Guía 12: Teorías de primer orden

Teoría de primer orden

- Teoría de primer orden: Una teoría (de primer orden) es un par (Σ, τ) donde τ es un tipo y Σ es un conjunto de sentencias de tipo τ
 - Los elementos de Σ son los axiomas propios de (Σ, τ)
 - Un modelo de (Σ, τ) será una estructura de tipo τ la cual satisfaga todos los axiomas propios de (Σ, τ)
 - Ejemplos:

```
* Po = (\{A_{\leq R}, A_{\leq T}, A_{\leq A}\}, \tau_{Po}) \text{ con } \tau_{Po} = (\emptyset, \emptyset, \{\leq\}, \{(\leq, 2)\})

* RetCua = (\Sigma_{RetCua}, \tau_{RetCua}) \text{ con } \Sigma_{RetCua} = \{A_{\leq R}, A_{\leq T}, A_{\leq A}, A_{s \text{ es } C}, A_{s \leq C}, A_{i \text{ es } C}, A_{i \geq C}\} \text{ y } \tau_{RetCua} = (\emptyset, \{s^2, i^2\}, \{<^2\}, a)
```

Prueba formal

• Como objeto matemático, una prueba resultará ser un par ordenado de palabras cuya primera coordenada codificará en forma natural la sucesión de sentencias y su segunda coordenada codificará la sucesión de justificaciones

Reglas

```
• Reglas a considerar:
```

- Sea R una regla tal que $(\varphi_1, \ldots, \varphi_n) \in R$, decimos que φ_n se deduce de $\varphi_1, \ldots, \varphi_{n-1}$ por la regla R respecto a τ para expresar que $(\varphi_1, \ldots, \varphi_n) \in R$
- Particularización:

```
* Partic^{\tau} = \{ (\forall v \varphi(v), \varphi(t)) : \varphi_d = \varphi(v) \in F^{\tau} \text{ y } t \in T_c^{\tau} \}
```

- Existencia:

*
$$Exist^{\tau} = \{(\varphi(t), \exists v\varphi(v)) : \varphi =_d \varphi(v) \in F^{\tau} \text{ y } t \in T_c^{\tau}\}$$

- Evocación

*
$$Evoc^{\tau} = \{(\varphi, \varphi) : \varphi \in S^{\tau}\}$$

- Absurdo:

```
* Absur^{\tau} = Absur1^{\tau} \cup Absur2^{\tau} \cup Absur3^{\tau}
```

$$\cdot Absur1^{\tau} = \{((\neg \varphi \to (\psi \land \neg \psi)), \varphi) : \varphi, \psi \in S^{\tau}\}$$

$$Absur2^{\tau} = \{((\varphi \to (\psi \land \neg \psi)), \neg \varphi) : \varphi, \psi \in S^{\tau}\}$$

$$Absur3^{\tau} = \{ ((\varphi \land \neg \varphi), \psi) : \varphi, \psi \in S^{\tau} \}$$

- Conjunción-introducción y conjunción-eliminación:

```
* ConjInt^{\tau} = \{ (\varphi, \psi, (\varphi \wedge \psi)) : \varphi, \psi \in S^{\tau} \}
```

*
$$ConjElim^{\tau} = ConjElim1^{\tau} \cup ConjElim2^{\tau}$$

$$\cdot ConjElim1^{\tau} = \{((\varphi \wedge \psi), \varphi) : \varphi, \psi \in S^{\tau}\}$$

$$ConjElim2^{\tau} = \{((\varphi \land \psi), \psi) : \varphi, \psi \in S^{\tau}\}$$

- Equivalencia-introducción y equivalencia-eliminación:

```
* EquivInt^{\tau} = \{((\varphi \to \psi), (\psi \to \varphi), (\varphi \leftrightarrow \psi)) : \varphi, \psi \in S^{\tau}\}
```

* $EquivElim^{\tau} = EquivElim1^{\tau} \cup EquivElim2^{\tau}$

$$EquivElim1^{\tau} = \{((\varphi \leftrightarrow \psi), (\varphi \to \psi)) : \varphi, \psi \in S^{\tau}\}$$

