Theory of Deep Learning

Manik Bhandari

Department of Computational Data Science Indian Institute of Science Bangalore, India mbbhandarimanik2@gmail.com

Abstract

Notes of Theory of Deep Learning mainly from lectures at IISC.

1 Introduction

Define error of a classifier (aka *true error*) as probability of it making a mistake given a random data point.

$$L_{D,f}(h) = \Pr_{x \sim D}[h(x) \neq f(x)] = D(\{x : h(x) \neq f(x)\})$$

where D is the distribution from where a data point x is drawn, f is a known *correct* function which always gives the correct labels to a data point. By this definition D(A) is the probability of observing a random point x from A.

Define training error or emperical risk as

$$L_S(h) = \frac{|i \in [m] : h(x_i) \neq y_i|}{m}$$

where S is the training set (it is actually a sequence since points can repeat and classifiers often take into account their order) of the form $\{(x_i, y_i)\}$. If you naively minimize this emperical risk then you are likely to overfit. To avoid it, you use some prior knowledge about the kind of classifier that can possibly fit to the data and restrict your hypothesis search space to those types of classifiers.

This kind of restriction induces a bias in the model (aka inductive bias). In this setting, define

$$h_S = ERM_h(S) \in \underset{h \in \mathcal{H}}{argmin} \ L_S(h).$$

This is a tradeoff – choosing a restricted \mathcal{H} can add too much bias but choosing a large \mathcal{H} may lead to overfitting.

Finite hypothesis class If we restrict \mathcal{H} to have an upper bound on its size then ERM_h will not overfit if we have *large* training data (how large will depend on size of \mathcal{H}).

Realizability Assumption There exists $h^* \in \mathcal{H}$ such that $L_{D,f}(h^*) = 0$ i.e. it never makes a mistake which means that $L_S(h^*) = 0$. Since this is the least possible error, this means that for every ERM hypothesis $L_S(h_S) = 0$. We are however interested in true error of h_S i.e. $L_{D,f}(h_S)$.

iid assumption Assume that elements of S are identically and independently distributed according to D denoted by $S \sim D^m$.

Now, we would like to have an h_S such that $L_{D,f}(h_S)$ is not too large. Let's say h_S fails if $L_{D,f}(h_S) > \epsilon$.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

We want to upper bound the probability of sampling a training set that leads to a failure i.e $D^m(S:L_{D,f}(h_S)>\epsilon)$. Define bad hypothesis as $\mathcal{H}_{\mathcal{B}}=\{h\in\mathcal{H}\}:L_{D,f}(h_S)>\epsilon$ and misleading training sets as $M=\{S:\exists h\in\mathcal{H}_{\mathcal{B}},L_S(h)=0\}$. So, all the training sets for which h_S fails must be misleading (there can be other misleading sets also). So

$${S: L_{D,f}(h_S) > \epsilon} \subseteq M = \bigcup_{h \in \mathcal{H}_{\mathcal{B}}} {S: L_S(h) = 0}.$$

This means that

$$D^{m}(\{S: L_{D,f}(h_S) > \epsilon\}) \le D^{m}(M) = D^{m}(\bigcup_{h \in \mathcal{H}_{\mathcal{B}}} \{S: L_{S}(h) = 0\}).$$

Take union bound of RHS to get

$$D^{m}(\{S: L_{D,f}(h_S) > \epsilon\}) \leq \sum_{h \in \mathcal{H}_{\mathcal{B}}} D^{m}(\{S: L_S(h) = 0\}) = \sum_{h \in \mathcal{H}_{\mathcal{B}}} \left(\prod_{i=1}^{m} D(\{x_i: h(x_i) = f(x_i)\}) \right).$$

and since $h \in \mathcal{H}_{\mathcal{B}}$, $D(\{x_i : h(x_i) = f(x_i)\}) \le 1 - \epsilon$. But each x_i is iid over D so $D^m(\{S : L_S(h) = 0 \le (1 - \epsilon)^m \le e^{-\epsilon m}$. As m goes large, the probability of finding a misleading set reduces. Therefore

$$D^m(\{S: L_{D,f}(h_S) > \epsilon\}) \le |\mathcal{H}_{\mathcal{B}}|e^{-\epsilon m} \le |\mathcal{H}|e^{-\epsilon m}.$$

Take log both sides to get

$$\log D^{m}(\{S: L_{D,f}(h_S) > \epsilon\}) \le \log |\mathcal{H}| - \epsilon m \implies m \le \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$$

where $\delta = D^m(\{S : L_{D,f}(h_S) > \epsilon\})$. This also implies that if m is large enough i.e. $m \ge \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$ then $L_{D,f}(h_S) \le \epsilon$ with probability $1 - \delta$ of choosing the iid samples S.

