(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 September 2001 (07.09.2001)

PCT

(10) International Publication Number WO 01/64922 A2

(51) International Patent Classification7: C12N 15/70. C07K 14/22, 19/00

PCT/IB01/00452 (21) International Application Number:

(22) International Filing Date: 28 February 2001 (28.02.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0004695.3 0027675.8

28 February 2000 (28:02.2000) GB 13 November 2000 (13.11.2000) GB

(71) Applicant (for all designated States except US): CHIRON SPA [IT/IT]; Via Fiorentina 1, I-53100 Siena (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ARICO, Maria, Beatrice [IT/IT]; Chiron SpA, Via Fiorentina 1, I-53100 Siena (IT). COMANDUCCI, Maurizio [IT/IT]; Chiron SpA, Via Fiorentina 1, I-53100 Siena (IT). GALEOTTI, Cesira [IT/IT]; Chiron SpA, Via Fiorentina 1, I-53100 Siena (IT). MASIGNANI, Vega [IT/IT]; Chiron SpA, Via Fiorentina 1, I-53100 Siena (IT). GUILIANI, Marzia, Monica [IT/IT]; Chiron SpA, Via Fiorentina 1, I-53100 Siena (IT). PIZZA, Mariagrazia [IT/IT]; Chiron SpA, Via Fiorentina, 1, I-53100 Siena (IT).

- (74) Agents: HALLYBONE, Huw, George et al.; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HETEROLOGOUS EXPRESSION OF NEISSERIAL PROTEINS

(57) Abstract: Alternative and improved approaches to the heterologous expression of the proteins of Neisseria meningitidis and Neisseria gonorrhoeae. These approaches typically affect the level of expression, the ease of purification, the cellular localisation, and/or the immunological properties of the expressed protein.

HETEROLOGOUS EXPRESSION OF NEISSERIAL PROTEINS

All documents cited herein are incorporated by reference in their entirety.

TECHNICAL FIELD

5

10

15

This invention is in the field of protein expression. In particular, it relates to the heterologous expression of proteins from *Neisseria* (e.g. N.gonorrhoeae or, preferably, N.meningitidis).

BACKGROUND ART

International patent applications WO99/24578, WO99/36544, WO99/57280 and WO00/22430 disclose proteins from *Neisseria meningitidis* and *Neisseria gonorrhoeae*. These proteins are typically described as being expressed in *E.coli* (i.e. heterologous expression) as either N-terminal GST-fusions or C-terminal His-tag fusions, although other expression systems, including expression in native *Neisseria*, are also disclosed.

It is an object of the present invention to provide alternative and improved approaches for the heterologous expression of these proteins. These approaches will typically affect the level of expression, the ease of purification, the cellular localisation of expression, and/or the immunological properties of the expressed protein.

DISCLOSURE OF THE INVENTION

Nomenclature herein

The 2166 protein sequences disclosed in WO99/24578, WO99/36544 and WO99/57280 are referred to herein by the following SEQ# numbers:

Application	Protein sequences	SEQ# herein
WO99/24578	Even SEQ IDs 2-892	SEQ#s 1-446
WO99/36544	Even SEQ IDs 2-90	SEQ#s 447-491
	Even SEQ IDs 2-3020	SEQ#s 492-2001
WO99/57280	Even SEQ IDs 3040-3114	SEQ#s 2002-2039
	SEQ IDs 3115-3241	SEQ#s 2040-2166

In addition to this SEQ# numbering, the naming conventions used in WO99/24578, WO99/36544 and WO99/57280 are also used (e.g. 'ORF4', 'ORF40', 'ORF40-1' etc. as used in WO99/24578 and WO99/36544; 'm919', 'g919' and 'a919' etc. as used in WO99/57280).

10

The 2160 proteins NMB0001 to NMB2160 from Tettelin et al. [Science (2000) 287:1809-1815] are referred to herein as SEQ#s 2167-4326 [see also WO00/66791].

The term 'protein of the invention' as used herein refers to a protein comprising:

- (a) one of sequences SEQ#s 1-4326; or
- (b) a sequence having sequence identity to one of SEQ#s 1-4326; or
- (c) a fragment of one of SEQ#s 1-4326.

The degree of 'sequence identity' referred to in (b) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). This includes mutants and allelic variants [e.g. see WO00/66741]. Identity is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence.

The 'fragment' referred to in (c) should comprise at least n consecutive amino acids from one of SEQ#s 1-4326 and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). Preferably the fragment comprises an epitope from one of SEQ#s 1-4326. Preferred fragments are those disclosed in WO00/71574 and WO01/04316.

Preferred proteins of the invention are found in N.meningitidis serogroup B.

Preferred proteins for use according to the invention are those of serogroup B N.meningitidis strain 2996 or strain 394/98 (a New Zealand strain). Unless otherwise stated, proteins mentioned herein are from N.meningitidis strain 2996. It will be appreciated, however, that the invention is not in general limited by strain. References to a particular protein (e.g. '287', '919' etc.) may be taken to include that protein from any strain.

25 Non-fusion expression

In a first approach to heterologous expression, no fusion partner is used, and the native leader peptide (if present) is used. This will typically prevent any 'interference' from fusion partners and may alter cellular localisation and/or post-translational modification and/or folding in the heterologous host.

10

25

30

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.

The method will typically involve the step of preparing an vector for expressing a protein of the invention, such that the first expressed amino acid is the first amino acid (methionine) of said protein, and last expressed amino acid is the last amino acid of said protein (i.e. the codon preceding the native STOP codon).

This approach is preferably used for the expression of the following proteins using the native leader peptide: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109 and NMB2050. The suffix 'L' used herein in the name of a protein indicates expression in this manner using the native leader peptide.

15 Proteins which are preferably expressed using this approach using no fusion partner and which have no native leader peptide include: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.

Advantageously, it is used for the expression of ORF25 or ORF40, resulting in a protein which induces better anti-bactericidal antibodies than GST- or His-fusions.

20 This approach is particularly suited for expressing lipoproteins.

Leader-peptide substitution

In a second approach to heterologous expression, the native leader peptide of a protein of the invention is replaced by that of a different protein. In addition, it is preferred that no fusion partner is used. Whilst using a protein's own leader peptide in heterologous hosts can often localise the protein to its 'natural' cellular location, in some cases the leader sequence is not efficiently recognised by the heterologous host. In such cases, a leader peptide known to drive protein targeting efficiently can be used instead.

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.

20

30

The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide and to introduce nucleotides that encode a different protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The expressed protein will consist of the replacement leader peptide at the N-terminus, followed by the protein of the invention minus its leader peptide.

The leader peptide is preferably from another protein of the invention (e.g. one of SEQ#s 1-4326), but may also be from an *E.coli* protein (e.g. the OmpA leader peptide) or an *Erwinia carotovora* protein (e.g. the PelB leader peptide), for instance.

A particularly useful replacement leader peptide is that of ORF4. This leader is able to direct lipidation in *E.coli*, improving cellular localisation, and is particularly useful for the expression of proteins 287, 919 and ΔG287. The leader peptide and N-terminal domains of 961 are also particularly useful.

Another useful replacement leader peptide is that of *E.coli* OmpA. This leader is able to direct membrane localisation of *E.coli*. It is particularly advantageous for the expression of ORF1, resulting in a protein which induces better anti-bactericidal antibodies than both fusions and protein expressed from its own leader peptide.

Another useful replacement leader peptide is MKKYLFSAA. This can direct secretion into culture medium, and is extremely short and active. The use of this leader peptide is not restricted to the expression of Neisserial proteins – it may be used to direct the expression of any protein (particularly bacterial proteins).

Leader-peptide deletion

In a third approach to heterologous expression, the native leader peptide of a protein of the invention is deleted. In addition, it is preferred that no fusion partner is used.

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.

The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may

15

20

25

already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.

This method can increase the levels of expression. For protein 919, for example, expression levels in *E.coli* are much higher when the leader peptide is deleted. Increased expression may be due to altered localisation in the absence of the leader peptide.

The method is preferably used for the expression of 919, ORF46, 961, 050-1, 760 and 287.

Domain-based expression

In a fourth approach to heterologous expression, the protein is expressed as domains. This may be used in association with fusion systems (e.g. GST or His-tag fusions).

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.

The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove at least one domain from within the protein. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. Where no fusion partners are used, the first amino acid of the expressed protein will be that of a domain of the protein.

A protein is typically divided into notional domains by aligning it with known sequences in databases and then determining regions of the protein which show different alignment patterns from each other.

The method is preferably used for the expression of protein 287. This protein can be notionally split into three domains, referred to as A B & C (see Figure 5). Domain B aligns strongly with IgA proteases, domain C aligns strongly with transferrin-binding proteins, and domain A shows no strong alignment with database sequences. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.

Once a protein has been divided into domains, these can be (a) expressed singly (b) deleted from with the protein e.g. protein ABCD \rightarrow ABD, ACD, BCD etc. or (c) rearranged e.g. protein ABC \rightarrow ACB, CAB etc. These three strategies can be combined with fusion partners is desired.

ORF46 has also been notionally split into two domains – a first domain (amino acids 1-433) which is well-conserved between species and serogroups, and a second domain (amino acids 433-608) which is not well-conserved. The second domain is preferably deleted. An alignment of polymorphic forms of ORF46 is disclosed in WO00/66741.

5 Protein 564 has also been split into domains (Figure 8), as have protein 961 (Figure 12) and protein 502 (amino acids 28-167 of the MC58 protein).

Hybrid proteins

10

20

In a fifth approach to heterologous expression, two or more (e.g. 3, 4, 5, 6 or more) proteins of the invention are expressed as a single hybrid protein. It is preferred that no non-Neisserial fusion partner (e.g. GST or poly-His) is used.

This offers two advantages. Firstly, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem. Secondly, commercial manufacture is simplified – only one expression and purification need be employed in order to produce two separately-useful proteins.

Thus the invention provides a method for the simultaneous heterologous expression of two or more proteins of the invention, in which said two or more proteins of the invention are fused (i.e. they are translated as a single polypeptide chain).

The method will typically involve the steps of: obtaining a first nucleic acid encoding a first protein of the invention; obtaining a second nucleic acid encoding a second protein of the invention; ligating the first and second nucleic acids. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.

Preferably, the constituent proteins in a hybrid protein according to the invention will be from the same strain.

The fused proteins in the hybrid may be joined directly, or may be joined via a linker peptide e.g. via a poly-glycine linker (i.e. G_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more) or via a short peptide sequence which facilitates cloning. It is evidently preferred not to join a ΔG protein to the C-terminus of a poly-glycine linker.

The fused proteins may lack native leader peptides or may include the leader peptide sequence of the N-terminal fusion partner.

The method is well suited to the expression of proteins orf1, orf4, orf25, orf40, Orf46/46.1, orf83, 233, 287, 292L, 564, 687, 741, 907, 919, 953, 961 and 983.

The 42 hybrids indicated by 'X' in the following table of form NH₂-A—B-COOH are preferred:

$\downarrow A B \rightarrow$	ORF46.1	287	741	919	953	961	983
ORF46.1		X	X	X	Х	X	X
287	Х		X	Х	Х	Х	X
741	Х	X		Х	Х	X	Х
919	Х	Х	Х		Х	Х	Х
953	Х	X	Х	Х		Х	Х
961	X	X	X	Х	Х		Х
983	Х	X	Х	X	Х	Х	

- Preferred proteins to be expressed as hybrids are thus ORF46.1, 287, 741, 919, 953, 961 and 983. These may be used in their essentially full-length form, or poly-glycine deletions (ΔG) forms may be used (e.g. ΔG-287, ΔGTbp2, ΔG741, ΔG983 etc.), or truncated forms may be used (e.g. Δ1-287, Δ2-287 etc.), or domain-deleted versions may be used (e.g. 287B, 287C, 287BC, ORF46₁₋₄₃₃, ORF46₄₃₃₋₆₀₈, ORF46, 961c etc.).
- Particularly preferred are: (a) a hybrid protein comprising 919 and 287; (b) a hybrid protein comprising 953 and 287; (c) a hybrid protein comprising 287 and ORF46.1; (d) a hybrid protein comprising ORF1 and ORF46.1; (e) a hybrid protein comprising 919 and ORF46.1; (f) a hybrid protein comprising ORF46.1 and 919; (g) a hybrid protein comprising ORF46.1, 287 and 919; (h) a hybrid protein comprising 919 and 519; and (i) a hybrid protein comprising ORF97 and 225. Further embodiments are shown in Figure 14.

Where 287 is used, it is preferably at the C-terminal end of a hybrid; if it is to be used at the N-terminus, if is preferred to use a ΔG form of 287 is used (e.g. as the N-terminus of a hybrid with ORF46.1, 919, 953 or 961).

Where 287 is used, this is preferably from strain 2996 or from strain 394/98.

Where 961 is used, this is preferably at the N-terminus. Domain forms of 961 may be used.

Alignments of polymorphic forms of ORF46, 287, 919 and 953 are disclosed in WO00/66741. Any of these polymorphs can be used according to the present invention.

Temperature

In a sixth approach to heterologous expression, proteins of the invention are expressed at a low temperature.

Expressed Neisserial proteins (e.g. 919) may be toxic to *E.coli*, which can be avoided by expressing the toxic protein at a temperature at which its toxic activity is not manifested.

Thus the present invention provides a method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.

A preferred temperature is around 30°C. This is particularly suited to the expression of 919.

10 Mutations

5

As discussed above, expressed Neisserial proteins may be toxic to *E.coli*. This toxicity can be avoided by mutating the protein to reduce or eliminate the toxic activity. In particular, mutations to reduce or eliminate toxic enzymatic activity can be used, preferably using site-directed mutagenesis.

In a seventh approach to heterologous expression, therefore, an expressed protein is mutated to reduce or eliminate toxic activity.

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.

The method is preferably used for the expression of protein 907, 919 or 922. A preferred 20 mutation in 907 is at Glu-117 (e.g. Glu-Gly); preferred mutations in 919 are at Glu-255 (e.g. Glu-Gly) and/or Glu-323 (e.g. Glu-Gly); preferred mutations in 922 are at Glu-164 (e.g. Glu-Gly), Ser-213 (e.g. Ser-Gly) and/or Asn-348 (e.g. Asn-Gly).

Alternative vectors

In a eighth approach to heterologous expression, an alternative vector used to express the protein. This may be to improve expression yields, for instance, or to utilise plasmids that are already approved for GMP use.

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which an alternative vector is used. The alternative vector is preferably pSM214, with no fusion partners. Leader peptides may or may not be included.

This approach is particularly useful for protein 953. Expression and localisation of 953 with its native leader peptide expressed from pSM214 is much better than from the pET vector.

pSM214 may also be used with: Δ G287, Δ 2-287, Δ 3-287, Δ 4-287, Orf46.1, 961L, 961, 961(MC58), 961c, 961c-L, 919, 953 and Δ G287-Orf46.1.

Another suitable vector is pET-24b (Novagen; uses kanamycin resistance), again using no fusion partners. pET-24b is preferred for use with: ΔG287K, Δ2-287K, Δ3-287K, Δ4-287K, Orf46.1-K, Orf46A-K, 961-K (MC58), 961a-K, 961b-K, 961c-K, 961c-L-K, 961d-K, ΔG287-919-K, ΔG287-Orf46.1-K and ΔG287-961-K.

Multimeric form

In a ninth approach to heterologous expression, a protein is expressed or purified such that it adopts a particular multimeric form.

This approach is particularly suited to protein 953. Purification of one particular multimeric form of 953 (the monomeric form) gives a protein with greater bactericidal activity than other forms (the dimeric form).

15 Proteins 287 and 919 may be purified in dimeric forms.

Protein 961 may be purified in a 180kDa oligomeric form (e.g. a tetramer).

Lipidation

In a tenth approach to heterologous expression, a protein is expressed as a lipidated protein.

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.

This is particularly useful for the expression of 919, 287, ORF4, 406, 576-1, and ORF25. Polymorphic forms of 919, 287 and ORF4 are disclosed in WO00/66741.

The method will typically involve the use of an appropriate leader peptide without using an N-terminal fusion partner.

25 C-terminal deletions

In an eleventh approach to heterologous expression, the C-terminus of a protein of the invention is mutated. In addition, it is preferred that no fusion partner is used.

20

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.

The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to mutate nucleotides that encode the protein's C-terminus portion. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.

The mutation may be a substitution, insertion or, preferably, a deletion.

This method can increase the levels of expression, particularly for proteins 730, ORF29 and ORF46. For protein 730, a C-terminus region of around 65 to around 214 amino acids may be deleted; for ORF46, the C-terminus region of around 175 amino acids may be deleted; for ORF29, the C-terminus may be deleted to leave around 230-370 N-terminal amino acids.

Leader peptide mutation

In a twelfth approach to heterologous expression, the leader peptide of the protein is mutated. This is particularly useful for the expression of protein 919.

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.

The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides within the leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.

Poly-glycine deletion

In a thirteenth approach to heterologous expression, poly-glycine stretches in wild-type sequences are mutated. This enhances protein expression.

The poly-glycine stretch has the sequence $(Gly)_n$, where $n\geq 4$ (e.g. 5, 6, 7, 8, 9 or more). This stretch is mutated to disrupt or remove the $(Gly)_n$. This may be by deletion (e.g. CGGGGS \rightarrow CGGGGS, CGS, CGS or CS), by substitution (e.g. CGGGGS \rightarrow CGXGGS, CGXXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS \rightarrow CGXGGS, CGXGGGS, etc.).

This approach is not restricted to Neisserial proteins – it may be used for any protein (particularly bacterial proteins) to enhance heterologous expression. For Neisserial proteins, however, it is particularly suitable for expressing 287, 741, 983 and Tbp2. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.

Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) a poly-glycine stretch within the protein is mutated.

The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides that encode a polyglycine stretch within the protein sequence. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.

Conversely, the opposite approach (i.e. introduction of poly-glycine stretches) can be used to suppress or diminish expression of a given heterologous protein.

Heterologous host

10

15

25

Whilst expression of the proteins of the invention may take place in the native host (i.e. the organism in which the protein is expressed in nature), the present invention utilises a heterologous host. The heterologous host may be prokaryotic or eukaryotic. It is preferably E.coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonenna typhimurium, Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria lactamica, Neisseria cinerea, Mycobateria (e.g. M.tuberculosis), yeast etc.

20 Vectors etc.

As well as the methods described above, the invention provides (a) nucleic acid and vectors useful in these methods (b) host cells containing said vectors (c) proteins expressed or expressable by the methods (d) compositions comprising these proteins, which may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions (e) these compositions for use as medicaments (e.g. as vaccines) or as diagnostic reagents (f) the use of these compositions in the manufacture of (1) a medicament for treating or preventing infection due to Neisserial bacteria (2) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria, and/or (3) a reagent which can raise antibodies against Neisserial bacteria and (g) a method of treating a

patient, comprising administering to the patient a therapeutically effective amount of these compositions.

Sequences

10

The invention also provides a protein or a nucleic acid having any of the sequences set out in the following examples. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of 'sequence identity' is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more).

Furthermore, the invention provides nucleic acid which can hybridise to the nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution).

The invention also provides nucleic acid encoding proteins according to the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

BRIEF DESCRIPTION OF DRAWINGS

Figures 1 and 2 show constructs used to express proteins using heterologous leader peptides.

Figure 3 shows expression data for ORF1, and Figure 4 shows similar data for protein 961.

Figure 5 shows domains of protein 287, and Figures 6 & 7 show deletions within domain A.

Figure 8 shows domains of protein 564.

Figure 9 shows the *PhoC* reporter gene driven by the 919 leader peptide, and Figure 10 shows the results obtained using mutants of the leader peptide.

Figure 11 shows insertion mutants of protein 730 (A: 730-C1; B: 730-C2).

Figure 12 shows domains of protein 961.

Figure 13 shows SDS-PAGE of ΔG proteins. Dots show the main recombinant product.

Figure 14 shows 26 hybrid proteins according to the invention.

MODES FOR CARRYING OUT THE INVENTION

Example 1 – 919 and its leader peptide

5 Protein 919 from *N.meningitidis* (serogroup B, strain 2996) has the following sequence:

```
1 MKKYLFRAAL YGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIFDPA
51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KAYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
```

15 The leader peptide is underlined.

The sequences of 919 from other strains can be found in Figures 7 and 18 of WO00/66741.

Example 2 of WO99/57280 discloses the expression of protein 919 as a His-fusion in *E.coli*. The protein is a good surface-exposed immunogen.

Three alternative expression strategies were used for 919:

20
 1) 919 without its leader peptide (and without the mature N-terminal cysteine) and without any fusion partner ('919^{untagged}'):

```
25 QSKSIQTFP QPDTSVINGP DRPVGIPDPA GTTVGGGGAV YTVVPHLSLP
100 YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR RTAQARFPIY GIPDDFISVP
150 LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT HTADLSRFPI TARTTAIKGR
200 FEGSRFLPYH TRNQINGGAL DGKAPILGYA EDPVELFFMH IQGSGRLKTP
250 SGKYIRIGYA DKNEHPYVSI GRYMADKGYL KLGQTSMQGI KAYMRQNPQR
300 LAEVLGQNPS YIFFRELAGS SNDGPVGALG TPLMGEYAGA VDRHYITLGA
350 PLFVATAHPV TRKALNRLIM AQDTGSAIKG AVRVDYFWGY GDEAGELAGK
300 QKTTGYVWQL LPNGMKPEYR P*
```

The leader peptide and cysteine were omitted by designing the 5'-end amplification primer downstream from the predicted leader sequence.

- 2) 919 with its own leader peptide but without any fusion partner ('919L'); and
- 35 3) 919 with the leader peptide (MKTFFKTLSAAALALILAA) from ORF4 ('919LOrf4').

```
40 MKTFFKTLS AAALALILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
50 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
100 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
150 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
200 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
250 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
300 KLGQTSMQGI KSYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
```

15

25

30

350 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG 400 AVRVDYFWGY GDEAGRLAGK QKTTGYVWQL LPNGMKPEYR P*

To make this construct, the entire sequence encoding the ORF4 leader peptide was included in the 5'-primer as a tail (primer 919Lorf4 For). A *NheI* restriction site was generated by a double nucleotide change in the sequence coding for the ORF4 leader (no amino acid changes), to allow different genes to be fused to the ORF4 leader peptide sequence. A stop codon was included in all the 3'-end primer sequences.

All three forms of the protein were expressed and could be purified.

The '919L' and '919LOrf4' expression products were both lipidated, as shown by the incorporation of [3H]-palmitate label. 919^{untagged} did not incorporate the 3H label and was located intracellularly.

919LOrf4 could be purified more easily than 919L. It was purified and used to immunise mice. The resulting sera gave excellent results in FACS and ELISA tests, and also in the bactericidal assay. The lipoprotein was shown to be localised in the outer membrane.

919^{untagged} gave excellent ELISA titres and high serum bactericidal activity. FACS confirmed its cell surface location.

Example 2 – 919 and expression temperature

Growth of *E.coli* expressing the 919LOrf4 protein at 37°C resulted in lysis of the bacteria. In order to overcome this problem, the recombinant bacteria were grown at 30°C. Lysis was prevented without preventing expression.

Example 3 - mutation of 907, 919 and 922

It was hypothesised that proteins 907, 919 and 922 are murein hydrolases, and more particularly lytic transglycosylases. Murein hydrolases are located on the outer membrane and participate in the degradation of peptidoglycan.

The purified proteins 919^{untagged}, 919Lorf4, 919-His (i.e. with a C-terminus His-tag) and 922-His were thus tested for murein hydrolase activity [Ursinus & Holtje (1994) J.Bact. 176:338-343]. Two different assays were used, one determining the degradation of insoluble murein sacculus into soluble muropeptides and the other measuring breakdown of poly(MurNAc-GlcNAc)_{n>30} glycan strands.

15

25

30

The first assay uses murein sacculi radiolabelled with meso-2,6-diamino-3,4,5-[³H]pimelic acid as substrate. Enzyme (3–10 µg total) was incubated for 45 minutes at 37°C in a total volume of 100µl comprising 10mM Tris-maleate (pH 5.5), 10mM MgCl₂, 0.2% v/v Triton X-100 and [³H]A₂pm labelled murein sacculi (about 10000cpm). The assay mixture was placed on ice for 15 minutes with 100 µl of 1% w/v N-acetyl-N,N,N-trimethylammonium for 15 minutes and precipitated material pelleted by centrifugation at 10000g for 15 minutes. The radioactivity in the supernatant was measured by liquid scintillation counting. *E.coli* soluble lytic transglycosylase Slt70 was used as a positive control for the assay; the negative control comprised the above assay solution without enzyme.

All proteins except 919-His gave positive results in the first assay.

The second assay monitors the hydrolysis of poly(MurNAc-GlcNAc)glycan strands. Purified strands, poly(MurNAc-GlcNAc)_{n>30} labelled with N-acetyl-D-1-[³H]glucosamine were incubated with 3µg of 919L in 10 mM Tris-maleate (pH 5.5), 10 mM MgCl₂ and 0.2% v/v Triton X-100 for 30 min at 37°C. The reaction was stopped by boiling for 5 minutes and the pH of the sample adjusted to about 3.5 by addition of 10µl of 20% v/v phosphoric acid. Substrate and product were separated by reversed phase HPLC on a Nucleosil 300 C₁₈ column as described by Harz et. al. [Anal. Biochem. (1990) 190:120-128]. The E.coli lytic transglycosylase Mlt A was used as a positive control in the assay. The negative control was performed in the absence of enzyme.

By this assay, the ability of 919LOrf4 to hydrolyse isolated glycan strands was demonstrated when anhydrodisaccharide subunits were separated from the oligosaccharide by HPLC.

Protein 919Lorf4 was chosen for kinetic analyses. The activity of 919Lorf4 was enhanced 3.7-fold by the addition of 0.2% v/v Triton X-100 in the assay buffer. The presence of Triton X-100 had no effect on the activity of 919^{untagged}. The effect of pH on enzyme activity was determined in Tris-Maleate buffer over a range of 5.0 to 8.0. The optimal pH for the reaction was determined to be 5.5. Over the temperature range 18°C to 42°C, maximum activity was observed at 37°C. The effect of various ions on murein hydrolase activity was determined by performing the reaction in the presence of a variety of ions at a final concentration of 10mM. Maximum activity was found with Mg²⁺, which stimulated activity 2.1-fold. Mn²⁺ and Ca²⁺ also stimulated enzyme activity to a similar extent while the addition Ni²⁺ and EDTA had no significant effect. In contrast, both Fe²⁺ and Zn²⁺ significantly inhibited enzyme activity.

20

The structures of the reaction products resulting from the digestion of unlabelled *E.coli* murein sacculus were analysed by reversed-phase HPLC as described by Glauner [Anal. Biochem. (1988) 172:451-464]. Murein sacculi digested with the muramidase Cellosyl were used to calibrate and standardise the Hypersil ODS column. The major reaction products were 1,6 anhydrodisaccharide tetra and tri peptides, demonstrating the formation of 1,6 anhydromuraminic acid intramolecular bond.

These results demonstrate experimentally that 919 is a murein hydrolase and in particular a member of the lytic transglycosylase family of enzymes. Furthermore the ability of 922-His to hydrolyse murein sacculi suggests this protein is also a lytic transglycosylase.

10 This activity may help to explain the toxic effects of 919 when expressed in E.coli.

In order to eliminate the enzymatic activity, rational mutagenesis was used. 907, 919 and 922 show fairly low homology to three membrane-bound lipidated murein lytic transglycosylases from *E.coli*:

919 (441aa) is 27.3% identical over 440aa overlap to E.coli MLTA (P46885);

922 (369aa) is 38.7% identical over 310aa overlap to *E.coli* MLTB (P41052); and 907-2 (207aa) is 26.8% identical over 149aa overlap to *E.coli* MLTC (P52066).

907-2 also shares homology with *E.coli* MLTD (P23931) and Slt70 (P03810), a soluble lytic transglycosylase that is located in the periplasmic space. No significant sequence homology can be detected among 919, 922 and 907-2, and the same is true among the corresponding MLTA, MLTB and MLTC proteins.

Crystal structures are available for Slt70 [1QTEA; 1QTEB; Thunnissen et al. (1995) Biochemistry 34:12729-12737] and for Slt35 [1LTM; 1QUS; 1QUT; van Asselt et al. (1999) Structure Fold Des 7:1167-80] which is a soluble form of the 40kDa MLTB.

The catalytic residue (a glutamic acid) has been identified for both Slt70 and MLTB.

In the case of Slt70, mutagenesis studies have demonstrated that even a conservative substitution of the catalytic Glu505 with a glutamine (Gln) causes the complete loss of enzymatic activity. Although Slt35 has no obvious sequence similarity to Slt70, their catalytic domains shows a surprising similarity. The corresponding catalytic residue in MLTB is Glu162.

Another residue which is believed to play an important role in the correct folding of the enzymatic cleft is a well-conserved glycine (Gly) downstream of the glutamic acid. Recently, Terrak et al. [Mol.Microbiol. (1999) 34:350-64] have suggested the presence of another important residue which is an aromatic amino acid located around 70-75 residues downstream of the catalytic glutamic acid.

Sequence alignment of Slt70 with 907-2 and of MLTB with 922 were performed in order to identify the corresponding catalytic residues in the MenB antigens.

The two alignments in the region of the catalytic domain are reported below:

907-2/Slt70:

5

10		90	100	110	▼ 120	130	140
	907-2.pep	ERRRLLVNI	QYESSRAG	LDTQIVLGLI	ev e safroyai	SGV G AR G LMQ	VMPFWKNYIG
	mlb amal:		:: :	: :::::	, , ,		: ! ! : : : : : : : : : : : : : : : : :
	slty_ecoli	480	LFKRYTSGKE 490	IPQSYAMATA 500	RQESAWNPKVK	SPVGASGLMÇ 520	IMPGTATHTV 530
15		400	430	300	GLU505	320	530
	922/MLTB						
	922/WIL1D						
		150	160 V	7 170	180	190	200
20	922.pep	VAOKYGVPA	ELIVAVIGIE		RVADALATLGF	DYPRRAGFFO	
20	mlah asali	:	: :: :	: : :]: :	: :	: :
	mltb_ecoli	AWQVYGVPF			RILDALATLSF		
		150	160 🛦	170 LU162	180	190	200
			G	T0162			
25		210	220	230	240	250	260
-	922.pep	_ -			KWAVDYDGDGH		
	• •	:: :	: :	1 1 1 1 1 1 7	:: ::	:: 1:	: :
	mltb_ecoli	RDEQDDPLN	LKGSFAGAMG	YGOFMPSSYK	QYAVDFSGDGH	INLWDPV-DA	.igsvanyfka
		210	220	230	240	250	260
30		. *					

From these alignments, it results that the corresponding catalytic glutamate in 907-2 is Glu117, whereas in 922 is Glu164. Both antigens also share downstream glycines that could have a structural role in the folding of the enzymatic cleft (in bold), and 922 has a conserved aromatic residue around 70aa downstream (in bold).

In the case of protein 919, no 3D structure is available for its *E.coli* homologue MLTA, and nothing is known about a possible catalytic residue. Nevertheless, three amino acids in 919 are predicted as catalytic residues by alignment with MLTA:

919/MLTA

```
240
                                  250
                                            260 🗆 🗆 270 🗇
                                                                  280
                                                                             290
40
                        ALDGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRI-GYADKNEHPYVSIGRYMADK
           919.pep
                         |||: | |||:|::: :: |:| :|||| :
                                                          :|: : : :|| || | | | || ||: : |:
           mlta_ecoli.p ALSDKY-ILAYSNSLMDNFIMDVQGSGYIDFGDGSPLNFFSYAGKNGHAYRSIGKVLIDR
                                  170
                                            180
                                                       190
                                                                 200
                                                                            210
```


The three possible catalytic residues are shown by the symbol ▼:

- 20 1) Glu255 (Asp in MLTA), followed by three conserved glycines (Gly263, Gly265 and Gly272) and three conserved aromatic residues located approximately 75-77 residues downstream. These downstream residues are shown by □.
 - 2) Glu323 (conserved in MLTA), followed by 2 conserved glycines (Gly347 and Gly355) and two conserved aromatic residues located 84-85 residues downstream (Tyr406 or Phe407). These downstream residues are shown by ◊.
 - 3) Asp362 (instead of the expected Glu), followed by one glycine (Gly 369) and a conserved aromatic residue (Trp428). These downstream residues are shown by o.

Alignments of polymorphic forms of 919 are disclosed in WO00/66741.

Based on the prediction of catalytic residues, three mutants of the 919 and one mutant of 907, containing each a single amino acid substitution, have been generated. The glutamic acids in position 255 and 323 and the aspartic acids in position 362 of the 919 protein and the glutamic acid in position 117 of the 907 protein, were replaced with glycine residues using PCR-based SDM. To do this, internal primers containing a codon change from Glu or Asp to Gly were designed:

Primers	Sequences	Codon change
919-E255 for	CGAAGACCCCGTCGgtCTTTTTTTATG	$GAA \rightarrow Ggt$
919-E255 rev	GTGCATAAAAAAAAGacCGACGGGGTCT	
919-E323 for	AACGCCTCGCCGgtGTTTTGGGTCA	GAA → Ggt
919-E323 rev	TTTGACCCAAAACacCGGCGAGGCG	
919-D362 for	TGCCGGCGCAGTCGgtCGGCACTACA	$GAC \rightarrow Ggt$
919-D362 rev	TAATGTAGTGCCGacCGACTGCGCCG	
907-E117 for	TGATTGAGGTGGgtAGCGCGTTCCG	$GAA \rightarrow Ggt$
907-E117 rev	GGCGGAACGCGCTacCCACCTCAAT	

Underlined nucleotides code for glycine; the mutated nucleotides are in lower case.

To generate the 919-E255, 919-E323 and 919-E362 mutants, PCR was performed using 20ng of the pET 919-LOrf4 DNA as template, and the following primer pairs:

- 1) Orf4L for / 919-E255 rev
- 2) 919-E255 for / 919L rev

5

20

- 3) Orf4L for / 919-E323 rev
- 4) 919-E323 for / 919L rev
- 5) Orf4L for / 919-D362 rev
- 6) 919-D362 for / 919L rev
- The second round of PCR was performed using the product of PCR 1-2, 3-4 or 5-6 as template, and as forward and reverse primers the "Orf4L for" and "919L rev" respectively.

For the mutant 907-E117, PCR have been performed using 200ng of chromosomal DNA of the 2996 strain as template and the following primer pairs:

- 7) 907L for / 907-E117 rev
- 15 8) 907-E117 for / 907L rev

The second round of PCR was performed using the products of PCR 7 and 8 as templates and the oligos "907L for" and "907L rev" as primers.

The PCR fragments containing each mutation were processed following the standard procedure, digested with *NdeI* and *XhoI* restriction enzymes and cloned into pET-21b+vector. The presence of each mutation was confirmed by sequence analysis.

Mutation of Glu117 to Gly in 907 is carried out similarly, as is mutation of residues Glu164, Ser213 and Asn348 in 922.

10

15

20

25

The E255G mutant of 919 shows a 50% reduction in activity; the E323G mutant shows a 70% reduction in activity; the E362G mutant shows no reduction in activity.

Example 4 - multimeric form

287-GST, 919^{untagged} and 953-His were subjected to gel filtration for analysis of quaternary structure or preparative purposes. The molecular weight of the native proteins was estimated using either FPLC Superose 12 (H/R 10/30) or Superdex 75 gel filtration columns (Pharmacia). The buffers used for chromatography for 287, 919 and 953 were 50 mM Tris-HCl (pH 8.0), 20 mM Bicine (pH 8.5) and 50 mM Bicine (pH 8.0), respectively.

Additionally each buffer contained 150-200 mM NaCl and 10% v/v glycerol. Proteins were dialysed against the appropriate buffer and applied in a volume of 200µl. Gel filtration was performed with a flow rate of 0.5 – 2.0 ml/min and the eluate monitored at 280nm. Fractions were collected and analysed by SDS-PAGE. Blue dextran 2000 and the molecular weight standards ribonuclease A, chymotrypsin A ovalbumin, albumin (Pharmacia) were used to calibrate the column. The molecular weight of the sample was estimated from a calibration curve of K_{av} vs. log M_r of the standards. Before gel filtration, 287-GST was digested with thrombin to cleave the GST moiety.

The estimated molecular weights for 287, 919 and 953-His were 73 kDa, 47 kDa and 43 kDa respectively. These results suggest 919 is monomeric while both 287 and 953 are principally dimeric in their nature. In the case of 953-His, two peaks were observed during gel filtration. The major peak (80%) represented a dimeric conformation of 953 while the minor peak (20%) had the expected size of a monomer. The monomeric form of 953 was found to have greater bactericidal activity than the dimer.

Example 5 - pSM214 and pET-24b vectors

953 protein with its native leader peptide and no fusion partners was expressed from the pET vector and also from pSM214 [Velati Bellini et al. (1991) J. Biotechnol. 18, 177-192].

The 953 sequence was cloned as a full-length gene into pSM214 using the *E. coli* MM294-1 strain as a host. To do this, the entire DNA sequence of the 953 gene (from ATG to the STOP codon) was amplified by PCR using the following primers:

953L for/2 CCGGAATTCTTATGAAAAAATCATCTTCGCCGC

Eco RI

953L rev/2 GCCCAAGCTTTTATTGTTTGGCTGCCTCGATT

Hind III

10

which contain *Eco*RI and *Hind*III restriction sites, respectively. The amplified fragment was digested with *Eco*RI and *Hind*III and ligated with the pSM214 vector digested with the same two enzymes. The ligated plasmid was transformed into *E.coli* MM294-1 cells (by incubation in ice for 65 minutes at 37° C) and bacterial cells plated on LB agar containing 20µg/ml of chloramphenicol.

Recombinant colonies were grown over-night at 37°C in 4 ml of LB broth containing 20 µg/ml of chloramphenicol; bacterial cells were centrifuged and plasmid DNA extracted as and analysed by restriction with *Eco*RI and *Hind*III. To analyse the ability of the recombinant colonies to express the protein, they were inoculated in LB broth containing 20µg/ml of chloramphenicol and let to grown for 16 hours at 37°C. Bacterial cells were centrifuged and resuspended in PBS. Expression of the protein was analysed by SDS-PAGE and Coomassie Blue staining.

Expression levels were unexpectedly high from the pSM214 plasmid.

Oligos used to clone sequences into pSM-214 vectors were as follows:

∆G287	Fwd	CCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGA	EcoRI
(pSM-214)	Rev	GCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCG	HindIII
Δ2 287	Fwd	CCG <u>GAATTC</u> TTATG-AGCCAAGATATGGCGGCAGT	EcoRI
(pSM-214)	Rev	GCCC <u>AAGCTT</u> -TCAATCCTGCTCTTTTTTGCCG	HindIII
Δ3 287	Fwd	CCGGAATTCTTATG-TCCGCCGAATCCGCAAATCA	EcoRI
(pSM-214)	Rev	GCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCG	HindⅢ
Δ4 287	Fwd	CCG <u>GAATTC</u> TTATG-GGAAGGGTTGATTTGGCTAATG	EcoRI
(pSM-214)	Rev	GCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCG	HindIII
Orf46.1	Fwd	CCGGAATTCTTATG-TCAGATTTGGCAAACGATTCTT	EcoRI
(pSM-214)	Rev	GCCCAAGCTT-TTACGTATCATATTTCACGTGCTTC	HindIII
ΔG287-Orf46.1	Fwd	CCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGA	EcoRI
(pSM-214)	Rev	GCCCAAGCTT-TTACGTATCATATTTCACGTGCTTC	HindIII
919	Fwd	CCGGAATTCTTATG-CAAAGCAAGAGCATCCAAACCT	EcoRI
(pSM-214)	Rev	GCCC <u>AAGCTT</u> -TTACGGGCGGTATTCGGGCT	HindIII
961L	Fwd	CCGGAATTCATATG-AAACACTTTCCATCC	EcoRI
(pSM-214)	Rev	GCCCAAGCTT-TTACCACTCGTAATTGAC	HindIII
961	Fwd	CCG <u>GAATTC</u> ATATG-GCCACAAGCGACGAC	EcoRI
(pSM-214)	Rev	GCCC <u>AAGCTT</u> -TTACCACTCGTAATTGAC	HindIII
961c L	Fwd	CCGGAATTCTTATG-AAACACTTTCCATCC	EcoRI
pSM-214	Rev	GCCC <u>AAGCTT</u> -TCAACCCACGTTGTAAGGTTG	HindIII
961c	Fwd	CCGGAATTCTTATG-GCCACAAACGACGACG	EcoRI
pSM-214	Rev	GCCC <u>AAGCTT</u> -TCAACCCACGTTGTAAGGTTG	HindIII
953	Fwd	CCGGAATTCTTATG-GCCACCTACAAAGTGGACGA	EcoRI
(pSM-214)	Rev	GCCC <u>AAGCTT</u> -TTATTGTTTGGCTGCCTCGATT	HindIII
961c pSM-214 953	Rev Fwd	CCGGAATTCTTATG-GCCACAAACGACGACG GCCCAAGCTT-TCAACCCACGTTGTAAGGTTG CCGGAATTCTTATG-GCCACCTACAAAGTGGACGA	HindIII EcoRI

These sequences were manipulated, cloned and expressed as described for 953L.

For the pET-24 vector, sequences were cloned and the proteins expressed in pET-24 as described below for pET21. pET2 has the same sequence as pET-21, but with the kanamycin resistance cassette instead of ampicillin cassette.

5 Oligonucleotides used to clone sequences into pET-24b vector were:

ΔG 287 K				
ΔG 48/ IX	Fwd	CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC §	NheI	
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC *	XhoI	
Δ2 287 Κ	Fwd	CGCGGATCCGCTAGC-CAAGATATGGCGGCAGT §	NheI	
Δ3 287 K	Fwd	CGCGGATCCGCTAGC-GCCGAATCCGCAAATCA 8	NheI	
Δ4 287 K	Fwd	CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG §	NheI	
Orf46.1 K	Fwd	GGGAATTCCATATG-GGCATTTCCCGCAAAATATC	NdeI	
	Rev	CCCGCTCGAG-TTACGTATCATATTTCACGTGC	XhoI	
Orf46A K	Fwd	GGGAATTCCATATG-GGCATTTCCCGCAAAATATC	NdeI	
	Rev	CCCGCTCGAG-TTATTCTATGCCTTGTGCGGCAT	XhoI	
961 K	Fwd	CGCGGATCC <u>CATATG</u> -GCCACAAGCGACGACGA	NdeI	
(MC58)	Rev	CCCGCTCGAG-TTACCACTCGTAATTGAC	XhoI	
961a K	Fwd	CGCGGATCC <u>CATATG</u> -GCCACAAACGACG	NdeI	1.
	Rev	CCCGCTCGAG-TCATTTAGCAATATTATCTTTGTTC	XhoI	
961b K	Fwd	CGCGGATCC <u>CATATG</u> -AAAGCAAACAGTGCCGAC	NdeI	
	Rev	CCCGCTCGAG-TTACCACTCGTAATTGAC	XhoI	7:
961c K	Fwd	CGCGGATCC <u>CATATG</u> -GCCACAAACGACG	NdeI]:
	Rev	CCCG <u>CTCGAG</u> -TTAACCCACGTTGTAAGGT	XhoI	``
961cL K	Fwd	CGCGGATCCCATATG-ATGAAACACTTTCCATCC	NdeI	1:
	Rev	CCCGCTCGAG-TTAACCCACGTTGTAAGGT	XhoI	٦.
961d K	Fwd	CGCGGATCC <u>CATATG</u> -GCCACAAACGACG	NdeI	-
	Rev	CCCGCTCGAG-TCAGTCTGACACTGTTTTATCC	XhoI]
ΔG 287-	Fwd	CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC	NheI	
919 K	Rev	CCCGCTCGAG-TTACGGGCGGTATTCGG	XhoI	
ΔG 287-	Fwd	CGCGGATCC <u>GCTAGC</u> -CCCGATGTTAAATCGGC	NheI	
Orf46.1 K	Rev	CCCGCTCGAG-TTACGTATCATATTTCACGTGC	XhoI	
AC 207	Fwd	CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC	NheI	
ΔG 287- 961 K				

^{*} This primer was used as a Reverse primer for all the 287 forms.

Example 6 - ORF1 and its leader peptide

ORF1 from N.meningitidis (serogroup B, strain MC58) is predicted to be an outer membrane or secreted protein. It has the following sequence:

1 MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQA WAGHTYFGIN

 $^{^{\}S}$ Forward primers used in combination with the $\Delta G278$ K reverse primer.

	51	YQYYRDFAEN	KGKFAVGAKD	IEVYNKKGEL	VGKSMTKAPM	IDFSVVSRNG
	101	VAALVGDQYI	VSVAHNGGYN	NVDFGAEGRN	PDQHRFTYKI	VKRNNYKAGT
	151	KGHPYGGDYH	MPRLHKFVTD	AEPVEMTSYM	DGRKYIDQNN	YPDRVRIGAG
بـ	201	RQYWRSDEDE	PNNRESSYHI	ASAYSWLVGG	NTFAQNGSGG	GTVNLGSEKI
5	251	KHSPYGFLPT	GGSFGDSGSP	MFIYDAQKQK	WLINGVLQTG	NPYIGKSNGF
	301	QLVRKDWFYD	EIFAGDTHSV	FYEPRONGKY	SFNDDNNGTG	KINAKHEHNS
	351	LPNRLKTRTV	QLFNVSLSET	AREPVYHAAG	GVNSYRPRLN	NGENISFIDE
	401	GKGELILTSN	INQGAGGLYF	QGDFTVSPEN	NETWQGAGVH	ISEDSTVTWK
10	451	VNGVANDRLS	KIGKGTLHVQ	AKGENQGSIS	VGDGTVILDQ	QADDKGKKOA
10	501	FSEIGLVSGR	GTVQLNADNQ	FNPDKLYFGF	RGGRLDLNGH	SLSFHRIONT
	551	DEGAMIVNHN	QDKESTVTIT	GNKDIATTGN	NNSLDSKKEI	AYNGWFGEKD
	601	TTKTNGRLNL	VYQPAAEDRT	LLLSGGTNLN	GNITQTNGKL	FFSGRPTPHA
	651	YNHLNDHWSQ	KEGIPRGBIV	WDNDWINRTF	KAENFQIKGG	QAVVSRNVAK
	701	VKGDWHLSNH	AQAVFGVAPH	QSHTICTRSD	WIGLINCVEK	TITDDKVIAS
15	751	LTKTDISGNV	DLADHAHLNL	TGLATLNGNL	SANGDTRYTV	SHNATONGNL
	801		NQATLNGNTS			
	851		ADKAVFHFES			
	901		TLNSAYRHDA			
00	951	SVESRFNTLT	VNGKLNGQGT	FRFMSELFGY	RSDKLKLAES	SEGTYTLAVN
20	1001	NTGNEPASLE	QLTVVEGKDN	KPLSENLNFT	LONEHVDAGA	WRYQLIRKDG
	1051	EFRLHNPVKE	QELSDKLGKA	EAKKQAEKDN	AQSLDALIAA	GRDAVEKTES
	1101	VAEPARQAGG	ENVGIMQAEE	EKKRVQADKD	TALAKQREAE	TRPATTAFPR
	1151	ARRARRDLPQ	LQPQPQPQPQ	RDLISRYANS	GLSEFSATLN	SVFAVQDELD
0.5	1201		VWTSGIRDTK			
25	1251		NTFDDGIGNS			
	1301	SLSDGIGGKI	RRRVLHYGIQ	ARYRAGFGGF	GIEPHIGATR	YFVQKADYRY
	1351	ENVNIATPGL	AFNRYRAGIK	ADYSFKPAQH	ISITPYLSLS	YTDAASGKVR
	1401		DFGKTRSAEW	GVNAEIKGFT	LSLHAAAAKG	PQLEAQHSAG
	1451	IKLGYRW*				

30 The leader peptide is underlined.

A polymorphic form of ORF1 is disclosed in WO99/55873.

Three expression strategies have been used for ORF1:

- 1) ORF1 using a His tag, following WO99/24578 (ORF1-His);
- 2) ORF1 with its own leader peptide but without any fusion partner ('ORF1L'); and
- 35 3) ORF1 with the leader peptide (MKKTAIAIAVALAGFATVAQA) from E.coli OmpA ('Orf1LOmpA'):

MKKTAIAIAVALAGFATVAQAASAGHTYFGINYQYYRDFAENKGKFAVGAKDIEVYNKKGELVGKSMTKAPMIDFSV VSRNGVAALVGDQYIVSVAHNGGYMNVDFGAEGRNPDQHRFTYKIVKRNNYKAGTKGHPYGGDYHMPRLHKFVTDAE PVEMTSYMDGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSYHIASAYSWLVGGNTFAQNGSGGGTVNLGSEK 40 ${\tt IKHSPYGFLPTGGSFGDSGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTHSVFYEPRQ}$ ${\tt NGKYSFNDDNNGTGKINAKHEHNSLPNRLKTRTVQLFNVSLSETAREPVYHAAGGVNSYRPRLNNGENISFIDEGKG}$ ELILTSNINQGAGGLYFQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLHVQAKGENQGSIS VGDGTVILDQQADDKGKKQAFSEIGLVSGRGTVQLNADNQFNPDKLYFGFRGGRLDLNGHSLSFHRIONTDEGAMIV NHNQDKESTVTITGNKDIATTGNNNSLDSKKEIAYNGWFGEKDTTKTNGRLNLVYQPAAEDRTLLLLSGGTNLNGNIT 45 QTNGKLFFSGRPTPHAYNHLNDHWSQKEGIPRGEIVWDNDWINRTFKAENFQIKGGQAVVSRNVAKVKGDWHLSNHA QAVFGVAPHQSHTICTRSDWTGLTNCVEKTITDDKVIASLTKTDISGNVDLADHAHLNLTGLATLNGNLSANGDTRY TVSHNATQNGNLSLVGNAQATFNQATLNGNTSASGNASFNLSDHAVQNGSLTLSGNAKANVSHSALNGNVSLADKAV FHFESSRFTGQISGGKDTALHLKDSEWTLPSGTELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRRSRRSRRS $\verb|LLSVTPPTSVESRFNTLTVNGKLNGQGTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGKD|$ 50 NKPLSENLNFTLQNEHVDAGAWRYQLIRKDGEFRLHNPVKEQELSDKLGKAEAKKQAEKDNAQSLDALIAAGRDAVE KTESVAEPARQAGGENVGIMQAEEEKKRVQADKDTALAKQREAETRPATTAFPRARRARRDLPQLQPQPQPQPQRDL ISRYANSGLSEFSATLNSVFAVQDELDRVFAEDRRNAVWTSGIRDTKHYRSQDFRAYRQQTDLRQIGMQKNLGSGRV GILFSHNRTENTFDDGIGNSARLAHGAVFGQYGIDRFYIGISAGAGFSSGSLSDGIGGKIRRRVLHYGIQARYRAGF GGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYRAGIKADYSFKPAQHISITPYLSLSYTDAASGKVRTRVN 55 TAVLAQDFGKTRSAEWGVNAEIKGFTLSLHAAAAKGPQLEAQHSAGIKLGYRW*

10

20

-

To make this construct, the clone pET911LOmpA (see below) was digested with the *NheI* and *XhoI* restriction enzymes and the fragment corresponding to the vector carrying the OmpA leader sequence was purified (pETLOmpA). The ORF1 gene coding for the mature protein was amplified using the oligonucleotides ORF1-For and ORF1-Rev (including the *NheI* and *XhoI* restriction sites, respectively), digested with *NheI* and *XhoI* and ligated to the purified pETOmpA fragment (see Figure 1). An additional AS dipeptide was introduced by the *NheI* site.

All three forms of the protein were expressed. The His-tagged protein could be purified and was confirmed as surface exposed, and possibly secreted (see Figure 3). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay.

ORF1LOmpA was purified as total membranes, and was localised in both the inner and outer membranes. Unexpectedly, sera raised against ORF1LOmpA show even better ELISA and anti-bactericidal properties than those raised against the His-tagged protein.

ORF1L was purified as outer membranes, where it is localised.

15 Example 7 - protein 911 and its leader peptide

Protein 911 from N. meningitidis (serogroup B, strain MC58) has the following sequence:

- 1 MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKT YAVYADFGDI
- GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK YQFSSDVSAQ
- 101 ILTSGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN LIGKFMTSFA
- 151 EKNADGGNAE KAAE*

The leader peptide is underlined.

Three expression strategies have been used for 911:

- 1) 911 with its own leader peptide but without any fusion partner ('911L');
- 2) 911 with the leader peptide from E.coli OmpA ('911LOmpA').
- To make this construct, the entire sequence encoding the OmpA leader peptide was included in the 5'- primer as a tail (primer 911LOmpA Forward). A NheI restriction site was inserted between the sequence coding for the OmpA leader peptide and the 911 gene encoding the predicted mature protein (insertion of one amino acid, a serine), to allow the use of this construct to clone different genes downstream the OmpA leader peptide sequence.
 - 3) 911 with the leader peptide (MKYLLPTAAAGLLLAAQPAMA) from Erwinia carotovora PelB ('911LpelB').

To make this construct, the 5'-end PCR primer was designed downstream from the leader sequence and included the *NcoI* restriction site in order to have the 911 fused directly to the PelB leader sequence; the 3'- end primer included the STOP codon. The expression vector used was pET22b+ (Novagen), which carries the coding sequence for the PelB leader peptide. The *NcoI* site introduces an additional methionine after the PelB sequence.

All three forms of the protein were expressed. ELISA titres were highest using 911L, with 919LOmpA also giving good results.

