Le mouvement des dunes de sable

Modélisation

19532 LE GUILLOU Auxence

En binôme avec Bastien Allier

Motivation et Lien du sujet

Pierre-Gilles de Gennes

L'articulation de notre TIPE

Mes objectifs annoncés

• Modéliser une dune de sable en Ocaml.

• Etudier ses déplacements en implémentant les différentes altérations possibles à notre modélisation.

• Aspects mathématiques des tas de sables.

• Conclure.

Stratégie pour la ** modélisation **

OCaml

C'est quoi, un automate cellulaire?

> Grille

> Cellules

> Règles

Le jeu de la vie

Etat d'une cellule

Vivant

Mort

Le jeu de la vie

Etat d'une cellule

Vivant

Mort

Le jeu de la vie

Etat d'une cellule

Vivant

Règles pour chaque cellule:

- Morte & 3 voisins vivants→ Vivant
- Vivante sans exactement
 2 ou 3 voisins vivants
 → Morte

Mort

Objet de modélisation

O	O	O	o	O	O	O	O
O	0	O	0	0	O	0	0
O	0	O	O	0	O	0	0
O	O	O	O	O	O	O	O
O	O	O	o	O	O	O	0
o	O	O	o	O	O	O	0
O	O	O	o	O	O	O	0

Implémentation d'une règle d'écoulement simpliste

```
1 (*Seuil d'écoulement du sable*)
2 let seuil = 5;;
```



```
18
       (*Règle d'écoulement en absence de contrainte sur notre automate*)
19
       let appliquer regle grille =
         let largeur, longueur = (Array.length grille), (Array.length grille.(0)) in
20
21
         let nouvelle grille = Array.map Array.copy grille in
22
         let modifie = ref false in
23
         for i = 0 to (largeur-1) do
24
           for j = 0 to (longueur-1) do
             let voisins = [(i-1, j); (i+1, j); (i, j-1); (i, j+1)] in
25
             List.iter (fun (vi, vj) ->
26
27
                 if vi >= 0 && vi < largeur && vj >= 0 && vj < longueur then
                   let ecart = grille.(i).(j) - grille.(vi).(vj) in
28
29
                   if ecart > seuil then (
                     nouvelle grille.(i).(j) <- nouvelle grille.(i).(j) - 1;
30
                     nouvelle grille.(vi).(vj) <- nouvelle grille.(vi).(vj) + 1;
31
32
                     modifie := true
33
34
               ) voisins
35
           done;
36
         done;
37
         if !modifie then Some nouvelle grille else None
38
       ;;
```

Implémentation d'une première dune simpliste

```
41  (* Simulation jusqu'à stabilisation *)
42  let rec simuler grille = match appliquer_regle grille with
43  | Some nouvelle_grille -> simuler nouvelle_grille
44  | None -> grille
45 ;;
```



```
(* Programme principal *)
47
48
       let () =
         let grille = init grille 10 10 in
49
50
         grille.(5).(5) <- 100;
51
         Printf.printf "Grille initiale :\n";
52
         affichage grille grille;
53
54
         let resultat = simuler grille in
         Printf.printf "Grille après simulation :\n";
55
56
         affichage grille resultat
57
       ;;
```

Implémentation d'une première dune simpliste

o	o	O	o	O	o	o	o	o
0	o	o	O	o	O	O	O	O
0	О	o	O	О	O	O	O	O
0	О	О	O	О	O	o	o	О
0	O	0	0	0	0	o	0	0
0	0	0	0	10 00	0	0	0	0
0	О	0	0	O	0	O	0	0
0	О	o	o	О	o	o	О	o
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0 0 0 0 0	 O 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0

o	o	0	o	4	8	5	1	o	o
O	o	o	4	9	13	8	4	2	o
O	o	4	9	14	17	13	9	5	2
O	4	9	14	19	22	18	14	9	5
4	9	14	19	24	27	23	18	13	10
8	13	17	22	27	32	2 7	23	18	14
5	8	13	18	23	27	24	19	14	9
1	4	9	14	18	23	19	14	9	4
o	2	5	9	13	18	14	9	4	o
0	0	2	5	10	14	9	4	0	0

Améliorons la visibilité des résultats

OCaml

104 (* Transformation en fichier txt*) 105 let sauvegarder_grille grille nom_fichier = 106 let out = open_out nom_fichier in 107 Array.iter (fun ligne -> 108 Array.iter (fun valeur -> Printf.fprintf out "%d " valeur) ligne; 109 Printf.fprintf out "\n" 110) grille; 111 close out out 112 ;; 113 114 let save_to_file filename matrix = 115 let oc = open out filename in 116 Array.iter (fun row -> 117 Array.iteri (fun i v -> 118 output_string oc (string_of_int v); if i < Array.length row - 1 then output char oc ',' 120) row; 121 output char oc '\n' 122) matrix; 123 close_out oc 124 ;;

