

AD-A169

RESULTS OF DUST OBSCURATION TESTS (DOT) USING EXPLOSIVES FORT CARSON, COLORADO

by

Katherine S. Long, Randall R. Williams

Environmental Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631

and

Roger E. Davis

Science and Technology Corporation Las Cruces, New Mexico 88005

December 1985 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington, DC 20314-1000

Under DA Project No. 4A762730AT42, Task Area B/E5, Work Unit 002

L

FILE COPY

86 6 30 02 6

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	AD-ALG9	1 CONTROL OF NUMBER
Technical Report EL-85-12 4. TITLE (and Substite)	איטודי עא	TYPE OF REPORT & PERIOD COVERED
	ma (nom) Lianta	
RESULTS OF DUST OBSCURATION TES EXPLOSIVES, FORT CARSON, COLORA	•)
LAI EGSIVES, FORT CARSON, COLORA	100	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(#)
Katherine S. Long Roger E. Davis		DACA39-85-C-0006
Randall R. Williams		
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Engineer Waterways Experiment Station,		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Environmental Laboratory, PO Box 631, Vicksburg, 39180-0631; Science and Technology Corporation, L.		DA Project No. 4A762730AT42,
New Mexico 88005	as Cruces,	Task Area B/E5, Work Unit 002
11. CONTROLLING OFFICE NAME AND ADDRESS DEPARTMENT OF THE ARMY		12. REPORT DATE December 1985
US Army Corps of Engineers		13. NUMBER OF PAGES
Washington, DC 20314-1000	Irom Controlling Office	288 . 15 SECURITY CLASS. (ct this report)
The month of the Assertation in		Unclassified
		15a. DECLASSIFICATION DOWNGRADING
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution un	ılimited.	
17. DISTRIBUTION STATEMENT (of the abetract entered in	Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES		
Available from National Technical Informa	tion Sarvica 5285 I	Port Poyal Pond Springfield
Virginia 22161.	tion service, 3263 I	ort Royal Road, Springricia,
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)	
Cratering		
Explosive dust		
Mathematical model /		
Sampling procedures		
20. ABSTRACT (Continue on reverse side if necessary and i	dentify by block number)	
The US Army Engineer Waterways Experi	iment Station (WES	S) conducted dust obscuration mea-
surements at Fort Carson, Colo., in April as	nd August 1983 to	demonstrate the validity of existing
models to predict crater volumes produced by		
the Atmospheric Sciences Laboratory (ASL) t plosions. It was found that apparent craters f		

DD 1 JAN 73 1473

(Continued)

Unclassified

SECURITY CLASSIFICATION G THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

EOSAEL 82 (COMBIC) developed by ASL. Cloud masses were calculated using techniques developed by ASL and a contractor, PEDCo, Inc. (now PEI Associates). Generally, results obtained at Fort Carson showed that from 2 to 5 percent of the excavated soil mass would be found in a dust cloud after approximately 10 sec had elapsed from detonation.

Improvements in sampling techniques, particularly those characterizing the vertical nature of the cloud, are recommended. Since the composition of the cloud can vary greatly in a few metres of downwind distance, different sampler types should be used and should be positioned as close together as practical to determine differences in the respective samplers.

Other recommendations concerning the conduct of future tests are included.

PREFACE

The work reported herein was conducted by the US Army Engineer Waterways Experiment Station (WES), Environmental Laboratory (EL), for the Office, Chief of Engineers (OCE), US Army, under DA Project No. 4A762730AT42, Task Area B/E5, Work Unit 002. Dr. C.A. Meyer and MAJ Denton Brown, DAEN-ZCM, were the OCE Technical Monitors. This research was conducted under the AirLand Battlefield Environment Thrust. The purpose was to identify factors in the environment influencing the amount of dust lofted from explosive bursts of various sizes. These studies were conducted in April and August 1983 at Fort Carson, Colo.

In the April 1983 exercise, US Army Atmospheric Sciences Laboratory personnel performed the tasks of test layout and meteorological and dust data collection; WES personnel provided crater and soil characterization and photographic coverage. In the August 1983 exercise, a WES contractor, PEDCo Environmental, Inc., devised and executed the dust sampling program.

Mr. James B. Mason of the Environmental Analysis Group (EAG), Environmental Systems Division (ESD), EL, directed the April exercise; Mr. Randall R. Williams, EAG, directed the August exercise. The report was prepared by Ms. Katherine S. Long and Mr. Williams, EAG, and by Dr. Roger E. Davis, Science and Technology Corporation (STC), Las Cruces, NM (Contract No. DACA39-85-C-0006) under the direct supervision of Mr. Harold W. West, Chief, EAG, and under the general supervision of Dr. L.E. Link, Jr., Chief, ESD, and Dr. John Harrison, Chief, EL. STC personnel performed data analysis and prepared a major portion of the report as well as the computer graphics presented in the text and in Appendixes A and B. The report was edited by Ms. Jessica S. Ruff of the WES Publications and Graphic Arts Division (PGAD). Layout of the appendixes was accomplished by Ms. Beatrice W. Watson, PGAD.

At the time of publication, COL Allen F. Grum, USA, was Director of WES and Dr. Robert W. Whalin was Technical Director.

This report should be cited as follows:

Long, K.S., Davis, R.E., and Williams, R.R. 1985. "Results of Dust Obscuration Tests (DOT) Using Explosives, Fort Carson, Colorado," Technical Report EL-85-12, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Accesi	on For		
NTIS	CRA&I	54	
DTIC	TAB	ă	
Unann	ounced		
Justific	cation		
Ву			
Distrib	ution /	_	
A	vailabilit	y Codes	
Dist		and for cial	
A-1		,	•

CONTENTS

PREFACE		1
PART I:	INTRODUCTION Background Objective Scope	3 3 4
PART II:	DESCRIPTION OF TESTS -Test Sites	. 5
	Instrumentation	5
PART III:	DATA COLLECTED DOT I Event Data DOT II Event Data Soil Classification Data	16 16 24 25
PART IV:	DATA REDUCTION AND ANALYSIS Crater Volumes Dust Clouds	26 26 36
PART V:	CONCLUSIONS AND RECOMMENDATIONS Determination and Measurement of Relevant Factors Recommendations for Future Studies Summary	47 47 48 50
REFEREN	CES	51
TABLES I	-15	
APPENDI	X A: DATA COLLECTED IN DOT I AND DOT II EXERCISES	Αí
APPENDI	X R. SOUS DATA FROM DOT LAND DOT IL EXERCISES	Ri

RESULTS OF DUST OBSCURATION TESTS (DOT) USING EXPLOSIVES, FORT CARSON, COLORADO

PART I: INTRODUCTION

Background

- 1. The US Army Engineer Waterways Experiment Station (WES) is conducting research related to the determination of the terrain dust concentration and composition for realistic battlefield conditions. This research is sponsored by the Office, Chief of Engineers, US Army, under the auspices of the Battlefield Terrain Working Group of the AirLand Battlefield Environment Thrust (Deepak 1983). The importance of terrain dust has increased as a result of the development of high-technology weapons, sensors, and surveillance systems. The potential effects of terrain dust upon battlefield operations and equipment are significant, and dust properties and characteristics vary greatly with geographic location, climate, season, and even time of day. The prediction of dust concentrations and composition in a region being used for a military activity is an integral part of combat survivability. WES's primary thrust has been to determine the terrain and environmental factors affecting dust generation and transmission and to develop analytical relations that describe those dependencies. This research will provide data to analysts involved in combat effectiveness studies and to military engineer teams involved in predicting the performance of weapon systems in combat.
- 2. An experimental research program is being conducted jointly by WES and the US Army Atmospheric Sciences Laboratory (ASL) to determine data and relationships for use in an analytical procedure for prediction of terrain dust generated by explosions such as impacting munitions, moving vehicles, weapon firings, and helicopter landings and takeoffs. The principal goal of the explosive tests has been to develop a database to correlate soil properties with airborne dust loading. The initial series of tests in the Corps of Engineers' dust research program focused on determining the correlations with dust loading by considering the sand, silt, and clay content of soils before explosive detonation. This test series was designated the Battlefield Environments from Tailored Soils (BETS) (Mason and Long 1981; Kennedy 1982; Mason and Long 1983). The objective of BETS was to account for the material removed from craters produced by uncased simulated munition rounds to infer the dust cloud mass and distribution.
- 3. The second series of experimental explosive tests, conducted at Fort Carson, Colo., in April and August 1983, were designated the terrain Dust Obscuration Tests (DOT). The April test (DOT I) was conducted jointly by the ASL, White Sands Missile Range, N. Mex., and WES (Long et al. 1985). The August test (DOT II) was conducted by the WES with some field support provided by a WES contractor (PEDCo Environmental, Inc.).

Objective

4. The objective of the DOT was to gather meaningful data concerning the amount and characteristics of the obscurants released into the atmosphere by two likely components of the battlefield environment: (a) explosive activity and (b) vehicular traffic. The explosive trials were conducted by placing uncased C-4 charges upwind of the sampling array. The vehicular trials were conducted by running tracked and wheeled military vehicles upwind of the sampling array. This report documents the results of the DOT explosive tests.

Scope

- 5. Part II of this report describes physical features of the test sites selected. The instruments used to measure the phenomena resulting from the blasts are also described, and the conduct of the explosive events is summarized.
- 6. Part III describes the kinds of data collected during the high-explosive trials. Basic soil characteristics were measured before and after each event. The data collected for the DOT I events were greater than those in DOT II in both number and kind. These data were meteorological data, transmission data, and dust collection data gathered at the time of each event and shortly thereafter until it was determined that measurable effects of the blast had vanished. In the DOT II phase, limited meteorological and soil data were taken in addition to dust collection. After each event, the physical measurements of the resulting crater were taken.
- 7. Part IV presents the analysis of crater geometries and resulting clouds. Part V presents the conclusions and recommendations for future studies.

PART II: DESCRIPTION OF TESTS

Test Sites

- 8. The two test sites used for the Fort Carson DOTs are respectively located 2 km north of the southernmost gate of the Military Reservation (DOT I) and approximately 2 km southeast of Camp Red Devil (DOT II), as shown in Figures 1 and 2. The sites are gently sloping, with the Rocky Mountains approximately 60 km to the northwest and open terrain and low hills to the east and south. The Fort Carson reservation can be considered analogous to many semiarid regions of the world in terms of surface soil types and vegetation ground cover types. Figure 2 shows the portions of the reservation that are covered by the predominant short- and mixed-grass prairie species that occur at the two test sites. Figures 3 and 4 are presented as pictorial records of the terrain and ground cover found at the DOT I and II sites, respectively.
- 9. The surface soil at Site 1 (DOT I) was a light brown sandy clay material classified according to the Unified Soil Classification System (USCS) as a sandy clay (CL). The in situ moisture content of the surface soil ranged between 6.7 and 26.7 percent, with the maximum moisture occurring just after the site received some light rainfall. Soil strength or cone index (CI) was 50 at the surface and increased to approximately 200 at a 15-cm depth and 750+ at a 30-cm depth. The surface soil at Site 2 (DOT II) was a reddish-brown, sandy clay-sandy silt material classified as CL according to the USCS. The moisture content ranged from 7.2 to 17.5 at the surface, and the soil strength varied from 100 CI in the surface layer to 750+ CI at the depth of 15-30 cm. Figure 5 shows the surface soil grain sizes at the two test sites.
- 10. The predominant vegetation types occurring at the sites were short grasses and plants of blue grama, Russian thistle, lamb's-quarters, and prickly pear. Height of the plants ranged 10-20 cm, and the ground area of coverage was 50-70 percent, as illustrated in Figures 3 and 4. Figure 6 displays typical root depths (approximately 15-20 cm) for the grass clumps growing at the sites.
- 11. Site 1 near the southern boundary normally receives approximately 9-11 in. (23-28 cm) average annual rainfall. Site 2, near Camp Red Devil, receives an average of 12-13 in. (30-33 cm) of rainfall annually. Some rainfall did occur during both the April and August tests, which is reflected in the in situ moisture data presented.

Instrumentation

- 12. The instrumentation for the April explosive tests was provided by the ASL and consisted of a multiwavelength transmissometer, eight Hi-Vol dust samplers (height 1.5 m, spaced 6-10 m apart), five nephelometers, a Knollenberg counter, a spectrophone, four Gelman vertical samplers (heights 2, 6, 11, 15 m), and 2- and 16-m meteorological towers containing sensors for measurements of wind speed, wind direction, air temperature, dew point, humidity, and solar radiation. Additional meteorological sensors were included on the 16-m tower at heights of 4 m and 8 m. Meteorological sensor measurements were digitally recorded at 2-sec intervals. Figure 7a shows the layout and general ground-level view of the instrumentation. Further description of the instrumentation and calibration procedures is provided in a preliminary project report by Hoock and Kennedy (1983).
- 13. For the August tests, the instrumentation (Figure 7b) consisted of five Hi-Vol dust samplers (spaced 20 m apart and 2.5 m above ground), two tethered balloons each with four 47-mm polyvinyl chloride vertical samplers located at heights of 1.5, 7.6, 15.2, and 22.9 m above the ground,

Figure 1. Location of test sites at Fort Carson, Colo.

Figure 2. Vegetation cover at Fort Carson, Colo.

Figure 3. Site 1 (April tests, DOT 1)

Figure 4. Site 2 (August tests, DOT II)

Figure 5. Average grain size distribution of surface soil at each of the two sites (\bullet - Site i; \bigcirc - Site 2)

Figure 6. Typical grass root depths at Site 1

b. Site 2 (August tests, DOT II)

Figure 7. Instrumentation used at the DOT

Best Available Copy

and several meteorological sensors (wind speed, wind direction, air temperature, barometric pressure, relative humidity, and solar intensity) located at a height of 2 m. The instrumentation for Site 2 was provided by PEDCo Environmental, Inc., under contract to WES. The instrumentation and calibration procedures are described in PEDCo Environmental, Inc. (1985).

14. Figures 8 and 9 are schematic representations of the instrumentation and coordinate systems used for DOT I and DOT II. A rectangular coordinate system was used in DOT I while polar coordinates were utilized in DOT II. Polar coordinates for DOT II were deemed appropriate because the sampler line could be rotated in order to adjust for prevalent wind shifts. Figure 9a shows locations of shots and measuring devices for the first three shots, while Figure 9b shows those for the rest of the shots.

Figure 8. Schematic site layout for DOT I

Figure 9. Schematic site layout for DOT II

日本の大学の大学となってある。 開発などのから、 自然なるななない。 日本のからなっていません。 日本のからなっていません。 日本のからない。 日本のもない。 日本のない。 日本のない。

Conduct of Tests

15. The explosive agent used for the DOT explosive phases was uncased C-4 detonated by personnel of the 52d Engineering Battalion, Fort Carson. Charges were either blocks or molded spheres (Figure 10) of 7.5 lb (3.4 kg, designated "A"), 15 lb (6.8 kg, designated "B"), and 25 lb (11.3 kg, designated "C"). A total of 35 shots were made during DOT I, the majority being surface tangent (ST) blasts. Trial B16 had three separate charges of 15 lb each detonated at 5-sec intervals, making it the only multiple charge shot of DOT I. The B14 shot was detonated on a stick with the C-4 center of mass at 39 cm above the surface. No crater was formed by this shot. Trials B12, B13, and B15 were surface tangent buried (STB) shots with the charges shaped as blocks formed from individual 1.25-lb (0.6-kg) bricks of C-4 and placed in the ground with the top of the charge flush with the surface. The B5 trial was unusual in that the charge was inadvertently placed over a soil sample plug hole 1.5 in. (3.8 cm) in diameter and 8 in. (20.3 cm) deep. The true and apparent crater volumes resulting from this shot were approximately three and five times larger than those of the respective B shot means. Evidently the plug hole caused a focusing of the blast energy.

Figure 10. Typical molded C-4 sphere

- 16. The DOT II high-explosive phase consisted of eight shots, four of which were multiple-detonation trials. However, only seven of the trials yielded data because the Hi-Vol sampler filters were blown out by the blast in Trial 8. Charges for the measurable DOT II shots were 15-and 25-lb spheres.
- 17. The location for the point of burst (POB) was an important consideration for the tests. The POB for the April tests was determined by using the onsite measured wind direction and speed data and the center (location of sampler 3) of the Hi-Vol sampler array. The actual POB was determined by using the direction from which the wind was blowing and selecting a distance from the Hi-Vol array that would allow representative measurement of the horizontal and vertical composition of the dust cloud. The POB distance ranged from 19-75 m for all of the April tests, while the POB distance range for the August tests was somewhat less (40-45 m).
- 18. Tables 1 and 2 provide reference logs for the high-explosive trials at the DOT. Both timed still photographs and video records were taken for most of the DOT I events. A typical young cloud generated by a 15-lb C-4 charge is shown in Figure 11. Note the significant amount of dust (appearing white in Figure 11) generated to the 2- to 3-m heights by the detonation shock waves. The craters were measured immediately after the blast as shown in Figure 12.

c. Dust cloud at 1.0 sec

b. Dust cloud at time 0.5 sec

a. Dust cloud at time 0.1 sec

Figure 11. Dust cloud generated at DOT I (April 1983) using a 15-lb C-4 charge

Figure 12. Measurement of crater following static surface tangent detonation of C-4

PART III: DATA COLLECTED

19. Data from the DOT I and DOT II high-explosive trials are presented in Appendix A. The DOT I data are the more comprehensive set, reflecting the instrumentation differences between the April and August trials. However, some additional information concerning the meteorology, Hi-Vol sampler data, and balloon sampler data obtained during DOT II are included in the WES contract report by PEDCo Environmental, Inc.

DOT I Event Data

20. The DOT I (April 1983) data are presented in Appendix A (pages A3-A180) in sequence by charge weight, starting with the A (7.5-lb) shots. Figure 13 shows typical data for one shot, as presented in Appendix A. At the beginning of each charge weight group is a schematic diagram locating the Hi-Vol sampler positions and the location of each shot for the data set (Figure 13a). The meteorological, transmissometer, Hi-Vol, nephelometer, and Gelman data have been reduced and provided by ASL. Crater profiles, crater volumes, cone indices, soil densities, and soil moisture contents have been measured and/or calculated by WES. Information for each shot includes an Event Summary Table (Figure 13b) followed by a crater profile plot (Figure 13c), a cloud track and Hi-Vol data plot (Figure 13d), time-dependent nephelometer concentration plots (four stations) (Figures 13e-f), time-dependent transmission plots (four bandpasses) (Figures 13g-h), plots of visibility, solar flux, and sky and target voltages (Figure 13i), and time of obscuration histograms for four levels of transmission (four bandpasses) (Figure 13j). The following comments pertain to the DOT I data.

Meteorological data

- 21. The 2-m tower data are not presented in this report. The 16-m tower data are presented in tabular form as mean values for the 2-, 4-, 6-, and 16-m levels (Figure 13b). These means are computed for the 2-sec sampling intervals, which usually began several minutes before the detonation (event time) and continued until the cloud was well past the data acquisition instrumentation (usually 5 to 10 min). The "start" time and "end" time values identify this 2-sec sampling period for each shot.
- 22. The soil temperature, dew point, air temperature, relative humidity, and absolute humidity data are also means computed during the 2-sec sampling period (Figure 13b). The solar flux, visual range, Vista Ranger, and sky-target contrast data are the values observed at the start time given for each shot. Mean values for these data were not computed, as these data are strongly affected by dust cloud trajectory and location. However, the time-dependent plots of these variables are displayed for each shot.
- 23. The Richardson number values presented are means computed from both the 2- and 16-m levels and have been noted to be noisy.

Cone index

ススススス 自動しているのな問題 インチススス 自動などのなななな問題で

24. Cone indices were acquired for most shots before (pre-shot) and after (post-shot) the detonations (Figure 13b). These indices are presented for surface (SFC) and 15-, 30-, and 45-cm depths. The 15-, 30-, and 45-cm values, however, are averages for 0-15, 15-30, and 30-45 cm, respectively. The maximum value the instrument would register was 750. Any excess of this maximum value is logged as 750+ in the event summary C1 data.

a. Schematic diagram of POBs (DOT I)

Figure 13. Data items for typical 15-lb C-4 event (Sheet 1 of 6)

EVENT SUMMARY DATA	DATA			CONE INDEX:		-	į	;		
					X.Y Coord (M)	£	2	: a		:
Test Number: REB6		Surface Tangent	ngent	Pre-Shot		73.0	*			C !
Date: 22 APRIL 83	<	Charge Sha	Charge Shape: SPHERICAL	Post-Shot	62.0 7	 O	22	70	130	193
Detonation Coordinates (F): X: 61.7 Y: 72.7		Charge Wt: 15.0 LB Event Time: 11:22:	Charge Wt: 15.0 LB Event Time: 11:22:01							
				CRATER DATA						
METEOROLOGICAL DATA:				Moisture	Moisture Content: 13.1					
Pasquill Category: D Richardson Number: -0.020				CRATER VC	•			DENSITII Pre-	2	1.380
16 Meter Tower (Means) Start Time: 11:20:49 End Time:	ime: 11:24:			Apparent	Apparent Crater: 0.233 Flow: 1.029	7 A		A	Bottom: 0 Side: 1	0.975 1.104
2н	ŧ	¥	16H							
Wind Speed (M/S) 6.20	7.07	7.17	8.65	HI VOL DATA (G):	(6):					
	29.8	32.3	27.4	HA1	HV2 HV3	#AH	HAS	HV6	E E	BAH
Signa WSP 1.00	1.15	30.8	* A - C						9700	900
CIRCLE COMPONENTS		•	•	0.0147 0.0	0.0693 0.1081	0.1129	0.0966	0.2123	3	6.633
H/S)	-6.08	-6.01	-7.64	SUME	0.6249					
(H/S)	-3.42	-3.75	-3.92							
W (Vert) (M/S) 0.40	30.0	1.18	1.03							
	0.97	96.0	0.95	POC MAN POC	- (1997/8 U) AUTSON MEN HO	- -				
	6.32	0.34	•	TO BUTTON		- !				
Temperature (C) 11.0	10.9	10.8	10.6	GELMAN A	GELMAN B	GELMAN C		GELHAN D		
				16.114	\$5.200	16.961		67.562		
Soil Temperature (C): 11.7	Solar F	lux (W/Me•	Solar Flux (W/M**2): 131.5							
Dew Point (C): 2.7	Visual	Visual Range (M): 30480.0	30480.0							
Temperature (C): 10.2	Vista R	sta Ranger Voltages:	::0							
Rel. Hum. (%): 59.4		Target:	•							
Abs. Hum. (G/M**3): 5.69	Sky-Tar	Sky-Target Contrast:	st: •		-					
Rain Accumulation (MM): 0.00			1							

b. Event Summary Data Figure 13. (Sheet 2 of 6)

<u>8</u> -

Ñ

LEGEND

B6 15 LB 1122HR 22APRB3 62,73

DISTANCE, cm

ĸ

0

K

DEPTH, cm

c. Radial crater profile plots

Figure 13. (Sheet 3 of 6)

Ñ

DISTANCE, cm 50 75 100

8

LEGEND

ĸ

DEPTH, cm

Figure 13. (Sheet 4 of 6)

ライイインアンXI

g. Time-dependent natural logarithmic transmittance plots

Figure 13. (Sheet 5 of 6)

Figure 13. (Sheet 6 of 6)

Crater data

- 25. The crater data include soil moisture content, crater volumes, and soil densities both before and after the shot.
- 26. Crater volumes. A number of different approaches were tested for calculating crater volumes. The approach that apparently yields the most accurate results is a Simpson's rule integration. Four volumes for each crater were determined using a vertical through the crater center as the axis of rotation for each quadrant profile (see discussion of crater profiles below). The calculated volumes defined by the resulting surface of revolution for each quadrant profile were then averaged to yield the volumes presented in this summary. The flow volume refers to the volume of material which includes sheared material ejected with insufficient energy to carry it past the crater rim and ejecta which has fallen back into the crater. The flow volume is the difference between the true crater volume and the apparent crater volume.
- 27. The flow density given is a mean value of several samples taken from the flow material. Often this is just the mean of the bottom and side flow densities, as given in the event summary table.
- 28. Crater profiles (Figure 13c). Crater profiles, that is, the depths of the apparent and true crater surfaces, were measured along east-west and north-south diameters. The apparent crater was measured from the surface to the crater floor, i.e., the top of the flow in the crater. The true crater was measured from the surface to the point at which the measuring stick was perceived to encounter a significant change in soil structure when pushed through the flow material, i.e., the bottom of the flow material. This measuring technique is expected to yield more accurate apparent crater profiles than true crater profiles. This expectation is confirmed in the large scatter in the calculated true crater volumes (see Part IV, paragraph 46).
- 29. The crater profile information is displayed in two plots for each shot, one plot displaying the north-south quadrant profiles and the other presenting the east-west quadrant profiles. Apparent and true crater profiles are displayed together for easy comparison. The solid and dashed lines appearing on each plot are formed from averages computed from all four quadrants for the true and apparent craters, respectively.

