全国青少年信息学奥林匹克竞赛

NOI2023 模拟

时间: 7:30-12:20

题目名称	氦	锂	最短路
题目类型	传统型	传统型	传统型
目录	he	li	shortest
可执行文件名	he	li	shortest
输入文件名	he.in	li.in	shortest.in
输出文件名	he.out	li.out	shortest.out
每个测试点时限	1.0秒	2.0秒	秒
内存限制	1024MB	1024 MB	MB
子任务数目	Subtask	Subtask	10
测试点是否等分	否	否	是

提交源程序文件名

对于 C++语言	he.cpp	li.cpp	shortest.cpp
		· - F F	

编译选项

对于 C++语言	-lm -std=c++14 -O2

注意事项与提醒(请选手务必仔细阅读)

- 1.选手提交的源程序必须存放在**已建立好**的,且**带有样例文件和下发文件**的文件夹中,文件夹名称与对应试题英文名一致。
 - 2.文件名(包括程序名和输入输出文件名)必须使用英文小写。
 - 3.C++中函数 main()的返回值类型必须是 int, 值必须为 0。
 - 4.对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
 - 5.若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
 - 6.程序可使用的栈空间大小与该题内存空间限制一致。
- 7.在终端中执行命令 ulimit -s unlimited 可将当前终端下的栈空间限制放大,但你使用的 栈空间大小不应超过题目限制。
 - 8.每道题目所提交的代码文件大小限制为 100KB。
 - 9.若无特殊说明,输入文件与输出文件中同一行的相邻整数均使用一个空格分隔。
- 10.输入文件中可能存在行末空格,请选手使用更完善的读入方式(例如 scanf 函数)避免出错。
- 11.直接复制 PDF 题面中的多行样例,数据将带有行号,建议选手直接使用对应目录下的样例文件进行测试。
 - 12.使用 std:deque 等 STL 容器时,请注意其内存空间消耗。
- 13.请务必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外**不允 许在程序中手动开启其他编译选项**,一经发现, 本题成绩以 0 分处理。

题目描述

很久很久以前,有一个神秘的**有根二叉树**T,包含n个结点,并且以1为根。

有 k 个球将会**以随机的顺序**被扔到树上,编号为 i 的球会被扔到结点 p_i 上。

当一个球被扔到结点 x 时:

- 如果 x 的所有儿子上均有球,则这个球就停在 x;
- 如果 x 恰好有一个儿子上没有球,则递归将这个球扔到这个儿子上;
- 如果 x 有两个儿子都没有球,则:
 - 如果球是从x的父亲下到x的,那么递归将这个球扔到与x同方向的儿子上(如x是父亲的左儿子,则递归到x的左儿子);
 - 如果球是一开始就扔在 x 的, 那么递归将这个球扔到随机的一个儿子上。

显然在所有球扔下后,每个点上至多只有一个球,定义一种可能的最终结果的 (\circ \circ \circ) 序列是一个长度为 n 的序列 a_1,\ldots,a_n , 其中 a_i 表示最终在点 i 上的球的编号。

求有多少种可能的(できつ)序列,对109+7取模。

输入格式

第一行: 两个整数 n, k。

第二行: k 个整数 p_1, \ldots, p_k 。

接下来 n 行: 第 i 行两个整数 l_i, r_i ,表示 i 的左右儿子编号,若不存在则用 0 代替。

输出格式

输出一行一个整数,表示答案。

样例1输入

```
1 | 5 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 3 | 4 | 0 | 0 | 0 | 5 | 4 | 5 | 6 | 0 | 0 | 0 | 7 | 0 | 0 | 0
```

样例1输出

1 4

样例1解释

先扔编号为 1 的球,再扔编号为 2 的球,可能得到的 ($^{\circ}$ $^{\circ}$ $^{\circ}$ 序列有 (0,1,0,2,0),(0,1,0,0,2),(0,0,0,1,2),(0,0,0,2,1)。 先扔编号为 2 的球,再扔编号为 1 的球,可能得到的 ($^{\circ}$ $^{\circ}$