Fichier Texte

```
      0
      0
      0
      4
      8
      5
      1
      0
      0

      0
      0
      0
      4
      9
      13
      8
      4
      2
      0

      0
      0
      4
      9
      14
      17
      13
      9
      5
      2

      0
      4
      9
      14
      19
      22
      18
      14
      9
      5

      4
      9
      14
      19
      24
      27
      23
      18
      13
      10

      8
      13
      17
      22
      27
      32
      27
      23
      18
      14
      9

      1
      4
      9
      14
      18
      23
      27
      24
      19
      14
      9
      4

      0
      2
      5
      9
      13
      18
      14
      9
      4
      0

      0
      0
      2
      5
      10
      14
      9
      4
      0
      0
```

Améliorons la visibilité des résultats

Fichier txt

0 0 0 4 8 5 1 0 0 0 0 0 4 9 13 8 4 2 0 0 0 4 9 14 17 13 9 5 2 0 4 9 14 19 22 18 14 9 5 4 9 14 19 24 27 23 18 13 10 8 13 17 22 27 32 27 23 18 14 9 1 4 9 14 18 23 27 24 19 14 9 4 0 2 5 9 13 18 14 9 4 0 0 0 2 5 10 14 9 4 0 0

Python

```
12
     13
     chemin = r"C:\Users\auxen\OneDrive\Documents\MP_etoile\TIPE\jpp\pilat_ocaml.txt"
15
     print("Fichier existe :", os.path.isfile(chemin))
16
      27
      def visualiser 2d(matrice, titre="Dune de sable - Vue 2D"):
 29
         Affiche une visualisation 2D de la matrice avec une échelle de couleur.
 31
32
         plt.figure(figsize=(10, 8))
 33
         im = plt.imshow(matrice, cmap=cm.terrain)
         plt.colorbar(im, label="Hauteur")
         plt.title(titre)
35
 36
         plt.tight layout()
 37
         plt.savefig("dune 2d.png")
 38
         plt.show()
```

Trouvons un meilleur affichage

Caractéristiques de cette dune

Implémentation du vent

```
18
        (*Implémentation du vent sous un module qui priorise les voisins*)
19
        module Vent = struct
20
          type direction = Nord | Sud | Est | Ouest
21
          let voisins_selon_vent dir (i, j) =
22
            match dir with
23
            Nord \rightarrow [(i-1, j); (i, j+1); (i, j-1); (i+1, j)]
24
            Sud \rightarrow [(i+1, j); (i, j+1); (i, j-1); (i-1, j)]
25
            Est \rightarrow [(i, j+1); (i+1, j); (i-1, j); (i, j-1)]
26
27
            Ouest -> [(i, j-1); (i+1, j); (i-1, j); (i, j+1)]
28
29
          let deplacement vent dir =
30
            match dir with
31
            Nord \rightarrow (-1, 0)
32
            | Sud -> (1, 0)
33
            Est -> (0, 2)
            Ouest -> (0, -1)
34
35
36
        end
37
        ::
```

let appliquer_regle_vent grille vent

```
let grille = init_grille 30 30 in

(* Dépôt de sable *)
for i = 5 to 25 do
  grille.(i).(22) <- 1000;
done;</pre>
```

Ligne culminante

Caractéristiques de cette dune

Mouvements de la dune

Implémentation de la saltation

```
(* Implémentation de la saltation sur chacune des cellules de la dune *)
63
       let appliquer_saltation grille x y =
         let (_,vent_dir) = Vent.deplacement_vent Vent.Est in
         let proba saut = 0.75 in
         match grille.(x).(y) with
67
         qte when qte > 0 && Random.float 1.0 < proba_saut ->
69
             let dist = 2 + Random.int 10 in (* Saut entre 1 et 10 cases *)
70
             let x' = x + (vent dir * dist) in
71
             if x' < Array.length grille then</pre>
72
              ( match grille.(x').(y) with
               0 ->
                   grille.(x').(v) <- 3: (* dépose dans la cellule cible entre 1 et 5 grains *)
                   let nouvelle qte = qte - 3 in
76
                   grille.(x).(y) <- nouvelle qte
               | ate' ->
77
                    (* ajoute un grain à la cellule cible *)
78
79
                    grille.(x').(y) \leftarrow qte' + 2;
                   let nouvelle qte = qte - 2 in
                   grille.(x).(y) <- nouvelle qte
           -> ()
       ;;
```


