

CONTENT PAGE.

CHAPTER NUMBER.	NAME OF CHAPTER.	PAGE NO.
01	SETS.	01 - 09.
02	REAL & COMPLEX NUMBER SYSTEM.	10 – 18.
03	EQUATIONS.	19 – 78.
04	MATRICES & DETERMINANTS.	79 – 99.
05	GROUPS.	100 – 109.
06	SEQUENCE & SERIES.	110 – 162.
07	PERMUTATIONS COMBINATIONS & INTRODUCTION TO PROBABILITY.	163 – 197.
08	MATHEMATICAL INDUCTION & BINOMIAL THEOREM.	198– 227.
09	FUNDAMENTALS OF TRIGNOMETRY.	228 – 233.
10	TRIGNOMETRIC IDENTITIES	234 – 247.
11	GRAPHS OF TRIGNOMETRIC FUNCTIONS.	248 – 249.
12	SOLUTION OF TRIANGLES.	250 – 253.
13	INVERSE TRIGNOMETRIC FUNCTIONS & TRIGNOMETRIC EQUATIONS.	254 - 264.

https://stbmathematics.blogspot.com/

EXERCISE NO. = 1.1

Collection of well defined distinct objects is called set.

Ways of describing a set There are three ways to describe a set.

Way of description	Definition	Example The set of natural numbers.	
1.The descriptive Method	In this method the set can be described in words.		
2.The tabular Method	In this method the set is described by listing its elements with in brackets.	Set of natural numbers ={1,2,3,}	
3.Set Builder Method	In this method a symbol or leter is used for an arbitrary member of the set and starting the property common to all the members of the set.	Set of natural numbers $= \{x \mid x \in N\}$	

ORDER OF A SET.

The number of elements present in a set is called order of the set.

Name	Definition	
et of natural numbers or Counting number.	$N = \{1, 2, 3 \dots \}$	
Set of whole numbers	$W = \{0,1,2,3\}$	
et of integers or directed numbers	$Z = \{0, \pm 1, \pm 2, \pm 3, \dots \}$	
Set of positive integers	$Z^+ = \{1, 2, 3,\}$	
Set of negative integers	$Z^- = \{-1, -2, -3, \dots\}$	
Set of odd numbers	<i>O</i> = {1,3,5,}	
Set of even numbers	$E = \{0, 2, 4, \dots\}$	
Set of prime numbers	$P = \{2,3,5,7,11,13,17,19,\}$	
Set of rational numbers	$Q = \left\{ x / x = \frac{p}{q} . p, q \in z.q \neq 0 \right\}$	
Set of irrational numbers	$Q' = \left\{ x / x \neq \frac{p}{q} . p, q \in z.q \neq 0 \right\}$	
Set of real numbers	$R = Q \cup Q'$	

https://stbmathematics.blogspot.com/

TYPES OF SETS (W.R.T THE ORDER).

 Name of the set 	De?~ition —	Example -
1.Finite set	If a set has definite	{1, 2, 3, 10}
	number of elements	
2.Infinite set	If a set has indefinite	N = {1.2.3}
	number of elements	$Z = \{6, \pm 1, \pm 2, \pm 3, \dots\}$
<u> </u>	present in it.	
3.Null set or Empty set	A set having no	Ø=1
or yoid set	element	
Figure 1 as the	It is denoted by ø.	d .
4. Singleton set	A set having only one	17)
	element.	1-9
Equal sets	Two sets A and B are	E / 1 - 2 2
	equal if they have same	If $A = \{c, a, t\} &$
	elements.Order of the	$B = \{a, c, t\}$ then
	elements of the set	A=B.
	does not matter.	J č
6: Equivalent or similar	Two sets A and B are	# 4_#324534
els	equivalent if a one to	If A={1,2,3,4,5}&
	one correspondence	$B = \{a, e, i, o, u\}$ then
	exists between the	$A \sim B \text{ or } A \equiv B$.
	elements of the sets. It	v
	is denoted by	
	$A \sim B \text{ or } A \equiv B$.	
7.Subset	131127	Let A={1,23}&
	A is an element of a set	•
	B, then A is a subset of	$B = \{1, 2, 3, \dots, 10\}$ then
	B written as $A \subseteq B$.	$A \subseteq B$. If a set has n
		elements then it has 2"
	ŧ it	subsets.
3.Superset	If $A \subseteq B$ then B is called	Let A={1,2,3}&
	superset of A.It is	$B = \{1, 2, 3,, 10\}$ then
	denoted by $B \supset A$	$B\supset A$
).Proper subset.	If $A \subseteq B$ and B contains	Let A={1,2,3}&
	at least one element	
	which is not an element	$B = \{1.2.3, \dots, 10\}$ then
	of the set Athen A is	$A \subset B$.
	proper subset of B.	1
0.Improper subset	Every set itself and the	Note: The empty and
	empty set are the	singleton set has to
* · . · · · · · · · · · · · · · · · · ·	subsets of every set.	proper subsets.
	They are calles	proposition subsets.
	improper subsets of a	
Ŷ.	set.	학
A Power set	The collection of all proper and	# A=(1,2) then
	improper subsets of a set A is called power set of A. Denoted	$P(A) = \phi_*(\{1, (21, \{1, 2\})\})$
	PAL.	(1, 2)
		E 3 SPI hon − =
		If a set has n-elements then there are 2' elements in its

