## **Example 1: Mortar Formula**



Let  $y_{11}, y_{12}, y_{13}, \dots y_{1n1}$  be  $n_1$  observations from the first factor level (Modified Mortar)

and  $y_{21}, y_{22}, y_{23}, \dots y_{2n1}$  be  $n_2$  observations from the second factor level (UNmodified Mortar)

#### What is the hypothesis test?

A simple statistical model to describe the data is

$$y_{ij} = \mu_i + \epsilon_{ij} \begin{cases} i = 1, 2 \\ j = 1, 2, \dots, n_i \end{cases}$$

where  $y_{ij}$  is the *j*th observation from factor level *i*,  $\mu_i$  is the mean of the response at the *i*th factor level, and  $\epsilon_{ii}$  is a normal random variable associated with the *ij*th observation.

Ref: Design and Analysis of Experiments, 8th Ed.

## ■ TABLE 2.1 Tension Bond Strength Data for the Portland Cement Formulation Experiment

|    | Modified<br>Mortar | Unmodified<br>Mortar |  |  |  |
|----|--------------------|----------------------|--|--|--|
| j  | ${y}_{1j}$         | ${\cal Y}_{2j}$      |  |  |  |
| 1  | 16.85              | 16.62                |  |  |  |
| 2  | 16.40              | 16.75                |  |  |  |
| 3  | 17.21              | 17.37                |  |  |  |
| 4  | 16.35              | 17.12                |  |  |  |
| 5  | 16.52              | 16.98                |  |  |  |
| 6  | 17.04              | 16.87                |  |  |  |
| 7  | 16.96              | 17.34                |  |  |  |
| 8  | 17.15              | 17.02                |  |  |  |
| 9  | 16.59              | 17.08                |  |  |  |
| 10 | 16.57              | 17.27                |  |  |  |

## **Example 1: Mortar Formula**



We assume that the random error components  $\epsilon_{1j}$  and  $\epsilon_{2j}$  are normally distributed with means 0 and variances  $\sigma_1^2$  and  $\sigma_2^2$ 

Which would follow that the  $y_{1j}$  and  $y_{2j}$  are normally distributed with means  $\mu_1$  and  $\mu_2$  and variances  $\sigma_1^2$  and  $\sigma_2^2$ 



■ TABLE 2.1

Tension Bond Strength Data for the Portland
Cement Formulation Experiment

|    | Modified<br>Mortar   | Unmodified<br>Mortar |
|----|----------------------|----------------------|
| j  | ${oldsymbol y}_{1j}$ | ${\cal Y}_{2j}$      |
| 1  | 16.85                | 16.62                |
| 2  | 16.40                | 16.75                |
| 3  | 17.21                | 17.37                |
| 4  | 16.35                | 17.12                |
| 5  | 16.52                | 16.98                |
| 6  | 17.04                | 16.87                |
| 7  | 16.96                | 17.34                |
| 8  | 17.15                | 17.02                |
| 9  | 16.59                | 17.08                |
| 10 | 16.57                | 17.27                |

## **Example 1: Mortar Formula**



#### Now the question is whether $\mu_1 \otimes \mu_2$ are statistically different

#### **Hypothesis Testing**

$$H_0$$
:  $\mu_1 = \mu_2$  Null Hypothesis  $H_1$ :  $\mu_1 \neq \mu_2$  Alternate Hypothesis (two-sided)  $\mu_1 < \mu_2$  or if  $\mu_1 > \mu_2$ .

