Discrete Fourier Transform (DFT)

Let f(x) be periodic, for simplicity of Period 1. We assume that N measurements of f(x) are taken over the interval $0 \le x \le 1$ at regularly spaced points

$$x_k = \frac{k}{N} \qquad \qquad k = 0, 1, 2, \dots, N - 1$$

We now want to determine a complex trigonometric polynomial

$$q(x) = \sum_{n=0}^{N-1} c_n e^{i2\pi nx}$$

that interpolates f(x) at the nodes x_k , that is, $q(x_k) = f(x_k)$. Denoting $f(x_k)$ with f_k ,

$$f_k = f(x_k) = q(x_k) = \sum_{n=0}^{N-1} c_n e^{i2\pi n x_k}$$
$$k = 0, 1, 2, \dots, N-1$$

cf.
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i2\pi nx}$$

$$e^{ix} = \cos x + i \sin x$$

The coefficients are determined by using the orthogonality of the trigonometric system.

$$f_k = \sum_{n=0}^{N-1} \frac{1}{c_n} e^{i2\pi n x_k}$$
 \checkmark Multiply f_k by $e^{-i2\pi m x_k}$ and sum over k from 0 to $N-1$ \checkmark Interchange the order of the two summations \checkmark Replacing x_k with k/N

$$\sum_{k=0}^{N-1} f_k e^{-i2\pi m x_k} = \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} c_n e^{i2\pi (n-m)x_k} = \sum_{n=0}^{N-1} c_n \sum_{k=0}^{N-1} e^{i(n-m)2\pi k/N}$$

$$e^{i(n-m)2\pi k/N} = \left[e^{i(n-m)2\pi/N}\right]^k = r^k \qquad r = e^{i(n-m)2\pi/N}$$

For
$$n=m$$

$$r^k=(e^0)^k=1^k=1$$

$$\sum_{k=0}^{N-1}r^k=N$$
 Sum of a geometric series
$$S_n=a+ar+ar^2+\cdots+ar^{n-1}$$

$$=\frac{a(1-r^n)}{1-r} \qquad r\neq 1$$

or
$$n \neq m$$

$$r \neq 1 \qquad \sum_{k=0}^{N-1} r^k = \frac{1 - r^N}{1 - r} = 0$$

$$r^{N} = e^{i(n-m)2\pi N/N} = e^{i(n-m)2\pi}$$

= $\cos(n-m)2\pi + i\sin(n-m)2\pi = 1 + 0 = 1$

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

= $\frac{a(1-r^n)}{1-r}$ $r \neq 1$

$$\sum_{k=0}^{N-1} f_k e^{-i2\pi m x_k} = \sum_{n=0}^{N-1} c_n \sum_{k=0}^{N-1} e^{i(n-m)2\pi k/N} = c_0 0 + c_1 0 + \dots + c_m N + \dots + c_{N-1} 0$$

$$c_m = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-i2\pi m x_k}$$

Replacing m with n,

$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k} f_k = f(x_k)$$

$$n = 0, 1, 2, \dots, N-1$$

$$\sum_{k=0}^{N-1} r^k = N \qquad \text{For } n = m$$

$$\sum_{k=0}^{N-1} r^k = 0 \qquad \text{For } n \neq m$$

$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$
 $f_k = f(x_k)$
$$n = 0, 1, 2, \dots, N-1$$

Discrete Fourier Transform

$$\widehat{f_n} = Nc_n = \sum_{k=0}^{N-1} f_k e^{-inx_k}$$
 $f_k = f(x_k)$ $n = 0, 1, 2, \dots, N-1$

The Discrete Fourier Transform of the given signal $\mathbf{f} = [f_0 \cdots f_{N-1}]^\mathsf{T}$ to be the vector $\hat{\mathbf{f}} = [\hat{f_0} \cdots \hat{f_{N-1}}]$ with components $\widehat{f_n}$

This is the frequency spectrum of the signal.

In vector notation, $\hat{\mathbf{f}} = \mathbf{F}_N \mathbf{f}$, where the $N \times N$ Fourier matrix $\mathbf{F}_N = [e_{nk}]$ has the entries

$$e_{nk} = e^{-i2\pi nx_k} = e^{-i2\pi nk/N} = w^{nk}, \quad w = w_N = e^{-i2\pi/N}$$
 $x_k = \frac{k}{N}$

where $n, k = 0, \dots, N-1$

Example Discrete Fourier Transform (DFT)

Let N = 4 measurements (sample values) be given.

Then
$$w = e^{-i2\pi/N} = e^{-i\pi/2}$$
$$= \cos \pi/2 - i \sin \pi/2$$
$$= -i$$

$$w^{nk} = (-i)^{nk}$$

Then
$$w = e^{-i2\pi/N} = e^{-i\pi/2}$$

$$= \cos \pi/2 - i \sin \pi/2$$

$$= -i$$
and thus
$$w^{nk} = (-i)^{nk}$$

$$\text{Let the sample values be,}$$

$$\text{say } \mathbf{f} = \begin{bmatrix} 0 & 1 & 4 & 9 \end{bmatrix}^{\mathsf{T}}.$$
Then
$$f_0$$

$$f_1$$

$$f_2$$

$$x_0$$

$$x_1$$

$$x_2$$

$$x_3$$

$$f_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\mathbf{f}_n = Nc_n = \sum_{k=0}^{N-1} f_k e^{-i2\pi n x_k}$$

$$\hat{\mathbf{f}} = \mathbf{F}_{4} \mathbf{f} = \begin{bmatrix} w^{0} & w^{0} & w^{0} & w^{0} \\ w^{0} & w^{1} & w^{2} & w^{3} \\ w^{0} & w^{2} & w^{4} & w^{6} \\ w^{0} & w^{3} & w^{6} & w^{9} \end{bmatrix} \mathbf{f} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 4 \\ 9 \end{bmatrix} = \begin{bmatrix} 14 \\ -4 + 8i \\ -6 \\ -4 - 8i \end{bmatrix}$$