1. [Для групп 2 и 3.] Решить нужно подробно, а записываться можно всем и сразу.

Найдите все максимальные идеалы кольца $R = \mathbb{R}[X, Y]$.

Yказание. Приходят в голову два способа решения. Можно доказать, что любой такой идеал M дает сюръективный гомоморфизм факторизации $R \to \mathbb{R}$ или $R \to \mathbb{C}$, и найти все возможные ядра. Или можно рассмотреть $R \otimes_{\mathbb{R}} \mathbb{C}/M \otimes_{\mathbb{R}} \mathbb{C}$ как $R \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C}[X,Y]$ -модуль и доказать, что идеал $M \otimes_{\mathbb{R}} \mathbb{C}$ или сам максимален в $\mathbb{C}[X,Y]$, или является пересечением двух максимальных.

Зафиксируем натуральное n; R — коммутативное кольцо с единицей (можно считать $R = \mathbb{Z}$) x_1, \ldots, x_n — переменные и элементы кольца $R' = R[x_1, \ldots, x_n]$.

Для монома $M = \prod x_i^{n_i}$, $n_i \ge 0$, будем обозначать через $O_n(M)$ сумму всех различных мономов, получающихся из M перестановкой x_i (мы берем эти слагаемые без повторов!); $p_m = \sum_{i=1}^n x_i^m$ при m > 0.

Мы определим элементарные симметрические многочлены $s_m \in R'$ от x_i для $m \geq 0$ следующим образом: $s_0 = 1$, $s_m = O_n(x_1 \dots x_m)$ если $1 \leq m \leq n$ (обычное определение!), $s_m = 0$ если m > n.

- 2. [Молодые люди, у которых есть плюсики, могут записываться на эту задачу начиная с 9 марта, барышни с 8 марта.] Выразите $O_4(x_1^2x_2^2)$ через s_i (пользуясь рассуждением, примененным на лекции для доказательства теоремы 5.1).
- 3. [Молодые люди с плюсиками могут записываться на эту задачу с 9 марта, барышни с 8 марта.] Выразите $O_3(x_1^3x_2^2)$ через s_i .
- 4. [Молодым людям нельзя записываться на эту задачу 8 марта; в остальные дни можно всем.]
 - Докажите для каждого m>0 следующее тождество (Ньютона): $ms_m+\sum_{i=1}^m (-1)^i s_{m-i} p_i=0$. Используйте его, чтобы выразить характер m-ой внешней степени комплексного представления π (конечной группы) через χ_{π} .
 - Говорим, что многочлен $f \in R'$ антисимметричен, если при перестановке любых двух переменных он меняет знак (см. ниже).
- 5. [Молодым людям нельзя записываться на эту задачу 8 марта; в остальные дни можно всем.]
 - $R=\mathbb{Z}.$ Докажите, что $f\in R'$ антисимметричен тогда и только тогда, когда его можно представить в виде
 - $f'\prod_{1\leq i\leq j\leq n}(x_i-x_j)$, где $f'\in R'$ симметрический многочлен.
 - Замечание. Конечно же, следствие в одну сторону выполнено всегда. Видимо, для следствия в нетривиальную сторону достаточно того, чтобы отображение умножения на 2 не имело ядра в R (т.е., 2 не делитель 0 в R).