Factor level 2



■ TABLE 2.1

Tension Bond Strength Data for the Portland
Cement Formulation Experiment

|    | Modified<br>Mortar | Unmodified<br>Mortar |  |  |  |
|----|--------------------|----------------------|--|--|--|
| j  | ${y}_{1j}$         | ${y}_{2j}$           |  |  |  |
| 1  | 16.85              | 16.62                |  |  |  |
| 2  | 16.40              | 16.75                |  |  |  |
| 3  | 17.21              | 17.37                |  |  |  |
| 4  | 16.35              | 17.12                |  |  |  |
| 5  | 16.52              | 16.98                |  |  |  |
| 6  | 17.04              | 16.87                |  |  |  |
| 7  | 16.96              | 17.34                |  |  |  |
| 8  | 17.15              | 17.02                |  |  |  |
| 9  | 16.59              | 17.08                |  |  |  |
| 10 | 16.57              | 17.27                |  |  |  |

r any of the platforms where it can be accessed by others.

Factor level 1

## **Two-Sample t-Test**



Suppose that we could assume that the variances of tension bond strengths were identical for both mortar formulations.  $\sigma_1^2=\sigma_2^2=\sigma^2$ 

■ TABLE 2.1

Tension Bond Strength Data for the Portland
Cement Formulation Experiment

Then the **appropriate test statistic** to use for comparing two treatment

means in the completely randomized design is

Where

$$t_0 = \frac{(y_1 - y_2) - (y_1 - U_1)}{Sp (V_{h_1} + V_{h_2})}$$

$$t_0 = \frac{(\bar{y}_1 - \bar{y}_2) - 0}{(S_p) \left(\frac{1}{p} + \frac{1}{p}\right)}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

| reatment        |           |
|-----------------|-----------|
|                 | j         |
|                 | 1         |
| SS              | 2         |
| ν               | 3         |
|                 | 4         |
| 3               | 5         |
| Ī               | 6         |
| S1 + SS2        | 7         |
| $n_1 + n_2 - 2$ | 8         |
|                 | 9         |
| (ULI) T SZ CN-  | $10^{10}$ |

 $S_p^2$  is an estimate of the common variance  $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 

## t-Test



#### **Two-Sample t-Test Procedure**

$$t_0 = \frac{(\bar{y}_1 - \bar{y}_2) - 0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$



- 1) To determine whether to reject  $H_0$ :  $\mu_1=\mu_2$ , we would compare  $t_0$  to the t-distribution with  $(n_1+n_2-2)$  degrees of freedom.
- 2) If  $t_0 > t_{\frac{\alpha}{2}, n_1 + n_2 2}$  OR  $t_0 < -t_{\frac{\alpha}{2}, n_1 + n_2 2}$  , then we will reject  $H_0$ :  $\mu_1 = \mu_2$

## t-Test



#### **Justification of Two-Sample t-Test**

If we were sampling from two independent normal distributions, then the distribution of  $\overline{y_1} - \overline{y_2}$  will be a

normal distribution with mean  $\mu_1 - \mu_2$  and variance  $\sigma^2 \left( \frac{1}{n_1} + \frac{1}{n_2} \right)$ 

If  $\sigma^2$  were known, and if  $H_0$ :  $\mu_1 = \mu_2$  were true, then the  $Z_0$  distribution would be a normal distribution

with mean 0 and variance 1

$$Z_0 = \frac{\bar{y}_1 - \bar{y}_2}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

But since we do NOT know  $\sigma^2$ , we use  $S_p^2$ 

and the normal distribution changes to t-distribution with  $(n_1 + n_2 - 2)$  degrees of freedom.





#### **Two-Sample t-Test**

In this example

# $t_{8} = \frac{y_{1} - y_{2}}{Sp \sqrt{\frac{1}{h_{1}} + \frac{1}{h_{2}}}} = \frac{16.76 - 17.04}{\sqrt{0.081} \sqrt{\frac{2}{10}}}$

