Velmi jemný úvod do biomedicínské statistiky

B00364 Zdravotnická informatika

Lubomír Štěpánek^{1, 2}

 Oddělení biomedicínské statistiky Ústav biofyziky a informatiky
 lékařská fakulta
 Univerzita Karlova v Praze

²Katedra biomedicínské informatiky Fakulta biomedicínského inženýrství České vysoké učení technické v Praze

28. května 2020

(2020) Lubomír Štěpánek, CC BY-NC-ND 3.0 (CZ)

Dílo lze dále svobodně šířit, ovšem s uvedením původního autora a s uvedením původní licence. Dílo není možné šířit komerčně ani s ním jakkoliv jinak nakládat pro účely komerčního zisku. Dílo nesmí být jakkoliv upravováno. Autor neručí za správnost informací uvedených kdekoliv v předložené práci, přesto vynaložil nezanedbatelné úsilí, aby byla uvedená fakta správná a aktuální, a práci sepsal podle svého nejlepšího vědomí a svých "nejlepších" znalostí problematiky.

Obsah

- Úvod
- Základní pojmy
- Oeskriptivní statistika
- Pravděpodobnost
- Induktivní statistika
- Literatura

Motivace

- evidence-based medicine
- denně sbíráno obrovské množství medicínských dat
- myšlení lékaře je probabilistické
- i medikovi se hodí uživatelská znalost základní statistiky
 - aby rozuměl odborným článkům a moderním klinickým učebnicím
 - pro komunikaci se statistikem

Dělení statistiky

- deskriptivní statistika
 - popisuje data, ale nedělá na nich žádné "velké" závěry
- induktivní statistika
 - pozoruje konkrétní data a vyvozuje z nich obecné závěry, ovšem s udáním stupně jejich spolehlivosti

Vzájemný vztah deskriptivní a induktivní statistiky

Literatura

Pojem statistický znak, veličina

- statistický znak, veličina
 - měřitelná (veličina) či jinak zjistitelná (znak) charakteristika našeho zájmu
 - např. tělesná výška, pohlaví, mzda, apod.

Pojem statistická jednotka

- statistická jednotka
 - základní atomický prvek zájmu, u nějž lze měřit nebo jinak získat hodnotu statistického znaku či veličiny
 - např. student, pacient, stát, molekula, apod.

Pojem statistický soubor

- statistický soubor
 - množina statistických jednotek (prvků statistického souboru)
 - např. třída žáků, kohorta pacientů, apod.

Vztah statistického znaku (veličiny), jednotky a souboru

- každá statistická jednota (prvek) statistického souboru má svou hodnotu¹ určitého zkoumaného statistického znaku či veličiny (jde-li o měřítelný znak)
- např. ve školní třídě změříme tělesnou výšku každého žáka
 - školní třída je statistický soubor
 - žáci jsou statistické jednotky (prvky)
 - tělesná výška je statistická veličina

o oooooo• Intermezzo

- měříme tělesné hmotnosti v kohortě pacientů-diabetiků na interním oddělení
- určeme, co je v takovém případě
 - statistickým znakem, resp. veličinou
 - statistickou jednotkou
 - statistickým souborem

Cíle deskriptivní statistiky

- cílem je popsat soubor dat
 - číselně (resp. tabulkou)
 - graficky
- popisné číselné ukazatele i grafické přístupy se liší, pokud jde
 - o kvantitativní statistický znak (veličinu)
 - o kvalitativní statistický znak

Kvantitativní znak (veličina)

- je vyjádřen číslem (a obvykle s jednotkou), kdy s číselnou hodnotou je smysluplné provádět aritmetické operace
- číslo tedy nenese pouze "katalogizační" význam
- někdy též označován jako numerický typ dat

Dělení kvantitativního znaku (veličiny)

