Linear Regression

15/02/2021

Overview

- Linear Regression Model
- Measuring error
- Error Surface
- Regression Algorithm
- Example

Prerequisite

- Derivative
- Finding Derivatives
- Chain Rule
- Partial Differentiation
- Dataset, Descriptive Features, Target

Supervised Learning

• In a supervised learning problem, you have access to input variables (X) and outputs (Y), and the goal is to predict an output given an input.

Examples:

- Housing prices (Regression): predict the price of a house based on features (size, location, age etc)
- Cat vs. Dog (Classification): predict whether a picture is of a cat or a dog

Regression

- Predicting a continuous outcome variable:
 - × Predicting a company's future stock price using its profit and other financial information
 - ▼ Retail How much will be the daily, monthly, and yearly sales for a given store for the next three years?
 - ▼ How much will be the monthly electricity cost for the next three years?
 - ➤ How many customers will claim the insurance this year?
 - What will be the temperature for the next five days?
 - ➤ Predicting annual rainfall based on local flora and fauna

Ex: Predicting the rental price of an Office

<u>(6)</u>

A dataset that includes office rental prices and a number of descriptive features

ID	SIZE	FLOOR	BROADBAND RATE	ENERGY RATING	RENTAL PRICE
1	500	4	8	С	320
2	550	7	50	Α	380
3	620	9	7	Α	400
4	630	5	24	В	390
5	665	8	100	С	385
6	700	4	8	В	410
7	770	10	7	В	480
8	880	12	50	Α	600
9	920	14	8	С	570
10	1,000	9	24	В	620

Scatter plot of the SIZE and RENTAL PRICE features

		RENTAL
ID	SIZE	PRICE
1	500	320
2	550	380
3	620	400
4	630	390
5	665	385
6	700	410
7	770	480
8	880	600
9	920	570
10	1,000	620

Linear Model relating Size and Rent

Linear Model

- 9
- The equation of a line can be written as: y = mx + b
- This model is:

RENTAL PRICE = 6.47 + 0.62 SIZE

Advantage

- Understand how office size affects office rental price.
- Determine the expected rental price for office sizes that we have never actually seen in the historical data
- How much would we expect for size = 730

Prediction

RENTAL PRICE =
$$6.47 + 0.62 \times SIZE$$

 Using this model determine the expected rental price of the 730 square foot office:

RENTAL PRICE =
$$6.47 + 0.62 \times 730$$

= 459.07

Regression Model

$$y = mx + b$$

$$y = w[0] + w[1] * size$$

Objective is:

- to determine the optimal values for the weights in the model
- To measure the error between the predictions a model makes and the actual rental prices

Measuring Error

Error
$$E = \sum_{i=1}^{n} (t_i - y_i)^2$$

$$= \sum_{i=1}^{n} (t_i - (w[0] + w[1] * size_i))^2$$
....

Measuring Error

14

The sum of squared errors for the model (with w[o] = 6.47 and w[1] = 0.62)

		RENTAL		RENTAL	Model	Error	Squared
ID	SIZE	PRICE	ID	PRICE	Prediction	Error	Error
1	500	320	1	320	316.79	3.21	10.32
2	550	380	2	380	347.82	32.18	1,035.62
3	620	400	3	400	391.26	8.74	76.32
4	630	390	4	390	397.47	-7.47	55.80
5	665	385	5	385	419.19	-34.19	1,169.13
6	700	410	6	410	440.91	-30.91	955.73
7	770	480	7	480	484.36	-4.36	19.01
8	880	600	8	600	552.63	47.37	2,243.90
9	920	570	9	570	577.46	-7.46	55.59
10	1,000	620	10	620	627.11	-7.11	50.51
-10	1,000	020				Sum	5,671.64

Collection of simple linear models

(15)

With w[1] set to 0.4, 0.5, 0.7, and 0.8, the sums of squared errors are 136,218, 42,712, 20,092, and 90,978

Important Observation

- The sum of squared errors function can be used to measure how well any combination of weights fits the instances in a training dataset
- From a collection of simple linear models we need to identify the one which minimizes the sum of the squared errors
- How do we identify this?

