技术报告

-Paper Machine Pipeline

刘维湘—深圳大学

20201212

摘要

科学与技术的发展离不开实践与思考。个人的学习笔记有利于自己系统的思考,为了更好地实践、交流与传承。¹

¹源于个人日常学习中的点滴积累。很多资料来自网络。仅可用于非商业目的教学与研发。

概率分布的空间(以正态分布为例)

目录

1	描述问题					
	1.1	应用背景	5			
		1.1.1 是基础科学问题	5			
		1.1.2 或是工程应用问题	5			
		1.1.3 或是应用基础研究问题	5			
	1.2	研究现状	5			
		1.2.1 国外现状	5			
		1.2.2 国内现状	5			
	1.3	存在不足	5			
2	建立	模型	6			
	2.1	出发点/基本假设	6			
	2.2	模型描述	6			
3	优化策略 7					
	3.1	目标函数	7			
	3.2	正则化技术	7			
4	求解	?算法	8			
	4.1	迭代求解	8			
	4.2	近似计算	8			
	4.3	快速解法	8			
	4.4	算法收敛性分析	8			
	4.5	算法复杂性分析	8			
5	编程	·····································	9			
	5.1	原型验证: 小规模试验	9			

目录 4

6	实验结果				
	6.1	仿真数据	10		
	6.2	真实数据	10		
	6.3	大规模实验	10		
	6.4	不同参数	10		
	6.5	算法稳定性实验	10		
7	分析讨论				
	7.1	对比分析	11		
	7.2	优缺点分析	11		
	7.3	工作展望	11		
\mathbf{A}	数学基础回顾				
	A.1	概率论与数理统计	12		
	A.2	线性代数与矩阵分析	12		
	A.3	凸优化理论与算法	12		
	A.4	泛函分析初步	12		
В	主要	数学符号表	13		
\mathbf{C}	主要	算法流程 (伪代码或代码)	14		

1 描述问题 5

1 描述问题

- 1.1 应用背景
- 1.1.1 是基础科学问题
- 1.1.2 或是工程应用问题
- 1.1.3 或是应用基础研究问题
- 1.2 研究现状
- 1.2.1 国外现状
- 1.2.2 国内现状
- 1.3 存在不足

2 建立模型 6

2 建立模型

- 2.1 出发点/基本假设
- 2.2 模型描述

3 优化策略 7

3 优化策略

- 3.1 目标函数
- 3.2 正则化技术

4 求解算法 8

4 求解算法

- 4.1 迭代求解
- 4.2 近似计算
- 4.3 快速解法
- 4.4 算法收敛性分析
- 4.5 算法复杂性分析

5 编程实现 9

5 编程实现

5.1 原型验证: 小规模试验

C/C++, Python, R, Julia, Matlab

6 实验结果 10

6 实验结果

- 6.1 仿真数据
- 6.2 真实数据
- 6.3 大规模实验
- 6.4 不同参数
- 6.5 算法稳定性实验

7 分析讨论 11

7 分析讨论

- 7.1 对比分析
- 7.2 优缺点分析
- 7.3 工作展望

A 数学基础回顾

- A.1 概率论与数理统计
- A.2 线性代数与矩阵分析
- A.3 凸优化理论与算法
- A.4 泛函分析初步

B 主要数学符号表

常见符号说明

 $\mathbb{A}, \mathbb{B}, \mathbb{C}$: $\mathbb{A}, \mathbb{B}, \mathbb{C}$

ℝ: 实数集

账: 复数集

№: 自然数集

ℤ: 整数集

 \mathbb{R}^n : n 维欧式空间

x: 数 x, 比如 $x \in \mathbb{R}$ (零阶张量);

有时在不引起混淆的情况下,我们也用 x_1, x_2 等来表示具有多个元素的数据向量。

x: 向量 x, 比如 $x \in \mathbb{R}^n$ (一阶张量), 第 i 个分量 x_i

X: 矩阵 X, 比如 $X \in \mathbb{R}^{m \times n}$ (二阶张量), 第 i 行 X_i ,

第 j 列 X_{ij} , 第 i 行第 j 列的元素 X_{ij}

 \mathcal{X} : 张量 \mathcal{X} , 比如三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times k}$, 四阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times k \times t}$

 x^* : x 的最优值

î: 估计值

·: 算术平均值

|·|: 实数的绝对值或复数的模

||·||: 向量,矩阵或张量的范数

.*: 对应元素乘法

./: 对应元素除法

< ·, · > : 内积

C 主要算法流程 (伪代码或代码)