

HR ANALYTICS CASE STUDY

SUBMISSION

Group Members

Priya Raviraman Muthuraman M PL Raviraman Srinivasa Raghavan Indira Srinivasa Raghavan

Abstract

Problem: A company, XYZ has a significant attrition rate (15%) which results in delayed deliverables in turn causing reputational loss .They also face recruitment overhead/challenges

Objective: Provide data-backed suggestions to Company XYZ, to identify key factors contributing to attrition enabling them to have a better business planning to retain employees.

Constraints: To work around data quality issues and produce a reliable Logistic Regression model that would identify the key factors of attrition.

Strategy: XYZ will revisit their business plan based on the feedback received from HR analytics Firm and make positive changes to improve employee retention

Goals:

- Model the probability of attrition using a logistic regression
- Identify Key factors contributing to attrition
- List down suggestions to retain employees

Problem-solving methodology

Data Understanding

- ➤ Given 5 data sets containing records of 4410 employees. EmployeeID is an auto-generated unique key variable that is common in all the 5 data sets.
- > The data comprises of ,
 - General HR details(age, marital status, gender, workExp.,companies, monthly income, attrition) (24 columns). Attrition is the response variable
 - Swipe history for 2015 (260 columns in each IN and OUT time)
 - Manager Feedback (2 Columns)
 - Employee Engagement Survey Results (3 Columns)
- ➤ 16% employee attrition found in 2015.
- The variables like age, distance travelled, NumberofCompaniesWorked, hike, TotalYearsWorked qualify for bucketing to improve explainability.
- Outliers were identified
- Key data anomalies found
 - When general, empl_survey, manager_survey data are merged and duplicates identified without considering EmployeeID, there were 2837 duplicates (i.e., 29 rows matched exactly)
 - All 9 JobRoles are spread across all departments and levels.
 - Average Monthly Income for each Joblevel is very similar

Data Preparation

- Bucketing and outlier handling was done as per data understanding
- Data errors found in NoCompaniesworked, TotalWorkingYears and YearsAtCompany were addressed for NA's and 0 values
- ➤ The working hours per employee is calculated from swipe report and average working hours determined. No. of leaves taken by each employee calculated. Holidays were removed.
- Scaling of numerical variables performed
- Dummy variables were created for categorical ones.
- ➤ De duplicated the data set to get the total of 4223 records.

Outliers for YearsSinceLastPromotion and TrainingTimesLastYear were retained as they may be key factors for determining attrition.

EDA – Categorical factors

Class	Attrition Rate	Class	Attrition Rate
Education Field - HR	41%	Age Under 30	27%
HR Department	31%	Marital Status - Single	25%
Work life Balance - Bad	31%	Business travel-Frequent	24%
Experience Under 5 Years	31%	Job Role-Research director	24%

EDA – Continous factors

Data distribution varies between attrition and no attrition for the following variables:

Monthly income, YearsAtCompany, YearsWithCurrManager, AvgWorkingHours

The following factors are positively correlated: YearsAtCompany & YearsSinceLastPromotion, YearsAtCompany & YearsWithCurrManager, YearsWithCurrManager & YearsSinceLastPromotion

NumLeaves & avgWorkingHours are highly negatively correlated.

Model Building

- ➤ Performed variable selection using AIC, VIF and p-value considerations, on the prepared data set with 4223 employee records and 57 columns
- > Split the prepared data set in 70:30 proportion for training and test respectively
- > Step 1: Invoked GLM function for binomial family on the training data set and got a AIC of 2058.3
- > Step 2: Invoked step-wise AIC to iterate and finally obtained a model with AIC = 2028.7 and 35 independent variables
- ➤ Iterated on the model from step 2, 20 times removing one variable at a time with less significance (> 0.001 p-value) / high VIF
- ➤ Obtained a final model with 15 variables as follows (with all *** p-value and less than 2 VIF)
- This model is also in sync with EDA observations

