Contents			5.7 Min-cost Maximum Flow 16 5.8 General Min-cut (Stoer-Wagner) 16
1	Setting	1	5.9 General Max Matching
	1.1 vimrc	1	5.10 Hungarian Algorithm
	1.2 account	1	***************************************
			6 Geometry 20
2	Math	2	6.1 Basic Operations
	2.1 Basic Arithmetic	2	6.2 Compare angles
	2.2 Sieve Methods: Prime, Divisor, Euler phi	2	6.3 Convex Hull
	2.3 Primality Test	2	6.4 Rotating Calipers
	2.4 Integer Factorization (Pollard's rho)	3	6.5 Point in Polygon Test
	2.5 Chinese Remainder Theorem	3	6.6 Polygon Cut
	2.6 Modular Equation		6.7 Pick's theorem
	2.7 Catalan number	3	
	2.8 Burnside's Lemma	4	7 String 23
	2.9 Kirchoff's Theorem	4	7.1 KMP
	2.10 Lucas Theorem	4	7.2 Z Algorithm
	2.11 Fast Fourier Transform	4	7.3 Aho-Corasick
	2.12 Number Theoretic FFT		7.4 Suffix Array with LCP
	2.13 Example for FFT	5	7.5 Manacher's Algorithm
	2.14 Polynomial Division	5	8 Miscellaneous 24
	2.15 Gaussian Elimination	6	8.1 Fast I/O
	2.16 Simplex Algorithm	6	8.2 Magic Numbers
	2.17 Nim Game	7	6.2 Magic Numbers
3	Data Structure	7	1 Setting
	3.1 Order statistic tree	7	<u>C</u>
	3.2 Segment Tree with Lazy Propagation	7	1.1 vimrc
	3.3 Persistent Segment Tree	8	set nocp ai si nu et bs=2 mouse=a
	3.4 Splay Tree		set ts=4 sts=4 sw=4 hls showmatch
	3.5 Dynamic Connectivity with Example	10	set ruler rulerformat=%17.(%l:%c%)
			set noswapfile autoread wildmenu wildmode=list:longest
4	DP	11	syntax on
	4.1 Convex Hull Optimization		map <f5> <esc>:w<cr>:!g++ -g -Wallstd=c++0x -02 %:r.cpp -o %:r && ./%:r < %:r</cr></esc></f5>
	4.2 Divide & Conquer Optimization		.in > %:r.out <cr></cr>
	4.3 Knuth Optimization	11	map <f6> <esc>:w<cr>:!g++ -g -Wallstd=c++0x -02 %:r.cpp -o %:r && ./%:r < %:r .in<cr></cr></cr></esc></f6>
5	Graph	12	map <c-t> :tabnew<cr></cr></c-t>
	5.1 SCC		
	5.2 BCC, Cut vertex, Bridge		command -nargs=1 PS :cd d:/ :vi <args>.cpp vs <args>.in sp <args>.out</args></args></args>
	5.3 Heavy-Light Decomposition		1.0
	5.4 Bipartite Matching (Hopcroft-Karp)		1.2 account
	5.5 Maximum Flow (Dinic)	14	ID : team242
	5.6 Maximum Flow with Edge Demands	15	PW : zx6utcpf

2 Math

2.1 Basic Arithmetic

```
// calculate a*b % m
// x86-64 only
ll large mod mul(ll a, ll b, ll m) {
    return 11(( int128)a*( int128)b%m);
}
// calculate a*b % m
// |m| < 2^62, x86 available
// O(Loab)
11 large_mod_mul(l1 a, l1 b, l1 m) {
    a \% = m; b \% = m; 11 r = 0, v = a;
    while (b) {
        if (b & 1) {
            r = r + v;
            if (r >= m) r -= m;
        b >>= 1;
        v <<= 1; if (v >= m) v -= m;
    }
    return r;
}
// calculate n^k % m
11 modpow(11 n, 11 k, 11 m) {
    ll ret = 1;
    n \% = m;
    while (k) {
        if (k & 1) ret = large mod mul(ret, n, m);
        n = large_mod_mul(n, n, m);
        k /= 2;
    }
    return ret;
}
// find a pair (c, d) s.t. ac + bd = gcd(a, b)
pair<ll, ll> extended_gcd(ll a, ll b) {
    if (b == 0) return { 1, 0 };
    auto t = extended gcd(b, a % b);
    return { t.second, t.first - t.second * (a / b) };
}
// find x in [0,m) s.t. ax === gcd(a, m) \pmod{m}
11 modinverse(ll a, ll m) {
    return (extended gcd(a, m).first % m + m) % m;
}
// calculate modular inverse for 1 ~ n
void calc_range_modinv(int n, int mod, int ret[]) {
    ret[1] = 1;
    for (int i = 2; i <= n; ++i)
        ret[i] = (l1)(mod - mod/i) * ret[mod%i] % mod;
```

2.2 Sieve Methods: Prime, Divisor, Euler phi

```
// find prime numbers in 1 ~ n
// ret[x] = false -> x is prime
// O(n*loglogn)
void sieve(int n, bool ret[]) {
    for (int i = 2; i * i <= n; ++i)
        if (!ret[i])
            for (int j = i * i; j <= n; j += i)
                ret[i] = true;
}
// calculate number of divisors for 1 ~ n
// when you need to calculate sum, change += 1 to += i
// O(n*Logn)
void num_of_divisors(int n, int ret[]) {
    for (int i = 1; i <= n; ++i)
        for (int j = i; j \leftarrow n; j \leftarrow i)
            ret[j] += 1;
}
// calculate euler totient function for 1 ~ n
// phi(n) = number of x s.t. 0 < x < n && gcd(n, x) = 1
// O(n*loglogn)
void euler_phi(int n, int ret[]) {
    for (int i = 1; i <= n; ++i) ret[i] = i;
    for (int i = 2; i <= n; ++i)
        if (ret[i] == i)
            for (int j = i; j <= n; j += i)</pre>
                ret[j] -= ret[j] / i;
}
```

2.3 Primality Test

}

```
bool test_witness(ull a, ull n, ull s) {
    if (a >= n) a %= n;
    if (a <= 1) return true;</pre>
    ull d = n \gg s;
    ull x = modpow(a, d, n);
    if (x == 1 \mid | x == n-1) return true;
    while (s-- > 1) {
        x = large mod mul(x, x, n);
        if (x == 1) return false;
        if (x == n-1) return true;
    }
    return false:
}
// test whether n is prime
// based on miller-rabin test
// O(logn*logn)
bool is prime(ull n) {
```

```
if (n == 2) return true;
    if (n < 2 | | n % 2 == 0) return false;
    ull d = n \gg 1, s = 1;
    for(; (d&1) == 0; s++) d >>= 1;
#define T(a) test_witness(a##ull, n, s)
    if (n < 4759123141ull) return T(2) && T(7) && T(61);</pre>
    return T(2) && T(325) && T(9375) && T(28178)
        && T(450775) && T(9780504) && T(1795265022);
#undef T
     Integer Factorization (Pollard's rho)
ll pollard_rho(ll n) {
    random device rd;
    mt19937 gen(rd());
    uniform_int_distribution<ll> dis(1, n - 1);
   11 x = dis(gen);
   11 \ y = x;
   ll c = dis(gen);
   11 g = 1;
    while (g == 1) {
        x = (modmul(x, x, n) + c) % n;
        y = (modmul(y, y, n) + c) % n;
        y = (modmul(y, y, n) + c) % n;
        g = gcd(abs(x - y), n);
    return g;
}
// integer factorization
// O(n^0.25 * logn)
void factorize(ll n, vector<ll>& fl) {
    if (n == 1) {
        return;
    if (n % 2 == 0) {
        fl.push_back(2);
        factorize(n / 2, fl);
    else if (is prime(n)) {
        fl.push back(n);
    else {
        11 f = pollard_rho(n);
        factorize(f, fl);
        factorize(n / f, fl);
}
```

2.5 Chinese Remainder Theorem

```
// find x s.t. x === a[0] \pmod{n[0]}
```

```
//
                  === a[1] \pmod{n[1]}
//
// assumption: gcd(n[i], n[j]) = 1
ll chinese remainder(ll* a, ll* n, int size) {
    if (size == 1) return *a;
    ll tmp = modinverse(n[0], n[1]);
    ll tmp2 = (tmp * (a[1] - a[0]) % n[1] + n[1]) % n[1];
    ll ora = a[1];
    11 tgcd = gcd(n[0], n[1]);
    a[1] = a[0] + n[0] / tgcd * tmp2;
    n[1] *= n[0] / tgcd;
    ll ret = chinese remainder(a + 1, n + 1, size - 1);
    n[1] /= n[0] / tgcd;
    a[1] = ora;
    return ret;
}
```

2.6 Modular Equation

 $x \equiv a \pmod{m}, x \equiv b \pmod{n}$ 을 만족시키는 x를 구하는 방법.

m과 n을 소인수분해한 후 소수의 제곱꼴의 합동식들로 각각 쪼갠다. 이 때 특정 소수에 대하여 모순이 생기면 불가능한 경우고, 모든 소수에 대해서 모순이 생기지 않으면 전체식을 CRT로 합치면 된다. 이제 $x\equiv x_1\pmod{p^{k_1}}$ 과 $x\equiv x_2\pmod{p^{k_2}}$ 가 모순이 생길조건은 $k_1\leq k_2$ 라고 했을 때, $x_1\not\equiv x_2\pmod{p^{k_1}}$ 인 경우이다. 모순이 생기지 않았을 때답을 구하려면 CRT로 합칠 때 $x\equiv x_2\pmod{p^{k_2}}$ 만을 남기고 합쳐주면 된다.

2.7 Catalan number

다양한 문제의 답이 되는 수열이다.

- 길이가 2n인 올바른 괄호 수식의 수
- n+1개의 리프를 가진 풀 바이너리 트리의 수
- n+2각형을 n개의 삼각형으로 나누는 방법의 수

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

$$C_0 = 1$$
 and $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

$$C_0 = 1$$
 and $C_{n+1} = \frac{2(2n+1)}{n+2}C_n$

2.8 Burnside's Lemma

경우의 수를 세는데, 특정 transform operation(회전, 반사, ..)해서 같은 경우들은 하나로 친다. 전체 경우의 수는?

- 각 operation마다 이 operation을 했을 때 변하지 않는 경우의 수를 센다 (단, "아무것도 하지 않는다"라는 operation도 있어야 함!)
- 전체 경우의 수를 더한 후, operation의 수로 나눈다. (답이 맞다면 항상 나누어 떨어져야 한다)

2.9 Kirchoff's Theorem

그래프의 스패닝 트리의 개수를 구하는 정리.

무향 그래프의 Laplacian matrix L를 만든다. 이것은 (정점의 차수 대각 행렬) - (인접행렬) 이다. L에서 행과 열을 하나씩 제거한 것을 L'라 하자. 어느 행/열이든 관계 없다. 그래프의 스패닝 트리의 개수는 det(L')이다.

