

MSCA 37016 Advanced Linear Algebra for Machine Learning

Lecture 5

Danny Ng

Local Extremum of 1-Dimensional Function

• 1st Order Condition for Slope: If a differentiable $f: \mathbb{R} \to \mathbb{R}$ has a local extremum / optimum at an interior x^* , then $f'(x^*) = 0$ i.e. x^* is a stationary / critical point.

- 2nd Order Condition for Curvature: Suppose $f'(x^*) = 0$.
 - If $f''(x^*) > 0$, then x^* is a local minimum i.e. **concave up**.
 - If $f''(x^*) < 0$, then x^* is a local maximum i.e. **concave down**.
 - If $f''(x^*) = 0$, then it is inconclusive since x^* can also be an **inflection / saddle point** i.e. curvature changes sign. (Need higher-order derivative test.)

Local Extremum of d-Dimensional Function

• Let $f: \mathbb{R}^d \to \mathbb{R}$ i.e. $y = f(x_1, ..., x_d)$ with input $\vec{x} = (x_1, ..., x_d) \in \mathbb{R}^d$ and output $y \in \mathbb{R}$

• 1st Order Condition: If an interior \vec{x}^* is a local extremum, then all 1st order partial derivatives

$$\frac{\partial}{\partial x_1} f(\vec{x}^*) = 0, \dots, \frac{\partial}{\partial x_d} f(\vec{x}^*) = 0$$

• Zero slope along each x_i -coordinate so f is overall "flat" at \vec{x}^*

2nd Order Partial Derivative

- Question: What about 2nd order condition to distinguish among concave up/down, saddle point, etc?
- Answer: Use 2nd order partial derivatives

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \quad \text{for } i, j = 1, \dots, d$$

Fact: If f is smooth enough (i.e. all 2nd order partial derivatives are continuous), then

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

e.g.
$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + x_2^2 - 4x_1 + 2$$

$$\frac{\partial f}{\partial x_1} = 6x_1 + 2x_2 - 4 \qquad \frac{\partial f}{\partial x_2} = 2x_1 + 2x_2$$

$$\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_2} = 6 \qquad \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_2} = 2$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_2} = 2$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_1} = \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_1} = 2$$
same

Hessian Matrix

• Hessian matrix of a function $f: \mathbb{R}^d \mapsto \mathbb{R}$ is

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_d^2} \end{pmatrix}$$

- $H \in \mathbb{R}^{d \times d}$ is usually a symmetric matrix!
- **Question:** How to define "H is positive or negative" when it is not a single number?

Matrix Definiteness

• Symmetric matrix $A \in \mathbb{R}^{d \times d}$ is **positive semi- definite** if

$$\frac{d}{1 \quad \vec{v}^T} \times \begin{bmatrix} d & 1 \\ d & A \end{bmatrix} \times \begin{bmatrix} 1 \\ d \\ \vec{v} \end{bmatrix} \ge 0 \text{ for all } \vec{v} \in \mathbb{R}^d$$

• Furthermore, A is **positive definite** if

$$\vec{v}^T A \vec{v} > 0$$
 whenever $\vec{v} \neq \vec{0}$

- Similarly for negative semi-definite and negative definite
- If *A* is none of the above, then it is **indefinite**

Matrix Definiteness vs Eigenvalue Spectrum

• Let $A = QDQ^T$ be its spectral decomposition

$$\hat{v}_i^T A \hat{v}_i = (- \quad \hat{v}_i \quad -) \begin{pmatrix} | & & | \\ \hat{v}_1 & \dots & \hat{v}_d \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_d \end{pmatrix} \begin{pmatrix} - & \hat{v}_1 & - \\ & \vdots & \\ - & \hat{v}_d & - \end{pmatrix} \begin{pmatrix} | \\ \hat{v}_i \\ | \end{pmatrix} = \lambda_i$$

$$\hat{e}_i^T = (0, \dots, 1, \dots, 0)$$

- If A is positive definite, then $\lambda_i > 0$ for all i = 1, ..., d (Converse is also true!)
- If A is positive semi-definite, then $\lambda_i \geq 0$ for all i = 1, ..., d
- Similarly for negative definite and negative semi-definite
- A is indefinite iff its eigenvalues have mixed signs i.e. some $\lambda_i < 0$ and $\lambda_j > 0$

Spectrum of a symmetric matrix tells us about its definiteness

2^{nd} Order Condition for d-Dimensional Function

 $f(x_1,x_2)=-x_1^2-x_2^2$

Positive definite Hessian

$$H = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

 x^* is a local minimum i.e. **concave up**

Negative definite Hessian

$$H = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$

 x^* is a local maximum i.e. concave down

Indefinite Hessian

$$H = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

 x^* is a **saddle point**

Quadratic Form

• Quadratic form of a symmetric matrix $A \in \mathbb{R}^{d \times d}$ is a function $f: \mathbb{R}^d \mapsto \mathbb{R}$

$$f(\vec{x}) = \vec{x}^T A \vec{x} = \sum_{i=1}^d \sum_{j=1}^d A_{ij} x_i x_j$$

• It is the high-dimensional analog of the parabola function $f(x) = ax^2$

e.g.

$$A = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}$$

$$f(x_1, x_2) = 4x_1x_1 + 1x_1x_2 + 1x_2x_1 + 3x_2x_2$$
$$= 4x_1^2 + 2x_1x_2 + 3x_2^2$$

Hessian of Quadratic Form

The 2nd order partial derivatives are

$$\frac{\partial^2 f}{\partial x_i^2} = 2A_{ii}$$

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = A_{ij} + A_{ji} = 2A_{ij}$$

- So the Hessian matrix of f is exactly 2A
- Therefore, we can understand more about definiteness of A by visualizing a "pure" quadratic function f closely related to A

Geometry of Quadratic Form

e.g. Positive definite matrix

$$A = \begin{pmatrix} 7 & 3 \\ 3 & 7 \end{pmatrix}$$

$$f(x_1, x_2) = \vec{x}^T A \vec{x} = 7x_1^2 + 6x_1x_2 + 7x_2^2$$

$$\hat{v}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$
 with $\lambda_1 = 10$

$$\hat{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$
 with $\lambda_2 = 4$

$$f(x_1,x_2) = 7x_1^2 + 6x_1x_2 + 7x_2^2$$

Geometry of Quadratic Form

e.g. Indefinite matrix

$$A = \begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix}$$

$$f(x_1, x_2) = \vec{x}^T A \vec{x} = x_1^2 + 10x_1x_2 + x_2^2$$

$$\hat{v}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$
 with $\lambda_1 = 6$

$$\hat{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$
 with $\lambda_2 = -4$

Normal Distribution Density

• Univariate normal $\mathcal{N}(\mu, \sigma^2)$ distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

• Multivariate normal $\mathcal{N}_d(\vec{\mu}, C)$ distribution

$$f(\vec{x}) = \frac{1}{\sqrt{(2\pi)^d \det(C)}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})}$$
 quadratic form density normalization constant

Gradient Vector

• The **gradient** / Jacobian / "derivative" of $f: \mathbb{R}^d \mapsto \mathbb{R}$ at point $\vec{x} \in \mathbb{R}^d$ is

$$\nabla f(\vec{x}) = Df(\vec{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\vec{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\vec{x}) \end{pmatrix} \in \mathbb{R}^d$$

i.e. vector of all 1st order partial derivatives

• Previously, $\nabla f(\vec{x}^*) = \vec{0}$ when \vec{x}^* is a critical point

Geometry of Gradient Vector

- Gradient vector $\nabla f(\vec{x})$ represents:
 - 1. Direction of **steepest ascent** along the surface of f at point \vec{x}
 - 2. Length is steepness

