Zero Returns to Compulsory Schooling in Germany: Evidence and Interpretation Jörg-Steffen Pischke, Till von Wachter, 2008

Radost Holler

Bonn Graduate School of Economics

December 20, 2018

Research Question

What are the (wage) returns to (an additional year of compulsory) schooling in West Germany?

Length of Compulsory Schooling and Reforms

- In the 1950's to 1960's the West German Bundesländer (states) increased compulsory schooling.
- The implementation date varied across Bundesländer.

Hauptschule: $\mathbf{8} \rightarrow \mathbf{9}$ Realschule: $10 \rightarrow 10$ Gymnasium: $13 \rightarrow 13$

Introduction

Potential Outcomes - Notation

Variable Definition:

- Y_i log wages
- D_i years of schooling
- X_i gender, age, age², year fe, year of birth fe, state fe, state fe \times linear trend
- Z_i 1{9 years of compulsory schooling}

Potential Outcomes:

$$Y_{1i} = \mu_1 + X_i \gamma + U_{1i}$$

$$Y_{0i} = \mu_0 + X_i \gamma + U_{0i}$$
(1)

Here pretend years of schooling is a dummy.

troduction **Identification** Estimation Results Problems References Appendix

Potential Outcomes

Observed Outcome:

$$Y_i = D_i Y_{1i} + (1 - D_i) Y_{0i}$$

= $\alpha + X_i \gamma + \beta_i D_i + \varepsilon_i$ (2)

where

$$\alpha = \mu_0
\beta_i = \mu_1 - \mu_0 + (U_{1i} - U_{0i})
\varepsilon_i = U_{0i}$$

Potential treatment state:

$$D_i = D_{0i}Z_i + D_{1i}(1 - Z_i)$$
 (3)

where D_{ji} is the potential treatment state if $Z_{i} = j$

Radost Holler Bonn Graduate Sc

(Additional) Identification Assumptions, IV

- A1 Independence: $\{Y_{1i}, Y_{0i}, D_{1i}, D_{0i} \perp Z_i | X_i\}$
- A2 Existence of a first stage: $E(D_i|Z_i = 1, X_i) \neq E(D_i|Z_i = 0, X_i)$
- A3 Monotonicity: $D_{1i} > D_{0i} \ \forall i$

Under these assumptions, we can identify the LATE.

- A1 Independence: $\{Y_{1i}, Y_{0i}, D_{1i}, D_{0i} \perp Z_i | X_i\}$
- A2 Existence of a first stage: $E(D_i|Z_i = 1, X_i) \neq E(D_i|Z_i = 0, X_i)$
- A3 Monotonicity: $D_{1i} > D_{0i} \ \forall i$

Under these assumptions, we can identify the LATE.

How do these assumptions relate to the assumptions made in the generalized Roy model? (for equivalence proof see Vytlacil, 2002)

This slide heavily relies on: Cornelissen et al. (2016)

"Treated"

$$D_{i|Z_i=0}=1$$

"Untreated"

$$D_{i|Z_i=0}=0$$

The relationship between LATE and ATU

"Treated" $D_{i Z_i=0}=1$	"Untreated" $D_{i Z_i=0}=0$	
Always-Taker	Complier	$D_{i Z_i=1}=1$
Defier	Never-Taker	$D_{i Z_i=1}=0$

The relationship between LATE and ATU

Monotonicity assumption: no defier.

The relationship between LATE and ATU

- + Monotonicity assumption: no defier.
- + Perfect enforcement of reform: no never-taker

$$\Rightarrow$$
 LATE = ATU = (PRTE)

roduction Identification **Estimation** Results Problems References Appendio

Data (Constraints)

- Two data sets: Qualification and Career Survey (QaC) and Micro Census
- Main issue: neither data set includes years of education.

Imputation based on:

	QaC	Micro Census
year of birth	Χ	Χ
state of residence	Χ	Χ
year second. school graduation	Χ	
highest secondary degree	Χ	Χ
postsecondary education	detailed	not detailed

⇒ Only use imputed values for QaC.

The two-sample two-staged least square estimator (TSTSLS) - Intuition

- IV estimation of treatment effects relies on two moments/conditional means:
 - **1** GMM: Cov(Z, y),

Wald-estimator: $E[Y_i|Z=1] - E[Y_i|Z=0]$

2 GMM: Cov(Z, D),

Wald-estimator: $E[D_i|Z=1] - E[D_i|Z=0]$

The two-sample two-staged least square estimator (TSTSLS) - Intuition

- IV estimation of treatment effects relies on two moments/conditional means:
 - I GMM: Cov(Z, y), Wald-estimator: $E[Y_i|Z=1] - E[Y_i|Z=0]$
 - 2 GMM: Cov(Z, D), Wald-estimator: $E[D_i|Z=1] - E[D_i|Z=0]$
- Use the first stage of the QaC sample to estimate (2)
- and use the reduced form effect of the instrument on wages of the Micro Census to estimate (1)
- (here) the division of these two coefficients yields the TSTSLS estimator

Zhao et al. (2017), Angrist & Krueger (1992), Inoue & Solon (2010)

The two-sample two-staged least square estimator (TSTSLS)

- A4 the data generating process of the samples is the same among the relevant dimensions (see Angrist & Krueger 1992, Zhao et al. 2017, for details)
- A5 sample moments are independent

