Mathematical Data Science HW5

20180617 You SeungWoo

October 22, 2023

Problem 1

1) Solution. The below figure shows the convergence of the sample mean. Decreasing with the rate of $\frac{1}{\sqrt{N}}$.

2) Solution. Following histograms show the distribution of $\mu_M(N)$ with increasing M. We can check it becomes similar to a normal distribution as M goes to ∞ . Since the exact distribution is a uniform distribution from -1 to 1, $\mu_{\rm exact}=0$ and $\sigma_{\rm exact}=\sqrt{\frac{1}{3}}\simeq 0.577$. Here is the error.

From this, we can check that $\mu_M \simeq \mu_{\rm exact}$ and $\sigma_M \times 10 \simeq \sigma_{\rm exact}$. Note that the coefficient '10' comes from the sample size N=100.

3) Solution. From 2), we can check that σ_{exact} is related to N. i.e. $\sigma_M \propto \frac{1}{\sqrt{N}}$. Because of this, the error in 1) converges with rate $\frac{1}{\sqrt{N}}$. This is why the errors of the most trials decay with the rate of $\frac{1}{\sqrt{N}}$.

Problem 2

1) Solution. Here is the result. I use uniform samples for X_i . The below graph shows log-scale axis with number of samples versus errors. This graph has slope -1. i.e. The value $\alpha = -1$, rate of convergence is $O\left(\frac{1}{N}\right)$.

2) Solution. Here is the result. The blue dots represent $\mu_M(N)$ for each M and the orange line has slope $-\frac{1}{2}$. Note that this also has the similar log-scale axis. It shows that μ_M also converges, but not as fast as the above problem. Because it has the rate of convergence $O\left(\frac{1}{\sqrt{N}}\right)$.