Gradient Descent Algorithm

Numerical minimization problem

$$\min_{\vec{x}} f(\vec{x})$$

- Iterative **gradient descent** algorithm
 - 1. Initialize \vec{x}_0 somehow
 - 2. Compute

$$\vec{x}_{t+1} = \vec{x}_t - \nabla f(\vec{x}_t)$$
direction of steepest descent

• Application: Learning the weight parameters \overrightarrow{w} of deep neural network models

Source: Alexander Amini, Daniela Rus. Massachusetts Institute of Technology, Adapted by M. Atarod / Science

Markov Chain

- Everyday, I decide among following 4 lunch options:
 - 1. McDonald's
 - 2. Pizza Hut
 - 3. Starbucks
 - 4. Leftover

t = 1, 2, ...

• Let random variables $X_1, X_2, ...$ be the sequence of daily lunch choices

$$X_t = \begin{pmatrix} \text{lunch choice} \\ \text{on } t^{\text{th}} \text{ day} \end{pmatrix} \in \{1, 2, 3, 4\}$$
 finite state space

Markov Property

 Assume Markov property i.e. tomorrow's choice depends only on today but not previous days

$$\mathbb{P}(X_{t+1} = j | X_t, X_{t-1}, \dots, X_1) = \mathbb{P}(X_{t+1} = j | X_t)$$
all history

e.g. If I choose to "not repeat what I just ate in the last 2 days", then it is not Markovian

Transition Probability Matrix Lunch Example

Assume **time-homogenous** chain i.e. transition probability does not depend on time index t

$$\mathbb{P}(X_{t+1} = j | X_t = i) = p_{ij}$$

Let 1-step transition probability matrix be

$$P = \begin{pmatrix} 0.1 & 0.6 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0.3 & 0.4 & 0 \end{pmatrix} \in [0,1]^{d \times d}$$
number of states

row stochastic matrix i.e. each row sum to 1

e.g. McDonald's, Pizza Hut, Starbucks, leftover

Question: In the long run, how often do I visit each lunch option?

Chapman-Kolmogorov Equation

Let 1-step transition probability matrix

$$P = \begin{pmatrix} p_{11} & \cdots & p_{1d} \\ \vdots & \ddots & \vdots \\ p_{d1} & \cdots & p_{dd} \end{pmatrix} \in [0,1]^{d \times d}$$

The 2-step transition probability matrix is $P^{(2)} = P \times P = P^2$. Similarly, the **n-step** transition probability matrix is

$$P^{(n)} = P \times \cdots \times P = P^n$$

The 2-step transition probability is

$$P_{ij}^{(2)} = \mathbb{P}(X_{t+2} = j | X_t = i)$$

$$= \sum_{k=1}^{d} \mathbb{P}(X_{t+1} = k | X_t = i) \mathbb{P}(X_{t+2} = j | X_{t+1} = k)$$

$$= (p_{i1} \dots p_{id}) \times \begin{pmatrix} p_{j1} \\ \vdots \\ p_{jd} \end{pmatrix}$$

$$i^{th} \text{ row of } P$$

$$p^{(4)} = \begin{pmatrix} 0.1 & 0.6 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0.3 & 0.4 & 0 \end{pmatrix}^{4}$$

$$= \begin{pmatrix} 0.26 & 0.38 & 0.16 & 0.21 \\ 0.24 & 0.37 & 0.17 & 0.22 \\ 0.25 & 0.38 & 0.17 & 0.19 \\ 0.26 & 0.36 & 0.18 & 0.20 \end{pmatrix}$$

$$P^{(4)} = \begin{pmatrix} 0.1 & 0.6 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0.3 & 0.4 & 0 \end{pmatrix}^{4}$$

$$= \begin{pmatrix} 0.26 & 0.38 & 0.16 & 0.21 \\ 0.24 & 0.37 & 0.17 & 0.22 \\ 0.25 & 0.38 & 0.17 & 0.19 \\ 0.26 & 0.36 & 0.18 & 0.20 \end{pmatrix}$$

e.g.

