# **Machine Learning Report**

## **Linear Regression**



## **Table of Contents**

| 1. Executive Summary                       | 3 |
|--------------------------------------------|---|
| 2. Data audit, cleaning and interpretation | 3 |
| 3. Technical approach                      | 4 |
| 4. Model evaluation                        | 5 |
| 5. Conclusion and Recommendations          | 6 |
| 6. Technical Annex                         | 8 |

## 1. Executive Summary

The Turing Consulting has conducted a linear approach for modeling the relationship between a scalar response, the house rental price in Madrid, and one or more explanatory variables. The goal of the model is to help estimate the rental price and find good opportunities in the market (flats that may be under their theoretical estimated price).

Initially, the dataset was audit and clean to assure the model defined would be reliable. As such, Turing consulting proceeded to eliminate null values, create new variables (e.g. Binary variables for each district), use additional artifacts to improve the analysis, and remove outliers (rents above 10,000€). A bivariate analysis was performed to investigate the relationship between the rental price and the possible explanatory variables. A strong positive relationship was found between the rent and the Sq.Mt (around 0.82), and weak relation between rent and floor. To evaluate the model two data sets were created, one for training (80%) and another for validation (20%). This was later used to confirm the robustness of the model. The criteria for including variables was avoiding multicollinearity and being statistically significant for a 95% level of confidence (p-value lower than 0.05). After running the model several times, it was concluded that the rental price in madrid could be described using the below equation:

```
Predicted\ Rent = -100.9 + 10.3 * Sq.\ Mt + 45.1 * Floor + 211.4 * Outer + 608.8 * D_Centro + 518.1 * D_chamartin + 550 * D_chamberi - 114.2 * D_fuencarral + 781.4 * D_retiro + 965.7 * D_salamanca
```

Considering the model, a pattern emerges that can reveal potential opportunities for the top 25% of highest price differences between theoretical prices and real rent prices. Similarly, properties located on higher floors also appear to be undervalued, presenting potential opportunities for investors or renters looking for better deals. Nearly all of these top price-difference properties are outward-facing, suggesting a potential bias in the market pricing these types of properties lower. As such, the main recommendation is to focus on larger, outward-facing properties on higher floors, regardless of the district, which could uncover undervalued opportunities in the rental market.

The consistent model performance in both training and testing phases instills confidence in the predictive ability of this model. However, to ensure the model stays robust and relevant over time, it's important to continue monitoring its performance, retrain it with fresh data as necessary, and consider incorporating additional relevant features if they become available.

## 2. Data audit, cleaning and interpretation

Data audit and cleaning

Before starting analyzing the relationship between the variables, a thorough inspection of the dataset was made. The dataset included data on the following variables: *District*, *Address*, *Area*, *Number*, *Rent*, *Bedrooms*, *Sq.Mt*, *Floor*, *Outer*, *Elevator*, *Penthouse*, *Cottage*, *Duplex* and *Semidetached*.

Our approach was to remove the null values in the dataset, when it was impossible to infer any value (for more details see Annex A1).

### **Data interpretation**

Once finalized the data cleaning, a bivariate analysis was done to investigate the relationship between the rental price and the candidates to explanatory variables. Some of these relationships have been visualized in a scatter plot (for more detail see Annex A2 and A3), where it was observed the positive/negative and low/high correlation between the different variables of the original dataset with the dependent variable *Rent*. The correlation matrix (Annex A4) supports the understanding of the scatter plots. It was observed a strong positive correlation between *Sq.Mt* and the dependent variable, and a weak relationship between rent and floor number.

In order to better understand the effect of different districts on the rent price, another graph was analyzed (Annex A5). The variable District can be an important variable to consider, as there is a considerable difference between the rental prices for the different districts. As such, in order to be incorporated into the analysis, the district was converted into more variables using the "dummyfication" technique.

In order to improve correlation between the explanatory variables and rent, two approaches were tested: logarithms transformation and the creation of new variables. Logarithm transformations help to normalize skewed data and sometimes improve correlations, with that aim following log-transformation to the continuous variables were calculated: lnRent = log(Rent), lnSq.Mt = log(Sq.Mt). The variables created were Bedrooms/Sq.Mt, which is the division of both variables with the aim of identifying different types of houses, and the multiplication of the following:  $Elevator \times Penthouse$ ,  $Elevator \times Penthouse$ , Elevator

It is also relevant to consider the strong correlations between variables like Sq.Mt., Bedrooms, Elevator and Cottage to avoid multicollinearity in the upcoming model fitting.

#### **Outliers**

It was observed in the scatter plot that some records do not follow the general trend, specifically for a high range of values for rent prices. Therefore, the further analysis will not consider values for Rent equal or above 10.000€.

