



LOAN COPY: RETURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX

# REMOTE INFORMATION RETRIEVAL FACILITY

by Roger K. Summit

Prepared by
LOCKHEED AIRCRAFT CORPORATION
Palo Alto, Calif.
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . APRIL 1969



NASA CR-1318

#### REMOTE INFORMATION RETRIEVAL FACILITY

By Roger K. Summit

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Issued by Originator as Report No. N-07-68-1

Prepared under Contract No. NASw-1454 by LOCKHEED AIRCRAFT CORPORATION Palo Alto, Calif.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 — CFST1 price \$3.00

|  | - <b>T</b> 4 |  |  |
|--|--------------|--|--|
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |
|  |              |  |  |

#### FOREWORD

This report summarizes work performed under NASA Contract NASw 1454. The first phase consisted of installing a remote terminal base at Ames Research Center, Moffett Field, California, for the use of engineers and scientists in conducting on-line searches on the NASA collection of machine-readable document citations. This data base was stored in a mass storage device at the Lockheed Palo Alto Research Laboratory. Communication between the user and the data base was conducted over a telephone line using an interactive information retrieval language, DIALOG, developed by Lockheed. During the second phase of the contract, the terminal was relocated at NASA headquarters in Washington, D.C. where additional searches were conducted.

Special acknowledgment is due the Scientific and Technical Information Division of NASA for its pioneering effort in information retrieval, and its continuing developmental support in this important discipline.

| • |  | • |   |
|---|--|---|---|
|   |  |   | ' |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |
|   |  |   |   |

### CONTENTS

| Section  |                                                                        | Page |
|----------|------------------------------------------------------------------------|------|
|          | FOREWORD                                                               | iii  |
|          | ILLUSTRATIONS                                                          | vi   |
| 1        | SUMMARY OF WORK PERFORMED                                              | 1    |
|          | 1.1 NASA File Conversion                                               | 1    |
|          | 1.2 System Operation, Ames Research Center                             | 1    |
|          | 1.3 System Operation, Washington, D. C.                                | 2    |
| 2        | DESCRIPTION OF THE DIALOG SYSTEM                                       | 3    |
|          | 2.1 Description of the DIALOG Language                                 | 3    |
|          | 2.2 Command Language Modification                                      | 7    |
|          | 2.3 Hardware Description                                               | 9    |
| 3        | SUMMARY OF SYSTEM USE                                                  | 11   |
|          | 3.1 Ames Research Center Phase                                         | 11   |
|          | 3.2 NASA Headquarters Phase                                            | 16   |
|          | 3.3 Comparative Analysis of Ames and Headquarters<br>Search Statistics | 18   |
| Appendix |                                                                        |      |
| A        | FILE CONVERSION REPORT                                                 | 23   |
| В        | INDIVIDUAL SEARCH SUMMARIES                                            | 30   |

## ILLUSTRATIONS

| Figure |                                                           | Page |
|--------|-----------------------------------------------------------|------|
| 2-1    | DIALOG Video/Keyboard Display Terminal                    | 4    |
| 2-2    | Display Keyboard Showing DIALOG Commands                  | 4    |
| 2-3    | Display Resulting From EXPAND TECHNOLOGY                  | 6    |
| 2-4    | Display of Cross-Reference Terms Resulting From EXPAND E5 | . 6  |
| 2-5    | Display Examples                                          | 8    |

#### Section 1

#### SUMMARY OF WORK PERFORMED Contract NASw-1454

#### 1.1 NASA FILE CONVERSION

The NASA linear file, inverted file, and cross-reference file, which were furnished by NASA, were converted to a standard format compatible with the IBM 360 system. Conversion of the linear file resulted in an average compression of 28%. Much of the greater storage efficiency resulted from elimination of coded terms and blank spaces from the records. All files were loaded on the IBM 2321 data cell. Indices to the files were generated using the IBM index sequential file management system (ISFMS). These indices were stored in a special format on the IBM 2311 disk.

A detailed description of the file conversion process can be found in Appendix A.

#### 1.2 SYSTEM OPERATION, AMES RESEARCH CENTER

On completion of file conversion and after local checkout of the files with the DIALOG information retrieval system (described in Section 2), a remote terminal consisting of an IBM 2260 keyboard/display device and an IBM 1053 character printer were installed at the Ames Research Center in Mountain View, California. Remote operation was conducted via a 1200 bit/second, full duplex, schedule 4A telephone line using Model 202 data sets.

For a period of 2 months, Ames scientific and library personnel operated the system on the average of 2 hours per day performing literature searches on the computer-based collection of 300,000 report and journal citations. (See Appendix B for search summaries.) Following an announcement of the availability of the service, user's manuals were distributed to interested parties and a signup sheet was maintained. After the first month, signups were backlogged an average of 1 to 2 weeks.

The general reaction of the users, based on their comments and repeated searches, was favorable. Ames is currently contemplating an extention of the service. Excepting substantial trouble with the telephone line, and occasional trouble with the IBM equipment and the application programs, the system operated reliably.

Several minor modifications were made to the DIALOG search system during the course of performance, based on user reaction and observations of user needs.

#### 1.3 SYSTEM OPERATION, WASHINGTON, D.C.

The terminal was shipped and installed in Washington, D.C., in July, 1967. During the ensuing 12-months, searches were conducted during a 3-hour period each morning. Whereas searches were primarily conducted by the final customers during the first phase, most searches were conducted by the NASA Headquarters Librarian, Mrs. Karen Milligan, during the second phase.

During this period, approximately 300 searches were conducted. Also, files were enlarged to a total of 400,000 citations, abstracts for the 1967 items were included, and the W series (describing research projects) was included. Service on the whole was more reliable than during the first phase with only negligible telephone line failure. Inclusion of a "soft restart" capability largely eliminated catastrophic software failures. Continued difficulty was experienced with the IBM 2321 Data Cell, however, which accounted for most of the nonrecoverable failures.

# Section 2 DESCRIPTION OF THE DIALOG SYSTEM

This section reviews the procedural techniques and computer facilities used in conducting on-line searches — specifically, the DIALOG information retrieval language and the computer environment within which this set of programs operates.

#### 2.1 DESCRIPTION OF THE DIALOG LANGUAGE

DIALOG is an interactive information retrieval language which allows the user to formulate simple or complex search requests via a video/keyboard display terminal (Fig. 2-1) which is coupled to a computer containing the material to be searched. To use DIALOG, the engineer or librarian enters desired commands such as "begin search," "display," "select," or "combine" by depressing keys on the keyboard (Fig. 2-2). The computer responds by displaying various data on the display screen and/or on the console printer as appropriate.

Four important phases in the search are:

- Select index terms or subject phrases
- Combine individual terms or phrases
- Display output
- Modify search expression

In the first step, the user identifies and selects index terms (i.e., subject phrases) of interest which relate to his search topic. The second step allows the user to build his own specialized subject heading during the search. At each step the user is informed of the number of documents which fulfill his specified search criteria. The third step, display of the output, allows the user to review references for relevancy,



Fig. 2-1 DIALOG Video/Keyboard Display Terminal



Fig. 2-2 Display Keyboard Showing DIALOG Commands

and to select additional terms to better express his search requirement. Once the desired literature references are displayed, the user can press the printout key for a permanent record of the retrieved references, or can modify his search expression based on index terms used in displayed references.

The NASA linear file, inverted file, and related term files are located on the IBM 2321 data cell. The descriptor and accession number indices are located on one of the two 2311 disk drives. The system reaction to several of the commands is described below.

To assist the user in identifying and selecting index terms, a command labeled "EXPAND" is provided which causes a display of the alphabetically near index terms for any term entered. For each term displayed, the number of items indexed by that term as well as the number of thesaurus terms is shown. This function provides the user with a continually updated catalog of the index and cross-reference terms and their usage. Figure 2-3 shows the display resulting from EXPAND TECHNOLOGY. Figure 2-4 shows the display of cross-reference terms resulting from EXPAND E5 (the reference number for TECHNOLOGY on Fig. 2-3). Desired terms can be selected using a command, "SELECT." Each selected term defines a subset of the total collection; namely, that subset which contains that term as an index term. Each subset is numbered and described on the remote character printer providing easy reference for the user.

The subsets corresponding to selected terms (or combinations of terms) can be combined with a powerful command called "COMBINE" to further partition the collection. COMBINE 1\*2\*3 (where 1, 2, and 3 are subsets of citations corresponding to the first three terms selected) results in a subset 4 which includes only those items containing all three of the specified terms. COMBINE operates on specified subsets with operators "and," "or," and "not," allowing the flexible and recursive construction of any arbitrary Boolean set. The power of this command is great. It allows the user to successively cut-and-try various search expressions. The system

|      | E.                | XPAND-TECHNOLOGY |       |     |
|------|-------------------|------------------|-------|-----|
| REF  | DESCRIPTOR        | CITATIONS REL.   | TERMS | REF |
| Εl   | TECHNICAL         | 531              |       | E1  |
| E 2  | TECHNICAL DRAWING |                  | 1     | E 2 |
| E3   | TECHNICAL WRITING | 9                |       | E3  |
| E4   | TECHNIQUE         | 6343             | 16    | E 4 |
| E5   | *TECHNOLOGY       | 4452             | 4     | E 5 |
| E6   | TECTONIC MOVEMENT | 50               |       | EΘ  |
| E7   | TECTONICS         | 97               |       | E 7 |
| E8   | TEE               | 22               |       | 3 B |
| E9   | TEETERING         | 2                |       | E9  |
| ENTE | ER NEXT COMMAND * |                  |       |     |

Fig. 2-3 Display Resulting From EXPAND TECHNOLOGY

|     | EXPAND-E5            |               |          |     |
|-----|----------------------|---------------|----------|-----|
| REF | DESCRIPTOR           | CITATIONS REI | L. TERMS | REF |
| E 5 | *TECHNOLOGY          | 4462          | lļ       | E 5 |
| E10 | AEROSPACE TECHNOLOGY | 657           |          | E10 |
| E11 | BIOTECHNOLOGY        | 131           |          | E11 |
| E12 | MILITARY TECHNOLOGY  | 352           | 1        | F12 |
| E13 | REACTOR TECHNOLOGY   | 484           |          | E13 |

ENTER NEXT COMMAND ▶

Fig. 2-4 Display of Cross-Reference Terms Resulting From EXPAND E5

tells the user at each step how many items meet the specified criteria, and based on this feedback the searcher can narrow or broaden any expression to suit his requirement.

To assist the user in further evaluating the result of any search expression, several output commands are defined. DISPLAY causes a display of the specified items (citations or accession numbers) on the cathode ray tube display device; PRINT causes specified items to be printed on a high-speed printer; KEEP causes specified items to be saved in a special subset; and TYPE causes specified items (or their access numbers) to be typed on the IBM 1053 character printer at the terminal. Figure 2-5 shows displays of citations retrieved from the search expression:

(TECHNOLOGY or AEROSPACE TECHNOLOGY) and TRANSFER and INDUSTRY

Examination of displayed items (and the terms used to index these items) frequently suggests additional terms which should be included in the search expression. The step-wise approach to searching used in DIALOG allows easy modification of search strategy without repeating or regenerating the search.

#### 2.2 COMMAND LANGUAGE MODIFICATION

Because each of the commands within DIALOG is an integral unit, modifications to individual command definitions were facilitated. It was also possible to introduce additional commands when the need for them was indicated.

Distributions were developed from actual search history execution times which indicated that with four terminals, mean waiting time per command would be between 1 and 2 seconds. Elimination of the TYPE command (use of remote PRINT capability) and a current change which causes output printing to go to tape rather than the on-line printer would reduce the wait time figure.

DISPLAY 6/2/1

65A31673 00/07/65 UNCLASSIFIED
SPIN-OFF FROM SPACE. (N; ASA INFORMATION SYSTEM TO ASSIST TRANSFER OF TECHNOLO GICAL DATA FROM SPACE PROGRAMS TO POTENTIAL BENEFICIARIES)

KERR, B. M. /NASA, SCIENTIFIC AND TECHNICAL INFORMATION DIV., WASHINGTO N, D.C./. 203049 SCIENCE JOURNAL, VOL. 1, JUL. 1965, P. 85-90.

KERR, B. M.

/ AEROSPACE/\*AEROSPACE TECHNOLOGY/ DATA/ INDUSTRY/ INFORMATION/\*INFORMATION RET RIEVAL/\*NASA PROGRAM/ PROGRAM/ RETRIEVAL/ SPACE/ TECHNOLOGY/ TITANIUM/ TRANSFER

ENTER NEXT COMMAND ₽

DISPLAY 6/2/2

65N16989# NASA-CR-51214 NASR-162 00/06/63 UNCLASSIFIED
AEROSPACE RESEARCH APPLICATIONS CENTER SUMMARY REPORT, 1 APRIL TO 30 JUNE 1963
(AEROSPACE RESEARCH APPLICATIONS - CONFERENCE)
WEIMER, A. M.

INDIANA UNIV. FOUNDATION, BLOOMINGTON.

/ AEROSPACE/\*AEROSPACE TECHNOLOGY/ APPLICATION/ COMMERCIAL/\*CONFERENCE/ INDUSTR
Y/ NASA PROGRAM/ RESEARCH/ TRANSFER

ENTER NEXT COMMAND ►

D ISPLAY 6/2/3

66N13375# NASA-CR-68620 ER-SB-1844 NASW-1139 00/04/65 UNCLASSIFIED SPACE TECHNOLOGY APPLIED TO MAN\*S EARTHLY NEEDS - A FEASIBILITY STUDY ON THE TRANSFER OF AEROSPACE TE CHNOLOGY TO INDUSTRY USE (FEASIBILITY STUDY ON ACC ELERATING TRANSFER OF AE ROSPACE TECHNOLOGY TO COMMERCIAL INDUSTRY - AEROSPACE LITERATURE APPLICABILITY TO INDUSTRY)

BROCK, A. W. DEMBICZAK, W. J. NAGY, A.

