# Application of stochastic approximation to Cartpole problem

Sang Jun Moon

December 12, 2018

Statistics, University of Seoul

Introduction

# **Cartpole** game







Approaches using stochastic

approximation

# Definition of problem

Let the observation vector and reward value at time t be

$$\mathbf{x}_t \in \mathbb{R}^p$$
 and  $y_t \in \{-1, 1\}$ .

- It is natural that an action is determined by the current observation.
- In this presentation, the action at time t,  $a_t \in \{0,1\}$  is modeled as follows, which is designed from the idea of logistic regression:

$$a_t = I(x_{t-1}^T \beta \ge 0).$$

where  $\beta \in \mathbb{R}^p$  is a parameter vector.

• Note that the reward value  $y_t$  is an unknown function of  $\beta$  for given  $\mathbf{x}_0$ .

4

# **Approaches**

• The objective function  $L(\beta|\mathbf{x}_0)$  is defined as follows:

$$L(\boldsymbol{\beta}|\mathbf{x}_0) = -\sum_{i=1}^t y_t$$

- It is impossible to obtain a gradient of the L for the  $\beta$  for given  $\mathbf{x}_0$ .
- To solve the problem, the following methods are applied:
  - Finite difference stochastic approximation (FDSA)
  - Simultaneous perturbation stochastic approximation (SPSA)
  - Second order SPSA (2SPSA) methods are applied.
- In the practical implementation,  $\alpha = 0.602$ ,  $\gamma = 0.101$  are used.
- Also, the gain sequence is:

$$a_k=rac{1}{(k+1)^{lpha}}, \quad c_k=rac{1}{(k+1)^{\gamma}}$$

• In 2SPSA, the simultaneous perturbation constant  $\tilde{c}_k$  is:

$$\tilde{c}_k = \frac{1}{2(k+1)^{\gamma}}$$

5

# **Additional processing**

- The objective function is affected by the initial value of  $x_0$ .
- It is a problem to estimate the  $\beta$  that maintains performance even when the initial value of  $x_0$  changes.
- My algorithm changes the initial point and confirm that the performance is maintained after the appropriate  $\beta$  candidate is determined.
- Then, it decides to use  $\beta$  or not.

# **Algorithms**

Initialize  $\beta$ , S, t, M, v = 0.

### For iteration from 1 to M:

- Update step:
  - Update β.
  - Compute  $L(\beta)$  for given random  $x_0$ .
  - Compute  $v \leftarrow \min(v, L(\beta))$ .
  - If  $v = L(\beta)$  then  $\beta^* \leftarrow \beta$ .
  - Else  $\beta \leftarrow \beta^*$ .
- Stopping criteria:
  - Set s ← 1
  - While  $L(\beta^*) = -t$ :
    - Compute  $L(\beta^*)$  for given  $\mathbf{x}_{0,s}$ .
    - If S = s return  $\beta^*$ .
    - $s \leftarrow s + 1$ .

### Limitations and List of related links

#### Limitations

- My proposed method doesn't work with the situation when success is rare.
- For example, in MountainCar-v0 problem, the success reward occurs only when the car is at a hill.
- In this case, even if parameters are updated, the value of objective function does not change easily which means the update is ended.

#### List of related links

## Openai-gym

https://github.com/openai/gym

#### Code & Simulation results

https://github.com/Monster-Moon/gymR