## 3. Technical approach

The dataset was split into two sets: training and validation. This splitting was performed randomly using the train\_test\_split function of the sklearn.model\_selection Python library with test\_size = 0.2 and random state = 101.

To initial model was run considering several variables (Annex A7): Bedrooms, Sq.Mt, Floor, Outer, Elevator, Penthouse, Cottage, Duplex, Semidetached, Bedrooms / Sq.Mt, Floor x Elevator, Elevator x Penthouse, Bedrooms x Duplex, Outer x Penthouse, Outer x Duplex, and the binary variables of each district. Notice that the last variables are the ones created to include the district in the model (District\_argazuela to avoid the dummy's trap).

The procedure followed implies an iterative process of elimination of the insignificant variables from the model, P-value higher than 0,05 (95% confidence level), until significant variables are obtained. After that it is important to check the correlation and eliminate the less significant one(s) to avoid multicollinearity. Several models were run (using the OLS function from the statsmodels.api Python library) and the following results were obtained:

The first model results (Annex A8):

- R2 = 0.783 and adjusted R2 = 0.779
- Significant variables: Bedrooms, Sq.Mt, Floor, Outer, Bedrooms / Sq.Mt, District\_carabanchel, District\_centro, District\_chamartin, District\_chamberi, District\_fuencarral, District\_retiro, District\_salamanca and District\_vicalvaro.

As per the results, for the second regression only the significant variables described above were included, *Bedrooms* was eliminated to avoid multicollinearity and also the non-significant variables were removed.

The second model results (Annex A9):

- R2 = 0.768 and adjusted R2 = 0.768
- Significant variables: Sq.Mt, Floor, Outer, District\_centro, District\_chamartin, District\_chamberi, District\_fuencarral, District\_retiro, and District\_salamanca.

Taking the conclusions from the 2nd model, only the variables described above were included in the final model (Annex A10). The result was an R2 of 0.767 and an adjusted R2 of 0.765. Correlation was checked one final time, and no multicollinearity issues were found (Annex A11). Even though the floor variable had previously demonstrated low correlation with rent, the low p-value means it is statistically significant, therefore it was included in the model.

## 4. Model evaluation

One of the main criteria to assure a good model is a high R2, the 76% obtained with the final model assures good predictions. On the other hand the independent variables are not highly correlated so good interpretations can be made of the parameters.

In this scatter plot (annex A12) it is observable that by applying the model to the test set the linear relationship between the test values and the predictions remains, actually, the correlation between these two variables is 0.88 which corresponds to R2 of 0.764. This means that the model is not overfitted.

Additionally, by looking at the histogram of the errors (annex 13) it can be observed that the error is centered around zero and maintains symmetric distribution, another indicator that the model has no biases and that the errors are small.

The following metrics were extracted:

- **Mean Absolute Error** (MAE): 417.42. This metric indicates that, on average, the predictions are around 417.42 away from the actual prices, regardless of the direction. This is a good result, as it is a lower value compared to the minimum value in the dataset.
- **Mean Squared Error** (MSE): 385521.67. This indicator is more sensitive to large errors than MAE, because it squares the differences before averaging them. The relatively low value of MSE in the model suggests that there are not many outliers or large errors in the predictions.

- **Root Mean Squared Error (**RMSE): 620.90. This can be interpreted similarly to the standard deviation. This result suggests that the prediction errors typically have a magnitude of about 620.9 units. Since RMSE gives a relatively high weight to large errors, the model's low RMSE is a good indicator of quality of the model.

## 5. Conclusion and Recommendations

In conclusion, the regression model for predicting house rental prices has performed well in both training and testing stages. It exhibits an R-squared value of 0.76, indicating that it accounts for approximately 76% of the variability in the rental prices.

This strong performance holds true in the training phase (utilizing 80% of the data) as well as in the validation or test phase. The consistency in the R2 value in both training and testing phases implies that the model generalizes well and is not overfitting the training data.

```
Predicted\ Rent = -100.9 + 10.3 * Sq.\ Mt + 45.1 * Floor + 211.4 * Outer + 608.8 * D_Centro + 518.1 * D_chamartin + 550 * D_chamberi - 114.2 * D_fuencarral + 781.4 * D_retiro + 965.7 * D_salamanca
```

Examining the individual feature contributions:

- a. The most relevant variable in explaining the dependent is Sq.Mt
- b. As the dependent variable Rent is in level, the explanation of the beta coefficient for *Sq.Mt*: 1 additional square meter, has a positive effect on the rental price by, on average, 10.33 units.
- c. A house in the Salamanca district means that, on average, the rent will cost 965.7 units more.
- d. The average rent decreases in the District of Fuencarral
- e. Higher floor numbers are expected to increase the rental price.
- f. Outer properties cost 211.43 units more, on average, in rent compared to non-outer properties.