- dle spojitosti číselných hodnot
 - spojitý hodnoty nabývají reálných čísel, nebo je na ně lze převést nějakou bijekcí
 - např. hmotnost, výška atd.
 - diskrétní hodnoty jsou oddělená čísla obvykle ve smyslu počet či pořadí
 - např. počty pacientů atd.
- dle měřítka
 - intervalová stupnice lze si smysluplně odpovědět, o kolik se dvě hodnoty liší, ale ne kolikrát
 - např. °C, datumy atd.
 - poměrová stupnice lze si smysluplně odpovědět, o kolik se dvě hodnoty liší i kolikrát se liší
 - např. °K

Kvalitativní znak

- je vyjádřen obvykle slovně
- pokud vyjádřen číslem, pak nese pouze "katalogizační" význam a není smysluplné s ním provádět aritmetické operace

Velmi jemný úvod do biomedicínské statistiky

někdy též označován jako kategorický typ dat

Dělení kvalitativního znaku

- dle měřítka
 - nominální stupnice dvě či více vzájemně se vylučujících, rovnocenných tříd, které nelze uspořádat na číselné ose
 - např. pohlaví {muž, žena}
 - rodinný stav muže {svobodný, ženatý, rozvedený, vdovec, registrovaný}
 - ordinální stupnice kategorie je možné uspořádat vzestupně/sestupně, lze si smysluplně odpovědět, která hodnota je větší než jiná (ale ne o kolik, natož kolikrát)
 - např. pořadí v závodu, grade tumoru {1, 2, 3, 4} atd.

- určete typ znaku a stupnice u následujících příkladů
 - procentuální úspěšnost v testu v souboru studentů jednoho kruhu [%]
 - soubor všech červencových dní jednoho roku (1., 2., ..., 31.)
 - soubor čísel všech autobusů projíždějících zastávkou Kajetánka (174, 180, ...)
 - soubor mutací genu CFTR (F508del, ...)
 - bolest hodnocená pomocí VAS [0–10]
 - počet porodů v jedné porodnici za jednu noc
 - staging kolorektálního karcinomu {1, 2, 3, 4}

Popis kvantitativního znaku

- např. tělesná výška, glykémie, výše mzdy, atd.
- číselně

Úvod Základní pojmy

- poloha (center)
 - aritmetický průměr, medián, modus
- variabilita (spread)
 - rozpětí (min-max), směrodatná odchylka, rozptyl
- tvar (shape)²
 - šikmost, špičatost
- graficky
 - krabicový diagram (boxplot)
 - histogram

• pro n čísel x_1, x_2, \ldots, x_n spočítáme jejich aritmetický průměr jako

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

určeme aritmetický průměr z následujícího souboru tělesných výšek

určeme aritmetický průměr z následujícího souboru tělesných výšek

•
$$\bar{x} = \frac{165 + 176 + 152 + 194 + 171}{5} \doteq 171,6 \text{ [cm]}$$

Úvod Základní pojmy

- určeme aritmetický průměr z následujícího souboru tělesných výšek
- $\bar{x} = \frac{165 + 176 + 152 + 194 + 171}{5} = 171.6$ [cm]
- kolik navzájem různých průměrů může mít jeden soubor čísel?

určeme aritmetický průměr z následujícího souboru tělesných výšek

•
$$\bar{x} = \frac{165 + 176 + 152 + 194 + 171}{5} \doteq 171,6 \text{ [cm]}$$

- kolik navzájem různých průměrů může mít jeden soubor čísel?
- pouze jeden

Geometrická interpretace aritmetického průměru

ullet pokud zavěsíme n jednogramových závaží na pozice čísel x_1, x_2, \ldots, x_n pravítka, hodnota průměru \bar{x} je v těžišti soustavy

Medián

- medián je "prostřední" prvek, zhruba polovina hodnot je větší než medián a zbylá polovina hodnot je menší než medián
- ullet pro n čísel x_1, x_2, \ldots, x_n zjistíme jejich medián tak, že
 - (i) čísla seřadíme vzestupně
 - (ii) medián \tilde{x} je prostřední hodnota (pro n liché), resp. aritmetický průměr z "prostředních" dvou hodnot (pro n sudé)

určeme medián z následujícího souboru tělesných výšek

- určeme medián z následujícího souboru tělesných výšek
- $\tilde{x} = 171 \text{ [cm]}$

Úvod Základní pojmy

určeme medián z následujícího souboru tělesných výšek

- $\tilde{x} = 171 \text{ [cm]}$
- kolik navzájem různých mediánů může mít jeden soubor čísel?

