

Doc. Number:

- Tentative Specification
- □ Preliminary Specification
- □ Approval Specification

MODEL NO.: P080LDE SUFFIX: DF1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note :	
Please return 1 copy for your corsignature and comments.	nfirmation with your

Approved By	Checked By	Prepared By
	Willy Yeh 2014/09/02	SingYi Li 2014/09/02

CONTENTS

1. General Description of TDM	5
1.1 Overview	5
1.2 General Specifications of TDM	5
1.3 General TP Sensor Specifications	6
1.4 WIS Specifications	7
2. Optical Characteristics	8
2.1 Test Condition of LCM	8
2.2 Optical Specifications of TDM	8
3.Electrical Specifications of LCM	
3.1 Function Block Diagram	12
3.2 Interface Connections	12
3.3 LCD Electronics Specifications	
3.4 LEC Converter Specifications	
3.5 Electrical Characteristics	
3.6 LED Converter Specifications	16
3.7 Backlight Unit	16
3.8 Signal Timing Specifications	17
3.9 MIPI Interface DC/AC Characteristic	18
3.10 MIPI interface (Mobile Industry Processing Interface)	25
4. Electrical Specifications of TPM	28
4.1 General Specifications of TPM	28
4.2 Electrical Characteristics of TPM	30
4.3 TPM Pin Assignment	30
5. Mechanical Specifications of TDM	32
5.1 Mechanical Specifications of LCM	32
5.2 TDM Explosion Figure	33
5.3 TDM Drawing	34
6. Absolute Maximum Ratings of LCM	37
6.1 Absolute Ratings of Environment	37
6.2 Electrical Absolute Ratings	37

7. Reliability Test Item of TDM	38
8. Shipping and Package of TDM	39
8.1 Label Position	39
8.2 Label Definition of TDM	40
8.3 Package of TDM	42
9. Precautions	45
9.1 Handing Precautions	
9.2 Storage Precautions	45
9.3 Operation Precautions	

REVISION HISTORY

Version	Date	Page	Description
V 1	04, 16, 2014	All	First Release
V 1.1	07, 25, 2014	34, 35	RA Spec
V1.2	09, 01, 2014	5~44	Update Chapter 1~8

1. General Description of TDM

1.1 Overview

P080LDE-DF1 is a 8" (8" diagonal) TDM (Touch Display Module) with **10 pins I2C** interface for Touch Module and TFT Liquid Crystal Display module with LED Backlight unit and **45 pins MIPI** interface. This module supports 1200 x 1920 WUXGA mode.

1.2 General Specifications of TDM

Item	Specification	Unit	Note
Screen Size	8" diagonal		
Driver Element	a-si TFT active matrix	-	
Pixel Number	1200 x R.G.B. x 1920	pixel	
Pixel Pitch	0.0897 (H) x 0.0897 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16,777,216 (8bit color depth)	color	
Transmissive Mode	Normally black	-	
Luminance, White	LCM: 400	Cd/m2	
Luminance, write	TDM: 380	Cu/IIIZ	
	LCM: Total 2.3 W (Max.)		10 fingers
Power Consumption	(panel 0.55 W (Max.), BL 1.75W (Max.))		touches
	TDM: 2.4 W (Max.)		touches
Touch Technology	Projected Capacitive		
0,	Multi-Touch Panel		
Number of Channels	25(X)-39(Y)		
TPM/LCM Bonding Type	Direct-bond		UV-OCA: 0.2mm
Numbers of Touch	10 Points		
TP Reporting rate	<60 Hz (16.7 ms)		
Minimum stylus diameter	5 mm		
Sensor Glass	Soda lime 0.7mm		
TP unit cell pattern pitch	4.3456x 4.4415	mm	
size		111111	
TP Type	WIS		
Touch Module Outline	119.44 x 211.8 (mm)	mm	
Touch Active Area	108.64 x 173.224 (mm)	mm	
Touch Windows Visible	108.64 x 173.224 (mm)	mm	
Area	,	111111	
TP Module Thickness	TPM:0.7 (w/o FPCA)		UV-OCA:
(Max)	1.8 (W/i FPCa)	mm	0.2mm
(Wax)	TPM:0.7		0.2111111
	LCM:82.2		
Module Weight (Max)	TPM:46	g	
	TDM:128.2		
AR/AG/ASF	No		

