Міністерство освіти і науки, молоді та спорту України Національний університет водного господарства та природокористування Факультет прикладної математики та комп'ютерноінтегрованих систем Кафедра електротехніки та автоматики

0xx-xx

### МЕТОДИЧНІ ВКАЗІВКИ

до виконання контрольної роботи з дисципліни "Комп'ютерні системи та мережі в АСКТП" для студентів заочної форми навчання, які навчаються за напрямом підготовки 6.050202 "Автоматизація та комп'ютерно-інтегровані технології"

Рекомендовано до друку методичною комісією за напрямом підготовки 0925 "Автоматизація та комп'ютерно інтегровані технології" Протокол № \_\_\_\_ від \_\_\_\_ 2011 р.

Рівне 2011

Методичні вказівки до виконання контрольної роботи з дисципліни "Комп'ютерні системи та мережі в АСКТП" для студентів заочної форми навчання, які навчаються за напрямом підготовки 6.050202 "Автоматизація та комп'ютерно-інтегровані технології". /В.В. Жуковський, - Рівне, НУВГП, 2011. — 32 с.

Упорядник: Жуковський В.В.

Рецензент:

Відповідальний за випуск Б.О.Баховець, професор, завідувач кафедри електротехніки і автоматики.

<sup>©</sup> Жуковський В.В., 2011

<sup>©</sup> НУВГП, 2011

# **Зміст**

| 1. Загальні положення                     | 4  |
|-------------------------------------------|----|
| 2. Вимоги до оформлення                   | 4  |
| 3. Варіанти завдань                       | 5  |
| 4. Перелік теоретичних питань             | 6  |
| 5. Практичне завдання                     |    |
| 6. Варіанти практичних завдань            |    |
| 7. Приклад виконання практичного завдання | 15 |
| 9. Ресурси                                |    |
| Додаток А                                 |    |
|                                           |    |

#### 1. ЗАГАЛЬНІ ПОЛОЖЕННЯ

Основний вид навчальної роботи студентів заочної форми навчання - самостійна робота над навчальним матеріалом. При цьому варто орієнтуватися на матеріал тих тем, що зазначені в переліку завдань. Список літератури, що рекомендується, наведений в кінці методичних вказівок.

Згідно з робочим навчальним планом студент повинен виконати домашню контрольну роботу. Виконання контрольної роботи надає можливість підтвердити своє вміння самостійно працювати з різними інформаційними джерелами і на базі цього робити самостійні теоретичні й практичні висновки та пропозиції.

Контрольна робота з дисципліни: "Комп'ютерні системи та мережі в АСКТП' складається з двох теоретичних та одного практичного завдання.

### 2. ВИМОГИ ДО ОФОРМЛЕННЯ

Контрольна робота повинна бути ретельно відредагованою і чітко віддрукованою (або написаною від руки) на аркушах формату A4.

Вимоги до оформлення курсової роботи за допомогою ПЕОМ:

- шрифт Times New Roman;
- розмір шрифту 14 кегель;
- інтервал між рядками одинарний;
- текст вирівняний по ширині;
- абзац 5 мм,
- поля: праве, ліве, верхнє 15 мм, нижнє 17 мм;
- нумерація сторінок по центру нижнього поля, наскрізна;
- рисунки, таблиці, формули друкуються по центру, нумерація по правому верхньому полю, основний розмір шрифту 14 кегель.

Робота повинна також містити зміст, завдання та список використаної літератури. Зразок оформлення титульної сторінки наведено в додатку.

### 3. ВАРІАНТИ ЗАВДАНЬ

Завдання контрольної роботи включає в себе 2 теоретичних питання та 1 практичне завдання. Варіанти завдань вибираються згідно нижченаведеної таблиці 3.1, де по горизонталі вказано останню цифру залікової книжки, а по вертикалі передостанню. залікової Наприклад. останні дві цифри книжки 89. №19 №38. теоретичними питаннями будуть питання практичним завданням - №20.

### Варіанти завдань

По горизонталі - остання цифра залікової книжки.

По вертикалі - передостання цифра залікової книжки.

Таблиця 3. 1 2, 19, 4, 16, 5, 15, 7, 13, 0 1, 10, 3, 17, 6, 14, 8, 12, 9.11. 10, 40, 13 15 14 16 12 18 11. 39. 12. 38. 13. 37. 14. 36. 15. 35. 16. 34. 17. 33. 18. 32. 19. 31. 20. 30. 26, 19, 27, 18, 28, 17, 29, 16, 30, 15, 21, 29, 22, 28, 23, 27, 24, 37, 25, 5, 10 13 14 16 31, 14, 32, 13, 33, 12, 34, 11, 35, 40, 36, 19, 37, 15, 38, 16, 39, 17, 40, 18, 20 11, 19, 12, 20, 13, 21, 14, 22, 15, 23, 16, 24, 17, 25, 18, 26, 19, 27 30, 28. 10 12 13 14 15 16 35, 05, 34, 20, 33, 19, 32, 18, 31, 17, 30, 16, 29, 15, 28, 14, 27, 13, 26, 12, 5 14 16 15 14 25, 11, 24, 40, 23, 19, 22, 38, 21, 37, 20, 36, 19, 35, 18, 34, 17, 33, 16, 32, 6 15, 31, 14, 30, 13, 29, 12, 28, 11, 27, 10, 26, 9, 25, 6, 22, 8. 24. 7, 23, 10 2, 14, 1, 13, 15, 12, 16, 11, 17, 30, 18, 39, 5, 21, 4, 20, 3, 15, 19, 38, 8 15 12 13 14 16 10 18 17 20 26, 16, 27, 19, 28, 33, 29, 34, 20, 37, 21, 1, 22, 2, 23, 3, 24, 5, 25, 8, 9

Перші дві цифри – номери теоретичних питань.