Example 8 – ORF46

The complete ORF46 protein from *N.meningitidis* (serogroup B, strain 2996) has the following sequence:

```
1 LGISRKISLI LSILAVCLPM HAHASDLAND SFIRQVLDRQ HFEPDGKYHL
                51 FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGY IVRFSDHGHE
               101 VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD GYDGPQGGGY
15
               151
                    PAPKGARDIY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH NAGSMLTQGV
               201
                    GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE IVGAGDAVQG
               251
                    ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA AIRDWAVQNP
               301 NAAQGIEAVS NIFMAAIPIK GIGAVRGKYG LGGITAHPIK RSQMGAIALP
               351 KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKENI TSSTVPPSNG
20
               401 KNVKLADORH PKTGVPFDGK GFPNFEKHVK YDTKLDIOEL SGGGIPKAKP
               451
                    VSDAKPRWEV DRKLNKLTTR EQVEKNVQEI RNGNKNSNFS QHAQLEREIN
               501
                    KLKSADEINF ADGMGKFTDS MNDKAFSRLV KSVKENGFTN PVVBYVEING
               551
                    KAYIVRGNNR VFAAEYLGRI HELKFKKVDF PVPNTSWKNP TDVLNESGNV
               601
                    KRPRYRSK*
25
```

The leader peptide is underlined.

The sequences of ORF46 from other strains can be found in WO00/66741.

Three expression strategies have been used for ORF46:

- ORF46 with its own leader peptide but without any fusion partner ('ORF46-2L');
- 2) ORF46 without its leader peptide and without any fusion partner ('ORF46-2'), with the leader peptide omitted by designing the 5'-end amplification primer downstream from the predicted leader sequence:

```
SDLANDSFIR QVLDRQHFEP DGKYHLFGSR GELAERSGHI GLGKIQSHQL
                    GNLMIQQAAI KGNIGYIVRF SDHGHEVHSP FDNHASHSDS DEAGSPVDGF
35
                    SLYRIHWDGY EHHPADGYDG PQGGGYPAPK GARDIYSYDI KGVAQNIRLN
               101
               151 LTDNRSTGQR LADRFHNAGS MLTQGVGDGF KRATRYSPEL DRSGNAAEAF
               201 NGTADIVKNI IGAAGEIVGA GDAVQGISEG SNIAVMHGLG LLSTENKMAR
                    INDLADMAQL KDYAAAAIRD WAVQNPNAAQ GIEAVSNIFM AAIPIKGIGA
               251
               301 VRGKYGLGGI TAHPIKRSQM GAIALPKGKS AVSDNFADAA YAKYPSPYHS
40
               351 RNIRSNLEQR YGKENITSST VPPSNGKNVK LADQRHPKTG VPFDGKGFPN
               401 FEKHVKYDTK LDIQELSGGG IPKAKPVSDA KPRWEVDRKL NKLTTREQVE
               451 KNVQEIRNGN KNSNFSQHAQ LEREINKLKS ADEINFADGM GKFTDSMNDK
               501 AFSRLVKSVK ENGFTNPVVE YVEINGKAYI VRGNNRVFAA EYLGRIHELK
               551 FKKVDFPVPN TSWKNPTDVL NESGNVKRPR YRSK*
```

- ORF46 as a truncated protein, consisting of the first 433 amino acids ('ORF46.1L'), constructed by designing PCR primers to amplify a partial sequence corresponding to aa 1-433.
- 5 A STOP codon was included in the 3'-end primer sequences.

ORF46-2L is expressed at a very low level to *E.coli*. Removal of its leader peptide (ORF46-2) does not solve this problem. The truncated ORF46.1L form (first 433 amino acids, which are well conserved between serogroups and species), however, is well-expressed and gives excellent results in ELISA test and in the bactericidal assay.

ORF46.1 has also been used as the basis of hybrid proteins. It has been fused with 287, 919, and ORF1. The hybrid proteins were generally insoluble, but gave some good ELISA and bactericidal results (against the homologous 2996 strain):

Protein	ELISA	Bactericidal Ab		
Orf1-Orf46.1-His	850	256		
919-Orf46.1-His	12900	512		
919-287-Orf46-His	n.d.	n.d.		
Orf46.1-287His	150	8192		
Orf46.1-919His	2800	2048		
Orf46.1-287-919His	3200	16384		

For comparison, 'triple' hybrids of ORF46.1, 287 (either as a GST fusion, or in ΔG287 form) and 919 were constructed and tested against various strains (including the homologous 2996 strain) versus a simple mixture of the three antigens. FCA was used as adjuvant:

	2996	BZ232	MC58	NGH38	F6124	BZ133
Mixture	8192	256	512	1024	>2048	>2048
ORF46.1-287-919his	16384	256	4096	8192	8192	8192
ΔG287-919-ORF46.1his	8192	64	4096	8192	8192	16384
ΔG287-ORF46.1-919his	4096	128	256	8192	512	1024

Again, the hybrids show equivalent or superior immunological activity.

Hybrids of two proteins (strain 2996) were compared to the individual proteins against various heterologous strains:

	1000	MC58	F6124 (MenA)
ORF46.1-His	<4	4096	<4
ORF1-His	8	256	128
ORF1—ORF46.1-His	1024	512	1024

Again, the hybrid shows equivalent or superior immunological activity.

Example 9 - protein 961

The complete 961 protein from *N.meningitidis* (serogroup B, strain MC58) has the following sequence:

5	1	MCMKAEDVKI	ፒመጣል ፐፒ አመውሮ	SGALAATSDD	TYTTE A AMYRA T	IIX XXADXOODT
•						
				KDATAADVEA		
	101	ENKQNVDAKV	KAAESEIEKL	TTKLADTDAA	LADTDAALDE	TTNALNKLGE
	151	NITTFAEETK	TNIVKIDEKL	EAVADTVDKH	AEAFNDIADS	LDETNTKADE
4.0	201	AVKTANEAKQ	TAEETKQNVD	AKVKAAETAA	GKAEAAAGTA	NTAADKAEAV
10	251	AAKVTDIKAD	IATNKADIAK	NSARIDSLDK	NVANLRKETR	QGLAEQAALS
	301	GLFQPYNVGR	FNVTAAVGGY	KSESAVAIGT	GFRFTENFAA	KAGVAVGTSS
	351	GSSAAYHVGV	NYEW*			

The leader peptide is underlined.

- 15 Three approaches to 961 expression were used:
 - 1) 961 using a GST fusion, following WO99/57280 ('GST961');
 - 2) 961 with its own leader peptide but without any fusion partner ('961L'); and
 - 3) 961 without its leader peptide and without any fusion partner ('961^{untagged'}), with the leader peptide omitted by designing the 5'-end PCR primer downstream from the predicted leader sequence.

All three forms of the protein were expressed. The GST-fusion protein could be purified and antibodies against it confirmed that 961 is surface exposed (Figure 4). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay. 961L could also be purified and gave very high ELISA titres.

25 Protein 961 appears to be phase variable. Furthermore, it is not found in all strains of *N.meningitidis*.

Example 10 - protein 287

20

Protein 287 from N.meningitidis (serogroup B, strain 2996) has the following sequence:

```
1 MFERSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP VVAEKETEVK
51 EDAPQAGSQG QGAPSTQGSQ DMAAVSAENT GNGGAATTDK PKNEDEGPQN
101 DMPQNSAESA NQTGNNQPAD SSDSAPASNP APANGGSNFG RVDLANGVLI
151 DGPSQNITLT HCKGDSCNGD NLLDEEAPSK SEFENLNESE RIEKYKKDGK
```

30

```
201 SDKFTNLVAT AVQANGTNKY VIIYKDKSAS SSSARFRRSA RSRRSLPAEM
251 PLIPVNQADT LIVDGEAVSL TGHSGNIFAP EGNYRYLTYG AEKLPGGSYA
301 LRVQGEPAKG EMLAGTAVYN GEVLHFHTEN GRPYPTRGRF AAKVDFGSKS
351 VDGIIDSGDD LHMGTQKFKA AIDGNGFKGT WTENGGGDVS GRFYGPAGEE
401 VAGKYSYRPT DAEKGGFGVF AGKKEQD*
```

The leader peptide is shown underlined.

The sequences of 287 from other strains can be found in Figures 5 and 15 of WO00/66741.

Example 9 of WO99/57280 discloses the expression of 287 as a GST-fusion in E.coli.

- 10 A number of further approaches to expressing 287 in E.coli have been used, including:
 - 1) 287 as a His-tagged fusion ('287-His');
 - 2) 287 with its own leader peptide but without any fusion partner ('287L');
 - 3) 287 with the ORF4 leader peptide and without any fusion partner ('287LOrf4'); and
 - 4) 287 without its leader peptide and without any fusion partner ('287^{untagged}'):

```
15
                 1 CGGGGGSPD VKSADTLSKP AAPVVAEKET EVKEDAPOAG SOGGAPSTO
                   GSQDMAAVSA ENTGNGGAAT TDKPKNEDEG PQNDMPQNSA ESANQTGNNQ
                51
               101 PADSSDSAPA SNPAPANGGS NFGRVDLANG VLIDGPSQNI TLTHCKGDSC
               151 NGDNLLDEEA PSKSEFENLN ESERIEKYKK DGKSDKFTNL VATAVOANGT
               201 NKYVIIYKDK SASSSSARFR RSARSRRSLP AEMPLIPVNQ ADTLIVDGEA
20
               251
                   VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP AKGEMLAGTA
                   VYNGEVLHFH TENGRPYPTR GRFAAKVDFG SKSVDGIIDS GDDLHMGTQK
               301
               351
                    FKAAIDGNGF KGTWTENGGG DVSGRFYGPA GEEVAGKYSY RPTDAEKGGF
                    GVFAGKKEQD *
               401
```

25 All these proteins could be expressed and purified.

'287L' and '287LOrf4' were confirmed as lipoproteins.

As shown in Figure 2, '287LOrf4' was constructed by digesting 919LOrf4 with *NheI* and *XhoI*. The entire ORF4 leader peptide was restored by the addition of a DNA sequence coding for the missing amino acids, as a tail, in the 5'-end primer (287LOrf4 for), fused to 287 coding sequence. The 287 gene coding for the mature protein was amplified using the oligonucleotides 287LOrf4 For and Rev (including the *NheI* and *XhoI* sites, respectively), digested with *NheI* and *XhoI* and ligated to the purified pETOrf4 fragment.

Example 11 - further non-fusion proteins with/without native leader peptides

A similar approach was adopted for *E.coli* expression of further proteins from WO99/24578, WO99/36544 and WO99/57280.

20

25

The following were expressed without a fusion partner: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 982, and Orf143-1. Protein 117-1 was confirmed as surface-exposed by FACS and gave high ELISA titres.

The following were expressed with the native leader peptide but without a fusion partner: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 926, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1. These proteins are given the suffix 'L'.

His-tagged protein 760 was expressed with and without its leader peptide. The deletion of the signal peptide greatly increased expression levels. The protein could be purified most easily using 2M urea for solubilisation.

His-tagged protein 264 was well-expressed using its own signal peptide, and the 30kDa protein gave positive Western blot results.

All proteins were successfully expressed.

15 The localisation of 593, 121-1, 128-1, 593, 726, and 982 in the cytoplasm was confirmed.

The localisation of 920-1L, 953L, ORF9-1L, ORF85-2L, ORF97-1L, 570L, 580L and 664L in the periplasm was confirmed.

The localisation of ORF40L in the outer membrane, and 008 and 519-1L in the inner membrane was confirmed. ORF25L, ORF4L, 406L, 576-1L were all confirmed as being localised in the membrane.

Protein 206 was found not to be a lipoprotein.

ORF25 and ORF40 expressed with their native leader peptides but without fusion partners, and protein 593 expressed without its native leader peptide and without a fusion partner, raised good anti-bactericidal sera. Surprisingly, the forms of ORF25 and ORF40 expressed without fusion partners and using their own leader peptides (i.e. 'ORF25L' and 'ORF40L') give better results in the bactericidal assay than the fusion proteins.

Proteins 920L and 953L were subjected to N-terminal sequencing, giving hrvwvetah and atykvdeyhanarfaf, respectively. This sequencing confirms that the predicted leader peptides were cleaved and, when combined with the periplasmic location, confirms that the

proteins are correctly processed and localised by *E.coli* when expressed from their native leader peptides.

The N-terminal sequence of protein 519.1L localised in the inner membrane was MEFFIILLA, indicating that the leader sequence is not cleaved. It may therefore function as both an uncleaved leader sequence and a transmembrane anchor in a manner similar to the leader peptide of PBP1 from N.gonorrhoeae [Ropp & Nicholas (1997) J. Bact. 179:2783-2787.]. Indeed the N-terminal region exhibits strong hydrophobic character and is predicted by the Tmpred. program to be transmembrane.

Example 12 – lipoproteins

10 The incorporation of palmitate in recombinant lipoproteins was demonstrated by the method of Kraft et. al. [J. Bact. (1998) 180:3441-3447.]. Single colonies harbouring the plasmid of interest were grown overnight at 37°C in 20 ml of LB/Amp (100µg/ml) liquid culture. The culture was diluted to an OD₅₅₀ of 0.1 in 5.0 ml of fresh medium LB/Amp medium containing 5 µC/ml [³H] palmitate (Amersham). When the OD₅₅₀ of the culture reached 0.4-15 0.8, recombinant lipoprotein was induced for 1 hour with IPTG (final concentration 1.0 mM). Bacteria were harvested by centrifugation in a bench top centrifuge at 2700g for 15 min and washed twice with 1.0 ml cold PBS. Cells were resuspended in 120µl of 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1.0% w/v SDS and lysed by boiling for 10 min. After centrifugation at 13000g for 10 min the supernatant was collected and proteins precipitated 20 by the addition of 1.2 ml cold acetone and left for 1 hour at -20 °C. Protein was pelleted by centrifugation at 13000g for 10 min and resuspended in 20-50µl (calculated to standardise loading with respect to the final O.D of the culture) of 1.0% w/v SDS. An aliquot of 15 μ l was boiled with 5µl of SDS-PAGE sample buffer and analysed by SDS-PAGE. After electrophoresis gels were fixed for 1 hour in 10% v/v acetic acid and soaked for 30 minutes 25 in Amplify solution (Amersham). The gel was vacuum-dried under heat and exposed to Hyperfilm (Kodak) overnight -80 °C.

Incorporation of the [3H] palmitate label, confirming lipidation, was found for the following proteins: Orf4L, Orf25L, 287L, 287LOrf4, 406.L, 576L, 926L, 919L and 919LOrf4.

Example 13 – domains in 287

Based on homology of different regions of 287 to proteins that belong to different functional classes, it was split into three 'domains', as shown in Figure 5. The second domain shows

15

20

homology to IgA proteases, and the third domain shows homology to transferrin-binding proteins.

Each of the three 'domains' shows a different degree of sequence conservation between *N.meningitidis* strains – domain C is 98% identical, domain A is 83% identical, whilst domain B is only 71% identical. Note that protein 287 in strain MC58 is 61 amino acids longer than that of strain 2996. An alignment of the two sequences is shown in Figure 7, and alignments for various strains are disclosed in WO00/66741 (see Figures 5 and 15 therein).

The three domains were expressed individually as C-terminal His-tagged proteins. This was done for the MC58 and 2996 strains, using the following constructs:

10 287a-MC58 (aa 1-202), 287b-MC58 (aa 203-288), 287c-MC58 (aa 311-488). 287a-2996 (aa 1-139), 287b-2996 (aa 140-225), 287c-2996 (aa 250-427).

To make these constructs, the stop codon sequence was omitted in the 3'-end primer sequence. The 5' primers included the *NheI* restriction site, and the 3' primers included a *XhoI* as a tail, in order to direct the cloning of each amplified fragment into the expression vector pET21b+ using *NdeI-XhoI*, *NheI-XhoI* or *NdeI-HindIII* restriction sites.

All six constructs could be expressed, but 287b-MC8 required denaturation and refolding for solubilisation.

Deletion of domain A is described below (' $\Delta 4$ 287-His').

Immunological data (serum bactericidal assay) were also obtained using the various domains from strain 2996, against the homologous and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):

	2996	BZ232	MC58	NGH38	394/98	MenA	MenC
287-His	32000	16	4096	4096	512	8000	16000
287(B)-His	256	-	-	-	-	16	-
287(C)-His	256	-	32	512	32	2048	>2048
287(B-C)-His	64000	128	4096	64000	1024	64000	32000

Using the domains of strain MC58, the following results were obtained:

	MC58	2996	BZ232	NGH38	394/98	MenA	MenC
287-His	4096	32000	16	4096	512	8000	16000
287(B)-His	128	128	-	-	-	-	128
287(C)-His	-	16	-	1024	-	512	-
287(B-C)-His	16000	64000	128	64000	512	64000	>8000

Example 14 – deletions in 287

5

As well as expressing individual domains, 287 was also expressed (as a C-terminal His-tagged protein) by making progressive deletions within the first domain. These

Four deletion mutants of protein 287 from strain 2996 were used (Figure 6):

- 1) '287-His', consisting of amino acids 18-427 (i.e. leader peptide deleted);
- 2) ' Δ 1 287-His', consisting of amino acids 26-427;
- 3) ' Δ 2 287-His', consisting of amino acids 70-427;
- 4) 'Δ3 287-His', consisting of amino acids 107-427; and
- 5) ' Δ 4 287-His', consisting of amino acids 140-427 (=287-bc).
- 10 The 'Δ4' protein was also made for strain MC58 ('Δ4 287MC58-His'; aa 203-488).

The constructs were made in the same way as 287a/b/c, as described above.

All six constructs could be expressed and protein could be purified. Expression of 287-His was, however, quite poor.

Expression was also high when the C-terminal His-tags were omitted.

Immunological data (serum bactericidal assay) were also obtained using the deletion mutants, against the homologous (2996) and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):

	2996	BZ232	MC58	NGH38	394/98	MenA	MenC
287-his	32000	16	4096	4096	512	8000	16000
Δ1 287-His	16000	128	4096	4096	1024	8000	16000
Δ2 287-His	16000	128	4096	>2048	.512	16000	>8000
Δ3 287-His	16000	128	4096	>2048	512	16000	>8000
Δ4 287-His	64000	128	4096	64000	1024	64000	32000

The same high activity for the $\Delta 4$ deletion was seen using the sequence from strain MC58.

10

30

As well as showing superior expression characteristics, therefore, the mutants are immunologically equivalent or superior.

Example 15 - poly-glycine deletions

The ' $\Delta 1$ 287-His' construct of the previous example differs from 287-His and from '287^{untagged}' only by a short N-terminal deletion (GGGGGGS). Using an expression vector which replaces the deleted serine with a codon present in the *Nhe* cloning site, however, this amounts to a deletion only of (Gly)₆. Thus, the deletion of this (Gly)₆ sequence has been shown to have a dramatic effect on protein expression.

The protein lacking the N-terminal amino acids up to GGGGGG is called 'ΔG 287'. In strain MC58, its sequence (leader peptide underlined) is:

		→ ΔG287				
	1			GGGGSPDVKS		
	51	EDAPQAGSQG	QGAPSAQGSQ	DMAAVSEENT	GNGGAVTADN	PKNEDEVAON
15	101			NMLAGNMENQ		
	151	DGMQGDDPSA	GGQNAGNTAA	QGANQAGNNQ	AAGSSDPIPA	SNPAPANGGS
	201	NFGRVDLANG	VLIDGPSQNI	TLTHCKGDSC	SGNNFLDEEV	QLKSEFEKLS
	251	DADKISNYKK	DGKNDKFVGL	VADSVQMKGI	NQYIIFYKPK	PTSFARFRRS
	301	ARSRRSLPAE	MPLIPVNQAD	TLIVDGEAVS	LTGHSGNIFA	PEGNYRYLTY
20	351			GEMLAGAAVY		
	401			DLHMGTQKFK		TWTENGSGDV
	451	SGKFYGPAGE	EVAGKYSYRP	TDAEKGGFGV	FAGKKEOD*	

 Δ G287, with or without His-tag (' Δ G287-His' and ' Δ G287K', respectively), are expressed at very good levels in comparison with the '287-His' or '287 ^{untagged}'.

On the basis of gene variability data, variants of ΔG287-His were expressed in *E.coli* from a number of MenB strains, in particular from strains 2996, MC58, 1000, and BZ232. The results were also good.

It was hypothesised that poly-Gly deletion might be a general strategy to improve expression. Other MenB lipoproteins containing similar (Gly)_n motifs (near the N-terminus, downstream of a cysteine) were therefore identified, namely Tbp2 (NMB0460), 741 (NMB 1870) and 983 (NMB1969):

```
TBP2

→ ΔGTbp2
             1
                MNNPLVNQAA MVLPVFLLSA CLGGGGSFDL DSVDTEAPRP APKYQDVFSE
            51
                KPQAQKDQGG YGFAMRLKRR NWYPQAKEDE VKLDESDWEA TGLPDEPKEL
35
           101 PKRQKSVIEK VETDSDNNIY SSPYLKPSNH QNGNTGNGIN QPKNQAKDYE
           151
                NFKYVYSGWF YKHAKREFNL KVEPKSAKNG DDGYIFYHGK EPSRQLPASG
           201 KITYKGVWHF ATDTKKGQKF REIIQPSKSQ GDRYSGFSGD DGEEYSNKNK
           251 STLTDGQEGY GFTSNLEVDF HNKKLTGKLI RNNANTDMNQ ATTTQYYSLE
           301 AQVTGNRFNG KATATDKPQQ NSETKEHPFV SDSSSLSGGF FGPQGERLGF
40
           351 RFLSDDQKVA VVGSAKTKDK PANGNTAAAS GGTDAAASNG AAGTSSENGK
           401 LTTVLDAVEL KLGDKEVQKL DNFSNAAQLV VDGIMIPLLP EASESGNNQA
           451 NQGTNGGTAF TRKFDHTPES DKKDAQAGTQ TNGAQTASNT AGDTNGKTKT
```

	501	YEVEVCCSNI	NYLKYGMLTE	R KNSKSAMOAC	ESSSOADAKT	EQVEQSMFLQ
	551	GERTDEKEI	SEONIVYRGS	WYGYTANDKS	TSWSGNASNA	TSGNRAEFTV
	601	NFADKKITGI	LTADNROEAT	FTIDGNIKDN	GFEGTAKTAR	SGFDLDQSNT
	651	TRTPKAYITI	AKVOGGFYGI	KAERLGGWPA	YPGDKOTKNA	TNASGNSSAT
5	701	VVFGAKRQQI	VR*		obigiida	TACCHOCKT
	741			⇔ ΔG		
	1	VNRTAFCCLS	LTTALILTAC	SSGGGGVAAD	IGAGLADALT	APLDHKDKGL
10	51	QSLTLDQSVR	KNEKLKLAAQ	GAEKTYGNGD	SLNTGKLKND	KVSRFDFIRO
10	101	IEVDGQLITL	ESGEFQVYKQ	SHSALTAFQT	EOIODSEHSG	KMVAKROFRI
	151	GDIAGEHTSF	DKLPEGGRAT	YRGTAFGSDD	AGGKLTYTID	FAAKOGNGK I
	201	EHLKSPELNV	DLAAADIKPD	GKRHAVISGS	VLYNQAEKGS	YSLGIFGGKA
	251	QEVAGSAEVK	TVNGIRHIGL	AAKQ*	_	
15						
15	983				≠ ΔG	
	1	MRTTPTFPTK	TFKPTAMALA	VATTLSACLO	GGGGGTSAPE	FNAGGTGIGS
	51	nsrattaksa	AVSYAGIKNE	MCKDRSMLCA	GRDDVAVTDR	DAKINAPPPN
	101	LHTGDFPNPN	DAYKNLINLE	PAIBAGYTGE	GVEVGIVDTG	ESVGSISFPE
	151	LYGRKEHGYN	ENYKNYTAYM	RKEAPEDGGG	KDIEASFDDE	AVIETEAKPT
20	201	DIRHVKBIGH	IDLVSHIIGG	RSVDGRPAGG	IAPDATLHIM	NTNDETKNEM
	251	MVAAIRNAWV	KLGERGVRIV	NNSFGTTSRA	GTADLFQIAN	SEEQYRQALL
	301	DYSGGDKTDE	GIRLMQQSDY	GNLSYHIRNE	NMLFIFSTGN	DAOAOPNTYA
	351	LLPFYEKDAC	KGIITVAGVI	RSGEKFKREM	YGEPGTEPLE	YGSNHCGITA
0.5	401	MWCLSAPYEA	SVRFTRTNPI	QIAGTSFSAF	IVTGTAALLL	QKYPWMSNDN
25	451	LRTTLLTTAQ	DIGAVGVDSK	FGWGLLDAGK	AMNGPASPPF	GDFTADTKGT
	501	SDIAYSFRND) ISGTGGLIKK	GGSQLQLHGN	NTYTGKTILE	GGSLVLYGNN
	551	KSDMRVETKG	ALIYNGAASG	GSLNSDGIVY	LADTDQSGAN	ETVHIKGSLO
	601	LDGKGTLYTR	LGKLLKVDGT	AIIGGKLYMS	ARGKGAGYLN	STGRRVPFLS
20	651	AAKIGQDYSF	' FTNIETDGGL	LASLDSVEKT	AGSEGDTLSY	YVRRGNAART
30	701	asaaahsapa	GLKHAVEQGG	SNLENLMVEL	DASESSATPE	TVETAAADRT
	751	DMPGIRPYGA	TFRAAAAVQH	ANAADGVRIF	NSLAATVYAD	STAAHADMQG
	801	RRLKAVSDGL	DHNGTGLRVI	AQTQQDGGTW	EQGGVEGKMR	GSTOTVGIAA
	851	KTGENTTAAA	TLGMGRSTWS	ENSANAKTDS	ISLFAGIRHD	AGDIGYLKGL
25	901	FSYGRYKNSI	SRSTGADEHA	EGSVNGTLMQ	LGALGGVNVP	FAATGDLTVE
35	951	GGLRYDLLKQ	DAFAEKGSAL	GWSGNSLTEG	TLVGLAGLKL	SOPLSDKAVL
	1001	FATAGVERDL	NGRDYTVTGG	FTGATAATGK	TGARNMPHTR	LVAGLGADVE
	1051	FGNGWNGLAR	YSYAGSKQYG	NHSGRVGVGY	RF*	

Tbp2 and 741 genes were from strain MC58; 983 and 287 genes were from strain 2996.

These were cloned in pET vector and expressed in *E.coli* without the sequence coding for their leader peptides or as "ΔG forms", both fused to a C-terminal His-tag. In each case, the same effect was seen – expression was good in the clones carrying the deletion of the poly-glycine stretch, and poor or absent if the glycines were present in the expressed protein:

ORF	Express.	Purification	Bact. Activity
287-His(2996)	+/-	+	+
'287 ^{untagged} ' (2996)	+/-	nd	nd
ΔG287-His(2996)	+	+	+
ΔG287K(2996)	+	+	+
Δ G287-His(MC58)	+	+	+
Δ G287-His(1000)	+	+	+
ΔG287-His(BZ232)	+	+	+
Tbp2-His(MC58)	+/-	nd	nd
ΔGTbp2-His(MC58)	+	+	
741-His(MC58)	+/-	nd	nd
ΔG741-His(MC58)	+	+	
983-His (2996)			
ΔG983-His (2996)	+	+	

SDS-PAGE of the proteins is shown in Figure 13.

△G287 and hybrids

5

 Δ G287 proteins were made and purified for strains MC58, 1000 and BZ232. Each of these gave high ELISA titres and also serum bactericidal titres of >8192. Δ G287K, expressed from pET-24b, gave excellent titres in ELISA and the serum bactericidal assay. Δ G287-ORF46.1K may also be expressed in pET-24b.

ΔG287 was also fused directly in-frame upstream of 919, 953, 961 (sequences shown below) and ORF46.1:

	ΔG287-9	19				
10	1	ATGGCTAGCC	CCGATGTTAA	ATCGGCGGAC	ACGCTGTCAA	AACCGGCCGC
	51	TCCTGTTGTT	GCTGAAAAAG	AGACAGAGGT	AAAAGAAGAT	GCGCCACAGG
	101	CAGGTTCTCA	AGGACAGGGC	GCGCCATCCA	CACAAGGCAG	CCAAGATATG
	151	GCGGCAGTTT	CGGCAGAAAA	TACAGGCAAT	GGCGGTGCGG	CAACAACGGA
	201	CAAACCCAAA	AATGAAGACG	AGGGACCGCA	AAATGATATG	CCGCAAAATT
15	251	CCGCCGAATC	CGCAAATCAA	ACAGGGAACA	ACCAACCCGC	CGATTCTTCA
	301	GATTCCGCCC	CCGCGTCAAA	CCCTGCACCT	GCGAATGGCG	GTAGCAATTT
	351	TGGAAGGGTT	GATTTGGCTA	ATGGCGTTTT	GATTGATGGG	CCGTCGCAAA
	401	ATATAACGTT	GACCCACTGT	AAAGGCGATT	CTTGTAATGG	TGATAATTTA
20	451	TTGGATGAAG	AAGCACCGTC	AAAATCAGAA	TTTGAAAATT	TAAATGAGTC
20	501	TGAACGAATT	GAGAAATATA	AGAAAGATGG	GAAAAGCGAT	AAATTTACTA
	551	ATTTGGTTGC	GACAGCAGTT	CAAGCTAATG	GAACTAACAA	ATATGTCATC
	601	ATTTATAAAG	ACAAGTCCGC	TTCATCTTCA	TCTGCGCGAT	TCAGGCGTTC
	651	TGCACGGTCG	AGGAGGTCGC	TTCCTGCCGA	GATGCCGCTA	ATCCCCGTCA
	701	ATCAGGCGGA	TACGCTGATT	GTCGATGGGG	AAGCGGTCAG	CCTGACGGGG
25	751	CATTCCGGCA	ATATCTTCGC	GCCCGAAGGG	AATTACCGGT	ATCTGACTTA
	801	CGGGGCGGAA	AAATTGCCCG	GCGGATCGTA	TGCCCTCCGT	GTGCAAGGCG
	851	AACCGGCAAA	AGGCGAAATG	CTTGCTGGCA	CGGCCGTGTA	CAACGGCGAA
	901	GTGCTGCATT	TTCATACGGA	AAACGGCCGT	CCGTACCCGA	CTAGAGGCAG
	951	GTTTGCCGCA	AAAGTCGATT	TCGGCAGCAA	ATCTGTGGAC	GGCATTATCG
30	1001	ACAGCGGCGA	TGATTTGCAT	ATGGGTACGC	AAAAATTCAA	AGCCGCCATC

	1051	CATCCAAACC	CCTTTT ACCC	GACTTGGACG	C1111mcccc	
	1101	TTCCCGAACC	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CGGCCGGCGA	CCARACTCCCC	GCGGGGATGT
	1151	CCMANCCCCC	GACAGATCCC	GAAAAGGGCG	CAMMOCOCOCO	GGAAAATACA
	1201	AAAAAAGAGC	ACCATCCATC	CGGAGGAGGA	CCAMCCCAAA	GTTTGCCGGC
5	1251	CCAAACCTTT	CCCCAACCCG	ACACATCCGT	CATCAACGCC	CCCCACCCC
	1301	CGGTCGGCAT	CCCCGACCCC	GCCGGAACGA	CCCTCCCCCC	CCCCCCCCCCC
	1351	GTCTATACCG	TTGTACCGCA	CCTGTCCCTG	CCCCACACGG	CGCCGCACCA
	1401	TTTCGCCAAA	AGCCTGCAAT	CCTTCCGCCT	CGCCTGCGC	AATTTCAAAA
	1451	ACCGCCAAGG	CTGGCAGGAT	GTGTGCGCCC	AAGCCTTTTCA	AACCCCCCCTC
10	1501	CATTCCTTTC	AGGCAAAACA	GTTTTTTGAA	CCCTATTTCA	CGCCGTC
	1551	GGTTGCAGGC	AACGGAAGCC	TTGCCGGTAC	GGTTACCGGC	TATTACCACC
	1601	CGGTGCTGAA	GGGCGACGAC	AGGCGGACGG	CACAAGCCCG	CTTCCCGATT
	1651	TACGGTATTC	CCGACGATTT	TATCTCCGTC	CCCCTGCCTG	CCGGTTTGCG
	1701	GAGCGGAAAA	GCCCTTGTCC	GCATCAGGCA	GACGGGAAAA	AACAGCGGCA
15	1751	CAATCGACAA	TACCGGCGGC	ACACATACCG	CCGACCTCTC	CCGATTCCCC
	1801	ATCACCGCGC	GCACAACGGC	AATCAAAGGC	AGGTTTGAAG	GAAGCCGCTT
	1851			ACCAAATCAA		
	1901	AAGCCCCGAT	ACTCGGTTAC	GCCGAAGACC	CCGTCGAACT	TTTTTTTATG
	1951	CACATCCAAG	GCTCGGGCCG	TCTGAAAACC	CCGTCCGGCA	AATACATCCG
20	2001			ACGAACATCC		
	2051	ATATGGCGGA	CAAAGGCTAC	CTCAAGCTCG	GGCAGACCTC	GATGCAGGGC
	2101	ATCAAAGCCT	ATATGCGGCA	AAATCCGCAA	CGCCTCGCCG	AAGTTTTGGG
	2151	TCAAAACCCC	AGCTATATCT	TTTTCCGCGA	GCTTGCCGGA	AGCAGCAATG
	2201	ACGGTCCCGT	CGGCGCACTG	GGCACGCCGT	TGATGGGGGA	ATATGCCGGC
25	2251	GCAGTCGACC	GGCACTACAT	TACCTTGGGC	GCGCCCTTAT	TTGTCGCCAC
	2301	CGCCCATCCG	GTTACCCGCA	AAGCCCTCAA	CCGCCTGATT	ATGGCGCAGG
	2351	ATACCGGCAG	CGCGATTAAA	GGCGCGGTGC	GCGTGGATTA	TTTTTGGGGA
•	2401	TACGGCGACG	AAGCCGGCGA	ACTTGCCGGC	AAACAGAAAA	CCACGGGTTA
20	2451	CGTCTGGCAG	CTCCTACCCA	ACGGTATGAA	GCCCGAATAC	CGCCCGTAAC
30	2501	TCGAG				
	_					
	1	MASPDVKSAD	TLSKPAAPVV	AEKETEVKED	APQAGSQGQG	APSTQGSQDM
	51	AAVSAENTGN	GGAATTDKPK	NEDEGPONDM	PQNSAESANQ	TGNNQPADSS
35	101	DSAPASNPAP	ANGGSNFGRV	DLANGVLIDG	PSQNITLTHC	KGDSCNGDNL
33	151	LDEEAPSKSE	FENLNESERI	EKYKKDGKSD	KFTNLVATAV	QANGTNKYVI
	201	LYKDKSASSS	SARFRRSARS	RRSLPAEMPL	IPVNQADTLI	VDGEAVSLTG
	251 301	HSGNIFAPEG	NYRYLTYGAE	KLPGGSYALR	VQGEPAKGEM	LAGTAVYNGE
	351	VLHFHTENGR	PYPTRGRFAA	KVDFGSKSVD	GIIDSGDDLH	MGTQKFKAAI
40	401			FYGPAGEEVA PQPDTSVING		
10	451			SLQSFRLGCA		
	501	HSFQAKQFFE	PVEMDMOUVE	MCCL ACMING	MPWWYGRMOD	VCAQAFQTPV
	551	YGIPDDFISV				
	601			HTRNQINGGA		
45	651	HTOGSGRIKT	PSGKYTRIGY	VILLIA ÓTAGON	TCDAMPURCA	LKLGQTSMQG
	701	TKAYMRONPO	RIAEVI CONP	SYTERRELAG	CONTROLOGI.	GTPLMGEYAG
	751	AVDRHYTTIG	APLEVATARD	UTRKALNRI.T	MACDITICSATE	GAVRVDYFWG
	801	YGDEAGELAG				ORTKV DII NO
50						
	<u>ΔG287-9</u>	<u>53</u>				
	1	ATGGCTAGCC	CCGATGTTAA	ATCGGCGGAC	ACGCTGTCAA	AACCGGCCGC
	51	TCCTGTTGTT	GCTGAAAAAG	AGACAGAGGT	AAAAGAAGAT	GCGCCACAGG
	101	CAGGTTCTCA	AGGACAGGGC	GCGCCATCCA	CACAAGGCAG	CCAAGATATG
55	151	GCGGCAGTTT	CGGCAGAAAA	TACAGGCAAT	GGCGGTGCGG	CAACAACGGA
	201	CAAACCCAAA	AATGAAGACG	AGGGACCGCA	AAATGATATG	CCGCAAAATT
	251	CCGCCGAATC	CGCAAATCAA	ACAGGGAACA	ACCAACCCGC	CGATTCTTCA
	301	GATTCCGCCC	CCGCGTCAAA	CCCTGCACCT	GCGAATGGCG	GTAGCAATTT
60	351	TGGAAGGGTT	GATTTGGCTA	ATGGCGTTTT	GATTGATGGG	CCGTCGCAAA
60	401	ATATAACGTT	GACCCACTGT	AAAGGCGATT	CTTGTAATGG	TGATAATTTA
	451	TTGGATGAAG	AAGCACCGTC	AAAATCAGAA	TTTGAAAATT	TAAATGAGTC
	501	TGAACGAATT	GAGAAATATA	AGAAAGATGG	GAAAAGCGAT	AAATTTACTA
	551	ATTTGGTTGC	GACAGCAGTT	CAAGCTAATG	GAACTAACAA	ATATGTCATC
65	601	ATTTATAAAG	ACAAGTCCGC	TTCATCTTCA	TCTGCGCGAT	TCAGGCGTTC
65	651	TGCACGGTCG	AGGAGGTCGC	TTCCTGCCGA	GATGCCGCTA	ATCCCCGTCA
	701	ATCAGGCGGA				
	751	CATTCCGGCA	ATATCTTCGC	GCCCGAAGGG	AATTACCGGT	ATCTGACTTA

	801	CGGGGCGGAA	AAATTGCCCG	GCGGATCGTA	TGCCCTCCGT	GTGCAAGGCG
	851	AACCGGCAAA	AGGCGAAATG	CTTGCTGGCA	CGGCCGTGTA	CAACGGCGAA
	901	GTGCTGCATT	TTCATACGGA	AAACGGCCGT	CCGTACCCGA	CTAGAGGCAG
5	951			TCGGCAGCAA		
J	1001 1051			ATGGGTACGC GACTTGGACG		
	1101			CGGCCGGCGA		
	1151	GCTATCGCCC	GACAGATGCG	GAAAAGGGCG	CATTCCCCCT	CTTTCCCCC
	1201	AAAAAAGAGC	AGGATGGATC	CGGAGGAGGA	GGAGCCACCT	ACAAAGTGGA
10	1251			GTTTCGCCAT		
	1301	CCAACGTCGG	CGGTTTTTAC	GGTCTGACCG	GTTCCGTCGA	GTTCGACCAA
	1351	GCAAAACGCG	ACGGTAAAAT	CGACATCACC	ATCCCCGTTG	CCAACCTGCA
	1401	AAGCGGTTCG	CAACACTTTA	CCGACCACCT	GAAATCAGCC	GACATCTTCG
15	1451 1501			ATCCGCTTTG		
15	1551			CGTTGACGGC AAGCCGAAAA		
	1601			TGCGGCGGCG		
	1651			CTACCTCGTT		
	1701			TCGAGGCAGC		
20						
	1	MASPDVKSAD	TLSKPAAPVV	${\bf AEKETE V}{\bf KED}$	APQAGSQGQG	APSTQGSQDM
	51	AAVSAENTGN	GGAATTDKPK	NEDEGPONDM	PQNSAESANQ	TGNNQPADSS
	101			DLANGVLIDG		
25	151 201	LDEEAPSKSE	FENLNESERI	EKYKKDGKSD	KFTNLVATAV	QANGTNKYVI
23	251	HCCNTEADEC	NVDVI.TVCA D	RRSLPAEMPL KLPGGSYALR	TANNOADIPT	VDGEAVSLIG
	301			KVDFGSKSVD		
	351			FYGPAGEEVA		
	401	KKEQDGSGGG	GATYKVDEYH	ANARFAIDHF	NTSTNVGGFY	GLTGSVEFDO
30	451	AKRDGKIDIT	IPVANLQSGS	QHFTDHLKSA	DIFDAAQYPD	IRFVSTKFNF
	501				YQSPMAKTEV	${\tt CGGDFSTTID}$
	551	RTKWGVDYLV	NVGMTKSVRI	DIQIEAAKQ*		
35	ΔG287-9	61				
35	1	ATGGCTAGCC		ATCGGCGGAC		
35	1 51	ATGGCTAGCC TCCTGTTGTT	GCTGAAAAAG	AGACAGAGGT	AAAAGAAGAT	GCGCCACAGG
35	1 51 101	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA	GCTGAAAAAG AGGACAGGGC	AGACAGAGGT GCGCCATCCA	AAAAGAAGAT CACAAGGCAG	GCGCCACAGG CCAAGATATG
	1 51 101 151	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA	AGACAGAGGT GCGCCATCCA TACAGGCAAT	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG	GCGCCACAGG CCAAGATATG CAACAACGGA
35 40	1 51 101 151 201	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT
	1 51 101 151	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA
	1 51 101 151 201 251	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT
40	1 51 101 151 201 251 301 351 401	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA
	1 51 101 151 201 251 301 351 401 451	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT AAGCACCGTC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC
40	1 51 101 151 201 251 301 351 401 451 501	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT AAGCACCGTC GAGAAATATA	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA
40	1 51 101 151 201 251 301 351 401 451 501	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT AAGCACCGTC GAGAAATATA GACAGCAGTT	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC
40	1 51 101 151 201 251 301 351 401 451 501 551 601	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC AGGAGGTCGC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC ATCCCCGTCA
40	1 51 101 151 201 251 301 351 401 451 501 551 601	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC AGGAGGTCGC TACGCTGATT	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGGG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGGG
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA GACCCACTGT AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC AGGAGGTCGC TACGCTGATT ATATCTTCGC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGGG GCCCGAAGGG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGGG ATCTGACTTA
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC AGGAGGTCGC TACGCTGATT ATATCTTCGC AAATTGCCCG	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGGG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGGG ATCTGACGGGG ATCTGACGGGG
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 701 751 801 851 901	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA CGGGGCGGAA AACCGGCAAA GTGCTGCATT	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC AGGAGGTCGC TACGCTGATT ATATCTTCGC AAATTGCCCG AGGCGAAATG TTCATACGGA	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGGG GCCGAAGGG GCCGAAGGG GCGGATCGTA CTTGCTGCCA AAACGGCCGT	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGGCCGTGTA CCGTACCCGA	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGGG ATCTGACTTA GTGCAAGGCG CAACGGCGAA CTAGAGGCAA
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 701 751 801 851 901	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA CGGGGCGGAA AACCGGCAAA GTGCTGCATT GTTTGCCGCA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC AGGAGGTCGC TACGCTGATT ATATCTTCGC AAATTGCCCG AGGCGAAATG TTCATACGGA AAAGTCCGATT	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGGG GCCGAAGGG GCCGAAGGG GCGGATCGTA CTTGCTGCCA AAACGGCCGT TCGGCAAA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGGCCGTGTA CCGTACCCGA ATCTGTGGAC	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC ATCCCCGTCA CCTGACGGGG ATCTGACTTA GTGCAAGGCG CAACGGCGAA CTAGAGGCAG GGCATTATCG
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 701 751 801 851 901 951	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA CAGTCCGCAAA GTGCTGCAATT GTTTGCCGCA ACAGCGGCAA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC TACGCTGATT ATATCTTCGC AAGTCCTGATT ATATCTTCGC AAGTCCCGAAATTGCCCG AGGCGAAATG TTCATACGGA AAAGTCCATT TGATTTGCAT	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGGG GCCGAAGGG GCCGAAGGG GCGGATCGTA CTTGCTGGCA AAACGGCCGT TCGGCAGCAA ATGGGTACGC	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACCAAC AACCACCGC AATGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGGCCGTGTA CCGTACCCGA ATCTGTGGAC AAAAATTCAA	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC ATCCCGTCA CCTGACGGGG ATCTGACTTA GTGCAAGGCG CAACGGCGAA CTAGAGGCAG GGCATTATCG AGCCGCCATC
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 701 751 801 851 901 951 1001	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA CGGGGCGGAA AACCGGCAAA GTGCTGCATT GTTTGCCGCA ACAGCGGCGA ACAGCGGCGA GATGGAAACG	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC AGGAGATCGC TACGCTGATT ATATCTTCGC AAATTGCCCG AGGCGAAATG TTCATACGGA AAAGTCGATT TGATTTGCAT GCTTTAAGGG	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CTCATCTCA TTCCTGCCGA GTCGATGGGG GCCGATGGGG GCCGATGGGA CTTGCTGGCA AAACGCCGT TCGGCAAA ATGGCTACGC GACTTGCCGA ATGGCTACGC	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGTA AAGCGGTCA AAGCGGTCA AAGCGGTCA CGGCCGTGTA CCGTACCCGA ATCTGTGGAC AAAAATTCAA GAAAATTCAA	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGG ATCTGACTTA GTGCAGGCGAA CTAGAGGCAA CTAGAGGCAA CTAGAGGCAG GGCATTATCG AGCCGCCATC GCGGGGATGT
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 751 801 851 901 951 1001 1051	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA CGGGGCGGAA GTGCTGCATT GTTTGCCGCA ACAGCGGCGA GATGGAAACG TTCCGGAAGG	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AAGCACCGTC GAGAAATATA GACAGCAGTT ACAAGTCCGC TACGCTGATT ATATCTTCGC AAATTGCCCG AGGCGAAATG TTCATACGGA AAAGTCGATT TGATTTGCAT GCTTTAAGGG TTTTACGGCC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGGG GCCGAAGGG GCCGAAGGG GCGGATCGTA CTTGCTGCCA AAACGGCCGT TCGGCAGCAA ATGGGTACGC GACTTGGACG GCGCCGGCGA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT TCGCCCTCCGT CCGCCGTGTA CCGTACCCGA ATCTGTGGAC AAAAATTCAA GAAAATTCAA GAAAATTCAA	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC ATCCCCGTCA CCTGACGGGG ATCTGACTTA GTGCAAGGCG CAACGGCGAA CTAGAGGCAG CTAGAGGCAG GGCATTATCG AGCCGCCATC GCGGGGATGT GGAAAATACA
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA CAGGGCGAAA GTGCTGCATT GTTTGCCGCA ACAGCGGCGA GATGGAAACG TTCCGGAAGG GCTATCGCCC	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAGGCGGTCAAA TATCTTCGC AAATTGCCCG AGGCGAAATG TTCATACGGA AAAGTCGAT TGATTTGCAT GCTTTAAGGG TTTTACGGCC GACAGATGCC GACAGATGCC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CTCATCTTCA TTCATCTTCA GTCGATGGGG GCCGATGGGG GCCGATGGGA CTTGCTGCCA ATGGCTGCA ATGGCTACGC AAACGCCGT TCGCCGCA ATGGGTACGC GCCTTGGCCA ATGGGTACGC GACTTGGACG GACTTGGACG GACTTGGACG GACTTGGACG GACTTGGACG GACTTGGACG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT AAGCGGTCAG AATTACCGGT CGGCCGTGTA CGGCCGTGTA CCGTACCCGA ATCTGTGGAC AAAAATTCAA GAAAATTCAA GAAAATTCAA GAAAATTGGCG GGAAGTGGCG GATTCGGCGT	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGG ATCTGACGGGG CTAGACGCGA CTAGAGGCAG CAACGCCATC GCGCCATC GCGGGGATGT GGAAAATACA GTTTGCCGGC
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 751 801 851 901 951 1001 1051	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGCAA CAGTCCGCAA ACCGGCAA ACCGGCAA ACCGGCAA ACCGGCAA ACCGGCAA ACCGGCAA ACCGGCAA ATTTGCTGCCCA CTTTGCCGCA GTTTGCCGCA GTTTGCCGCA GATGGAAACG GTTCCGGAAGG GATGGAAACG TTCCGGAAGG GCTATCGCCC AAAAAAGAGC	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAGCAGTCG TACGCTGATT ATATCTTCGC AAATTGCCCG AGGCGAAATG TTCATACGGA AAAGTCGATT TGATTTGCAT GCTTTAAGGG TTTTACGGCC GACAGATGCC AGGATGGATC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GCCGAAGGG GCCGAAGGG AAACGGCCGT TCGGCAGCAA ATGGGTACGC AATGGTACGC GACTTGGACG GCCGCGCGA ATGGGTACGC GACTTGGACG GACATTGGACG CGGCCGCGA GAAAAGGGCG CGGAGGAGGA	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCAGT CGGCCGTGTA CGGCCGTGTA CCGTACCCGC ATCTGTGGAC AAAAATTCAA GAAAATTCAA GAAAATTCAA GAAAATTCAA GAAAATTCAC GGAAGTGGCG GGAAGTGGCG GGAGCCACAA	GCGCCACAGG CCAAGATATG CAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGGG ATCTGACGGGG CTACAGGCGAA CTAGAGGCAA CTAGAGGCAA GGCATTATCG AGCCGCCATC GCGGGGATGT GGAAAATACA GTTTGCCGGC ACGACGACGA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGTCG ATCAGGCGGA CATTCCGGCA CAGGGCGAAA GTGCTGCATT GTTTGCCGCA ACAGCGGCGA GATGGAAACG TTCCGGAAGG GCTATCGCCC	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAGCAGTT ACAGCTGCC AGGAGGTCGC TACGCTGATT ATATCTTCGC AAATTGCCCG AGGCGAAATGA ATATCTTCGC TTCATTGCAT TGATTTGCAT GCTTTAAGGG TTTTACGGCC GACAGATGCG GCGAATGCG GCTGCCACTG	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGG GCCCGAAGGG GCGCGATCGTA ATGGGTACGC TTGGCGA ATGGGTACGC AACGGCCGA ATGGGTACGC GACTGGACGA ATGGGTACGC GACTTGGCCG CGGCCGCGA GAAAAGGCCG CGGAGGAGGA TGGCCATTGC	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATTGCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGCCTGCTAC CGCTGTCAC ATCTGTGGAC ATCTGTGGAC AAAAATTCAA GAAAATTCAA GAAAATTCAC GGAAGTGGCG GGAAGTGGCG GATTCGGCGT GGAGCCACAA TGCTGCCTAC	GCGCCACAGG CCAAGATATG CCAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGGG ATCTGACGTGA CTAGAGGCGAA CTAGAGGCAA CTAGAGGCAA CTAGAGGCAA CGCGCCATC GCGGGGATGT GGAAAATACA GTTTGCCGGC ACGACGACA ACAATGGCC ACAACACGCAA AACAATGGCC
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGTTGC ATTTATAAAG TGCACGGCAA ACCGGCAA GTGCTGCATT GTTTGCCGCA CATTCCGCA CATCCGCCA TGTTAGAACG TTCCGGAAGG GATGGAAACG TTCCGGAAGG GATGGAAACG TTCCGGAAGG GATGGAAACG TTCCGGAAGG GCTATCGCCC AAAAAAGAGC TGTTAAAAAA AAGAAATCAA GACGGCACAA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAGCAGTT ACAGTCCGC AGGAGGTCGC TACGCTGATT ATATCTTCGC AAATTGCCCG AGGCGAAATGGA TTCATAGGG TTCATAGGG TTTTACGGCC GACAGATGGAT GCTTTAACGCC GACAGATGGAT CGCTGCCACTG CGCTTCCAAA TTACCAAAAA	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGG GCCGAAGGG GCGCATCGTA ATGGGTACGC ATGGGCACAA ATGGGTACGC GACTGGACGA ATGGGTACGC GACTGGACGA GACAGAGGAGA GACAACGT TGGCCATTGC CGGCCGCGA GAAAAGGGCG CGGAGGAGGA ATGGCATTGC CGGCCGCGA GAAAAGGGCG CGGAGGAGAGA AGACGCAACT	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGGCCGTGTA CCGTACCGA ATCTGTGGAC AAAAATTCAA GAAAATTCAA GAAAATTCAG GGAAGTGGCG GATTCGGCGT GGAGCCACAA TGCTGCCTAC CCATCTACGA GCAGCCGATG	GCGCCACAGG CCAAGATATG CCAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA ACTGACGGGG ATCTGACGGGG ATCTGACGGGGA CTAGAGGCGAA CTAGAGGCAA CGCGCATC GCGGGGATGT GGAAAATACA GTTTGCCGGC ACTTGCCGGC ACTTGCCGGC ACTTGCCGGC ACTTGCCGGC ACTTGCCGGC ACTTGCCGGC ACTTGCCGCC ACTTGCCGGC ACCACCGACGA ACAATGGCC CATTGATGAA TTGAAGCCGA
40 45 50 55 60	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1351	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGGTTGC ATTTATAAAG TGCACGGCAA ACCGGCAA ACCGGCAA GTGCTGCATT GTTTGCCGCA GATGGAAACG TTCCGGAAGG GATGGAAACG TTCCGGAAGG GATGGAAACG TTCCGGAAGG GATGGAAACG TTCCGGAAGG GATGGAAACG TTCCGGAAGG GCTATCGCCC AAAAAAGAGC TGTTAAAAAA AAGAAATCAA GACGGCACAA CGACTTTAAAA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAGGTCGC TACGCTGATT ATATCTTCGC AAGTGGATT ATATCTTCCC AAGTCGATT TGATTTGCAT GCTTTAAGGG TTCATACGGC TTCATACGGC GACAGATGCC GACAGATGCC GCTGCCACTG GCTGCCACTG CGGTTTCAAA TTACCAAAAA GGTCTGGGTC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GCCGAAGGG GCCGAAGGG GCGGATCGTA ATGGGTACGC AAGGGATCGTA CTTGCTGCCA ATGGGTACGC GCCGGCGA ATGGGTACGC GACTTGGCG GACTTGGCG GACTGTACGC GCCGGCGA ATGGGTACGC GCCGGCGA ATGGGTACGC GCCGGCGA GAAAAGGGCG CGGACGAGAGA TGGCCATTGC GCTGGAGAGA AGACGCAACT TGAAAAAAAGT	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGGCCGTGTA CGGCGTGTA ATCTGTGGAC AAAAATTCAA GAAAATTCAA GAAAATTCAA GAAAATTCAA GAAGTGGCG GGTTCGCCTA CGCACCCAA TGCTGCCTAC CCATCTACGA CCATCTACGA CCATCTACGA CCATCTACGA CCATCTACGA CCATCTACCA	GCGCCACAGG CCAAGATATG CCAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCCGTCA CCTGACGGGG ATCTGACGGGG CTAACGCGCAA CTAACGCCAAC GGCATTATCG GGCATTATCG GGCAAATACA GTTTTCCCGGC ACGCGCATC GCGGGGATGT GGAAAATACA GTTTTCCCGGC ACGACGACA ACAATGGCC CATTGATGAA TTGAAGCCGA CTGACCAAAA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1451	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGTTGC ATTTATAAAG TGCACGGCAA ACCGGCAAA GTGCTGCATT GTTTGCCGCA ACAGCGGCAA ACCGGCAAA CTGCTGCATT GTTTCCGGAAGG TTCCGGAAGG TTCCGGAAGG TTCCGGAAGG TTCCGGAAGG TTCCGGAAGG TTCCGGAAGG TTCCGGAAGG GCTATCGCCC AAAAAAGAGC TGTTAAAAAA AAGAAATCAA GACGGCACAA CGACTTTAAA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAGCAGTT ACAGCAGTT ACAGCTCGC AGGAGGTCGC TACGCTGATT ATATCTTCGC AAATTGCCG AGGCGAAATG TTCATACGGA AAAGTCGATT TGATTTGCAT GCTTTAAGGG TTTTACGGCC GACAGATGGTC GCTGCCACTG CGGTTTCAAA TTACCAAAAA GGTCTGGGTC AAACAAACAA	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGG GCCGAAGGG GCGGATCGTA ATGGGTACGC AAACGGCCGT TCGGCAGCAA ATGGGTACGC GACTGGACGA GACAGAGGAGA GACAAAAAGGT GCTGGAGAGA TGGCCATTGC GCTGGAGAGA AGACGCAACT TGAAAAAAGT AACGTCGATG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATTGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGGCCGTGTA CCGTACCGAAAATTCAA ATCTGTGGAC AAAAATTCAA GAAAATTCAG GGAAGTGGCG GATTCGGCGT GGAGCCACAA TGCTGCCTAC CCATCTACGA CCATCTACGA CCATCTACGA CCACAAGTAAA	GCGCCACAGG CCAAGATATG CCAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCGTCA CCTGACGGG ATCTGACGGGA CTAGAGGCGAA CTAGAGGCAA GGCATTATCG GGCGCATC GCGGGGATGT GGAAAATACA GTTTGCCGGC ACGCGCATC GCGGGGATGT GGAAAATACA GTTTGCCGGC ACGACGACGA ACAATGGCC CATTGATGAA TTGAAGCCGA CTGACCAAAA AGCTGCAAAA
40 45 50 55 60	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1351	ATGGCTAGCC TCCTGTTGTT CAGGTTCTCA GCGGCAGTTT CAAACCCAAA CCGCCGAATC GATTCCGCCC TGGAAGGGTT ATATAACGTT TTGGATGAAG TGAACGAATT ATTTGTTGC ATTTATAAAG TGCACGGCAA ACCGGCAAA GTGCTGCATT GTTTGCCGCA ACAGCGCGA ACCGGCAAA ACCGGCAAA CGTCATCGCCC AAAAAAACG TTCCGGAAGG GCTATCGCCC AAAAAAAAA CGGCACAA CGGCCAAA CAGCGCCAA CGCGCCAA	GCTGAAAAAG AGGACAGGGC CGGCAGAAAA AATGAAGACG CGCAAATCAA CCGCGTCAAA GATTTGGCTA AGCACCGTC GAGAAATATA GACAGCAGTT ACAGCAGTT ACAGCTCGC AGGAGGTCGC TACGCTGATT ATATCTTCGC AAATTGCCG AGGCGAAATG TTCATACGGA TTCATACGGT TTCATACGGC GACAGATGGCC GCTGTTTAAGGG TTTTACGGCC GACAGATGGCC GCTGCCACTG CGGTTTCAAA TTACCAAAAA CGGTCTGGGTC AAACAAACAA AAAAGTTAAC	AGACAGAGGT GCGCCATCCA TACAGGCAAT AGGGACCGCA ACAGGGAACA CCCTGCACCT ATGGCGTTTT AAAGGCGATT AAAATCAGAA AGAAAGATGG CAAGCTAATG TTCATCTTCA TTCCTGCCGA GTCGATGGG GCCGAAGGG GCGGATCGTA ATGGGTACGC AAACGGCCGT TCGGCAGCAA ATGGGTACGC GACTGGACGA GACAGAGGAGA GACAAAAAGGT GCTGGAGAGA TGGCCATTGC GCTGGAGAGA AGACGCAACT TGAAAAAAGT AACGTCGATG	AAAAGAAGAT CACAAGGCAG GGCGGTGCGG AAATGATATG ACCAACCCGC GCGAATGGCG GATTGATGGG CTTGTAATGG TTTGAAAATT GAAAAGCGAT GAACTAACAA TCTGCGCGAT GATGCCGCTA AAGCGGTCAG AATTACCGGT TGCCCTCCGT CGGCCGTGTA CCGTACCGAAAAATTCAA GAAAATTCAA GAAAATTCAA GGAAGTGGCG GATTCGGCGT CGGACCACAA TGCTGCCTAC CCATCTACGA CCATCTACGA CCATCTACGA GCAGCCGATG CCAAAGTAAA GCAAAGTAAA	GCGCCACAGG CCAAGATATG CCAACAACGGA CCGCAAAATT CGATTCTTCA GTAGCAATTT CCGTCGCAAA TGATAATTTA TAAATGAGTC AAATTTACTA ATATGTCATC TCAGGCGTTC ATCCCGTCA CCTGACGGGG ATCTGACTGA CTAGAGGCGAA CTAGAGGCGATC GGGAAAATACA GGTGCACGCATC GCGGGGATCT GGAAAATACA GTTTGCCGGC ACACGCGATC TGACGACGA ACAATGGCC CATTGATGAA ATGACCGAA ATGACCGAA ATGACCGAA ATGACCGAAA AGCTGCAGAA ATGCCGCTTT