Cloud data

- 30. High-volume samplers (Figure 13d). Complete descriptions of the Hi-Vol samplers and reduction techniques are found in the ASL reports on the DOT test. Presenter here are the masses (in grams) accumulated by the Hi-Vol samplers for each test shot. Also, the individual Hi-Vol masses for each shot have been added and recorded as "Sum" in the Hi-Vol data presented in the event summary table. This sum has no quantitative significance other than to benchmark the cloud track relative to the sampler array. The Hi-Vol masses and predicted cloud tracks determined from the observed winds are displayed graphically in Appendix A (see following discussion).
- 31. Cloud tracks (Figure 13d). In order to provide a visual representation of each shot, cloud transport and diffusion are displayed with the Hi-Vol sampler data. The transport of the cloud was predicted by use of the 2-sec interval wind speed and direction data acquired at the 2-m level of the 16-m tower. (The Hi-Vol samplers were 1.5 m above the ground.) Assuming a Gaussian cloud, the diffusion is approximated in the horizontal by

- where a_p is the standard deviation in the horizontal direction perpendicular to the wind direction. The coefficients a and b are Brookhaven National Laboratory (BNL) parameters (Hanna, Briggs, and Hosker 1982) and x is the downwind distance.
- 32. These standard deviations computed with the BNL parameters tend to be representative of the lower portion of the clouds' mass distributions. To support this conjecture, the Hi-Vol sampler positions and their respective recorded masses are also displayed on these plots. The relative Hi-Vol masses are reflected by the areas of the circles centered on the sampler positions.
- 33. The predicted dust cloud tracks represent remarkably well the paths taken by the individual clouds as confirmed from the video records of the shots.
- 34. Nephelometer data (Figures 13e-f). The nephelometer data for those instruments placed adjacent to the Hi-Vol sampler stations Nos. 1, 3, 5, and 8 are presented as time-dependent plots. A complete description of the instruments and reduction procedures is given in ASL reports of the DOT test (Bruce, Unthank, and Jelinek 1985; Hoock*). The reduced data in grams per cubic metre are presented here as both linear and logarithmic (base 10) representations. Passage of the shock dust and cloud is easily identified in the nephelometer data. Occasionally, data are missing due to acquisition problems.
- 35. Transmissometer data (Figures 13g-h). As with the nephelometer data, a complete description of the instrumentation and data reduction is found in ASL reports. The transmission data are presented as a function of time in both linear and natural log representations. Shock dust is more difficult to observe in the transmissometer data since the line-of-sight (LOS) was nearly a metre above the nephelometers. However, the shock can be seen in many of the trials. Note that the time at which the transmissometer data start is not the same time as the event time.
- 36. Other data (Figure 13i). Visibility, solar flux, and sky and target voltages were acquired in some of the DOT I events. These data are likewise presented in Appendix A, with the appropriate event, if they were available.

37. Time of obscuration (Figure 13j). To estimate quantitatively the obscuration potential of the high-exlosive dust clouds, total time of transmission below the 50, 37, 10, and 2 percent levels has been determined from the transmissometer data. These results have been calculated for those clouds which passed between the transmissometer transmitter and receiver in all four bandpasses and are displayed as histograms. These times of obscuration are the actual observed times at the transmissometer LOS and have been neither corrected for wind direction nor normalized to a common wind speed. These modifications to the data are presented later in the text (Part IV, paragraph 85).

DOT II Event Data

38. The DOT II (August 1983) data comprise the second part of Appendix A (pages A181-193). The data are grouped by charge sizes with the 15-lb charges designated B and the 25-lb charges designated C. Since there were no 7.5-lb charges, no shots were designated A as for DOT I. No data were recorded for the final DOT II shot because it blew the samplers away and thus no data were collected. DOT II data are not nearly as voluminous as those of DOT I because no

^{*}Personal Communication, 1984, D.W. Hoock, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, N. Mex.

transmissometer, nephelometer, or high time-resolution meteorological data were taken. Likewise, only eight trials were attempted in DOT II whereas 35 were attempted in DOT I.

39. The field trial identification for DOT II was made by numbering the trials sequentially, including both the vehicular and high-explosive trials. For purposes of this report the trial identification has been altered to match more closely that of DOT I. The high-explosive trials for DOT II are identified by the following notation:

HEmp – n

where

m = the sequential number of the high-explosive trial starting with m = 1

p = the charge weight identifier, either B (15 lb) or C (25 lb)

n = the charge identifier (A, B, C) if multiple charges were detonated for the trial

Note that the DOT II Event Summary Data tables include the field trial test number in parentheses for cross-reference purposes.

- 40. Hi-Vol and Gelman sampler data are presented in the WES draft contract report by PEDCo Environmental, Inc., and are therefore not included in this report. The meteorological data, crater profiles, crater volumes, soil densities, soil moisture contents, and cone indices are provided in the DOT II Event Summary Data tables (Appendix A).
- 41. The summary data are preceded by two graphical representations of the DOT II field coordinate system which mark the sampler line and POBs for the high-explosive shots (see pages A181 and A185). Note that the sampler line was rotated 90 deg after the first three trials in order to adjust for a wind shift. The vertical samplers were positioned by tethered balloons, one between the rightmost two Hi-Vols and one between the leftmost two Hi-Vols. The meteorological station was positioned near the center Hi-Vol.

Soil Classification Data

42. Acquisition of data for soil characterization at the DOT sites included soil samples taken at various depths in approximately 2-m-deep pits (dug by backhoe) and in shot craters. Presented in Appendix B are summary tables (pages B3 and B18), pit profiles (pages B4-B6), and soil gradation curves (B7-B17 and B20-B34) from soil samples obtained at the DOT 1 and II sites. Information provided in the individual curve figures includes the site location and depth of the sample, liquid and plastic limits, specific gravity, and organic content. Mean curves (Figure 5) have been formed for both sites and yield percent finer values of 67 and 60 percent for Sites 1 and 2, respectively. Cone index data acquired at the shot locations are found in the individual Event Summary Data tables of Appendix A.

PART IV: DATA REDUCTION AND ANALYSIS

- 43. One of the most obvious results of a high-explosive surface blast is the excavation of a crater. Consequently, much initial work in field tests similar to DOT sought to infer dust cloud masses from crater volumes under the assumption that only the percent fines less than some specified diameter composed the cloud. It was soon recognized, however, that mass predictions based on this assumption greatly overestimated the cloud masses and that only a very small fraction of the excavated crater volume remains in the sustained clouds.
- 44. The problem of identifying relationships among explosive charge weights, crater volumes, and resulting dust cloud masses is complicated by a host of variables that include soil compaction during crater formation, fallback material into the craters, soil/terrain properties, and ejecta which does not become part of the sustained clouds. Because of the compounding factors and the fact that only a small fraction of the excavated mass remains lofted, a large error potential exists in formulating charge weight-crater volume-cloud mass relationships. The DOT test was designed to minimize the errors in defining these relationships by providing direct measurements of dust cloud mass loading in both the horizontal and vertical planes. The results of the DOT data analysis are presented below.

Crater Volumes

- 45. Twenty-nine crater profiles were measured during DOT I, and 10 such profiles were measured during DOT II. Appendix A contains plots of the individual profiles, and the measurement procedure is described in Part III of the text. From the profile data, true and apparent crater volumes were calculated using a modified Simpson's rule. Table 3 includes these calculated volumes as well as soil densities, moisture contents, bulking factor (i.e., the ratio of pre-shot to post-shot densities), and volumes normalized to the charge weights.
- 46. Figures 14a-d (DOT I) and 15a-b (DOT II) provide histograms of the true and apparent volumes determined for the individual craters; Figures 16a-d present plots of these volumes versus explosive charge weights. The DOT I volumes show a wide scatter in true volumes, while the apparent volumes show much more consistency. This result suggests that the true crater profiles determined from the DOT I tests probably were more prone to measurement error than the apparent crater profiles. A possible cause for the inability to measure the true profiles more precisely may be that substantial fracture zones were established at the true crater boundaries, thereby causing an ambiguity in the determination of the boundaries. That is, the depths for the true crater profiles were not measured directly; they were determined by forcing a graduated range pole through the loose material commonly called fallback. Thus, overestimations were possible should the pole be overextended into the true crater "fracture zone" or underestimations were possible should the vertical path to the true crater boundary be blocked by dense fallback material. In contrast to the DOT I volumes, the true crater boundaries measured in DOT II appear to be more consistent from crater to crater.
- 47. Additional differences between the DOT I and DOT II craters are highlighted by calculating mean crater profiles for each charge weight. Four profiles were measured from the center of the crater to past the crater rim along north-to-south and east-to-west radii (see Part III, paragraph 28). These four radii profiles, one for each quadrant of the crater, were generated to employ the modified Simpson's rule techniques to calculate the crater volumes. Mean profiles (true and apparent) presented in Figures 17a-f have been calculated for each charge weight group and detonation configuration (i.e., ST or STB) by averaging all quadrants of all craters in their respective groups.

Figure 14. Volumes of true and apparent craters, DOT I (April 1983) (Continued)

Figure 14. (Concluded)

Figure 15. Volumes of true and apparent craters, DOT II (August 1983)

Figure 16. Plots of apparent and true crater volumes versus charge weights (Continued)

c. Apparent volume, DOT II

Figure 16. (Concluded)

Figure 17. Mean (apparent and true) shot profiles (Sheet 1 of 3)

c. "B" shot (STB) profiles, DOT I

Figure 17. (Sheet 2 of 3)

e. "C" shot (ST) profiles, DOT I

Figure 17. (Sheet 3 of 3)

- 48. Comparison of the mean profiles for similar charge weights shows distinct differences in crater profiles between DOT I and DOT II, both in shape and resulting volumes. These differences are particularly striking for the true crater profiles, with the DOT I profiles showing a distinct "shelf' as opposed to the smooth profiles of DOT II. The volumes calculated from these mean profiles are given in Table 4 and are compared to the mean volumes found by averaging the individually determined volumes found in Table 3. Note that no significant differences are found in the mean values for the two methods. The effect of burying the charges (STB) on the crater volumes is also illustrated by the mean crater profiles, as the 15-lb STB shots typically created much larger craters than even the 25-lb ST shots.
- 49. Two factors that have been identified as likely contributors to the differences in the DOT I and DOT II craters are (a) the existence of a hardpan approximately 10 to 20 cm below the surface at the DOT I site and (b) the difference in soil densities between the two sites.
- 50. The hardpan layer at the DOT I site was noted by field workers as they encountered and broke through this layer while acquiring CI data. This region was relatively thin (several centimetres) as it cannot be identified in the CI data. The shelf seen in the DOT I crater profiles, particularly in the A shots, is undoubtedly a manifestation of the hardpan zone. The hardpan is also likely to be the cause for the greater than usual height obtained by the ST shots. The shape and height of the clouds generated by ST shots during DOT I resembled buried shot clouds seen in earlier high-explosive tests (e.g., DIRT [Dusty Infrared] tests).
- 51. The second difference between the two sites noted above was in soil density. Site 1 had a mean pre-shot surface soil density of approximately 1.4 g/cm³ (1.22 g/cm³ dry) while the DOT II mean site density was approximately 1.75 g/cm³ (1.58 g/cm³ dry). The soil moisture contents measured at the two sites were nearly the same, with values of 14 percent and 10 percent for Sites 1 and 2, respectively. The resulting voids ratios (the volume of voids divided by the volume of solids) for the two sites are calculated to be approximately 1.2 and 0.7.
- 52. Additional differences between the two sites include slightly different soil characteristics and surface soil grain sizes (see Figure 5).
- 53. Regardless of the causes for scatter in true crater volumes and differences in crater profiles, the relative consistency of the apparent crater volumes is encouraging, implying that for a given charge weight and set of site/soil properties, a predictable apparent crater volume will be formed. This leads to a simple calculation for the mass excavated by the explosions. By ignoring complicating effects such as soil compaction in the true crater, the excavated mass is computed by simply taking the product of the dry pre-shot soil density and the apparent crater volume. Table 5 displays the results of these calculations and shows that approximately equivalent amounts of mass have been ejected for similar charge weights in both DOT I and DOT II. An oversimplified physical argument would conclude that the energy available from a given charge will remove a well-defined amount of mass, given similar soil characteristics. Similar charges detonated in terrains quite different from the Fort Carson area may produce different results. Nevertheless, the Fort Carson study provides very important data for quantifying a charge weight-mass ejecta relationship.
- 54. The DOT crater data provide information for verifying charge weight/crater volume algorithms previously developed and currently used in various DoD models. A widely used algorithm is that of the EOSAEL 82 COMBIC module (Hoock et al. 1982) which is expressed as:

where V is the crater volume, in cubic metres; S is a scaling factor, dimensionless, reflecting site variability; and W is equivalent weight of charge, in kilograms TNT. Figure 18 displays the mean apparent crater volumes from DOT as functions of charge weight in equivalent kilograms of TNT. The dashed line in Figure 18 represents the 1.111 power law used by the EOSAEL 82 COMBIC module. While the power law seems to describe the relationship quite well, the actual COMBIC predictions for the Fort Carson crater volumes are high. This is a result of the rather coarse grid offered by COMBIC for setting the scaling factor coefficient. Therefore, the future focus of the charge weight/crater volume studies should be directed toward refinement of the scaling factor.

55. Correlations between crater volumes and soil density or soil moisture content were not evident in the DOT data. This is a reflection of the similarity in soil types and grain sizes between Sites 1 and 2 and the rather narrow range of soil moisture contents. Figures 19 and 20 present the soil density and soil moisture content data from DOT as functions of the normalized apparent crater volumes, i.e., the apparent crater volumes divided by the charge weight. In the data collected in the DOT tests, at least, it is apparent that soil densities and range of moisture contents had negligible influence on crater volume.

Dust Clouds

56. The focal point of the DOT test was the characterization of the dust clouds in context of source generators and site/soil factors. Mass loading, cloud masses, cloud structure, and cloud optical properties have been studied from the acquired data. The following paragraphs present the dust cloud analysis for DOT I and DOT II.

Mass extinction coefficients

ない ちょうしょ 自己 かいこうきょう ない 国内 かんそう そう 女 自己 かんしゅ かんな 国内 ないない かんしゅ しゅうしゅうしゅうしゅ

- 57. The mass extinction coefficients presented in Table 6 are courtesy of Dr. Donald Hoock, ASL, White Sands Missile Range. Hoock first identified those dust clouds which passed through the interior of the Hi-Vol sampler line 1 through 5 from video tapes. This ensured that a cloud profile could be determined with good confidence. Trials A7, A8, B4, B5, B6, B10, B13, and C4 were found to meet this requirement. Path integrated dosages (g · sec/m) were determined for these trials as well as integrals of the negative of the natural log of transmittance (at each wavelength band) over the time the transmittance was between 85 percent and 0.1 percent. The ratio of the transmittance integration to the dosage integration yields the mass extinction coefficient as presented in Table 6.
- 58. Hoock notes these coefficients will be somewhat underestimated if the dust is more concentrated at the 1.5-m level (Hi-Vol samplers) than at the 2.5-m level (transmissometer LOS) and somewhat overestimated if the converse is true. Details of these calculations will be found in the ASL final DOT report.* We also note that the presence of significant amounts of burn products (e.g., carbon) along the transmissometer LOS causes the coefficients to be overestimated. Unfortunately, no data concerning the amount and type of burn products mixed in the dust cloud exist.

^{*}Personal Communication, 1984, D.W. Hoock, op. cit., p 24.

Figure 18. Mean apparent crater volumes as a function of charge weight

Figure 19. Soil density compared to normalized crater volume

Figure 20. Soil moisture content compared to normalized crater volume

Dust cloud masses

- 59. The determination of accurate dust cloud masses has been proven to be difficult and inexact in past tests. Consequently, a new strategy was formulated for evaluating the DOT-generated clouds (see Hoock and Kennedy 1983). Much of the measuring difficulty lies in the individuality of each cloud, both in structure and dynamics. Although general geometries, structure, and dynamics exist, the effects of micrometeorology, local perturbations in terrain and soil, and any existing peculiarities of explosive charges all contribute to the uniqueness in detail of individual clouds. (A survey of the video tapes reveals the extent of this problem.) Thus, a rather large scatter in mass determinations was expected, making different and independent calculations highly desirable.
- 60. The cloud masses presented in this report are independent calculations provided by Dr. Don Hoock and Dr. Charles Bruce et al. for the DOT I data and by PEDCo Environmental, Inc., for DOT II. Although cursory comments outlining the different mass calculation approaches are made here, reference is made to the appropriate final reports (Bruce, Unthank, and Jelinek 1985; Hoock*; PEDCo Environmental, Inc. 1985) for complete descriptions of the computations.
- 61. Hoock's approach for calculating cloud masses utilizes the transmissometer data by computing the total mass of dust in a 1-m-thick layer at 2.5 m above the ground (the transmissometer LOS).

^{*}Personal Communication, D.W. Hoock, ibid.

The working equation for computing this layer mass is given by

$$\frac{dm}{dz}_{2.5} = \frac{-v_r \int_0^t \ln T(\lambda) dt}{a(\lambda)}$$

where

 $\frac{dm}{dz}$ = rate of change of mass, g, with height, m

 $v_r \equiv$ speed of cloud perpendicular to the LOS, m/sec

 $T(\lambda)$ = transmittance (0 to 1) at wavelength λ

t = duration of test, sec

 $a(\lambda)$ = mass extinction at wavelength λ , m²/g (see Table 6)

62. The perpendicular velocity was determined both from the meteorological data as well as from the time it took for the dust to reach the transmissometer LOS and the perpendicular distance from the detonation point to the LOS. As those velocities were always different, giving two values of dm/dz for each shot, the average value was computed. The final step in the calculations involves the assumption that for well-defined cloud shapes the mass loading was constant with height. Then, from the heights of the clouds measured from the video tapes, masses were calculated from

$$M = (dm/dz) Z$$

where

M = mass, g dm/dz = rate of change of mass, g, with height, m Z = height of the cloud, m

- 63. Several caveats to this approach are noted. First, the assumption of the mass loading consistency with height is only a working approximation. The vertical samplers do not support this assumption for individual clouds but indicate a variety of distribution profiles. Second, the cloud heights used were measured from the surface to the top of the visible clouds. There is currently supporting evidence from the vertical samplers that dust does not exist in significant amounts to the heights indicated by the visible cloud tops. The upper cloud regions are black for most shots, as opposed to the brownish lower portions of the clouds. This suggests that most of the upper part of the clouds may be burn products of the munition and contains little dust. The question of height of the dust in the cloud is reconsidered below.
- 64. The Bruce calculations are somewhat more involved than the previously described Hoock method and have required a number of assumptions and approximations in reducing the data. Therefore, the reader should refer to the Bruce, Unthank, and Jelinek (1985) final DOT report for details of the cloud mass calculations, as the analysis will be only briefly discussed here.
- 65. The principal data required by Bruce are the Hi-Vol sampler and nephelometer data that have been used to map density profiles of the dust clouds in both the horizontal (at 1.5 m) and vertical planes. From the video tape as well as the sampler array information, only those clouds which passed through the sampler arrays (vertical and horizontal) and maintained manageable geometry were selected for analysis. The dosage (and density) profiles as provided by the horizontal

samplers suggest a Gaussian distribution in the clouds. Thus, the following distribution function was adapted:

$$Q_{1.5}(r) = Q_{1.5}(0) \exp(-r/r_0)^2$$

where

 $\varrho_{1.5}(r)$ = density in the horizontal plane at 1.5 m and at a distance r from maximum density, g/m^3

 $\varrho_{1.5}(0)$ = maximum density in the 1.5-m horizontal plane, g/m³

r = distance from point of maximum concentration, m

 r_0 = distance at which the density is e^{-1} of the maximum density, m

- 66. While the vertical profiles were neither consistent nor easily characterized, heights which significant amounts of dust reached were determined with a straightforward extrapolation of the implied profiles. The heights obtained in this manner gave quite repeatable results and, in general, strongly suggest that the maximum altitude acquired by significant dust is generally much lower than the visible top of the clouds (see Table 7).
- 67. Two algorithms were selected in calculating the cloud masses, both of which assumed circular cylindrical symmetry. The first, termed the rectangular method, is given by

$$M = \pi r_0^2 Z Q_{1.5}(0)$$

where

M = total mass of the cloud, gZ = height of dust in cloud, m

- 68. This approach assumes every horizontal slice has exactly the same central (maximum) density as the 1.5-m slice. This approach was formulated for comparison with the cloud masses determined by the Hoock method and ignores the vertical structure of the clouds. The vertical samplers, however, indicate that the maximum concentration is a function of height. This function is apparently highly variable and must be formulated for each cloud.
- 69. The second Bruce algorithm attempts to account for the functional height dependence and is written:

$$M = \int \varrho(r,\theta s) \, r dr d\theta dZ$$

or

$$M = \pi \varrho_{qq} r_0^2 \int_0^z F(z) dz$$

where

 $\varrho_{g\varrho}$ = peak concentration in the cloud, g/m³

F(z) = functional form of the vertical concentration profile from graphical fit

70. The peak concentration ϱ_{qq} was calculated from the ratios of the peak vertical and horizontal dosages as determined from the profile fits multiplied by the maximum concentration at 1.5 m. This is expressed as

$$Q_{QQ} = Q_{1.5}(0)(D_s/D_{1.5})_{\text{max}}$$

The dust particle masses determined by this algorithm are similar but, in general, slightly smaller than by the rectangular algorithms.

- 71. The PEDCo Environmental, Inc., calculations are similar to the second Bruce algorithm. Both horizontal and vertical concentration profiles are used to integrate over the cloud volumes. Unlike DOT I, a number of cloud masses were determined for multiple-shot trials. These multiple-shot cases are not used in the comparisons made below.
- 72. Table 8 compares the results of the mass calculations made for DOT I and DOT II. While mass means from the Bruce and PEDCo Environmental determinations seem to agree, the Hoock mass means are almost a factor of four larger. If Hoock's masses are recalculated using the cloud heights suggested by the vertical samplers instead of the visible cloud tops (see Table 7), the Hoock masses are reduced by approximately 40 percent. These recalculated masses are listed as "modified Hoock" masses in Table 8. (Unfortunately, no-A-shot clouds tracked through the vertical sampling tower, so no vertical profile data are available.) However, if a 40-percent reduction for the A shot clouds is used, the resultant mass falls in nicely with the B and C shot modified values.
- 73. An important question to be answered in the high-explosive phase of DOT concerns the amount of mass that remains lofted relative to the mass excavated by the crater generation. Results from Tables 5 and 9 provide an answer to this question. By using mean values from excavated masses and cloud masses, values of approximately 2 percent are easily derived for the percentage of excavated mass remaining in sustained clouds (Table 10). Even if the larger cloud mass estimates in Table 9 are assumed (instead of the means), the percentages remain smaller than 5 percent. While these results are quite significant, it should be emphasized that the DOT results really provide only one data point in the charge weight-soil/terrain-crater volume-cloud mass relationship as these values are valid only for bare ST charges and a rather narrow range of soil and moisture conditions. Near-surface buried charges create larger craters and are suspected to result in more massive dust clouds. Since only one STB dust cloud was adequately sampled for mass determination, the DOT test provides no statistics for cloud masses from buried shots.
- 74. Figure 21 is a plot of the excavation and cloud mass means given in Tables 5 and 9 for all the techniques discussed for the ST trials. The Bruce means for the B shots do not include B15, as it was a buried shot, nor B7, as it appears extremely anomalous. All values have been rounded to the nearest hundred grams.
- 75. A final note should be made concerning cloud ages at sampling time. The cloud ages at the sampling arrays ranged between 6 and 20 sec. No correlation between cloud mass and cloud age in these data has been detected, implying that cloud masses in this age range do not change significantly and/or the errors in the cloud mass estimates overwhelm changes in mass for this rather narrow time interval. It does seem logical that cloud mass will be a function of cloud age as settling and scavenging occur, at least until the cloud reaches a quasi-stable state. However, a much wider range in ages than those observed at the DOT test is needed for confirming this reasoning and to establish decay rates.

Cloud heights

76. The clouds produced by the ST DOT test shots appeared, in general, to be more representative of STB shots because of the relatively large heights attained. It is proposed that this phenomenon may have been caused by the hard subsurface layer found throughout the test site. This fact should be remembered when comparing cloud heights of this test with those of other high-explosive test clouds.

Figure 21. Estimated cloud masses (by four different methods) compared to their respective apparent crater volumes

77. The cloud heights presented in Table 7 are measured in two ways. The first is from the Hoock cloud mass analysis in which the visible tops of the clouds were measured from the video tapes. The second is from the vertical sampler data. Striking consistency is apparent in the means of both sets of measurements. The visible cloud top means measured from the video are very nearly equal for all three groups of explosive charges, with a value of approximately 30 m. However, the scatter among individual measures is quite large. In contrast, the vertical samplers imply very repeatable but charge-dependent heights for the dust in the clouds, giving mean heights of 14.5 and 18.5 m for the B and C shots, respectively. It is likely the difference in the heights between the video-visible and sampler measurements is due to the fact that the upper portions of the clouds are buoyant, i.e., mainly hot gases and burn products that contain little dust. This conjecture draws some support from the strong color difference seen between the upper and lower portions of the cloud, but whether a significant amount of dust is entrained by the upper cloud is uncertain.

Radii and widths

- 78. The DOT dust clouds have been characterized in this analysis by defining widths in two different manners. The first characterization defines an e^{-1} density radius r_0 and assumes a Gaussian density distribution. The second characterization defines obscuration widths based on obscuration times below 50-, 37-, 10- and 2-percent transmission levels.
- 79. The first manner of characterizing the cloud radii by r_0 has been approached with two independent sets of calculations. One set has been determined by Bruce using the Hi-Vol density profiles. By assuming a Gaussian distribution to the observed profiles, e^{-1} radii are easily measured.

These radii are then corrected for wind angle relative to the sampler array. These radii have been used by Bruce in calculating cloud masses. The second set of e^{-1} radii have been calculated using the transmissometer data as described below.