Третя цифра – номер практичного завдання.

#### 4. ПЕРЕЛІК ТЕОРЕТИЧНИХ ПИТАНЬ

- 1. Поняття та історія розвитку інформаційних систем.
- 2. Інтегровані автоматизовані системи управління.
- 3. Організаційна інтеграція в контексті створення ІАСУ.
- 4. Функціональна інтеграція в контексті створення ІАСУ.
- 5. Інформаційна інтеграція в контексті створення ІАСУ.
- 6. Технічна інтеграція в контексті створення ІАСУ.
- 7. Визначення промислової мережі та їх градація.
- 8. Промислові мережі в контексті моделі ÎSO OSI.
- 9. Основні робочі характеристики промислових мереж.
- 10. Електричні шуми, завади та боротьба з ними. Контроль за помилками.
  - 11. Протокол, пакет, його структура.
  - 12. Інкапсуляція даних в контексті мережної взаємодії.
- 13. Технологія Ethernet: стандарти, принцип роботи, компоненти та обладнання.
- 14. Технологія Token-Ring: стандарти, принцип роботи, компоненти та обладнання.
- 15. Технологія FDDI: стандарти, принцип роботи, компоненти та обладнання.
- 16. Технологія 100VG-AnyLAN: стандарти, принцип роботи, компоненти та обладнання.
- 17. Технологія АТМ: стандарти, принцип роботи, компоненти та обладнання.
- 18. Технологія ISDN: стандарти, принцип роботи, компоненти та обладнання.
- 19. Технологія Frame relay: стандарти, принцип роботи, компоненти та обладнання.
- 20. Технологія DWDM: стандарти, принцип роботи, компоненти та обладнання.
- 21. Технологія LanDrive: стандарти, принцип роботи, компоненти та обладнання.
- 22. Технологія Modbus: стандарти, принцип роботи, компоненти та обладнання.
- 23. Технологія LonWorks: стандарти, принцип роботи, компоненти та обладнання.
- 24. Технологія CAN: стандарти, принцип роботи, компоненти та обладнання.

- 25. Технологія Profibus: стандарти, принцип роботи, компоненти та обладнання.
- 26. Технологія HART: стандарти, принцип роботи, компоненти та обладнання.
- 27. Технологія AS-Interface: стандарти, принцип роботи, компоненти та обладнання.
- 28. Технологія ЕІВ: стандарти, принцип роботи, компоненти та обладнання.
- 29. Технологія ZigBee: стандарти, принцип роботи, компоненти та обладнання.
  - 30. Широкомовні мережі. Множинний доступ.
  - 31. Метод доступу до середовища TDMA.
  - 32. Метод доступу до середовища FDMA.
  - 33. Метод доступу до середовища СDMA.
  - 34. Метод доступу до середовища CSMA/CD.
  - 35. Метод доступу до середовища CSMA/CA.
  - 36. Маркерний метод доступу до середовища.
  - 37. Захист інформації в широкомовних мережах.
- 38. Порівняльна характеристика технологій промислових мереж
- 39. Проблеми вибору оптимального протоколу обміну згідно поставленої залачі.
  - 40. Програмування мережної взаємодії.

### 5. ПРАКТИЧНЕ ЗАВДАННЯ

Практичним завданням  $\epsilon$  дослідження структури мережного пакета. Пакети можна переглядати за допомогою спеціальних програм: сніферів (Sniffer, від англ. to sniff — нюхати) та спуферів (Spoofer).

Необхідно розглянути і вирішити наступні задачі:

- 1. Організувати мережну взаємодію згідно свого варіанту завдання.
  - 2. Перехопити необхідні пакети.
- 3. Проаналізувати пакет канального рівня. Розписати всі інформаційні поля пакетів згідно моделі OSI.

#### Поняття пакета даних

Інформація в локальних мережах, як правило, передається окремими порціями, блоками, званими в різних джерелах *пакетами (packets*), *кадрами (frames) або блоками*. Причому гранична довжина цих пакетів строго обмежена (максимальна довжина). Обмежена довжина пакету і знизу (мінімальна довжина).

Тобто процес інформаційного обміну в мережі  $\varepsilon$  чергуванням пакетів, кожний з яких містить інформацію, що передається від абонента до абонента.

