

Секвенциальное исчисление предикатов

5 аксиом

- 1 4+4
- $a \vdash \forall x (x = x)$
- 3. $\vdash \forall x \forall y (x=y \rightarrow y=x)$
- 4. F AXAAA XX (X=A & A=3 -> X=5)
- 5. $(t_1 = q_1), ..., (t_n = q_n), \, \psi(t_1, ..., t_n) \vdash \psi(q_1, ..., q_n)$

16 правил вывода

- 4 <u>F</u> F <u>F</u> F. <u>F</u> F (9 vy)

 T + (9 vy)

 T + (9 vy)
- 7. [,4+4 8. [+4; [+(p+4) 9. [,79+
 [+6] T+0
- 10. THY; THY 11. T, 4, 4, 5, 6 12 13 14.

- 16. <u>\(\frac{\partial}{\partial}{\partial}\) \(\frac{\partial}{\partial}\) \(\frac{\partial}{\pa</u>

miro

ПРЕДЛОЖЕНИЕ 14.11.

- а) Если секвенция логики предикатов получена из доказуемой секвенции логики высказываний подстановкой формул логики предикатов вместо пропозициональных переменных, то эта секвенция доказуема в секвенциональном исчислении предикатов.
- б) Правила вывода, допустимые (производные) в секвенциональном исчислении высказываний, являются допустимыми (производными) и в секвенциональном исчислении предикатов.

Доказательство.

а) Пусть секвенция логики предикатов S'получена из доказуемой секвенции логики высказываний S подстановкой формул логики предикатов вместо пропозициональных переменных Рассмотрим в секвенциональном исчислении высказываний дерево вывода D, заканчивающееся на секвенцию S. Заменим в дереве вывода D пропозициональные переменные на формулы. Тогда аксиомы секвенционального исчисления высказываний перейдут в аксиомы предикатов, секвенционального правила исчисления вывода секвенционального исчисления высказываний перейдут переходят в правила вывода секвенционального исчисления предикатов. Таким образом, мы получим вывода D', секвенциональном исчислении предикатов дерево заканчивающееся на секвенцию S'. Стало быть, секвенция S доказуема в секвенциональном исчислении предикатов. miro

Тусть D=
$$D_1 \dots D_N$$
 дерево вывода S — секвенция ЛВ

$$\mathcal{S}^{\mathsf{I}} = \left[\mathcal{S}^{\mathsf{A}_{\mathsf{1},\ldots,\mathsf{A}_{\mathsf{N}}}}_{\varphi_{\mathsf{1},\ldots,\mathsf{A}_{\mathsf{N}}}}, \varphi_{\mathsf{1},\ldots,\mathsf{A}_{\mathsf{N}}}\right] + \left[\mathcal{S}^{\mathsf{A}_{\mathsf{1},\ldots,\mathsf{A}_{\mathsf{N}}}}_{\varphi_{\mathsf{N},\ldots,\mathsf{A}_{\mathsf{N}}}}, \varphi_{\mathsf{N},\ldots,\mathsf{A}_{\mathsf{N}}}\right]$$

$$D' = \begin{bmatrix} D \end{bmatrix} S_{i}$$
, $D' = \frac{D'_{1,...}D'_{k}}{S'} - \partial$ ерево вывода в ЛП

Предложение 14.12.

Следующие деревья секвенций высоты 2 являются допустимыми прави-

тами вывода в секвенциональном исчислении предикатов:

1)
$$\frac{\varphi \vdash \psi}{(\varphi \& \xi) \vdash (\psi \& \xi)}$$
 2) $\frac{\varphi \vdash \psi}{(\xi \& \varphi) \vdash (\xi \& \psi)}$ 3) $\frac{\varphi \vdash \psi}{(\varphi \lor \xi) \vdash (\psi \lor \xi)}$

$$4) \ \frac{\varphi \vdash \psi}{(\xi \lor \varphi) \vdash (\xi \lor \psi)} \quad 5) \ \frac{\varphi \vdash \psi}{(\psi \to \xi) \vdash (\varphi \to \xi)} \quad 6) \ \frac{\varphi \vdash \psi}{(\xi \to \varphi) \vdash (\xi \to \psi)}$$

$$7) \ \frac{\varphi \vdash \psi}{\neg \psi \vdash \neg \varphi} \qquad \qquad 8) \ \frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi} \qquad \qquad 9) \ \frac{\varphi \vdash \psi}{\forall x \varphi \vdash \forall x \psi}$$

$$10) \; \frac{\varphi \vdash \psi}{\exists x \varphi \vdash \exists x \psi}$$

Доказательство: упражнение.

miro

miro

$$\frac{A \times 6 + A \times 4}{A \times 6 + A} \text{ (12)} \qquad \frac{A \times 6 + A \times 4}{A \times 6 + A} \text{ (12)} \qquad \frac{A \times 6 + A \times 4}{A \times 6 + A} \text{ (12)}$$

miro

Предложение 14.14.

≡ - отношение эквивалентности.

Доказательство: упражнение.

a)
$$\varphi + \varphi \Rightarrow \varphi \equiv \varphi$$
 pephekcueho \vee

5)
$$\varphi = \psi \Rightarrow \varphi + \psi \Rightarrow g\alpha \Rightarrow \psi = \varphi$$
 CUMMETTPULLED ψ

A)
$$\varphi = \psi, \psi = \xi \Rightarrow \varphi + \psi$$

$$\psi + \xi$$

Предложение 14.15.

Пусть $\varphi \equiv \varphi_1, \; \psi \equiv \psi_1$, тогда:

- 1) $(\varphi \lor \psi) \equiv (\varphi_1 \lor \psi_1);$
- 2) $(\varphi \& \psi) \equiv (\varphi_1 \& \psi_1);$
- 3) $(\varphi \to \psi) \equiv (\varphi_1 \to \psi_1);$
- 4) $\neg \varphi \equiv \neg \varphi_1$;
- 5) $\forall x\varphi \equiv \forall x\varphi_1;$
- 6) $\exists x\varphi \equiv \exists x\varphi_1$.

Доказательство: упражнение.

крч тут все пункты убиваются однократным применением этих правил, доказанных выше

$$1) \ \frac{\varphi \vdash \psi}{(\varphi \And \xi) \vdash (\psi \And \xi)} \quad 2) \ \frac{\varphi \vdash \psi}{(\xi \And \varphi) \vdash (\xi \And \psi)} \quad 3) \ \frac{\varphi \vdash \psi}{(\varphi \lor \xi) \vdash (\psi \lor \xi)}$$

$$4) \ \frac{\varphi \vdash \psi}{(\xi \lor \varphi) \vdash (\xi \lor \psi)} \quad 5) \ \frac{\varphi \vdash \psi}{(\psi \to \xi) \vdash (\varphi \to \xi)} \quad 6) \ \frac{\varphi \vdash \psi}{(\xi \to \varphi) \vdash (\xi \to \psi)}$$

$$7) \ \frac{\varphi \vdash \psi}{\neg \psi \vdash \neg \varphi} \qquad \qquad 8) \ \frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi} \qquad \qquad 9) \ \frac{\varphi \vdash \psi}{\forall x \varphi \vdash \forall x \psi}$$

10)
$$\frac{\varphi \vdash \psi}{\exists x \varphi \vdash \exists x \psi}$$

Фринциперации от при добом означивании если на модели истины фи1...фи_н то на ней должна быть истина фи

elnu CLE & [N, ..., a = 4 [N], to a = 4[N]

Секвенция $\vdash \varphi$ называется тождественно истинной, если фи истинно на любой модели (сигнатуры этой формулы) при любом означивании

Секвенция $\varphi_1, \dots, \varphi_n \vdash$ называется тождественно истинной, если

для любой модели при любом означивании хотя бы одна из формул фи ложна на модели(сигнатуры этих формул) miro

14.18 очевидным образом вытекает из определения 14.17

14.19 аналогична основной теореме из 10 параграфа

лемма 14.20 говорит: а) если свехру истинные секв то и снизу истинная б) если сверху т.и. то и снизу т.и

далее по индукции, в ветках дерева у нас аксиомы, они т.и. значит снизу под аксиомами тоже т.и. секвенции, так далее до корневой S всё будет т.и.

Перейдем к доказательству теоремы. Пусть секвенция S доказуема. Тогда существует доказательство $S_1, \ldots, S_n = S$.

Будем доказывать индукцией по длине доказательства n.

Базис индукции: n=1. В этом случае секвенция S является аксиомой. Поэтому, по Лемме 14.20 (a), секвенция S является тождественно истинной.

Допустим, что для любого k < n утверждение теоремы является верным. Докажем это утверждение для секвенции S, длина доказательства S_1,\dots,S_n которой равно n.

