Δυναμική Πολύπλοκων Δικτύων

Κεφάλαιο 6: Θεωρία Παιγνίων

Διάλεξη 1: Εισαγωγή, Κυρίαρχες Στρατηγικές & Βέλτιστες Αποκρίσεις

Αλληλεξάρτηση σε Σύνθετα Δίκτυα

Ένα σύνθετο δίκτυο απαρτίζεται από:

- Διακριτά (απλά) τμήματα
- Συνδέσεις μεταξύ των τμημάτων
- Η συμπεριφορά του κάθε τμήματος,

εξαρτάται από την συμπεριφορά του συνόλου.

- Η συνδεσιμότητα αφορά τη Θεωρία Γραφημάτων.
- Η αλληλεξάρτηση της συμπεριφοράς μελετάται στη Θεωρία Παιγνίων.

Θεωρία Παιγνίων

- Μελετά καταστάσεις σύγκρουσης.
- Οι παίκτες έχουν σκοπό να μεγιστοποιήσουν την ωφέλειά (κέρδος) τους.
- Το όφελος του κάθε παίκτη, δεν εξαρτάται μόνο από τις αποφάσεις του,
- αλλά και από τις αποφάσεις των υπόλοιπων παικτών.
- Η επιλογή στρατηγικής εξαρτάται μόνο από την ωφέλεια του παίκτη.
- Η συλλογιστική ενός πράκτορα στο περιβάλλον ενός παιγνίου, αναπόφευκτα
 συμπεριλαμβάνει τις αποφάσεις των άλλων παικτών.
- Αυτό διαφοροποιεί ένα παίγνιο από έναν γρίφο (puzzle).

Εφαρμογές της Θεωρίας Παιγνίων

- Παιχνίδια (Χαρτοπαίγνια, Ομαδικά Αθλήματα, κτλ.)
- Οικονομικά (Συμπεριφορά Αγορών, Δημοπρασίες, Τιμολόγηση, κτλ.)
- Δρομολόγηση (Συγκοινωνιακά και Επικοινωνιακά Δίκτυα)
- Εξελικτική Βιολογία (Επιβίωση Μεταλλάξεων)
- Ανθρωπολογία (Χαρακτηριστικά Πολιτισμών)
- Πολιτικές Επιστήμες (Συμπεριφορά Πολιτών)
- και άλλα πολλά...

Εξέταση ή Παρουσίαση

Ένα πρώτο παράδειγμα:

Παράδειγμα 1: Εξέταση ή Παρουσίαση

Θεωρούμε την ακόλουθη κατάσταση:

- Αύριο πρέπει να ετοιμαστείτε για μία εξέταση ή μια παρουσίαση.
- Δεν μπορείτε να προετοιμαστείτε και για τα δύο.
- Στην εξέταση:
 - Θα πάρετε 8 αν προετοιμαστείτε.
 - 🗖 Θα πάρετε 5 διαφορετικά.
- Η παρουσίαση είναι ομαδική, συνεργάζεστε με έναν συμφοιτητή σας.
- Ο συμφοιτητής σας έχει το ίδιο δίλημμα.
- Στην παρουσίαση:
 - 🖵 Θα πάρετε αμοιβαία 10, αν προετοιμαστείτε και οι δύο.
 - 🖵 Θα πάρετε αμοιβαία 9, αν ένας από τους δύο προετοιμαστεί.
 - 🖵 Θα πάρετε αμοιβαία 6.5, αν δεν προετοιμαστεί κανένας από τους δύο.
- Σκοπός σας είναι να μεγιστοποιήσετε τον μέσο όρο, εξέτασης και παρουσίασης.

Παράδειγμα 1: Υπολογίζοντας τις Ωφέλειες

Ο καθένας από τους δύο φοιτητές έχει τις εξείς στρατηγικές:

- ε: όταν ο φοιτητης προετοιμαστεί για την *εξέταση*.
- π: όταν ο φοιτητης προετοιμαστεί για την *παρουσίαση*.

