What is claimed is:

1. A process for the preparation of a compound of formula I

$$\begin{array}{c|c} R_{05} & O & O \\ \hline R_4 & N & R_1 & (I), \\ \hline X_1 & R_2 & \end{array}$$

wherein

R is C₁-C₆alkyl;

 R_{05} is Hydrogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or C_1 - C_3 alkyl- C_1 - C_3 alkoxy;

 R_1 is a C_1 - C_6 alkylene, C_3 - C_6 alkenylene or C_3 - C_6 alkynylene chain which may be substituted one or more times by halogen and/or by R_5 , the unsaturated bonds of the chain not being attached directly to the substituent X_1 ;

R₄ is C₁-C₄haloalkyl;

 X_1 is oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₆)-O-, -O-NR₁₇-, thio, sulfinyl, sulfonyl, -SO₂NR₇-, -NR₁₈SO₂-, -N(SO₂R_{18a})-, -N(R_{18b})C(O)- or -NR₈-;

R_{18a} is C₁-C₆alkyl;

 R_2 is hydrogen or $C_1\text{-}C_8$ alkyl, or is a $C_1\text{-}C_8$ alkyl, $C_3\text{-}C_6$ alkenyl or $C_3\text{-}C_6$ alkynyl group which may be substituted one or more times by substituents selected from halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, $C_1\text{-}C_6$ alkoxy, $C_1\text{-}C_6$ alkoxycarbonyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ haloalkenyl, $C_2\text{-}C_6$ alkynyl, $C_2\text{-}C_6$ haloalkynyl, $C_3\text{-}C_6$ cycloalkyl, halosubstituted $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ alkenyloxy, $C_3\text{-}C_6$ alkoxyloxy, $C_1\text{-}C_6$ haloalkoxy, $C_3\text{-}C_6$ alkoxy, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfinyl, benzylsulfinyl, $C_1\text{-}C_6$ alkylamino, di($C_1\text{-}C_6$ alkyl), benzyloxy, benzylthio, benzylsulfinyl, benzylsulfonyl, $C_1\text{-}C_6$ alkylamino, di($C_1\text{-}C_6$ alkyl) amino, $C_1\text{-}C_6$ alkylsulfonyl; and phenylsulfonyl;

it being possible for the phenyl- or benzyl-containing groups to be in turn substituted by one or more C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro groups, or

 R_2 is phenyl which may be substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; or

 R_2 is C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy- or C_1 - C_6 alkyl-substituted C_3 - C_6 cycloalkyl, 3-oxetanyl or C_1 - C_6 alkyl-substituted 3-oxetanyl; or

R₂ is a three- to ten-membered, monocyclic or fused bicyclic, ring system which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, and/or may contain the group -C(=O)-, -C(=S)-, -C(=NR₁₉)-, -(N=O)-, -S(=O)- or -SO₂-, the ring system being attached to the substituent X₁ either directly or by way of a C₁-C₄alkylene, C₂-C₄alkenylene, C₂-C₄alkynylene, -N(R₁₂)-C₁-C₄alkylene, -O-C₁-C₄alkylene, -S-C₁-C₄alkylene, -SO-C₁-C₄alkylene or -SO₂-C₁-C₄alkylene group and each ring system containing no more than 2 oxygen atoms and no more than two sulfur atoms, and it being possible for each ring system itself to be substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, amino, hydroxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkyl $carbonyl-C_1-C_3 alkylthio,\ C_1-C_4 alkoxycarbonyl-C_1-C_3 alkylthio,\ cyano-C_1-C_3 alkylthio,\ C_1-C_6-C_8 alkylthio,\ cyano-C_1-C_8 alkylthio,\ cyano-C_8 alkylthio,\ cyan$ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, N,N-di(C_1 - C_2 alkyl)aminosulfonyl, di(C_1 - C_4 alkyl)amino, halogen, cyano, nitro or by phenyl, it being possible for the phenyl group to be in turn substituted by hydroxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, N,N-di(C_1 - C_2 alkyl)aminosulfonyl, di(C_1 - C_4 alkyl)amino, halogen, cyano or by nitro, and the substituents on nitrogen in a heterocyclic ring being other than halogen; $R_5 \text{ is hydroxy, } C_1\text{-}C_6 \text{alkoxy, } C_3\text{-}C_6 \text{cycloalkyloxy, } C_1\text{-}C_6 \text{alkoxy-}C_1\text{-}C_6 \text{alkoxy, } C_1\text{-}C_6 \text{alkoxy-}C_1\text{-}C_6 \text{al$ C_1 - C_6 alkoxy- C_1 - C_6 alkoxy or C_1 - C_2 alkylsulfonyloxy;

