

FÍSICA NIVEL MEDIO PRUEBA 3

Martes 9 de noviembre de 2010 (mañana	Martes 9	de novieml	bre de 2010	(mañana)
---------------------------------------	----------	------------	-------------	----------

1 hora

Número de convocatoria del alumno											
0	0										

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas de dos de las opciones en los espacios provistos.
- Cuando termine el examen, indique en las casillas correspondientes de la portada de su examen las letras de las opciones que ha contestado.

Opción A — Visión y fenómenos ondulatorios

A1. Esta pregunta trata del ojo.

(a)	Indique qué entendemos por acomodación, haciendo referencia a las definiciones de punto próximo y punto remoto.	[3]
(b)	Explique cómo logra el ojo la acomodación.	[2]

A2. Esta pregunta trata de difracción y resolución.

(a) Un haz paralelo de luz monocromática incide sobre una rendija rectangular estrecha. Después de atravesar la rendija, la luz incide sobre una pantalla lejana.

X es el punto medio de la rendija.

(i) Sobre los ejes de más abajo, esquematice una gráfica que muestre cómo varía la intensidad de luz sobre la pantalla con el ángulo θ mostrado en el diagrama. [3]

(ii)	La longitud de onda de la luz es 520 nm, la anchura de la rendija es 0,04 mm y la pantalla se encuentra a 1,2 m de la rendija. Demuestre que la anchura del máximo central de intensidad sobre la pantalla es de alrededor de 3 cm.	[2]

(Pregunta A2: continuación)

(b) Los puntos P y Q se sitúan sobre la circunferencia de un planeta tal y como se muestra.

tel							-			-			-			-											•	a	21	da	ad	l (de	1	un	1	I	[3	J
	 										 								-							 					-								
	 		•								 							•	-			 •		•	•	 					•		•						
						•					 			•	•			•	•			 •			•	 					-		•						

8. Es	ta pregunta trata de ondas estacionarias y tubos de órgano.	
(a	Indique un modo en el que una onda estacionaria difiera de una onda progresiva.	[1
(b	Un tubo de órgano de longitud L está cerrado por un extremo. Sobre los diagramas, dibuje una representación del desplazamiento del aire en el tubo cuando la frecuencia de la nota emitida por el tubo sea	
	(i) la fundamental (primer armónico) frecuencia f_1 .	[
	\leftarrow L	
		Г
	(ii) el segundo armónico frecuencia f_2 .	[
	\overline{L}	
(c	Utilice su respuesta a (b) para deducir una expresión para el cociente $\frac{f_1}{f}$.	[.
	f_2	_
(d	En términos de las condiciones de contorno de las ondas estacionarias que pueden formarse en un tubo, indique la razón por la que los cocientes entre las frecuencias superiores de los armónicos y la fundamental deben ser siempre un número entero.	[

Opción B — Física cuántica y física nuclear

- **B1.** Esta pregunta trata de la dualidad onda–partícula.
 - (a) En el efecto fotoeléctrico, no se emiten electrones desde la superficie del metal si la frecuencia de la luz incidente es inferior a cierto valor llamado frecuencia umbral.

(i)	Haciendo referencia al modelo de Einstein del efecto fotoeléctrico, explique la existencia de la frecuencia umbral.	[4]
(ii)	Haciendo referencia a su respuesta a (a)(i), indique la razón por la que la frecuencia umbral es diferente para metales distintos.	[1]

(Pregunta B1: continuación)

b)		ace incidir luz de frecuencia $1,0 \times 10^{10}$ Hz sobre la superficie de un metal. La función abajo para el metal es $3,2 \times 10^{-19}$ J.	
	(i)	Demuestre que la energía cinética máxima de los electrones emitidos es $3,4 \times 10^{-19}$ J.	[2]
	(ii)	Determine la longitud de onda de De Broglie de los electrones de (b)(i).	[3]

- **B2.** Esta pregunta trata del espectro del hidrógeno atómico.
 - (a) El diagrama representa las líneas principales del espectro visible del hidrógeno atómico.