Error Surface

17

For every possible combination of weights, **w[o]** and **w[1]**, there is a corresponding sum of squared errors value that can be joined together to make a surface.

Least squares optimization.

- Having a global minimum means that on an error surface, there is a unique set of optimal weights with the lowest sum of squared errors.
- If we can find the global minimum of the error surface, we can find the set of weights defining the model that best fits the training dataset.
- This approach to finding weights is known as **least** squares optimization.

Stationary Points

• We can find the optimal weights at the point where the **partial derivatives of the error** surface with respect to **w[o]** and **w[1]** are equal to o

$$E = \sum_{i=1}^{n} (t_i - (w[0] + w[1] * size_i))^2$$

$$\frac{\partial E}{\partial w[0]} = \sum_{i=1}^{n} 2(t_i - (w[0] + w[1] * size_i))(-1) = 0$$

$$\sum_{i=1}^{n} t_i = n.w[0] + w[1] * \sum_{i}^{n} size_i$$

$$\frac{\partial E}{\partial w[1]} = \sum_{i=1}^{n} 2(t_i - (w[0] + w[1] * size_i))(size_i) = 0$$

$$\sum_{i=1}^{n} t_{i} size_{i} = w[0] \sum_{i=1}^{n} size_{i} + w[1] * \left(\sum_{i=1}^{n} size_{i}\right)^{2}$$

Simple example

		RENTAL
ID	SIZE	PRICE
1	500	320
2	550	380
3	620	400
4	630	390
5	665	385
6	700	410
7	770	480
8	880	600
9	920	570
10	1,000	620

$$\sum_{i=1}^{n} t_{i} = n.w[0] + w[1] * \sum_{i=1}^{n} size_{i}$$

$$\sum_{i}^{n} t_{i} \operatorname{size}_{i} = w[0] \sum_{i}^{n} \operatorname{size}_{i} + w[1] * \left(\sum_{i}^{n} \operatorname{size}_{i}\right)^{2}$$

$$4555 = 10w[0] + w[1] * 7235$$

$$3447725 = w[0] * 7235 + w[1] * 5479725$$

Simple example

- import numpy as np
- mat=np.array([[10, 7235], [7235, 5479725]])
- b=np.array([4555, 3447725])
- imat=np.linalg.inv(mat)
- print(imat)
- w=np.dot(imat, b)
- w=[6.46689981 0.62064008]

This model is:

Rental Price = $6.47 + 0.62 \times Size$

Multivariate Regression

(22)

$$y = w[0] + w[1] * size$$
 $y = w[0] + w[1] * d[1]$

$$y = w[0] + w[1] * d[1] + w[2] * d[2] + w[3] * d[3] + \cdots + w[n] * d[n]$$

Multivariate regression model equation for Rental dataset

RENTAL PRICE =
$$\mathbf{w}[0] + \mathbf{w}[1] \times \text{Size} + \mathbf{w}[2] \times \text{Floor} + \mathbf{w}[3] \times \text{Broadband Rate}$$

- There is, however, a simple approach to learning weights that is based on the fact that,
- The error surfaces that correspond to these highdimensional weight spaces still have that single global minimum.

• This approach uses a guided search from a random starting position and is known as **gradient descent.**

- Gradient descent starts by selecting a random point within the weight space.
- Calculate the sum of squared errors(E) associated with this point based on predictions made for each instance in the training set .
- Determine the slope of the error surface $\frac{\partial E}{\partial w[j]}$
- Calculate the value of this derivative at the random point selected in the weight space.

- The randomly selected weights are adjusted slightly in the direction of the error surface gradient to move to a new position on the error surface.
- Because the adjustments are made in the direction of the error surface gradient, this new point will be closer to the overall global minimum.
- This adjustment is repeated over and over until the global minimum on the error surface is reached

$$E = \sum_{i=1}^{n} (t_i - (w[0] + w[1] * size_i))^2$$

The journey across the error surface that is taken by the gradient descent algorithm when training

the simple version of the office rentals example - involving just SIZE and RENTAL PRICE.

