数学分析

第1章集合与映射

定理

 $S_{\mathbf{x}}^{C} \equiv X \backslash C$.

定理 1.1.1 可列个可列集的并也是可列集。

定理1.1.2 有理数是可列集.

定理 1.2.1 三角不等式

$$|a| - |b| \le |a + b| \le |a| + |b|$$

定理 1.2.2 平均值不等式

$$rac{a_1+a_2+\cdots+a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n} \geq n \left/ \left(rac{1}{a_1}+rac{1}{a_2}+\cdots+rac{1}{a_n}
ight)
ight.$$

第2章数列极限

定理

• 整数具有 离散性, 有理数具有 稠密性, 实数具有 连续性.

定理 2.1.1 (确界存在定理——实数系连续性定理) ☆ 非空有上界的数集必有上确界, 非空有下界的数集必有下确界.

定理 2.1.2 (确界唯一性定理) 非空有解数集的上(下)确界是唯一的.

• 有理数集合若有界,则未必有确界.

定理 2.1.3 (Dedekind 切割定理) \bigtriangleup 设 \tilde{A}/\tilde{B} 是实数集 $\mathbb R$ 的一个切割,则 \tilde{A} 有最大值或 \tilde{B} 有最小值.

定理 2.2.1 收敛数列极限的唯一性.

定理 2.2.2 收敛数列的有界性.

定理 2.2.3 收敛数列的保序性.

定理 2.2.4 收敛数列的夹逼性.

定理 2.2.5 数列极限的四则运算.

定号无穷大量: 正无穷大量, 负无穷大量.

定理 2.3.1 设 $x_n \neq 0$, 则 $\{x_n\}$ 是无穷大量的充要条件是 $\left\{\frac{1}{x_n}\right\}$ 是无穷小量.

定理 2.3.2 设 $\{x_n\}$ 是无穷大量, 若当 $n>N_0$ 时, $|y_n|\geq \delta>0$ 成立, 则 $\{x_ny_n\}$ 是无穷大量.

推论 设 $\left\{x_n\right\}$ 是无穷大量, $\lim_{n o\infty}y_n=b
eq 0$, 则 $\left\{x_ny_n\right\}$ 和 $\left\{rac{x_n}{y_n}\right\}$ 都是无穷大量.

定理 2.3.3 (Stolz 定理) ☆ 设 $\{y_n\}$ 是严格单调增加的正无穷大量,且 $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a$ (可以为正负无穷),则 $\lim_{n \to \infty} \frac{x_n}{y_n} = a$.

• 若第一个极限不存在(如为不定号无穷),则不一定成立.

定理 2.4.1 单调有界数列必定收敛.

定义 2.4.1 如果一列闭区间 $\{[a_n,b_n]\}$ 满足条件

1.
$$[a_{n+1},b_{n+1}]\subset [a_n,b_n],\, n=1,,2,3,\cdots$$

$$2. \lim_{n \to \infty} (b_n - a_n) = 0.$$

则称这列闭区间形成一个 闭区间套.

定理 2.4.2 (闭区间套定理) 如果 $\{[a_n,b_n]\}$ 形成一个闭区间套, 则存在唯一实数 ξ 属于所有的闭区间 $[a_n,b_n]$, 且 $\xi=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.

• 若改为开区间套,则结果亦成立,只不过这个实数可能不属于任何一个上述开区间.

定理 2.4.3 实数集是不可列集.

定理 2.4.4 若数列收敛域 a,则它的任何子列也收敛于 a.

推论 若数列有两个子列分别收敛于不同的极限,则该数列发散.

定理 2.4.5 (Bolzano-Weierstrass 定理) ☆ 有界数列必有收敛子列. (应用闭区间套定理)

定理 2.4.6 无界数列必存在子列极限为无穷.

$$\lim_{k o\infty}x_{n_k}=\infty.$$

定义 2.4.3 如果数列 $\{x_n\}$ 对于任意给定的 $\varepsilon>0$, 存在正整数 N, 使得当 n,m>N 时成立 $|x_n-x_m|<\varepsilon$, 则称该数列为 **基本数列**.

定理 2.4.7 (Cauchy 收敛原理) ☆ 数列收敛的充要条件是, 该数列为基本数列.

- 实数系的 完备性: 由实数构成的基本数列必有实数极限.
- 有理数系不具有完备性.(见自然常数的定义及其无理性)

推论 若数列 $\{x_n\}$ 满足压缩性条件

$$|x_{n+1} - x_n| \le k |x_n - x_{n-1}|, 0 < k < 1, n = 2, 3, \cdots,$$

则该数列收敛.

实数系基本定理

定理 2.4.8 ☆ 实数系的连续性等价于完备性.

筆记

数列极限

- 求出递推公式,或反之,求出通项公式
- 单调有界, 数学归纳法, 分奇偶讨论

例题

1.
$$\lim_{n \to \infty} \frac{(2n)!}{(2^n n!)^2} = \frac{(2n-1)!!}{(2n)!!} = 0 \text{ (Hint: } 2k > \sqrt{(2k+1)(2k-1)} \text{)}.$$

2.
$$\lim_{n\to\infty}\frac{n^b}{a^n}=\lim_{n\to\infty}\frac{a^n}{n!}=\lim_{n\to\infty}\frac{n!}{n^n}=0\;(a,b>0).$$

3. 若
$$\lim_{n o\infty}a_n=a$$
, 则

$$n o\infty$$
1. $\lim_{n o\infty} rac{a_1+a_2+\cdots+a_n}{n}=a$. (先考虑 a=0; 对于正负无穷亦成立)
2. $\lim_{n o\infty} \sqrt[n]{a_1a_2\cdots a_n}=a$. (各项大于 0. 利用均值不等式)

2.
$$\lim_{n\to\infty} \sqrt[n]{a_1a_2\cdots a_n}=a$$
. (各项大于 0. 利用均值不等式)

4. 若
$$\lim_{n o\infty}a_n=a,\,\lim_{n o\infty}b_n=b$$
, 则

1.
$$\lim_{n \to \infty} a_n = a$$
, $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} a_n = a$. (先考虑 a=b=0)
5. 若 $\lim_{n \to \infty} (a_1 + a_2 + \dots + a_n)$ 存在, 则

5. 若
$$\lim_{n\to\infty}(a_1+a_2+\cdots+a_n)$$
 存在, 则

1.
$$\lim_{n o\infty}rac{a_1+2a_2+\cdots+na_n}{n}=0$$
. (用前 n 项和表示分子)

$$2. \lim_{n\to\infty} (n! \cdot a_1 a_2 \cdots a_n)^{\frac{1}{n}} = 0.$$

3. 若 $\{p_n\}$ 是递增的正无穷大量,则

$$\lim_{n o\infty}rac{p_1a_1+p_2a_2+\cdots+p_na_n}{p_n}=0$$
. (将项转化为前 n 项和)

6.
$$\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}$$
.

7. 利用定义欧拉常数的数列

1.
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln 2.$$

2. $\lim_{n \to \infty} \left[1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n+1} \frac{1}{n} \right] = \ln 2.$

8. 若
$$x_1 = a, y_1 = b$$
,

1. 若
$$x_{n+1} = \sqrt{x_n y_n}, \ y_{n+1} = \frac{x_n + y_n}{2}$$
 , 则 $\{x_n\}, \{y_n\}$ 收敛, 且 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n =: AGM(a,b).$ 2. 若 $x_{n+1} = \frac{x_n + y_n}{2}, \ y_{n+1} = \frac{2x_n y_n}{x_n + y_n}$, 则 $\{x_n\}, \{y_n\}$ 收敛, 且 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n =: AHM(a,b).$

第3章函数极限与连续函数

定理

定理 3.1.1 (极限唯一性) 设 A = B 都是函数 f(x) 在点 x_0 的极限,则 A = B.

定理 3.1.2 (局部保序性) 若 $\lim_{x\to x_0}f(x)=A,\ \lim_{x\to x_o}g(x)=B,\ A>B$, 则存在 $\delta>0$, 当 $0<|x-x_0|<\delta$ 时, 成立 f(x)>g(x).

推论 1 若 $\lim_{x o x_0}f(x)=A
eq 0$,则存在 $\delta>0$,当 $0<|x-x_0|<\delta$,成立 $|f(x)|>rac{|A|}{2}$.

推论 2 若 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, 且存在 r>0, 使得当 $0<|x-x_0|< r$ 时, 成立 $f(x) \le g(x)$, 则 $A \le B$.

推论 3 (局部有界性) 若 $\lim_{x o x_0}f(x)=A$, 则存在 $\delta>0$, 使得 f(x) 在 $O(x_0,\delta)\setminus |x_0|$ 有界.

定理 3.1.3 (夹逼性) 若存在 r>0, 使得当 $0<|x-x_0|< r$ 时, 成立 $g(x)\leq f(x)\leq h(x)$, 且 $\lim_{x\to x_0}g(x)=\lim_{x\to x_0}h(x)=A$, 则 $\lim_{x\to x_0}f(x)=A$.

定理 3.1.4 函数极限的四则运算.

定理 3.1.5 (Heine 定理) $\lim_{x \to x_0} f(x) = A$ 的充要条件是, 对于任意满足条件

 $\lim_{n o\infty}x_n=x_0,\,x_n
eq 0\;(n=1,2,\cdots)$ 的数列 $\{x_n\}$, 相应的函数值数列 $|f(x_n)|$ 成立 $\lim_{n o\infty}f(x_n)=A.$

定理 3.1.5' $\lim_{x\to x_0} f(x)$ 存在的充要条件是,对于任意满足条件 $\lim_{n\to\infty} x_n = x_0, \ x_n \neq 0 \ (n=1,2,\cdots)$ 的数列 $\{x_n\}$,相应的函数值数列 $|f(x_n)|$ 收敛.

• 同样的还有 $\lim_{x\to x_0}f(x),\ \lim_{x\to x_0^+}f(x),\ \lim_{x\to -\infty}f(x)$. (即函数极限的 Cauchy 收敛原理, 应用 Heine 定理可证.)

单侧极限,单侧连续.

不连续点

- 第一类不连续点: 左右极限存在但不相等.
 又称 跳跃点, 左右极限只差称为该点的 跃度.
- 第二类不连续点: 左右极限至少有一个不存在.

• 第三类不连续点: 左右极限存在且相等, 但不等于该点的函数值.

另一种分类

- 第一类间断点: 左右极限存在
 - 。 可去间断点
 - 。 跳跃间断点
- 第二类间断点: 左右极限不存在
 - 。 无穷间断点
 - 。 震荡间断点

Dirichlet 函数

$$D(x) = \begin{cases} 1, & x$$
 为有理数, $0, & x$ 为无理数,

在任意点单侧极限不存在, 故任意点都为震荡间断点。

Riemann 函数 🛧

$$R(x) = egin{cases} rac{1}{p}, & x = rac{q}{p} \; (p \in \mathbb{N}^+, q \in \mathbb{Z} ackslash \{0\}, \gcd(p,q) = 1), \ 1, & x = 0, \ 0, & x \; \mathbb{B} \mathcal{R}$$
 and $x \in \mathbb{R}$ is a sum of $x \in \mathbb{R}$ and $x \in \mathbb{R}$ is a sum of $x \in \mathbb{R}$ and $x \in \mathbb{R}$ is a sum of $x \in \mathbb{R}$ in \mathbb{R} in $\mathbb{R$

在任意点的极限存在且为 0. 即一切无理点都是连续点, 一切有理点都是可去间断点.

定理 3.2.1 (反函数存在性定理) 若函数 $y=f(x), x\in D_f$ 是严格单调增加 (减少) 的,则存在它的反函数 $x=f^{-1}(y), y\in R_f$,并且 $f^{-1}(y)$ 也是严格单调增加 (减少) 的.

定理 3.2.2 (反函数连续性定理) 设函数 y=f(x) 在闭区间 [a,b] 上连续且严格单调增加,则它的反函数 $x=f^{-1}(y)$ 在 [f(a),f(b)] 连续且严格单调增加.

定理 3.2.3 (复合函数连续性定理) 若 u=g(x) 在点 x_0 连续, $g(x_0)=u_0,\ y=f(u)$ 在点 u_0 连续, 则复合函数 $y=f\circ g(x)$ 在点 x_0 连续.

定理 3.2.4 一切初等函数在其定义区间连续.

- 高阶无穷小量: u(x) = o(v(x)).
- 同阶无穷小量: u(x) = O(v(x)). (或同阶无穷大量)
- 等价无穷小量: $u(x) \sim v(x)$. (或等价无穷大量)
- u(x) = o(1) $(x \to x_0)$ 表示其为无穷小量.
- u(x) = O(1) $(x \to x_0)$ 表示其为有界量.

定理 3.3.1 设 u(x),v(x),w(x) 在 x_0 的某个去心邻域 U 上有定义, 且 $v(x)\sim w(x)\quad (x\to x_0)$, 那 么

$$egin{aligned} ext{1.} & \lim_{x o x_0} u(x)w(x) = A \quad \Rightarrow \quad \lim_{x o x_0} u(x)v(x) = A. \ ext{2.} & \lim_{x o x_0} rac{u(x)}{w(x)} = A \quad \Rightarrow \quad \lim_{x o x_0} rac{u(x)}{v(x)} = A. \end{aligned}$$

定理 3.4.1 (有界性定理) 若函数 f(x) 在闭区间 [a,b] 上连续,则它在 [a,b] 上有界.

推论 若函数 f(x) 在闭区间 $[a,+\infty]$ 上连续, 且 $\lim_{x\to+\infty}f(x)=A$ (有限数), 则它在 $[a,+\infty]$ 上有界.

定理 3.4.2 (最值定理) 若函数 f(x) 在闭区间 [a,b] 上连续,则它在 [a,b] 上必能渠道最大值与最小值,即

$$\exists \xi, \eta \in [a,b], orall x \in [a,b]: f(\xi) \leq f(x) \leq f(\eta)$$

定理 3.4.3 (零点存在性定理) 若函数 f(x) 在闭区间 [a,b] 连续, 且 $f(a)\cdot f(b)<0$, 则 $\exists \xi\in(a,b),\,f(\xi)=0.$

定理 3.4.4 (中间值定理) 若函数 f(x) 在闭区间 [a,b] 上连续,则它一定能取到最大值和最小值之间的任何一个值.

推论 若函数 f(x) 在闭区间 [a,b] 连续, m 是最小值, M 是最大值, 则其值域为 $R_f = [m,M]$.

