#### Spring 2019



EECE 588 Lecture 15

**Prof. Wonbin Hong** 

## **Grating Lobes**

- As you see, as we change the phase shift of each antenna, the beam can be scanned.
- This means that we are changing the visible region dynamically and moving it around.
- The manifestation of this is the change in the direction of maximum radiation or electronic beam steering.





## **Grating Lobes**

- To ensure that grating lobes are not excited we must ensure that the visible region only contains the main peak of the periodic array factor and not any other major peaks.
- To have the main beam of the antenna directed along  $\theta_0$ , the required phase shift is  $\beta = -kd \cos \theta_0$ .
  - $\square$  Remember that the peak occurs for  $\psi = 0$ .
- Therefore, we have to ensure that  $\psi$  is between  $\pm 2\pi$  ( $-2\pi < \psi < 2\pi$ ).
- But maximum value of magnitude of  $\psi$  is  $kd(1 + |\cos \theta|)$ .
- Therefore, to have no grating lobes:

$$d < \frac{\lambda}{1 + |\cos\theta_0|}$$



## Phased Array Architectures

- Active Electronically Steered Antennas (AESA).
- Passive Electronically Steered Antennas (PESA).
- True-time-delay (TTD) ESAs.







#### Passive ESA

 PESA is simpler than the AESA but more complex than a mechanically steered array (MSA).

 It operates in conjunction with the same sort of central transmitter and receiver as the MSA.

- To steer the beam formed by the array, an electronically controlled phase shifter is placed immediately behind each radiator.
- The phase shifter is controlled either by a local processor called the beam steering controller (BSC) or by the central processor of the array.





#### **Active ESA**

The active ESA is an order of magnitude more complex than the passive ESA.

Instead of a phase shifter, a tiny dedicated transmit/receive (T/R) module is placed directly behind each radiating element of the array.

 Within it, are both the transmitter power-amplifier function and the receiver frontend functions.





#### **AESA**

- The TR module is a complete 2-way radio system containing the following:
  - □ A multistage high power amplifier (HPA).
  - □ a duplexer (circulator).
  - a protection circuit to block any leakage of the transmitted pulses through the duplexer into the receiving channel.
  - □ a low-noise preamplifier (LNA) for the received signals.
- The RF input and output are passed through a variable gain amplifier and a variable phase shifter, which typically are time shared between transmission and reception.
- They, and the associated switches, are controlled by a logic circuit in accordance with commands received from the beam steering controller.
- To minimize the cost and the size, TR modules are usually implemented using integrated circuit technology.



5. Basic functional elements of a T/R module. Variable gain amplifier, variable phase shifter, and switches are controlled by the logic element. They may be duplicated for transmit and receive, or time shared as shown here.



#### **AESA**



A representative T/R module. Even a fairly small ESA would include two to three thousand such modules.



#### T/R Modules



9. Closeup of a representative T/R module (cover removed). Integrated circuit chips are interconnected in a hybrid microcircuit.







#### True Time Delay

- TTD ESAs are electronically steered arrays where phase shifts for beam steering are obtained by varying the physical lengths of the feeds for the individual T/R modules.
- Generally, a fiber-optic feed is provided for each module.
- The time delay experienced by the signals in passing through the feed—hence their phase—is controlled by switching precisely cut lengths of fiber into or out of the feed.
- Advantages:
  - Avoid the BW limitations that are inherent in electronic phase shifting.
  - ☐ This way, extremely wide instantaneous bandwidths can be achieved for arrays.



- The receiver and transmitter are located immediately behind the radiators. This essentially eliminates the effect of losses both in the antenna feed system and the phase shifters.
- In AESA, the net receiver noise figure is established by the LNA. It can be designed to have a very low noise figure.
- Comparatively in PESA it is established by losses in the phase shifter and feed network.
- Loss of transmit power is similarly reduced.
  - ☐ In PESAs, very high power and high efficiency TWTs are used. So this one might not be as bad.
- Control over the amplitude and the phase of individual radiators in both transmit and receive.
  - ☐ This provides a superior beam-shape agility.
- Multiple beam operation. Divide the aperture into several sub apertures & provide appropriate feeds.
- Through suitable T/R module design, independently steerable beams of widely different frequencies may simultaneously share the entire array.



## More about Phased Arrays

- Electronic beam scanning techniques can be divided into four different categories:
  - □ Phase scanning.
  - □ Real time scanning.
  - □ Frequency scanning.
  - □ Electronic feed switching.
- We will give examples of these in the next few slides. The figures are borrowed from the following books:
  - □ Phased Array Antenna Handbook by R. Mailloux, Artech House, 2005, 2<sup>nd</sup> Edition, Norwood, MA.
  - □ Practical Phased Array Antenna Systems by Eli Brookner, 1991, Artech House, Illustrated Edition.



#### Phase Scanning

This is similar to what we already discussed. The AESA and PESA architectures that we showed were both examples of this type of beam scanning array.



φ<sub>s</sub> = ELECTRICAL DEGREES

y = φ<sub>1</sub> - φ<sub>2</sub> - φ<sub>2</sub> - φ<sub>3</sub> =

= DIFFERENTIAL PHASE SHIFT
= SPACE ANGLE

d = INTERELEMENT SPACING

λ = FREE SPACE WAVELENGTH

θ= BEAM POSITION RELATIVE TO BROADSIDE

Fig 1-2 Basic operation of a phase scanning system. Note that beam direction depends on phase shift between elements



## Continuous Phase Scanning

- Continuous phase scanning is accomplished by exciting all radiating elements coherently with a small frequency increment between them.
- The beam is continuously scanned at the rate of f.
- Think about it this way,
  - $\Box \cos(\omega_0 t + \beta) = \cos([\omega_0 + \Delta\omega]t) \rightarrow \beta = \Delta\omega t.$
  - □ The array is excited with a progressive phase of  $\Delta \omega t$ . This changes with time and consequently, the beam's direction changes with time.



