

# Ingeniería de Sistemas







# INGENIERIA DE SOFTWARE II UNIDAD No. 3

Estimación del software







# **Estimación de Costos**









 COCOMO es el modelo de construcción de costos más conocido y utilizado de los modelos algorítmicos compuestos que se basan sobre todo en datos estadísticos, pero también en ecuaciones analíticas y en un ajuste fruto de la opinión de expertos.







- El modelo original **COCOMO** se público por primera vez en 1981 por Barry Boehm
- Se basó en 63 proyectos, principalmente de la NASA
- Es el modelo de estimación de costos más utilizado
- En 1995 se publicó la versión COCOMO II
- COCOMO II está adaptado a las nuevas prácticas de desarrollo de software







El COCOMO clásico lo forman tres modelos diferentes, que tienen en cuenta diferentes grados de complejidad:

- Modelo básico: Se basa exclusivamente en el tamaño expresado en LDC.
   Aplicable cuando se conoce muy poco del proyecto
- Modelo intermedio: Además del tamaño del programa incluye un conjunto de medidas subjetivas llamadas conductores de costos. Aplicable luego de la especificación de requerimientos.
- Modelo avanzado: Incluye todo lo del modelo intermedio además del impacto de cada conductor de costo en las distintas fases de desarrollo.
   Aplicable cuando se termina el diseño.





## Existen Tres tipos de proyectos en COCOMO:

- ❖ Orgánicos: relativamente pequeños y sencillos, en los que trabajan pequeños equipos con experiencia, sobre un conjunto de requisitos poco rígidos.
- ❖ Semiacoplados: proyectos intermedios (en tamaño y complejidad) en los que participan equipos con variados niveles de experiencia, y que deben satisfacer requisitos poco o medio rígidos
- **Empotrados:** proyectos que deben ser desarrollados en un conjunto de hardware, software y restricciones operativas muy restringido.







## Los valores de los tres tipos de proyectos en COCOMO clásico:

| MODELO COCOMO BASICO |     |      |     |      |  |  |
|----------------------|-----|------|-----|------|--|--|
| PROYECTO             | а   | b    | С   | d    |  |  |
| ORGANICO             | 2.4 | 1.05 | 2.5 | 0.38 |  |  |
| SEMIACOPLADO         | 3.0 | 1.12 | 2.5 | 0.35 |  |  |
| EMPOTRADO            | 3.6 | 1.20 | 2.5 | 0.32 |  |  |

| MODELO     | ESFUERZO<br>Hombre-mes            | Tiempo de<br>desarrollo<br>(Meses) | No. Personas |
|------------|-----------------------------------|------------------------------------|--------------|
| BASICO     | E = a(KLOC) <sup>b</sup>          | T = c E <sup>d</sup>               | P= E/T       |
| INTERMEDIO | E = a(KLOC) <sup>b</sup> *<br>FAE | T = c E <sup>d</sup>               | P= E/T       |
| AVANZADO   | E = a(KLOC) <sup>b</sup> * FAE    | T = c E <sup>d</sup>               | P= E/T       |





#### Objetivos que se tuvieron en cuenta para crear el modelo COCOMO II

- Proporcionar modelo de estimación de costes ajustado a las prácticas de los 90's y del 2000.
- Proporcionar técnicas analíticas para evaluar los efectos de ciertas decisiones sobre planificación y costes.
- Crear una bases de datos y herramientas que permitan mejorar el modelo.

El nuevo modelo COCOMO II tiene como objetivo principal desarrollar un modelo de estimación de costos y planificación del software especialmente adecuado para los ciclos de vida.







#### COCOMO II posee tres modelos:

- · Composición de Aplicación
- · Diseño Temprano
- · Post-Arquitectura.

### Modelo de composición de aplicaciones:

- Incluye el uso de prototipos para disminuir los riesgos potenciales que surgen con las interfaces gráficas de usuario típicas de herramientas RAD y otras herramientas actuales de productividad y de la orientación a objetos.
- En este modelo se definen unos puntos objeto que vendrían a ser una adaptación y modernización de los puntos de función





- Intenta obtener una primera aproximación en las fases iniciales del ciclo de vida, cuando todavía se conocen pocas de las características y datos definitivos del proyecto.
- Utiliza como primitivas de salida tanto las líneas de código como los clásicos puntos de función.

