Subgrupos y Homomorfismos

Cristian Chois Amaya

14 de febrero de 2023

probar que Kernel(θ) y Img(θ) son subgrupos; demostrar teorema de si T es cualquier otro subgrupo que contiene x, $s \in T$.

- 1. Para demsotar que kernel(θ) es un subgrupo este tiene que cupmlir las 3 propiedades de los subrupos:
 - a. contiene el elemento neutro,o identidad, esta identidad esta en el kernel de cualquier función, por lo que kernel (θ) no esta vacio.
 - b. Es cerrado bajo la operación de grupo, si f y g estan en kernel(θ), ahora hay que comprobar que su composición tambien este dentro de g.Para demostrar esto, podemos observar que $\theta(fg)(x) = \theta(f(g(x)))$ = $\theta(f(\theta(g(x)))) = \theta(f(1)) = \theta(1) = 1$. Por lo tanto, fg también pertenece al Kernel(θ).
 - c. Es cerrado bajo inversos, es decir que si f esta, ya que si f(x) = 1, entonces $\theta(f(x)) = \theta(1) = 1$, y si $f^{(-1)}(x) = 1$, entonces $\theta(f^{(-1)}(x)) = \theta(1) = 1$.

lo tanto es un subgrupo.

- 1. Para demostrar que $Img(\theta)$ es un subgrupo este tiene que cupmlir las 3 propiedades de los subrupos:
 - a. ontiene el elemento neutro,o identidad, en este caso es la imagen de la identidad, $\theta(1)$. imagen está en Img(θ), lo que indica que Img(θ) no es vacío.
 - b. Es cerrado bajo la operación de grupo, si y1 y y2 pertenecen a Img(θ), entonces existen elementos x1 y x2 en el dominio tal que $\theta(x1) = y1$ y $\theta(x2) = y2$.Para demostrar que y1y2 también está en Img(θ), podemos observar que $\theta(x1x2) = \theta(x1)(x2) = y1y2$, lo que indica que y1*y2 también pertenece a Img(θ).
 - c. Es cerrado bajo inversos: Si y pertenece a $\text{Img}(\theta)$, entonces su inverso $y^{(-1)}$ también pertenece a $\text{Img}(\theta)$. Esto viendo la definición de $\text{Img}(\theta)$: si y = $\theta(x)$ para algún x en el dominio, entonces $y^{(-1)} = \theta(x^{(-1)})$, lo que implica que $y^{(-1)}$ también está en $\text{Img}(\theta)$.

por lo tanto es un subgrupo.

- 2. Para demostrar el teorema de que T es cualquier otro subgrupo que contiene x, entonces $s \subseteq T$, podemos seguir los siguientes pasos:
 - Sea y un elemento en s. Por definición, existe un elemento x en el dominio tal que $\theta(x) = y$. Pero como x está en el dominio y T contiene x, entonces T también contiene $\theta(x) = y$. Por lo tanto, cualquier

elemento y en s está en T, lo que implica que s es un subconjunto de T, es decir, $s \subseteq T$. De esta manera, se demuestra que si T es un subgrupo que contiene a x, entonces s es un subconjunto de T.