

Document Identification		
Document Category	Training Material	
Document Revision Number		
Document Issue Date		
Document Status	Draft	
Document Title		
Document Identification	MBWTRG-TRM-XXX	

2. Related Documents

Related Documents	Document Identification

Amendments made to this document since the previous version are listed below. All amendments to this document have been made in accordance with CAE OAAM's document management procedure.

Slide	Changes

TYPES OF TURNS

Types of Turns

➤ Level Turns (turning whilst maintaining altitude) are classified according to the bank angle used:

➤ There are also climbing & descending turns. You will learn about these after mastering medium level turns

Types of Turns

- > There is also a Rate 1 turn which you will use extensively in IFR Flight
- ➤ A Rate 1 turn is one that takes 2 minutes to turn a full 360 degrees
- ➤ The angle of bank required for a rate 1 turn will vary depending on atmospheric conditions
- ➤ However, it may be approximated using the following formula:

AoB for Rate 1 Turn =
$$(IAS \div 10) + 7$$

BALANCE OF FORCES IN A CORRECTLY BALANCED LEVEL TURN

Balance of Forces – Level Turns

LOAD FACTOR

Load Factor

- ➤ Load Factor is expressed in terms of "g" force
- > S&L = 1g
- \triangleright 60° AoB = 2g

How To Calculate Load Factor

How To Calculate Load Factor

$$L_v = W$$

$$L > W (L = ?W)$$

$$\theta = AoB$$

$$\cos \theta = \frac{\text{Adjacent Side}}{\text{Hypotenuse Side}} = \frac{L_V}{L} = \frac{W}{L}$$

Example:

Load Factor in a 45° Turn Aircraft weighs 5000kg

$$\cos (45^{\circ}) = \frac{W}{L} = \frac{5000 \text{kg}}{I}$$

$$L = \frac{5000}{\cos^{-1} (45^{\circ})}$$

$$L = 7071kg$$

Load Factor =
$$\frac{L}{W} = \frac{7071 \text{kg}}{5000 \text{kg}} = 1.41 \text{g}$$

STALL SPEED

Load Factor

We have also seen that an increase in load factor increases the stall speed

 \triangleright Remember the formula: **New** V_S = **Old** V_S \times $\sqrt{Load Factor}$

Load Factor

As we have seen, any control input where we "pull" will increase the load factor or "g" we experience

Angle of	Vs
Bank	Increase (%)
30	7%
45	19%
60	41%
75	100%

 \triangleright This can be added to the lift equation: $L = C_1 \frac{1}{2} \rho v^2 S = nW$

TURN PERFORMANCE

Turn Performance

- ➤ When examining turn performance, we must consider:
 - 1. Radius of Turn
 - 2. Rate of Turn
- > An aircraft is maximising its turn performance when:
 - 1. The Radius of Turn is a minimum
 - 2. The Rate of Turn is a maximum

Turn Performance

What variables affect turning performance?

- ➤ Weight? X
- ➤ AoB? ✓
- > TAS?

Turn Performance - Weight

$$ightharpoonup$$
 Centripetal Force = $L_H = \frac{W v^2}{g r}$

$$\tan \theta = \frac{\text{Opposite Side}}{\text{Adjacent Side}} = \frac{L_H}{L_V} = \frac{\frac{W}{g} v^2}{V}$$

$$=\frac{v^2}{g r}$$

WEIGHT DOES NOT

affect centripetal acceleration

Therefore, **WEIGHT DOES NOT** affect rate

Turn Performance - TAS

- Constant Angle of Bank with changing TAS
 - An Aircraft in a 30° turn will travel a different path depending on its airspeed
 - At low TAS the turn will be tighter (the radius of the turn is smaller)
 than at high speed. The rate of turn will also be greater at low TAS
 - Weight will <u>NOT</u> affect turning performance unless you have to fly a greater TAS (not really relevant for light aircraft)
 - If you fly a turn at a given IAS at high altitude, the TAS (actual airspeed) will be greater at the higher altitude therefore the radius of the turn will be greater

Turn Performance - AoB

- Constant TAS with changing AoB
 - At a constant airspeed, the greater the bank angle, the tighter the turn (i.e. the smaller the radius)

As a result the rate of turn will be greater in degrees per second.

Turn Performance

- ➤ Effect of Altitude on Turning Performance
 - IAS = $\frac{1}{2}\rho V^2$
 - Increase ALT = Reduced density = Increased TAS = Increased radius
 of turn & decreased rate of turn

Turn Performance

- ➤ Effect of Power on Turning Performance
 - During a level turn, airspeed decreases slightly due to increased drag
 - If airspeed is to be maintained during the turn, an increase in power that produces an increase in thrust is required
 - Because the addition of power causes a higher airspeed, this will in turn decrease the rate of turn and increase the radius of turn

Turn Performance - Summary

- > Two variables control turn performance
 - Angle of Bank
 - TAS
- ➤ Increase in Angle of Bank decrease radius of turn, increase rate of turn
- Decrease Angle of Bank increase radius of turn, decrease rate of turn

- ➤ Increase TAS increase radius of turn, decrease rate of turn
- Decrease TAS decrease radius of turn, increase rate of turn
- Doubling the speed (TAS) = 4 x turn radius

RATE OF TURN

Rate of Turn

Rate of turn may be measured in degrees per second, or the number of seconds to turn trough 360°

Rate	Time to Complete 360°	Degrees/Second
Rate 1	2 minutes	3º/second
Rate 2	1 minute	6º/second
Rate 3	40 seconds	9º/second
Rate 4	30 seconds	12°/second

AoB for a Rate 1 Turn =
$$\frac{TAS}{10}$$
 +7

CLIMBING AND DESCENDING TURNS

Over Banking in a Climb

Higher speed and ↑ AoA on the outer wing creates more lift than the inner. Thus, an over banking tendency occurs. Some bank may have to be held off.

OUTBOARD WING INBOARD WING

Altitude Change

Distance Travelled

Over Banking in a Climb

In any turn, one wing must travel further (hence faster), therefore creating more lift – banking the aircraft further.

Counteract this tendency by using opposite aileron once established in the turn.

Under Banking in a Descent

The outer wing travels a greater distance while the inner wing has a greater AoA.

The increase AoA on the inner wing counteracts the over-banking tendency of the outer wing, and may lead to an under-banking tendency.

SLIPPING & SKIDDING

Slipping

- > Experienced when turning from upwind to downwind
- > Aircraft is pushed into the turn due to the wind
- > Bank should be reduced as you turn

When ground speed is highest, bank must be highest When ground speed is lowest, bank must be lowest

Skidding

- > Experienced when turning from downwind to upwind
- > Aircraft is pushed out of the turn due to the wind
- Bank should be increased as you turn

When ground speed is highest, bank must be highest When ground speed is lowest, bank must be lowest

AIRSPEED

Airspeeds

- - V_{S1} Stalling Speed with flaps and wheels <u>up</u> bottom of green arc
 - V_{so} Stalling Speed with flaps and wheels <u>down</u> bottom of white arc

- V_b Turbulence Penetration Speed
- ➤ V_{le} Maximum Landing Gear Extended Speed
- V_{fe} Maximum Flap Extended Speed top of the white arc

Airspeeds

Airspeeds - V_a

 V_a

Manoeuvring Speed or Maximum Control Deflection Speed

V_a <u>decreases</u> with an <u>decrease</u> in weight

Airspeeds - V_a