2.10 Lucas Theorem

```
// calculate nCm % p when p is prime
int lucas_theorem(const char *n, const char *m, int p) {
    vector<int> np, mp;
    int i;
    for (i = 0; n[i]; i++) {
        if (n[i] == '0' && np.empty()) continue;
        np.push back(n[i] - '0');
    for (i = 0; m[i]; i++) {
        if (m[i] == '0' && mp.empty()) continue;
        mp.push back(m[i] - '0');
    }
    int ret = 1;
    int ni = 0, mi = 0;
    while (ni < np.size() || mi < mp.size()) {</pre>
        int nmod = 0, mmod = 0;
        for (i = ni; i < np.size(); i++) {</pre>
            if (i + 1 < np.size())</pre>
                np[i + 1] += (np[i] \% p) * 10;
            else
                nmod = np[i] \% p;
            np[i] /= p;
        for (i = mi; i < mp.size(); i++) {</pre>
            if (i + 1 < mp.size())</pre>
                mp[i + 1] += (mp[i] \% p) * 10;
                mmod = mp[i] % p;
            mp[i] /= p;
```

```
while (ni < np.size() && np[ni] == 0) ni++;
  while (mi < mp.size() && mp[mi] == 0) mi++;
  // implement binomial. binomial(m,n) = 0 if m < n
  ret = (ret * binomial(nmod, mmod)) % p;
}
return ret;</pre>
```

2.11 Fast Fourier Transform

```
const double PI = acos(-1);
void fft(double *r, double *im, int N, bool f) {
    for (int i = 1, j = 0; i < N; i++) {
        int k; for (k = N >> 1; j >= k; k >>= 1) j -= k;
        j += k; if (i < j) swap(r[i], r[j]), swap(im[i], im[j]);</pre>
    for (int i = 1; i < N; i <<= 1) {
        double w = PI / i; if (f) w = -w;
        double c = cos(w), s = sin(w);
        for (int j = 0; j < N; j += i << 1) {
            double yr = 1, yi = 0;
            for (int k = 0; k < i; k++) {
                double zr = r[i + j + k] * yr - im[i + j + k] * yi;
                double zi = r[i + j + k] * yi + im[i + j + k] * yr;
                r[i + j + k] = r[j + k] - zr;
                im[i + j + k] = im[j + k] - zi;
                r[i + k] += zr; im[i + k] += zi;
                tie(yr, yi) = make pair(yr * c - yi * s, yr * s + yi * c);
           }
        }
    }
}
// Compute Poly(a)*Poly(b), write to r; Indexed from 0
// O(n*Logn)
int mult(int *a, int n, int *b, int m, int *r) {
    const int maxn = 1048576;
    static double ra[maxn], rb[maxn], ia[maxn], ib[maxn];
    while (fn < n + m) fn <<= 1; // n + m: interested length
    for (int i = 0; i < n; ++i) ra[i] = a[i], ia[i] = 0;
    for (int i = n; i < fn; ++i) ra[i] = ia[i] = 0;
    for (int i = 0; i < m; ++i) rb[i] = b[i], ib[i] = 0;
    for (int i = m; i < fn; ++i) rb[i] = ib[i] = 0;
    fft(ra, ia, fn, false);
    fft(rb, ib, fn, false);
    for (int i = 0; i < fn; ++i) {
        double real = ra[i] * rb[i] - ia[i] * ib[i];
        double imag = ra[i] * ib[i] + rb[i] * ia[i];
        ra[i] = real, ia[i] = imag;
    fft(ra, ia, fn, true);
    for (int i = 0; i < fn; ++i) r[i] = (int)floor(ra[i] / fn + 0.5);</pre>
    return fn:
```

}

2.12 Number Theoretic FFT

 $p=a\cdot 2^b+1$ 꼴의 소수 p와 p의 원시근 x에 대하여, $n\leq b$ 를 만족하는 모든 2^n 크기의 배열에 대해 법 p로 FFT를 행할 수 있다. 다음은 위를 만족하는 충분히 큰 소수들 목록이다.

```
곱셈
                      원시근 덧셈
3221225473
           3
                  30
                      5
                               64-bit signed
                                               64-bit unsigned
2281701377
                  27
                      3
                               64-bit signed
                                               64-bit signed
           17
                  27 31
2013265921
                               32-bit unsigned
           15
                                               64-bit signed
998244353
                  23
                      3
            119
                               32-bit signed
                                               64-bit signed
469762049
           7
                  26 - 3
                               32-bit signed
                                               64-bit signed
```

NTT 사용 시에 자료형에 유의하여, 덧셈 혹은 곱셈에서 Integer overflow가 나지 않도록 하라.

```
const int A = 7, B = 26, P = A << B | 1, R = 3;
int Pow(int x, int y) {
   int r = 1;
    while (y) {
        if (y & 1) r = r * 1ll * x % P;
        x = x * 111 * x % P;
       y >>= 1;
   }
    return r;
}
void fft(int *a, int N, bool f) {
    for (int i = 1, j = 0; i < N; i++) {
        int k; for (k = N >> 1; j >= k; k >>= 1) j -= k;
        j += k; if (i < j) swap(a[i], a[j]);</pre>
    for (int i = 1; i < N; i <<= 1) {
        int x = Pow(f ? Pow(R, P - 2) : R, P / i >> 1);
        for (int j = 0; j < N; j += i << 1) {
            int y = 1;
            for (int k = 0; k < i; k++) {
                int z = a[i + j + k] * 111 * y % P;
                a[i + j + k] = a[j + k] - z;
                if (a[i + j + k] < P) a[i + j + k] += P;
                a[j + k] += z;
                if (a[j + k] >= P) a[j + k] -= P;
                y = y * 111 * x % P;
            }
       }
   }
}
```

2.13 Example for FFT

```
string S;
int ai, bi, ri;
int A[MAXL], B[MAXL], R[MAXL];
int main(){
    cin>>S;
    for(auto it = S.rbegin(); it != S.rend(); it++) A[ai++] = *it - '0';
    cin>>S;
    for(auto it = S.rbegin(); it != S.rend(); it++) B[bi++] = *it - '0';
    mult(A, ai, B, bi, R);
    for(ri = 0; ri < ai + bi; ri++) R[ri + 1] += R[ri] / 10;
    while(!R[ri] && ri) ri--;
    while(ri >= 0) cout<<R[ri--] % 10;
    cout<<'\n';
    return 0;
}</pre>
```

2.14 Polynomial Division

```
vll get inv(const vll& v, int deg){
    if (deg == 1) return vll(1, fastpow(v[0], MOD - 2));
    if (deg & 1){
        vll a = get_inv(v, deg - 1);
        11 c = 0;
        for (int i = 1; i < deg - 1; i++) c = (c + a[i] * v[deg - 1 - i]) % MOD;
        ll h1 = v[deg - 1];
        ll b = MOD - (h1 * a[0] + c) % MOD * a[0] % MOD;
        if (b == MOD) b = 0; a.push back(b);
        return a;
    }
    vll a = get_inv(v, deg >> 1);
    vll h0(v.begin(), v.begin() + (deg >> 1));
    vll h1(v.begin() + (deg >> 1), v.begin() + deg);
    vll ah0 = mult(a, h0); ah0.push_back(0);
    vll c(ah0.begin() + (deg >> 1), ah0.begin() + deg);
    vll h1a = mult(h1, a);
    vll b_ = mult(a, add(h1a, c));
    vll b(b_.begin(), b_.begin() + (deg >> 1));
    for (11 e : b) a.push_back(e ? MOD - e : 0);
    return a;
}
vll divide(const vll& F, const vll& G, bool newg = false){
    static vll G INV;
    const int N = (int)F.size() - 1, M = (int)G.size() - 1; // deg of F, G
    if (N < M) return vll();</pre>
    if (N == M) return vll(1, F.back()*fastpow(G.back(), MOD - 2) % MOD);
    vll f = F;
    if (G_INV.empty() || newg)
```

```
vll g = G; reverse(g.begin(), g.end());
        while (g.size() < N - M + 1) g.push_back(0);</pre>
        G_{INV} = get_{inv}(g, N - M + 1);
   }
    reverse(f.begin(), f.end());
    vll ret = mult(f, G INV);
    ret.resize(N - M + 1);
    reverse(ret.begin(), ret.end());
    return ret;
}
       Gaussian Elimination
const double EPS = 1e-10;
typedef vector<vector<double>> VVD;
// Gauss-Jordan elimination with full pivoting.
// solving systems of linear equations (AX=B)
// INPUT:
             a[][] = an n*n matrix
             b[][] = an n*m matrix
// OUTPUT:
            X = an n*m matrix (stored in b[][])
//
             A^{-1} = an n*n matrix (stored in a[][])
// O(n^3)
double gauss_jordan(VVD& a, VVD& b) {
    const int n = a.size();
    const int m = b[0].size();
    vector<int> irow(n), icol(n), ipiv(n);
    double det = 1;
    for (int i = 0; i < n; i++) {
        int pj = -1, pk = -1;
        for (int j = 0; j < n; j++) if (!ipiv[j])
            for (int k = 0; k < n; k++) if (!ipiv[k])
                if (pj == -1 \mid | fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk =
                  k; }
        if (fabs(a[pj][pk]) < EPS) return 0; // matrix is singular</pre>
        ipiv[pk]++;
        swap(a[pj], a[pk]);
        swap(b[pj], b[pk]);
        irow[i] = pj;
        icol[i] = pk;
        double c = 1.0 / a[pk][pk];
        det *= a[pk][pk];
        a[pk][pk] = 1.0;
        for (int p = 0; p < n; p++) a[pk][p] *= c;
        for (int p = 0; p < m; p++) b[pk][p] *= c;
        for (int p = 0; p < n; p++) if (p != pk) {
            c = a[p][pk];
            a[p][pk] = 0;
```

for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;</pre>

```
for (int p = n - 1; p >= 0; p --) if (irow[p] != icol[p]) {
        for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
    return det;
}
2.16 Simplex Algorithm
// Two-phase simplex algorithm for solving linear programs of the form
//
       maximize
                    C^T X
//
       subiect to
                   Ax <= b
//
                     x >= 0
// INPUT: A -- an m x n matrix
          b -- an m-dimensional vector
         c -- an n-dimensional vector
         x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
           above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const double EPS = 1e-9;
struct LPSolver {
    int m, n;
    VI B, N;
    VVD D:
    LPSolver(const VVD& A, const VD& b, const VD& c) :
        m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) 
        for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j]
         ];
        for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; D[i][n + 1] =
         b[i]; }
        for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
        N[n] = -1; D[m + 1][n] = 1;
    }
    void pivot(int r, int s) {
        double inv = 1.0 / D[r][s];
        for (int i = 0; i < m + 2; i++) if (i != r)
            for (int j = 0; j < n + 2; j++) if (j != s)
                D[i][j] -= D[r][j] * D[i][s] * inv;
```

for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;

for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *= -inv;

D[r][s] = inv;

swap(B[r], N[s]);

bool simplex(int phase) {

int x = phase == 1 ? m + 1 : m;

```
while (true) {
        int s = -1;
        for (int j = 0; j <= n; j++) {</pre>
            if (phase == 2 && N[j] == -1) continue;
            if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s] && N[j] <
               N[s]) s = j;
        if (D[x][s] > -EPS) return true;
        int r = -1;
        for (int i = 0; i < m; i++) {</pre>
            if (D[i][s] < EPS) continue;</pre>
            if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||</pre>
                 (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i] <
                   B[r]) r = i;
        if (r == -1) return false;
        pivot(r, s);
}
double solve(VD& x) {
    int r = 0;
    for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i;
    if (D[r][n + 1] < -EPS) {</pre>
        pivot(r, n);
        if (!simplex(1) || D[m + 1][n + 1] < -EPS)
            return -numeric_limits<double>::infinity();
        for (int i = 0; i < m; i++) if (B[i] == -1) {
            int s = -1;
            for (int j = 0; j <= n; j++)
                 if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[</pre>
                   j] < N[s]) s = j;
            pivot(i, s);
        }
    }
    if (!simplex(2))
        return numeric_limits<double>::infinity();
    x = VD(n);
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1];
    return D[m][n + 1];
```

2.17 Nim Game

};

Nim Game의 해법: 각 더미의 돌의 개수를 모두 XOR했을 때 0이 아니면 첫번째, 0이면 두번째 플레이어가 승리.

