

Background

- The experiment involves immobilizing the enzyme invertase in calcium alginate beads for use in a packed bed reactor (PBR).
- Gel entrapment is used to immobilize the biocatalyst within a polymeric network without modifying its conformation.
- The beads are created by forcing the mixture of biocatalyst and polymeric solution through a fine orifice into a salt solution that causes insolubilization through ion exchange.
- The size and shape of the beads can be controlled by varying the orifice diameter and the distance of the nozzle from the liquid surface.
- Immobilized enzymes can provide high yield of immobilization and are useful in industrial applications.
- In this experiment, sucrose is used as the substrate, and alkaline DNS and 50mM sodium acetate buffer are used to perform kinetic characterization of the calcium alginate beads.
- The enzyme activity is calculated using standard curve based on absorbance readings taken at 540nm.

Procedure

- 1. The glass vessel was filled to ½ height with glass wool.
- 2. The prepared calcium alginate beads (40ml) were added to the vessel.
- 3. The vessel was then filled with glass wool.
- 4. The flow rate was adjusted to 2mL/min.
- 5. The input and output lines were connected, and the substrate was passed through the packed bed.
- 6. 50 μL samples were collected every 0, 10, 20, 30, 40, 50, and 60 minutes.
- 7. The kinetic characterization of the calcium alginate beads was performed as follows:
 - a. $200\mu L$ of alkaline DNS was added to the $50\mu L$ sample obtained from the reactor.
 - b. The mixture was incubated at 90oC for 5 minutes.
 - c. 200µL of 50mM acetate buffer at pH 4.8 was added to the mixture.
 - d. A blank sample without enzyme was prepared by adding sucrose, DNS, and acetate.
 - e. Absorbance readings were taken at 540nm, and enzyme activity was calculated using a standard curve.

Observation

Time	Abs
0 min	0.092
10 min	0.128
20 min	0.283
30 min	0.253
Dilution	100X

Enzyme activity calculation

Time (min)	Abs	ε (mM^-1 cm^-1	l (cm)	Df (C2 (mM)	ΔC (mM)	Δt (min)	Activity
C	0.092	2 14.2	2 1	100	0.648			
10	0.128	3 14.2	2 1	100	0.901	-0.25	10	-0.03
20	0.283	3 14.2	2 1	100	1.993	-1.09	10	-0.11
30	0.253	3 14.2	2 1	100	1.782	0.21	10	0.02

