CS4278/5478 Intelligent Robots: Algorithms & Systems

Instructor: David HSU

Co-Instructor: Panpan CAI

Teaching assistant: Siwei CHEN, Yiqing XU

Robot

Leonardo's robot

da Vinci surgical robot

"Intelligent" robots

2000s

1980s, 1990s

Objectives

- Understand, implement, and analyze robot algorithms.
 Apply them in specific robot task domains.
 - State estimation and mapping "Where am !?"
 - Reasoning and decision making
 "What shall I do?"
 - Control"How do I do it?"
- Understand the common architectures of intelligent robot systems.

Objectives

- Gain practical experiences in developing and debugging robot systems on common platforms, e.g., ROS.
- Gain exposure to one or more application domains of robotics.
 - Autonomous driving
 - Robot manipulation
 - ...

Related modules

CS6208 Advanced Topics in Al CS6216 Advanced Topics in Machine Learning CS6244 Advanced Topics in Robotics

Graduate Certificate in Robotics

- Requirements
 - CS5339 Theory & Algorithm for Machine Learning OR CS5242 Neural Networks and Deep Learning
 - CS5446 AI Planning and Decision Making
 - CS5477 3D Computer Vision
 - CS5478 Intelligent Robots: Algorithms & Systems
- "Stackable" towards MComp in Al
- More information

Prerequisites

- Calculuse.g., "gradient"
- Linear algebra
 e.g., "rotation matrix"
- Probability
 e.g., "Bayes rule"
- **A**I e.g., "A* search"

Prerequisites

- Programming experiences. Proficient in at least one programming language
 - Python or
 - C/C++

Workload

- 2 written assignments
- 2 programming assignments
- 1 project
 - 2-person team
- Midterm?

Textbooks

Main textbook

 Introduction to Autonomous Mobile Robots, R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza. 2nd ed.

Supplementary textbook

- Reinforcement Learning: An Introduction, R.S. Sutton and A.G. Barto
- Probabilistic Robotics. S. Thrun, W. Burgard, and D. Fox

Course website

- LumiNUS
- Google directory

Consultation hours

- Wednesday after the class
 - Office: COM2 #03-52
- Otherwise, e-mail me to make an appointment.

Collaboration policy

- You may brainstorm, discuss ideas, etc. verbally with other students on problem sets and programming assignments.
- You must write up your solutions independently
 without resorting to any external help. In particular,
 "cut-and-paste" of any form and any extent is
 strictly forbidden and is treated as plagiarism.
- You should take reasonable precautions to prevent your work from being used for plagiarism.

Questions?