Abstract

This report is the discuss the procedure of designing a FIR filter to satisfy the given properties. Kaisar window is used for the implementation. All the operations were done in MATLAB 2016a (By mathworks).

Content

- 1. Introduction
- 2. Filter specifications and derived parameters
- 3 Method
- 4. Testing the Filter

2.Filter specification

Property	Symbol	Value	Units
Maximum passband ripple,	Ãp	0.06	dB
Minimum stopband attenuation,	Ãa	49	dB
Lower passband edge,	Ω_{p1}	1200	rad/s
Upper passband edge,	$\Omega_{ m p2}$	1500	rad/s
Lower stopband edge,	$\Omega_{ m al}$	1050	rad/s
Upper stop band edge,	$\Omega_{ m a2}$	1600	rad/s
Sampling Frequency,	Ω s	4000	rad/s

Table 1;Properties derived from index number

Parameter	Symbol	Method	Value	Unit
Lower transition width	B _{t1}	$\Omega_{\rm pl} - \Omega a_1$	150	rad/s
Upper transition width	B _{t2}	$\Omega_{a2} - \Omega_{p2}$	100	rad/s
Critical transition width	B _t	Min(B _{t1} ,B _{t2})	100	rad/s
Lower cutoff frequancy	ω_{c1}	$\Omega_{\rm p1}$ - $B_{\rm t}/2$	1150	rad/s
Upper Cutoff Frequancy	ω_{c2}	$\Omega_{p1} + B_t/2$	1550	rad/s
Sampling Period	T	2π/ Ωs	1.570 x 10 ⁻³	S

Table 2; derived parameters from table 1

3.Method

Step 1

Construct the impulse response of the bandpass filter h(nT) using ideal conditions.

$$H(ej\omega T)$$
 $\begin{cases} 1 ; \omega c1 < |\omega| < \omega c1 \\ 0 ; Otherwise \end{cases}$

Step 2

Choose δ such that actual pass band attenuation is less than or equal maximum pass band attenuation($\tilde{A}p$) and stopband attenuation is higher or equal than minimum stop band attenuation ($\tilde{A}a$).

$$\delta = \min(\delta_p, \delta_a)$$
 $\delta_p = (10^{0.05 \, \tilde{A}p} - 1)/(10^{0.05 \, \tilde{A}p} + 1)$ $\delta_2 = 10^{-0.05 \, \tilde{A}a}$

Step 3

Actual stopband attenuation A is calculated as

 $Aa=-20log_{10}(\delta)$

Step 4

Construct alpha such that

$$\alpha = \begin{cases} 0.5842(Aa - 21)^{0.4} + 0.07886(Aa - 21); for 21 < Aa < 50 \\ 0.1102(Aa - 8.7); for Aa > 50 \end{cases}$$

Step 5

Choose D and N as following

$$D = \begin{cases} 0.9222; for \ Aa \leq 21\\ \frac{Aa - 7.95}{14.36}; for \ Aa > 21 \end{cases}$$

$$N \ge \frac{\omega_s \, D}{B_t} + 1$$

Step 6

Form kaiser window function as follows

$$w_k(nT) \begin{cases} \frac{I_0(\beta)}{I_0(\alpha)} \ for \ |n| \leq N \\ 0 \ otherwise \end{cases}$$

$$\beta = \sqrt{1 - (\frac{n}{M})^2}$$
 M=(N-1)/2

$$I_0(X) = 1 + \sum_{k=1}^{\infty} (\frac{1}{k!} (\frac{X}{2})^k)^2$$

Step 7

Form the impulse response of the band pass filter

$$h_w(nT) = w_k(nT) \times h(nT)$$

Parameter	Value
δ_p	3.45×10 ⁻³
δ_a	3.54×10 ⁻³
Aa	49.236dB
α	4.45
D	2.87
N	117
M	58

Figure 1.Kaisar window for N=117

Figure 2. Frequancy response of the FIR filter

Figure 3 passband of the FIR filter

4. Testing the filter

Testing of the filter was done by giving a sum of three sinusoids as input.

$$\sum_{i=1}^{3} \sin \left(\Omega_{1} nT\right)$$

Where Ω_1 is the mid frequency of the lower stop band, Ω_3 is the mid frequency of upper stopband and Ω_2 is the mid frequency of the passband.