FORMAL LANGUAGES AND AUTOMATA, 2024 FALL SEMESTER

Lec 21. NP-completeness

Eunjung Kim

POLYNOMIAL-TIME MANY-ONE REDUCTION

Let $A \subseteq \{0,1\}^*$ and $B \subseteq \{0,1\}^*$ be two languages, i.e. two (decision) problems

P-TIME MANY-ONE REDUCTION

We say that A is polynomial-time many-one reducible to B, written as $A \leq_p B$, if there is a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for every input $w \in \{0,1\}^*$,

 $w \in A$ if and only if $f(w) \in B$.

Also called polynomial-time mapping reduction, polynomial-time Karp reduction and polynomial-time transformation.

NP-HARD, NP-COMPLETE

DEFINITIONS

A language *L* is said to be NP-hard if $A \leq_p L$ for every language $A \in NP$.

A language *L* is said to be NP-complete if *L* is NP-hard and $L \in NP$.

$A \leq_{p} B$ means B is as hard as A

TRANSITIVITY

If $A \leq_{p} B$ and $B \leq_{p} C$, then $A \leq_{p} C$.

NP-HARDNESS PROPAGATES FORWARDS

If $A \leq_p B$ and A is NP-hard, then B is NP-hard.

P-TIME FOR ONE NP-COMPLETE PROBLEM

Let *L* be NP-complete. Then $L \in P$ if and only if P = NP.

FIRST NP-COMPLETE PROBLEM

COOK-LEVIN THEOREM

SATISFIABILITY is NP-complete.

BOOLEAN SATISFIABILITY

- Boolean Formula: an expression formed from boolean variables using logical connectives \land ('AND'), \lor 's ('OR) and the negation \neg . $(x_1 \lor \bar{x_3}) \land (\neg(x_2 \land x_4) \lor ((\bar{x_1} \lor x_2) \land \bar{x_5})) \land (\neg(\bar{x_1} \land \bar{x_3}) \lor (\bar{x_4} \land x_5))$.
- Rather formally: a single boolean variable is an atomic boolean formula.
 A negation of a boolean formula, OR of two boolean formulas, AND of two boolean formulas are boolean formulas.
- For a boolean formula φ , one can <u>evaluate</u> φ on an assignment $\gamma: V(\varphi) \to \{0,1\}$, i.e. determine if φ is satisfied (=1) or not (=0) by γ .
- A formula φ is satisfiable if there is an assignment γ satisfying φ .

BOOLEAN SATISFIABILITY, SATISFIABILITY IN SHORT

INPUT: a boolean formula φ

QUESTION: is there a satisfying assignment to the variables of φ ?

SATISFIABILITY IS NP-COMPLETE

COOK-LEVIN THEOREM

SATISFIABILITY is NP-complete.

- Let $L \subseteq \{0, 1\}^*$ be an arbitrary language in NP.
- Equivalently, there exist a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a P-time TM M s.t. for every $x \in \{0,1\}^n$

 $x \in L$ if and only if there exists $w \in \{0,1\}^{p(n)}$ for which M(x,w) = 1.

- Goal: show $L \leq_p$ SATISFIABILITY.
- How: for every $x \in \{0,1\}^n$, construct a boolean formula φ_x s.t. there exists a witness w of length p(n) if and only if there exists a satisfying assignment to φ_x in time polynomial in n.

COOK-LEVIN THEOREM

SATISFIABILITY is NP-complete.

- Let $L \subseteq \{0,1\}^*$ be an arbitrary language in NP.
- Equivalently, there exist a single-tape nondeterministic TM M and a polynomial p: N → N and s.t. for every x ∈ {0,1}ⁿ
 x ∈ L if and only if there is an accepting computation history of M on x, and M halts on x in p(n) steps.
- Goal: show $L \leq_p SATISFIABILITY$.
- How: for every x ∈ {0, 1}ⁿ, construct a boolean formula φ_x s.t.
 M, upon input string x, admits an accepting computation history of length p(n)
 if and only if there exists a satisfying assignment to φ_x.

- For simplicity, assume $p(n) \le n^k$ for some k.
- NTM N would not move the header beyond the first n^k cells in the tape.
- An accepting computation history can be written in a $n^k \times n^k$ table.

Figure 7.38, Sipser 2012.

Idea similar to the one used for a reduction from A_{TM} to PCP.

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{cell}} \wedge \varphi_{\mathsf{start}} \wedge \varphi_{\mathsf{move}} \wedge \varphi_{\mathsf{accept}}.$$

- Each cell can contain a symbol from $Q \cup \Gamma$ (from N).
- We allocate a variable $z_{i,j,s}$ to each cell (i,j) (row i and column j) and $s \in Q \cup \Gamma$.
- We want to simulate an accepting computation history of M on a length-n input string x by φ_x .
- More specifically, we express the constraints using a boolean formula φ_x so that
 - an accepting computation $n^k \times n^k$ table starting with $q_0 x B B \cdots B$ must satisfy the constraint,
 - any satisfying assignment to φ_x , when written on the cells of the table, forms an accepting computation history.