- určeme medián z následujícího souboru tělesných výšek
- $\tilde{x} = 171 \text{ [cm]}$
- kolik navzájem různých mediánů může mít jeden soubor čísel?
- pouze jeden

Geometrická interpretace mediánu

• pokud na pravítku vyznačíme pozice čísel x_1, x_2, \ldots, x_n , hodnota mediánu \tilde{x} má od všech vyznačených bodů nejmenší možný součet vzdáleností

Modus

- modus je hodnota statistického znaku, který se v souboru čísel vyskytuje nejčastěji
 - pozor, modem není četnost takového prvku, tj. v souboru $\{10, 11, 11, 12\}$ je modem hodnota 11, nikoliv 2

určeme modus z následujícího souboru tělesných výšek

Základní pojmy

- určeme modus z následujícího souboru tělesných výšek
- $\hat{x} = \{165; 176\}$ [cm]

Základní pojmy

určeme modus z následujícího souboru tělesných výšek

- $\hat{x} = \{165; 176\}$ [cm]
 - kolik navzájem různých modů může mít jeden soubor čísel?

- určeme modus z následujícího souboru tělesných výšek
- $\hat{x} = \{165; 176\}$ [cm]
- kolik navzájem různých modů může mít jeden soubor čísel?
- alespoň jeden

• určeme aritmetický průměr a medián u každého z obou následujícího souborů

$$x_1 = \{1, 2, 3, 4, 5\}$$
 $x_2 = \{1, 2, 3, 4, 90\}$

 určeme aritmetický průměr a medián u každého z obou následujícího souborů

$$x_1 = \{1, 2, 3, 4, 5\}$$
 $x_2 = \{1, 2, 3, 4, 90\}$

$$\bar{x}_1 = \tilde{x}_1 = 3;$$
 $\bar{x}_2 = 20; \ \tilde{x}_2 = 3$

Úvod Základní pojmy

 určeme aritmetický průměr a medián u každého z obou následujícího souborů

$$\mathbf{x}_1 = \{1, 2, 3, 4, 5\}$$
 $\mathbf{x}_2 = \{1, 2, 3, 4, 90\}$

$$\bar{x}_1 = \tilde{x}_1 = 3;$$
 $\bar{x}_2 = 20; \ \tilde{x}_2 = 3$

 která z měr polohy (průměr, medián) lépe vyhovuje "asymetrickým" datům?

Literatura

Rozpětí (min-max)

- rozpětí (min-max) je nejjednodušší měrou variability
- pro n čísel x_1, x_2, \ldots, x_n spočítáme jejich rozpětí (min-max) jako

$$\min-\max = x_{\max} - x_{\min}$$

určeme rozpětí z následujícího souboru tělesných výšek

Úvod Základní pojmy

- určeme rozpětí z následujícího souboru tělesných výšek
- $min-max = x_{max} x_{min} = 194 152 = 42$ [cm]

• pro n čísel x_1, x_2, \ldots, x_n spočítáme jejich směrodatnou odchylku jako

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

• pro stejných n čísel x_1, x_2, \ldots, x_n spočítáme jejich rozptyl jako

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

 určeme směrodatnou odchylku a rozptyl z následujícího souboru tělesných výšek

Úvod Základní poimy

 určeme směrodatnou odchylku a rozptyl z následujícího souboru tělesných výšek

•
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \doteq 15.4 \text{ [cm]}; \quad s^2 \doteq 237.2 \text{ [cm}^2]$$

Krabicový diagram (boxplot)

Úvod Základní pojmy

vhodný pro kvantitativní znaky

Základní pojmy

• který z krabicových diagramů nedává smysl?

