Repositorio en C++

Universidad de la Amazonia, Colombia.

21 de agosto de 2023

1. Formulas, tablas y secuencias

1.1. Formulas

PERMUTACIÓN Y COMBINACIÓ	N
Combinación (Coeficiente Binomial): Número de subconjuntos de k elementos escogidos de un conjunto con n	$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$
Combinación con repetición: Número de grupos formados por n elementos, partiendo de m tipos de elementos.	$\binom{m+n-1}{n} = \frac{(m+n-1)!}{n!(m-1)!}$
Permutación: Número de formas de agru- elementos, donde importa el orden y sin re elementos	1 11
Permutación múltiple: Elegir r elementos posibles con repetición	de n n^r
Permutación con repetición: Se tienen n ele tos donde el primero se repite a veces, el seg b veces, etc.	1 " alblal
Permutaciones sin repetición: Número de fo de agrupar r elementos de n disponibles, s petir elementos.	1 (n-r)
CIRCUNFERENCIA Y CÍRCULO	
Considerando r como el radio, α como el a (R, r) como radio mayor y menor respecti	

Continúa en la siguiente columna

Área	$A = \pi * r^2$	Longitud	$L = 2 * \pi * r$	
Longitud de un arco	$L = \frac{\pi * r * \alpha}{180}$	Área sector circular	$A = \frac{\pi * r^2 * \alpha}{360}$	
Área corona circular	$A = \pi (R^2 - r^2)$	Formula ge- neral	$(X - P_x)^2 + (Y - P_y)^2 = r^2$	
TRIÁNGUL	0			
	d de la base, h la altura, gulos, y r el radio de las		· ·	
Área con base y altura	_	ángulo	$A = \frac{1}{2}b * a * sin(C)$	
Área con los 3 lados	$A = \sqrt{p(p-a)(p-b)}$	$\overline{(p-c)} \operatorname{con} p = 0$	$\frac{a+b+c}{2}$	
Triangulo equilátero	$A = \frac{\sqrt{3}}{4}a^2$	Triángulo circunscrito a circunferen- cia	$A = \frac{abc}{4r}$	
Triángulo inscr	ito a circunferencia	$A = r(\frac{a+b+c}{2})$		
TRIGONOM	IÉTRIA			
Ley de los seno opuesto al lado	os, con γ el angulo c	$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$		
Ley de los coser opuesto al lado	$\cos, \cos \gamma$ el angulo c	$c^2 = a^2 + b^2 - a^2 + b^2 + a^2 + b^2 + a^2 + a^2 + b^2 + a^2 $	$2ab*\overline{cos(\gamma)}$	

Continúa en la siguiente columna

PROPIEDAI	DES DEL MÓDULO	(RES	SIDUO)		
Neutra	(a%b)%b = a%b				
Suma	(a+b)%c = ((a%c) + (b%c))%c				
Resta	(a-b)%c = ((a%c) -	(a-b)%c = ((a%c) - (b%c) + c)%c			
Multiplicación	(a*b)%c = ((a%c)*((b%c))	%c		
FIGURAS					
Cono	A = PI * r * h		$V = \frac{1}{3} * PI * r^2 * h$		
Cilindro	A = 2 * PI * r * (r + h)	.)	$V = PI * r^2 * h$		
Esfera	$A = 4 * PI * r^2$		$V = \frac{4}{3} * PI * r^3$		
Cuadrilatero	A = 0.5 * a * d * sin(ang)	q(a,d)	+0.5*b*c*sin(ang(b,c))		
Cuadrilatero	$S = (a+b+c+d)/2 A = \sqrt{(S-a)(S-b)(S-c)(S-d)} = 0$				
Poligonos reg					
Area	$A = \frac{P*apotema}{2}$	$A = \frac{1}{2}$	$\frac{n*r*r*\sin(\alpha)}{2} \qquad \alpha = \frac{2*\pi}{n}$		
Apotema	$a = \frac{L}{2*\tan(\pi/n)}$		$a = R * \cos(\pi/n)$		
Sagita	$s = \frac{L}{\sin(\pi/n)} * \sin^2(\frac{\pi}{2*n})$)	$\frac{n*r*r*\sin(\alpha)}{2} \qquad \alpha = \frac{2*\pi}{n}$ $a = R*\cos(\pi/n)$ $s = 2*R*\sin^2(\frac{\pi}{2*n})$		
Formulas ext					
Formula de nu nacci	imeros fibo- $f(n) = \frac{1}{\sqrt{n}}$	$\frac{1}{\sqrt{5}} * [(\frac{1}{2})]$	$(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n$		
Formula de fi matrices	bonacci con $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^b$	$=\begin{bmatrix}fi \\ & \end{bmatrix}$	$ \begin{array}{c c} ib(b+1) & fib(b) \\ fib(b) & fib(b-1) \end{array} $ $ \begin{array}{c c} 1)d & \sum_{i=1}^{n} a_i = n \frac{a_1 + a_n}{2} \end{array} $		
Progresión arit d la diferencia	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\overline{(n-}$	1) d $\sum_{i=1}^{n} a_i = n \frac{a_1 + a_n}{2}$		