Έχουμε τα ενδεχόμενα:

- (ε, ε): Αμφότεροι παίρνετε 8 στην εξέταση και 6.5 στην παρουσίαση. Οι αντίστοιχες ωφέλειες είναι (7.25, 7.25).
- (ε, π): Θα πάρετε 8 στην εξέταση και 9 στην παρουσίαση. Ο συμφοιτητής σας θα πάρει 5 στην εξέταση και 9 στην παρουσίαση. Οι αντίστοιχες ωφέλειες είναι (8.5, 7).
- (π, ε): Εντελώς συμμετρικά οι αντίστοιχες ωφέλειες θα είναι (7, 8.5).
- (π, π): Αμφότεροι θα πάρετε 10 στην παρουσίαση και 5 στην εξέταση. Οι αντίστοιχες ωφέλειες είναι (7.5, 7.5).

Παράδειγμα 1: Οργανώνοντας το Παιχνίδι

- Οργανώνουμε τις ωφέλειες σε πίνακα.
- Ο παίκτης 1 παίζει γραμμές.
- Ο παίκτης 2 στήλες.
- Οι παίκτες διαλέγουν ταυτόχρονα γραμμή και στήλη.
- 🖵 Παίρνουν τις αντίστοιχες ωφέλειες.

	εξέταση	παρουσίαση
εξέταση	(7.25, 7.25)	(8.5, 7)
παρουσίαση	(7, 8.5)	(7.5, 7.5)

- Αν ο συμφοιτητής σας παίξει "παρουσίαση":
 - Τότε συμφέρει να παίξετε εξέταση, κερδίζοντας 1 μονάδα ωφέλειας.
- Αν ο συμφοιτητής παίξει "εξέταση":
 - Τότε συμφέρει να παίξετε και εσείς εξέταση.
- Ο συμφοιτητής σας θα συμπεριφερθεί εντελώς συμμετρικά.

	εξέταση	παρουσίαση
εξέταση	(7.25, 7.25)	(8.5, 7)
παρουσίαση	(7, 8.5)	(7.5, 7.5)

- Αν ο συμφοιτητής σας παίξει "παρουσίαση":
 - Τότε συμφέρει να παίξετε εξέταση, κερδίζοντας 1 μονάδα ωφέλειας.
- Αν ο συμφοιτητής παίξει "εξέταση":
 - Τότε συμφέρει να παίξετε και εσείς εξέταση.
- Ο συμφοιτητής σας θα συμπεριφερθεί εντελώς συμμετρικά.
- Μπορούμε να υποθέσουμε ότι το παίγνιο θα καταλήξει στην κατάσταση (ε, ε).

	εξέταση	παρουσίαση
εξέταση	(7.25, 7.25)	(8.5, 7)
παρουσίαση	(7, 8.5)	(7.5, 7.5)

Σε κάθε περίπτωση σας συμφέρει να διαβάσετε για την εξέταση.

	εξέταση	παρουσίαση
εξέταση	(7.25, 7.25)	(8.5, 7)
παρουσίαση	(7, 8.5)	(7.5, 7.5)

- Σε κάθε περίπτωση σας συμφέρει να διαβάσετε για την εξέταση.
- Ομοίως και θα συμπεριφερθεί και ο συμφοιτητής σας.
- Έτσι η στρατηγική "εξέταση" αποτελεί αυστηρά κυρίαρχη στρατηγική (strictly dominant strategy) και για τους δύο παίκτες.

	εξέταση	παρουσίαση
εξέταση	(7.25, 7.25)	(8.5, 7)
παρουσίαση	(7, 8.5)	(7.5, 7.5)

- Σε κάθε περίπτωση σας συμφέρει να διαβάσετε για την εξέταση.
- Ομοίως και θα συμπεριφερθεί και ο συμφοιτητής σας.
- Ετσι η στρατηγική "εξέταση" αποτελεί αυστηρά κυρίαρχη στρατηγική (strictly dominant strategy) και για τους δύο παίκτες.
- Η κατάσταση (ε, ε) θα είναι η λήξη του παιχνιδιού.

	εξέταση	παρουσίαση
εξέταση	(7.25, 7.25)	(8.5, 7)
παρουσίαση	(7, 8.5)	(7.5, 7.5)

- Σε κάθε περίπτωση σας συμφέρει να διαβάσετε για την εξέταση.
- Ομοίως και θα συμπεριφερθεί και ο συμφοιτητής σας.
- Ετσι η στρατηγική "εξέταση" αποτελεί αυστηρά κυρίαρχη στρατηγική (strictly dominant strategy) και για τους δύο παίκτες.
- Η κατάσταση (ε, ε) θα είναι η λήξη του παιχνιδιού.
- Αντίθετα, η κατάσταση (π, π) δίνει την μεγαλύτερη κοινή ωφέλεια.

