

GRAF

(Slide Acknowledgment: Gatot Wahyudi, Adila A. Krisnadhi)

Matematika Diskret 2
Fakultas Ilmu Komputer Universitas Indonesia

Agenda

- Definisi dan Terminologi
- Jenis-Jenis Graf Sederhana
- Operasi pada Graf
- Representasi Graf

Definisi dan Terminologi Graf

Definisi

- Sebuah tuple (V, E)
 - V merupakan himpunan simpul (vertex) yang bukan himpunan kosong
 - E merupakan himpunan sisi (edge) yang diasosiasikan dengan satu atau dua simpul
- Jika V atau E merupakan himpunan tak berhingga maka G disebut graf tak berhingga (inifinite graph)
- Jika V dan E merupakan himpunan berhingga maka G disebut graf berhingga (finite graph)

Contoh Graf

- $G_1 = (V_1, E_1) \text{ dengan}$
 - $V_1 = \{1, 2, 3, 4\}$
 - $E_1 = \{ (1,1), (1,2), (3,3), (2,3), (2,4) \}$
- $G_2 = (\{ Apple, Banana, Cherry \}, \emptyset)$

App

Apple Banana

Cherry

- $G_3 = (V_3, E_3) dengan$
 - $V_3 = \{Jakarta, Denpasar, Melbourne\}$
 - E₃ = {(Jakarta, Denpasar), (Jakarta, Melbourne), (Denpasar, Melbourne)}

Jakarta

Denpasar

Melbourne

- Pada graf G = (V, E), untuk setiap dua vertex $v_1, v_2 \in V$, jika tuple $(v_1, v_2) \in E$ dipandang sebagai:
 - Pasangan tidak berurut maka G disebut graf tidak berarah (undirected graph)
 - Pasangan berurut maka G disebut graf berarah (directed graph atau digraph)
 - (v_1, v_2) dibaca sebagai sisi yang berawal pada vertex v_1 dan berakhir pada vertex v_2

- Contoh
 - Diberikan sebuah himpunan verteks berupa nama kota dan edge berupa jalur yang menghubungkan dua kota yaitu:
 - $V = \{ Jakarta, Surabaya, Balikpapan, Makassar, Jayapura \}$
 - $E = \{ (Jakarta, Balikpapan), (Jakarta, Surabaya), (Surabaya, Balikpapan), (Surabaya, Makasar), (Makassar, Jayapura) \}$
 - Bagaimanakah visualisasi dari graf (V,E)?

- (V,E) sebagai Undirected Graph

– (V,E) sebagai Directed Graph

Model-Model Graf

- Social Network
 - Friends graph, collaboration graph
- Communication Network
 - Call graph
- Information Network
 - Web graph, citation graph
- Software Design
 - Module dependency, precedence graph
- Transportation Network
 - Airline routes, road networks
- Biological Network
 - Phylogenetic, protein interaction
- Tournaments
 - Round-robin, Single-elimination

- Terminologi dasar
 - Gelang (loop)
 - Sisi e disebut loop jika bertumpuan pada satu vertex v
 - Sisi paralel (parallel edges)
 - Sisi e₁ dan e₂ dikatakan paralel jika bertumpuan pada vertex yang sama
 - Graf sederhana (simple graph)
 - Graf G dikatakan sederhana jika dan hanya jika G tidak memiliki loop maupun sisi paralel
 - Multigraf
 - Multigraf adalah graf sederhana yang mengandung sisi paralel

- Adjacency, endpoints, incident
- Dalam suatu graf G = (V, E), dua vertex v_1 dan v_2 dikatakan bersisian (adjacent) jika $(v_1, v_2) \in E$
- Jika sisi $e = (v_1, v_2) \in E$, maka dikatakan bahwa
 - Sisi e bertumpuan pada vertex v₁ dan v₂
 - Vertex v_1 dan v_2 disebut titik-titik ujung (endpoints) dari e
- Dalam suatu graf berarah $G^* = (V^*, E^*)$, jika $e^* = (v_1^*, v_2^*) \in E^*$, maka
 - v_1 disebut vertex awal (initial vertex) dan v_2 disebut vertex akhir (terminal vertex) dari sisi e^*
 - v_1 dikatakan bertetangga ke (*adjacent to*) v_2
 - v₂ dikatakan bertetangga dari (adjacent from) v₁
- Jika sisi e menghubungkan v_1 dan v_2 , maka dikatakan bahwa
 - Sisi e berinsiden pada (incident to/at) vertex v₁ dan v₂
 - Vertex v₁ dan v₂ berinsiden dengan (incident to/with) e

