Strong duality data of type A and extended T-systems

Katsuyuki Naoi

Tokyo University of Agriculture and Technology

Advances in Cluster Algebras 2024, March 11, 2024

based on the preprint arXiv:2305.15681

Plan

Main Theorem

Mukhin–Young's extended T-systems are generalized to a general strong duality data of type A.

- Mukhin-Young's extended T-systems (what we generalize)
- Strong duality data and affine cuspidal modules (how we generalize)
- Main Theorem
- Proof (relations between the extended T-systems and Kashiwara crystals)

MY extended T-systems

 $U_q'(\mathfrak{g})$: quantum affine algebra with index set [0,n] and $q\in\mathbb{C}^{\times}$ not root of 1 (assoc. alg. over \mathbb{C} defined as a q-deformation of $U(\mathfrak{g})$, where g: affine Lie algebra, e.g. $g = g_0 \otimes \mathbb{C}[t^{\pm 1}] \oplus \mathbb{C}K$)

- ullet $\mathcal{C}_{\mathfrak{g}}$ is a monoidal category with \otimes and the trivial module 1
- Each $M \in \mathcal{C}_{\mathfrak{q}}$ has the right dual $\mathcal{D}(M)$ and the left dual $\mathcal{D}^{-1}(M)$

$$\left\{ \text{simples in } \mathscr{C}_{\mathfrak{g}} \right\} /_{\cong} \ \stackrel{1:1}{\leftrightarrow} \ \left\{ \boldsymbol{\pi}(u) = (\pi_1(u), \dots, \pi_n(u)) \mid \pi_i(u) \in 1 + u\mathbb{C}[u] \right\}.$$
 Drinfeld polynomials

Notations

 $U_q'(\mathfrak{g})$: quantum affine algebra with index set [0,n] and $q\in\mathbb{C}^{\times}$ not root of 1 (assoc. alg. over $\mathbb C$ defined as a q-deformation of $U(\mathfrak{g})$, where \mathfrak{g} : affine Lie algebra, e.g. $\mathfrak{g}=\mathfrak{g}_0\otimes\mathbb C[t^{\pm 1}]\oplus\mathbb CK$) $\mathscr{C}_{\mathfrak{g}}$: the cat. of f.d. $U_q'(\mathfrak{g})$ -mod. (of type 1)

- $\mathscr{C}_{\mathfrak{g}}$ is a monoidal category with \otimes and the trivial module 1 $\Rightarrow K(\mathscr{C}_{\mathfrak{g}})$ has a ring structure (Grothendieck ring)
- \bullet Each $M \in \mathscr{C}_{\mathfrak{g}}$ has the right dual $\mathscr{D}(M)$ and the left dual $\mathscr{D}^{-1}(M)$

```
Theorem (Chari-Pressley, 95)
```

```
 \left\{ \text{simples in } \mathscr{C}_{\mathfrak{g}} \right\} \big/_{\cong} \ \stackrel{1:1}{\leftrightarrow} \ \left\{ \boldsymbol{\pi}(u) = (\pi_1(u), \dots, \pi_n(u)) \mid \pi_i(u) \in 1 + u\mathbb{C}[u] \right\}.  Drinfeld polynomials
```

Main Theorem

Notations

 $U_q'(\mathfrak{g})$: quantum affine algebra with index set [0,n] and $q\in\mathbb{C}^{\times}$ not root of 1

(assoc. alg. over \mathbb{C} defined as a q-deformation of $U(\mathfrak{g})$,

where g: affine Lie algebra, e.g. $g = g_0 \otimes \mathbb{C}[t^{\pm 1}] \oplus \mathbb{C}K$)

 $\mathscr{C}_{\mathfrak{q}}$: the cat. of f.d. $U'_{\mathfrak{q}}(\mathfrak{g})$ -mod. (of type 1)

- ullet $\mathscr{C}_{\mathfrak{q}}$ is a monoidal category with \otimes and the trivial module 1 $\Rightarrow K(\mathscr{C}_{\mathfrak{a}})$ has a ring structure (**Grothendieck ring**)
- Each $M \in \mathcal{C}_{\mathfrak{a}}$ has the right dual $\mathcal{D}(M)$ and the left dual $\mathcal{D}^{-1}(M)$

Theorem (Chari-Pressley, 95)

 $\{\text{simples in }\mathscr{C}_{\mathfrak{g}}\}/_{\simeq} \stackrel{1:1}{\leftrightarrow} \{\pi(u) = (\pi_1(u), \dots, \pi_n(u)) \mid \pi_i(u) \in 1 + u\mathbb{C}[u]\}.$

Drinfeld polynomials

For $i \in [1, n]$ and $k \in \mathbb{Z}$, set

$$Y_{i,k} = Y_{i,k}(u) := (1, \dots, 1 - q^k u, \dots, 1) \in (1 + u\mathbb{C}[u])^{\times n}$$

$$\leadsto$$
 For a sequence $((i_1,k_1),\ldots,(i_p,k_p))\in([1,n]\times\mathbb{Z})^{\times p}$,

$$\prod_{r=1}^r Y_{i_r,k_r} = (\pi_1(u),\dots,\pi_p(u)), \text{ where } \pi_i(u) = \prod_{r;i_r=i} (1-q^{k_r}u)$$

$$\leadsto$$
 simple module $L(\prod Y_{i_1,k_1})$ is defined (monomial parametrization)

A simple module $L(Y_{i,k})$ is called a **fundamental module**.

T-systems

For general affine \mathfrak{g} , the T-systems are certain relations in $K(\mathscr{C}_{\mathfrak{g}})$ for the tensor product of Kirillov-Reshetikhin (KR) modules $L(\prod_{k=1}^p Y_{i,r+2d_ik})$:

 $\underline{\mathsf{Ex.}}\ (T\text{-systems for untwisted, simply-laced }\mathfrak{g})$

$$\left[L\left(\prod_{k=1}^{p-1} Y_{i,r+2k}\right) \otimes L\left(\prod_{k=2}^{p} Y_{i,r+2k}\right)\right]
= \left[L\left(\prod_{k=1}^{p} Y_{i,r+2k}\right) \otimes L\left(\prod_{k=2}^{p-1} Y_{i,r+2k}\right)\right] + \left[\bigotimes_{c_{ij}=-1} L\left(\prod_{k=1}^{p-1} Y_{j,r+2k+1}\right)\right]$$

For g of type $A_n^{(1)}$ and $B_n^{(1)}$, Mukhin and Young introduced in '12 similar relations (extended T-systems) for prime snake modules (which we will recall next). These contain all T-systems of these types.

T-systems

For general affine \mathfrak{g} , the T-systems are certain relations in $K(\mathscr{C}_{\mathfrak{g}})$ for the tensor product of Kirillov-Reshetikhin (KR) modules $L(\prod_{k=1}^p Y_{i,r+2d_ik})$:

 $\underline{\mathsf{Ex.}}\ (T\text{-systems for untwisted, simply-laced }\mathfrak{g})$

$$\left[L\left(\prod_{k=1}^{p-1} Y_{i,r+2k}\right) \otimes L\left(\prod_{k=2}^{p} Y_{i,r+2k}\right)\right]
= \left[L\left(\prod_{k=1}^{p} Y_{i,r+2k}\right) \otimes L\left(\prod_{k=2}^{p-1} Y_{i,r+2k}\right)\right] + \left[\bigotimes_{c_{ij}=-1} L\left(\prod_{k=1}^{p-1} Y_{j,r+2k+1}\right)\right]$$

For $\mathfrak g$ of type $A_n^{(1)}$ and $B_n^{(1)}$, Mukhin and Young introduced in '12 similar relations (extended T-systems) for prime snake modules (which we will recall next). These contain all T-systems of these types.

