SBML Model Report

Model name: "Ferreira2003_CML_generation2"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by Harish Dharuri¹ at April nineth 2006 at 8:54 p.m. and last time modified at October nineth 2014 at 3:39 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	6
events	0	constraints	0
reactions	12	function definitions	0
global parameters	2	unit definitions	1
rules	2	initial assignments	0

Model Notes

The model should reproduce the figure 2F of the article.

The equation 7 has been split into equations 7a-7c, in order to take into account the different flux rates of Lysine and CML formation from Schiff.

The model was tested in Jarnac (SBML L2 V1) and Copasi (SBML L2 V3).

 $^{^{1}} California\ Institute\ of\ Technology, {\tt hdharuri@cds.caltech.edu}$

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name hour (default)

Definition 3600 s

2.2 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment			3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains six species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
					tion
Glucose		compartment	$\text{mol} \cdot l^{-1}$		
Lysine		compartment	$\text{mol} \cdot l^{-1}$		
Schiff		compartment	$\text{mol} \cdot l^{-1}$		\Box
Amadori		compartment	$\text{mol} \cdot l^{-1}$	\Box	
Glyoxal		compartment	$\text{mol} \cdot l^{-1}$		\Box
CML		compartment	$\text{mol} \cdot l^{-1}$		\Box

5 Parameters

This model contains two global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Va	lue Unit	Constant
Fraction-		0	.0	
$_$ Amadori				
${\tt Fraction_CML}$		0.	.0	

6 Rules

This is an overview of two rules.

6.1 Rule Fraction_Amadori

Rule Fraction_Amadori is an assignment rule for parameter Fraction_Amadori:

$$Fraction_Amadori = \frac{[Amadori]}{0.0034}$$
 (1)

6.2 Rule Fraction_CML

Rule Fraction_CML is an assignment rule for parameter Fraction_CML:

Fraction_CML =
$$\frac{[CML]}{0.0034}$$
 (2)

7 Reactions

This model contains twelve reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO	
1	v1a		Lysine + Glucose → Schiff		
2	v1b		Schiff \longrightarrow Lysine + Glucose		
3	v2a		Schiff Amadori		
4	v2b		Amadori → Schiff		
5	v3		$Glucose \longrightarrow Glyoxal$		
6	v4		Amadori \longrightarrow CML		
7	v5		Lysine + Glyoxal \longrightarrow CML		
8	v5b		Glyoxal $\longrightarrow \emptyset$		
9	v6		Schiff \longrightarrow CML		
10	v7a		$\emptyset \xrightarrow{\text{Schiff}} \text{Lysine}$		
11	v7b		$\emptyset \xrightarrow{\text{Schiff}} \text{Glyoxal}$		
12	v7c		Schiff $\longrightarrow \emptyset$		

7.1 Reaction v1a

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Lysine + Glucose \longrightarrow Schiff$$
 (3)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
Lysine		
Glucose		

Product

Table 7: Properties of each product.

Id	Name	SBO
Schiff		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{compartment}\right) \cdot \text{p1} \cdot \text{k1a} \cdot \left[\text{Glucose}\right] \cdot \left[\text{Lysine}\right]$$
 (4)

Table 8: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
p1		0.115	$ \mathcal{L} $
k1a		0.090	

7.2 Reaction v1b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Schiff \longrightarrow Lysine + Glucose$$
 (5)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
Schiff		

Products

Table 10: Properties of each product.

Id	Name	SBO
Lysine		
Glucose		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol} (\text{compartment}) \cdot \text{k1b} \cdot [\text{Schiff}]$$
 (6)

Table 11: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1b		0.36	\overline{Z}

7.3 Reaction v2a

This is an irreversible reaction of one reactant forming one product.

Reaction equation

Schiff
$$\longrightarrow$$
 Amadori (7)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Schiff		

Product

Table 13: Properties of each product.

Id	Name	SBO
Amadori	·	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}\left(\text{compartment}\right) \cdot \text{p2} \cdot \text{k2a} \cdot \left[\text{Schiff}\right]$$
 (8)

Table 14: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
p2 k2a		0.750 0.033	✓

7.4 Reaction v2b

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Amadori \longrightarrow Schiff \tag{9}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
Amadori		

Table 16: Properties of each product.

Id	Name	SBO
Schiff		

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{compartment}\right) \cdot \text{p2} \cdot \text{k2b} \cdot \left[\text{Amadori}\right]$$
 (10)

Table 17: Properties of each parameter.

		* *	
Id	Name	SBO Value Unit	Constant
p2		0.750	✓
k2b		0.001	$\overline{\mathbf{Z}}$

7.5 Reaction v3

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Glucose \longrightarrow Glyoxal \tag{11}$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
Glucose		

Table 19: Properties of each product.

Id	Name	SBO
Glyoxal		

Derived unit contains undeclared units

$$v_5 = \text{vol} \left(\text{compartment} \right) \cdot \text{ox} \cdot \text{p3} \cdot \text{k3} \cdot \left(\frac{[\text{Glucose}]}{0.25} \right)^{0.36}$$
 (12)

Table 20: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ox			1.000		Ø
p3			1.000		\square
k3		•	$7.92 \cdot 10^{-7}$		

7.6 Reaction v4

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Amadori \longrightarrow CML \tag{13}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
Amadori		

Product

Table 22: Properties of each product.

