Note

Feng-Yang Hsieh

1 SPANet2

Version 2 of SPANet. call it SPANet2.

1.1 Defining event topology

Defining the event topology in .ymal file. The structure of the .yaml file follows this format:

INPUTS:

SEQUENTIAL:

1.2 Creating training dataset

.hdf5

1.3 Training options

1.4 Training

Training:

python -m spanet.train -of <OPTIONS_FILE> --log_dir <LOG_DIR> --name <NAME>
<OPTIONS_FILE>: JSON file with options. <LOG_DIR>: output directory. <NAME>: subdirectory name

Evaluation:

python -m spanet.test <log_directory> -tf <TEST_FILE>

<log_directory>: directory containing the checkpoint and options file. <TEST_FILE> will
replace the test file in the option file.

Prediction:

python predict.py <log_directory> <output name> -tf <TEST_FILE> --gpu ????

2 Test SPANet2

2.1 SM SPANet

Generate the correct format $\kappa_{\lambda} = 1$ training data for SPANet2 training.

• Training sample:

- Total sample size: 76,131

- 1h sample size: 14,527

- 2h sample size: 60,122

- 5% used on validation

• Testing sample:

- Total sample size: 8,460

- 1h sample size: 1,577

- 2h sample size: 6,744

The training results are presented in Table 1.

Table 1: SPA-NET2 training results on the SM di-Higgs samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.280	0.907	0.907
=5	0.287	0.806	0.847
≥ 6	0.229	0.679	0.753
Total	0.797	0.805	0.841

2.2 $\kappa 5$ SPANet

Generate the $\kappa_{\lambda} = 5$ training data for SPANet2 training.

- Training sample:
 - Total sample size: 78,388

- 1h sample size: 16,013

- 2h sample size: 59,180

- 5% used on validation

• Testing sample:

- Total sample size: 8,710

- 1h sample size: 1,846

- 2h sample size: 6,486

The training results are presented in Table 2.

Table 2: SPA-NET2 training results on the di-Higgs $\kappa_{\lambda}=5$ samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.315	0.689	0.689
=5	0.255	0.617	0.639
≥ 6	0.174	0.499	0.544
Total	0.745	0.620	0.638

Resonant SPANet

Generate the correct format resonant training data for SPANet2 training.

• Training sample:

- Total sample size: 51,145

- 1h sample size: 9,320

- 2h sample size: 40,991

- 5% used on validation

• Testing sample:

- Total sample size: 5,683

- 1h sample size: 1,011

- 2h sample size: 4,582

The training results are presented in Table 3.

Table 3: SPA-NET2 training results on the resonant di-Higgs samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.316	0.930	0.930
=5	0.282	0.808	0.839
≥ 6	0.208	0.660	0.727
Total	0.806	0.818	0.846

2.4 Mixing κ_{λ} SPANet

Generate the correct format mixing κ_{λ} training data for SPANet2 training.

• Training sample:

- Total sample size: 51,145

- 1h sample size: 9,320

- 2h sample size: 40,991

- 5% used on validation

• Testing sample:

- Total sample size: 5,683

- 1h sample size: 1,011

- 2h sample size: 4,582

The training results are presented in Table 4.

Table 4: SPA-NET2 training results on the resonant di-Higgs samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.316	0.930	0.930
=5	0.282	0.808	0.839
≥ 6	0.208	0.660	0.727
Total	0.806	0.818	0.846

2.5 Summary

In most cases, the performance of SPANet2 is worse than the old one. Some default options are different between the two versions. But even if the options are set as identical, the training results also cannot be better.

The training results of old and new versions SPANet have been summarized in Table 5.

Table 5: SPA-NET2 training results on the resonant di-Higgs samples.

	Event efficiency		
	SPANet SPANet2		
SM	0.868	0.805	
kappa 5	0.725	0.620	
Resonant	0.903	0.818	
Mixing κ_{λ}	0.833	0.830	

3 Combine jet assignment and event classification

This section trains the SPANet2 on the jet assignment and event classification task at the same time. This is the new feature of SPANet2.

3.1 $\kappa_{\lambda} = 5$ sample

For the jet assignment part, use the same sample as in Sec. 2.2.

