Table 1 Glossary of variables used in the generic case, "tank" (This is part of the tank.DEF file, created automatically by the GENOPT processor, GENTEXT, with use of information, variable names and one-line definitions provided by the GENOPT user.)

C=	======				=====	======	=======	
С	ARRAY	NU	MBER	OF		PROMPT		
С	?	(RO	WS,CO	LS)	ROLE	NUMBER	NAME	DEFINITION OF VARIABLE
C					(tank.PRO)	
C=	====== n	====	0,	0)	===== 2	10	====== GRAV	
C	n	,	_ `	0)	2	20	DIAVEH	= diameter of launch vehicle
C	n	,	0, 0,	0)	2	30	AFTDIA	= diameter of the aft dome of the tank
C		,	_	0)	2	35	AFTHI	= height of the aft dome of the tank
C	n n	,	0,	0)	2	40	FWDDIA	= diameter of the forward dome of the tank
C	n n	,	0,	0)	2	45	FWDHI	= height of the forward dome of the tank
C		,	0,	0)	2	50	FLTANK	= axial dist. from aft dome apex to fwd dome apex
C	n n	,	0,	0)	2	55	ZAPEX	= global axial coordinate of the aft dome apex
C	n	,	0,		2	60	DENPRP	= weight density of the propellant
C	n	,	0,	0) 0)	2	65	ZCG	= global axial coordinate of the tank cg
	n	(0,	,	1			= thickness of the tank aft dome skin
С	n	(0,	0)		70	THKAFT	
C	n	(0,	0)	1	75	THKMID	= thickness of the tank cylinder skin
C	n	(0,	0)	1	80	THKFWD	= thickness of the forward tank dome skin
C	n	(0,	0)	1	90	STRSPC	= spacing of the tank orthogrid stringers
C	n	(0,	0)	1	95 100	RNGSPC	= spacing of the tank orthogrid rings
C	n	(0,	0)	1	100	STRTHK	= thickness of the tank orthogrid stringers
C	n	(0,	0)	1	105	STRHI	= height of the tank orthogrid stringers
C	n	(0,	0)	1	110	RNGTHK	= thickness of the tank orthogrid rings
C	n	(0,	0)	1	115	RNGHI	= height of the tank orthogrid rings
C	n	(0,	0)	2	125	ETANK	= Young's modulus of the cold tank material
C	n	(0,	0)	2	130	NUTANK	= Poisson's ratio of the tank material
C	n	(0,	0)	2	135	DENTNK	= mass density of the tank material
C	n	(0,	0)	2	140	ALTNK	= coef.thermal expansion of tank material
C	n	(0,	0)	2	150	IAXIS	= tank is vertical (1) or horizontal (2)
C	n	(0,	0)	2	160	IZTANK	= strut support ring number in ZTANK(IZTANK)
C	У	•	10,	0)	1	165	ZTANK	= global axial coordinate of tank support ring
C	У		10,	0)	1	170	ZGRND	= global axial coordinate of "ground"
C	У	(10,	0)	2	180	STRTYP	= type of strut arrangement
C	n	(0,	0)	2	190	INPAIRS	= strut type number in NPAIRS(INPAIRS)
C	У	(3,	0)	2	195	NPAIRS	= number of strut pairs
C	У	(3,	0)	2	205	FITTNK	= length of end fitting attached to tank ring
C	У	(3,	0)	2	210	FEATNK	= axial "EA" stiffness of tank-end strut fitting
C	У	(3,	0)	2	215	ALFITT	= Coef.of thermal expansion of tank end fitting
C	У	(3,	0)	2	220	FITVEH	= length of strut end fitting attached to "ground"
C	У	(3,	0)	2	225	FEAVEH	= axial "EA" stiffness of "ground" end strut fitting
C	У	(3,	0)	2	230	ALFITV	= coef.of thermal expan. of "ground" end fitting
C	У	(3,	0)	1	240	ATANK	= circ.angle (deg.) to pinned tank end of strut
C	У	(3,	0)	1	245	AGRND	= circ.angle to pinned "ground" end of strut
C	У	(3,	0)	1	255	IDTUBE	= inner diam. of support tube active at launch
С	У	(3,	0)	2	265	FACLEN	= length factor for strut buckling as a shell
С	У	(3,	0)	2	270	DTSUP	= Average strut temperature minus ambient
С	У	(3,	0)	2	275	ODINNR	= outer diam.of the orbital tube assembly
С	У	(3,	0)	2	280	FLINNR	= Length of the orbital tube assembly
С	n	(0,	0)	2	285	NTUBES	= Choose 1 or 2 tubes in the orbital tube assembly
С	n	(0,	0)	2	295	ISTRUT	= index for simple strut (1), "PODS" strut (2)
С	У	(3,	0)	2	305	WALTYP	= type of wall constructions in strut type STRTYP
С	n	(0,	0)	1	315	WEBHI	= height of mid-tank T-ring web
С	n	(0,	0)	1	320	WEBTHK	= thickness of mid-tank T-ring web
С	n	(0,	0)	1	325	FLGHI	<pre>= width (height) of mid-tank T-ring flange</pre>

```
0)
                                330
                                      FLGTHK
                                                = thickness of mid-tank T-ring flange
     n
              3,
                   0)
                                340
                                      RNGTYP
                                                = propellant tank reinforcement type
     У
         (
С
              0,
                   0)
                         2
                                350
                                       IDUBAXL = propellant tank reinforcement type number in
     n
DUBAXL(IDUBAXL)
             3,
                                                = axial length of the propellant tank doubler
                   0)
                         1
                                355
                                      DUBAXL
                                                = max.thickness of the propellant tank doubler
              3,
                   0)
                         1
                                360
                                      DUBTHK
     У
                                                = thickness of the tank reinforcement ring
С
                                370
              3,
                   0)
                         1
                                      TRNGTH
     У
                                375
                                               = height of the tank reinforcement ring
С
              3,
                   0)
                                      TRNGHI
     У
                         1
             3,
                                               = hoop modulus of the tank ring
С
                   0)
                         2
                                380
                                      TRNGE
     У
         (
С
                                385
                                      ALRNGT
                                                = coef.of thermal expansion of the tank ring
             3,
                   0)
     У
         (
С
                         2
                                395
                                       ITHICK = thickness index in THICK(ITHICK)
            0,
                   0)
     n
         (
            15,
                                                = thickness of a lamina
С
                                400
                                      THICK
     У
                   0)
                         1
            15,
                   0)
С
                         1
                                405
                                      ANGLE
                                                = layup angle
     У
С
                                      MATTYP
                                                = Material type
             15,
                   0)
                         2
                                410
     У
                                      JLAYTYP = wall type number in LAYTYP(ILAYTYP, JLAYTYP)
С
     n
         (
             0,
                   0)
                         2
                                420
                                      ILAYTYP = layer number in LAYTYP(ILAYTYP, JLAYTYP)
С
                         2
                                425
     n
             Ο,
                   0)
            90,
                                      LAYTYP
C
                   3)
                         2
                                430
                                                = layer type index
     У
             0,
C
C
                   0)
                         2
                                440
                                                = material type in E1(IE1)
     n
             3,
                   0)
                         2
                                445
                                                = modulus in the fiber direction
     У
С
                         2
                                450
                                      E2
                                                = modulus transverse to fibers
             3,
                   0)
     У
                                      G12
             3,
                   0)
C
                         2
                                455
                                                = in-plane shear modulus
     У
С
                                                = small Poisson's ratio
             3,
                   0)
                         2
                                460
                                      NU
     У
С
     У
              3,
                   0)
                         2
                                465
                                      G13
                                                = x-z out-of-plane shear modulus
                                                = y-z out-of-plane shear modulus
С
                         2
     У
             3,
                   0)
                                470
                                      G23
                                                = coef.of thermal expansion along fibers
С
             3,
                         2
                                475
