UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Luan Willig Silveira

MÉTODO DE APRIMORAMENTO DE PROCESSAMENTOS DE IMAGENS APLICADOS À DETECÇÃO E CLASSIFICAÇÃO DE FALHAS EM CADEIAS DE ISOLADORES

Luan Willig Silveira

MÉTODO DE APRIMORAMENTO DE PROCESSAMENTOS DE IMAGENS APLICADOS À DETECÇÃO E CLASSIFICAÇÃO DE FALHAS EM CADEIAS DE ISOLADORES

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica, Área de Concentração em CNPq, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de **Mestre em Engenharia Elétrica**. Defesa realizada por videoconferência.

Orientador: Prof. Dr. Daniel Pinheiro Bernardon

Coorientador: Prof. Dr. Paulo César Vargas Luz

Luan Willig Silveira

MÉTODO DE APRIMORAMENTO DE PROCESSAMENTOS DE IMAGENS APLICADOS À DETECÇÃO E CLASSIFICAÇÃO DE FALHAS EM CADEIAS DE ISOLADORES

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica, Área de Concentração em CNPq, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de **Mestre em Engenharia Elétrica**.

Aprovado em 8 de dezembro de 2025:
Daniel Pinheiro Bernardon, Dr. (UFSM) (Presidente/Orientador)
Paulo César Vargas Luz, Dr. (UFSM) (Coorientador)
Banca Um, Dra. (UFSM)
Banca Dois, Dr. (UFSM)

Santa Maria, RS 2025

RESUMO

MÉTODO DE APRIMORAMENTO DE PROCESSAMENTOS DE IMAGENS APLICADOS À DETECÇÃO E CLASSIFICAÇÃO DE FALHAS EM CADEIAS DE ISOLADORES

AUTOR: Luan Willig Silveira Orientador: Daniel Pinheiro Bernardon Coorientador: Paulo César Vargas Luz

Escreva seu resumo aqui! Você pode digitá-lo diretamente neste arquivo ou usar o comando input. O resumo deve ter apenas uma página, desde o cabeçalho até as palavras chave. Caso seu resumo seja maior, use comandos para diminuir espaçamento e fonte (até um mínimo de 10pt) no texto. Segundo a MDT, é preciso que os resumos tenham, no máximo, 250 palavras para trabalhos de conclusão de curso de graduação, pós-graduação e iniciação científica e até 500 palavras para dissertações e teses.

Palavras-chave: Processamento de Imagens. Redes Neurais Artificiais. Aprendizado de Máquina. Métricas de Qualidade. Classificação de Imagens. Detecção de Objetos. Regressão. Dataset. Combinação de Processamentos. Otimização. Deep Learning. Segmentação de Imagens. Eficiência Computacional. Redes Convolucionais (CNN). Comparação de Modelos. Inteligência Artificial.

ABSTRACT

IMAGE PROCESSING ENHANCEMENT METHOD APPLIED TO FAULT DETECTION AND CLASSIFICATION IN INSULATOR STRINGS

AUTHOR: Luan Willig Silveira ADVISOR: Daniel Pinheiro Bernardon CO-ADVISOR: Paulo César Vargas Luz

Write your abstract here! As recomendações do resumo também se aplicam ao abstract. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords: Keyword 1. Keyword 2. Keyword 3. (...)

SUMÁRIO

1	INTRODUÇÃO	7
1.1	PROPOSTA	7
1.2	OBJETIVO GERAL	8
1.3	OBJETIVOS ESPECÍFICOS	9
1.4	JUSTIFICATIVA	9
1.5	CRONOGRAMA	10
2	TRABALHOS RELACIONADOS	11
2.1	ANÁLISE SUSTENTÁVEL DA DETECÇÃO DE FALHAS EM ISOLADORES	
	BASEADA EM OTIMIZAÇÃO VISUAL REFINADA	11
2.2	DETECÇÃO DE FALHAS EM ISOLADORES EM IMAGENS AÉREAS DE LI-	
	NHAS DE TRANSMISSÃO DE ALTA VOLTAGEM BASEADA EM MODELO	
	DE APRENDIZADO PROFUNDO	11
2.3	DETECÇÃO DE DEFEITOS EM ISOLADORES POR IMAGEM BASEADA EM	
	PROCESSAMENTO MORFOLÓGICO E APRENDIZADO PROFUNDO	11
2.4	COMPARANDO REDES NEURAIS CONVOLUCIONAIS E TÉCNICAS DE PRÉ-	
	PROCESSAMENTO PARA CLASSIFICAÇÃO DE CÉLULAS HEP-2 EM IMA-	
	GENS DE IMUNOFLUORESCÊNCIA	13
2.5	EFEITOS DO PRÉ-PROCESSAMENTO DE IMAGENS HISTOPATOLÓGICAS	
	EM REDES NEURAIS CONVOLUCIONAIS	14
2.6	O IMPACTO DE TÉCNICAS DE PRÉ-PROCESSAMENTO E PÓS-PROCESSAM	1ENTC
	DE IMAGENS EM FRAMEWORKS DE APRENDIZADO PROFUNDO: UMA	
	REVISÃO ABRANGENTE PARA ANÁLISE DE IMAGENS DE PATOLOGIA	
	DIGITAL	14
2.7	RESUMO DOS TRABALHOS	15
2.8	JUSTIFICATIVA DA RELEVÂNCIA DA METODOLOGIA PROPOSTA	15
2.9	TABELA COMPARATIVA DOS TRABALHOS	15
2.10	CONSIDERAÇÕES FINAIS DO CAPÍTULO	16
3	REVISÃO BIBLIOGRÁFICA	17
3.1	PROCESSAMENTO DE IMAGENS	17
3.1.1	Normalização	17
3.1.2	Redimensionamento e Recorte	18
3.1.3	Aumento de Dados	18
3.1.4	Redução de Ruído	
3.1.5	Ajuste de Contraste e Brilho	19
3.1.6	Aumento de Nitidez	20
317	Conversão de Espaço de Cores	20