Implémentation de la reptation

```
86
        (* Implémentation du charriage sur chacune des cellules recevant la saltation *)
87
88
        let appliquer charriage grille x y force charriage =
89
          let proba charriage = 0.25 in
          match grille.(x).(y) with
 90
          | qte when qte >= force charriage && Random.float 1.0 < proba charriage ->
91
92
              let hauteur = Array.length grille.(0) in
              if y + 1 < hauteur then
               ( match grille.(x).(y+1) with
                0 ->
                    grille.(x).(y+1) <- force charriage;
                    grille.(x).(y) <- qte - force_charriage</pre>
97
                qte_bas ->
                    grille.(x).(y+1) <- qte bas + force charriage;
                    grille.(x).(y) <- qte - force_charriage
100
101
          -> ()
102
103
```


Modification du programme principal

```
for x = 0 to (Array.length resultat - 1) do

for y = 0 to (Array.length resultat.(0) - 1) do

appliquer_saltation resultat x y

done;

done;
```



```
for x = 0 to (Array.length resultat - 1) do

for y = 0 to (Array.length resultat.(0) - 2) do

appliquer_charriage resultat x y 2

done;

done;
```

Modélisation de la dune du Pilat

Et une modélisation dynamique?

let sauvegarder_etape_cumulative oc etape grille

Un exemple en image

Pendant ce temps, mon partenaire

Zoom sur les grains de sables

Mouvement d'une dune à échelle réduite

Recherche du coût énergétique minimal de déplacement d'une dune

Transport Optimal avec Kantorovich

Leonid Kantorovich, XX

$$\min\left\{\sum_{i,j} \mathbf{C}_{i,j} \mathbf{P}_{i,j} \; ; \; \mathbf{P} \in \mathbf{U}(\mathbf{a},\mathbf{b})\right\}$$

$$\mathbf{U}(\mathbf{a}, \mathbf{b}) \stackrel{\text{\tiny def.}}{=} \left\{ \mathbf{P} \in \mathbb{R}_{+}^{n \times m} \; ; \; \mathbf{P} \mathbb{1}_{m} = \mathbf{a}, \mathbf{P}^{\top} \mathbb{1}_{n} = \mathbf{b} \right\}$$

Transport Optimal avec Kantorovich

Leonid Kantorovich, XX

$$\mathbf{U}(\mathbf{a}, \mathbf{b}) \stackrel{\text{def.}}{=} \left\{ \mathbf{P} \in \mathbb{R}_{+}^{n \times m} \; ; \; \mathbf{P} \mathbb{1}_{m} = \mathbf{a}, \mathbf{P}^{\top} \mathbb{1}_{n} = \mathbf{b} \right\}$$
Poids

Pour notre dune de sable

 Poids → Masse du sable à conserver

- Coût → Distance euclidienne entre deux cellules
- Points → Nombre de grains à transporter d'une cellule à une autre

Exemple simplifié: 3 x 3

a

<u>Cellules</u>	<u>Masse</u>
A	3
В	4
С	2

b

<u>Cellules</u>	<u>Masse</u>
X	2
Y	5
Z	2

C

	X	Y	Z
${f A}$	1	3	5
В	2	1	4
C	3	2	1

Problème d'optimisation linéaire

Contraintes:

•
$$\forall i \in \{1, 2, 3\},\$$
 $P_{i,1} + P_{i,2} + P_{i,3} = a_i$

$$\forall j \in \{1, 2, 3\},\ P_{1,j} + P_{2,j} + P_{3,j} = b_j$$

Problème d'optimisation linéaire

Contraintes:

•
$$\forall i \in \{1, 2, 3\},\$$
 $P_{i,1} + P_{i,2} + P_{i,3} = a_i$

$$\forall j \in \{1, 2, 3\},$$

$$P_{1,j} + P_{2,j} + P_{3,j} = b_j$$

Bases réalisables : 5

Problème d'optimisation linéaire

Contraintes:

$$\forall i \in \{1, 2, 3\},\ P_{i,1} + P_{i,2} + P_{i,3} = a_i$$

$$\forall j \in \{1, 2, 3\},\ P_{1,j} + P_{2,j} + P_{3,j} = b_j$$

Bases réalisables : 5

$$\binom{9}{5}$$
 = 126 bases
admissibles possibles

Choix du plan optimal

Calcul de $c^T x$ pour chaque base :

- 1. Résoudre le système lié à la base active
- 2. S'assurer de la positivité
 - 3. Calculer $c^T P$

```
Plan optimal = \min_{P \in U(a,b)} c^T P
```

D'un point de vue physique

Comparons ces 2 points de vue

Maths Physique > Existence d'une solution > Approche pas à pas d'une optimale solution optimale Nombreux calculs > Résultat concret, permet des applications périlleux

