01)

المسألة الشاملة رقم:

مشاهـــدة الحل

نعتبر الدالة g المعرفة على g المعرفة على g كما يلي:

$$g(x) = x^2 + 2x + \ln(x+1)$$

- . g ادرس تغيرات الدالة (1
- . g(x) غم استنتج حسب قیم x اشاره (2) احسب ثم استنتج
 - [II] نعتبر الدالة f المعرفة على (II)

$$f(x) = x - \frac{\ln(x+1)}{x+1}$$

 $.(o;ec{i};ec{j})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس ونسمي (C_f)

اً السبب $\lim_{\substack{x \to -1}} [f(x)]$ ثم فسر النتيجة هندسيا.

 $\lim_{x \to +\infty} [f(x)]$ برا احسب

- $+\infty$ بيّن أن المستقيم (Δ) ذو المعادلة y=x مقارب مائل لـ (C_f) في جوار (2
 - . (Δ) والمستقيم (C_f) ادرس الوضع النسبي بين المنحني (3
 - $:]-1;+\infty[$ بين أنه من أجل كل x من المجال (4

$$f'(x) = \frac{g(x)}{(x+1)^2}$$

. f شكل جدول تغيرات الدالة

- لين أن المنحني (C_f) يقبل نقطة انعطاف يُطلب تعيين إحداثييها.
 - . (C_f) مثل بيانيا المنحنى (6

حل المسألة الشاملة رقم:

مشاهدة المسألة

(I)

: g دراسة تغيرات الدالة (1

- حساب النهايات:

•
$$\lim_{\substack{x \to -1 \\ x \to -1}} [g(x)] = \lim_{\substack{x \to -1 \\ x \to -1}} [x^2 + 2x + \ln(x+1)]$$

= $-\infty$

$$\begin{array}{l}
\bullet \lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} [x^2 + 2x + \ln(x+1)] \\
= +\infty
\end{array}$$

g'(x) حساب -

$$g'(x) = 2x + 2 + \frac{1}{x+1}$$

$$= \frac{(2x+2)(x+1)+1}{x+1}$$

$$= \frac{2x^2 + 2x + 2x + 2 + 1}{x+1}$$

$$= \frac{2x^2 + 4x + 3}{x+1}$$

لدينا g'(x)>0 ومنه الدالة g متزايدة تماما على مجال تعريفها.

- جدول التغيرات:

x	-1 +∞
g'(x)	+
g(x)	-8

: g(0) حساب (2

$$g(0) = 0$$

:g(x) استنتاج حسب قیم x اشارة

من جدول التغيرات نجد:

x	-1	0	+∞
g(x)	_	0	+

(II)

. $(o; ec{\imath}; ec{\jmath})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس ونسمي

1) حساب نهايات الدالة عند أطراف مجموعة تعريفها:

$$\bullet \lim_{\substack{x \to -1}} [f(x)] = \lim_{\substack{x \to -1}} \left[\underbrace{x}_{x \to -1} - \frac{\overbrace{\ln(x+1)}^{-\infty}}{\underbrace{x+1}_{0^{+}}} \right] \\
= +\infty$$

التفسير الهندسى:

x=-1 یقبل مستقیم مقارب عمودی بجوار $+\infty$ معادلته (C_f)

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[x - \frac{\ln(x+1)}{x+1} \right] \\
= \lim_{x \to +\infty} \left[x - \frac{\frac{\ln(x+1)}{x}}{1 + \frac{1}{x}} \right] \\
= +\infty - 0 \\
= +\infty$$

 $z + \infty$ عقارب مائل لـ (C_f) في جوار (2 دو المعادلة y = x مقارب مائل المستقيم (Δ

$$\lim_{x \to +\infty} [f(x) - y] = \lim_{x \to +\infty} \left[x - \frac{\ln(x+1)}{x+1} - x \right]$$
$$= \lim_{x \to +\infty} \left[-\frac{\frac{\ln(x+1)}{x}}{1 + \frac{1}{x}} \right]$$
$$= 0$$

 (Δ) ومنه المستقيم و مقارب مقائل بجوار (Δ)

