Simple Book Example

TeXstudio Team

January 2013

Contents

1	Con	nmon concepts	1
	1.1	Propositions]
		Induction	
2	The	e Second Chapter	1

iv CONTENTS

Chapter 1

Common concepts

1.1 Propositions

Definition 1 (Proposition). A proposition is a statement that is either true or false (and usually has a variable).

Definition 2 (Compound Proposition). Compound propositions: Combine multiple propositions using and/or/not/implies

Definition 3 (Predicate). A predicate is a proposition whose truth value dedpends on one or more variables.

For e.g. "n is a perfect square" P(n) ::= "n is a perfect square" P(4) is true, P(5) is false

Definition 4 (Quantifier). A quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. $(\forall \text{ or } \exists)$

For instance, the universal quantifier \forall in the first order formula $\forall x P(x)$ expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula $\exists x P(x)$ expresses that there is something in the domain which satisfies that property

Lemma 1 (Negating Quantifiers). Universal negation:

$$\neg(\forall x \in D, P(x)) \equiv \exists x \in D, \neg P(x).$$

Existential negation:

$$\neg(\exists x \in X, P(x)) \equiv \forall x \in D, \neg P(x).$$

Lemma 2 (Order of mixed quantifiers). When multiple quantifiers are of the same type, e.g. all \forall or all \exists , then it is ok.

$$\forall x \forall y. Likes(x, y) \equiv \forall y \forall x. Likes(x, y)$$

But if quantifiers are of different type, then they do not mean the same

$$\forall x \exists y. Likes(x, y) \neq \exists y \forall x. Likes(x, y)$$

Definition 5 (Validity). A propositional formula is called valid when it evaluates to T no matter what truth values are assigned to the individual propositional variables.

Definition 6 (Satisfiability). A proposition is satisfiable if some setting of the variables makes the proposition true

E.g. e, $P \land \neg Q$ is satisfiable because the expression is true if P is true or Q is false.

1.2 Induction

Definition 7 (Well Ordering principle). Every nonempty set of nonnegative integers has a smallest element.

Definition 8 (Induction). Let P(n) be a predicate. If

- *P* (0) is true, and
- P(n) IMPLIES P(n + 1) for all nonnegative integers, n,

then

• P (m) is true for all nonnegative integers, m.

In other words:
$$\frac{P(0) \quad \forall n \in \mathbb{N}. P(n) \implies P(n+1)}{\forall m \in \mathbb{N}. P(m)}$$

Definition 9 (Invariant). A property that is preserved through a series of operations or steps is known as an invariant

Lemma 3 (Invariant method). If you would like to prove that some property NICE holds for every step of a process, then it is often helpful to use the following method:

• Define P(t) to be the predicate that NICE holds immediately after step t.

1.2. INDUCTION 3

• Show that P(0) is true, namely that NICE holds for the start state.

• Show that $\forall t \in \mathbb{N}.P(t) \implies P(t+1)$; namely, that for any $t \geq 0$, if NICE holds immediately after step t, it must also hold after the following s

Definition 10 (Strong Induction). Let P(n) be a predicate

- P(0) is true and
- P(1), P(2), ...P(n) together imply P(n+1)

then P(n) is true for all $n \in \mathbb{N}$

Chapter 2 The Second Chapter