Якби вся необхідна інформація передавалася якимось абонентом відразу, безперервно, без розділення на пакети, то це привело б до монопольного захоплення мережі цим абонентом на досить тривалий час. Вся решта абонентів була вимушена б чекати закінчення передачі всієї інформації, що у ряді випадків могло б тривати десятки секунд і навіть хвилин (наприклад, при копіюванні вмісту цілого жорсткого диска). З тим щоб зрівняти в правах всіх абонентів, а також зробити приблизно однаковою для всіх них величину часу доступу до мережі і інтегральну швидкість передачі інформації, якраз і застосовуються пакети (кадри) обмеженої довжини. Це і є основним при комутації пакетів.

Кожний пакет крім корисних даних, які вимагається передати, повинен містити деяку кількість *службової інформації*. Перш за все, це *адресна інформація*, яка визначає, від кого і кому передається даний пакет (як на поштовому конверті — адреси одержувача і відправника). У різних протоколах різні вимоги до створення пакетів. Умовно це можна порівняти з різними мовами народів світу (протоколами обміну даними), де в кожного народу свої правила побудови речень (створення пакетів).

Нагадаємо, що згідно моделі OSI виділяють 7 рівнів:

Таблиця 5.1

| Прикладний   | Application layer  |
|--------------|--------------------|
| Відображення | Presentation layer |
| Сеансовий    | Session layer      |
| Транспортний | Transport layer    |
| Мережевий    | Network layer      |
| Канальний    | Data link layer    |
| Фізичний     | Physical layer     |
|              |                    |

Кожен з цих рівнів визначає свої протоколи (правила обміну).

У мережі має місце фізичне та логічне переміщення даних.

Фізичне переміщення даних починається на верхньому рівні (прикладному) і йде вниз по всіх рівнях моделі. Наприклад: на верхньому рівні було створено інформацію (користувач відкрив браузер і ввів адресу сайту, тобто надіслав запит). Протокол прикладного рівня передає ці дані в певній формі протоколу комунікаційного рівня. На цьому рівні проходить "упаковка" інформації в інформаційний пакет визначеної структури. Цей пакет протоколу рівня передачі даних для пересилки. Потім ці дані переміщуються по мережевому носії у вигляді імпульсів, що відповідають 0 або 1. Цей носій може бути різного виду кабелем, радіоканалом, ... Як тільки дані дійшли до комп'ютера-отримувача, вони починають переміщатись знизу догори. На кожному рівні вони обробляються, але виділяється тільки та частинка, яка була запакована на тому ж рівні, що й у комп'ютері-передавачі. В кінці інформація доходить до користувача на прикладному рівні.

Процес вкладання інформації, створеної за деяким протоколом, в секцію даних блока даних іншого протоколу називається **інкапсуляцією**. У випадку наведеному вище це відбувається при вкладанні даних протоколу вищого рівня в протокол нижчого.

### Програми аналізатори трафіку

**Аналізатор трафіку**, або **сніфер** (від англ. to sniff — нюхати) — програма або програмно-апаратний пристрій, призначений для перехоплення і подальшого аналізу, або тільки аналізу мережного трафіку, призначеного для інших вузлів.

Однією з таких програм є програма *The Wireshark Network Analyzer*. Wireshark — програма для аналізу пакетів Ethernet і деяких інших мереж. Має графічний інтерфейс користувача. У червні 2006 року проект був перейменований на Wireshark через проблеми з торговою маркою. Дана програма є безкоштовною і її можна скачати з офіційного сайту: http://www.wireshark.org

Функціональність, яку надає Wireshark, дуже схожа з можливостями програми tepdump, проте Wireshark має графічний інтерфейс користувача і значно більше можливостей із сортування і фільтрації інформації. Програма дозволяє користувачеві переглядати весь трафік, що проходить по мережі, в режимі реального часу, переводячи мережеву карту в широкомовний режим (англ. promiscuous mode).



Рисунок 5.1. Вікно програми Wireshark

Програма дозволяє аналізувати багато протоколів різних форматів, починаючи від всім відомих кадрів Ethernet, пакетів ТСР/ІР, ІСМР і закінчуючи протоколами для quake3, TDMA, telnet, daytime. Детальний перелік можна переглянути на сайті <a href="http://www.wireshark.org/docs/dfref/">http://www.wireshark.org/docs/dfref/</a> або в довідці.

Потрібно знати, що Wireshark ніяким чином не контролює пакети, не сигналізує про вторгнення чи атаки і не посилає пакетів в мережу. Вона лише дозволяє побачити поточний стан мережевої активності, а подальші дії залежать від користувача.

Головне вікно програми поділене на 4 області:

*Capture* – вибір інтерфейсів для захоплення пакетів та його налаштування.

*Capture Help* — довідкова інформація.

Filters — дозволяє відкрити вже збережені налаштування, також містить демонстраційні налаштування для захоплення специфічних пакетів.

Online — довідкова інформація в мережі інтернет.

Робота з програмою починається з вибору інтерфейсу в розділі Interface List:



Рисунок 5.2. Діалог вибору мережних інтерфейсів

Він містить всі доступні інтерфейси для захоплення. Це можуть бути як реальні фізичні інтерфейси, представлені мережевими картами, вбудовані в материнську плату, так і віртуальні, створені

різними програмами (Virtual Box, VMWare).

