Machine Learning

2014/12/16

By 謝德威 (tewei)

安裝順序

- 1. Python 2.7
- 2. \$python get-pip.py
- 3. \$ pip install ipython, pyzmq, tornado, jinja2, numpy, matplotlib
- 4. \$ipython notebook

Contents

- 1. Linear Basis Function Models
- 2. Maximum Likelihood
- 3. Gradient Descent
- 4. Regularization
- Problems Applying Machine Learning

1. Linear Basis Function Models

1.1. Linear Regression

$$y(x, w) = w_0 + w_1 x_1 + ... + w_D x_D$$

where $x = (x_1, ..., x_D)^T$

當然很多時候model沒有那麼簡單

1.2. Linear Combinations of Fixed Nonlinear Functions

$$y(x, w) = w_0 + \sum_{j=1}^{M-1} w_j \varphi_j(x)$$
 把常數加進去

$$y(x, w) = \sum_{j=0}^{M-1} w_j \varphi_j(x) = w^T \varphi(x)$$

where $w = (w_0, ..., w_{M-1})^T$ and $\varphi = \varphi(\varphi_0, ..., \varphi_{M-1})^T$

1.3. Examples of Basis Function

- \Box Polynomial Function $\varphi_i(x) = x^{j}$
- **山** Logistic Function $\varphi_j(x) = \sigma(\frac{x-\mu_j}{s})$, $\sigma(k)$ is a logistic (邏輯) sigmoid (S型) function $\sigma(k) = \frac{1}{1+exp(-k)}$ or $\sigma(k) = \frac{tanh(k)+1}{2}$

((exp(x)-exp(-x))/(exp(x)+exp(-x))+1)/2 的圖表

Maximum Likelihood

2.1. Sum-of-Squares Error Function

$$E_D(w) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - w^T \varphi(x_n)\}^2$$
, where t is target variable

把它微分一下得到

$$\sum_{n=1}^{N} \{t_n - w^T \varphi(x_n)\} \varphi(x_n)^T$$

因為這個函數是convex, 微分=0可得最小值

$$\sum_{n=1}^{N} t_{n} \varphi(x_{n})^{T} - w^{T} \left(\sum_{n=1}^{N} \varphi(x_{n}) \varphi(x_{n})^{T} \right) = 0$$

 Φ 是一個 $N \times M$ 的矩陣, $\Phi_{nj} = \varphi_j(x_n)$

所求的 $w = (\Phi^T \Phi)^{-1} \Phi^T$,是 Φ 的Pseudo-Inverse

Gradient Descent

3.1. Optimization Problem

好Pseudo-Inverse不用嗎?如果沒辦法 直接解呢?Gradient Descent是個最常 見的最佳化演算法,可以求得一個函數 的區域極大、極小值

假設有個 $cost\ function\ J(\theta)$, 我們想知

道 $J(\theta)$ 最小值時的 θ

一直重複 $\theta = \theta - \alpha \nabla J(\theta)$

也就是向最陡(梯度 $\nabla J(\theta)$)的方向走, α 是一步的長度,好的情況下會趨近最小值時的 θ

範例:線性GradientDesent

3.2. 不好的情況 有可能會z字型走,如果α太大有可能不收斂

4. Regularization

- 4.1. Control Over-Fitting 為避免模型過度複雜造成 over-fitting,所以加了 regularization term $E_D(w) + \lambda E_w(w)$ λ 是控制它們之間重要性的係數 最簡單的 $E_w(w) = \frac{1}{2}w^T w$
- 4.2. $\frac{\lambda}{2} \sum_{j=1}^{M} |w_{j}|^{q}$ 通常q = 1叫lasso(L1-norm) 右圖為L1-norm與L2-norm

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

5. Problems Applying Machine Learning

- 5.1. Cross Validation 拿一部份的資料用做測試而非訓練,以此觀察訓練結果的好壞
- 5.2. Over-Fitting

5.3. High Bias dk 3 模型選得太簡單,造成Training跟Testing Error都偏高(Under-Fit)

5.4. High Variance

選太多參數或是演算法、模型取不好,造成Testing Error上升但 Training Error下降(Over-Fit)

http://www.astroml.org/sklearn_tutorial/practical.html

Reference: Pattern Recognition and Machine Learning by Christopher M. Bishop

Further Reading

https://github.com/nborwankar/LearnDataScience