Из того, что $S_1, \ldots, S_n = S$ является доказательством, по определению доказательства имеем: для секвенции $S_n=S$ существуют такие доказуемые секвенции $S_{k_1}, \ldots S_{k_l}$ (где $k_1, \ldots, k_l < n$), что дерево $\frac{S_{k_1}; \ldots; S_{k_l}}{S}$ является правилом вывода. По индукционному предположению получаем, что секвенции S_{k_1},\ldots,S_{k_l} являются тождественно истинными, так как длина доказательства каждой из них равна k_i , которое меньше n. Поэтому, применяя

miro

ПРЕДЛОЖЕНИЕ 14.21.

Пусть $x \notin FV(\xi)$, тогда имеют место следующие эквивалентности:

- 1) $\forall x \xi \equiv \xi$;
- 2) $\exists x \xi \equiv \xi$;
- 3) $\forall x \forall y \varphi \equiv \forall y \forall x \varphi$;
- $4) \ \exists x \exists y \varphi \equiv \exists y \exists x \varphi;$
- 5) $\neg \exists x \varphi \equiv \forall x \neg \varphi$:

35

- 6) $\neg \forall x \varphi \equiv \exists x \neg \varphi$;
- 7) $(\forall x \varphi \& \forall x \psi) \equiv \forall x (\varphi \& \psi);$
- 8) $(\exists x \varphi \lor \exists x \psi) \equiv \exists x (\varphi \lor \psi);$
- 9) $((\forall x\varphi) \& \xi) \equiv \forall x(\varphi \& \xi);$
- 10) $((\exists x\varphi) \& \xi) \equiv \exists x(\varphi \& \xi);$
- 11) $((\forall x\varphi) \lor \xi) \equiv \forall x(\varphi \lor \xi);$
- 12) $((\exists x\varphi) \lor \xi) \equiv \exists x(\varphi \lor \xi);$
- 13) $\forall x[\varphi]_x^z \equiv \forall y[\varphi]_y^z$, если $\forall x\varphi(x) \equiv \forall y\varphi(y)$ (если не возникает коллизий);
- 14) $\exists x [\varphi]_x^z \equiv \exists y [\varphi]_y^z$, если $\exists x \varphi(x) \equiv \exists y \varphi(y)$ (если не возникает коллизий). Доказательство: упражнение.

 $\frac{1}{4} \frac{1}{4} \frac{1}$ TXPLU6)

аналогично по 10 допустимому правилу

miro

14.22 предваренная нормальная форма - все кванторы стоят за скобками

Q= {3,4}, y- 500ce. Q= Q1x1... Qn xny (x1,...,xn)

Вообще не эквивалентная, а равносильная, не????

Хотя кому это блин надо

Теорема 14.23.

Для всех формул φ существует эквивалентная ей формула $\psi \stackrel{\cong}{=} \varphi$, находящаяся в ПНФ.

ДОКАЗАТЕЛЬСТВО: Алгоритм приведения формулы к ПНФ:

- 1) Избавляемся от импликаций;
- 2) С помощью тождеств 5, 6 из 14.21., а также законов де Моргана и снятия двойного отрицания, вносим отрицание под кванторы.
 - 3) С помощью тождеств 13, 14 переобозначаем переменные так, чтобы:
 - а) разные кванторы действовали по разным переменным;
 - каждая переменная имела либо только свободное, либо только связанное вхождение.

36

- 4) С помощью 9-12 выносим кванторы наружу.
- В результате получим формулу, эквивалентную изначальной, но находя-
- $5) \ \neg \exists x \varphi \equiv \forall x \neg \varphi;$
- 6) $\neg \forall x \varphi \equiv \exists x \neg \varphi$;
- 9) $((\forall x\varphi) \& \xi) \equiv \forall x(\varphi \& \xi)$;
- 10) $((\exists x\varphi) \& \xi) \equiv \exists x(\varphi \& \xi);$
- 11) $((\forall x\varphi) \lor \xi) \equiv \forall x(\varphi \lor \xi);$
- 12) $((\exists x\varphi) \lor \xi) \equiv \exists x(\varphi \lor \xi);$
- 13) $\forall x[\varphi]_x^z \equiv \forall y[\varphi]_y^z$, если $\forall x\varphi(x) \equiv \forall y\varphi(y)$ (если не возникает коллизий);
- 14) $\exists x[\varphi]_x^z \equiv \exists y[\varphi]_y^z$, если $\exists x\varphi(x) \equiv \exists y\varphi(y)$ (если не возникает коллизий).