80. Assume, as before, that the dust clouds are circular symmetric in the horizontal plane and have a Gaussian distribution in density. Then, as the clouds drift through the transmissometer LOS, a minimum transmittance will occur when the LOS cuts through the cloud center. Using the Beer-Lambert law at the minimum transmittance and assuming the entire cloud lies between the transmitter and receiver yields

$$\ln T\lambda = -\alpha\lambda \int_{-\infty}^{\infty} Q_{2.5}(0) e^{-(r/r_0)^2} dr$$

where

 $T\lambda$ = minimum transmittance at wavelength λ

 α_{λ} = mass extinction coefficient for wavelength λ , m²/g

 $\varrho_{2.5}(0)$ = peak concentration at the 2.5-m level, g/m³

Integrating and solving for r_0 gives

$$r_0 = \frac{-\ln T_{\lambda}}{\sqrt{\pi} \alpha_{\lambda} Q_{2.5}(0)}$$

- 81. Problems arise once the minimum detectable transmittance threshold has been reached. For the DOT test, this limit is less than 0.1 percent transmission. Using 0.1 percent if values smaller have been recorded causes r_0 to be underestimated. This is not a major problem, as threshold values, when they occur, are usually observed for very short time intervals (1-2 sec) and rarely occur in all four wavelength bands. Furthermore, factor of 10 lower than threshold, 0.01 percent, results only in a factor of 2.3 in r_0 estimates.
- 82. Minimum values of transmittance did not always occur simultaneously in the data for all four wavelengths. However, since the minima were usually within 1 or 2 sec of each other, only minimum transmittance data were used for the calculations.
- 83. The mass extinction coefficients used were those of Hoock (Table 6). The peak densities at 2.5 m were calculated from the peak densities given by Bruce at 1.5 m and the vertical sampler profiles.
- 84. The results of these radii calculations, along with those values determined by Bruce, are given in Table 11. Although the B shot means agree quite closely, the C shot means are obviously in disagreement. The transmission radii at 2.5 m are in general expected to be somewhat larger as the vertical profiles often indicate a density increase from the surface to above the transmissometer LOS at 2.5 m. Recall that the Bruce radii were measured from the Hi-Vol profiles at 1.5 m. While the accuracy of each method is difficult to assess, the results are not so grossly different as to prohibit reasonable estimates of r_0 for mean dust clouds.
- 85. The second width characterization of the dust clouds is that of obscuring widths for the four transmissometer wavelength bands at thresholds of 50, 37, 10, and 2 percent transmittance. The method here has been to find the total time for a given threshold and wavelength band that the transmittance was below the threshold value (see Appendix A for histogram data). Then, from the meteorological data, the wind speed component perpendicular, V_{ϱ} , to the transmissometer LOS was calculated and multiplied by the total obscuration time to yield the obscuration width.

Tables 12-15 display the results of this analysis. (Divide the widths in Tables 12-15 by 2 to obtain obscuration radii.) Figures 22a-d present the results of these calculations. Note that only slight changes are seen in the obscuration widths between the visible and the infrared. This is expected due to the similarity in mass extinction coefficients for the four bandpasses (see Table 6).

86. It is interesting to note that the Pasquill Stability Category shows no correlation with the calculated radii. Thus, it is proposed that through the early life of clouds, the internal turbulence created by the blast completely overwhelms the surrounding atmospheric turbulence, and not until this explosive turbulent energy is dispersed will the standard atmospheric diffusion processes become dominant. The age of the clouds passing through the transmissometer LOS ran from 6 to 20 sec. A study of the video tapes suggests a significant amount of turbulent blast energy apparently remains in the clouds through this time frame, thereby supporting the above conjecture.

Figure 22. Obscuration radii for various wavelength bands compared to charge weight (Continued)

PART V: CONCLUSIONS AND RECOMMENDATIONS

87. The DOT tests have proved successful in establishing a number of important relationships concerning dust cloud production by high explosives. The DOT tests have also provided quantitative characterization of these dust clouds which includes physical properties and obscurant potentials in four different spectral bands. The results of the DOT I and II tests are summarized below.

Determination and Measurement of Relevant Factors

- 88. One of the most important results to come out of this study is the relationship established between crater volume and dust cloud mass. From the analysis presented in Part IV, it has been determined that approximately 2 percent of the mass excavated from a crater by a ST detonation remains lofted in a young cloud. This result is also linked to the initial charge weight of the explosive through the charge weight-crater volume power law relationship (see Part IV, paragraph 54). Therefore, given a charge weight and terrain/soil parameters similar to those found at Fort Carson, a reasonably accurate prediction of cloud dust mass can be made. The apparent relationship between charge weight and excavated mass, regardless of soil moisture, density, and type, is also an important result of DOT. This relationship certainly warrants more study given the narrow range of terrain/soil parameters occurring at the test sites.
- 89. Dust cloud physical properties determined from the DOT data include visual heights, dust heights, cloud widths (both dust density and obscuring widths), and mass extinction coefficients. The mean visual heights, which include the buoyant upper portion of the cloud, have been determined to be approximately 30 m for all three charge weights used, but there is a large scatter about these means. However, the mean heights at which the measurable dust is lofted in these young clouds have been determined from the vertical Gelman samplers to be 14.5 and 18.4 m for the 15- and 25-lb shots, respectively (refer to Table 7 for the cloud height statistics). The cloud widths as defined by dust concentration profiles have been determined using the Hi-Vol samplers and also by the transmissometer observations. These density widths are calculated to be approximately 15 and 25 m for the 15- and 25-lb shots, respectively (see Table 11). These widths are comparable to the values of 16- and 28-m determined visible obscuration widths (corrected for wind speed and direction) of 10 percent or less transmission (see Tables 12-15.) Furthermore, the analysis reveals the transmission obscuration width of a dust cloud remains nearly constant in the four bandpasses observed at the DOT. This is a reflection of the small change in mass extinction coefficients with wavelength observed in the clouds, ranging from 0.18 m²/g in the visible to 0.12 m²/g in the 8.4- to 12-µm bandpass. (Refer to Table 6.) Future test characterization should be pursued in terrains/soils different from those at Fort Carson in order to identify the major relationships between cloud properties, charge weight, and terrain environmental parameters.
- 90. Observations of the clouds as they passed through the sampling arrays indicate the clouds were still dissipating turbulent energy generated by the detonation. These observations are supported by the lack of correlation between Pasquill Stability Category and cloud widths as measured at the samplers.
- 91. The dust clouds generated at Fort Carson displayed distinct color separations. Typically the upper, buoyant portions tended to be dark or black, indicating burn products, while the lower portions tended to be brownish, indicating a preponderance of dust. Outer regions of the lower portions of the clouds were often whitish, perhaps remnants of shock-induced dust or dust of smaller particle sizes.

92. Moisture content was not sufficiently varied at the two sites to provide meaningful correlations with dust masses, and even soil properties proved to be more similar than originally expected on the basis of initial field inspections. Grain sizes and percentage of fines proved not to vary significantly between the two test sites.

Dust cloud mass determination

93. The difficulty of determining the mass of dust lofted in a cloud created by explosion necessitated extensive and redundant sampling. In spite of the elaborate sampling design used for the DOT tests, only about one-half of the events attempted yielded a data set complete enough for analysis by the various mass calculation algorithms. This fact reflects the short-term variability in wind direction, which often foiled attempts to place the explosive charges in locations such that the wind would carry the dust clouds across the sampler array. However, incomplete data sets are not without merit, as they provide crater data and video data used to measure cloud sizes and qualitative information on cloud dynamics. Often these incomplete data sets will also contain transmissometer data or dust density profile data in one dimension. Therefore, it has been concluded the sampler array approach coupled with real-time monitoring of wind conditions is a satisfactory approach to the young dust cloud sampling problem. The mobile multiple-tethered balloon approach used in DOT II allows a statistically higher degree of success in measuring vertical profiles than the single-tower approach used in DOT I.

Charge size effects

94. The DOT tests have substantiated the findings of previous workers explaining the relationship between charge size and crater volume (the 1.111 power law). Unfortunately, the relationship among charge, crater sizes, and amount of dust lofted has not been thoroughly investigated, largely because reliable sampling of dust clouds is so difficult. Furthermore, the influence of specific terrain factors such as soil moisture content, soil density, and soil type is not complete, lacking sufficient range for correlations to be recognized in the DOT data. This fact is also true of previous tests of this nature and is reflected in the rather crude terrain effects scaling factor used by COMBIC (EOSAEL 82) for the charge weight-crater volume algorithm (paragraph 54).

Recommendations for Future Studies

Instrumentation

95. Instrumentation that is interdependent in the sense of data analysis should be collocated. In the DOT trials, significant cloud inhomogeneities were noted to exist over distances as short as 1 m. (The clouds are clumpy.) Therefore, if test analysis requires the linking of data from two instruments for spatial information, e.g., nephelometer and Hi-Vol data, the instruments should be placed as close together as possible. Instrument size and volume of influence will, of course, dictate the limits of collocation.

Charge size

96. The DOT results confirm the data produced for previous field tests concerning the charge weight-crater volume relationship. Because this relationship is apparently well established and because secondary influences are only partially understood, we recommend future test designers

consider holding the driver (charge and shot configuration) constant while varying the secondary parameter. Preferably, the test should be designed to hold all parameters constant except for the variable studied.

Extension of event sampling time

- 97. In terms of cloud characterization, future test efforts should address the problem of cloud evolution. The clouds measured at the DOT exercises were approximately 10 sec old, still dispersing a significant amount of turbulent energy and containing many large nonbuoyant particles. A question that must be answered concerns the amount of mass and the particle size distribution of the clouds after the turbulent energy has dissipated and the large particles have settled. It is the older, quasi-stable clouds that may ultimately affect battlefield performance during sustained engagements.
- 98. Measurement of the quasi-stable cloud presents a difficult challenge to the field tester. The unpredictability of cloud trajectories makes adequate sampling of the clouds by stationary instrumentation either haphazard or prohibitively expensive. Remote sensing techniques probably offer the best solution to this problem but must be demonstrated to be valid or at least consistent with sampling instrumentation. Thus, remote sensing techniques should be validated by stationary sampling instrumentation in a few tests with physical layouts much like those used in the DOT.

Optical properties of cloud components

- 99. Because of a real need to understand the optical properties of the explosively generated dust clouds, quantitative measurements of both the amount and spatial distribution of burn products must be made in future tests. Strong color differences seen in the clouds produced in the DOT as well as the vertical mass measurements indicate the majority of the dust is in the lower portion of the clouds while much of the hot burn products are in the buoyant upper portion. However, significant amounts of burn products in the lower portion will strongly affect the transmissometer data and lead to calculations of erroneous extinction coefficients for the dust. These results will definitely affect the ability of most remote sensing techniques to determine accurate cloud masses.
- 100. The effects of vegetation characteristics, which have generally been excluded, may warrant more careful consideration. Future tests should provide more detailed characterization and measurement of vegetation type, density, and coverage.

Environmental parameters

101. We need to know much more precisely how soil moisture contributes to dust loading. Such a test should be conducted in an area where the soil structure (density, composition, percent fines, etc.) and vegetation cover are reasonably constant over the site and the charge weight and configuration (e.g., surface tangent or buried) remain unchanged from shot to shot. The moisture content could be varied artificially, and a statistically significant number of shots should be conducted. The results of these tests would provide very important results concerning dust potential for a terrain/soil. The range of moisture contents covered by DOT suggests there are quite likely saturation values of moisture for a given soil which, when reached, will dramatically alter the dust potential. If these thresholds can be established, the field commander may no longer require precise soil moisture content analysis for estimating dust potential, but may be able to use

rather crude and/or simple measurement techniques. Certainly, different soil types are expected to yield different threshold values, so the soil moisture experiments must be conducted at a variety of sites. Defining the environmental parameters could lead to a refinement of the scaling factor used in the EOSAEL 82 COMBIC model to predict crater volumes produced by a certain charge weight.

Summary

102. The lesson learned from the Fort Carson, Colo., DOT exercises is that quantifying cloud masses generated by an explosive charge is possible, though difficult. Larger sampler arrays extended over greater distances along the cloud path would yield information unattainable and difficult to estimate using present techniques. Moreover, sampling older clouds would permit identification of the time at which forces of the blast become negligible when compared to "natural" atmospheric turbulence. At this point, existing atmospheric models could be employed to predict cloud behavior and content, and the precision of their predictions could be determined.

REFERENCES

- Bruce, C.W., Unthank, J., and Jelinek, A.V. 1985. "Explosion and Vehicular Dust Profiles" in progress, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, N. Mex.
- Deepak, Adarsh. 1983. "Implementation of AirLand Battlefield Environment (ALBE) Products into Army Operations; Phase I: Current Operational Support," STC Technical Report 2018, prepared by Science and Technology Corp., Hampton, Va., for Office, Chief of Engineers, US Army, Washington, DC.
- Hanna, S.R., Briggs, G.A., and Hosker, R.P., Jr. 1982. "Handbook on Atmospheric Diffusion," J.S. Smith, ed., prepared by National Oceanic and Atmospheric Administration, Atmospheric Turbulence and Diffusion I aboratory, Oak Ridge, Tenn., for Office of Health and Environmental Research, US Department of Energy.
- Hoock, D.W., et al. 1982. "Combined Obscuration Model for Battlefield Induced Contaminants," Chap. 1, Transmission Through Battlefield Aerosols, ASL-TR-0122, Vol III, L.D. Duncan et al., eds., US Army Atmospheric Sciences Laboratory, White Sands Missile Range, N. Mex.
- Hoock, D.W., and Kennedy, B.W. 1983. "Dust Obscuration Test (DOT): A Preliminary Project Survey, August 1983" (unpublished), US Army Atmospheric Sciences Laboratory, White Sands Missile Range, N. Mex.
- Kennedy, B.W., compiler. 1982 (Jul). "Dusty Infrared Test III (DIRT III)," US Army Atmospheric Sciences Laboratory, White Sands Missile Range, N. Mex.
- Long, K.S., et al. 1985. "The Dust Obscuration Test (DOT): Analysis of the High-Explosive Phase," p 149, Battlefield Dust Environment, Symposium II: Proceedings, K.S. Long and A. Deepak, eds., US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Mason, J.B., and Long, K.S. 1981. "Site Characterization for the MBCE/DIRT II Battlefield Environment Tests," Miscellaneous Paper EL-81-8, US Army Engineer Waterways Experiment Station, Vickburg, Miss.
- Dust Test Series at Fort Polk, Louisiana," Miscellaneous Paper EL-83-4, US Army Engineer Waterways Experiment Station, Vickburg, Miss.
- PEDCo Environmental, Inc. 1985. "Fugitive Dust Sampling of Military Vehicles and Explosives at Fort Carson, Colorado," Micellaneous Paper in preparation, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Table 1 High-Explosive Trial Log, DOT I

	.	Charge		nation nates, m	Wir	.d		•
Trial*	Date (1983)	Config- uration	X	Y	m/sec		Pasquill Category	Crater Profile
A1	4-19	BL,ST	0.0	94.5	5.4	230	В	Y
A2	4-19	BL,ST	2.4	78.9	5.9	259	В	Ŷ
A3	4-19	S,ST	-6.1	106.1	8.2	278	Ď	Ŷ
A4	4-20	S,ST	78.1	65.1	3.3	94	В	Ŷ
A5	4-20	S,ST	77.7	9.0	2.3	128	Ā	Y
- A 6	- 4-22	S;ST	69:7	66.8	6.3	32	D	Y
A7	4-25	S,ST	7.7	75.2	5.7	290	Č	Ÿ
A8	4-25	S,ST	0.9	63.5	3.1	112	Ä	Ŷ
A9	4-25	S,ST	30.7	20.9	2.6	156	· · A	Ϋ́
BI	4-20	S,ST	66.3	5.2	3.0	136	Α	Y
B2	4-20	S,ST	50.4	4.5	3.0	129	В	Y
B 3	4-21	S,ST	-16.0	78.4	6.7	267	С	Y
B4	4-21	S,ST	-14.9	88.8	6.8	283	С	ND
B 5	4-21	S,ST	37.9	18.5	0.9	100	D	Y
B 6	4-22	ND,ST	61.7	72.7	6.2	33	D	Y
B 7	4-22	S,ST	80.9	69.1	8.8	30	D	ND
B 8	4-23	S,ST	53.3	18.3	4.0	114	В	Y
B9	4-23	S,ST	88.9	-0.6	3.6	95	С	Y
B10	4-26	S,ST	43.5	17.8	5.6	117	В	Y
B11	4-26	BL,ST	39.1	9.4	5.1	136	С	Y
B12	4-26	BL,STB	65.0	-11.4	4.4	131	В	Y
E13	4-26	BL,STB	51.4	-11.5	5.1	125	В	Y
B14	4-26	BL,AGL	60.5	9.8	5.7	146	В	N
B15	4-26	BL,STB	36.1	2.8	5.8	155	C	Y
B16	. 26	BL(3),ST**	44.0	10.0	3.0	145	C	N
			54.8	9.4				
			65.9	9.2				
C1	4-20	S,ST	57.0	14.3	2.8	109	D	Y
C2	4-21	, BL,ST	81.7	97.7	4.4	56	В	Y
C3	4-21	BL,ST	80.6	42.1	5.9	70	D	Y
C4	4-22	BL,ST	65.7	79.3	7.0	25	D	N
C5	4-22	BL,ST	90.6	71.0	8.8	52	С	ND
C6	4-23	BL,ST	29.8	5.6	3.5	157	В	Y
C7	4-23	BL,S7	57.2	3.1	5.3	117	D	Y
C8	4-23	BL,ST	65.3	17.5	4.6	118	В	Y
C9	4-23	BL,ST	75.7	-13.9	4.9	140	D	Y
C10	4-25	BL,ST	10.2	23.5	8.1	212	C	Y

NOTE: BL = charge shape—block, S = charge shape--spherical, ST = surface tangent, STB = surface tangent buried, AGL = above ground level, Y = yes, N = no, ND = no data.

^{*} A = 7.5 lb of C-4, B = 15 lb of C-4, C = 25 lb of C-4.

^{**} Three 15-lb shots in series.

Table 2
High-Explosive Trial Log, DOT II

		Charge		nation dinates			·	
Trial*	Date (1983)	Config- uration	Distance m	Azimuth deg	Win m/sec	nddeg	Pasquill Category	Crater Profile
	8-4	S,ST	50	150	2.5	170	ND	Y
01B(8)**	_	•						
02B(9)	8-4	S,ST	46	179	2.7	155	ND	Y
03C(10)	8-4	S,ST	45	165	2.5	110	ND	Y
-04B(11)				1:12 - · ·	3.4	-115	- ND	 Y
_ (,			50	97				
05B(14)	8-5	S,ST	46	75	3.4	80	ND	V
• •		•	47	61				• Y
			46	45				Y
06C(15)	8-5	S,ST	55	75	2.9	75	ND	Y
			51	91				Y
			ND	ND				ND
07C(16)	8-5	S,ST	37	90	4.0	75	ND	ND
08(17)*	8-5	S.ST	ND	ND	ND	ND	ND	ND

NOTE: S = charge shape—spherical, ST = surface tangent, Y = yes, ND = no data.

^{*} B = 15 lb of C-4, C = 25 lb of C-4.

^{**} Trial number of DOT II records in parentheses. The leading alphanumeric identifier will be used to designate the high-explosive DOT II shots in this report.

[†] Three 20-lb charges/no data available.

Table 3
Crater Volumes

Trial	Preshot Density g/cm ³	Moisture Content	Bulking Factor dimensionless	Apparent Volume m'	True Volume m'	Apparent Volume/ kg TNT m³/kg TNT
A1		11.5		0.118	0.420	0.032
A2	1.43	13.1	1.53	0.151	0.493	0.040
A2	3	10.4	•	0.065	0.242	0.017
A4	1.54	33.3	1.42	0.110	0.204	0.029
A5	1.32	26.7	1.24	0.095	0.178	0.025
A6	1.38	13.9	1.32	0.126	0.383	0.034
A7	1.38	13.0	-	0.140	0.378	0.037
A8	1.36	11.4	· · · · · · · ·	0.107	0.161	0.029
A9	1.39	9.3	1.20	0.172	0.429	0.046
Bl	1.36	19.5	1.55	0.263	0.750	0.035
B2	1.52	22.0	1.60	0.224	0.848	0.030
B3	1.36	13.3	1.46	0.215	0.738	0.029
B5	1.50	11.5	1.40	1.252	2.375	0.318
B6	1.38	13.1	1.33	0.231	1.260	0.031
B7*	1.28	11.8	1.12	0.230	0.840	0.031
B8	1.43	12.4	1.27	0.335	0.930	0.045
B9	1.42	12.9	1.25	0.333	0.529	0.030
B10	1.37	12.4	1.18	0.191	0.875	0.026
BII	1.34	11.8	1.33	0.143	0.547	0.019
B12	1.28	12.1	1.06	0.779	1.674	0.104
B13	1.44	7.2	1.21	0.440	2.013	0.059
B15	1.26		1.13	0.810	1.832	0.108
Cl	1.44	23.6	1.46	0.465	0.893	0.037
C2	1.84	11.2	1.92	0.440	1.350	0.035
C3	1.26	12.8	1.20	0.510	1.139	0.041
C4*	1.36	13.5	1.20	0.310	0.800	0.025
C5*	1.23	12.7	1.10	0.560	1.300	0.045
C6	1.34	13.9	1.18	0.484	1.284	0.039
C7	1.31	11.6	1.19	0.392	1.862	0.031
C8	1.48	12.1	1.32	0.481	1.598	0.039
C9	1.45	11.7	1.33	0.694	1.327	0.056
C10	1.31	12.4	1.55	0.443	1.335	0.036
1B	1.71	11.6	•	0.320	0.480	0.043
2B	1.94	17.5	•	0.188	0.254	0.025
3C	1.93	13.2	-	0.393	0.517	0.032
4B(a)	1.78	11.6	-	0.243	0.309	0.033
4B(b)	1.70	10.5	-	0.151	0.288	0.020
5B(a)	1.69	7.9	-	0.196	0.238	0.026
5B(b)	1.50	8.2	•	0.110	0.228	0.015
5B(c)	1.71	5.0	-	0.118	0.256	0.016
6C(a)	1.79	8.1	-	0,360	0.481	0.029
6C(b)	1.62	8.3	•	0.323	0.467	0.026

^{*} Only crater diameters and central depths were recorded. Volumes are calculated assuming these craters to be cone shaped.

Table 4
Mean Crater Volumes,* m³

Charge Weight	App	arent	True			
lb	DOT I	DOT II	DOT I	DOT II		
7.5 (ST)	0.119	-	0.320	•		
	(0.120)	•	(0.321)	•		
15.0 (ST)	0.226	0.187	0.745	0.281		
	(0.228)	(0.189)	(0.809)	(0.293)		
25.0 (ST)	0.490	0.357	1.345	0.486		
· .	(0.489)	(0.359)	(1.349)	(0.488)		
15.0 (STB)	0.674	*	1.835	•		
	(0.674)	-	(1.837)	-		

[•] These volumes are calculated from mean crater profiles (see text). Values in parentheses are means computed from the volumes of the individual craters listed in Table 3. Crater volumes B7, C4, and C5 have been omitted from these mean calculations as no profiles were measured. The B5 volume has also been omitted as the charge was inadvertently placed on a core sample hole.

Table 5
Mass Excavation for ST Shots

Test	Charge Weight Ib	Density Wet	r, g∕cm' Dry	Moisture Content	Apparent Volume m'	Calculated Excavated Mass kg	Volume/ kg TNT
DOT I	7.5	1.40	1.19	17.2	0.119	142	0.032
DOT I	15	1.40	1.22	14.7	0.226	276	0.030
DOT II	15	1.72	1.56	10.3	0.187	292	0.025
DOT I	25	1.40	1.23	13.7	0.490	603	0.039
DOT II	25	1.78	1.62	9.9	0.357	578	0.029

Table 6
Path Integrated Dosage and Mass Extinction
[Mass Extinction Coefficients, ming]

	Dosage Integration	Wavelength λ, μm					
Trial	g · sec/m ²	0.4-0.7	1.06	3.8	8.4-12		
B4	264.	0.21	0.18	0.15	0.16		
B5	1,910.	0.14	0.15	0.11	0.08		
'B6	104.	0.21	0.14	0.12	0.12		
- C4	149,	-0.28	0.26	0.19	0,24-		
A7	156.	0.17	0.18	0.12	0.12		
A8	192-250	0.12-0.16	0.13-0.17	0.10-0.14	0.11-0.15		
B10	186.	0.16	0.14	0.1!	0.11		
B13	388.	0.16	0.18	0.12	0.11		
Average		0.18	0.16	0.12	0.13		

Table T Mean Dust Cloud Heights for DOT 1, m

		Video Tap	es				
		Visible		Vertical Samplers			
Charge Weight	Number of Clouds	Mean Height, m	Standard Destrition, m	Number of Clouds	Mean Height, m	Standard Deviation, m	
.A	3	30.3	12.7	-		·	
В	6	29.7	14.5	5	14.5	2.3	
		2".9	3.7	8	18.4	4.3	

Table 8 Cloud Masses, g

Shot	Hoock	Modified Hoock	Bruce	Rectangular Bruce	PEDCo, Inc.
A3	9,660	•	-	-	
A5	8,460	-	•	•	-
A 6	1,792	-	•	-	-
B1 B3 -	21,170 6,860	<u>.</u>	•	.	
B4	25,825	11,156	1,841	2,798	•
B5	51,375	•	•	-	-
B6	7,218	6,015	5,756	8,908	•
B7	14,680	14,391	370	650	•
B8	17,400	-	-	-	•
B9	18,612	-	•	•	•
B11	-	-	4,060	6,675	-
B15	•	-	7,209	5,807	-
C1	25,740	17,846	7,976	2,439	-
C3	,	•	4,494	2,665	-
C4	14,390	11,427	5,934	12,812	•
C5	45,210	23,392	8,941	16,264	-
C6	22,734	15,830	4,076	5,953	-
C7	17,870	-	-	-	-
C8	19,068	10,555	11,426	4,990	•
C9	40,545	22,426	4,520	4,881	-
C10	•	•	1,645	8,393	•
01B	-	-	-	•	6,396
02B	•	-	-	-	4,354
03C	-	-	-	-	7,167
07C	-	-	-	-	5,625

Table 9 Cloud Mass Means, g

		Shots		
Method	A*	В	С	
Modified Hoock	6,600 (4,200)	10,500 (4,200)	16,800 (5,400)	
Bruce	•	3,900 (2,000)	6,100 (3,100)	
Rectangular Bruce		6,100 (3,100)	7,300 - (4,900)	
PEDCo	•	5,400 (1,400)	6,400 (1,100)	
Average of means	-	6,500	9,200	
Mean for individual shots**		6,600 (3,400)	9,200 (6,122)	

NOTE: Masses for B7 and B15 shots have been omitted from all calculations in Table 10. Standard deviations are in parentheses, and all table values have been rounded to the nearest hundred grams.

