WEEK 5 - MATCHING METHODS

Tutorial PSM with Python

2022-23925 SYALIANDA SALSABILA IZZATI

2022-25172 LEE SOOIN

OUTLINE

Introduction: The Psychology of Growth

Data Description

Normal Linear Regression

Selection Bias

Propensity Score Estimation

Logistic Regression

Linear Regression using PSM

Easier way to implement C.I.

Result of using "CausalModel"

INTRO

What is Growth Mindset?

FIXED MINDSET VS. GROWTH MINDSET

Fixed Mindset

- Abilities are <u>given</u> at birth or in early childhood
- Should not <u>waste time</u> on areas where you don't excel.
- Wants to **prove** intelligence or talent
- Traits as stable and <u>unchangeable</u>

Growth mindset

- Intelligence can be <u>developed</u>
- Your failure is not as lack of tenacity, but lack of practice
- Want to <u>improve</u> intelligence or talent
- Traits as learnable and <u>changeable</u>

RESEARCH QUESTION

Is it that a growth mindset causes people to achieve more?

OR

Is simply the case that people who achieve more are prone to develop a growth mindset as a result of their success?

DATA DESCRIPTION

Treatment (T): Students can choose to attend seminar about "Growth mindset". (Intervention)

Dependent Variable (Y): How well they've performed academically (Achievement score)

Data Description

NORMAL LINEAR REGRESSION

Given students who attended seminar, Intervention = 1, otherwise = 0 (Binary Variable)

smf.ols(" <mark>a</mark> c	hievemen	t_score	~ inter	rventid	on", da	ta=data
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.1538	0.012	-13.201	0.000	-0.177	-0.131
intervention	0.4723	0.020	23.133	0.000	0.432	0.512

Effect of Intervention: 0.4723?

E[Y|T=1]-E[Y|T=0] = Average Treatment Effect (ATE) + Selection Bias

SELECTION BIAS

Positive Bias

- Did students who attended the seminar got higher achievement score? (Treatment Effect)
- 2. Or as more ambitious students are more willing to go to the seminar, even if they had not attended it they probably would have higher achievement score more. (Selection Bias)

Success expectation vs. Intervention

PROPENSITY SCORE ESTIMATION

- Example of covariate adjustment using the propensity score
 - "The outcome variable is regressed on an indicator variable denoting <u>treatment status</u> and the <u>estimated propensity score</u>."
 - $Y = \beta_0 + \beta_1 * T + \beta_2 * \widehat{P}(x)$
- Even though, we have true propensity score P(x), mechanism that assigns the treatment effect is **unknown** and we need to replace the true propensity score by an estimation score $\widehat{P}(x)$
- For Dichotomous (Binary) outcomes, we will be using **logistic regression** to estimate $\hat{P}(x)$
 - Range of propensity score: $0 \le \hat{P}(x) \le 1$, likelihood that subject will be given a specific treatment

LINEAR VS. LOGISTICS

PROCESS OF ESTIMATION

Changing into dummies

Changing categorical features into dummies

ethnicity_13	ethnicity_14	ethnicity_15	gender_1	gender_2	school_urbanicity_0	school_urbanicity_1	school_urbanicity_2	school_urbanicity_3
0	0	0	0	1	0	1	0	0
1	0	0	1	0	0	0	0	0
0	0	0	0	1	1	0	0	0
0	1	0	1	0	0	0	0	0
0	0	0	1	0	0	1	0	0

Estimated propensity score

```
from sklearn.linear_model import LogisticRegression

T = 'intervention'
Y = 'achievement_score'
X = data_with_categ.columns.drop(['schoolid', T, Y])

ps_model = LogisticRegression(C=1e6).fit(data_with_categ[X], data_with_categ[T])

data_ps = data.assign(propensity_score=ps_model.predict_proba(data_with_categ[X])[:, 1])

data_ps[["intervention", "achievement_score", "propensity_score"]].head()
```

	intervention	achievement_score	propensity_score
0	1	0.277359	0.315490
1	1	-0.449646	0.263803
2	1	0.769703	0.344039
3	1	-0.121763	0.344039
4	1	1.526147	0.367797

$$Log\left[\frac{Y}{1-Y}\right] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 ... + \beta_n X_n$$

Linear Regression using PSM

Success expect & Propensity score Linear Regression with P.S

Intervention Effect: $0.472 \rightarrow 0.393$

EASIER WAY TO IMPLEMENT C.I.

CAUSAL INFERENCE

- Python package provides various statistical methods
- Simple package used for basic causal analysis learning

CAUSALLIB

- Python package developed by IBM
- Provide causal analysis API unified with Scikit-Learn API

DOWHY

- Python package provides 4-step interface for causal inference
- Integration with EconML library

RESULT OF USING "CAUSALMODEL"

Actual ATE

ATT

0.412

0.025

confounders = data_with_categ,drop(columns=['achievement_score', 'intervention']).values model = CausalModel(Y= data_ps["achievement_score"].values, D = data_ps["intervention"].values, X= confounders model.est_via_matching(matches=1, bias_adj=True) print(model.estimates) Treatment Effect Estimates: Matching P>lzl [95% Conf. int.] 0.023 16.327 0.000 0.336 0.4280.025 0.318 14.540 0.000 0.417 0.368

16,206

0.000

0.362

0.462

Estimated ATE using PSM

```
model2 = CausalModel(
    Y= data_ps["achievement_score"].values,
   D = data_ps["intervention"].values,
   X= data_ps["propensity_score"].values
model2.est_via_matching(matches=1, bias_adj=True)
print(model2.estimates)
Treatment Effect Estimates: Matching
                                                               [95% Conf. int.]
                                                    P>lzl
                               0.025
                                        15,696
                                                    0.000
                                                               0.343
                                                                          0.442
                                                               0.331
                               0.027
                                        14.031
                                                    0.000
                                                                          0.439
                   0.407
                               0.027
                                        15.315
                                                    0.000
                                                               0.355
                                                                          0.460
```

