Formelsprache und stöchiometrisches Rechnen am Beispiel des Thermitversuchs:

- 3. Erläutere, was die Verhältnisformeln Fe_2O_3 und Al_2O_3 über die Zusammensetzung des Stoffes auf der Teilchenebene aussagen (\rightarrow S. 94).
- 4. Welche Informationen sind aus dieser Reaktionsgleichung herauszulesen? (S. 100)

$$Fe_2O_3 + 2 AI \longrightarrow 2 Fe + AI_2O_3$$

Lösung:

3. Fe₂O₃: Der Stoff besteht aus Eisenionen und Sauerstoffionen. Diese liegen im gesamten Stoff im Anzahlverhältnis 2:3 vor.

Al₂O₃: Der Stoff besteht aus Aluminiumionen und Sauerstoffionen. Diese liegen im Anzahlverhältnis 2:3 vor.

4. Eine Ionengruppe Fe₂O₃ reagiert mit 2 Al-Atomen zu 2 Fe-Atomen und einer Ionengruppe Al₂O₃ (Teilchenebene) 1 mol Ionengruppen Fe₂O₃ reagiert mit 2 mol Al-Atomen zu 2 mol Fe-Atomen und 1 mol Ionengruppen Al₂O₃ (Stoffebene)

Merke:

1mol ist die Anzahl von 6·10²³ (600 Trilliarden) Ionengruppen, Atomen oder Molekülen. Das sind so viele Teilchen, dass sie von uns als Stoff gesehen werden können.

Formelsprache und stöchiometrisches Rechnen am Beispiel des Thermitversuchs:

- 5a. Wie viele Atome enthalten 2,5 mol Eisen? Was wiegt der Stoff dann (Masse in Gramm)?
- b. Wie viele Ionengruppen enthalten 4 mol Aluminiumoxid (Al₂O₃)? Welche Masse hat der Stoff in Gramm?
- \rightarrow hierzu musst du wissen, wie viel 1 mol des Stoffes wiegen. Das findest du mithilfe des Periodensystems und dem Bestimmen der molaren Masse M heraus (\rightarrow S. 129, Kasten).

Lösung:

- 5a. 2,5 mol Eisen enthalten 2,5 ⋅ 6⋅10²³ Eisenatome (das sind 1500 Trilliarden Atome!)
 1 mol Eisenatome wiegen 55,85g (= molare Masse, aus dem PSE bei Atommasse abzulesen)
 2,5 mol Eisenatome wiegen 2,5 ⋅ 55,85g = 139,6 g (= Masse der Stoffportion Eisen)
- b. 4 mol Aluminiumoxid enthält 4 · 6·10²³ Ionengruppen Al₂O₃ (das sind 2400 Trilliarden Ionengruppen!).
 Diese enthalten dann 2 · 4 · 6·10²³ Aluminiumionen und 3 · 4 · 6·10²³ Sauerstoffionen.
 1 mol Al₂O₃ wiegen 101,9g (= molare Masse, wird berechnet: 2·Atommasse von Al + 3·Atommasse von O,)
 4 mol Al₂O₃ wiegen 4 · 101,9g = 407,7 g (= Masse der Stoffportion Aluminiumoxid)