Calculation of best fit weights for the same model by GD

- 1: w random starting point in the weight space
- 2: repeat
- *3: for each w*[*j*] *in w do*

$$w[j] \leftarrow w[j] + \alpha \frac{\partial E}{\partial w[j]}$$

$$w[j] \leftarrow w[j] + \alpha \sum_{i=1}^{n} (t_i - y_i) \frac{-\partial y_i}{\partial w[j]} = \alpha \sum_{i=1}^{n} (t_i - y_i).(-d[j])$$

$$w[j] \leftarrow w[j] + \alpha * errorDelta(d[j], error)$$

- 4: end for
- 5: until convergence occurs

selection of the simple linear regression models

Multivariate Regression

$$y = w[0] + w[1] * size$$
 $y = w[0] + w[1] * d[1]$
 $y = w[0] + w[1] * d[1] + w[2] * d[2] + w[3] * d[3] + \dots + w[n] * d[n]$

Multivariate regression model equation for Rental dataset

RENTAL PRICE =
$$\mathbf{w}[0] + \mathbf{w}[1] \times \text{Size} + \mathbf{w}[2] \times \text{Floor} + \mathbf{w}[3] \times \text{Broadband Rate}$$

ID	SIZE	FLOOR	BROADBAND RATE	ENERGY RATING	RENTAL PRICE
1	500	4	8	С	320
2	550	7	50	Α	380
3	620	9	7	Α	400
4	630	5	24	В	390
5	665	8	100	С	385
6	700	4	8	В	410
7	770	10	7	В	480
8	880	12	50	Α	600
9	920	14	8	С	570
10	1,000	9	24	В	620

- For this example let's assume that:
 - $\alpha = 0.00000002$

Initial Weights

$\mathbf{w}[0]$: -0.146 $\mathbf{w}[1]$: 0.185 $\mathbf{w}[2]$: -0.044 $\mathbf{w}[3]$: 0.119	w [0]:	-0.146	w[1]:	0.185	w [2]:	-0.044	w [3]:	0.119
---	---------------	--------	-------	-------	---------------	--------	---------------	-------

(32)

Iteration 1

RENTAL Squared					errorDelta(D, w[i])			
ID	PRICE	Pred.	Error	Error	w [0]	w [1]	w[2]	w [3]
1	320	93.26	226.74	51411.08	226.74	113370.05	906.96	1813.92
2	380	107.41	272.59	74307.70	272.59	149926.92	1908.16	13629.72
3	400	115.15	284.85	81138.96	284.85	176606.39	2563.64	1993.94
4	390	119.21	270.79	73327.67	270.79	170598.22	1353.95	6498.98
5	385	134.64	250.36	62682.22	250.36	166492.17	2002.91	25036.42
6	410	130.31	279.69	78226.32	279.69	195782.78	1118.76	2237.52
7	480	142.89	337.11	113639.88	337.11	259570.96	3371.05	2359.74
8	600	168.32	431.68	186348.45	431.68	379879.24	5180.17	21584.05
9	570	170.63	399.37	159499.37	399.37	367423.83	5591.23	3194.99
10	620	187.58	432.42	186989.95	432.42	432423.35	3891.81	10378.16
			Sum	1067571.59	3185.61	2412073.90	27888.65	88727.43

$$w[j] \leftarrow w[j] + \alpha error Delta(d[j], w[j])$$

Initial Weights

 $\mathbf{w}[0]$: -0.146 $\mathbf{w}[1]$: 0.185 $\mathbf{w}[2]$: -0.044 $\mathbf{w}[3]$: 0.119

Example

 $\mathbf{w}[1] \leftarrow 0.185 + 0.00000002 \times 2,412,074 = 0.23324148$

New Weights (Iteration 1)

