Cloud - 5

ESIR

Djob Mvondo

Proliferation of data

- Due to Cloud advent, companies can store several chunks of data
 - Airbus generates up to 40TB of data per flight test
 - Facebook generates 4 PB every day
 - Twitter generates approximately 500 million tweets per day
 - •

With Cloud resources, we have enough processing power right?

Proliferation of data

• With Cloud resources, we have enough processing power right?

It depends on how they are used

Example

 Write a program that counts the number of occurrences of each word in a text file.

Measure the performance of your program for different input sizes:
 https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

• Does your program performance scale? Now working in groups of 4/3, to parallelize the work between the different servers.

Example

• Does your program performance scale? Now working in groups of 8/10, to parallelize the work between the different servers.

What are the different pitfalls you faced?

To summarize

We need new programming abstractions to process big chunks of data:

- (1) very fast, such that it can
- (2) scale across different servers, while efficiently using
- (3) available resources while achieving
- (4) fault tolerance.

To summarize

- Fast processing is essential to meet stringent demands
 - Finance
 - Marketing
 - Recommender systems
 - Face recognition systems
 - •

 Scaling is essential to efficiently use available resources and meet workload bursts

 Fault tolerance is necessary to reduce unecessary work performed and detect processing errors that can cost alot

Two programming abstractions

Batch processing (MapReduce)

Stream processing

- Perform processing on big chunks of data (usually distributed) introduced by Dean and Sanjay from Google[1].
- The core idea is to divide and conquer
- A set of jobs divides the data to be processed by several entities, then the data chunks are sorted (map) and then aggregated to get the final result (reduce).
 - Sort-Map: Which data interest me?
 - Aggregated-Reduce: How should I combine the results?

Batch processing (MapReduce) - Wordcount

Can you implement it?
What are the main difficult
aspect of implementing this
architecture?

https://www.analyticsvidhya.com/blog/2 022/05/an-introduction-to-mapreducewith-a-word-count-example/

- Used by several mainstream products e.g., MongoDB, Hadoop/HDFS, etc...
- Requires coordination, task initialization, coordination, scheduling, and monitoring
- Can achieve up to 100x faster processing times than standard naive abstractions.
- Several existing interfaces in several existing programming languages.

- Used by several mainstream products e.g., MongoDB, Hadoop/HDFS, etc...
- Requires coordination, task initialization, coordination, scheduling, and monitoring
- Can achieve up to 100x faster processing times than standard naive abstractions.
- Several existing interfaces in several existing programming languages.

Stream processing

- Introduced by Apache Storm in 2011 mainly by Twitter Engineers to handle real-time rendering of tweets feed
- Meant for continuous execution where there are several data sources compared to batch processing where data is already registered/saved somewhere.

Stream processing

- Introduces the concept of spouts and bolts
- Spouts generate data (data sources)
- Bolts perform an operation and send the data to one or more other bolts
- A combination of spouts and bolts form a topology

Stream processing

An example of a stream processing technology

