Inflationary Redistribution vs. Trading Opportunities

Costs of Inflation and Financial Innovation

Timothy Kam¹, Junsang Lee²

 1 RSE, Australian National University 2 Sungkyunkwan University

Paper: github.com/phantomachine/csim

Macro/Trade Seminar, Monash Caulfield April 9, 2018

Motivation

Yellen (2016) in Macroeconomic Research After the Crisis:

[O]nce heterogeneity is taken into account, other important channels emerge. For example, spending by many households ... quite sensitive to changes in ... income [... and etc. (sic) ...] that in turn affects their access to credit ...

[S]tudying monetary models with heterogeneous agents **more closely** could help us shed new light on these aspects of the monetary transmission mechanism.

Cost of Inflation

Some literature

Taxonomy. Welfare Costs/benefits of inflation

- 1. Intertemporal distortionary tax, distorting consumption (all models): raises cost
- 2. Precautionary liquidity management activities: raises cost
- **3.** Redistributes money wealth from "rich" to "poor": *lowers cost* Models:
 - ► Lagos-Wright (2005) (quasilinearity + bargaining):
 - ▶ kill #3 (RA model) and accentuate #2, large inflation cost
 - ► Molico (2006) (relaxed LW quasilinearity):
 - brings back #3, reduced heterogeneity, smaller inflation cost
 - ▶ Molico-Chiu (2010) (Costly CM participation): accentuate #2
 - \blacktriangleright but #3 still strong, reduced heterogeneity, smaller inflation cost

Question

What happens to welfare cost

- ▶ of *inflation*?
- ► (Corrollary) and of "financial innovation"?

when agents

- do not choose to always participate in complete-insurance markets (CM), and,
- **2.** face *new trade-off*: extensive (trading probability) vs. intensive (terms of trade) in frictional trades (DM)?

Key Takeaways

- Exists stationary monetary equilibrium with unique non-degenerate distribution of agents
- 2. CSIM Python Library: *Open-source*, exploits computational geometry for convexification, fast solution: highly parallelized and JIT-able (for structural estimation)
- 3. Economic insight:
 - ► What we already know: Redistributive inflation
 - Rich to poor, but reduces average welfare.
 - ► Mechanism: *intensive margin* (all HA models):
 - ► CIA and HANK (Imhoroglu and Prescott, 1992; Kaplan et al, 2017)
 - ► Random-matching (Molico, 2006; Molico and Chiu, 2010)
 - ▶ What's new: Search externality affects trading probabilities
 - Sufficiently high inflation: extensive margins (DM trading opportunities*; CM participation) dominate redistribution effect
 - ▶ and result in possible reduction of average welfare
 - a rise in inequality of real liquid asset holdings (contra. Molico and Chiu, 2010)
 - "Financial innovation": raise average welfare, but increase liquid wealth inequality

CSIM

Competitive Search Incomplete Markets

a Heterogeneous Agent New Monetarist model

- \blacktriangleright Agents must go to CM after DM (no ex-ante participation choice) and $\chi=0$
 - ⇒ Lagos-Wright (JPE2005) with competitive search, or Rocheteau-Wright (ECTA2008)
- \blacktriangleright CM Participation cost $\chi=0,$ no CM utility of consumption, and strictly convex disutility of labor
 - ⇒ Menzio-Shi-Sun (JET2013)

Giants

Ex-post CM worker/consumer

Worker named $s := (m, \omega)$:

$$W(\mathbf{s}) = \max_{(C,l,y) \in \mathbb{R}_{+}^{3}} \left\{ U(C) - A \cdot l + \beta \bar{V}(\mathbf{s}_{+1}) : pC + y \le m + l \right\},\,$$

- ightharpoonup takes ω as given
- $m_{+1} = \frac{\omega y + \tau}{\omega_{+1}(1+\tau)}$

Ex-post DM buyer

Buyer named $\mathbf{s} := (m, \omega)$:

$$B(\mathbf{s}) = \max_{x \in [0, m], q \in \mathbb{R}_+} \left\{ \beta \left[1 - b \left(x, q \right) \right] \left[\bar{V} \left(\frac{\omega m + \tau}{\omega_{+1} \left(1 + \tau \right)}, \omega_{+1} \right) \right] + b \left(x, q \right) \left[u(q) + \beta \bar{V} \left(\frac{\omega \left(m - x \right) + \tau}{\omega_{+1} \left(1 + \tau \right)}, \omega_{+1} \right) \right] \right\}.$$

