

SME0822 Análise Multivariada e Aprendizado Não-Supervisionado

Aula 2: Notação Matricial

Prof. Cibele Russo

cibele@icmc.usp.br

http://www.icmc.usp.br/~cibele

Baseado em Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Prentice Hall.

Escreveremos $\underline{v} = \underline{v}_{s \times 1}$ para denotar um vetor de dimensão s, ou seja, um vetor com s linhas e 1 coluna:

$$\underline{v} = \left[\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_s \end{array} \right]$$

Obs: Outra notação v.

2/40

Prof. Cibele Russo ICMC USP

Multiplicação por escalar

Sejam $\underline{v}=\underline{v}_{s\times 1}$ e $c\in\mathbb{R}$ um escalar. Define-se o produto $c.\underline{v}=c$ \underline{v} como

$$c \ v = \begin{bmatrix} c \ v_1 \\ c \ v_2 \\ \vdots \\ c \ v_s \end{bmatrix}$$

Soma de dois vetores

Sejam $\underline{v} = \underline{v}_{s \times 1}$ e $\underline{w} = \underline{w}_{s \times 1}$. Define-se a soma de dois vetores como

$$\underline{v} + \underline{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_s + w_s \end{bmatrix}$$

Prof. Cibele Russo ICMC USP 4/40

Escreveremos $A = A_{n \times m}$ para denotar uma matriz de dimensão $n \times m$, ou seja, uma matriz com n linhas e m colunas:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

Obs 2: Quando $A = A_{n \times n}$, dizemos que A é uma matriz quadrada de ordem n.

Prof. Cibele Russo ICMC USP 5 / 40

Multiplicação por escalar

Seja $A=A_{n\times m}$ uma matriz $n\times m$ e $c\in\mathbb{R}$ um escalar. Define-se a multiplicação de uma matriz por um escalar como

$$c A = \begin{bmatrix} c \ a_{11} & c \ a_{12} & \dots & c \ a_{1m} \\ c \ a_{21} & c \ a_{22} & \dots & c \ a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c \ a_{n1} & c \ a_{n2} & \dots & c \ a_{nm} \end{bmatrix}$$

Prof. Cibele Russo ICMC USP 6/40

Soma de duas matrizes

Sejam $A=A_{n\times m}$ e $B=B_{n\times m}$ duas matrizes de mesma dimensão. A soma A+B é uma matriz $n\times m$ em que

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2m} + b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nm} + b_{nm} \end{bmatrix}$$

Prof. Cibele Russo ICMC USP 7/40

Produto de duas matrizes

Sejam $A=A_{n\times m}$ e $B=B_{m\times p}$ duas matrizes. O produto AB é uma matriz $n\times p$ em que

$$AB = \begin{bmatrix} \sum_{i=1}^{m} a_{1i}b_{i1} & \dots & \sum_{i=1}^{m} a_{1i}b_{ip} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{m} a_{ni}b_{i1} & \dots & \sum_{i=1}^{m} a_{ni}b_{ip} \end{bmatrix}$$

Prof. Cibele Russo ICMC USP 8 / 40

Matriz transposta e vetor transposto

A matriz transposta de A é denotada por A^{\top} e é definida como:

$$A^{\top} = \left[egin{array}{ccccc} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{array}
ight]$$

O vetor transposto de \underline{v} é denotado por \underline{v}^\top e definido como

$$\underline{v}^{\top} = \left[\begin{array}{cccc} v_1 & v_2 & \dots & v_s \end{array} \right].$$

Prof. Cibele Russo ICMC USP 9 / 40

Produto interno entre dois vetores

Sejam $\underline{v} = \underline{v}_{s \times 1}$ e $\underline{w} = \underline{w}_{s \times 1}$. Define-se o produto interno de dois vetores como

$$\overset{\cdot}{v}^{\top}\overset{\cdot}{w} = v_1w_1 + v_2w_2 + \ldots + v_sw_s \in \mathbb{R}.$$

Prof. Cibele Russo ICMC USP 10 / 40

Seja $A = A_{n \times m}$ uma matriz real com n linhas e m colunas e $v = v_{s \times 1}$ um vetor com s linhas.

- **1** A^{\top} é a matriz transposta de A, \underline{v}^{\top} é o vetor transposto de \underline{v} .
- \bigcirc det $(A_{n\times n})$ = det A = |A| é o determinante de A.
- 3 $tr(A_{n\times n})=trA$ é o traço de A= soma dos elementos da diagonal principal de A.
- \bigcirc A^{-1} é a matriz inversa de A, se A admitir inversa.
- **1** dim(A) = dim A é a dimensão de A, em geral no formato $(\#linhas \times \#colunas)$.
- \circ r (A) é o posto de A= ordem da maior submatriz de determinante não nulo de A.
- $0 \mid I_n = I$ é a matriz identidade de ordem n.

◆ロト ◆問ト ◆差ト ◆差ト 差 りへ○

Seja $A = A_{n \times m}$ uma matriz real com n linhas e m colunas e $v = v_{s \times 1}$ um vetor com s linhas.

- **1** A^{\top} é a matriz transposta de A, \underline{v}^{\top} é o vetor transposto de \underline{v} .
- \bigcirc det $(A_{n\times n})$ = det A = |A| é o determinante de A.
- 3 $tr(A_{n\times n})=trA$ é o traço de A= soma dos elementos da diagonal principal de A.
- \bullet A^{-1} é a matriz inversa de A, se A admitir inversa.
- **1** dim(A) = dim A é a dimensão de A, em geral no formato $(\#linhas \times \#colunas)$.
- \circ r (A) é o posto de A= ordem da maior submatriz de determinante não nulo de A.
- $0 \mid I_n = I$ é a matriz identidade de ordem n.

