

Pontifícia Universidade Católica de Minas Gerais

Programa de Pós-graduação em Informática (Mestrado/Doutorado)

Disciplina: Fundamentos Teóricos da Computação

Professor : Zenilton Kleber Gonçalves do Patrocínio Júnior

Exercícios Extra (Lista N.01 – Graduação)

1. Construa **AFD**s para as seguintes linguagens:

- a) { $uavbxcy | u, v, x, y \in \{a, b, c\}^*\}.$
- b) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ começa com } \mathbf{a} \text{ e tem tamanho par } \}.$
- c) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ nunca tem mais de dois } \mathbf{a} \text{ 's consecutivos } \}.$
- d) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ tem número ímpar de } \mathbf{ab}\text{'s } \}.$
- e) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid |w| \ge 2 \text{ e os } \mathbf{a} \text{ 's (se houver) precedem os } \mathbf{b} \text{ 's (se houver) } \}.$
- f) $\{ w \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \}^* \mid \text{os } \mathbf{a}\text{'s (se houver) precedem os } \mathbf{b}\text{'s (se houver) e os } \mathbf{c}\text{'s (se houver) precedem os } \mathbf{d}\text{'s (se houver) } \}.$
- g) $\{x\mathbf{b}\mathbf{a}^n \mid x \in \{\mathbf{a}, \mathbf{b}\}^*, n \ge 0 \text{ e } x \text{ tem um número par de } \mathbf{a}\text{'s }\}.$
- h) $\{x\mathbf{a}^m\mathbf{b}\mathbf{a}^n \mid x \in \{\mathbf{a}, \mathbf{b}\}^*, m+n \text{ \'e par e } x \text{ n\~ao termina em } \mathbf{a}\}.$
- i) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid \text{toda subpalavra de } w \text{ de tamanho 3 tem } \mathbf{a}\text{'s e b's } \}.$
- j) $\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ tem no máximo uma ocorrência de } \mathbf{aa} \text{ e no máximo uma ocorrência de } \mathbf{bb} \}.$

2. Construa **AFN**s para as seguintes linguagens:

- a) $\{w \in \{0, 1\}^* \mid |w| \ge 4 \text{ e o segundo e o penúltimo símbolos são ambos } 1\}$.
- b) $\{ w \in \{0, 1\}^* \mid 00 \text{ não aparece nos 4 últimos símbolos de } w \}.$
- c) { $w \in \{0, 1\}^*$ | entre dois 1's de w há sempre um número par de 0's, exceto nos 4 últimos símbolos }.
- d) { $w \in \{0, 1\}^*$ | w tem uma subpalavra constituída de dois 1's separados por um número par de símbolos}.
- e) $\{x\mathbf{0}^{3n} \mid x \in \{\mathbf{0}, \mathbf{1}\}^*, \operatorname{val}(x) \bmod 3 = 1 \text{ e } n \ge 0\}$, onde $\operatorname{val}(x)$ é o valor do número representado por x na base 2.

3. Construa **AFD**s para as seguintes linguagens:

- a) $L_1 = \{ w \in \{ 0, 1 \}^* \mid |w| \text{ \'e divis\'ivel por } 3 \}.$
- b) $L_2 = \{ \mathbf{0}w\mathbf{0} \mid w \in \{ \mathbf{0}, \mathbf{1} \}^* \}.$
- c) $L_3 = L_1 \cup L_2$.
- d) $L_4 = L_1 \cap L_2$.
- e) $L_5 = \overline{L_1 \cap L_2}$.

- 4. Mostre que sim ou que não, justificando sua resposta:
 - a) Para qualquer linguagem L (inclusive aquelas que não são regulares), existem linguagens regulares R_1 e R_2 tais que $R_1 \subseteq L \subseteq R_2$.
 - b) Todos os subconjuntos de uma linguagem regular são também linguagens regulares.
 - c) Há linguagens regulares que têm como subconjuntos linguagens que não são regulares.
 - d) A união de duas linguagens que não são regulares pode ser ou não uma linguagem regular.
 - e) A interseção de duas linguagens que não são regulares pode ser ou não uma linguagem regular.
 - f) O complemento de uma linguagem que não é regular pode ser ou não uma linguagem regular.
- 5. Prove que os seguintes conjuntos não são linguagens regulares:

```
a) \{ \mathbf{0}^n \mathbf{1}^{n+10} \mid n \ge 0 \}.
```

b)
$$\{ \mathbf{0}^n y \mid y \in \{ \mathbf{0}, \mathbf{1} \}^* e \mid y \mid \le n \}.$$

c)
$$\{ \mathbf{0}^m \mathbf{1}^n | m \neq n \}.$$

d) {
$$\mathbf{a}^{m} \mathbf{b}^{n} \mathbf{c}^{m+n} | m, n > 0$$
 }.