定义 3.4.1 设函数 f(x) 在区间 X 上定义, 若

$$\forall \varepsilon > 0, \exists \delta > 0, \forall (x', x'' \in X) \land |x' - x''| < \delta : |f(x') - f(x'')| < \varepsilon,$$

则称函数 f(x) 在此区间上 **一致连续**

定理 3.4.5 ☆ 设函数 f(x) 在区间 X 上定义,则 f(x) 在 X 上一致连续的充要条件是: 对任何点列 $\{x_n'\}\ (x_n'\in X)$ 和 $\{x_n''\}\ (x_n''\in X)$,只要满足 $\lim_{n\to\infty}(x_n'-x_n'')=0$,就成立 $\lim_{n\to\infty}(f(x_n')-f(x_n''))=0$.

定理 3.4.6 (Cantor 定理) ☆ 若函数 f(x) 在闭区间 [a,b] 上连续, 则它在 [a,b] 上一致连续. (一致连续性定理)

定理 3.4.7 ☆ 函数 f(x) 在有限开区间 (a,b) 连续, 则 f(x) 在 (a,b) 上一致连续的充要条件是 f(a+) 与 f(b-) 存在.

- 该定理不适用于无限开区间的情况.
- \bigstar 若函数 f(x) 在 $[a,+\infty)$ 上连续, 且 $\lim_{x\to+\infty}f(x)=A$ (有限数), 则 f(x) 在 $[a,+\infty)$ 上一致 连续.

笔记

注意事项

• $\lim_{x \to \infty} f(x)$ 需要分正负无穷两类讨论.

总结

- 实数系的 5 个基本定理: 确界存在性定理, 闭区间套定理, Bolzano-Weierstrass 定理, Cauchy 收敛原理.
- 闭区间上连续函数的 5 个定理: 有界性定理, 最值定理, 零点存在性定理, 中间值定理, Cauchy 定理.

一致连续性

基本初等函数 숙

- $\sin x \in (-\infty, +\infty)$ 致连续.
- x^n (n < 0) 在 (0, a) 非一致连续, 在 $(a, +\infty)$ 一致连续.
- $x^n (0 < n < 1)$ 在 $[0, +\infty)$ 一致连续.
- $x^n (n > 1)$ 在 $[0, +\infty)$ 非一致连续.
- $\ln x$ 在 (0,a) 非一致连续, 在 $(a,+\infty)$ 一致连续.
- $e^x \in (-\infty, a)$ 一致连续, $\in (a, +\infty)$ 非一致连续.

性质 🏠

- 一致连续函数的复合函数一致连续.
- 一致连续函数之和一定一致连续
- 一致连续函数之积不一定一致连续

第4章微分

定理

定理 4.1.1 函数 y = f(x) 在 x 处可微的充要条件是在此处可导.

定理 4.3.1
$$[c_1f(x)+c_2g(x)]'=c_1f'(x)+c_2g'(x)$$
.

定理 4.3.2
$$[f(x) \cdot g(x)]' = f'(x)g(x) + f(x)g'(x)$$
.

定理 4.3.3
$$\left[\frac{1}{g(x)}\right]' = -\frac{g'(x)}{g(x)^2}$$
.

推论
$$\left[rac{f(x)}{g(x)}
ight]'=rac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}.$$

定理 4.3.4 (反函数求导定理) $[f^{-1}(y)]' = \frac{1}{f'(x)}$.

定理 4.4.1 (复合函数求导法则) [f(g(x))]' = f'(g(x))g'(x).

一阶微分形式不变性

定理 4.5.1
$$[\sum_{i=1}^n c_1 f(x) + c_2 g(x)]^{(n)} = c_1 f^{(n)}(x) + c_2 g^{(n)}(x).$$

定理 4.5.2 (Leibniz 公式)
$$[f(x)\cdot g(x)]^{(n)}=\sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).$$

笔记

微分

- $\bullet \ \mathrm{d}\big(x^2\big) = 2x\,\mathrm{d}x.$
- $\bullet \ \mathrm{d}x^2 = (\mathrm{d}x)^2.$
- $\bullet \ \mathrm{d}^2x = \mathrm{d}(\mathrm{d}x) = 0.$

关系

- 可微必定连续
- 可微等价于可导

第5章 微分中值定理及其应用

定理

定理 5.1.1 (Fermat 引理) 设 x_0 是 f(x) 的一个极值点, 且 f(x) 在 x_0 处导数存在, 则 $f'(x_0) = 0$.

定理 5.1.2 (Rolle 定理) 设函数 f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b) 上可导, 且 f(a)=f(b), 则至少存在一点 $\xi\in(a,b)$, 使得

$$f'(\xi) = 0.$$

Legendre 多项式 ☆ $p_n(x)=\frac{1}{2^n n!}\frac{\mathrm{d}^n}{\mathrm{d}x^n}\big(x^2-1\big)^n$ $(n=0,1,2,\cdots)$ 在 (-1,1) 恰有 n 个不同的根.

定理 5.1.3 (Lagrange 中值定理) 设函数 f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b) 上可导, 则至少存在一点 $\xi\in(a,b)$, 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

若 $a=x,b-a=\Delta x$, 则 Lagrange 公式又可写作

$$f(x + \Delta x) - f(x) = f'(x + \theta \Delta x)(b - a).$$

定理 5.1.4 若 f(x) 在 (a,b) 上可导旦有 $f'(x) \equiv 0$, 则 f(x) 在 (a,b) 上恒为常数.

定理 5.1.5 (一阶导数与单调性) 设函数 f(x) 在区间 I 上可导, 则其单调递增的充要条件是 $\forall x \in I: f'(x) \geq 0$.

定理 5.1.6 (二阶导数与凸性) 设函数 f(x) 在区间 I 上二阶可导, 则 f(x) 在区间 I 上是下凸函数的充 要条件是 $\forall x \in I: f''(x) \geq 0$.

定理 5.1.7 拐点的判别.

定理 5.1.8 (Jensen 不等式) 若 f(x) 为区间 I 的下凸 (上凸) 函数, 则对于任意的 $x_i\in I$ 和满足 $\sum_{i=1}^n \lambda_i=1$ 的 $\lambda_i>0$ $(i=1,2,\cdots,n)$, 成立

$$f(\sum_{i=1}^n \lambda_i x_i) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

定理 5.1.9 (Cauchy 中值定理) 设 f(x) 和 g(x) 都在闭区间 [a,b] 上连续, 在开区间 (a,b) 上可导, 且对于任意 $x \in (a,b), g'(x) \neq 0$, 则至少存在一点 $\xi \in (a,b)$, 使得

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Darboux 定理 会 设 f(x) 在 (a,b) 上可导, $x_1,x_2\in(a,b),\ f'(x_1)f'(x_2)<0$, 则 $\exists \xi\in(x_1,x_2):f'(\xi)=0.$

定理 5.2.1 (L' Hospital 法则) 设函数 f(x) 和 g(x) 在 (a,a+d] 上可导, 且 $g'(x)\neq 0$. 若 $\lim_{x\to a+}f(x)=\lim_{x\to a+}g(x)=0$ 或 $\lim_{x\to a+}g(x)=\infty$, 且 $\lim_{x\to a+}\frac{f'(x)}{g'(x)}$ 存在 (有限数或无穷), 则成立

$$\lim_{x o a+}rac{f(x)}{g(x)}=\lim_{x o a+}rac{f'(x)}{g'(x)}.$$

定理 5.3.1 (带 Peano 余项的 Talor 公式) 设 f(x) 在 x_0 处有 n 阶导数,则存在 x_0 的一个邻域,对于该 邻域中的任一点 x,成立

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + rac{f''(x_0)}{2!}(x - x_0)^2 + \dots + rac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x),$$

其中余项 $r_n(x) = o((x-x_0)^n)$.

定理 5.3.2 (带 Lagrange 余项的 Taylor 公式) 设 f(x) 在 [a,b] 上具有 n 阶连续导数, 且在 (a,b) 上有 n+1 阶导数. 设 $x_0 \in [a,b]$ 为一定点, 则对于任意 $x \in [a,b]$, 成立

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + rac{f''(x_0)}{2!}(x-x_0)^2 + \dots + rac{f^{(n)}(x_0)}{n!}(x-x_0)^n + r_n(x),$$

其中余项
$$r_n(x)=rac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$
, ξ 在 x 和 x_0 之间.

引理 设函数 g(x) 在 [a,b] 上连续, 在 (a,b) 处可导, 在 [a,b] 上的 l_0 个不同的点上有 g(x)=0, 同时在其中的 l_1 个点上有 g'(x)=0, 则 g'(x) 在 [a,b] 内至少有 l_0+l_1-1 个不同的零点.

定理 5.3.3 (插值多项式的余项定理) ☆ 设 f(x) 在 [a,b] 上具有 n 阶连续导数, 在 (a,b) 上具有 n+1 阶导数, 且 f(x) 在 [a,b] 上的 m+1 个互异点 $x_0,x_1\cdots,x_m$ 上的函数值和若干阶导数值

$$f^{(j)}(x_i)\;(i=0,1,\cdots,m,j=0,1,\cdots,n_i-1;\sum_{i=1}^mn_i=n+1)$$
 是已知的,则对于任意 $x\in[a,b]$

,差值问题有余项估计

$$r_n(x) = f(x) - p_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^m (x-x_i)^{n_i},$$

这里的 $\xi \in [\min \{x_i, x\}, \max \{x_i, x\}].$

定理 5.3.4 满足上述插值条件的多项式存在且唯一.

1. Lagrange 插值多项式 $n_0=n_1=\cdots=n_m=1,\, m=n.$

$$p_n(x) = \sum_{k=0}^n \left[f(x_k) \prod_{i=0,\,i
eq k}^n rac{x-x_i}{x_k-x_i}
ight].$$

2. Taylor 插值多项式 $n_0=n+1,\,m=0.$

$$p_n(x) = \sum_{k=0}^n f^{(k)}(x_0) rac{(x-x_0)^k}{k!}.$$

3. Hermite 插值多项式 $\stackrel{\bullet}{\mathbf{n}} n_0 = n_1 = \cdots = n_m = 2, \, m = n.$

$$p_n(x) = \sum_{k=0}^n \left[f(x_k) q_k^{(0)}(x) + f'(x_k) q_k^{(1)}(x)
ight],$$

其中 $\left\{q_k^{(0)}(x), q_k^{(1)}\right\}_{k=0}^n$ 是满足条件

$$egin{cases} egin{cases} q_k^{(0)}(x_i) = \delta_{ik}, \ [q_k^{(0)}]'(x_i) = 0, \end{cases} egin{cases} q_k^{(1)}(x_i) = 0, \ [q_k^{(1)}]'(x_i) = \delta_{ik}, \end{cases} i, k = 0, 1, 2, \cdots, n$$

的 **基函数**, 其中 δ_{ik} 为 Kronecker 记号. 实际上

$$q_k^{(0)} = \left[\prod_{i=0,\,i
eq k}^n \left(rac{x-x_i}{x_k-x_i}
ight)^2
ight] \left[1-\left(\sum_{i=0,\,i
eq k}^n rac{2}{x_k-x_i}
ight)(x-x_k)
ight],$$

$$q_k^{(1)} = \left[\prod_{i=0,\,i
eq k}^n \left(rac{x-x_i}{x_k-x_i}
ight)^2
ight](x-x_k).$$

Marclaurin 公式

定理 5.4.1 设 f(x) 在 x_0 的某个邻域有 n+2 阶导数存在, 则它的 n+1 次 Taylor 多项式的导数恰为 f'(x) 的 n 次 Taylor 多项式.

渐近线 水平渐近线, 斜渐近线, (铅锤渐近线). 充要条件为:

$$\lim_{x o +\infty} [f(x)-(ax+b)]=0 \quad ee \quad \lim_{x o -\infty} [f(x)-(ax+b)]=0.$$

以正无穷为例,则有

$$egin{cases} a = \lim_{x o +\infty} rac{f(x)}{x}, \ b = \lim_{x o +\infty} [f(x) - ax]. \end{cases}$$

外推 $\stackrel{\bullet}{\bigtriangleup}$ 若对于某个值 a, 按参数 h 算出的近似值 $a_1(h)$ 可以 Taylor 展开 (无需真正计算), 则

$$a_1(h) = a + c_1 h + j c_2 h^2 + c_3 h^3 + \cdots \ a_1\left(rac{h}{2}
ight) = a + rac{1}{2}c_1 h + rac{1}{4}c_2 h^2 + rac{1}{8}c_3 h^3 + \cdots \ a_2(h) = 2a_1\left(rac{h}{2}
ight) - a_1(h) = a + d_2 h^2 + d_3 h^3 + \cdots$$

于是两个 O(h) 阶的近似值组合得到了 $O(h^2)$ 的近似值. 同样的,

$$a_k(h) = rac{2^{k-1}a_{k-1}\left(rac{h}{2}
ight) - a_{k-1}(h)}{2^{k-1} - 1} = a + O(h^k).$$

定理 5.5.1 (极值点判定定理) 第一判别法和第二判别法.

数值求解

- 1. 二分法.
- 2. Newton 迭代法 (切线法).

Newton 法是二次收敛 (平方收敛) 的迭代方法.

3. 割线法 (弦割法).

定理 5.6.1 设 f(x) 在 [a,b] 中有二阶连续导数, 且满足条件

- 1. $f(a) \cdot f(b) < 0$;
- 2. f'(x) 在 (a,b) 保号;
- 3. f''(x) 在 (a,b) 保号.

取 $x_0 \in (a,b)$,且 $f(x_0) \cdot f''(x_0) > 0$,则以之为初值的 Newton 迭代过程 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ 产生的序列 $\{x_k\}$ 单调收敛于方程 f(x) = 0 在 [a,b] 中的唯一解.

笔记

泰勒公式的应用

- 近似计算
- 求极限
- 证明不等式
- 求曲线的渐近线
- 外推

函数作图

- 1. 定义域, 不连续点.
- 2. 奇偶性, 周期性.
- 3. 驻点, 导数不存在的点.
- 4. 拐点, 凹凸性.
- 5. 渐近线.

Machin 公式 $\pi=16\arctan\frac{1}{5}-\arctan\frac{1}{239}$.

例题

1. Jensen 不等式

1. 若
$$a,b,p,q\geq 0,rac{1}{p}+rac{1}{q}=1$$
, 则 $ab\leq rac{a^p}{p}+rac{b^q}{q}.$

2.
$$\arctan \frac{1+x}{1-x} - \arctan x = \begin{cases} \frac{\pi}{4}, & x < 1 \\ -\frac{3\pi}{4}, & x > 1 \end{cases}$$

- 3. 中值定理
 - 1. $|\arctan a \arctan b| \le |a b|$.
 - 2. 设 f(x) 在 $[1,+\infty)$ 上连续,在 $(1,+\infty)$ 上可导, $\mathrm{e}^{-x^2}f'(x)$ 在 $(1,+\infty)$ 上有界,则 $\mathrm{e}^{-x^2}f(x)$, $x\mathrm{e}^{-x^2}f(x)$ 也在 $(1,+\infty)$ 上有界.