Note (1) The specified power consumption (with converter efficiency) is under the conditions at **VDD= 3.3V, fv = 60 Hz, Brightness (5 point average) = 400nits, I_{F_LED} = 22mA and Ta = 25 ± 2 °C, whereas white pattern is displayed.**

Version 1.2 2 September 2014 5 / 46

1.3 General TP Sensor Specifications

Item	Specification	Unit	Note
Bridge-Type	Metal		
Process Flow	BM/ITO/DE/ME/PAS		
BM Thickness	1.4	um	
BM OD	>4		
ITO Resistance	<50	ohm/sq.	
DE Thickness	1.6	um	
ME Resistance	≤ 0.35	ohm/sq	
PAS Thickness	2.3	um	
Index Match Film	Yes		
Transmittance, T%	Among visible light spectrum > 87%		
Transmittance, a*	-1.5 < a* < 1.5		
Transmittance, b*	-2 < b* < 4.5		
Reflection, R%	NA		
Reflection, a*	NA		
Reflection, b*	NA		
Haze	< 1%	%	
Number of Channels	25(X)-39(Y)		
Trace line/space	20/25		

1.4 WIS Specifications

Item	Specification	Unit	Note
Cover Lens Thickness	0.7±0.05	mm	
Cover Type	Glass (WIS)		
Cover Lens Substrate	Soda-lime		
ASF	Without		
Light Sensor ink	IR Ink Transmittance : 10%-20% at 540nm & > 70% at 850nm (Black color)		
Logo	No		
Logo method	NA		
Logo Color	NA		
Drill Hole	No		
Function Hole	Camera/IR Hole		
Hole Optical Spec.	NA		
4PB(B10) (Mpa)	160		
Surface Treatment	No		
Pencil hardness	>7H		
Light Sensor Hole Transmittance	10%-20% at 540nm & > 70% at 850nm		
Corner spec	四角雲形線		
2nd strength	No		
Outline Dimension (mm)	119.44 x 211.8	mm	
Visible Area (mm)	108.64 x 173.224	mm	
Weight(g)	Glass :44.3g FPC:0.6g OCA:7.4g		

2. Optical Characteristics

2.1 Test Conditions of LCM

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	VDDI	1.8	V		
	VCI	3.3	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current	IL	66	mA		

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5)

2.2 Optical Specifications of TDM

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Rat	io	CR		600	800	-	-	(2),(5) , (7)
Response Ti	me	$T_{R+}T_{F}$		-	25	30	ms	(3),(7)
СР	LCM			340	400		Cd/	(4), (6),
Luminance of White	TDM	L _{CP}	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	320	380	-	m ²	(7)
	White	Wx	R=G=B=255		(0.313)			
	VVIIIC	Wy	Gray		(0.329)			
	Red	Rx	scale .		0.613			(4), (6), (7)
Color	rcu	Ry		Тур –	0.350	Typ +	-	
Chromaticity	Green	Gx Gy		0.03	0.325	0.03	-	
	Oreen				0.605			
	Blue	Bx			0.152			
	Dide	Ву			0.071			
NTSC			$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	55	60	-	%	(5), (6), (7)
Viewing	Horizontal	χ- + χ+	OD > 40	170	178	-	al a a	(1), (5),
Angle	Vertical	y- + y+	CR > 10	170	178	-	deg.	(7)
White Variation Points	on of 9	δW_{9p}	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	80		-	%	(5), (6), (7)
White Variation	on of 13	δW _{13p}	θ _x =0°, θ _Y =0°	67		-	%	(5), (6), (7)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Center Point Luminance of White (L_{CP}): Measure the luminance of gray level 63 at center point

 $L_{CP} = L(5)$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 13 points $\delta W_{9p} = \{ \text{Minimum [L (1)} \sim \text{L (13)]} / \text{Maximum [L (1)} \sim \text{L (13)]} \}^* 100\%$ Active area

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

3. Electrical Specifications of LCM

3.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: I-PEX 20584-045E-01

3.2 ABSOLUTE MAXIMUM RATINGS

3.2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Noto		
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+70	°C	(1)	
Operating Ambient Temperature	T _{OP}	-10	+60	°C	(1), (2)	

Note (1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be -10 °C min. and 70 °C max.

