UNIVERSITY OF TEXAS AT ARLINGTON INSY-5339-003-PRIN OF BUSINESS DATA MINING SPRING 2022

FINAL PROJECT REPORT

Due Date: 5/8/2022

Submitted by: Team 9

Team Members

Ruchi Shukla: 1001977095

Pranati Chauhan: 1002032137

Jessica Mendem: 1002036921

INDEX

1. Executive Summary	3
2. Background (Hotel Booking cancellation Prediction)	5
Business ContextBusiness ProblemWhat should you do?	
3. Description of Data	6
Resources on handVariables summary and list of variables usedData Exploration	
4. Data Visualization	9
3. Data Mining Modules and Comparison	12
 Naïve Bayes Classification K- Nearest Neighbor Algorithm Classification Tree Logistic Regression 	
5. Managerial Insights	20

Executive Summary

Company Goal:

Boost business for hotels by predicting cancellations.

Problem Statement:

In the hospitality industry, there is a vast amount of data which is untouched that can revolutionize revenue management. In the industry, optimizing the operations of the hotel industry to ensure the right room to the right customer at the right price is what would hotels stay ahead of the competition and help in efficient use of resources.

Last-minute cancellations and no-show lead to heavy loss of resources. What if cancellations could be predicted way before they are made?

Proposed Solution:

If potential cancellers are identified, they may be persuaded to check into a hotel by attractive, customized incentives. Analyzing the behavior of previous hotel guests might help management provide targeted incentives, allowing them to keep as many reservations as feasible.

As seen in the bar graph, it can be concluded that deposit, country, and lead time are the top 3 factors which lead to cancellations.

A proper solution investigating these factors can help to minimize cancellations.

Approach:

To implement the concept, data was analyzed from three years (2015-2017) of customer records at city and resort hotels. To construct the best accurate prediction model for identifying probable cancellers and studying prior customer behavior, a variety of data mining algorithms were applied.

Results:

To detect prospective cancellers, a predictive model with a high degree of accuracy was successfully created. Various parameters were used to assess consumer behavior and create client categories. Incentives were given to customers who were likely to cancel reservations.

Managerial Insights:

Managers might utilize the prediction model to target possible cancellers, and group of customers analysis could be used to give individualized rewards to the identified potential cancellers. The benefits must be based on the resources and capital available.

Hotel Booking Cancellations

Background:

We are a data analytics team for a hotel chain, and our job is to provide management with insights that will help them enhance business at their city and resort properties.

- Numerous individuals who reserve hotel reservations end up checking in, but there are also many people who cancel their reservations.
- It is wonderful for business if people show up; but it is a loss for the franchise if they cancel their reservations and do not show up.

Solution:

Management has advised us that if we can identify possible cancellers and provide them with individualized incentives, they may be persuaded to visit a hotel, minimizing the chance of a reservation cancellation.

We'll discover and investigate folks who have a high risk of canceling in order to provide them with targeted incentives.

What Should You Do

- If we can identify potential cancellers, we might be able to convince them and provide specific incentives, minimizing the risk of a reservation cancellation.
- We'll discover and investigate folks who have a high risk of canceling to provide them with targeted incentives.

Description of Data

Resources on hand

Data was collected from Kaggle.

https://www.kaggle.com/datasets/jessemostipak/hotel-booking-demand

- •This dataset contains client records of 2 hotels- city hotel and a resort hotel (2015-2017).
- •This dataset comprises booking information including dates of booking, duration of stay, number of adults, children, and/or newborns, meal preferences, room type, etc.

List of Variables

Variable	Description	Type
Is_canceled	If booking was cancelled	Categorical
lead_time	difference between booking date & arrival date	Integer
arrival_date_year	arrival date of the year	Integer
arrival_date_month	arrival month - Jan to Dec	Categorical
arrival_date_week_number	week of arrival	Integer
arrival_date_day_of_month	date and day of arrival	Integer
stays_in_weekend_nights	number of nights stayed on weekends	Integer
stays_in_week_nights	number of nights stayed in a week	Integer
Adults	Number of adults	Integer
Children	Number of children	Integer
Babies	Number of babies	Integer

Meal	type of meal booked	Categorical
Country	country of origin of the guest	Categorical
market_segment	source of booking - self or through travel agent or other sources	Categorical
distribution_channel	source of booking - self or through travel agent or other sources	Categorical
is_repeated_guest	If the guest	Categorical
previous_cancellations	bookings cancelled by the customer at the same hotel before the current booking	Integer
previous_bookings_not_canceled	number of bookings not cancelled by guest, prior to current booking	Integer
reserved_room_type	which type of room was booked by the customer	Categorical
assigned_room_type	which room was assigned	Categorical
booking_changes	count of changes made to the reservation ahead of check-in	Integer
deposit_type	Category addressing whether a deposit was made during reservation or not	Categorical
Agent	travel agency identifier/code	Categorical
Company	company identifier/code	Categorical
days_in_waiting_list	measurement of time when booking was on waitlist	Integer
customer_type	type of customer	Categorical

