NUMBER SYSTEM CONVERSION

http://www.tutorialspoint.com/computer logical organization/number system conversion.htm

Copyright © tutorialspoint.com

There are many methods or techniques which can be used to convert numbers from one base to another. We'll demonstrate here the following —

- · Decimal to Other Base System
- · Other Base System to Decimal
- Other Base System to Non-Decimal
- Shortcut method Binary to Octal
- Shortcut method Octal to Binary
- Shortcut method Binary to Hexadecimal
- Shortcut method Hexadecimal to Binary

Decimal to Other Base System

Steps

- **Step 1** Divide the decimal number to be converted by the value of the new base.
- **Step 2** Get the remainder from Step 1 as the rightmost digit *leastsignificantdigit* of new base number.
- **Step 3** Divide the quotient of the previous divide by the new base.
- **Step 4** Record the remainder from Step 3 as the next digit *totheleft* of the new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in Step 3.

The last remainder thus obtained will be the Most Significant Digit MSD of the new base number.

Example -

Decimal Number: 29₁₀

Calculating Binary Equivalent -

Step	Operation	Result	Remainder
Step 1	29 / 2	14	1
Step 2	14/2	7	0
Step 3	7/2	3	1
Step 4	3/2	1	1
Step 5	1/2	0	1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the first remainder becomes the Least Significant Digit LSD and the last remainder becomes the Most Significant Digit MSD.

Decimal Number -29_{10} = Binary Number -11101_2 .

Other Base System to Decimal System

Steps

- **Step 1** Determine the column *positional* value of each digit *thisdependsonthepositionofthedigitandthebaseofthenumbersystem*.
- **Step 2** Multiply the obtained column values *inStep*1 by the digits in the corresponding columns.
- Step 3 Sum the products calculated in Step 2. The total is the equivalent value in decimal.

Example

Binary Number – 11101₂

Calculating Decimal Equivalent –

Step	Binary Number	Decimal Number
Step 1	11101 ₂	((1 \times 2 4) + (1 \times 2 3) + (1 \times 2 2) + (0 \times 2 1) + (1 \times 2 0)) $_{10}$
Step 2	11101 ₂	16 + 8 + 4 + 0 + 1 10
Step 3	11101 ₂	29 ₁₀

Binary Number -11101_2 = Decimal Number -29_{10}

Other Base System to Non-Decimal System

Steps

- **Step 1** Convert the original number to a decimal number *base10*.
- **Step 2** Convert the decimal number so obtained to the new base number.

Example

Octal Number - 258

Calculating Binary Equivalent -

Step 1 – Convert to Decimal

Step	Octal Number	Decimal Number
Step 1	25 ₈	$((2 \times 8^1) \& plus; (5 \times 8^0))_{10}$
Step 2	25 ₈	16 + 5 10
Step 3	258	21 ₁₀

Octal Number -25_8 = Decimal Number -21_{10}

Step 2 – Convert Decimal to Binary

Step	Operation	Result	Remainder
Step 1	21/2	10	1
Step 2	10 / 2	5	0
Step 3	5 / 2	2	1
Step 4	2/2	1	0
Step 5	1/2	0	1

Decimal Number -21_{10} = Binary Number -10101_2

Octal Number -25_8 = Binary Number -10101_2

Shortcut method - Binary to Octal

Steps

- **Step 1** Divide the binary digits into groups of three *startingfromtheright*.
- Step 2 Convert each group of three binary digits to one octal digit.

Example

Binary Number – 10101₂

Calculating Octal Equivalent -

Step	Binary Number	Octal Number
Step 1	10101 ₂	010 101
Step 2	10101 ₂	28 58
Step 3	10101 ₂	258

Binary Number $-10101_2 = Octal Number - 25_8$

Shortcut method - Octal to Binary

Steps

- **Step 1** Convert each octal digit to a 3 digit binary number theoctaldigitsmaybetreatedasdecimalforthisconversion.
- **Step 2** Combine all the resulting binary groups of 3 digitseach into a single binary number.

Example

Octal Number - 258

Calculating Binary Equivalent -

Step	Octal Number	Binary Number
Step 1	258	2 ₁₀ 5 ₁₀
Step 2	25 ₈	0102 1012

Step 3 25₈ 010101₂

Octal Number -25_8 = Binary Number -10101_2

Shortcut method - Binary to Hexadecimal

Steps

- **Step 1** Divide the binary digits into groups of four *startingfromtheright*.
- **Step 2** Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number – 10101₂

Calculating hexadecimal Equivalent –

Step	Binary Number	Hexadecimal Number
Step 1	10101 ₂	0001 0101
Step 2	10101 ₂	1 ₁₀ 5 ₁₀
Step 3	10101 ₂	15 ₁₆

Binary Number -10101_2 = Hexadecimal Number -15_{16}

Shortcut method - Hexadecimal to Binary

Steps

- **Step 1** Convert each hexadecimal digit to a 4 digit binary number thehexadecimaldigitsmaybetreatedasdecimalforthisconversion.
- **Step 2** Combine all the resulting binary groups *of4digitseach* into a single binary number.

Example

Hexadecimal Number – 15₁₆

Calculating Binary Equivalent -

Step 1 15_{16} $1_{10} 5_{10}$ Step 2 15_{16} $0001_2 0101_2$ Step 3 15_{16} 00010101_2	Step	Hexadecimal Number	Binary Number
	Step 1	15 ₁₆	1 ₁₀ 5 ₁₀
Step 3 15 ₁₆ 00010101 ₂	Step 2	15 ₁₆	00012 01012
	Step 3	15 ₁₆	000101012

Hexadecimal Number - 15₁₆ = Rinary Number - 10101₂

Loading [MathJax]/jax/output/HTML-CSS/jax.js