Active Low와 Active High 동작

1. 다이오드(Diode)

: 다이오드(Diode)는 한 방향으로 전류가 흐르도록 제어하는 반도체 소자를 말하며, 전류-전압 특성은 2가지 동작영역으로 나뉜다.

가. 역방향 바이어스(Reversed biased)

: 전압을 걸면 전류의 흐름이 "끊긴(opened)" 회로처럼 동작.

나. 순방향 바이어스(Forward biased)

: 전압을 걸면 저항이 매우 작거나 없는 물체처럼 동작

다. 다이오드(diode)의 기호

2. LED(Light Emitting Diodes)의 기호

가. 회로도에서 발광 다이오드(LED, Light Emitting Diode)는 다음과 같이 표기된다.

나. LED의 구조

다. 보호 저항

: LED와 구동 게이트가 손상되지 않도록 다이오드가 순방향 바이어스될 때 전류를 제한하기 위해 일반적으로 직렬로 접속되는 보호 저항이 필요하다.

3. 액티브-하이(Active High) 및 액티브-로우(Active Low)

가. 액티브-하이(Active High)

1) GPIO 출력이 HIGH일 때 LED가 켜지거나 GPIO 입력에 HIGH 신호가 인가되는 경우를 "액티브-하이(Active High)"라고 함.

2) 위 그림에서 "IO" 핀의 출력이 "High"이면 LED에 빛이 들어온다. 즉, 켜지지 않은 상태에서 기본이 "Low" 상태이며, 따라서 "액티브-하이(Active High)"를 "Normal Low"라고도 한다.

나. 액티브-로우(Active Low)

1) GPIO 출력이 일 때 LED가 켜지거나 GPIO 입력에 LOW 신호가 인가되는 경우를 "액티브-로우(Active Low)"라고 함.

2) 위 그림과 같이 "IO" 핀의 출력이 "Low"이면 LED에 빛이 들어온다. 즉, 켜지지 않은 상태에서 기본이 "High" 상태이며, 따라서 "액티브-로우(Active Low)"를 "Normal High"라고도 한다.

다. Floating 상태

- 1) 입력되는 전압이 "0"도 아니고 "1"도 아닌 상태를 의미한다.
- 2) 이 상태에서는 예상치 못한 결과를 초래할 수 있으므로, 동작 방식이 "Active Low" 또는 "Active High" 인지에 따라 "풀-업"이나 "풀-다운" 저항을 달아준다.
- 4. 풀-업(Pull-Up)과 풀-다운(Pull-Down) 저항

가. 풀-업(Pull-Up) 저항

1) 풀-업(Pull-Up)은 플로팅 상태의 전압을 끌어 올리는 것을 말한다.

- 2) 액티브-로우(Active Low), 즉 "Normal High" 상태에서 사용한다.
- 3) 저항은 "VCC"에 달아준다.

4) 기본적으로 스위치가 닫혀 있을 때 전류가 "VCC ⇒ io" 핀으로 흐른다. 스위치 가 눌리면 전류가 "VCC ⇒ GND"로 흐르므로 "io" 핀에는 전류가 흐르지 않게 되므로 "Low" 상태가 된다.

나. 풀-다운(Pull-Down) 저항

- 1) 풀-다운(Pull-Down)은 플로팅 상태의 전압을 내리는 것을 말한다.
- 2) 액티브-하이(Active High), 즉 "Normal Low"에서 사용한다.
- 3) 풀-업(Pull-Up)과는 반대로 저항은 "GND"에 달아준다.

4) 기본적으로 스위치가 닫혀 있을 때 "io" 핀과 "GND"가 저항으로 연결되어 있어 "Normal Low" 상태이다. 스위치가 눌리면 "VCC"가 "GND"와 도통될 것 같지만 저항 때문에 "io" 핀으로 전류가 흐르게 된다.