• Training sample:

- Total sample size: 168,125

- Signal sample size: 78,388

- Background sample size: 89,737

-5% used on validation

• Testing sample:

- Total sample size: 18,681

- Signal sample size: 8,710

- Background sample size: 9,971

The training results are presented in Table 6.

Table 6: SPA-NET2 training results on the $\kappa_{\lambda} = 5$ samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.316	0.930	0.930
=5	0.282	0.808	0.839
≥ 6	0.208	0.660	0.727
Total	0.806	0.818	0.846

3.2 Mixing κ_{λ}

3.2.1 Training samples

For signal, set $\kappa_{\lambda} = [-5, -3, -1, 1, 2, 3, 5, 7, 9, 12]$ and generate 9,000 samples on each κ_{λ} point for training. The training samples are required to pass the "Four tag cut", i.e., there are at least four b-tagged jets with $p_{\rm T} > 40$ GeV and $|\eta| < 2.5$.

Note that the κ_{λ} value is an input feature. For the background sample, the input κ_{λ} value is randomly chosen from the above values.

For the jet assignment part,

• Training sample:

- Total sample size: 90,000

- 1h sample size: 18,020

- 2h sample size: 69,267

- 5% used on validation

• Testing sample:

- Total sample size: 9,000

- 1h sample size: 1,802

- 2h sample size: 6,899

For event classification,

• Training sample:

- Total sample size: 179,737

- Signal sample size: 90,000

- Background sample size: 89,737

- 5% used on validation

• Testing sample:

- Total sample size: 18,971

- Signal sample size: 9,000

- Background sample size: 9,971

3.2.2 Hyperparameters setting

Some options are different between SPANet and SPANet2. List the different options below

• hidden_dim: $128 \rightarrow 64$

• learning_rate: $0.0007 \rightarrow 0.0015$

• num_attention_heads: $8 \rightarrow 4$

The total loss function consists of assignment loss and classification loss. The same weights are assigned to these losses.

• assignment_loss_scale: 1.0

 \bullet classification_loss_scale: 1.0

3.2.3 Training results

Table 7 presents the jet assignment training results.

Table 7: SPANet2 training results on the mixing κ_{λ} samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.139	0.866	0.866
=5	0.130	0.806	0.834
≥ 6	0.095	0.704	0.766
Total	0.364	0.802	0.829

Table 8 presents the classification training results.

Table 8: The SPANet2 classification training results with mixing κ_{λ} sample.

Training sample	ACC	AUC
Mixing κ_{λ}	0.828	0.911

4 κ_{λ} constraints on SPANet2

4.1 SPANet2 classification

Use the SPANet2 to do the signal background classification task.

When an event is put in SPANet2, SPANet2 will return a signal score p_{signal} which represents the confidence of this event is a signal event. The requirement of $p_{\text{signal}} > p_{\text{th}}$ is imposed for event selection, where $p_{\text{th}} = 0.90$. Where we do not choose the value that can maximize the S/\sqrt{B} . Because the value is too close to 1, then very few events can pass this selection. Thus we can not do further analysis.

Set the κ_{λ} limits by the profile likelihood method and CLs method. Table 9 results from κ_{λ} constraints.

Table 9: The κ_{λ} constraints of SPANet2.

	Expected Constraint			
	Profile 1	likelihood	CLs	
Selection method	Lower	Upper	Lower	Upper
SPANet2	-3.48	9.18	-3.41	9.09

5 Comparision with previous results

This section summary the results among the "min- ΔR DNN", " $\kappa 5$ SPANet DNN", "mixing κ SPANet2".

5.1 Pairing performance

Figure 1 shows the pairing efficiency of different methods. Where the mixing κ SPANet2 has the best performance.

5.2 Classification performance

Table 8 presents the classification training results.

Figure 1: The pairing performance for different κ_λ samples.

Table 10: The classification performance of different selection methods.

Selection method	ACC	AUC
\min - ΔR DNN	0.783	0.864
$\kappa 5$ SPANet DNN	0.792	0.875
mixing κ SPANet2	0.828	0.911

5.3 κ_{λ} constraints

Table 11 is the κ_{λ} constraints of the different selection methods.