Grundy Number : 가능한 다음 state의 Grundy Number를 모두 모은 다음, 그 set에 포함되지 않는 가장 작은 수가 현재 state의 Grundy Number가 된다. 만약 다음 state가 독립된 여러 개의 state들로 나뉠 경우, 각각의 state의 Grundy Number의 XOR 합을 생각한다.

Subtraction Game : 한 번에 k개까지의 돌만 가져갈 수 있는 경우, 각 더미의 돌의 개수를 k+1로 나눈 나머지를 XOR 합하여 판단한다.

Index-k Nim : 한 번에 최대 k개의 더미를 골라 각각의 더미에서 아무렇게나 돌을 제거할 수 있을 때, 각 binary digit에 대하여 합을 k+1로 나눈 나머지를 계산한다. 만약 이 나머지가 모든 digit에 대하여 0이라면 두번째, 하나라도 0이 아니라면 첫번째 플레이어가 승리.

3 Data Structure

3.1 Order statistic tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb ds/detail/standard policies.hpp>
#include <functional>
#include <iostream>
using namespace __gnu_pbds;
using namespace std;
// tree<key_type, value_type(set if null), comparator, ...>
using ordered set = tree<int, null type, less<int>, rb tree tag,
    tree order statistics node update>;
int main()
    ordered set X;
    for (int i = 1; i < 10; i += 2) X.insert(i); // 1 3 5 7 9
    cout << boolalpha;</pre>
    cout << *X.find_by_order(2) << endl; // 5</pre>
    cout << *X.find by order(4) << endl; // 9</pre>
    cout << (X.end() == X.find_by_order(5)) << endl; // true</pre>
    cout << X.order_of_key(-1) << endl; // 0</pre>
    cout << X.order_of_key(1) << endl; // 0</pre>
    cout << X.order_of_key(4) << endl; // 2</pre>
    X.erase(3);
    cout << X.order of key(4) << endl; // 1</pre>
    for (int t : X) printf("%d<sub>||</sub>", t); // 1 5 7 9
}
```

3.2 Segment Tree with Lazy Propagation

```
// example implementation of sum tree
const int TSIZE = 131072; // always 2^k form && n <= TSIZE
int segtree[TSIZE * 2], prop[TSIZE * 2];
void seg_init(int nod, int 1, int r) {
    if (1 == r) segtree[nod] = dat[1];
    else {
        int m = (1 + r) >> 1;
        seg_init(nod << 1, 1, m);
        seg_init(nod << 1 | 1, m + 1, r);
}</pre>
```

```
segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
                                                                                            void init() {
                                                                                                 // zero-initialize, can be changed freely
}
                                                                                                 memset(&npoll[TSIZE - 1], 0, sizeof(node) * TSIZE);
void seg relax(int nod, int 1, int r) {
    if (prop[nod] == 0) return;
    if (1 < r) {
                                                                                                 for (int i = TSIZE - 2; i >= 0; i--) {
        int m = (1 + r) >> 1;
                                                                                                     npoll[i].v = 0;
                                                                                                     npoll[i].l = &npoll[i*2+1];
        segtree[nod << 1] += (m - 1 + 1) * prop[nod];
        prop[nod << 1] += prop[nod];</pre>
                                                                                                     npoll[i].r = &npoll[i*2+2];
        segtree[nod << 1 | 1] += (r - m) * prop[nod];
        prop[nod << 1 | 1] += prop[nod];</pre>
                                                                                                 head[0] = &npoll[0];
    prop[nod] = 0;
                                                                                                 last q = 0;
}
                                                                                                 pptr = 2 * TSIZE - 1;
int seg_query(int nod, int 1, int r, int s, int e) {
    if (r < s \mid | e < 1) return 0;
    if (s <= 1 && r <= e) return segtree[nod];</pre>
                                                                                            // update val to pos
                                                                                            // 0 <= pos < TSIZE
    seg_relax(nod, 1, r);
    int m = (1 + r) >> 1;
                                                                                            // returns updated tree index
    return seg_query(nod << 1, 1, m, s, e) + seg_query(nod << 1 | 1, m + 1, r, s
                                                                                            int update(int pos, int val, int prev) {
                                                                                                 head[++last_q] = &npoll[pptr++];
      , e);
}
                                                                                                 node *old = head[prev], *now = head[last q];
void seg_update(int nod, int 1, int r, int s, int e, int val) {
    if (r < s \mid | e < 1) return;
                                                                                                 int flag = 1 << DEPTH;</pre>
    if (s <= 1 && r <= e) {
                                                                                                 for (;;) {
        segtree[nod] += (r - l + 1) * val;
                                                                                                     now->v = old->v + val;
        prop[nod] += val;
                                                                                                     flag >>= 1;
        return;
                                                                                                     if (flag==0) {
                                                                                                         now->l = now->r = nullptr; break;
    seg_relax(nod, 1, r);
                                                                                                     if (flag & pos) {
    int m = (1 + r) >> 1;
    seg_update(nod << 1, 1, m, s, e, val);</pre>
                                                                                                         now->1 = old->1;
                                                                                                         now->r = &npoll[pptr++];
    seg update(nod \langle\langle 1 \mid 1, m + 1, r, s, e, val)\rangle;
    segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
                                                                                                         now = now - > r, old = old - > r;
}
                                                                                                     } else {
// usage:
                                                                                                         now->r = old->r;
// seg_update(1, 0, n - 1, qs, qe, val);
                                                                                                         now->1 = &npoll[pptr++];
// seg query(1, 0, n - 1, qs, qe);
                                                                                                         now = now->1, old = old->1;
                                                                                                     }
     Persistent Segment Tree
                                                                                                 return last q;
                                                                                            }
// persistent segment tree impl: sum tree
// initial tree index is 0
                                                                                            val t query(int s, int e, int l, int r, node *n) {
namespace pstree {
                                                                                                 if (s == 1 \&\& e == r) return n \rightarrow v;
    typedef int val t;
                                                                                                 int m = (1 + r) / 2;
    const int DEPTH = 18;
                                                                                                 if (m \ge e) return query(s, e, l, m, n \ge l);
    const int TSIZE = 1 << 18;</pre>
                                                                                                 else if (m < s) return query(s, e, m + 1, r, n->r);
    const int MAX QUERY = 262144;
                                                                                                 else return query(s, m, l, m, n->l) + query(m + 1, e, m + 1, r, n->r);
                                                                                            }
    struct node {
        val_t v;
                                                                                            // query summation of [s, e] at time t
        node *1, *r;
                                                                                            val_t query(int s, int e, int t) {
   } npoll[TSIZE * 2 + MAX_QUERY * (DEPTH + 1)], *head[MAX_QUERY + 1];
                                                                                                 s = max(0, s); e = min(TSIZE - 1, e);
                                                                                                 if (s > e) return 0;
    int pptr, last_q;
```

```
return query(s, e, 0, TSIZE - 1, head[t]);
}
       Splay Tree
// example : https://www.acmicpc.net/problem/13159
struct node {
     node* 1, * r, * p;
     int cnt, min, max, val;
     long long sum;
     bool inv;
     node(int val) :
          cnt(1), sum(_val), min(_val), max(_val), val(_val), inv(false),
          l(nullptr), r(nullptr), p(nullptr) {
     }
};
node* root;
void update(node* x) {
     x \rightarrow cnt = 1;
     x \rightarrow sum = x \rightarrow min = x \rightarrow max = x \rightarrow val;
     if (x->1) {
          x\rightarrow cnt += x\rightarrow l\rightarrow cnt;
          x \rightarrow sum += x \rightarrow 1 \rightarrow sum;
          x->min = min(x->min, x->l->min);
          x->max = max(x->max, x->1->max);
     if (x->r) {
          x \rightarrow cnt += x \rightarrow r \rightarrow cnt;
          x \rightarrow sum += x \rightarrow r \rightarrow sum:
          x->min = min(x->min, x->r->min);
          x->max = max(x->max, x->r->max);
}
void rotate(node* x) {
     node* p = x-p;
     node* b = nullptr;
     if (x == p->1) {
          p->1 = b = x->r;
          x->r = p;
     }
     else {
          p->r = b = x->1;
          x \rightarrow 1 = p;
     x->p = p->p;
     p \rightarrow p = x;
     if (b) b \rightarrow p = p;
     x \rightarrow p? (p == x \rightarrow p \rightarrow 1 ? x \rightarrow p \rightarrow 1 : x \rightarrow p \rightarrow r) = x : (root = x);
     update(p);
     update(x);
}
```

```
// make x into root
void splay(node* x) {
    while (x->p) {
        node* p = x-p;
        node* g = p - p;
        if (g) rotate((x == p->1) == (p == g->1) ? p : x);
        rotate(x);
    }
}
void relax lazy(node* x) {
    if (!x->inv) return;
    swap(x->1, x->r);
    x->inv = false;
    if (x->1) x->1->inv = !x->1->inv;
    if (x->r) x->r->inv = !x->r->inv;
}
// find kth node in splay tree
void find kth(int k) {
    node* x = root;
    relax lazy(x);
    while (true) {
        while (x->1 && x->1->cnt > k) {
            x = x -> 1;
            relax_lazy(x);
        if (x->1) k -= x->1->cnt;
        if (!k--) break;
        x = x - r;
        relax_lazy(x);
    splay(x);
}
// collect [l, r] nodes into one subtree and return its root
node* interval(int 1, int r) {
    find kth(l - 1);
    node* x = root;
    root = x - r;
    root->p = nullptr;
    find kth(r - l + 1);
    x \rightarrow r = root;
    root -> p = x;
    root = x;
    return root->r->l;
void traverse(node* x) {
    relax_lazy(x);
    if (x->1) {
        traverse(x->1);
    // do something
    if (x->r) {
```

}

