

ME414 - Estatística para Experimentalistas

Parte 21

Inferência para duas populações: Teste de hipótese para duas médias

Teste de hipótese para duas médias

População 1: Coletamos uma amostra aleatória $X_1, X_2, ..., X_n$ de uma população com média μ_1 e a variância σ_1^2 e usamos \bar{X} para estimar μ_1 .

População 2: Coletamos uma amostra aleatória $Y_1, Y_2, ..., Y_m$ de uma população com média μ_2 e a variância σ_2^2 e usamos \bar{Y} para estimar μ_2 .

A população 1 é independente da população 2.

Condições:

- 1. As populações 1 e 2 são aproximadamente normais ou
- 2. Os tamanhos amostrais n e m são suficientemente grandes.

Se pelo menos uma das condições acima é satisfeita, temos pelo TLC:

$$\bar{X} \sim N\left(\mu_1, \frac{\sigma_1^2}{n}\right)$$
 e $\bar{Y} \sim N\left(\mu_2, \frac{\sigma_2^2}{m}\right)$

Teste de hipótese para duas médias

Caso 1: Variâncias diferentes e conhecidas

Assumindo que as duas amostras $X_1, ..., X_n$ e $Y_1, ..., Y_m$ são independentes com $\sigma_1^2 \neq \sigma_2^2$ conhecidas, temos:

$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}\right)$$

Caso 1: Variâncias diferentes e conhecidas

Hipóteses:

$$H_0: \mu_1 - \mu_2 = \Delta_0$$
 vs $H_1: \begin{cases} \mu_1 - \mu_2 \neq \Delta_0 & \text{(bilateral)} \\ \mu_1 - \mu_2 > \Delta_0 & \text{(unilateral à direita)} \\ \mu_1 - \mu_2 < \Delta_0 & \text{(unilateral à esquerda)} \end{cases}$

Estatística do teste: Sob a hipótese H_0 , temos

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \stackrel{H_0}{\sim} N(0, 1)$$

População 1: uma amostra aleatória de tamanho n é coletada da população X e encontra-se uma estimativa de μ_1 , a média amostral \bar{x} .

População 2: uma amostra aleatória de tamanho m é coletada da população Y e encontra-se uma estimativa de μ_2 , a média amostral \bar{y} .

Calcula-se a estatística do teste:

$$z_{obs} = \frac{(\bar{x} - \bar{y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$$

Valor-de-p: Depende de H_1

Hipótese Alternativa Valor-de-p
$$H_1: \mu_1 - \mu_2 \neq \Delta_0 \qquad P(|Z| \geq |z_{obs}|)$$

$$H_1: \mu_1 - \mu_2 > \Delta_0 \qquad P(Z \geq z_{obs})$$

$$H_1: \mu_1 - \mu_2 < \Delta_0 \qquad P(Z \leq z_{obs})$$

Decisão: Para um nível de significância $\alpha = 0.05$:

- Rejeita-se H_0 se valor-de-p $< \alpha$.
- · Não Rejeita-se H_0 se valor-de-p $\geq \alpha$.

Caso 2: Variâncias iguais e conhecidas

$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma^2}{n} + \frac{\sigma^2}{m}\right)$$

Hipóteses: As mesmas definidas anteriormente.

Estatística do teste: Sob a hipótese H_0 , temos

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \stackrel{H_0}{\sim} N(0, 1)$$

Valor-de-p: calculado de forma análoga ao que fizemos anteriormente.

Teste de hipótese para duas médias ($\sigma_1^2 = \sigma_2^2$ desconhecidas)

Caso 3: Variâncias iguais e desconhecidas

Assim como no caso de uma média com variância desconhecida, usamos uma estimativa de σ^2 e a distribuição normal é substituída pela distribuição t.

No caso de duas populações, o estimador da variância σ^2 é a combinação das variâncias amostrais de cada população, ou seja,

$$S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2},$$

sendo S_i^2 é a variância amostral da população i.