Id	Name	SBO
CML		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{compartment}\right) \cdot \text{ox} \cdot \text{p4} \cdot \text{k4} \cdot \left[\text{Amadori}\right]$$
 (14)

Table 23: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ox			1.000		
p4			1.000		\mathbf{Z}
k4			$8.6 \cdot 10^{-5}$		

7.7 Reaction v5

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Lysine + Glyoxal \longrightarrow CML$$
 (15)

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
Lysine		
Glyoxal		

Product

Table 25: Properties of each product.

Id	Name	SBO
CML		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol} (\text{compartment}) \cdot \text{ox} \cdot \text{p5} \cdot \text{k5} \cdot [\text{Glyoxal}] \cdot [\text{Lysine}]$$
 (16)

Table 26: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ox			1.000		\square
p 5			1.000		\square
k5			0.019		

7.8 Reaction v5b

This is an irreversible reaction of one reactant forming no product.

Reaction equation

Glyoxal
$$\longrightarrow \emptyset$$
 (17)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
Glyoxal		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}\left(\text{compartment}\right) \cdot \text{k5b} \cdot [\text{Glyoxal}]$$
 (18)

Table 28: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k5b		0.002	

7.9 Reaction v6

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Schiff \longrightarrow CML \tag{19}$$

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
Schiff		

Product

Table 30: Properties of each product.

Id	Name	SBO
CML		

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol} \left(\text{compartment} \right) \cdot \text{ox} \cdot \text{p6} \cdot \text{k3} \cdot \left(\frac{[\text{Schiff}]}{0.25} \right)^{0.36}$$
 (20)

Table 31: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ox			1.000		
p6			2.700		
k3			$7.92 \cdot 10^{-7}$		

7.10 Reaction v7a

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \xrightarrow{\text{Schiff}} \text{Lysine} \tag{21}$$

Modifier

Table 32: Properties of each modifier.

Id	Name	SBO
Schiff		

Table 33: Properties of each product.

Id	Name	SBO
Lysine		

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{compartment}\right) \cdot 0.05 \cdot \text{ox} \cdot \text{p7} \cdot \text{k3} \cdot \left(\frac{[\text{Schiff}]}{0.25}\right)^{0.36}$$
 (22)

Table 34: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ox			1.000		
p 7			60.000		
k3			$7.92 \cdot 10^{-7}$		

7.11 Reaction v7b

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \xrightarrow{\text{Schiff}} \text{Glyoxal} \tag{23}$$

Modifier

Table 35: Properties of each modifier.

Id	Name	SBO
Schiff		

Table 36: Properties of each product.

Id	Name	SBO
Glyoxal		

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{compartment}\right) \cdot 0.0050 \cdot \text{ox} \cdot \text{p7} \cdot \text{k3} \cdot \left(\frac{[\text{Schiff}]}{0.25}\right)^{0.36}$$
 (24)

Table 37: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ox			1.000		
p7		60.000			\mathbf{Z}
k3			$7.92 \cdot 10^{-7}$		

7.12 Reaction v7c

This is an irreversible reaction of one reactant forming no product.

Reaction equation

Schiff
$$\longrightarrow \emptyset$$
 (25)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
Schiff		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{compartment}\right) \cdot \text{ox} \cdot \text{p7} \cdot \text{k3} \cdot \left(\frac{[\text{Schiff}]}{0.25}\right)^{0.36}$$
 (26)

Table 39: Properties of each parameter.

		•	•		
Id	Name	SBO	Value	Unit	Constant
ox			1.000		$\overline{\hspace{1cm}}$
p 7			60.000		

Id	Name	SBO	Value	Unit	Constant
k3		$7.92 \cdot 10^{-7}$			

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species Glucose

Initial concentration $0.25 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v1a, v3 and as a product in v1b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glucose} = |v_2| - |v_1| - |v_5| \tag{27}$$

8.2 Species Lysine

Initial concentration $0.0034 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in v1a, v5 and as a product in v1b, v7a).

$$\frac{d}{dt}Lysine = v_2 + |v_{10}| - |v_1| - |v_7|$$
 (28)

8.3 Species Schiff

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in v1b, v2a, v6, v7c and as a product in v1a, v2b and as a modifier in v7a, v7b).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Schiff} = |v_1| + |v_4| - |v_2| - |v_3| - |v_9| - |v_{12}| \tag{29}$$

8.4 Species Amadori

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v2b, v4 and as a product in v2a).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Amadori} = v_3 - v_4 - v_6 \tag{30}$$

8.5 Species Glyoxal

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v5, v5b and as a product in v3, v7b).

$$\frac{d}{dt}Glyoxal = |v_5| + |v_{11}| - |v_7| - |v_8|$$
(31)

8.6 Species CML

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a product in v4, v5, v6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CML} = |v_6| + |v_7| + |v_9| \tag{32}$$

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany