Esercizio 1. Considerate l'istanza del Facility Location Game con insieme dei clienti $N = \{A, B, C, D\}$, insieme delle facility $F = \{1, 2, 3\}$, costi di set-up $f_1 = 5$, $f_2 = 7$, $f_3 = 8$ e costi di connessione $d_{A,1} = 2$, $d_{A,2} = 5$, $d_{A,3} = 10$, $d_{B,1} = 2$, $d_{B,2} = 1$, $d_{B,3} = 6$, $d_{C,1} = 6$, $d_{C,2} = 3$, $d_{C,3} = 2$, $d_{D,1} = 10$, $d_{D,2} = 10$, $d_{D,3} = 4$ (i costi sono metrici e non dovete verificarlo).

Utilizzando l'algoritmo primale-duale individuare una soluzione per il problema di facility location (ovvero, quali facility aprire e la connessione di ogni cliente a una facility aperta). Illustrare lo svolgimento dell'esercizio riportando i valori di tutte le variabili al variare della variabile di clock t, le facility aperte in modo temporaneo e quelle aperte in modo definitivo (giustificando la eventuale chiusura di una o più facility) e i valori delle variabili duali.

Esercizio 1.1 Quale frazione del costo di questa soluzione può essere recuperata se volete imputare a ciascun cliente un costo che sia stabile anche rispetto le coalizioni? *Per rispondere alla domanda, indicare quanto dovrebbe pagare ciascun cliente e appunto la frazione di costo che questa allocazione permette di recuperare.*

Esercizio 1.2 Supponete ora che il costo delle facility $2 \sin 7 + \varepsilon$ (con ε possibilmente anche negativa) mentre tutto il resto è immutato. Qual è il più piccolo valore di ε per cui vi attendete che l'algoritmo primale duale vi restituisca una soluzione che permetta di recuperare il 100% del costo? *Per rispondere alla domanda*, è sufficiente fornire tale valore, se esiste.

Esercizio 1

Svolgiamo l'algoritmo primale-duale. Esso fa crescere ordinatamente le variabili $\alpha_j, j \in \{A, B, C, D\}$ e le variabili $\beta_{ij}, i \in \{1, 2, 3\}, j \in \{A, B, C, D\}$. Immaginiamo che il suo svolgimento segua un clock esterno, rappresentato da una variabile temporale t: all'inizio t = 0 e tutte le variabili valgono 0, poi $t = \varepsilon$ e tutte le α_j valgono ε etc.

All'istante t = 1, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 1$, le variabili β sono a o, gli archi $\{2, B\}$ è tight, nessuna facility è temporaneamente aperta.

All'istante t = 2, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 2$, $\beta_{2B} = 1$, le altre variabili β sono a o, gli archi $\{1,A\},\{1,B\},\{2,B\},\{3,C\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante t = 3, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 3$, $\beta_{2B} = 2$, $\beta_{1A} = \beta_{1B} = \beta_{3C} = 1$, le altre variabili β sono a o, gli archi $\{1,A\}, \{1,B\}, \{2,B\}, \{2,C\}, \{3,C\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante t = 4, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 4$, $\beta_{2B} = 3$, $\beta_{1A} = \beta_{1B} = \beta_{3C} = 2$, $\beta_{2C} = 1$, le altre variabili β sono a o, gli archi $\{1,A\},\{1,B\},\{2,B\},\{2,C\},\{3,C\},\{3,D\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante t = 4.5, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 4.5$, $\beta_{2B} = 3.5$, $\beta_{1A} = \beta_{1B} = \beta_{3C} = 2.5$, $\beta_{2C} = 1.5$, $\beta_{3D} = 0.5$, le altre variabili β sono a o, gli archi $\{1,A\},\{1,B\},\{2,B\},\{2,C\},\{3,C\},\{3,D\}$ sono tight, la facility 1 è temporaneamente aperta e i clienti A e B sono temporaneamente connessi alla facility 1.

