AFRE 835: Introductory Econometrics

Chapter 9: Miscellaneous Issues

Spring 2017

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

1 / 34

Introduction

- This chapter touches on a series of additional issues, mostly centering around functional form misspecifications.
- The chapter also discusses the impact of
 - measurement errors in the dependent and independent variables;
 - missing data;
 - departures from random sampling.

Outline

- 1 Functional Form Misspecification
- 2 The Use of Proxy Variables
- Models with Random Slopes
- Properties of OLS under Measurement Errors
- **5** Missing Data and Nonrandom Samples

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

3 / 34

Functional Form Misspecification

Functional Form Misspecification

- Functional form misspecification arises if we have specified the incorrect population regression function, linking the dependent variable of interest to the observed independent variables.
- Two common concerns are:
 - Insufficiently flexible functional form (e.g., excluding quadratic or higher terms)
 - The wrong form for the dependent variable (e.g., levels versus logs);

Log(wage)

- Consider a model of wages (using WAGE1.DTA), where we specify $E[ln(wages)|educ, exper, female) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 female.$
- This assumes that the marginal effect of experience and education on log-wages is constant.
- It also ignores potential differential returns to either education or experience by gender.
- A more general functional form would include quadratic terms in experience and/or educ and interaction effects by gender.
- For example, consider the specification focused on possible nonlinear and interaction effects of experience

$$E[In(wages)|educ, exper, female) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 female + \beta_4 * exper^2 + \beta_5 * exper * female$$

2017 Herriges (MSU)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

5 / 3/1

Functional Form Misspecification

log(wages)						
	basic	nonlinear				
educ	0.091	0.087				
	(0.007)**	(0.007)**				
exper	0.009	0.044				
	(0.001)**	(0.005)**				
female	-0.344	-0.172				
	(0.038)**	(0.058)**				
expersq		-0.001				
		(0.000)**				
femexper		-0.010				
		(0.003)**				
_cons	0.481	0.273				
	(0.105)**	(0.106)*				
R^2	0.35	0.41				
M	526	526				
Do not quot	e/distribute witho	ut permission				

* p < 0.05: ** p < 0.01

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

7 / 34

Functional Form Misspecification

Testing for Functional Form Misspecification

- One approach to considering functional form misspecifications is to include quadratic and interaction terms into the model and use standard F—statistics to test for their joint significance.
- In the previous example, the F-statistic corresponding to the null hypothesis $H_0: \beta_4 = \beta_5 = 0$ would be 27.7, which is greater the $F_{2,522} = 4.61$ critical value using a 1% significance level.
- However, incorporating a full set of quadratic and interaction terms can use up a large number of degrees of freedom if k is large.
- The regression specification error test (RESET) suggests a more parsimonious test by
 - Fitting a simple linear model and recovering fitted values \hat{y} .
 - Estimate an expanded model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \delta_1 \hat{y}^2 + \delta_2 \hat{y}^3 + error$$
 (1)

testing the null hypothesis H_0 : $\delta_1 = \delta_2 = 0$. Not commonly used.

Testing Against Non-nested Alternatives

 One is often faced with a choice between non-nested competing models; e.g.,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \tag{2}$$

VS.

$$y = \beta_0 + \beta_1 \ln(x_1) + \beta_2 \ln(x_2) + u \tag{3}$$

• One approach is to specify a more general model, with

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 \ln(x_1) + \beta_4 \ln(x_2) + u \tag{4}$$

and test $H_0: \beta_1 = \beta_2 = 0$ and $\tilde{H}_0: \beta_3 = \beta_4 = 0$.

- The problem is you may end up rejecting both or neither specifications.
- Moreover, there are other possibilities; e.g., \check{H}_0 : $\beta_1=\beta_4=0$.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

9 / 34

Functional Form Misspecification

The Davidson-MacKinnon Test

- The approach on the previous slide can be problematic if k is large.
- Davidson and MacKinnon suggested a more parsimonious test by, first, estimating the two competing models:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u \tag{5}$$

VS.

$$y = \beta_0 + \beta_1 \ln(x_1) + \dots + \beta_k \ln(x_k) + u \tag{6}$$

...and then estimating

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \theta_1 \hat{\hat{y}} + u \tag{7}$$

VS.

$$y = \beta_0 + \beta_1 \ln(x_1) + \dots + \beta_k \ln(x_k) + \theta_1 \hat{y} + u \tag{8}$$

where \hat{y} and $\hat{\hat{y}}$ are fitted values from (5) and (6), respectively, and testing $H_0: \theta_1 = 0$

The Problem of Unobserved Explanatory Variables

- A common problem arising in applied research is that we may not have the precise variable we need for our analysis.
- The classic example here emerges in the labor literature, in models designed to assess the returns to education.
- One might assume that the following relationship holds

$$In(wages) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 abil + u$$
 (9)

where abil measures the underlying ability of the individual.