Conclusion

Annexe

```
1
        (*Seuil d'écoulement du sable*)
       let seuil = 5;;
2
3
       (*Initialisation du plateau recevant les grains de sables*)
4
5
       let init grille longueur largeur = Array.make matrix largeur longueur 0;;
                                                                                                                    dune-
6
                                                                                                         simulation.ml
        (*Affichage de la grille sous formes de cellules d'entiers*)
8
       let affichage grille grille =
9
         Array.iter (fun ligne ->
              Array.iter (fun colonne -> Printf.printf "%2d " colonne) ligne;
              print newline ()
12
            ) grille;
13
          print newline ()
14
15
       ;;
       (*Règle d'écoulement en absence de contrainte sur notre automate*)
18
       let appliquer regle grille =
19
         let largeur, longueur = (Array.length grille), (Array.length grille.(0)) in
20
         let nouvelle grille = Array.map Array.copy grille in
                                                                                   41
                                                                                           (* Simulation jusqu'à stabilisation *)
21
         let modifie = ref false in
22
                                                                                   42
                                                                                           let rec simuler grille = match appliquer regle grille with
         for i = 0 to (largeur-1) do
23
                                                                                             | Some nouvelle grille -> simuler nouvelle grille
                                                                                   43
          for j = 0 to (longueur-1) do
24
                                                                                              None -> grille
                                                                                   44
            let voisins = [(i-1, j); (i+1, j); (i, j-1); (i, j+1)] in
25
                                                                                   45
                                                                                           ;;
            List.iter (fun (vi, vj) ->
26
                                                                                   46
                if vi >= 0 && vi < largeur && vj >= 0 && vj < longueur then
27
                                                                                           (* Programme principal *)
                                                                                   47
                  let ecart = grille.(i).(j) - grille.(vi).(vj) in
28
                                                                                           let () =
                                                                                   48
                  if ecart > seuil then (
29
                                                                                            let grille = init_grille 10 10 in
                                                                                   49
                    nouvelle grille.(i).(j) <- nouvelle grille.(i).(j) - 1;
30
                                                                                   50
                                                                                             grille.(5).(5) <- 100;
                    nouvelle_grille.(vi).(vj) <- nouvelle_grille.(vi).(vj) + 1;</pre>
31
                                                                                            Printf.printf "Grille initiale :\n";
                                                                                   51
                    modifie := true
32
                                                                                            affichage grille grille;
                                                                                   52
33
                                                                                   53
34
              ) voisins
                                                                                            let resultat = simuler grille in
                                                                                   54
35
          done;
                                                                                            Printf.printf "Grille après simulation :\n";
                                                                                   55
         done;
36
                                                                                             affichage grille resultat
                                                                                   56
         if !modifie then Some nouvelle_grille else None
37
                                                                                   57
                                                                                           ;;
                                                                                                                                 43
38
```

```
let seuil = 5;;
(*Initialisation du plateau recevant les grains de sables*)
let init grille longueur largeur = Array.make matrix largeur longueur 0;;
(*Affichage de la grille sous formes de cellules d'entiers*)
let affichage_grille grille =
 Array.iter (fun ligne ->
     Array.iter (fun colonne -> Printf.printf "%2d " colonne) ligne;
     print_newline ()
   ) grille;
 print newline ()
 (*Implémentation du vent sous un module qui priorise les voisins*)
 module Vent = struct
   type direction = Nord | Sud | Est | Ouest
   let voisins selon vent dir (i, j) =
     match dir with
     Nord \rightarrow [(i-1, j); (i, j+1); (i, j-1); (i+1, j)]
     Sud \rightarrow [(i+1, j); (i, j+1); (i, j-1); (i-1, j)]
     Est -> [(i, j+1); (i+1, j); (i-1, j); (i, j-1)]
```

Ouest -> [(i, j-1); (i+1, j); (i-1, j); (i, j+1)]

let deplacement vent dir =

match dir with

Nord -> (-1, 0)

Sud -> (1, 0)

Est -> (0, 2)

Ouest -> (0, -1)

(*Seuil d'écoulement du sable*)

