Feuille d'exercice n° 22 : **Probabilités**

Exercice 1 On se donne $N \in \mathbb{N}^*$. Deux joueurs lancent tour à tour un dé. Le premier qui tire un six a gagné. On s'arrête au bout de N lancers.

- 1) Quelle est la probabilité de gagner pour chacun des joueurs ?
- 2) Quelle est la probabilité que personne ne gagne ?
- 3) Ces probabilités admettent-elles des limites quand N tend vers $+\infty$ et, le cas échéant, lesquelles?

Exercice 2 (On met une boule blanche dans une urne. On répète alors les opérations suivantes : on lance un dé.

- Si le résultat est différent de 6, on ajoute une boule rouge dans l'urne, puis on recommence.
- Si le résultat est 6, on tire une boule dans l'urne et on s'arrête.
- 1) Quelle est la probabilité de s'arrêter au bout de N lancers au plus ?
- 2) Quelle est la probabilité de s'arrêter au bout de N lancers au plus et qu'à la fin, on tire une boule blanche dans l'urne?
- 3) Quelles sont les limites de ces probabilités quand N tend vers $+\infty$? Comment interpréter cela intuitivement (la justification sera donnée en spé).

Indication: Montrer que $\int_0^{5/6} \frac{q^n}{1-q} dq \xrightarrow[n \to +\infty]{} 0.$

Exercice 3 () Au poker, on distribue à chaque joueur une main de 5 cartes prises dans un jeu de 52 cartes. Dans un jeu de 52 cartes, il y a quatre couleurs (pique, trèfle, carreau, cœur), 13 cartes dans chaque couleur, ordonnées du 2 au 10 puis valet, dame, roi, as. Une quinte flush est une main contenant 5 cartes consécutives de même couleur, avec la règle suivante : (As, 2, 3, 4, 5) et (10, Valet, Dame, Roi, As) sont toutes des quintes.

- 1) Quelle est la probabilité d'obtenir une quinte flush (sans tricher)?
- 2) Vous jouez au poker avec Pat Poker (tricheur célèbre dans les épisodes de Lucky Luke, probabilité qu'il triche 0,9, probabilité qu'il réussisse son coup et sorte une quinte flush s'il triche : 0,9). Il abat une quinte flush au premier coup. Quelle est la probabilité qu'il ait triché ?
- 3) Vous avez eu le malheur de répondre à la question précédente et de conclure à voix haute. Comme vous êtes moins bon tireur que Pat Poker, vous vous retrouvez au paradis devant Saint-Pierre. Pour passer le temps, vous commencez à jouer au poker avec lui.
 - Probabilité que Saint-Pierre soit tenté de tricher : 10^{-5} . Probabilité de réussir son coup et de sortir une quinte flush s'il triche : 0, 5. Il abat une quinte flush au premier coup. Quelle est la probabilité qu'il ait triché ?
- 4) Vous l'accusez, il nie trois fois. Le jour se lève et un coq se met à chanter. (Au paradis, après les nuits où Saint-Pierre a menti trois fois, le coq chante avec une probabilité 0,9; après les autres, avec une probabilité un demi)
 - Muni de cette information supplémentaire, calculer la probabilité que Saint-Pierre ait triché.

Exercice 4 (\circlearrowleft) On étudie la descendance d'une fleur. Cette fleur a deux descendantes avec la probabilité $p \in]0;1[$, ou aucune avec la probabilité q=1-p. Les descendantes de la première fleur ont des descendantes de façons mutuellement indépendantes et dans les mêmes conditions que la première fleur. Pour tout entier naturel n, on note u_n la probabilité qu'il n'y ait plus de descendance à la génération n+1.

- 1) Calculer u_0 .
- 2) Montrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} = pu_n^2 + 1 p$.
- 3) Étudier la suite $(u_n)_{n\in\mathbb{N}}$. Quelle est sa limite? Conclure?

Exercice 5 En 1761, Thomas Bayes, théologien protestant, quitte pour toujours cette vallée de larmes. Il arrive aux portes du Paradis et, comme il n'y a plus beaucoup de places et que Bayes a parfois eu des opinions assez peu orthodoxes en manière de théologie, Saint Pierre lui propose le test suivant. Bayes est placé devant trois portes identiques, dont deux mènent à l'enfer et une au paradis, et il est sommé de choisir. N'ayant aucune information a priori, Bayes choisit une des portes au hasard.

