Introduction to Wireless and Mobile Networking

Midterm & Homework #5

Hung-Yu Wei National Taiwan University

Midterm Grades

- 平均=82.69
- 標準差=17.71

HW#5 Mini-Porject

Read Magazine Articles

Due Date: 2024/12/23

- Find at least two IEEE magazine articles related to wireless and mobile networking.
 - Please find articles published in recent years (2020~now and early access articles). Write the report after reading those articles.
 - https://ieeexplore.ieee.org/Xplore/dynhome.jsp
- Write report to summarize and discuss the technologies covered in the article

Report: Summary

- [1] Summarize the articles
 - what is the problem
 - what is the importance
 - what is the proposed solution
 - what is the contribution of the article

- [2] Strengths and weaknesses of the described technologies
 - what is good
 - what is bad

Report: Discussions

• [3] Compare/classify the described technologies. You could also compare it to the state-of-the art.

· [4] Your comments and future direction

Bonus

Extended survey

 [Optional] Do a quick search and mini-survey to find out more related research papers/researchers. What do you find? What's useful or interesting?

Report format

- Please include those articles in the reference section of your report (you could refer to the citation format in the article you read)
- [Optional] You are encouraged to use IEEE paper format to write the report

Resources

- · S. Keshev, "How to Read a Paper"
 - https://dl.acm.org/doi/pdf/10.1145/1273445.1 273458

IEEE Magazines

· IEEE Communications Magazine

 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?pun umber=35

IEEE Wireless Communications

 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?pun umber=7742

IEEE Network

 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?pun umber=65

· IEEE Communications Standards Magazine

 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?pun umber=7886829

IEEE Magazines

- IEEE Vehicular Technology Magazine
 - https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?pun umber=10209

- IEEE Internet of Things Magazine
 - https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?pun umber=8548628

Sample Topics

Time-Sensitive Wi-Fi

- "Toward the Internet of Medical Things for Real-Time Health Monitoring Over Wi-Fi," IEEE Network 2024
 - https://ieeexplore.ieee.org/document/10388245
- "Controlled Channel Access for IEEE 802.11-Based Wireless TSN Networks," IEEE Internet of Things Magazine 2023
 - https://ieeexplore.ieee.org/document/10070404
- "WiFi TSN: Enabling Deterministic Wireless Connectivity over 802.11," IEEE Communications Standards Magazine 2022
 - https://ieeexplore.ieee.org/document/10034532

Machine Learning and 6G

- "Toward Reinforcement-Learning-Based Intelligent Network Control in 6G Networks," IEEE Network 2024
 - https://ieeexplore.ieee.org/document/10293205
- "On Combining XAI and LLMs for Trustworthy Zero-Touch Network and Service Management in 6G," IEEE
 Communications Magazine (Early Access)
 - https://ieeexplore.ieee.org/document/10742571
- "Machine Learning-Based Channel Quality Prediction in 6G Mobile Networks," IEEE Communications Magazine 2023
 - https://ieeexplore.ieee.org/document/10192311

Edge Computing and Wireless System

- "Integrating Satellites and Mobile Edge Computing for 6G Wide-Area Edge Intelligence: Minimal Structures and Systematic Thinking," IEEE Network 2023
 - https://ieeexplore.ieee.org/document/10239284
- "Learning IoV in 66: Intelligent Edge Computing for Internet of Vehicles in 66 Wireless Communications," IEEE Wireless Communications 2023
 - https://ieeexplore.ieee.org/document/10061645
- "Collaboration of Heterogeneous Edge Computing Paradigms: How to Fill the Gap Between Theory and Practice," IEEE Wireless Communications 2024
 - https://ieeexplore.ieee.org/document/10091816

Integrated Sensing and Communications

- "Integrated Sensing and Communication for 6G: Ten Key Machine Learning Roles," IEEE Communications Magazine 2023
 - https://ieeexplore.ieee.org/document/10049816
- "AI-Enhanced Integrated Sensing and Communications: Advancements, Challenges, and Prospects," IEEE Communications Magazine 2024
 - https://ieeexplore.ieee.org/document/10663823
- "Integrated Sensing and Communication Channel: Measurements, Characteristics, and Modeling," IEEE Communications Magazine 2024
 - https://ieeexplore.ieee.org/document/10292797/

