Bisimulation and its Logical Characterization

Prakash Panangaden

1 Bisimulation: three definitions

We fix a labelled transition system

$$\mathcal{S} = (S, \mathcal{A}, \rightarrow \subseteq S \times \mathcal{A} \times S)$$

which we assume to be *image finite*. This means that for any $a \in \mathcal{A}$ and any $s \in S$ the set $\{s' | s \xrightarrow{a} s'\}$ is finite.

Definition 1 A dynamic relation on S is a binary relation $R \subseteq S \times S$ such that whenever sRt then $\forall a \in A, s' \in S$ such that $s \xrightarrow{a} s'$, $\exists t'$ such that $t \xrightarrow{a} t'$ and s'Rt' and, conversely, $\forall t'$ such that $t \xrightarrow{a} t'$, $\exists s'$ such that $s \xrightarrow{a} s'$ with s'Rt'.

Given the complete lattice of relations, \mathfrak{R} on S we define a function $\mathcal{F}: \mathfrak{R} \to \mathfrak{R}$ as follows. If R is a relation, we define $\mathcal{F}(R)$ as $(s,t) \in \mathcal{F}(R)$ if, $\forall a \in \mathcal{A}, s' \in S$, such that if $s \xrightarrow{a} s'$, then $\exists t' \in S$ with $t \xrightarrow{a} t'$ and $(s',t') \in R$ and if $t \xrightarrow{a} t'$, then $\exists s' \in S$ with $s \xrightarrow{a} s'$ and $(s',t') \in R$.

The following important proposition is easy to prove.

Proposition 2 The function \mathcal{F} is monotone on \mathfrak{R} with the inclusion order.

It follows that it has a *greatest* fixed point.

We now define three equivalence relations on S.

Definition 3 (Milner) We first define, by induction, a family of equivalence relations indexed by the integers. Let \sim_0 be the universal relation. Given a relation \sim_n we define $\sim_{(n+1)}$ as $\mathcal{F}(\sim_n)$. Finally we define \sim_M to be the intersection of all the \sim_n .

Definition 4 (Park) We define the relation \sim_P to be the greatest fixed point of \mathcal{F} .

Definition 5 (Milner2) We define the relation \sim , called bisimulation, by saying that $s \sim t$ if there exists any dynamic relation R with sRt.

These three definitions are equivalent for image-finite systems. In fact the last two are always equivalent; this is the really important connection.

There is an intimate relation between prefixed points of \mathcal{F} and dynamic relations.

Proposition 6 A relation R is a dynamic relation if and only if it is a prefixed point of \mathcal{F} .

Proof. Suppose that R is a dynamic relation. Let sRt. I claim that $s\mathcal{F}(R)t$. To check this we must show that whenever $s \stackrel{a}{\longrightarrow} s'$, there exists t' with $t \stackrel{a}{\longrightarrow} t'$ and s'Rt' (and vice versa). But this is immediate from the definition of a dynamic relation. Thus $R \subseteq \mathcal{F}(R)$. Conversely, $R \subseteq \mathcal{F}(R)$ is the definition of being a dynamic relation.

We need another simple fact.

Proposition 7 The union of any family of dynamic relations is again a dynamic relation.

Proof. Suppose that $\{R_i|i\in I\}$ is a family of dynamic relations. Let $R=\bigcup_i R_i$. Suppose that sRt, then, for some $j\in I$, sR_jt . If $s\stackrel{a}{\longrightarrow} s'$ then, for some t', $t\stackrel{a}{\longrightarrow} t'$ with $s'R_jt'$ and vice versa. Clearly s'Rt' so we have that R is a dynamic relation.

Note that the last proof is almost too trivial to write down.

Theorem 8 The relations \sim and \sim_P are the same.

Proof. The relation \sim is, by definition, the union of all dynamic relations. By Prop. 6, this says that \sim is the union (least upper bound) of all the prefixed points of \mathcal{F} . By the fixed-point theorem Thm. 16 it follows that \sim is the greatest fixed point of \mathcal{F} .

We note some important properties of dynamic relations without proof.

Proposition 9 If R is a dynamic relation then so is R^{-1} , the relational converse. If R_1 and R_2 are dynamic relations then so is $R_1 \circ R_2$.

In order to see that \sim_M is the same as \sim we will first assume a very important property of \mathcal{F} ; later we will show that the assumption is justified.

