Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. Sea G con |G| = 12, con $n_3 > 1$. Entonces $G \equiv A_4$.

Demostración. Supongamos P un 3-subgrupo de Sylow de G. |P|=3 y es un subgrupo no normal, porque $n_3>1$.

Se considera el conjunto $G/P = \{xP : x \in G\}$, que es un conjunto (no tiene estructura por no ser P normal). Consideramos la acción $G \times G/P \longrightarrow G/P$ dada por g(xP) = gxP.

Consideramos la representación asociada $\phi: G \longrightarrow S(G/P) \cong S_4$. Es un homomorfismo. Veamos que la acción es fiel, es decir, el núcleo es trivial.

$$\ker(\phi) = \{g \in G : \phi(g)(xP) = xP \forall x \in G\} = \{g \in G : (gx)P = xP \forall x \in G\}$$

Veamos que $\ker(\phi) \leq P$. Sea $g \in \ker \phi$ Entonces considerando x = 1 tenemos qP = P, luego $q \in P$.

Como P tiene orden 3, tenemos que el núcleo es o trivial o el total. Como $\ker \phi \subseteq G$ y $P \triangleleft G$, tenemos que el núcleo es trivial, con lo que $G \cong \operatorname{Im}(\phi)$.

$$|G/P| = [G:P] = \frac{|G|}{|P|} = \frac{12}{3} = 4$$

con lo cual $S(G/P) \cong S_4$ y $Im(\phi)$ es isomorfo a un subgrupo de S_4 de orden 12, que no puede ser otro que A_4 .

Proposición 2. No existen grupos simples de orden 28. Además, todo grupo de orden 28 es resoluble.

Demostración. G con $|G| = 28 = 7 \cdot 4$ luego $n_7 | 4$ y $n_7 \equiv 1 \mod 7$, luego $n_7 = 1$. Existe entonces un único $P \subseteq G$ tal que |P| = 7. En particular G no es simple.

Por otro lado, $P \subseteq G$ y de orden 7, P es resoluble y |G/P| = 4, luego G/P es un 2-grupo, luego G/P es resoluble. Por tanto G es resoluble.

П

Proposición 3. Todo grupo de orden 12 admite un subgrupo normal de orden 3 o un subgrupo normal de orden 4. En particular no es simple.

Además es resoluble.

Demostración. G con $|G|=12=3\cdot 4$ tenemos que $n_3|4$ y $n_3\equiv 1\mod 3$ y $n_3\in\{1,4\}$.

Si $n_3 = 1$, existe un único $P \leq G$ tal que |P| = 3 estaría hecho.

Si $n_3 = 4$, veamos que $n_2 = 1$. Sean P_1, P_2, P_3, P_4 los 3-subgrupos de Sylow. Tenemos que $P_i \cap P_j = \{1\}$ porque $P_i \cap P_j \leq P_i$ y son todos distintos.

Todos los elementos de cada P_i distintos de 1 tienen orden 3, para cada i = 1, 2, 3, 4.

Consideramos el conjunto $\bigcup_{i=1}^{4} (P_i \setminus \{1\})$ que tiene exactamente 8 (4 por 2) elementos, todos ellos de orden 3. De hecho en dicho conjunto están todos los elementos del grupo G de orden 3.

Nos quedan 4 (12 menos 8) elementos en G cuyo orden no es 3. Como ha de existir un 2-grupo de Sylow $Q \leq G$ y de orden 4, existe un único subgrupo Q normal y de orden 4, luego $n_2 = 4$.

Por el apartado 1, existe P subgrupo normal de G con |P| = 3 o existe un Q con orden 4. En el primer caso P y G/P tienen orden 3 y 4, luego ambos son resolubles, por tanto, G es resoluble.

En el segundo caso $Q \subseteq G$ de orden 4, Q es resoluble y G/Q tambien es resoluble por ser de orden 3. Luego G es resoluble.

Proposición 4. Todo grupo de orden 24 es resoluble.

Demostración. Sea G con $|G| = 24 = 3 \cdot 2^3 = 3 \cdot 8$.

$$n_3 | 8 \text{ y } n_3 \equiv 1 \mod (3) \text{ y } n_3 = 1 \text{ o } n_3 = 4.$$

Si $n_3 = 1$ tenemos que existe un único P subgrupo normal de orden 3 y por lo tanto es resoluble. Como $|G/P| = 8 = 2^3$ es resoluble y entonces G también lo es.

Supongamos $n_3=4$. Sean P_1,P_2,P_3,P_4 los 3-subgrupos de Sylow. Todos tienen orden 3. Sea $X=\{P_i:i=1,2,3,4\}$ y consideramos la acción de G sobre X por conjugación. La representación asociada es $\phi:G\longrightarrow S(X)\equiv S_4$. Veamos el núcleo:

$$\ker(\phi) = \{g \in G : \phi(g)(P_i) = P_i\} = \{h \in G : gP_ig^{-1} = P_i\}$$

Como P_i no es normal en G, $n_3 = 4 > 1$, entonces $\ker(\phi) \triangleleft G$. Como el orden de G es 24, el orden del núcleo es 1,2,3,4,6,8 o 12. Pero en cualquier caso el núcleo es resoluble.

 $G/\ker\phi\cong\operatorname{Im}\phi\leq S_4$ y como S_4 es resoluble, la imagen también lo es, y se tiene que G es resoluble.