Lecture 3: Generalized Method of Moments

Chris Conlon

February 14, 2021

NYU Stern

Testing

Testing with MLE

Before we discuss testing under GMM, let's look at testing under MLE.

Helpful to define the likelihood ratio

$$LR \equiv -2 \cdot \ln \left[\frac{\mathcal{L}(\theta_1|x)}{\mathcal{L}(\theta_2|x)} \right] = -2 \cdot \left[\ell(\theta_1|x) - \ell(\theta_2|x) \right]$$

- Consider $dim(\theta_1) = q_1$ and $dim(\theta_2) = q_2$ number of parameters
- Often we let θ_2 be the unrestricted and θ_1 be the restricted model.
- Define the degrees of degrees of freedom $N \dim(\theta)$.
- The *LR* statistic is distributed:

$$\Lambda \sim \chi^2_{q_1 - q_2}$$

• If we know θ_1 and θ_2 and we fix significance level α = 0.05 then Neyman-Pearson Lemma says this is uniformly post powerful test.

1

Testing with MLE

We can consider the more advanced possiblity:

$$LR = -2 \ln \left[\frac{\sup_{\theta \in \Theta_1} \mathcal{L}(\theta)}{\sup_{\theta \in \Theta} \mathcal{L}(\theta)} \right]$$

- Θ_1 is a restricted version of the larger set Θ .
- We can also consider non nested tests by looking at differences in degrees of freedom
 - This is mostly beyond what we will do in this course.
 - But we could ask: is x_i distributed normally? or log-normally?

GMM: J-test

The equivalent test in GMM is the J-test

$$Q_N(\theta) = g_N(\theta)' W_N g_N(\theta)$$
$$N \cdot Q_N(\theta) \to^D \chi^2_{n-k}$$

This is an LR-type test statistic.

Inverting LR tests

A useful technique is that we can always invert a test statistic in order to construct confidence intervals.

- \bullet Form an unrestricted estimate $\widehat{\theta}_{MLE}$ or $\widehat{\theta}_{GMM}$
- Compute $\ell(\widehat{\theta})$.
- Find all of the θ such that $CI = \{\theta : \ell(\widehat{\theta}) \ell(\theta) < c\}.$
- If we do *GMM* we can use the *J*-stat instead.

How to choose c the critical value.

- Compute the number of degrees of freedom / additional restrictions
- Choose a significance level α (ie: α = 0.05).

Confidence Intervals and Wald Tests

The multivariate Wald Test is:

$$H_0: R\theta = r \quad H_1: R\theta \neq r$$

$$\left(R\hat{\theta}_n - r\right)' \left[R\left(\hat{V}_n/n\right)R'\right]^{-1} \left(R\hat{\theta}_n - r\right) \quad \rightarrow \quad \chi_q^2$$

- *R* is a matrix of *q* linear restrictions on *k* parameters.
- \hat{V}_n is the covariance matrix for $\widehat{\theta}$.

You've been constructing CI's this way already

$$\widehat{\beta} \pm 1.96SE(\widehat{\beta})$$

LM or Score Test

There is a third test known as the Score Test or LM Test

$$S(\theta) = \frac{\partial \ell(\theta|x)}{\partial \theta}$$
$$I(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2}\ell(X;\theta)|\theta\right]$$

- Compute the score of log likelihood
- Compute the Fisher Information.
- The test statistic

$$S^{T}(\hat{\theta}_{0})I^{-1}(\hat{\theta}_{0})S(\hat{\theta}_{0}) \sim \chi_{q}^{2}$$

Where q is number of restrictions and θ_0 is the true value.

The Trinity of Testing

What to do in practice?

- By reporting asymptotic standard errors you are implicitly using Wald type statisitics.
- If you are comparing models, you should probably try an LR type statistic if you can.
 - It used to be people didn't do this because *LR* required maximizing the objective function more than once.
 - But computers today are pretty good...
- For most extremum estimators (MLE, GMM, GEL, etc.) there are all three kinds of test-statistics
 - ... and around the true θ_0 as $N \to \infty$ they should coincide.
 - but in finite sample... anything can happen!

Thanks!