

第十章

西至禾口酉同

(Aldehydes and Ketones)

有机化学(Organic Chemistry)

■生活中的醛、酮化合物

■白血病患儿

■杏仁中还有苯甲醛

■生活中的醛、酮化合物

壬醛/天竺葵醛

■樟脑香味 2-莰酮

本章主要内容

- 一、醛酮的结构
- 二、醛酮的命名
- 三、醛酮的制备
- 四、醛酮的物理性质
- 五、醛酮的化学性质*
- 六、重要的醛酮

一、醛、酮的结构

醛、酮的官能团是羰基,羰基碳原子、氧原子为sp²杂化,碳原子带部分正电荷。

R—C—H R—C—R
$$\frac{120^{\circ}}{120^{\circ}}$$
 $\frac{5}{120^{\circ}}$ $\frac{5}{120^$

醛、酮的结构

羰基与烯烃结构的比较

- 1. 脂肪族醛酮的命名
- □ □ 以含有一C一最长碳链为主链
- 从靠近羰基的一端开始编号
- 一CHO永远在第一位,不要编号
- 分子中既有醛又有酮羰基时,以醛为母体,酮 羰基称为"氧代(oxo-)"

3一甲基丁醛

2一甲基一3一戊酮

4一乙基一2一己酮

3一氧代戊醛

用αβγ表示离羰基远近的碳原子

2. 芳香醛酮命名时,芳环作取代基

2-萘甲醛

3一苯基一2一丙烯醛

苯甲醛

苯乙酮

羰基作为取代基时,称为酰基

3. 二元酮命名时,两个 $_{\text{C}}^{\text{C}}$ 一位置除可用数字标明,也可用 α , β 表示

α一表示两个羰基相邻

β一表示两个羰基相隔一个C原子

$$H_3CH_2C-C-C-CH_3$$

三、醛酮的制备

■烯烃臭氧氧化反应

*炔烃水合

■Freidel-Crafts 酰基化

■醇的氧化和脱氢

四、醛酮的物理性质

性状:甲醛是气体,12碳以下的醛酮是液体,低级醛带有刺鼻的气味,7~12个碳的醛酮有芳香味

▶沸点:高于同分子量的烃、醚、卤代烃,低于醇、酸

■溶解性: 在水中有一定的溶解度

五、醛、酮的化学性质**

$$\sum_{c=0}^{\delta^{+}} C = 0 + H - Nu^{-} - C - OH$$
Nu

1.与HCN的加成,生成α一羟基腈

$$C=O + HCN \xrightarrow{OH} R OH$$
 CH_3
 $C=O + HCN \xrightarrow{CH_3} C$
 CH_3

α-羟基腈 (α- cyanohydrin)

- ■该反应是可逆反应。
- ■反应在弱碱条件下进行。
- -空间位阻增大时,产率降低。

2.与NaHSO₃的加成

加成反应为可逆反应,往产物中加入<mark>酸或者碱</mark>溶液, 白色固体分解再变成醛。

醛、脂肪族甲基酮、环酮能发生反应,其他酮不反应。

一些醛酮与亚硫酸氢钠反应的活性次序:

加成产物在酸、碱作用下,可分解为原来的醛和酮:

本反应可用于鉴别和分离提纯。

3.与醇的加成

乙醛缩二乙醇

缩醛(Acetal)

反应机理:

$$C = O \xrightarrow{H^{+}} C \xrightarrow{OH} \xrightarrow{HOR} C \xrightarrow{OH} \xrightarrow{-H^{+}} C \xrightarrow{OR} \xrightarrow{OR} C \xrightarrow{OR$$

环酮形成缩酮的产率较高:

几点说明

- 半缩醛(酮)无论在酸性或碱性介质中均不稳定。
- 缩醛(酮)在碱性介质中稳定,在酸性介质中 不稳定。
- 缩醛较易形成,缩酮较难。
- ■用乙二醇形成环状缩酮可提高缩酮的产率。