3.3 ELECTRICAL ABSOLUTE RATINGS

3.3.1 TFT LCD MODULE

Item	Symbol	Va	ue	Unit	Note
item		Min.	Max.		
Power Supply Voltage	VDD	+2.7	+3.6	٧	(1)

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

3.4. ELECTRICAL SPECIFICATIONS

3.4.1 FUNCTION BLOCK DIAGRAM

3.4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	I/O	Description	Remark
1	NC(WPN)		No connection, please keep it floating	
2	GND	Р	Ground	
3	ID1		Ground	
4	ID2		No connection	
5	NC(SDA)		No connection, please keep it floating	
6	NC(SCL)		No connection, please keep it floating	
7	NC(MTP)		No connection, please keep it floating	7.4V~7.6V
8	GND	Р	Ground	
9	ID3		Ground	
10	NC(BIST)		No connection, please keep it floating	1.4V~1.6V
11	GND	Р	Ground	
12	NC		No connection	
13	NC		No connection	
14	VDD	Р	3.3V input	3.0V~3.6V
15	VDD	Р	3.3V input	3.0V~3.6V
16	VDD	Р	3.3V input	3.0V~3.6V
17	VDD	Р	3.3V input	3.0V~3.6V
18	GND	Р	Ground	
19	NC		No connection	
20	RESET	I	Device reset signal	3.0V~3.6V
21	GND	Р	Ground	
22	D0_P	I	MIPI data 0 positive signal	
23	D0_N	I	MIPI data 0 negative signal	
24	GND	Р	Ground	

25	D1_P	ı	MIPI data 1 positive signal	
26	D1_N	I	MIPI data 1 negative signal	
27	GND	Р	Ground	
28	CLK_P	I	MIPI CLK positive signal	
29	CLK_N	ı	MIPI CLK negative signal	
30	GND	Р	Ground	
31	D2_P	ı	MIPI data 2 positive signal	
32	D2_N	I	MIPI data 2 negative signal	
33	GND	Р	Ground	
34	D3_P	I	MIPI data 3 positive signal	
35	D3_N	ı	MIPI data 3 negative signal	
36	GND	Р	Ground	
37	LED3	Р	LED Cathode	
38	LED2	Р	LED Cathode	
39	LED1	Р	LED Cathode	
40	GND	Р	Ground	
41	VLED	Р	LED Anode	22.4V
42	VLED	Р	LED Anode	22.4V
43	VLED	Р	LED Anode	22.4V
44	GND	Р	Ground	
45	NC		No connection	

Note (1) The first pixel is odd as shown in the following figure.

Note (2) Normal operation/BIST pattern selection. (Control by MIPI LP Command)

3.5 Electrical Characteristics

3.5.1 LCD ElectronicsSpecifications

Item		Symbol		Values		Unit	Remark
item		Symbol	Min.	Тур.	Max.	Oiiit	Remark
Power supply voltage		VDD	3.0	3.3	3.6	V	
VDD High level input	voltage	V _{IH1}	0.7 VDD	-	VDDI	V	For I/O girquit
VDD Low level input voltage		V _{IL1}	0	-	0.3 VDD	V	For I/O circuit
Power Supply Current	White	I _{VDD}		116	120	mA	Note (2)

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) The specified power supply current is under the conditions at VDD = 3.3 V,Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Active Area

3.6 LED Converter Specifications

N/A

3.7 Backlight Unit

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
raiailletei	Syllibol	Min.	Min. Typ.			
LED Light Bar Power Supply Voltage	VL			23	V	/1)/2)/Duty/100%)
LED Light Bar Power Supply Current	lL	-	66	-	mA	(1)(2)(Duty100%)
Power Consumption	PL	-		1.5	W	(3)
LED Life Time	L_BL	15,000	-	-	Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 22 mA(Per EA) until the brightness becomes $\leq 50\%$ of its original value.