	1601	TGGGAGAAAA	TATAACGACA	TTTGCTGAAG	AGACTAAGAC	AAATATCGTA
	1651				GATACCGTCG	
	1701				GGATGAAACC	
	1751				CCAAACAGAC	
5	1801	ACCAAACAAA	ACGTCGATGC	CAAAGTAAAA	GCTGCAGAAA	CTGCAGCAGG
	1851				TACTGCAGCC	
	1901				AAGCTGATAT	
	1951				GCCGACGTGT	
10	2001				TGGTCTGAAC	
10	2051	AAAAATTGGA	CACACGCTTG	GCTTCTGCTG	AAAAATCCAT	TGCCGATCAC
	2101	GATACTCGCC	TGAACGGTTT	GGATAAAACA	GTGTCAGACC	TGCGCAAAGA
	2151	AACCCGCCAA	GGCCTTGCAG	AACAAGCCGC	GCTCTCCGGT	CTGTTCCAAC
	2201	CTTACAACGT	GGGTCGGTTC	AATGTAACGG	CTGCAGTCGG	CGGCTACAAA
1.5	2251	TCCGAATCGG	CAGTCGCCAT	CGGTACCGGC	TTCCGCTTTA	CCGAAAACTT
15	2301	TGCCGCCAAA	GCAGGCGTGG	CAGTCGGCAC	TTCGTCCGGT	TCTTCCGCAG
	2351	CCTACCATGT	CGGCGTCAAT	TACGAGTGGT	AACTCGAG	
	_					
	1	MASPDVKSAD	TLSKPAAPVV	AEKETEVKED	APQAGSQGQG	APSTQGSQDM
20	51	AAVSAENTGN	GGAATTDKPK	NEDEGPQNDM	PONSAESANO	TGNNQPADSS
20	101	DSAPASNPAP	ANGGSNFGRV	DLANGVLIDG	PSQNITLTHC	KGDSCNGDNL
	151	LDEEAPSKSE	FENLNESERI	EKYKKDGKSD	KFTNLVATAV	QANGTNKYVI
•	201	IYKDKSASSS	SARFRRSARS	RRSLPAEMPL	IPVNQADTLI	VDGEAVSLTG
	251	HSGNIFAPEG	NYRYLTYGAE	KLPGGSYALR	VQGEPAKGEM	LAGTAVYNGE
25	301				GIIDSGDDLH	
25	351				${\tt GKYSYRPTDA}$	
	401				NNGQEINGFK	
	451				LTKTVNENKQ	
	501	SEIEKLTTKL	ADTDAALADT	DAALDATTNA	LNKLGENITT	FAEETKTNIV
30	551				NTKADEAVKT	
3 0			מגערתגמחסגג	አ አ አርጥ አ አጥ አ አ	THE ATTEMPT AND	TOTRADTATE
	601	TKQNVDAKVK				
	651	KDNIAKKANS	ADVYTREESD	SKFVRIDGLN	ATTEKLDTRL	ASAEKSIADH
		KDNIAKKANS DTRLNGLDKT	ADVYTREESD VSDLRKETRQ	SKFVRIDGLN GLAEQAALSG		ASAEKSIADH NVTAAVGGYK

	ELISA	Bactericidal
ΔG287-953-His	3834	65536
ΔG287-961-His	108627	65536

The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens (using 287-GST) for 919 and ORF46.1:

	Mixture with 287	Hybrid with ΔG287
919	32000	128000
ORF46.1	128	16000

Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained:

	9	19	ORF46.1		
Strain	Mixture	Hybrid	Mixture	Hybrid	
NGH38	1024	32000	-	16384	
MC58	512	8192	-	512	
BZ232	512	512	-	-	
MenA (F6124)	512	32000	-	8192	
MenC (C11)	>2048	>2048	-	_	
MenC (BZ133)	>4096	64000	-	8192	

The hybrid proteins with $\Delta G287$ at the N-terminus are therefore immunologically superior to simple mixtures, with $\Delta G287$ -ORF46.1 being particularly effective, even against heterologous strains. $\Delta G287$ -ORF46.1K may be expressed in pET-24b.

The same hybrid proteins were made using New Zealand strain 394/98 rather than 2996:

5	<u>ΔG287N</u>	IZ-919				
	1	ATGGCTAGCC	CCGATGTCAA	GTCGGCGGAC	ACGCTGTCAA	AACCTGCCGC
	51	CCCTGTTGTT	TCTGAAAAAG	AGACAGAGGC	AAAGGAAGAT	GCGCCACAGG
	101	CAGGTTCTCA	AGGACAGGGC	GCGCCATCCG	CACAAGGCGG	TCAAGATATG
	151	GCGGCGGTTT	CGGAAGAAAA	TACAGGCAAT	GGCGGTGCGG	CAGCAACGGA
10	201	CAAACCCAAA	AATGAAGACG	AGGGGGCGCA	AAATGATATG	CCGCAAAATG
	251	CCGCCGATAC	AGATAGTTTG	ACACCGAATC	ACACCCCGGC	TTCGAATATG
	301	CCGGCCGGAA	ATATGGAAAA	CCAAGCACCG	GATGCCGGGG	AATCGGAGCA
	351	GCCGGCAAAC	CAACCGGATA	TGGCAAATAC	GGCGGACGGA	ATGCAGGGTG
	401	ACGATCCGTC	GGCAGGCGGG	GAAAATGCCG	GCAATACGGC	TGCCCAAGGT
15	451	ACAAATCAAG	CCGAAAACAA	TCAAACCGCC	GGTTCTCAAA	ATCCTGCCTC
	501	TTCAACCAAT	CCTAGCGCCA	CGAATAGCGG	TGGTGATTTT	GGAAGGACGA
	551	ACGTGGGCAA	TTCTGTTGTG	ATTGACGGGC	CGTCGCAAAA	TATAACGTTG
	601			TTGTAGTGGC		
00	651			TTGAAAAATT		
20	701			AAGAATGACG		
	751			GCAGATGAAG	-	
	801			CTTCATTTGC		
	851			GCCGAGATGC		
05	901			TGGGGAAGCG		
25	951			AAGGGAATTA		
	1001			TCGTATGCCC		
	1051			GGGCACGGCA		
	1101			GCCGTCCGTC		
20	1151			AGCAAATCTG		
30	1201			TACGCAAAAA		
	1251			GGACGGAAAA		
	1301			GGCGAGGAAG		
	1351			GGGCGGATTC		
35	1401			GAGGAGGATG		
22	1451			TCCGTCATCA		
	1501			AACGACGGTC		
	1551			CCCTGCCCCA		
	1601			CGCCTCGGCT		
40	1651			CGCCCAAGCC	-	
40	1701			TTGAACGCTA		
	1751			GGTACGGTTA	-	
	1801			GACGGCACAA		
	1851			CCGTCCCCCT		
15	1901			AGGCAGACGG		
45	1951			TACCGCCGAC		
	2001	CGCGCGCACA	ACGGCAATCA	AAGGCAGGTT	TGAAGGAAGC	CGCTTCCTCC

	2051			ATCAACGGCG		
	2101			AGACCCCGTC		
	2151			AAACCCCGTC		
5	2201			CATCCCTACG		
3	2251 2301			GCTCGGGCAG CGCAACGCCT		
	2351			CGCGAGCTTG		
	2401			GCCGTTGATG		
	2451			TGGGCGCGCC		
10	2501			CTCAACCGCC		
	2551			GGTGCGCGTG		
	2601	CGACGAAGCC	GGCGAACTTG	CCGGCAAACA	GAAAACCACG	GGTTACGTCT
	2651	GGCAGCTCCT	ACCCAACGGT	ATGAAGCCCG	AATACCGCCC	GTAAAAGCTT
15	1			SEKETEAKED		
	51			NEDEGAQNDM	-	
	101			QPDMANTADG		
	151			PSATNSGGDF		
20	201			KSEFEKLSDA		
20	251 301			PKPTSFARFR FAPEGNYRYL		
	351			TENGRPSPSR		
	401			KGTWTENGGG		
	451			GSGGGGCQSK		
25	501			PHLSLPHWAA		
	551	QGWQDVCAQA	FQTPVHSFQA	KQFFERYFTP	WQVAGNGSLA	GTVTGYYEPV
	601	LKGDDRRTAQ	ARFPIYGIPD	DFISVPLPAG	LRSGKALVRI	RQTGKNSGTI
	651			TAIKGRFEGS		
20	701		_	GRLKTPSGKY		
30	751			RQNPQRLAEV		
	801			YITLGAPLFV		_
	851	GSAIKGAVRV	DYFWGYGDEA	GELAGKQKTT	GYVWQLLPNG	MKPEYRP*
35	ΔG287NZ	-953				
35	<u>ΔG287NZ</u>		CCGATGTCAA	GTCGGCGGAC	ACGCTGTCAA	AACCTGCCGC
35		ATGGCTAGCC		GTCGGCGGAC AGACAGAGGC		
35	1 51 101	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA	TCTGAAAAAG AGGACAGGGC	AGACAGAGGC GCGCCATCCG	AAAGGAAGAT CACAAGGCGG	GCGCCACAGG TCAAGATATG
	1 51 101 151	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA	AGACAGAGGC GCGCCATCCG TACAGGCAAT	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG	GCGCCACAGG TCAAGATATG CAGCAACGGA
35 40	1 51 101 151 201	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG
	1 51 101 151 201 251	ATGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGATAC	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG
	1 51 101 151 201 251 301	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGATAC CCGCCGGAA	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG AATCGGAGCA
	1 51 101 151 201 251 301 351	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGATAC CCGGCCGGAA GCCGGCAAAC	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG
40	1 51 101 151 201 251 301 351 401	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGATAC CCGGCCGGAA GCCGGCAAAC	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT
	1 51 101 151 201 251 301 351 401 451	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGATAC CCGGCCGGAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC
40	1 51 101 151 201 251 301 351 401	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGATAC CCGGCCGGAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT	GCGCCACAGG TCAAGATATG CAGCAACAGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA
40	1 51 101 151 201 251 301 351 401 451 501	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGATAC CCGGCCGGAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA	GCGCCACAGG TCAAGATATG CAGCAACAGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG
40 45	1 51 101 151 201 251 301 351 401 451 501	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCACTGTA ACGATCAGTA	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGTAGTGGC TTGAAAAATT	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA
40	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GTAATTACAA	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT GAAAGATGGG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGTAGTGGC TTGAAAATT AAGAATGACG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA	GCGCCACAGG TCAAGATATG CAGCAACAGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTACAGCTA GGTACAGCTA GGTACAGCTA GGTACTGGTTG	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGTAGTGGC TTGAAAATT AAGAATGACG GCAGATGAAG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAAGAATCA	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTATACAA GGTTTGGTTG CTTTTATAAA	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT CCTAAACCCA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGTAGTGGC TTGAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAAGAATGA GGAATCAATC GCGATTTAGG	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTAATTACAA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT CCTAAACCCA GTCGCTTCCG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGTAGTGGC TTGAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTAATTACAA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG GCGGATACGC	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT CCTAAACCCA GTCGCTTCCG TGATTCCG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGTAGTGGC TTGAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC GCCGAGATGC TGGGGAAGCG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTAATTACAA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG GCGGATACGC CGGCAATATC	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT CCTAAACCCA GTCGCTTCCG TGATTGTCGA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGTAGTGGC TTGAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC GCCGAGATGC TGGGGAAGCG AGGGAATTA	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTG	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG GCGGATACCC CGGCAATATC CGGAAAAATT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA CGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGCGGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT CCTAAACCCA GTCGCTTCCG TGTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC ATTGACGGGC TTGAAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC GCCGAGATGC TGGGGAAGCG AGGGGAATTA TCGTATGCCC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTG TCCGTGTTCA	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG AGGCGAACCT
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTATACAA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG GCGGATACGC CGGCAATATC CGGAAAAATT TCAAAAGGCG	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA CGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGCGGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT CCTAAACCCA GTCGCTTCCG TGTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGA AAATGCTCGC	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC ATTGACGGGC TTGAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC GCCGAGATGC TGGGGAAGCG AGGGGAATTA TCGTATGCCC GGGCACGCA	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTG TCCGTGTTCA	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG AGGCGAACCT
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG GCGGATACC CGGCAATATC CGGAAAAATT TCAAAAGGCG GCATTTTCAT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA CGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGCGGATTC AAATCAGAAT GAAAGATGGG CCGATAGTGT CCTAAACCCA GTCGCTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGA AAATGCTCGC ACGGAAAACG	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC ATTGACGGGC TTGAAAATT AAGAATGACG GCAGATGACG GCCGAGATGC GCCGAGATGC GCCGAGATGC GCCGAGATTA TCGTATGCCC GGGCACGCCA GCCGTCCGTC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTG TCCGTGTTCA GTGTACAACG CCCGTCCAGA	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG AGGCGAACCT GCGAAGTGCT GCGAAGTGCT
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG GCGGATATC CGGAAAAATT TCAAAAGGCG GCGAATATC CGGAAAAATT CCAAAAGCCG GCATTTTCAT CCGCAAAAGT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA CGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT CCTAAACCCA GTCGCTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGA AAATGCTCGC ACGGAAAACG CGATTTCGGC	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGG TTGTAGTGGC TTGAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC GCCGAGATGC TGGGGAAGCG AGGGAATTA TCGTATGCCC GGGCACGCCA GCCGTCCGTC AGCAAATCTG	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTG TCCGTGTTCA GTGTACAACG CCCGTCCAGA TGGACGGCAT	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG AGGCGAACCT GCGAAGTGCT GCGAAGTGCT TATCGACAGC
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTATACAA GGTTTGGTTG CTTTTATAAA GGTCGAGGCG GCGGATACGC CGGCAATATC CGGAAAAATT TCAAAAGGCG GCATTTTCAT CCGCAAAAGT CCGCAAAAGT CCGCAAAAGT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA CGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT CCTAAACCCA GTCGCTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGA AAATGCTCGC ACGGAAAACG CGATTTCGGC CGGTTTCGGC CGGTTTCGCC CGCCGGCGGA AAATGCTCGC CGGTTTCGGC CGGTTTCGGC CGGTTTCGGC CGGTTTTCGGC CGGTTTTCGGC CGGTTTTCGGC	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC ATTGACGGGC TTGAAAATT AAGAATGACG GCAGATGACG GCCGAGATGC GCCGAGATGC GCCGAGATGC GCCGAGATTA TCGTATGCCC GGGCACGCCA GCCGTCCGTC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTG TCCGTGTTCA GTGTACAACG CCCGTCCAGA TGGACGGCAT TTCAAAGCCG	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG AGGCGAACCT GCGAAGTGCT GCGAAGTGCT GCGAAGTGCT CGCAGGTTTG TATCGACAGC CCATCGATGG
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGGCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTATTGGTTG CTTTTATAAA GGTCGAGGCG GCGAATATC CGGAAAAATT TCAAAAGGCG GCGATTTCAT CCGCAAAAGT CCGCAAAAGT CCGCAAAAGT AAACGCCTTT AAACGCCTTT AAACGCCTTT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA CGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT CCTAAACCCA GTCGCTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGA AAATGCTCGC ACGGAAAACG CGATTTCGGC CGGTTTCGCC ACGGAAAACG CGATTTCGGC ACGGAAAACG CGATTTCGGC TGCATTTCGGC TGCATTTCGGC ACGGAAAACG AAGGGGACTT	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC ATTGACGGGC TTGTAGTGGC GCAGATGACG GCAGATGACG GCGGGAAGCG AGGGGAATTA TCGTATGCCC GGGCACGCCA GCCGTCCGTC AGCAAAAAA	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTG TCCGTGTTCA GTGTACAACG CCCGTCCAGA TGGACGGCAT TTCAAAGCCG TGGCGGGGG	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG AGGCGAACCT GCGAAGTGCT GCGAAGTGCT GCGAAGTGCT GCGAAGTGCT TATCGACAGC CCATCGATGG GATGTTTCCG
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGCCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCACTGTA AGTACACTA GGTTTGGTTG CTTTTATAAA GGTCGGCAATATC CCGCAAAATT TCAAAAGCG GCGCATTTCAT CCGCAAAAGT TCAAAAGCG GCGATTTTCAT CGCCAAAAGT CCGCCAACAG CGCGATCGTT CAAACGCTT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA CGCAGGCGGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT CCTAAACCCA GTCGCTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGAAAACG AAATGCTCGC ACGGAAAACG CGATTTCGGC CGGTTTCGGC ACGGAAAACG AAATGCTCGC ACGGAAAACG CGATTTCGGC CGGCCGGCC ACGCCAAAACAA	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC ATTGACGGGC TTGTAGTGGC GCAGATGACG GCAGATGACG GCGGAATTAC GCCGAGATGC TGGGGAAGCG AGGGAATTA TCGTATGCCC GGGCACGCCA GCCGTCCGTC AGCAAATCTG TACGCAAAAA GGACGGAATA GGACGGAATA GGACGGAATC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGATTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCTC TCCGTGTTCA GTGTACAACG CCCGTCCAGA TGGACGGCAT TTCAAAGCCG TGGCGGGGAAA GGCGTGTTTG	GCGCCACAGG TCAAGATATG CAGCAACAGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGTCAATCAG CGGGGCATTC ACTTACGGGG AGGCGAACCT GCGAAGTGCT GCGAAGTGCT GCGAAGTGCT GCGAAGTGCT TATCGACAGC CCATCGATGG GATGTTTCCG ATACAGCTAT CCGGCCAAAAA
40 45 50 55 60	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGCCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTTTGGTTG CTTTTATAAA GGTCGGCAATATC CGGCAATATT CGGCAAAATT TCAAAAGGCG GCGATTTCAT CGGCAATATT CAAAAGGCG GCATTTTCAT CGCCAAAAGT AAACGCTTT CAAACGCTT CAGCAAAAGT CCGCCAACAG AGAGCAGGAT AGACCAGGAT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT CCTAAACCA GTCGCTTCCG TGATTGTCGA TTCGCGCCCG GCCCGGCGGAAAACG ACGGAAAACG CGATTTCGGC CGATTTCGGC CGGCTGGCAAACCG ACGGAAAACG CGATTTCGGC CGATTTCGGC CGATTTCGGC CGGCCGGAAAACG CGATTTCGGC CGATTTCGGC CGGCCGGCC ACGGCAAAACG CGATTTCGGC CGATTTCGGC CGGCCCGGCC	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGAAAAATT AAGAATGACG GCAGATGACG GCGGAATGC GCCGAGATGC TGGGAAGCG ATGGGAATGC GCGGAATGC TGGGAATGC TGGGAATGC TGGGAATGC AGCGAATCA TCGTATCCC GGCCACGCA GCCGTCCGTC AGCAAAAAA GGCCGAAAAA GGACGGAAAA GGACGGAAAA GGACGGAAAA GGGCGGGAAGC GGGCGGAAGC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGGTTTAGG CGCTGATTCC GTCAGCCTGA CCGGTATCG TCCGTGTTCA TCCGTGTTCA TCGTGCCGGAT TCCAGCCTGA TGGACGGCAT TTCAAAGCCG TGGCGGGGAAA GGCGTGTTTG CACCTACAAA	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAATAA TAAATTTGTC AATATATTAT CGTTCACAC CGGGACATCA CGGGACATCA GCGAAGTGCT GCGAAGTGCT GCGAAGTGCT TATCGACAGC CGCAAGTTTG TATCGACAGC CATCAATCAG CAGCATTCC GCAAGTTTC CGCAAGTTTC TATCGACAGC CATCGATGG GATGTTTCCG ATACAGCTAT CCGGCAAAAA GTGGACGAATA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301 1351 1401 1451	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGCCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCACTGTA AGTACAGCTA GGTATTACAA GGTTTGGTTG CTTTTATAAA GGTCGAGCG GCGAATATC CGGCAATATT CGGCAAAAGT TCAAAAGGCG GCATTTTCAT CGGCAAAAGT CGGCAATATC CGGCAACAG AAACGCTTT AAACGCCTT CAAAAGGTT CAAAAGTTTTA CGCCCAACAG AGAGCAGGAT ATCACGCCAA ATCACGCCAA	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT CCTAAACCCA GTCGCTTCCG TGATTGTCGC TGATTGTCGA ACGCGCCGG ACGGAAAACA ACGGAAAACG CCGATAGTGT CCTAAACCCA TTCGCGCCCG GCCCGGCGA AAATGCTCGC ACGGAAAACG CGATTTCGGC CGATTTCGGC CGGTTTCGGC CGGCCGGAAAAC CGGCCCGGCC	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGAAAAATT AAGAATGACG CTTCATTTGC GCCGAGATGC TGGGAAGCG AGGGAATCA TCGTATTCC GCCGACGCA ACCGCCACGCA GCCGTCCGTC AGCAAAAAA GGCCGAAAAA GGCCATCGACC GCGGAAGC GCCGTCCGTC AGCAAAAAA GGCCGAAAAA GGCCGAAAAA GGCCGACGCA	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGGTATTCC GTCGCATTCC GTCGCTGATCC GTCGGCTGATCC TCCGTGTTCA TCCGTGTTCA GTGACCCGC TGGCGGCAT TTCAAAGCCC TGGCGGCGGAAA ATTTCAACAC	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAAGA GACAAAATAA TAAATTTGTC AATATATTAT CGTTCTGCAC CGGCGATCAG ACGGGCATCA GCGAGGTTTG GCGAGGTTTG TATCGACAGC TATCGACAGC CATCGATGG GATGTTTCCG ATACAGCTAT CCGCCAAAAA GTGGACGAAT CAGCCAACAC CCGGCAAAAA
40 45 50 55 60	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301 1351	ATGGCTAGCC CCCTGTTGTT CAGGTTCTCA GCGGCGGTTT CAAACCCAAA CCGCCGGAAA GCCGCCAAAC ACGATCCGTC ACAAATCAAG TTCAACCAAT ACGTGGGCAA ACCCACTGTA AGTACAGCTA GGTATTACAA GGTTTGGTTG CTTTTATAAA GGTCGAGCG GCGAAAATT CCGCAAAAGT TCAAAAGCG GCGATTTCAT CGGCAATATC CGGCAATATT CAAAAGGCG GCATTTTCAT CGCCAAAAGT AACGGCTTT AAACGGCTT CAGCAACAG AGAGCAGGAT ATCACGCCAA AGTCACGCCAA GTCGCCGATT	TCTGAAAAAG AGGACAGGGC CGGAAGAAAA AATGAAGACG AGATAGTTTG ĀTATGGAAAA CAACCGGATA GGCAGGCGG CCGAAAACAA CCTAGCGCCA TTCTGTTGTG AAGGCGATTC AAATCAGAAT CCTAAACCCA GTCGCTTCCG TGATTGTCGA TTCGCGCCGG ACAGATAGTGT CCGACCGAAAACA CCGATAGTGT CCGACCGC GCCCGGCGA AAATGCTCGC CGCTTCCG CGCCCGGCGAAAACG CGATTTCGGC CGATTTCGGC CGGTTTCGGC CGGCCGGAAAACG CGATTTCGGC CGGCCGGCC AAGGGGACTT CGGCCCGGCC	AGACAGAGGC GCGCCATCCG TACAGGCAAT AGGGGGCGCA ACACCGAATC CCAAGCACCG TGGCAAATAC GAAAATGCCG TCAAACCGCC CGAATAGCGG ATTGACGGGC TTGAAAAATT AAGAATGACG GCAGATGAAG CTTCATTTGC GCCGAGATGC GCGCACGCA AGCACAGCA AGCACATCAC GCCGTCCGTC AGCAAAAAA GGCGAAAAA GGCGAAGAAAA GGCGAAGAAAA GGCGAAGAAC GGCGAGAAC GCCGTCCGTC AGCAAAAAA GGCGAAGAAC GGCACGGAAAA GGCGAAGAAC GGCGAGGAAC GCCGTCCGTC CACCGACCACAC GCCATCGACC GACCGGTTCC GACCGGTTCC	AAAGGAAGAT CACAAGGCGG GGCGGTGCGG AAATGATATG ACACCCCGGC GATGCCGGGG GGCGGACGGA GCAATACGGC GGTTCTCAAA TGGTGATTTT CGTCGCAAAA AATAATTTCT AAGTGATGCA GGAAGAATGA GGAATCAATC GCGGTATTCC GTCAGCCTGA TCCGGTATTCC GTCAGCCTGA TCCGTGTTCA GTGACGCCAGA TGGACGGCAT TTCAAAGCCG TGGCGGGGAAA ATTTCAACAC GCCCTACAAA ATTTCAACAC GTCGAGTTCG	GCGCCACAGG TCAAGATATG CAGCAACGGA CCGCAAAATG TTCGAATATG AATCGGAGCA ATGCAGGGTG TGCCCAAGGT ATCCTGCCTC GGAAGGACGA TATAACGTTG TGGATGAATAA TAAATTTGTC AATATATTAT CGTTCACAC CGGGACATCA CGGGACATCA GCGAAGTGCT GCGAAGTGCT GCGAAGTGCT TATCGACAGC CGCAAGTTTG TATCGACAGC CATCAATCAG CAGCATTCC GCAAGTTTC CGCAAGTTTC TATCGACAGC CATCGATGG GATGTTTCCG ATACAGCTAT CCGGCAAAAA GTGGACGAATA

	1601	GTTCGCAACA	CTTTACCGAC	CACCTGAAAT	CAGCCGACAT	СТТССАТССС
	1651	GCCCAATATC	CGGACATCCG	CTTTGTTTCC	ACCAAATTCA	ACTTCAACGG
	1701	CAAAAAACTG	GTTTCCGTTG	ACGGCAACCT	GACCATGCAC	GGCAAAACCG
_	1751	CCCCCGTCAA	ACTCAAAGCC	GAAAAATTCA	ACTGCTACCA	AAGCCCGATG
5	1801	GCGAAAACCG	AAGTTTGCGG	CGGCGACTTC	AGCACCACCA	TCGACCGCAC
	1851	CAAATGGGGC	GTGGACTACC	TCGTTAACGT	TGGTATGACC	AAAAGCGTCC
	1901	GCATCGACAT	CCAAATCGAG	GCAGCCAAAC	AATAAAAGCT	T
	1	MASPDVKSAD	TLSKPAAPVV	SEKETEAKED	APOAGSOGOG	APSAOGGODM
10	51	AAVSEENTGN	GGAAATDKPK	NEDEGAQNDM	PONAADTDSL	TPNHTPASNM
	101	PAGNMENQAP	DAGESEQPAN	QPDMANTADG	MOGDDPSAGG	ENAGNTAAOG
	151	TNQAENNQTA	GSQNPASSTN	PSATNSGGDF	GRTNVGNSVV	IDGPSONITL
	201	THCKGDSCSG	NNFLDEEVQL	KSEFEKLSDA	DKISNYKKDG	KNDGKNDKFV
1 =	251	GLVADSVQMK	GINQYIIFYK	PKPTSFARFR	RSARSRRSLP	AEMPLIPVNQ
15	301	ADTLIVDGEA	VSLTGHSGNI	FAPEGNYRYL	TYGAEKLPGG	SYALRVOGEP
	351	SKGEMLAGTA	VYNGEVLHFH	TENGRPSPSR	GRFAAKVDFG	SKSVDGIIDS
	401			KGTWTENGGG		
	451	RPTDAEKGGF	GVFAGKKEQD	GSGGGGATYK	VDEYHANARF	AIDHFNTSTN
20	501			KIDITIPVAN		
20	551			VSVDGNLTMH		
	601	AKTEVCGGDF	STTIDRTKWG	VDYLVNVGMT	KSVRIDIQIE	AAKQ*
25	<u>ΔG287NZ</u> - 1		CCCAMOMONA	amaaaaaaa a	100000000	
23	51	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCGATGTCAA	GTCGGCGGAC AGACAGAGGC	ACGCTGTCAA	AACCTGCCGC
	101			GCGCCATCCG		
	151	CAGGIICICA	CCCAACAGGGC	TACAGGCAAT	CACAAGGCGG	TCAAGATATG
	201	CAAACCCAAA	AATCAACACC	AGGGGGGGCA	AAAMCAMAMC	CCCCAAACGGA
30	251			ACACCGAATC		
	301			CCAAGCACCG		
	351			TGGCAAATAC		
	401	ACGATCCGTC	GGCAGGCGGG	GAAAATGCCG	GCAATACGGC	TGCCCAAGGT
	451			TCAAACCGCC		
35	501			CGAATAGCGG		
	551	ACGTGGGCAA	TTCTGTTGTG	ATTGACGGGC	CGTCGCAAAA	TATAACGTTG
	601			${\tt TTGTAGTGGC}$		
	651			TTGAAAAATT		
40	701	GTAATTACAA	GAAAGATGGG	AAGAATGACG	GGAAGAATGA	TAAATTTGTC
40	751 801	GGTTTGGTTG	CCGATAGTGT	GCAGATGAAG	GGAATCAATC	AATATATTAT
	851	CCTCCACCCC	CCTAAACCCA	CTTCATTTGC GCCGAGATGC	GCGATTTAGG	CGTTCTGCAC
	901			TGGGGAAGCG		
	951			AAGGGAATTA		
45	1001			TCGTATGCCC		
	1051			GGGCACGGCA		
	1101	GCATTTTCAT	ACGGAAAACG	GCCGTCCGTC	CCCGTCCAGA	GGCAGGTTTG
	1151	CCGCAAAAGT	CGATTTCGGC	AGCAAATCTG	TGGACGGCAT	TATCGACAGC
	1201	GGCGATGGTT	TGCATATGGG	TACGCAAAAA	TTCAAAGCCG	CCATCGATGG
50	1251			GGACGGAAAA		
	1301	GAAAGTTTTA	CGGCCCGGCC	GGCGAGGAAG	TGGCGGGAAA	ATACAGCTAT
	1351	CGCCCAACAG	ATGCGGAAAA	GGGCGGATTC	GGCGTGTTTG	CCGGCAAAAA
	1401	AGAGCAGGAT	GGATCCGGAG	GAGGAGGAGC	CACAAACGAC	GACGATGTTA
55	1451	AAAAAGCTGC	CACTGTGGCC	ATTGCTGCTG	CCTACAACAA	TGGCCAAGAA
55	1501			AGAGACCATC		
	1551 1601	TITA A A COMOT	CCCCCCCCC	CAACTGCAGC	CGATGTTGAA	GCCGACGACT
	1651	AATCAAAACA	AACAAAACCE	AAAGTCGTGA CGATGCCAAA	CTAACCTGAC	CAAAACCGTC
	1701			AGTTAGCAGA		
60	1751			GCAACCACCA		
••	1801	GAAAATATAA	CGACAGMAGC	TGAAGAGACT	ACCCCITGAA	MCCMAAATTGGGA
	1851	TGATGAAAA	TTAGAAGCCG	TGGCTGATAC	CCTCCDCDDC	CATCCCCAAC
	1901			TCATTGGATG		
	1951	GAAGCCGTCA	AAACCGCCAA	TGAAGCCAAA	CAGACGGCCG	AAGAAACCAA
65	2001	ACAAAACGTC	GATGCCAAAG	TAAAAGCTGC	AGAAACTGCA	GCAGGCAAAG
	2051	CCGAAGCTGC	CGCTGGCACA	GCTAATACTG	CAGCCGACAA	GGCCGAAGCT
	2101	GTCGCTGCAA	AAGTTACCGA	CATCAAAGCT	GATATCGCTA	CGAACAAAGA

	2151	TAATATTGCT	AAAAAAGCAA	ACAGTGCCGA	CGTGTACACC	AGAGAAGAGT
	2201	CTGACAGCAA	ATTTGTCAGA	ATTGATGGTC	TGAACGCTAC	TACCGAAAAA
	2251	TTGGACACAC	GCTTGGCTTC	TGCTGAAAAA	TCCATTGCCG	ATCACGATAC
~	2301	TCGCCTGAAC	GGTTTGGATA	AAACAGTGTC	AGACCTGCGC	AAAGAAACCC
5	2351	GCCAAGGCCT	TGCAGAACAA	GCCGCGCTCT	CCGGTCTGTT	CCAACCTTAC
	2401	AACGTGGGTC	GGTTCAATGT	AACGGCTGCA	GTCGGCGGCT	ACAAATCCGA
	2451	ATCGGCAGTC	GCCATCGGTA	CCGGCTTCCG	CTTTACCGAA	AACTTTGCCG
	2501	CCAAAGCAGG	CGTGGCAGTC	GGCACTTCGT	CCGGTTCTTC	CGCAGCCTAC
10	2551	CATGTCGGCG	TCAATTACGA	GTGGTAAAAG	CTT	
10						
	1	MASPDVKSAD	TLSKPAAPVV	SEKETEAKED	APQAGSQGQG	APSAQGGQDM
	51	AAVSEENTGN	GGAAATDKPK	NEDEGAQNDM	PQNAADTDSL	TPNHTPASNM
	101	PAGNMENQAP	DAGESEQPAN	QPDMANTADG	MQGDDPSAGG	ENAGNTAAQG
1.5	151	TNQAENNQTA	GSQNPASSTN	PSATNSGGDF	GRTNVGNSVV	IDGPSQNITL
15	201					KNDGKNDKFV
	251	GLVADSVQMK	GINQYIIFYK	PKPTSFARFR	RSARSRRSLP	AEMPLIPVNQ
	301					SYALRVOGEP
	351	SKGEMLAGTA	VYNGEVLHFH	TENGRPSPSR	GRFAAKVDFG	SKSVDGIIDS
00	401			KGTWTENGGG		
20	451			GSGGGGATND		
	501			KKDATAADVE		
	551			LTTKLADTDA		
	601			LEAVADTVDK		
05	651			DAKVKAAETA		
25	701			KKANSADVYT		
	751	LDTRLASAEK	SIADHDTRLN	${\tt GLDKTVSDLR}$	KETRQGLAEQ	AALSGLFQPY
	801	NVGRFNVTAA	VGGYKSESAV	AIGTGFRFTE	NFAAKAGVAV	GTSSGSSAAY
	851	HVGVNYEW*				

30 △G983 and hybrids

Bactericidal titres generated in response to $\Delta G983$ (His-fusion) were measured against various strains, including the homologous 2996 strain:

	2996	NGH38	BZ133
∆G983	512	128	128

ΔG983 was also expressed as a hybrid, with ORF46.1, 741, 961 or 961c at its C-terminus: a

~=	∆G983-0	RF46.1				
35	1	ATGACTTCTG	CGCCCGACTT	CAATGCAGGC	GGTACCGGTA	TCGGCAGCAA
	51	CAGCAGAGCA	ACAACAGCGA	AATCAGCAGC	AGTATCTTAC	GCCGGTATCA
	101	AGAACGAAAT	GTGCAAAGAC	AGAAGCATGC	TCTGTGCCGG	TCGGGATGAC
	151	GTTGCGGTTA	CAGACAGGGA	TGCCAAAATC	AATGCCCCCC	CCCCGAATCT
40	201				CGCATACAAG	
40	251	ACCTCAAACC	TGCAATTGAA	GCAGGCTATA	CAGGACGCGG	GGTAGAGGTA
	301	GGTATCGTCG	ACACAGGCGA	ATCCGTCGGC	AGCATATCCT	TTCCCGAACT
	351	GTATGGCAGA	AAAGAACACG	GCTATAACGA	AAATTACAAA	AACTATACGG
	401	CGTATATGCG	GAAGGAAGCG	CCTGAAGACG	GAGGCGGTAA	AGACATTGAA
	451	GCTTCTTTCG	ACGATGAGGC	CGTTATAGAG	ACTGAAGCAA	AGCCGACGGA
45	5 01	TATCCGCCAC	GTAAAAGAAA	TCGGACACAT	CGATTTGGTC	TCCCATATTA
	551	TTGGCGGGCG	TTCCGTGGAC	GGCAGACCTG	CAGGCGGTAT	TGCGCCCGAT
	601	GCGACGCTAC	ACATAATGAA	TACGAATGAT	GAAACCAAGA	ACGAAATGAT
	651	GGTTGCAGCC	ATCCGCAATG	CATGGGTCAA	GCTGGGCGAA	CGTGGCGTGC
	701	GCATCGTCAA	TAACAGTTTT	GGAACAACAT	CGAGGGCAGG	CACTGCCGAC
50	751	CTTTTCCAAA	TAGCCAATTC	GGAGGAGCAG	TACCGCCAAG	CGTTGCTCGA
	801	CTATTCCGGC	GGTGATAAAA	CAGACGAGGG	TATCCGCCTG	ATGCAACAGA
	851	GCGATTACGG	CAACCTGTCC	TACCACATCC	GTAATAAAAA	CATGCTTTTC
	901	ATCTTTTCGA	CAGGCAATGA	CGCACAAGCT	CAGCCCAACA	CATATGCCCT
	951	ATTGCCATTT	TATGAAAAAG	ACGCTCAAAA	AGGCATTATC	ACAGTCGCAG
55	1001	GCGTAGACCG	CAGTGGAGAA	AAGTTCAAAC	GGGAAATGTA	TGGAGAACCG
	1051				CATTGCGGAA	
	1101				CGTCCGTTTC	

	1151	ACCCGATTCA	AATTGCCGGA	ACATCCTTTT	CCGCACCCAT	CGTAACCGGC
	1201	ACGGCGGCTC	TGCTGCTGCA	GAAATACCCG	TGGATGAGCA	ACGACAACCT
	1251	GCGTACCACG	TTGCTGACGA	CGGCTCAGGA	CATCGGTGCA	GTCGGCGTGG
	1301	ACAGCAAGTT	CGGCTGGGGA	CTGCTGGATG	CGGGTAAGGC	CATGAACGGA
5	1351	CCCGCGTCCT	TTCCGTTCGG	CGACTTTACC	GCCGATACGA	AAGGTACATC
	1401			GTAACGACAT		
	1451	TCAAAAAAGG	CGGCAGCCAA	CTGCAACTGC	ACGGCAACAA	CACCTATACG
	1501	GGCAAAACCA	TTATCGAAGG	CGGTTCGCTG	GTGTTGTACG	GCAACAACAA
	1551	ATCGGATATG	CGCGTCGAAA	CCAAAGGTGC	GCTGATTTAT	AACGGGGCGG
10	1601			AGCGACGGCA		
	1651	GACCAATCCG	GCGCAAACGA	AACCGTACAC	ATCAAAGGCA	GTCTGCAGCT
	1701	GGACGGCAAA	GGTACGCTGT	ACACACGTTT	GGGCAAACTG	CTGAAAGTGG
	1751			GGCAAGCTGT		
	1801			TACCGGACGA		
15	1851	CGCCAAAATC	GGGCAGGATT	ATTCTTTCTT	CACAAACATC	GAAACCGACG
	1901			GACAGCGTCG		
	1951	GGCGACACGC	TGTCCTATTA	TGTCCGTCGC	GGCAATGCGG	CACGGACTGC
	2001	TTCGGCAGCG	GCACATTCCG	CGCCCGCCGG	TCTGAAACAC	GCCGTAGAAC
	2051	AGGGCGGCAG	CAATCTGGAA	AACCTGATGG	TCGAACTGGA	TGCCTCCGAA
20	2101	TCATCCGCAA	CACCCGAGAC	GGTTGAAACT	GCGGCAGCCG	ACCGCACAGA
	2151			ACGGCGCAAC		
	2201			GACGGTGTAC		
	2251			TACCGCCGCC		
25	2301			ACGGGTTGGA		
25	2351			CAGGACGGTG		
	2401			CAGTACCCAA		
	2451			CAGCCGCCAC		
	2501	CATGGAGCGA	AAACAGTGCA	AATGCAAAAA	CCGACAGCAT	TAGTCTGTTT
20	2551			${\tt GGGCGATATC}$		
30	2601			ACAGCATCAG		
	2651			AACGGCACGC		
	2701			TGCCGCAACG		
	2751			TCAAACAGGA		
35	2801	GTGCTTTGGG	CTGGAGCGGC	AACAGCCTCA	CTGAAGGCAC	GCTGGTCGGA
33	2851 2901	CTCGCGGGTC	TGAAGCTGTC	GCAACCCTTG	AGCGATAAAG	CCGTCCTGTT
	2901 2951			GCGACCTGAA		
	3001			ACTGCAGCAA		
	3051			GGTTGCCGGC TGGCACGTTA		
40	3101			CGAGTCGGCG		
10	3151			CTCAGATTTG		
	3201			ATTTCGAACC		
	3251			GCCGAGCGCA		
	3301			GGGCAACCTG		
45	3351			TTGTCCGCTT		
	3401			CATGCCTCAC		
	3451			TAGCCTTTAC		
	3501			GCTATGACGG		
	3551			GATATATACA		
50	3601			CCTGACCGAC		
	3651			ATGCCGGTAG		
	3701			ACCCGATACA		
	3751	GGCAATGCCG	CCGAAGCCTT	CAACGGCACT	GCAGATATCG	TTAAAAACAT
	3801			TTGTCGGCGC		
55	3851	TAAGCGAAGG	CTCAAACATT	GCTGTCATGC	ACGGCTTGGG	TCTGCTTTCC
	3901	ACCGAAAACA	AGATGGCGCG	CATCAACGAT	TTGGCAGATA	TGGCGCAACT
	3951	CAAAGACTAT	GCCGCAGCAG	CCATCCGCGA	TTGGGCAGTC	CAAAACCCCA
	4001	ATGCCGCACA	AGGCATAGAA	GCCGTCAGCA	ATATCTTTAT	GGCAGCCATC
60	4051	CCCATCAAAG	GGATTGGAGC	TGTTCGGGGA	AAATACGGCT	TGGGCGGCAT
60	4101	CACGGCACAT	CCTATCAAGC	GGTCGCAGAT	GGGCGCGATC	GCATTGCCGA
	4151	AAGGGAAATC	CGCCGTCAGC	GACAATTTTG	CCGATGCGGC	ATACGCCAAA
	4201	TACCCGTCCC				
	4251			CCTCCTCAAC		
<i>(</i> =	4301	AAAATGTCAA				
65	4351	GACGGTAAAG			CACGTGAAAT	ATGATACGCT
	4401	CGAGCACCAC	CACCACCACC	ACTGA		

	1	MTSAPDFNAG	GTGIGSNSRA	TTAKSAAUSV	ACTEMBETED	RSMLCAGRDD
	51	VAVTDRDAKI	NAPPPNLHTG	DEPNENDAYK	MI.TMI.KDATE	AGYTGRGVEV
	101	GIVDTGESVG	SISFPELYGR	KEHGYNENYK	NYTAYMRKEA	PEDGGGKDIE
_	151	ASFDDEAVIE	TEAKPTDIRH	VKEIGHIDLV	SHIIGGRSVD	GRPAGGTAPD
5	201	ATLHIMNTND	ETKNEMMVAA	IRNAWVKLGE	RGVRIVNNSF	GTTSRAGTAD
	251	LFQIANSEEQ	YRQALLDYSG	GDKTDEGIRL	MOOSDYGNLS	YHIRNKNMLF
	301	IFSTGNDAQA	QPNTYALLPF	YEKDAQKGII	TVAGVDRSGE	KFKREMYGEP
	351	GTEPLEYGSN	HCGITAMWCL	SAPYEASVRF	TRTNPIQIAG	TSFSAPIVTG
10	401	TAALLLQKYP	WMSNDNLRTT	LLTTAQDIGA	VGVDSKFGWG	LLDAGKAMNG
10	451 501	PASFPFGDFT	ADTKGTSDIA	YSFRNDISGT	GGLIKKGGSQ	LQLHGNNTYT
	551	GKTTTEGGSD	VLYGNNKSDM	RVETKGALIY	NGAASGGSLN	SDGIVYLADT
	601	CACAL MEACE	IKGSLQLDGK RVPFLSAAKI	CODYCERMIA	LKVDGTAIIG	GKLYMSARGK
	651	GDTI-SVVVRR	GNAARTASAA	GÖDISELIMI	ATECCOME E	DSVEKTAGSE
15	701	SSATPETVET	AAADRTDMPG	TROVCATERA	WARAGGSMTR	NUMVELDASK
	751	ATVYADSTAA	HADMOGRRLK	AVSDGLDHNG	TGIRVIANTA	DGAKTENSTW
	801	VEGKMRGSTO	TVGIAAKTGE	NTTAAATLGM	GRSTWSENSA	Mykaldeter Specimence
	851	AGIRHDAGDI	GYLKGLFSYG	RYKNSISRST	GADEHAEGSV	NGTLMOLGAL
20	901	GGVNVPFAAT	GDLTVEGGLR	YDLLKQDAFA	EKGSALGWSG	NSLTEGTLVG
20	951	LAGLKLSQPL	SDKAVLFATA	GVERDLNGRD	YTVTGGFTGA	TAATGKTGAR
	1001	NMPHTRLVAG	LGADVEFGNG	WNGLARYSYA	GSKOYGNHSG	RVGVGYRFLD
	1051	GGGGTGSSDL	ANDSFIRQVL	DRQHFEPDGK	YHLFGSRGEL	AERSGHIGLG
	1101	KIQSHQLGNL	MIQQAAIKGN	IGYIVRFSDH	GHEVHSPFDN	HASHSDSDEA
25	1151	GSPVDGFSLY	RIHWDGYEHH	PADGYDGPQG	GGYPAPKGAR	DIYSYDIKGV
23	1201 1251	AQNIRLALID	NRSTGORLAD	RFHNAGSMLT	QGVGDGFKRA	TRYSPELDRS
	1301	GIVAALAFIVGT	ADIVKNIIGA LADMAQLKDY	AGEIVGAGDA	VQGISEGSNI	AVMHGLGLLS
	1351	PIKCICAVEC	KYGLGGITAH	AAAAIKDWAV	QNPNAAQGIE	AVSNIFMAAI
	1401	YPSPYHSRNT	RSNLEQRYGK	FILLSCHIGHT	SMCKMUKLYD	DNFADAAYAK
30	1451	DGKGFPNFEK	HVKYDTLEHH	HHHH*	PHOMINANTED	QRHPRIGVPF
					•	
	<u>∆G983-7</u> 4		CCCCCC A CDD	03.3.maa.3.aaa	00000000	
35	51	CACCACACCA	CGCCCGACTT ACAACAGCGA	CAATGCAGGC	GGTACCGGTA	TCGGCAGCAA
	101	AGAACGAAAT	GTGCAAAGAC	AGAAGCAGC	TOTAL TOTAL	GCCGGTATCA
	151	GTTGCGGTTA	CAGACAGGGA	TGCCAAAATC	AATGCCCCCC	CCCCCAATCAC
	201	GCATACCGGA	GACTTTCCAA	ACCCAAATGA	CGCATACAAG	AATTTCATCA
	251	ACCTCAAACC	TGCAATTGAA	GCAGGCTATA	CAGGACGCGG	GGTAGAGGTA
40	301	GGTATCGTCG	ACACAGGCGA	ATCCGTCGGC	AGCATATCCT	TTCCCGAACT
	351	GTATGGCAGA	AAAGAACACG	GCTATAACGA	AAATTACAAA	AACTATACGG
	401	CGTATATGCG	GAAGGAAGCG	CCTGAAGACG	GAGGCGGTAA	AGACATTGAA
	451	GCTTCTTTCG	ACGATGAGGC	CGTTATAGAG	ACTGAAGCAA	AGCCGACGGA
45	501	TATCCGCCAC	GTAAAAGAAA	TCGGACACAT	CGATTTGGTC	TCCCATATTA
73	551 601	TTGGCGGGCG	TTCCGTGGAC	GGCAGACCTG	CAGGCGGTAT	TGCGCCCGAT
	651	GCGACGCTAC	ACATAATGAA ATCCGCAATG	TACGAATGAT	GAAACCAAGA	ACGAAATGAT
	701	GCATCGTCAA	TAACAGTTTT	CATGGGTCAA	CCACCCCAA	CGTGGCGTGC
	751	CTTTTCCAAA	TAGCCAATTC	GGAGGAGCAG	TACCGCCAAG	CACTGCCGAC
50	801	CTATTCCGGC	GGTGATAAAA	CAGACGAGGG	TATCCGCCAAG	ATTOCALCACA
	851	GCGATTACGG	CAACCTGTCC	TACCACATCC	GTAATAAAA	CATGCTTTTC
	901	ATCTTTTCGA	CAGGCAATGA	CGCACAAGCT	CAGCCCAACA	CATATGCCCT
	951	ATTGCCATTT	TATGAAAAAG	ACGCTCAAAA	AGGCATTATC	ACAGTCGCAG
	1001	GCGTAGACCG	CAGTGGAGAA	AAGTTCAAAC	GGGAAATGTA	TGGAGAACCG
55	1051	GGTACAGAAC	CGCTTGAGTA	TGGCTCCAAC	CATTGCGGAA	TTACTGCCAT
	1101	GTGGTGCCTG	TCGGCACCCT	ATGAAGCAAG	CGTCCGTTTC	ACCCGTACAA
	1151	ACCCGATTCA	AATTGCCGGA	ACATCCTTTT	CCGCACCCAT	CGTAACCGGC
	1201	ACGGCGGCTC	TGCTGCTGCA	GAAATACCCG	TGGATGAGCA	ACGACAACCT
60	1251 1301	ACACCA ACTO	TTGCTGACGA	CGGCTCAGGA	CATCGGTGCA	GTCGGCGTGG
	1301 1351	CCCCCCCCCCC	CGGCTGGGGA	CCACTGGATG	CGGGTAAGGC	CATGAACGGA
	1401	CCATATTCCC	TTCCGTTCGG TACTCCTTCC	CGACTTTACC	GCCGATACGA	AAGGTACATC
		CONTRITRE	ANCICCITCC	GIAACGACAT	A CCCCCA A CA A	CACCUAGCCTGA
		TCAAAAAACC	CCCCACCCAA			
	1451	TCAAAAAAGG GGCAAAACCA	TTATCGAAGG	CIGCAACIGC	GTGTTGTACC	CACCTATACG
65		GGCAAAACCA	TTATCGAAGG	CGGTTCGCTG	GTGTTGTACG	GCAACAACAA
65	1451 1501	GGCAAAACCA ATCGGATATG	TTATCGAAGG CGCGTCGAAA	CGGTTCGCTG CCAAAGGTGC	GTGTTGTACG GCTGATTTAT	GCAACAACAA AACGGGGCGG
65	1451 1501 1551	GGCAAAACCA ATCGGATATG CATCCGGCGG	TTATCGAAGG CGCGTCGAAA	CGGTTCGCTG CCAAAGGTGC AGCGACGGCA	GTGTTGTACG GCTGATTTAT TTGTCTATCT	GCAACAACAA AACGGGGCGG GGCAGATACC

