NOTE

A SYNTACTIC CONGRUENCE FOR RATIONAL ω-LANGUAGES

André ARNOLD

Département de Mathématiques et Informatique, Université de Poitiers, 86022 Poitiers Cedex, France

Communicated by D. Perrin Received April 1984

Abstract. Büchi has proved that if L is a rational ω -language, then there exists a finite congruence for which L is saturated in the following sense: $[u][v]^{\omega} \cap L \neq \emptyset \Rightarrow [u][v]^{\omega} \subset L$. Here, we define the syntactic congruence of L, which is the largest congruence having this property.

Introduction

It is well known that a language $L \subset A^*$ is rational (regular, or recognizable) iff there exists a finite congruence over A^* such that L is a union of congruence classes. Moreover, there exists a largest such congruence, the so-called syntactic congruence of L.

In [2], Büchi proved that if L is a rational ω -language, there exists a finite congruence \sim over A^* such that the following two properties hold:

- (i) $[u][v]^{\omega} \cap L \neq \emptyset \Rightarrow [u][v]^{\omega} \subset L$,
- (ii) L is a finite union of sets $[u][v]^{\omega}$, where [u] is the \sim -class of u.

Indeed, these two properties are always equivalent for finite congruences and, by analogy with the usual case of languages in A^* , we say that the finite congruence \sim recognizes the ω -language L if the two above properties are satisfied. Therefore, the result of Büchi can be rephrased: every rational ω -language is recognizable, whilst the converse is a consequence of the celebrated Büchi's theorem [2].

Next we prove that if a ω -language L is rational (or recognizable), there exists a largest congruence which recognizes it and we give an explicit definition of the syntactic congruence for languages in A^{ω} ; thus, we name this congruence the syntactic congruence of L.

This note contains two parts. In Section 1 we recall some preliminary notions and results, we introduce the notion of a recognizable ω -language and we prove Kleene's theorem for ω -languages. In Section 2 we define the syntactic congruence and we prove it to be the largest one which recognizes a rational ω -language.

334 A. Arnold

1. Preliminaries

A congruence \sim over A^* is an equivalence relation which satisfies: $\forall u, u', v, w \in A^*$, $u \sim u' \Rightarrow vuw \sim vu'w$. We denote by [u] the \sim -class of u restricted to A^+ and we say that this congruence is finite if it has a finite number of classes.

It is well known [3] that if \sim is a finite congruence over A^* , $[u] \subset A^+$ is a rational language.

The Büchi-McNaughton Theorem gives several equivalent definitions of a rational ω -language (see [3]). We single out the following one: $L \subset A^{\omega}$ is said to be rational if $L = \bigcup_{i=1}^{n} K_i L_i^{\omega}$, where K_i and L_i are rational languages in A^+ .

Let $L \subseteq A^{\omega}$ be any ω -language and \sim be any congruence over A^* . We say that $-\sim$ saturates L if $[u][v]^{\omega} \cap L \neq \emptyset \Rightarrow [u][v]^{\omega} \subseteq L$;

 $-\sim \text{ covers } L \text{ if } L=\bigcup\{[u][v]^{\omega}|uv^{\omega}\in L\}$

Lemma 1.1. If \sim is a finite congruence, then \sim saturates L iff \sim covers L.

Proof. The idea of this proof can be found in [2].

(1) Let us assume that \sim saturates L. We get: $\forall u, v \in A^*, [u][v]^{\omega} \subset L$ or $[u][v]^{\omega} \subset A^{\omega} - L$. In order to prove that \sim covers L, we first have to prove $A^{\omega} = \bigcup_{u,v \in A^*} [u][v]^{\omega}$. Let u be in A^{ω} ; since \sim is finite, by Ramsay's theorem (referred to in [2]), there exist $u_0, u_1, \ldots, u_n, \ldots \in A^+$, $v \in A^*$ such that $u = u_0 u_1 \ldots u_n \ldots$ and $v \sim u_1 \sim u_2 \sim \cdots \sim u_n \sim \cdots$, hence $u \in [u_0][v]^{\omega}$.

Hence, we get $L = \bigcup \{[u][v]^{\omega} | [u][v]^{\omega} \subset L\}$; but, since \sim saturates L, $uv^{\omega} \in L$ iff $[u][v]^{\omega} \subset L$, and $L = \bigcup \{[u][v]^{\omega} | uv^{\omega} \in L\}$.