Teste de hipótese para duas médias ($\sigma_1^2 = \sigma_2^2$ desconhecidas)

Quando σ^2 é conhecida:

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0, 1)$$

Quando σ^2 é desconhecida:

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2}$$

Teste de hipótese para duas médias ($\sigma_1^2 = \sigma_2^2$ desconhecidas)

Hipóteses: As mesmas definidas anteriormente

Estatística do teste: Sob a hipótese H_0 , temos

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \stackrel{H_0}{\sim} t_{n+m-2}$$

Observação: Se n e m são pequenos, as duas amostras devem vir de populações aproximadamente normais. Se n e m são grandes, então a distribuição t com n+m-2 graus de liberdade aproxima-se de uma normal.

Resumo: Teste de hipótese para duas médias

Hipóteses: H_0 : $\mu_1 - \mu_2 = \Delta_0$ vs H_1 : $\mu_1 - \mu_2 \neq \Delta_0$

$$H_1$$
: $\mu_1 - \mu_2 \neq \Delta_0$

Variâncias

Estatística do teste

Valor crítico para α

Valor-de-p

Diferentes e conhecidas ($\sigma_1^2 \neq \sigma_2^2$)

 $Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{r_1} + \frac{\sigma_2^2}{r_2}}} \sim N(0, 1)$

rejeitar se $z_{obs} < -z_{\alpha/2}$ ou $z_{obs} > z_{\alpha/2}$

 $2P(Z \ge |z_{obs}|)$

Iguais e conhecidas ($\sigma_1^2 = \sigma_2^2 = \sigma^2$)

$$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\sigma^2(\frac{1}{n} + \frac{1}{m})}} \sim N(0, 1)$$

rejeitar se $z_{obs} < -z_{\alpha/2}$ ou $z_{obs} > z_{\alpha/2}$

 $2P(Z \ge |z_{obs}|)$

Iguais e desconhecidas ($\sigma_{\mathrm{I}}^2=\sigma_{\mathrm{2}}^2=\sigma^2$)

$$T\sim rac{(ar{X}-ar{Y})-\Delta_0}{\sqrt{S_p^2(rac{1}{n}+rac{1}{m})}}\sim t_{n+m-2}$$
 rejeitar se $t_{obs}<-t_{n+m-2,lpha/2}$ ou $t_{obs}>-t_{n+m-2,lpha/2}$

rejeitar se
$$t_{obs} < -t_{n+m-2,\alpha/2}$$
 ou $t_{obs} > -t_{n+m-2,\alpha/2}$

 $2P(T \ge |t_{obs}|)$

Resumo: Teste de hipótese para duas médias

Hipóteses: H_0 : $\mu_1 - \mu_2 = \Delta_0$ vs H_1 : $\mu_1 - \mu_2 < \Delta_0$

$$H_1: \mu_1 - \mu_2 < \Delta_0$$

Variâncias

Estatística do teste

Valor crítico para α

Valor-de-p

Diferentes e conhecidas ($\sigma_1^2 \neq \sigma_2^2$)

$$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$$
 rejeitar se $z_{obs} \le -z_{\alpha}$

 $P(Z \leq z_{obs})$

Iguais e conhecidas ($\sigma_1^2 = \sigma_2^2 = \sigma^2$)

$$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\sigma^2(\frac{1}{n} + \frac{1}{m})}} \sim N(0, 1)$$
 rejeitar se $z_{obs} \le -z_{\alpha}$

 $P(Z \leq z_{obs})$

Iguais e desconhecidas ($\sigma_1^2 = \sigma_2^2 = \sigma^2$)

$$T \sim \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{S_p^2(\frac{1}{n} + \frac{1}{m})}} \sim t_{n+m-2}$$
 rejeitar se $t_{obs} \leq -t_{n+m+2,\alpha}$

 $P(T \leq t_{obs})$

Resumo: Teste de hipótese para duas médias

Hipóteses: H_0 : $\mu_1 - \mu_2 = \Delta_0$ vs H_1 : $\mu_1 - \mu_2 > \Delta_0$

$$H_1: \mu_1 - \mu_2 > \Delta_0$$

Variâncias

Estatística do teste

Valor crítico para α

Valor de p

Diferentes e conhecidas ($\sigma_1^2 \neq \sigma_2^2$)

$$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$$
 rejeitar se $z_{obs} \ge z_{\alpha}$