3.1.8	Restauração e Desembaçamento de Imagens	20
3.1.9	Detecção de Bordas	21
3.1.10	Correção de Iluminação	21
3.1.11	Super-Resolução	21
3.1.12	Importância do Pré-processamento de Imagens no SEP	22
3.2	DATASETS	22
3.3	REDES NEURAIS	23
3.3.1	Métricas	23
3.4	INFLUÊNCIA DE DATASETS NA PERFORMANCE DOS MODELOS	23
3.5	MÉTODOS DE AJUSTE DE PARÂMETROS E COMBINAÇÃO DE PROCES-	
	SAMENTOS	23
4	METODOLOGIA	24
4.1	DEFINIÇÃO DAS MÉTRICAS PARA AVALIAR EFICÁCIA DOS PROCESSA-	
	MENTOS	24
4.2	ESCOLHA DO TIPO DE MODELO DE REDE NEURAL	26
4.3	SELEÇÃO DOS DATASETS PARA AVALIAÇÃO	26
4.4	METODOLOGIA PARA COMBINAÇÃO DE PROCESSAMENTOS UNITÁRIOS	26
4.5	IMPLEMENTAÇÃO DE UM MÉTODO DE AJUSTE AUTOMÁTICO DE PARÂ-	
	METROS	26
4.6	CONSTRUÇÃO DE REDES NEURAIS PARA AVALIAÇÃO DOS PROCESSA-	
	MENTOS	26
4.7	TESTES COM DIFERENTES ARQUITETURAS E ANÁLISE DE VARIAÇÕES	
	NOS RESULTADOS	26
5	COLETA E ANÁLISE DE RESULTADOS	27
5.1	IMPACTO DOS MODELOS NO DESEMPENHO DOS PROCESSAMENTOS	27
5.2	INFLUÊNCIA DOS DATASETS NOS RESULTADOS	27
5.3	COMPARAÇÃO ENTRE DIFERENTES ESTRATÉGIAS DE PROCESSAMENTO	27
6	CONCLUSÃO	28
6.1	SÍNTESE DOS RESULTADOS OBTIDOS	28
6.2	LIMITAÇÕES E DESAFIOS ENCONTRADOS	28
6.3	SUGESTÕES PARA PESQUISAS FUTURAS	28
	REFERÊNCIAS BIBLIOGRÁFICAS	29

1 INTRODUÇÃO

1.1 PROPOSTA

O presente estudo tem como objetivo desenvolver uma metodologia capaz de comparar, selecionar, combinar e aprimorar técnicas de processamento de imagem para a detecção e classificação de falhas em cadeias de isoladores. Para isso, serão estabelecidas métricas para avaliar a eficácia dos processamentos de imagem, considerando aspectos como acurácia e tempo de processamento. Além disso, serão construídos modelos de redes neurais para avaliar o desempenho dos processamentos, podendo abranger tarefas como classificação, detecção e regressão. No decorrer do estudo, serão construídos modelos de redes neurais voltados para a avaliação do desempenho das técnicas de processamento de imagem, sem a intenção de definir um modelo ideal.

Também será analisado o impacto da escolha do modelo de rede neural no desempenho do processamento, visto que diferentes modelos podem gerar resultados distintos para um mesmo processamento. A influência do dataset na eficácia do processamento será outro aspecto a ser investigado, considerando possíveis variações nos resultados devido ao uso de diferentes conjuntos de dados. Para aprimorar os processamentos de imagem, será desenvolvida uma metodologia que permita a combinação de diferentes processamentos unitários (processamentos de imagem que realizam uma única operação). Além disso, será criado um método de ajuste automático de parâmetros das técnicas de processamento de imagem, com o intuito de otimizar seus resultados sem exigir extensa intervenção manual.

A metodologia proposta será desenvolvida dentro de um conjunto de restrições previamente estabelecidas, garantindo um escopo bem delimitado e viável dentro do período de realização da dissertação. Primeiramente, o estudo será restrito à detecção e classificação de falhas em cadeias de isoladores elétricos, não abrangendo outros componentes elétricos. O uso de imagens previamente adquiridas será uma diretriz, de modo que apenas imagens já disponíveis ou capturadas por métodos convencionais serão utilizadas, sem o desenvolvimento de novas técnicas de aquisição de imagens. Além disso, a metodologia será aplicada exclusivamente a técnicas de processamento de imagem já conhecidas, sem a criação de novos algoritmos de base.

Os modelos de redes neurais desenvolvidos terão o propósito único de avaliar o impacto das redes sobre os processamentos de imagem, sem a intenção de definir um modelo definitivo para diagnóstico industrial. A análise será conduzida utilizando conjuntos de dados já existentes ou obtidos por métodos convencionais, sem a necessidade de criar um novo dataset específico para o estudo. A otimização contemplada estará limitada ao

ajuste de parâmetros das técnicas existentes, não incluindo o desenvolvimento de novas abordagens baseadas em inteligência artificial para otimização dos processamentos. Por fim, toda a avaliação será realizada em ambiente controlado, sem a realização de testes em ambientes industriais reais.

A Figura 1 ilustra o diagrama da proposta de metodologia.

Redes convolucionais Construção de redes neurais Metodologia de aprimoramento de processamentos de imagem Redes perceptron Ajuste automático de Metodologia de aprimoramento parâmetros Combinação de abordagens unitárias Dataset Análise de influência Modelo Tempo de processamento Métricas Métricas de eficácia de modelos de IA (acurácia, precisão, recall, f1-score)

Figura 1 – Diagrama da proposta de metodologia

Fonte: Autor.

1.2 OBJETIVO GERAL

O objetivo geral deste estudo é desenvolver uma metodologia capaz de comparar, selecionar, combinar e aprimorar técnicas de processamento de imagem para a detecção e classificação de falhas em cadeias de isoladores.

1.3 OBJETIVOS ESPECÍFICOS

Para alcançar esse objetivo, foram definidos os seguintes objetivos específicos:

- Estabelecer métricas para avaliar a eficácia dos processamentos de imagem, considerando aspectos como acurácia e tempo de processamento.
- Determinar o tipo de modelo de redes neurais ideal para avaliar o desempenho dos processamentos, podendo abranger classificação, detecção e regressão.
- Construir modelos de redes neurais destinados à avaliação do desempenho das técnicas de processamento de imagem, sem o intuito de encontrar um modelo definitivo.
- Analisar o impacto da escolha do modelo de rede neural no desempenho do processamento, considerando que diferentes modelos podem gerar diferentes resultados para um mesmo processamento.
- Avaliar a influência do dataset na eficácia do processamento, considerando possíveis variações nos resultados devido à utilização de diferentes conjuntos de dados.
- Desenvolver uma metodologia para o aprimoramento dos processamentos de imagem por meio da combinação de diferentes abordagens unitárias.
- Criar um método de ajuste automático de parâmetros dos processamentos de imagem, visando otimizar seus resultados sem a necessidade de intervenção manual extensa.