- Unfortunately, ability is a difficult characteristic to measure.
- Excluding it from the model, however, is not a good option, since ability would then be absorbed by the error term
 - ... and, since ability is almost surely correlated with *educ*, we would end up with omitted variables bias in estimating the returns to education.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

11 / 34

The Use of Proxy Variables

The Use of Proxy Variables

- One solution to the unobserved variable problem is to employ a proxy variable - a variable related to the unobserved variable, but in a specific way.
- Consider a model with three independent variable (as in the log-wage model on the previous slide); i.e.,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3^* + u \tag{10}$$

where x_3^* is unobserved.

• Now suppose that we have a proxy variable for x_3^* , say x_3 where

$$E(x_3^*|x_1,x_2,x_3) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3$$
 (11)

... or simply

$$x_3^* = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + v_3 \tag{12}$$

with $E(v_3|x_1,x_2,x_3)=0$.

• What happens if we simply use x_3 instead of x_3^* ?

The Use of Proxy Variables (cont'd)

• In particular, suppose we estimate the model

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 + \tilde{\beta}_3 x_3 + \tilde{u} \tag{13}$$

• Substituting in (12) into (10), we know that

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3^* + u$$

$$= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (\delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + v_3) + u$$

$$= (\beta_0 + \beta_3 \delta_0) + (\beta_1 + \beta_3 \delta_1) x_1 + (\beta_2 + \beta_3 \delta_2) x_2 + \beta_3 \delta_3 x_3 + \beta_3 v_3 + u$$
(14)

• Comparing (13) and (14) we have that:

$$\tilde{\beta}_i = \beta_i + \beta_3 \delta_i \quad j = 0, 1, 2 \tag{15}$$

$$\tilde{\beta}_3 = \beta_3 \delta_3 \tag{16}$$

$$\tilde{u} = \beta_3 v_3 + u \tag{17}$$

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

13 / 34

The Use of Proxy Variables

The Use of Proxy Variables (cont'd)

- We need one additional assumption; i.e., u is uncorrelated with x_3 .
- The zero condition mean assumption holds for (13), since

$$E(\tilde{u}|x_1, x_2, x_3) = \beta_3 E(v_3|x_1, x_2, x_3) + E(u|x_1, x_2, x_3) = 0$$
 (18)

- As a result, OLS applied to (13) will yield unbiased and consistent estimates of $\tilde{\beta}_i, j = 0, \dots, 3$.
- The only issue that remains is, under what conditions can we use the OLS estimator to recover parameters of interest?
 - We need $\delta_3 \neq 0$, otherwise the unobservable variable is not an issue to begin with.
 - In order to recover β_1 and β_2 , we need $\delta_1=0$ and $\delta_2=0$, in which case $\tilde{\beta}_i=\beta_i$ j=1,2.
 - Typically, we don't care about β_0 , but if we do, then we need $\delta_0=0$.
 - Identifying β_3 requires $\delta_3 = 1$, in which case we essentially are observing the so called unobserved variable.

Returns to Education Example

- In the returns to education example, ability is proxied for using IQ.
- Our key assumption is then

$$E(abil|educ, exper, IQ) = \delta_0 + \delta_3 IQ$$
 (19)

...i.e., mean ability varies with IQ, but (conditional on IQ), ability does not vary with education or experience.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