Main Theorem

Snake modules in type $A_n^{(1)}$

Assume \mathfrak{g} is of type $A_n^{(1)}$:

MY extended T-systems

Set $J_A := \{(i, k) \mid k \equiv i \pmod{2}\} \subseteq [1, n] \times \mathbb{Z}$

$$\overset{\text{def}}{\Leftrightarrow} \text{ for } 1 \leq \forall r
$$|i-i'| + 2 \leq k-k'$$$$

Snake modules in type $A_n^{(1)}$

Assume $\mathfrak g$ is of type $A_n^{(1)}$:

Set $J_A := \{(i, k) \mid k \equiv i \pmod{2}\} \subseteq [1, n] \times \mathbb{Z}$

Definition

A sequence $\boldsymbol{\xi} = \big((i_1,k_1),\ldots,(i_p,k_p)\big) \in J_A^p$ is a snake (prime snake)

$$\overset{\text{def}}{\Leftrightarrow} \text{ for } 1 \leq {}^\forall r
$$|i-i'| + 2 \leq k-k' \, (\leq \min\{i+\ell',2n+2-i-\ell'\})$$$$

Snake modules in type $A_n^{(1)}$

Assume \mathfrak{g} is of type $A_n^{(1)}$:

MY extended T-systems

Set $J_A := \{(i, k) \mid k \equiv i \pmod{2}\} \subseteq [1, n] \times \mathbb{Z}$

Definition

A sequence $\boldsymbol{\xi} = ((i_1, k_1), \dots, (i_p, k_p)) \in J_A^p$ is a snake (prime snake)

$$\stackrel{\mathrm{def}}{\Leftrightarrow} \text{ for } 1 \leq {}^\forall r$$

$$|i-i'|+2 \le k-k'$$
 ($\le \min\{i+i', 2n+2-i-i'\}$)

Snake modules in type $A_n^{(1)}$

Assume $\mathfrak g$ is of type $A_n^{(1)}$:

Set $J_A := \{(i, k) \mid k \equiv i \pmod{2}\} \subseteq [1, n] \times \mathbb{Z}$

Definition

A sequence $\boldsymbol{\xi} = \big((i_1, k_1), \dots, (i_p, k_p)\big) \in J_A^p$ is a snake (prime snake)

$$\stackrel{\mathrm{def}}{\Leftrightarrow} \text{ for } 1 \leq {}^\forall r$$

$$|i-i'|+2 \le k-k' \ (\le \min\{i+i', 2n+2-i-i'\})$$

$$\pmb{\xi} = \big((i_1,k_1),\ldots,(i_p,k_p)\big) \colon \mathsf{snake} \ \Rightarrow \ L(\pmb{\xi}) = L(\prod_{r=1}^r Y_{i_r,k_r}) \colon \mathsf{snake} \ \mathsf{module}$$

00000000

• ξ : prime $\Leftrightarrow L(\xi)$: prime (i.e. $L(\xi) \cong M \otimes N \Rightarrow M \cong 1$ or $N \cong 1$)

$$\bullet \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\boldsymbol{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\boldsymbol{\xi}_{\mathrm{H}})\otimes L(\boldsymbol{\xi}_{\mathrm{L}})]$$

$$\circ \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\boldsymbol{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\boldsymbol{\xi}_{\mathrm{H}})\otimes L(\boldsymbol{\xi}_{\mathrm{L}})]$$

• • · · ·

$$\pmb{\xi} = \big((i_1,k_1),\ldots,(i_p,k_p)\big) \colon \mathsf{snake} \ \Rightarrow \ L(\pmb{\xi}) = L(\prod_{r=1}^r Y_{i_r,k_r}) \colon \mathsf{snake} \ \mathsf{module}$$

prime snake $\xi \rightsquigarrow$ two neighboring snakes $\xi_{\rm H}$ (\star), $\xi_{\rm L}$ (\star)

MY extended T-systems

00000000

• ξ : prime $\Leftrightarrow L(\xi)$: prime (i.e. $L(\xi) \cong M \otimes N \Rightarrow M \cong 1$ or $N \cong 1$)

$$\bullet \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\boldsymbol{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\boldsymbol{\xi}_{\mathrm{H}})\otimes L(\boldsymbol{\xi}_{\mathrm{L}})]$$
simple

• • · · ·

$$\pmb{\xi} = \big((i_1,k_1),\dots,(i_p,k_p)\big) \colon \mathsf{snake} \ \Rightarrow \ L(\pmb{\xi}) = L(\prod_{r=1}^r Y_{i_r,k_r}) \colon \mathsf{snake} \ \mathsf{module}$$

prime snake $\xi \leadsto$ two **neighboring snakes** ξ_{H} (\star), ξ_{L} (\star)

Theorem (MY12)

- ξ : prime $\Leftrightarrow L(\xi)$: prime (i.e. $L(\xi) \cong M \otimes N \Rightarrow M \cong \mathbf{1}$ or $N \cong \mathbf{1}$)
- $\bullet \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\pmb{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\pmb{\xi}_{\mathrm{H}})\otimes L(\pmb{\xi}_{\mathrm{L}})]$

Rem. KR module \Leftrightarrow straight snake

• • ..

$$0 \longrightarrow 0 \longrightarrow J_E$$

$$J_B = \{(i,k) \mid k \equiv \delta_{in} \pmod{2}\} \subseteq [1,n] \times \mathbb{Z}$$

• $\boldsymbol{\xi}$: prime $\Leftrightarrow L(\boldsymbol{\xi})$: prime

$$\bullet \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\boldsymbol{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\boldsymbol{\xi}_{\mathrm{H}})\otimes L(\boldsymbol{\xi}_{\mathrm{L}})]$$

$$\underbrace{\overset{\circ}{\underset{1}{\longrightarrow}}^{0}}_{1} \underbrace{\overset{\circ}{\underset{2}{\longrightarrow}}}_{n-1} \underbrace{\overset{\circ}{\underset{n}{\longrightarrow}}}_{n} J_{B} = \{(i,k) \mid k \equiv \delta_{in} \; (\text{mod } 2)\} \subseteq [1,n] \times \mathbb{Z}$$

$$oldsymbol{\xi} = ig((i_1,k_1),\ldots,(i_p,k_p)ig)$$
: (prime) snake

Theorem (MY12

•
$$\xi$$
: prime $\Leftrightarrow L(\xi)$: prime

$$\bullet \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\boldsymbol{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\boldsymbol{\xi}_{\mathrm{H}})\otimes L(\boldsymbol{\xi}_{\mathrm{L}})]$$
simple

$$\underbrace{\overset{\circ}{\underset{1}{\longrightarrow}}\overset{\circ}{\underset{2}{\longrightarrow}}}_{n-1}\overset{\circ}{\underset{n}{\longrightarrow}} \quad J_{B}=\{(i,k)\mid k\equiv \delta_{in} \text{ (mod 2)}\}\subseteq [1,n]\times \mathbb{Z}$$

$$m{\xi} = ig((i_1, k_1), \dots, (i_p, k_p)ig)$$
: prime snake \leadsto neighboring snakes $m{\xi}_{
m H}$, $m{\xi}_{
m L}$

