Noisy Self-Knowledge Distillation for Text Summarization

Yang Liu, Sheng Shen and Mirella Lapata
NAACL 2021

- Maximum-likelihood training on single reference datasets
- Why this is not optimal?

- Maximum-likelihood training on single reference datasets
- Why this is not optimal?
 - 1. Human variation in summarization tasks

- Maximum-likelihood training on single reference datasets
- Why this is not optimal?
 - 1. Human variation in summarization tasks
 - Different people disagree on writing style and content selection
 - Summarization is naturally a multi-reference task

- Maximum-likelihood training on single reference datasets
- Why this is not optimal?
 - 1. Human variation in summarization tasks
 - 2. Most popular benchmarks are collated opportunistically

- Maximum-likelihood training on single reference datasets
- Why this is not optimal?
 - 1. Human variation in summarization tasks
 - 2. Most popular benchmarks are collated opportunistically
 - Their summaries only loosely correspond to the source input [1]
 - The inherent noise in the data collection hampers training, and models may be prone to hallucination

- Maximum-likelihood training on single reference datasets
- Why this is not optimal?
 - 1. Human variation in summarization tasks
 - 2. Most popular benchmarks are collated opportunistically

- Maximum-likelihood training on single reference datasets
- Why this is not optimal?
 - 1. Human variation in summarization tasks
 - 2. Most popular benchmarks are collated opportunistically
- Self-Knowledge Distillation can alleviate these challenges

Knowledge Distillation

- Teacher neural network Student neural network
- To train a new student, Knowledge Distillation usually penalizes the difference between the trained teacher and the student

$$L_{KD} = \sum_{x_i \in X} l(f_T(x_i), f_S(x_i))$$

 Self-knowledge distillation refers to the special case: teacher and student have identical neural network architectures

Self-Knowledge Distillation for Text Summarization

- Teacher outputs provide softened distributions of the reference summaries
 - An enrichment of the single reference setting
 - A reweighting of gold summaries
 - Prevent the student from becoming over-confident in its predictions.

Self-Knowledge Distillation for Text Summarization

NLL loss for abstractive summarization

$$L_{NLL} = -\sum_{t=1}^{T} log(p(y_t | y_1^{t-1}, x))$$

KD loss for abstractive summarization

$$L_{KD} = \sum_{t=1}^{T} KL(p_T(y_t | y_1^{t-1}, x), p_S(y_t | y_1^{t-1}, x))$$

Final loss for abstractive summarization

$$L_{\text{FINAL}} = (1 - \lambda)L_{\text{NLL}} + \lambda L_{\text{KD}}$$

- To make summarization systems robust to noise in existing datasets
- Introduce noise to both distillation signals and training data
 - 1. Noisy Teacher

- To make summarization systems robust to noise in existing datasets
- Introduce noise to both distillation signals and training data
 - 1. Noisy Teacher
 - Dropout is kept active while generating teacher predictions
 - The teacher generates variable supervision labels
 - The teacher can also be considered as approximating an average ensemble from many neural networks

- To make summarization systems robust to noise in existing datasets
- Introduce noise to both distillation signals and training data
 - 1. Noisy Teacher
 - Dropout is kept active while generating teacher predictions
 - 2. Noisy Student

- To make summarization systems robust to noise in existing datasets
- Introduce noise to both distillation signals and training data
 - 1. Noisy Teacher
 - Dropout is kept active while generating teacher predictions
 - 2. Noisy Student
 - Inject noise into the training data
 - Word Drop, Word Replacement, Sentence Drop

- To make summarization systems robust to noise in existing datasets
- Introduce noise to both distillation signals and training data
 - 1. Noisy Teacher
 - Dropout is kept active while generating teacher predictions
 - 2. Noisy Student
 - Inject noise into the training data

$$L_{KD} = \sum_{t=1}^{T} KL(\tilde{p}_{T}^{\alpha}(y_{t} | y_{1}^{t-1}, x), p_{S}(y_{t} | y_{1}^{t-1}, \tilde{x}))$$

ExperimentsSingle-document Summarization Datasets

	# docs (train/val/test)	avg. doc length	avg. summary length
CNN	90,266/1,220/1,093	760.50	45.70
DailyMail	196,961/12,148/10,397	653.33	54.65
XSum	204,045/11,332/11,334	431.07	23.26

ExperimentsMulti-document Summarization Dataset

WikiCatSum	Category	# instances	avg. summary length	
			sents	words
	Company	62,545	5.09	124.20
	Film	59,973	4.17	98.16
	Animal	60,816	4.71	92.69

ExperimentsCNN/DM Results

ExperimentsXSum Results

ExperimentsWikiCatSum Results

ExperimentsFactual Correctness Evaluation

Conclusions

- Self-Knowledge Distillation can alleviate problems associated with maximum-likelihood training in summarization tasks.
- Noise Injection (in the training signal and training data) can help regularize training and further boost performance.