Degree

- Pada suatu graf G, jumlah sisi yang bertumpuan pada suatu vertex v disebut derajat (degree) dari vertex v, dinyatakan dengan deg(v)
- Suatu vertex u disebut vertex terisolasi (isolated vertex) jika deg(u) = 0
- Suatu vertex w disebut bandul (pendant) jika deg(w) = 1

- Degree Vertex pada Graf Berarah
 - Dalam graf berarah $G^* = (V^*, E^*)$, untuk setiap vertex v^* didefinisikan:
 - Derajat-masuk (in-degree) dari v*, dinyatakan dengan deg-(v*)
 - Menyatakan jumlah sisi dengan v* sebagai vertex akhir
 - Derajat-keluar (out-degree) dari v*, dinyatakan dengan deg+(v*)
 - Menyatakan jumlah sisi dengan v* sebagai vertex awal

Handshaking Theorem

Teorema jumlah derajat semua vertex

Jumlah derajat semua vertex dalam suatu graf sama dengan dua kali jumlah sisi pada graf tersebut

- Bukti
 - Misalkan graf G = (V, E) dengan $V = \{v_1, v_2, ..., v_n\}$ dan $E = \{e_1, e_2, ..., e_m\}$, berarti
 - Jumlah vertex = |V| = n dan jumlah sisi = |E| = m
 - Setiap sisi $e_i \in E$ bertumpuan pada dua vertex, berarti setiap sisi berkontribusi 2 terhadap jumlah derajat semua vertex
 - Jadi, $\sum_{i=1}^{n} \deg(v_i) = 2m$

Contoh

- 1. Tentukan derajat masing-masing vertex pada graf G = (V, E) dengan
 - $V = \{a, b, c, d, e, f\}$
 - $E = \{ (a,b), (a,d), (a,d), (a,e), (b,b), (b,c), (b,d), (b,e), (d,e), (d,e), (d,e) \}$

Jawab:

Derajat masing-masing vertex:

$$deg(a) = 4$$
; $deg(b) = 6$; $deg(c) = 1$; $deg(d) = 6$; $deg(e) = 5$; $deg(f) = 0$

Contoh

2. Berapa jumlah sisi pada graf *G* yang mempunyai 15 vertex yang masing-masing verteksnya berderajat 6?

Jawab:

Berdasarkan teorema handshaking, $\sum_{i=1}^{n} \deg(v_i) = 2m$, dengan m adalah jumlah sisi pada graf.

```
\sum_{i=1}^{n} \deg(v_i) = 2m \text{ dapat dihitung dari } 15 \times 6 = 90.
90 = 2m
m = 90/2 = 45
```

Teorema terkait Derajat Vertex

- Teorema
 - Banyaknya vertex yang berderajat ganjil pada suatu graf adalah genap
 - Untuk suatu graf berarah $G^* = (V^*, E^*)$ berlaku

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$$

Jenis-Jenis Graf Sederhana

Graf Lengkap

Definisi

Sebuah graf dengan n buah vertex disebut sebagai graf lengkap (complete graph), ditulis K_{n} , apabila untuk setiap pasang vertex yang berbeda terdapat tepat satu sisi.

$$-K_1 = (\{a\}, \emptyset)$$

$$-K_2 = (\{a, b\}, \{(a, b)\})$$

$$-K_3 = (\{a, b, c\}, \{(a, b), (a, c), (b, c)\})$$

Graf Lengkap

Berapakah jumlah sisi pada sebuah graf lengkap dengan *n* buah vertex?

Jawab:

- Setiap vertex pada K_n terdapat tepat satu sisi menuju (n-1) vertex lainnya
- Karena terdapat n buah vertex maka terdapat sebanyak n (n 1) buah sisi tetapi setiap sisi dihitung 2 kali
- Dengan demikian, jumlah sisi pada K_n adalah sebanyak $\frac{n(n-1)}{2}$

Graf Siklis (Cycle)

Definisi

Sebuah graf G = (V, E) dengan n buah vertex disebut sebuah siklis (cycle), ditulis C_n , apabila

- $V = \{ v_1, v_2, ..., v_n \} dan$
- $E = \{ (v_1, v_2), (v_2, v_3), ..., (v_{n-1}, v_n), (v_n, v_1) \}$

Graf Roda (Wheel)

Definisi

Sebuah graf G = (V, E) dengan n + 1 buah vertex disebut sebuah roda (wheel), ditulis W_{n} , apabila

- n buah vertex dari (n + 1) vertex membentuk C_n dan
- vertex ke-(n + 1) mempunyai tepat satu sisi ke setiap vertex pada C_n yang terbentuk

Hypercubes

Definisi

Sebuah graf sederhana disebut sebagai hypercube n-dimensi (n-cube), ditulis Q_n , apabila

- memiliki 2ⁿ vertex dan
- setiap vertex merepresentasikan bit string dengan panjang n

Operasi pada Graf

Underlying Undirected Graph

Definisi

Underlying undirected graph dari sebuah graf berarah G = (V, E) adalah sebuah graf G' yang terbentuk dengan cara mengabaikan arah setiap sisi pada G.

