普通高等教育"十一五"国家级规划教材 教育部2011年精品教材

> 网络安全—技术与实践 (第2版) 刘建伟 王育民 编著 清华大学出版社

课件制作人声明

- 本课件总共有17个文件,版权属于刘建伟所有,仅供选用此教材的教师和学生参考。
- 本课件严禁其他人员自行出版销售,或未经 作者允许用作其他社会上的培训课程。
- 对于课件中出现的缺点和错误,欢迎读者提出宝贵意见,以便及时修订。

课件制作人: 刘建伟 2016年04月05日

单钥加密体制(第1讲)

- 基本概念
 - 宫 密码分析
 - 三 密码学历史
 - 四,古典密码
- 五 传统密码学(对称算法)
- DES数据加密标准

单钥加密体制(第1讲)

- 基本概念
 - 三 密码分析
 - 三 密码学历史
 - 四古典密码
 - 五 传统密码学(对称算法)
- **DES数据加密标准**

明文	→需要秘密传送的消息。	
密文	➡明文经过密码变换后的消息。	
加密	→由明文到密文的变换	
解密	→从密文恢复出明文的过程。	
破译	→对明文进行加密时采用的一组规则。	
加密算法	→对密文进行解密时采用的一组规则。	
解密算法	→从密文恢复出明文的过程。	

▶加密和解密时使用的一组秘密信息。

密钥

1、密码系统组成

- 一个密码系统可以用以下数学符号描述:
 - $S = \{M, C, K, E, D\}$
 - ullet 明文消息空间M:由字母、数字组成的串集
 - ullet 密文消息空间C:可能的密文消息集
 - 密钥生成算法 ζ : $N \rightarrow K \times K$
 - ullet 加密密钥空间K: 可能的加密密钥集
 - ullet 解密密钥空间K': 可能的解密密钥集
 - 加密算法 $E: M \times K \rightarrow C$
 - 解密算法 $D: C \times K' \rightarrow M$
 - \forall 整数1^l, ζ (1^l)输出长为1的密钥对(k_e , k_d)∈ $K \times K$
 - $\forall m \in M, c \in C$ $c = E_{ke}(m)$ $m = D_{kd}(c) = D_{kd}(E_{ke}(m))$

2、密码体制的分类

- 若k_e=k_d,则加密算法称为:单钥体制(对称加密体制) 或私钥加密体制);
- 若 $k_e \neq k_d$,则加密算法称为双钥体制(非对称加密体制,或公钥加密体制)。

3、单钥体制的分类

→ 对于单钥加密体制,可以按照其加密/解密运算的特点,分为流密码(Stream Cipher)和分组密码(Block Cipher)

流密码:数据逐比特加密,即数据流与密钥流逐 比特进行异或(XOR)运算;

分组密码:对数据分组进行处理。

密码学基本概念小结

单钥加密体制(第1讲)

- 宫 密码分析
- 三 密码学历史
- 四 古典密码
- (五) 传统密码学(对称算法)
- **DES数据加密标准**

- ➡ 试图破译单条消息
- ➡ 试图识别加密的消息格式,以便借助直接的解密算法 破译后续的消息
- ➡ 试图找到加密算法中的普遍缺陷(无须截取任何消息)

1、密码分析的条件与工具

已知加密算法

语言特性

计算机

截取到明文、密文中已知或推测的数据项

数学或统计工具和技术

技巧与运气

2、密码分析类型

攻击类型	密码破译者已知的东西
唯密文	● 加密算法
	● 待破译的密文
已知明文	● 加密算法
	● 待破译的密文
	● 由密钥形成的一个或多个明文一密文对
选择明文	● 加密算法
	● 待破译的密文
	● 由破译者选择的明文消息,连同对应的由密 <u>钥</u> 生成的密文
选择密文	● 加密算法
	● 待破译的密文
	● 由破译者选择的猜测性密文,连同它对应的由密 <u>钥</u> 生成的已破译明文
选择文本	● 加密算法
	● 待破译的密文
	● 由破译者选择的明文消息,连同对应的由密 <u>钥</u> 生成的密文
	● 由破译者选择的猜测性密文,连同它对应的由密钥生成的已破译明文

- ○3、加密方案的安全性
 - ▶ 无条件安全: 无论提供多少密文,若密文中所包含的信息不足以唯一地决定对应的明文,那么该密码体制就是无条件安全的。
 - 除了一次一密(one-time padding)的方案外,没有无条件安全的 其他算法。
 - 安全性体现在
 - ➡ 破译的成本超过加密信息的价值
 - ➡ 破译的时间超过该信息有用的生命周期

○4、攻击的复杂性决定了密码算法的安全性

数据复杂性 (data complexity)