	εξέταση	παρουσίαση
εξέταση	(7.25, 7.25)	(8.5, 7)
παρουσίαση	(7, 8.5)	(7.5, 7.5)

Το Δίλημμα του Φυλακισμένου

- Δύο ύποπτοι κρατούνται από την αστυνομία σε ξεχωριστά κελιά.
- Δεν τους δίνεται η δυνατότητα επικοινωνίας μεταξύ τους.
- Κατηγορούνται για μια ληστεία.
- Δεν υπάρχουν αρκετά στοιχεία, για να καταδικαστούν θα πρέπει να ομολογήσουν.
- Παρ' όλα αυτά αντιστάθηκαν στην σύλληψη (μικρότερο παράπτωμα).
- Αν δεν βρεθούν στοιχεία, θα καταδικαστούν μόνο για το μικρότερο παράπτωμα.
- Αν ομολογήσουν και οι δύο, τότε θα καταδικαστούν για την ληστεία, αλλά με μειωμένη ποινή.
- Αν ομολογήσει μόνο ο ένας, τότε αυτός θα αφεθεί ελεύθερος, ενώ ο άλλος θα πάρει την πλήρη ποινή.

- Μπορούμε να μοντελοποιήσουμε αυτή την κατάσταση σαν παίγνιο, ο κάθε ύποπτος έχει δύο στρατηγικές: "ομολογεί" ή "δεν ομολογεί".
- Διακρίνουμε τις περιπτώσεις για τον 1ο ύποπτο.
- 🖵 Έστω ότι ο 1ος ύποπτος "ομολογεί":
 - Αν ο 2ος "ομολογήσει", τότε θα αντιστοιχεί ωφέλεια (-4, -4).
 - Αν ο 2ος "δεν ομολογήσει", τότε θα αντιστοιχεί ωφέλεια (0, -10).
- Έστω ότι ο 1ος "δεν ομολογεί":
 - Αν ο 2ος "ομολογήσει", τότε θα αντιστοιχεί ωφέλεια (-10, 0).
 - Αν ο 2ος "δεν ομολογήσει", τότε θα αντιστοιχεί ωφέλεια (-1, -1).

Ο 1ος ύποπτος έχει κυρίαρχη στρατηγική την ομολογία.

	ομολογεί	δεν ομολογεί
ομολογεί	(-4, -4)	(0, -10)
δεν ομολογεί	(-10, 0)	(-1, -1)

- Ο 1ος ύποπτος έχει κυρίαρχη στρατηγική την ομολογία.
- 🖬 Ομοίως, και ο 2ος ύποπτος.

	ομολογεί	δεν ομολογεί
ομολογεί	(-4, -4)	(0, -10)
δεν ομολογεί	(-10, <mark>0</mark>)	(-1, -1)

- Ο 1ος ύποπτος έχει κυρίαρχη στρατηγική την ομολογία.
- Ομοίως, και ο 2ος ύποπτος.
- Έτσι, το παιχνίδι θα καταλήξει στην (o, o).

	ομολογεί	δεν ομολογεί
ομολογεί	(-4, -4)	(0, -10)
δεν ομολογεί	(-10, 0)	(-1, -1)

- Ο 1ος ύποπτος έχει κυρίαρχη στρατηγική την ομολογία.
- Ομοίως, και ο 2ος ύποπτος.
- Έτσι, το παιχνίδι θα καταλήξει στην (o, o).
- Παρ' όλο που η μέγιστη κοινή ωφέλεια είναι στο (δ, δ).

