Supplementary Tables

Table S1 | Metadata for climate metrics

Table of Information Children												
Ocean climate variable	ESGF metadata	Earth System Models (ESMs)		Climate metric	Calculation	IPCC emissions scenarios						
			MIROC6 MPI-EMS1-2-HR MRI-ESM2-0 NorESM2-LM NorESM2-MM	Rate of change (decade ⁻¹)	20-year slope of the regression, representing the rate of change of anomalous values relative to the mean baseline climatology (1995–2014). Analysis not-depth resolved, only surface layers used.	SSP1-2.6	Net-zero CO ₂ emissions in the second half of the century. Surface warming estimates of below 2.0°C (relative to 1850–1900).					
Sea surface temperature (SST) (Temperature of upper boundary of the liquid ocean, including temperatures below sea-ice and floating ice shelves °C)	Frequency: SST – Daily; O ₂ , pH – Monthly	ACCESS-ESM1-5 ACCESS-CM2 CanESM5 CMCC-ESM2 CNRM-ESM2-1 IPSL-CM6A-LR		Cumulative MHW intensity (degree days decade ⁻¹)	As in Hobday et al. (2016), calculated as the mean intensity multiplied by the duration of each event in each year, and ensembled across ESMs for each IPCC emissions scenario. Calculated using the <i>heatwaveR</i> package (Schlegel & Smit, 2018).	SSP2-4.5	Scenario in line with the upper end of Nationally Determined Contributions emissions levels by 2030. CO ₂ emissions remain at current levels until mid-century. Surface warming estimates of 2.7°C by 2100 (collable to t					
	Variants: r1i1p1f1, r1i1p1f2 Grid: gn, gr Years: Recent past (1995–2014) Projections (2021–2100)			Climate velocity (km decade ⁻¹)	Calculated as gradient-based magnitude climate velocity — the ratio between the long-term temporal trend in climate conditions multiplied by the spatial gradient in climate conditions. Calculated using the VoCC R package (rewritten for terra, owing to the deprecation of raster and sp following the removal of support in October 2023).	SSP3-7.0	(relative to 1850–1900). Intermediate-high scenario resulting from no additional climate policy. CO ₂ emissions double from current levels by 2100. Surface warming estimates of 2.8–4.6°C by 2100 (relative to 1850–1900).					
Oxygen content (Dissolved Oxygen Concentration µg L ⁻¹)		ACCESS-ESM1-5 CanESM5 CMCC-ESM2 CNRM-ESM2-1 GFDL-ESM4	IPSL-CM6A-LR MIROC-ES2L MPI-EMS1-2-HR NorESM2-LM NorESM2-MM	Rate of change (decade ⁻¹)	20-year slope of the regression, representing the rate of change of anomalous values relative to the mean recent past	SSP5-8.5	High reference scenario, no additional climate policy is implemented. CO_2 emissions double from current levels by 2100. Surface warming estimates of 3.3–5.7°C by 2100 (relative to 1850–1900).					
