Análisis Canónico

Saraí Campos Varela

2022-05-11

Análisis Canónico

Introducción

El análisis de correlación canónica es un método de análisis multivariante desarrollado por Harold Hotelling. Su objetivo es buscar las relaciones que pueda haber entre dos grupos de variables y la validez de las mismas. Se diferencia del análisis de correlación múltiple en que este solo predice una variable dependiente a partir de múltiples independientes, mientras que la correlación canónica predice múltiples variables dependientes a partir de múltiples independientes. La correlación hipercanónica es una correlación lineal y, por tanto, solo busca relaciones lineales entre las variables.

Librerias

Cargamos o instalamos la libreria en caso de no contar con ella.

library(tidyverse)
library(readxl)

Matriz de trabajo

Preparamos la matriz; en este caso trabajaremos con la matriz Penguins la cual esta precargada en R, esta matriz muestra información sobre los pinguinos.

penguins=read_excel("C:/Users/USUARIO/Documents/MULTIVARIADA/penguins.xlsx")

Exploración de la matriz

Dimensión de la matriz.

dim(penguins)

[1] 344 9

Nombres de las variables.

colnames(penguins)

```
## [1] "ID" "especie" "isla" "largo_pico_mm"
## [5] "grosor_pico_mm" "largo_aleta_mm" "masa_corporal_g" "genero"
## [9] "año"
```

Tipo de varibles.

```
str(penguins)
```

Colaboramos que no haya datos perdidos en nuestra matriz.

```
anyNA(penguins)
```

[1] FALSE

Escalamiento de la matriz

Generacion de variables X

```
X <- penguins %>%
  select(grosor_pico_mm, largo_pico_mm) %>%
  scale()
head(X)
```

```
## grosor_pico_mm largo_pico_mm
## [1,] 0.7863145 -0.8825216
## [2,] 0.1267012 -0.8093460
## [3,] 0.4311381 -0.6629947
## [4,] 0.4818776 -1.1203424
## [5,] 1.0907514 -1.3215754
## [6,] 1.7503647 -0.8459338
```

Generacion de variables Y

```
Y <- penguins %>%
  select(largo_aleta_mm, masa_corporal_g) %>%
  scale()
head(Y)
```

Analisis canonico con un par de variables

Cargamos la libreria.

```
library(CCA)
```

Ejecución del análisis

```
ac<-cancor(X,Y)
```

Visualización de la matriz X

ac\$xcoef

```
## [,1] [,2]
## grosor_pico_mm 0.03098538 0.04615243
## largo_pico_mm -0.03746177 0.04107014
```

Visualizacion de la matriz Y

ac\$ycoef

```
## [,1] [,2]
## largo_aleta_mm -0.055220261 -0.0951545
## masa_corporal_g 0.001411466 0.1100076
```

Visualizacion de la correlacion canonica

```
ac$cor
```

```
## [1] 0.79268475 0.09867305
```

Obtencion de la matriz de variables canonicas

Se obtiene multiplicando los coeficientes por cada una de las variables (X1 y Y1)

```
ac1_X <- as.matrix(X) %*% ac$xcoef[, 1]
ac1_Y <- as.matrix(Y) %*% ac$ycoef[, 1]</pre>
```

Visualizacion de los primeros 20 datos

```
ac1_X[1:20,]

## [1] 0.05742508 0.03424542 0.03819593 0.05690117 0.08330590 0.08592589

## [7] 0.04464608 0.07088939 0.08225809 0.06113346 0.04117935 0.04432371

## [13] 0.02642463 0.10015624 0.12599695 0.06040849 0.06488291 0.06556776

## [19] 0.08491867 0.05415894

ac1_Y[1:20,]

## [1] 0.07742915 0.05790657 0.02163800 0.04204177 0.02983476 0.04195365

## [7] 0.07720886 0.02414936 0.02987882 0.04301106 0.05702539 0.08126317

## [13] 0.07253771 0.03829586 0.01189829 0.06165247 0.02199048 0.01599667

## [19] 0.06491373 0.02723438
```

Correlacion canonica entre variable X1 y Y1

```
cor(ac1_X,ac1_Y)

## [,1]
## [1,] 0.7926848
```

Verificacion de la correlacion canonica

Agregamos las variables generadas a la matriz original de penguins

Visualizacion de los nombres de las variables

```
colnames(ac_df)
```

```
## [1] "ID" "especie" "isla" "largo_pico_mm" 
## [5] "grosor_pico_mm" "largo_aleta_mm" "masa_corporal_g" "genero" 
## [9] "año" "ac1_X" "ac1_Y" "ac2_X" 
## [13] "ac2_Y"
```

Generacion del grafico scater plot para la visualizacion de X1 y Y1

```
ac_df %>%
  ggplot(aes(x=ac1_X,y=ac1_Y))+
  geom_point(color="indianred1")
```


Generacion de un boxplot

```
ac_df %>%
  ggplot(aes(x=especie,y=ac1_X, color=especie))+
  geom_boxplot(width=0.5)+
  geom_jitter(width=0.15)+
  ggtitle("Variable Canónica X1 contra Especie")
```

Variable Canónica X1 contra Especie

Interpretación: Se observa una correlacion entre la variable canónica X1 y la variable latente Especie.

```
ac_df %>%
  ggplot(aes(x=especie,y=ac1_Y, color=especie))+
  geom_boxplot(width=0.5)+
  geom_jitter(width=0.15)+
  ggtitle("Variable Canónica Y1 contra Especie")
```

Variable Canónica Y1 contra Especie

Scarter plot con las variables canonicas X2 y Y2 separadas por genero.

```
ac_df %>%
ggplot(aes(x=ac1_X,y=ac1_Y, color=especie))+
geom_point()+
ggtitle("Variable Canónica X1 contra Y1")
```

Variable Canónica X1 contra Y1


```
ac_df %>%
  ggplot(aes(x=ac2_X,y=ac2_Y, color=genero))+
  geom_point()+
  ggtitle("Variable Canónica X2 contra Y2")
```


Interpretacion: No de identifica correlacion entre el conjunto de variables X2 y Y2 separadas por genero.