Redes recíprocas

Dada uma rede definida pelos pontos

$$R = n_1 a_1 + n_2 a_2 + n_3 a_3$$

em que a_1 , a_2 e a_3 , são os vectores da rede primitiva directa, e n_1 , n_2 e n_3 são inteiros.

A rede recíproca define-se pelos pontos ${\it G}$ tais que

$$e^{i {m G} \cdot {m R}} = 1$$

Os vectores \boldsymbol{G} formam uma rede no espaço recíproco, com vectores primitivos \boldsymbol{b}_1 , \boldsymbol{b}_2 e \boldsymbol{b}_3 , e têm a seguinte propriedade:

$$\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$$

Podemos determinar estes vectores da rede recíproca usando:

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

$$\mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

$$\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

Podemos escrever um ponto arbitrário da rede recíproca na forma

$$G = m_1 b_1 + m_2 b_2 + m_3 b_3 \tag{1}$$

Figure: Representation of the vectors on the real space and on the reciprocal space

$$\sqrt{3}a$$
 \overrightarrow{a} \overrightarrow{a} \overrightarrow{c} 27

$$\vec{a}_1 = \frac{\sqrt{3}a}{2}\vec{e}_x - \frac{a}{2}\vec{e}_y$$
 $\vec{b}_1 = \frac{2\pi}{a\sqrt{3}}\vec{k}_x - \frac{2\pi}{a}\vec{k}_y$

$$\vec{a}_2 = \frac{\sqrt{3}a}{2}\vec{e}_x + \frac{a}{2}\vec{e}_y$$
 $\vec{b}_2 = \frac{2\pi}{2\sqrt{3}}\vec{k}_x + \frac{2\pi}{3}\vec{k}_y$

$$=\frac{\sqrt{3}a}{\vec{e_x}+\vec{e_y}}$$

and in normal units:

$$=\frac{2\pi}{a\sqrt{3}}\vec{k}_x$$

The positions of the atoms, in units of the lattice vectors, are

$$\frac{\kappa}{\sqrt{3}}k_x - \frac{2}{3}$$

 $(0\ 0\ 0); (\frac{1}{3}\ \frac{1}{3}\ 0)$

 $(0\ 0\ 0); (\frac{\sqrt{3}}{3}a\ 0\ 0)$

$$\frac{1}{3}\vec{k}_{x}$$
 –

$$\pi$$
 $\vec{\iota}$

	I		
Special points:	$\vec{b}_1,\ \vec{b}_2$	\vec{k}_x , \vec{k}_y (units of $\frac{2\pi}{a}$)	
M_1	$rac{1}{2}ec{b}_1$	$rac{1}{2\sqrt{3}}ec{k}_{\scriptscriptstyle X}-rac{1}{2}ec{k}_{\scriptscriptstyle Y}$	
M_2	$rac{1}{2}(ec{b}_1+ec{b}_2)$	$rac{1}{\sqrt{3}} ec{k}_{\!\scriptscriptstyle X}$	
M_3	$rac{1}{2} ec{b}_2$	$rac{1}{2\sqrt{3}}ec{k}_{\scriptscriptstyle X}+rac{1}{2}ec{k}_{\scriptscriptstyle Y}$	
M_4	$-rac{1}{2}ec{b}_1$	$-rac{1}{2\sqrt{3}}ec{k}_{\scriptscriptstyle X}+rac{1}{2}ec{k}_{\scriptscriptstyle Y}$	
M_5	$-rac{1}{2}(ec{b}_1+ec{b}_2)$	$-rac{1}{\sqrt{3}}ec{k}_{\!\scriptscriptstyle X}$	
M_6	$-rac{1}{2}ec{b}_2$	$-rac{1}{2\sqrt{3}}ec{k}_{\scriptscriptstyle X}-rac{1}{2}ec{k}_{\scriptscriptstyle Y}$	
K ₁	$\frac{2}{3}\vec{b}_1 + \frac{1}{3}\vec{b}_2$	$\frac{\frac{1}{\sqrt{3}}\vec{k}_{x}-\frac{1}{3}\vec{k}_{y}}{}$	
K_2	$-rac{1}{3}\left(ec{b}_1-ec{b}_2 ight)$	$\frac{2}{3}\vec{k}_{y}$	
K ₃	$-\frac{1}{3}\vec{b}_1 - \frac{2}{3}\vec{b}_2$	$\frac{1}{\sqrt{3}}\vec{k}_{X}+\frac{1}{3}\vec{k}_{y}$	
K' ₁	$\tfrac13\vec b_1+\tfrac23\vec b_2$	$-rac{1}{\sqrt{3}}ec{k}_{\scriptscriptstyle X}-rac{1}{3}ec{k}_{\scriptscriptstyle Y}$	
K' ₂	$-\frac{2}{3}\vec{b}_1 - \frac{1}{3}\vec{b}_2$	$-rac{1}{\sqrt{3}}ec{k}_{\!\scriptscriptstyle X}+rac{1}{3}ec{k}_{\!\scriptscriptstyle Y}$	
K' ₃	$rac{1}{3}\left(ec{b}_1-ec{b}_2 ight)$	$-\frac{2}{3}\vec{k}_{V}$	

Zona de Brillouin

 $\acute{\mathsf{E}}$ a célula de Wigner-Sitz do espaço recíproco.

Convenções para os pontos especiais

- Dentro da zona de Brillouin, usam-se letras gregas maiúsculas
- Na fronteira da zona de Brillouin, usam-se letras latinas maiúsculas
- No centro (0,0,0) usa-se o Gama Γ

Exemplo Zona de Brillouin FCC

Exemplo: BCC

BCC path: Γ -H-N- Γ -P-H|P-N

[Setyawan & Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010]

Exeplo: Cúbico

CUB path: Γ -X-M- Γ -R-X|M-R

[Setyawan & Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010]

Exmplo: Hexagonal

HEX path: Γ -M-K- Γ -A-L-H-A|L-M|K-H

[Setyawan & Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010]