# Анализ жд грузоперевозок.

### План работ:

- Предобработка данных.
- Графическое отображение.
- Создание таблицы с ошибками.

# Предобработка данных.

### Откроем второй лист документа **EXCEL**:

### In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
#from pymystem3 import Mystem
```

### In [2]:

```
data = pd.read_excel('datasets/Задача для аналитика.xlsx', sheet_name='Данные по перевозкам
```

Ознакомимся с данными:

### In [3]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9680 entries, 0 to 9679
Data columns (total 8 columns):
```

| # | Column             | Non-Null Count | Dtype  |
|---|--------------------|----------------|--------|
|   |                    |                |        |
| 0 | Название компаний  | 9680 non-null  | object |
| 1 | Год                | 9680 non-null  | object |
| 2 | Месяц              | 9680 non-null  | object |
| 3 | Страна отправления | 9680 non-null  | object |
| 4 | Тип вагона         | 9680 non-null  | object |
| 5 | Страна прибытия    | 9680 non-null  | object |
| 6 | Вагонов            | 9610 non-null  | object |
| 7 | Выручка            | 9665 non-null  | object |
|   |                    |                |        |

dtypes: object(8)
memory usage: 605.1+ KB

Видны пропуски и некорректные типы данных.

### In [4]:

```
display(data.head(5))
display(data.tail(5))
```

|   | Название<br>компаний | Год  | Месяц | Страна<br>отправления | Тип вагона | Страна<br>прибытия | Вагонов | Выручка |
|---|----------------------|------|-------|-----------------------|------------|--------------------|---------|---------|
| 0 | Компания 1           | 2019 | 1     | АЗЕРБАЙДЖАН           | Крытые     | БЕЛАРУСЬ           | 8200    | 123000  |
| 1 | Компания 1           | 2019 | 1     | АЗЕРБАЙДЖАН           | Крытые     | РОССИЯ             | 200     | 3000    |
| 2 | Компания 1           | 2019 | 1     | АЗЕРБАЙДЖАН           | Полувагоны | РОССИЯ             | 400     | 6000    |
| 3 | Компания 1           | 2019 | 1     | БЕЛАРУСЬ              | Крытые     | РОССИЯ             | 3800    | 57000   |
| 4 | Компания 1           | 2019 | 1     | БЕЛАРУСЬ              | Полувагоны | РОССИЯ             | 300     | 4500    |

|      | Название<br>компаний | Год  | Месяц | Страна<br>отправления | Тип вагона | Страна<br>прибытия | Вагонов | Выручка |
|------|----------------------|------|-------|-----------------------|------------|--------------------|---------|---------|
| 9675 | Компания<br>16       | 2020 | 3     | ТУРЦИЯ                | Полувагоны | РОССИЯ             | 87      | 1305    |
| 9676 | Компания<br>16       | 2020 | 3     | УЗБЕКИСТАН            | Полувагоны | КАЗАХСТАН          | 174     | 2610    |
| 9677 | Компания<br>16       | 2020 | 3     | УЗБЕКИСТАН            | Полувагоны | РОССИЯ             | 783     | 11745   |
| 9678 | Компания<br>16       | 2020 | 3     | Украина               | Полувагоны | КАЗАХСТАН          | 1479    | 22185   |
| 9679 | Компания<br>16       | 2020 | 3     | ШРИ-ЛАНКА             | Полувагоны | КАЗАХСТАН          | 87      | 1305    |

### Переименуем названия столбцов в более читабельные:

### In [5]:

```
list_data_columns = data.columns.tolist()
for i in range(0, 8):
    list_data_columns[i] = list_data_columns[i].replace(' ', '_').lower()
list_data_columns[6] = 'количество_вагонов'
print(list_data_columns)
data.columns = list_data_columns
```

```
['название_компаний', 'год', 'месяц', 'страна_отправления', 'тип_вагона', 'с трана_прибытия', 'количество_вагонов', 'выручка']
```

### In [6]:

```
display(data.head(5))
display(data.tail(5))
```

|   | название_компаний | год  | месяц | страна_отправления | тип_вагона | страна_прибытия | KOJ |
|---|-------------------|------|-------|--------------------|------------|-----------------|-----|
| 0 | Компания 1        | 2019 | 1     | АЗЕРБАЙДЖАН        | Крытые     | БЕЛАРУСЬ        |     |
| 1 | Компания 1        | 2019 | 1     | АЗЕРБАЙДЖАН        | Крытые     | РОССИЯ          |     |
| 2 | Компания 1        | 2019 | 1     | АЗЕРБАЙДЖАН        | Полувагоны | РОССИЯ          |     |
| 3 | Компания 1        | 2019 | 1     | БЕЛАРУСЬ           | Крытые     | РОССИЯ          |     |
| 4 | Компания 1        | 2019 | 1     | БЕЛАРУСЬ           | Полувагоны | РОССИЯ          |     |



