Theophyllin aptamer switch example

Introduction

Artificial 5'UTR regions were designed which change their structure upon theophyllin binding to the integrated aptamer structure. This triggers the opening of a terminator structure allowing to fully transcribe the mRNA.

Sequenzes

The original sequence can be found in RS3.fa, a mutated version in RS3mut.fa.

RNAfold with soft-constraints

RNAfold < RS3mut.fa

include soft constraints which model theophyllin binding

RNAfold --motif="GAUACCAG&CCCUUGGCAGC,(...((((&)...)))...),-9.22" < RS3mut.fa

Predict ensemble

no switching can be seen in the MFE structure... aha, so it does not work? look at ensemble of structures and dot-plot:

```
RNAfold -p --motif="GAUACCAG&CCCUUGGCAGC,(...(((&)...)))...),-9.22" < RS3mut.fa
```

aha, high percentage of structures exhibit the aptamer structure bound to the ligand. But whats the percentage?

Calculate probability of aptamer

use hard constraints to calculate the accessibility of RBS with and without sRNA file RS3_constraint.fa contains the structure of the theophyllin aptamer, which can be used as hard constraint with -C

without ligand

```
RNAfold -p -C <( cat RS3mut.fa RS3_constraint.fa )  prob(aptamer) = \exp((pf - constraint\_energy) / KT) \ KT = ((temperature + 273.15)*1.98717)/1000.0  calculation should be: e^((-26,04+17,05)÷(((37+273,15)×1,98717)÷1000)) = 0,000000463 = 0,00% of states exhibit have the aptamer structure without ligand
```

with ligand

```
RNAfold -p -C --motif="GAUACCAG&CCCUUGGCAGC,(...(((&)...)))...),-9.22" <( cat RS3mut.fa RS3_constraint.fa ) prob(aptamer) = \exp((\text{pf - constraint\_energy}) / \text{KT}) \text{ KT} = ((\text{temperature} + 273.15)*1.98717)/1000.0  calculation should be: e^{(-26,55+26,16)} \div (((37+273,15)\times1,98717)\div1000)) = 0.53110934 = 53,11\% of states exhibit have the aptamer structure with ligand
```

References Wachsmuth, Manja, Sven Findeiß, Nadine Weissheimer, Peter F. Stadler, and Mario Mörl. 2013. "De Novo Design of a Synthetic Riboswitch That Regulates Transcription Termination." Nucleic Acids Research 41 (4): 2541-51. doi:10.1093/nar/gks1330.