                                      ALPHA1
     У
                   0)
             3,
                   0)
                                                = coef.of thermal expan.transverse to fibers
С
                         2
                                480
                                      ALPHA2
     У
С
             3,
                   0)
                                485
                                      TEMTUR
                                                = curing delta temperature (positive)
     У
         (
С
                         2
                                490
                                               = conductivity along the fibers
             3,
                   0)
                                      COND1
     У
         (
С
                         2
                                495
                                                = conductivity transverse to fibers
             3,
                   0)
                                      COND2
             3,
                                               = weight density of the material
                   0)
С
                         2
                                500
                                      DENSTY
     У
              Ο,
                         2
                                510
                                                = objective=WGT*(empty tank mass) +(1-
                   0)
     n
WGT) * (conductance)
                   0)
                         2
                                515
                                                = normalizing empty tank mass
С
             Ο,
                                      TNKNRM
     n
         (
                                      CONNRM
                                                = normalizing total strut conductance
С
              0,
                   0)
                         2
                                520
     n
              Ο,
                                                = IPHASE=1=launch phase; IPHASE=2=orbital phase
С
     n
                   0)
                         2
                                530
                                      IPHASE
         (
              0,
                                540
                                      NCASES = Number of load cases (number of environments)
PRESS(NCASES)
                                                = propellant tank ullage pressure
С
             20,
                   0)
                         3
                                545
                                      PRESS
     У
                                                = quasi-static axial g-loading
С
             20,
                   0)
                         3
                                550
                                      GAXIAL
     У
         (
                                      GLATRL
С
             20,
                   0)
                         3
                                555
                                                = quasi-static lateral g-loading
     У
                                      TNKCOOL = propellant tank cool-down from cryogen
С
                         3
                                560
     У
         (
            20,
                   0)
С
             0,
                                                = vibration mode type in FREQ(NCASES, JFREQ)
                         2
                                570
                   0)
                                      JFREQ
     n
         (
                                                = modal vibration frequency (cps)
С
            20,
                   4)
                                575
                                      FREQ
     У
         (
С
            20,
                   4)
                                580
                                                = minimum allowable frequency (cps)
     У
         (
С
                                                = factor of safety for frequency
             20,
                   4)
                                585
     У
            Ο,
С
                                      JSTRES1 = stress component number in STRES1(NCASES, JSTRES1)
                   0)
                         2
                                595
     n
                                      STRES1 = maximum stress in material 1
STRES1A = maximum allowable stress in material 1
STRES1F = factor of safety for stress, matl 1
STRES2 = maximum stress in material 2
                   6)
С
            20,
                         4
                                600
     У
С
            20,
                         5
                                605
                   6)
     У
         (
С
     У
         (
            20,
                   6)
                         6
                                610
С
                                615
            20,
     У
         (
                   6)
                         4
                                      STRES2A = maximum allowable stress in material 2
С
            20,
                         5
                   6)
                                620
     У
         (
         ( 20,
С
                                      STRES2F = factor of safety for stress, matl 2
                   6)
                         6
                                625
     У
С
         (20,
                   6)
                         4
                                630
                                      STRES3 = maximum stress in material 3
     У
С
            20,
                   6)
                         5
                                635
                                      STRES3A = maximum allowable stress in material 3
     У
         (
                                      STRES3F = factor of safety for stress, matl 3
JCOLBUK = strut set number (1 for aft-most set) in
            20,
С
                   6)
                         6
                                640
             0,
С
                   0)
                         2
                                645
     n
COLBUK(NCASES, JCOLBUK)
                                650
                          4
                                      COLBUK
                                                = buckling of a strut as a column
С
     У
         (
             20,
С
             20,
                         5
                                655
                                      COLBUKA = allowable for column buckling of strut
                   3)
     У
С
            20,
                   3)
                         6
                                660
                                      COLBUKF = factor of safety for Euler strut buckling
     У
         (
            20,
                                665
                                      SHLBUK = buckling of strut as a shell
     У
         (
                   3)
С
            20,
                         5
                                670
                                      SHLBUKA = allowable for shell buckling of strut
                   3)
     У
         (
С
                                675
                                      SHLBUKF = factor of safety for shell buckling of strut
           20,
                   3)
                         6
            20,
                                      FORCE = launch-hold force in a strut
FORCEA = maximum allowable launch-hold force in strut
С
                         4
                                680
                   3)
     У
            20,
                                685
```

```
20,
                  3)
                              690
                                    FORCEF = factor of safety for launch-hold force
     У
            20,
                  3)
                              695
                                    TNKSTR = maximum stress in the propellant tank
     У
         (
С
         (20,
                  3) 5
                              700
                                    TNKSTRA = allowable for propellant tank stress
                  3) 6
3) 4
        ( 20,
                              705
С
                                    TNKSTRF = factor of safety for tank stress
                                    TNKBUK = propellant tank buckling load factor
TNKBUKA = allowable for propellant tank buckling
TNKBUKF = factor of safety for tank buckling
CONDCT = WGTXTOTMAS/TNKNRM +(1-WGT)xCONDCT/CONNRM
                              710
        (20,
     У
           20,
                  3)
                        5
                              715
     У
           20,
                  3)
                        6
                              720
            0,
                       7
                  0)
                              730
     n
```

