Experiment No. 04

Name of the experiment: Construct and test various adder and subtractor circuits.

Objective: To realize the adder and subtractor circuits using basic gates and universal gates

To realize full adder using two half adders.

To realize a full subtractor using two half subtractors.

Components Required:

IC 7400, IC 7408, IC 7486, IC 7432, Patch Cords & IC Trainer Kit.

Theory:

<u>Half-Adder:</u> A combinational logic circuit that performs the addition of two data bits, A and B, is called a half-adder. Addition will result in two output bits; one of which is the sum bit, S, and the other is the carry bit, C. The Boolean functions describing the half-adder are:

$$S = A \oplus BC = AB$$

<u>Full-Adder:</u> The half-adder does not take the carry bit from its previous stage into account. This carry bit from its previous stage is called carry-in bit. A combinational logic circuit that adds two data bits, A and B, and a carry-in bit, Cin, is called a full-adder. The Boolean functions describing the full-adder are:

$$S = (x \oplus y) \oplus Cin C = xy + Cin (x \oplus y)$$

<u>Half Subtractor:</u> Subtracting a single-bit binary value B from another A (i.e. A -B) produces a difference bit D and a borrow out bit B-out. This operation is called half subtraction and the circuit to realize it is called a half subtractor. The Boolean functions describing the half Subtractor are:

$$S = A \oplus B C = A' B$$

<u>Full Subtractor</u>: Subtracting two single-bit binary values, B, Cin from a single-bit value A produces a difference bit D and a borrow out Br bit. This is called full subtraction. The Boolean functions describing the full-subtractor are:

$$D = (x \oplus y) \oplus Cin Br = A'B + A'(Cin) + B(Cin)$$

Truth Table& Logic Diagram: To realize Half Adder

TRUTH TABLE

	INP	UTS	OUTPUTS		
	A	В	S	C	
	0	0	0	0	
	0	1	1	0	
	1	0	1	0	
1	1	1	0	1	

BOOLEAN EXPRESSIONS:

S=A ⊕ B C=A B

i) Basic Gates

ii) NAND Gates

Full Adder:

TRUTH TABLE

INPUTS			OUTPUTS	
A	В	Cin	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

BOOLEAN EXPRESSIONS:

 $S = A \oplus B \oplus C$

C=A B + B Cin + A Cin

Half Subtractor:

TRUTH TABLE

INP	INPUTS		OUTPUTS		
A	В	D	Br		
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		

BOOLEAN EXPRESSION

$$\mathbf{D} = \mathbf{A} \oplus \mathbf{B}$$

$$\mathbf{Br} = \bar{\mathbf{A}} B$$

Full subtractor:

TRUTH TABLE

BOOLEAN EXPRESSIONS:

	D= A	⊕ 1	B ⊕	C
$Br = \bar{A}$	B + B	Cin	$+ \bar{A}$	Cin

INPUTS			OUTPUTS	
A	В	Cin	D	Br
0	0	0	0	0
0	O	1	1	1
0	1	0	1	1
0	1	1	О	1
1	0	О	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Procedure:

- 1. Check the components for their working.
- 2. Insert the appropriate IC into the IC base.
- 3. Make connections as shown in the circuit diagram.
- 4. Provide the input data via the input switches and observe the output on output LEDs

Discussion:

The adder is divided in to types full and half adder the half adder add two bit numbers and the full adder add two bits and a carry.

The subtractor is also divided into half and full were the half subtract two bits and the full subtract two bits and a borrow.