1.4 JUSTIFICATIVA

A crescente demanda por sistemas automatizados de inspeção de cadeias de isoladores evidencia a necessidade de técnicas avançadas de processamento de imagem para a detecção precoce de falhas. Conforme demonstrado por Gonzalez e Woods (GONZALEZ; WOODS, 2008), a análise digital de imagens permite extrair características relevantes para identificar anomalias em componentes elétricos, possibilitando diagnósticos mais precisos. Ademais, o emprego de redes neurais tem se destacado na resolução de problemas complexos de classificação e detecção, conforme ressaltado por LeCun et al. (LECUN; BENGIO; HINTON, 2015) e Krizhevsky et al. (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), contribuindo para a robustez dos sistemas de inspeção.

Estudos recentes apontam que a combinação de diferentes técnicas de processamento de imagem, aliada ao ajuste automático de parâmetros, pode resultar em melhorias

significativas no desempenho dos sistemas de diagnóstico (LI et al., 2019). Assim, a proposta deste trabalho visa desenvolver uma metodologia que integre esses avanços, buscando não apenas aprimorar a acurácia e a eficiência dos processamentos, mas também possibilitar uma análise comparativa que leve em conta a influência de diferentes modelos e datasets.

Dessa forma, esta dissertação justifica-se pela necessidade de inovar na abordagem de detecção e classificação de falhas em cadeias de isoladores, promovendo ganhos práticos para a segurança e manutenção das redes elétricas, e contribuindo para a evolução do estado da arte em processamento de imagem e aprendizado de máquina.

1.5 CRONOGRAMA

A seguir, é apresentado um cronograma de atividades para garantir a organização e a execução das tarefas.

Etapa	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1. Introdução	√										
2. Revisão Bibliográfica	√	√	√	√	√						
3. Metodologia		√	√	√	√	√	✓				
4. Implementação dos Modelos						√	√				
5. Coleta e Análise de Resultados						√	✓	√	√		
6. Conclusão e Redação Final								√	√	√	
7. Defender											√

Tabela 1 – Cronograma de Atividades

2 TRABALHOS RELACIONADOS

2.1 ANÁLISE SUSTENTÁVEL DA DETECÇÃO DE FALHAS EM ISOLADORES BASE-ADA EM OTIMIZAÇÃO VISUAL REFINADA

O primeiro estudo aborda a detecção de falhas em isoladores em linhas de transmissão aéreas, destacando a vulnerabilidade desses componentes a fatores ambientais. A inspeção manual é ineficaz devido ao alto volume de dados e à complexidade dos fundos das imagens, levando à aplicação da rede neural convolucional de atenção regressiva (RA-CNN). O método proposto melhora a acurácia da detecção ao empregar extração de características em múltiplas escalas e operações recursivas, com otimização pelo algoritmo de Enxame de Partículas (PSO). Os resultados indicam que a RA-CNN (1+2+3) atinge 85,3% de acurácia, superando os modelos FCAN e MG-CNN. Além disso, a abordagem proposta demonstra maior eficiência em tempo real, atingindo 25,4 FPS. (WANG et al., 2023)

2.2 DETECÇÃO DE FALHAS EM ISOLADORES EM IMAGENS AÉREAS DE LINHAS DE TRANSMISSÃO DE ALTA VOLTAGEM BASEADA EM MODELO DE APRENDIZADO PROFUNDO

O segundo estudo foca na detecção de falhas em isoladores por meio de imagens aéreas, utilizando um modelo YOLO modificado, denominado CSPD-YOLO, baseado no YOLO-v3 e na Rede Parcial de Estágio Cruzado. A pesquisa envolve a criação do conjunto de dados 'InSF-detection', composto por 1.331 imagens e 2.104 falhas rotuladas. O modelo CSPD-YOLO se destaca por uma alta acurácia (AP = 98,18%) e eficiência no processamento (0,011 s), superando modelos tradicionais como YOLO-v3 e YOLO-v4. A análise qualitativa indica que o método é eficaz mesmo em cenários complexos, como presença de rios, vegetação e torres de energia. (LIU et al., 2021)

2.3 DETECÇÃO DE DEFEITOS EM ISOLADORES POR IMAGEM BASEADA EM PRO-CESSAMENTO MORFOLÓGICO E APRENDIZADO PROFUNDO

O terceiro estudo propõe um método híbrido para detecção de defeitos em isoladores, combinando aprendizado profundo (Faster RCNN) com processamento morfológico.

A segmentação das imagens utiliza técnicas de transformação de forma para identificação e separação de isoladores, enquanto a detecção de falhas é realizada por um modelo matemático aplicado a imagens binárias. O Faster RCNN alcança AP = 0,9175 e *recall* = 0,98, superando abordagens baseadas em ResNet, YOLO e LBP+SVM. Além disso, a análise de desempenho em diferentes níveis de voltagem e condições de ruído demonstra a robustez do modelo (ZHANG et al., 2022). O processo de segmentação realizado no trabalho é apresentado na Figura 2.

Figura 2 - Segmentação de isoladores

Fonte: Zhang et al. (2022).

2.4 COMPARANDO REDES NEURAIS CONVOLUCIONAIS E TÉCNICAS DE PRÉ- PRO-CESSAMENTO PARA CLASSIFICAÇÃO DE CÉLULAS HEP-2 EM IMAGENS DE IMUNOFLUORESCÊNCIA

A pesquisa avalia seis estratégias de pré-processamento e cinco arquiteturas de CNNs de última geração para classificar células HEp-2 em imagens de imunofluorescência, uma tarefa crítica em diagnósticos médicos. Métodos como aumento de dados (rotações, espelhamentos), ajuste fino e otimização de hiperparâmetros foram testados em conjunto com arquiteturas como Inception-V3 e ResNet. Surpreendentemente, o melhor desempenho, com 98,28% de precisão, foi alcançado ao treinar o modelo Inception-V3 do zero, utilizando apenas aumento de dados sem pré-processamento adicional. A conclusão sugere que, para esse tipo de imagem, técnicas tradicionais de pré-processamento podem ser menos impactantes quando o aumento de dados é bem implementado, desafiando a necessidade de etapas complexas de preparação. A contribuição do estudo está em mostrar que, em cenários específicos como imagens médicas de imunofluorescência, estratégias simples podem superar abordagens mais elaboradas, oferecendo uma alternativa eficiente para aplicações práticas em classificação (RODRIGUES; NALDI; MARI, 2020). A Figura 3 apresenta os métodos e combinações de pré-processamentos utilizados no trabalho.