 $P(Z \ge z_{obs})$

Iguais e conhecidas ($\sigma_1^2 = \sigma_2^2 = \sigma^2$)

$$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\sigma^2(\frac{1}{n} + \frac{1}{m})}} \sim N(0, 1)$$

rejeitar se $z_{obs} \ge z_{\alpha}$

 $P(Z \ge z_{obs})$

Iguais e desconhecidas ($\sigma_1^2 = \sigma_2^2 = \sigma^2$)

$$T \sim \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{S_p^2(\frac{1}{n} + \frac{1}{m})}} \sim t_{n+m-2}$$

rejeitar se $t_{obs} \ge t_{n+m+2,\alpha}$

 $P(T \ge t_{obs})$

Relembrando: Como encontrar $z_{\alpha/2}$

$$P(|Z| \le z_{\alpha/2}) = P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$$

Procure na tabela o valor de z tal que a probabilidade acumulada até o valor de z, isto é $P(Z \le z) = \Phi(z)$, seja $1 - \alpha/2$.

Relembrando: Como encontrar $t_{\nu,\alpha/2}$

$$P(-t_{\nu,\alpha/2} < T < t_{\nu,\alpha/2}) = 1 - \alpha$$

Nesse caso, $\nu = n + m - 2$ e os valores da distribuição t encontram-se tabelados.

O tempo de incubação do vírus 1 segue uma distribuição normal com média μ_1 e desvio padrão $\sigma_1 = \sqrt{2}$.

Por outro lado, o tempo de incubação do vírus 2 segue uma distribuição normal com média μ_2 e desvio padrão $\sigma_2 = 1$.

Os tempos de incubação de ambos os vírus são considerados independentes.

Afirma-se que em média, o tempo de incubação do vírus 1 é 3 meses depois do tempo médio de incubação do vírus 2.

Realizaram um estudo de controle e os tempos de incubação registrados foram (tempo em meses):

· X: tempo de incubação do vírus 1 (20 observações)

```
## [1] 4.56 3.72 3.45 2.86 4.03 4.08 6.56 4.31 0.42 5.56 5.92 2.65 4.54 4.04 ## [15] 4.23 6.24 6.16 5.46 3.22 2.28
```

· Y: tempo de incubação do vírus 2 (22 observações)

```
## [1] 2.44 1.49 2.68 2.60 1.51 1.60 1.47 3.70 2.22 1.78 2.36 1.56 2.98 3.33 ## [15] 2.22 0.58 2.26 2.26 1.92 0.50 1.17 1.70
```

Recentemente, pacientes contaminados com os vírus foram avaliados e suspeita-se que talvez o tempo de incubação do vírus 1 não seja 3 meses depois do tempo médio de incubação do vírus 2.

Definindo as hipóteses as serem testadas:

$$H_0: \mu_1 - \mu_2 = 3$$
 vs $H_1: \mu_1 - \mu_2 \neq 3$

Os dados coletados serão usados para avaliar se temos ou não evidências contra H_0 .

Vamos calcular a média amostral das duas populações: $\bar{x} = 4.21$ e $\bar{y} = 2.02$.

Pelo enunciado, as duas populações são normais e as variâncias são conhecidas: $\sigma_1^2 = 2$ e $\sigma_2^2 = 1$. Veja que as populações são normais, variâncias diferentes mas conhecidas. Além disso, n = 20 e m = 22.

Estatística do teste:

$$z_{obs} = \frac{(\bar{x} - \bar{y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} = \frac{(4.21 - 2.02) - 3}{\sqrt{\frac{2}{20} + \frac{1}{22}}} = -2.12$$

Valor-de-p:

$$P(|Z| \ge |z_{obs}|) = P(Z \ge 2.12) + P(Z \le -2.12) = 2P(Z \ge 2.12) = 0.034$$

Conclusão: Para $\alpha = 0.01$, como p-valor=0.034 > $\alpha = 0.01$, não temos evidência para rejeitar $H_0: \mu_1 = 3 + \mu_2$ com nível de significância 0.01.

Valor crítico: $z_{0.005} = 2.58$. Portanto, com $|z_{obs}| < 2.58$ não temos evidências para rejeitar H_0 com nível de significância $\alpha = 0.01$.

Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete experimentos foram:

Tecido	1	2	3	4	5	6	7
А	36	26	31	38	28	20	37
В	39	27	35	42	31	39	22

Construa um teste de hipótese com nível de significância 5% para testar a hipótese nula de igualdade entre os pesos médios dos tecidos. Admita que a variância é a mesma, e igual a 49.

Quais outras suposições são necessárias para que o teste seja válido?

, Notas de aula.

Os tecidos do tipo A tem uma média amostral igual a $\bar{x}_A = 30.86$. Já os tecidos do tipo B têm média amostral de $\bar{x}_B = 33.57$.

A variância populacional é igual a 49, enquanto as variâncias amostrais são 44.14 e 52.62, respectivamente.

Suposições: Como os tamanhos amostrais n=m=7 são pequenos, devemos assumir os pesos dos tecidos dos dois tipos são normalmente distribuídos ou seja, $X_A \sim N(\mu_A, \sigma^2)$ e $X_B \sim N(\mu_B, \sigma^2)$. Além disso são independentes e com variâncias iguais.

Assumimos que as variâncias são iguais e **conhecidas** ($\sigma_1^2 = \sigma_2^2 = 49$). Além disso, n = 7 e m = 7.

Definindo as hipóteses as serem testadas:

$$H_0: \mu_A - \mu_B = 0$$
 vs $H_1: \mu_A - \mu_B \neq 0$.

Como a variância é conhecida, a estatística do teste é dada por

$$Z = \frac{\bar{X}_A - \bar{X}_B - \Delta_0}{\sqrt{\sigma^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}}$$

Se a hipótese nula é verdadeira, temos que $\Delta_0 = \mu_A - \mu_B = 0$ e $Z \sim N(0,1)$. Note que a hipótese alternativa é do tipo \neq , então o teste é bilateral.

Estatística do teste:

$$z_{obs} = \frac{(\bar{x} - \bar{y}) - \Delta_0}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} = \frac{(30.86 - 33.57) - 0}{\sqrt{49 \left(\frac{1}{7} + \frac{1}{7}\right)}} = -0.72$$

Valor-de-p:

$$P(|Z| \ge |z_{obs}|) = P(Z \ge 0.72) + P(Z \le -0.72) = 2P(Z \ge 0.72) = 0.4716$$

Conclusão: Para $\alpha = 0.05$, como p-valor=0.4716 > $\alpha = 0.05$, não temos evidência para rejeitar $H_0: \mu_A = \mu_B$ com nível de significância 0.05.

Valor crítico: $z_{0.025} = 1.96$. Portanto, com $|z_{obs}| < 1.96$ não temos evidências para rejeitar H_0 com nível de significância $\alpha = 0.05$.

Vamos assumir agora que a variância populacional não fosse conhecida.

Assumindo ainda que as variâncias são iguais mas desconhecidas, vamos então estimar a variância amostral combinada.

Sabendo que
$$s_1^2 = 44.14$$
, $s_2^2 = 52.62$ e $n = m = 7$ temos:

$$s_p^2 = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}$$

$$= \frac{(7-1)44.14 + (7-1)52.62}{7+7-2}$$

$$= 48.38$$

Nesse caso, a estatística do teste, sob H_0 , é dada por:

$$T = \frac{\bar{X}_A - \bar{X}_B}{\sqrt{S_p^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} \sim t_{n_A + n_B - 2}$$
$$t_{obs} = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{s_p^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} = \frac{30.86 - 33.57}{\sqrt{48.38(1/7 + 1/7)}} = -0.73$$

Considerando nível de significância 0.05, rejeitamos H_0 se $|t_{obs}| \ge t_{n+m-2,0.025}$.

Valor crítico para $\alpha=0.05$: 2.18, ou seja, se $|t_{obs}| \geq 2.18$ temos evidências para rejeitar H_0 com nível de significância $\alpha=0.05$. No caso, $|t_{obs}|=0.73<2.18$, portanto não encontramos evidências para rejeitar a hipótese de que as médias são iguais.

Exemplo: tempo de adaptação

Num estudo comparativo do tempo médio de adaptação (em anos), uma amostra aleatória, de 50 homens e 50 mulheres de um grande complexo industrial, produziu os seguintes resultados:

Estatística	Homens	Mulheres
Média	3.2	3.7
Desvio Padrão	0.8	0.9

Construa um teste de hipótese com nível de significância de 5% para a diferença entre o tempo médio de adaptação para homens e mulheres.

