

Bazy Danych

Modele danych

Piotr Macioł

Cele modelowania danych

- Dane każdej organizacji podlegają nieustannym zmianom.
- · W miarę stabilne pozostają jedynie ich:
- » rodzaje
- » sposób przechowywania i przetwarzania
- Modelowanie danych jest techniką organizowania i dokumentowania danych.
 Poprzez uogólnienie ich typów, cech i zależności między nimi można tworzyć modele danych. Modele danych można opracowywać na różnych poziomach abstrakcji czy szczegółowości. Najczęściej wyróżnia się:
- » podstawowe modele danych, (konceptualne bądź logiczne), są ukierunkowane na potrzeby użytkownika, opisują dziedzine przedmiotowa, niezależnie od technicznego sposobu jego wdrożenia.
- wdrożeniowe modele danych dotyczą wdrożenia modelu danych w konkretnej technologii baz danych.

Cele modelowania danych

- Cele modelowania danych:
 - Otrzymanie dokładnego modelu potrzeb informacyjnych przedsiębiorstwa,
 - Dekompozycja i strukturalizacja problemu,

 - Dekompozycja i strukturalizacja problemu,
 Sformalizowanie opisu z wykorzystaniem języka graficznego jednoznaczność i czytelność,
 Mechanizm efektywnej komunikacji pomiędzy analitykiem i użytkownikiem, pomiędzy analitykami systemu, a nawet pomiędzy użytkownikami,
 Poprawa jakości i efektywności projektowania bazy danych,
 Opis danych niezależny od struktur logicznych i fizycznych,
- Opis dailydri mezalezhy od sti dutu logicznych nazycznych
 Niezależność od implementacji pozwala na zastosowanie modelu do integracji istniejących baz danych,
 Podstawa do zrozumienia procesów realizowanych w przedsiębiorstwie i jego reorganizacji,
- Możliwość prezentacji potrzeb informacyjnych na różnym poziomie.

Modele danych

- Model konceptualny spojrzenie na dane jako całość, model najbardziej stabilny, powinien on być podstawą, na której opierać się będzie przetwarzanie danych
- Model wewnętrzny, niskiego poziomu opisuje sposób przechowywania danych w pamięci komputerów i przedstawia formaty rekordów czy ścieżki dostępu, modelami takimi są metody adresowania, struktury łańcuchowe i pierścieniowe

AGH

Historia rozwoju BD

Modele danych

- Modele użytkowe stanowią podstawę do budowy systemu informatycznego:
 - » hierarchiczny
 - » sieciowy
 - » relacyjny
 - » obiektowy
 - » postrelacyjny

VICINA WARKID AG

Model hierarchiczny

- Model obejmuje dwie struktury danych
 - » typy rekordów
 - » związki nadrzędny podrzędny
- Każdy element zwany rekordem może uczestniczyć w roli podrzędnej w co najwyżej jednym powiązaniu rekordów, w roli nadrzędnej w dowolnej liczbie powiązań
- Rekord podrzędny nie może istnieć bez rekordu nadrzędnego
- Podmiotem operacji jest jeden rekord

KISIM, WIMIP, AG

Więzi w modelu hierarchicznym

OSIM, WIMIP, AG

Model sieciowy

- Model obejmuje dwie struktury danych
 - » typy rekordów
 - » typy kolekcji
- Każdy rekord może jednocześnie uczestniczyć w wielu powiązaniach rekordów
- Rekord taki może równocześnie i wielokrotnie wystąpić w roli nadrzędnej oraz w roli podrzędnej, powiązania realizowane są przez rekordy specjalne zwane łącznikami
- Podmiotem operacji jest jeden rekord

KISIM, WIMIP

Więzi w modelu sieciowym

Modele obiektowy

- Brak sprecyzowanej definicji obiektowych baz danych
- Model opiera się na takich pojęciach jak:
 - » klasa
 - » obiekt
 - » uogólnienie
 - » abstrakcja
 - » dziedziczenie
- Obiekty dysponują metodami

KISIM, WIMIP,

Model semantyczny

- -Zbliżony do modelu obiektowego
- Skupia się na abstrakcji struktury, a nie na abstrakcji działania

Model dedukcyjny

- Oparty na logice formalnej
- Wykorzystywane elementy to
 - » predykaty
 - » argumenty
- Predykaty oraz argumenty tworzą asercję (zdanie), które może przyjmować wartość "prawda" lub "fałsz"
- Często oparty jest o język Datalog

KISIM, WIMIP, A

Model postrelacyjny

- Model relacyjny rozszerzony o elementy obiektowości
- Brak ścisłej definicji za bazy realizujące model postrelacyjny przyjmuje się implementacje, które "już nie są relacyjne, ale jeszcze nie są obiektowe"

