Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Trabajo Final de Graduación

Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal.

Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
recha	11001VIGAG	7 Motaciones	dedicadas
04/04/0004	1 D. 1/ L) D. 1.17 1	
24/04/2024	0	a) Revisión de avance y er-	2 horas
	el asesor del proyecto.	rores de forma.	
		b) Se acordó contienuar con	
		el desarrollo de los métodos	
		ajustados para el $PAHM$.	
26/04/2024	· · · · · · · · · · · · · · · · · · ·	a) Se discute con el asesor	8 horas
	la función $get_action()$ del método PPO .	respecto al método de ex-	
		ploración y explotación del	
		código base PPO .	
		b) Se decide plantear un cam-	
		bio escalado del valor inicial	
		de la matriz de covarianza	
		$self.cov_mat.$	
		c) Montaje de lógica para	
		cambio de varianza y pruebas	
		con diferentes variación de la	
		desviación estandar.	
27/04/2024	•	a) Adaptación del código	6 horas
	método DQN discretizado para el control del env $PAHM$.	probado con <i>Pendulum</i> al	
		PAHM. Ajuste para uti-	
		lización de la libreria <i>argparse</i> .	
		b) Pruebas de entrenamiento	
		del modelo fallidas por	
		problemas en la función	
		$optimize_model().$	

27/04/2024	4. Adaptación del código de los métodos para observar los resultados de los entrenamientos mediante la herramienta Weights & Biases (W&B).	 a) Se estudió la forma de enviar la información a W&B. b) Ajuste de forma para mantener el registro por fecha y hora. 	4 horas
28/04/2024	5. Continuación de pruebas de variación de varianza y división estandar para el <i>PPO</i> del <i>PAHM</i> .	 a) Se crean nuevas versiones de get_action() y evaluate() con uso diferentes de distribución normal. b) Entrenamientos para cada caso de variación. Resultados fallidos. 	6 horas
29/04/2024	6. Pruebas de entrenamiento del modelo <i>PPO</i> del <i>PAHM</i> .	a) Se probaron diferentes métodos de distribución normal y variaciones de varianza para la etapa de exploración en el entrenamiento. b) Entrenamiento de modelos con cada método con aproximadamente 150,000 timesteps. El aprendizaje se estanca luego de unos 100,000 timesteps.	6 horas
30/04/2024	7. Continuación de entre- namientos con cambios en el valor de la varianza para el método <i>PPO</i> .	a) Se realizan entrenamientos con timesteps cercanos a los 500,000. b) Algunos resultados presentan cualidades prometedoras, pero en su mayoría no son aceptables.	6 horas
		Total de horas de trabajo:	38 horas

Contenidos de actividades

Los resultados de los entrenamientos del modelo PPO y sus métodos se compararon con una nueva referencia RL - Adventure - 2 y una anteriormente mencionada como [1].

Con la implementación de W&B en el código, ahora es posible acceder a los resultados de las pruebas para cada caso del variación con su respectiva fecha y hora, además de ciertos comentarios adicionados en alguna ocación.

Se cuenta con un proyecto para las pruebas del PPO como se observan en la Figura 1 y un proyecto para las pruebas con DQN discreto en la Figura 2.

Figure 1: Pruebas de entrenamiento del modelo PahmPPO en wandb.

Figure 2: Pruebas de entrenamiento del modelo PahmDQN en wandb.

Referencias

[1] S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, and W. Wang, "The 37 implementation details of proximal policy optimization," in ICLR~Blog~Track, 2022, https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/. [Online]. Available: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/