Superstore DataFlow: End-to-End ETL Project Using PostgreSQL & PowerBl

Project by: Rohan Verma

GitHub Repository: [Link to your project repo]

Abstract

This project demonstrates a complete data engineering pipeline built on PostgreSQL to ingest, transform, validate, and automate the processing of Superstore sales data. The pipeline enables real-time updates of sales data from raw to aggregated forms and serves as a robust foundation for supply chain analytics, sales forecasting, and inventory optimization. By leveraging Python (Pandas, SQLAlchemy), PostgreSQL, and Windows Task Scheduler, we simulate a production-ready ETL workflow applicable to real-world business intelligence environments.

1. Introduction

Efficient management of sales and inventory data is crucial in domains like retail, supply chain, and operations. This project showcases a working ETL (Extract, Transform, Load) pipeline using cleaned Superstore sales data. The ETL pipeline is developed to:

- Ingest raw CSV data into PostgreSQL.
- Transform it into a monthly summary.
- Validate data integrity with quality checks.
- Automate daily updates using Windows Task Scheduler.

Such a pipeline can aid business analysts, supply chain managers, and data teams to maintain clean, real-time dashboards and make timely decisions.

2. Database & Schema Setup

We created a PostgreSQL database named **etl_demo** under the default server (PostgreSQL 17). A user role **etl_user1** was granted permission to manage tables within the default schema **public.**

• **Fig 1:** pgAdmin query showing tables created under the **public** schema.

SELECT table_name FROM information_schema.tables WHERE table_schema = 'public';

The output confirmed the existence of our key tables:

- sales_raw (raw ingestion layer)
- sales_summary (aggregated layer)

3. Table Structure

3.1 sales_raw

This table mirrors the structure of the Superstore dataset with 21 columns.

Fig 2: Column metadata extracted using:

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'sales_raw';

3.2 sales_summary

Aggregates data per (year, month) with calculated fields like total_sales, avg_discount, and total_profit.

4. Data Ingestion using load_raw.py

The load_raw.py script handles the **Extract** and **Load** stages:

- Reads the cleaned dataset from disk.
- Truncates the existing sales_raw table.
- Loads all rows using df.to_sql(..., chunksize=1000).

• Fig 3: Output of SELECT COUNT(*) returned 9994 rows:

• Fig 4: Validation of unique orders:

5. Transformation Logic with transform_summary.py

This script performs the **Transform** step. It:

- Reads sales_raw into a Pandas DataFrame.
- Extracts year and month from order_date.
- Groups and aggregates metrics.
- Replaces data in sales_summary table.

•

• Fig 5: Preview of the sales_summary table in pgAdmin.

6. Data Quality Checks: quality_checks.py

This script ensures:

- No null or duplicate order_ids.
- sales ≥ 0.
- $0 \le discount \le 1$.
- sales_summary is not empty.

7. Advanced SQL Queries

We wrote SQL queries to verify integrity and extract insights:

Fig 6: Total and average profit by region:

• Fig 7: Sales performance by shipping mode:

These analyses could power dashboards for marketing, supply chain and logistics teams.

8. Automation using Windows Task Scheduler

To ensure the ETL runs daily without manual intervention, we:

- Created a task called Superstore ETL.
- Configure it to run python run_etl.py at 2:00 AM every day.

• Fig 8: Task Scheduler confirmation screenshot showing task status and result.

10. Project Structure

9. Dashboard Visualization with Power BI

To complete the end-to-end pipeline, we built an interactive Power BI dashboard on top of the aggregated **sales_summary** table. This serves business users—such as supply chain managers or retail analysts—by delivering key insights at a glance.

9.1 Connecting Power BI to PostgreSQL

- 1. Get Data → PostgreSQL database
- 2. Server: 127.0.0.1 Database: etl_demo Authentication: etl_user1 / 3******@
- 3. Loaded both the tables.

9.2 Key Visuals

Below are the four principal visuals we built in Power BI—each tied directly to our sales_summary and sales_raw tables—along with the business insights they enable.

1. Monthly Sales Trend

Type: Line chart

• X-axis: Month (across all years)

• Y-axis: Sum of total_sales

• **Insight:** Shows how overall revenue evolves month-over-month. Seasonal peaks (e.g., holidays) and troughs (e.g., early year) become immediately apparent, helping supply-chain planners anticipate inventory needs.

2. Regional Performance Comparison

Type: Clustered bar chart

- Axis (categorical): Region (Central, East, South, West)
- Values (series):

- Sum of total_sales
- Sum of total_orders
- Sum of total_profit
- Insight: Enables executives to compare how each region contributes to revenue, order volume, and profitability in a single view. Regions with high sales but low profit can be flagged for discount strategy review.

3. Profit Heatmap by State

Type: Filled map

Location: State

• Color intensity: Sum of total_profit

• **Insight:** Visualizes geographic profit distribution, highlighting states where margins are strongest or weakest—critical for optimizing logistics routes and promotional campaigns.

4. Category & Discount Distribution

Type: Donut / pie chart with percentage labels

• Category slices: Product Category (Office Supplies, Furniture, Technology)

Slice size: Count of orders

• Color shading (inner ring): Discount brackets (e.g. 0–5%, 5–10%, >10%)

• **Insight:** Quickly shows which product categories dominate order volume and how different discount levels are applied across those categories—helping merchandising teams balance discount depth against sales uplift.

These visuals together form a **dynamic analytics dashboard** that empowers stakeholders to track sales trends, regional performance, profitability hotspots, and discount effectiveness—all updated daily by your automated ETL pipeline.

9.3 Theming & Layout

- Applied a **corporate blue** theme and set a **dark** report page background.
- Added date and region slicers to enable ad-hoc filtering.
- Arranged visuals on a single 16:9 canvas for executive review.

9.4 Publish & Share

• Saved the report as Superstore_Dashboard.pbit to include in the GitHub repo.

10. Conclusion & Next Steps

This Power BI dashboard completes the Superstore DataFlow project, delivering:

- Operational Metrics: Automated ETL keeps data current.
- Analytical Insights: Interactive visuals for revenue, profit, and product performance.
- **Business Value:** Enables supply chain and sales teams to monitor KPIs and drive data-led decisions.

Future enhancements could include real-time data streaming, advanced forecasting visuals, or integration with cloud data warehouses like Snowflake.