The two-sample two-staged least square estimator (TSTSLS)

A4 the data generating process of the samples is the same among the relevant dimensions (see Angrist & Krueger 1992, Zhao et al. 2017, for details)

A5 sample moments are independent

, The TSTSLS consistently estimates:

$$LATE^{MC,QaC} = \frac{E[Y_i^{MC}|Z_i^{MC} = 1] - E[Y_i^{MC}|Z_i^{MC} = 0]}{E[D_i^{QaC}|Z_i^{QaC} = 1] - E[D_i^{QaC}|Z_i^{QaC} = 0]}$$
(4)

$$\stackrel{A4}{=} \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1] - E[D_i|Z_i=0]} = LATE$$
 (5)

Results

Independent Variable

Full Sample (1)

Qualification and Career Survey

Dummy for cohort with ninth grade in basic track

0.190

Number of observations

	Dependent '	Variable: Log V	Vage	
		Full Sample		
Independent Variable	OLS (1)	OLS (2)	OLS (RF) (3)	IV (4)
	Mi	cro Census		
Years of education	0.074 (0.001)	_	_	-
Imputed number of years in school	· — ·	_	_	0.016
Dummy for cohort with ninth grade in basic track	_	_	0.003 (0.003)	(0.015)
Number of observations	939,736	939,736	939,736	939,736

Results

	Dependent \	Variable: Log V	Vage	
	Full Sample			
Independent Variable	OLS (1)	OLS (2)	OLS (RF)	IV (4)
	Qualification	and Career St	urvey	
Years of education	0.061 (0.001)	_	_	_
Imputed number of years in school	` — ´	0.066 (0.002)	_	0.058 (0.038)
Dummy for cohort with ninth grade in basic track	_		-0.010 (0.008)	\ \ - \ \
Number of observations	54,126	54,126	54,126	54,126

Identification Estimation Results Problems References Appendix

Discussion

- Results suggests that there are no wage returns to one additional year of schooling at the lower end of the schooling distribution in West Germany.
- Problem: according to my own research some of the reforms are incorrectly dated.

ction Identification Estimation Results **Problems** References Appendix

Discussion

State	Pivotal Cohort		
	Pischke & von Wachter	Laws	
Schleswig-Holstein	1941	1940	
Hamburg	1934	1934	
Niedersachsen	1947	1947	
Bremen	1943	1943	
NRW	1953	1952	
Hessen	1953	1947	
Rheinland-Pfalz	1953	1951	
BaWü	1953	1949	
Bavaria	1955	1955	
Saarland	1949	1952	

oduction Identification Estimation Results Problems **References** Appendix

References

- Angrist, J. D. & Krueger, A. B. (1992), 'The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples', *Journal of the American Statistical Association* 87(418), 328–336.
- Angrist, J. D. & Pischke, J. S. (2009), Instrumental Variables in Action: Sometimes You Get What You Want, in J. D. Angrist & J. S. Pischke, eds, 'Mostly Harmless Econometrics - An Empricist's Companion', Princeton University Press, chapter 4, pp. 113 –218.
- Cornelissen, T., Dustmann, C., Raute, A. & Schönberg, U. (2016), 'From LATE to MTE: Alternative methods for the evaluation of policy interventions', Labour Economics 41, 47–60. URL: http://dx.doi.org/10.1016/j.labeco.2016.06.004
- Inoue, A. & Solon, G. (2010), 'Two-sample instrumental variables estimators', Review of Economics and Statistics 92(3), 557–561.
- Vytlacil, E. (2002), 'Independence, Monotonicity, and Latent Index Models: An Equivalence Result', Econometrica 70(1), 331–341.
- Zhao, Q., Wang, J., Bowden, J. & Small, D. S. (2017), Two-sample instrumental variable analyses using heterogeneous samples.
 - URL: http://arxiv.org/abs/1709.00081

Identification Estimation Results Problems References Appendix

Institutional Background

- Germany's secondary schooling system consists of three main tracks:
 - Hauptschule (basic track),
 - Realschule
 - Gymnasium (academic track).
- Children who graduate from Hauptschule or Realschule usually continue with an 3-year apprenticeship including part-time vocational education.
- Children who graduate from Gymnasium take part in a university entrance exam (Abitur)

Identified Parameters of IV with Covariates

- As discussed in the lecture, IV estimator without covariates yields the LATE. This is not generally true if we add additional covariates. (Cornelissen et al. 2016)
- If we partition the sample in subsamples s.t. for all $X_i = x$, then we obtain, the covariate specific LATE:

$$LATE(x) = E(Y_{1i} - Y_{0i}|D_{1i} > D_{0i}, X_i = x)$$

Identified Parameters of IV with Covariates

- As discussed in the lecture, IV estimator without covariates yields the LATE. This is not generally true if we add additional covariates. (Cornelissen et al. 2016)
- If we partition the sample in subsamples s.t. for all $X_i = x$, then we obtain, the covariate specific LATE:

$$LATE(x) = E(Y_{1i} - Y_{0i}|D_{1i} > D_{0i}, X_i = x)$$

- Applying the 2SLS with a fully saturated 1st and 2nd stage yields a variance-weighted average of covariate specific LATEs.
- Less saturated models seem to yield tolerable approximation (Angrist & Pischke 2009).

This slide heavily relies on: Cornelissen et al. (2016)