Recitation #5

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

recall: Orthogonal matrices

Orthogonal matrix

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. A is an orthogonal matrix if its columns form an orthogonal family of \mathbb{R}^n (therefore linearly independent and basis of \mathbb{R}^n)

Alert!: orthogonal vectors given an inner product

Properties of Orthogonal matrices

The following are equivalent:

- A is orthogonal

Exercise for home: re-prove it.

Exercise 1

Prove that the product of two orthogonal matrices is also an orthogonal matrix.

Fool:
$$A \cdot B$$
 is octhogonal
Stort: $A, B \in \mathbb{R}^{n \times n}$ one arthogonal
Show: $(A \cdot B)(A \cdot B)^T = Id$
 $A \cdot B B^T A^T = A A^T = Id$ \square
Id B orthogonal A athogonal

Exercise 2

Let $Q \in \mathbb{R}^{k n}$ be an orthogonal matrix and let $x, y \in \mathbb{R}^n$. Show that $\langle Qx, Qy \rangle = \langle x, y \rangle$

$$\langle x, y \rangle = x^{T}y$$

 $\langle Qx, Qy \rangle = (Qx)^{T}Qy = x^{T}Q^{T}Qy = x^{T}Z$
 $\downarrow IJ$ $\uparrow = IJ$
 $Q = x^{T}Z$
 $Q = x^{T}Z$

QR decomposition

Exercise 3

Let $A \in \mathbb{R}^{m \times n}$ be a matrix with linearly independent columns.

Show that A can be written as A = QR where $Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and $R \in \mathbb{R}^{m \times n}$ an upper triangular matrix.

Hint: apply Gram-Schmidt to the columns of A.

Exercise 3

Let $A \in \mathbb{R}^{m \times n}$ be a matrix with linearly independent columns. Show that A can be written as A = QR where $Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and $R \in \mathbb{R}^{m \times n}$ an upper triangular matrix. Hint: apply Gram-Schmidt to the columns of A.

$$Q = \begin{pmatrix} u_1 \dots u_m \\ 1 \end{pmatrix}$$

$$R = \begin{pmatrix} v_1 & v_2 \\ 0 \end{pmatrix}$$

$$R = \begin{pmatrix} v_1 & v_2 \\ 0 \end{pmatrix}$$

recall: eigenvalues and eigenvectors

Eigenvalue, eigenvector

Let $A \in \mathbb{R}^{n \times n}$. A non-zero vector $v \in \mathbb{R}^n$ is an eigenvector of A if there exists $\lambda \in \mathbb{R}$ such that eigenvalue $Av = \lambda v$

$$Av = \lambda v$$

The scalar λ is the eigenvalue of A associated to ν .

Eigenspace

The following set is called eigenspace of A associated to λ .

$$E_{\lambda}(A) = \{x \in \mathbb{R}^n | Ax = 0 \} = ker(A - \lambda Id)$$

The dimension of the eigenspace is called multiplicity of λ .

practice

Exercise 4

Show that the eigenspace $E_{\lambda}(A)$ is a subspace.

-
$$V, N \in E_{\Delta}(A)$$
 $AV = \Delta V$
 $AN = \Delta W$
 $Show : A(V+W) = \Delta(V+W)$
 $A(V+W) = AV+AV = \Delta V + \Delta W = \Delta(V+W)D$
 $A(V+W) = AV+AV = \Delta V + \Delta W = \Delta(V+W)D$
 $A(V+W) = AV+AV = \Delta V + \Delta W = \Delta(V+W)D$

$$A(\Delta V) = \alpha(AV) = \alpha(\Delta V) = \lambda(\Delta V) - D$$

recall and practice: diagonalizable matrices

Exercise 5

Are all(rea) matrices diagonalizable? Why?

XFalse

~= 1 × diagonalizable IR V digonalizable C

practice: diagonalizable matrices

Exercise 5

Are all real matrices diagonalizable? Why?

✓ True **X**False

Counter example:
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $V = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_4 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_5 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_4 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_4 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_4 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_4 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix}$$

practice: orthogonal matrices and eigenvalues

Exercise 6

Let $Q \in \mathbb{R}^{n \times n}$ be an orthogonal matrix.

Prove that the eigenvalues of Q can only be -1, +1.

$$\Rightarrow \text{Recall}: x \in \mathbb{R}^{n} \|Qx\| = \|x\|$$

$$\text{Lets find } v \in \mathbb{R}^{n} \quad Qv = \lambda v$$

$$\text{Recall}: x \in \mathbb{R}^{n} \quad Qv = \lambda v$$

$$\text{Recall}: |Qv|| = ||\lambda v||$$

$$\text{Recall}: x \in \mathbb{R}^{n} \quad ||Qx|| = ||x||$$

$$\text{Recal$$

practice: orthogonal matrices and eigenvalues

Exercise 7

Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ and respective eigenvectors $v_1, v_2, ..., v_n$.

Prove that $v_1, v_2, ..., v_n$ are linearly independent.

Note that we can sewrite equation in vector form $\alpha = \begin{pmatrix} \alpha \\ \alpha \end{pmatrix}$, $v = \begin{pmatrix} -v_1 \\ v_n \end{pmatrix} \neq 8$ s $\alpha^T v = 0$

Now apply A at each side and use eigenvector hypothesis

practice: orthogonal matrices and eigenvalues

Exercise 7

Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ and respective eigenvectors $v_1, v_2, ..., v_n$.

Prove that $v_1, v_2, ..., v_n$ are linearly independent.

$$A \propto^{T} V = 0 \qquad \Rightarrow \Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A(J_1 V_1 + ... + J_1 A) = 0$$

$$A \propto^{T} V = 0$$

$$A \sim^{T} V = 0$$

$$A$$

practice: diagonal matrices

Exercise 8 (*)

Suppose $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix.

Give a vector $v \in \mathbb{R}^n$ with ||v|| = 1 such that ||Dv|| is maximized.

Note:

$$\|Dv\| = \int_{i=1}^{2} (dii v_i)^2 + (mox dii^2) \int_{i=1}^{2} v_i^2 = \lim_{i \to \infty} dii^2$$

$$= \max_{i} dii^2$$
Take $v = e_j$ where $|dij|$ is the max absolute $|dij|$ value of D_{ij}