In(odds) = 0.59 - 0.2 * TrainingTimesLastYear + 0.46 * YearsSinceLastPromotion - 0.53 * YearsWithCurrManager + 0.56 * avgWorkingHours - 0.32 * age_bucket + 0.23 * NumCompaniesWorkedBucket - 0.52 * TotalWorkingYearsBucket + 0.84 * BusinessTravel.xTravel_Frequently + 0.93 * MaritalStatus.xSingle - 0.78 * EnvironmentSatisfaction.x2 - 0.85 * EnvironmentSatisfaction.x3 - 0.91 * EnvironmentSatisfaction.x4 - 0.61 * JobSatisfaction.x2 - 0.68 * JobSatisfaction.x3 - 1.13 * JobSatisfaction.x4 - 0.47 * WorkLifeBalance.x3

Model Evaluation

- ➤ Predicted the probabilities of attrition on the test data set (1267 records)
- ➤ Identified the optimal cut off for the probability by plotting accuracy, sensitivity and specificity at 100 points between 0.01 and 0.8
- Chose 0.17 which is close to the point where accuracy, sensitivity and specificity converge (as seen in the graph)
- From the gain chart, the model with 0.17 probability cut off is high performing with 100% attrition captured in the top 40% of the predicted probability.

With probability Cut off 0.17,
Accuracy - 73.9%
Sensitivity - 75%
Specificity - 73.8%
KS statistic - 48.8%

	bucket [‡]	total [‡]	$totalres\hat{\vec{p}}$	Cumresp	Gain [‡]	Cumlift [‡]
1	1	127	127	127	29.67290	2.967290
2	2	126	126	253	59.11215	2.955607
3	3	126	126	379	88.55140	2.951713
4	4	126	49	428	100.00000	2.500000
5	5	126	0	428	100.00000	2.000000
6	6	126	0	428	100.00000	1.666667
7	7	126	0	428	100.00000	1.428571
8	8	126	0	428	100.00000	1.250000
9	9	126	0	428	100.00000	1.111111
10	10	126	0	428	100.00000	1.000000
11	NA	6	0	428	100.00000	NA

Model Interpretation

- ➤ Key factors impacting attrition are as follows:
 - ➤ Positive impact (that is, additive increase in these factors produce a multiplicative increase in odds of attrition)
 - ➤ MaritalStatus.xSingle
 - **➤** BusinessTravel.xTravel_Frequently
 - > avgWorkingHours
 - > YearsSinceLastPromotion
 - > NumCompaniesWorkedBucket
 - ➤ Negative impact (that, additive increase in these factors produce a multiplicative decrease in odds of attrition)
 - > JobSatisfaction.x4
 - > EnvironmentSatisfaction.x4
 - > EnvironmentSatisfaction.x3
 - > EnvironmentSatisfaction.x2
 - > JobSatisfaction.x3
 - > JobSatisfaction.x2
 - > YearsWithCurrManager
 - ➤ TotalWorkingYearsBucket
 - ➤ WorkLifeBalance.x3
 - > age_bucket
 - > TrainingTimesLastYear

Recommendations

- Based on the coefficient strength in the final prediction model, below recommendations are put forth:
 - Single employees have very high attrition rates (25%)
 - Maintain positive work environment (through food subsidies, dorm facilities, free transport, "FunAtWork" activities, updated job infrastructure and facilities)
 - Institute/review mentoring program
 - Institute periodic team building activities
 - Reward longevity
 - Frequent business travelers face travel fatigue and hence spike attrition rates (24%)
 - Specialized leave policy to support family needs
 - Flexible work hours
 - Travel perks including increased per-diem, increased travel kit package, improved stay and transport at destinations
 - Consider periodic role shifts to less-travelling roles
 - 16% of employees putting in over 5 hours have quit
 - Institute a part-time work program. This may be suitable for retaining such employees
 - Understand efficiency of such employees to determine if there is a deficit in training or distribution of work load
 - 47% of those with under 5 years experience have quit immediately after promotion
 - Revisit policies for the first promotion of entry level employees to ensure industry standardization and greater stringency