Introdução ao Tensorflow

(continuação após Cloud ML Engine)

RECURSOS COM TENSORFLOW

O Cloud Machine Learning Engine leva para a nuvem a força e a flexibilidade do TensorFlow. É possível usar o Cloud ML Engine para treinar modelos de machine learning e receber predições por meio dos recursos gerenciados do Google Cloud Platform.

Primeiros passos

Dê os primeiros passos com o modelo TensorFlow no Cloud ML. Engine

Guias de instruções

Execute tarefas específicas

APIs e referência

API, console e linha de comando

Conceitos

Amplie seu conhecimento sobre o Cloud ML Engine

Tutoriais e amostras

Instruções sobre aplicativos comuns.

Recursos

Preços, cotas, notas da versão, discussão, feedback e outros recursos

Uma aplicação de aprendizado de máquina é o resultado do cálculo repetido de expressões matemáticas complexas. No **TensorFlow**, um cálculo é descrito usando o **Fluxograma de Dados**, onde cada **nó do grafo representa** a instância de uma **operação matemática** (multiplicação, adição, divisão e assim por diante), e **cada aresta é um conjunto de dados multidimensional** (tensores) em que as operações são realizadas.

Operação: representa uma computação abstrata, como adição ou multiplicação de matrizes. Uma operação gerencia os tensores. Pode ser apenas polimórfico: a mesma operação pode manipular diferentes tipos de elementos tensores. Por exemplo, a adição de dois tensores int32, a adição de dois tensores de ponto flutuante e assim por diante.

Kernel: representa a implementação concreta dessa operação. Um kernel define a implementação da operação em um determinado dispositivo. Por exemplo, uma operação de adição de matriz pode ter uma implementação de CPU e uma de GPU.

Sessão: Quando o programa cliente tem que estabelecer comunicação com o sistema de tempo de execução TensorFlow, uma sessão deve ser criada. Assim que a sessão é criada para um cliente, um grafo inicial vazio é criado.

Existem dois métodos fundamentais:

- **session.extend**: Em um cálculo, o usuário pode estender o grafo de execução, solicitando adicionar mais operações (nós) e arestas (dados).
- session.run: Usando o TensorFlow, as sessões são criadas com alguns grafos, e esses grafos completos são executados para obter as saídas, ou às vezes, subgrafos, eles são executados milhares / milhões de vezes usando invocações de execução. Basicamente, o método executa o gráfico de execução para fornecer saídas.

Livro de TensorFlow

Com exercícios práticos resolvidos

Demo do conteúdo do livro

Arquitetura ML e TensorFlow

Vídeo: "01-Effective ML" 7'

Vídeo: "02-Fully managed ML" 8'

Datalab e GitHub do Google para Data Analyst

Os Jupyter notebooks são uma maneira fácil de explorar interativamente seus dados, definir modelos do TensorFlow e iniciar execuções de treinamento. Se você usa ferramentas e produtos do Google Cloud Platform como parte de seu fluxo de trabalho, talvez usando o Google Cloud Storage ou BigQuery para seus conjuntos de dados, ou o Apache Beam para pré-processamento de dados, o Google Cloud Datalab fornece um ambiente baseado no Jupyter com todas essas ferramentas (e outras como NumPy, Pandas, Scikit-learn e Matplotlib), junto com o TensorFlow, pré-instalados e agrupados. O Datalab é de código aberto, portanto, se você quiser modificar ainda mais seu ambiente de notebook, é fácil de fazer.

https://github.com/tensorflow/tensorflow

Datalab e GitHub do Google para Data Analyst

https://github.com/GoogleCloudPlatform/training-data-analyst

Branch: master ▼ training-data-a	nalyst / courses / machine_learning / deepdive / 06_structured /	Create new file Find file History
mlotstein Resolving merge conflict		Latest commit f59b6cb 12 days ago
a babyweight	added summary file writer cache clear	2 months ago
labs	Changing instructionns for lab version of babyweight CMLE lab to refl	28 days ago
pipelines	Update 3_install_sdk.sh	3 months ago
serving	Fixed python streaming notebook	a month ago
1_explore.ipynb	removed logy=True for male vs female plot because graph was misleading	6 months ago
2_sample.ipynb	conversion of end-to-end bootcamp to python 3	8 months ago
3_tensorflow_dnn.ipynb	added summary file writer cache clear	2 months ago
3_tensorflow_wd.ipynb	added summary file writer cache clear	2 months ago
a_preproc.ipynb	Update: 4_preproc.ipynb	2 months ago
4_preproc_tft.ipynb	Resolving merge conflict	12 days ago
5_train.ipynb	Changed expected run time for babyweight CMLE lab	28 days ago
5_train_bqml.ipynb	conversion of end-to-end bootcamp to python 3	8 months ago
6_deploy.ipynb	conversion of end-to-end bootcamp to python 3	8 months ago
T_pipelines.ipynb	Update to v1.1.3 and using Jupyter on the cluster itself	5 months ago