Resuma cómo se puede producir y observar el espectro en el laboratorio. [3]

(b)	Calcule en eV la diferencia de energía entre los niveles de energía en el átomo de hidrógeno que dan lugar a la línea roja del espectro.	[2]

[2]

- **B3.** Esta pregunta trata de la desintegración radiactiva.
 - (a) Un núcleo de un isótopo radiactivo del oro (Au-189) emite un neutrino al desintegrarse en un núcleo de un isótopo del platino (Pt).

En la ecuación de la reacción nuclear de más abajo, indique el nombre de la partícula X e identifique el número de nucleones A y el número de protones Z del núcleo del isótopo del platino.

 $^{189}_{79}Au \rightarrow {}^{A}_{Z}Pt + X + v$

X:	 	
A:	 	
7.		

(b) La semivida del Au-189 es de 8,84 minutos. Una muestra recién preparada del isótopo tiene una actividad de 124 Bq.

(i)	Calcule la constante de desintegración del Au-189.	[1]

(ii)	Determine la actividad de la muestra después de 12,0 minutos.	[2]

Página en blanco

Opción C — Tecnología digital

C1. Esta pregunta trata de CDs y CCDs.

(a)	señales analógicas se almacenan en un CD como una señal digital binaria. Para una la analógica de intensidad 11 V,	na	
	(i)	indique el magnitud de la intensidad de la señal como un número binario.	[1]
	(ii)	describa cómo una señal digital, tal y como la de (a)(i), se almacena en un CD.	[2]
	(iii)	resuma cómo se lee del CD el dígito uno (1), almacenado en una señal digital, utilizando luz láser reflejada desde la superficie del CD.	[2]

(Pregunta C1: continuación)

(0)	digit	al basándose en dividir la superficie en un gran número de píxeles. Cada píxel tiene alor fijo de capacitancia.			
	(i)	Defina qué se entiende por capacitancia de un píxel.	[1]		
	(ii)	Los píxeles de un determinado CCD tienen un área de $2.8 \times 10^{-10} \text{m}^2 \text{y}$ una capacitancia de 20pF . Sobre el CCD incide un haz de luz monocromática. El número de fotones por metro cuadrado que llegan al CCD es de 4.0×10^{13} . El rendimiento cuántico de un píxel es del 74%.			
		Determine el aumento en la diferencia de potencial a través de un píxel como consecuencia de la luz incidente.	[4]		

- **C2.** Esta pregunta trata de un amplificador operacional utilizado en un circuito con disparador de Schmitt.
 - (a) Un amplificador operacional utiliza una fuente de alimentación de ± 6.0 V. El amplificador operacional opera en modo no inversor.
 - (i) Sobre los ejes de más abajo, esquematice una gráfica para mostrar cómo varía el voltaje de salida $V_{\rm SAL}$ del amplificador con la diferencia de potencial V entre las dos entradas del amplificador.

[2]

(11)	el amplificador operacional se dice que actúa como un comparador.	[2]

(Pregunta C2: continuación)

(b) El diagrama muestra un amplificador operacional conectado como disparador de Schmitt. La salida del amplificador es de \pm 6,0 V.

(1)	Demuestre que el voltaje conmutador superior del disparador, es decir, el voltaje de entrada $V_{\rm EN}$ para el que el voltaje de salida $V_{\rm SAL}$ conmuta de $-6.0\mathrm{V}$ a $+6.0\mathrm{V}$, es $2.0\mathrm{V}$.	[2]

(Pregunta C2: continuación)

(ii) La gráfica muestra la señal de entrada $V_{\rm EN}$ al disparador.

Los voltajes de conmutación del disparador son $\pm 2,0 \,\mathrm{V}$.

