의사 될정 나무에서 연속형 변수 경계 값 나누는 방법

[표 6.11] 데이터

x	100	120	160	180	186	190	210	250	270	300
y	1	1	1	-1	-1	-1	-1	1	1	1

[풀이]

x	100 120 160 1 1 1 1			160			180			186			190			210			250			270			300			
y					-1			-1		-1			-1		1				1		1							
중간값	110		110		14	10		17	70		18	183		18	88		20	00		23	30		26	260		285		
		<	>		≤	>		≤	>		\leq	>		≤	>		\leq	>		\leq	>		<	>		\leq	>	
1분류		1	5		2	4		3	3		3	3		3	3		3	3		3	3		4	2		5	1	
-1분류		0	4		0	4		0	4		1	3		2	2		3	1		4	0		4	0		4	0	
엔트로피	0.892 0.		.8		0.6	90		0.9	25	5 0		.971 0		0.9	0.925		0.690			0.	.8		0.8	392				

(예) 중간값이 110인 경우:

. 엔트로피=
$$\frac{1}{10} imes \left\{ -1 imes \log_2(1) - 0 imes \log_2(0) \right\} + \frac{9}{10} imes \left\{ -\frac{5}{9} log_2(\frac{5}{9}) - \frac{4}{9} log_2(\frac{4}{9}) \right\} = 0.892$$

위 데이터에서 엔트로피가 최소가 되는 가지분할은 c=170 또는 230이다. 두 경우 분류기의 정확도는 각각 70%, 30%이다.

배깅 방법을 적용하기 위하여 10개의 붓스트랩 표본을 추출한 결과와 엔트로피가 최소가 되는 각각의 분류기가 [표 6.12]와 같다.

엔트로피계수 =
$$-\sum_{i=1}^K p_i \log_2 p_i$$
ex) 경단 2개 엔트로피계수 = $-p \log_2 p - (1-p) \log_2 (1-p)$

$$I(A) = \frac{n_1}{n_{\cdot \cdot \cdot}} I(A_1) + \frac{n_2}{n_{\cdot \cdot \cdot}} I(A_2) + \dots + \frac{n_a}{n_{\cdot \cdot \cdot}} I(A_a)$$

2. 한 백화점의 어느 상품매장을 방문하는 사람 10 명에 대해 상품 구매여부와 나이를 조사해보니 다음과 같다. 구매하는 사람을 Y 집단, 구매하지 않는 사람을 N 집단으로 표시하고 나이를 오름차순으로 정렬하였다. 의사결정나무 모형을 적용하기 위해 나이를 두 개의 집단으로 나누고자 한다. 어떠한 경계값으로 나누어야 좋은가? (지니계수 이용하여 문제 풀기)

지니계수 = $1 - \sum_{i=1}^{K} p_i^2$

구매여부	N 25	N 27	N 31	Y 33	N 35	Y 41	N 43	Y 49	Y 51	Y 55		
44						38 L						
	<	>			,		ı	1	ı İ	ı		
<u>Y</u>	0	5 0	2 0	2 3	1 3	14	24	25	3 5	45		
\mathcal{N}	ı	4 9	3	5 2	د 4	1 4	3	3 0	20	10		
ſ	,		2	21		9,	,	(,	5,2	, 4	,2))
را کا/	($\frac{1}{7}$	24:	(+	10	/- (1 19	-	t (4)	1 /)	/
ν-		,	,									
	_	7	(1.	_	4	() =		7.	01	= 4	=0,0	44
		(O	, ,	,	81	/	l	0	S /	7		