Teste Computacional 2025/1

Objetivos 1

Implementar um código, em python, que faça um ajuste de função $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$, isto é, um ajuste linear, a um conjunto de dados no \Re^3 , sem usar as bibliotecas/pacotes de ajuste existentes que fazem essa tarefa.

$\mathbf{2}$ O Método dos mínimos quadrados para o ajuste linear

Seja dado um conjunto de pontos no \Re^3 : D= $((x_1^1, x_2^1, y^1), (x_1^2, x_2^2, y^2), \cdots, (x_1^n, x_2^n, y^n))$. É possível, usando o método dos mínimos quadrados, ajustar uma função linear, a esse conjunto de pontos, de forma a prever o valor de y para um par de valores (x_1, x_2) onde a imagem y não é

O método ajusta uma função do tipo $f(x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$, de forma a tornar mínima a soma dos quadrados dos resíduos, ou seja,

$$Min(\sum_{k=1}^{n} (r^k)^2)$$

onde o resíduo, em um ponto k da base, é

$$r^k = f(x_1^k, x_2^k) - y^k$$

ou, mais especificamente, para esse caso,

$$r^k = ((\beta_0 + \beta_1 x_1^k + \beta_2 x_2^k) - y^k)$$

Ao fazer os cálculos para obtenção do ponto de mínimo, chega-se ao seguinte sistema linear:

$$\begin{bmatrix} \sum\limits_{k=1}^{n}g_{0}^{k}g_{0}^{k} & \sum\limits_{k=1}^{n}g_{0}^{k}g_{1}^{k} & \sum\limits_{k=1}^{n}g_{0}^{k}g_{2}^{k} \\ \sum\limits_{k=1}^{n}g_{1}^{k}g_{0}^{k} & \sum\limits_{k=1}^{n}g_{1}^{k}g_{1}^{k} & \sum\limits_{k=1}^{n}g_{1}^{k}g_{2}^{k} \\ \sum\limits_{k=1}^{n}g_{2}^{k}g_{0}^{k} & \sum\limits_{k=1}^{n}g_{2}^{k}g_{1}^{k} & \sum\limits_{k=1}^{n}g_{2}^{k}g_{2}^{k} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{bmatrix} = \begin{bmatrix} \sum\limits_{k=1}^{n}g_{0}^{k}y^{k} \\ \sum\limits_{k=1}^{n}g_{1}^{k}y^{k} \\ \sum\limits_{k=1}^{n}g_{2}^{k}y^{k} \end{bmatrix}$$

 $g_0^k = 1$, $g_1^k = x_1^k$ e $g_2^k = x_2^k$. Obs: está sendo usado o índice k, para se referir a um k^{simo} ponto e não à potenciação. Por exemplo y^k se refere a um k^{simo} ponto y e (x_1^k, x_2^k) se refere ao k^{simo} par da base de dados.

3 Problemas a serem tratados

Fazer o ajuste de uma função do tipo $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$, para os problemas relatados a seguir. O ajuste deve ser feito montando o sistema linear, resultante da minimização da soma dos quadrados dos resíduos conforme descrito acima, e resolvendo o sistema usando, no seu código, a função chamada "Eliminação de Gauss com pivoteamento(n, A, b)"fornecida.

Base de dados entre altura dos pais e altura do(a) filho(a) 3.1

Estão sendo fornecidas bases de dados com informações sobre a altura de um filho(a) - quando ele(a) está adulto(a) - e as alturas de seus pais (altura do pai, a altura da mãe). Por exemplo, as 5 primeiras linhas de uma das bases têm os seguintes dados:

```
1.813,1.629,1.727
1.825,1.617,1.617
1.593,1.617,1.495
1.691,1.629,1.678
1.781,1.691,1.715
```

A 1^a coluna (informação) se refere à altura do pai, a 2^a à altura da mãe e a 3^a à altura do filho (ou da filha, a depender da base). Há 2 bases distintas para as meninas e outras 2 bases (também distintas), com os dados para os meninos. A turma da Engenharia Elétrica deve usar as bases com os dados das meninas e a turma da Matemática deve usar os dados dos meninos.

3.2 Ajuste para uma base de dados gerada pelo grupo

Gere uma base de dados, com 25 pontos, de tal forma que a relação entre x_1, x_2 e y seja aproximadamente linear. Faça, em seguida, com esses dados, o ajuste.

Essa base deve conter pontos distintos no plano.

4 Menu de entrada e valores de saída

Seu programa deve exibir, na tela, um menu para o usuário, similar ao mostrado abaixo: Digite uma opção:

- 1 Fazer o ajuste com a base de dados 1.
- 1 Fazer o ajuste com a base de dados 2.
- 3 Fazer o ajuste com a base inventada pelo grupo.
- 0 Sair

Escolha:

5 Relatório

Além de me enviar o script (o código), será preciso fazer um breve relatório do que foi feito e exibindo os resultados obtidos. Para fazer este relatório, siga, aproximadamente, os seguintes passos:

- 1. Introdução: apresentar uma síntese do trabalho (o que se propõe, o que foi feito).
- 2. Problemas tratados:
 - 1) Apresentar o problema 1 e mostrar a função ajustada.
 - 2) Apresentar o problema 2 e mostrar a função ajustada.
 - 3) Apresentar o problema 3 e mostrar a função ajustada.
- 3. Conclusões

6 Condições de entrega

Este trabalho deverá ser realizado em grupos de, no máximo, 3 alunos/as. Entregar o código e o relatório.

Obs: Escreva os nomes dos componentes no código principal do seu programa.