#### ■ TABLE 2.1

Tension Bond Strength Data for the Portland Cement Formulation Experiment

| Modified            | Mortar                                    | Unmodified N                    | Mortar 2.21         |
|---------------------|-------------------------------------------|---------------------------------|---------------------|
| $\bar{y}_1 = 16.70$ | 6 kgf/cm <sup>2</sup>                     | $\bar{y}_2 = 17.04  \mathrm{I}$ | kgf/cm <sup>2</sup> |
| $S_1^2 = 0.10$      | <u>0</u>                                  | $S_2^2 = 0.061$                 |                     |
| $S_1 = 0.31$        | 6                                         | $S_2 = 0.248$                   |                     |
| $n_1 = 10$          |                                           | $n_2 = 10$                      |                     |
| Sp =                | $\frac{S_{1}^{2}(h_{1}-1)+}{h_{1}+n_{2}}$ |                                 | 0-1×9 + 0.061×9     |

|                  | Modified<br>Mortar | Unmodified<br>Mortar |  |  |  |  |
|------------------|--------------------|----------------------|--|--|--|--|
| $\boldsymbol{j}$ | ${y}_{1j}$         | ${y}_{2j}$           |  |  |  |  |
| 1                | 16.85              | 16.62                |  |  |  |  |
| 2                | 16.40              | 16.75                |  |  |  |  |
| 3                | 17.21              | 17.37                |  |  |  |  |
| 4                | 16.35              | 17.12                |  |  |  |  |
| 5                | 16.52              | 16.98                |  |  |  |  |
| 6                | 17.04              | 16.87                |  |  |  |  |
| 7                | 16.96              | 17.34                |  |  |  |  |
| 8                | 17.15              | 17.02                |  |  |  |  |
| 9                | 16.59              | 17.08                |  |  |  |  |
| 10               | 16.57              | 17.27                |  |  |  |  |

## t-Test



#### **Two-Sample t-Test**

In this example

#### **Modified Mortar**

#### **Unmodified Mortar**

$$\overline{y}_1 = 16.76 \text{ kgf/cm}^2$$
  $y_2 = 17.04 \text{ kgf/cm}^2$   $S_1^2 = 0.100$   $S_2^2 = 0.061$   $S_1 = 0.316$   $S_2 = 0.248$   $n_1 = 10$   $n_2 = 10$ 



■ FIGURE 2.10 The *t* distribution with 18 degrees of freedom with the critical region  $\pm t_{0.025,18} = \pm 2.101$ 

Furthermore,  $n_1 + n_2 - 2 = 10 + 10 - 2 = 18$ , and if we choose  $\alpha = 0.05$ , then we would reject  $H_0$ :  $\mu_1 = \mu_2$  if the numerical value of the test statistic  $t_0 > t_{0.025,18} = 2.101$ , or if  $t_0 < -t_{0.025,18} = -2.101$ . These boundaries of the critical region are shown on the reference distribution (t with 18 degrees of freedom) in Figure 2.10.

### t-Test Calculations



#### **Two-Sample t-Test**

#### In this example

Modified Morter

| Widdined Widital                     | Cinnodified Mortal                   |
|--------------------------------------|--------------------------------------|
| $\bar{y}_1 = 16.76 \text{ kgf/cm}^2$ | $\bar{y}_2 = 17.04 \text{ kgf/cm}^2$ |
| $S_1^2 = 0.100$                      | $S_2^2 = 0.061$                      |
| $S_1 = 0.316$                        | $S_2 = 0.248$                        |
| $n_1 = 10$                           | $n_2 = 10$                           |

Unmodified Mortar

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
$$= \frac{9(0.100) + 9(0.061)}{10 + 10 - 2} = 0.081$$
$$S_p = 0.284$$



■ FIGURE 2.10 The *t* distribution with 18 degrees of freedom with the critical region  $\pm t_{0.025,18} = \pm 2.101$ 

$$t_0 = \frac{\bar{y}_1 - \bar{y}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{16.76 - 17.04}{0.284 \sqrt{\frac{1}{10} + \frac{1}{10}}}$$
$$= \frac{-0.28}{0.127} = -2.20$$

We Reject  $H_0$ :  $\mu_1 = \mu_2$  at Significance level of 0.05

## **P-Value**





#### **Two-Sample t-Test**

In this example, we concluded that we Reject  $H_0$ :  $\mu_1 = \mu_2$  at significance level of  $\alpha = 0.05$ 

Do you see any problem/limitation of this?

