ASSIGNMENT-1

EE24BTECH11057-SHIVAM SHILVANT*

- 9) The slope of tangent to curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2), then the area bounded by curve, the x axis and the line x = 1 is

 - d) 6
- 10) If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$, where $0 < x \le 1$, then in this interval (1997 2*Marks*)
 - a) both f(x) and g(x) are increasing functions.
 - b) both f(x) and g(x) are decreasing functions.
 - c) f(x) is an increasing function.
 - d) g(x) is an increasing function.
- 11) The function $f(x) = \sin^4 x + \cos^4 x$ increases (1999 - 2Marks)
 - a) $0 < x < \frac{\pi}{9}$
 - b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$
 - c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$
 - d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$
- 12) Consider the following statements in S and

S: Both $\sin x$ and $\cos x$ are decreasing functions in the interval $\left(\frac{\pi}{2},\pi\right)$

R: If a differentiable function decreases in a interval (a, b), then its derivative also decreases in (a, b).

Which of the following is true?

- a) Both S and R are wrong.
- b) Both S and R are correct, but R is not the correct explanation of S.

- c) S is correct and R is correct explanation for S.
- d) S is correct and R is wrong.
- 13) Let $f(x) = \int e^x (x-1)(x-2) dx$. Then f decreases in the interval ((2000S))
 - a) $(-\infty, -2)$
 - b) (-2, -1)
 - (1,2)
 - d) $(2, +\infty)$
- 14) If normal to curve y = f(x) at the point (3,4)makes an angle $\frac{3\pi}{4}$ with the positive x-axis, (2000S)

 - a) -1b) $-\frac{3}{4}$
- 15) Let $f(x) = \begin{cases} |x|, & \text{for } 0 < |x| \le 2\\ 1, & \text{for } x = 0 \end{cases}$ then at x = 0, (2000S)
 - a) a local maximum
 - b) no local maximum
 - c) a local minimum
 - d) no extremum
- 16) For all $x \in (0, 1)$ (2000S)
 - a) $e^x < 1 + x$
 - b) $\log_{e} (1 + x) < x$
 - c) $\sin x > x$
 - d) $\log_e x > x$
- 17) If $f(x) = xe^{x(1-x)}$, then f(x) is (2001S)
 - a) increasing on $\left[-\frac{1}{2}, 1\right]$
 - b) decreasing on R
 - c) increasing on R

- d) decreasing on $\left| -\frac{1}{2}, 1 \right|$
- 18) The triangle formed by tangent to curve f(x) = $x^2 + bx - b$ at the point (1, 1) and the coordinate axes, lies in the first quadrant. If its area is 2, then the value of b is (2001S)
 - a) -1
 - b) 3
 - c) -3
 - d) 1
- 19) Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b)be the minimum value of f(x). As b varies, the range of m(b) is (2001S)
 - a) [0, 1]
 - b) $(0, \frac{1}{2})$
 - c) $\left[\frac{1}{2}, 1\right]$
 - d) (0, 1]
- 20) The length of a longest interval in which the function $3 \sin x - 4 \sin^3 x$ is increasing,

(2002S)

- a)

- 21) The point(s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical, is (are) (2002S)
 - a) $\left(\pm \frac{4}{\sqrt{3}}, -2\right)$
 - b) $\left(\pm\sqrt{\frac{11}{3}},1\right)$
 - (0,0)
 - d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$
- 22) In [0,1] Lagranges Mean Value theorem is NOT applicable to (2003S)

- a) $f(x) = \begin{cases} \frac{1}{2} x, & x < \frac{1}{2} \\ \left(\frac{1}{2} x\right)^2, & x \ge \frac{1}{2} \end{cases}$ b) $f(x) = \begin{cases} \frac{\sin x}{x}, & x \ne 0 \\ 1, & x = 0 \end{cases}$
- c) f(x) = x|x|
- d) f(x) = |x|
- 23) Tangent is drawn to ellipse $\frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3}\cos\theta,\sin\theta)$ (where $\theta\in(0,\frac{\pi}{2})$). Then the value of θ such that sum of intercepts on axes made by this tangent is minimum, is (2003S)