1

3

4

5

7

8

9

15

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

end

;;

dune_du_pilat_ ocaml.ml

```
let appliquer regle vent grille vent =
40
         let largeur = Array.length grille in
         let longueur = Array.length grille.(0) in
41
         let nouvelle grille = Array.map Array.copy grille in
42
         let modifie = ref false in
43
44
         for i = 0 to largeur - 1 do
           for j = 0 to longueur - 1 do
45
46
             let voisins = Vent.voisins selon vent vent (i, j) in
47
             List.iter (fun (vi, vj) ->
                 if vi >= 0 && vi < largeur && vj >= 0 && vj < longueur then
48
                   let ecart = grille.(i).(j) - grille.(vi).(vj) in
49
                   if ecart > seuil then (
50
51
                      nouvelle grille.(i).(j) <- nouvelle grille.(i).(j) - 1;
52
                      nouvelle grille.(vi).(vj) <- nouvelle grille.(vi).(vj) + 1;
                     modifie := true
53
54
               ) voisins
55
56
           done
57
         done:
58
         if !modifie then Some nouvelle grille
59
         else None
60
       ;;
```

```
(* Implémentation de la saltation sur chacune des cellules de la dune *)
let appliquer saltation grille x y =
 let (_,vent_dir) = Vent.deplacement_vent Vent.Est in
 let proba saut = 0.75 in
 match grille.(x).(y) with
  | gte when gte > 0 && Random.float 1.0 < proba saut ->
     let dist = 2 + Random.int 10 in (* Saut entre 1 et 10 cases *)
     let x' = x + (vent dir * dist) in
     if x' < Array.length grille then
      ( match grille.(x').(y) with
       0 ->
           grille.(x').(y) <- 3; (* dépose dans la cellule cible entre 1 et 5 grains *)
           let nouvelle qte = qte - 3 in
           grille.(x).(y) <- nouvelle qte
       | qte' ->
           (* ajoute un grain à la cellule cible *)
           grille.(x').(y) \leftarrow qte' + 2;
           let nouvelle qte = qte - 2 in
           grille.(x).(y) <- nouvelle qte
       )
 -> ()
;;
(* Implémentation du charriage sur chacune des cellules recevant la saltation *)
let appliquer charriage grille x y force charriage =
  let proba charriage = 0.25 in
  match grille.(x).(y) with
                                                                                      105
   | qte when qte >= force_charriage && Random.float 1.0 < proba_charriage ->
                                                                                      106
                                                                                      107
      let hauteur = Array.length grille.(0) in
      if y + 1 < hauteur then
                                                                                      108
                                                                                      109
        ( match grille.(x).(y+1) with
         0 ->
                                                                                      110
                                                                                      111
             grille.(x).(y+1) <- force charriage;
             grille.(x).(y) <- qte - force charriage
                                                                                      112
         | qte bas ->
                                                                                      113
             grille.(x).(y+1) <- qte bas + force charriage;
                                                                                      114
             grille.(x).(y) <- qte - force charriage
                                                                                      115
```

62

63

64

65 66

67 68

69

70

71

72 73

74

75

76

77 78

79

80

81

82

83 84

86 87

88

89

90

91

92

93

94

95

96

97

98

99

101

103

_ -> ()

;;

dune_du_pilat_ ocaml.ml

```
(* Retourne true si un des sommets initiaux n'est plus un maximum local *)
let sommet_n_est_plus_maximum grille positions =
  let hauteur i j = grille.(i).(j) in
  let largeur = Array.length grille
  and longueur = Array.length grille.(0) in
  List.exists (fun (i,j) ->
       let h = hauteur i j in
       let voisins = [(i-1,j); (i+1,j); (i,j-1); (i,j+1)] in
       List.exists (fun (vi,vj) ->
            vi >= 0 && vi < largeur && vj >= 0 && vj < longueur &&
            grille.(vi).(vj) > h
            ) voisins
      ) positions
;;
```