Name of the set	Definition	Example
12.Universal set or	The super set of all the	It is denoted by
Universe of Discourse	sets under a particular discussion.	U, E or X.
13.Disjoint sets or	For two sets A and B	Let A={1,2}&B={3,4}
Exclusive sets	If $A \cap B = \phi$.	So $A \cap B = \phi$.
14.Overlapping sets	For two sets A&B if	Let A={1,2}& B={2,3}
	$A \cap B \neq \phi$ but neither	So A&B are
	$A \subseteq B$ nor $B \subseteq A$.	overlapping sets.
15.Cells	If $A \cup B = U$ and $A \cap B = \phi$	Let U={1,2,3}
	then A&B are cells.	A={1,2},B={3}.
16.Exhaustive sets	If $A \cup B = U$ and $A \cap B \neq \emptyset$	Let U={1,2,3}
	Then A&B are	A={1,2},B={2,3}.
	exhaustive sets.	

De Morgan's laws	•	$(i)(A \cup B)' = A' \cap B'$
-		$(ii)\big(A\cap B\big)'=A'\cup B'$

SOME PROPERTIES OF THE SETS.

 $A \cup B = B \cup A$ (Commutative property for the union of two sets.)

 $A \cap B = B \cap A$ (Commutative property for the intersection of two sets.)

 $(A \cup B) \cup C = A \cup (B \cup C)$ (Associative property of union.)

 $(A \cap B) \cap C = A \cap (B \cap C)$ (Associative property of intersection.)

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (Distributive property of union over intersection.)

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive property of intersection over union.)

EXAMPLE FROM THE TEXT BOOK.

1. Verify De Morgan's laws when A={1,2},B={2,3} and U={1,2,3,4}.

Solution: (a)

Solution: (a)
$$(A \cup B) = \{1,2,3\}$$
 So $(A \cup B)' = \{4\}$. Now $A' = \{3,4\}$ and $B' = \{1,4\}$. So $A' \cap B' = \{4\}$. Hence $(A \cup B)' = A' \cap B'$. Now $(A \cap B)' = A' \cup B'$. $(A \cap B) = \{2\}$ So $(A \cap B)' = \{1,3,4\}$. Now $A' = \{3,4\}$ and $B' = \{1,4\}$. So $A' \cup B' = \{1,3,4\}$. Hence $(A \cap B)' = A' \cup B'$.

The elements of S and T are in one-to-one correspondence thus S~T.But the elements of S are not equal to the elements of T. Therefore $S \neq T$.

6. Which of the following sets are null sets?

(i)A= $\{x/x^2 = 16 \text{ and } 2x = 4\}$ (ii)B= $\{x/x+6=6\}$.

(i)As there is no number such that its square is 16 and twice the number is (ii)If $B=\{x/x+6=6\}$ then $B=\{0\}$ So B is not a null set.

7.If A={a,b,d},B={b,c,d}, \cup = {a,b,c,d,e}.Find

(i) $A' = ? A' = \bigcup -A = \{a,b,c,d,e\} - \{a,b,d\} = \{c,e\}$

(ii) $B' = \bigcup -B = \{a, b, c, d, e\} - \{b, c, d\} = \{a, e\}$

(iii) $(A')' = \bigcup -A' = \{a,b,c,d,e\} - \{c,e\} = \{a,b,d\}$ So (A')' = A

(iv) $(A \cup B)' = ? (A \cup B) = \{a,b,d\} \cup \{b,c,d\} = \{a,b,c,d\}$, $(A \cup B)' = \bigcup -(A \cup B) = \{a,b,c,d,e\} - \{a,b,c,d\} = \{e\}$

(v) $(A \cap A')' = ? (A \cap A') = \{a,b,d\} \cap \{c,e\} = \emptyset$, $(A \cap A')' = U - (A \cap A') = \{a, b, c, d, e\} - \phi = \{a, b, c, d, e\}$

(vi) $B' - A' = \{a, c\} - \{c, e\} = \{a\}$

8. Let U be the set of all students of an intermediate science college. (Pre – Medical & Pre - Enginnering)

A the set of all students of first year class.

B the set of all students of second year pre - medical class.

