Sistemas de Recomendação com ML

José Arlan e Nathanael Augusto

O que é?

Os sistemas de recomendação são um conjunto de métodos que administram uma base de dados e recomendam itens para facilitar a escolha do usuário.

Por que Sistemas de Recomendação?

Netflix

2/3 dos filmes alugados vêm de recomendação

Google News

38% das notícias mais clicadas vêm de recomendação

Amazon

38% das vendas vêm de recomendação

O que é?

Os sistemas de recomendação são um conjunto de métodos que administram uma base de dados e recomendam itens para facilitar a escolha do usuário.

Por que Sistemas de Recomendação?

Netflix

- 2/3 dos filmes alugados vêm de recomendação

Google News

- 38% das notícias mais clicadas vêm de recomendação

Amazon

- 38% das vendas vêm de recomendação

Sistema de Recomendação Baseado em conteúdo

A característica principal desse modelo de recomendação é se basear em escolhas que o usuário tenha feito anteriormente, e um exemplo é o usuário selecionar alguns livros de um mesmo gênero, para que as próximas recomendações sejam baseadas no gênero dos livros escolhidos pelo usuário.

Sistema de Recomendação Colaborativa

Esse tipo de recomendação basea-se na popularidade do item dentro de um grupo de perfis de usuários com características em comum. É identificado qual grupo de perfis o usuário tem perfil parecido, então é feita a recomendação do item. Para realizar esta recomendação o sistema se baseia no cálculo de similaridade.

Sistema de Recomendação Híbrido

Os sistemas de recomendação podem utilizar várias técnicas para gerar recomendações a seus utilizadores, de modo que as mais diferentes preferências sejam atendidas. Dentro desse contexto a filtragem híbrida combina o uso de várias técnicas. Um exemplo do método híbrido na recomendação seria a filtragem colaborativa com outras técnicas a fim de resolver problemas em que nenhuma avaliação sozinha conseguiria.

Sistema de Recomendação Baseado em conteúdo

A característica principal desse modelo de recomendação é se basear em escolhas que o usuário tenha feito anteriormente, e um exemplo é o usuário selecionar alguns livros de um mesmo gênero, para que as próximas recomendações sejam baseadas no gênero dos livros escolhidos pelo usuário.

Sistema de Recomendação Colaborativa

Esse tipo de recomendação basea-se na popularidade do item dentro de um grupo de perfis de usuários com características em comum. É identificado qual grupo de perfis o usuário tem perfil parecido, então é feita a recomendação do item. Para realizar esta recomendação o sistema se baseia no cálculo de similaridade.

Sistema de Recomendação Híbrido

Os sistemas de recomendação podem utilizar várias técnicas para gerar recomendações a seus utilizadores, de modo que as mais diferentes preferências sejam atendidas. Dentro desse contexto a filtragem híbrida combina o uso de várias técnicas. Um exemplo do método híbrido na recomendação seria a filtragem colaborativa com outras técnicas a fim de resolver problemas em que nenhuma avaliação sozinha conseguiria.

Sistema de Recomendação Baseado em conteúdo

A característica principal desse modelo de recomendação é se basear em escolhas que o usuário tenha feito anteriormente, e um exemplo é o usuário selecionar alguns livros de um mesmo gênero, para que as próximas recomendações sejam baseadas no gênero dos livros escolhidos pelo usuário.

Sistema de Recomendação Colaborativa

Esse tipo de recomendação basea-se na popularidade do item dentro de um grupo de perfis de usuários com características em comum. É identificado qual grupo de perfis o usuário tem perfil parecido, então é feita a recomendação do item. Para realizar esta recomendação o sistema se baseia no cálculo de similaridade.

Sistema de Recomendação Híbrido

Os sistemas de recomendação podem utilizar várias técnicas para gerar recomendações a seus utilizadores, de modo que as mais diferentes preferências sejam atendidas. Dentro desse contexto a filtragem híbrida combina o uso de várias técnicas. Um exemplo do método híbrido na recomendação seria a filtragem colaborativa com outras técnicas a fim de resolver problemas em que nenhuma avaliação sozinha conseguiria.