 $:(\Delta)$ دراسة الوضع النسبي بين المنحني (C_f) والمستقيم (3

:f(x)-y دراسة إشارة الفرق

$$f(x) - y = -\frac{\ln(x+1)}{x+1}$$

لدينا:

$$-\ln(x+1) = 0 \Rightarrow e^{\ln(x+1)} = e^{0}$$
$$\Rightarrow x+1 = 1$$
$$\Rightarrow x = 0$$

х	-1	0	+∞
f(x) - y	+	0	_

- الوضعية:
- $x \in]-1;0[$ لما (Δ) فوق (C_f) المنحنى •

- . O(0;0) في (C_f) يقطع المنحنى \bullet
- $x\in]0;+\infty[$ المنحني (C_f) تحت (Δ) المنحني •

$$f'(x) = \frac{g(x)}{(x+1)^2} :]-1; +\infty[$$
 عن المجال عن $f'(x) = \frac{g(x)}{(x+1)^2} :]$ 1; +∞[عن المجال (4

$$f'(x) = 1 - \frac{\frac{1}{x+1}(x+1) - \ln(x+1)}{(x+1)^2}$$
$$= \frac{x^2 + 1 + 2x - 1 - \ln(x+1)}{(x+1)^2}$$
$$= \frac{g(x)}{(x+1)^2}$$

- جدول تغيرات الدالة f:

g(x) من إشارة f'(x) دينا إشارة

X	-1	0	+∞
f'(x)	_	0	+
f(x)	+∞	0	+∞

تبيين أن المنحني (C_f) يقبل نقطة انعطاف: (5

$$f''(x) = \frac{\left(2x + 2 + \frac{1}{x+1}\right)(x+1)^2 - 2(x+1)(x^2 + 2x + \ln(x+1))}{(x+1)^4}$$

$$= \frac{\left(2(x+1) + \frac{1}{x+1}\right)(x+1) - 2(x^2 + 2x + \ln(x+1))}{(x+1)^3}$$

$$= \frac{2(x+1)^2 + 1 - 2x^2 + 4x + 2\ln(x+1)}{(x+1)^3}$$

$$= \frac{3 - 2\ln(x+1)}{(x+1)^3}$$

لدينا: $0 > (x+1)^3 > 0$ ومنه إشارة البسط

$$3 - 2 \ln(x + 1) = 0 \Rightarrow 2 \ln(x + 1) = 3$$
$$\Rightarrow \ln(x + 1) = \frac{3}{2}$$
$$\Rightarrow x + 1 = e^{\frac{3}{2}}$$
$$\Rightarrow x = e^{\frac{3}{2}} - 1$$

 $e^{rac{3}{2}}-1$ لدينا الدالة f'' تنعدم وتغير اشارتها، ومنه المنحني (\mathcal{C}_f) يقبل نقطة انعطاف فاصلتها

6) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- $\underline{x}=-1$: نرسم المستقيم المقارب العمودي
 - (T) نرسم المماس •
 - $\left(\mathcal{C}_{f}
 ight)$ ثم باستعمال جدول التغيرات نرسم ullet

المسألة الشاملة رقم:

نعتبر الدالة g المعرفة على المجال $]0;+\infty[$ كما يلي:

$$g(x) = 1 + x^2 + \ln x$$

- . g ادرس تغيرات الدالة (1
- 0.32 < lpha < 0.33: بين أن المعادلة g(x) = 0 تقبل حلا وحيدا lpha حيث (2
 - .]0; $+\infty$ [على المجال g(x) على إشارة (3
 - نعتبر الدالة f المعرفة على المجال $]\infty+\infty[$ كما يلى:

$$f(x) = -x + \frac{2 + \ln x}{x}$$

 (c_f) ونسمي و (C_f) تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس

- 1) احسب نهايات الدالة عند أطراف مجموعة تعريفها.
 - D_f من \mathcal{L} من أجل كل \mathcal{L}

$$f'(x) = -\frac{g(x)}{x^2}$$

. f شكل جدول تغيرات الدالة

- $f(\alpha)$. بين أن: $f(\alpha)=2\left(rac{1}{2lpha}-lpha
 ight)$ ، ثم عين حصرا للعدد (3
- اً احسب $\lim_{x \to +\infty} [f(x)+x]$ ، ثم استنتج أن $\lim_{x \to +\infty} [f(x)+x]$ ، يطلب تعيين (4) معادلته.
 - \cdot (Δ) والمستقيم (C_f) والمستقيم بين المنحنى (C_f) والمستقيم
 - اثبت أن المنحنى (C_f) يقبل مماس (T) يوازى المستقيم (Δ) في نقطة يُطلب تعيينها.
- - نعتبر الدالة h المعرفة على المجال] -1; $+\infty$ [كما يلي:

$$h(x) = -x + 1 + \frac{2 + \ln(x+1)}{x+1}$$

. $(o; \vec{\imath}, \vec{j})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_h)

