

NPTEL ONLINE CERTIFICATION COURSES

Blockchain and its applications

Prof. Shamik Sural
Department of Computer Science &
Engineering
Indian Institute of Technology Kharagpur
Lecture 07: Basic Cryptographic Primitives - V

CONCEPTS COVERED

- RSA Encryption and Decryption
- Digital Signature
- Hashing and Digital Signature

KEYWORDS

- RSADigital Signature

RSA Encryption and Decryption

- Let be the integer representation of a message.
- Encryption with public key

Decryption with private key

RSA Encryption and Decryption - Example

Key Selection

- Select 2 prime numbers: p=17, q=11
- Calculate n=pq=17×11=187
- Calculate $\phi(n)=(p-1)(q-1)=16\times 10=160$
- Select e such that e is relatively prime to $\phi(n)=160$ and less than $\phi(n)$; Let e=7
- Determine d such that d.e = 1 mod 160 and d<160; Can determine d = 23 since 23×7 = 161 = 1×160+1

RSA Encryption and Decryption - Example

Encryption of Plaintext M = 88

- C=88⁷ mod 187
- = [(88⁴ mod 187)×(88² mod 187)×(88¹ mod 187)] mod 187 = (88×77×132) mod 187 = 11

Decryption of Ciphertext C = 11

- M=11²³ mod 187
- =[(11¹ mod 187)×(11² mod 187) ×(11⁴ mod 187) ×(11⁴ mod 187) ×(11⁴ mod 187)
 mod 187) ×(11⁴ mod 187)] mod 187
- =(11×121×55×33×33) mod 187 = (79720245) mod 187 = 88

RSA Encryption and Decryption - Illustration

https://www.devglan.com/online-tools/rsa-encryption-decryption

Digital Signature using Public Key Cryptography

- Sign the message using the Private key
 - Only Alice can know her private key
- Verify the signature using the Public key
 - Everyone has Alice's public key and they can verify the signature

Reduce the Signature Size

Use the message digest to sign, instead of the original message

Digital Signature - Illustration

https://www.devglan.com/online-tools/rsa-encryption-decryption

http://www.blockchain-basics.com/HashFunctions.html

Digital Signature in Blockchain

- Used to validate the origin of a transaction
 - Prevent non-repudiation
 - Alice cannot deny her own transactions
 - No one else can claim Alice's transaction as his/her own transaction
- Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA)
 - Based on elliptic curve cryptography
 - Supports good randomness in key generation

A Cryptocurrency using Hashchain and Digital Signatures

A:10, Sig(A)

- Alice generates 10 coins
- Sign the transaction A:10 using Alice's private key and put that in the blockchain

A Cryptocurrency using Hashchain and Digital Signatures

- Alice transfers 5 coins to Bob
- Sign the transaction A-B:5 using Alice's private key and put that in the blockchain

CONCLUSIONS

- We have shown how to encrypt and decrypt using public key cryptography
- Application in digital signature
- Use of digital signature in blockchain

REFERENCES

- Cryptography and Network Security Principles and Practice by William Stallings, Pearson (2017)
- Blockchain Basics: A Non-Technical Introduction in 25 Steps by Daniel Drescher, Apress (2017)

