

对偶理论 (Duality)

张伯雷

南京邮电大学计算机学院、通达学院

https://bolei-zhang.github.io/course/opt.html

回顾

- 凸集
 - 集合中任意两点所组成的线段仍然在该集合中
- 凸函数
 - 定义一: 如果dom f 为凸集,且 $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$ 对所有的 $x, y \in dom f$, $0 \le \theta \le 1$ 成立
 - 定义二: 对于可微函数f, 如果dom f 为凸集,则f 为凸函数当且仅 当 $f(y) \ge f(x) + \nabla f(x)^T (y-x)$,对所有的 $x,y \in dom f$ 成立
 - 定义三: 对于二阶可微函数f,如果dom f为凸集,则f为凸函数当且仅当 $\nabla^2 f(x) \ge 0$,对所有 $x \in dom f$ 成立
- 凸优化问题
 - 标准形式
 - 局部最优=全局最优
 - 最优条件: $x \in X$ 最优 $\Leftrightarrow \nabla f_0^T(x)(y-x) \ge 0$ for all $y \in X$

目录

- 拉格朗日与共轭函数
- 对偶间隙
- 最优性条件: Slater条件
- 最优条件的两个解释
 - 几何解释
 - 鞍点解释
- 互补松弛与KKT条件

一般优化问题

• 优化问题

$$\min f_0(x)$$
.

s.t.
$$f_i(x) \le 0$$
, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbb{R}^n$
- $D = \bigcap_{i=0}^{m} dom f_i \cap \bigcap_{i=1}^{p} dom h_i$
- $X = \{x \in D$ 且所有约束条件可以满足\
- p*为最优值

不一定是凸优化问题!

拉格朗日函数

• 优化问题

min
$$f_0(x)$$
.
s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- 拉格朗日函数 (Lagrangian function)
 - · 给该问题中的每一个约束指定一个拉格朗日乘子λ,ν,以乘子为加权系数将约束增加到目标函数中
 - $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, 其中定义域为 $D \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, v) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} v_i h_i(x)$$

拉格朗日对偶函数

• 拉格朗日对偶函数(Lagrange Function/Dual Function)

$$g(\lambda, v) = \inf_{x \in D} L(x, \lambda, v)$$

$$= \inf_{x \in D} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x))$$

• $\lambda \in \mathbb{R}^m$, $v \in \mathbb{R}^p$

对偶函数性质一

• 弱对偶理论:如果 $\lambda \geq 0$,则 $g(\lambda, v) \leq p^*$

实线:目标函数 f_0

虚线: $f_1 \leq 0$

点虚线: 拉格朗日 $f_0 + \lambda f_1$: $\lambda = 0.1, 0.2, \dots, 1.0$

可行解集: [-0.46, 0.46]

有多数多业量 Nanjing University of Posts and Telecommunications

对偶函数性质二

• 性质:对偶函数为凹函数

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- 命题: 若f₁,..., f_m为凸函数,则f(x) = max{f₁(x),..., f_m(x)}
 为凸函数
- 命题: 若f(x,y)对所有 $y \in A$ 为关于x的凸函数,则 $f(x) = \sup f(x,y)$ 为凸函数 $y \in A$

min
$$x^T x$$

s.t.
$$Ax = b$$

$$x \in \mathbb{R}^n, b \in \mathbb{R}^p, A \in \mathbb{R}^{p \times n}$$

min $C^T x$

s.t.
$$Ax = b$$
, $x \ge 0$

min
$$x^T W x$$

s.t.
$$x_i = \pm 1, i = 1, ..., m$$

函数的共轭

• 函数共轭:

$$f^*$$
是 f 的共轭,若 $f^*(y) = \sup_{x \in dom \ f} (y^T x - f(x))$

• 拉格朗日对偶函数(Lagrange Function/Dual Function)

$$g(\lambda, v) = \inf_{x \in D} L(x, \lambda, v)$$

$$= \inf_{x \in D} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x))$$

例

s. t.
$$x = 0$$

解

例

min $f_0(x)$

$$s.t.$$
 $Ax \le b, Cx = d$

解