- ▶ If $m \le k$, buyer can only afford to visit submarkets (\tilde{x}, \tilde{q}) where $\tilde{x} \tilde{q} \le m \le k$
 - lacktriangle For *this* submarket, optimal to choose

$$b^{\star}(\mathbf{s}) = x^{\star}(\mathbf{s}) = 0 \Rightarrow B(\mathbf{s}) = \beta \bar{V} \left(\frac{\omega m + \tau}{\omega_{+1}(1 + \tau)}, \omega_{+1} \right)$$

Ex-ante market participation decisions

Ex-ante value of fair lottery $(\pi_1, 1 - \pi_1)$ over prizes $\{z_1, z_2\}$

$$\bar{V}(\mathbf{s}) = \max_{\pi_1 \in [0,1], z_1, z_2} \left\{ \pi_1 \tilde{V}(z_1, \omega) + (1 - \pi_1) \tilde{V}(z_2, \omega) : \right.$$
$$\pi_1 z_1 + (1 - \pi_1) z_2 = m \right\},$$

where ex-post value is

$$\tilde{V}\left(z,\omega\right) = \begin{cases} \max\left\{W\left(z-\chi,\omega\right),B\left(z,\omega\right)\right\}, & z-\chi \geq -y_{\max}\left(\omega;\tau\right) \\ B\left(z,\omega\right), & \text{otherwise} \end{cases}$$

and,

$$y_{\max}\left(\omega;\tau\right):=\begin{cases} \min\left\{\bar{m}-\frac{\tau}{\omega},\bar{m}\right\} & \text{if pay }\chi\text{ in CM}\\ A\in\left[0,\min\left\{\bar{m}-\frac{\tau}{\omega},\bar{m}\right\}\right) & \text{if pay }\chi\text{ before entering CM} \end{cases}$$

Stationary Monetary Equilibrium

Definition

A stationary monetary equilibrium (SME), given exogenous monetary policy au, is a

- ▶ list of value functions $s \mapsto (W, B, \bar{V})(s)$, satisfying the Bellman functionals ...
- ▶ a list of policies $\mathbf{s} \mapsto (l^{\star}, y^{\star}, b^{\star}, x^{\star}, q^{\star}, z^{\star}, \pi^{\star})(\mathbf{s})$ supporting the value functions;
- ▶ market tightness $\mathbf{s} \mapsto \mu \circ b^{\star}(\mathbf{s})$ given matching technology μ : firms max. profits;
- ▶ an ergodic distribution of wealth $G(\mathbf{s})$ s.t.

$$G(E) = \int P(\mathbf{s}, E) dG(\mathbf{s}) \qquad \forall E \in \mathcal{E},$$

 $\mathbf{s}\mapsto P(\mathbf{s},\cdot)$ is a Markov kernel induced by $(l^\star,x^\star,q^\star,z^\star,\pi^\star)$ and $\mu\circ b^\star$ under τ ; and,

ightharpoonup a wage rate function $\mathbf{s}\mapsto\omega(\mathbf{s})$ satisfying labor market clearing

SME

Theorem 3 (Existence with unique distro)

There is a SME with a unique nondegenerate distribution G.

SME: Computation

Computation

- ► Program runs in Python 2.7/3.6
 - with optional OpenMPI parallelization capabilities
- ► Finding a steady state equilibrium
 - ► ~90 seconds on workstation running on 18 parallel cores

Incomplete Information Estimation

Method of Simulated Moments

$$\blacktriangleright \ \, \mathsf{CM} \colon U\left(C\right) = \bar{U}_{CM} \frac{C^{1-\sigma_{CM}} - (0.001)^{1-\sigma_{CM}}}{1-\sigma_{CM}} \ \, \mathsf{and} \ \, -A \cdot l$$

► DM:
$$u(q) = \frac{(q+0.001)^{1-\sigma_{DM}} - (0.001)^{1-\sigma_{DM}}}{1-\sigma_{DM}}$$

▶ DM matching technology: $\mu(b) = 1 - b$.