AMERICAN MACHINE AND FOUNDRY CO., SANTA BARBARA, CALIF.

/ AEROSPACE/\*AEROSPACE TECHNOLOGY/ APPLICATION/ COMMERCIAL/ EVALUATION/\*INDUSTR
Y/ INFORMATION/\*INFORMATION RETRIEVAL/ LITERATURE/ QUALITY/ RETRIEVAL/ SURVEY/ T
ECHNICAL/ TECHNOLOGY/ TRANSFER/ UTILIZATION
ENTER NEXT COMMAND >

Fig. 2-5 Display Examples

#### 2.3 HARDWARE DESCRIPTION

The major hardware components of the IBM 360/30 include:

- Central processor containing 32,000 bytes of core (later upgraded to 64,000 bytes)
- 2 disk drives (IBM 2311) each with a capacity of 7.25 million bytes of storage
- 1 data cell drive (IBM 2321) with a capacity of 400 million bytes of storage
- Data adapter unit (IBM 2701)
- Remote terminal consisting of IBM 2848 control unit, IBM 2260 keyboard display, and IBM 1053 character printer
- IBM 1443 printer

The central processor itself contains 32,000 bytes of high-speed core storage memory, the arithmetic and logic unit (ALU), and the power supplies for the ALU and the channels. [A byte is 8 digital bits plus a parity (check) bit.] Programs and data are stored as magnetic patterns in the memory.

The IBM 2311 disk storage drive is the memory device in which most of the "files" are located and the units in which various sorting and rearrangements of data are accomplished. The 2311 disk storage drive provides random access storage for 7.25 million bytes (or 14.5 million packed decimal digits and signs) on a single disk pack. The data rate of the IBM 2311 is 156 thousand bytes per second. Sequential track-to-track access time is 30 milliseconds. The maximum seek time is 145 milliseconds, and the average seek time is 85 milliseconds. The average rotational delay is 12.5 milliseconds.

The IBM 2321 data cell drive (and data cells) is the bulk storage memory of the system. The IBM 2321 data cell drive extends on-line random access storage capabilities to a volume of data beyond that of other storage devices. Each 2321 offers 400 million bytes (or 800 million packed decimal digits and signs) of on-line data. The data cells

are all removable and interchangeable, permitting an open ended capacity for libraries of data cells. The storage medium is a strip of magnetic tape 2-1/4 inches wide by 13 inches long. Each data cell contains 200 of these strips, divided into 20 subcells of 10 strips each.

The IBM 2701 data adapter unit provides direct connection of a variety of remote and local external devices to an IBM 360. Together, the data adapter unit and a transmission adapter provide a single duplex (one way) or half-duplex (two ways alternately) data path, depending on the particular transmission adapter used, between external device(s) and an IBM 360.

The IBM 2848 display control contains the interface control, a character generator, and buffer storage for the display stations. This buffer storage retains the video data to maintain display regeneration on the CRT.

In addition, one IBM 1053 printer adapter unit may be attached to each display control. This feature allows use of an IBM 1053 printer at a central location to document and record periodic system transactions.

The IBM 1443 printer is the high-speed printer which produces the final output of the system. The IBM 1443 Printer Model N1 prints from 200 to 600 (maximum) lines per minute, depending on the number of characters in the set being used.

## Section 3 SUMMARY OF SYSTEM USE

Two separate operational phases are described. These two phases differed substantially in terms of the manner in which the system was utilized. During the Ames Research Center Phase, all searching was performed by the primary customer; i.e., scientists and engineers interested in specific, detailed, and often subtle areas of technology. During the NASA Headquarters Phase, the terminal was used primarily by a NASA librarian to perform searches requested by other NASA personnel. The substantial difference between the two phases was that in the former case searches tended to be more specific with more items displayed and more selective printout, whereas in the latter case, the searches tended to be more generally formulated with less reliance on the display to edit results, and more massive printouts.

This section discusses the two phases with regard to search characteristics and user reaction. Summaries of individual searches from Phase 1 operation are included as Appendix B.

#### 3.1 AMES RESEARCH CENTER PHASE

During the 2-month period (44 working days or about 80 terminal hours), 75 successful working search sessions were conducted. The actual number of search topics explored was somewhat greater, however, because many sessions included multiple search topics. In addition, there were several demonstrations and instruction searches.

#### 3.1.1 User Statistics

Although some service was provided in all but 2 days, there were several interruptions in service during the 2-month period. These interruptions are summarized as follows:

| Type of Failure      | Frequency of Occurrence | Approx. Time Lost (hr) | Percent of Total Time |
|----------------------|-------------------------|------------------------|-----------------------|
| Transmission line    | 9                       | 8                      | 10.0                  |
| IBM equipment        | 6                       | 7                      | 8.7                   |
| Application software | 5                       | 4                      | 5.0                   |

In cases of failure, the interrupted search was regenerated either at the next scheduled period of operation, or by Lockheed personnel in a local mode of operation.

Time spent per search is distributed as follows:

| Elapsed<br>Search Time<br>(min) | Number of<br>Searches | Percent of<br>Searches |
|---------------------------------|-----------------------|------------------------|
| 0 - 10                          | 11                    | 12.4                   |
| 11-20                           | 16                    | 18.0                   |
| 21 - 30                         | 10                    | 11.2                   |
| 31 - 40                         | 19                    | 21.3                   |
| 41 - 50                         | 12                    | 13.5                   |
| 51 - 60                         | 11                    | 12.4                   |
| 61 - 70                         | 10                    | 11.2                   |

Average minutes per search: 33

Much of this time included learning and practice time. The experienced searcher (after 2 to 3 tries) frequently can complete a relatively complex search in 8 to 10 minutes. In addition, search expressions tended to be both long in terms of the number of index terms included in the search expression, and complex in terms of the number of levels and concept groups in the Boolean expression satisfying the search topic.

| Number of Index<br>Terms per Search Topic | Number of<br>Searches | Percent of<br>Searches |
|-------------------------------------------|-----------------------|------------------------|
| 1-5                                       | 33                    | 34.4                   |
| 6-10                                      | 39                    | 40.6                   |
| 11-15                                     | 15                    | 15.6                   |
| 16 - 20                                   | 4                     | 4.2                    |
| 21-25                                     | 5                     | 5.2                    |

Average index terms per search: 8

| Level of Boolean Expression | Number of<br>Searches | Percent of Searches |  |
|-----------------------------|-----------------------|---------------------|--|
| 1                           | 7                     | 7.3                 |  |
| 2                           | 62                    | 64.6                |  |
| 3                           | 20                    | 20.8                |  |
| 4                           | 7                     | 7.3                 |  |

Average level of search: 2.3

| Number of Concept<br>Groups | Number of<br>Searches | Percent of<br>Searches |
|-----------------------------|-----------------------|------------------------|
| 1                           | 2                     | 2.1                    |
| 2                           | 40                    | 41.7                   |
| 3                           | 40                    | 41.7                   |
| 4                           | 14                    | 14.5                   |

Average concept groups per search topics: 2.7

NOTE: The level of a Boolean expression measures the hierarchy of the expression, whereas the number of concept groups refers to the number of different groups of terms connected by "AND." For example, the expression (WELDING) AND (DEFECT OR FLAW) AND (ALUMINUM) is a two level, three expression search.

From these data we see that the average search time was 33 minutes, the average number of terms for search topics was 8, and the average level of search expression

was 2.3 and the average number of concept groups was 2.7. The total number of search topics does not agree in all cases because "elapsed search" time was lost in some instances.

The number of relevant items printed was as follows:

| Number of Items<br>Printed | Number of<br>Searches | Percent of<br>Searches |
|----------------------------|-----------------------|------------------------|
| 0-10                       | 37                    | 38.6                   |
| 11 - 20                    | 17                    | 17.7                   |
| 21 - 30                    | 15                    | 15.6                   |
| 31 - 40                    | 10                    | 10.4                   |
| 41 - 50                    | 6                     | 6.3                    |
| 51 - 60                    | 4                     | 4.2                    |
| 61 - 70                    | 2                     | 2.1                    |
| 71-80                      | 3                     | 3.1                    |
| 81-90                      | 1                     | 1.0                    |
| 91 - 100                   | 0                     | 0.0                    |
| >100                       | . 1                   | 1.0                    |

Average items printed per search: 22

From the distribution of items printed, it can be seen that most users printed less than 20 items. With on-line retrieval and the display capability, the user frequently prints only items which have been displayed and adjudged relevant. It follows, of course, that he does not print items which, although relevant to the search topic, are already familiar to him. The longer printouts frequently resulted when, after extensive sampling within a set, a user simply decided to print the entire set for review.

#### 3.1.2 User Reaction

User reaction can be measured in several ways:

- Relevance versus precision
- Repeat usage
- Testimonial
- System demand

The traditional measures used to evaluate information retrieval systems are recall and precision. Recall refers to the number of relevant items retrieved compared with the total number of relevant items in the file; precision refers to the number of relevant items retrieved compared with the total number of items retrieved. With a recursive, on-line system such as DIALOG, the user successively modifies his search expression until he is satisfied with the relevance and precision of the resulting file. He then prints out selected items from the resulting file. The items printed out represent relevant items, but also represent items with which the user is not already familiar. In other words, they represent net additions to his knowledge in the area. As might be expected, there were large individual differences in the number of items printed as compared with items displayed. In a sample of 10 searches, the percentage of items kept per items displayed varied from 100% in two cases to 40% in the worst case. (The average was 58%.) Realizing that the searchers were professionals in the subjects, these percentages appear to represent substantial contributions.

Repeat usage, in the case of the 2-month Ames operation, is not a valid indicator of user reaction. On the one hand, there were no file updates during this period so that repetitions represented either searches in different subject areas or refinements of previous searches. Experience in this regard, however, is summarized below:

| Number of Search<br>Sessions per User | Number of<br>Occurrences | New Topic | Same Topic (Refinement) |
|---------------------------------------|--------------------------|-----------|-------------------------|
| 1                                     | 37                       | 37        | _                       |
| 2                                     | 11                       | 15        | 7                       |
| 3                                     | 4                        | 12        | 0                       |
| 4                                     | 1                        | 1         | 3                       |

It can be seen that most repeated searches involved new topics. The last case above represented a searcher who was generally interested in all Apollo programs. He eventually printed a long bibliography in this area.

User comments and reactions were solicited as part of the search procedure and are summarized below. (The detailed comments can be found in Appendix B.)

|    | Comment                                              | Positive | Negative | Not<br>Discussed |
|----|------------------------------------------------------|----------|----------|------------------|
| 1. | Usefulness of particular search                      | 37       | 7        | 31               |
| 2. | Desirability of<br>having DIALOG<br>as a search tool | 36       | 0        | 39               |
| 3. | Ease of learning and/or use                          | 19       | 4        | 52               |
| 4. | DIALOG vs. batch<br>or manual search                 | 20       | 2        | 53               |

Demand for use was substantial once availability was announced. Although only 2 hours per day (8:00-10:00 AM) were available for searching, and an observation session was required before a user could "solo," there was an average backlog of 1-2 weeks toward the end of the 2-month period of operation.

That users would expend their time reading the manual, observing a search session, and would spend 30-60 minutes per search session at a terminal operating the system knowing the service was to be terminated and the file would not be updated, would seem to indicate a positive reaction to the DIALOG system.

#### 3.2 NASA HEADQUARTERS PHASE

During the year that the terminal was installed in Washington, D.C., approximately 300 searches were conducted, of which 174 are used in the analysis which follows.\*

Service was provided on all but 9 days during the one-year period of operation (approximately 300 hours of available time). Failures are summarized as follows:

<sup>\*</sup>Only those searches conducted by library personnel are included in this analysis.

| Type of Failure      | Frequency of Occurrence | Approx. Time Lost (hr) | Percent of Total Time |
|----------------------|-------------------------|------------------------|-----------------------|
| Transmission line    | 7                       | 13                     | 4.3                   |
| IBM equipment        | 25                      | 23                     | 7.7                   |
| Application software | 30                      | 3                      | 1.0                   |

During later phases of the operation, failures were nil due to additional errorchecking software, and inclusion of the soft restart capability in DIALOG.

The number of terms per search expression was distributed as follows:

| Number of Index<br>Terms per Search | Number of<br>Searches | Percent of<br>Searches |
|-------------------------------------|-----------------------|------------------------|
| 1-5                                 | 104                   | 59.8                   |
| 6 - 10                              | 40                    | 23.0                   |
| 11-15                               | 14                    | 8.0                    |
| 16 - 20                             | 9                     | . 5.2                  |
| 21 - 25                             | 7                     | 4.0                    |

Average index terms per search: 6.5

Another measure of the complexity of the search expression is the level\* of the Boolean expression which was distributed as follows:

| Level of Boolean Expression | Number of<br>Searches | Percent of<br>Searches |  |
|-----------------------------|-----------------------|------------------------|--|
| 1                           | 62                    | 35.6                   |  |
| 2                           | 78                    | 44.8                   |  |
| 3                           | 25                    | 14.4                   |  |
| 4                           | 9                     | 5.2                    |  |

Average level of search: 1.9

<sup>\*</sup>The level number is one greater than the largest number of successive parentheses employed.