### Посмотрим на уникальные типы данных в таблице:

### In [7]:

```
for i in data.columns:
   print(i)
   print(data[i].unique())
   print()
название_компаний
['Компания 1' 'Компания 2' 'Апельсин' 'Яблоки' 'Компания 3' 'Компания 4'
 'Компания 5' 'Компания 6' 'Компания 7' 2222 'Компания 8' 'Компания 9'
 'Компания 10' 'Компания 11' 'Компания 12' 'Компания 13' 'Компания 14'
 'Компания 15' 'Компания 16']
ГОД
[2019 2020 '2019' '2 019' '2019']
месяц
[1 2 3 4 5 6 7 8 9 10 11 12 '07.01.1900' '07.01.1901' '07.01.1902'
 '07.01.1903' '07.01.1904' '07.01.1905' '07.01.1906' '07.01.1907'
 '07.01.1908' '07.01.1909' '07.01.1910' '07.01.1911' '07.01.1912'
 '07.01.1913' '07.01.1914' '07.01.1915' '07.01.1916' '07.01.1917'
 '07.01.1918' '07.01.1919' '07.01.1920' '07.01.1921' '07.01.1922'
 '07.01.1923' '07.01.1924' '07.01.1925' '07.01.1926' '07.01.1927'
 '07.01.1928' '07.01.1929' '07.01.1930' '07.01.1931' '07.01.1932'
 '07.01.1933' '07.01.1934' '07.01.1935' '07.01.1936' '07.01.1937'
 '07.01.1938' '07.01.1939' '07.01.1940' '07.01.1941' '07.01.1942'
 '07.01.1943' '07.01.1944' '07.01.1945' '07.01.1946' '07.01.1947'
 '07.01.1948' '07.01.1949' '07.01.1950' '07.01.1951' '07.01.1952'
 '07.01.1953' '07.01.1954' '07.01.1955' '07.01.1956' '07.01.1957'
 '07.01.1958' '07.01.1959' '07.01.1960']
страна_отправления
['АЗЕРБАЙДЖАН' 'БЕЛАРУСЬ' 'ГРУЗИЯ' 'ЕГИПЕТ' 'ИТАЛИЯ' 'КАЗАХСТАН'
 'КИРГИЗИЯ' 'КИТАЙ' 'КОРЕЯ, РЕСПУБЛИКА' 'ПОЛЬША' 'РОССИЯ'
 'СОЕДИНЕННЫЕ ШТАТЫ' 'ТАДЖИКИСТАН' 'ТУРКМЕНИЯ' 'ТУРЦИЯ'
 'УЗБЕКИСТАН' 'Украина' 'ФИНЛЯНДИЯ' 'ГЕРМАНИЯ' 'ЛАТВИЯ' 'ЛИТВА' 'АЛЖИР'
 'БЕЛЬГИЯ' 'ИРАН' 'МЕКСИКА' 'МОЛДОВА, РЕСПУБЛИКА' 'МОНГОЛИЯ'
 'ЮЖНАЯ АФРИКА' 'НИДЕРЛАНДЫ' 'ОБЪЕДИНЕННЫЕ АРАБСКИЕ ЭМИРАТЫ' 'БОЛГАРИЯ'
 'ВЬЕТНАМ' 'ЛИВАН' 'ШРИ-ЛАНКА' 'ЭСТОНИЯ' 'ИНДИЯ' 'КАНАДА' 'АФГАНИСТАН'
 'ДАНИЯ' 'КАТАР' 'КУВЕЙТ' 'МАЛАЙЗИЯ' 'ПРОЧИЕ СТРАНЫ'
 'СОЕДИНЕННОЕ КОРОЛЕВСТВО' 'ШВЕЦИЯ' 'БАНГЛАДЕШ' 'ФИЛИППИНЫ' 'ВЕНГРИЯ'
 'КОРЕЯ, НАРОДНО-ДЕМОКРАТИЧЕСКАЯ' 'ЯПОНИЯ' 'ИСПАНИЯ' 'ФРАНЦИЯ' 'ШВЕЙЦАРИЯ'
 'ИЗРАИЛЬ' 'ПЕРУ' 'САУДОВСКАЯ АРАВИЯ' 7777777 'АВСТРАЛИЯ' 'КЕНИЯ' 'КИПР'
 'СИРИЙСКАЯ АРАБСКАЯ РЕСПУБЛИКА' 'ТУНИС' 'МАРОККО' 'ПОРТУГАЛИЯ' 'ТАИЛАНД'
 'ИНДОНЕЗИЯ' 'БРАЗИЛИЯ' 'ГОНКОНГ' 'ВИРГИНСКИЕ ОСТРОВА , БРИТАНСКИ'
 'МАЛЬТА' 'ГРЕЦИЯ' 'РУМЫНИЯ' 'СЕРБИЯ' 'РЕСПУБЛИКА МАКЕДОНИЯ' 'НОРВЕГИЯ'
 'Молдавия' 'СЛОВАКИЯ' 'ДОМИНИКАНСКАЯ РЕСПУБЛИКА'
 'ВИРГИНСКИЕ ОСТРОВА, США' 'ЭКВАДОР']
тип вагона
['Крытые' 'Полувагоны' 'Цистерны' 'Цестерны' 'Полумагоны' 'Самолет'
 'Крысые' 'Полубагоны']
страна_прибытия
['БЕЛАРУСЬ' 'РОССИЯ' 'АФГАНИСТАН' 'КАЗАХСТАН' 'АЗЕРБАЙДЖАН' 'ГРУЗИЯ'
 'ДАНИЯ' 'СЛОВАКИЯ' 'ТАИЛАНД' 'Узбекистан' 'ИТАЛИЯ' 'КИРГИЗИЯ'
 'МОЛДОВА, РЕСПУБЛИКА' 'ПОЛЬША' 'ПРОЧИЕ СТРАНЫ' 'ТАДЖИКИСТАН' 'ТУНИС'
 'ТУРЦИЯ' 'ФРАНЦИЯ' 'ЛАТВИЯ' 'УКРАИНА' 'ЭСТОНИЯ' 'ГРЕЦИЯ' 'ИНДИЯ'
 'ИНДОНЕЗИЯ' 'МАЛАЙЗИЯ' 'МОНГОЛИЯ' 'ЯПОНИЯ' 'НИДЕРЛАНДЫ' 'ЛИТВА'
 'ГЕРМАНИЯ' 'БОЛГАРИЯ' 'ФИНЛЯНДИЯ' 'ВЕНГРИЯ' 'КИТАЙ' "КОТ-Д' ИВУАР"
 'ТУРКМЕНИЯ' 'ШРИ-ЛАНКА' 'ГАНА' 'ЕГИПЕТ' 'СОЕДИНЕННЫЕ ШТАТЫ'
```

```
'ОБЪЕДИНЕННЫЕ АРАБСКИЕ ЭМИРАТЫ' 'БРАЗИЛИЯ' 'ХОРВАТИЯ' 'ШВЕЦИЯ' 'АВСТРИЯ' 'ПОРТУГАЛИЯ' 'ЮЖНАЯ АФРИКА' 7777777 'КОРЕЯ, НАРОДНО-ДЕМОКРАТИЧЕСКАЯ' 'ИСПАНИЯ' 'БЕЛЬГИЯ' 'ИРАН' 'СОЕДИНЕННОЕ КОРОЛЕВСТВО' 'АЛЖИР' 'МЕКСИКА' 'СЕРБИЯ' 'НОРВЕГИЯ' 'ВЬЕТНАМ' 'КИПР' 'КАНАДА' 'ИЗРАИЛЬ' 'САУДОВСКАЯ АРАВИЯ' 'МАЛЬТА' 'НИГЕРИЯ' 'ЭКВАДОР' 'КОРЕЯ, РЕСПУБЛИКА' 'АВСТРАЛИЯ' 'КУВЕЙТ' 'НОВАЯ ЗЕЛАНДИЯ' 'АРМЕНИЯ' 'ШВЕЙЦАРИЯ' 'ВИРГИНСКИЕ ОСТРОВА, США' 'ТУРКМЕНИСТАН' 'РФ']

КОЛИЧЕСТВО_ВАГОНОВ
[8200 200 400 ... 640668 105966 78561]

ВЫРУЧКА
[123000 3000 6000 ... 9610020 1589490 1178415]
```

