Exercice 1. Montrer par récurrence que

(i)
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$
 pour tout $n \in \mathbb{N}$

(ii)
$$\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$
 pour tout $n \in \mathbb{N}$

(iii)
$$\sum_{k=0}^{n} a^k = \frac{1-a^{n+1}}{1-a}$$
 pour tout $a \neq 1$ et $n \in \mathbb{N}$

Exercice 1

(i) Initialisation; Pour n = 0, $\sum_{k \neq 0}^{\infty} k = 0 = \frac{0 \cdot (0 + l)}{2} = \frac{n(0 + l)}{2}$ Induction; Supposers $A := \sum_{k \neq 0}^{\infty} \frac{n(0 + l)}{2} = \frac{n(0 + l)}$

Exercice 2. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a $n < 2^n$.

Exercice 2

Initialisation: Pour n=0, 0<1=2°=2° donc &<2°, et pour n=1 1<2=2°=2° donc n<2°.

Induction: Supposons A:=0<2° vraie pour n. Alors, uvec n>1,

2ⁿ⁺¹=2·2°>2·n>n+1, err a++>+ donc A est vraie pour n+1

Comme A est meotrée vraie pour n=0 et n=1 et par récurrence pour n>1 elle est donc vraie pour tout n eN.

Exercice 3. Où est la faute de raisonnement dans la preuve suivante?

"Montrons que le plus grand entier naturel strictement positif est 1.

En effet, soit n le plus grand entier positif. Comme $n \ge 1$, nous trouvons $n^2 \ge n$. Mais puisque n est le plus grand entier naturel, $n^2 \le n$ de sorte que $n^2 = n$ et donc n = 1 (puisque $n \ne 0$).

Donc 1 est le plus grand entier naturel strictement positif."

Exercice 4. (Inégalité de Bernoulli)

Montrer par récurrence que pour tout $x \ge -1$ et tout $n \in \mathbb{N}$ on a $(1+x)^n \ge 1 + nx$.

Exercice 5. Trouver le supremum et l'infimum pour chacun des ensembles suivants. Préciser lorsqu'il s'agit d'un maximum ou d'un minimum. Justifier chaque réponse.

- (i) [2,3)
- (ii) [2,3]
- (iii) (2,3)
- (iv) (2,3]
- (v) $[-2,2] \cup (5,8)$
- (vi) $[0,1] + [-3,7] = \{x+y : x \in [0,1], y \in [-3,7]\}$
- (vii) $\{\frac{1}{n} : n \in \mathbb{N}^*\}$ (viii) $\{x^2 : x \in [-1, 4)\}$
- (ix) $\{4 + \frac{1 + (-1)^n}{n} : n \in \mathbb{N}^*\}$

Exerc	ice 5	
(i)~	(iv) Pour Chacun de ces ensembles, il est directement explicite que incE=2 et supE=3.	
(i)	Comme 2 E minE=infE=2 et comme 3 E l'essemble n'a pas de maximum.	
(i)	Comme 2 EE minEzingE=2 et comme 3 EE maxE=SupE=3	
(iii)	Comme 2 EE et 3 EE l'ensemble n'a ni minimum ni muximum.	
(iv)	Comme 2 EE, l'essemble l'a pas de moinson et comme 3 EE, maxE=supE=3.	
(v)	ing E = min ([-2,2] U(5,2)) = -2 = min E 5-p5 = max([-2,2]	
	incE = min (inc[-2,2] u (inc(58)) = -2 = min E supE = max (sup[8,2] u sup(5,8)) = 8	
(vi)	[0]+[-3]+]=[-3,8] => MarinE=inFE=-3; max E=SUPE=8	
(vii)	Pour n >1, 1 & 1 = 1. Done 1 est majorant de E, et comme 1 EE, max E 2 Sup E >1.	
	Voel 1>0 donc 0 est minerant de E et par le principe d'Archimède, Vezo, ENEN NEE donc 0 est l'infimem de E.	+0
	L'ensemble n'a pas de minimum.	
(viii)	Si $x \in [-1,0)$ alors $x^2 \in [0,1]$ Si $x \in [0,+)$ alors $x^2 \in [0,16)$	
	Donc, E = (0,] v [0,16) = [0,16). Il suit que minE=inpE=0, supE=10, et E na pos de maximum.	
(ix)	Si n est impair: $4 + \frac{1+60}{1} = 4 + \frac{0}{2} = 4$ Si n est poir: $4 + \frac{1+60}{1} = 4 + \frac{0}{2} > 4$	
	Donc Ynelly 4+ 1+400 2+ et 4 EE, door minE=inpE=4.	
8	SupE = Sup(4) + Sup({2/2: n pair}) = ++1=5 et SEE (pair n=2).	