Table: Benchmark estimates

Parameter	Value	Empirical Targets	Description (MSM*)	
β	0.99	-	$1/\beta - 1 \approx 1\%$	
σ_{CM}	2	-	CM risk aversion	
σ_{DM}	1.01	-	Normalized	
A	1	-	Normalized	
$ar{m}$	$0.95 \times U^{-1}(A)$	-	Sufficient condition (2.3)	
χ	$0.132 \times \bar{m} = 0.125$	Aux reg. $(\pi, M/PY)$	Fixed cost, CM participation *	
k	0.05103	Aux reg. $(\pi, M/PY)$	Fixed cost, trading post *	
$ar{U}_{CM}$	0.002710	Mean Hours $(\frac{1}{3})$	CM preference scale *	

Incomplete Information Estimation

Method of Simulated Moments: Result

Table: Implied Target Estimators

	Auxiliary Stats	Model Stats*	Description (MSM*)
(χ, k)	0.60	0.70	Mean M/PY
	-0.31	-0.21	Aux reg $(\pi, M/PY)$ slope at mean
\bar{U}_{CM}	0.33	0.34	Mean Hours $(\frac{1}{3})$

SME: Results

SME

Value Functions (Theorems 1 and 2)

Figure: Value functions from two economies.

Steady State

Markov Policy Functions: Theorems 1 and 2

Figure: Markov policy functions with $\tau=0.1$

Steady State

Money Distribution

Figure: Money distribution under different equilibrium inflation rates

Comparative SME: Costs of

Inflation

Economic Mechanism (a.k.a intuition)

Limiting case, $\chi \searrow 0$

- ► Near-zero limited CM asset market participation
- ▶ DM poses "virtually only" trading friction ...
- ▶ DM Search externality: intensive-extensive trade-off
 - ightharpoonup given b, if buyer pays more x, then more q consumable
 - lacktriangleright given x, buyer wanting greater trading opportunity b, eats less q

Economic Mechanism (a.k.a intuition)

Limiting case, $\chi \searrow 0$ (cont'd)

- ▶ With anticipated higher inflation and *V* concave, *higher* (lower)-balance agents have *lower* (higher) *marginal valuation* of liquid asset
- ► One hand (**DM or CM intensive** margin): inflation, a redistribution of wealth from high-agents to low agents
 - ▶ standard insight in HA-CIA (İmrohoroğlu-Prescott, 1991) or HANK (Kaplan-Moll-Violante, 2016), and in HA-random-matching (Molico, 2006; Chiu-Molico 2014).
- ► Other hand (**DM extensive** margin): inflation raises the downside risk of agents not getting matched in DM
 - ► feature of competitive search

General case, $\chi > 0$

Now, combine with non-zero CM participation cost ($\chi > 0$):

▶ more incentive to trade off q and l for higher DM-match (DM extensive) and CM-participation rates (CM extensive)

Economic Mechanism - numerical result

- ► So higher anticipated inflation means:
 - ex ante agents participate less in CM, but work more intensively in CM, spend more x in DM to maintain (C,q) (intensive margins) ...
 - vs. more likely to match b each round of trade with less q; and participate in CM more, but work less intensively (opposite force: extensive margins)
- With sufficiently high inflation, extensive margins dominates intensive margins
 - Gini inequality may rise with inflation rate (or τ), if paying χ during CM (baseline economy)
 - Relatively higher proportion of low balance agents dominate average welfare—thus average welfare falls with inflation

Intensive vs Extensive Margins

Figure: Extensive margins (left) vs Intensive margins (right)

Effect on Distribution

Comparative steady states

Figure: Distributional consequences

Effect on Welfare

Comparative steady states: Utilitarian Welfare

Table: Size matters

Economy	Welfare Cost*	Remarks
CSIM (This Model)	-0.28	$\chi = 0.001$
	1.02	$\chi = 0.125$
	1.39	$\chi = 0.125$, ZBL
İmrohoroğlu-Prescott (1991, JMCB)	0.90	Bewley-CIA-HA
Chiu-Molico (2010, JME)	0.41	RM-HA
Lagos-Wright (2005, JPÉ)	1.32	RM-TIOLI-RA
Lucas (2000, ECTA)	0.87	CIA-RA
	* Note: % CE	V, $0\%-10\%$ inflati

Comparative SME: "Financial Innovation"

Financial Innovation

Interpretation 1: more access to CM borrowing

▶ From Pay χ Before CM (\Longrightarrow ZBL) to During CM (\Longrightarrow NBL)

Table: FI #1

Gini (Liquid Assets)	Gini (Consumption)
0.33	0.22
0.41	0.20
	0.33

Key Takeaways

- 1. **Existence** of stationary monetary equilibrium with unique non-degenerate distribution
- 2. CSIM Python Library: An open-source computational-geometry method to quickly solve for a monetary equilibrium
- With high enough inflation, extensive margins (DM trading opportunities*; CM participation) can dominate redistribution effect; and result in
 - ► a reduction of average welfare
 - a rise in inequality of money balances (if some can "borrow" to overcome CM participation cost)
- **4.** "Financial innovation" raises average welfare, but raises liquid wealth inequality

Quantitative Next Steps

- ▶ Not all trades use "money"—proportion of money exchanges small
 - some exchanges supported by unsecured credit and banking (with A. Head, J. Lee, I. Ng)
 - claims on capital may further exacerbate inequality effects (with J. Lee, S. Ong, L. Wang)
- ▶ Re-consider welfare cost of inflation, by accounting for welfare along:
 - deterministic transition (with J. Lee, L. Wang and A. Sun)
 - stochastic transitions (business cycles) (with J. Lee, L. Wang, and A. Sun)

Quantitative answer may differ from comparative steady state analysis.

