us vilve , richmangerine ;

Relations and functions

Cartesian Products and Relations

for sets A,B & U, the Cartesian product or cross product of A &B is denoted by AXB & equals &(a,b))aeA, beB&

The dements of AXB are ordered pairs

[A x B] = [A] x |B| = [B x A]

But in general AXB + BXA and

A1XA2 X ... XAn = {(a,,a2,...an) | 9; EA; 15 (4) } which is interested

For sels A,B EU, any subset of AXB is called relation from A to B. Any subset of AXA is called binary relation on A. · 2 mm on 2 n / May Mar () on general, for finite sets A,B with IAI = m f/BI= En, there are 2000 relations from A to B, including the empty relation as well as the relation A.B. itself

|H| = U, $|A \times A| = U_s$

Relations on A = 2n2

Reflexive relations on $A = 2^{n^2-n}$

Symmetric relations on A = 20x2 = (n2-n) indianage the a including of the

Keflexive & symmetric relations on A = 2 = (n2-n)

Antisymmetric relations on A = 2%3 = (n2-n)

Reflexive & antisymmetric relations on A = 32 (n2-n)

(1,1) (2,2) = Reflexive

(2,1)(1,2) (2,3) (3,2) = Symmetric

of A= {w, x,y,z}

Determine the now of relations on A that are

(a) sufflexive

$$n=4$$
 2^{4} $2^{n^{2}-n}$ = 2^{16-4} = 2^{12}

(b) softexive & symmetric $= 2^{\frac{1}{2}(h^2-n)}$

$$2^{n} \cdot 2^{\frac{1}{2}(n^{2}-n)} = 2^{4} \cdot 2^{6} = 2^{16}$$

(d) sufflexive 4 contain (x,y)
$$\frac{2^{4-2}}{2^{2}} = 2^{2} + 2^{4-2-1} = 2^{1} = 2$$

untilymmetric
$$2^{n} \cdot 3^{\frac{1}{2}(n^{2}-n)} = 2^{4} \cdot 3^{\frac{1}{2}(16-4)} = 2^{4} \cdot 3^{6}$$
lymmetric of contain $(2, 4)$

(4) symmetric of contain
$$(x, y)$$

 2^{4} , $2^{\frac{6-4}{2}-1} = 2^{4}$, $2^{5} = 2^{9}$

$$2^{12} \times 2^4 \times 2^6 \times 2^4 \times 3^6$$

two site nongenion is a site

er and the state of the state o

13 - 14 did 1

- I of A= &1,2,3,43 give an example of a relation Ron A that is
 - a) sufferive & symmetric, but not transitive: $^{\circ}$ R₁ = $^{\circ}$ (1,1) (2,2) (3,3) (4,4) }
 - b) reflexive a transitive, but not symmetric $R_1 = \frac{9}{2}(1,1)(2,2)(3,3)(4,4)$ (2,3) (4,4)
 - c) symmetric & toansettive, but not suffexive $R_1 = \{(1,2)(2,1)(1,1)\}$ (2,3) (3,3) (2,3)

Poset = Should be sufferive, antisymmetric & toansitive of or duding Hasse Diagram = Groaphical superventation of Poset

82: Construct for (\$1,2,33, 4) (SIG) (GS) (GS) (GS) (GS)

$$R = \{(1,1),(1,2),(1,3)\}$$

$$(2,2),(2,3),(3,3),($$

Procedure:

- * stood with the digraph of poset
- a Remove the loops at each vertex
- * Remove all edges that must be present bcoz of transitivity.
- · Arrange each edge so that all arrows point up
- * Remove all asserbleads of the mode is not the second

experiment of samples: e.f. j. b. a.d. desperad of the sample of the samples of t

Portion to be based weed town

1 Construct Hasse diagram for ([1,2,3,4], 5)

$$R = \begin{cases} (1,1) & (1,2) & (1,3) & (1,4) \\ (2,2) & (2,3) & (2,4) \\ (3,3) & (3,4) \\ (4,4) & 6 \end{cases}$$

1 Construct for (21,2,3,4,6,8,128,1)

$$(2,1)$$
 $(2,4)$ $(2,6)$ $(2,8)$ $(2,12)$

$$(3,3)$$
 $(3,6)$ $(3,12)$ $(4,4)$ $(4,8)$ $(4,12)$

Greatest element: None

least element: a

Upper bound of &a,b,c&: e,f,j,h,g,d Litadosco Do mona? least upper bound of &a,b,c3:e tower bound of fa, b, c3:

bast bower bound of &a,b,c3:

Poset in which every pair of elements has both least Oppen bound of greatest lower bound is called lattice. It is both poset of equivalence relation.

