Some properties of Rational numbers and Real numbers

1 Preliminaries

Definition 1.1. A binary relation ρ on a nonempty set S is called a partial order relation if

- 1. $a\rho a$ for all $a \in S$ (reflexivity),
- 2. $a, b \in S$, $a\rho b$ and $b\rho a$ imply a = b (antisymmetry),
- 3. $a, b, c \in S$, $a\rho b$ and $b\rho c$ imply $a\rho c$ (transitivity).

Definition 1.2. A nonempty set S together with a partial ordering ρ is called a partially ordered set. A partially ordered set (S, ρ) is called totally ordered if for any $a, b \in S$, either $a\rho b$ or $b\rho a$ or both (in which case a = b). A totally ordered set (S, ρ) is called well-ordered if every nonempty subset of S has a smallest element.

Definition 1.3. Let (S, \leq) be a partially ordered set (please do not confuse \leq with its usual meaning in \mathbb{R} , here \leq is just a replacement for ρ above for convenience). Let A be a nonempty subset of S. An element $x \in S$ is called an *upper bound* of A if $a \leq x$ for all $a \in A$. An upper bound s of s is called the *least upper bound* (in brief, s is called a *lower bound* (in brief, s if s if s is called the *greatest lower bound* (in brief, s is unique by definition. In this context, we just mention, a partially ordered set is called a *lattice* if there exist lub and glb for every pair of elements in the set. Let s be a nonempty subset of s. If s has an upper bound in s, then s called bounded above and if s has a lower bound in s, then s is called bounded below. A is called bounded if it is both bounded above and bounded below. A totally ordered set s is said to have the s but s is said to have a glb (in s).

Definition 1.4. A nonempty set F together with two binary operation + and \cdot is called a *field* if the following conditions are satisfied (+ and \cdot are binary operations on F imply that $a+b, a \cdot b \in F$ for all $a, b \in F$):

- 1. a+b=b+a for all $a,b\in F$,
- 2. a + (b + c) = (a + b) + c for all $a, b, c \in F$,
- 3. there exists $0 \in F$ such that a + 0 = a for all $a \in F$,

- 4. for each $a \in F$, there exists $-a \in F$ such that a + (-a) = 0,
- 5. $a \cdot b = b \cdot a$ for all $a, b \in F$,
- 6. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in F$,
- 7. there exists $1 \in F$ such that $a \cdot 1 = a$ for all $a \in F$,
- 8. for each $0 \neq a \in F$, there exists $a^{-1} \in F$ such that $a \cdot a^{-1} = 1$,
- 9. $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.

Notations: We denote the sets of natural numbers, integers, rational numbers and real numbers by \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} respectively.

Here we assume the constructions of \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} and the following properties:

- 1. \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} are totally ordered with usual \leq .
- 2. \mathbb{N} is well-ordered.
- 3. $(\mathbb{N}, +, \cdot)$ is an additively and multiplicatively commutative *semiring* with multiplicative identity (satisfying 1,2,5,6,7,9 of Definition 1.4).
- 4. $(\mathbb{Z}, +, \cdot)$ is a commutative *ring* with identity (satisfying 1,2,3,4,5,6,7,9 of Definition 1.4).
- 5. $(\mathbb{Q}, +, \cdot)$ and $(\mathbb{R}, +, \cdot)$ are fields.
- 6. \mathbb{R} is a totally ordered field with lub property.

2 Properties of rational numbers

Theorem 2.1. \mathbb{Q} is densely ordered, i.e., between any two rational numbers, there exist infinite number of rational numbers.

Hint:
$$a < \frac{a+b}{2} < b$$
, $a < \frac{a+\frac{a+b}{2}}{2} < \frac{a+b}{2}$ and so on.

Theorem 2.2. \mathbb{Q} is archimedian ordered, i.e., for any $a, b \in \mathbb{Q}$ with a, b > 0, there exists $n \in \mathbb{N}$ such that nb > a.