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{cell}} \wedge \varphi_{\mathsf{start}} \wedge \varphi_{\mathsf{move}} \wedge \varphi_{\mathsf{accept}}.$$

- φ_{cell} expresses the constraint "each cell contains a single entry from either Q or Γ "
- φ_{start} expresses the constraint "the first row is $\#q_0xBB\cdots B\#$."
- φ_{accept} expresses the constraint "the last row contains $q_{accept} \in Q$."
- φ_{move} expresses the constraint "every (i,j)-th 2 \times 3-window is a part of legit move in δ ."

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{cell}} \wedge \varphi_{\mathsf{start}} \wedge \varphi_{\mathsf{move}} \wedge \varphi_{\mathsf{accept}}.$$

• φ_{cell} expresses the constraint "each cell contains a single entry from either Q or Γ "

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{cell}} \wedge \varphi_{\mathsf{start}} \wedge \varphi_{\mathsf{move}} \wedge \varphi_{\mathsf{accept}}.$$

• φ_{start} expresses the constraint "the first row is $\#q_0xBB\cdots B\#$."

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{cell}} \wedge \varphi_{\mathsf{start}} \wedge \varphi_{\mathsf{move}} \wedge \varphi_{\mathsf{accept}}.$$

• φ_{accept} expresses the constraint "the last row contains $q_{accept} \in Q$."

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{cell}} \wedge \varphi_{\mathsf{start}} \wedge \varphi_{\mathsf{move}} \wedge \varphi_{\mathsf{accept}}.$$

- φ_{move} expresses the constraint "every (i,j)-th 2 \times 3-window is a part of legal move in δ ."
- Legal and illegal moves when $\delta(q_1, a) = \{(q_1, b, R)\}$ and $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}.$

- (b) a q₁ b a a q₂

- (d) # b a # b a
- (e) a b a a b q₂
- b b b c b
- (a) a b a a a
- a q_1 b q_2 a a
- c) $\begin{vmatrix} b & q_1 & 1 \\ q_2 & b & q \end{vmatrix}$

Figure 7.39. Sipser 2012.

Figure 7.40, Sipser 2012.

$$\varphi_{\mathsf{X}} = \varphi_{\mathsf{cell}} \wedge \varphi_{\mathsf{start}} \wedge \varphi_{\mathsf{move}} \wedge \varphi_{\mathsf{accept}}.$$

• φ_{move} expresses the constraint "Each (i,j)-th 2 imes 3-window is a part of legal move in δ " or equivalently,

$$\varphi_{move} = \bigwedge_{1 \le i \le n^k, 1 \le j \le n^k} (i, j) \text{-th window is legal}$$

Legal windows

	#	а	b	q_1	b	С	а	#
	#	а	b	С	q ₂	С	а	#

We described a construction of a boolean formula φ_X from an input string $X \in \Sigma^*$ to L.

It remains to prove that this is a polynomial-time transformation from $L \in NP$ to Satisfiability.

- The construction can be done in polynomial time in |x| (tedious to check).
- (\Rightarrow) If $x \in L$, then consider the $n^k \times n^k$ table displaying an accepting computation history.
- Choose the assignment to $(z_{i,j,s})_{1 \le i,j \le n^k, s \in Q \cup \Gamma}$ which encodes this table.
- Easy to see that each of the subformulas $\varphi_{\textit{celll}}, \varphi_{\textit{start}}, \varphi_{\textit{accept}}$ and $\varphi_{\textit{move}}$ is satisfied.

- (\Leftarrow) Suppose that φ_X is satisfied by an assignment $(\tilde{z}_{i,j,s})_{1 \leq i,j \leq n^k, s \in Q \cup \Gamma}$.
 - It encodes a $n^k \times n^k$ table, where each cell contains a single symbol from $Q \cup \Gamma$; imposed by φ_{cell}
 - 2 The first row must be $\#q_0xBB\cdots B\#$; imposed by φ_{start} .
 - **3** The last row must contain q_{accept} ; imposed by φ_{accept} .

- (\Leftarrow) Suppose that φ_X is satisfied by an assignment $(\tilde{z}_{i,j,s})_{1 \leq i,j \leq n^k, s \in Q \cup \Gamma}$.
 - It encodes a $n^k \times n^k$ table, where each cell contains a single symbol from $Q \cup \Gamma$; imposed by φ_{cell}
 - **2** The first row must be $\#q_0xBB\cdots B\#$; imposed by φ_{start} .
 - **3** The last row must contain q_{accept} ; imposed by φ_{accept} .

To see that $C_i \vdash_M C_{i+1}$ for rows C_i and C_{i+1}

- Obs 1: if C_i contains a single symbol from Q, then C_{i+1} contains a single symbol from Q, in a position captured by some 2×3 -window.
- Obs 2: the 2 \times 3-window with q in the top center must describe a legal move.

CNF-SAT

 CNF (Conjunctive Normal Form) formula: ∧ ('AND') of ∨'s ('OR) of variables and their negations.

$$(x_1 \vee \bar{x_3}) \wedge (x_2 \vee x_4) \wedge (\bar{x_1} \vee x_2 \vee \bar{x_5}) \wedge (\bar{x_1} \vee \bar{x_3} \vee \bar{x_4} \vee x_5).$$

- Literals are variables and its negations.
- A clause is a OR's over literals.
- CNF formula is a conjunction ('AND') of clauses.
- A formula φ is kCNF if each clause contains at most k literals.

CNF-SAT

INPUT: a CNF formula φ

QUESTION: is there a satisfying assignment to the variables of φ ?