CELESTIAL MECHANICS (Fall 2006): COMPUTER EXERCISES III

(Heikki Salo 07.11.2006)

8. Numerical integration of 2-body relative orbit

Using I and II order Taylor series Using Runge-Kutta 4 method

8. Numerical integration of 2-body relative orbit

• Dynamical equation for two-body relative motion,

$$\ddot{\vec{R}} = -G(m_1 + m_2) \frac{\vec{R}}{r^3} = -\mu \frac{\vec{R}}{r^3}$$

• General principle: divide the second order differential equation for radius vector \vec{R} into two first order differential equations for vectors \vec{R} and \vec{V}

$$\dot{\vec{R}} = \vec{V}$$
 $\dot{\vec{V}} = \ddot{\vec{R}}$

$$\dot{\vec{V}} = \ddot{\vec{R}}$$

 • Choose a Cartesian coordinate system $\vec{R} = [x,y,z], \; \vec{V} = [v_x,v_y,v_z]$ $(r=\sqrt{x^2+y^2+x^2}))$ In component form:

$$\dot{x} = v_a$$

$$\dot{y} = v_y$$

$$\dot{z} = v_z$$

$$\dot{v}_x = \ddot{x} = -\mu \ x/r^3$$
 $\dot{v}_y = \ddot{y} = -\mu \ y/r^3$
 $\dot{v}_z = \ddot{z} = -\mu \ z/r^3$

$$\dot{v}_{\cdot \cdot \cdot} = \ddot{u} = -u u/r^3$$

$$\dot{v}_z = \ddot{z} = -\mu z/r^3$$

- This is an initial value problem (alkuarvoprobleema): position, velocity known at a given instant of time \Rightarrow orbit for any desired time interval. 6 initial values needed
- We next look at some simple methods for the solution of this problem: truncated Taylor expansions, Leap-frog method, RK4

A. First order truncated Taylor expansion: $f(t + \Delta t) = f(t) + f'(t)\Delta t$

- Simplest possible method of solution for any first order differential equation
 - i) at time $t = t_o$ the position $[x_0, y_0, z_0]$ and velocity $[(v_x)_0, (v_y)_0, (v_z)_0]$
 - ii) Approximation at time $t_1 = t_0 + \Delta t$:

$$egin{array}{lll} x_1 &=& x_0 + \dot{x} \; \Delta t & \dot{x} = (v_x)_0 \ y_1 &=& y_0 + \dot{y} \; \Delta t & \dot{y} = (v_y)_0 \ z_1 &=& z_0 + \dot{z} \; \Delta t & \dot{z} = (v_z)_0 \ (v_x)_1 &=& (v_x)_0 + v_x \; \Delta t & v_x = \ddot{x}_0 = -\mu \; x_0/r_0^3 \ (v_y)_1 &=& (v_y)_0 + v_y \; \Delta t & \dot{v}_y = \ddot{y}_0 = -\mu \; y_0/r_0^3 \ (v_z)_1 &=& (v_z)_0 + v_z \; \Delta t & \dot{v}_z = \ddot{z}_0 = -\mu \; z_0/r_0^3 \end{array}$$

(NOTE: derivatives evaluated at t_0 \Rightarrow must use $r_0 = \sqrt{x_0^2 + y_0^2 + z_0^2}$) in velocity derivatives

- iii) Repeat the step ii) for the next time steps $t_i \to t_i + \Delta t$, until the whole desired time interval is covered
- Easy to program, extremely inaccurate error/step proportional to $(\Delta t)^2$, at the time interval t_{tot} one needs $t_{tot}/\Delta t$ steps \Rightarrow (in the worst case) the total error proportional to Δt
 - ⇒ NEVER USED! (except in initial tests)

B. Second order Taylor expansion: $f(t + \Delta t) = f(t) + f'(t)\Delta t + \frac{1}{2}f''(t)(\Delta t)^2$

Approximation at time $t_1 = t_0 + \Delta t$:

$$x_{1} = x_{0} + \dot{x} \Delta t + \frac{1}{2} \ddot{x} (\Delta t)^{2}$$

$$y_{1} = y_{0} + \dot{y} \Delta t + \frac{1}{2} \ddot{y} (\Delta t)^{2}$$

$$z_{1} = z_{0} + \dot{z} \Delta t + \frac{1}{2} \ddot{z} (\Delta t)^{2}$$

$$(v_{x})_{1} = (v_{x})_{0} + \dot{v_{x}} \Delta t + \frac{1}{2} \ddot{v_{x}} (\Delta t)^{2}$$

$$(v_{y})_{1} = (v_{y})_{0} + \dot{v_{y}} \Delta t + \frac{1}{2} \ddot{v_{y}} (\Delta t)^{2}$$

$$(v_{z})_{1} = (v_{z})_{0} + \dot{v_{z}} \Delta t + \frac{1}{2} \ddot{v_{z}} (\Delta t)^{2}$$

