MATH 525 Section 3.7: The Golay Code

October 26, 2020

Section 3.7 October 26, 2020 1/5

- Marcel Golay introduced his (23, 12, 7) code (now known as the Golay code) in the one-page paper "Notes on digital coding," published in the *Proceedings of the I.R.E.* in 1949.
- ullet The Golay code, denoted by C_{23} , is perfect because

$$|C| = \frac{2^n}{\binom{n}{0} + \dots + \binom{n}{t}}, \quad \text{that is, } 2^{12} = \frac{2^{23}}{\binom{23}{0} + \binom{23}{1} + \binom{23}{2} + \binom{23}{3}}$$

where t=3 is the error-correction capability of the code. From this, it follows that any word $w \in K^{23}$ is at distance at most 3 from exactly one codeword in C_{23} .

- One generator matrix is $G = [I_{12}|\widehat{B}]$ where \widehat{B} is the 12×11 matrix obtained from B (on p. 77) by deleting its last column.
- We also say that C_{23} is obtained from C_{24} by *puncturing* it, that is, by removing the last bit from every codeword in C_{24} .

Section 3.7 October 26, 2020 2 / 5

Decoding Algorithm for C_{23} :

- Input: The received vector $r = (r_1, r_2, \dots, r_{23}) \in K^{23}$.
- The output will be the codeword $\hat{c} \in C_{23}$, closest to r.
 - 1) Append a digit $i \in \{0,1\}$ to r so that ri has odd weight.
 - 2) Decode ri using the decoding algorithm for C_{24} , obtaining c.
 - 3) Remove the last digit from c, obtaining $\hat{c} \in C_{23}$.

Question: Why does the above algorithm work?

October 26, 2020 3 / 5

Partial Proof: Let r = v + u where $v \in C_{23}$ is the sent codeword and $u \in K^{23}$ is the error pattern. We will do the proof in the case where $\operatorname{wt}(u) = 3.$

- Case 1: wt(r) = odd, wt(v) = even. In this case, the decoder will append 0 to r, obtaining r0. The codeword $v0 \in C_{24}$ is at distance 3 from r0. The output is v, as desired.
- Case 2: wt(r) = even, wt(v) = odd. In this case, the decoder will append 1 to r, obtaining r1. The codeword $v1 \in C_{24}$ is at distance 3 from r1. The output is v, as desired.

The cases where $wt(u) \in \{0, 1, 2\}$ are left as an exercise.

Remark: If wt(u) = 0, then ri is never a codeword of C_{24} (because ri has odd weight). However, r = v and so ri = vi. It follows that:

• If wt(v) = odd, then i = 0 and ri = v0. Thus,

$$syn(ri) = syn(v0) = syn(v1 + 01) = \mathbf{b}_{12}$$

where $\mathbf{0} \in K^{23}$ is the all-zero vector and \mathbf{b}_{12} is the 12th row of B.

② If wt(v) = even, then i = 1 and ri = v1. Thus,

$$syn(ri) = syn(v1) = syn(v0 + 01) = \mathbf{b}_{12}.$$

In either case, $\operatorname{syn}(ri) = \mathbf{b}_{12}$ when there are no errors. This can be used to make decoding more efficient: If $\operatorname{syn}(ri) = \mathbf{b}_{12}$, then the decoder does not need to run the algorithm described on slide 3; it can directly conclude that $r \in \mathcal{C}_{23}$ is the sent codeword.

Section 3.7 October 26, 2020 5 / 5