Teil I.

Wahrscheinlichkeitstheorie

1. Wahrscheinlichkeiten

1.1. Grundbegriffe

Def. 1.1 (Ereignisraum). Ereignisraum oder Grundraum $\Omega \neq \emptyset$ ist Menge aller möglichen Ergebnisse des Zufallsexperiments. Seine Elemente $w \in \Omega$ heissen Elementarereignisse.

Def. 1.2 (Potenzmenge, Ereignis). Die *Potenzmenge* von Ω wird mit 2^{Ω} oder mit $\mathcal{P}(\Omega)$ bezeichnet und ist die Menge aller Teilmengen von Ω . Ein *Ereignis* ist ein solches Element der Potenzmenge, also $A \in \mathcal{P}(\Omega)$. Die Klasse aller beobachtbaren Ereignisse ist \mathcal{F} , eine Teilmenge der Potenzmenge.

Def. 1.3 (σ -Algebra). Ein Mengensystem \mathcal{F} ist eine σ -Algebra, falls

- (i) $\Omega \in \mathcal{F}$
- (ii) für jedes $A \in \mathcal{F}$ ist auch Komplement $A^{\complement} \in \mathcal{F}$.
- (iii) für jede Folge $(A_n)_{n\in\mathbb{N}}$ mit $A_n\in\mathcal{F}$ für alle $n\in\mathbb{N}$ ist auch $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F}$.

Def. 1.4 (Wahrscheinlichkeitsmass). Ein Wahrscheinlichkeitsmass ist eine Abbildung $P: \mathcal{F} \to [0, 1]$ mit folgenden Axiomen:

- A0) $P[A] \ge 0 \quad \forall A \in \mathcal{F}$
- A1) $P[\Omega] = 1$
- A2) $P\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} P[A_i]$ für disjunkte Ereignisse A_i .

Aus den Axiomen A1 und A2 lassen sich die folgenden Rechenregeln herleiten:

- $P[A^{0}] = 1 P[A]$
- $P[\emptyset] = 0$ und $P[\Omega] = 1$
- $A \subseteq B \implies P[A] < P[B]$
- $P[A \cup B] = P[A] + P[B] P[A \cap B]$

1.2. Diskrete Wahrscheinlichkeitsräume

Annahme: Ω ist **endlich** oder **abzählbar unendlich** und $\mathcal{F}=2^{\Omega}$. Hier kann man das Wahrscheinlichkeitsmass definieren, in dem man die Wahrscheinlichkeiten der Elementarereignisse addiert.

Ist $\Omega = \{\omega_1, \dots, \omega_N\}$ endlich mit $|\Omega| = N$ und sind alle ω_i gleich wahrscheinlich, also $p_i = 1/N$, so nennt man Ω einen **Laplace Raum** und P ist die diskrete Gleichverteilung. Die Wahrscheinlichkeit eines Ereignisses kann dann wie folgt berechnet werden:

$$P[A] = \frac{\text{Anz. Elementare reignisse in } A}{\text{Anz. Elementare reignisse in } \Omega} = \frac{|A|}{|\Omega|}$$

1.3. Bedingte Wahrscheinlichkeiten

Def. 1.5 (Bedingte Wahrscheinlichkeit). A, B Ereignisse und P[A] > 0. Die bedingte Wahrscheinlichkeit von B unter der Bedingung A ist definiert als

$$P[B \mid A] := \frac{P[B \cap A]}{P[A]}$$

Bei fixierter Bedingung Aist $P[\cdot \mid A]$ wieder ein Wahrscheinlichkeitsmass auf $(\Omega, \mathcal{F}).$

 \implies Multiplikations regel: $P[A \cap B] = P[B \mid A] \cdot P[A]$ und Additions regel: $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

Satz 1.1 (Satz der totalen Wahrscheinlichkeit). Sei A_1, \ldots, A_n eine Zerlegung von Ω in paarweise disjunkte Ereignisse, d.h. $\bigcup_{i=1}^n A_i = \Omega$ und $A_i \cap A_k = \emptyset \ \forall i \neq k$. Dann gilt:

$$P[B] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

Beweis. Da $B \subseteq \Omega \implies B \cap \Omega = B = B \cap (\bigcup_{i=1}^n A_i) = \bigcup_{i=1}^n (B \cap A_i)$ Weiter sind alle Mengen der Art $(B \cap A_i)$ paarweise disjunkt, was bedeutet, dass $(B \cap A_i)$ eine disjunkte Zerlegung von B bilden. Damit folgt dann

$$P[B] = P\left[\bigcup_{i=1}^{n} (B \cap A_i)\right] = \sum_{i=1}^{n} P[B \cap A_i] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

Bedingte Wahrscheinlichkeiten in mehrstufigen Experimenten können oft als Wahrscheinlichkeitsbäume dargestellt werden.

Satz 1.2 (Satz von Bayes). Sei A_1, \ldots, A_n eine Zerlegung von Ω mit $P[A_i] > 0$ für $i = 1 \ldots n$ und B ein Ereignis mit P[B] > 0, dann gilt für iedes k

$$P[A_k \mid B] = \frac{P[B \mid A_k] \cdot P[A_k]}{\sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]}$$

einfacher:
$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{P[B \mid A] \cdot P[A]}{P[B \mid A] \cdot P[A] + P[B \mid \overline{A}] \cdot P[\overline{A}]}$$

Beweis. Verwende Definition der bedingten Wahrscheinlichkeit, wende im Zähler die Multiplikationsregel und im Nenner den Satz der totalen Wahrscheinlichkeit an.

1.4. Unabhängigkeit

Def. 1.6 (Unabhängigkeit von 2 Ereignissen). Zwei Ereignisse A,B heissen $stochastisch unabhängig falls <math>P[A\cap B]=P[A]\cdot P[B]$. Ist P[A]=0 oder P[B]=0, so sind zwei Ereignisse immer unabhängig. Ist $P[A]\neq 0$, dann gilt folgende Äquivalenz:

$$A, B \text{ sind unabhängig } \iff P[B \mid A] = P[B]$$

Analoges gilt falls $P[B] \neq 0$.

Def. 1.7 (allgemeine Unabhängigkeit). Ereignisse A_1, \ldots, A_n heissen stochastisch unabhängig, falls für jede endliche Teilfamilie die Produktformel gilt. D.h. für ein $m \in \mathbb{N}$ und $\{k_1, \ldots, k_m\} \subseteq \{1, \ldots, n\}$ gilt immer

$$P\left[\bigcap_{i=1}^{m} A_{k_i}\right] = \prod_{i=1}^{m} P[A_{k_i}]$$

2. Diskrete Zufallsvariablen und Verteilungen

In diesem Kapitel ist $\Omega \neq \emptyset$ abzählbar oder endlich und $\mathcal{F} = 2^{\Omega}$ die Potenzmenge von Ω , und damit das Wahrscheinlichkeitsmass P gegeben durch seine Gewichte $p_i = P[\omega_i]$ für alle i.

2.1. Grundbegriffe

Def. 2.1 (diskrete Zufallsvariable). Eine reellwertige diskrete Zufallsvariable auf Ω ist eine Funktion $X:\Omega\to\mathbb{R}$ mit abzählbarem Wertebereich $\mathcal{W}(X)=\{x_1,\ldots,x_n\}$.

 \bullet die Verteilungsfunktion von Xist die Abbildung $F_X:\mathbb{R}\to [0,1]$ und ist definiert durch

$$t \mapsto F_X(t) := P[X \le t] := P[\{\omega \mid X(\omega) \le t\}]$$

• die diskrete Dichte von X ist die Funktion $p_X: \mathcal{W}(X) \to [0,1]$ und ist definiert durch

$$p_X(x_k) := P[X = x_k] = P[\{\omega \mid X(\omega) = x_k\}]$$
 für $k = 1, 2$

In unserem Fall mit Ω abzählbar und $\mathcal{F}=2^{\Omega}$ ist jede Funktion $X:\Omega\to\mathbb{R}$ eine Zufallsvariable. Sind Ω,\mathcal{F} allgemeiner, dann muss die obige Definition der Verteilung so angepasst werden, dass die Menge $\{X\leq t\}$ ein beobachtbares Ereignis für jedes t ist, also in \mathcal{F} ist. Das bedeutet, dass die Funktion X im allgemeinen Fall \mathcal{F} -messbar sein muss.

Def. 2.2 (Indikatorfunktion). Für jede Teilmenge $A \subseteq \Omega$ ist die *Indikatorfunktion* I_A von A definiert durch

$$I_A(\omega) := \begin{cases} 1 & \text{falls } \omega \in A \\ 0 & \text{falls } \omega \in A^{\complement} \end{cases}$$

In unserem Fall ist I_A für jedes $A \subseteq \Omega$ eine Zufallsvariable.

Eigenschaften der Dichte und Verteilungsfunktion

 \bullet die Verteilungsfunktion F_X ist vollständig durch die Dichte p_X festgelegt, nämlich:

$$F_X(t) = P[X \le t] = \sum_{x_k \le t} P[X = x_k] = \sum_{x_k \le t} p_X(x_k)$$

- für jedes $x_k \in \mathcal{W}(X)$ gilt $0 \le p_X(x_k) \le 1$ und $\sum_{x_k \in \mathcal{W}(X)} p_X(x_k) = 1$.
- ist $\mathcal{W}\subseteq\mathbb{R}$ nichtleer und abzählbar und $f:\mathcal{W}\to[0,1]$ eine Funktion mit $\sum_{w_k\in\mathcal{W}}f(w_k)=1$, dann kann man einen Wahrscheinlichkeitsraum (Ω,\mathcal{F},P) und darauf eine Zufallsvariable X konstruieren, deren Gewichtsfunktion gerade die Funktion f ist. Dazu genügt bspw. $\Omega:=\mathcal{W},$ $\mathcal{F}:=2^\Omega,P[\{\omega\}]:=f(\omega)$ und $X(\omega)=\omega.$
- Die Verteilung beschreibt das stochastische Verhalten einer Zufallsvariable. Das ist dasjenige Wahrscheinlichkeitsmass μ_X auf \mathbb{R} , das durch $\mu_X(B) := P[X \in B]$ definiert ist. Ist X diskrete Zufallsvariable $\Longrightarrow \mu_X$ heisst diskrete Verteilung. Damit kann man die Verteilung μ_X und die Gewichtsfunktion p_X direkt miteinander identifizieren: der einzige Unterschied besteht darin, dass μ_X als Argumente Teilmengen von $\mathcal{W}(X)$ hat, p_X hingegen Elemente von $\mathcal{W}(X)$. Folgende Formel beschreibt ihren Zusammenhang:

$$\mu_X(B) = P[X \in B] = \sum_{x_k \in B} p_X(x_k)$$
 für $B \subseteq \mathcal{W}(X)$

2.2. Erwartungswerte

Def. 2.3 (Erwartungswert). Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion $p_X(x)$, dann ist der Erwartungswert definiert als

$$\mathbb{E}[X] := \sum_{x_k \in \mathcal{W}(X)} x_K \cdot p_X(x_k)$$

sofern diese Reihe absolut konvergiert. Ansonsten existiert der Erwartungswert nicht.

Man kann den Erwartungswert auch als Summe über Ω schreiben, falls er exisitert, denn dann gilt:

$$\mathbb{E}[X] = \sum_{\omega_i \in \Omega} X(\omega_i) P[\{\omega_i\}] = \sum_{\omega_i \in \Omega} p_i X(\omega_i)$$

(eine weitere Umformung existiert im Skript, Seite 43)

Satz 2.1 (Erwartungswert von Funktionen von ZV). Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion $p_X(x)$ und Y=g(X) für eine Funktion $g:\mathbb{R}\to\mathbb{R}$. Dann gilt

$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x_k \in \mathcal{W}(X)} g(x_k) \cdot p_X(x_k)$$

sofern die Reihe absolut konvergiert.

