ECE/CS/ME 539 - Fall 2024 — Activity Solution 2

Problem 1

(a) Proof that the Transpose of the Transpose of Any Matrix is the Matrix Itself Given any matrix **A**, we want to prove that:

$$(\mathbf{A}^{\top})^{\top} = \mathbf{A}.$$

Proof:

The transpose of a matrix **A**, denoted \mathbf{A}^{\top} , is defined such that if $\mathbf{A} = [a_{ij}]$, then:

$$\mathbf{A}^{\top} = [a_{ji}].$$

Now, the transpose of \mathbf{A}^{\top} , denoted $(\mathbf{A}^{\top})^{\top}$, is obtained by swapping the rows and columns of \mathbf{A}^{\top} :

$$(\mathbf{A}^{\top})^{\top} = [(a_{ji})^{\top}] = [a_{ij}] = \mathbf{A}.$$

Hence, we have shown that:

$$(\mathbf{A}^\top)^\top = \mathbf{A}.$$

(b) Proof that the Transpose of the Sum of Two Matrices is Equal to the Sum of Their Transposes

Given two matrices **A** and **B**, we want to prove:

$$(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}.$$

Proof:

Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$. Then, the sum of \mathbf{A} and \mathbf{B} is:

$$\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}].$$

Taking the transpose of the sum:

$$(\mathbf{A} + \mathbf{B})^{\top} = [a_{ij} + b_{ij}]^{\top} = [a_{ji} + b_{ji}].$$

But this is exactly:

$$[a_{ii}] + [b_{ii}] = \mathbf{A}^{\top} + \mathbf{B}^{\top}.$$

Thus, we have:

$$(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}.$$

(c) Determine if $\mathbf{A} + \mathbf{A}^{\top}$ is Always Symmetric for Any Square Matrix A

To check if $\mathbf{A} + \mathbf{A}^{\top}$ is symmetric, we need to show that:

$$(\mathbf{A} + \mathbf{A}^{\top})^{\top} = \mathbf{A} + \mathbf{A}^{\top}.$$

Proof:

Using the result from part (b):

$$(\mathbf{A} + \mathbf{A}^{\top})^{\top} = \mathbf{A}^{\top} + (\mathbf{A}^{\top})^{\top}.$$

From part (a), we know that:

$$(\mathbf{A}^{\top})^{\top} = \mathbf{A}.$$

So:

$$(\mathbf{A} + \mathbf{A}^{\top})^{\top} = \mathbf{A}^{\top} + \mathbf{A} = \mathbf{A} + \mathbf{A}^{\top}.$$

Since the transpose of $\mathbf{A} + \mathbf{A}^{\top}$ is equal to itself, the matrix $\mathbf{A} + \mathbf{A}^{\top}$ is indeed symmetric.

(d) Show that DD^{\top} is Always Symmetric for Any Square Matrix D

We want to prove that:

$$(\mathbf{D}\mathbf{D}^{\top})^{\top} = \mathbf{D}\mathbf{D}^{\top}.$$

Proof:

Using the property of transposes for matrix products, we have:

$$(\mathbf{D}\mathbf{D}^{\top})^{\top} = (\mathbf{D}^{\top})^{\top}\mathbf{D}^{\top}.$$

From part (a), $(\mathbf{D}^{\top})^{\top} = \mathbf{D}$, so:

$$(\mathbf{D}\mathbf{D}^{\top})^{\top} = \mathbf{D}\mathbf{D}^{\top}.$$

Since the transpose of $\mathbf{D}\mathbf{D}^{\top}$ equals itself, $\mathbf{D}\mathbf{D}^{\top}$ is symmetric.

(e) Prove that if A+B=C and A and B are Symmetric, then C Must Also be Symmetric

Given that:

$$\mathbf{A} + \mathbf{B} = \mathbf{C}$$
, and $\mathbf{A} = \mathbf{A}^{\top}$, $\mathbf{B} = \mathbf{B}^{\top}$,

we want to prove that ${f C}$ is symmetric.

Proof:

Take the transpose of **C**:

$$\mathbf{C}^{\top} = (\mathbf{A} + \mathbf{B})^{\top}.$$

Using the result from part (b):

$$\mathbf{C}^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}.$$

Since $\mathbf{A} = \mathbf{A}^{\top}$ and $\mathbf{B} = \mathbf{B}^{\top}$, we have:

$$\mathbf{C}^{\top} = \mathbf{A} + \mathbf{B} = \mathbf{C}.$$

Thus, **C** is symmetric.

Problem 2

2a)

$$w_1x_1 + w_2x_2 + b = 0$$
, $w_1^2 + w_2^2 = 1 \implies (5,0) \implies 5w_1 + b = 0$, $(0,4) \implies 4w_2 + b = 0$

$$\implies w_1 = 0.8w_2 \implies (0.8w_2)^2 + w_2^2 = 1 \implies w_2 = \frac{1}{\sqrt{1.64}} = 0.7809 \implies w_1 = 0.6247, \quad b = -3.1235$$

2b) For any point x, let the closest point to it in H be x'. Similar to \mathbf{w} , the vector x' - x is perpendicular to the hyperplane. Thus, x' - x and \mathbf{w} must be parallel, and their cosine similarity must be:

$$d_{\cos}(x - x', \mathbf{w}) = \frac{\mathbf{w}^T(x - x')}{||\mathbf{w}|| \cdot ||x - x'||} = 1.$$

On the other hand, we know that x' lies in the hyperplane, so it must satisfy the hyperplane equation:

$$\mathbf{w}^T x' + b = 0 \implies \mathbf{w}^T x' = -b.$$

Replacing the latter equation into the former, we get the desired equation:

$$r = |x' - x| = \frac{\mathbf{w}^T(x - x')}{||\mathbf{w}||} = \frac{\mathbf{w}^T x - \mathbf{w}^T x'}{||\mathbf{w}||} = \frac{\mathbf{w}^T x + b}{||\mathbf{w}||}.$$

2c) Assuming that $||\mathbf{w}|| = 1$, we get:

$$r = \frac{\mathbf{w}^T x + b}{||\mathbf{w}||} = \frac{\mathbf{w}^T [0, 0] + b}{||\mathbf{w}||} = \frac{b}{||\mathbf{w}||} = b.$$

Thus, the distance of the hyperplane to the origin is given by r = |b|.

2d) Given the formula in (2b), and substituting the coordinates of point C = (4.5, 3), we obtain:

$$r = 4.5w_1 + 3w_2 + b = 2.03035$$

Note that if we substitute the coordinate of the origin (0,0) into g(x), we have:

$$g(0,0) = b = -3.1235.$$

Thus, the distance r of any point on the side of the origin O with respect to the hyperplane H shall have a negative value. Hence, the positive sign of the estimated r corresponding to point C implies that C is on the opposite side of the origin with respect to the hyperplane (line) H.