CS 207: Discrete Structures

Abstract algebra and Number theory

— Lagrange's theorem and its proof

Lecture 39 Oct 29 2015

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

What are the subgroups of the following groups?

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

What are the subgroups of the following groups?

▶ Symmetries of an eq triangle: $G = \{i, r, s, x, y, z\}$

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

What are the subgroups of the following groups?

 $\blacktriangleright (\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\} \dots$

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - ▶ $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\}...$
 - $0 + H_2 = \{0, 3\}, 1 + H_2 = \{1, 4\}, 2 + H_2 = \{2, 5\}, \dots$

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - ▶ $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\}...$
 - $0 + H_2 = \{0, 3\}, 1 + H_2 = \{1, 4\}, 2 + H_2 = \{2, 5\}, \dots$

What are the properties of such sets obtained?

 \blacktriangleright We start with a subgroup H of G...

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\} \dots$
 - $0 + H_2 = \{0,3\}, 1 + H_2 = \{1,4\}, 2 + H_2 = \{2,5\}, \dots$

What are the properties of such sets obtained?

- \blacktriangleright We start with a subgroup H of G...
- ▶ The same sets keep repeating... when multiplied by elements of *G*

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\} \dots$
 - $0 + H_2 = \{0, 3\}, 1 + H_2 = \{1, 4\}, 2 + H_2 = \{2, 5\}, \dots$

What are the properties of such sets obtained?

- \blacktriangleright We start with a subgroup H of G...
- ightharpoonup The same sets keep repeating... when multiplied by elements of G
- \blacktriangleright When do we get back the same subgroup H? And what happens when we don't get back the subgroup?

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\} \dots$
 - $0 + H_2 = \{0,3\}, 1 + H_2 = \{1,4\}, 2 + H_2 = \{2,5\}, \dots$

- \blacktriangleright We start with a subgroup H of G...
- ▶ The sets are disjoint & span G, i.e., form a partition of G.

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6) \colon \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, \ a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\} \dots$
 - $0 + H_2 = \{0,3\}, 1 + H_2 = \{1,4\}, 2 + H_2 = \{2,5\}, \dots$

- \blacktriangleright We start with a subgroup H of G...
- ▶ The sets are disjoint & span G, i.e., form a partition of G.
- ▶ But what is the size of each set?

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6): \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\} \dots$
 - $0 + H_2 = \{0, 3\}, 1 + H_2 = \{1, 4\}, 2 + H_2 = \{2, 5\}, \dots$

- \blacktriangleright We start with a subgroup H of G...
- ▶ The sets are disjoint & span G, i.e., form a partition of G.
- ▶ But what is the size of each set?= size of subgroup
- ▶ Thus (size of subgroup) * (no. of such sets)= |G|

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6): \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\} \dots$
 - $0 + H_2 = \{0, 3\}, 1 + H_2 = \{1, 4\}, 2 + H_2 = \{2, 5\}, \dots$

- \blacktriangleright We start with a subgroup H of G...
- ▶ The sets are disjoint & span G, i.e., form a partition of G.
- ▶ But what is the size of each set?= size of subgroup
- ▶ Thus (size of subgroup) * (no. of such sets)= |G|
- ▶ And so |H| divides |G|...

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

- $(\mathbb{Z}_6, +_6): \mathbb{Z}_n = \{ a \mod n \mid a \in \mathbb{Z} \}, a +_n b = a + b \mod n$
 - $H_1 = \{0, 2, 4\}, H_2 = \{0, 3\}$
 - \blacktriangleright What happens if we add elements to H?
 - ▶ $0 + H_1 = \{0, 2, 4\}, 1 + H_1 = \{1, 3, 5\}, 2 + H_1 = \{2, 4, 0\}...$
 - $0 + H_2 = \{0, 3\}, 1 + H_2 = \{1, 4\}, 2 + H_2 = \{2, 5\}, \dots$

- \blacktriangleright We start with a subgroup H of G...
- ▶ The sets are disjoint & span G, i.e., form a partition of G.
- ▶ But what is the size of each set?= size of subgroup
- ▶ Thus (size of subgroup) * (no. of such sets)= |G|
- ▶ And so |H| divides |G|...
- ▶ Now, let us generalize and prove this formally!

