Seifert - Van Kampen Theorem, Applications

Yahya Tamur

February 18, 2022

Knots

▶ A knot is a subset of \mathbb{R}^3 homeomorphic to \mathbb{S}^1 (or more generally, any subset of a topological space homeomorphic to \mathbb{S}^n).

▶ A knot K is equivalent to K' if (K, \mathbb{R}^3) is homeomorphic to (K', \mathbb{R}^3) In other words, there's a homeomorphism

$$h: \mathbb{R}^3 \to \mathbb{R}^3$$
 so that $h(K) = K'$

Then.

$$h|_{\mathbb{R}^3-K}:\mathbb{R}^3-K\to\mathbb{R}^3-K'$$

is also a homeomorphism,

 ... and its induced homeomorphism from the fundemental groups

$$\pi_1(\mathbb{R}^3 - K) \to \pi_1(\mathbb{R}^3 - K')$$

is an isomorphism, so those groups are isomorphic.

- ▶ The group $\pi_1(\mathbb{R}^3) K$ is also called the fundemental group of a knot.
- The main argument we'll be making is, if the fundemental groups of two knots aren't isomorphic, then the knots aren't equivalent.
- ▶ Seifert Van Kampen's Theorem helps determine the fundemental group of $A \cup B$ given the fundemental groups of A, B, and $A \cap B$.
- In this presentation, we'll be looking at the statement and proof of this theorem, and applying it to find the fundemental groups of a few knots.

Seifert - Van Kampen Theorem

- Let X be a path-connected topological space, x₀ be any point in X. Let {U_λ}_{λ∈Λ} be an open cover of X so that each U_λ contains x₀ and the intersection of any two elements in the cover is also in the cover.
- ▶ *here, $\{U_{\lambda}\}_{{\lambda}\in{\Lambda}}$ could be $\{A,B,A\cap B\}$ *
- Let ψ_{λ} be the homomorphism induced by the inclusion map $U_{\lambda} \to X$.
- ▶ For $U_{\lambda} \subseteq U_{\mu}$, let $\phi_{\lambda\mu}$ be the homomorphism induced by the inclusion map $U_{\lambda} \to U_{\mu}$. Clearly, the following commutes:

 $\pi_1(U_{\lambda}) \xrightarrow{\phi_{\lambda\mu}} \pi_1(U_{\mu})$ $\downarrow^{\psi_{\lambda}} \qquad \downarrow^{\psi_{\mu}}$ $\pi_1(X)$

▶ Let H be any group and $\{p_{\lambda}\}_{{\lambda} \in {\Lambda}}$ be any family of homomorphisms so the following commutes:

$$\pi_1(U_\lambda) \xrightarrow{\phi_{\lambda\mu}} \pi_1(U_\mu)$$

$$\downarrow^{\rho_\lambda} \qquad \downarrow^{\rho_\mu}$$

$$H$$

▶ Then, there's a unique σ so that the following commutes:

$$\pi_1(U_\lambda) \xrightarrow{\psi_\lambda} \pi_1(X)$$

$$\downarrow^{\rho_\lambda} \downarrow^{\sigma}$$

$$H$$

From this definition, we can tell:

- ▶ If $\alpha \in \pi_1(U_\lambda)$, $\sigma(\psi_\lambda(\alpha)) = p_\lambda(\alpha)$
- ▶ If $\alpha \in \pi_1(U_\lambda)$, $\beta \in \pi_1(U_\mu)$,

$$\sigma(\psi_{\lambda}(\alpha)\psi_{\mu}(\beta)) = \sigma(\psi_{\lambda}(\alpha))\sigma(\psi_{\mu}(\beta)) = p_{\lambda}(\alpha)p_{\mu}(\beta)$$

▶ For $\{\alpha_i\}_{i=1}^n$ so that $\alpha_i \in U_{\lambda_i}$,

$$\sigma(\psi_{\lambda_1}(\alpha_1)\psi_{\lambda_2}(\alpha_1)...\psi_{\lambda_n}(\alpha_n)) = p_{\lambda_1}(\alpha_1)p_{\lambda_2}(\alpha_2)...p_{\lambda_n}(\alpha_n)$$

lacktriangle We need to prove that σ is well defined, In other words, if

$$\psi_{\lambda_1}(\alpha_1)\psi_{\lambda_2}(\alpha_2)...\psi_{\lambda_n}(\alpha_n) \sim \psi_{\mu_1}(\beta_1)\psi_{\mu_2}(\alpha_2)...\psi_{\mu_m}(\mu_m)$$

