PUISSANCES D'UNE MATRICE

1.a)
$$B^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} = 3B.$$

$$B^{3} = B \times B^{2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 9 & 9 & 9 \\ 9 & 9 & 9 \\ 9 & 9 & 9 \end{pmatrix} = 9B.$$

- **1.b)** On conjecture que $B^n = 3^{n-1}B$.
- **1.c)** La proposition $B^n = 3^{n-1}B$ est vraie pour n = 1, n = 2 et n = 3.

Si elle vraie pour un certain entier n, alors on peut écrire :

 $B^{n+1} = B^n \times B = 3^{n-1}B \times B = 3^{n-1}B^2 = 3^{n-1} \times 3B = 3^n B$, montrant ainsi que la proposition est vraie pour n+1, et, par récurrence, pour tout $n \in \mathbb{N}^*$.

2)

2.a) On constate que
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 2I - B$$
.

2.b) Alors
$$A^2 = (2I - B)(2I - B) = 4I^2 - 4IB + B^2 = 4I - 4B + 3B = 4I - B$$
 et $A^3 = (4I - B)(2I - B) = 8I - 3B$.

$$\mathbf{2.c)} A^{3} = 8 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - 3 \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{pmatrix} - \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 5 & -3 & -3 \\ -3 & 5 & -3 \\ -3 & -3 & 5 \end{pmatrix}.$$

3)

3.a) La proposition $A^n = 2^n I + a_n B$ avec $n \in \mathbb{N}^*$ et $a_n \in \mathbb{Z}$ est vraie pour $A^1 = 2^1 I + (-1)B$, $A^2 = 2^2 I + (-1)B$ et $A^3 = 2^3 I + (-3)B$ avec $a_1 = -1$, $a_2 = -1$ et $a_3 = -3$.

Si la proposition est vraie pour un certain entier naturel n, on peut écrire :

$$A^{n+1} = A^n \times A = (2^n I + a_n B)(2I - B) = 2^{n+1} I - 2^n IB + 2a_n IB - a_n B^2.$$

En remarquant que IB = B et $B^2 = 3B$, on obtient :

$$A^{n+1} = 2^{n+1}I + (-2^n - a_n)B.$$

 $(-2^n - a_n) \in \mathbb{Z}$ et, en posant $a_{n+1} = -2^n - a_n$, on obtient $A^{n+1} = 2^{n+1}I + a_{n+1}B$, démontrant que la proposition est vraie pour n+1 et, par récurrence, pour tout $n \in \mathbb{N}^*$.

- **3.b)** La valeur de a_1 est -1. L'expression de a_{n+1} en fonction de a_n est $a_{n+1} = -2^n a_n$.
- **3.c)** D'après ce qui précède : $a_n = -2^{n-1} a_{n-1}$. En substituant dans le second membre de cette égalité a_{n-1} par $-2^{n-2} a_{n-2}$, puis en faisant de même avec a_{n-2} et ainsi de suite

jusqu'à substituer a_2 par $-2 - a_1$, on obtient, sachant que $a_1 = -1$, l'expression suivante :

$$a_n = -2^{n-1} + 2^{n-2} - 2^{n-3} + \dots \pm (2-1) = 2^n \sum_{i=1}^n \left(-\frac{1}{2}\right)^i$$
.

La somme \sum est celle des n termes d'une progression géométrique de raison $-\frac{1}{2}$ et de premier terme $-\frac{1}{2}$, d'où :

$$a_n = 2^n \left(-\frac{1}{2}\right)^{\frac{1-\left(-\frac{1}{2}\right)^n}{1-\left(-\frac{1}{2}\right)}} = -\frac{1}{2}\left(\frac{2}{3}\right)\left[2^n - (-1)^n\right] = \frac{-2^n + (-1)^n}{3}$$

3.d)
$$A^n = 2^n I + a_n B = 2^n \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{-2^n + (-1)^n}{3} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, soit:

$$A_{n} = \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} + \begin{pmatrix} \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} \\ \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} \\ \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} \end{pmatrix}, \text{ et}$$

$$A_{n} = \begin{pmatrix} \frac{2^{n+1} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} \\ \frac{-2^{n} + (-1)^{n}}{3} & \frac{2^{n+1} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} \\ \frac{-2^{n} + (-1)^{n}}{3} & \frac{-2^{n} + (-1)^{n}}{3} & \frac{2^{n+1} + (-1)^{n}}{3} \end{pmatrix}.$$