15 / 34

The Use of Proxy Variables

Returns to Education Example

TABLE 9.2 Dependent Va	riable: log(wage)					
Independent Variables	(1)	(2)	(3)			
educ	.065	.054	.018			
	(.006)	(.007)	(.041)			
exper	.014	.014	.014			
	(.003)	(.003)	(.003)			
tenure	.012	.011	.011			
	(.002)	(.002)	(.002)			
married	.199	.200	.201			
	(.039)	(.039)	(.039)			
south	091	080	080			
	(.026)	(.026)	(.026)			
urban	.184	.182	.184			
	(.027)	(.027)	(.027)			
black	188	143	147			
	(.038)	(.039)	(.040)			
IQ	_	.0036 (.0010)	0009 (.0052)			
educ·IQ	_	_	.00034 (.00038)			
intercept	5.395	5.176	5.648			
	(.113)	(.128)	(.546)			
Observations	935	935	935			
<i>R</i> -squared	.253	.263	.263			

Models with Random Slopes

- In our models thus far, we have assumed that the slope coefficients are the same for everyone.
 - ... or at least that they only vary in observable ways.
- For example, in the model in Table 9.2 above, we assume that the marginal effect of *educ* on log-wages is given by:

$$\frac{\partial E[log(wages)|\mathbf{x}]}{\partial educ} = \beta_{educ} + \beta_{educ \cdot IQ} \cdot IQ$$
 (20)

- For a given IQ, and holding everything else constant, the marginal impact of education is the same for everyone.
- But it might be the case that this marginal effect varies by individual because there are *unobserved factors* interacting with education that also impact log-wages.
- These interaction terms can lead to random slope (or random coefficient) models.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

17 / 34

Models with Random Slopes

An Illustration

 Suppose that we have the following population model for our dependent variable of interest

$$y_{i} = \alpha + \gamma z_{i} + \beta x_{i} + \delta x_{i} z_{i} + \tilde{u}_{i}$$

$$= (\alpha + \gamma z_{i}) + (\beta + \delta z_{i}) x_{i} + \tilde{u}_{i}$$

$$= (\alpha + c_{i}) + (\beta + d_{i}) x_{i} + \tilde{u}_{i}$$

$$= a_{i} + b_{i} x_{i} + \tilde{u}_{i}$$
(21)

where $c_i = \gamma z_i$ and $d_i = \delta z_i$.

- Without loss of generality, assume that $E(z_i) = 0$.
- Think of $a_i = \alpha + \gamma z_i$ and $b_i = \beta + \delta z_i$ as representing the intercept and slope terms, respectively, for the relationship between y_i and x_i .
- If we observe x_i and z_i , we would simply estimate the model depicted in (21) as including an interaction term between x_i and z_i .

An Illustration (cont'd)

- Suppose, however, that z_i is unobserved.
- The model in (22) has intercept and slope terms that vary by individual, with $y_i = a_i + b_i x_i + \tilde{u}_i$.
- The individual specific slope term implies that the marginal effect of a change in x_i varies by individual.
- We cannot estimate a separate intercept and slope for each individual.
- The question is can we estimate the average intercept $(E[a_i] = \alpha)$ and average slope $(E[b_i] = \beta)$ in the population?
- β is referred to as the average partial effect (APE) or the average marginal effect (AME).

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

19 / 34

Models with Random Slopes

An Illustration (cont'd)

• We can re-write our model as:

$$y_{i} = (\alpha + c_{i}) + (\beta + d_{i})x_{i} + \tilde{u}_{i}$$

$$= \alpha + \beta x_{i} + (c_{i} + d_{i}x_{i} + \tilde{u}_{i})$$

$$= \alpha + \beta x_{i} + u_{i}$$
(23)

where $u_i = c_i + d_i x_i + \tilde{u}_i$.

- What do we need for OLS applied to the above equation to yield unbiased estimates of α and β ?
- We need:

$$0 = E(u_i|x_i) = E(c_i + d_i x_i + \tilde{u}_i|x_i)$$

= $E(c_i|x_i) + E(d_i|x_i)x_i + E(\tilde{u}_i|x_i)$ (24)

• Sufficient conditions for this to hold are: $E(c_i|x_i) = 0$, $E(d_i|x_i) = 0$, and $E(\tilde{u}_i|x_i)$.