 $: D_h$ أ/ بين أنه من أجل كل x من المجال (1

$$h(x) = f(x+1) + 2$$

 $+\infty$ بين أن المستقيم (C_h) ذو المعادلة y=-x+1 مقارب مائل لـ (C_h) في جوار

- . هو صورة المنحني (C_f) بتحويل بسيط يُطلب تعيينه (2 أ بين أن المنحني (C_h) هو صورة المنحني (C_h) . (C_h)
 - وسیط حقیقی غیر معدوم، (T_m) مستقیم معادلته: m

$$y = \ln(|m|) x + 1$$

أ/ برهن أن جميع المستقيمات (T_m) تشمل نقطة ثابتة يُطلب تعيينها.

ب/ ناقش بيانيا حسب قيم m عدد حلول المعادلة (E) ذات المجهول x التالية:

$$h(x) = \ln(|m|) x + 1 \dots (E)$$

حل المسألة الشاملة رقم:

🟠 مشاهـــدة المسألة

(I)

: g دراسة تغيرات الدالة (1

حساب النهايات:

$$\bullet \lim_{x \to 0} [g(x)] = \lim_{x \to 0} [1 + x^2 + \ln x]$$

$$= 0 - \infty$$

$$= -\infty$$

$$\bullet \lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} [1 + x^2 + \ln x]$$

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} [1 + x^2 + \ln x]$$

= $+\infty + \infty$
= $+\infty$

g'(x) دراسة

$$g'(x) = 2x + \frac{1}{x}$$
$$= \frac{2x^2 + 1}{x}$$

الدينا g'(x) > 0 ومنه:

: g(x) جدول تغیرات -

X	0 +∞
g'(x)	+
	▼ +∞
g(x)	
	-∞

: lpha تببين أن المعادلة g(x) = 0 تقبل حلا وحيدا (2

لدينا: الدالة g مستمرة ومتزايدة على مجال تعريفها

$$g(0.32) = -0.03$$

$$g(0.33) = 0.0002$$
 ولدينا:

$$g(0.33) \times g(0.32) < 0$$
 ولدينا:

0.32 < lpha < 0.33 حيث: lpha حيث g(x) = 0 تقبل حلا وحيدا lpha حيث ومنه حسب مبرهنة القيم المتوسطة المعادلة

 $:]0; +\infty[$ على المجال على المجال (3

X	0	α	+∞
g(x)	_	0	+

(II)

1) حساب نهايات الدالة عند أطراف مجموعة تعريفها:

$$\bullet \lim_{\substack{x \to 0}} [f(x)] = \lim_{\substack{x \to 0}} \left[-x + \frac{\overbrace{2 + \ln x}}{\underbrace{x}_{0^{+}}} \right]$$

· التفسير الهندسي:

x=0 معادلته $-\infty$ یقبل مستقیم مقارب عمودی بجوار ر (\mathcal{C}_f)

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[-x + \frac{2 + \ln x}{x} \right]$$

$$= \lim_{x \to +\infty} \left[-x + \frac{\frac{2}{x} + \frac{\ln x}{x}}{1} \right]$$

$$= -\infty$$

$$\lim_{x \to +\infty} \left[\frac{\ln x}{x} \right] = 0 : \forall x$$

$$: f'(x) = -\frac{g(x)}{x^2} : D_f \text{ in } x \text{ in$$

. g(x) من إشارة f'(x) من إشارة $x^2>0$ لدينا

- جدول التغيرات:

X	0	α	+∞
f'(x)	+	0	_
f(x)	-∞	$ \sqrt{f(\alpha)} $	+∞

$$\overline{f(\alpha)} = 2\left(\frac{1}{2\alpha} - \alpha\right)$$
 : تبيين أن (3