Then,
$$\sigma(\psi_{\lambda_1}(\alpha_1)...\psi_{\lambda_n}(\alpha_n)) \sim \sigma(\psi_{\mu_1}(\beta_1)...\psi_{\mu_m}(\mu_m))$$

So, $p_{\lambda_1}(\alpha_1)...p_{\lambda_n}(\alpha_n) \sim p_{\mu_1}(\beta_1)...p_{\mu_m}(\beta_m)$

Since this is all the restrictions on σ , but σ is unique, $\pi_1(X)$ must not have any elements which aren't in the form

$$\psi_{\lambda_1}(\alpha_1)\psi_{\lambda_2}(\alpha_2)...\psi_{\lambda_n}(\alpha_n)$$

We also need to prove this.

- We'll also look at when two elements of $\pi_1(X)$ are equal and when they're different.
- ▶ But hopefully it makes sense how this theorem determines $\pi_1(X)!$

Seifert - Van Kampen Theorem Proof - Part 1

▶ To Prove: Every element of $a \pi_1(X)$ can be expressed as

$$a = \psi_{\lambda_1}(\alpha_1)\psi_{\lambda_2}(\alpha_2)...\psi_{\lambda_n}(\alpha_n)$$

for $\lambda_i \in \Lambda$, $\alpha_i \in U_{\lambda_i}$.

- We will use: Lebesgue's Number Lemma: Every open cover of a compact metric space has a δ so that any subset of the metric space with diameter less than δ is contained in a single element of the cover. δ is called the Lebesgue number of the cover.
- ▶ For any $a \in \pi_1(X)$, find a path $f : [0,1] \to X$ so that $a = [f]_{\pi_1(X)}$.
- $\{f^{-1}(U_{\lambda})\}_{{\lambda}\in{\Lambda}}$ is a cover of the compact metric space [0, 1]. It has a Lebesgue number δ .
- Find n so $\frac{1}{n} < \delta$, divide [0,1] into subintervals $[0,\frac{1}{n}]$, $[\frac{1}{n},\frac{2}{n}]$, ..., $[\frac{n-1}{n},1]$. Each has diameter less than δ , so $[\frac{i}{n},\frac{i+1}{n}] \in f^{-1}(U_{\lambda_i})$ for some λ_i , and $f([\frac{i}{n},\frac{i+1}{n}]) \in U_{\lambda_i}$.
- Let f_i be f from $f(\frac{i-1}{n})$ to $f(\frac{i}{n})$. So,

$$f \sim f_1 f_2 f_3 ... f_n$$

▶ $f(\frac{i}{n}) \in U_{\lambda_i}, U_{\lambda_i+1}$. Since $U_{\lambda_i} \cap U_{\lambda_{i+1}} \in \{U_{\lambda}\}_{\lambda \in \Lambda}$, and all elements of $\{U_{\lambda}\}_{\lambda \in \Lambda}$ are path connected and include x_0 , there's a path k_i from $f(\frac{i}{n})$ to x_0 contained in $U_{\lambda_i} \cap U_{\lambda_{i+1}}$.

We add the k_i to put each small piece starts and ends at x₀, and so is in a fundemental group:

$$f \sim f_1 k_1 \cdot k_1^{-1} f_2 k_2 \cdot k_2^{-1} f_3 k_3 \cdot \ldots \cdot k_{n-1}^{-1} f_n$$

$$a = [f]_{\pi_1(X)} = [f_1 k_1]_{\pi_1(X)} [k_1^{-1} f_2 k_2]_{\pi_1(X)} ... [k_{n-1}^{-1} f_n]_{\pi_1(X)}$$

Now, $k_{i-1}f_ik_i\subseteq U_{\lambda_i}$, since $k_i\subseteq U_{\lambda_i},U_{\lambda_{i+1}}$. Since ψ_{λ_i} is the homomorphism induced by an inclusion map,

$$a = \psi_{\lambda_1}([f_1k_1]_{\pi_1(U_{\lambda_1})})...\psi_{\lambda_n}([k_{n-1}f_n]_{\pi_1(U_{\lambda_n})})$$