For example, what will be the conclusion if the significance level is 0.04 or 0.03 or 0.01?

We do not know whether the test-statistic to lies just barely in the rejection region OR very far into the rejection region

Thus, we can specify P-value, which is the minimum significance value which will

#### Result in rejection of the null hypothesis

For example, in the mortar experiments, the null hypothesis will be rejected for any level of significance > 0.0411



■ FIGURE 2.10 The *t* distribution with 18 degrees of freedom with the critical region  $\pm t_{0.025,18} = \pm 2.101$ 

## **Concept of Confidence Interval**



- Given a random sample of 'n' observations from some process of interest and an estimate of the process mean, it is of interest to make some statement about the "goodness" of that sample mean, as an estimate of  $\mu$ , i.e., the degree of belief or confidence that can be placed on it.
- One way of approaching this problem is through the concept of the confidence interval.
- Remember: Distribution of sample means is a normal distribution (CLT)
- That means, for random samples of size 'n' drawn from a population, we expect that 95% of all sample means will be within an interval of  $\mu \pm 1.96$  standard deviations of the distribution of the sample mean, i.e.,  $\mu \pm \frac{1.96\sigma_x}{\sqrt{n}}$

## **Concept of Confidence Interval**



In other words,  $\bar{y} \pm \frac{1.96\sigma_y}{\sqrt{n}}$  is called a 95% confidence interval for the true mean  $\mu$ 



In general,

$$\overline{y} \pm (z_{1-\frac{\alpha}{2}}) \frac{\sigma_y}{\sqrt{n}}$$
 is a 100\*(1- $\alpha$ )% confidence interval for the true mean  $\mu$ 



When sample size is small and  $\sigma_y$  is UNKNOWN,

the confidence interval is given by 
$$\overline{y} \pm (\overline{t_{v,1-\frac{\alpha}{2}}}) \frac{s}{\sqrt{n}}$$



Where v = n-1 is the degree of freedom

$$t_{v/\alpha/2} = -t_{v/1-\alpha/2}$$

NOTE: You do NOT have permission to share this file or any of its contents with

https://www.mathsisfun.com/data/standard-normal-distribution-table.html

## **Confidence Interval**





X 19

 $X_{20}$ 

https://www.mathsisfun.com/data/standard-normal-distribution-table.html

## **Confidence Interval Approach**



CEP2022 Notebook (2.1.5)



To define a confidence interval, suppose that  $\theta$  is an unknown parameter. To obtain an interval estimate of  $\theta$ , we need to find two statistics L and U such that the probability statement

$$P(L \le \theta \le U) = 1 - \alpha \tag{2.27}$$

is true. The interval

$$L \le \theta \le U \tag{2.28}$$

is called a  $100(1 - \alpha)$  percent confidence interval for the parameter  $\theta$ . The interpretation of this interval is that if, in repeated random samplings, a large number of such intervals are constructed,  $100(1 - \alpha)$  percent of them will contain the true value of  $\theta$ . The statistics L and U are called the **lower** and **upper confidence limits**, respectively, and  $1 - \alpha$  is called the **confidence coefficient**. If  $\alpha = 0.05$ , Equation 2.28 is called a 95 percent confidence interval for  $\theta$ . Note that confidence intervals have a frequency interpretation; that is, we do not know if the statement is true for this specific sample, but we do know that the *method* used to produce the confidence interval yields correct statements  $100(1 - \alpha)$  percent of the time.