pH (Negative log of hydrogen ion concentration with the concentration expressed as mol H kg ⁻¹)		CESM2-WACCM CMCC-ESM2 CNRM-ESM2-1 GFDL-ESM4 IPSL-CM6A-LR	MIROC-ES2L MPI-EMS1-2-HR NorESM2-LM NorESM2-MM		(1995–2014). Analysis not-depth resolved, only surface layers used.		For more information, see Cross-Chapter Box 1.4, Table 1 in Chen et al. (2021)					

Table S2 | Summary statistics of climate metrics within the EEZ

				SSP1-2.6			SSP2-4.5				SSP3-7.0				SSP5-8.5				
			Recent	Near	Mid	Int	Long	Near	Mid	Int	Long	Near	Mid	Int	Long	Near	Mid	Int	Long
Rate of change	SST (°C decade ⁻¹)	Median Q1 Q3	0.066 0.305 0.101	0.066 0.032 0.108	0.02 -0.011 0.046	-0.089 -0.132 -0.041	-0.062 -0.093 -0.038	0.114 0.076 0.153	0.07 0.03 0.114	0.06 0.031 0.094	0.018 -0.031 0.068	0.086 0.034 0.142	0.222 0.162 0.262	0.2 0.146 0.239	0.259 0.216 0.293	0.148 0.089 0.204	0.27 0.241 0.3	0.304 0.216 0.356	0.344 0.302 0.384
	(C decade)	Min Max	-0.097 0.275	-0.007 0.303	-0.154 0.153	-0.321 0.112	-0.180 0.048	-0.022 0.315	-0.084 0.437	-0.075 0.256	-0.221 0.191	-0.0975 0.363	0.030 0.371	0.031 0.533	0.109 0.618	0.037 0.443	0.045 0.578	0.065 0.554	0.08 0.658
	pH (decade ⁻¹)	Median Q1 Q3 Min Max	-1.71x10-2 -1.87x10-2 -1.64x10-2 -2.17x10-2 -1.38x10-2	-1.9x10 ⁻² -2.0x10 ⁻² -1.8x10 ⁻² -2.2x10 ⁻² -1.6x10 ⁻²	-7.0x10 ⁻³ -7.7x10 ⁻³ -6.3x10 ⁻³ -1.3x10 ⁻² -4.2x10 ⁻³	1.8x10 ⁻³ 1.2x10 ⁻³ 2.4x10 ⁻³ -1.6x10 ⁻³ 4.4x10 ⁻³	8.7x10 ⁻³ 8.2x10 ⁻³ 9.2x10 ⁻³ 4.9x10 ⁻³ 1.1x10 ⁻²	-2.5x10 ⁻² -2.7x10 ⁻² -2.4x10 ⁻² -2.9x10 ⁻² -2.1x10 ⁻²	-2.3x10 ⁻² -2.4x10 ⁻² -2.2x10 ⁻² -2.6x10 ⁻² -1.8x10 ⁻²	-1.7x10 ⁻² -1.8x10 ⁻² -1.6x10 ⁻² -2.0x10 ⁻² -1.4x10 ⁻²	-5.7x10 ⁻³ -6.3x10 ⁻³ -5.1x10 ⁻³ -9.5x10 ⁻³ -2.2x10 ⁻³	-3.1x10 ⁻² -3.3x10 ⁻² -3.0x10 ⁻² -3.6x10 ⁻² -2.7x10 ⁻²	-3.5x10 ⁻² -3.6x10 ⁻² -3.4x10 ⁻² -3.8x10 ⁻² -3.1x10 ⁻²	-3.6x10 ⁻² -3.7x10 ⁻² -3.5x10 ⁻² -3.9x10 ⁻² -3.2x10 ⁻²	-3.7x10 ⁻² -3.8x10 ⁻² -3.7x10 ⁻² -4.0x10 ⁻² -3.5x10 ⁻²	-3.4x10 ⁻² -3.5x10 ⁻² -3.2x10 ⁻² -3.6x10 ⁻² -2.5x10 ⁻²	-4.7x10 ⁻² -4.9x10 ⁻² -4.6x10 ⁻² -5.2x10 ⁻² -4.1x10 ⁻²	-5.8x10 ⁻² -6.0x10 ⁻² -5.7x10 ⁻² -6.2x10 ⁻² -5.3x10 ⁻²	-5.4x10 ⁻² -5.5x10 ⁻² -5.3x10 ⁻² -5.9x10 ⁻² -4.6x10 ⁻²
