Rasch gone mixed: A mixed model approach to Implicit Association Test responses

Epifania, O.M., Robusto, E., Anselmi, P.

University of Padova

31st July 2018

Contents

- Introduction
- 2 Methodology
- 3 Accuracy
- 4 Response Time
- 5 Final remarks

Introduction

What is the IAT?

IAT conditions

(a) Compatible.

(b) Incompatible.

Figure 1: IAT conditions.

Table 1: Race IAT Blocks

Block	Trials	Function	Left key	Right Key
1	20	Practice	White People (WP)	Black People (BP)
2	20	Practice	Good	Bad
3	60	Test	WP + Good	BP + Bad
4	20	Practice	BP	WP
5	60	Test	BP + Good	WP + Bad

Table 1: Race IAT Blocks

Block	Trials	Function	Left key	Right Key
1	20	Practice	White People (WP)	Black People (BP)
2	20	Practice	Good	Bad
3	60	Test	WP + Good	BP + Bad
4	20	Practice	BP	WP
5	60	Test	BP + Good	WP + Bad

Compatible Condition

Table 1: Race IAT Blocks

Block	Trials	Function	Left key	Right Key
1	20	Practice	White People (WP)	Black People (BP)
2	20	Practice	Good	Bad
3	60	Test	WP + Good	BP + Bad
4	20	Practice	BP	WP
5	60	Test	BP + Good	WP + Bad

Compatible Condition Incompatible Condition

The D score algorithm (Greenwald et al., 2003)

How do we compute the D score?

The D score algorithm (Greenwald et al., 2003)

How do we compute the D score?

$$D_{score} = \frac{M_{inc} - M_{comp}}{SDpooled_{comp,inc}}$$

7/41

The D score algorithm (Greenwald et al., 2003)

How do we compute the D score?

$$D_{score} = \frac{M_{inc} - M_{comp}}{SDpooled_{comp,inc}}$$

How do we read it?

Positive score: On average, slower responses in the incompatible condition than in the compatible condition

Negative score: On average, slower responses in the compatible condition than in the incompatible condition

The structure of the IAT

Problems:

- Multiple observations on the same item by the same participant
- Different sources of variability
- Local dependence

Aims of the study

- I Generalized Linear Mixed Effects Models to IAT response accuracy \rightarrow Rasch Model
- 2 Linear Mixed Effects Models to IAT (log) transformed time responses \rightarrow Log Normal Model for Speed

Rasch and GLM

Rasch Model

$$logit(P(Y_{ij} = 1 | (\theta_i, b_j)) = log\left(\frac{P(Y_{ij} = 1 | (\theta_i, b_j))}{P(Y_{ij} = 0 | (\theta_i, b_j))}\right)$$

$$i = 1, \dots, p$$
 Participants $j = 1, \dots, s$ Stimuli

12 / 41

Rasch Model

$$logit(P(Y_{ij} = 1 | (\theta_i, b_j)) = log\left(\frac{P(Y_{ij} = 1 | (\theta_i, b_j))}{P(Y_{ij} = 0 | (\theta_i, b_j))}\right)$$
$$P(Y_{ij} = 1 | \theta_i, b_j) = \frac{exp(\theta_i - b_j)}{1 + exp(\theta_i - b_j)}$$

$$i = 1, \dots, p$$
 Participants $j = 1, \dots, s$ Stimuli

Rasch Model

$$logit(P(Y_{ij} = 1 | (\theta_i, b_j)) = log\left(\frac{P(Y_{ij} = 1 | (\theta_i, b_j))}{P(Y_{ij} = 0 | (\theta_i, b_j))}\right)$$

$$P(Y_{ij} = 1 | \theta_i, b_j) = \frac{exp(\theta_i - b_j)}{1 + exp(\theta_i - b_j)}$$

$$P(Y_{ij} = 1 | \theta_i, b_j) = \frac{1}{1 + exp(b_j - \theta_i)}$$

$$i = 1, \dots, p \text{ Participants}$$

$$j = 1, \dots, s \text{ Stimuli}$$

$$x_i\beta_i = \eta_i = g(\mu_i)$$

 $x_i = i$ -th row of $p \times s$ matrix **X**

 $\mu_i = \text{expected response}$

g = link function

 $\eta_i = \text{linear predictors for the } i\text{-th response}$

For a binomial response:

$$x_i \beta_i = \eta_i = g(\mu_i) = log\left(\frac{\mu_i}{1 - \mu_i}\right)$$

 $x_i = i$ -th row of $p \times s$ matrix **X**

 $\mu_i = \text{expected response}$

g = link function

 η_i = linear predictors for the *i*-th response

For a binomial response:

$$x_i \beta_i = \eta_i = g(\mu_i) = log\left(\frac{\mu_i}{1 - \mu_i}\right)$$

 $x_i = i$ -th row of $p \times s$ matrix **X**

 $\mu_i = \text{expected response}$

q = link function

 η_i = linear predictors for the *i*-th response

With inverse link:

$$\eta_i = g^{-1}(\mu_i) = \frac{1}{1 + exp(-\eta_i)}$$

13 / 41

For a binomial response:

$$x_i \beta_i = \eta_i = g(\mu_i) = log\left(\frac{\mu_i}{1 - \mu_i}\right)$$

 $x_i = i$ -th row of $p \times s$ matrix **X**

 $\mu_i = \text{expected response}$

q = link function

 η_i = linear predictors for the *i*-th response

With inverse link:

$$\eta_i = g^{-1}(\mu_i) = \frac{1}{1 + exp(-\eta_i)}$$

Generalized Linear Mixed Effects Model - GLMM

$$\eta = X\beta + Za$$

 $\beta = \text{Fixed effects}$

a = Random effects

 $Z = p \times q$

Hierarchical Model for accuracy - response time

van der Linden (2007):

van der Linden (2007):

First Level: Accuracy

Any IRT model e.g.: Rasch model

$$P(Y_{ij} = 1 | \theta_i, b_j) = \frac{exp(\theta_p - b_i)}{1 + exp(\theta_p - b_i)}$$

First Level: Response time

Log-normal model

$$ln(T_{ij}) = \beta_j - \tau_i$$

15 / 41

van der Linden (2007):

First Level: Accuracy

Any IRT model e.g.: Rasch model

$$P(Y_{ij} = 1 | \theta_i, b_j) = \frac{exp(\theta_p - b_i)}{1 + exp(\theta_p - b_i)}$$

First Level: Response time

Log-normal model

$$ln(T_{ij}) = \beta_j - \tau_i$$

Second Level: Population Model

$$\xi_p = (\theta, \tau) \sim N \begin{bmatrix} \begin{pmatrix} \mu_{\theta} \\ \mu_{\tau} \end{pmatrix}, & \begin{pmatrix} \sigma_{\theta}^2 & \sigma_{\theta\tau}^2 \\ \sigma_{\theta\tau}^2 & \sigma_{\tau}^2 \end{pmatrix} \end{bmatrix} \quad \psi_i = (b_i, \beta_i) \sim N \begin{bmatrix} \begin{pmatrix} \mu_b \\ \mu_{\beta} \end{pmatrix}, & \begin{pmatrix} \sigma_b^2 & \sigma_{b\beta}^2 \\ \sigma_{b\beta}^2 & \sigma_{\beta}^2 \end{pmatrix} \end{bmatrix}$$

Second Level: Item Domain Model

$$\psi_i = (b_i, \beta_i) \sim N \begin{bmatrix} \begin{pmatrix} \mu_b \\ \mu_{\beta} \end{pmatrix}, & \begin{pmatrix} \sigma_b^2 & \sigma_{b\beta}^2 \\ \sigma_{b\beta}^2 & \sigma_{\beta}^2 \end{pmatrix} \end{bmatrix}$$

Log Normal Model for response time

$$ln(T_{ij}) = \beta_j - \tau_i$$

 β_j : Stimulus time intensity, j = 1, ..., s τ_i : Person speed, i = 1, ..., p

Methodology

Race IAT

Valenced words (n=16)

- Positive words: Good, laughter, pleasure, glory, peace, happy, joy, love
- Negative words: Evil, bad, horrible, terrible, nasty, pain, failure, hate

White Faces (M=3, F=3)

Black Faces (M=3, F=3)

Participants

$$n=65~(F=49.23\%,\,M_{\rm age}=24.95,\,SD_{\rm age}=2.09,\,range_{\rm age}=19$$
 - $30)$

Accuracy

Take a look at the data - Accuracy

Model specification - Accuracy

Maximal Model

Random effects: Participants Intercept, Stimuli Intercept, Condition Random Slope in Participants, Condition Random Slope in Stimuli, Random Intercept interaction Participants*Stimuli

Fixed effects: Condition, $\beta_0 = 0$

$$\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + S_{0j} + P_{0i} * S_{0j} + (\beta_1 + P_{1i})c_k + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$$

$$i = 1, ..., P$$
 Participants
 $j = 1, ..., S$ Stimuli
 $k = 1, ..., C$ Conditions

24 / 41

Random effects: Condition Random Slope in Participants, Condition Random Slope in Stimuli

Fixed effects: Condition, $\beta_0 = 0$

$$\eta_{ij} = \beta_0 + \beta_{1k} + (\beta_1 + P_{1i})c_k + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$$

Model 2

Random effects: Participants (Intercept), Condition Random Slope in Stimuli, Interaction Stimuli * Participants

Fixed effects: Condition, $\beta_0 = 0$

$$\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + P_{0i} * S_{0j} + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$$

Random effects: Participants (Intercept), Condition Random Slope in Stimuli Fixed effects: Condition, $\beta_0 = 0$

$$\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$$

Model 4

Random effects: Participants (Intercept), Stimuli (Intercept)

Fixed effects: Condition, $\beta_0 = 0$

$$\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + S_{0j} + \epsilon_{ij}$$