Proof. Suppose $nb \leq a$ for all $n \in \mathbb{N}$. Then $\frac{nb}{a} \leq 1 \leq m$ for all $m, n \in \mathbb{N} \Longrightarrow \frac{n}{m} \leq \frac{a}{b}$ for all $m, n \in \mathbb{N} \Longrightarrow x \leq \frac{a}{b}$ for all $x \in \mathbb{Q}^+$, which is a contradiction (as $\frac{a}{b} + 1 > \frac{a}{b}$).

Proposition 2.3. \mathbb{Q} does not have the lub property.

Proof. Let $A = \{x \in \mathbb{Q} \mid x > 0, \ x^2 < 2\}$. Now A is bounded above as x < 2 for all $x \in A$. Let $x \in A$. Define $y = \frac{2x+2}{x+2} = x + \frac{2-x^2}{x+2}$. Since $x^2 < 2$, y > x. Also $2 - y^2 = \frac{2(2-x^2)}{(x+2)^2} > 0$. Thus $y^2 < 2$ and so $y \in A$. Therefore for each $x \in A$, there is a y in A such that y > x, i.e., A has no greatest element. Again let $B = \{x \in \mathbb{Q} \mid x > 0, \ x^2 > 2\}$. Let $x \in B$. Define $y = x - \frac{x^2-2}{x+2} = \frac{2x+2}{x+2}$. Then 0 < y < x and $y^2 > 2$. So B has no least element. Finally, there is no rational number y such that $y^2 = 2$ (surely, its proof is known to you). Thus A has no lub.

3 Properties of \mathbb{R}

Theorem 3.1. \mathbb{R} is archimedean ordered, i.e., for any $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{N}$ such that nx > y.

Proof. Let $A = \{nx \mid n \in \mathbb{N}\}$. If the result is not true, then y is an upper bound of A. But then A has a lub in \mathbb{R} . Let $\alpha = \sup(A)$. Since x > 0, $\alpha - x < \alpha$ and $\alpha - x$ is not an upper bound of A. Then $\alpha - x < mx$ for some $m \in \mathbb{N}$. But then $\alpha < (m+1)x \in A$ which is impossible as $\alpha = \sup(A)$.

Theorem 3.2. \mathbb{Q} is dense in \mathbb{R} , i.e., if $x, y \in \mathbb{R}$ with x < y, then there exists $p \in \mathbb{Q}$ such that x .

Proof. We have y - x > 0. So there exists $n \in \mathbb{N}$ such that n(y - x) > 1, i.e., ny > 1 + nx Also $m_1, m_2 \in \mathbb{N}$ such that $m_1 \cdot 1 > nx$ and $m_2 \cdot 1 > -nx$. Then $-m_2 < nx < m_1$. This implies there exists $m \in \mathbb{N}$ such that $m - 1 \le nx < m$. Therefore $nx < m \le 1 + nx < ny$ which implies $x < \frac{m}{n} < y$. This proves the result for $p = \frac{m}{n}$.

Definition 3.3. (Limit points of a subset of \mathbb{R}): Let $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Then x is called a limit point of S if for every $\delta > 0$, $(x - \delta, x + \delta) \cap (S \setminus \{x\}) \neq \emptyset$. In other words, every neighborhood of x contains at least one point of S different from x itself, where $N \subseteq \mathbb{R}$ is a neighborhood of x if there exists $\delta > 0$, $\delta \in \mathbb{R}$ such that $(x - \delta, x + \delta) \subseteq N$. It is important to understand that δ in the definition of a limit point is arbitrary, i.e., the condition holds for ANY δ (i.e., δ can be as small as you please. But do not romanticize δ to be the length of a very small nano particle! It is simply, arbitrary). Another important thing to note in the definition of a limit point is that $(x - \delta, x + \delta) \cap (S \setminus \{x\}) \neq \emptyset \iff (x - \delta, x + \delta) \cap S$ is infinite (prove!). Finally, note that the limit of a sequence of real numbers is not the same as limit points. For example, the limit of the constant sequence $\{1, 1, 1, \ldots\}$ is 1. But as a set, $\{1, 1, 1, \ldots\} = \{1\}$ and it has no limit points (prove!).