```
traverse(x->r);
}
void uptree(node* x) {
    if (x->p) {
        uptree(x->p);
    relax lazy(x);
}
     Dynamic Connectivity with Example
#include <bits/stdc++.h>
using namespace std;
typedef long long lint;
typedef pair<int, int> pi;
vector<pi> tree[1050000];
void add(int s, int e, int ps, int pe, int p, pi v){
        if(e < ps || pe < s) return;</pre>
        if(s <= ps && pe <= e){
                tree[p].push_back(v);
                return;
        int pm = (ps + pe) / 2;
        add(s, e, ps, pm, 2*p, v);
        add(s, e, pm+1, pe, 2*p+1, v);
}
vector<pi> tmp;
bool ok(pi a, pi b, pi c){
        return 111 * (b.first - a.first) * (c.second - b.second) <= 111 * (b.</pre>
         first - c.first) * (a.second - b.second);
}
void solve(int x){
        sort(tree[x].begin(), tree[x].end(), [&](const pi &a, const pi &b){
                return pi(a.first, -a.second) < pi(b.first, -b.second);</pre>
        });
        tmp.clear();
        int pv = -2e9;
        for(auto &i : tree[x]){
                if(i.first == pv) continue;
                pv = i.first;
                while(tmp.size() \geq 2 && !ok(tmp[tmp.size()-2], tmp.back(), i)){
                        tmp.pop back();
                tmp.push_back(i);
        tree[x] = tmp;
```

```
void dfs(int s, int e, int p){
        solve(p);
        if(s == e) return;
        int m = (s+e)/2;
        dfs(s, m, 2*p);
        dfs(m+1, e, 2*p+1);
}
lint nodequery(int p, int x){
        if(tree[p].empty()) return -5e18;
        auto func = [&](int q){
                return 1ll * tree[p][q].first * x + tree[p][q].second;
        int s = 0, e = (int)tree[p].size() - 1;
        while(s != e){
                int m = (s+e)/2;
                if(func(m) < func(m+1)) s = m+1;
                else e = m;
        return func(s);
}
lint query(int pos, int s, int e, int p, int x){
        lint ret = nodequery(p, x);
        if(s == e) return ret;
        int m = (s+e)/2;
        if(pos <= m) ret = max(ret, query(pos, s, m, 2*p, x));</pre>
        else ret = max(ret, query(pos, m+1, e, 2*p+1, x));
        return ret;
}
struct ins{
        int s, e, x, y;
};
int q;
vector<ins> inserts;
pi inslis[300005];
bool vis[300005];
int cnt[300005], qry[300005];
int N;
int main(){
        cin>>N;
        for(int i=1; i<=N; i++){</pre>
                int t;
        cin>>t;
                if(t == 1){
                         vis[i] = 1;
            cin>>inslis[i].first>>inslis[i].second;
                }
                if(t == 2){
                         int x;
            cin>>x:
                         inserts.push_back({cnt[x] + 1, cnt[i-1], inslis[x].first
```

```
, inslis[x].second});
                 vis[x] = 0;
        if(t == 3){
    cin>>qry[i];
                 cnt[i]++;
        cnt[i] += cnt[i-1];
if(cnt[N] == 0) return 0;
for(int i=1; i<=N; i++){</pre>
        if(vis[i]){
                 inserts.push_back({cnt[i] + 1, cnt[N], inslis[i].first,
                   inslis[i].second});
for(auto &i : inserts){
        add(i.s, i.e, 1, cnt[N], 1, pi(i.x, i.y));
dfs(1, cnt[N], 1);
for(int i=1; i<=N; i++){</pre>
        if(cnt[i] != cnt[i-1]){
                 lint t = query(cnt[i], 1, cnt[N], 1, qry[i]);
                 if(t < -4e18) cout << "EMPTY SET\n";</pre>
                 else cout<<t<<'\n';</pre>
}
```

4 DP

 $O(n^2) \to O(n \log n)$

}

4.1 Convex Hull Optimization

```
DP 점화식 꼴 D[i] = \max_{j < i}(D[j] + b[j] * a[i]) \; (b[k] \le b[k+1]) D[i] = \min_{j < i}(D[j] + b[j] * a[i]) \; (b[k] \ge b[k+1]) 특수조건) a[i] \le a[i+1] 도 만족하는 경우, 마지막 쿼리의 위치를 저장해두면 이분검색이 필요없어지기 때문에 amortized O(n) 에 해결할 수 있음 struct Line { long long a, b; long long y(long long x) const { return a * x + b; } }; vector < Line > stk; int qpt; CHTLinear() : qpt(0) { } // when you need maximum : (previous L).a < (now L).a // when you need minimum : (previous L).a > (now L).a
```

```
void pushLine(const Line& 1) {
        while (stk.size() > 1) {
            Line& 10 = stk[stk.size() - 1];
            Line& l1 = stk[stk.size() - 2];
            if ((10.b - 1.b) * (10.a - 11.a) > (11.b - 10.b) * (1.a - 10.a))
              break;
            stk.pop_back();
        stk.push back(1);
    // (previous x) <= (current x)</pre>
    // it calculates max/min at x
    long long query(long long x) {
        while (qpt + 1 < stk.size()) {</pre>
            Line& 10 = stk[qpt];
            Line& 11 = stk[qpt + 1];
            if (11.a - 10.a > 0 & (10.b - 11.b) > x * (11.a - 10.a)) break;
            if (11.a - 10.a < 0 && (10.b - 11.b) < x * (11.a - 10.a)) break;</pre>
            ++apt;
        return stk[qpt].y(x);
};
```

4.2 Divide & Conquer Optimization

 $O(kn^2) o O(kn\log n)$ 조건 1) DP 점화식 꼴 $D[t][i] = \min_{j < i} (D[t-1][j] + C[j][i])$ 조건 2) $A[t][i] \vdash D[t][i]$ 의 답이 되는 최소의 j라 할 때, 아래의 부등식을 만족해야 함 $A[t][i] \le A[t][i+1]$ 조건 2-1) 비용C가 다음의 사각부등식을 만족하는 경우도 조건 2)를 만족하게 됨 $C[a][c] + C[b][d] \le C[a][d] + C[b][c] \ \ (a \le b \le c \le d)$

4.3 Knuth Optimization

```
O(n^3) \to O(n^2)
조건 1) DP 점화식 꼴 D[i][j] = \min_{i < k < j} (D[i][k] + D[k][j]) + C[i][j] 조건 2) 사각 부등식 C[a][c] + C[b][d] \le C[a][d] + C[b][c] \ (a \le b \le c \le d)
```

```
조건 3) 단조성
```

```
C[b][c] \le C[a][d] \ (a \le b \le c \le d)
```

결론) 조건 2, 3을 만족한다면 A[i][j]를 D[i][j]의 답이 되는 최소의 k라 할 때, 아래의 부등식을 만족하게 됨

```
A[i][j-1] \le A[i][j] \le A[i+1][j]
```

3중 루프를 돌릴 때 위 조건을 이용하면 최종적으로 시간복잡도가 $O(n^2)$ 이 됨

5 Graph

5.1 SCC

```
const int MAXN = 100;
vector<int> graph[MAXN];
int up[MAXN], visit[MAXN], vtime;
vector<int> stk;
int scc_idx[MAXN], scc_cnt;
void dfs(int nod) {
    up[nod] = visit[nod] = ++vtime;
    stk.push back(nod);
    for (int next : graph[nod]) {
        if (visit[next] == 0) {
            dfs(next);
            up[nod] = min(up[nod], up[next]);
        else if (scc idx[next] == 0)
            up[nod] = min(up[nod], visit[next]);
    if (up[nod] == visit[nod]) {
        ++scc_cnt;
        int t;
        do {
            t = stk.back();
            stk.pop_back();
            scc_idx[t] = scc_cnt;
        } while (!stk.empty() && t != nod);
   }
}
// find SCCs in given directed graph
// O(V+E)
// the order of scc_idx constitutes a reverse topological sort
void get_scc() {
    vtime = 0;
    memset(visit, 0, sizeof(visit));
    scc cnt = 0;
    memset(scc_idx, 0, sizeof(scc_idx));
    for (int i = 0; i < n; ++i)
        if (visit[i] == 0) dfs(i);
```

5.2 BCC, Cut vertex, Bridge

}

```
const int MAXN = 100;
vector<pair<int, int>> graph[MAXN]; // { next vertex id, edge id }
int up[MAXN], visit[MAXN], vtime;
vector<pair<int, int>> stk;
int is cut[MAXN];
                            // v is cut vertex if is cut[v] > 0
vector<int> bridge;
                            // list of edge ids
vector<int> bcc_idx[MAXN]; // list of bccids for vertex i
int bcc cnt;
void dfs(int nod, int par edge) {
    up[nod] = visit[nod] = ++vtime;
    int child = 0;
    for (const auto& e : graph[nod]) {
        int next = e.first, edge_id = e.second;
        if (edge_id == par_edge) continue;
        if (visit[next] == 0) {
            stk.push_back({ nod, next });
            ++child;
            dfs(next, edge id);
            if (up[next] == visit[next]) bridge.push_back(edge_id);
            if (up[next] >= visit[nod]) {
                ++bcc_cnt;
                do {
                    auto last = stk.back();
                    stk.pop_back();
                    bcc_idx[last.second].push_back(bcc_cnt);
                    if (last == pair<int, int>{ nod, next }) break;
                } while (!stk.empty());
                bcc idx[nod].push back(bcc cnt);
                is cut[nod]++;
            up[nod] = min(up[nod], up[next]);
        else
            up[nod] = min(up[nod], visit[next]);
    if (par_edge == -1 && is_cut[nod] == 1)
        is_cut[nod] = 0;
}
// find BCCs & cut vertexs & bridges in undirected graph
// O(V+E)
void get_bcc() {
    vtime = 0;
    memset(visit, 0, sizeof(visit));
    memset(is_cut, 0, sizeof(is_cut));
    bridge.clear();
    for (int i = 0; i < n; ++i) bcc_idx[i].clear();</pre>
    bcc_cnt = 0;
    for (int i = 0; i < n; ++i) {
```

if (visit[i] == 0)

dfs(i, -1);