Here $\ddot{\boldsymbol{v}}_x = \dddot{\boldsymbol{x}}$, $\ddot{\boldsymbol{v}}_y = \dddot{\boldsymbol{y}}$ and $\ddot{\boldsymbol{v}}_z = \dddot{\boldsymbol{z}}$.

• How to construct $\overset{\cdots}{\vec{R_0}} \equiv [\ddot{x_0}, \ddot{y_0}, \ddot{z_0}]$?

Obtain $\ddot{\vec{R}}$ by differentiating $-\mu \vec{R}/r^3$ \Rightarrow

$$\ddot{ec{R}} = d/dt \; (\ddot{ec{R}}) = -\mu rac{\dot{ec{R}} r^3 - 3 r^2 \dot{r} ec{R}}{r^6} = -\mu/r^3 \left(\dot{ec{R}} \cdot \dot{ec{R}}) ec{R} \over r^2
ight),$$

 \dot{r} is calculated using the formula $r^2=ec{R}\cdotec{R}$ \Rightarrow $d(r^2)/dt=2r\dot{r}\equiv 2ec{R}\cdot\dot{ec{R}}$

• In the component form

$$\ddot{x} = -\mu/r^3 \left(v_x - 3 \frac{(\vec{R} \cdot \dot{\vec{R}})}{r^2} x \right)$$
 $\qquad \qquad \qquad \vec{R} \cdot \dot{\vec{R}} = x v_x + y v_y + z v_z$ $\ddot{y} = -\mu/r^3 \left(v_y - 3 \frac{(\vec{R} \cdot \dot{\vec{R}})}{r^2} y \right)$ $\qquad \qquad r = \sqrt{x^2 + y^2 + z^2}$ $\ddot{z} = -\mu/r^3 \left(v_z - 3 \frac{(\vec{R} \cdot \dot{\vec{R}})}{r^2} z \right)$

- ullet The error/step is proportional to $(\Delta t)^3$ (worst case total error proportional to $(\Delta t)^2$)
 - ⇒ allows longer steps than the first order Taylor expansion, still not very good

C. Higher order Taylor expansions: $f(t+\Delta t)=f(t)+\sum rac{1}{k!}f^{(k)}(t)(\Delta t)^k$

- In practice the II order method is far too inaccurate
 - ⇒ higher order methods (e.g. 8th order etc.)
- ullet Calculation of higher order derivatives of $\ddot{\vec{R}}$ gets rapidly very cumbersome
 - \Rightarrow tabulated f and g series:

$$\vec{R}(\tau) = f(\tau, \vec{R}_0, \vec{R}_0') \ \vec{R}_o + g(\tau, \vec{R}_0, \vec{R}_0') \ \vec{R}_0'$$

$$ec{V}(au) = \dot{f}(au, ec{R}_0, ec{R}_0') \,\, ec{R}_o + \dot{g}(au, ec{R}_0, ec{R}_0') \,\, ec{R}_0'$$

where

$$au \equiv \sqrt{\mu}(t-t_0)$$
 and

' denotes differentiation with respect to normalized time $(d/dt = (d/d au)(d au/dt) = \sqrt{\mu}\ d/d au)$
$$\begin{split} f &= 1 - \tfrac{1}{2} \tau^2 {r_0}^3 + \tfrac{1}{2} \tau^3 {r_0}^{-4} {r_0}' ... \\ g &= \tau - \tfrac{1}{6} \tau^3 {r_0}^{-3} ... \end{split}$$

$$g = \tau - \frac{1}{6}\tau^3 r_0^{-3} \dots$$

(here truncated with the accuracy that corresponds to II order Taylor expansion

D 'TIME-CENTERED LEAPFROG'