Відразу після того, як буде вибрано інтерфейс почнеться процес захоплення всіх файлів:



Рисунок 5.3. Процес захоплення пакетів

Піктограма для зупинки процесу має вигляд:



Разом з тим існує декілька варіантів побачити і тим самим зупинити процес захоплення пакетів:

- Використовуючи кнопку "Stop" з діалогу "Capture Info"
- Використовуючи пункт головного меню: "Capture/ Stop".
- Використовуючи кнопку "Stop" на панелі інструменів.
- Натиснувши гарячі клавіші Ctrl+E.

 Також процес захоплення буде автоматично зупинено при виконанні умови Stop Conditions, наприклад буде досягнуто максимальної к-ті захоплених пакетів.

Якщо вибрати будь-який пакет зі списку, тоді в нижньому вікні програми будуть детально описані протоколи, що використовуються (наприклад TCP, IP, Ethernet, HTTP ітд):



Рисунок 5.4. Деталізація перехопленого пакету

Тобто розпізнає програма автоматично ключові поля загальновідомих протоколів: адреса відправника, адреса призначення, контрольна сума, порт відправника, порт призначення, додаткова інформація.

### 6. ВАРІАНТИ ПРАКТИЧНИХ ЗАВДАНЬ

Проаналізувати мережну взаємодію з наступним ресурсом:

- 1. <u>www.ya.ru</u>
- 2. www.google.com
- 3. <u>www.gmail.com</u>
- 4. www.rada.gov.ua
- 5. http://rutracker.org
- 6. www.ukr.net
- 7. www.mail.ru
- 8. www.facebook.com
- 9. www.vkontakte.ru
- 10. www.icq.com
- 11. www.habrahabr.ru
- 12. <u>www.wikipedia.org</u>
- 13. <u>www.ua.fm</u>
- 14. www.icq.com
- 15. www.mail.ua
- 16. http://nuwm.rv.ua
- 17. www.i.ua
- 18. <u>www.gismeteo.ua</u>
- 19. <u>www.rozetka.com.ua</u>
- 20. www.twitter.com
- 21. <u>www.liveinternet.ru</u>
- 22. <u>www.webmoney.ru</u>
- 23. <u>www.uz.gov.ua</u>
- 24. <u>http://2ip.ru/</u>
- 25. <a href="http://speedtest.net">http://speedtest.net</a>

Спочатку виконайте команду ping (для перевірки відгуку від сервера), а потім організуйте обмін даними по HTTP протоколу.

Якщо ресурс передбачає прийом даних від користувача (введення логіну і паролю, пошук певних даних ітд) проаналізувати як саме дані передаються на сервер. Знайти ці дані в пакетах, що передаються.

### 7. ПРИКЛАД ВИКОНАННЯ ПРАКТИЧНОГО ЗАВДАННЯ

#### Завдання:

Проаналізувати мережну взаємодію з ресурсом www.ya.ru.

#### Виконання:

Ресурс <u>www.ya.ru</u> належить компанії «Яндекс» і є спрощеною версією ресурсу <u>www.yandex.ua</u>. На спрощеній версії немає реклами та різних інформаційних блоків, а є лише стрічка для пошуку:



Рисунок 7.1. Ресурс www.ya.ru

Згідно завдання потрібно перевірити мережну взаємодію по ICMP протоколу (команда ping) та по HTTP (перегляд веб сторінок).

Запускаємо сніфер wireshark і виберемо потрібний мережний інтерфейс для захоплення.

Тепер виконаємо команду «ping ya.ru» (для перевірки відгуку від сервера).

Для перевірки відгуку віддаленого комп'ютера запускаємо утиліту ping в командному рядку (Пуск-Все программы-

### Стандартные-Коммандная строка):

C:\>ping ya.ru

C:\Documents and Settings\Zeon>ping ya.ru

Обмен пакетами с уа.ru [93.158.134.3] по 32 байт:

Ответ от 93.158.134.3: число байт=32 время=69мс TTL=56 Ответ от 93.158.134.3: число байт=32 время=68мс TTL=56 Ответ от 93.158.134.3: число байт=32 время=68мс TTL=56 Ответ от 93.158.134.3: число байт=32 время=67мс TTL=56

Статистика Ping для 93.158.134.3:

Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь),

Приблизительное время приема-передачи в мс:

Минимальное = 175мсек, Максимальное = 198 мсек, Среднее = 186 мсек

C:\>

Утиліта *Ping* використовує повідомлення Echo і Echo Reply для визначення, чи потрібна станція досяжна.

