

DDR3 SDRAM UDIMM

MT4JTF12864AZ – 1GB MT4JTF25664AZ – 2GB

Features

- DDR3 functionality and operations supported as defined in the component data sheet
- 240-pin, unbuffered dual in-line memory module (UDIMM)
- Fast data transfer rates: PC3-12800, PC3-10600, PC3-8500, or PC3-6400
- 1GB (128 Meg x 64), 2GB (256 Meg x 64)
- $V_{DD} = V_{DDO} = 1.5V \pm 0.075V$
- $V_{DDSPD} = 3.0-3.6V$
- · Reset pin for improved system stability
- Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- Single-rank
- Fixed burst chop (BC) of 4 and burst length (BL) of 8 via the mode register set (MRS)
- Adjustable data-output drive strength
- Serial presence-detect (SPD) EEPROM
- · Gold edge contacts
- · Halogen-free
- Fly-by topology
- Terminated control, command, and address bus

Figure 1: 240-Pin UDIMM (MO-269 R/C C)

Options	Marking
• Operating temperature ¹	_
– Commercial (0°C ≤ T_A ≤ +70°C)	None
• Package	
 240-pin DIMM (halogen-free) 	Z
• Frequency/CAS latency	
- 1.25ns @ CL = 11 (DDR3-1600)	-1G6
-1.5ns @ CL = 9 (DDR3-1333)	-1G4
- 1.87ns @ CL = 7 (DDR3-1066)	-1G1

Note: 1. Contact Micron for industrial temperature module offerings.

Table 1: Key Timing Parameters

Speed	Industry		Data Rate (MT/s)						^t RCD	^t RP	^t RC
Grade	Nomenclature	CL = 11	CL = 10	CL = 9	CL = 8	CL = 7	CL = 6	CL = 5	(ns)	(ns)	(ns)
-1G6	PC3-12800	1600	1333	1333	1066	1066	800	667	13.125	13.125	48.125
-1G4	PC3-10600	-	1333	1333	1066	1066	800	667	13.125	13.125	49.125
-1G1	PC3-8500	-	_	_	1066	1066	800	667	13.125	13.125	50.625
-1G0	PC3-8500	-	_	_	1066	_	800	667	15	15	52.5
-80B	PC3-6400	_	_	_	_	_	800	667	15	15	52.5

Table 2: Addressing

Parameter	1GB	2GB
Refresh count	8K	8K
Row address	16K A[13:0]	32K A[14:0]
Device bank address	8 BA[2:0]	8 BA[2:0]
Device configuration	2Gb 128 Meg x 16	4Gb 256 Meg x 16
Column address	1K A[9:0]	1K A[9:0]
Module rank address	1 S0#	1 SO#

Table 3: Part Numbers and Timing Parameters - 1GB Modules

Base device: MT4J128M16,1 2Gb DDR3 SDRAM

Part Number ²	Module Density	Configuration	Module Bandwidth	Memory Clock/Data Rate	Clock Cycles (CL- ^t RCD- ^t RP)
MT4JTF12864AZ-1G6	1GB	128 Meg x 64	12.8 GB/s	1.25ns/1600 MT/s	11-11-11
MT4JTF12864AZ-1G4	1GB	128 Meg x 64	10.6 GB/s	1.5ns/1333 MT/s	9-9-9
MT4JTF12864AZ-1G1	1GB	128 Meg x 64	8.5 GB/s	1.87ns/1066 MT/s	7-7-7

Table 4: Part Numbers and Timing Parameters - 2GB Modules

Base device: MT41J256M16,1 4Gb DDR3 SDRAM

Part Number ²	Module Density	Configuration	Module Bandwidth	Memory Clock/Data Rate	Clock Cycles (CL- ^t RCD- ^t RP)
MT4JTF25664AZ-1G6	2GB	256 Meg x 64	12.8 GB/s	1.25ns/1600 MT/s	11-11-11
MT4JTF25664AZ-1G4	2GB	256 Meg x 64	10.6 GB/s	1.5ns/1333 MT/s	9-9-9
MT4JTF25664AZ-1G1	2GB	256 Meg x 64	8.5 GB/s	1.87ns/1066 MT/s	7-7-7

Notes: 1. The data sheet for the base device can be found on Micron's Web site.