- * Unmodified Hoock values. No A shots passed through the vertical sampler.
- ** The following shots were used to calculate the means for individual shots:
 - B: Modified Hoock—B4, B6, B7
 Bruce, Rectangular Bruce—B4, B6, B11
 PEDCo—01B, 02B
 - C: Modified Hoock—C1, C4, C5, C6, C8, C9
 Bruce, Rectangular Bruce—C1, C3, C4, C5, C6, C8, C9, C10
 PEDCo—03C, 07C

Table 10 Sustained Cloud Dust

Shot	Excavated Mass Means, kg	Cloud Mass Means, kg	Percent Excavated in Clouds
A*	142	6.6**	4.6
В	284	6.6	2.3
C	591	9.2	1.6

- * Calculated from DOT I data only.
- ** Unmodified Hoock method.

Table 11 Density Radii

	2.5			Radii,	m						
	2.5-m Density		Wave	length			Bruce				
Shot	g/cm³	Visible	1.06 μm	3.4 μm	8.4~12 μm	Mean	Mean				
B4	1.864	11.62 (0.001)*	10.99 (0.003)	13.04 (0.0057)	13.30 (0.0038)	12.24	6.54				
B 6	1.782	12.85 (0.001)	5.50 (0.0623)	5.08 (0.1459)	6.39 (0.0727)	7.28	10.20				
B11-	2.601	(0.0038)	7.59··· (0.0037)	6.85 (0.0227)	11.53 (0.001)	··- 8:17 ·	7.14				
B15	6.002	3.00 (0.0032)	3.48 (0.0027)	3.15 (0.0180)	4.87 (0.0012)	3.63	4.74				
		M	eans for 15-	lb shots		7.83	7.16				
Cl	1.795	12.06 (0.001)	12.10 (0.0021)	13.89 (0.005)	13.61 (0.0036)	12.91	6.30				
C3	1.042	18.69 (0.002)	23.37 (0.001)	31.17 (0.001)	28.77 (0.001)	25.50	8.34				
C4	1.267	17.09 (0.001)	16.56 (0.0026)	16.63 (0.0113)	23.66 (0.001)	19.17	13.26				
C5	1.093	19.81 (0.001)	22.28 (0.001)	29.71 (0.001)	27.43 (0.001)	24.81	16.14				
C8	4.186	5.17 (0.001)	4.42 (0.0053)	4.65 (0.0161)	6.89 (0.0013)	5.28	7.44				
C9	1.412	15.33 (0.001)	12.85 (0.0058)	13.59 (0.0169)	11.31 (0.0252)	13.27	7.92				
C10	1.740	12.44 (0.901)	11.04 (0.0043)	10.55 (0.201)	17.23 (0.001)	12.81	6.66				
		M	eans for 25-	lb shots		16.25	9.44				

^{*} Minimum transmission is given in parentheses.

Table 12
Obscuration Widths (Visible)

					Percent Transmission Widths, m			
					117		n wiatns, n	<u> </u>
	WSP			Cloud		37		
Shot	m/sec	WSP (⊥)	PASQ	Age, sec	50	(e ⁻¹)	10	2
A3	8.16	4.56	D	14.5	50.2	18.2	0.0	0.0
A 5	2.33	2.13	C	14.5	12.8	0.0	0.0	0.0
A 6	6.29	3.42	D	7.9	13.7	10.3	0.0	0.0
A7	5.7.1_	4.16	C	85	33.3	33.3	16.7	4.6
A9	2.61	2.61	Α	7.3	28.7	23.5	13.1	7.8
Bi	3.03	2.93	Α	11.8	64.4	44.0	20.5	2.9
B2	2.98	2.73	В	13.0	57.3	43.7	2.7	0.0
B3	6.66	2.71	C	14.1	27.1	24.4	16.3	5.4
B4	6.76	4.32	C	11.3	51.8	43.2	30.2	25.9
B6	6.20	3.13	Đ	10.5	25.0	18.8	6.3	3.1
B 7	8.79	4.83	D	6.1	53.1	48.3	33.8	29.0
B8	3.99	3.12	В	6.9	56.1	34.3	12.5	9.4
B9	3.61	1.92	C	21.1	23.1	21.2	7.7	3.9
C1	2.81	2.02	D	12.7	68.6	58.5	30.3	14.1
C4	7.02	4.33	D	9.1	43.3	43.3	26.0	8.7
C5	8.82	1.62	C	19.2	48.7	47.0	34.1	21.1
C7	5.32	4.32	D	8.5	60.5	34.6	17.3	4.3
C8	4.60	3.76	В	6.0	41.4	37.6	22.6	11.3
C9	4.85	4.73	D	11.4	71.0	61.5	37.9	18.9
(A)*	5.02	3.38	•	10.5	27.7	17.1	6.0	2.5
					(15.5)**	(12.7)	(8.3)	(3.6)
(B)	5.25	3.21	-	11.9	44.7	34.7	16.3	10.0
` /					(16.7)	(11.7)	(11.3)	(11.2)
(C)	5.57	3.46	-	11.2	55.6	47.2	28.0	13.1
ζ - /					(12.9)	(11.0)	(7.6)	(6.3)

NOTE: WSP = wind speed, WSP (1) = wind speed perpendicular to the transmissometer line-of-sight, PASQ = Pasquill Stability Category.

^{*} Mean values for charge weight.

^{**} Standard deviations are displayed in parentheses.

Table 13
Obscuration Widths (1.06 μm)

					Tr		cent n Widths,	m
	WSP			Cloud		37		······································
Shot	m/sec	WSP (1)	PASQ	Age, sec	50	(e ⁻¹)	10	2
A3	8.16	4.56	D	14.5	54.7	18.2	0.0	0.0
A5	2.33	2.13	С	14.5	10.7	0.0	0.0	0.0
A6	6.29	3.42	D	7.9	20.5	13.7	0.0	0.0
A7	5.71	4.16	С	8.5	33.3	33.3	16.6	8.3
A9	2.61	2.61	A	73 · -	28.7	20.9	13.1-	10.4
BI	3.03	2.93	A.	11.8	61.5	44.0	20.5	0.0
B2	2.98	2.73	В	13.0	57.3	43.7	5.5	0.0
В3	6.66	2.71	С	14.1	27.1	24.4	16.3	10.8
B4	6.76	4.32	C	11.3	51.8	43.2	34.6	21.6
B 6	6.20	3.13	D	10.5	25.0	21.9	3.1	0.0
B 7	8.79	4.83	D	6.1	53.1	48.3	33.8	29.0
B 8	3.99	3.12	В	6.9	56.1	31.2	12.5	6.2
B9	3.61	1.92	C	21.1	25.0	19.2	5.8	1.9
C1	2.81	2.02	D	12.7	72.7	60.6	34.3	24.2
C4	7.02	4.33	D	9.1	47.6	43.3	30.3	17.3
C5	8.82	1.62	С	19.2	50.2	47.0	35.6	22.7
C7	5.32	4.32	D	8.5	60.5	34.6	25.9	8.6
C8	4,60	3.76	В	6.0	41.4	37.6	26.3	15.0
C9	4.85	4,73	Ð	11.4	71.0	61.5	42.6	9.5
(A)*	5.02	3.38	-	10.5	29.6	13.6	5.9	3.7
					(16.5)**	(13.3)	(8.2)	(5.2)
(B)	5.25	3.21	-	11.9	44.6	34.5	16.5	8.7
					(15.9)	(11.6)	(12.4)	(11.1)
(C)	5.57	3.46	-	11.2	57.2	47.4	32.5	16.2
					(12.9)	(11.4)	(6.4)	(6.5)

NOTE: WSP = wind speed, WSP (j) = wind speed perpendicular to the transmissometer line-of-sight, PASQ = Pasquill Stability Category.

^{*} Mean values for charge weight.

^{**} Standard deviations are displayed in parentheses.

Table 14
Obscuration Widths (3.8 μm)

					Th		cent n Widths, r	n
	WSP			Cloud		37	11 17 101115, 1	
Shot	m/sec	WSP()	PASQ	Age, sec	50	3 / (e ⁻¹)	10	2
								
A3	8.16	4.56	D	14.5	36.5	4.6	0.0	0.0
A5	2.33	2.13	C	14.5	6.4	0.0	0.0	0.0
A6	6.29	3.42	D	7.9	13.7	10.3	0.0	0.0
- A7 ····	5.71	··- 4: 16 -	C	8:5:	33.3	29.1	12.5	0.0
A9	2.61	2.61	Α	7.3	26.1	20.9	10.4	2.6
B1	3.03	2.93	Α	11.8	55.7	44.0	20.5	0.0
B2	2.98	2.73	В	13.0	49.1	38.2	0.0	0.0
B3	6.66	2.71	C	14.1	27.1	24.4	13.6	5.4
B 4	6.76	4.32	C	11.3	51.8	43.2	30.2	17.3
B6	6.20	3.13	D	10.5	21.9	18.8	0.0	0.0
B 7	8.79	4.83	D	6.1	53.1	48.3	29.0	0.0
B8	3.99	3.12	В	6.9	49.9	25.0	9.4	3.1
B9	3.61	1.92	C	21.1	25.0	19.2	5.8	0.0
C1	2.81	2.02	D	12.7	64.6	58.5	30.3	20.2
C4	7.02	4.33	D	9.1	47.6	39.0	21.7	8.7
C5	8.82	1.62	C	19.2	48.7	47.0	29.2	14.6
C:7	5.32	4.32	D	8.5	51.8	34.6	25.9	0.0
C8	4.60	3.76	В	6.0	41.4	37.6	18.8	3.8
C9	4.85	4.73	D	11.4	71.0	61.5	33.1	4.7
(A)*	5.02	3.38	-	10.5	23.2	13.0	4.6	0.5
					(12.8)**	(11.9)	(6.3)	(1.2)
(B)	5.25	3.21	•	11.9	41.7	32.6	13.6	3.2
-					(14.3)	(12.0)	(12.0)	(6.0)
(C)	5.57	3.46	•	11.2	54.2	46.4	26.5	8.7
					(11.3)	(11.4)	(5.4)	(7.5)

NOTE: WSP = wind speed, WSP () - wind speed perpendicular to the transmissometer line-of-sight, PASQ = Pasquill Stability Category.

^{*} Mean values for charge weight.

^{**} Standard deviations are displayed in parentheses.

Table 15
Obscuration Widths (8.4-12 μm)

							cent	
				•	Tra	ansmissio	n Widths, n	<u> </u>
	WSP			Cloud		37		
Shot	m/sec	WSP (⊥)	PASQ	Age, sec	50	(e ⁻¹)	10	2
A3	8.16	4.56	D	14.5	18.2	0.0	0.0	0.0
A 5	2.33	2.13	C	14.5	2.1	0.0	0.0	0.0
A6	6.29	3.42	D	7.9	13.7	3.4	0.0	0.0
-A7 -	.5.71	4.16	C	8.5	33.3	29.1	_ 12.5	. 0.0
A9	2.61	2.61	Α	7.3	23.5	20.9	13.1	2.6
B1	3.03	2.93	Α	11.8	46.9	35.2	14.7	0.0
B2	2.98	2.73	·B	13.0	43.7	21.8	0.0	0.0
B3	6.66	2.71	С	14.1	24.4	21.7	13.6	8.1
B4	6.76	4.32	С	11.3	43.2	43.2	30.2	21.6
B6	6.20	3.13	D	10.5	21.9	15.7	6.3	0.0
B 7	8.79	4.83	D	6.1	48.3	43.5	29.0	14.5
B8	3.99	3.12	В	6.9	31.2	18.7	12.5	9.4
B 9	3.61	1.92	C	21.1	21.1	19.2	5.8	0.0
Cl	2.81	2.02	D	12.7	58.6	46.5	26.3	12.1
C4	7.02	4.33	D	9.1	39.0	39.0	26.0	17.3
C5	8.82	1.62	C	19.2	47.0	43.7	24.3	11.3
C7	5.32	4.32	D	8.5	34.6	34.6	17.3	13.0
C8	4.60	3.76	В	6.0	37.6	37.6	22.6	7.5
C9	4.85	4.73	D	11.4	66.2	56.8	23.7	0.0
(A)*	5.02	3.38	•	10.5	18.5	10.7	5.1	9.5
					(11.6)**	(13.5)	(7.0)	(1.2)
(B)	5.25	3.21	-	11.9	35.1	27.4	14.0	6.7
					(11.7)	(11.4)	(10.8)	(8.2)
(C)	5.57	3.46	-	11.2	47.2	43.0	23.4	10.2
					(12.7)	(8.0)	(3.3)	(5.9)

NOTE: WSP = wind speed, WSP (]) = wind speed perpendicular to the transmissometer line-of-sight, PASQ = Pasquill Stability Category.

^{*} Mean values for charge weight.

^{**} Standard deviations are displayed in parentheses.

APPENDIX A: DATA COLLECTED IN DOT I
AND DOT II EXERCISES

- HI-VOL SAMPLERS
- ▲ NEPHELOMETER AND HI-VOL SAMPLERS
- — POINT OF BURST FOR 7.5-LB SHOTS
- T 2-M MET TOWER
- T 16-M MET TOWER

E	EVENT SUMMARY DATA	N DATA			CONE INDEX:		- —				
1						X,Y Cc	X,Y Coord (M)	SFC	15	30	57
Test Number: REA1			Surface Tangent	angent	Pre-Shot	3.0		62	192	545	750+
Date: 19 APRIL 83			Charge Sh	Charge Shape: BLOCK	Post-Shot	E	0.06	88 (Y	%	367	730+
ă	 Î		Charge Wt: 7.5 LB	. 7.5 LВ		٠	. —				
Y: 94.5			Event Time	Event Time: 11:18:59							
					CRATER DATA						
METHOROLOGICAL DATA:					Moisture Content: 11.5	ontent: 1	1.5				
Pasquill Category: B Richardson Number:	3 -0.361				CRATER VOLUMES (M**3): True Crater: 0.4	OR VOLUMES (Me True Crater:	0.420		DENSIT	DENSITIES (G/CM**3): Pre-Shot: *	H••3):
15 Meter Tower (Means) Start Time: 11:18:24		End Time: 11:20:29	9: 29		Apparent Crater: Flow:	Crater: Flow:	0.303		æ	Flow: Bottom: Side:	1.002
	2.M	Ŧ.	£9	16H							
Wind Speed (M/S)	5.42	5.98	6.13	6.94	HI VOL DATA (G):	: (9)					
	230.3	230.4	231.2	229.4	3 653	באח כרת	TAN E	HVS	HAV	LAN.	× ×
Signa WSP	1.09	1.03	0.99	1.04	i	į	į	1		i	
Signa WDTR	15.9	15.2	15.8	15.5	_	0.0177 0.0088	Ö	0.0139	0.0233	0.0203	0.0171
UVW Componence U (N-S) (M/S)	3,31	3,64	3.64	4.27		;					
V (E-W) (M/S)	4.03	4.49	99.4	5.17	SUM: 0.1140	1140					
_	0.15	0.51	0.21	•							
Signs U	1.27	1.20	1.16	1.19							
Signa V	1,33	1.43	1.53	1.73	24 304 REA	- N/O J/O					
Stgma W	0.21	0.32	0.41	•	GELTAN DUSAGE (C. S/TH-3/	E (C 0) 3					
Temperature (C)	27.4	19.4	19.0	18.4	GELMAN A	CELMAN B	CELMAN C	S S	GELMAN D	A 1	
					00.00	0.000	. 6 .	000.0	000.0		
Soil Temperature (1): 30.7	30.7	Solar F	Iux (W/Mee	Solar Flux (W/M**2): 1017.0		-	-				

Visual Range (M): 30480.0

Vista Ranger Voltages: Sky: Target:

Dew Point (C): -5.8 Temperature (C): 18.8

Rel. Hum. (%): 17.3

Sky-Target Contrast:

Abs. Hum. (C/N++3): 2.79
Rain Accumulation (MM): 0.00

CLOUD PATH AND WIDTH BY 2-SEC INTERVALS

A7

Ln Transmittance

۲

EVENT SUMMARY DATA	Y DATA			CONE INDEX:	K, T Coord (M)	§ -	SPC	15	30	\$
Test Number: HEA2		Surface Tangent	ngent	Pre-Shot	1	77.0	8 8	190	515	750+
Date: 19 APRIL 83		Charge Sha	Charge Shape: SPHERICAL	Post-Shot	0.6	> -	3	3	}	
Detonation Coordinates (M): X: 2.4 y: 78 9		Charge Wt: Event Time:	Charge Wt: 7.5 LB Event Time: 13:57:01	ı						
				CRATER DATA						
HETEOROLOGICAL DATA:				Moisture (Moisture Content: 13.1					
Pasquill Category: B Richardson Number: -0.222				CRATER VOI	CRATER VOLUMES (M**3): True Crater: 0.493	 60 v		DENSIT;	DENSITIES (G/CM**3): Pre-Shot: 1.430 Flow: 0.933	1.430 0.933
16 Newer (Means) Start Time: 13:56:16 End 1	End Time: 13:59:15	9:15		Apparent Crater: Flow:		0.342		A	Bottom: Side:	• •
2H	Ž.	6K	16M		į					
	, AK	6.76	7.67	HI VOL DATA (G):	:(9):					
Wind Speed (M/S) 3:03 Wind Dir. (DEG) 259.3	158.2	158.7	253.7	HVI	HV2 HV3	BV4	RVS	HAG	HAL	HA8
	2.51	2.51	2.74			7770	1970	0000	0.0767	0.1768
Sigma WDIR	13.7	2.44		0.0375 0.0	0.0370 0.0294	****	1010			
UTW Components U (N-S) (M/S) 1.41	1.64	1.62	2.39	SUM: 0.5089	.5089					
(S/W)	6.03	6.38	7.15							
W (Vert) (M/S) 0.04	0.36	0.22				-				
	2.21	2.12	2.09		0 0 0	_				
Signa V	70.7	0.46	•	GELMAN DOSP	GELMAR DUSRUE (C S/R-3):	: !				
Sigma W C.1.6	21.7	21.5	20.6	GELMAN A	GET YAN B	GELMAN C	ت چ	CELMAN D	A Į	
#				60.948	0.000	3	8.978	0.000	_	
Soil Temperature (C): 35.3	Solar	Solar Flux (W/M**2): 871.9	2): 871.9			=				
Dew Point (C): -6.9	Visual	Visual Range (M): 30480.0	30480.0							
Temperature (C): 20.8	Vista	a Ranger Voltages: Skv: 3.2	ыg es: 3.28							
Rel. Hum. (%): 13.8		Target:								
Abs. Hum. (G/M3): 2.51	Sky-Ta	Sky-Target Contrast: -0.76	st: -0.76					٠		
Rain Accumulation (MM): 0.00										

EVENT SUMARY DATA	ara	CONE INDEX:	
Test Number: HEA3	Surface Tangent	Pre-Spot	-3.0 195.0
Date: 19 APRIL 83	Charge Shape: SPHERICAL	Post-Shot	-3.0 105.0
Detoration Coordinates (H): X: -6.1	Charge Wt. 7.5 LB		
T: 106.1	Event Time: 15:17:01		
		CRATER DATA	

\$ | \$

2 | 8.

METEDPOLOGICAL DATA:

Pasquill Category: D Richardson Number:

End Time: 15:18: 6 15 Meter Tower (Means) Start Time: 15:15:50

ЖУТ	9.60 271.7 1.57 5.8 -0.25 9.55 0.95 1.57
\$	273.8 273.8 5.0 0.60 0.53 0.53 0.53 0.53 22.3
¥	275.5 1.47 5.64 6.86 8.86 8.96 9.90 9.90 1.47
¥	278.0 1.53 1.53 5.9 8.04 0.18 0.35 22.9
	1 (N.S.) (DEG.) (B.S.) (H.S.) (H.S.) (H/S.)
	Wind Speed (M/S) Mind Dir. (BEG) Signa WSP Signa WSP Signa WIR UVW Components U (N-S) (M/S) V (E-W) (M/S) V (E-W) (M/S) Signa U Signa W Signa W Signa W

Solar Flux (W/He+2): 696.5	Visual Range (M): 30480.0
Scil Temperature (C): 30.6	Dew Point (C): -7.7

Sky-Target Contrast: -0.69 Ats. Hum. (G/H**3): 2.35

Esta Accumulation (Me): 0.00

Vista Ranger Voltages: Sky: 2.48 Target: 0.77

Temperature (C): 21.8

Rel. Hum. (%): 12.2

Moisture Content: 10.4

CRATER VOLUMES (M**3):
True Crater: 0.3 Apparent Crater:

DEMSITIES (G/CH**3): Pre-Shot: •

0.0332 0.0158 0.0188 0.0066 0.0080 0.0154 0.0578 0.0236 HA **9AH** HVS 7AH EAR SUM: 0.1792 HV2

HI WOL DATA (G):

GELMAN DOSAGE (G S/H**3):

GELMAN D 9.00 GELMAN C 90.00 GELMAN B 0.000 GELMAR A 4.063

CLOUD PATH AND WIDTH BY 2-SEC LITERVALS

3.8 µm

8.4-12 µm

< 50 %

0.4-0.7 µm

1,06 µm

TIME 15:16:07

	ATAC VRAMABLY DATA	DATA			CONE INDEX:						
	EVENT SOFTIANT					X,Y Coord (M)	(H)	SFC	115	30	45
Test Number: HEA4		•	Surface Tangent	ngent	Pre-Shot	75.0	0.09		119		710
Date: 20 APRIL 83			Charge Sha	e Shape: SPHERICAL	Post-Shot		0.09		130	320	6
Detonation Coordinates (M): X: 78.1 Y: 65.1	: Ĥ		Charge Wt: Event Time:	7.5 LB : 09:22:01							
					CRATER DATA			,			
METEOROLOGICAL DATA:					Moisture C	Moisture Content: 33.3					
Pasquill Category: Richardson Number:	B -19.806				CRATER VOL	:	3): 0.204		DENSITI Pre-	DENSITIES (G/CH**3): Pre-Shot: 1.540	He+3): 1.540 1.087
16 Meter Tower (Means) Start Time: 9:19:31	s) End Time:	ле: 9:23:43	: 43		Apparent Crater: Flow:		0.094		ă	Bottom: Side:	• •
	2M	4 _M	₩9	16M							
Wind Sneed (M/S)	3.32	3.41	3.52	3.59	HI VOL DATA (G):	: (g)					
Wind Dir. (DEG)	93.5	91.8	94.9	100.1	HVI	HV2 HV3	HV4	HVS	HV6	HV7	HV8
Sigma WSP	1.30	1.33	1.39	1.54	İ	İ	1				
Sigma WDIR	19.5	19.8	18.1	14.3	0.0166 0.0	0.0086 0.0126	0.0183	0.0221	0.0329	0.0302	2 0.0205
UVW Components II (N-S) (M/S)	0.40	0.29	0.45	0.56		0.1618					
	-3.14	-3.23	-3,34	-3.45) 1					
W (Vert) (M/S)	0.22	0.16	0.24								
Sigma U	1.02	1.05	1.01	1.55							
Signa V	1.29	0.29	0.37	•	GELMAN DOSA	GELMAN DOSAGE (G S/M**3):	: :				
Temperature (C)	15.5	14.3	13.8	13.5	GELMAN A	GELMAN B	GELMAN C	υ z	GELMAN D	A	
					00000	1,600	0.000	8	0.000		
Soil Temperature (C):): 21.2	Solar F	Solar Flux (W/M**2):	2): 892.4							
Dew Point (C): 0.4	4	Visual Range		(M): 30480.0							,
Temperature (C): 1	14.1	Vista Ranger		Voltages:							
Rel. Hum. (%): 39.2	2		Target:								