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof:

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof:

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Then we can observe several facts:

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof:

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Then we can observe several facts:

1.
$$|gH| = |H|$$
. Why?

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof:

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Then we can observe several facts:

1. |gH| = |H|. $gh_1 = gh_2$ implies $h_1 = h_2$ (by left cancellation rule).

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof:

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Then we can observe several facts:

- 1. |gH| = |H|. $gh_1 = gh_2$ implies $h_1 = h_2$ (by left cancellation rule).
- 2. $\bigcup_{g \in G} gH = G$. Why?

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof:

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Then we can observe several facts:

- 1. |gH| = |H|. $gh_1 = gh_2$ implies $h_1 = h_2$ (by left cancellation rule).
- 2. $\bigcup_{g \in G} gH = G$. Each $gH \subseteq G$ and $\forall g \in G, g = g * e \in gH$, so $G \subseteq \bigcup_{g \in G} gH$.

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Lemma

Let H be a subgroup of G and $g_1, g_2 \in G$. Then either $g_1H \cap g_2H = \emptyset$ or $g_1H = g_2H$.

Proof: Exercise.

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Lemma

Let H be a subgroup of G and $g_1, g_2 \in G$. Then either $g_1H \cap g_2H = \emptyset$ or $g_1H = g_2H$.

Proof:

1. Suppose $x \in g_1H \cap g_2H$, i.e.,

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Lemma

Let H be a subgroup of G and $g_1, g_2 \in G$. Then either $g_1H \cap g_2H = \emptyset$ or $g_1H = g_2H$.

Proof:

1. Suppose $x \in g_1H \cap g_2H$, i.e., $x = g_1h_1 = g_2h_2$ for some $h_1, h_2 \in H$, then we will show $g_1H = g_2H$.

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Lemma

Let H be a subgroup of G and $g_1, g_2 \in G$. Then either $g_1H \cap g_2H = \emptyset$ or $g_1H = g_2H$.

Proof:

- 1. Suppose $x \in g_1H \cap g_2H$, i.e., $x = g_1h_1 = g_2h_2$ for some $h_1, h_2 \in H$, then we will show $g_1H = g_2H$.
- 2. Let $y \in g_1H$, i.e., $y = g_1h$ for some $h \in H$.

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Lemma

Let H be a subgroup of G and $g_1, g_2 \in G$. Then either $g_1H \cap g_2H = \emptyset$ or $g_1H = g_2H$.

Proof:

- 1. Suppose $x \in g_1H \cap g_2H$, i.e., $x = g_1h_1 = g_2h_2$ for some $h_1, h_2 \in H$, then we will show $g_1H = g_2H$.
- 2. Let $y \in g_1H$, i.e., $y = g_1h$ for some $h \in H$.
- 3. Then, $y = g_1 h = (g_2 h_2 h_1^{-1}) h = (g_2)(h_2 h_1^{-1} h) = g_2 h' \in g_2 H$

Definition (Left Coset)

Let H be a subgroup of G and $g \in G$. The left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}.$

Lemma

Let H be a subgroup of G and $g_1, g_2 \in G$. Then either $g_1H \cap g_2H = \emptyset$ or $g_1H = g_2H$.

Proof:

- 1. Suppose $x \in g_1H \cap g_2H$, i.e., $x = g_1h_1 = g_2h_2$ for some $h_1, h_2 \in H$, then we will show $g_1H = g_2H$.
- 2. Let $y \in g_1H$, i.e., $y = g_1h$ for some $h \in H$.
- 3. Then, $y = g_1 h = (g_2 h_2 h_1^{-1}) h = (g_2)(h_2 h_1^{-1} h) = g_2 h' \in g_2 H$
- 4. Thus $g_1H \subseteq g_2H$. Similarly can show that $g_2H \subseteq g_1H$.

