

MATH - 1

B4

DR. ADEL MORAD

Aims and Objectives

- (1) Learn the definite and indefinite integrals.
- (2) Understand the methods of evaluating integrals.
- (3) Apply rules of integrals.
- (4) Have a strong intuitive feeling for these important concepts.

Exact Value Of Definite Integral:

Definition (4.4):

If
$$c > d$$
, then $\int_{c}^{d} f(x) dx = -\int_{d}^{c} f(x) dx$

Definition (4.5):

If
$$f(a)$$
 exists, then $\int_{a}^{a} f(x) dx = 0$

Theorem (4.4):
$$\int_{a}^{b} k dx = k (b - a)$$

Theorem(4.5): If f is integrable on [a, b] and k is

any real umber, then kf is integrable on [a, b] and

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

Theorem (4.6):

If f and are integrable on [a, b], then f + g and f - g are integrable on [a, b]

and
$$i \int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

 $ii \int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$

Theorem (4.7):

If a < c < b, and if f is integrable on both [a,c] and [c,b], then f is integrable on [a,b] and

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Example 5:

1-
$$\int_{-2}^{3} 7dx$$

Solution:

Using Theorem(4.5)

$$\int_{-2}^{3} 7 dx = 7[3 - (-2)] = 7(5) = 35$$

Example 6:

2-
$$\int_{-1}^{1} dx = 1 - (-1) = 2$$

The mean value theorem:

If f is continuous on a closed interval [a, b], then there is a number z in the open interval (a, b) such that $\int_{a}^{b} f(x) dx = f(z)(b-a)$

Let f(u) = m and f(v) = M, where u and v are in [a, b] since f is not a constant function m < f(x) < M, for some x in [a, b]

$$\int_{a}^{b} m dx < \int_{a}^{b} f(x) dx < \int_{a}^{b} M dx$$

Employing theorem

$$m(b-a) < \int_{a}^{b} f(x) dx < M(b-a)$$

Dividing by b = a and replacing m and M by f(u) and f(v),

$$f(z) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Multiplying both sides by b-a gives us the conclusion of the theorem.

Example 8:

It can proved that $\int_{0}^{3} [4 - (x^{2}/4)] dx = \frac{39}{4}$. Find a number that satisfies the conclusion of the mean value theorem for this integral.

Solution:

of theorem.

According to the mean value theorem for definite integrals, there is a number z between 0 and 3

such that
$$\int_{0}^{3} (4 - \frac{x^{2}}{4}) dx = (4 - \frac{z^{2}}{4})(3 - 0)$$

Or, equivalently,
$$\frac{39}{4} = (\frac{16 - z^2}{4})(3)$$

Multiplying both sides of the last equation by $\frac{4}{3}$ leads to $13 = 16 - z^2$ and, therefore, $z^2 = 3$. Consequently, $\sqrt{3}$ satisfies the condition

Area Under a Straight-Line Segment

Tabulation of Integrals

$$F(x) = \int f(x) dx$$

$$I = \int_{a}^{b} f(x) dx$$

$$I = F(x)\Big]_a^b = F(b) - F(a)$$

Table 1. Common Integrals.

f(x)	$F(x) = \int f(x)dx$	Integral Number
af(x)	aF(x)	I-1
u(x) + v(x)	$\int u(x)dx + \int v(x)dx$	I-2
а	ax	I-3
$x^n \qquad (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	I-4
e^{ax}	$\frac{e^{ax}}{a}$	I-5
$\frac{1}{x}$	ln x	I-6
sin ax	$-\frac{1}{a}\cos ax$	I-7
cos ax	$\frac{1}{a}\sin ax$	I-8
$\sin^2 ax$	$\frac{1}{2}x - \frac{1}{4a}\sin 2ax$	I-9

$\cos^2 ax$	$\frac{1}{2}x + \frac{1}{4a}\sin 2ax$	I-10
x sin ax	$\frac{1}{a^2}\sin ax - \frac{x}{a}\cos ax$	I-11
$x\cos ax$	$\frac{1}{a^2}\cos ax + \frac{x}{a}\sin ax$	I-12
sin ax cos ax	$\frac{1}{2a}\sin^2 ax$	I-13
$\sin ax \cos bx$ for $a^2 \neq b^2$	$-\frac{\cos(a-b)x}{2(a-b)} - \frac{\cos(a+b)x}{2(a+b)}$	I-14
xe^{ax}	$\frac{e^{ax}}{a^2}(ax-1)$	I-15
$\ln x$	$x(\ln x-1)$	I-16
$\frac{1}{ax^2 + b}$	$\frac{1}{\sqrt{ab}} \tan^{-1} \left(x \sqrt{\frac{a}{b}} \right)$	I-17

Example 1.

$$y = 12e^{4x}$$

$$z = \int 12e^{4x} dx = 12\frac{e^{4x}}{4} + C$$

$$= 3e^{4x} + C$$

Example 2.

$$y = 6x^{2} + \frac{3}{x}$$

$$z = \int \left(6x^{2} + \frac{3}{x}\right) dx$$

$$= \int 6x^{2} dx + \int \frac{3}{x} dx$$

$$= \frac{6x^{3}}{3} + 3\ln x + C$$

$$= 2x^{3} + 3\ln x + C$$

Example 3.

$$I = \int_0^{\pi} \sin x dx$$

$$I = \int_0^{\pi} \sin x dx = -\cos x \Big]_0^{\pi}$$
$$= -\cos \pi - (-\cos 0)$$
$$= -(-1) - (-1) = 2$$

THANK YOU