Suites et Séries – DM1

À rendre le mardi 25 octobre 2022

NI		N f	
Milmero eriigiant '	Nom comos:	Nom trancais:	
. Tulliolo coudinilo.		· · · · · · · · · · · · · · · · · · ·	

1 Valeurs d'adhérence

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée.

1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est divergente, alors elle admet au moins deux valeurs d'adhérence distinctes.

 $(u_n)_{n\in\mathbb{N}}$ est une suite réelle bornée, elle admet donc au moins une valeurs d'adhérence $\lambda\in\mathbb{R}$ d'après le théorème de Bolzano-Weierstrass. Comme la suite est divergente, alors elle ne converge pas vers λ . Cela veut dire :

$$\exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \ge N, |u_n - \lambda| \ge \varepsilon.$$

On peut alors construire par récurrence une sous-suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}$: $|u_{\phi(n)}-\lambda|\geq \varepsilon$.

En effet:

- Pour N = 0, il existe $n_0 \ge N = 0$ tel que $|u_{n_0} \lambda| \ge \varepsilon$. On pose $\phi(0) = n_0$.
- Supposons construits $\phi(0), \ldots, \phi(n)$ pour un certain rang n. Pour $N = \phi(n)$, il existe $n_N \geq N = \phi(n)$ tel que $|u_{n_N} \lambda| \geq \varepsilon$. On note $\phi(n+1) = n_N$.

Ainsi, on a construit une exctration ϕ et une suite extraite $(u_{\phi(n)})_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}$: $|u_{\phi(n)}-\lambda|\geq \varepsilon$.

La suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ est elle-même bornée, donc admet une valeur d'adhérence $\mu\in\mathbb{R}$. Comme on a pour tout $n\in\mathbb{N}: |u_{\phi(n)}-\lambda|\geq \varepsilon$, alors $\lambda\neq\mu$.

Conclusion : la suite $(u_n)_{n\in\mathbb{N}}$ admet au moins deux valeurs d'adhérence distinctes.

2. Montrer que si $\lim_{n\to+\infty} \left(u_{n+1}-u_n\right)=0$ alors $\mathrm{Adh}(u)$ est un intervalle de \mathbb{R} .

 $u = (u_n)_{n \in \mathbb{N}}$ est une suite réelle bornée, elle admet donc au moins une valeurs d'adhérence $\lambda \in \mathbb{R}$ d'après le théorème de Bolzano-Weierstrass.

- Si $Adh(u) = \{\lambda\}$: il n'y a rien à démontrer. Un singleton est un intervalle.
- Supposons que Adh(u) contient au moins deux valeurs distinctes $\lambda < \mu$. Soit $\gamma \in]\lambda, \mu[$. Montrons que γ est aussi une valeur d'adhérence de la suite u.

Fixons $\varepsilon > 0$ et $N \in \mathbb{N}$. $\lim_{n \to +\infty} \left(u_{n+1} - u_n \right) = 0$ veut dire qu'il existe $N_0 \in \mathbb{N}$ (qui dépend de ε) tel que :

$$\forall n \geq N_0, |u_{n+1} - u_n| \leq \varepsilon.$$

- λ est une valeur d'adhérence de u, donc il existe $N_1 \in \mathbb{N}$ tel que : $u_{N_1} < \gamma$ et $N_1 \ge \max(N, N_0)$.
- De même, $\mu \in Adh(u)$ implique qu'il existe $N_2 \in \mathbb{N}$ tel que : $u_{N_2} > \gamma$ et $N_2 \geq N_1$.

Notons A l'ensemble défini par :

$$A = \{ n \in \mathbb{N}, \ N_1 \le n < N_2 \text{ et } u_n < \gamma \}$$

L'ensemble A est non vide (car contient N_1) et borné (car contient au maximum N_2-N_1 éléments). Donc A admet un maximum $p \in \mathbb{N}$ qui vérifie : $N_1 \leq p \leq N_2-1$ (p ne peut pas être égal à N_2).

On a donc

$$u_p < \gamma \le u_{p+1} \tag{1}$$

En particulier, cela veut dire que $0 < u_{p+1} - u_p$. Par ailleurs, comme $p > N_1 \ge N_0$ alors $|u_{p+1} - u_p| \le \varepsilon$. D'où :

$$0 < u_{p+1} - u_p \le \varepsilon \tag{2}$$

Les inégalités (1) et (2) nous permettent de déduire que $|u_p-\gamma|\leq \varepsilon.$ On a montré donc :

$$\forall \varepsilon > 0, \forall N \in \mathbb{N}, \exists p \ge N, |u_p - \gamma| \le \varepsilon.$$

En notant ϕ l'application qui à N associe p, on a donc construit une sous-suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ qui converge vers γ . D'où $\gamma \in Adh(u)$.

Conclusion : Adh(u) est un intervalle de \mathbb{R} .

2 Suite implicite

Soit la suite réelle $(x_n)_{n\in\mathbb{N}}$ définie par : pour tout $n\in\mathbb{N}$, x_n est l'unique solution de $\tan(x)=x$ dans l'intervalle $\left\lfloor n\pi-\frac{\pi}{2},n\pi+\frac{\pi}{2}\right\rfloor$.

