Exploratory Data Analysis

Overview

- 1. Introduction
- 2. Application
- 3. EDA
- 4. Learning Process
- 5. Bias-Variance Tradeoff
- 6. Regression (review)
- 7. Classification

- 8. Validation
- 9. Regularisation
- 10. Clustering
- 11. Evaluation
- 12. Deployment
- 13. Ethics

Lecture outline

- Definitions
- Data types
- Steps in Exploratory Data Analysis (EDA)
 - General characteristics of the dataset
 - Descriptive statistics (univariate)
 - Correlation statistics (bivariate)
 - Exploratory visualisation univariate and bivariate
 - Anomalies outliers and inliers
 - Missing values
- EDA in real-life practice

Definitions

Exploratory data analysis can never be the whole story, but nothing else can serve as a foundation stone - as the first step.

John Tukey, 1977, Data Exploratory Analysis, Addison-Wesley

- Exploratory data analysis is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as those we believe to be there.

 John Tukey, 1977, Data Exploratory Analysis, Addison-Wesley
- The primary aim with exploratory data analysis is to examine the data for distribution, outliers and anomalies ... hypothesis generation by visualising and understanding the data.

 https://link.springer.com/chapter/10.1007/978-3-319-43742-2_15

Structured data vs unstructured data

Unstructured data: signals, images, text, graphs, sounds, etc.

Structured data - cross-sectional, panel, time series

- Data types: nominal, ordinal, interval, ratio, transaction, latitude/longitude, etc

Structured data types

Nominal - labels, mutually exclusive, no numerical significance, may or may not have orders.

Ordinal - having order but the difference between variables not defined

Structured data types

Interval - having order, difference between variables defined, but don't have a 'true zero', e.g. temperature, clock time.

For example, a glass of water with a temperature of 0 degree does not mean it has **no** temperature.

Ratio - like interval but with a 'true zero', e.g. income, age, years of education, weight.

EDA - General characteristics of the dataset

Assess the general characteristics of the dataset

- What kind of data structure is the dataset?
- How many records does this dataset contain?
- How many fields (variables) are there?
- What kind of variables are they?

EDA - General characteristics of the dataset

Example output from dataset in Bank.csv

	age		job	mar	ital	educ	ation	default	ba	alance	housing	loan	contact	1
0	59	а	dmin.	mar	ried	seco	ndary	no		2343	yes	no	unknown	
1	56	а	dmin.	mar	ried	seco	ndary	no		45	no	no	unknown	
2	41	techn	ician	mar	ried	seco	ndary	no		1270	yes	no	unknown	
3	55	ser	vices	mar	ried	seco	ndary	no		2476	yes	no	unknown	
4	54	а	dmin.	mar	ried	ter	tiary	no		184	no	no	unknown	
	day	month	durat	ion	camp	aign	pdays	s previo	ous	poutco	me depo	sit		
0	5	may	10	042		1	-1	L	0	unkno	wn j	yes		
1	5	may	1	467		1	-1	l	0	unkno	wn j	yes		
2	5	may	1	389		1	-1	L	0	unkno	wn j	yes		
3	5	may		579		1	-1	L	0	unkno	own j	yes		
4	5	may		673		2	-1	L	0	unkno	own j	yes		

```
RangeIndex: 11162 entries, 0 to 11161
Data columns (total 17 columns):
     Column
                Non-Null Count Dtype
                11162 non-null
                                int64
     age
                11162 non-null
     iob
                                object
     marital
                11162 non-null
                                object
     education
                11162 non-null
                                object
     default
                11162 non-null
                                object
                11162 non-null int64
     balance
     housing
                11162 non-null
                                object
                11162 non-null
                                object
     loan
     contact
                11162 non-null
                                object
     day
                11162 non-null
                                int64
 9
     month
                11162 non-null
                                object
     duration
                11162 non-null
                                int64
                11162 non-null
     campaign
                                int64
                11162 non-null
     pdays
                                int64
                11162 non-null
     previous
                                int64
     poutcome
                11162 non-null
                                object
     deposit
                11162 non-null
                                object
dtypes: int64(7), object(10)
```

EDA - Descriptive statistics (univariate)