总共有4种可能的(でき) 序列。

样例 2 输入

```
1 | 4 3 | 2 | 1 2 4 | 3 | 0 2 | 4 | 0 3 | 5 | 0 4 | 6 | 0 0
```

样例 2 输出

1 2

样例2解释

共有两种可能的(5) 9 序列:

(0,1,2,3): 先扔编号为 3 的球,再扔编号为 2 的球,最后扔编号为 1 的球。

(0,2,1,3): 先扔编号为 3 的球,再扔编号为 1 的球,最后扔编号为 2 的球。

数据范围

对于 100% 的数据: $1 \le n, k \le 4000, \ 1 \le p_i \le n, \ 0 \le l_i, r_i \le n$ 。

Subtask 1 (20%): $n \le 12, k \le 6$.

Subtask 2 (30%): $l_i = 0$.

Subtask 3 (20%): p_i 两两不同。

Subtask 4 (30%): 无特殊限制。

题目描述

很久很久以前,有一个神秘的**无向完全图** G,包含 n 个结点。

现在给这张图的所有边赋权,边权是 $1,2,\ldots,\frac{n(n-1)}{2}$ 的一个排列,在所有可能情况中等概率随机。

称一条边 (u,v) 是 $(ullet_u)$ 的,当且仅当它的权值是以 u 为端点的边权的最大值,或者是以 v 为端点的边权的最大值。

由全部 n 个点和所有 (●___●) 边构成的子图称为 (●___●) 子图。

求 G 的 (Φ __ Φ) 子图恰好有 k 个连通块的概率,对素数 p 取模。

输入格式

第一行: 三个整数 n, k, p。

输出格式

输出一行一个整数,表示答案。

样例 1 输入

1 5 1 998244353

样例1输出

1 427819009

样例 1 解释

所求概率为 $\frac{4}{7}$ 。

样例 2 输入

1 6 3 998244353

样例 2 输出

1 617960790

样例 2 解释

所求概率为 $\frac{1}{21}$ 。

数据范围

对于 100% 的数据: $2 \le n \le 10^7$, $1 \le k \le n$, $9 \times 10^8 \le p \le 10^9$, 保证 p 为素数。

子任	E务编号	$n \le$	p	分值
	1	5	1	10
	2	50	1	20
	3	5000	1	20
	2		/	

子任务编号	$n \leq$	p	分值
4	10^5	=998244353	10
5	10^7	1	40

最短路 (shortest)

【题目描述】

有一个结点 1 和结点 n 连通的正权无向图,求删除不超过 K 条边,使得结点 1 和结点 n 仍然连通的同时,令这两个结点之间的最短路尽可能长。

【输入格式】

第一行包含三个整数 n, m, K 表示点数、边数与限制条件。结点从 1 到 n 编号,边从 1 到 m 编号。

接下来 m 行每行三个正整数 u, v, w 表示一条连接 (u,v) 的权值为 w 的无向边。

【输出格式】

第一行一个非负整数 T 表示需要删除的边数。

接下来 T 行每行一个 1 到 m 之间的整数 x 表示删掉输入中的第 x 条边。你需要保证 T 个整数互不相同

【评分标准】

对于每个测试点,设有评分四个参数 $s\,1\,$, $s\,2\,$, $s\,3\,$, $s\,4\,$ 。假设你的方案的最短路为 ans。

如果你没有输出,或者输出不合法,或者最短路不存在,得0分。

如果最短路存在,得1分。

如果 ans s1,得3分。

如果 ans s2,得5分。

如果 ans s3,得8分。

如果 ans = s4, 得 10分。

如果 ans > s 4, 得 12 分。

取满足条件的分数中的最高得分为该测试点你的得分。

【如何测试你的输出】

首先先编译 checker.cpp

在你的目录下有一个名为 checker 的程序可以用来检查你的输出,你可以在终端中使用以下命令来检查你的输出:

./checker N

(不同环境下自行更改命令) 其中 N 为测试点的编号,例如,要测试第 3 个测试点可以使用

$./{\rm checker} \ 3$

该程序会检测你的输出方案是否合法。如果方案合法,程序还会给出该方案的最短路的长度值。