Goppa codes 13^{th} January 2006

Definition 1. A linear code with parameter [n, k, d] such that k + d = n + 1 is called a maximum distance separable (MDS) code.

δ

Theorem 1. Let C be a linear code over \mathbf{F}_q with parameters [n, k, d]. Let G be a generator matrix, and H a parity matrix, for C. Then, the following statements are equivalent.

- a. C is an MDS code,
- b. every set of n-k columns of H is linearly independent,
- c. every set of k columns of G is linearly independent,
- d. C^{\perp} is an MDS code.

δ

Definition 2. An MDS code C over \mathbf{F}_q is said to be *trivial* if and only if C satisfies one of the following cases.

- a. $C = \mathbf{F}_q^n$,
- b. C is equivalent to the code generated by $\mathbf{1} = (1, \dots, 1)$,
- c. C is equivalent to the dual of the code generated by 1. C is said to be nontrivial if it is not trivial.

δ

The class of Bose, Chaudhuri and Hocquenghem (BCH) codes is a generalisation of the Hamming codes for multiple-error correction. Binary BCH codes were introduced by A Hocquenghem (1959) and then independently by R C Bose and D K Ray-Chaudhuri (1960). D Gorenstein and N Zierler (1961) generalised the binary BCH codes to q-ary ones. The class of Reed-Solomon (RS) codes is a subclass of BCH codes introduced by I S Reed and G Solomon (1960). Goppa codes, a generalisation of BCH codes introduced by V D Goppa (1970 and 1971), are used also in cryptography some examples of which are the McEliece- and the Niederreiter cryptosystems. The Goppa codes are in turn a subclass of alternant codes, which was introduced by H J Helgert in 1974.

Theorem 2. Let $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$ be an arbitrary ordering of the $n = 2^m - 1$ non-zero elements of \mathbf{F}_{2^m} . Than a word $\mathbf{c} = \{c_0, \ldots, c_{n-1}\}$ is a code word of BCH code if and only if $\sum_{i=0}^{n-1} c_i \alpha_i^j = 0$, where $j = 1, 2, \ldots, 2t$.

S

Definition 3. A q-ary Reed-Solomon (RS) code is a q-ary BCH code of length q-1 generated by

$$g(x) = (x - \alpha^{a+1}) (x - \alpha^{a+2}) \cdots (x - \alpha^{a+\delta-1})$$

where α is a primitive element of \mathbf{F}_q , $a \geq 0$ and $2 \leq \delta \leq q-1$.

§

Theorem 3. Reed-Solomon codes are MDS. This means that a q-ary Reed-Solomon code of length q-1 generated by $g(x)=\prod_{i=a+1}^{a+\delta-1}\left(x-\alpha^i\right)$ is a $\{q-1,q-\delta,\delta\}$ -cyclic code for any $2\leq\delta\leq q-1$.

Theorem 4. Let C be a q-ary RS code generated by $g(x) = \prod_{i=1}^{\delta-1} (x - \alpha^i)$, where $2 \le \delta \le q-1$. Then the extended code \overline{C} is also MDS.

3

Theorem 5. Let α be a primitive element of the finite field \mathbf{F}_q . Let $q-1 \geq \delta \geq 2$. The narrow-sense q-ary RS code with generator polynomial

$$g(x) = (x - \alpha) (x - \alpha^2) \cdots (x - \alpha^{\delta - 1})$$

is equal to

$$\left\{(f(1)\,,f(\alpha),f(\left(\alpha^2\right)),\ldots,f\left(\alpha^{q-2}\right)):f(x)\in \mathbf{F}_q[x]\quad\text{and}\quad \deg\left(f(x)\right)< q-\delta\right\}$$

δ

Theorem 6. Let α be a primitive element of \mathbf{F}_q , and let $q-1 \geq \delta \geq 2$. The matrix

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{q-2} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{2(q-2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{q-\delta-1} & \alpha^{2(q-\delta-1)} & \cdots & \alpha^{(q-\delta-1)(q-2)} \end{pmatrix}$$

is a generator matrix for the RS code generated by the polynomial

$$g(x) = (x - \alpha) (x - \alpha^2) \cdots (x - \alpha^{\delta - 1})$$

δ

Definition 4. Let $n \leq q$. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$, where $\alpha_i, 1 \leq i \leq n$, are distinct elements of \mathbf{F}_q . Let $\mathbf{v} = (v_1, \dots, v_n)$, where $v_i \in \mathbf{F}_q^*$ for all $1 \leq i \leq n$. The generalised Reed-Solomon code $GRS_k(\alpha, v)$ is defined as

$$\{v_1 f\left(\alpha_1\right), v_2 f\left(\alpha_2\right), \dots, v_n f\left(\alpha_n\right) : f(x) \in \mathbf{F}_q[x] \text{ and } \deg\left(f(x)\right) < k \le n\}$$