缩醛(酮)在酸性水溶液中水解成原来的醛(酮)和醇,可用此反应保护羰基。

OH CHO CHO
$$H^{+}$$
OH H^{+}

$$H^{+}/H_{2}O$$

$$H_{2}SO_{4}$$

$$H_{2}SO_{4}$$

从
$$CH_3$$
 C=CH(CH₂)₂CHCH₂CHO 制备 HOOC(CH₂)₂CHCH₂CHO CH₃

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} \xrightarrow{\text{C=CH} (\text{CH}_{2})_{2} \text{CHCH}_{2} \text{CHO}} \xrightarrow{\text{CH}_{3} \text{OH, H}^{+}} \xrightarrow{\text{CH}_{3}} \text{C=CH} (\text{CH}_{2})_{2} \text{CHCH}_{2} \text{CH} (\text{OCH}_{3})_{2} \\ \text{CH}_{3} \end{array}$$

$$\begin{array}{c|c} & \overset{\text{KMnO}_4}{\longrightarrow} & \text{HOOC} \ (\text{CH}_2)_2 \text{CHCH}_2 \text{CH} (\text{OCH}_3)_2 & \xrightarrow{\text{HCl}, \text{H}_2 \text{O}} & \text{HOOC} \ (\text{CH}_2)_2 \text{CHCH}_2 \text{CHO} \\ & & & & \text{CH}_3 \\ \end{array}$$

4.与Grignard 反应,合成醇

1) RMgX和甲醛或环氧乙烷加成,生成伯醇

$$H_2C=O$$
 $\xrightarrow{(1) \text{RMgX/∓}}$ RCH₂OH $\xrightarrow{(2) H_3O^+}$

制得的醇比格氏试剂多一个碳

$$O$$
 (1) RMgX/∓醚
(2) H₃O⁺ RCH₂CH₂OH

制得的醇比格氏试剂多两个碳

2) RMgX和其它醛反应,生成仲醇

CH₃CHO
$$\xrightarrow{(1) \text{ RMgX/干醚}}$$
 RCHCH₃

3) RMgX和酮反应,生成叔醇

$$CH_3COCH_3$$
 $\xrightarrow{(1) \text{ RMgX/干醚}}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{CCH}_3}$ $\xrightarrow{\text{CH}_3}$

$$(CH_3)_2CH-C-CH(CH_3)_2 + CH_3CH_2MgBr \xrightarrow{(1) Et_2O}$$
 $(2) H_3O^+$

5.与氨的衍生物加成

G = OH, NH_2 , NHAr, $NHCONH_2$

$$(CH_3)_2C=O + H_2N-NH$$
 本 $\#$ (Phenylhydrazine)

$$(CH_3)_2C=N-NH$$

苯腙(Phenylhydrazone)

羰基的定性鉴定反应

羰基的亲核加成,不仅与亲核试剂的亲核性 有关,也与羰基化合物的结构有关。

■空间位阻,位阻大不利于亲核试剂的进攻

$$H_{C=0} > H_{3C} > C=0 > C=0 > H_{3C} > C=0 > H_{3C} > C=0 > H_{3C} > H_{$$

$$C=0 > C_6H_5$$
 $C=0 > C_6H_5$
 $C=0$
 C_6H_5

■羰基所连的基团是给电子基,会减弱羰基的活性

$$\begin{array}{c}
0 \\
C \\
C \\
R
\end{array}$$

$$H_3CCC^{--}C=O$$
 > $H_3CC^{--}C=H$

$$H_3C-C_2H_5$$
 < $H_3C-C_2C_3$

反应活性: 醛 > 脂肪酮 > 芳香酮; 环酮 > 脂肪酮

将下列羰基化合物按其亲核加成的活性次序排列

1. CH₃CHO,CH₃COCH₃,CF₃CHO,CH₃COCH=CH₂

CF₃CHO> CH₃CHO> CH₃COCH₃ > CH₃COCH=CH₂

2.CICH₂CHO,BrCH₂CHO,CH₂=CHCHO,CH₃CHO

CICH₂CHO>BrCH₂CHO>CH₃CHO >CH₂=CHCHO

P304-8

(二) α-活泼氢的反应

1. 酮式和烯醇式—— 互变异构

$$CH_3$$
 $C-CH_3$ H^+ or OH CH_3 CH_3 $C-C=CH_2$

2. 羟醛缩合(Aldol condensation)