•
$$EquivElim2^{\tau} = \{((\varphi \leftrightarrow \psi), (\psi \rightarrow \varphi)) : \varphi, \psi \in S^{\tau}\}$$

- Disyunción-introducción y disyunción-eliminación:

```
* DisjInt^{\tau} = DijInt1^{\tau} \cup DisjInt2^{\tau} \cup DisjElim3^{\tau}
```

$$DisjInt1^{\tau} = \{ (\varphi, (\varphi \lor \psi)) : \varphi, \psi \in S^{\tau} \}$$

$$DisjInt2^{\tau} = \{(\psi, (\varphi \lor \psi)) : \varphi, \psi \in S^{\tau}\}$$

$$DisjInt3^{\tau} = \{((\neg \varphi \to \psi), (\varphi \lor \psi)) : \varphi, \psi \in S^{\tau}\}$$

* $DisjElim^{\tau} = DisjElim1^{\tau} \cup DisjElim2^{\tau}$

$$DisjElim1^{\tau} = \{ (\neg \varphi, (\varphi \lor \psi), \psi) : \varphi, \psi \in S^{\tau} \}$$

$$DisjElim2^{\tau} = \{ (\neg \psi, (\varphi \lor \psi), \varphi) : \varphi, \psi \in S^{\tau} \}$$

- Conmutatividad:

```
* Commut^{\tau} = Commut1^{\tau} \cup Commut2^{\tau}
```

·
$$Commut1^{\tau} = \{((t \equiv s), (s \equiv t)) : s, t \in T_c^{\tau}\}$$

$$\cdot Commut2^{\tau} = \{ ((\varphi \leftrightarrow \psi), (\psi \leftrightarrow \varphi)) : \varphi, \psi \in S^{\tau} \}$$

- Modus Ponens:

*
$$ModPon^{\tau} = \{(\varphi, (\varphi \rightarrow \psi), \psi) : \varphi, \psi \in S^{\tau}\}$$

- División por casos:

*
$$DivPorCas^{\tau} = \{((\varphi_1 \vee \varphi_2), (\varphi_1 \rightarrow \psi), (\varphi_2 \rightarrow \psi), \psi) : \varphi_1, \varphi_2, \psi \in S^{\tau}\}$$

- Reemplazo:

- * $Reemp^{\tau} = Reemp1^{\tau} \cup Reem2^{\tau}$
 - $\cdot \ \ Reem1^{\tau} = \{((t \equiv s), \gamma, \bar{\gamma}) : s, t \in T_c^{\tau}, \gamma \in S^{\tau} \ \ \text{y} \ \bar{\gamma} = \text{resultado de reemplazar en } \gamma \ \text{una ocurrencia de } t \ \text{por } s\}$
 - · $Reem2^{\tau} = \{(\forall v_1 \dots \forall v_n(\varphi \leftrightarrow \psi), \gamma, \bar{\gamma}), \varphi, \psi \in F^{\tau}, Li(\varphi) = Li(\psi) = \{v_1, \dots, v_n\}, n \geq 0, \gamma \in S^{\tau} \text{ y } \bar{\gamma} = \text{resultado de reemplazar en } \gamma \text{ una ocurrencia de } \varphi \text{ por } \psi\}$
- * Transitividad:
 - $\cdot \ Trans^{\tau} = Trans1^{\tau} \cup Trans2^{\tau} \cup Trans3^{\tau}$
 - $Trans1^{\tau} = \{((t \equiv s), (s \equiv u), (t \equiv u)) : t, s, u \in T_c^{\tau}\}$
 - $Trans2^{\tau} = \{((\varphi \to \psi), (\psi \to \Phi), (\varphi \to \Phi)) : \varphi, \psi, \Phi \in S^{\tau}\}$
 - $Trans3^{\tau} = \{((\varphi \leftrightarrow \psi), (\psi \leftrightarrow \Phi), (\varphi \leftrightarrow \Phi)) : \varphi, \psi, \Phi \in S^{\tau}\}$
- * Generalización:
 - · $Generaliz^{\tau} = \{(\varphi(c), \forall v \varphi(v)) : \varphi =_d \varphi(v) \in F^{\tau}, Li(\varphi) = \{v\} \text{ y } c \in \mathcal{C} \text{ no ocurre en } \varphi\}$
- * Elección:
 - · $Elec^{\tau} = \{((\exists v \varphi(v), \varphi(e))) : \varphi =_d \varphi(v) \in F^{\tau}, Li(\varphi) = \{v\} \text{ y } e \in \mathcal{C} \text{ no ocurre en } \varphi\}$
- Regla universal: Una regla R es llamada universal cuando se da que si φ se deduce de ψ_1, \ldots, ψ_k por R entonces $((\psi_1 \wedge \cdots \wedge \psi_k) \to \varphi)$ es una sentencia universalmente válida
 - Lema: Sea au un tipo, todas las reglas excepto las de elección y generalización son universales

