# **Digital Signal Processing**

# **Borhan**

ASH2101008M November, 2024

# **Contents**

| l  | What is DSP? |                                      | 1 |  |
|----|--------------|--------------------------------------|---|--|
| 2  | Sign         | als                                  | 1 |  |
|    | 2.1          | Continuous and Discrete Time Signals | 1 |  |
|    | 2.2          | Even and Odd Signal                  | 1 |  |
|    | 2.3          | Periodic and Non-Periodic            | 1 |  |
|    | 2.4          | Causality                            | 1 |  |
|    | 2.5          | Sided Signals                        | 2 |  |
|    | 2.6          | Complex Exponential Signal           | 2 |  |
|    | 2.7          | Operations on Signals                | 2 |  |
|    | 2.8          | Standard Test Signals                | 3 |  |
|    | 2.9          | Energy and Power Signal              | 3 |  |
| ξ. | Syst         | em                                   | 3 |  |

#### What is DSP?

Digital Signal Processing (DSP) refers to various techniques for improving the accuracy and reliability of digital communication. <sup>1</sup>

# **Signals**

Signals are detachable physical quantities or variables by which message or information can be transmitted.

Signals are represented mathematically as a function of one or more variable.

$$y = f(t) \tag{1}$$

t = independent variable, y = dependent variable

**Example**: Human voice, Television, Picture etc.

# 2.1 Continuous and Discrete Time Signals

| Continuous Time Signal         | Discrete Time Signal            |
|--------------------------------|---------------------------------|
| A signal is said to be contin- | A signal is said to be discrete |
| uous when it is defined for    | when it is defined at only      |
| all instance of time.          | discrete instance of time.      |
| Continuous in both time and    | Discrete in time; amplitude     |
| amplitude                      | can be continuous or quan-      |
|                                | tized                           |
| Analog Signals: Sine,          | Digital signals: sample au-     |
| speech                         | dio, digital images             |
|                                | A Discrete-Time Signal          |
| x(t)                           | <b>↑</b>                        |
| 1 2 4 6 8 t                    | 5 5 4 3 2 1 0 11 2 3 4 5 n      |

Table 1: Continuous and Discrete Time Signals

| <sup>1</sup> https://www.techtarget.com/whatis/definition/digital-signal-processing | 3- |
|-------------------------------------------------------------------------------------|----|
| DSP                                                                                 |    |

# 2.2 Even and Odd Signal

| Even Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odd Signal                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| A signal $x(t)$ is even if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A signal $x(t)$ is odd if        |
| x(t) = x(-t) for all values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x(t) = -x(-t) for all val-       |
| of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ues of $t$                       |
| Identical about the origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not identical about the ori-     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gin. It is identical to its neg- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ative.                           |
| x(t) = cos(t) is even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x(t) = sin(t) is odd             |
| x(-t) $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ $(-2)$ | x(t) $x(-t)$ $x(-t)$ $x(-t)$     |

Table 2: Even and Odd Signal

# 2.3 Periodic and Non-Periodic

| Periodic Signal A signal repeats itself after a fixed time period is called as a periodic signal. Condi- | Non-Periodic Signal  A signal which is not satisfy the condition $x(t)! = x(t+T)$ Fundamental Time |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| tions:                                                                                                   | Period, $T = \frac{2\pi}{\omega} = \frac{1}{f}$                                                    |
| • $x(t) = x(t+T)$<br>• $-\infty \le t \le \infty$                                                        |                                                                                                    |
| $-\infty \le t \le \infty$                                                                               |                                                                                                    |
|                                                                                                          | x(t)                                                                                               |

Table 3: Properties of Signal

# 2.4 Causality

Causal Signals: Causal signals are signals that are zero for all negative time.

$$x(t) = \begin{cases} x(t) > 0 & t \ge 0 \\ 0 & t < 0 \end{cases}$$



**Anti-Causal Singal:** A signal which posses zero value for all positive value of time, but has amplitude which is greater than zero for all negative value of time.



**Non-Causal:** A signal that has value of amplitude which is greater than zero for both positive and negative instances of time is a non-causal signal.



