Departamento de Produção e Sistemas Universidade do Minho

Modelos Determinísticos de Investigação Operacional

(MIEI)

Exame Meio-Semestre - 00 de zeroembro de 0000 Duração - 2:00 horas (tolerância - 0:30)

Responda às questões utilizando técnicas adequadas à resolução de problemas de grande dimensão.

1. Considere o seguinte problema de programação linear:

max
$$x_1 + 3x_2$$

suj. a $-x_1 + x_2 \le 4$
 $3x_1 + 2x_2 \ge 12$
 $x_1 + x_2 \le 10$
 $x_1, x_2 \ge 0$

- a) Desenhe o domínio de soluções válidas no espaço x_1, x_2 .
- b) Identifique todos os pontos extremos, e, para cada ponto extremo, calcule os valores das variáveis x_1 e x_2 . Justifique sucintamente e apresente os cálculos para obter os valores.
 - c) Identifique o ponto óptimo, e diga qual o seu valor.
- d) Para cada ponto extremo, identifique as variáveis básicas e não-básicas, e indique os seus valores. Justifique sucintamente e apresente os cálculos para obter os valores.

Nota: Respostas que envolvam a utilização do método simplex não serão consideradas.

2. O Departamento de Marketing de uma empresa de mobiliário metálico para escritório sugeriu à administração o lançamento de novos modelos de secretárias e estantes, em substituição dos modelos actuais. O Departamento de Produção, depois de analisar os novos modelos, concluiu que os tempos de produção são os seguintes:

	Horas-Máquina Horas-Homer	
Secretárias	1	2
Estantes	2	1
Disponibilidade Mensal	400	600

Foi ainda estimado que o lucro unitário será de 20 U.M. para as secretárias e de 15 U.M. para as estantes.

- a) Construa um modelo de programação linear de modo a auxiliar à administração da empresa a decidir quantas unidades deve fabricar por mês de cada modelo de modo a maximizar o lucro.
 - b) Determine a solução óptima através do método simplex.
 - 3. Considere o seguinte problema de programação linear:

max
$$4x_1 + x_2$$

suj. $x_1 - 2x_2 \le 6$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

- a) Escreva o modelo dual do problema acima apresentado.
- b) Seleccione dois pontos válidos, um do domínio primal e outro do dual, com valores de função objectivo diferentes, e mostre que obedecem ao Teorema da Dualidade Fraca.
- c) Considere os pontos do espaço primal $(x_1, x_2)^t = (14, 4)^t$ e do espaço dual $(y_1, y_2)^t = (4, 9)^t$. Será que eles são soluções óptimas do problema primal e do problema dual, respectivamente? Justifique.
- 4. Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

Duals			
Variables	value	from	till
objective	2100	2100	2100
R1	0	$-\infty$	+∞
R2	15	0	80
R3	40	0	37.5
x1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞
х3	-65	-3.15789	15

- a) Quanto estaria disposto a pagar para aumentar a disponibilidade do recurso 1. Justifique.
- b) Quanto estaria disposto a pagar para aumentar a disponibilidade do recurso 2. Justifique.
- c) Da análise do relatório, indique que quantidade adicional de recurso 2 é que estaria disposto a adquirir ao preço indicado na alínea anterior.
- d) Qual seria o valor da solução óptima caso adquirisse essa quantidade adicional. Justifique.
- e) Faça a análise matricial para derivar os limites de variação do recurso 2, que serve para verificar que a informação dada pelo relatório (relativa à alínea c) está correcta.
- f) Se fosse proposta uma nova actividade (x_4) com coeficiente da função objectivo (lucro unitário) de 40 e coeficientes nas linhas iguais a 3, 2, 0, respectivamente, será que essa actividade seria atractiva? Em caso afirmativo, construa a novo quadro, **mas não o resolva**, indicando apenas a variável que sairia da base.
- g) Qual deveria ser, no mínimo, o coeficiente c_3 da variável x_3 para esta actividade ser atractiva?

Nota: Todas as seguintes alíneas são independentes entre si. Qualquer resposta que envolva a resolução do problema desde o quadro inicial não será classificada.