Axiomas lógicos

- Axiomas lógicos (verdades universales) de tipo τ que consideraremos: Sean $t \in T_c^{\tau}, \varphi \in S^{\tau}, \psi \in F^{\tau}, v \in Var, Li(\psi) \subseteq \{v\}$:
 - $-(\varphi\leftrightarrow\varphi)$
 - $-(t \equiv t)$
 - $-(\varphi \vee \neg \varphi)$
 - $(\varphi \leftrightarrow \neg \neg \varphi)$
 - $(\neg \forall v \psi \leftrightarrow \exists v \neg \psi)$
 - $(\neg \exists v \psi \leftrightarrow \forall v \neg \psi)$
- Denotaremos $AxLog^{\tau} = \{ \varphi \in S^{\tau} : \varphi \text{ es un axioma lógico de tipo } \tau \}$

Justificaciones

- Justificación básica: Sea Nombres₁ el conjunto formado por las siguientes palabras:
 - EXISTENCIA
 - COMMUTATIVIDAD
 - PARTICULARIZACION
 - ABSURDO
 - EVOCACION
 - CONJUNCIONELIMINACION
 - EQUIVALENCIAELIMINACION
 - DISJUNCIONINTRODUCCION
 - ELECCION
 - GENERALIZACION

Y $Nombres_2$ el conjunto formado por las siguientes palabras:

- MODUSPONENS
- TRANSITIVIDAD
- CONJUNCIONINTRODUCCION
- EQUIVALENCIAINTRODUCCION
- DISJUNCIONELIMINACION
- REEMPLAZO

Una justificación básica es una palabra perteneciente a la unión de los siguientes conjuntos de palabras:

- {CONCLUSION, AXIOMAPROPIO, AXIOMALOGICO}
- $-\{\alpha(\bar{k}): k \in N, \alpha \in Nombres_1\}$
- $\{\alpha(\bar{j}, \bar{k}) : j, k \in N, \alpha \in Nombres_2\}$
- $\{DIVISIONPORCASOS(\bar{j}, \bar{k}, \bar{l}) : j, k, l \in N\}$

Y usaremos JustBas para denotar el conjunto formado por todas las justificaciones básicas.

- Justificación: Una justificación es una palabra que pertenece a la unión de los siguientes conjuntos de palabras:
 - JustBas

```
- {HIPOTESIS\bar{k}: k \in N}
- {TESIS\bar{j}\alpha: j \in N, \alpha \in JustBas}
```

Usaremos Just para denotar el conjunto formado por todas las justificaciones.

