Reply to the Comment on "Electron Source in Photoinduced Hydrogen Production on Pt-Supported TiO₂ Particles"

Toshiyuki Abe,[†] Eiji Suzuki,[†] Kentaro Nagoshi,[†] Kohichi Miyashita,[‡] and Masao Kaneko*,[†],§

Faculty of Science, Ibaraki University, Mito, Ibaraki 310–8512, Japan, and Asakahigashi R & D Center, Honda R & D Co. Ltd., 3-15-1, Senzui, Asaka, Saitama 351-0024, Japan

Received: June 8, 2000

We wish to reply to the Comment stated by Perkins et al. for our published paper in *J. Phys. Chem. B*.

In the paper, the most important point we have reported is that stoichiometric O_2 and H_2 formations on Pt-supported TiO_2 (P-25 was used) (TiO_2 /Pt) cannot take place under UV irradiation, and only H_2 formation was observed. In addition, a long-term photolysis by TiO_2 /Pt showed that the H_2 formation stops almost after 600 h irradiation. Although the TiO_2 were reused in a photocatalytic H^+ reduction by adding methanol as an electron donor after recovering the photocatalyst used in the long-term reaction, no H_2 formation was observed, showing that the TiO_2 /Pt particles have entirely lost their photocatalytic activity after the long-term reaction. These results revealed that TiO_2 itself has been changed to lose its photocatalytic activity after the long-term photochemical reaction.

As for the electron donor to cause the photoinduced H_2 formation on the TiO_2/Pt , we investigated various possibilities. We took into account also the possibilities such as the

contamination by (1) inorganic impurities, (2) Ti³⁺, and/or (3) organic impurities, as suggested in the above Comment by Perkins et al. However, we believe that the entire deactivation of TiO₂/Pt could exclude such possibilities and that only one possible interpretation would be a structural change of the TiO₂.

As for the structural change of TiO_2 , we proposed as one of the possibilities the oxidation of Ti^{4+} to 5+ as a most probable mechanism. We did not mention the entire change to 5+, but the activity has been lost entirely after one-third of the Ti is changed, as calculated from the total amount of evolved H_2 , suggesting that an intermediate state (probably one positive charge is delocalized between three Ti^{4+}), whose average composition is $(Ti_2O_5)(TiO_2)_2$, is stabilized to realize a stable Ti^{5+} apparent state.

We do not hesitate to accept any other possibilities of other electron source or other structural change of the TiO₂ if supporting data for such are available. For example, Arakawa's groups carried out a recent experiment of water photolysis with layered and platinized TiO₂ nanosized particles to find also only H₂ formation (K. Sayama, J. Augustynski, and H. Arakawa, Poster in the 3rd NIMC International Symposium on Photoreaction Control and Photofunctional Materials held in Tsukuba, Japan, in March 2000). They are proposing also structural change of TiO₂, but an oxidized structure such as the formation of Ti-O-O-Ti bondings. We welcome further discussion about the real photochemical reaction process on TiO₂.

As pointed in the above Comment, it was our mistake that both refs 10 and 11 were missing in the paper. They are added here

References and Notes

- (10) Ohtani, B.; Okugawa, Y.; Nishimoto, S.-I.; Kagiya, T. J. Phys. Chem. 1987, 91, 3550.
- (11) Moulder, J. F.; Stickele. W. F.; Sobol, P. E.; Bomben, K. D. *Handbook of X-ray Photoelectron spectroscopy*; Chastain, J., Ed.; Physical Electronics Division, Perkin-Elmer Corp.: MN, 1992.

[†] Published in J. Phys. Chem. B 1999, 103, 1119.

^{*} Corresponding author.

[†] Ibaraki University.

[‡] Honda R & D Co. Ltd.

[§] Visiting senior researcher of The Institute of Physical