ЛАБОРАТОРНА РОБОТА №4

Тема: Використання апарату теорії ймовірності для оцінки ризику

Мета: виробити уміння та навички оцінювати ризик за допомогою апарату теорії ймовірності з використанням електронних таблиць *Excel*...

Порядок виконання роботи:

- Записати умову математичної моделі задачі в Microsoft Excel. 1.
- 2. Обчислити абсолютні показники ризику.
- 3. Обчислити відносні показники ризику.
- 4. Зробити висновки

Методичні вказівки

Розглянемо використання деяких коефіцієнтів для розрахунків величин ризику. Першим є відомим зі статистики коефіцієнт варіації:

$$V = \frac{\sigma(x)}{M(x)},$$
 де $\sigma^2(x) \sum_{i=1}^n (x_1 - M(x))^2 * Pi$ або $\sigma^2(x) = \sum_{i=1}^n x_1^2 * Pi - M^2(x)$ $M(x) = \sum_{i=1}^n XiPi$, де

n — кількість можливих варіантів;

Рі – ймовірність першого варіанта;

Хі – фінансовий підсумок пршого варіанта.

У випадку відомої щільності розподілу $\varphi(x)$ маємо:

$$M(x) = \int_{-\infty}^{\infty} x \varphi(x) dx$$

$$\sigma^{2}(x) = \int_{-\infty}^{\infty} (x - M(x))^{2} \varphi(x) dx \text{ afo} \quad \sigma^{2}(x) = \int_{-\infty}^{\infty} x^{2} \varphi(x) dx - M^{2}(x)$$

Відносний коефіцієнт ризику розраховується як відношення збитків X_{α} на рівні значності α , до обсягу власних ліквідних результатів фінансової діяльності R, тобто

$$W_{\alpha} = \frac{|x_{\alpha}|}{R}; \quad W_{\alpha} > 0$$

Величина x_{α} для відомих M(x); $\delta(x)$ визначається при використанні нерівності Чебишева. Якщо відомі тільки максимальні (Xmax) та мінімальні (Xmin) збитки, то

$$M(x) = \frac{X \min + X \max}{2}$$
; $\sigma(x) \approx \frac{X \max - X \min}{4}$

Коефіцієнт сподіваних збитків, як відношення очікуваних збитків до сподіваних завжди додатних результатів комерційної діяльності, дорівнює:

$$K = \frac{\int_{-\infty}^{0} x \varphi(x) dx}{\int_{-\infty}^{\infty} |x| \varphi(x) dx}$$

У випадку х – дискретна величина використовується формула:

$$K = \frac{\sum_{x_i < 0} -x_i P(x_i)}{\sum_{x_i < 0} -x_i P(x_i) + \sum_{x_i \ge 0} x_i P(x_i)}$$
 Де

$$0 \le K \le 1$$

Коли K=0, то відсутні збитки, для K=1- відсутні прибутки.

Також використовується перетворений коефіцієнт асиметрії:

$$\epsilon = \begin{cases}
\frac{1}{a+1}, & a \ge 0 \\
1-a
\end{cases}$$

a – коефіцієнт асиметрії, визначається за формулою:

$$a = \frac{\int\limits_{-\infty}^{\infty} (x - M(x))^3 \, \varphi(x) dx}{\sigma^3}, \quad \text{для неперервного розподілу}.$$

Для дискретного розподілу користуються формулою:

$$a = \frac{\sum (x_1 - M(x))^3 Pi}{\sigma^3}.$$

Величина l>0, якщо $l\to0$, відносна роль збитків не значна. Якщо l=1,то розподіл симетричних стосовно прибутків і збитків.

Для l > 1 ймовірність значних збитків перевищує ймовірність значних прибутків.

Завдання. Можливі результати фінансової діяльності з двох різних проектів представлені у таблиці. Розрахувати коефіцієнти абсолютні та відносні показники ризику. Зробити висновки стосовно співвідношень рівня ризику проектів, якщо ліквідність фірми $R = 10^6$ гр. одиниць.

X_1	$-5*10^4$	$-2*10^4$	10 ⁴	3*10 ⁴	6*10 ⁴	10 ⁵
P_1	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{2}{10}$
X_2	-10^{3}	$-5*10^4$	$-2*10^4$	-10^{4}	10 ³	3*10 ⁵
P_2	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{4}{10}$	1/10

1. Вводимо умову задачі в Microsoft Excel (рис. 2.1).

		<u>, , , , , , , , , , , , , , , , , , , </u>				
Хі (тис. гр. одиниць)	-50	-20	10	30	60	100
Pi	0,1	0,2	0,1	0,2	0,2	0,2
Хі (тис. гр. одиниць)	-1	-50	-20	-10	10	300
Pi	0,2	0,1	0,1	0,1	0,4	0,1
	Хі (тис. гр. одиниць) Рі	Xi (тис. гр. одиниць) -50 Pi 0,1	Xi (тис. гр. одиниць) -50 -20 Pi 0,1 0,2	Xi (тис. гр. одиниць) -50 -20 10 Pi 0,1 0,2 0,1	Xi (тис. гр. одиниць) -50 -20 10 30 Pi 0,1 0,2 0,1 0,2	Xi (тис. гр. одиниць) -50 -20 10 30 60 Pi 0,1 0,2 0,1 0,2 0,2

Рис. 2.1. Умова задачі в Microsoft Excel.