- Concatenaciones balanceadas de justificaciones:
 - Lema: Sea $\mathbf{J} \in Just^+$, hay únicos $n \geq 1$ y $J_1, \ldots, J_n \in Just$ tales que $\mathbf{J} = J_1 \ldots J_n$
 - * Es decir que la sucesión J_1,\ldots,J_n puede codificarse con la palabra $J_1\ldots J_n$ sin perder información
 - * Dada $\mathbf{J} \in Just^+$, usaremos $n(\mathbf{J})$ y $\mathbf{J}_1, \dots, \mathbf{J}_{n(\mathbf{J})}$ para denotar los únicos n y J_1, \dots, J_n cuya existencia garantiza el lema anterior
 - **Bloques**: Dados números naturales $i \leq j$, usaremos $\langle i, j \rangle$ para denotar el conjunto $\{i, i+1, \ldots, j\}$. A los conjuntos de la forma $\langle i, j \rangle$ los llamaremos bloques
 - Justificación balanceada: Sea $\mathcal{B}^{\mathbf{J}}$ el conjunto de bloques de $\mathbf{J} \in Just^+$, diremos que \mathbf{J} es balanceada si se dan las siguientes condiciones:
 - 1. Por cada $k \in N$ hay a lo sumo un i tal que $\mathbf{J}_i = \text{HIPOTESIS}\bar{k}$ y a lo sumo un j tal que $\mathbf{J}_j = \text{TESIS}\bar{k}\alpha$, con $\alpha \in Just Bas$
 - 2. Si $J_i = \text{HIPOTESIS}\bar{k}$ entonces hay un l > i tal que $J_l = \text{TESIS}\bar{k}\alpha$, con $\alpha \in Just Bas$
 - 3. Si $\mathbf{J}_i = \text{TESIS}\bar{k}\alpha$ entonces hay un l < i tal que $\mathbf{J}_l = \text{HIPOTESIS}\bar{k}$
 - 4. Si $B_1, B_2 \in \mathcal{B}^{\mathbf{J}}$, entonces $B_1 \cap B_2 = \emptyset$ o $B_1 \subseteq B_2$ o $B_2 \subseteq B_1$

Pares adecuados

- Lema: Sea $\varphi \in S^{\tau+}$, hay únicos $n \ge 1$ y $\varphi_1, \ldots, \varphi_n \in S^{\tau}$ tales que $\varphi = \varphi_1 \ldots \varphi_n$
 - Es decir que la sucesión $\varphi_1, \dots, \varphi_n$ puede codificarse con la palabra $\varphi_1 \dots \varphi_n$ sin perder información
 - Dada $\varphi \in S^{\tau+}$, usaremos $n(\varphi)$ y $\varphi_1, \ldots, \varphi_{n(\varphi)}$ para denotar los únicos n y $\varphi_1, \ldots, \varphi_n$ cuya existencia garantiza el lema anterior
- Par adecuado: Un par adecuado de tipo τ es un par $(\varphi, \mathbf{J}) \in S^{\tau +} \times Just^+$ tal que $n(\varphi) = n(\mathbf{J})$ y \mathbf{J} es balanceada
- Bloques en un par adecuado: Sea (φ, \mathbf{J}) un par adecuado de tipo τ
 - Si $\langle i,j\rangle \in \mathcal{B}^{\mathbf{J}}$, entonces φ_i será la **hipótesis** del bloque $\langle i,j\rangle$ en (φ,\mathbf{J}) y φ_j será la **tesis** del bloque $\langle i,j\rangle$ en (φ,\mathbf{J})
 - Diremos que φ_i está **bajo la hipótesis** φ_l en (φ, \mathbf{J}) o que φ_l es una una hipótesis de φ_i en (φ, \mathbf{J}) cuando haya en $\mathcal{B}^{\mathbf{J}}$ un bloque de la forma $\langle l, j \rangle$ el cual contenga a i
 - Sean $i, j \in \langle 1, n(\varphi) \rangle$, diremos que i es **anterior** a j en (φ, \mathbf{J}) si i < j y además para todo $B \in \mathcal{B}^{\mathbf{J}}$ se tiene que $i \in B \Rightarrow j \in B$
- Dependencia de constantes en pares adecuados:
 - **Dependencia directa**: Dadas $e, d \in \mathcal{C}$, diremos que e depende directamente de d en (φ, \mathbf{J}) si hay números $1 \leq l < j \leq n(\varphi)$ tales que:
 - 1. l es anterior a j en (φ, \mathbf{J})
 - 2. $\mathbf{J}_{i} = \alpha \text{ELECCION}(\bar{l}) \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in N\} \text{ y } (\varphi_{l}, \varphi_{i}) \in Elec^{\tau} \text{ v\'a } e$
 - 3. d ocurre en φ_l
 - **Dependencia**: Dados $e, d \in \mathcal{C}$, diremos que e depende de d en (φ, \mathbf{J}) si existen $e_0, \dots, e_{k+1} \in \mathcal{C}$ con $k \geq 0$ tales que e1. $e_0 = e$ y $e_{k+1} = d$
 - 2. e_i depende directamente de e_{i+1} en (φ, \mathbf{J}) para $i = 0, \dots, k$