■ TABLE 2.1

Tension Bond Strength Data for the Portland
Cement Formulation Experiment

|          | Modified<br>Mortar | Unmodified<br>Mortar |  |  |  |
|----------|--------------------|----------------------|--|--|--|
| <i>j</i> | ${y}_{1j}$         | ${\cal Y}_{2j}$      |  |  |  |
| 1        | 16.85              | 16.62                |  |  |  |
| 2        | 16.40              | 16.75                |  |  |  |
| 3        | 17.21              | 17.37                |  |  |  |
| 4        | 16.35              | 17.12                |  |  |  |
| 5        | 16.52              | 16.98                |  |  |  |
| 6        | 17.04              | 16.87                |  |  |  |
| 7        | 16.96              | 17.34                |  |  |  |
| 8        | 17.15              | 17.02                |  |  |  |
| 9        | 16.59              | 17.08                |  |  |  |
| 10       | 16.57              | 17.27                |  |  |  |



Suppose that we wish to find a  $100(1 - \alpha)$  percent confidence interval on the true dif-

ference in means  $\mu_1 - \mu_2$  for the Portland cement problem. The interval can be derived in the

following way. The statistic

$$\frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$P\left(-t_{\alpha/2,n_1+n_2-2} \leq \frac{\bar{y}_1 - \bar{y}_2}{S_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \leq t_{\alpha/2,n_1+n_2-2}\right) = \underline{1 - \alpha}$$

is distributed as  $t_{n_1+n_2-2}$ . Thus,

$$\Delta y = y_1 - y_2$$

$$\overline{\Delta y} = \overline{y_1} - \overline{y_2}$$

$$P\left(\bar{y}_{1} - \bar{y}_{2} - t_{\alpha/2, n_{1} + n_{2} - 2} S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \le \underline{\mu_{1} - \mu_{2}}\right)$$

$$\leq \bar{y}_1 - \bar{y}_2 + t_{\alpha/2, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) = 1 - c$$

ーナカル=

Comparing Equations 2.29 and 2.27, we see that

$$\underline{\bar{y}_1 - \bar{y}_2} - t_{\alpha/2, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \leq \underline{\mu}_1 - \underline{\mu}_2 
\leq \underline{\bar{y}_1 - \bar{y}_2} + t_{\alpha/2, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

is a  $100(1-\alpha)$  percent confidence interval for  $\mu_1 - \mu_2$ .

have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platforms where it can be accessed by others.

or



The actual 95 percent confidence interval estimate for the difference in mean tension bond strength for the formulations of Portland cement mortar is found by substituting in Equation 2.30 as follows:

$$16.76 - 17.04 - (2.101)0.284\sqrt{\frac{1}{10} + \frac{1}{10}} \leq \mu_1 - \mu_2$$

$$\leq 16.76 - 17.04 + (2.101)0.284\sqrt{\frac{1}{10} + \frac{1}{10}}$$

$$-0.28 - 0.27 \leq \mu_1 - \mu_2 \leq -0.28 + 0.27$$

$$-0.55 \leq \mu_1 - \mu_2 \leq -0.01$$

Note that because  $\mu_1 - \mu_2 = 0$  is *not* included in this interval, the data do not support the hypothesis that  $\mu_1 = \mu_2$  at the 5 percent level of significance (recall that the *P*-value for the two-sample *t*-test was 0.042, just slightly less than 0.05).

## **Example**



Given that 9 bearings made by a certain process have an average diameter of 0.305 cm and the sample standard deviation of 0.003 cm, construct a 99 % confidence interval for the true mean diameter of bearings made by the process. What is the width of the confidence interval?  $2 \times 6.005 = 3.35$ 