Table 11: The κ_{λ} constraints of different selection methods.

		Expected Constraints		S	
		Profile	ikelihood	\mathbf{C}	Ls
Pairing method	Selection method	Lower	Upper	Lower	Upper
$\overline{\min -\Delta R}$	DNN	-3.81	11.16	-3.73	11.15
κ 5 SPANet	DNN	-4.08	11.65	-4.02	11.68
Mixing κ SPANet2	SPANet2	-3.48	9.18	-3.41	9.09

5.4 Mass distribution plot

Figure 2 and 3 show the Higgs mass distribution for signal and background events with different pairing methods. The selection does not apply. The mass planes for the signal process all look similar for all pairing methods. For background, the results of min- ΔR are very different from others.

Figure 4 are the m_{HH} distributions after the selection.

6 SPANet2 pairing + DNN selection

This section uses the mixing κ SPANet2 for jet pairing and generates the samples for DNN training. The training samples consisted of different κ_{λ} value events.

6.1 Training samples

Set $\kappa_{\lambda} = [-5, -3, -1, 1, 2, 3, 5, 7, 9, 11]$, for each κ_{λ} point generate samples. For signal, the different κ_{λ} samples are mixed. For each type, the same number of samples is used. For background, the κ_{λ} values are randomly chosen from the above list. Training sample sizes are shown in Table 12.

6.2 Training results

The DNN training results are summarized in Table 13.

Figure 2: The mass plane and distribution of Higgs candidate for signal events with different pairing methods. The top one is mixing κ SPANet2 pairing, the middle one is $\kappa 5$ SPANet pairing, bottom one is min- ΔR pairing.

Figure 3: The mass plane and distribution of Higgs candidate for background events with different pairing methods. The top one is mixing κ SPANet2 pairing, the middle one is $\kappa 5$ SPANet pairing, bottom one is min- ΔR pairing.

Figure 4: The m_{HH} distributions after selection. The DNNs are trained with different pairing method samples.

Table 12: The sample size for signal and background, which are the training and testing sample sizes.

$$\frac{\text{Signal}}{80k + 8k} \frac{\text{Background}}{80k + 8k}$$

Table 13: The DNN training results with different pairing methods. The training samples contain different κ_{λ} samples. The average and standard deviation of 10 training is presented.

Pairing method	ACC	AUC
\min - ΔR	0.800 ± 0.010	0.882 ± 0.010
$\kappa 5$ SPA-NET	0.794 ± 0.004	0.876 ± 0.004
mixing κ SPANet2	0.800 ± 0.003	0.882 ± 0.004

6.3 κ_{λ} limits

Set the κ_{λ} limits by the profile likelihood method and CLs method. The model with the best ACC is used. The $p_{\rm th}$ is chosen such that maximize S/\sqrt{B} .

The results of κ_{λ} constraints are summarized in Table 14.

Table 14: The κ_{λ} constraints with DNN selection samples.

	Expected Constraint				
	Profile l	ikelihood	\mathbf{C}	Ls	
Pairing method	Lower Upper		Lower	Upper	
\min - ΔR	-3.20	10.87	-3.16	10.78	
κ 5 SPA-NET	-4.44	10.86	-4.35	10.78	
mixing κ SPANet2	-3.42	10.85	-3.40	10.77	

Here, the bug of the previous testing sample is fixed. In the previous background testing sample, all κ_{λ} are set to 1 not randomly chosen from the κ_{λ} value list.

7 Summary

7.1 Classification performance

Table 15 presents the classification training results.

Table 15: The classification performance of different selection methods.

Selection method	ACC	AUC
\min - ΔR DNN	0.800 ± 0.010	0.882 ± 0.010
$\kappa 5$ SPANet DNN	0.794 ± 0.004	0.876 ± 0.004
mixing κ SPANet2 DNN	0.800 ± 0.003	0.882 ± 0.004
mixing κ SPANet2	0.822 ± 0.007	0.906 ± 0.006

7.2 κ_{λ} constraints

Table 16 is the κ_{λ} constraints of the different selection methods.

Table 16: The κ_{λ} constraints of different selection methods.