```
}
     Heavy-Light Decomposition
// heavy-light decomposition
//
// hld h;
// insert edges to tree[0~n-1];
// h.init(n, root);
// h.decompose(root);
// h.hldquery(u, v); // edges from u to v
struct hld {
    static const int MAXLN = 18;
    static const int MAXN = 1 << (MAXLN - 1);</pre>
    vector<int> tree[MAXN];
    int subsize[MAXN], depth[MAXN], pa[MAXLN][MAXN];
    int chead[MAXN], cidx[MAXN];
    int lchain;
    int flatpos[MAXN + 1], fptr;
    void dfs(int u, int par) {
        pa[0][u] = par;
        subsize[u] = 1;
        for (int v : tree[u]) {
            if (v == pa[0][u]) continue;
            depth[v] = depth[u] + 1;
            dfs(v, u);
            subsize[u] += subsize[v];
    }
    void init(int size, int root)
        lchain = fptr = 0;
        dfs(root, -1);
        memset(chead, -1, sizeof(chead));
        for (int i = 1; i < MAXLN; i++) {</pre>
            for (int j = 0; j < size; j++) {</pre>
                if (pa[i - 1][j] != -1) {
                    pa[i][j] = pa[i - 1][pa[i - 1][j]];
        }
    void decompose(int u) {
        if (chead[lchain] == -1) chead[lchain] = u;
        cidx[u] = lchain;
        flatpos[u] = ++fptr;
```

```
int maxchd = -1:
    for (int v : tree[u]) {
        if (v == pa[0][u]) continue;
        if (maxchd == -1 || subsize[maxchd] < subsize[v]) maxchd = v;</pre>
    if (maxchd != -1) decompose(maxchd);
    for (int v : tree[u]) {
        if (v == pa[0][u] || v == maxchd) continue;
        ++lchain; decompose(v);
}
int lca(int u, int v) {
    if (depth[u] < depth[v]) swap(u, v);</pre>
    int logu;
    for (logu = 1; 1 << logu <= depth[u]; logu++);</pre>
    logu--;
    int diff = depth[u] - depth[v];
    for (int i = logu; i >= 0; --i) {
        if ((diff >> i) & 1) u = pa[i][u];
    if (u == v) return u;
    for (int i = logu; i >= 0; --i) {
        if (pa[i][u] != pa[i][v]) {
            u = pa[i][u];
            v = pa[i][v];
        }
    return pa[0][u];
// TODO: implement query functions
inline int query(int s, int e) {
    return 0;
}
int subquery(int u, int v) {
    int uchain, vchain = cidx[v];
    int ret = 0;
    for (;;) {
        uchain = cidx[u];
        if (uchain == vchain) {
            ret += query(flatpos[v], flatpos[u]);
            break;
        ret += query(flatpos[chead[uchain]], flatpos[u]);
        u = pa[0][chead[uchain]];
    return ret;
```

```
int next = matched[adj];
   inline int hldquery(int u, int v) {
                                                                                                 if (next >= 0 && level[next] != level[nod] + 1) continue;
        int p = lca(u, v);
                                                                                                 if (next == -1 || findpath(next)) {
                                                                                                     match[nod] = adj;
        return subquery(u, p) + subquery(v, p) - query(flatpos[p], flatpos[p]);
                                                                                                     matched[adj] = nod;
};
                                                                                                     return 1;
                                                                                                 }
     Bipartite Matching (Hopcroft-Karp)
                                                                                             return 0;
                                                                                         }
// in: n, m, qraph
// out: match, matched
                                                                                         int solve() {
// vertex cover: (reached[0][left_node] == 0) || (reached[1][right_node] == 1)
                                                                                             int ans = 0;
// 0(E*sqrt(V))
                                                                                             while (assignLevel()) {
struct BipartiteMatching {
                                                                                                 edgeview.assign(n, 0);
    int n, m;
                                                                                                 for (int i = 0; i < n; i++)
    vector<vector<int>> graph;
                                                                                                     if (match[i] == -1)
    vector<int> matched, match, edgeview, level;
                                                                                                         ans += findpath(i);
    vector<int> reached[2];
    BipartiteMatching(int n, int m) : n(n), m(m), graph(n), matched(m, -1),
                                                                                             return ans;
     match(n, -1) {}
                                                                                     };
    bool assignLevel() {
        bool reachable = false;
        level.assign(n, -1);
                                                                                     5.5 Maximum Flow (Dinic)
        reached[0].assign(n, 0);
        reached[1].assign(m, 0);
                                                                                     // usage:
        queue<int> q;
                                                                                     // MaxFlowDinic::init(n);
                                                                                     // MaxFlowDinic::add_edge(0, 1, 100, 100); // for bidirectional edge
        for (int i = 0; i < n; i++) {
            if (match[i] == -1) {
                                                                                     // MaxFlowDinic::add_edge(1, 2, 100); // directional edge
                                                                                     // result = MaxFlowDinic::solve(0, 2); // source -> sink
                level[i] = 0;
                reached[0][i] = 1;
                                                                                     // graph[i][edgeIndex].res -> residual
                q.push(i);
            }
                                                                                     // in order to find out the minimum cut, use `l'.
                                                                                     // if l[i] == 0, i is unrechable.
        while (!q.empty()) {
                                                                                     //
            auto cur = q.front(); q.pop();
                                                                                     // O(V*V*E)
                                                                                     // with unit capacities, O(\min(V^{(2/3)}, E^{(1/2)}) * E)
            for (auto adj : graph[cur]) {
                reached[1][adj] = 1;
                                                                                     struct MaxFlowDinic {
                auto next = matched[adj];
                                                                                         typedef int flow t;
                if (next == -1) {
                                                                                         struct Edge {
                    reachable = true;
                                                                                             int next;
                                                                                             size_t inv; /* inverse edge index */
                else if (level[next] == -1) {
                                                                                             flow_t res; /* residual */
                    level[next] = level[cur] + 1;
                                                                                         };
                    reached[0][next] = 1;
                                                                                         int n;
                    q.push(next);
                                                                                         vector<vector<Edge>> graph;
                                                                                         vector<int> q, l, start;
            }
                                                                                         void init(int _n) {
        return reachable;
                                                                                             n = n;
   }
                                                                                             graph.resize(n);
                                                                                             for (int i = 0; i < n; i++) graph[i].clear();</pre>
   int findpath(int nod) {
                                                                                         void add_edge(int s, int e, flow_t cap, flow_t caprev = 0) {
        for (int &i = edgeview[nod]; i < graph[nod].size(); i++) {</pre>
            int adj = graph[nod][i];
                                                                                             Edge forward{ e, graph[e].size(), cap };
```

```
Edge reverse{ s, graph[s].size(), caprev };
    graph[s].push_back(forward);
    graph[e].push_back(reverse);
bool assign_level(int source, int sink) {
    int t = 0;
    memset(&1[0], 0, sizeof(1[0]) * 1.size());
    l[source] = 1;
    q[t++] = source;
    for (int h = 0; h < t && !1[sink]; h++) {
        int cur = q[h];
        for (const auto& e : graph[cur]) {
            if (l[e.next] || e.res == 0) continue;
            l[e.next] = l[cur] + 1;
            q[t++] = e.next;
    return l[sink] != 0;
flow t block flow(int cur, int sink, flow t current) {
    if (cur == sink) return current;
    for (int& i = start[cur]; i < graph[cur].size(); i++) {</pre>
        auto& e = graph[cur][i];
        if (e.res == 0 || 1[e.next] != 1[cur] + 1) continue;
        if (flow t res = block flow(e.next, sink, min(e.res, current))) {
            e.res -= res;
            graph[e.next][e.inv].res += res;
            return res;
        }
    }
    return 0;
flow t solve(int source, int sink) {
    a.resize(n);
    1.resize(n);
    start.resize(n);
    flow_t ans = 0;
    while (assign level(source, sink)) {
        memset(&start[0], 0, sizeof(start[0]) * n);
        while (flow_t flow = block_flow(source, sink, numeric_limits<flow_t</pre>
         >::max()))
            ans += flow;
    }
    return ans;
```

5.6 Maximum Flow with Edge Demands

};

그래프 G = (V, E) 가 있고 source s와 sink t가 있다. 각 간선마다 $d(e) \le f(e) \le c(e)$ 를 만족하도록 flow f(e)를 흘려야 한다. 이 때의 maximum flow를 구하는 문제다.

먼저 모든 demand를 합한 값 D를 아래와 같이 정의한다.

$$D = \sum_{(u \to v) \in E} d(u \to v)$$

이제 G 에 몇개의 정점과 간선을 추가하여 새로운 그래프 G' = (V', E') 을 만들 것이다. 먼저 새로운 source s' 과 새로운 sink t' 을 추가한다. 그리고 s'에서 V의 모든 점마다 간선을 이어주고, V의 모든 점에서 t'로 간선을 이어준다.

새로운 capacity function c'을 아래와 같이 정의한다.

- 1. V의 점 v에 대해 $c'(s' \to v) = \sum_{u \in V} d(u \to v)$, $c'(v \to t') = \sum_{u \in V} d(v \to w)$
- 2. E의 간선 $u \to v$ 에 대해 $c'(u \to v) = c(u \to v) d(u \to v)$
- 3. $c'(t \to s) = \infty$

이렇게 만든 새로운 그래프 G'에서 \max \max flow를 구했을 때 그 값이 D라면 원래 문제의 해가 존재하고, 그 값이 D가 아니라면 원래 문제의 해는 존재하지 않는다.

위에서 maximum flow를 구하고 난 상태의 residual graph 에서 s'과 t'을 떼버리고 s에서 t사이의 augument path 를 계속 찾으면 원래 문제의 해를 구할 수 있다.

```
struct MaxFlowEdgeDemands
   MaxFlowDinic mf;
   using flow_t = MaxFlowDinic::flow_t;
   vector<flow t> ind, outd;
   flow t D; int n;
   void init(int n) {
        n = _n; D = 0; mf.init(n + 2);
        ind.clear(); outd.clear();
        ind.resize(n, 0); outd.resize(n, 0);
   void add_edge(int s, int e, flow_t cap, flow_t demands = 0) {
        mf.add edge(s, e, cap - demands);
        D += demands; ind[e] += demands; outd[s] += demands;
   // returns { false, 0 } if infeasible
   // { true, maxflow } if feasible
   pair<bool, flow t> solve(int source, int sink) {
        mf.add_edge(sink, source, numeric_limits<flow_t>::max());
        for (int i = 0; i < n; i++) {
            if (ind[i]) mf.add_edge(n, i, ind[i]);
            if (outd[i]) mf.add edge(i, n + 1, outd[i]);
        if (mf.solve(n, n + 1) != D) return{ false, 0 };
        for (int i = 0; i < n; i++) {
```