Table 2 Input data for the GENOPT processor, BEGIN (test.BEG file) (These input data are provided by the End user for the specific case called "test"; See Figs. 1-3.)

```
$ Do you want a tutorial session and tutorial output?
 386.4000
              $ acceleration of gravity: GRAV
              $ diameter of launch vehicle: DIAVEH
     300
              $ diameter of the aft dome of the tank: AFTDIA
     200
     50
              $ height of the aft dome of the tank: AFTHI
              $ diameter of the forward dome of the tank: FWDDIA
     200
     50
              $ height of the forward dome of the tank: FWDHI
              $ axial dist. from aft dome apex to fwd dome apex: FLTANK
     400
              $ global axial coordinate of the aft dome apex: ZAPEX
     100
0.2560000E-02 $ weight density of the propellant: DENPRP
              $ global axial coordinate of the tank cg: ZCG
     300
              $ thickness of the tank aft dome skin: THKAFT
0.1000000
              $ thickness of the tank cylinder skin: THKMID
0.1000000
0.1000000
              $ thickness of the forward tank dome skin: THKFWD
              $ spacing of the tank orthogrid stringers: STRSPC
      10
              $ spacing of the tank orthogrid rings: RNGSPC
      10
              $ thickness of the tank orthogrid stringers: STRTHK
0.5000000
              $ height of the tank orthogrid stringers: STRHI
       1
              $ thickness of the tank orthogrid rings: RNGTHK
0.5000000
              $ height of the tank orthogrid rings: RNGHI
0.1000000E+08 $ Young's modulus of the cold tank material: ETANK
0.3000000
              $ Poisson's ratio of the tank material: NUTANK
0.2500000E-03 $ mass density of the tank material: DENTNK
0.1000000E-04 $ coef.thermal expansion of tank material: ALTNK
       1
              $ tank is vertical (1) or horizontal (2): IAXIS
              $ Number IZTANK of rows in the array ZTANK: IZTANK
       2
     150
              $ global axial coordinate of tank support ring: ZTANK(
              $ global axial coordinate of tank support ring: ZTANK(
     450
              $ global axial coordinate of "ground": ZGRND(
     50
     550
              $ global axial coordinate of "ground": ZGRND(
              $ type of strut arrangement: STRTYP( 1)
       1
       2
              $ type of strut arrangement: STRTYP(
              $ Number INPAIRS of rows in the array NPAIRS: INPAIRS
              $ number of strut pairs: NPAIRS( 1)
       4
       4
              $ number of strut pairs: NPAIRS(
              $ length of end fitting attached to tank ring: FITTNK(
```

```
$ length of end fitting attached to tank ring: FITTNK( 2)
0.1000000E+08 $ axial "EA" stiffness of tank-end strut fitting: FEATNK(
                                                                         1)
0.1000000E+08 $ axial "EA" stiffness of tank-end strut fitting: FEATNK( 2)
0.1000000E-04 $ Coef.of thermal expansion of tank end fitting: ALFITT( 1)
0.1000000E-04 $ Coef.of thermal expansion of tank end fitting: ALFITT( 2)
              $ length of strut end fitting attached to "ground": FITVEH( 1)
              $ length of strut end fitting attached to "ground": FITVEH(
0.1000000E+08 $ axial "EA" stiffness of "ground" end strut fitting: FEAVEH(
0.1000000E+08 $ axial "EA" stiffness of "ground" end strut fitting: FEAVEH(
0.1000000E-04 $ coef.of thermal expan. of "ground" end fitting: ALFITV( 1)
0.1000000E-04 $ coef.of thermal expan. of "ground" end fitting: ALFITV( 2)
              $ circ.angle (deg.) to pinned tank end of strut: ATANK(
      10
      10
              $ circ.angle (deg.) to pinned tank end of strut: ATANK(
              $ circ.angle to pinned "ground" end of strut: AGRND(
      25
              $ circ.angle to pinned "ground" end of strut: AGRND( 2)
      25
              $ inner diam. of support tube active at launch: IDTUBE(
       5
              $ inner diam. of support tube active at launch: IDTUBE(
                                                                       2)
0.1000000
              $ length factor for strut buckling as a shell: FACLEN(
0.1000000
              $ length factor for strut buckling as a shell: FACLEN(
              $ Average strut temperature minus ambient: DTSUP(
    -100
              $ Average strut temperature minus ambient: DTSUP(
    -100
              $ outer diam.of the orbital tube assembly: ODINNR(
       2
       2
              $ outer diam.of the orbital tube assembly: ODINNR(
              $ Length of the orbital tube assembly: FLINNR(
       4
              $ Length of the orbital tube assembly: FLINNR(
       4
              $ Choose 1 or 2 tubes in the orbital tube assembly: NTUBES
       1
              $ index for simple strut (1), "PODS" strut (2): ISTRUT
              $ type of wall constructions in strut type STRTYP: WALTYP(
       1
                                                                          1)
              $ type of wall constructions in strut type STRTYP: WALTYP(
       2
                                                                          2)
 0.00001
              $ height of mid-tank T-ring web: WEBHI
              $ thickness of mid-tank T-ring web: WEBTHK
 0.00001
              $ width (height) of mid-tank T-ring flange: FLGHI
 0.00001
 0.00001
              $ thickness of mid-tank T-ring flange: FLGTHK
              $ propellant tank reinforcement type: RNGTYP(
       1
              $ propellant tank reinforcement type: RNGTYP(
       1
       1
              $ Number IDUBAXL of rows in the array DUBAXL: IDUBAXL
      30
              $ axial length of the propellant tank doubler: DUBAXL(
0.1000000
              $ max.thickness of the propellant tank doubler: DUBTHK(
0.2000000
              $ thickness of the tank reinforcement ring: TRNGTH( 1)
              $ height of the tank reinforcement ring: TRNGHI( 1)
 1.000000
0.1000000E+08 $ hoop modulus of the tank ring: TRNGE( 1)
0.1000000E-04 $ coef.of thermal expansion of the tank ring: ALRNGT(
                                                                     1)
              $ Number ITHICK of rows in the array THICK: ITHICK
      12
0.1000000
              $ thickness of a lamina: THICK(
                                               1)
              $ thickness of a lamina: THICK(
                                               2)
0.1000000
0.1000000
              $ thickness of a lamina: THICK(
                                               3)
0.1000000
              $ thickness of a lamina: THICK(
                                               4)
0.1000000
              $ thickness of a lamina: THICK(
                                               5)
0.1000000
              $ thickness of a lamina: THICK(
                                               6)
0.1000000
              $ thickness of a lamina: THICK(
                                               7)
0.1000000
              $ thickness of a lamina: THICK(
                                               8)
0.1000000
              $ thickness of a lamina: THICK(
0.1000000
              $ thickness of a lamina: THICK( 10)
```

```
0.1000000
             $ thickness of a lamina: THICK( 11)
0.1000000
             $ thickness of a lamina: THICK( 12)
             $ layup angle: ANGLE( 1)
     45
    -45
             $ layup angle: ANGLE(
                                    2)
             $ layup angle: ANGLE( 3)
     45
             $ layup angle: ANGLE( 4)
    -45
             $ layup angle: ANGLE(
     45
                                    5)
            $ layup angle: ANGLE(
    -45
             $ layup angle: ANGLE( 7)
     45
             $ layup angle: ANGLE( 8)
    -45
     45
             $ layup angle: ANGLE( 9)
             $ layup angle: ANGLE(10)
    -45
     45
             $ layup angle: ANGLE( 11)
           $ layup angle: ANGLE( 12)
$ Material type: MATTYP( 1)
     -45
      1
             $ Material type: MATTYP(
      1
      1
             $ Material type: MATTYP( 3)
             $ Material type: MATTYP( 4)
      1
      1
             $ Material type: MATTYP( 5)
      1
             $ Material type: MATTYP( 6)
      1
             $ Material type: MATTYP( 7)
      1
             $ Material type: MATTYP( 8)
      1
             $ Material type: MATTYP( 9)
             $ Material type: MATTYP( 10)
      1
             $ Material type: MATTYP( 11)
      1
      1
             $ Material type: MATTYP( 12)
      2
             $ Number JLAYTYP of columns in the array, LAYTYP: JLAYTYP
      12
             $ Number ILAYTYP of rows in this column of LAYTYP: ILAYTYP
             $ layer type index: LAYTYP( 1, 1)
      1
      2
             $ layer type index: LAYTYP( 2, 1)
             $ layer type index: LAYTYP( 3, 1)
      3
             $ layer type index: LAYTYP( 4, 1)
      4
      5
             $ layer type index: LAYTYP( 5, 1)
      6
             $ layer type index: LAYTYP( 6, 1)
             $ layer type index: LAYTYP( 7, 1)
      6
      5
             $ layer type index: LAYTYP( 8, 1)
             $ layer type index: LAYTYP( 9, 1)
      3
             $ layer type index: LAYTYP( 10,
                                              1)
      2
             $ layer type index: LAYTYP( 11, 1)
      1
             $ layer type index: LAYTYP( 12, 1)
             $ Number ILAYTYP of rows in this column of LAYTYP: ILAYTYP
      12
      7
             $ layer type index: LAYTYP( 1, 2)