3.8 Signal Timing Specifications

Signal	Item	Symbol	Min.	Тур.	Max.	Unit
DCLK	Frequency	1/Tc	-	159.4	-	MHz
	Vertical Total Time	TV	1981	1981	1982	TH
	Vertical Active Display Period	TVD	-	1920	-	TH
	Vertical Front Porch Period	TVFP	35	35	36	TH
	Vsync pulse width	TVPW	1	1	1	TH
DE	Vertical Back Porch Period	TVBP		25		TH
	Horizontal Total Time	TH	1275	1341	1342	Tc
	Horizontal Active Display Period	THD	-	1200	-	Tc
	Horizontal Front Porch Period	THFP	42	80	81	Tc
	Horizontal pulse width	THPW	1	1	1	Tc
	Horizontal Back Porch Period	THBP	32	60	60	Tc
	MIPI Data frequency	FDATA	955	999	1000	MHz

Note1: DCLK = TV x TH x frame rate, and frame rate = 60Hz.

Note 2: The CABC and CE function were disabled.

3.9 MIPI Interface DC/AC Characteristic

3.9.1 MIPI Interface DC characteristic

Parameter	Cumbal	Conditions	S	Specification		UNIT
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
MIPI digital operation current	Ivccif	VCC=VCC_IF=1.5V, Data Rate=500Mbps,	-	ı	24	mA
MIPI digital stand-by current	Ivccifst	VCC_IF input current. All input signal are stopped.	-	200	1	uA
	MIP	I Characteristics for High Speed Red	ceiver			
Single-endedl input low voltage	VILHS		-40	1	1	mV
Single-endedl input high voltage	VIHHS		-	1	460	mV
Common-mode voltage	VCMRXDC		155	1	330	mV
Differential input impedance	Zıd		80	100	125	ohm
Differential input high threshold	VIDTH			1	70	mV
Differential input low threshold	VIDTL		70	1	ı	mV
	М	IPI Characteristics for Low Power M	ode			
Pad signal voltage range	Vı		-50	1	1350	mV
Ground shift	VGNDSH		-50		50	mV
Output low level	Vol		-150		150	mV
Output high level	Vон		1.1	1.2	1.3	V

Note 1) VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C

Figure :MIPI DC Diagram

Version 1.2 2 September 2014 18 / 46

3.9.2 MIPI AC Characteristic

3.9.2.1 LP Transmission

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	Sı	UNIT		
Parameter	Symbol	MIN	TYP	MAX	UNIT
15%-85% rise time and fall time	TRLP / TFLP	-	-	25	ns
Pulse width of the LP exclusive-OR clock	TLP-PULSE-TX	-50	-	-	ns
Period of the LP exclusive-OR clock	Tlp-per-tx	100			ns

Figure :LP Transmitter Timing Definitions

3.9.3 High Speed Transmission

3.9.3.1 Data-Clock Timing Specifications

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	Sp	UNIT		
	Syllibol	MIN	TYP	MAX	UNIT
UI instantaneous	UIINST	1.0	1	12.5	ns
Data to Clock Setup Time	Тѕетир	0.25	-	-	UIINST
Data to Clock Hold Time	THOLD	0.25	-	-	UIINST

Note:

Data to clock setup time/ hold time cannot reach those listed in above "Data-Clock Timing Specifications" may cause abnormal display.

Figure : Data to Clock Timing Definitions

3.9.3.2 High-Speed Data Transmission in Bursts

3.9.3.2.1 High-Speed Data Transmission Operation Timing Parameters

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	Sp	UNI		
r ai ailletei	Syllibol	MIN	TYP	MAX	T
Time to drive LP-00 to prepare for HS transmission	Ths-prepare	40+4UI	1	85+6UI	ns
Time from start of tHS-TRAIL or tCLK-TRAIL period to start of LP-11 state	Теот	-	ı	105+12U I	ns
Time to enable Data Lane receiver line termination measured from when Dn cross VIL,MAX	Ths-term-en	-	1	35+4UI	ns
Time to drive flipped differential state after last payload data bit of a HS transmission burst	Ths-trail	60+4UI	-	-	ns
Time-out at RX to ignore transition period of EoT	Ths-skip	40		55+4UI	ns
Time to drive LP-11 after HS burst	Ths-exit	100	-	-	ns
Length of any Low-Power state period	TLPX	50	-	1	ns
Sync sequence period	Ths-sync	-	8UI	-	ns
Minimum lead HS-0 drive period before the Sync sequence	Ths-zero	105+6UI	-	-	ns

Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. UI means Unit Interval, equal to one half HS clock period on the Clock Lane.
- 3. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

