

Machine Learning Systems for Engineers

Where Data Science Meets Engineering

Who Am I?

- I'm Cameron!
 - https://www.linkedin.com/in/cameron-joannidis/
- Consult across a range of areas and have built many big data and machine learning systems
- Specialise in several areas
 - Big Data / Data Engineering
 - Machine Learning / Data Science
 - Scala / Functional Programming

Agenda

- Data
- Deployment
- Metrics
- Big Data Iteration Speed

Example Use Case: Churn Prediction

We want to predict which users are likely to leave our service soon so that we can try and give them reasons to stay

Training Data Creation

- Historical Data (need actual churn events as examples)
- We know the labels at train time
- Produce Features to try and predict the label

Train Our Model

 Minimise our loss function to best predict out labels (Churn/No Churn)

Prediction Time

• Jason's red feature value > 30

Prediction Time

- Jason's red feature value > 30
- Jason's yellow feature value != 7

Prediction Time

- Jason's red feature value > 30
- Jason's yellow feature value != 7
- We predict Jason will churn

Moving to Production

Moving to Production

- Training data Historical
- Scoring data New data
- Model and feature logic remains the same

Data Issues

- Data ingestion lags (systematic) or failures (random)
- Data is incorrect

Data Issues

- Data ingestion lags (systematic) or failures (random)
- Data is incorrect

Before we change the system

- Fix the data source if thats an option
- Measure the importance of the feature in the model to quantify the cost/effort

Use most recent data from each source?

• Will allow your system to function in the face of data lag

Problems?

 May introduce significant error into the model - especially if the lagged feature is highly predictive and changes quickly

Retrain your model with this data lag?

 e.g. To model a 2 week lag on feature A: for each data point, get whatever the value of feature A was 2 weeks ago

Problems?

- May lose too much information to be predictive
- End up tightly coupling your model to the data lag itself

Use the most recent consistent data

 Means the predictions will behave as expected

Problems?

 Predictions will be outdated equal to the slowest data source lag

Build a model that gracefully degrades

 If we don't have certain data, we could aggregate the possible outcomes beneath that node (assuming tree model)

Build a model that gracefully degrades

• Average / Most Common label?

Problems?

- Model dependent custom code
- Expensive to build and maintain
- Will likely still degrade the model performance

Small Data Deployment

- Containerise models + feature logic
- Send your data to your models
- Single machine scoring
- Resembles standard deployment models

Problems?

- Doesn't scale to larger datasets without significant engineering overhead
- Huge amounts of data shuffled over the network = slower/more expensive scoring process

Big Data Deployment

- Distributed processing framework performs scoring (e.g. Spark)
- Send your models to your data

Big Data Deployment Options

- 1. Deploy by copying model files to HDFS/S3?
- 2. Deploy by embedding model in JAR file and using Spark Job Server?

Problems - Option 1?

- Copying files makes deployment lifecycle management harder
- Have to rebuild things that Kubernetes etc give us for free
 - Rollout deployments
 - Canary Deployments
 - A/B testing
 - Rollback

Problems - Option 2?

- Tightly couples scoring code to models
- We typically want to decouple our scoring code from our models so that they can evolve at different rates

Future Solutions?

- Spark on Kubernetes?
- Manage data locality and application deployment through the same framework?

A few ML system metrics

- Data distribution
- Effectiveness in market

Data Distribution

Your training data will have some distribution of labels

Data Distribution

- In production, your data distribution may be significantly different
- This can happen over time as these systems tend to be dynamic

Possible causes

- Changes to the domain you're modelling
- Seasonality or external effects
- Changes to the customers themselves or the way the customers are using your service
- Problems with the data collection pipelines (corrupted data feeds etc)

Effectiveness in market

- Production is the first real test
- Need to capture metrics to measure the effect of the model for its intended purpose
- Paves the road towards
 - Effective A/B testing
 - Incremental model improvement
 - Measurability of ROI

Big Data Iteration Speed

Training Models on Big Data is slow

- Not all algorithms scale linearly as data/model complexity increases
- Hit computation/memory bottlenecks
- Number of hypothesis we can test is reduced
- Generating new features can become prohibitively expensive

Stratified Sampling

Know where to spend your time

- Bad performance on training data = Bias Problem
 - Train longer
 - More complex model
 - Improve features
- Good performance on training data and bad performance on test set = Variance Problem
 - Get more data for training
 - Regularisation

Choice of Framework / Technology

- Modelling in R/Python and rewriting in production in Scala/Spark is an expensive process
- Choose a tech stack that allows engineers and data scientists to work together and productionise things quickly. Leads to faster feedback loops

What we've covered

- Data issues can be be a central issue to ML systems are require a lot of up front design thought
- There are several modes of deployment, each with their own tradeoffs for different scenarios
- Production is not the end of the process for ML models.
 Metrics are a fundamental part of enabling improvement and growth.
- Ways to improve iteration speed on ML projects

Thank you

Questions?