116

```
| Some nouvelle_grille -> simuler_avec_vent nouvelle_grille vent
123
            None -> grille
124
125
         ;;
                                                                                                                  dune_du_pilat_
126
         let rec simuler_dynamique_avec_vent grille vent =
127
                                                                                                                              ocaml.ml
            match appliquer_regle_vent grille vent with
128
129
            | Some nouvelle grille ->
                (* Effacer l'écran *)
130
                print_string "\027[2J"; (* code ANSI pour effacer l'écran *)
131
                                                                                                        let sauvegarder_etape_cumulative oc etape grille =
                                                                                              160
                print string "\027[H"; (* se replacer en haut à gauche *)
132
                                                                                                          Printf.fprintf oc "Étape %d:\n" etape;
                                                                                              161
133
                affichage grille nouvelle grille;
                                                                                                          Array.iter (fun ligne ->
                                                                                              162
134
                simuler_dynamique_avec_vent nouvelle_grille vent
                                                                                                               Array.iter (fun valeur -> Printf.fprintf oc "%d " valeur) ligne;
                                                                                              163
            None -> grille
135
                                                                                                               Printf.fprintf oc "\n"
                                                                                              164
136
         ;;
                                                                                              165
                                                                                                             ) grille;
137
                                                                                                          Printf.fprintf oc "\n%!";
                                                                                              166
138
          (* Transformation en fichier txt*)
                                                                                              167
                                                                                                        ;;
         let sauvegarder grille grille nom fichier =
139
                                                                                              168
            let out = open out nom fichier in
140
                                                                                              182
                                                                                                    (* Programme principal *)
                                                                                              183
                                                                                                    let () =
141
            Array.iter (fun ligne ->
                                                                                              184
                                                                                                      let grille = init_grille 30 30 in
                Array.iter (fun valeur -> Printf.fprintf out "%d " valeur) ligne;
142
                                                                                                      (* Dépôt de sable *)
                Printf.fprintf out "\n"
143
                                                                                              187
                                                                                                      for i = 5 to 25 do
                                                                                              188
                                                                                                       grille.(i).(22) <- 1000;
              ) grille;
144
                                                                                              189
145
            close out out
                                                                                              199
                                                                                              191
                                                                                                      Printf.printf "Grille initiale :\n";
146
                                                                                              192
                                                                                                      affichage_grille grille;
         let save to file filename matrix =
148
                                                                                              193
                                                                                              194
                                                                                                      let vent = Vent.Est in
            let oc = open out filename in
149
                                                                                              195
                                                                                                      let resultat = simuler dynamique avec vent grille vent in
            Array.iter (fun row ->
150
                                                                                              196
                                                                                              197
                                                                                                      for x = 0 to (Array.length resultat - 1) do
                Array.iteri (fun i v ->
151
                                                                                                       for y = 0 to (Array.length resultat.(0) - 1) do
                                                                                              199
                                                                                                                appliquer saltation resultat x y
                     output_string oc (string_of_int v);
152
                                                                                              200
                                                                                                           done;
                     if i < Array.length row - 1 then output_char oc ','
153
                                                                                              201
                                                                                                      done;
                                                                                              202
154
                   ) row;
                                                                                              203
                                                                                                      for x = 0 to (Array.length resultat - 1) do
                                                                                                       for y = 0 to (Array.length resultat.(0) - 2) do (* on s'arrête avant que l'on ne puisse plus transférer plus bas *)
155
                output_char oc '\n'
                                                                                              294
                                                                                              205
                                                                                                         appliquer_charriage resultat x y 2
156
              ) matrix;
                                                                                              286
                                                                                                       done:
                                                                                              207
157
            close out oc
                                                                                              208
158
                                                                                              209
                                                                                                      Printf.printf "Grille après simulation :\n";
         ;;
                                                                                              210
                                                                                                      affichage grille resultat;
                                                                                              211
                                                                                                      sauvegarder grille resultat "pilat ocaml.txt";
                                                                                              212
                                                                                                      save_to_file "pilat_ocaml.txt" resultat
                                                                                                                                                                   46
                                                                                              213
```

120

121 122 (* Simulation avec vent jusqu'à stabilisation *)

match appliquer regle vent grille vent with

let rec simuler avec vent grille vent =

```
(* Simulation dynamique jusqu'à stabilisation *)
let simuler dynamique grille sommets =
  let grille_courante = ref grille in
 let continuer = ref true in
 while !continuer do
   match appliquer regle !grille courante with
    | Some nouvelle ->
       if sommet_n_est_plus_maximum nouvelle sommets then (
          print endline "Un des sommets initiaux est dépassé. Arrêt.";
          continuer := false
        ) else (
         print_string "\027[2J"; (* Efface écran *)
         print_string "\027[H"; (* Curseur en haut *)
         Printf.printf "Étape suivante :\n";
          affichage_grille nouvelle;
          grille courante := nouvelle
                                                                        46
                                                                        47
    | None -> continuer := false
                                                                        48
 done;
                                                                        49
  !grille_courante
                                                                        50
;;
(* Vérification du programme *)
                                                                        51
                                                                        52
let compteur grille =
                                                                        53
        let cpt = ref 0 in
                                                                        54
        let n,m = (Array.length grille, Array.length grille.(0)) in
        for i = 0 to (n-1) do
                 for j = 0 to (m-1) do
                          cpt := !cpt + grille.(i).(j)
                 done;
         done;
         !cpt;
;;
```

(* ou *)

79

80

81

82

83

84

85 86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

169

170

171

172

173

174 175

176

177

178

179

180

Agrémentation

```
if !modifie then (
    let nouvelle_grille = Array.map Array.copy grille in
    for i = 0 to largeur - 1 do
        for j = 0 to longueur - 1 do
            nouvelle_grille.(i).(j) <- grille.(i).(j) + delta.(i).(j)
        done
        done;
        Some nouvelle_grille
    ) else None
::</pre>
```

