WHAT IS CLAIMED IS:

1		1.	A method for manufacturing a trench-type MOSFET, the method		
2	comprising:				
3		provid	ding a semiconductor substrate and forming a trench on the		
4	semiconductor substrate;				
5		formi	ng a first oxide layer on a bottom and sidewalls of the trench and on		
6	the semicond	onductor substrate;			
7		formi	ng a bottom anti-reflective coating (BARC) layer in the trench to		
8	cover the first	irst oxide layer;			
9		forming a photoresist layer on the bottom anti-reflective coating layer;			
10	removing the photoresist layer;				
11		remov	ving the bottom anti-reflective coating layer; and		
12		remov	ving the first oxide layer on the sidewalls of the trench to form a		
13	bottom oxide layer on the bottom of the trench.				
1		2.	The method of claim 1 wherein providing the semiconductor		
2	substrate and forming the trench comprises:				
3		formi	ng a pad oxide layer, a silicon nitride layer, and a mask oxide layer		
4	sequentially on the semiconductor substrate; and				
5		remov	ving portions of the pad oxide layer, the silicon nitride layer, the mask		
6	oxide layer, a	nd the	semiconductor substrate to form the trench.		
1		3.	The method of claim 2 wherein removing the portions is performed		
2	by a photolith	ograph	y process and an etching process.		
1		4.	The method of claim 2 further comprising after removing the		
2	portions:				
3	forming a sacrificial oxide layer on the sidewalls of the trench; and				
4		remov	ving the sacrificial oxide layer.		
1		5.	The method of claim 4 wherein the sacrificial layer is formed by		
2	thermal oxidation.				
1		6.	The method of claim 4 wherein the sacrificial oxide layer is		
2	removed by e	tching.			

1	7. The method of claim 1 wherein the first oxide layer is formed by		
2	chemical vapor deposition (CVD).		
1	8. The method of claim 1 wherein the bottom anti-reflective layer is		
2	formed by deposition.		
۷	formed by deposition.		
1	9. The method of claim 1 wherein the bottom anti-reflective layer is		
2	removed by etching.		
1	10. The mostle defeation 0 colonia the bettern anti-material leaves in		
1	10. The method of claim 9 wherein the bottom anti-reflective layer is		
2	removed by etching using a chemical compound which contains sulfuric acid.		
1	11. The method of claim 1 wherein the first oxide layer is removed by		
2.	etching.		
1	12. The method of claim 11 wherein the first oxide layer is removed by		
2	etching using a chemical compound which contains hydrofluoric acid.		
1	13. The method of claim 1 further comprising depositing a polysilicon		
2	layer in the trench after removing the first oxide layer on the sidewalls of the trench.		
2	layer in the trenen after removing the first oxide layer on the sidewans of the trenen.		
1	14. A method for manufacturing semiconductor devices, the method		
2	comprising:		
3	providing a semiconductor substrate having a trench on the semiconductor		
4	substrate;		
5	forming a first oxide layer on a bottom and sidewalls of the trench and on		
6	the semiconductor substrate;		
7	forming a bottom anti-reflective coating (BARC) layer in the trench to		
8	cover the first oxide layer;		
9	forming a photoresist layer on the bottom anti-reflective coating layer; and		
10	removing the photoresist layer, the bottom anti-reflective coating layer, and		
11	the first oxide layer on the sidewalls of the trench to form a bottom oxide layer on the		
12	bottom of the trench.		
1	15. The method of claim 14 wherein providing the semiconductor		

substrate having the trench comprises:

3	forming a pad oxide layer, a silicon nitride layer, and a mask oxide layer				
4	sequentially on the semiconductor substrate; and				
5	removing portions of the pad oxide layer, the silicon nitride layer, the mask				
6	oxide layer, and the semiconductor substrate to form the trench.				
1	16. The method of claim 15 further comprising after removing the				
2	portions:				
3	forming a sacrificial oxide layer on the sidewalls of the trench; and				
4	removing the sacrificial oxide layer.				
1	17. The method of claim 15 further comprising depositing a polysilico				
2	layer in the trench after removing the first oxide layer on the sidewalls of the trench.				
1	18. A method for manufacturing semiconductor devices, the method				
2	comprising:				
3	providing a semiconductor substrate having a trench on the semiconductor				
4	substrate;				
5	forming a first oxide layer on a bottom and sidewalls of the trench and on				
6	e semiconductor substrate;				
7	forming a bottom anti-reflective coating (BARC) layer over the first oxide				
8	layer, the bottom anti-reflective coating layer filling the trench;				
9 10	forming a photoresist layer on the bottom anti-reflective coating layer; and removing the photoresist layer, the bottom anti-reflective coating layer, are				
11	the first oxide layer on the sidewalls of the trench to form a bottom oxide layer on the				
12	bottom of the trench.				
12	octom of the trenen.				
1	19. The method of claim 18 wherein providing the semiconductor				
2	substrate having the trench comprises:				
3	forming a pad oxide layer, a silicon nitride layer, and a mask oxide layer				
4	sequentially on the semiconductor substrate;				
5	removing portions of the pad oxide layer, the silicon nitride layer, the mas				
6	oxide layer, and the semiconductor substrate to form the trench;				
7	forming a sacrificial oxide layer on the sidewalls of the trench; and				
8	removing the sacrificial oxide layer.				

- 1 20. The method of claim 18 further comprising depositing a polysilicon
- 2 layer in the trench after removing the first oxide layer on the sidewalls of the trench.