8

Theorem 7. The dual of the generalised Reed-Solomon code $GRS_k(\alpha, vb)$ over \mathbf{F}_q of length n is $GRS_{n-k}(\alpha, \mathbf{v}')$ for some $\mathbf{v}' \in (\mathbf{F}_q^*)^n$.

8

Theorem 8.

$$\begin{pmatrix} v'_1 & v'_2 & \cdots & v'_n \\ v'_1\alpha_1 & v'_2\alpha_2 & \cdots & v'_n\alpha_n \\ v'_1\alpha_1^2 & v'_2\alpha_2^2 & \cdots & v'_n\alpha_n^2 \\ \vdots & & \ddots & \vdots \\ v'_1\alpha_1^{n-k-1} & v'_2\alpha_2^{n-k-1} & \cdots & v'_n\alpha_n^{n-k-1} \end{pmatrix}$$

§

Definition 5. An alternant code $A_k(\alpha, \mathbf{v}')$ over the finite field \mathbf{F}_q is the subfield subcode $GRS_k(\alpha, \mathbf{v})|_{\mathbf{F}_q}$, where $GRS_k(\alpha, \mathbf{v})$ is a generalised RS code over \mathbf{F}_{q^m} , for some $m \geq 1$.

J

Theorem 9. The alternant code A_k (α, \mathbf{v}') has parameters [n, k', d], where $mk - (m-1)n \le k' \le k$ and $d \ge n - k + 1$.

§

Theorem 10. The dual of the alternant code $A_k(\alpha, \mathbf{v}')$ is

$$\operatorname{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}(GRS_{n-k}(\alpha, \mathbf{v}'))$$

δ

Theorem 11. Given any positive integers n, h, δ and m. If

$$\sum_{w=0}^{\delta-1} (q-1)^w \binom{n}{w} < (q^m-1)^{\left\lfloor \frac{n-h}{m} \right\rfloor}$$

then there exists an alternant code A_k (α , \mathbf{v}') over \mathbf{F}_q , which is the subfield subcode of a generalised RS code over \mathbf{F}_{q^m} , having parameters $\{n, k', d\}$, where $k' \geq h$ and $d \geq \delta$.

S

Definition 6. Let g(z) be a polynomial in $\mathbf{F}_{q^m}[z]$. Let $L = \{\alpha_1, \ldots, \alpha_n\}$ be a subset of \mathbf{F}_{q^m} such that $L \cap \{\text{zeros of } g(z)\} = \emptyset$. Let $R_c(z) = \sum_{i=1}^n \frac{c_i}{z-\alpha_i}$ for $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbf{F}_q^n$. Then, the *Goppa code* $\Gamma(L, g)$ is defined as

$$\Gamma(L,g) = \left\{ \mathbf{c} \in \mathbf{F}_q^n : R_c(z) \cong 0 \, (\text{mod} \, g(z)) \right\}$$

Coding theory, Goppa codes

-2-

From 8 Nov 05, as of 13th January, 2006

The polynomial g(z) is called the *Goppa polynomial*. The Goppa code $\Gamma(L,g)$ is said to be *irreducible* if g(z) is irreducible.

§

Theorem 14. A word is a code word of the Goppa code, that is to say, $\mathbf{c} \in \Gamma(L, g)$ if and only if

$$\sum_{i=1}^{n} \frac{g(z) - g(\alpha_i)}{z - \alpha_i} g(\alpha_i)^{-1} = 0$$

δ

Theorem 13. Given a Goppa polynomial g(z) of degree t and $L = \{\alpha_1, \ldots, \alpha_n\}$, we have $\Gamma(L, g) = \{\mathbf{c} \in \mathbf{F}_q^n : \mathbf{c}H^T = \mathbf{0}\}$, where

$$H = \begin{pmatrix} g(\alpha_1)^{-1} & \cdots & g(\alpha_n)^{-1} \\ \alpha_1 g(\alpha_1)^{-1} & \cdots & \alpha_n g(\alpha_n)^{1} \\ \vdots & \ddots & \vdots \\ \alpha_1^{t-1} g(\alpha_1)^{-1} & \cdots & \alpha_n^{t-1} g(\alpha_n)^{-1} \end{pmatrix}$$