含有 α -H的醛(酮)在稀碱的作用下,缩合生成 β -羟基醛(酮)

$$2 \text{ CH}_{3}\text{CHO} \xrightarrow{\text{OH}} \text{CH}_{2}\text{CHO}$$

β-羟基醛(酮)易脱水形成 α ,β-不饱和醛(酮):

$$\begin{array}{ccc}
& OH \\
-H_2O \\
CH_3CH-CH_2CHO & \longrightarrow CH_3CH=CHCHO
\end{array}$$

■反应机理:

一分子提供羰基,一分子提供a一H 羟醛缩合的实质是亲核加成

■自身缩合

$$2 \text{ CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CHO} \xrightarrow{\text{OH}} \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH} - \text{CHCHO} \\ \text{CH}_{2}\text{CH}_{3}$$

$$\longrightarrow$$
 CH₃CH₂CH₂C=CCHO
CH₂CH₃

■不含α一H的醛与含α一H的可羟醛缩合

HCHO +
$$CH_3 - CC - CH_3 \xrightarrow{1)OH} HCH = CH - CC - CH_3$$

PhCHO + CH₃CHO
$$\frac{1)OH}{2)\Delta}$$
 PhCH=CH-C-H

PhCHO + CH₃-
$$\frac{O}{C}$$
-C(CH₃)₃ $\frac{1)\text{NaOH-H}_2O}{2)} \triangle$

Ph
$$C = C$$
 $C - C(CH_3)_3$ 88~93%

■不含α一H的醛不发生缩合

$$H-C=O$$
 H_3C-C+O CH_3 CH_3 CH_3

- ■羟醛缩合是一种增长碳链的方法
- ■酮的缩合较少

3. 醛酮的 α -H的卤化

1) 卤化反应

$$-\overset{|}{\overset{\circ}{C}}-\overset{\circ}{\overset{\circ}{C}}-\overset{X_2}{\overset{\circ}{\overset{\circ}{H}^+}}\overset{-}{\overset{\circ}{\overset{\circ}{C}}}-\overset{\circ}{\overset{\circ}{\overset{\circ}{C}}}-\overset{\circ}{\overset{\circ}{\overset{\circ}{C}}}-\overset{\circ}{\overset{\circ}{\overset{\circ}{C}}}+\overset{HX}{\overset{\circ}{\overset{\circ}{\overset{\circ}{C}}}}$$

在酸性介质可以停留在一卤代物

2) 卤仿反应

$$R - C - CH_3 \xrightarrow{X_2} R - C - O - + CHX_3$$
 点仿

碘仿CHI₃↓黄色

■用于制备少一个C原子的羧酸

$$(CH_{3})_{3}C - C - CH_{3} \xrightarrow{(1) I_{2}, OH} (CH_{3})_{3}C - C - O$$

$$(CH_{3})_{3}C - C - OH$$

$$(CH_{3})_{3}C - C - OH$$

练习: P₃₀₄, 7

(三) 氧化和还原

- 1. 还原反应,条件不同,产物不同
 - 1)还原成醇

RCHO + H₂
$$\xrightarrow{\text{Pt or Pd, Ni}}$$
 RCH₂OH
 $0.3 \text{ MPa, } 25^{\circ}\text{C}$ RCH₂OH
 $R_2\text{CO} + H_2 \xrightarrow{\text{Pt or Pd, Ni}}$ R₂CHOH
 $0.3 \text{ MPa, } 25^{\circ}\text{C}$