Damit genügt es, die Verteilung von X zu kennen, man muss nicht extra die Verteilung von Y zuerst bestimmen, um den Erwartungswert von Y zu berechnen.

Satz 2.2 (Eigenschaften des Erwartungswerts). Seien X, Y Zufallsvariablen mit existentem Erwartungswert. Dann gilt:

- (i) Monotonie: falls $X(\omega) \leq Y(\omega)$ für alle ω , so gilt $\mathbb{E}[X] \leq \mathbb{E}[Y]$
- (ii) **Linearität:** für beliebige $a, b \in \mathbb{R}$ gilt: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- (iii) nimmt X nur Werte aus $\mathbb{N}_0 = \{0, 1, 2, \dots\}$ annimmt, dann gilt:

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} P[X \ge j] = \sum_{l=0}^{\infty} P[X > l]$$

Def. 2.4 (Varianz & Standardabweichung). Sei X eine diskrete ZV mit $\mathbb{E}[X^2] < \infty$

dann definieren wir die Varianz von X als

$$Var[X] := \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$

und die Standardabweichung von X als

$$\sigma(X) = \operatorname{sd}(X) := \sqrt{\operatorname{Var}[X]}$$

Beides sind Streuungsmasse für die Verteilung von X

Schreiben wir $m_X:=\mathbb{E}[X]$ und definieren die Funktion $g(x):=(x-m_X)^2$ dann erhalten wir

$$Var[X] = \sum_{x_k \in \mathcal{W}(X)} (x_k - m_X)^2 \cdot p_X(x_K)$$

Lemma 2.1. Die Varianz von Zufallsvariablen hat folgende Eigenschaften:

- (i) $Var[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- (ii) $Var[aX + b] = a^2 \cdot Var[X]$

2.3. Gemeinsame Verteilungen & Unabhängige Zufallsvariablen

Def. 2.5 (Gemeinsame Verteilung & Dichte). Seien X_1,\ldots,X_n Zufallsvariablen. Die *gemeinsame Verteilungsfunktion* von X_1,\ldots,X_n ist die Abbildung $F:\mathbb{R}^n \to [0,1]$ definiert durch

$$(x_1, \ldots, x_n) \mapsto F(x_1, \ldots, x_n) := P[X_1 \le x_1, \ldots, X_n \le x_n]$$

Sind X_1, \ldots, X_n diskrete Zufallsvariablen, so definiert man ihre gemeinsame Gewichtsfunktion $p: \mathbb{R}^n \to [0, 1]$ durch

$$p(x_1,\ldots,x_n) := P[X_1 = x_1,\ldots,X_n = x_n]$$

. Es ist klar, dass $p(x_1,\dots,x_n)=0$ falls das Ereignis (x_1,\dots,x_n) nicht im gemeinsamen Wertebereich liegt.

Aus der gemeinsamen Gewichtsfunktion \boldsymbol{p} erhält man die gemeinsame Verteilungsfunktion:

$$F(x_1, ..., x_n) = \sum_{y_1 < x_1, ..., y_n < x_n} p(y_1, ..., y_n)$$

 $\bf Def.~2.6$ (Randverteilung). Sein X,Y Zufallsvariablen mit der gemeinsamen Verteilungsfunktion F. Dann ist die Randverteilung von X gegeben durch

$$F_X: \mathbb{R} \to [0,1] \text{ mit } x \mapsto F_X(x) := P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x)$$

Sind X, Y diskrete Zufallsvariablen mit $W(Y) = \{y_1, y_2, ...\}$ und gemeinsamer Gewichtsfunktion p(x, y), so ist die Gewichtsfunktion der Randverteilung von X gegeben durch

$$\begin{aligned} p_X: \mathcal{W}(X) &\to [0,1] \text{ mit } x \mapsto p_X(x) = P[X=x] \\ &= \sum_{y_j \in \mathcal{W}(Y)} P[X=x, Y=y_j] \\ &= \sum_{y_j \in \mathcal{W}(Y)} p(x, y_j) \quad \text{ für } x \in \mathcal{W}(X) \end{aligned}$$

Analoge Aussagen gelten natürlich für Y

Für Vektoren von diskreten Zufallsvariablen (X_1, \ldots, X_n) definiert man die Randverteilungen für jeden möglichen Teilvektor von (X_1, \ldots, X_n) . Es gibt also eindimensionale, aber auch multi-dimensionale Randverteilungen!

Bei zweidimensionalen diskreten Zufallsvariablen erhält man die Gewichtsfunktionen der Randverteilungen als Zeilen- bzw. Spaltensummen der gemeinsamen Gewichtsfunktionen, wie das folgende Bespiel illustriert:

$x \setminus y$	0	1	2	3	$p_X(x)$
0	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{1}{2}$
1	0	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	$\frac{1}{2}$
$p_Y(y)$	$\frac{1}{8}$	3 8	$\frac{3}{8}$	$\frac{1}{8}$	

Aus den Randverteilungen kann man jedoch nicht ohne Weiteres die gemeinsame Verteilung herleiten, dazu fehlt Information über die Abhängigkeitsstruktur der Zufallsvariable.

Def. 2.7 (Unabhängigkeit). Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, falls gilt

$$F(x_1, ..., x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$$

Folgendes Lemma gibt den Zusammenhang zu unabhängigen Ereignissen:

Lemma 2.2. Die diskreten Zufallsvariablen X_1, \ldots, X_n sind unabhängig \iff für beliebige Teilmengen $B_i \subseteq \mathcal{W}(X_i), i = 1 \ldots n$ sind die Ereignisse $A_i := \{X_i \in B_i\}$ für $i = 1 \ldots n$ unabhängig

 \iff für beliebige Teilmengen $B_i \subset \mathcal{W}(X_i), i = 1 \dots n$ gilt:

$$P[X_1 \in B_1, \dots, X_n \in B_n] = \prod_{i=1}^n P[X_i \in B_i]$$

Satz 2.3 (Funktionen auf Zufallsvariablen). Seien X_1,\ldots,X_n diskrete unabhängige Zufallsvariablen und $f_i:\mathbb{R}\to\mathbb{R}$ irgendwelche Funktionen. Sei weiter $Y_i:=f_i(X_i)$ für $1\leq 1\leq n$. Dann sind die Zufallsvariablen Y_1,\ldots,Y_n ebenfalls unabhängig.

2.4. Funktionen von mehreren Zufallsvariablen

Sind X_1, \ldots, X_n diskrete Zufallsvariablen, dann ist $Y = g(X_1, \ldots, X_n)$ wieder eine Zufallsvariable für eine Funktion $g : \mathbb{R}^n \to \mathbb{R}$.

Satz 2.4. Seien X_1,\ldots,X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Sei $Y=a+\sum_{i=0}^n b_iX_i$ für Konstanten a,b_i . Dann gilt:

$$\mathbb{E}[Y] = a + \sum_{i=0}^{n} b_i \mathbb{E}[X_i]$$

Def. 2.8 (Kovarianz). Seien X, Y Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit endlichen Erwartungswerten. Dann ist die Kovarianz definiert als

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Def. 2.9 (Korrelation). Die Korrelation von X und Y ist definiert durch

$$\rho(X,Y) := \begin{cases} \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)} & \text{falls } \sigma(X)\sigma(Y) > 0\\ 0 & \text{sonst} \end{cases}$$

Satz 2.5 (Wertebereich der Korrelation). Seien X, Y wie in der Definition der Kovarianz, dann folgt aus der Cauchy-Schwarz Ungleichung, dass $|Cov(X,Y)| \leq \sigma(X)\sigma(Y)$, und damit folgt für die Korrelation

$$-1 \le \rho(X, Y) \le 1$$

Wir haben bereits gesehen, dass der Erwartungswert linear ist. Für die Varianz ist dies nicht ganz so einfach. Es gilt:

Korollar 2.1 (Summenformel für Varianzen).

$$\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[X_{i}] + 2 \cdot \sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$$

Ist Cov(X,Y)=0, so nennt man X und Y unkorreliert. \Longrightarrow Linearität der Varianz gilt nur für unkorrelierte Zufallsvariablen. Für Produkte von Zufallsvariablen gilt:

Satz 2.6 (Produkte von Zufallsvariablen). Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Falls X_1, \ldots, X_n unabhängig sind, dann gilt

$$\mathbb{E}\left[\prod_{i=1}^{n} X_i\right] = \prod_{i=1}^{n} \mathbb{E}[X_i]$$

Insbesondere sind dann X_1, \ldots, X_n paarweise unkorreliert und daher gilt

$$\operatorname{Var}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \operatorname{Var}[X_i]$$

sofern die Varianzen existieren und endlich sind.

Bemerkung: Es gilt die Implikationskette: unabhängig \implies paarweise unabhängig \implies unkorreliert

Bemerkung: Es gibt keine allgemeine Produktregel für Varianzen!

Faltung

Seien X,Y diskrete Zufallsvariablen mit gemeinsamer Gewichtsfunktion p(x,y). Dann ist auch ihre Summe Z:=X+Y diskret. Damit können wir die Gewichtsfunktion von Z beschreiben durch

$$p_{Z}(z) = P[Z = z] = \sum_{x_{k} \in \mathcal{W}(X)} P[X = x_{k}, Y = z - x_{k}] = \sum_{x_{k} \in \mathcal{W}(X)} p(x_{k}, z - x_{k})$$

oder analog via Symmetrie = $\sum_{y_j \in \mathcal{W}(Y)} p(z - y_j, y_j)$. Dies ist ein völlig **3.5. Geometrische Verteilung** allgemeines Resultat. Sind nun X und Y unabhängig, dann gilt bekanntlich | Unendliche Folge von 0-1-Experimenten mit Erfolgsparameter p. Sei X die $p(x,y) = p_X(x) \cdot p_Y(y)$. Damit folgt die bekannte Faltung der Gewichtsfunktionen p_X und p_Y :

$$p_Z(z) = \sum_{x_k \in \mathcal{W}(X)} p_X(x_k) \cdot p_Y(z - x_k) = \sum_{y_j \in \mathcal{W}(Y)} p_X(z - y_j) \cdot p_Y(y_j)$$

und schreiben dies kurz als $p_Z = p_X * p_Y = p_Y * p_X$

2.5. Bedingte Verteilungen

Hier haben wir die gemeinsame Verteilung zweier Zufallsvariablen und wollen Informationen, die wir über eine der beiden Zufallsvariablen haben, ausnutzen um eine genauere Aussage über die andere Zufallsvariable zu machen.

Def. 2.10 (bedingte Gewichtsfunktion). X, Y diskrete ZV mit gemeinsamer Gewichtsfunktion p(x,y). Die bedingte Gewichtsfunktion von X, gegeben dass Y = y, ist definiert als

$$p_{X \mid Y}(x \mid y) := P[X = x \mid Y = y] = \frac{P[X = x, Y = y]}{P[Y = y]} = \frac{p(x, y)}{p_Y(y)}$$

für $p_Y(y) > 0$ und 0 sonst.

Lemma 2.3 (Kriterium für Unabhängigkeit). Aus der Charakterisierung der Unabhängigkeit folgt sofort:

X und Y sind unabhängig \iff für alle y mit $p_Y(y) > 0$ gilt: $p_{X \perp Y}(x \mid y) =$ $p_X(x) \quad \forall x \in \mathcal{W}(X).$

Eine symmetrische Aussage gilt natürlich, wenn X und Y vertauscht werden.

Bemerkung: Man kann auch auf ein Ereignis bedingen, welches man dann mithilfe einer Indikatorvariable in eine Zufallsvariable verwandelt (siehe Beispiel Seite 64)

3. Wichtige Diskrete Verteilungen

3.1. Diskrete Gleichverteilung

Die diskrete Gleichverteilung existiert nur auf einer endlichen Menge. Sie gehört zu einer ZV X mit Wertebereich \mathcal{W} und Gewichtsfunktion

$$p_X(x_k) = P[X = x_k] = \frac{1}{N} \text{ für } k = 1, \dots, N$$

3.2. Unabhängige 0-1 Experimente

Wir betrachten eine Folge gleichartiger Experimente, die alle nur mit Erfolg oder Misserfolg enden können und betrachten die Ereignisse A_i {Erfolg beim i-ten Experiment}. Wir nehmen an, dass alle A_i unabhängig sind und dass $P[A_i] = p$ für alle i. Wir können nun eine Indikatorfunktion $Y_i = I_{A_i}$ für jedes i definieren, und danach die Folge von Ereignissen als Folge von 0 und 1 codieren. Dies werden wir für die nächsten Verteilungen brauchen.