Figura 3 – Etapas do método proposto

Fonte: Rodrigues, Naldi e Mari (2020).

2.5 EFEITOS DO PRÉ-PROCESSAMENTO DE IMAGENS HISTOPATOLÓGICAS EM RE-DES NEURAIS CONVOLUCIONAIS

O artigo analisa como diferentes níveis de pré-processamento afetam a classificação de imagens histopatológicas por CNNs, dividindo os dados em quatro categorias: imagens originais, pré-processadas normalmente (com redução de ruído e aprimoramento de células), outras pré-processadas normalmente e excessivamente pré-processadas (com operações morfológicas adicionais). Os experimentos revelam que o pré-processamento normal melhora a precisão ao remover ruídos de fundo e realçar características celulares, mas o excesso de processamento não agrega valor e pode até degradar o desempenho ao eliminar informações úteis. A conclusão enfatiza a importância de um equilíbrio no pré-processamento, recomendando ajustes moderados para maximizar a eficácia das CNNs em imagens histopatológicas. A contribuição do trabalho é fornecer uma análise comparativa detalhada que orienta pesquisadores e profissionais na escolha de técnicas de pré-processamento, evitando exageros que comprometam a qualidade dos dados em aplicações médicas (ÖZTüRK; AKDEMIR, 2018).

2.6 O IMPACTO DE TÉCNICAS DE PRÉ-PROCESSAMENTO E PÓS-PROCESSAMENTO DE IMAGENS EM FRAMEWORKS DE APRENDIZADO PROFUNDO: UMA REVI-SÃO ABRANGENTE PARA ANÁLISE DE IMAGENS DE PATOLOGIA DIGITAL

Este trabalho explora como técnicas tradicionais de pré- e pós-processamento de imagens, como redução de ruído, correção de iluminação e segmentação, melhoram o desempenho de redes neurais em tarefas de patologia digital, incluindo classificação (tecido saudável vs. canceroso), detecção (contagem de linfócitos) e segmentação (núcleos e glândulas). Ao analisar uma ampla gama de estudos, os autores concluem que essas técnicas são indispensáveis para lidar com a variabilidade e complexidade das imagens médicas, melhorando significativamente a precisão e a robustez dos modelos de aprendizado profundo. A revisão destaca que o pós-processamento, como refinamento de contornos, também desempenha um papel crucial em tarefas de segmentação. A contribuição do artigo está em consolidar evidências sobre a eficácia dessas abordagens, oferecendo um guia abrangente para pesquisadores que buscam integrar métodos tradicionais ao treinamento de redes neurais, especialmente em contextos de patologia digital onde a qualidade dos dados é crítica (SALVI et al., 2021).

2.7 RESUMO DOS TRABALHOS

Diversos estudos abordam o impacto do pré-processamento de imagens na análise por redes neurais convolucionais (CNNs) e outros modelos de aprendizado profundo. O estudo de Liu et al. (2021) e Wang et al. (2023) optam por não realizar processamentos significativos, utilizando apenas redimensionamento e normalização.

Por outro lado, Öztürk e Akdemir (2018) investigam diferentes algoritmos de préprocessamento, incluindo remoção de fundo, filtros de suavização e equalização de histograma, além de um método de sobre-processamento baseado em limiar adaptativo. Rodrigues, Naldi e Mari (2020) testam técnicas como redimensionamento, alongamento de contraste, equalização de histograma e subtração da média, constatando que o uso de imagens originais favorece o desempenho da CNN, enquanto o data augmentation tem impacto positivo. Salvi et al. (2021) destacam que técnicas como remoção de artefatos, normalização de cor e seleção de patches melhoram a precisão dos modelos e reduzem o tempo computacional. Por fim, Zhang et al. (2022) exploram a segmentação de isoladores para otimizar a classificação.

2.8 JUSTIFICATIVA DA RELEVÂNCIA DA METODOLOGIA PROPOSTA

Os trabalhos analisados demonstram a importância do pré-processamento na análise de imagens, mas também indicam que determinadas abordagens podem comprometer o desempenho da CNN. Em especial, Rodrigues, Naldi e Mari (2020) evidenciam que a eliminação de ruídos e artefatos pode não ser sempre benéfica. Além disso, Salvi et al. (2021) reforçam que técnicas de segmentação e normalização podem aprimorar a análise quando aplicadas corretamente. No entanto, nenhum dos estudos analisados aborda a metodologia específica proposta nesta dissertação, o que destaca sua inovação e potencial contribuição para a área.

2.9 TABELA COMPARATIVA DOS TRABALHOS

A tabela 2 compara os resultados de diferentes estudos sobre pré-processamento de imagens e seu impacto nos modelos de classificação de imagens. Os estudos variam desde melhorias no desempenho até riscos de sobre-processamento, destacando a falta de consenso e a necessidade de novas abordagens. A metodologia proposta neste trabalho busca preencher essa lacuna ao introduzir um método inovador para determinar os processamentos mais eficientes e otimizar os parâmetros de processamento, oferecendo uma solução mais robusta e adaptável para análise de imagens.

Trabalho	Resultado do pré-processamento					
Liu et al. (2021)	Sem impacto significativo					
Öztürk e Akdemir (2018)	Melhorou contraste, mas risco de sobre-processamento					
Rodrigues, Naldi e Mari (2020)	Afetou negativamente a CNN; data augmentation foi positivo					
Salvi et al. (2021)	Melhorou precisão e reduziu tempo computacional					
Wang et al. (2023)	Sem impacto significativo					
Zhang et al. (2022)	Melhorou o desempenho do modelo					

Tabela 2 – Comparação dos trabalhos relacionados

A análise desses estudos reforça a lacuna existente na literatura e a necessidade de uma nova abordagem, como a metodologia proposta nesta dissertação. A proposta de um método para determinar os processamentos mais eficientes e otimizar os parâmetros de processamento representa uma contribuição significativa para a área de análise de imagens. Através da combinação de técnicas de pré-processamento adaptativo e otimização de parâmetros, o trabalho busca não apenas melhorar o desempenho dos modelos de aprendizado profundo, mas também oferecer uma solução prática e eficiente para cenários complexos. Essa abordagem pode impactar positivamente diversas áreas, como diagnóstico médico, inspeção industrial e análise de imagens aéreas, ao proporcionar resultados mais precisos e confiáveis. Além disso, a metodologia proposta pode servir como base para futuras pesquisas e aplicações em diferentes contextos, ampliando as possibilidades de utilização das redes neurais em tarefas desafiadoras de classificação e detecção de objetos em imagens.