Sky-Target Contrast: -0.33

Abs. Hum. (G/M**3): 4.76
Rain Accumulation (MM): 0.00

EVENT SURMARY DATA	RY DATA			CONE INDEX:						
					X,Y Coord (M)	$\widehat{\mathbf{E}}$	SFC		30	45
Test Number: HEAS		Surface Tangent	ıngent	Pre-Shot	78.0	5.0	25			750+
Pate: 20 APRIL 83		Charge Sh	e Shape: SPHERICAL	Post-Shot	78.0	5.0	40	717	492	100
integration toordinates (M): X: 77.7 T: 9.0		Charge Wt: Event Time:	Wt: 7.5 LH Time: 10:34:01							
				CRATER DATA						
HETEOROLOGICAL DATA:				Moisture C	Moisture Content: 26.7					
Parquill Category: A Richardson Number: -6.263				CRATER VOL	CRATER VOLUMES (M**3):			DENSITIES (G/CM·•3):	ES (G/C	Hee3):
16 Meter Tower (Means) Start Time: 10:34: 4 End 1	End Time: 10:36:	: 3		Truo Crater: Apparent Crater: Flow:		0.178 0.095 0.083		e e	rre-Snot: Flow: Bottom: Side:	1.068
2M	¥	Ж9	16M							
Wind Speed (M/S) 2.33	2.41	2.60	2.92	HI VOL DATA (G):	: (D)					
(DEC)	125.7	124.7	118.2	1 1/1	HV2 HV3	HVA	HVS	HV6	LAN	HV8
	0.73	0.84	0.00	į	ì					1
UVW Components	1.97	73.4	5.5	0.0260 0.0341	141 0.0244	0.0198	0.0157	0.0163	0.0108	0.0092
U (N-S) (H/S) 1.22	1.21	1.29	1.47						1	
	-1,83	-2.05	-2.41	SUM: O	0.1563					
(H/S)	0.21	0.16	•							
	06-0	0.85	96.0							
Signa V 0.86	0.84	0.95	0.76	GELMAN DOSAGE (G S/M••3):	3E (G S/M••3	::				
ture (C)	16.8	16.1	15.7	GELMAN A	GET.MAN B	GELMAN C	O Z	GELMAN D	•	
				0.000	00000	0.000	- 00	0.000		
Soil Temperature (C): 28.0	Solar Fl	nx (W/M••;	Solar Flux (W/M**2): 986.4							
Pew Point (C): 0.1	Visual Range		(M): 30480.0							
Temperature (C): 15.9	Vista Ranger		Res:							
Rel. Hum. (%): 34.0		SKy: Target:	2.10 1.35							
Abst. Hum. (G/M**3); 4,63	Sky-Targ	Sky-Target Contrast: -0.36	t: -0.36							

Rain Accumulation (MM): 0.00

8.4-12 µm

< 50 %

< 37 %

8

TIME 10:33:35 0,4-0,7 µm

1.06 µm

3.8 µm

EVENT SUIGHARY	MARY DATA			CONE INDEX:						
	1				X,Y Coord (M)		SPC	•	30	45
Test Number: HEA6		Surface Tangent	angent	Pre-Shot	:	67.0		200		300
Date. 22 APRIL 83		Charge Sh	Charge Shape: SPHERICAL	Post-Shot	70.0	67.0			108	233
		Charge Wt: Event Time:	Charge Wt: 7.5 LB Event Time: 09:43:31							
				CRATER DATA						
METENROLGGICAL DATA:				Moisture	Moisture Content: 13.9					
Pasquill Category: D Richardson Number: -0.021				CRATER VOI	CRATER VOLUMES (M**3): True Crater: 0.383	 8		DENSITIES (G/CM**3): Pre-Shot: 1.380	S (G/CM Shot: 1	34°°3): 1.380
16 Meter Tower (Means) Start Time: 9:39:43 End	End Time: 9:4	9:45:37		Apparent Grater: Flow:	Srater: 0.126 Flcw: 0.257	26		F 80	Flow: 1 Bottom: 1 Side: 1	1.044
214	Ŧ	ı.	164							
Wind Speed (M/S) 6.29	7.26	7.34	8.95	HI VOL DATA (G):	(6):					
(590)	29.2	32.5	27.2		низ низ	HVA	HVS	HV6	HV	HAS
Ü	0.99	96.0	0.95							
UNA COMPONENTS	1.7	r.	7.0	0.0062 0.0	0.0193 0.0165	0.0457 (0.0608	0.0555	0.0032	0.0028
1(3)	-6.31	-6.16	-7.94	0 .	0 2100					
V (E-W) (H/S) -3.22	-3.48	-3.86	-4.02							
(n)E)	0.07	9.70								
	0.74	0.83	0.79		(1000)					
Sigma W 0.22	0.28	0.29	•	ACLUAR POST	GELTARN DUDAGE (6 S/H-5):					
Temperature (C) 10.3	10.1	10.0	8.6	GELMAN A	CELMAN B	CELMAN C		CELMAN D		
				32.227	65.600	38.854		29.189		
Soil Temperature (C): 11.2	Sclar F	Sciar Flux (W/Mee2);	2): 205.7							
Dew Point (C): 3.5	Visual	Visual Range (M): 30480.0	30480.0		-					
Temperature (C): 9.5	Vista R	/ista Ranger Voltages:	ages:							
Rel. Hum. (%): 66.0		oky: Target:	0.30							

Sky-Target Contrast: -0.43

Abs. Hum. (G/M**3): 6.03
Rain Accumulation (HM): 0.00

こととととなる。 これのことは、「「ないないないないない。」ではないないないが、「ないないないない。」できないないない。 「これのないないない。」ではないない。

MIS THANE	EVFNT SUMMARY DATA			CONE INDEX:						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* : : : : : : : : : : : : : : : : : : :				X,Y CCOP'S (M)	£	SFC	15		45
Test Number. HEA7		Surface Tangent	langent	Pre-Shot	:	88.0	8 0	330	485	750+
Date: 25 A:F:15 %		Charge St	Charge Shape: SPHERICAL	Post-Shot	8.0	75.0	75			780+
Detenation Coordinates (M): X: 7.7 Y: 75.2		Charge W Event Tit	Charge Wt: 7.5 LB Event Time: 09:44:42							
				CRATER DATA						
NETEOROLOGI, AL DATA:				Moisture	Moisture Content: 13.0					
Pasquill Category: C Bichardton Number: -0.194				CRATER VO	CRATER VOLUMES (M**3): True Crater: 0.3	03):		DENSITI Pre-	DENSITIES (G/CM**3): Pre-Shot: 1,380	M**3): 1,380
16 Meter Tow'r (Means) Start Time: 9:42: 6 En	End Time: 9:	9:46:44		Apparent		0.140		&		
24	¥	¥.	16P							
Wind Speed (M/ 1) 5.71	6.22	6.47	6.85	HI VOL DATA (G):	: (9) :					
Ε,	288.3	287.0	286.4	111111111111111111111111111111111111111	649		740	AUL	EVH	KAM
Signa WSP 1.00	0.95	0.95	0.94		İ	-				į
Sigma WDIR 12.7	12.4	11.8	10.1		_	0.0394	0.0218	0.2851	0.0243	•
U (N-S) (E/S) -1.79	-1.80	-1.77	-1.85							
(F/S)	5.80	6.03	6.48	SUM: 0.9666	9000	-				
W (Vert) (M/S) 0.09	0.11	0.31	•			_				
	1.15	1.17	1.16							
Signa V 1.16	1.15	1.12	1.03	CELMAN DOS	GELMAN DOSAGE (G S/H**3):					
ture (C)	19.6	19.3	18.9	GELMAN A	CELMAN B	GELMAN C	ပ 5	CELMAN D	_	
				0.000	0.000	0.00	.000	0.000		
Soil Temperature (C): 21.0	Solar	Flux (W/He	Solar Flux (W/M**2): 544.8							
Dew Point (C): -9.5	Visual	Visual Range (M): 304:0.6	30430.6							
~	Metc	Visto Ranger Voltages: Sky: 1.8	.ages: 1,81							
Rel. Hum. (%): 12.3		Target:	66.0							

Sky-Target Contrast: -0.45

Rain Accomplation (MM): 0.00 Ats. Hum. (G/x***): 2.02

CLOUD PATH AND WIDTH BY 2-SEC INTERVALS

ののでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年のでは、1000年の

EVENT SC	EVENT SUMMARY DATA			CONE INDEX:					
					X,Y Coord (M)		15	30	\$ \$
Fest Number: HEA8		Surface Tangent	gent	Pre-Shot	0.9 63.5		255	290	540
Date: 25 APRIL 83		Charge Shap	Charge Shape: SPHERICAL	Post-Shot	0.9	S	£	087	Ş
0-tonation Coordinates (M): X: 0.9 Y: 63.5		Charge Wt: 7.5 LB Event Time: 11:10:00	7.5 LB: 11:10:00			-			
				CRATER DATA	-				
HETEOROLOGICAL DATA:				Moisture C	Moisture Content: 11.4				
Pasquill Category: A Richardson Number: -0.688	s o			CRATER VOL	:	,.	DENSIT	DEMSITIES (G/CH**3): Pre-Shot: 1,360	340 03): 1,360
16 Meter Tower (Means) Start Time: 11: 2: 8	End Time: 11:11: 1	11: 1		Apparent Grater: Flow:	Crater: 0.107 Flow: 0.531	2 Fg 1		Flow: Bottom: Side:	
MZ	±	H9	16H			_ , _			
Wind Speed (M/S) 3.11	1	3.41	3,68	HI VOL DATA (G):	(g):				
-	_	114.0	117.6	HAI	HV2 HV3	HV4 HV5			AAB L
Signa WSP 1.26	30.7	1.28	31.7	2000 0 0010	0 0437	0.0145 0.0178	0.0472	2 0.0165	5 0.0188
ts		;	•	>					
U (N-S) (H/S) 1.26	1,33	1.41	1.58	SUM: 0.	0.2023				
(S/H) (0.0	•						
	1.44	1.46	1.66						
Signa V 1.24		1.29	1.40	GELMAN DOSA	GELMAN DOSAGE (G S/H**3):				
Temperature (C) 21.4		19.9	19.6	GELMAN A	CELMAN B	GELMAN C	CELMAN D	Α !	
	1 1 1 1 1 1 1 1 1 1 1 1			0.000	0000	0.000	0.000	9	
Soil Temperature (C): 30.9		Solar Flux (W/M**2): 883.6): 883.6						
Dew Point (C): -9.9	Yisual	Visual Range (M): 30480,0	30480.0						
Temperature (C): 19.9	Vista	Vista Ranger Voltages: Sky: 1.9	lges: 1,91			·			
Rel. Hum. (%): 11.3		Target:	1.02						
Abs. Hum. (G/M**3): 1.95	Sky-Ta	Sky-Target Contrast: -0.46	st: -0.46						
Rain Accumulation (NM): 0.00	00								

EVEN	EVENT SUMMARY DATA			CONE INDE					
					X,Y Coord (M)		15		45
Inst Number: HEA9		Surface Tangent	ent	Pre-Shot	•	38	210		250
Date: 25 APRIL 83		Charge Shape: SPHERICAL	: SPHERICAL	Post-Shot	31.0 21.0		140	192	192
X: 30.7 X: 30.7 X: 20.9		Charge Wt: 7.5 LB Event Time: 12:41:11	7.5 LB 12:41:11						
				CRATER DATA					
METESROLOGICA), DATA:				Moisture Content:	ontent: 93				
Pasquill Category: K Richardson Number: -0	-0.901			CRATER VOLI	CRATER VOLUMES (Pee3): True Crater: 0.429		DENSIT	ပ	H••3): 1.390
16 Meter Tower (Means) Start Time: 12:40:14	End Time: 12:43	9: 0		Apparent Crater: Flow:			Ā	Flow: 1 Bottom: 1 Side: 1	1.159 1.120 1.198
	2H 4H	¥9	16H			-			
	2.61 2.81		3.65	HI VOL DAYA (G):	(0)				
(98)	_		159.8	H	HV2 HV3	SAH PAH	9AH	AH	HAS
			1.02	į		1	İ		
	21.2 18.3	16.8	15.1	0.0740 0.2598	0.6726	0.0 809 0.0608	0.3353	0.1577	0.0724
UVM COMPONENTS U (N-S) (M/S) 2	2.28 2.50	2.59	3.35						
(N/S)	,	•	-1.17	SUM: 1.	1.7132				
(S/K) (•						
			1.09						
			0.79	GELMAN DOSAG	GELMAN DOSAGE (G S/M*+3):				
	0.21 0.35					-			
- }	73.9	41.8	41.5	GELMAN A	GELMAN B	GELMAN C	GELMAN D	6 I	
7				0.000	0.000	0.000	0.000		
Soil Temperature (C): 30	38.8 Solar F	Flux (W/M**2): 1004.6	1004.6						
Dew Point (C): -9.7	Visual	Range (M): 30480.0	0.08						
Temperature (C): 21.5	Vista R	9 9						-	
Rel. Hum. (%): 10.4		Target: 0	0.97						
Aba. Hum. (G/M**3): 1.97		Sky-Target Contrast: -0.48	-0.48						
Rain Accumulation (MM): 0.00	00.00								

「日本のでは、日本には、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本の

Log Concentration, g/m^3

- HI-VOL SAMPLERS
- ▲ NEPHELOMETER AND HI-VOL SAMPLERS
- - POINT OF BURST FOR 15-LB SHOTS
- P 2-M MET TOWER
- T 16-M MET TOWER

EVENT SUPPLARY DATA	ARY DATA			CONE INDEK:						
					X,Y Coord (M)	£	SPC	. 51	30	45
Test Number: HEB1		Surface Tangent	Kent	Pre-Shot	99	5.0	8			750+
Date: 20 APRIL 83		Charge Shap	Charge Shape: SPHERICAL	Post-Shot	0.99	0.0	8.	26	\ \ \ \	.
Deconation coordinates (f): X: 66.3 Y: 5.2		Charge Wt: 15.0 LB Event Time: 11:29:01	15.0 LB 11:29:01							
				CRATER DATA					-	
METEOROLOGICAL DATA:				Moisture (Moisture Content: 19.5	 				
Pasquill Category: A Richardson Number: -1.106				CRATER VOI	CRAIER VOLUMES (M**3): True Crater: 0.7	3): 0.750		DENSITI	೭	H**3): 1,360
16 Meter Tower (Means) Start Time: 11:26:58 End	End Time: 11:3	1:31: 9		Apparent Crater: Flow:		0.263		å	Flow: Bottom: Side:	0.877 1.007 0.836
24	¥	¥;	16H							
Wind Speed (M/S) 3.03	3.12	3.27	3.67	HI VOL DATA (G):	: (9)					
(050)	132.7	132.7	136.1	HV1	HV2 HV3	HV4	HY5	HV6	HA	BAB
Signa WSF 1.30	1.36 22.1	19.5	1.38 16.0			100	0110	7170 0	0 0746	0.0620
ts				0.3222 0.0914	914 0.0247	6.0199				
(H/S)	1.88	1.99	2.42	SUM: 0.6805	. 6805	•				
W (Vert) (M/S) -2.07	0,18	0.11	-2.30							
	0.93	0.87	0.78		-					
	1.46	1.55	1.54	GELMAN DOSA	GELMAN DOSAGE (G S/Me+3):	3):				
Jemperature (C) 17.9	17.0	16.5	16.1	GELMAN A	GELMAN B	GELMAN C	ن 5	GELMAN D	0	
				154,402	81.600	28.394	3	21.622	•	
Soil Temperature (C): 29.0	Solar F	Solar Flux (W/H**2):	: 866.1							
Dew Point (C): -0.8	Visual	Visual Range (H): 30480.0	10480.0							
Temperature (C): 16.3	Vista A	Ranger Voltages:	jes:							
Rel. Hum. (%): 30.8		JKy: Target:	1.22							
Abs. Hum. (G/H**3): 4.30	Sky-Tar	Sky-Target Contrast: -0.40	: -0.40		-					
Rain Accumulation (MM): 0.00					•	-				

■のからからのでは**無いっついのない**■のいっ

CONE INDEX: X,Y Goord (M) SPC 15 30 45	45 178	50 133 107		CRATER DATA	Moisture Content: 22.0	•			HI VOL DATA (G):	HV1 HV2 HV3 HV4 HV5 HV6 HV7 HV8			SIN: 0.4732			COMPANY OF COMPANY	CELTAN DOSMOE (C C)	GELMAN A GELMAN B GELMAN C GELMAN D	0.000 8.000 3.736 2.703				
	angent	Charge Shape: SPHERICAL	Charge Wt: 15.0 LB Event Time: 12:49:02					16M	3.58	132.4	1.63 18 8	0.01	2.42	-2.40		1.37	•	17.8		2): 831.5	30480.0	tages: 2,38	
	Surface Tangent	Charge Sha	Charge Wt: 15.0 LB Event Time: 12:49:0				1: 3	W9	3.18	131.6	1.43	13.4	2.10	-2.17	-0.03	1.26	0.37	18.1		Solar Flux (W/H**2):	Range (H): 30480.0	Ranger Voltages: Sky: 2.3	Target:
Y DATA							End Time: 12:51:	Ŧ	3.08	132.1	1.29	17.3	1.99	-2.13	80.0	1.15	0.32	18.6		Solar F	Visual	Vista R	
EVENT SUMMARY DATA		,	 £			3 -0.724		2 .	2.98	129.3	1.11	18.3	1.82	-2.15	0.09	20.1	0.18	19.6		32.2		7	
F2 :	Tes; Number: HEB2	Date: 20 APRIL 83	Detonation Coordinates (M): X: 50.4 Y: 4.5		METEOROLOGICAL DATA:	Pasquill Category: B Richardson Number:	16 Meter Tower (Means) Start Time: 12:46: \$		Wind Speed (M/S)	Wind Dir. (DEC)	Sigma WSP	Signa WDI3	UVN COMPONENTS ((N-S) (M/S)		W (Vert) (M/S)	Signa U	20 00 00 00 00 00 00 00 00 00 00 00 00 0	Temperature (C)		Soil Temperature (C):	Dew Point (C): -1.5	Temperature (C): 17.7	Rel. Hum. (%): 26.6

Sky-Target Contrast: -0.45

Abs. Hum. (G/M**3): 4.03
Rain Accumulation (MM): 0.00

THE STATESTAL STATESTAL BENEVALOR OF STATESTAL BUILDING STATESTAL

EVENT SUMMENT DATA			CONE INDEX:					
				I, Y Coord (H)			30	45
Test Number: HEB3	Surface Tangent	ent	Pre-Shot	ł	'	25 92		\$25
Date: 21 APRIL 83	Charge Shape: SPHERICAL	: SPHERICAL	Post-Shot	-10.0 78.0			20 2	167
Detobation coordinates (n): X: -16.0 Y: 78.4	Charge Wt: 15.0 LB Event Time: 11:06:35	5.0 LB 11:06:35						
			CRATER DATA					
METEOROLOGICAL DATA:			Moisture Content: 13.3	ntent: 13.3				
Pasquill Category: C Richardson Number: -0.195			CRATER VCLUMES (M**3): True Crater: 0.7	MES (H**3): rater: 0.738		DEM	DEMSITIES (G/CHe+3): Pre-Shot: 1.360	/CH**3): 1.360
16 Meter Tower (Means) Start Time: 10:58: 4 End Time: 11:	: 8:21		Apparent Crater: Flow:				Flow: Bottom: Side:	0.934 0.984 0.884
24	₩.	16H						
Wind Speed (M/S) 6.66 7.50	7.93	8.45	HI VOL DATA (G):	::				
(0.00) 267.0 2	~	263.0	HV1 RV2	2 HV3	HV4	HYS	Н 9АН	HV7 HV8
Signa WSP 1.78 1.78 Signa WDIR 17.3 17.1	1.73	1.75	6	0.00		0.2910 0.0	0.0206 0.0148	48 0.0056
UVW Components	97 0	. R3						
(N/S) 6.34	7.60	8.06	SUM: 0.4241	241				
(M/S) 0.14	0.33	•						
Signs U 2.08 2.29 Signs V 1.73	1.70	1.71			-			
0.29	0.48	•	GELMAN DOSAGE (G S/H=3):	(C S/Head):				
ture (C)	18.5	17.8	GELMAN A	CELHAN B	GELMAN C	ĝ	CELMAN D	
			7.583	8.600	1.494	-	1.622	
Soil Temperature (C): 31.0 Solar	Solar Flux (W/M*2):	972.3	,					
Dew Point (C): -4.8 Visual	Visual Range (M): 30480.0	480.0						

Sky-Target Contrast: -0.67

Abs. Hum. (G/M**3): 3.06 Fair Accumulation (MPI): 0.00

Vista Ranger Voltages: Sky: 3.08 Tanget: 1.00

Temperature (C): 18.3 Rel. Rum. (%): 19.5

CLOUD PATH AND WIDTH BY 2-SEC INTERVALS

いている。個別は必要がはなる個別であるからのない問題なっていている。個別できていている。個別できる

EVENT SUMMARY	RY DATA			CONE INDEX:	-				
	1				X,Y Coord (H)	CH)	•	15	30 45
Test Number: HEB4	Sur	Surface Tangent	ent	Pre-Shot	1				
Date: 21 APRIL 83	ਫ਼	rge Shap	Charge Shape: SPHERICAL	Post-Shot	-15.0 8	0.08			
Detomation Coordinates (M): X: -14.9 Y: 88.8	Chai	Charge Wt: 15.0 LB Event Time: 12:22:	Charge Wt: 15.0 LB Event Time: 12:22:44						
				CRATER DATA	-				
METFORGLOGICAL DATA:				Holsture Content:	Content:				
Pasquill Category: C Richardson Number: -f.164				CRATER VO	CRATER VOLUMES (N°°3): True Crater: "	<u>-</u>	ā	ENSITIES (G. Pre-Shot:	DENSITIES (G/CH**3) Pre-Shot: *
16 Meter Tower (Means) Start Time: 12:19:46 End 1	End Time: 12:24:44			Apparent	Apparent Crater: • Flow: •			Bot F	Flow: • Bottom: • Side: •
2 2 2	¥	ž	16M						
Wind Speed (N/S) 5.76	7.47	7.86	8.42	HI VOL DATA (G):	: (9)				
~	-	281.3	281.1		200	-AH	HPS	9AH	HA
		2.14	1.24	748	I	-	, 		
Signa WDIR 11.4	12.2	11.9	15.5	0.1405 0.3	0.3135 0.4069	0.0627 0.0	0.0624 0	0.2859	0.0594 0.0
UVN Components II (H-S) (H/S) -1.47	-1.52 -1	-1.51	-1.53						
(E-N) (M/S)			8.8	SUM: 1.3434	.3434				
(M/S)		0.26	•			-			
		1.42	1.81			-			
	2.20	2.18	2.39	GELMAN DOS	GELMAN DOSAGE (G S/N°*3):	 <u>:</u>			
Temperature (C) 20.7		19.8	18.9	GELMAN A	GELMAN B	GELMAN C		CELMAN D	
				0.000	0.000	4.483		4.865	
Soil Temperature (C): 35.9	Solar Flux (W/H**2): 1013.5	(N/He-2)	: 1013.5						
Dew Point (C): -7.1	Visual Range (M): 30480.0	re (R) : 3	0.080.0					•	
Temperature (C): 19.1	Vista Ranger Voltages:	r Voltag	(e.s.:						
Bel. Hum. (%): 15.2	-		0.93						
Abs. Rum. (G/N=+3): 2.50	Sky-Target Contrast: -0.76	Contrast	0.76						

Time of Obscuration, s

Surface Tangent Charge With 13 of LB Event Times 15:58:01 Charge With 13 of LB Event Times 16:58:01 Charge With 14 of LB Event Times 16:58:01 Charge With 14 of LB Event Times 16:58:01 Charge With 14 of LB Event Times 16:58:01 Charge With 14 of LB Event Times 16:58:01 Charge With 16 of LB Event Times 16:58:01 Charge Wi		EVENT SUMMARY DATA	DATA			CONE INDEX:	(· · §	Ş	;	ć	;
Charge Shape: SPHERICAL Prost-Shot 64:0 19:0 25 192 329 485	Te::t Number: HEB5			Surface Ta	ingent	6	X,T Coord		2 *	2 £	0 92 93	¢ §
DATA: DA	Date: 21 APRIL 83	3		Charge Sha	npe: SPHERICAL	Post-Shot		. 0	22	192	325	485
Particular Par	nation coordinates X: 37.9 Y: 18.5	 È		Charge Wt: Event Time	: 15.0 LB 9: 16:58:01							
Holsture Content: 11.5 Regery: D Number: 0.000 Regery: D Number: 0.000 Regery: D Number: 0.000 Regery: D Number: 0.000 Regery: D Number: 0.000 True Crafer: • Fre-Shot: • Fre-S						CRATER DATA	- •	· ·				
Avigory: D	METECHOLOGICAL DATA:					Moisture (ontent: 11.5		-			
Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.922 Flow: 0.923	Pasquill Category: Richardson Number:					CRATER VOL	.UMES (M**3): Crater:			DENSITI	(ES (G/C -Shot:	
2H 4H 6H 16H 16H HI VOL DATA (G): HI VOL DATA (G): HO 20 0.87 1.02 1.19 HI VOL DATA (G): HI VOL DA	16 Heter Tower (Mean: Start Time: 16:57:11			9#:		Apparent	Crater: • Flow: •			&	Flow: ottom: Side:	0.925 0.925 0.926
HI VOL DATA (G): Hy OL DAT		¥	£	£	16н							
EC) 99.6 104.1 103.6 90.1 HV1 HV2 HV3 HV4 HV5 HV6 HV7 HV7 HV7 HV7 HV7 HV7 HV7 HV7 HV7 HV7	Wind Speed (M/S)		0.87	1.02	1.19	HI VOL DATA	: (9)					
11.4 11.7 15.5 19.0 0.5196 1.0856 1.0502 2.8643 1.1068 0.6853 0.1133 0.0	Wind Dir. (DEG)		04.1	103.6	90.1		1	HAY	HAS	9AH	H	
4/S) 0.15 0.21 0.23 -0.05 SUM: 7.4733 4/S) -0.87 -0.83 -0.96 -1.13 SUM: 7.4733 4/S) 0.08 0.01 0.01 0.01 0.01 0.18 0.17 0.24 0.37 GELMAN DOSAGE (G S/M**3): (C) 17.4 17.3 17.3 17.3 GELMAN A GELMAN B GELMAN DOSAGE (C S/M**3):	na WSP na WDIR		0.21 11.7	0.23	0.36			.				į,
4/S) 0.15 0.21 0.23 -0.05 SUM: 7.4733 4/S) -0.87 -0.83 -0.96 -1.13 SUM: 7.4733 4/S) 0.00 0.01 0.01 0.01 0.01 0.21 0.24 0.37 GELMAN DOSAGE (G S/M**3): (C) 17.4 17.3 17.3 17.3 GELMAN DOSAGE (G S/M**3):	omponents			:	2			2.8643	1.1068	0.6853	0.1133	
(M/S) -0.87 -0.83 -0.96 -1.13 SUP: 7-753 SUP	(S/H) (S-N		0.21	0.23	-0.05							
0.00 0.01 0.01 0.01 0.01 0.036 0.36 0.21 0.24 0.37 GELMAN DOSAGE (G S/M**3): 0.01 0.04 0.04 ** GELMAN A GELMAN B GELMAN C GELMAN A GELMAN B GELMAN C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			0.83	96.0-	-1,13	Line	6674					
0.21 0.21 0.24 0.37 CELMAN DOSAGE (G S/N**3): 0.01 0.04 0.04 ** 17.4 17.3 17.3 17.3 GELMAN A GELMAN B GELMAN C 17.4 17.3 17.3 17.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000	_		0.01	0.01	9 1 0							
0.01 0.04 0.04 e GELMAN DOSAGE (G S/N**3): 17.4 17.3 17.3 17.3 GELMAN A GELMAN B GELMAN C 0.000 0.000 0.000 visual Range (M): 3048C.0	> A 86		0.21	0.24	75.0							
17.4 17.3 17.3 17.3 GELMAN A GELMAN G GELMAN C GELMAN C GELMAN C GELMAN C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	na v		0.0	0.04		CELMAN DOSA	3E (C S/Ne+3)	••				
20.2 Solar Flux (W/H**2): 82.9 0.000 0.000 0.000 Visual Range (M): 3048C.0	Temperature (C)		17.3	17.3	17.3	GELMAN A	GELMAN B	GELMAN	ပ	GELHAN 1	•	
: 20.2 Solar Flux (W/M**2): Visual Range (M): 30480						000.0	0.000	0.0	٥	0.000		
	Temperature (C):	20.2	Solar Fl	ux (W/H**2								
	Point (C): -3.3		Visual R	ange (M):	30480.0							

Sky-Target Contrast: -0.56

Abs. Hum. (G/Mee3): 3.47
Rain Accumulation (MM): 0.00

Vista Ranger Voltages: Sky: 0.91 Target: 0.40

Temperature (C): 16.4 Sel. Hum. (%): 24.7

STAC TRANSCIS STRUBE	ARY DATA			CONE INDECT:			-			
					X.Y Coord (H)	8	SPC	15	30	45
Teet. Marchen: HEDE		Surface Tangent	ungeat	Pre-Shot	1	73.0	2	192		199
Deter 22 Mail 83		Charge Sta	Charge Shape: SPHEBLCAL	Post-Shot	62.0 7	73.0	ង	0	130	195
Detumblior Coordinates (F): I: 61.7 I: 72.7		Charge St: 15.0 LB Event Time: 11:22:0	Charge St: 15.0 LB Event Time: 11:22:01							
				CRATER DATA						
METHOROLOGICAL DATA:				Moisture	Moisture Content: 13.1					
Pasquill Category: D Richardson Number: -0.020				CRATES VO	CRATER VOLUMES (M**3): True Crater: 1.260			Pre	۲	1.380
16 Meter Tower (Means) Start Time: 11:20:49 End	End Time: 11:24: 1	# #:		Apparent	Apparent Crater: 0.7 Flow: 1.0	0.231 1.029		ă	Flow: Bottom: Side:	1.040 0.975 1.104
ž	\$	\$	169							
Wind Speed (B/S) 6.20	7.07	7.17	8.65	HI VOL DATA (G):	; (g)					
(390)	29.8	32.3	27.4	T.	HV2 HV3	74	HAS	9AH	HY	HAS
Signa USP 1.00	5.13	30.1	, 		1.	- -			9700	9000
t s		}		0.0147 0.0	0.0693 0.1081	0.1129	6.096	0.212		
K/S)	9.03	-6.01	3.5	3.25	0.6249					
W (S-M) (M/S) -3.25	7 P	5.75 0.65	-3.92							
	1.30	1.18	1.03							
Signa V 0.96	0.9 25	, , ,	ć	CELMAN DOS	CELLAR DOSAGE (G S/H**3):					
Temperature (C) 11.0	10.9	10.8	10.6	GELMAN A	GELMAN B	CELTAN C		GELMAN D	a	
				16.114	55.200	76.961	la	67.568	١	
Soil Temperature (C): 11.7	Solar	Solar Flux (W/Hee2): 131.5	2): 131.5							
Dew Point (C): 2.7	Visual	Visual Range (H): 36486.0	36486.0			- ·				
Temperature (C): 10.2	Vista	Vista Manger Voltages:	rges:							
Bel. Hum. (%): 59.4		Target:	•		-					
Abs. Rum. (G/H=+3): 5.69	20 E	-Target Contrast:	• ::te							

うんと イメート・ション・ハー・ハー・ログ にいいいいいかい かいにいいいい はいない かいかいしい

SVENT SURARY DATA	HARY DATA			COME INDEX:	ii l					_	
					X.X	X,Y Coord (M)		35		30	\$\$
Test Fumber: HEB7		Surface Tangent	angent	Pre-Shot	i	1	 o			852	375
Date: 22 APRIL 83		Charge Sh	Charge Shape: SPHERICAL	Post-Shot		81.0 69.0		2	=		9
Detomation Coordinates (M): X: 80.9 Y: 69.1		Charge Wt Event Tia	Charge Wt: 15.0 LB Event Time: 15:41:00								
				CRATER DATA	4						
METEDROLOGICAL DATA:				Hoistur	Moisture Content: 11.8						
Pasquill Category: D Richardson Number: -0.026				CRATER	CRATER VOLUMES (M**3): True Grater: 0.8	H=+3): : 0.840			DENSITIES (G/CH**3): Pre-Shot: 1.280	SITIES (G/CI Pre-Shot:	He•3): 1.280
16 Meter Tower (Means) Start Time: 15:31:17 Exc	End Time: 15:43: 2	3: 2		Appare	Apparent Grater: Flow:	.: 0.23 0	-,		~ & · ·	Flow: Botton: Side:	1.138 1.095 1.181
ž	₹	\$	162			-					
and Speed (N/S) 8.79	10.27	10.28	12.10	HI VOL DATA (G):	.TA (G):						
(283)	27.0	31.0	27.1	TAH!	HAZ	- 64	HA4	HAS	9AH	HA	BAH
Signa WSP 1.47	1.65	1.62	1.65								
5	;	•		0.0000	0.1486 0.	0.2105 0.	0.216	0.1358	0.0945	0.0207	0.020
U (N-S) (N/S) -7.61	-9.12	-8.79	-10.7		7700						
(M/S)	5.7	-5.20	-5.43								
(H/S)	0.20	1.06	•								
	1.74	1.72	1.73							-	
	3.	1.07	1.03	A BAN PLO	CHE MAN TOCAGE (C. C. (Massa).	(1000)	-				
	0.39	0.33	•								
ture (C)	10.9	10.8	10.4	GELMAN A	GELMAN B		GELMAN C		GELMAN D		
				0.000	49.600	8	91.905		103.243		
Soil Temperature (C): 14.5	Solar	Tux (W/He	Flux (W/H**2): 190.1								

Visual Bange (N): 30480.0

Vista Banger Voltages: Sky: 0.49 Target: 0.39

Bain Accumulation (MM): 0.00

Abs. Rum. (G/H**3): 5.66

Temperature (C): 10.7 Rel. Hum. (%): 57.5

Dew Point (C): 2.6

on property closected professor appropriate account movement

SECURATION AND THE TOTAL CONTROL OF THE TOTAL CON

~
DAT
SUMMARY
Ē
7.

CONE INDEX:

	-				X,Y Coord (M)		SPC	15	30	45
Test Number: HEB8		Surface Tangent	ingent	Pre-Shot	1	· -		258	225	433
Date: 23 APRIL 83		Charge Sh	Charge Shape: SPHERICAL	Post-Shot				8	145	240
Detonation Coordinates (M): X: 53.5 Y: 18.3		Charge Wt: 15.0 LB Event Time: 11:38:	Charge Wt: 15.0 LB Event Time: 11:38:00							
				CRATER DATA	•					
METEOROLOGICAL DATA:				Moisture Co	Moisture Content: 12.4					
Pasquill Category: B fichardson Number: -5.758				CRATER VOLI	CRATER VOLUMES (M**3): True Crater: 0.930		_	DEMSITI Pre-	DEMSITIES (G/CM**3): Pre-Shot: 1.430	Hee3): 1,430
16 Meter Tower (Neans) Start Time: 11:34:44 End 1	End Time: 11:40	7: 7		Apparent Crater: Flow:		w 4		£	Flow: Bottom: Side:	1.127 1.136 1.118
23	Ā.	Н9	16М			·				
Wind Speed (M/S) 3.99	4.16	4.40	4.97	HI VOL DATA (G):	(6):					
Wind Dir. (DEG) 114.4	113.9	114.2	110.6 1.53		HV2 HV3	HA	HAS	HVE	HY	HVS
œ	22.0	20.9	23.0	1.0707 0.2778	0.2178	0.0881	0.0578	0.3186	0.2340	0.0455
UVW Components	1.45	1.53	1.51							
(S/H)	-3.60	-3.85	-4.34	SUM: 2.3103	103					
(S/H) (0.32	0.40	• ;							
Signa U 1,15	1.29	1.50	1.73		,					
Stems W 0.20	0.28	0.39	•	GELMAN DOSAG	GELMAN DOSAGE (G S/H**3);	-				
ture (C)	14.0	13.8	13.3	GELMAN A	GELMAN B	CELHAN C		CELMAN D	_	
				0.000	0.000	0.000	1	0.000		
Scil Temperature (C): 26.6	Solar F	ıux (W/Me	Solar Flux (W/M**2): 782.4							
Dew Point (C): 2.8	Visual	Range (M): 30480.0	30480.0							
Temperature (C): 13.9	Vista R	Vista Ranger Voltages: Sky: 1.5	ages: 1.54							
Rel. Hum. (%): 47.2		Target:								
Abs. Hum. (G/M**3): 5.67	Sky-Tar	Sky-Target Contrast: -0.10	ıst: -0.10							
Rain Accumulation (MM:: 0.00										

公置人民民民民国的人,他们是一个人,他们是一个人,他们们们是一个人的人,他们也是一个人的人的是一个人的人,他们就会会有一个人的人的人,他们也是一个人的人的一个人的人,他们

3.8 pan

8.4-12 µm

< 50 %

0.4-0.7 µm

1.06 prm

| 東京のは大阪は関いのスタンの間です。 まずら 間からからので聞からなっている 間で

ω	EVENT SURMARY DATA	RY DATA			CONE INDEX:		• •			
•						X.Y Coord (M)	£	STC	15	30
Test Number: HEB9			Surface Tangent	angent	Pre-Shot	l	0.0	8	5 2	13
Date: 23 APRIL 83	1		Charge Sh	Charge Shape: SPHERICAL	Post-Shot	0.03	 0	Š		SE
Decometion Coordinates (F): I: 88.9 I: -0.6	 E		Charge Wt Event Tim	Charge Wt: 15.0 LB Event Time: 14:51:57						
					CRATER DATA					
METEOROLOGICAL DATA:					Moisture Co	Moisture Content: 12.9	-	:		
Pasquill Category: C Richardson Number:	c -0.602				CRATER VOLU	CRATER VOLUMES (M**3): True Crater: 0.529	 		DENSITIES (G/CI Pre-Shot:	SITIES (G/G Pre-Sbot:
16 Meter Tower (Means) Start Time: 14:48:35	E E	Time: 14:54: 0	0 :		Apparent Crater:		12 80		- <u>A</u>	Flow: Bottom: Side:
	2	¥	Н9	16H						
Wind Speed (M/S)	3.61	3.77	4.12	4.64	HI VOL DATA (G):	:6				
Wind Dir. (DEG)	95.2	94.9	6.96	97.5	end tan	- 5	7.6	YAH	YAH	1
Signa WSP	1.36	1.32	1.45	1.36			-			
Signa Wolf	21.6	22.8	21.5	20.1	0.0858 0.0334	0.0281	0.0221	0.0190	0.0453	0.1429
U (N-S) (M/S)	0.60	0.64	0.81	0.90						
	-3,35	-3.48	-3.81	4.31	SOM: 0.4	0.4939				
<u> </u>	0.22	0.18	0.20	•			-			
Signa U	1.30	1.42	1.46	1.58						
Signa V	1.26	1.22	1.33	1.23	CENTRAL POSACE (C. 6/Mags).	(C c/mea)	- · -			
Signa W	0.24	0.29	0.31	•	DECOME DOORS	(C	• 1			
Temperature (C)	15.3	14.8	14.5	14.4	GELMAN A	CELMAN B	GELMAN C		CELMAN D	

HV8 0.1193

22.703

GELMAN C 20.174

CELMAN B

GELMAN A 105.213

Solar Flux (W/M**2): 267.0

Soil Temperature (C): 24.2

Visual Range (M): 30.555.0

Vista Ranger Voltages: Sky: 1.24 Target: 1.04

Sky-Target Contrast: -0.17

Rain Accumulation (MM): 6.00

Abs. Hum. (G/H**3): 5.44

Temperature (C): 14.3 Hel. Hum. (%): 44.0

Dew Point (C): 2.2

2,5

Λ

8.4-12 µm

< 50 %

< 37 %

< 10 %

× 2 %

TIME, sec

ŭ

0.4-0.7 µm

1.06 µm

3.8 µm

Time of Obscuration, s

g _zw/M

1300

8

Solar Flux

8

8

0.0

TIME 14:51:48

TRIAL HE-B9

TIME 14:51:47

TRIAL HE-B9

8 0.8 16.5

ци

Visibility

- '	EVENT SUPRARY DATA	DATA			CONB INDEX:	T Y Count		. Si	វ	30	\$
Test Maber: HEB10			Surface Tangent	et	Pre-Shot	43.0 18.0	! <u>-</u> .			1 90	33
Date: 26 APRIL 83	į		Charge Shape: SPHERICAL	: SPHERICAL	Post-Shot	43.0 18.0		8			136
Detomation Coordinates (M): X: 43.5 Y: 17.5	 E		Charge Wt: 15.0 LB Event Time: 09:22:04	5.0 LB 09:22:04							
					CRATER DATA						
HETEORCLOGICAL DATA:					Heisture (Mcisture Content: 12.4	-				
Pasquill Category: Michardson Mumber:	B -1.620				CRATER VO	:	- ··	A	Pre	2	1.370
16 Meter Tower (Means) Start Time: 9:20:37	Drd Time:	Be: 9:24: 5	%		Apparent Grater: Flow:	Crater: 0.191 Flow: 0.683	 ed 60		 	Flow: 1 Bottom: 1 Side: 1	1.160 1.122 1.148
	Ħ	ŧ	Ę	164						4	
Wind Speed (M/S)	5.61	5.87	6.25	6.74	HI VOL DATA (G):	;; (6)					
Wind Dir. (DEG)		117.2		118.8	HVI	HV2 HV3	HYA	HAS	HAG	HA	HAS
Signs MSP	1.36	1.44	1.63	1.67				188	3430	CHAT. A	0 0 0
UVN Components	•)	•	;	0.1007 0.4363	0.33%					
U (H-S) (M/S)		2.52	2.78	3.12	· · · · · · · · · · · · · · · · · · ·	1.6047		-			
V (E-W) (M/S)		-5.16		-5.89							
W (Vert) (M/S)		0.41		•							
Signa U	0.80	0.97	0.91	0.83			-				
Signs V	1.55	1.63	7.	1.74	GET HAN DOSA	GRIMAN DOSAGE (G S/Nº+3):					
Signa W	0.17	0.24	0.29	•							
Tesperature (C)	11.5	10.6	10.3	10.0	GELMAN A	GELMAN B	GELMAN C		GELMAN D		
					0.00	0.000	0.00	j 1	0.000		
Soil Temperature (C):	17.6	Solar Fl	Solar Flux (W/He*2): 586.7	586.7							
Dev Point (C): -0.3		Tisual R	Range (H): 30480.0	99.0			- —				

Sky-Tanget Contrast: -0.19

Bain Accumulation (MM): 0.00

Vista Ranger Voltages: Sty: 1.10

Temperature (C): 10.4

のでは、100mmの

EVENT SUPPLARY DA	DATA			CONE INDEX:	X.Y Coord (M)	SPC	21		45
e de la companya de l		,	•				1 5		
	-	ouriace tangent	ng en c	Pre-Shot	39.0	2	135	210	200
Late: 26 APRIL 83		Charge Shape: BLOCK	pe: BLOCK	Post-Shot	0.66		071	3	3
39.1 X: 39.1 X: 39.1 X: 9.4		Charge Wt: 15.0 LB Event Time: 10:07::	Charge Wt: 15.0 LB Event Time: 10:07:56			- .			
				CRATER DATA					
METEUROLOGICAL DATA:				Moisture C	Moisture Content: 11.8				
Pasquill Ca.egory: C Richardson Number: -0,200				CRATER VOL	CRATER VOLUMES (M**3): True Crater: 0.547		DENSIT	DENSITIES (G/CM003): Pre-Shot: 1.34	Hee3): 1,34
16 Meter Tower (Means) Start Time: 10: 3:41 End Time: 10: 9:55	10: 9	: 55		Apparent Crater: Flow:		,- <u>,</u>	æ.	Flow: Bottom: Side:	1.005 1.165 0.845
23	#	ક	16M						
Wind Speed (M/S) 5.71 5.	5.47	5.71	6.46	HI VOL DATA (G):	(9):				
135.6	35.2	135.6	136.1		200	PAR HAC	9AH	F	HAS
1.13	1.29	1.33	1.35	į	200		İ	ł	į
15.1	14.9	14.0	13.2		0.2360	0.0761 0.0306	0.5330	0.1969	0.1908
nents		;							
U (N-S) (M/S) 3.53 3.	3.80	4.00 2.00	4.64	SUM: 2	2.2582				
(1)(2)	77	2 × C							
1.31	1.48	1.50	1.77			-			
1.26	1.23	1.24	0.94	CETHAN DOSA	CETHAN DOSAGE (G.S/Mee3):				
i 0.27	0.30	0.33	•						
Temperature (C) 12.5 11	11.5	11.1	10.5	CELMAN A	GELMAN B	GELMAN C	GELMAN D	Δ ;	
				2.844	48.800	53.051	62.703	ı _	
Soil Temperature (C): 21.4 So	olar Fl	Solar Flux (N/M**2): 726.1): 726.1		-				
Dew Point (C): 6.3 Vi	isual R	Visual Range (M): 30480.0	30480.0						
Temperature (C): 11.5	ista Ra	Vista Ranger Voltages:	. s .		-				
Rel. H.n. (%): 46.0		Target:	1.23 0.98						
Abs. Hul. (G/Mee3): 4.76 Sk	ky-Targ	Sky-Target Contrast: -0.20	t: -0.20						

EVENT SU	EVENT SUPRARY DATA			CONE INDEX:	- (*	ç	*
		Surface Ta	Surface Tangent Buried		X,Y Coord (F)	· 	4 3	1 5	150+
lest winder:				Pre-Shot	65.0 -11.0		220	8	290
Date: 26 APRIL 83		Charge Shape: BLOCK	pe: BLOCK	Post-Shot	0.00		}		
Detonation Coordinates (M): X: 65.0 Y: -11.4		Charge Wt: 15.0 LB Event Time: 11:22:	Charge Wt: 15.0 LB Event Time: 11:22:38			· · <u> </u>			
				CRATER DATA					
METEOROLOGICAL DATA:				Moisture C	Moisture Content: 12.1				
Pasquill Category: B Richardson Number: -0.468	60			CRATER VOL			DENSI	SITIES (G. Pre-Shot:	ပ
16 Meter Tower (Means) Start Time: 11:20: 3	End Time: 11:2	:24:37		Apparent Crater: Flow:	Crater: 0.779 Flow: 0.896			Flow: Bottom: Side:	1.308
2H		ž	16H						
		4.92	5.52	HI VOL DATA (G):	: (9)	<u>-</u>			
Wind Dir. (DEG) 131.1		132.5	136.2 1.66	HVI	HV2 HV3	HA4 HVS	İ	HV6 HV	HV7 HV8
œ	17.4	16.8	17.7	0.0635 0.0557	0.1270	0.2827 0.6118	3 0.0638	38 0.0325	25 0.0154
UVW Components	7,94	3,19	3.79	;					
•		-3.44	-3.63	SUM: 1	1.2524				
(M/S)		0.17	• ;		-				
- •	1.49	1.51	1.64						
Signs V 1.40		0.33	•	GELMAN DOSA	GELMAN DOSAGE (G S/M**3):				
ture (C)		12.6	12.2	GELMAN A	GELMAN B	GELMAN C	GELMAN D	Q	
				0.000	0.000	0.000	0.000	00	
Soil Temperature (C): 27.5		Solar Flux (W/M·•2):	2): 933.3						
Dew Point (C): 0.2	Visual	al Range (M): 30480.0	30480.0		-				
Temperature (C): 12.8	Vista	a Ranger Voltages: Sky: 1.7	ages: 1.75		٠	-			
Rel. Hum. (%): 42.0		Target:	1.07						
Abs. Hum. (G/X**3): 4.73	Sky-Ta	Sky-Target Contrast: -0.39	st: -0.39						

Rain Accumulation (MM): 0.00

EVENT SUPRARI DATA

CONE INDEX:

					X,Y Coord (H)	H) SFC	13	30	\$\$
Test Mumber: WEB13		Surface Tangent Buried	ent Buried			•		1 6	8
A TABLE OF THE PARTY OF THE PAR		Charee Chape: BLOCK	BLOCK	Post-Mot	51.0 -11.0	3 S	110	155	155
Defendation Coordinates (M):		, 0				·			
I: 51.4 I: -11.5		Charge Wt: 15.0 LB Event Time: 12:25:35	5.0 LB 12:25:35						
				CRATEN DATA					
METBOROLOGICAL DATA:				Moternee C	Moteture Content: 7.2				
Pasquill Category: B Richardson Number: -1.142	ű			CRATER VOL	CRATER VOLUMES (Nº*3):		DENS	DENSITIES (G/CHP93)	1/CH003):
16 Meter Tower (Means) Start Time: 11:21:59	End Time: 12:	12:27:40	:	Apparent Crater:			•	Flow: Bottom:	
HZ.	*	Ę	16H						
Wind Speed (M/S) 5.14	5.		6.41	HI VOE DATA (G):	(9):				
Wind Dir. (DEG) 125.2	_	-	122.1		1				
	1.		1.17	HAI	HV2 HV3	HA4	HVS	HA6	HA7 HAS
Signa Wolf 13.8	13.5	12.6	11.2						
nents	•			0.2382 0.3612	0.6893	0.3433 0.1490	190 0.5181	181 0.5210	9790.0 013
(H/S)		3.16	0 t 4 t	erae.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- ,			
W (B-W) (R/S) -5.12 W (West) (M/S) 0.32	, 0								
; !			1.44						
		1.62	1.69						
		0.29	•	GELMAN DOSAG	GELMAN DOSAGE (G S/M**3):				
femperature (C) 15.0	14.1	13.7	13.1	7 27 25		, Man 17	2	9	
				CELTAR A	UELMAN B	OBLINEN L	NAC -	3	
		C.102 (14/hee2) - 701 2	701.0	0.000	000.0	0.000	0.0	0.000	
Soil Temperature (C): 24.3			7.10						
Dem Potnt (C): 0.9	Fisual	Tisual Range (M): 30480.0	480.0						
		۲							

Sky-Target Contrast: -0.44

Rain Accumulation (MM): 0.00 Abs. Hum. (G/M**3): 4.96

Vista Ranger Voltages: Sky: 1.74 Target: 0.97

Temperature (C): 14.0 Rel. Hum. (%): 40.9

HW8 0.0676

A112

Log Concentration, g/m^3

STAC TARREST THEFT	MARY DATA			CONE INDEX:	-						
					X,Y Coord (M)	£	SPC	15	30	\$	
Men Wombern Highla		Above Ground	pu	Pre-Shot	60.0	10.0	2 2	175 2		430	
Date. 26 APPIL 33		Charge Scape: BLOCK	pe: BLOCK	Post-Shot) -	₹			1	
Detobation Coordinates (M): M: A0.5		Charge Wt: 15.0 LB Event Time: 13:34:0	Charge Wt: 15.0 LB Event Time: 13:34:01								
				CRATER DATA							
METECROLOGICAL DATA:				Hoisture Content:	ontent:						
Sactolit Category: 9 Sichactor Number: +14.845				CRATER VOL	CRATER VOLUMES (M**3): True Crater:			DEMSITIES (G/CH**3): Pre-Shot: * Flow: *	SITIES (G/CH Pre-Shot: •	••3):	
16 Weign (Swen (Weans)	End T'me, 13:	36: 2		Apparent trater.	Flow:			e i	Bottom:		
3:	±	£	168								
	6.13	6.33	6.92	HI VOL DATA (G):	: (9)						
#100 (150) 146.1	146.3	145.6	147.1		HV2 PV3	HV4	HVS	HA6	HA	8 Å H	
	16.9	17.3	16.0	0.0897 0.0805		0.0896	0.0513	0.0846	0.0421	0.0260	
79.4 (の(型) (の)型) に	\$.04	5.17	5.85	SUM: 0.5832	5832						
(8/2)	-3.03	-3.10	-3.31								
W (Vert) (H/S) 9.21	0.32	0.01 2.46	2.71								
THE STATE OF THE S	1.37	1.33	1.08	GELMAN DOSA	GELMAN DOSAGE (G S/N°•3):	::					
C. 0.31	67.0	0.30	14.2			1		C BAN PO			
Tespenature (C) Asio	*****			GELKAN A	D DOD O	000		0.00			
Soll Temperature (C): 32.2	Solar	Solar Flux (W/M**2): 1003.2	2): 1003.2								
1-0-10: 10 tale 10.7	Visua	Visual Range (M): 30480.0	30480.0		•						
Templicature (2): 15.1	Vista	a Ranger Voltages:	. gg es:								
86. Total (%) 33.8		Sky: Tanget:	1.22								
Abs. F (0/8**3); 4,37	Sky-T	Sky-Taiget Contrast: -0.37	15t: -0.37								
Hain Accumulation (Max): 0.00											

