D17 – SIG no ambiente de Ciências de Dados - Aula 3

Agenda

- Ambiente Ciência de Dados com SIG
- Jupyter Notebook (Revisão)
- Biblioteca GDAL

GeoPandas

- Outras bibliotecas de SIG
- Bibliotecas de Mapas

Ambiente Ciência de Dados com SIG

- Existe vários ambientes, como:
 - Ferramenta de desenvolvimento (IDE) Ex.: VSCode
 - Bl e Visualização Ex.: Power Bl
 - Notebook Ex.: Jupyter Lab, *Google Colab* (nuvem)
 - Big Data Ex.: Apache Spark.
- Google Colab:
 - As bibliotecas precisam ser instaladas a cada "Execução da máquina"
 - A sessão inicia as variáveis do Notebook (não altera o estado máquina)
- Bibliotecas: GDAL, Shapely, RasterIO, XArray e Geopandas.
- Notebook ("ambiente_sig_ciencia_dados.ipynb"):
 https://colab.research.google.com/drive/1PrXCTcpzszp9Z8cbMWGT6P86ZtR0xNT7
 - * Precisa ter uma conta na Google

Jupyter Notebook (Revisão)

- No notebook (ambiente_sig_ciencia_dados.ipynb) executar a célula com as instruções de instalação.
- No Google Colab o Jupyter Notebook é customizado.
- Ambiente:
 - Menu/Arquivo:
 - Modelo playground (não grava)
 - Locais: Google Drive (cria uma pasta), GitHub
 - Revisão (versionamento)
 - "Célula":
 - Unidade do Notebook, pode ser do tipo "Texto" ou "Código"
 - O Texto utiliza a linguagem Markdown
 - No código podemos fazer "chamadas" para o Sistema Operacional ('!')

Jupyter Notebook (Revisão) – Continuação

- Ambiente:
 - Menu/Arquivo:
 - Modelo playground (não grava)
 - Locais: Google Drive (cria uma pasta), GitHub
 - Revisão (versionamento)
 - "Célula":
 - Unidade do Notebook, pode ser do tipo "Texto" ou "Código"
 - O Texto utiliza a linguagem Markdown
 - No código podemos fazer "chamadas" para o Sistema Operacional ('!')
 - Formatação do Notebook (linguagem Markdown):
 - O ambiente facilita a edição
 - Índice: Agrupa conteúdos (facilita a navegação)
 - Snippets: trechos prontos de código
 - Formulário: GUI para entrada de dados (vai colocando o valor no código)

Prof. Luiz Motta

Biblioteca GDAL

- Biblioteca base de vários projetos (SIG e outras bibliotecas).
 www.gdal.org
- Origem em 1998 (Frank Warmedam) evoluindo p/ pertencer a OSGeo.
- Começou como conversão de formatos de imagem, depois para vetor, e chegando a algoritmos de processamento.
 Engloba outras bibliotecas.
- Biblioteca em C++, oferecendo "Binding" para Python.
- Alto desempenho.
- A biblioteca de Python é puramente um "Binding" não sendo "Pythônica Origem em 1998 (Frank Warmedam) evoluindo p/ pertencer a OSGeo".

Biblioteca GDAL (Continuação)

- Imagem com 3 bandas Array 3D
 - 1^a index: Array 2D (Bandas)
 - 2^a index: Array 1D (Linhas)
 - 3ª index: Célula (Coluna)
 - Valor = Array(idx_band, idx_line, idx_column)

Outras bibliotecas - Shapely

- "Pythônica".
- Utilizada pelo GeoPandas
- Criar (Polygon, Point, ...) e analisar geometria (Interseção, Diferença, ...).
- https://shapely.readthedocs.io/en/stable/

Outras bibliotecas - RasterlO

- Ler, escrever e manipular dados raster (imagem)
- https://rasterio.readthedocs.io/en/stable/

Outras bibliotecas - XArray

- Trabalhar com dados multidimensionais (2D, 3D ou 4D)
- Uso em série histórica (alteração dos valores do pixeis ao longo do tempo)
- Dados climáticos e meteorológicos (NetCDF, GRIB)
- Séries temporais espaciais
 - Open Data Cube (ODC), conhecido como Data Cube, usa o Xarray
- https://docs.xarray.dev/en/stable/
- https://www.opendatacube.org/

GeoPandas

- Combina a funcionalidade do Pandas com bibliotecas de SIG
 - Lê arquivos geográficos como .shp, .geojson, .kml, .gpkg
 - Manipula geometrias (funções do Shapely)
 - Joins espaciais (dataframes)
- https://geopandas.org/en/stable/index.html

Bibliotecas de Mapas

- Ipyleaflet:
 - Base: Leaflet.js (via widgets do Jupyter)
 - Interatividade: Alta (suporte a eventos, camadas, popups, widgets)
 - Ideal para: Aplicações interativas em notebooks, integração com ipywidgets
 - Destaques: Suporte a camadas vetoriais e raster, controle de camadas, integração com GeoDataFrame

https://ipyleaflet.readthedocs.io/en/latest/

- folium
 - Base: Leaflet.js (renderiza HTML/JS)
 - Interatividade: Média (interativo no navegador, mas não reativo no notebook)
 - Ideal para: Mapas rápidos e bonitos com pouco código
 - Destagues: Fácil de usar, exporta mapas como HTML, bom para dashboards
- keplergl
 - Base: Kepler.gl (Uber)
 - Interatividade: Muito alta (interface gráfica rica)
 - Ideal para: Exploração visual de grandes volumes de dados geoespaciais
 - Destaques: Visualizações 3D, animações temporais, integração com geopandas

Prof. Luiz Motta

Bibliotecas de Mapas (Cont.)

- S geemap
 - Base: ipyleaflet + Google Earth Engine
 - Interatividade: Alta
 - Ideal para: Análise de dados ambientais e sensoriamento remoto
 - Destaques: Acesso direto ao Google Earth Engine, ferramentas de análise espacial, visualização de imagens de satélite
- ii geopandas + matplotlib
 - Base: matplotlib
 - Interatividade: Baixa (mapas estáticos)
 - Ideal para: Análise exploratória e visualização simples
 - Destaques: Integração com pandas, fácil de usar para análises vetoriais
- - Base: Plotly.js + Mapbox
 - Interatividade: Alta
 - Ideal para: Dashboards interativos e visualizações web
 - Destaques: Gráficos 3D, animações, integração com Dash