## Modelo de postarquitectura:

- Se aplica cuando se considera que el proyecto dispone ya de requerimientos estables. Por otra parte, también utiliza como primitivas de salida las líneas de código y los puntos de función.
- Además, tiene en cuenta indicadores de la reutilización de software, cinco factores de escala y hasta diecisiete factores específicos diferentes





| ETAPA   | MODELO                       | DESCRIPCION                                                                                                                                                                                                                                                                                                     |
|---------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Etapa 1 | Composición de<br>Aplicación | <ul> <li>Soporta proyectos con prototipado y proyectos que<br/>hacen uso intensivo de la Reutilización.</li> <li>Basado en estimaciones estándar de la productividad<br/>del desarrollador en puntos de objetos</li> </ul>                                                                                      |
| Etapa 2 | Diseño<br>anticipado         | <ul> <li>Puede utilizarse antes de que esté determinada por completo su arquitectura.</li> <li>Utiliza un pequeño conjunto de elementos de costo nuevo</li> <li>Está basado en Punto de Función sin ajustar o KLOC.</li> <li>Primeras etapas de desarrollo, especificaciones de Hardware y Software.</li> </ul> |
| Etapa 3 | Post-<br>Arquitectura        | <ul> <li>Se ha desarrollado por completo la arquitectura del proyecto.</li> <li>Tiene nuevos elementos de costo, nuevas reglas para el recuento de líneas y nuevas ecuaciones.</li> <li>Etapa de desarrollo</li> </ul>                                                                                          |







## Modelo Composición de Aplicación.

Estimación del Esfuerzo

## E = NPO /PROD

- NOP (Nuevos Puntos Objeto): Tamaño del nuevo software a desarrollar expresado en Puntos Objeto
- **PROD:** Es la productividad promedio determinada a partir del análisis de datos de proyectos en [Banker 1994].







## **NOP** se calcula de la siguiente manera:

- Identificación de los tipos de objetos:
  - -Ventanas o Pantallas
  - —Informes
  - -Componente o módulos de tercera generación 3GL









• Clasificar cada instancia de objeto dentro de niveles de complejidad

| Pantallas           | Número de Tablas de Datos |          |         |  |  |  |
|---------------------|---------------------------|----------|---------|--|--|--|
| Número<br>de vistas | <4 <8 >=8                 |          |         |  |  |  |
| <3                  | Sencillo                  | Sencillo | Medio   |  |  |  |
| 3-7                 | Sencillo                  | Medio    | Difícil |  |  |  |
| >=8                 | Medio                     | Difícil  | Difícil |  |  |  |

| Informes                  | Número de Tablas de Datos |          |         |  |  |
|---------------------------|---------------------------|----------|---------|--|--|
| Número<br>de<br>secciones | <4                        | >=8      |         |  |  |
| 0 ó 1                     | Sencillo                  | Sencillo | Medio   |  |  |
| 2 ó 3                     | Sencillo                  | Medio    | Difícil |  |  |
| >=4                       | Medio                     | Difícil  | Difícil |  |  |





 Pesar el número de cada celda usando las tablas del punto anterior. El peso refleja el esfuerzo relativo que se requiere para implementar una instancia de ese nivel de complejidad.

| Tipo de objeto    | Complejidad - Peso |       |          |          |  |
|-------------------|--------------------|-------|----------|----------|--|
|                   | Simple             | Media | Difícil  | Subtotal |  |
| Ventana           | x 1                | x2    | x3       | =        |  |
| Informe           | x2                 | x 5   | x 8      | =        |  |
| Componente de 3GL |                    |       | x 10     | =        |  |
|                   |                    |       | Total OP | =        |  |







- Determinar Puntos Objeto (OP): Suma todas las instancias de objeto pesadas para conseguir un número.
- Estimar el porcentaje de reutilización que se espera lograr en este proyecto.
- Calcular los nuevos Puntos Objeto a desarrollar.