Definición de prueba formal

- Prueba formal: Sea (Σ, τ) una teoría de primer orden y φ una sentencia de tipo τ , una prueba formal de φ en (Σ, τ) será un par adecuado (φ, \mathbf{J}) de algún tipo $\tau_1 = (\mathcal{C} \cup \mathcal{C}_1, \mathcal{F}, \mathcal{R}, a)$, con \mathcal{C}_1 finito y disjunto con \mathcal{C} , tal que:
 - 1. Cada φ_i es una sentencia de tipo τ_1
 - 2. $\varphi_{n(\varphi)} = \varphi$
 - 3. Si $\langle i,j\rangle \in \mathcal{B}^{\mathbf{J}}$, entonces $\varphi_{j+1} = (\varphi_i \to \varphi_j)$ y $\mathbf{J}_{j+1} = \alpha \text{CONCLUSION}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in N\}$
 - 4. Para cada $i = 1, ..., n(\varphi)$, se da una de las siguientes:
 - 1. $\mathbf{J}_i = \text{HIPOTESIS}k$
 - Para algún $k \in N$
 - 2. $\mathbf{J}_i = \alpha \text{CONCLUSION}$
 - Con $\alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}$ y hay un j tal que $\langle j, i-1 \rangle \in \mathcal{B}^{\mathbf{J}}$ y $\varphi_i = (\varphi_i \to \varphi_{i-1})$
 - 3. $J_i = \alpha AXIOMALOGICO$
 - Con $\alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}$ y φ_i es un axioma lógico de tipo τ_1
 - 4. $\mathbf{J}_i = \alpha \text{AXIOMAPROPIO}$
 - Con $\alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}$ y $\varphi_i \in \Sigma$
 - 5. $\mathbf{J}_i = \alpha \text{PARTICULARIZACION}(\bar{l})$
 - Con $\alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}$, l anterior a i y $(\varphi_l, \varphi_i) \in Partic^{\tau_1}$

```
6. \mathbf{J}_i = \alpha \text{COMMUTATIVIDAD}(\bar{l})
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l anterior a i y (\varphi_l, \varphi_i) \in Commut^{\tau_1}
 7. \mathbf{J}_i = \alpha ABSURDO(\bar{l})
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l anterior a i y (\varphi_l, \varphi_i) \in Absur^{\tau_1}
 8. \mathbf{J}_i = \alpha \text{EVOCACION}(l)
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l anterior a i \vee (\varphi_l, \varphi_i) \in Evoc^{\tau_1}
 9. \mathbf{J}_i = \alpha \text{EXISTENCIA}(\bar{l})
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l \text{ anterior a } i \text{ y } (\varphi_l, \varphi_i) \in Exist^{\tau_1}
10. \mathbf{J}_i = \alpha \text{CONJUNCIONELIMINACION}(\bar{l})
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l anterior a i y (\varphi_l, \varphi_i) \in ConjElim^{\tau_1}
11. \mathbf{J}_i = \alpha \text{DISJUNCIONINTRODUCCION}(\bar{l})
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l anterior a i y (\varphi_l, \varphi_i) \in DisjElim^{\tau_1}
12. \mathbf{J}_i = \alpha \text{EQUIVALENCIAELIMINACION}(\bar{l})
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l anterior a i y (\varphi_l, \varphi_i) \in EquivElim^{\tau_1}
13. \mathbf{J}_i = \alpha \text{MODUSPONENS}(\bar{l}_1, \bar{l}_2)
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\varphi_{l_1}, \varphi_{l_2}, \varphi_i) \in ModPon^{\tau_1}
14. \mathbf{J}_i = \alpha \text{CONJUNCIONINTRODUCCION}(\bar{l}_1, \bar{l}_2)
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\varphi_{l_1}, \varphi_{l_2}, \varphi_i) \in ConjInt^{\tau_1}
15. \mathbf{J}_i = \alpha \text{EQUIVALENCIAINTRODUCCION}(\bar{l}_1, \bar{l}_2)
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l_1 y l_2 anteriores a i y (\varphi_{l_1}, \varphi_{l_2}, \varphi_i) \in EquivInt^{\tau_1}
16. \mathbf{J}_i = \alpha \text{DISJUNCIONELIMINACION}(\bar{l}_1, \bar{l}_2)
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l_1 y l_2 anteriores a i y (\varphi_l, \varphi_l, \varphi_i) \in DisjElim^{\tau_1}
17. \mathbf{J}_i = \alpha \text{REEMPLAZO}(\bar{l}_1, \bar{l}_2)
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\varphi_{l_1}, \varphi_{l_2}, \varphi_i) \in Reemp^{\tau_1}
18. \mathbf{J}_i = \alpha \text{TRANSITIVIDAD}(l_1, l_2)
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k} : k \in N\}, l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\varphi_{l_1}, \varphi_{l_2}, \varphi_i) \in Trans^{\tau_1}
19. \mathbf{J}_i = \alpha \text{DIVISIONPORCASOS}(\bar{l}_1, \bar{l}_2, \bar{l}_3)
         - Con \alpha \in \{\varepsilon\} \cup \{TESIS\bar{k}: k \in N\}, l_1, l_2, l_3 \text{ anteriores a } i \text{ y } (\varphi_{l_1}, \varphi_{l_2}, \varphi_{l_3}, \varphi_i) \in DivPorCas^{\tau_1}
20. \mathbf{J}_i = \alpha \text{ELECCION}(l)
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\overline{k}: k \in N\}, l'anterior a i y (\varphi_l, \varphi_i) \in Elec^{\tau_1} vía un nombre de constante e, el cual
             no pertenece a \mathcal{C} y no ocurre en \varphi_1, \ldots, \varphi_{i-1}
21. \mathbf{J}_i = \alpha \text{GENERALIZACION}(l)
          - Con \alpha \in \{\varepsilon\} \cup \{TESIS\overline{k}: k \in N\}, l'anterior a i y (\varphi_l, \varphi_i) \in Generaliz^{\tau_l} vía un nombre de constante c el
             cual cumple:
```

