Math 12, Fall 2007 Lecture 5

Scott Pauls 1

¹Department of Mathematics Dartmouth College

10/5/07

- Recap and overview
 - Last class
 - Additional examples
- Today's material
 - Review of reading topics
 - Group Work
- Summary
- 4 Next class

- Recap and overview
 - Last class
 - Additional examples
- 2 Today's material
 - Review of reading topics
 - Group Work
- Summary
- 4 Next class

Spacecurves

- A space curve is an example of a vector valued function of one variable.
- Curves generalize lines:

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$$

- Limits, derivatives and integrals are taken component-wise
- Sketching space curves.

- Recap and overview
 - Last class
 - Additional examples
- 2 Today's material
 - Review of reading topics
 - Group Work
- Summary
- 4 Next class

Examples

What do these curves look like? Where are they smooth? What are do their tangent vectors look like? Are the tangent vectors continuous?

- $\vec{r}(t) = \langle t, t^2, 0 \rangle$
- $\vec{r}(t) = \langle t^2, t^4, 0 \rangle$

Example $\vec{r}(t) = \langle t^2, t^3, t^4 \rangle$

Figure: Coordinate plane projections

- Recap and overview
 - Last class
 - Additional examples
- Today's material
 - Review of reading topics
 - Group Work
- Summary
- 4 Next class

Concepts from reading

Given a spacecurve, $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ with $a \leq t \leq b$, its arclength is given by

$$L = \int_{a}^{b} \sqrt{f'(t)^{2} + g'(t)^{2} + h'(t)^{2}} dt$$

or, equivalently

$$L = \int_a^b |\vec{r}'(t)| dt$$

Parametrization and reparametrization by arclength

$$s(t) = \int_a^t |\vec{r}'(\tau)| \ d\tau$$

Concepts from reading Curvature

- Recall: $\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$
- The curvature of a curve is

$$\kappa = \left| rac{d\vec{T}}{ds}
ight| = rac{|\vec{T}'(t)|}{|\vec{r}'(t)|}$$

- Example: circles have constant curvature
- Normal vector:

$$\vec{N}(t) = rac{\vec{T}'(t)}{|\vec{T}'(t)|}$$

• Claim: \vec{T} and \vec{N} are perpendicular.

Concepts from reading

Position, velocity and acceleration

- $\vec{r}(t) = \vec{p}(t)$) can be interpreted as the position of an object traveling through space.
- $\vec{v}(t) = \vec{p}'(t)$ is velocity $(|\vec{v}(t)|)$ is the speed)
- $\vec{a}(t) = \vec{v}'(t) = \vec{p}''(t)$ is the acceleration

- Recap and overview
 - Last class
 - Additional examples
- Today's material
 - Review of reading topics
 - Group Work
- Summary
- 4 Next class

Problems to work on

- A projectile is fired with an angle of elevation α and initial velocity \vec{v}_0 . Find the position function $\vec{r}(t)$ and determine for which α is the range maximized.
- Derive the equations of projectile motion in three dimensional space: Assume that the only force acting on a particle is gravity: $\vec{F} = -g\vec{k}$ where g is the graviational constant. If \vec{p}_o is the initial position of the particle and \vec{v}_0 is the initial veclocity, find an equation for $\vec{p}(t)$.

Summary

- Tangent and normal vectors
- Arclength, curvature
- Motion of a particle: position, velocity and acceleration

Work for next class

• Reading: 15.1,15.2

f07hw6