Поки процесс захоплення пакетів триває, відкриваємо браузер і в ньому звертаємось до сайту <u>www.ya.ru</u>. Повинні отримати результат, який було зображено вище на рис. 7.2

Тепер зупиняємо захоплення пакетів і дивимось як виглядають перехоплені дані в сніфері. Для цього відфільтруємо лишні пакети. Ми знаємо IP адресу вузла уа.ru - 93.158.134.3. Отже, використаємо фільтр, де вкажемо цю IP адресу. (Для того щоб дізнатися власну IP адресу можна скористатися утилітою ірсопбід)

Фільтр виглядатиме так:

ip.addr == 93.158.134.3



Рисунок 7.2. Фільтрація пакетів до ресурсу уа.ru

Перші пакети, протокол яких ICMP, це пакети утиліти ping. Розглянемо детальніше їхню структуру. Для цього спочатку звернемось до документації, а потім проаналізуємо наші пакети. Виділивши будь-який з пакетів, програма Wireshark надасть інформацію про вміст пакету.

### Структура ІСМР пакету згідно стандарту



Рисунок 7.3. Структура ІСМР пакету

На рисунку 7.3 показано формат ICMP-повідомлення. Перші байти мають однаковий формат для всіх ICMP-повідомлень, але решта залежить від його типу. Значення відповідних полів наведені в таблиці нижче:

Таблиця 7.1

| Тип (type)                      | Тип ІСМР-повідомлення; всього існує 15 різних                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | типів;                                                                                                                                                                           |
| Код (code)                      | код ІСМР-повідомлення одного типу;                                                                                                                                               |
| Контрольна сума ICMP (checksum) | 16-бітова контрольна сума, що охоплює все ІСМР-<br>повідомлення, обчислюється так само як для ІР-<br>заголовку; для обчислення контрольної суми поле<br>повинне мати значення 0. |
| Ідентифікато р (identifier)     | Ідентифікатор, який застосовується для узгодження запиту/відповіді; повинен дорівнювати нулю.                                                                                    |

| Номер<br>послідовнос<br>ті (sequence<br>number) | Номер послідовності, який застосовується для узгодження запити/відповіді; повинен дорівнювати нулю. |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Маска<br>адреси<br>(address<br>mask)            | 32-бітова маска адреси                                                                              |
| Дані ICMP (body)                                | Саме повідомлення, має змінну довжину, його формат залежить від типу ІСМР-повідомлення.             |

Нижче наведені всі *типи* ICMP-повідомлень та їх короткий опис.

Таблиця 7.2

| Тип | Зміст                                |
|-----|--------------------------------------|
| 0   | ехо (відповідь)                      |
| 3   | призначення недосяжне                |
| 4   | обірвання джерела                    |
| 5   | переспрямування                      |
| 8   | ехо (запит)                          |
| 9   | оголошення раутера                   |
| 10  | вимога раутера                       |
| 11  | час вичерпаний (TTL=0)               |
| 12  | проблема із параметром               |
| 13  | запит часової позначки               |
| 14  | відповідь про часову позначку        |
| 15  | запит інформації (застаріле)         |
| 16  | відповідь про інформацію (застаріле) |
| 17  | запит мережевої маски                |
| 18  | відповідь про мережеву маску         |

Поле *код* містить код помилки для данограми, про яку повідомляється у даному ІСМР-повідомленні. Інтерпретація коду залежить від типу повідомлення:

Таблиця 7.3

| Тип | Код | Зміст                                                          |
|-----|-----|----------------------------------------------------------------|
| 3   | 0   | мережа недосяжна                                               |
| 3   | 1   | станція недосяжна                                              |
| 3   | 2   | протокол недосяжний                                            |
| 3   | 3   | порт недосяжний                                                |
| 3   | 4   | необхідна фрагментація і встановлено DF-<br>біт                |
| 3   | 5   | невдалий маршрут від джерела                                   |
| 3   | 6   | невідома мережа призначення                                    |
| 3   | 7   | невідомий станція призначення                                  |
| 3   | 8   | станція-джерело ізольована (застаріла)                         |
| 3   | 9   | доступ до мережі призначення адміністративно заборонений       |
| 3   | 10  | доступ до станції-призначення адміністративно заборонений      |
| 3   | 11  | для вибраного TOS мережа недосяжна                             |
| 3   | 12  | для вибраного TOS комп'ютер<br>недосяжний                      |
| 3   | 13  | зв'язок адміністративно заборонений за допомогою фільтрування: |
| 3   | 14  | порушення приорітету комп'ютера                                |
| 3   | 15  | роз'єднання на основі приорітету                               |
| 5   | 0   | переспрямування для мережі                                     |
| 5   | 1   | переспрямування для станції                                    |
| 5   | 2   | переспрямування для мережі на основі TOS                       |
| 5   | 3   | переспрямування для станції на основі<br>TOS                   |
| 11  | 0   | TTL рівне 0 під час транзитної передачі                        |

#### Отже, дивлячись на наший пакет розпишемо поля даних:



Рисунок 7.4. Обмін ІСМР пакетами

### Дані Ethernet кадру

00:02:cf:ae:81:01 - MAC адреса призначення

00:1b:fc:9a:35:99 - MAC адреса відправника

0800 – тип Езернет кадру

### Дані IP дейтаграми

45 – тип ІР дейтаграми

00 3с – довжина ІР пакету, 60 байтів

61 5с – ідентифікація; 00 – прапорці; 80 – час життя пакету

01 – тип протоколу, в нашому випадку це ІСМР

0xeb9f - контрольна сума

0а 00 00 24 - ІР адреса відправника (10.0.0.36)

5d 9e 86 03 - IP адреса призначення (93.158.134.3)

### Дані ІСМР пакету

08 – Тип 8, дивлячись таблицю це ехо (запит)

00 - код 0; 3e 5c - контрольна сума

06 00 – ідентифікатор

09 00 - номер послідовності

I далі 32 байта даних: abcdefghijklmnopqrstuvwabcdefghi

Аналогічно аналізуємо дані, що передаються по HTTP протоколу.