Sistema de Recomendação Baseado em conteúdo

A característica principal desse modelo de recomendação é se basear em escolhas que o usuário tenha feito anteriormente, e um exemplo é o usuário selecionar alguns livros de um mesmo gênero, para que as próximas recomendações sejam baseadas no gênero dos livros escolhidos pelo usuário.

Sistema de Recomendação Colaborativa

Esse tipo de recomendação basea-se na popularidade do item dentro de um grupo de perfis de usuários com características em comum. É identificado qual grupo de perfis o usuário tem perfil parecido, então é feita a recomendação do item. Para realizar esta recomendação o sistema se baseia no cálculo de similaridade.

Sistema de Recomendação Híbrido

Os sistemas de recomendação podem utilizar várias técnicas para gerar recomendações a seus utilizadores, de modo que as mais diferentes preferências sejam atendidas. Dentro desse contexto a filtragem híbrida combina o uso de várias técnicas. Um exemplo do método híbrido na recomendação seria a filtragem colaborativa com outras técnicas a fim de resolver problemas em que nenhuma avaliação sozinha conseguiria.

last.fm

 Atribuir um peso para todos os usuários de acordo com a similaridade com o usuário atual.

 Selecionar k usuários que tenham a maior similaridade possível com o usuário atual - que normalmente é chamado de vizinhança.

 Atribuir um peso para todos os usuários de acordo com a similaridade com o usuário atual.

 Selecionar k usuários que tenham a maior similaridade possível com o usuário atual - que normalmente é chamado de vizinhança.

 Atribuir um peso para todos os usuários de acordo com a similaridade com o usuário atual.

 Selecionar k usuários que tenham a maior similaridade possível com o usuário atual - que normalmente é chamado de vizinhança.

 Atribuir um peso para todos os usuários de acordo com a similaridade com o usuário atual.

 Selecionar k usuários que tenham a maior similaridade possível com o usuário atual - que normalmente é chamado de vizinhança.

Métricas

 Identificar o melhor algoritmo de recomendação é um desafio.

 "A falta de padronização leva a uma grande quantidade de métricas sendo utilizadas, tornando-se difícil comparar os resultados de diferentes publicações" (HERLOCKER et al., 2004).

Métricas

 Identificar o melhor algoritmo de recomendação é um desafio.

 "A falta de padronização leva a uma grande quantidade de métricas sendo utilizadas, tornando-se difícil comparar os resultados de diferentes publicações" (HERLOCKER et al., 2004).

Métricas

 Identificar o melhor algoritmo de recomendação é um desafio.

 "A falta de padronização leva a uma grande quantidade de métricas sendo utilizadas, tornando-se difícil comparar os resultados de diferentes publicações" (HERLOCKER et al., 2004).

Distância entre os Cossenos

$$sim(\overrightarrow{d_1}, \overrightarrow{d_2}) = cos(\overrightarrow{d_1} \overrightarrow{d_2}) = \frac{\overrightarrow{d_1} \cdot \overrightarrow{d_2}}{|\overrightarrow{d_1}| \cdot |\overrightarrow{d_2}|} = \frac{\sum_i w_{i,1} \cdot w_{i,2}}{\sqrt{\sum_i w_{i,1}^2} \cdot \sqrt{\sum_i w_{i,2}^2}}$$

O coseno é uma correlação, que retorna valores entre 0 e 1. Ele mede o ângulo entre dois vetores num espaço vetorial. Quanto mais próximo de 1 for o valor, mais similares são os dois vetores.