### Начнём с названия компаний:

Подозрительное название 2222. Посмотрим, сколько таких значений в наших данных:

### In [8]:

```
data.query('название_компаний == 2222')['название_компаний'].count()
Out[8]:
```

25

Всего 25. Посмотьрим на общую картину данных с этой ошибкой:

### In [9]:

```
data.query('название_компаний == 2222')
Out[9]:
```

|      | -                 |      |       |                    |            |                 |              |
|------|-------------------|------|-------|--------------------|------------|-----------------|--------------|
|      | название_компаний | год  | месяц | страна_отправления | тип_вагона | страна_прибытия | количество_е |
| 4450 | 2222              | 2020 | 3     | УЗБЕКИСТАН         | Полувагоны | КАЗАХСТАН       |              |
| 4451 | 2222              | 2020 | 3     | УЗБЕКИСТАН         | Полувагоны | РОССИЯ          |              |
| 4452 | 2222              | 2020 | 3     | Украина            | Крытые     | РОССИЯ          |              |
| 4453 | 2222              | 2020 | 3     | Украина            | Полувагоны | КАЗАХСТАН       |              |
| 4454 | 2222              | 2020 | 3     | финляндия          | Полувагоны | РОССИЯ          |              |
| 4455 | 2222              | 2020 | 5     | АЗЕРБАЙДЖАН        | Крытые     | КАЗАХСТАН       |              |
| 4456 | 2222              | 2020 | 5     | АЗЕРБАЙДЖАН        | Крытые     | РОССИЯ          |              |
| 4457 | 2222              | 2020 | 5     | АЗЕРБАЙДЖАН        | Полувагоны | РОССИЯ          |              |
| 4458 | 2222              | 2020 | 5     | БЕЛАРУСЬ           | Крытые     | РОССИЯ          |              |
| 4459 | 2222              | 2020 | 5     | БЕЛАРУСЬ           | Полувагоны | РОССИЯ          |              |
| 4    |                   |      |       |                    |            |                 | <b>&gt;</b>  |

Т.к. Компанию узнать не представляется возможным, заменим цифры 2222, выделяющейся строкой 'unknown'

```
In [10]:
```

```
data['название_компаний'].replace(2222, 'unknown', inplace=True)
```

### In [11]:

# Рассмотрим столбец год. Здесь имеются строчные значения вместо int, а также значение года с пропуском (2 019).

```
In [12]:
```

```
data[data['год'] == '2 019']['год'].count()
```

### Out[12]:

20

### In [13]:

```
display(data[data['год'] == '2 019'])
```

|      | название_компаний | год      | месяц | страна_отправления                  | тип_вагона | страна_прибытия | количество_ва |
|------|-------------------|----------|-------|-------------------------------------|------------|-----------------|---------------|
| 8410 | Компания 14       | 2<br>019 | 6     | УЗБЕКИСТАН                          | Крытые     | КИРГИЗИЯ        |               |
| 8982 | Компания 15       | 2<br>019 | 6     | МАРОККО                             | Полувагоны | РОССИЯ          |               |
| 8983 | Компания 15       | 2<br>019 | 6     | Молдавия                            | Полувагоны | Узбекистан      |               |
| 8984 | Компания 15       | 2<br>019 | 6     | монголия                            | Крытые     | РОССИЯ          |               |
| 8985 | Компания 15       | 2<br>019 | 6     | монголия                            | Крытые     | УКРАИНА         |               |
| 8986 | Компания 15       | 2<br>019 | 6     | монголия                            | Полувагоны | РОССИЯ          |               |
| 8987 | Компания 15       | 2<br>019 | 6     | ОБЪЕДИНЕННЫЕ<br>АРАБСКИЕ<br>ЭМИРАТЫ | Крытые     | РОССИЯ          | •             |
| 4    |                   |          |       |                                     |            |                 | <b>&gt;</b>   |

