

Consequência Lógica Lógica para computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

21 de maio de 2021

⁰Slides baseados no livro Lógica para Ciência da Computação¹.

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.

Introdução

Quando podemos dizer que uma fórmula é consequência de outra fórmula ou de um conjunto de fórmulas?

- Este é um dos temas mais estudados da lógica
- Diferentes respostas a essa pergunta podem gerar diferentes lógicas
- No caso da lógica proposicional clássica, a resposta é dada em termos de valoração

Definição

Dizemos que uma fórmula B é consequência lógica de uma outra fórmula A, representada por $A \models B$, se toda valoração que satisfaz A também satisfaz B.

Obs: Note que essa definição permite que B seja satisfeito por valorações que não satisfazem A. Nesse caso, dizemos que A implica logicamente B.

- Podemos usar as Tabelas Verdade para verificar a consequência lógica
- Por exemplo, considere a afirmação $(p \lor q) \to r \vDash p \to r$
- Para verificar se essa afirmação é verdadeira, construímos simultaneamente as Tabelas Verdade de $(p \lor q) \to r$ e $p \to r$
- Nesse caso, vemos que a fórmula $(p \lor q) \to r$ implica logicamente $p \to r$, pois toda linha da coluna $p \lor q \to r$ que contém 1 também contém 1 na coluna $p \to r$
- Além disso, para p e r falsos e q verdadeiro, temos 1 para p \to r e 0 para $(p \lor q) \to r$, o que é permitido pela definição

Segundo exemplo

Vamos tentar determinar se $(p \land q) \rightarrow r \vDash p \rightarrow r$ ou não

- ullet Novamente, construímos a tabela verdade simultânea para $(p \wedge q)
 ightarrow r$ e para p
 ightarrow r
- Concluímos que $(p \land q) \to r \not\models p \to r$ por causa da quinta linha, que satisfaz $(p \land q) \to r$ mas falsifica $p \to r$
- Além da consequência lógica entre duas fórmulas, podemos estudar quando uma fórmula
 A é consequência lógica de um conjunto de fórmulas Γ

Um conjunto de fórmulas é chamado de teoria, e essa definição nos permite dar um significa preciso para as consequências lógicas de uma teoria

Definição

Dizemos que uma fórmula A é a consequência lógica de um conjunto de fórmulas Γ , representado por $\Gamma \vDash A$, se toda valoração v que satisfaz a todas as fórmulas de Γ também satisfaz A

- Como exemplo da verificação desse tipo de consequência lógica, vamos verificar a validade da regra lógica conhecida por modus ponens, ou seja, $p \to q$, $p \models q$.
- Para tanto, construímos a Tabela Verdade
- ullet A única linha que satisfaz simultaneamente p o q e p é a última, e nesse caso temos também q satisfeita
- Podemos concluir a validade do modus ponens

Nessa altura, surge uma pergunta natural

Qual a relação entre a consequência lógica (\models) e o conectivo booleano da implicação (\rightarrow)?

A resposta para essa pergunta é dada pelo Teorema da Dedução

Teorema da Dedução

Sejam Γ um conjunto de fórmulas e A e B fórmulas. Então

$$\Gamma, A \vDash B \text{ sse } \Gamma \vDash A \rightarrow B$$

Vamos provar as duas partes do "se e somente se" separadamente

Demonstração

- Primeiro, assuma que Γ , $A \models B$
- Então, pela definição de consequência lógica, toda valoração que satisfaz simultaneamente
 Γ e A também satisfaz B
- Para mostrar que $\Gamma \vDash A \to B$, considere uma valoração v que satisfaz todas as fórmulas de Γ (notação: $\nu(\Gamma) = 1$)
- Vamos verificar que $v(A \rightarrow B) = 1$
- Para isso, consideramos dois casos:
 - v(A)=1. Nesse caso, como temos $\Gamma, A \models B$, temos necessariamente que v(B)=1 e, portanto, $v(A \rightarrow B)=1$
 - v(A)=0. Nesse caso, é imediato que $v(A \rightarrow B) = 1$

Portanto, concluímos que $\Gamma \vDash A \rightarrow B$

Demonstração

- Vamos assumir agora que $\Gamma \vDash A \to B$, ou seja, toda valoração que satisfaz Γ também satisfaz $A \to B$
- Para mostrar que $\Gamma, A \vDash B$, considere uma valoração v tal que $\nu(\Gamma) = \nu(A) = 1$
- Assuma, por contradição, que v(B)=0
- Nesse caso, temos que $v(A \to B) = 0$, o que contradiz $\Gamma \vDash A \to B$
- Logo, v(B) = 1 e provamos que $\Gamma, A \vDash B$, como desejado

O teorema de dedução nos diz que $A \to B$ é consequência lógica das hipóteses Γ se, e somente se, ao adicionarmos A às hipóteses, podemos inferir logicamente B. Dessa forma, a noção de implicação lógica e o conectivo implicação estão totalmente relacionados.

Além da consequência lógica, também podemos considerar a equivalência lógica entre duas fórmulas

Definição

Duas fórmulas A e B são logicamente equivalentes, representado por $A \equiv B$, se as valorações que satisfazem A são exatamente as mesmas valorações que satisfazem B. Em outras palavras, $A \equiv B$ se $A \models B$ e $B \models A$.

Para verificarmos a equivalência lógica de duas fórmulas A e B, construímos uma Tabela Verdade simultânea para A e B e notamos se as colunas de A e B são idênticas.

Exemplo

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$
?

Existem várias equivalências notáveis entre fórmulas, dentre as quais destacamos as seguintes

Equivalências notáveis

- $\neg \neg p \equiv p$
- $p \rightarrow q \equiv \neg p \lor q$
- $\neg (p \land q) \equiv \neg p \lor \neg q$
- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Ao definirmos a linguagem da lógica proposicional, apresentamos três símbolos binários: \land, \lor e \rightarrow . Na realidade, precisamos apenas da negação e de um deles para definir os outros dois. Nesse exemplo, vamos ver como definir \lor e \rightarrow em função de \land e \neg

Definição de \lor e ightarrow em função de \land e \lnot

- $A \vee B \equiv \neg(\neg A \wedge \neg B)$;
- $A \rightarrow B \equiv \neg (A \land \neg B)$

Também é possível usar como básicos o par \vee e \neg , ou o par \rightarrow e \neg e definir os outros conectivos binários em função deles.

Por fim, podemos definir o conectivo \leftrightarrow da seguinte maneira

Equivalência

$$A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$$

A fórmula $A \leftrightarrow B$ possui a seguinte tabela verdade

Próxima Aula

O que vem por aí?

Sistemas dedutivos

Consequência Lógica Lógica para computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

21 de maio de 2021

⁰Slides baseados no livro Lógica para Ciência da Computação².

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.