[optional]

Survey Paper	Year	Topics Covered and Scope	SDN or/and NFV Considerations	QoE in Emerging Architectures	QoE in New Domains	
Baraković et al. [8] 2013		QoE modeling, monitoring and measurement	No	No	No	
Liotou et al. [10], Seufert et al. [6]	2015	QoE in HTTP adaptive video streaming [6], network-level QoE management in mobile networks [10]	No	No	No	
Awobuluyi et al. [21]	2015	Context-aware QoE management in the SDN	SDN only	No	No	
Zhao <i>et al.</i> [32], 2016 Su <i>et al.</i> [33]		QoE assessment and management in video transmission [32], QoE of video streaming [33]	No	No	No	
Wang et al. [19] 2016		Architecture for personalized QoE management	Yes	No	No	
Peng et al. [35] 2017		QoE-oriented mobile edge service management	Yes	MEC only	No	
Sousa et al. [26] 2017		QoE-based scheduling strategies No		No	No	
Skorin-Kapov <i>et al.</i> [25], 2018 Petrangeli <i>et al.</i> [31]		QoE modeling, QoE monitoring and management [25], QoE- centric management of adaptive video streaming services [31]		ICN only [31], MEC only [25]	AR/VR & multisen- sory	
Barman and Martini [30] 2019		QoE modelling for HTTP adaptive video streaming	No	No	No	
Barakabitze et al. [36] 2019		Network slicing using SDN and NFV	Yes	Yes	No	
Our work	2019	(a) A tutorial on QoE modelling and assessment, QoE monitoring and measurement, QoE optimization and control; (b) a survey on QoE management in SDN and NFV, and (c) QoE management using emerging architectures and in new domains	Yes (both SDN and NFV)	Yes (MEC, fog/cloud computing and ICN)	Yes	

TABLE I
COMPARISON AMONG SURVEY PAPERS ON MULTICAST AND BROADCAST SERVICES

	[162]	[163]	[168]	[169]	This survey
Investigation of no-3GPP architectures (i.e., WLAN and WiMAX)		X	X		
Investigation of 3GPP-oriented solutions based on MBMS and MBSFN				X	X
Investigation of 3GPP-oriented solutions based on SC-PTM					X
Investigation of standardized mechanisms and methodologies	X		X	X	X
Advanced approaches for the physical layer	X	X	X	X	X
Advanced approaches for the MAC layer		X	X		X
Advanced approaches for the network layer		X			X
Advanced approaches for the transport layer		X			
Advanced approaches for the application layer		X			X
Advanced cross-layer approaches		X			X
Network architectures for multicast and broadcast services			X	X	X
Coding schema for multicast and broadcast services		X	X	X	X
Optimization algorithms for multicast and broadcast services	X				X

Techniques Approach		Reference	Description	Reference
		technology		works
MBMS in net- Enhancement and inte-		MBMS and	Analysis of architectures based on MBMS	[17]–[33]
work architec-	gration of MBMS into	MBSFN		
tures	different network archi-			
	tectures			
Cooperative	Adoption of cooperative	MBMS and	Multicasting is part of multi-hop cooperative	[34]-[43]
strategies	strategies (relay nodes	MBSFN	architectures, including D2D and M2M co-	
	and data forwarding)		operation	
Error	Adoption of coding tech-	MBMS and	FEC implementations at application and	[44]–[49]
correction	niques for error correc-	MBSFN	MAC layers, including transmission of re-	
	tion and data repair		dundant data, for error correction and data	
			repair purposes	
Scheduling	Time-multiplexing of	MBMS and	Scheduling techniques to increase power	[50]-[54]
of MBMS	MBMS services for	MBSFN	saving, throughput and robustness against	
services	battery saving purposes		BS failures	
Physical layer	Performance evaluation	MBMS and	Evaluation of MBMS performance in terms	[11], [13],
evaluation	of MBMS at physical	MBSFN	of SE, size and population of a MBSFN area	[55]–[63]
	layer			
Implementation	Validation of MBSFN	MBMS and	The MBSFN transmission in LTE and LTE-	[64], [65]
of LTE	transmission through	MBSFN	A environments is implemented according to	
environment	simulation/emulation		3GPP standards, through an implementation	
	tools		of eMBMS in LTE simulators and emulators	
Standard analy-	Analysis and evaluation	MBMS and	Evaluation of MBMS main functionalities	[12], [14],
sis and evalua-	of different aspects of	MBSFN	(SE, error protection, power consumption,	[66]–[70]
tion	the MBMS and MBSFN		transmission schema for service delivery,	
	standardization		etc.) according to 3GPP standard	
LTE	Performance evaluation	MBMS and	Analysis of MBMS performance, as regards	[71]–[74]
performance	of LTE multicasting	MBSFN	network dimensioning strategies and wire-	
evaluation			less communication frameworks, in different	