3.3. Bernoulli-Verteilung

Sei $X \sim Be(p)$, dann $\mathbb{E}[X] = p$, Var[X] = p(1-p)

3.4. Binomialverteilung

Beschreibt die Anzahl der Erfolge bei n unabhängigen 0-1-Experimenten mit Erfolgsparameter p.

$$p_X(k) = P[X=k] = \binom{n}{k} p^k (1-p)^{n-k} \text{ für } k=0,1,...,n$$

$$\mathbb{E}X = np, \text{Var}[X] = np(1-p)$$

Wartezeit auf den ersten Erfolg.

$$p_X = p(1-p)^{k-1}$$

4. Allgemeine Zufallsvariablen

4.1. Grundbegriffe

Def. 4.1 (**Zufallsvariable**). Sein (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum Eine Zufallsvariable (ZV) auf Ω ist eine messbare Funktion $X:\Omega\to\mathbb{R}$ das bedeutet, dass die Menge $\{X < t\} = \{\omega \mid X(\omega) < t\}$ für jedes t ein beobachtbares Ereignis, also $\in \mathcal{F}$ sein muss.

Die Verteilungsfunktion (VF) von X ist die Abbildung $F_X : \mathbb{R} \to [0,1]$ mit

$$t \mapsto F_X(t) := P[X \le t] := P[\{\omega \mid X(\omega) \le t\}]$$

Wir betrachten nur messbare Zufallsvariablen in dieser Vorlesung.

Satz 4.1 (Eigenschaften der Verteilungsfunktion). F_X hat folgende Eigenschaften:

- (i) F_X ist wachsend und rechtsstetig: $F_X(s) \leq F_X(t)$ für $s \leq t$ und $F_X(u) \to F_X(t)$ für $u \to t$ mit u > t.
- (ii) $\lim_{t\to-\infty} F_X(t) = 0$ und $\lim_{t\to\infty} F_X(t) = 1$

Das stochastische Verhalten einer ZV X wird durch die Verteilung beschrieben, d.h. das Wahrscheinlichkeitsmass μ_X , welches durch $\mu_X(B) = P[X \in B]$ definiert ist. Sobald die Verteilungsfunktion F_X bekannt ist, ist das Mass μ_X festgelegt, nämlich durch den Zusammenhang

$$F_X(t) = \mu_X\left((-\infty, t]\right)$$

Anstelle der Gewichtsfunktion aus dem diskreten Fall verwenden wir die Dichtefunktion, sofern diese existiert.

Def. 4.2 (**Dichtefunktion**). Eine ZV X mit Verteilungsfunktion $F_X(t) =$ $P[X \leq t]$ heisst (absolut) stetiq mit Dichtefunktion $f_X : \mathbb{R} \to [0, \infty)$, falls

$$F_X(t) = \int_{-\infty}^t f_X(s) ds$$
 für alle $t \in \mathbb{R}$.

Bemerkung: X heisst stetig, falls F_X nur stetig ist. Eine ZV X mit einer Dichte hat aber eine VF F_X , die fast überall differenzierbar ist. Dafür verwenden wir den Begriff stetig mit Dichte.

Satz 4.2 (Eigenschaften der Dichte). Die Dichtefunktion f_X hat folgende Eigenschaften:

- (i) $f_X > 0$ und $f_X = 0$ ausserhalb des Wertebereichs $\mathcal{W}(X)$
- (ii) $\int_{-\infty}^{\infty} f_X(s) ds = 1$ (dies folgt aus Eigenschaft (ii), 2. GW von der Ver-

In beinahe allen praktischen Beispielen ist f_X zusätzlich stetig oder zumindest stückweise stetig.

Die Dichtefunktion ist beinahe analog zur Gewichtsfunktion für diskrete Zufallsvariablen, jedoch unterscheidet sie sich in Punktwahrscheinlichkeiten. Es

$$P[a < X \le b] = P[X \le b] - P[X \le a] = F_X(b) - F_X(a) = \int_a f_X(s) ds$$

$$\implies P[X \in B] = \int_B f_X(s) ds$$

und betrachtet man nun einen Grenzwert, so erhält man

$$\lim_{\varepsilon \to 0^+} P[t - \varepsilon < X \le t + \varepsilon] = \lim_{\varepsilon \to 0^+} \int_{t - \varepsilon}^{t + \varepsilon} f_X(s) \, ds = 0 = P[X = t]$$

Damit ist die Punktwahrscheinlichkeit an jedem Punkt = 0. Jedoch gilt für kleine ε (wir verwenden hier $\varepsilon = dt$) das Folgende:

$$P[X \in (t, t + dt]] = f_X(t)dt$$

In allen vernünftigen Situationen gilt also der folgende Zusammenhang zwischen Dichtefunktion und Verteilung:

Dichtefunktion = Ableitung der Verteilungsfunktion

Vom diskreten zum stetigen Fall kommt man , indem Summen durch Integrale und die Gewichtsfunktion durch die Dichte ersetzt.

4.2. Normalverteilung

Normalverteilung oder Gauss-Verteilung nimmt zwei Parameter $\mu \in \mathbb{R}$, $\sigma^2 >$ 0. Ihre Dichte ist symmetrisch um μ und hat eine glockenförmige Gestalt.

- Wertebereich: $W(X) = \mathbb{R}$
- Dichtefunktion: $f_X(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$ für $t \in \mathbb{R}$
- Erwartungswert: $\mathbb{E}[X] = \mu$ und Varianz: $Var[X] = \sigma^2$
- Verteilungsfunktion: entspricht dem Integral von der Dichtefunktion über dem Intervall $[-\infty, t)$, es existiert jedoch kein geschlossener Term.
- Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$

Mit einer Normalverteilung können z.b: die Streuung von Messwerten um ihren Mittelwert, Gewichte bzw. Grössen in Bevölkerungen, Leistungen in IQ-Tests und viele mehr modelliert werden. Der Grund für die Wichtigkeit der Normalverteilung liegt im Zentralen Grenzwertsatz, der in Kapitel 5 besprochen wird.

4.2.1. Standard-Normalverteilung

Die Standard-Normalverteilung gibt die beiden Parameter vor: $\mu = 0$ und

- Dichtefunktion: $\varphi(t) = \frac{1}{\sqrt{2-\epsilon}} e^{-\frac{t^2}{2}}$
- Verteilungsfunktion: Wieder existiert kein geschlossener Ausdruck, jedoch ist das Integral tabelliert:

$$\Phi(t) = \int_{-\infty}^{t} \varphi(s) \, ds = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{s^2}{2}} \, ds$$

 $\frac{\text{Wichtig:}}{\text{es ausreicht, nur die Werte von }} \stackrel{X-\mu}{\sigma} \sim \mathcal{N}(0,1). \text{ Daraus folgt unmittelbar, dass}$

$$F_X(t) = P[X \le t] = P\left[\frac{X - \mu}{\sigma} \le \frac{t - \mu}{\sigma}\right] = \Phi\left(\frac{t - \mu}{\sigma}\right)$$

4.3. Erwartungswerte

Eine beliebige reellwertige ZV X kann immer durch eine Folge diskreter ZV approximiert werden. Ist bspw. $X \geq 0$, dann kann man

$$X_N := \sum_{k=1}^{n2^n} \frac{k-1}{2^n} I_{\{\frac{k-1}{2^n} \le X \le \frac{k}{2^n}\}} + nI_{\{X \ge n\}}$$

für $X_n \nearrow X$ wählen und erhält den Erwartungswert als

$$\mathbb{E}[X] := \lim_{n \to \infty} \mathbb{E}[X_n]$$

Für allgemeine Zufallsvariablen zerlegt man $X = X^+ - X^- := \max(X, 0) - \max(-X, 0)$ mit $X^+, X^- \ge 0$ und setzt dann $\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-]$. Sind diese beiden Erwartungswerte nicht endlich, so existiert der Erwartungswert von X nicht (in \mathbb{R}).

Erwartungswert berechnen: Ist X stetigt mit einer Dichte $f_X(x)$, so gilt (sofern konvergent):

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \ dx$$

Satz 4.3. Seien X und Y = g(X) zwei ZV. Ist X stetig mit Dichte $f_X(x)$ dann gilt (sofern das Integral konvergiert)

$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \ dx$$

Weitere Eigenschaften für Erwartungswerte gelten analog zum diskreten Fall, einzig die konkreten Berechnungen unterscheiden sich.

4.4. Momente & Absolute Momente

Def. 4.3 (Moment). Sei X eine Zufallsvariable und $p \in R_+$. Wir definieren:

- das p-te absolute Moment von X durch $M_o := \mathbb{E}[|X|^p]$ (kann ∞ sein)
- falls $M_n < \infty$ für ein n, dann ist das n-te (rohe) Moment von X durch $m_n := \mathbb{E}[X^n]$ definiert.
- Das n-te zentralisierte Moment von X durch $m_n := \mathbb{E}[(X \mathbb{E}[X])^n]$ definiert.

Damit folgt sofort:

Korollar 4.1. $M_n < \infty$ für $n \in \mathbb{N} \implies |m_n| \leq M_n$

Hat X eine Dichte f_X , dann gilt zudem für das absolute Moment

$$M_p = \int_{-\infty}^{\infty} |x|^p f_X(x) \ dx$$

Gilt dann $M_n < \infty$ für ein $n \in \mathbb{N}$, dann können wir auch das n-te Moment per Integral bestimmen:

$$m_n = \int\limits_{-\infty}^{\infty} x^n f_X(x) \ dx$$

Satz 4.4. Sei X ZV und $p, q \in R_+$. Dann:

$$p \le q \land M_q < \infty \implies M_p < \infty$$

4.5. Gemeinsame Verteilungen, Unabhängige Zufallsvariablen

Def. 4.4 (Gemeinsame Verteilung). Die gemeinsame Verteilungsfunktion von n ZV X_1, \ldots, X_n ist die Abbildung $F : \mathbb{R}^n \to [0, 1]$ mit:

$$(x_1, \ldots, x_n) \mapsto F(x_1, \ldots, x_n) := P[X_1 \le x_1, \ldots, X_n \le x_n]$$

Lässt sich F für eine Funktion $f: \mathbb{R}^n \to [0, \infty)$ schreiben als

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(t_1, \dots, t_n) dt_n \dots dt_1$$

dann heisst $f(x_1, \ldots, x_n)$ die gemeinsame Dichte von X_1, \ldots, X_n .