	ομολογεί	δεν ομολογεί
ομολογεί	(-4, -4)	(0, -10)
δεν ομολογεί	(-10, 0)	(-1, -1)

- Το Δίλημμα του Φυλακισμένου πρωτοδιατυπώθηκε στα 1950.
- Έκτοτε έχει υπάρξει αντικείμενο εκτενούς μελέτης.
- Αναδεικνύει την δυσκολία συνεργασίας στο πλαίσιο της μονομερούς, μεγιστοποίησης της ατομικής ωφέλειας.
- Μπορεί να μοντελοποιήσει τη συμπεριφορά αθλητών για την χρήση ντόπινγκ.
- Μοντελοποιεί την συμπεριφορά αντιμαχόμενων κρατών.
- Σε κάθε περίπτωση εξηγεί γιατί μπορεί ένα σύστημα πρακτόρων να καταλήξει σε υποβέλτιστη κατάσταση, παρά το γεγονός ότι μια καλύτερη έκβαση είναι εφικτή.

Βέλτιστες Αποκρίσεις &

Κυρίαρχες Στρατηγικές

Βέλτιστες Αποκρίσεις

- Μοντελοποιούμε τον συλλογισμό που ακολουθήσαμε στην ανάλυση των προηγούμενων παιγνίων.
- Σταθεροποιώντας μια στρατηγική του αντιπάλου, προσπαθούμε να βρούμε την καλύτερη στρατηγική για εμάς.
- Αυτός ο συλλογισμός μοντελοποιείται μέσω της έννοιας των βέλτιστων αποκρίσεων (best response).

Ορισμός: Βέλτιστες Αποκρίσεις (1/3)

- Υποθέτουμε ένα παιχνίδι 2-παικτών.
- Ο παίκτης 1 παίζει την στρατηγική S.
- Ο παίκτης 2 παίζει την στρατηγική Τ.
- Θεωρούμε τον πίνακα πληρωμών P.
- Η ωφέλεια του παίκτη 1 είναι P₁(S, T), ομοίως P₂(S, T) για τον παίκτη 2.

Ορισμός: Βέλτιστες Αποκρίσεις (2/3)

Μια στρατηγική S*, του παίκτη 1 είναι βέλτιστη απόκριση σε μια στρατηγική Τ του παίκτη 2, όταν

$$P_1(S^*, T) \ge P_1(S, T)$$
 (1)

για κάθε άλλη στρατηγική $S \neq S^*$ του παίκτη 1.

- Με BR₁(T) συμβολίζουμε το σύνολο βέλτιστων αποκρίσεων του παίκτη 1, στη στρατηγική T του παίκτη 2. Συμμετρικά για BR₂(T).
- Σε κάποια στρατηγική Τ του παίκτη 2 μπορούν να υπάρχουν πολλαπλές βέλτιστες αποκρίσεις.

Ορισμός: Βέλτιστες Αποκρίσεις (3/3)

Μια στρατηγική S*, του παίκτη 1 είναι αυστηρά βέλτιστη απόκριση σε μια στρατηγική T του παίκτη 2, όταν

$$P_1(S^*, T) > P_1(S, T)$$
 (2)

για κάθε άλλη στρατηγική $S \neq S^*$ του παίκτη 1.

- Με SBR₁(T) συμβολίζουμε το σύνολο βέλτιστων αποκρίσεων του παίκτη 1, στη στρατηγική T του παίκτη 2. Συμμετρικά για SBR₂(T).
- Αν υπάρχει κάποια αυστηρά βέλτιστη απόκριση, τότε αυτή θα είναι μοναδική,
 για την στρατηγική Τ του παίκτη 2.

Ορισμός: Κυρίαρχες Στρατηγικές

Μια στρατηγική S^{*}, του παίκτη 1 είναι κυρίαρχη στρατηγική όταν, για κάθε στρατηγική T του παίκτη 2,

$$S^* \subseteq BR_1(T). \tag{3}$$

Ομοίως για τις κυρίαρχες στρατηγικές του παίκτη 2.

Ορισμός: Κυρίαρχες Στρατηγικές

Μια στρατηγική S*, του παίκτη 1 είναι κυρίαρχη στρατηγική όταν, για κάθε στρατηγική T του παίκτη 2,

$$S^* \subseteq BR_1(T). \tag{3}$$

Ομοίως για τις κυρίαρχες στρατηγικές του παίκτη 2.

Μια στρατηγική S*, του παίκτη 1 είναι αυστηρά κυρίαρχη στρατηγική όταν, για κάθε στρατηγική Τ του παίκτη 2,

$$S^* \subseteq SBR_1(T).$$
 (4)

Ομοίως για τις κυρίαρχες στρατηγικές του παίκτη 2.