 R_6 , R_7 , R_8 , R_9 , R_{10} R_{11} , R_{12} , R_{17} , R_{18} and R_{18b} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 Alko

being possible for phenyl and benzyl to be in turn substituted one or more times by $C_{1}-C_{6}$ -C₆alkyl, $C_{1}-C_{6}$ -Alloalkyl, $C_{1}-C_{6}$ -Alloalkyl, $C_{1}-C_{6}$ -Alloalkoxy, halogen, cyano, hydroxy or by nitro; R_{6} not being hydrogen when R_{9} is hydrogen, $C_{1}-C_{6}$ -Alkoxycarbonyl or $C_{1}-C_{6}$ -Alkyl-carbonyl;

or the group -R₁-X₁-R₂ together is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylamino, $\label{eq:continuous} di(C_1-C_6alkyl) amino, \ C_1-C_6alkylaminosulfonyl, \ di(C_1-C_6alkyl) aminosulfonyl, \ -NH-S-R_{13},$ -N-(C_1 - C_4 alkyíthio)- R_{13} , -NH-SO- R_{14} , -N-(C_1 - C_4 alkylsulfonyl)- R_{14} , -NH-SO₂- R_{15} , -N-(C_1 - C_4 alkylsulfonyl)- R_{15} , nitro, cyano, halogen, hydroxy, amino, formyl, rhodano- C_1 - C_6 alkyl, cyano- C_1 - C_6 alkyl, oxiranyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, cyano- C_1 - C_6 alkenyloxy, C_1 - C_6 alkoxycarbonyloxy- C_1 - C_6 alkoxy, C_3 - C_6 alkynyloxy, $cyano-C_1-\dot{C}_6 alkoxy,\ C_1-C_6 alkoxycarbonyl-C_1-C_6 alkoxy,\ C_1-C_6 alkoxy,\ C_1-C_$ C_6 alkoxycarbonyl- C_1 - C_6 alkylthio, C_1 - C_6 alkoxycarbonyl- C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkoxycarbonyl- C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 haloalkylsulfonyloxy, phenyl, benzyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, benzylthio, benzylsulfinyl or benzylsulfonyl, it being possible for the phenyl groups to be substituted one or more times by halogen, methyl, ethyl, trifluoromethyl, methoxy or by nitro; or the group -R₁-X₁-R₂ together is a three- to ten-membered, monocyclic or fused bicyclic, ring system, which may be aromatic, partially saturated or saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur and/or may contain one or two groups selected from -C(=O)-, -C(=S)-, -C(=NR $_{20}$)-, -(N=O)-, -S(=O)and -SO₂-, the ring system either being attached to the pyridine ring directly via a carbon atom or being attached to the pyridine ring via a carbon atom or via a nitrogen atom by way of a C_1 - C_4 alkylene, C_2 - C_4 alkenyl or C_2 - C_4 alkynyl chain, and it being possible for each ring system to contain no more than 2 oxygen atoms and no more than two sulfur atoms, and it being possible for the ring system itself to be substituted one, two or three times by substituents selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, hydroxy, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_3 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl,

aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, $di(C_1$ - C_6 alkyl)aminosulfonyl, C_1 - C_3 alkylene- R_{16} , amino, C_1 - C_6 alkylamino, C_1 - C_6 alkoxyamino, $di(C_1$ - C_6 alkyl)amino, (N- C_1 - C_6 alkyl)- C_1 - C_6 alkoxyamino, halogen, cyano, nitro, phenyl, benzyloxy and benzylthio, it being possible for phenyl, benzyloxy and benzylthio to be in turn substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and substituents on a nitrogen atom in a heterocyclic ring being other than halogen; R_{13} is N(H)- C_1 - C_6 alkyl, N(H)- C_1 - C_6 alkoxy, N- $(C_1$ - C_6 alkyl)- C_1 - C_6 alkyl, N- $(C_1$ - C_6 alkyl), C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 cycloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 $\begin{array}{l} R_{14} \text{ is N(H)-C}_1\text{-}C_6\text{alkyl, N(H)-C}_1\text{-}C_6\text{alkoxy, N-}(C_1\text{-}C_6\text{alkyl)-C}_1\text{-}C_6\text{alkyl, N-}(C_1\text{-}C_6\text{alkyl})\text{-}}\\ C_1\text{-}C_6\text{alkoxy, C}_1\text{-}C_6\text{alkoxy, C}_1\text{-}C_6\text{haloalkoxy, C}_1\text{-}C_6\text{alkyl, C}_1\text{-}C_6\text{haloalkyl, C}_3\text{-}C_6\text{alkenyl, C}_3\text{-}C_6\text{alkynyl, C}_3\text{-}C_6\text{haloalkynyl, C}_3\text{-}C_6\text{cycloalkyl or phenyl, it being possible for phenyl to be in turn substituted by C}_1\text{-}C_3\text{alkyl, C}_1\text{-}C_3\text{haloalkyl, C}_1\text{-}C_3\text{alkoxy, C}_1\text{-}C_3\text{haloalkoxy, halogen, cyano or by nitro;} \end{array}$