So with the ERM_h rule, your hypothesis will be *probably* $(1 - \delta)$ approximately (ϵ) correct (PAC). Note that the size m does not depend upon the underlying distribution or labeling function.

PAC Learnability A hypothesis class \mathcal{H} is PAC learnable if $\exists m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that

For every $(\epsilon, \delta) \in (0, 1)$, for every distribution \mathcal{D} over \mathcal{X} and for every labeling function $f : \mathcal{X} \to (0, 1)$

If the realizability assumption holds over $\mathcal{H}, \mathcal{D}, f$

then running the algorithm on $m > m_{\mathcal{H}}(\epsilon, \delta)$ samples generated iid from \mathcal{D} and labeled by f gives a hypothesis h such that

with probability at least $1 - \delta$ over the choice of examples, $L_{\mathcal{D},f}(h) \leq \epsilon$.

Sample complexity $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$ defines the *sample complexity* of learning \mathcal{H} i.e. how many samples are required to get a PAC solution. Let it be the *minimum function* that satisfies the criteria of PAC learnability.

Sample complexity of finite hypothesis class Every finite hypothesis class is PAC learnable with sample complexity $m \leq \lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \rceil$

Removing realizability assumption Assuming that such an h^* exists such that

 $\underset{x \sim \mathcal{D}}{P}[h^*(x) = f(x)] = 1$ is too strong. Not only might such an h^* not exists, your features might not be discriminative enough. Instead assume that \mathcal{D} is a joint distribution over domain points \mathcal{X} and labels \mathcal{Y} . Now, true error

$$L_D(h) = P_{(x,y \sim D)}[h(x) \neq y] = \mathcal{D}(\{(x,y) : h(x) \neq y\})$$

Bayes optimal predictor is the best labeling function defined as

$$f_{\mathcal{D}}(x) = \begin{cases} 1 & \text{if } \mathbb{P}[y=1|x] \ge 0.5\\ 0 & \text{otherwise} \end{cases}$$

i.e. there is no other labeling function with a lower true error rate.

Agnostic PAC Learnability A hypothesis class \mathcal{H} is agnostic PAC learnable w.r.t. a set \mathbb{Z} and a loss function $l: \mathcal{Z} \to \mathbb{R}_+$ if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that

for every $\epsilon, \delta \in (0,1)$ and for every \mathcal{D} over \mathcal{Z} when the algorithm is run $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ samples iid from \mathcal{D} , the algo returns a hypothesis $h \in \mathcal{H}$ such that with probability $1 - \delta$ over the training samples

$$L_{\mathcal{D}}(h) = \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$$

where $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[l(h, z)].$

2 Linear Regression

[Lost notes]

3 Multinomial Logistic Regression

Let set of classes = 1, 2...k and training set be $S = (x^1, y^1), (x^2, y^2), ...(x^m, y^m)$ where each $x^i \in \mathbb{R}^d$ and $y^i \in [k]$.

There are multiple ways to model this, one way is to use *one* vs all approach. The other is to use a logistic regression approach. Here, we take the latter. Work out the expression for one vs all case. Use k linear functions as

$$< w_1, x > +b_1, ..., < w_k, x > +b_k.$$

We'll also make use of the softmax function which takes a vector of inputs $(t_1, t_2...)$ and transforms them to $(\frac{e^{t_1}}{\sum e^{t_i}}, ...)$. This has the nice property that its sum to one. add imp props of softmax.

We then use the Maximum Likelihood Approach. Define Likelihood as

$$\prod_{i=1}^{m} p(y^{i}|x^{i}) = p(1|x)^{\mathbb{1}(y=1)}...p(k|x)^{\mathbb{1}(y=k)}$$

Maximizing this equivalent to minimizing the Cross Entropy Loss Why is it called cross entropy.

$$L_{CE}(w,b;S) = -\sum_{i \in [k]} \mathbb{1}_{(y} = 1) log \left(\frac{e^{< w_i, x > + b_i}}{\sum e^{< w_i, x > + b_i}} \right) = log \left(\frac{e^{< w_{y^i}, x > + b_{y^i}}}{\sum e^{< w_{y^i}, x > + b_{y^i}}} \right)$$