Adaptado de Morettin & Bussab, Estatística Básica 5^a edição, pág 365.

Exemplo: tempo de adaptação

Veja que não sabemos a variância populacional, mas temos os desvios-padrão amostrais e estes são bem próximos. Então iremos assumir que as variâncias são iguais porém desconhecidas.

Nesse caso, vamos então estimar a variância amostral combinada.

Sabendo que $s_1 = 0.8$, $s_2 = 0.9$ e n = m = 50 temos:

$$s_p^2 = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}$$

$$= \frac{(50-1)(0.8)^2 + (50-1)(0.9)^2}{50+50-2}$$

$$= 0.73$$

Exemplo: tempo de adaptação

Nesse caso, a estatística do teste, sob H_0 , é dada por:

$$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S_p^2(\frac{1}{n} + \frac{1}{m})}} \sim t_{n+m-2}$$

$$t_{obs} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2(\frac{1}{n} + \frac{1}{m})}} = \frac{3.2 - 3.7}{\sqrt{0.73(\frac{1}{50} + \frac{1}{50})}} = -2.93$$

Considerando nível de significância 0.05 e H_1 : $\mu_1 \neq \mu_2$, rejeitamos H_0 se $|t_{obs}| \geq t_{n+m-2,0.025} = 1.98$.

Valor crítico Se $|t_{obs}| \ge 1.98$ temos evidências para rejeitar H_0 com nível de significância $\alpha = 0.05$. No caso, $|t_{obs}| = 2.93 > 1.98$, portanto encontramos evidências para rejeitar a hipótese de que as médias são iguais.

Inferência para duas populações: Teste de hipótese para duas proporções

Considere $X_1, ..., X_{n_1}$ e $Y_1, ..., Y_{n_2}$ duas amostras independentes de ensaios de Bernoulli tal que $X \sim b(p_1)$ e $Y \sim b(p_2)$, com probabilidade p_1 e p_2 de apresentarem uma certa característica.

Hipóteses:

$$H_0: p_1-p_2=0$$
 vs $H_1: \begin{cases} p_1-p_2 \neq 0 & \text{(bilateral)} \\ p_1-p_2 > 0 & \text{(unilateral à direita)} \\ p_1-p_2 < 0 & \text{(unilateral à esquerda)} \end{cases}$

Em aulas anteriores vimos que:

$$\hat{p}_1 \sim N\left(p_1, \frac{p_1(1-p_1)}{n_1}\right)$$
 e $\hat{p}_2 \sim N\left(p_2, \frac{p_2(1-p_2)}{n_2}\right)$

Veja que as variâncias de \hat{p}_1 e \hat{p}_2 dependem de p_1 e p_2 (não conhecidas).

Sob H_0 , $p_1 = p_2 = p$, portanto:

$$\hat{p}_1 \sim N\left(p_1, \frac{p(1-p)}{n_1}\right)$$
 e $\hat{p}_2 \sim N\left(p_2, \frac{p(1-p)}{n_2}\right)$

No entanto, p é desconhecido. Iremos utilizar como estimativa para p: \hat{p} , definido como o número de sucessos entre todos os elementos amostrados. Ou seja, o estimador é a proporção de sucessos na amostra toda, sem levar em consideração as populações, pois, sob H_0 , $p_1 = p_2$ (não há diferença entre as proporções das duas populações).

Então, para H_0 : $p_1 = p_2$ usamos a estatística do teste a seguir:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$$

em que \hat{p} é a proporção de sucessos entre os $n_1 + n_2$ elementos amostrados.

Condições: Todas as quantidades $n_1\hat{p}_1$, $n_1(1-\hat{p}_1)$, $n_2\hat{p}_2$ e $n_2(1-\hat{p}_2)$ devem ser pelo menos igual a 10 para que a aproximação pela normal seja válida.