Korollar 4.2 (Eigenschaften der Dichte). Für die gemeinsame Dichte von X_1, \ldots, X_n gilt:

- (i) $f(x_1, \ldots, x_n) \geq 0$ und = 0 ausserhalb $\mathcal{W}(X_1, \ldots, X_n)$
- (ii) $\iiint_{\mathbb{R}^n} f(x_1, \dots, x_n) dx_n \dots dx_1 = 1$
- (iii) $P[(X_1,\ldots,X_n)\in A]=\iint\limits_{(x_1,\ldots,x_n)\in A}f(x_1,\ldots,x_n)dx_n\ldots dx_1$ für $A\subseteq \mathbb{R}^n$

Def. 4.5 (Randverteilung). Haben X, Y die gemeinsame Verteilungsfunktion F, dann sind $F_X : \mathbb{R} \to [0,1]$ und $F_Y : \mathbb{R} \to [0,1]$ die Verteilungsfunktionen der Randverteilung von X bzw. Y und sind definiert als:

$$x \mapsto F_X(x) := P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$$

$$y\mapsto F_Y(y):=P[Y\leq y]=P[X<\infty,Y\leq y]=\lim_{x\to\infty}F(x,y)$$

Haben X, Y eine gemeinsame Dichte f, dann haben auch die Randverteilungen Dichten $f_X : \mathbb{R} \to [0, \infty)$ und $f_Y : \mathbb{R} \to [0, \infty)$ mit

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Def. 4.6 (Unabhängigkeit). Die ZV X_1,\ldots,X_n heissen $unabhängig \iff F(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdots F_{X_n}(x_n).$

Hat man stetige Zufallsvariablen mit Dichten, dann ist die gemeinsame Dichtefunktion das Produkt der Randdichten, also

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

4.6. Bedingte Verteilungen usw

Def. 4.7 (Bedingte Dichte, Verteilungsfunktion und Erwartungswert).

$$f_{X_1|X_2}(x_1 \mid x_2) = \frac{f_{X_1,X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$

$$P(Y > t \mid Y < a) = \frac{P[t < Y < a]}{P[Y < a]}$$

$$E[X_1 \mid X_2](x_2) = \int x_1 f_{X_1 \mid X_2}(x_1 \mid x_2) \ dx_1$$

Mit Trick:

$$\begin{split} E[X_1] &= E[E[X_1 \mid X_2]] = \int E[X_1 \mid X_2](x_2) f_{X_2}(x_2) dx_2 \\ &= \int \int x_1 f_{X_1, X_2}(x_1, x_2) dx_1 dx_2 \end{split}$$

Anm. $E[X_1 \mid X_2](x_2) = E[X_1 \mid X_2 = x_2]$

4.7. Funktionen und Transformationen von Zufallsvariablen

Summen

Für Z=X+Y suchen wir die Verteilungsfunktion $F_Z(z)=P[Z\leq z]=P[X+Y\leq z].$ Dies kann man als Punktemenge im \mathbb{R}^2 auffassen, nämlich $A_z:=\{(x,y)\in\mathbb{R}^2\mid x+y\leq z\}.$ Damit ist $F_Z(z)=P[(X,Y)\in A_z].$ Damit erhält man

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) \ dy \ dx$$

Substituiere nun $v = x + y \Rightarrow y = v - x, dy = dv$ so erhält man

$$F_{Z}(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(x, v - x) \ dv \ dx = \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(x, v - x) \ dx \ dv$$

$$\implies f_{Z}(z) = \frac{d}{dz} F_{Z}(z) = \int_{-\infty}^{\infty} f(x, z - x) \ dx = \int_{-\infty}^{\infty} f(z - y, y) \ dy$$

womit wir also auch die Dichte erhalten haben. Das letzte Gleichheitszeichen gilt wegen Symmetrie zwischen X, Y. Sind X, Y unabhängig, so gilt $f(x,y) = f_X(x) \cdot f_Y(y)$ und dann ist f_Z die Faltung von f_X und f_Y .

Transformationen

Sei X ZV mit Verteilung und Dichte. Sei $g: \mathbb{R} \to \mathbb{R}$ messbare Funktion. Betrachte Y = g(X), wir suchen Verteilung und Dichte (falls existent) von Y. Allgemein löst man dieses Problem wie folgt:

$$F_Y(t) = P[Y \le t] = P[g(X) \le t] = \int_{A_g} f_X(s) \ ds$$

mit $A_g:=\{s\in\mathbb{R}\mid g(s)\leq t\}$. Die Dichtefunktion (falls existent) erhält man dann durch Ableiten der Verteilung.

Awendung der Transformation

Satz 4.5. Sei F stetige, streng-monoton wachsende Verteilungsfunktion mit Umkehrfunktion F^{-1} . Dann:

$$X \sim \mathcal{U}(0,1) \quad \land \quad Y = F^{-1}(X) \implies Y \text{ hat Verteilungsfunktion } F.$$

Dieser Satz erlaubt die Konstruktion einer Zufallsvariablen Y mit einer gewünschten Verteilungsfunktion F, wenn man eine Zufallsvariable $X \sim \mathcal{U}(0,1)$ zur Hand hat. Damit kann man beispielsweise eine Verteilung mit einem Computer simulieren. Ein Zufallszahlengenerator produziert in einem gewissen Sinn eine Folge von $\mathcal{U}(0,1)$ -verteilten Zufallsvariablen. $\Longrightarrow F^{-1}(\text{Zufallszahlengenerator})$ simuliert also die Verteilung F.

5. Ungleichungen und Grenzwertsätze

5.1. Wahrscheinlichkeit & Konvergenz

Def. 5.1 (Konvergenz in Wahrscheinlichkeit). Sei X_1, X_2, \ldots und YZV auf gemeinsamen Wahrscheinlichkeitsraum.

(i) X_1, X_2, \ldots konvergiert gegen Y in Wahrscheinlichkeit falls

$$\forall \varepsilon > 0.$$
 $\lim_{n \to \infty} P[|X_n - Y| > \varepsilon] = 0$

(ii) Für p > 0 konvergiert die Folge X_1, X_2, \ldots gegen Y in L^p falls

$$\lim_{n \to \infty} \mathbb{E}[|X_n - Y|^p] = 0$$

(iii) X_1, X_2, \ldots konvergiert gegen Y P-fast sicher falls

$$P\left[\lim_{n\to\infty} X_n = Y\right] = P\left[\left\{\omega \in \Omega \mid \lim_{n\to\infty} X_n(\omega) = Y(\omega)\right\}\right] = 1$$

Def. 5.2 (Konvergenz in Verteilung). Seien X_1, X_2, \ldots , und Y ZV auf möglicherweise verschiedenen Wahrscheinlichkeitsräumen mit Verteilungsfunktionen F_1, F_2, \ldots und F_Y . Dann konvergiert X_1, X_2, \ldots gegen Y in Verteilung falls

$$\lim_{n\to\infty}F_n(x)=F_Y(x)\qquad\text{für alle }x\in R,\text{wo }F_Y\text{ stetig ist}$$

Satz 5.1. Es gilt folgende Äquivalenz:

 X_1, X_2, \ldots konvergiert in Verteilung gegen $Y \iff$

 $\lim_{n\to\infty}\mathbb{E}[f(X_n)]=\mathbb{E}[f(Y)] \text{ für jedes beschränkte stetige } f:\mathbb{R}\to\mathbb{R}$

5.2. Ungleichungen

Satz 5.2 (Markov-Ungleichung). Sei X eine Zufallsvariable und g $\mathcal{W}(X) \to [0,\infty)$ eine wachsende Funktion. Für jedes $c \in \mathbb{R}$ mit g(c) > 0gilt dann:

$$P[X \ge c] \le \frac{\mathbb{E}[g(X)]}{g(c)}$$

Bemerkung: Insbesondere gilt der satz für die Identitätsfunktion g = id. Daraus folgt unmittelbar:

Satz 5.3 (Chebyshev-Ungleichung). Sei Y Zufallsvariable mit endlicher Varianz. Für jedes b > 0 gilt dann:

$$P[|Y - \mathbb{E}[Y]| \ge b] \le \frac{\operatorname{Var}[Y]}{b^2}$$

Beweis. Wähle $X:=|Y-\mathbb{E}[Y]|$ und $g(x)=x^2$ für $x\geq 0 \implies \mathbb{E}[g(Y)]=\bigcap$

5.3. Gesetz der grossen Zahlen

Wir betrachten nun Folgen von Zufallsvariablen mit dem gleichen Erwartungswert und der gleichen Varianz. Uns interessiert das Verhalten des arithmetischen Mittel dieser Folge von Zufallsvariablen.

Satz 5.4 (Schwaches Gesetz der grossen Zahlen). Sei X_1, X_2, \ldots eine Folge von unabhängigen ZV mit $\mathbb{E}[X_i] = \mu$ und Varianz $\text{Var}[X_i] = \sigma^2$. Sei $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$. Dann konvergiert $\overline{X_n}$ für $n \to \infty$ in Wahrscheinlichkeit/stochastisch gegen μ .

Beweis. Betrachte Linearität des EW: $\mathbb{E}[\overline{X_n}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \mu$. Da die Daraus folgt $S_n \sim \mathcal{N}(n\mu, n\sigma^2)$ und $\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, wobei beide Verteilungvorgen parweise unkorreliert sind, gilt auch die Linearität der Varianz und somit gen nur approximativ gelten. $\operatorname{Var}[\overline{X_n}] = \frac{1}{n} \sum_{i=1}^n \operatorname{Var}[X_i] = \frac{\sigma^2}{n}$. Die Chebyshev-Ungleichung liefert damit:

$$P\left[|\overline{X_n} - \mu| > \varepsilon\right] \le \frac{\operatorname{Var}[\overline{X_n}]}{\varepsilon^2} = \frac{\sigma^2}{n \cdot \varepsilon^2}$$

Dieser Term geht für jedes beliebige $\varepsilon > 0$ gegen 0, was Def. 5.1 (i) entspricht.

Bemerkung 1: Es genügt bereits, wenn X_i nur paarweise unkorreliert sind. Bemerkung 2: Die Existenz des Erwartungswerts ist essentiell, damit das Gesetz gilt: So existiert bspw kein Erwartungswert für die bereits eingeführte Cauchy-Verteilung. Damit konvergiert $n \mapsto \overline{X_n}(\omega)$ nicht, denn Summen von Cauchy-verteilten Zufallsvariablen sind wiederum Cauchy-verteilt.

Monte-Carlo-Integration

Wir wollen für $h:[0,1]^d\to\mathbb{R}$ ein Integral $I:=\int_{[0,1]^d}h(\vec{x})\ d\vec{x}$ berechnen, welches auch numerisch schwer lösbar ist. Dafür können wir I als einen Erwartungswert auffassen. Sei d=1. Ist $U \sim \mathcal{U}(0,1)$, dann gilt

$$\mathbb{E}[h(U)]) = \int_{\mathbb{R}} h(x) f_U(x) \ dx = \int_0^1 h(x) \ dx = I$$

Die letzte Gleichheit gilt, weil die Dichte von U auf [0,1] konstant 1 ist und sonst 0. Deshalb können wir mit einem Zufallszahlengenerator eine Folge U_1, U_2, \ldots generieren mit $U_i \sim \mathcal{U}(0,1)$ und den Wert von I mit dem schwa chen GGZ approximieren:

$$\overline{h(U_n)} = \frac{1}{n} \sum_{i=1}^n h(U_i)$$

Damit ist aber auch gleich klar, wieso man eine stärkere Aussage möchte. denn der berechnete Wert liegt nur mit grosser Wahrscheinlichkeit sehr nahe bei I, aber man weiss nicht, ob eine feste Realisierung ω in dieser guten Approximationsmenge liegt.

Satz 5.5 (Starkes Gesetz der grossen Zahlen). Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen mit gleicher Verteilung und EW μ endlich. Für das arithmetische Mittel $\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i$ gilt dann, dass $\overline{X_n}$ P-fast sicher (P.f.s.) gegen μ konvergiert, also

$$P\left[\left\{\omega \in \Omega \mid \overline{X_n}(\omega) \underset{n \to \infty}{\longrightarrow} \mu\right\}\right]$$

Für die Monte-Carlo Integration bedeutet dies, dass unserer berechneter Wert mit Wahrscheinlichkeit 1 nahe bei I liegt. Schlechte Approximationen sind zwar möglich, aber mit Wahrscheinlichkeit 0.

5.4. Zentraler Grenzwertsatz

Wir bezeichnen unabhängige gleichverteilte Zufallsvariablen als i.i.d. für independent identically distributed.

