Problem Set 1 - Solution

June 24, 2015

1. Prove by contradiction. Suppose that $\sqrt[3]{2}$ is sensible. Then by definition, there exist positive integers a and b such that $\sqrt{a/b} = \sqrt[3]{2}$. Squaring both sides of the equation gives us $a/b = \sqrt[3]{4}$, which implies that $\sqrt[3]{4}$ is rational.

This means there exists positive integers x and y such that $x/y = \sqrt[3]{4}$ and x/y is in lowest term. Therefore, we have:

$$x/y = \sqrt[3]{4} \tag{1}$$

$$x^3/y^3 = 4 (2)$$

$$x^3 = 4y^3 \tag{3}$$

In the last equation, the right side is even, so is the left side. Since x^3 is even, x must be even. Therefore x^3 is a multiple of 8, this implies that y^3 is also a even number, thus y is even, too. x and y are both even, this contradicts the assumption that x/y is in lowest term.

Thus $\sqrt[3]{4}$ is irrational, the original assumption must not be true.

2. A Wrong Attempt:

$$\exists x. \ (E(x,y) \land E(x,z) \land x \neq y \land x \neq z \land y \neq z) \tag{4}$$

This doesn't say "x emailed exactly two other people in the class.". It also doesn't existentially quantify y and z.

Right Attempt:

First, we modify the above predicate to express that there exist students x, y and z such that x have emailed y and z.

$$\exists x \exists y \exists z. \ (E(x,y) \land E(x,z) \land x \neq y \land x \neq z \land y \neq z)$$
 (5)

The following predicate restricts that x emailed exactly y and y, besides herself.

$$\forall s, \ E(x,s) \implies s = x \lor s = y \lor s = z \tag{6}$$

Combining these two predicates, we can say that there exists some student x who has emailed to exactly two other students y and z, besides possibly herself.

$$\exists x \exists y \exists z. \ (E(x,y) \land E(x,z) \land \tag{7}$$

$$x \neq y \land x \neq z \land y \neq z \land \tag{8}$$

$$\forall s, \ E(x,s) \implies s = x \lor s = y \lor s = z) \tag{9}$$

3. (a) $\exists a, b, c. (n = a \cdot a + b \cdot b + c \cdot c)$

(b) We can express x=1 as: $\forall y. (xy=y)$. Further we can express x>1 as: $\exists y. (y=1 \land x>y)$. Replacing y=1 with the previous predicate gives us: $\exists y. (\forall z. (yz=z) \land x>y)$.

(c)
$$\neg(\exists x. \ (x > 1 \land x < n \land \exists y. \ (y > 1 \land y < n \land xy = n))) \tag{10}$$

A better version:

$$IS - PRIME(n) \equiv (n > 1) \land \neg(\exists x \exists y. (x > 1 \land y > 1 \land x \cdot y = n)) \tag{11}$$

(d) $\exists n \exists p \exists q. \text{ IS-PRIME}(p) \land \text{ IS-PRIME}(q) \land (n = p \cdot q) \land (p \neq q)$ (12)

(e) My Attempt:

$$\neg(\exists n. \text{ IS-PRIME}(n) \land \text{ IS-PRIME}(p) \land \forall p, n > p) \tag{13}$$

Right Solution:

$$\neg(\exists n. \text{ IS-PRIME}(n) \land (\forall p, \text{ IS-PRIME}(p) \implies n \ge p)) \tag{14}$$

(f) We can express n > 2 as:

$$\exists k. \ (k=1) \land (n > k+k). \tag{15}$$

So the predicate is:

$$\forall (n), (n > 2 \land \exists k.n = k + k) \implies \exists p \exists q. \text{ IS-PRIME}(p) \land \text{ IS-PRIME}(q) \land (n = p + q)$$
 (16)

(g)
$$\forall (n), (n > 1 \implies \exists p. \text{ IS-PRIME}(p) \land (n < p) \land (p < n + n))$$
 (17)

4. Proof. We prove by contradiction. Assume that there is a surjection f from set A to its powerset for some A which is infinite. Let the set W be $W = \{x \in A | x \notin f(x)\}$. So by definition,

$$x \in W \iff x \notin f(x)$$
 (18)

W is a member of $\mathcal{P}(A)$ since W is a subset of A. Because there is a surjection f from A to $\mathcal{P}(A)$, we know that there must exist an element $a \in A$ such that W = f(a). So from the above equation, we have,

$$x \in f(a) \iff x \notin f(x)$$
 (19)

for all $x \in A$. Substituting a for x yields a contradiction, proving that there cannot be such a f. \square

- 5. (a) Proof. Let D be the domain for the variables and P, Q be some binary predicates on D. We need to show that if $\exists z.[P(z) \land Q(z)]$ holds under this interpretation, then so does $[\exists x.P(x) \land \exists y.Q(y)]$. So suppose $\exists z.[P(z) \land Q(z)]$. So some element $z_0 \in D$ such that $P(z) \land Q(z)$ is true. So there exists some $x \in D$ and some $y \in D$ such that $P(z) \land Q(z)$ is true. Namely, $x = z_0$ and $y = z_0$. That is, $[\exists x.P(x) \land \exists y.Q(y)]$ holds under this interpretation, as required.
 - (b) *Proof.* We can prove by describing an counter model. Let the domain be the integers and P(x) be x > 100, and Q(y) be y < 50. $[\exists x. P(x) \land \exists y. Q(y)]$ would be true because we can let x = 101 and y = 49. But $\exists z. [P(z) \land Q(z)]$ asserts that there exists an integer z such that z > 100 while z < 50, which is certainly false.
- 6. (a) Let A = 0, B = 1, C = 2 and D = 3. Then $L = (A \cup C) \times (B \cup D) = \{(0, 1), (0, 3), (2, 1), (2, 3)\}$ and $R = (A \times B) \cup (C \times D) = \{(0, 1), (2, 3)\}$. Thus $L \neq R$.

- (b) The mistake lies in the third iff. The claim: "either $x \in A$ or $x \in C$, and either $y \in B$ and $y \in D$ iff $(x \in A \text{ and } y \in B)$ or else $(x \in C \text{ and } y \in D)$ " is not true. There are 4 possible combinations in total. Two others are $(x \in A \text{ and } y \in D)$ and $(x \in C \text{ and } y \in B)$.
- (c) Replacing the third "iff" with "which is true when" which yields a correct prove that $(x,y) \in L$ is true when $(x,y) \in R$, which implies that $R \subseteq L$.