MAT220 - Assignment 5 - Loic Dallaire

a) let $c: C \to \mathbb{R}^3$ s.t. $x^2 + y^2 = r^2 \to (x, y, r)$ is a clear bijection $: [C] = [\mathbb{R}^3]$

> let $f:[0,1) \to [0,1) \times [0,1) \times [0,1)$ s.t. $0.a_1b_1c_1a_2b_2c_2\cdots \to (0.a_1a_2\cdots,0.b_1b_2\cdots,0.c_1c_2\cdots)$ is also a bijection.

We showed $[[0,1)] = [[0,1)^3]$ $\therefore [\mathcal{C}] = [\mathbb{R}^3] = [\mathbb{R}]$ $\therefore [\mathcal{C}] = c$

b) We know that \mathbb{Q} is countable. Suppose that \mathbb{I} is also countable: then $\mathbb{Q} \cup \mathbb{I}$ is countable,

but $\mathbb{Q} \cup \mathbb{I} = \mathbb{R}$ which is not countable so we have a contradiction therefore \mathbb{I} is uncountable so $[\mathbb{N}] < [\mathbb{I}]$

We can define $i: \mathbb{I} \to \mathbb{R}$ s.t. $x \to x$. This is obviously an injection so we have that $[\mathbb{N}] < [\mathbb{I}] \leq [\mathbb{R}]$. By the continuum hypothesis we have that $[\mathbb{I}] = [\mathbb{R}] = c$

c) With induction lets show that \mathbb{Z}^n is countable

Base case is \mathbb{Z} which we know to be countable.

Assuming \mathbb{Z}^k is countable for some $k \in \mathbb{N}$, show that \mathbb{Z}^{k+1} is also

 $\mathbb{Z}^{k+1} = \mathbb{Z}^k \times \mathbb{Z}$ and the cartesian product of two countable sets is countable therefore \mathbb{Z}^{k+1} is countable. We have shown \mathbb{Z}^n is countable so $[\mathbb{Z}^n] = \aleph_0$

d) First lets look at $\mathbb{Z}_n[x]$ which is the set of polynomials with integer coefficients of degree n.

define $f: \mathbb{Z}_n[x] \to \mathbb{Z}^{n+1}$

s.t. $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \to (a_0, a_1, a_2, \dots, a_n)$ this is a bijection so $\mathbb{Z}_n[x]$ is countable.

now consider $\bigcup_{i=0}^{\infty} \mathbb{Z}_i[x]$.

this is a countable union of countable sets, and this union is also equivalent to $\mathbb{Z}[x]$ meaning that $\mathbb{Z}[x]$ is countable and therefore $[\mathbb{Z}[x]] = \aleph_0$

2. a) A polynomial of degree d has a countable number of roots d, since $d\in\mathbb{N}$

Define $r : \mathbb{Z}[x] \to \mathcal{P}(\mathcal{A})$ s.t. $p(n) \to \{\text{roots of } p(n)\}$ consider the image of r.

- $\forall x \in \text{IM}(r), x \text{ is a countable set.}$ We also previously showed that $\mathbb{Z}[x]$ is countable so IM(r) is countable. Consider $\bigcup_{i=1}^{\infty} r(x)_i$ to be the union of all sets in IM(r). This is a countable union of countable sets, this is also \mathcal{A} therefore the set of algebraic numbers is countable.
- b) Suppose \mathcal{A}' is countable, take $\mathcal{A} \cup \mathcal{A}'$ which is the set of all numbers. The union of two countable sets is countable but the set of all numbers is not countable so we have a contradiction. therefore the set of transcendent numbers is not countable.
- c) Let $\mathcal{A}_n = \{\mathcal{D} \in \mathcal{P}(\mathbb{N}) : \mathcal{D} \text{ is finite and } |\mathcal{D}| = n\}$ Let \mathbb{N}_o^n be the subset of \mathbb{N}^n s.t. the elements in the tuple are ordered. For example $(1,2,3) \in \mathbb{N}_o^n$ for n=3 but (1,3,2) is not. $\mathbb{N}_o^n \subseteq \mathbb{N}^n : [\mathbb{N}_o^n] = \aleph_0$

We can define a simple bijection:

 $f: \mathcal{A}_n \to \mathbb{N}_o^n$ s.t. $\{a_1, a_2, \cdots, a_n\} \to (a_1, a_2, \cdots, a_n)$ showing that \mathcal{A}_n is countable

let $\mathcal{A} = \bigcup_{i=1}^{\infty} \mathcal{A}_i$. This is a countable union of countable sets which is countable, it is also the set of all finite subsets of \mathbb{N} therefore the set of all finite subsets of \mathbb{N} is countable.

d) The set of all subsets of $\mathbb N$ is simply $\mathcal P(\mathbb N)$ and we know $[\mathcal P(\mathbb N)]=c$ which is not countable.