             $ layer type index: LAYTYP( 2,
      8
                                              2)
      9
             $ layer type index: LAYTYP( 3,
                                              2)
             $ layer type index: LAYTYP( 4,
      10
                                              2)
      11
             $ layer type index: LAYTYP( 5,
                                              2)
      12
             $ layer type index: LAYTYP( 6,
                                              2)
      12
             $ layer type index: LAYTYP( 7,
                                              2)
             $ layer type index: LAYTYP( 8,
      11
                                              2)
      10
             $ layer type index: LAYTYP( 9, 2)
             $ layer type index: LAYTYP( 10, 2)
      9
      8
             $ layer type index: LAYTYP( 11, 2)
             $ layer type index: LAYTYP( 12, 2)
```

```
$ Number IE1
                               of rows in the array E1: IE1
0.2100000E+08 $ modulus in the fiber direction: E1(
              $ modulus transverse to fibers: E2(
1600000.
679000.0
              $ in-plane shear modulus: G12( 1)
0.2300000E-01 $ small Poisson's ratio: NU( 1)
627000.0
              $ x-z out-of-plane shear modulus: G13(
              $ y-z out-of-plane shear modulus: G23(
334000.0
                                                      1)
0.1000000E-05 $ coef.of thermal expansion along fibers: ALPHA1( 1)
0.1000000E-04 $ coef.of thermal expan.transverse to fibers: ALPHA2(
                                                                     1)
              $ curing delta temperature (positive): TEMTUR( 1)
0.7270000E-02 $ conductivity along the fibers: COND1( 1)
0.4370000E-02 $ conductivity transverse to fibers: COND2(
0.5700000E-01 $ weight density of the material: DENSTY( 1)
0.5000000
              $ objective=WGT*(empty tank mass) +(1-WGT)*(conductance): WGT
10.00000
              $ normalizing empty tank mass: TNKNRM
0.2000000E-02 $ normalizing total strut conductance: CONNRM
              $ IPHASE=1=launch phase; IPHASE=2=orbital phase: IPHASE
       1
       2
              $ Number NCASES of load cases (environments): NCASES
25.00000
              $ propellant tank ullage pressure: PRESS(
              $ propellant tank ullage pressure: PRESS(
25.00000
              $ quasi-static axial q-loading: GAXIAL( 1)
      10
              $ quasi-static axial g-loading: GAXIAL( 2)
       0
       0
              $ quasi-static lateral q-loading: GLATRL(
              $ quasi-static lateral g-loading: GLATRL(
      10
              $ propellant tank cool-down from cryogen: TNKCOOL(
-200.0000
              $ propellant tank cool-down from cryogen: TNKCOOL(
-200.0000
              $ Number JFREO
                              of columns in the array, FREQ: JFREQ
       4
              $ minimum allowable frequency (cps): FREQA(
      10
                                                               1)
              $ minimum allowable frequency (cps): FREQA(
      10
                                                               1)
              $ minimum allowable frequency (cps): FREQA(
      10
                                                               2)
              $ minimum allowable frequency (cps): FREQA(
      10
                                                               2)
              $ minimum allowable frequency (cps): FREQA(
      10
                                                               3)
              $ minimum allowable frequency (cps): FREQA(
      10
              $ minimum allowable frequency (cps): FREQA(
      10
                                                           1,
                                                               4)
              $ minimum allowable frequency (cps): FREQA(
      10
                                                               4)
1.200000
              $ factor of safety for frequency: FREQF( 1,
                                                           1)
              $ factor of safety for frequency: FREQF(
1.200000
                                                           1)
1.200000
              $ factor of safety for frequency: FREQF(
              $ factor of safety for frequency: FREQF(
1.200000
              $ factor of safety for frequency: FREQF(
1.200000
              $ factor of safety for frequency: FREQF(
                                                           3)
1.200000
              $ factor of safety for frequency: FREQF(
1.200000
1.200000
              $ factor of safety for frequency: FREQF( 2,
              $ Number JSTRES1 of columns in the array, STRES1: JSTRES1
              $ maximum allowable stress in material 1: STRES1A(
 140571
                                                                      1)
              $ maximum allowable stress in material 1: STRES1A(
 140571
                                                                      1)
 104714
              $ maximum allowable stress in material 1: STRES1A(
                                                                      2)
 104714
              $ maximum allowable stress in material 1: STRES1A(
                                                                      2)
              $ maximum allowable stress in material 1: STRES1A(
  10557
                                                                      3)
              $ maximum allowable stress in material 1: STRES1A(
  10557
                                                                      3)
              $ maximum allowable stress in material 1: STRES1A(
  14529
                                                                      4)
  14529
              $ maximum allowable stress in material 1: STRES1A(
                                                                      4)
   6290
              $ maximum allowable stress in material 1: STRES1A(
                                                                      5)
```

```
6290
             $ maximum allowable stress in material 1: STRES1A(
                                                                       5)
                                                                   2,
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                    1)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                    1)
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
                                                                    2)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                    2)
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
                                                                    3)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                    3)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                    4)
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
                                                                    4)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                    5)
             $ maximum allowable stress in material 2: STRES2A(
140571
                                                                       1)
             $ maximum allowable stress in material 2: STRES2A(
140571
                                                                       1)
             $ maximum allowable stress in material 2: STRES2A(
104714
                                                                       2)
             $ maximum allowable stress in material 2: STRES2A(
 104714
                                                                       2)
             $ maximum allowable stress in material 2: STRES2A(
  10557
                                                                       3)
  10557
             $ maximum allowable stress in material 2: STRES2A(
                                                                   2,
                                                                       3)
             $ maximum allowable stress in material 2: STRES2A(
  14529
                                                                       4)
  14529
             $ maximum allowable stress in material 2: STRES2A(
                                                                       4)
             $ maximum allowable stress in material 2: STRES2A(
   6290
                                                                       5)
             $ maximum allowable stress in material 2: STRES2A(
                                                                   2,
   6290
                                                                       5)
             $ factor of safety for stress, matl 2: STRES2F(
                                                                   1)
1.500000
1.500000
             $ factor of safety for stress, matl 2: STRES2F(
                                                                   1)
             $ factor of safety for stress, matl 2: STRES2F(
1.500000
                                                                   2)
             $ factor of safety for stress, matl 2: STRES2F(
1.500000
                                                                    2)
1.500000
             $ factor of safety for stress, matl 2: STRES2F(
                                                                    3)
             $ factor of safety for stress, matl 2: STRES2F(
1.500000