Theorem (MY12)

• ξ : prime $\Leftrightarrow L(\xi)$: prime

$$\bullet \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\boldsymbol{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\boldsymbol{\xi}_{\mathrm{H}})\otimes L(\boldsymbol{\xi}_{\mathrm{L}})]$$
simple

$$\underbrace{\overset{\circ}{\underset{1}{\longrightarrow}}^{0}}_{1} \underbrace{\overset{\circ}{\underset{2}{\longrightarrow}}}_{n-1} \underbrace{\overset{\circ}{\underset{n}{\longrightarrow}}}_{n} \quad J_{B} = \{(i,k) \mid k \equiv \delta_{in} \; (\mathsf{mod} \; 2)\} \subseteq [1,n] \times \mathbb{Z}$$

$$m{\xi} = ig((i_1, k_1), \dots, (i_p, k_p)ig)$$
: prime snake \leadsto neighboring snakes $m{\xi}_{
m H}$, $m{\xi}_{
m L}$

Theorem (MY12)

MY extended T-systems

- ξ : prime $\Leftrightarrow L(\xi)$: prime
- $\bullet \ [L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\pmb{\xi})\otimes L(\prod_{r=2}^{r}Y_{i_r,k_r})] + [L(\pmb{\xi}_{\mathrm{H}})\otimes L(\pmb{\xi}_{\mathrm{L}})]$

Extended T-systems

$$[L(\prod_{r=1}^{p-1}Y_{i_r,k_r})\otimes L(\prod_{r=2}^{p}Y_{i_r,k_r})] = [L(\pmb{\xi})\otimes L(\prod_{r=2}^{p-1}Y_{i_r,k_r})] + [L(\pmb{\xi}_{\mathrm{H}})\otimes L(\pmb{\xi}_{\mathrm{L}})]$$

This was proved by showing that the q-characters of both sides coincide.

Questions

- Are there other families of simple modules satisfying these relations?
- Why snake modules satisfy these relations? In other words, where the prime snake condition for highest monomials come from?

Relations with cluster algebras

Theorem (Hernandez–Leclerc '10, Kashiwara–Kim–Oh–Park '22)

A subcat. $\mathscr{C}_{\mathfrak{g}}^-\subseteq\mathscr{C}_{\mathfrak{g}}$ is a monoidal categorification of a cluster alg. \mathscr{A} , i.e., we have

- $\bullet \psi \colon \mathscr{A} \xrightarrow{\sim} K(\mathscr{C}_{\mathfrak{g}}^{-}).$
- $② \ \psi(\mathsf{cluster} \ \mathsf{var}.) \subseteq (\mathsf{prime} \ \mathsf{real} \ \mathsf{simple} \ \mathsf{mod}. \ \mathsf{in} \ \mathscr{C}_{\mathfrak{g}}^{-}). \quad (M: \ \mathsf{real} \ \overset{\mathsf{def}}{\Leftrightarrow} \ M \otimes M: \ \mathsf{simple})$

$$\Rightarrow xy = \prod_i z_i + \prod_i w_i \text{ (mutation in } \mathscr{A}\text{)}$$
$$\Rightarrow [\psi(x) \otimes \psi(y)] = \left[\bigotimes_i \psi(z_i)\right] + \left[\bigotimes_i \psi(w_i)\right] \text{ (relations in } K(\mathscr{C}_{\mathfrak{a}}^-)\text{)}.$$

The initial seed corresponds to KR modules, and T-systems are mutations.

It is strongly expected that extended T-systems also come from mutations (though this has not been proved so far). In fact, it is known that all prime snake modules correspond to cluster variables [Duan-Li-Luo, 19].

In this view, extended T-systems are mutations having distinguished combinatorial description.

Main Theorem

Mukhin–Young's extended T-systems are generalized to a general strong duality data of type A.

- Mukhin-Young's extended T-systems (what we generalize)
- Strong duality data and affine cuspidal modules [KKOP]
- Main Theorem
- Proof (relations between the extended T-systems and Kashiwara crystals)

invariants $\mathfrak{d}(M,N)$

For simple modules $M,N\in\mathscr{C}_{\mathfrak{g}},$ there is an isomorphism

$$R_{M,N}^{ ext{norm}} \colon \mathbb{C}(z) \otimes_{\mathbb{C}[z^{\pm 1}]} (M \otimes N[z^{\pm 1}]) \stackrel{\sim}{ o} \mathbb{C}(z) \otimes_{\mathbb{C}[z^{\pm 1}]} (N[z^{\pm 1}] \otimes M)$$
(normalized R -matrix)

<u>Rem.</u> An isom. $M \otimes N \xrightarrow{\sim} N \otimes M$ does not necessarily exist in $\mathscr{C}_{\mathfrak{g}}$.

Definition

For simple modules M,N of $\mathscr{C}_{\mathfrak{g}}$, define $\mathfrak{d}(M,N)\in\mathbb{Z}_{\geq 0}$ by

$$\mathfrak{d}(M,N) :=$$

(deg. of the pole of
$$R_{N,N}^{\rm norm}$$
 at $z=1)+({\rm deg.}$ of the pole of $R_{N,M}^{\rm norm}$ at $z=1$

Intuitively, $\mathfrak{d}(M,N)$ measures how far from the existence of an isomorphism $M\otimes N\stackrel{\sim}{\to} N\otimes M.$

invariants $\mathfrak{d}(M,N)$

For simple modules $M,N\in\mathscr{C}_{\mathfrak{g}},$ there is an isomorphism

$$R_{M,N}^{\mathrm{norm}} \colon \mathbb{C}(z) \otimes_{\mathbb{C}[z^{\pm 1}]} (M \otimes N[z^{\pm 1}]) \stackrel{\sim}{\to} \mathbb{C}(z) \otimes_{\mathbb{C}[z^{\pm 1}]} (N[z^{\pm 1}] \otimes M)$$

(normalized R-matrix)

 $\underline{\mathsf{Rem.}} \ \ \mathsf{An isom.} \ M \otimes N \overset{\sim}{\to} N \otimes M \ \mathsf{does not necessarily exist in} \ \mathscr{C}_{\mathfrak{g}}.$

Definition

For simple modules M,N of $\mathscr{C}_{\mathfrak{g}}$, define $\mathfrak{d}(M,N)\in\mathbb{Z}_{\geq 0}$ by

$$\mathfrak{d}(M,N) :=$$

(deg. of the pole of $R_{M,N}^{\rm norm}$ at $z=1)+({\rm deg.}$ of the pole of $R_{N,M}^{\rm norm}$ at z=1)

Intuitively, $\mathfrak{d}(M,N)$ measures how far from the existence of an isomorphism $M\otimes N\stackrel{\sim}{\to} N\otimes M.$

strong duality data

Fix Cartan matrix $C=(c_{ij})_{i,j\in I}$ of finite ADE type (irrelevant to the type of \mathfrak{g})

Definition

A family of real simple modules $\mathcal{D} = \{L_i\}_{i \in I} \subseteq \mathscr{C}_{\mathfrak{g}}$ is called a **strong duality** datum (associated with C) if

- $b(L_i, \mathcal{D}^k L_i) = \delta_{k,0} \quad (\forall i \in I, \forall k \in \mathbb{Z})$
- $(L_i, \mathcal{D}^k L_j) = -c_{ij}(\delta_{k,1} + \delta_{k,-1}) \quad (i \neq j, \forall k \in \mathbb{Z}).$

strong duality data

Fix Cartan matrix $C=(c_{ij})_{i,j\in I}$ of finite ADE type (irrelevant to the type of \mathfrak{g})