Sobre los ejes de más arriba, esquematice una gráfica para mostrar cómo varía con el tiempo t el voltaje de salida $V_{\rm SAL}$. [2] Explique el uso del disparador de Schmitt en la transmisión de señales digitales. [2]

(c)

Opción D — Relatividad y física de partículas

D1. Esta pregunta trata de una transformación de Galileo y de la dilatación del tiempo.

Ben se encuentra en una nave espacial que viaja en línea recta, con rapidez constante v, tal y como la mide Jill, que se encuentra en una estación espacial.

Ben enciende un pulso luminoso que rebota verticalmente (según observa Ben) entre dos espejos horizontales M_1 y M_2 separados una distancia d. En el instante en que los espejos están enfrente de Jill, el pulso está abandonando justamente el espejo M_2 . La rapidez de la luz en el aire es c.

(a)	Esquematice sobre el diagrama la trayectoria del pulso de luz entre M_1 y M_2 la observa Jill.		[1]
		$ M_1$	
(b)	Segí	In la medida de Jill, el tiempo que tarda el pulso luminoso en ir de M_2 a M_1 es Δt .	
	(i)	Indique, según Jill, la distancia recorrida por la nave espacial en el tiempo Δt .	[1]
	(ii)	Utilizando la transformación de Galileo, deduzca una expresión para la longitud de la trayectoria de la luz entre $\rm M_2$ y $\rm M_1$.	[2]

(Pregunta D1: continuación)

(c)	Indique, según la relatividad especial, la longitud de la trayectoria de la luz entre M_2 y M_1 , tal y como la mide Jill, en términos de c y de Δt .	[1]
(d)	El tiempo que le lleva al pulso ir de M_2 a M_1 tal y como lo mide Ben es $\Delta t'$. Utilice sus respuestas a (b)(i) y (c) para deducir una relación entre Δt y $\Delta t'$.	[3]
(e)	Según un reloj en reposo respecto a Jill, un reloj en la nave espacial marcha retrasado en un factor 2,3. Demuestre que la rapidez v de la nave espacial es 0,90c.	[2]

D2. Esta pregunta trata de leptones y mesones.

(a)	Los leptones son un tipo de partícula elemental y cada leptón tiene su propia antipartícula.
	Indique qué entendemos por

(i)	partícula elemental.	[1]
(ii)	antipartícula de un leptón.	[1]

El electrón es un leptón y su antipartícula es el positrón. Entre un electrón y un positrón puede tener lugar la siguiente reacción.

$$e^- + e^+ \rightarrow \gamma + \gamma$$

Esquematice el diagrama de Feynman de esta reacción e identifique en su diagrama cualquier partícula virtual. [3]

(Pregunta D2: continuación)

(c)	Al c	ontrario que los leptones, el mesón π^+ no es una partícula elemental. Indique	
	(i)	la estructura de quarks del mesón $\pi^{\scriptscriptstyle +}$.	[1]
	(ii)	la razón por la que no ocurre la siguiente reacción.	[1]
		$p^+ + p^+ \rightarrow p^+ + \pi^+$	
(d)	Indi	que el principio de exclusión de Pauli.	[1]
(e)		dendo referencia a su respuesta a (d), explique por qué a los quarks se les atribuye ropiedad color.	[2]

Opción E — Astrofísica

	Low	pregunta trata de las características de las estrellas Procyon A y Procyon B.					
	(a)	Las estrellas Procyon de la constelación Ca			mismo cúmulo estelar dentro n y cúmulo estelar.		
		Constelación:					
		Cúmulo estelar:					
	(b)	La siguiente tabla mu	estra algunos datos	de Procyon A y Pr	ocyon B.		
			Magnitud aparente	Magnitud absoluta	Brillo aparente / W m ⁻²		
		Procyon A (P _A)	+0,400	+2,68	2,06×10 ⁻⁸		
		Procyon B (P _B)	+10,7	+13,0	$1,46 \times 10^{-12}$		
		(i) tal y como se v	de la tabla, explique e desde la Tierra, P _A		llante que P _B .		
		(ii) la luminosidad	de P _A es mucho may	vor que la de $P_{\scriptscriptstyle B}$.			
		(ii) la luminosidad	-	_			