Fig 1-3 Continuous phase scanning



## True Time Delay Beam Scanning

TTD is necessary in beam scanning systems using wideband

signals.



PHASE DELAY- THE PHASE OF SUCCESSIVE RADIATORS TIME DELAY -IS DELAYED TO OBTAIN PHASE (BUT NOT TIME) COHERENCY IN WAVEFRONT AT AN ANGLE & FROM

BROADSIDE.

THE TIME OF SUCCESSIVE RADIATORS IS DELAYED TO OBTAIN BOTH PHASE AND TIME COHERENCY IN WAVEFRONT AT AN ANGLE & FROM BROADSIDE.

Comparison of phase and real time Fig 1-4 scanning .



#### Bandwidth of Phase Scanning Systems

- X: Space length of travel of field from the last aperture element relative to first element to form wavefront at maximum scan angle  $\gamma_m$ .
- D=Length of array aperture.
- Time for signal to travel through the length x is  $t = x/c = D \sin \gamma_m/c$ , where  $c = 3 \times 10^8$  m/s.
- $c = f/\lambda$  and  $\theta_{3dB} \approx 64\lambda/D$  ( $\theta_{3dB}$  is the 3dB beamwidth of the array).
- $t = 64 \sin \gamma_m / (\theta_{3dB} f).$





#### Bandwidth of Phase Scanning Systems

- Practical designs allow for a minimum of  $\frac{1}{2}$  pulse width overlap between transmission from first and last radiating elements. Therefore,  $t \leq \tau/2$ , where  $\tau$  is the pulse width.
- This way,  $\tau \ge 128 \sin \theta_m / (\beta f)$ .
- The Bandwidth (BW) of the signal is inversely proportional to  $1/\tau$ .
- Therefore:

$$BW \le \frac{\theta_{3dB}f}{128\sin\gamma_m}$$



18



## Example

- Assume a  $HPBW = 1^{\circ}$ , f = 3 GHz, and maximum scan angle = 60 degrees.
- This way, the maximum signal bandwidth that can be used with phase scanning systems is approximately 27 MHz.
- If this is not enough, then TTD systems must be used or a combination of TTD and Phase Shift system.



## Frequency Scanning Arrays

Fig 1-5

- In a frequency scanning array, frequency is employed to control the interelement differential phase shift so that each frequency corresponds to a unique beam position.
- This is a completely passive method and reciprocal.



BASIC OPERATION OF A FREQUENCY SCANNING SYSTEM NOTE THAT BEAM DIRECTION DEPENDS ON TRANSMISSION FREQUENCY

Basic operation of a frequency scanning system. Note that beam direction depends on transmission frequency

# Frequency Scanning Arrays: Bandwidth Limitation

- Practical FS arrays employ an approximately 6% bandwidth to scan 90°.
- BW is limited by: (for derivation, refer to E. Brookner, Practical phased array antenna systems)

$$BW \le \frac{\theta_{3dB} \Delta f}{256 \sin \gamma_m}$$

- $\gamma_m$  is the maximum scan angle measured from the plane of the array.
- e.g. for  $\theta_{3dB}=1^{\circ}$ , f=3 GHz,  $\Delta f=180$  MHz, and  $\gamma_m=60^{\circ}$  the maximum signal bandwidth that can be used is 0.8 MHz.



## Electronic Feed Switching: Hybrid/Butler Matrix



Fig 1-6 Hybrid/Butler matrix
Basic operation of an electronic
feed switching system



#### Electronic Feed Switching: Luneburg Lens



Fig 1-7 Luneburg Lens
Basic operation of an alternative
electronic feed switching system



## Electronic Feed Switching

- EFS Systems can be wideband or narrow band.
- The two examples shown, the Butler matrix approach's bandwidth is limited to the hybrid circuits' and phase shifters' bandwidths used.
- The Luneburg lens is a wideband approach for beam steering.
- Other lens types can be used including Rotman lens:
  - □ Bandwidths will be different based on the approach used. For example Rotman lens is generally a wideband approach whereas other lenses may or may not be wideband based on specific design of lens.



#### N Element Linear Array: Directivity

#### Procedure:

- The procedure for calculating directivity of the array factor is straight forward.
- The array factor is essentially our radiation pattern function.
- □ Calculate the total radiated power + Radiation Intensity, etc.

$$D_0 = 2N\left(\frac{d}{\lambda}\right)$$

$$D_0 = 2N \left(\frac{d}{\lambda}\right)$$
 Ordinary End Fire Array: 
$$D_0 = 4N \left(\frac{d}{\lambda}\right)$$
 Hansen-Woodyard:

$$D_0 = 1.805 \times 4N \left(\frac{d}{\lambda}\right)$$



#### Example: Problem 6.18 of text

- An array of 10 isotropic radiators are placed along the z-axis a distance d apart. Assuming uniform distribution, find the progressive phase (in degrees), half-power beamwidth (in degrees) first null beamwidth (in degrees), first side lobe level maximum beam width, relative side lobe level maximum (in dB), and directivity in dB
  - □ Broadside
  - □ Hansen Woodyard End Fire
  - Ordinary End Fire
- Assume d=λ/4

