Pseudo-Random Number Generators

February 24, 2020

Yida Wang

Assuming that all random values in (0,1) are equally likely to be generated, the theoretical mean is obviously 0.500. Derive the theoretical value of the standard deviation.

The mean or expected value of the discrete variable X, denoted as μ or E(X), is

$$\mu = E(X) = \frac{1}{b-a} \int_a^b x \, dx = \frac{a+b}{2}$$

The variance of X, demoted as σ^2 or V(X), is

$$\sigma^{2} = V(X) = E(X - \mu)^{2} = E(X^{2}) - E(X)^{2}$$

$$E(X^{2}) = \frac{1}{b - a} \int_{a}^{2} x^{2} dx = \frac{b^{3} - a^{3}}{3(b - a)} = \frac{a^{2} + ab + b^{2}}{3}$$

$$E(X)^{2} = \left(\frac{a + b}{2}\right)^{2} = \frac{a^{2} + 2ab + b^{2}}{4}$$

$$\sigma^{2} = \frac{a^{2} + ab + b^{2}}{3} - \frac{a^{2} + 2ab + b^{2}}{4} = \frac{(b - a)^{2}}{12}$$

The standard deviation is $\sigma = \sqrt{\sigma^2}$

$$\sigma = \sqrt{\frac{(1-0)^2}{12}} = \frac{1}{\sqrt{12}} = 0.288675134595$$

PRNG Program Output:

First 25 random values generated

C++ Build-In Function	LFSR	LCG	
0.00125125888851588488	0.999999880790710449	0.774822711944580078	
0.563585314493240119	0.999999761581420898	0.209692716598510742	
0.193304239020966218	0.999999523162841797	0.200248658657073975	
0.808740501113925592	0.999999046325683594	0.603763937950134277	
0.585009308145390206	0.999998092651367188	0.455168724060058594	
0.479873043000579869	0.999996185302734375	0.16328352689743042	
0.350291451765495754	0.99999237060546875	0.866270661354064941	
0.895962401196325531	0.9999847412109375	0.462814569473266602	
0.822840052491836338	0.999969482421875	0.00484794378280639648	
0.746604815820795298	0.99993896484375	0.998071551322937012	
0.174108096560563974	0.9998779296875	0.347929716110229492	
0.858943449201940989	0.999755859375	0.715225160121917725	

0.710501419110690646	0.99951171875	0.269772052764892578
0.513534958952604703	0.9990234375	0.802969634532928467
0.303994872890408052	0.998046875	0.196724176406860352
0.0149845881527146223	0.99609375	0.201556622982025146
0.0914029358806115882	0.9921875	0.212633013725280762
0.364452040162358493	0.984375059604644775	0.290182650089263916
0.147312845240638451	0.968750178813934326	0.162697315216064453
0.165898617511520741	0.937500417232513428	0.917162597179412842
0.988525040437025049	0.875000894069671631	0.475239038467407227
0.445692312387462986	0.750001847743988037	0.502730846405029297
0.119083223975341046	0.500003695487976074	0.888273000717163086
0.00466933194982757042	7.45058059692382813e-06	0.577593803405761719
0.00891140476699118014	1.49011611938476563e-05	0.22178959846496582

Summary Table

# of values generated	Build-In Function		LFSR		LCG	
	Mean	Std dev	Mean	Std dev	Mean	Std dev
25	0.414379	0.313594	0.880001	0.280948	0.460859	0.283604
50	0.47378	0.290865	0.560156	0.447441	0.488098	0.268389
100	0.494811	0.286705	0.579965	0.397113	0.497986	0.289465
500	0.497494	0.288725	0.528364	0.31421	0.497517	0.283768
1000	0.500417	0.288156	0.508304	0.30244	0.499273	0.285078
5000	0.504223	0.288094	0.510107	0.290091	0.498529	0.288348
10000	0.503787	0.288871	0.510144	0.288113	0.49813	0.288651
Theoretical	0.5	0.288675				

Summary:

These three options for generating random numbers are not essentially equivalent. For the build-in function and LCG random numbers, we can see the mean and standard deviation are much closer to the theoretical mean and standard deviation compare to LFSR.

The build-in function random number is generated by an algorithm that returns some non-related numbers. This algorithm is using a seed to generate the series, which it initialized to some distinctive value by using function srand.

LFSR start from numbers closer to 1 because when it logical shift left 1 bit, the number does not change a lot initially since the most significant bit dominates. Compare to LCG, the number decrease significantly when it is using modulus operator.