C the set of all students of pre - medical class.

D the set of all students who play cricket.

E the set of all students who put on glasses.

(i)Set of all students of Pre - Engineering class.

(ii)Set of all students of first year pre - medical class.

(iii)Set of all students of first year pre - engineering class.

(iv)Set of all students of second year pre - engineering class who play cricket but do not wear glasses.

Solut set ϕ contains no element so it is the null set.

(0) contains one element, the number 0.

 $\{\phi\}$ contains one element ϕ , the null set

ide which sets are proper subsets of the others.

={t|t is a rectangle}(ii)P={p|p is a parallelogram}

 $S=\{s \mid s \mid s \mid a \mid square\}$ (iv) $X=\{x/x \mid s \mid a \mid q \mid adrilateral\}$

lution, (i) Since every rectangle is a quadrilateral : $T \subset X$ or, T is a proper ubset of X.

ii)Since every parallelogram is a quadrilateral.: $P \subset X$, or P is a proper subset of X.

(iii)Since every square is a rectangle,: $S \subset T$ or S is a proper subset of T.

It is also a parallelogram. So, $S \subset P$ or S is a proper subset of P.

It is also a quadrilateral So, $S \subset X$, or S is a proper subset of X.

(Iv)Since every rectangle is also a parallelogram: $T \subset P$.

Hence $T \subset P, T \subset X, P \subset X, S \subset T, S \subset P$ and $S \subset X$.

3. Write down all the subsets of $\{x, y, z, t\}$ and find the power set of $S = \{4, 1\}$

 $\{z,t\},\{x,y,z\},\{x,y,t\},\{x,z,t\},\{y,z,t\},\{x,y,z,t\}$

The power set of $S = \{4,8,12\}$ is $\{\{\phi,\{4\},\{8\},\{12\},\{4,8\},\{4,12\},\{8,12\},\{4,8\}\}\}$

4.Show that N={1,2,3,....},E={2,4,6,....} and O={1,3,5,....} are equivalent

In sets N and E, the elements of N can be placed in one-to-one correspondence with E.Thus N ~ E.Similarly in set, Eland O the elen nt of E anlaced in one-to-one correspondence with O.Thus set E is iivalent to O or E~O

(ii)If $A \cup B = B$, it implies that $A \subseteq B$ i.e A is a proper subset of B. (iii)If $A' \cap U = U$, it implies that A' = U and if A' = U, then $A = \emptyset$. (iv)If $A \cap B = A$, it implies that $A \subseteq B$ (v)If $B' \subseteq A'$ then $(U-B) \subseteq (U-A)$ or $A \subseteq B$ i.e A is a proper subset of B. 13. Prove that $(i)A \cup B = A \Rightarrow A' \cap B' = A'$ $(ii)A \cap B = A \Rightarrow A' \cup B' = A'$ (i)By De Morgan's law $A' \cap B' = (A \cup B)'$ but $A \cup B = A$ So if $A \cup B = A$ then $A' \cap B' = A'$ (ii) By De Morgan's law $A' \cup B' = (A \cap B)'$ but $A \cap B = A$ So if $A \cap B = A$ then 14.Let A={2,3},B={3,4},C={c,f} and U={2,3,4,c,f}. Find $(i)A \times (B \cup C) = \{2,3\} \times [\{3,4\} \cup \{e,f\}] = \{2,3\} \times \{3,4,e,f\}$ thus $A \times (B \cup C) = \{(2,3), (2,4), (2,e), (2,f), (3,3), (3,4), (3,e), (3,f)\}$ (ii) $A \times (B \cap C) = \{3,4\} \times [\{3,4\} \cap \{e,f\}] = \{3,4\} \times \phi \text{ thus } A \times (B \cap C) = \phi$ $(iii)(A \times B) \cup (A \times C) = \{2,3\} \times \{3,4\} \cup \{2,3\} \times \{e,f\}$ = $\{(2,3),(2,4),(3,3),(3,4)\}\cup\{(2,e),(2,f),(3,e),(3,f)\}$ thus $(A \times B) \cup (A \times C) = \{(2,3), (2,4), (3,3), (3,4), (2,e), (2,f), (3,e), (3,f)\}$ $(iv)(A \times B) \cap (A \times C) = \{(2,3),(2,4),(3,3),(3,4)\} \cap \{(2,e),(2,f),(3,e),(3,f)\}$ thus $(A \times B) \cap (A \times C) = \phi$ 15. For the sets A={2,3},B={3,4},C={4,5} and U={2,3,4,5} , verify that $(i)(A-B)\times C=(A\times C)-(B\times C)$ $L.H.S = (A-B) \times C = [\{2,3\} - \{3,4\}] \times \{4,5\} = \{2\} \times \{4,5\} = \{(2,4),(2,5)\}$ $R.H.S = (A \times C) - (B \times C) = [\{2,3\} \times \{4,5\}] - [\{3,4\} \times \{4,5\}]$ = [(2,4),(2,5),(3,4),(3,5)] - [(3,4),(3,5),(4,4),(4,5)] thus $(A \times C)$ - $(B \times C)$ = $\{(2,4),(2,5)\}$

