Sheet 1

Discussion of the sheet: Tue., 14.03.2023

This exercise sheet is concerned with the topics

- 1D finite differences
- 1D Sobolev spaces
- weak formulations
- 1. Write down the 1D finite difference scheme to the Poisson equation

$$-u'' = 1 + x in (0,1)$$

$$u(0) = u(1) = 0$$

on an equidistant grid of mesh-width h=1/N. Solve this ODE exactly, draw the solution and the finite difference approximation for N=4 grid points. What is the error in the nodal values, i.e., $|u(x_j)-u_j|$ for $j \in \{0,\ldots,N\}$?

2. (Consistency error of 1D-FD) Assume that $u \in C^4([0,1])$ (i.e. 4-times continuously differentiable). Show that for h sufficiently small and a constant C > 0, there holds

$$\left| \frac{1}{h^2} (u(x+h) - 2u(x) + u(x-h)) - u''(x) \right| \le Ch^2.$$

What is the error if we use the one-sided approximation twice, i.e.

$$u''(x) \approx \frac{u'(x+h) - u'(x)}{h} \approx \frac{\frac{u(x+2h) - u(x+h)}{h} - \frac{u(x+h) - u(x)}{h}}{h} = \frac{u(x+2h) - 2u(x+h) - u(x)}{h^2}$$
?

hint: Use Taylor expansion.

3. Show that the space $H^1(0,1)$ is a vector space. Moreover, show that

$$\|u\|_{H^1(0,1)}^2 := \|u\|_{L^2(0,1)}^2 + \|u'\|_{L^2(0,1)}^2$$

is a norm on $H^1(0,1)$ and

$$(u,v)_{H^1} := (u',v')_{L^2} + (u,v)_{L^2} = \int_0^1 u'v' + uv \ dx$$

is an inner product on $H^1(0,1)$.

4. Show that a weak solution to the 1D Poisson equation

$$-u'' = f$$
 in $(0,1)$
 $u = 0$ on $\{0,1\}$

is also a classical (strong) solution, if additionally $u \in C^2([0,1])$.

5. For each of the following classes of functions, find a PDE that is satisfied by u for all choices of functions f, g (i.e. f, g should not appear in the PDE)

a)
$$u(x,y) = f(x) + g(y)$$
,

b)
$$u(x,y) = f(x+y),$$

c)
$$u(x,y) = f(x^2 - y^2)$$
.