Definition

A family of real simple modules $\mathcal{D}=\{L_i\}_{i\in I}\subseteq\mathscr{C}_{\mathfrak{g}}$ is called a **strong duality** datum (associated with C) if

- \bullet $\mathfrak{d}(L_i, \mathscr{D}^k L_i) = \delta_{k,0} \quad (\forall i \in I, \forall k \in \mathbb{Z}),$
- $(L_i, \mathcal{D}^k L_j) = -c_{ij}(\delta_{k,1} + \delta_{k,-1}) \quad (i \neq j, \forall k \in \mathbb{Z}).$

Proposition (KKOP)

 $\mathcal{D} = \{L_i\}_{i \in I} \subseteq \mathscr{C}_{\mathfrak{q}}$: a strong duality datum associated with C

$$\Rightarrow {}^{\exists!}\mathbb{Z}\text{-alg. hom. }\Phi_{\mathcal{D}}\colon U_q^-(\mathfrak{g}_C)^\vee_{\mathbb{Z}}\to K(\mathscr{C}_{\mathfrak{g}})\text{ s.t. }\Phi_{\mathcal{D}}(f_i)=[L_i]\text{ }(i\in I)\text{, }\Phi_{\mathcal{D}}(q)=1.$$

Moreover, $\Phi_{\mathcal{D}}$ induces an inj. map from the **upper global basis** $\mathbf{B}^{\mathrm{up}} \subseteq U_q^-(\mathfrak{g}_C)_{\mathbb{Z}}^{\vee}$ to the isom. classes of simple modules in $\mathscr{C}_{\mathfrak{g}}$.

Rem. $\Phi_{\mathcal{D}}$ is defined by the composition of the following two hom.:

•
$$U_q^-(\mathfrak{g}_C)_{\mathbb{Z}}^{\vee} \stackrel{\sim}{\to} K(R^C\mathrm{-gmod})$$
 (R^C : quiver Hecke algebra) [Khovanov–Lauda, Rouquier

• $K(R^C - \operatorname{gmod}) \to K(\mathscr{C}_{\mathfrak{g}})$, which is induced from the quantum affine Schur-Weyl duality functor $R^C - \operatorname{gmod} \to \mathscr{C}_{\mathfrak{g}}$.

Proposition (KKOP)

 $\mathcal{D} = \{L_i\}_{i \in I} \subseteq \mathscr{C}_{\mathfrak{g}}$: a strong duality datum associated with C

$$\Rightarrow {}^{\exists!}\mathbb{Z}\text{-alg. hom. }\Phi_{\mathcal{D}}\colon U_q^-(\mathfrak{g}_C)^\vee_{\mathbb{Z}}\to K(\mathscr{C}_{\mathfrak{g}})\text{ s.t. }\Phi_{\mathcal{D}}(f_i)=[L_i]\text{ ($i\in I$), }\Phi_{\mathcal{D}}(q)=1.$$

Moreover, $\Phi_{\mathcal{D}}$ induces an inj. map from the **upper global basis** $\mathbf{B}^{\mathrm{up}} \subseteq U_q^-(\mathfrak{g}_C)_{\mathbb{Z}}^\vee$ to the isom. classes of simple modules in $\mathscr{C}_{\mathfrak{g}}$.

Rem. $\Phi_{\mathcal{D}}$ is defined by the composition of the following two hom.:

- $\bullet \ U_q^-(\mathfrak{g}_C)^\vee_\mathbb{Z} \overset{\sim}{\to} K(R^C\mathrm{-gmod}) \qquad \text{$(R^C$: quiver Hecke algebra)$}$ [Khovanov–Lauda, Rouquier]
- $K(R^C \operatorname{gmod}) \to K(\mathscr{C}_{\mathfrak{g}})$, which is induced from the quantum affine Schur-Weyl duality functor $R^C \operatorname{gmod} \to \mathscr{C}_{\mathfrak{g}}$.

affine cuspidal modules

 \mathcal{D} : strong duality datum associated with C

$$\begin{array}{cccc} \leadsto \Phi_{\mathcal{D}} \colon U_q^-(\mathfrak{g}_C)_{\mathbb{Z}}^\vee & \to & K(\mathscr{C}_{\mathfrak{g}}) \\ & \cup & & \cup \\ & \mathbf{B}^{\mathrm{up}} & & \{\mathsf{simple mod.}\}/_{\cong} \end{array}$$

Fix a reduced word $i=(i_1,\ldots,i_N)$ of the longest el. w_0 of W_C . For $1\leq j\leq N$,

$$U_q^-(\mathfrak{g}_C)^\vee \ni f_{\beta_j} := T_{i_1} \cdots T_{i_{j-1}}(f_{i_j}) \xrightarrow{\text{normalize}} f_{\beta_j}^\vee \in \mathbf{B}^{\mathrm{up}}$$
: dual root vector $(T_i: \text{Lusztig's braid group action})$

Rem. $f_{\beta_s}^{\vee}$ depends on the choice of i.

Definition

 f_{β_j} depends on the energy v

Define the affine cuspidal modules $\{S_j = S_j^{\mathcal{D},i} \mid j \in \mathbb{Z}\} \subseteq \mathscr{C}_{\mathfrak{g}}$ as follows:

- (i) if $1 \leq j \leq N$, S_j is the image of $f_{\beta_i}^{\vee}$ under $\Phi_{\mathcal{D}}$, and
- (ii) set $S_{j\pm N}=\mathscr{D}^{\mp 1}S_j$ for all $j\in\mathbb{Z}.$

affine cuspidal modules

 \mathcal{D} : strong duality datum associated with C

$$\begin{array}{ccc} \leadsto \Phi_{\mathcal{D}} \colon U_q^-(\mathfrak{g}_C)_{\mathbb{Z}}^\vee & \to & K(\mathscr{C}_{\mathfrak{g}}) \\ & \cup & & \cup \\ & \mathbf{B}^{\mathrm{up}} & \{\mathsf{simple mod.}\}/_{\cong} \end{array}$$

Fix a reduced word $i=(i_1,\ldots,i_N)$ of the longest el. w_0 of W_C . For $1\leq j\leq N$,

$$U_q^-(\mathfrak{g}_C)^\vee \ni f_{\beta_j} := T_{i_1} \cdots T_{i_{j-1}}(f_{i_j}) \stackrel{\text{normalize}}{\longrightarrow} f_{\beta_j}^\vee \in \mathbf{B}^{\mathrm{up}}$$
: dual root vector

 $(T_i$: Lusztig's braid group action)

Rem. $f_{\beta_j}^{\vee}$ depends on the choice of i.