Заменим на '2 019', 2019 и 2019 на 2019:

```
In [14]:
```

```
data['год'].replace('2 019', 2019, inplace=True)
```

```
In [15]:
data['год'].unique()
Out[15]:
array([2019, 2020, '2019', '2019'], dtype=object)
In [16]:
data['год'].replace('2019', 2019, inplace=True)
In [17]:
data['год'].unique()
Out[17]:
array([2019, 2020, '2019'], dtype=object)
In [18]:
data['год'].replace('2019', 2019, inplace=True)
In [19]:
data['год'].unique()
Out[19]:
array([2019, 2020])
```

## Следующий - месяц.

Выбиваются строковые значения с полной датой типа '07.01.19\*\*'. Преобразуем столбец в строку, заменим эти даты на -1, т.к. во все эти данные скорее всего сбой при записи базы либо при выгрузке давнных, затем преобразуем в int:

4882

4883

```
In [20]:
data['месяц'].unique()
Out[20]:
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, '07.01.1900', '07.01.1901',
        '07.01.1902', '07.01.1903', '07.01.1904', '07.01.1905',
       '07.01.1906', '07.01.1907', '07.01.1908', '07.01.1909',
       '07.01.1910', '07.01.1911', '07.01.1912', '07.01.1913',
       '07.01.1914', '07.01.1915', '07.01.1916', '07.01.1917'
       '07.01.1918',
                     '07.01.1919',
                                    '07.01.1920', '07.01.1921
       '07.01.1922', '07.01.1923', '07.01.1924', '07.01.1925',
       '07.01.1926', '07.01.1927', '07.01.1928', '07.01.1929'
       '07.01.1930', '07.01.1931', '07.01.1932', '07.01.1933',
       '07.01.1934', '07.01.1935', '07.01.1936',
                                                   '07.01.1937'
       '07.01.1938', '07.01.1939', '07.01.1940', '07.01.1941',
       '07.01.1942', '07.01.1943', '07.01.1944', '07.01.1945'
       '07.01.1946', '07.01.1947', '07.01.1948',
                                                    '07.01.1949'
       '07.01.1950', '07.01.1951', '07.01.1952', '07.01.1953',
       '07.01.1954', '07.01.1955', '07.01.1956', '07.01.1957',
       '07.01.1958', '07.01.1959', '07.01.1960'], dtype=object)
In [21]:
list_12 = []
for i in range(1, 13):
    list_12.append(i)
In [22]:
data.query('месяц not in @list 12')['месяц'].count()
Out[22]:
72
In [23]:
data.query('mecsu not in @list 12').head(15)
Out[23]:
      название_компаний
                                       страна_отправления
                                                          тип вагона
                                                                     страна_прибытия
                                                                                      количесті
                         год
                                 месяц
2692
                        2019
                             07.01.1900
                                                  РОССИЯ
                                                                      ПРОЧИЕ СТРАНЫ
             Компания 5
                                                              Крытые
2758
              Компания 5 2019
                             07.01.1900
                                              УЗБЕКИСТАН
                                                              Крытые
                                                                           КАЗАХСТАН
2808
             Компания 5
                        2019
                             07.01.1900
                                               КАЗАХСТАН
                                                              Крытые
                                                                             РОССИЯ
2870
             Компания 5
                        2019
                             07.01.1900
                                                  РОССИЯ
                                                              Крытые
                                                                             РОССИЯ
2895
                             07.01.1900
                                               ТУРКМЕНИЯ
                                                                             РОССИЯ
              Компания 5
                        2019
                                                          Полувагоны
                                            СОЕДИНЕННЫЕ
4880
              Компания 9 2019
                             07.01.1900
                                                          Полувагоны
                                                                                  РΦ
                                                   ШТАТЫ
4881
             Компания 9
                        2019
                             07.01.1901
                                            ТАДЖИКИСТАН
                                                              Крытые
                                                                            БЕЛАРУСЬ
```

ТАДЖИКИСТАН

ТАДЖИКИСТАН

Крытые

Крытые

**KA3AXCTAH** 

РΦ

07.01.1902

07.01.1903

2019

2019

Компания 9

Компания 9

### Рассмотрим столбец страна\_отправления:

```
In [29]:

count_errors = 0
for i in data['cтрана_отправления']:
    try:
        int(i)
        count_errors += 1
    except:
        pass
print(f'Колличество ошибок: {count_errors}')
```

Колличество ошибок: 52

Заменим числовой тип данных на unknown, т.к. название страны не известно.

```
In [30]:
```

```
data['страна_отправления'].replace(7777777, 'unknown', inplace=True)
data['страна_отправления'] = data['страна_отправления'].str.lower()
```

```
In [31]:
#m = Mystem()
#for i in sorted_list:
     lemmas = m.lemmatize(i)
#
     lemmas = ('').join(lemmas[0:-1])
     data['cmpaнa_omnpaвления'].replace(i, lemmas, inplace=True)
#data['cmpaнa_omnpaвления'].unique()
In [32]:
sorted_list = sorted(data['страна_отправления'].unique())
sorted_list
Out[32]:
['unknown',
 'австралия',
 'азербайджан',
 'алжир',
 'афганистан',
 'бангладеш',
 'беларусь',
 'бельгия',
 'болгария',
 'бразилия',
 'венгрия',
 'виргинские острова , британски',
 'виргинские острова, сша',
 'вьетнам',
 'германия',
 'гонконг',
 'греция',
 'грузия'.
In [33]:
len(sorted_list)
Out[33]:
81
In [34]:
count_errors = data.query('страна_отправления == "молдавия"')['страна_отправления'].count()
count_errors
Out[34]:
12
In [35]:
data['страна_отправления'].replace('молдавия', 'молдова, республика', inplace=True)
```

```
In [36]:
count_errors = count_errors + data.query('страна_отправления == "корея,народно-демократичес
count_errors
Out[36]:
28
In [37]:
data['страна_отправления'].replace('корея,народно-демократическая', 'корея, республика', in
In [38]:
count_errors = count_errors + data.query('страна_отправления == "прочие страны"')['страна_о
count_errors
Out[38]:
80
In [39]:
data['страна_отправления'].replace('прочие страны', 'unknown', inplace=True)
#data['cmpaнa_omnpaвления'].replace('nepo', 'nepy', inplace=True)
In [40]:
sorted_list = sorted(data['страна_отправления'].unique())
sorted_list
Out[40]:
['unknown',
 'австралия',
 'азербайджан',
 'алжир',
 'афганистан',
 'бангладеш',
 'беларусь',
 'бельгия',
 'болгария',
 'бразилия',
 'венгрия',
 'виргинские острова , британски',
 'виргинские острова, сша',
 'вьетнам',
 'германия',
 'гонконг',
 'греция',
 'грузия'.
In [41]:
len(sorted_list)
Out[41]:
78
```