Subgraf

Definisi

```
Subgraf dari suatu graf G = (V, E) adalah sebuah graf H = (W, F) dengan W \subseteq V dan F \subseteq E
```

- Contoh
 - Berikanlah dua subgraf dari graf G = (V, E) di mana
 - $V = \{1, 2, 3\} \text{ dan } E = \{(1, 2), \{2, 3\}, (3, 1)\}$
 - $H_1 = (W_1, F_1)$ dengan
 - $-W_1 = \{1, 3\} \text{ dan } F_1 = \emptyset$
 - $H_2 = (W_2, F_2)$ dengan
 - $-W_2 = V \operatorname{dan} F_2 = \{ (1, 2), (3, 1) \}$

Subgraf Terinduksi

Definisi

Jika diketahui graf G = (V, E) dan himpunan vertex $W \subseteq V$, maka subgraf G terinduksi terhadap W adalah subgraf yang vertexnya termasuk di dalam W dan sisinya adalah bagian dari E yang hanya menghubungkan pasangan vertex di dalam W.

Subgraf K_5 terinduksi terhadap $\{a, b, c\}$

Penambahan dan Pengurangan Sisi

Definisi

Diketahui graf G = (V, E).

- o Jika e adalah sebuah sisi pada E, maka G − e adalah subgraf yang didapatkan dengan menghapus sisi e dari G.
- o Jika e adalah sebuah sisi baru yang belum ada pada E namun menghubungkan vertex yang terdapat pada V, maka G + e adalah subgraf yang didapatkan dengan menambahkan sisi e ke G.

Penambahan dan Pengurangan Simpul

Definisi

Diketahui graf G = (V, E).

- Jika v adalah sebuah simpul pada V, maka penghapusan simpul v menghasilkan subgraf G' yang tidak mengandung vertex v dan tidak mengandung sisi yang berinsiden dengan v.
- O Jika v adalah sebuah simpul baru yang belum ada pada V, maka penambahan simpul v akan menambahkan simpul v ke dalam V dan tidak memengaruhi anggota E.

Kontraksi Sisi (Edge Contraction)

Definisi

Diketahui graf G = (V, E) dan $e \in E$ adalah sebuah sisi yang menghubungkan vertex u dan v, $(u, v \in V)$. Kontraksi sisi e pada G akan menghasilkan graf G' di mana

- o sisi e tidak termasuk pada G',
- o vertex *u* dan *v* digabung menjadi vertex baru *w*, dan
- vertex lain yang sebelumnya memiliki hubungan ketetanggaan dengan u dan v akan memiliki hubungan ketetanggaan dengan w.

Graf Gabungan (*Union*)

Definisi

```
Graf gabungan (union) dari dua buah graf sederhana G_1 = (V_1, E_1) dan G_2 = (V_2, E_2) adalah G = G_1 \cup G_2 dengan G = (V, E) di mana V = V_1 \cup V_2 \& E = E_1 \cup E_2
```

- Contoh
 - Tentukan graf gabungan dari $G_1 = (\{a, b\}, \{(a, b)\})$ dan $G_2 = (\{b, c, d\}, \{(b, c), (b, d)\})$
 - Jawab:
 - $G = (\{a, b, c, d\}, \{(a, b), (b, c), (b, d)\})$

Representasi Graf

List Ketetanggaan (Adjacency List)

• List ketetanggaan untuk graf tidak berarah

Verteks	Verteks yang adjacent
а	b, c, e
b	a, c
С	a, b, d, e
d	С
е	a, c

• List ketetanggaan untuk graf berarah

<u> </u>		
Verteks inisial	Verteks terminal	
1	2, 3, 4	
2	3	
3		
4	4	
5	2	

Matriks Ketetanggaan (Adjacency Matrix)

- Graf G dengan n buah vertex v_1 , v_2 , ..., v_n dapat direpresentasikan dalam matriks $A=[a_{ij}]$ berukuran $n \times n$
 - Elemen a_{ij} menyatakan jumlah sisi yang memiliki v_i dan v_j sebagai titik-titik ujungnya.
 - Sisi gelang berkontribusi dua
 - Untuk graf berarah G^* , jika direpresentasikan dalam matriks ikatan, maka a_{ij} menyatakan jumlah sisi yang memiliki v_i sebagai vertex awal dan v_j sebagai vertex akhirnya

