COMPUTER LOGIC AND DIGITAL CIRCUIT DESIGN (PHYS306/COSC330): UNIT 2.2

Jordan Hanson January 29, 2018

Whittier College Department of Physics and Astronomy

UNIT 2.2 SUMMARY - THEORETICAL LOGIC GATES, AND OPERATIONS

Reading: DF Chapter 3-4 (Moodle)

- 1. Logic Gates
 - · Circuit diagram
 - Truth table
 - · Timing diagram
 - · Boolean logic
- 2. Boolean algebra I
- 3. IC Circuits, data sheets
- 4. Boolean algebra II

Homework: Chapter 3, ex. 1-22 (two weeks)

IC Gates are an interesting but fading topic.

- 1. Some basic realities
- 2. Notions of power and time
- 3. Fun with part numbers and data-sheets
 - · This may not seem as important, but it is

Switching time - t_s , Power dissipation - $P_d = V^2/R$

CMOS

- Complementary Metal-Oxide Semiconductor
- MOSFETs
- · Lower power dissipation
- 3.3V and 5V type (voltage that represents HIGH)

TTL

- Transistor-Transistor Logic
- BJTs
- Faster switching speeds
- 5V type (voltage that represents HIGH)

Chapter 3 examines 54/74 series IC gates.

Chapter 3 examines 54/74 series IC gates.

www.digikey.com

Sample part number: **74**ALV**C**20

- 74 Mil-spec or military specification. 54 is commerical specification
- · A "Advanced"
- LV low-voltage (3.3 V type), could also be HV or high-voltage (5.0 V type)
- · C CMOS, could also be CT for TTL compatibility
- 20: specific gates inside. In this case we have two NAND gates with 4-inputs each

End code	IC contents
00	Quad 2-input NAND
02	Quad 2-input NOR
04	Hex inverter
08	Quad 2-input AND
10	Triple 3-input NAND
11	Triple 3-input AND
20	Dual 4-input NAND
21	Dual 2-input AND
27	Triple 3-input NOR
30	Single 8-input NAND
32	Quad 2-input OR
86	Quad 2-input XOR

Chapter 3 examines 54/74 series IC gates.

www.digikey.com | Get the data sheets.

Sample part number: **74**ALV**C**20

- 1. Look up power dissipation. Can't find it? Then find I_{CCL} and/or I_{CCH} .
- 2. Look up propagation delay time t_d . Usually it is in nanoseconds.
- 3. Look up voltage type (does it match?)
- 4. $P_D = V_{CC} \left(\frac{I_{CCL} + I_{CCH}}{2} \right)$
- 5. Compute the speed-power product (SPP) (product of the delay time and P_D)
- 6. Repeat (6) for a variety of part numbers, and plot (SPP) versus t_d and P_D .

Chapter 3 examines 54/74 series IC gates.

www.digikey.com | Get the data sheets.

Sample part number: **74**ALV**C**20

- 1. Look up power dissipation. Can't find it? Then find I_{CCL} and/or I_{CCH} .
- 2. Look up propagation delay time t_d . Usually it is in nanoseconds.
- 3. Look up voltage type (does it match?)
- 4. $P_D = V_{CC} \left(\frac{I_{CCL} + I_{CCH}}{2} \right)$
- 5. Compute the speed-power product (SPP) (product of the delay time and P_D)
- 6. Repeat (6) for a variety of part numbers, and plot (SPP) versus t_d and P_D .

Chapter 3 examines 54/74 series IC gates.

www.digikey.com | Get the data sheets.

Sample part number: **74**ALV**C**20

1. Compute fan-out:

$$UL = \frac{I_{OH}}{I_{IH}} = \frac{I_{OL}}{I_{IL}} \tag{1}$$

This is the ratio of input and output currents in the low and high states. Represents the maximum number of down-stream gates a given gate can handle.

- 2. CMOS systems are "high-impedance" (high-resistance) so the fan-out should be high. Think about this in terms of Ohm's law (V = iR).
- 3. Compute fan-out for a variety of part numbers

The key to this lesson is that data sheets and part numbers matter. It's not just gibberish.

Imagine buying 54-series parts, because that's what they last guy did, building a unit, and deploying it in...Antarctica. What's the temperature in Antarctica? Yeah...you needed to buy 74-series.

Also, an important feature of any IC/digital component data sheet is the **pin-out.**

Figure 1: Example of IC *pinout*, which displays **which pins mean** what.

Vocabulary recap:

- 1. Pinout
- 2. Ohm's Law
- 3. SPP
- 4. t_d
- 5. *P*_d
- 6. I_{IH}, I_{OH}
- 7. I_{IL}, I_{OL}
- 8. V_{CC}, I_{CCL}, I_{CCH} (which current is higher?)
- 9. CMOS, TTL, MOSFET

CONCLUSION

UNIT 2.2 SUMMARY - THEORETICAL LOGIC GATES, AND OPERATIONS

Reading: DF Chapter 3-4 (Moodle)

- 1. Logic Gates
 - · Circuit diagram
 - Truth table
 - Timing diagram
 - · Boolean logic
- 2. Boolean algebra I
- 3. IC Circuits, data sheets
- 4. Boolean algebra II

Homework: Chapter 3, ex. 1-22 (two weeks)