Esercizi del 2 maggio

Esercizio 4.2

Siano $K \subseteq S^3$ un nodo, νK un intorno tubolare (aperto) di K tale che $\overline{\nu K}$ sia diffeomorfo a $D^2 \times S^1$. Allora $M = S^3 \setminus \nu K$ è una 3-varietà compatta il cui bordo $\partial M = \overline{\nu K} \setminus \nu K$ è diffeomorfo al 2-toro T^2 . Per semplicità, poniamo $T^2 = \partial M$ e $D^2 \times S^2 = \nu K$.

Scriviamo una parte della successione esatta di Mayer-Vietoris¹ per $S^3 = M \cup (D^2 \times S^1)$, dove $i: T^2 \to M$ e $j: T^2 \to D^2 \times S^1$ indicano le inclusioni:

$$H_2(S^3) \longrightarrow H_1(T^2) \xrightarrow{(i_*,j_*)} H_1(M) \oplus H_1(D^2 \times S^1) \longrightarrow H_1(S^3).$$

Ricordando che $H_2(S^3) = H_1(S^3) = 0$ otteniamo l'isomorfismo

$$0 \longrightarrow H_1(T^2) \xrightarrow{(i_*,j_*)} H_1(M) \oplus H_1(D^2 \times S^1) \longrightarrow 0.$$

Poiché $H_1(T^2) = \mathbb{Z} \oplus \mathbb{Z}$ e $H_1(D^2 \times S_1) = \mathbb{Z}$, otteniamo immediatamente che $H_1(M) = \mathbb{Z}$.

Sia ora $l \in H_1(T^2)$ la classe di omologia, ben definita a meno del segno, tale che $i_*(l) = 0 \in H_1(M)$ e $j_*(l)$ generi $H_1(D^2 \times S^1)$. Osserviamo che il nucleo dell'omomorfismo $i_* \colon H_1(T^2) \to H_1(M)$ è precisamente il sottogruppo ciclico generato da l, e che l è primitivo, in quanto $H_1(M) = \mathbb{Z}$ non ha torsione. Sappiamo allora che esiste un'unica classe di isotopia di curve semplici chiuse non orientate che rappresenta l in omologia; poiché anche -l è rappresentata dalla stessa classe di isotopia, otteniamo che è ben definita la longitudine come l'unica curva semplice chiusa di T^2 (a meno di isotopia e dell'orientazione) che in omologia genera il nucleo di i_* .

Con un ragionamento del tutto analogo, possiamo ben definire il *meridiano* come l'unica curva semplice chiusa di T^2 (a meno di isotopia e dell'orientazione) che in omologia genera il nucleo dell'omomorfismo $j_*: H_1(T^2) \to H_1(D^2 \times S^1)$.

¹Nonostante M e $D^2 \times S^1$ non siano aperti in S^3 , entrambi sono retratti per deformazione di un loro intorno aperto; inoltre tali intorni aperti si possono scegliere in modo che la loro intersezione si retragga per deformazione su $M \cap (D^2 \times S^1) = T^2$.

Esercizio 4.3

Ricordiamo che una struttura iperbolica sul complementare del nodo figura otto è data dall'incollamento secondo il seguente schema di due tetraedri ideali regolari iperbolici aventi orientazione opposta (le facce dello stesso colore vengono identificate, in modo da rispettare le frecce e i colori rappresentati sugli spigoli).

Per fissare la notazione, siano M il complementare del nodo figura otto, $T \times \{0,1\}$ l'unione disgiunta dei due tetraedri $T \times \{0\}$ e $T \times \{1\}$, \sim la relazione di equivalenza descritta dall'incollamento, in modo che $M = T \times \{0,1\}/\sim$. Ricordiamo che, essendo T un tetraedro ideale regolare iperbolico, ogni permutazione dei suoi vertici è indotta da un'isometria di \mathbb{H}^3 . Sia allora $g \colon T \to T$ l'isometria di T che induce la permutazione $\sigma = (1\ 2)(3\ 4)$.

Definiamo l'isometria

$$\begin{split} f: T \times \{0,1\} &\longrightarrow T \times \{0,1\} \\ (x,i) &\longmapsto (g(x),1-i). \end{split}$$

In altre parole, f scambia $T \times \{0\}$ e $T \times \{1\}$, e poi applica a ognuno dei tetraedri l'isometria che induce la permutazione σ . In altre parole ancora, f è l'unica isometria di $T \times \{0,1\}$ che effettua i seguenti scambi di vertici:

$$a_1 \leftrightarrow b_2$$
 $a_2 \leftrightarrow b_1$ $a_3 \leftrightarrow b_4$ $a_4 \leftrightarrow b_3$.