The number of concept groups per search was distributed as follows:

| Number of Concept<br>Groups | Number of<br>Searches | Percent of<br>Searches |  |
|-----------------------------|-----------------------|------------------------|--|
| 1                           | 66                    | 37.9                   |  |
| 2                           | 52                    | 29.9                   |  |
| 3                           | 31                    | 17.8                   |  |
| 4                           | 25                    | 14.4                   |  |

Average concept groups per search: 2.1

The number of items printed was distributed as follows:

| Number of Items Printed | Number of<br>Searches | Percent of Searches |
|-------------------------|-----------------------|---------------------|
| 0-10                    | 118                   | 67.8                |
| 11 - 20                 | 8                     | 4.6                 |
| 21 - 30                 | 9                     | 5.2                 |
| $31\!-\!40$             | 10                    | 5.8                 |
| 41 - 50                 | 3                     | 1.7                 |
| 51 - 60                 | 3                     | 1.7                 |
| 61 - 70                 | 6                     | 3.4                 |
| 71-80                   | 3                     | 1.7                 |
| 81-90                   | 1                     | 0.6                 |
| 91-100                  | 1                     | 0.6                 |
| >100                    | 12                    | 6.9                 |

Average items printed per search: 22.4

#### 3.3 COMPARATIVE ANALYSIS OF AMES AND HEADQUARTERS SEARCH STATISTICS

In the Ames environment most searches were conducted by the engineer or scientist with the information need. In the Headquarters environment, most searches were conducted by library personnel in response to expressed needs. Our hypothesis is

that searches conducted by users of information will differ from those conducted by an intermediary. Specifically, the searches conducted by the information users are apt to be more specific, more complex in structure, and to cause fewer items to be printed out than those conducted by an intermediary. This hypothesis is based on the assumption that communicating a complex notion to another person is more difficult than recognizing descriptive abstracts of documents which closely relate to that complex notion.

Table 3-1 presents a summary of the search statistics from the two environments.

Table 3-1
SUMMARY OF SEARCH CHARACTERISTICS FROM AMES
AND HEADQUARTERS SEARCHES

| Characteristic                     | Ames | Headquarters |
|------------------------------------|------|--------------|
| Average Number of<br>Terms         | 8.0  | 6.5          |
| Average Level of<br>Search         | 2.3  | 1.9          |
| Average Number of<br>Concepts      | 2.7  | 2.1          |
| Average Number of<br>Items Printed | 22.0 | 22.4         |

A superficial review of this table seems to bear out the above hypothesis. A more detailed analysis of these four characteristics was carried out as follows.

For each characteristic we are given the distribution of that characteristic for 96 searches at Ames and 174 searches at NASA Headquarters. We are interested in whether the population distributions of these two groups are identical, and if not, which classes differ significantly.

To describe the statistical technique employed, let  $n_{11}, n_{21}, \ldots, n_{k1}$  be the allocation of observations among k classes for the Ames group for a particular characteristic. Similarly, let  $n_{12}, n_{22}, \ldots, n_{k2}$  be the corresponding allocation for the Headquarters group. Let

$$N_1 = \sum_{i=1}^{k} n_{i1} = 96$$
 and  $N_2 = \sum_{i=1}^{k} n_{i2} = 174$ 

be the sample sizes for the two groups. Define  $n_{i0} = n_{i1} + n_{i2}$  and  $En_{i1} = N_1 n_{i0} / (N_1 + N_2)$ . When the true probabilities of observations attaining values in the  $i^{th}$  class are equal for the two groups, the statistic,

$$Z_{i} = \frac{n_{i1} - N_{1}n_{i0}/(N_{1} + N_{2})}{\sqrt{N_{1}n_{i0}/(N_{1} + N_{2})}}$$

is approximately normally distributed with mean zero and variance one. The probabilities for the  $i^{th}$  class will be said to be significantly different if the absolute value of  $Z_i$  is sufficiently large. (Largeness is based on quantiles of the normal distribution.)

When the probabilities of observations attaining values in the i<sup>th</sup> class are equal for the two groups for every class, then the statistic,

$$\chi^2_{2k-2} = 2 \sum_{i=1}^{k} Z_i^2$$

has approximately a chi-square distribution with 2k-2 degrees of freedom. The two distributions are significantly different if  $\chi^2_{2k-2}$  is large relative to certain quantiles of the chi-square distribution.

Table 3-2 is an analysis of the data for each characteristic. An asterisk denotes significance at the 5% level.

Table 3-2 ANALYSIS OF AMES AND HEADQUARTERS SEARCH STATISTICS

|               | Index T           | 'erms per Se                    | arch Topic           |                              |
|---------------|-------------------|---------------------------------|----------------------|------------------------------|
| Index Terms   | $n_{\mathbf{i}1}$ | $^{\mathrm{n}}{}_{\mathrm{i2}}$ | $^{ m En}{}_{ m i1}$ | $\mathtt{z}_{\mathtt{i}}^{}$ |
| 1 - 5         | 33                | 104                             | 48.7                 | -2.25*                       |
| 6 - 10        | 39                | 40                              | 28.1                 | +2.06*                       |
| 11 - 15       | 15                | 14                              | 10.3                 | +1.46                        |
| 16 - 20       | 4                 | 9                               | 4.6                  | -0.28                        |
| 21 - 25       | 5                 | 7                               | 4.3                  | +0.34                        |
|               | 96                | 174                             | 96.0                 | $\chi_8^2 = 33.26*$          |
|               | Во                | oolean Expre                    | ssion                |                              |
| Expression    | n <sub>i1</sub>   | $^{\rm n}{}_{\rm i2}$           | $^{ m En}{}_{ m i1}$ | ${f z}_{f i}$                |
| 1 .           | 7                 | 40                              | 24 5                 | -3.54*                       |
| $\frac{1}{2}$ | 62                | 62<br>78                        | 49.8                 | +1.73                        |
| 3             | 20                | 25                              |                      |                              |
| $\frac{3}{4}$ | 20<br>7           | 9                               | 16.0 $5.7$           | $^{+1.00}_{+0.54}$           |
| 4             |                   | ð                               | J. (                 |                              |
|               | 96                | 174                             | 96.0                 | $\chi_6^2 = 33.63*$          |
|               |                   | Concept Gro                     | ups                  |                              |
| Groups        | n <sub>i1</sub>   | $^{ m n}_{ m i2}$               | $^{ m En}$ i1        | $\mathbf{z_i}$               |
| 1             | 2                 | 66                              | 24.2                 | -8.50*                       |
| 2             | 40                | 52                              | 32.7                 | +1.28                        |
| 3             | 40                | 31                              | 25.2                 | +2.95*                       |
| 4             | 14                | 25                              | 13.9                 | +0.03                        |
|               | . 96              | 174                             | 96.0                 | $\chi_6^2 = 165.18*$         |
|               |                   | Items Print                     | ed                   |                              |
| Items Printed | n <sub>i1</sub>   | $^{\mathrm{n}}$ i2              | En <sub>i1</sub>     | $\mathbf{z_i}$               |
| 0 - 10        | 37                | 118                             | 55.1                 | -2.44*                       |
| 11-20         | 17                | 8                               | 8.9                  | +2.72*                       |
| 21 - 30       | 15                | 9                               | 8.5                  | +2.23*                       |
| 31-40         | 10                | 10                              | 7.1                  | +1.09                        |
| 41 - 60       | 10                | 6                               | 5.7                  | +1.80                        |
| 61-100        | 6                 | 11                              | 6.0                  | -0.00                        |
| 101:          | 1                 | 10                              | 1 7                  | 1 60                         |

<sup>\*</sup>Significance at 5% level.

1

101+

11 12

174

4.7

96.0

-1.68

 $\chi^2_{12} = 51.15*$ 

The analysis of the data shows an overall statistically significant difference in the distribution corresponding to the two groups for each characteristic.

For the index terms per search topic, the Ames group tends to have smaller probabilities toward the lower tail, higher probabilities in the middle range, and approximately even probabilities in the upper range, in comparison with the Headquarters group. This indicates that for most of the range, the Ames group tends to use larger numbers of index terms than does the Headquarters group.

For the Boolean expressions, the main differences occur with respect to expression one, in which the Ames group exhibits a significantly smaller proportion than at Headquarters.

Similar comments apply to the number of concept groups. Undoubtedly, the expression levels and concept groups are heavily correlated, and the similarity of results is not surprising.

For the Ames group, the items printed tend to be more compactly distributed away from extreme values, than the Headquarters group. This result was unanticipated, and has no ready explanation.

The foregoing analysis indicates that significant differences exist between the two user groups. The implication of this finding to the system designer is that an on-line system, if it is to achieve maximum effectiveness, should be designed to utilize the decision-making and pattern recognition capabilities of the human operator, and thus enable the engineer, scientist, or manager user to employ the computer as an extension of his intellect, not as a substitute for it.

#### Appendix A

#### FILE CONVERSION REPORT - NASA LINEAR FILE

#### SUMMARY

A program was written which reads NASA linear file blocks and reformats individual citation records, the formats for which are shown in Figures 1 and 2. The reformatted records are blocked onto successive tracks in the IBM 2321 data cell as indicated in Figure 3. A dictionary of accession numbers vs. data cell addresses is written on the IBM 2311 disk drive using ISFMS (Indexed Sequential File Management System) as illustrated in Figure 4. Checkpoint records are written on tape at the completion of loading of each reel of tape for restart purposes.

The reformatting results in an average compression of 28% if coded terms are eliminated (as they are in the reformatting), or 18% if coded terms are included. There were no particular problems encountered in reformatting the NASA linear file except for accession 63A2Ol45 which was garbled by inclusion of a portion of 63A2Ol41, and two tape redundancies which made blocks containing records 64X12674-6 and 66N22475-6 unreadable. In these three cases, the problem records were ignored. Several equipment and software problems were encountered and surmounted as a result of diligence and persistent effort on the part of the LMSC file conversion programmer and the IBM systems representative.

Data cell load time approximates 90 minutes/reel (15,000 citations/reel). The large amount of record scanning and checking accounts for perhaps 60% of this time. Usefulness of the IBM 2321 Data Cell is improving now that several earlier problems have been eliminated. Many of the difficulties relate to early use of new equipment. Free oxides on new tape strips accumulated on read/write heads, hydraulic pressure failure, and strip initialization problems seem to have decreased significantly. Because we have no experience regarding prolonged use of the device, judgment on this aspect of performance will be deferred.

#### Basic NASA Linear File Record

```
6E C$-=14=63N=16459=096111 =283=1222 170563 2 0 0006 1= =

=0045= =0117=0356=0432=0448=0464=0476=0758$ESTIMATE OF NEUTRON ALBEDD ON MOON SURFACE DUE T=UCO
SMIC RAY BOMBAROMEN=T$40N63-16459 ROCHESTER U., N.Y. ESTIMATE OF NEUTRO=N41ALBEDD ON THE MOON*S SUR
FACE DUE TO COSMIC RA=Y42BOMBARDMENT M. V. KRISHNA APPA RAO MAY 17, 196=3436P 6 REFS SUBMITTED FOR
PUBLICATION /CUNTRAC=T44AT/30-1/-875/ /NY0-10265= \( \x^2 \) = S=NY0-10265 $= AT/30-1/-875 $= 3ALBEDD =1 BASALT

=3BOMBARDMENT =1CHARGE =1CHONDRITE =1COMPOSITION =1CDSMIC =3COSMIC RADIA

TION =1ENERGY =1FLARE =1HELIUM =1 INTENSITY =1 INTERACTION =3LUNAR SURFACE
=1M00N =3NEUTRON =1NUCLEUS =1PROTON =1SPALLATION=1SUN =1 SURFACE $=1 OSM1=1=$

$ \) N=1=)NERG=1=)W \( \x^2 \) = C=1=\( \x^2 \) = 1=\( \x^2 \) = 3=\( \x^2 \) = 1=\( \x^2 \
```

#### Reformatted Linear File Record, Character and Hexadecimal Dump

```
1463N16459096111 2831222
                                                           170563
                                                                              2 0
                                                                                                              0006
                                                                                                                               1C YE 1EAUGAXHAFIA-_A
B& ESTIMATE OF NEUTRON ALBEDO ON MOON SURFACE DUE TO COSNIC RAY BOMBARDMENT 40N63-16459 ROCHESTER U., N.Y. ESTIMATE OF NEUTRON 41ALBEDO ON THE MOON*S SURFACE DUE TO COSMIC RAY 42ROMBARDMENT N. V. K RISHNA APPA RAO MAY 17, 1963 436P 6 REFS SUBMITTED FOR PUBLICATION /CONTRACT 44AT/30-1/-875/ /NYO-10265 RAO, M. V. K. A RW983420ROCHESTER UNIV., N. Y NYO-1026 AT/30-1/-875 BALBEDOH1BASALT (3BOMBA ROMENTHICHARGE 11CHONDRITTE (10CMPOSITIONHICOSMICK3COSMIC RADIATIONHIENERGYGIFL REHIHEL IUM. 1INTENSITY (1
INTERACTION 3LUNAR SURFACEF1MOONI3NEUTRONI1NUCLEUSH1PROTON@1SPALLATIONE1SUN 1SURFACE
F1F4F6F305F1F6F4F5F9F0F9F6F1F1F140F2F8F3F1F2F2F240404040404040404040
01000A01DDEF02AC00C5E2E3C9D4C1E3C54OD6C64UD5C5E4E3U9D6D54OC1D3C2

55C4D640D6D540D4D6D540E2E4D9C6C1C3C540C4E4C540E3D640C3D6E2D4C9

03
                                                                                                                                                          START
                                                                                                                        FIELD
                                                                                                                                        DESC.
                                                                                                                                                           BYTE
C340D9C1E840C2D6D4C2C1D9C4D4C5D5E300F4F0D5F6F360F1F6F4F5F94040D9
                                                                                                                                   NOC
                                                                                                                                                            104
D6C3C8C5E2E3C5D940E4486B40D54BE84B40C5E2E3C9D4C1E3C540D6C640D5C5
                                                                                                                                   DESC. NOTE
                                                                                                                           05
                                                                                                                                                            177
E4E3D9D6D540F4F1C1D3C2C5C4D640D6D540E3C8C540D4D6D6D55CE240E2E4D9
                                                                                                                          06
                                                                                                                                   PERS. AUTH.
                                                                                                                                                            406
C6C1C3C540C4E4C540E3D640C3D6E2D4C9C340D9C1E840F4F2C2D6D4C2C1D9C4 o5
                                                                                                                          07
                                                                                                                                   CORP. SOURCE
                                                                                                                                                            423
D4C5D5E340D44B40E54B40D2P9C9E2C8D5C140C1D7D7C140D9C1D64040D4C1E8
                                                                                                                          08
                                                                                                                                   RPT. NO.
                                                                                                                                                            454
<del>4</del>0F1F76B40F1F9F6F340F4F3F6D74040F640D9C5C6E240E2E4C2D4C9E3E3C5C4
                                                                                                                          09
                                                                                                                                   CONT. NO.
                                                                                                                                                            464
40C6D6D940D7E4C2D3C9C3C1E3C9D6D54061C3D6D5E3D9C1C3E340F4F4C1E361
                                                                                                                          0A
                                                                                                                                   VOCAB. TERMS
                                                                                                                                                            477
F3F060F16160F8F7F5614061D5E8D660F1F0F2F6F56100D9C1D66840D44840E5 06 4840D24840C14100D9E6F9F8F3F4F2F0D9D6C3C8C5E2E3C5D940E4D5C9E54B68 07
                                                                                                                                   END OF REC.
                                                                                                                                                            684
40D54B40E84F00D5E8D660F1F0F2F6F3D0C1E361F3F060F16160F8F7F3D8F3C1 08 09 D3C2C5C4D408F1C2C1E2C1D3E30DF3C2D6D4C2C1D9C4D4C5D5E30BF1C3C8C1D9
C7C50BF1C3CR06D5C4D9C9E3C50DF1C3D6D4D7D6E2C9E3C9D6D50BF1C3D6E2D4
C9C312F3C3D6E2D4C9C340D9C1C4C9C1E3C9D6D50BF1C5D5C5D9C7E8D7F1C6D3 OA
C1D9C508F1C8C5D3C9E4D40BF1C9D5E3C5D5E2C9E3E8DDF1C9D5E3C5D9C1C3E3
C9D6D50FF3D3E4D5C1D940E2E4D9C6C1C3C506F1D4D6D6D509F3D5C5E4E3D9D6
D509F1D5E4C3D3C5E4E20BF1D7D9D6E3D6D5<u>OC</u>F1E2D7C1D3D3C1E3C9D6D5<u>O5</u>F1
E2E4D5<u>O</u>0F1E2E4D9C6C1C3C3
```