Back Pocket

On the Shoulders of Giants

Baumol-Tobin liquidity channel of monetary transmission:

- ► Alvarez, Atkeson and Edmond (2009, QJE)
- Money is introduced into GE via CIA constraint assumption; not a fundamental friction of markets
 - ► Exogenous measures of *active* households who can "go to the bank"
- ▶ c.f., MSS2013, when to top up liquidity is *endogenous* decision.

Alternative mechanisms:

- ► Rocheteau, Weill and Wong (2015, NBER):
 - Undirected search: random matching and bargaining.
 - ► Exogenous upper bound on labor supply—incomplete insurance in CM.
 - Money is non-neutral and generates redistribution (akin to our intensive margin).
 - ► c.f., no "extensive margin" trade-off.
- ► Head, Liu, Menzio, Wright (2012, JEEA):
 - Inflation affects price dispersion only in shifting support of price distribution
 - ► Money is neutral

Existence of SME with unique agent distribution:

- ► Kamihigashi-Stachurski (TE, 2014) sufficient (and necessary) conditions;
- ► ⇒ Hopenhayn-Prescott (1992, ECTA)

Big Picture

- 1. Each period, agent market participation:
 - buyer search in DM: decentralised (anonymity); competitive search; matching frictions, or,
 - worker/consumer in CM: work; precautionary asset (money); neoclassical Walrasian market
- **2. Matching friction** in **DM** ⇒ *ex-post* agent **heterogeneity** of money holdings
 - competitive firms create trading posts (some cost); post terms of trades
 - buyers direct their search decisions to these trading posts
 - ► Equilibrium spending cycle
 - ▶ liquid wealth accumulation at different rates (Baumol-Tobin)
 - ▶ monetary policy has real effects via uneven equilibrium liquidity demands
- **3. Costly participation** in the Walrasian **CM** ⇒ *ex-post* agent **heterogeneity** of money holdings.
- **4.** Equilibrium trade-offs:
 - ► Intensive margins: quantities in both markets
 - ► Extensive margins: participation rates in CM; matching prob. DM

Fiat money supply, measurement units

► Money supply growth:

$$\frac{M_{+1}}{M} = 1 + \tau$$

- Labor is the numeraire good.
 - ▶ Denote ωM as the nominal wage rate.
 - ▶ A dollar's worth of money is equivalent to $1/\omega M$.
- ▶ $1/\omega$: per-capita real money balance (in labor units)
 - ▶ If *M*: initial aggregate stock of money
 - ▶ Then: $1/\omega = M \times 1/\omega M$ initial (per-capita) stock of money, *measured* in units of labor
- ▶ Nominal wage growth rate γ :

$$\gamma\left(\tau\right) \equiv \omega_{+} M_{+} / \omega M$$

Firms, matching, submarket location in DM

Matching technology:

- ▶ Sellers and buyers: $s(\mathbf{s}) = \mu[b(\mathbf{s})]$, given buyer type: $\mathbf{s} := (m; \omega)$
 - $\blacktriangleright \ \mu(b) \colon \mu' < 0 \text{ and } \mu'' < 0$

Expected profit-max. decision rule:

- ▶ Create trading posts $(x,q)(\mathbf{s})$, and labor hiring from competitive CM market:
- •

$$\mu\left[b(\mathbf{s})\right]\left[x(\mathbf{s})-q(\mathbf{s})\right]-k \begin{cases} <0 & \Rightarrow \text{ not enter} \\ =0 & \Rightarrow \text{ indifferent on } \#\text{posts} \\ >0 & \Rightarrow \text{ not equilibrium} \end{cases}$$