The district of the property significantly affects the rental price, with properties in districts Centro, Chamartin, Chamberi, Retiro, and Salamanca costing more compared to the reference district, while properties in district Fuencarral cost less.

The consistent model performance in both training and testing phases instills confidence in the predictive ability of this model. It implies that it can be expected to perform similarly when this model is applied to new data in future predictions.

Upon reviewing the properties that fall into the top 25% of highest price differences (for more detail see Annex A14), a pattern emerges that suggests where potential opportunities may lie. Larger properties, as indicated by greater square meters (Sq.Mt), tend to exhibit more significant price differences, implying that these larger areas might be undervalued and represent lucrative opportunities. Similarly, properties located on higher floors also appear to be undervalued, presenting potential opportunities for investors or renters looking for better deals.

Nearly all of these top price-difference properties are outward-facing, suggesting a potential bias in the market pricing these types of properties lower.

Interestingly, the district location does not seem to play a significant role in these high price-difference properties, suggesting that good investment opportunities are not confined to any specific districts and could be found throughout the market.

Thus, focusing on larger, outward-facing properties on higher floors and considering options across various districts could be a promising strategy for uncovering undervalued opportunities in the rental market.

## 6. Technical Annex

A1: Regarding District, Address and Area special characters had to be eliminated and for Address and Area the values were harmonized by equal description. For the four blanks observations in Area, the correct value was extrapolated using the Address field of each record. As per analysis criteria we will consider that except for a "Piso" & "Ático" that could be interior, the rest will be treated as Outer.

1. Simplify text in District, Address and Area to eliminate special characters.



2. Address & Area harmonization by equal description:





3. As per the 4 blank observations in Area we can find the right fields looking by Address.



4. Number Variable for the empty fields we add a "fake Value" that we know it will never happens



## 5. Bedroom Variables

If we analyze the null observations:

| Dadasan Arabaia  | D - d     |     |     |     |     |    |    |      |         |             |
|------------------|-----------|-----|-----|-----|-----|----|----|------|---------|-------------|
| Bedroom Analysis | Bedroon ▼ |     |     |     |     |    |    |      |         |             |
| House Type       | ▼ 0       | 1   | 2   | 3   | 4   | 5  | 6  | 7 8  | (blank) | Grand Total |
| Ático            | 4         | 32  | 65  | 37  | 21  | 4  | 1  |      | 5       | 169         |
| Casa o           |           |     |     | 4   | 3   | 9  | 15 | 4 1  |         | 36          |
| Caserón          |           |     |     |     | 1   |    |    |      |         | 1           |
| Chalet           |           |     |     | 4   | 21  | 11 | 11 | 5    |         | 52          |
| Dúplex           |           | 15  | 17  | 13  | 8   | 9  |    |      | 2       | 64          |
| Estudio          | 10        |     |     |     |     |    |    |      | 82      | 92          |
| Piso             |           | 420 | 602 | 371 | 204 | 64 | 8  | 2 4  |         | 1675        |
| (blank)          |           |     |     |     |     |    |    |      |         |             |
| Grand Total      | 14        | 467 | 684 | 429 | 258 | 97 | 35 | 11 5 | 89      | 2089        |
|                  |           |     |     |     |     |    |    |      |         |             |

As per analysis criteria we will add at least 0 to Atic & Estudio



The rest of null observations as per non possible definition removed: A total of 2 blanks.



#### 1. Floor Variable

If we analyze the null observations



As per analysis criteria we will consider that Casa, Caserón & Chalet Caseron as per Cottage equal to 1 and Semidetached equal to 1 the floor should be 0.



The rest of null observations as per non possible definition removed: A total of 15 blanks



## 2. Outer Variable

| Outer Analysi      | s Out v |      |         |          |
|--------------------|---------|------|---------|----------|
| House Type         | ▼ 0     | 1    | (blank) | Grand To |
| Ático              | 7       | 157  | 5       | 169      |
| Casa o             | 1       |      | 35      | 36       |
| Caserón            |         |      | 1       | 1        |
| Chalet             | 3       |      | 49      | 52       |
| Dúplex             | 6       | 58   |         | 64       |
| Estudio            | 28      | 62   | 2       | 92       |
| Piso               | 211     | 1394 | 70      | 1675     |
| (blank)            |         |      |         |          |
| <b>Grand Total</b> | 256     | 1671 | 162     | 2089     |

As per analysis criteria we will consider that except for a "Piso" & "Ático" that could be interior, the rest will be treated as Outer.

```
if(substring(Address,0,4)=='casa' ||
substring(Address,0,6)=='chalet' ||
Semidetached==1 ||
contage ==1,
1, Outer)
```

The rest of null observations as per non possible definition removed: A total of 77 blanks



## A2: Variable distributions



"Rent" and "Sq.Mt" both appear to be positively skewed, with their means being larger than their medians. This suggests there might be some high-value outliers in the dataset.