mero inicial

Continúa en la siguiente columna

Progresión geométrica, Sea r la razón y a_1 el numero inicial	$a_n = a_1 * r^{n-1}$ $\sum_{i=1}^n a_i = a_1 * \frac{r^{n-1}}{r-1}$ $\sum_{i=1}^\infty a_i = \frac{a_1}{1-r}$
Distancia de un punto a una una recta con la forma: $ax + y$ un punto p (px, py)	$-by+c$ $\sqrt{a^2+b^2}$
Ecuación de la recta que pa dos puntos, $y = mx + b$	sa por $\left \frac{x - x_1}{x_2 - x_1} \right = \frac{y - y_1}{y_2 - y_1}$
Ecuación del plano que pa- sa por 3 puntos, resolver la determinante.	$\begin{vmatrix} X - x_1 & Y - y_1 & Z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$
Teorema de Erdős–Gallai, una lista de enteros $d_1 \ge$ $\ge d_n$ puede ser una se- cuencia de grados de un grafo si:	Para cada k $1 \le k \le n$ $\sum_{i=1}^{k} d_i \le k(k+1) + \sum_{i=k+1}^{n} \min(d_i, k)$
Área de un polígono en el plano cartesiano a partir de sus vértices	$S = x_1 y_2 + x_2 y_3 + \dots + x_n y_1$ $D = x_2 y_1 + x_3 y_2 + \dots + x_1 y_n$ $A = \frac{1}{2} S - D $
Cadenas de markov	$E(i) = 1 + \sum_{j=0}^{n-1} p[i][j] * E(j)$
Teorema de Euler	El menor k tal que $a^k \equiv 1 \% n$ es $phi(n)$ si y solo si $gcd(a,n) = 1$
Coeficientes binomiales $C(n,k) = \langle c \rangle$	$\begin{cases} 0 & k=0,n=k \\ C(n-1,k-1) + C(n-1,k) & \text{c.c.} \end{cases}$

Continúa en la siguiente columna

Números de catalán	$Cat(n) = \begin{cases} 1 & \text{si } n = 0\\ \frac{2n*(2n-1)*Cat(n-1)}{(n+1)*n} & \text{c.c.} \end{cases}$
Teorema de Cardano- Vieta	$\sigma_{1} = \sum_{i} r_{i} = r_{1} + r_{2} + \dots + r_{n} = -\frac{a_{n-1}}{a_{n}},$ $\sigma_{2} = \sum_{i < j} r_{i}r_{j} = r_{1}r_{2} + r_{1}r_{3} + \dots + r_{n-1}r_{n} = \frac{a_{n-2}}{a_{n}},$ $\sigma_{3} = \sum_{i < j < k} r_{i}r_{j}r_{k} = r_{1}r_{2}r_{3} + \dots = -\frac{a_{n-3}}{a_{n}},$ \dots
polígono con p dad de puntos	$\sigma_n = r_1 r_2 \cdots r_n = \frac{(-1)^n a_0}{a_n}.$ ick, Sea A el área de un untos enteros, B la cantienteros en el borde, I la ntos enteros interiores
Congruencias	$isPrime(p) \longleftrightarrow (p-1)! \equiv (p-1) \% p$ $x^n \equiv x^{phi(m)+(n \% phi(m))} \% m$ $a^{phi(m)} \equiv 1 \% m \longleftrightarrow mcd(a,m) = 1$ $a^{p-1} \equiv 1 \% p \to a^{n \% p-1} \equiv a^n \% p$
Recurrencias lineales	$\begin{bmatrix} f(n) \\ f(n-1) \\ f(n-2) \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^{n-2} * \begin{bmatrix} f(n-1) \\ f(n-2) \\ f(n-3) \end{bmatrix}$