	4504					
	1701				GGGCAAACTG	
	1751				ACATGTCGGC	
	1801				CGTGTTCCCT	
5	1851				CACAAACATC	
3	190 1 1951				AAAAAACAGC GGCAATGCGG	
	2001				TCTGAAACAC	
	2051				TCTGAAACAC	
	2101				GCGGCAGCCG	
10	2151				TTTCCGCGCA	
	2201				GCATCTTCAA	
	2251				CATGCCGATA	
	2301				CCACAACGGC	
	2351				GAACGTGGGA	
15	2451				ACCGTCGGCA	
	2451				ACTGGGCATG	
	2501				CCGACAGCAT	
	2551				GGCTATCTCA	
	2601				CCGCAGCACC	
20	2651	AACATGCGGA	AGGCAGCGTC	AACGGCACGC	TGATGCAGCT	GGGCGCACTG
	2701	GGCGGTGTCA	ACGTTCCGTT	TGCCGCAACG	GGAGATTTGA	CGGTCGAAGG
	2751	CGGTCTGCGC	TACGACCTGC	TCAAACAGGA	TGCATTCGCC	GAAAAAGGCA
	2801	GTGCTTTGGG	CTGGAGCGGC	AACAGCCTCA	CTGAAGGCAC	GCTGGTCGGA
	2851	CTCGCGGGTC	TGAAGCTGTC	GCAACCCTTG	AGCGATAAAG	CCGTCCTGTT
25	2901	TGCAACGGCG	GGCGTGGAAC	GCGACCTGAA	CGGACGCGAC	TACACGGTAA
	2951				CCGGCAAGAC	
	3001				CTGGGCGCGG	
	3051				CAGCTACGCC	
20	3101				TAGGCTACCG	
30	3151				ATCGGTGCGG	
	3201				CAAAGGTTTG	
	3251				AACTGAAGCT	
	3301				AGCCTCAATA	
35	3351 3401				TATCCGCCAA	
33	3451				AGTTCCAAGT GAGCAAATAC	
	3501				GTTCAGAATC	
	3551				CCGAAGGCGG	
	3601				GCCGGCGGAA	
40	3651				CGGCAAAATC	
	3701				CCGCCGATAT	
	3751	GGAAAACGCC	ATGCCGTCAT	CAGCGGTTCC	GTCCTTTACA	ACCAAGCCGA
	3801	GAAAGGCAGT	TACTCCCTCG	GTATCTTTGG	CGGAAAAGCC	CAGGAAGTTG
	3851	CCGGCAGCGC	GGAAGTGAAA	ACCGTAAACG	GCATACGCCA	TATCGGCCTT
45	3901	GCCGCCAAGC	AACTCGAGCA	CCACCACCAC	CACCACTGA	
	1				AGIKNEMCKD	
	51	VAVTDRDAKI				
50	101				NYTAYMRKEA	
50	151	ASFDDEAVIE				
	201	ATLHIMNTND				
	251	LFQIANSEEQ	-			
	301				TVAGVDRSGE	
55	351 401				TRTNPIQIAG VGVDSKFGWG	
33	451				GGLIKKGGSQ	
	501				NGAASGGSLN	-
	551				LKVDGTAIIG	
	601	-	-		ETDGGLLASL	
60	651	GDTLSYYVRR				
	701				AAAVQHANAA	
	751	ATVYADSTAA				
	801	VEGKMRGSTQ				
	851	AGIRHDAGDI				
65	901				EKGSALGWSG	
	951	LAGLKLSQPL				
	1001	NMPHTRLVAG				
					. -	

	1051	GSGGGGVAAD	IGAGLADALT	APLDHKDKGL	OSLTLDOSVR	KNEKLKTAAO
	1101	GAEKTYGNGD	SLNTGKLKND	KVSRFDFIRQ	IEVDGOLITL	ESGEFOVYKO
	1151	SHSALTAFQT	EQIQDSEHSG	KMVAKROFRI	GDIAGEHTSF	DKLPEGGRAT
_	1201	YRGTAFGSDD	AGGKLTYTID	PAAKQGNGKI	EHLKSPELNV	DLAAADIKPD
5	1251	GKRHAVISGS	VLYNQAEKGS	YSLGIFGGKA	QEVAGSAEVK	TVNGIRHIGL
	1301	AAKQLEHHHH	HH*			
	∆G983-9	61				
10	1		CCCCCCACTO	CAATGCAGGC	CCMACCCCMA	MCCCCCA CCA A
	51	CAGCAGAGCA	ACAACAGCGA	AATCAGCAGC	ACTATICTE	CCCCCTATCA
	101			AGAAGCATGC		
	151			TGCCAAAATC		
	201			ACCCAAATGA		
15	251	ACCTCAAACC	TGCAATTGAA	GCAGGCTATA	CAGGACGCGG	GGTAGAGGTA
	301			ATCCGTCGGC		
	351			GCTATAACGA		
	401			CCTGAAGACG		
20	451	GCTTCTTTCG	ACGATGAGGC	CGTTATAGAG	ACTGAAGCAA	AGCCGACGGA
20	501 551			TCGGACACAT		
	601	GCGACGCTAC	ACAMAAMCAA	GGCAGACCTG TACGAATGAT	CAGGCGGTAT	TGCGCCCGAT
	651	GGTTGCACCC	ACATAATGAA	CATGGGTCAA	GAMACCAAGA	CCTCCCCTCC
	701			GGAACAACAT		
25	751			GGAGGAGCAG		
	801	CTATTCCGGC	GGTGATAAAA	CAGACGAGGG	TATCCGCCTG	ATGCAACAGA
	851	GCGATTACGG	CAACCTGTCC	TACCACATCC	GTAATAAAAA	CATGCTTTTC
	901	ATCTTTTCGA	CAGGCAATGA	CGCACAAGCT	CAGCCCAACA	CATATGCCCT
20	951			ACGCTCAAAA		
30	1001			AAGTTCAAAC		
	1051			TGGCTCCAAC		
	1101 1151			ATGAAGCAAG ACATCCTTTT		
	1201	ACCCGATTCA	TIGCTICCTICCA	GAAATACCCG	TCCATCACCAT	ACCACAACCGCC
35	1251	GCGTACCACG	TTGCTGACGA	CGGCTCAGGA	CATCCCTCCA	CTCCCCCTCC
	1301	ACAGCAAGTT	CGGCTGGGGA	CTGCTGGATG	CGGGTAAGGC	CATGAACGGA
	1351	CCCGCGTCCT	TTCCGTTCGG	CGACTTTACC	GCCGATACGA	AAGGTACATC
	1401	CGATATTGCC	TACTCCTTCC	GTAACGACAT	TTCAGGCACG	GGCGGCCTGA
40	1451			CTGCAACTGC		
40	1501			CGGTTCGCTG		
	1551	ATCGGATATG	CGCGTCGAAA	CCAAAGGTGC	GCTGATTTAT	AACGGGGCGG
	1601 1651			AGCGACGGCA		
	1701			AACCGTACAC ACACACGTTT		
45	1751			GGCAAGCTGT		
	1801	GGGGCAGGCT				
	1851			ATTCTTTCTT		
	1901			GACAGCGTCG		
5 0	1951			TGTCCGTCGC		
50	2001			CGCCCGCCGG		
	2051			AACCTGATGG		
	2101			GGTTGAAACT		
•	2151			ACGGCGCAAC		
55	2201 2251			GACGGTGTAC TACCGCCGCC		
<i>55</i>	2301			ACGGGTTGGA		
	2351			CAGGACGGTG		
	2401			CAGTACCCAA		
	2451			CAGCCGCCAC		
60	2501			AATGCAAAAA		
	2551			GGGCGATATC		
	2601			ACAGCATCAG		
	2651	AACATGCGGA				
65	2701			TGCCGCAACG		
UJ	2751			TCAAACAGGA		
	2801			AACAGCCTCA		
	2851	CICGCGGTC	1 GAAGCTGTC	GCAACCCTTG	AGCGATAAAG	CCGTCCTGTT

	2901	MCCX ACCCCC	CCCCCCCXXC	GCGACCTGAA	0003000030	#1.61.66em. 1
	2951	CGGGGGGGG	TACCGIGGRAC	ACTGCAGCAA	CCCCCAACAC	CCCCCCCCCCC
	3001			GGTTGCCGGC		
	3051			TGGCACGTTA		
5	3101			CGAGTCGGCG		
	3151	GGTGGCGGAG	GCACTGGATC	CGCCACAAAC	GACGACGATG	TTAAAAAAGC
	3201	TGCCACTGTG	GCCATTGCTG	CTGCCTACAA	CAATGGCCAA	GAAATCAACG
	3251			ATCTACGACA		
	3301	ACCAAAAAAG	ACGCAACTGC	AGCCGATGTT	GAAGCCGACG	ACTTTAAAGG
10	3351	TCTGGGTCTG	AAAAAGTCG	TGACTAACCT	GACCAAAACC	GTCAATGAAA
	3401			AAAGTAAAAG		
	3451			AGACACTGAT		
	3501			CCAACGCCTT		
1.5	3551			ACTAAGACAA		
15	3601			TACCGTCGAC		
	3651			ATGAAACCAA		
	3701			AAACAGACGG		
	3751			TGCAGAAACT		
20	3801			CTGCAGCCGA		
20	3851			GCTGATATCG		
	3901 3951			CGACGTGTAC		
	4001			GTCTGAACGC AAATCCATTG		
	4051			GTCAGACCTG		
25	4101	CCTTCCAGAA	CANGCCGCGC	TCTCCGGTCT	COCAMAGAAA	MACA ACCRCC
	4151			GCAGTCGGCG		
	4201			CCGCTTTACC		
	4251			CGTCCGGTTC		
	4301			GAGCACCACC		
30						
	1			TTAKSAAVSY		
	51			DFPNPNDAYK		
	101			KEHGYNENYK		
25	151			VKEIGHIDLV		
35	201			IRNAWVKLGE		
	251			GDKTDEGIRL		
	301	_	-	YEKDAQKGII		
	351 401			SAPYEASVRF	-	
40	451			LLTTAQDIGA YSFRNDISGT		
40	501			RVETKGALIY		
	551			GTLYTRLGKL		
	601			GQDYSFFTNI		
	651			AHSAPAGLKH		
45	701			IRPYGATFRA	-	
	751			AVSDGLDHNG		
	801			NTTAAATLGM		
	851	AGIRHDAGDI	GYLKGLFSYG	RYKNSISRST	GADEHAEGSV	NGTLMQLGAL
	901	GGVNVPFAAT	${\tt GDLTVEGGLR}$	YDLLKQDAFA	EKGSALGWSG	NSLTEGTLVG
50	951	LAGLKLSQPL	SDKAVLFATA	GVERDLNGRD	YTVTGGFTGA	TAATGKTGAR
	1001	NMPHTRLVAG	LGADVEFGNG	WNGLARYSYA	GSKQYGNHSG	RVGVGYRFLE
	1051			AIAAAYNNGQ		
	1101			KKVVTNLTKT		
55	1151			DATTNALNKL		
33	1201			DSLDETNTKA		
	1251			TANTAADKAE		
	1301			RIDGLNATTE		
	1351 1401		_	QAALSGLFQP VGTSSGSSAA		
60	1401	VAIGIGERFI	ENFAARAGVA	VGISSGSSAA	INVGVNIEWD	Ennann"
50						
	∆G983-9	61c				
	1		CGCCCGACTT	CAATGCAGGC	GGTACCGGTA	TCGGCAGCAA
	51			AATCAGCAGC		
65	101			AGAAGCATGC		
	151			TGCCAAAATC		
	201			ACCCAAATGA		

	251	1000011100				
	301	ACCTCAAACC	TGCAATTGAA	GCAGGCTATA	CAGGACGCGG	GGTAGAGGTA
	351	GGTATCGTCG	ACACAGGCGA	ATCCGTCGGC	AGCATATCCT	TTCCCGAACT
	401	CCMAMAMOOO	CARCARACACG	GCTATAACGA	AAATTACAAA	AACTATACGG
5	451	CCTATATGCG	ACCAMCACCC	CCTGAAGACG CGTTATAGAG	GAGGCGGTAA	AGACATTGAA
J	501	TATCCCCCAC	CONTRACTOR	TCGGACACAT	ACTGAAGCAA	AGCCGACGGA
	551	TATCCGCCAC	TOUCCOTCCAC	GGCAGACCTG	CACCCCCAA	TCCCATATTA
	601	GCGACGCTAC	ACAMB AMCA A	TACGAATGAT	CAGGCGGTAT	TGCGCCCGAT
	651	GGTTGCAGCC	AUCCICANTO	CATGGGTCAA	CCTCCCCAAGA	ACGAAATGAT
10	701	GCATCGTCAA	TAACACTATIO	GGAACAACAT	CCACCCCAA	CACTGGCGTGC
	751	CTTTTCCAAA	TAGCCAATTC	GGAGGAGCAG	TACCCCCAAC	CACTGCCGAC
	801	CTATTCCGGC	GGTGATAAAA	CAGACGAGGG	TATCCCCCAAG	AGCCAACACA
	851	GCGATTACGG	CAACCTGTCC	TACCACATCC	CAVALACA	CAUCCERTING
	901	ATCTTTTCGA	CAGGCAATGA	CGCACAAGCT	CAGCCCAACA	CATATCCCCCT
15	951	ATTGCCATTT	TATGAAAAAG	ACGCTCAAAA	AGGCATTATC	ACAGTCGCAG
	1001	GCGTAGACCG	CAGTGGAGAA	AAGTTCAAAC	GGGAAATGTA	TGGAGAACCG
	1051	GGTACAGAAC	CGCTTGAGTA	TGGCTCCAAC	CATTGCGGAA	TTACTGCCAT
	1101	GTGGTGCCTG	TCGGCACCCT	ATGAAGCAAG	CGTCCGTTTC	ACCCGTACAA
••	1151	ACCCGATTCA	AATTGCCGGA	ACATCCTTTT	CCGCACCCAT	CGTAACCGGC
20	1201	ACGGCGGCTC	TGCTGCTGCA	GAAATACCCG	TGGATGAGCA	ACGACAACCT
	1251	GCGTACCACG	TTGCTGACGA	CGGCTCAGGA	CATCGGTGCA	GTCGGCGTGG
	1301	ACAGCAAGTT	CGGCTGGGGA	CTGCTGGATG	CGGGTAAGGC	CATGAACGGA
	1351	CCCGCGTCCT	TTCCGTTCGG	CGACTTTACC	GCCGATACGA	AAGGTACATC
25	1401	CGATATTGCC	TACTCCTTCC	GTAACGACAT	TTCAGGCACG	GGCGGCCTGA
25	1451	TCAAAAAAGG	CGGCAGCCAA	CTGCAACTGC	ACGGCAACAA	CACCTATACG
	1501	GGCAAAACCA	TTATCGAAGG	CGGTTCGCTG	GTGTTGTACG	GCAACAACAA
	1551	ATCGGATATG	CGCGTCGAAA	CCAAAGGTGC	GCTGATTTAT	AACGGGGCGG
•	1601	CATCCGGCGG	CAGCCTGAAC	AGCGACGGCA	TIGICTATCT	GGCAGATACC
30	1651	GACCAATCCG	GCGCAAACGA	AACCGTACAC	ATCAAAGGCA	GTCTGCAGCT
30	1701	GGACGGCAAA	GGTACGCTGT	ACACACGTTT	GGGCAAACTG	CTGAAAGTGG
•	1751	ACGGTACGGC	GATTATCGGC	GGCAAGCTGT	ACATGTCGGC	ACGCGGCAAG
	1801 1851	GGGGCAGGCT	ATCTCAACAG	TACCGGACGA	CGTGTTCCCT	TCCTGAGTGC
	1901	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGGCAGGATT	ATTCTTTCTT	CACAAACATC	GAAACCGACG
35	1951	CCCCACACCC	mcmccmamma	GACAGCGTCG TGTCCGTCGC	AAAAAACAGC	GGGCAGTGAA
	2001	TTCGGCAGCG	GCACATTCCG	CGCCCGCCGG	GGCAA1GCGG	CACGGACTGC
	2051	AGGGCGGCAG	CAATCTCCAA	AACCTGATGG	TCTGAAACAC	GCCGTAGAAC
	2101	TCATCCGCAA	CACCCGAGAC	GGTTGAAACT	GCGGCAGCCG	ACCCCCCACACA
	2151	TATGCCGGGC	ATCCGCCCCT	ACGGCGCAAC	TTTCCGCGCA	GCGCCACAGA
40	2201	TACAGCATGC	GAATGCCGCC	GACGGTGTAC	GCATCTTCAA	CAGTCTCGCC
	2251	GCTACCGTCT	ATGCCGACAG	TACCGCCGCC	CATGCCGATA	TGCAGGGACG
	2301	CCGCCTGAAA	GCCGTATCGG	ACGGGTTGGA	CCACAACGGC	ACGGGTCTGC
	2351	GCGTCATCGC	GCAAACCCAA	CAGGACGGTG	GAACGTGGGA	ACAGGGCGGT
	2401	GTTGAAGGCA	AAATGCGCGG	CAGTACCCAA	ACCGTCGGCA	TTGCCGCGAA
45	2451	AACCGGCGAA	AATACGACAG	CAGCCGCCAC	ACTGGGCATG	GGACGCAGCA
	2501	CATGGAGCGA	AAACAGTGCA	AATGCAAAAA	CCGACAGCAT	TAGTCTGTTT
	2551	GCAGGCATAC	GGCACGATGC	GGGCGATATC	GGCTATCTCA	AAGGCCTGTT
	2601	CTCCTACGGA	CGCTACAAAA	ACAGCATCAG	CCGCAGCACC	GGTGCGGACG
50	2651	AACATGCGGA	AGGCAGCGTC	AACGGCACGC	TGATGCAGCT	GGGCGCACTG
50	2701	GGCGGTGTCA	ACGTTCCGTT	TGCCGCAACG	GGAGATTTGA	CGGTCGAAGG
	2751	CGGTCTGCGC	TACGACCTGC	TCAAACAGGA	TGCATTCGCC	GAAAAAGGCA
	2801	GTGCTTTGGG	CTGGAGCGGC	AACAGCCTCA	CTGAAGGCAC	GCTGGTCGGA
•	2851	CTCGCGGGTC	TGAAGCTGTC	GCAACCCTTG	AGCGATAAAG	CCGTCCTGTT
55	2901	TGCAACGGCG	GGCGTGGAAC	GCGACCTGAA	CGGACGCGAC	TACACGGTAA
33	2951 3001	A A MA MOCOCO	TACCGGCGCG	ACTGCAGCAA	CCGGCAAGAC	GGGGGCACGC
	3051	CCCCARCCCC	ACACCCGTCT	GGTTGCCGGC	CTGGGCGCGG	ATGTCGAATT
	3101	ACTACCCCAA	CCACACCCCCA	TGGCACGTTA	CAGCTACGCC	GGTTCCAAAC
	3151	GCTGCCCCAC	CCACAGCGGA	CGAGTCGGCG	CACCACCCG	GTTCCTCGAG
60	3201			CGCCACAAAC CTGCCTACAA		
	3251			ATCTACGACA		
	3301			AGCCGATGTT		
	3351	TCTGGGTCTC	AAAAAAGTCC	TGACTAACCT	CACCAAAACC	ULL D DUCKYYY
	3401	ACAAACAAAA	CGTCGATGCC	AAAGTAAAAG	CTGCAGAATCC	TCAAIGAAA
65	3451			AGACACTGAT		
	3501			CCAACGCCTT		
	3551			ACTAAGACAA		
					verun	

	3601	AAATTAGAAG	CCGTGGCTGA	TACCGTCGAC	AAGCATGCCG	AAGCATTCAA
	3651	CGATATCGCC	GATTCATTGG	ATGAAACCAA	CACTAAGGCA	GACGAAGCCG
	3701	TCAAAACCGC	CAATGAAGCC	AAACAGACGG	CCGAAGAAAC	CAAACAAAAC
_	3751			TGCAGAAACT		
5	3801			CTGCAGCCGA		
	3851			GCTGATATCG		
	3901	GCTAAAAAAG	CAAACAGTGC	CGACGTGTAC	ACCAGAGAAG	AGTCTGACAG
	3951	CAAATTTGTC	AGAATTGATG	GTCTGAACGC	TACTACCGAA	AAATTGGACA
	4001			AAATCCATTG		
10	4051	AACGGTTTGG	ATAAAACAGT	GTCAGACCTG	CGCAAAGAAA	CCCGCCAAGG
	4101	CCTTGCAGAA	CAAGCCGCGC	TCTCCGGTCT	GTTCCAACCT	TACAACGTGG
	4151	GTCTCGAGCA	CCACCACCAC	CACCACTGA		
	4	Amer somule	anatamian.			
15	1 51			TTAKSAAVSY		
13	101			DFPNPNDAYK		
				KEHGYNENYK		
	151			VKEIGHIDLV		
	201			IRNAWVKLGE		
20	251			GDKTDEGIRL		
20	301			YEKDAQKGII		
	351			SAPYEASVRF		
	401	TAALLLQKYP	WMSNDNLRTT	LLTTAQDIGA	VGVDSKFGWG	LLDAGKAMNG
	451			YSFRNDISGT		
25	501			RVETKGALIY		
25	551			GTLYTRLGKL		
	601			GQDYSFFTNI		
	651	GDTLSYYVRR	GNAARTASAA	AHSAPAGLKH	AVEQGGSNLE	NLMVELDASE
	701			IRPYGATFRA		
30	751			AVSDGLDHNG		
30	801			NTTAAATLGM		
	851			RYKNSISRST		
	901			YDLLKQDAFA		
	951			GVERDLNGRD		
35	1001			WNGLARYSYA		
33	1051	GGGGTGSATN	DDDVKKAATV	AIAAAYNNGQ	EINGFKAGET	IYDIDEDGTI
	1101	TKKDATAADV	EADDFKGLGL	KKVVTNLTKT	VNENKQNVDA	KVKAAESEIE
	1151			DATTNALNKL		
	1201			DSLDETNTKA		
40	1251			TANTAADKAE		
40	1301			RIDGLNATTE		
	1351	NGLDKTVSDL	KKETRQGLAE	QAALSGLFQP	YNVGLEHHHH	HH*

△G741 and hybrids

Bactericidal titres generated in response to $\Delta G741$ (His-fusion) were measured against various strains, including the homologous 2996 strain:

	2996	MC58	NGH38	F6124	BZ133
∆G741	512	131072	>2048	16384	>2048

As can be seen, the $\Delta G741$ -induced anti-bactericidal titre is particularly high against heterologous strain MC58.

ΔG741 was also fused directly in-frame upstream of proteins 961, 961c, 983 and ORF46.1:

	<u>ΔG7419</u>	<u>61</u>				
	1	ATGGTCGCCG	CCGACATCGG	TGCGGGGCTT	GCCGATGCAC	TAACCGCACC
50	51	GCTCGACCAT	AAAGACAAAG	GTTTGCAGTC	TTTGACGCTG	GATCAGTCCG
	101	TCAGGAAAAA	CGAGAAACTG	AAGCTGGCGG	CACAAGGTGC	GGAAAAAACT
	151	TATGGAAACG	GTGACAGCCT	CAATACGGGC	AAATTGAAGA	ACGACAAGGT
	201	CAGCCGTTTC	GACTTTATCC	GCCAAATCGA	AGTGGACGGG	CAGCTCATTA

	251	00000000000	maca.ca.cama	C110m1m1m1		
		CCTTGGAGAG	TGGAGAGTTC	CAAGTATACA	AACAAAGCCA	TTCCGCCTTA
	301	ACCGCCTTTC	AGACCGAGCA	AATACAAGAT	TCGGAGCATT	CCGGGAAGAT
	351	GGTTGCGAAA	CGCCAGTTCA	GAATCGGCGA	CATAGCGGGC	GAACATACAT
5	401	CTTTTGACAA	GCTTCCCGAA	GGCGGCAGGG	CGACATATCG	CGGGACGGCG
5	451	TTCGGTTCAG	ACGATGCCGG	CGGAAAACTG	ACCTACACCA	TAGATTTCGC
	501	CGCCAAGCAG	GGAAACGGCA	AAATCGAACA	TTTGAAATCG	CCAGAACTCA
	551	ATGTCGACCT	GGCCGCCGCC	GATATCAAGC	CGGATGGAAA	ACGCCATGCC
	601	GTCATCAGCG	GTTCCGTCCT	TTACAACCAA	GCCGAGAAAG	GCAGTTACTC
10	651	CCTCGGTATC	TTTGGCGGAA	AAGCCCAGGA	AGTTGCCGGC	AGCGCGGAAG
10	701			CGCCATATCG		
	751			ATCCGCCACA		
	801	AGCTGCCACT	GTGGCCATTG	CTGCTGCCTA	CAACAATGGC	CAAGAAATCA
	851			ACCATCTACG		
1.5	901	ATTACCAAAA	AAGACGCAAC	TGCAGCCGAT	GTTGAAGCCG	ACGACTTTAA
15	951	AGGTCTGGGT	CTGAAAAAAG	TCGTGACTAA	CCTGACCAAA	ACCGTCAATG
	1001	AAAACAAACA	AAACGTCGAT	GCCAAAGTAA	AAGCTGCAGA	ATCTGAAATA
	1051			AGCAGACACT		
	1101			CCACCAACGC		
20	1151			GAGACTAAGA		
20	1201			TGATACCGTC		
	1251			TGGATGAAAC		
	1301			GCCAAACAGA		
	1351			AGCTGCAGAA		
25	1401			ATACTGCAGC		
23	1451			AAAGCTGATA		
	1501			TGCCGACGTG		
	1551					GAAAAATTGG.
	1601			GAAAAATCCA		
30	1651 1701			AGTGTCAGAC		
50	1751	MCCOMOCOMM	GAACAAGCCG	CGCTCTCCGG GCTGCAGTCG	CCCCCTTCCAA	CCTTACAACG
	1801			CTTCCGCTTT		
	1851			CTTCGTCCGG		
	1901			CTCGAGCACC		
35	1701	ICGGCGICAA	TIACGAGIGG	CICGAGCACC	ACCACCACCA	CCACIGA
	1	MVAADTGAGI.	שח.זמבית בחב	KDKGLQSLTL	DOSTRENERI.	KT. N NOCH EVE
	51			DFIRQIEVDG		
	101			ROFRIGDIAG		
	151			GNGKIEHLKS		
40	201			FGGKAQEVAG		
	251			VAIAAAYNNG		
	301			LKKVVTNLTK		
	351			LDATTNALNK		
	401			ADSLDETNTK		
45	451			GTANTAADKA		
	501	TAKKANSADV	YTREESDSKE	VRIDGINATT	EKLOTRIASA	EKSIADHDTR
	551					AAVGGYKSES
	601			AVGTSSGSSA		
50						
	<u>∆G741-9</u>	<u>61c</u>				
	1	ATGGTCGCCG	CCGACATCGG	TGCGGGGCTT	GCCGATGCAC	TAACCGCACC
	51	GCTCGACCAT	AAAGACAAAG	GTTTGCAGTC	TTTGACGCTG	GATCAGTCCG
	101	TCAGGAAAAA	CGAGAAACTG	AAGCTGGCGG	CACAAGGTGC	GGAAAAAACT
55	151					ACGACAAGGT
	201					CAGCTCATTA
	251	CCTTGGAGAG	TGGAGAGTTC	CAAGTATACA	AACAAAGCCA	TTCCGCCTTA
	301			AATACAAGAT		
CO	351			GAATCGGCGA		
60	401					CGGGACGGCG
	451			CGGAAAACTG		
	501			AAATCGAACA		
	551			GATATCAAGC		
65	601					GCAGTTACTC
65	651					AGCGCGGAAG
	701					CAAGCAACTC
	751	GAGGGTGGCG	GAGGCACTGG	ATCCGCCACA	AACGACGACG	ATGTTAAAAA

	801	AGCTGCCACT	GTGGCCATTG	CTGCTGCCTA	CAACAATGGC	CAAGAAATCA
	851	ACGGTTTCAA	AGCTGGAGAG	ልሮሮልጥሮሞልሮር	АСАФФСАФСА	AGACGCCACA
				-		
	901	ATTACCAAAA				
_	951	AGGTCTGGGT	CTGAAAAAAG	TCGTGACTAA	CCTGACCAAA	ACCGTCAATG
5	1001	AAAACAAACA	AAACGTCGAT	GCCAAAGTAA	AAGCTGCAGA	ATCTGAAATA
	1051	GAAAAGTTAA	CAACCAAGTT	AGCAGACACT	GATGCCGCTT	TAGCAGATAC
	1101				CTTGAATAAA	
	1151				CAAATATCGT	
	1201	GAAAAATTAG	AAGCCGTGGC	TGATACCGTC	GACAAGCATG	CCGAAGCATT
10	1251	CAACGATATC	GCCGATTCAT	TGGATGAAAC	CAACACTAAG	GCAGACGAAG
	1301				CGGCCGAAGA	
	1351	AACGTCGATG				
	1401	AGCTGCCGCT	GGCACAGCTA	ATACTGCAGC	CGACAAGGCC	GAAGCTGTCG
	1451	CTGCAAAAGT	TACCGACATC	AAAGCTGATA	TCGCTACGAA	CAAAGATAAT
15	1501				TACACCAGAG	
13						
	1551				CGCTACTACC	
	1601	ACACACGCTT	GGCTTCTGCT	GAAAAATCCA	TTGCCGATCA	CGATACTCGC
	1651	CTGAACGGTT	TGGATAAAAC	AGTGTCAGAC	CTGCGCAAAG	AAACCCGCCA
	1701				TCTGTTCCAA	
20						CCTIACAACG
20	1751	TGGGTCTCGA	GCACCACCAC	CACCACCACT	GA	
	1	MVAADIGAGL	ADALTAPLDH	KDKGLOSLTL	DOSVRKNEKL	KLAAOGAEKT
	51	VCNCDST.NTC	KT.KMDKUSPP	DETROTEMIC	QLITLESGEF	OWNED CHCAT.
05	101				EHTSFDKLPE	
25	151				PELNVDLAAA	
	201	VISGSVLYNQ	AEKGSYSLGI	FGGKAQEVAG	SAEVKTVNGI	RHIGLAAKQL
	251				OEINGFKAGE	
	301				TVNENKONVD	
					_	
20	351				LGENITTFAE	
30	401	EKLEAVADTV	DKHAEAFNDI	ADSLDETNTK	ADEAVKTANE	AKQTAEETKQ
	451	NVDAKVKAAE	TAAGKAEAAA	GTANTAADKA	EAVAAKVTDI	KADIATNKON
	501	TAKKANSADV	YTREESDSKE	VRIDGLNATT	EKLDTRLASA	EKSIADHDTR
	551				PYNVGLEHHH	
	221	DMGDDVIADO	DUVELUÕGUA	EQAADSCORQ	FINVGLERAN	mur
25						
35						
35	∆G7 41 —9	83				
35			CCGACATCGG	TGCGGGGCTT	GCCGATGCAC	TAACCGCACC
35	1	ATGGTCGCCG			GCCGATGCAC	
35	1 51	ATGGTCGCCG GCTCGACCAT	AAAGACAAAG	GTTTGCAGTC	TTTGACGCTG	GATCAGTCCG
	1 51 101	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA	AAAGACAAAG CGAGAAACTG	GTTTGCAGTC AAGCTGGCGG	TTTGACGCTG CACAAGGTGC	GATCAGTCCG GGAAAAAACT
35	1 51	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA	AAAGACAAAG CGAGAAACTG	GTTTGCAGTC AAGCTGGCGG	TTTGACGCTG	GATCAGTCCG GGAAAAAACT
	1 51 101	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG	AAAGACAAAG CGAGAAACTG GTGACAGCCT	GTTTGCAGTC AAGCTGGCGG CAATACGGGC	TTTGACGCTG CACAAGGTGC	GATCAGTCCG GGAAAAAACT ACGACAAGGT
	1 51 101 151 201	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG	GATCAGTCCG GGAAAAAACT ACGACAAGGT CAGCTCATTA
	1 51 101 151 201 251	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA	GATCAGTCCG GGAAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA
	1 51 101 151 201 251 301	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT
40	1 51 101 151 201 251 301 351	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT
	1 51 101 151 201 251 301	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG
40	1 51 101 151 201 251 301 351	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG
40	1 51 101 151 201 251 301 351 401 451	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC
40	1 51 101 151 201 251 301 351 401 451 501	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG TAGATTTCGC CCAGAACTCA
40	1 51 101 151 201 251 301 351 401 451 501	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCCCC	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC
40	1 51 101 151 201 251 301 351 401 451 501	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA AAACGGCATA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC GCCTTGCCGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT GAGAGGATCCG	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA AAACGGCATA GCGGAGGCGCG	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG CACTTCTGCG	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC GCCTTGCCGC CCCGACTTCA	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCCGG
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT GAGGGATCCG TACCGGTATC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTACT TTTGGCGGAA AAACGGCATA ACGGAGCATA GCGGAGGCGG	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCCGAGAAAG AGTTGCCGGC CCCGACTTCA AACAGCGAAA	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCCGG TCAGCAGCAGCAG
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TGAAAACCGT TACCGGTATC TACCGGTATC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTACT TTTGGCGGAA AAACGGCATA ACGGCATA ACGGCATA CGGCAGCAACA CGGCAGCAACA CGGTATCAAG	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCCGACTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAAGACAG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCGGG TCAGCAGCAG AAGCAACTC
40 45	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TGAAAACCGT TACCGGTATC TACCGGTATC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTACT TTTGGCGGAA AAACGGCATA ACGGCATA ACGGCATA CGGCAGCAACA CGGCAGCAACA CGGTATCAAG	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCCGACTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAAGACAG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCCGG TCAGCAGCAGCAG
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TGAGAGATCCG TACCGGTATC TACCGGTATC TATCTTACGC TGTGCCGGTC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTACT TTTGGCGGAA AAACGGCATA GCGGAGCACA CGGTATCAAG GGGATGACGT	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT TGCGGTTACA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC GCCTTGCCGC CCCGACTTCA AACAGCGAAA GCAAAGACAG GACAGGGATG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCAGCAG TCAGCAGCAG AGCAACTC CCAAAATCAA
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TGAGAGATCCG TACCGGTATC TATCTTACGC TATCTTACGC TGTGCCGGTC TGTGCCGGTC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGA ACGATGCCGC GGAAACGGCA GGCCGCCGCC GTTCCGTACT TTTGGCGGAA AAACGGCATA ACGGCATA ACGGCATA CGGCAGCAACA CGGTATCAAG GGGATGACGT CCGAATCTGC	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AATCCAACA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT TGCGGTTACA ATACCGGAGA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCCGACTTCC CCCGACTTCA AACAGCGAAA GCAAAGACAG GACAGGGATG CTTTCCAAAC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCGG TCAGCAGCAG AGCATCCA AGCATCCA CCAAAATCAA CCAAAATCAA
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA CTTTTGACAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TGAGAGATCCG TACCGGTATC TACCGGTTCCGC TACCGGTTCCGCCCCCCCCCC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTACT TTTGGCGGAA AAACGGCATA GCGGAGCACA CGGTATCAAG GGGATGACGT CCGAATCTGC TTTGATCAAC	GTTTGCAGTC AAGCTGGCGG CAATACGGCG GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG GCAGAGCAAC GACTCTGCG GCAGAGCAAC AACGAAATGT TGCGGTTACA ATACCGGAGA CTCAAACCTG	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCCGACTTCA AACAGCGAAA GCAAAGACAG GACAGGGATG CTTTCCAAAC CAATTGAAGC CAATTGAAGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCAGCAG TCAGCAGCAG TCAGCAGCAG AGCATCAA CCAAAATCAA CCAAAATCAA AGGCTATACA
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCGGTATC TACCGGTATC TACCGGTATC TGTGCCGGTC TATCCTTACGC CTTGCCGGTC TATCCTTACGC CTGGCACCCCCCC CATACAAGAA GGACGCGGGG	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCC TTTGGCGGAA AAACGGCATG AAACGGCATG GGCAGCAGCA GCGAGCAGCA CGGAGCAGCACA CGGATGCCGT CTTCGTCT TTTGGCGAA CGGAGCAGC GCAGCAACA CGGATGACGT CCGAATCTGC TTTGATCAAC TAGAGGTAGG	GTTTGCAGTC AAGCTGGCGG CAATACGAGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AATCGAACA GATATCAACA AAGCCCAGA CGCCATATCGG CACTTCTGCG GCAGAGCAAC TGCGGTTACA AAGCGAAATGT TGCGGTTACA ATACCGGAGA CTCAAACCTG TATCGTCGAC	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCCTTGCCGC CCCGACTTCA AACAGCGATA GCAAAGACAG GCAAGGGATG GACAGGGATG CTTTCCAAAC CAATTGAAGC CAATTGAAGC CAATTGAAGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGAAG TAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG AGCATCTC AGCAGCAG AGCATCTC ATGCAGCAG AGCATCTC CCAAAATCAA CCAAAATCAA CCAAATGACA CCGTCGGCAG
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCGGTATC TGACGGTATC TGTCCGGTCC TATCTTACGC CTGGTATC TGTCCCGCT CTGCCGGTC TGCCCCCCC CATACAAGAA GGACGCGGGG CATATCCTTT	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCC GTTCCGTCCT TTTGGCGGAA ACGGGAGCACA ACGGAGCACACA CGGAGCACACA CGGTATCAAG CGGAATCTGC TTTGATCAAC TAGAGGTAGG CCCGAACTGT	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT TGCGGTTACA ATACCGGAGA CTCAAACCTG TATCGTCGAC ATGGCAGAAAA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGACATACCGC CCCGACTCC ACCTGCCCC ACCGACTCC ACAGGGAAA GCAAAGACAG GCAAGGCAAA GCAAAGACAG GACAGGGATG CTTTCCAAAC CAATTGAAGC ACAGCGAAT ACAGCGAAT ACAGCGAAT ACAGCGAAT ACAACACGGAAT ACAACACGGAAT ACAACACGGAAT	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCCG TCAGCAGCAG CAGCAGCAG CAACTCA CCAAAATCAA CCAAAATCAA CCAAAATCAA CCAAAATCAA CCGTCGGCAG TATAACGAAA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCGGTATC TGACGGTATC TGTCCGGTCC TATCTTACGC CTGGTATC TGTCCCGCT CTGCCGGTC TGCCCCCCC CATACAAGAA GGACGCGGGG CATATCCTTT	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCC GTTCCGTCCT TTTGGCGGAA ACGGGAGCACA ACGGAGCACACA CGGAGCACACA CGGTATCAAG CGGAATCTGC TTTGATCAAC TAGAGGTAGG CCCGAACTGT	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT TGCGGTTACA ATACCGGAGA CTCAAACCTG TATCGTCGAC ATGGCAGAAAA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGACATACCGC CCCGACTCC ACCTGCCCC ACCGACTCC ACAGGGAAA GCAAAGACAG GCAAGGCAAA GCAAAGACAG GACAGGGATG CTTTCCAAAC CAATTGAAGC ACAGCGAAT ACAGCGAAT ACAGCGAAT ACAGCGAAT ACAACACGGAAT ACAACACGGAAT ACAACACGGAAT	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG CAAGCAACTC ATGCAGCCG TCAGCAGCAG TCAGCAGCAG AGCATGCT CCAAAATCAA CCAAAATCAA CCAAAATCAA CCAAAATCAA CCGTCGGCAG TATAACGAAA
40 45 50	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CTCGGTATC TGAGAAACCGT TACCGGTATC TACCGGTATC TGTGCCGGTC TGTGCCGGTC CTGTGCCGGTC TACCGGTATC TACCGGTATC TACCGGTATC TACCGGTATC TATCTTACGC CATACAAGAA GGACGCGGGG CATATCCTTT ATTACAAAAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCC GTTCCGTCCT TTTGGCGGAA AAACGGCATG GGCAGCAGCA CGGAGCAGCA CGGAGCAGCA CGGATGACGT CTTTGATCAAC TAGAGGTAGG CCCGAACTGT CTGATACGCC CTATACGCCG	GTTTGCAGTC AAGCTGGCGG CAATACGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AATCCAACA GATATCAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG GCAGAGCAAC TGCGGTTACA AACGAAATGT TGCGGTTACA ATACCGGAGA CTCAAACCTG TATCGTCGAC ATGGCAGAAA TATATGCGGA	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCCTGCCGC CCCTGCCGC CCCTGCCGC CCTTCCAAAC GACAGGGATG GACAGGGATG CATTCCAAAC CAATTGAAGC CAATTGAAGC CAATTGAAGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC AGGAAGCGCC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC ACGCGGAAG CCAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG AGCATCCT CCAAAATCAA CCAAAATCAA CCAAATGACG AGGCTATACA CCGTCGGCAG TATAACGAAA TGAAGACGGA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCGGTCC TACCGGTCC TATCTTACGC CCTCGGTATC TGCCGGTC TATCTTACGC CGCCCC CATACAAGAA GGACGCGGGG CATATCCTTT ATTACAAAAA GGCGGTAAAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCCC TTTGGCGGAA ACACGGCATA ACACGGCATA GCGAGGCGG GGCAGCACAC CGGTATCACG CTTTGATCACG TTTGATCAAC TAGAGGTAGC CCCGAACTGT CCGAACTGT CTATACGCCG ACATTGAAGC	GTTTGCAGTC AAGCTGGCGG CAATACGGCG GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AATACAAGC TTACAACCAA AAGCCCAGGA CGCCATATCG GCAGAGCAAC AACGAAATGT TGCGGTTACA ATACCGGAGA CTCAAACCTG TATCGTCGAC ATGCCAGAAA TTCTTCGAC ATGGCAGAAA TATATGCGGA TTCTTTCGAC	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG GCTTGCCGC CCCGACTTCA AACAGCGAAA GCAAAGACAG GACAGGGATG CTTTCCAAAC CAATTGAAGC ACAGCGAAT ACAGCGAAT ACAGCGAAT AGAACACGGC ACAGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC AGGAAGCCGC AGGAAGCCCC GATGAGGCCC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG TAGCAGCCG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG CCAAAATCAA CCAAAATCAA CCAAATCAA CCAAATCAA CCAAATCAA CCAAATCAA TCAAACGAAA TGAAGACGG TATAACGAAA TGAAGACGGA TTATAGAGAC
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCGGTATC TGCCGGTC TGCCCCCC CATACAAGAA GGACGCGGGG CATATCCTTT ATTACAAAAA GGCGGTAAAA GGCGGTAAAA GGCGGTAAAA GGCGGTAAAA GGCGGTAAAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA ACACGGCATA ACGGCATCAC GGCAGCACACA CGGATCACG CCGAATCTGC TTTGATCAAC CCGAACTGT CTATACGGCG ACATTGAAGC CCGAACTGT CTATACGGCG ACATTGAAGC CCGACGGATA	GTTTGCAGTC AAGCTGGCGG CAATACGGCG GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AATACAAGCA TTACAACCAA AAGCCCAGGA CGCCATATCG GCAGAGCAAC AACGAAATGT TGCGGTTACA ATACCGGAGA CTCAAACCTG TATCGTCGAC ATGCCAGAAA TATATGCGGA TTCTTTCGAC TTCTTTCGAC TTCTTTCGAC TCCGCCACGT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAAGACAG GAAAGGAAG CATTCCAAAC CAATTGAAGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC AGGAAGCGCC GATGAGGCCC AAAAGAAATC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGAAG TAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG AGCATGCTC AGCAGCAGCAG AGCATGCTC AGCAGCAGCAG TCAAAATCAA CCAAAATCAA CCAAAATCAC AGGCTATACA CCGTCGGCAG TATAACGAAA TGAAGACGGA TTATAGAGAC GGACACATCG
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCTTACGC TACCGGTATC TGCCCGCC CATACAAGAA GGACGCGGG CATATCCTTT ATTACAAAAA GGCGGTAAAA GGCGGTAAAA GGCGGTAAAAAAAAAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA ACACGCATA ACGGATCACG GGCAGCACACA CGGATCACG CGGATCACG CTTTGATCAAC TTGATCAAC CCGAACTGT CTATACGCCG ACATTGAACC CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AATACAACAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT TGCGGATACA ATACCGGAGA CTCAAACCTG TATCGTCGAC ATGCCAGAAA TTCTTCGAC ATGCCAGAAA TATATGCGGA TTCTTTCGAC TCCGCCACGT GCCGCCACGT GCCGCGCGCTT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAAGACAG GAAAGGAAG CTTTCCAAAC CTTTCCAAAC CAATTGAAGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC AGGAAGCCCC GATGAGGCCC GATGAGCCCC AAAAGAAATC CCGTGGACGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG TAGCAGCAG TCAGCAGCAG TCAGCAGCAG AAGCAATCA CCAAAATCAA CCAAAATCAC CCGTCGGCAG TATAACGAAA TGAAGACGGA TTATAGAGAC GGACACATCG CAGACCTGCA CAGACCTGCA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCTTACGC TACCGGTATC TGCCCGCC CATACAAGAA GGACGCGGG CATATCCTTT ATTACAAAAA GGCGGTAAAA GGCGGTAAAA GGCGGTAAAAAAAAAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA ACACGCATA ACGGATCACG GGCAGCACACA CGGATCACG CGGATCACG CTTTGATCAAC TTGATCAAC CCGAACTGT CTATACGCCG ACATTGAACC CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AATACAACAA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AACGAAATGT TGCGGATACA ATACCGGAGA CTCAAACCTG TATCGTCGAC ATGCCAGAAA TTCTTCGAC ATGCCAGAAA TATATGCGGA TTCTTTCGAC TCCGCCACGT GCCGCCACGT GCCGCGCGCTT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAAGACAG GAAAGGAAG CTTTCCAAAC CTTTCCAAAC CAATTGAAGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC AGGAAGCCCC GATGAGGCCC GATGAGCCCC AAAAGAAATC CCGTGGACGC	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG TAGCAGCAG TCAGCAGCAG TCAGCAGCAG AAGCAATCA CCAAAATCAA CCAAAATCAC CCGTCGGCAG TATAACGAAA TGAAGACGGA TTATAGAGAC GGACACATCG CAGACCTGCA CAGACCTGCA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCTGTCGT TACCGGTATC TGCCGCCCC CATACAAGAA GGACGCGGG CATATCCTTT ATTACAAAAA GGCGGTAAAA GGCGGTAAAA GGCGGTAAAAA GGCGGTAAAAA GGCGGTAAAAA GGCGGTAAAAA GGCGGTAAAAA GGCGGTAAAAA ATTTGGTCTC GGCGGTATTC GGCGGTATTC GGCGGTATTC GGCGGTAAAG ATTTGGTCTC GGCGGTATTT	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGA ACGATGCCGC GTTCCGTCCT TTTGGCGGAA ACACGCATA ACGGCATCA GCGAGCACA CGGAGCACA CGGATCACG TTTGATCACG TTTGATCACC TTTGATCACC CCGAACTGT CTATACGCCG ACATTGAAGC CCGAACTGT CTATACGCCG ACATTGAAGC CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCCCCGATGC	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC AAGCGAAAATGT TGCGGTTACA ATACGGAGA ATACGGAGA ATACGGAGA TTCTGCGG TATCGTCGC CTTCTGCG CTTCTGCG GCAGACTACA ATACCGAGA ATACCGAGA TTCTTTCGCG TTTCGCG ATGGCAGAAA TATATGCGGA TTCTTTCGAC TCCGCCACGT GCCGCGCCGTT GACGCTACAC	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGACGACA AGTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAAGACAG GACAGGATG CATTTCCAAAC CATTGCAAC CATTGAAGC CAATTGAAGC CAATTGAAGC ACAGGCGAAT AGAACACGGC ACAGGCGCAAT AGAACACGGC ACAGGCCGACTC CCATGAAGC CCATTGAAGC CAATTGAAGC CAATTGAAGC CAATTGAAGC CAATGAAGCCGC AAAAGAAATC CCGTGGACGG ATAATGAATA	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG AGCATCA CCAAAATCAA CCAAAATCAC CCGTCGCAG TGAAGCAGCAG TATAACGAAA TGAAGACGGA TTATAGAGAC GGACACATCC CAGACCTGCA CGAACCTCC CAGACCTGCA CGAACCTCCA CGACCTCCA CGACCTCCA CGAACCTCCA CGAACCTCCA CGAACCTCCA CGAACCTCCA CGAACCTCCA CGAACCTCCA
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCTGTATC TGACCGTATC TACCGGTATC TGCCGCCCC CATACAAGAA GGACGCGGG CATATCCTTT ATTACAAAAA GGCGGTAAAA GGCGGTAAAA GGCGGTAAAAA GGCGGTAAAAA GGCGGTAAAAA GGCGGTAAAAA ATTTGGTCTC GGCGGTATTC GGCGGTATTC AACCAAGAAC ATTTGGTCTCC CATACAAAAA	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA GCTTCCCGAA ACGATGCCGG GGAAACGGCA CGCCGCCCGCT TTTGGCGGAA ACACGCATA ACGGCATCA GCGAGCACA CGGTATCACG GGCAGCACAC CGGATCACG TTTGATCAAC TTGATCAAC CCGAACTGT CTATACGCCG ACATTGAAC CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCGACGGATA CCCCGATGC GAAATGATGG GAAATGATGG	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AATACAAGCA TTACAACCAA AAGCCCAGGA CGCCATATCG GCAGAGCAAC AACGAAATGT TGCGGTTACA ATACGAGA ATACCGAGA ATACCGAGA TTCTTCGCG CTTTCGCG CTTTCGCG CTTTCGCG CTTCTCGCC CCCACGT TGCGCCACGT TCCGCCACGT GCCGCCACGT GACGCCATACAC TTCGCAGCCAT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGAGAAAG AGTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAAGACAG GACAGGAGA GCAAGACAG CATTCCAAAC CAATTGAAGC ACAGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT CCGTGGACGC ATAATGAATA CCGCAATGCA	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG AGCATGCT AGCAGCAGCAG TCAGAAATCAA CCAAAATGAC AGGCTATACA CCGTCGGCAG TATAACGAAA TGAAGACGGA TTATAGAGAC GGACACATCG CAGACCTGCA CGAACTGCA CGAACTGCA CGAACCTGCA CGAACCTGCA CGAACCTGCA CGAATGATGA TGGGTCAAGC
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301 1351 1401 1451	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCGGTATC TGACATCAGCG CATACAAGAA GGACGCGGTC CATACAAGAA GGACGCGGGA GGACGCGGGA CATATCCTTT ATTACAAAAA TGGAGGAACG TGAAGAAAC TGAAGCAAAGA TGAAGCAAAG ATTTGGTCTC CACCAAGAAC TGAAGCAAAGAC TGAAGCAAAAC TGAAGCAAAC TGAAGCAAAC TGGACGCGAACC CACAAGAAC TGGGCGAACC CGCCAACAAGAAC TGGGCGAACC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA ACAGGCATA ACGGCATCA GGGAGCACA CGGTATCAAG GGGATGACGT CCGAATCTGC TTTGATCAAC TTGATCAAG CCCGAACTGT CTATACGGCG ACATTGATCAGC CCGACTGT CTATACGCCG ACATTGATCAC CCGACTGT CTATACGCCG ACATTGATCAC CCGACTGT CCATATTATT CGCCCGATGC GAAATGATGG GAAATGATGG TGGCCTGCCC	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC ATGCGAGA ATACGAGA ATACGAGA ATACGAGA ATACGGAGA ATACGTCGAC ATTTTTCGCG TATCGTCGAC TATCGTCGAC TTTTTCGAC TCCGCCACGT GCCGGGCGTT GACGCTACAC ATGCAGCAT ATGCTCAAC TCCGCCACGT GACGCTACAC ATGCAGCAT ATGCAGCCAT ATGCAGCCAT ATGCAGCCAT ATGCAGCCAT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGACGACA AGTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAGACAG GACAGGGATG CTTTCCAAAC CAATTGAAGC CAATTGAAGC CAATGAAGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT CCGTGGACGC ATAATGAATA CCGCAATGCA ACAGTTTTCG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGAGCAGCAG AGCATACAC CCAAAATGACA CCAAATGACA TGAAGACGGA TTATAGAGAC GGACACATCG CAGACCTGCA CGAATGATCA CGAACTCG CAGACCTGCA CGAACTCG CAGACCTGCA CGAATGATGA TGAGGACGAC TTATAGAGAC CGAACATCG CAGACCTGCA CGAATGATGA CGAATGATGA TGGGTCAAGC AACAACATCG
40 45 50 55	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301	ATGGTCGCCG GCTCGACCAT TCAGGAAAAA TATGGAAACG CAGCCGTTTC CCTTGGAGAG ACCGCCTTTC GGTTGCGAAA TTCGGTTCAG CGCCAAGCAG ATGTCGACCT GTCATCAGCG CCTCGGTATC TGAAAACCGT TACCGGTATC TGACATCAGCG CATACAAGAA GGACGCGGTC CATACAAGAA GGACGCGGGA GGACGCGGGA CATATCCTTT ATTACAAAAA TGGAGGAACG TGAAGAAAC TGAAGCAAAGA TGAAGCAAAG ATTTGGTCTC CACCAAGAAC TGAAGCAAAGAC TGAAGCAAAAC TGAAGCAAAC TGAAGCAAAC TGGACGCGAACC CACAAGAAC TGGGCGAACC CGCCAACAAGAAC TGGGCGAACC	AAAGACAAAG CGAGAAACTG GTGACAGCCT GACTTTATCC TGGAGAGTTC AGACCGAGCA CGCCAGTTCA ACGATGCCGG GGAAACGCA GGCCGCCGCC GTTCCGTCCT TTTGGCGGAA ACAGGCATA ACGGCATCA GGGAGCACA CGGTATCAAG GGGATGACGT CCGAATCTGC TTTGATCAAC TTGATCAAG CCCGAACTGT CTATACGGCG ACATTGATCAGC CCGACTGT CTATACGCCG ACATTGATCAC CCGACTGT CTATACGCCG ACATTGATCAC CCGACTGT CCATATTATT CGCCCGATGC GAAATGATGG GAAATGATGG TGGCCTGCCC	GTTTGCAGTC AAGCTGGCGG CAATACGGGC GCCAAATCGA CAAGTATACA AATACAAGAT GAATCGGCGA GGCGGCAGGG CGGAAAACTG AAATCGAACA AAGCCCAGGA CGCCATATCG CACTTCTGCG GCAGAGCAAC ATGCGAGA ATACGAGA ATACGAGA ATACGAGA ATACGGAGA ATACGTCGAC ATTTTTCGCG TATCGTCGAC TATCGTCGAC TTTTTCGAC TCCGCCACGT GCCGGGCGTT GACGCTACAC ATGCAGCAT ATGCTCAAC TCCGCCACGT GACGCTACAC ATGCAGCAT ATGCAGCCAT ATGCAGCCAT ATGCAGCCAT ATGCAGCCAT	TTTGACGCTG CACAAGGTGC AAATTGAAGA AGTGGACGGG AACAAAGCCA TCGGAGCATT CATAGCGGGC CGACATATCG ACCTACACCA TTTGAAATCG CGGATGGAAA GCCGACGACA AGTTGCCGGC CCCGACTTCA AACAGCGAAA GCAAGACAG GACAGGGATG CTTTCCAAAC CAATTGAAGC CAATTGAAGC CAATGAAGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT AGAACACGGC ACAGGCGAAT CCGTGGACGC ATAATGAATA CCGCAATGCA ACAGTTTTCG	GATCAGTCCG GGAAAAACT ACGACAAGGT CAGCTCATTA TTCCGCCTTA CCGGGAAGAT GAACATACAT CGGGACGCG TAGATTTCGC CCAGAACTCA ACGCCATGCC GCAGTTACTC AGCGCGGAAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG TCAGCAGCAG AGCATGCT AGCAGCAGCAG TCAGAAATCAA CCAAAATGAC AGGCTATACA CCGTCGGCAG TATAACGAAA TGAAGACGGA TTATAGAGAC GGACACATCG CAGACCTGCA CGAACTGCA CGAACTGCA CGAACCTGCA CGAACCTGCA CGAACCTGCA CGAATGATGA TGGGTCAAGC