Version 1.2 2 September 2014 20 / 46

Figure : High-Speed Data Transmission in Bursts

3.9.3.3 High-Speed Clock Transmission

3.9.3.3.1 Switching the Clock Lane Operation Timing Parameters

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	Spe	cificati	on	UNIT
Farameter	Symbol	MIN	TYP	MAX	UNIT
Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	Tclk-post	60+52UI	ı	-	ns
Detection time that the clock has stopped toggling	Tclk-miss	ı	1	60	ns
Time to drive LP-00 to prepare for HS clock transmission	Tclk-prepare	38	ı	95	ns
Minimum lead HS-0 drive period before starting Clock	Tclk-prepare +Tclk-zero	300	ı	ı	ns
Time to enable Clock Lane receiver line termination measured from when Dn cross VIL,MAX	Ths-term-en			38	ns
Minimum time that the HS clock must be set prior to any associated date lane beginning the transmission from LP to HS mode	Tclk-pre	8	-	-	UI
Time to drive HS differential state after last payload clock bit of a HS transmission burst	Tclk-trail	60	ı	-	ns

Note:

The DSI host processor shall support continuous clock on the Clock Lane for NT chip that require it, so the host processor needs to keep the HS serial clock running.

Figure :Switching the Clock Lane between Clock Transmission and Low-Power Mode

3.9.3.4 LP11 timing request between data transformation

When Clock lane of DSI TX chip always keeps High speed mode, then Clock lane never go back to Low power mode. If Date lane of TX chip needs to transmit the next new data transmission or sequence, after the end of Low power mode or High speed mode. Then TX chip needs to keep LP-11 stop state before the next new data transmission, no matter in Low power mode or High speed mode. The LP-11 minimum timing is required for RX chip in the following 9 conditions, include of LP - LP, LP - HS, HS - LP, and HS – HS. This rule is suitable for short or long packet between TX and RX data transmission.

Parameter	Symbol	Spe	UNIT		
raidilleter	Syllibol	MIN	TYP	MAX	UNIT
LP-11 delay to a start of the new Escape Mode Entry	TDEE	150	-	-	ns

(2) Timing between LP - HS command

Parameter	Symbol	Specific	cation		UNIT
Farameter	Syllibol	MIN	TYP	MAX	UNII
LP-11 delay to a start of the Entering High Speed Mode	TDEH	Max(150,32UI)	-	-	ns

(3)Timing between HS - LP command

Parameter	Symbol	Specific	cation		UNIT
r ai ailletei	Syllibol	MIN	TYP	MAX	ONIT
LP-11 delay to a start of the Escape Mode Entry	TDHE	Max(150,32UI)	-	-	ns

Version 1.2 2 September 2014 23 / 46

Parameter	Symbol	Specific	cation		UNIT
raidilletei	Syllibol	MIN	TYP	MAX	ONIT
LP-11 delay to a start of the Entering High Speed Mode	Тонн	Max(150,32UI)	-	-	ns

3.10 MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards. DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode. Which mode is used depends on the architecture and capabilities of the peripheral. The mode definitions reflect the primary intended use of DSI for display interconnect, but are not intended to restrict DSI from operating in other applications.

Command Mode refers to operation in which transactions primarily take the form of sending commands and data to a peripheral, such as a display module, that incorporates a display controller. The display controller may include local registers. Systems using Command Mode write to, and read from the registers. The host processor indirectly controls activity at the peripheral by sending commands, parameters and data to the display controller. The host processor can also read display module status information. Command Mode operation requires a bidirectional interface.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

Note: The NT51021 IC only supports Video Mode operation.

3.10.1 MIPI Lane Configuration

	MCU (Master) Display Module (Slave)				
	Unidirectional Lane				
Clock Lane+/-	■ Clock Only				
	■ Escape Mode(ULPS Only)				
	Unidirectional Lane				
Data Lancou	■ Forward High-Speed				
Data Lane0+/-	■ Forward Escape Mode				
	■ Forward LPDT				
Data Lane1+/-	Unidirectional				
Data Lane 1+/-	■ Forward High speed				
Data Lane2+/-	Unidirectional				
Data Lane2+/-	■ Forward High speed				
Data Lang2 L/	Unidirectional				
Data Lane3+/-	■ Forward High speed				

The connection between host device and display module is as reference.

