Lenguajes de primer orden (complementaria)

Ejercicio 1. Consideramos el lenguaje de primer orden en el que sus elementos son:

- Símbolos de constante: t, s, l.
- Símbolos de variable: x, y, z.
- Símbolos de predicado: P¹, S¹, E¹, G², Eq².

Sea ahora una L-estructura en la que el universo es el conjunto de los astros celestes.

Completa la estructura asignándole un significado a las constantes y a los predicados, y expresa con este lenguaje los siguientes enunciados:

- 1. Hay a lo sumo un planeta.
- 2. Hay exactamente un planeta.
- 3. Hay al menos dos planetas.
- 4. Hay a lo sumo dos planetas.
- 5. Hay exactamente dos planetas.
- 6. La Luna es el único satélite de la Tierra.
- 7. Si un astro gira alrededor de un planeta, entonces es un satélite.
- 8. La Tierra tiene un movimiento de rotación y uno de traslación alrededor del Sol.
- 9. Todo cuerpo celeste, o es estrella, o gira alrededor de una estrella.

Ejercicio 2. Calcula la interpretación de las siguientes fórmulas en cada una de las \mathcal{L} -estructuras que se dan:

1. $\forall x \forall y E(f(x,y), f(y,x))$

a)
$$D = \{1, 2, 3, 4, 5, 6, 7\}$$

 $f(x,y) = \begin{cases} x+y & si \ x+y \in D \\ x & en \ otro \ caso \end{cases}$
 $E = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (1,7), (7,1), (2,6), (6,2), (3,5), (5,3)\}$

b)
$$D = M_3(\mathbb{R})$$

 $f(x,y) = xy$
 $E(x,y) \equiv x = y$

c)
$$D = \mathbb{Z}$$

 $f(x,y) = xy$
 $E(x,y) \equiv x = y$

2. $\forall x E(f(x, e), f(e, x))$

$$\begin{array}{ll} a) & D=M_3(\mathbb{R})\\ & e=I_3\\ & f(x,y)=xy\\ & E(x,y)\equiv x=y\\ b) & D=M_3(\mathbb{R}) \end{array}$$

b)
$$D = W_3(\mathbb{R})$$

 $e = O_3$
 $f(x, y) = xy$
 $E(x, y) \equiv x = y$

c)
$$D = M_3(\mathbb{R})$$

 $e = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$
 $f(x,y) = xy$
 $E(x,y) \equiv x = y$

- 3. $\forall x \exists y E(f(x,y), e)$
 - a) $D = M_3(\mathbb{R})$ $e = Id_3$ f(x,y) = xy $E(x,y) \equiv x = y$
 - $\begin{array}{ll} b) \ D = M_3(\mathbb{R}) \\ e = O_3 \\ f(x,y) = xy \\ E(x,y) \equiv x = y \end{array}$
 - c) $D = \mathbb{Z}$ e = 1 f(x,y) = xy $E(x,y) \equiv x = y$
- 4. $\forall x (E(f(x,x),e) \rightarrow E(x,e))$
 - a) $D = M_3(\mathbb{R})$ $e = Id_3$ f(x,y) = xy $E(x,y) \equiv x = y$
 - b) $D = M_3(\mathbb{R})$ $e = O_3$ f(x,y) = xy $E(x,y) \equiv x = y$
 - c) $D = \mathbb{Z}$ e = 1, f(x,y) = xy $E(x,y) \equiv x = y$
 - d) $D = \mathbb{R}$ e = 1, f(x,y) = xy $E(x,y) \equiv x = y$
 - e) $D = \mathbb{R}$ e = 0, f(x,y) = xy $E(x,y) \equiv x = y$
 - $f) \ \ D = \mathbb{Z}_4$ e = 0, f(x, y) = xy $E(x, y) \equiv x = y$

Ejercicio 3. Dadas las siguientes fórmulas

$$\alpha = \forall x (P(x) \rightarrow P(\alpha)), \qquad \beta = \forall x P(x) \rightarrow P(\alpha)$$

estudia cuáles son universalmente válidas, satisfacibles y/o refutables.

