UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 15 (Vectores, Rectas y Planos en \mathbb{R}^3)

- 1. Hallar la ecuación de la recta que:
 - i) Pasa por los puntos P(0,-1,3) y $Q(\frac{1}{2},-1,2)$.
 - ii) Es paralela a la recta L: $\frac{x-1}{2} = 2 y = -z + 34$ y pasa por el punto P(-1,3,4).

(En práctica)

- 2. Determine la ecuación de la recta que es perpendicular a la recta $L: \frac{x-1}{2} = y-1 = \frac{z+3}{2}$ y que pasa por el punto P = (3, -2, 1).
- 3. Dados los puntos $P_1(2,3,2)$ y $P_2=(-1,1,4)$, encuentre todos los puntos P=(x,y,z) tales que $(P_2-P_1)\bot(P-P_1)$. Describa tal conjunto. (En práctica)
- 4. Para los siguientes pares de rectas L_1 y L_2 , determine cuáles son paralelas y cuáles son perpendiculares.

i)
$$L_1: x-4=\frac{y-2}{-3}=\frac{z+3}{5}$$
 y $L_2: \frac{x-11}{3}=\frac{y+9}{-4}=\frac{z+3}{-3}$.

ii)
$$L_1: \frac{x-11}{3} = \frac{y+3}{-1} = \frac{z-4}{3}$$
 y $L_2: \frac{x-6}{-2} = y+2 = \frac{z+15}{7}$.

5. Encuentre la ecuación del plano \mathcal{P}_1 que contiene al punto P(-1,1,2) y a la recta dada por:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

- 6. Encuentre el valor de α de modo que los planos : $2x \alpha y + z = 3$ y $3x + 2\alpha y \alpha z = 5$, sean ortogonales. (En práctica)
- 7. Hallar el ángulo formado por los planos de ecuaciones : π_1 : 2x-y-2z+5=0 y π_2 : 4x+8y+z-3=0. (En práctica)
- 8. Hallar la distancia entre los planos paralelos de ecuaciones: π_1 : 4x y + 8z + 2 = 0 y π_2 : 4x y + 8z 7 = 0.
- 9. Calcular la distancia desde el punto (-1, 1, -2) al plano que pasa por los puntos: (1, -1, 1); (-2, 1, 3) y (4, -5 2).
- 10. Encuentre la ecuación del plano que contiene al punto P(3, -1, 6) y a la recta intersección de los planos: $\pi_1: x + y + z = 1$ y $\pi_2: 4x y + 2z = 7$. (En práctica)
- 11. Encuentre el punto de intersección del plano de ecuación: 3x 4y + z = 2 con la recta que pasa por el punto P(1,2,-1) y es perpendicular al plano.