Όταν μόνο ο ένας παίκτης έχει Κυρίαρχη

Στρατηγική

Παράδειγμα 2: Τιμολόγηση (1/2)

- Δύο εταιρείες θέλουν να προωθήσουν στην αγορά ένα παρόμοιο προϊόν.
- Μπορούν να προωθήσουν το προϊόν με χαμηλή ή με υψηλή τιμή.
- Το 60% του πληθυσμού θα αγοράσει το προϊόν σε χαμηλή τιμή.
- Το 40% του πληθυσμού θα αγοράσει το προϊόν σε υψηλή τιμή.
- Η εταιρία 1 έχει μεγαλύτερη απήχηση στον κόσμο, έτσι αν βρεθούν στο ίδιο επίπεδο τιμών οι δύο εταιρείες:
 - Η εταιρία 1 παίρνει το 80% του πληθυσμού.
 - Η εταιρεία 2 παίρνει το 20% του πληθυσμού.
- Αν επιλέξουν οι δύο εταιρείες διαφορετικές τιμές, τότε παίρνουν το σύνολο του αντίστοιχου πληθυσμού.

Παράδειγμα 2: Υπολογίζοντας τις ωφέλειες (2/2)

- Αναλύουμε ως προς την εταιρία 1.
- Η εταιρεία 1 "παίζει" χαμηλή τιμή:
 - 🖬 Αν η εταιρεία 2 παίζει χαμηλή τιμή, τότε αντιστοιχούν οι ωφέλειες (0.48, 0.12).
 - Αν η εταιρεία 2 παίζει υψηλή τιμή, τότε αντιστοιχούν οι ωφέλειες (0.6, 0.4).
- Η εταιρεία 1 "παίζει" υψηλή τιμή:
 - 🖬 Αν η εταιρεία 2 παίζει χαμηλή τιμή, τότε αντιστοιχούν οι ωφέλειες (0.4, 0.6).
 - **Δ** Αν η εταιρεία 2 παίζει υψηλή τιμή, τότε αντιστοιχούν οι ωφέλειες (0.32, 0.08).

- Η εταιρεία 1 παίζει γραμμές.
- Η εταιρεία 2 παίζει στήλες.

	χαμηλή	υψηλή
χαμηλή	(0.48, 0.12)	(0.6, 0.4)
υψηλή	(0.4, 0.6)	(0.32, 0.08)

- Η εταιρεία 1 παίζει γραμμές.
- Η εταιρεία 2 παίζει στήλες.
- Η εταιρεία 1 έχει αυστηρά κυρίαρχη στρατηγική την χαμηλή τιμή.

	χαμηλή	υψηλή
χαμηλή	(0.48, 0.12)	(0.6, 0.4)
υψηλή	(0.4, 0.6)	(0.32, 0.08)

- Η εταιρεία 1 παίζει γραμμές.
- Η εταιρεία 2 παίζει στήλες.
- Η εταιρεία 1 έχει αυστηρά κυρίαρχη στρατηγική την χαμηλή τιμή.
- Η εταιρεία 2 γνωρίζει ότι η εταιρεία 1 θα παίξει χαμηλή τιμή.
- Έτσι η εταιρεία 2 θα παίξει υψηλή τιμή.

	χαμηλή	υψηλή
χαμηλή	(<u>0.48</u> , 0.12)	(<u>0.6,</u> 0.4)
υψηλή	(0.4, 0.6)	(0.32, 0.08)

- Η εταιρεία 1 παίζει γραμμές.
- Η εταιρεία 2 παίζει στήλες.
- Η εταιρεία 1 έχει *αυστηρά* κυρίαρχη στρατηγική την χαμηλή τιμή.
- Η εταιρεία 2 γνωρίζει ότι η εταιρεία 1 θα παίξει χαμηλή τιμή.
- Έτσι η εταιρεία 2 θα παίξει υψηλή τιμή.
- Άρα το παίγνιο καταλήγει στην κατάσταση (χ, υ).