Two integers a and b are congruent modulo in iff they have the same remainder when divided by no

en sychon out ; it is not suit.

- 0 : (f.o) 1 - 100 = [all - 8.5] (f

Add to make the contract of the second of the second of

Que & man literary in a granger of in

Latin to the state of the property of the second of the

por walk aft mined of

of 100 101- 11

Equivalence relation: Reflexive, symmetric & toansitive

Equivalence classes and partitions

Let R be an equivalence relation on a set A. Following statements for elements a f b of set A are equivalent

(1) alb (11) [a] = [b] (111) [a] $n[b] \neq \emptyset$

Let R be an equivalence relation on a set A. For any x E A, the equivalence class of x, denoted [x] is defined by [x] = 2.7 E A | y R x &

From house diagram for set $A = \S1,2,3\S$ of $P(A) = \SA, \subseteq \S$ $P(A) = \S \phi$, $\S1\S$, $\S2\S$, $\S2\S$, $\S1,2\S$, $\S1,2\S$, $\S2,3\S$

functions

floor function the greatest & integer less than or equal to &

or or a second to be the second of the second Celling function = least integer greather than or equal to x

or chater is the three per in

estidan, bur keeph sundah

Take In Cost of the Cost of the Cost of the

toche in or over A top je;

towns function = integer part of x=towns(x)

- 1) Determine the following
 - (a) 12.3-1.6] = @ execut [0.7] = 0
 - (b) L2.3] L1.6] = 2-1 = 1
 - (c) [3.4] [6.2] = 4,86 = 24 al el, hatte has nothing and by a second of the same of the o
- 1 Determine true of false
 - (a) Las = Fa7 for all a EZ

 - (b) La] = [a] for all a & R
 - Fraggio) of has pet historia to hoterate, a prosec (c) Las = Ta7-1 for all a CR-Z
 - (d) La] = 1-a1 for
- 3 Check whether nelation is a function of so then find its range.
 - (a) {(x,y) | x,y \in Z , y = 12+7}, a relation from 2 to Z Range = 97,8,11,16...}
 - (b) 9 (2,y) 12,y ER, y2= 23, a sulation from R to R X
 - (1) 2(x,y)/x,yER, y=3x+18, a relation from R to R Range=set of all real no):
 - (d) $\{(x,y)|x,y\in Q : x^2+y^2=1\}$, a relation from Q to $Q\times$
- (e) R is a relation from A to B where |A| = 5 |B| = 6 & 187 = 6 not of elements

A function file-18 is called one-tw-one or injective, if each element of B appears at most once as the image of an element of A.

If $f: A \rightarrow B$ is one to one, with A,B finite, we must have $|A| \leq |B|$. For arbitrary gets A,B if $f: A \rightarrow B$ is one to one, then for $a_1,a_2 \in A$, $f(a_1) = f(a_2) \Longrightarrow a_1 = a_2$ f(x) = 3x + 3 is one to one

g(1) = 14 - 2 is not; g(0) = 0 g(1) = 0

let A = {1,2,3} B= {1,2,3,4,5}

Then $f = \{(1,1)(2,3)(3,4)\}$ Function and One to One $g = \{(1,1)(2,3)(3,3)\}$ Function but not one to one

heren: Let $f: A \rightarrow B$, with $A_1A_2 \subseteq B$. Then (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ c) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ when

tia injective

19 f : A-B, then t is said to be bijective ex to be a one-to-one correspondence. It t is both one to one onto