Table IV: State-of-the-art of different methods to reduce the explicit channel sounding overhead.

Scheme	Method	Advantage	Disadvantage	MAP-Co suitability
ni i co	φ Onty feedback [49]	Existing in 802.11ah with minor change in MAC protocols	This method only supports one data stream and does not reduce over- head significantly.	×
Enhanced explicit	Time domain channel feed- back [50]	Existing in 802.11ad/ay and over- head is lower	Need extra signalling to identify transpose and extra matrix.	Y
	Differential Given rotation [51]	Reducing overhead significantly in 802.11ax/be and 802.11ay	Need additional processing and can experience propagation errors.	x
	Variable angle optimization [52], [53]	Only designed for 802.11ax	Also requires additional processing and signaling.	~
New Schemes	Multiple component feedback [52]	Reduce feedback overhead	Requires to redesign MAC to change feedback sizes and indica- tion of intervals.	Y
	Codebook based feedback [54]	Well studied and reduced feedback overheadL	Require additional processing power and new design.	~
	Deep learning [55], [56]	Predicting CSI based on previous patterns can significantly reduce feedback overhead, making it a great fit for MAP-Co.	To store previously reported CSI, additional processing and storage are required. It may not be feasible for an MA-based architecture.	~

A Survey on Multi-AP Coordination Approaches over Emerging WLANs: Future Directions and Open Challenges

TABLE I EXISTING SURVEYS CONCERNING WI-FI-RELATED TOPICS AND ML MODELS

Network	Ref.	Main scope	Addressed Wi-Fi feature	Year
-	[19]	Large-scale network monitoring	Wi-Fi analytics	2020
	[20]	Quality indicators accounting for user satisfaction	Wi-Fi quality indicators	2020
	[21]			2020
	[22]			2019
Wi-Fi	[23]	Indoor localization	Application-oriented	2019
8	[24]			
	[25]	Human activity detection		2017
	[26]	Intervious detection	Wi-Fi security	
	[27]	Intrusion detection		
	[37]	Detection and identification of IoT devices	Identification of devices and security protection	2021
	[40]	Federated learning	Privacy protection	2021
	[39]	Applications of transfer learning in wireless networks		2021
	[9]	Performance improvement in a variety of wireless networks like HetNets, CRNs, IoTs, and M2M		2020
s .NET)	[28]	Performance improvement in the PHY/MAC/Network layers as well as novel networking concepts (MEC, SDN, NFV)	Insufficient details concerning Wi-Fi functionalities	
Wireless networks (IoT, CRN, M2M, MANET)	[38]	Optimization of communication and computing technologies of IoT systems		
/ireless /RN, M	[11]	ML models to support resource management, networking and localization in wireless networks	Power saving mechanisms for Wi-Fi infrastructure, indoor localization mechanisms	
V (IoT, C	[33]	Decision making and feature classification in CRNs	Collaborative coexistence of Wi-Fi networks with other tech- nologies, performance evaluation, dynamic channel selection	
	[34]	ML models to support cognitive radio capabilities	Collaborative coexistence of Wi-Fi networks with other technologies	2013
	[35]	ML models to support cognitive radio capabilities	Wi-Fi signal identification	2010