		Expected Constraints			
		Profile likelihood C		Ls	
Pairing method	Selection method	Lower	Upper	Lower	Upper
\min - ΔR	DNN	-3.20	10.87	-3.16	10.78
κ 5 SPANet	DNN	-4.44	10.86	-4.35	10.78
Mixing κ SPANet2	DNN	-3.42	10.85	-3.40	10.77
Mixing κ SPANet2	SPANet2	-3.18	8.79	-3.13	8.77

8 κ_{λ} constraints with different luminosities

Use the min- ΔR method to set constraints with different luminosity. The results are shown in Figure 5.

Figure 5: The κ_{λ} constraints with different luminosities. Use min- ΔR method for pairing and DNN for selection.

Use mixing κ SPANet2 for constraints setting with different luminosity. The results are presented in Table 17.

9 SPANet classifier

Figure 6 is the model structure of SPANet2. The classifier part takes the outputs of the transformer encoder. The architecture of the classifier part is just the feed-forward structure

Table 17: The κ_{λ} constraints with different luminosities. Use SPANet2 for event selection.

	Expected Constraints			Equivlent luminosity for min- ΔR				
	Profile likelihood		CLs		Profile likelihood		CLs	
\mathcal{L} (fb ⁻¹)	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
139	-3.18	8.79	-3.13	8.77	145	388	144	381
300	-1.96	7.96	-1.96	7.89	280	810	275	796

networks.

The SPANet classifier does not take the results from the jet assignment part, because it is worse than if we just take the transformer outputs. The reason is that it can lead to worse performance due to errors in that part.

Figure 6: The model structure of SPANet2.

10 SPANet2 classification

This section turns off the jet assignment part in SPANet2 by setting the assignment loss weight to zero.

• assignment_loss_scale: 0.0

• classification_loss_scale: 1.0

Table 18: The SPANet2 classification training results with mixing κ_{λ} sample. The jet assignment part is turned off. The average and standard deviation of 10 training are presented.

Training sampleACCAUCMixing
$$\kappa_{\lambda}$$
 0.809 ± 0.013 0.890 ± 0.014

Using the mixing κ samples for training. The samples are the same as Sec. 3.2.1. Table 18 presents the classification training results.

Set $p_{\rm th} = 0.93$ and use the profile likelihood method and CLs method for the κ_{λ} setting. Table 19 is the results of κ_{λ} constraints. These results are worse than simultaneously training on jet assignment and classification tasks.

Table 19: The κ_{λ} constraints of SPANet2.

	Expected Constraint				
	Profile l	likelihood	\mathbf{C}	Ls	
Selection method	Lower	Upper	Lower	Upper	
SPANet2	-5.01	10.97	-4.92	10.89	

11 SPANet embedding vectors

The SPANet embedding vectors can be saved in .hdf5 file by this command

```
python -m spanet.predict <log_dir> <output name> -tf <TEST_FILE> \
   --gpu --output_vectors
```

<log_dir>: directory containing the checkpoint and options file. <TEST_FILE>: the test file
path.

11.1 Principal component analysis

Use the PCA class implemented in scikit-learn to do the principal component analysis (PCA) on the SPANet embedding vectors. The variance ratio of the first ten components is shown in Figure 7.

Calculate the correlation coefficients with principal components and the high-level observables. The high-level observables are the DNN input features that are constructed by the SPANet2 pairing.

Figure 7: The variance ratio of the first ten principal components.

The results are presented in Figure 8. In Figure 9, the correlation coefficients of signal and background events are calculated separately. The level of correlation of most variables is very low in the background case compared to the signal one's.

Figure 8: The correlation coefficients of the first three principal components and high-level observables.

12 Hyperparameter tuning

This section uses Optuna to do the hyperparameter optimization.

Figure 9: The correlation coefficients of the first three principal components and high-level observables. Where the signal and background samples are calculated separately.

12.1 Optimization range

The optimization range of different hyperparameters is listed in the below

• learning_rate: $[10^{-5}, 10^{-2}]$

• dropout: [0, 0.5]

• $\texttt{gradient_clip:}\ [0,0.5]$

• 12_penalty: [0, 0.0005]

 $\bullet \ \, \mathtt{hidden_dim} \colon [16, 32, 64, 128, 256]$

 $\bullet \ \, {\tt num_encoder_layers} \colon [2,8]$

 $\bullet \ \, {\tt num_branch_encoder_layers} \colon \, [2,8]$

 $\bullet \ \, {\tt num_classification_layers:} \,\, [1,5] \\$

Each parameter set was trained for 10 epochs. Test 100 trials.