2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions. Consult factory for current revision codes. Example: MT4JTF25664AZ-1G6<u>E1</u>.

Pin Assignments

Table 5: Pin Assignments

	240-Pin DDR3 UDIMM Front							240-Pin DDR3 UDIMM Back							
Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
1	V_{REFDQ}	31	DQ25	61	A2	91	DQ41	121	V _{SS}	151	V _{SS}	181	A1	211	V _{SS}
2	V _{SS}	32	V _{SS}	62	V_{DD}	92	V _{SS}	122	DQ4	152	DM3	182	V_{DD}	212	DM5
3	DQ0	33	DQS3#	63	CK1	93	DQS5#	123	DQ5	153	NC	183	V_{DD}	213	NC
4	DQ1	34	DQS3	64	CK1#	94	DQS5	124	V _{SS}	154	V _{SS}	184	CK0	214	V _{SS}
5	V _{SS}	35	V _{SS}	65	V_{DD}	95	V _{SS}	125	DM0	155	DQ30	185	CK0#	215	DQ46
6	DQS0#	36	DQ26	66	V_{DD}	96	DQ42	126	NC	156	DQ31	186	V_{DD}	216	DQ47
7	DQS0	37	DQ27	67	V_{REFCA}	97	DQ43	127	V _{SS}	157	V _{SS}	187	NC	217	V _{SS}
8	V _{SS}	38	V _{SS}	68	NC	98	V _{SS}	128	DQ6	158	NF	188	A0	218	DQ52
9	DQ2	39	NF	69	V_{DD}	99	DQ48	129	DQ7	159	NF	189	V_{DD}	219	DQ53
10	DQ3	40	NF	70	A10	100	DQ49	130	V _{SS}	160	V _{SS}	190	BA1	220	V _{SS}
11	V _{SS}	41	V _{SS}	71	BA0	101	V _{SS}	131	DQ12	161	NF	191	V_{DD}	221	DM6
12	DQ8	42	NF	72	V_{DD}	102	DQS6#	132	DQ13	162	NF	192	RAS#	222	NC
13	DQ9	43	NF	73	WE#	103	DQS6	133	V _{SS}	163	V _{SS}	193	S0#	223	V _{SS}
14	V _{SS}	44	V _{SS}	74	CAS#	104	V _{SS}	134	DM1	164	NF	194	V_{DD}	224	DQ54
15	DQS1#	45	NF	75	V_{DD}	105	DQ50	135	NC	165	NF	195	ODT0	225	DQ55
16	DQS1	46	NF	76	NF	106	DQ51	136	V _{SS}	166	V _{SS}	196	A13	226	V _{SS}
17	V _{SS}	47	V_{SS}	77	NF	107	V _{SS}	137	DQ14	167	NC	197	V_{DD}	227	DQ60
18	DQ10	48	NC	78	V_{DD}	108	DQ56	138	DQ15	168	RESET#	198	NC	228	DQ61
19	DQ11	49	NC	79	NC	109	DQ57	139	V _{SS}	169	NF	199	V _{SS}	229	V _{SS}
20	V _{SS}	50	CKE0	80	V _{SS}	110	V _{SS}	140	DQ20	170	V_{DD}	200	DQ36	230	DM7
21	DQ16	51	V_{DD}	81	DQ32	111	DQS7#	141	DQ21	171	NF	201	DQ37	231	NC
22	DQ17	52	BA2	82	DQ33	112	DQS7	142	V _{SS}	172	NF/A14 ¹	202	V _{SS}	232	V _{SS}
23	V _{SS}	53	NC	83	V _{SS}	113	V _{SS}	143	DM2	173	V_{DD}	203	DM4	233	DQ62
24	DQS2#	54	V_{DD}	84	DQS4#	114	DQ58	144	NC	174	A12	204	NC	234	DQ63
25	DQS2	55	A11	85	DQS4	115	DQ59	145	V _{SS}	175	A9	205	V _{SS}	235	V _{SS}
26	V _{SS}	56	A7	86	V _{SS}	116	V _{SS}	146	DQ22	176	V_{DD}	206	DQ38	236	V _{DDSPD}
27	DQ18	57	V_{DD}	87	DQ34	117	SA0	147	DQ23	177	A8	207	DQ39	237	SA1
28	DQ19	58	A5	88	DQ35	118	SCL	148	V _{SS}	178	A6	208	V _{SS}	238	SDA
29	V _{SS}	59	A4	89	V _{SS}	119	SA2	149	DQ28	179	V_{DD}	209	DQ44	239	V _{SS}
30	DQ24	60	V_{DD}	90	DQ40	120	V _{TT}	150	DQ29	180	A3	210	DQ45	240	V _{TT}

Note: 1. Pin 172 is NF for 1GB, A14 for 2GB.

