COMP 375: Lecture 32

- News & Notes:
 - Quiz #7 in class today
 - Project #5
 - Protocol Spec Due: Monday (April 23)
 - Code Due: Mon, April 30
- Reading (Mon, Apr. 23)
 - None (review today's reading)

Quiz #7

- Closed book. Closed notes.
- Happy National Pineapple Upside-Down Cake Day!!!

Section 5.2

LINK-STATE ROUTING

In Dijkstra's Algorithm we calculate one new best cost each iteration.

```
1 Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
       then D(v) = c(u,v)
    else D(v) = \infty
  Loop
    find w not in N' such that D(w) is a minimum
    add w to N'
    update D(v) for all v adjacent to w and not in N':
    D(v) = \min(D(v), D(w) + c(w,v))
12
    /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
14
15 until all nodes in N'
```


Pick

Min

Previous Step

			1
	Dest	Path	Cost D(v)
/	Α	Α	0
	В	C, B	3
\	С	С	2
	D	C, D	6
	Е	Ś	∞
	F	Ś	∞

This Step

	Dest	Path	Cost D(v)
/	Α	Α	0
/	В	C, B	3
/	С	С	2
	D		
	Е		
	F		

Fill out the rest of "This Step" table for this iteration.

Pick

Min

Previous Step

	Dest	Path	Cost D(v)
/	Α	Α	0
	В	C, B	3
/	С	С	2
	D	C, D	6
	Е	Ś	∞
	F	Ś	∞

This Step

	Dest	Path	Cost D(v)
\checkmark	Α	Α	0
\checkmark	В	C, B	3
\checkmark	С	С	2
	D		
	Е		
	F		
	F		

Which node will be added to N' during this iteration (i.e. which goes red next)?

Pick

Min

Previous Step

			I
	Dest	Path	Cost D(v)
✓	Α	Α	0
	В	C, B	3
/	С	С	2
	D	C, D	6
	Е	Ś	∞
	F	Ś	∞

This Step

Dest	Path	Cost D(v)
Α	Α	0
В	C, B	3
С	С	2
D		
Е		
F		

Consider path to D:

$$D(D) = 6$$

or
 $D(B) + cost(B, D)$
 $3 + 2 = 5$

Previous Step

	Dest	Path	Cost D(v)
/	Α	Α	0
	В	C, B	3
/	С	С	2
	D	C, D	6
	E	Ś	∞
	F	Ś	∞

This Step

	Dest	Path	Cost D(v)
\checkmark	Α	Α	0
\checkmark	В	C, B	3
\checkmark	С	С	2
	D	C, B, D	5
	Е		
	F		

Consider path to E:

D(E) =
$$\infty$$

or
D(B) + cost(B, E)
3 + 10 = 13

	Dest	Path	Cost D(v)
\	A	Α	0
	В	C, B	3
\	С	С	2
	D	C, D	6
	Е	Ś	∞
	F	Ś	∞

	Dest	Path	Cost D(v)
/	Α	Α	0
	В	C, B	3
/	С	С	2
	D	C, B, D	5
	Е	C, B, E	13
	F	Ś	∞

Previous Step

	Dest	Path	Cost D(v)
V .	Α	Α	0
V ,	В	C, B	3
/	С	С	2
	D	C, B, D	5
	E	C, B, E	13
	F	Ś	∞

This Step

	Dest	Path	Cost D(v)
/	Α	Α	0
	В	C, B	3
\checkmark	С	С	2
/	D	C, B, D	5
	Е		
	F		

No change for E.

Previous Step

	Dest	Path	Cost D(v)
V .	Α	Α	0
V ,	В	C, B	3
/	С	С	2
	D	C, B, D	5
	E	C, B, E	13
	F	Ś	∞

This Step

	Dest	Path	Cost D(v)
/	Α	Α	0
/	В	C, B	3
\checkmark	С	С	2
/	D	C, B, D	5
	Е	C, B, E	13
	F		

Previous Step

	Dest	Path	Cost D(v)
	Α	Α	0
/	В	C, B	3
/	С	С	2
	D	C, B, D	5
	Е	C, B, E	13
	F	Ś	∞

Consider path to F:

$$D(F) = \infty$$

or
 $D(D) + cost(D, F)$
 $5 + 5 = 10$

This Step

	Dest	Path	Cost D(v)
/	Α	Α	0
/	В	C, B	3
\checkmark	С	С	2
/	D	C, B, D	5
	Е	C, B, E	13
	F	C, B, D, F	10

Previous Step

	Dest	Path	Cost D(v)
V	Α	Α	0
V	В	C, B	3
\checkmark	С	С	2
/	D	C, B, D	5
	Е	C, B, E	13
	F	C, B, D, F	10

This Step

	Dest	Path	Cost D(v)
\checkmark	Α	Α	0
\checkmark	В	C, B	3
\checkmark	С	С	2
\checkmark	D	C, B, D	5
	,		
\	F	C, B, D, F	10

Consider path to E:

$$D(E) = 13$$

or
 $D(F) + cost(F, E)$
 $10 + 4 = 14$

Previous Step

	Dest	Path	Cost D(v)
V ,	Α	Α	0
V ,	В	C, B	3
\checkmark	С	С	2
/	D	C, B, D	5
	Е	C, B, E	13
	F	C, B, D, F	10

This Step

	Dest	Path	Cost D(v)
	Α	Α	0
	В	C, B	3
	С	С	2
\checkmark	D	C, B, D	5
	E	C, B, E	13
	F	C, B, D, F	10

Previous Step

	Dest	Path	Cost D(v)
√ .	Α	Α	0
√ ,	В	C, B	3
V ,	С	С	2
/	D	C, B, D	5
	Е	C, B, E	13
/	F	C, B, D, F	10

This Step

	Dest	Path	Cost D(v)
\checkmark	Α	Α	0
\checkmark	В	C, B	3
\checkmark	С	С	2
\checkmark	D	C, B, D	5
\leq	E	C, B, E	13
\checkmark	F	C, B, D, F	10

Dijkstra's Algorithm – Done!