### Посмотрим на столбцец тип\_вагона:

```
In [42]:
data['тип_вагона'].unique()
Out[42]:
array(['Крытые', 'Полувагоны', 'Цистерны', 'Цестерны', 'Полумагоны',
       'Самолет', 'Крысые', 'Полубагоны'], dtype=object)
Посчитаем опечатки:
In [43]:
error_list = ['Цестерны', 'Полумагоны', 'Крысые', 'Полубагоны']
In [44]:
count_errors = 0
for i in error_list:
    tmp = i
    count = data.query('тип_вагона == @tmp')['тип_вагона'].count()
    count_errors += count
print(f'Колличество ошибок: {count_errors}')
Колличество ошибок: 72
Заменим опечатки на верные данные:
In [45]:
data['тип_вагона'].replace('Крысые', 'Крытые', inplace=True)
In [46]:
data['тип_вагона'].replace('Полубагоны', 'Полувагоны', inplace=True)
In [47]:
data['тип_вагона'].replace('Цестерны', 'Цистерны', inplace=True)
In [48]:
data['тип вагона'].replace('Полумагоны', 'Полувагоны', inplace=True)
In [49]:
data['тип вагона'] = data.тип вагона.str.lower()
In [50]:
data['тип_вагона'].unique()
Out[50]:
array(['крытые', 'полувагоны', 'цистерны', 'самолет'], dtype=object)
```

# Рассмотрим столбец страна\_прибытия аналогично столбцу страна\_отправления:

```
In [51]:
count_errors = 0
for i in data['страна_прибытия']:
   try:
        int(i)
        count_errors += 1
    except:
        pass
print(f'Колличество ошибок: {count_errors}')
Колличество ошибок: 16
In [52]:
data['страна_прибытия'].replace(7777777, 'unknown', inplace=True)
data['страна_прибытия'] = data['страна_прибытия'].str.lower()
In [53]:
sorted_list = sorted(data['страна_прибытия'].unique())
sorted_list
Out[53]:
['unknown',
 'австралия',
 'австрия',
 'азербайджан',
 'алжир',
 'армения',
 'афганистан',
 'беларусь',
 'бельгия',
 'болгария',
 'бразилия',
 'венгрия',
 'виргинские острова, сша',
 'вьетнам',
 'гана',
 'германия',
 'греция',
 'грузия'.
In [54]:
len(sorted list)
Out[54]:
75
```

localhost:8888/notebooks/yandex-praktikum-projects/ΠΡΟΕΚΤЫ ipynb/Data analyst Test 1.ipynb#

```
In [55]:
count_errors = data.query('страна_прибытия == "корея, народно-демократическая"')['страна_при
count_errors
Out[55]:
28
In [56]:
data['страна_прибытия'].replace('корея,народно-демократическая', 'корея, республика', inpla
In [57]:
count_errors = count_errors + data.query('страна_прибытия == "pф"')['страна_прибытия'].coun
count_errors
Out[57]:
117
In [58]:
data['страна_прибытия'].replace('рф', 'россия', inplace=True)
In [59]:
count_errors = count_errors + data.query('страна_прибытия == "прочие страны"')['страна_приб
count_errors
Out[59]:
313
In [60]:
data['страна_прибытия'].replace('прочие страны', 'unknown', inplace=True)
```

72

```
In [61]:
sorted_list = sorted(data['страна_прибытия'].unique())
sorted_list
Out[61]:
['unknown',
 'австралия',
 'австрия',
 'азербайджан',
 'алжир',
 'армения',
 'афганистан',
 'беларусь',
 'бельгия',
 'болгария',
 'бразилия',
 'венгрия',
 'виргинские острова, сша',
 'вьетнам',
 'гана',
 'германия',
 'греция',
 'грузия'.
In [62]:
len(sorted_list)
Out[62]:
```

## Посмотрим на столбец количество вагонов:

```
In [63]:

data['количество_вагонов'].count()

Out[63]:

9610

Заполним пропуски звыбивающимся -1.

In [64]:

data['количество_вагонов'].fillna(-1, inplace=True)
```

Посчитаем строковые значения (ошибки) в столбце:

```
In [65]:
```

```
erorr_str = []
for i in data['количество_вагонов']:
    try:
        int(i)
    except:
        erorr_str.append(i)
print(erorr_str)
print(f'Колличество ошибок: {len(erorr_str)}')
```

```
['в', 'й', 'y', 'цй', 'к', 'е', 'й', 'цу', 'кцук', 'цу', 'пе', 'кке', 'йц', 'йцу', 'йуйцу']
Колличество ошибок: 15
```

```
In [66]:
```

```
erorr_str = set(erorr_str)
```

