下推自动机

- 下推自动机
- 下推自动机接受的语言
 - 从终态方式到空栈方式
 - 从空栈方式到终态方式
- 下推自动机与文法的等价性
- 确定型下推自动机

下推自动机接受的语言

定义

 $PDA\ P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F),$ 以两种方式接受语言:

• P 以终态方式接受的语言, 记为 $\mathbf{L}(P)$, 定义为

$$\mathbf{L}(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (p, \varepsilon, \gamma), p \in F \}.$$

• P 以 $\overline{\text{CRK}}$ 接受的语言, 记为 $\overline{\text{N}}(P)$ 定义为

$$\mathbf{N}(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon) \}.$$

 $\mathcal{N}(P)$

续例 2. 识别 L_{wwr} 的 PDA P, 从终态方式接受, 改为空栈方式接受. 用 $\delta(q_1,\varepsilon,Z_0)=\{(q_1,\varepsilon)\}$ 代替 $\delta(q_1,\varepsilon,Z_0)=\{(q_2,Z_0)\}$ 即可.

$$0,0/00 \qquad 0,1/01 \qquad \varepsilon, Z_0/\varepsilon$$

$$1,0/10 \qquad 1,1/11 \qquad 0,0/\varepsilon$$

$$0,Z_0/0Z_0 \qquad 1,Z_0/1Z_0 \qquad 1,1/\varepsilon$$

$$\cot \longrightarrow q_0 \qquad \varepsilon,Z_0/Z_0 \qquad q_1 \qquad \varphi$$

$$\varepsilon,0/0 \qquad \varepsilon,1/1 \qquad \varepsilon,1/1$$

从终态方式到空栈方式

定理 25

如果 PDA P_F 以终态方式接受语言 L, 那么一定存在 PDA P_N 以空栈方式接受 L.

证明: 设 $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, 构造 PDA P_N ,

$$P_{N} = (Q \cup \{p_{0}, p\}, \Sigma, \Gamma \cup \{X_{0}\}) \delta_{N}, p_{0}, X_{0}) \varnothing).$$

$$\text{start} \longrightarrow P_{0} \underbrace{\varepsilon, X_{0}/Z_{0}X_{0}}_{P_{N}} \underbrace{q_{0}}_{Q_{0}} P_{F} \underbrace{q_{f}}_{Q_{f}} \underbrace{\varepsilon, Y/\varepsilon}_{\varepsilon, Y/\varepsilon} \underbrace{v_{Y}\varepsilon \Gamma \cup \{X_{0}\}}_{v_{Y}\varepsilon \Gamma \cup \{X_{0}\}} \underbrace{\varepsilon, Y/\varepsilon}_{v_{Y}\varepsilon \Gamma \cup \{X_{0}\}}$$

start
$$\longrightarrow p_0$$
 $\varepsilon, X_0/Z_0X_0$ q_0 P_F q_0 $\varepsilon, Y/\varepsilon$ $\varepsilon, Y/\varepsilon$ $\varepsilon, Y/\varepsilon$ $\varepsilon, Y/\varepsilon$ $\varepsilon, Y/\varepsilon$

其中 δ_N 定义如下:

$$lackbox{1}{P_N}$$
 首先将 P_F 的栈底符号压栈, 开始模拟 P_F :

$$\delta_N(p_0,\varepsilon,X_0) = \{(q_0,Z_0X_0)\};$$

② P_N 模拟 P_F 的动作: $\forall q \in Q, \ \forall a \in \Sigma \cup \{\varepsilon\}, \ \forall Y \in \Gamma$: $\delta_N(q, a, Y)$ 包含 $\delta_F(q, a, Y)$ 的全部元素:

$$Mq_f \in F$$
 开始弹出栈中符号, 即 $\forall q_f \in F$, $\forall Y \in \Gamma \cup \{X_0\}$: $\delta_N(q_f, \varepsilon, Y)$ 包含 (p, ε) ;

● 在状态 p 时, 弹出全部栈中符号, 即 $\forall Y \in \Gamma \cup \{X_0\}$: $\delta_N(p,\varepsilon,Y) = \{(p,\varepsilon)\}.$

$$v \in \Sigma$$

$$w \in \mathbf{L}(P_F) \Rightarrow (q_0, w, Z_0) \vdash_{P_F}^* (q_f, \varepsilon, \gamma)$$

$$(P_n)$$
 -

即 $\mathbf{L}(P_F) \subset \mathbf{N}(P_N)$.

