Vecteurs et coordonnées

Définition 1. Une base de vecteurs est un couple $(\overrightarrow{i},\overrightarrow{j})$ de vecteurs non nuls n'ayant pas la même direction.

Définition 2. Soit $(\overrightarrow{i},\overrightarrow{j})$ une base de vecteurs et \overrightarrow{u} un vecteur tel que :

$$\overrightarrow{u}=x\overrightarrow{i}+y\overrightarrow{j}$$

où x et y sont des réels.

Ce couple (x,y) est appelé les coordonnées du vecteur \overrightarrow{u} dans la base $(\overrightarrow{i},\overrightarrow{j})$. On note :

$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$

El Considérons la base de vecteurs $(\overrightarrow{i},\overrightarrow{j})$ suivante :

Seconde Générale et Technologique

Tracez sur votre cahier les vecteurs suivants dans la base $(\overrightarrow{i},\overrightarrow{j})$:

$$\overrightarrow{u}_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} \qquad \overrightarrow{u}_2 \begin{pmatrix} 2 \\ -4 \end{pmatrix} \qquad \overrightarrow{u}_3 \begin{pmatrix} -5 \\ 7 \end{pmatrix} \qquad \overrightarrow{u}_4 \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$

Propriété 1. Considérons les coordonnées des vecteurs dans une base $(\overrightarrow{i}, \overrightarrow{j})$:

- Le vecteur nul $\overrightarrow{0}$ a pour coordonnées $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Si \overrightarrow{u} a pour coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ alors son

vecteur opposé $-\overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} -x \\ -y \end{pmatrix}$

Déterminez les coordonnées des vecteurs opposés des vecteurs de l'exercice précédent.

Propriété 2. Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées dans une base donnée.