Initial Distribution at t = 1

• At initial time t = 1, let us impose

$$\mathbb{P}(X_1=i)=p_i^{(1)}$$

$$\vec{p}^{(1)} = (p_1^{(1)}, \dots, p_d^{(1)}) \in [0,1]^d$$
sum up to 1

e.g. McDonald's on 1st day

$$\vec{p}^{(1)} = (1, 0, 0, 0)$$

e.g. Pick one at random uniformly

$$\vec{p}^{(1)} = (1/4, 1/4, 1/4, 1/4)$$

Distribution of X_2

Marginalize the joint distribution

$$\mathbb{P}(X_2 = j) = \sum_{i=1}^{d} \mathbb{P}(X_1 = i) \mathbb{P}(X_2 = j | X_1 = i)$$

$$= \begin{pmatrix} p_1^{(1)} & \dots & p_d^{(1)} \end{pmatrix} \times \begin{pmatrix} p_{j1} \\ \vdots \\ p_{jd} \end{pmatrix} = p_j^{(2)}$$

$$\text{distribution of } X_1 \qquad \uparrow$$

$$j^{\text{th}} \text{ column of } P$$

• Distribution of X_2 is

$$\begin{array}{c}
d \\
1 \quad \overrightarrow{\vec{p}^{(1)}} \times \boxed{d} \quad P \\
 & = 1 \quad \overrightarrow{\vec{p}^{(2)}} \in [0,1]^{1 \times d} \\
 & \text{also sum up to 1}
\end{array}$$

Distribution of X_t

• By induction or n-step transition probability matrix, X_t has distribution

$$\mathbb{P}(X_t = i) = p_i^{(t)}$$

$$\vec{p}^{(t)} = (p_1^{(t)}, \dots, p_d^{(t)}) \in [0, 1]^d$$

$$\begin{array}{c}
\frac{d}{1 \quad \overrightarrow{\vec{p}^{(1)}}} \times \boxed{d} \\
P^{t-1} = \boxed{1 \quad \overrightarrow{\vec{p}^{(t)}}} \in [0,1]^{1 \times d}
\end{array}$$

• We denote $X_t \sim \vec{p}^{(t)}$

Day 2 Lunch Example

e.g. McDonald's on 1st day

$$\vec{p}^{(1)} = (1, 0, 0, 0)$$

$$P = \begin{pmatrix} 0.1 & 0.6 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0.3 & 0.4 & 0 \end{pmatrix}$$

$$\vec{p}^{(2)} = \vec{p}^{(1)} \times P = (0.1, 0.6, 0.2, 0.1)$$

e.g. Pick one at random uniformly

$$\vec{p}^{(1)} = (1/4, 1/4, 1/4, 1/4)$$

$$\vec{p}^{(2)} = \vec{p}^{(1)} \times P = (0.275, 0.4, 0.175, 0.15)$$

Stationary Distribution

 A stationary / steady-state / equilibrium distribution is an initial distribution

$$X_1 \sim \vec{\pi}$$

$$\vec{\pi} = (\pi_1, \dots, \pi_d) \in [0,1]^{1 \times d}$$

that satisfies

$$\vec{\pi} \times P = \vec{\pi}$$

• In this case, $X_2 \sim \vec{\pi}$ and hence

$$X_t \sim \vec{\pi}$$
 for all $t = 1, 2, ...$

i.e. all have same distribution

Left Eigenvector of Eigenvalue 1

- Stationary condition says:
 - 1. $\vec{\pi}$ is a **left eigenvector** of P with eigenvalue 1
 - 2. We also need $\pi_1 + \cdots + \pi_d = 1$
- In other words, column vector $\vec{\pi}^T \in [0,1]^{d \times 1}$ is a (right) eigenvector of P^T

$$P^T \times \vec{\pi}^T = \vec{\pi}^T$$

• Fact: If transition probability matrix P has any other (real) eigenvalue λ , then $|\lambda| < 1$

Stationary Lunch Example

e.g.