<sup>&</sup>quot;Floor" seems to be relatively evenly distributed, but given its maximum value, there might be a few properties located in higher-floor buildings.

"Outer" and "Elevator" are mostly 1 (yes), suggesting that a majority of properties are outward-facing and equipped with an elevator.

"Penthouse", "Cottage", "Duplex", and "Semidetached" variables, which are all binary, have mean values significantly less than 0.5. This indicates that these types of properties are less common in the dataset.

This high-level analysis offers some insight into the nature of the properties in the dataset. It also reveals areas that might warrant further investigation, such as the presence of high-value outliers and the distribution of different property types.

## A3: Scatter plots



## A4: Correlation matrix original variables

|              | Rent      | Bedrooms  | Sq.Mt     | Floor     | Outer     | Elevator  | Penthouse | Cottage   | Duplex    | Semidetached |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|
| Rent         | 1.000000  | 0.517803  | 0.822577  | 0.052758  | 0.185068  | -0.360172 | 0.094679  | 0.362837  | 0.049974  | 0.133474     |
| Bedrooms     | 0.517803  | 1.000000  | 0.647785  | -0.136440 | 0.185439  | -0.400245 | -0.440413 | 0.401162  | 0.057257  | 0.207484     |
| Sq.Mt        | 0.822577  | 0.647785  | 1.000000  | -0.084319 | 0.206504  | -0.599432 | 0.032500  | 0.600754  | 0.073880  | 0.235394     |
| Floor        | 0.052758  | -0.136440 | -0.084319 | 1.000000  | 0.079312  | 0.238032  | 0.222508  | -0.236549 | 0.021441  | -0.135448    |
| Outer        | 0.185068  | 0.185439  | 0.206504  | 0.079312  | 1.000000  | -0.077545 | 0.070797  | 0.077061  | 0.021664  | 0.044126     |
| Elevator     | -0.360172 | -0.400245 | -0.599432 | 0.238032  | -0.077545 | 1.000000  | 0.062840  | -0.993769 | 0.037725  | -0.569034    |
| Penthouse    | 0.094679  | -0.440413 | 0.032500  | 0.222508  | 0.070797  | 0.062840  | 1.000000  | -0.062448 | -0.053678 | -0.035758    |
| Cottage      | 0.362837  | 0.401162  | 0.600754  | -0.236549 | 0.077061  | -0.993769 | -0.062448 | 1.000000  | -0.037490 | 0.572602     |
| Duplex       | 0.049974  | 0.057257  | 0.073880  | 0.021441  | 0.021664  | 0.037725  | -0.053678 | -0.037490 | 1.000000  | -0.021467    |
| Semidetached | 0.133474  | 0.207484  | 0.235394  | -0.135448 | 0.044126  | -0.569034 | -0.035758 | 0.572602  | -0.021467 | 1.000000     |



## A5: Rent average by District



## A6: Correlations with log-transformations

|       | Rent       | Bedrooms | Sq.Mt    | Floor    | Outer    | Elevator  | Penthouse | Cottage  | Duplex   | Semidetached | InRent   | InSq.Mt  |
|-------|------------|----------|----------|----------|----------|-----------|-----------|----------|----------|--------------|----------|----------|
| Ren   | t 1.000000 | 0.517803 | 0.822577 | 0.052758 | 0.185068 | -0.360172 | 0.094679  | 0.362837 | 0.049974 | 0.133474     | 0.935880 | 0.808392 |
| InRer | t 0.935880 | 0.515098 | 0.746098 | 0.118041 | 0.204231 | -0.318347 | 0.118728  | 0.320138 | 0.061335 | 0.144646     | 1.000000 | 0.829507 |