8

Theorem 14. Given a Goppa polynomial g(z) of degree t and $L = \{\alpha_1, \ldots, \alpha_n\}$, the Goppa code $\Gamma(L, g)$ is the alternant code $A_{n-1}(\alpha, \mathbf{v}')$, where $\alpha = (\alpha_1, \ldots, \alpha_n)$ and

$$\mathbf{v}' = \left(g\left(\alpha_1\right)^{-1}, \dots, g\left(\alpha_n\right)^{-1}\right)$$

δ

Theorem 15. The Goppa code $\Gamma(L,g)$ is $GRS_{n-t}(\alpha,\mathbf{v})|_{\mathbf{F}_q}$, where $\mathbf{v}=(v_1,\ldots,v_n)$ and

$$\frac{v_i = g\left(\alpha_i\right)}{\prod_{j \neq i} \left(\left(\alpha_i - \alpha_j\right)\right)}$$

for all $1 \leq i \leq n$.

δ

Theorem 16. Given a Goppa polynomial g(z) of degree t and $L = \{\alpha_1, \ldots, \alpha_n\}$, the Goppa code $\Gamma(L, g)$ is a linear code over \mathbf{F}_q with parameters [n, k, d], where $k \geq n - mt$ and $d \geq t + 1$.

δ

Theorem 17. The dual of the Goppa code $\Gamma(L,g)$ is the trace code $\operatorname{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}(GRS_t(\alpha,\mathbf{v}'))$, where $\mathbf{v}' = \left(g(\alpha_1)^{-1},\ldots,g(\alpha_n)^{-1}\right)$.

δ

Theorem 18. Let q=2. Given a polynomial g(z), let $\tilde{g}(z)$ represent the lowest degree perfect square polynomial that is divisible by g(z), and let \tilde{t} the degree of $\tilde{g}(z)$. For a vector $\mathbf{c}=(c_1,\ldots,c_n)\in \mathbf{F}_q^n$ of weight w, where $c_{i_1}=\cdots=c_{i_w}=1$, let

$$f_c(z) = \prod_{j=1}^{w} (z - \alpha_{i_j})$$

The derivative of $f_c(z)$ is

$$f'_c(z) = \sum_{l=1}^{w} \prod_{j \neq l} (z - \alpha_{i_j})$$

Then, $\mathbf{c} \in \mathbf{F}_2^n$ belongs to $\Gamma(L,g)$ if and only if $\tilde{g}(z)$ divides $f'_c(z)$. Consequently, the minimum distance d of $\Gamma(L,g)$ satisfies $d \geq \tilde{t} + 1$. If g(z) has no multiple root, that is g(z) is a separable polynomial, then $d \geq 2t + 1$.

S

Theorem 19. There exists a q-ary Goppa code $\Gamma(L,g)$, where g(z) is an irreducible polynomial in $\mathbf{F}_{q^m}[z]$ of degree t and $L = \mathbf{F}_{q^m}$ of parameters $[q^m, k, d]$ such that $k \geq q^m - mt$, provided that

$$\sum_{w=t+1}^{d-1} \left\lfloor \frac{w-1}{t} \right\rfloor (q-1)^w \left(\frac{q^m}{w} \right) < \frac{1}{t} q^{mt} \left(1 - (t-1) q^{-\frac{mt}{2}} \right)$$

δ

Bibliography

R C Bose and D K Ray-Chaudhuri. On a class of error-correcting binary group codes. *Inform. Control.* **3**, 68–79, 1960

Raymond Hill. A first course in coding theory. Clarendon, 1986

V D Goppa. A new class of linear error-correcting codes. *Probl. Peredach. Inform.* **6**, 3, 24–30, 1970

V D Goppa. Rational representation of codes and (L,g) codes. Probl. Peredach. Inform. 7, 3, 41–9, 1971

D Gorenstein and N Zierler. A class of cyclic linear error-correcting codes in p^m symbols. J. Soc. Ind. App. Math. 9, 107–214, 1961

H J Helgert. Alternant codes. Information and Control. 26, 369–80, 1974

A Hocquenghem. Codes correcteurs d'erreurs. Chiffres. 2, 147–56, 1959

San Ling and Chaoping Xing. Coding theory, a first course. Cambridge University Press, 2004

I S Reed and G Solomon. Polynomial codes over certain finite fields. J.Soc.Ind. App. Math. 8, 300–4, 1960