                                                                    3)
             $ factor of safety for stress, matl 2: STRES2F(
1.500000
                                                                    4)
             $ factor of safety for stress, matl 2: STRES2F(
1.500000
                                                                    4)
             $ factor of safety for stress, matl 2: STRES2F(
1.500000
             $ factor of safety for stress, matl 2: STRES2F(
1.500000
                                                                    5)
             $ maximum allowable stress in material 3: STRES3A(
 140571
                                                                   1,
                                                                       1)
             $ maximum allowable stress in material 3: STRES3A(
140571
                                                                       1)
             $ maximum allowable stress in material 3: STRES3A(
104714
                                                                       2)
             $ maximum allowable stress in material 3: STRES3A(
 104714
                                                                       2)
             $ maximum allowable stress in material 3: STRES3A(
  10557
                                                                       3)
             $ maximum allowable stress in material 3: STRES3A(
  10557
                                                                   2,
                                                                       3)
             $ maximum allowable stress in material 3: STRES3A(
  14529
                                                                       4)
             $ maximum allowable stress in material 3: STRES3A(
                                                                       4)
  14529
             $ maximum allowable stress in material 3: STRES3A(
   6290
                                                                       5)
             $ maximum allowable stress in material 3: STRES3A(
                                                                   2,
   6290
                                                                       5)
             $ factor of safety for stress, matl 3: STRES3F(
1.500000
                                                                   1)
             $ factor of safety for stress, matl 3: STRES3F(
1.500000
                                                                    1)
1.500000
             $ factor of safety for stress, matl 3: STRES3F(
                                                                   2)
             $ factor of safety for stress, matl 3: STRES3F(
1.500000
                                                                    2)
             $ factor of safety for stress, matl 3: STRES3F(
1.500000
                                                                    3)
             $ factor of safety for stress, matl 3: STRES3F(
1.500000
                                                                    3)
1.500000
             $ factor of safety for stress, matl 3: STRES3F(
                                                                    4)
             $ factor of safety for stress, matl 3: STRES3F(
1.500000
                                                                    4)
             $ factor of safety for stress, matl 3: STRES3F(
1.500000
                                                                    5)
1.500000
             $ factor of safety for stress, matl 3: STRES3F(
                                                                    5)
      2
             $ Number JCOLBUK of columns in the array, COLBUK: JCOLBUK
             $ allowable for column buckling of strut: COLBUKA( 1, 1)
```

```
$ allowable for column buckling of strut: COLBUKA(
                                                                      1)
      1
             $ allowable for column buckling of strut: COLBUKA(
                                                                      2)
             $ allowable for column buckling of strut: COLBUKA(
      1
                                                                      2)
      1
             $ factor of safety for Euler strut buckling: COLBUKF(
                                                                         1)
             $ factor of safety for Euler strut buckling: COLBUKF(
      1
                                                                         1)
      1
             $ factor of safety for Euler strut buckling: COLBUKF(
                                                                         2)
             $ factor of safety for Euler strut buckling: COLBUKF(
                                                                     2,
      1
                                                                         2)
             $ allowable for shell buckling of strut: SHLBUKA(
      1
                                                                     1)
      1
             $ allowable for shell buckling of strut: SHLBUKA(
                                                                     1)
      1
             $ allowable for shell buckling of strut: SHLBUKA(
      1
             $ allowable for shell buckling of strut: SHLBUKA(
                                                                     2)
      2
             $ factor of safety for shell buckling of strut: SHLBUKF(
                                                                            1)
      2
             $ factor of safety for shell buckling of strut: SHLBUKF(
                                                                            1)
      2
             $ factor of safety for shell buckling of strut: SHLBUKF(
                                                                            2)
      2
             $ factor of safety for shell buckling of strut: SHLBUKF( 2,
                                                                            2)
             $ maximum allowable launch-hold force in strut: FORCEA(
  15000
                                                                           1)
             $ maximum allowable launch-hold force in strut: FORCEA(
  15000
                                                                           1)
             $ maximum allowable launch-hold force in strut: FORCEA(
  15000
                                                                           2)
  15000
             $ maximum allowable launch-hold force in strut: FORCEA(
                                                                           2)
             $ factor of safety for launch-hold force: FORCEF(
      1
                                                                     1)
             $ factor of safety for launch-hold force: FORCEF(
      1
                                                                 2,
                                                                     1)
             $ factor of safety for launch-hold force: FORCEF(
      1
                                                                     2)
      1
             $ factor of safety for launch-hold force: FORCEF( 2,
                                                                     2)
             $ allowable for propellant tank stress: TNKSTRA(
50000.00
                                                                    1)
50000.00
             $ allowable for propellant tank stress: TNKSTRA(
                                                                    1)
50000.00
             $ allowable for propellant tank stress: TNKSTRA(
                                                                    2)
50000.00
             $ allowable for propellant tank stress: TNKSTRA(
                                                                    2)
             $ factor of safety for tank stress: TNKSTRF( 1,
      1
                                                                1)
             $ factor of safety for tank stress: TNKSTRF(
      1
                                                                1)
             $ factor of safety for tank stress: TNKSTRF(
      1
             $ factor of safety for tank stress: TNKSTRF(
      1
                                                                2)
             $ allowable for propellant tank buckling: TNKBUKA(
      1
                                                                  1,
                                                                      1)
             $ allowable for propellant tank buckling: TNKBUKA(
      1
                                                                      1)
             $ allowable for propellant tank buckling: TNKBUKA(
      1
                                                                      2)
             $ allowable for propellant tank buckling: TNKBUKA(
      1
                                                                      2)
      1
             $ factor of safety for tank buckling: TNKBUKF(
                                                                  1)
      1
             $ factor of safety for tank buckling: TNKBUKF(
                                                                  1)
             $ factor of safety for tank buckling: TNKBUKF( 1,
                                                                  2)
      1
             $ factor of safety for tank buckling: TNKBUKF(
      1
```