	χαμηλή	υψηλή
χαμηλή	(0.48, 0.12)	(0.6, 0.4)
υψηλή	(0.4, 0.6)	(0.32, 0.08)

Παράδειγμα 2: Συμπεράσματα

- Η εταιρία 1 έχει τη "δύναμη" να πάρει αποφάσεις μη λαμβάνοντας υπόψη της την επιλογή της εταιρείας 2.
- Η εταιρεία 2 μπορεί να λάβει υπόψη της το παραπάνω στη συλλογιστική της.
- Έτσι το παιχνίδι μπορεί να απλοποιηθεί, λαμβάνοντας υπόψη μόνο την πρώτη γραμμή του πίνακα πληρωμών.
- Σε επόμενη διάλεξη θα δούμε πως αυτή η διαδικασία μπορεί να γενικευθεί σε μια επαναληπτική διαδικασία επίλυσης ενός παιγνίου (υπο προϋποθέσεις).
- Υπόθεση κοινής γνώσης (common knowledge): Ο κάθε παίκτης ξέρει την δομή του παιχνιδιού. Ο καθένας ξέρει ότι ο αντίπαλός του ξέρει την δομή του παιχνιδιού. Ο καθένας ξέρει, ότι ο αντίπαλός του ξέρει, ότι εκείνος ξέρει την δομή του παιχνιδιού κτλ.
- Η παραπάνω υπόθεση επιτρέπει συλλογισμούς σαν αυτόν που κάναμε στο τελευταίο παράδειγμα.

Όταν δεν υπάρχουν Κυρίαρχες

Στρατηγικές

Όταν δεν υπάρχουν Κυρίαρχες Στρατηγικές

- Δυστυχώς η προηγούμενη ανάλυση δεν είναι γενική.
- Μπορούμε να κατασκευάσουμε παραδείγματα όπου κανένας παίκτης δεν έχει κυρίαρχη στρατηγική.
- Ποια θα είναι η συμπεριφορά των παικτών σε αυτή την κατάσταση;

	А	В
А	(4, 4)	(0, 2)
В	(0, 0)	(1, 1)

Όταν δεν υπάρχουν Κυρίαρχες Στρατηγικές

- Δυστυχώς η προηγούμενη ανάλυση δεν είναι γενική.
- Μπορούμε να κατασκευάσουμε παραδείγματα όπου κανένας παίκτης δεν έχει κυρίαρχη στρατηγική.
- Ποια θα είναι η συμπεριφορά των παικτών σε αυτή την κατάσταση;

	А	В
А	(4, 4)	(0, 2)
В	(0, 0)	(1, 1)

Θα το δούμε στην επόμενη διάλεξη!

Επισκόπηση

Σε αυτή την διάλεξη..

- Εισαγάγαμε ένα μοντέλο για μελέτη της συμπεριφοράς πρακτόρων σε περιβάλλοντα όπου το αποτέλεσμα των ενεργειών τους δεν εξαρτάται μόνο από τις αποφάσεις τους, αλλά και από τις αποφάσεις των υπολοίπων.
- Είδαμε την Θεωρία Παιγνίων μέσα από παραδείγματα.
- Μελετήσαμε την συμπεριφορά των παικτών όταν έχουν αυστηρά κυρίαρχες στρατηγικές.
- Παρατηρήσαμε τις δυσκολίες που εισάγει η ατομική συμπεριφορά στη συνεργασία μεταξύ των παικτών.
- Αναλύσαμε το διάσημο Δίλημμα του Φυλακισμένου.
- Ορίσαμε την έννοια της βέλτιστης απόκρισης.
- Επεκτείναμε την ανάλυσή μας σε παίγνια όπου μόνο ένας παίκτης έχει αυστηρά κυρίαρχη στρατηγική.

Στην επόμενη διάλεξη..

- Όπως είδαμε η ανάλυση με βάση κυρίαρχες στρατηγικές δεν είναι γενική.
- Θα εισάγουμε μία νέα έννοια επίλυσης (solution concept), το σημείο ισορροπίας Nash (Nash equilibrium).
- Θα μελετήσουμε τις ιδιότητές του μέσω παραδειγμάτων.
- Θα επεκτείνουμε τον χώρο στρατηγικών των παικτών.
- Θα επιτρέψουμε στους παίκτες να αποφασίζουν με βάσει μηχανισμούς τυχαιότητας.
- Θα δούμε γενικές μεθόδους επίλυσης για "μικρά" παίγνια 2 παικτών.

Ευχαριστώ για τον χρόνο σας :)