Reaction-diffusion spatial modeling of COVID-19 in Chicago

Trent Gerew*

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois

October 28, 2021

Figure 1: Timeline of the progression of COVID-19 in Chicago with key public policy events marked. The COVID-19 data was obtained from the City of Chicago Data Portal [3]. The dates of the policy events were gathered from the Illinois.gov press releases [7], [5], [6], [8], [4], the Chicago Tribune [2], and NBC Chicago [1].

1 Model Setup

[9]

^{*}tgerew@hawk.iit.edu

Figure 2: Schematic diagram of the model. The dashed lines indicate the interaction of the infected populations with the susceptible populations that leads to infection.

$$S_t = \mathfrak{D}_S \Delta S - \beta_{SA} SA - \beta_{SI} SI - \mu S, \tag{1}$$

$$E_t = \mathfrak{D}_E \Delta E + \beta_{SA} SA + \beta_{SI} SI - (\sigma_A + \sigma_I) E, \tag{2}$$

$$AR_t = M_{AR}A, (3)$$

$$A_t = \mathfrak{D}_A \Delta A + \sigma_A E - M_{AR} A, \tag{4}$$

$$I_t = \sigma_I E - MI, \tag{5}$$

$$H_t = \gamma MI - (1 - \omega)\chi H - \omega \psi H,\tag{6}$$

$$R_t = (1 - \gamma)MI + (1 - \omega)\chi H,\tag{7}$$

$$D_t = \omega \psi H. \tag{8}$$

Table 1: Population values for Chicago. Initial populations are determined from March 13, 2020.

		Population
Total population	N	$2,\!695,\!598$
Initial infected	I_0	162
Initial hospitalized	H_0	38
Initial deceased	D_0	3

2 ODE Dynamics

We want to understand the trajectories of the dynamics of the ODE system under different initial conditions. To do this we first find the equilibrium points by solving

$$S_t = E_t = A_t = I_t = H_t = R_t = D_t = 0$$

simultaneously for $\mathbf{x} = (S, E, A, AR, I, H, R, D)$. The solutions of this system are of the form $\mathbf{x}^* = (0, 0, 0, AR, 0, 0, R, D)$. This implies there are infinitely many non-isolated equilibrium points. We determine the stability of these equilibrium points by analyzing the linearized system near the

Table 2: Fitting parameters for Chicago: optimal (best-fitting), median and interquartile range, and variation range used in the optimization algorithm. Initial parameter guesses were uniformly sampled within these ranges.

		Median (interquartile range)	Initial value
Transmission rate, $S \to I$ [per day]	β_{SI}		$c \in \mathcal{U}[0,1]$
Transmission rate, $S \to A$ [per day]	β_{SA}		$c \in \mathcal{U}[0,1]$
Lockdown effect, $S \to I$	η_{SI}		$c \in \mathcal{U}[0,1]$
Lockdown effect, $S \to A$	η_{SA}		$c \in \mathcal{U}[0,1]$
Incubation period, $E \to I$ [days]	$1/\sigma_I$		$1/k, k \in \mathcal{U}[2,7]$
Latent period, $E \to A$ [days]	$1/\sigma_A$		$1/k, k \in \mathcal{U}[2,7]$
Infectivity period [days]	1/M		$1/k, k \in \mathcal{U}[5, 12]$
Recovery period, $A \to AR$ [days]	$1/M_{AR}$		$1/k, k \in \mathcal{U}[5, 12]$
Recovery period, $H \to R$ [days]	$1/\chi$		$1/k, k \in \mathcal{U}[5, 20]$
Period to deceased, $H \to D$ [days]	$1/\psi$		$1/k, k \in \mathcal{U}[5, 20]$
Conversion fraction $(I \xrightarrow{\gamma} H, I \xrightarrow{1-\gamma} R)$	γ		$c \in \mathcal{U}[0.25, 0.75]$
Conversion fraction $(H \xrightarrow{\omega} D, H \xrightarrow{1-\omega} R)$	ω		$c \in \mathcal{U}[0.1, 0.5]$
Initial population fraction, exposed	E_0/I_0		$c \in \mathcal{U}[1,5]$
Initial population fraction, asymptomatic	A_0/I_0		$c \in \mathcal{U}[1,5]$