2.10 CONSIDERAÇÕES FINAIS DO CAPÍTULO

A metodologia apresentada neste trabalho se diferencia dos estudos revisados ao introduzir um novo enfoque que não foi explorado anteriormente. Enquanto os trabalhos existentes se concentram em construção de modelos de redes neurais e utilização de técnicas tradicionais de pré-processamento e normalização, a metodologia deste trabalho propõe a criação de um método para determinar os processamentos mais eficientes das imagens, além de um método de otimização dos parâmetros de processamento. Além disso, a pesquisa busca integrar novas abordagens que possam aprimorar a análise de dados em contextos variados, contribuindo para a evolução das técnicas de aprendizado profundo. A implementação dessas novas abordagens poderá oferecer insights valiosos para futuras investigações e aplicações práticas.

3 REVISÃO BIBLIOGRÁFICA

3.1 PROCESSAMENTO DE IMAGENS

Nesta seção, serão abordados os conceitos fundamentais de processamento de imagens, incluindo técnicas e algoritmos utilizados para a análise e manipulação de imagens digitais. Também será discutida a importância do processamento de imagens no SEP para a detecção e classificação de falhas em equipamentos de linhas de transmissão de energia elétrica.

A seguir, serão apresentadas as principais técnicas de pré-processamento de imagens, que são essenciais para melhorar a qualidade das imagens antes de serem alimentadas em modelos de aprendizado de máquina.

3.1.1 Normalização

A normalização é uma etapa fundamental no pré-processamento de imagens para redes neurais, pois padroniza os valores dos pixels, facilitando a convergência durante o treinamento e melhorando a generalização do modelo. Um método comum é a normalização de valores de pixels, que escala os valores para intervalos como [0,1] ou [-1,1], frequentemente realizada dividindo os valores originais pelo máximo possível (por exemplo, 255 para imagens de 8 bits) (SHARMA et al., 2024). Outro método é a normalização Z-score, que subtrai a média dos pixels e divide pelo desvio padrão, resultando em dados com média zero e variância unitária (CHEN et al., 2023). A equalização de histograma também é utilizada para redistribuir as intensidades dos pixels, aumentando o contraste e destacando detalhes em imagens de baixa qualidade (CHEN et al., 2023). Além disso, a padronização de cores, como subtrair os valores médios dos canais RGB, centraliza os dados em torno de uma distribuição normal, o que é particularmente útil para redes convolucionais (MALLA et al., 2023). Técnicas mais avançadas, como a normalização por percentis, utilizam o 5º e o 95º percentis como limites para lidar com valores discrepantes, enquanto a correspondência de histogramas ajusta a distribuição de intensidades com base em pontos de referência (ISOLA et al., 2023). Essas abordagens garantem que as redes neurais processem dados de forma consistente, reduzindo a sensibilidade a variações de iluminação ou escala, especialmente em tarefas de visão computacional (SHARMA et al., 2024).

3.1.2 Redimensionamento e Recorte

O redimensionamento é essencial para ajustar as imagens ao tamanho de entrada esperado pelas arquiteturas de redes neurais, garantindo compatibilidade e consistência. Um método comum é redimensionar as imagens para um tamanho fixo, como 224x224 pixels, amplamente utilizado em modelos como ResNet e VGG (CHEN et al., 2023). Isso pode ser feito por meio de interpolação bilinear ou bicúbica, que suaviza as transições entre pixels, embora métodos mais avançados, como interpolação baseada em Fourier, também sejam explorados (DENNANNI, 2019). O recorte, por outro lado, extrai uma região de interesse da imagem, frequentemente centrada, para preservar áreas relevantes, especialmente quando as dimensões originais variam significativamente (MALLA et al., 2023). Estudos indicam que o redimensionamento para tamanhos menores pode acelerar o treinamento, mas tamanhos muito reduzidos podem comprometer a qualidade das características extraídas (SABOTTKE et al., 2020). Além disso, o recorte aleatório é usado em conjunto com aumento de dados para introduzir variabilidade durante o treinamento (NALEPA et al., 2022). Essas técnicas são cruciais para lidar com conjuntos de dados heterogêneos, garantindo que as entradas sejam uniformes sem perda significativa de informação (CHEN et al., 2023).

3.1.3 Aumento de Dados

O aumento de dados é uma estratégia poderosa para ampliar a diversidade do conjunto de treinamento, reduzindo o risco de sobreajuste e melhorando a robustez do modelo. Técnicas geométricas incluem espelhamento horizontal ou vertical, rotações em ângulos variados (de 1° a 359°), translações, cortes aleatórios e ajustes de escala, que simulam diferentes perspectivas e tamanhos (SHORTEN et al., 2019). Transformações no espaço de cores, como ajustes de brilho, contraste, saturação e matiz, ajudam a lidar com variações de iluminação (SHORTEN et al., 2019). Métodos mais avançados, como apagamento aleatório, mascaram partes da imagem para simular oclusões, enquanto a mistura de imagens combina pixels de diferentes amostras para criar novas instâncias (SHORTEN et al., 2019). Por exemplo, o método SamplePairing reduziu o erro no conjunto CIFAR-10 de 8,22% para 6,93% (SHORTEN et al., 2019). Além disso, redes adversárias generativas (GANs) são usadas para gerar imagens sintéticas, especialmente em domínios com dados limitados, como imagens médicas, alcançando melhorias de até 10% em precisão (SHORTEN et al., 2019). Essas técnicas são particularmente valiosas em cenários com poucos dados, permitindo que as redes neurais generalizem melhor para condições não vistas (NALEPA et al., 2022).