(Pregunta E1: continuación)

(c)	Utilizando los datos de la tabla de (b), deduzca que P _A y P _B están aproximadamente a la misma distancia de la Tierra.	[2]
(d)	Utilizando sus respuestas a (a) y a (c), indique por qué $P_{\rm A}$ y $P_{\rm B}$ podrían ser estrellas binarias.	[1]
(e)	Utilizando los datos de la tabla de (b), calcule el cociente $\frac{L_{\rm A}}{L_{\rm B}}$, donde $L_{\rm A}$ es la luminosidad de $P_{\rm A}$ y $L_{\rm B}$ es la luminosidad de $P_{\rm B}$.	[2]

(Pregunta E1: continuación)

(f) La temperatura superficial tanto de P_A como de P_B es del orden de 10^4 K. La luminosidad de P_A es del orden de $10L_S$, donde L_S es la luminosidad del Sol. El diagrama muestra la red de cuadrículas de un diagrama de Hertzsprung–Russell.

Sobre la red de cuadrículas anterior, rotule la posición aproximada de

- (i) la estrella P_A , con la letra A. [1]
- (ii) la estrella P_B , con la letra B. [1]
- (g) Identifique la naturaleza de la estrella P_B . [1]

E2.	Esta	Esta pregunta trata del modelo del Big Bang y del desplazamiento al rojo.					
	(a)	Des	criba qué significa el modelo del Big Bang.	[1]			
			,				
	(b)		os años 60 del siglo pasado, Penzias y Wilson descubrieron una radiación de fondo nico uniforme (FCM) en la región de las microondas del espectro electromagnético.				
		(i)	Explique cómo la FCM es consistente con el modelo del Big Bang.	[3]			
		(ii)	Indique por qué el desplazamiento al rojo de la luz procedente de las galaxias apoya el modelo del Big Bang.	[1]			

Opción F — Comunicaciones

F1.	Esta	pregunta	trata	de	la	modulación.
-----	------	----------	-------	----	----	-------------

(a)	Indique qué entendemos por modulación de una onda portadora.					

(Pregunta F1: continuación)

(b) La gráfica muestra cómo varía con el tiempo t la intensidad de la señal de voltaje V de una onda portadora modulada en amplitud (AM).

Utilice la gráfica para determinar

	(i)	la frecuencia de la onda portadora.	[1]
	(ii)	la frecuencia de la onda de señal.	[1]
	(iii)	la amplitud de la onda de señal.	[2]
	(iv)	el ancho de banda.	[1]
(c)		onda portadora también puede ser modulada en frecuencia (FM). Indique y explique ventaja de la FM en comparación con la AM.	[2]

F2.	Esta p	regunta	trata	de	fibras	ópticas.	
-----	--------	---------	-------	----	--------	----------	--

(a)	Indique qué se entiende por dispersión material.	[2]
(b)	Sugiera por qué la dispersión material establece un límite sobre la velocidad de transferencia de datos (<i>bitrate</i>) en la transmisión.	[1]
(c)	(i) La señal mostrada más abajo se introduce en una fibra óptica monomodo.	
	voltaje	
	tiempo	
	1	
	Sobre el diagrama anterior, muestre los efectos de la dispersión material sobre la señal entrante, dibujando la forma de la señal después de haber viajado una larga distancia en la fibra óptica.	[1]

Indique y explique cómo pueden reducirse los efectos sobre la señal dibujada

(Esta pregunta continúa en la siguiente página)

[2]

(ii)

en (c)(i).