**%reuso**: Porcentaje de reuso que se espera lograr en el proyecto







Determinar la razón de productividad a partir de la siguiente tabla

| Experiencia y capacidad de<br>los desarrolladores | Muy<br>Baja | Baja | Nominal | Alta | Muy<br>Alta |
|---------------------------------------------------|-------------|------|---------|------|-------------|
| Madurez y capacidad de<br>ICASE                   | Muy<br>Baja | Baja | Nominal | Alta | Muy<br>Alta |
| PROD                                              | 4           | 7    | 13      | 25   | 50          |

Calcular el esfuerzo dado en Meses-persona estimado según la ecuación

PM = NPO /PROD







Este modelo se usa en las etapas tempranas de un proyecto de software, cuando se conoce muy poco del tamaño del producto a ser desarrollado, de la naturaleza de la plataforma, del personal a ser incorporado al proyecto o detalles específicos del proceso a utilizar. Este modelo podría emplearse tanto en productos desarrollados en sectores de Generadores de Aplicación, Sistemas Integrados o Infraestructura.

El modelo de Diseño Temprano ajusta el esfuerzo nominal usando siete factores de costo. La fórmula para el cálculo del esfuerzo es la siguiente:

$$PM_{estimado} = PM_{nominal} \times \prod_{i=1}^{7} EM_{i}$$







A= Constante que captura el lineal 05 esfuerzo a medida proyectos que estos incrementan tamaño, evita los efectos multiplicativos del esfuerzo que proyectos creciendo. Actualmente estál calibrada en 2.45 ajustable dates empíricos de cada empresa.

B = Factor escalar que indica el grado de economía en el esfuerzo a realizar o bien variaciones en la productividad

B= 0,91+0,01 ∑ W ; <

Factores Wi

PREC precedente

FLEX flexibilidad

RESL resolución riesgos

TEAM cohesión equipo

PMAT madurez del proceso

Esfuerzo medido en personas/ meses  $PM_{nominal} = A \times (Size)^{B}$ 

Tamaño del software expresado en miles de líneas de código **KSLOC** determinado a partir de los Puntos de Función sin ajustar que se convierten según tabla en LOC y se dividen por 1000, KSLOC = LOC / 1000,







## El esfuerzo viene dado por:

$$PM_{Nominal} = A \times (Tama\tilde{n}o)^{B}$$

### Donde:

- A= Constante de calibración (2,45 o 2,94)
- Tamaño= KLOC
- B=  $0.91 + 0.01 \times \Sigma$  Fej (j= 1..5)

(Fe=Factor de escala)







Establecer la escala de ahorro o gasto

B = 
$$0.91 + 0.01 \times \Sigma FE_j$$
 (j = 1 a 5)

#### Factores de Escala

|                                              | Muy<br>Bajo | Bajo | Normal | Alto | Muy<br>Alto | Extra<br>Alto |
|----------------------------------------------|-------------|------|--------|------|-------------|---------------|
| Precedentes (PREC)                           | 6,2         | 4,96 | 3,72   | 2,48 | 1,24        | 0             |
| Flexibilidad (FLEX)                          | 5,07        | 4,05 | 3,04   | 2,03 | 1,01        | 0             |
| Arquitectura/resolución<br>del riesgo (RESL) | 7,07        | 5,65 | 4,24   | 2,83 | 1,41        | 0             |
| Cohesión del Equipo<br>(TEAM)                | 5,48        | 4,38 | 3,29   | 2,19 | 1,10        | 0             |
| Madurez del Proceso<br>(PMAT)                | 7,80        | 6,24 | 4,68   | 3,12 | 1,56        | 0             |

| PREC | Experiencia previa de<br>la organización con este<br>tipo de proyectos. |
|------|-------------------------------------------------------------------------|
| FLEX | Refleja el grado de<br>flexibilidad en el proceso<br>de desarrollo.     |
| RESL | Refleja la amplitud de<br>análisis de riesgo que se<br>lleva a cabo.    |
| TEAM | Refleja la relación<br>entre los miembros del<br>equipo de desarrollo.  |
| PMAT | Refleja la madurez del<br>proceso de la<br>organización.                |