	1551	0000033000	mmccmccx cm	ATTCCGGCGG	manmana	
	1601			GATTACGGCA		
	1651	ADGGGGGGG	TCCTTTTTC AT	CTTTTCGACA	CCCAATCACC	CACAACCECA
	1701	GCCCAACACA	TATGCCCTAT	TGCCATTTTA	TCANANCACO	CACAAGCICA
5	1751			GTAGACCGCA		
	1801			TACAGAACCG		
	1851			GGTGCCTGTC		
	1901			CCGATTCAAA		
10	1951			GGCGGCTCTG		
10	2001			GTACCACGTT		
	2051			AGCAAGTTCG		
•	2101			CGCGTCCTTT		
	2151			ATATTGCCTA		
15	2201			AAAAAAGGCG		
15	2251 2301			CAAAACCATT CGGATATGCG		
	2351			TCCGGCGGCA		
	2401			CCAATCCGGC		
	2451			ACGGCAAAGG		
20	2501			GGTACGGCGA		
	2551			GGCAGGCTAT		
	2601	TGTTCCCTTC	CTGAGTGCCG	CCAAAATCGG	GCAGGATTAT	TCTTTCTTCA
	2651	CAAACATCGA	AACCGACGGC	${\tt GGCCTGCTGG}$	CTTCCCTCGA	CAGCGTCGAA
05	2701			CGACACGCTG		
25	2751			CGGCAGCGGC		
	2801			GGCGGCAGCA		
	2851 2901			ATCCGCAACA		
	2951			TGCCGGGCAT CAGCATGCGA		
30	3001			TACCGTCTAT		
	3051			GCCTGAAAGC		
	3101			GTCATCGCGC		
	3151			TGAAGGCAAA		
0.5	3201			CCGGCGAAAA		
35	3251			TGGAGCGAAA		
	3301			AGGCATACGG		
	3351			CCTACGGACG		
	3401			CATGCGGAAG		
40	3451 3501			CGGTGTCAAC		
40	3551			GTCTGCGCTA GCTTTGGGCT		
	3601			CGCGGGTCTG		
	3651			CAACGGCGGG		
	3701			GGCGGCTTTA		
45	3751					TTGCCGGCCT
	3801					GCACGTTACA
	3851	GCTACGCCGG	TTCCAAACAG	TACGGCAACC	ACAGCGGACG	AGTCGGCGTA
	3901	GGCTACCGGT	TCCTCGAGCA	CCACCACCAC	CACCACTGA	
50	_					
30 .	1			KDKGLQSLTL		
	51 101			DFIRQIEVDG		
	151			RQFRIGDIAG GNGKIEHLKS		
	201			FGGKAQEVAG		
55	251			GSNSRATTAK		
	301	CAGRDDVAVT	DRDAKINAPP	PNLHTGDFPN	PNDAYKNLIN	LKPATEAGYT
	351	GRGVEVGIVD	TGESVGSISF	PELYGRKEHG	YNENYKNYTA	YMRKEAPEDG
	401			PTDIRHVKEI		
60	451	GGIAPDATLH	IMNTNDETKN	EMMVAAIRNA	WVKLGERGVR	IVNNSFGTTS
60	501					DYGNLSYHIR
	551			YALLPFYEKD		
	601			TAMWCLSAPY		_
	651			DNLRTTLLTT		
65	701 751			GTSDIAYSFR		
U J	751 801			NNKSDMRVET		
	801 851			LOLDGKGTLY		
	021	TOMONOMGY	TWOLCKKALL	LSAAKIGQDY	SEFTMIETING	GULASUUSVE

	901	KTAGSEGDTL	SYYVRRGNAA	RTASAAAHSA	PAGLKHAVEO	GGSNT-ENT-MY
	951			RTDMPGIRPY	_	
	1001			QGRRLKAVSD		
_	1051	TWEQGGVEGK	MRGSTQTVGI	AAKTGENTTA	AATLGMGRST	WSENSANAKT
5	1101			GLFSYGRYKN		
	1151			VEGGLRYDLL		
	1201			VLFATAGVER		
	1251			VEFGNGWNGL	ARYSYAGSKQ	YGNHSGRVGV
10	1301	GYRFLEHHHH	HH"			
10	ΔG74101	RF46.1				
	1		CCGACATCGG	TGCGGGGCTT	GCCGATGCAC	TAACCGCACC
	51			GTTTGCAGTC		_
	101			AAGCTGGCGG		_
15	151	TATGGAAACG	GTGACAGCCT	CAATACGGGC	AAATTGAAGA	ACGACAAGGT
	201	CAGCCGTTTC	GACTTTATCC	GCCAAATCGA	AGTGGACGGG	CAGCTCATTA
	251			CAAGTATACA		
	301			AATACAAGAT		
20	351			GAATCGGCGA		
20	401 451			GGCGGCAGGG CGGAAAACTG		
	501			AAATCGAACA		
	551			GATATCAAGC		
	601			TTACAACCAA		
25	651			AAGCCCAGGA		
	701	TGAAAACCGT	AAACGGCATA	CGCCATATCG	GCCTTGCCGC	CAAGCAACTC
	751			ATCCTCAGAT		
	801			AGCATTTCGA		
30	851			CTTGCCGAGC		
30	901 951			GTTGGGCAAC ACATTGTCCG		
	1001			AACCATGCCT		
	1051			ATTTAGCCTT		
	1101		-	ACGGCTATGA		
35	1151	ATCCCGCTCC	CAAAGGCGCG	AGGGATATAT	ACAGCTACGA	CATAAAAGGC
	1201	GTTGCCCAAA	ATATCCGCCT	CAACCTGACC	GACAACCGCA	GCACCGGACA
	1251			ACAATGCCGG		
	1301			GCCACCCGAT		
40	1351 1401			CTTCAACGGC AAATTGTCGG		
40	1451			ATTGCTGTCA		
	1501	- · ·		GCGCATCAAC		
	1551			CAGCCATCCG		
	1601	CCAATGCCGC	ACAAGGCATA	GAAGCCGTCA	GCAATATCTT	TATGGCAGCC
45	1651					GCTTGGGCGG
	1701					ATCGCATTGC
	1751					GGCATACGCC
	1801 1851					ACTTGGAGCA CCGTCAAACG
50	1901					AGGCGTACCG
	1951					AATATGATAC
	2001		CACCACCACC			
	1					KLAAQGAEKT
55	51					QVYKQSHSAL
	101			-		GGRATYRGTA
	151 201					DIKPDGKRHA
	251					RHIGLAAKQL LAERSGHIGL
60	301			_		NHASHSDSDE
	351					RDIYSYDIKG
	401					ATRYSPELDR
	451					IAVMHGLGLL
<i>~</i> ~	501					EAVSNIFMAA
65	551					SDNFADAAYA
	601				PSNGKNVKLA	DQRHPKTGVP
	651	FDGKGFPNFE	KHVKYDTLEH	ннннн*		

15

Example 16 - C-terminal fusions ('hybrids') with 287/4G287

According to the invention, hybrids of two proteins A & B may be either NH₂-A-B-COOH or NH₂-B-A-COOH. The effect of this difference was investigated using protein 287 either C-terminal (in '287-His' form) or N-terminal (in ΔG287 form – sequences shown above) to 919, 953 and ORF46.1. A panel of strains was used, including homologous strain 2996. FCA was used as adjuvant:

Strain	287 & 919		287 & 953		287 & ORF46.1	
	∆G287-919	919-287	∆G287-953	953-287	∆G287-46.1	46.1-287
2996	128000	16000	65536	8192	16384	8192
BZ232	256	128	128	<4	<4	<4
1000	2048	<4	<4	<4	<4	<4
MC58	8192	1024	16384	1024	512	128
NGH38	32000	2048	>2048	4096	16384	4096
394/98	4096	32	256	128	128	16
MenA (F6124)	32000	2048	>2048	32	8192	1024
MenC (BZ133)	64000	>8192	>8192	<16	8192	2048

Better bactericidal titres are generally seen with 287 at the N-terminus (in the ΔG form)

When fused to protein 961 [NH₂- Δ G287-961-COOH – sequence shown above], the resulting protein is insoluble and must be denatured and renatured for purification. Following renaturation, around 50% of the protein was found to remain insoluble. The soluble and insoluble proteins were compared, and much better bactericidal titres were obtained with the soluble protein (FCA as adjuvant):

	2996	BZ232	MC58	NGH38	F6124	BZ133
Soluble	65536	128	4096	>2048	>2048	4096
Insoluble	8192	<4	<4	16	n.d.	n.d.

Titres with the insoluble form were, however, improved by using alum adjuvant instead:

Insoluble	32768	128	4096	>2048	>2048	2048

Example 17 – N-terminal fusions ('hybrids') to 287

Expression of protein 287 as full-length with a C-terminal His-tag, or without its leader peptide but with a C-terminal His-tag, gives fairly low expression levels. Better expression is achieved using a N-terminal GST-fusion.

As an alternative to using GST as an N-terminal fusion partner, 287 was placed at the C-terminus of protein 919 ('919-287'), of protein 953 ('953-287'), and of proteins ORF46.1 ('ORF46.1-287'). In both cases, the leader peptides were deleted, and the hybrids were direct in-frame fusions.

To generate the 953-287 hybrid, the leader peptides of the two proteins were omitted by designing the forward primer downstream from the leader of each sequence; the stop codon sequence was omitted in the 953 reverse primer but included in the 287 reverse primer. For the 953 gene, the 5' and the 3' primers used for amplification included a *NdeI* and a *BamHI* restriction sites respectively, whereas for the amplification of the 287 gene the 5' and the 3' primers included a *BamHI* and a *XhoI* restriction sites respectively. In this way a sequential directional cloning of the two genes in pET21b+, using *NdeI-BamHI* (to clone the first gene) and subsequently *BamHI-XhoI* (to clone the second gene) could be achieved.

The 919-287 hybrid was obtained by cloning the sequence coding for the mature portion of 287 into the *XhoI* site at the 3'-end of the 919-His clone in pET21b+. The primers used for amplification of the 287 gene were designed for introducing a *SalI* restriction site at the 5'-and a *XhoI* site at the 3'- of the PCR fragment. Since the cohesive ends produced by the *SalI* and *XhoI* restriction enzymes are compatible, the 287 PCR product digested with *SalI-XhoI* could be inserted in the pET21b-919 clone cleaved with *XhoI*.

The ORF46.1-287 hybrid was obtained similarly.

The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens:

	Mixture with 287	Hybrid with 287
919	32000	16000
953	8192	8192
ORF46.1	128	8192

Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained for 919-287 and 953-287:

	919		953		ORF46.1	
Strain	Mixture	Hybrid	Mixture	Hybrid	Mixture	Hybrid
MC58	512	1024	512	1024	-	1024
NGH38	1024	2048	2048	4096	-	4096
BZ232	512	128	1024	16	-	_
MenA (F6124)	512	2048	2048	32	_	1024
MenC (C11)	>2048	n.d.	>2048	n.d.	-	n.d.
MenC (BZ133)	>4096	>8192	>4096	<16	-	2048

Hybrids of ORF46.1 and 919 were also constructed. Best results (four-fold higher titre) were achieved with 919 at the N-terminus.

Hybrids 919-519His, ORF97-225His and 225-ORF97His were also tested. These gave moderate ELISA fitres and bactericidal antibody responses.

5 Example 18 – the leader peptide from ORF4

As shown above, the leader peptide of ORF4 can be fused to the mature sequence of other proteins (e.g. proteins 287 and 919). It is able to direct lipidation in *E.coli*.

Example 19 - domains in 564

The protein '564' is very large (2073aa), and it is difficult to clone and express it in complete form. To facilitate expression, the protein has been divided into four domains, as shown in figure 8 (according to the MC58 sequence):

Domain	A	В	C	D
Amino Acids	79-360	361-731	732-2044	2045-2073

These domains show the following homologies:

• Domain A shows homology to other bacterial toxins:

```
gb|AAG03431.1|AE004443_9probable hemagglutinin [Pseudomonas aeruginosa] (38%)
gb|AAC31981.1|(139897) HecA [Pectobacterium chrysanthemi] (45%)
emb|CAA36409.1|(X52156) filamentous hemagglutinin [Bordetella pertussis] (31%)
gb|AAC79757.1|(AF057695)large supernatant protein1 [Haemophilus ducreyi] (26%)
gb|AAA25657.1|(M30186) HpmA precursor [Proteus mirabilis] (29%)
```

- Domain B shows no homology, and is specific to 564.
 - Domain C shows homology to:

Domain D shows homology to other bacterial toxins:

```
gb|AAF84995.1|AE004032_14 HA-like secreted protein [Xylella fastidiosa] (29%)
```

Using the MC58 strain sequence, good intracellular expression of 564ab was obtained in the form of GST-fusions (no purification) and his-tagged protein; this domain-pair was also expressed as a lipoprotein, which showed moderate expression in the outer membrane/supernatant fraction.

The b domain showed moderate intracellular expression when expressed as a his-tagged product (no purification), and good expression as a GST-fusion.

The c domain showed good intracellular expression as a GST-fusion, but was insoluble. The d domain showed moderate intracellular expression as a his-tagged product (no purification). The cd protein domain-pair showed moderate intracellular expression (no purification) as a GST-fusion.

Good bactericidal assay titres were observed using the c domain and the bc pair.

15 Example 20 - the 919 leader peptide

20

35

The 20mer leader peptide from 919 is discussed in example 1 above:

```
MKKYLFRAAL YGIAAAILAA
```

As shown in example 1, deletion of this leader improves heterologous expression, as does substitution with the ORF4 leader peptide. The influence of the 919 leader on expression was investigated by fusing the coding sequence to the *PhoC* reporter gene from *Morganella morganii* [Thaller et al. (1994) *Microbiology* 140:1341-1350]. The construct was cloned in the pET21-b plasmid between the *NdeI* and *XhoI* sites (Figure 9):

```
25 MKKYLFRAAL YGIAAAILAA AIPAGNDATT KPDLYYLKNE QAIDSLKLLP
51 PPPEVGSIQF LNDQAMYEKG RMLRNTERGK QAQADADLAA GGVATAFSGA
101 FGYPITEKDS PELYKLLTNM IEDAGDLATR SAKEHYMRIR PFAFYGTETC
151 NTKDQKKLST NGSYPSGHTS IGWATALVLA EVNPANQDAI LERGYQLGQS
201 RVICGYHWQS DVDAARIVGS AAVATLHSDP AFQAQLAKAK QEFAQKSQK*
```

The level of expression of PhoC from this plasmid is >200-fold lower than that found for the same construct but containing the native PhoC signal peptide. The same result was obtained even after substitution of the T7 promoter with the *E.coli* Plac promoter. This means that the influence of the 919 leader sequence on expression does not depend on the promoter used.

In order to investigate if the results observed were due to some peculiarity of the 919 signal peptide nucleotide sequence (secondary structure formation, sensitivity to RNAases, etc.) or

to protein instability induced by the presence of this signal peptide, a number of mutants were generated. The approach used was a substitution of nucleotides of the 919 signal peptide sequence by cloning synthetic linkers containing degenerate codons. In this way, mutants were obtained with nucleotide and/or amino acid substitutions.

5 Two different linkers were used, designed to produce mutations in two different regions of the 919 signal peptide sequence, in the first 19 base pairs (L1) and between bases 20-36 (S1).

L1: 5' T ATG AAA/g TAc/t c/tTN TTt/c a/cGC GCC GCC CTG TAC GGC ATC GCC GCC GCC ATC CTC GCC GCC GCC ATC CCC 3'
S1: 5' T ATG AAA AAA TAC CTA TTC CGa/g GCN GCN c/tTa/g TAc/t GGc/g ATC GCC GCC GCC ATC CTC GCC GCC ATC CC 3'

The alignment of some of the mutants obtained is given below.

L1 mutants: 9L1-a 15 9L1-e ATGAAAAATACTTTTTCCGCGCCCCC-----9L1-d ATGAAAAATACTTTTTCCGCGCCCCC-----9L1-f ATGAAAAATATCTCTTTAGCGCCGCCCTGTACGGCATCGCCGCCCATCCTCGCCGCC 919sp 20 9L1a MKKYLFSAA~~~~~~ 9L1e MKKYFFRAA~~~~~~ 9L1d MKKYFFRAA~~~~~~ 9L1f MKKYLFSAALYGIAAAILAA 919sp MKKYLFRAALYGIAAAILAA (i.e. native signal peptide) 25 S1 mutants: 9S1-e ATGAAAAAATACCTATTC......ATCGCCGCCGCCATCCTCGCCGCC 951-c ATGAAAAAATACCTATTCCGAGCTGCCCAATACGGCATCGCCGCCCATCCTCGCCGCC 9S1-b ATGAAAAATACCTATTCCGGGCCGCCCAATACGGCATCGCCGCCCATCCTCGCCGCC 30 9S1-i ${\tt ATGAAAAATACCTATTCCGGGCGGCTTTGTACGGGATCGCCGCCATCCTCGCCGCC}$ 919sp ATGAAAAATACCTATTCCGCGCCCCCTGTACGGCATCGCCGCCCATCCTCGCCGCC 9S1e MKKYLF.....IAAAILAA 9S1c MKKYLFRAAQYGIAAAILAA 35 951b MKKYLFRAAQYGIAAAILAA 9**s**1i MKKYLFRAALYGIAAAILAA 919sp MKKYLFRAALYGIAAAILAA

As shown in the sequences alignments, most of the mutants analysed contain in-frame deletions which were unexpectedly produced by the host cells.

Selection of the mutants was performed by transforming E. coli BL21(DE3) cells with DNA prepared from a mixture of L1 and S1 mutated clones. Single transformants were screened for high PhoC activity by streaking them onto LB plates containing 100 µg/ml ampicillin,

45 50μg/ml methyl green, 1 mg/ml PDP (phenolphthaleindiphosphate). On this medium PhoC-producing cells become green (Figure 10).

A quantitative analysis of PhoC produced by these mutants was carried out in liquid medium using pNPP as a substrate for PhoC activity. The specific activities measured in cell extracts and supernatants of mutants grown in liquid medium for 0, 30, 90, 180 min. were:

CELL EXTRACTS

	0	30	90	180
control	0,00	0,00	0,00	0,00
9phoC	1,11	1,11	3,33	4,44
9S1e	102,12	111,00	149,85	172,05
9L1a	206,46	111,00	94,35	83,25
9L1d	5,11	4,77	4,00	3,11
9L1f	27,75	94,35	82,14	36,63
9S1b	156,51	111,00	72,15	28,86
9S1c	72,15	33,30	21,09	14,43
9S1i	156,51	83,25	55,50	26,64
phoCwt	194,25	180,93	149,85	142,08

SUPERNATANTS

	0	30	90	180
control	0,00	0,00	0,00	0,00
9phoC	0,33	0,00	0,00	0,00
9S1e	0,11	0,22	0,44	0,89
9L1a	4,88	5,99	5,99	7,22
9L1d	0,11	0,11	0,11	0,11
9L1f	0,11	0,22	0,11	0,11
9S1b	1,44	1,44	1,44	1,67
9S1c	0,44	0,78	0,56	0,67
9S1i	0,22	0,44	0,22	0,78
phoCwt	34,41	43,29	87,69	177,60

Some of the mutants produce high amounts of PhoC and in particular, mutant 9L1a can secrete PhoC in the culture medium. This is noteworthy since the signal peptide sequence of this mutant is only 9 amino acids long. This is the shortest signal peptide described to date.

Example 21 - C-terminal deletions of Maf-related proteins

MafB-related proteins include 730, ORF46 and ORF29.

The 730 protein from MC58 has the following sequence:

1.5	1	VKPLRRLTNL	LAACAVAAAA	LIQPALAADL	AQDPFITDNA	QRQHYEPGGK
15	51	YHLFGDPRGS	VSDRTGKINV	IQDYTHQMGN	LLIQQANING	TIGYHTRFSG
	101	HGHEEHAPFD	NHAADSASEE	KGNVDEGFTV	YRLNWEGHEH	HPADAYDGPK
	151	GGNYPKPTGA	RDEYTYHVNG	TARSIKLNPT	DTRSIRQRIS	DNYSNLGSNF
	201	SDRADEANRK	MFEHNAKLDR	WGNSMEFING	VAAGALNPFI	SAGEALGIGD
00	251	ILYGTRYAID	KAAMRNIAPL	PAEGKFAVIG	GLGSVAGFEK	NTREAVDRWI
20	301	QENPNAAETV	EAVFNVAAAA	KVAKLAKAAK	${\tt PGKAAVSGDF}$	ADSYKKKLAL

5

10

- 351 SDSARQLYQN AKYREALDIH YEDLIRRKTD GSSKFINGRE IDAVTNDALI
- 401 QAKRTISAID KPKNFLNQKN RKQIKATIEA ANQQGKRAEF WFKYGVHSQV
- 451 KSYIESKGGI VKTGLGD*

5 The leader peptide is underlined.

730 shows similar features to ORF46 (see example 8 above):

- as for Orf46, the conservation of the 730 sequence among MenB, MenA and gonococcus is high (>80%) only for the N-terminal portion. The C-terminus, from ~340, is highly divergent.
- its predicted secondary structure contains a hydrophobic segment spanning the central region of the molecule (aa. 227-247).
- expression of the full-length gene in E. coli gives very low yields of protein. Expression from tagged or untagged constructs where the signal peptide sequence has been omitted has a toxic effect on the host cells. In other words, the presence of the full-length mature protein in the cytoplasm is highly toxic for the host cell while its translocation to the periplasm (mediated by the signal peptide) has no detectable effect on cell viability. This "intracellular toxicity" of 730 is particularly high since clones for expression of the leaderless 730 can only be obtained at very low frequency using a recA genetic background (E. coli strains: HB101 for cloning; HMS174(DE3) for expression).
- To overcome this toxicity, a similar approach was used for 730 as described in example 8 for ORF46. Four C-terminal truncated forms were obtained, each of which is well expressed. All were obtained from intracellular expression of His-tagged leaderless 730.
 - Form A consists of the N-terminal hydrophilic region of the mature protein (aa. 28-226). This was purified as a soluble His-tagged product, having a higher-than-expected MW.
- Form B extends to the end of the region conserved between serogroups (aa. 28-340). This was purified as an insoluble His-tagged product.
- The C-terminal truncated forms named C1 and C2 were obtained after screening for clones expressing high levels of 730-His clones in strain HMS174(DE3). Briefly, the pET21b plasmid containing the His-tagged sequence coding for the full-length mature 730 protein was used to transform the recA strain HMS174(DE3). Transformants were obtained at low frequency which showed two phenotypes: large colonies and very small colonies. Several large and small colonies were analysed for expression of the 730-His clone. Only cells from large colonies over-expressed a protein recognised by anti-730A antibodies. However the

30

35

protein over-expressed in different clones showed differences in molecular mass. Sequencing of two of the clones revealed that in both cases integration of an *E. coli* IS sequence had occurred within the sequence coding for the C terminal region of 730. The two integration events have produced in-frame fusion with 1 additional codon in the case of C1, and 12 additional codons in the case of C2 (Figure 11). The resulting "mutant" forms of 730 have the following sequences:

```
730-C1 (due to an IS1 insertion - figure 11A)

1 MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTG KINVIQDYTH
51 QMGNLLIQQA NINGTIGYHT RFSGHGHEEH APFDNHAADS ASEEKGNVDE
101 101 GFTVYRLNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTY HVNGTARSIK
151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNA KLDRWGNSME
201 FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMRN IAPLPAEGKF
251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV AAAAKVAKLA
301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA LDIHYEDLIR
15 351 RKTDGSSKFI NGREIDAVTN DALIQAR*
```

The additional amino acid produced by the insertion is underlined.

```
730-C2 (due to an IS5 insertion - Figure 11B)

1 MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTG KINVIQDYTH
20 51 QMGMLLIQQA NINGTIGYHT RFSGHGHEEH APFDNHAADS ASEEKGNVDE
101 GFTVYRLNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTY HVNGTARSIK
151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNA KLDRWGNSME
201 FINGVAAGAL NPFISAGEAL GIGDLLYGTR YAIDKAAMRN IAPLPAEGKF
251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV AAAAKVAKLA
25 301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA LGKVRISGEI
```

The additional amino acids produced by the insertion are underlined.

In conclusion, intracellular expression of the 730-C1 form gives very high level of protein and has no toxic effect on the host cells, whereas the presence of the native C-terminus is toxic. These data suggest that the "intracellular toxicity" of 730 is associated with the C-terminal 65 amino acids of the protein.

Equivalent truncation of ORF29 to the first 231 or 368 amino acids has been performed, using expression with or without the leader peptide (amino acids 1-26; deletion gives cytoplasmic expression) and with or without a His-tag.

Example 22 – domains in 961

As described in example 9 above, the GST-fusion of 961 was the best-expressed in *E.coli*. To improve expression, the protein was divided into domains (figure 12).

The domains of 961 were designed on the basis of YadA (an adhesin produced by Yersinia which has been demonstrated to be an adhesin localized on the bacterial surface that forms

oligomers that generate surface projection [Hoiczyk et al. (2000) EMBO J 19:5989-99]) and are: leader peptide, head domain, coiled-coil region (stalk), and membrane anchor domain.

These domains were expressed with or without the leader peptide, and optionally fused either to C-terminal His-tag or to N-terminal GST. *E.coli* clones expressing different domains of 961 were analyzed by SDS-PAGE and western blot for the production and localization of the expressed protein, from over-night (o/n) culture or after 3 hours induction with IPTG. The results were:

	Total lysate (Western Blot)	Periplasm (Western Blot)	Supernatant (Western Blot)	OMV SDS-PAGE
961 (o/n)	-	-	-	
961 (IPTG)	+/-	-	-	
961-L (o/n)	+	-	-	+
961-L (IPTG)	+	-	-	+
961c-L (o/n)	-	-	-	-
961c-L (IPTG)	+	+	+	
961Δ ₁ -L (o/n)	-	-	-	
$961\Delta_{I}$ -L (IPTG)	+	-	-	+

The results show that in *E.coli*:

- 961-L is highly expressed and localized on the outer membrane. By western blot analysis two specific bands have been detected: one at ~45kDa (the predicted molecular weight) and one at ~180kDa, indicating that 961-L can form oligomers. Additionally, these aggregates are more expressed in the over-night culture (without IPTG induction). OMV preparations of this clone were used to immunize mice and serum was obtained. Using overnight culture (predominantly by oligomeric form) the serum was bactericidal; the IPTG-induced culture (predominantly monomeric) was not bactericidal.
 - 961 Δ_1 -L (with a partial deletion in the anchor region) is highly expressed and localized on the outer membrane, but does not form oligomers;
 - the 961c-L (without the anchor region) is produced in soluble form and exported in the supernatant.
- 20 Titres in ELISA and in the serum bactericidal assay using His-fusions were as follows:

	ELISA	Bactericidal
961a (aa 24-268)	24397	4096

961b (aa 269-405)	7763	64
961c-L	29770	8192
961c (2996)	30774	>65536
961c (MC58)	33437	16384
961d	26069	>65536

E.coli clones expressing different forms of 961 (961, 961-L, 961 Δ_1 -L and 961c-L) were used to investigate if the 961 is an adhesin (c.f. YadA). An adhesion assay was performed using (a) the human epithelial cells and (b) E.coli clones after either over-night culture or three hours IPTG induction. 961-L grown over-night (961 Δ_1 -L) and IPTG-induced 961c-L (the clones expressing protein on surface) adhere to human epithelial cells.

961c was also used in hybrid proteins (see above). As 961 and its domain variants direct efficient expression, they are ideally suited as the N-terminal portion of a hybrid protein.

Example 23 – further hybrids

Further hybrid proteins of the invention are shown below (see also Figure 14). These are advantageous when compared to the individual proteins:

	ORF46.1	<u>-741</u>				
	1	ATGTCAGATT	TGGCAAACGA	TTCTTTTATC	CGGCAGGTTC	TCGACCGTCA
	51	GCATTTCGAA	CCCGACGGGA	AATACCACCT	ATTCGGCAGC	AGGGGGGAAC
	101			ATCGGATTGG		
15	151			ACAGGCGGCC		
	201			ACGGGCACGA		
	251			TCTGATGAAG		
	301			TTGGGACGGA		
	351			GCGGCGGCTA		
20	401			ATAAAAGGCG		
	451	AACCTGACCG	ACAACCGCAG	CACCGGACAA	CGGCTTGCCG	ACCGTTTCCA
	501			CGCAAGGAGT		
	551			CTGGACAGAT		
	601			CGTTAAAAAC		
25	651			CCGTGCAGGG		
	701			GGTCTGCTTT		
	751			TATGGCGCAA		
	801			TCCAAAACCC		
	851			ATGGCAGCCA		
30	901			CTTGGGCGGC		
	951			TCGCATTGCC		
	1001			GCATACGCCA		
	1051	TCCCGAAATA	TCCGTTCAAA	CTTGGAGCAG	CGTTACGGCA	AAGAAAACAT
	1101			CGTCAAACGG		
35	1151	ACCAACGCCA	CCCGAAGACA	GGCGTACCGT	TTGACGGTAA	AGGGTTTCCG
	1201			ATATGATACG		
	1251			GGCTTGCCGA		
	1301			CAGTCTTTGA		
	1351			GGCGGCACAA		
40	1401			CGGGCAAATT		
	1451			ATCGAAGTGG		
	1501	GAGAGTGGAG	AGTTCCAAGT	ATACAAACAA	AGCCATTCCG	CCTTAACCGC
	1551	CTTTCAGACC	GAGCAAATAC	AAGATTCGGA	GCATTCCGGG	AAGATGGTTG
	1601	CGAAACGCCA	GTTCAGAATC	GGCGACATAG	CGGGCGAACA	TACATCTTTT

	1651	GACAAGCTTC	CCGAAGGCGG	CAGGGCGACA	TATCGCGGGA	CGGCGTTCGG
	1701	TTCAGACGAT	GCCGGCGGAA	AACTGACCTA	CACCATAGAT	TTCGCCGCCA
	1751	AGCAGGGAAA	CGGCAAAATC	GAACATTTGA	AATCGCCAGA	ACTCAATGTC
5	1801	GACCTGGCCG	CCGCCGATAT	CAAGCCGGAT	GGAAAACGCC	ATGCCGTCAT
3	1851	CAGCGGTTCC	GTCCTTTACA	ACCAAGCCGA	GAAAGGCAGT	TACTCCCTCG
	1901	GTATCTTTGG	CGGAAAAGCC	CAGGAAGTTG	CCGGCAGCGC	GGAAGTGAAA
	1951			TATCGGCCTT	GCCGCCAAGC	AACTCGAGCA
	2001	CCACCACCAC	CACCACTGA			
10	1	MCDI.AMDCRT	POW.DPOHER	DIYOKVUI DOG	RGELAERSGH	7010770000
	51	LGNUMTOOAA	TECNTOYTUR	PSDHGHEVNS	PFDNHASHSD	TOTOVIOSHO
	101	FSLYRIHWDG	YEHHPADGYD	GPOGGGYPAP	KGARDIYSYD	TKGVAONTRI.
	151	NLTDNRSTGO	RLADRFHNAG	SMLTOGVGDG	FKRATRYSPE	LDRSGNAAEA
	201	FNGTADIVKN	IIGAAGEIVG	AGDAVQGISE	GSNIAVMHGL	GLLSTENKMA
15	251	RINDLADMAQ	LKDYAAAAIR	DWAVQNPNAA	QGIEAVSNIF	MAAIPIKGIG
	301	AVRGKYGLGG	ITAHPIKRSQ	MGAIALPKGK	SAVSDNFADA	AYAKYPSPYH
	351	SRNIRSNLEQ	RYGKENITSS	TVPPSNGKNV	KLADQRHPKT	GVPFDGKGFP
	401	NFEKHVKYDT	GSGGGGVAAD	IGAGLADALT	APLDHKDKGL	QSLTLDQSVR
20	451	KNEKLKLAAQ	GAEKTYGNGD	SLNTGKLKND	KVSRFDFIRQ	IEVDGQLITL
20	501	ESGEFQVYKQ	SHSALTAFQT	EQIQDSEHSG	KMVAKRQFRI	GDIAGEHTSF
	551	DKLPEGGRAT	YRGTAFGSDD	AGGKLTYTID	FAAKQGNGKI	EHLKSPELNV
	601 651				YSLGIFGGKA	QEVAGSAEVK
	. 651	TANGIRHIGH	AAKQLEHHHH	nn-		
25						
	ORF46.1	L-9 61				
	1	ATGTCAGATT	TGGCAAACGA	TTCTTTTATC	CGGCAGGTTC	TCGACCGTCA
	51	GCATTTCGAA	CCCGACGGGA	AATACCACCT	ATTCGGCAGC	AGGGGGGAAC
20	101	TTGCCGAGCG	CAGCGGCCAT	ATCGGATTGG	GAAAAATACA	AAGCCATCAG
30	151	TTGGGCAACC	TGATGATTCA	ACAGGCGGCC	ATTAAAGGAA	ATATCGGCTA
	201	CATTGTCCGC	TTTTCCGATC	ACGGGCACGA	AGTCCATTCC	CCCTTCGACA
	251 301	ACCATGCCTC	ACATTCCGAT	TCTGATGAAG	CCGGTAGTCC	CGTTGACGGA
	351	CCCCMAMCAC	ACCGCATCCA	TTGGGACGGA	TACGAACACC TCCCGCTCCC	ATCCCGCCGA
35	401	CCCATATGAC	CACCTACAGG	ATANAGECE	TTGCCCAAAA	AAAGGCGCGA
-	451	AACCTGACCG	ACAACCGCAG	CACCCCACAA	CGGCTTGCCG	ACCOMMUCCA
	501	CAATGCCGGT	AGTATGCTGA	CGCAAGGAGT	AGGCGACGGA	TTCAAACGCG
	551				CGGGCAATGC	
	601	TTCAACGGCA	CTGCAGATAT	CGTTAAAAAC	ATCATCGGCG	CGGCAGGAGA
40	651	AATTGTCGGC	GCAGGCGATG	CCGTGCAGGG	CATAAGCGAA	GGCTCAAACA
	701	TTGCTGTCAT	GCACGGCTTG	${\tt GGTCTGCTTT}$	CCACCGAAAA	CAAGATGGCG
	751	CGCATCAACG	ATTTGGCAGA	TATGGCGCAA	CTCAAAGACT	ATGCCGCAGC
	801	AGCCATCCGC	GATTGGGCAG	TCCAAAACCC	CAATGCCGCA	CAAGGCATAG
45	851 901				TCCCCATCAA	
73	951				ATCACGGCAC GAAAGGGAAA	
	1001				AATACCCGTC	
	1051				CGTTACGGCA	
	1101				CAAAAATGTC	
50	1151				TTGACGGTAA	
	1201				GGATCCGGAG	
	1251				CACTGTGGCC	
	1301				TCAAAGCTGG	
<i>e e</i>	1351				AAAAAAGACG	
55	1401				GGGTCTGAAA	
	1451				AACAAAACGT	
	1501				TTAACAACCA	
	1551 1601				CGCTCTGGAT	
60	1651				CGACATTTGC TTAGAAGCCG	
	1701				TATCGCCGAT	
	1751				AAACCGCCAA	
	1801	CAGACGGCCG				
	1851				CGCTGGCACA	
65	1901	CAGCCGACAA				
	1951				AAAAAAGCAA	
	2001	CGTGTACACC	AGAGAAGAGT	CTGACAGCAA	ATTTGTCAGA	ATTGATGGTC

	2051	TGAACGCTAC	ጥል ርርርልልልልል	ምምርር እር እ ር እር	CCTTCCCTTC	ጥርርጥር እ እ እ እ
	2101	TCCATTGCCG				
	2151				TGCAGAACAA	
	2201	CCGGTCTGTT				
5	2251	GTCGGCGGCT				
-	2301	CTTTACCGAA	AACTTTGCCG	CCAAAGCAGG	CGTGGCAGTC	GGCACTTCGT
	2351	CCGGTTCTTC	CGCAGCCTAC	CATGTCGGCG	TCAATTACGA	GTGGCTCGAG
	2401	CACCACCACC	ACCACCACTG	A		
10			DOLL DDOLLER	DDGWAH BGG	DODE VEDCOM	TOLCYTOCHO
10	1 51	MSDLANDSFI LGNLMIQQAA				
	101				KGARDIYSYD	
	151	NLTDNRSTGO				
	201				GSNIAVMHGL	
15	251				QGIEAVSNIF	
	301				SAVSDNFADA	
	351	SRNIRSNLEQ	RYGKENITSS	TVPPSNGKNV	KLADQRHPKT	GVPFDGKGFP
	401	NFEKHVKYDT	GSGGGGATND	DDVKKAATVA	IAAAYNNGQE	INGFKAGETI
	451				KVVTNLTKTV	
20	501				ATTNALNKLG	
	551				SLDETNTKAD	
	601	OTAEETKONV	DAKVKAAETA	AGKAEAAAGT	ANTAADKAEA	VAAKVTDIKA
	651				IDGLNATTEK	
25	701				AALSGLFQPY GTSSGSSAAY	
23	751 801	VGGYKSESAV HHHHHH+	AIGTGFRFTE	NEARCAGVAV	GISSGSSAAI	HAGANIEMER
	901	nanana.				
	ORF46.1					
30	1				CGGCAGGTTC	
	51	GCATTTCGAA	CCCGACGGGA	AATACCACCT	ATTCGGCAGC	AGGGGGGAAC
	101	TTGCCGAGCG	CAGCGGCCAT	ATCGGATTGG	GAAAAATACA ATTAAAGGAA	AAGCCATCAG
	151	TTGGGCAACC	TGATGATTCA	ACAGGCGGCC	ATTAAAGGAA	CCCTTCGACA
35	201 251	ACCATIGICCGC	ACAUTCCGATC	TOTGATGAAG	CCGGTAGTCC	CGTTGACGGA
33	301				TACGAACACC	
	351				TCCCGCTCCC	
	401	GGGATATATA	CAGCTACGAC	ATAAAAGGCG	TTGCCCAAAA	TATCCGCCTC
	451				CGGCTTGCCG	
40	501	CAATGCCGGT	AGTATGCTGA	CGCAAGGAGT	AGGCGACGGA	TTCAAACGCG
	551				CGGGCAATGC	
	601					CGGCAGGAGA
	651	AATTGTCGGC	GCAGGCGATG	CCGTGCAGGG	CATAAGCGAA	GGCTCAAACA
15	701	TTGCTGTCAT	GCACGGCTTG	GGTCTGCTTT	CCACCGAAAA CTCAAAGACT	AMCCCCCACC
45	751	ACCOMPACC	CAMPEGGGAGA	TATGGCGCAA	CICAAAGACI	CAAGGCATAG
	801 851					AGGGATTGGA
	901					ATCCTATCAA
	951	GCGGTCGCAG	ATGGGCGCGA	TCGCATTGCC	GAAAGGGAAA	TCCGCCGTCA
50	1001	GCGACAATTT	TGCCGATGCG	GCATACGCCA	AATACCCGTC	CCCTTACCAT
	1051	TCCCGAAATA	TCCGTTCAAA	CTTGGAGCAG	CGTTACGGCA	AAGAAAACAT
	1101	CACCTCCTCA	ACCGTGCCGC	CGTCAAACGG	CAAAAATGTC	AAACTGGCAG
	1151	ACCAACGCCA	CCCGAAGACA	GGCGTACCGT	TTGACGGTAA	AGGGTTTCCG
~ ~	1201	AATTTTGAGA	AGCACGTGAA	ATATGATACG	GGATCCGGAG	GAGGAGGAGC
55	1251	CACAAACGAC	GACGATGTTA	AAAAAGCTGC	CACTGTGGCC	ATTGCTGCTG
	1301	CCTACAACAA	TGGCCAAGAA	ATCAACGGTT	TCAAAGCTGG	AGAGACCATC CAACTGCAGC
	1351	CCAMCMMCAA	CCCCACGACT	TOTAL A ACCORD	CCCTCTCAAA	AAAGTCGTGA
	1401 1451	COATGITGAA	CTONDONA	ADAAAADTCI ADAAAADTAA	AACAAAACGT	CGATGCCAAA
60	1501	GTAAAAGCTG	CAGAATCTGA	AATAGAAAAG	TTAACAACCA	AGTTAGCAGA
	1551	CACTGATGCC	GCTTTAGCAG	ATACTGATGC	CGCTCTGGAT	GCAACCACCA
	1601	ACGCCTTGAA	TAAATTGGGA	GAAAATATAA	CGACATTTGC	TGAAGAGACT
	1651	AAGACAAATA	TCGTAAAAAT	TGATGAAAAA	TTAGAAGCCG	TGGCTGATAC
	1701	CGTCGACAAG	CATGCCGAAG	CATTCAACGA	TATCGCCGAT	TCATTGGATG
65	1751	AAACCAACAC	TAAGGCAGAC	GAAGCCGTCA	AAACCGCCAA	TGAAGCCAAA
	1801	CAGACGGCCG	AAGAAACCAA	ACAAAACGTC	GATGCCAAAG	TAAAAGCTGC
	1851	AGAAACTGCA	GCAGGCAAAG	CCGAAGCTGC	: CGCTGGCACA	GCTAATACTG

	1901	010000101				
	1951	CAGCCGACAA	GGCCGAAGCT	GTCGCTGCAA	AAGTTACCGA	CATCAAAGCT
	2001	COMOMACACO	CGAACAAAGA	TAATATTGCT	AAAAAAGCAA	ACAGTGCCGA
	2051	TGA ACCCTAC	MGAGAAGAGT	CTGACAGCAA TTGGACACAC	ATTTGTCAGA	ATTGATGGTC
5	2101	TCCAPTCCCC	ATCACCATAC	TCGCCTGAAC	CCMMMCCAMA	1GC1GAAAAA
	2151	AGACCTGCGC	AAAGAAACCC	GCCAAGGCCT	TCCACAACAA	CCCCCCCCCCCC
	2201	CCGGTCTGTT	CCAACCTTAC	AACGTGGGTC	TCGAGCACCA	CCACCACCAC
	2251	CACTGA			realisation	CUACUACUAC
10	_					
10	1	MSDLANDSFI	RQVLDRQHFE	PDGKYHLFGS	RGELAERSGH	IGLGKIQSHQ
	51 101	LGNLMIQQAA	IKGNIGYIVR	FSDHGHEVHS	PFDNHASHSD	SDEAGSPVDG
	151	L STIKTUMDG	I ADDEWNAC	GPQGGGYPAP SMLTQGVGDG	KGARDIYSYD	IKGVAQNIRL
	201	FNGTADIVKN	TIGANGETUG	AGDAVQGISE	CONTRIBUTE	LDRSGNAAEA
15	251	RINDLADMAO	LKDYAAAATR	DWAVQNPNAA	OGTRAVENTR	MAATRIKGIG
	301	AVRGKYGLGG	ITAHPIKRSO	MGAIALPKGK	SAVSDNFADA	AYAKYPSPYH
	351	SRNIRSNLEQ	RYGKENITSS	TVPPSNGKNV	KLADORHPKT	GVPFDGKGFP
	401	NFEKHVKYDT	GSGGGGATND	DDVKKAATVA	IAAAYNNGOE	INGFKAGETI
20	451	YDIDEDGTIT	KKDATAADVE	ADDFKGLGLK	KVVTNLTKTV	NENKQNVDAK
20	501	VKAAESEIEK	LTTKLADTDA	ALADTDAALD	ATTNALNKLG	ENITTFAEET
	551	KTNIVKIDEK	LEAVADTVDK	HAEAFNDIAD	SLDETNTKAD	EAVKTANEAK
	601 651	QTAEETKQNV	DAKVKAAETA	AGKAEAAAGT	ANTAADKARA	VAAKVTDIKA
	701			REESDSKFVR KETRQGLAEQ		
25	751	H*	GLDKIVSDLK	VETKÖGTMEÖ	AALSGLFQPY	NVGLEHHHHH
	961-ORF					
30	1	ATGGCCACAA	ACGACGACGA	TGTTAAAAAA	GCTGCCACTG	TGGCCATTGC
30	51	TGCTGCCTAC	AACAATGGCC	AAGAAATCAA	CGGTTTCAAA	GCTGGAGAGA
	101 151			GACGGCACAA		
	201			CGACTTTAAA CCGTCAATGA		
	251	CCAAAGTAAA	ACCTCCAGAA	TCTGAAATAG	AAACAAACAA	AACGTCGATG
35	301	GCAGACACTG	ATGCCGCTTT	AGCAGATACT	GATGCCGCTC	TGGATGCAAC
	351	CACCAACGCC	TTGAATAAAT	TGGGAGAAAA	TATAACGACA	TTTGCTGAAG
	401			AAAATTGATG		
	451			CGAAGCATTC		
40	501			CAGACGAAGC		
40	551			ACCAAACAAA		
	601 651			CAAAGCCGAA AAGCTGTCGC		
	701			AAAGATAATA		
	751			AGAGTCTGAC		
45	801			AAAAATTGGA		
	851			GATACTCGCC		
	901			AACCCGCCAA		
	951			CTTACAACGT		
50	1001			TCCGAATCGG		
20	1051			TGCCGCCAAA		
	1101 1151			CCTACCATGT GATTTGGCAA		
	1201			CGAACCCGAC		
	1251			AGCGCAGCGG		
55	1301			AACCTGATGA		
	1351			CCGCTTTTCC		
	1401			CCTCACATTC		
	1451	GTCCCGTTGA	CGGATTTAGC	CTTTACCGCA	TCCATTGGGA	CGGATACGAA
60	1501			TGACGGGCCA		
60	1551			TATACAGCTA		
	1601			ACCGACAACC		
	1651 1701			COGTAGTATG		
	1751			GATACAGCCC GGCACTGCAG		
65	1801	GGCGCGGCAG				
	1851			TCATGCACGG		
	1901			AACGATTTGG		