Histogram

vhodný pro posouzení tvaru rozdělení hodnot

Počet intervalů v histogramu

- rozdílný počet intervalů histogramu mění "příběh" dat!
- nejčastěji je počet intervalů k dán Sturgesovým pravidlem

$$k = \lceil \log_2 n \rceil,$$

kde n je počet pozorování v souboru

Normální rozdělení kvantitativního znaku

Ize odhadnout z histogramu

Vztah mezi polohou, variabilitou, tvarem a proporcí

- pokud je udržitelný předpoklad normálního rozložení, pak
 - v intervalu $\langle \bar{x}-s,\bar{x}+s\rangle$ leží asi 68 % hodnot
 - v intervalu $\langle \bar{x}-2s, \bar{x}+2s \rangle$ leží asi 95 % hodnot
 - v intervalu $\langle \bar{x} 3s, \bar{x} + 3s \rangle$ leží asi 99,7 % hodnot

Úvod Základní poimy

Vztah mezi polohou, variabilitou, tvarem a proporcí

- pokud není udržitelný předpoklad normálního rozložení, pak
 - v intervalu $\langle \bar{x} 2s, \bar{x} + 2s \rangle$ leží alespoň 75 % hodnot
 - v intervalu $\langle \bar{x} 3s, \bar{x} + 3s \rangle$ leží alespoň 88,9 % hodnot
- (vychází z Chebysevovy nerovnosti)

Úvod Základní poimy

Popis kvalitativního znaku

- např. krevní skupiny, grading tumoru, pohlaví, atd.
- číselně
 - absolutní, relativní četnosti
- graficky
 - koláčový diagram

Četnost

- absolutní četnost n_k kategorie k se rovná počtu jednotek souboru, jejichž statistický znak odpovídá kategorii k
- relativní četnost π_k kategorie k je podíl absolutní četnosti kategorie k a celkového rozsahu souboru

určeme absolutní a relativní četnost krevní skupiny A

- určeme absolutní a relativní četnost krevní skupiny A
- $n_A = 4$; $\pi_A = \frac{4}{12} = \frac{1}{3}$

Koláčový diagram

vhodný pro kvalitativní znaky k vyjádření četností jejich kategorií

Klasická definice pravděpodobnosti

- je intuitivní a bude nám stačit
- ullet pravděpodobnost jevu A je rovna podílu počtu případů m, které jsou jevu A příznivé, ku počtu n všech možným případů

$$P(A) = \frac{m}{n}$$

 nutným předpokladem je, že všechny případy mohou nastat stejně často

Screeningové síto v medicíně

- způsob, jak plošně a včas diagnostikovat nemoci našeho zájmu
- měl by být levný
- síto složeno minimálně ze dvou po sobě jdoucích typů vyšetření
- každé z vyšetření má svou senzitivitu a specificitu

$$senzitivita = \frac{\# \text{ pozitivních}}{\# \text{ nemocných}}$$
$$specificita = \frac{\# \text{ negativních}}{\# \text{ zdravých}}$$

 první vyšetření by mělo být hodně senzitivní, druhé vyšetření by mělo být hodně specifické (viz další slide)

Screeningové síto v medicíně

 prvním vyšetřením může být např. test na okultní krvácení, druhým vyšetření pak kolonoskopie

Screeningové síto v medicíně

- ať je senzitivita prvního vyšetření se_1 a jeho specificita sp_1 , dále senzitivita druhého vyšetření se_2 a jeho specificita sp_2
- v populaci n jedinců, np nemocných, n(1-p) zdravých

Motivace

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka je 10 cm
- jaká je s 95 % pravděpodobností průměrná výška populace?