 $\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_n}^* (q_f, \varepsilon, \gamma X_0)$

 $\Rightarrow (q_0, w, Z_0 X_0) \stackrel{*}{\vdash}_{R_{-\epsilon}} (q_f, \varepsilon, \gamma X_0)$

 $\Rightarrow w \in \mathbf{N}(P_N)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma X_0) \overline{\delta_N$ 构造 p_0 部分

定理23

 P_N 模拟 P_F

 δ_N 构造 q_f 和p部分

$yt \forall w \in \Sigma^*$ 有

$$\underline{w \in \mathbf{N}(P_N)} \Rightarrow (p_0, w, X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon)
\Rightarrow (p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0 X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon)
\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon)
\Rightarrow (q_0, w, Z_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma)
\Rightarrow (q_0, w, Z_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma)
\Rightarrow (q_0, w, Z_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma)
\Rightarrow w \in \mathbf{L}(P_F)$$

$$\Rightarrow (p_0, w, X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma)
\Rightarrow (q_0, w, Z_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma)
\Rightarrow w \in \mathbf{L}(P_F)$$

$$\Rightarrow (p_0, w, X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma)
\Rightarrow (p_0, w, Z_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma)
\Rightarrow (p_0, w, Z_0)$$

 $\mathbb{P} \mathbf{N}(P_N) \subseteq \mathbf{L}(P_F).$

所以
$$\mathbf{N}(P_N) = \mathbf{L}(P_F)$$
.

从空栈方式到终态方式

定理 26

如果 $PDA P_N$ 以空栈方式接受语言 L, 那么一定存在 $PDA P_F$ 以终态方式接受 L.

证明: 设 $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, \varnothing)$. 构造 PDA P_F ,

$$P_F = (Q \cup \{p_0, \overline{p_f}\}, \Sigma, \Gamma \cup \{X_0\}) \delta_F, p_0, X_0, \{p_f\})$$

start
$$\longrightarrow p_0$$
 $\varepsilon, X_0/Z_0X_0$ Q_0 P_N Q_j $\varepsilon, X_0/\varepsilon$ ε

其中 δ_F 定义如下:

$$P_F$$
 开始时,将 P_N 栈底符号压入栈,并开始模拟 P_N ,
$$\delta_F(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\};$$

$$P_F$$
 模拟 P_N , $\forall q \in Q$, $\forall a \in \Sigma \cup \{\varepsilon\}$, $\forall Y \in \Gamma$:

 $\delta_F(q,a,Y)=\delta_N(q,a,Y);$ **3** 在 $\forall q\in Q$ 时,看到 P_F 的栈底 X_0 ,则转移到新终态 p_F :

③ 在
$$\forall q \in Q$$
 时, 看到 P_F 的栈底 X_0 , 则转移到新终态 p_f :
$$\delta_F(q, \varepsilon, X_0) = \{(p_f, \varepsilon)\}.$$

$$w \in \Sigma$$

$$v \in \Sigma$$

 $\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q, \varepsilon, X_0)$

 $\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_{\mathcal{P}_{\mathcal{P}_{\mathcal{P}}}}}^* (q, \varepsilon, X_0)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_r}^* (p_f, \varepsilon, \varepsilon)$

 $\Rightarrow w \in \mathbf{L}(P_F)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_n} (q_0, w, Z_0 X_0) \vdash_{P_n}^* (q, \varepsilon, X_0)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_{-}}^* (q, \varepsilon, X_0) \vdash_{P_{-}} (p_f, \varepsilon, \varepsilon)$

定理23

 P_{F} 模拟 P_{N}

 δ_F 构造, p_0 部分

 δ_F 构造, p_f 部分

 $\mathbb{P} \mathbf{N}(P_N) \subset \mathbf{L}(P_F)$.

$yt \forall w \in \Sigma^*$ 有

$$w \in \mathbf{L}(P_F) \Rightarrow (p_0, w, X_0) \vdash_{P_F}^* (p_f, \varepsilon, \varepsilon)$$

$$\Rightarrow (p_0, w, X_0) \vdash_{P_F}^* (q, \varepsilon, X_0) \vdash_{P_F} (p_f, \varepsilon, \varepsilon) \qquad \qquad \text{经 } q \text{ 才 可达 } p_f$$

$$\Rightarrow (p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F}^* (q, \varepsilon, X_0) \qquad \qquad P_F \text{ 第一个动作}$$

$$\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_F}^* (q, \varepsilon, X_0) \qquad \qquad \text{即上式}$$

$$\Rightarrow (q_0, w, Z_0) \vdash_{P_N}^* (q, \varepsilon, \varepsilon) \qquad \qquad P_N \vdash X_0 \text{ £ £}$$

$$\Rightarrow w \in \mathbf{N}(P_N)$$

 $\mathbb{P} \mathbf{N}(P_F) \subseteq \mathbf{L}(P_N).$

所以
$$\mathbf{L}(P_F) = \mathbf{N}(P_N)$$
.

例 3. 接受 $L = \{w \in \{0,1\}^* \mid w \text{ 中字符 } 0 \text{ 和 } 1 \text{ 的 数量相同} \}$ 的 PDA.

例 4. 接受 $L = \{0^n 1^m \mid 0 \le n \le m \le 2n\}$ 的 PDA. (0 $1,0/\varepsilon$ $\varepsilon, Z_0/Z_0$ $\varepsilon, Z_0/\varepsilon$ start ε , 0/0 $1,0/\varepsilon$ (1,0/0) $0, Z_0/0Z_0$ 0,0/00-10~212 or - 10 × 111