$$P = \begin{pmatrix} 0.1 & 0.6 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0.3 & 0.4 & 0 \end{pmatrix}$$

• Using R to compute

Only one stationary distribution

$$\vec{\pi} = (0.248, 0.371, 0.171, 0.210)$$

Interpretation of Stationary

• If I pick 1st day lunch randomly based on $X_1 \sim \vec{\pi}$ and follow transition probability matrix P, then each lunch X_t has same marginal distribution

$$X_t \sim \vec{\pi}$$

- But X₁, X₂, ... are **not independent** e.g. if I eat leftover today, then no leftover for tomorrow
- Stationary is not same as choosing everyday lunch X_t from $\vec{\pi}$ separately

$$X_t \sim \vec{\pi}$$
 but not i.i.d.

Countable State Space

Main questions:

- 1. Does stationary $\vec{\pi}$ always exist?
- In this case, is it unique?
- 3. Does $\lim_{n\to\infty} P^n = P^\infty$ exist?
- 4. Is this case, is $\vec{\pi}$ related to rows of P^{∞} ?
- Finite state space is too simple to see general big picture
- We will also illustrate some countably infinite state space examples

Random Walk on \mathbb{Z}

e.g. Random walk on integers

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$$

countable but infinite state space

Let transition probability be

$$\mathbb{P}(X_{t+1} = i + 1 | X_t = i) = p$$

$$\mathbb{P}(X_{t+1} = i - 1 | X_t = i) = 1 - p$$
 sum to 1

- So the chain can only move ± 1 unit to left or right each time
- Application: Brownian motion, stochastic calculus, financial derivative pricing

Accessible and Irreducible

 If we start at state i and there is a chance to visit state j eventually

$$(P^n)_{ij} > 0$$
 for some step n

then j is **accessible** from i.

$$i \rightarrow j$$

• If two states i and j are accessible from each other i.e. both $i \rightarrow j$ and $j \rightarrow i$, then they **communicate**.

$$i \leftrightarrow j$$

 A Markov chain is irreducible if all states communicate with each other

Fast Food Junkie Example

e.g.

$$P_{\text{fast food}} = \begin{pmatrix} 0.5 & 0.5 & 0 & 0\\ 0.5 & 0.5 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0.1 & 0 & 0.9 & 0 \end{pmatrix}$$

Absorbing State

An absorbing state i has

$$\mathbb{P}(X_{t+1} = i | X_t = i) = P_{ii} = 1$$

For all other $j \neq i$

$$\mathbb{P}(X_{t+1} = j | X_t = i) = P_{ij} = 0$$

Facts:

- 1. Absorbing state does not communicate with other states
- 2. Irreducible Markov chain cannot have an absorbing state

Latte-Holic Example

e.g. Once visit Starbucks, then latte everyday

$$P_{\text{latte}} = \begin{pmatrix} 0.1 & 0.6 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.5 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0.3 & 0.3 & 0.4 & 0 \end{pmatrix}$$

$$0.2 \qquad \text{all 0's except 1}$$

$$0.3 \qquad L$$

$$0.4 \qquad S$$

Transient and Recurrent

A state is transient if

$$\mathbb{P}(\text{never return}|X_1=i)>0$$

Otherwise, it is recurrent since

$$\mathbb{P}(\text{will return}|X_1=i)=1$$

• (For recurrent state) Let T_i be the time it takes to return. State i is **positive recurrent** if

$$\mathbb{E}(T_i) < \infty$$

Otherwise, $\mathbb{E}(T_i) = \infty$ and it is **null** recurrent

Examples

- e.g. Fast food junkie
 - Positive recurrent: McDonald's, Pizza Hut
 - Transient: Starbucks, leftover
- e.g. Latte-holic
 - Positive recurrent: Starbucks
 - Transient: (all other states)
- e.g. Asymmetric random walk on \mathbb{Z} i.e. $p \neq 1/2$
 - All integers are transient
- e.g. Symmetric random walk on \mathbb{Z} i.e. p=1/2
 - All integers are actually null recurrent