Continúa en la siguiente columna

1.2. Sucesiones

Estrellas octangulares	0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, $f(n) = n * (2 * n^2 - 1).$
Euler totient	$1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6,$ $f(n) = \text{Cantidad de números} \leq n \text{ coprimos con n.}$
Números de Catalán	1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, $f(n) = \frac{(2n)!}{(n+1)!n!}$
Números de Fermat	3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, $f(n) = 2^{(2^{n})} + 1$
Números de Pell	0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, $f(0) = 0; f(1) = 1; f(n) = 2f(n-1) + f(n-2) para n > 1$
Números piramidales cuadrados	$0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650,$ $f(n) = \frac{n * (n+1) * (2 * n + 1)}{6}$
Números primos de Mersenne	$3, 7, 31, 127, 8191, 131071, 524287, 2147483647,$ $f(n) = 2^{p(n)} - 1 \text{ donde } p \text{ representa valores primos iniciando en } p(0) = 2.$
Números tetraedrales	$0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, \dots$ $f(n) = \frac{n * (n+1) * (n+2)}{6}$
Números triangulares	$0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105,$ $f(n) = \frac{n(n+1)}{2}$
OEIS A000127	$f(n) = \frac{(n^4 - 6n^3 + 23n^2 - 18n + 24)}{24}.$

Continúa en la siguiente columna

Secuencia de	1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129,
Narayana	f(0) = f(1) = f(2) = 1; f(n) = f(n-1) + f(n-3) para
	todo n > 2.
Suma de los	1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24,
divisores de un número	Para todo $n > 1$, $n = p_1^{a_1} p_2^{a_2} p_k^{a_k}$ entonces:
	$f(n) = \frac{p_1^{a_1+1} - 1}{p_1 - 1} * \frac{p_2^{a_2+1} - 1}{p_2 - 1} * \dots * \frac{p_k^{a_k+1} - 1}{p_k - 1}$
Cantidad de divisores de	1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24,
un número	Para todo $n > 1, n = p_1^{a_1} p_2^{a_2} p_k^{a_k}$ entonces:
	$f(n) = \prod_{i=1}^{k} a_i + 1$
Números de Super-	1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859,
Catalán	El número de formas de insertar paréntesis en una se-
	cuencia y el número de formas de partir un polígono
	convexo en polígonos más pequeños mediante la inser-
	ción de diagonales. $f(1)=f(2)=1$;
	$f(n) = \frac{3(2n-3) * f(n-1) - (n-3) * f(n-2)}{n-2}$
	n

1.3. Tabla ASCII

Caracteres ASCII con sus respectivos valores numéricos.

No.	ASCII	No.	ASCII	No.	ASCII	No.	ASCII
32	space	40	(48	0	56	8
33	!	41)	49	1	57	9
34	"	42	*	50	2	58	:
35	#	43	+	51	3	59	;
36	\$	44	,	52	4	60	i
37	%	45	-	53	5	61	=
38	&	46		54	6	62	i
39	,	47	/	55	7	63	?

No.	ASCII	No.	ASCII	No.	ASCII	No.	ASCII
64	@	72	Н	80	P	88	X
65	A	73	I	81	Q	89	Y
66	В	74	J	82	R	90	Z
67	С	75	K	83	S	91	[
68	D	76	L	84	Т	92	\
69	Е	77	M	85	U	93]
70	F	78	N	86	V	94	^
71	G	79	0	87	W	95	_
No.	ASCII	No.	ASCII	No.	ASCII	No.	ASCII
No. 96	ASCII		ASCII		ASCII p	No. 120	ASCII x
		No.		No.			
96		No. 104	h	No. 112	p	120	X
96 97	a	No. 104 105	h i	No. 112 113	p q	120 121	x y
96 97 98	a b	No. 104 105 106	h i j	No. 112 113 114	р q r	120 121 122	x y z
96 97 98 99	a b c	No. 104 105 106 107	h i j k	No. 112 113 114 115	p q r	120 121 122 123	x y z
96 97 98 99 100	a b c d	No. 104 105 106 107 108	h i j k	No. 112 113 114 115 116	p q r s	120 121 122 123 124	x y z {