▶用作攻击输入所需要的数据

处理复杂性 (processing complexity)

→完成攻击所需要的时间

存储需求 (storage requirement)

▶进行攻击所需要的数据量

5、密钥搜索所需平均时间

	密钥长度 (bit)	密钥数量	每微秒加密 1 次所需时间	每微秒加密 100 万次所需时间
,	32	$2^{32}=4.3x10$	2 ³¹ us=35.8 minutes	2.15ms
	56	$2^{56}=7.2x10$	¹⁶ 2 ⁵⁵ us=1142year	rs 10.01 hours
	128	$2^{128}=3.4x10$	$2^{127}us=5.4x10^2$ years	5.4x10 ¹⁸ years
	26 character (permutation	$7.26! = 4x10^{4}$	2x10 ²⁶ us=6.4x10 years	0 ¹² 6.4x10 ⁶ years

6、常用对称加密算法

DES: 第一代数据加密标准, 因密钥长度太短已经弃用。

3DES:对数据用三个不同的密钥进行三次加密,强度更高。

AES: 下一代的加密算法标准,速度快,安全级别高。

AES与3DES的比较

算法名称	算法类型	密钥长度	速度	解密时间 (每秒尝试 255个密钥)	资源消耗
AES	对称block密码	128、192、 - 256位	高	1490000亿年	低
3DES	对称feistel密码	112位或 168位	低	46亿年	中

7、常用非对称加密算法

RSA: 基于大整数因子分解问题的公钥密码算法

ECC: 基于椭圆曲线上离散对数计算问题的公钥密码算法

RSA与ECC的安全性和速度比较

攻破时间 (MIPS年)	RSA密钥长度	ECC密钥长度	RSA/ECC 密钥长度比
10^4	512	106	5:1
10^{8}	768	132	6:1
10^{11}	1024	160	7:1
10^{20}	2048	210	10:1
10^{78}	21000	600	35:1

单钥加密体制(第1讲)

- 基本概念
 - 密码分析
 - 三 密码学历史
- 四 古典密码
- 50 传统密码学(对称算法)
- DES数据加密标准

三、密码学的历史

▶ 密码学的演进

单表代替一>多表代替一>机械密(恩格玛)一>现代密码学 (对称与非对称密码体制)一>量子密码学

- ▶ 密码编码学和密码分析学
- ▶ 应用领域
- ▶ 军事、外交、商业、通信。

三、密码学的历史

Phaistos圆盘,一种直径约为160mm的Cretan-Mnoan粘土圆盘,始于公元前17世纪。表面有明显字间空格的字母,至今还没有破解。

三、密码学的历史

20世纪早期密码机

Hagelin CX-52

单钥加密体制(第一讲)

- 基本概念
 - 宫 密码分析
 - 三 密码学历史
 - 四古典密码
- 50 传统密码学(对称算法)
- 方 DES数据加密标准

1、古典密码学

- ▶ 已经成为历史,但被传统密 码学所借鉴;
- ▶ 加解密都很简单,易被攻破;
- ▶ 属于对称密码体制;
- ◆ 包括置换密码、单表代换密码、多表代换密码等。

2、古典密码的种类

- ▶ 置换密码
 - ▶ 用加密置换去对消息进行加密
- ▶ 代换密码
 - ▶ 明文中的字母用相应的密文字母 进行替换
 - ◆ 单表代换密码
 - ◆ 多表代换密码
- ▶ 多表密码

●3、古典密码——代换密码

▶ 单表代换密码举例

明文: a b c d e f g h i j k l m n o p q r s t u v w x y z 密文: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

- → m = "Caser cipher is a shift substitution"
- → c = "FDVHU FLSHU LV D VKLIW VXEVWLW XWLRO"

4、古典密码——置换密码

- ➡ 用加密置换去对消息进行加密
- ▶ 举例:
 - \bullet E = (1, 2, 3, 4)
 - \rightarrow D = (2, 1, 4, 3)
 - ▶ M = "置换密码"
 - ▶ C = E(M) = "换置码密"

5、古典密码——多表密码

维吉尼亚密码是多表密码中最知名的密码。令密钥串是gold,利用编码规则A=0, B=1, C=2, ..., Z=25。这个密钥串的数字表示是: (6, 14, 11, 3)。设明文为: proceed meeting as agreed

15	17	14	2	4	4	3	12	4	4	19
6	14	11	3	6	14	11	3	6	14	11
21	5	25	5	10	18	14	15	10	18	4

8	13	6	0	18	0	6	17	4	4	3
3	6	14	11	3	6	14	11	3	6	14
11	19	20	11	21	6	20	2	7	10	17