- 1) Avant qu'il ait le temps de l'ouvrir, Saint Pierre qui est bon lui dit : « Attends, je te donne encore un renseignement... » ; et il lui ouvre une des deux autres portes (menant bien entendu à l'enfer). Que doit faire Bayes ? Garder sa porte, ou changer d'avis et prendre l'autre porte non ouverte ?
- 2) Reprendre l'exercice dans le cas où Saint Pierre a passé la soirée précédente à faire la fête, il ne sait plus du tout où mènent les portes, en ouvre une au hasard et se rend compte qu'elle mêne à l'enfer.
- 3) En fait, en arrivant devant Saint Pierre, Bayes remarque qu'il a un pied de bouc : Saint Pierre a tellement fait la fête qu'il n'est plus en mesure de s'occuper des entrées et Satan en a profité pour le remplacer (en se déguisant). Vous imaginez assez vite ce que fait Satan : lorsqu'un candidat a choisi une porte, il le laisse prendre la porte choisie si elle conduit vers l'enfer ou bien de lui montrer une porte conduisant vers l'enfer et de lui proposer de changer s'il a choisi la porte menant vers le paradis. Bayes choisit une porte, Satan lui propose de changer. Que faire ?
- 4) En fait, Satan est bien plus pervers que cela : si le candidat choisit une porte conduisant vers l'enfer, il lui propose quand même de changer avec la probabilité p_1 et si le candidat choisit la porte conduisant vers le paradis, il lui propose de changer avec la probabilité p_2 . Bayes choisit une porte, Satan lui propose de changer. Que faire?

Exercice 6 (\bigcirc) Dans une classe, les élèves décident de s'offrir des cadeaux à Noël. Pour cela, on met dans un chapeau les noms des n élèves de la classe, chacun des n élèves tire à son tour un nom et doit faire un cadeau à celui dont il a tiré le nom.

La question est la probabilité que quelqu'un tire son propre nom (ce qui est problématique). Calculer cette probabilité à 10^{-15} près sans calculatrice.

Indications:

- 1) Remarquer que le processus mis en place consiste à tirer au hasard une permutation de l'ensemble des élèves (qu'on pourra identifier à $[\![1,n]\!]$) et que toutes les permutations sont tirées de façon équiprobable.
- 2) On note S_n l'ensemble des permutations de $[\![1,n]\!]$. On note B le sous-ensemble de S_n constitué des permutations σ qui conviennent, c'est-à-dire telle que pour tout $k \in [\![1,n]\!]$, $\sigma(k) \neq k$. Pour $k \in S_n$, on note A_k l'ensemble des permutations σ fixant k:

$$A_k = \{ \sigma \in S_n \mid \sigma(k) = k \}$$

Exprimer B à partir des A_k pour $k \in [1, n]$.

- 3) En utilisant la formule de Poincaré (du crible), exprimer la probabilité cherchée.
- 4) La calculer en utilisant le fait qu'il y a une quarantaine d'élèves dans la classe et que $\frac{1}{e} \approx 0.367\,879\,441\,171\,442\,322$.

Exercice 7 ($^{\circ}$) On considère un ivrogne marchant le long d'un trottoir. À chaque seconde, il avance avec probabilité un demi d'un pas, et recule d'un pas avec la même probabilité. On supposera que tous les pas sont de la même longueur. On se donne un repère le long du trottoir, gradué en pas. On note X_n la position de l'ivrogne au bout de $n \in \mathbb{N}$ secondes.

Donner la loi de X_n , son espérance et sa variance.

Exercice 8 (%)

1) Soit $n \in \mathbb{N}^*$, soit X une variable aléatoire à valeurs dans [1, n]. Exprimer E[X] en fonction des $P(X \ge k)$, pour $1 \le k \le n$.

On dispose de $N \in \mathbb{N}^*$ urnes avec, dans chacune d'elles, des jetons numérotés de 1 à n. On tire, au hasard, un jeton dans chaque urne, et on note X le numéro du plus grand jeton tiré.