Numerical variables

- Measures of centre: mean, median, mode
- Measures of variability: range, standard deviation
- Measures of relative standings: quartiles, percentiles
- Measures of distribution: skewness and kurtosis

https://www.statisticshowto.com/probability-and-statistics/skewed-distribution/

https://towardsdatascience.com/skewness-kurtosis-simplified-1338e094fc85

EDA - Descriptive statistics (univariate)

Categorical variables

- Cardinality: number of unique values
- Unique counts: number of occurrences of each unique value

EDA - Descriptive statistics (univariate)

Example output from dataset in Bank.csv

	age	balance	day	duration	campaign
count	11162.000000	11162.000000	11162.000000	11162.000000	11162.000000
mean	41.231948	1528.538524	15.658036	371.993818	2.508421
std	11.913369	3225.413326	8.420740	347.128386	2.722077
min	18.000000	-6847.000000	1.000000	2.000000	1.000000
25%	32.000000	122.000000	8.000000	138.000000	1.000000
50%	39.000000	550.000000	15.000000	255.000000	2.000000
75%	49.000000	1708.000000	22.000000	496.000000	3.000000
max	95.000000	81204.000000	31.000000	3881.000000	63.000000
	pdays	previous			
count	11162.000000	11162.000000			
mean	51.330407	0.832557			
std	108.758282	2.292007			
min	-1.000000	0.000000			
25%	-1.000000	0.000000			
50%	-1.000000	0.000000			
75%	20.750000	1.000000			
max	854.000000	58.000000			

management	2566
blue-collar	1944
technician	1823
admin.	1334
services	923
retired	778
self-employe	ed 405
student	360
unemployed	357
entrepreneur	328
housemaid	274
unknown	70
Name: job, d	ltype: int64
married	6351
single	3518
divorced	1293
Name: marita	al, dtype: int64
secondary	5476
tertiary	3689
primary	1500
unknown	497

Name: education, dtype: int64

EDA - Correlation statistics (bivariate)

Qualitative analysis

Both categorical	Contingency table
Categorical (X) vs numerical (Y)	Descriptive statistics of Y for each value X

Quantitative analysis

	Categorical	Numerical
Categorical	Chi-squared test	Student t-test, ANOVA, Logistic regression
Numerical	Student t-test, ANOVA, Logistic regression	Correlation, Linear regression

EDA - Exploratory visualisation (univariate)

Numerical variables - histogram, boxplot

Freedman-Diaconis rule

$$\mathrm{Bin\ width} = 2\,\frac{\mathrm{IQR}(x)}{\sqrt[3]{n}}$$

EDA - Exploratory visualisation (1 dimensional)

EDA - Exploratory visualisation (1 dimensional)

EDA - Statistics and visualisation summary

	Univ	ariate	Bivariate					
	Numerical (N)	Categorical (C)	N-N	N-C	C-C			
Statistics	 - Mean, mode, median - Range, standard deviation - Quartiles, quintiles - Kurtosis, skewness 	- Counts and frequencies	- Correlation coefficients - Linear regression	- Student T-test - ANOVA - Logistic regression	Chi-squared test			
Visualisation	Histogram, box plot	Bar plot	Scatter plot	Box plot (for each category)	Heat map (of frequencies)			

EDA - Exploratory visualisation (more than 2 variables)

Plotting 3 variables, e.g. bubble plots

Plotting 4 variables, e.g. side-by-side plots

- Consistency chart type, axis scale, colour scheme
- Arrangement for easy comparison
- Sequence following some natural orders

EDA - Exploratory visualisation - Plots to avoid

99 98 97

Jul

Jun

Sep

Aug

... an observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data.

V. Barnett and T. Lewis. *Outliers in Statistical Data*. Wiley, 2nd edition, 1984

- Outliers significantly change the characteristics of a dataset
- They can be results of gross data errors or of special cases.

