16. Übungsblatt

Aufgabe 1: Eine geladene Linie

a) Die drei dimensionale Linienladungsdichte ρ lautet:

$$\rho(\vec{r}) = \sigma \cdot \delta(x) \cdot \delta(y) \cdot \Theta\left(z + \frac{a}{2}\right) \cdot \Theta\left(\frac{a}{2} - z\right) \qquad \text{mit σ als Linienladungsdichte $\sigma = \frac{Q}{a}$}$$

Aufgabe 3: Spiegelladungen

Zum Erfüllen der Randbedingung setzen 3 weitere Ladungen in das System, die gegenüberliegende Ladung ist gleichnamig. Die Ladungen im 2. und im 4. Quadranten sind jedoch negativ geladen. Die Anordnung sieht dann wie folgt aus:

Durch die Multipolentwicklung können wir das elektrische Potential im Raum ermitteln:

$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{d(\vec{r}, \vec{q_i})}$$

$$= \frac{1}{4\pi\epsilon_0} \left[\underbrace{\frac{Q}{\sqrt{(x-a)^2 + (y-b)^2}}}_{\text{Durch Ladung }Q} - \underbrace{\frac{Q}{\sqrt{(x+a)^2 + (y-b)^2}}}_{\text{Spiegelladung im 2. Quadrant}} + \underbrace{\frac{Q}{\sqrt{(x+a)^2 + (y+b)^2}}}_{\text{Spiegelladung im 3. Quadrant}} - \underbrace{\frac{Q}{\sqrt{(x-a)^2 + (y+b)^2}}}_{\text{Spiegelladung im 4. Quadrant}} \right]$$

Die Randbedingung $\phi=0$ auf den Platten ist damit auch erfüllt:

$$\phi\left(\binom{x}{0}\right) = \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{(x-a)^2 + (0-b)^2}} - \frac{Q}{\sqrt{(x+a)^2 + (0-b)^2}} + \frac{Q}{\sqrt{(x+a)^2 + (0+b)^2}} - \frac{Q}{\sqrt{(x-a)^2 + (0+b)^2}} \right]$$

$$= \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{(x-a)^2 + b^2}} - \frac{Q}{\sqrt{(x+a)^2 + b^2}} + \frac{Q}{\sqrt{(x+a)^2 + b^2}} - \frac{Q}{\sqrt{(x-a)^2 + b^2}} \right]$$

$$= 0$$

$$\phi\left(\binom{0}{y}\right) = \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{(0-a)^2 + (y-b)^2}} - \frac{Q}{\sqrt{(0+a)^2 + (y-b)^2}} + \frac{Q}{\sqrt{(0+a)^2 + (y+b)^2}} - \frac{Q}{\sqrt{(0-a)^2 + (y+b)^2}} \right]$$

$$= \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{a^2 + (y-b)^2}} - \frac{Q}{\sqrt{a^2 + (y-b)^2}} + \frac{Q}{\sqrt{a^2 + (y+b)^2}} - \frac{Q}{\sqrt{a^2 + (y+b)^2}} \right]$$

$$= 0$$