- * $c \notin \mathcal{C}$
 - * c no es un nombre de constante que ocurra en φ el cual sea introducido por la regla de elección
 - * c no ocurre en ninguna hipótesis de φ_l
 - * Ningún nombre de constante que ocurra en φ_l o en sus hipótesis, depende de c

El concepto de Teorema

• **Teorema**: Cuando haya una prueba de φ en (Σ, τ) , diremos que φ es un teorema de la teoría (Σ, τ) y escribiremos $(\Sigma, \tau) \vdash \varphi$

Conteo de modelos módulo isomorfismo

- **Definición**: Diremos que una teoría T tiene, módulo isomorfismo, exactamente una cantidad n de modelos de m elementos si hay $\mathbf{A}_1, \dots, \mathbf{A}_n$ estructuras de tipo τ tales que:
 - 1. Cada \mathbf{A}_i es un modelo de T
 - 2. $|A_i| = m$ para cada i = 1, ..., n
 - 3. \mathbf{A}_i no es isomorfa a \mathbf{A}_j para $i \neq j$
 - 4. Si **A** es un modelo de la teoría T y |A| = m, entonces **A** es isomorfa a algún A_i
- Criterio para saber que dos estructuras no son isomorfas: Si dos estructuras de tipo τ son tales que hay una $\varphi \in S^{\tau}$ la cual vale en una y no en la otra, entonces dichas estructuras no son isomorfas
 - Notar que no es completo, es decir, dos estructuras pueden satisfacer las mismas sentencias pero no ser isomorfas