Заменим данные значения на выбивающееся -1, т.к. восстановить эти данные не представляется возможным:

```
In [67]:
```

```
for i in erorr_str:
data['количество_вагонов'].replace(i, -1, inplace=True)
```

Заменим ошибки(-1) на среднее, т.к. их не много, влияния оказать в любом случае это не должно.

```
In [68]:
```

```
data['количество_вагонов'].replace(-1, data['количество_вагонов'].mean(), inplace=True)
```

## Далее рассмотрим столобец выручка:

```
In [69]:
```

```
data['выручка'].count()
Out[69]:
```

9665

Заполним пропуски выбивающимся -1:

```
In [70]:
```

```
data['количество_вагонов'].describe()
Out[70]:
         9.680000e+03
count
         1.264376e+04
mean
         8.125824e+04
std
         8.700000e+01
min
25%
         2.000000e+02
50%
         7.200000e+02
75%
         3.420000e+03
         1.882100e+06
max
Name: количество_вагонов, dtype: float64
In [71]:
data['выручка'].fillna(-1, inplace=True)
In [72]:
count_errors = []
for i in data['выручка']:
    try:
        int(i)
    except:
        count_errors.append(i)
print(erorr_str)
```

```
{'цу', 'йц', 'пе', 'к', 'йуйцу', 'е', 'цй', 'у', 'кке', 'йцу', 'в', 'й', 'кц
yκ'}
Колличество ошибок: 1
```

print(f'Колличество ошибок: {len(count\_errors)}')

Заменим данное значение на выбивающееся -1, т.к. восстановить эту строку не представляется возможным:

```
In [73]:
```

```
data['выручка'].replace('цйцу', -1, inplace=True)
```

```
In [74]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9680 entries, 0 to 9679
Data columns (total 8 columns):
     Column
                         Non-Null Count Dtype
                                         object
 0
     название_компаний
                         9680 non-null
 1
                                         int64
                         9680 non-null
     год
 2
     месяц
                         9680 non-null
                                         int64
 3
    страна_отправления 9680 non-null
                                         object
 4
    тип_вагона
                         9680 non-null
                                         object
 5
     страна_прибытия
                         9680 non-null
                                         object
 6
     количество_вагонов 9680 non-null
                                         float64
                         9680 non-null
                                         int64
     выручка
dtypes: float64(1), int64(3), object(4)
memory usage: 605.1+ KB
In [75]:
data['выручка'].replace(-1, data['выручка'].mean(), inplace=True)
```

### In [76]:

```
display(data.head(5))
display(data.tail(5))
```

|   | название_компаний | год  | месяц | страна_отправления | тип_вагона | страна_прибытия | KOJ |
|---|-------------------|------|-------|--------------------|------------|-----------------|-----|
| 0 | Компания 1        | 2019 | 1     | азербайджан        | крытые     | беларусь        |     |
| 1 | Компания 1        | 2019 | 1     | азербайджан        | крытые     | россия          |     |
| 2 | Компания 1        | 2019 | 1     | азербайджан        | полувагоны | россия          |     |
| 3 | Компания 1        | 2019 | 1     | беларусь           | крытые     | россия          |     |
| 4 | Компания 1        | 2019 | 1     | беларусь           | полувагоны | россия          |     |
| 4 |                   |      |       |                    |            |                 | •   |

|      | название_компаний | год  | месяц | страна_отправления | тип_вагона | страна_прибытия |
|------|-------------------|------|-------|--------------------|------------|-----------------|
| 9675 | Компания 16       | 2020 | 3     | турция             | полувагоны | россия          |
| 9676 | Компания 16       | 2020 | 3     | узбекистан         | полувагоны | казахстан       |
| 9677 | Компания 16       | 2020 | 3     | узбекистан         | полувагоны | россия          |
| 9678 | Компания 16       | 2020 | 3     | украина            | полувагоны | казахстан       |
| 9679 | Компания 16       | 2020 | 3     | шри-ланка          | полувагоны | казахстан       |
| 4    |                   |      |       |                    |            | <b>&gt;</b>     |

Проверм данные на дуббликаты:

### In [77]:

```
data.duplicated().sum()
```

### Out[77]:

2

Дубликатов очень мало, но есть. избавимся от него:

```
In [78]:
```

```
data = data.drop_duplicates().reset_index(drop=True)
```

In [79]:

```
data.duplicated().sum()
```

Out[79]:

0

Предобработка данных завершена. Можно переходить к заданиям.

# Графическое отображение.

# Отобразим таблицу в разрезе месяц/год/компания/количество вагонов/выручка:

In [80]:

|      | месяц | год  | название_компаний | количество_вагонов | выручка   |
|------|-------|------|-------------------|--------------------|-----------|
| 5693 | 6     | 2020 | Компания 9        | 90.0               | 1350.0    |
| 4111 | 4     | 2019 | Компания 7        | 2156.0             | 32340.0   |
| 2379 | 2     | 2020 | Компания 4        | 400.0              | 6000.0    |
| 9225 | 2     | 2020 | Компания 15       | 261.0              | 3915.0    |
| 254  | 7     | 2019 | Компания 1        | 2100.0             | 31500.0   |
| 8967 | 6     | 2019 | Компания 15       | 957.0              | 14355.0   |
| 3197 | 5     | 2020 | Компания 5        | 98.0               | 1470.0    |
| 5701 | 6     | 2020 | Компания 9        | 180.0              | 2700.0    |
| 4095 | 4     | 2019 | Компания 7        | 294.0              | 4410.0    |
| 6457 | 2     | 2019 | Компания 11       | 2070.0             | 31050.0   |
| 3060 | 3     | 2020 | Компания 5        | 60662.0            | 909930.0  |
| 7718 | 12    | 2019 | Компания 13       | 203493.0           | 3052395.0 |