 $(\times A) - (C \times B)$ (viii) $A - B = A \cap B'$, $L.H.S = A - B = \{2, 3\} - \{3, 4\} = \{2\}$ $R.H.S = A \cap B' = A \cap (U - B) = \{2, 3\} \cap \{\{2, 3, 4, 5\} - \{3, 4\}\} = \{2, 3\} \cap \{2, 5\} = \{2\}$ $\times A$) - $(C \times B) = [\{4,5\} \times \{2,3\}] - [\{4,5\} \times \{3,4\}]$ thus $A-B=A\cap B'$ (4,3),(5,2),(5,3) - $\{(4,3),(4,4),(5,3),(5,4)\}$ = $\{(4,2),(5,2)\}$ = LHS $(ix)A \cap B \subset A \subset A \cup B$ $C \times (A - B) = (C \times A) - (C \times B)$ $A \cap B = \{2,3\} \cap \{3,4\} = \{3\} \subset \{2,3\}$ i.e $A \cap B \subset A$ (iii) $(B \cap C) = (A \times B) \cap (A \times C)$ And $A \cup B = \{2,3\} \cup \{3,4\} = \{2,3,4\} \supset \{2,3\}$ thus $A \cup B \supset A$ or $A \subset A \cup B$ = $A \times (B \cap C)$ = {2,3}×[{3,4} \cap (4,5)] thus $A \times (B \cap C)$ = {2,3}×{4} = {(2,4),(3,4)} $S = (A \times B) \cap (A \times C) = [\{2,3\} \times \{3,4\}] \cap [\{2,3\} \times \{4,5\}]$ $\{2,3\},\{2,4\},\{3,3\},\{3,4\}\} \cap \{\{2,4\},\{2,5\},\{3,4\},\{3,5\}\} = \{\{2,4\},\{3,4\}\} = L.H.S$ 16.If A and B be subsets of a set U, then prove that hus $A \times (B \cap C) = (A \times B) \cap (A \times C)$ $(i)A \cup B = A \cup (A' \cap B).$ $iv)A\times (B\cup C)=(A\times B)\cup (A\times C)$ Taking R.H.S = $A \cup (A' \cap B) = (A \cup A') \cap (A \cup B) \therefore A \cup A' = U$ $LHS = A \times (B \cup C) = \{2,3\} \times [\{3,4\} \cup \{4,5\}] = \{2,3\} \times \{3,4,5\}$ So = $U \cap (A \cup B) = A \cup B = L.H.S$ **So** $A \times (B \cup C) = \{(2,3), (2,4), (2,5), (3,3), (3,4), (3,5)\}$ $(ii)B = (A \cap B) \cup (A' \cap B)$ $R.H.S = (A \times B) \cup (A \times C) = \{(2,3), (2,4), (3,3), (3,4)\} \cup \{(2,4), (2,5), (3,4), (3,5)\}$ $R.H.S = (A \cap B) \cup (A' \cap B) = B \cap (A \cup A') \therefore A \cup A' = U$ So $B \cap U = B = L.H.S$ = {(2,3),(2,4),(2,5),(3,3),(3,4),(3,5)} = LHS Hence $A \times (B \cup C) = (A \times B) \cup (A \times C)$ $(v)A\cup(B\cap C)=(A\cup B)\cap(A\cup C)$ $L.H.S = A \cup (B \cap C) = \{2,3\} \cup [\{3,4\} \cap \{4,5\}] = \{2,3\} \cup \{4\} = \{2,3,4\}$ $R.H.S = (A \cup B) \cap (A \cup C) = [\{2,3\} \cup \{3,4\}] \cap [\{2,3\} \cup \{4,5\}]$ = $\{2,3,4\} \cap \{2,3,4,5\} = \{2,3,4\} = LHS$ thus $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $(vi)A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$ $L.H.S = A \cap (B \cup C) = \{2,3\} \cap [\{3,4\} \cup \{4,5\}] = \{2,3\} \cap \{3,4,5\} = \{3\}$ $RHS = (A \cap B) \cup (A \cap C) = [\{2,3\} \cap \{3,4\}] \cup [\{2,3\} \cap \{4,5\}] = \{3\} \cup \phi = \{3\}$ Thus $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $(vii)(A-B)\cap B=\phi$ $= \{2\} \cap \{3,4\} = \emptyset$ thus $(A-B) \cap B = \emptyset$