```
if (ind[i]) mf.graph[i].pop_back();
                                                                                             while(!q.empty()) {
            if (outd[i]) mf.graph[i].pop_back();
                                                                                                 int cur = q.front();
        }
                                                                                                 v[cur] = 0; q.pop();
                                                                                                 for (const auto& e : graph[cur]) {
        return{ true, mf.solve(source, sink) };
                                                                                                     if (iszerocap(e.residual_capacity)) continue;
                                                                                                     auto next = e.target;
                                                                                                     auto ncost = dist[cur].first + e.cost;
};
                                                                                                     auto nflow = min(dist[cur].second, e.residual_capacity);
                                                                                                     if (dist[next].first > ncost) {
                                                                                                         dist[next] = make_pair(ncost, nflow);
      Min-cost Maximum Flow
                                                                                                         from[next] = e.revid;
                                                                                                         if (v[next]) continue;
// precondition: there is no negative cycle.
                                                                                                         v[next] = 1; q.push(next);
// usage:
// MinCostFlow mcf(n);
                                                                                                 }
// for(each edges) mcf.addEdge(from, to, cost, capacity);
// mcf.solve(source, sink); // min cost max flow
// mcf.solve(source, sink, 0); // min cost flow
                                                                                             auto p = e;
// mcf.solve(source, sink, goal_flow); // min cost flow with total_flow >=
                                                                                             auto pathcost = dist[p].first;
 goal_flow if possible
                                                                                             auto flow = dist[p].second:
struct MinCostFlow {
                                                                                             if (iszerocap(flow)|| (flow_limit <= 0 && pathcost >= 0)) return pair
    typedef int cap t;
                                                                                               cost t, cap t>(0, 0);
    typedef int cost_t;
                                                                                             if (flow_limit > 0) flow = min(flow, flow_limit);
   bool iszerocap(cap t cap) { return cap == 0; }
                                                                                             while (from[p] != -1) {
                                                                                                 auto nedge = from[p];
    struct edge {
                                                                                                 auto np = graph[p][nedge].target;
       int target;
                                                                                                 auto fedge = graph[p][nedge].revid;
        cost t cost;
                                                                                                 graph[p][nedge].residual capacity += flow;
        cap_t residual_capacity;
                                                                                                 graph[np][fedge].residual_capacity -= flow;
        cap_t orig_capacity;
                                                                                                 p = np;
        size t revid;
    };
                                                                                             return make pair(pathcost * flow, flow);
                                                                                         }
    int n:
    vector<vector<edge>> graph;
                                                                                         pair<cost t,cap t> solve(int s, int e, cap t flow minimum = numeric limits
                                                                                           cap_t>::max()) {
    MinCostFlow(int n) : graph(n), n(n) {}
                                                                                             cost t total cost = 0;
                                                                                             cap_t total_flow = 0;
    void addEdge(int s, int e, cost t cost, cap t cap) {
                                                                                             for(;;) {
        if (s == e) return:
                                                                                                 auto res = augmentShortest(s, e, flow minimum - total flow);
        edge forward{ e, cost, cap, cap, graph[e].size() };
                                                                                                 if (res.second <= 0) break;</pre>
        edge backward{ s, -cost, 0, 0, graph[s].size() };
                                                                                                 total cost += res.first;
        graph[s].emplace_back(forward);
                                                                                                 total flow += res.second;
        graph[e].emplace_back(backward);
                                                                                             return make pair(total cost, total flow);
    pair<cost_t, cap_t> augmentShortest(int s, int e, cap_t flow_limit) {
                                                                                     };
        auto infinite cost = numeric limits<cost t>::max();
        auto infinite_flow = numeric_limits<cap_t>::max();
                                                                                          General Min-cut (Stoer-Wagner)
        vector<pair<cost t, cap t>> dist(n, make pair(infinite cost, 0));
        vector<int> from(n, -1), v(n);
                                                                                     // implementation of Stoer-Wagner algorithm
        dist[s] = pair<cost_t, cap_t>(0, infinite_flow);
                                                                                     // O(V^3)
                                                                                     //usage
        queue<int> q;
        v[s] = 1; q.push(s);
                                                                                     // MinCut mc;
```

```
// mc.init(n);
// for (each edge) mc.addEdge(a,b,weight);
// mincut = mc.solve();
// mc.cut = {0,1}^n describing which side the vertex belongs to.
struct MinCutMatrix
    typedef int cap_t;
    int n;
    vector<vector<cap_t>> graph;
    void init(int n) {
        n = n;
        graph = vector<vector<cap_t>>(n, vector<cap_t>(n, 0));
    void addEdge(int a, int b, cap_t w) {
        if (a == b) return;
        graph[a][b] += w;
        graph[b][a] += w;
    }
    pair<cap_t, pair<int, int>> stMinCut(vector<int> &active) {
        vector<cap_t> key(n);
        vector<int> v(n);
        int s = -1, t = -1;
        for (int i = 0; i < active.size(); i++) {</pre>
            cap_t maxv = -1;
            int cur = -1;
            for (auto j : active) {
                if (v[j] == 0 && maxv < key[j]) {</pre>
                    maxv = key[j];
                    cur = j;
            t = s; s = cur;
            v[cur] = 1;
            for (auto j : active) key[j] += graph[cur][j];
        return make_pair(key[s], make_pair(s, t));
    }
    vector<int> cut;
    cap_t solve() {
        cap_t res = numeric_limits<cap_t>::max();
        vector<vector<int>> grps;
        vector<int> active;
        cut.resize(n);
        for (int i = 0; i < n; i++) grps.emplace_back(1, i);</pre>
        for (int i = 0; i < n; i++) active.push_back(i);</pre>
        while (active.size() >= 2) {
            auto stcut = stMinCut(active);
            if (stcut.first < res) {</pre>
                res = stcut.first;
                fill(cut.begin(), cut.end(), 0);
                for (auto v : grps[stcut.second.first]) cut[v] = 1;
```

```
}
            int s = stcut.second.first, t = stcut.second.second;
            if (grps[s].size() < grps[t].size()) swap(s, t);</pre>
            active.erase(find(active.begin(), active.end(), t));
            grps[s].insert(grps[s].end(), grps[t].begin(), grps[t].end());
            for (int i = 0; i < n; i++) { graph[i][s] += graph[i][t]; graph[i][t</pre>
              ] = 0; }
            for (int i = 0; i < n; i++) { graph[s][i] += graph[t][i]; graph[t][i</pre>
             1 = 0;
            graph[s][s] = 0;
        return res;
};
      General Max Matching
struct DisjointSet
    vector<int> parent, rnk;
    DisjointSet(int n = 0) : rnk(n) {
        parent.reserve(n);
        for (int i = 0; i < n; i++) parent.push_back(i);</pre>
    }
    void reset(int n) {
        parent.clear(); rnk.assign(n, 0);
        for (int i = 0; i < n; i++) parent.push_back(i);</pre>
    }
    void increase(int n) {
        int base = parent.size();
        for (int i = base; i < base + n; i++) {</pre>
            parent.push back(i);
            rnk.push_back(0);
    }
    int find(int p) {
        return parent[p] == p ? p : parent[p] = find(parent[p]);
    }
    void merge(int a, int b) {
        a = find(a), b = find(b);
        if (a == b) return;
        if (rnk[a] < rnk[b]) swap(a, b);</pre>
        else if (rnk[a] == rnk[b]) ++rnk[a];
        parent[b] = a;
};
struct MaxMatching
```

{

```
int n;
vector<vector<int>> gnext;
vector<int> matched;
int vcnt;
MaxMatching(int n) : n(n), gnext(n), matched(n, -1) {}
void AddEdge(int a, int b) {
    gnext[a].push back(b);
    gnext[b].push_back(a);
}
int Match() {
    int ans = 0;
    while (findAugment()) ++ans;
    return ans;
}
vector<int> parent; // shrunken -> real
vector<int> forest;
vector<int> level;
vector<pair<int,int>> bridge;
queue<int> q;
DisjointSet blossomSet;
vector<int> origin; // blossomSet number to -> origin vertex
vector<int> ancestorChecker;
int ancestorCheckerValue;
vector<int> marker;
void markBlossomPath(int vv, pair<int, int> vu, int ancestor){
    int p = vv;
    marker.clear();
    while (p != ancestor) {
        int np = origin[blossomSet.find(parent[p])];
        marker.push back(p); p = np;
        np = origin[blossomSet.find(parent[p])];
        marker.push back(p);
        bridge[p] = vu; // need original vertex number
        q.push(p); // odd level edges were not considered
        p = np;
    for (auto x : marker) blossomSet.merge(ancestor, x);
    origin[blossomSet.find(ancestor)] = ancestor;
}
void mergeBlossom(int vv, int uu, int v, int u){
    if (uu == vv) return;
    ++ancestorCheckerValue;
    int p1 = uu, p2 = vv;
    int ancestor = -1;
    for (;;) {
```

```
if (p1 >= 0) {
            if (ancestorChecker[p1] == ancestorCheckerValue) {
                ancestor = p1;
                break;
            ancestorChecker[p1] = ancestorCheckerValue;
            if (parent[p1] >= 0) p1 = origin[blossomSet.find(parent[p1])];
              else p1 = -1;
        if (p2 >= 0) {
            if (ancestorChecker[p2] == ancestorCheckerValue) {
                ancestor = p2;
                break;
            ancestorChecker[p2] = ancestorCheckerValue;
            if (parent[p2] >= 0) p2 = origin[blossomSet.find(parent[p2])];
              else p2 = -1;
        }
    markBlossomPath(uu, make pair(u, v), ancestor);
    markBlossomPath(vv, make_pair(v, u), ancestor);
}
vector<int> augmentPathLink;
void getRootPath(int v, int w, bool reversed){
    if (v == w) return;
    if (level[v] & 1) {
        // odd. use bridge
        int x, y, mate = matched[v];
        tie(x,y) = tie(bridge[v].first, bridge[v].second);
        getRootPath(x, mate, !reversed);
        getRootPath(y, w, reversed);
        if (reversed) {
            augmentPathLink[y] = x;
            augmentPathLink[mate] = v;
            augmentPathLink[v] = mate;
            augmentPathLink[x] = y;
       }
    } else {
        // even
        int mate = matched[v];
        getRootPath(parent[mate], w, reversed);
        if (reversed) {
            augmentPathLink[parent[mate]] = mate;
            augmentPathLink[mate] = v;
       } else {
            augmentPathLink[v] = mate;
            augmentPathLink[mate] = parent[mate];
        }
}
void augmentPath(int v, int w) {
```

```
augmentPathLink = vector<int>(n,-1);
    int x = forest[v];
    int y = forest[w];
    getRootPath(v,x,true);
    getRootPath(w,y,false);
    augmentPathLink[v] = w;
    int p = x;
    for(;;) {
        int q = augmentPathLink[p];
        matched[p] = q;
        matched[q] = p;
        if (q == y) break;
        p = augmentPathLink[q];
    }
}
bool findAugment() {
    parent = vector<int>(n,-1);
    forest = vector<int>(n,-1);
    level = vector<int>(n);
    bridge = vector<pair<int,int>>(n,make_pair(-1,-1));
    q = queue<int>();
    blossomSet.reset(n);
    origin = vector<int>(n);
    ancestorChecker = vector<int>(n);
    ancestorCheckerValue = 0;
    for(int i = 0; i < n; i++) {
        origin[i] = i;
        if (matched[i] == -1) {
            forest[i] = i;
            q.push(i);
    bool foundPath = false;
    while(!q.empty() && !foundPath) {
        int v = q.front(); q.pop();
        for(auto u : gnext[v]) {
            int vv = origin[blossomSet.find(v)];
            int uu = origin[blossomSet.find(u)];
            if (forest[uu] == -1) {
                // assert(u == uu)
                parent[uu] = v;
                forest[uu] = forest[vv];
                level [uu] = level [vv] + 1;
                parent[matched[uu]] = uu;
                forest[matched[uu]] = forest[vv];
                level [matched[uu]] = level [vv] + 2;
                q.push(matched[uu]);
            } else if (level[uu]&1) {
                // odd level
            } else if (forest[uu] != forest[vv]){
                // found path. both are even level
                foundPath = true;
                augmentPath(v,u);
```