# Построим линейный график помесячной динамики количества вагонов в разрезе направления (страна отправления-страна прибытия):

Добавим столбцец направление для выполнения задания:

```
In [81]:
```

```
data['направление'] = data['страна_отправления'] + ' - ' + data['страна_прибытия']
```

### In [82]:

```
display(data.head(5))
display(data.tail(5))
```

|            | название_компаний                         | год                     | месяц          | СТ  | рана_отправления             | тип_в                            | агона с              | трана_прибытия                     | кол       |
|------------|-------------------------------------------|-------------------------|----------------|-----|------------------------------|----------------------------------|----------------------|------------------------------------|-----------|
| 0          | Компания 1                                | 2019                    | 1              |     | азербайджан                  | кр                               | ытые                 | беларусь                           |           |
| 1          | Компания 1                                | 2019                    | 1              |     | азербайджан                  | кр                               | ытые                 | россия                             |           |
| 2          | Компания 1                                | 2019                    | 1              |     | азербайджан                  | полува                           | агоны                | россия                             |           |
| 3          | Компания 1                                | 2019                    | 1              |     | беларусь                     | кр                               | ытые                 | россия                             |           |
| 4          | Компания 1                                | 2019                    | 1              |     | беларусь                     | полув                            | агоны                | россия                             |           |
| 4          |                                           |                         |                |     |                              |                                  |                      |                                    | •         |
|            | название_компан                           | ий г                    | од мес         | яц  | страна_отправлен             | ия тиі                           | п вагона             | страна_прибыт                      | иа        |
|            |                                           |                         |                | •   | <u> </u>                     |                                  |                      |                                    |           |
| 967        | З Компания                                | 16 20                   | 20             | 3   | турц                         |                                  | —<br>лувагоны        |                                    |           |
| 967<br>967 |                                           |                         |                |     |                              | ия по                            | лувагоны<br>лувагоны | росс                               | еия       |
|            | <b>4</b> Компания                         | 16 20                   | 20             | 3   | турц                         | ия по                            |                      | росс                               | ан        |
| 967        | <b>74</b> Компания <b>75</b> Компания     | 16 20<br>16 20          | 20             | 3   | турц<br>узбекист             | ия по.<br>ан по.<br>ан по.       | лувагоны             | росс<br>казахст<br>росс            | ан        |
| 967<br>967 | 74 Компания<br>75 Компания<br>76 Компания | 16 20<br>16 20<br>16 20 | 20<br>20<br>20 | 3 3 | турц<br>узбекист<br>узбекист | ия по<br>ан по<br>ан по<br>на по | лувагоны             | росс<br>казахст<br>росс<br>казахст | ан<br>сия |

Общий график динамики количества вогонов по месяцам:

```
In [83]:
```

```
(data.query('страна_отправления != "unknown" and страна_прибытия != "unknown"')
   .groupby('месяц')
   .agg({'количество_вагонов': 'sum'})
   .reset_index()
   .plot(x='месяц', y='количество_вагонов', figsize=(12, 6))
)
plt.xlabel('месяц')
plt.ylabel('количество_вагонов')
plt.title('Динамика количества вагонов по месяцам')
plt.show()
```



Отдельные графики каждого месяца с динамикой вагонов по направлениям:

#### In [84]:



Откинем выбросы с меньшей стороны и установим ограничение для с бОльшей стороны для наглядности:

### In [85]:

```
data['количество_вагонов'].describe()
Out[85]:
count
         9.678000e+03
         1.264635e+04
mean
         8.126644e+04
std
         8.700000e+01
min
25%
         2.000000e+02
50%
         7.200000e+02
75%
         3.420000e+03
         1.882100e+06
max
Name: количество_вагонов, dtype: float64
```

```
In [86]:
```

```
data['количество_вагонов'].describe()[5]
```

### Out[86]:

720.0

### In [87]:

```
for month in range(1, 13):
   tmp = data.query('страна_отправления != "unknown" and страна_прибытия != "unknown" and
   #maximum = tmp['koличесmbo_baronob'].mean() + (0.01 * np.std(tmp['koличеcmbo_baronob'])
   maximum = tmp['количество_вагонов'].describe()[5]
   minimum = tmp['количество вагонов'].mean() - (3 * np.std(tmp['количество вагонов']))
   three_sigma = tmp.query('@minimum < количество_вагонов < @maximum')
    (three_sigma
     .groupby('направление')
     .agg({'количество_вагонов': 'sum'})
     .reset_index()
     .plot(x='направление', y='количество_вагонов', figsize=(12, 6))
   plt.xlabel('направление')
   plt.xticks(rotation=45)
   plt.ylabel('количество_вагонов')
   plt.title(f'Динамика количества вагонов по направлениям в {month} месяце')
   plt.show()
```



Посмотрим на динамику количества вагонов на отдельном графике каждого направления по месяцам:

### In [88]:

```
for direction in data['направление'].unique():
    min_num_month = len(data[data['направление'] == direction]['месяц'].unique())
    if min_num_month > 10:
         (data[(data['страна_прибытия'] != 'unknown') & (data['страна_отправления'] != 'unkn
          .groupby('месяц')
          .agg({'количество_вагонов': 'sum'})
          .reset_index()
          .plot(x='месяц', y='количество_вагонов', figsize=(12, 6))
         plt.xlabel('месяц')
        plt.ylabel('количество_вагонов')
        plt.title(f'Динамика количества вагонов по месяцам в направлении {direction}')
        plt.show()
                Динамика количества вагонов по месяцам в направлении азербайджан - россия
  250000
                                                                      количество_вагонов
  200000
количество вагонов
  150000
  100000
   50000
                                                                               12
                                                                  10
```