- 2) Déterminer la loi de X.
- **3)** Montrer que : $E[X] = n \sum_{j=0}^{n-1} \left(\frac{j}{n}\right)^{N}$.
- **4)** Calculer la limite de $\frac{\mathrm{E}[X]}{n}$ quand $n \to \infty$. En déduire un équivalent de $\mathrm{E}[X]$ quand $n \to \infty$.
- 5) Calculer la limite de E[X] quand $N \to \infty$. Commenter.

Exercice 9 ($\stackrel{\triangleright}{\rightharpoonup}$) Soit N un entier naturel non nul. On dispose d'un sac contenant N jetons numérotés de 1 à N dans lequel on peut effectuer une succession de tirages avec remise en notant, à chaque fois, le numéro obtenu.

Pour tout entier naturel n non nul, on note T_n le nombre de numéros distincts obtenus au cours des n premiers tirages. Soit n un entier naturel non nul.

- 1) a) Quelles sont les valeurs prises par T_n ?
 - b) Calculer les probabilités $P(T_n = 1), P(T_n = n)$ et $P(T_n = 2)$.
- 2) Soit (k,n) un couple d'entiers naturels non nuls tels que $1 \le k \le N$. Déterminer une relation entre $P(T_{n+1} = k), P(T_n = k)$ et $P(T_n = k-1)$.
- 3) Pour tout entier naturel n non nul, on considère le polynôme $Q_n(X)$ défini par :

$$Q_n(X) = \sum_{k=1}^{N} P(T_n = k) X^k$$

- a) Montrer, pour tout entier naturel n non nul : $Q_{n+1}(X) = \frac{1}{N}(X X^2)Q'_n(X) + XQ_n(X)$
- b) Pour tout entier naturel n non nul, en reliant $E(T_n)$ à $Q_n(X)$, exprimer $E(T_{n+1})$ en fonction de $E(T_n)$, N et n. Déterminer ensuite $E(T_n)$ en fonction de N et n.
- c) Calculer la limite de $\frac{E(T_N)}{N}$ quand $N \to \infty$.

Exercice 10 ($^{\infty}$) Soit $n \in \mathbb{N}^*$. On choisit au hasard un nombre X dans [1, n]. On choisit ensuite un nombre Y au hasard dans [1, X].

- 1) Déterminer la loi conjointe de X et Y.
- 2) En déduire la loi (marginale) de Y.

Exercice 11 ($^{\circ}$) On réalise un portefeuille d'actions avec deux valeurs. La première permet de réaliser un gain qui est une variable aléatoire X_1 de moyenne m_1 et d'écart type σ_1 et la deuxième (indépendante de la première) est associée à une variable aléatoire X_2 de moyenne m_2 et d'écart type σ_2 . On suppose que X_1 est plus performante en moyenne que X_2 mais qu'elle est moins stable que X_2 (c'est à dire que $\sigma_1 > \sigma_2$).

- 1) On investit x euros sur la première valeur et (1-x) euros sur la deuxième (où x est un réel vérifiant 0 < x < 1). Déterminer la valeur de x qui minimise $V(xX_1 + (1-x)X_2)$.
- 2) Quelle est pour la valeur de x trouvée à la question précédente l'espérance de l'investissement réalisé ?

Exercice 12 On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes de même loi, à valeurs dans $\{-1,1\}$.

On pose, pour tout $n \in \mathbb{N}^*$, $p = P(X_n = 1)$ avec $p \in]0;1[$.

On définit, pour tout $n \in \mathbb{N}^*$, $Y_n = \prod_{k=1}^n X_k$

- 1) Calculer, pour tout $n \in \mathbb{N}^*$, l'espérance et la variance de Y_n .
- 2) a) Déterminer la loi de Y_2 et de Y_3 .
 - b) On pose, pour tout $n \in \mathbb{N}^*$, $p_n = P(Y_n = 1)$. Déterminer une relation de récurrence entre p_{n+1} et p_n . En déduire une expression de p_n en fonction de p et de n.
- 3) Existe-t-il un réel p pour lequel Y_n et Y_{n+1} sont indépendantes ?
- 4) Calculer, pour n et $m \in \mathbb{N}^*$, la covariance de Y_n et Y_{n+m}