The function IA: A>A defined by IA (a) = a for all a EA is called identity function for A

of 1,9:A-B, we say that & & g are equal & write as

devoted gof: $A \rightarrow C$, by (gof)(a) = g(f(a)), too each a $\in A$

8x: Let
$$f,g:R \to R$$
 be defined by $f(x)=x^2$, $g(x)=x+5$ then

1) $g \circ f(x) = g(f(x)) = g(x^2) = x^2 + 5$

2) $f \circ g(x) = f(x+5) = (x+5)^2$

Ex: let
$$f,gh: R \to R$$
 where $f(x) = x^2$, $g(x) = x + 5$, $h(x) = \int x^2 + 2^4$

$$((h \circ g) \circ f)(x) = (h \circ g)f(x) = h(g(x^2)) = h(x^2 + 5) = \sqrt{(x^2 + 5)^2 + 2}$$

Theorem:
$$4 + : A \rightarrow B$$
, $g: B \rightarrow C$; $h: C \rightarrow D$, then $(h \circ g) \circ f = h \circ (g \circ f)$
Def: $4 + : A \rightarrow A$, we define $f' = f$ and for $n \in Z^{+}$, $f^{n+1} = f \circ f^{n}$
So $A = \{1, 2, 3, 4\}$, $f: A \rightarrow A$ defined by $f = \{C_{1}, 2\}$ $(2, 2)$ $(3, 1)$ $(4, 3)$?
Then $f^{2} = f \circ f = (1, 2)$ $(2, 2)$ $(3, 2)$ $(4, 1)$
 $f \circ f(1) = f(2) = 2$ $f(f(2)) = f(2) = 2$ $f(f(3)) = f(1) = 2$ $f(f(4)) = f(3) = f(3)$

ln x = y

· main - nois - partition of a

(i)
$$f,g:R\rightarrow R$$
, $f(x)=2x+5$, $g(x)=\frac{1}{2}(x-5)$
Then $gf(x)=g(2x+5)=\frac{1}{2}(2x+5-5)=x$
 $fg(x)=f(\frac{x-5}{2})=x(\frac{x-5}{2})+5=x$
if fg are both invertible functions.

(3)
$$f: R \to R^+, f(x) = e^x, f$$
 is one to one of onto
$$f^{-1} = \frac{1}{2}(x, y) | y = e^x e^x$$

$$= \frac{1}{2}(y, x) | y = e^x e^x$$

$$= \frac{1}{2}(y, x) | x = e^y e^x$$

Onto Function A function f: A-B is called onto or susjective, if \$ (A) = B that is, if for all bEB there is at least one a EA with f(a) = b. 1A1-100 3 Formula = $\sum_{k=0}^{n} (-1)^{k} \binom{n}{n-k} (n-k)^{m}$ 18/=0 A = 5 0 = 5 5 (1), ("-1 / W-2) Stoling number of second kind 1 = (-1)x (v-K) (v-K) W f(y) = 3x-5 2>0 OKE $f(x) = \{(x,y) \mid y = 3x - 5\}$ $= {(x,y)}/{x} = 3y - 5 = 3y$ y>0 201 1 2 4 1 2 1 2 45 X+5 50. = { (x,y), 1 y= 12+5 } } } } } } } 2.>-5 $(\pi) = \frac{245}{2} \text{ for a good for above operator in the set of the set of$ (x) = -3x+11 8 8 80 $\chi \leq 0$

 $f'(x) = -3x + 1 \quad x = 0$ $f'(x) = \frac{2}{3}(x,y) | y = -3x + 1 = 0$ $f'(x) = \frac{2}{3}(x,y) | x = -3y + 1 = 0$ $f''(x) = \frac{1-x}{3} \quad x \leq 0$ $f''(x) = \frac{1-x}{3} \quad x \leq 0$ $f''(x) = \frac{1-x}{3} \quad x \leq 0$

 $4^{-1}(0) = \frac{x+5}{3}$ 0 $\frac{1-x}{3}$ $\frac{1-x}{3}$ $\frac{1}{3}$ $\frac{$

f'(1) = x+5 U 1-x = 2 U0 = 90,2} f'(-1) = x+5 U 2 = {2,0}