- A method sometimes used in N-body simulations: the accuracy corresponds to second degree Taylor expansion, but the method does not require the calculation of $\vec{R} = \dot{\vec{F}}$
- The positions and velocities are approximated with formulas which are symmetric with respect to time (time-centered)
 For example, the x component (y and z are treated in a similar manner)

$$egin{array}{lll} v_x(t+\Delta t/2) &=& v_x(t-\Delta t/2) + f_x(t)\Delta t \\ x(t+\Delta t) &=& x(t) + v_x(t+\Delta t/2)\Delta t \end{array}$$

It is easy to see that the accuracy corresponds to II degree Taylor: write the Taylor expansions

$$v_x(t + \Delta t/2) = v_x(t) + f_x(t)\Delta t/2 + \frac{1}{2}\dot{f}_x(t)(\Delta t/2)^2
onumber \ v_x(t - \Delta t/2) = v_x(t) - f_x(t)\Delta t/2 + \frac{1}{2}\dot{f}_x(t)(\Delta t/2)^2$$

subtract the latter from the first \Rightarrow

$$v_x(t+\Delta t/2)-v_x(t-\Delta t/2)=f_x(t)\Delta t+...\Delta t^3$$

leads to leapfrog formula, with an error term proportional to Δt^3

Same accuracy holds for the position vector components

E. Fourth order Runge-Kutta method (RK4)

- A method accurate to $(\Delta t)^4$, without the need to calculate explicitly the the higher order derivatives of force.
- The accuracy is achieved by evaluating the forces in 4 different intermediate steps.
- Assume that dx/dt = f(t,x), then

$$x(t + \Delta t) = x(t) + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 where $k_1 = f(t, x(t))$ $k_2 = f(t + \frac{\Delta t}{2}, x(t) + \frac{\Delta t}{2}k_1)$ $k_3 = f(t + \frac{\Delta t}{2}, x(t) + \frac{\Delta t}{2}k_2)$ $k_4 = f(t + \Delta t, x(t) + \Delta t k_3)$

In practice most programming packages have subroutines for the above steps

- IDL contains a library-routine RK4: to use it one needs to
 - collect the components of \vec{R} and \vec{V} into a single variable to be integrated, say, yy = [x, y, z, vx, vy, vz]
 - make a loop over time steps, calling RK4 at each step for updating the variable yy
 - provide a function routine for returning the derivatives of yy

WHAT TO DO?

- Make a program to numerically integrate the 2-body relative motion. Also compare to analytical solution, and check the conservation of energy and angular momentum.
- Analytical solution: Choose values for the orbital elements: a, ϵ, t_0 . Also, set the units by choosing $\mu = G(m_1 + m_2) = 1$. The orbital period $P = 2\pi \sqrt{a^3/\mu}$ (therefore if $\mu = 1$ $\Rightarrow P = 2\pi$ at the unit distance)

Solve Kepler's equation t:

$$M = 2\pi \frac{t-t_0}{P}$$
 $M = E - \epsilon \sin E$
Position and velocity $(b = a\sqrt{1 - \epsilon^2})$
 $x = a(\cos E - \epsilon)$
 $y = b \sin E$
 $z = 0$
 $v_x = -a \sin E \sqrt{\mu/a^3} (1 - \epsilon \cos E)^{-1}$

$$egin{aligned} v_x &= -a\sin E \ \sqrt{\mu/a^3} \ (1-\epsilon\cos E)^{-1} \ v_y &= b\cos E \ \sqrt{\mu/a^3} \ (1-\epsilon\cos E)^{-1} \ v_z &= 0 \end{aligned}$$

At
$$t = t_0$$
 $\Rightarrow M = 0, E = 0$ $\Rightarrow [x_0, y_0, 0], [v_{x_0}, v_{y_0}, 0]$

• Numerical solution:

Integrate the orbit numerically for times $t = t_0 + i \Delta t$, i = 0, 1, 2, ...

Use the analytical solution for the calculation of initial values.

Compare to analytical solution evaluated for the same times

Check the energy and angular momentum

$$egin{aligned} h &= rac{1}{2}v^2 - \mu/r \ &|ec{k}| &= (ec{R} imesec{V})_z = xv_y - yv_x \end{aligned}$$

• Compare I and II order Taylor expansions, RK4, using different time steps (for example $\Delta t = 0.1, 0.01, 0.001$ orbital periods).