$\begin{array}{c} \text{Sam Tay} \\ \text{Professor Milnikiel} \\ \text{Math 335} \\ \text{Questions on S15} \\ 1/5/11 \end{array}$

Theorem 15.18: M is a maximal normal subgroup of G if and only if G/M is simple.

Proof. (\Rightarrow) His forward direction is pretty straightforward. Let M be a maximal normal subgroup of G and X be a nontrivial proper normal subgroup of G/M. We know first that $\gamma^{-1}[X]$ must contain M, because if $m \in M$, then $\gamma(m) = mM = M$, which is the identity of G/M and therefore is in the subgroup X. Since X is nontrivial, it also contains an element $aM = \gamma(a)$ where $a \notin M$ and therefore $M \subset \gamma^{-1}[X]$. We also know $\gamma^{-1}[X] \subset G$ because since X is a proper subgroup of G/M, there exists an element $gM = \gamma(g) \notin X$, such that $g \notin \gamma^{-1}[X]$ where $g \in G$. Thus $M \subset \gamma^{-1}[X] \subset G$, and since $\gamma^{-1}[X]$ is normal by Theorem 15.16, this contradicts M being maximal. Therefore there is no nontrivial proper normal subgroups of G/M, which must then be simple.

(\Leftarrow) On the other hand, I have trouble understanding his proof of the converse. If N is a normal subgroup of G properly containing M, then $\gamma[N]$ is normal in G/M by Theorem 15.16. He then claims that if $N \neq G$, then

$$\gamma[N] \neq G/M$$
 and $\gamma[N] \neq \{M\}.$

The second statement is clear from the reasoning in the the forward direction: since N properly contains M, there exists $n \in N \setminus M$ such that $\gamma(n) = nM \neq M$, so $\{M\} \subset \gamma[N]$. However I do not see how the first statement follows; just because there exists $g \in G \setminus N$ doesn't mean that $\gamma(g) \notin \gamma[N]$, because we can easily have gM = nM for some $n \in N$ can't we? In other words, how do we know that a proper subgroup N of G can't generate the cosets of M such that

$${nM: n \in N} = G/M.$$

It only takes (G:M) elements of N to do it, so... am I missing something? \square

Theorem 15.20: Let G be a group. The set of all commutators $aba^{-1}b^{-1}$ for $a,b \in G$ generates a subgroup C (the commutator subgroup) of G. This subgroup C is a normal subgroup of G. Furthermore, if N is a normal subgroup of G, then G/N is abelian if and only if $C \leq N$.

Proof. "The commutators certainly generate a subgroup C." Well, I'd argue it's not so certain. I have trouble showing that C is closed. If we let two elements of C be denoted by $aba^{-1}b^{-1}$ and $cdc^{-1}d^{-1}$ for $a,b,c,d\in G$, their product

$$aba^{-1}b^{-1}cdc^{-1}d^{-1}$$

is not easily reduced into the form $wxw^{-1}x^{-1}$. Or maybe it is and I don't see it. But certainly "certainly" is a strong word here.

Luckily, as Fraleigh says "the rest of the theorem is obvious if we have acquired the proper feeling for factor groups," I felt that way too. If $C \leq N$ then we know that $at\ least$ the commutators are sent to the identity in the factor group, which allows for at the very least commutativity between all of the elements. \Box

I'm going to go ahead and start the homework for this section; while these uncertainties bother me, I'm sure it won't interfere too much with the problems.