Computer Communication Laboratory

Research Seminar: Idea proposal

Intelligence Reflecting Surface for Free Space Optical Communication Systems

Student: DANG Dinh Khanh - m5282002

Supervisor: Professor Anh T. PHAM

Aizuwakamatsu, April. 23 2025

Outline of Presentation

- I. Research Background
 - The FSO communication system
 - The optical IRS
- II. The optical IRS-assisted terrestrial network
- III. The optical IRS-assisted HAP networks
- IV. Idea proposal 1: Problem statement and goal
- V. Idea proposal 2: Problem statement and goal

1. Research Background: FSO communication

Free Space Optical (FSO) communications

 Using near infrared light (200-400 THz) to transmit data through free space (air or vacuum)

- High-speed connection (Gbps and even Tbps)
- Free-license bandwidth

1. Research Background: FSO communication

Applications

- Terrestrial networks (e.g., building to building link)
- Non-terrestrial networks (e.g., ground to UAV, HAP, Satellite or aerial platforms link)
- Underwater communication (e.g., submarine to submarine)

Challenges

- Weather conditions: rain, fog, cloud,...
- Atmospheric turbulence
- Line-of-sight (LoS) requirement due to obstruction blocks the link

Solutions

- Aperture averaging
- Diversity techniques
- Adaptive optics
- Hybrid FSO/RF
- Relay

Limits the operational transmission distance and reduce the system's reliability

1. Research Background: the optical IRS

Recently, many studies have developed *Intelligent reflecting surface (IRS)* as a green and effective solution to relax the LoS requirement.

❖ Optical Intelligent Reflecting Surface (OIRS):

- A surface is used to *reflect signal* in a *controlled way*.
- Comprises: an array of mirrors or metamaterial elements.
- Nearly-passive: only low power is used for the microcontroller to control every OIRS element to "reflect" incident laser beam into the expected direction.

Advantages

- Low energy consumption.
- Light payload, reduce hardware complexity compared to relay
- Extend coverage and avoid blockage.

OIRS can be equipped in terrestrial or aerial platforms to reflect the FSO signal.

The operation concept of IRS [1]

1. Research Background: How can the optical IRS reflect the signal?

Optical IRS (OIRS) is created to reflect the light waves

A mechanical rotary structure controlled by electrical motors Use micro-electromechanical systems (MEMSs) Using V-shaped optical nano-antennas

Use oxide material and control electricity to turn the phase of incident waves

2. The optical IRS-assisted terrestrial system

System description:

- 1. Source: a laser source on top of the building.
- 2. One OIRS mounted on building.
- 3. Destinations: a lens on top of the building.

What is the impact of IRS to end-toend channel?

2. Channel Modeling

Composite channel model: $h = \eta \times h_p \times h_t \times h_{gml}$

- $lue{}$ IRS reflection coefficient: imperfect reflection of IRS, η
- Atmospheric loss: laser beam energy loss due to absorption and scattering.

$$h_p = \exp(-\zeta(L_1 + L_2))$$

 ζ : attenuation coefficient

 L_1, L_2 : distance between GS-IRS, IRS-UAV

■ Atmospheric turbulence: random variation of temperature and pressure of atmospheric cause the scintillation effect.

$$\begin{cases} h_{t,1} \sim GG(\alpha_1, \beta_1) \\ h_{t,2} \sim GG(\alpha_2, \beta_2) \end{cases} \qquad h_t = h_{t,1} \times h_{t,2} \approx GG$$

2. Geometric and Misalignment Loss in 2D model

- o Laser source, IRS, lens fluctuate because of building sway in both y and z direction
- o Each fluctuation can be projected in two directions, one parallel to beam line and one orthogonal to it
- Laser source fluctuation

$$r_s = (\epsilon_s^z, \epsilon_s^y)$$

$$\epsilon_s^y \sim N(0, \sigma_s^2)$$

$$d_1 \gg \epsilon_s^z \longrightarrow$$
 The impact of $\epsilon_s^z \approx 0$

The misalignment at lens can be calculated by

$$u_1 = \frac{1}{\cos \theta_{rl}} \cos \theta_r \frac{\epsilon_s^y}{\cos \theta_i}$$

