Exploration of Cryptography

Whitfield Diffie

Distinguished Visiting Professor Zhejiang University

27 March 2020

Class 04 Cryptography: Post WWII and Key Management

Grading

I would rather not grade but the University seems to want it.

Two Problem Sets

- Midterm next week due a week later
- Final due late in course and due a week after you get it.

Beginning in WW II Electronic Cryptosystems

Stream Encryption

Keystream Generator

$$Plaintext \longrightarrow \oplus \longrightarrow Ciphertext$$

Keystream Generator Requirements

- Long period
- High Complexity

Sigsaly

Long-cycle Systems

- Linear process, usually one or more shift registers
- Nonlinear combiner trees
- Irregular motion

Linear Feedback Shift Register

Linear Feedback Shift Register with Nonlinear Output

Linear Feedback Shift Register with Nonlinear Clocking

LFSR with Both

Nonlinear Feedback Shift Register

Invertible Shift Register Notation

Nonlinear Shift Register with Multipoint Feedback

Maximal Shift Register Sequences

Shift registers do polynomial arithmetic. Maximal period shift registers, correspond to polynomials with maximal period: primitive polynomials.

Cost of Key Production

Many shift register systems were keyed with primitive polynomials. These were hard to find and key production was expensive.

GSM A5

Post World War II

Symmetric Cryptography

Stream ciphers gradually give way to block ciphers.

Identification Friend or Foe

- MK I to MK IX: analog
- MK X: digital but not crypto
- MK XII: encrypted

Identification Friend or Foe (Cont'd)

- Air Force Cambridge Research Center, early fifties
- System called Cadmus used in KI-1 used in MK XII
- 32-bit challenge, short response, done many times

KI-1

Horst Feistel

IBM 2984 Banking System

- Feistel crypto design
- 32-bit block, 64-bit key
- Perhaps called DSD-1; now called
 AET

Things Called Lucifer

- Lucifer Box in 2984 (AET)
- Scientific American Lucifer
- Smith's Lucifer

Scientific American Lucifer

SSSSSSS Transposition SSSSSSS Transposition

SSSSSSS Transposition 16 rounds

Scientific American Lucifer

Fig 2.3 - Substitution-Fermutation Network, with the Avalanche Characteristic

Smith's Lucifer

FIG. 1. FUNCTIONAL BLOCK DIAGRAM
OF THE CIPHER SYSTEM

Data Encryption Standard

- Joint NSA-NBS project: 1973– 1977
- Call for algs: IBM entry accepted
- 64-bit block, 56-bit key

Data Encryption Standard

Better Building Block

Block ciphers were recognized as a better building block than streams for diverse applications.

Nineties and On

- DES ⇒ 3DES
- Development of AES
- Other systems, mostly blocks

Issues Today

- Internet of Things short on power
- Lookup tables use too much power
- Design for evaluation

Summary of Block Ciphers

- IFF Problem 1950s, Horst Feistel,
 Air Force Cambridge Research Center
- IBM "Lucifer" System for Lloyds Bank 1969
- DES 1975, 1977, and on

Key Management

Management view of Cryptography

Crypto is an amplifier

Separates security from path of message

Key management systems both reflect and shape the organizations that employ them.

Function of Key Management

Couples to bureaucracy: clearances, jobs ...

Elements of Key Management

Production

Testing

- Shipping and Storage
- Use (to encrypt or decrypt)

Elements of Key Management? (Cont'd)

Accounting

Destruction

Key Production

- There is no more critical crypto function
 - If you can produce good key, you have the possibility of good cryptoography.
 - If you can't, you don't.

Generating Unpredictability (Randomness)

- Card shuffling
- Rotors
- Slot machines
- Thermal noise
- Astable multivibrators

Randomness (Cont'd)

 Atmospheric turbulence in Winchester disks

Half-silvered mirror (ETH)

Human variability

Desiderata

Never seen by human eyses

- Impossible with code books and rotors

 Failing that, secrecy of key, until traffic declassified.

Desiderata (Cont'd)

Easy to use

Hard to copy

Easy to destroy

Quality Control

Cycle reandom generator and test

 Testing for the failure of the generator, not for the quality of the method.

Don't hash before testing.

Key Production Costs

- Physical
 - manufacturing rotors
 - permutor boards

Key Production Costs

- Logical
 - permutations for rotor wirings
 - primitive polynomials for shift registers
 - prime numbers for RSA keys

Distribution

Shipping

Encrypted transmission

Quantum Key Distribution

Transport

- Paper tape in canisters
- KYK-13
- KSD64a (STU-III)
- Smart cards
- All ordinary data storage devices:
 CDCs, USBs, etc.

Key-tape Canister

KYK-13

KY-57

Cable

Use

- Codebooks
- Rotor machine setup
- Plug boards
- Slide switches
- Pull paper tape, etc.

Paper-tape Key Loader

Accounting (Comsec Materials Control System)

- Central Facility
- Comsec accounts
- Comsec Custodians and user agents
- Hand receipts
- Inventories

Destruction

Lead jackets to sink codebooks

Smashing rotors

Burning or shredding cards and tapes

Destruction

 Zeroizing many forms of computer memory

Physically destroying computer memory

Changing Keys

- Why change keys
 - Cryptoperiod (intrinsic)
 - Management issues (extrinsic)

Changing Keys

- Rekeying
- Key Updating
 - backtrack security
- Daisy chaining (danger of cascading compromise)