Definition 10 In a poset (S, \leq) we say that a non-empty subset X is **filtered**, if whenever $x, y \in X$, there is a z with $z \leq x$ and $z \leq y$.

A decreasing chain is obviously filtered. We will only need to deal with decreasing chains, but the general concept is worth knowing.

Definition 11 We say that $f: L \to L$ is **co-continuous** if whenever we have a filtered family $X \subseteq L$ then $f(\bigwedge X) = \bigwedge f(X)$.

Proposition 12 In an image-finite system \mathcal{F} is co-continuous.

We will prove this later. For the moment we note that it gives us the equivalence of the first two definitions of bisimulation immediately.

Theorem 13 The relation \sim_M is the greatest fixed point of \mathcal{F} .

Proof. From the definition of the relations \sim_n we have that $\sim_{n+1} = \mathcal{F}(\sim_n)$. Now we have

$$\mathcal{F}(\sim_M) = \mathcal{F}(\bigcap_n \sim_n) = \bigcap_n \mathcal{F}(\sim_n) = \bigcap_n \sim_{n+1} = \sim_M.$$

This shows that \sim_M is a fixed point of \mathcal{F} . Let K be any other fixed point. Then clearly $K \subseteq \sim_0$. Now, by an obvious induction proof, $K \subseteq \sim_n$ for all n. Thus $K \subseteq \bigcap_n \sim_n = \sim_M$. Thus, \sim_M is the greatest fixed point of \mathcal{F} .

Thus all three definitions coincide. We need to complete the proof of cocontinuity. This will be very close to the proof of the Hennessy-Milner theorem.

Proof (Of cocontinuity). In this proof each argument comes in identical pairs, one where $s \xrightarrow{a} s'$ and then we have to find a matching t' and vice versa as well. I will only show one case as the other is identical.

Suppose that $\{R_i|i\in I\}$ is a filtered family of relations. We write $R=\bigcap_i R_I$, $K_i=\mathcal{F}(R_i)$ and $K=\bigcap_i K_i$. We want to show that $K=\mathcal{F}(R)$. First we show that $\mathcal{F}(R)\subseteq K$. Suppose that $s\mathcal{F}(R)t$. Suppose further that $s\stackrel{a}{\longrightarrow} s'$, then, by the definition of $\mathcal{F}(R)$ we have that there is some t' such that $t\stackrel{a}{\longrightarrow} t'$ and s'Rt'. This means that $\forall i\in I.s'R_it'$ so (arguing similarly for the other case) we have $\forall i\in I.s\mathcal{F}(R_i)t$ or $\forall i\in I.(s,t)\in K_i$ and hence $(s,t)\in K$.

Now we assume that $\neg s\mathcal{F}(R)t$. Once again we have that there is some a, s' with $s \xrightarrow{a} s'$ and $\forall t', t \xrightarrow{a} t' \Rightarrow \neg(s'Rt')$, i.e. $\exists R_j$ such that $\neg s'R_jt'$. Note, however, that the R_j can be different for each t' so we cannot immediately say that we are done. There are, however, only finitely many possible t' (image-finiteness), call them t_1, \ldots, t_k and call the associated relations R_1, \ldots, R_k . Thus for each $j \in \{1, \ldots, k\}$, we have $t \xrightarrow{a} t_j$ and $\neg s'R_jt_j$. Of course, it could be that, for example, $s'R_7t_3$ so we cannot conclude anything just yet. However, the family of relations is filtered, by assumption, and the number of t_j is finite, so there has to be one relation, call it T, such that $\neg s'Tt_j$ for all the j. Thus we have that $\neg s\mathcal{F}(T)t$, but this means that there is some $R_l = T$ such that $(s, t) \notin K_l$, hence $(s, t) \notin K$. Thus, $K \subseteq \mathcal{F}(R)$. This concludes the proof of cocontinuity

2 The Logical Characterization of Bisimulation

Consider the modal logic

$$\Phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 |\langle a \rangle \phi.$$

The meaning of $\langle a \rangle \phi$ is, $s \models \langle a \rangle \phi$ if there exists an s' such that $s \xrightarrow{a} s'$ with $s' \models \phi$.