	1951	GACTATGCCG	CAGCAGCCAT	CCGCGATTGG	GCAGTCCAAA	ACCCCAATGC
	2001		ATAGAAGCCG			
	2051		TGGAGCTGTT			
_	2101		TCAAGCGGTC			
5	2151		GTCAGCGACA			
	2201		CCATTCCCGA			
	2251		ACATCACCTC			
	2301		GCAGACCAAC			
10	2351 2401		TCCGAATTTT ACCACCACTG		TGAAATATGA	TACGCTCGAG
10	2401	CACCACCACC	ACCACCACTG	A		
	1	MATINDDDDVKK	AATVAIAAAY	NNGOETNGEK	AGETTYDTDE	חפיידייצעהמיי
	51		GLGLKKVVTN			
	101		DAALDATTNA			
15	151		NDIADSLDET			
	201		AAAGTANTAA			
	251	ADVYTREESD	SKFVRIDGLN	ATTEKLDTRL	ASAEKSIADH	DTRLNGLDKT
	301		GLAEQAALSG			
00	351		AGVAVGTSSG			
20	401	_	GKYHLFGSRG			~~
	451		DHGHEVHSPF			
	501		QGGGYPAPKG			
	551 601		LTQGVGDGFK			
25	601 651		DAVQGISEGS AVQNPNAAQG			
23	701		AIALPKGKSA			
	751		PPSNGKNVKL			
	801	нинини*				DIGITATION
30	961-741					
	1		ACGACGACGA			
	51		AACAATGGCC			
	101		CATTGATGAA			
35	151 201		TTGAAGCCGA CTGACCAAAA			
<i>33</i>	4UL	CGIGACIAAC	CIGACCAAAA	CCGICMAIGA	AMMUMAMUMA	MALITILITATION
	251	CCAAACMAAA	ACCTCCACAA			
	251 301		AGCTGCAGAA ATGCCGCTTTT	TCTGAAATAG	AAAAGTTAAC	AACCAAGTTA
	301	GCAGACACTG	ATGCCGCTTT	TCTGAAATAG AGCAGATACT	AAAAGTTAAC GATGCCGCTC	AACCAAGTTA TGGATGCAAC
		GCAGACACTG CACCAACGCC	ATGCCGCTTT TTGAATAAAT	TCTGAAATAG AGCAGATACT TGGGAGAAAA	AAAAGTTAAC GATGCCGCTC TATAACGACA	AACCAAGTTA TGGATGCAAC TTTGCTGAAG
40	301 351	GCAGACACTG CACCAACGCC AGACTAAGAC	ATGCCGCTTT	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT
40	301 351 401	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG	ATGCCGCTTT TTGAATAAAT AAATATCGTA	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT
40	301 351 401 451 501 551	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA
40	301 351 401 451 501 551 601	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA GCACAGCTAA
	301 351 401 451 501 551 601 651	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA GCACAGCTAA ACCGACATCA
40 45	301 351 401 451 501 551 601 651	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA GCACAGCTAA ACCGACATCA
	301 351 401 451 501 551 601 651 701	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA GCACAGCTAA ACCGACATCA AGCAAACAGT TCAGAATTGA
	301 351 401 451 501 551 601 651 701 751	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAAATTGGA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA GCACAGCTAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG
	301 351 401 451 501 551 601 651 701 751 801 851	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTTT	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA GCACAGCTAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA
45	301 351 401 451 501 551 601 651 701 751 801 851 901	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GTGTCAGACC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCCGCAAAGA	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTTT GGCCTTGCAG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA GCACAGCTAA ACCGACATCA TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC
	301 351 401 451 501 551 601 651 701 751 801 851	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GAAAAATCCAT GTGTCAGACC GCTCTCCGGT	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG
45	301 351 401 451 501 551 601 651 701 751 801 851 901	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC AAAAATCCAT GTGTCAGACC GCTCTCCGGT CTGCAGTCGG	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCCGCAAAGA CTGTTCCAAC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT TCCGAATCGG	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC CAGTCGCAT	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG CGGTACCGGC
45	301 351 401 451 501 551 601 651 701 751 801 851 901 951	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC AAAAATCCAT GTGTCAGACC GCTCTCCGGT CTGCAGTCG TTCCGCTTTA	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT TCCGAATCGG TGCCGCCAAA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC CAGTCGCCAT GCAGGCGTTG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG CGGTACCGGC CAGTCGGCAC
45 50	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1101 1151	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GAAAAATCCAT GTGTCAGACC GCTCTCCGGT CTGCAGTCG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT TCCGAATCGG TGCCGCCAAA CCTACCATGT GCCGCCGACA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC CAGTCGCCAT CCAGGCGTGG CGGCGTCAAT TCGGTGCGGG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACG CGGTACCGGC CAGTCGGCAC TACGAGTGGG GCTTGCCGAT
45	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GAAAAATCCAT GTGTCAGACC GCTCTCCGGT CTGCAGTCG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG GCACTTAACCG	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT TCCGAATCGG TGCCGCCAAA CCTACCATGT GCCGCCGACA CCTACCATGAC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC CAGTCGCCAT CCAGTCGCAT CCAGTCGCCAT TCGGTGCGGG CGGCGTCAAT TCGGTGCGGG AAAGGTTTGC	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG CGGTACCGGC CAGTCGGCAC TACGAGTGGG GCTTGCCGAT AGTCTTTGAC
45 50	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GTGTCAGACC GCTCTCCGGT CTGCAGTCG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG GCACTAACCG GCTGGATCAG	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA TCCGTCAGGA	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT TCCGAATCGG TGCCGCCAAA CCTACCATGT GCCGCCGACA CCTAAAAGAC AAAACGAGAA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC CAGTCGCCAT CCAGTCGCCAT TCGGTGCGGG CGGCGTCAAT TCGGTGCGGG AAAGGTTTGC ACTGAAGCTG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACG CGGTACCGGC CAGTCGGCAC TACGAGTGGG GCTTGCCGAT AGTCTTTGAC GCGGCACAAG
45 50	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GTGTCAGACC GCTCTCCGGT CTGCAGTCG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG GCACTAACCG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA ACCTGCAGGA ACCTTATGGA	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT TCCGAATCGG TGCCGCCAAA CCTACCATGT GCCGCCGACA CCATAAAGAC AAAACGAGAA AACGGGAAA AACGGGAAA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC CAGTCGCCAT GCAGGCGTGG CGGCGTCAAT TCGGTGCGGG AAAGGTTTGC ACTGAAGCTG GCTTGAACGTTTGC ACTGAAGCTTG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG CGGTACCGGC CAGTCGGCAC TACGAGTGGG GCTTGCCGAT AGTCTTTGAC GCGGCACAAG GCGGCACAAG
45 50	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1351	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GTGTCAGACC GCTCTCCGGT CTGCAGTCG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG GCACTAACCG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG GTGCGGAAAA AAGAACGACA	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA CTGCGCAAAGA CTGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA ACTTATGGA AACTTATGGA AACTTATGGA AGGTCAGCCG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CATACCGCCAA CTTACAACGT TCCGAATCGG TGCCGCCAAA CCTACCATGT GCCGCCAAA CCTACATGT GCCGCCGACA CCTAAAGAC AAAACGAGAA AACGGGACA AAACGAGAA AACGGTGACA TTTCGACTTT	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCAGTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCTTGCAG GGGTCGGTTC CAGTCGCCAT TCGGTGCCAT TCGGTGCGCAT TCGGTGCGCAT TCGGTGCGGG AAAGGTTTGC ACTGAAGCTG ACTGAAGCTTG ACTGAAGCTTG ACTGAAGCTTG ACTGAAGCTAA	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG CAGTGCGCC CAGTCGGCAC TACGAGTGGCAC TACGAGTGGCAC GCTTCTCTGTG GCTTCTCCCAT AGCTTTTGAC GCGCACAAG GCGCACAAG GCGCACAAG
45 50 55	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1351 1401	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GTGTCAGACC GCTCTCCGGT CTGCAGTCG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG GCACTAACCG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGATCAG GCTGGGATCAG GCTGGGATCAG CGGGCAGCTC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA TCCGTCAGGA AACTTATGGA AGGTCAGCCG ATTACCTTGG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CATACACGT TCCGAATCGG TGCCGCCAA CCTACCATGT GCCGCCGACA CCTACCATGT GCCGCCGACA CCATAAAGAC AAAACGAGAA AACGGTGACA TTTCGACTTT AGAGTGGAGA	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTC CAGTCGCCAT GCAGGCGTGG CGGCGTCAAT TCGGTGCGGG AAAGGTTTGC ACTGAAGCTG ACTGAAGCTG ACTGAAGCTG ACTGAAGCTAA GTTCCAAGTA	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG CGGTACCGGC CAGTCGGCAC TACGAGTGGG GCTTTTGAC GCGCACAAG GCGCACAAG GCGCACAAG GCGCACAAA TGGAAGTTGA CGGGCACAAG GCGCACAAA
45 50	301 351 401 451 501 551 601 651 701 751 801 951 1001 1151 1201 1251 1301 1351 1401 1451	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GTGTCAGACC GCTCTCCGGT CTGCAGTCGG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG GCACTAACCG GCTGGATCAG GCTGGATCAG GCGGGAAAA AAGAACGACA CGGGCAGCTC GCCATTCCGC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA TCCGTCAGGA AACTTATGGA AACTTATGGA AGGTCAGCCC CTTAACCCCC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CATACCGCCAA CCTACAACGT TCCGAATCGG GCCGCCAA CCTACATGG GCCGCCAA CCTACATGT GCCGCCAAA CCTACATGT GCCGCCGACA CCTAAAGAC TTCCGACTTT AGAGTGACA TTTCGACTTT AGAGTGGAGA TTTCGACTGT	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCAGTGT TGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCTTGCAG GGGTCGGTTC CAGTCGCAT TCGGTGCAT AACGTTTGC ACTGAAGCTT GCCTCAATAC ATCCGCCAAA GTTCCAAGTA	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGG CAGTGCGCA TACGAGTGGCAC TACGAGTGGCAC TACGAGTGGCAC GCTTCTTTGAC GCGCACAAG GCGCACAAG GGGCACAAG GGGCACAATTG TCGAAGTGGA TACAAACAAA AGATTCGGAG
45 50 55	301 351 401 451 501 551 601 651 701 751 801 951 1001 1151 1201 1251 1301 1351 1401 1451 1501	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GTGTCAGACC GCTCTCCGGT CTGCAGTCGG TTCCGCTTTA TTCGTCCGGT GATCCGGAGG GCACTAACCG GCTGGATCAG GCTGGATCAG GCGGGAAAA AAGAACGACA CGGGCAGCTC GCCATTCCGC CATTCCGCGA	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA TCCGTCAGGA AACTTATGGA AACTTATGGA AGGTCAGCCC ATTACCTTCG CTTAACCCCC AGATGGTTGC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CATACCACGC AACCCGCCAA CCTACAACGT TCCGAATCGG TCCGCCAAA CCTACAACGT GCCGCCAAA CCTACATGG CCATAAAGAC AAAACGAGAA AACGGTGACA TTTCGACTTT AGAGTGGAGA TTTCGACTGG GAAACGCCG GAAACGCCAG	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCAGCTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCTTGCAG GGGTCGGTTC CAGTCGCAT TCGGTGCAT TCGGTGCAT TCGGTGCAT TCGGTGCAT TCGGTGCAT TCGGTGCAT TCGGTGCAT TCGGTGCAT ACGGTTTGCAG AAAGGTTTGC ACTGAAGCTT GCCTCAATAC ATCCGCCAAA GTTCCAAGTA AGCAAATACA TTCAGAATCG	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCGC AATGTAACGC CAGTCGGCAC TACGAGTGGCAC TACGAGTGGCAC TACGAGTGGCAC GCTTCTTTGAC GCGCACAAG GCGCACAAG GGGCACAAATTG TCGAAGTGGA TACAAACCAA AGATTCGGAG GCGCACAAAA AGATTCGGAG GCGACATAGC
45 50 55	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1351 1401 1451 1501 1551	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GATACCAT GTGTCAGACC GCTCTCCGGT TTCCGCTTTA TTCGTCCGGT GTCCGAGTGACC GCACTAACCG GCACTAACCG GCACTAACCG GCACTAACCG GCACTAACCG GCACTAACCG GCACTAACCG GCACTACCG GCACTACCG GCCGCAAAA AAGAACGACA CGGGCAGCTC GCCATTCCGCG CATTCCGGGA GGGCGAACAT	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CCGAAACAT TCTTCCGCAG GGGTGGTGT CACCGCTCGA TCCGTCAGGA ACTTATGGA ACTTATGGA AGGTCAGCCG ATTACCTTGG CTTAACCGCC AGATGGTTGC ACATCTTTTG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CATACCACCAA CTTACAACGT TCCGAATCGG TGCCGCCAA CCTACCATGT GCCGCCAAA CCTACCATGT GCCGCCGACA CCATAAAGAC AAAACGAGAA AACGGTGACA TTTCGACTTT AGAGTGGAGA TTTCGACTTC AGAGTGGAGA TTTCAGACCG GAAACGCCAG ACAAGCTTCC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGTTC CAGTCGCCAT GCAGCGTTG CAGTCGCCAT TCGGTGCGGG AAAGGTTTGC ACTGAAGCTTG ACTGAAGCTTG GCCTCAATAC ATCCGCCAAA GTTCCAAGTA AGCAAATACA TTCAGAATCC CGAAGGCGGC	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGC CAGTCGGCAC TACGAGTGGG CGGTACCGGC TACGAGTGGG GCTTGCCGAT AGTCTTTGAC GCGCACAAG GCGCACAATG TCGAAGTGGA TCGAAGTGGA TCGAAGTGGA AGTCTTTGAC GCGCACAAAC AGATTCGGAG TCGAAGTGGA TCGAAGTAGC AGGGCGACATAGC
45505560	301 351 401 451 501 551 601 651 701 751 801 951 1001 1151 1201 1251 1301 1351 1401 1451 1501	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC AAAAATCCAT GTGTCAGACC GCTGCAGTCG TTCCGGT TTCGTCCGGT GATCCGGAG GCACTAACC GCTGGATCAG GCTGGATCAG GCGCGAAAA AAGAACGACA CGGGCAGCTC GCCATTCCGGC CATTCCGGAC GCCATTCCGCAC GCGCACCC CATTCCGCACC CATTCCGCACC CATTCCGCACC CATTCCGCACC CATTCCGCACC CATTCCGCGACACC CGCCATTCCGCC CATTCCGCGACACC CGCCACCC CATTCCGCGCACC CATTCCGCGCACC CATTCCGCGCACC CATTCCGCGCACC CATTCCGCGCACC CATTCCGCGCACC CACCCCCCCCCC	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CTGTTCCAAC CGGCTACAAA CCGAAAACTT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA TCCGTCAGGA AACTTATGGA AACTTATGGA AGGTCAGCCC ATTACCTTCG CTTAACCCCC AGATGGTTGC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CTTACAACGT TCCGAATCGG TCCGCCAAA CCTACCATGT GCCGCCAAA CCTACCATGT GCCGCCGACA CCATACAGAC AAAACGAGAA AACGGTGACA TTTCGACTTT AGAGTGGAGA TTTCGACTTT AGAGTGGAGA TTTCAGACCG GAAACGCCAG ACAAGCTTCC TCAGACGTTC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGCTG CAGTCGCCAT TCGGCGTAAT TCGGTGCGGG AAAGGTTTG GCCTCAATAC ACTCAAGTA ATCCGCCAAA GTTCCAAGTA AGCAAATACA TTCAGAATCG CGAAGGCGGC CCGGCGGAAA	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCGC AATGTAACGC CAGTCGGCAC TACGAGTGGC TACGAGTGGC GCTTCTGCTG TGCTGCTGT TGCTGCTGT AGTCTTTGAC GCGCACAAG GCGCACATG AGTCTTTGAC GCGCACAAG GCGCACATG TCGAAGTGGA TCGACTTAC
45 50 55	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1451 1401 1451 1501	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC AAAAATCCAT GTGTCAGACC GCTCTCCGGT TTCCGCTTTA TTCGTCCGGT GTCCGGAAACG GCACTAACCG GCTGGATCAG GCACTAACCG GCTGGATCAG GCACTACCG GCTGGATCAG GCCGCAAAA AAGAACGACA CGGGCAACAT ACGCGGGACAT ATCGCGGGA ACCATAGATT	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCCGATCAC CGGCTACAAC CCGAAACAT TCTTCCGCAG TCCGCTCGA TCCGTCAGGA ACTTATGGA ACTTATGGA AGGTCAGCCG ATTACCTTGG CTTAACCGCC AGATGGTTCCAAC CGGCTTCGCC ACATCGTTCCCAAC CTTACCCCC AGATGGTTCCCACCC AGATGGTTCCCACCC ACATCGTTCCCCACAC	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CATACCACCAA CTTACAACGT TCCGAATCGG CCAAA CCTACCATGT GCCGCCAAA CCTACCATGT GCCGCCGACA AAACGAGAC AAAACGAGAA AACGGTGACA TTTCGACTTT AGAGTGGAGA TTTCAGACCG GAAACGCCAG CAAACGCTAC CTAGACCGC GAAACGCAG ACAGGTTCC TCAGACGATG GCAGGGAAAC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTG CAGTCGCCAT CCAGTCGCAT TCGGCGTAAT TCGGTGCGGG AAAGTTTG ACTGAAGCTTG CAGTCGCGAT TCGGTGCGGG AAAGTTTCC ACTGAAGCTTG CCTCAATAC ATCCGCCAAA GTTCCAAGTA AGCAAATACA TTCAGAATCC CGAAGGCGGC CCGGCGGAAA GGCAAAATCC	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCGC AATGTAACGC CAGTCGGCAC TACGAGTGGC TACGAGTGGC GCTTCTGCTG TGCTGCTGT TGCTGCTGT AGTCTTTGAC GCGCACAAG GCGCACATG AGTCTTTGAC GCGCACAAG GCGCACATG TCGAAGTGGA TCGACTTAC
45505560	301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1151 1201 1251 1301 1451 1401 1551 1601 1651	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC AAAAATCCAT GTGTCAGACC GCTCTCCGGT TTCCGCTTTA TTCGTCCGGT GTCCGAGTCAGACC GCTGCAGTCAGC GCACTAACCG GCACTAACCG GCACTAACCG GCTGGATCAG GCGCAAAA AAGAACGACA CGGGCAGCTC GCATTCCGGGA AAGAACGACA CGGGCAGCTC CGCATTCCGGCAAA AAGAACGACA CGGGCAACAT ATCGCGGGAC ACCATAGATT ATCGCCGGAAA	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCGCAAAGA CCGAAACAT TCTTCCGCAG TCCGTCGGA TCCGTCAGG AACTTATGGA ACTTATGGA ACTTATGGA AGGTCAGCCG ATTACCTTGG CTTAACCGCC AGATGGTTCGAT CCGCTTCGA CTTACCTTGG CTTACCGCC AGATGGTTCGCT ACATCTTTTG GCCGCTCAA CTCAATGTCG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA CATACCACCAA CTTACAACGT TCCGAATCGG CCAAA CCTACCATGT GCCGCCAAA CCTACCATGT AAAACGAGAA AACGGTGACA TTTCGACTTT AGAGTGGAGA TTTCGACTTT AGAGTGGAGA TTTCAGACCG GAAACGCCAG CAAACGCCAG CTACACTTT AGAGTGAGA ACGGTGACA TTTCGACTTT AGAGTGGAGA TTTCAGACCG GAAACGCCAG CCAGAGCGATG CCAGGGGAAAC ACAGGTTCC TCAGACGATG CCAGGGGAAAC ACCTGGCCGC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGGTTG CAGTCGCCAT TCGGCGTAAT TCGGTGCGCG AAAGGTTTG ACTGAAGCTTG CACTCAATAC ATCCGCCAAA GTTCCAAGTA ATCCGCCAAA TTCAGAATCC CGAAGGCGGC CCGGCGGAAA GCCAAAATCC CCGCCGATATC CGCCGATATC	AACCAAGTTA TGGATGCAAC TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGC CAGTCGGCAC TACGAGTGGG GCTTCTGCTG TGCTGTTGCCGAT AGTCTTTGAC GCGCACAAACAG GCGCACATG AGTCTTTGAC GCGCACAAG GCGCACATG TCGAAGTGGA TCGAAGTTGGAA
45505560	301 351 401 451 501 551 601 651 701 751 801 851 901 1051 1101 1151 1201 1251 1301 1451 1401 1551 1601 1651 1701	GCAGACACTG CACCAACGCC AGACTAAGAC GATACCGTCG GGATGAAACC CCAAACAGAC GCTGCAGAAA TACTGCAGCC AAGCTGATAT GCCGACGTGT TGGTCTGAAC GATACCGT GTGCAGTCG TTCCGGT TTCGGTCTGA TTCGTCTGGT TTCGTCTGGT GATCCGGT GATCCGGAAA AAGAACGCCA AAGAACGCCA GCGCAACAT ATCGCGGGA ACGCCATTCCGGA ACGACTCCGC CATTCCGGA ACGACTCCCGC CATTCCGCAACA CGGCAACAT ACGCGGAACAT ATCGCGGGAC ACCATAGATT ATCGCCGGAA GAAAACGCCA	ATGCCGCTTT TTGAATAAAT AAATATCGTA ACAAGCATGC AACACTAAGG GGCCGAAGAA CTGCAGCAGG GACAAGGCCG CGCTACGAAC ACACCAGAGA GCTACTACCG TGCCGATCAC TGCCGATCAC TGCTACAAC CGGAAACAT TCTTCCGCAG GGGTGGTGTC CACCGCTCGA ACCTTATGGA ACCTTATGGA ACGTCAGCCG ATTACCTTGG CTTAACCGC AGATGGTTGC ACATCTTTTG GCCGTTCGCT TCGCCGCCAA CTCAATGTCG TCGCCGCCAA CTCAATGTCG TCGCCGCCAA CTCAATGTCG	TCTGAAATAG AGCAGATACT TGGGAGAAAA AAAATTGATG CGAAGCATTC CAGACGAAGC ACCAAACAAA CAAAGCCGAA AAGCTGTCGC AAAGATAATA AGAGTCTGAC AAAAATTGGA GATACTCGCC AACCCGCCAA CTTACAACGT TCCGAATCGG TGCCGCCAAA CCTACCATGT GCCGCCGACA CCTACCATGT GCCGCGACA TTTCGACTTT AGAGTGACA TTTCGACTTT AGAGTGACA TTTCAGACCG GAAACGCCAG CTACCATGT TCGACTTT AGAGTGACA TTTCAGACCG GAAACGCCAG ACAAGCTTCC TCAGACGATG GCAGGGAAAC ACCTGGCCGC ACCTGGCCGC ACCTGGCCGC	AAAAGTTAAC GATGCCGCTC TATAACGACA AAAAATTAGA AACGATATCG CGTCAAAACC ACGTCGATGC GCTGCCGCTG TGCAAAAGTT TTGCTAAAAA AGCAAATTTG CACACGCTTG TGAACGGTTT GGCCTTGCAG GGGTCGATT CAGTCGCCAT TCGGTGCGGG AAAGGTTTC GCTGAAGGTTG ACTGAAGTTG ACTGAAGTTG ACTGAAGTTG ACTGAAGTTC ACTGAATACA TTCAGAATACA TTCAGAATCC CGAAGGCGGC CGGCGGAAA GCCAAAATCC CGAAGGCGGC CGGCGGAAA GCCAAAATCC CCGCCGATATC TCCTTTACAA	TGGATGCAAG TTGGATGCAAG TTTGCTGAAG AGCCGTGGCT CCGATTCATT GCCAATGAAG CAAAGTAAAA ACCGACATCA AGCAAACAGT TCAGAATTGA GCTTCTGCTG GGATAAAACA AACAAGCCGC AATGTAACGC CAGTCGGCAC TACGAGTGGC TACGAGTGGC TACGAGTGGC GCGCACAAG GCGCACAAG GCGCACAAG GGGCAAATTG TCGAAGTGGA TCGAGTGGA TCGAAGTGGA TCGAAGTGGA AGTTTGCAAG CGGCACATAG CGGCACATAG AGATTCGGAG GCGACATAGC AGGGCGACAT ACTGACCTAC AACATTTGAA AAGCCGGATG

	1851 1901	CGGCAGCGCG CCGCCAAGCA	GAAGTGAAAA ACTCGAGCAC	CCGTAAACGG CACCACCACC	CATACGCCAT ACCACTGA	ATCGGCCTTG
5	1 51 101	AADVEADDFK ADTDAALADT	GLGLKKVVTN DAALDATTNA	LTKTVNENKQ LNKLGENITT	AGETIYDIDE NVDAKVKAAE FAEETKTNIV	SEIEKLTTKL KIDEKLEAVA
	151 201 251	AAETAAGKAE	AAAGTANTAA	DKAEAVAAKV	ANEAKQTAEE TDIKADIATN ASAEKSIADH	KDNIAKKANS
10	301 351 401	VSDLRKETRQ FRFTENFAAK	GLABQAALSG AGVAVGTSSG	LFQPYNVGRF SSAAYHVGVN	NVTAAVGGYK YEWGSGGGGV AAQGAEKTYG	SESAVAIGTG AADIGAGLAD
15	451 501 551	KNDKVSRFDF HSGKMVAKRQ	IRQIEVDGQL FRIGDIAGEH	ITLESGEFQV TSFDKLPEGG	YKQSHSALTA RATYRGTAFG	FQTEQIQDSE SDDAGGKLTY
13	601				KPDGKRHAVI IGLAAKQLEH	
00	961-983					
20	1	ATGGCCACAA	ACGACGACGA	TGTTAAAAAA	GCTGCCACTG	TGGCCATTGC
	51 101				CGGTTTCAAA TTACCAAAAA	
•	151				GGTCTGGGTC	
	201				AAACAAACAA	
25	251	CCAAAGTAAA	AGCTGCAGAA	TCTGAAATAG	AAAAGTTAAC	AACCAAGTTA
	301				GATGCCGCTC	
	351 401				TATAACGACA	
	451				AAAAATTAGA AACGATATCG	
30	501				CGTCAAAACC	
	551				ACGTCGATGC	
	601	GCTGCAGAAA	CTGCAGCAGG	CAAAGCCGAA	GCTGCCGCTG	GCACAGCTAA
	651				TGCAAAAGTT	
35	701 751				TTGCTAAAAA	
<i>JJ</i>	801				AGCAAATTTG CACACGCTTG	
	851				TGAACGGTTT	
	901				GGCCTTGCAG	
40	951				GGGTCGGTTC	
40	1001				CAGTCGCCAT	
	1051 1101				GCAGGCGTGG	
	1151				CGGCGTCAAT	
	1201				GCGAAATCAG	
45	1251				AGACAGAAGC	
	1301	CCGGTCGGGA	TGACGTTGCG	GTTACAGACA	GGGATGCCAA	AATCAATGCC
	1351				CCAAACCCAA	
	1401 1451				TGAAGCAGGC GCGAATCCGT	
50	1501				CACGGCTATA	
	1551				AGCGCCTGAA	
	1601				AGGCCGTTAT	
	1651				GAAATCGGAC	
55	1701				GGACGGCAGA	
33	1751 1801				TGAATACGAA AATGCATGGG	
	1851	CGAACGTGGC	GTGCGCATCG	TCAATAACAG	TTTTGGAACA	ACATCGAGGG
	1901	CAGGCACTGC	CGACCTTTTC	CAAATAGCCA	ATTCGGAGGA	GCAGTACCGC
60	1951				AAAACAGACG	
60	2001	CCTGATGCAA	CAGAGCGATT	ACGGCAACCT	GTCCTACCAC	ATCCGTAATA
	2051				ATGACGCACA	
	2101 2151				AAAGACGCTC	
	2201				AGAAAAGTTC AGTATGGCTC	
65	2251				CCCTATGAAG	
	2301				CGGAACATCC	
	2351				TGCAGAAATA	

. . .

....

	2401	1001100101	3.00m000m3.0	ON COMPOONS	ACCACCCMC	3/C2 C3/D3/D000
	2401				ACGACGGCTC GGGACTGCTG	
	2451				TCGGCGACTT	
	2501				TTCCGTAACG	
5	2551				CCAACTGCAA	
3	2601 2651				AAGGCGGTTC	
	2701				GAAACCAAAG	
	2751				GAACAGCGAC	
	2801				ACGAAACCGT	
10	2851				CTGTACACAC	
	2901				CGGCGGCAAG	
	2951	CGGCACGCGG	CAAGGGGGCA	GGCTATCTCA	ACAGTACCGG	ACGACGTGTT
	3001	CCCTTCCTGA	GTGCCGCCAA	AATCGGGCAG	GATTATTCTT	TCTTCACAAA
	3051	CATCGAAACC	GACGGCGGCC	TGCTGGCTTC	CCTCGACAGC	GTCGAAAAAA
15	3101	CAGCGGGCAG	TGAAGGCGAC	ACGCTGTCCT	ATTATGTCCG	TCGCGGCAAT
	3151	GCGGCACGGA	CTGCTTCGGC	AGCGGCACAT	TCCGCGCCCG	CCGGTCTGAA
	3201	ACACGCCGTA	GAACAGGGCG	GCAGCAATCT	GGAAAACCTG	ATGGTCGAAC
	3251	TGGATGCCTC	CGAATCATCC	GCAACACCCG	AGACGGTTGA	AACTGCGGCA
	3301	GCCGACCGCA	CAGATATGCC	GGGCATCCGC	CCCTACGGCG	CAACTTTCCG
20	3351				CGCCGACGGT	
	3401				ACAGTACCGC	
	3451				TCGGACGGGT	
	3501				CCAACAGGAC	
25	3551				GCGGCAGTAC	
25	3601				ACAGCAGCCG	
	3651				TGCAAATGCA	
	3701				ATGCGGGCGA AAAAACAGCA	
	3751 3801				CGTCAACGGC	
30	3851				CGTTTGCCGC	
50	3901				CTGCTCAAAC	
	3951				CGGCAACAGC	
	4001				TGTCGCAACC	
	4051				GAACGCGACC	
35	4101	CGACTACACG	GTAACGGGCG	GCTTTACCGG	CGCGACTGCA	GCAACCGGCA
	4151	AGACGGGGGC	ACGCAATATG	CCGCACACCC	GTCTGGTTGC	CGGCCTGGGC
	4201				GGCTTGGCAC	
	4251				CGGACGAGTC	GGCGTAGGCT
40	4301	ACCGGTTCCT	CGAGCACCAC	CACCACCACC	ACTGA	
40						
	1				AGETIYDIDE	
	51			_	NVDAKVKAAE	
	101				FAEETKTNIV ANEAKOTAEE	
45	151				TDIKADIATN	
43	201 251				ASAEKSIADH	
	301				NVTAAVGGYK	
	351				YEWGSGGGGT	
	401				MLCAGRDDVA	
50	451				YTGRGVEVGI	
	501	SFPELYGRKE	HGYNENYKNY	TAYMRKEAPE	DGGGKDIEAS	FDDEAVIETE
	551	AKPTDIRHVK	EIGHIDLVSH	IIGGRSVDGR	PAGGIAPDAT	LHIMNTNDET
	601				TSRAGTADLF	
	651				IRNKNMLFIF	
55	701				KREMYGEPGT	
	751				FSAPIVTGTA	
	801				DAGKAMNGPA	
	851				LHGNNTYTGK	
60	901				GIVYLADTDQ	
60	951				LYMSARGKGA	
	1001				VEKTAGSEGD MVELDASESS	
	1051				WRIFNSLAAT	
	1101 1151					GKMRGSTQTV
65	1201	CLV V KACENIA	TEGENTING IG	STWSENSANA	KTDSISLFAG	IRHDAGDIGY
00	1251	I.KGT.FSVGPV	KNSTSRSTGA	DEHAEGSVNG	TLMOLGALGG	VNVPFAATGD
	1301					GLKLSQPLSD
		,				~

1401

551

601

651

701

65

KAVLFATAGV ERDLNGRDYT VTGGFTGATA ATGKTGARNM PHTRLVAGLG

ADVEFGNGWN GLARYSYAGS KQYGNHSGRV GVGYRFLEHH HHHH+

				-		
_						
5	961c-OR	F46.1				
	1	ATGGCCACAA	ACGACGACGA	TGTTAAAAAA	GCTGCCACTG	TGGCCATTGC
	51	TGCTGCCTAC	AACAATGGCC	AAGAAATCAA	CGGTTTCAAA	GCTGGAGAGA
	101	CCATCTACGA	CATTGATGAA	GACGGCACAA	TTACCAAAAA	AGACGCAACT
4.0	151	GCAGCCGATG	TTGAAGCCGA	CGACTTTAAA	GGTCTGGGTC	TGAAAAAAGT
10	201		CTGACCAAAA			
	251		AGCTGCAGAA			
	301		ATGCCGCTTT			
	351		TTGAATAAAT			
1.7	401		AAATATCGTA			
15	451		ACAAGCATGC			
	501		AACACTAAGG			
	551	CCAAACAGAC	GGCCGAAGAA	ACCAAACAAA	ACGTCGATGC	CAAAGTAAAA
	601		CTGCAGCAGG			
20	651		GACAAGGCCG			
20	701		CGCTACGAAC			
	751		ACACCAGAGA			
	801		GCTACTACCG			
	851		TGCCGATCAC			
25	901	GTGTCAGACC	TGCGCAAAGA	AACCCGCCAA	GGCCTTGCAG	AACAAGCCGC
23	951		CTGTTCCAAC			
	1001		GGCAAACGAT			
	1051		CCGACGGGAA			
	1101		AGCGGCCATA			
30	1151 1201		GATGATTCAA			
50	1251		TTTCCGATCA			
	1301		CATTCCGATT CCGCATCCAT			
	1351	CCCTATCACC	GGCCACAGGG	CCCCCCCTAT	CCCCCTCCCA	AACCCCCCAC
	1401		AGCTACGACA			
35	1451		CAACCGCAGC			
	1501		GTATGCTGAC			
	1551		AGCCCCGAGC			
	1601		TGCAGATATC			
	1651		CAGGCGATGC			
40	1701		CACGGCTTGG			
	1751		TTTGGCAGAT			
	1801		ATTGGGCAGT			
	1851	AGCCGTCAGC	AATATCTTTA	TGGCAGCCAT	CCCCATCAAA	GGGATTGGAG
4	1901		AAAATACGGC			
45	1951	CGGTCGCAGA	TGGGCGCGAT	CGCATTGCCG	AAAGGGAAAT	CCGCCGTCAG
	2001		GCCGATGCGG			
	2051	CCCGAAATAT	CCGTTCAAAC	TTGGAGCAGC	GTTACGGCAA	AGAAAACATC
	2101					AACTGGCAGA
50	2151					GGGTTTCCGA
50	2201		GCACGTGAAA	TATGATACGC	TCGAGCACCA	CCACCACCAC
	2251	CACTGA				
	•	***************************************				
	1 51		AATVAIAAAY			
55			GLGLKKVVTN			
JJ	101 151		DAALDATTNA NDIADSLDET			
	201					
	201 251	VURTURGIVE	AAAGTANTAA SKFVRIDGLN	PANEWAWKA PANEWAWKA	TOTAMOTATA	VONTAKKANS
	301		GLAEQAALSG			
60	351	HEEDDOKAHL	FGSRGELAER	SCHICLURIO PER CELEVISION CONTRACTOR CONTRAC	CHUT CMI MIC	ON Y TROMEON
	401		VHSPFDNHAS			
	451		PAPKGARDIY			
	501		GDGFKRATRY			
	551					VANIIGAAGE

IVGAGDAVQG ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA

AIRDWAVQNP NAAQGIEAVS NIFMAAIPIK GIGAVRGKYG LGGITAHPIK

RSQMGAIALP KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKENI

TSSTVPPSNG KNVKLADQRH PKTGVPFDGK GFPNFEKHVK YDTLEHHHHH

751 H*

_	961c-74	<u>1</u>				
5	1	ATGGCCACAA	ACGACGACGA	TGTTAAAAAA	GCTGCCACTG	TGGCCATTGC
	51	TGCTGCCTAC	AACAATGGCC	AAGAAATCAA	CGGTTTCAAA	GCTGGAGAGA
	101	CCATCTACGA	CATTGATGAA	GACGGCACAA	TTACCAAAAA	AGACGCAACT
	151	GCAGCCGATG	TTGAAGCCGA	CGACTTTAAA	GGTCTGGGTC	TGAAAAAAGT
4.0	201	CGTGACTAAC	CTGACCAAAA	CCGTCAATGA	AAACAAACAA	AACGTCGATG
10	251	CCAAAGTAAA	AGCTGCAGAA	TCTGAAATAG	AAAAGTTAAC	AACCAAGTTA
	301	GCAGACACTG	ATGCCGCTTT	AGCAGATACT	GATGCCGCTC	TGGATGCAAC
	351	CACCAACGCC	TTGAATAAAT	TGGGAGAAAA	TATAACGACA	TTTGCTGAAG
	401	AGACTAAGAC	AAATATCGTA	AAAATTGATG	AAAAATTAGA	AGCCGTGGCT
	451				AACGATATCG	
15	501				CGTCAAAACC	
	551				ACGTCGATGC	
	601				GCTGCCGCTG	
	651				TGCAAAAGTT	
20	701				TTGCTAAAAA	
20	751				AGCAAATTTG	
	801				CACACGCTTG	
	851				TGAACGGTTT	
	901				GGCCTTGCAG	
25	951				GGGTGGATCC	
23	1001 1051				CCGATGCACT	
	1101				TTGACGCTGG ACAAGGTGCG	
	1151				AATTGAAGAA	
	1201				GTGGACGGC	
30	1251				ACAAAGCCAT	
50	1301				CGGAGCATTC	
	1351				ATAGCGGGCG	
	1401				GACATATCGC	
	1451				CCTACACCAT	
35	1501				TTGAAATCGC	
	1551	TGTCGACCTG	GCCGCCGCCG	ATATCAAGCC	GGATGGAAAA	CGCCATGCCG
	1601	TCATCAGCGG	TTCCGTCCTT	TACAACCAAG	CCGAGAAAGG	CAGTTACTCC
	1651	CTCGGTATCT	TTGGCGGAAA	AGCCCAGGAA	GTTGCCGGCA	GCGCGGAAGT
	1701	GAAAACCGTA	AACGGCATAC	GCCATATCGG	CCTTGCCGCC	AAGCAACTCG
40	1751	AGCACCACCA	CCACCACCAC	TGA		
	1	MARKIDIOPERE		MMCORTNICER	AGETIYDIDE	רביידייצער) איי
	51				NVDAKVKAAE	
	101				FAEETKTNIV	
45	151				ANEAKOTAEE	
13	201				TDIKADIATN	~
	251				ASAEKSIADH	
	301				GGGGVAADIG	
	351				EKTYGNGDSL	
50	401				SALTAFOTEO	
	451				GTAFGSDDAG	
	501	AKOGNGKIEH	LKSPELNVDL	AAADIKPDGK	RHAVISGSVL	YNQAEKGSYS
	551				когеннинин	
55						
	961c-98					
	1				GCTGCCACTG	
	51				CGGTTTCAAA	
60	101				TTACCAAAAA GGTCTGGGTC	
00	151 201				AAACAAACAA	
	201 251				AAAAGTTAAC	
	301				GATGCCGCTC	
	301 351				TATAACGACA	
65	401				AAAAATTAGA	
-	451				AACGATATCG	
	501				CGTCAAAACC	
	201	JOILL GREENCE				

751 H*

_	961c-74	<u>1</u>				
5	1	ATGGCCACAA	ACGACGACGA	TGTTAAAAAA	GCTGCCACTG	TGGCCATTGC
	51	TGCTGCCTAC	AACAATGGCC	AAGAAATCAA	CGGTTTCAAA	GCTGGAGAGA
	101				TTACCAAAAA	
	151	GCAGCCGATG	TTGAAGCCGA	CGACTTTAAA	GGTCTGGGTC	TGAAAAAAGT
	201				AAACAAACAA	
10	251				AAAAGTTAAC	
	301				GATGCCGCTC	
	351				TATAACGACA	
	401				AAAAATTAGA	
	451				AACGATATCG	
15	501				CGTCAAAACC	
	551				ACGTCGATGC	
	601				GCTGCCGCTG	
	651	TACTGCAGCC	GACAAGGCCG	AAGCTGTCGC	TGCAAAAGTT	ACCGACATCA
	701				TTGCTAAAAA	
20	751				AGCAAATTTG	
	801				CACACGCTTG	
	851				TGAACGGTTT	
	901				GGCCTTGCAG	
	951				GGGTGGATCC	
25	1001				CCGATGCACT	
	1051				TTGACGCTGG	
	1101				ACAAGGTGCG	
	1151				AATTGAAGAA	
	1201				GTGGACGGGC	
30	1251				ACAAAGCCAT	
50	1301				CGGAGCATTC	
	1351				ATAGCGGGCG	
	1401				GACATATCGC	
	1451				CCTACACCAT	
35	1501				TTGAAATCGC	
J	1551				GGATGGAAAA	
	1601				CCGAGAAAGG	
	1651				GTTGCCGGCA	
	1701				CCTTGCCGCC	
40	1751	AGCACCACCA			CCIIGCCGCC	ANGCANCICG
	2,02			1011		
	1	MATNDDDVKK	AATVAIAAAY	NNGQEINGFK	AGETIYDIDE	DGTITKKDAT
	51				NVDAKVKAAE	
	101	ADTDAALADT	DAALDATTNA	LNKLGENITT	FAEETKTNIV	KIDEKLEAVA
45	151	DTVDKHAEAF	NDIADSLDET	NTKADEAVKT	ANEAKOTAEE	TKONVDAKVK
	201	AAETAAGKAE	AAAGTANTAA	DKAEAVAAKV	TDIKADIATN	KDNIAKKANS
	251	ADVYTREESD	SKFVRIDGLN	ATTEKLDTRL	ASAEKSIADH	DTRLNGLDKT
	301	VSDLRKETRQ	GLAEQAALSG	LFQPYNVGGS	GGGGVAADIG	AGLADALTAP
	351	LDHKDKGLQS	LTLDQSVRKN	EKLKLAAQGA	EKTYGNGDSL	NTGKLKNDKV
50	401	SRFDFIRQIE	VDGQLITLES	GEFQVYKQSH	SALTAFQTEQ	IQDSEHSGKM
	451	VAKRQFRIGD	IAGEHTSFDK	LPEGGRATYR	GTAFGSDDAG	GKLTYTIDFA
	501				RHAVISGSVL	
	551	LGIFGGKAQE	VAGSAEVKTV	NGIRHIGLAA	KQLEHHHHHH	*
55						
	<u>961c-98</u>	<u>3</u>				
	1	ATGGCCACAA	ACGACGACGA	TGTTAAAAAA	GCTGCCACTG	TGGCCATTGC
	51	TGCTGCCTAC	AACAATGGCC	AAGAAATCAA	CGGTTTCAAA	GCTGGAGAGA
	101				TTACCAAAAA	
60	151				GGTCTGGGTC	
	201				AAACAAACAA	
	251				AAAAGTTAAC	
	301				GATGCCGCTC	
	351				TATAACGACA	
65	401				AAAAATTAGA	
	451				AACGATATCG	
	501				CGTCAAAACC	
	301	COLLEGERACE			Colomboo	CCCGRAG

_	3901 3951 4001 4051	GGGCGGCTTT ATATGCCGCA GGCAACGGCT	ACCGGCGCGA CACCCGTCTG GGAACGGCTT	CGACCTGAAC CTGCAGCAAC GTTGCCGGCC GGCACGTTAC	CGGCAAGACG TGGGCGCGGA AGCTACGCCG	GGGGCACGCA TGTCGAATTC GTTCCAAACA
5	4101 4151	ACCACCACCA	CCACCACTGA	GAGTCGGCGT		
10	1 51 101	AADVEADDFK	GLGLKKVVTN	NNGQEINGFK LTKTVNENKQ LNKLGENITT	NVDAKVKAAE	SEIEKLTTKL
	151	DTVDKHAEAF	NDIADSLDET	NTKADEAVKT	ANEAKQTAEE	TKQNVDAKVK
	201 251			DKAEAVAAKV ATTEKLDTRL		
	301	VSDLRKETRQ	GLAEQAALSG	LFQPYNVGGS	GGGGTSAPDF	NAGGTGIGSN
15	351			CKDRSMLCAG		
	401 451			AIEAGYTGRG KEAPEDGGGK		
	501			SVDGRPAGGI		
00	551	VAAIRNAWVK	LGERGVRIVN	NSFGTTSRAG	TADLFQIANS	EEQYRQALLD
20	601 651			NLSYHIRNKN		
	701			SGEKFKREMY IAGTSFSAPI		
	751			GWGLLDAGKA		
25	801			GSQLQLHGNN		
25	851 901			SLNSDGIVYL IIGGKLYMSA		
	951			ASLDSVEKTA		
	1001	SAAAHSAPAG	LKHAVEQGGS	NLENLMVELD	ASESSATPET	VETAAADRTD
30	1051			NAADGVRIFN		
50	1101 1151			QTQQDGGTWE NSANAKTDSI		
	1201			GSVNGTLMQL		
	1251			WSGNSLTEGT		
35	1301 1351		GRDYTVTGGF SYAGSKQYGN	TGATAATGKT		VAGLGADVEF
.3.3						
33			SIAGSAÇIGN	nsgrvgvgir	rubnnanna"	
33	961cL-0	RF46.1	-	AGTACTGACC		TTGCCACTTT
40	961cL-0 1 51	RF46.1 ATGAAACACT	TTCCATCCAA		ACAGCCATCC	
	961cL-0 1 51 101	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC	TTCCATCCAA GCACTGGCAG CATTGCTGCT	AGTACTGACC CCACAAACGA GCCTACAACA	ACAGCCATCC CGACGATGTT ATGGCCAAGA	AAAAAAGCTG AATCAACGGT
	961cL-0 1 51 101 151	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG	AAAAAAGCTG AATCAACGGT GCACAATTAC
40	961cL-0 1 51 101	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG	AGTACTGACC CCACAAACGA GCCTACAACA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC
	961cL-0 1 51 101 151 201 251 301	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA
40	961cL-0 1 51 101 151 201 251 301 351	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG
40	961cL-0 1 51 101 151 201 251 301 351 401	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA
40 45	961cL-0 1 51 101 151 201 251 301 351 401 451 501	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACGA CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG
40	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC
40 45	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551 601	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT
40 45	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAAA	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA GAAGAAACCA AGCAGGCAAA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG
40 45 50	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAAA CCGCTGGCAC AAAGTTACCG	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTG AGCTAATACT ACATCAAAGC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA TGATATCGCT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA GAAGAAACCA AGCAGGCAAA AGGCCGAAGC	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC
40 45	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTG AGCTAATACT ACATCAAAGC AACAGTGCCG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA TGATATCGCT ACGTGTACAC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA CTAAGGCAGA AGGACAAAC ACGAGAAAAG CAGAGAAAAG	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA
40 45 50	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCA AAAACGCCA CCGCTGCAA CCGCTGCAC CAAACCCCAA ACGCCAAA CCGCTGCCAA ACGCCAAA ACGCCAA AAACTTACCG TAAAAAAGCA AAATTTGTCAG	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA ATGAAGCCAA GTAAAAGCTG AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGCC CAGAAACTGC CAGACGCC CAGACGCC CAGACCGCC TGATATCGCT ACGTGTACAC CTGAACCTA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGAGAACCA AGCAGCAAA AGCCCGAAGC ACGAACAAAG CCAAAGAACAA CCAACAAAG CCAACAAAAG CTACCGAAAA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA
40 45 50	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA ACAACCCCCA CGATGCCAAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTG AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA TGATATCGCT ACGTGTACAC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA CTAAGGCAGA AGGCCGAAGC ACGAGAAAACCA ACGAGAAAAG CTACGGAAAAG CTACCGAAAA GCATGCCGAAAA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA
40 45 50 55	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA AAACCGCAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGCTGATA ATGAAGCCAA GTAAAAGCTG AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCACA GAAACCTGC CCAGAAACTGC TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGGAGCAAA AGGCCGAAGC ACGAACAAAG CTACCGAAAA GCATCCGAAAA GCATCACGATA GATCACGATA CAAAGAAACC TCCAACCTTA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT
40 45 50	961cL-0 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCAA ACGACCACCA CCGCTCGCAC AAAACCGCCA AAAACCGCCA CGATGCCAAC CGATGCCAAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG	TTCCATCCAA GCACTGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTCA ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC GAGGAGGATC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA CAGAACGCC CAGAAACTGC GCAGCGACA TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT AGATTTGGCA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGCAGGCAAA AGCAGGCAAA AGCAGGCAAA CGAACAAAG CTACCGAAAA GATCACGATA CAAAGAAACC TCCAACCTTA AACGATTCTT	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT TTATCCGGCA
40 45 50 55	961cL-O 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCAA ACGGCCAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG GGTTCTCGAC	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTCA ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC GAGGAGGATC CGTCAGCATT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGCC CAGAAACTGC GCAGCCGACA TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT AGATTTGGCA TCGAACCCGA TCGAACCCGA TCGAACCCGA TCGAACCCGA TCGAACCCGA TCGAACCCGA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGCAGGCAAA AGCAGGCAAA CGAGAAACC ACGAACAAG CTACCGAAAA GATCACGATA CAAAGAAACC TCCAACCTTA AACGATTCTT CGGGGAAATAC	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT TTATCCGGCA CACCTATTCG
40 45 50 55	961cL-O 1 51 101 151 201 251 301 351 401 451 501 651 701 751 801 851 901 951 1001 1051 1101 1151 1201	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCAA ACGCCCAAAACCGCCA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA CGGTTGGCTC CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG GGTTCTCGAC GGATCCGGAG GGTTCTCGAC GCAGCAGGGG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTCA ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC GAGGAGGATC CGTCAGCATT GGAACTTGCC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA CAGAACGCC CAGAAACTGC GCAGCGACA TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT AGATTTGGCA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGCAGGCAAA AGCAGGCAAA CGAGAAACC ACGAACAAG CTACCGAAAA GATCACGATA CAAAGAAACC TCCAACCTTA AACGATTCTT CGGGGAAATAC GCCATATCGG	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT TTATCCGGCA ATTGGGAAAA
40 45 50 55	961cL-O 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCAA CCGCTGGCAC CGATGCCAAA CCGCTGGCAC TAAAAAAGCC TAAAAAGCC TAAAAAGCC TAAAAAGCC GGTTTGGAT TTGCAGAACA GGTTCCGAC GGTTCCGAC GGTTCCGAC GGATCCCGAG GGTTCTCGAC GGATCCCGAG GGTTCTCGAC GGATCCCGAC GCAGCAGGGG ATACAAAGCC AGGAAATATC	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGAAGAGAC GTGAAGCCAA ATTGATGCTA ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA CTGCTGCTCCCCCCCCCC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA ACAGCGCC CAGAAACTGC CCAGAAACTGC CTGAACGCTA ATCCATTGCC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT AGATTTGGCA TCGAACCCGA TCGAACCCGA TCGACCCGACA TCGAACCCGA CCAACCTGATG TCCGCTTTTC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAAA AGCAGGCAAA AGCAGGCAAA CAAGAAACC ACGAACAAAG CTACCGAAA GATCACGATA CAAAGAAACC TCCAACCTTA AACGATTCTT CGGGAAATAC GCCATATCGG ATTCAACAGG CGATCACGGG	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT TTATCCGGCA ATTGGGAAAA CGCCATTTCG ATTGGGAAAA CGCCATTTAA CACGAAGTCC
40 45 50 55	961cL-O 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA AAAACCGCCA AAATTGCAGCA CCGCTTGGCAC TAAAAAAGCC TAAAAAAGCA AATTTGTCAG CGCTTGGAT CCGCTTGGAT CGGTTTGGAT TTGCAGAACA GGATCCCGAG GGTTCTCGAC GGATCCCGAG GGTTCTCGAC GGATCCCGAC GCAGCAGGGG ATACAAAGCC AGGAAATATC ATTCCCCCTT	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGAAGAGAC GTGAAGCCAA GTAAAAGCTG ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT CTGCTGAAAA AAACAGTGT CGGCGCGCTC GAGGAGGATC CGTCAGCATT GCACATTGCC ATCAGTTGCC ATCAGTTGCC ATCAGTTGCC CGACACCAT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA ACAGCGCC CAGAAACTGC CCAGAAACTGC CTGAACGCTA ATCCATTGCC CAGACCTTGA ATCCATTGCC CAGACCTGCG TCCGGTCTGT AGATTTGGCA TCGAACCCGA TCGAACCCGA TCGACCCGACA TCGAACCCGA TCGAACCCGA TCGACCCGA TCGACCCGA TCGACCCGA TCGACCCGA TCGACCCGA CCGCCCCACATT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAAA CTAAGGCAAA AGCAGGCAAA CAGAGAACCA ACGAGAAAACC ACGAACAAAG CTACCGAAA GATCACGATA CAAAGAAACC TCCAACCTTA AACGATTCTT CGGGAAATAC GCCATATCGG ATTCACCGG CCGATTCTGA	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT TTATCCGGCA ATTGGGAAAA CGCCATTTCG ATTGGGAAAA CGCCATTTAA CACGAAGTCC TGAAGCCGGT
40 45 50 55	961cL-O 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251	RF46.1 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGGTGCCAAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA CGGTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG GGTTCTCGAC GGATCCGGAG GGTTCTCGAC GGATCCCGAC AGGAAATATC ATTCCCCCTT AGTCCCCTTG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGAAGAGAC TTCATTGGAT ATGAAGCCAA GTAAAAGCTG ACATCAAAGC AACTTAGAT CTGCTGAAAA AAACAGTGCC AATTGATGGT CTGCTGAAAA CTGCTGCTGAAAA AAACAGTGT CGACAGCATT GGAACTTGCC ATCAGTTGGG GGCTACATTG CGACAACCAT ACGGATTTAG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA ACAGCGCC CAGAAACTGC CCAGAAACTGC CTGAACGCTA ATCCATTGCC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT AGATTTGGCA TCGAACCCGA TCGAACCCGA TCGACCCGACA TCGAACCCGA CCAACCTGATG TCCGCTTTTC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA AGCAGGCAAA AGCAGGCAAAG CAAAGAAACCA AGCAGAAAG CTACCGAAAA CTACCGAAAA GATCCGAAAA GATCACGATA CAAAGAAACC TCCAACTTA AACGATTCTT CGGGAAATAC GCCATATCGG ATTCAACAGG CGATCACGGG CCGATTCTGA ATCCATTGGG	AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATTAGACACA ATTGGACACA ATTGGACACA CTCGCCTGAA CGCCAAGGCC TTATCCGGCA CACCTATTCG ATTGGAAAA CGCCATTAA CACGAAGTCC TGAAGCCGGT ACGGATACGA