3.
$$f(b)+f(a)-2f\left(rac{a+b}{2}
ight)=\left(rac{b-a}{2}
ight)^2f''(\eta).$$

- 4. 设 f(x) 在 [0,1] 上具有二阶导数, 且 $|f(x)| \leq A, \ |f''(x)| \leq B$, 则 $|f'(x)| \leq 2A+B$. \spadesuit
- 5. 利用 Stolze 定理

1. 设
$$0< x_1<rac{\pi}{2},\ x_{n+1}=\sin x_n\ (n=1,2,\cdots)$$
, 则 $\lim_{n o\infty}x_n=0,\ x_n^2\simrac{3}{n}.$

2. 设
$$y_1>0,\ y_{n+1}=\ln(1+y_n)\ (n=1,2,\cdots)$$
, 则 $\lim_{n o\infty}y_n=0,\ y_n\simrac{2}{n}$.

第6章不定积分

定理

定理 6.1.1 (线性性) 若函数 f(x) 和 g(x) 的原函数都存在,则对任意常数 k_1 和 k_2 ,函数 $k_1f(x)+k_2g(x)$ 的原函数也存在,且为 $k_1\int f(x)\,\mathrm{d}x+k_2\int g(x)\,\mathrm{d}x$.

- 两类换元积分法
- 分部积分公式
- 有理函数的不定积分

定理 6.3.1 ☆ 设有理函数 $\frac{p(x)}{q(x)}$ 是真分式, 多项式 q(x) 有 k 重实根 α , 即 $q(x) = (x - \alpha)^k q_1(x), q_1(\alpha) \neq 0$. 则存在实数 λ 与多项式 $p_1(x)$, 其次数低于 $(x - \alpha)^{k-1} q_1(x)$ 的次数, 成立

$$rac{p(x)}{q(x)} = rac{\lambda}{(x-lpha)^k} + rac{p_1(x)}{(x-lpha)^{k-1}q_1(x)}.$$

定理 6.3.2 $\stackrel{\frown}{\bigcirc}$ 设有理函数 $\frac{p(x)}{q(x)}$ 是真分式,多项式 q(x) 有 l 重共轭复根 $\beta \pm \gamma$ i,即 $q(x) = (x^2 + 2\xi x + \eta^2)^l q^*(x)$, $q^*(\beta \pm \gamma i) \neq 0$, $\xi = -\beta$, $\eta^2 = \beta^2 + \gamma^2$.则存在实数 μ, ν 和多项式 $p^*(x)$,其次数低于 $(x^2 + 2\xi x + \eta^2)^{l-1} q^*(x)$ 的次数,成立

$$rac{p(x)}{q(x)} = rac{\mu x +
u}{(x^2 + 2 \xi x + \eta^2)^l} + rac{p^*(x)}{(x^2 + 2 \xi x + \eta^2)^{l-1} q^*(x)}.$$

推论

$$\int \frac{p_m(x)}{q_n(x)} \, \mathrm{d}x = \sum_{k=1}^i \sum_{r=1}^{m_k} \int \frac{\lambda_{kr} \, \mathrm{d}x}{(x-\alpha_k)^r} + \sum_{k=1}^j \sum_{r=1}^{n_k} \int \frac{\mu_{kr} x + \nu_{kr}}{(x^2 + 2\xi_k x + \eta_k^2)^r} \, \mathrm{d}x$$

• 积分表见 p237.

笔记

有理函数不定积分

- 拆项比较系数时,通分时分子不展开,而是代入特殊值,简化计算.
- 定理 6.3.2 推论的右边数项, 高次分母的积分时, 分子拆成两部分, 一部分利用换元法消去 x; 另一部分分子为常数, 配凑出二次项, 一部分与分母相消, 另一部分使用分部积分, 则可得到递推公式.

可化成有理函数不定积分的情况

1.
$$R\left(x,\sqrt[n]{rac{\xi x+\eta}{\mu x+
u}}
ight)$$
, 作变量代换 $t=\sqrt[n]{rac{\xi x+\eta}{\mu x+
u}}$, 则 $x=rac{-
u t^n+\eta}{\mu t^n-\eta}$.

2.
$$R(\sin x,\cos x)$$
, 作变量代换 $t=\tan \frac{x}{2}$, 则

$$\sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2}, dx = \frac{2dt}{1+t^2}.$$

3.
$$R(x,\sqrt{a+x},\sqrt{b+x})$$
, 作变量代换 $t=\sqrt{a+x},\,\sqrt{t^2-a+b}=t+u$, 则
$$R(x,\sqrt{a+x},\sqrt{b+x})=R(t,\sqrt{t^2-a+b})=R(u).$$

多项式的其它形式 (平移)

$$p_n(x) = \sum_{i=0}^n rac{p_n^{(k)}(x-a)}{k!} (x-a)^k.$$

例题

1. 设多项式
$$p_n(x)=\sum_{i=0}^n a_i x^i$$
 系数满足关系 $\sum_{i=1}^n \frac{a_i}{(i-1)!}=0$, 则 $\int p\left(\frac{1}{x}\right)\mathrm{e}^x\,\mathrm{d}x$ 是初等函数.

第7章 定积分

定理

Riemann 可积 若 $\exists I, \forall \varepsilon>0, \exists \delta>0$,使得对任意一种划分 $P:a=x_0< x_1< x_2< \cdots < x_n=b$ 和任意点 $\xi_i\in [x_{i-1},x_i]$,只要 $\lambda=\max_{1\leq i\leq n}(\Delta x_i)<\delta$,便有

$$\left|\sum_{i=1}^n f(\xi_i) \Delta x_i - I
ight| < arepsilon,$$

则称 f(x) 在 [a,b] 上 Riemann 可积, 称 I 是 f(x) 在 [a,b] 上的定积分.

• Dirichlet 函数在 Riemann 意义下不可积 (在每个小区间分别考虑有理数与无理数,则二者和式的极限分别为 0 和 1).

Darboux 和 记 f(x) 在 [a,b] 和 $[x_{i-1},x_i]$ 的上下确界分别为 M,M_i,m,m_i ,则和式

$$\overline{S}(P) = \sum_{i=1}^n M_i \Delta x_i, \, \underline{S}(P) = \sum_{i=1}^n m_i \Delta x_i$$

分别称为相应于划分 P 的 Darboux 大和 与 Darboux 小和.

• 定义 $\omega_i=M_i-m_i$ 为 f(x) 在 $[x_{i-1},x_i]$ 上的 振幅.

引理 7.1.1 若在原有划分中加入分店形成新的划分,则大和不增,小何不减.

引理 7.1.2 记 \overline{S} , S 分别为一切可能的大和与小和的集合, 则

$$orall \overline{S}(P_1) \in \overline{\mathbf{S}}, \underline{S}(P_2) \in \underline{\mathbf{S}}: m(b-a) \leq \underline{S}(P_2) \leq \overline{S}(P_1) \leq M(b-a).$$

引理 7.1.3 (Darboux 定理) 对任意在 [a,b] 上有界的函数 f(x),恒有

$$\lim_{\lambda o 0} \overline{S}(P) = L \equiv \inf \Big\{ \overline{S}(P) \mid \overline{S}(P) \in \overline{\mathbf{S}} \Big\}, \ \lim_{\lambda o 0} \underline{S}(P) = l \equiv \sup \big\{ \underline{S}(P) \mid \underline{S}(P) \in \underline{\mathbf{S}} \big\}.$$

定理 7.1.1 (Riemann 可积的充要条件) \uparrow 有界函数 f(x) 在 [a,b] 可积的充要条件是

$$orall P: \lim_{\lambda o 0} \overline{S}(P) = L = l = \lim_{\lambda o 0} \underline{S}(P).$$

定理 7.1.2 ☆ 有界函数 f(x) 在 [a,b] 可积的充要条件是

$$orall P: \lim_{\lambda o 0} \sum_{i=1}^n \omega_i \Delta x_i = 0.$$

推论 0 ☆ 有限区间上的一致连续函数必定可积.

推论 1 ☆ 闭区间上的连续函数必定可积.

推论 2 ☆ 闭区间上的单调函数必定可积.

定理 7.1.3 \uparrow 有界函数 f(x) 在 [a,b] 可积的充要条件是

$$orall arepsilon > 0, \exists P: \sum_{i=1}^n \omega_i \Delta x_i < arepsilon.$$

推论3 ☆ 闭区间上只有有限个不连续点的有界函数必定可积。

• Riemann 函数在 [0,1] 可积.

定积分的基本性质

性质 1 (线性性质)
$$\int_a^b [k_1 f(x) + k_2 g(x)] \, \mathrm{d}x = k_1 \int_a^b f(x) \, \mathrm{d}x + k_2 \int_a^b g(x) \, \mathrm{d}x.$$

推论 若 f(x) 在 [a,b] 上可积, 而 g(x) 只在有限个点上与 f(x) 的取值不相同, 则 g(x) 在 [a,b] 上也可积, 并且 $\int_a^b f(x) \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x.$

性质 2 (乘积可积性) 设 f(x) 和 g(x) 都在 [a,b] 上可积,则 $f(x)\cdot g(x)$ 在 [a,b] 上也可积.

性质 3 (保序性) 设 f(x) 和 g(x) 都在 [a,b] 上可积, 且恒有 $f(x)\geq g(x)$, 则成立 $\int_a^b f(x)\,\mathrm{d}x\geq \int_a^b g(x)\,\mathrm{d}x.$

性质 4 (绝对可积性) 若 f(x) 在 [a,b] 上可积,则 |f(x)| 也于此可积,且 $\left|\int_a^b f(x)\,\mathrm{d}x\right| \leq \int_a^b |f(x)|\,\mathrm{d}x.$

性质 5 (区间可加性) 设 f(x) 在 [a,b] 上可积,则对任意点 $c\in[a,b]$, f(x) 在 [a,c] 和 [c,b] 上都可积;反之亦然,且 $\int_a^b f(x)\,\mathrm{d}x=\int_a^c f(x)\,\mathrm{d}x+\int_c^b f(x)\,\mathrm{d}x$.

性质 6 (积分第一中值定理) 设 f(x) 和 g(x) 都在 [a,b] 上可积, g(x) 在 [a,b] 上不变号, 令 m,M 分别为 f(x) 在 [a,b] 的上下确界. 则存在 $\eta \in [m,M]$, 使得

$$\int_a^b f(x)g(x)\,\mathrm{d}x = \eta \int_a^b g(x)\,\mathrm{d}x.$$

• 特殊的, 当 f(x) 连续且 $g(x)\equiv 1$ 时, $\int_a^b f(x)\,\mathrm{d}x=f(\xi)(b-a)$.

定理 7.3.1 设 f(x) 在 [a,b] 上可积,作函数 $F(x)=\int_a^x f(t)\,\mathrm{d}t,\,x\in[a,b]$,则

- 1.F(x) 是 [a,b] 上的连续函数.
- 2. 若 f(x) 在 [a,b] 上连续,则 F(x) 在 [a,b] 上可微,并且 F'(x)=f(x).

定理 7.3.2 (微积分基本定理) 设 f(x) 在 [a,b] 上连续, F(x) 是 f(x) 在 [a,b] 上的一个原函数, 则

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a).$$

定理 7.3.3 设 u(x), v(x) 在区间 [a,b] 上有连续倒数,则

$$\int_a^b u(x)v'(x)\,\mathrm{d}x = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)\,\mathrm{d}x.$$

定义 7.3.1 ☆ 设 $g_n(x)$ 是定义在 [a,b] 上的一列函数 $(n=0,1,2,\cdots)$, 若对任意的 m 和 n, $g_m(x)g_n(x)$ 在 [a,b] 上可积, 且有

$$\int_a^b g_m(x)g_n(x)\,\mathrm{d}x = egin{cases} 0, & m
eq n, \ \int_a^b g_n^2(x)\,\mathrm{d}x > 0, & m=n, \end{cases}$$

则称 $\{g_n(x)\}$ 是 [a,b] 上的 **正交函数列**. 当 $g_n(x)$ 是多项式时, 称为 **正交多项式列**.

$$p_n(x) = rac{1}{2^n n!} rac{\mathrm{d}^n}{\mathrm{d}x^n} ig(x^2 - 1ig)^n \ \int_{-1}^1 p_m(x) p_n(x) \, \mathrm{d}x = egin{cases} 0, & m
eq n, \ rac{2}{2n+1}, & m = n. \end{cases}$$

定理 7.3.4 设 f(x) 在区间 [a,b] 上连续, $x=\varphi(t)$ 在区间 $[\alpha,\beta]$ (或 [b,a]) 上有连续导数, 其值域包含于 [a,b], 且 $\varphi(\alpha)=a,\varphi(\beta)=b$, 则

$$\int_a^b f(x) \, \mathrm{d}x = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) \, \mathrm{d}t.$$

• 注意 $x = \varphi(t)$ 须有连续导数.

定理 7.3.5 设 f(x) 在 [-a,a] 上可积,则

1. 若
$$f(x)$$
 是偶函数, 则 $\int_{-a}^a f(x) \, \mathrm{d}x = 2 \int_0^a f(x) \, \mathrm{d}x$.
2. 若 $f(x)$ 是奇函数, 则 $\int_{-a}^a f(x) \, \mathrm{d}x = 0$.

定理 7.3.6 设 f(x) 是以 T 为周期的可积函数,则对任一 a,

$$\int_a^{a+T} f(x) \, \mathrm{d}x = \int_0^T f(x) \, \mathrm{d}x.$$

- $\{1, \sin x, \cos x, \sin 2x, \cos 2x, \cdots, \sin nx, \cos nx, \cdots\}$ 是任意一个长度为 2π 的区间上的正交函数列.
- ☆ 注意最后一列最后两行. (均为饶 x 轴旋转)

	直角坐标显式方程 $y=f(x), x \in [a,b]$	直角坐标参数方程 $\begin{cases} x = x(t), & t \in [T_1, T_2] \\ y = y(t), & t \in [T_1, T_2] \end{cases}$	极坐标方程 r=r(θ),θ∈[α,β]
平面图形面积	$\int_{a}^{b} f(x) \mathrm{d}x$	$\int_{T_1}^{T_2} y(t)x'(t) dt$	$\frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) \mathrm{d}\theta$
弧长的微分	$dl = \sqrt{1 + [f'(x)]^2} dx$	$dl = \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$	$dl = \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$
曲线弧长	$\int_a^b \sqrt{1 + [f'(x)]^2} \mathrm{d}x$	$\int_{\tau_1}^{\tau_2} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$	$\int_{\alpha}^{\beta} \sqrt{r^2(\theta) + r'^2(\theta)} \mathrm{d}\theta$
旋转体体积	$\pi \int_a^b \left[f(x) \right]^2 \mathrm{d}x$	$\pi \int_{T_1}^{T_2} y^2(t) x'(t) \mathrm{d}t$	$\frac{2}{3}\pi \int_{\alpha}^{\beta} r^{3}(\theta) \sin \theta d\theta$
旋转曲面面积	$2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} \mathrm{d}x$	$2\pi \int_{T_1}^{T_2} y(t) \sqrt{x'^2(t) + y'^2(t)} dt$	$2\pi \int_{\alpha}^{\beta} r(\theta) \sin \theta \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$

• 绕 y 轴旋转: $V=2\pi\int_a^b x f(xj)\,\mathrm{d}x$.

