

# National University of Computer and Emerging Sciences Islamabad Campus

CS3001

# **Computer Networks**

# **Project**

Design and Simulation of a Multi-Protocol(OSPF,EIGRP,RIP), Multiple kind of Servers ,ACL and NAT-Enabled Network Using Cisco Packet Tracer

Submitted by: Abdullah Noman

Roll number: 23i-2012

**Date:** 5/12/2025

# **Table of Contents**

| 1. Project Objectives                                 | 3  |
|-------------------------------------------------------|----|
| 2. Methodology & Steps Followed During Implementation | 3  |
| 3. Network Design and Configuration Details           | 4  |
| 4. Observations and Results                           | 6  |
| 5. Screenshots                                        | 6  |
| 6. Conclusion                                         | 12 |

# 1. Project Objectives

The primary objectives of this Computer Networks project are:

- To simulate a complex network topology using Cisco Packet Tracer.
- To apply subnetting using Variable Length Subnet Masking (VLSM).
- To configure and implement routing protocols: EIGRP, OSPF (Areas 1 & 2), and RIP.
- To enable communication between these protocols through route redistribution.
- To set up and configure a centralized DHCP Server for dynamic IP addressing.
- To implement NAT (Network Address Translation) for external network access.
- To restrict access to the Web Server using Access Control Lists (ACLs).
- To configure Mail and FTP servers with access limited to specific network segments.

# 2. Methodology & Steps Followed During Implementation

- 1. **Topology Design**: The given logical network layout was replicated precisely using routers, switches, servers, and end devices categorized by color-coded network blocks (A to N).
- 2. **VLSM Subnetting**: Calculated subnets based on host requirements provided. Applied VLSM to efficiently allocate IP ranges.
- 3. **Router and Interface Configuration**: IP addresses were assigned to all router interfaces and devices as per subnetting plans.

#### 4. Routing Protocols:

- o EIGRP configured in Block A and Block E.
- OSPF Area 1 and 2 are configured in Blocks B and C.
- RIP configured in Block G.
- 5. **Route Redistribution**: Applied between routers connecting different blocks (e.g., EIGRP-OSPF, OSPF-RIP).
- 6. **DHCP Configuration**: Central DHCP server configured in Block D to assign IPs dynamically to devices in DHCP-enabled blocks.

#### 7. NAT Implementation:

- o Configured on Router21 (connected to Network K).
- o Configured on Router10 (connected to Network F).
- Used public IPs provided in IP address file.

#### 8. ACL Configuration:

Blocked one PC from Network A from accessing the Web Server.

- o Blocked a laptop from Network E and smartphone from Network B.
- Blocked all devices in Network D from accessing the Web Server.

#### 9. **Server Configuration**:

- Mail Server in Block D allows email exchange between Network H and Network I.
- o FTP Server in Network G allows only hosts from Network G to upload files.

#### 10. Testing & Validation:

- Verified IP addressing.
- Confirmed routing tables and redistribution.
- Checked ACL effectiveness.
- Validated DHCP, NAT translations, FTP and mail delivery.

# 3. Network Design and Configuration Details

#### 3.1 VLSM and IP Address Planning

Variable Length Subnet Masking (VLSM) was used to allocate IP addresses efficiently based on the number of hosts required in each network. Point-to-point links between routers were assigned /30 subnets (4 IPs) to minimize address waste.

Each subnet is planned to ensure that host and network communication requirements are met with minimum wastage.

#### 3.2 Routing Protocols

Routing protocols were used to manage the dynamic exchange of routing information between routers.

#### • EIGRP (Enhanced Interior Gateway Routing Protocol):

- o Used in Blocks A and E for its fast convergence and support for VLSM.
- Configured using AS numbers and relevant networks.

#### OSPF (Open Shortest Path First):

- o Used in Blocks B and C, with Area 1 and Area 2.
- Hierarchical, link-state protocol suitable for larger domains.

#### • RIP (Routing Information Protocol):

- Used in Block G.
- o Simple distance vector protocol with 15-hop limit.

#### 3.3 DHCP Configuration

#### What is DHCP?

Dynamic Host Configuration Protocol (DHCP) automates the assignment of IP addresses to hosts.

#### Why use DHCP?

- Reduces manual IP configuration errors.
- Simplifies network management.

#### Where it is used?

- A centralized DHCP Server is placed in Block D.
- It serves hosts in Blocks A (EIGRP), B & C (OSPF), and G (RIP).

#### 3.4 NAT Configuration

#### What is NAT?

Network Address Translation (NAT) converts private IP addresses into public IP addresses before packets are sent to the internet.

#### Why use NAT?

- Allows multiple private IP devices to access the internet using a single public IP.
- Enhances security by hiding internal IPs.

#### Where NAT is used in the project?

- Router7 (connected to Network K): NAT is used to translate internal addresses for internet access.
- Router11 (connected to Network F): Performs NAT for outbound traffic using public IP.

#### 3.5 ACL Configuration

#### What are ACLs?

Access Control Lists (ACLs) control network traffic by filtering packets based on criteria like IP, protocol, or port.

#### Why use ACLs?

- To enhance security.
- To restrict specific devices or networks from accessing services.

#### Where ACLs were applied?

- Router connected to the Web Server:
  - Denied one PC from Network A.
  - o Denied one Laptop from Network E.
  - Denied one Smartphone from Network B.
  - o Denied complete access for Network D.

#### 3.6 Mail Server Configuration

Purpose: To allow communication via email.

Location: Block D

#### **Configuration:**

Mail Server IP: 192.168.12.10

• Email clients on Network H and I.

SMTP and IMAP protocols used.

• ACLs and firewall rules ensure only those networks can communicate with the mail server.

### 3.7 FTP Server Configuration

Purpose: To allow file uploads.

Location: Network G

Access Restricted to: Only devices in Network G.

#### **Configuration:**

FTP Server IP: 192.173.0.4

• Username/password set up for clients.

• ACL restricts access to the FTP server.

### 4. Observations and Results

- All DHCP-configured hosts received IPs.
- Routing tables correctly propagated through redistribution.
- NAT translation verified using show ip nat translations.
- ACLs effectively blocked traffic from restricted hosts.
- Email services between Network H and I were successful.
- FTP upload from Network G was functional.

## 5. Screenshots

• Full topology diagram.



• Router and switch interface settings.





• DHCP pool output.



• NAT and ACL verification outputs.





• Ping results for testing connectivity and restrictions.



• Mail client send/receive window.



FTP client upload interface.



DNS interface



## 6. Conclusion

This project successfully demonstrated the planning, configuration, and deployment of a scalable and secure network using Cisco Packet Tracer. Key protocols and technologies including EIGRP, OSPF, RIP, DHCP, NAT, and ACLs were integrated in a functional topology. Access control, address translation, and service configurations were all verified and met the project's requirements.