Fig. 1 Example of Basic and Reformatted Linear File Record



Reformatted Record Layout

| lst field Pointer (No. of 2nd field Pointer          | Last field Pointer "FF" Pointer (hex) to rec. end |
|------------------------------------------------------|---------------------------------------------------|
| ←1 byte →←2 bytes ——→←1 byte <del>-×</del> 2 bytes → | <pre>←1 byte→←2 bytes★1byte→←2 bytes→→</pre>      |

#### Relative Image Detail

| First su                                                                      | ubfield              | Second su | ubfield            | Last su   | ubfield     |  |  |
|-------------------------------------------------------------------------------|----------------------|-----------|--------------------|-----------|-------------|--|--|
| length                                                                        | gth data length data |           | "00 <sub>h</sub> " | data      |             |  |  |
| ←l byte →                                                                     | ←variable →          | ←1 byte → | √ variable →       | ←1 byte → | ← variable? |  |  |
| Length of field N = (value of field N+1 pointer) - (value of field N pointer) |                      |           |                    |           |             |  |  |
|                                                                               |                      | Major     | r Field Detai      | 1.        |             |  |  |

Fig. 2 Schematic of Reformatted Record



Track Layout - One Physical Record/Track



RFR - Reformatted logical record

Flag Bit - ON: RFR continued

next track

CF Field Detail

OFF: RFR completed

this track

Fig. 3. Record Blocking on the 2321 Data Cell



Track Layout (99 items/record, 4 records/track)

| cell | s/cell | strip | cyl. | head | key lgth. | rec no. | start pos | Item         |
|------|--------|-------|------|------|-----------|---------|-----------|--------------|
| 4    | 5      | 4     | 3    | 5    | 0         | 0       | 11        | Bits alloted |

#### Data Cell Address Packing

Fig. 4 Record Layout - ISFMS Index (2311 disk)

#### PROGRAM DESCRIPTION

This section contains a point by point description of the appended, annotated program. Figures 5 and 6 respectively show dumps of a 2321 data cell block (reformatted linear file entries) and a 2311 disk index block (accession numbers to data cell addresses).

Orientation of 1401 input data to 360 type output data is accomplished. includes removal of wordmarks, packing of fields (removal of blanks in several places) and the establishment of binary (count) pointers to distinct fields within the (input) record. Output is written on successive tracks of the 2321 data cell at up to 2000 bytes of data per track. A dictionary (DICT) of accession numbers versus data cell addresses is written on a reserve disk pack on the 2311 disk drive. This is written with ISFMS (Indexed Sequential File Management System) ... a part of the BOS &K operating system ... and occupies about 75 cylinders. On our IBM 360 model 30, reel run time averages 90 minutes. A succession of checkpoint records is constructed on a one entry per reel basis; said record being written after the previous one on a special tape mounted at the end of processing of each input reel (following its removal). These reflect the machine status at reel-end time and permit restarting the job with any reel. The 23ll disk pack is periodically copied to tape as a protection against loss. The data cell is removed and replaced with a dummy cell when filled.

The area between statements 844 and 948 was conceived, and largely coded, by a former employee and uses a rigorous character by character approach to the problem. Others might argue that the TRT (translate and test) plus multicharacter move operations constitute the proper approach.

Statements 750 to 758 initialize basic program parameters. Reel 1 processing starts at START (711); other reels begin at RSTART (779). OPEN DICT (759) and SETFL DICT (768) cause the 75 cylinders of the 2311 pack to be preformatted in a suitable way to receive the KEY/DATA pairs, referenced later in this description. MTSOS (784) advises the operator of the reel # of the tape that must now be mounted in order to continue processing and waits for him to advise that this has been completed.