◆□▶◆□▶◆壹▶◆壹▶ 壹 めQ

Prof. Cibele Russo ICMC USP 11 / 40

Seja $A = A_{n \times m}$ uma matriz real com n linhas e m colunas e $v = v_{s \times 1}$ um vetor com s linhas.

- **1** A^{\top} é a matriz transposta de A, \underline{v}^{\top} é o vetor transposto de \underline{v} .
- \bigcirc det $(A_{n\times n})$ = det A = |A| é o determinante de A.
- **3** $tr(A_{n\times n}) = trA$ é o traço de A = soma dos elementos da diagonal principal de A.
- \bullet A^{-1} é a matriz inversa de A, se A admitir inversa.
- **5** dim(A) = dim A é a dimensão de A, em geral no formato $(\#linhas \times \#colunas)$.
- \circ r (A) é o posto de A= ordem da maior submatriz de determinante não nulo de A.
- $0 \mid I_n = I$ é a matriz identidade de ordem n.

Prof. Cibele Russo ICMC USP 11 / 40

Seja $A = A_{n \times m}$ uma matriz real com n linhas e m colunas e $v = v_{s \times 1}$ um vetor com s linhas.

- **1** A^{\top} é a matriz transposta de A, \underline{v}^{\top} é o vetor transposto de \underline{v} .
- \bigcirc det $(A_{n\times n})$ = det A = |A| é o determinante de A.
- **3** $tr(A_{n\times n}) = trA$ é o traço de A = soma dos elementos da diagonal principal de A.
- $oldsymbol{4}$ A^{-1} é a matriz inversa de A, se A admitir inversa.
- **3** dim(A) = dim A é a dimensão de A, em geral no formato $(\#linhas \times \#colunas)$.
- \circ r (A) é o posto de A= ordem da maior submatriz de determinante não nulo de A.
- $0 \mid I_n = I$ é a matriz identidade de ordem n.

Prof. Cibele Russo ICMC USP 11/40

Seja $A = A_{n \times m}$ uma matriz real com n linhas e m colunas e $v = v_{s \times 1}$ um vetor com s linhas.

- **1** A^{\top} é a matriz transposta de A, \underline{v}^{\top} é o vetor transposto de \underline{v} .
- \bigcirc det $(A_{n\times n})$ = det A = |A| é o determinante de A.
- 3 $tr(A_{n\times n})=trA$ é o traço de A= soma dos elementos da diagonal principal de A.
- $oldsymbol{4}$ A^{-1} é a matriz inversa de A, se A admitir inversa.
- **1** dim(A) = dim A é a dimensão de A, em geral no formato $(\#linhas \times \#colunas)$.
- \circ r (A) é o posto de A= ordem da maior submatriz de determinante não nulo de A.
- ${ ilde O} \ I_n = I$ é a matriz identidade de ordem n.

Prof. Cibele Russo ICMC USP 11/40

Seja $A = A_{n \times m}$ uma matriz real com n linhas e m colunas e $v = v_{s \times 1}$ um vetor com s linhas.

- **1** A^{\top} é a matriz transposta de A, \underline{v}^{\top} é o vetor transposto de \underline{v} .
- ② $det(A_{n\times n}) = det A = |A|$ é o determinante de A.
- 3 $tr(A_{n\times n})=trA$ é o traço de A= soma dos elementos da diagonal principal de A.
- $oldsymbol{4}$ A^{-1} é a matriz inversa de A, se A admitir inversa.
- **3** dim(A) = dim A é a dimensão de A, em geral no formato $(\#linhas \times \#colunas)$.
- \circ r (A) é o posto de A= ordem da maior submatriz de determinante não nulo de A.
- $0 I_n = I$ é a matriz identidade de ordem n.

Prof. Cibele Russo ICMC USP 11/40

Seja $A = A_{n \times m}$ uma matriz real com n linhas e m colunas e $v = v_{s \times 1}$ um vetor com s linhas.

- **1** A^{\top} é a matriz transposta de A, \underline{v}^{\top} é o vetor transposto de \underline{v} .
- ② $det(A_{n\times n}) = det A = |A|$ é o determinante de A.
- 3 $tr(A_{n\times n})=trA$ é o traço de A= soma dos elementos da diagonal principal de A.
- $oldsymbol{4}$ A^{-1} é a matriz inversa de A, se A admitir inversa.
- **3** dim(A) = dim A é a dimensão de A, em geral no formato $(\#linhas \times \#colunas)$.
- \circ r (A) é o posto de A= ordem da maior submatriz de determinante não nulo de A.
- $I_n = I$ é a matriz identidade de ordem n.

◆ロト 4個ト 4 差ト 4 差ト 差 めなる

Prof. Cibele Russo ICMC USP 11 / 40

 $I_n = I$ é a matriz identidade de ordem n.

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}_{n \times n}$$

Definições e resultados matriciais

Dependência linear de vetores

Sejam $y_1,...,y_m$ m vetores, cada um com n linhas, $y_i \in \mathbb{R}^n$, i = 1,...,m.

O conjunto $\{v_1, ..., v_m\}$ é um conjunto de vetores linearmente independentes (li) se

$$c_1 \underbrace{v}_1 + ... + c_m \underbrace{v}_m = \underbrace{0} \quad \Rightarrow \quad c_1 = ... = c_m = 0.$$

Caso contrário dizemos que $\{\underline{v}_1,...,\underline{v}_m\}$ é um conjunto de vetores linearmente dependentes (ld).