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof: Let H be a subgroup of G and $g \in G$. Consider the left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}$. Then we have,

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof: Let H be a subgroup of G and $g \in G$. Consider the left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}$. Then we have,

- 1. |gH| = |H|.
- 2. $\bigcup_{g \in G} gH = G$.

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof: Let H be a subgroup of G and $g \in G$. Consider the left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}$. Then we have,

- 1. |gH| = |H|.
- 2. $\bigcup_{g \in G} gH = G$.
- 3. By Lemma, for all $g_1, g_2 \in G$, either $g_1 H \cap g_2 H = \emptyset$ or $g_1 H = g_2 H$.

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof: Let H be a subgroup of G and $g \in G$. Consider the left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}$. Then we have,

- 1. |gH| = |H|.
- 2. $\bigcup_{g \in G} gH = G$.
- 3. By Lemma, for all $g_1, g_2 \in G$, either $g_1 H \cap g_2 H = \emptyset$ or $g_1 H = g_2 H$.
- 4. From the above, the set of all left cosets $\{gH \mid g \in G\}$ forms a partition of G. Each coset has size |H|, so

(no. of cosets)
$$\times |H| = |G|$$

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Proof: Let H be a subgroup of G and $g \in G$. Consider the left coset $gH = \{x \in G \mid x = gh \text{ for some } h \in H\}$. Then we have,

- 1. |gH| = |H|.
- 2. $\bigcup_{g \in G} gH = G$.
- 3. By Lemma, for all $g_1, g_2 \in G$, either $g_1 H \cap g_2 H = \emptyset$ or $g_1 H = g_2 H$.
- 4. From the above, the set of all left cosets $\{gH \mid g \in G\}$ forms a partition of G. Each coset has size |H|, so

(no. of cosets)
$$\times |H| = |G|$$

5. Thus |H| divides |G|.

Definition

The no. of (distinct) left cosets is called the index of H in G, denoted |G:H|. Thus $|G:H|=\frac{|G|}{|H|}$.

Definition

The no. of (distinct) left cosets is called the index of H in G, denoted |G:H|. Thus $|G:H| = \frac{|G|}{|H|}$.

▶ Note that the definition of left cosets, the observations and the Lemma hold even when *G* is not finite!

Definition

The no. of (distinct) left cosets is called the index of H in G, denoted |G:H|. Thus $|G:H| = \frac{|G|}{|H|}$.

▶ Note that the definition of left cosets, the observations and the Lemma hold even when *G* is not finite!

Right cosets

▶ What's the fuss about left cosets? Why not right cosets?

Definition

The no. of (distinct) left cosets is called the index of H in G, denoted |G:H|. Thus $|G:H| = \frac{|G|}{|H|}$.

▶ Note that the definition of left cosets, the observations and the Lemma hold even when *G* is not finite!

Right cosets

- ▶ What's the fuss about left cosets? Why not right cosets?
- ▶ (H.W) Prove that right cosets work too! And no. of left cosets = no. of right cosets.

Definition

The no. of (distinct) left cosets is called the index of H in G, denoted |G:H|. Thus $|G:H| = \frac{|G|}{|H|}$.

▶ Note that the definition of left cosets, the observations and the Lemma hold even when *G* is not finite!

Right cosets

- ▶ What's the fuss about left cosets? Why not right cosets?
- ▶ (H.W) Prove that right cosets work too! And no. of left cosets = no. of right cosets.
- \triangleright So, is there a difference? Do they generate the same partition of G?

Definition

The no. of (distinct) left cosets is called the index of H in G, denoted |G:H|. Thus $|G:H| = \frac{|G|}{|H|}$.

▶ Note that the definition of left cosets, the observations and the Lemma hold even when *G* is not finite!

Right cosets

- ▶ What's the fuss about left cosets? Why not right cosets?
- ▶ (H.W) Prove that right cosets work too! And no. of left cosets = no. of right cosets.
- ▶ So, is there a difference? Do they generate the same partition of *G*?
- ightharpoonup consider the cosets of $H=\{i,x\}$ in $G=\{i,r,s,x,y,z\}$...
 - ▶ What are its left-cosets? How many are there?
 - ▶ What are its right-cosets? How many are there?

