

Floating Point

These slides adapted from materials provided by the textbook

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j} b_k imes 2^k$

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers: Examples

Value

Representation

```
5 3/4 101.11<sub>2</sub>
2 7/8 10.111<sub>2</sub>
1 7/16 1.0111<sub>2</sub>
```

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
 - **•** 1/3 0.0101010101[01]...2
 - **•** 1/5 0.001100110011[0011]...2
 - **•** 1/10 0.0001100110011[0011]...2

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Design Challenges

- Only so many bits. Need to be efficient
- Need to handle "special" numbers like Infinity
- Numbers near zero are "special" because 1/x is common
- Properly rounding numbers is important in many algorithms
- What to represent large numbers (1.23 x 10¹⁵) and small (1.23 x 10⁻¹⁵)

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	exp	frac
---	-----	------

Precision options

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

"Normalized" Values

 $v = (-1)^s M 2^E$

When: exp ≠ 000...0 and exp ≠ 111...1

Exponent coded as a biased value: E = Exp - Bias

- Exp: unsigned value of exp field
- Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

Significand coded with implied leading 1: M = 1.xxx...x₂

- xxx...x: bits of frac field
- Minimum when frac=000...0 (M = 1.0)
- Maximum when frac=111...1 (M = 2.0ε)
- Get extra leading bit for "free"

Normalized Encoding Example

 $v = (-1)^s M 2^E$ E = Exp - Bias

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$
- Significand

$$M = 1.101101101_2$$

frac= 101101101101 000000000002

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 11011011011010000000000

Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - = exp = 000...0, frac \neq 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- **Case:** exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