Final Answer

	Dest	Path	Cost D(v)
/	Α	Α	0
	В	C, B	3
	С	С	2
	D	C, B, D	5
Y	E	C, B, E	13
\	F	C, B, D, F	10

Populate Forwarding Table Forwarding Table

Dest	Forward To
В	С
С	С
D	С
Е	С
F	С

Dijkstra's Algorithm is naively an O(N²) algorithm, but can be made more efficient.

- As previously described: $O(N^2)$
 - At each step, there are N nodes to choose next
 - Total of N steps
- Fastest known is O(N*log₂(N) + E)
 - Uses a min-heap

Section 5.2

DISTANCE VECTOR ROUTING

Bellman-Ford Equation

```
let
  d_{x}(y) := cost of least-cost path from x to y
then
  d_{x}(y) = min_{y} \{c(x,y) + d_{y}(y)\}
                      cost from neighbor v to destination y
                cost to neighbor v
        min taken over all neighbors v of x
```

A node's **distance vector** is its estimated costs to every other node in the graph.

$$D_x = [D_x(y): y \in N]$$

- Node x knows the following about neighbor v:
 - > Its cost to v: c(x,v)
 - > v's Distance Vector: $\mathbf{D}_{v} = [D_{v}(y): y \in N]$

DV is iterative and asynchronous, with link cost changes triggering updates.

Each node:

wait for (change in local link cost or msg from neighbor)

recompute estimates

if DV to any dest has changed, notify neighbors

Distance Vector Example

Goal: Compute routing table for each router.

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	5
F	12	10

Dest	Next Hop	Cost
В	С	3
С	С	2
D	С	5
F	С	10

A's Routing Table

A's Forwarding Table

Distance Vector – Round 0

Router F

Via→ ↓ To	В	D
Α		
В	14	
С		
D		5

Routers populate their forwarding table by taking the row minimum.

Router A

Via→ ↓ To	В	С
В	5	
С		2
D		
F		

Router B

Via→ ↓ To	Α	С	D	F
Α	5			
С		1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
Α	2		
В		1	
D			4
F			

Router D

Via→ ↓ To	В	С	F
А			
В	2		
С		4	
F			5

Distance Vector – Round 0

Router F

Via→ ↓ To	В	D
Α		
В	14	
С		
D		5

Routers exchange their local vectors with direct neighbors. We'll assume they all exchange at once (synchronous). (Not realistic)

Router A

Via→ ↓ To	В	С
В	5	
С		2
D		
F		

Router B

Via→ ↓ To	A	С	D	F
Α	5			
С		1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
Α	2		
В		1	
D			4
F			

Via→ ↓ To	В	С	F
Α			
В	2		
С		4	
F			5

Distance Vector - Round 1

Router F	R	0	U	t	е	r	F
----------	---	---	---	---	---	---	---

Via→ ↓ To	В	D
Α		
В	14	
С		
D		5

A will send to neighbors (B & C): I can get to B in 5 and C in 2.

Router A

Via→ ↓ To	В	С
В	5	
С		2
D		
F		

Router B

Via→ ↓ To	A	С	D	F
Α	5			
С	7	1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
Α	2		
В	7	1	
D			4
F			

Via→ ↓ To	В	С	F
Α			
В	2		
С		4	
F			5

Distance Vector - Round 1

Router	F
--------	---

Via→ ↓ To	В	D
Α	19	
В	14	
С	15	
D	16	5

B will send to neighbors (A, C, D, F): I can get to A in 5, C in 1, D in 2, and F in 14.

Router A

Via→ ↓ To	В	С
В	5	
С	6	2
D	7	
F	19	

Router B

Via→ ↓ To	A	С	D	F
Α	5			
С	7	1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	
D		3	4
F		15	

Via→ ↓ To	В	С	F
Α	7		
В	2		
С	3	4	
F	16		5

Distance Vector – Round 1

Router	F
--------	---

Via→ ↓ To	В	D
Α	19	
В	14	
С	15	
D	16	5

C will send to neighbors (A, B, D): I can get to A in 2, B in 1, and D in 4.

Router A

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	

Router B

Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1		
D		5	2	
F				14

Router C

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	
D		3	4
F		15	

Via→ ↓ To	В	С	F
Α	7	6	
В	2	5	
С	3	4	
F	16		5

Distance Vector - Round 1

Router F

Via→ ↓ To	В	D
Α	19	
В	14	7
С	15	9
D	16	5

D will send to neighbors (B, C, F): I can get to B in 2, C in 4, and F in 5.

Router A

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	

Router B

Via→ ↓ To	A	С	D	F
Α	5	3		
С	7	1	6	
D		5	2	
F			7	14

Router C

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	6
D		3	4
F		15	9

Via→ ↓ To	В	С	F
Α	7	6	
В	2	5	
С	3	4	
F	16		5

Distance Vector - Round 1

Router	F
--------	---

Via→ ↓ To	В	D
Α	19	
В	14	7
С	15	9
D	16	5

F will send to neighbors (B, D): I can get to B in 14, D in 5.

Router A	R	οι	Jte	<u>e</u> r	A
----------	---	----	-----	------------	---

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	

Router B

Via→ ↓ To	A	С	D	F
Α	5	3		
С	7	1	6	
D		5	2	19
F			7	14

Router C

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	6
D		3	4
F		15	9

Via→ ↓ To	В	С	F
Α	7	6	
В	2	5	19
С	3	4	
F	16		5