|              | Rent      | Bedrooms  | Sq.Mt     | Floor     | Outer     | Elevator  | Penthouse | Cottage   | Duplex    | Semidetached | InRent    | InSq.Mt   |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|
| Rent         | 1.000000  | 0.517803  | 0.822577  | 0.052758  | 0.185068  | -0.360172 | 0.094679  | 0.362837  | 0.049974  | 0.133474     | 0.935880  | 0.808392  |
| Bedrooms     | 0.517803  | 1.000000  | 0.647785  | -0.136440 | 0.185439  | -0.400245 | -0.440413 | 0.401162  | 0.057257  | 0.207484     | 0.515098  | 0.694860  |
| Sq.Mt        | 0.822577  | 0.647785  | 1.000000  | -0.084319 | 0.206504  | -0.599432 | 0.032500  | 0.600754  | 0.073880  | 0.235394     | 0.746098  | 0.902279  |
| Floor        | 0.052758  | -0.136440 | -0.084319 | 1.000000  | 0.079312  | 0.238032  | 0.222508  | -0.236549 | 0.021441  | -0.135448    | 0.118041  | -0.002988 |
| Outer        | 0.185068  | 0.185439  | 0.206504  | 0.079312  | 1.000000  | -0.077545 | 0.070797  | 0.077061  | 0.021664  | 0.044126     | 0.204231  | 0.294943  |
| Elevator     | -0.360172 | -0.400245 | -0.599432 | 0.238032  | -0.077545 | 1.000000  | 0.062840  | -0.993769 | 0.037725  | -0.569034    | -0.318347 | -0.455666 |
| Penthouse    | 0.094679  | -0.440413 | 0.032500  | 0.222508  | 0.070797  | 0.062840  | 1.000000  | -0.062448 | -0.053678 | -0.035758    | 0.118728  | 0.071042  |
| Cottage      | 0.362837  | 0.401162  | 0.600754  | -0.236549 | 0.077061  | -0.993769 | -0.062448 | 1.000000  | -0.037490 | 0.572602     | 0.320138  | 0.455205  |
| Duplex       | 0.049974  | 0.057257  | 0.073880  | 0.021441  | 0.021664  | 0.037725  | -0.053678 | -0.037490 | 1.000000  | -0.021467    | 0.061335  | 0.098578  |
| Semidetached | 0.133474  | 0.207484  | 0.235394  | -0.135448 | 0.044126  | -0.569034 | -0.035758 | 0.572602  | -0.021467 | 1.000000     | 0.144646  | 0.221912  |
| InRent       | 0.935880  | 0.515098  | 0.746098  | 0.118041  | 0.204231  | -0.318347 | 0.118728  | 0.320138  | 0.061335  | 0.144646     | 1.000000  | 0.829507  |
| InSq.Mt      | 0.808392  | 0.694860  | 0.902279  | -0.002988 | 0.294943  | -0.455666 | 0.071042  | 0.455205  | 0.098578  | 0.221912     | 0.829507  | 1.000000  |



# A7: Correlation matrix between the expanded dataset, native variables and new ones (without considering the dummy districts).

|                         | Rent      | Bedrooms  | Sq.Mt     | Floor     | Outer     | Elevator  | Penthouse | Cottage   | Duplex    | Semidetached | / Sq.Mt   | Penthouse | x Duplex  | Penthouse | Outer x<br>Duplex |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-------------------|
| Rent                    | 1.000000  | 0.517803  | 0.822577  | 0.052758  | 0.185068  | -0.360172 | 0.094679  | 0.362837  | 0.049974  | 0.133474     | -0.291909 | 0.094679  | 0.093904  | 0.102817  | 0.055519          |
| Bedrooms                | 0.517803  | 1.000000  | 0.647785  | -0.136440 | 0.185439  | -0.400245 | -0.440413 | 0.401162  | 0.057257  | 0.207484     | 0.412538  | -0.440413 | 0.125461  | -0.429864 | 0.063633          |
| Sq.Mt                   | 0.822577  | 0.647785  | 1.000000  | -0.084319 | 0.206504  | -0.599432 | 0.032500  | 0.600754  | 0.073880  | 0.235394     | -0.261816 | 0.032500  | 0.125565  | 0.037840  | 0.082707          |
| Floor                   | 0.052758  | -0.136440 | -0.084319 | 1.000000  | 0.079312  | 0.238032  | 0.222508  | -0.236549 | 0.021441  | -0.135448    | -0.112985 | 0.222508  | 0.027604  | 0.220917  | 0.021555          |
| Outer                   | 0.185068  | 0.185439  | 0.206504  | 0.079312  | 1.000000  | -0.077545 | 0.070797  | 0.077061  | 0.021664  | 0.044126     | -0.073465 | 0.070797  | 0.032053  | 0.107734  | 0.063429          |
| Elevator                | -0.360172 | -0.400245 | -0.599432 | 0.238032  | -0.077545 | 1.000000  | 0.062840  | -0.993769 | 0.037725  | -0.569034    | 0.124909  | 0.062840  | 0.033506  | 0.061358  | 0.036125          |
| Penthouse               | 0.094679  | -0.440413 | 0.032500  | 0.222508  | 0.070797  | 0.062840  | 1.000000  | -0.062448 | -0.053678 | -0.035758    | -0.541316 | 1.000000  | -0.047674 | 0.976419  | -0.051401         |
| Cottage                 | 0.362837  | 0.401162  | 0.600754  | -0.236549 | 0.077061  | -0.993769 | -0.062448 | 1.000000  | -0.037490 | 0.572602     | -0.124259 | -0.062448 | -0.033297 | -0.060976 | -0.035900         |
| Duplex                  | 0.049974  | 0.057257  | 0.073880  | 0.021441  | 0.021664  | 0.037725  | -0.053678 | -0.037490 | 1.000000  | -0.021467    | -0.036995 | -0.053678 | 0.888156  | -0.052412 | 0.957586          |
| Semidetached            | 0.133474  | 0.207484  | 0.235394  | -0.135448 | 0.044126  | -0.569034 | -0.035758 | 0.572602  | -0.021467 | 1.000000     | -0.051966 | -0.035758 | -0.019066 | -0.034915 | -0.020556         |
| Bedrooms /<br>Sq.Mt     | -0.291909 | 0.412538  | -0.261816 | -0.112985 | -0.073465 | 0.124909  | -0.541316 | -0.124259 | -0.036995 | -0.051966    | 1.000000  | -0.541316 | -0.023303 | -0.528447 | -0.041743         |
| Elevator x<br>Penthouse | 0.094679  | -0.440413 | 0.032500  | 0.222508  | 0.070797  | 0.062840  | 1.000000  | -0.062448 | -0.053678 | -0.035758    | -0.541316 | 1.000000  | -0.047674 | 0.976419  | -0.051401         |
| Bedrooms x<br>Duplex    | 0.093904  | 0.125461  | 0.125565  | 0.027604  | 0.032053  | 0.033506  | -0.047674 | -0.033297 | 0.888156  | -0.019066    | -0.023303 | -0.047674 | 1.000000  | -0.046550 | 0.875409          |
| Outer x<br>Penthouse    | 0.102817  | -0.429864 | 0.037840  | 0.220917  | 0.107734  | 0.061358  | 0.976419  | -0.060976 | -0.052412 | -0.034915    | -0.528447 | 0.976419  | -0.046550 | 1.000000  | -0.050189         |
| Outer x<br>Duplex       | 0.055519  | 0.063633  | 0.082707  | 0.021555  | 0.063429  | 0.036125  | -0.051401 | -0.035900 | 0.957586  | -0.020556    | -0.041743 | -0.051401 | 0.875409  | -0.050189 | 1.000000          |

