Multiple Linear Regression Review

Jack Cunningham

```
data <- read.csv("HoustonChronicle.csv")
head(data)</pre>
```

```
District X.Repeating.1st.Grade X.Low.income.students Year
1
       Alvin
                                                     49.7 2004 Brazoria
2
       Alvin
                               5.8
                                                     41.1 1994 Brazoria
                                                     44.2 2004 Brazoria
3
   Angleton
                               7.1
    Angleton
                               6.7
                                                     30.2 1994 Brazoria
5 Brazosport
                               7.3
                                                     49.4 2004 Brazoria
6 Brazosport
                                                     33.7 1994 Brazoria
                               2.6
```

```
attach(data)
```

To answer these three questions we use the model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

Where Y is the percentage of students repeating first grade, x_1 is the percentage of low income students, and x_2 is a dummy variable that is equal to 1 when Year is 2004 and 0 when year is 1994.

Call:

lm(formula = X.Repeating.1st.Grade ~ X.Low.income.students +
 year_dummy + X.Low.income.students * year_dummy, data = data)

Residuals:

Min 1Q Median 3Q Max -8.1606 -2.6121 -0.5576 1.7495 11.6014

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.27194	1.22347	2.674	0.00855	**
X.Low.income.students	0.06080	0.03093	1.966	0.05167	
year_dummy	-0.38956	1.76109	-0.221	0.82532	
<pre>X.Low.income.students:year_dummy</pre>	0.01903	0.03949	0.482	0.63066	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.845 on 118 degrees of freedom Multiple R-squared: 0.1288, Adjusted R-squared: 0.1066 F-statistic: 5.813 on 3 and 118 DF, p-value: 0.0009689

a)

The association between the percentage of low income students and the percentage of students repeating first grade is low and not statistically significant. If we test the hypothesis:

$$H_0: \beta_1 = 0, H_a: \beta_1 \neq 0$$

The null hypothesis cannot be rejected with a p-value barely over a significance of $\alpha = 0.05167$.

The effect size is low as well, $\hat{\beta}_1 = 0.0608$ means an increase in one percentage of low income students only increases the percentage of students repeating first grade by 0.06%.

b)

To review, when the year is 1994 we have:

$$Y = \beta_0 + \beta_1 x_1$$

When the year is 2004 we have:

$$Y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x_1$$

In order to test if there has been an increase in the percentage of students repeating first grade between 1994-1995 and 2004-2005 let us first test whether there is a difference between the two years. We do this by testing:

$$H_0: \beta_2 = \beta_3 = 0, H_a: \beta_2 \neq 0 \text{ or } \beta_3 \neq 0$$

We have test statistic:

$$F = \frac{(RSS_{reduced} - RSS_{full})/(df_{reduced} - df_{full})}{RSS_{full}/df_{full}}$$

Where $df_{full} = 61 - 3 - 1$ and $df_{reduced} = 61 - 1 - 1$.

```
fit_reduced <- lm(X.Repeating.1st.Grade ~ X.Low.income.students, data = data)</pre>
summary(fit reduced)
```

Call:

lm(formula = X.Repeating.1st.Grade ~ X.Low.income.students, data = data)

Residuals:

Min 1Q Median 3Q Max -8.9845 -2.5072 -0.4184 1.8505 11.1067

Coefficients:

Signif. codes:

Estimate Std. Error t value Pr(>|t|) (Intercept) 2.91419 0.83836 3.476 0.000709 *** 0.01823 4.141 6.47e-05 *** X.Low.income.students 0.07550 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.821 on 120 degrees of freedom

Multiple R-squared: 0.125, Adjusted R-squared: 0.1177 F-statistic: 17.14 on 1 and 120 DF, p-value: 6.472e-05

```
df_full = 61 - 3 - 1
df_reduced = 61 - 1 - 1
```

```
RSS_full = sum(fit$residuals^2)
RSS_reduced = sum(fit_reduced$residuals^2)

F = (RSS_reduced - RSS_full)/(df_reduced - df_full) /
    (RSS_full/df_full)
p_value = 1 - pf(F, df_reduced - df_full, df_full)
cat("F Statistic: ",F, " p value: ", p_value)
```

F Statistic: 0.1227336 p value: 0.8847324

With a p value of 0.8847324 we can cannot reject the null hypothesis that no increase in the percentage of students is due to the year being 1994-1995 or 2004-2005.

c)