催化氢化会将分子中含有的不饱和键一起还原

$$C_2H_5CH=CHCHO \xrightarrow{H_2/Ni} C_2H_5CH_2CH_2CH_2OH$$

用金属氢化物还原,不还原 c=c

硼氢化钠 NaBH₄,氢化铝锂 LiAlH₄

$$H_3$$
C-C=C-C-CH₃ $\xrightarrow{1. \text{LiAlH}_4}$ $\xrightarrow{1. \text{LiAlH}_4}$ $\xrightarrow{1. \text{LiAlH}_4}$ $\xrightarrow{1. \text{NaBH}_4}$ $\xrightarrow{2. \text{H}_3^+\text{O}}$ $\xrightarrow{2. \text{H}_3^+\text{O}}$

- ■NaBH4的还原能力比LiAlH4差,只能还原醛、酮、 酰卤的羰基。
- ■LiAlH4除了C=C, C≡C不还原, 其它基团也会还原

2) 还原成一CH₂一

Clemmensen Reduction

Wolff-Kishner-黄鸣龙 Reduction

2. 氧化反应

(1) 醛的氧化

RCHO
$$\stackrel{[O]}{\longrightarrow}$$
 RCO₂H

氧化剂: KMnO4, K₂Cr₂O₇, H₂Cr₂O₇, H₂CrO₄ RCO₃H, Ag₂O, H₂O₂, Br₂-H₂O,

许多醛(尤其是芳香醛)还会发生自动氧化,金属离子、光照等能加速氧化。

被Tollens 试剂氧化(银镜反应)

$$RCHO + Ag(NH_3)_2^+OH^- \rightarrow RCO_2NH_4 + Ag$$

被Fehling试剂或Benedict试剂氧化

Fehling试剂: 酒石酸钾钠络合剂

Benedict试剂: 柠檬酸络合剂

Tollens 试剂、Fehling试剂、Benedict试剂可用来区别醛酮。 酮不反应!!

(2) 酮的氧化

- ■酮遇一般氧化剂时,不被氧化
- 酮遇强氧化剂时,发生碳链断裂,氧化成酸

$$\begin{array}{c} O \\ CH_3-C-CH_2CH_3 \end{array} \xrightarrow{HNO_3} \begin{array}{c} CO_2 + CH_3CO_2H \\ \hline \triangle \\ + CH_3CH_2CO_2H \end{array}$$

3. Cannizarro reaction (歧化反应)

■不含α-H的醛在浓碱作用下发生分子间的 氧化一还原反应生成相应的醇和酸。

交叉的Cannizarro 反应

$$\sim$$
 CHO + CH₂O $\stackrel{OH}{\longrightarrow}$ \sim CH₂OH + HCO₂

$$(CH_3)_3CCHO + CH_2O \xrightarrow{OH} (CH_3)_3CCH_2OH + HCO_2$$

羰基还原性较强的醛被氧化成酸

$$3 H_2C=O + CH_3CHO \xrightarrow{Ca(OH)_2} HOH_2C-C-CHO$$
 经醛缩合 CH₂OH

季戊四醇

六、重要的醛酮(P₂₉₆₋₂₉₇)

本章重点

- 醛酮的亲核加成反应
 - ■与HCN, NaHSO₃, 醇,格氏试剂,氨的衍生物亲核试剂的加成
- α-活泼氢的反应
 - · α-卤化与卤仿反应
 - 羟醛缩合
- ■氧化还原反应
 - 还原反应,成醇,亚甲基
 - 氧化反应,区别醛酮的试剂
 - 歧化反应

作业

■ P₃₀₂, 1①~⑦, 4, 5, 6, 9①③⑤, 10 11①②③, 14, 15

黄鸣龙(1898.7.3~1979.7.1),化学家

醋酸可的松的七步合成法 1966年获国家发明奖

是我国甾族激素药物工业的奠基人

环戊烷并全氢菲类化合物的总称。又称类固醇。这类化合物由于含有4个环和3个侧链,故用一象形字"甾"为其中文名,总称甾族化合物。

胆固醇

胆固醇(cholesterol),又分为高密度胆固醇和低密度胆固醇两种,前者对心血管有保护作用,通常称之为"好胆固醇",后者偏高,冠心病的危险性就会增加,通常称之为"坏胆固醇"。血液中胆固醇含量每单位在140~199毫克之间,是比较正常的胆固醇水平。