 $\begin{array}{l} R_{15} \text{ is N(H)-C}_1\text{-}C_6\text{alkyl, N(H)-C}_1\text{-}C_6\text{alkoxy, N-}(C_1\text{-}C_6\text{alkyl)-}C_1\text{-}C_6\text{alkyl, N-}(C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_6\text{alkyl, N-}(C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_6\text{alkyl, C}_1\text{-}C_6\text{alkyl, C}_1\text{-}C_6\text{alkyl, C}_2\text{-}C_6\text{alkenyl, C}_3\text{-}C_6\text{alkenyl, C}_3\text{-}C_6\text{alkynyl, C}_3\text{-}C_6\text{cycloalkyl or phenyl, it being possible for phenyl to be in turn substituted by C}_1\text{-}C_3\text{alkyl, C}_1\text{-}C_3\text{haloalkyl, C}_1\text{-}C_3\text{alkoxy, C}_1\text{-}C_3\text{haloalkoxy, halogen, cyano or by nitro;} \end{array}$

 R_{16} is C_1 - C_3 alkoxy, C_2 - C_4 alkoxycarbonyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl or phenyl, it being possible for phenyl to be in turn substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro; and R_{19} and R_{20} are each independently of the other hydrogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylsulfonyl; which process comprises reacting a compound of formula II

wherein R_3 is $C_1\text{-}C_8$ alkyl or $C_3\text{-}C_6$ cycloalkyl and R_4 and R_{05} are as defined for formula I, with a compound of formula III

wherein R, R_1 , R_2 and X_1 are as defined for formula I, in an inert solvent in the presence of a proton source.

2. A process according to claim 1, wherein there is prepared a compound of formula I wherein

R₄ is halomethyl or haloethyl;

R₀₅ is hydrogen;

 X_1 is oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₆)-O-, -O-NR₁₇-, thio, sulfinyl, sulfonyl, -SO₂NR₇-, -NR₁₈SO₂- or -NR₈-;

 R_2 is hydrogen or C_1 - C_8 alkyl, or a C_1 - C_8 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group which is substituted one or more times by halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, halo-substituted C_3 - C_6 cycloalkyl, or by C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆haloalkoxy, C₃-C₆haloalkenyloxy, cyano- $C_1-C_6 \\ alkoxy, \ C_1-C_6 \\ alkoxy-C_1-C_6 \\ alkoxy-C$ thio- C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl- C_1 - C_6 alkoxy, C_1 - C_6 Alkoxy, alkoxycarbonyl- C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylthio, $C_1\text{-}C_6 alkylsulfinyl, \ C_1\text{-}C_6 alkylsulfonyl, \ C_1\text{-}C_6 haloalkylthio, \ C_1\text{-}C_6 haloalkylsulfinyl, \ C_1\text{-}C_6\text{-}Aloalkylsulfinyl, \ C_1\text{-}C_6\text{-}Aloalkylsu$ haloalkylsulfonyl, oxiranyl (which may in turn be substituted by C1-C6alkyl), or by (3-oxetanyl)oxy (which may in turn be substituted by C1-C6alkyl), or by benzylthio, benzylsulfinyl, benzylsulfonyl, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, $R_9S(O)_2O$ -, $R_{10}N(R_{11})SO_{2^{-}}$, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl or by phenylsulfonyl; it being possible for the phenyl- or benzyl-containing groups to be in turn substituted by one or more C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro groups, or

 R_2 is phenyl which may be substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; or

 $R_2 \text{ is } C_3\text{-}C_6 \text{cycloalkyl, } C_1\text{-}C_6 \text{alkoxy- or } C_1\text{-}C_6 \text{alkyl-substituted } C_3\text{-}C_6 \text{cycloalkyl, } 3\text{-}oxetanyl \text{ or } C_1\text{-}C_6 \text{alkyl-substituted } 3\text{-}oxetanyl;}$