Prof. Cibele Russo ICMC USP 13/40

- Se $A_{n \times n}$ admite inversa, então A é dita não singular. Caso contrário, A é singular.
- ② Se $A_{n \times n}$ admite inversa, digamos A^{-1} , então a inversa é única.
- $AA^{-1} = A^{-1}A = I_n$
- $(A^{-1})^{-1} = A.$
- **6** $A_{n \times n}$ e $B_{n \times n}$ não singulares $\Rightarrow (AB)^{-1} = B^{-1}A^{-1}$.
- **6** $A_{n \times n}$ não singular e $k \neq 0$ um escalar $\Rightarrow (kA)^{-1} = (1/k)A^{-1}$.

Prof. Cibele Russo ICMC USP 14/40

- Se $A_{n \times n}$ admite inversa, então A é dita não singular. Caso contrário, A é singular.
- ② Se $A_{n \times n}$ admite inversa, digamos A^{-1} , então a inversa é única.
- 3 $AA^{-1} = A^{-1}A = I_n$
- $(A^{-1})^{-1} = A.$
- **6** $A_{n \times n}$ e $B_{n \times n}$ não singulares $\Rightarrow (AB)^{-1} = B^{-1}A^{-1}$.
- **6** $A_{n \times n}$ não singular e $k \neq 0$ um escalar $\Rightarrow (kA)^{-1} = (1/k)A^{-1}$.

Prof. Cibele Russo ICMC USP 14 / 40

- Se $A_{n \times n}$ admite inversa, então A é dita não singular. Caso contrário, A é singular.
- ② Se $A_{n \times n}$ admite inversa, digamos A^{-1} , então a inversa é única.
- $AA^{-1} = A^{-1}A = I_n.$
- $(A^{-1})^{-1} = A.$
- **6** $A_{n \times n}$ e $B_{n \times n}$ não singulares $\Rightarrow (AB)^{-1} = B^{-1}A^{-1}$.
- **6** $A_{n \times n}$ não singular e $k \neq 0$ um escalar $\Rightarrow (kA)^{-1} = (1/k)A^{-1}$.

Prof. Cibele Russo ICMC USP 14 / 40

- ① Se $A_{n \times n}$ admite inversa, então A é dita não singular. Caso contrário, A é singular.
- ② Se $A_{n \times n}$ admite inversa, digamos A^{-1} , então a inversa é única.
- $AA^{-1} = A^{-1}A = I_n.$
- $(A^{-1})^{-1} = A.$
- **6** $A_{n \times n}$ e $B_{n \times n}$ não singulares $\Rightarrow (AB)^{-1} = B^{-1}A^{-1}$.
- **6** $A_{n \times n}$ não singular e $k \neq 0$ um escalar $\Rightarrow (kA)^{-1} = (1/k)A^{-1}$.

Prof. Cibele Russo ICMC USP 14/40

- Se $A_{n \times n}$ admite inversa, então A é dita não singular. Caso contrário, A é singular.
- ② Se $A_{n \times n}$ admite inversa, digamos A^{-1} , então a inversa é única.
- $AA^{-1} = A^{-1}A = I_n.$
- $(A^{-1})^{-1} = A.$
- **6** $A_{n \times n}$ não singular e $k \neq 0$ um escalar $\Rightarrow (kA)^{-1} = (1/k)A^{-1}$.

Prof. Cibele Russo ICMC USP 14 / 40

- Se $A_{n \times n}$ admite inversa, então A é dita não singular. Caso contrário, A é singular.
- ② Se $A_{n \times n}$ admite inversa, digamos A^{-1} , então a inversa é única.
- $AA^{-1} = A^{-1}A = I_n.$
- $(A^{-1})^{-1} = A.$
- **6** $A_{n \times n}$ e $B_{n \times n}$ não singulares $\Rightarrow (AB)^{-1} = B^{-1}A^{-1}$.
- **6** $A_{n \times n}$ não singular e $k \neq 0$ um escalar $\Rightarrow (kA)^{-1} = (1/k)A^{-1}$.

Prof. Cibele Russo ICMC USP 14 / 40

Propriedades da matriz transposta

- 2 $A^{T}A$ e AA^{T} são simétricas.
- **③** A e B matrizes; \exists AB \Rightarrow $(AB)^{\top} = B^{\top}A^{\top}$.

Propriedades da matriz transposta

- **2** $A^{T}A$ e AA^{T} são simétricas.
- **③** A e B matrizes; \exists AB \Rightarrow $(AB)^{\top} = B^{\top}A^{\top}$.

Prof. Cibele Russo ICMC USP 15 / 40

Propriedades da matriz transposta

- **2** $A^{T}A$ e AA^{T} são simétricas.
- **3** A e B matrizes; $\exists AB \Rightarrow (AB)^{\top} = B^{\top}A^{\top}$.

Prof. Cibele Russo ICMC USP 15 / 40

Propriedades do determinante de uma matriz

- ② $det(A_{n\times n}) = 0 \Rightarrow A \text{ \'e singular}.$

Propriedades do determinante de uma matriz

Prof. Cibele Russo ICMC USP 16 / 40

- $A_{n\times m}$ (n>m), r=r (A) é o número de colunas linearmente independentes de A, $r\leq m$.
 - Se r = m então A é de posto completo. Caso contrário A é de posto incompleto.
- **3** $A_{n \times m}$ (n < m), r = r(A) é o número de linhas linearmente independentes de A, $r \le n$.
 - Se r = n então A é de posto completo. Caso contrário A é de posto incompleto.