Boxplot outlier identifier

A graphical tool "expressly designed" for isolating outliers from a sample.

$$x_k > Q_3 + 1.5IQR \text{ or } x_k < Q_1 - 1.5IQR$$

3-sigma outlier identifier

Based on the "Empirical rule"

$$|x_k - \bar{x}| > 3\sigma$$

σ is inflated by outliers

Larger outlier values -> larger σ -> larger the bound values -> less effective in identifying unusual values

Hampel outlier identifier

- The three procedures described above may identify different sets of outliers.
- A suggested strategy:
 - Apply all three procedures and compare (i) the number and the value of outliers identified by each procedure, and (ii) the range of the data values not declared as outliers.
 - Apply application-specific assessments, i.e. does the nominal range (excluded outliers) make sense? Do outliers seem extreme enough to be excluded?
 - Visualise the data either with different colours for nominal values and for outliers, or with indication of outlier detection thresholds.
- Identifying outliers can be a mathematical procedure interpreting the outliers is NOT.
- Outliers are not necessarily bad data that should be removed/rejected they simply need further investigation.

Outliers - multidimensional

... a data value that lies in the interior of a statistical distribution and is an

error.

D. DesJardins. Paper 169: Outliers, inliers and just plain liars – new eda+ techniques for understanding data. In *Proceedings SAS User's Group International Conference*, SUG126. Cary, NC, USA, 2001

Inliers often represent in the form of values which *repeat* unusually frequently.

	Chile\$statusquo	Frequency
1	-1.80301	1
2	-1.74401	1
19	-1.29617	201
20	-1.29293	2
21	-1.28924	1
22	-1.28897	1
23	-1.27876	3
24	-1.27556	1
25	-1.2727	5
2092	2.04859	1
2093	NA	17

Because the majority of numerical values in Chile\$statusquo appears only *once*,

- the majority of values in Frequency is 1, median of Frequency is 1, MADM of Frequency is 0 => we cannot use Hampel identifier to detect inliers.
- Quartiles of Fraguency are as below 0% 25% 50% 75% 100% 1 1 1 201
- Both Hampel and boxplot procedures would declare that all data points in Frequency are outliers!

Freque	ency												
1	2	3	4	5	6	8	9	13	17	18	21	61	201
1955	72	22	19	8	5	4	1	1	2	1	1	1	1

Applying the three-sigma procedure to identify outliers in 'Frequency'.

- Mean $\bar{x} = 1.29$
- Standard deviation $\sigma = 4.67$
- A value x_k in Frequency is considered outlier if $|x_k \bar{x}| > 3\sigma$ or $x_k > 15.3$

	Chile\$statusquo	Frequency
19	-1.29617	201
39	-1.25795	21
61	-1.21834	18
137	-1.14049	17
2074	1.5877	61
2093	NA	17

Similar to outliers, inliers are not necessarily bad data and need to be rejected/removed – they simply need further investigation.

- Sampling
- Data processing errors, e.g. data entry, software engineering, version incompatibility (in apps)
- Data sources
 - 3rd party data, e.g. Tax vs Telco for demographics data
 - 1st party data, e.g. missing required data fields

- **Missing completely at random (MCAR)** the probability of an instance being missing does not depend on known values nor the missing value itself.
- Missing at random (MAR) the probability of an instance being missing may depend on known values (of other variables), but not on the variable having missing values.
- Missing not at random (MNAR)
 - the probability of an instance being missing depends on other variables which also have missing values, or
 - The probability of missingness depends on the very variable itself

Deletion

Single imputation

- A fixed value
- Minimum, maximum, mean (or moving average), median, most frequent value
- Previous or next value (ordered data or time series data)
- K-nearest neighbours
- Regression

Multiple imputation by Chained Equations

- Creates multiple replacements for each missing value, multiple versions of the complete dataset
- Step 1. Make a simple imputation (e.g. mean) for all missing values in the dataset
- Step 2. Set missing values in a variable 'A' back to missing
- Step 3. Train a model to predict missing values in 'A' using available values of 'A' as dependent and other variables in the dataset as independent
- Step 4. Predict missing values in 'A' using the trained model in Step 3
- Step 5. Repeat step 2-4 for all other variables with missing values
- Step 6. Repeat step 2-5 for a number of cycles until convergence (or a preset maximum cycles)
- Step 7. Repeat steps 1-6 multiple times with different random number settings to create different versions of the complete/imputed dataset.