

Calibration of water tank positioning system v2

Martin Unland 11.03.2024

Coordinate system

Calibration of speed and acceleration

- Speed and acceleration are set via ADC value
- Calibration of these ADC values performed by measuring moving time of each axis for several distances at different speeds & accelerations
- No load on rot / tilt axis... acceleration calibration will probably change
- Assumptions:
- Linear relationship between ADC & realvalues
 - Equal acceleration & deacceleration

Few comments

- Real acceleration changes only every 10 ADC steps
- Speed seems to change continuously (tested down to 1 ADC steps)
- Acceleration for <10ADC shows weird behaviour
- For following calibration, data with acceleration > 10 ADC was ignored

X-Axis (1)

X-Axis (1)

Global fit:

Speed slope	Speed const
(mm/s / ADC)	(mm/s)
(216.381 ± 0.004)e-3	$(1.899 \pm 0.019)e-3$

Acceleration slope	Acceleration const
(mm/s² / ADC)	(mm/s²)
(290.441 ± 0.035)e-3	1.2077 ± 0.0004

Y-Axis (2)

Y-Axis (2)

Speed slope	Speed const
(mm/s / ADC)	(mm/s)
(216.5920± 0.0021)e-3	(0.789 ± 0.026)e-3

Acceleration slope	Acceleration const
(mm/s² / ADC)	(mm/s²)
(238.28 ± 0.023)e-3	2.0345± 0.0004

Z-Axis (3)

Z-Axis (3)

Speed slope	Speed const
(mm/s / ADC)	(mm/s)
(216.526 ± 0.002)e-3	(0.773 ± 0.011)e-3

Acceleration slope	Acceleration const
(mm/s² / ADC)	(mm/s²)
(233.427 ± 0.017)e-3	2.1272 ± 0.0004

Tilt-Axis (5)

0° 1° 10° 20° 30°

Acceleration bounds maybe [20-100]?

Tilt-Axis (5)

Speed slope	Speed const
(°/s / ADC)	(°/s)
(60.272 ± 0.002)e-3	(-1.236 ± 0.009)e-3

Acceleration slope	Acceleration const
(°/s²/ADC)	(°/s²)
17.753 ± 0.023	-28.16 ± 0.27

Rot-Axis (4)

0° 1° 10° 20° 30°

13

Rot-Axis (4)

Speed slope	Speed const
(°/s / ADC)	(°/s)
(20.0254 ± 0.0002)e-3	(-1.447 ± 0.013)e-3

Acceleration slope	Acceleration const
(°/s²/ADC)	(°/s²)
(6.082 ± 0.016)	-17.83±0.20