(Pregunta F2: continuación)

(d)	índio	ransmiten datos digitales en una fibra óptica con un núcleo de vidrio que tiene un ce de refracción de 1,5. La duración de un bit en la transmisión es de 0,50 ns y cada stra en la señal consta de 32 bits.	
	(i)	Calcule el tiempo que tarda la señal para viajar una distancia de 500 km.	[2]
	(ii)	Determine la frecuencia de muestreo.	[2]
(e)	los o	datos en (d) son confidenciales y deben protegerse. Sin tomar en consideración costes financieros, resuma si resulta preferible transferir esos datos a través de una exión directa por fibra óptica o hacerlo por medio de un satélite geosíncrono.	[2]

$Opci\'on \ G - Ondas \ electromagn\'eticas$

G1. Esta pregunta trata de láseres.

(a)	En relación con las ondas de luz emitidas por un láser, indique qué significan los siguientes términos						
	(i)	monocromática.	[1]				
	(;;)	ach arenta	Г1				
	(11)	coherente.	[1]				

(Pregunta G1: continuación)

(b) El diagrama (no a escala) muestra tres de los niveles de energía de una sustancia utilizada para producir luz láser.

 E_0 estado fundamental

La energía del estado fundamental es E_0 .

(i)	Indique qué se entiende por inversión de la población.	[1]	
(ii)	Dibuje una flecha sobre el diagrama para indicar la transición que da lugar a una inversión de población. Rotule la flecha como P.	[1]	
(iii)	Dibuje una flecha sobre el diagrama para indicar la transición que da lugar a un pulso de luz láser. Rotule la flecha como L.	[1]	
(iv)	Deduzca que la longitud de onda de la luz láser emitida es de 690 nm.	[1]	

[2]

G2. Esta pregunta trata del telescopio astronómico.

El diagrama (no a escala) muestra la disposición de las dos lentes convexas en un telescopio astronómico con ajuste normal.

Se utiliza el telescopio para observar una estrella lejana. Uno de los puntos focales de la lente ocular se rotula como $F_{\rm E}$.

()	0 1 1	1.	1	,	-1
121	Sonre el	anaarama	$\alpha =$	mac	arrina
(a)		diagrama	uc	mas	anna.

	(i)	rotule con el símbolo $F_{\rm E}$, la posición del otro punto focal de la lente ocular.	[1]
	(ii)	rotule con el símbolo $F_{\rm O}$, la posición del punto focal de la lente objetivo que se encuentra entre las dos lentes.	[1]
	(iii)	construya rayos para localizar la imagen final de la estrella.	[3]
(b) En un determinado telescopio astronómico, la lente ocular tiene una potencia dioptrías y la lente objetivo tiene una potencia de 0,80 dioptrías. Determine el au angular del telescopio en ajuste normal.			

En un telescopio astronómico el objetivo se construye, a menudo, con una lente divergente

y otra convergente, mientras que la abertura de la lente ocular se limita habitualmente para que solo se visualicen los rayos próximos al eje principal. Indique las razones para ello.

(c)

Lente objetivo:

Lente ocular:

- **G3.** Esta pregunta trata de una red de difracción.
 - (a) Un haz paralelo de luz monocromática incide perpendicularmente sobre una red de difracción. Después de atravesar la red se focaliza en un punto de una pantalla, por medio de una lente. El diagrama muestra algunas de las rendijas de la red de difracción y el trayecto de la luz difractada con un ángulo θ en cada rendija.

La distancia entre rendijas es d y la longitud de onda de la luz es λ .

(1)	entre rayos procedentes de dos rendijas adyacentes. Rotule como L la diferencia de caminos.	[1]
(ii)	Utilice su respuesta a (a)(i) para deducir, en términos de d y θ , la condición para que haya un máximo de intensidad en el punto P de la pantalla.	[2]
	una red de difracción concreta, la distancia entre rendijas adyacentes es 2,0×10 ⁻⁶ m. ermine, para luz de longitud de onda 520 nm, el orden de difracción teórico máximo.	[2]

(b)