Quelques tests OCaml

```
(* Programme principal *)
         let () =
101
102
           let grille = init grille 50 50 in
103
           (* Dépôt de sable *)
104
                                                                          (* Programme principal*)
                                                                  126
           for i = 2 to 44 do
                                                                  127
                                                                          let () =
105
                                                                            let grille = init grille 30 30 in
                                                                  128
106
             grille.(i).(22) <- 9000;
                                                                            let sommets = ref [] in
                                                                  129
107
           done;
                                                                            for i = 0 to 29 do
                                                                  130
108
                                                                  131
                                                                                  grille.(10).(i) <- 10000;
           Printf.printf "Grille initiale :\n";
109
                                                                  132
                                                                                  sommets := (i,7)::(!sommets);
110
           affichage grille grille;
                                                                  133
                                                                            done:
111
                                                                            grille.(25).(25) <- 50000;
                                                                  134
112
           let vent = Vent.Est in
                                                                            Printf.printf "Grille initiale :\n";
                                                                  135
           let resultat = simuler_avec_vent grille vent in
                                                                            affichage_grille grille;
                                                                  136
113
                                                                  137
114
                                                                            let resultat = simuler(* dynamique*) grille (* !voisins *) in
                                                                  138
           Printf.printf "Grille après simulation :\n";
115
                                                                  139
                                                                            Printf.printf "Grille après simulation :\n";
116
           affichage grille resultat;
                                                                            affichage grille resultat;
                                                                  140
           sauvegarder_grille resultat "pilat_ocaml.txt";
117
                                                                            sauvegarder grille resultat "mat ocaml.txt";
                                                                  141
           save_to_file "pilat_ocaml.txt" resultat
118
                                                                            save_to_file "mat_ocaml.txt" resultat
                                                                  142
119
         ;;
                                                                                                                        48
                                                                  143
```

Modélisation_ dynamique_dune.py

```
1
```

```
3
      Created on Wed May 21 09:57:28 2025
                                                                                      39
                                                                                             # Charger les données souhaitées
4
                                                                                      40
                                                                                             chemin = r"C:\Users\auxen\OneDrive\Documents\MP etoile\TIPE\jpp\historique simulation.txt'
5
      @author: auxen
                                                                                             matrices = charger_matrices_depuis_fichier(chemin)
                                                                                      41
6
                                                                                      42
7
                                                                                             # Initialisation de la figure
                                                                                      43
                                                                                             fig = plt.figure()
                                                                                      44
8
      import numpy as np
                                                                                      45
                                                                                             ax = fig.add_subplot(111, projection='3d')
9
      import matplotlib.pyplot as plt
                                                                                      46
      from matplotlib import cm
                                                                                      47
                                                                                             nrows, ncols = matrices[0].shape
      from matplotlib.animation import FuncAnimation
                                                                                      48
                                                                                             x = np.arange(ncols)
12
                                                                                      49
                                                                                             y = np.arange(nrows)
13
      xx, yy = np.meshgrid(x, y)
15
        # Fonction pour obtenir le fichier OCaml
                                                                                             x, y = _xx.ravel(), _yy.ravel()
16 V
        def charger matrices depuis fichier(nom fichier):
                                                                                      52
                                                                                             bottom = np.zeros_like(x)
                                                                                             width = depth = 0.8
                                                                                      53
            with open(nom fichier, 'r') as f:
17
                                                                                      54
                                                                                             bars = None
                lignes = f.readlines()
18
                                                                                              # Fonction d'animation
                                                                                       56
19
                                                                                            def update(frame):
            matrices = []
20
                                                                                                  global bars
                                                                                      58
            matrice_courante = []
21
                                                                                       59
                                                                                                  ax.clear()
                                                                                       60
22
                                                                                                  Z = matrices[frame]
            for ligne in lignes:
                                                                                       61
23
                                                                                       62
                                                                                                  top = Z.ravel()
                ligne = ligne.strip()
24
                                                                                       63
                if ligne.startswith("Étape"):
25
                                                                                       64
                                                                                                  colors = cm.gist_earth((top - top.min()) / (top.max() - top.min()))
                    if matrice courante:
26
                                                                                                  bars = ax.bar3d(x, y, bottom, width, depth, top, color=colors, shade=True)
                                                                                       65
27
                         matrices.append(np.array(matrice courante, dtype=int))
                                                                                       66
                         matrice courante = []
28
                                                                                                  ax.set title(f"Étape {frame}")
                                                                                       67
                elif ligne and all(c.isdigit() or c.isspace() for c in ligne):
29
                                                                                                  ax.set xlabel("X")
                                                                                       68
30
                    valeurs = list(map(int, ligne.split()))
                                                                                       69
                                                                                                  ax.set ylabel("Y")
                    matrice_courante.append(valeurs)
31
                                                                                       70
                                                                                                  ax.set zlabel("Hauteur")
32
                                                                                      71
                                                                                                  ax.view init(elev=45, azim=135)
            if matrice courante:
33
                                                                                       72
                matrices.append(np.array(matrice courante, dtype=int))
34
                                                                                       73
                                                                                              # Lancer l'animation
35
                                                                                       74
                                                                                              ani = FuncAnimation(fig, update, frames=len(matrices), interval=200)
36
            return matrices
                                                                                      75
                                                                                                                                                     49
37
                                                                                       76
                                                                                              plt.show()
```

