PSAF- Feuille d'exercices 6

Exercice 1.

Soit (X_n) une sur-martingale telle que $\mathbb{E}(X_n)$ soit constante. Montrer que (X_n) est une martingale.

Exercice 2.

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ un espace de probabilité filtré sur lequel on considère deux martingales (X_n) et (Y_n) de carrés intégrables.

- a) Montrer que pour $m \leq n$ on a $\mathbb{E}(X_m Y_n | \mathcal{F}_m) = X_m Y_m \ p.s.$
- b) Montrer que

$$\mathbb{E}(X_n Y_n) - \mathbb{E}(X_0 Y_0) = \sum_{k=1}^n \mathbb{E}((X_k - X_{k-1})(Y_k - Y_{k-1})).$$

Exercice 3.

Soit X_n une suite de v.a. i.i.d. de loi normale $\mathcal{N}(0,\sigma^2), \ \sigma > 0$. On considère la filtration naturelle $(F_n), \ \mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_n = \sigma(X_i, 1 \leq i \leq n), \ n \geq 1$, et la marche aléatoire $S_n = X_1 + \ldots + X_n$. On rappelle que

$$\mathbb{E}(e^{X_1 t}) = e^{t^2 \sigma^2 / 2}.$$

- 1) Soit $Z_n^t = \exp(tS_n nt^2\sigma^2/2)$. Montrer que pour tout $t \in \mathbb{R}$, $(Z_n^t)_{n \geq 0}$ est une (\mathcal{F}_n) -martingale.
- 2) Montrer que pour tout $t \in \mathbb{R}$, (Z_n^t) converge p.s. vers une v.a. Z_∞^t finie. Que vaut cette limite?