Period and Aperiodic

Recall the n-step return probability is

$$(P^n)_{ii} = \mathbb{P}(X_{t+n} = i | X_t = i)$$

• The **period** of state *i* is

GCD of
$$\{n \in \mathbb{N}: (P^n)_{ii} > 0\}$$
greatest common denominator

- A state is **aperiodic** if it has period 1
- e.g. McDonald's has self-loop so is period 1

$${n \in \mathbb{N}: (P^n)_{ii} > 0} = {1, ...}$$

Examples

e.g. Random walk on \mathbb{Z} is period 2 (all states)

$${n \in \mathbb{N}: (P^n)_{ii} > 0} = {2, 4, 6, \dots}$$

e.g. Random walk on 3-cycle is period 1

$${n \in \mathbb{N}: (P^n)_{ii} > 0} = {2, 3, \dots}$$

Shared Characteristic

- **Fact:** If two states communicate, then they are either:
 - Both transient
 - 2. Both positive recurrent
 - 3. Both null recurrent

Moreover, they have the same period.

e.g. In lunch example, Markov chain is irreducible. Since McDonald's has period 1, all states are aperiodic.

3 Types of Markov Chains

- **Thm 1:** For an irreducible Markov chain on countable state space, the states are either:
 - 1. All transient and no stationary $\vec{\pi}$
 - 2. All null recurrent and no stationary $\vec{\pi}$
 - 3. All positive recurrent and has unique stationary $\vec{\pi}$. In this case,

$$\pi_i = \lim_{t \to \infty} \frac{N_i^{(t)}}{t} = \frac{1}{\mathbb{E}(T_i)} > 0$$
 must be positive of visits to state i expected return time

Thm 2: For finite state space, must be case #3

Oscillation and Ergordic

e.g.

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 period 2

$$P^{2n} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad P^{2n+1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

So P^n does not converge as $n \to \infty$

 A Markov chain is ergodic if it is positive recurrent and aperiodic

Convergence of P^n to $\overrightarrow{\pi}$

- Thm 3: For an irreducible Markov chain on countable state space, if it is ergordic (so $\vec{\pi}$ exists):
 - 1. *n*-step transition matrix must converge

$$\lim_{n\to\infty} P^n = P^\infty$$

2. All rows of matrix limit are the same

$$\vec{\pi} = \text{any row of } P^{\infty}$$

3. For any initial distribution $X_1 \sim \vec{p}^{(1)}$

$$X_t \sim \vec{p}^{(1)} P^{t-1} \rightarrow \vec{p}^{(1)} P^{\infty} = \vec{\pi}$$
 linear combination of all rows in P^{∞}

Detailed Balance Condition

Recall 1-step transition probability

$$\mathbb{P}(X_{t+1} = j | X_t = i) = p_{ij}$$

Fact: If $\vec{v}=(v_1,\dots,v_d)\in [0,1]^d$ with $v_1+\dots+v_d=1$ satisfies the **detailed** balance equations

$$v_i \times p_{ij} = v_i \times p_{ji}$$
 for all i, j

then \vec{v} must be a stationary distribution

Proof?

$$v_i = v_i \times \sum_{j=1}^d p_{ij} = \sum_{j=1}^d v_j \times p_{ji}$$
 dot product of \vec{v} with i^{th} column of P

In this case, the Markov chain is called reversible

e.g. Symmetric random walk on 3-cycle

So
$$v_i = 1/3$$
 for $i = 1, ..., 3$

Markov Chain Monte Carlo

• In Bayesian statistics, we are often given some probability distribution (say $\vec{\pi}$) and need to generate a sample

$$X_1, X_2, \dots \sim \vec{\pi}$$
 approx i.i.d.