Prof. Cibele Russo ICMC USP 17 / 40

Prof. Cibele Russo

- $A_{n \times m} (n > m), r = r (A) \text{ \'e o n\'umero de colunas linearmente independentes de } A, r \leq m.$
 - Se r = m então A é de posto completo. Caso contrário A é de posto incompleto.
- **3** $A_{n \times m}$ (n < m), r = r(A) é o número de linhas linearmente independentes de A, $r \le n$.
 - Se r = n então A é de posto completo. Caso contrário A é de posto incompleto.

ICMC USP

17 / 40

Prof. Cibele Russo

- $A_{n \times m} (n > m), r = r (A) \text{ \'e o n\'umero de colunas linearmente independentes de } A, r \leq m.$
 - Se r = m então A é de posto completo. Caso contrário A é de posto incompleto.
- **3** $A_{n \times m}$ (n < m), r = r(A) é o número de linhas linearmente independentes de A, $r \le n$.
 - Se r = n então A é de posto completo. Caso contrário A é de posto incompleto.

ICMC USP

17 / 40

- **4** $A_{n \times m}$ (n > m), r = r(A) é o número de colunas linearmente independentes de A, $r \le m$.

Se r = m então A é de posto completo. Caso contrário A é de posto incompleto.

- **3** $A_{n \times m}$ (n < m), r = r(A) é o número de linhas linearmente independentes de A, $r \le n$.
 - Se r = n então A é de posto completo. Caso contrário A é de posto incompleto.

Prof. Cibele Russo ICMC USP 17 / 40

- **4** $A_{n\times m}$ (n>m), r=r(A) é o número de colunas linearmente independentes de A, $r\leq m$.

Se r = m então A é de posto completo. Caso contrário A é de posto incompleto.

- **3** $A_{n \times m}$ (n < m), r = r(A) é o número de linhas linearmente independentes de A, $r \le n$.
 - Se r = n então A é de posto completo. Caso contrário A é de posto incompleto.

• Traço de uma matriz tr(AB) = tr(BA), se $AB \in BA$ estiverem definidos.

Prof. Cibele Russo ICMC USP 18 / 40

- $P_{n \times n}$ é ortogonal $\iff P^{-1} = P^{\top}$.
- P é ortogonal $\Rightarrow P^{\top}P = I_n$.
- P é ortogonal \Rightarrow det $P = \pm 1$.
- \underline{x}_{nx1} e \underline{y}_{nx1} são ortogonais se $\underline{x}^{\top}\underline{y} = 0$.

- $P_{n \times n}$ é ortogonal $\iff P^{-1} = P^{\top}$.
- P é ortogonal $\Rightarrow P^{\top}P = I_n$.
- P é ortogonal \Rightarrow det $P = \pm 1$.
- \underline{x}_{nx1} e \underline{y}_{nx1} são ortogonais se $\underline{x}^{\top}\underline{y} = 0$.

- $P_{n \times n}$ é ortogonal $\iff P^{-1} = P^{\top}$.
- P é ortogonal $\Rightarrow P^{\top}P = I_n$.
- P é ortogonal \Rightarrow det $P=\pm 1$.
- \underline{x}_{nx1} e \underline{y}_{nx1} são ortogonais se $\underline{x}^{\top}\underline{y} = 0$.

- $P_{n \times n}$ é ortogonal $\iff P^{-1} = P^{\top}$.
- P é ortogonal $\Rightarrow P^{\top}P = I_n$.
- P é ortogonal \Rightarrow det $P=\pm 1$.
- \underline{x}_{nx1} e \underline{y}_{nx1} são ortogonais se $\underline{x}^{\top}\underline{y} = 0$.

- As raízes características ou autovalores de uma matriz $A_{n\times n}$ são soluções em λ da equação $\det(A-\lambda I_n)=0$.
- A soma das raízes características de A é trA.
- O produto das raízes características de A é det A.
- Se r $(A_{n\times n})=p$ então (n-p) raízes da equação $\det(A-\lambda I_n)=0$ são nulas.

- As raízes características ou autovalores de uma matriz $A_{n\times n}$ são soluções em λ da equação $\det(A \lambda I_n) = 0$.
- A soma das raízes características de A é trA.
- O produto das raízes características de A é det A.
- Se r $(A_{n\times n})=p$ então (n-p) raízes da equação $\det(A-\lambda I_n)=0$ são nulas.

- As raízes características ou autovalores de uma matriz $A_{n\times n}$ são soluções em λ da equação $\det(A \lambda I_n) = 0$.
- A soma das raízes características de A é trA.
- O produto das raízes características de A é det A.
- Se r $(A_{n\times n}) = p$ então (n-p) raízes da equação $\det(A \lambda I_n) = 0$ são nulas.

- As raízes características ou autovalores de uma matriz $A_{n\times n}$ são soluções em λ da equação $\det(A \lambda I_n) = 0$.
- A soma das raízes características de A é trA.
- O produto das raízes características de A é det A.
- Se r $(A_{n\times n})=p$ então (n-p) raízes da equação $\det(A-\lambda I_n)=0$ são nulas.

1 $A_{n \times n}$ é positiva definida \iff

 $A = P^{\top}P$ para alguma matriz P não singular **ou** as raízes características de A são todas positivas **ou**

$$a_{11} > 0$$
, det $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} > 0$, ..., det $A > 0$.

- ② Se $A_{n\times n}$ é positiva definida então r (A)=n e $a_{ii}>0$ para todo $i=1,\ldots,n$.
- ullet $P^{\top}AP$ é positiva definida para toda matriz $P_{n\times n}$ não singular.

