

Projeto de Redes de Computadores

Administração e Gerência de redes Parte 2

Funções:

- Dar nome a objetos
- Definir o tipo de dados que podem ser armazenados em um objeto
- Mostrar como codificar dados para transmissão através da rede
- O SMI é uma diretriz para o SNMP
- Enfatiza 3 atributos que identificam um objeto: nome, tipo de dados e método de codificação

Nome

- O SMI requer que cada objeto gerenciado tenha um nome exclusivo
- Para atribuir nomes a objetos de forma global, o SMI usa um identificador de objetos, que é um identificador hierárquico com base em uma estrutura na forma de árvore
- Todos os objetos gerenciados pelo SNMP devem ter um identificador único de objeto. O identificador de objeto do SNMP sempre começa com 1.3.6.1.2.1.

Tipo

 Para definir o tipo de dado, o SMI usa as definições padronizadas pelo ASN.1 (Abstract Syntax Notation 1 notação de sintaxe abstrata 1) e acrescenta algumas definições novas

- O MIB2 (Management Information Base Version 2 base de informações de gerenciamento, versão 2) é um conjunto de todos os objetos que o gerente pode administrar
- Os objetos na MIB2 são classificados em 10 grupos diferentes:
 - system, interface, address translation, ip, icmp, tcp, udp, egp, transmission e snmp

- Um agente pode implementar algumas ou várias MIBs, mas todos implementam uma específica chamada MIB-II
- A MIB II: fornece informações gerais de gerenciamento sobre um determinado equipamento gerenciado: número de pacotes transmitidos, estado da interface, entre outras

- Para cada objeto são definidos: nome, identificador, sintaxe, definição e acesso
- Instâncias do objeto: variáveis simples
- Object Name: nome do objeto, composto por uma string de texto curto
- Object Identifier: identificador do objeto, formado por números separados por pontos
- Sintax: sintaxe do objeto, descreve o formato, ou o valor, da informação
- Definição: descrição textual do objeto
- Acesso: tipo de controle que se pode ter sobre o objeto: somente leitura, leitura e escrita ou n\u00e3o acess\u00edvel.

Exemplo de um objeto - ipInReceives do grupo IP:

ipInReceives Object Type

Object Identifier: 1.3.6.1.2.1.4.3

Access: read-only

Syntax: Counter32

Description: O número total de datagramas que chegam nas interfaces,

incluindo aqueles com erro

Gerência de Redes – SNMP – MIB

 Abaixo da subárvore MIB II estão os objetos usados para obter informações específicas dos dispositivos da rede, divididos em 10 grupos

Grupo	Informação
system (1)	informações básicas do sistema
interfaces (2)	interfaces de rede
at (3)	tradução de endereços
ip (4)	protocolo ip
icmp (5)	protocolo icmp
tcp (6)	protocolo tcp
udp (7)	protocolo udp
egp (8)	protocolo egp
transmission (10)	meios de transmissão
snmp (11)	protocolo snmp

Gerência de Redes-SNMP

- SNMP possibilita:
 - Um gerente faça a leitura do valor de um objeto definido em um agente
 - Um gerente possa gravar um valor em um objeto definido em um agente
 - Um agente possa enviar ao gerente uma notificação, ou seja, uma mensagem de alerta em relação a uma situação anormal

Gerência de Redes-SNMP

O SNMPv3 define oito tipos de pacotes (ou PDUs)

Operações do Protocolo SNMP

- Existem duas operações básicas (SET e GET) e suas derivações (GET-NEXT, TRAP):
- A operação SET é utilizada para alterar o valor da variável; o gerente solicita que o agente faça uma alteração no valor da variável
- A operação GET é utilizada para ler o valor da variável; o gerente solicita que o agente obtenha o valor da variável

Operações do Protocolo SNMP

- GET-NEXT é utilizada para ler o valor da próxima variável; o gerente fornece o nome de uma variável e o cliente obtém o valor e o nome da próxima variável
- A operação TRAP é utilizada para comunicar um evento; o agente comunica ao gerente o acontecimento de um evento, previamente determinado

Gerência de Redes – Softwares de Gerência

Necessidade de Gerenciamento

- Um software de gerenciamento não resolve todos os problemas:
 - Softwares normalmente são subutilizados;
 - Inúmeras características inexploradas;
 - Utilizados de modo pouco eficiente;
 - Usuários despreparados.
- Para gerenciar um recurso, é necessário conhecê-lo bem e entender o que ele representa no contexto da rede

Gerência de Redes – Softwares de Gerência

Necessidade de Gerenciamento

- Aumento da importância de um recurso, aumenta a sua demanda por disponibilidade
- O sistema deve garantir esta disponibilidade
- A utilização dos recursos deve ser monitorada e controlada para garantir que os usuários estejam satisfeitos a um custo razoável