Satz 5.6 (Zentraler Grenzwert). Sei X_1, X_2, \ldots eine Folge von i.i.d. ZV mit EW μ und Varianz σ^2 . Für die Summe $S_n = \sum_{i=1}^n X_i$ gilt dann:

$$\lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \Phi(x) \qquad \forall x \in \mathbb{R}$$

Für praktische Anwendungen existieren zwei alternative Notationen:

- $P[S_n^* < x] \approx \Phi(x)$ für n gross
- $S_n^* \stackrel{\text{approx.}}{\sim} \mathcal{N}(0,1)$ für n gross

wobei S_n^* die Standardisierung von S_n gennant wird:

$$S_n^* = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}[S_n]}}$$

Häufige Anwendung: Approximation der Binomialverteilung durch Normalverteilung weil die Binomialverteilung mühsam zu berechnen ist. Ist $S_n \sim Bin(n,p)$ dann können wir approxmativ sagen, dass $S_n \sim \mathcal{N}(np, np(1-p))$. Fügen wir noch eine additiven Konstante $+\frac{1}{2}$ dazu, die sogenannte Kontinuitätskorrektur, so wird das Resultat noch genauer. Dies lässt sich intuitiv dadurch rechtfertigen, dass sich die Binomialverteilung besser approximieren lässt, wenn man die Normalverteilungsdichte unter den "Stäbensentriert, statt am linken/rechten Rand zu betrachten. Damit gilt:

Korollar 5.1. Dieses Korollar braucht man eigentlich überhaupt nicht.

$$P[a < S_n \le b] = P\left[\frac{a - np}{\sqrt{np(1 - p)}} < S_n^* \le \frac{b - np}{\sqrt{np(1 - p)}}\right]$$
$$\approx \Phi\left(\frac{b + \frac{1}{2} - np}{\sqrt{np(1 - p)}}\right) - \Phi\left(\frac{a + \frac{1}{2} - np}{\sqrt{np(1 - p)}}\right)$$

5.5. Grosse Abweichungen & Chernoff-Schranken

Def. 5.3 (momenterzeugende Funktion). Für eine Zufallsvariable X ist die momenterzeugende Funktion definiert als

$$M_X(t) := \mathbb{E}[e^{tX}] \quad \text{für } t \in \mathbb{R}$$

Diese ist wohldefiniert auf $[0, \infty]$, kann aber den Wert unendlich anneh-

Satz 5.7. Seien X_1, \ldots, X_n i.i.d. für welche die momenterzeugende Funktion $M_X(t)$ für alle $t \in \mathbb{R}$ endlich ist. Dann gilt für jedes $b \in \mathbb{R}$:

$$P[S_n \ge b] \le \exp\left(\inf_{t \in \mathbb{R}} (n \log M_X(t) - tb)\right)$$

Diese Aussage ist zwar stark und liefert ziemlich genaue Abschätzungen, ist allerdings nicht praktisch wegen der momenterzeugenden Funktion. Diese schätzen wir im folgenden Satz nach oben ab:

Satz 5.8 (Chernoff Schranken). Seien X_1, \ldots, X_n unabhängig mit $X_i \sim$ $Be(p_i)$ und $S_n = \sum_{i=1}^n X_i$. Sei $\mu_n := \mathbb{E}[S_n] = \sum_{i=1}^n p_i$ und $\delta > 0$. Dann

$$P[S_n \ge (1+\delta)\mu_n] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_n}$$

Teil II. Statistik

6. Statistische Grundideen

Man unterscheidet im Grunde zwei Formen der Statistik:

- Die deskriptive Statistik beschäftigt sich hauptsächlich mit graphischer Aufbereitung der Daten etc.
- Die induktive Statistik sucht für eine gesammelte Menge an Daten ein passendes (Verteilungs-)Modell

Wir unterscheiden $Daten x_1, \ldots, x_n$ (generell Zahlen) und den generierenden Mechanismus X_1, \ldots, X_n (Zufallsvariablen, also Funktionen auf Ω). Die Gesamtheit der Beobachtungen x_1, \ldots, x_n oder Zufallsvariablen X_1, \ldots, X_n nennt man oft Stichprobe mit Stichprobenumfang n.

Ausgangspunkt ist oft ein Datensatz x_1, \ldots, x_n aus einer Stichprobe X_1, \ldots, X_n , für die wir ein Modell suchen. \implies durch Parameter $\vartheta \in \Theta$ (möglicherweise hoch-dimensional). Dazu betrachtet man einge ganze Familie von Wahrscheinlichkeitsräumen. Der Grundraum (Ω, \mathcal{F}) ist fest und für jeden Parameter ϑ aus dem Parameterraum Θ hat man ein Wahrscheinlichkeitsmass P. auf dem Grundraum. Dies gibt uns also einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$ für jedes $\vartheta \in \Theta$. Wir betrachten dann die Daten x_1, \ldots, x_n als Ergebnisse von Zufallsvariablen X_1, \ldots, X_n und versuchen daraus Rückschlüsse über ϑ zu ziehen.

Das Vorgehen erfolgt in 5 Schritten:

- 1. Deskriptive Statistik um sich einen Überblick zu verschaffen
- 2. Wahl eines (parametrischen) Modells \rightarrow spezifiziere eine Parametermenge Θ und die Familie $(P_{\vartheta})_{\vartheta \in \Theta}$
- 3. Schätzung der Parameter aufgrund der Daten mithilfe eines Schätzers
- 4. Kritische Modellüberprüfung und Anpassung → überprüft ob Daten gut zu gewähltem Paramter ϑ passen mittels geeignetem statistischen Test
- 5. Aussagen über die Zuverlässigkeit \rightarrow wie gut passt das Modell? kann auch Konfidenzbereich anstelle eines einzelnen Parameters angeben.

Dieses Vorgehen nennt man parametrische statistische Analyse.

7. Schätzer

Wir suchen ein Modell für eine Stichprobe X_1, \ldots, X_n und haben einen Parameterraum Θ (oft $\subset \mathbb{R}^m$) und für jedes $\vartheta \in \Theta$ einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$. Wir wollen daher die Paramter $\vartheta_1, \ldots, \vartheta_m$ bestimmen.

Def. 7.1 (Schätzer). Ein Schätzer T_i für einen Parameter ϑ_i ist eine Zufallsvariable der Form $T_i := t_i(X_1, \ldots, X_n)$ für eine Schätzfunktion $t_i: \mathbb{R}^n \to \mathbb{R}$.

Def. 7.2 (Schätzwert). Ein Schätzwert ist das Ergenis einer konkreten Berechnung, eine Zahl. Sie entsteht durch Einsetzen konkreter Daten in einen Schätzer: $T_i(\omega) = t_i(x_1, \dots, x_n)$ und liefert damit einen Wert für genau einen Parameter ϑ_i .

Damit ist ein Schätzer also eine Funktion, die eine Berechnungs methode angibt und ein Schätzwert ist ein Ergebnis einer solchen konkreten Berechnung. Der Einfachheit halber schreiben wir oft $T = (T_1, \ldots, T_m)$ und $\vartheta = (\vartheta_1, \dots, \vartheta_m)$. Wir betrachten nun einige wünschenswerte Eigenschaften

Def. 7.3 (Eigenschaften von Schätzern). Sei T ein Schätzer.

- T ist erwartungstreu, falls $\mathbb{E}_{\vartheta}[T] = \vartheta$ gilt. T schätzt im Mittel also
- der Bias ist definiert als $\mathbb{E}_{\vartheta}[T] \vartheta \implies$ ein erwartungstreuer Schätzer hat keinen Bias.
- der mean-squared-error (MSE) ist definiert als $MSE_{\vartheta}[T] := \mathbb{E}_{\vartheta}[(T - \vartheta)^2] = Var_{\vartheta}[T] + (\mathbb{E}_{\vartheta}[T] - \vartheta)^2$ ⇒ für erwartungstreue Schätzer ist MSE = Varianz
- eine Folge $T^{(n)}$ von Schätzern heisst konsistent für ϑ , falls $T^{(n)}$ für $n \to \infty$ in P_{ϑ} -Wahrscheinlichkeit gegen ϑ konvergiert, d.h. für jedes $\vartheta \in \Theta$ gilt:

$$\lim_{n\to\infty} P_{\vartheta} \left[|T^{(n)} - \vartheta| > \varepsilon \right] = 0 \quad \forall \varepsilon > 0$$

7.1. Maximum-Likelihood Methode

Man unterscheidet den diskreten und stetigen Fall. Wir betrachten hier nur den stetigen Fall, der diskrete Fall verläuft analog (man verwendet Gewichtsfunktion statt Dichtefunktion).

individueller Dichtefunktion $f_X(x;\vartheta)$ und man erhält die gemeinsame Dichtefunktion als Produkt (dies wird später nützlich):

$$f(x_1,\ldots,x_n;\vartheta) = P_{\vartheta}[X_1 = x_1,\ldots,X_n = x_n] = \prod_{i=1}^n f_X(x_i;\vartheta)$$

Beachte, dass die erste Gleichheit auch im allgemeinen Fall gilt, während die zweite Gleichheit nur für i.i.d. ZV gilt.

Def. 7.4 (Likelihood-Funktion). Die Likelihood-Funktion L ist definiert durch

$$L(x_1, \dots, x_n; \vartheta) := \begin{cases} p(x_1, \dots, x_n; \vartheta) & \text{diskreter Fall} \\ f(x_1, \dots, x_n; \vartheta) & \text{stetiger Fall} \end{cases}$$

Die Funktion $\log L(x_1, \ldots, x_n; \vartheta)$ ist dann die \log -Likelihood-Funktion (natürlicher Logarithmus)

Für eine Stichprobe X_1, \ldots, X_n gibt die Likelihood-Funktion die Wahrscheinlichkeit, dass im Modell P_{2} unsere Stichprobe gerade die Werte x_1, \ldots, x_n die wir beobachtet haben, liefert. Die Idee der Maximum-Likelihood Funktion besteht nun darin, dass wir die beobachteten Werte x_1, \ldots, x_n als sehr wahrscheinlich betrachten. Konkret "definieren" wir diese Ergebnis als das wahrscheinlichste Ergebnis, das auftauchen kann. Aus diesem Grund maximieren wir die Likelihood-Funktion nach dem Parameter ϑ :

Def. 7.5 (Maximum-Likelihood-Schätzer). Der ML-Schätzer T für ϑ ist dadurch definiert, dass er die Funktion $\vartheta \mapsto L(X_1, \ldots, X_n; \vartheta)$ als Funktion von ϑ maximiert.

Bemerkung: Normalerweise arbeiten wir mit i.i.d. Zufallsvariablen $X_i \implies$ die Likelihood-Funktion L ist ein Produkt. Verwenden wir aber $\log L$, so können wir die log-Likelihood-Funktion als Summe schreiben, was das Differenzieren erleichtert. Dies funktioniert, da log : $(0,\infty) \to \mathbb{R}$ streng monoton wachsend ist. Das bedeutet konkret, dass jedes Maximum/Minimum von Lauch eines von $\log L$ ist.

Im Allgemeinen versucht man, diese Maximum analytisch zu finden, z.B. durch Differenzieren. Es kann aber auch vorkommen, dass die Likelihood-Funktion nicht differenzierbar ist. In diesem Fall muss man iterativ vorgehen, z.B. mit der Newton-Methode als Iterationsverfahren.

7.2. Momentenmethode

Der Momentenmethode liegt die Idee zugrunde, dass die Momente einer Zufallsvariable bzw. einer Wahrscheinlichkeitsverteilung durch Stichprobenmomente geschätzt werden können.

Sei dazu X_1, \ldots, X_n eine Stichprobe und $\Theta \subseteq \mathbb{R}^m$ der Parameterraum Für jeden Parameter $\vartheta = (\vartheta_1, \dots, \vartheta_m) \in \Theta$ sei X_1, \dots, X_n i.i.d. unter dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$.