- **1** $A_{n \times n}$ é positiva definida \iff $A = P^{\top}P$ para alguma matriz P não singular **ou** as raízes características de A são todas positivas **ou** $a_{11} > 0$, det $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} > 0, ..., \det A > 0$.
- ② Se $A_{n\times n}$ é positiva definida então r (A)=n e $a_{ii}>0$ para todo $i=1,\ldots,n$.
- $lacksquare P^ op AP$ é positiva definida para toda matriz $P_{n imes n}$ não singular.

21/40

- **1** $A_{n \times n}$ é positiva definida \iff $A = P^{\top}P$ para alguma matriz P não singular **ou** as raízes características de A são todas positivas **ou** $a_{11} > 0$, det $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} > 0$, ..., det A > 0.
- ② Se $A_{n\times n}$ é positiva definida então r (A)=n e $a_{ii}>0$ para todo $i=1,\ldots,n$.
- **3** $P^{\top}AP$ é positiva definida para toda matriz $P_{n \times n}$ não singular.

- **1** $A_{n \times n}$ é positiva semidefinida \iff ∃ $B_{n \times n}$ com r (B) < n tal que $B^{\top}B = A$ ou as raízes características de A são não negativas com no mínimo uma igual a zero.
- ② Se $A_{n \times n}$ é positiva semidefinida então r(A) < n e $a_{ii} \ge 0$ para todo $i = 1, \dots, n$.
- \bullet $P^{\top}AP$ é positiva semidefinida para toda matriz $P_{n\times p}$.

- **1** $A_{n \times n}$ é positiva semidefinida \iff ∃ $B_{n \times n}$ com r (B) < n tal que $B^{\top}B = A$ ou as raízes características de A são não negativas com no mínimo uma igual a zero.
- ② Se $A_{n \times n}$ é positiva semidefinida então r(A) < n e $a_{ii} \ge 0$ para todo $i = 1, \dots, n$.
- \bullet $P^{\top}AP$ é positiva semidefinida para toda matriz $P_{n\times p}$.

- **1** $A_{n \times n}$ é positiva semidefinida \iff ∃ $B_{n \times n}$ com r (B) < n tal que $B^{\top}B = A$ ou as raízes características de A são não negativas com no mínimo uma igual a zero.
- ② Se $A_{n \times n}$ é positiva semidefinida então r(A) < n e $a_{ii} \ge 0$ para todo $i = 1, \dots, n$.
- **3** $P^{\top}AP$ é positiva semidefinida para toda matriz $P_{n \times p}$.

- **1** $A_{n \times n}$ é negativa definida se $-A_{n \times n}$ é positiva definida.
- \bigcirc $A_{n\times n}$ é negativa semidefinida se $-A_{n\times n}$ é positiva semidefinida.
- 3 $A^{T}A$ é positiva definida se A tem posto completo.

- **1** $A_{n\times n}$ é negativa definida se $-A_{n\times n}$ é positiva definida.
- **2** $A_{n \times n}$ é negativa semidefinida se $-A_{n \times n}$ é positiva semidefinida.
- \bullet $A^{T}A$ é positiva definida se A tem posto completo.

- **1** $A_{n \times n}$ é negativa definida se $-A_{n \times n}$ é positiva definida.
- 2 $A_{n \times n}$ é negativa semidefinida se $-A_{n \times n}$ é positiva semidefinida.
- $\mathbf{3} \ A^{\top} A$ é positiva definida se A tem posto completo.

Formas quadráticas

lacksquare A função $f(x_1,...,x_n)$ de n variáveis reais é uma forma quadrática se

$$f(x_1,...,x_n) = \underline{x}^{\top} A \underline{x},$$

com $\underline{x} = (x_1, \dots, x_n)^{\top}$ e $A = A_{n \times n}$ uma matriz simétrica (matriz da forma quadrática).

② A forma quadrática mais simples é $f(x) = a_{11}x^2$.

24 / 40

Formas quadráticas

lacksquare A função $f(x_1,...,x_n)$ de n variáveis reais é uma forma quadrática se

$$f(x_1,...,x_n) = \underline{x}^{\top} A \underline{x},$$

com $\underline{x} = (x_1, \dots, x_n)^{\top}$ e $A = A_{n \times n}$ uma matriz simétrica (matriz da forma quadrática).

2 A forma quadrática mais simples é $f(x) = a_{11}x^2$.

Prof. Cibele Russo

Classificação de formas quadráticas

1 A forma quadrática $(\underline{x}^{\top}A\underline{x})$ é positiva definida se

$$(\underline{x}^{\top} A \underline{x}) > 0$$
 para todo $\underline{x} \neq 0$.

② A forma quadrática $(\underline{x}^{\top}A\underline{x})$ é positiva semidefinida se

$$(\underline{x}^{ op}A\underline{x}) \geq 0$$
 para todo $\underline{x}
eq 0$

e $(\underline{x}^{\top} A \underline{x}) = 0$ para pelo menos um $\underline{x} \neq 0$.

Classificação de formas quadráticas

1 A forma quadrática $(\underline{x}^{\top}A\underline{x})$ é positiva definida se

$$(\underline{x}^{\top}A\underline{x}) > 0$$
 para todo $\underline{x} \neq 0$.

2 A forma quadrática $(\underline{x}^{\top}A\underline{x})$ é positiva semidefinida se

$$(\underline{x}^{\top} A \underline{x}) \ge 0$$
 para todo $\underline{x} \ne 0$

e $(\underline{x}^{\top} A \underline{x}) = 0$ para pelo menos um $\underline{x} \neq 0$.

Autovalores e autovetores

Seja $A_{n\times n}$ uma matriz qualquer. Dizemos que (λ, \underline{v}) , com $\underline{v} \neq 0$, é um par de autovalor e autovetor de A se

$$A\underline{v} = \lambda \underline{v}$$
.