3.1.4 Redução de Ruído

A redução de ruído remove interferências que podem comprometer o desempenho das redes neurais, sendo especialmente crítica em aplicações como imagens médicas e vigilância. Métodos tradicionais, como filtros de média ou mediana, são complementados por abordagens baseadas em aprendizado profundo, como redes neurais convolucionais (CNNs) especializadas, como DnCNNs, que aprendem a mapear imagens ruidosas para versões limpas (SHARMA et al., 2024). Autoencoders também são empregados para reconstruir imagens a partir de representações latentes, eliminando ruídos como Gaussianos ou de sal e pimenta (SHARMA et al., 2024). Técnicas como Total Variation Denoising (TVD) e Non-Local Means (NLM) exploram regularizações e similaridades entre pixels para preservar detalhes (SHARMA et al., 2024). Um estudo demonstrou que a aplicação de DnCNNs em imagens de tomografia computadorizada resultou em uma precisão de detecção de câncer de pulmão variando de 86,17% a 99,67% (SHARMA et al., 2024). Além disso, métodos baseados em redes neurais profundas, como o Deep Neural Filter (DNF), alcançaram melhorias de até 10 dB na relação sinal-ruído em sinais de EEG (PEER et al., 2022). Essas abordagens são essenciais para garantir que as redes neurais processem imagens de alta qualidade, minimizando artefatos que poderiam obscurecer características críticas (SHARMA et al., 2024).

3.1.5 Ajuste de Contraste e Brilho

O ajuste de contraste e brilho melhora a visibilidade das características das imagens, sendo crucial para tarefas que dependem de detalhes finos. A equalização de histograma redistribui as intensidades dos pixels para maximizar o contraste, enquanto a equalização adaptativa limitada por contraste (CLAHE) evita a amplificação excessiva de ruído em regiões homogêneas (MALLA et al., 2023). A correção gama ajusta a curva de intensidade para realçar detalhes em áreas escuras ou claras, sendo amplamente usada em imagens de baixa qualidade (MALLA et al., 2023). Métodos baseados em aprendizado profundo, como redes convolucionais fuzzy, integraram filtros Gaussianos e triangulares para melhorar imagens de íris, alcançando até 97% de precisão em tarefas de reconhecimento (SHARMA et al., 2024). Além disso, técnicas como RetinexDIP foram propostas para melhorar a resolução e reduzir o consumo de memória em comparação com métodos tradicionais (SHARMA et al., 2024). Essas abordagens são fundamentais para preparar imagens para redes neurais, garantindo que as características relevantes sejam destacadas (MALLA et al., 2023).

3.1.6 Aumento de Nitidez

O aumento de nitidez realça bordas e detalhes finos, facilitando tarefas como detecção de objetos e segmentação. Técnicas tradicionais, como a máscara de desfoque, aplicam filtros de alta passagem para enfatizar transições de intensidade (MALLA et al., 2023). Métodos baseados em redes neurais, como CNNs, foram desenvolvidos para detectar e corrigir nitidez, como no caso da detecção de máscaras de desfoque (USM), superando métodos baseados em codificação ternária perpendicular a bordas (DING et al., 2018). Em aplicações específicas, como imagens de documentos, redes convolucionais combinadas com filtros de Gabor e desfoque melhoraram a legibilidade, reduzindo distorções como sombras e ruídos (BEN et al., 2022). Essas técnicas são particularmente úteis em cenários onde a clareza das bordas é essencial para o desempenho do modelo (SHARMA et al., 2024).

3.1.7 Conversão de Espaço de Cores

A conversão de espaço de cores adapta as imagens às necessidades específicas da tarefa, simplificando o processamento ou destacando características relevantes. A conversão de RGB para escala de cinza reduz a dimensionalidade, sendo útil em tarefas onde a cor não é essencial (SHARMA et al., 2024). Espaços como HSV e LAB são preferidos em aplicações que requerem separação de matiz, saturação ou luminância, como segmentação de objetos (SHARMA et al., 2024). Redes neurais também foram usadas para realizar conversões de espaço de cores, como de RGB para XYZ, alcançando erros de cor inferiores a 1,0 unidade E 2000 em mais de 85% dos casos testados (MACDONALD, 2019). Essas conversões são valiosas para otimizar a extração de características e reduzir a complexidade computacional em tarefas de visão computacional (SHARMA et al., 2024).

3.1.8 Restauração e Desembaçamento de Imagens

A restauração de imagens visa recuperar a imagem original a partir de versões degradadas por desfoque, ruído ou outras distorções. O desembaçamento, um subcampo da restauração, utiliza redes neurais como U-Net para corrigir desfoques dinâmicos, alcançando PSNR de 31,53 no conjunto GoPro e 31,32 no Real Blur (LIAN; WANG, 2023). Métodos baseados em autoencoders convolucionais foram propostos para restaurar imagens em aplicações de fotografia computacional e sensoriamento remoto (BARRETO et al., 2020). Além disso, redes neurais como DnCNNs foram aplicadas para remover ruídos específicos, como speckle em imagens holográficas (SHARMA et al., 2024). Essas técnicas

são cruciais para preparar imagens de alta qualidade para redes neurais, especialmente em domínios onde a clareza é essencial (SUMIDA et al., 2019).

3.1.9 Detecção de Bordas

A detecção de bordas identifica limites e formas nas imagens, sendo uma etapa fundamental em muitas tarefas de visão computacional. Redes neurais, como redes de codificação-decodificação, foram desenvolvidas para detectar bordas com alta precisão, superando detectores tradicionais como Canny em imagens ruidosas (YU et al., 1994). Métodos inspirados em mecanismos biológicos, como redes com atenção seletiva, melhoraram a extração de características globais, resultando em mapas de bordas mais robustos (CHEN et al., 2022). Essas abordagens são essenciais para pré-processar imagens, fornecendo informações estruturais que facilitam a segmentação e o reconhecimento de objetos (YU et al., 1994).

3.1.10 Correção de Iluminação

A correção de iluminação normaliza as condições de luz nas imagens, garantindo consistência na extração de características. Métodos baseados em aprendizado profundo, como redes convolucionais, foram propostos para corrigir imagens com iluminação desigual, como pinturas, alcançando resultados superiores em métricas como NIQE e LOE (LI et al., 2020). Técnicas híbridas que combinam modelos baseados em aprendizado e físicos foram aplicadas para melhorar a detecção de objetos em condições de luz variada, como em imagens de plantações (YANG et al., 2022). Essas abordagens são particularmente úteis em cenários onde a iluminação não uniforme pode comprometer o desempenho do modelo (LI et al., 2020).

3.1.11 Super-Resolução

A super-resolução aumenta a resolução de imagens, gerando versões de alta qualidade a partir de entradas de baixa resolução. Redes neurais, como redes convolucionais profundas e redes adversárias generativas (GANs), alcançaram resultados impressionantes, com modelos como SRGAN produzindo imagens fotorrealistas (LEDIG et al., 2017). Em aplicações biológicas, redes como DPA-TISR foram desenvolvidas para imagens de células vivas, alcançando fidelidade temporal e consistência em mais de 10.000 pontos temporais (LIU et al., 2025). Essas técnicas são valiosas para tarefas que requerem de-

talhes finos, como análise médica e vigilância, permitindo que redes neurais processem imagens com maior clareza (LEDIG et al., 2017).