لدينا:

$$g(\alpha) = 0 \Rightarrow \alpha^2 + 1 + \ln \alpha = 0$$

 $\Rightarrow \ln \alpha = -(\alpha^2 + 1)$

ولدينا:

$$f(\alpha) = -\alpha + \frac{2 + \ln \alpha}{\alpha}$$

$$= \frac{-\alpha^2 + 2 - (\alpha^2 + 1)}{\alpha}$$

$$= \frac{-2\alpha^2 + 1}{\alpha}$$

$$= 2\left(\frac{1}{2\alpha} - \alpha\right)$$

 $: f(\alpha)$ حصر -

لدىنا:

$$0.32 < \alpha < 0.33$$

 $-0.33 < -\alpha < -0.32 \dots (1)$

ولدينا:

$$0.32 < \alpha < 0.33$$

$$0.64 < 2\alpha < 0.66$$

$$\frac{1}{0.66} < \frac{1}{2\alpha} < \frac{1}{0.64}$$

$$1.51 < \frac{1}{2\alpha} < 1.66 \dots (2)$$

بجمع (1) و (2) طرفا لطرف نجد:

$$1.18 < \frac{1}{2\alpha} - \alpha < 1.34$$
$$2.18 < 2\left(\frac{1}{2\alpha} - \alpha\right) < 2.34$$

إذن:

$$2.18 < f(\alpha) < 2.34$$

$$\lim_{x \to +\infty} [f(x) + x]$$
 أ/ حساب (4

$$\lim_{x \to +\infty} [f(x) + x] = \lim_{x \to +\infty} \left[-x + \frac{2 + \ln x}{x} + x \right]$$
$$= \lim_{x \to +\infty} \left[\frac{2 + \ln x}{x} \right]$$
$$= \lim_{x \to +\infty} \left[\frac{2}{x} + \frac{\ln x}{x} \right]$$
$$= 0$$

y=-x ومنه (\mathcal{C}_f) يقبل مستقيم مقارب مائل معادلته

 $:(\Delta)$ والمستقيم (C_f) والمستقيم بين المنحنى بين المنحنى

f(x)-y ندرس إشارة الفرق

$$f(x) - y = \frac{2 + \ln x}{x}$$

لدينا x>0 ومنه الإشارة من البسط:

$$2 + \ln x = 0 \Rightarrow \ln x = -2$$
$$\Rightarrow x = e^{-2}$$

ومنه:

X	$0 e^{-2}$		+∞
f(x) - x	_	0	+

- الوضعية:
- $x \in]0; e^{-2}[$ لما (Δ) تحت (\mathcal{C}_f) •
- . e^{-2} عقطع (Δ) في النقطة ذات الفاصلة (\mathcal{C}_f)
 - $x \in]e^{-2}; +\infty[$ لما (Δ) فوق (\mathcal{C}_f) •
- $:(\Delta)$ يوازي المستقيم (C_f) يقبل مماس (5 اثبات أن المنحني (C_f) يقبل مماس

ومنه:
$$f'(a) = -1$$
 ومنه: (Δ) يوازي (T)

$$f'(a) = -1 \Rightarrow -\frac{a^2 + 1 + \ln a}{a^2} = -1$$
$$\Rightarrow a^2 + 1 + \ln a = a^2$$
$$\Rightarrow 1 + \ln a = 0$$
$$\Rightarrow \ln a = -1$$
$$\Rightarrow a = e^{-1}$$

ومنه:

$$(T): y = f'(a)(x - a) + f(\alpha)$$

$$= -x + e^{-1} - e^{-1} + \frac{2 + \ln e^{-1}}{e^{-1}}$$

$$= -x + e$$

6) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- $\underline{x} = \underline{0}$: نرسم المستقيم المقارب العمودي
- نعين χ_0 و χ_1 نقط تقاطع المنحني (χ_1 مع محور الفواصل χ_2
 - $(\underline{\Delta})$: نرسم المستقيم المقارب المائل $\underline{\Delta}$
 - (T) نرسم المماس
 - (C_f) ثم باستعمال جدول التغيرات نرسم ullet

(III)