3.11 Input AC Characteristic

a. VDD/GRB AC characteristic:

VDD= 3..3V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter Symbol	Symbol	Min.	Тур.	Max.	Unit	Conditions
VDD power source slew time	Tpor	-	-	20	ms	From 0V to 90% VDD
RESET active pulse width	Treset	1	-	-	ms	VDD=3.3V
VDD resettle time	Tres	1	-	-	S	

3.12 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

a. Power on Timing Sequence:

VDD=3.0 to 3.6V

<u>Version 1.2</u> 2 September 2014 **26 / 46**

Symbol	Value			Value	Unit	Remark
Symbol	Min.	Тур.	Max.	Oill	Kelliaik	
t1	-	-	2	ms		
t2	5	-	-	ms		
t3	20	-	-	ms		
t4	100	-	-	ms		

b. Power off:

VDD=3.0 to 3.6V.

Symbol		Value		Unit	Remark
	Min.	Тур.	Max.		
t5	0	-	-	ms	
t6	0	-	1	ms	
t7	100	-	•	ms	
t8	20	-	-	ms	

- 4. Electrical Specifications of TPM
 - 4.1 General Specifications of TPM

TP Technology	Projected Capacitive Multi-Touch Panel		
Sensing technology	Projected mutual		
Touch Structure	WIS		
Touch Channels (X - Y)	25-39		
Sensor Pitch (X - Y)	X 4.3456mm/Y 4.4415mm		
FPC Golden Finger shape	Follow: DF37B-10DP-0.4V(51) HRS		
Supply Voltage	VDD 3.3V		

Version 1.2 2 September 2014 28 / 46

4.2 Electrical Characteristics of TPM

Item	Spec				
Supply Voltage	VDD 3.3V				
Interface	12C				
Chipset	Nova NT11003_QFN	188B			
Interface Connector to	DF37B-10DP-0.4V(5	51) HRS			
system					
Interface Connector Pin	Pin no.				
Assignment	1	ESD_GND			
(BTB CNT)	2	GND			
	3	VDDIO(1.8V)			
1 € 2 €	4	I2C Clock (SCK)			
3-/ BTB 4-/	5	I2C Data (SDA)			
5+ CNT+ 6+	6	I2C Interrupt (INT)			
7↔ 8↔	7	TP_Sync			
94 104	8	GND			
	9	RST			
	10	VDDIN (3.3V)			
Support OS	Android				
FPC	2 Layers; 1/3 oz				

4.3 TPM Pin Assignment

4.3.1 Sensor & FPCa Pin Assignment

金手指端 Pin Assignment

pin #	pin assignment						
1	GND	22	TX20	43	RX37	64	RX16
2	GND	23	TX21	44	RX36	65	RX15
3	TX1	24	TX22	45	RX35	66	RX14
4	TX2	25	TX23	46	RX34	67	RX13
5	TX3	26	TX24	47	RX33	68	RX12
6	TX4	27	TX25	48	RX32	69	RX11
7	TX5	28	NA	49	RX31	70	RX10
8	TX6	29	NA	50	RX30	71	RX9
9	TX7	30	NA	51	RX29	72	RX8
10	TX8	31	NA	52	RX28	73	RX7
11	TX9	32	ESD_GND	53	RX27	74	RX6
12	TX10	33	ESD_GND	54	RX26	75	RX5
13	TX11	34	ESD_GND	55	RX25	76	RX4
14	TX12	35	NA	56	RX24	77	RX3

Version 1.2 2 September 2014 30 / 46

15	TX13	36	NA	57	RX23	78	RX2
16	TX14	37	NA	58	RX22	79	RX1
17	TX15	38	NA	59	RX21		
18	TX16	39	GND	60	RX20		
19	TX17	40	GND	61	RX19		
20	TX18	41	RX39	62	RX18		
21	TX19	42	RX38	63	RX17		

(b)Connector Pin Assignment

pin #	pin assignment
1	ESD_GND
2	GND
3	VDDIO(1.8V)
4	SCK
5	SDA
6	INT
7	TP_Sync
8	GND
9	RST
10	VDDIN(3.3V)