**HTTP** — **протокол прикладного рівня**, схожими на нього  $\epsilon$  FTP і SMTP. Обмін повідомленнями йде за звичайною схемою «запит-відповідь».

Кожен запит/відповідь складається з трьох частин:

- стартовий рядок;
- заголовка;
- •тіло повідомлення, що містить дані запиту, запитаний ресурс або опис проблеми, якщо запит не виконано

Обов'язковим мінімумом запиту  $\epsilon$  стартовий рядок. Починаючи з HTTP/1.1 обов'язковим став заголовок Host: (щоб розрізнити кілька доменів, які мають одну і ту же IP-адресу).

#### Запит

Стартові рядки розрізняються для запиту і відповіді. Рядок запиту виглядає так:

«Memod» «URI» HTTP/«Версія»

де в полі «Метод» можливі варіанти:

#### **OPTIONS**

Повертає методи НТТР, які підтримуються сервером. Цей метод може служити для визначення можливостей веб-сервера.

#### **GET**

Запрошує вміст вказаного ресурсу. Запитаний ресурс може приймати параметри (наприклад, пошукова система може приймати як параметр шуканий рядок). Вони передаються в рядку URI (наприклад:

http://www.example.net/resource?param1=value1&param2=value2).

Згідно зі стандартом НТТР, запити типу GET вважаються ідемпотентними — багатократне повторення одного і того ж запиту GET повинне приводити до однакових результатів (за умови, що сам ресурс не змінився за час між запитами). Це дозволяє кешувати відповіді на запити GET.

#### HEAD

Цей метод аналогічний методу GET, за винятком того, що у відповіді сервера відсутнє тіло. Це корисно для отримання метаінформації, заданої в заголовках відповіді, без пересилання всього вмісту. Зокрема, клієнт чи проксі, перевіривши заголовок Last-Modified: (останній час модифікації), таким чином може переконатися, що сторінка на сервері не змінилася від часу попереднього запиту.

#### **POST**

Передає призначені для користувача дані (наприклад, з HTML-форми) заданому ресурсу. На відміну від методу GET, метод POST не вважається ідемпотентним, тобто багатократне повторення одних і тих же запитів POST може повертати різні результати

#### **PUT**

Завантажує вказаний ресурс на сервер.

DELETE

Видаляє вказаний ресурс.

**TRACE** 

Повертає отриманий запит так, що клієнт може побачити, що проміжні сервери додають або змінюють в запиті.

#### **CONNECT**

Для використання разом з проксі-серверами, які можуть динамічно перемикатися в тунельний режим SSL.

В основному використовуються методи GET i POST.

### Відповідь

Перший рядок відповіді виглядає так: HTTP/〈Версія〉 〈Код статусу〉 〈Опис статусу〉

Найтиповіші коди статусів:

- 200 ОК запит виконаний успішно;
- 403 Forbidden доступ до запитаного ресурсу заборонений;
- 404 Not Found запитаний ресурс не знайдений.

Отже, якщо успішно було отримано сторінку, то ми можемо здійснити пошук по відповіді «200 ОК», а відповідно вище буде запит типу «GET».



Рисунок 7.5. Обмін НТТР пакетами

Для того щоб переглянути діалог обміну даними між клієнтом і сервером в контекстному меню вибираємо Follow TCP Stream:

#### Запит:

GET / HTTP/1.1

User-Agent: Opera/9.80 (Windows NT 5.1; U; ru) Presto/2.10.229

Version/11.60 Host: www.ya.ru

Accept: text/html, application/xml;q=0.9, application/xhtml+xml,

image/png, image/webp, image/jpeg, image/x-xbitmap, \*/\*;q=0.1

Accept-Language: uk-UA,uk;q=0.9,en;q=0.8

Accept-Encoding: gzip, deflate

Cookie: yandex\_gid=213; yp=1324779814.ygu.1; yandexuid=2114

Connection: Keep-Alive

### Відповідь:

HTTP/1.1 200 Ok

Server: nginx

Date: Thu, 08 Dec 2011 13:45:20 GMT Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: close

Cache-Control: no-cache,no-store,max-age=0,must-revalidate

Expires: Thu, 08 Dec 2011 13:45:20 GMT

Last-Modified: Thu, 08 Dec 2011 13:45:20 GMT

P3P: policyref="/w3c/p3p.xml", CP="NON DSP ADM DEV PSD IVDo

OUR IND STP PHY PRE NAV UNI"