Distância Euclidiana

$$DE(x,y) = \sqrt{\sum_{i}^{p} (x_i - y_i)^2}$$

Base de Dados

	Freddy X Jason	Ultimate Bourne	Star Trek	Exteminador do Futuro	Norbit	Star Wars
Ana	2,5	3,5	3	3,5	2,5	3
Marcos	3	3,5	1,5	5	3	3,5
Pedro	2,5	3		3,5		4
Cláudia		3,5	3	4	2,5	4,5
Adriano	3	4	2	3	2	3
Janaina	3	4		5	3,5	3
Leonardo		4,5		4	1	

1. Prediz o quanto você pode gostar de um determinado serviço.

2. Sugere uma lista de N itens ordenada de acordo com seu interesse

3. Sugere uma lista de N usuários ordenados para um produto/serviço

1. Prediz o quanto você pode gostar de um determinado serviço.

2. Sugere uma lista de N itens ordenada de acordo com seu interesse

Sugere uma lista de N usuários ordenados para um produto/serviço

1. Prediz o quanto você pode gostar de um determinado serviço.

2. Sugere uma lista de N itens ordenada de acordo com seu interesse.

3. Sugere uma lista de N usuários ordenados para um produto/serviço

1. Prediz o quanto você pode gostar de um determinado serviço.

Sugere uma lista de N itens ordenada de acordo com seu interesse.

3. Sugere uma lista de N usuários ordenados para um produto/serviço.

1. Prediz o quanto você pode gostar de um determinado serviço.

2. Sugere uma lista de N itens ordenada de acordo com seu interesse

Sugere uma lista de N usuários ordenados para um produto/serviço.

Recomendações Para Leonardo

Usuário	Sim	Freddy	S X Freddy	Star Trek	S X Star Trek	Star Wars	S X Star Wars
Adriano	0,4	3	1,2	2	0,8	3	1,2
Pedro	0,38	2,5	0,95			4	1,52
Claudia	0,35	2,5	0,875	3	1,05	4,5	1,575
Ana	0,35			3	1,05	3	1,05
Janaína	0,26	3	0,78			3	0,78
Marcos	0,25	3	0,75	1,5	0,375	3	0,75
TOTAL			4,555		3,275		6,875
SOMA SIMI			1,64		1,35		1,99
TOTAL/SOMA			2,777439024		2,425925926		3,454773869

Recomendações Para Leonardo

	Freddy X Jason	Ultimate Bourne	Star Trek	Exteminador do Futuro	Norbit	Star Wars
Ana	2,5	3,5	3	3,5	2,5	3
Marcos	3	3,5	1,5	5	3	3,5
Pedro	2,5	3		3,5		4
Cláudia		3,5	3	4	2,5	4,5
Adriano	3	4	2	3	2	3
Janaina -	3	4		5	3,5	3
Leonardo	2,77	4,5	2,42	4	1	3,45

Implementação de um SR Simples

Filtragem colaborativa baseada em usuários

Filtragem colaborativa baseada em itens

Implementação de um SR Simples

Filtragem colaborativa baseada em usuários

Filtragem colaborativa baseada em itens

Implementação de um SR Simples

Filtragem colaborativa baseada em usuários

Filtragem colaborativa baseada em itens

K-Nearest Neighbour (kNN) – K vizinhos mais próximos

KNN

 A maioria dos métodos de aprendizagem constroem um modelo após o treinamento (os dados são descartados após a criação do modelo)

 Métodos baseados em instâncias simplesmente armazenam os exemplos de treinamento

KNN

 A maioria dos métodos de aprendizagem constroem um modelo após o treinamento (os dados são descartados após a criação do modelo)

 Métodos baseados em instâncias simplesmente armazenam os exemplos de treinamento

KNN

 A maioria dos métodos de aprendizagem constroem um modelo após o treinamento (os dados são descartados após a criação do modelo)

 Métodos baseados em instâncias simplesmente armazenam os exemplos de treinamento

Dataset MovieLens

Informações

100.000 Avaliações de 1000 Usuários em 1700 filmes.

Implementações usando KNN

Referências

Sistema de Recomendação Baseado em Estilos de Aprendizagem em Sala de Aula Andressa G. Richardt1, Jones Granatyr2, , Fábio Spak3

https://www.udemy.com/inteligencia-artificial-sistemas-de-recomendacao-e m-python/learn/v4/overview

https://cursos.alura.com.br/course/machine-learning-introducao-aos-sistem as-de-recomendacoes/

Sistemas de Recomendação com ML

José Arlan e Nathanael Augusto