Def. 7.6 (Empirisches Moment). Für $k \in \{1, \ldots, m\}$ sei das kte empirische Moment oder Stichprobenmoment \widehat{m}_k der Realisierunger (x_1,\ldots,x_n) definiert durch

$$\widehat{m}_k(x_1,\ldots,x_n) := \frac{1}{n} \sum_{i=1}^n x_i^k$$

(i) $\mathbb{E}_{\vartheta}[|X_1|^m] < \infty$ für jedes $\vartheta \in \Theta$

(ii) Für jedes $k \in \{1, \ldots, m\}$ ist das k-te Moment $m_k^{\vartheta} := \mathbb{E}_{\vartheta}[X_1^k]$ der Stichprobenyariablen eine bekannte Funktion des Parametervektors ϑ . Kon-

$$\forall k \in \{1,\dots,m\}. \; \exists \; g_k : \Theta \to \mathbb{R} \; \text{(borel-messbar)}. \; \forall \vartheta \in \Theta. \quad m_k^\vartheta = g_k(\vartheta_1,\dots$$

In einem Modell P_{ϑ} sind dann die Zufallsvariablen X_1, \ldots, X_n stetig mit einer Beachte, dass wir aufgrund der Tatsache, dass die X_i i.i.d. sind, diese Eigengemeinsamen Dichtefunktion $f(x_1, \ldots, x_n; \theta)$. Oft sind die X_i sogar i.i.d. mit schaften nur für X_1 überprüfen müssen. Sind diese Annahmen erfüllt, so kann man die Momentenmethode nach dem folgenden Schema anwenden.

Methode

- 1. Für gegebene Realisierungen x_1, \ldots, x_n bestimmen für jedes $k \in$ $\{1,\ldots,m\}$ das k-te empirische Moment.
- 2. Stelle ein Gleichungssystem für die Unbekannten Paramter $\vartheta_1, \ldots, \vartheta_m$ auf, in dem das k-te empirische Moment dem k-ten Moment gleichgesetzt wird, also:

$$\widehat{m}_k(x_1,\ldots,x_n) = g_k(\vartheta_1,\ldots,\vartheta_m)$$
 $k=1,\ldots,m$

3. Überprüfe, ob dieses LGS eine eindeutige Lösung besitzt. Dann entspricht die Lösung $\widehat{\vartheta} = \widehat{\vartheta}(x_1, \dots, x_n) \in \Theta$ unserer Schätzung für die

Def. 7.7 (Momenten-Schätzer). Der Vektor $\widehat{\vartheta}(X_1,\ldots,X_n)$ heisst Momenten-Schätzer des Parameters ϑ .

Beispiel: Normalverteilte Stichprobenvariablen

Sei X_1,\ldots,X_n i.i.d. $\mathcal{N}(\mu,\sigma^2)$ -verteilt mit unbekanntem Parameter ϑ (μ, σ^2) und in diesem Fall gilt $q_1(\mu, \sigma^2) = \mu$ und $q_2(\mu, \sigma^2) = \mu^2 + \sigma^2$. Damit berechnen wir den ML-Schätzer für $\vartheta = (\mu, \sigma^2)$:

$$T_1 = \frac{1}{n} \sum_{i=1}^n X_i =: \overline{X_n}$$

$$T_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2$$

Dieser Schätzer $T = (T_1, T_2)$ ist im Allgemeinen der Momementenschätzer für $(E_{\vartheta}[X], \operatorname{Var}_{\vartheta}[X])$. Dieser ist aber nicht erwartungstreu, denn es gilt $\mathbb{E}_{\vartheta}[T_2] = \frac{n-1}{n} \mathrm{Var}_{\vartheta}[X]$. Man kann aber durch eine kleine Modifikation einen erwartungstreuen Schätzer $T' = (T_1, T_2)$ mit $T_1' = T_1$ und $T_2' = S^2$, der empirischen Stichprobenvarianz.

$$S^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

7.3. Verteilungsaussagen

Es gibt sehr wenige allgemeingültige Aussagen über Verteilungen von Schätzern. Da diese aber von grosser Wichtigkeit in der Statistik sind, verschafft man sich einen approxmativen Zugang über die Normalverteilung. Schätzer sind nämlich häufig Funktion einer Summe von i.i.d. Zufallsvariablen im Modell $P_{\mathfrak{A}}$. Diese Summe ist nach dem ZGS approximativ normalverteilt unter P_{ϑ} . Für normalverteilte Stichproben existieren nämlich exakte Aussagen. Zuerst führen wir aber zwei neue Verteilungen ein:

χ^2 -Verteilung

Die χ^2 -Verteilung mit n Freiheitsgraden (bezeichnet mit χ_n^2) ist eine stetige Verteilung einer Zufallsvariablen X. Es gibt folgenden Zusammenhang mit der Normalverteilung:

Lemma 7.1.
$$(\forall i \in \{1,\ldots,n\}. \ Z_i \sim \mathcal{N}(0,1) \land Z_i \text{ i.i.d.}) \implies (\sum_{i=1}^n Z_i^2) \sim \chi_n^2$$

Zudem ist die χ^2 -Verteilung ein Spezialfall der Gamma-Verteilung, es gilt

Lemma 7.2. $X \sim \chi_n^2 \Longleftrightarrow X \sim Ga(\frac{n}{2}, \frac{1}{2})$

Damit ist eine χ_2^2 -Verteilung gerade die Exponentialverteilung mit $\lambda=\frac{1}{2}$. Sei $X\sim\chi_n^2$, dann gilt:

• Wertebereich: $W(X) = \mathbb{R}_0^+$

• Erwartungswert: $\mathbb{E}[X] = n$

• Varianz: Var[X] = 2n

• Dichtefunktion:

$$f_X(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} y^{\frac{n}{2} - 1} e^{-\frac{1}{2}y} & \text{für } x \ge 0\\ 0 & \text{für } x < 0 \end{cases}$$

Die χ^2 -Verteilung ermöglicht ein Urteil über die Kompabilität eines funktionalen Zusammenhangs mit empirischen Messpunkten. So kann bspw. bestimmt werden, ob eine Gerade, Logarithmhus oder eine Parabel die gesammelten Daten am besten erklärt.

t-Verteilung

Die t-Verteilung mit n Freiheitsgraden gehört zu einer stetigen Zufallsvariablen Z. Sie entsteht durch die standarisierte Schätzfunktion des Stichprobenmittelwerts normalverteilter Daten, wenn bei der Standarisierung des Mittelwerts die Varianz (weil sie nicht bekannt ist) durch die Stichprobenvarianz abgeschätzt werden muss. Die standardisierte Schätzfunktion ist dann nicht mehr normalverteilt, sondern folgt der t-Verteilung.

Sei $Z \sim t_n$. Dann hat Z folgende Eigenschaften:

• Dichtefunktion:

$$f_Z(z) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{z^2}{n}\right)^{-\frac{n+1}{2}} \qquad z \in \mathbb{R}$$

 \implies für n=1 ist dies eine Cauchy-Verteilung \implies Erwartungswert existiert für n=1 nicht.

- für $n \to \infty$ erhält man eine $\mathcal{N}(0,1)$ -Verteilung
- Erwartungswert: für n > 1 gilt: $\mathbb{E}[Z] = 0$
- Varianz: für n > 2 gilt: $Var[Z] = \frac{n}{n-2}$
- Faustregel: ab n=30 Freiheitsgraden kann man die t-Verteilung durch die Normalverteilung approximieren

Die t-Verteilung kann auch anders hergeleitet werden, Seien $X \sim \mathcal{N}(0,1)$ und $Y \sim \chi_n^2$ unabhängig. Dann ist $Z := \frac{X}{\sqrt{\frac{1}{n}Y}} t$ -verteilt mit n Freiheitsgraden.

Satz 7.1 (Normalverteilte Stichproben). Seien X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt:

(i)
$$\overline{X_n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
 und normalisiert $\frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$

(ii)
$$\frac{n-1}{\sigma^2} S^2 = \left(\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X_n})^2\right) \sim \chi_{n-1}^2$$

(iii) $\overline{X_n}$ und S^2 sind unabhängig.

(iv)
$$\frac{\overline{X_n} - \mu}{S/\sqrt{n}} = \frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X_n} - \mu}{\sqrt{n-1} \frac{n-1}{\sigma^2} S^2} \sim t_{n-1}$$

Die Hauptaussage dieses Satzes ist (iii). (i) ist schon bekannt und (iv) folgt unmittelbar aus der Herleitung der t-Verteilung.

8. Tests

Ausganspunkt: Stichprobe X_1,\dots,X_n und Familie von Wahrscheinlichkeiten P_ϑ mit $\vartheta\in\Theta$ die unsere möglichen Modelle beschreiben. \Longrightarrow Grundproblem besteht darin, Entscheidung zwischen zwei konkurrierenden Modelkassen zu treffen: der Hypothese oder Nullhypothese $\Theta_0\subset\Theta$ oder der Alternative $\Theta_A\subseteq\Theta$. Dabei muss zwingend $\Theta_0\cap\Theta_A=\emptyset$ gelten. Man Schreibt $H_0:\vartheta\in\Theta_0$ und $H_A:\vartheta\in\Theta_A$. Falls keine Alternative explizit definiert ist, so wählen wir $\Theta_A=\Theta\setminus\Theta_0$. Wir unterscheiden:

- einfache Hyptohesen bestehen aus einem einzelnen Wert, also z.B. $\Theta_0 = \{\vartheta_0\}$
- zusammengesetzte Hypothesen bestehen aus mehreren Werten

Ein Test ist im Allgemeinen eine Entscheidungsregel, die zu gegebenen Daten x_1, \ldots, x_n einen Wert $\{0, 1\}$ liefert und dieser ist $1 \iff$ die Nullhypothese soll abgelehnt werden. Formal:

Def. 8.1 (Test, Teststatistik). Ein Test besteht aus

- einer Abbildung $t: \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto t(x_1, \dots, x_n)$
- und einem kritischen Bereich oder Verwerfungsbereich $K \subseteq \mathbb{R}$.

Die Zufallsvariable $T=t(X_1,\ldots,X_n)$ heisst *Teststatistik*. Die Entscheidungsregel ist definiert durch die Zufallsvariable

$$I_{\{t(x_1,\ldots,x_n)\in K\}}$$

d.h. man verwirft die Hypothese genau dann, wenn der realisierte Wert $t(x_1,\dots,x_n)$ im Verwerfungsbereich K liegt.

Für eine Realisierung ω gilt $t(x_1,\ldots,x_n)=t(X_1(\omega),\ldots,X_n(\omega))=T(\omega)$. Weil T eine Zufallsvariable ist, ist der Raum $\{T\in K\}\subseteq \Omega$ messbar. Damit kann für jedes Modell P_{ϑ} die Wahrscheinlichkeit $P_{\vartheta}[T\in K]$ betrachtet werden.

Arten von Fehlern

- Fehler 1. Art: Hypothese zu Unrecht abgelehnt $\implies \vartheta \in \Theta_0$ und $T \in K$
- Fehler 2. Art: Hypothese zu Unrecht nicht verworfen, d.h. die Hypothese wird akzeptiert obwohl sie falsch ist. ⇒ ϑ ∈ Θ_A und T ∉ K.

 \implies man würde gerne beide Fehler-Wahrscheinlichkeiten minimieren. Dazu sollte $\vartheta \mapsto P_{\vartheta}[T \in K]$ auf Θ_0 möglichst klein sein, aber gleichzeitig möglichst gross in Θ_A . \implies oft nicht möglich, deshalb folgendes Verfahren:

1. Man wählt ein Signifikanzniveau $\alpha \in (0,1)$ und kontrolliert die Wahrscheinlichkeit eines Fehlers erster Art durch α :

$$\sup_{\vartheta \in \Theta_0} P_{\vartheta}[T \in K] \le \alpha$$

2. Man versucht die Wahrscheinlichkeit für einen Fehler zweiter Art $P_{\vartheta}[T \notin K]$ für $\vartheta \in \Theta_A$ zu minimieren. Dazu maximiert man die $Macht\ des\ Tests$

$$\beta:\Theta_A\to[0,1]$$
 $\vartheta\mapsto\beta(\vartheta):=P_\vartheta[T\in K]$

Damit ergibt sich der Zusammenhang $1 - \beta(\vartheta) = P_{\vartheta}[T \in K]$.