Pin Descriptions

The pin description table below is a comprehensive list of all possible pins for all DDR3 modules. All pins listed may not be supported on this module. See Pin Assignments for information specific to this module.

Table 6: Pin Descriptions

Symbol	Туре	Description
Ax	Input	Address inputs: Provide the row address for ACTIVE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BAx) or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command. See the Pin Assignments Table for density-specific addressing information.
BAx	Input	Bank address inputs: Define the device bank to which an ACTIVE, READ, WRITE, or PRECHARGE command is being applied. BA define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD MODE command.
CKx, CKx#	Input	Clock: Differential clock inputs. All control, command, and address input signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#.
CKEx	Input	Clock enable: Enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM.
DMx	Input	Data mask (x8 devices only): DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH, along with that input data, during a write access. Although DM pins are input-only, DM loading is designed to match that of the DQ and DQS pins.
ODTx	Input	On-die termination: Enables (registered HIGH) and disables (registered LOW) termination resistance internal to the DDR3 SDRAM. When enabled in normal operation, ODT is only applied to the following pins: DQ, DQS, DQS#, DM, and CB. The ODT input will be ignored if disabled via the LOAD MODE command.
Par_In	Input	Parity input: Parity bit for Ax, RAS#, CAS#, and WE#.
RAS#, CAS#, WE#	Input	Command inputs: RAS#, CAS#, and WE# (along with S#) define the command being entered.
RESET#	Input (LVCMOS)	Reset: RESET# is an active LOW asychronous input that is connected to each DRAM and the registering clock driver. After RESET# goes HIGH, the DRAM must be reinitialized as though a normal power-up was executed.
Sx#	Input	Chip select: Enables (registered LOW) and disables (registered HIGH) the command decoder.
SAx	Input	Serial address inputs: Used to configure the temperature sensor/SPD EEPROM address range on the I ² C bus.
SCL	Input	Serial clock for temperature sensor/SPD EEPROM: Used to synchronize communication to and from the temperature sensor/SPD EEPROM on the I ² C bus.
CBx	I/O	Check bits: Used for system error detection and correction.
DQx	I/O	Data input/output: Bidirectional data bus.
DQSx, DQSx#	I/O	Data strobe: Differential data strobes. Output with read data; edge-aligned with read data; input with write data; center-aligned with write data.

Table 6: Pin Descriptions (Continued)

Symbol	Туре	Description
SDA	I/O	Serial data: Used to transfer addresses and data into and out of the temperature sensor/SPD EEPROM on the I ² C bus.
TDQSx, TDQSx#	Output	Redundant data strobe (x8 devices only): TDQS is enabled/disabled via the LOAD MODE command to the extended mode register (EMR). When TDQS is enabled, DM is disabled and TDQS and TDQS# provide termination resistance; otherwise, TDQS# are no function.
Err_Out#	Output (open drain)	Parity error output: Parity error found on the command and address bus.
EVENT#	Output (open drain)	Temperature event: The EVENT# pin is asserted by the temperature sensor when critical temperature thresholds have been exceeded.
V _{DD}	Supply	Power supply: 1.5V ± 0.075 V. The component V_{DD} and V_{DDQ} are connected to the module V_{DD} .
V _{DDSPD}	Supply	Temperature sensor/SPD EEPROM power supply: 3.0-3.6V.
V _{REFCA}	Supply	Reference voltage: Control, command, and address V _{DD} /2.
V_{REFDQ}	Supply	Reference voltage: DQ, DM V _{DD} /2.
V _{SS}	Supply	Ground.
V _{TT}	Supply	Termination voltage: Used for control, command, and address V _{DD} /2.
NC	_	No connect: These pins are not connected on the module.
NF	_	No function: These pins are connected within the module, but provide no functionality.