|              | 0000         | VOLILMSC-10          | D                                  |                                 |                        |                      |                      |                      |                                         |
|--------------|--------------|----------------------|------------------------------------|---------------------------------|------------------------|----------------------|----------------------|----------------------|-----------------------------------------|
| VOL (C)      | 0000         | *0E1EH3C=10          |                                    |                                 |                        |                      |                      | 40404040             | 40404040                                |
| VOL(H)       | 0000         | E50603F1             | D3U4E2C3                           | 60F1F000                        | 00000004               | 40404040<br>40404040 | 40404040<br>40404040 | 40404040             | 40404040                                |
|              | 0020         | 40404040<br>40404040 | 40404040<br>40404040               | 40404040<br>40404040            | 40404040<br>40404040   | 10104040             | 40 10 10 10          |                      |                                         |
|              | 0040         | 40404040             | 404040                             | 70101010                        |                        |                      |                      |                      |                                         |
| HA-RO        | 0000         | 00000703             | 05000703                           | 05000000                        | 08000703               | 050007D0             | 00                   |                      | •                                       |
| •            |              |                      |                                    |                                 |                        |                      | •                    |                      |                                         |
| CELL = 001.  | SRCELL :     | = 012. STRIP         | = 007. CYL                         | = 003, TRACK                    | = 005, REC             | ■ 001, KL 🖭          | 000, DL = 200        | 0                    |                                         |
| Circa - wayy |              |                      |                                    |                                 |                        |                      |                      |                      |                                         |
| COUNT        | 0000         | 00070305             | 01000700                           |                                 |                        |                      |                      |                      |                                         |
| DATA(C)      | 0000         | HME 1WAVER           | x1463N164590                       | 96111 283122                    | Ż                      | i 70563              | 2 0                  | . 00                 | 06 IC YE 1FA                            |
|              | 0100         |                      |                                    | TE OF MEHITOD                   | N KIDEDO ON I          | HOON SURFACE         | DUE TO COSMI         | C RAY BOMBA          | RDMENT 40N63-1645                       |
|              | 0200         | ******* 11 12 6      | 2016 1111 4 4004                   | 630 MAV 17                      | . 1063 636P            | A REES SUMM          | 11160 FOR PUR        | LILATIUN /L          | MIC RAY 4280MBARD<br>ONTRACT 44AT/30-1  |
|              | 0300         | /_075/ /NVO-         | -10265/ BAN-                       | M. V. K. A.                     | RW983420R0CI           | HESTER UNIV          | . N. Y. NYU-1        | U265 AI/3U=          | 1/-8/2034   DEDUCTO                     |
|              | 0500         | ACAL TERROUGH        |                                    | DEC TEMPNODI                    | TELLCOMPOSIT           | LONHICHSMICK         | SCHSMIC RAULA        | ALLUNDHENERG         | TGIFLAKENINELIUN.                       |
|              | 0600         |                      |                                    |                                 |                        |                      |                      |                      | ISUN ISURFACEC%14<br>7FBRGBVHBVIB B     |
|              | 0700<br>0800 | 63N1646001202        |                                    | W DECRE US IN                   | C CUADODATIV           | E ELLM COOL L        | NC TO MEASURE        | : ÇVZ LUMBUZ         | ITION AND ENERGY                        |
|              | 0900         | DALANCE TO           | CC (13) 7 ALIC TO                  | MEXCIPE TOTA                    | I ENTHAIDY 4           | NN63-16460 (         | CORNELL AFROM        | NAUIILAL LAD         | A INCAS SIBUEFAL                        |
|              | 1000<br>1100 | C MVVC P             | JD   CUT_DATTE                     | PSON AFR. OH                    | II N. 44AFRONA         | JTICAL RESEA         | RCH LABS FO          | :Ha 1963 92          | - DEC. 431962# F                        |
|              | 1200         | MITDAFT AF 27        | 1/457 <i>/7774/</i>                | /ADI - 63-67/                   | HAASa E. C.            | ZC5101763CURI        | NELL ACKUNAU         | ILLAL LADO           | INC., OUTFALU, C)                       |
|              | 1300         | 1017/34              | AD1 - / 2 - / 7 A                  | E 22/457/-77                    | 74F1ARC13CAL           | DRIMETRY (ICD)       | MPOSTTIONOICU        | JNVEC.T 10N 1 1C     | OOLINGHIENERGY 3E<br>ASFIHEATKIHIGH TE  |
|              | 1400<br>1500 | NTHALPY ( LEN        | V [RONMENI (16<br>i evel / Lwektii | VAPURALIUNNS<br>IDEMENT. 1110EB | ATTONGSPRORE           | H1SAMPLEH15 F        | REAM ISTRUCTU        | JRE/Y14163N16        | 461090311 1231212                       |
|              | 1600         |                      | 220642                             | 1 3                             | 00                     | 87 1C. V             | F 1FAZGRI HRH        | BM B5 MEAN           | ELECTRON DENSITY                        |
|              | 1700         | PROFILES OF          | IONOSPHERE                         | FROM VERTICA                    | L SOUNDING F           | LIGHTS ORCEN         | TRAL RADIO PE        | RDPAGATION L         | AB. 40N63-16461                         |
|              | 1800<br>1900 | NATIONAL BUF         | REAU UF SIAN                       | DARDS. CENT                     | PHERE NO. 9            | - NOVEMBER 1         | 959 J. W. WR         | IGHT. L. 44R         | N 42ELECTRON DENS<br>L. WESCOTT, AND D. |
|              |              |                      |                                    | Che bibe                        | D Accession            | N NUMBER             |                      |                      |                                         |
| TATA(H)      | .0000        | 00080405             | 00F1E6C1                           | ESCSDEAC                        | F1F4F6F3               | 05F1F6F4<br>40F1F7F0 | F5F9F0F9<br>F5F6F340 | F6F1F1F1             | 40F24040                                |
|              | 0020<br>0040 | F1F/F2F2<br>F0404040 | 40404040<br>40404040               | 40404040<br>40404040            | 40404040<br>40404040   | 40F0F0F0             | F6404040             | 404040F1             | 03006805                                |
| •            | 0060         | 00810601             | 960701A7                           | 08010609                        | 10400010               | DDFF02AC             | OOCSEZE3             | C904C1E3             | C540D6C6                                |
|              | 0800<br>0A00 | 40D5C5E4<br>C4E4C540 | E3D9D6D5<br>E3D640C3               | 40C1D3C2<br>D6E2D4C9            | C5C4D640<br>C340D9C1   | D60540D4<br>E840C2D6 | D6D6D540<br>D4C2C1D9 | E284D9C6<br>C4D4C5D5 | C1C3C540<br>E300F4F0                    |
|              | 0000         |                      | F1F6F4F5                           | F9404000                        | 06030805               | E2E3C5D9             | 40E44B6B             | 40054868             | 4840C5E2                                |
|              | 00E0         | E3C9D4C1             | E3C 540D6                          | C640011(.5                      | E4E30906               | D540F4F1             | C1D3C2C5             | C4D640D6             | 0540E3C8                                |
|              | 0100         | C540D4D6             | D6D55CE2                           | 40E2E4D9<br>C2C1D9C4            | 06010305<br>040505€3   | 40C4E4C5<br>40D44B40 | 40E3D640<br>E54B40D2 | C3D6E2D4<br>D9C9E2C8 | C9C340D9<br>D5C140C1                    |
|              | 0120<br>0140 | C1E840F4<br>D7D7C140 | F2C2D6D4<br>D9C1D640               | 40D4C1E8                        | 40F1F76B               | 40F1F9F6             | F340F4F3             | F6074040             | F640D9C5                                |
|              | 0160         | C6E240E2             | E4C2D4C9                           | E3E3C5C4                        | 40060609               | 4007E4C2             | D3C9C3C1             | F3C9D6D5             | 4061C3D6                                |
|              | 0180         | 65E3D9C1             | C3E340F4<br>C1D66B40               | F4C1E361                        | F3F060F1<br>4B40D24B   | 6160F8F7<br>40C14B00 | F5614061<br>D9E6F9F8 | D5E8D660<br>F3F4F2F0 | F1F0F2F6<br>D9D6C3C8                    |
|              | 01A0<br>01C0 | F56100D9<br>C5E2E3C5 | D940E405                           | D44840E5<br>C9E54B6B            | 40D54B40               | E84B00D5             | E80660F1             | FOF2F6F5             | 00016361                                |
|              | DIEO         | F3F060F1             | 6160F8F7                           | F50 8F3C1                       | D3C2C5C4               | D608F1C2             | C1E2C1D3             | E 30hF 3C 2          | D6D4C2C1                                |
|              | 0200<br>0220 | D9C4D4C5<br>E2C9E3C9 | D5E308F1<br>D6D508F1               | C3C8C1D9<br>C3D6E2D4            | C7C50BF1<br>C9C312F3   | C3C8D6D5<br>C3D6E2D4 | C409C9E3<br>C9C340D9 | C50DF1C3<br>C1C4C9C1 | D6D4D7D6<br>E3C9D6D5                    |
|              | 0240         |                      | C509C7E8                           | 07F1C603                        | C109C50A               | F1CAC5D3             | C9E4040B             | F1C905E3             | C505E2C9                                |
|              | 0560         | E3E80DF1             | C9D5E3C5                           | D9C1C3E3                        | C906050F               | F303E405             | C10940E2             | E4D9C6C1             | C3C506F1                                |
|              | 0850<br>0850 | D4D6D6D5<br>E2D7C1D3 | 09F3D5C5<br>D3C1E3C9               | E4E3D9D6<br>D6D5O5F1            | D509F1D5<br>E2E4D500   | E4C3D3C5<br>F1E2E4D9 | E4E208F1<br>C6C1C3C5 | D7D9D6E3             | D6050CF1<br>IF6F3D5F1                   |
|              | 0200         | F6F4F6F0             | F1F2F0F2                           | F1F140F1                        | F5F3F1F2               | F2F24040             | 40404040             | 40404040             | 404040F0                                |
|              | 02E0<br>0300 | F0F0F2F6<br>F0F9F240 | F3404040<br>40404040               | 404040F1<br>40F10300            | 4040F340<br>680500F7   | 40404040<br>06021907 | 40404040<br>02250802 | 40404040<br>6509026F | 404040F0<br>0A027FFF                    |
|              | 0320         | 036C00C3             | C1D3D6D9                           | C9D4C5E3                        | D9C9C340               | C5D5E3C8             | C1D3D7E8             | 40D7D9D6             | C2C540E4                                |
|              | 0340         | E2C9D5C7             | 40C5E5C1                           | 070609C1                        | E3C9E5C5               | 40060903             | 0440C 3D6            | D6D3C9D5             | C740E3D6                                |
|              | 0360<br>0380 | 40D4C5C1<br>D9C7E840 | E2E4D9C5<br>C2C1D3C1               | 40C7C1E2<br>D5C3C540            | 40C3D6D4<br>6040E3C5   | D7D6E2C9<br>C3C8D5C9 | E3C9D6D5<br>D8E4C540 | 40C1D5C4<br>E3D640D4 | 40C5U5C5<br>C5C1E2E4                    |
|              | 03A0         | 09C540E3             | D6E3C103                           | 40C5D5E3                        | C8C1D3D7               | E800F4F0             | D5F6F360             | F1F6F4F6 .           | F04040C3                                |
|              | 0300         | D6D9D5C5             | D3D34DC1                           | C5D9D6D5                        | C1E4E3C9               | C3C1D340             | D3C1C24B             | 6B40C9D5             | C3486H40                                |
|              | 03E0<br>0400 | F4F1C2E4<br>C9D3D440 | C6C6C1D3<br>C3C1D3D6               | D66840D5<br>D9C9D4C5            | 48E84840<br>E3D9C9C3   | C1D540C5<br>40F4F2C5 | E5C1D7D6<br>D5E3C8C1 | D9C1E3C9<br>D3D7E840 | D5C740C6<br>D7D9D6C2                    |
|              | 0420         | C540404C             | C6C905C1                           | D340D9C5                        | D7D6D9E3               | 6B40D5D6             | E54B40F1             | F9F6F140             | 60400405                                |
|              | 0440<br>0460 | C34B40F4             | F3F1F9F6                           | F24C40C6                        | 4B40C34B               | 40C8C1C1             | E24040E6             | D9C9C7C8             | E360D7C1                                |
|              | 0480         | E3E3C509<br>D340D9C5 | E2060540<br>E2C5C1D9               | C1C6C26B<br>C3C840D3            | 4006C8C9               | 066840F4<br>6840C6C5 | F4C1C509<br>C24B40F1 | 0605C1E4<br>F9F6F340 | E3C9C3C1 40F9F2D7                       |
|              | 0440         | 4040F1F2             | F740F4F5                           | D9C5C6E2                        | 4061C3D6               | D5E3D9C1             | C3E340C1             | C640F3F3             | 61F6F5F7                                |
| -            | 04C0<br>04E0 | 6160F7F7             | F7F46140                           | 61010903                        | 60F6F360               | F4F76100             | CBC1C1E2             | 6840C64B             | 40C34B32                                |
|              | 0500         | C3F5F1F0<br>4B6B40C9 | F1F7F6F3<br>D5C34B6B               | C3D6D9D5<br>40C2E4C6            | C5D3D340<br>C6C1D3D6   | C1C5D9D6<br>6B00C3F5 | D5C1E4E3<br>F1F0F1F7 | C9C3C1D3<br>F6F3D548 | 40D3C1C2<br>40E84B00                    |
|              | 0520         | C1D9D360             | F6F360F4                           | _F700C1C6                       | 40F3F361               | F6F5F761             | 60F7F7F7             | F405F1C1             | D9C30DF3                                |
|              | 0540         | C3C1D3D6             | D9C9D4C5                           | E309E800                        | F1C3D6D4               | D7D6E2C9             | E3C9D6D5             | OCF1C3D6             | D5E5C5C3                                |
|              | 0560<br>0580 | E3C9D6D5<br>F1C5D5E5 | C9D9D6D5                           | D603C905<br>D4C5D5E3            | C708F1C5<br>ODF1C5E5   | D5C5D9C7<br>C1D7D6D9 | E80AF3C5<br>C1E3C9D6 | D5E3C8C1<br>D515F3C5 | D3D7E80D<br>E5C1D7D6                    |
| •            | 05A0         | D9C1E3C9             | D6D540C3                           | D6D6D3C9                        | 05C706F1               | C6C9D3D4             | 0EF3C6C9             | D3D440C3             | D6D6D3C9                                |
|              | 05C0<br>05E0 | D5C706F1             | C6D3E4E7                           | 05F1C7C1                        | E206F1C8               | C5C1E312             | F1C8C9C7             | C840E3C5             | D4D7C5D9                                |
|              | 0600         | C1E3E4D9<br>E3C9D6D5 | _C507F1D3<br>07F3D7D9              | _ C5E5C5D3<br>D6C2C508_         | 0DF1D4C5<br>F1E2C1D4   | C1E2E4D9             | C5D4C5D5<br>F1E2E3D9 | E308F1D6             | D7C5D9C <u>1</u><br>F1E2E3D9            |
|              | 0620         | E4C3E3E4             | D9C 5 21 AB                        | F1F4F6F3                        | D5F1F6F4               | FAF JF0F9            | FOF3F1F1             | 40F1F2F3             | F1F2F1F2                                |
|              | 0640<br>0660 | 40404040<br>40404040 | 40404040                           | 40404040                        | 40F2F2F0               | F4F6F340             | 40404040             | 40F14040             | F3404040                                |
|              | 0880         | E9070213             | 40404040<br>0802480A               | 40404040<br>0254FF02            | 40F0F0F8<br>F500D4C5   | F7404040<br>C1D540C5 | 404040F1<br>D3C5C3E3 | 03006505<br>09060540 | 00810601<br>C4C5D5E2                    |
|              | 0640         | C9E3E840             | D7D9D6C6                           | C9D3C5E2                        | 40D6C640               | C9060506             | E2D7C8C5             | D9C540C6             | D9D6D440                                |
|              | 06C0         | E5C5D9E3<br>D9C1D340 | C9C3C1D3<br>D9C1C4C9               | 40E2D6E4<br>D640D7D9            | D5C4C9D5               | C740C603             | C9C7C8E3             | E200F0F8             | C3C5D5E3                                |
|              | 0700         | 60F1F6F4             | F6F14040                           | D5C1E3C9                        | 06D7C1C7<br>D6D5C1D3   | C1E3C9D6<br>40C2E4D9 | D540D3C1<br>C5C1E440 | C24B40F4<br>D6C640E2 | F0D5F6F3<br>E3C1D5C4                    |
|              | 0720         | C1D9C4E2             | 484040C3                           | C505E3D9                        | C1D340F4               | F1D9C1C4             | C9D640D7 "           | D9D6D7C1             | C7C1E3C9                                |
|              | 0740<br>0760 | D6D540D3<br>D3C5C3E3 | C1C2486B<br>D9D6D540               | 40C2D6E4                        | D3C4C5D9               | 6840C3D6             | 03064840             | D4C5C1D5             | 40F4F2C5                                |
|              | 0780         | C540D864             | C9C5E340                           | C4C5D5E2<br>F4F3C9D6            | C9E3E840<br>- D506E2D7 | E5C1D9C9<br>C8C5D9C5 | C1E3C9D6<br>40D5D648 | D5E240D6             | _C640E3C8                               |
|              | 07A0<br>07C0 | C5D4C2C5             | D940F1F9                           | F5F94001                        | 4B40E64B               | 40260367             | C7C8E368             | 40D34B40             | F4F4D94B                                |
|              | 3700         | 40E6C5E2             | C3D6E3E3                           | 6840C1D5                        | C440C44B               |                      |                      |                      |                                         |

Fig. 5 Character and Hexadecimal Dump of Reformatted Data Cell Record

| VOL(C)     | 0000    | VOL10947370          | , D_,                |                       | LBSC BDSBK           |                      |                      |                      |                   |
|------------|---------|----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|
| VUL (11)   | 0000    | E50603F1             | F0F0F4F7             | F367c000              | 00000004             | 40404040             | 40404040             | 40404040             | 404040            |
|            | 0020    | 4(1404040            | 40404040             | 4003041:2             | 63406206             | 1.21/80/240          | . 40404040.          | 40404040             | 404040            |
|            | 0040    | 40404040             | 40404040             | 40404640              | 40404040             |                      |                      |                      |                   |
| HA-RO      | 0000    | 00002700             | 02002700             | usooinioo             | 0008000              | 02000E29             | 00                   |                      |                   |
| VI ~ 030.  | TDACK - | 002, REC = 00        | 01 - KI - O          | 06. Dt = 0792         |                      | 450                  | HUMBER: 3516         | 459 = 63 116         | 459               |
| 16 - 17379 |         | OUR F NEC - W        | AN KINE TIME         | 933 <u></u> 265¥X. (1 |                      |                      | ATION : OOOI         | 0110 0111            | וטוטט ווס         |
| COUNT      | 0000    | 00270002             | 01040318             |                       |                      |                      |                      | 12 7                 | 3 F               |
|            |         |                      | •                    | •                     |                      |                      | COL                  | SKELL STRIP          | CYL THREE         |
| KEY(H)     | 0000    | 3516506F             |                      |                       |                      |                      |                      | •                    |                   |
| DATA(H)    | 0000    | 3516408F             | 16342030             | 3516409F              | 16342324             | 35164101-            | 163A2606             | 3516411F             | 163A29            |
|            | 0020    | 3516412F             | 16342048             | 3516413F              | 16343000             | 3516414F             | 163A330B             | 13516415F            | 163A36            |
|            | 0040    | 3516416F             | 16343910             | 3516417F              | 163A3C7C             | 3516418F             | 16364000             | 8516419F             | 163443            |
|            | 0060    | 3516420F             | 16344800             | 3516421F              | 163A4BDA             | 35164221             | 16384674             | 3516423F             | 163452            |
|            | 0080    | 3516424F             | 16345654             | 3516425F              | 163A5967             | 3516426F             | 16345047             | 35164271             | 163461            |
|            | 0000    | 3516428F             | 163A652C             | 3516429F              | 16386880             | 3516430F             | 16346834             | 3516431E             | 163A6E            |
|            | 0000    | 3516432F             | 163A719F             | 3516433F              | 16347488             | 3516434F             | 163A7800             | 35164356             | 163478            |
|            | 00E0    | 3516436F             | 163A7DFC             | 3516437F              | 163/8198             | 35164381             | 16388426             | 35164 39F            | 163488            |
|            | 0100    | 3516440F             | 16348840             | 3516441F              | 16349000             | 3516442F             | 16389203             | 45164436             | 163495            |
|            | 0120    | 3516444F             | 163A98D6             | 3516445F              | 163A9BCF             | 3516446F             | 163A9ECC             | 3516447F             | 163801            |
|            | 0140    | 35T6448F             | 163B0443             | 35164496              |                      | 3516450F             | 163B0A2B             | 3516451F             | 163600            |
|            | 0160    | 3516452F             | 16381150             | 3516453F              | 163R1457             | 3516454F             | 16381800             | 3516455F             | 163818            |
|            | 0180    | 3516456F             | 16381662             | 3516457F              | 16382174             | 3516458F             | 16382468             | <u>3516459</u> ⊢     | 163828            |
|            | 0110    | 3516460F             | 16382488             | 3516461F              | 16382526             | 3516462F             | 1635314F             | 35164636             | 163634            |
|            | 0100    | 3516464F             | 16383689             | 3516465F              | 163B3ACC             | 3516466F             | 16383090             | 3\$164676            | 163840            |
|            | 01F0    | 3516468F             | 16384381             | 3516469F              | 16384601             | 3516470F             | 1638496C             | 3\$16471F            | 163840            |
|            | 0200    |                      | .163850A4            | 35 [6473F             | 16385458             | 3516474F             | 16385667             | 3916475F             | 163054            |
|            | 0220    | 3516476F             | 163B5CCE             | 3516477F              | 16386015             | 3516478F             | 16386095             | 39164798             | 163863            |
|            | 0240    | 3516480F             | 16386800             | 3516481F              | 16386861             | 3516482F             | 16386644             | 3516483F             | 163870            |
|            | 0260    | 3516484F             | 16387319             | 3516485F              | 16387800             | 3516486F             | 16387814             | 3516487F             | 163B7F            |
|            | 0280    | 3516488F             | 16388207             | 3516489F              | 16388557             | 3516490F             | 16388894             | 3516491F             | 163888            |
|            | 0200    | 3516492F             | 16388EFE             | 3516493F              | 16389000             | 3516494F             | 163B92CA_            | 3516495F             | 163895            |
|            |         |                      |                      |                       |                      |                      |                      |                      |                   |
|            | 0260    | 3516496F<br>3516500F | 163898F3<br>163C0521 | 3516497F<br>3516501F  | 16389CDB<br>17300829 | 3516498F<br>3516502F | 16300015<br>16300019 | 3516499F<br>3516503F | 1630023<br>163000 |

