Python For Data Science *Cheat Sheet*

Pandas

Learn Python for Data Science Interactively at www.DataCamp.com

Reshaping Data

Pivot

>>> df3= df2.pivot(index='Date', columns='Type', values='Value')

Spread rows into columns

	Date	Туре	Value]				
0	2016-03-01	a	11.432		Туре	a	ь	С
1	2016-03-02	ь	13.031		Date			
2	2016-03-01	с	20.784		2016-03-01	11.432	NaN	20.784
3	2016-03-03	a	99.906		2016-03-02	1.303	13.031	NaN
4	2016-03-02	a	1.303		2016-03-03	99.906	NaN	20.784
5	2016-03-03	С	20.784					

Pivot Table

>>> df4 = pd.pivot table(df2, values='Value' index='Date', columns='Type']

Spread rows into columns

Stack / Unstack

>>> stacked = df5.stack() Pivot a level of column labels >>> stacked.unstack() Pivot a level of index labels

Stacked

Melt

Gather columns into rows >>> pd.melt(df2, id vars=["Date"], value_vars=["Type", "Value"], value name="Observations")

Iteration

(Column-index, Series) pairs >>> df.iteritems() (Row-index, Series) pairs >>> df.iterrows()

Advanced Indexing

>>> df3.loc[:,(df3>1).any()] >>> df3.loc[:,(df3>1).all()] >>> df3.loc[:,df3.isnull().any()] >>> df3.loc[:,df3.notnull().all()]

Indexing With isin >>> df[(df.Country.isin(df2.Type))]

>>> df3.filter(items="a","b"]) >>> df.select(lambda x: not x%5)

Selecting

>>> s.where(s > 0)

>>> df6.query('second > first')

Also see NumPy Arrays

Select cols with any vals >1 Select cols with vals > 1 Select cols with NaN Select cols without NaN

Find same elements Filter on values Select specific elements

Subset the data

Query DataFrame

Backward Filling

Setting/Resetting Index

<pre>>>> df.set_index('Country') >>> df4 = df.reset_index() >>> df = df.rename(index=str,</pre>	Set the index Reset the index Rename DataFrame
--	--

Reindexing

>>> s2 = s.reindex(['a','c','d','e','b'])

Forward Filling

	Torwarari	9				Backwara i iiiiig
>>:	> df.reind	ex(range(4)	,	>>>	s3 =	s.reindex(range(5),
		method='	ffill')			method='bfill'
	Country	Capital	Population	0	3	
() Belgium	Brussels	11190846	1	3	
-	l India	New Delhi	1303171035	2	3	
2	2 Brazil	Brasília	207847528	3	3	
1	Rrazil	Brasília	207847528	1	3	

MultiIndexing

```
>>> arrays = [np.array([1,2,3]),
              np.array([5,4,3])]
>>> df5 = pd.DataFrame(np.random.rand(3, 2), index=arrays)
>>> tuples = list(zip(*arrays))
>>> index = pd.MultiIndex.from tuples(tuples,
                                      names=['first', 'second'])
>>> df6 = pd.DataFrame(np.random.rand(3, 2), index=index)
>>> df2.set index(["Date", "Type"])
```

Duplicate Data

>>>	s3.unique()	Return unique values
>>>	df2.duplicated('Type')	Check duplicates
>>>	<pre>df2.drop_duplicates('Type', keep='last')</pre>	Drop duplicates
>>>	df.index.duplicated()	Check index duplicates
	>>> >>>	>>> s3.unique() >>> df2.duplicated('Type') >>> df2.drop_duplicates('Type', keep='last') >>> df.index.duplicated()

Grouping Data

Aggregation >>> df2.groupby(by=['Date','Type']).mean() >>> df4.groupby(level=0).sum() >>> df4.groupby(level=0).agg({'a':lambda x:sum(x)/len(x), 'b': np.sum}) Transformation >>> customSum = lambda x: (x+x%2) >>> df4.groupby(level=0).transform(customSum)

Missing Data

>>>	df.dropna()	Drop
>>>	df3.fillna(df3.mean())	Fill Na
>>>	df2.replace("a", "f")	Repla
	>>>	>>> df.dropna() >>> df3.fillna(df3.mean()) >>> df2.replace("a", "f")

NaN values aN values with a predetermined value ace values with others

Combining Data

do	ita1	 da	ita2
X1	X2	X1	Х3
a	11.432	a	20.784
b	1.303	b	NaN
с	99.906	d	20.784

Merge

>>> p	d.merge(data1,
	data2,
	how='outer',
	on='X1')

X2 Х3

Oin

```
>>> data1.join(data2, how='right')
```

Concatenate

```
Vertical
```


Dates

```
>>> df2['Date'] = pd.to datetime(df2['Date'])
>>> df2['Date']= pd.date_range('2000-1-1',
                               periods=6,
                               freq='M')
>>> dates = [datetime(2012,5,1), datetime(2012,5,2)]
>>> index = pd.DatetimeIndex(dates)
>>> index = pd.date range(datetime(2012,2,1), end, freq='BM')
```

Visualization

Also see Matplotlib

Learn Python for Data Science Interactively