*Proof

2. Geometric and Misalignment Loss in 2D model

Lens fluctuation

$$r_l=\left(\epsilon_l^y,\epsilon_l^z
ight)$$
 $\epsilon_l^y\sim N\left(0,\sigma_l^2
ight)$ $d_2\gg\epsilon_l^z$ —The impact of $\epsilon_l^zpprox 0$

$$u_2 = rac{\epsilon_l^y}{\cos heta_{rl}}$$

2. Geometric and Misalignment Loss in 2D model

o IRS fluctuation: $r_{irs} = (\epsilon_r^y, \epsilon_r^z)$

The impact of $\epsilon_r^y \approx 0$

The misalignment at lens can be calculated by

$$u_3 = \frac{\epsilon_r^z \sin(\theta_i + \theta_r)}{\cos \theta_{rl} \cos \theta_i}$$

*Proof

2. Geometric and misalignment model in 2D model

The composite misalignment at lens can be calculated by

$$\begin{split} u &= u_1 - u_2 - u_3 \\ u &= \frac{1}{\cos \theta_{rl}} \Big(\frac{\cos \theta_r}{\cos \theta_i} \epsilon_s^y - \frac{\sin(\theta_i + \theta_r)}{\cos \theta_i} \epsilon_r^z - \epsilon_l^y \Big) \end{split}$$

$$\epsilon_s^y \sim N(0, \sigma_s^2)$$
 $\epsilon_r^z \sim N(0, \sigma_r^2)$
 $u \sim N(0, \sigma_u^2)$
 $\epsilon_l^y \sim N(0, \sigma_l^2)$

The GML can be approximated by

$$h_g \approx A_0 \exp\left(\frac{-2u^2}{tw^2(d_{e2e}, \hat{w}_0)}\right) \qquad f_{h_g}(h_g) = \frac{\sqrt{\varpi}}{2A_0\sqrt{\pi}} \left[\ln\left(\frac{A_0}{h_g}\right)\right]^{-\frac{1}{2}} \left(\frac{h_g}{A_0}\right)^{\varpi - 1}$$

2. Geometric and Misalignment Loss in 3D model

- Laser source, IRS, lens fluctuate because of building sway in xyz coordinates
- Each fluctuation can be projected in three directions, one parallel to beam line and others orthogonal to it

Lens fluctuation $\epsilon_l^x, \epsilon_l^y \sim N(0, \sigma_l^2)$

The misalignment vector
$$u=f(\epsilon_s^x,\epsilon_s^y,\epsilon_r^z,\epsilon_l^x,\epsilon_l^y)\sim N(0,\sigma_u^2)$$

2. Impact of LS jitter and IRS jitter in Geometric and Misalignment Loss

 \circ Laser source, IRS jitter cause beam displacement in x and y axis: $\theta_x, \theta_y \sim N(0, \sigma_\theta^2)$

IRS jitter

$$\begin{split} R_1 &= \frac{\cos \theta_r}{\cos \theta_i} L_1 \theta_x \\ R_3 &\approx \left(\theta_x + 2\psi_x\right) L_2 \\ R_2 &\approx 0 \end{split}$$

$$\theta_{sx} = \frac{R_1 + R_3}{L_2} \sim N(0, \sigma_x^2)$$

$$\theta_{sy} \sim N(0, \sigma_y^2)$$

 $R_{
m 1}$: Misalignment due to LS jitter

 R_2, R_3 : Misalignment due to IRS jitter

$$R_1 = \frac{\cos \theta_r}{\cos \theta_i} L_1 \theta_x$$

$$R_3 \approx (\theta_x + 2\psi_x) L_2$$

$$R_2 \approx 0$$

$$\theta_{sx} = \frac{R_1 + R_3}{L_2} \sim N(0, \sigma_x^2)$$

$$\theta_{sy} \sim N(0, \sigma_y^2)$$

3. The optical IRS-assisted HAP network

FSO-based HAP-Assisted UAV with IRS

System description:

- 1. Source: a laser source in the optical ground station.
- 2. One OIRS mounted HAP.

Each mirror can rotate independently with angle θ to reflect the beam to expected users.

- **3. Destinations:** UAV mounted base station in rural/remote areas.
- ❖ **Application:** provide the connection to rural/remote areas where ground base stations are unavailable or assumed to be blockage connection.

4. Propose Idea 1: Problem Statement and Goal

Hovering, vibration and tilt of HAP due to wind, mechanical jitter

- IRS fluctuates in xyz coordinates
- The incident and reflected angle are changed

The misalignment between GS-IRS and IRS-UAV *is a critical issue*

How to model the end-to-end Geometric and Misalignment Loss?