Diagramy ERD

- Diagramy związku encji (Entity Relashinship Diagrams) to metoda graficznego modelowania struktur danych oraz relacji między nimi
- Przedstawiają strukturę danych opisywanego systemu wraz z wszystkimi niezbędnymi atrybutami dla jego funkcjonowania.
- Modele danych można opracowywać na różnych poziomach szczegółowości.
- Modelowanie "z dołu do góry" (normalizacja) konieczność zidentyfikowania całości zbioru danych przed projektowaniem
- Modelowanie "z góry do dołu" (modelowanie danych) zbiór danych powstaje w trakcie projektowania
- Modelowanie semantyczne

ISIM, WIMIP, AG

Komponenty diagramu związków encji

Komponent	Opis
Encja	Rzecz mająca znaczenie, rzeczywista lub wymyślona, o której informacje należy znać lub przechowywać.
Atrybut	Element informacji służący do klasyfikowania, identyfikowania, kwalifikowania, określania ilości lub wyrażania stanu encji.
Związek	Znaczący sposób, w jaki mogą być ze sobą powiązane dwie rzeczy tego samego typu lub różnych typów.

AGH

Przykład prostego diagramu związków encji

KISIM, WIMIP, AGH

Ш	ш	ш	ı
Ш	ш	ш	ı

Encja

 Encja (ang. entity) – jest to jednoznacznie identyfikowany składnik badanej rzeczywistości, o którym informacja jest lub może być zbierana i przechowywana.

Encja – cd.

- Przykładami encji są:
 - » PRACOWNIK,
 - » KLIENT,
 - » DOSTAWCA,
 - ZAMÓWIENIE,
 - » MAGAZYN,
 - » KONTO itp.
- Uwaga: encje zazwyczaj opisuje się za pomocą rzeczowników lub wyrażeń rzeczownikowych w liczbie pojedynczej

KISIM, WIMIP, A

Atrybut

 Atrybut - jest cechą, elementem charakteryzującym encje i związki w badanej dziedzinie przedmiotowej.

Atrybut - cd.

- Zestaw atrybutów, który jednoznacznie opisuje encję, nazywa się wiązką atrybutów.
- Wiązka powinna składać się, z co najmniej dwóch atrybutów opisujących daną encję. Szczególną rolę w zakresie atrybutów encji pełni klucz, zwany identyfikatorem. Pozwala on na jednoznaczne określenie wystąpienia encji.
- Jeśli używa się jednego atrybutu dla określenia encji, to mamy do czynienia z kluczem pojedynczym, a jeśli w tym celu używa się więcej niż jednego atrybutu, to z kluczem złożonym.

KISIM, WIMIP, AC

KISIM, WIMIP, A

Atrybut - cd.

- Atrybut ma jedno z pięciu zadań:
 - » identyfikować,
 - » opisywać,
 - » klasyfikować,
 - » określać ilość,
 - » wyrażać stan encji.

Rodzaje atrybutów

Przykład	Przeznaczenie
numer zamówienia	identyfikacja
opis towaru	opis werbalny
typ towaru	klasyfikacja
ilość towaru w magazynie	określenie ilości
status płatności za zamówienie	wyrażenie stanu

KISIM, WIMIP,

KISIM, WIMIP, AG

Wymagania dla atrybutu

- nazwa atrybutu musi być unikalna w ramach encji;
- atrybut musi być obowiązkowy (tzn., że wartość atrybutu musi być zawsze określona) lub opcjonalny (tzn., że atrybut nie musi mieć wartości). Symbolu "*" używa się dla atrybutu obowiązkowego, zaś symbolu "o" dla opcjonalnego;
- atrybut musi mieć format lub typ;

Przykładowe atrybuty

Związek

- Związek stanowi naturalne powiązanie pomiędzy dwoma lub więcej encjami w badanej dziedzinie przedmiotowej.
- W identyfikowaniu i modelowaniu związków encji bierze się pod uwagę następujące cechy:
 - » stopień związku (liczebność związku)
 - » opcjonalność (uczestnictwo encji).

Stopień związku

- oznacza stosunek ilościowy między liczebnością wystąpień poszczególnych encji, uczestniczących w danym związku,
- mówi o tym, ile wystąpień encji jednego rodzaju jest powiązanych z iloma wystąpieniami encji innego rodzaju

AGIN, WINIF, A

KISIM, WIMIP, AG

AGH

Przykłady związków encji

Stopień związku	Przykład	Znaczenie
1:1	Dziekan-Wydział	Każde wystąpienie encji Dziekan jest powiązane tylko z jednym wystąpieniem encji Wydział. Zatem jeden Dziekan kieruje jednym Wydziałem
1:m 1: wiele	Wydział-Student	 Każde wystąpienie encji Wydział powiązane jest jednym lub wieloma wystąpieniami encji Student, przy czym każde wystąpienie encji Student powiązane jest tylko jednym wystąpieniem encji Wydział. Zatem Wydział posiada wielu Studentów, natomiast Student Studiuje wylącznie na jednym Wydziałe
m:n Wiele : wiele	Książka - Autor	 Każde wystąpienie encji Książka powiązane jest z wieloma wystąpieniami encji Autor i odwrotnie każde wystąpienie encji Autor powiązane jest z wieloma wystąpieniami encji Książka. Jest to sytuacja, gdzie książka może być napisana przez jednego lub wielu autorów i jeden Autor jest podpisany

KSIM, WIMIP, AGH 29

AGH.

