WEB3CLUBS FOUNDATION LIMITED

Course Instructor: DR. Cyprian Omukhwaya Sakwa

PHONE: +254723584205 Email: cypriansakwa@gmail.com

Foundational Mathematics for Web3 Builders

Lecture 14 May 21, 2024

1.7 Linear Congruence

Consider the linear congruence

$$ax \equiv b(\bmod m) \tag{1}$$

where a, b, m are integers with m > 0.

By a solution of equation (1) we mean an integer $x=x_1$ for which $m \mid (ax_1-b)$.

Note that if x_1 is a solution of equation (1) then $x_1 + km$ for $k \in \mathbb{Z}$ is another solution of equation (1).

Note: An equation $ax \equiv b \pmod{m}$ has a solution if $\gcd(a,m)$ divides b. In this case, if $d = \gcd(a,m)$ and $d \mid b$ then the congruence equation has d solutions. This congruence equation has no solution if $d \nmid b$.

Example 32

Solve the following linear congruence equations.

a)
$$5x \equiv 3 \pmod{8}$$

b)
$$6x \equiv 4 \pmod{9}$$

c)
$$6x \equiv 8 \pmod{10}$$

d)
$$3x + 2 \equiv 8 \pmod{10}$$

e)
$$6x - 3 \equiv 5 + 2x \pmod{10}$$
 f) $\frac{2}{3}x \equiv 4 \pmod{7}$

$$f) \ \frac{2}{3}x \equiv 4(\bmod 7)$$

Solution

Since the moduli is relatively small, we will find solutions by testing. Later on we will see how to use extended Euclid's Algorithm to find solutions to such congruence equations.

1.8 Solution of Linear Congruences Using Euclid's Algorithm

Example 33

Find the least positive integer x for which

$$53x \equiv 1 \mod 93$$

Solution

First, gcd(93, 53) = 1 and 1 divides 1 and the equation has 1 solution.

By Euclid's algorithm algorithm we have

$$93 = 53(1) + 40$$

$$53 = 40(1) + 13$$

$$40 = 13(3) + 1$$

$$13 = 1(13) + 0$$

Solution (conti...)

Now solve for the gcd.

$$1 = 40 - 13(3) = 40 - [53 - 40(1)](3) = 40 - 53(3) + 40(3)$$

$$= -53(3) + 40(4) = -53(3) + [93 - 53(1)](4) = -53(3) + 93(4)$$

$$= 93(4) + 53(-7)$$

Thus 1 = 93(4) + 53(-7) and therefore modulo 93 gives $53(-7) \equiv 1 \bmod 93$.

Thus x=-7 is a solution. We could also give this answer as x=86 since 86 is the least positive number congruent to $-7 \mod 93$. So, x=86 is the required answer.

- 53

Example 34

Find integer x for which $7x \equiv 13 \mod 19$

Solution

gcd(19,7) = 1 and so equation has 1 solution.

By Euclid's algorithm algorithm we have

$$19 = 7(2) + 5$$

$$7 = 5(1) + 2$$

$$5 = 2(2) + 1$$

$$2 = 1(2) + 0$$

We solve for gcd

$$1 = 5 - 2(2) = 5 - [7 - 5(1)](2) = 5 - 7(2) + 5(2) = -7(2) + 5(3)$$

$$= -7(2) + [19 - 7(2)](3) = -7(2) + 19(3) - 7(6)$$

$$= 19(3) + 7(-8)$$

That is,
$$1 = 19(3) + 7(-8)$$
.

Solution (conti...)

Since we require 13 = 19(n) + 7(x) for some $n \in \mathbb{Z}$, we multiply

$$1 = 19(3) + 7(-8)$$
 by 13 to get

 $13 = 19(3 \times 13) + 7(-8 \times 13)$ which we compute mod 19 to get

$$13 = 19(1) + 7(10)$$

Thus, x = 10

Example 35

Solve $4043n \equiv 27 \pmod{166361}$

Solution

Here, gcd(166361, 4043) = 13 but $13 \nmid 27$. Hence the congruence has no solution.