R Notebook

James Weaver

Programming Language Trends Analysis

Section 1: Load Necessary Libraries

```
library(readr)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
```

Section 2: Load and Preview Dataset

<dbl> <chr>

```
# Load the dataset
data <- read_csv("stack_overflow_data.csv")

## Rows: 420066 Columns: 4
## -- Column specification -------
## Delimiter: ","
## chr (1): tag
## dbl (3): year, num_questions, year_total
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.

## Preview the dataset
head(data, 5)

## # A tibble: 5 x 4
## year tag num_questions year_total</pre>
```

<dbl>

<dbl>

```
## 1 2008 treeview 69 168541

## 2 2008 scheduled-tasks 30 168541

## 3 2008 specifications 21 168541

## 4 2008 rendering 35 168541

## 5 2008 http-post 6 168541
```

Section 3: Data Transformation

```
# Calculate the percentage of questions per tag per year
data <- data %>%
  mutate(percentage = (num_questions / year_total) * 100)
```

Section 4: Analyze Top Programming Languages

```
# Top Tags Analysis
top_tags <- data %>%
  filter(year %in% 2015:2020) %>%
  group_by(tag) %>%
  summarise(total = sum(num_questions)) %>%
  arrange(desc(total)) %>%
  head(5)
top_tags
```

```
## # A tibble: 5 x 2

## tag total

## <chr> <dbl> **

## 1 javascript 1373634

## 2 python 1187838

## 3 java 982747

## 4 android 737330

## 5 c# 730045
```

Section 5: Visualize Top Programming Languages

```
# Visualize Top Tags for 2015-2020
ggplot(top_tags, aes(x = total, y = reorder(tag, total))) +
geom_col(fill = "skyblue") +
labs(
   title = "Top 5 Programming Languages (2015-2020)",
   x = "Number of Questions",
   y = "Programming Language"
) +
theme_minimal()
```


Section 6: Trend Analysis for Specific Languages

```
# Percentage Trend for a Specific Language
plot_language_trend <- function(data, language) {
    language_data <- data %>% filter(tag == language)
    ggplot(language_data, aes(x = year, y = percentage)) +
        geom_line(color = "blue") +
        labs(
        title = paste("Trend of", toupper(language), "Popularity Over Time"),
        x = "Year",
        y = "Percentage of Questions (%)"
    ) +
        theme_minimal()
}

plot_language_trend(data, "python")
```


Section 7: Summary Insights

```
# Summary Insights
cat("### Key Insights:\n")
```

Key Insights:

cat("1. Python has consistently grown in popularity, surpassing many other programming languages.\n")

1. Python has consistently grown in popularity, surpassing many other programming languages.

cat("2. Other languages like JavaScript remain stable, while some older languages show declining trends

2. Other languages like JavaScript remain stable, while some older languages show declining trends.

cat("3. This analysis provides insights into programming language trends to guide career and learning d

3. This analysis provides insights into programming language trends to guide career and learning dec