Fig. 6 Dump of Disk Index Block

A record is read from tape at EXCP TAPE (822), one or more records are reformatted in the area mentioned above (844-948), and when 2000 bytes of output data are ready (or too little space is left in track image area to accommodate the field pointer area of still another record) program control reaches PACK (951). At this point, the EBCDIC representation of the accession number is altered in form (PACK operation) cutting its byte length in two. This item constitutes our dictionary KEY entry for this pair. There follows the construction (series of shift operations) resulting in the word DATA (986). It consists of 32 bytes divided as follows (left to right):

lst 4 cell number
next 5 subcell number
next 4 strip number i.e., the 2321 address
next 3 cylinder number
next 5 track number
next 11 relative (to start of track) position of start of

KEY and DATA are the pair of entries presented to ISFMS at line 992. ISFMS has been directed (lines 10-13) to block these two 4 byte fields at 99 pairs per 2311 "record". This allows four records to be accommodated on each

reformatted record

2311 track.

MOVE (line 1029) is the subroutine that transfers all input characters (from IPAREA) to the output (reformatted) area at FRONT.

LIMIT and LIMIT2 (1045, 1046) are used in the process of determining when the field pointer count fields (of a record starting somewhere downstream in the 2321 track image area ... 1st 2000 bytes of FRONT) have been filled ... a process that requires processing the entire logical input record and may cause considerable overflow beyond the first 2000 bytes of the FRONT area. Hence the space reservation of 4000 bytes.

Data Cell records are prefixed with a C/F (count flag) area of two bytes which gives the byte count of this segment of an accession on the 2321 track and further indicates (if bit 3 of first such byte is on ... and only then) that the remainder of this record (i.e., it is not here complete) is to be

found on the next available track (Volume Label and Alternate Track areas are avoided).

The references to KSU (1597) and ESCAPE (1604) are associated with preventing undesired strip restoration to its subcell while reformatting is taking place ... the latter process frequently exceeds 800 ms, the maximum strip holding time of the 2321.

Routine SHIFT (at 1323) moves the data from that portion of a reformatted record that just exceeded the 2000 byte limit of the track image area back to the prime work area (at FRONT) once the data at FRONT has been written out on the data cell. This routine includes some coding (lines 1329 to 1339) of Mr. Keith Eckhardt of IBM ... one of their Systems Engineers ... whose valuable advice on ISFMS and data cell write operations have made this program possible. His assistance has been invaluable.

GERR (gross error, 1512) refers to a  $\neq$  (record mark) being found in an unacceptable spot. 63A2O145 is such a record.

Principal programmer for the file conversion and load routines is D. C. Shoultz. His conscientious devotion and thoroughness are responsible for the success of the conversion.

## FILE CONVERSION REPORT - NASA INVERTED AND RELATED TERMS FILES

### Contract NASw 1454

#### SUMMARY

A program was written to accomplish the following:

- 1. Load related terms records on data cell (Relative Master file).
- 2. Load inverted file records on data cell (V-post file).
- 3. Generate an index of Descriptor vs. Inverted File and Related Terms.

Figure 1 depicts the chronological processing sequence outlined above.



Fig. 1 Chronological Processing Chart

Figure 2 contains schematics of the referenced output records. Figures 3-5 are character and hexadecimal dumps of the referenced output records. An appendix contains an annotated listing of the subject program. Data Cell load time approximates 25 minutes/reel.

### PROGRAM DESCRIPTION

The related terms tape processing program is merely a tape reader, term counter and data cell writer (except that counts for a descriptor are for items on this track only and may necessitate repeating descriptor on upcoming track). As such it deserves little comment. The output format is that of Fig. 2c and is used by the inverted file program as needed. The reason for putting it on the 232l prior to processing the V-post tapes is that this facility has only one tape unit.

The approach taken to the inverted file (V-post tapes) was that of:

- 2. combination of pointer to data in (1) with a pointer to related terms paired with the descriptor at hand. This is illustrated in Fig. 2a.

#### OPERATING PROCEDURE

- A. Required Configuration (in addition to CPU and storage controller)
  - 2 each 23ll disk drives (units 190,191)
  - l each 2321 data cell drive (unit 193)
  - 1 each 2400 series 7 track tape unit (unit 180)
  - l each 1052 typewriter (SYSOO4)

### B. Operating Procedure:

- 1. Mount BOS pack (with 2321 error recovery procedures) on unit 190.
- 2. Mount (surface) initialized disk pack on 191.
- 3. Mount initialized cell 6 on 193.

- 4. Ready forms in printer, hex deck (supplied) in card reader. Press blue end-of-file button.
- 5. IPL from 190.

  E
  Hit interrupt. Reply (small) c, 0 to SAR on 1052. Job should
  B
  run to end of file on input tape (Label file is shipped). At
  EOF time message EOF A appears on 1052. Mount new reel and
  type (small) c to continue. To terminate job (close files), reply
  with something else, not supervisor processed, such as f.

## a. IBM 2311 (Disk) Vocabulary Term Index

35

| Item    | Descriptor         | Data Cell Seek Add.<br>for Inv. File Entry | 1              | 1              | _           | No. of<br>Rel. Terms | Trạck Loc.<br>of 1st Rel.<br>Terms Entry |
|---------|--------------------|--------------------------------------------|----------------|----------------|-------------|----------------------|------------------------------------------|
| Example | Zone               | 0607050211                                 | 0617           | 0320           | 061204030C  | 05                   | 0066                                     |
| Bytes   | 50 EBCDIC<br>Char. | 5 hex char.                                | 2 hex<br>char. | 2 hex<br>char. | 5 hex char. | l hex<br>char.       | 2 hex<br>char.                           |

## b. IBM 2321 (Data Cell) Inverted File Entry (6-7-5-2-17)

| Item   |      | Descriptor | Accessions |          |      |  |
|--------|------|------------|------------|----------|------|--|
| Exampl | Zone |            | 0000       | 2510046F | etc. |  |
| Bytes  |      | 50         | -2-        | 4        | 4    |  |

## c. IBM 2321 (Data Cell) Related Terms Entry (6-18-4-3-12)

| Item    | Count     | Descriptor | Related Term 1 | Related Term 2 | etc. |
|---------|-----------|------------|----------------|----------------|------|
| Example | 0005      | Zone       | Auroral Zone   | Brillouin Zone |      |
| Bytes   | Bytes 2 5 |            | 50             | 50             |      |

Fig. 2 Record Formats

DUMP FROM 2311, UNIT X\*191\* ON 12/31/66
VOLUME LABEL FOLLOWS

| VOL(C)     | 0000         | VOL1094737           | 0 D                  |                       | LMSC                 | BOS8K                |                      |                      |                      |          |
|------------|--------------|----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------|
| VOL(H)     | 0000         | E5D6D3F1             | F0F9F4F7             | F3F7F000              | 00000004             | 40404040             | 40404040             | 40404040             | 4040404              |          |
|            | 0020<br>0040 | 40404040<br>40404040 | 40404040<br>40404040 | 40D3D4E2<br>40404040  | C340C2D6<br>40404040 | E2F8D240             | 40404040             | 40404040             | 4040404              | 0        |
|            |              | 40404040             | 40404040             | 40404040              | 40404040             |                      |                      |                      |                      |          |
| HA-RO      | 0000         | 00008B00             | 08008800             | 08000000              | 08008800             | 08000E29             | 00                   |                      |                      |          |
| CYL = 139. | TRACK =      | 008, REC = 0         | 001, KL = 05         | O, DL = 348           | •                    |                      |                      |                      |                      |          |
| COUNT      | 0000         | 00880008             | 01320D9C             | , -                   |                      |                      |                      |                      |                      |          |
| KEY(C)     | 0000         | ZYMOGEN              |                      |                       |                      |                      |                      |                      |                      |          |
|            |              |                      |                      |                       |                      |                      |                      |                      |                      |          |
| DATA(C)    | 0000         | ZONAL HARM           | DNICS<br>FGEBJ       | 480                   | ZOND II SPA          | FGEBJ 1A             | - ZO:                | ND I SPACE PR        |                      |          |
|            | 0200         | ZOND III             | SPACE PROBE          | ABQ                   | ZUND II SPA          | CE PROBE<br>FGEBJ D  | .B≠ 7(               | ONE                  | FGEBJ F              | 36       |
|            | 0300         |                      |                      | JFPC-FKDC¤E           | WZONE MELTIN         |                      |                      |                      | FGEC                 | D٤       |
|            | 0400         | ZONE REF             |                      |                       |                      | FGEC                 | Da i                 | ONING TECHNIO        |                      |          |
|            | 0500<br>0600 | 441170011            | FGE                  | C E%                  | ZOOLOGY              | 5656                 | 654                  | 7.00                 | FGEC                 | OFHFKDC¤ |
|            | 0700         | AAMZOOM              | FG                   | ec Benekber           | JAA ZTA GRAPH        | FGEC                 | GFM                  | ZPR                  | FGEC                 | DG-      |
|            | 0800         | ZUBOV 1              | PROPOSITION          | 2001100               | JAA ZIA GRAFII       | FGEC                 | DGU                  | ZUNI MISSILE         |                      | DG-      |
|            | 0900         |                      |                      | GECA I 4              | ZYMOGEN              |                      |                      | 2011 1133120         |                      | CA 8 0   |
|            | 1000         |                      |                      |                       |                      |                      |                      |                      |                      |          |
| DATA(H)    | 0000         | E906D5C1             | D340C8C1             | D9D4D6D5              | C9C3E240             | 40404040             | 40404040             | 40404040             | 4040404              | n        |
|            | 0020         | 40404040             | 40404040             | 40404040              | 40404040             | 40400607             | 05021100             | 31016000             | 0000000              |          |
|            | 0040         | 000000E9             | D6D5C440             | 40C 940E2             | D7C1C3C5             | 40D7D9D6             | C2C54040             | 40404040             | 4040404              | 0        |
|            | 00 60        | 40404040             | 40404040             | 40404040              | 40404040             | 40404040             | 40060705             | 02110001             | 02580000             |          |
|            | 0800<br>0400 | 00000000<br>40404040 | 0000E9D6<br>40404040 | D5C 44040<br>40404040 | C9C940E2<br>40404040 | 07C1C3C5<br>40404040 | 4007D9D6<br>40404040 | C2C54040             | 40404040             |          |
|            | 0000         | 90000000             | 00000000             | 00E 9D6D5             | C44040C9             | C9C940E2             | D7C1C3C5             | 06070502<br>40D7D9D6 | 11000602<br>C2C54040 |          |
|            | 00E0         | 40404040             | 40404040             |                       |                      | 40404040             | 40404040             | 40404006             | 0705021              |          |
|            | 0100         | 000402DC             | 00000000             | 00000000              | → E0000C5            | 40404040             | 40404040             | 40404040             | 40404046             |          |
|            | 0120         | 40404040             | 40404040             | 40404040              | 40404040             | 40404040             | 40404040             | 40404040             | 4040060              |          |
|            | 0140         | 05021106             | 17032006             | 1204030C              | 050066E9             | D6D5C540             | D4C5D3E3             | C9D5C740             | 40404040             |          |
|            | 0160<br>0180 | 40404040<br>40060705 | 40404040<br>0300001E | 40404040<br>04500000  | 40404040<br>00000000 | 40404040<br>0000E9D6 | 40404040<br>D5C540D9 | 40404040             | 40404040             |          |
|            | 0140         | 40404040             | 40404040             | 40404040              | 40404040             | 40404040             | 40404040             | C5C6C9D5<br>40404040 | C9D5C740             |          |
|            | 0100         | 40404040             | 06070503             | 00002F04              | FC000000             | 00000000             | 00E9D6D5             | C9D5C740             | E3C5C3C8             |          |
|            | 01E0         | D5C9D8E4             | C5404040             | 40404040              | 40404040             | 40404040             | 40404040             | 40404040             | 40404040             |          |
|            | 0200         | 40404040             | 40404006             | 07050300              | 000A05EC             | 00000000             | 00000000             | E9D6D6D3             | D6C7E840             | ס        |
|            | 0220         | 40404040             | 40404040             | 40404040              | 40404040             | 40404040             | 40404040             | 40404040             | 40404040             |          |
|            | 0240         | 40404040             | 40404040             | 40400607              | 05030000             | 16064806             | 1204030C             | 010194E9             | D6D6D440             |          |
|            | 0260<br>0280 | 40404040<br>40404040 | 40404040<br>40404040 | 40404040<br>40404040  | 40404040<br>40060705 | 40404040<br>03000007 | 40404040<br>06040000 | 40404040<br>0000000  | 40404040<br>0000E9D  |          |
|            | 02 AO        | D9404040             | 40404040             | 40404040              | 40404040             | 40404040             | 40404040             | 40404040             | 40404040             |          |
|            | 0200         | 40404040             | 40404040             | 40404040              | 40404040             | 06070503             | 00000207             | 24061204             | 0300010              | -        |
|            | 02 E0        | FAE9E3C1             | 40C7D9C1             | D7C8C9E3              | C5404040             | 40404040             | 40404040             | 40404040             | 40404040             | כ        |
|            | 0300         | 40404040             | 40404040             | 40404040              | 40404040             | 40404006             | 07050300             | 00040760             | 00000000             |          |
|            | 0320         | 00000000             | E9E4C2D6             | E54007D9              | D6D7D6E2             | C9E3C9D6             | D5404040             | 40404040             | 40404040             |          |
|            | 0340<br>0360 | 40404040<br>00000000 | 40404040<br>000000E9 | 40404040<br>E4D5C940  | 40404040<br>D4C9E2E2 | 40404040<br>C9D3C540 | 40400607<br>40404040 | 05030000<br>40404040 | 0407A400<br>40404040 |          |
|            | 0380         | 40404040             | 40404040             | 40404040              | 40404040             | 40404040             | 40404040             | 40060705             | 0301000              |          |
|            | 03A0         | 00340000             | 00000000             | 0000E9E8              | D4D6C7C5             | D5404040             | 40404040             | 40404040             | 40404040             |          |
|            | 0300         | 40404040             | 40404040             | 40404040              | 40404040             | 40404040             | 40404040             | 40404040             | 0607050              |          |
|            |              |                      | ••                   |                       |                      |                      |                      |                      |                      |          |