Построим график piechart распределения долей в количестве вагонов по компаниям за последний квартал по отправлениям из России:

### In [89]:

```
(data.query('(месяц == 4 or месяц == 5 or месяц == 6) and страна_отправления == "россия" an .groupby('название_компаний')
.agg({'количество_вагонов': 'sum'})
.plot(kind='pie', y='количество_вагонов', figsize=(16, 16), autopct = '%.1f')
)
plt.show()
```



# Оценим отклонение от нормы в данных по суммарному количеству вагонов в месяц, независимо от типа вагонов в виде распределения Гаусса

### In [90]:

```
sum_of_wagons_months = data.groupby('месяц').agg({'количество_вагонов': 'sum'})
sum_of_wagons_months
```

### Out[90]:

### количество\_вагонов

| месяц |              |
|-------|--------------|
| шоолц |              |
| 1     | 7.733940e+06 |
| 2     | 1.299435e+07 |
| 3     | 1.543764e+07 |
| 4     | 1.064751e+07 |
| 5     | 1.336421e+07 |
| 6     | 2.178060e+07 |
| 7     | 1.078847e+07 |
| 8     | 8.465872e+06 |
| 9     | 4.792832e+06 |
| 10    | 5.982000e+06 |
| 11    | 6.621918e+06 |
| 12    | 3.782034e+06 |

1200

```
In [91]:
```

```
for month in range(1, 13):
    tmp = data.query('mecsqu == @month')
    plt.figure(figsize=(12, 6))
    plt.hist('количество_вагонов', bins=100, data=tmp)
    plt.show()

600

600

400

300

200

100
```

200000

250000

300000

350000

Откинем выбросы по правилу трёмх сигм и снова посмотрим на гистограммы:

150000

50000

100000

#### In [92]:

```
for month in range(1, 13):
    tmp = data.query('месяц == @month')
    maximum = tmp['количество_вагонов'].mean() + (3 * np.std(tmp['количество_вагонов']))
    minimum = tmp['количество_вагонов'].mean() - (3 * np.std(tmp['количество_вагонов']))
    three_sigma = tmp.query('@minimum < количество_вагонов < @maximum')
    plt.figure(figsize=(12, 6))
    plt.hist('количество_вагонов', bins=100, data=three_sigma)
    plt.show()</pre>
```



На мой взгляд стоит откинуть хвосты побольше.

### In [93]:

```
data['количество_вагонов'].describe()
```

### Out[93]:

```
9.678000e+03
count
         1.264635e+04
mean
         8.126644e+04
std
         8.700000e+01
min
25%
         2.000000e+02
50%
         7.200000e+02
75%
         3.420000e+03
         1.882100e+06
max
```

Name: количество вагонов, dtype: float64

### In [94]:

```
data['количество_вагонов'].describe()[4]
```

### Out[94]:

200.0

#### In [95]:

```
for month in range(1, 13):
    tmp = data.query('месяц == @month')
    maximum = tmp['количество_вагонов'].mean() + (1 * np.std(tmp['количество_вагонов']))
    #minimum = tmp['количество_вагонов'].mean() - (1 * np.std(tmp['количество_вагонов']))
    #minimum = tmp['количество_вагонов'].describe()[4]
    three_sigma = tmp.query('1000 < количество_вагонов < @maximum')
    plt.figure(figsize=(12, 6))
    plt.hist('количество_вагонов', bins=100, data=three_sigma)
    plt.show()</pre>
```



Так их можно рассматривать.

Вид распределений похож на распределения Пуассона, а не нормальное распределение Гауса.

## Создадим таблицу по посчитанным ошибкам:

Ошибки:

Пропуски:

Вагонов = 70

Выручка = 15

Название компаний(2222) = 25

Год(2 019, 2019, 2019) = 20

Месяц(07.01.19\*\*) = 72

Страна отправления(7777777) = 52 Страна отправления(По разному написаны страны и прочие страны) = 80

Тип вагона('Цестерны', 'Полумагоны', 'Крысые', 'Полубагоны') = 72

Страна прибытия(7777777) = 16

Страна прибытия(По разному написаны страны и прочие страны) = 313

Вагонов ('в', 'й', 'у', 'цй', 'к', 'e', 'й', 'цу', 'кцук', 'цу', 'пе', 'кке', 'йц', 'йцу', 'йуйцу') = 15

### In [96]:

### In [97]:

```
errors_tabl = pd.DataFrame(data=errors, columns=columns)
errors_tabl
```

### Out[97]:

|   | Название ошибки                                     | Название<br>компаний | Год | Месяц | Страна<br>отправления | Тип<br>вагона | Страна<br>прибытия | Вагонов | Вь |
|---|-----------------------------------------------------|----------------------|-----|-------|-----------------------|---------------|--------------------|---------|----|
| 0 | Пропуски                                            | 0                    | 0   | 0     | 0                     | 0             | 0                  | 70      |    |
| 1 | int в string                                        | 25                   | 0   | 0     | 52                    | 0             | 16                 | 0       |    |
| 2 | Разное написание -<br>один смысл и<br>прочие страны | 0                    | 0   | 0     | 80                    | 0             | 313                | 0       |    |
| 3 | string в int                                        | 0                    | 20  | 0     | 0                     | 0             | 0                  | 0       |    |
| 4 | Предположительные<br>сбои                           | 0                    | 0   | 72    | 0                     | 0             | 0                  | 0       |    |
| 5 | Опечатки                                            | 0                    | 0   | 0     | 0                     | 72            | 0                  | 15      |    |
| 4 |                                                     |                      |     |       |                       |               |                    |         | •  |