Seja $A_{k \times k}$ é uma matriz positiva definida, então A tem k pares de autovalor e autovetor,

$$(\lambda_1, \underline{e}_1), \ldots, (\lambda_k, \underline{e}_k).$$

Autovalores e autovetores

Seja $A_{n\times n}$ uma matriz qualquer. Dizemos que (λ, \underline{v}) , com $\underline{v} \neq 0$, é um par de autovalor e autovetor de A se

$$A\underline{v} = \lambda\underline{v}$$
.

Seja $A_{k \times k}$ é uma matriz positiva definida, então A tem k pares de autovalor e autovetor,

$$(\lambda_1, \underline{e}_1), \ldots, (\lambda_k, \underline{e}_k).$$

Autovalores e autovetores

Se $A_{k \times k}$ é uma matriz positiva definida com pares de autovalor e autovetor dados por

$$(\lambda_1, \underline{e}_1), \ldots, (\lambda_k, \underline{e}_k).$$

Então os autovetores sempre podem ser escolhidos de tal forma que

$$1 = \underline{e}_1^{\top} \underline{e}_1 = \ldots = \underline{e}_k^{\top} \underline{e}_k$$

e $\underline{e}_i^{\top}\underline{e}_j = 0$ para todo $i, j = 1, \dots, k$ e $i \neq j$.

◆ロト ◆個ト ◆ 差ト ◆ 差 ・ 釣 へ ○

- **1** $B_{n \times n}$ é idempotente se B = BB.
- ② Se A é idempotente, então r(A) = tr(A).
- Se A-B é idempotente, então r (A-B)= r (A)- r (B).

- **1** $B_{n \times n}$ é idempotente se B = BB.
- 2 Se A é idempotente, então r(A) = tr(A).
- 3 Se A B é idempotente, então r(A B) = r(A) r(B).

- **1** $B_{n \times n}$ é idempotente se B = BB.
- 2 Se A é idempotente, então r(A) = tr(A).
- **3** Se A B é idempotente, então r (A B) = r(A) r(B).

- H é idempotente.
- (I H) é idempotente.
- (4) r (H) = r (X) = p+1.
- **5** r(I-H) = n (p+1).

- H é idempotente.
- (I H) é idempotente.
- (4) r (H) = r (X) = p+1.
- **5** r(I-H) = n (p+1).

- H é idempotente.
- (I H) é idempotente.
- **3** $H \in (I H)$ são ortogonais, ou seja, (I H)H = 0.
- (4) r (H) = r (X) = p+1
- **5** r(I-H) = n (p+1).

Sejam $X_{n\times(p+1)}$ com n>(p+1) e posto p+1 (posto completo) e $H=X(X^\top X)^{-1}X^\top$ a matriz hat ou chapéu. Então

- H é idempotente.
- (I H) é idempotente.
- **3** $H \in (I H)$ são ortogonais, ou seja, (I H)H = 0.
- **4** r(H) = r(X) = p + 1.
- **5** r(I-H) = n (p+1).

- H é idempotente.
- (I H) é idempotente.
- **3** $H \in (I H)$ são ortogonais, ou seja, (I H)H = 0.
- **4** r(H) = r(X) = p + 1.

A decomposição espectral de uma matriz simétrica $A_{k imes k}$ é dada por

$$A = \lambda_1 \underline{e}_1 \underline{e}_1^\top + \ldots + \lambda_k \underline{e}_k \underline{e}_k^\top$$

com $\lambda_1, \ldots, \lambda_k$ autovalores de A com $\underline{e}_1, \ldots, \underline{e}_k$ autovetores correspondentes, tais que

$$1 = \underline{e}_1^{\mathsf{T}} \underline{e}_1 = \ldots = \underline{e}_k^{\mathsf{T}} \underline{e}_k \ \mathbf{e} \ \underline{e}_i^{\mathsf{T}} \underline{e}_j = \mathbf{0},$$

para todo $i, j = 1, \dots, k$ e $i \neq j$.

Seja A uma matriz positiva definida com decomposição espectral

$$A = \lambda_1 \underline{e}_1 \underline{e}_1^\top + \ldots + \lambda_k \underline{e}_k \underline{e}_k^\top = \sum_{i=1}^k \lambda_i \underline{e}_i \underline{e}_i^\top$$

e seja

$$P = [\underline{e}_1 \dots \underline{e}_k]$$
.

(continua...)

Então podemos escrever

$$A = \sum_{i=1}^{k} \lambda_{i} \underline{e}_{i} \underline{e}_{i}^{\top} = P \Lambda P^{\top}$$

com

$$\Lambda = \left[\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_k \end{array} \right]$$

e $\lambda_i > 0$.

Além disso,
$$A^{-1} = P\Lambda^{-1}P^{\top} = \sum_{i=1}^{k} \frac{1}{\lambda_i} \underline{e}_i \underline{e}_i^{\top}$$
, já que
$$(P\Lambda P^{\top})(P\Lambda^{-1}P^{\top}) = P\Lambda P^{\top}P\Lambda^{-1}P^{\top} = I.$$

Seja
$$\Lambda^{1/2}=\left[egin{array}{cccc} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_k} \end{array}
ight].$$

Def. A raiz quadrada de A é denotada por $A^{1/2}$ e pode ser escrita na forma

$$A^{1/2} = \sum_{i=1}^{\kappa} \sqrt{\lambda_i} \underline{e}_i \underline{e}_i^{\mathsf{T}}$$
 e tem as seguintes propriedades

- **1** $(A^{1/2})^{\top} = A^{1/2}$ (simétrica),
- $A^{1/2}A^{1/2} = A,$
- $(A^{1/2})^{-1} = P \Lambda^{-1/2} P^{\top},$
- $4^{1/2}(A^{1/2})^{-1} = I$
- **6** $A^{-1/2}A^{-1/2} = A^{-1}$ em que $A^{-1/2} = (A^{1/2})^{-1}$.