Pojem populace

- populace := základní soubor
- úplná množina (statistický soubor) všech prvků (statistických jednotek), které spojuje určitá vlastnost a o kterých se snažíme statisticky něco zjistit
- prvky dány výčtem (je-li rozsah populace konečný), nebo společnou vlastností všech prvků (je-li rozsah populace nekonečný i konečný)
- rozsah konečně velké populace obvykle značíme N (u nekonečně velké populace $N \to \infty$)
- např. {T. G. Masaryk, E. Beneš, ..., V. Klaus, M. Zeman}, {všichni dosavadní prezidenti českého státu}, {všichni obyvatelé Evropy}, apod.

Pojem *výběr*

- vyšetřit celou populaci v praxi takřka nemožné
- nekonečně velké populace nelze celkově šetřit už z principu
- výběr := statistický soubor, obsahuje vybrané prvky z populace; je tedy podmnožinou populace
- výběr pořizujeme metodou náhodného, či záměrného výběru
- cílem získat reprezentativní výběr (vystihuje vlastnosti populace), nikoliv selektivní výběr

Reprezentativní výběr

- takový výběr, z kterého je induktivními metodami možné usuzovat na vlastnosti "mateřské" populace
- pořizujeme záměrným, či náhodným výběrem
 - záměrný výběr opírá se o expertízu, zatížen subjektivitou
 - náhodný výběr náhodné, nezávislé vybírání prvků populace do výběru

Vztah populace a výběru

- z populace je vybírán výběr
- z charakteristik výběru jsou odhadovány charakteristiky populace (!)

Bodový odhad statistického znaku

- předpokládáme, že charakteristická hodnota výběru (průměr, četnost) odpovídá populační hodnotě
- populační hodnota se pokládá rovna dané charakteristické hodnotě výběru
- např. "je-li četnost hypertoniků mezi dvaceti náhodnými pacienty 7, je i četnost hypertoniků v populaci $\frac{7}{20}=0.35=35$ %"
- s jakou "mírou jistoty" jsme se "trefili" do skutečné populační četnosti?
 - přirovnává se k lovu oštěpem

Intervalový odhad statistického znaku

- (interval spolehlivosti, konfidenční interval)
- interval, ve kterém leží charakteristická hodnota populace s určitou pravděpodobností (spolehlivostí)
- např. např. "je-li četnost hypertoniků mezi dvaceti náhodnými pacienty 7, pak průměrná populační četnost hypertoniků leží s pravděpodobností 95 % intervalu (30; 40) %"
- s jakou "mírou jistoty" jsme se "trefili" do skutečné populační četnosti?
 - přirovnává se k lovu sítí

Intervalový odhad statistického znaku

• máme-li výběr o rozsahu n s průměrem \bar{x} a směrodatnou odchylkou s daného znaku, pak populační průměr μ daného znaku leží s 95 % pravděpodobností v intervalu

$$\mu \in \left(\bar{x} - 2\frac{s}{\sqrt{n}}; \bar{x} + 2\frac{s}{\sqrt{n}}\right)$$

• máme-li výběr o rozsahu n s relativní četností p daného znaku, pak populační relativní četnost π daného znaku leží s 95 % pravděpodobností v intervalu

$$\pi \in \left(\bar{p} - 2\sqrt{\frac{p(1-p)}{n}}; \bar{x} + 2\sqrt{\frac{p(1-p)}{n}}\right)$$

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka je 10 cm
- jaká je s 95 % pravděpodobností průměrná výška populace?