	1.451					
	1451 1501	CICCCAAAGG	CGCGAGGGAT	ATATACAGCT	ACGACATAAA	AGGCGTTGCC
	1551	TOOGGE ACCOUNT	GCCTCAACCT	GACCGACAAC	CGCAGCACCG	GACAACGGCT
	1601	ACCCAMMON A	ACCCCCCAATG	CCGGTAGTAT CGATACAGCC	GCTGACGCAA	GGAGTAGGCG
5	1651	ACGGATTCAA	ACCCOTTCAA	CGGCACTGCA	CCGAGCTGGA	CAGATCGGGC
Ū	1701	CCCCCCCC	CCACAAAMTC	TCGGCGCAGG	COMPOCOCOM	CACCCCATCAT
	1751	CCGAACCCTC	AAACAMMCCT	GTCATGCACG	CCATGCCGTG	CAGGGCATAA
	1801	GAAAACAAGA	TGGCGCGCAT	CAACGATTTG	CCACATATCC	CCCDACTICALC
	1851	AGACTATGCC	GCAGCAGCCA	TCCGCGATTG	GCCACTCCAA	ADCCCCA ATC
10	1901	CCGCACAAGG	CATAGAAGCC	GTCAGCAATA	TOTTTATGGC	AGCCATCCCC
	1951			TCGGGGAAAA		
	2001			CGCAGATGGG		
	2051			AATTTTGCCG		
	2101	CCGTCCCCTT	ACCATTCCCG	AAATATCCGT	TCAAACTTGG	AGCAGCGTTA
15	2151	CGGCAAAGAA	AACATCACCT	CCTCAACCGT	GCCGCCGTCA	AACGGCAAAA
	2201			CGCCACCCGA		
	2251	GGTAAAGGGT	TTCCGAATTT	TGAGAAGCAC	GTGAAATATG	ATACGTAACT
	2301	CGAG				
20	_					
20	1	MKHFPSKVLT	TAILATFCSG	ALAATNDDDV	KKAATVAIAA	AYNNGQEING
	51			ATAADVEADD		
	101 151			KLADTDAALA VADTVDKHAE		
	201			VKAAETAAGK		
25	251			NSADVYTREE		
	301			KTVSDLRKET		
	351			ROHFEPDGKY		
	401			GYIVRFSDHG		
	451			ADGYDGPQGG		
30	501			FHNAGSMLTQ		
	551	NAAEAFNGTA	DIVKNIIGAA	GEIVGAGDAV	QGISEGSNIA	VMHGLGLLST
	601			AAAIRDWAVQ		
	651	IKGIGAVRGK	YGLGGITAHP	IKRSQMGAIA	LPKGKSAVSD	NFADAAYAKY
25	701	PSPYHSRNIR		NITSSTVPPS	${\tt NGKNVKLADQ}$	RHPKTGVPFD
35	701 751			NITSSTVPPS	NGKNVKLADQ	RHPKTGVPFD
35		PSPYHSRNIR		NITSSTVPPS	NGKNVKLADQ	RHPKTGVPFD
35	.751	PSPYHSRNIR GKGFPNFEKH		NITSSTVPPS	NGKNVKLADQ	RHPKTGVPFD
35		PSPYHSRNIR GKGFPNFEKH 41	VKYDT*		_	
35 40	751 961cL-7	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT	VKYDT* TTCCATCCAA	AGTACTGACC	ACAGCCATCC	TTGCCACTTT
	751 9 61cL-7 1	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC	VKYDT* TTCCATCCAA GCACTGGCAG	AGTACTGACC CCACAAACGA	ACAGCCATCC CGACGATGTT	TTGCCACTTT
	751 961cL-7 1 51	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT	AGTACTGACC	ACAGCCATCC CGACGATGTT ATGGCCAAGA	TTGCCACTTT AAAAAAGCTG AATCAACGGT
	751 961cL-7 1 51 101 151 201	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC
40	751 961cL-7 1 51 101 151 201 251	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC
	751 961cL-7 1 51 101 151 201 251 301	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA
40	751 961cL-7 1 51 101 151 201 251 301 351	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG
40	751 961cL-7 1 51 101 151 201 251 301 351 401	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA
40	751 961cL-7 1 51 101 151 201 251 301 351 401 451	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGACA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAAA
40 45	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG
40	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC
40 45	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA GAAGAAACCA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT
40 45	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAAA	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGAAGAAACCA AGCAGGCAAA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG
40 45	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAAA CCGCTGGCAC	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAAGCTG AGCTAATACT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGCAGGCAAA AGGCCGAAGC	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA
40 45	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ATTAGAAGC ATTAGAAGC ATTACCCGA AAAACCGCCA CGGTGCCAA CCGCTGGCAC AAAGTTACCG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTG AGCTAATACT ACATCAAAGC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA TGATATCGCT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGCAGGCAAA AGGCCGAAGC ACGAACAAAG	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC
40 45 50	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGC ATATCGCCGA AAAACCGCCA CGGTGCCAC CGGTGCCAC AAAGTTACCG TAAAAAAGCA	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC CTGAAGAGAC TTCATTGGAT ATGAAGCCAA GTAAAAGCTA AGCTAATACT ACATCAAAGC AACAGTGCCG ACATCAAAGC AACAGTGCCG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA TGATATCGCT ACGTGTACAC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCAGA CTAAGGCAGA GAAGAAACCA AGCAGGCAAA AGCAGGCAAA AGCCCGAAGC ACGAACAAAG	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA
40 45 50	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ACTACACC ATATCGCCGA AAAACCGCCA CGGTGCCAC CGGTGCCAC AAAGTTACCG TAAAAAGCA AATTTGTCAG AATTTGTCAG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAAGTCGTG TCGATGCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGGCTGATA TTCATTGGAT ATGAAGCCAA GTAAAAGCTG AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA TGATATCGCT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGCAGGCAAA AGGCCGAAGC ACGAACAAAG CAGAGAAAAGC CAGAGAAAAAG CTACCGAAAA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA
40 45 50	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA ACAACCCCAA CCGCTGCCAC AAAACCGCA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTGCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGCAACTGGAT ATGATGGAT ATGAAGCCAA AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA CAGACGGCC CAGAAACTGC GCAGCCGACA TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGAACCTGC	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGGACGAAG ACGAACAAG CAGAGAAGA CTACCGAAAA CTACCGAAAA CAAGAAACC	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC ACCAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC
40 45 50 55	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTG ATTAGAAGCC ATATCGCCGA ACGACGCCA CCGATGCCAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTAGCAG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGATGGAT ATGAAGCTAA ATGAAGCTA AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGCC CAGAAACTCC CAGACGCC TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGGCCGAAGC ACGAACAAAG CAGAGAAACA CTACCGAAAA CTACCGAAAA CTACCGAAAA CTACCGAAAA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CCTCGCCTGAA CGCCAAGGCC CAACGTGGGT
40 45 50	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTG ATTAGAAGCC ATATCGCCGA ACGACGCCA CCGCTGGCAC CGGTGCCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGAG	VKYDT* TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGATGCAA ATTATTGGAT ATGAAGCCAA AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC GGGGTGGTGT	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT CCCGGTCTGT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGGCCGAAGC ACGAACAAA CGAGCAAA AGGCCGAAGC CTACCGAAAA GATCACGATA CAAAGAAACC TCCAACCTTA ATCGGTGCGG	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC ACCAAAACGT GCCGAAGCTG TCTCGCTGCA ATTAGACACA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT GGCTTGCCGA
40 45 50 55	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC GTTAACAACC CCGCTCTGGA ACGACATTG ATTAGAAGCC ATATCGCCGA ACGACGCCA CCGCTGGCAC CGGTGCCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGAG GGATCCGGAG TGCACTAACC	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAG AAAGTCGTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGATGGAT ATGAAGCTAA ATGAAGCCAA AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC GGGGTGGTGT GCACCGCTCG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT CCCGCCCGAC ACCATAAAGA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAAA AGGCCGAAGC ACGAACAAA CAGAGAAAACC TTACCGAAAA GATCACGATA CAAAGAAACC TCCAACCTTA ATCGGTGCGG CAAAGGTTTG	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC ACCAAAACGT GCCGAAGCTG TCTCGCTGCA ATTAGACACA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT GGCTTGCCGA CAGCTTGCCGA CAGCTCTTGA
40 45 50 55	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA ACGACATTG CCGCTGGCAC AAAACCGCA AAAACCGCCA AAAACCGCA CGATGCCAA CCGCTGGCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG TGCACTAACC CGCTGGATCA	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTGCCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGCAACAGAT ATCATTGGAT ATGAAGCCAA AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT CGGGGTGGTC GGGGTGGTC GCACCGCTCG GTCCGTCAGG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA CAGAAGCGCC GCAGCCGACA TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT CGCCGCCGAC ACCATAAAGA AAAAACGAGA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA AGCAGGCAAA AGCAGGCAAA AGGCCGAAGC ACGAACAAAG CTACCGAAAA GATCACGATA CAAAGAAACC TCCAACCTTA ATCGGTGCGG CAAAGGTTTG AACTGAAGCT	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAAC CGAAGCCGTC AACAAAACGT GCCGAAGCTG TCTCGCTGCA ATTAGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGCC CAACGTGGCT GGCCTTGCCGA CGCCTGCCAA
40 45 50 55	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGGTGCCAC CGGTGGCAC AAATTTGCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG TGCACTAACC CGCTGGATCA GGTCCGGAG TGCACTAACC CGCTGGATCA GGTCCGGAAAA	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTGCCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGCAACAGA ATCATTGGAT ATGAAGCCAA AGCTAATACT ACATCAAAGC AACAGTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT CGGGTTGGT AGCCGCCTC GGGGTGGTCT GCACCGCTCG GTCCGTCAGG AAACTTATGG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGCC CGAGAACTGC CCGACACAC TGATTGCC CTGAACGCTA ATCCATTGCC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT CCGCCCGAC ACCATAAAGA AAAACGAGA AAAACGAGA	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCATTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA AGCAGGCAAA AGCAGGCAAA AGCAGCCAAAG CTACCGAAA GATCACGATA CAAAGAAACC TCCAACCTTA ATCGGTGCGG CAAAGGTTTG AACTGAAGCT AGCCTCAATA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAAC CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATTAGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGCC CAACGTGGGT GGCTTGCCGA CGCCTGCAA CGCCAAGGCC CAACGTCGCT CAACGTGGGT GGCTTTGCAA CGCGGCACAA CGGCGCACAA
40 45 50 55 60	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAA CCGCTGGCAC AAAATTTGCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG TGCACTAACC CGCTGGATCA GGTCCGGAAA GGATCCGGAG TGCACTAACC CGCTGGATCA GGTGCGGAAA GGATCCGGAAA GGATCCGGAAA GGATCCGGAAA GGATCCGGAAA GGATCCGGAAA GGATCCGGAAA GAAGAACGAC	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTGCCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGCAACAG ATCATTGGAT ATGAAGCCAA AGCTAATACT ACATCAAAGC AACACTGCCG AATTGATGGT CTGCTGAAAA AAACAGTGT CTGCTGAAAA AAACAGTGT GCGCGCTC GGGGTGGTGT GCACCGCTCG GTCCGTCAGG AACTTATGG AACCTTATGG AACCTTATGG AACCTTATGG AACCTTATGG AACCTCAGG AACTTATGG AACCTTATGG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC CCGACAAC TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT CGCCGCCGAC ACCATAAAGA AAAACGAGA AAAACGAGA CGTTTCGACTT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA AGCAGGCAGA AGCAGCAAA AGCAGCAAA CTACCGAAA GATCACGATA CAAAGAAACC TCCAACCTTA ATCGGTGCG ACTGAAGC ATCGTGAGC ATCGAACATA CAAAGAAACC TCCAACCTTA ATCGGTGCG CAAAGGTTTG AACTGAAGCT AGCCTCAATA TATCCGCCAA	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATTATATTGC TCTGACAGCA ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGT GCCTTGCCGA CGCCTGGAA CGCCAAGGCC CAACGTCGGT GGCTTGCCGA CGCCTTGCAA CGCCGAAGTCT CGCGCAAGTCT CGCGCAAGTC CAACGTCGGT GGCTTTTGA CGCGGCACAA CGGGCCACAA
40 45 50 55	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAAGAC TGGGTCTGAA AAACAAAACG GTTAACAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAAC CGGTGGCAC AAAGTTACCG TAAAAAAGCA AATTTGTCAG CGCTTGGAT TTGCAGAACA GGATCCGGAG TGCACTAACC CGCTGGATCA GGTGCGCAC AGGTCCGGAG TGCACTAACC CGCTGGATCA GGTGCGGAAA GGATCCGGAG TGCACTAACC CGCTGGATCA GGTGCGGAAA GAAGAACGAC ACGGGCAGCT	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTGCAA AAGTTAGCAG TGCAACCAC CTGAAGAGAC GTGCAACAA ATTAGCAG ATTAGCAG ATTAGCAG ATTAGCAG ATTAGCAG ATTAGCAA AGTTAGCAA AGTTAGCAA CTGAAGACAC CTGAAGAGC AACATGAAGC AACAGTGCC AATTGATGGT CTGCTGAAAA AAACAGTGT AGCCGCGCTC GGGGTGGTGT GCACCGCTCG GTCCGTCAGG AAACTTATGG AAGCTCAGC CATTACCTTG	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC GCAGCCGACA ATCCATTGCC CTGAACGCTTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT CGCCGCCGAC ACCATAAAGA AAAAACGAGA AAAACGAGA GTTTCGACTT GAGAGTGGAG	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG GCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA GCAGGCAAC AGCAGCAAA AGCCGAAGA CTACCGAAA GATCACGATA CAAAGAAACC TCCAACCTTA ATCGGTGCG CAAAGGTTTG AACTGAAGT ATCCGCCAA AGCTCAATA TATCCGCCAA AGTTCCAAGT	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAAC AAATAGAAAA GATACTGATG AGAAAATATA TTGATGAAAC GCGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATTAGACAC ATTGGACACA CTCGCCTGAA CGCCAAGGCC CAACGTGGT GCCTTGCCGA CGCCTGGAA CGCCAAGGCC CAACGTGGGT GGCTTGCCGA CGCCTTGCCGA CGCCTTGCCGA CGCCTGCAA CGCCAAGGCC CAACGTGGGT GGCTTTTGA CGCGGCACAA CGGGCCACAA CGGGCCACAA
40 45 50 55 60	751 961cL-7 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251	PSPYHSRNIR GKGFPNFEKH 41 ATGAAACACT CTGTAGCGGC CCACTGTGGC TTCAAAGCTG CAAAAAACAC TGGGTCTGAA AAACAAACC CCGCTCTGGA ACGACATTTG ATTAGAAGCC ATATCGCCGA AAAACCGCCA CGATGCCAAA CCGCTGGCAC AAAGTTACC TAAAAAAGCA AATTTGTCAG CGCTTGGCTT CGGTTTGGAT TTGCAGAACA GGATCCGGAG TGCACTAACC CGCTGGATCC CGGTTGGATC CGGTTGGATC CGGTTGGAT CGGTTGGATC GGATCCGGAG TGCACTAACC CGCTGGATCA GGATCCGGAG TGCACTAACC CGCTGGATCA GGATCCGGAG TGCACTAACC CGCTGGATCA GGAGCACCT AGCGGCAGCT AGCCATTCCG	TTCCATCCAA GCACTGGCAG CATTGCTGCT GAGAGACCAT GCAACTGCAA AAGTTGCTG TCGATGCCAA AAGTTAGCAG TGCAACCACC CTGAAGAGAC GTGCTGATA ATGAAGCCAA GTAAAAGCTG ACATCAAAGC AACTAGATGCT ACATCAAAGC AACTGATGCT CTGCTGAAAA AAAACAGTGCT GAGCTGGTGT CTGCTGAAAA AAAACAGTGT GGGGTGGTGT GCACCGCTCG GTCCGTCAGG AAACTTATGG AAGCTCAGC CATTACCTTG CCTTAACCGC CCTTAACCGC	AGTACTGACC CCACAAACGA GCCTACAACA CTACGACATT CCGATGTTGA ACTAACCTGA AGTAAAAGCT ACACTGATGC AACGCCTTGA TAAGACAAAT CCGTCGACAA GAAACCAACA ACAGACGGCC CAGAAACTGC CCGACAAC TGATATCGCT ACGTGTACAC CTGAACGCTA ATCCATTGCC CAGACCTGCG TCCGGTCTGT CGCCGCCGAC ACCATAAAGA AAAACGAGA AAAACGAGA CGTTTCGACTT	ACAGCCATCC CGACGATGTT ATGGCCAAGA GATGAAGACG AGCCGACGAC CCAAAACCGT GCAGAATCTG CGCTTTAGCA ATAAATTGGG ATCGTAAAAA GCATGCCGAA CTAAGGCAGA AGGCCGAAGC ACGAACAAG CTACCGAAA GATCCGAAAA GATCACGATA CAAAGAACC TCCAACCTTA ATCGGTGCGG CAAAGGTTTG AACTGAAGAT TATCCGCCAA AGTTCCAAGT GAGCAAATAC	TTGCCACTTT AAAAAAGCTG AATCAACGGT GCACAATTAC TTTAAAGGTC CAATGAAAA GATACTGATG AGAAAATATA TTGATGAAAA GCATTCAACG CGAAGCCGTC AACAAAACGT GCCGAAGCTG TGTCGCTGCA ATAATATTGC TCTGACACA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CTCGCCTGAA CGCCAAGGCC CAACGTGGGT GGCCTTGCCGA CGCCAAGTCT ATCGAACTG ATACAAACAA AAGATTCGGA

	1451	CCCCCCAACA	መ ል	CACAACCEMC	CCGAAGGCGG	C2CCCCC2 C2
	1501				GCCGGCGGAA	
	1551				CGGCAAAATC	
_	1601				CCGCCGATAT	
5	1651				GTCCTTTACA	
	1701				CGGAAAAGCC	
	1751				GCATACGCCA	TATCGGCCTT
	1801	GCCGCCAAGC	AACTCGAGCA	CCACCACCAC	CACCACTGA	•
10	1	MKHFPSKVLT	TAILATFCSG	ALAATNDDDV	KKAATVAIAA	AYNNGOEING
	51				FKGLGLKKVV	
	101	KQNVDAKVKA	AESEIEKLTT	KLADTDAALA	DTDAALDATT	NALNKLGENI
	151				AFNDIADSLD	
1.5	201				AEAAAGTANT	
15	251 301				SDSKFVRIDG	
	351				RQGLAEQAAL QSLTLDQSVR	-
	401				IEVDGQLITL	
	451				GDIAGEHTSF	
20	501				EHLKSPELNV	
	551		-	YSLGIFGGKA	QEVAGSAEVK	TVNGIRHIGL
	601	AAKQLEHHHH	HH*			
25	961cL-9	83				
	1	ATGAAACACT	TTCCATCCAA	AGTACTGACC	ACAGCCATCC	TTGCCACTTT
	51				CGACGATGTT	
	101				ATGGCCAAGA	
30	151				GATGAAGACG AGCCGACGAC	
30	201 251				CCAAAACCGT	
	301				GCAGAATCTG	
	351	-			CGCTTTAGCA	
	401	CCGCTCTGGA	TGCAACCACC	AACGCCTTGA	ATAAATTGGG	AGAAAATATA
35	451				ATCGTAAAAA	
	501				GCATGCCGAA	
	551 601				CTAAGGCAGA GAAGAAACCA	
	651				AGCAGGCAAA	
40	701				AGGCCGAAGC	
	751	AAAGTTACCG	ACATCAAAGC	TGATATCGCT	ACGAACAAAG	ATAATATTGC
	801				CAGAGAAGAG	
	851				CTACCGAAAA	
45	901 951				GATCACGATA CAAAGAAACC	
15	1001				TCCAACCTTA	
	1051				GACTTCAATG	
	1101	CGGTATCGGC	AGCAACAGCA	GAGCAACAAC	AGCGAAATCA	GCAGCAGTAT
50	1151				AAGACAGAAG	
50	1201				AGGGATGCCA	
	1251 1301				TCCAAACCCA TTGAAGCAGG	
	1351				GGCGAATCCG	
	1401				ACACGGCTAT	
55	1451	АСАААААСТА	TACGGCGTAT	ATGCGGAAGG	AAGCGCCTGA	AGACGGAGGC
	1501				GAGGCCGTTA	
	1551				AGAAATCGGA	
	1601				TGGACGGCAG	
60	1651 1701				ATGAATACGA CAATGCATGG	
30	1751				GTTTTGGAAC	
	1801				AATTCGGAGG	
	1851				TAAAACAGAC	
	1901	GCCTGATGCA	ACAGAGCGAT	TACGGCAACC	TGTCCTACCA	CATCCGTAAT
65	1951				AATGACGCAC	
	2001				AAAAGACGCT	
	2051	TTATCACAGT	CGCAGGCGTA	GACCGCAGTG	GAGAAAAGTT	CAAACGGGAA

	2101	1 mcm 1 mcc 1 c				
	2101 2151	ATGTATGGAG	AACCGGGTAC	AGAACCGCTT	GAGTATGGCT	CCAACCATTG
	2201	CGGAATTACT	MACA A ACCCC	ACCIGICGC	ACCCTATGAA CCGGAACATC	GCAAGCGTCC
	2251				CTGCAGAAAT	
5	2301				GACGACGGCT	
	2351				GGGGACTGCT	
	2401				TTCGGCGACT	
	2451				CTTCCGTAAC	
	2501				GCCAACTGCA	
10	2551				GAAGGCGGTT	
	2601				CGAAACCAAA	
	2651				TGAACAGCGA	
	2701				AACGAAACCG	
15	2751				GCTGTACACA	
13	2801				TCGGCGGCAA	
	2851 2901				AACAGTACCG	
	2901				GGATTATTCT CCCTCGACAG	
	3001				TATTATGTCC	
20	3051				TTCCGCGCCC	
	3101				TGGAAAACCT	
	3151				GAGACGGTTG	
	3201	AGCCGACCGC	ACAGATATGC	CGGGCATCCG	CCCCTACGGC	GCAACTTTCC
	3251				CCGCCGACGG	
25	3301	TTCAACAGTC	TCGCCGCTAC	CGTCTATGCC	GACAGTACCG	CCGCCCATGC
	3351	CGATATGCAG	GGACGCCGCC	TGAAAGCCGT	ATCGGACGGG	TTGGACCACA
	3401				CCCAACAGGA	
	3451				CGCGGCAGTA	
30	3501				GACAGCAGCC	
30	3551				GTGCAAATGC	
	3601 3651				GATGCGGGCG	
	3701				CAAAAACAGC GCGTCAACGG	
•	3751				CCGTTTGCCG	
35	3801				CCTGCTCAAA	
	3851				GCGGCAACAG	
	3901				CTGTCGCAAC	
•	3951	TAAAGCCGTC	CTGTTTGCAA	CGGCGGGCGT	GGAACGCGAC	CTGAACGGAC
4.0	4001				GCGCGACTGC	
40	4051	AAGACGGGGG	CACGCAATAT	GCCGCACACC	${\tt CGTCTGGTTG}$	CCGGCCTGGG
	4101				CGGCTTGGCA	
	4151			GGCAACCACA	GCGGACGAGT	CGGCGTAGGC
	4201	TACCGGTTCT	GACTCGAG			
45	1	WKREDCKIT W	MATI AMBGCC	3	77773 3 MY 73 T 3 3	110010000000
43	51				KKAATVAIAA FKGLGLKKVV	-
	101				DTDAALDATT	
	151				AFNDIADSLD	
	201				AEAAAGTANT	
50	251				SDSKFVRIDG	
	301				RQGLAEQAAL	
	351				AAVSYAGIKN	
	401				NDAYKNLINL	
	451	RGVEVGIVDT	GESVGSISFP	ELYGRKEHGY	NENYKNYTAY	MRKEAPEDGG
55	501				HIDLVSHIIG	
	551				VKLGERGVRI	
	601				EGIRLMQQSD	
	651				QKGIITVAGV	
60	701				ASVRFTRTNP	
00	751				QDIGAVGVDS	
	801 851				DISGTGGLIK	
	901				GALIYNGAAS RLGKLLKVDG	
	901 951				FFTNIETDGG	
65	1001				AGLKHAVEOG	
	1051				ATFRAAAAVQ	
	1101				LDHNGTGLRV	
			X			

	1151	WEQGGVEGKM	RGSTQTVGIA	AKTGENTTAA	ATLGMGRSTW	SENSANAROD
	1201	SISLFAGIRH	DAGDIGYLKG	LFSYGRYKNS	ISRSTGADEH	AEGSVNGTT.M
	1251	QLGALGGVNV	PFAATGDLTV	EGGLRYDLLK	ODAFAEKGSA	LGWSGNSLTE
•	1301	GTLVGLAGLK	LSQPLSDKAV	LFATAGVERD	LNGRDYTVTG	CEACOUSTIC
i	1351	KTGARNMPHT	RLVAGLGADV	EFGNGWNGT.A	RYSYAGSKOY	CNHSCRUCTC
	1401	YRF*				CITIZOTIV GVG

It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention. For instance, the use of proteins from other strains is envisaged [e.g. see WO00/66741 for polymorphic sequences for ORF4, ORF40, ORF46, 225, 235, 287, 519, 726, 919 and 953].

EXPERIMENTAL DETAILS

FPLC protein purification

5

10

The following table summarises the FPLC protein purification that was used: 15

Protein	PI	Column	Buffer	pН	Protocol
121.1 untagged	6.23	Mono Q	Tris	8.0	A
128.1 untagged	5.04	Mono Q	Bis-Tris propane	6.5	A
406.1L	7.75	Mono Q	Diethanolamine	9.0	В
576.1L	5.63	Mono Q	Tris	7.5	В
593 ^{untagged}	8.79	Mono S	Hepes	7.4	A
726 ^{untagged}	4.95	Hi-trap S	Bis-Tris	6.0	A
919 ^{untagged}	10.5(-leader)	Mono S	Bicine	8.5	С
919Lorf4	10.4(-leader)	Mono S	Tris	8.0	В
920L	6.92(-leader)	Mono Q	Diethanolamine	8.5	A
953L	7.56(-leader)	Mono S	MES	6.6	D
982 ^{untagged}	4.73	Mono Q	Bis-Tris propane	6.5	A
919-287	6.58	Hi-trap Q	Tris	8.0	A
953-287	4.92	Mono Q	Bis-Tris propane	6.2	A

Buffer solutions included 20-120 mM NaCl, 5.0 mg/ml CHAPS and 10% v/v glycerol. The dialysate was centrifuged at 13000g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resins were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual [Pharmacia:

FPLC Ion Exchange and Chromatofocussing; Principles and Methods. Pharmacia 20

10

15

20

25

30

Publication]. Proteins were eluted using a step-wise NaCl gradient. Purification was analysed by SDS-PAGE and protein concentration determined by the Bradford method.

The letter in the 'protocol' column refers to the following:

FPLC-A: Clones 121.1, 128.1, 593, 726, 982, periplasmic protein 920L and hybrid proteins 919-287, 953-287 were purified from the soluble fraction of E.coli obtained after disruption of the cells. Single colonies harbouring the plasmid of interest were grown overnight at 37°C in 20 ml of LB/Amp (100 µg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30°C or 37°C until the OD₅₅₀ reached 0.6-08. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000g for 15 minutes at 4°C. When necessary cells were stored at -20°C. All subsequent procedures were performed on ice or at 4°C. For cytosolic proteins (121.1, 128.1, 593, 726 and 982) and periplasmic protein 920L, bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim). Cells were lysed by sonication using a Branson Sonifier 450. Disrupted cells were centrifuged at 8000g for 30 min to sediment unbroken cells and inclusion bodies and the supernatant taken to 35% v/v saturation by the addition of 3.9 M (NH₄)₂SO₄. The precipitate was sedimented at 8000g for 30 minutes. The supernatant was taken to 70% v/v saturation by the addition of 3.9 M (NH₄)₂SO₄ and the precipitate collected as above. Pellets containing the protein of interest were identified by SDS-PAGE and dialysed against the appropriate ion-exchange buffer (see below) for 6 hours or overnight. The periplasmic fraction from E.coli expressing 953L was prepared according to the protocol of Evans et. al. [Infect.Immun. (1974) 10:1010-1017] and dialysed against the appropriate ion-exchange buffer. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Buffer solutions included 20 mM NaCl, and 10% (v/v) glycerol. The dialysate was centrifuged at 13000g for 20 min and applied to either a mono Q or mono S FPLC ionexchange resin. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Proteins were eluted from the ion-exchange resin using either step-wise or continuous NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method. Cleavage of the leader peptide of periplasmic proteins was demonstrated by sequencing the NH_2 -terminus (see below).

10

15

20

25

30

FPLC-B: These proteins were purified from the membrane fraction of E.coli. Single colonies harbouring the plasmid of interest were grown overnight at 37°C in 20 ml of LB/Amp (100 µg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium. Clones 406.1L and 919LOrf4 were grown at 30°C and Orf25L and 576.1L at 37°C until the OD₅₅₀ reached 0.6-0.8. In the case of 919LOrf4, growth at 30°C was essential since expression of recombinant protein at 37°C resulted in lysis of the cells. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000g for 15 minutes at 4°C. When necessary cells were stored at -20 °C. All subsequent procedures were performed at 4°C. Bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim) and lysed by osmotic shock with 2-3 passages through a French Press. Unbroken cells were removed by centrifugation at 5000g for 15 min and membranes precipitated by centrifugation at 100000g (Beckman Ti50, 38000rpm) for 45 minutes. A Dounce homogenizer was used to re-suspend the membrane pellet in 7.5 ml of 20 mM Tris-HCI (pH 8.0), 1.0 M NaCl and complete protease inhibitor. The suspension was mixed for 2-4 hours, centrifuged at 100000g for 45 min and the pellet resuspended in 7.5 ml of 20mM Tris-HCl (pH 8.0), 1.0M NaCl, 5.0mg/ml CHAPS, 10% (v/v) glycerol and complete protease inhibitor. The solution was mixed overnight, centrifuged at 100000g for 45 minutes and the supernatant dialysed for 6 hours against an appropriately selected buffer. In the case of Orf25.L, the pellet obtained after CHAPS extraction was found to contain the recombinant protein. This fraction, without further purification, was used to immunise mice.

FPLC-C: Identical to FPLC-A, but purification was from the soluble fraction obtained after permeabilising *E.coli* with polymyxin B, rather than after cell disruption.

FPLC-D: A single colony harbouring the plasmid of interest was grown overnight at 37°C in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at 30°C until the OD₅₅₀ reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000g for 15 minutes at 4°C. When necessary cells were stored at -20 °C. All subsequent procedures were performed on ice or at 4°C. Cells were resuspended in 20mM Bicine (pH 8.5), 20mM NaCl, 10% (v/v) glycerol, complete protease inhibitor (Boehringer-Mannheim) and disrupted using a Branson Sonifier 450. The sonicate was centrifuged at 8000g for 30 min to sediment unbroken cells and

10

20

· ;; ;;

inclusion bodies. The recombinant protein was precipitated from solution between 35% v/v and 70% v/v saturation by the addition of 3.9M (NH₄)₂SO₄. The precipitate was sedimented at 8000g for 30 minutes, resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol and dialysed against this buffer for 6 hours or overnight. The dialysate was centrifuged at 13000g for 20 min and applied to the FPLC resin. The protein was eluted from the column using a step-wise NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method.

Cloning strategy and oligonucleotide design

Genes coding for antigens of interest were amplified by PCR, using oligonucleotides designed on the basis of the genomic sequence of *N. meningitidis* B MC58. Genomic DNA from strain 2996 was always used as a template in PCR reactions, unless otherwise specified, and the amplified fragments were cloned in the expression vector pET21b+ (Novagen) to express the protein as C-terminal His-tagged product, or in pET-24b+(Novagen) to express the protein in 'untagged' form (e.g. ΔG 287K).

Where a protein was expressed without a fusion partner and with its own leader peptide (if present), amplification of the open reading frame (ATG to STOP codons) was performed.*

Where a protein was expressed in 'untagged' form, the leader peptide was omitted by designing the 5'-end amplification primer downstream from the predicted leader sequence.

The melting temperature of the primers used in PCR depended on the number and type of hybridising nucleotides in the whole primer, and was determined using the formulae:

$$T_{ml} = 4 (G+C)+2 (A+T)$$
 (tail excluded)

$$T_{m2} = 64.9 + 0.41 \text{ (\% GC)} - 600/N$$
 (whole primer)

The melting temperatures of the selected oligonucleotides were usually 65-70°C for the whole oligo and 50-60°C for the hybridising region alone.

Oligonucleotides were synthesised using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in water.

		Sequences	Restriction site
Orf1L	Fwd	CGCGGATCCGCTAGC-AAAACAACCGACAAACGG	NheI
	Rev	CCCGCTCGAG-TTACCAGCGGTAGCCTA	XhoI
Orf1	Fwd	CTAGCTAGC-GGACACACTTATTTCGGCATC	NheI
	Rev	CCCGCTCGAG- TTACCAGCGGTAGCCTAATTTG	XhoI
Orf1LOmpA	Fwd		NdeI-(NheI)
	Rev	CCCGCTCGAG-	XhoI
Orf4L	Fwd	CGCGGATCCCATATG-AAAACCTTCTTCAAAACC	NdeI
	Rev	CCCGCTCGAG-TTATTTGGCTGCGCCTTC	XhoI
Orf7-1L	Fwd	GCGGCATTAAT-ATGTTGAGAAAATTGTTGAAATGG	AseI
	Rev	GCGGCCTCGAG-TTATTTTTTCAAAATATATTTGC	XhoI
Orf9-1L	Fwd	GCGGCCATATG-TTACCTAACCGTTTCAAAATGT	NdeI
	Rev	GCGGCCTCGAG-TTATTTCCGAGGTTTTCGGG	XhoI
Orf23L	Fwd	CGCGGATCCCATATG-ACACGCTTCAAATATTC	NdeI
	Rev	CCCGCTCGAG-TTATTTAAACCGATAGGTAAA	XhoI
Orf25-1 His	Fwd	CGCGGATCCCATATG-GGCAGGGAAGAACCGC	NdeI
	Rev	GCCCAAGCTT-ATCGATGGAATAGCCGCG	HindIII
Orf29-1 b-His	Fwd	CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG	NheI
(MC58)	Rev	CCCGCTCGAG-TTTGTCTAAGTTCCTGATAT	XhoI
(1/1050)	100	CCCG <u>CTCGAG</u> -ATTCCCACCTGCCATC	Allor
Orf29-1 b-L	Fwd	CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT	NheI
(MC58)	Rev	CCCGCTCGAG-TTAATTCCCACCTGCCATC	XhoI
Orf29-1 c-His	Fwd	CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT	NheI
(MC58)	Rev	CCCGCTCGAG-TTGGACGATGCCCGCGA	XhoI
Orf29-1 c-L	Fwd	CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT	NheI
(MC58)	Rev	CCCGCTCGAG-TTATTGGACGATGCCCGC	XhoI
Orf25L	Fwd	CGCGGATCCCATATG-TATCGCAAACTGATTGC	NdeI
	Rev	CCCGCTCGAG-CTAATCGATGGAATAGCC	XhoI
Orf37L	Fwd		NdeI
		CCCGCTCGAG-TCAATAACCCGCCTTCAG	XhoI
Orf38L	Fwd	CGCGGATCCCATATG-	NdeI
011002		TTACGTTTGACTGCTTTAGCCGTATGCACC	11001
	Rev	CCCG <u>CTCGAG</u> -	XhoI
	 	TTATTTTGCCGCGTTAAAAGCGTCGGCAAC	
Orf40L		CGCGGATCCCATATG-AACAAAATATACCGCAT	NdeI
	+	CCCG <u>CTCGAG</u> -TTACCACTGATAACCGAC	XhoI
Orf40.2-His	Fwd	CGCGGATCCCATATG-ACCGATGACGACGATTTAT	NdeI
	Rev	GCCC <u>AAGCTT</u> -CCACTGATAACCGACAGA	HindIII
Orf40.2L	Fwd	CGCGGATCC <u>CATATG</u> -AACAAAATATACCGCAT	NdeI
	Rev	GCCC <u>AAGCTT</u> -TTACCACTGATAACCGAC	HindIII
Orf46-2L	Fwd	GGGAATTC <u>CATATG</u> -GGCATTTCCCGCAAAATATC	NdeI
	Rev	CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC	XhoI
Orf46-2	Fwd	GGGAATTC <u>CATATG</u> -TCAGATTTGGCAAACGATTCTT	NdeI
	Rev	CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC	XhoI
Orf46.1L	Fwd	GGGAATTCCATATG-GGCATTTCCCGCAAAATATC	NdeI

	Rev	CCCGCTCGAG-TTACGTATCATATTTCACGTGC	XhoI
orf46. (His-GST)	Fwd	GGGAATTC <u>CATATG</u> CACGTGAAATATGATACGAAG	BamHI-Ndel
	Rev	CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC	XhoI
orf46.1-His	Fwd	GGGAATTCCATATGTCAGATTTGGCAAACGATTCTT	NdeI
	Rev	CCCGCTCGAGCGTATCATATTTCACGTGC	XhoI
orf46.2-His	Fwd	GGGAATTC <u>CATATG</u> TCAGATTTGGCAAACGATTCTT	NdeI
···	Rev	CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC	XhoI
Orf65-1-(His/GST)	Fwd	CGCGGATCCCATATG-CAAAATGCGTTCAAAATCCC	BamHI-Ndel
(MC58)	Rev	CGCGGATCCCATATG-AACAAAATATACCGCAT	XhoI
		CCCGCTCGAG -TTTGCTTTCGATAGAACGG	
Orf72-1L	Fwd	GCGGC <u>CATATG</u> -GTCATAAAATATACAAATTTGAA	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTAGCCTGAGACCTTTGCAAATT	XhoI
Orf76-1L	Fwd	GCGGC <u>CATATG</u> -AAACAGAAAAAAACCGCTG	NdeI
•	Rev	GCGGCCTCGAG-TTACGGTTTGACACCGTTTTC	XhoI
Orf83.1L	Fwd	CGCGGATCCCATATG-AAAACCCTGCTCCTC	NdeI
	Rev	CCCGCTCGAG-TTATCCTCCTTTGCGGC	XhoI
Orf85-2L	Fwd	GCGGC <u>CATATG</u> -GCAAAAATGATGAAATGGG	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTATCGGCGCGGGCC	XhoI
Orf91L (MC58)	Fwd	GCGGCCATATGAAAAAATCCTCCCTCATCA	NdeI
	Rev	GCGGCCTCGAGTTATTTGCCGCCGTTTTTGGC	XhoI
Orf91-His(MC58)	Fwd	GCGGCCATATGGCCCCTGCCGACGCGGTAAG	NdeI
, ,	Rev	GCGGCCTCGAGTTTGCCGCCGTTTTTGGCTTTC	XhoI
Orf97-1L	Fwd	GCGGC <u>CATATG</u> -AAACACATACTCCCCCTGA	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTATTCGCCTACGGTTTTTTG	XhoI -
Orf119L (MC58)	Fwd	GCGGCCATATGATTTACATCGTACTGTTTC	NdeI
	Rev	GCGGCCTCGAGTTAGGAGAACAGGCGCAATGC	XhoI -
Orf119-His(MC58)	Fwd	GCGGCCATATGTACAACATGTATCAGGAAAAC	NdeI
	Rev	GCGGCCTCGAGGGAGAACAGGCGCAATGCGG	XhoI =
Orf137.1 (His- GST) (MC58)	Fwd	CGCGGATCCGCTAGCTGCGGCACGGCGGG	BamHI-NheI
GB1) (MC30)	Rec	CCCG <u>CTCGAG</u> ATAACGGTATGCCGCCAG	XhoI
Orf143-1L	Fwd	CGCGGATCCCATATG-GAATCAACACTTTCAC	
O114-0-1E	Rev	CCCG <u>CTCGAG-</u> TTACACGCGGTTGCTGT	NdeI XhoI
008	Fwd	CGCGGATCCCATATG-AACAACAGACATTTTG	
000	Rev	CCCGCTCGAG-TTACCTGTCCGGTAAAAG	NdeI
050-1(48)	Fwd	CGCGGATCCGCTAGC-ACCGTCATCAAACAGGAA	XhoI
050-1(40)	Rev	CCCGCTCGAG-TCAAGATTCGACGGGGA	NheI
105	Fwd		XhoI
105		CGCGGGATCCCATATG-TCCGCAAACGAATACG	NdeI
1117	Rev	CCCGCTCGAG-TCAGTGTTCTGCCAGTTT	XhoI
11 1L	Fwd	CGCGGATCCCATATG-CCGTCTGAAACACG	NdeI
445.4	Rev	CCCGCTCGAG-TTAGCGGAGCAGTTTTTC	XhoI
117-1	Fwd	CGCGGATCCCATATG-ACCGCCATCAGCC	NdeI
	Rev	CCCGCTCGAG-TTAAAGCCGGGTAACGC	XhoI
121-1	Fwd	GCGGC <u>CATATG</u> -GAAACACAGCTTTACATCGG	NdeI
1	Rev	GCGGC <u>CTCGAG</u> -TCAATAATAATATCCCGCG	XhoI

122-1	Fwd	GCGGC <u>CATATG</u> -ATTAAAATCCGCAATATCC	NdeI
	Rev	GCGGCCTCGAG-TTAAATCTTGGTAGATTGGATTTGG	XhoI
128-1	Fwd	GCGGC <u>CATATG</u> -ACTGACAACGCACTGCTCC	NdeI
	Rev	GCGGCCTCGAG-TCAGACCGCGTTGTCGAAAC	XhoI
148	Fwd	CGCGGATCC <u>CATATG</u> -GCGTTAAAAACATCAAA	NdeI
	Rev	CCCGCTCGAG-TCAGCCCTTCATACAGC	XhoI
149.1L (MC58)	Fwd	GCGGCATTAATGGCACAAACTACACTCAAACC	AseI
	Rev	GCGGCCTCGAGTTAAAACTTCACGTTCACGCCG	XhoI
149.1-His(MC58)	Fwd	GCGGCATTAATGCATGAAACTGAGCAATCGGTGG	AseI
	Rev	GCGGCCTCGAGAAACTTCACGTTCACGCCGCCGGTAAA	XhoI
205 (His-GST) (MC58)	Fwd	CGC <u>GGATCCCATATG</u> GGCAAATCCGAAAATACG	BamHI-NdeI
	Rev	CCCG <u>CTCGAG</u> ATAATGGCGGCGGCGG	XhoI
206L	Fwd	CGCGGATCC <u>CATATG</u> -TTTCCCCCCGACAA	NdeI
	Rev	CCCG <u>CTCGAG</u> -TCATTCTGTAAAAAAAGTATG	XhoI
214 (His-GST) (MC58)	Fwd	CGC <u>GGATCCCATATG</u> CTTCAAAGCGACAGCAG	BamHI-NdeI
	Rev	CCCGCTCGAGTTCGGATTTTTGCGTACTC	XhoI
216	Fwd	CGCGGATCC <u>CATATG</u> -GCAATGGCAGAAAACG	NdeI
	Rev	CCCGCTCGAG-CTATACAATCCGTGCCG	XhoI
225-1L	Fwd	CGCGGATCC <u>CATATG</u> -GATTCTTTTTCAAACC	NdeI
	Rev	CCCGCTCGAG-TCAGTTCAGAAAGCGGG	XhoI
235L	Fwd	CGCGGATCCCATATG-AAACCTTTGATTTTAGG	NdeI
	Rev	CCCGCTCGAG-TTATTTGGGCTGCTCTTC	XhoI
243	Fwd	CGCGGATCC <u>CATATG</u> -GTAATCGTCTGGTTG	NdeI
	Rev	CCCGCTCGAG-CTACGACTTGGTTACCG	XhoI
247-1L	Fwd	GCGGC <u>CATATG</u> -AGACGTAAAATGCTAAAGCTAC	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TCAAAGTGTTCTGTTTGCGC	XhoI
264-His	Fwd	GCCGC <u>CATATG</u> -TTGACTTTAACCCGAAAAA	NdeI
	Rev	GCCGCCTCGAG-GCCGGCGGTCAATACCGCCCGAA	XhoI
270 (His-GST) (MC58)	Fwd	CGC <u>GGATCCCATATG</u> GCGCAATGCGATTTGAC	BamHI-NdeI
	Rev	CCCGCTCGAGTTCGGCGGTAAATGCCG	XhoI
274L	Fwd	GCGGC <u>CATATG</u> -GCGGGGCCGATTTTTGT	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTATTTGCTTTCAGTATTATTG	XhoI
283L	Fwd	GCGGC <u>CATATG</u> -AACTTTGCTTTATCCGTCA	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTAACGGCAGTATTTGTTTAC	XhoI
285-His	Fwd	CGC <u>GGATCC</u> CATATGGGTTTGCGCTTCGGGC	BamHI
	Rev	GCCCAAGCTTTTTTCCTTTGCCGTTTCCG	HindIII
286-His	Fwd	CGCGGATCC <u>CATATG</u> -GCCGACCTTTCCGAAAA	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -GAAGCGCGTTCCCAAGC	XhoI
286L	Fwd	CGCGGATCC <u>CATATG</u> -CACGACACCCGTAC	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TTAGAAGCGCGTTCCCAA	XhoI
287L	Fwd	CTAGCTAGC-TTTAAACGCAGCGTAATCGCAATGG	NheI
	Rev	CCCG <u>CTCGAG</u> -TCAATCCTGCTCTTTTTTGCC	XhoI

287	Fwd	CTAGCTAGC-GGGGGCGGCGGTGGCG	NheI
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC	XhoI
287LOrf4	Fwd	CTAGCTAGCGCTCATCCTCGCCGCC- TGCGGGGGCGCGGT	NheI
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC	XhoI
287-fu	Fwd	CGG <u>GGATCC</u> -GGGGGCGGCGGTGGCG	BamHI
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC	XhoI
287-His	Fwd	CTAGCTAGC-GGGGGCGGCGGTGGCG	NheI
	Rev	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC *	XhoI
287-His(2996)	Fwd	CTAGCTAGC-TGCGGGGGGGGGGGGGGGGG	NheI
	Rev	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC	XhoI
Δ1 287-His	Fwd	CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC 5	NheI
Δ2 287-His	Fwd	CGCGGATCCGCTAGC-CAAGATATGGCGGCAGT 5	NheI
Δ3 287-His	Fwd	CGCGGATCCGCTAGC-GCCGAATCCGCAAATCA 5	NheI
Δ4 287-His	Fwd	CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG	NheI
Δ4 287MC58-His	Fwd	CGC <u>GCTAGC</u> -GGAAGGGTTGATTTGGCTAATGG §	NheI
287a-His	Fwd	CGC <u>CATATG</u> -TTTAAACGCAGCGTAATCGC	NdeI
_	Rev	CCCGCTCGAG-AAAATTGCTACCGCCATTCGCAGG	XhoI
287b-His	Fwd	CGC <u>CATATG</u> -GGAAGGGTTGATTTGGCTAATGG	NdeI
287b-2996-His	Rev	CCCGCTCGAG-CTTGTCTTTATAAATGATGACATATTTG	XhoI -
287b-MC58-His	Rev	CCCGCTCGAG-TTTATAAAAGATAATATATTGATTGATTCC	XhoI -
287c-2996-His	Fwd	CGCGCTAGC-ATGCCGCTGATTCCCGTCAATC §	NheI
'287 ^{untagged} '(2996)	Fwd	CTAGCTAGC-GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	NheI
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC	XhoI
ΔG287-His *	Fwd	CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC	NheI -
	Rev	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC	XhoI
ΔG287K(2996)	Fwd	CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC	NheI
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC	XhoI
ΔG 287-L	Fwd	CGCGGATCC <u>GCTAGC</u> - TTTGAACGCAGTGTGATTGCAATGGCTTGTATTTTTGCC CTTTCAGCCTGT TCGCCCGATGTTAAATCGGCG	NheI
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC	XhoI
ΔG 287-Orf4L	Fwd	CGCGGATCC <u>GCTAGC</u> - AAAACCTTCTTCAAAACCCTTTCCGCCGCCGCACTCGCG CTCATCCTCGCCGCCTGC TCGCCCGATGTTAAATCG	NheI
	Rev	CCCG <u>CTCGAG</u> -TCAATCCTGCTCTTTTTTGCC	XhoI
292L	Fwd	CGCGGATCCCATATG-AAAACCAAGTTAATCAAA	NdeI
	Rev	CCCG <u>CTCGAG</u> -TTATTGATTTTTGCGGATGA	XhoI
308-1	Fwd	CGCGGATCC <u>CATATG</u> -TTAAATCGGGTATTTTATC	NdeI
	Rev	CCCGCTCGAG-TTAATCCGCCATTCCCTG	XhoI
401L	Fwd	GCGGC <u>CATATG</u> -AAATTACAACAATTGGCTG	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTACCTTACGTTTTTCAAAG	XhoI
406L	Fwd	CGCGGATCC <u>CATATG</u> -CAAGCACGGCTGCT	NdeI
	Rev	CCCGCTCGAG-TCAAGGTTGTCCTTGTCTA	XhoI
502-1L	Fwd	CGCGGATCC <u>CATATG</u> -ATGAAACCGCACAAC	NdeI
	Rev	CCCGCTCGAG-TCAGTTGCTCAACACGTC	XhoI

502-A (His-GST)	Fwd	CGC <u>GGATCCCATATG</u> GTAGACGCGCTTAAGCA	BamHI-NdeI
	Rev	CCCGCTCGAGAGCTGCATGGCGGCG	XhoI
503-1L	Fwd	CGCGGATCCCATATG-GCACGGTCGTTATAC	NdeI
	Rev	CCCGCTCGAG-CTACCGCGCATTCCTG	XhoI
519-1L	Fwd	GCGGCCATATG-GAATTTTTCATTATCTTGTT	NdeI
	Rev	GCGGCCTCGAG-TTATTTGGCGGTTTTGCTGC	XhoI
525-1L	Fwd	GCGGCCATATG-AAGTATGTCCGGTTATTTTTC	NdeI
	Rev	GCGGCCTCGAG-TTATCGGCTTGTGCAACGG	XhoI
529-(His/GST)	Fwd	CGCGGATCCGCTAGC-TCCGGCAGCAAAACCGA	Bam HI-Nhel
(MC58)	Rev	GCCCAAGCTT-ACGCAGTTCGGAATGGAG	HindIII
552L	Fwd	GCCGCCATATGTTGAATATTAAACTGAAAACCTTG	NdeI
	Rev	GCCGCCTCGAGTTATTTCTGATGCCTTTTCCC	XhoI
556L	Fwd	GCCGCCATATGGACAATAAGACCAAACTG	NdeI
7-7	Rev	GCCGCCTCGAGTTAACGGTGCGGACGTTTC	XhoI
557L	Fwd	CGCGGATCCCATATG-AACAAACTGTTTCTTAC	NdeI
	Rev	CCCGCTCGAG-TCATTCCGCCTTCAGAAA	XhoI
564ab-(His/GST)	Fwd	CGCGGATCCCATATG-	BamHI-NdeI
(MC58)	1 ***	CAAGGTATCGTTGCCGACAAATCCGCACCT	Danin Titor
(1.2000)	Rev	CCCG <u>CTCGAG</u> -	XhoI
		AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT	
564abL (MC58)	Fwd	CGCGGATCC <u>CATATG</u> - AACCGCACCCTGTACAAAGTTGTATTTAACAAACATC	NdeI
	Rev	CCCGCTCGAG-	XhoI
	1.0	TTAAGCTAATTGTGCTTGGTTTGCAGATAGGAGTT	
564b- (His/GST)(MC58)	Fwd	CGCGGATCCCATATG- ACGGGAGAAAATCATGCGGTTTCACTTCATG	BamHI-NdeI
(2220 002)(112000)	Rev	CCCGCTCGAG-	XhoI
564c-	Fwd	AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT CGCGGATCCCATATG-	BamHI-NdeI
(His/GST)(MC58)	rwu	GTTTCAGACGGCCTATACAACCAACATGGTGAAATT	Danien-Noer
(Rev	CCCGCTCGAG-	XhoI
		GCGGTAACTGCCGCTTGCACTGAATCCGTAA	
564bc-	Fwd	CGCGGATCCCATATG- ACGGGAGAAAATCATGCGGTTTCACTTCATG	BamHI-NdeI
(His/GST)(MC58)	Rev	CCCGCTCGAG-	XhoI
	Kev	GCGGTAACTGCCGCTTGCACTGAATCCGTAA	THIOI
564d- (His/GST)(MC58)	Fwd	CGCGGATCCCATATG- CAAAGCAAAGTCAAAGCAGACCATGCCTCCGTAA	BamHI-NdeI
(HE/G51)(MC56)	Rev	CCCGCTCGAG-	XhoI
	Rov	TCTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG	
		GTCCCC	
564cd- (His/GST)(MC58)	Fwd	CGC <u>GGATCCCATATG</u> - GTTTCAGACGGCCTATACAACCAACATGGTGAAATT	BamHI-Ndel
	Rev	CCCGCTCGAG- TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG GTCCCC	XhoI
570L	Fwd	GCGGCCATATG-ACCCGTTTGACCCGCG	NdeI
	Rev	GCGGCCTCGAG-TCAGCGGGCGTTCATTTCTT	XhoI
576-1L	Fwd	CGCGGATCCCATATG-AACACCATTTTCAAAATC	NdeI
	Rev	CCCGCTCGAG-TTAATTTACTTTTTTGATGTCG	XhoI