DQ Map

Table 7: Component-to-Module DQ Map

Component Reference Number	Component DQ	Module DQ	Module Pin Number	Component Reference Number	Component DQ	Module DQ	Module Pin Number
U1	0	2	9	U2	0	18	27
	1	1	4		1	17	22
	2	3	10		2	19	28
	3	5	123		3	21	141
	4	6	128		4	22	146
	5	4	122		5	20	140
	6	7	129		6	23	147
	7	0	3		7	16	21
	8	8	12		8	24	30
	9	15	138		9	31	156
	10	9	13		10	25	31
	11	11	19		11	27	37
	12	12	131		12	28	149
	13	14	137		13	30	155
	14	13	132		14	29	150
	15	10	18		15	26	36
U3	0	34	87	U4	0	50	105
	1	33	82		1	49	100
	2	35	88		2	51	106
	3	37	201		3	53	219
	4	38	206		4	54	224
	5	36	200		5	52	218
	6	39	207		6	55	225
	7	32	81		7	48	99
	8	40	90		8	56	108
	9	47	216		9	63	234
	10	41	91		10	57	109
	11	43	97		11	59	115
	12	44	209		12	60	227
	13	46	215		13	62	233
	14	45	210		14	61	228
	15	42	96		15	58	114

Functional Block Diagram

Figure 2: Functional Block Diagram

Note: 1. The ZQ ball on each DDR3 component is connected to an external $240\Omega \pm 1\%$ resistor that is tied to ground. It is used for the calibration of the component's ODT and output driver.

General Description

DDR3 SDRAM modules are high-speed, CMOS dynamic random access memory modules that use internally configured 8-bank DDR3 SDRAM devices. DDR3 SDRAM modules use DDR architecture to achieve high-speed operation. DDR3 architecture is essentially an 8*n*-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the DDR3 SDRAM module effectively consists of a single 8*n*-bit-wide, one-clock-cycle data transfer at the internal DRAM core and eight corresponding *n*-bit-wide, one-half-clock-cycle data transfers at the I/O pins.

DDR3 modules use two sets of differential signals: DQS, DQS# to capture data and CK and CK# to capture commands, addresses, and control signals. Differential clocks and data strobes ensure exceptional noise immunity for these signals and provide precise crossing points to capture input signals.

Fly-By Topology

DDR3 modules use faster clock speeds than earlier DDR technologies, making signal quality more important than ever. For improved signal quality, the clock, control, command, and address buses have been routed in a fly-by topology, where each clock, control, command, and address pin on each DRAM is connected to a single trace and terminated (rather than a tree structure, where the termination is off the module near the connector). Inherent to fly-by topology, the timing skew between the clock and DQS signals can be easily accounted for by using the write-leveling feature of DDR3.

Serial Presence-Detect EEPROM Operation

DDR3 SDRAM modules incorporate serial presence-detect. The SPD data is stored in a 256-byte EEPROM. The first 128 bytes are programmed by Micron to comply with JEDEC standard JC-45, "Appendix X: Serial Presence Detect (SPD) for DDR3 SDRAM Modules." These bytes identify module-specific timing parameters, configuration information, and physical attributes. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the master (system logic) and the slave EEPROM device occur via a standard $\rm I^2C$ bus using the DIMM's SCL (clock) SDA (data), and SA (address) pins. Write protect (WP) is connected to $\rm V_{SS}$, permanently disabling hardware write protection. For further information refer to Micron technical note TN-04-42, "Memory Module Serial Presence-Detect."

Electrical Specifications

Stresses greater than those listed may cause permanent damage to the module. This is a stress rating only, and functional operation of the module at these or any other conditions outside those indicated in each device's data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability.