| $N = 9$ $\bar{y} = 0.305$ $S = 0.863$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Degrees of   | Amount of area in one tail ( $lpha$ ) |          |          |          |          |          |          |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|----------|----------|----------|----------|----------|----------|-----------|
| N = 9 $y = 0.305$ $S = 0.863$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | freedom (V)  | 0.0005                                | 0.001    | 0.005    | 0.010    | 0.025    | 0.050    | 0.100    | 0.200     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _1           | 636.6192                              | 318.3088 | 63.65674 | 31.82052 | 12.70620 | 6.313752 | 3.077684 | 1.376382_ |
| $\alpha = 1^{\circ}/_{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2            | 31.59905                              | 22.32712 | 9.924843 | 6.964557 | 4.302653 | 2.919986 | 1.885618 | 1.060660  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>3</del> | 12.92398                              | 10.21453 | 5.840909 | 4.540703 | 3.182446 | 2.353363 | 1.637744 | 0.978472  |
| U-M with the with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4            | 8.610302                              | 7.173182 | 4.604095 | 3.746947 | 2.776445 | 2.131847 | 1.533206 | 0.940965  |
| y-M will follow to dist with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5            | 6.868827                              | 5.893430 | 4.032143 | 3.364930 | 2.570582 | 2.015048 | 1.475884 | 0.919544  |
| dot = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6            | 5.958816                              | 5.207626 | 3.707428 | 3.142668 | 2.446912 | 1.943180 | 1.439756 | 0.905703_ |
| $S/\sqrt{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7            | 5.407883                              | 4.785290 | 3.499483 | 2.997952 | 2.364624 | 1.894579 | 1.414924 | 0.896030  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8            | 5.041305                              | 4.500791 | 3.355387 | 2.896459 | 2.306004 | 1.859548 | 1.396815 | 0.888890- |
| $\overline{U} - M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9            | 4.780913                              | 4.296806 | 3.249836 | 2.821438 | 2.262157 | 1.833113 | 1.383029 | 0.883404  |
| $-3.35 \leq \frac{y-M}{2.15} \leq 3.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10           | 4.586894                              | 4.143700 | 3.169273 | 2.763769 | 2.228139 | 1.812461 | 1.372184 | 0.879058  |
| SIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11           | 4.436979                              | 4.024701 | 3.105807 | 2.718079 | 2.200985 | 1.795885 | 1.363430 | 0.875530  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12           | 4.317791                              | 3.929633 | 3.054540 | 2.680998 | 2.178813 | 1.782288 | 1.356217 | 0.872609  |
| $\frac{1}{4}$ $\frac{1}$ | —13          | 4.220832                              | 3.851982 | 3.012276 | 2.650309 | 2.160369 | 1.770933 | 1.350171 | 0.870152- |
| 0.65 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14           | 4.140454                              | 3.787390 | 2.976843 | 2.624494 | 2.144787 | 1.761310 | 1.345030 | 0.868055  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15           | 4.072765                              | 3.732834 | 2.946713 | 2.602480 | 2.131450 | 1.753050 | 1.340606 | 0.866245  |
| 0.305 + 0.003 3.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16           | 4.014996                              | 3.686155 | 2.920782 | 2.583487 | 2.119905 | 1.745884 | 1.336757 | 0.864667  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17           | 3.965126                              | 3.645767 | 2.898231 | 2.566934 | 2.109816 | 1.739607 | 1.333379 | 0.863279  |
| https://www.mathsisfun.com/data/standard-normal-distribution-table.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •            |                                       |          |          |          |          |          |          | _         |

## **Choice of Sample Size**



- Selection of appropriate sample size 'n' is critical in any experimental design
- In the previous example, have a look at the length of  $100*(1-\alpha)\%$  confidence interval for difference in means  $(\mu_1 \mu_2)$
- It was determined by

$$t_{\alpha/2, n_1+n_2-2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

• What is the effect of sample size on this width?

- $\bar{y}_{1} \bar{y}_{2} \underline{t_{\alpha/2, n_{1} + n_{2} 2}} \left( S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \right) \leq \underline{\mu_{1} \mu_{2}} \\
  \leq \bar{y}_{1} \bar{y}_{2} + t_{\alpha/2, n_{1} + n_{2} 2} S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$
- is a  $100(1 \alpha)$  percent confidence interval for  $\mu_1 \mu_2$ .
- Say n1 = n2 = n, and  $\alpha = 0.05$ , Sp could be anything (we don't have control over it)
- So essentially, the width is a function of









NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on in