曲率

$$K = rac{|x'(t)y''(t) - x''(t)y'(t)|}{\left(x'^2(t) + y'^2(t)
ight)^{rac{3}{2}}} = rac{|y''|}{\left(1 + y'^2
ight)^{rac{3}{2}}} = rac{\left|r^2 + 2r'^2 - rr''
ight|}{\left|r^2 + r'^2
ight|^{rac{3}{2}}}$$

n 步 Newton-Cotes 求积公式 ☆ 将 [a,b] 以步长 $h=\frac{b-a}{n}$ 分成 n 等分, 以分点 $x_i=a+ih$ 为 节点作 Lagrange 插值多项式, 并积分, 得

$$egin{aligned} f(x) &pprox p_n(x) = \sum_{i=0}^n \left[\prod_{j=0, h
eq i}^n rac{x-x_j}{x_i-x_j}
ight] f(x_i) \ \int_a^b f(x) \, \mathrm{d}x &pprox (b-a) \sum_{i=0}^n C_i^{(n)} f(x_i) \end{aligned}$$

其中 Cotes 系数 为

$$C_i^{(n)} = \frac{1}{b-a} \int_a^b \prod_{j=0}^n \frac{x - x_j}{x_i - x_j} dx \quad (x = a + th)$$

$$= \frac{h}{b-a} \int_0^n \prod_{j=0, j \neq i} \frac{t - j}{i - j} dt$$

$$= \frac{1}{n} \frac{(-1)^{n-i}}{i!(n-i)!} \int_0^n \prod_{j=0, j \neq i}^n (t - j) dt$$

由表达式及 Newton-Cotes 公式对 $f(x) \equiv 1$ 精确成立, 知

1.
$$C_i^{(n)} = C_{n-i}^{(n)}$$
.

2.
$$\sum_{i=0}^{n} C_i^{(n)} = 1$$
.

- 当 n = 1 时, 得到梯形公式。
- 当 n=2 时, 得到 Simpson 公式 \diamondsuit

$$\int_a^b f(x) \, \mathrm{d}x pprox rac{b-a}{6} \left[f(a) + 4f\left(rac{a+b}{2}
ight) + f(b)
ight].$$

• 当 n=4 时, 得到 Cotes 公式 \diamondsuit

$$\int_a^b f(x) \, \mathrm{d}x pprox rac{b-a}{90} \{ 7[f(x_0) + f(x_4)] + 32[f(x_1 + f(x_3))] + 12f(x_2) \}.$$

定理 7.6.1 (Newton-Cotes 公式误差估计定理) 设 $f^{(n+1)}(x)$ 在 [a,b] 连续, 则用 Newton-Cotes 公式计算 $\int_a^b f(x) \, \mathrm{d}x$ 的误差 $R_n(f)$ 满足估计式

$$|R_n(f)| \leq rac{M_f h^{n+2}}{(n+1)!} \int_0^n \left| \prod_{j=0}^n (t-j)
ight| \mathrm{d}t \ M_f = \max_{x \in [a,b]} \left| f^{(n+1)}(x)
ight|$$

注意这里是 n + 1 次多形式.

定义 7.6.1 若一个数值求积公式在被积函数时任意不高于 n 次的多项式时都精确成立, 而且存在着一个 n+1 次多项式使公式不能精确成立, 则称该求积公式具有 n 次代数精确度.

推论 1 $\stackrel{\frown}{\Omega}$ n 步 Newton-Cotes 求积公式的代数精度至少为 n.

推论 2 $\stackrel{\bullet}{n}$ n=2k 步的 Newton-Cotes 求积公式的代数精度至少为 n+1.

• 特别地, 当 n=2 时, Simpson 公式具有三次代数精度.

复化求积公式 ☆

1. 复化梯形公式

$$egin{align} T_m^{(1)} &= rac{h}{2} \sum_{i=1}^m [f(x_{i-1}) + f(x_i)] \ &= rac{h}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{m-1} f(x_i)
ight]. \end{split}$$

对整个区间直接使用梯形公式的误差为 $O((b-a)^3)$, 复化梯形公式的误差为 $O((b-a)h^2)$.

2. 复化 Simpson 公式

$$egin{split} T_m^{(2)} &= rac{h}{6} \Bigg[f(a) + f(b) + 2 \sum_{i=1}^{m-1} f(x_i) + 4 \sum_{i=1}^m f(x_{i-rac{1}{2}}) \Bigg] \ &= rac{4 T_{2m}^{(1)} - T_m^{(1)}}{4 - 1} \end{split}$$

误差为 $O((b-a)h^5)$. (实质上是对复化梯形公式做了一次外推)

3. **复化 Cotes 公式**

$$T_m^{(3)} = rac{4^2 T_{2m}^{(2)} - T_m^{(2)}}{4^2 - 1}.$$

4. Romberg 方法

$$T_m^{(k+1)} = rac{4^k T_{2m}^{(k)} - T_m^{(k)}}{4^k - 1}.$$

适合计算机实现 自适应算法.

定义 7.6.2 设使用 [a,b] 上 n+1 个节点 $\{x_i\}_{i=0}^n$ 的近似求积公式

$$\int_a^b f(x) \, \mathrm{d}x pprox \sum_{i=0}^n a_i^{(n)} f(x_i)$$

对于 2n+1 次的任意多项式 $p_{2n+1}(x)$ 都有

$$\int_a^b p_{2n+1}(x)\,\mathrm{d}x = \sum_{i=0}^n a_i^{(n)} p_{2n+1}(x_i),$$

则称该求和公式为 [a,b] 上的 Gauss 型求积公式

Gauss-Legendre 求积公式 ☆ 以 n+1 次 Legendre 多项式 $p_{n+1}(x)$ 的根 $\{x_i^*\}_{i=0}^n$ 作为插值节点,作 f(x) 的 Lagrange 插值多项式,并在 [-1,1] 上积分,由此得到的数值积分公式称为 Gauss 型求积公式.

$$a_i^{(n)} = \int_{-1}^1 \prod_{j=0, j
eq i}^n rac{x - x_j^*}{x_i^* - x_j^*} \, \mathrm{d}x = \int_{-1}^1 rac{p_{n+1}(x)}{(x - x_i^*)[p_{n+1}(x_i^*)]'} \, \mathrm{d}x \quad (i = 0, 1, 2, \cdots, n)$$

笔记

Holder 不等式 设 f(x),g(x) 在 [a,b] 上连续, $\dfrac{1}{p}+\dfrac{1}{q}=1,\,p,q>0$, 则

$$\int_a^b |f(x)g(x)| \leq \left(\int_a^b |f(x)|^p \,\mathrm{d}x
ight)^{rac{1}{p}} \left(\int_a^b |g(x)|^q \,\mathrm{d}x
ight)^{rac{1}{q}}.$$

• $riangledown ab \leq rac{a^p}{p} + rac{a^q}{q}$.

设 f(x) 和 g(x) 在 [a,b] 上都可积,则

Schwarz 不等式
$$\left[\int_a^b f(x)g(x)\,\mathrm{d}x\right]^2 \leq \int_a^b f^2(x)\,\mathrm{d}x \cdot \int_a^b g^2(x)\,\mathrm{d}x.$$

Minkowski 不等式
$$\left\{\int_a^b \left[f(x)+g(x)
ight]^2\mathrm{d}x
ight\}^{rac{1}{2}} \leq \left[\int_a^b f^2(x)\,\mathrm{d}x
ight]^{rac{1}{2}} + \left\{\int_a^b g^2(x)\,\mathrm{d}x
ight\}^{rac{1}{2}}.$$

例题

可积性

- 设 f(x) 在 [a, b] 上可积
 - \circ 则 f(x) 在 [a,b] 上有界.
 - 若 $|f(x)| \ge m > 0$,则 $\frac{1}{f(x)}$ 在[a,b]上也可积.
 - 。 若 $A \leq f(x) \leq B, \ g(u)$ 在 [A,B] 上连续, 则 g(f(x)) 在 [a,b] 上可积.
- 若 f(x) 在 [a,b] 上有界

 - 。 若不连续点为 $\{x_n\}$, 且 $\lim_{n \to \infty} x_n$ 存在,则 f(x) 在 [a,b] 上也可积. 。 可积的充要条件是: $\forall \varepsilon > 0, \sigma > 0, \exists P$,使得振幅 $\omega_i \geq \varepsilon$ 的小区间长度和 $\sum_{\alpha > c} \Delta x_i < \sigma$.
- 1. 由定积分定义与 Jensen 不等式得: 🌙

1.
$$\frac{1}{b-a}\int_a^b \ln f(x)\,\mathrm{d}x \leq \ln\left(\frac{1}{b-a}\int_a^b f(x)\,\mathrm{d}x\right).$$
2.
$$f\left(\frac{1}{a}\int_0^a \varphi(t)\,\mathrm{d}t\right) \leq \frac{1}{a}\int_0^a f(\varphi(t))\,\mathrm{d}t.$$
2. 设
$$f(x) \, \overleftarrow{a}\left[a,b\right]$$
 上二阶可导,
$$f\left(\frac{a+b}{2}\right) = 0, \, M = \sup_{a\leq x\leq b}|f''(x)|, 则$$

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \frac{M(b-a)^3}{24}.$$

注: 对泰勒展开式积分. 🌙

3. 设 f(x) 在 [0,1] 上连续, 且单调减少, 则 \rightarrow

$$orall lpha \in [0,1]: \int_0^a f(x) \, \mathrm{d}x \geq lpha \int_0^1 f(x) \, \mathrm{d}x.$$

1. 法一: 求导, 求极值

2. 法二: 对
$$(1-\alpha)\int_0^a f(x)\,\mathrm{d}x\geq \alpha\int_\alpha^1 f(x)\,\mathrm{d}x$$
 两端分别使用中值定理.

3. 法三:
$$\int_0^a f(x) \, \mathrm{d}x = \alpha \int_0^1 f(\alpha t) \, \mathrm{d}t \ge \alpha \int_0^1 f(x) \, \mathrm{d}x$$
.

4. **(Young 不等式)** 设 y = f(x) 是 $[0, +\infty]$ 上严格单调增加的连续函数, 且 f(0) = 0, 则

$$\int_0^a f(x) \, \mathrm{d}x + \int_0^b f^{-1}(y) \, \mathrm{d}y \geq ab \quad (a>0,b>0).$$

5. 设 f(x) 和 g(x) 在 [a,b] 上连续, 且 $f(x) \geq 0, g(x) > 0$, 则

$$\lim_{n o\infty}\left[\int_a^bf^n(x)g(x)\,\mathrm{d}x
ight]^{rac{1}{N}}=\max_{a\le x\le b}f(x).$$

Cauchy 主值 (cpv)

定理 8.2.1 (Cauchy 收敛原理) \bigtriangleup 反常积分 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛的充要条件是:

$$orall arepsilon > 0, \exists A_0 \geq a: orall A, A' \geq A_0, \ \left| \int_A^{A'} f(x) \, \mathrm{d}x
ight| < arepsilon.$$

定义 8.2.1 设 f(x) 在任意有限区间 $[a,A]\subset [a,+\infty)$ 上可积, 且 $\int_a^{+\infty}|f(x)|\,\mathrm{d}x$ 收敛, 则称 $\int^{+\infty}f(x)\,\mathrm{d}x$ 绝对收敛, f(x) 在 $[a,+\infty)$ 上 绝对可积.

若 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛而非绝对收敛,则称为 条件收敛, f(x) 在 $[a,+\infty)$ 上 条件可积.

推论 若反常积分 $\int_a^{+\infty} f(x) dx$ 绝对收敛, 则它一定收敛.

定理 8.2.2 (比较判别法) 设在 $[a,+\infty)$ 上恒有 $0\leq f(x)\leq K \varphi(x)$, 其中 K 是正常数, 则

1. 当
$$\int_{a}^{+\infty} \varphi(x) dx$$
 收敛时, $\int_{a}^{+\infty} f(x) dx$ 也收敛. 2. 当 $\int_{a}^{+\infty} f(x) dx$ 发散时, $\int_{a}^{+\infty} \varphi(x) dx$ 也发散.

推论 (比较判别法的极限形式) 设在 $[a,+\infty)$ 上恒有 $f(x)\geq 0$ 和 $\varphi(x)\geq 0$,且 $\lim_{x o +\infty}rac{f(x)}{\varphi(x)}=l$,则

1. 若
$$0 \leq l < +\infty$$
, 则 $\int_a^{+\infty} \varphi(x) \, \mathrm{d}x$ 收敛时 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 也收敛. 2. 若 $0 < l \leq +\infty$, 则 $\int_a^{+\infty} \varphi(x) \, \mathrm{d}x$ 发散时 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 也发散.

若 $0 < l < +\infty$, 则 $\int_a^{+\infty} \varphi(x) \, \mathrm{d}x$ 与 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 同时收敛或同时发散.

定理 8.2.3 (Cauchy 判别法) 设在 $[a,+\infty)\subset (0,+\infty)$ 上恒有 $f(x)\geq 0$, K 是正常数,则

1. 若
$$f(x) \leq \frac{K}{x^p}$$
, 且 $p > 1$, 则 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛.
2. 若 $f(x) \geq \frac{K}{x^p}$, 且 $p \leq 1$, 则 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 发散.

推论 (Cauchy 判别法的极限形式) 设在 $[a,+\infty)\subset (0,+\infty)$ 上恒有 $f(x)\geq 0$, K 是正常数, 且 $\lim_{x\to +\infty}x^pf(x)=l$, 则

1. 若
$$0 \leq l < +\infty, \, p > 1$$
, 则 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛. 2. 若 $0 < l \leq +\infty, \, p \leq 1$, 则 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 发散.