Definition

Define the affine cuspidal modules $\{S_j = S_j^{\mathcal{D},i} \mid j \in \mathbb{Z}\} \subseteq \mathscr{C}_{\mathfrak{g}}$ as follows:

- (i) if $1 \leq j \leq N$, S_j is the image of $f_{\beta_j}^{\vee}$ under $\Phi_{\mathcal{D}}$, and
- (ii) set $S_{j\pm N}=\mathscr{D}^{\mp 1}S_j$ for all $j\in\mathbb{Z}.$

Examples

(1) Assume $\mathfrak{g}=\widehat{\mathfrak{sl}}_{n+1}$ (type $A_n^{(1)}$).

$$\mathcal{D}^A:=\{L(Y_{1,-2j+1})\mid 1\leq j\leq n\}\subseteq\mathscr{C}_{\widehat{\mathfrak{sl}}_{n+1}}$$
: SDD of type A_n

$$i^A := (1, \dots, n/1, \dots, n-1/\dots/1, 2/1)$$

$$S_1 = \Phi_{\mathcal{D}}(f_1) = L(Y_{1,-1}), S_2 = \Phi_{\mathcal{D}}(f_{\alpha_1 + \alpha_2}^{\vee}) = L(Y_{2,-2}), \dots,$$

$$S_{N+1} = \mathcal{D}^{-1}(S_1) = L(Y_{n,-n-2}), \dots \leadsto \{S_j^{\mathcal{D}^A, i^A} | j \in \mathbb{Z}\} = \{L(Y_{i,k}) \mid k \equiv i \pmod{2}\}$$

$$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$$

(2) Assume
$$\mathfrak{g} = \mathfrak{so}_n$$
 with odd n (type D_{n_0} with $n = 2n_0 = 1$

$$L_{j} = \begin{cases} L(Y_{1,-4j+2}) & (j < n_{0}), \quad L(Y_{n_{0},-3n+2}) & (j = n_{0}) \\ L(Y_{n_{0},-n-2}) & (j = n_{0} + 1), \quad L(Y_{1,-4j+6}) & (j > n_{0}) \end{cases}$$

$$\leadsto \mathcal{D}^B := \{L_j \mid 1 \leq j \leq n\} \subseteq \mathscr{C}_{\widehat{\mathfrak{so}}_n} \colon \mathsf{SDD} \text{ of type } A_n$$

$$i^B := (1, \dots, n/n_0/1, \dots, n-1/n_0/\dots/1, \dots, n_0/1, \dots, n_0-2/\dots/12/1)$$

Rem. For general g, fund. mod. $L(Y_{i,k})$ are ACM assoc. with suitable \mathcal{D}, i .

Examples

(1) Assume $\mathfrak{g} = \widehat{\mathfrak{sl}}_{n+1}$ (type $A_n^{(1)}$)

$$\mathcal{D}^A:=\{L(Y_{1,-2j+1})\mid 1\leq j\leq n\}\subseteq \mathscr{C}_{\widehat{\mathfrak{sl}}_{n+1}}\colon \operatorname{SDD} \text{ of type } A_n$$

$$i^A := (1, \dots, n/1, \dots, n-1/\dots/1, 2/1)$$

$$\hookrightarrow \ldots, S_1 = \Psi_{\mathcal{D}}(J_1) = L(Y_{1,-1}), S_2 = \Psi_{\mathcal{D}}(J_{\alpha_1 + \alpha_2}) = L(Y_{2,-2}), \ldots,$$

$$S_{N+1} = \mathcal{G}^{-1}(S_1) = L(Y_{n,-n-2}), \dots \leadsto \{S_j^{-1} \mid j \in \mathbb{Z}\} = \{L(Y_{i,k}) \mid k \equiv i \pmod 2\}$$

(2) Assume $\mathfrak{g} = \widehat{\mathfrak{so}}_n$ with odd n (type $B_{n_0}^{(1)}$ with $n=2n_0-1$).

$$L_{j} = \begin{cases} L(Y_{1,-4j+2}) & (j < n_{0}), \quad L(Y_{n_{0},-3n+2}) & (j = n_{0}) \\ L(Y_{n_{0},-n-2}) & (j = n_{0} + 1), \quad L(Y_{1,-4j+6}) & (j > n_{0}) \end{cases}$$

$$\leadsto \mathcal{D}^B := \{L_j \mid 1 \leq j \leq n\} \subseteq \mathscr{C}_{\widehat{\mathfrak{so}}_n} \colon \mathsf{SDD} \text{ of } \underline{\mathsf{type}} \ A_n$$

$$i^B := (1, \dots, n/n_0/1, \dots, n-1/n_0/\dots/1, \dots, n_0/1, \dots, n_0-2/\dots/12/1)$$

$$\rightsquigarrow \{S_j^{\mathcal{D}^B, \mathbf{i}^B} \mid j \in \mathbb{Z}\} = \{L(Y_{i,k}) \mid k \equiv \delta_{i,n_0} \pmod{2}\}$$

Rem. For general \mathfrak{g} , fund. mod. $L(Y_{i,k})$ are ACM assoc. with suitable $\mathcal{D}, m{i}$.

Examples

(1) Assume $\mathfrak{g} = \widehat{\mathfrak{sl}}_{n+1}$ (type $A_n^{(1)}$)

$$\mathcal{D}^A:=\{L(Y_{1,-2j+1})\mid 1\leq j\leq n\}\subseteq \mathscr{C}_{\widehat{\mathfrak{sl}}_{n+1}}\colon \operatorname{SDD} \text{ of type } A_n$$

$$i^A := (1, \dots, n/1, \dots, n-1/\dots/1, 2/1)$$

$$C = Q^{-1}(C) + I(V) + C = Q^{D^A, i^A} + i \in \mathbb{Z}$$

$$(I(V) + k = i \pmod{2})$$

(2) Assume
$$a = \widehat{\mathfrak{so}}_n$$
 with odd n (type $B_{n0}^{(1)}$ with $n = 2n_0 - 1$).

$$L_{j} = \begin{cases} L(Y_{1,-4j+2}) \ (j < n_{0}), & L(Y_{n_{0},-3n+2}) \ (j = n_{0}) \\ L(Y_{n_{0},-n-2}) \ (j = n_{0} + 1), & L(Y_{1,-4j+6}) \ (j > n_{0}) \end{cases}$$

$$ightsquigarrow \mathcal{D}^B := \{L_j \mid 1 \leq j \leq n\} \subseteq \mathscr{C}_{\widehat{\mathfrak{so}}_n}$$
: SDD of type A_n

$$i^B := (1, \dots, n/n_0/1, \dots, n-1/n_0/\dots/1, \dots, n_0/1, \dots, n_0-2/\dots/12/1)$$

$$\rightsquigarrow \{S_j^{\mathcal{D}^{\mathcal{B}}, i^{\mathcal{B}}} \mid j \in \mathbb{Z}\} = \{L(Y_{i,k}) \mid k \equiv \delta_{i,n_0} \pmod{2}\}$$

Rem. For general \mathfrak{g} , fund. mod. $L(Y_{i,k})$ are ACM assoc. with suitable \mathcal{D}, i .

Main Theorem

Mukhin-Young's extended T-systems are generalized to a general strong duality data of type A.

- Mukhin-Young's extended T-systems (what we generalize)
- Strong duality data and affine cuspidal modules [KKOP]
- Main Theorem
- lacktriangledown Proof (relations between the extended T-systems and Kashiwara crystals)

Prior work for T-systems by [KKOP]

 $\mathcal{D}\subseteq\mathscr{C}_{\mathfrak{g}}$: SDD of arbitrary type, $~~\pmb{i}$: arbitrary reduced word of the longest el. w_0 ,

$$\leadsto \{S_j = S_j^{\mathcal{D}, i} \mid j \in \mathbb{Z}\}$$
: the associated affine cuspidal modules

A family of simple modules $\{M_i[a,b] \mid i \in I, a < b\}$ was defined, where

$$M_i[a,b] := \operatorname{hd}(S_{r_1} \otimes \cdots \otimes S_{r_p})$$
 with a suitable seq. $r_1 < r_2 < \cdots < r_p$ of integers

Fact In the case where $\{S_j\}$ are fundamental modules,

$$M_i[a,b] = \operatorname{hd}(L(Y_{i,r+2}) \otimes \cdots \otimes L(Y_{i,r+2k})) \cong L(\prod_{k=1}^r Y_{i,r+2k})$$
: KR modules.