 $h(x) = f(x+1) + 2: D_h$ أ/ تبيين أنّه من أجل كل x من المجال (1

$$f(x+1) + 2 = -(x+1) + \frac{2 + \ln(x+1)}{x+1} + 2$$

$$= -x - 1 + \frac{2 + \ln(x+1)}{x+1} + 2$$

$$= -x + 1 + \frac{2 + \ln(x+1)}{x+1}$$

$$= h(x)$$

y=-x+1 مقارب مائل لـ (C_h) في جوار y=-x+1 مقارب مائل لـ (D)

لدينا:

$$\lim_{x \to +\infty} [h(x) - (-x+1)] = \lim_{x \to +\infty} \left[-x + 1 + \frac{2 + \ln(x+1)}{x+1} - (-x+1) \right]$$

$$= \lim_{x \to +\infty} \left[\frac{2 + \ln(x+1)}{x+1} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{2}{x+1} + \frac{\ln(x+1)}{x+1} \right]$$

$$= 0$$

 $+\infty$ ومنه المستقيم (C_h) ذو المعادلة y=-x+1 مقارب مائل لـ (D) في جوار

: هو صورة المنحني (C_f) عمو صورة المنحني (أ) بتحويل بسيط يُطلب تعيينه (2

$$h(x) = f(x+1) + 2$$

= $f(x-(-1)) + 2$

 $ec{u}(-1;2)$ ومنه (\mathcal{C}_h) مو صورة ورث بانسحاب شعاعه:

 $\cdot \cdot (C_h)$ التمثيل البياني لـ التمثيل

 $:(C_h)$ و (C_f) تمثیل

3) أ/ برهان أن جميع المستقيمات (T_m) تشمل نقطة ثابتة يُطلب تعيينها:

نفرض أن النقطة $A(x_1;y_1)$ تنتمي إلى المستقيم T_m ونبرهن أنها ثابتة:

لدينا: A تنتمى إلى (T_m) معناه:

$$y_1 = \ln(|m|) x_1 + 1$$

 $\Rightarrow \ln(|m|) x_1 - y_1 + 1 = 0 \dots (3)$

المعادلة (3) عبارة عن كثير حدود متغيره $\ln(|m|)$ وينعدم اذا انعدمت جميع معاملاته أى:

$$\begin{cases} x_1 = 0 \\ -y_1 + 1 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ y_1 = 1 \end{cases}$$

A(0;1) اذن: المستقيمات (T_m) تشمل النقطة

ب/ المناقشة البيانية:

حلول المعادلة (E) هي فواصل نقط تقاطع المنحني $y_m = \ln(|m|)\,x + 1$

ومنه:

لما
$$m=-e^{-1}$$
 أي $m=e^{-1}$ أي $m=e^{-1}$ أي $m=e^{-1}$ و $m=e^{-1}$ المعادلة تقبل حلا وحيدا $m=-e^{-1}$ أي $m=e^{-1}$ أي $m=e^{-1}$ أي $m=e^{-1}$ المعادلة تقبل حلا وحيدا $m=e^{-1}$ أي $m=e^{-1}$ أي $m=e^{-1}$ المعادلة تقبل حلان $m\in]-\infty; -e^{-1}[\cup]e^{-1}; +\infty$ المعادلة تقبل حلان

المسألة الشاملة رقم:

نعتبر الدالة f المعرفة على $\mathbb{R} - \{-1; 1\}$ بـ:

$$f(x) = \begin{cases} \frac{1}{\ln|x|} + x; x \in \mathbb{R}_{-}^{*} - \{-1\} \\ \frac{1}{\ln x} - \frac{1}{2(\ln x)^{2}}; x \in \mathbb{R}_{+}^{*} - \{1\} \\ 0; x = 0 \end{cases}$$

. $(o; \vec{\imath}, \vec{j})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