定理 8.2.4 (积分第二中值定理) ☆ 设 f(x) 在 [a,b] 上可积, g(x) 在 [a,b] 上单调, 则存在 $\xi \in [a,b]$, 使得

$$\int_a^b f(x)g(x)\,\mathrm{d}x = g(a)\int_a^\xi f(x)\,\mathrm{d}x + g(b)\int_{arepsilon}^b f(x)\,\mathrm{d}x.$$

推论 ☆ 在定理 8.2.4 的条件下

1. 若 g(x) 在 [a,b] 上单调增加, 且 $g(a)\geq 0$, 则存在 $\xi\in [a,b]$ 使得

$$\int_a^b f(x)g(x)\,\mathrm{d}x = g(b)\int_{\xi}^b f(x)\,\mathrm{d}x.$$

2. 若 g(x) 在 [a,b] 上单调减少,且 $g(b)\geq 0$,则存在 $\xi\in [a,b]$ 使得

$$\int_a^b f(x)g(x)\,\mathrm{d}x = g(a)\int_a^\xi f(x)\,\mathrm{d}x.$$

定理 8.2.5 (A-D 判別法) 若下列两个条件之一满足, 则 $\int_a^{+\infty} f(x)g(x) \,\mathrm{d}x \,$ 收敛:

- 1. **(Abel 判別法)** $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛, g(x) 在 $[a, +\infty)$ 上单调有界.
- 2. **(Dirichlet 判别法)** $F(A)=\int_a^A f(x)\,\mathrm{d}x$ 在 $[a,+\infty)$ 上有界, g(x) 在 $[a,+\infty)$ 上单调有界 且 $\lim_{x\to+\infty}g(x)=0$.

笔记

Cauchy 主值:

• 若
$$f(x) \geq 0$$
,则 $(\operatorname{cpv}) \int_{-\infty}^{+\infty} f(x) \, \mathrm{d} x$ 收敛 $\qquad \Leftrightarrow \qquad \int_{-\infty}^{+\infty} f(x) \, \mathrm{d} x$ 收敛.

例题

1. 设
$$\int_a^{+\infty} f(x) \,\mathrm{d}x$$
 收敛, 且 $f(x)$ 在 $[a,+\infty)$ 一致连续, 则 $\lim_{x o +\infty} f(x) = 0.$

第9章数项级数

定理

调和级数的 余和数列.

定理 9.1.1 (级数收敛的必要条件) 设级数 $\sum_{n=1}^\infty x_n$ 收敛, 则其通项构成的数列 $\{x_n\}$ 是无穷小量, 即 $\lim_{n \to \infty} x_n = 0$.

定理 9.1.2 (线性性) 设
$$\sum_{n=1}^{\infty}a_n=A,\sum_{n=1}^{\infty}b_n=B,\,lpha.\,eta$$
是两个常数, 则

$$\sum_{n=1}^{\infty}(lpha a_n+eta b_n)=lpha A+eta B.$$

定理 9.1.3 (加法结合律) 设级数 $\sum_{n=1}^{\infty} x_n$ 收敛,则在它的求和表达式中任意添加括号后所得的级数仍然 收敛, 且其和不变.

定义 9.2.1 在有界数列 $\{x_n\}$ 中,若存在它的一个子列 $\{x_{n_k}\}$ 使得 $\lim_{k \to \infty} x_{n_k} = \xi$,则称 ξ 为数列 $\{x_n\}$ 的一个极限点.

定理 9.2.1 \uparrow 有界数列 $\{x_n\}$ 的极限点的集合 E 的上确界 H 和下确界 h 均属于 E, 即

$$H = \max E, h = \min E.$$

• 无界亦成立.

定义 9.2.2 上极限
$$H=\overline{\lim_{n o\infty}}\,x_n$$
, 下极限 $h=\varliminf_{n o\infty}x_n$.

定理 9.2.2 有界数列 $\{x_n\}$ 收敛的充要条件是

$$\overline{\lim_{n o\infty}}x_n= \varliminf_{n o\infty}x_n.$$

• 无界亦成立.

定理 9.2.3 \spadesuit 设 $\{x_n\}$ 是有界数列,则

- 1. $\overline{\lim} x_n = H$ 的充要条件是: $\forall \varepsilon > 0$,
 - 1. $\exists N, \forall n > N : x_n < H + \varepsilon$.
 - 2. $\{x_n\}$ 中有无穷多项满足 $x_n > H \varepsilon$.
- 2. $\underline{\lim} x_n = h$ 的充要条件是: $\forall \varepsilon > 0$,
 - 1. $\exists N, \forall n > N : x_n > H \varepsilon$.
 - 2. $\{x_n\}$ 中有无穷多项满足 $x_n < H + \varepsilon$.

定理 9.2.4 \diamondsuit 设 $\{x_n\}$ 和 $\{y_n\}$ 是两数列,则

$$1. \overline{\lim_{n o\infty}}(x_n+y_n) \leq \overline{\lim_{n o\infty}}\,x_n + \overline{\lim_{n o\infty}}\,y_n. \ \lim \left(x_n+y_n
ight) \geq \lim \,x_n + \lim \,y_n.$$

$$arlimits_{n o\infty}(x_n+y_n)\geq arlimits_{n o\infty}x_n+arlimits_{n o\infty}y_n.$$

2. 若 $\lim_{n o\infty}x_n$ 存在,则

$$\overline{\lim_{n o\infty}}(x_n+y_n)=\lim_{n o\infty}x_n+\overline{\lim_{n o\infty}}y_n.$$

$$\underline{\underline{\lim}}_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \underline{\underline{\lim}}_{n \to \infty} y_n.$$

(要求上述诸式的右端不是待定型)

1. 若
$$x_n \ge 0$$
, $y_n \ge 0$, 则

$$\overline{\lim_{n o \infty}}(x_n y_n) \leq \overline{\lim_{n o \infty}} \, x_n \cdot \overline{\lim_{n o \infty}} \, y_n.$$

$$arprojlim_{n o\infty}(x_ny_n)\geq arprojlim_{n o\infty}x_n\cdotarprojlim_{n o\infty}y_n.$$

2. 若
$$\lim_{n o\infty}x_n=x\in(0,+\infty)$$
, 则

$$\overline{\lim_{n o\infty}}(x_ny_n) = \lim_{n o\infty} x_n \cdot \overline{\lim_{n o\infty}} \, y_n. \ rac{\lim_{n o\infty}}{n o\infty}(x_ny_n) = \lim_{n o\infty} x_n \cdot rac{\lim_{n o\infty}}{n o\infty} \, y_n.$$

(要求上述诸式的右端不是待定型)

对于 $\{x_n\}$, 记

$$egin{aligned} b_n &= \sup \left\{ x_{n+1}, x_{n+2}, \cdots
ight\} = \sup_{k > n} \left\{ x_k
ight\} \ a_n &= \inf \left\{ x_{n+1}, x_{n+2}, \cdots
ight\} = \inf_{k > n} \left\{ x_k
ight\} \ H^* &= \lim_{n o \infty} b_n = \lim_{n o \infty} \sup_{k > n} \left\{ x_k
ight\} \ h^* &= \lim_{n o \infty} a_n = \lim_{n o \infty} \inf_{k > n} \left\{ x_k
ight\} \end{aligned}$$

定理 9.2.6 $ightharpoonup H^*$ 是 $\{x_n\}$ 的最大极限点, h^* 是 $\{x_n\}$ 的最小极限点, 即

$$H^* = \max E = \overline{\lim_{n o \infty}} \, x_n, \quad h^* = \min E = \varliminf_{n o \infty} x_n.$$

定理 9.3.1 (正项级数的收敛原理) 正项级数收敛的充要条件是它的部分和数列有上界.

定理 9.3.2 (比较判别法) 设 $\sum_{n=1}^{\infty} x_n$ 与 $\sum_{n=1}^{\infty} y_n$ 是两个正项级数, 若

$$\exists A>0: x_n\leq Ay_n,\, n=1,2,\cdots,$$
则

1. 当
$$\sum_{n=1}^{\infty} y_n$$
 收敛时, $\sum_{n=1}^{\infty} x_n$ 也收敛.

2. 当
$$\sum_{n=1}^{\infty} x_n$$
 发散时, $\sum_{n=1}^{\infty} y_n$ 也发散.

定理 9.3.2' (比较判别法的极限形式) 设 $\sum_{n=1}^\infty x_n$ 与 $\sum_{n=1}^\infty y_n$ 是两个正项级数, 且 $\lim_{n o\infty} rac{x_n}{y_n} = l$, 则

1. 若
$$0 \leq l < +\infty$$
, 则当 $\displaystyle \sum_{n=1}^{\infty} y_n$ 收敛时, $\displaystyle \sum_{n=1}^{\infty} x_n$ 也收敛.

2. 若
$$0 < l \le +\infty$$
, 则当 $\sum_{n=1}^{\infty} y_n$ 发散时, $\sum_{n=1}^{\infty} x_n$ 也发散.

定理 9.3.3 (Cauchy 判别法) ☆ 设 $\sum_{n=1}^{\infty} x_n$ 是正项级数, $r = \overline{\lim_{n \to \infty}} \sqrt[n]{x_n}$, 则

1. 当
$$r < 1$$
时, $\sum_{n=1}^{\infty} x_n$ 收敛.

2. 当
$$r > 1$$
 时, $\sum_{n=1}^{\infty} x_n$ 发散.

3. 当 r=1 时, 级数可能收敛可能发散。

定理 9.3.4 (d' Alembert 判别法) $\stackrel{\bigstar}{\diamondsuit}$ 设 $\sum_{n=1}^{\infty}x_n\ (x_n\neq 0)$ 是正项级数, 则

1. 当
$$\overline{\lim_{n o\infty}}\,rac{x_{n+1}}{x_n}=\overline{r}<1$$
 时, 级数 $\sum_{n=1}^\infty x_n$ 收敛.

2. 当
$$\varliminf_{n o \infty} \frac{x_{n+1}}{x_n} = \underline{r} > 1$$
 时, 级数 $\sum_{n=1}^\infty x_n$ 发散.

3. 当 $\overline{r} \ge 1$ 或 $r \le 1$ 时,级数可能收敛,也可能发散

引理 9.3.1 \diamondsuit 设 $\{x_n\}$ 是正项数列,则

$$\varliminf_{n\to\infty}\frac{x_{n+1}}{x_n}\le\varliminf_{n\to\infty}\sqrt[n]{x_n}\le\varlimsup_{n\to\infty}\sqrt[n]{x_n}\le\varlimsup_{n\to\infty}\frac{x_{n+1}}{x_n}.$$

• 能用 d' Alembert 判别法判定的敛散情况, 一定能用 Cauchy 判别法判定, 反之不亦然. 二者本质是比较判别法.

定理 9.3.5 (Rabbe 判别法) $\roldsymbol{\diamondsuit}$ 设 $\sum_{n=1}^{\infty}x_n\ (x_n
eq 0)$ 是正项级数, $\lim_{n o \infty}n\left(rac{x_n}{x_{n+1}}-1
ight)=r$, 则

1. 当
$$r>1$$
 时, 级数 $\displaystyle\sum_{n=1}^{\infty}x_n$ 收敛.

2. 当
$$r < 1$$
时,级数 $\sum_{n=1}^{\infty} x_n$ 发散.

定理 9.3.5' (Bertrand 判别法) ightharpoonup 设 $\sum_{n=1}^{\infty}x_n\;(x_n\neq 0)$ 是正项级数,

$$\lim_{n o\infty}\left[n\left(rac{x_n}{x_{n+1}}-1
ight)-1
ight]\ln n=r$$
, 则判断标准同上.

设 f(x) 在 $[a, +\infty)$ 非负且 Riemann 可积,

且

取一单调增加趋于
$$+\infty$$
 的数列 $\{a_n\}: a=a_1 < a_2 < \cdots$,令 $u_n=\int_a^{a_{n+1}} f(x) \,\mathrm{d}x$.

定理 9.3.6 (积分判别法) $_{\bigcirc}$ 反常积分 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 与正项级数 $\sum_{n=1}^\infty u_n$ 同时收敛或同时发散于 $+\infty$,

$$\int_a^{+\infty} f(x) \,\mathrm{d}x = \sum_{n=1}^\infty u_n = \sum_{n=1}^\infty \int_{a_n}^{a_{n+1}} f(x) \,\mathrm{d}x.$$

特别地, 当 f(x) 单调减少时, 取 $a_n=n$, 则反常积分 $\int_a^{+\infty}f(x)\,\mathrm{d}x$ 与正项级数

$$\sum_{n=N}^{\infty} f(n) \; (N=[a]+1)$$
 同时收敛或同时发散.

- 由反常积分的收敛性判断级数的收敛性.
- 由级数的收敛性判断反常积分的收敛性.
- 若 $f(x) \geq 0$ 不恒成立,则由反常积分的收敛性仍可得到级数的收敛性,但反之不亦然.

定理 9.4.1 (级数的 Cauchy 收敛原理) $_{n=1}^{\infty}$ 级数 $\sum_{n=1}^{\infty}x_{n}$ 收敛的充要条件是: $orall arepsilon>0, \exists N\in\mathbb{N}^{+}:$

$$|x_{n+1} + x_{n+2} + \dots + x_m| < \varepsilon$$

对一切m > n > N成立.

• 当m=n+1时,即为必要条件 $\lim_{n\to\infty}x_n=0$.

• $\forall \varepsilon>0, \forall p\in\mathbb{N}^+, \exists N(\varepsilon,p): \forall n>N, |x_{n+1}+x_{n+2}+\cdots+x_{n+p}|<\varepsilon$ 无法推出级数收敛.

定义 9.4.1 $\sum_{n=1}^{\infty} (-1)^{n+1} u_n \ (u_n > 0)$ 称为 **交错级数**, 若 $|u_n|$ 单调减少且收敛于 0, 则称为 Leibniz 级数.

定理 9.4.2 (Leibniz 判别法) Leibniz 级数必定收敛.

1. Leibniz 级数满足 $0 \leq \sum_{n=1}^{\infty} (-1)^{n+1} u_n \leq u_1.$

2. 余和
$$r_n = \sum_{k=n+1}^{\infty} (-1)^{k+1}$$
 满足 $|r_n| \leq u_{n+1}$.

引理 9.4.1 (Abel 变换; 分部求和公式) \spadesuit 设 $\{a_n\},\,\{b_n\}$ 是两数列, 记 $B_k=\sum_{i=1}^k b_i\;(k=1,2,\cdots)$,

$$\sum_{k=1}^P a_k b_k = a_p B_p - \sum_{k=1}^{P-1} (a_{k+1} - a_k) B_k.$$

引理 9.4.2 (Abel 引理) ☆ 设 $\{a_k\}$ 为单调数列, $\{B_k\}$ $(B_k=\sum_{i=1}^k b_i, k=1,2,\cdots)$ 为有界数列, 即 $\exists M>0, \forall k: |B_k|\leq M$, 则

$$\left|\sum_{k=1}^P a_k b_k
ight| \leq M(|a_1|+2\,|a_p|).$$

定理 9.4.3 (级数的 A-D 判别法) $\stackrel{\bullet}{\bigcirc}$ 若下列两个条件之一满足, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛:

- 1. (**Abel 判别法**) $|a_n|$ 单调有界, $\sum_{n=1}^{\infty} b_n$ 收敛;
- 2. (**Dirichlet 判别法**) $|a_n|$ 单调趋于 0, $\left\{\sum_{i=1}^n b_i\right\}$ 有界.
- Leibniz 判别法和 Abel 判别法均可看作 Dirichlet 判别法的特例.