or R₂ is a five- to ten-membered, monocyclic or fused bicyclic, ring system which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, and/or may contain the group -C(=O)-, -C(=S)-, -C(=NR₁₉)-, -(N=O)-, -S(=O)- or -SO₂-, the ring system being attached to the substituent X₁ directly or by way of a C₁-C₄alkylene, C₂-C₄alkenyl-C₁-C₄alkylene, C₂-C₄alkynyl- $C_1\text{-}C_4 alkylene, -N(R_{12})\text{-}C_1\text{-}C_4 alkylene, -SO-}C_1\text{-}C_4 alkylene or -SO_2\text{-}C_1\text{-}C_4 alkylene group and }C_1\text{-}C_4 alkylene, -N(R_{12})\text{-}C_1\text{-}C_4 alkylene, -SO-}C_1\text{-}C_4 alkylene or -SO_2\text{-}C_1\text{-}C_4 alkylene group and }C_1\text{-}C_4 alkylene group alk$ each ring system containing no more than 2 oxygen atoms and no more than two sulfur atoms, and it being possible for each ring system itself to be substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, amino, hydroxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or by phenyl, it being possible for the phenyl group to be in turn substituted by hydroxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, $C_3-C_6 alkynylthio,\ C_1-C_3 alkoxy-C_1-C_3 alkylthio,\ C_1-C_4 alkylcarbonyl-C_1-C_3 alkylthio,\ C_1-C_4-C_5 alkylthio,\ C_1-C_5 alkylthio,\ C$ alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, $N_1N_2-di(C_1-C_2$ alkyl)aminosulfonyl, di(C_1-C_4 alkyl)amino, halogen, cyano or by nitro, and the substituents on nitrogen in a heterocyclic ring being other than halogen; R₆, R₇, R₈, R₉, R₁₀ R₁₁, R₁₂, R₁₇ and R₁₈ are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl substituted by C_1 - C_6 alkoxy, benzyl, or phenyl, it being possible for phenyl and benzyl to be in turn substituted one or more times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; R_6 not being hydrogen when R₉ is hydrogen, C₁-C₆alkoxycarbonyl or C₁-C₆alkylcarbonyl; or the group -R₁-X₁-R₂ together is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, $C_1-C_6 alkylsulfinyl,\ C_1-C_6 alkylsulfonyl,\ C_1-C_6 haloalkyl,\ C_1-C_6 haloalkyl-looper alkylsulfonyl,\ C_1-C_6$ sulfinyl, C₁-C₆haloalkylsulfonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylamino,

 $di(C_1-C_6alkyl)amino,\ C_1-C_6alkylaminosulfonyl,\ di(C_1-C_6alkyl)aminosulfonyl,\ -NH-S-R_{13},$ -N-(C_1 - C_4 alkylthio)- R_{13} , -NH-SO- R_{14} , -N-(C_1 - C_4 alkylsulfonyl)- R_{14} , -NH-SO₂- R_{15} , -N-(C₁-C₄alkylsulfonyl)-R₁₅, nitro, cyano, halogen, hydroxy, amino, formyl, rhodano- C_1 - C_6 alkyl, cyano- C_1 - C_6 alkyl, oxiranyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, cyano- C_1 - C_6 alkenyloxy, C_1 - C_6 alkoxycarbonyloxy- C_1 - C_6 alkoxy, C_3 - C_6 alkynyloxy, cyano- C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl- C_1 - C_6 alkoxy, C_1 - C_6 alkylthio- C_1 - C_6 alkoxy, alkoxycarbonyl-C₁-C₆alkylthio, alkoxycarbonyl-C₁-C₆alkylsulfinyl, alkoxycarbonyl- C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 haloalkylsulfonyloxy, phenyl, benzyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, benzylthio, benzylsulfinyl or benzylsulfonyl, it being possible for the phenyl groups to be substituted one or more times by halogen, methyl, ethyl, trifluoromethyl, methoxy or by nitro; or the group -R₁-X₁-R₂ together is a five- to ten-membered, monocyclic or fused bicyclic, ring system, which may be aromatic or partially saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system either being directly attached to the pyridine ring or being attached to the pyridine ring by way of a C₁-C₄alkylene group, and it being possible for each ring system to contain no more than 2 oxygen atoms and no more than two sulfur atoms, and/or to contain the group -C(=O)-, -C(=S)-, -C(=NR₂₀)-, -(N=O)-, -S(=O)- or -SO₂-; and the ring system itself may be substituted one, two or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_2 - C_5 alkoxyalkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_2 - C_4 dialkylaminosulfonyl, C_1 - C_3 alkylene- R_{16} , N(H)- C_1 - C_6 alkyl, $N(H)-C_1-C_6 alkoxy, \ N-(C_1-C_6 alkyl)-C_1-C_6 alkyl, \ N-(C_1-C_6 alkyl)-C_1-C_6 alkoxy, \ halogen, \ cyano, \ halogen, \ cyano, \ halogen, \ halogen$ nitro, phenyl and by benzylthio, it being possible for phenyl and benzylthio to be in turn substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and substituents on nitrogen in a heterocyclic ring being other than halogen; and

 R_{19} and R_{20} are each independently of the other hydrogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylsulfonyl.

3. A compound of formula Illa

wherein R is as defined for formula I in claim 1.

4. Use of a compound of formula III

wherein R, R_1 , R_2 and X_1 are as defined for formula I in claim 1, in the preparation of a compound of formula I according to claim 1.