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka je 10 cm
- jaká je s 95 % pravděpodobností průměrná výška populace?

$$\mu \in \left(\bar{x} - 2\frac{s}{\sqrt{n}}; \bar{x} + 2\frac{s}{\sqrt{n}}\right)$$

$$\mu \in \left(175 - 2\frac{10}{\sqrt{100}}; 175 + 2\frac{10}{\sqrt{100}}\right)$$

$$\mu \in \left(175 - 2\frac{10}{10}; 175 + 2\frac{10}{10}\right)$$

$$\mu \in \left(175 - 2; 175 + 2\right)$$

$$\mu \in \left(173; 177\right) \text{ [cm]}$$

Princip testování hypotéz

- je založen na definování tzv. nulové hypotézy, kterou lze eventuálně vyvrátit nalezením významného protipříkladu
- nulovou hypotézou může být např. tvrzení, že průměrná výška v populaci je 171 cm
- protipříkladem je ve statistice myšlen dostatečně velký soubor hodnot, které jsou dostatečně "v rozporu" s nulovou hypotézou
- protipříkladem může být např. výběr sto lidí, kde je průměrná výška 175 cm a směrodatná odchylka 10 cm

Hladina významnosti

- předpokládejme, že nulová hypotéza platí; pak pravděpodobnost toho, že ji za její platnosti (chybně) zamítnu, by měla být co nejmenší a je nazývaná p-hodnota či hladina signifikance
- hladina významnosti je tedy pravděpodobnost chyby (1. typu), proto by měla být co nejmenší
- je-li obvykle hladina významnosti $\equiv p$ -hodnota ≤ 0.05 , lze již nulovou hypotézu zamítnout (riziko chyby prvního typu je malé)

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka je 10 cm
- někdo tvrdí, že průměrná výška populace je 171 cm
- lze takovou hypotézu rozumně zamítnout?

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka je 10 cm
- někdo tvrdí, že průměrná výška populace je 171 cm
- lze takovou hypotézu rozumně zamítnout?
- ullet nulová hypotéza $H_0: \mu = 171 \; [ext{cm}]$

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka ie 10 cm
- někdo tvrdí, že průměrná výška populace je 171 cm
- lze takovou hypotézu rozumně zamítnout?
- nulová hypotéza $H_0: \mu = 171$ [cm]
- my ale díky předchozímu příkladu víme, že s 95 % pravděpodobností je $\mu \in (173; 177)$ [cm]

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka ie 10 cm
- někdo tvrdí, že průměrná výška populace je 171 cm
- lze takovou hypotézu rozumně zamítnout?
- nulová hypotéza $H_0: \mu = 171$ [cm]
- my ale díky předchozímu příkladu víme, že s 95 % pravděpodobností je $\mu \in (173; 177)$ [cm]
- pravděpodobnost chyby (1. typu) při zamítnutí nulové hypotézy je tak menší než 100 % - 95 % = 5 %

- ve výběru sto lidí je průměrná výška 175 cm a směrodatná odchylka je 10 cm
- někdo tvrdí, že průměrná výška populace je 171 cm
- lze takovou hypotézu rozumně zamítnout?
- ullet nulová hypotéza $H_0: \mu=171 \; [{
 m cm}]$
- my ale díky předchozímu příkladu víme, že s 95 % pravděpodobností je $\mu \in (173;177)$ [cm]
- pravděpodobnost chyby (1. typu) při zamítnutí nulové hypotézy je tak menší než 100 % 95 % = 5 %
- nulovou hypotézu tak lze zamítnout

Testy hypotéz

- předchozí úvahy ale obvykle není nutné pokaždé provádět, existují zavedené algoritmy, tzv. testy hypotéz, které vrací pouze hladinu signifikance (p-hodnotu)
- je-li p-hodnota ≤ 0.05 , zamítáme nulovou hypotézu

Úvod Základní pojmy Deskriptivní statistika Pravděpodobnost Induktivní statistika Literatura 0000000000000

Testy hypotéz

Literatura

Jana Zvárová. Základy statistiky pro biomedicínské obory. Praha: Karolinum, 2016. ISBN: 978-80-246-3416-6.

Velmi jemný úvod do biomedicínské statistiky

Děkuji za pozornost!

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz

