Feedforward Neural Networks and Backpropagation

Changyou Chen

Department of Computer Science and Engineering Universitpy at Buffalo, SUNY changyou@buffalo.edu

February 21, 2019

Backpropagation

Importance of Backpropagation

- Backprop is a technique for computing derivatives quickly by avoiding duplicated computations.
- 2 It is the key algorithm that makes training deep models computationally tractable.
- For modern neural networks it can make training gradient descent 10 million times faster relative to naive implementation:
 - ▶ it is the difference between a model that takes a week to train instead of 200,000 years.
- It is based on the computational graph.
- Simply called backprop.

Anecdote

Geoffery Hinton and BP

- 1986: Invented Backpropagation.
- 2017: "Discard it, do it from the beginning!"
 - Capsule networks.

Basic Steps in Backpropagation

- Two passes through the computational graph:
 - forward pass: compute the outputs of each layer.
 - backward pass: compute the gradients of parameters in each layer, based on results from the forward pass.
- Backprop algorithm does this using a simple and inexpensive procedure.

Backprop vs. Learning

- Backprop does not mean the whole learning algorithm.
- Backprop only refers to the method of computing the gradient.
 - Another algorithm, such as SGD, is used to perform leaning using this gradient:

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \eta \nabla_{\mathbf{w}} J(\mathbf{w})$$

- Often misunderstood to being specific to multilayer neural networks.
 - It can be used to compute derivatives for any function.
 - It also can be used to compute Jacobian of a function with multiple outputs.
 - ▶ We restrict to case where *f* has a single output.

Recap: Computational Graph

- Each node is either
 - a variable: scalar, vector, matrix, tensor, or other type
 - or an operation
 - ★ simple function of one or more variables
 - functions more complex than operations are obtained by composing operations
 - if variable y is computed by applying operation to variable x then draw directed edge from x to y.

Example: Graph of Logistic Regression

$$\hat{\mathbf{y}} = \sigma \left(\mathbf{w}^\mathsf{T} \, \mathbf{x} + \mathbf{b} \right)$$

• Variables in graph $\mathbf{u}^{(1)}$ and $\mathbf{u}^{(2)}$ are not in the original expression, but are needed in the graph.

Example: Graph of ReLU

$$\mathbf{H} = \max\left\{0, \mathbf{W}^T \mathbf{X} + \mathbf{b}\right\}$$

• Variables in graph $\mathbf{U}^{(1)}$ and $\mathbf{U}^{(2)}$ are not in the original expression, but are needed in the graph.

Recap: Calculus' Chain Rule for Scalars

- Let x be a real number; f and g be functions mapping from a real number to a real number.
- Let y = g(x), z = f(g(x)) = f(y), then

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$$

Generalizing Chain Rule to Vectors

- Let $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$; $f : \mathbb{R}^m \to \mathbb{R}^n$, and $g : \mathbb{R}^n \to \mathbb{R}$.
- Let $\mathbf{y} = g(\mathbf{x}), z = f(g(\mathbf{x})) = f(\mathbf{y}),$ then

$$\frac{\mathrm{d}z}{\mathrm{d}x_i} = \sum_j \frac{\mathrm{d}z}{\mathrm{d}y_j} \cdot \frac{\mathrm{d}y_j}{\mathrm{d}x_i}$$

- Like multiple paths when each node represents one element of a vector.
- In vector notation, this is

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

where $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is the $n \times m$ Jacobian matrix of g.

 Backprop algorithm consists of performing "Jacobian-gradient" product for each step of graph.

Generalizing Chain Rule to Tensors

- Backpropagation is usually applied to tensors with arbitrary dimensionality.
- This is almost the same as with vectors:
 - we could flatten each tensor into a vector, compute a vector-valued gradient and reshape it back to a tensor.
- In this view backpropagation is still multiplying Jacobians by gradients:

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

Chain Rule for Tensors

- To denote gradient of value z w.r.t. a tensor X, we write as if X were a vector:
 - ▶ an element in a k-order tensor is indexed by a tuple (i_1, \dots, i_k) , we abstract this away by a single (vector) variable $i \triangleq (i_1, \dots, i_k)$ to represent the tuple.
- ② For all possible tuples i, $(\nabla_{\mathbf{X}}z)_i$ gives $\frac{\partial z}{\partial X_i}$:
 - exactly same as how for all possible indices i in a vector, $(\nabla_{\mathbf{X}}z)_i$ gives $\frac{\partial z}{\partial X}$.
- **3** Chain rule for tensors: let $\mathbf{Y} = g(\mathbf{X})$ and $z = f(\mathbf{Y})$:

$$\nabla_{\mathbf{X}} z = \sum_{i} \underbrace{(\nabla_{\mathbf{X}} Y_{i})}_{\text{tensor}} \underbrace{\frac{\partial z}{\partial Y_{i}}}_{\text{scalar}}$$

Backprop is Recursive Chain Rule

- Backprop is obtained by recursively applying the chain rule.
- Using the chain rule, it is straightforward to write expression for gradient of a scalar w.r.t. any node in graph producing that scalar.
- Mowever, evaluating that expression on a computer has some extra considerations:
 - e.g., many subexpressions may be repeated several times within overall expression.
 - should we store subexpressions or recompute them?

Example of repeated subexpressions

• Let ω be the input to the graph; Use same function $f : \mathbb{R} \to \mathbb{R}$ at every step: $x = f(\omega), \ \ y = f(x), \ \ z = f(y).$

$$\frac{\partial z}{\partial \omega} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \cdot \frac{\partial y}{\partial \omega} = f'(y)f'(x)f'(\omega)$$

$$= f'(f(f(\omega)))f'(f(\omega))f'(\omega)$$
 (2)

- ② We can use (1) to compute the derivative, where $f(\omega)$ is computed once and stored it in x.
 - This is the approach taken by backprop.
- **3** We can also use (2) to compute the derivative, where $f(\omega)$ is recomputed each time it is needed.
 - ► For low memory, (1) preferable: reduced runtime.
 - (2) is also valid chain rule, useful for limited memory.
- For complicated graphs as in deep neural networks, (2) exponentially wastes computations for repeated subexpressions.

Basic Backprop Algorithm

- Assume each u_i is a scalar.
- Each $\{u_j\}$ is connected by a subset of other $\{u_k\}_{k \le j}$, dented as $Pa(u_j)$.
- For Each $\{u_j\}_{j>i}$, $u_j = f^{(j)}(Pa(u_j))$.
- The basic backprop consists of two procedures: the forward pass and the backward pass.

Forward Propagation Computation

Input: Data
$$\{x_i\}$$

Output: Loss $\{u_n\}$
for $j = 1, ..., i$ do
 $| u_i = x_i |$
end
for $j = i + 1, ..., n$ do
 $| u_j = f^{(j)}(Pa(u_j)) |$
end
Algorithm 1: Forward Propagation

- Algorithm specifies a computational graph \mathcal{G} .
- Computation in reverse order gives back-propagation computational graph B.

Backward Propagation Computation

- Proceeds exactly in reverse order of computation in \mathcal{G} .
- 2 Each node in \mathcal{B} computes the derivative $\frac{\partial u_n}{\partial u_i}$.
- One by using the chain rule w.r.t. the scalar output u_n :

$$\frac{\partial u_n}{\partial u_j} = \sum_{i:j \in Pa(u_i)} \underbrace{\frac{\partial u_n}{\partial u_i}}_{(1)} \cdot \underbrace{\frac{\partial u_i}{\partial u_j}}_{(2)},$$

where all derivatives in the summation can be computed:

- (1) has been computed in previous step.
- \triangleright (2) is easily computed given the mapping from u_i to u_i .
- acting like dynamic programming.

Backpropagation Algorithm

Input: Data $\{x_i\}$

Output: All derivatives $\{\frac{\partial u_n}{\partial u_i}\}$

Run forward propagation to obtain network activations (outputs) Initialize grad-table, a data structure that will store derivatives that have been computed, The entry grad-table $[u_j]$ will store the computed value of $\frac{\partial u_n}{\partial u_j}$

$$egin{align*} & \operatorname{grad-table}[u_j] \leftarrow 1 \ & \operatorname{for}\ j = n-1, \ldots, i+1 \ & \operatorname{do} \ & | \operatorname{grad-table}[u_j] = \sum_{i:j \in Pa(u_i)} \operatorname{grad-table}[u_i] rac{\partial u_i}{\partial u_i} \end{aligned}$$

3 = 19 = 1(21)

end

Algorithm 2: Backpropagation Algorithm

Step (*) computes
$$\frac{\partial u_n}{\partial u_j} = \sum_{i:j \in \textit{Pa}(u_i)} \frac{\partial u_n}{\partial u_i} \cdot \frac{\partial u_i}{\partial u_j}$$
.

Computational Complexity & Generalization

- Computational cost is proportional to the number of edges in the graph (same as for forward pass):
 - each edge is visited a limited number of times.
 - complexity proportional to #edges in the computational graph.
- Backpropagation thus avoids exponential explosion in repeated subexpressions
 - by simplifications on the computational graph.
- It can be generalized to the case of intermediate tensor-output by replacing the formula $\frac{\partial u_n}{\partial u_j} = \sum_{i:j \in Pa(u_i)} \frac{\partial u_n}{\partial u_i} \cdot \frac{\partial u_i}{\partial u_j}$ in the BP algorithm by the tensor-version:

$$\frac{\partial u_n}{\partial u_j} = \sum_{i:j \in Pa(u_i)} \sum_{\mathbf{k}} \left(\nabla_{u_j} u_{i\,\mathbf{k}} \right) \frac{\partial u_n}{\partial u_{i\,\mathbf{k}}} \;,$$

where \mathbf{k} is the tuple index of a tensor.

Recap: Backward Propagation Computation

$$\frac{\partial u_n}{\partial u_j} = \sum_{i:j \in Pa(u_i)} \frac{\partial u_n}{\partial u_i} \cdot \underbrace{\frac{\partial u_i}{\partial u_j}}_{(2)},$$

- (1) has been computed in previous step.
- (2) is easily computed given the mapping from u_i to u_i.
- When u_i's are vectors, (2) becomes a matrix (Jacobian matrix), and (1) becomes a vector: → the result is a vector.

Backprop in Fully Connected MLP

• Maps parameters to supervised loss $L(\hat{y}, y)$ associated with a single training example (\mathbf{x}, y) with \hat{y} the output when \mathbf{x} is the input.

Forward Prop for MLP (without regularization)

Input: Network depth I; Weight matrices $\mathbf{W}^{(i)}$, $i \in \{1, ..., I\}$; bias parameters $\mathbf{b}^{(i)}$, $i \in \{1, ..., I\}$; Input data \mathbf{x} and target output y; **Input:** Activation function $f^{(k)}$, $k \in \{1, ..., I\}$

Output: Loss function L

$$ar{h}^{(0)} = \mathbf{x}$$
for $k = 1, ..., l$ do
$$\begin{vmatrix} \mathbf{a}^{(k)} &= \mathbf{W}^{(k)}^T h^{(k-1)} + \mathbf{b}^{(k)} \\ \mathbf{h}^{(k)} &= f^{(k)}(\mathbf{a}^{(k)}) \end{vmatrix}$$
end
 $\hat{y} = \mathbf{h}^{(l)}$
Return $L(\bar{y}, y)$

Algorithm 3: Forward prop through typical deep NN

• $L(\bar{y}, y)$ is the loss function w.r.t. the network output \bar{y} and the target y, e.g., the cross entropy.

Backward Prop for MLP

Forward prop through typical deep NN

 $\mathbf{g} \leftarrow \nabla_{\bar{v}} J = \nabla_{\bar{v}} L(\bar{v}, y)$ (gradient of hidden layers, e.g., derivative of softmax on the top-layer)

for
$$k = 1, 1 - 1, ..., 1$$
 do

Caculate the gradient of the pre-nonlinearity activation a^(k) (element-wise multiplication if f is elementwise)

//g stores either $\nabla_{\mathbf{a}^{(k)}}J$ or $\nabla_{\mathbf{h}^{(k)}}J$

$$\mathbf{g} \leftarrow \nabla_{\mathbf{a}^{(k)}} J = \nabla_{f(\mathbf{a}^{(k)})} J \odot \frac{f(\mathbf{a}^{(k)})}{\mathbf{a}^{(k)}} = \mathbf{g} \odot f'(\mathbf{a}^{(k)})$$

Compute the gradients on weights and biases (including the regularization term: $\mathbf{a}^{(k)} = \mathbf{W}^{(k)} \mathbf{h}^{(k-1)} + \mathbf{b}^{(k)}$

$$\nabla_{b^{(k)}} J = \nabla_{\mathbf{a}^{(k)}} J \odot \frac{\partial \mathbf{a}^{(k)}}{\partial b^{(k)}} = \mathbf{g}$$
$$\nabla_{\mathbf{W}^{(k)}} J = \nabla_{\mathbf{a}^{(k)}} J \odot \frac{\partial \mathbf{a}^{(k)}}{\partial \mathbf{W}^{(k)}} = \mathbf{g} \mathbf{h}^{k-1}^{T}$$

Propagate the gradients w.r.t. the next lower-level hidden layer's activations: $\mathbf{g} = \nabla_{\mathbf{h}^{(k-1)}} J = \frac{\partial \mathbf{a}^{(k)}}{\partial \mathbf{h}^{(k-1)}} \cdot \nabla_{\mathbf{a}^{(k)}} J = \mathbf{W}^{(k)}$ g

Implementation: Symbol-to-Symbol Derivatives

- Algebraic expressions and computational graphs operate on symbolic representations.
- When we train a neural network we must assign specific values for these symbols, e.g., $[2.5, 3.75, -1.8]^T$.

Two Approaches to BP

- Symbol-to-number differentiation:
 - Input: computational graph and numerical values of inputs to graph.
 - Output: a set of numerical values describing gradient at the input values.
 - Used by libraries: PyTorch/Torch and Caffe.
- Symbol-to-symbol differentiation:
 - Input: computational graph.
 - Output: Add additional nodes to the graph.
 - Used by libraries: Theano and Tensorflow.
 - ▶ BP does not need to ever access any actual numerical values:
 - instead it adds nodes to a computational graph describing how to compute the derivatives for any specific numerical values.
 - ★ a generic graph evaluation engine can later compute derivatives for any specific numerical values.

