Querying Space and Time with Tree Structures

Rasmus Resen Amossen
SOLUTION ARCHITECT
rasmus.resen.org

The Match Finder App

Demo

Spatial search - initializing the solution

- 1 Geohash: mostly for points
- 2 Basic tree: B-tree
- 3 With rectangles: R-tree
- 4 With spheres: M-tree

Geohashing

Geohash for x: 110110

11011010100110 110110101001100011

01 1100 10

26 bits to represent whole earth with around 60 cm precision B-tree to index geohashes

Wikipedia: "Geohash"

MongoDB: tinyurl.com/mongogeohash SQL Server: tinyurl.com/sqlSpatial

Nodes

All nodes have the same capacity, M

Inner and leaf nodes require minimum m elements ($m \ge M/2$)

Height, h, gives $(M+1)^h$ - 1 values in total

Example: M = 100 and h = 5 gives 10 billion values in the tree

Build tree bottom-up

$$M = 4, m = 2$$

Use median as split point Put median at parent node

Leaf node

Use median as split point Put median at parent node

R-trees

Get all rectangles within query box

Get nearest rectangle(s) relative to query box

Create hierarchy of nested rectangles
Organize nested rectangles in B-tree

How to manage covering rectangles?

Nodes

All nodes have the same capacity, *M*Inner and leaf nodes require minimum *m* elements *m* between 30% and 40% of *M*

Insertion - Node Split

2^N possible splits of N rectangles Split strategy highly affects performance

Deletion - Underflow

M-trees

points sphere Get all rectangles within query box

Get nearest <u>rectangle(s)</u> relative to query box point(s) sphere

Create hierarchy of nested rectangles

Organize nested rectangles in B-tree spheres

Lookup

Short description: tinyurl.com/mtreeShort
Longer description: tinyurl.com/mtreeLong
Symmetric M-tree with deletion: tinyurl.com/mtreeSym

R-tree vs M-tree

What's actually available?

What is Distance?

What is Space?

Moving Objects

Demo

Spatial search - Using an R-tree

Options

Lessons Learned

Geohashing

Recursive division of area (mostly for points)

Basic structure: B-tree

Balanced

Disk friendly

R-treeHierarchy of rectangles

M-tree

Hierarchy of spheres

Splits bounding box/sphere when full

Moving objects difficult

Position, time, anything numerical