Seja
$$\Lambda^{1/2}=\left[egin{array}{cccc} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_k} \end{array}
ight].$$

Def. A raiz quadrada de A é denotada por $A^{1/2}$ e pode ser escrita na forma

$$A^{1/2} = \sum_{i=1}^{\kappa} \sqrt{\lambda_i} \underline{e}_i \underline{e}_i^{\mathsf{T}}$$
 e tem as seguintes propriedades

- **1** $(A^{1/2})^{\top} = A^{1/2}$ (simétrica),
- $A^{1/2}A^{1/2} = A,$
- $(A^{1/2})^{-1} = P \Lambda^{-1/2} P^{\top},$
- $4^{1/2}(A^{1/2})^{-1} = I$
- **6** $A^{-1/2}A^{-1/2} = A^{-1}$ em que $A^{-1/2} = (A^{1/2})^{-1}$.

Seja
$$\Lambda^{1/2}=\left[egin{array}{cccc} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_k} \end{array}
ight].$$

Def. A raiz quadrada de A é denotada por $A^{1/2}$ e pode ser escrita na forma

$$A^{1/2} = \sum_{i=1}^{\kappa} \sqrt{\lambda_i} \underline{e}_i \underline{e}_i^{\mathsf{T}}$$
 e tem as seguintes propriedades

- **1** $(A^{1/2})^{\top} = A^{1/2}$ (simétrica),
- $A^{1/2}A^{1/2} = A,$
- **3** $(A^{1/2})^{-1} = P\Lambda^{-1/2}P^{\top}$,
- $4^{1/2}(A^{1/2})^{-1} = I$
- **5** $A^{-1/2}A^{-1/2} = A^{-1}$ em que $A^{-1/2} = (A^{1/2})^{-1}$.

Seja
$$\Lambda^{1/2}=\left[egin{array}{cccc} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_k} \end{array}
ight].$$

Def. A raiz quadrada de A é denotada por $A^{1/2}$ e pode ser escrita na forma

$$A^{1/2} = \sum_{i=1}^{\kappa} \sqrt{\lambda_i} \underline{e}_i \underline{e}_i^{\mathsf{T}}$$
 e tem as seguintes propriedades

- **1** $(A^{1/2})^{\top} = A^{1/2}$ (simétrica),
- $A^{1/2}A^{1/2} = A,$
- **3** $(A^{1/2})^{-1} = P\Lambda^{-1/2}P^{\top}$,
- $4^{1/2}(A^{1/2})^{-1} = I,$
- **6** $A^{-1/2}A^{-1/2} = A^{-1}$ em que $A^{-1/2} = (A^{1/2})^{-1}$.

Seja
$$\Lambda^{1/2}=\left[egin{array}{cccc} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_k} \end{array}
ight].$$

Def. A raiz quadrada de A é denotada por $A^{1/2}$ e pode ser escrita na forma

$$A^{1/2} = \sum_{i=1}^{\kappa} \sqrt{\lambda_i} \underline{e}_i \underline{e}_i^{\mathsf{T}}$$
 e tem as seguintes propriedades

- **1** $(A^{1/2})^{\top} = A^{1/2}$ (simétrica),
- $A^{1/2}A^{1/2} = A,$
- **3** $(A^{1/2})^{-1} = P\Lambda^{-1/2}P^{\top}$,
- $4^{1/2}(A^{1/2})^{-1} = I,$
- **6** $A^{-1/2}A^{-1/2} = A^{-1}$ em que $A^{-1/2} = (A^{1/2})^{-1}$.

Outras decomposições

1 Uma matriz simétrica pode ser fatorada como

$$A = LDL^{\top}$$

onde L é uma matriz triangular inferior e D é uma matriz diagonal.

2 A é positiva definida se e somente se existir uma matriz W não singular tal que

$$A = WW^{\mathsf{T}}$$

(Decomposição de Cholesky).

③ Para $A_{p \times p}$ positiva definida, existe uma única matriz triangular superior T tal que

$$A = T^{\top}T$$

com $t_{ii} > 0$ para todo $i = 1, \ldots, p$.

4 D > 4 D > 4 E > 4 E > E 990

Outras decomposições

Uma matriz simétrica pode ser fatorada como

$$A = LDL^{\top}$$

onde L é uma matriz triangular inferior e D é uma matriz diagonal.

 ${f 2}$ ${\cal A}$ é positiva definida se e somente se existir uma matriz ${\cal W}$ não singular tal que

$$A = WW^{\top}$$

(Decomposição de Cholesky).

③ Para $A_{p \times p}$ positiva definida, existe uma única matriz triangular superior T tal que

$$A = T^{\top} T$$

com $t_{ii} > 0$ para todo $i = 1, \ldots, p$.

<ロ > < 個 > < 置 > < 重 > のQ (~)

Outras decomposições

Uma matriz simétrica pode ser fatorada como

$$A = LDL^{\top}$$

onde L é uma matriz triangular inferior e D é uma matriz diagonal.

 ${f 2}$ ${\cal A}$ é positiva definida se e somente se existir uma matriz ${\cal W}$ não singular tal que

$$A = WW^{\top}$$

(Decomposição de Cholesky).

③ Para $A_{p \times p}$ positiva definida, existe uma única matriz triangular superior T tal que

$$A = T^{T}T$$

com $t_{ii} > 0$ para todo $i = 1, \ldots, p$.

