Projekt MOFiT2.

Paweł Rzońca

Wstęp

Jest to projekt o temacie numer 12.

Zadanie polega na rozwiązaniu problemu wieloelektronowego w sferycznie symetrycznej kropce kwantowej metodą funkcjonału gęstości. Rozwiązywano problem **dwuwymiarowy**. W dalszej części wszystkie wartości i równania są podawane z jednostkami atomowymi $\hbar = m = e = 4\pi\varepsilon_0 = 1$, chyba, że zaznaczono inaczej. Będziemy używać algorytmu przedstawionego w ([3]).

Przygotowanie programu

Pierwszym etapem było rozwiązanie równania Schrödingera dla skończonej studni potencjału metodą gaussianów.

Przyjęto studnię potencjału sferycznie symetryczną

$$U(r) = \begin{cases} -V_0 & r < R \\ 0 & r \ge R \end{cases} \tag{1}$$

oraz pudło obliczeniowe [0, L], gdzie $L = 10 \,\mathrm{nm}$.

Wykorzystano bazę $7 \times 7 = 49$ elementową składającą się z siatki gaussianów umieszczonych w równych odstępach na całym pudle obliczeniowym. Bazę rozmieszczono tak, aby przy brzegach pudła obliczeniowego gaussiany znikały, a odległości między sąsiednimi gaussianami dobrano tak, aby nieco się przekrywały. Program przystosowano do wyboru dowolnej (rozsądnej) bazy. Zwiększenie bazy, np. do 15×15 elementowej skutkuje znakomitym zwiększeniem dokładności wyniku, aczkolwiek wydłuża czas obliczeń w sposób radykalny.

Testem dla tej części programu, było rozwiązanie równania w przypadku braku potencjału. Wtedy problem redukuje się do nieskończonej studni potencjału o szerokości pudła obliczeniowego. Analityczne rozwiązanie dane jest wzorem

$$E_{n_1 n_2} = \frac{\pi^2}{2L^2} (n_1^2 + n_2^2) \tag{2}$$

Z uwagi na to, iż gaussiany umieszczono w pewnej odległości od brzegów pudła ($\approx 3\sigma$) stąd wartości energii mogą nie odpowiadać wartością liczonym według wzoru (2) (baza może "czuć" odrobinę mniejsze pudło niż jest w rzeczywistości). Nie jest to problematyczne gdyż jest to wyłącznie test działania programu i wystarczy, aby stosunek kolejnych energii zgadzał się z analitycznym, wyniki przedstawiono w tabeli 1

W następnym kroku, w celu obliczenia potencjału Hartree, zaimplementowano obliczanie koncentracji jako sumy kwadratów kolejnych funkcji falowych (uwzględniając degenerację ze względu na spin), a następnie rozwiązywanie równania poissona

$$\nabla^2 V = -n_e(x, y). \tag{3}$$

Równanie to rozwiązywano metodą relaksacji Gaussa-Seidla (GS) z zerowym warunkiem początkowym. Uzyskany potencjał dodano do potencjału potencjału kropki według wzoru (4) i procedurę powtarzano

Tabela 1: Tabela zawierająca stosunki kolejnych energii dla nieskończonej studni potencjału

	analityczny	numeryczny
E_{11}/E_{12}	2.5	2.5109
E_{12}/E_{21}	1	1.0000
E_{21}/E_{22}	1.6	1.6026
E_{22}/E_{31}	1.25	1.2627
E_{31}/E_{31}	1	1.0000

Tabela 2: Tabela zawierająca stosunki kolejnych energii dla nieskończonej studni potencjału

stan ilość elektronów	1	2	3	4	5
E_1	-0.734784	-0.578514	-0.487107	-0.397228	-0.309370
E_2		-0.399554	-0.323903	-0.250565	-0.178470
E_3			-0.324304	-0.249774	-0.178083
E_4				-0.139564	-0.075859
E_5					-0.048473

do samouzgodnienia. Przyjęto w obliczeniach $\alpha=0.02$. Warunek zakończenia pętli ustalono na $0.01\,\mathrm{eV}$. Warunek zakończenia pętli ustalono na $0.01\,\mathrm{eV}$. Nie uwzględniono energii wymienno-korelacyjnej, co jest możliwą drogą kontynuacji projektu.

$$U_{new} = U_{dot} + (1 - \alpha)V_{old} + \alpha V_{new}. \tag{4}$$

Wyniki

Przyjęto następujące warunki dla potencjału: promień studni R=1 nm, głębokość studni $V_0=25\,\mathrm{eV}$. Obliczenia przeprowadzono dla N=1,2,...,5 elektronów. Na wykresach 1–5 przedstawiono uzyskane po samouzgodnieniu potencjały, natomiast na wykresach 6–10 koncentracje. Natomiast w tabeli 2 uzyskane energie uwzględnionych w obliczeniach stanów. Wszędzie gdzie nie zaznaczono jednostek użyto jednostek atomowych.

Rysunek 1: Profil potencjału efektywnego po samouzgodnieniu równania dla jednego elektronu.

Rysunek 2: Profil potencjału efektywnego po samouzgodnieniu równania dla dwóch elektronu.

Rysunek 3: Profil potencjału efektywnego po samouzgodnieniu równania dla trzech elektronu.

Rysunek 4: Profil potencjału efektywnego po samouzgodnieniu równania dla czterech elektronu.

Rysunek 5: Profil potencjału efektywnego po samouzgodnieniu równania dla pięciu elektronu.

Rysunek 6: Koncentracja elektronowa po samouzgodnieniu równania dla jednego elektronu.

Rysunek 7: Koncentracja elektronowa po samouzgodnieniu równania dla dwóch elektronu.

Rysunek 8: Koncentracja elektronowa po samouzgodnieniu równania dla trzech elektronu.

Rysunek 9: Koncentracja elektronowa po samouzgodnieniu równania dla czterech elektronu.

Rysunek 10: Koncentracja elektronowa po samouzgodnieniu równania dla pięciu elektronu.

Literatura

- [1] http://newton.fis.agh.edu.pl/~wojcik/mof/mof2/Laboratorium_1.pdf
- [2] http://newton.fis.agh.edu.pl/~wojcik/mof/mof2/projekty_2016.pdf
- [3] http://www.ftj.agh.edu.pl/~adamowski/wyklady_mof/k22.pdf
- [4] http://www.ftj.agh.edu.pl/~adamowski/wyklady_mofit_2/r5.pdf
- [5] http://www.ftj.agh.edu.pl/~adamowski/wyklady_mofit_2/r1.pdf
- [6] http://www.ftj.agh.edu.pl/~adamowski/wyklady_mofit_1/r7.pdf