SME properties

Bounded labor implies NBL

Sufficient condition (primitives):

$$\exists \bar{m} \in (0, U_1^{-1}(A)) \iff A < U_1(\bar{m}) < U_1(0)$$

▶ Implies **bounded** and **interior** *optimal labor choice*:

$$l^{\star}\left(m,\omega\right)=\bar{y}^{\star}\left(\omega\right)-m+\bar{C}^{\star}\in\left(0,l_{\max}\left(\omega,\tau\right)\right)$$

where

$$\begin{split} l_{\mathsf{max}}\left(\omega,\tau\right) &:= y_{\mathsf{max}}\ \left(\omega;\tau\right) - 0 + \bar{C}^{\star} \\ &= \min\left\{\bar{m} - \frac{\tau}{\omega}, \bar{m}\right\} + U^{-1}\left(A\right) < 2U^{-1}\left(A\right) \end{split}$$

▶ Equivalent interpretation: y_{max} (ω ; τ) is a **N**atural Borrowing Limit.

SME properties

Theorem 1 (CM policies and value)

- 1. $W\left(\cdot,\omega\right)\in\mathcal{V}[0,\bar{m}]$, i.e., it is continuous, increasing and concave on $[0,\bar{m}]$. Moreover, it is linear on $[0,\bar{m}]$.
- 2. The partial derivative functions $W_1\left(\cdot,\omega\right)$ and $\bar{V}_1\left(\cdot,\omega_{+1}\right)$ exist and satisfy the first-order condition

$$\frac{\beta}{1+\tau} \left(\frac{\omega}{\omega_{+1}} \right) \bar{V}_1 \left(\frac{\omega y^* (m,\omega) + \tau}{\omega_{+1} (1+\tau)}, \omega_{+1} \right) \begin{cases} \leq A, & y^* (m,\omega) \geq 0 \\ \geq A, & y^* (m,\omega) \leq y_{\max} (\omega; \tau) \end{cases},$$

and the envelop condition:

$$W_1(m,\omega)=A,$$

- **3.** The stationary Markovian policy rules $y^{\star}\left(\cdot,\omega\right)$ and $l^{\star}\left(\cdot,\omega\right)$ are scalar-valued and continuous functions on $[0,\bar{m}]$.
 - ▶ The function $y^*(\cdot, \omega)$, is constant valued on $[0, \bar{m}]$.
 - ▶ The optimizer $l^*(\cdot, \omega)$ is an affine and decreasing function on $[0, \bar{m}]$.
 - ▶ Moreover, for every (m, ω) , the optimal choice $l^*(m, \omega)$ is interior.

SME properties

Theorem 2 (DM policies and value)

- 1. Fo any $\bar{V}(\cdot,\omega_{+1})\in\mathcal{V}\left[0,\bar{m}\right]$, the DM buyer's value function is increasing and continuous in $m\colon B\left(\cdot;\omega\right)\in\mathcal{C}\left[0,\bar{m}\right]$.
- 2. For any $m \leq k$, optimal decisions are $b^{\star}\left(m,\omega\right) = x^{\star}\left(m,\omega\right) = q^{\star}\left(m,\omega\right) = 0$, and $B\left(m,\omega\right) = \beta \bar{V}\left[\phi(m,\omega),\omega_{+1}\right]$, where $\phi(m,\omega) := (\omega m + \tau)/\left[\omega_{+1}(1+\tau)\right]$.
- **3.** At any (m, ω) , where $m \in [k, \bar{m}]$ and $b^*(m, \omega) > 0$:
 - (x^*, b^*, q^*) (m, ω) are unique, continuous, and increasing in m.
 - ▶ $B_1(m,\omega)$ exists if and only if $V_1[\phi(m,\omega),\omega]$ exists.
 - ▶ $B(m, \omega)$ is strictly increasing in m.
 - b^* and x^* , respectively, satisfy the FoCs

$$u \circ Q \left[x^{\star}(m,\omega), b^{\star}(m,\omega) \right] + b^{\star}(m,\omega) \left(u \circ Q \right)_{2} \left[x^{\star}(m,\omega), b^{\star}(m,\omega) \right]$$
$$= \beta \left[\bar{V} \left(\phi \left(m,\omega \right), \omega_{+1} \right) - \bar{V} \left(\phi^{\star} \left(m,\omega \right), \omega_{+1} \right) \right],$$

$$(u \circ Q)_1 \left[x^*(m, \omega), b^*(m, \omega) \right] = \frac{\beta}{1+\tau} \left(\frac{\omega}{\omega_{+1}} \right) \bar{V}_1 \left[\phi^*(m, \omega), \omega_{+1} \right].$$

Steady State

Agent sample path: 10% money growth

Figure: Agent sample path ($\tau = 0.1$)