# RAMDE - Engenharia Orientada a Requisitos e Modelos

Project - Assignment 5 Integrative Assignment

Paulo Maio (pam@isep.ipp.pt)

Mestrado em Engenharia de Sistemas Computacionais Críticos (MESCC)

Instituto Superior de Engenharia do Porto (ISEP) Politécnico do Porto (P.PORTO)

2024-2025





Prerequisites

2 Description / Tasks

3 Deadlines

Prerequisites

- Description / Tasks
- 3 Deadlines

# Required: Team and Project Repository

#### It is the same team and repository for all the assignments.

- Have you already formed a team (2 students) to develop the project?
  - NO!!! What are you waiting for...
- Have you already informed the teacher by email of your team?
  - NO!!! Do it ASAP to "pam@isep.ipp.pt"
  - Do not forget to had your team mate(s) in "cc"
- Oid you receive the link/invitation to the assigned team project repository?
  - NO!!! Please, contact the teacher reporting this issue (if necessary)
- Did you check that you have read/write access to the assigned team project repository?
  - NO!!! Do it ASAP
  - Please, contact the teacher in case you do not have read/write access to it

When you answer "Yes" to all these questions, then you are ready to proceed.

#### Software and Tools

Before proceeding to the assignment tasks, ensure that you have the tools required on previous assignments (P1 to P4) installed and properly operational.

The required tools include:

- Eclipse Papyrus
- Eclipse Modeling Tools
  - With OCL Support features
  - With Acceleo features
- Maven and Maven Plugin for Eclipse
- Java IDE (e.g.: Eclipse) and a (recent) Java Virtual Machine (e.g.: >=17)
- Git
- Bitbucket account registered with ISEP email



Prerequisites

2 Description / Tasks

3 Deadlines

#### General Purpose

The general purpose of this assignment is to **apply the knowledge acquired** during the previous assignments **to a larger problem**.

As so, it is important that you have completed previous assignments (P1 to P4) before proceeding to this one.

### Assignment Tasks

- Propose / select a problem to be modelled using SysML
- Model the Problem, including:
  - Initial set of requirements (e.g.: stakeholder needs, mission statements)
  - **b** Black-box and White-box perspectives
  - Measure of Effectiveness
  - Requirements Traceability
- Model the Solution, including:
  - (Sub-)System requirements resulting from the modelled problem
  - High level architecture(s)
  - Some behaviour using at least one state machine
  - Measure of Effectiveness
  - Requirements Traceability
- Analyze Safety and Reliability
  - Considering possible hazards/failures and mitigations actions
  - Reflecting analysis output while modelling the problem and the solution
- Generate/Implement code for the state machine(s) modelled in the solution
- Write automatic tests for your code
- Report your work
- Commit the work (all the developed artifacts) into your repository

#### Assignment Tasks: Other Requirements

- Define a common glossary
- Use EARS to write the requirements
- Model requirements using different perspectives (i.e.: functional, behavioural and data)
- Make sure that your requirements (models) meet standard quality criteria
- Adopt design, code and testing best practices and principles
- As possible, apply / use well-known standards / practices
- Reporting:
  - Explain the process followed to develop the model and the diagrams
  - Include images of the main diagrams and explain them
  - Describe some modelling and implementation (i.e. code and tests) alternatives
  - Explain how tasks were divided by the team members



#### Team Work - Alert!

#### Have in mind that:

- Every team member should know about all aspects of the assignment
- Recommendation: every team member must have activities in all assignment tasks / concerns
- Commits are evidences of the developed work
- The team must report about how the tasks were assigned to the team members
- Each team member must report about his/her tasks

# Problem Proposal / Selection - Some References

For proposing / selecting the problem to be addressed on this assignment, the team should search for possible examples of problems in bibliography.

For instance, the problem examples mentioned on:

- The book "A Practical Guide to SysML The Systems Modeling Language" [2]
  - Sanford Friedenthal, Alan Moore, and Rick Steiner. 3rd Edition. MK/OMG Press, 2015. ISBN: 978-0-12-800202-5. DOI: https://doi.org/10.1016/C2013-0-14457-1.
- The SysMLForum on https://sysmlforum.com/examples/
- When in doubt, check with the teacher if the problem is feasible/acceptable
- Next slides briefly present a few examples extracted from [2]



#### Problem Example - Automobile System

#### From [2], chapter 4:

[...] the need to increase the automobile's acceleration and fuel efficiency from its current capability. [...] selected aspects [...] are considered to support an initial trade-off analysis. [...] included evaluation of alternative vehicle configurations that included a 4-cylinder engine and a 6-cylinder engine to determine whether they can satisfy the acceleration and fuel efficiency requirement.



# Problem Example - Water Distiller

#### From [2], chapter 16:

[...] needs of a humanitarian organization [...] providing safe drinking water [...] in impoverished parts of the world. [... It] would like explore the viability of developing and deploying a large number of extremely simple water distillers, of a common design which is both economical to build, and adaptable to use the variety of energy sources anticipated in remote areas.



# Problem Example - Residential Security System

#### From [2], chapter 17:

A company [...] has been providing residential security systems [...] intended to detect potential intruders. [...] however, their sales have significantly dropped and [...] has become evident [...] their current system is becoming obsolete [...] they have decided to launch a major initiative to develop an enhanced security system (ESS) that is intended to help regain their market share.





Prerequisites

- Description / Tasks
- 3 Deadlines

# Project Assignment(s) Deadline(s)

Project assignments are drawn up to be developed by students in a sequential order, i.e., first students develop assignment P1, then assignment P2 and so on...

The foreseen project assignments schedule is depicted in the following table:

| Part | Assignment | Release Date    | Deadline         |
|------|------------|-----------------|------------------|
| 1    | P1         | 2024/09/23 (W2) | 2024/11/03 (W7)  |
|      | P2         | 2024/09/30 (W3) | 2024/11/03 (W7)  |
|      | P3         | 2024/10/14 (W5) | 2024/11/03 (W7)  |
|      | P4         | 2024/10/28 (W7) | 2024/11/03 (W7)  |
| 2    | P5         | 2024/11/04 (W8) | 2024/11/24 (W10) |

Unless stated otherwise, these deadlines must be honoured.



# References & Bibliography I

- [1] Alexandre Bragança. Lectures Handouts on Requirements and Model-driven Engineering (RAMDE) 2023/24. 2023.
- [2] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML - The Systems Modeling Language. 3rd Edition. MK/OMG Press, 2015. ISBN: 978-0-12-800202-5. DOI: https://doi.org/10.1016/C2013-0-14457-1.

# Questions?

Questions?

Thank You!