3.1.12 Importância do Pré-processamento de Imagens no SEP

O processamento de imagens é uma ferramenta essencial para garantir a confiabilidade do Sistema Elétrico de Potência (SEP), especialmente na detecção e classificação de falhas em equipamentos de linhas de transmissão de energia elétrica. Essa técnica permite identificar problemas em componentes como isoladores, fixadores e suportes, que, se não tratados, podem causar interrupções no fornecimento de energia. O uso de imagens capturadas por drones ou câmeras especiais facilita a inspeção de grandes extensões de linhas de transmissão, reduzindo custos e aumentando a segurança ao evitar a necessidade de intervenções manuais em locais de difícil acesso (EZE et al., 2022).

Métodos avançados de análise de imagens, como os baseados em aprendizado profundo, ajudam a reconhecer padrões que indicam falhas, mesmo em condições adversas, como baixa visibilidade ou equipamentos desgastados (ALTAIE et al., 2023). Essas abordagens são particularmente úteis em regiões com infraestrutura antiga, onde a manutenção regular é desafiadora. Além disso, o processamento de imagens possibilita uma resposta rápida a problemas, minimizando o impacto de falhas na rede elétrica e melhorando a continuidade do serviço (KUMAR et al., 2023).

A automação proporcionada pelo processamento de imagens também contribui para a eficiência operacional. Técnicas modernas permitem monitorar equipamentos em tempo real, identificando danos antes que se tornem críticos (EZE et al., 2022). Isso é crucial para manter a estabilidade do SEP, especialmente em áreas remotas ou com alta demanda energética. Assim, o processamento de imagens não apenas aprimora a manutenção das linhas de transmissão, mas também reforça a segurança e a confiabilidade do fornecimento de energia elétrica.

3.2 DATASETS

Será discutida a influência dos datasets na performance dos modelos de processamento de imagem, considerando a importância da escolha de conjuntos de dados representativos e diversificados para o treinamento e avaliação dos modelos.

3.3 REDES NEURAIS

Aqui, serão discutidos os diferentes tipos de redes neurais aplicáveis ao processamento de imagens, com foco em suas arquiteturas e aplicações específicas para avaliação de desempenho.

3.3.1 Métricas

Serão apresentadas as principais métricas utilizadas para avaliar a eficácia dos processamentos de imagem, como acurácia, tempo de processamento, precisão, recall, entre outras.

3.4 INFLUÊNCIA DE DATASETS NA PERFORMANCE DOS MODELOS

Esta seção tratará da importância dos datasets na performance dos modelos de processamento de imagem, incluindo a análise de diferentes conjuntos de dados e suas características.

3.5 MÉTODOS DE AJUSTE DE PARÂMETROS E COMBINAÇÃO DE PROCESSAMENTOS

Serão explorados os métodos para ajuste automático de parâmetros e a combinação de diferentes técnicas de processamento de imagem para otimização dos resultados.

4 METODOLOGIA

4.1 DEFINIÇÃO DAS MÉTRICAS PARA AVALIAR EFICÁCIA DOS PROCESSAMENTOS

O fluxograma apresentado na Figura 4 descreve o processo de desenvolvimento de uma metodologia para o processamento de imagens. Inicialmente, define-se e desenvolve-se os processamentos necessários, ajustando seus parâmetros e combinando-os para otimizar os resultados. Com isso, são avaliadas as métricas de desempenho para verificar a eficácia das abordagens adotadas. Se os resultados forem satisfatórios, os melhores processamentos são selecionados e o processo é finalizado. Caso contrário, analisa-se o número de tentativas realizadas: se muitas tentativas falhas ocorreram, o processamento é descartado e novas abordagens são consideradas. Se o número de tentativas ainda for baixo, o processo retorna à etapa de ajuste de parâmetros, permitindo novas tentativas até atingir os resultados desejados.

Figura 4 – Fluxograma da metodologia de processamento de imagens

Fonte: Autor.

4.2 ESCOLHA DO TIPO DE MODELO DE REDE NEURAL

Será discutida a escolha do tipo de modelo de rede neural mais adequado para as tarefas de classificação, detecção e regressão no contexto do estudo.

4.3 SELEÇÃO DOS DATASETS PARA AVALIAÇÃO

Serão apresentados os critérios e a seleção dos datasets que serão utilizados para a avaliação dos processamentos de imagem.

4.4 METODOLOGIA PARA COMBINAÇÃO DE PROCESSAMENTOS UNITÁRIOS

Aqui, será detalhada a metodologia desenvolvida para combinar diferentes processamentos unitários de imagem visando a melhoria dos resultados.

4.5 IMPLEMENTAÇÃO DE UM MÉTODO DE AJUSTE AUTOMÁTICO DE PARÂMETROS

Será descrito o método implementado para ajuste automático de parâmetros das técnicas de processamento de imagem, com o objetivo de otimização sem intervenção manual extensa.

4.6 CONSTRUÇÃO DE REDES NEURAIS PARA AVALIAÇÃO DOS PROCESSAMENTOS

Nesta seção, será detalhada a construção dos modelos de redes neurais utilizados para avaliar os processamentos de imagem.

4.7 TESTES COM DIFERENTES ARQUITETURAS E ANÁLISE DE VARIAÇÕES NOS RESULTADOS

Serão apresentados os testes realizados com diferentes arquiteturas de redes neurais e a análise das variações nos resultados obtidos.

5 COLETA E ANÁLISE DE RESULTADOS

5.1 IMPACTO DOS MODELOS NO DESEMPENHO DOS PROCESSAMENTOS

Será analisado o impacto dos diferentes modelos de redes neurais no desempenho dos processamentos de imagem.

5.2 INFLUÊNCIA DOS DATASETS NOS RESULTADOS

Aqui, será discutida a influência dos diferentes datasets nos resultados dos processamentos de imagem.

5.3 COMPARAÇÃO ENTRE DIFERENTES ESTRATÉGIAS DE PROCESSAMENTO

Serão comparadas as diferentes estratégias de processamento de imagem utilizadas no estudo, destacando as vantagens e desvantagens de cada uma.

