





# **EJERCICIO MLLIB**







### Sumario

| MILIB 2 |       |   |
|---------|-------|---|
| MILIE   |       | _ |
|         | 1//// | , |







### **MLLIB**

Ejercicio de Machine Learning con Spark Mllib.

Tenemos un excel (customers.csv) en el cual tenemos información sobre clientes de una web:



La idea es que a partir del tiempo de sesion, tiempo en la app, tiempo en la web... podamos saber cuanto dinero se ha gastado el usuario en un año.

1.- Importamos nuestros datos de clientes, en este caso vamos a importar un csv con la información usamos inferschema para que nos coja el tipo de dato y header true para que nos cree las cabeceras

datos = spark.read.csv("customers.csv",inferSchema = True,header = True)

2.- Debemos saber que para trabajar, el modelo va a necesitar un formato concreto que es de tipo vector que necesita spark para trabajar, esto lo vamos a conseguir usando lo que se llama Assembler

Vamos a crear un Assembler el cual nos permite crear el formato que necesita el modelo para trabajar con spark(formato de vector) para ello primero necesitamos importar:

from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler







3.- Vamos a crear nuestro Assembler crearemos con la funcion que acabamos de importar, añadimos en el inputCols las columnas que queremos que estén en nuestro vector y el segundo elemento que es outputCols que se va a llamar features

assembler = VectorAssembler(inputCols = ['Avg Session Length', 'Time on App', 'Time on Website', 'Length of Membership'], outputCol='features')

4.- Vamos a crear un output utilizando el assembles que acabamos de crear y transform usando los datos,para tener los datos como necesitamos

output = assembler.transform(datos)

5.- Ahora vamos a coger los datos finales, que son el vector que hemos creado que será lo que nos ayude a predecir, y lo que queremos predecir que es el Yearly Amount Spent

datos\_finales = output.select('features','Yearly Amount Spent')

6.- A partir de estos datos hacemos un train y un test usando randomSplit, le vamos a dar 0,7 y 0,3, lo que estamos haciendo aquí es coger el 70% de los datos para entrenar el modelo y un 30 para testear el modelo

train, test = datos\_finales.randomSplit([0.7,0.3]

7.- Consultamos los datos y vemos que tenemos 354 registros para entrenar:

| train.describe().show()     |               |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|
| +                           | +             |  |  |  |  |
| summary Yearly Amount Spent |               |  |  |  |  |
| ++                          | -             |  |  |  |  |
| count                       | 354           |  |  |  |  |
| mean  496.2                 | 5968353126103 |  |  |  |  |
| stddev  78.68               | 8652306131044 |  |  |  |  |
| min  256.67                 | 7058229005585 |  |  |  |  |
| max  765.5                  | 3184619388373 |  |  |  |  |
| +                           | +             |  |  |  |  |







# Comprobamos los datos que tenemos para testear y vemos que en test tenemos 146 registros



8. Vamos a entrenar el modelo con train y evaluar el modelo con test, entonces vamos a crear una regresión lineal pasándole features que son los datos que vamos a usar para entrenar y el dato que queremos calcular en este caso el yearly amount Spent, y por ultimo añadiremos una columna de predicción que será el resultado que vamos a obtener

Ir = LinearRegression(featuresCol = 'features',labelCol = 'Yearly Amount Spent',predictionCol =
'prediction')

Si por defecto tienen los nombres features y label no hace falta indicarle el nombre, pero como aquí se llama Yearly... se lo pasamos

9.- Creamos el modelo con Ir.fit() y le pasamos los datos de entrenamiento Ir\_modelo = Ir.fit(train)

#### 10.Evaluamos los datos test

resultado = lr\_modelo.evaluate(test)

11. Con residuals podemos ver en lo que se ha equivocado por predicción







| resultado.residuals.show() |  |  |  |
|----------------------------|--|--|--|
| ++                         |  |  |  |
| residuals                  |  |  |  |
| ++                         |  |  |  |
| 8.178019986211666          |  |  |  |
| -11.662579206420503        |  |  |  |
| 0.28375387925063933        |  |  |  |
| 23.88033922548516          |  |  |  |
| 5.328554360332532          |  |  |  |
| 1.5247878290938388         |  |  |  |
| -4.585938823420406         |  |  |  |
| 5.016282615349667          |  |  |  |
| 17.7858835593359           |  |  |  |
| -1.585812084553197         |  |  |  |
| -3.2538229452102883        |  |  |  |
| -16.324447019822003        |  |  |  |
| 1.3243068169010712         |  |  |  |
| 8.979596065303951          |  |  |  |
| -16.35742247597409         |  |  |  |
| -3.271236363257799         |  |  |  |
| 4.72471901011221           |  |  |  |
| 5.612109941364338          |  |  |  |
| 7.1134779211603245         |  |  |  |
| 23.82819269785142          |  |  |  |
|                            |  |  |  |

#### Si hacemos:

resultado. root Mean Squared Error

only showing top 20 rows

In [24]: resultado.rootMeanSquaredError |
Out[24]: 10.522935932789585

Podemos ver en lo que se ha equivocado, por lo que si los precios son de 400 500 dólares, se esta equivocando en unos 9 dólares, podemos considerar que es una muy buena predicción Si el valor que tenemos que calcular es 9 y el error nos da 9, pues obviamente es muy mal resultado pero en nuestro caso que son valores altos, 9 es muy poco







### 12. Por ultimo vamos a hacer un sumary y ver las predicciones:

summary = Ir\_modelo.summary
summary.predictions.show()

| ++                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| features Yearly Amount Spent  prediction                                                                                                                                                                                                                                                                                                                                                                                  |
| [29.5324289670579  408.6403510726275  396.2129552626909    [30.3931845423455  319.9288698031936  330.7251777036697    [30.4925366965402  282.4712457199145  287.1825725547285    [30.5743636841713  442.06441375806565  440.3762661797134    [30.7377203726281  461.7807421962299 449.70867929914334    [30.8162006488763  266.086340948469  282.6664667274133    [30.8364326747734  467.5019004269896 470.24814039939565 |
| [30.8794843441274  490.2065999848547 492.21998777593853 <br> [31.0472221394875  392.4973991890214 386.77926727686736 <br> [31.0613251567161  487.5554580579016  492.245354616555 <br> [31.1239743499119  486.9470538397658 507.06124817285877 <br> [31.1280900496166  557.2526867470547  562.4946330032003                                                                                                                |
| $\begin{array}{l}  [31.1695067987115  \ \ 427.3565308022928 416.07943078351013  \\  [31.2681042107507  \ \ 423.4705331738239 426.60481489817926  \\  [31.3091926408918  \ \ 432.7207178399336 428.90727593277074  \\  [31.3123495994443  \ \ \ 463.5914180279406 443.30478342340825  \\  [31.3662121671876  \ \ \ 430.5888825564849  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                               |
| [31.4459724827577  484.87696493512857  480.5407962121369 <br> [31.4474464941278  418.602742095224  425.332599466542 <br>+                                                                                                                                                                                                                                                                                                 |

Como podemos observar nuestro modelo funciona bastante bien ya que las predicciones son muy buenas