# 2.5 Sided Signals

**Left Sided Signal:** A signal is called left-sided if it is non-zero only for  $t \le T$ , where T is a finite time.

**Right Sided Signal:** A signal is called right-sided if it is non-zero only for  $t \geq T$ , where T is a finite time.

**Two Sided Signal:** A signal is called two-sided if it is non-zero for both  $t \le T_1$  and  $t \ge T_2$ , where  $T_1, T_2$  are finite times.



#### 2.6 Complex Exponential Signal

An exponential signal whose samples are complex numbers is known as a complex exponential signal.

**Continuous-Time Complex Exponential Signal**: A CT Complex exponential signal is the one that is defined for every instance of time.  $x(t) = Ae^{\lambda t}$  Where, A is amplitude and s is a complex variable.



**Complex Sinusoid :** A complex sinusoid signal is a special case of a complex exponential  $x(t)=A^{\lambda t}$ , where A is complex and  $\lambda$  is pure imaginary.

 $x(t) = Ae^{j\omega t}$ , where  $\omega$  is real.



By expressing A in polar form as,  $A=|A|e^{j\theta}$ , where  $\theta$  is real and using Euler's relation,  $x(t)=|A|\cos(\omega t+\theta)+j|A|\sin(\omega t+\theta)$  Most general case of a complex exponential, A and  $\lambda$  both are complex, letting  $A=|A|e^{j\theta}$  and  $\lambda=\sigma+j\omega$  and now using Euler's relation,

$$x(t) = |A|e^{\sigma t}\cos(\omega t + \theta) + j|A|e^{\sigma t}\sin(\omega t + \theta)$$



**Exponentially Sinusoid Dumped Signal:** A dumped signal is sinusoidal signal which amplitude approaches zero as times increases.  $x(t) = Ae^{-\lambda t}\sin{(\omega t + \Phi)}$ 



#### 2.7 Operations on Signals

Time Shifting Operation :  $x(t \pm t_0)$ 



Time Scaling Operation  $x(\alpha t)$ 



Time reverse or folding Operation x(-t)



# Standard Test Signals

They are used to check the control systems performance using time response of the output.

# **Unit Step Signal**

The step signal or step function is that type of standard signal which exists only for positive time and it is zero for negative time. If a step signal has unity magnitude, then it is known as unit step signal.



# Impulse Signal

An Ideal impulse signal is a signal that is zero everywhere but at the origin (t = 0), it is infinitely high.

$$\delta(t) = \begin{cases} 1 & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases}$$

 $A \cdot \delta(t), A = A$  is the area



#### Ramp Signal

A ramp signal is a type of standard signal which starts at t = 0 and increase linearly with time.

$$r(t) = \begin{cases} t & \text{if } t \leq 0 \\ 0 & \text{if } t < 0 \end{cases}$$
 Slope = Coefficient of r(t)



### **Rectangular Single**

A signal that produces a rectangular shaped pulse with a width of  $\tau$  (where  $\tau = 1$  for unit rectangular function) centered at t = 0 is known as rectangular signal.

$$rec(t) = \begin{cases} 1 & \text{if } |t| \leq \frac{\tau}{2} \\ 0 & \text{otherwise} \end{cases}$$
 $\tau = 1 \text{ for unit rectangular}$ 



# 2.9 Energy and Power Signal

**Energy Signal:** A signal is said to be an energy signal if and only if its total energy E is finite,  $0 < E < \infty$ .

$$E = \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$

**Power Signal:** A signal is said to be a power signal if its average Pis finite,  $0 < P < \infty$ .

$$P = \lim_{T \to \infty} \frac{E}{T} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$

 $P=\lim_{T o\infty}rac{E}{T}=\lim_{T o\infty}rac{1}{T}\int_{-rac{T}{2}}^{rac{T}{2}}|x(t)|^2dt$  A signal cant be Energy and Power Signals together. If  $E_x$  is finite, then  $P_x$  is zero, vice-versa.

#### 3 **System**

System is a interconnection of different physical components which is used to convert one form of signal to others.