	O ₂ (µg L ⁻¹ decade ⁻¹)	Median Q1 Q3 Min Max	-2.3x10-4 -3.9x10-4 -6.0x10-4 -1.8x10-3 6.5x10-4	-2.8x10 ⁻⁴ -4.8x10 ⁻⁴ -8.7x10 ⁻⁵ -1.6x10 ⁻³ 6.4x10 ⁻⁴	2.4x10 ⁻⁵ -8.6x10 ⁻⁵ -2.0x10 ⁻⁴ -9.9x10 ⁻⁴ -1.6x10 ⁻³	3.7x10 ⁻⁴ -1.4x10 ⁻⁴ -5.6x10 ⁻⁴ -9.8x10 ⁻⁴ 1.5x10 ⁻³	3.0x10 ⁻⁴ 1.2x10 ⁻⁴ 5.0x10 ⁻⁴ -7.9x10 ⁻⁴ 1.3x10 ⁻³	-4.3x10 ⁻⁴ -6.7x10 ⁻⁴ -2.8x10 ⁻⁴ -1.5x10 ⁻³ 5.5x10 ⁻⁴	-2.8x10 ⁻⁴ -4.9x10 ⁻⁴ -9.4x10 ⁻⁵ -2.4x10 ⁻³ 6.6x10 ⁻⁴	-9.5x10 ⁻⁵ -2.6x10 ⁻⁴ 4.7x10 ⁻⁵ -9.9x10 ⁻⁴ 8.9x10 ⁻⁴	-7.1x10 ⁻⁵ -2.3x10 ⁻⁴ -1.3x10 ⁻³ -1.2x10 ⁻³	-5.0x10 ⁻⁴ -7.0x10 ⁻⁴ -2.9x10 ⁻⁴ -2.4x10 ⁻³ 2.9x10 ⁻⁴	-8.5x10 ⁻⁴ -9.8x10 ⁻⁴ -7.4x10 ⁻⁴ -2.5x10 ⁻³ -1.6x10 ⁻⁴	-7.5x10 ⁻⁴ -9.1x10 ⁻⁴ -6.4x10 ⁻⁴ -2.6x10 ⁻³ -3.3x10 ⁻⁵	-8.4x10 ⁻⁴ -1.1x10 ⁻³ -7.3x10 ⁻⁴ -3.7x10 ⁻³ -2.2x10 ⁻⁴	-6.2x10 ⁻⁴ -8.5x10 ⁻⁴ -3.4x10 ⁻⁴ -2.6x10 ⁻³ -7.1x10 ⁻⁴	-9.8x10 ⁻⁴ -1.1x10 ⁻³ -8.8x10 ⁻⁴ -3.2x10 ⁻³ -3.2x10 ⁻⁴	-1.1x10 ⁻³ -1.2x10 ⁻³ -9.6x10 ⁻⁴ -3.0x10 ⁻³ -2.5x10 ⁻⁴	-1.1x10 ⁻³ -1.3x10 ⁻³ -9.9x10 ⁻⁴ -3.1x10 ⁻³ -5.8x10 ⁻⁴
	Cumulative MHW intensity (degree days decade ⁻¹)	Median Q1 Q3 Min Max	0.08 0.02 0.2 -0.03 5.6	13.3 8.5 21.9 0.3 56.3	21.8 14.3 30.4 -13.5 62.7	6.6 -0.7 13.1 -30.6 58.5	1.0 -8.2 11 -35.2 58.5	18.7 13.2 28 -0.1 63.9	54.7 41.3 68.1 19.6 174	55.6 44.9 64.3 16.2 131	42.8 29.3 58.0 -0.9 98.0	18.3 12.0 28.2 0.8 74.5	103 75.9 115 39.8 163	109 97.2 119 52.0 226	131 118 146 81.8 239	29.2 17.8 44.5 2.6 102	131 112 144 59.5 236	150 117 167 79.0 229	163 150 176 82.9 273
Climate velocity	Climate velocity (km decade ⁻¹)	Median Q1 Q3 Min Max	34.8 24.0 64.9 0.979 1532	31.8 17.8 67.2 -16.7 1673	21.8 12.9 38.5 -14.4 1002	3.78 -3.29 11.1 -70.3 446	-0.63 -9.23 9.06 -502 94.4	48.2 28.0 83.4 9.11 2145	40.2 22.9 66.3 -7.40 1897	33.2 19.2 66.4 -1.09 1439	24.4 13.0 38.5 -21.0 585	40.3 26.9 87.9 7.01 3042	74.3 45.6 135 16.0 3310	65.2 43.4 120 11.5 3159	82.9 52.8 148 19.3 3292	54.3 30.4 108 9.31 3732	86.3 57.9 152 22.4 3819	93.8 47.2 164 8.14 4157	93.5 69.7 175 33.5 4710