A8: Parameters first regression model.

| ============               |            |          |        | ======= |           |           |
|----------------------------|------------|----------|--------|---------|-----------|-----------|
|                            | coef       | std err  | t      | P> t    | [0.025    | 0.975]    |
|                            |            |          |        |         |           |           |
| const                      | -734.2845  | 655.689  | -1.120 | 0.263   | -2020.412 | 551.843   |
| Bedrooms                   | 98.3062    | 26.563   | 3.701  | 0.000   | 46.203    | 150.410   |
| Sq.Mt                      | 10.0958    | 0.358    | 28.219 | 0.000   | 9.394     | 10.798    |
| Floor                      | 28.5860    | 5.684    | 5.029  | 0.000   | 17.436    | 39.736    |
| Outer                      | 145.7517   | 55.277   | 2.637  | 0.008   | 37.327    | 254.176   |
| Elevator                   | 822.7985   | 645.897  | 1.274  | 0.203   | -444.123  | 2089.720  |
| Penthouse                  | -119.3310  | 134.520  | -0.887 | 0.375   | -383.191  | 144.529   |
| Cottage                    | -98.6895   | 655.605  | -0.151 | 0.880   | -1384.652 | 1187.273  |
| Duplex                     | 192.9215   | 313.189  | 0.616  | 0.538   | -421.396  | 807.239   |
| Semidetached               | 310.7710   | 169.801  | 1.830  | 0.067   | -22.292   | 643.834   |
| Bedrooms / Sq.Mt           | -6625.7410 | 2744.373 | -2.414 | 0.016   | -1.2e+04  | -1242.678 |
| Elevator x Penthouse       | -119.3310  | 134.520  | -0.887 | 0.375   | -383.191  | 144.529   |
| Bedrooms x Duplex          | -64.1291   | 66.749   | -0.961 | 0.337   | -195.056  | 66.798    |
| Outer x Penthouse          | 503.9137   | 272.883  | 1.847  | 0.065   | -31.344   | 1039.171  |
| Outer x Duplex             | -61.6173   | 313.805  | -0.196 | 0.844   | -677.143  | 553.908   |
| District_barajas           | -310.6958  | 179.107  | -1.735 | 0.083   | -662.012  | 40.620    |
| District_carabanchel       | -292.5942  | 144.014  | -2.032 | 0.042   | -575.077  | -10.111   |
| District_centro            | 487.6075   | 104.783  | 4.653  | 0.000   | 282.077   | 693.139   |
| District_chamartin         | 393.7177   | 108.625  | 3.625  | 0.000   | 180.650   | 606.786   |
| District_chamberi          | 402.4715   | 108.768  | 3.700  | 0.000   | 189.124   | 615.819   |
| District_ciudad lineal     | -130.0692  | 123.152  | -1.056 | 0.291   | -371.630  | 111.492   |
| District_fuencarral        | -264.3161  | 117.086  | -2.257 | 0.024   | -493.980  | -34.653   |
| District_hortaleza         | -108.3331  | 119.130  | -0.909 | 0.363   | -342.005  | 125.339   |
| District_latina            | -299.3898  | 164.914  | -1.815 | 0.070   | -622.868  | 24.088    |
| District_moncloa           | 86.3508    | 113.720  | 0.759  | 0.448   | -136.710  | 309.412   |
| District_moratalaz         | -404.4820  | 217.212  | -1.862 | 0.063   | -830.541  | 21.577    |
| District_puente vallecas   | -131.2949  | 156.206  | -0.841 | 0.401   | -437.692  | 175.102   |
| District_retiro            | 626.5219   | 125.777  | 4.981  | 0.000   | 379.811   | 873.233   |
| District_salamanca         | 781.0716   | 104.660  | 7.463  | 0.000   | 575.783   | 986.361   |
| District_san blas          | -237.1152  | 137.569  | -1.724 | 0.085   | -506.955  | 32.725    |
| District_tetuan            | 113.6791   | 114.349  | 0.994  | 0.320   | -110.615  | 337.973   |
| District_usera             | -222.3511  | 182.165  | -1.221 | 0.222   | -579.665  | 134.963   |
| District_vicalvaro         | -373.5357  | 182.211  | -2.050 | 0.041   | -730.942  | -16.130   |
| District_villa de vallecas | -262.7102  | 164.162  | -1.600 | 0.110   | -584.713  | 59.292    |
|                            |            |          |        |         |           |           |