 $\mathbf{w}[0]$: -0.146 $\mathbf{w}[1]$: 0.233 $\mathbf{w}[2]$: -0.043 $\mathbf{w}[3]$: 0.121

Iteration 2

RENTAL				Squared		errorDelta	$\mathbf{a}(\mathcal{D}, \mathbf{w[i]})$	
ID	PRICE	Pred.	Error	Error	w [0]	w[1]	w[2]	w [3]
1	320	117.40	202.60	41047.92	202.60	101301.44	810.41	1620.82
2	380	134.03	245.97	60500.69	245.97	135282.89	1721.78	12298.44
3	400	145.08	254.92	64985.12	254.92	158051.51	2294.30	1784.45
4	390	149.65	240.35	57769.68	240.35	151422.55	1201.77	5768.48
5	385	166.90	218.10	47568.31	218.10	145037.57	1744.81	21810.16
6	410	164.10	245.90	60468.86	245.90	172132.91	983.62	1967.23
7	480	180.06	299.94	89964.69	299.94	230954.68	2999.41	2099.59
8	600	210.87	389.13	151424.47	389.13	342437.01	4669.60	19456.65
9	570	215.03	354.97	126003.34	354.97	326571.94	4969.57	2839.76
10	620	187.58	432.42	186989.95	432.42	432423.35	3891.81	10378.16
			Sum	886723.04	2884.32	2195615.84	25287.08	80023.74
Sun	n of squar	ed errors	(Sum/2)	443361.52				

$$w[j] \leftarrow w[j] + \alpha error Delta(d[j], w[j])$$

Initial Weights (Iteration 2)

 $\mathbf{w}[0]$: -0.146 $\mathbf{w}[1]$: 0.233 $\mathbf{w}[2]$: -0.043 $\mathbf{w}[3]$: 0.121

Exercise

$$w[1] \leftarrow ?, \alpha = 0.00000002$$

New Weights (Iteration 2)

 $\mathbf{w}[0]$: ? $\mathbf{w}[1]$: ? $\mathbf{w}[2]$: ? $\mathbf{w}[3]$: ?

$$w[j] \leftarrow w[j] + \alpha error Delta(d[j], w[j])$$

Initial Weights (Iteration 2)

 $\mathbf{w}[0]$: -0.146 $\mathbf{w}[1]$: 0.233 $\mathbf{w}[2]$: -0.043 $\mathbf{w}[3]$: 0.121

Exercise

$$\mathbf{w}[1] \leftarrow ?, \alpha = 0.00000002$$

New Weights (Iteration 2)

 $\mathbf{w}[0]$: ? $\mathbf{w}[1]$: ? $\mathbf{w}[2]$: ? $\mathbf{w}[3]$: ?

New Weights (Iteration 2)

 $\mathbf{w}[0]$: -0.145 $\mathbf{w}[1]$: 0.277 $\mathbf{w}[2]$: -0.043 $\mathbf{w}[3]$: 0.123

- After 100 iterations the final values for the weights are:
 - $\mathbf{w}[0] = -0.1513$,
 - $\mathbf{w}[1] = 0.6270$,
 - $\mathbf{w}[2] = -0.1781$
 - $\mathbf{w}[3] = 0.0714$

Prediction

Using this model:

Rental Price =
$$-0.1513 + 0.6270 \times \text{Size}$$

$$- 0.1781 \times \text{Floor}$$

$$+ 0.0714 \times \text{Broadband Rate}$$

 we can, for example, predict the expected rental price of a 690 square foot office on the 11th floor of a building with a broadband rate of 50 Mb per second as:

RENTAL PRICE
$$= -0.1513 + 0.6270 \times 690$$

 $-0.1781 \times 11 + 0.0714 \times 50$
 $= 434.0896$

Linear Regression with Scikit

- Load Dataset and split target and Features
- Data Preprocessing(null values, scaling)
- Exploratory Data Analysis
- Split data into training and test part
- Fit the Model to the training data
- Print model coefficients
- Make predictions on the test data
- Compute the mean squared error
- Make Predictions for new query