Modelli logici dei dati

#modelli #modello-relazionale #relazione-mate #ennupla

3 modelli logici tradizionali:

- · gerarchico, con puntatori come un albero
- · reticolare, un grafo
- relazionale, che è ancora oggi il più utilizzato, basato sui valori della realtà che noi vogliamo modellare

Modello relazionale

Creato ('70) per favorire l'indipendenza dei dati rispetto la rappresentazione e ha impiegato tempo per essere adottato ('80).

Si dice relazionale perché legato al concetto matematico (non strettamente), le relazioni hanno rappresentazione tramite tabelle:

- relazione matematica
- relazione secondo modello relazionale dei dati
- relationship, due entità hanno un qualche collegamento, termine di riferito agli schemi ER (la chiameremo 'associazione' per evitare confusione)

L'utilità della relazione per valori è nella facilità dei collegamenti logici, rispetto a quella dei puntatori dove la confusione è facile comparire.

Schema di relazione

un nome R con un insieme di attributi A_n :

$$R(A_1,\ldots,A_n)$$

Schema di base di dati

insieme/lista di schemi di relazione:

$$R = \{R_1(X_1), \ldots R_k(X_k)\}$$

Ennupla $\rightarrow n$ -upla

su insieme di attributi X, è una funzione che associa a ciascun attributo A in X un valore nel dominio di A, e t[A] denota il valore di t su A.

Base di dati

insieme di relazioni:

$$r = \{r_1, \ldots, r_n\}$$

≡ Esempio relazione su unico attributo

matricola	/
6554	/

matricola	/
3456	/

≔ Esempio di struttura nidificata

Le strutture nidificate non sono consentite nel modello ER

numero	data	totale	quantità	descrizione
1235	12/10/2002	39,20	3	coperti
			2	antipasti
			3	primi

vengono piuttosto separate in 2 tabelle

numero	data	totale

		
numero	quantità	descrizione

Relazione matematica

$$D_1=\{a,b\}$$
 $D_2=\{x,y,z\}$ II prodotto cartesiano sarebbe D_1*D_2 Una relazione $r\subseteq D_1*D_2$

≔ Esempio di tabella con nome "Partite"

 $\mathtt{partite} \subseteq \mathtt{string} * \mathtt{string} * \mathtt{int} * \mathtt{int}$

casa	fuori	reticasa	retifuori
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	0	2
Roma	Milan	0	1

La n-upla della tabella non la pensiamo come valore massimo ∞ .

Alcune proprietà:

- non c'è ordinamento tra le n-uple
- le *n*-uple sono distinte
- ciascuna n-upla è ordinata
- la struttura è posizionale

Tabelle e relazioni

Siccome la struttura posizionale non ci è comoda, associamo un nome unico alla tabella (attributo) che ne descrive il "ruolo" ('casa', 'fuori', 'reticasa', 'retifuori').

Una tabella rappresenta una relazione (nel modello logico relazionale teorico) dove:

- le righe sono diverse tra loro
- le intestazioni delle colonne sono diverse tra loro
- i valori di ogni colonna sono tra loro omogenei, sono valori del dominio (un numero non è una stringa)

Vincoli d'integrità

#vincoli #chiavi

Un *vincolo d'integrità* deve essere una proprietà di tutte le basi di dati, che deve essere rispettata. La base di dati viene presa per il suo intero e verificato che il vincolo restituisca VERO, ovvero sia corretta.

Il compito del DBMS è quello di fare controlli in maniera più o meno efficiente, perché controllare tutto il DB è lento.

Utilità:

- 1. niente spazzatura nella base di dati, ho dati di qualità più alta
- 2. sono effettivamente utili per il DBMS per eseguire interrogazioni in maniera efficiente
- 3. utili nella progettazione

I vincoli corrispondono a proprietà del mondo reale modellato dalla base di dati. A uno schema associamo un insieme di vincoli e consideriamo *corrette* le istanze che soddisfano tutti i vincoli.

Intrarelazionali

Il vincolo riguarda *una sola* tabella/relazione e mi è sufficiente per verificare la veridicità del DB. I due vincoli non sono molto separati per quanto teoria, nei DBMS non c'è molta distinzione.

vincoli di n-upla

Controllo ogni singola n-upla. Indipendente una dalle altre.

Ci dobbiamo immaginare tutti i valori possibili per il nostro dato: situazioni temporali,

situazioni indefinite devono avere un comportamento da noi voluto.

vincoli su valori (o dominio)

Controllo il valore.

chiave

Una **chiave** possiamo identificarla come un insieme di attributi per singola tabella/relazione, univoca, identificanti le n-uple di una relazione.

Chiamiamo questo insieme di attributi K.

Si chiama **superchiave** per r se r non contiene due n-uple distinte t_1 e t_2 con $t_1[K] = t_2[K]$.

- Non esistono due persone con lo stesso numero Matricola, quindi questa sarà la nostra chiave.
- Congome, Nome, Nascita potrebbe essere una chiave fintanto che non esista una persona che ha tutti e quanti gli stessi valori:
 - è superchiave
 - minimale

L'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati; le chiavi permettono di correlare i dati in relazioni diverse (modello relazionale basato su valori). Nel caso di valori <u>NULL</u>, impedisce di usare chiavi, quindi da ricordare che una chiave non può avere questo valore.

chiave primaria

Sulla quale non sono MAI ammessi valori nulli, su nessun attributo componente la **chiave primaria** possiamo consentire il valore nullo.

La sottolineatura identifica questa chiave.

```
Esempio

La Matricola e il CodiceFiscale possono fare chiave, pero' sara' primaria soltanto Matricola siccome uno studente potrebbe venire dall'estero e non avere il CodiceFiscale.
```

Interrelazionali

Guardiamo diverse tabelle per verificare la veridicità.

integrità referenziale (di chiave esterna, foreign key)

Quel vincolo che serve per dire che da *questa* tabella, scrivo un valore contenente in *un'altra* tabella.

- informazioni in relazioni diverse sono correlate attraverso valori comuni
- in particolare, valori delle chiavi (primarie), usiamo quasi sempre quelle
- le correlazioni debbono essere "coerenti"

Un vincolo di **integrità referenziale (foreign key)** fra gli attributi X di una relazione R_1 e un'altra relazione R_2 impone ai valori su X in R_1 di comparire come valori della chiave primaria di R_2 .

up to: 27-09 seso pazo in unipr