Algorítmica (2015-2016)

Grado en Ingeniería Informática Universidad de Granada

Práctica 3-Primera Parte: Minimizando el número de visitas al proveedor

Francisco Carrillo Pérez, Borja Cañavate Bordons, Miguel Porcel Jiménez, Jose Manuel Rejón Santiago, Jose Arcos Aneas 16 de abril de 2016

Índice

1.	Introducción	3
2.	Resolución del problema	3
3.	Elementos de la solución al problema	3
	3.1. Conjunto de candidatos	
	3.2. Conjunto de seleccionados	
	3.3. Función solución	
	3.4. Función de factibilidad	
	3.5. Función selección	4
	3.6. Función objetivo	4
4.	Pseudocódigo	4

Índice de figuras

Índice de tablas

1. Introducción

El problema que vamos a tratar de resolver desde la aproximación de un algoritmo Greedy consiste en minimizar el número de visitas que debe realizar un granjero a su proveedor, es decir, nos encontramos frente a un problema de optimización.

La máquina que hemos utilizado tiene las siguientes características:

■ Procesador: Intel Core i5-3337U (2.7GHz x 2)

■ Memoria RAM: 4GB

■ Disco Duro: 500GB 5400 rpm

• SO: Manjaro Linux 15.2 Capella 64 bits

2. Resolución del problema

Tenemos un granjero cuyo fertilizante dura R días. Además conocemos los días en los que abre la tienda. Con estas características podemos tener dos posibilidades para resolver este problema:

- Buscar la fecha mas cercana dentro del intervalo R
- Buscar la fecha mas lejana dentro del intervalor R

Como lo que queremos es optimizar, es decir, reducir el número de viajes que debe dar el granjero descartamos la primera opción y nos centramos en la segunda.

3. Elementos de la solución al problema

3.1. Conjunto de candidatos

El conjunto de candiatos serán aquellos días en los que la tienda se encuentre abierta.

3.2. Conjunto de seleccionados

El conjunto de seleccionados serán los días elegidos para acudir a la tienda.

3.3. Función solución

Nuestra función solución será si han pasado todos esos días y no nos hemos quedado sin fertilizante, lo que significará que hemos maximizado el número de viajes.

3.4. Función de factibilidad

Sabremos que no hay solución, si dentro del intervalo R no hay ninguna tienda a la que acudir.

3.5. Función selección

Se seleccionará el día más lejano de los posibles.

3.6. Función objetivo

La solución devolverá una lista, con los dias en los que el granjero irá a la tienda.

4. Pseudocódigo