Adr	Average daily rates at the time of booking	Numeric
required_car_parking_spaces	number of parking spaces requested in the booking	Integer
total_of_special_requests	count of special requests associated with the reservation	Integer
reservation_status	status of reservation at the end of stay	Categorical
reservation_status_date	date of reservation_status	Date

Summary of Variables

Total number of records	118,221
Binary variable	2
Ordinal variable	4
Nominal	9
Interval	13
Outcome/Target	Is_canceled
variable	
Percentage of the	For is_canceled = 0(Not
records that belong to	Canceled):74283
each class.	Observations = 63%
	For is_canceled = 1(Canceled):
	43938
	Observations = 37%

Data Visualization

For data exploration and finding trends and patterns, data visualization is a necessary tool. It helps us understand relationships between variables.

Through these visualizations, univariate analysis and various patterns and trends helped in understanding and brainstorming why cancellations happen and how changes can be made by analyzing the trends.

Visualization Methods:

- Bar Chart
- Pie Chart
- Heat Map

Univariate Analysis

The univariate analysis here shows the following:

- City Hotel had more reservations and cancellations than Resort Hotels.
- Around 49% of the bookings were made by Transient customer type and had a 69% rate of cancellations in city hotels.
- Resort Hotels had most bookings and cancellations by Transient Customers as well.

Maps

- Portugal has the most bookings and cancellations.
- Among 47.887% of bookings, 56.9% were cancelled, which is an alarming percentage.

Bar Graph

 Booking percentage per year: In 2015 bookings are 62.8% and Cancellation 37.2%. The highest bookings were in 2016 bookings are 64.1% and cancellations are 35.9%. In 2017 bookings were up to 61.1% and 38.9% Cancellations.

• Busiest Month: In overall months we have busiest month is in August and it also has the highest cancellation rate.

• Customers who booked **Room A** cancelled more than any other room.

Heat Map

It was found that the variables were weakly correlated with each other.

Data Mining Models

The data was utilized to create a model that predicted how likely a potential customer would cancel their reservation.

For developing the prediction model:

- Naïve Bayes Classification
- K- Nearest Neighbor Algorithm
- Classification Tree
- Logistic Regression
- After partitioning the dataset into a 60:20:20 ratio (Training: Validation: Test), all the models were run.
- Naive Bayes and K-Nearest Neighbor algorithms were used, because our dataset was vast, and these algorithms perform better on large datasets.
- In case the above-mentioned models' performance was unsatisfactory, classification tree and logistic regression were used as backups.
- We also performed different regression models- stepwise, forward, and backward, and the misclassification rate for forward regression was minimum.

Process Flow Diagram

Model 1: Naïve Bayes Classification:

Results

Statistics and Bayesian Network

Observations

- Average Squared Error for validation dataset = 17%
- Misclassification Rate for validation dataset = 24%

Important Variables in Bayesian Network:

- lead time
- market segment
- assigned_room_type
- customer_type
- required car parking spaces
- country
- hotel
- is_repeated_guest
- meal
- reserved_room_type
- deposit type
- distribution channel
- total_of_special_requests

Model 2: KNN Algorithm - Default settings were used.

Results

Confusion Matrix

Observations

- Average Squared Error for validation dataset = 18%
- Misclassification Rate for validation dataset = 26%

Model 3: Classification Tree- Default settings were used.

Results

Observations:

- Average Squared Error for validation dataset = 13%
- Misclassification Rate for validation dataset = 20%

List of important variables

					Ratio of
		Number of			Validation
		Splitting		Validation	to Training
Variable Name	Label	Rules	Importance	Importance	Importance
deposit_type		1	1.0000	1.0000	1.0000
country		2	0.4782	0.4715	0.986
market_segment		1	0.4289	0.4214	0.982
lead_time		3	0.3975	0.4041	1.0166
total_of_special_requests		1	0.3444	0.3642	1.057
previous_cancellations		3	0.2811	0.3006	1.069
required_car_parking_spaces		1	0.2574	0.2625	1.0200
booking_changes		1	0.1868	0.2015	1.0787
arrival_date_year		1	0.1484	0.1412	0.9516
previous_bookings_not_canceled		2	0.0786	0.0858	1.0925
distribution_channel		1	0.0710	0.0608	0.8556
customer_type		1	0.0513	0.0537	1.0461
hotel		1	0.0337	0.0292	0.8658

Model 4: Logistic Regression – Default settings were used.

