

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 1

- (I) Sea \mathbb{R} con la σ-álgebra de Borel $\mathcal{B}(\mathbb{R})$.
 - (a) Dado $x_0 \in \mathbb{R}$, considere δ_{x_0} la medida de Dirac centrada en x_0 dada por: $\delta_{x_0}(A) = 1$ si $x_0 \in A$, y $\delta_{x_0}(A) = 0$ si $x_0 \notin A$, para cada $A \in \mathcal{B}(\mathbb{R})$. Muestre que δ_{x_0} es una medida.

Demostración. Es claro que $\delta_{x_0} : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ ya que las unicas imagenes de la funcion son 0 y 1. Ahora comprobemos las dos condiciones.

Si $A=\varnothing$, claramente $x_0\notin A$, luego por la definicion $\delta_{x_0}(A)=0$, como queriamos.

Ahora sea $\{A_i\}_i = 1^\infty \subseteq \mathcal{B}(\mathbb{R})$ una familia de disjuntos dos a dos.

(b) Sea $f : \mathbb{R} \to \mathbb{R}$ una función medible. Muestre que

$$\int_{\mathbb{R}} f(x) d\delta_{x_0} = f(x_0)$$

- (c) De un ejemplo de una función que sea integrable con la medida δ_{x_0} para algún x_0 , pero que no sea integrable con la medida de Lebesgue.
- (II) Sea $\mathbb{N} = \{1, 2, 3, \ldots\}$ con la σ-álgebra $\mathcal{P}(\mathbb{N})$.
 - (a) Considere la medida contadora μ dada por: $\mu(A) = \text{cardinal}(A)$ si A es finito y $\mu(A) = \infty$ caso contrario, para cada $A \in \mathcal{P}(\mathbb{N})$. Muestre que μ es una medida.
 - (b) Dada $f: \mathbb{N} \to \mathbb{R}$ una función medible, es decir, f es una secuencia, $f = \{\alpha_j\}_{j \in \mathbb{N}}$, para algunos $\alpha_j \in \mathbb{R}, j \in \mathbb{N}$. Muestre que si f es integrable (es decir, $\int_{\mathbb{N}} |f| d\mu < \infty$), entonces

$$\int_{\mathbb{N}} f dx = \sum_{j=1}^{\infty} a_j$$

Ejercicio 3 Sea $\Omega \subseteq \mathbb{R}^n$ abierto. Sea $1 \le p \le \infty$. Entonces $L^p(\Omega)$ es un espacio de Banach. **Ejercicio 5** Considere el espacio $L^p(\mathbb{R}^n)$, $1 \le p \le \infty$. Sean

$$f_0(x) = \begin{cases} |x|^{-\alpha}, & \text{si } |x| \le 1, \\ 0, & \text{si } |x| > 1. \end{cases} \quad f_1(x) = \begin{cases} 0, & \text{si } |x| \le 1, \\ |x|^{\alpha}, & \text{si } |x| > 1. \end{cases}$$

(I) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_0 \in L^p(\mathbb{R}^n)$?

- (II) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_1 \in L^p(\mathbb{R}^n)$?
- (III) ¿Para qué valores de $\alpha\in\mathbb{R},\frac{1}{1+|x|^{\alpha}}\in L^{p}\left(\mathbb{R}^{n}\right)$?

Ejercicio 8

- (I) Sea $1 . Considere las secuencias <math>x_n = \left\{x_n^j\right\}_{j=1}^{\infty}$, para cada $n \in \mathbb{N}$ y $x = \left\{x^j\right\}_{j=1}^{\infty}$. Asuma que $x_n, x \in l^p$, para todo $n \in \mathbb{N}$. Muestre que $x_n \rightharpoonup x$ en l^p si y solo si $\{x_n\}$ es acotada (en l^p) y $x_n^j \rightarrow x^j$ para cada entero positivo j.
- (II) Considere la secuencia $x_n=\left(1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},0,0,0,\ldots\right)$. En cuales espacios $l^p,1\leq p\leq \infty$, esta secuencia converge débilmente?