QGP parameter extraction via a global analysis of event-by-event flow coefficient distributions

Jonah E. Bernhard¹ Christopher E. Coleman-Smith¹ Peter W. Marcy² Steffen A. Bass¹

> ¹Department of Physics Duke University

²Department of Statistics University of Wyoming

20 July 2013

Model to data comparison

Model to data comparison

The generic recipe:

- » Choose a set of input parameters.
- » Vary parameters, calculate observables.
- » Determine parameters that optimally describe reality.

Easy if the model is fast:

- » Use e.g. MCMC to find the optimal parameters.
- » Requires many points in parameter space, $\mathcal{O}(10^6)$ or more.
- » Only feasible if the model runs in $\mathcal{O}(1 \text{ second})$.

Heavy-ion collision models are not "fast".

» Need a different approach.

Slow models

Strategy: emulate the model.

- » Run at predetermined set of parameter points.
 - Latin-hypercube sample.
- » Interpolate between points.
 - > Emulator.

Latin-hypercube sampling

- » Provides an optimal set of parameter points.
- » Maximizes the minimum distance between points.

Latin-hypercube sampling

- » Provides an optimal set of parameter points.
- » Maximizes the minimum distance between points.

Gaussian processes

- » Assume the model is a Gaussian process.
- » A Gaussian process is a generalization of a Gaussian distribution.
 - > Draw a set of Gaussian values with a specified covariance.

$$\operatorname{\mathsf{cov}}(x_1, x_2) \propto \exp\left[-\frac{(x_1 - x_2)^2}{2\ell^2}\right]$$

Gaussian Processes for Machine Learning, Rasmussen and Williams, 2006.

Gaussian process emulators

- » Prior: the model is a Gaussian process.
- » Posterior: Gaussian process conditioned on model outputs.

- » Emulator is a fast surrogate to the actual model.
 - More certain near calculated points.
 - > Less certain in gaps.

The data

- » ATLAS event-by-event flow distributions v_n , n = 2-6.
- » Could provide a much more sensitive probe than average flows \rightarrow especially high-order (n > 3).

Data reduction

- » Fit to "Generalized Reverse Weibull" distribution.
 - > Represent each distribution by four fit parameters.

$$f(x; m, s, \alpha, \gamma) = \frac{\alpha}{s \Gamma(\gamma)} \left(\frac{x - m}{s}\right)^{\alpha \gamma - 1} \exp\left[-\left(\frac{x - m}{s}\right)^{\alpha}\right]$$

Data reduction

- » Fit to "Generalized Reverse Weibull" distribution.
 - > Represent each distribution by four fit parameters.

$$f(x; m, s, \alpha, \gamma) = \frac{\alpha}{s \Gamma(\gamma)} \left(\frac{x - m}{s}\right)^{\alpha \gamma - 1} \exp\left[-\left(\frac{x - m}{s}\right)^{\alpha}\right]$$

$$10^{2}$$

$$10^{1}$$

$$10^{0}$$

$$10^{-1}$$

$$10^{-2}$$

$$0.00$$

$$0.05$$

$$0.10$$

$$0.15$$

$$0.20$$

$$0.25$$

V3

The model

Modern version of the OSU+Duke hybrid model VISHNU (Viscous Hydro and UrQMD):

- » MC-Glauber/KLN initial conditions
- » 2+1 viscous hydro (OSU)
- » Cooper-Frye hypersurface sampler (OSU)
- » UrQMD

Similar to OSU iEBE, but organized differently; different analysis.

Main goal

Calibrate the event-by-event model to ATLAS flow distributions.

Experiment design

- » 256 Latin-hypercube points across 5 parameters:
 -) IC normalization
 - > IC-specific parameter (wounded nucleon / binary collision for Glauber, saturation exponent for KLN)
 - \rightarrow hydro start time au_0
 - \rightarrow viscosity η/s
 -) shear stress relaxation time au_Π
- » Observables:
 - $\rightarrow v_n$ distributions
 - > multiplicities
 - identified particle spectra
 - **)** ...

CPU time

- » 3 centrality bins
- » 256 points/bin
- » 1000 events/point
- » $\sim 1 \text{ hour/event}$

 \sim 768 000 CPU hours \sim 87 years

» Open Science Grid (OSG)

EbE-OSG: job automation

github.com/jbernhard/ebe-osg

Maximum: 59,330 Hours, Minimum: 11,946 Hours, Average: 47,453 Hours, Current: 11,946 Hours

» roughly 500 000 events complete

EbE analysis

- » Python + Numpy/Scipy
- » parses event files
- » calculates flows & fits flow distributions
- » calculates other observables
- » makes common plots (Matplotlib)

Planned:

- » store results in database via ORM
- » optimization via custom C++ extentions

Preliminary results

analysis of uncalibrated Latin-hypercube sample point

two centrality bins, 0–5% and 20–25% 1000 events each

MC-Glauber with $\alpha = 0.06$

$$\eta/s=$$
 0.29 $au_0=$ 0.93 fm

*v*₂ distributions

v_3 distributions

Identified particle spectra

Multiplicity

Goals

- » Higher-order flows v_4, v_5, v_6 .
- » More realistic model (IP-Glasma, 3+1D, ...).
- » Systematically analyze all events.
- » Train emulator to calculated flow distributions, identified particles, etc.
- » Calibrate parameters to data.
 - > Which are the most important?
- » Improve statistics for likely parameters.