4□ > 4個 > 4 = > 4 = > = 900

Sejam
$$A_{m \times n} = (a_{ij})$$
 e $B_{p \times q} = (b_{ij})$.

O produto de Kronecker entre A e B é definido por

$$(A \otimes B)_{mp \times nq} = (a_{ij}B).$$

Propriedades do produto de Kronecker

$$(A+B) \otimes C = (A \otimes C) + (B \otimes C)$$

$$\textcircled{4}$$
 $aA \otimes bB = ab(A \otimes B)$, com $a, b \in \mathbb{R}$

6
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

∢ロト ∢倒ト ∢差ト ∢差ト 差 めらぐ

37 / 40

Propriedades do produto de Kronecker

$$(A+B) \otimes C = (A \otimes C) + (B \otimes C)$$

$$\textcircled{4}$$
 $aA \otimes bB = ab(A \otimes B)$, com $a, b \in \mathbb{R}$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

6
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

37 / 40

Propriedades do produto de Kronecker

$$(A+B)\otimes C = (A\otimes C) + (B\otimes C)$$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

1
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

Propriedades do produto de Kronecker

$$(A+B)\otimes C=(A\otimes C)+(B\otimes C)$$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

1
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

Propriedades do produto de Kronecker

$$(A+B) \otimes C = (A \otimes C) + (B \otimes C)$$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

6
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

Propriedades do produto de Kronecker

$$(A+B) \otimes C = (A \otimes C) + (B \otimes C)$$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

6
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

Propriedades do produto de Kronecker

$$(A+B)\otimes C=(A\otimes C)+(B\otimes C)$$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

6
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

Propriedades do produto de Kronecker

$$(A+B)\otimes C=(A\otimes C)+(B\otimes C)$$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

6
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

3
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

Propriedades do produto de Kronecker

$$(A+B)\otimes C=(A\otimes C)+(B\otimes C)$$

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$$

6
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 se A^{-1} e B^{-1} existirem

8
$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I$$

Operações com matrizes em blocos

Sejam A, B, C, ... matrizes com dimensões adequadas em cada caso.

 $\begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} + \begin{bmatrix} A^* & B^* & C^* \\ D^* & E^* & F^* \end{bmatrix} = \begin{bmatrix} A + A^* & B + B^* & C + C^* \\ D + D^* & E + E^* & F + F^* \end{bmatrix},$ desde que as somas sejam possíveis.

 $\begin{bmatrix} P & Q \\ R & S \end{bmatrix} \begin{bmatrix} E \\ G \end{bmatrix} = \begin{bmatrix} PE + QG \\ RE + SG \end{bmatrix},$ desde que os produtos sejam possívei

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

Operações com matrizes em blocos

Sejam A, B, C, ... matrizes com dimensões adequadas em cada caso.

 $\begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} + \begin{bmatrix} A^* & B^* & C^* \\ D^* & E^* & F^* \end{bmatrix} = \begin{bmatrix} A + A^* & B + B^* & C + C^* \\ D + D^* & E + E^* & F + F^* \end{bmatrix},$ desde que as somas sejam possíveis.

$$\begin{bmatrix} P & Q \\ R & S \end{bmatrix} \begin{bmatrix} E \\ G \end{bmatrix} = \begin{bmatrix} PE + QG \\ RE + SG \end{bmatrix},$$
desde que os produtos sejam possíve

desde que os produtos sejam possíveis.

Operações com matrizes em blocos

Sejam A, B, C, ... matrizes com dimensões adequadas em cada caso.

 $\begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} + \begin{bmatrix} A^* & B^* & C^* \\ D^* & E^* & F^* \end{bmatrix} = \begin{bmatrix} A + A^* & B + B^* & C + C^* \\ D + D^* & E + E^* & F + F^* \end{bmatrix},$ desde que as somas sejam possíveis.

 $\begin{bmatrix} P & Q \\ R & S \end{bmatrix} \begin{bmatrix} E \\ G \end{bmatrix} = \begin{bmatrix} PE + QG \\ RE + SG \end{bmatrix},$ desde que os produtos sejam possíveis.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Inversas de matrizes em blocos

Seja B uma matriz particionada em blocos,

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} \right]$$

em que B_{11} e B_{22} são matrizes quadradas não-singulares. Então

$$B^{-1} = \begin{bmatrix} (B_{11} - B_{12}B_{22}^{-1}B_{21})^{-1} & -B_{11}^{-1}B_{12}(B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1} \\ -B_{22}^{-1}B_{21}(B_{11} - B_{12}B_{22}^{-1}B_{21})^{-1} & (B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1} \end{bmatrix}$$

е

$$|B| = |B_{22}||B_{11} - B_{12}B_{22}^{-1}B_{21}| = |B_{11}||B_{22} - B_{21}B_{11}^{-1}B_{12}|$$

Inversas de matrizes em blocos

Seja B uma matriz bloco diagonal

$$B = \left[\begin{array}{ccc} B_{11} & 0 & 0 \\ 0 & B_{22} & 0 \\ 0 & 0 & B_{33} \end{array} \right]$$

em que B_{11} , B_{22} e B_{33} são matrizes quadradas não-singulares.

Então
$$B^{-1} = \left[\begin{array}{ccc} B_{11}^{-1} & 0 & 0 \\ 0 & B_{22}^{-1} & 0 \\ 0 & 0 & B_{33}^{-1} \end{array} \right]$$

e
$$|B| = |B_{11}||B_{22}||B_{33}|.$$

O resultado vale para matrizes bloco diagonal de maior dimensão.