Ejercicio 4. Consideramos las siguientes sentencias:

(1)
$$\forall x (P(x) \rightarrow \exists y R(x,y))$$

(2)
$$\forall x(Q(x) \rightarrow \exists y R(y, x))$$

- (3) $\exists x (P(x) \land Q(x))$
- (4) $\forall x \exists y R(x, y)$
- (5) $\exists x \exists y \neg R(x, y)$

Encuentra, si existen, estructuras en las que:

- 1. Las sentencias (1), (3) y (5) sean verdaderas y las restantes falsas.
- 2. Las sentencias (1), (2) y (4) sean verdaderas y las restantes falsas.
- 3. Las sentencias (2) y (3) sean verdaderas y las restantes falsas.
- 4. Las sentencias (2), (3) y (4) sean verdaderas y las restantes falsas.
- 5. Las sentencias (2), (4) y (5) sean verdaderas y las restantes falsas.
- 6. Las sentencias (2), (3) y (5) sean verdaderas y las restantes falsas.
- 7. Todas las sentencias sean verdaderas.
- 8. Todas las sentencias sean falsas.

Ejercicio 5. Dadas las siguientes sentencias:

- (1) $\forall x(\exists y R(x,y) \rightarrow P(x))$
- (2) $\forall x (P(x) \rightarrow Q(x))$
- (3) $\exists x (Q(x) \land \forall y \neg R(x, y))$
- (4) $\exists x R(x, x)$
- (5) $\exists x \neg R(x, x)$

Encuentra, si existen, estructuras en las que:

- 1. Las sentencias (1), (3) y (5) sean verdaderas y las restantes falsas.
- 2. Las sentencias (1), (2) y (4) sean verdaderas y las restantes falsas.
- 3. Las sentencias (1), (2) y (4) sean falsas y las restantes verdaderas.
- ${\it 4. \ Las\ sentencias\ (2)\ y\ (3)\ sean\ verdaderas\ y\ las\ restantes\ falsas.}$
- 5. Las sentencias (2), (3) y (4) sean verdaderas y las restantes falsas.
- 6. Las sentencias (2), (4) y (5) sean verdaderas y las restantes falsas.
- 7. Las sentencias (2), (3) y (5) sean verdaderas y las restantes falsas.
- 8. Todas las sentencias sean verdaderas.
- 9. Todas las sentencias sean falsas.

Ejercicio 6. Sea el lenguaje de primer orden con:

- Símbolos de constante: c.
- Símbolos de variable: x, y, z.
- Símbolos de predicado: P¹, Q¹, R², S².

Consideramos la estructura cuyo universo es \mathbb{Z}_5 , e interpretamos cada uno de los símbolos como sigue:

- c = 0.
- $P = \{0, 1, 2\}.$
- $Q = \{2, 4\}.$
- $R = \{(0,1), (0,2), (1,2), (2,2)\}.$

$$S = \{(0,2), (2,0), (2,2)\}.$$

Para cada una de las fórmulas siguientes, con variables libres, encuentra las valoraciones que las hacen ciertas. Dicho de otra forma, resuelve la ecuación $I(\phi) = 1$.

