Springboard Capstone Project 2

Time Series Forecasting for Sales Order

Presented by: Cuili Huang

Agenda

- 1. Introduction
- 2. Data Wrangling
- 3. Time Series Analysis
- 4. Time Series Forecasting (Base Model)
- 5. Tune Hyperparameters
- 6. Conclusion

Introduction

Brazilian E-Commerce Company Olist Datasets

Data Wrangling

Changed datetime format

Aggregated 'order_id' by day

Handled missing values and outliners

Time Series Analysis

Plot autocorrelation function (ACF) to discover seasonality

Time Series Analysis

Decompose the time series:

- 1. Slightly upward trend;
- 2. Strong seasonality;

Time Series Analysis

Trendline research for trend data

Time Series Forecasting (Base Model)

- 1. Use SARIMAX model;
- 2. Use the first 80% of data as training dataset;
- 3. Performed one-step-ahead forecast on the latter 20% of data;
- 4. Evaluation metric: Symmetric Mean Absolute Percentage Error (SMAPE); base model SMAPE: 6.78%;

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^n rac{|F_t - A_t|}{|A_t| + |F_t|}$$

Time Series Forecasting

Tune Hyperparameters

- 1. P=7, D=2, S=7, search for Q;
- 2. P=7, D=1, S=7, search for Q;

Based on the research above, the optimal values for the hyperparameters are P=7, D=1, Q=2, S=7

Conclusion

Perform forecast for the next 100 days

Conclusion

Perform one-step-ahead forecast

Conclusion

Summary

- 1. The sales data display a slight upward trend and strong seasonality;
- 2. Although trendline research suggested D=2, hyperparameters research suggested that the SARIMAX model performed better when D=1;
- 3. Perform one-step-ahead prediction will yield more accurate results comparing to few-step-ahead prediction;