12.2 Hyperparameter optimization results

The hyperparameters optimization results are listed the below

• learning_rate: 0.00659

• dropout: 0.0059

• $gradient_clip: 0.425$

• 12 penalty: 0.000374

• hidden_dim: 32

• num_encoder_layers: 8

• num branch encoder layers: 2

• num classification layers: 1

Use this parameter set for full training. The samples are the same as Sec. 3.2.1. Table 20 presents the classification training results. This result is a little better than Table 15.

Table 20: The SPANet2 classification training results with mixing κ_{λ} sample. Use the Optuna hyperparameter optimization results. The average and standard deviation of 10 training are presented.

Set $p_{\rm th} = 0.95$ and use the profile likelihood method and CLs method for the κ_{λ} setting. Table 21 is the results of κ_{λ} constraints. These results are similar to the previous one (Table 16).

Table 21: The κ_{λ} constraints of SPANet2.

	Expected Constraint				
	Profile 1	likelihood	C	Ls	
Selection method	Lower	Upper	Lower	Upper	
SPANet2	-3.07	8.80	-3.04	8.76	

12.3 DNN hyperparameter optimization

The optimization range of different hyperparameters is listed in the below

• learning_rate: $[10^{-5}, 10^{-1}]$

• hidden_dim: [16, 32, 64, 128, 256]

• n_layers: [1,5]

Test 100 trials.

12.4 DNN hyperparameter optimization results

For min- ΔR , the hyperparameters optimization results are

• learning_rate: 0.00495

• hidden_dim: 256

• n_layers: 3

For mixing κ SPANet2, the results are

• learning_rate: 0.000948

• hidden_dim: 256

• n_layers: 2

Use these parameter sets for training. The samples are the same as Sec. 6.1. Table 22 presents the DNN classification training results. The results are similar to Table 15.

Table 22: The DNN classification training results with mixing κ_{λ} sample. Use the Optuna hyperparameter optimization results. The average and standard deviation of 10 training are presented.

	ACC	AUC
\min - ΔR	0.799 ± 0.011	0.881 ± 0.012
mixing κ SPANet2	0.803 ± 0.004	0.884 ± 0.004

Set $p_{\rm th} = 0.95$ and use the profile likelihood method and CLs method for the κ_{λ} setting. Table 23 is the results of κ_{λ} constraints. These results are similar to the previous one (Table 16).

Table 23: The κ_{λ} constraints of DNN with best hyperparameters.

	Expected Constraint					
	Profile likelihood CLs		Ls			
Selection method	Lower	Upper	Lower	Upper		
\min - ΔR DNN	-3.20	10.31	-3.16	10.19		
mixing κ SPANet2 DNN	-3.29	11.14	-3.14	11.04		

13 Summary

13.1 Pairing performance

Figure 10 shows the pairing efficiency of different methods. Table 24 is the pairing efficiency of some κ_{λ} points. Where the mixing κ SPANet2 has the best performance.

Table 24: The classification performance of different selection methods.

		κ_{λ}	
Pairing method	-5	1	5
$min-\Delta R$	0.644	0.809	0.395
mixing κ SPANet2	0.793	0.885	0.729

13.2 Classification performance

Table 25 presents the classification training results. Where the hyperparameter optimization is finished.

Table 25: The classification performance of different selection methods.

Selection method	ACC	AUC
\min - ΔR DNN	0.799 ± 0.011	0.881 ± 0.012
mixing κ SPANet2 DNN	0.803 ± 0.004	0.884 ± 0.004
mixing κ SPANet2	0.828 ± 0.002	0.911 ± 0.001

13.3 κ_{λ} constraints

Table 26 is the κ_{λ} constraints of the different selection methods. Where the hyperparameter optimization is finished.

Figure 10: The pairing performance for different κ_λ samples.

Table 26: The κ_{λ} constraints of different selection methods.