4.3.2 TP Performance

Test parameter	Spec
Multi-touch	10 point
Report Rate (continuous)	<16.7ms
Response time (idle to active)	<35ms
Linearity with 5mm finger	< 1mm on X, Y and Diagonal at 5mm/sec and 50mm/sec speed
Accuracy with 5mm finger	< 1mm tested on 13 points by touching each point 10 times
Finger Separation	2 fingers when distance is >12mm
Jitter	< 1mm with stationary contact for 5 secs
Noise suppression capability	40Vpp common mode noise with 50-500KHz noise requency with 5ø and 22ø

5. Mechanical Specifications of TDM

5.1 Mechanical Specifications of LCM

Item		Min.	Тур.	Max.	Unit	Note
Module Size	Horizontal (H)	114.3	114.6	114.9	mm	
	Vertical (V)	184.3	184.6	184.9	mm	
	Thickness (T)			2.15(w/o	mm	Module
				FPCA)		Size
				3.65(w/		
				FPCA)		
CF Polarizer	Horizontal	110.14	110.44		mm	CF
						Polarizer
	Vertical	175.32	175.62		mm	
Active Area	Horizontal	107.59	107.64	107.69	mm	Active
						Area
	Vertical	172.174	172.224	172.274	mm	
Weight		-	_	90	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

5.2 TDM Explosion Figure

5.3 TDM Drawing

6. Absolute Maximum Ratings of LCM

6.1 Absolute Ratings of Environment

Item	Symbol	Value		Unit	Note
item	Syllibol	Min.	Max.	Ullit	NOLE
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	-10	+50	°C	(1), (2)

Note (1) (a) 90 %RH Max.

- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) The temperature of panel surface should be -10 °C min. and 60 °C max.

6.2 Electrical Absolute Ratings

6.2.1 TFT LCD Module

Item	Symbol	Value		Unit	Note
Item	Symbol	Min.	Max.	Offic	NOLE
Power Supply Voltage	VDD	+2.7	+3.6	V	(1)

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

7. Reliability Test Item of TDM

Test Item	Test Condition	Note	
Temperature Humidity Bias (THB)	Ta= 50℃ , 80%RH, 240hours		
High Temperature Operation (HTO)	Ta= 50°C , 240hours		
Low Temperature Operation (LTO)	Ta= -10℃,240hours		
High Temperature Storage (HTS)	Ta= 60°C , 240hours	(1) (2)	
Low Temperature Storage (LTS)	Ta= -20℃,240hours		
Thermal Shock Test (TST)	-20°ℂ/30min , 60°ℂ / 30min , 100 cycles		
ESD Toot/Operation)	150pF, 330Ω, 1sec/cycle Condition 1 : Contact Discharge, ±8KV	(1)	
ESD Test(Operation)	150pF, 330Ω, 1sec/cycle Condition 2 : Air Discharge, ±12KV	(1)	
(non-operation) 220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z		(1) (3)	
Vibration (Non-Operating)	(non-operation) 1.5G/10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1) (3)	

Note (1) Criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hours.

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

8. Shipping and Package of TDM

8.1 Label Position

(a) Label: Means TDM Label

(b) Module Label: Means LCM Label

8.2 Label Definition of TDM

(a) Carton Label Format

(a) Carton ID: ATXYMDLNNN

(b)SN Label Definition

- (a) Model Name: P080LDE-DF1
- (b) Revision: Rev. A0, for example: C1, C2 ...etc.
- (c) Serial ID: X X X X X X X Y M D L N N N N

- (d) Production Location: MADE IN XXXX. XXXX stands for production location.
- (e) UL logo: "AAAA" especially stands for panel manufactured by INX China satisfying UL requirement.

"LEOO" and "COCKN" is the INX's UL factory code for Ningbo factory..

8.3 Package of TDM

(a) Packing

- (1) Box Dimensions: 435(L)*350(W)*275(H)
- (2) 30 Modules/Carton

Figure. 7-1 Packing method

Figure. 7-2 Packing method

(b) Un-Packing

Figure. 7-3 Un-Packing method

9. Precautions

9.1 Handing Precautions

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

9.2 Storage Precautions

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

9.3 Operation Precautions

(1) Do not pull the I/F connector in or out while the module is operating.

- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.
- (4) ight unit.