ap.code UBIAM-IA

Reg.No

KPR Institute of Engineering and Technology

(Autonomous)

Course Code & Title

Year

CIAT

KPR Institute of Engineering and Technology

(Autonomous)

Ac.Yr.: 2024 – 2025

Ac.Yr.: 2024 – 2025

Ac.Yr.: 2025 – FN

Semester: 04

Date: 21.05.2025 - FN

Maximum Marks: 60

				«			7			6	i C.		0			14		35	w			1	12 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	2	A.	Q. No
c NP = EXP d All problems become unsolvable	All NP problems can be solved in b No NP problems can be solved v polynomial time	In the context of NP-Complete problems, if one NP-Complete problem is solved in polynomial time, then	c Prim's Algorithm · d Linear Search	a Binary Search b Hamiltonian Circuit	Which of the following is an NP-Complete problem?	c. Backtracking d Dynamic Programming	a Greedy b Divide and conquer	The N-Queens problem is a classic example of algorithmic technique.	Explore promising branches and prune d Match patterns using finite automata others	a Divide and combine solutions b Explore all paths recursively	What is the main idea behind Branch and Bound technique?	c maximum weight in the knapsack d minimum weight in the knapsack	a niaximum total value in the knapsack b minimum total value in the knapsack	The objective of the knapsack problem is to get the	c Maximum of both subtrees d Sum of both subtree heights	a Left subtree height - Right subtree by Right subtree height height	In AVL trees, the balance factor of a node is given by	c, Dynamic Programming d Backtracking	a Divide and conquer b Greedy	Matrix Chain Multiplication is typically solved using which technique?	c Select activity with shortest duration d Select activity with earliest finish time	a Select activity with maximum duration b Select activity with earliest start time	In the Activity Selection Problem, what strategy does the greedy algorithm use to select activities?	c Divide and conquer algorithm d Brute force algorithm	a. Greedy algorithm b Exhaustive search	Which of the following algorithms is the best approach for solving Huffman codes?	Section - A (10X1=10 Marks) Answer All Questions
	_	The state of the s	./3	-			7	*	h	-	4	1	_	100	4			1.4	-		1112		Pip (M)		_		Marks
	R		Art.	R		27.7	R		vi	æ		4	7			R			R		かりから	c	=	ï	U	rini)	ВТ
The second	COS	Tr.		COS			CO3			604			Ş			COA			604		数には	5	3		CO3		60

	=
	The Graph Coloring problem is used primarily to a Minimize the number of vertices in a b Assign colors to edges of a graph Color adjacent vertices with different colors using minimum number of colors • Colors using minimum number of colors
1	≈
- 1	CO5

rec.	
rec.	Compare NP-Hard and NP-Complete problems.
ree.	Define the graph coloring problem.
	Differentiate between AVL tree and Red-Black tree.
	Recall the concept of the N-Queens problem.
la de	State the principle of polynomial-time reduction.
	Define the term state-space tree.
ch and bound method.	Identify the three primary components in the branch and bound method.
	List the advantages of dynamic programming.
	State the purpose of Huffman Trees.
100	Define the greedy technique.
estions	Section – B (10X2=20 Marks) Answer All Questions

Apply the Branch and Bound algorithm to solve the Travelling Salesperson Problem (TSP) for the given graph.		Person 4	Person 3	Person 2	Person 1		Consider the assignment problem to find the solution			210)	311	Solve the following Knapsack Problem using Branch and Bound with knapsack capacity $W\!=\!6$		21 a) \$25, 36, 12, 4, 5, 16, 58, 54, 24, 16, 9, 65, 78.	Apply the Quick Sort algorithm on the following dataset:	Q.No Section
ound algorithm		7	5	6	9	Job 1	problem to find	3	2		Items	sack Problem		54, 24, 16, 9, 6	orithm on the fo	Answe
to solve the Ti	(Or)	6	8	4	2	Job 2	the solution	2 %	3	2*	Weight	using Branch	(0	5, 78	ollowing data	Answer All Questions
aveiling Salesperson	3	9		3	* EME 7	Job 3		4	6	8	Value	and Bound with knap	(0r)		set:	Answer All Questions
Problem (TSP)		4	8	7	8	Job 4						sack capacity				
12			12					0						6		Marks
AP			£.,	The state of the s	2		20		7	2	ò			AP		вт
.	9.48		100		3	2	die 1			3	3			CO3		CO

23 b)		23 a)	
Devise a backtracking algorithm for 6 Queen problem and analyze the possible solution.	(0r)	Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give examples for each class?	
12		12	
П		U	
60	T PA	6	I make the second