

Sharif University of Technology

Department of Computer Engineering

Low Power Digital System Design

Circuit-Level Techniques (Cont.)

A. Ejlali

Input reordering at the circuit level

- Exhaustive enumeration method
 - All possible orders are checked to determine the best input ordering.
 - Simulation
 - Analytical methods
 - Suitable for a gate with a small number of transistors.
- Heuristic reordering method
 - Deducing reordering rules from the relationship of input characteristics to power consumption.
 - It does not provide the best solution.
 - Suitable for a gate with a large number of transistors.

Activity of an Internal Node

All Possible Input Values				Impact on Cint
A _n	B _n	A_{n+1}	\mathbf{B}_{n+1}	
0	0	0	0	-
0	0	0	1	Cond. Discharge
0	0	1	0	Cond. Charge
0	0	1	1	Cond. Discharge
0	1	0	0	-
0	1	0	1	-
0	1	1	0	Charge
0	1	1	1	-
1	0	0	0	-
1	0	0	1	Discharge
1	0	1	0	-
1	0	1	1	Discharge
1	1	0	0	-
1	1	0	1	-
1	1	1	0	Charge
1	1	1	1	-

$$P(C_{\text{int}} 1 \to 0) = P(A_1) \cdot P(B_{01}) + P(A_0) \cdot P(B_{01}) \cdot P(C_{\text{int}} : 1)$$

$$P(C_{\text{int}} 0 \to 1) = P(A_1) \cdot P(B_{10}) + P(A_{01}) \cdot P(B_{00}) \cdot P(C_{\text{int}} : 0)$$

Activity of an Internal Node

$$P(C_{\text{int}} 1 \rightarrow 0) = P(A_1) \cdot P(B_{01}) + P(A_0) \cdot P(B_{01}) \cdot P(C_{\text{int}} : 1)$$

$$\square$$
Dominant Factor

$$P(C_{\text{int}} \ 0 \to 1) = P(A_1) \cdot P(B_{10}) + P(A_{01}) \cdot P(B_{00}) \cdot P(C_{\text{int}} : 0)$$

Dominant Factor

- Why is $P(A_1)P(B_{01})$ the dominant factor?
 - In general, the probability of joint events decreases as the number of the individual events increases.
- Heuristic reordering method is used to reduce the dominant factor.

Heuristic Reordering Method

- Objective: minimize $P(A_1)P(B_{01})$
 - Note:
 - A: Placed nearest the output
 - B: Placed nearest the supply node
- Rules for input ordering (transistor ordering):
 - Signals with a high probability of switching are placed nearest the output.
 - Signals with a low probability of switching are placed nearest the supply node.
 - Signals with a high probability of being off are placed nearest the output.
 - Signals with high probability of being on are placed nearest the supply node.

Heuristic Reordering Method

• Note: Input reordering at the circuit level does not have any impact on the switching activity of a logic gate output.

• Efficiency of the heuristic reordering method: an average 10% saving in power was found between the worst and best orderings.