- 1. $P(x) \wedge Q(x)$
- 2. $P(x) \wedge Q(y)$
- 3. $P(x) \vee Q(x)$
- 4. $P(x) \lor Q(y)$
- 5. $P(x) \rightarrow Q(x)$
- 6. $P(x) \rightarrow Q(y)$
- 7. $P(x) \leftrightarrow Q(x)$
- 8. $P(x) \vee \neg Q(x)$
- 9. $\neg R(x, y)$
- 10. $R(x,y) \wedge S(x,y)$
- 11. $P(x) \land \neg Q(x)$
- 12. $((P(x) \lor Q(x)) \land R(x,y))$
- 13. $\neg P(x) \land \neg Q(x)$
- 14. $\exists z (R(x,z) \land S(y,z))$
- 15. $\neg P(x) \lor \neg Q(x)$
- 16. $\forall z (R(x,z) \rightarrow S(y,z))$
- 17. $\exists x R(x, y)$
- 18. $\exists x R(y, x)$
- 19. $\exists x (R(x,y) \land S(x,y))$
- 20. $\exists z (R(x,z) \lor P(y))$
- 21. $\forall x (P(x) \rightarrow R(x,y))$
- 22. $\forall x((P(x) \land Q(x)) \rightarrow \neg R(x,y))$
- 23. $\exists x (P(x) \land S(x,y))$
- 24. $\exists x (Q(x) \lor R(x,y))$
- 25. $\forall x(\exists y R(x,y) \rightarrow R(x,z))$
- 26. $\forall x (R(x,z) \rightarrow \exists y R(x,y))$
- 27. $\forall x(R(x,z) \rightarrow \exists y S(x,y))$
- 28. $((P(x) \lor Q(y)) \land \forall x \forall y R(x, y))$

Ejercicio 7. Estudia si la siguiente fórmula es o no universalmente válida

$$P(x) \rightarrow (\forall x \neg P(x) \rightarrow \neg P(f(a)))$$

Ejercicio 8. Dadas las siguientes fórmulas:

$$\phi = \forall x \exists y P(x, y); \qquad \psi = \exists x \forall y P(x, y)$$

Encuentra una interpretación en la que ambas sean ciertas y otra en la que ϕ sea cierta y ψ sea falsa. ¿Es cierto que $\{\phi\} \models \psi$?

Ejercicio 9.

Describe todas las estructuras en las que la fórmula siguiente es válida:

$$R(x) \rightarrow \forall x R(x)$$

Ejercicio 10. Consideremos el lenguaje de primer orden $\mathcal L$ definido por $\mathcal C=\{\mathfrak a\}$, $\mathcal F=\{f,g\}$, $\mathcal R=\{P\}$ y la $\mathcal L$ -estructura $\mathcal E$ dada por:

Dominio $D = \mathbb{Z}_6$.

Constantes a = 2.

Functiones f = (x, y) = x + y, $g(x, y) = x \cdot y$.

Predicados $P(x, y) \equiv x = y$.

Sea ν la valoración dada por $\nu(x_1)=2, \nu(x_2)=0, \nu(x_3)=0, \nu(x_4)=3.$ Interpreta las siguientes fórmulas:

- 1. $\neg \exists x_1 \forall x_2 P(f(x_1, x_4), \alpha)$
- 2. $\forall x_1(P(x_1, g(x_1, x_1)) \leftrightarrow P(g(a, x_1), f(a, a)))$

Ejercicio 11. Dada la fórmula

$$R(x) \leftrightarrow \exists x R(x),$$

se pide:

- 1. Prueba que no es universalmente válida.
- 2. Encuentra una estructura donde la fórmula no sea válida.
- 3. ¿Es satisfacible la fórmula en cualquier estructura?
- 4. ¿Es refutable en toda estructura?

Ejercicio 12. Interpreta la fórmula

$$\forall x \forall y (P(x,y) \rightarrow \neg P(y,x))$$

en las siguientes estructuras

- *I*. D = $\{0, 1, 2, 3\}$ P = $\{(0, 0), (0, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$
- 2. $D = \mathbb{R}$

P es la relación binaria "x es estrictamente menor que y"

3. $D = \mathbb{N}$

P es la relación binaria "x es múltiplo de y"

Ejercicio 13. Dada la fórmula

$$P(x) \rightarrow \forall x (P(x) \lor \neg P(f(x)))$$

señala para cuáles de las siguientes interpretaciones es verdadera.