Set-Cookie: yp=; path=/; expires=Mon, 10-Dec-2001 13:45:20 GMT Set-Cookie: S=; path=/; expires=Mon, 10-Dec-2001 13:45:20 GMT Set-Cookie: S=; domain=.www.ya.ru; path=/; expires=Mon, 10-Dec-

2001 13:45:20 GMT

Set-Cookie: yandex\_gid=143; domain=.www.ya.ru; path=/; expires=Sat,

07-Jan-2012 13:45:20 GMT

Set-Cookie: yp=1325943920.ygu.1; domain=.www.ya.ru; path=/;

expires=Sun, 05-Dec-2021 13:45:20 GMT

X-XRDS-Location: http://openid.yandex.ru/server\_xrds/

Content-Encoding: gzip

І відповідно дані веб сторінки закодовані у форматі дгір

Тепер подивимось як дані інкапсулюються в кадр Ethernet. В порівнянні з рис. 7.4 помітно що додався транспортний рівень моделі OSI (рівень TCP) і замість ІСМР в нас присутній прикладний рівень НТТР, що і не дивно, адже тут вже використовувалась інша прикладна програма (веб браузер, а не утиліта ріпд).

На рис. 7.6 наведено внутрішню структуру НТТР запиту. В розгорнутому вигляді наведено сам запит. Помітно стартовий рядок, заголовок і тіло повідомлення.



Рисунок 7.6. GET запит

### Розглянемо структуру ТСР пакету



Рисунок 7.8. Структура ТСР пакету

## Значення полів в ТСР заголовку:

Таблиця 7.4

| Номер порта<br>джерела                                                               | ідентифікатор процесу, що передав пакет;                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Номер порта призначення                                                              | ідентифікатор процесу, для якого пакет призначений;                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Номер<br>послідовності<br>(sequence<br>number)                                       | ідентифікатор першого байта в пакеті з потоку даних від передаючого ТСР модуля до приймаючого ТСР модуля, тобто кожен байт в потоці має свій номер. Він не обов'язково починається з 0. Оскільки ТСР забезпечує дуплексний зв'язок, дані незалежно можуть передаватися в обох напрямках, кожна сторона веде свій незалежний ідентифікатор послідовності. Ідентифікатор послідовності наступного пакету збільшується на число рівне кількості байтів даних присутніх в попередньому пакеті; |
| Номер підтвердження (acknowledgment number) Довжина заголовку (header length - HLEN) | номер наступного ідентифікатора послідовності (sequence) який очікується на приймальній стороні, тим самим підтверджує, що всі попередньо передані дані прийнято правильно; довжина ТСР заголовку в 32-х розрядних словах.                                                                                                                                                                                                                                                                 |
| Резерв (reserved) Коди прапорців (flags)                                             | зарезервовано для майбутнього використання; поле, що займає 6 біт які розглядаються як 6 прапорців, один або більше з яких можуть бути встановлені в 1.  • URG - в даному TCP сегменті присутні термінові дані;  • ACK - поле acknowledgment використано для підтвердження прийнятих даних;  • PSH - передати прийняті TCP модулем дані пакету якомога швидше до процесу користувача;                                                                                                      |

|                                        | <ul> <li>RST - ініціатива в розриві або відмова встановлення зв'язку;</li> <li>SYN - синхронізувати ідентифікатор послідовності, проводиться при встановленні зв'язку;</li> <li>FIN - джерело пакета повідомляє що воно завершило передавати свою інформацію в даній ТСР сесії, хоча не відмовляється від приймання даних від призначення;</li> <li>Коли в пакеті встановлений SYN, або FIN прапорець, то наступний ідентифікатор послідовності додатково збільшується на 1.</li> </ul> |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Розмір вікна (windows size)            | кількість байт, яку може (погоджується) прийняти джерело TCP сегменту. Саме за допомогою windows size (збільшуючи чи зменшуючи його значення) проводиться контроль потоку інформації на обох сторонах зв'язку;                                                                                                                                                                                                                                                                          |
| Контрольна сума (checksum)             | контрольна сума сегменту, що охоплює як TCP заголовок так і дані. На відміну від UDP, в TCP використання контрольної суми завжди $\epsilon$ обов'язковим;                                                                                                                                                                                                                                                                                                                               |
| Показник терміновості (urgent pointer) | це поле має зміст (аналізується) коли в пакеті встановлено URG прапорець. Число записане тут $\epsilon$ позитивним зміщенням, яке треба додати до ідентифікатора послідовності пакету, для того щоб можна було визначити останній байт термінових даних в пакеті;                                                                                                                                                                                                                       |
| Опції (options)                        | додаткові поля заголовку, які розширюють можливості ТСР. Вони мають змінну довжину але завжди вирівнюються на 32-х розрядне слово                                                                                                                                                                                                                                                                                                                                                       |
| Дані (data)                            | дані користувача, кількість байт може бути некратна 32-х розрядним словам.                                                                                                                                                                                                                                                                                                                                                                                                              |