⇒ asymmetrisches Vorgehen führt dazu, dass es schwieriger ist, eine Hypothese zu verwerfen, als diese zu behalten. Das führt zu folgendem Verhalten in der Statistik:

In einem Test verwendet man als Hypothese immer die Negation der eigentlich gewünschten Aussage.

Aufgrund der Asymmetrie kann es durchaus vorkommen, dass bei Vertauschen von Hypothese und Alternative unterschiedlich entschieden wird.

8.1. Konstruktion von Tests

Def. 8.2 (Likelihood-Quotient). Sei $L(x_1,\ldots,x_n;\vartheta)$ die Likelihood-Funktion und $\vartheta_0\in\Theta_0$ und $\vartheta_A\in\Theta_A$. Dann definieren wir den Likelihood-Quotienten als

$$R(x_1,\ldots,x_n;\vartheta_0,\vartheta_a) := \frac{L(x_1,\ldots,x_n;\vartheta_A)}{L(x_1,\ldots,x_n;\vartheta_0)}$$

Je kleiner dieser Quotient wird, desto wahrscheinlicher sind die Beobachtungen im Modell P_{ϑ_a} im Gegensatz zum Modell P_{ϑ_0} . \Longrightarrow wähle als Teststatistik $T = R(X_1, \dots, X_n; \vartheta_0, \vartheta_A)$ und als kritischen Bereich K := [0, c). Sind Hypothese und Alternative jeweils einfach, so ist diesr Test optimal:

Satz 8.1 (Neyman-Pearson-Lemma). $\Theta_0 = \{\vartheta_0\}, \Theta_A = \{\vartheta_A\}$. Sei die Teststatistik $T := (X_1, \dots, X_n; \vartheta_0, \vartheta_A)$ mit K := [0, c) und sei $\alpha^* := P_{\vartheta_0}[T \in K] = P_{\vartheta_0}[T < c]$. Dann ist der *Likelihood-Quotienten-Test* mit T und K im folgenden Sinne optimal:

jeder andere Test mit Signifikanzniveau $\alpha \leq \alpha^*$ hat kleinere Macht~des Tests

was bedeutet, dass die Wahrscheinlichkeit für einen Fehler 2. Art grösser ist Etwas formaler bedeutet dies für jeden anderen Test (T', K'):

$$P_{\vartheta_0}[T' \in K] \leq \alpha^* \implies P_{\vartheta_A}[T' \in K] \leq P_{\vartheta_A}[T \in K]$$

In den allermeisten Fällen sind weder Hypothese noch Alternative einfach. Um dennoch ein systematisches Vorgehen zu liefern, verallgemeinern wir zuerst den Likelihood-Quotienten:

$$R(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_A} L(x_1, \dots, x_n; \vartheta)}$$

$$\widetilde{R}(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in (\Theta_A \cup \Theta_0)} L(x_1, \dots, x_n; \vartheta)}$$

Nun wählt man eine dieser beiden Quotienten als Teststatistik T_0 mit einem kritischen Bereich $K_0 := [0,c_0)$. C_0 muss dabei so gewählt werden, dass der Test ein gewähltes Signifikanzniveau einhält.

Oft kann man auch durch Umformen eine einfachere Teststatistik finden, in dem man versucht, eine Beziehung der Art "Quotient klein genau dann, wenn ... "herzuleiten. Diese Bedingung kann man dann als Teststatistik verwenden. Schlussendlich braucht man noch die Verteilung von T unter der Hypothese H_0 , um den kritischen Bereich K passend zum gewünschten Signifikanzniveau zu finden.

8.2. *p*-Wert

Def. 8.3 (*p*-Wert). ei $\Theta_0 = \{\vartheta_0\}$. Dann ist der *p*-Wert die Wahrscheinlichkeit, einen mindestens so extremen Wert der Teststatistik zu erhalten, falls die Nullhypothese wahr ist. Die Alternativhypothese bestimmt dabei, was als "extremer" gilt.

Haben wir also Daten (x_1, \ldots, x_n) gesammelt und betrachten wir den Wert der Teststatistik $t(x_1, \ldots, x_n)$, so interessiert es uns, wie extrem dieser Wert unter Annahme der Nullhypothese ist.

Bemerkung: Der p-Wert gibt nicht an, wie wahrscheinlich die Nullhypothese bei Erhalt dieses Wertes ist!

Lemma 8.1. Am p-Wert kann direkt der Testentscheid abgelesen werden, liegt er unter dem Signifikanzniveau α , wird die Nullhypothese verworfen, ansonsten nicht.

Dies lässt sich wie folgt begründen: Ist der p-Wert kleiner als α , dann liegt der beobachtete Wert der Teststatistik sicher im Verwerfungsbereich.

8.3. z-Test

Test für den Erwartungswert einer Normalverteilung mit bekannter Varianz Seien $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ Zufallsvariablen, so dass (X_i, Y_i) natürliche der Grundgesamtheit. Seien also $X_1, \ldots, X_n \sim \mathcal{N}(\vartheta, \sigma^2)$ -verteilt (i.i.d.) für Paare bilden. Bezeichnen wir nun $Z_i := X_i - Y_i$. bekanntes $\sigma > 0$.

- Hypothese: $H_0: \vartheta = \vartheta_0$
- Teststatistik:

$$T = \frac{\overline{X}_n - \vartheta_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1) \quad \text{unter } P_{\vartheta_0}$$

• Kritische Bereiche (zum Signifikanzniveau $\alpha \in (0,1)$) kann au Tabelle abgelesen werden: Dabei bezeichnet z_{α} das α -Quantil der Standardnormalverteilung. Man findet es, indem man in der Tabelle der Standardnormalverteilung nach $\Phi^{-1}(\alpha)$ sucht. Aus Symmetriegründen gilt

$$\Phi(z_{\alpha}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_{\alpha}} e^{-x^{2}/2} dx = \alpha$$

Rezept Fehler 2. Art berechnen:

Nehme an: einseitiger z-Test, $T = \frac{\overline{X_n} - \mu_0}{\sigma \sqrt{S_n}}$, $\mu_0 = 70$

 $H_0: \mu = \mu_0; H_A: \mu < \mu_0.$

Kritischer Bereich mit 5%-Niveau: $K = (-\infty, -1.645)$

Objective: Fehler 2. Art finden für $\mu_A = 69.5$. Wir nehmen an, dass $T = \frac{\overline{X_n} - \mu_A}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$ unter P_{μ_A}

Fehler 2. Art =
$$P_{\mu_A}[T \notin K]$$

= $P_{\mu_A}[T > -1.645]$
= $P_{\mu_A}\left[\frac{\overline{X_n} - \mu_0}{\sigma/\sqrt{n}} > -1.645\right]$
= $P_{\mu_A}\left[\frac{\overline{X_n} - \mu_A}{\sigma/\sqrt{n}} > \frac{\mu_0 - \mu_A}{\sigma/\sqrt{n}} - 1.645\right]$ mit addition
= $1 - P_{\mu_A}\left[\frac{\overline{X_n} - \mu_A}{\sigma/\sqrt{n}} \leq \frac{\mu_0 - \mu_A}{\sigma/\sqrt{n}} - 1.645\right]$
= $1 - \Phi\left(\frac{\mu_0 - \mu_A}{\sigma - \sqrt{n}} - 1.645\right)$ weil $\sim \mathcal{N}(0, 1)$

8.4. *t*-Test

Test für den Erwartungswert einer Normalverteilung mit unbekannter Varianz. Seien also $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ -verteilt (i.i.d.) für unbekanntes $\sigma > 0$.

- Hypothese: $H_0: \mu = \mu_0$. Formal präziser wäre $\Theta_0 = \{\vartheta = \{\vartheta\}\}$ $(\mu_0, \sigma) | \sigma > 0$
- Teststatistik: $T = \frac{\overline{X}_n \mu_0}{S/\sqrt{n}} \sim t_{n-1}$ unter P_{μ_0} wobe
i $\boldsymbol{S}^2 :=$ empirische Stichprobenvarianz
- Kritische Bereiche (zum Signifikanzniveau $\alpha \in (0,1)$) kann aus Tabelle abgelesen werden:

Dabei bezeichnet $t_{m,\alpha}$ das α -Quantil der t_m -Verteilung. Aus Symmetriegründen gilt $t_{m,\alpha} = -t_{m,1-\alpha}$:

$$\int_{-\infty}^{t_{m,\alpha}} f_m(x) \ dx = \alpha$$

wobei f_m die Dichte der t_m Verteilung ist. Diesen Wert erhält man aus einer Tabelle zur t-Verteilung.

8.5. Gepaarte Zweistichproben-Tests für Normalverteilungen

- bekannte Varianz: Falls $Z_1,\dots,Z_n \sim \mathcal{N}(\vartheta,\sigma^2)$ (i.i.d.) für bekanntes $\sigma > 0$, dann kann z-Test analog zu Kapitel 8.3 angewendet werden.
- unbekannte Varianz: Falls $Z_1, \ldots, Z_n \sim \mathcal{N}(\mu, \sigma^2)$ (i.i.d.) für unbekanntes $\sigma > 0$, dann kann t-Test analog zu Kapitel 8.4 angewendet werden.

8.6. Ungepaarte Zweistichproben-Tests für Normalverteilungen

Seien $X_1, \ldots, X_n \sim \mathcal{N}(\mu_X, \sigma_X^2)$ (i.i.d.) und $Y_1, \ldots, Y_m \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ (i.i.d.) so dass alle X_i, Y_i unabhängig.

8.6.1. Normalverteilungen mit bekannten Varianzen

Seien also σ_X, σ_Y bekannt.

- Hypothese: $H_0: \mu_X \mu_Y = \mu_0$ (bspw. $\mu_0 = 0$)
- Teststatistik:

$$T = \frac{\overline{X}_n - \overline{Y}_m - \mu_0}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1) \qquad \text{für } P_{\mu_0}$$

Die kritischen Bereiche zum Signifikanzniveau sind analog zur Tabelle aus Kapitel 8.3.

8.6.2. Normalverteilungen mit unbekannten aber gleichen Varianzen

Sei also $\sigma_X = \sigma_Y = \sigma$ für $\sigma > 0$ unbekannt.

- Hypothese: $\mu_X \mu_Y = \mu_0$ (bspw. $\mu_0 = 0$)
- Teststatistik:

$$T = \frac{\overline{X}_n - \overline{Y}_m - \mu_0}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2} \quad \text{unter } P_{\mu_0}$$

• Kritische Bereiche: analog zu Tabellae aus Kapitel 8.4, jedoch ist nun die Anzahl der Freiheitsgrade n + m - 2 und nicht mehr n - 1.

Dabei benutzen wir für die Varianz ein gewichtetes Mittel aus den Stichprobenvarianzen S_X, S_Y , definiert als

$$S^{2} := \frac{(n-1)S_{X}^{2} + (m-1)S_{Y}^{2}}{n+m-2}$$

9. Konfidenzbereiche

Wir suchen aus einer Familie $(P_{\vartheta})_{\vartheta\in\Theta}$ von Modellen eines, welches zu unserern Daten passt. Da es aber extrem schwierig ist, einen Parameter ϑ genau zu schätzen, suchen wir nun eine (zufällige) Teilmenge des Parameterbereichs, der hoffentlich den wahren Parameter enthält.