Matriks Ketetanggaan (Adjacency Matrix)

Contoh

- Tentukan matriks ketetanggaan untuk graf tidak berarah G = (V, E) dengan:
 - $V = \{a, b, c, d\} \text{ dan } E = \{(a, c), (a, d), (b, c), (b, c), (c, c), (b, d)\}$

Jawab

- Matriks ketetanggaan untuk G dapat dibentuk lebih dari satu tergantung pada pemilihan urutan verteksnya
- Jadi, untuk graf dengan n vertex dapat dipilih satu dari n! (permutasi n unsur) matriks sebagai matriks ketetanggaannya
- Contoh:

$$A_{1} = \begin{bmatrix} a & b & c & d \\ b & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ c & 1 & 2 & 2 & 0 \\ d & 1 & 1 & 0 & 0 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} b & 0 & 2 & 1 & 0 \\ 2 & 2 & 0 & 1 \\ d & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$A_2 = \begin{pmatrix} b & c & d & a \\ b & 0 & 2 & 1 & 0 \\ c & 2 & 2 & 0 & 1 \\ d & 0 & 0 & 1 \\ a & 0 & 1 & 1 & 0 \end{pmatrix}$$

Matriks Ketetanggaan (Adjacency Matrix)

- Contoh
 - Tentukan matriks ikatan untuk graf berarah $G^* = (V, E)$ dengan:
 - $V = \{a, b, c, d\} \text{ dan } E = \{(a, c), (a, d), (b, c), (b, c), (c, c), (b, d)\}$
- Jawab
 - Contoh:

$$A_1 = \begin{bmatrix} a & b & c & d \\ 0 & 0 & 1 & 1 \\ b & c & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ d & 0 & 0 & 0 \end{bmatrix}$$

- Perhatikan bahwa
 - Matriks ikatan untuk graf tidak berarah bersifat simetri
 - Matriks ikatan untuk <u>graf berarah</u> <u>tidak harus simetri</u>

Latihan

• Tentukan matriks ketetanggaan untuk sebuah graf G = (V, E) dengan

```
V = { a, b, c, d, e }
E = { (a, b), (a, b), (a, c), (a, d), (a, d), (b, c),
(b, d), (b, d), (c, d), (c, e), (d, d), (d, d) }
```

- Pandang graf pada soal di atas sebagai
 - graf berarah
 - graf tidak berarah

Matriks Kehadiran (*Incidence Matrix*)

- Graf G dengan n buah vertex v_1 , v_2 , ..., v_n dan m buah edge e_1 , e_2 , ..., e_m dapat direpresentasikan dalam matriks $A = [a_{ij}]$ berukuran $n \times m$
 - Elemen a_{ij} menyatakan apakah verteks v_i menjadi tumpuan bagi edge e_j
 - a_{ij} = 1 jika verteks v_i menjadi tumpuan edge e_j
 - Kasus spesial, a_{ij} = 2 jika v_i menjadi tumpuan $loop e_j$
 - $a_{ij} = 0$ jika verteks v_i tidak menjadi tumpuan edge e_j
 - Untuk graf berarah G^* , jika direpresentasikan ke dalam matriks kehadiran $A = [a_{ij}]$
 - a_{ij} = 1 jika verteks v_i merupakan verteks awal dari e_j dan a_{ij} = -1 jika verteks v_i merupakan verteks akhir dari e_j
 - Kasus spesial, $a_{ij} = 2$ jika v_i memiliki loop berarah e_j
 - $a_{ij} = 0$ jika verteks v_i bukan merupakan verteks awal/akhir dari e_i

Matriks Kehadiran (*Incidence Matrix*)

• Tentukan matriks kehadiran graf G = (V, E) dengan $V = \{v_1, v_2, v_3, v_4\}$ dan $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$ dengan:

$$e_1 = (v_1, v_1), e_2 = (v_1, v_2), e_3 = (v_1, v_2), e_4 = (v_2, v_3),$$

 $e_5 = (v_2, v_3), e_6 = (v_4, v_2), e_7 = (v_3, v_3), e_8 = (v_3, v_4)$

Jawab

$$M = \begin{bmatrix} v_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ v_2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ v_3 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ v_4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Latihan

- Diberikan himpunan verteks V dan edge E berikut
 - *V* = { Jakarta, Surabaya, Balikpapan, Makassar, Jayapura }
 - $E = \{ (Jakarta, Balikpapan), (Jakarta, Surabaya), (Surabaya, Balikpapan), (Surabaya, Makasar), (Makassar, Jayapura) \}$
- Bagaimana representasi matriks kehadirannya jika (V,E) dilihat sebagai:
 - graf tidak berarah
 - graf berarah