Table 3 Feasible Optimum Designs for the Long Propellant Tank with 3, 4 and 5 Pairs of Struts at Each of 2 Axial Locations (Dimensions in inches and degrees. These optimum designs were obtained after the August 2012 and February 2013 updates to the "tank" software, struct.tank and behavior.tank.)

•	_		=======================================
	3 strut		5 strut
	-	=	
	1.030E-01		
	5.488E-02		
	4.807E-02		
STRSPC	9.202E+00	7.891E+00	6.772E+00
RNGSPC	9.515E+00	7.907E+00	6.467E+00
STRTHK	2.341E-01	2.601E-01	2.569E-01
STRHI	5.355E-01	6.714E-01	6.119E-01
RNGTHK	2.329E-01	4.095E-01	4.510E-01
	5.355E-01		
ZTANK(1)	1.500E+02	1.500E+02	1.500E+02
ZTANK(2)	4.500E+02	4.500E+02	4.500E+02
	7.753E+01		9.860E+01
	5.350E+02		
ATANK(1)	6.186E+00	6.000E+00	6.000E+00
ATANK(2)	6.173E+00	6.001E+00	6.000E+00
AGRND(1)	5.719E+01	4.500E+01	3.599E+01
	6.000E+01		
IDTUBE(1)	6.481E+00	5.617E+00	5.128E+00
	7.080E+00		
DUBAXL(1)	3.000E+01	3.000E+01	3.000E+01
DUBTHK(1)	5.308E-01	7.272E-01	7.817E-01
	9.484E-02		
	4.742E-01		
	8.017E=03		
THICK(7)	7.899E-03	6.695E-03	6.045E-03
ANGLE(1)	1.003E+01	1.002E+01	1.000E+01
` ,	1.003E+01		
` '	1.003E+01		
, ,			1.108E+01
	1.000E+01		
ANGLE(11)	1.000E+01	4.980E+01	4.903E+01
Objective	= WGTxTOTMAS/TI		
with WGT =	= 0.5, TNKNRM $=$	10.0 lb-sec^2/	inch, CONNRM = 0.002 BTU/hr-deg.R
Objective	7.305E-01	9.099E-01	1.049E+00
	7.9226E+00		
CONDCT	1.3377E-03	1.5450E-03	1.9469E-03