6 CONCLUSÃO

6.1 SÍNTESE DOS RESULTADOS OBTIDOS

Nesta seção, será feita uma síntese dos principais resultados obtidos ao longo do estudo.

6.2 LIMITAÇÕES E DESAFIOS ENCONTRADOS

Serão discutidas as limitações e os desafios encontrados durante a realização do trabalho.

6.3 SUGESTÕES PARA PESQUISAS FUTURAS

Por fim, serão apresentadas sugestões para pesquisas futuras, com base nos resultados e nas limitações identificadas no estudo.

REFERÊNCIAS

ALTAIE, A. S. et al. Fault detection on power transmission line based on wavelet transform and scalogram image analysis. **Energies**, MDPI, v. 16, n. 23, p. 7914, 2023. Disponível em: https://www.mdpi.com/journal/energies.

BARRETO, T. et al. Cnn based image restoration. **Journal of Intelligent & Robotic Systems**, v. 100, n. 2, p. 609–620, 2020.

BEN, M. et al. Deep neural network concept for a blind enhancement of document-images. **Applied Sciences**, v. 12, n. 19, p. 9601, 2022.

CHEN, X. et al. Edge detection networks inspired by neural mechanisms of selective attention in biological visual cortex. **Frontiers in Neuroscience**, v. 16, p. 1073484, 2022.

CHEN, Y. et al. Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets. **Materials & Design**, 2023.

DENNANNI, Α. How to deal with image resizing in Deep 2019. Disponível https://medium.com/neuronio/ Learning. em: how-to-deal-with-image-resizing-in-deep-learning-e5177fad7d89.

DING, F. et al. Detecting usm image sharpening by using cnn. **Signal Processing: Image Communication**, v. 68, p. 188–194, 2018.

EZE, C. C. et al. Deep learning for component fault detection in electricity transmission lines. **Journal of Big Data**, v. 9, n. 1, p. 63, 2022.

GONZALEZ, R. C.; WOODS, R. E. **Digital Image Processing**. 3. ed. [S.I.]: Prentice Hall, 2008.

ISOLA, P. et al. Comparison of image normalization methods for multi-site deep learning. **Applied Sciences**, v. 13, n. 15, p. 8923, 2023.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep convolutional neural networks. In: **Advances in Neural Information Processing Systems**. [S.I.: s.n.], 2012.

KUMAR, D. et al. A novel scheme of fault detection in transmission line using image processing. **Global Journal of Computer Science and Technology**, v. 17, n. 1, 2023.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. **Nature**, v. 521, n. 7553, p. 436–444, 2015.

LEDIG, C. et al. Photo-realistic single image super-resolution using a generative adversarial network. In: **CVPR**. [S.I.: s.n.], 2017. p. 4681–4690.

LI, C. et al. A simple deep learning based image illumination correction method for paintings. **Pattern Recognition Letters**, v. 138, p. 392–398, 2020.

- LI, X. et al. Fusion of image processing techniques for fault detection in electrical insulators. **IEEE Transactions on Power Delivery**, v. 34, n. 3, p. 1234–1241, 2019.
- LIAN, Z.; WANG, H. An image deblurring method using improved u-net model based on multilayer fusion and attention mechanism. **Scientific Reports**, Nature Publishing Group, v. 13, p. 21402, 2023. Disponível em: https://www.nature.com/articles/s41598-023-47768-4.
- LIU, C. et al. Detecção de falhas em isoladores em imagens aéreas de linhas de transmissão de alta voltagem baseada em modelo de aprendizado profundo. **Appl. Sci.**, v. 11, n. 10, p. 4647, 2021.
- LIU, S. et al. A neural network for long-term super-resolution imaging of live cells with reliable confidence quantification. **Nature Biotechnology**, 2025.
- MACDONALD, L. Color space transformation using neural networks. In: **Proc. IS&T 27th Color and Imaging Conf.** [S.I.: s.n.], 2019. p. 178–183.
- MALLA, P. K. et al. A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. **Healthcare Analytics**, Elsevier, v. 4, p. 100216, 2023. Disponível em: https://doi.org/10.1016/j.health.2023.100216.
- NALEPA, J. et al. A review: Data pre-processing and data augmentation techniques. **ScienceDirect**, 2022.
- PEER, D. et al. Real-time noise cancellation with deep learning. **PMC**, v. 9, p. e9678292, 2022.
- RODRIGUES, L. F.; NALDI, M. C.; MARI, J. F. Comparing convolutional neural networks and preprocessing techniques for hep-2 cell classification in immunofluorescence images. **Computers in Biology and Medicine**, Elsevier, v. 116, p. 103542, 2020. Acessado em: 24 mar. 2025. Disponível em: https://www.sciencedirect.com/science/article/pii/S0010482519303993.
- SABOTTKE, C. F. et al. The effect of image resolution on deep learning in radiography. **Radiology: Artificial Intelligence**, v. 2, n. 1, p. e190015, 2020.
- SALVI, M. et al. The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. **Computers in Biology and Medicine**, Elsevier, v. 128, p. 104129, 2021.
- SHARMA, A. et al. Deep learning models for digital image processing: a review. **Artificial Intelligence Review**, 2024.
- SHORTEN, C. et al. A survey on image data augmentation for deep learning. **Journal of Big Data**, v. 6, n. 1, p. 1–48, 2019.
- SUMIDA, I. et al. Deep convolutional neural network for reduction of contrast-enhanced region on ct images. **Journal of Radiation Research**, v. 60, n. 5, p. 586–594, 2019.
- WANG, L. et al. Análise sustentável da detecção de falhas em isoladores baseada em otimização visual refinada. **Sustainability**, v. 15, n. 4, p. 3456, 2023.

YANG, Z. et al. Using convolutional neural network models illumination estimation according to light colors. **Optics Communications**, v. 513, p. 128108, 2022.

YU, J. et al. Edge detection using a neural network. **Pattern Recognition**, v. 27, n. 12, p. 1653–1662, 1994.

ZHANG, Z. et al. Detecção de defeitos em isoladores por imagem baseada em processamento morfológico e aprendizado profundo. **Energies**, v. 15, n. 7, p. 2465, 2022.

ÖZTÜRK, ; AKDEMIR, B. Effects of histopathological image pre-processing on convolutional neural networks. In: ELSEVIER. **Procedia Computer Science**. [S.I.], 2018. v. 132, p. 396–403. International Conference on Computational Intelligence and Data Science (ICCIDS 2018).