<u>Lab 7</u>

To Demonstrate the Working of a Digital Comparator

Note: You may draw all the logic diagrams with hand and paste the pictures here or on logicly software with your name, roll number & section mentioned in your workspace. Make sure that all of your connections are clearly visible and distinguishable. In logicly, use "text" label to point out/show all your inputs & outputs

Tasks

1. Construct a logic circuit for a 2 bit magnitude comparator Also write the Boolean expression for output(s). Simulate your circuit in logicly software. Hint: Take 2 bits of each input i.e. A1A0 & B1B0

2-Bit Magnitude Comparator

a) Truth Table

	00	0	QN01 A1
	00	0	Part
0000-	0	0	(a)
-0-0-0-0-0-	0 -	0	Bo Bo
00000	00	0	47B
0000-00000-		0	9-bit compa
-,000-000-00	9 0		nator. A=B.

b) Boolean Expression (Simplified)

Boolean Enpression (Simplifice)

A7B= A1B1+136 (A0B1+A0A1) 1 (B= B1 B1+ BoBi A6+ A1 A6 BC B = A6 @ B0. AI & BI

c) Logic Diagram

d)	Software Simulation (Show here your results for each combination that gives a high output)
2)	Construct a logic circuit for a 4-bit magnitude comparator Also write the Boolean expression for output(s). Simulate your circuit in logicaly software.
	You may take help from the logic diagram available on the Internet and compare it with yours for better understanding.
	The logic circuit should be hand drawn (neatly) with all necessary labels (inputs/outputs).
<u>4-Bit</u>	Magnitude Comparator
a)	Truth Table

$A_3 > B_3$ $A_3 < B_3$ $A_3 = B_3$	A3 B3 A2
X A9789 A9789 A2=82 A2=82 A2=82 A2=82 A2=82	32
\times \times $A_{1} = B_{1}$ $A_{1} = B_{1}$ $A_{1} = B_{1}$ $A_{1} = B_{1}$	Truth Toble
X X X X X Ao7 Be Ao 7 Be Ao 8 Bo	Ao. 130
0 0 - 0 - 0 0 -	A78
0 - 0 - 0 - 0	AKB
-0.00000000	A II

Granastiaith PatriGrassi

b) Boolean Expression

c) Logic Diagram