Table 4 Behaviors of Feasible Optimum Designs for the Long Propellant Tank with 3, 4 and 5 Pairs of Struts at Each of 2 Axial Locations. These behaviors correspond to the optimum designs that were obtained after the August 2012 and February 2013 updates to the "tank" software, struct.tank and behavior.tank. See the previous table.)

=======================================	=======================================					
Behavior	3 strut	4 strut	5 strut			
	pairs	pairs	pairs			
Load Case 1:						
FREQ(1,1)	1.297E+01	1.213E+01	1.234E+01			
FREQ(1,2)	1.285E+01	1.205E+01	1.277E+01			
FREQ(1,3)	1.287E+01	1.316E+01	1.331E+01			
FREQ(1,4)	1.323E+01	1.337E+01	1.345E+01			
STRES1(1,1)	8.599E+03	5.854E+03	5.632E+03			
STRES1(1,2)	2.516E+04	2.493E+04	2.496E+04			
STRES1(1,3)	4.301E+03	4.258E+03	4.257E+03			
STRES1(1,4)	4.301E+03 8.493E+01 6.380E+02 4.178E+04	1.000E-10	1.000E-10			
STRES1(1,5)	6.380E+02	1.000E+03	1.001E+03			
STRES2(1,1)	4.178E+04	6.137E+04	6.210E+04			
STRES2(1,2)	9.007E+03	1.052E+04	1.051E+04			
STRES2(1,3)		6.534E+03				
	9.131E+02					
STRES2(1,5)						
		2.368E+00	2.899E+00			
, , ,	5.369E+03					
		4.392E+00				
SHLBUK(1,2)		1.365E+02	1.389E+02			
FORCE(1,1)		7.446E+03	8.520E+03			
FORCE(1,2)	1.574E+04	1.489E+04	1.458E+04			
TNKSTR(1,1)	5.215E+04	4.983E+04	4.999E+04			
TNKSTR(1,2)	5.216E+04	4.983E+04	4.999E+04			
TNKBUK(1,1)	6.194E+00	1.874E+01 1.874E+01	1.955E+01			
TNKBUK(1,2)	5.215E+04 5.216E+04 6.194E+00 6.192E+00	1.874E+01	1.955E+01			
Load Case 2:						
FREQ(2,1)	1.194E+01	1.205E+01	1.227E+01			
FREQ(2,2)	1.197E+01	1.209E+01	1.266E+01			
	1.280E+01		1.330E+01			
		1.336E+01	1.344E+01			
		7.228E+04				
, , ,		3.823E+04				
STRES1(2,3)	5.201E+03	6.952E+03	7.053E+03			

AIAA Paper 2013-1479, AIAA Structures, Structural Dynamics and Materials Meeting, Boston, Massachusetts, April 8-12, 2013

STRES1(2,4)	1.079E+03	1.000E-10	1.000E-10	
STRES1(2,5)	1.351E+03	4.108E+03	4.213E+03	
STRES2(2,1)	4.523E+04	7.095E+04	7.368E+04	
STRES2(2,2)	2.628E+04	3.772E+04	2.781E+04	
STRES2(2,3)	5.138E+03	6.972E+03	7.060E+03	
STRES2(2,4)	9.999E+02	1.000E-10	1.000E-10	
STRES2(2,5)	1.297E+03	3.915E+03	4.226E+03	
COLBUK(2,1)	1.988E+00	1.428E+00	2.597E+00	
COLBUK(2,2)	2.440E+00	1.624E+00	2.729E+00	
SHLBUK(2,1)	2.659E+00	2.648E+00	3.888E+00	
SHLBUK(2,2)	2.953E+00	2.419E+00	3.646E+00	
FORCE(2,1)	4.690E+03	6.904E+03	8.202E+03	
FORCE(2,2)	1.379E+04	1.436E+04	1.426E+04	
TNKSTR(2,1)	5.173E+04	5.046E+04	4.955E+04	
TNKSTR(2,2)	5.172E+04	5.046E+04	4.955E+04	
TNKBUK(2,1)	1.698E+01	1.446E+01	1.222E+01	
TNKBUK(2,2)	1.707E+01	1.446E+01	1.222E+01	

Table 5 Feasible Optimum Designs for the Short Propellant Tank with 3, 4 and 5 Pairs of Struts Attached at the Midlength of the Tank

(Dimensions in inches and degrees. These optimum designs were obtained after the August 2012 and February 2013 updates to the "tank" software, struct.tank and behavior.tank.)

=======	==========	==========	=======================================
Decision	3 strut	4 strut	5 strut
		pairs	
THKAFT	2.619E-02	2.220E-02	5.315E-02
		7.152E-02	
THKFWD	2.827E-02	3.031E-02	3.638E-02
STRSPC	3.000E+00	3.000E+00	3.000E+00
		3.003E+00	
STRTHK	1.444E-01	1.557E-01	1.464E-01
STRHI	9.977E-01	1.000E+00	5.449E-01
RNGTHK	2.635E-01	1.579E-01	1.763E-01
RNGHI	9.977E-01	1.000E+00	5.449E-01
ZTANK(1)	1.750E+02	1.750E+02	1.750E+02
ZGRND(1)	9.595E+01	1.067E+02	1.059E+02
ATANK(1)	6.000E+00	6.000E+00	6.000E+00
AGRND(1)	5.357E+01	4.500E+01	3.600E+01
		5.177E+00	
DUBAXL(1)	3.000E+01	3.000E+01	3.000E+01
DUBTHK(1)	1.517E-01	1.852E-01	5.590E-01
		1.000E-01	
TRNGHI(1)	5.000E-01	5.000E-01	2.021E+00
THICK(1)	5.730E-03	5.587E-03	5.782E-03
ANGLE(1)	1.358E+01	1.264E+01	1.139E+01
ANGLE(3)	1.000E+01	1.000E+01	1.162E+01
ANGLE (5)	6.121E+01	6.532E+01	8.000E+01
Objective	─────────────────────────────────────	 NKNRM +(1-WGT)x	CONDCT/CONNRM
			nch, CONNRM = 0.0006 BTU/hr-deg.R
		1.214E+00	
		4.6609E+00	
		5.2505E-04	
COMPCI	J. 7240E-04	J. 2JUJE-U4	0.0/045-04

Table 6 Behaviors of Feasible Optimum Designs for the Short Propellant Tank with 3, 4 and 5 Pairs of Struts Attached at the Tank Midlength. (These behaviors correspond to the optimum designs that were obtained after the August 2012 and February 2013 updates to the "tank" software, struct.tank and behavior.tank. See the previous table.)