Exercice 6. (Proposition 2.4) Montrer que pour tout $x, y \in \mathbb{R}$ on a

(i)
$$|x| = 0 \iff x = 0$$

(ii)
$$|x \cdot y| = |x| \cdot |y|$$

(i)	=	I	est	dir	ecte	; (Com	me	*>	0	6 >	(=0	=>	(x)	= X	= O.					H	-	+	7
		1	Soil	F /	x1 = 0	, a	loc	3	k = C	, ,	0 -	X =	0,	et	Со	mme	-0	=0	X.	0.				
(2)	Si:	* X	20	ek	120	ode	015	X-	130	9 6	+ 1	x -	141	= k	. 7 :	. /x	71					3		
		* X 5	0 0	et	150	ale	15	x . y	50	e l	- 1	×1 - 1	11 =	= x - () -	(-y)= y =	-(x	y):	1x-y	1					+
1		·X	80	et;	60	alo	(5)	cy.	20	et	b	1-19	1=	(4) (-x) =	* 7	=	1×.7	1		Н	+	+	+

Exercice 7. Trouver a et b tels que $\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$. En déduire ce que vaut

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

Exercice 8. (Formule du binôme)

Pour $p, n \in \mathbb{N}$ satisfaisant $0 \le p \le n$ on définit le coefficient binomial

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

(On utilise la convention habituelle 0! := 1).

(i) Pour p < n montrer que

$$\binom{n+1}{p+1} = \binom{n}{p} + \binom{n}{p+1}$$

(ii) Montrer par récurrence la formule du binôme : Pour tout $a,b\in\mathbb{R}$ et $n\in\mathbb{N}$ on a

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Exercise 8

(i)
$$\binom{n+1}{p+1} - \binom{n}{p} = \binom{(n+1)!}{(p+1)!} \binom{n}{(p+1)!} = \binom{(n+1)!}{(p+1)!} \binom{(n+1)!}{(n-1)!} = \binom{(n+1)!}{(n-1)!} \binom{(n+1)!}{(n-1)!} \binom{(n+1)!}{(n-1)!} = \binom{(n+1)!}{(n-1)!} \binom{(n+1)!}{(n-1)!}$$

Exercice 9. Soient $A, B \subset \mathbb{R}$ et définissons

$$A + B = \{x + y : x \in A, y \in B\}, \quad A \cdot B = \{x \cdot y : x \in A, y \in B\}$$

Montrer que $\sup(A+B) = \sup A + \sup B$.

Quelle hypothèse faut-il rajouter à A, B pour qu'on ait $\sup(A \cdot B) = \sup A \cdot \sup B$?

X+7 5x	+ supB & SupA + supB donc supA + supB est un majorant de A+B, i.e. suplaB) (SupA+sup
(x+y) 5S	$sup(A+B) \Rightarrow x \leq sup(A+B) - y$ donc $sup(A+B) - y$ est majorant de A, $\Rightarrow supA \leq sup(A+B) - y$
	=75UpA +y (5Up(A+B) =>y (5Up(A+B)-SUPA donc SUp(A+B)-SUPA est majorant de B, =)SUPB (5Up(A+B)-SUPA =>SUPA + SUPB (SUP(A+B)
Comme	5UP (4+8) & SUPA + SUPB OF OF SUPA + SUPB & SUP(A+B) SUP(A+B) = SUPA + SUPB.
	ir sup(A.B) = SUPA · SUPB, nous devocs rajourer l'hypothèse suivante:
- 5up	A = Sup {IN : x & A} et sup B = Sup {IXI : Y & B}
En d'auti	restermes la partie positive de 4 et B doit être plus grande que leur régative.

