Linguagem de Programação Lista de Exercícios I - III Unidade

Prof. Vinicius Pereira Santana

14 de Agosto de 2024

Exercício 1. A Geometria Espacial estuda os objetos que possuem mais de uma dimensão e ocupam lugar no espaço. Por sua vez, esses objetos são conhecidos como "sólidos geométricos" ou "figuras geométricas espaciais". Dessa forma, a geometria espacial é capaz de determinar, por meio de cálculos matemáticos, o volume destes mesmos objetos, ou seja, o espaço ocupado por eles. A Tabelas 1 apresenta a definição das principais figuras geométricas espaciais, bem como as fórmulas utilizadas para calcular as medidas de área, perímetro e volume. É importante notar que, pelo fato de as figuras geométricas planas serem definidas em um plano de duas dimensões, elas não possuem volume.

Figura	Definição	Área	Volume
Pirâmide	Figura composta por uma base poligonal* (triangular, quadrangular, etc.) e um vértice que une as faces laterais da pirâmide	A = area_base + area_lateral**	$V = \frac{1}{3} \times area_base \times altura$
Cubo	Figura composta por seis faces quadrangulares	$A = 6 \times aresta^2$	$V = aresta^3$
Paralelepípedo	Figura composta por seis faces, tendo três pares de faces idênticas e paralelas entre si	$A = (2 \times aresta1 \times aresta2) + (2 \times aresta1 \times aresta3) + (2 \times aresta2 \times aresta3)$	$V = aresta1 \times aresta2 \times aresta3$
Esfera	Figura resultante do conjunto de pontos do espaço cuja distância ao centro é igual ou menor que o raio	$A=4\times\pi\times r^2$	$V = \frac{4}{3} \times \pi \times r^3$

^{*} Para este exercício, você deverá considerar uma pirâmide com base quadrangular, ou seja, contendo uma base formando um quadrado e quatro faces laterais triangulares.

Figure 1: Tabela 1: Área e volume das figuras geométricas espaciais.

A tarefa principal a ser realizada neste exercício é a implementação de um programa que calcula as medidas de diversas figuras geométricas espaciais presentes na Tabela 1. Utilize comentários para facilitar a correção de sua lógica e indicar onde especificamente está os requisitos referentes às questões abaixo.

a) Utilize uma ou mais técnicas de polimorfismo, vistas em sala de aula, de

^{**} A área lateral de uma pirâmide é dada pela soma das áreas de todas as faces laterais triangulares.

modo que o programa principal deve apenas chamar apenas as funções área e volume para as quatro figuras geométricas da Tabela 1. Como resultado, o programa deve exibir o retorno dessas duas funções correspondendo com as informações passadas por parâmetro. Considere $\pi=3,14$.

b) Utilize também ponteiro de função para chamar as funções criadas.

Exercício 2. Implemente em C++ um programa que simule a uma corrida de sapos. Implemente uma classe chamada Sapo contendo

- 1. Atributos: nome, identificador, distância percorrida, quantidade de pulos dados, quantidade de provas disputadas, vitórias, empates, quantidade total de pulos dados, quantidade.
- 2. Atributo estático público: distância total da corrida
- 3. Métodos públicos: Construtores, getters e setters, quando necessários.
- 4. Pular: incrementa distância percorrida de forma randômica entre 1 e o máximo que o sapo pode saltar e incrementa o número de pulos dados em uma unidade.
- 5. Sinta-se a vontade para adicionar outro método ou atributos.