e) {
$$\mathbf{a}^n \mathbf{b}^{n^2} | n \ge 0$$
 }.

f)
$$\{ \mathbf{a}^{n^3} | n \ge 0 \}.$$

g) {
$$\mathbf{a}^{m} \mathbf{b}^{n} | n \le m \le 2n$$
 }.

h)
$$\{ xx \mid x \in \{ \mathbf{a}, \mathbf{b} \}^* \}.$$

i) $\{u\bar{u} \mid u \in \{0, 1\}^*\}$, onde \bar{u} é obtido de u substituindo-se 0 por 1 e 1 por 0. Exemplo: $\overline{011} = 100$.

j)
$$\{ w \in \{ 0, 1 \}^* \mid w \neq w^R \}.$$

- k) { $w \in \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}^* \mid \text{o número de } \mathbf{a}\text{'s}, \mathbf{b}\text{'s e } \mathbf{c}\text{'s}, \text{ em } w, \text{ \'e o mesmo} \}.$
- 1) $\{ w \in \{ 0, 1 \}^* \mid \text{o número de } 0 \text{'s em } w \text{ é um cubo perfeito } \}.$
- m) { $0^m 1^n | mdc(m, n) = 1$ }.
- n) { $\mathbf{a}^k \mathbf{b}^m \mathbf{c}^n \mid k \neq m \text{ ou } m \neq n$ }.
- o) { $0^m 1^n 0^n | m, n > 0$ }.
- 6. Sejam L_1 e L_2 duas linguagens. Mostre que sim ou que não:
 - a) se $L_1 \cup L_2$ é uma linguagem regular então L_1 é uma linguagem regular.
 - b) se L_1L_2 é uma linguagem regular então L_1 é uma linguagem regular.
 - c) se L_1^* é uma linguagem regular então L_1 é uma linguagem regular.
 - d) se L_1 é uma linguagem regular então { $w \mid w$ é uma subpalavra de L_1 } é uma linguagem regular.

- 7. Mostre que a classe das linguagens regulares é fechada sob as seguintes operações:
 - a) $pref(L) = \{ x \mid xy \in L \}$ (os prefixos das palavras de L).
 - b) $suf(L) = \{ y \mid xy \in L \}$ (os sufixos das palavras de L).
 - c) $rev(L) = \{ w^R \mid w \in L \}$ (os reversos das palavras de L).
 - d) $crev(L) = \{ xy^R \mid x, y \in L \}$ (a concatenação das palavras de L com os reversos das palavras de L).
- 8. Determine expressões regulares e gramáticas regulares para as seguintes linguagens sob $\{0, 1\}^*$:
 - a) Conjunto das palavras em que 0's só podem ocorrer nas posições pares.
 - b) Conjunto das palavras que não contêm 000.
 - c) Conjunto das palavras em que cada subpalavra de tamanho 4 contém pelo menos três 1's.
 - d) Conjunto das palavras que não contêm **00** nos últimos 4 símbolos.
 - e) Conjunto das palavras que não contêm **00**, a não ser nos últimos 4 símbolos (se tiver).
- 9. Determine uma expressão regular e uma gramática regular para o AFD cujo diagrama é representado pela figura abaixo:

- 10. Considere as seguintes ERs:
 - $\mathbf{r}_1 = (\mathbf{a} \cup \mathbf{b})^* (\mathbf{ab} \cup \mathbf{ba}) (\mathbf{a} \cup \mathbf{b})^*$
 - $r_2 = ab^*$
 - $r_3 = a(b^*ab^*a)^*$
 - $r_4 = (\mathbf{aa} \cup \mathbf{bb} \cup (\mathbf{ab} \cup \mathbf{ba})(\mathbf{aa} \cup \mathbf{bb})^*(\mathbf{ab} \cup \mathbf{ba}))^*$

Encontre ERs para:

- a) $\overline{L(\mathbf{r}_1)}$;
- b) $\overline{L(\mathbf{r}_2)}$;
- c) $\overline{L(r_3)}$;
- d) $\overline{L(r_4)}$;
- e) $L(\mathbf{r}_1) \cap L(\mathbf{r}_4)$;
- f) $L(r_1) L(r_4)$.