Formy zapisu związku

autor musi mieć napisaną co najmniej 1 książkę książka musi być napisana przez co najmniej 1 autora

IM, WIMIP, AGH

Opcjonalność

- dotyczy zaangażowania encji w związek,
- z uwagi na tę cechę wyróżnia się dwa typy związków:
 - » wymagane (obowiązkowe) zachodzi wówczas, jeśli wszystkie wystąpienia encji muszą uczestniczyć w związku;
 - » opcjonalne zachodzi wówczas, jeśli istnieje, co najmniej jedno wystąpienie encji, które nie uczestniczy w związku.

Cechy związków encji (notacja Martina)

Diagramy Związków Encji

- Liczebność (stopień)
 - » 1:1
 - » 1:M
 - » M:N
 - » Liczebność min/max
- Uczestnictwo (opcjonalność)
- Zawieranie i wykluczanie

Diagramy Związków Encji

- Związki rekurencyjne (jednoargumentowe)
- Związki trójargumentowe rozbicie na dwie osobne relacje powoduje utratę informacji
- Role
- Atrybuty związków (możliwa konwersja do nowego zbioru encji)

AGH

Podklasy w modelu ER

- Wyjątkowe zbiory encji zawierające dodatkowe/specjalizowane atrybuty/związki
- Zbiory encji łączone są z podklasami związkami "isa"
- Kreskówka is a Film
- Kryminał is a Film

AGH

ERD - Modelowanie upływu czasu

[1,1]

Reguły czytania związków encji

Każdy Klient może złożyć jedno lub wiele Zamówień. Każde Zamówienie musi być zlecone przez jedngo i tylko jednego Klient

AGH

Notacja

- tworzenie diagramu związków encji najlepiej rozpocząć od wskazania encji oraz określić związki między encjami występującymi w danej dziedzinie przedmiotowej.
- istnieje kilka najbardziej rozpowszechnionych notacji graficznych diagramu ERD, należą do nich notacje:
 - Chena,
 - Bachmana,
 - Martina,
 - Shlaer-Mellora.
- ponieważ w zasadzie notacje te są równoważne i różnią się jedynie wyglądem symboli graficznych, do opisu wybrano najbardziej rozpowszechnioną notację Martina.

ISIM, WIMIP, AGH

Typy encji ERD (notacja Martina)

Diagram ERD z wyróżnionymi typami encji

KISIM, WIMIP, AC

Diagramy Związków Encji

Projektowanie logicze danych

- Konceptualny model danych, którego odzwierciedleniem są diagramy ERD, przekształcany jest w jeden z modeli baz danych:
 - » relacyjny,
 - » sieciowy,
 - » hierarchiczny.

ISIM, WIMIP, AGH

Terminologia relacyjna

Pojęcie	Opis
Relacja	 Jest to podzbiór iloczynu kartezjańskiego reprezentowany przez zbiór krotek. Reprezentacją relacji jest tablica.
Krotka	Oznacza wiersz tablicy. Reprezentacją krotki w tablicy jest rekord.
Atrybut	Oznacza kolumnę tablicy (a dokładnie są to różne wystąpienia tego samego atrybutu). Reprezentacją atrybutu w tablicy jest pole.
Stopień relacji	Liczba typów atrybutów w relacji.
Liczebność relacji	Liczba krotek w relacji.
Klucz główny	Kolumna lub kombinacja kolumn, których wartości jednoznacznie identyfikują wiersze w tablicy.
Klucz obcy	 Kolumna lub kombinacja kolumn, których wartości określają klucz główny innej tablicy.
Dziedzina (atrybutu)	Lista dostępnych wartości atrybutu, wszystkie tego samego typu.

SIM, WIMIP, AG

Stworzenie relacyjnego modelu danych

- każda encja staje się tablicą, której nazwa jest zazwyczaj nazwą encji w liczbie mnogiej;
- każdy atrybut staje się komuną, a jego nazwa odpowiednio nazwą tej kolumny. Natomiast właściwości atrybutu stają się odpowiadającymi im właściwościami w projekcie danych. Atrybuty obowiązkowe stają się kolumnami NOT NULL (co oznacza, że nie jest możliwe by wartość kolumny przyjmowała wartość NULL);
- unikalny identyfikator encji staje się kluczem głównym tabeli;
- każdy związek jest przekształcany w dwa obiekty. Kolumnę klucz obcego, zgodną z kluczem głównym (lub unikalnym) tabeli, której dotyczy. Dziedziczy ona typ i rozmiar danego klucz głównego.

KISIM, WIMIP, A

AGH

Przekształcenie diagramu ERD

