

1 - Etude d'une potence articulée

On considère une potence de manutention représentée ci-dessous .

La potence est composée des éléments suivants :

- le corps S_0 lié au repère R_0 (O, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$) est fixé au sol par une liaison encastrement
- la tête S_1 lié au repère R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}$) est en liaison pivot d'axe $O \overrightarrow{z_0}$ par rapport à S_0 avec $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1})$
- le bras S_2 lié au repère R_2 (B, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$) est en liaison pivot d'axe B $\overrightarrow{z_0}$ par rapport à S_1 avec : θ = ($\overrightarrow{x_1}$, $\overrightarrow{x_2}$) et $\overrightarrow{OB} = a$. $\overrightarrow{z_0} + b$. $\overrightarrow{y_1}$
- la partie télescopique S_3 est en liaison glissière d'axe D $\overrightarrow{y_2}$ par rapport à S_2 avec : $\overrightarrow{BD} = -c.\overrightarrow{z_0} + d(t).\overrightarrow{y_2}$ (d est une fonction du temps)
- la charge S_4 peut monter ou descendre suivant l'axe $E \ \overrightarrow{z_0}$ par rapport à S_3 avec : $\overrightarrow{EF} = -f(t)$. $\overrightarrow{z_0}$ et $\overrightarrow{DE} = c$. $\overrightarrow{z_0} + e$. $\overrightarrow{y_2}$ (f est une fonction du temps)
- 1) Représenter les figures des rotations planes (changements de repères)
- 2) Calculer $\vec{\Omega}$ (R_1/R_0) et $\vec{\Omega}$ (R_2/R_1) . En déduire $\vec{\Omega}$ (R_2/R_0)
- 3) Exprimez $\vec{V}_{B1/0}$ par dérivation. Vous l'exprimerez dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 4) Exprimez $\vec{V}_{D3/0}$ par dérivation . Vous l'exprimerez dans le repère R_2 ($B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$)
- 5) Exprimez $\vec{V}_{D \ 3/0}$ par changement de point . Vous l'exprimerez dans le repère R_2 ($B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$)
- 6) Exprimez $\vec{V}_{E 3/0}$ par dérivation. Vous l'exprimerez dans le repère R_2 (B, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$)
- 7) Exprimez $\vec{V}_{E 3/0}$ par changement de point . Vous l'exprimerez dans le repère R_2 ($B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$)
- 8) Exprimez $\vec{V}_{F4/0}$ par dérivation. Vous l'exprimerez dans le repère R_2 (B, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$)
- 9) Exprimez $\vec{V}_{F4/0}$ par changement de point . Vous l'exprimerez dans le repère R_2 (B, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$)
- 10) Exprimez $\vec{\Gamma}_{F\ 4/0}$, . Vous l'exprimerez dans le repère R_2 ($B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$)

2 - Matrice d'inertie et centre de masse d'un quart de disque

On considère une quart de disque d'épaisseur nulle de masse m et de rayon R .

On notera σ la masse par unité de surface

- 1) Exprimer l'élément de surface dS en coordonnées polaires
- 2) Exprimer la masse (m) du quart de disque en fonction de σ et de R
- 3) Déterminer la position (X_G , Y_G) du centre de masse G de S
- 4) Donnez la forme générale de la matrice d'inertie en précisant :
- les moments et les produits d'inertie qui sont nuls
- les moments et les produits d'inertie qui sont égaux
- 5) Calculer les moments d'inertie lox, loy et loz du quart de disque (on utilisera les coordonnées polaires)
- 6) Calculer les produits d'inertie lxy, lyz et lxz du quart de disque (on utilisera les coordonnées polaires)