(2) Let us assume that \sim covers L. Since \sim is finite, L is a finite union of sets $[u][v]^{\omega}$ where [u] and [v] are rational languages in A^+ , hence L is rational. Let u and v be such that $[u][v]^{\omega} \cap L$ is not empty. Since $[u][v]^{\omega} \cap L$ is a rational, nonempty ω -language, by definition, it contains an ultimately periodic word xy^{ω} ; then there exist p, p', q, $q' \ge 0$, y_1 , $y_2 \in A^*$ such that $y = y_1 y_2$, $xy^{p'} y_1 \in [u][v]^p$, $y_2 y^{q'} y_1 \in [v]^q$. Let $w_1 = xy^{p'} y_1$, $w_2 = y_2 y^{q'} y_1$. We have $w_1 w_2^{\omega} = xy^{\omega} \in L$, hence, $[w_1][w_2]^{\omega} \subset L$ and, since \sim is a congruence, $w_1 \in [u][v]^p \Rightarrow [u][v]^p \subset [w_1]$, $w_2 \in [v]^q \Rightarrow [v]^q \subset [w_2]$, hence, $[u][v]^{\omega} \subset [w_1][w_2]^{\omega} \subset L$ and \sim saturates L. \square

Thus, we say that a finite congruence recognizes an ω -language L if it saturates/covers this language and we say that an ω -language is recognizable if it is recognized by a finite congruence (see also [4]).

Theorem 1.2. An ω -language is recognizable iff it is rational.

Proof. Büchi has proved [2] that every rational ω -language is saturated by a finite congruence. Conversely, if L is covered by a finite congruence, it is rational. \square

2. The syntactic congruence

Let L be any ω -language. Let us define the relation \approx over A^* by $w \approx w'$ iff $\forall u$, $v_1, v_2 \in A^*, u(v_1wv_2)^{\omega} \in L$ iff $u(v_1w'v_2)^{\omega} \in L$ and $v_1wv_2u^{\omega} \in L$ iff $v_1w'v_2u^{\omega} \in L$.

It is clear that \approx is a congruence. Let us call it the syntactic congruence of L and let us denote by $[\![u]\!]$ the \approx -class of u restricted to A^+ .

Lemma 2.1. The syntactic congruence of L is larger than any congruence which saturates L.

Proof. We have to prove that if \sim saturates L, then $w \sim w'$ implies $w \approx w'$. Let us assume $w \sim w'$; then $[v_1wv_2] = [v_1w'v_2]$. If $u(v_1wv_2)^\omega \in L$, then, since \sim saturates L, $[u][v_1wv_2]^\omega \subset L$, hence $[u][v_1w'v_2]^\omega \subset L$ and $u(v_1w'v_2)^\omega \in L$. Similarly, $v_1wv_2u^\omega \in L$ implies $v_1w'v_2u^\omega \in L$. It follows that $w \approx w'$. \square

Lemma 2.2. If L is rational, its syntactic congruence is finite and recognizes L.

Proof. If L is rational, it is saturated by a finite congruence and, by Lemma 2.1, \approx is finite.

Let us assume that the rational ω -language $[\![u]\!][\![v]\!]^{\omega} \cap L$ is not empty. Like in the proof of part (2) of Lemma 1.1, we get that there exists $w_1w_2^{\omega} \in L$ such that $[\![u]\!][\![v]\!]^{\omega} \subset [\![w_1]\!][\![w_2]\!]^{\omega}$. Thus, it remains to prove, in order to obtain that \approx saturates L, that $uv^{\omega} \in L \Rightarrow [\![u]\!][\![v]\!]^{\omega} \subset L$. If this is not the case, there exists $xy^{\omega} \in [\![u]\!][\![v]\!]^{\omega} - L$. The infinite word xy^{ω} can be written $u_0v_1 \dots v_p(v_1'\dots v_q')^{\omega}$ with $u_0 \approx u$, $v_i \approx v_j' \approx v$, hence, $u_0v_1\dots v_p \approx uv^P$, $v_1'\dots v_q' \approx v^q$, and $uv^{\omega} \in L$ iff $uv^P(v^q)^{\omega} \in L$ iff $u_0v_1\dots v_p(v_1'\dots v_q')^{\omega} \in L$, a contradiction. \square

From Lemmata 2.1 and 2.2 we have the following theorem.

Theorem 2.3. The syntactic congruence of a rational ω -language is finite and is the largest one which recognizes this language.

Note. From Lemma 2.2 it follows that if L is rational, then its syntactic congruence is finite, but the converse is not true: two ω -languages which have the same set of ultimately periodic words will have the same syntactic congruence, thus, even if a language has a finite syntactic congruence, it cannot be recognized by this congruence.

References

- [1] J. Berstel, Transductions and Context-free Languages (Teubner, Stuttgart, 1979).
- [2] J.R. Büchi, On a decision method in restricted second order arithmetic, *Proc. Internat. Congress on Logic*, Methodology and Philosophy (Stanford Univ. Press, 1962) 1-11.
- [3] S. Eilenberg, Automata, Languages, and Machines, Vol. A (Academic Press, New York, 1974).
- [4] M.P. Schützenberger, A propos des relations rationnelles fonctionnelles, in: M. Nivat, ed., *Proc. 1st ICALP'72*, Rocquencourt (North-Holland, Amsterdam, 1973) 103-114.