```
break;
                } else {
                    // blossom formed
                    mergeBlossom(vv, uu, v, u);
            }
        return foundPath;
};
       Hungarian Algorithm
int n, m;
int mat[MAX N + 1][MAX M + 1];
// hungarian method : bipartite min-weighted matching
// O(n^3) or O(m*n^2)
// http://e-maxx.ru/algo/assignment_hungary
// mat[1][1] ~ mat[n][m]
// matched[i] : matched column of row i
int hungarian(vector<int>& matched) {
    vector<int> u(n + 1), v(m + 1), p(m + 1), way(m + 1), minv(m + 1);
    vector<char> used(m + 1);
    for (int i = 1; i <= n; ++i) {
        p[0] = i;
        int i0 = 0;
        fill(minv.begin(), minv.end(), INF);
        fill(used.begin(), used.end(), false);
        do {
            used[j0] = true;
            int i0 = p[j0], delta = INF, j1;
            for (int j = 1; j <= m; ++j) {
                if (!used[j]) {
                    int cur = mat[i0][j] - u[i0] - v[j];
                    if (cur < minv[j]) minv[j] = cur, way[j] = j0;</pre>
                    if (minv[j] < delta) delta = minv[j], j1 = j;</pre>
            for (int j = 0; j <= m; ++j) {
                if (used[j])
                    u[p[j]] += delta, v[j] -= delta;
                else
                    minv[j] -= delta;
            j0 = j1;
        } while (p[j0] != 0);
        do {
            int j1 = way[j0];
            p[j0] = p[j1];
            j0 = j1;
        } while (j0);
    for (int j = 1; j <= m; ++j) matched[p[j]] = j;</pre>
```

```
6 Geometry
```

}

return -v[0];

6.1 Basic Operations

```
const double eps = 1e-9;
inline int diff(double lhs, double rhs) {
   if (lhs - eps < rhs && rhs < lhs + eps) return 0;</pre>
    return (lhs < rhs) ? -1 : 1;</pre>
}
inline bool is between(double check, double a, double b) {
   if (a < b)
        return (a - eps < check && check < b + eps);</pre>
    else
        return (b - eps < check && check < a + eps);</pre>
}
struct Point {
    double x, y;
    bool operator==(const Point& rhs) const {
        return diff(x, rhs.x) == 0 && diff(y, rhs.y) == 0;
    Point operator+(const Point& rhs) const {
        return Point{ x + rhs.x, y + rhs.y };
    Point operator-(const Point& rhs) const {
        return Point{ x - rhs.x, y - rhs.y };
    Point operator*(double t) const {
        return Point{ x * t, y * t };
};
struct Circle {
    Point center:
    double r;
};
struct Line {
    Point pos, dir;
};
inline double inner(const Point& a, const Point& b) {
    return a.x * b.x + a.y * b.y;
}
inline double outer(const Point& a, const Point& b) {
    return a.x * b.y - a.y * b.x;
}
```

```
inline int ccw line(const Line& line, const Point& point) {
    return diff(outer(line.dir, point - line.pos), 0);
}
inline int ccw(const Point& a, const Point& b, const Point& c) {
    return diff(outer(b - a, c - a), 0);
inline double dist(const Point& a, const Point& b) {
    return sqrt(inner(a - b, a - b));
}
inline double dist2(const Point &a, const Point &b) {
    return inner(a - b, a - b);
inline double dist(const Line& line, const Point& point, bool segment = false) {
    double c1 = inner(point - line.pos, line.dir);
    if (segment && diff(c1, 0) <= 0) return dist(line.pos, point);</pre>
    double c2 = inner(line.dir, line.dir);
    if (segment && diff(c2, c1) <= 0) return dist(line.pos + line.dir, point);</pre>
    return dist(line.pos + line.dir * (c1 / c2), point);
}
bool get cross(const Line& a, const Line& b, Point& ret) {
    double mdet = outer(b.dir, a.dir);
    if (diff(mdet, 0) == 0) return false;
    double t2 = outer(a.dir, b.pos - a.pos) / mdet;
    ret = b.pos + b.dir * t2;
    return true;
}
bool get segment cross(const Line& a, const Line& b, Point& ret) {
    double mdet = outer(b.dir, a.dir);
    if (diff(mdet, 0) == 0) return false;
    double t1 = -outer(b.pos - a.pos, b.dir) / mdet:
    double t2 = outer(a.dir, b.pos - a.pos) / mdet;
    if (!is between(t1, 0, 1) || !is between(t2, 0, 1)) return false;
    ret = b.pos + b.dir * t2;
    return true;
}
Point inner center(const Point &a, const Point &b, const Point &c) {
    double wa = dist(b, c), wb = dist(c, a), wc = dist(a, b);
    double w = wa + wb + wc;
    return Point{ (wa * a.x + wb * b.x + wc * c.x) / w, (wa * a.y + wb * b.y +
      wc * c.y) / w };
}
Point outer_center(const Point &a, const Point &b, const Point &c) {
    Point d1 = b - a, d2 = c - a;
    double area = outer(d1, d2);
    double dx = d1.x * d1.x * d2.y - d2.x * d2.x * d1.y
        + d1.y * d2.y * (d1.y - d2.y);
    double dy = d1.y * d1.y * d2.x - d2.y * d2.y * d1.x
```

```
+ d1.x * d2.x * (d1.x - d2.y);
   return Point{ a.x + dx / area / 2.0, a.y - dy / area / 2.0 };
}
vector<Point> circle_line(const Circle& circle, const Line& line) {
    vector<Point> result;
    double a = 2 * inner(line.dir, line.dir);
    double b = 2 * (line.dir.x * (line.pos.x - circle.center.x)
        + line.dir.y * (line.pos.y - circle.center.y));
    double c = inner(line.pos - circle.center, line.pos - circle.center)
        - circle.r * circle.r;
    double det = b * b - 2 * a * c;
    int pred = diff(det, 0);
   if (pred == 0)
        result.push_back(line.pos + line.dir * (-b / a));
    else if (pred > 0) {
        det = sqrt(det);
        result.push_back(line.pos + line.dir * ((-b + det) / a));
        result.push back(line.pos + line.dir * ((-b - det) / a));
    return result;
}
vector<Point> circle circle(const Circle& a, const Circle& b) {
    vector<Point> result;
    int pred = diff(dist(a.center, b.center), a.r + b.r);
    if (pred > 0) return result;
    if (pred == 0) {
        result.push_back((a.center * b.r + b.center * a.r) * (1 / (a.r + b.r)));
        return result;
    double aa = a.center.x * a.center.x + a.center.y * a.center.y - a.r * a.r;
    double bb = b.center.x * b.center.x + b.center.y * b.center.y - b.r * b.r;
    double tmp = (bb - aa) / 2.0;
   Point cdiff = b.center - a.center;
   if (diff(cdiff.x, 0) == 0) {
        if (diff(cdiff.y, 0) == 0)
            return result; // if (diff(a.r, b.r) == 0): same circle
        return circle_line(a, Line{ Point{ 0, tmp / cdiff.y }, Point{ 1, 0 } });
   return circle line(a,
        Line{ Point{ tmp / cdiff.x, 0 }, Point{ -cdiff.y, cdiff.x } });
}
Circle circle_from_3pts(const Point& a, const Point& b, const Point& c) {
    Point ba = b - a, cb = c - b;
    Line p{ (a + b) * 0.5, Point{ ba.y, -ba.x } };
    Line q\{(b + c) * 0.5, Point\{cb.y, -cb.x\}\};
    Circle circle:
   if (!get_cross(p, q, circle.center))
        circle.r = -1;
    else
        circle.r = dist(circle.center, a);
    return circle;
}
```

```
Circle circle_from_2pts_rad(const Point& a, const Point& b, double r) {
    double det = r * r / dist2(a, b) - 0.25;
    Circle circle;
    if (det < 0)
        circle.r = -1;
    else {
        double h = sqrt(det);
        // center is to the left of a->b
        circle.center = (a + b) * 0.5 + Point{a.y - b.y, b.x - a.x} * h;
        circle.r = r;
    return circle;
}
6.2 Compare angles
int ccw(pair<int, int> p1, pair<int, int> p2) {
    auto ret = p1.first * 111 * p2.second - p2.first * 111 * p1.second;
    return ret > 0 ? 1 : (ret < 0 ? -1 : 0);
}
bool upper(pair<int, int> p) {
    return tie(p.second, p.first) > tuple<int, int>();
// sorting criterion: [0 ~ 2 * pi)
sort(dat.begin(), dat.end(), [](pair<int, int> a, pair<int, int> b){
    if (upper(a) != upper(b)) return upper(a) > upper(b);
    if (ccw(a, b)) return ccw(a, b) > 0;
    // optional: closest to farthest
    return hypot(a.first, a.second) < hypot(b.first, b.second);</pre>
});
     Convex Hull
// find convex hull
// O(n*Loan)
vector<Point> convex hull(vector<Point>& dat) {
    if (dat.size() <= 3) return dat;</pre>
    vector<Point> upper, lower;
    sort(dat.begin(), dat.end(), [](const Point& a, const Point& b) {
        return (a.x == b.x)? a.y < b.y: a.x < b.x;
    });
    for (const auto& p : dat) {
        while (upper.size() >= 2 && ccw(*++upper.rbegin(), *upper.rbegin(), p)
          >= 0) upper.pop_back();
        while (lower.size() >= 2 && ccw(*++lower.rbegin(), *lower.rbegin(), p)
          <= 0) lower.pop_back();
        upper.emplace_back(p);
        lower.emplace back(p);
    upper.insert(upper.end(), ++lower.rbegin(), --lower.rend());
```

