Embedded Systems

Digital-to-Analog & Analog-to-Digital Converters

Embedded Systems, ECE:3360. The University of Iowa, 2019

Slide 1

A/D and D/A Converters

- Two basic types of converters:
 - Digital-to-analog (DACs or D/As)
 - Analog-to-digital (ADCs or A/Ds)
- Frequently utilized in embedded systems
 - Often integrated into μC (ATmega88: 10-bit ADC, but no DAC)
- Applications include:
 - Digital signal processing (DSP): audio, radio, ...
 - Imaging (CCD)
 - Medical applications
 - Instrumentation, data loggers, ...
 - Digital offset and gain adjustment
 - Sensors: temperature, weight bridge, ...
 - Control systems: motor, temperature, digital servos, ...
 - Communications, GPS, ...

- ...

de 2

Converters

- ADCs convert a voltage or current to a digital output value
 - A digital representation of the analog voltage/current that is applied to the ADC input is outputted
 - The representation is proportional to a reference voltage/current

Pre- and Post-Processing & Accuracy vs Resolution

- ADC → voltages and currents must be "normalized" to ranges compatible with ADC input ranges
 - →often a preprocessing of input signals is required
- DAC → analog output voltages or currents from DACs are direct and in normalized form
 - → signals often need post-processing (e.g., scaled/amplified, filtered, etc.).

Embedded Systems, ECE:3360. The University of Iowa, 2019

A/D and D/A Converters

- Different architectures
- It is important to select a suitable A/D or D/A converter for a given application → design requirements
 - Processing speed
 - Resolution
 - Accuracy, linearity, ...
 - Power consumption
 - ..
- ADC architectures:
 - successive approximation, flash, dual slope, sigma-delta, ...
- DAC architectures:
 - string, R-2R, PWM, ...

Embedded Systems, ECE:3360. The University of Iowa, 2019

Slide 7

Aliasing and Sampling Frequency

- The required conversion speed depends on the application (e.g., sampling/reproducing an audio signal, thermocouples, HF transceiver, ...)
- A signal with a maximum BANDWIDTH f_a must be sampled at a rate $f_s > 2$ f_a , or information about the signal will be lost because of aliasing.

NOTE: fa IS SLIGHTLY LESS THAN fs

→ Oscilloscope

Embedded Systems, ECE:3360. The University of Iowa, 2019

Resolution of Data Converters

- The digital input or output can have 1 to 32 bits
 - The greater the number of bits, the finer the resolution
- Example:
 - The 10-bit ADC used by the Atmega88 with a 5 V reference (FS)
 - Has 2¹⁰ = 1024 possible output codes
 - Can resolve 5/2¹⁰ = 5/1024 = 4.88 mV

Typically:

Code_{Out/in} ... code produced by ADC or code sent to DAC

N ... number of bits

S_{in/Out} ... input signal to ADC or output signal of DAC FS ... full-scale (often equivalent to reference)

Embedded Systems, ECE:3360. The University of Iowa, 2019

Resolution of Data Converters

- The resolution of data converters may be expressed in several different ways
- Quantization: The Size of a Least Significant Bit (LSB)

RESOLUTION N	2 ^N	VOLTAGE (10V FS)	ppm FS	% FS	dB FS
2-bit	4	2.5 V	250,000	25	- 12
4-bit	16	625 mV	62,500	6.25	- 24
6-bit	64	156 mV	15,625	1.56	- 36
8-bit	256	39.1 mV	3,906	0.39	- 48
10-bit	1,024	9.77 mV (10 mV)	977	0.098	- 60
12-bit	4,096	2.44 mV	244	0.024	- 72
14-bit	16,384	610 μV	61	0.0061	- 84
16-bit	65,536	153 μV	15	0.0015	- 96
18-bit	262,144	38 μV	4	0.0004	- 108
20-bit	1,048,576	9.54 μV (10 μV)	1	0.0001	- 120
22-bit	4,194,304	2.38 μV	0.24	0.000024	- 132
24-bit	16,777,216	596 nV*	0.06	0.000006	- 144

*600nV is the Johnson Noise in a 10kHz BW of a 2.2kΩ Resistor @ 25°C

Embedded Systems, ECE:3360. The University of Iowa, 2019

Slide 1

Example - D/A Converter

- An engineer needs to select a DAC that can produce an output voltage in the range of 0 to 3 V. The voltage increment ΔV needs to be <= 1 mV.
- Q1: How many bits (N) will be needed to meet this specification?
- Q2: What will be the value of ΔV?

Embedded Systems, ECE:3360. The University of Iowa, 2019

Fractional Binary Numbers

- For ADCs & DACs fractional binary coding is utilized, which is always normalized to full-scale (→ ref. voltage)
- Integer binary can be interpreted as fractional binary if all integer values are divided by 2^N

Unipolar Codes

- Coding method is related to the
 - analog input range of an ADC or
 - analog output range of a DAC
- The simplest case is when the input to the ADC or the output of the DAC is always a unipolar (positive) voltage/current

Example:	BASE 10 NUMBER	SCALE	+10 V FS	BINARY
· ·	+15	+FS - 1 LSB = 15/16 FS	9.375	1111
4-bit converter	+14	+7/8 FS	8.750	1110
	+13	+13/16 FS	8.125	1101
	+12	+3/4 FS	7.500	1100
	+11	+11/16 FS	6.875	1011
	+10	+5/16 FS	6.250	1010
	+9	+9/16 FS	5.625	1001
	+8	+1/2 FS	5.000	1000
	+7	+7/16 FS	4.375	0111
	+6	+3/8 FS	3.750	0110
	+5	+5/16 FS	3.125	0101
	+4	+1/4 FS	2.500	0100
	+3	+3/16 FS	1.875	0011
	+2	+1/8 FS	1.250	0010
	+1	1 LSB = +1/16 FS	0.625	0001
	0	0	0.000	0000

Embedded Systems, ECE:3360. The University of Iowa, 2019

Bipolar Codes For some applications it is desirable to represent both positive and negative analog quantities with binary codes Either offset binary, two's complement, ones complement, and sign magnitude codes will accomplish this, but offset binary and two's complement are by far the most popular BASE 10 NUMBER ONES SCALE ±5V FS MAG. +FS - 1LSB = +7/8 FS 0111 0111 Example: +6 +3/4 FS +3.750 0110 0110 4-bit converter +5 +5/8 FS +3.125 0101 +4 +3 +2 +1 0 +1/2 FS +2.500 1100 0100 0100 +3/8 FS +1.875 0011 0011 +1/4 FS +1.250 0010 0010 +1/8 FS +0.625 0001 0001 0.000 0000 *0 0 0 0 -1 -2 -3 -4 -5 -0.625 - 1/4 FS -1.250- 3/8 FS -1.8750101 1101 0100 -1/2 FS -2.5001100 1011 -5/8 FS -3.1250011 1011 1010 1101 -3/4 FS -3.750 0010 1010 1001 -7/8 FS -4.375 1000 ONES SIGN 0000 1111 0000 CODES NOT NORMALLY USED IN COMPUTATIONS Slide 17

Simple Voltage-Output DAC

- A N-bit String DAC uses 2^N resistors and 2^N (CMOS) switches → high complexity for large N
- · Nonlinear versions are also possible
- Output impedance depends on input → use a voltage buffer

Slide 23

Digital Potentiometers

- Another variation of the string DAC is the digital potentiometer
 - Better "adjustability" than their mechanical counterparts
 - Immune to mechanical vibration and oxidation of the wiper contact
 - Adjustments can be made without human intervention
 - Typically, the voltage on the input pins cannot exceed the supplies (CMOS switches)

A Slight Modification to a Kelvin DAC Yields a "Digital Potentiometer

Thermometer Current-Output DAC

- Analogous to a string DAC
- Consists of 2^N 1 switchable current sources (resistors and a voltage reference or active current sources) connected to an output terminal
- Output must be at or close to ground → I-V converter

R-2R Resistor Ladder

- R-2R resistor ladder → the most common DAC buildingblock
- It uses resistors of only two different values (ratio is 1:2)
- An N-bit DAC → 2N resistors, which are quite easy to trim

Embedded Systems, ECE:3360. The University of Iowa, 2019

Comparator Some comparators have an internal latch The latch-enable signal has two states: compare (track) latch (hold) COMPARATOR DIFFERENTIAL INPUT VOLTAGE LATCH LATCH **ENABLE** COMPARE COMPARE OUTPUT LATCH ENABLE TO **OUTPUT DELAY** Embedded Systems, ECE:3360. The University of Iowa, 2019 Slide 35

Charge Run-Down ADCs

- First samples the analog input and stores the voltage on a fixed capacitor
- The capacitor is then discharged with a constant current source → the time required for complete discharge is measured using a counter
- Accuracy depends on: C, current source, time-base, ...

Tracking ADCs

- Continually compares the input signal with a reconstructed representation of the input signal (DAC)
- The up/down counter is controlled by the comparator output.
- → slow step response → not widely used

Successive Approximation ADCs

- Used in the ATmega88PA and other μCs
- The mainstay of data acquisition for many years
- Recent design improvements → sampling frequency in MHz-region
- → constant conversion time for a given resolution

19

Successive Approximation ADCs

- Often integrated on µCs
 - ATmega88:

8/10-bit SAR ADC

Up to 76.9 kSPS (up to 15 kSPS at max. resolution)

- Advantages
 - High Accuracy
 - Typically Low Power
 - Low cost
- Disadvantages
 - Max sample rates approximately 2-5 MHz
 - Medium resolution

Embedded Systems, ECE:3360. The University of Iowa, 2019

Slide 47

Flash Converters

- Flash (parallel) ADCs are the fastest type of ADC
- · Have a large numbers of components:
 - N-bit flash ADC consists of 2^N resistors and 2^N-1 comparators
- Very fast, but lower resolution, high power dissipation, and expensive

Dual Slope ADCs

- "Breakthrough" in ADCs for high resolution applications such as digital voltmeters (DVMs), etc.
- Many advantages: conversion accuracy is independent of C and clock frequency, fixed input signal integration period → noise rejection (e.g., 50/60 Hz)
- Disadvantage: slow

Sigma-Delta (or Delta-Sigma) ADC

- Conversion approach: k-fold oversampling (1-bit signal) and digital filtering with down-conversion
- High resolution, high stability (averages and filters out noise), low power, moderate cost, and low to medium conversion speed

Voltage-to-Frequency Converter

- A voltage-to-frequency converter (VFC) is an oscillator whose frequency is linearly proportional to a control voltage
- · VFCs are typically small, cheap, and low-powered
- Can be used in combination with an optocoupler for isolation → e.g., industrial applications