Resumindo:

Para H_0 : $p_1 - p_2 = 0$

H_1	Valor crítico para α	Valor de p
$p_1 - p_2 \neq 0$	rejeitar se $ z_{obs} \ge z_{\alpha/2}$	$2P(Z \ge \mid z_{obs} \mid)$
$p_1 - p_2 < 0$	rejeitar se $z_{obs} \leq -z_{\alpha}$	$P(Z \le z_{obs})$
$p_1 - p_2 > 0$	rejeitar se $z_{obs} \geq z_{\alpha}$	$P(Z \ge z_{obs})$

O dinheiro que não é gasto hoje pode ser gasto depois.

Será que ao relembrar o aluno deste fato faz com que tome a decisão sobre uma compra de maneira diferente?

O cético pode pensar que relembrar não irá influenciar na decisão.

Podemos utilizar um teste de hipótese:

- H_0 : Relembrar o aluno de que ele pode poupar para comprar algo especial depois não irá influenciar na decisão de gasto do aluno.
- H_1 : Relembrar o aluno de que ele pode poupar para comprar algo especial depois irá aumentar a chance dele não gastar em algo no presente.

Alunos de ME414 do segundo semestres de 2015 foram recrutados para um estudo e cada um recebeu a seguinte informação através do Google Forms:

56 alunos (grupo 1) selecionados ao acaso receberam a seguinte opção de resposta:

- · Compraria o DVD.
- · Não compraria o DVD.

54 alunos (grupo 2) selecionados ao acaso receberam a seguinte opção de resposta:

- · Compraria o DVD.
- · Não compraria o DVD. Pouparia os R\$ 20,00 para algo especial.

Obs: estudo adaptado do artigo _____

	Compraria	Não compraria
grupo1	31	25
grupo2	29	25

Entre os alunos do grupo 1, a proporção que decide não comprar foi 0.45.

Entre os alunos do grupo 2, a proporção que decide não comprar foi 0.46.

Temos evidências contra a hipótese nula, ou seja, relembrar o aluno não influencia na decisão?

Para realizar o teste de hipótese, devemos fazer algumas suposições.

Considere duas populações: *X* e *Y* tal que:

- $X_i \sim b(p_1)$ indica se o i-ésimo aluno do **grupo 1** decide não comprar o DVD e p_1 é a probabilidade de decidir por não comprar.
- $Y_i \sim b(p_2)$ indica se o i-ésimo aluno do **grupo 2** decide não comprar o DVD e p_2 é a probabilidade de decidir por não comprar.

Queremos testar:

$$H_0: p_1 = p_2$$
 VS $H_1: p_1 < p_2$

Seja \hat{p}_1 a proporção que decide não comprar entre os alunos n_1 amostrados do grupo 1.

Seja \hat{p}_2 a proporção que decide não comprar entre os n_2 alunos **amostrados do grupo 2**.

Relembrando o TLC:

$$\hat{p}_1 \sim N\left(p_1, \frac{p_1(1-p_1)}{n_1}\right)$$
 e $\hat{p}_2 \sim N\left(p_2, \frac{p_2(1-p_2)}{n_2}\right)$

Condições: Todas as quantidades $n_1\hat{p}_1$, $n_1(1-\hat{p}_1)$, $n_2\hat{p}_2$ e $n_2(1-\hat{p}_2)$ devem ser pelo menos igual a 10 para que a aproximação pela normal seja válida.

Então, para H_0 : $p_1 = p_2$ usamos a estatística do teste a seguir:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$$

em que \hat{p} é a proporção que decide não comprar entre os n_1+n_2 alunos amostrados.

Testar:

$$H_0: p_1 = p_2$$
 vs $H_1: p_1 < p_2$,

é equivalente a testar:

$$H_0: p_1 - p_2 = 0$$
 vs $H_1: p_1 - p_2 < 0$.

Estatística do teste:

$$z_{obs} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{25/56 - 25/54}{\sqrt{5/11(1-5/11)\left(\frac{1}{56} + \frac{1}{54}\right)}} = -0.17$$

Valor crítico: Para $\alpha = 0.05$, $z_{0.025} = -1.64$

Conclusão: como $z_{obs} > -1.64$ não temos evidências para rejeitar H_0 .

Leituras

- · Ross: capítulo 10.
- · OpenIntro: seções 3.2 e 4.3.
- · Magalhães: capítulo 9.

Slides produzidos pelos professores:

- · Samara Kiihl
- · Tatiana Benaglia
- · Benilton Carvalho