a)
$$\begin{cases} D = \mathbb{Z}_4 \\ f(x) = x + 1 \pmod{4} \\ P = \{0, 1, 3\} \\ \nu(x) = 2 \end{cases}$$

b)
$$\begin{cases} D = \mathbb{Z}_4 \\ f(x) = x + 1 \pmod{4} \\ P = \{0, 1, 3\} \\ \nu(x) = 1 \end{cases}$$

c)
$$\begin{cases} D = \mathbb{Z} \\ f(x) = x + 1 \\ P(x) \equiv x \text{ es par} \\ v(x) = 2 \end{cases}$$

$$\mathbf{d}) \left\{ \begin{array}{l} D = \mathbb{Z} \\ f(x) = x + 1 \\ P(x) \equiv x \ es \ par \\ v(x) = 1 \end{array} \right.$$

Ejercicio 14. Para el lenguaje de primer orden correspondiente se considera la estructura:

$$D = \mathbb{N}$$
 $R(x,y) \equiv \text{``x es múltiplo de y''}$
 $a = 0$
 $b = 1$

Determina cuáles de las siguientes fórmulas son verdaderas bajo esta interpretación:

- a) R(a, b)
- **b**) $\exists y \neg R(y, a)$
- c) $\forall x R(b, x)$
- **d)** $\forall x \forall y (R(x,y) \rightarrow R(y,x))$

Ejercicio 15. Señala las afirmaciones correctas:

La fórmula

- 1. $\exists x (\forall y (P(y) \rightarrow \exists z R(y,z) \land \neg R(x,y))) \rightarrow R(a,b).$
- 2. $\forall y R(y, b) \rightarrow \forall x (P(x) \rightarrow \exists y R(x, y)) \land \exists x \neg \forall y R(x, y)$.
- 3. $\forall x (R(x,z) \rightarrow \exists y S(x,y)).$
- 4. $\forall x \exists y (P(x,y) \rightarrow \neg P(f(y),x)).$
- 5. $\forall x P(x) \land \forall y Q(x, b) \rightarrow \forall x (P(x) \land Q(x, y))$.

es satisfacible y refutable.

Ejercicio 16. *La fórmula* $\forall x (R(x, z) \rightarrow \neg \exists y R(g(x, y), z))$

- 1. Es válida en la estructura $D = \mathbb{N}$; g(x,y) = 2x + y; $R(x,y) \equiv x < y$.
- 2. Es satisfacible en la estructura $D = \mathbb{N}$; g(x,y) = 2x + y; $R(x,y) \equiv x < y$.
- 3. Es satisfacible en la estructura $D = \mathbb{Z}$; g(x,y) = x + 2y; $R(x,y) = x + y + 1 \pmod{2}$.
- 4. Es satisfacible y refutable en la estructura $D = \mathbb{Q}$; $g(x,y) = x^2 + y$; $R(x,y) \equiv x \cdot y = 1$.
- 5. Es refutable en la estructura $D = \mathbb{Z}_4$; g(x,y) = x + 2y; $R(x,y) \equiv x^2 + y^2 = 1$.

Ejercicio 17. Dado el lenguaje de primer orden con símbolos de constantes a, b, símbolos de función d, s, p y símbolos de predicado Pr, P, M, y la estructura siguiente:

Dominio
$$D = \mathbb{Z}$$
.

Constntes a = 0, b = -1.

Functiones d(x) = 2x, s(x,y) = x + y, $p(x,y) = x \cdot y$.

Predicados $Pr(x) \equiv x \ es \ primo, \ P(x) \equiv x \ es \ par, \ M(x,y) \equiv x < y.$

- 1. La fórmula $\forall x (\Pr(x) \rightarrow \neg P(x) \land \neg M(p(b,d(b)),x))$ significa que no hay primos pares mayores que 2.
- 2. La fórmula $\forall x \exists y (\neg (M(s(x,y),a) \lor M(a,s(x,y))) \rightarrow \neg (M(x,p(b,y)) \lor M(p(b,y),x)))$ significa que si x+y=0 entonces x=-y.
- 3. x = y lo podemos decir mediante la fórmula $\neg M(x,y) \wedge \neg M(y,x)$.
- 4. La fórmula $\forall x \exists y (\neg M(x, p(x, y)) \land \neg M(p(x, y), x)$ significa que hay un elemento neutro para el producto.