A9: Parameters second regression model.

| ======================================= |            |          |        |          |           |          |  |  |  |  |  |
|-----------------------------------------|------------|----------|--------|----------|-----------|----------|--|--|--|--|--|
|                                         | coef       | std err  | t      | P> t     | [0.025    | 0.975]   |  |  |  |  |  |
|                                         |            |          |        |          |           |          |  |  |  |  |  |
| const                                   | -14.5697   | 74.106   | -0.197 | 0.844    | -159.926  | 130.786  |  |  |  |  |  |
| Sq.Mt                                   | 10.2169    | 0.167    | 61.131 | 0.000    | 9.889     | 10.545   |  |  |  |  |  |
| Floor                                   | 43.5095    | 5.550    | 7.839  | 0.000    | 32.623    | 54.396   |  |  |  |  |  |
| Outer                                   | 212.4190   | 53.713   | 3.955  | 0.000    | 107.062   | 317.776  |  |  |  |  |  |
| Bedrooms / Sq.Mt                        | -2314.5548 | 1636.864 | -1.414 | 0.158    | -5525.216 | 896.106  |  |  |  |  |  |
| District_carabanchel                    | -208.9548  | 113.357  | -1.843 | 0.065    | -431.301  | 13.391   |  |  |  |  |  |
| District_centro                         | 576.5069   | 53.623   | 10.751 | 0.000    | 471.326   | 681.688  |  |  |  |  |  |
| District_chamartin                      | 496.0556   | 58.099   | 8.538  | 0.000    | 382.096   | 610.015  |  |  |  |  |  |
| District_chamberi                       | 521.2768   | 60.643   | 8.596  | 0.000    | 402.327   | 640.227  |  |  |  |  |  |
| District_fuencarral                     | -164.1144  | 73.128   | -2.244 | 0.025    | -307.552  | -20.677  |  |  |  |  |  |
| District_retiro                         | 759.4299   | 87.885   | 8.641  | 0.000    | 587.045   | 931.814  |  |  |  |  |  |
| District_salamanca                      | 941.8562   | 50.115   | 18.794 | 0.000    | 843.556   | 1040.156 |  |  |  |  |  |
| District_vicalvaro                      | -301.5280  | 161.565  | -1.866 | 0.062    | -618.433  | 15.377   |  |  |  |  |  |
|                                         | ========   |          |        | ======== |           | =        |  |  |  |  |  |

