$(A,+,\cdot)$ を可換環とし、I を A のイデアルとする。この時、 $\mathrm{Jac}(I)$ とは全ての I を含む A の極大イデアルの共通部分である。

1. Jac(I) が A のイデアルであることを示せ。

.....

Jac(I) は次のような集合である。

$$\operatorname{Jac}(I) = \bigcap_{m \in M_I} m, \qquad M_I = \{ m \subset A \mid m \supset I となる極大イデアル \}$$
 (1)

 $a,b\in\operatorname{Jac}(I)$ とすると全ての $m\subset M_I$ に対して、 $a,b\in m$ である。よって、 $-a,a+b,ab\in m$ となるので、 $-a,a+b,ab\in\operatorname{Jac}(I)$ である。

また、 $I \subset \operatorname{Jac}(I)$ より、 $0 \in \operatorname{Jac}(I)$ である。

 $c \in A$ について $ca \in m$ である為、 $ca \in \operatorname{Jac}(I)$ である。

 $\operatorname{Can}(I)$ は A のイデアルである。

2. $n=p_1^{a_1}\dots p_k^{a_k}$ を $n\in\mathbb{Z}_{>1}$ の素因数分解とする。ただし、 $a_i\in\mathbb{Z}_{\geq 1}$ $(1\leq i\leq k)$ とする。 \mathbb{Z} のイデアル $(n)=n\mathbb{Z}$ に対して、 $\mathrm{Jac}(n\mathbb{Z})$ を求めよ。

.....

環 \mathbb{Z} の極大イデアルは素数pによって生成されるイデアル $(p) = p\mathbb{Z}$ である。 イデアル(n)を含む極大イデアルは素数から生成されるイデアルなので、 $(p_1), \ldots, (p_k)$ である。

よって、 $Jac(n\mathbb{Z})$ は次のようなイデアルとなる。

$$\operatorname{Jac}(n\mathbb{Z}) = \bigcap_{i=1}^{k} (p_i) = \bigcap_{i=1}^{k} p_i \mathbb{Z}$$
 (2)