设 $\sum_{n=1}^{\infty} x_n$ 是任意项级数, 令

$$x_n^+ = rac{|x_n| + x_n}{2} = egin{cases} x_n, & x_n > 0, \ 0, & x_n \leq 0, \end{cases} \ x_n^- = rac{|x_n| - x_n}{2} = egin{cases} -x_n, & x_n < 0, \ 0, & x_n \geq 0. \end{cases}$$

定理 9.4.4 若 $\sum_{n=1}^{\infty} x_n$ 绝对收敛,则 $\sum_{n=1}^{\infty} x_n^+$ 和 $\sum_{n=1}^{\infty} x_n^-$ 都收敛;若 $\sum_{n=1}^{\infty} x_n$ 条件收敛,则 $\sum_{n=1}^{\infty} x_n^+$ 和 $\sum_{n=1}^{\infty} x_n^-$ 都发散到 $+\infty$.

加法交换律

定理 9.4.5 ☆ 若级数 $\sum_{n=1}^\infty x_n$ 绝对收敛, 则它的 **更序级数** $\sum_{n=1}^\infty x_n'$ 也绝对收敛, 且和不变, 即 $\sum_{n=1}^\infty x_n' = \sum_{n=1}^\infty x_n$.

定理 9.4.6 (Riemann) ☆ 设级数 $\sum_{n=1}^\infty x_n$ 条件收敛, 则 $\forall a \in [-\infty, +\infty]$, 必定存在 $\sum_{n=1}^\infty x_n$ 的更序级数 $\sum_{n=1}^\infty x_n'$ 满足 $\sum_{n=1}^\infty x_n' = a$.

级数的乘法

级数的 Cauchy 乘积.

对于正方形排列所得的乘积, 只要 $\displaystyle\sum_{n=1}^{\infty}a_n$ 和 $\displaystyle\sum_{n=1}^{\infty}b_n$ 收敛, 则 $\displaystyle\sum_{n=1}^{\infty}d_n$ 收敛, 且

$$\sum_{n=1}^{\infty}d_n=\left(\sum_{n=1}^{\infty}a_n
ight)\left(\sum_{n=1}^{\infty}b_n
ight).$$

定理 9.4.7 ☆ 如果级数 $\sum_{n=1}^\infty a_n$ 与 $\sum_{n=1}^\infty b_n$ 绝对收敛, 则将 a_ib_j 按任一方式排列求和而成的级数也绝对收敛, 且其和等于 $\left(\sum_{n=1}^\infty a_n\right)\left(\sum_{n=1}^\infty b_n\right)$.

无穷乘积

定义 9.5.1 如果部分积数列 $\{P_n\}$ 收敛于一个非零有限数 P, 则称无穷乘积 $\prod_{n=1}^\infty p_n$ 收敛, 且称 P 为它的积. 如果发散或收敛于 0, 则称无穷乘积 $\prod_{n=1}^\infty p_n$ 发散.

定理 9.5.1 \spadesuit 如果无穷乘积 $\prod_{n=1}^{\infty} p_n$ 收敛, 则

1.
$$\lim_{n o \infty} p_n = 1.$$
2. $\lim_{m o \infty} \prod_{n=m+1}^{\infty} p_n = 1.$

Wallis 公式 ☆

设
$$p_n=1-rac{1}{(2n)^2}$$
,记 $I_n=\int_0^{rac{\pi}{2}}\sin^n x\,\mathrm{d}x$,则

$$I_{2n} = rac{(2n-1)!!}{(2n)!!} \cdot rac{\pi}{2}, \quad I_{2n+1} = rac{(2n)!!}{(2n+1)!!}, \ P_n = \prod_{k=1}^n p_k = rac{[(2n-1)!!]^2}{[(2n)!!]^2} \cdot (2n+1) = rac{2}{\pi} rac{I_{2n}}{I_{2n+1}}, \ 1 < rac{I_{2n}}{I_{2n+1}} < rac{I_{2n-1}}{I_{2n+1}} = rac{2n+1}{2n}, \ \lim_{n o \infty} rac{I_{2n-1}}{I_{2n+1}} = 1 \quad \Rightarrow \quad \prod_{n=1}^{\infty} p_n = rac{2}{\pi} \ rac{\pi}{2} = \left(rac{2}{1} \cdot rac{2}{3}
ight) \cdot \left(rac{4}{3} \cdot rac{4}{5}
ight) \cdot \left(rac{6}{5} \cdot rac{6}{7}
ight) \cdot \dots \ rac{(2n)!!}{(2n-1)!!} \sim \sqrt{n\pi} \quad (n o + \infty)$$

Viete 公式 ☆

$$\prod_{n=1}^{\infty}\cos\frac{x}{2^k}=\lim_{n\to\infty}\frac{\sin x}{2^n\sin\frac{x}{2^n}}=\frac{\sin x}{x}$$

令
$$x=\frac{\pi}{2}$$
, 即得

$$\frac{2}{\pi} = \cos\frac{\pi}{4} \cdot \cos\frac{\pi}{8} \cdot \dots \cdot \cos\frac{\pi}{2^n} \cdot \dots$$

无穷乘积与无穷级数

定理 9.5.2 ☆ 无穷乘积 $\prod_{n=1}^{\infty} p_n$ 收敛的充要条件是级数 $\sum_{n=1}^{\infty} \ln p_n$ 收敛.

推论 9.5.1 \spadesuit 设 $a_n>0$ (或 $a_n<0$), 则无穷乘积 $\prod_{n=1}^{\infty}(1+a_n)$ 收敛的充要条件是级数 $\sum_{n=1}^{\infty}a_n$ 收敛.

• 即对于正项级数
$$\sum_{n=1}^{\infty} x_n$$
 有: $\sum_{n=1}^{\infty} \ln(1+x_n)$ 收敛 \Leftrightarrow $\sum_{n=1}^{\infty} x_n$ 收敛.

推论 9.5.2 ightharpoonup 设级数 $\sum_{n=1}^\infty a_n$ 收敛,则无穷乘积 $\prod_{n=1}^\infty (1+a_n)$ 收敛的充要条件是级数 $\sum_{n=1}^\infty a_n^2$ 收敛.

• 若级数
$$\sum_{n=1}^\infty a_n$$
 收敛, $\sum_{n=1}^\infty a_n^2 = +\infty$,则无穷乘积 $\prod_{n=1}^\infty (1+a_n)$ 发散于 0.

• 当无穷乘积
$$\prod_{n=1}^{\infty}(1+a_n)$$
 收敛时, $\sum_{n=1}^{\infty}a_n$ 和 $\sum_{n=1}^{\infty}a_n^2$ 可能都发散.

定义 9.5.2 当级数 $\sum_{n=1}^{\infty} \ln p_n$ 绝对收敛时,无穷乘积 $\prod_{n=1}^{\infty} p_n$ 绝对收敛.

定理 9.5.3 \spadesuit 设 $a_n > -1, n = 1, 2, \cdots$,则下述命题等价:

1. 无穷乘积
$$\prod_{n=1}^{\infty} (1+a_n)$$
 绝对收敛.

2. 无穷乘积
$$\prod_{n=1}^{\infty}(1+|a_n|)$$
 收敛. $3.$ 级数 $\sum_{n=1}^{\infty}|a_n|$ 收敛.

Stirling 公式 🏠

$$\diamondsuit b_n = rac{n! \mathrm{e}^n}{n^{n+rac{1}{2}}}$$
,则 $rac{b_n}{b_{n-1}} = \mathrm{e}^{1+(n-rac{1}{2})\ln(1-rac{1}{n})} = 1 - rac{1}{12n^2} + o\left(rac{1}{n^2}
ight)$,故 $\sum_{n=2}^\infty \left(rac{b_n}{b_{n-1}} - 1
ight)$ 是收敛的定号级数,故无穷乘积 $\prod_{n=2}^\infty rac{b_n}{b_{n-1}}$ 收敛于非零实数, $\lim_{n o \infty} b_n = b_1 \prod_{n=2}^\infty rac{b_n}{b_{n-1}}$ 也收敛于非零实数,故
$$\lim_{n o \infty} b_n = \lim_{n o \infty} rac{b_n^2}{b_{2n}} = \lim_{n o \infty} rac{(2n)!!}{(2n-1)!!} \cdot \sqrt{rac{2}{n}} = \sqrt{2\pi}$$
 $n! \sim \sqrt{2\pi} n^{n+rac{1}{2}} \mathrm{e}^{-n} \quad (n o + \infty)$

巴塞尔问题

$$\sin x = (2n+1)\sinrac{x}{2n+1}\prod_{k=1}^n \left(1-rac{\sin^2rac{x}{2n+1}}{\sin^2rac{k\pi}{2n+1}}
ight)$$

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

筆记

• 可利用级数收敛的必要条件证明数列收敛于 0.

$$egin{aligned} & & \lim_{n o \infty} rac{n^n}{(n!)^2} = 0. \ & & & \lim_{n o \infty} rac{(2n)!}{2^{n(n+1)}} = 0. \end{aligned}$$

- 若由 Cauchy 判别法或 d' Alembert 判别法判断出 $\sum_{n=1}^{\infty}|x_n|$ 发散, 则 $\sum_{n=1}^{\infty}x_n$ 也发散.
- 正弦级数的有界性

$$\left|\sum_{k=1}^n \sin kx\right| = \left|\frac{\cos\frac{x}{2} - \cos\frac{2n+1}{2}x}{2\sin\frac{x}{2}}\right| \le \frac{1}{\left|\sin\frac{x}{2}\right|}.$$

等价无穷大

$$rac{(2n)!!}{(2n-1)!!} \sim \sqrt{n\pi} \ n! \sim \sqrt{2\pi} n^{n+rac{1}{2}} \mathrm{e}^{-n}$$

• 一些无穷乘积

$$\frac{\pi}{2} = \left(\frac{2}{1} \cdot \frac{2}{3}\right) \cdot \left(\frac{4}{3} \cdot \frac{4}{5}\right) \cdot \left(\frac{6}{5} \cdot \frac{6}{7}\right) \cdot \dots$$
$$\frac{2}{\pi} = \cos\frac{\pi}{4} \cdot \cos\frac{\pi}{8} \cdot \dots \cdot \cos\frac{\pi}{2^n} \cdot \dots$$
$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$$

- 若 $\{x_n\}$ 和 $\sum_{n=2}^{\infty}n(x_n-x_{n-1})$ 收敛,则级数 $\sum_{n=1}^{\infty}x_n$ 收敛.
- 若 $x_n>0$ 且 $\lim_{n o\infty}n\left(rac{x_n}{x_{n+1}}-1
 ight)>0$, 则交错级数 $\sum_{n=1}^{\infty}(-1)^nx_n$ 收敛. 🛣
- 由柯西乘积数归得: $\sum_{n=0}^{\infty} (n+1)q^n = (1-q)^{-k}$. 🖈

例题

1.
$$\sum_{n=1}^{\infty} \sin\left(\sqrt{n^2+1}\pi\right) = \sum_{n=1}^{\infty} \sin\left(\sqrt{n^2+1}-n\right)$$
 收敛.

2. 设正项级数
$$\displaystyle\sum_{n=1}^{\infty}x_{n}$$
 发散, $S_{n}=\displaystyle\sum_{k=1}^{n}x_{k}$, 则

1. 存在发散的正项级数
$$\sum_{n=1}^\infty y_n = \sum_{n=1}^\infty \left(\sqrt{S_n} - \sqrt{S_{n-1}}
ight)$$
, 使得 $\lim_{n o\infty} rac{y_n}{x_n} = 0$.

$$2.\sum_{n=1}^{\infty}rac{x_n}{S_n^2}\leq \sum_{n=1}^{\infty}rac{S_n-S_{n-1}}{S_nS_{n-1}}=rac{2}{x_1}-rac{1}{S_n}$$
收敛.

3. 无穷乘积

$$\lim_{n\to\infty} \frac{\beta(\beta+1)(\beta+2)\cdot\dots\cdot(\beta+n)}{\alpha(\alpha+1)(\alpha+2)\cdot\dots\cdot(\alpha+n)} = 0 \quad (0<\beta<\alpha)$$

4. 设 |q| < 1, 则

$$\prod_{n=1}^{\infty} (1+q^n) = rac{1}{\displaystyle\prod_{n=1}^{\infty} (1-q^{2n-1})}$$

第 10 章 函数项级数

定理

定义 10.1.1 设 $u_n(x)$ 在 \mathbb{E} 上定义,对于任意固定的 $x_0\in\mathbb{E}$,若数项级数 $\sum_{n=1}^\infty u_n(x_0)$ 收敛,则称函数项级数 $\sum_{n=1}^\infty u_n(x)$ 在点 x_0 收敛, x_0 称为其 **收敛点**. 收敛点全体构成的集合 \mathbb{D} 称为 **收敛域**.

 $\sum_{n=1}^\infty u_n(x)$ 在 $\mathbb D$ 上 点态收敛 于 和函数 $S(x)=\sum_{n=1}^\infty u_n(x)$, 即 部分和函数 的极限.

逐项求极限: $\lim_{n \to \infty} \sum_{n=1}^{\infty} = \sum_{n=1}^{\infty} \lim_{n \to \infty}, \quad \lim_{x \to x_0} \lim_{n \to \infty} = \lim_{n \to \infty} \lim_{x \to x_0}.$

逐项求导: $\frac{\mathrm{d}}{\mathrm{d}x}\sum_{n=1}^{\infty}=\sum_{n=1}^{\infty}\frac{\mathrm{d}}{\mathrm{d}x},\quad \frac{\mathrm{d}}{\mathrm{d}x}\lim_{n\to\infty}=\lim_{n\to\infty}\frac{\mathrm{d}}{\mathrm{d}x}.$

逐项积分: $\int_a^b \sum_{n=1}^\infty = \sum_{n=1}^\infty \int_a^b, \quad \int_a^b \lim_{n o \infty} = \lim_{n o \infty} \int_a^b.$

定义 10.1.2 设 $\{S_n(x)\}(x\in\mathbb{D})$ 是一函数序列,若对任意给定的 $\varepsilon>0$,存在正整数 $N(\varepsilon)$,当 $n>N(\varepsilon)$ 时,

$$|S_n(x) - S(x)| < \varepsilon$$

对一切 $x\in\mathbb{D}$ 成立, 则称 $\{S_n(x)\}$ 在 \mathbb{D} 上 **一致收敛** 于 S(x), 记为 $S_n(x)\stackrel{\mathbb{D}}{\Rightarrow} S(x)$.