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

1. Show that order of the element g divides n.

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n =$

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n = e$.

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n = e$.
- 3. If the order of a group is a prime p, then
 - 3.1 Is it cyclic (i.e., isomorphic to the cyclic group of order p)?
 - 3.2 Is it abelian? How many proper subgroups does it have?

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n = e$.
- 3. If the order of a group is a prime p, then
 - 3.1 Is it cyclic (i.e., isomorphic to the cyclic group of order p)?
 - 3.2 Is it abelian? How many proper subgroups does it have?

Fermat's little theorem

For any prime p, if gcd(a, p) = 1, then $p|(a^{p-1} - 1)$.

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n = e$.
- 3. If the order of a group is a prime p, then
 - 3.1 Is it cyclic (i.e., isomorphic to the cyclic group of order p)?
 - 3.2 Is it abelian? How many proper subgroups does it have?

Fermat's little theorem

For any prime p, if gcd(a, p) = 1, then $p|(a^{p-1} - 1)$.

▶ Thus if q does not divide $a^{q-1} - 1$, then q is composite.

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n = e$.
- 3. If the order of a group is a prime p, then
 - 3.1 Is it cyclic (i.e., isomorphic to the cyclic group of order p)?
 - 3.2 Is it abelian? How many proper subgroups does it have?

Fermat's little theorem

For any prime p, if gcd(a, p) = 1, then $p|(a^{p-1} - 1)$.

- ▶ Thus if q does not divide $a^{q-1} 1$, then q is composite.
- ▶ Is the converse true? That is, does gcd(a,q) = 1, $q|a^{q-1} 1$ imply q is prime?

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n = e$.
- 3. If the order of a group is a prime p, then
 - 3.1 Is it cyclic (i.e., isomorphic to the cyclic group of order p)?
 - 3.2 Is it abelian? How many proper subgroups does it have?

Fermat's little theorem

For any prime p, if gcd(a, p) = 1, then $p|(a^{p-1} - 1)$.

- ▶ Thus if q does not divide $a^{q-1} 1$, then q is composite.
- ▶ Is the converse true? That is, does gcd(a,q) = 1, $q|a^{q-1} 1$ imply q is prime?
- No! There exist composite n such that $n|a^{n-1}-1$ for all $a \in \mathbb{Z}^+, gcd(a, n) = 1$.

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $g^n = e$.
- 3. If the order of a group is a prime p, then
 - 3.1 Is it cyclic (i.e., isomorphic to the cyclic group of order p)?
 - 3.2 Is it abelian? How many proper subgroups does it have?

Fermat's little theorem

For any prime p, if gcd(a, p) = 1, then $p|(a^{p-1} - 1)$.

- ▶ Thus if q does not divide $a^{q-1} 1$, then q is composite.
- ▶ Is the converse true? That is, does gcd(a,q) = 1, $q|a^{q-1} 1$ imply q is prime?
- No! There exist composite n such that $n|a^{n-1}-1$ for all $a \in \mathbb{Z}^+, gcd(a, n) = 1$. They are called Carmichael numbers.

Exercise Prove the following:

Let g be an element of a finite group G, |G| = n.

- 1. Show that order of the element g divides n.
- 2. Prove that $q^n = e$.
- 3. If the order of a group is a prime p, then
 - 3.1 Is it cyclic (i.e., isomorphic to the cyclic group of order p)?
 - 3.2 Is it abelian? How many proper subgroups does it have?

Fermat's little theorem

For any prime p, if gcd(a, p) = 1, then $p|(a^{p-1} - 1)$.

- ▶ Thus if q does not divide $a^{q-1} 1$, then q is composite.
- ▶ Is the converse true? That is, does gcd(a,q) = 1, $q|a^{q-1} 1$ imply q is prime?
- No! There exist composite n such that $n|a^{n-1}-1$ for all $a \in \mathbb{Z}^+$, gcd(a, n) = 1. They are called Carmichael numbers.
- ▶ The third Carmichael number is 1729...