What is the **maximum allowable IRS tilt angle** to ensure the UAV still receives the signal and maintains **target QoS**?

4. Propose Idea 1: Literature reviews

Ref.	NTN	TN	2D	3D	OIRS design		Beam power	Geometric and misalignment loss			
			model	model	Mirror	Meta surface	distribution	LS	IRS	Receiver	IRS tilt
[1]	v		v		v		Gaussian		v		
[2]	V		v			v	Gaussian		v		
[3]	V			v	v		Gaussian		v		
[4]	V			v	v		Gaussian	v	v	v	
[5]	V			v		v	Gaussian			v	
[6]	V			v			Gaussian		v		v
[7]		v	v	v	v	v	Gaussian	v	v	v	
[8]		v		v		v	Uniform				v
This work	V		v		v		Gaussian	v	v	v	v

To the best of my knowledge, **no existing study** considers the **combined hovering** of **all three nodes** (LS, IRS, UAV) and the impact of **IRS tilt angle** in an **NTN scenario**.

4. Proposal Idea 1: Problem Statement and Goal

☐ Goal:

- Model the end-to-end FSO channel considering the hovering of LS, HAP, UAV and jilt angle
- Method to calculate the maximum allowable IRS tilt angle to maintain targeted QoS of UAV

□ Approach:

Step 1: Analyze the impact of LS, HAP, UAVs hovering and jilt angle on e2e channel?

Misalignment vector
$$u = f(\varepsilon_s^x, \varepsilon_s^y, \varepsilon_r^z, \varepsilon_l^x, \varepsilon_l^y, \theta)$$

Derive the PDF of e2e channel

Step 2: Derive the maximum tilt angle to maintain the targeted QoS of UAV

Achievable rate =
$$f(SNR) = f(P_{received}) = f(h) = f(\theta)$$

Step 3: Performance Evaluation: Compare the system's performance, i.e., outage probability
of system with and without tilt-aware control

4. Proposal Idea 2: Problem Statement and Goal

- Motivation: The received beam width can be controlled by changing the divergence angle and the size of IRS
- If the received beam is *large*, the impact of PE is *small* but *less* power received at lens
- If the received beam is *small*, the impact of PE is *significant* but *more* power received at lens

How to *design the divergence angle* or efficient IRS size to maximize the achievable rate of UAV?

☐ Goal:

- Model the end-to-end FSO channel considering the hovering and vibration of LS, HAP, UAV
- Propose a protocol to adapt divergence angle or determine the effective IRS to maximize the achievable rate

□ Approach:

Step 1: Analyze the impact of LS, HAP, UAVs hovering and vibration on e2e channel?

Misalignment vector
$$u = f(\varepsilon_s^x, \varepsilon_s^y, \varepsilon_r^z, \varepsilon_l^x, \varepsilon_l^y, \theta)$$

Derive the PDF of e2e channel

- Step 2: Determine the divergence angle or on-off IRS element to maximize achievable rate
- Step 3: Performance Evaluation: Compare the system's performance, i.e., achievable rate of system with and without proposed protocol

4. Propose Idea 2: Approaches

Given the typical size of IRS: 1m x 0.5m; the divergence angle range: 10 μ rad to 0.1 mrad

The received beam: few decimeters to few meters

THANK YOU FOR LISTENING!

- [1] 2020. Ergodic Capacity Analysis for FSO Communications with UAV-Equipped IRS in the Presence of Pointing Error
- [2] 2022. Performance analysis of a UAV-based IRS-assisted hybrid RF/FSO link with pointing and phase shift errors
- [3] 2023. RIS Assisted UAV for Weather-Dependent Satellite Terrestrial Integrated Network With Hybrid FSO/RF Systems
- [4] 2024. IRS-Assisted UAV Based FSO System: Modeling Approach for Hovering UAV
- [5] 2025. Optical RISs Improve the Secret Key Rate of Free-Space QKD in HAP-to-UAV Scenarios
- [6] 2025. A Generalized Pointing Error Model for FSO Links with Fixed-Wing UAVs for 6G: Analysis and Trajectory Optimization
- [7] 2021. Intelligence reflecting surface for Free space optical communication
- [8] 2024. Performance Analysis of IRS-Assisted Multi-Link FSO System Under Pointing Errors.
- [9] 2022. Adaptive Beam Divergence for Expanding Range of Link Distance in FSO With Moving Nodes Toward 6G