5. Para decir que todo número par es el doble de un número lo podemos hacer con la fórmula

$$\forall x (\forall y \neg (M(x,d(y)) \land \neg M(d(y),x)) \rightarrow \neg P(x)).$$

Ejercicio 18.

- 1. Si α es satisfacible y refutable en una estructura, y α es una variable libre en α , entonces $\exists \alpha$ es válida en esa estructura
- 2. Si α es satisfacible y refutable, y α es libre en α entonces $\forall \alpha$ es una contradicción.
- 3. $\exists x(\alpha \vee \beta) \vDash \exists x\alpha \vee \beta$.
- 4. $\exists x(\alpha \land \beta) \rightarrow \exists x\alpha \land \exists x\beta \text{ es universalmente válida.}$
- 5. Si x no es libre en α entonces $\alpha \to \forall x \alpha$ es universalmente válida.

Ejercicio 19. Sea $\alpha = \forall x (P(x, z) \rightarrow \exists x \forall z R(q(x, z), q(b, x)) \land Q(x))$. Consideramos la estructura

Dominio $D = \mathbb{Z}$.

Constantes b = 3.

Funciones g(x, y) = 3x + 2y.

Predicados $P(x,y) \equiv x + y = 1$, $Q(x) \equiv x$ es primo, $R(x,y) \equiv x + y$ es impar.

Indica para cuál de las siguientes valoraciones la fórmula α se interpreta como cierta.

- 1. v(x) = 2, v(z) = 3
- 2. v(x) = 5, v(z) = 3
- 3. v(x) = 5, v(z) = -3
- 4. v(x) = 0, v(z) = 0
- 5. v(x) = -3v(z) = -4

Ejercicio 20. (Junio 2011)

Tenemos los predicados siguientes:

- P(x) significa que x es pájaro,
- I(x) significa que x es insecto,
- C(x,y) significa que x se come a y.

Utiliza estos predicados para traducir cada una de las oraciones siguientes a un lenguaje de primer orden:

- a) Hay pájaros que solo comen insectos.
- b) Todos los pájaros comen insectos.

Ejercicio 21. (Junio 2011)

Sea el lenguaje de primer orden dado por $\mathcal{C}=\{\mathfrak{a}\},~\mathcal{V}=\{x,y,z\},~\mathcal{F}=\{f^1\}~y~\mathcal{R}=\{Q^2\}.$

a) Interpreta las fórmulas

$$\begin{split} &\alpha_1 = \forall x \exists y Q(x,f(y)), \\ &\alpha_2 = Q(x,f(\alpha)) \rightarrow \exists y \exists z Q(y,z), \\ &\alpha_3 = Q(x,f(\alpha)) \rightarrow \forall y \forall z Q(y,z), \\ &\alpha_4 = \exists x \exists y (\neg Q(x,y) \land Q(f(x),f(y))), \end{split}$$

utilizando la estructura \mathcal{E} dada por:

- $D = \mathbb{Z}_6$.
- a = 5.
- $f(x) = x^2$.
- $Q = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)\}.$

y la valoración v dada por v(x) = v(y) = v(z) = 3.

b) Para cada una de las fórmulas anteriores, estudia si es válida en E y si es universalmente válida.

Ejercicio 22. (Septiembre 2011)

Dada la fórmula $\alpha = \forall x \exists y (P(x,y) \rightarrow P(y,x)) \rightarrow \exists x \exists y (P(y,x) \rightarrow \neg P(x,y))$, estudia si α es universalmente válida, es satisfacible y refutable o es una contradicción.