Fig. 3 Character and Hexadecimal Dump Descriptor Index Entries

## DUMP FROM 2321, UNIT X'193' ON 12/31/66 VOLUME LABEL FOLLOWS

| VOL(C)      | 0000                                                                                                                                                                                                                        | VOL1LMSC-60                                                                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AOT (H)     | 0000<br>0020<br>0040                                                                                                                                                                                                        | E5D6D3F1<br>40404040<br>40404040                                                                                                                                                                                                                                                                                  | D3D4E2C3<br>40404040<br>40404040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60F6F000<br>40404040<br>40404040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000004<br>40404040<br>40404040                                                                                                                                                                                                                                                                                              | 40404040<br>40404040                                                                                                                                                                                                                        | 40404040<br>40404040                                                                                                                                                                                                                                                                                                                                                              | 40404040<br>40404040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40404040<br>40404 <b>0</b> 40                                                                                                                                                                                                                                                                                                                                                                            |
| HA-RO       | 0000                                                                                                                                                                                                                        | 00070502                                                                                                                                                                                                                                                                                                          | 11070502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 08070502                                                                                                                                                                                                                                                                                                                      | 110007D0                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |
| CELL = 006, | SBCELL                                                                                                                                                                                                                      | = 007, STRIP                                                                                                                                                                                                                                                                                                      | = 005 • CYL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 002, TRACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 017, REC                                                                                                                                                                                                                                                                                                                    | = 001, KL =                                                                                                                                                                                                                                 | 000, DL = 20                                                                                                                                                                                                                                                                                                                                                                      | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |
| COUNT       | 0000                                                                                                                                                                                                                        | 07050211                                                                                                                                                                                                                                                                                                          | 010007D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |
| DATA(H)     | 0000<br>0020<br>0040<br>0080<br>0080<br>0080<br>0010<br>0120<br>0140<br>0160<br>0180<br>0120<br>0220<br>0220<br>0220<br>0240<br>0250<br>0320<br>0320<br>0340<br>0350<br>0360<br>0360<br>0360<br>0360<br>0360<br>0360<br>036 | E906C4C9 40404040 3122406F 4117553F 4524951F 4710675F 5123746F 5529493F 6516601F 40404040 3113832F 3519554F 4518239F 5124048F 5719970F 6710679F 40404040 40404040 40404040 40404040 2510046F 2510046F 2510046F 2510046F 2511633F 2511430F 2511633F 2511430F 2512381F 2512381F 2512880F 2513118F 2512880F 2513118F | C1C3C1D3<br>40404040<br>3123835F<br>4117767F<br>4527274F<br>4713579F<br>5710643F<br>6121125F<br>6518007F<br>40404040<br>3519566F<br>4121201F<br>4526248F<br>5127896F<br>6111106F<br>E9D605C4<br>40404040<br>40E2D7C1<br>40404040<br>40E2D7C1<br>40404040<br>6521579F<br>40404040<br>6121755F<br>40404040<br>6121755F<br>2510054F<br>2510054F<br>2510627F<br>2511039F<br>25112420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>2512420F<br>25125039F<br>2512420F<br>25125039F<br>2512420F<br>25125039F<br>25125039F<br>2512420F<br>2512901F<br>2513149F<br>2513149F<br>2513149F<br>2513149F<br>2513149F | 40D 3C 9C 7<br>40404040<br>3124484F<br>4117768F<br>4527397F<br>5112716F<br>5130239F<br>5713053F<br>61322430F<br>6736273F<br>40404040<br>3124733F<br>3713095F<br>4128488F<br>4526887F<br>5133816F<br>6120883F<br>404004040<br>030540N7<br>40404040<br>6502432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>40404040<br>6522432F<br>4051262F<br>2511608F<br>2511608F<br>25112426F<br>2512770F<br>2512902F<br>2513553F | C8E34040 40404040 3514901F 4125081F 4528766F 5116482F 5134197F 5737065F 6123510F 40404040 3124734F 4112167F 4128489F 4527255F 5134643F 6123493F 6207C1C3 40404040 090602C5 40400000 4040C9C9 404060000 4040C9C9 2510183F 2510690F 2511653F 2511653F 25112471F 2511653F 25122471F 2511653F 2512269F 2512798F 2512798F 2512925F | 40404040<br>40400000<br>4110494F<br>4128547F<br>4128547F<br>6510322F<br>034026C1<br>40404040<br>3124736F<br>411266F<br>411266F<br>4128491F<br>4530947F<br>5135231F<br>6511253F<br>654007109<br>40404040<br>40404040<br>40404040<br>40404040 | 40404040<br>3115283F<br>4111792F<br>4128576F<br>4533214F<br>5120631F<br>5511446F<br>6112850F<br>6511605F<br>090400405<br>40404040<br>3124740F<br>4114692F<br>4128499F<br>4533624F<br>5519856F<br>6517259F<br>D6C2C540<br>40400000<br>40404040<br>40404040<br>40404040<br>40404040<br>2510334F<br>2510749F<br>2510750F<br>2511738F<br>2512140F<br>2512508F<br>2513268F<br>2513268F | 40404040<br>3116975F<br>4113276F<br>4521130F<br>4521130F<br>5523399F<br>6112452F<br>6515052F<br>C9C36240<br>40404040<br>3125382F<br>4118561F<br>4512236F<br>5123197F<br>5522840F<br>6517319F<br>40404040<br>6121049F<br>40404040<br>6121049F<br>40404040<br>40404040<br>40404040<br>40404040<br>40404040<br>40404040<br>40404040<br>40404040<br>40510378F<br>2510785F<br>25110983F<br>2511265F<br>2512605F<br>2512605F<br>2512609F<br>2513009F<br>2513009F<br>2513009F<br>2513009F<br>2513009F<br>2513009F<br>2513009F<br>2513265F | 40404040 3119655F 4116583F 4524776F 4710670F 5122064F 5524314F 65114881F 6516175F 40404040 40400000 3514920F 4118931F 4517612F 55124047F 5717502F 6519541F 40404040 6905054 40404040 6114023F 40404040 6114023F 40404040 6114023F 40404040 716736 716736 717502F 6519541F 651052F 651052F 651052F 651052F 651052F 651052F 651062F 6511632F 6511632F 6511632F 6511632F 6511810F 6513254F 651310F 6513254F |
|             | 0440<br>0400<br>0460<br>0500<br>0520<br>0540<br>0560<br>0580                                                                                                                                                                | 2513924F<br>2514178F<br>2514613F<br>2515339F<br>2516165F<br>2516419F<br>2517250F<br>2711069F                                                                                                                                                                                                                      | 2513927F<br>2514209F<br>2514616F<br>2515554F<br>2516181F<br>2516443F<br>2517342F<br>2711073F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2513960F<br>2514211F<br>2514632F<br>2515575F<br>2516187F<br>2516493F<br>2517422F<br>2711269F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2514008F<br>2514213F<br>2514996F<br>2515693F<br>2516278F<br>2516776F<br>2517447F<br>2711454F                                                                                                                                                                                                                                  | 2514016F<br>2514256F<br>2515031F<br>2515738F<br>2516326F<br>2516789F<br>2517562F<br>2711457F                                                                                                                                                | 2514062F<br>2514257F<br>2515210F<br>2515742F<br>2516332F<br>2516870F<br>2570986F<br>2711461F                                                                                                                                                                                                                                                                                      | 2514162F<br>2514341F<br>2515233F<br>2515822F<br>2516365F<br>2517224F<br>2571060F<br>2711462F                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2514176F<br>2514573F<br>2515336F<br>2516108F<br>2516396F<br>2517243F<br>2577646F<br>3110120F                                                                                                                                                                                                                                                                                                             |
|             |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |

Fig. 4 Hexadecimal Dump of Inverted File Entries

DUMP FROM 2321, UNIT X'193' ON 12/31/66 VOLUME LABEL FOLLOWS

| VOL(C)      | 0000         | VOL1LMSC-60          | 0 0                  |                      |                      |                  |              |              |                  |  |  |
|-------------|--------------|----------------------|----------------------|----------------------|----------------------|------------------|--------------|--------------|------------------|--|--|
| VOE (H)     | 0000         | E50603F1             | D3D4E2C3             | 60F6F000             | 00000004             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0020<br>0040 | 40404040<br>40404040 | 40404040<br>40404040 | 40404040<br>40404040 | 40404040<br>40404040 | 40404040         | 40404040     | 40404040     | 40444040         |  |  |
| HA-RO       | 0000         | 00120403             | 00120403             | 0000000              | 08120403             | 0C0007D <b>0</b> | 00           |              |                  |  |  |
|             | 0000         | 00120103             | 00120705             | 0000000              | 00120103             | 00000.04         | 00           |              |                  |  |  |
| CELL = 006, | SBCELL       | = 018, STR1P         | • = 004, CYL         | = 003, TRACE         | < = 012, REC         | = 001, KL =      | 000, DL = 0  | 711          |                  |  |  |
| COUNT       | 0000         | 1204030C             | 01000207             |                      |                      |                  |              |              |                  |  |  |
| DATA(C)     | 0000         | AZIRCONATE           |                      |                      |                      |                  | IUM ZIRCONAT | E            | =16, 2C          |  |  |
|             | 0100         | EZONE                |                      |                      |                      |                  | RAL ZONE     |              | -101 XC          |  |  |
|             | 0200         |                      | JIN ZONE             |                      |                      |                  | ZONE         |              |                  |  |  |
|             | 0300         | RECOVER              |                      |                      |                      |                  | L ZONE       |              |                  |  |  |
|             | 0400         | A Z 0 0 L 0          |                      |                      |                      |                  | HTHYOLOGY    |              |                  |  |  |
|             | 0500         | AZPR                 |                      |                      |                      |                  | ZERO POWER R |              |                  |  |  |
|             | 0600         | Α9                   | 99999999999          | 999999999999         | 99999999999          | 999999999999     | 99999999999  | 99999999999  | 9999999999999999 |  |  |
|             | 0700         | 9999999993           |                      |                      |                      |                  |              |              |                  |  |  |
| DATA(H)     | 0000         | 0001E9C9             | D9C3D6D5             | C1E3C540 →           | <b>6</b><br>40404040 | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0020         | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | E2E3D9D6     | D5E3C9E4     | D440E9C9         |  |  |
|             | 0040         | D9C3D6D5             | C1E3C540             | <u> 40404040</u> 2/  | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0060         | 40404040             | 40400005             | E90605C5             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 080          | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | 40404040     | 4040C1E4     | D9D6D9C1         |  |  |
|             | OAO          | D340E9D6             | D5C54040             | 40404040             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0000         | 40404040             | 40404040             | 40404C40             | C209C9D3             | D3D6E4C9         | D540E9D6     | D5C54040     | 40404040         |  |  |
|             | 00E0         | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | 40404040     | 40404040     | 4040D5E4         |  |  |
|             | 0100         | D3D34DE9             | D6D5C540             | 40404040             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0120         | 40404040             | 40404040             | 40404040             | 40404040             | D9C5C3D6         | E5C5D9E8     | 40E9D6D5     | C5404040         |  |  |
|             | 0140         | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0160         | 40400906             | E8C1D340             | E906D5C5             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0180         | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | 0001E9D6     | D6D3D6C7     | E8404040         |  |  |
|             | 0140         | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0100         | 40404040             | 40404040             | C9C3C8E3             | C8E8D6D3             | D6C7E840         | 40404040     | 40404040     | 40404040         |  |  |
|             | 01E0         | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | 40404040     | 40400001     | E9070940         |  |  |
|             | 0200         | 40404040             | 40404040             | 40404040             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0220         | 40404040             | 40404040             | 40404040             | 4040E9C5             | D9D640D7         | D6E6C5D9     | 4009C5C1     | C3E3D6D9         |  |  |
|             | 0240         | 4061E9D7             | D9614040             | 40404040             | 40404040             | 40404040         | 40404040     | 40404040     | 40404040         |  |  |
|             | 0260         | 0001F9F9             | F9F9F9F9             | F9F9F9F9             | F9F9F9F9             | F9F9F9F9         | F9F9F9F9     | F9F9F9F9     | F9F9F9F9         |  |  |
|             | 0280         | F9F9F9F9             | F9F9F9F9             | F9F9F9F9             | F9F9F9F9             | F9F9F9F9         | F9F9F9F9     | F9F9F9F9     | F9F9F9F9         |  |  |
|             | 02A0         | F9F9F9F9             | F9F9F9F9             | F9F9F9F9             | F9F9F9F9             | F9F9F9F9         | F9F9F9F9     | F9F9F9F9     | F9F9F9F9         |  |  |
|             | 0200         | F9F9F9F9             | F9F973               | . 21 21 21 2         | ,                    | ,                |              | . // 3/ // 7 | . 21 71 71 7     |  |  |
|             | 0200         | LALALALA             | LALA()               |                      |                      |                  |              |              |                  |  |  |

Fig. 5 Character and Hexadecimal Dump of Related Term Entries

# Appendix B INDIVIDUAL SEARCH SUMMARIES

Appendix A contains summaries of a representative sample of searches performed by NASA Ames Research Center scientists and engineers. In selecting the sample, an effort was made to include examples of the range of complexity of the Boolean search expressions, user's comments, and times spent performing each search. In several instances the user was able to perform several searches in the same console session; the numbered expressions are used to indicate this. In the Boolean search expression the symbols "+," "\*," and "-" are used to indicate the Boolean connectives OR, AND, and NOT, respectively.