A10: Parameters final regression model

| ===========         |           |          |        |         |          |          |
|---------------------|-----------|----------|--------|---------|----------|----------|
|                     | coef      | std err  | t      | P> t    | [0.025   | 0.975]   |
|                     |           |          |        |         |          |          |
| const               | -100.9489 | 58.457   | -1.727 | 0.084   | -215.611 | 13.713   |
| Sq.Mt               | 10.3228   | 0.161    | 64.202 | 0.000   | 10.007   | 10.638   |
| Floor               | 45.1474   | 5.498    | 8.211  | 0.000   | 34.362   | 55.932   |
| Outer               | 211.4365  | 53.705   | 3.937  | 0.000   | 106.097  | 316.777  |
| District_centro     | 608.8422  | 52.537   | 11.589 | 0.000   | 505.792  | 711.892  |
| District_chamartin  | 518.0511  | 57.724   | 8.975  | 0.000   | 404.827  | 631.275  |
| District_chamberi   | 550.0279  | 59.959   | 9.173  | 0.000   | 432.420  | 667.636  |
| District_fuencarral | -144.2123 | 72.878   | -1.979 | 0.048   | -287.161 | -1.264   |
| District_retiro     | 781.3717  | 87.745   | 8.905  | 0.000   | 609.263  | 953.480  |
| District_salamanca  | 965.7427  | 49.581   | 19.478 | 0.000   | 868.492  | 1062.993 |
|                     | ========  | ======== |        | ======= |          | =        |

A11: Correlation matrix for independent variables in final model.

|                     | Sq.Mt     | Floor     | Outer     | District_centro | District_chamartin | District_chamberi | District_fuencarral | District_retiro | District_salamanca |
|---------------------|-----------|-----------|-----------|-----------------|--------------------|-------------------|---------------------|-----------------|--------------------|
| Sq.Mt               | 1.000000  | -0.084319 | 0.206504  | -0.120499       | 0.018983           | -0.020899         | 0.015606            | 0.010234        | 0.084404           |
| Floor               | -0.084319 | 1.000000  | 0.079312  | -0.064646       | 0.072758           | 0.036294          | 0.038797            | 0.002098        | 0.050243           |
| Outer               | 0.206504  | 0.079312  | 1.000000  | -0.109810       | 0.039611           | -0.124298         | 0.081651            | -0.091488       | -0.049816          |
| District_centro     | -0.120499 | -0.064646 | -0.109810 | 1.000000        | -0.134145          | -0.127163         | -0.094306           | -0.080041       | -0.167186          |
| District_chamartin  | 0.018983  | 0.072758  | 0.039611  | -0.134145       | 1.000000           | -0.110301         | -0.081802           | -0.069428       | -0.145018          |
| District_chamberi   | -0.020899 | 0.036294  | -0.124298 | -0.127163       | -0.110301          | 1.000000          | -0.077544           | -0.065815       | -0.137470          |
| District_fuencarral | 0.015606  | 0.038797  | 0.081651  | -0.094306       | -0.081802          | -0.077544         | 1.000000            | -0.048809       | -0.101950          |
| District_retiro     | 0.010234  | 0.002098  | -0.091488 | -0.080041       | -0.069428          | -0.065815         | -0.048809           | 1.000000        | -0.086529          |
| District_salamanca  | 0.084404  | 0.050243  | -0.049816 | -0.167186       | -0.145018          | -0.137470         | -0.101950           | -0.086529       | 1.000000           |



## A12: Scatter plot linear relationship between the test values and the predictions



## A13: Histogram of errors



## A14: Good opportunities

Descriptive matrix for independent variables for those houses which have bigger differences between theoretical prices and real rent prices. This dataset corresponds to the 25% with higher differences (bigger than \$328).

|       | Sq.Mt       | Floor      | Outer      | District_centro | ${\sf District\_chamartin}$ | District_chamberi | ${\sf District\_fuencarral}$ | District_retiro | District_salamanca |
|-------|-------------|------------|------------|-----------------|-----------------------------|-------------------|------------------------------|-----------------|--------------------|
| count | 498.000000  | 498.000000 | 498.000000 | 498.000000      | 498.000000                  | 498.000000        | 498.000000                   | 498.000000      | 498.000000         |
| mean  | 157.791165  | 3.928715   | 0.901606   | 0.126506        | 0.150602                    | 0.098394          | 0.020080                     | 0.084337        | 0.251004           |
| std   | 151.008856  | 3.171877   | 0.298146   | 0.332753        | 0.358021                    | 0.298146          | 0.140416                     | 0.278173        | 0.434027           |
| min   | 20.000000   | -0.500000  | 0.000000   | 0.000000        | 0.000000                    | 0.000000          | 0.000000                     | 0.000000        | 0.000000           |
| 25%   | 70.500000   | 2.000000   | 1.000000   | 0.000000        | 0.000000                    | 0.000000          | 0.000000                     | 0.000000        | 0.000000           |
| 50%   | 105.000000  | 3.500000   | 1.000000   | 0.000000        | 0.000000                    | 0.000000          | 0.000000                     | 0.000000        | 0.000000           |
| 75%   | 170.750000  | 6.000000   | 1.000000   | 0.000000        | 0.000000                    | 0.000000          | 0.000000                     | 0.000000        | 0.750000           |
| max   | 1160.000000 | 25.000000  | 1.000000   | 1.000000        | 1.000000                    | 1.000000          | 1.000000                     | 1.000000        | 1.000000           |