Ejercicio 23. (Septiembre 2011)

Sea el lenguaje de primer orden dado por $C = \{a\}$, $V = \{x,y\}$, $\mathcal{F} = \{f^2\}$ y $\mathcal{R} = \{P^1\}$.

a) Interpreta las fórmulas

$$\alpha_1 = \forall x (P(x) \rightarrow \exists y P(f(x, y))),$$

$$\alpha_2 = P(y) \rightarrow \exists x (P(x) \land P(f(x, a))),$$

utilizando la estructura E dada por:

- $\bullet D = \{n \in \mathbb{Z} : n \ge 2\}.$
- a = 7.
- f(x, y) = x + y.
- $P(x) \equiv x \ es \ primo.$

y la valoración ν dada por $\nu(x) = \nu(y) = 11$.

b) Para cada una de las fórmulas anteriores, estudia si es válida en E y si es universalmente válida.

Ejercicio 24. (Julio 2012)

Sea $\alpha = \neg \exists x \forall y (P(x,y) \rightarrow P(x,x)) \land \forall x \forall y \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z))$. Estudia si α es universalmente válida, satisfacible y refutable o contradicción.

Ejercicio 25. (Septiembre 2012)

Sean $\alpha_1 = \forall y (Q(\alpha, y) \to \exists z (P(z) \land R(z, y))) \ y \ \alpha_2 = \exists x R(x, \alpha) \to \forall z \exists y (R(z, y) \land Q(y, z)) \ dos \ f\'{o}rmulas \ de un lenguaje de primer orden, y consideramos la estructura siguiente:$

- *Dominio: Números naturales* (N).
- Asignación de constantes: a = 1.
- Asignación de predicados: $P(x) \equiv x$ es primo; $Q(x,y) \equiv x < y$; $R(x,y) \equiv x | y$.

Estudia si las fórmulas α_1 y α_2 se interpretan como verdaderas o falsas en esta estructura.

Ejercicio 26. (Junio 2014)

Demuestra:

- 1. que la fórmula $\forall x \exists y P(x,y) \rightarrow \exists y \forall x P(x,y)$ es satisfacible y refutable;
- 2. que la fórmula $\forall x R(x) \land \exists y Q(y) \leftrightarrow \exists y \forall x [R(x) \land Q(y)]$ es universalmente válida.

Ejercicio 27. (Septiembre 2014)

Sea $\alpha = \forall x [P(x,f(x)) \to \exists y P(\alpha,y)] \ \text{y sea \mathcal{E} la estructura dada por:}$

$$D = \mathbb{N}$$

$$a = 0$$

$$f(x) = x + 1$$

$$P(x, y) \equiv x < y$$

(es decir, P(x, y) se interpreta como verdadero cuando x < y).

- 1. Calcula el valor de verdad de α en la estructura dada.
- 2. Prueba que α es satisfacible y refutable.

Ejercicio 28. (*Junio 2015*)

Sea α la siguiente fórmula:

$$\alpha = \forall y \Big(P(\alpha, y) \to \forall y \exists x P(x, y) \Big)$$

Calcula el valor de verdad de α en cada una de las estructuras siguientes:

- Estructura \mathcal{E}_1 .
 - Dominio: N.
 - Asignación de constantes: a = 0.
 - Asignación de predicados: $P(x, y) \equiv y = x + 1$.
- Estructura \mathcal{E}_2 .
 - Dominio: \mathbb{Z}_9 .
 - Asignación de constantes: a = 0.
 - Asignación de predicados: $P(x, y) \equiv y = x + 1$.

Ejercicio 29. (Septiembre 2015)

Sea
$$\alpha = \forall x (\forall y R(y, f(x)) \rightarrow Q(x)) \lor \exists x R(x, x).$$

Estudia si α es universalmente válida, contradicción o contingente (satisfacible y refutable).