```
return upper;
                                                                                                  if (poly[ni].y <= p.y) {</pre>
}
                                                                                                      if (is_left(poly[i], poly[ni], p) < 0) {</pre>
6.4 Rotating Calipers
                                                                                                 }
                                                                                              }
// get all antipodal pairs
// O(n)
                                                                                         return wn != 0;
void antipodal pairs(vector<Point>& pt) {
                                                                                     }
    // calculate convex hull
    sort(pt.begin(), pt.end(), [](const Point& a, const Point& b) {
        return (a.x == b.x)? a.y < b.y: a.x < b.x;
                                                                                     6.6 Polygon Cut
   });
    vector<Point> up, lo;
    for (const auto& p : pt) {
                                                                                     // Left side of a->b
        while (up.size() >= 2 \& ccw(*++up.rbegin(), *up.rbegin(), p) >= 0) up.
                                                                                     vector<Point> cut_polygon(const vector<Point>& polygon, Line line) {
          pop back();
                                                                                         if (!polygon.size()) return polygon;
        while (lo.size() >= 2 \& ccw(*++lo.rbegin(), *lo.rbegin(), p) <= 0) lo.
                                                                                          typedef vector<Point>::const iterator piter;
          pop_back();
                                                                                         piter la, lan, fi, fip, i, j;
        up.emplace back(p);
                                                                                         la = lan = fi = fip = polygon.end();
        lo.emplace_back(p);
                                                                                         i = polygon.end() - 1;
                                                                                         bool lastin = diff(ccw_line(line, polygon[polygon.size() - 1]), 0) > 0;
                                                                                          for (j = polygon.begin(); j != polygon.end(); j++) {
    for (int i = 0, j = (int)lo.size() - 1; <math>i + 1 < up.size() \mid \mid j > 0;) {
                                                                                              bool thisin = diff(ccw_line(line, *j), 0) > 0;
        get_pair(up[i], lo[j]); // DO WHAT YOU WANT
                                                                                              if (lastin && !thisin) {
        if (i + 1 == up.size()) --j;
                                                                                                  la = i;
        else if (j == 0) ++i;
                                                                                                  lan = j;
        else if ((long long)(up[i + 1].y - up[i].y) * (lo[j].x - lo[j - 1].x)
            > (long long)(up[i + 1].x - up[i].x) * (lo[j].y - lo[j - 1].y)) ++i;
                                                                                              if (!lastin && thisin) {
        else --j;
                                                                                                  fi = j;
                                                                                                  fip = i;
}
                                                                                              i = j;
                                                                                              lastin = thisin;
     Point in Polygon Test
                                                                                         if (fi == polygon.end()) {
typedef double coord_t;
                                                                                              if (!lastin) return vector<Point>();
                                                                                              return polygon;
inline coord_t is_left(Point p0, Point p1, Point p2) {
    return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
                                                                                         vector<Point> result;
}
                                                                                         for (i = fi ; i != lan ; i++) {
                                                                                              if (i == polygon.end()) {
// point in polygon test
                                                                                                  i = polygon.begin();
// http://geomalgorithms.com/a03-_inclusion.html
                                                                                                  if (i == lan) break;
bool is_in_polygon(Point p, vector<Point>& poly) {
    int wn = 0;
                                                                                              result.push_back(*i);
    for (int i = 0; i < poly.size(); ++i) {</pre>
        int ni = (i + 1 == poly.size()) ? 0 : i + 1;
                                                                                         Point lc, fc;
        if (poly[i].y <= p.y) {</pre>
                                                                                         get_cross(Line{ *la, *lan - *la }, line, lc);
            if (poly[ni].y > p.y) {
                                                                                         get cross(Line{ *fip, *fi - *fip }, line, fc);
                if (is_left(poly[i], poly[ni], p) > 0) {
                                                                                         result.push_back(lc);
                    ++wn;
                                                                                         if (diff(dist2(lc, fc), 0) != 0) result.push back(fc);
                                                                                         return result;
                                                                                     }
        else {
```

6.7 Pick's theorem

격자점으로 구성된 simple polygon이 주어짐. i는 polygon 내부의 격자점 수, b는 polygon 선분 위 격자점 수, A는 polygon의 넓이라고 할 때, 다음과 같은 식이 성립한다.

```
A = i + \frac{b}{2} - 1
```

String

7.1 KMP

```
typedef vector<int> seq_t;
void calculate_pi(vector<int>& pi, const seq_t& str) {
    pi[0] = -1;
    for (int i = 1, j = -1; i < str.size(); i++) {
        while (j >= 0 && str[i] != str[j + 1]) j = pi[j];
        if (str[i] == str[j + 1])
            pi[i] = ++j;
        else
            pi[i] = -1;
   }
}
// returns all positions matched
// O(|text|+|pattern|)
vector<int> kmp(const seq_t& text, const seq_t& pattern) {
    vector<int> pi(pattern.size()), ans;
    if (pattern.size() == 0) return ans;
    calculate_pi(pi, pattern);
    for (int i = 0, j = -1; i < text.size(); i++) {</pre>
        while (j >= 0 && text[i] != pattern[j + 1]) j = pi[j];
        if (text[i] == pattern[j + 1]) {
            j++;
            if (j + 1 == pattern.size()) {
                ans.push_back(i - j);
                j = pi[j];
        }
    return ans;
}
```

Z Algorithm

```
// Z[i] : maximum common prefix length of &s[0] and &s[i]
// O(|s|)
using seq_t = string;
vector<int> z_func(const seq_t &s) {
   vector<int> z(s.size());
   z[0] = s.size();
   int 1 = 0, r = 0;
```

```
for (int i = 1; i < s.size(); i++) {
        if (i > r) {
            int j;
            for (j = 0; i + j < s.size() && s[i + j] == s[j]; j++);
            z[i] = j; l = i; r = i + j - 1;
        else if (z[i-1] < r-i+1) {
            z[i] = z[i - 1];
        } else {
            int j;
            for (j = 1; r + j < s.size() && s[r + j] == s[r - i + j]; j++);
            z[i] = r - i + j; l = i; r += j - 1;
   }
   return z;
     Aho-Corasick
struct AhoCorasick
   const int alphabet;
   struct node {
        node() {}
        explicit node(int alphabet) : next(alphabet) {}
        vector<int> next, report;
        int back = 0, output_link = 0;
   };
   int maxid = 0;
   vector<node> dfa;
   explicit AhoCorasick(int alphabet) : alphabet(alphabet), dfa(1, node(
      alphabet)) { }
   template<typename InIt, typename Fn> void add(int id, InIt first, InIt last,
      Fn func) {
        int cur = 0;
        for ( ; first != last; ++first) {
            auto s = func(*first);
            if (auto next = dfa[cur].next[s]) cur = next;
                cur = dfa[cur].next[s] = (int)dfa.size();
                dfa.emplace_back(alphabet);
           }
        dfa[cur].report.push back(id);
        maxid = max(maxid, id);
   void build() {
        queue<int> q;
        vector<char> visit(dfa.size());
        visit[0] = 1;
        q.push(0);
        while(!q.empty()) {
            auto cur = q.front(); q.pop();
            dfa[cur].output_link = dfa[cur].back;
```

```
if (dfa[dfa[cur].back].report.empty())
                dfa[cur].output_link = dfa[dfa[cur].back].output_link;
            for (int s = 0; s < alphabet; s++) {</pre>
                auto &next = dfa[cur].next[s];
                if (next == 0) next = dfa[dfa[cur].back].next[s];
                if (visit[next]) continue;
                if (cur) dfa[next].back = dfa[dfa[cur].back].next[s];
                visit[next] = 1;
                q.push(next);
        }
    template<typename InIt, typename Fn> vector<int> countMatch(InIt first, InIt
      last, Fn func) {
       int cur = 0;
        vector<int> ret(maxid+1);
        for (; first != last; ++first) {
            cur = dfa[cur].next[func(*first)];
            for (int p = cur; p; p = dfa[p].output_link)
                for (auto id : dfa[p].report) ret[id]++;
        return ret;
};
     Suffix Array with LCP
typedef char T;
```

```
// calculates suffix array.
// O(n*Logn)
vector<int> suffix array(const vector<T>& in) {
    int n = (int)in.size(), c = 0;
    vector<int> temp(n), pos2bckt(n), bckt(n), bpos(n), out(n);
    for (int i = 0; i < n; i++) out[i] = i;
    sort(out.begin(), out.end(), [&](int a, int b) { return in[a] < in[b]; });</pre>
    for (int i = 0; i < n; i++) {
        bckt[i] = c;
        if (i + 1 == n || in[out[i]] != in[out[i + 1]]) c++;
    for (int h = 1; h < n && c < n; h <<= 1) {
        for (int i = 0; i < n; i++) pos2bckt[out[i]] = bckt[i];</pre>
        for (int i = n - 1; i >= 0; i--) bpos[bckt[i]] = i;
        for (int i = 0; i < n; i++)
            if (out[i] >= n - h) temp[bpos[bckt[i]]++] = out[i];
        for (int i = 0; i < n; i++)
            if (out[i] >= h) temp[bpos[pos2bckt[out[i] - h]]++] = out[i] - h;
        for (int i = 0; i + 1 < n; i++) {
            int a = (bckt[i] != bckt[i + 1]) || (temp[i] >= n - h)
                    || (pos2bckt[temp[i + 1] + h] != pos2bckt[temp[i] + h]);
            bckt[i] = c;
            c += a:
        bckt[n - 1] = c++;
```

```
temp.swap(out);
    return out;
}
// calculates lcp array. it needs suffix array & original sequence.
vector<int> lcp(const vector<T>& in, const vector<int>& sa) {
    int n = (int)in.size();
    if (n == 0) return vector<int>();
    vector<int> rank(n), height(n - 1);
    for (int i = 0; i < n; i++) rank[sa[i]] = i;</pre>
    for (int i = 0, h = 0; i < n; i++) {
        if (rank[i] == 0) continue;
        int j = sa[rank[i] - 1];
        while (i + h < n \& k j + h < n \& k in[i + h] == in[j + h]) h++;
        height[rank[i] - 1] = h;
        if (h > 0) h--;
    }
    return height;
}
```

Manacher's Algorithm

```
// find longest palindromic span for each element in str
// 0(|str|)
void manacher(const string& str, int plen[]) {
    int r = -1, p = -1;
    for (int i = 0; i < str.length(); ++i) {</pre>
        if (i <= r)
            plen[i] = min((2 * p - i >= 0) ? plen[2 * p - i] : 0, r - i);
        else
            plen[i] = 0;
        while (i - plen[i] - 1 >= 0 && i + plen[i] + 1 < str.length()</pre>
                 && str[i - plen[i] - 1] == str[i + plen[i] + 1]) {
            plen[i] += 1;
        if (i + plen[i] > r) {
            r = i + plen[i];
            p = i;
}
```

Miscellaneous

8.1 Fast I/O

```
namespace fio {
    const int BSIZE = 524288;
    char buffer[BSIZE];
    int p = BSIZE;
    inline char readChar() {
```

```
if(p == BSIZE) {
    fread(buffer, 1, BSIZE, stdin);
    p = 0;
}
return buffer[p++];
}
int readInt() {
    char c = readChar();
    while ((c < '0' || c > '9') && c != '-') {
        c = readChar();
    }
    int ret = 0; bool neg = c == '-';
    if (neg) c = readChar();
    while (c >= '0' && c <= '9') {
        ret = ret * 10 + c - '0';
        c = readChar();
}
return neg ? -ret : ret;
}</pre>
```

8.2 Magic Numbers

소수: 10 007, 10 009, 10 111, 31 567, 70 001, 1 000 003, 1 000 033, 4 000 037, 99 999 989, 999 999 937, 1 000 000 007, 1 000 000 009, 9 999 999 967, 99 999 999 977