An Illustration (cont'd)

- These conditions essentially imply that the unobserved factors are mean independent of the observed regressors.
- One additional note: The structure of the error term implies that we have heteroskedasticity in this case.
- Specifically, if $Var(c_i|x_i) = \sigma_c^2$ and $Var(d_i|x_i) = \sigma_d^2$, then

$$Var(u_i) = \sigma_c^2 + \sigma_{\tilde{u}}^2 + \sigma_d^2 x_i^2$$
 (25)

• The above model can also be generalized to allow the intercept and slopes to vary in both observable and unobservable ways.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

21 / 34

Properties of OLS under Measurement Errors

Measurement Error

- Not surprisingly, analysts do not always have perfect measures of the variables of interest to them.
- Measurement errors can arise due to flawed due to technological failures or incomplete survey instruments.
- Measurement errors will have different implications depending on
 - whether the measurement error relates to the dependent or independent variables;
 - the form the measurement error takes.

Measurement Error on the Dependent Variable

- Measurement error on the dependent variable is typically not a serious problem.
- Suppose that the true dependent variable of interest is y*, with the regression model taking the form:

$$y^* = \beta_0 + \beta_1 x_1 + \dots + \beta_x x_k + u \tag{26}$$

• Let y denote the observed value for y^* , with

$$e_0 = y - y^* \tag{27}$$

denoting the measurement error.

• Using the fact that $y^* = y - e_0$, we have from our population regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_x x_k + (e_0 + u)$$
 (28)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

23 / 34

Properties of OLS under Measurement Errors

Measurement Error on the Dependent Variable (cont'd)

• The key to unbiasedness and consistency of the OLS is that this new composite error term $\tilde{u}=e_0+u$ have a zero (or constant) conditional mean; i.e.,

$$a = E(\tilde{u}|\mathbf{x}) = E(e_0|\mathbf{x}) + E(u|\mathbf{x}) = E(e_0|\mathbf{x}).$$
 (29)

where a is a constant.

Typically, *a* is assumed to be zero. If it is not, the intercept will be biased, but not the slopes.

- This assumption says that the measurement error is not linked to any of the regressors.
- This could be a problem in some settings (e.g., TOU meters), but is typically not a strong assumption.
- One effect of the measurement error is to increase the error variance, with $Var(\tilde{u}) = Var(e_0 + u) = Var(e_0) + Var(u) > Var(u)$ under the usual assumption that e_0 is uncorrelated with u.

Measurement Error in an Explanatory Variable

- Measurement errors in regressors is typically a more serious problem.
- Consider the single regressor case, with $y = \beta_0 + \beta_1 x_1^* + u$, where x_1^* is the true value of the regressor.
- The observed counterpart is given by x_1 , with measurement error

$$e_1 = x_1 - x_1^* \tag{30}$$

• Using the fact that $x_1^* = x_1 - e_1$, we can then rewrite our population model as

$$y = \beta_0 + \beta_1 x_1^* + u$$

= \beta_0 + \beta_1 x_1 + (u - \beta_1 e_1)
= \beta_0 + \beta_1 x_1 + \tilde{u} (31)

where $\tilde{u} = u - \beta_1 e_1$.

• Assuming $E(e_1) = 0$, the questions is whether $E(e_1|x)=0$.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

25 / 34

Properties of OLS under Measurement Errors

Assumption 1

- Two assumptions are typically made regarding the nature of the measurement error.
- Assumption 1: $Cov(x_1, e_1) = 0$ (or the stronger version $E(e_1|x_1) = 0$). This assumes that the observed regressor is uncorrelated with the measurement error.
- With this assumption, we get $E(\tilde{u}|\mathbf{x}) = E(u|\mathbf{x}) \beta_1 E(e_1|\mathbf{x}) = 0$; ...i.e., the model with x_1 still satisfies the zero conditional mean assumption, so that the properties of the OLS estimator remain intact.
- As with measurement error in the dependent variable, however, we do end up with a larger error variance.

Assumption 2 - The Classical Errors-in-Variable (CEV) Model

• The more common assumption in terms of measurement errors is that the measurement error is uncorrelated with the true variable; i.e.

$$Cov(x_1^*, e_1) = 0$$
 (32)

or the stronger version: $E(e_1|x_1^*)=0$.