Example: Symbol-to-symbol Derivatives

Advantages of Approach

- Derivatives are described in the same language as the original expression.
- Because the derivatives are just another computational graph, it is possible to run back-propagation again:
 - differentiating the derivatives.
 - yields higher-order derivatives.

How is BP Implemented

Constructing the Graph

- **1** Each node in graph \mathcal{G} corresponds to a variable.
- Each variable is described by a tensor V, subsuming scalars, vectors and matrices.
- For each node, several routines are implemented associated with the node.

Subroutines Associated with V

- get_operation (V):
 - returns the operation that computes V represented by the edges coming into V.
 - e.g., suppose we have a variable that is computed by matrix multiplication C = AB, then get_operation (V) returns a pointer to an instance of the corresponding C++ class implemented the multiplication.
- get_consumers (V, G):
 - ▶ returns list of variables that are children of V in the computational graph G.
- get_inputs (**V**, *G*):
 - returns list of variables that are parents of \mathbf{V} in the computational graph \mathcal{G} .

bprop Operation

- Each operation (node) op is also associated with a bprop operation.
- ② op.bprop operation can compute a Jacobian-vector product as described by: $\nabla_{\mathbf{x}}z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}}z$ for input \mathbf{x} and output \mathbf{y} .
- This is how the backpropagation algorithm can achieve great generality:
 - each operation is responsible for knowing how to backpropagate through the edges in the graph that it participates in (local operation).

Inputs, Outputs of bprop

- Backprogation algorithm itself does not need to know any differentiation rules:
 - op.bprop implements it.
 - it only needs to call each operation's op.bprop rules with the right arguments.
- Formally op.bprop(inputs, X, D) must return:

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z = \sum_{i} (\nabla_{\mathbf{x}} y_i) \mathbf{D}_i$$

- "inputs" is a list of inputs that are supplied to the operation, y is a math function that the operation implements.
- **X** is the input whose gradient we wish to compute.
- ▶ **D** is the gradient on the output of the operation, *e.g.*, gradient of last layer.
- layer.

 Just an implementation of the chain rule: $\nabla_{\mathbf{X}}z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{X}}\right)^T \underbrace{\nabla_{\mathbf{y}}z}_{\mathbf{D}_{i}}$.

Software Implementations

- Usually provide both:
 - operations.
 - their bprop methods.
- Users of software libraries are able to backpropagate through graphs built using common operations like:
 - matrix multiplication, exponents, logarithms, etc.
- To add a new operation to existing library, one must derive ob.prop method manually.

Formal Backpropagation Algorithm: Outermost Skeleton

Require: T, the target set of variables whose gradients must be computed.

Require: \mathcal{G} , the computational graph

Require: z, the variable to be differentiated

Let \mathcal{G}' be \mathcal{G} pruned to contain only nodes that are ancestors of z and descendents of nodes in \mathbb{T} .

Initialize grad_table, a data structure associating tensors to their gradients

 $\texttt{grad_table}[z] \leftarrow 1$

for V in T do

 $build_grad(V, G, G', grad_table)$

end for

Return $grad_table$ restricted to \mathbb{T}

Inner Loop: build-grad $(V, \mathcal{G}, \mathcal{G}', grad-table)$

```
Require: V, the variable whose gradient should be added to \mathcal{G} and grad_table.
Require: \mathcal{G}, the graph to modify.
Require: \mathcal{G}', the restriction of \mathcal{G} to nodes that participate in the gradient.
Require: grad_table, a data structure mapping nodes to their gradients
   if V is in grad_table then
     Return grad table[V]
  end if
  i \leftarrow 1
   for C in get consumers (V, \mathcal{G}') do
     op \leftarrow get operation(\mathbf{C})
     D \leftarrow \text{build grad}(C, \mathcal{G}, \mathcal{G}', \text{grad table})
     \mathbf{G}^{(i)} \leftarrow \mathtt{op.bprop}(\mathtt{get} \ \mathtt{inputs}(\mathbf{C}, \mathcal{G}'), \mathbf{V}, \mathbf{D})
     i \leftarrow i + 1
   end for
  \mathbf{G} \leftarrow \sum_{i} \mathbf{G}^{(i)}
   grad table[V] = G
   Insert G and the operations creating it into \mathcal{G}
   Return G
```

Example: FNN Forward Propagation Graph

Computational Graph of Gradient

- It would be large and tedious for this example.
- One benefit of back-propagation algorithm is that it can automatically generate gradients that would be straightforward but tedious manually for a software engineer to derive.

After gradient computation, it is the responsibility of SGD or other optimization algorithm to use gradients to update parameters.