密文为: vfzfkso pkseltu guchkr

注意: 模数=26

单钥加密体制(第一讲)

- 基本概念
 - 密码分析
 - 三 密码学历史
- 四古典密码
- **五** 单钥密码体制(对称加密体制)
- 方 DES数据加密标准

●1、对称加密体制

- 历史悠久,最古老与最现代的密码学
- 基本特点:加密和解密采用同一个密钥,所以 又被称为对称密码体制。

let C = Cipher text, P = Plain text, k is key, E()/D() is the encryption/decryption function, then C=E(P, k), P=D(C, k)

● 基本技术

替换、置换和移位

2、对称密钥体制的加密过程

对称密码技术又称单钥密码技术,即同用一个密钥去加密和解密数据。

单钥密码技术 要求通信双方 事先交换密钥。 在实际应用中, 商户需要与成 千上万的购物 者进行交易, 若采用单钥密 码技术, 商户 需要管理成千 上万个不同对 象通信的密钥。

双方如何交换密钥。通过传统手段,还是通过因特网,都会遇到 密钥传送的安全性问题。

- 4、对称算法设计标准
 - ▶算法必须提供较高的安全性;
 - ➡算法必须完全确定且易于理解;
 - ➡算法的安全性必须依赖于密钥,而不应依赖于算法;
 - ▶算法必须对所有用户都用效。

- ▶算法必须适用于各种应用;
- ➡用以实现算法的电子器件必须很经济;
- ▶算法必须能有效使用;
- ▶算法必须是可逆的运算。

单钥加密体制(第1讲)

- 基本概念
 - 密码分析
 - 三 密码学历史
 - 四古典密码
 - 50 传统密码学(对称算法)
- DES数据加密标准

六、DES数据加密标准

1、Shannon的密码设计思想

- 扩散(diffusion)
 将明文及密钥的影响尽可能迅速地散布到较多个输出的密文中(将明文冗余度分散到密文中)。
 产生扩散的最简单方法是通过"置换(Permutation)"
 (比如:重新排列字符)。
- 混淆(confusion)
 其目的在于使作用于明文的密钥和密文之间的关系复杂化,是明文和密文之间、密文和密钥之间的统计相关特性极小化,从而使统计分析攻击不能奏效。通常的方法是"代换(Substitution)"。

六、DES数据加密标准

- ●2、分组密码的设计要求
 - 1 分组长度足够大(≥128~256比特)
 - 密钥量要足够大(≥128~192~256比特)
 - 3 算法足够复杂(包括子密钥产生算法)
 - 4 加密、解密算法简单,易软、硬件实现
 - 5 便于分析(破译是困难的,但算法却简洁清晰)

●3、分组密码——DES数据加密标准

- 数据加密标准(Data Encryption Standard),40年历史;
- DES是一种对称密码算法,源自IBM公司 于1970年开发的Lucifer算法,1976年11月 23日DES被采纳为美国联邦标准;
- DES是第一个得到广泛应用的密码算法, 满足対合特性;
- DES是一种分组加密算法,输入的明文分组长度为64位,密钥为56位,生成的密文分组长度为64位;

DES的运算共有3个

1、对输入分组进行固定的"初始置换"IP运算,可以将这个置换表示为: $(L_0, R_0) \leftarrow IP(InputBlock)$

注意:这里 L_0 和 R_0 称为左、右半分组,各为32比特。IP是固定的、公开的函数。上述这个过程实际上为"扩散(Diffusion)"。

2、迭代运算,即将下面的运算迭代16轮:

$$L_i \leftarrow R_{i-1}$$

$$R_i \leftarrow L_{i-1} \oplus f(R_{i-1}, k_i)$$

注意:这个过程就是香农信息论中的"混淆(Confusion)"。

3、将16轮迭代后得到的结果 (L16, R16)输入到IP的逆置 换IP-1中:

 $OutputBlock \leftarrow IP^{-1}(R_{16}, L_{16})$

注意:

- DES算法的加密和解密运算均采用这3个步骤。
- 如果加密时使用的轮密钥次序为k1, k2, ..., k16, 那么当解密时使用的密钥次序为: k16, k15, ..., k1。
- DES采用Feistel网络结构。Feistel 密码结构是一种对称结构,满足对合性。采用此结构的密码,其好处是加解密可以使用同一个芯片。