同样的有 $\sum_{n=1}^{\infty} u_n(x)$ 在 $\mathbb D$ 上一致收敛于 S(x). 即

$$orall arepsilon > 0, \exists N, orall n > N, orall x \in \mathbb{D}: \left| \sum_{k=1}^n u_k(x) - S(x)
ight| = \left| S_n(x) - S(x)
ight| < arepsilon$$

推论 10.1.1 若函数项级数 $\sum_{n=1}^\infty u_n(x)$ 在 $\mathbb D$ 上一致收敛, 则函数序列 $\{u_n(x)\}$ 在 $\mathbb D$ 上一致收敛于 $u(x)\equiv 0$.

定义 10.1.3 若对于任意给定的闭区间 $[a,b]\subset \mathbb{D}$, 函数序列 $\{S_n(x)\}$ 在 [a,b] 上一致收敛于 S(x), 则称 $\{S_n(x)\}$ 在 \mathbb{D} 上 **内闭一致收敛** 于 S(x).

定理 10.1.1 设函数序列 $\{S_n(x)\}$ 在集合 $\mathbb D$ 上点态收敛于 S(x), 定义 $S_n(x)$ 与 S(x) 的距离为

$$d(S_n,S) = \sup_{x \in \mathbb{D}} |S_n(x) - S(x)|.$$

则 $\{S_n(x)\}$ 在 $\mathbb D$ 上一致收敛于 S(x) 的充要条件是 $\lim_{n \to \infty} d(S_n,S) = 0$.

定理 10.1.2 设函数序列 $\{S_n(x)\}$ 在集合 $\mathbb D$ 上点态收敛于 S(x),则 $|S_n(x)|$ 在 $\mathbb D$ 上一致连续收敛于 S(x) 的充要条件是: 对任意数列 $|x_n|, x_n \in \mathbb D$,成立

$$\lim_{n o\infty}(S_n(x_n)-S(x_n))=0.$$

一致收敛的判别

定理 10.2.1 (函数项级数一致收敛的 Cauchy 收敛原理) 函数项级数 $\sum_{n=1}^{\infty}u_n(x)$ 在 $\mathbb D$ 上一致收敛的充

要条件是, $\forall \varepsilon > 0, \exists N, \forall m > n > N, \forall x \in \mathbb{D}$

$$|S_m(x) - S_n(x)| = |u_{n+1}(x) + u_{n+2}(x) + \cdots + u_m(x)| < \varepsilon.$$

定理 10.2.2 (Weierstrass 判别法) 设函数项级数 $\sum_{n=1}^\infty u_n(x)(x\in\mathbb{D})$ 的每一项 $u_n(x)$ 满足

$$|u_n(x)| \leq a_n, \quad x \in \mathbb{D},$$

并且数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\sum_{n=1}^{\infty} u_n(x)$ 在 $\mathbb D$ 上一致收敛.

• 此时不仅一致收敛,还在绝对意义上一致收敛.

定理 10.2.3 设函数项级数 $\sum_{n=1}^\infty a_n(x)b_n(x)(x\in\mathbb{D})$ 满足如下两个条件之一,则 $\sum_{n=1}^\infty a_n(x)b_n(x)$ 在 \mathbb{D} 上一致收敛.

1. (**Abel 判别法**) 函数序列 $\{a_n(x)\}$ 对每一固定的 $x\in\mathbb{D}$ 关于 n 是单调的, 且 $\{a_n(x)\}$ 在 \mathbb{D} 上一致有界:

$$|a_n(x)| \leq M, \quad x \in \mathbb{D}, n \in \mathbb{N}^+,$$

同时, 函数项级数 $\sum_{n=1}^{\infty} b_n(x)$ 在 $\mathbb D$ 上一致收敛.

2. (**Dirichlet 判别法**) 函数序列 $\{a_n(x)\}$ 对每一固定的 $x\in\mathbb{D}$ 关于 n 是单调的, 且 $\{a_n(x)\}$ 在 \mathbb{D} 上一致位数于 0; 同时, 函数项级数 $\sum_{n=1}^\infty b_n(x)$ 的部分和序列在 \mathbb{D} 上一致有界:

$$\left|\sum_{k=1}^n b_k(x)
ight| \leq M, \quad x\in \mathbb{D}, n\in \mathbb{N}^+.$$

一致收敛级数的性质

定理 10.2.4 (连续性定理) 设函数序列 $\{S_n(x)\}$ 的每一项 $S_n(x)$ 在 [a,b] 连续, 且一致收敛于 S(x), 则 S(x) 在 [a,b] 上也连续.

• 即可以逐项求极限, $\lim_{x \to x_0} \lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} S_n(x)$.

定理 10.2.4' (逐项求极限定理) 设对每个 n, $u_n(x)$ 在 [a,b] 上连续, 且 $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 上一致收敛于 S(x), 则 S(x) 在 [a,b] 上连续. 这时, $\forall x_0 \in [a,b]$,

$$\lim_{x o x_0}\lim_{n o\infty}u_n(x)=\sum_{n=1}^\infty\lim_{x o x_0}u_n(x).$$

定理 10.2.5 设函数序列 $\{S_n(x)\}$ 的每一项 $S_n(x)$ 在 [a,b] 上连续, 且在 [a,b] 上一致收敛于 S(x), 则 S(x) 在 [a,b] 上可积, 且

$$\int_a^b \lim_{n o \infty} S_n(x) \, \mathrm{d}x = \lim_{n o \infty} \int_a^b S_n(x) \, \mathrm{d}x.$$

定理 10.2.5' (逐项积分定理) 设对每个 n, $u_n(x)$ 在 [a,b] 上连续, 且 $\sum_{n=1}^\infty u_n(x)$ 在 [a,b] 上一致收敛于 S(x), 则 S(x) 在 [a,b] 上可积, 且

$$\int_a^b \sum_{n=1}^\infty u_n(x) \,\mathrm{d}x = \sum_{n=1}^\infty \int_a^b u_n(x) \,\mathrm{d}x.$$

定理 10.2.6 设函数序列 $\{S_n(x)\}$ 满足

- 1. $S_n(x)$ $(n = 1, 2, \cdots)$ 在 [a, b] 上有连续的导函数.
- 2. $\{S_n(x)\}$ 在 [a,b] 上点态收敛于 S(x).
- 3. $\{S'_n(x)\}$ 在 [a,b] 上一致收敛于 $\sigma(x)$.

则 S(x) 在 [a,b] 上可导, 且 $\dfrac{\mathrm{d}}{\mathrm{d}x}S(x)=\sigma(x)$. 即

$$rac{\mathrm{d}}{\mathrm{d}x}\lim_{n o\infty}S_n(x)=\lim_{n o\infty}rac{\mathrm{d}}{\mathrm{d}x}S_n(x).$$

定理 10.2.6' (逐项求导定理) 设函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 满足

- 1. $u_n(x)$ $(n = 1, 2, \cdots)$ 在 [a, b] 上有连续的导函数.
- 2. $\sum_{n=1}^{\infty}u_n(x)$ 在 [a,b] 上点态收敛于 S(x).
- 3. $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 上一致收敛于 $\sigma(x)$.

则 S(x) 在 [a,b] 上可导, 且

$$rac{\mathrm{d}}{\mathrm{d}x}\sum_{n=1}^{\infty}u_n(x)=\sum_{n=1}^{\infty}rac{\mathrm{d}}{\mathrm{d}x}u_n(x).$$

定理 10.2.7 (Dini 定理) 设函数序列 $|S_n(x)|$ 在闭区间 [a,b] 上点态收敛于 S(x), 如果

- 1. $S_n(x)$ $(n=1,2,\cdots)$ 在 [a,b] 上连续.
- 2. S(x) 在 [a,b] 上连续.
- 3. $\{S_n(x)\}$ 关于 n 单调.

则 $[S_n(x)]$ 在 [a,b] 上一致收敛于 S(x).

定理 10.2.7' 设函数项级数 $\sum_{n=1}^{\infty}u_n(x)$ 在闭区间 [a,b] 上点态收敛于 S(x), 如果

- 1. $u_n(x)$ $(n=1,2,\cdots)$ 在 [a,b] 上连续
- 2. S(x) 在 [a,b] 上连续.
- 3. 对任意固定的 $x\in [a,b]$, $\displaystyle\sum_{n=1}^{\infty}u_n(x)$ 是正项级数或负向级数.

则
$$\sum_{n=1}^{\infty} u_n(x)$$
 在 $[a,b]$ 上一致收敛于 $S(x)$.

处处不可导的连续函数 $f(x) = \sum_{n=0}^{\infty} rac{arphi(10^n x)}{10^n}.$

幂级数

对于幂级数 $\displaystyle\sum_{n=0}^{\infty}a_{n}x^{n}$,令 $\displaystyle A=\overline{\lim_{n o\infty}\sqrt[n]{|a_{n}|}}$,定义 **收敛半径**

$$R=egin{cases} +\infty, & A=0,\ rac{1}{A}, & A\in(0,+\infty),\ 0, & A=+\infty. \end{cases}$$

定理 10.3.1 (Cauchy-Hadamard 定理) 幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 当 |x|< R (R>0) 时绝对收敛; 当 |x|>R 时发散.

定理 10.3.2 (d' Alembert 判別法) 如果对幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 成立

$$\lim_{n o\infty}\left|rac{a_{n+1}}{a_n}
ight|=A,$$

则此幂级数的收敛半径为 $R=rac{1}{A}$.

• 即不等式 $\varliminf_{n \to \infty} \frac{x_{n+1}}{x_n} \le \varliminf_{n \to \infty} \sqrt[n]{x_n} \le \varlimsup_{n \to \infty} \sqrt[n]{x_n} \le \varlimsup_{n \to \infty} \frac{x_{n+1}}{x_n}$ 的推论.

Abel 第一定理 设 $x_0=0$, 如果幂级数在点 ξ 收敛, 则当 $|x|<|\xi|$ 时幂级数绝对收敛. 如果幂级数在点 η 发散, 则当 $|x|>|\eta|$ 时幂级数发散.

定理 10.3.3 (Abel 第二定理) 设幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 的收敛半径为 R, 则

1.
$$\sum_{n=0}^{\infty} a_n x^n$$
 在 $(-R,R)$ 上内闭一致收敛.

$$^{n=0}_{n=0}$$
 2. 若 $\sum_{n=0}^{\infty}a_nx^n$ 在 $x=R$ 收敛, 则它在任意闭区间 $[a,R]\subset (-R,R]$ 上一致收敛.

• 即幂级数在包含于收敛域中的任意闭区间上一致收敛.

定理 10.3.4 (和函数的连续性) 设 $\sum_{n=0}^\infty a_n x^n$ 的收敛半径为 R, 则和函数在 (-R,R) 上连续; 若 $\sum_{n=0}^\infty a_n x^n$ 在 x=R 收敛, 则和函数在 x=R 左连续.

定理 10.3.5 (逐项可积性) 设 a,b 是幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 收敛域中任意二点,则

$$\int_a^b \sum_{n=0}^\infty a_n x^n \,\mathrm{d}x = \sum_{n=0}^\infty \int_a^b a_n x^n \,\mathrm{d}x,$$

且逐项积分所得幂级数与原幂级数具有相同的收敛半径.

• 收敛半径相同, 但收敛域可能扩大.

定理 10.3.6 (逐项可导性) 设 $\sum_{n=0}^{\infty}a_nx^n$ 的收敛半径为 R, 则它在 (-R,R) 上可以逐项求导, 即

$$rac{\mathrm{d}}{\mathrm{d}x}\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}rac{\mathrm{d}}{\mathrm{d}x}a_nx^n=\sum_{n=1}^{\infty}na_nx^{n-1},$$

且逐项求导所得幂级数的收敛半径也是R.

• 收敛半径相同, 但收敛域可能缩小.

Taylor 级数与余项公式

定理 10.4.1 (积分形式的余项公式) 设 f(x) 在 $O(x_0, r)$ 上任意阶可导,则

$$egin{aligned} f(x) &= \sum_{k=0}^n rac{f^{(k)}(x_0)}{k!} (x-x_0)^k + r_n(x), \quad x \in O(x_0,r) \ &r_n(x) &= rac{1}{n!} \int_{x_0}^x f^{(n+1)}(t) (x-t)^n \, \mathrm{d}t \quad ($$
积分形式的余项公式 $) \ &= rac{f^{(n+1)}(x_0 + heta(x-x_0))}{(n+1)!} (x-x_0)^{n+1} \quad \mathrm{(Lagrang } \, \hat{x} \, ar{y} \mathrm{)} \ &= rac{f^{(n+1)}(x_0 + heta(x-x_0))}{n!} (1- heta)^n (x-x_0)^{n+1} \quad \mathrm{(Cauchy } \, \hat{x} \, ar{y} \mathrm{)} \end{aligned}$

定理 10.5.1 (Weierstrass 第一逼近定理) 设 f(x) 在 [0,1] 上连续, 则它的 **Bernstein 多项式** 序列 $\{B_n(f,x)\}$ 在 [0,1] 上一致收敛于 f.

$$B_n(f,x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}$$

Bernstein 多项式的性质

- 1. 线性性: $B_n(\alpha f + \beta g, x) = \alpha B_n(f, x) + \beta B_n(g, x)$.
- 2. 单调性: 若 f(t) > q(t) 恒成立, 则 $B_n(f,x) > B_n(g,x)$

3.
$$B_n(1,x) = 1$$
.

$$B_n(t,x)=rac{1}{n^1}n^{1\over 2}x^{1}.$$
 $B_n(t^2,x)=rac{1}{n^2}(n^2x^2+n^1x^1).$
 $B_n(t^3,x)=rac{1}{n^3}(n^3x^3+3n^2x^2+n^1x^1).$
 $B_n(t^4,x)=rac{1}{n^4}(n^4x^4+6n^3x^3+7n^2x^2+n^1x^1).$
 $B_n(t^5,x)=rac{1}{n^5}(n^6x^6+10n^4x^4+25n^3x^3+15n^2x^2+n^1x^1).$
 $B_n(t^6,x)=rac{1}{n^6}(n^7x^7+15n^6x^6+65n^4x^4+90n^3x^3+31n^2x^2+n^1x^1).$

找到了比较方便的递推式, 希望没有算错

• 可以用有理系数多项式逼近

笔记

•
$$f(x) = x^a (1-x)^b \ (0 < x < 1)$$
 在 $x = \frac{a}{a+b}$ 处取到最值 $\frac{a^a b^b}{(a+b)^{a+b}}$

• 若
$$\sum_{n=1}^\infty a_n$$
, $\sum_{n=1}^\infty b_n$ 和它们的 Cauchy 乘积 $\sum_{n=1}^\infty c_n = \sum_{n=1}^\infty (a_1b_n + a_2b_{n-1} + \cdots + a_nb_1)$ 都收敛,则 $\sum_{n=1}^\infty c_n = \left(\sum_{n=1}^\infty a_n\right) \left(\sum_{n=1}^\infty b_n\right)$.