Area	Ref.	ML category	ML mechanisms	Year	Evaluation method	Application of ML	Novelty of approach	ML improvement
- - - -	[48]	RL	QL	2012	S	Select CW update rule	Apply ABP framework for configuring DCF	Better QoS metrics for voice/video flows
	[49]	RL	PDS	2015	T	Select backoff value	Apply PDS for configuring DCF	Higher throughput, faster convergence than QL
	[50]	SL	RF	2019	S	Select minimum CW value	Improve fairness, robust to selfish stations	Higher throughput and fairness, lower latency
	[51]	RL	QL	2019	S	Select CW value	Apply Q-learning in dense network scenario	Higher throughput
	[52]	SL	fixed-share	2019	S	Select CW value	Apply a fixed-share algorithm for configuring DCF	Higher throughput and fairness, lower latency
	[53]	RL	QL	2020	S	Select time slot for transmission	Stations self-organize into slot-based channel access	Higher throughput and lower latency
Channel access	[54]	SL	DT	2020	S	Set AIFS and CW values	Consider QoS requirements	Higher throughput for voice/video flows
(Section III-A)	[55]	RL	QL	2020	S	Select CW values	Consider QoS requirements	Higher throughput
(01111111111111111111111111111111111111	[56]	RL	QL	2020	S	Select time slot for transmission	Consider interference from non-ML based devices	Higher throughput than in cooperative setting
	[57]	RL	DQN, DDPG	2021	S	Select CW value	Apply two DRL variants for configuring DCF	Higher throughput, close to optimal
	[58]	RL	QL	2021	S	Select minimum CW value	Apply DQN with rainbow agent for configuring DCF	Higher fairness, close to optimal
	[59]	RL	DQL	2021	S	Select CW value	Apply FL for configuring DCF	Higher throughput than using only RL
_	[60]	RL	DQL, QNN	2021	S	Select time slot for transmission	Apply FL for configuring slotted transmissions	Higher throughput
	[61]	RL	multi-agent RL	2022	S	Select time slot for transmission	Apply multi-agent RL for random channel access scheme	Higher throughput and lower latency
	[62]	RL	SLA	2008	S+T	Select transmission rate	Apply iterative learning for rate selection	Higher throughput than three SoA methods
	[63]	SL	RF	2013	S	Select transmission rate	Apply the random forests method for rate selection	Higher throughput than three SoA methods
	[64]	SL	ANN, MLP	2013	S	Select transmission rate	Use number of stations, channel conditions, and traffic intensity as input	Higher throughput than two SoA methods
	[65]	RL	MAB	2016	S	Configure link parameters	Apply MAB for link adaptation	Higher throughput, lower packet loss and delay than three SoA methods
	[66]	SL	RF	2018	S	Classify channel type	Apply SL for channel classification	Higher spectral efficiency
Link adaptation,	[67]	SL	ANN	2020	E	Select transmission rate	Provide extensible rate selection framework	Higher throughput than three SoA methods
data rate selection (Section III-B)	[68]	SL	DNN	2020	E	Predict link-layer throughput	Apply SL for link adaptation	Higher throughput, lower packet loss and delay than three SoA methods
(section III-b) -	[69]	RL	TS	2020	S	Select guard interval	Apply TS for guard interval selection	Higher throughput, lower packet loss and delay vs static settings
	[70]	RL	SARSA	2020	S	Select transmission rate	Apply RL for rate selection in industrial settings	Higher throughput, lower delay than SOA method
	[71]	RL	particle filter	2020	S	Select transmission rate	Apply RL for 802.11ax rate selection	Higher throughput, lower delay than two SOA methods
	[72]	RL	QL	2021	S	Select transmission rate	Use packet timeouts to train RL model	Higher throughput than a SoA method
_	[73]	RL	DQN	2021	E	Select transmission rate	Apply DRL for rate selection	Higher throughput than two SoA methods