EVE	EVENT SUMMARY DATA	Y DATA			CONE INDEA.		
•						X,Y Coord (M)	£
Test Number: HEB15			Surface :	Surface Tangent Buried	Pre-Shot	<u> </u>	3.0
Date: 26 APRIL 83	,		Charge Sh	Charge Shape: BLOCK	Post-Shot	36.0	3.0
Velonation Coordinates of X: 36.1			Charge Wt Event Tim	Charge Wt: 15.0 LB Event Time: 14:57:35			
					CRATER DATA		
HETEOROLOGICAL DATA:					Kotsture	Moisture Content:	
Pasquill Category: C Richardson Number:	-0.136				CRATER VO	CRATER VOLUMES (M**3):	
2	End 7	End Time: 14:59:43	.43		True Crater: Apparent Crater: Flow:		1.832 0.810 1.021
	E Z	Į	¥9	16H			
Wind Speed (M/S)	5.80	6.25	6.47	7.76	HI VOL DATA (G):	: (9)	
	155,4	156.8	157.7	157.8	LAG.	CATI	700
Signa MSP	1.12	1.13	1.12	0.93 4.	1	Ì	
UVW Cognonents	10.3	70.7	10.1	:	0.3737 1.0	0.3737 1.0164 0.2213	0.0798
(8)	5.19	5.64	5.88	7.11	SUN: 3.3443	.3443	
(M/S)	0.18	0.43	0.05	•		-	
Signs U	1.14	1.12	1.05	0.88			
Signs V	1.03	1.14	1.19	1.0	GELMAN DOSA	GELMAN DOSAGE (G S/H=+3):	· ••
Temperature (C)	17.3	16.6	16.1	15.3	A MAN TOO	C NAM PO	CPT MAN
	 				79.621	153.600	183.06
Soil Temperature (C):	32.5	Solar F)	lux (W/He	Solar Flux (W/M**2): 776.8			
Dew Foint (C): -1.2		Visual A	Wisual Range (M): 30480.0	30480.0			
Temperature (C): 16.7		Vista Ra	Vista Ranger Voltages: Sky: 1.9	ages: 1.92			
Rel. Hum. (5): 29.3			farget:				_
Abs. Hum. (G/M**3): 4.17	.17	Sky-fang	set Contra	Sky-farget Contrast: -0.41			
Nain Accumulation (MM): 0.00	0.00						

CLOUD PATH AND WIDTH BY 2-SEC INTERVALS

こう 最初のののののの 最いないのののの

Sky-Target Contrast: -0.49

Rain Accumulation (NM): 0.00 Abs. Hum. (G/M**3): 4.08

- HI-VOL SAMPLERS
- NEPHELOMETER AND HI-VOL SAMPLERS
- FOR 25-LB SHOTS
- # = 2-M MET TOWER
- + G-M MO,T TOWER

3/2	EVENT SUPMARY DATA	Ωλ 	CONE INDEX:
Tes: Number: dEC1		Surface Tangent	Pre-Shot 60.0 20.0
Date: 20 APRTL 93	3	Charge Shape: SPHERICAL	14.
Detor . or. Coordinates (A): 7.0 4.3	 E	Charge Wt: 25.0 LB Event Time: 14:43:01	
			CRATER DATA
METEOROLOGICAL DATA:			Moisture Content: 23.6
Pasquil Category: D Richard:on Number: -0.636	-0.636		CRATER VOLUMES (M**3): True Crater: 0.893
16 Meter Tower (Means) Start Tibe: 14:41: 1		End Time: 14:44:57	Apparent Crater: 0.465 Plow: 0.428
	23	4M 6M 16M	

DENSITIES (G/CH**3):
 Pre-Shot: 1.440
 Flow: 0.986
 Bottom: 0.970
 Side: 1.018

45

30 160 175

15 104 118

SPC 50

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
Wind Speed (M/S)	2.81	2.90	3.09	3.44	HI VOL DATA (G):	A (G):					
Wind Dir. (DEC)	108.9	110.8	111.5	114.6				7,111	7410	1	• 445
SIRBA WSP	0.73	0.87	0.94	1.17				CAE		A C	0
Signa WDIF	14.2	14.0	12.4	10.7	7 0 7000	orre o erry o your o	0110	1000		A 4893 O 4010 O 0344	7970
UNW Components					0.1238	6177 0.7713					0.0.0
(N-S) (M/S)	0.85	0.97	1.07	1.45	į						
V (E-W) (M/S)	-2.58	-2.64	-2.83	-3.06	SUM: 7.838/	7989					
W (Vert) (M/S)	0.10	80.0	0.12	•							
Signa U	19.0	0.71	0.64	0.80							
S (Alba V	0.77	0.88	96.0	1.06							
SIgna W	0.13	0.16	0.20	•	CELMAN DOS	GELMAN DOSAGE (G S/M**3):	3):				
Temperature (C)	19.7	19.3	19.1	18.9	GELMAN A	GELMAN A GELMAN B		Ī	GELMAN D		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
					50.113	46.400	41.843	4 3	8.108		
Soil Temperature (C): 27.8	27.8	Solar F	1ux (W/M**	Flux (W/H**2): 142.6							
Dew Point (C): -1.6		Visual	Visual Range (M): 30480.0	30480.0							

Sky-Target Contrast: -0.56

Rain Accurtation (MM): 0.00

Abs. Hum. (6/M••3): 4.00

Temperature (C): 18.6 Rel. Hum. (%): 25.0

Vista Ranger Voltages: Sky: 1.60 Target: 0.70

EVENT SURMARY DATA	DATA			CONE INDEX:						
} 1 1 1 1 1 1 1 2 1 2 3 3 4 4 4 4 4 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	1 				X,Y Coord (M)	Ξ	SFC	15	30	45
Test Number: HEC2		Surface Tangent	angent	Pre-Shot	:	98.0				
Date: 21 APRIL 83		Charge Sh	Charge Shape: BLOCK	Post-Shot	83.0	0.86	25	138 1	163 167	<u>.</u>
Detonation Coordinates (M): X: 81.7 y: 97.7		Charge Wt Event Tim	Charge Wt: 25.0 LB Event Time: 14:27:45							
				CRATER DATA						
NETEGROLOGICAL DATA:				Moisture C	Moisture Content: 11.2					
Pasquill Category: B Richardson Number: -0.858				CRATER VOL	:	(3): 1,350		DENSITII	DENSITIES (G/CH**3): Pre-Shot: 1.840	H**3): 1.840
16 Meter Tower (Means) Start Time: 14:26:37 End Ti	End Time: 14:29:4	9:48		Apparent Crater: Flow:		0.910		Bo		1.056 0.860
2H	4	Н9	1 óM							
114.4 Cross (WC) 4.43	4.83	4.96	5.56	HI VOL DATA (G):	(g):					
Wind Dir. (DEG) 55.7	52.8	56.7	53.4	H IVH	HV2 HV3	HV4	HVS	HV6	HV7	HV8
	0.87	0.94	0.91	İ	; ;					
Sigma WDIR 14.1	12.8	12.6	14.7	0.0218 0.0344	44 0.0438	0.0042	0.0256	0.0362	0.0196	0.0138
UVW Components	-2.82	-2.62	-3,25		, 00,					
(E-W) (M/S)	-3,78	-4.08	-4.29	SUM: O.	0.1994					
(Vert) (M/S)	0.16	0.62	•							
	0.00	0.88	1,35							
	1.00	1.09	96.0	GELMAN DOSAGE (G S/M**3):	IE (G S/M**3	:				
	0.34		• •							
Temperature (C) 19.1	18.4	18.0	C'11	GELMAN A	GELMAN B	GELMAN C		GELMAN D		
				0000	0.000	000.0	00	0.000		
Soil Temperature (C): 27.2	Solar Flux	Flux (W/M**2):	•2): 756.4							
Dew Point (C): 1.1	Visual Ran	Range (M)	ge (H): 30480.0							
Temperature (C): 18,3	Vista	Vista Ranger Voltages:	tages:							
Hel. Hum. (%): 31.6		Target:								
Abs. Hum. (G/M**3): 4.95	Sky-Target		Contrast: -0.59							
Rain Accumulation (MM): 0.00										

HV8 0.0138

CLOUD PATH AND MIDTH BY 2-SEC INTERVALS

30	80.0 47.0 25			CRATER DATA	Moisture Content: 12.8	•			_	HV4 HV5 HV4 HV5 HV6 HV6 HV8		0.2522		SUR: 2.4510			GELMAN DOSAGE (G S/M**3):		CELMAN B CELTAAN C	_				
	angent	Charge Shape: BLOCK	Charge Wt: 25.0 LB Event Time: 15:23:00					Н91	 	0.79	0.95	5,5	-3.08	-7.29	•	0.13		17.1			(W/M**2): 195.4	Visual Range (M): 30480.0	ltages:	
	Surface Tangent	Charge Sh	Charge Wt Event Tim				5: 1	М	7.06	8.69	1.12	5.7	-2.41	09.9-	0.65	0.72	1.11	17.4				Range (M)	Vista Ranger Voltages: Sky: 1.1	Target:
Y DATA							End Time: 15:25: 1	4 Σ	6.64	67.2	1.03	5.5	-2.54	-6.10	0.09	0.65	1.02	17.6			Solar Flux	Visual	Vista	
EVENT SUMMARY DATA			:: =			-0.051	End	2M	5.91	70.3	96.0	6.2	-1.96	-5.54	0.52	0.63	96.0	0.21			25.5		~	
EVE	Test Number: HEC3	Date: 21 APRIL 83	Detonation Coordinates (M): X: 80.6 Y: 42.1		METEOROLOGICAL DATA:	Pasquill Category: D Richardson Number:	16 Mcter Tower (Means) Start Time: 15:21:37		(M/S)	Wind Dir. (DEG)	Signa WSP	Sigma WDIR	UVW Components	(M/S)	(M/S)	Sigma U	Sigma V	Sigma W	lemperature (c)		Soil Temperature (C):	Dew Point (C): 0.9	Temperature (C): 17.2	Rel. Hum. (%): 33.2

Sky-Target Contrast: -0.41

Rain Accumulation (MM): 0.00 Abs. Hum. (G/M..3): 4.88

•

いいかは無いいくかんとうとは無ななかった。たれば

EVERT SUMMARY DATA

CONE INDEX:

30	463	80				
15	263	70				
SFC	153	25				
X,Y Coord (M)	65.0 79.0	65.0 79.0				
	Pre-Shot	Post-Shot				CHATER DATA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Surface Tangent	Charge Shape: BLOCK		Charge Wt: 25.0 LB	Event Time: 12:57:01	
	Test Number: HEC4	Date: 22 APRIL 83	Detonation Coordinates (M):	X: 65.7	Y: 79,3	

45 550 150

METEOROLOGICAL DATA:

	12:59: 1
9:036	Ecd 71me: 12:59: 1
Pasquill Category: D Rithardson Number: -0.036	16 Moter Tower (Means) Start Time: 12:55:43

16H	9.31	23.0	1.14	8.5		-8.50	-3.55	•	1.30	1.20	•	0 11
3 .	8.06	25.8	1.03	8.8		-7.19	-3.43	89.0	1.16	1.11	0.36	101
4 7:	8.07	23.5	1.03	8.3		-7.35	-3.11	-0.05	1.15	1.07	0.32	
2 M	7.02	24.9	0.99	80 80		-6.30	-2.89	0.45	1.09	0.97	0.23	3 61
	(8/3)	(550)			it e	(K/S)	(R/S)	(H/S)				(2)
	Mind Speed (M/S)	Wind Dir.	Signa WSP	Sigma Work	W Componen	(N-S) U	V (E-N)	W (Vert)	Signs U	Signs V	Signs W	() out the second

Solar Flux (W/M**2): 414.8	Visual Bange (M): 30480.0	Vista Ranger Voltages:	Target: 0.83	Sky-Target Contrast: -0.29
Soil Temperature (C): 14.5	Lew Foint (C): 1.8	Temperature (C): 11.9	Rel. Fum. (%): 50.0	Abs. Hum. (G/M••3): 5.32

Rain Accumulation (MM): 0.00

Moisture Content: 13.5

DENSITIES (G/CM3):	Pre-Shot: 1.360	Flow: 1.131	Bottom: 1.167	Cide: 1.095
CRATER VOLUMES (M3):	True Crater: 0.800	Apparent Crater: 0.310	Flow: 0.490	

HI VOL DATA (G):

HV8	1 1 1	6 0.0170
HV7	1 1 1 1 1	0.1866
HV6	1	0.2560
HVS	1	0.1400 0.2560 0.1866
HV4		0.1715
HV3	1	0.2140
HV2	1 1 1 1	0.0057 0.0219
HV1	1	0.0057

SUM: 1.0127

	CELMAN D	1111111	137.838
	CELMAN C	1	73.225
GELMAN DOSAGE (G S/M**3):	HH		66.400
GELMAN DOSA	GELMAN A		19.905

< 50 %

%

< 37

%

< 10

% Q

53

Time of Obscuration, s TIME 12:56:37 TIME, sec TRIAL HE-C4

3.8 µm

TIME 12:56:37 0.4-0.7 µm

EVENT	EVENT SUMMARY DATA			CONE INDEX:						
1 1 1 1					X,Y Coord (M)		SFC			45
Tes: Number: HECS		Surface Tangent	ngent	Pre-Shot	91.0	71.0	25	130	170	
Date: 22 APRIL 83		Charge Shape: BLOCK	pe: BLOCK	Post-Shot		1.0	•		•	•
X: 90.6 Y: 71.0		Charge Wt: 25.0 LB Event Time: 14:17:0	Charge Wt: 25.0 LB Event Time: 14:17:00							
				CRATER DATA						
METEOROLOGICAL DATA:				Moisture (Moisture Content: 12.7					
Pasquill Category: C Richardson Number: -0.	-0.111			CRATER VOI	CRATER VOLUMES (M**3): True Crater: 1.3	3): 1.300		DENSITI	~	!yee3): 1.230
16 Meter Tower (Means) Start Time: 14:15:50	End Time: 14:1	4:19:15		Apparent Crater: Flow:		0,560		2	Flow: Bottom: Side:	1.123 1.196 1.051
	2M 4M	Ю	16M							
Wind Speed (M/S) 8.	8.82 9.83	10.21	11.54	HI VOL DATA (G):	: (3)					
(DEC)		52.8	47.7	HV1	HV2 HV3	HV4	HVS	9AH	HV7	HV8
Signa WSP 1.	1.51 1.55 8.3 7.9	1.47	1.26					1 6		
t s		•	•	0.0074 0.0111	111 0.0323	0.0952	0.1109	0.1832	0.2.0	0.1403
4/8)		-6.13	-7.73	SIN: 0.8631	8631					
(H/S)	1	-8.06	-8.44							
Stems II	1.43	1.04								
		1.42	1.21	1004						
		0.43	•	GELFIAN DUSA	GELTAN DOSAGE (G S/R-3):	<u>.</u> !				
ture (C)	13.5 12.8	12.6	11.7	GELMAN A	GELMAN B	GELMAN C		GELMAN D	_	
				18.009	36.000	58.281	!	\$5.676		
Soil Temperature (C): 20	20.5 Solar F	Solar Flux (W/M**2): 870.6): 870.6							
Dew Point (C): 2.5	Visual	Visual Range (M): 30480.0	30480.0							
Temperature (C): 13.2	Vista F	a Ranger Voltages: Sky: 0.7	ges: 0.74							
Rel. Hum. (%): 48.3		Target:								
Ats. Hum. (G/M**3): 5.56		Sky-Target Contrast: -0.17	t: -0.17							

8.4-12 µm

88

20

% 37

к,

0.4-0.7 µm

1.06 µm

3.8 µm

TIME 14:16:36

EVE	EVENT SUPPRARY DATA	DATA			CONE INDEX:						
•		1				X.Y Coord (M)	Ξ	SFC	15		45
Test Number: HEC6			Surface Tangent	gent	Pre-Shot	29.8	5.5	19			240
Date: 13 APMIL 83	į		Charge Shape: BLOCK	e: BLOCK	Post-thot		s. s	22	8	395	90
Vercondition Conditions of S. 6.	· }:		Charge Wt: 25.0 LB Event Time: 10:22:16	25.0 LB 10:22:16							
					CRATER DATA						
METECFOLOGICAL TATA:					Moisture Co	Moisture Content: 13.9					
Pasquill Category: B Richardson Number:	0.194				CRATER VOLI	CRATER VOLUMISS (N**3): True Crater: 1.284	*		DENSITI Pre-	×	JM••3): 1,340
16 Peter Tower (Means) Start Time: 10:18:57	End To	End Time: 10:24	: 13		Apparent Crater: Flow:		2 00		å	Flow: 1 Bottom: 1 Side: 1	1.137 1.163 1.111
	21	Ţ	5	16%							
Wind Speed (M/S)	3.50	3.80	3.92	4.46	HI YOL DATA (G):	(0):					
	156.6	156.1	156.2	152.8	HV1	RV2 HV3	HV4	HVS	HV6	HV7	HAS
Signa For	1.45	1.5.1 20.8	20.7	14.8				1001	1361	1080	0 0691
nen.					0.2544 0.33	0.3333 0.4016			•		
(S/M) (M-M) (M/M) (M/M)	2.98	3.25	3.34	ت. ت	SUM: 1.7203	7203					
(S/E) (#/8)		0.27	0.03								
S:88:a U	1.38	1.45	1.42	1.48							
Signa F	1.28	1.31	1.38	1.19	CENTAN DOSAGE (C. S/Hee3):	(C S/Mee3)	•				
Signa K	0.24	0.35	0.40	•	Curan and and		. (
Terrerature (C)	13.5	12.6	12.2	11.8	GELMAN A	GELMAN B	CELMAN C		GELMAN D	•	

75.676

GELMAN C

GELMAN B

S9.716

Solar Flux (W/M**2): 353.4

Soil Temperature (C): 23.9

Visual Bange (M): 30480.0

Vista Ranger Voltages: Sky: 1.26 Target: 1.17 Sky-Tanget Contrast: -0.07

Rair Accumulation (MP): 0.00

Abs. Bum. (G/Pe+3): 5.84

Tengerature (C): 12.1 Pel. Hum. (%): 54.4

Dew Fourt (C): 3.1

のころからのできないとうなった。これのことでは

が発展である。 のでは、大学のでは、大学のでは、大学のでは、「一般などのでは、「他のでは、」」では、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、」」では、「他のでは、」」では、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、」」では、「他のでは、」」では、「他のでは、「他のでは、「他のでは、」」では、「他のでは、「他のでは、「他のでは、」」では、「他のでは、」」では、「他のでは、」」では、「他のでは、」」では、「他のでは、」」では、「他のでは、「他のでは、」」では、「他のでは、」のは、「他のでは、我のでは、」のは、「他のでは、我のいいは、我のいいは、我のいいは、我のいいは、」は、我のいいは、我ののでは、我のでは、我のでは、我のいい

DATA
SUPPRARY
VENT

EVENT SUPPARY DATA	Y DATA		CONE INDEX:						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!			X,Y Coord (H)	Ê	SFC	15	20 1	45
Test Number: HEC7	Surf	Surface Tangent	Pre-Shot	57.0	3.0	20			465
Date: 23 APPIL 83	Char	Charge Shape: BLOCK	Post-Shot		3.0	•			•
Detonation Coordinates (M): X: 57.2 Y: 3.1	Char Even	Charge Wt: 25.0 L9 Event Tipe: 12:37:11							
			CRATER DATA	 .					
METED 40LOGICAL DATA:			Moisture	Moisture Content: 11.6					
Pasquill Category: D Richardson Number: -0.235			CRATER VC	CRATER VOLUMES (M**3):	Ş		DENSITI	DENSITIES (G/CH**3):	H••3):
16 Meter Tower (Means) Start Time: 12:35:58 End Time:	ime: 12:39:24		Apparent	Apparent Crater: 0.392	1.602 0.392 1.470				1.101
ĸ	1	н 9 1							
	!) ; ;	DAT	. (6):					
		_	INH	HV2 HV3	#AH	HVS	HV6	HV7	æ
Signa USP 1.01	13.8 12	1.19 1.14 12.2 10.8		İ					i
t a			n.0048 0.0	0.0248 0.0531	0.2121	0.2838	0.0241	0.0163	0.0
(i)	,	2.78 3.16	SUM: 0.6261	0.6261					
_	0.44								
5		1.14 1.02							
Signa V 1.14	0.35 0.	1.30 1.37 0.37 •	GELMAN DOS!	GELMAN DOSAGE (G S/M**3):	ä				
ture (C)	1	13.9 13.5	GELHAN A	GELMAN B	CELMAN C		GELMAN D		
			0.000	0.000	0.000	8	0.000		
Soil Temperature (C): 27.2	Solar Flux (r Flux (W/M**2): 367.9							
Sew Point (G): 3.1	Visual Fange	Visual Fange (M): 30480.0							
Temperature (C): 14.2	Vista hanger	a hanger Voltages:							
Hel. Hum. (%): 47.2	Ţ								
Abs. Hum. (G/H••3): 5.77	Sky-Tanget (Sky-Target Contrast: -0.14							

HV8 0.0071

Rain Accumulation (MM): 0.00

1,06 µm

3.8 µm

8.4-12 µш

50 %

V

٠.
DAT
۵
RY
Ŧ
S
EST

ស	EVERT SUMMARY DATA	RY DATA			CONE INDEX:						
ì		!				X,Y Coord (M)	3	SFC	15	30	45
Test Number: HEC8			Surface Tangent	angent	Pre-Shot	65.0 17.0	7.0	45	220	305	410
Date: 23 APRIL 83	<u> </u>		Charge Sh	Charge Shape: BLOCK	Post-Shot	65.0 17.0	7.0	•	•	•	•
Detonation Coordinates (M): X: 65.3 Y: 17.5	 S		Charge Wt Event Tim	Charge Wt: 25.0 LB Event Time: 13:39:30							
					CRATER DATA						
METEOROLOGICAL DATA:					Moisture Co	Moisture Content: 12.1					
Pasquill Category: B Richardson Number:	B -0.714				CRATER VOLI	CRATER VOLUMES (M**3): True Crater: 1.598	869		DENSITI Pre-	DENSITIES (G/CM··3): Pre-Shot: 1,480	H••3): 1,480
16 Muter Tower (Means) Start Time: 13:38:10		End Time: 13:41:39	1:39		Apparent Crater: Flow:		0.481		ŭ	Flow: Bottom: Side:	1.124 1.113 1.134
	W.	4	¥9	16M							
Wind Speed (M/S)	4.60	4.84	5.17	5.65	HI VOL DATA (G):	(G) :					
Wind Dir. (DEG)	9.711	118.2	118.9	119.2		HV2 HV3	AVH	HV	9ЛН	HV7	8AA
Signa WSP	0.77	0.79	0.84	0.17	i	1					i
Sigma hDIR	8.1	7.9	7.5	8.6	0.4490 0.0995	95 0.0359	0.0514	0.0439	0.0490	0.3887	0.2199
UNW Components II (N-S) (N/S)	2.09	2.22	2.43	2.70							
V (E-W) (M/S)	-4.05	-4.25	-4.52	-4.90	ScH: 1.3373	5373					
_	0.28	0.35	0.31	•							
Sigma U	0.53	0.52	0.48	6.67							
Signa V	0.85	0.88	0.94	06.0	CET MAN DOSAGE (C C/Mee3).	10 C/Mee1	<u>.</u>				
Signa W	0.25	0.31	0.34	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		: !				
Temperature (C)	16.7	15.7	15.1	14.7	GELMAN A	GELMAN B	GELMAN C	ن د	CELHAN D	^	
	1			• • • • • • • • • • • • • • • • • • • •			1	1			

EV8

77.297

444.583

223,200

58,768

Solar Flux (W/M**2): 1034.5

Soil Temperature (C): 25.3

Visual Range (M): 30480.0

Sky-Target Contrast: -0.11

Rain Accumulation (MM): 0.00

Abs. Hum. (G/M..3): 5.50

Temperature (C): 15.6 Rel. Hum. (%): 41.2

Dew Point (C):

Vista Ranger Voltages: Sky: 1.40 Target: 1.24

が発動を含める。 のでは、これでは、 の

DATA	
SUPPLYFT	
even.	