Ejercicio 30. (Diciembre 2015)

Sea
$$\alpha = \forall x (\forall y Q(f(y), x) \rightarrow P(x)) \lor \exists x Q(x, x).$$

- 1. Consideramos la estructura E:
 - *Dominio o Universo*: $D^{\mathcal{E}} = \mathbb{N}$.
 - Asignación de símbolos de función: $f^{\mathcal{E}}(x) = x + 1$.
 - Asignación de símbolos de predicado: $P^{\mathcal{E}}(x) \equiv x$ es par; $Q^{\mathcal{E}}(x.y) \equiv x > y$.

Calcula el valor de verdad de α en la estructura \mathcal{E} .

2. Estudia si α es universalmente válida, contingente (es decir, satisfacible y refutable) o contradicción.

Ejercicio 31. (Mayo 2016) Dada la fórmula $\alpha = \forall x \forall y (P(x, f(y)) \rightarrow \exists z (P(f(x), y) \land Q(z)) da$, si es posible, una estructura donde α se interprete como verdadera y otra donde α se interprete como falsa.

Ejercicio 32. (Mayo 2016) Consideramos el lenguaje de primer orden con cuatro símbolos de constante a, b, c, e, tres símbolos de función m^1, s^2, p^2 y tres símbolos de predicado Q^1, M^2, E^2 .

Damos la estructura siguiente:

- *Dominio*: $D = \mathbb{R}$.
- *Constantes:* a = 0, b = 1, c = -1, e = e.
- Functiones: m(x) = |x|, s(x,y) = x + y, $p(x,y) = x \cdot y$.
- *Predicados:* $Q(x) \equiv x \in \mathbb{Q}$, $M(x,y) \equiv x < y$, $E(x,y) \equiv x = y$.

Expresa con este lenguaje los siguientes enunciados:

- 1. El número e está entre 2 y 3.
- 2. |x| < y si, y sólo si, -y < x < y.
- 3. Tanto e como e^2 son irracionales.
- 4. El doble de un número racional es racional.
- 5. El valor absoluto de un número es menor o igual que el propio número.
- 6. Entre dos números racionales hay un número irracional.
- 7. Todo número positivo tiene raíz cuadrada.
- 8. Todo número positivo tiene dos raíces cuadradas distintas.
- 9. La función f(x) = 2x es estrictamente creciente.

Ejercicio 33. (Julio 2016) Dado un lenguaje de primer orden con dos símbolos de constante a, b, y dos símbolos de predicado binarios E, R consideramos la estructura siguiente:

- *Dominio*: $D = \mathbb{N}$.
- Asignación de constantes: a = 0, b = 1.
- Asignación de predicados: $E(x,y) \equiv x = y$; $R(x,y) \equiv x$ es múltiplo de y.

Determina el valor de verdad de cada una de las siguientes fórmulas:

- 1. R(a, b).
- 2. $\forall x R(a, x)$.
- 3. $\forall x \forall y (R(x,y) \rightarrow \neg E(x,y))$.
- 4. $\forall x(\exists y(R(x,y) \land \forall z(R(y,z) \rightarrow E(z,y) \lor E(z,b)))).$

Ejercicio 34. (Septiembre 2016)

Interpreta cada una de las siguientes fórmulas en cada una de las estructuras que se describen:

- 1. $\exists x \forall y P(f(y), x)$
- 2. $\forall x \exists y P(f(y), x)$
- 3. $\forall y \exists x P(f(y), x)$

Estructura 1	Estructura 2	Estructura 3
$D_1=\mathbb{R}$	$D_2=\mathbb{Z}_5$	$D_3=\mathbb{Z}_2$
$f(z) = z^2$	$f(z) = z^2$	$f(z) = z^2$
$P(x,y) \equiv x + y = 0$	$P(x,y) \equiv x + y = 0$	$P(x,y) \equiv x + y = 0$

¿Es alguna de ellas universalmente válida? Razona la respuesta.