580L	Fwd	GCGGCCATATG-GATTCGCCCAAGGTCGG	NdeI
	Rev	GCGGCCTCGAG-CTACACTTCCCCCGAAGTGG	XhoI
583L	Fwd	CGCGGATCCCATATG-ATAGTTGACCAAAGCC	NdeI
	Rev	CCCGCTCGAG-TTATTTTTCCGATTTTTCGG	XhoI
593	Fwd	GCGGCCATATG-CTTGAACTGAACGGACT	NdeI
	Rev	GCGGCCTCGAG-TCAGCGGAAGCGGACGATT	XhoI
650 (His-GST)	Fwd	CGCGGATCCCATATGTCCAAAACTCAAAACCATCG	BamHI-Ndel
(MC58)	Rev	CCCGCTCGAGCCTTCCAATCAGTTTGACC	XhoI
652	Fwd	GCGGCCATATG-AGCGCAATCGTTGATATTTTC	Ndel
	Rev	GCGGCCTCGAG-TTATTTGCCCAGTTGGTAGAATG	XhoI
664L	Fwd	GCGGCCATATG-GTGATACATCCGCACTACTTC	NdeI
	Rev	GCGGCCTCGAG-TCAAAATCGAGTTTTACACCA	XhoI
726	Fwd	GCGGC <u>CATATG</u> -ACCATCTATTTCAAAAACGG	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TCAGCCGATGTTTAGCGTCCATT	XhoI
741-His(MC58)	Fwd	CGCGGATCC <u>CATATG</u> -AGCAGCGGAGGGGGTG	NdeI
	Rev	CCCGCTCGAG-TTGCTTGGCGGCAAGGC	XhoI
ΔG741-His(MC58)	Fwd	CGCGGATCCCATATG-GTCGCCGCCGACATCG	Ndel
· · ·	Rev	CCCGCTCGAG-TTGCTTGGCGGCAAGGC	XhoI
686-2-(His/GST)	Fwd	CGCGGATCCCATATG-GGCGGTTCGGAAGGCG	BamHI-Ndel
(MC58)	Rev	CCCGCTCGAG-TTGAACACTGATGTCTTTTCCGA	XhoI
719-(His/GST)	Fwd	CGCGGATCCGCTAGC-AAACTGTCGTTGGTGTTAAC	BamHI-Nhel
(MC58)	Rev	CCCGCTCGAG-TTGACCCGCTCCACGG	XhoI
730-His (MC58)	Fwd	GCCGCCATATGGCGGACTTGGCGCAAGACCC	NdeI
	Rev	GCCGCCTCGAGATCTCCTAAACCTGTTTTAACAATGCCG	XhoI
730A-His (MC58)	Fwd	GCCGCCATATGGCGGACTTGGCGCAAGACCC	NdeI
	Rev	GCGGCCTCGAGCTCCATGCTGTTGCCCCAGC	XhoI
730B-His (MC58)	Fwd	GCCGCCATATGGCGGACTTGGCGCAAGACCC	NdeI
	Rev	GCGGCCTCGAGAAAATCCCCGCTAACCGCAG	XhoI
741-His	Fwd	CGCGGATCC <u>CATATG</u> -AGCAGCGGAGGGGGTG	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TTGCTTGGCGGCAAGGC	XhoI
ΔG741-His	Fwd	CGCGGATCC <u>CATATG</u> -GTCGCCGCCGACATCG	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TTGCTTGGCGGCAAGGC	XhoI
743 (His-GST)	Fwd	CGCGGATCCCATATGGACGGTGTTGTGCCTGTT	BamHI-NdeI
	Rev	CCCG <u>CTCGAG</u> CTTACGGATCAAATTGACG	XhoI
757 (His-GST) (MC58)	Fwd	CGC <u>GGATCCCATATG</u> GGCAGCCAATCTGAAGAA	BamHI-NdeI
·	Rev	CCCGCTCGAGCTCAGCTTTTGCCGTCAA	XhoI
759-His/GST	Fwd	CGCGGATCCGCTAGC-TACTCATCCATTGTCCGC	BamHI-NheI
(MC58)	Rev	CCCGCTCGAG-CCAGTTGTAGCCTATTTTG	XhoI
759L	Fwd	CGCGGATCCGCTAGC-ATGCGCTTCACACACAC	NheI
(MC58)	Rev	CCCGCTCGAG-TTACCAGTTGTAGCCTATTT	XhoI
760-His	Fwd	GCCGCCATATGGCACAAACGGAAGGTTTGGAA	NdeI
	Rev	GCCGCCTCGAGAAAACTGTAACGCAGGTTTGCCGTC	XhoI
769-His (MC58)	Fwd	GCGGCCATATGGAAGAAACACCGCGCGAACCG	NdeI

	Rev	GCGGCCTCGAGGAACGTTTTATTAAACTCGAC	XhoI
907L	Fwd	GCGGC <u>CATATG</u> -AGAAAACCGACCGATACCCTA	NdeI
	Rev	GCGGCCTCGAG-TCAACGCCACTGCCAGCGGTTG	XhoI
911L	Fwd	CGCGGATCCCATATG-AAGAAGAACATATTGGAATTTTGGGTCGGACTG	NdeI
	Rev	CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG	XhoI
911LOmpA	Fwd	GGGAATTC <u>CATATG</u> AAAAAGACAGCTATCGCGATTGCA GTGGCACTGGCTGGTTTCGCTACCGTAGCGCAGGCC <u>GC</u> TAGC-GCTTTCCGCGTGGCCGCGGTGC	NdeI-(NheI)
	Rev	CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG	XhoI
911LPelB	Fwd	CATGCCATGG-CTTTCCGCGTGGCCGGCGGTGC	NcoI
	Rev	CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG	XhoI
913-His/GST	Fwd	CGCGGATCCCATATG-TTTGCCGAAACCCGCC	BamHI-NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -AGGTTGTGTCCAGGTTG	XhoI
913L	Fwd	CGCGGATCCCATATG-AAAAAAACCGCCTATG	NdeI
(MC58)	Rev	CCCGCTCGAG-TTAAGGTTGTGTTCCAGG	XhoI
919L	Fwd	CGCGGATCCCATATG-AAAAAATACCTATTCCGC	NdeI
	Rev	CCCG <u>CTCGAG</u> -TTACGGGCGGTATTCGG	XhoI
919	Fwd	CGCGGATCCCATATG-CAAAGCAAGAGCATCCAAA	NdeI
	Rev	CCCGCTCGAG-TTACGGGCGGTATTCGG	XhoI
919L Orf4	Fwd	GGGAATTC <u>CATATG</u> AAAACCTTCTTCAAAACCCTTTCCG CCGCCGC <u>GCTAGC</u> GCTCATCCTCGCCGCC- TGCCAAAGCAAGAGCATC	NdeI-(NheI)
	Rev	CCCGCTCGAG-TTACGGGCGGTATTCGGGCTTCATACCG	XhoI
(919)-287fusion	Fwd	CGCGGATCCGTCGAC-TGTGGGGGCGGCGGTGGC	SalI
	Rev	CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC	XhoI
920-1L	Fwd	GCGGC <u>CATATG</u> -AAGAAAACATTGACACTGC	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTAATGGTGCGAATGACCGAT	XhoI
925-His/GST (MC58) GATE	Fwd	ggggacaagtttgtacaaaaaagcaggctTGCGGCAAGGATGCCGG	attB1
	Rev	ggggaccactttgtacaagaaagctgggtCTAAAGCAACAATGCCGG	attB2
926L	Fwd	CGCGGATCCCATATG-AAACACACCGTATCC	NdeI
	Rev	CCCGCTCGAG-TTATCTCGTGCGCGCC	XhoI
927-2-(His/GST)	Fwd	CGCGGATCCCATATG-AGCCCCGCGCCGATT	BamHI-NdeI
(MC58)	Rev	CCCGCTCGAG-TTTTTGTGCGGTCAGGCG	XhoI
932-His/GST (MC58) ^{CATE}	Fwd	ggggacaagtttgtacaaaaaagcaggctTGTTCGTTTGGGGGATTTAA ACCAAACCAAATC	attB1
935 (His-GST) (MC58)	For	CGC <u>GGATCCCATATG</u> GCGGATGCGCCCGCG	BamHI-NdeI
	Rev	CCCG <u>CTCGAG</u> AAACCGCCAATCCGCC	XhoI
	Rev	ggggaccactttgtacaagaaagctgggtTCATTTTGTTTTTCCTTCTCTCGAGGCCATT	attB2
936-1L	Fwd	CGCGGATCC <u>CATATG</u> -AAACCCAAACCGCAC	NdeI
	Rev	CCCGCTCGAG-TCAGCGTTGGACGTAGT	XhoI
953L	Fwd	GGGAATTC <u>CATATG</u> -AAAAAAATCATCTTCGCCG	NdeI
	Rev	CCCGCTCGAG-TTATTGTTTGGCTGCCTCGAT	XhoI
953-fu	Fwd	GGGAATTC <u>CATATG</u> -GCCACCTACAAAGTGGACG	NdeI

954 (His-GST) (MC58)	Fwd	CGCGGATCCCATATGCAAGAACAATCGCAGAAAG	BamHI-NdeI
	Rev	CCCGCTCGAGTTTTTTCGGCAAATTGGCTT	XhoI
958-His/GST (MC58) GATE	Fwd	ggggacaagtttgtacaaaaaagcaggctGCCGATGCCGTTGCGG	attB1
	Rev	ggggaccactttgtacaagaaagctgggtTCAGGGTCGTTTGTTGCG	attB2
961L	Fwd	CGCGGATCC <u>CATATG</u> -AAACACTTTCCATCC	NdeI
	Rev	CCCGCTCGAG-TTACCACTCGTAATTGAC	XhoI
961	Fwd	CGCGGATCC <u>CATATG</u> -GCCACAAGCGACGAC	NdeI
	Rev	CCCGCTCGAG-TTACCACTCGTAATTGAC	XhoI
961 c (His/GST)	Fwd	CGCGGATCCCATATG-GCCACAAACGACG	BamHI-NdeI
	Rev	CCCGCTCGAG-ACCCACGTTGTAAGGTTG	XhoI
961 c-(His/GST)	Fwd	CGCGGATCCCATATG-GCCACAAGCGACGACGA	BamHI-NdeI
(MC58)	Rev	CCCGCTCGAG-ACCCACGTTGTAAGGTTG	XhoI
961 c-L	Fwd	CGCGGATCCCATATG-ATGAAACACTTTCCATCC	NdeI
	Rev	CCCGCTCGAG-TTAACCCACGTTGTAAGGT	XhoI
961 c-L	Fwd	CGCGGATCC <u>CATATG</u> -ATGAAACACTTTCCATCC	NdeI
(MC58)	Rev	CCCGCTCGAG-TTAACCCACGTTGTAAGGT	XhoI
961 d (His/GST)	Fwd	CGCGGATCCCATATG-GCCACAAACGACG	BamHI-NdeI
	Rev	CCCGCTCGAG-GTCTGACACTGTTTTATCC	XhoI
961 Δ1-L	Fwd	CGCGGATCCCATATG-ATGAAACACTTTCCATCC	NdeI
	Rev	CCCGCTCGAG-TTATGCTTTGGCGGCAAAG	XhoI
fu 961	Fwd	CGCGGATCCCATATG- GCCACAAACGACGAC	NdeI
	Rev	CGCGGATCC-CCACTCGTAATTGACGCC	BamHI
fu 961	Fwd	CGCGGATCC <u>CATATG</u> -GCCACAAGCGACGAC	Ndel
(MC58)	Rev	CGCGGATCC-CCACTCGTAATTGACGCC	BamHI
fu 961 c	Fwd	CGCGGATCC <u>CATATG</u> -GCCACAAACGACGAC	NdeI
	Rev	CGCGGATCC -ACCCACGTTGTAAGGTTG	BamHI
fu 961 c-L	Fwd	CGCGGATCCCATATG- ATGAAACACTTTCCATCC	NdeI
	Rev	CGCGGATCC -ACCCACGTTGTAAGGTTG	BamHI
fu (961)- 741(MC58)-His	Fwd	CGCGGATCC -GGAGGGGGTGTTCG	BamHI
	Rev	CCCGCTCGAG-TTGCTTGGCGGCAAGGC	XhoI
fu (961)-983-His	Fwd	CGCGGATCC - GGCGGAGGCGGCACTT	BamHI
	Rev	CCCGCTCGAG-GAACCGGTAGCCTACG	XhoI
fu (961)- Orf46.1- His	Fwd	CGC <u>GGATCC</u> GGTGGTGGT- TCAGATTTGGCAAACGATTC	BamHI
	Rev	CCCGCTCGAG-CGTATCATATTTCACGTGC	XhoI
fu (961 c-L)- 741(MC58)	Fwd	CGC <u>GGATCC</u> -GGAGGGGGTGTGTCG	BamHI
	Rev	CCCG <u>CTCGAG</u> -TTATTGCTTGGCGGCAAG	XhoI
fu (961c-L)-983	Fwd	CGCGGATCC - GGCGGAGGCGCACTT	BamHI
	Rev	CCCGCTCGAG-TCAGAACCGGTAGCCTAC	XhoI
fu (961c-L)- Orf46.1	Fwd	CGC <u>GGATCC</u> GGTGGTGGT- TCAGATTTGGCAAACGATTC	BamHI
	Rev	CCCGCTCGAG-TTACGTATCATATTTCACGTGC	XhoI
961-(His/GST)	Fwd	CGCGGATCCCATATG-GCCACAAGCGACGACG	BamHI-NdeI

(MC58)	Rev	CCCGCTCGAG-CCACTCGTAATTGACGCC	XhoI
961 Δ1-His	Fwd	CGCGGATCCCATATG-GCCACAAACGACGAC	NdeI
	Rev	CCCGCTCGAG-TGCTTTGGCGGCAAAGTT	XhoI
961a-(His/GST)	Fwd	CGCGGATCCCATATG-GCCACAAACGACGAC	BamHI-NdeI
,	Rev	CCCGCTCGAG-TTTAGCAATATTATCTTTGTTCGTAGC	XhoI
961b-(His/GST)	Fwd	CGCGGATCCCATATG-AAAGCAAACCGTGCCGA	BamHI-NdeI
	Rev	CCCGCTCGAG-CCACTCGTAATTGACGCC	XhoI
961-His/GST GATE	Fwd	ggggacaagtttgtacaaaaaagcaggctGCAGCCACAAACGACGACGATGTTAAAAAAAGC	attB1
	Rev	ggggaccactttgtacaagaaagctgggtTTACCACTCGTAATTGACGC CGACATGGTAGG	attB2
982	Fwd	GCGGC <u>CATATG</u> -GCAGCAAAAGACGTACAGTT	NdeI
	Rev	GCGGC <u>CTCGAG</u> -TTACATCATGCCGCCCATACCA	XhoI
983-His (2996)	Fwd	CGCGGATCCGCTAGC-TTAGGCGGCGGGGGAG	NheI
	Rev	CCCG <u>CTCGAG</u> -GAACCGGTAGCCTACG	XhoI
ΔG983-His (2996)	Fwd	CCCCTAGCTAGC-ACTTCTGCGCCCGACTT	NheI
	Rev	CCCG <u>CTCGAG</u> -GAACCGGTAGCCTACG	XhoI
983-His	Fwd	CGCGGATCCGCTAGC-TTAGGCGGCGGGGGGG	NheI
	Rev	CCCG <u>CTCGAG</u> -GAACCGGTAGCCTACG	XhoI
ΔG983-His	Fwd	CGCGGATCC <u>GCTAGC</u> -ACTTCTGCGCCCGACTT	NheI
	Rev	CCCG <u>CTCGAG</u> -GAACCGGTAGCCTACG	XhoI
983L	Fwd	CGCGGATCC <u>GCTAGC</u> - CGAACGACCCCAACCTTCCCTACAAAAACTTTCAA	NheI
	Rev	CCCGCTCGAG-TCAGAACCGACGTGCCAAGCCGTTC	XhoI
987-His (MC58)	Fwd	GCCGCCATATGCCCCCACTGGAAGAACGGACG	NdeI
	Rev	GCCGCCTCGAGTAATAAACCTTCTATGGGCAGCAG	XhoI
989-(His/GST)	Fwd	CGCGGATCCCATATG-TCCGTCCACGCATCCG	BamHI-NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TTTGAATTTGTAGGTGTATTG	XhoI
989L	Fwd	CGCGGATCC <u>CATATG</u> -ACCCCTTCCGCACT	NdeI
(MC58)	Rev	CCCGCTCGAG-TTATTTGAATTTGTAGGTGTAT	XhoI
CrgA-His	Fwd	CGCGGATCCCATATG-AAAACCAATTCAGAAGAA	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TCCACAGAGATTGTTTCC	XhoI
PilC1-ES	Fwd	GATGCCCGAAGGCCGG	
(MC58)	Rev	GCCCAAGCTT-TCAGAAGAAGACTTCACGC	
PilC1-His	Fwd	CGCGGATCC <u>CATATG</u> -CAAACCCATAAATACGCTATT	NdeI
(MC58)	Rev	GCCCAAGCTT-GAAGAAGACTTCACGCCAG	HindIII
Δ1PilC1-His	Fwd	CGCGGATCC <u>CATATG</u> -GTCTTTTTCGACAATACCGA	NdeI
(MC58)	Rev	GCCCAAGCTT-	HindIII
PilC1L	Fwd	CGCGGATCC <u>CATATG</u> -AATAAAACTTTAAAAAGGCGG	NdeI
(MC58)	Rev	GCCC <u>AAGCTT</u> -TCAGAAGAAGACTTCACGC	HindIII
ΔGTbp2-His	Fwd	CGCGAATCC <u>CATATG</u> -TTCGATCTTGATTCTGTCGA	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TCGCACAGGCTGTTGGCG	XhoI
Tbp2-His	Fwd	CGCGAATCC <u>CATATG</u> -TTGGGCGGAGGCGGCAG	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TCGCACAGGCTGTTGGCG	XhoI
Tbp2-His(MC58)	Fwd	CGCGAATCC <u>CATATG</u> -TTGGGCGGAGGCGGCAG	NdeI
	Rev	CCCG <u>CTCGAG</u> -TCGCACAGGCTGTTGGCG	XhoI

NMB0109- (His/GST)	Fwd	CGCGGATCCCATATG-GCAAATTTGGAGGTGCGC	BamHI-NdeI
(MC58)	Rev	CCCGCTCGAG-TTCGGAGCGGTTGAAGC	XhoI
NMB0109L	Fwd	CGCGGATCCCATATG-CAACGTCGTATTATAACCC	NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> -TTATTCGGAGCGGTTGAAG	XhoI
NMB0207- (His/GST)	Fwd	CGC <u>GGATCCCATATG</u> - GGCATCAAAGTCGCCATCAACGGCTAC	BamHI-NdeI
(MC58)	Rev	CCCGCTCGAG-TTTGAGCGGGCGCACTTCAAGTCCG	XhoI
NMB0462- (His/GST)	Fwd	CGC <u>GGATCCCATATG</u> -GGCGCAGCGAAAAAAC	BamHI-NdeI
(MC58)	Rev	CCCGCTCGAG-GTTGGTGCCGACTTTGAT	XhoI
NMB0623- (His/GST)	Fwd	CGC <u>GGATCCCATATG</u> -GGCGGCGGAAGCGATA	BamHI-NdeI
(MC58)	Rev	CCCGCTCGAG-TTTGCCCGCTTTGAGCC	XhoI
NMB0625 (His- GST)(MC58)	Fwd	CGC <u>GGATCCCATATG</u> GGCAAATCCGAAAATACG	BamHI-NdeI
NA STACE (Rev	CCCGCTCGAGCATCCCGTACTGTTTCG	XhoI
NMB0634 (His/GST)(MC58)	Fwd	ggggacaagtttgtacaaaaaagcaggctCCGACATTACCGTGTACAAC GGCCAACAAAGAA	attB1
	Rev	ggggaccactttgtacaagaaagctgggtCTTATTTCATACCGGCTTGCT CAAGCAGCCGG	attB2
NMB0776- His/GST (MC58)	Fwd	ggggacaagtttgtacaaaaaagcaggctGATACGGTGTTTTCCTGTAA AACGGACAACAA	attB1
	Rev	ggggaccactttgtacaagaaagctgggtCTAGGAAAAATCGTCATCGT TGAAATTCGCC	attB2
NMB1115- His/GST (MC58)	Fwd	ggggacaagtttgtacaaaaaagcaggctATGCACCCCATCGAAACC	attB1
GATE GATE	Rev	ggggaccactttgtacaagaaagctgggtCTAGTCTTGCAGTGCCTC	attB2
NMB1343- (His/GST)	Fwd	CGC <u>GGATCCCATATG</u> - GGAAATTTCTTATATAGAGGCATTAG	BamHI-NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> - GTTAATTTCTATCAACTCTTTAGCAATAAT	XhoI
NMB1369 (His- GST (MC58)	Fwd	CGC <u>GGATCCCATATG</u> GCCTGCCAAGACGACA	BamHI-NdeI
	Rev	CCCGCTCGAGCCGCCTCCTGCCGAAA	XhoI
NMB1551 (His- GST)(MC58)	Fwd	CGC <u>GGATCCCATATG</u> GCAGAGATCTGTTTGATAA	BamHI-NdeI
	Rev	CCCGCTCGAGCGGTTTTCCGCCCAATG	XhoI
NMB1899 (His- GST) (MC58)	Fwd	CGC <u>GGATCCCATATG</u> CAGCCGGATACGGTC	BamHI-NdeI
	Rev	CCCGCTCGAGAATCACTTCCAACACAAAAT	XhoI
NMB2050- (His/GST)	Fwd	CGCGGATCCCATATG-TGGTTGCTGATGAAGGGC	BamHI-NdeI
(MC58)	Rev	CCCGCTCGAG-GACTGCTTCATCTTCTGC	XhoI
NMB2050L	Fwd	CGCGGATCC <u>CATATG</u> -GAACTGATGACTGTTTTGC	NdeI
(MC58)	Rev	CCCGCTCGAG-TCAGACTGCTTCATCTTCT	XhoI
NMB2159- (His/GST)	Fwd	CGCGGATCCCATATG- AGCATTAAAGTAGCGATTAACGGTTTCGGC	BamHI-NdeI
(MC58)	Rev	CCCG <u>CTCGAG</u> - GATTITGCCTGCGAAGTATTCCAAAGTGCG	XhoI
fu-∆G287His	Fwd	CGCGGATCC <u>GCTAGC</u> -CCCGATGTTAAATCGGC	NheI

	Rev	CGGGGATCC-ATCCTGCTCTTTTTTGCCGG	BamHI
fu-(ΔG287)-919-	Fwd	CGCGGATCCGGTGGTGGTGGT-	BamHI
His		CAAAGCAAGAGCATCCAAACC	241112
	Rev	CCC <u>AAGCTT</u> -TTCGGGCGGTATTCGGGCTTC	HindIII
fu-(ΔG287)-953-	Fwd	CGC <u>GGATCC</u> GGTGGTGGTGGT-	BamHI
His		GCCACCTACAAAGTGGAC	
	Rev	GCCCAAGCTT-TTGTTTGGCTGCCTCGAT	HindIII
fu-(ΔG287)-961-	Fwd	CGC <u>GGATCC</u> GGTGGTGGT-ACAAGCGACGACG	BamHI
His	Rev	GCCC <u>AAGCTT</u> -CCACTCGTAATTGACGCC	HindIII
fu-(ΔG287)- Orf46.1-His	Fwd	CGC <u>GGATCC</u> GGTGGTGGTG TCAGATTTGGCAAACGATTC	BamHI
01140.1.1113	Rev	CCC <u>AAGCTT</u> -CGTATCATATTTCACGTGC	HindIII
fu-(ΔG287-919)-	Fwd	CCC <u>AAGCTT</u> GGTGGTGGTGGT-	HindIII
Orf46.1-His		TCAGATTTGGCAAACGATTC	
	Rev	CCC <u>GCTCGAG</u> -CGTATCATATTTCACGTGC	XhoI
fu-(ΔG287- Orf46.1)-919-His	Fwd	CCC <u>AAGCTT</u> GGTGGTGGTGGT- CAAAGCAAGAGCATCCAAACC	HindIII
O1140.1/-212-1118	Rev	CCCGCTCGAG-CGGCCGTATTCGGGCTT	XhoI
fu ΔG287(394.98)-	Fwd	CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC	NheI
		00000.1100 <u>0011.00</u> 0000.110111111110000	141101
	Rev	CGG <u>GGATCC</u> -ATCCTGCTCTTTTTTGCCGG	BamHI
fu Orf1-(Orf46.1)-	Fwd	CGCGGATCCGCTAGC-GGACACACTTATTTCGGCATC	NheI
His	Rev	CGCGGATCC-CCAGCGGTAGCCTAATTTGAT	
fu (Orf1)-Orf46.1-	Fwd	CGC <u>GGATCC</u> GGTGGTGGT-	BamHI
His	Rev	TCAGATTTGGCAAACGATTC CCC <u>AAGCTT</u> -CGTATCATATTTCACGTGC	HindIII
A- (010) O-846 1			
fu (919)-Orf46.1- His	Fwd1 Fwd2	GCGGC <u>GTCGAC</u> GGTGGCGGAGGCACTGGATCCTCAG GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC	SalI
			VL -T
TI . 646	Rev	CCCGCTCGAG-CGTATCATATTTCACGTGC	XhoI
Fu orf46	Fwd	GGAATTCCATATGTCAGATTTGGCAAACGATTC	NdeI
VI (044) 007 TT	Rev	CGCGGATCCCGTATCATATTTCACGTGC	BamHI
Fu (01146)-287-His		CGGGGATCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	BamHI
T / 840 010 TT	Rev		HindIII
Fu (orf46)-919-His	Fwd	CGC <u>GGATCC</u> GGTGGTGGTGAAAGCAAGAGCATCCA AACC	BamHI
	Rev	CCC <u>AAGCTT</u> CGGGCGTATTCGGGCTTC	HindIII
Fu (orf46-919)-	Fwd	CCCCAAGCTTGGGGGCGGCGGTGGCG	HindIII
287-His	Rev	CCCGCTCGAGATCCTGCTCTTTTTTGCCGGC	XhoI
Fu (orf46-287)-	Fwd	CCCAAGCTTGGTGGTGGTGGTCAAAGCAAGAGCAT	HindIII
919-His		CCAAACC	
	Rev	CCCGCTCGAGCGGCGTATTCGGGCTT	XhoI
(ΔG741)-961c-His	Fwd1		XhoI
	Fwd2		
	Rev	CCCG <u>CTCGAG</u> -ACCCAGCTTGTAAGGTTG	XhoI
(ΔG741)-961-His	Fwd1		XhoI
	Fwd2		
	Rev	CCCG <u>CTCGAG</u> -CCACTCGTAATTGACGCC	XhoI

10

15

	T		
(ΔG741)-983-His	Fwd	GCGGC <u>CTCGAG</u> -	XhoI
		GGATCCGGCGGAGGCGCACTTCTGCG	
	Rev	CCCG <u>CTCGAG</u> -GAACCGGTAGCCTACG	XhoI
(ΔG741)-orf46.1-	Fwd1	GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC	SalI
His	Fwd2	GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA	
	Rev	CCCGCTCGAG-CGTATCATATTTCACGTGC	XhoI
(ΔG983)- 741(MC58) -His	Fwd	GCGGC <u>CTCGAG</u> -GGATCCGGAGGGGGTGGTGTCGCC	XhoI
	Rev	CCCG <u>CTCGAG</u> -TTGCTTGGCGGCAAG	XhoI
(ΔG983)-961c-His	Fwd1	GGAGGCACTGGATCCGCAGCCACAAACGACGACGA	XhoI
	Fwd2	GCGGC <u>CTCGAG</u> -GGTGGCGGAGGCACTGGATCCGCAG	
	Rev	CCCGCTCGAG-ACCCAGCTTGTAAGGTTG	XhoI
(ΔG983)-961-His	Fwd1	GGAGGCACTGGATCCGCAGCCACAAACGACGACGA	XhoI
	Fwd2	GCGGC <u>CTCGAG</u> -GGTGGCGGAGGCACTGGATCCGCAG	
	Rev	CCCG <u>CTCGAG</u> -CCACTCGTAATTGACGCC	XhoI
(ΔG983)- Orf46.1-	Fwd1	GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC	SalI
His	Fwd2	GCGGC <u>GTCGAC</u> GGTGGCGGAGGCACTGGATCCTCAGA	
	Rev	CCCG <u>CTCGAG</u> -CGTATCATATTTCACGTGC	XhoI

^{*} This primer was used as a Reverse primer for all the C terminal fusions of 287 to the His-tag.

§ Forward primers used in combination with the 287-His Reverse primer.

NB – All PCR reactions use strain 2996 unless otherwise specified (e.g. strain MC58)

In all constructs starting with an ATG not followed by a unique *NheI* site, the ATG codon is part of the *NdeI* site used for cloning. The constructs made using *NheI* as a cloning site at the 5' end (e.g. all those containing 287 at the N-terminus) have two additional codons (GCT AGC) fused to the coding sequence of the antigen.

Preparation of chromosomal DNA templates

N.meningitidis strains 2996, MC58, 394.98, 1000 and BZ232 (and others) were grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20% w/v sucrose, 50mM Tris-HCl, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml of lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension incubated at 37°C for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation. The pellet was washed once with 70%(v/v) ethanol and redissolved in 4.0ml TE buffer (10mM Tris-HCl, 1mM EDTA, pH 8.0). The DNA concentration was measured by reading OD₂₆₀.

PCR Amplification

5

10

15

20

The standard PCR protocol was as follows: 200ng of genomic DNA from 2996, MC581000, or BZ232 strains or 10ng of plasmid DNA preparation of recombinant clones were used as template in the presence of 40µM of each oligonucletide primer, 400-800 µM dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units *TaqI* DNA polymerase (using Perkin-Elmer AmpliTaQ, Boerhingher Mannheim ExpandTM Long Template).

After a preliminary 3 minute incubation of the whole mix at 95°C, each sample underwent a two-step amplification: the first 5 cycles were performed using the hybridisation temperature that excluded the restriction enzyme tail of the primer (T_{m1}) . This was followed by 30 cycles according to the hybridisation temperature calculated for the whole length oligos (T_{m2}) . Elongation times, performed at 68°C or 72°C, varied according to the length of the Orf to be amplified. In the case of Orf1 the elongation time, starting from 3 minutes, was increased by 15 seconds each cycle. The cycles were completed with a 10 minute extension step at 72°C.

The amplified DNA was either loaded directly on a 1% agarose gel. The DNA fragment corresponding to the band of correct size was purified from the gel using the Qiagen Gel Extraction Kit, following the manufacturer's protocol.

Digestion of PCR fragments and of the cloning vectors

The purified DNA corresponding to the amplified fragment was digested with the appropriate restriction enzymes for cloning into pET-21b+, pET22b+ or pET-24b+. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted with either H₂O or 10mM Tris, pH 8.5. Plasmid vectors were digested with the appropriate restriction enzymes, loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit.

25 Cloning

The fragments corresponding to each gene, previously digested and purified, were ligated into pET21b+, pET22b+ or pET-24b+. A molar ratio of 3:1 fragment/vector was used with T4 DNA ligase in the ligation buffer supplied by the manufacturer.

Recombinant plasmid was transformed into competent *E.coli* DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice, then at 37°C for 3 minutes.

This was followed by the addition of 800µl LB broth and incubation at 37°C for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200µl of the supernatant and plated onto LB ampicillin (100mg/ml) agar.

Screening for recombinant clones was performed by growing randomly selected colonies overnight at 37°C in 4.0ml of LB broth + 100µg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1µg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.

Expression

5

10

15

20

25

30

After cloning each gene into the expression vector, recombinant plasmids were transformed into *E.coli* strains suitable for expression of the recombinant protein. 1µl of each construct was used to transform *E.coli* BL21-DE3 as described above. Single recombinant colonies were inoculated into 2ml LB+Amp (100µg/ml), incubated at 37°C overnight, then diluted 1:30 in 20ml of LB+Amp (100µg/ml) in 100ml flasks, to give an OD₆₀₀ between 0.1 and 0.2. The flasks were incubated at 30°C or at 37°C in a gyratory water bath shaker until OD₆₀₀ indicated exponential growth suitable for induction of expression (0.4-0.8 OD). Protein expression was induced by addition of 1.0mM IPTG. After 3 hours incubation at 30°C or 37°C the OD₆₀₀ was measured and expression examined. 1.0ml of each sample was centrifuged in a microfuge, the pellet resuspended in PBS and analysed by SDS-PAGE and Coomassie Blue staining.

Gateway cloning and expression

Sequences labelled GATE were cloned and expressed using the GATEWAY Cloning Technology (GIBCO-BRL). Recombinational cloning (RC) is based on the recombination reactions that mediate the integration and excision of phage into and from the *E.coli* genome, respectively. The integration involves recombination of the *attP* site of the phage DNA within the *attB* site located in the bacterial genome (BP reaction) and generates an integrated phage genome flanked by *attL* and *attR* sites. The excision recombines *attL* and *attR* sites back to *attP* and *attB* sites (LR reaction). The integration reaction requires two enzymes [the phage protein Integrase (Int) and the bacterial protein integration host factor (IHF)] (BP clonase). The

15

20

25

30

excision reaction requires Int, IHF, and an additional phage enzyme, Excisionase (Xis) (LR clonase). Artificial derivatives of the 25-bp bacterial attB recombination site, referred to as B1 and B2, were added to the 5' end of the primers used in PCR reactions to amplify Neisserial ORFs. The resulting products were BP cloned into a "Donor vector" containing complementary derivatives of the phage attP recombination site (P1 and P2) using BP clonase. The resulting "Entry clones" contain ORFs flanked by derivatives of the attL site (L1 and L2) and were subcloned into expression "destination vectors" which contain derivatives of the attL-compatible attR sites (R1 and R2) using LR clonase. This resulted in "expression clones" in which ORFs are flanked by B1 and B2 and fused in frame to the GST or His N terminal tags.

The *E. coli* strain used for GATEWAY expression is BL21-SI. Cells of this strain are induced for expression of the T7 RNA polymerase by growth in medium containing salt (0.3 M NaCl).

Note that this system gives N-terminus His tags.

Preparation of membrane proteins.

Fractions composed principally of either inner, outer or total membrane were isolated in order to obtain recombinant proteins expressed with membrane-localisation leader sequences. The method for preparation of membrane fractions, enriched for recombinant proteins, was adapted from Filip et. al. [J.Bact. (1973) 115:717-722] and Davies et. al. [J.Immunol.Meth. (1990) 143:215-225]. Single colonies harbouring the plasmid of interest were grown overnight at 37°C in 20 ml of LB/Amp (100 µg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30°C or 37°C until the OD₅₅₀ reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000g for 15 minutes at 4°C and resuspended in 20 ml of 20 mM Tris-HCl (pH 7.5) and complete protease inhibitors (Boehringer-Mannheim). All subsequent procedures were performed at 4°C or on ice.

Cells were disrupted by sonication using a Branson Sonifier 450 and centrifuged at 5000g for 20 min to sediment unbroken cells and inclusion bodies. The supernatant, containing membranes and cellular debris, was centrifuged at 50000g (Beckman Ti50, 29000rpm) for 75 min, washed with 20 mM Bis-tris propane (pH 6.5), 1.0 M NaCl, 10% (v/v) glycerol and sedimented again at 50000g for 75 minutes. The pellet was resuspended in 20mM Tris-HCl (pH 7.5), 2.0% (v/v) Sarkosyl, complete protease inhibitor (1.0 mM EDTA, final

10

1/

concentration) and incubated for 20 minutes to dissolve inner membrane. Cellular debris was pelleted by centrifugation at 5000g for 10 min and the supernatant centrifuged at 75000g for 75 minutes (Beckman Ti50, 33000rpm). Proteins 008L and 519L were found in the supernatant suggesting inner membrane localisation. For these proteins both inner and total membrane fractions (washed with NaCl as above) were used to immunise mice. Outer membrane vesicles obtained from the 75000g pellet were washed with 20 mM Tris-HCl (pH 7.5) and centrifuged at 75000g for 75 minutes or overnight. The OMV was finally resuspended in 500 µl of 20 mM Tris-HCl (pH 7.5), 10% v/v glycerol. Orf1L and Orf40L were both localised and enriched in the outer membrane fraction which was used to immunise mice. Protein concentration was estimated by standard Bradford Assay (Bio-Rad), while protein concentration of inner membrane fraction was determined with the DC protein assay (Bio-Rad). Various fractions from the isolation procedure were assayed by SDS-PAGE.

Purification of His-tagged proteins

Various forms of 287 were cloned from strains 2996 and MC58. They were constructed with a C-terminus His-tagged fusion and included a mature form (aa 18-427), constructs with 15 deletions ($\Delta 1$, $\Delta 2$, $\Delta 3$ and $\Delta 4$) and clones composed of either B or C domains. For each clone purified as a His-fusion, a single colony was streaked and grown overnight at 37°C on a LB/Amp (100 µg/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 µg/ml) liquid medium and grown overnight at 37°C with shaking. 20 The overnight culture was diluted 1:30 into 1.0 L LB/Amp (100 µg/ml) liquid medium and allowed to grow at the optimal temperature (30 or 37°C) until the OD₅₅₀ reached 0.640.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000g for 15 min at 4°C. The bacterial pellet was resuspended in 7.5 ml of 25 either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (10mM Tris-HCl, 100 mM phosphate buffer, pH 8.8 and, optionally, 8M urea) for insoluble proteins. Proteins purified in a soluble form included 287-His, $\Delta 1$, $\Delta 2$, $\Delta 3$ and $\Delta 4287$ -His, $\Delta 4287$ MC58-His, 287c-His and 287cMC58-His. Protein 287bMC58-His was insoluble and purified accordingly. Cells were disrupted by 30 sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13000xg for 30 min at 4°C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6 M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris- HCl, pH 7.5

10

15

25

and treated with 10 passes of a Dounce homogenizer. The homogenate was centrifuged at 13000g for 30 min and the supernatant retained. Supernatants for both soluble and insoluble preparations were mixed with 150µl Ni²⁺-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to the manufacturer's protocol. The batch-wise preparation was centrifuged at 700g for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batch-wise) with 10ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4°C or (ii) buffer B at room temperature, until the OD₂₈₀ of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300mM NaCl, 50mM phosphate buffer, 20mM imidazole, pH 8.0) or (ii) buffer D (10mM Tris-HCl, 100mM phosphate buffer, pH 6.3 and, optionally, 8M urea) until OD₂₈₀ of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300 mM NaCl, 50mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5 and, optionally, 8M urea) and fractions collected until the OD₂₈₀ indicated all the recombinant protein was obtained. 20µl aliquots of each elution fraction were analysed by SDS-PAGE. Protein concentrations were estimated using the Bradford assay.

20 Renaturation of denatured His-fusion proteins.

Denaturation was required to solubilize 287bMC8, so a renaturation step was employed prior to immunisation. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10% v/v. The proteins were diluted to 200 μg/ml using dialysis buffer I (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4°C. Further dialysis was performed with buffer II (10% v/v glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C. Protein concentration was estimated using the formula:

Protein
$$(mg/ml) = (1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

Amino acid sequence analysis.

Automated sequence analysis of the NH₂-terminus of proteins was performed on a Beckman sequencer (LF 3000) equipped with an on-line phenylthiohydantoin-amino acid analyser (System Gold) according to the manufacturer's recommendations.

5 Immunization

10

15

20

25

Balb/C mice were immunized with antigens on days 0, 21 and 35 and sera analyzed at day 49.

Sera analysis – ELISA

The acapsulated MenB M7 and the capsulated strains were plated on chocolate agar plates and incubated overnight at 37°C with 5% CO₂. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.4-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and bacteria were washed twice with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37°C and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200µl of saturation buffer (2.7% polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200µl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-phenildiamine and 10µl of H2O2) were added to each well and the plates were left at room temperature for 20 minutes. 100µl 12.5% H₂SO₄ was added to each well and OD490 was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD₄₉₀ value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD₄₉₀ of 0.4 was higher than 1:400.

30 Sera analysis – FACS Scan bacteria binding assay

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C with 5% CO₂. Bacterial colonies were collected from the agar plates using

10

15

20

25

30

a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD_{620} of 0.05. 100µl bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab)₂ goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of 200µl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15mW) setting were: FL2 on; FSC-H threshold:92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.

Sera analysis – bactericidal assay

N. meningitidis strain 2996 was grown overnight at 37°C on chocolate agar plates (starting from a frozen stock) with 5% CO₂. Colonies were collected and used to inoculate 7ml Mueller-Hinton broth, containing 0.25% glucose to reach an OD₆₂₀ of 0.05-0.08. The culture was incubated for approximately 1.5 hours at 37 degrees with shacking until the OD₆₂₀ reached the value of 0.23-0.24. Bacteria were diluted in 50mM Phosphate buffer pH 7.2 containing 10mM MgCl₂, 10mM CaCl₂ and 0.5% (w/v) BSA (assay buffer) at the working dilution of 10^5 CFU/ml. The total volume of the final reaction mixture was 50 μ l with 25 μ l of serial two fold dilution of test serum, 12.5 μ l of bacteria at the working dilution, 12.5 μ l of baby rabbit complement (final concentration 25%).

Controls included bacteria incubated with complement serum, immune sera incubated with bacteria and with complement inactivated by heating at 56°C for 30'. Immediately after the addition of the baby rabbit complement, 10µl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 0). The 96-wells plate was incubated for 1 hour at 37°C with rotation. 7µl of each sample were plated on Mueller-Hinton agar plates as spots, whereas 10µl of the controls were plated on Mueller-Hinton agar plates using the tilt method

10

15

20

25

30

7.5

3

(time 1). Agar plates were incubated for 18 hours at 37 degrees and the colonies corresponding to time 0 and time 1 were counted.

Sera analysis – western blots

Purified proteins (500ng/lane), outer membrane vesicles (5µg) and total cell extracts (25µg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, using transfer buffer (0.3% Tris base, 1.44% glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

The OMVs were prepared as follows: *N. meningitidis* strain 2996 was grown overnight at 37 degrees with 5% CO₂ on 5 GC plates, harvested with a loop and resuspended in 10 ml of 20mM Tris-HCl pH 7.5, 2 mM EDTA. Heat inactivation was performed at 56°C for 45 minutes and the bacteria disrupted by sonication for 5 minutes on ice (50% duty cycle, 50% output, Branson sonifier 3 mm microtip). Unbroken cells were removed by centrifugation at 5000g for 10 minutes, the supernatant containing the total cell envelope fraction recovered and further centrifuged overnight at 50000g at the temperature of 4°C. The pellet containing the membranes was resuspended in 2% sarkosyl, 20mM Tris-HCl pH 7.5, 2 mM EDTA and incubated at room temperature for 20 minutes to solubilise the inner membranes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, the supernatant was further centrifuged at 50000g for 3 hours. The pellet, containing the outer membranes was washed in PBS and resuspended in the same buffer. Protein concentration was measured by the D.C. Bio-Rad Protein assay (Modified Lowry method), using BSA as a standard.

Total cell extracts were prepared as follows: *N. meningitidis* strain 2996 was grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes.

961 domain studies

<u>Cellular fractions preparation</u> Total lysate, periplasm, supernatant and OMV of *E. coli* clones expressing different domains of 961 were prepared using bacteria from over-night cultures or

10

after 3 hours induction with IPTG. Briefly, the periplasm were obtained suspending bacteria in saccarose 25% and Tris 50mM (pH 8) with polimixine 100μg/ml. After 1hr at room temperature bacteria were centrifuged at 13000rpm for 15 min and the supernatant were collected. The culture supernatant were filtered with 0.2μm and precipitated with TCA 50% in ice for two hours. After centrifugation (30 min at 13000 rp) pellets were rinsed twice with ethanol 70% and suspended in PBS. The OMV preparation was performed as previously described. Each cellular fraction were analyzed in SDS-PAGE or in Western Blot using the polyclonal anti-serum raised against GST-961.

Adhesion assay Chang epithelial cells (Wong-Kilbourne derivative, clone 1-5c-4, human conjunctiva) were maintained in DMEM (Gibco) supplemented with 10% heat-inactivated FCS, 15mM L-glutamine and antibiotics.

For the adherence assay, sub-confluent culture of Chang epithelial cells were rinsed with PBS and treated with trypsin-EDTA (Gibco), to release them from the plastic support. The cells were then suspended in PBS, counted and dilute in PBS to $5x10^5$ cells/ml.

Bacteria from over-night cultures or after induction with IPTG, were pelleted and washed twice with PBS by centrifuging at 13000 for 5 min. Approximately 2-3x10⁸ (cfu) were incubated with 0.5 mg/ml FITC (Sigma) in 1ml buffer containing 50mM NaHCO₃ and 100mM NaCl pH 8, for 30 min at room temperature in the dark. FITC-labeled bacteria were wash 2-3 times and suspended in PBS at 1-1.5x10⁹/ml. 200μl of this suspension (2-3x10⁸) were incubated with 200μl (1x10⁵) epithelial cells for 30min a 37°C. Cells were than centrifuged at 2000rpm for 5 min to remove non-adherent bacteria, suspended in 200μl of PBS, transferred to FACScan tubes and read

CLAIMS

- 1. A method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.
- 2. The method of claim 1, in which the protein of the invention is ORF46.
- 5 3. The method of claim 2, in which ORF46 is divided into a first domain (amino acids 1-433) and a second domain (amino acids 433-608).
 - 4. The method of claim 2, in which the protein of the invention is 564.
 - 5. The method of claim 4, in which protein 564 is divided into domains as shown in Figure 8.
- 10 6. The method of claim 1 in which the protein of the invention is 961.
 - 7. The method of claim 6, in which protein 961 is divided into domains as shown in Figure 12.
 - 8. The method of claim 1, in which the protein of the invention is 502 and the domain is amino acids 28 to 167 (numbered according to the MC58 sequence).
- 15 9. The method of claim 1, in which the protein of the invention is 287.
 - 10. A method for the heterologous expression of a protein of the invention, in which (a) a portion of the N-terminal domain of the protein is deleted.
 - 11. The method of claim 9 or claim 10, in which protein 287 is divided into domains A B & C shown in Figure 5.
- 20 12. The method of claim 11, in which (i) domain A, (ii) domains A and B, or (iii) domains A and C are deleted.
 - 13. The method of claim 11, wherein (i) amino acids 1-17, (ii) amino acids 1-25, (iii) amino acids 1-69, or (iv) amino acids 1-106, of domain A are deleted.
- 14. A method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.

10

- 15. The method of claim 14, in which the protein of the invention is selected from the group consisting of: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109, NMB2050, 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
- 16. A method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
- 17. The method of claim 16, in which the different protein is 961, ORF4, *E.coli* OmpA, or *E.carotovora* PelB, or in which the leader peptide is MKKYLFSAA.
- 18. The method of claim 17, in which the different protein is *E.coli* OmpA and the protein of the invention is ORF1.
- 15 19. The method of claim 17, in which the protein of the invention is 911 and the different protein is *E.carotovora* PelB or *E.coli* OmpA.
 - 20. The method of claim 17, in which the different protein is ORF4 and the protein of the invention is 287.
- 21. A method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.
 - 22. The method of claim 21, in which the protein of the invention is 919.
 - 23. A method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.
- 25 24. The method of claim 23, in which protein 919 is expressed at 30°C.
 - 25. A method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.

i vile

- 26. The method of claim 25, in which the protein of the invention is 907, 919 or 922.
- 27. The method of claim 26, in which 907 is mutated at Glu-117 (e.g. Glu→Gly).
- 28. The method of claim 26, in which 919 is mutated at Glu-255 (e.g. Glu→Gly) and/or Glu-323 (e.g. Glu→Gly).
- 5 29. The method of claim 26, in which 922 is mutated at Glu-164 (e.g. Glu→Gly), Ser-213 (e.g. Ser→Gly) and/or Asn-348 (e.g. Asn→Gly).
 - 30. A method for the heterologous expression of a protein of the invention, in which vector pSM214 is used or vector pET-24b is used.
- 31. The method of claim 30, in which the protein of the invention is 953 and the vector is pSM214.
 - 32. A method for the heterologous expression of a protein of the invention, in which a protein is expressed or purified such that it adopts a particular multimeric form.
 - 33. The method of claim 32, in which protein 953 is expressed and/or purified in monomeric form.
- 34. The method of claim 32, in which protein 961 is expressed and/or purified in tetrameric form.
 - 35. The method of claim 32, in which protein 287 is expressed and/or purified in dimeric form.
- 36. The method of claim 32, in which protein 919 is expressed and/or purified in monomeric form.
 - 37. A method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.
 - 38. The method of claim 37, in which the protein of the invention is 919, 287, ORF4, 406, 576, or ORF25.
- 25 39. A method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.

- 40. The method of claim 39, wherein the mutation is a substitution, an insertion, or a deletion
- 41. The method of claim 40, wherein the protein of the invention is 730, ORF29 or ORF46.
- 42. A method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.
- 5 43. The method of claim 42, in which the protein of the invention is 919.
 - 44. A method for the heterologous expression of a protein, in which a poly-glycine stretch within the protein is mutated.
 - 45. The method of claim 44, wherein the protein is a protein of the invention.
 - 46. The method of claim 45, wherein the protein of the invention is 287, 741, 983 or Tbp2.
- 10 47. The method of claim 46, wherein (Gly)₆ is deleted from 287 or 983.
 - 48. The method of claim 46, wherein (Gly)₄ is deleted from Tbp2 or 741
 - 49. The method of claim 47 or claim 48, wherein the leader peptide is also deleted.
 - 50. The method of any preceding claim, in which the heterologous expression is in an *E.coli* host.
- 15 51. A protein expressed by the method of any preceding claim.
 - 52. A heterologous protein comprising the N-terminal amino acid sequence MKKYLFSAA.

٠,

FIGURE 2

FIGURE 3

ELISA: POSITIVE

FIGURE 4

PURIFICATION

70 60 50 50 40 GST GST 961 10 to t1

WESTERN BLOT

BACTERICIDAL ASSAY

ELISA: POSITIVE

WO 01/64922 PCT/IB01/00452

4/13

FIGURE 5

FIGURE 6

FIGURE 9

FIGURE 7

		Α
MC58	1	MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEMKEDAPOAGSOG
2996		MFERSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVV <mark>A</mark> EKETE <mark>V</mark> KEDAPQAGSQG
MC58	61	QGAPS <mark>A</mark> QGSQDMAAVSEENTGNGGAVT <mark>AD</mark> NPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP
2996	61	QGAPS <mark>T</mark> QGSQDMAAVS <mark>AENTGNGGAA</mark> TTDKPKNEDEGPQNDMPQN
MC58	121	NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ
2996	106	SAESANOTGNNO
MC58	181	AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV
2996	118	PADSSDSAPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCNGDNLLDEEA
MC58	241	QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVOMKGINOYTIFYKPKPUSFARFR
2996	178	PSKSEFENENESERIEKYKKDGKSDKFTNLVATAVQANGTNKYVIIYKDKSASSSSARFR
		<c< th=""></c<>
MC58	299	RSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGG
2996	238	RSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGG
		·
MC58	359	SYALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDS
2996	298	SYALRVQGEPAKGEMLAG <mark>T</mark> AVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDS
MC58	419	GDDLHMGTQKFKAAIDGNGFKGTWTENG <mark>S</mark> GDVSG <mark>K</mark> FYGPAGEEVAGKYSYRPTDAEKGGF
2996	358	GDDLHMGTQKFKAAIDGNGFKGTWTENG <mark>C</mark> GDVSG <mark>R</mark> FYGPAGEEVAGKYSYRPTDAEKGGF
		C>
MC58	479	GVFAGKKEQD*
2996	418	GVFAGKKEQD*

6/13

FIGURE 8

FIGURE 10

FIGURE 12

8/13

FIGURE 13

FIGURE 14

FIGURE 14A — ΔG287—919

FIGURE 14B — ΔG287—953

FIGURE 14C — ΔG287—961

FIGURE 14D — ΔG287NZ—919

FIGURE 14E — ΔG287NZ—953

FIGURE 14F — ΔG287NZ—961

FIGURE 14G — ΔG983-ORF46.1

10/13

FIGURE 14I — ΔG983-961

FIGURE 14J — ΔG983-961c

FIGURE 14K — ΔG741-961

FIGURE 14L — ΔG741-961c

644

FIGURE 14M — ΔG741-983

FIGURE 14N — ΔG741-ORF46.1

FIGURE 140 — ORF46.1-741

FIGURE 14P — ORF46.1-961

FIGURE 14Q — ORF46.1—961c

12/13

FIGURE 14S -- 961-741

FIGURE 14T — 961-983

FIGURE 14U — 961c-ORF46.1

FIGURE 14V — 961c-741

13/13

FIGURE 14W — 961c-983

FIGURE 14X — 961cL-ORF46.1

FIGURE 14Y — 961cL-741

FIGURE 14Z — 961cL-983

Xerox Document Centre Network Scanning Confirmation Report

Job Status: SUCCESS

Job Status Details:

1 - 1-	1 2 .			
Job	Int	1	atı	nn
vvu		<i>3</i> 1111	αи	u

Device name: XRX490STDU System date: 02/18/06 System time: 09:41 AM Submission date: 02/18/06 Sulomission time: 09:40 AM

Scan Settings

Status Images Scanned: **Basic** Original Type: Auto Exposure: Lighten/Darken: Sides Imaged: Resolution: Bits per Pixel: Contrast: Sharpness: Image Size

Original size:

TEXT LEAD_EDGE ONE_SIDED RES_300 x 300 0 **AUTO**

Template Information

Name: Duplicating_PDF.ust Owner: Description: \/ips4\/tproot\99999\duplicating

File Settings

Status Images Filed: Bytes Filed: Login Repository name: Protocot: NDS tree: NDS name context: Login name: Destination Votume:

Path: Name: Format **Attributes** Policy:

148.170.67.4 FTP

r/Rtxerox

/99999/duplicating PDF039 PDF

NEW_AUTO_GENERATE

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)