-*- coding: utf-8 -*-

modélisation_ nimporte_quelle_ dune.py

```
3
      Created on Wed May 21 09:57:28 2025
4
5
      @author: auxen
6
                                                                                      def visualiser 3d(matrice, titre="Dune de sable - Vue 3D"):
7
                                                                              43
8
      import numpy as np
                                                                              44
                                                                                           Crée une représentation 3D de la dune de sable.
      import matplotlib.pyplot as plt
                                                                              45
      from matplotlib import cm
                                                                                           fig = plt.figure(figsize=(12, 10))
                                                                              46
      from matplotlib.animation import FuncAnimation
                                                                                          ax = fig.add subplot(111, projection='3d')
                                                                              47
13
      14
      chemin = r"C:\Users\auxen\OneDrive\Documents\MP_etoile\TIPE\jpp\pilat_ocaml.txt"
                                                                                          # Créer des coordonnées x, y pour chaque point de la matrice
                                                                              49
      print("Fichier existe :", os.path.isfile(chemin))
15
                                                                                          y, x = np.meshgrid(range(matrice.shape[1]), range(matrice.shape[0]))
                                                                              50
16
                                                                              51
17
      try:
          sortie ocaml = np.loadtxt(chemin, delimiter=",", dtype=int)
                                                                                           # Tracer la surface
18
                                                                              52
19
          print("Matrice chargée !")
                                                                              53
                                                                                           surf = ax.plot_surface(x, y, matrice, cmap=cm.terrain,
      # print(sortie ocaml)
20
                                                                              54
                                                                                                                 linewidth=0, antialiased=True)
21
      except Exception as e:
                                                                              55
          print("Erreur :", e)
22
                                                                                           # Ajouter une barre de couleur
23
                                                                              56
       def visualiser 2d(matrice, titre="Dune de sable - Vue 2D"):
28
                                                                              57
                                                                                           fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5, label="Hauteur")
29
                                                                              58
          Affiche une visualisation 2D de la matrice avec une échelle de couleur.
30
                                                                              59
                                                                                           ax.set xlabel('X')
31
                                                                                           ax.set ylabel('Y')
           plt.figure(figsize=(10, 8))
                                                                              60
32
           im = plt.imshow(matrice, cmap=cm.terrain)
33
                                                                              61
                                                                                           ax.set zlabel('Hauteur')
           plt.colorbar(im, label="Hauteur")
34
                                                                              62
                                                                                           ax.set title(titre)
35
           plt.title(titre)
                                                                              63
36
           plt.tight layout()
                                                                              64
                                                                                           plt.savefig("dune 3d.png")
           plt.savefig("dune_2d.png")
37
                                                                                                                                               50
                                                                              65
                                                                                           plt.show()
           plt.show()
```

-*- coding: utf-8 -*-

51

Ta matrice déjà chargée

ax = fig.add subplot(111, projection='3d')

Couleur sable : RGB (0.76, 0.70, 0.50) colors = [(0.76, 0.70, 0.50)] * len(top)

ax.set title("Histogramme 3D - Dune couleur sable")

Afficher la matrice dans la console

visualiser 2d(sortie ocaml)

visualiser 3d(sortie ocaml)

print(" ".join(f"{val:2d}" for val in ligne))

#print("Matrice importée:")

#for ligne in sortie ocaml:

#if name == " main ":

Visualisations

nrows, ncols = Z.shape

Z = sortie ocaml

fig = plt.figure()

_x = np.arange(ncols)

_y = np.arange(nrows)

top = Z.ravel()

width = depth = 0.8

ax.set xlabel("X")

ax.set_ylabel("Y") ax.set_zlabel("Hauteur")

plt.show()

xx, yy = np.meshgrid(x, y)

x, y = _xx.ravel(), _yy.ravel()

bottom = np.zeros_like(top)

69

70

71

72

73

74 75

76

77

78

79

80

81

82 83 84

85

86 87

88 89

90

91 92

93 94

95 100

101

102

103

104

105 106

107

108

109