		Expected Constraints			
		Profile likelihood		CLs	
Pairing method	Selection method	Lower	Upper	Lower	Upper
\min - ΔR	DNN	-3.20	10.31	-3.16	10.19
Mixing κ SPANet2	DNN	-3.29	11.14	-3.14	11.04
Mixing κ SPANet2	SPANet2	-3.07	8.80	-3.04	8.76

14 Compared 13 TeV and 14 TeV samples

This section plots the $p_{\rm T}$, η , and invariant mass distribution with different energy.

14.1 Signal plots

Generate the di-Higgs samples with $\sqrt{s} = 13$ TeV and 14 TeV, then plot the total invariant mass of di-Higgs m_{hh} and the $p_{\rm T}$ of Higgs. The results are presented in Figure 11. The distribution of different energy is similar and the ratio is close to 1.

Figure 11: The total invariant mass m_{hh} distribution of di-Higgs system and the $p_{\rm T}^h$ distribution of Higgs. The ratio is obtained by dividing the 14 TeV samples by the 13 TeV samples. The distribution of different energy look similar.

14.2 Background plots

Generate the pp4b samples with $\sqrt{s} = 13$ TeV and 14 TeV, then plot the total invariant mass of 4b quarks and the $p_{\rm T}$, η of b quarks. The results are presented in Figure 12 and Figure 13. The distribution of different energy is similar and the ratio is close to 1.

Figure 12: The total invariant mass m_{4b} distribution. The ratio is obtained by dividing the 14 TeV samples by the 13 TeV samples.

15 κ_{λ} constraints with different cross section and luminosity

Because the kinematics for 13 TeV and 14 TeV are similar, we can just scale the cross section to 14 TeV ones. Calculate the κ_{λ} constraints with 14 TeV cross section and luminosity $\mathcal{L} = 300, 3000 \text{ fb}^{-1}$. Table 27 is the result.

The $\Delta \kappa_{\lambda}$ for different luminosity are shown in Figure 14. Where the $\Delta \kappa_{\lambda}$ is the upper limit minus the lower limit.

Use mixing κ SPANet2 classifier to set κ_{λ} constraints, then evaluate the equivalent luminosity for min- ΔR + DNN classifier. The results are shown in Table 28.

Figure 13: The $p_{\rm T}$ and η distribution of b quarks, the first row is for leading b quarks and the second row is for sub-leading b quarks. The ratio is the 14 TeV samples divided by the 13 TeV samples. The distribution of different energy look similar.

Table 27: The κ_{λ} constraints of different selection methods. Where the 14 TeV cross sections are used.

		Expected Constraints					
		Prof	ile likelih	ood	CLs		
S/B classifier	\mathcal{L} (fb ⁻¹)	Lower	Upper	$\Delta \kappa_{\lambda}$	Lower	Upper	$\Delta \kappa_{\lambda}$
\min - ΔR + DNN	300	-1.47	8.51	9.98	-1.44	8.49	9.92
\min - ΔR + DNN	3000	1.01	6.11	5.10	0.36	6.08	5.72
Mixing κ SPANet2 + DNN	300	-1.75	9.03	10.78	-1.72	8.94	10.67
Mixing κ SPANet2 + DNN	3000	0.87	6.23	5.36	0.33	6.20	5.87
Mixing κ SPANet2	300	-1.59	7.60	9.19	-1.57	7.49	9.06
Mixing κ SPANet2	3000	0.91	5.29	4.38	0.33	5.31	4.98

Figure 14: The $\Delta \kappa_{\lambda}$ for different luminosities.

Table 28: Use mixing κ SPANet2 classifier to set κ_{λ} constraints. The equivalent luminosity for min- ΔR + DNN are presented. Where the $\Delta \kappa_{\lambda}$ are used to evaluate the equivalent luminosity.

	Expected Constraints							
	Profile likelihood				CLs		Profile likelihood	CLs
\mathcal{L} (fb ⁻¹)	Lower	Upper	$\Delta \kappa_{\lambda}$	Lower	Upper	$\Delta \kappa_{\lambda}$	Equivalent \mathcal{L} for min- ΔR + DNN	
300	-1.59	7.60	9.19	-1.57	7.49	9.06	405	425