SEARCH PERFORMED BY: Carr B. Neel, Gasdynamics

SEARCH TITLE: Scattering of Light by MIE and Rayleigh Processes

BOOLEAN SEARCH EXPRESSION: Particle \* (Rayleigh Scattering + MIE Scattering Function + MIE Theory) \* (Scattering + Scattering Coefficient + Scattering Cross Section + Scattering Function + Atmospheric Scattering + Backscatter + Diffraction + Electromagnetic Scattering + Forward Scatter + Light Scattering + Extinction + Refraction + Cross Section + Absorption Cross Section + Radiation Absorption + Absorption + Refractivity)

SEARCH TIME: 55.61 min. NUMBER OF RELEVANT CITATIONS PRINTED: 18

COMMENTS: This is my first search, and it has been extremely helpful in locating articles very rapidly which otherwise would have been difficult to find. This is a very useful technique, and I highly recommend its adoption throughout NASA.

SEARCH PERFORMED BY: Duane W. Dugan

SEARCH TITLE: Nuclear Propulsion

BOOLEAN SEARCH EXPRESSION: (Nuclear + Nuclear Power + Nuclear Propulsion + Thermonuclear Propulsion) \* (Window + (Interplanetary Flight + Orbital Launch) \* (Payload + Performance)).

SEARCH TIME: 54.73 min. NUMBER OF RELEVANT CITATIONS PRINTED: 10

COMMENTS: This system appears to be potentially very useful and could save much time in searching the literature for pertinent references.

SEARCH PERFORMED BY: John C. Arvesen

SEARCH TITLE: Cerenkov Radiation Theory and Use as Standard Light Source

BOOLEAN SEARCH EXPRESSION: ((Cerenkov Effect + Cerenkov Radiation) -

(Cosmic + Cosmic Radiation + Cosmic Ray Shower + Shower)) \* (Spectral Analysis + Spectral + Spectrum)

SEARCH TIME: 64.18 min. NUMBER OF RELEVANT CITATIONS PRINTED: 23

COMMENTS: Very worthwhile took a half-hour to locate more sources than I found in a week. However, the references should go back further than 1962.

SEARCH PERFORMED BY: R. C. Whitten

SEARCH TITLE: Lunar Luminescence

BOOLEAN SEARCH EXPRESSION: (Lunar \* Luminescence) + Lunar Luminescence

SEARCH TIME: 51.32 min. NUMBER OF RELEVANT CITATIONS PRINTED: 49

COMMENTS: Very helpful on obtaining information not available in usual places for search.

SEARCH PERFORMED BY: W. L. Crawford

SEARCH TITLE: Time Series

BOOLEAN SEARCH EXPRESSION: ((Time + Series + Time Series) \* (Frequency Analysis + Data Analysis + Fourier Analysis + Harmonic Analysis + Numerical Analysis + Spectral Analysis + Statistical Analysis + Spectral + Spectral Analysis))—(Emission + Luminescence + Sun + Light)

SEARCH TIME: 40.37 min. NUMBER OF RELEVANT CITATIONS PRINTED: 79 COMMENTS: Very useful. We should obtain one for permanent use.

SEARCH PERFORMED BY: Philip Wilcox

SEARCH TITLE: (1) Rocket Noises (2) Time Series Programs

BOOLEAN SEARCH EXPRESSION: (1) (Noise + Acoustics) \* (Launch + Launching) \* (Rocket + Space Vehicle + (Vehicle \* Space) + Saturn Launch Vehicle) (2) Time Series \* (Computer Program + Computer Programming + Data Processing)

SEARCH TIME: 64.82 min. NUMBER OF RELEVANT CITATIONS PRINTED: (1) 43 (2) 13

COMMENTS: Very valuable for quick search. Easy to use after initial familiarization.

SEARCH PERFORMED BY: J. M. Coogan

SEARCH TITLE: Radar Imaging Interpretation

BOOLEAN SEARCH EXPRESSION: (Interpretation + Analysis + Exploitation) \* (Radar Map + Radar Photography + Satellite-Borne Radar + (Radar \* (Image + Imagery)))

SEARCH TIME: 51,02 min. NUMBER OF RELEVANT CITATIONS PRINTED: 19

COMMENTS: I made a hand search over this same area, thus far it looks as if the machine approach is at least as thorough and of course much easier. No problems anticipated. Hope the system becomes a permanent tool. Appreciate the patient instruction of the LMSC Rep.

SEARCH PERFORMED BY: Paul Droll

SEARCH TITLE: Magnetic Field Generating Systems

BOOLEAN SEARCH EXPRESSION: Magnetic Field \* (Magnetic Field Coil + Coil + Magnetic Coil + Solenoid) \* (Square + Uniform + Homogeneity)

SEARCH TIME: 38.40 min. NUMBER OF RELEVANT CITATIONS PRINTED: 9

COMMENTS: Having a good idea of what I was looking for, I have obtained exactly what I wanted. I regret that the printout is not at the location of the searcher. I noticed that only a category of basic references are listed — an expansion of the sources would be a big improvement (naturally).

SEARCH PERFORMED BY: Edgar M. Van Vleck

SEARCH TITLE: Information Transfer Satellites

BOOLEAN SEARCH EXPRESSION: (Information + Data) \* (Communication + Communications) \* (Human + Computer + Display) \* Network

SEARCH TIME: 55,61 min. NUMBER OF RELEVANT CITATIONS PRINTED: 20

COMMENTS: Excellent system, should be used throughout NASA. Nothing equivalent exists Q.E.D.

SEARCH PERFORMED BY: R. J. Debs

SEARCH TITLE: Neutron Activation

BOOLEAN SEARCH EXPRESSION: Calcium \* (Bone + Skeleton)

SEARCH TIME: 26.82 min. NUMBER OF RELEVANT CITATIONS PRINTED: 14

COMMENTS: This is my first, short-period attempt to use you, you monster. The results are excellent. One minor criticism some way of eliminating the necessity for shifting to make the commands, might be easier for the new user. This is a great concept, well worked-out.

SEARCH PERFORMED BY: I. G. Poppoff

SEARCH TITLE: Electron Attachment H20

BOOLEAN SEARCH EXPRESSION: ((Electron \* Attachment) + (Water + Water

Vapor)) \* (Drift Rate + Drift)

SEARCH TIME: 32.72 min. NUMBER OF RELEVANT CITATIONS PRINTED: 4

COMMENTS: Found entries that I could not find in a manual search.

SEARCH PERFORMED BY: John Rakich

SEARCH TITLE: Gaussian Quadrature

BOOLEAN SEARCH EXPRESSION: (1) Gauss \* (Integration + Quadrature)

(2) (Gauss + Gauss Function) \* (Integration + Quadrature + Numberical Integration + Quadrature Approximation)

SEARCH TIME: 54.69 min. NUMBER OF RELEVANT CITATIONS PRINTED: (1) 9 (2) 2

COMMENTS: After three tries I feel confident using this program. I think it is a fine tool.

SEARCH PERFORMED BY: William P. Gilbreath

SEARCH TITLE: Surface Properties

BOOLEAN SEARCH EXPRESSION: (1) Adsorption \* Surface \* Area (2) Nitrogen \* ((Heat \* Vaporization) + (Enthalpy \* Vaporization)) (3) Low Temperature \* (Calorimeter + Calorimetry) (4) (Rock + Mineral) \* (Fracture + Mechanics + Strength) \* (Vacuum + Lunar + Lunar Environment) (5) (Solid \* (Adhesion + Cohesion + Metal-Metal Bonding)) - Adhesive

SEARCH TIME: 72.15 min. NUMBER OF RELEVANT CITATIONS PRINTED: (1) 1 (2) 5 (3) 6 (4) 6 (5) 2

COMMENTS: Went OK but would be nice if various authors could be selected or rejected

SEARCH PERFORMED BY: William P. Gilbreath

SEARCH TITLE: Solid Surface Energy

BOOLEAN SEARCH EXPRESSION: (1) (Surface Energy + Surface Tension) \* (Solid + Solids) (2) (Surface Energy + Surface Tension) \* Metal - (Liquid + Liquid Metal) (3) (Hardness + (Indentation \* Creep) \* (Environment + Vacuum)

SEARCH TIME: 47.83 min. NUMBER OF RELEVANT CITATIONS PRINTED: (1) 17 (2) 23 (3) 20

COMMENTS: Method OK, very rapid but would nice to have full abstract printed. Search went well probably due to observing a search previously.

SEARCH PERFORMED BY: Lloyd D. Corliss

SEARCH TITLE: Techniques in Model Matching

BOOLEAN SEARCH EXPRESSION: (Model + Aircraft Model + Dynamic Model + Mathematical Model) \* (Matching + Following + Adaptive) + (Automatic Control + Optimal Control + Systems Analysis + Adaptive Control System + Closed Loop System + Reference)

SEARCH TIME: 56.27 min. NUMBER OF RELEVANT CITATIONS PRINTED: 33

COMMENTS: Most comprehensive search in this field. Would like to see the ENTER command incorporated in with some of the other commands. Thank you.

SEARCH PERFORMED BY: Val Watson

SEARCH TITLE: Numerical Solution of Poisson's Equation

BOOLEAN SEARCH EXPRESSION: (Poisson Equation + Dirichlet Problem) \* (Numerical Analysis + Numerical + Iterative Solution + Finite Difference Method + Computer Simulation)

SEARCH TIME: 56.60 min. NUMBER OF RELEVANT CITATIONS PRINTED: 27

COMMENTS: This computer technique allowed me to find relevant articles that were filed under headings that would not be obvious to the engineer without such a computer. For example, finite difference methods is a numerical method that is not also listed under numerical methods. Recommend that author file be added, that continuous backspace be added, and that multilevel arithmetic capability be added to the combine command.

SEARCH PERFORMED BY: J. M. Coogan

SEARCH TITLE: Infrared Imagers

BOOLEAN SEARCH EXPRESSION: Image \* (Scanner + Scanning Device + Sensor + Detector) \* Ultraviolet

SEARCH TIME: 9.56 min. NUMBER OF RELEVANT CITATIONS PRINTED: 28

COMMENTS: Again I am unable to stress sufficiently the tremendous help this system is both in terms of labor and time. Thank you.

SEARCH PERFORMED BY: Gary J. Griffith

SEARCH TITLE: Spatial Filtering

BOOLEAN SEARCH EXPRESSION: (Optical + Light) \* (Spatial Filtering + (Spatial + Filtration + Processing))) - Interferometer

SEARCH TIME: min. NUMBER OF RELEVANT CITATIONS PRINTED: 31

COMMENTS: Techniques easy to learn. Manual search has been conducted for last several months DIALOG appears much faster, but the results from this particular search were impeded by machine trouble. Search is being reproduced to obtain results.

SEARCH PERFORMED BY: P. R. Wilcox

SEARCH TITLE: Rocket Noises

BOOLEAN SEARCH EXPRESSION: (1) Spectral \* (Launch + Launching) (2) ((Noise + Acoustics + Spectral + Spectral Analysis + Spectral Noise) \* (Takeoff + Launch + Launching) \* (Apollo Spacecraft + Rocket + Space Vehicle + Saturn Launch Vehicle + Apollo Project + (Vehicle \* Space))) - (Animal + Performance + Man + Human + Personnel + Hazard + Geophysics)

SEARCH TIME: 48.24 min. NUMBER OF RELEVANT CITATIONS PRINTED: (1) 15 (2) 40

COMMENTS: Our division, a headquarters component, often has to respond in a short time to requests for information from our management. Thus far this system for quick access to information is the only one I have seen that can meet our needs.

SEARCH PERFORMED BY: F. G. Casal

SEARCH TITLE: Solar Probes or Heliocentric Missions

BOOLEAN SEARCH EXPRESSION: ((Energy + Energy Requirement) \* (Solar Probe + ((Solar + Sun + Heliocentric Orbit) \* (Probe + Space Probe + Mission)))) + (Solar Probe \* Propulsion)

SEARCH TIME: 55.06 min. NUMBER OF RELEVANT CITATIONS PRINTED: 76 COMMENTS: System very useful in conducting extensive searches.

SEARCH PERFORMED BY: Hornby

SEARCH TITLE: Oceanography-Space Commonality

BOOLEAN SEARCH EXPRESSION: Oceanography \* Exploration

SEARCH TIME: 19.09 min. NUMBER OF RELEVANT CITATIONS PRINTED: 7

COMMENTS: OK. Very efficient reduction of data to yield desired information.