All'istante t = 6, $\alpha_A = \alpha_B = 4.5$, $\alpha_C = \alpha_D = 6$, $\beta_{2B} = 3.5$, $\beta_{1A} = \beta_{1B} = 2.5$, $\beta_{3C} = 4$, $\beta_{2C} = 3$, $\beta_{3D} = 2$, le altre variabili β sono a o, gli archi $\{1,A\},\{1,B\},\{2,B\},\{2,C\},\{3,C\},\{3,D\},\{1,C\}$ sono tight, la facility 1 è temporaneamente aperta e i clienti $A,B\in C$ sono temporaneamente connessi alla facility 1

All'istante t = 8, $\alpha_A = \alpha_B = 4.5$, $\alpha_C = 6$, $\alpha_D = 8$, $\beta_{2B} = 3.5$, $\beta_{1A} = \beta_{1B} = 2.5$, $\beta_{3C} = 4$, $\beta_{2C} = 3$, $\beta_{3D} = 4$, le altre variabili β sono a o, gli archi $\{1,A\},\{1,B\},\{2,B\},\{2,C\},\{3,C\},\{3,D\},\{1,C\}$ sono tight, le facility 1 e 3 sono temporaneamente aperte. I clienti $A, B \in C$ sono temporaneamente connessi alla facility 1, mentre il cliente D è temporaneamente connesso alla facility 3. Così termina la fase 1 dell'algoritmo.

Nella fase 2, l'insieme delle facility temporaneamente aperte è $F_t = \{1,3\}$ e non ci sono conflitti. Quindi possiamo confermare la soluzione individuata al termine della fase 1.

Il costo della soluzione primale è 23 mentre il costo della soluzione duale è 27. Quindi la soluzione duale individuata ci permette di recuperare $\frac{23}{27}$ del costo della soluzione.

Esercizio 1.2 A causa di un refuso sul costo di un arco lo svolgimento dell'esercizio aveva poco senso, quindi non lo ho valutato.

Esercizio 2 Si consideri l'istanza dell'House Allocation Problem con insieme dei giocatori e delle case rispettivamente $N = \{1,2,3,4,5,6,7,8\}$ e $C = \{1,2,3,4,5,6,7,8\}$, dove il giocatore i—esimo possiede la i—esima casa, con $i = 1,\ldots,8$. Le seguenti graduatorie rappresentano le preferenze dei vari giocatori rispetto le case e sono degli ordini totali: Giocatore 1: $\{6,2,3,7,8,5,4,1\}$; Giocatore 2: $\{1,4,7,3,6,5,2,8\}$; Giocatore 3: $\{8,7,5,2,4,3,1,6\}$; Giocatore 4: $\{5,1,2,3,4,6,7,8\}$; Giocatore 5: $\{4,7,1,3,6,8,5,2\}$; Giocatore 6: $\{2,5,3,1,4,7,6,8\}$; Giocatore 7: $\{3,8,4,5,1,6,7,2\}$. Manca la graudatoria del giocatore 8!

2.1 Esiste una graudatoria per 8 tale che l'algoritmo TTCA individua una allocazione stabile in una sola iterazione? **2.2** Esiste una graudatoria per 8 tale che l'algoritmo TTCA individua una allocazione stabile in esattamente 2 iterazioni? **2.3** Esiste una graudatoria per 8 tale che l'algoritmo TTCA individua una allocazione stabile in esattamente 3 iterazioni? **2.4** Esiste una

graudatoria per 8 tale che l'algoritmo TTCA individua una allocazione stabile in esattamente 4 iterazioni? Per ogni punto, in caso affermativo limitarsi a fornire la graduatoria, altrimenti semplicemente dire che non esiste.

2.1 Si basta che la graduatoria di 8 inizi con 7. **2.2** Si, per esempio la graduatoria di 8 potrebbe essere $\{8,\ldots\}$. **2.3** Si, per esempio la graduatoria di 8 potrebbe essere $\{4,8,\ldots\}$. **2.4** Non esiste.