È facile verificare che f è compatibile con la relazione di equivalenza \sim .

- Per quanto riguarda le facce, consideriamo ad esempio $a_1a_2a_3$ e $b_2b_3b_1$, identificate da \sim . La faccia $a_1a_2a_3$ viene mandata da f in $b_2b_1b_4$, mentre $b_2b_3b_1$ viene mandata in $a_1a_4a_2$; le facce $a_1a_4a_2$ e $b_2b_1b_4$ risultano identificate da \sim . Analogamente si mostra che f è compatibile con \sim sulle parti interne di tutte le facce.
- Per quanto riguarda gli spigoli, una verifica diretta mostra che f manda spigoli rossi in spigoli blu e viceversa, preservando la direzione delle frecce. Pertanto f risulta compatibile con \sim anche sugli spigoli.

Per passaggio al quoziente otteniamo dunque un'isometria $\overline{f}: M \to M$. Verifichiamo che \overline{f} non ha punti fissi.

- I punti delle parti interne dei tetraedri non sono fissati da \overline{f} , poiché f scambia $T \times \{0\}$ e $T \times \{1\}$.
- I punti delle parti interne delle facce non sono fissati da \overline{f} , poiché g agisce in modo libero sull'insieme delle facce di T.
- I punti degli spigoli non sono fissati da \overline{f} , poiché (come già osservato) f manda spigoli rossi in spigoli blu e viceversa.

Osserviamo infine che \overline{f} ha ordine 2. Pertanto possiamo definire $N=M/\langle \overline{f} \rangle$, che risulta essere una varietà iperbolica di volume finito, doppiamente rivestita dal complementare del nodo figura otto. La proiezione al quoziente della tassellazione di M fornisce una tassellazione di N con un tetraedro ideale regolare iperbolico, che riportiamo per completezza.

La varietà N si ottiene incollando la faccia $a_1a_2a_3$ su $a_1a_4a_2$ e la faccia $a_1a_3a_4$ su $a_3a_2a_4$.

Esercizio 4.4

Ricordiamo la costruzione, vista a lezione, di una 3-varietà iperbolica tassellata da quattro ottaedri ideali regolari iperbolici. Dopo aver colorato le facce degli ottaedri a scacchiera, le identifichiamo secondo il seguente schema, utilizzando come mappa di incollamento l'identità.

Seguiamo ora un approccio simile a quello dell'esercizio precedente. Siano $O \times \{0\}$, $O \times \{1\}$, $O \times \{2\}$, $O \times \{3\}$ gli ottaedri, $M = O \times \{0,1,2,3\}/\sim$ la varietà ottenuta mediante l'incollamento. Sia $g \colon O \to O$ l'isometria data dalla rotazione di un angolo piatto attorno alla retta che congiunge due vertici diametralmente opposti.

Definiamo l'isometria

$$\begin{split} f:O\times\{0,1,2,3\} &\longrightarrow O\times\{0,1,2,3\}\\ (x,i) &\longmapsto (g(x),3-i). \end{split}$$

In altre parole, f scambia $(O \times \{0\}) \leftrightarrow (O \times \{3\})$ e $(O \times \{1\}) \leftrightarrow (O \times \{2\})$, e poi applica g a ciascun ottaedro. Si vede facilmente che f è compatibile con la relazione di equivalenza \sim , grazie al fatto che g preserva la colorazione a scacchiera (la compatibilità sugli spigoli si può verificare direttamente a parte). Per passaggio al quoziente otteniamo dunque un'isometria $\overline{f}: M \to M$.

Si vede immediatamente che \overline{f} agisce su M senza punti fissi. Infatti tutte le identificazioni in $O \times \{0,1,2,3\}$ sono del tipo $(x,i) \sim (x,i')$; se (x,i) è tale che $f(x,i) \sim (x,i)$, allora necessariamente g(x) = x, dunque x è un punto fisso per g e di conseguenza appartiene alla parte interna di O. Poiché i punti nelle parti interne degli ottaedri non sono identificati con altri punti, dovrebbe valere che 3-i=i, il che è assurdo.

Osserviamo infine che \overline{f} ha ordine 2. Pertanto possiamo definire $N=M/\langle \overline{f}\rangle$, che risulta essere una varietà iperbolica di volume finito, doppiamente rivestita da M. La proiezione al quoziente della tassellazione di M fornisce una tassellazione di N con due ottaedri ideali regolari iperbolici, che riportiamo per completezza.

TODO