| Factores de<br>Escala (SF <sub>j</sub> ) | Muy Bajo                                                          | Bajo                                             | Nominal                                      | Alto                    | Muy Alto                   | Extra Alto                     |  |  |
|------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------|----------------------------|--------------------------------|--|--|
| PREC                                     | Completa-<br>mente sin<br>precedentes                             | Prácticamen-<br>te sin<br>precedentes            | Casi sin<br>precedentes                      | Algo familiar           | Muy familiar               | Completa-<br>mente<br>familiar |  |  |
| FLEX                                     | Riguroso                                                          | Relajación<br>ocasional                          | Algo de<br>relajación                        | Conformidad<br>general  | Algo de<br>conformidad     | Metas<br>generales             |  |  |
| RESL*                                    | Poco (20%)                                                        | Algo (40%)                                       | A menudo<br>(60%)                            | Generalmen-<br>te (75%) | En su mayor<br>parte (90%) | Por completo<br>(100%)         |  |  |
| TEAM                                     | Interacciones<br>muy dificiles                                    | Algo de<br>dificultad en<br>las<br>interacciones | Interacciones<br>básicamente<br>cooperativas | Bastante<br>cooperativo | Altamente<br>cooperativo   | Completas<br>interacciones     |  |  |
| PMAT                                     | Peso medio de respuestas "Si" para el cuestionario de Madurez CMM |                                                  |                                              |                         |                            |                                |  |  |

Establecer la escala de ahorro o gasto

B =  $0.91 + 0.01 \times \Sigma FE_j$  (j = 1 a 5)







El esfuerzo ajustado será:

$$PM_{Ajustado} = PM_{Nominal} * \Pi FA_i$$
 (i = 1 to 7)

FA = Factores de Ajuste





Factores de Ajustes

| Factor | Descripción                           |
|--------|---------------------------------------|
| RCPX   | Fiabilidad y complejidad del producto |
| RUSE   | Requerimientos de reusabilidad        |
| PDIF   | Dificultad de la plataforma           |
| PERS   | Capacidad del personal                |
| PREX   | Experiencia del personal              |
| FCIL   | Facilidades para el desarrollo        |
| SCED   | Esfuerzo de calendario                |

|      | Extra<br>Bajo | Muy Bajo | Bajo | Nominal | Alto | Muy Alto | Extra<br>Alto |
|------|---------------|----------|------|---------|------|----------|---------------|
| RCPX | 0.73          | 0.81     | 0.98 | 1       | 1.3  | 1.74     | 2.38          |
| RUSE | -             | -        | 0.95 | 1       | 1.07 | 1.15     | 1.24          |
| PDIF | -             | -        | 0.87 | 1       | 1.29 | 1.81     | 2.61          |
| PERS | 2.12          | 1.62     | 1.26 | 1       | 0.83 | 0.63     | 0.5           |
| PREX | 1.59          | 1.33     | 1.12 | 1       | 0.87 | 0.71     | 0.62          |
| FCIL | 1.43          | 1.30     | 1.10 | 1       | 0.87 | 0.73     | 0.62          |
| SCED | -             | 1.43     | 1.14 | 1       | 1    | 1        | -             |







#### Calcular el PM ajustado

$$PM_{Ajustado} = PM_{Nominal} * \Pi FA_i$$

El **tiempo** estimado, una vez conocido el esfuerzo necesario, se obtiene de:

$$T_{DES} = [c x (PM)^d] * SCED\%/100$$

#### Siendo

- PM = esfuerzo expresado en persona-mes
- c = 3
- d = 0.33 + 0.2 \* [B 1,01]
- SCED% es el porcentaje de compresión/expansión del tiempo.







Calcular la duración y personal requerido para el proyecto.

Tiempo de Desarrollo

El **tiempo** estimado, una vez conocido el esfuerzo necesario, se obtiene de:

$$T_{DES} = [c x (PM)^d] * SCED%/100$$

#### Siendo

- **PM** = esfuerzo expresado en persona-mes
- c = 3
- d = 0.33 + 0.2 \* [B 1,01]
- SCED% es el porcentaje de compresión/expansión del tiempo.

Es el porcentaje en que se calcula podrá aumentar o disminuir el calendario.

|      | Muy Bajo           | Bajo | Nominal | Alto | Muy Alto | Extra Alto |
|------|--------------------|------|---------|------|----------|------------|
| SCED | 75% del<br>nominal | 85%  | 100%    | 130% | 160%     |            |







El personal a tiempo completo necesario para el desarrollo (PDTC) será:

$$PDTC = PM / T_{DES}$$