2. Розрахуємо математичне сподівання за формулою $M(x) = \sum_{i=1}^{n} XiPi$, для чого використовуємо функцію «СУММПРИЗВ» (рис. 2.2).

Рис. 2.2. Діалогове вікно функції «СУММПРОИЗВ».

3. Дисперсію обчислимо за формулою $\sigma^2(x) = \sum_{i=1}^n (x_i - M(x))^2 * Pi$, для чого побудуємо допоміжну таблицю (рис. 2.3).

Проект 1 Проект2	Хі (тис. гр. одиниць) Рі	-50 0,1	-20 0,2	10	30	60	100
Ппоеит?	Pi	0,1	0.2	0.000			(1) (1)
Ппорит?	The second secon		0,2	0,1	0,2	0,2	0,2
iipoekiz	Хі (тис. гр. одиниць)	-1	-50	-20	-10	10	300
33	Pi	0,2	0,1	0,1	0,1	0,4	0,1
	(Xi-M(X))^2	6400	2500	400	0	900	4900
-	(Xi-M(X))^2	718,24	5745,64	2097,64	1281,64	249,64	75185,64
		(Xi-M(X))^2	(Xi-M(X))^2 6400	Pi 0,2 0,1 (Xi-M(X))^2 6400 2500	Pi 0,2 0,1 0,1 (Xi-M(X))^2 6400 2500 400	Pi 0,2 0,1 0,1 0,1 (Xi-M(X))^2 6400 2500 400 0	Pi 0,2 0,1 0,1 0,1 0,4 (Xi-M(X))^2 6400 2500 400 0 900

Рис. 2.3. Допоміжна таблиця.

- 4. Обчислюємо середнє квадратичне відхилення за формулою $\sigma = \sqrt{\sigma^2}$.
- 5. Обчислюємо коефіцієнт сподіваних збитків за формулою

$$K = \frac{\sum_{x_i < 0} -x_i P(x_i)}{\sum_{x_i < 0} -x_i P(x_i) + \sum_{x_i \ge 0} x_i P(x_i)}$$

Отримуємо абсолютні показники двох проектів (рис. 2.4).

					, ,	1	(I	,				
										абсолютн	і показнин	КИ
12									M(x)	$\sigma^2(x)$	σ (x)	K
Про	ект 1	Хі (тис. гр. одиниць)	-50	-20	10	30	60	100	30	2340	48,37355	0,1875
		Pi	0,1	0,2	0,1	0,2	0,2	0,2				
Про	ект2	Хі (тис. гр. одиниць)	-1	-50	-20	-10	10	300	25,8	8674,56	93,13732	0,143646
2		Pi	0,2	0,1	0,1	0,1	0,4	0,1				
		(Xi-M(X))^2	6400	2500	400	0	900	4900				
		To thousand										
		(Xi-M(X))^2	718,24	5745,64	2097,64	1281,64	249,64	75185,64				
r e												

Рис. 2.4. Абсолютні показники ризику проектів.

- 6. Знаходимо коефіцієнт варіації за формулою $V=rac{\sigma(x)}{M(x)}$.
- 7. Обчислюємо відносний коефіцієнт ризику. Використовуючи нерівність Чебишева, знайдемо збитки на рівні значності α =0,05. Відповідна ймовірність що збитки не перевищують цю величину p=1- α =0,95.

$$\frac{\sigma^2}{\delta^2} = 2\alpha; X_{\infty} = M(x) - \delta.$$

Отримуємо відносні показники ризику (рис. 2.5).

Рис. 2.5. Відносні показники ризику.

8. Робимо висновки.

Завдання до проведення роботи

Можливі результати фінансової діяльності з двох різних проектів представлені у таблиці. Розрахувати коефіцієнти абсолютні та відносні показники ризику. Зробити висновки стосовно співвідношень рівня ризику проектів, якщо ліквідність фірми $R = m \cdot 10^6 \ гр.\ одиниць$.

X_1	$-n*10^4$	$-m*10^{4}$	10 ⁴	3*10 ⁴	n*10 ⁴	$m*10^4$
P_1	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{2}{10}$
X_2	$-n*10^3$	$-5*10^4$	$-2*10^4$	-10^{4}	10 ³	$m*10^5$
P_2	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{4}{10}$	$\frac{1}{10}$

(m - кількість літер в повному імені, <math>n - кількість літер в прізвищі).

Теоретичні питання.

- 1. Визначення економічного ризику.
- 2. Математичне сподівання.
- 3. Дисперсія, середнє квадратичне відхилення.
- 4. Абсолютні показники ризику.
- 5. Відносні показники ризику.
- 6. Семіваріація.
- 7. Коефіцієнт асиметрії.
- 8. Відносний показник ризику.
- 9. Коефіцієнт сподіваних збитків.