Def. 9.1 (Konfidenzbereich). Ein Konfidenzbereich für ϑ zu Daten x_1,\ldots,x_n ist eine Menge $C(x_1,\ldots,x_n)\subset\Theta$. Damit ist $C(X_1,\ldots,X_n)$ eine zufällige Teilmenge Θ . Dieses C heisst Konfidenzbereich zum Niveau $1 - \alpha$, falls für alle $\vartheta \in \Theta$ gilt:

$$P_{\vartheta}[\vartheta \in C(X_1,\ldots,X_n)] \ge 1-\alpha$$

Rezept (angewendeter t-Test): Konfidenzintervall mit Niveau $1-\alpha$, n Stichproben, Stichprobenmittel $\overline{X_n}$, Stichprobenvarianz s_X^2 ; beidsei-

$$I_{(1-\alpha)} = [\overline{X_n} - \frac{s_X}{\sqrt{n}} \cdot t_{n-1,1-\frac{\alpha}{2}}, \ \overline{X_n} + \frac{s_X}{\sqrt{n}} \cdot t_{n-1,1-\frac{\alpha}{2}}]$$

Die bedeutet intuitiv, dass man in jedem Modell den wahren Parameter mit grosser Wahrscheinlichkeit erwischt. Kennt man die Verteilung genau genug. so kann man exakte Konfidenzintervalle zu einem Signfikanzniveau angeben. Oft ist dies jedoch nicht der Fall und man kann nur approximative Angaben machen, z.B. mit dem Zentralen Grenzwertsatz

9.1. Zusammenhang von Kondifenzbereichen und Tests

Wir zeigen im Folgenden, dass beide Konzept grundlegend zusammenhängen und ineinander überführt werden können.

Sei $C(X_1,\ldots,X_n)$ ein Konfidenzbereich für ϑ zum Niveau $1-\alpha$. Wir wollen die Hypothese $H_0: \vartheta = \vartheta_0$ testen. Dazu definieren wir einen

$$I_{\{\vartheta_0\notin C(X_1,...,X_n)\}}$$

der H_0 ablehnt $\iff v_0$ liegt nicht in $C(X_1,\ldots,X_n)$. Damit folgt aus der Einfacheit von $\Theta_0 = \{ \vartheta_0 \}$ für iedes $\vartheta \in \Theta_0$:

$$P_{\vartheta}[\vartheta_0 \notin C(X_1, \dots, X_n)] = 1 - P_{\vartheta}[\vartheta_0 \in C(X_1, \dots, X_n)] \le \alpha$$

Dieser Test hat also gerade Signifikanzniveau α . Aus dem Konfidenzbereich für ϑ erhalten wir also eine Familie von Tests, nämlich für jede einfache Hypothese $\Theta_0 = \{\vartheta_0\}$ mit $\vartheta_0 \in \Theta$ genau einen Test.

10. Ableitung, Integration

- Summerregel (f(x) + g(x))' = f'(x) + g'(x)
- Produktregel $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$
- Quotientenregel $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)} (g \neq 0)$
- Kettenregel $(f(g(x)))' = (f \circ g)' = f'(g(x))g'(x)$
- Partielle Integration: $\int_a^b f'(x) \cdot g(x) dx = [f(x)g(x)]_a^b \int_a^b f(x)g'(x)$
- Substitution: $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt$
- $a+c, b+c \in I$ $\int_a^b f(t+c)dt = \int_{a+c}^{b+c} f(x)dx$
- $ca, cb \in I$: $\int_{a}^{b} f(ct)dt = \frac{1}{2}f(x)dx$
- Logarithmus: $\int \frac{f'(t)}{f(t)} dt = \log(|f(x)|)$, bzw. $\int_0^b \frac{f'(t)}{f(t)} dt = \log(f(|b|)) \frac{1}{b} \log(f(|b|))$

11. Nützlich

Erwartungswert Stuff

Median berechnen: Die Vertilungsfunktion muss = 0.5 sein. Also sei $F_X(x)=0.5$, dann ist x der Median.

Falls
$$Y = g(X)$$
, dann $F_Y(x) = F_X(g^{-1}(x))$
Falls $U = X + Y$, $V = X \cdot Y$ dann

$$F_U(u) = P[U \le u] = \int_0^u \left(\int_0^{u-y} f_X(x) dx \right) f_Y(y) dy$$
$$F_V(v) = P[V \le v] = \int_0^\infty \left(\int_0^{\infty/y} f_X(x) dx \right) f_Y(y) dy$$

$$\mathcal{N}(\mu_1, \sigma_1^2) + \mathcal{N}(\mu_2, \sigma_2^2) = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Für
$$aX: \mu \to a\mu; \sigma, \sigma^2 \to a\sigma, a^2\sigma^2$$

Falls
$$X_i \sim \text{Poi}(\lambda)$$
, dann $S_n \sim \text{Poi}(n \cdot \lambda)$

Falls
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
, dann

$$\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}), \quad \frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \ dx, \quad \mathbb{E}[X^k] = \int_{-\infty}^{\infty} x^k \cdot f_X(x) \ dx \quad (\text{vgl. Satz 4.3})$$

Die Likelihoodmethode ist eigentlich die gemeinsame Dichte (Produkt falls unabhängig).

Stichprobenmittel

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Stichprobenvarianz:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

Das Stichprobenmittel und die Stichprobenvarianz werden oft als Schätzer in Kofidenzbereichen verwendet.

12. Schätzer Rezepte

12.1. Maximum Likelihood Schätzer

- Likehood-Funktion L bestimmen
- \bullet Falls Zufallsvariablen i.i.d., dann $\log L$ bestimmen
- log L (oder L) maximieren: ableiten von log L (oder L) und gleich 0 setzen.
- ⇒ Funktion, die Parameter schätzt

12.2. Momentenschätzer mit zentralen/rohen Momenten

k-tes **rohes** Moment: $\mathbb{E}[X^k]$ *k*-tes empirisches $\tilde{}$: $\frac{1}{n}\sum_{i=1}^n x_i^k$

k-tes **zentrales** Moment: $\mathbb{E}[(X - \mathbb{E}[X])^k]$

1. theoretisches $\tilde{} = \mathbb{E}[X]$, 2. theoretisches $\tilde{} = \operatorname{Var}[X]$)

1. empirisches $\widetilde{=} \overline{X}$, 2. empirisches $\widetilde{=} \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$, k-tes empirisches

 \sim : $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^k$

12.2.1. Rezept

- Verteilung bestimmen, ϑ bestimmen (k argumente)
- \bullet Die ersten k theoretische zentrale/rohe Momente bestimmen
- Gleichstellen mit empirischen zentralen/rohen Momenten
- ⇒ Funktion, die Parameter schätzt.

13. p-Wert

Beispiel: Hintergrundfarbe einer Webseite ändern und schauen, ob sich die Besuchsdauer von Nutzern verändern.

$$\mu = 2$$

- Nullhypothese H_0 : $\mu=20$ nach der Änderung Alternative H_A : $\mu>20$ nach der Änderung
- Signifikanzniveau: $\alpha = 0.05$
- Stichprobe: $n = 100, \overline{X} = 25, (\sigma)$
- p-Wert: $P[\overline{X} \ge 25 \mid H_0 \text{ ist wahr}]$
- Falls p-Wert $< \alpha$: H_0 verwerfen (und H_A akzeptieren) Falls p-Wert $> \alpha$: H_0 nicht verwerfen (keine Aussage)

Der p-Wert ist **nicht** $P[H_0 \text{ ist wahr} | \text{Stichprobe}]$

14. Tests

Zusammenhänge α (Signifikanzniveau), Fehler 1. Art, β (Macht), Fehler 2. Art $(1 - \beta)$

- \bullet α grösser \iff Fehler 1. Art grösser \iff Fehler 2. Art kleiner \iff Macht grösser
- α kleiner \iff Fehler 1. Art kleiner \iff Fehler 2. Art grösser \iff Macht kleiner

Achtung: Bei kleinen Datenmengen kann eine Normalverteilungsapproximation ungenau werden. Deshalb immer diskrete Werte verwenden.

14.1. Begriffe

Modell: z.B. Unter P_{φ} sind die X_i i.i.d. $\sim \operatorname{Poi}(\lambda)$, $i=1,\ldots,6$, λ unbekannt. Teststatistik: Hilfsfunktion bei statistischen Tests. Kann zum Beispiel mittels Likelihood-Quotienten-Vorgehen gefunden werden.

Punkte; Beispiel jeweils in Klammern:

- Modell (Unter P_{ϑ} sind die X_i i.i.d. $\sim Poi...$)
- Nullhypothese $(H_0: p = ...)$
- Alternativhypothese $(H_A: p < ...)$

- Teststatistik ($T = \langle R \rangle$ also Likelihood-Quotienten verwenden)
- Verteilung der Teststatistik unter der Nullhypothese $(H_0: T \sim Bin...)$
- Verwerfungsbereich $(K = [a, b], P_{\vartheta_0}[T \in K] \leq 5\%...)$
- beobachteter Wert der Teststatistik ($t = T(\omega) = 6$)
- Testentscheid (Nullhypothese wird nicht verworfen...)
- eventuell p-Wert

Wichtig:

Falls beobachtetes Ergebnis im Verwerfungsbereich: H_0 wird abgelehnt, H_A wird angenommen.

Falls beobachtetes Ergebnis nicht im Verwerfungsbereich: H_0 wird nicht abgelehnt (keine Aussage über Annahme!), keine Aussage über H_A

 $p extbf{-} extbf{Wert}$: kleinstes Niveau, auf dem der Test die Nullhypothese noch verwirft.

Auch: Falls $H_0: p=123,\ H_A: p<123$ Mit Statistik $P_{H_0}[T\le$ Beobachteter Wert]. p-Wert ist so wie die Signifikanz des Testresultats.

A small p-value (typically $\leq 0.05)$ indicates strong evidence against the null hypothesis, so you reject the null hypothesis.

A large p-value (>0.05) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis.

15. Beispiel Teststatistik mit Likelihood-Quotienten finden

 $X_i \sim \operatorname{Poi}(\lambda)$

Betriebsstunde i		2	3	4	5	6
Anzahl Ausfälle X_i	1	0	1	1	2	1

Teststatistik: $T = \sum_{i=1}^{6} X_i$, denn

$$R(x_1, \dots, x_6; \lambda_0, \lambda_A) = \frac{L(x_1, \dots, x_6; \lambda_0)}{L(x_1, \dots, x_6; \lambda_A)} = \frac{e^{-6\lambda_0} \prod_{i=1}^{6} \frac{\lambda_0^{x_i}}{x_i!}}{e^{-6\lambda_A} \prod_{i=1}^{6} \frac{\lambda_1^{x_i}}{x_i!}}$$

$$= e^{-6(\lambda_0 - \lambda_A)} \left(\frac{\lambda_0}{\lambda_A}\right)^{\sum_{i=1}^{6} x_i}$$

$$= \text{const.}(\lambda_0, \lambda_A) \left(\frac{\lambda_0}{\lambda_A}\right)^{\sum_{i=1}^{6} x_i}.$$

Da $\lambda_0 < \lambda_A$, wird $R(x_1, \dots, x_6; \lambda_0, \lambda_A)$ klein, genau dann, wenn $\sum_{i=1}^6 x_i$ gross ist. Statt des komplizierten Quotienten wählen wir als Teststatistik also

$$T = \sum_{i=1}^{6} X_i.$$

16. Konfidenzintervall berechnen

- Gegeben: Teststatistik T.
- Schätze ϑ mit einem Schätzer. Zum Beispiel μ : Stichprobenmittel oder σ : Stichprobenvarianz.
- $\bullet\,$ Setze den geschätzten Wert von ϑ in T ein und bestimme die Verteilung. Achtung: Die Zufallsvariable ist frei.
- Konfidenzintervall mit Niveau 1 α: Bereich in der neuen Verteilung, die die Fläche 1 – α hat. ACHTUNG: Bereich soll als Bereich der Zufallsvariable angegeben sein, bevor sie in die Teststatistik eingeben wird, sodass sie im Niveaubereich liegt.

17. Diskrete Verteilungen

Γ	Verteilung	$\mathbb{E}[X]$	Var(X)	$p_X(x)$	$F_X(x)$	\prod
ſ	Gleichvertelun	$g \frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n} \sum_{i=1}^{n} x_i^2 -$	$\frac{1}{n}$		\mathbb{I}
			$\frac{1}{n^2} \left(\sum_{i=1}^n x_i \right)$	2		