Master Thesis – 3 Week Presentation

The Langevin Approach to Discretise the Collision Operator

Tobia Claglüna

AMAS - PSI

January 31, 2023

Outline

- Governing Equations
- 2 Collisions Rosenbluth Potentials
- 3 Disorder Induced Heating
- 4 Timeline

Vlasov Equation

Describes the evolution of phase space including long-range interactions

$$\frac{\partial f(\mathbf{r}, \mathbf{v})}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} \tag{1}$$

Use Fokker-Planck (FP) equation to define the collision dependent term.

From a Markov Process to Fokker-Planck

• Markovian assumption holds if $t_c \ll \Delta t$

By Taylor expansion of density change we arrive at

$$\left(\frac{\partial f(\mathbf{v})}{\partial t}\right)_{\text{coll}} = -\frac{\partial}{\partial \mathbf{v}} \cdot \left(f\left\langle \Delta \mathbf{v} \right\rangle\right) + \frac{1}{2} \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : \left(f\left\langle \Delta \mathbf{v} \Delta \mathbf{v}^\mathsf{T} \right\rangle\right)$$
(2)

Doesn't require the system to be in thermal equilibrium

• Compute the Dynamical Friction F_d and Diffusion coefficients D by describing the scattering mechanism.

Elastic collisions

Simplifying assumptions:

- Single species medium
- Consider collisions as binary events (in particle frame)
- Ignore small angle deflections by defining a minimum scattering angle $\theta_{\min} = \theta(\lambda_D)$ (Debye Shielding)

$$\mathbf{F_d} = \langle \Delta \mathbf{v} \rangle = \int f(\mathbf{v}) \int u \Delta \mathbf{v} \sigma(u, \Omega) d\Omega d\mathbf{v}$$
 (3)

Use Rutherford cross-section for Coulomb interactions:

$$\sigma(u,\Omega) = \left(rac{q^2}{8\pi\epsilon_0 m u^2}
ight)^2 rac{1}{\sin^4(heta/2)}$$

Figure: Binary Scattering [Boyd and Sanderson, 2003]

Rosenbluth Potentials [Rosenbluth et al., 1957]

Potentials on velocity space only [Callen, 2018]:

$$\Gamma = \frac{q^4 \ln(\Lambda)}{4\pi\epsilon_0^2 m^2} \tag{4}$$

$$H(\mathbf{v}) = 2 \int d^3 \mathbf{v}' \frac{f(\mathbf{v}')}{|\mathbf{v} - \mathbf{v}'|}$$
 (5)

$$G(\mathbf{v}) = \int d^3 v' f(\mathbf{v'}) |\mathbf{v} - \mathbf{v'}| \quad (6)$$

$$\langle \Delta \mathbf{v} \rangle = \Gamma \frac{\partial H}{\partial \mathbf{v}} = \mathbf{F_d} \tag{7}$$

$$\langle \Delta \mathbf{v} \Delta \mathbf{v}^{\mathsf{T}} \rangle = \Gamma \frac{\partial^{2} G}{\partial \mathbf{v} \partial \mathbf{v}} = \mathbf{D}$$
 (8)

Resulting Elliptic Identities:

$$\nabla_{\mathbf{v}}^{2}\nabla_{\mathbf{v}}^{2}G(\mathbf{v}) = -8\pi f(\mathbf{v}) \quad (9)$$

$$\nabla_{\mathbf{v}}^2 G(\mathbf{v}) = H(\mathbf{v}) \tag{10}$$

Resulting Scheme [Stoel, 2015]

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = -\frac{\partial}{\partial \mathbf{v}} \cdot (f \mathbf{F}_{\mathbf{d}}) + \frac{1}{2} \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : (f \mathbf{D})$$
(11)

Langevin type formulation of the Vlasov equation with the FP collisional term [Risken, 1984]:

$$\begin{cases}
\frac{d\mathbf{r}}{dt} = \mathbf{v} \\
\frac{d\mathbf{v}}{dt} = \frac{\mathbf{F}}{m} + \mathbf{F}_d + \mathbf{Q} \cdot d\mathbf{W}_t \\
\mathbf{D} = \mathbf{Q}\mathbf{Q}^T
\end{cases} \tag{12}$$

Disorder Induced Heating

- Cold coasting electron beam
- Collisions cause beam temparature to rise (undesired)
 - Beam widens
 - Emittance increases

Figure: DIH resolved with P³M [Ulmer, 2016]

Timeline I

Date	Target Goals
30/01	Assist Severin and ensure correctness of current implementation
20/02	Find Order of convergence / accuracy and compare whether really much better than P3M (even though it might still run only on single core)
20/02	Ensure Performance Portability (MPI, OpenMP and GPU)
06/03	Benchmarking of accuracy, runtime and scalability
27/03	Start improving most pressing bottlenecks
03/04	Easter Holidays
01/05	Research on better integrators / explore Multi-Level Monte-Carlo approach

Table: Timeline with approximate milestones

Timeline II

Date	Target Goals
08/05	Implement algorithmic improvements and compare accuracy / performance to previous implementation
29/05	(Potential Implementation into OPAL via IPPL-1 implementation)
12/06	Start writing and code clean-up
03/07	Submission

Table: Timeline with approximate milestones

References I

Boyd, T. J. M. and Sanderson, J. J. (2003). *The Physics of Plasmas*.

Cambridge University Press.

Callen, J. D. (2018).

Plasma kinetic theory.

Accessed: 2023-01-29.

Risken, H. (1984).

Fokker-Planck Equation.

Springer.

Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. (1957).

Fokker-planck equation for an inverse-square force.

Phys. Rev., 107:1-6.

Stoel, L. (2015).

The numerical solution of the vlasov-poisson-fokker-planck equation in the context of accelerator physics.

Master's thesis, Utrecht University.

References II

Ulmer, B. (2016).

The p3m model on emerging computer architectures with application to microbunching.

Master's thesis, ETH Zürich.