• 幂级数展开

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^{n}, \quad \begin{cases} x \in (-1,1), & \alpha \leq -1, \\ x \in (-1,1], & -1 < \alpha < 0, \\ x \in [-1,1], & \alpha > 0. \end{cases}$$

$$\sin x = \sum_{n=0}^{\infty} \sin \frac{n\pi}{2} \cdot \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \cos \frac{n\pi}{2} \cdot \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}$$

$$\arcsin x = x + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}, \quad x \in (-1,1)$$

$$\arccos x = \frac{\pi}{2} - \arcsin x, \quad x \in (-1,1)$$

$$\sinh x = \sum_{n=0}^{\infty} \sin^{2} \frac{n\pi}{2} \cdot \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}$$

$$\cosh x = \sum_{n=0}^{\infty} \cos^{2} \frac{n\pi}{2} \cdot \frac{x^{n}}{n!} = 1 + \sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}$$

• 和函数

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n = \left(\sum_{n=0}^{\infty} x^n \right) \left(\sum_{n=1}^{\infty} \frac{x^n}{n} \right) = \frac{1}{1-x} \ln \frac{1}{1-x}$$

$$\sum_{n=1}^{\infty} \frac{t^n}{n^2} = \int_0^t -\frac{\ln(1-u)}{u} \, du$$

• 巴塞尔问题

$$\zeta(2n) = rac{(2\pi)^{2n}(-1)^{n+1}B_{2n}}{2\cdot(2n)!}.$$

例题

1. (不) 一致收敛的例子

1.
$$S_n(x)=x^n$$
 在 $(0,+\infty)$ 不一致收敛于 $S(x)=0$.

2.
$$S_n(x) = \left(1 + rac{x}{n}
ight)^n$$
 在 $[0,a]$ 一致收敛,但在 $[0,+\infty)$ 上不一致收敛.

3. 若
$$\sum_{n=1}^{\infty}a_n$$
 绝对收敛, 则 $\sum_{n=1}^{\infty}a_n\cos nx$ 与 $\sum_{n=1}^{\infty}a_n\sin nx$ 在 $(-\infty,+\infty)$ 上一致收敛.

4.
$$\sum_{n=1}^{\infty} x^{\alpha} \mathrm{e}^{-nx}$$
 在 $[0,+\infty)$ 上当且仅当 $\alpha>0$ 时一致收敛.

5. 若
$$\sum_{n=1}^\infty a_n$$
 收敛, 则 $\sum_{n=1}^\infty a_n x^n$ 在 $[0,1]$ 上一致收敛. 如 $\sum_{n=1}^\infty \frac{(-1)^n}{n^p} x^n$.

6. 设
$$\{a_n\}$$
 单调收敛于 0, 则 $\sum_{n=1}^\infty a_n \cos nx$ 与 $\sum_{n=1}^\infty a_n \sin nx$ 在 $(0,2\pi)$ 内闭一致收敛.

2. 设正项级数
$$\sum_{n=1}^\infty a_n$$
 发散, $A_n=\sum_{k=1}^n a_k$, 且 $\lim_{n\to\infty} \frac{a_n}{A_n}=0$, 则幂级数 $\sum_{n=1}^\infty a_n x^n$ 的收敛半径为 1. (考虑幂级数 $\sum_{n=1}^\infty A_n x^n$ 并用 d' Alembert 判别法)

3. 设
$$P_n(x)=0, P_{n+1}(x)=P_n(x)+rac{x^2-P_n^2(x)}{2}$$
 $(n=0,1,2,\cdots)$, 则 $\{P_n(x)\}$ 在 $[-1,1]$ 上一致收敛于 $|x|$.

第 11 章 Euclid 空间上的极限和连续

Euclid 空间上的距离与极限

向量空间: 定义加法与数乘.

$$\mathbb{R}^n$$
 上的 **内积**: $\langle oldsymbol{x}, oldsymbol{y}
angle = \sum_{k=1}^n x_k y_k.$

- 1. (**正定性**) $\langle {m x}, {m y} \rangle \geq 0$, 而 $\langle {m x}, {m x} \rangle = 0$ 当且仅当 ${m x} = {m 0}$.
- 2. (对称性) $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$.
- 3. **(线性性)** $\langle \lambda m{x} + \mu m{y}, m{z}
 angle = \lambda \, \langle m{x}, m{z}
 angle + \mu \, \langle m{y}, m{z}
 angle.$
- 4. (Schwarz 不等式) $\langle \boldsymbol{x}, \boldsymbol{y} \rangle^2 \leq \langle \boldsymbol{x}, \boldsymbol{x} \rangle \langle \boldsymbol{y}, \boldsymbol{y} \rangle$.

定义 11.1.1 距离
$$|m x-m y|=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\cdots+(x_n-y_n)^2}$$
. Euclid 范数 $\|m x\|=\sqrt{\langle m x,m x
angle}$.

定理 11.1.1 距离满足一下性质:

- 1. (**正定性**) $|x y| \ge 0$, 当且仅当 x = y 时取等.
- 2. (**对称性**) |x-y| = |y-x|.
- 3. (**三角不等式**) $|x-z| \leq |x-y| + |y-z|$.

领域, 极限, 收敛, 发散, 有界集.

开集与闭集

以邻域 $O({m x},\delta)$ 判断: 内点, 内部 S^o , 外点, 边界点, 边界 ∂S , 孤立点, 聚点.

定理 11.1.2
$$\lim_{k o\infty}m{x}_k=m{a}$$
 \Leftrightarrow $\lim_{k o\infty}x_i^{(k)}=a_i\ (i=1,2,\cdots,n).$

定理 11.1.3 $m{x}$ 是点集 $S\subset \mathbb{R}^n$ 的聚点的充要条件是: 存在点列 $\{m{x}_k\}$ 满足 $m{x}\in S, \, m{x}_k
eq m{x}$,使得 $\lim_{k o\infty}m{x}_k = m{x}$.

定义 11.1.5 设 $S \in \mathbb{R}^n$ 上的点集, 若 S 中的每一个点都是它的内点, 则称 S 为 **开集**; 若 S 中包含了它的所有聚点, 则称 S 为 **闭集**. S 与它的聚点全体 S' 的并集称为 S 的 **闭包**, 记为 \overline{S} .

定理 11.1.4 \mathbb{R}^n 上的点集 S 为闭集的充要条件是 S^c 是开集.

引理 11.1.1 (De Morgan 公式) 设 $\{S_{\alpha}\}$ 是 \mathbb{R}^n 中的一组 (有限或无限多个) 子集, 则

1.
$$\left(\bigcup_{\alpha} S_{\alpha}\right)^{c} = \bigcap_{\alpha} S_{\alpha}^{c}$$
.
2. $\left(\bigcap_{\alpha} S_{\alpha}\right)^{c} = \bigcup_{\alpha} S_{\alpha}^{c}$.

定理 11.1.5

- 1. 开集之并是开集.
- 2. 闭集之交是闭集.
- 3. 有限个开集之交是开集.
- 4. 有限个闭集之并是闭集.
- 开集与并集之差是开集,并集与开集之差是并集.

定理 11.1.6 (闭矩形套定理) 设 $\Delta_k=[a_k,b_k] imes[c_k,d_k]$ $(k=1,2,\cdots)$ 是 \mathbb{R}^2 上一列闭矩形, 如果

1.
$$\Delta_{k+1}\subset\Delta_k$$
.
2. $\sqrt{(b_k-a_k)^2+(d_k-c_k)^2} o 0\ (k o\infty)$.

则存在唯一的点 $oldsymbol{a}=(\xi,\eta)\inigcap_{k=1}^n\Delta_k$, 且

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = \xi, \quad \lim_{k \to \infty} c_k = \lim_{k \to \infty} d_k = \eta.$$

定理 11.1.6' (Cantor 闭区域套定理) 设 $\{S_k\}$ 是 \mathbb{R}^n 上的非空闭集序列, 满足

$$S_1\supset S_2\supset\cdots\supset S_k\supset S_{k+1}\supset\cdots,$$

以及 $\lim_{k o \infty} \operatorname{diam} S_k = 0$,则存在唯一点属于 $\bigcap_{k=1}^\infty S_k$. 其中

$$\operatorname{diam} S = \sup \{ |\boldsymbol{x} - \boldsymbol{y}| \mid \boldsymbol{x}, \boldsymbol{y} \in S \},\$$

称为S的直径.

定理 11.1.7 (Bolzano—Weierstrass 定理) \mathbb{R}^n 上的有界点列 $\{x_k\}$ 中必有收敛子列.

推论 11.1.1 \mathbb{R}^n 上的有界无限点集至少有一个聚点.

定义 11.1.6 若 \mathbb{R}^n 上的点列 $\{x_k\}$ 满足:

$$orall arepsilon > 0, \exists K \in \mathbb{N}^+, orall k, l > K: |oldsymbol{x}_l - oldsymbol{x}_k| < arepsilon,$$

则称 $\{x_k\}$ 为 基本点列 (或 Cauchy 点列).

定理 11.1.8 (Cauchy 收敛原理) \mathbb{R}^n 上的点列 $\{x_k\}$ 收敛的充要条件是: $\{x_k\}$ 为基本点列.

定义 11.1.7 设 S 为 \mathbb{R}^n 上的点集,如果 \mathbb{R}^n 中的一组开集 $\{U_\alpha\}$ 满足 $\bigcup_\alpha U_\alpha \supset S$,那么称 $\{U_\alpha\}$ 为 S 的一个 **开覆盖**. 如果 S 的任意一个开覆盖 $\{U_\alpha\}$ 中总存在一个有限子覆盖,即存在 $\{U_\alpha\}$ 中的有限个开集 $\{U_{\alpha_i}\}_{i=1}^P$ 满足 $\bigcup_{i=1}^P U_{\alpha_i} \supset S$,则称 S 为 **紧集**.

定理 11.1.9 (Heine—Borel **定理**) \mathbb{R}^n 上的点集 S 是紧集的充要条件为: 它是有界闭集.

• 紧集之交与紧集之并仍是紧集.

定理 11.1.10 设 $S \in \mathbb{R}^n$ 上的点集, 那么以下三个命题等价:

- 1. S 是有界闭集.
- 2. S 是紧集.
- 3. S 的任一无限子集在 S 中必有聚点.
- Euclid 空间上的基本定理: Cantor 闭区间套定理、Bolzano—Weierstrass 定理、Cauchy 收敛原理和 Heine—Borel 定理,它们是相互等价的.

n 重极限, 累次极限

- 二次极限存在,二重极限不一定存在.
- 二重极限存在, 二次极限可能都存在, 可能有一个不存在, 也可能都不存在.
- 两个极限运算不一定可以交换次序.

定理 11.2.1 若二元函数 f(x,y) 在 (x_0,y_0) 点存在二重极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A$, 且当 $x\neq x_0$ 时存在极限 $\lim_{y\to y_0}f(x,y)=\varphi(x)$, 那么

$$\lim_{x o x_0}\lim_{y o y_0}f(x,y)=\lim_{n o\infty}arphi(x)=\lim_{(x,y) o(x_0,y_0)}f(x,y)=A.$$

- 注意条件是二重极限存在.
- 若二重极限和两个二次极限都存在,则极限运算可以交换次序.

向量值函数 (多元函数组)

定理 11.2.3 如果 g 在 D 上连续, f 在 Ω 上连续, 那么复合映射 $f \circ g$ 在 D 上连续.

• $f + g = \langle f, g \rangle$ 也是连续的. 注意到

$$|\langle f(x), g(x) \rangle - \langle f(x_0), g(x_0) \rangle| = |\langle f(x) - f(x_0), g(x) \rangle + \langle f(x_0), g(x) - g(x_0) \rangle|.$$

连续,一致连续.

定理 11.3.1 连续映射将紧集映射称紧集.

定理 11.3.2 (有界性定理) 设 $K \in \mathbb{R}^n$ 中的紧集, $f \in K$ 上的连续函数, 则 f 在 K 上有界.

定理 11.3.3 (最值定理)

定理 11.3.4 (一致连续性定理) 设 K 是 \mathbb{R}^n 中的紧集, $f: K \to \mathbb{R}^m$ 为连续映射, 则 f 在 K 上一致连续.

定义 11.3.3 设 $S \in \mathbb{R}^n$ 中的点集, 若连续映射 $\gamma:[0,1] \to \mathbb{R}^n$ 的值域全部落在 S 中, 即 $\gamma([0,1]) \subset S$, 则称 γ 为 S 中的 **道路**, $\gamma(0)$ 与 $\gamma(1)$ 分别称为道路的 **起点** 与 **终点**.

若 S 中任意两点之间都存在道路, 则称 S 是 (道路) 连通 的, 且称为 连通集.

连通的开集称为 (开) 区域, 其闭包称为 闭区域.

定理 11.3.5 连续映射将连通集映射成连通集.

推论 11.3.1 连续函数将连通的紧集映射成闭区间.

定理 11.3.6 (中间值定理)

笔记

- 内部 S^o , 边界 ∂S , 聚点集 S'. 闭包 \overline{S} .
- 开集的所有点都是聚点.
- 所有内点组成的点集是开集.
- 闭包是闭集.
- 由 $\sum_{i=1}^{n} (a_i tb_i)^2 \geq 0$ 可推出:

$$\sqrt{\sum_{i=1}^n(a_i+b_i)^2}\leq\sqrt{\sum_{i=1}^na_i^2}+\sqrt{\sum_{i=n}^nb_i^2}.$$

• 设 $f:\mathbb{R}^n \to \mathbb{R}^m$ 为连续映射, 则对于 \mathbb{R}^n 中的任意子集 A 成立

$$f(\overline{A}) \subset \overline{f(A)}.$$

• 设 f 是有界开区域 $D\subset\mathbb{R}^2$ 上的一致连续函数, 则可将 f 连续延拓到 D 的边界上, 且 f 在 D 上有 界.

例题

1. 设二元函数 f(x,y) 在开集 $D\subset\mathbb{R}^2$ 内对于变量 x 是连续的, 对于变量 y 满足 Lipschitz 条件:

$$|f(x, y') - f(x, y'')| \le L |y' - y''|,$$

其中 L 为 Lipschitz 常数, 则 f(x,y) 在 D 上连续.