Definition 14 We define the relation of logical equivalence between states by

$$s \approx tif \forall \phi \in \Phi, \ s \models \phi \Leftrightarrow t \models \phi.$$

The following important theorem is often called the Hennessy-Milner theorem. It was independently discovered by van Benthem slightly before Hennessy and Milner.

Theorem 15 The relations \sim and \approx are the same.

Proof. Suppose that $s \sim t$. We prove $s \approx t$ by induction on the structure of formulas. The base case is trivial. The boolean cases are almost trivial. Consider a formula of the form $\langle a \rangle \phi$ and suppose that we have proved the theorem for all formulas of lower complexity. Suppose that $s \models \langle a \rangle \phi$. Then there is an s' such that $s \stackrel{a}{\longrightarrow} s'$ and $s' \models \phi$. Since $s \sim t$ we have that there is a t' with $t \stackrel{a}{\longrightarrow} t'$ and $s' \sim t'$. By the induction hypothesis s', t' agree on all formulas of lower complexity. This implies that $t' \models \phi$ or, $t \models \langle a \rangle \phi$. This completes the induction.

For the other direction we will show that \approx is a dynamic relation. Suppose that $s \approx t$ and that $s \stackrel{a}{\longrightarrow} s'$. Suppose, for the sake of deriving a contradiction, that for all the t' such that $t \stackrel{a}{\longrightarrow} t'$ that $s' \not\approx t'$. There are only finitely many such t'; call them t'_i . For each such t'_i there is a formula ϕ_i such that $s' \models \phi_i$ but $t'_i \not\models \phi_i$. Note that we really need the logic to include negation in order to claim this. Without negation, it might be the case that for some t'_i we have $t'_i \models \phi_i$ and $s' \not\models \phi_i$. Using negation we can replace ϕ_i by $\neg \phi_i$ and establish the claim that for each t'_i there is a formula ϕ_i such that $s' \models \phi_i$ and $t'_i \models \phi_i$.

Consider the formula $\phi \stackrel{def}{=} \bigwedge_i \phi_i$. We have $s' \models \phi$ but for any t'_i we have $t'_i \not\models \phi$. This means that $s \models \langle a \rangle \phi$ but $t \not\models \langle a \rangle \phi$. This contradicts the assumption that $s \approx t$. Thus there must be a t' with $s' \approx t'$. We have proved that \approx is a dynamic relation so $s \sim t$.

A Basic Fixed-Point Theory for Complete Lattices

Let L be a complete lattice: this means that *every* subset of L has a least upper bound. From this it follows that every subset has a greatest lower bound as well.

To see that every subset has a greatest lower bound we proceed as follows. Let L be a complete lattice and let $Q \subseteq L$. Let $P \subseteq L$ be the set of lower bounds of Q and let g be the least upper bound of P. Now every element of $q \in Q$ is an upper bound for P so $g \leq q$; thus, g is itself a lower bound of Q. By construction it is greater than any other lower bound of Q so it is the greatest lower bound of Q.

Note that "every" includes the empty set, so every complete lattice has a least and a greatest element. Of course, this by itself is not enough for a lattice to be a complete lattice.

Let $f: L \to L$ be a monotone function. An element, x, of L such that $x \leq f(x)$ is called a *pre-fixed point* of f. We will show that the supremum of the pre-fixed

points of f give the greatest fixed point of f.

Theorem 16 There are greatest fixed points and least fixed points for f. Furthermore the greatest fixed point is the supremum of all the prefixed points of f.

Proof . Define $G = \{x | x \leq f(x)\}$ and $g = \bigvee G$; we know that g exists because L is a complete lattice. Now $\forall x \in G, \ x \leq g$, so, by monotonicity of $f, \ f(x) \leq f(g)$. Since $x \leq f(x) \leq f(g)$ it follows that f(g) is an upper bound of G, hence it is bigger than the least upper bound, g: i.e. $g \leq f(g)$. Then, again by monotonicity of $f, \ f(g) \leq f(f(g))$. This means that $f(g) \in G$, hence $f(g) \leq g$. Thus, we have g = f(g); g is a fixed point of f. Now if f is any fixed point of f we have f is any fixed point of f is the greatest fixed point of f. The obvious dualization of this argument shows that f has a least fixed point.

¹Contrary to what you may read in textbooks, this is **not** the Knaester-Tarski fixed point theorem. That theorem says that the fixed points of f form a complete lattice.