CONTINUOUS ASSESSMENT TEST-3

DEPARTMENT OF CSE & IT

Course Name: Design and Analysis of Algorithm

Course Code: CS8451 Branch: CSE & IT Year / Sem : II / IV Duration: 3 hours Date: 26/06/21 Max.Marks: 100

PART-A $(10 \times 2 = 20)$

Answer all the Questions.

- 1. Define Algorithm. List the desirable properties of algorithm. [CO1, K2]
- 2. What are the fundamental steps in Algorithmic Problem Solving? [CO1,K2]
- 3. Solve the recurrence equation T(n)=T(n-1)+n. [CO2,K3]
- 4. How do you measure an algorithm's running time? [CO2,K3]
- 5. Compare Prim's and Kruskal's Algorithm. [CO3,K4]
- 6. Analyse the time complexity of Binomial Coefficient. [CO3,K4]
- 7. When do you say a graph is a complete bi-partite graph?[CO6,K3]
- 8. List the advantages of Huffman encoding .[CO6,K3]
- 9. Define NP-Hard and NP-Complete problem. [CO5,K4]
- 10. Differentiate Branch & Bound and Backtracking Method. .[CO4,K4]

PART-B(5x13 = 65)

Answer all the Ouestions.

11.(a) Explain the recursive and non-recursive versions of the factorial function. Examine how much time each function requires as 'n' becomes large. (13) [CO2,K3]

(or)

- (b) Explain the asymptotic Notations and their properties. Illustrate with examples. (13) [CO2, K3]
- 12.(a) Analyze and infer the method suitable for performing multiplication of two large integers. Explain how divide and conquer method can be used to solve the same.(13) [CO3,K4]

(or)

- (b) Illustrate how quick sort algorithm is applied to the given numbers 5,3,1,9,8,2,4,7 and analyze its time complexity (13) [CO3,K4]
- 13.(a) Explain the memory function method for the knapsack problem and give the algorithm. (13) [CO4-K4]

(b) Analyze and infer the solution for the following Assignment problem using Branch and Bound technique. (13) [CO4-K4]

$$\begin{pmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4
\end{pmatrix}$$

- 14.(a) (i) Interpret stable marriage problem. Explain the algorithm and examine . (7) [CO6,K3]
 - (ii) Solve 8-queen's problem using Backtracking. (6) [CO6,K3]

(or)

(b) Apply the Simplex method to the linear programming problem.

Maximize Z =
$$3x + 5y$$
 Subject to $x + y \le 4$, $x + 3y \le 6$; $x, y \ge 0$ (13) [CO6][K3]

15.(a) Illustrate with suitable examples the approximation algorithm for Knapsack problem (13) [CO5,K4]

(or)

(b) Explain approximation algorithm for Travelling salesman problem (13) [CO5,K4]

PART-C(1x15 = 15)

16.(a) Infer the Optimal solution using Exhaustive search for the following assignment problem. (15) [CO1,K2]

	Job1	Job2	Job3	Job4
Α	9	2	7	8
В	6	4	3	7
C D	5	8	1	8
D	7	6	9	4
		(OR)		

(0)

(b) Interpret $\,$ Brute force approach and Solve the following instance of knapsack problem. (15) [CO1,K2]

W = 15

Item	Weight	Gain
1	5	\$40
2	7	\$35
3	2	\$18
4	4	\$4
5	5	\$10
6	1	\$2