Laboratorio di Elettronica Applicata Esercitazione 5 Inverter CMOS e oscillatori ad anello in LTspice

Paolo Allione 296500 Camolese Claudio 297378 Reniero Alessandro 272888

Indice

1	Inverter semplice		
	1.1	Parte 1	
	1.2	Parte 2: simulazione statica (.dc)	
	1.3	Parte 3: simulazione statica (.tran)	
	1.4	Parte 4: tempi di risposta e ritardi	
	1.5	Parte 2: simulazione statica (.dc)	
2	Inverter realistico		
	2.1	Simulazione statica (.dc)	
	2.2	Simulazione statica (.tran)	
	2.3	Tempi di riposta e ritardi	
		Calcolo della potenza	
3	Osc	illatore ad anello	
-		Parta 1: analisi dal circuito	

1 Inverter semplice

1.1 Parte 1

Il circuito è stato configurato.

1.2 Parte 2: simulazione statica (.dc)

- 1. Riportare il valore esatto della soglia in tensione: 2,5 V
- 2. Riportare il grafico Vi, Vo: Figura(1)

Figura 1: Grafico V_i , V_0

1.3 Parte 3: simulazione statica (.tran)

- 1. Riportare il valore esatto della soglia: 2,5 V
- 2. Riportare il grafico V_i , V_0 : Figura(2)

Figura 2: Grafico V_i , V_0

3. Discutere brevemente le differenze (se presenti) tra i due metodi: Non abbiamo riscontrato differenze.

1.4 Parte 4: tempi di risposta e ritardi

1. Riportare i tempi di risposta dell'inverter (ritardo, tempo di salita e di discesa).

Ritardo: 10,52 ns Tempo di salita: 24 ns Tempo di discesa: 10,36 ns

2. Riportare i grafici utilizzati per il calcolo dei tempi di risposta: Figura(3).

1.5 Parte 5: calcolo della potenza

1. Riportare la potenza utilizzata per la salita e per un intero periodo.

Potenza per salita: $1,05~\mathrm{mW}$ Potenza per periodo: $1,27~\mathrm{mW}$

2. Riportare il grafico utilizzato per il calcolo della potenza utilizzata: Figura(4)

Figura 3: Tempi di risposta

Figura 4: Potenza

2 Inverter realistico

2.1 Simulazione statica(.dc)

- 1. Riportare Il valore esatto della soglia: $V_{th} = 2,098 \text{ V}$
- 2. Riportare il grafico di V_i e V_0 : Figura(5)

Figura 5: grafico di V_i e V_0

2.2 Simulazione statica (.tran)

- 1. Riportare Il valore esatto della soglia: $V_{th} = 2,099 \text{ V}$
- 2. Riportare il grafico di V_i e V_0 : Figura(6)

Figura 6: grafico di V_i e V_0

3. Discutere brevemente le differenze (se presenti) tra i due metodi. Risposta: non ci sembra ci siano differenze.

2.3 Tempi di riposta e ritardi

1. Riportare i tempi di risposta dell'inverter (ritardo, tempo di salita e di discesa):

```
t_{ritardo} = 0.68 \text{ ns},
```

$$t_{rise}{=}0,\!3$$
ns,

$$t_{fall}$$
=0,2 ns.

2. Riportare i grafici utilizzati per il calcolo dei tempi di risposta

Figura 7: Ritardo, tempo salita, tempo discesa

2.4 Calcolo della potenza

1. Riportare la potenza utilizzata per un intero periodo:

$$P_{rise} = 562 \mu W,$$

$$P_{tot} = 603 \mu W$$

2. Riportare il grafico utilizzato per il calcolo della potenza utilizzata: Figura(8)

Figura 8: Potenza

3 Oscillatore ad anello

3.1 Parte 1: analisi del circuito

- 1. Riportare la frequenza di oscillazione: 0,78 GHz
- 2. Riportare il grafico dell'oscillazione nel tempo: Figura(9)

Figura 9: Grafico dell'oscillazione nel tempo

3. Quanto è lo sfasamento tra i diversi inverter? Risposta= 0°, 140°, 70°, 85°, 140°