Theorem (KKOP)

$$0 \to \bigotimes_{j; c_{ij} = -1} M_j[a+1, b-1] \to M_i[a, b-1] \otimes M_i[a+1, b] \to M_i[a, b] \otimes M_i[a+1, b-1] \to 0$$

- The first and the third terms are both simple.
- \rightsquigarrow T-systems as the special cases of KR modules

Prior work for T-systems by [KKOP]

 $\mathcal{D}\subseteq\mathscr{C}_{\mathfrak{g}}$: SDD of arbitrary type, $m{i}$: arbitrary reduced word of the longest el. w_0 ,

$$\leadsto \{S_j = S_j^{\mathcal{D}, i} \mid j \in \mathbb{Z}\}$$
: the associated affine cuspidal modules

A family of simple modules $\{M_i[a,b] \mid i \in I, \ a < b\}$ was defined, where

$$M_i[a,b] := \operatorname{hd}(S_{r_1} \otimes \cdots \otimes S_{r_p})$$
 with a suitable seq. $r_1 < r_2 < \cdots < r_p$ of integers.

Fact In the case where $\{S_j\}$ are fundamental modules,

$$M_i[a,b] = \operatorname{hd}(L(Y_{i,r+2}) \otimes \cdots \otimes L(Y_{i,r+2k})) \cong L(\prod_{k=1}^r Y_{i,r+2k})$$
: KR modules.

Theorem (KKOP)

$$0 \to \bigotimes_{j; c_{ij} = -1} M_j[a+1, b-1] \to M_i[a, b-1] \otimes M_i[a+1, b] \to M_i[a, b] \otimes M_i[a+1, b-1] \to 0$$

The first and the third terms are both simple.

 \rightsquigarrow T-systems as the special cases of KR modules

Prior work for T-systems by [KKOP]

 $\mathcal{D}\subseteq\mathscr{C}_{\mathfrak{g}}$: SDD of arbitrary type, $\quad \pmb{i}$: arbitrary reduced word of the longest el. w_0 ,

 $\leadsto \{S_j = S_j^{\mathcal{D},i} \mid j \in \mathbb{Z}\}$: the associated affine cuspidal modules

A family of simple modules $\{M_i[a,b] \mid i \in I, \ a < b\}$ was defined, where

 $M_i[a,b] := \operatorname{hd}(S_{r_1} \otimes \cdots \otimes S_{r_p})$ with a suitable seq. $r_1 < r_2 < \cdots < r_p$ of integers.

Fact In the case where $\{S_j\}$ are fundamental modules,

$$M_i[a,b] = \operatorname{hd}(L(Y_{i,r+2}) \otimes \cdots \otimes L(Y_{i,r+2k})) \cong L(\prod_{k=1}^r Y_{i,r+2k})$$
: KR modules.

Theorem (KKOP)

$$0 \to \bigotimes_{j; c_{ij} = -1} M_j[a+1, b-1] \to M_i[a, b-1] \otimes M_i[a+1, b] \to M_i[a, b] \otimes M_i[a+1, b-1] \to 0$$

- The first and the third terms are both simple.
- \leadsto T-systems as the special cases of KR modules

MY extended T-systems

Setting $\mathcal{D} \in \mathscr{C}_{\mathfrak{a}}$: a strong duality datum of type A_n , $X \in \{A, B\}$

 i^X : the reduced word defined in the previous slide

(i.e.
$${\pmb i}^A=(1,\ldots,n/\ldots/1,2/1)$$
, ${\pmb i}^B=(1,\ldots,n/n_0/\ldots/1,\ldots,n_0/\ldots/12/1)$)

 \rightsquigarrow affine cuspidal modules $S_i^{\mathcal{D},i^X}$ $(j \in \mathbb{Z})$

$$S_{i,k}^X := S_j^{\mathcal{D}, i^X} \quad \text{for } (i, k) \in J_X,$$

$$\mathbb{S}^X(\pmb{\xi}) := \operatorname{hd}(S^X_{i_1,k_1} \otimes \cdots \otimes S^X_{i_p,k_p}) \text{ for a snake } \pmb{\xi} = \big((i_1,k_1),\ldots,(i_p.k_p)\big) \in J^p_X$$

MY extended T-systems

Setting $\mathcal{D} \in \mathscr{C}_{\mathfrak{q}}$: a strong duality datum of type A_n , $X \in \{A, B\}$

 i^X : the reduced word defined in the previous slide

(i.e.
$$m{i}^A=(1,\ldots,n/\ldots/1,2/1)$$
, $m{i}^B=(1,\ldots,n/n_0/\ldots/1,\ldots,n_0/\ldots/12/1)$)

 \rightsquigarrow affine cuspidal modules $S_i^{\mathcal{D},i^X}$ $(j \in \mathbb{Z})$

Set $J_A := \{(i, k) \mid k \equiv i \pmod{2}\}, J_B := \{(i, k) \mid k \equiv \delta_{i, n_0} \pmod{2}\}, \text{ and define }$

$$S_{i,k}^X := S_j^{\mathcal{D}, i^X} \quad \text{for } (i, k) \in J_X,$$

where $j \in \mathbb{Z}$ is s.t. $S_i^{\mathcal{D}^X, i^X} = L(Y_{i,k})$.

Here \mathcal{D}^X is the special SDD s.t. $\{S_i^{\mathcal{D}^X, i^X} \mid j \in \mathbb{Z}\} = \{L(Y_{i,k}) \mid (i,k) \in J_X\}$

$$\mathbb{S}^X(\pmb{\xi}) := \operatorname{hd}(S^X_{i_1,k_1} \otimes \cdots \otimes S^X_{i_p,k_p}) \text{ for a snake } \pmb{\xi} = \left((i_1,k_1),\ldots,(i_p.k_p)\right) \in J^p_X$$

Setting $\mathcal{D} \in \mathscr{C}_{\mathfrak{q}}$: a strong duality datum of type A_n , $X \in \{A, B\}$

 $m{i}^X$: the reduced word defined in the previous slide

(i.e.
$$m{i}^A=(1,\ldots,n/\ldots/1,2/1)$$
, $m{i}^B=(1,\ldots,n/n_0/\ldots/1,\ldots,n_0/\ldots/12/1)$)

 \rightsquigarrow affine cuspidal modules $S_i^{\mathcal{D},i^X}$ $(j \in \mathbb{Z})$

Set $J_A := \{(i, k) \mid k \equiv i \pmod{2}\}, J_B := \{(i, k) \mid k \equiv \delta_{i, n_0} \pmod{2}\}, \text{ and define }$

$$S_{i,k}^X := S_j^{\mathcal{D}, \boldsymbol{i}^X} \quad \text{for } (i, k) \in J_X,$$

where $j \in \mathbb{Z}$ is s.t. $S_i^{\mathcal{D}^X, i^X} = L(Y_{i,k})$.

