

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Floating-point numbers and arithmetic

Slides adapted by: Sparsh Mittal

Quick Summary

Dally, High Performance Hardware for Machine Learning, NIPS'2015

A Brief Guide to Floating Point Formats

fp32: Single-precision IEEE Floating Point Format

Range: ~1e-38 to ~3e38

fp16: Half-precision IEEE Floating Point Format

Range: ~5.96e-8 to 65504

bfloat16: Brain Floating Point Format

Range: ~1e⁻³⁸ to ~3e³⁸

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Why it is called single/double precision

- The precision indicates the number of decimal digits that are correct, i.e. without any kind of representation error or approximation. In other words, it indicates how many decimal digits one can safely use.
- The number of decimal digits which can be safely used:
- single precision: log₁₀(2²⁴), which is about 7~8 decimal digits
- double precision: log₁₀(2⁵³), which is about 15~16 decimal digits

- A floating-point variable can represent a wider range of numbers than a <u>fixed-point</u> variable of the same bit width at the cost of precision.
- A <u>signed</u> 32-bit <u>integer</u> variable has a maximum value of $2^{31} 1 = 2,147,483,647$, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of $(2 2^{-23}) \times 2^{127} \approx 3.4028235 \times 10^{38}$.

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000....00

Floating-Point Example

What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Denormal Numbers

Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$\mathbf{x} = (-1)^{S} \times (0 + \text{Fraction}) \times 2^{-126}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision

Denormal Numbers

- * Smallest +ve normal number: 2⁻¹²⁶
- * Largest denormal number :

*
$$0.11...11$$
 * $2^{-126} = (1 - 2^{-23}) * 2^{-126}$
* $= 2^{-126} - 2^{-149}$

Example

Find the ranges of denormal numbers.

Answer

- For positive denormal numbers, the range is $[2^{-149}, 2^{-126} 2^{-149}]$
- For negative denormal numbers, the range is $[-2^{-149}, -2^{-126} + 2^{-149}]$

Denormal Numbers on Number Line

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Special FP Numbers

E	M	Value	
255	0	∞ if $S=0$	
255	0	$-\infty$ if $S=1$	
255	≠ 0	NAN(Not a number)	
0	0	0	
0	≠ 0	Denormal number	

$$*$$
 NAN + $x = NAN$

$$1/0 = \infty$$

$$* 0/0 = NAN$$

$$* sin^{-1}(5) = NAN$$

Some possible pitfalls in use of FP arithmetic

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - \blacksquare 11111011₂ >> 2 = 11111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

FP addition and multiplication

FP Addition (Base 10)

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $\mathbf{9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1}$
- 3. Normalize result & check for over/underflow
 - \bullet 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^2

FP Addition (Base 2)

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$
 - Above is same as (0.5 + -0.4375)
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - \bullet 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - \bullet 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - 1.110₂ × 2⁻³ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - 1.110₂ × 2⁻³ (no change)
- 5. Determine sign: +ve x −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

Further study

- https://blog.demofox.org/2017/11/21/floating-point-precision/
- https://stackoverflow.com/questions/42204
 17/print-binary-representation-of-a-floatnumber-in-c