Propiedades básicas de pruebas y teoremas

• Lema de cambio de índice de hipótesis: Sea (φ, \mathbf{J}) una prueba formal de φ en (Σ, τ) y sea $m \in N$ tal que $\mathbf{J}_i \neq \mathrm{HIPOTESIS}\bar{m}$ para cada $i = 1, \ldots, n(\varphi)$. Supongamos que $\mathbf{J}_i = \mathrm{HIPOTESIS}\bar{k}$ y que $\mathbf{J}_i = \mathrm{TESIS}\bar{k}\alpha$ con $[\alpha]_1 \notin Num$ y

- sea $\bar{\mathbf{J}}$ el resultado de reemplazar en \mathbf{J} la justificación \mathbf{J}_i por HIPOTESIS \bar{m} y reemplazar la justificación \mathbf{J}_j por TESIS $\bar{m}\alpha$. Entonces $(\varphi, \bar{\mathbf{J}})$ es una prueba formal de φ en (Σ, τ)
- Lema de cambio de constantes auxiliares: Sea (φ, \mathbf{J}) una prueba formal de φ en (Σ, τ) ; \mathcal{C}_1 el conjunto de nombres de constante que ocurren en φ y que no pertenecen a \mathcal{C} ; $e \in \mathcal{C}_1$; $\bar{e} \notin \mathcal{C} \cup \mathcal{C}_1$ tal que $(\mathcal{C} \cup (\mathcal{C}_{\infty} \{e\}) \cup \{\bar{e}\}, \mathcal{F}, \mathcal{R}, a)$ es un tipo; y $\bar{\varphi}_i$ = resultado de reemplazar en φ_i cada ocurrencia de e por \bar{e} . Entonces $(\bar{\varphi}_1 \dots \bar{\varphi}_{n(\varphi)}, \mathbf{J})$ es una prueba formal de φ en (Σ, τ)
- Lema de propiedades básicas de \vdash : Sea (Σ, τ) una teoría
 - 1. Uso de teoremas: Si $(\Sigma, \tau) \vdash \varphi_1, \dots, \varphi_n$ y $(\Sigma \cup \{\varphi_1, \dots, \varphi_n\}, \tau) \vdash \varphi$, entonces $(\Sigma, \tau) \vdash \varphi$
 - 2. Supongamos $(\Sigma, \tau) \vdash \varphi_1, \dots, \varphi_n$. Si R es una regla distinta de GENERALIZACION y ELECCION, y φ se deduce de $\varphi_1, \dots, \varphi_n$ por la regla R, entonces $(\Sigma, \tau) \vdash \varphi$.
 - 3. $(\Sigma, \tau) \vdash (\varphi \to \psi)$ sí y solo sí $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$

Consistencia

- Teorías consistentes e inconsistentes: Una teoría (Σ, τ) será
 - Inconsistente cuando haya una sentencia φ tal que $(\Sigma, \tau) \vdash (\varphi \land \neg \varphi)$.
 - Consistente cuando no sea inconsistente
- Lema de propiedades básicas de la consistencia: Sea (Σ, τ) una teoría
 - 1. Si (Σ, τ) es inconsistente, entonces $(\Sigma, \tau) \vdash \varphi$ para toda sentencia φ
 - 2. Si (Σ, τ) es consistente y $(\Sigma, \tau) \vdash \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente
 - 3. Si $(\Sigma, \tau) \not\vdash \neg \varphi$ entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente

El teorema de corrección

- Definición: Dada (Σ, τ) una teoría, escribiremos $(\Sigma, \tau) \vDash \varphi$ cuando φ sea verdadera en todo modelo de (Σ, τ)
- Teorema de Corrección: $(\Sigma, \tau) \vdash \text{implica } (\Sigma, \tau) \vDash \varphi$
- Corolario: Si (Σ, τ) tiene un modelo, entonces (Σ, τ) es consistente
- Idea para probar que una sentencia no es teorema: Si queremos probar que una sentencia $\varphi \in F^{\tau}$ no es teorema de una teoría (Σ, τ) basta con encontrar un modelo de (Σ, τ) en el cual φ sea falsa