VFH-Online-Studiengang Wirtschaftsinformatik

Probeklausur Operations Research

Sie können maximal 42 Punkte erreichen, ab 19 Punkten haben Sie bestanden.

1) Gegeben ist das folgende lineare Optimierungsproblem: (12 P)

$$z = 2x_1 + x_2 \quad max$$

$$x_1 + 2x_2 \le 8$$

$$2x_1 - x_2 \le 6$$

$$-x_1 + 2x_2 \le 4 \qquad x_1, x_2 \ge 0$$

- a) Lösen Sie das LOP graphisch (Skizze).
 Geben Sie die optimale zulässige Basislösung (ZBL) sowie den opt. Zielfunktionswert an.
- b) Geben Sie die Standard-Gleichungsform/Normalform des LOP an.
- c) Bestimmen Sie außer der Optimallösung eine weitere zulässige Basislösung.
- d) Bis zu welchem Wert kann die rechte Seite der ersten Restriktion b₁ = 8 erhöht werden, ohne die Stabilität der optimalen ZBL zu verletzen? (graphische oder rechnerische Lösung)
- 2) Stellen Sie ausgehend von der Standard-Gleichungsform aus Aufgabe 1b) das erste Simplextableau auf und führen einen Simplexschritt aus. Ist die erreichte ZBL optimal (Begründung)?
 (6 P)

$$z = 4x_1 - 7x_2 + 3x_3 \quad max \\ x_1 - x_2 + 2x_3 \le 2 \\ x_1 - x_2 \le 1 \quad , \qquad x_{1,} x_{2,} x_3 \ge 0$$

gehört das optimale Simplextableau.

	X 1	X 2	X 3	X 4	X 5	RS
X 3	0	0	1	1/2	- 1/2	1/2
X 1	1	- 1	0	0	1	1
Zf	0	3	0	3/2	5/2	11/2

- a) Geben Sie sowohl die primale als auch die duale Optimallösung an.
- b) Interpretieren Sie die Werte der Dualvariablen hinsichtlich der zwei Restriktionen/Ressourcen.

VFH-Online-Studiengang Wirtschaftsinformatik

Probeklausur Operations Research

4) Gegeben ist das folgende lineare Optimierungsproblem:

(6 P)

$$z = x_1 + 2x_2 \rightarrow max$$

 $5x_1 + 6x_2 \leq 30$
 $-x_1 + 3x_2 \leq 6$
 $x_1, x_2 \geq 0$ und ganzzahlig

Die optimale Lösung der Relaxation (des Problems ohne Ganzzahligkeitsforderung) lautet z_{max} = 58/7 mit x_1 = 18/7 und x_2 = 20/7.

Lösen Sie das LOP mit Ganzzahligkeitsforderung mittels Branch_and_Bound-Algorithmus. Beginnen Sie im ersten Branch-Schritt mit der Verzweigung bzgl. x₁. Hinweis: Die Teilprobleme können Sie grafisch lösen.

5) Folgendes Datenschema eines Transportproblems (TP) ist gegeben.

Bedarf B _j Aufkommen A _i	B ₁	B ₂	B ₃	B ₄	a _i
A ₁	1	0	4	7	20
A ₂	9	8	5	7	25
A ₃	3	6	8	1	40
b _j	10	25	15	35	85

Bestimmen Sie eine erste zulässige Basislösung mittels der Methode der Vogelschen Approximation.

6) Zum angegebenen Datenschema eines TP wurde die aufgeführte zulässige Basislösung ermittelt (6 P)

Bedarf B _j Aufkommen A _i	B ₁	B ₂	B ₃	B ₄	a _i
A ₁	1	4	3	2	10
A_2	5	3	4	5	7
A ₃	3	1	2	4	13
b _j	6	8	9	7	

Zulässige Basislösung:

6			4
	7		
	1	9	3

- a) Führen Sie einen Schritt mit der MODI-Methode zum optimalen Tableau aus.
- b) Geben Sie die Optimallösung einschließlich des optimalen Zielfunktionswertes an.