Théophile Chaumont-Frelet

8 February 1989

theophile.chaumont@inria.fr

(+33) 6 48 10 80 60

47 boulevard Gambetta, 06000 Nice, France

tchaumont.github.io

Research interests

Partial differential equations High performance computing

Numerical analysis Wave propagation

Finite element methods Geophysics

Multiscale methods Electromagnetism

Professional history

Since 2018: Junior researcher Inria project-team Atlantis

Sophia-Antipolis, France

2018 - 2018: Postdoctoral fellow CERMICS

Paris, France

Supervision: Alexandre Ern, Virginie Ehrlacher and Anthony Nouy

2016 - 2018: **Postdoctoral fellow** Basque Center for Applied Mathematics

Bilbao, Spain

Supervision: David Pardo

2012 - 2015: PhD Student INSA Rouen and Inria project-team Magique3D

Rouen, France

Supervision: Christian Gout and Hélène Barucq

Education

2007 - 2012: Engineering degree Insa Rouen

Rouen, France

2011 - 2012: Master's degree University of Rouen

Rouen, France

Publications

- [1] V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gomez-Revuelto, and L.E. Garcia-Castillo. *A painless automatic hp-adatptive strategy for elliptic probems*. preprint: hal-02071427.
- [2] T. Chaumont-Frelet and F. Valentin. A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains. SIAM J. Numer. Anal. **58** (2020), no. 2, 1029–1067. preprint: hal-01698914. doi: 10.1137/19M1255616.
- [3] T. Chaumont-Frelet, S. Nicaise, and J. Tomezyk. *Uniform a priori estimates for elliptic problems with impedance boundary conditions*. Comm. Pure Appl. Anal. **19** (2020), no. 5, 2445–2471. preprint: hal-01887269. doi: 10.3934/cpaa.2020107.
- [4] T. Chaumont-Frelet. Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers. Calcolo in press (2019). preprint: hal-02197891. doi: 10.1007/s10092-019-0346-z.
- [5] T. Chaumont-Frelet and S. Nicaise. Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. in press (2019). preprint: hal-01685388. doi: 10.1093/imanum/drz020.
- [6] T. Chaumont-Frelet, M. Shahriari, and D. Pardo. Adjoint-based formulation for computing derivaties with respect to bed boundary positions in resistivity geophysics. Comput. Geosci. 23 (2019), 583– 594. preprint: hal-01790697. doi: 10.1007/s10596-019-9808-2.
- [7] T. Chaumont-Frelet and S. Nicaise. *High-frequency behaviour of corner singularities in Helmholtz problems*. ESAIM Math. Model. Numer. Anal. **5** (2018), 1803–1845. preprint: hal-01706415. doi: 10.1051/m2an/2018031.
- [8] T. Chaumont-Frelet, D. Pardo, and Á. Rodríguez-Rozas. Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids. Comput. Geosci. 22 (2018), 1161–1174. preprint: hal-01706455. doi: 10.1007/s10596-018-9744-6.
- [9] T. Chaumont-Frelet, S. Nicaise, and D. Pardo. Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. **56** (2018), no. 4, 2288–2321. preprint: hal-01706452. doi: 10.1137/16m1105566.
- [10] H. Barucq, T. Chaumont-Frelet, and C. Gout. Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Math. Comp. 86 (2017), no. 307, 2129–2157. preprint: hal-01408934. doi: 10.1090/mcom/3165.
- [11] T. Chaumont-Frelet. On high order methods for the heterogeneous Helmholtz equation. Comp. Math. Appl. **72** (2016), 2203–2225. preprint: hal-01408943. doi: 10.1016/j.camwa.2016.08.026.
- [12] H. Barucq, T. Chaumont-Frelet, J. Diaz, and V. Péron. *Upscaling for the Laplace problem using a discontinuous Galerkin method*. J. Comput. Appl. Math. **240** (2013), 192–203. preprint: hal-00757098. doi: 10.1016/j.cam.2012.05.025.

Prepublications

- [13] G. Nehmetallah, T. Chaumont-Frelet, S. Descombes, and S. Lanteri. A postprocessing technique for a discontinuous Galerkin discretization of time-dependent Maxwell's equations. preprint: hal-02956882.
- [14] T. Chaumont-Frelet and P. Vega. Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations. preprint: hal-02943386.
- [15] T. Chaumont-Frelet and M. Vohralík. Equivalence of local-best and global-best approximations in H(curl).

 preprint: hal-02736200.
- [16] T. Chaumont-Frelet, A. Ern, and M. Vohralík. Stable broken H(curl) polynomial extensions and p-robust quasi-equilibrated a posteriori estimators for Maxwell's equations. preprint: hal-02644173.
- [17] T. Chaumont-Frelet, A. Ern, and M. Vohralík. *Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron.*preprint: hal-02631319.
- [18] T. Chaumont-Frelet and B. Verfürth. A generalized finite element method for problems with sign-changing coefficients.

 preprint: hal-02496832.
- [19] T. Chaumont-Frelet, A. Ern, and M. Vohralík. On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation. preprint: hal-02202233.
- [20] T. Chaumont-Frelet, D. Gallistl, S. Nicaise, and J. Tomezyk. Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers.

 preprint: hal-01887267.

Editorial activities

Guest editor for Geosciences:

Special issue "Petroleum Engineering Applications: Borehole Simulations"

Reviewer for the journals:

Comput. Geosci.; Comput. Math. Appl.; ESAIM Math. Model. Numer. Anal.; Math. Meth. Appl. Sci.; Geophys. J. Int.;