MACHINE LEARNING PRACTICAL

LOGISTIC REGRESSION

AGENDA

- Data Collection \parallel Reading Data
- Data Exploration
- Data Processing (Separating The Features From The Target)
- Splitting the data to training data & Test data
- Data Scaling (Data Standardization, Normalization)
- Build Model
- Model Evaluation
- Saving Model
- Build Test Method

✓ ABOUT DATA

Parkinson's Disease (PD) is a degenerative neurological disorder marked by decreased dopamine levels in the brain. It manifests itself through a deterioration of movement, including the presence of tremors and stiffness. There is commonly a marked effect on speech, including dysarthria (difficulty articulating sounds), hypophonia (lowered volume), and monotone (reduced pitch range). Additionally, cognitive impairments and changes in mood can occur

✓ SCALE DATA

Separating The Features From The Target

Define X → Input / Attributes of Data

Define Y → Output of Dataset (Result)

Feature scaling

Normalization

Standardization

LABEL ENCODING

	name	gender		age	city	_		name	gender		age	city
а	Abby		F	33	Berlin		а	Abby		0	33	0
b	Ben		М	16	Tokyo		b	Ben		1	16	2
С	Charlie		М	22	Sydney		С	Charlie		1	22	1
d	Dave		М	65	York		d	Dave		1	65	3
е	Ella		F	18	Sydney		е	Ella		0	18	1

df['Gender'].map({'M': 1, 'F': 0})

HOT ENCODING

Distribution Attributes (Nationality(4) 4 Cols)

LOGISTIC REGRESSION

- Logistic regression is used to handle the classification problems.
- Logistic Model Build on Probability , This type of statistical model
- Recall The Sigmoid Function

Logistic Function (Sigmoid)

- Linear Regression (Squashing)
- Classification of (Binary Classifier & Multi Classifier)

SUMMARY

 \rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1" If $h_{\theta}(x) < 0.5$, predict "y = 0"

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x) \text{ can be } > 1 \text{ or } < 0$$

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