Here \mathcal{D}^X is the special SDD s.t. $\{S_i^{\mathcal{D}^X, \boldsymbol{i}^X} \mid j \in \mathbb{Z}\} = \{L(Y_{i.k}) \mid (i, k) \in J_X\}$

Definition (Snake module associated with (\mathcal{D}, i^X))

$$\mathbb{S}^X(\pmb{\xi}) := \operatorname{hd}(S^X_{i_1,k_1} \otimes \cdots \otimes S^X_{i_p,k_p}) \text{ for a snake } \pmb{\xi} = \left((i_1,k_1),\ldots,(i_p.k_p)\right) \in J^p_X.$$

Definition (Snake module associated with $(\mathcal{D}, \boldsymbol{i}^X)$)

$$\mathbb{S}^X(\pmb{\xi}) := \operatorname{hd}(S^X_{i_1,k_1} \otimes \cdots \otimes S^X_{i_p,k_p}) \text{ for a snake } \pmb{\xi} = \left((i_1,k_1),\ldots,(i_p.k_p)\right) \in J^p_X.$$

Rem. If
$$\mathcal{D} = \mathcal{D}^X$$
,

$$\mathbb{S}^X(\boldsymbol{\xi}) = \operatorname{hd}\left(L(Y_{i_1,k_1}) \otimes \cdots \otimes L(Y_{i_p,k_p})\right) = L\left(\prod_{r=1}^r Y_{i_r,k_r}\right) = L(\boldsymbol{\xi}) \text{ (MY snake mod.)}$$

Theorem (N

For $X \in \{A, B\}$ and a prime snake $\boldsymbol{\xi} \in J_X^p$

$$0 \to \mathbb{S}^{X}(\boldsymbol{\xi}_{\mathrm{H}}) \otimes \mathbb{S}^{X}(\boldsymbol{\xi}_{\mathrm{L}}) \to \mathbb{S}^{X}(\boldsymbol{\xi}_{[1,p-1]}) \otimes \mathbb{S}^{X}(\boldsymbol{\xi}_{[2,p]}) \to \mathbb{S}^{X}(\boldsymbol{\xi}) \otimes \mathbb{S}^{X}(\boldsymbol{\xi}_{[2,p-1]}) \to 0$$

The first and the third terms are simple

$$\rightarrow \left[L(\pmb{\xi}_{[1,p-1]}) \otimes L(\pmb{\xi}_{[2,p]})\right] = \left[L(\pmb{\xi}) \otimes L(\pmb{\xi}_{[2,p-1]})\right] + \left[L(\pmb{\xi}_{\mathrm{H}}) \otimes L(\pmb{\xi}_{\mathrm{L}})\right] \text{ when } \mathcal{D} = \mathcal{D}^X.$$

Definition (Snake module associated with (\mathcal{D}, i^X))

$$\mathbb{S}^X(\pmb{\xi}) := \operatorname{hd}(S^X_{i_1,k_1} \otimes \cdots \otimes S^X_{i_p,k_p}) \text{ for a snake } \pmb{\xi} = \left((i_1,k_1),\ldots,(i_p.k_p)\right) \in J^p_X.$$

Rem. If
$$\mathcal{D} = \mathcal{D}^X$$
,

$$\overline{\mathbb{S}^X(\boldsymbol{\xi})} = \operatorname{hd} \left(L(Y_{i_1,k_1}) \otimes \cdots \otimes L(Y_{i_p,k_p}) \right) = L\left(\prod_{r=1}^p Y_{i_r,k_r} \right) = L(\boldsymbol{\xi}) \text{ (MY snake mod.)}$$

Theorem (N)

For $X \in \{A,B\}$ and a prime snake $\pmb{\xi} \in J_X^p$,

$$0 \to \mathbb{S}^X(\boldsymbol{\xi}_{\mathrm{H}}) \otimes \mathbb{S}^X(\boldsymbol{\xi}_{\mathrm{L}}) \to \mathbb{S}^X(\boldsymbol{\xi}_{[1,p-1]}) \otimes \mathbb{S}^X(\boldsymbol{\xi}_{[2,p]}) \to \mathbb{S}^X(\boldsymbol{\xi}) \otimes \mathbb{S}^X(\boldsymbol{\xi}_{[2,p-1]}) \to 0$$

• The first and the third terms are simple.

$$\leadsto \left[L(\pmb{\xi}_{[1,p-1]})\otimes L(\pmb{\xi}_{[2,p]})\right] = \left[L(\pmb{\xi})\otimes L(\pmb{\xi}_{[2,p-1]})\right] + \left[L(\pmb{\xi}_{\mathrm{H}})\otimes L(\pmb{\xi}_{\mathrm{L}})\right] \text{ when } \mathcal{D} = \mathcal{D}^X.$$

Ex. type A_3 , $i^A = (1, 2, 3, 1, 2, 1)$

(i)
$$L_i = L(Y_{1,-2i+1}) \leadsto S_{i,k}^A = L(Y_{i,k}) \leadsto \mathbb{S}^A((i_1,k_1),\cdots,(i_p,k_p)) = L(\prod_{r=1}^p Y_{i_r,k_r})$$

 $L(Y_{1,3}Y_{1,1}) \otimes L(Y_{3,1}) \to L(Y_{3,5}Y_{2,2}) \otimes Y(Y_{2,2}Y_{2,0}) \to L(Y_{3,5}Y_{2,2}Y_{2,0}) \otimes L(Y_{2,2})$

(ii)
$$L_i=L(Y_{1,2i-7})\leadsto S_{3,5}^A=L(Y_{1,7}Y_{1,5}Y_{1,3}),\ S_{2,2}^A=L(Y_{3,1}Y_{3,-1}),$$
 $S_{2,0}^A=L(Y_{3,3}Y_{3,1}),\ S_{1,3}^A=L(Y_{1,7}),\ \ldots,\ \text{etc.}$

$$L(Y_{1,7}Y_{3,3}Y_{3,1}Y_{3,-1}) \otimes L(Y_{1,-3}) \to L(Y_{1,7}Y_{1,5}Y_{1,3}Y_{3,1}Y_{3,-1}) \otimes L(Y_{2,2}Y_{2,0})$$

 $\to L(Y_{1,7}Y_{1,5}Y_{1,3}Y_{2,2}Y_{2,0}) \otimes L(Y_{3,1}Y_{3,-1})$

Mukhin–Young's extended T-systems are generalized to a general strong duality data of type A.

- Mukhin-Young's extended T-systems (what we generalize)
- Strong duality data and affine cuspidal modules [KKOP]
- Main Theorem
- Proof (relations between the extended T-systems and Kashiwara crystals)

Key Lemma

$$\mathcal{D}, i$$
: arbitrary $\leadsto \{S_j = S_j^{\mathcal{D}, i} \mid j \in \mathbb{Z}\}$: affine cuspidal modules

Lemma (KKOP, N)

For a sequence $\mathbf{k} = (k_1 < k_2 < \cdots < k_p) \in \mathbb{Z}^p$, denote by

$$\mathbb{S}_{k}[s,t] = \operatorname{hd}(S_{k_{s}} \otimes S_{k_{s+1}} \otimes \cdots \otimes S_{k_{t}}) \quad (1 \leq s \leq t \leq p).$$

Assume that

(i)
$$\mathfrak{d}(S_{k_s}, \mathbb{S}_{\boldsymbol{k}}[s+1, t]) = 1$$
 for all $1 \le s < t \le p$,

(ii)
$$\mathfrak{d}(\mathbb{S}_{k}[s, t-1], S_{k_t}) = 1$$
 for all $1 \le s < t \le p$.