1.4. Secuencias

Primos:

 $\begin{array}{c} 2\ 3\ 5\ 7\ 11\ 13\ 17\ 19\ 23\ 29\ 31\ 37\ 41\ 43\ 47\ 53\ 59\ 61\ 67\ 71\ 73\ 79\ 83\ 89\ 97\ 101\ 103\\ 107\ 109\ 113\ 127\ 131\ 137\ 139\ 149\ 151\ 157\ 163\ 167\ 173\ 179\ 181\ 191\ 193\ 197\ 199\\ 211\ 223\ 227\ 229\ 233\ 239\ 241\ 251\ 257\ 263\ 269\ 271\ 277\ 281\ 283\ 293\ 307\ 311\ 313\\ 317\ 331\ 337\ 347\ 349\ 353\ 359\ 367\ 373\ 379\ 383\ 389\ 397\ 401\ 409\ 419\ 421\ 431\ 433\\ 439\ 443\ 449\ 457\ 461\ 463\ 467\ 479\ 487\ 491\ 499\ 503\ 509\ 521\ 523\ 541\ 547\ 557\ 563\\ 569\ 571\ 577\ 587\ 593\ 599\ 601\ 607\ 613\ 617\ 619\ 631\ 641\ 643\ 647\ 653\ 659\ 661\ 673\\ 677\ 683\ 691\ 701\ 709\ 719\ 727\ 733\ 739\ 743\ 751\ 757\ 761\ 769\ 773\ 787\ 797\ 809\ 811\\ 821\ 823\ 827\ 829\ 839\ 853\ 857\ 859\ 863\ 877\ 881\ 883\ 887\ 907\ 911\ 919\ 929\ 937\ 941\\ 947\ 953\ 967\ 971\ 977\ 983\ 991\ 997\ 1009\ 1013\ 1019\ 1021\ 1031\ 1033\ 1033\ 1039\ 1049\ 1051\\ 1061\ 1063\ 1069\ 1087\ 1091\ 1093\ 1097\ 1103\ 1109\ 1117\ 1123\ 1129\ 1151\ 1153\ 1163\\ 1171\ 1181\ 1187\ 1193\ 1201\ 1213\ 1217\ 1223\ 1229\ 1231\ 1237\ 1249\ 1259\ 1277\ 1279\\ \end{array}$

1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477

 $67108864 \ 134217728 \ 268435456 \ 536870912 \ 1073741824 \ 2147483648 \ 4294967296$ $8589934592\ 17179869184\ 34359738368\ 68719476736\ 137438953472\ 274877906944$ 549755813888 1099511627776 2199023255552 4398046511104 879609302220817592186044416 35184372088832 70368744177664 140737488355328 281474976710656 562949953421312 1125899906842624 2251799813685248 4503599627370496 9007199254740992 18014398509481984 3602879701896396872057594037927936 144115188075855872 288230376151711744 576460752303423488 1152921504606846976 2305843009213693952 4611686018427387904 9223372036854775808

Primos cercanos a potencias de 10:

 $7\ 11,\ 89\ 97\ 101\ 103,\ 983\ 991\ 997\ 1009\ 1013\ 1019,\ 9941\ 9949\ 9967\ 9973\ 10007\\ 10009\ 10037\ 10039\ 10061\ 10067\ 10069\ 10079,\ 99961\ 99971\ 99989\ 99991\ 100003\\ 100019\ 100043\ 100049\ 100057\ 100069,\ 999959\ 999961\ 999979\ 999983\ 10000019\ 10000019\ 10000079\\ 10000103\ 10000121,\ 9999941\ 9999959\ 99999971\ 99999989\ 100000007\ 100000037\\ 100000039\ 100000049,\ 999999893\ 9999999999997\ 1000000007\ 1000000009\\ 1000000021\ 1000000033$

Fibonacci:

Factoriales:

Potencias de dos: de 1 hasta 63

 $1\ 2\ 4\ 8\ 16\ 32\ 64\ 128\ 256\ 512\ 1024\ 2048\ 4096\ 8192\ 16384\ 32768\ 65536$ $131072\ 262144\ 524288\ 1048576\ 2097152\ 4194304\ 8388608\ 16777216\ 33554432$