Exercice 10. Montrer que $u_n = \frac{6n^2 - \sqrt{n}}{2n^2 + n}$ converge vers 3.

$$V_{0} = \frac{6n^{2} - \sqrt{n}}{2n^{2} + n} = \frac{6 - \frac{\sqrt{n}}{n}}{2 + \frac{1}{n}} = \frac{6 - \frac{1}{\sqrt{n}}}{2 - \frac{1}{n}}$$

$$V_{0} = \frac{6n^{2} - \sqrt{n}}{2n^{2} + n} = \frac{6 - \frac{1}{\sqrt{n}}}{2 + \frac{1}{n}}$$

$$V_{0} = \frac{l_{0}m(6 - \frac{1}{\sqrt{n}})}{l_{0}m(2 - \frac{1}{n})} = \frac{6 - l_{0}m(\frac{1}{\sqrt{n}})}{2 - l_{0}m(\frac{1}{n})} = \frac{6 - 0}{2 - 0} = \frac{6}{2} = 3.$$

$$V_{0} = \frac{l_{0}m(6 - \frac{1}{\sqrt{n}})}{l_{0}m(2 - \frac{1}{n})} = \frac{6 - 0}{2 - l_{0}m(\frac{1}{n})} = \frac{6 - 0}{2 - 0} = \frac{6}{2} = 3.$$

$$V_{0} = \frac{6n^{2} - \sqrt{n}}{2n^{2} + n} = \frac{6 - \frac{1}{\sqrt{n}}}{2 - \frac{1}{\sqrt{n}}} = \frac{6 - 0}{2 - l_{0}m(\frac{1}{n})} = \frac{6 - 0}{2 - 0} = \frac{6}{2} = 3.$$

$$V_{0} = \frac{6n^{2} - \sqrt{n}}{2n^{2} + n} = \frac{6 - \frac{1}{\sqrt{n}}}{2 - \frac{1}{\sqrt{n}}} = \frac{6 - 0}{2 - l_{0}m(\frac{1}{n})} = \frac{6 - 0}{2 - l_$$

Exercice 11. Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ une suite convergente. Montrer que $(|u_n|)$ est une suite convergente et

$$\lim_{n} |u_n| = |\lim_{n} u_n|$$

Exercice 12. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite et $\ell\in\mathbb{R}$. Montrer que les assertions

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |u_n - \ell| < \epsilon$$

et

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n - \ell| \leq \epsilon$$

sont équivalentes.

Exercise 12

Soient (i):
$$\forall E > 0$$
, $\exists N \in \mathbb{N}$, $\forall n \geqslant N$, $|u_n - l| \le E + (ii)$: $\forall E > 0$, $\exists N \in \mathbb{N}$, $|u_n - l| \le E$

(i) \Rightarrow (ii) est directe: S: $|u_n - l| \le E$, alors $|u_n - l| \le E$

(ii) \Rightarrow (i): Comme (ii) est viaie poor tout $E > 0$, alors on particular elle est viaie poor tout $\frac{1}{2} \in \mathbb{N}$ of $\frac{1}{2} \in \mathbb{N}$.

Exercice 13. Déterminer le caractère de convergence de chacune des suites suivantes et calculer leur limite lorsqu'elle existe.

(i) $a_n = \sqrt{n+3} - \sqrt{n+1}$ (Il est souvent utile de multiplier les expressions de la forme $\sqrt{A} - \sqrt{B}$ par $\sqrt{A} + \sqrt{B}$)

(ii)
$$b_n = (-1)^n \left(\frac{n+5}{n}\right)$$

(iii)
$$c_n = \frac{n(n-1)}{2^n - 5}$$

 2^n-5 (On peut montrer que $2^n \ge n^3$ pour $n \ge 10$ en raisonnant par récurrence puis utiliser ce résultat).

(iv)
$$d_n = \left(\frac{2n^3}{n^3 - 7}\right)^2$$

Exercise 3

(i)
$$a_n = \sqrt{n+3} - \sqrt{n+1} = \frac{\sqrt{n+3} - \sqrt{n+1} \cdot (\log_2 + \sqrt{\log_2 + \sqrt{n+1}})}{\sqrt{n+3} + \sqrt{n+1}} = \frac{2}{\sqrt{n+3} + \sqrt{n+1}} = \frac{2}{\sqrt{n+3} + \sqrt{n+1}}$$

Dear, $\lim_{n \to \infty} a_n = \frac{2}{\log_2 (n+1) + \log_2 (n+1)} = \frac{2}{\log_2 (n+1)}$