Then we have

$$0 \to \operatorname{hd}\left(\bigotimes_{r=1}^{p-1} \operatorname{hd}(S_{k_{r+1}} \otimes S_{k_r})\right) \to \mathbb{S}_{\boldsymbol{k}}[1, p-1] \otimes \mathbb{S}_{\boldsymbol{k}}[2, p] \to \mathbb{S}_{\boldsymbol{k}}[1, p] \otimes \mathbb{S}_{\boldsymbol{k}}[2, p-1] \to 0.$$

Moreover, the first and the third terms are both simple.

Q. How to calculate the values of b?

Rem. B^{up} has a Kashiwara (bi-)crystal structure.

Lemma (KKOP)

where $\varepsilon_i(b) = \max\{r \in \mathbb{Z}_{\geq 0} \mid \tilde{e}_i^r(b) \neq 0\}$, and ε_i^* is defined similarly for \tilde{e}_i^*

Rem. B^{up} has a Kashiwara (bi-)crystal structure.

Lemma (KKOP)

$$\textcircled{1} \ \ \ \ \, b \Big(hd \big(S_1^{\otimes a_1} \otimes \cdots \otimes S_N^{\otimes a_N} \big), \mathscr{D}^{-1} L_i \Big) = \varepsilon_i^* \big(b^i(\boldsymbol{a}) \big)$$

where $\varepsilon_i(b) = \max\{r \in \mathbb{Z}_{>0} \mid \tilde{e}_i^r(b) \neq 0\}$, and ε_i^* is defined similarly for \tilde{e}_i^*

 $\underline{\mathsf{Rem.}}\ \mathbf{B}^{\mathrm{up}}$ has a Kashiwara (bi-)crystal structure.

Lemma (KKOP)

where $\varepsilon_i(b) = \max\{r \in \mathbb{Z}_{\geq 0} \mid \tilde{e}_i^r(b) \neq 0\}$, and ε_i^* is defined similarly for \tilde{e}_i^* .

We return to the setting of our main theorem (\mathcal{D} : type A, $i \in \{i^A, i^B\}$).

(The case of $i = i^A$)

Lemma

For $\mathbb{S} := \operatorname{hd}(S_k^{\otimes a_k} \otimes S_{k+1}^{\otimes a_{k+1}} \otimes \cdots \otimes S_\ell^{\otimes a_\ell})$, the following are equivalent:

- (i) S is a prime snake module,
- (ii) for all $k \leq s < t \leq \ell$, we have $\varepsilon_{i_s} \left(b^{\pmb{i}'}(\pmb{a}') \right) = \varepsilon_{i_t}^* \left(b^{\pmb{i}''}(\pmb{a}'') \right) = 1$, where i_r $(r \in \mathbb{Z})$ is determined from $\pmb{i} = (i_1, \dots, i_N)$ by $i_{r+N} = i_r^*$, $\pmb{i}' = (i_{s+1}, \dots, i_{s+N})$ and $\pmb{a}' = (a_{s+1}, \dots, a_{s+N})$. \pmb{i}'' and \pmb{a}'' are defined similarly,
- (iii) for all $k \leq s < t \leq \ell$, we have $\mathfrak{d}\big(S_s, \operatorname{hd}(S_{s+1}^{\otimes a_{s+1}} \otimes \cdots \otimes S_t^{\otimes a_t})\big) = \mathfrak{d}\big(\operatorname{hd}(S_s^{\otimes a_s} \otimes \cdots \otimes S_{t-1}^{\otimes a_{t-1}}), S_t\big) = 1.$
- : (i) \Leftrightarrow (ii): follows from the **Reineke's algorithm**, which gives a useful combinatorial algorithm for $\varepsilon_iig(b^i(a)ig)$ and $\varepsilon_i^*ig(b^i(a)ig)$, when i is "adapted".
- (ii) \Leftrightarrow (iii): follows from the previous lemma.

(The case of $i = i^B$) not adapted

Fact
$$i = (\dots, i_{k-1}, i_k, i_{k+1}, \dots) \stackrel{\text{3-move}}{\leadsto} i' = (\dots, i'_{k-1}, i'_k, i'_{k+1}, \dots),$$

 $\Rightarrow b^i(a) = b^{i'}(a') \text{ with } a'_{k-1} = a_k + a_{k+1} - \min(a_{k-1}, a_{k+1}),$

$$a'_{k} = \min(a_{k-1}, a_{k+1}), a'_{k+1} = a_{k-1} + a_{k} - \min(a_{k-1}, a_{k+1}),$$
 [Lusztig]

$$\leadsto$$
 for $m{a} \in \mathbb{Z}_{>0}^N$, we can calculate (in principal) $m{a}'$ s.t. $b^{m{i}^B}(m{a}) = b^{m{i}^A}(m{a}')$.

 \leadsto reduced to the previous case of i^A .

Future work Generalize to other types of strong duality data.

One obstacle is that in other types, the Reineke's algorithm cannot be applied (in full generality).

Thank you for your concentration!

(The case of $i = i^B$) not adapted

Fact
$$i = (\dots, i_{k-1}, i_k, i_{k+1}, \dots) \stackrel{\text{3-move}}{\leadsto} i' = (\dots, i'_{k-1}, i'_k, i'_{k+1}, \dots),$$

$$\Rightarrow b^{\pmb{i}}(\pmb{a}) = b^{\pmb{i}'}(\pmb{a}') \text{ with } a'_{k-1} = a_k + a_{k+1} - \min(a_{k-1}, a_{k+1}),$$

$$a'_k = \min(a_{k-1}, a_{k+1}), a'_{k+1} = a_{k-1} + a_k - \min(a_{k-1}, a_{k+1})$$
 [Lusztig]

$$\leadsto \text{for } \boldsymbol{a} \in \mathbb{Z}^N_{\geq 0} \text{, we can calculate (in principal) } \boldsymbol{a}' \text{ s.t. } b^{\boldsymbol{i}^B}(\boldsymbol{a}) = b^{\boldsymbol{i}^A}(\boldsymbol{a}').$$

 \leadsto reduced to the previous case of i^A .

<u>Future work</u> Generalize to other types of strong duality data.

One obstacle is that in other types, the Reineke's algorithm cannot be applied (in full generality).

Thank you for your concentration!

(The case of $i = i^B$) not adapted

Fact
$$i = (\dots, i_{k-1}, i_k, i_{k+1}, \dots) \stackrel{\text{3-move}}{\leadsto} i' = (\dots, i'_{k-1}, i'_k, i'_{k+1}, \dots),$$

$$\Rightarrow b^{i}(a) = b^{i'}(a')$$
 with $a'_{k-1} = a_k + a_{k+1} - \min(a_{k-1}, a_{k+1})$,

$$a'_k = \min(a_{k-1}, a_{k+1}), a'_{k+1} = a_{k-1} + a_k - \min(a_{k-1}, a_{k+1})$$
 [Lusztig]

$$\leadsto$$
 for $m{a} \in \mathbb{Z}_{>0}^N$, we can calculate (in principal) $m{a}'$ s.t. $b^{m{i}^B}(m{a}) = b^{m{i}^A}(m{a}')$.

 \rightsquigarrow reduced to the previous case of i^A .

<u>Future work</u> Generalize to other types of strong duality data.

One obstacle is that in other types, the Reineke's algorithm cannot be applied (in full generality).

Thank you for your concentration!