Results

Fit Statisti	cs					
Target=is_ca	nceled Ta	rget Label='				
Fit						
Statistics	Statist	Statistics Label		Train	Validation	Test
AIC		s Information		53505.06		
ASE		Squared Err		0.12	0.12	0.12
AVERR		Error Funct:		0.37	0.39	0.38
DFE		of Freedom :		70696.00		
DFM		egrees of Fro		235.00		
DFT		egrees of Fro	edom	70931.00		
DIV		for ASE		141862.00	47290.00	47290.00
ERR	EXECT F			53035.06	10209.20	10145.51
FPE		rediction Er		0.12		
MAX		Absolute Er	EOE	1.00	1.00	1.00
MSE		uare Error		0.12	0.12	0.12
NOBS		Frequencies		70931.00	23645.00	23645.00
NW		of Estimate 1		235.00		
PASE		erage Sum of		0.35	0.35	0.35
RFPE		nal Prediction		0.35		
PMSE		an Squared E:		0.35	0.35	0.35
SBC		's Bayesiam (55659.89		
SSE		Squared Error		17216.67	5819.42	5870.64
SUMW	Sum of	Case Weights	Times Freq	141862.00	47290.00	47290.00
MISC	Misclas	sification R	ste	0.18	0.18	0.18
Classificati	on rable					
Data Role=TR	AIN Targe	t Variable=i	_canceled Ta	rget Label='		
		Target	Outcome	Frequency	Total	
Target Ou	tcome	Percentage	Percentage	Count	Percentage	
0	0	82,1738	90,7694	40455	57,0343	

Type 3 Analy	sis of E	ffects	
		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
IMP_children	1	35.4431	<.0001
adr	1	346.1667	<.0001
adults	1	49.1659	<.0001
arrival date day of month	1	57.7395	<.0001
arrival_date_month	11	293.6240	<.0001
arrival_date_week_number	1	60.3100	<.0001
arrival_date_year	0	0.0000	
assigmed_room_type	11	922.4156	<.0001
babies	1	0.5301	0.4666
booking_changes	1	262.8020	<.0001
country	168	5314.6726	<.0001
customer_type	3	388.2299	<.0001
days_in_waiting_list	1	13.1290	0.0003
deposit_type	2	989.6810	<.0001
distribution_channel	3	717.1956	<.0001
hotel	1	5.2996	0.0213
is_repeated_guest	1	104.8284	<.0001
lead_time	1	1730.1400	<.0001
market_segment	7	1665.8151	<.0001
meal	3	92.7265	<.0001
previous_bookings_not_canceled	1	164.7710	<.0001
previous_cancellations	1	706.1083	<.0001
required_car_parking_spaces	1	17.7431	<.0001
reserved_room_type	8	631.7160	<.0001
stays_in_week_nights	1	90.9505	<.0001
stays_in_weekend_nights	1	64.6551	<.0001
total_of_special_requests	1	2205.5688	<.0001

Comparison between different Regression

Confusion Matrix

Observations

- Average Squared Error for validation dataset = 12%
- Misclassification Rate for validation dataset = 18%

Model Comparison

- K-NN model was predicting incorrectly.
- Logistic regression and classification tree were chosen since they performed much better.
- Misclassification rate for the logistic regression model was 18%.

Clustering - 3 significant clusters were formed: Cluster 1, 2, 3

Cluster 2: Customers likely to cancel (1)

Cluster 3: Customers not likely to cancel (0)

Segment 2: 65% consists of people who canceled reservations.

Statistics for variables:

- Lead time 329
- Market segment Groups = 48%, Offline TA/TO = 31%
- Deposit Type No Deposit = 59%
- Average Daily Rate = \$84 .00
- Late check ins
- Highest number of previous cancellations
- Travelers were mostly from **Portugal** (59%) and **Germany** (10%)
- Most arrivals in August and September
- Waiting list was higher
- Reserved Room Type A 88%
- People who booked Bed & Breakfast 77%
- Booked City Hotel 74%
- Transient customers 54%
- Distribution Channel TA/TO = 93%

Interpretation and Results

- To identify potential cancellations, logistic regression or classification tree can be used.
- Customers can be segmented to offer specific incentives to potential cancelers.
- Furthermore, without data analytics, estimating a person's likelihood of canceling a reservation would have been a vague idea.
- To determine cancellation likelihood, the logistic regression was chosen as the final prediction model.
- The performance of logistic regression improves dramatically as the number of the training data grows. Because our training dataset is so enormous, this is most likely what happened in this situation.

Based on validation misclassification rate:

Logistic Regression: Best model

K-NN: Worst model

Managerial Insights

Hotel industry tend to predict cancellations based on advance booking information (aka pick-up models- classical and advanced, where they see that several bookings is picked up from a specific time point to another) for hotel demand forecast.

Classical pick-up model only utilizes completed bookings in their forecasting.

Advanced pick-up method uses both complete and incomplete bookings.

Managers can use our findings in following ways:

- Predict the possibility of cancellations; Incentives can be offered to potential cancellers to attract them to visit the hotels.
- Consider advanced pick-up method (Lead_time being an important variable in our findings)

Some suggestions include:

- Provide a 5% discount, for example, to all possible cancellers.
- On the basis data analysis, a more efficient way would be to offer targeted incentives to potential cancellers, some possible incentives can be provided, keeping in mind the availability of resources and capital when giving incentives:
- Attract travelers who book Room A a 5% discount.
- \$20 discount on BB.
- Travelers/customers from Portugal or Germany will be offered a 5% discount.