Example 3.4. For example, 0 and 1 are limit points of the set $\{x \in \mathbb{R} \mid 0 < x < 1\}$, i.e., the open interval (0,1). Note that for any $\delta > 0$, $(-\delta, \delta) \cap (0,1) \neq \emptyset$ as $0 < \frac{\delta}{2} < \delta$. Similarly, $(1 - \delta, 1 + \delta) \cap (0,1) \neq \emptyset$ as $1 - \delta < 1 - \frac{\delta}{2} < 1$. Another example is that 0 is a limit point of set $\{\frac{1}{n} \mid n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\}$ as for any $\delta > 0$, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \delta$.

Now which subsets of \mathbb{R} always have limit points? Note that the set $\{1, 2, 3\}$ is finite and bounded, but it has no limits points (prove!). Also $\mathbb{N} = \{1, 2, 3, \ldots\}$ is infinite and not bounded. It has also no limit points (prove!).

Theorem 3.5. (Bolzano-Weirstrass Theorem) Every bounded infinite subset of \mathbb{R} has a limit point.

Proof. Let S be a bounded infinite subset of \mathbb{R} . Since S is bounded, we have, $S \subseteq [a,b]$ for some $a,b \in \mathbb{R}$ with $a \leq b$. Let $A = \{x \in \mathbb{R} \mid x \text{ exceeds only a finite number of elements of } S\}$. Now $A \neq \emptyset$ as $a \in A$. Also A is bounded above. In fact, for all $x \in A$, x < b as for any $y \in \mathbb{R}$ with $y \geq b$ exceeds infinite number of elements of S (in fact, all elements of S and S is infinite). Thus by lub property, A has an lub, say, $r \in \mathbb{R}$.

We show that r is a limit point of S. Let $\delta > 0$. Then $r - \delta \in A$ and $r + \delta \notin A$. Thus $(r - \delta, r + \delta) \cap S$ contains infinite number of elements of S. This implies r is a limit point of S.

3.1 Decimal expansion of Real numbers

Let x > 0, $x \in \mathbb{R}$. Let n_0 be the largest integer such that $n_0 \le x$.

Having chosen $n_0, n_1, \ldots, n_{k-1}$, let n_k be the largest integer such that $n_0 + \frac{n_1}{10} + \cdots + \frac{n_k}{10^k} \leq x$.

Let $E = \{n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \mid k = 0, 1, 2, 3, \dots\}$. Then $x = \sup(E)$. The decimal expansion of x is given by $n_0.n_1n_2...n_k...$

- \Diamond **Exercise 3.1.** Prove that \mathbb{R} has the glb property.
- \Diamond **Exercise 3.2.** Find lub and glb of the following subsets of \mathbb{R} :
 - 1. $S = \{1 + \frac{1}{n} \mid n \in \mathbb{N}\},\$
 - $2. S = \left\{ \frac{n}{n+2} \mid n \in \mathbb{N} \right\}.$
- \Diamond **Exercise 3.3.** Let $\emptyset \neq S, T \subseteq \mathbb{R}$ be two bounded sets. Prove the following:
 - 1. $S \subseteq T \Longrightarrow \inf(T) \le \inf(S) \le \sup(S) \le \sup(T)$.
 - 2. If $M = \{x \in \mathbb{R} \mid -x \in S\}$, then $\sup(M) = -\inf(S)$ and $\inf(M) = -\sup(S)$.
 - 3. If $A = \{x + y \mid x \in S, y \in T\}$, then $\sup(A) = \sup(S) + \sup(T)$ and $\inf(A) = \inf(S) + \inf(T)$.
 - 4. If $B = \{|x y| \mid x, y \in S\}$, then $\sup(B) = \sup(S) \inf(S)$ and $\inf(B) = 0$.