Table 8: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
V _{DD}	V_{DD} supply voltage relative to V_{SS}	-0.4	1.975	V
V _{IN} , V _{OUT}	Voltage on any pin relative to V _{SS}	-0.4	1.975	V

Table 9: Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units	Notes
V _{DD}	V _{DD} supply voltage	1.425	1.5	1.575	V		
V _{REFCA(DC)}	Input reference voltage comm bus	nand/address	0.49 × V _{DD}	0.5 × V _{DD}	0.51 × V _{DD}	V	
V _{REFDQ(DC)}	I/O reference voltage DQ bus		0.49 × V _{DD}	$0.5 \times V_{DD}$	0.51 × V _{DD}	V	
I _{VTT}	Termination reference current	from V _{TT}	-600	_	600	mA	
V _{TT}	Termination reference voltage command/address bus	e (DC) –	0.49 × V _{DD} - 20mV	0.5 × V _{DD}	0.51 × V _{DD} + 20mV	V	1
I _I	Input leakage current; Any input $0V \le V_{IN} \le V_{DD}$; V_{REF} input $0V \le V_{IN} \le 0.95V$ (All other pins not under test = $0V$)	Address in- puts, RAS#, CAS#, WE#, BA, S#, CKE, ODT, CK, CK#	-8	0	8	μА	
		DM	-2	0	2		
I _{OZ}	Output leakage current; $0V \le V_{OUT} \le V_{DDQ}$; DQ and ODT are disabled; ODT is HIGH	-5	0	5	μА		
I _{VREF}	V_{REF} supply leakage current; $V_{REFDQ} = V_{DD}/2$ or $V_{REFCA} = V_{DD}$ (All other pins not under test		-4	0	4	μА	
T _A	Module ambient operating te	mperature	0	_	70	°C	2, 3
T _C	DDR3 SDRAM component case temperature	e operating	0	-	95	°C	2, 3, 4

Notes:

- 1. V_{TT} termination voltage in excess of the stated limit will adversely affect the command and address signals' voltage margin and will reduce timing margins.
- 2. T_A and T_C are simultaneous requirements.
- 3. For further information, refer to technical note TN-00-08: "Thermal Applications," available on Micron's Web site.
- 4. The refresh rate is required to double when 85° C < $T_{C} \le 95^{\circ}$ C.

1GB, 2GB (x64, SR) 240-Pin DDR3 UDIMM DRAM Operating Conditions

DRAM Operating Conditions

Recommended AC operating conditions are given in the DDR3 component data sheets. Component specifications are available on Micron's Web site. Module speed grades correlate with component speed grades, as shown below.

Table 10: Module and Component Speed Grades

DDR3 components may exceed the listed module speed grades; module may not be available in all listed speed grades

Module Speed Grade	Component Speed Grade
-2G1	-093
-1G9	-107
-1G6	-125
-1G4	-15E
-1G1	-187E
-1G0	-187
-80C	-25E
-80B	-25

Design Considerations

Simulations

Micron memory modules are designed to optimize signal integrity through carefully designed terminations, controlled board impedances, routing topologies, trace length matching, and decoupling. However, good signal integrity starts at the system level. Micron encourages designers to simulate the signal characteristics of the system's memory bus to ensure adequate signal integrity of the entire memory system.

Power

Operating voltages are specified at the DRAM, not at the edge connector of the module. Designers must account for any system voltage drops at anticipated power levels to ensure the required supply voltage is maintained.

I_{DD} Specifications

Table 11: DDR3 I_{DD} Specifications and Conditions – 1GB (Die Revision D)

Values are for the MT41J128M16 DDR3 SDRAM only and are computed from values specified in the 2Gb (128 Meg x 16) component data sheet

Parameter	Symbol	1600	1333	1066	Units
Operating current 0: One bank ACTIVATE-to-PRECHARGE	I _{DD0}	440	400	360	mA
Operating current 1: One bank ACTIVATE-to-READ-to-PRE-CHARGE	I _{DD1}	540	520	500	mA
Precharge power-down current: Slow exit	I _{DD2P0}	48	48	48	mA
Precharge power-down current: Fast exit	I _{DD2P1}	160	140	120	mA
Precharge quiet standby current	I _{DD2Q}	160	140	120	mA
Precharge standby current	I _{DD2N}	168	148	128	mA
Precharge standby ODT current	I _{DD2NT}	260	240	220	mA
Active power-down current	I _{DD3P}	180	160	140	mA
Active standby current	I _{DD3N}	180	160	140	mA
Burst read operating current	I _{DD4R}	1080	980	800	mA
Burst write operating current	I _{DD4W}	1120	1020	840	mA
Refresh current	I _{DD5B}	860	800	760	mA
Self refresh temperature current: MAX $T_C = 85$ °C	I _{DD6}	48	48	48	mA
Self refresh temperature current (SRT-enabled): MAX $T_C = 95^{\circ}C$	I _{DD6ET}	60	60	60	mA
All banks interleaved read current	I _{DD7}	1900	1700	1500	mA
Reset current	I _{DD8}	56	56	56	mA

