

Inference

MAP

Max-Sum Exact Inference

Product ⇒ Summation

$$P_{\Phi}(\boldsymbol{x}) \propto \prod_k \phi_k(\boldsymbol{D}_k)$$

$$\operatorname{argmax} \prod_{k} \phi_k(\boldsymbol{D}_k)$$

$$\underset{\theta(X_1,\ldots,X_n)}{\operatorname{argmax}} \sum_{k} \theta_k(\boldsymbol{D}_k)$$

a¹	b¹	8
a^1	b ²	1
a ²	b¹	0.5
a ²	b ²	2

a^1	b¹	3
a^1	b ²	0
a ²	b¹	-1
a ²	b ²	1

Max-Sum Elimination in Chains

$$\max_{D} \max_{C} \max_{B} \max_{A} \left(\theta_{1}(A,B) + \theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) \right)$$

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \max_{A} \theta_{1}(A,B) \right)$$

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \lambda_{1}(B) \right)$$

Factor Summation

	_		
a¹	b¹	c ¹	3+4=7
a¹	b¹	c ²	3+1.5=4.5
a ¹	b ²	c ¹	0+0.2=0.2
a ¹	b ²	c ²	0+2=2
a ²	b¹	c ¹	-1+4=3
a ²	b¹	c ²	-1+1.5=0.5
a ²	b ²	c ¹	1+0.2=1.2
a ²	b ²	c ²	1+2=3

Factor Maximization

a¹	b¹	c ¹	7			
a^1	b¹	c ²	4.5			
a¹	b ²	c ¹	0.2	a ¹	c ¹	7
a ¹	b ²	c ²	2	a ¹	c ²	4.5
a ²	b¹	c¹	3	a ²	c ¹	3
a ²	b¹	c ²	0.5	a ²	c ²	3
a ²	b ²	c ¹	1.2			
a ²	b ²	c ²	3			

Max-Sum Elimination in Chains

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \lambda_{1}(B) \right)$$

$$\max_{D} \max_{C} (\theta_3(C, D) + \theta_4(D, E) + \max_{B} (\theta_2(B, C) + \lambda_1(B)))$$

$$\max_{D} \max_{C} (\theta_3(C, D) + \theta_4(D, E) + \lambda_2(C))$$

Max-Sum Elimination in Chains

$$\max_{D} \max_{C} (\theta_3(C, D) + \theta_4(D, E) + \lambda_2(C))$$

$$\max_{D} (\theta_4(D, E) + \lambda_3(D))$$

$$\lambda_4(E)$$
 $\lambda_4(e)$

Max-Sum in Clique Trees

Convergence of Message Passing

- Once C_i receives a final message from all neighbors except C_j , then $\lambda_{i \to j}$ is also final (will never change)
- · Messages from leaves are immediately final

Simple Example

	_		
a¹	b¹	c ¹	3+4=7
a¹	b¹	c ²	3+1.5=4.5
a ¹	b ²	c ¹	0+0.2=0.2
a ¹	b ²	c ²	0+2=2
a ²	b¹	c ¹	-1+4=3
a ²	b¹	c ²	-1+1.5=0.5
a ²	b ²	c ¹	1+0.2=1.2
a ²	b ²	c ²	1+2=3

Simple Example

a^1	b¹	3
a^1	b ²	0
a ²	b ¹	-1
a ²	b ²	1

		_
b¹	c ¹	4
b¹	c ²	1.5
b ²	c¹	0.2
b ²	c ²	2

Max-Sum BP at Convergence

Each clique contains max-marginal

$$\beta_i(\boldsymbol{C}_i) = \max_{\boldsymbol{W}_i} \theta(\boldsymbol{C}_i, \boldsymbol{W}_i)$$
 $\boldsymbol{W}_i = \{X_1, \dots, X_n\} - \boldsymbol{C}_i$

- · Cliques are necessarily calibrated

a^1	b¹	3+4=7
a^1	b ²	0+2=2
a ²	b¹	-1+4=3
a ²	b ²	1+2=3

- Agree on sepsets
$$\max_{C_i-S_{i,j}} \beta_i(C_i) = \max_{C_j-S_{i,j}} \beta_j(C_j)$$

b¹	c ¹	4+3=7
b¹	c ²	1.5+3=4.5
b ²	c ¹	0.2+1=1.2
b ²	c ²	2+1=3

Summary

- The same clique tree algorithm used for sum-product can be used for max-sum
- As in sum-product, convergence is achieved after a single up-down pass
- Result is a max-marginal at each clique C:
 - For each assignment ${\bf c}$ to ${\bf C}$, what is the score of the best completion to ${\bf c}$

Inference

MAP

Finding a MAP Assignment

Decoding a MAP Assignment

- Easy if MAP assignment is unique
 - Single maximizing assignment at each clique
 - Whose value is the θ value of the MAP assignment
 - Due to calibration, choices at all cliques must agree

a^1	b¹	c ¹	7
a^1	b¹	c ²	4.5
a^1	b ²	c¹	0.2
a^1	b ²	c ²	2
a ²	b¹	c¹	3
a ²	b¹	c ²	0.5
a ²	b ²	c¹	1.2
a ²	b ²	c ²	3

a^1	b ¹	3+4=7
a^1	b ²	0+2=2
a ²	b¹	-1+4=3
a ²	b ²	1+2=3

b¹	c ¹	4+3=7
b¹	c ²	1.5+3=4.5
b ²	c ¹	0.2+1=1.2
b ²	c ²	2+1=3

Decoding a MAP assignment

- If MAP assignment is not unique, we may have multiple choices at some cliques
- Arbitrary tie-breaking may not produce a MAP assignment

a^1	b¹	2
a^1	b ²	1
a ²	b¹	1
a ²	b ²	2

b¹	c ¹	2
b¹	c ²	1
b ²	c ¹	1
b ²	c ²	2

Decoding a MAP assignment

- If MAP assignment is not unique, we may have multiple choices at some cliques
- Arbitrary tie-breaking may not produce a MAP assignment
- Two options:
 - Slightly perturb parameters to make MAP unique
 - Use traceback procedure that incrementally builds a MAP assignment, one variable at a time