- This is know as classical errors-in-variables.
- This is a natural assumption if we have $x_1 = x_1^* + e_1$ and the two terms on the right-hand side are uncorrelated.
- The problem under these conditions is that x_1 and e_1 are now necessarily correlated, since

$$Cov(x_1, e_1) = E(x_1e_1) = E[(x_1^* + e_1)e_1] = E(e_1^2) = \sigma_{e_1}^2.$$
 (33)

• This in turn implies that

$$Cov(x_1, \tilde{u}) = E[x_1(u - \beta_1 e_1)] = E(x_1 u) - \beta_1 E(x_1 e_1) = -\beta_1 \sigma_{e_1}^2$$
 (34)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

27 / 34

Properties of OLS under Measurement Errors

The Impact of CEV

- Because the zero conditional mean assumption does not hold under CEV, OLS will be a biased and inconsistent estimator in this case.
- In particular, one can show in the single regressor context that

$$plim(\hat{\beta}_1) = \beta_1 \left(\frac{\sigma_{x_1}^2}{\sigma_{x_1}^2 + \sigma_{e_1}^2} \right).$$
 (35)

• This, in turn, implies that

$$|p\lim(\hat{\beta}_1)| < |\beta_1|. \tag{36}$$

i.e., $\hat{\beta}$ is always closer to zero than β (in large samples).

- This is referred to as attenuation bias.
- The following example looks at a regression of birth weight on family income with a CEV error $e_1 \sim \mathcal{N}(0, \sigma_{e_1}^2)$

	Me	easurement	Error Effe	cts	
	no err	$\sigma_{e_1}=10$	$\sigma_{e_1} = 20$	$\sigma_{e_1} = 40$	$\sigma_{e_1} = 80$
faminc	0.118				
	(0.029)**				
faminc10		0.100			
		(0.026)**			
faminc20			0.043		
			(0.020)*		
faminc40				0.018	
				(0.013)	
faminc80					0.003
					(0.007)
_cons	115.265	115.776	117.441	118.192	118.589
	(1.002)**	(0.938)**	(0.809)**	(0.654)**	(0.592)**
R^2	0.01	0.01	0.00	0.00	0.00
Ν	1.388	1.388	1.388	1.388	1,388
2017 Herriges (M	Do		te without permiss $** p < 0.01$	sion	Spring 2017

Properties of OLS under Measurement Errors

Additional Notes on Measurement Error

- The above results for measurement error under assumption 1 generalize readily to multiple regressors.
- Under assumption 2 (CEV), OLS will continue to be biased and inconsistent.
 - There will continue to be attenuation bias for the mis-measured variable's parameter.
 - The impact on other parameters is generally case dependent.

Missing Data

- There will often be cases in which there are individual variables missing for a subset of individuals.
- In the context of survey data, this is referred to as "item nonresponse."
- If the nonresponse is random in nature, then the subset of observations with complete data will still represent a random sample and OLS will be unbiased and consistent.
 - ... The only real consequence is that we will have a smaller sample.
- There are a variety of procedures to "fill-in" the missing data, including
 - hotdecking;
 - multiple imputation;
- If the nonresponse is systematic in some fashion, then the trimmed dataset is a **nonrandom sample** from the population.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

31 / 34

Missing Data and Nonrandom Samples

Nonrandom Samples

- The extent to which a nonrandom sample is problematic depends on how it is nonrandom.
- If the sample has been chosen on the basis of the independent (exogenous) variables of the model, then it falls into the category of exogenous sample selection.
 - This might arise if sampling is done, for example, by income or age groups.
 - Wooldridge gives the example:

$$saving = \beta_0 + \beta_1 income + \beta_2 age + \beta_3 size + u$$
 (37)

- It turns out that OLS will still be unbiased, as long as we including the stratification variables as regressors in the model.

Endogenous Sample Selection

- A bigger problem arises if the sample selection is based on the dependent variables.
- Examples of endogenous sample selection include:
 - On-site sampling (intercepting visitors to a recreation site);
 - Sample truncation (e.g., in a model of wealth, collecting data only on those below the poverty level);
 - Survey nonresponse.
- Dealing with endogenous sampling is, in general, more challenging and will be covered somewhat later in the course.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

33 / 34

Missing Data and Nonrandom Samples

Outliers and Influential Observations

- It is always good practice to start by simply summarizing your data so as to catch coding errors or outliers that might be problematic.
- It can also be useful to examine the residuals from a regression to see if any pattern emerges or if an outliers emerge, though it is not always clear what to do with such observations.