- Metropolis-Hastings / Gibbs sampling algorithms:
 - 1. Construct transition probability P to satisfy detailed balance condition for $\vec{\pi}$
 - 2. Use P as Markov chain to generate a sample $X_1, X_2, ...$
 - 3. We know $X_t \approx \vec{\pi}$ for all large t

Markov Chain Applications

- e.g. Sequence modeling
 - Hidden Markov model HMM (1989) for speech recognition
 - Text prediction / generation e.g. Mark
 V. Shaney
- e.g. Markov decision process
 - Markov chain + action + reward
 - Bellman equation, optimal policy
 - Reinforcement learning
- e.g. Google's PageRank (1996)
 - Graph of connected web pages with popularity

Low-Rank Matrix Approx.

- Let $A \in \mathbb{R}^{n \times d}$. We wish to find some matrix $B \in \mathbb{R}^{n \times d}$ such that:
 - 1. Low rank $rank(B) = k \ll min(n, d)$
 - 2. Approximation $A \approx B$
- The **Frobenius norm** of a matrix is

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^d a_{ij}^2\right)^{1/2}$$

Frobenius Norm of Matrix

Find the "best" rank-k matrix approximation

$$\min_{\operatorname{rank}(B)=k} \|A - B\|_F$$

• **Fact:** Frobenius norm is related to singular values

$$||A||_F^2 = \operatorname{tr}(A^T A) = \sum_{i=1}^r \sigma_i^2$$

Proof? Let $A = UDV^T$ be its SVD. Then

$$tr(A^{T}A) = tr(VDU^{T}UDV^{T})$$
$$= tr(V^{T}VD^{2}) = tr(D^{2})$$

Truncation of Singular Value Decomposition

• Let $A = UDV^T$ be its SVD with singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$

$$A = \begin{pmatrix} | & & | \\ \hat{u}_1 & \dots & \hat{u}_r \\ | & & | \end{pmatrix} \begin{pmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_r \end{pmatrix} \begin{pmatrix} - & \hat{v}_1 & - \\ \vdots & \\ - & \hat{v}_r & - \end{pmatrix} = \sum_{i=1}^r \sigma_i \begin{pmatrix} | \\ \hat{u}_i \\ | \end{pmatrix} (- & \hat{v}_i & -)$$

$$U \in \mathbb{R}^{n \times r} \qquad D \in \mathbb{R}^{r \times r} \qquad V^T \in \mathbb{R}^{r \times d} \qquad \text{rank-1 matrix}$$

$$A \approx \sum_{i=1}^k \sigma_i \begin{pmatrix} | \\ \hat{u}_i \\ | \end{pmatrix} (- \quad \hat{v}_i \quad -) = \begin{pmatrix} | \\ \hat{u}_1 & \dots & \hat{u}_k \\ | & & | \end{pmatrix} \begin{pmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_k \end{pmatrix} \begin{pmatrix} - & \hat{v}_1 & - \\ \vdots & \ddots & \vdots \\ - & \hat{v}_k & - \end{pmatrix} = B$$

$$\operatorname{rank-}k \text{ matrix} \qquad \in \mathbb{R}^{n \times k} \qquad \in \mathbb{R}^{k \times k} \qquad \in \mathbb{R}^{k \times d}$$

Latent Factor Analysis

- Let $X \in \mathbb{R}^{n \times d}$ be the movie review ratings by n people on d movies
- Latent factor model assumption:
 - 1. Each person's representation

$$\vec{p}_i \in \mathbb{R}^k$$

2. Each movie's representation

$$\overrightarrow{m}_j \in \mathbb{R}^k$$

3. Movie rating is

$$x_{ij} = \vec{p}_i \cdot \vec{m}_j + e_{ij}$$
 combining factors unexplained / noise

• Wish to learn low-dimensional hidden factors $\vec{p_i}$'s and $\vec{m_i}$'s from data X

• Data matrix *X* can be decomposed into

- Use cases:
 - 1. Movie similarity $\|\vec{m}_{j_1} \vec{m}_{j_2}\|$
 - 2. Predict rating for unwatched movie \vec{m}
- Applications: Collaborative filtering, latent semantic analysis LSA on document-word matrix