Calculatrices autorisées — Durée : 2 heures

Le sujet complété devra être rendu dans la copie

Nom: PRÉNOM: **CLASSE:**

/5

EXERCICE 1

Cet exercice est un Questionnaire à Choix Multiples. Vous donnerez votre réponse dans la colonne de droite. Aucune justification n'est demandée. Une réponse fausse n'enlève pas de point.

Aucune justification n'est	demander one repone	e iuuose ii eineve pus ue	poniii	Rép.				
1. La mesure principale de l'angle $x = \frac{197\pi}{3}$ est :								
a. $-\frac{\pi}{3}$	b. $\frac{5\pi}{3}$	$\mathbf{c}_{\bullet} - \frac{5\pi}{3}$	d. $\frac{2\pi}{3}$					
2. La dérivée de la foncti	2. La dérivée de la fonction $f: x \mapsto \frac{-3x^2 + 2}{5 - 4x}$ est : a. $\frac{3x}{2}$ b. $\frac{12x^2 - 30x + 8}{(5 - 4x)^2}$ c. $\frac{-12x^2 + 30x - 8}{(5 - 4x)^2}$ d. $\frac{12x^2 - 30x + 8}{(5 - 4x)}$							
a. $\frac{3x}{2}$	b. $\frac{12x^2 - 30x + 8}{(5 - 4x)^2}$	$\mathbf{c.} \frac{-12x^2 + 30x - 8}{(5 - 4x)^2}$	d. $\frac{12x^2 - 30x + 8}{(5-4x)}$					
3. On donne un nombre $x \in]-\pi; 0]$ tel que $\cos x = \frac{\sqrt{15}}{8}$. Quelle est la valeur de $\sin x$?								
a. $\frac{\sqrt{7}}{8}$	b. $-\frac{\sqrt{7}}{8}$	c. $\frac{7}{8}$	d. $-\frac{7}{8}$					
4. Les solutions de l'inéquation $x^2 - x - 1 \ge 0$ sont								
a.] $-\infty$; $+\infty$ [b. [$-0,62$; 1,62] c.] $-\infty$; $-0,62$] \cup [$1,62$; $+\infty$ [d.] $-\infty$; $\frac{1-\sqrt{5}}{2}$] \cup [$\frac{1+\sqrt{5}}{2}$; $+\infty$ [
5. On donne le point $A(3; 1)$ et le vecteur $\overrightarrow{u} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.								
Une équation cartésienne de la droite d passant par A et de vecteur directeur \overrightarrow{u} est :								
a. $2x - y - 5 = 0$	b. $x - 3y = 0$	c. $2x + y = 7$	$\mathbf{d.} - x + 2y + 1 = 0$					

EXERCICE 2

Soit f la fonction définie pour tout $x \in \mathbb{R}_+^*$ par $f(x) = \frac{1}{x}$, \mathcal{C}_f sa courbe représentative. On considère deux points de \mathscr{C}_f : A et B d'abscisses respectives $\frac{1}{2}$ et 5.

On note I le milieu de [AB],

- 1. (a) Justifier que $A(\frac{1}{2}; 2)$ et $B(5; \frac{1}{5})$.
 - (b) Placer les points sur le graphique ci-contre.
 - (c) Calculer les coordonnées de I, puis placer le point dans le repère.

 T_A et T_B sont les tangentes à \mathcal{C}_f aux points A et B. J est le point d'intersection de T_A et T_B et M est le point d'intersection de \mathscr{C}_f et [*IJ*].

 T_M est la tangente à \mathcal{C}_f au point M.

- (a) Prouver que l'équation de T_A est y = -4x + 4 et que celle de T_B est $y = -\frac{1}{25}x + \frac{2}{5}$.
 - (b) Faire apparaître approximativement les tangentes sur la figure.
 - (c) Déterminer les coordonnées du point J, intersection des deux droites T_A et T_B .
- (a) Trouver l'équation réduite de la droite (*IJ*).
 - (b) M est l'intersection entre (IJ) et \mathscr{C}_f . Démontrer que M a pour coordonnées $\left(\sqrt{\frac{5}{2}}; \frac{1}{\sqrt{\frac{5}{2}}}\right)$.
- 4. Prouver que la droite T_M , tangente à \mathscr{C}_f en M, est parallèle avec la droite (AB).

EXERCICE 3

/7,5

M. Busscarolle a une fille, Louise qui est née en 2008. Il ouvre à sa naissance un compte épargne dans lequel il place une somme de 100€. Tous les ans, ce compte est rémunéré par la banque à un taux de 2 % et M. Busscarolle ajoute à cette somme un montant de 600€.

On appelle u_n le montant, en euros, d'argent disponible sur le compte de Louise à l'année 2008 + n. On peut donc admettre que $u_0 = 100$.

- 1. Justifier rapidement que quel que soit $n \in \mathbb{N}$, $u_{n+1} = 1,02 \times u_n + 600$. Le but de l'exercice est d'étudier cette suite (u_n) .
- 2. Premiers résultats sur cette suite.
 - (a) Calculer les termes u_1 et u_2 de la suite.
 - (b) Démontrer que (u_n) n'est ni arithmétique, ni géométrique.
 - (c) Écrire un algorithme, en langage naturel, qui permet d'obtenir n'importe quel terme u_n de la suite, le nombre n étant entré par l'utilisateur.
- 3. Utilisation d'une suite auxiliaire.

Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n + 30000$.

- (a) Démontrer que la suite (v_n) est géométrique. Donner sa raison et son premier terme.
- (b) En déduire l'expression de v_n en fonction de n.
- (c) Justifier que, pour tout $n \in \mathbb{N}$, $u_n = 30100 \times 1,02^n 30000$
- (d) En déduire la somme disponible sur son compte l'année de ses 18 ans.
- 4. Étude d'un algorithme.

Entrée	Entrer la valeur A				
Traitement	$\it U$ prend la valeur 100				
	n prend la valeur 0				
	Tant que $U < A$ Faire				
	U prend la valeur $U \times 1,02 + 600$				
	n prend la valeur $n+1$				
Fin Tant que					
Sortie	Afficher n				

(a) Faire tourner cet algorithme pour A = 3000 et compléter le tableau suivant :

U	100				
n	0	1			

Que représente la valeur *n* affichée en sortie?

(b) Au bout de combien d'années le capital sur le compte de Louise atteindra-t-il 10 000€, si elle ne touche pas à son compte jusque là?

Plusieurs raisonnements sont possibles, et dans tous les cas, vous justifierez votre résultat.

EXERCICE 4

Géométrie — Hors barème

ABC est un triangle quelconque. Le point *I* est tel que $\overrightarrow{BI} = \frac{1}{4}\overrightarrow{BA}$.

Le point *J* est tel que $\overrightarrow{CJ} = \frac{2}{3}\overrightarrow{CB}$.

Le point *K* est tel que $\overrightarrow{AK} = \frac{3}{5}\overrightarrow{AC}$.

E est le point d'intersection des droites (BK) et (AJ).

Démontrer que les droites (AJ), (BK) et (CI) sont concourantes.