1. Pourquoi cette suite est-elle bien définie?

Pour tout nombre entier n, la fonction tan est une bijection continue de $n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}$ sur \mathbb{R} . Il existe donc (d'après le TVI) un unique réel x_n tel que $\tan(x_n) = x_n$. La suite $(x_n)_{n \in \mathbb{N}}$ est bien définie.

2. Donner la limite de x_n lorsque n tend vers $+\infty$.

Pour tout entier n on a $n\pi - \frac{\pi}{2} < x_n < n\pi + \frac{\pi}{2}$, on déduit alors d'après la règle des gendarmes que : $\lim_{n \to +\infty} x_n = +\infty$

3. Donner un développement asymptotique à 3 termes de x_n au voisinage de $+\infty$.

Soit $n \in \mathbb{N}$. On a $tan(x_n) = x_n$, par continuité de la fonction arctan on a donc :

$$\arctan(\tan(x_n)) = \arctan(x_n)$$

C'est-à-dire :

$$x_n - n\pi = \arctan(x_n)$$

Comme $\lim_{n\to+\infty} x_n = +\infty$ et $\lim_{x\to+\infty} \arctan(x) = \frac{\pi}{2}$, alors :

$$x_n = n\pi + \arctan(x_n)$$
$$= n\pi + \frac{\pi}{2} + \underset{n \to +\infty}{o}(1)$$

Afin de trouver le terme suivant du développement asymptotique, notons $y_n = x_n - n\pi - \frac{\pi}{2}$. Alors on a :

$$x_n = \tan(x_n)$$

$$= \tan\left(n\pi + \frac{\pi}{2} + y_n\right)$$

$$= \tan\left(\frac{\pi}{2} + y_n\right)$$

$$= \frac{-1}{\tan(y_n)}$$

Comme $y_n = \underset{n \to +\infty}{o}(1)$ alors $\lim_{n \to +\infty} y_n = 0$ donc $\tan(y_n) \underset{n \to +\infty}{\sim} y_n$, d'où : $x_n \underset{n \to +\infty}{\sim} \frac{-1}{y_n}$, c'est-à-dire $y_n \underset{n \to +\infty}{\sim} \frac{-1}{x_n} \underset{n \to +\infty}{\sim} \frac{-1}{\pi n}$.

Conclusion:
$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{\pi n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)$$

3 Suite récurrente

Soit $f: x \mapsto \frac{x^3+1}{3}$, et soit la suite réelle $(a_n)_{n\in\mathbb{N}}$ définie par $a_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, \ a_{n+1} = f(a_n)$.

Étudier, en fonction de a_0 , le comportement de la suite $(a_n)_{n\in\mathbb{N}}$

On note α, β et γ les trois racines distinctes de l'équation f(x) = x. Ces trois réels sont donc les seules limites finies possibles de la suite $(a_n)_{n \in \mathbb{N}}$. Le tableau suivant résume l'étude de f et $x \mapsto f(x) - x$.

x	$-\infty$		α		β		γ		$+\infty$
f(x)		7	α	7	β	7	γ	7	
f(x)-x		_	0	+	0	_	0	+	

On remarque que les intervalles $]-\infty,\alpha[,]\alpha,\beta[,]\beta,\gamma[$ et $]\gamma,+\infty[$ sont stables par f.

- Si $a_0 \in]-\infty, \alpha[: f \text{ est croissante (donc } (a_n)_{n \in \mathbb{N}} \text{ est monotone) et } x \mapsto f(x) x \text{ est négative (donc } (a_n)_{n \in \mathbb{N}} \text{ est décroissante)}$. Comme il n'y a aucun point fixe de f dans $]-\infty, \alpha[$ alors $[\lim_{n \to +\infty} a_n = -\infty]$.
- Si $a_0 = \alpha$: la suite est constante. $\lim_{n \to +\infty} a_n = \alpha$.
- Si $a_0 \in]\alpha, \beta]$: f est croissante (donc $(a_n)_{n \in \mathbb{N}}$ est monotone) et $x \mapsto f(x) x$ est positive (donc $(a_n)_{n \in \mathbb{N}}$ est croissante). Comme β est le seul point fixe de f dans $]\alpha, \beta]$ alors $\lim_{n \to +\infty} a_n = \beta$.
- Si $a_0 \in]\beta, \gamma[: f \text{ est croissante (donc } (a_n)_{n \in \mathbb{N}} \text{ est monotone) et } x \mapsto f(x) x \text{ est négative (donc } (a_n)_{n \in \mathbb{N}} \text{ est décroissante)}.$ Comme β est le seul point fixe de f dans $[\beta, \gamma[\text{ alors} | \lim_{n \to +\infty} a_n = \beta]$.
- Si $a_0 = \gamma$: la suite est constante. $\lim_{n \to +\infty} a_n = \gamma$.
- Si $a_0 \in]\gamma, +\infty[$: f est croissante $(donc (a_n)_{n\in\mathbb{N}})$ est monotone) et $x \mapsto f(x) x$ est négative $(donc (a_n)_{n\in\mathbb{N}})$ est croissante). Comme il n'y a aucun point fixe de f dans $]\gamma, +\infty[$ alors

 $\boxed{\lim_{n\to+\infty} a_n = +\infty}.$