AIL721: Deep Learning

Instructor: James Arambam

Class Announcements

☐ Project Team Size: 1~3

☐ Please form the team by **20th Jan** or will be assigned **randomly.**

☐ New students: Please email me for the piazza link and access code.

Class Announcements

ScAl

- ☐ Google Cloud Compute Credit Approved!
 - 50 USD per student.
- ☐ Class on Thursday
 - Tuesday's Schedule
 - 5-6 PM

Class Announcements

- ☐ IIT Delhi HPC Compute Credit **Approved!**
 - 800 INR per student.
 - More details over email.
 - First time users: Start setting up HPC or read about it.

Deep Neural Network

☐ Shallow Network:

How many parameters?

3D+1

☐ Deep Network:

How many parameters?

3D+(K-1)D^2+(K-1)D+1

Story So Far

Story So Far

- ☐ Brief history of neural networks.
- ☐ Basic mathematical model of neural network.
- ☐ Shallow neural network.
 - Neural network equation in *normal* form and matrix form?
 - Importance of activation functions ReLU.
 - Visualization of a neural network.
- ☐ Deep neural network.
 - Why deep?

What's the next step?

Optimization

Recap

□ Regression

$$f(x; \boldsymbol{\phi}) = \phi_0 + \phi_1 \cdot x$$

How to find ϕ that **best fits** the **given data**?

Optimization

$$\hat{oldsymbol{\phi}} = \operatorname*{argmin}_{oldsymbol{\phi}} \Big[L\left[oldsymbol{\phi}
ight] \Big]$$

☐ Least Square Error Loss:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$

= $\sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$

☐ Least Square Error Loss:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$

$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Binary Classification?

Multiclass Classification?

☐ Least Square Error Loss:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \boldsymbol{\phi}] - y_i)^2$$

$$y = f(x; \phi)$$

Pr(y|x)

Conditional Probability Model

Binary Classification?

Multiclass Classification?

Could we still do regression with this model?

Binary Classification?

Multiclass Classification?

☐ Regression with probabilistic model

☐ Maximum Likelihood

Maximize the probability of $Pr(y_i | x_i)$ from training data (y_i, x_i) .

■ Maximum Likelihood

$$Pr(y|\theta)$$

$$\theta = f(x; \phi)$$

Parameterized probability distribution

Training data:
$$(x_1, y_1), (x_2, y_2), \dots, (x_I, y_I)$$

$$Pr(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_I | \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_I)$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \boldsymbol{\theta}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

■ Maximum Likelihood

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$egin{array}{lll} \hat{oldsymbol{\phi}} &=& rgmin_{oldsymbol{\phi}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, oldsymbol{\phi}])
ight]
ight] \\ &=& rgmin_{oldsymbol{\phi}} \left[L[oldsymbol{\phi}]
ight] egin{array}{lll} \mathbf{Negative Log} \\ \mathbf{Likelihood Loss} \end{array}$$

Univariate Regression with Probabilistic Model

$$Pr(y|f(x; \boldsymbol{\phi}))$$

$$Pr(y|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right]$$

$$L[oldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[Pr(y_i | \mathrm{f}[\mathbf{x}_i, oldsymbol{\phi}], \sigma^2)
ight] \ = -\sum_{i=1}^{I} \log \left[rac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-rac{(y_i - \mathrm{f}[\mathbf{x}_i, oldsymbol{\phi}])^2}{2\sigma^2}
ight]
ight] \ Pr(y | \mu, \sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-rac{(y - \mu)^2}{2\sigma^2}
ight]$$

$$Pr(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$

Normal Distribution

☐ Univariate Regression with Probabilistic Model

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \left(\log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2 \right], \quad \text{Least Square Error Loss}$$

$$\hat{\boldsymbol{\phi}}, \hat{\sigma}^2 = \underset{\boldsymbol{\phi}, \sigma^2}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

☐ Univariate Regression with Probabilistic Model

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \left(\log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2 \right], \quad \text{Least Square Error Loss}$$

$$\hat{\boldsymbol{\phi}}, \hat{\sigma}^2 = \underset{\boldsymbol{\phi}, \sigma^2}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

□ Inference

$$\hat{y} = \underset{y}{\operatorname{argmax}} P(\cdot | f(x_i, \phi), \sigma)$$

$$\hat{y} = f(x_i, \phi)$$

Binary Classification

$$Pr(y|f(x; \phi))$$
 ?

$$\lambda = \operatorname{sig}[f(x; \boldsymbol{\phi})]$$

Likelihood Function

$$Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}, \boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}, \boldsymbol{\phi}]]^{y}$$

Negative Likelihood Loss

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} -(1-y_i) \log \left[1 - \operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right] - y_i \log \left[\operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right]$$

Sigmoid Function

$$Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0 \\ \lambda & y = 1 \end{cases}$$
$$Pr(y|\lambda) = (1 - \lambda)^{1 - y} \cdot \lambda^{y}$$

Bernoulli's Distribution

☐ Multiclass Classification

Homework Exercise

$$q(y)$$
 — Training data: $(x_1,y_1),(x_2,y_2),\ldots,(x_I,y_I)$

Empirical Data Distribution

 $p(y;\theta)$

Where is the true distribution?

Training data: $(x_1,y_1),(x_2,y_2),\ldots,(x_I,y_I)$

Empirical Data Distribution

□ Dirac Delta Function

$$\delta(x) = \left\{ egin{array}{ll} 0, & x
eq 0 \ \infty, & x = 0 \end{array}
ight.$$

such that

$$\int_{-\infty}^{\infty} \delta(x) dx = 1.$$

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$$

Empirical Data Distribution

Next Step?

$$p(y; \theta)$$

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$$

Minimize the distance between $p(y; \theta)$ and q(y)

$$D_{KL}ig[q||pig] = \int_{-\infty}^{\infty} q(z) \logig[q(z)ig] dz - \int_{-\infty}^{\infty} q(z) \logig[p(z)ig] dz.$$

$$D_{KL}ig[q||pig] = \int_{-\infty}^{\infty} q(z) \logig[q(z)ig] dz - \int_{-\infty}^{\infty} q(z) \logig[p(z)ig] dz$$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log \left[q(y) \right] dy - \int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right]$$
 Cross-Entropy

$$= \underset{\theta}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\frac{1}{I} \sum_{i=1}^{I} \log [Pr(y_i | \boldsymbol{\theta})] \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(y_i | \boldsymbol{\theta}) \right] \right]$$

$$q(y) = rac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$$

$$\hat{oldsymbol{\phi}} = \operatorname*{argmin}_{oldsymbol{\phi}} \left[-\sum_{i=1}^{I} \log \left[Pr(y_i | \mathbf{f}[\mathbf{x}_i, oldsymbol{\phi}])
ight]
ight]$$

Negative Log Likelihood Loss

Cross Entropy Loss

Negative Likelihood Loss

Maximizing the likelihood of the observed data.

Cross Entropy Loss

Minimizing the distance between model distribution and empirical distribution.

Negative Likelihood Loss

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} -(1-y_i) \log \left[1 - \operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right] - y_i \log \left[\operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right]$$

Binary Cross-Entropy Loss

Loss Function

☐ Binary Classification

$$Pr(y|f(x; \phi))$$
 ?

$$\lambda = f(x; \boldsymbol{\phi})$$

Likelihood Function

$$Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}, \boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}, \boldsymbol{\phi}]]^y$$

Negative Likelihood Loss

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} -(1 - y_i) \log \left[1 - \operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right] - y_i \log \left[\operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right]$$

Sigmoid Function

(ScAl

[Image from Prince 2023]