=========	=========		
Behavior	3 strut	4 strut	5 strut
		pairs	pairs
Load Case 1:			
FREQ(1,1)	1.349E+01 1.263E+01	1.582E+01	1.834E+01
FREQ(1,2)	1.263E+01	1.375E+01	1.280E+01
FREQ(1,3)	4.270E+01	4.216E+01	4.919E+01
FREQ(1,4)	4.050E+01	4.092E+01	4.726E+01
STRES1(1,1)	4.637E+03	5.179E+03	6.524E+03
STRES1(1,2)	3.933E+04	3.518E+04	3.026E+04
STRES1(1,3)	4.246E+03	4.247E+03	4.243E+03
• • •	1.000E-10		
	1.290E+03		
	1.165E+00		1.847E+00
SHLBUK(1,1)	2.324E+00	2.869E+00	3.831E+00
FORCE(1,1)	3.208E+03	2.408E+03	1.727E+03
TNKSTR(1,1)	5.020E+04 2.410E+01	5.036E+04	4.997E+04
TNKBUK(1,1)	2.410E+01	1.504E+01	1.179E+01
Load Case 2:			
	1.284E+01	1.378E+01	1.713E+01
FREQ(2,2)	1.203E+01	1.201E+01	1.195E+01
FREQ(2,3)		4.172E+01	
FREQ(2,4)		4.065E+01	
STRES1(2,1)		5.412E+04	
STRES1(2,2)		4.872E+04	4.952E+04
STRES1(2,3)		7.043E+03	7.054E+03
STRES1(2,4)		1.000E-10	1.000E-10
STRES1(2,5)	2.357E+03	1.868E+03	7.472E+02
COLBUK(2,1)	1.008E+00	9.991E-01	1.022E+00
SHT.BUK(2 1)	2.010E+00	1.994E+00	2.121E+00
FORCE(2,1) TNKSTR(2,1)	3.208E+03	2.408E+03	1.727E+03
TNKSTR(2,1)	5.021E+04	5.034E+04	5.044E+04
TNKBUK(2,1)	3.782E+01	3.533E+01	8.574E+00
=========	=========		

Table 7 Comparisons between predictions from STAGS and from GENOPT/TANK for the earlier optimized long propellant tank with aft (Lower) and forward (Upper) sets of struts, 4 pairs of struts in each set. (The earlier optimum design is that obtained before the August 2012 and February 2013 updates to the GENOPT/TANK software, behavior.tank and struct.tank. This earlier optimum design is listed in the section entitled: "Section 10. DECISION VARIABLE CANDIDATES FOR THE OPTIMIZED SPECIFIC CASE CALLED "test": THE LONG PROPELLANT TANK WITH TWO SETS OF STRUTS, AFT AND FORWARD, 4 PAIRS OF STRUTS IN EACH SET")

(a) Comparison of major-mass modes (modes in which there is significant strut extension/compression) followed by shell deformation modes (modes in which there is much less strut energy):

Mada Description	Vibration Frequency (Hz)			
Mode Description	STAGS	GENOPT/TANK		
Tank axial motion	13.46	12.06		
Tank lateral-pitching mode 1	12.19 and 13.90	12.16		
Tank lateral-pitching mode 2	16.25	15.28		
Tank rolling motion	15.92 and 19.82	17.79		
n=2 circ. waves tank shell deformation	13.02	13.24		
n=3 circ. waves tank shell deformation	12.19 and13.90	13.33		
n=4 circ. waves tank shell deformation	15.92 and 16.19	16.68		

(b) Comparison of Strut Forces from Load Case 1 and Load Case 2:

1. Load Case 1: 10G axial acceleration + 25psi internal pressure + tank cool-down

Strut	Value	Strut Forces (lbs.)		
Suut	v alue	STAGS	GENOPT/TANK	
Lower (aft)	Max.	-24611	-22693	
Lower (art)	Min.	-24841	-22093	
Upper	Max.	53035	53554	
(forward)	Min.	52767	33334	

2. Load Case 2: 10G lateral acceleration + 25psi internal pressure + tank cool-down

Strut	Value	1	Strut Fo	rces (lbs.)
Suut	value	S'	TAGS	GENOPT/TANK
Lower (aft)	Max.	6	54401	60463
Lower (art)	Min.	-,	36298	-39393
Upper	Max.	6	55057	60471
(forward)	Min.	-,	38568	-40611

(c) Comparison of maximum strut stresses from Load Case 1 and Load Case 2:

1. Load Case 1: 10G axial acceleration + 25psi internal pressure + tank cool-down

ad Case 1: 10G axial acceleration + 25psi internal pressure + tank cool-down						
Strut	Direction	Sense	Stress (psi)			
Situt	Direction	Schsc	STAGS	GENOPT/TANK		
	Fiber	Tension	973	4724		
	Pibei	Compression	23318	22060		
Lower (aft)	Transverse	Tension	510	4240		
	Transverse	Compression	816	0		
	Shear	n/a	1216	914		
	Fiber	Tension	43607	52620		
Linnon	riber	Compression	4088	14160		
Upper (forward)	Т	Tension	2288	6671		
(101 ward)	Transverse	Compression	327	0		
	Shear	n/a	1881	2328		

2. Load Case 2: 10G lateral acceleration + 25psi internal pressure + tank cool-down

Strut	Direction	Sense	Stress (psi)		
Strut	Direction	Selise	STAGS	GENOPT/TANK	
	Fiber	Tension	61017	63980	
	Pibei	Compression	34391	37110	
Lower (aft)	Transverse	Tension	2135	7016	
		Compression	1334	0	
	Shear	n/a	3182	3659	
	Fiber Transverse	Tension	53763	58880	
Linnar		Compression	31873	34380	
Upper (forward)		Tension	2807	7035	
(101 ward)	Transverse	Compression	1664	0	
	Shear	n/a	2307	2584	

(d) Comparison of struts buckling as columns:

			Buckling Load Factor		
Strut	Load Case	Compressive	STAGS (does not	GENOPT/TANK	
Strut	Load Casc	Load (lbs.)	include tank	(does not include	
			flexibility)	tank flexibility)	
Lower (aft)	10G Axial	24841	3.99	4.163	
Lower (art)	10G Lateral	36298	2.74	2.398	
Upper	10G Axial	Tension	n/a	n/a	
(forward)	10G Lateral	38568	3.00	2.645	

(e) Comparison of struts buckling as thin shells:

Strut	Load Case	Compressive	Buckling Load Factor	
		Load (lbs.)	STAGS	GENOPT/TANK
Lower (aft)	10G Axial	24841	4.73	5.314
	10G Lateral	36298	3.24	3.095
Upper	10G Axial	Tension	n/a	n/a
(forward)	10G Lateral	38568	3.65	3.210

(f) Comparison of strut forces in the Launch Hold condition:

Strut	Strut Force (lbs.)		
Strut	STAGS	GENOPT/TANK	
Lower (aft)	11157	7317	
Upper (forward)	18143	14390	