WHAT IS CLAIMED IS:

l	1. An expansible device for use in a body lumen or tract, the device
2	comprising:
3	a tubular member having a proximal end and a distal end;
4	an expansible member disposed on the distal end of the tubular member, the
5	expansible member having a contracted configuration and an expanded configuration
6	comprising a conical shape; and
7	a deformable membrane at least partially disposed over the expansible
8	member in the expanded configuration.
1	2. The device of claim 1, further comprising deployment means
2	coupleable to the proximal end of the tubular member, wherein the expansible member
3	includes a straight portion extending from an apex of the conical shape to the deployment
4	means.
1	3. The device of claim 1, wherein the expansible member comprises a
2	coil or spring of wire.
1	4. The device of claim 3, wherein the wire has a diameter in a range fro
2	about 0.005 inch to about 0.012 inch.
1	5. The device of claim 3, wherein the coil or spring comprises 1 to 10
1	
2	loops, wherein a height between the loops is in a range from about 0.1 inch to about 0.5 inc
1	6. The device of claim 1, wherein the expansible member comprises
2	superelastic material or shape memory material.
1	7. The device of claim 1, further comprising a reference stop disposed
1	
2	between the deformable membrane and the distal end of the tubular member so as to control
3	an angle of deflection of the membrane relative to the tubular member.
1	8. The device of claim 1, further comprising an additional expansible
2	member disposed proximal the expansible member on the distal end of the tubular member
3	the additional expansible member having a contracted configuration and an expanded
4	configuration comprising a cylindrical shape.

1	9. A method for sealing a puncture site:
2	providing an expansible device having a tubular member, an expansible
3	member disposed on a distal end of the tubular member moveable between a contracted
4	configuration and an expanded configuration, and a deformable membrane at least partially
5	disposed over the expansible member in the expanded configuration;
6	inserting the expansible device in the puncture site;
7	deploying the expansible member to an expanded configuration comprising a
8	conical shape.
1	10. The method of claim 9, wherein the expansible member includes a
2	straight portion extending from an apex of the conical shape which is oriented away from the
3	puncture site.
1	11. The method of claim 10, further comprising applying proximal tension
2	to the straight section so that the expansible member is deformed into a disk shape
3	configuration.
1	12. The method claim 11, further comprising applying increased proximal
2	tension to the straight section so that the expansible member is deformed into an inverted
3	conical shape configuration wherein the apex of the conical shape is oriented toward the
4	puncture site.
1	13. The method of claim 9, wherein the puncture site comprises a blood
2	vessel wall or tissue tract.
1	14. An expansible device for use in a body lumen or tract, the device
2	comprising:
3	a tubular member having a proximal end and a distal end;
4	an expansible member disposed on the distal end of the tubular member, the
5	expansible member having a contracted configuration and an expanded configuration;
6	a deformable membrane at least partially disposed over the expansible
7	member in the expanded configuration; and
8	a reference stop disposed between the deformable membrane and the distal
Q	end of the tuhular member

1	15. The device of claim 14, wherein a proximal end of the deformable
2	membrane is attached to the tubular member just proximal of the reference stop.
1	16. The device of claim 14, wherein the reference stop comprises a
2	hypotube having a length in a range from about 0.01 inch to about 0.2 inch, an inner diameter
3	slightly larger than an outer diameter of the tubular member, and an outer diameter in a range
4	from about 0.001 inch to about 0.02 inch larger than the outer diameter of the tubular
5	member.
1	17. The device of claim 14, wherein the deformable membrane comprises
2	a spherical shape when the expansible member is in the expanded configuration.
1	18. The device of claim 14, further comprising an additional expansible
2	member disposed proximal the expansible member on the distal end of the tubular member,
3	the additional expansible member having a contracted configuration and an expanded
4	configuration comprising a cylindrical shape.
1	19. An expansible device for use in a body lumen or tract, the device
2	comprising:
3	a tubular member having a proximal end and a distal end;
4	a first expansible member disposed on the distal end of the tubular member,
5	the first expansible member having a contracted configuration and an expanded
6	configuration;
7	a first deformable membrane at least partially disposed over the first
8	expansible member in the expanded configuration;
9	a second expansible member disposed proximal the first expansible member
10	on a distal end of the tubular member, the second expansible member having a contracted
11	configuration and an expanded configuration.
1	20. The device of claim 19, wherein the second expansible membrane has
2	a cylindrical shape in the expanded configuration.
1	21. The device of claim 20, wherein a predetermined volume of air
2	contained within the tubular member inflates the second expansible member so as to provide

at least one of radial or axial expansion.

1	22. The device of claim 20, wherein the second expansione member
2	comprises a coil or spring of wire.
1	23. The device of claim 22, wherein the coil has a diameter in a range from
2	about 0.02 inch to about 0.2 inch and the wire has a diameter in a range from about 0.005
3	inch to about 0.02 inch.
1	24. The device of claim 22, further comprising a second deformable
2	membrane at least partially disposed over the second expansible member in the expanded
3	configuration
1	25. The device of claim 24, further comprising ribs on a surface of the
2	second deformable membrane.
1	26. The device of claim 19, wherein the second expansible member has a
2	length in a range from about 0.1 inch to about 2.0 inches.
1	27. The device of claim 19, wherein the first deformable membrane
2	comprises a spherical shape when the first expansible member is in the expanded
3	configuration.
1	28. The device of claim 19, further comprising a reference stop disposed
2	between the first deformable membrane and the distal end of the tubular member.
1	29. A method for sealing a puncture site:
2	providing an expansible device having a tubular member, a first expansible
3	member disposed on a distal end of the tubular member, a first deformable membrane at least
4	partially disposed over the first expansible member in an expanded configuration, and a
5	second expansible member disposed proximal the first expansible member on the distal end
6	of the tubular member;
7	inserting the expansible device in the puncture site;
8	deploying the first expansible member to an expanded configuration
9	comprising a spherical shape;
10	deploying the second expansible member to an expanded configuration
11	comprising a cylindrical shape.

The method of claim 29, wherein the first and second expansible 30. 1 2 members are deployed sequentially. The method of claim 29, wherein the first and second expansible 1 31. 2 members are deployed simultaneously. 1 32. The method of claim 29, wherein the first expansible member is 2 deployed against a blood vessel wall. 1 33. The method of claim 29, wherein the second expansible member is deployed against a tissue tract. 2 The method of claim 29, wherein deploying the second expansible 34. 1 membrane comprises inflating the second expansible member with a predetermined volume 2

3

of air.