Results - Accuracy

Model Comparison

Model	AIC	BIC	$\log \mathrm{Lik}$	deviance	df.resid
M1	4142.05	4197.75	-2063.03	4126.05	7792
M2	4142.9	4191.63	-2064.45	4128.9	7793
M3	4141.35	4183.12	-2064.67	4129.35	7794
M4	4144.28	4172.12	-2068.14	4136.28	7796

Model 1:
$$\eta_{ij} = \beta_0 + \beta_{1k} + (\beta_1 + P_{1i})c_k + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$$

Model 2: $\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + P_{0i} * S_{0j} + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$
Model 3: $\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$
Model 4: $\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + S_{0j} + \epsilon_{ij}$

28 / 41

$$\eta_{ij} = \beta_0 + \beta_{1k} + P_{0i} + (\beta_1 + S_{1j})c_k + \epsilon_{ij}$$

Estimate Std. Error

ConditionCompatible 3.418152 0.1226003 ConditionIncompatible 2.012852 0.1080449

Groups Name Std.Dev. Corr

Participant (Intercept) 0.51184

stimuli ConditionCompatible 0.25983

> ConditionIncompatible 0.37184 0.166

29 / 41

ICC Model 3 Accuracy - Positive and Negative words Compatible Incompatible

ICC Model 3 Accuracy - Black and White Faces

Compatible Incompatible

"wf": White female, "bf": Black female "wm": White male, "bm": Black male

ICC Model 3 Accuracy - In a nutshell

Compatible Incompatible

Model 3 Accuracy - Participants' Ability

Response Time

Model Specification - Response Time

Random effects: Stimuli (Intercept), Condition Random Slope in Participants, Interaction Participants * Stimuli

Fixed effects: Condition, $\beta_0 = 0$

$$y_{ij} = \beta_0 + \beta_{1k} + S_{0j} + S_{0j} * P_{0i} + (\beta_1 + P_{1i})c_k + \epsilon_{ij}$$

Model 2

Random effects: Stimuli (Intercept), Condition Random Slope in Participants Fixed effects: Condition, $\beta_0 = 0$

$$y_{ij} = \beta_0 + \beta_{1k} + S_{0j} + (\beta_1 + P_{1i})c_k + \epsilon_{ij}$$

Model 3

Random effects: Participants (Intercept), Stimuli (Intercept)

Fixed effects: Condition, $\beta_0 = 0$

$$y_{ij} = \beta_0 + \beta_{1k} + S_{0j} + P_{0i} + \epsilon_{ij}$$

Results - Response Time

Model comparison - Response Time

	Model	AIC	BIC	$\log Lik$	deviance	df.resid
_	M1	4703.85	4759.54	-2343.92	4687.85	7792
	M2	4705.62	4754.35	-2345.81	4691.62	7793
	M3	5113.45	5148.26	-2551.73	5103.45	7795
-						

Model 1:
$$y_{ij} = \beta_0 + \beta_{1k} + S_{0j} + P_{0i} * S_{0j} + (\beta_1 + P_{1i})c_k + \epsilon_{ij}$$

Model 2: $y_{ij} = \beta_0 + \beta_{1k} + S_{0j} + (\beta_1 + P_{1i})c_k + \epsilon_{ij}$
Model 3: $y_{ij} = \beta_0 + \beta_{1k} + S_{0j} + P_{0i} + \epsilon_{ij}$

Model 1:

$$y_{ij} = \beta_0 + \beta_{1k} + S_{0j} + P_{0i} * S_{0j} + (\beta_1 + P_{1i})c_k + \epsilon_{ij}$$

Estimate Std. Error
ConditionCompatible -0.4267993 0.02311678
ConditionIncompatible -0.1418474 0.02915075
Groups Name Std.Dev. Corr
Participant ConditionCompatible 0.15937

ConditionIncompatible 0.21424 0.609

stimuli (Intercept) 0.05735

Residual (Intercept) 0.05/35 0.31791

38 / 41

Model 1 Response time - Stimuli Time Intensity

Model 1 Response time - Participants' Speed

Final remarks

■ Parameters estimated by these models give interesting insights regarding the processes underlying the IAT

- Parameters estimated by these models give interesting insights regarding the processes underlying the IAT
- 2 Future works:
 - Combine these parameters into one model (e.g., van der Linden)

- Parameters estimated by these models give interesting insights regarding the processes underlying the IAT
- 2 Future works:
 - Combine these parameters into one model (e.g., van der Linden)
 - Understand their relationship with relevant criteria (e.g., other IAT scoring methods or behavioural/explicit responses)

- Parameters estimated by these models give interesting insights regarding the processes underlying the IAT
- 2 Future works:
 - Combine these parameters into one model (e.g., van der Linden)
 - Understand their relationship with relevant criteria (e.g., other IAT scoring methods or behavioural/explicit responses)
- 3 Replicate these models on other IAT data

Thank you!

marina ottavia.epifania@phd.unipd.it