points. The Jacobian of the system is

Now evaluating J at the equilibrium point \mathbf{x}^* and calculating the eigenvalues, we have

$$\lambda = \{0, 0, 0, -M, -M_{AR}, -\mu, -\sigma_A - \sigma_I, -\chi + \chi \omega - \psi \omega\}. \tag{10}$$

Note that the first three eigenvalues are 0, which implies the equilibrium points are non-isolated. This agrees with our earlier observation.

The equilibrium points are stable when $\lambda_i < 0$ for $4 \le i \le 8$. Since all the system parameters are positive, this implies $\lambda_i < 0$ for $4 \le i \le 7$. Thus the stability depends on the sign of λ_8 . There are two cases when $\lambda_8 = -\chi + \chi \omega - \psi \omega < 0$ is true:

- 1. $0 < \omega \le 1$ implies $\lambda_8 < 0$, and
- 2. $\omega > 1$ and $\chi < \frac{\psi \omega}{\omega 1}$ implies $\lambda_8 < 0$.

That is, whenever we have either of these conditions the equilibrium points are stable. We call this situation endemic. If $\lambda_8 > 0$, the equilibrium points are unstable and the situation is an epidemic.

References

[1] Read the full 'restore Illinois' plan aimed at reopening the state during coronavirus. NBC Chicago, May 2020. https://www.nbcchicago.com/news/coronavirus/

- read-the-full-restore-illinois-plan-aimed-at-reopening-the-state-during-coronavirus/2267039/.
- [2] J. Byrne, D. Petrella, and A. Lukach. Mayor Lori Lightfoot says Chicago will move to phase 3 of her reopening plan on June 3 but warns: 'COVID-19 is still very much part of our present'. Chicago Tribune, May 2020. https://www.chicagotribune.com/coronavirus/ct-coronavirus-chicago-lightfoot-reopening-20200528-cefwiuidwnfd7a57m25uavq6me-story.html.
- [3] City of Chicago. Daily chicago covid-19 cases, deaths, and hospitalizations, 2021. Data retrieved from Chicago Data Portal, https://data.cityofchicago.org/Health-Human-Services/Daily-Chicago-COVID-19-Cases-Deaths-and-Hospitaliz/kxzd-kd6a.
- [4] Illinois.gov. Gov. Pritzker releases guidelines to safely reopen additional businesses and industries as state advances to next phase of restore Illinois. Press Release, June 2020. https://www.illinois.gov/news/press-release.21714.html.
- [5] Illinois.gov. Gov. Pritzker aligns Illinois mask guidance with CDC for fully vaccinated people. Press Release, May 2021. https://www.illinois.gov/news/press-release.23322.html.
- [6] Illinois.gov. Gov. Pritzker announces metrics-based pathway for Illinois to fully reopen; expands vaccine eligibility to all residents 16+ on April 12. Press Release, March 2021. https://www.illinois.gov/news/press-release.22961.html.
- [7] Illinois.gov. Gov. Pritzker issues guidelines for Illinois reopening on June 11. Press Release, June 2021. https://www.illinois.gov/news/press-release.23399.html8.
- [8] Illinois.gov. United Center vaccination appointments open Thursday for Illinois seniors. Press Release, March 2021. https://www.illinois.gov/news/press-release.22868.html.
- [9] J. Xu, S. L. Murphy, K. D. Kochnanek, and E. Arias. Mortality in the United States, 2018. National Center for Health Statistics, NCHS Data Brief, no 355, January 2020. https://www.cdc.gov/nchs/products/databriefs/db355.htm.