Gerência de Redes – Softwares de Gerência – Nagios

PR34-05	in ∰k UP	2012-04-19 15:34:08	1d 0h 48m 25s	PING OK - Packet loss = 0%, RTA = 1.66 ms
934-06	→ S A UP	2012-04-19 15:33:57	32d 20h 55m 23s	PING OK - Packet loss = 0%, RTA = 4.20 ms
R34-07	{€_up	2012-04-19 15:33:57	32d 20h 45m 23s	PING OK - Packet loss = 0%, RTA = 17.19 ms
R34LAB02-01	ing ∰s UP	2012-04-19 15:33:57	32d 20h 30m 22s	PING OK - Packet loss = 0%, RTA = 4.23 ms
R34LAB02-02	€ 🎉 UP	2012-04-19 15:33:57	32d 20h 30m 22s	PING OK - Packet loss = 0%, RTA = 17.50 ms
R34LAB04-01	ing ∰k UP	2012-04-19 15:33:57	32d 20h 30m 27s	PING OK - Packet loss = 0%, RTA = 16.90 ms
R34LAB06-01	in ∰k UP	2012-04-19 15:33:57	32d 20h 25m 27s	PING OK - Packet loss = 0%, RTA = 4.14 ms
R34LAB08-02	ing 🌇 UP	2012-04-19 15:33:57	32d 20h 24m 56s	PING OK - Packet loss = 0%, RTA = 15.95 ms
R38-01	≪ {} UP	2012-04-19 15:33:59	7d 0h 9m 27s	PING OK - Packet loss = 0%, RTA = 8.15 ms
R40-01	≪ ® up	2012-04-19 15:33:58	7d 0h 9m 37s	PING OK - Packet loss = 0%, RTA = 1.46 ms
841-01	∼ & UP	2012-04-19 15:33:58	7d 0h 9m 27s	PING OK - Packet loss = 0%, RTA = 4.23 ms
R42-01	→ {% , up	2012-04-19 15:33:58	7d 0h 9m 7s	PNO OK - Packet loss = 0%, RTA = 7.93 ms
843-01	→ S A UP	2012-04-19 15:34:08	1d 0h 48m 45s	PING OK - Packet loss = 0%, RTA = 77.88 ms
R46-01	→ { } UP	2012-04-19 15:33:58	7d 0h 9m 7s	PING OK - Packet loss = 0%, RTA = 21.64 ms
R46-02	{% , up	2012-04-19 15:33:57	7d 0h 9m 7s	PING OK - Packet loss = 0%, RTA = 17.25 ms
847-01	→ % UP	2012-04-19 15:33:58	7d 0h 9m 7s	PING OK - Packet loss = 0%, RTA = 11.28 ms
847-02	→ % , up	2012-04-19 15:33:58	10d 3h 3m 37s	PING OK - Packet loss = 0%, RTA = 12:34 ms
R49-01	∼ {} UP	2012-04-19 15:33:58	2d 23h 7m 20s	PING OK - Packet loss = 0%, RTA = 13.91 ms
R54-01	₹ N UP	2012-04-19 15:33:58	2d 23h 57m 30s	PING OK - Packet loss = 0%, RTA = 3.07 ms
R54-02	→ S A UP	2012-04-19 15:34:00	7d 0h 8m 57s	PING OK - Packet loss = 0%, RTA = 6.04 ms
R54-03	→ S A UP	2012-04-19 15:33:57	9d 7h 6m 4s	PING OK - Packet loss = 0%, RTA = 15.21 ms
R61-01	→ {% , up	2012-04-19 15:33:58	7d 0h 8m 57s	PNG OK - Packet loss = 0%, RTA = 7.82 ms
985-01	<a>® up	2012-04-19 15:34:00	7d 0h 9m 37s	PING OK - Packet loss = 0%, RTA = 16.15 ms
980-01	→ A UP	2012-04-19 15:33:59	9d 6h 7m 44s	PNG OK - Packet loss = 0%, RTA = 12.95 ms

Ferramenta de monitoramento de recursos de rede que pode disparar pings a uma determinada frequência para equipamentos de rede e servidores ou conferir portas de serviços hospedados em servidores para verificar sua disponibilidade.

Gerência de Redes – Softwares de Gerência – Cacti

Verificação de consumo de tráfego de portas de switches e roteadores, semelhante ao Zabbix. Em particular esta figura mostra o consumo da porta 24 do switch 05 do prédio 34 da PUC Coração Eucarístico.

Gerência de Redes – Softwares de Gerência – Zabbix

- A ferramenta de monitoramento de redes Zabbix oferece uma interface 100% Web para administração e exibição de dados
- Os alertas do sistema de monitoramento podem ser configurados para utilizar vários métodos de comunicação, como SMS, e-mail e abertura de chamados em sistemas de Helpdesk

Gerência de Redes – Softwares de Gerência – Zabbix

- O sistema permite ainda que ações automáticas como, por exemplo, restart de serviços sejam executados a partir de eventos
- O Zabbix permite monitoramento para diversos protocolos e conta com funções de auto-discovery (descoberta automática de itens) e low level discovery (descoberta de métricas em itens monitorados)

Gerência de Redes – Softwares de Gerência – Zabbix

Link dos vídeos sobre Gerenciamento de Redes

Introdução ao Gerenciamento de Redes – parte 4
https://youtu.be/PqgDoG4gLK0

Introdução ao Gerenciamento de Redes – parte 5
https://youtu.be/TMZVAc8cVnU