DES数据加密标准——基本算法

初始置换IP

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

设明文64bits数据为下表

\mathbf{M}_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8
M_9	M_{10}	M_{11}	M_{12}	M_{13}	M_{14}	M_{15}	M_{16}
M_{17}	M_{18}	M_{19}	M_{20}	M_{21}	M_{22}	M_{23}	M_{24}
M_{25}	M_{26}	M_{27}	M_{28}	M_{29}	M_{30}	M_{31}	M_{32}
M_{33}	M_{34}	M_{35}	M_{36}	M_{37}	M_{38}	M_{39}	M_{40}
M_{41}	M_{42}	M_{43}	M_{44}	M_{45}	M_{46}	M_{47}	M_{48}
M_{49}	M_{50}	M_{51}	M_{52}	M_{53}	M_{54}	M_{55}	M_{56}
M_{57}	M_{58}	M_{59}	M_{60}	M_{61}	M_{62}	M_{63}	M ₆₄

经过初始置换IP后变为

M_{58}	M_{50}	M_{42}	M_{34}	M_{26}	M_{18}	M_{10}	M_2
M_{60}	M_{52}	M_{44}	M_{36}	M_{28}	M_{20}	M_{12}	M_4
M_{62}	M_{54}	M_{46}	M_{38}	M_{30}	M_{22}	M_{14}	M_6
M_{64}	M_{56}	M_{48}	M_{40}	M_{32}	M_{24}	M_{16}	M_8
M_{57}	M_{49}	M_{41}	M_{33}	M_{25}	M_{17}	M_9	\mathbf{M}_1
M_{59}	M_{51}	M_{43}	M_{35}	M_{27}	M_{19}	M_{11}	M_3
M_{61}	M_{53}	M_{45}	M_{37}	M_{29}	M_{21}	M_{13}	M_5
M_{63}	M ₅₅	M_{47}	M_{39}	M_{31}	M_{23}	M_{15}	M_7

逆初始置换IP-1

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

经过逆初始置换IP-1后变为

\mathbf{M}_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8
M_9	M_{10}	M_{11}	M_{12}	M_{13}	M_{14}	M_{15}	M_{16}
M_{17}	M_{18}	M_{19}	M_{20}	M_{21}	M_{22}	M_{23}	M_{24}
M_{25}	M_{26}	M_{27}	M_{28}	M_{29}	M_{30}	M_{31}	M_{32}
M_{33}	M_{34}	M_{35}	M_{36}	M_{37}	M_{38}	M_{39}	M_{40}
M_{41}	M_{42}	M_{43}	M_{44}	M_{45}	M_{46}	M_{47}	M_{48}
M_{49}	M_{50}	M_{51}	M_{52}	M_{53}	M_{54}	M_{55}	M_{56}
M ₅₇	M_{58}	M_{59}	M_{60}	M_{61}	M_{62}	M_{63}	M ₆₄

DES数据加密标准——1轮的加密过程

DES数据加密标准——S盒和P盒

DES数据加密标准——8个S盒

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
C	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
S_1	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
S -	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
S_2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
S_3	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

DES数据加密标准——8个S盒

	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
C	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
S_4	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
C	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
S_5	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
S_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

DES数据加密标准——8个S盒

	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
S_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
<i>3</i> 7	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES数据加密标准——P盒与S盒的密码学意义

S盒的作用是混淆(Confusion),主要增加明文和密文之间的复杂度(包括非线性度等)。DES的安全性直接取决于S盒的安全性。

P盒的作用是扩散(Diffusion),目的是让明文和密钥的影响迅速扩散到整个密文中。即一位的明文或密钥的改变会影响到密文的多个比特。

S盒和P盒的作用体现了Shannon的扩散和混淆的 密码设计思想。

DES数据加密标准——安全性分析

1997年1月28日,美国RSA公司 悬赏10000美元破译DES。美国程序 员RockeVerser用140天破译成功。 从此宣布了 DES时代的终结。

2008年SciEngines公司的Rivyera将破解DES的时间缩减到1天以内,并一直保持着暴力破解DES的记录。

因此必须设计新一代的数据加密 标准来替代DES。

推出新的更安全的数据加密标准

DES加密的一个例子

- ➤ 取16进制明文X: 0123456789ABCDEF
- \triangleright 应用IP, 我们得到: L_0 = 110011000000000001100110011111111 R_0 = L_1 =1111000010101010111110000101010
- 然后进行16轮加密。 最后对L₁₆, R₁₆使用IP⁻¹
- ➤ 加密输出得到密文: 85E813540F0AB405

思考题

- ▶ 什么是对称加密体制?
- ◆ 什么是非对称加密体制?
- ▶ 根据对明文数据的处理方式不同,对称加密体制又可以分为哪两类算法?
- 非对称密码体制是分组加密算法吗?
- ▶ DES算法中的IP置换的作用是什么?
- ▶ DES算法中16轮迭代运算的作用是什么?
- → 什么是算法的对合性?DES为什么要满足对和的性质?
- ◆ 数据的安全性是否取决于密码算法的保密?

谢谢!