

	Beliag, Abstand)
	a, be IR. Dann
	(a, a>0
Λ.	$ a := \begin{cases} a, a \ge 0 \\ -a, a < 0 \end{cases}$
heip	st Beliag von a Es ist lal >0 lal ist des Abstand
	n a zum Nullpunht.
2. \ c	a-bl=lb-al: Abstand von a und b
	Rechannegelin für dem Belsag)
	abceR, c>0. Dann gilt
1.	$ x \le C \iff -C \le x \le C \implies -c \circ c$
2	$ a \cdot b = a \cdot b $ $\frac{a}{b} = \frac{ a }{ b }$ $b \neq 0$
•	7 16 151 2
Beispele	:
	1 = 2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
2 1	x-31=4
Fall 1	$x-3 \ge 0 \iff x \ge 3 : x-3 = 4 \iff x-3 = 4 \iff x = 7$
Fall 2:	: x-3<0 \(\sigma \) x<3 : \(\x-3\) = 4 \(\sigma \) -(x-3) = 4
	$(\Rightarrow -x+3=4 \Rightarrow x=-1$
	L1= {7}, L2 = {-13},
	L=L10 L2 = {-1,7}
3. X	-31>4
Fall 1:	x-3 >0 , x > 3 : 1x-3) > 4 <> x -3 > 4 <> x > 7
	x-3<0, $x<3$: $ x-3 >4 = -x+3>4 + x-4$
rall 2:	
	10 12 = (-10 2 -1) 0 (7, 20)

Aufgabe 6

Man berechne die Binomialkoeffizienten

a)
$$\binom{13}{4}$$
, b) $\binom{10}{5}$, c) $\binom{13}{11}$, d) $\binom{n+k}{k+1}$, e) $\binom{2n-1}{n+1}\frac{(n!)^2}{(2n)!}$ für $n=49$.

c)
$$\binom{13}{11} = \frac{13!}{(13-11)!} = \frac{13\cdot 12\cdot 11!}{2\cdot 11!} = 13\cdot 6 = 78$$

a)
$$\binom{4}{4}$$
, b) $\binom{5}{5}$, c) $\binom{11}{5}$, d) $\binom{k+1}{5}$, c) $\binom{n+1}{2n!}$ and $\binom{$

$$\frac{2n \cdot (n+1) \cdot (n-2)}{2}$$

$$=\frac{n(n-1)}{2y(n+1)}=\frac{n-1}{2n+2}$$