Table 12: DDR3 I_{DD} Specifications and Conditions – 2GB (Die Revision E)

Values are for the MT41J256M16 DDR3 SDRAM only and are computed from values specified in the 4Gb (256 Meg \times 16) component data sheet

Parameter	Symbol	1600	1333	1066	Units
Operating current 0: One bank ACTIVATE-to-PRECHARGE	I _{DD0}	264	232	220	mA
Operating current 1: One bank ACTIVATE-to-READ-to-PRE- CHARGE	I _{DD1}	348	336	320	mA
Precharge power-down current: Slow exit	I _{DD2P0}	64	64	64	mA
Precharge power-down current: Fast exit	I _{DD2P1}	128	112	104	mA
Precharge quiet standby current	I _{DD2Q}	108	100	88	mA
Precharge standby current	I _{DD2N}	112	100	96	mA
Precharge standby ODT current	I _{DD2NT}	148	136	120	mA
Active power-down current	I _{DD3P}	152	140	128	mA
Active standby current	I _{DD3N}	188	180	164	mA
Burst read operating current	I _{DD4R}	940	808	740	mA
Burst write operating current	I _{DD4W}	684	608	548	mA
Refresh current	I _{DD5B}	620	592	576	mA
Self refresh temperature current: MAX T _C = 85°C	I _{DD6}	80	80	80	mA
Self refresh temperature current (SRT-enabled): MAX $T_C = 95^{\circ}C$	I _{DD6ET}	100	100	100	mA
All banks interleaved read current	I _{DD7}	972	868	792	mA
Reset current	I _{DD8}	72	72	72	mA

Serial Presence-Detect EEPROM

For the latest SPD data, refer to Micron's SPD page: www.micron.com/SPD.

Table 13: Serial Presence-Detect EEPROM DC Operating Conditions

All voltages referenced to VDDSPD

Parameter/Condition	Symbol	Min	Max	Units
Supply voltage	V _{DDSPD}	3.0	3.6	V
Input low voltage: Logic 0; All inputs	V _{IL}	-0.6	V _{DDSPD} + 0.3	V
Input high voltage: Logic 1; All inputs	V _{IH}	V _{DDSPD} + 0.7	V _{DDSPD} + 1.0	V
Output low voltage: I _{OUT} = 3mA	V _{OL}	_	0.4	V
Input leakage current: V_{IN} = GND to V_{DD}	I _{LI}	0.1	2.0	μA
Output leakage current: V _{OUT} = GND to V _{DD}	I _{LO}	0.05	2.0	μA

Table 14: Serial Presence-Detect EEPROM AC Operating Conditions

Parameter/Condition	Symbol	Min	Max	Units	Notes
Clock frequency	tSCL	10	400	kHz	
Clock pulse width HIGH time	tHIGH	0.6	-	μs	
Clock pulse width LOW time	tLOW	1.3	-	μs	
SDA rise time	^t R	_	300	μs	1
SDA fall time	t _F	20	300	ns	1
Data-in setup time	tSU:DAT	100	-	ns	
Data-in hold time	tHD:DI	0	-	μs	
Data-out hold time	tHD:DAT	200	900	ns	
Data out access time from SCL LOW	tAA:DAT	0.2	0.9	μs	2
Start condition setup time	tSU:STA	0.6	-	μs	3
Start condition hold time	tHD:STA	0.6	-	μs	
Stop condition setup time	tSU:STO	0.6	-	μs	
Time the bus must be free before a new transition can start	^t BUF	1.3	-	μs	
WRITE time	tW	_	10	ms	

- Notes: 1. Guaranteed by design and characterization, not necessarily tested.
 - 2. To avoid spurious start and stop conditions, a minimum delay is placed between the falling edge of SCL and the falling or rising edge of SDA.
 - 3. For a restart condition, or following a WRITE cycle.

Module Dimensions

Figure 3: 240-Pin DDR3 UDIMM

Notes: 1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted.

2. The dimensional diagram is for reference only.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 www.micron.com/productsupport Customer Comment Line: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.