### Дані ТСР сегменту:

0е 48 – номер порту джерела

00 50 - номер порту призначення

**10 e7 d3 93** – номер послідовності

а8 07 а9 ба – номер підтвердження

50 - довжина заголовка

**18** - прапорці

**fb** 7**c** – розмір вікна

**fb c1** – контрольна сума

### 8. РЕКОМЕНДОВАНА ЛІТЕРАТУРА

### 8.1. Базова література

- 1. Буров €. Комп'ютерні мережі /За ред. В.Пасічніка. 2-е вид. оновл. і доп.-Львів: БАК, 2003. 584с.
- 2. Новиков Ю.В., Кондратенко СВ. Локальные сети: архитектура, алгоритмы, проектирование. Москва: ЭКОМ, 2000. 312c.
- 3. Пупена О.М., Ельперін І.В., Луцька Н.М., Ладанюк А.П. Промислові мережі та інтеграційні технології в автоматизованих системах. Навчальний посібник. К.: Ліра-К, 2011. –500с.

### 8.2. Допоміжна література

- 1. Камер Дуглас Э. Сети ТСР/IР. Т.1 Принципы, протоколы и структура: Пер. с англ. 4-е изд. Москва, Санкт-Петербург, Киев: Изд. дом "Вильяме", 2003. -880 с.
- 4. Хархаліс І.Р., Хархаліс Р.І. Телекомунікації, канали і мережі: Термінологічний словник. Київ: ІСДО, 1995. 52с.
- 5. Блэк Ю. Сети ЭВМ: Протоколы, стандарты, интерфейсы: Пер. с англ /Под ред. В.В.Василькова. Москва: Мир, 1990. -506с.
- 6. Халсалл Ф. Передача данных, сети компьютеров и взаимосвязь открытых систем: Пер. с снгл. Москва: Радио и связь, 1995. 408с.

#### 9. РЕСУРСИ

### 9.1. Інтернет ресурси

- 1. web-сайти періодичних видань <u>www.chip.ua</u>, <u>www.3dnews.ru</u>, <u>www.ixbt.com</u>, <u>www.cisco.com</u>, <u>www.habrahabr.ru</u>;
- 2. офіційні web-сайти виробників апаратного та програмного забезпечення -<u>www.intel.ru</u>, <u>www.amd.ru</u>, <u>www.asus.ru</u>, <u>www.nvidia.ru</u>, <u>www.samsung.ru</u>, <u>www.microsoft.ru</u>, <u>www.adobe.ru</u>;
- 3. електронна бібліотека на сервері кафедри електротехніки і автоматики НУВГП за адресою: e-a\stud\_doc\
- 4. IEEE 802.3<sup>TM</sup>: ETHERNET http://standards.ieee.org/about/get/802/802.3.html
- 5. RFC 793, TCP протокол <a href="http://tools.ietf.org/html/rfc793">http://tools.ietf.org/html/rfc793</a>

- 6. RFC 791, IP протокол <a href="http://tools.ietf.org/html/rfc791">http://tools.ietf.org/html/rfc791</a>
- 7. ModBus <a href="http://www.modbus-ida.org/specs.php">http://www.modbus-ida.org/specs.php</a>
- 8. WireShark <a href="http://www.wireshark.org/">http://www.wireshark.org/</a>
- 9. Code Project <a href="http://www.codeproject.com/">http://www.codeproject.com/</a>

#### 9.2. Бібліотеки

Національного університету водного господарства та природокористування:

м. Рівне, вул. Приходька, 75, 2-й корп. НУВГП Міжміський код 8(0362). тел. (0362) 22-25-39;

Рівненська обласна універсальна наукова бібліотека:

33000, м. Рівне, пл. Короленка, 6,

Міжміський код 8(0362). Тел./факс: 22-10-63

E-mail: <u>library@libr.rv.ua</u>

Рівненська обласна бібліотека для юнацтва:

33027, м. Рівне, вул. Київська, 18

Міжміський код 8(0362). Тел. 23-02-98

E-mail: molody@ukr.west.net

URL: http://libr.rv.ua

Міська бібліотека міста Рівне:

33028, м. Рівне, вул. Корольова, 2, Міжміський код 8(0362) Тел. 5-42-86

Центральна бібліотека ЦБС міста Рівне:

33028, м. Рівне, вул. Київська, 44

Міжміський код 8(0362) Тел. 23-35-3

E-mail: library@icc.rv.ua URL: http://www.library.rv.ua

### ДОДАТОК А ЗРАЗОК ОФОРМЛЕННЯ ТИТУЛЬНОЇ СТОРІНКИ

### МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ

# НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ВОДНОГО ГОСПОДАРСТВА ТА ПРИРОДОКОРИСТУВАННЯ

Факультет прикладної математики та комп'ютерноінтегрованих систем

Кафедра електротехніки та автоматики

### КОНТРОЛЬНА РОБОТА

з дисципліни "Комп'ютерні системи та мережі в АСКТП"

| Виконав (ла):<br>студент (ка) групи |  |
|-------------------------------------|--|
| Залікова книжка<br>№:               |  |
| Перевірив:                          |  |
| Дата здачі роботи на перевірку:     |  |

Рівне - 20