CORE INDEX:

SS	8	22		
X,Y Coord (M)	77.0 -14.0	77.0 -14.0		
	Pre-Shot	Post-Shot		
4 : II despe 4:	Surface Tangent	Charge Shape: BLOCK	Charge VI: 25.0 LB	Event Time: 16:19:18
	Test Number: REC9	Date: 23 APRIL 83	Detenation Coordinates (M):	66 * 60 P 1 1 1 1 1 1 1 1 1

30 685 559

15

METECSOLOGICAL DATA:

-0.138 Pasquill Category: D Richardson Number: -

End Time: 16:21:16 16 Mrter Tower (Means) Start Tixe: 16:16:48

16M	6.55	138.5	0.79	11.0		4.79	£.23	•	0.85	1.24	•	14.8
3	5.64	140.7	0.83	11.8		4.23	-3.53	0.32	0.33	1.18	0.34	15.2
£	5.28	140.5	0.80	12.5		3.96	-3,30	0.49	0.65	1.13	0.34	15.6
ž	4.85	140.3	0.80	12.5		3.61	-3.05	0.28	0.75	1.:1	0.26	16.0
	(\$/8)	(BGC)			ts	(H/S)	(H/S)	(£/S)				(C) e:
	Find Speed (M/S)	Bind Dir. (255)	Signa NSP	Signa NOIR	W Components	(X-X)	V (E-W)	W (Yert)	S. gran. U	S. grae V	Signa M	Temperature (C)

Solar Flux (W/M**2): 186.5 Sky-Target Contrast: -0.12 Tisual Range (M): 30480.0 Wista Ranger Voltuges: Sig: 1.43 Sarget: 1.25 Soil Temperature (C): 25.1 Temperature (C): 15.0 Dew Point (C): 2.2 Rel. Ptm. (%): 41.9

Alta, Hum. (C/H**3): 5.40

Rain Accumulation (MM): 0.00

CRATER DATA

Moisture Content: 11.7

Pre-Shot: 1.450 Flow: 1.093 Bottom: 1.124 Side: 1.061 DENSITIES (G/CH**3): CRATER VOLUMES (M**3):
True Crater: 1,327
Apparent Crater: 0.694
Flow: 0.633

HI VOL DATA (G):

HVI	HV2	HY3	HAY	HAS	HV6	HAZ	HAR

0.4746	0.1274	0.4746 0.1274 0.0000 0.0132 0.0203 0.0351 0.1926	0.0132	0.0203	0.0351	0.1926	0.2131

SUM: 1.0763

GELMAN DOSAGE (G S/M**3):

GELMAN D		59.459
GELMAN C	-	63.512
 CELYAN B		139,200
GELHAN A	*********	61.611

ショーにようとう シャス 単元 とんとうとくなる

が発展があれる場合ではなるが発展されているとは関われているとの関係できなるとは対象によっている。自己などのでは、自己などのなるとのであっているとのであるという。

-	EVENT SUPPLARY DATA	DATA			CONE INDEX:						
		•				X,Y Coord (H)		SFC	15	30	\$
Test Number: HEC10			Surface Tangent	ngent	Pre-Shot	10.0 23	23.0			250	235
Date: 25 APRIL 83			Charge Shape: BLOCK	pe: BLOCK	Post-Shot		23.0	23	135	250	465
Deficitation Coordinates (M): X: 10.2 Y: 23.5	 E		Charge Wt: 25.0 LB Event Time: 14:09:	Charge Wt. 25.0 LB Event Time: 14:09:21							
					CRATER DATA						
METEOROLOGICAL DATA:					Mossture	Moisture Content: 12.4					
Pasquill Category: C	U							•		9	
Richardson Number:	-0.122				CRATER VOI	CRATER VOLUMES (M°3): True Crater: 1.335	5	_	Pre	Pre-Shot: 1.310	1.310
16 Meter Tower (Means) Start Time: 14: 8:27		End Time: 14:11:24	:24		Apparent Crater: Flow:		2 2		28	Flow: Bottom:	1.157
	¥	ŧ	¥	16H							
Wind Speed (M/S)	8.07	8.94	9.21	10.30	HI VOL DATA (G):	; (9)					
Hind Dir. (DEG)	212.3	211.2	212.4	208.6	İ	:				,	
Signa WSP	1.64	1,60	1.50	1.43	LAG	HV2 HV3	HA4	RVS	HA6	BV7	HA8
Signa WDIR	13.4	12.4	13.1	11.7					177.0	1070	1346
nent	;	;	,		0.0340 0.1	0.1145 0.6082	0.4340	0.3880	7106.0	2.27	
	6.64	7.45	7.54	20° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5	**************************************	• 0 1.7					
	4.23	4. 54 6. 54	4. ey	, e	7 ELIC	9619.					
W (Vert) (A/S)	80. F	4.59	70.0	, 7							
	1.06		2.06	1.59							
Stern M	28	0.33	0.33	•	GELMAN DOSA	GELMAN DOSAGE (G S/N°+3):					
Cesperature (C)	24.9	24.0	23.6	22.9							
					GELMAN A	GELMAN B	GELMAN C	-	CELMAN D		
					11.374	12.000	6.725		76.757		
Soil Temperature (C):	39.2	Solar F	Flux (W/H002):): 970.6							
Dew Point (C): -11.4		Visual F	Tisual Range (M): 30480.0	30480.0							

Sky-Target Contrast: -0.52

Abs. Hum. (G/Mee3): 1.67
Rain Accumulation (MM): 0.00

Vista Ranger Voltages: Sky: i.84 Target: 0.88

Temperature (C): 24.0
Rel. Hum. (%): 7.7

■ そうかい の ■ しゅう アンビビ ■ ながら かける ■ あいかいないない ■ 配けないないない

- + MET TOWER
- # TETHERED BALLOONS
- — HI-VOL SAMPLERS
- * DETONATION LOCATIONS FOR SHOTS 1B, 2B, AND 3C

| 100 mm/ できなって 100 mm のののののでは 100 mm (100 mm (100 mm) できないないない 100 mm (100 mm) (

H

C4 15LB 1211HR 4AUG83 1 0 50M	25 50 75 150	4	LEGEND O APPARENT NORTH A APPARENT SOUTH	* TRUE NORTH + TRUE SOUTH MEAN APPARENT CRATER MEAN TRUE CRATER	DISTANCE, cm 125 150 75 160 125 150	000	LEGEND O APPARENT EAST	A TRUE EAST A TRUE MEST - MEAN APPARENT CRATER - MEAN TRUE CRATER
-	0	80	DEPTH,	cm &		×.	DEPTH	. cm
	Surface Tangent	Charge Shape: SPHERICAL Charge Wt: 15.0 LB Event Time: 12.11					\$	733
	Surfac	Charge		: 07			15 30	
CONTRACTORIES	ST 8)			End Time: 12:07 5	170	9	SFC	• •
# 1 - 1	HEIB (TEST 8)	83 inates : 150 50	ATA:	:45 M/S): 2.	on (DEG): (C): 16.	idity (%)	Range, Azimuth	50.0 150.0 50.0 150.0
	Test Number:	Date 04 AUGUST 83 Detenation Coordinates: AZIMUTH (DES): 150 RANIE (M):	METEUROLOGICAL DATA:	Sturt Time: 11:45 Wind Speed (M/S): 2.5	Wind Direction (DEG): 170 Temperature (C): .6.7	Relative Humidity (%): 46	CONE INDEX:	Pra-Shot Post-Shot

DENSITIES (G/CM**3): Pre-Shot: 1.71 Post Shot: 1.85

CRATER VOLUMES (M**3):
True Crater: 0.480
Apparent Crater: 0.320
Flow: 0.160

Moisture Content: 11.6

CRATER DATA

=	
2	;
T V W CILL	
7	
֡֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֡֝֝֝֡֝	1 1

Surface Tangent	Charge Shape: SPHERICAL	Charge Wt: 15.0 LB Event Time: 13:19
HEZB (TEST 9)		·•
H 52 B	T 83	dinates 179 46
Test Number:	Date: 04 AUGUST 83	Detonation Coordinates AZIMUTH (DEG): 179 RANJE (M): 46

ŝ

ž.

LEGEND

DEPTH, cm

2 C4 15LB 1319HP 4AUGB2 179 46M

DISTANCE, cms

52

유

프

Chare	Chare Event		End Time: 13:01	1	155
ate: 04 AUGUST 83	etonation Coordinates : AZIMUTH (DEG): 179 RANJE (M): 46	ETEDFOLOGICAL DATA:	Start Time: 12:45	Wind Speed (M/S): 2.7	Wind Direction (DEG):

Relative Sumidity (%): 40

Temperature (C): 29.4

	43	1 1	750+	750+	
	30	1	100	722	
	15	1	315	336	
	SFC		•	•	
	Azimuth	1111111	46.0 179.0	179.0	
	Range,		46.0	46.0	
CONE INDEX:			Pre-Shot	Post-Shot	

LEGEND

DEPTH, cm

DISTANCE, cm 50 75 100

ĸ

CRATER DATA

	DENSITIES (G/CM**3): Pre-Shot: 1,94 Post Shot: 1,91
Moisture Content: 17.5	CFATER VOLUMES (M**3): True Crater: 0.254 Apparent Crater: 0.188 Ficw: 0.066

DATA
SUMMARY
EVENT

3 C4 25LB 1400HR 4AUG83 165 45M	DISTANCE, cm 0 25 50 75 100 125 150	D YO	000	81 m	TEUE NORTH H TRUE SOUTH TO SEE THE SOUTH	75 - NEAN TRUE CRATER	DISTANCE, cm 0 25 50 75 130 125 150	100		DE DE	TYPE THE TENT OF T	4	+ TRUE WEST MEAN APPARENT CRATER 75 MEAN TRUE CRATER
	Surface Tangent	Charge Shape: SPHENICAL Charge Wt: 25.6 LB Event Time: 14.00									45	750+	667
	Surface	Charge Charge			00						15 30		
EVENI SUFFINI UKAR					End Time: 14:00						SFC		•
EVENT SUR	HESC (TEST 10)	 m			<u>ត</u>	2.5	EC): 110	22.2	(%): 44		Range, Azimuth	45.0 165.0	165.0
	HEC	UST 83 ordinates): 165	!	L DATA.	13:44	d (N/S):	ction (DI	re (C):	Fumidity		Range.	45.0	48.0
	Test Number:	Date 04 AUGUST 83 Detonation Coordinates: AZIMUTH (DEG): 165 RANGE (M): 45		METENROLOGICAL DATA.	Start Time: 13:44	Wind Speed (M/S): 2.5	Wird Direction (DEC): 110	Temperature (C): 22.2	Relative Humidity (%): 44	CONE INDEX:		Pre-Shot	Fost-Shot

CRATER DATA

Mo.. sture Content: 13.2

DENSITIES (G/CM*3): Pre-Shot: 1.93 Post Shot: 1.78 ChitER VOLUMES (M**3):
True Crater: 0.517
Apparent Crater: C.393
Flow: 0.124

- + MET TOWER
- ± TETHERED BALLOONS
- - HI-VOL SAMPLERS
- ▼ DETONATION LOCATIONS FOR SHOTS

Surface Tangent	Charge Shape: SPHERICAL Charge Wt: 15.0 LB Event Time: 15:30	
4E4B-a (TEST 11)		
4E4B-a	T 83 dinates 112 50	
Test Number:	Date: 04 AUGUST 83 Detcnation Coordinates AZIMUTH (EEG): 112 RANGE (M): 50	

<u>8</u>

Š

4A C4 15LB 1530HR 4AUG83 112 50M

DISTANCE, cm

ĸ

0

METEOROLOGICAL DATA:

End Time: 15:10 Start Time: 14:34

Wind Speed (M/S): 3.4

Wind Direction (DEG): 115

₹.

ĸ.

DISTANCE, cm

ĸ

-- MEAN APPARENT CRATER -- MEAN TRUE CRATER

APPARENT NORTH
APPARENT SOUTH

DEPTH, cm

LEGEND

Temperature (C): 30.0

Relative Humidity (%): 40

	¥	-	745	\$0\$	
	30	!	617	472	
	15	į	317	328	
	SFC		•	•	
	, Azimuth		112.0	50.0 112.0	
	กากge	!	50.0	50.0	
CON : INDEX:			P.e.Shot	Post-Shot	

O APPARENT EAST A APPARENT WEST

DEPTH, cm

LEGEND

DENSITIES (5,CM**3): Pre-Shot: 1.78 Post Shot: 1.76 CRATER VOLUMES (M**3):
True Crater: 0.309
Apparent Crater: 0.243
Flow: 0.066 Mc. sture Content: 11.6

EVENT SUMMARY DATA

Surface Tangent	Charge Shape: SPHERICAL	Charge Wt: 15.0 LB Event Time: 15:40
HE4B-b (TEST 11)		
HE48-b	T 83	
Test Number:	Date: 04 AUGUST 83	AZIMUTH (DEG): 097 RANGE (M): 50

METEOROLOGICAL DATA:

	٠
I CONCLOSICAL DAIA	
00.31	

Wind Speed (M/S): 3.4

Wind Direction (DEG): 115

Temperature (C): 30.0

Relative Humidity (%): 40

CONE INDEX:

	Range,	Range, Azimuth	SFC	15	30	45
	111111	111111	1	1	1	1
Pre-Shot	50.0	50.0 097.0	•	•	•	•
Post-Shot	50.0	0.760	•	322	\$69	750

CRATER DATA

10.5
Content:
Voisture

DENSITIES (G/CM••3):	Pre-Shot: 1.70	Post Shot: 1.70	
CRATER VOLUMES (N**3);	True Crater, 0,288	Apparent Crater: 0.151	E) OH 137

5A C4 15LB 1150HR 5AUG83 75 46M

こうか 1000 こうかん かんさん ロインタクラン 自動 なんかん かんかん 自動ないのない 医乳を取りなれていた (動物)を持たない。

Surfece Tangent	Charge Shape: SPHERICAL	Charge Wt: 15.0 LB Event Time: 11:50
Tes: Number: HESB-a (TEST 14)	Date: 05 AUGUST 83	Detonation Coordinates: AZIMUTH (DEG): 075 RANGE (M): 46

Start Time: 11:10

HETEOROLOGICAL DATA:

End Time: 11:44

Wind Speed (M/S): 3.4

Wind Direction (DEG): 080

Temperature (C): NO DATA

Relative Humidity (%): NO DATA

CONE INDEX:

43	-	750+ 750+
30	İ	750+ 703
15		578 330
SFC	!	• •
Range, Azimuth		47.0 061.0 46.0 075.0
		Fre-Shot Post-Shot

CRATER DATA

Moisture Content: 7.9

DENSITIES (G/CM**3):	Pre-Shot: 1.09	Post Shot: 1.71	
CRATER VOLUMES (M**3):	True Crater: 0.238	Apparent Crater: 0.196	Flow: 0.042

Š. APPARENT NORTH APPARENT SOUTH Ñ Ñ LEGEND LEGEND DISTANCE, cm 50 100 DISTANCE, cro **K**: **%** -0 0 6 ĸ R DEPTH, cm DEPTH, cm

Surface Tangent	Charge Shape: SPHERICAL		Charse Wt: 15.0 LB	Event Time: 11:52
HESB-b (TEST 14)	T 83	dinates :	061	47
Test Number:	Date: 05 AUGUST 83	Detonation Coordinates	AZ_MUTH (DEG): 061	RANGE (M): 47

METEOROLOGICAL DATA:

End Time: 11:44 Start Time: 11:10

Wind Speed (M/S): 3.4

Wild Direction (DEG): 080

Temperature (C): NO DATA

Relative Humidity (%): NO DATA

CONE INDEX:

\$	750+
90	728
15	439
SFC	• •
Range, Azimuth	47.0 061.0
	Pre-Shot Post-Shot

CRATER DATA

Moisture Content: 8.2

DENSITIES (G/CH**3):	Pre-Shot: 1.50	Post Shot: 1.50	
CRATER VOLUMES (M**3):	True Crater: 0,228	Apparent Crater: 0.110	Flow: 0.086

يّ ح		CRATER	8 7		CRATER
47M	٩	499 - 99 FF - 789	16	9	EAST WEST T SAMENT SE CRAT
5B C4 15LB 1152HR 5AUG83 61 47M DISTANCE, cm 25 50 75 10 125	LEGEND	APPARENT SI APPARENT SI TRUE NORTH TRUE SOUTH MEAN APPAR	85 -	LEGEND	APPARENT V APPARENT V TRUE VEST NEAN APPA
SAUG		C4×+	8		04=+;
NCE			ANCE.		
DISTANCE,			DISTANCE,		
516 108 508	10 m		4.6/ H		
2, 1€ ±			','	0	
58 0	, 50,4			40	
o -	<u>K</u>	- S K	0	18	8 K
	DEP			DEP	TH, cm

Surface Tangent	Charge Shape: SPHERICAL	Charge Wt: 15.0 LB Event Time:
(TEST 14)		
HEJB-c	T 83	045
Test Number: HE3B-c (TEST 14)	Date: 05 AUGUST 83	AZIMUTH (DEG): 045 RANGE (M): 46

METEOROLOGICAL DATA:

Start Time: 11:10

Wind Speed (M/S): 3.4

End Time: 11:44

O APPARENT NORTH

A APPARENT SOUTH

I TRUE NORTH

+ TRUE SOUTH

-- MEAN APPARENT CRATER

MEAN TRUE CRATER

LEGEND

DEPTH, cm

양

<u> 2</u>

DISTANCE, cm 50 100

ĸ

0

Š

ĸ

5C C4 15LB 5AUG83 45 46M

DISTANCE, cm 50

ĸ

0

Wind Direction (DEG): 080 Temperature (C): NO DATA Relative Humidity (%): NO DATA

750+ \$ 354 SFC Range, Azimuth 045.0 46.0 CONE INDEX: Pre-Shot Post-Shot

MEAN APPARENT CRATER MEAN TRUE CRATER

APPARENT EAST APPARENT WEST

8

DEPTH, cm

LEGEND

CRATER DATA

DENSITIES (G/CM**3); Pre-Shot: 1.71 Post Shot: 1.71 True Crater: 0.256 Apparent Crater: 0.118 Flow: 0.138 Moisture Content: 5.0 CRATER VOLUMES (M**3):

| では、100mmであっている。 | 100mmでは、100mmでは、100mmでは、100mmでは、100mmであっている。 | 100mmでは、1

A190

Surface Tangent	Charge Shape: SPHERICAL	Charge Wt: 25.0 LB	Event Time: 13:35
(TEST 15)			
HE6C-3	T 83	d1nates : 075	5.5
Test Number: HE6C-a (TEST 15)	Date: 05 AUGUST 83	Detonation Coordinates AZIMUTH (DEC): 075	RANGE (M):

End Time: 12:45 METEOROLUGICAL DATA: Start Time: 12:22

Wind Speed (M/S):

Wind Direction (DEG): 075

Temperature (C): 33.3

Relative Humidity (%): 35

CONE INDEX:

~	1	750+	•
30	1	678	•
1\$:	372	•
SFC	!	٠	•
lange. Azimuth		075.0	55.0 075.0
Range.		55.0	55.0
		Pre-Shot	Post-Shot

CEATER DATA

Moisture Content: 8.1

DENSITIES (G/CM**3):	Pre-Shot: 1.79	Post Shot:	
CRATER VOLUMES (M**3):	True Crater: 0.481	Apparent Crater: 0.360	F10W: 0.121

O APPARENT EAST
A APPARENT WEST
A TRUE EAST
+ TRUE WESST
-- MEAN APPARENT CRATER
-- MEAN TRUE CRATER ₹ 7 + TRUE SOUTH
-- MEAN APPARENT CRATER
-- MEAN TRUE CRATER 6A C4 Z5LB 1335HR 5AUG83 75 55M $\bar{\kappa}$ LEGEND LEGEND DISTANCE, cm DISTANCE, cm **x** -**R** -DEPTH, cm DEPTH, cm

•
₽
•
۵
\succ
æ
⋖
~
=
_
S
\vdash
=
-
5.1

Surface Tangent	Charge Shape: SPHERICAL	Charge Wt: 25.0 LB Event Time: 13:35
HE6C-b (TEST 15)		
HE6C-b	5T 83	dinates . 09: 51
Test Number:	Date: 05 AUGUST 83	Detonation Coordinates AZIMUTH (DEG): 091 RANGE (M): 51

 $\widetilde{\mathcal{K}}$

6B C4 25LB 5AUG83 1340HR 91 51M

DISTANCE, cm 50 100

K -

o 뉴

ĸ

DEPTH, cm

METEO

	End Time: 12:45
ETEORCLOGICAL DATA:	Start Time: 12:22

Wind Speed (M/S): 2.9

Wind Direction (DEG): 075

Temperature (C): 33.3

ل يَّ

Ñ.

DISTANCE, cm

ĸ

0

ĸ

+ TRUE SOUTH
-- MEAN APPARENT CRATER
-- MEAN TRUE CRATER

APPARENT NORTH APPARENT SOUTH TRUE NORTH

LEGEND

Relative Humidity (%): 35

30 15 SFC Range, Azimuth 55.0 075.0 55.0 075.0 CONE INDEX: Pre-Shot Post-Shot

APPARENT EAST APPARENT WEST

DEPTH, cm

45

LEGEND

CRATER DATA

Moisture Content: 8.3

DENSITIES (G/CM..3): Pre-Shot: 1.62 Post Shot: True Crater: 0.467 Apparent Crater: 0.323 Flow: 0.144 CRATER VCLUMES (M**3):

A192

EVENT SUMMARY DATA

1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !			•		
Tent Number: HE6C-c (TEST 15)	TEST 15)	Surface Tangent	Test Number:	HE7C	(TEST 16)	Surface Tangent
Date: 05 AUGUST 83		Charge Shape: SPHERICAL	Date: 05 AUGUST 83	ST 83		Charge Shape: SPHERICAL
Detonation Coordinates: AZIMUTH (DEG): RANGE (M):		Charge Wt: 25.0 LB Event Time: ••:••	AZIMUTH (DEG): 090 RANGE (M): 37	37		Charge Wt: 25.0 LB Event Time:
METEDROLOGICAL DATA:			METEOROLOGICAL DATA:	DATA:		
Start Time: 12:22	End Time: 12:45	51	Start Time: 13:15	13:15	End Time: 13:30	13:30
Wind Speed (M/S): 2.5	٠		Wind Speed (M/S): 4.0	(M/S):	₽.0	
Wind Direction (DEG): 075	075		Wind Direction (DEG): 075	tion (DB	3): 075	
Temperature (C): 33.3			Temperature (C): NO DATA	e (C):	NO DATA	

	5 .	
	Range, Azimuth 37.0 090.0 37.0 090.0	
CONE INDEX:	Pre-Shot Post-Shot	CRATER DATA
	45 - 750+	
	30 678	
	372	
	370	
	Range, Azimuth 55.0 075.0 55.0 075.0	
COME INDEX:		CRITER DATA

45 | 45 | 595

30 ---583 433

15 258 113

Relative Humidity (%): NO DATA

		DENSITIES (3/CH**3): Pre-Shot: Post Shot: 1.64
CRATER DATA	Moisture Content: 11.8	CRATER VOLUMES (W**3): True Crater: *Apparent Crater: *Flow: *Flo
		DENSITIES (G/CH**3): Pre-Shot: • Post Shot: •
CRITER DATA	Moisture Content:	CRATER VOLUMES (M**3): True Crater: * Apparent Crater: * Flow: *

Relative Humidity (%): 35

APPENDIX B: SOILS DATA FROM DOT I AND DOT II EXERCISES

PIT SOIL DATA: DOT I

		Lo	cal	е	Soil	%				
Pit Sample	Date 1983		n) Y	Depth cm	Type USCS	Finer 0.074um	Density* gm/cc	Organic Matter%	Moisture Content%	Specific Gravity
P1	4-15	0	80	10	CL	71	1.44/1.26	3.6	11.5	2.68
P1A	4-15	0	80	150	CL	64	1.45/1.35	2.2	2.0	2.73
P2	4-15	40	80	10	CL	72	1.69/1.48	2.9	14.1	2.68
P2A	4-15	40	80	150	SC	30	1.57/1.50	1.4	4.9	2.76
P3	4-16	80	80	10	CL	-	1.62/1.45	-	10.3	2.65
P4	4-18	80	0	10	CL	- -	1.52/1.34	-	13.4	2.69
P4A	4-18	80	0	145	CL	78	1.51/1.38	2.2	9.4	2.72
P4B	4-18	80	0	60	CL	76	1.49/1.36	2.5	10.8	2.71
P5	4-18	40	0	10	CL	_	1.55/1.40	_	13.8	2.67
P5A	4-18	40	0	40	CL	79	-	2.8	-	2.72
P5B	4 -18	40	0	180	CL	81	1.51/1.38	1.7	9.2	2.76
P5C	4-18	40	0	40	CL	-	1.53/1.38	-	10.5	2.69
P6	4-18	0	0	10	CL	-	1.57/1.46	-	7.9	2.68
P6 ∄	4-18	0	0	65	CL	62	1,67/1.53	2.5	8.9	-

^{*} Density wet/density dry.

:

. |

A STATE OF THE PARTY OF THE PAR

PIT SOIL DATA: DOT II

		Lo	cal	8	Soil	%				
Pit Sample	Date 1983	X (1	n) Y	Depth om	Type USCS	Finer 0.074um	Density* gm/cc	Organic Matter#	Moisture Content%	Specific Gravity
P1	7-29	0	45	50	SC	40	1.63/1.53	1.2	6,6	2.68
P1A	7-29	0	45	175	SC	44	1.70/1.56	1.4	9.0	2.70
P2	7-29	270	46	70	CL	52	1.73/1.60	1.1	8.4	2.71
P2A	7-29	270	46	170	CL	57	1,58/1.45	1.8	9.3	2.70
P3	7-29	180	45	60	CL	85	_	3.1	7.5	2.70
P3 A	7-29	180	45	170	SC	20	-	0.8	3.2	2.67
.P4	7-29	90	45	75	CL	65	1.65/1.55	2.1	6.5	2.70
P4A	7-29	90	45	175	CL	57	1.75/1.63	1.5	7.5	2.70

^{*} Density wet/density dry.