- ادرس قابلية اشتقاق الدالة f في $x_0=0$ ، فسر النتيجة هندسيا.
 - f ادرس تغيرات الدالة (2
- . عيين معادلته $-\infty$ عطلب تعيين معادلته (Δ) بجوار عبي أن المنحني (C_f) يقبل مستقيما مقاربا مائلا $\mathbb{R}_-^* - \{-1\}$ ادرس وضعية المنحني (\mathcal{C}_f) بالنسبة للمستقيم (Δ) على المجال
 - (C_f) في المجال $\mathbb{R}^*_+ \{1\}$ ماذا تسنتج بالنسبة للمنحني و f(x) = 0
- . $]-2;-rac{3}{4}$ بين أن (\mathcal{C}_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها lpha في المجال (5
 - . (C_f) مثل بيانيا (Δ) و المنحنى (6
 - نعتبر المعادلة ذات المجهول x والوسيط الحقيقي m التالية: (7)

$$f(x) = -(m^2 - e) \dots (E)$$

. (E) عدد واشارة حلول المعادلة m عدد واشارة حلول المعادلة

حل المسألة الشاملة رقم:

₁ مشاهــدة المسألة

 $x_0=0$ دراسة قابلية اشتقاق الدالة f في (1

$$\lim_{x \to 0} \left[\frac{f(x) - f(0)}{x - 0} \right] = \lim_{x \to 0} \left[\frac{\frac{1}{\ln|x|} + x - 0}{x - 0} \right]$$

$$= \lim_{x \to 0} \left[\frac{1}{x \ln|x|} + \frac{x}{x} \right]$$

$$= \lim_{x \to 0} \left[\frac{1}{x \ln(-x)} + 1 \right]$$

$$= \lim_{x \to 0} \left[\frac{-1}{-x \ln(-x)} + 1 \right]$$

$$= -\infty$$

$$\lim_{x \to 0} [-x \ln(-x)] = 0^+ : \forall x \to 0$$

الدالة f لا تقبل الاشتقاق عند $x_0=0$ من اليسار

$$\lim_{x \to 0} \left[\frac{f(x) - f(0)}{x - 0} \right] = \lim_{x \to 0} \left[\frac{\frac{1}{\ln x} - \frac{1}{2(\ln x)^2} - 0}{x - 0} \right]$$
$$= \lim_{x \to 0} \left[\frac{1}{x \ln x} - \frac{1}{2x(\ln x)^2} \right]$$
$$= \lim_{x \to 0} \left[\frac{1}{x \ln x} \left(1 - \frac{1}{2 \ln x} \right) \right]$$
$$= +\infty$$

الدالة f لا تقبل الاشتقاق عند $x_0=0$ من اليمين

- التفسير الهندس<u>ي:</u>

x=0 الدالة f لا تقبل الاشتقاق عند $x_0=0$ ومنه ومنه $x_0=0$ يقبل مماس عمودي معادلته

- : f دراسة تغيرات الدالة (2
 - حساب النهايات:

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[\frac{1}{\ln|x|} + x \right]$$

= $\lim_{x \to -\infty} \left[\frac{1}{\ln(-x)} + x \right]$

$$=-\infty$$

•
$$\lim_{\substack{x \to -1 \\ x \to -1}} [f(x)] = \lim_{\substack{x \to -1 \\ x \to -1}} \left[\frac{1}{\ln(-x)} + x \right]$$
$$= \lim_{\substack{x \to -1 \\ x \to -1}} \left[\frac{1}{0^+} + x \right]$$
$$= +\infty$$

$$\begin{array}{l}
\bullet \lim_{\substack{x \to -1}} [f(x)] = \lim_{\substack{x \to -1}} \left[\frac{1}{\ln(-x)} + x \right] \\
= \lim_{\substack{x \to -1}} \left[\frac{1}{0^-} + x \right] \\
= -\infty
\end{array}$$

•
$$\lim_{x \to 1} [f(x)] = \lim_{x \to 1} \left[\frac{1}{\ln x} - \frac{1}{2(\ln x)^2} \right]$$

= $\frac{1}{0^-} - \frac{1}{2(0^-)^2}$
= $-\infty$

•
$$\lim_{\substack{x \to 1 \\ x \to 1}} [f(x)] = \lim_{\substack{x \to 1 \\ x \to 1}} \left[\frac{1}{\ln x} - \frac{1}{2(\ln x)^2} \right]$$

$$= \lim_{\substack{x \to 1 \\ x \to 1}} \left[\frac{1}{\ln x} \left(1 - \frac{1}{2\ln x} \right) \right]$$

$$= \frac{1}{0^+} \left(1 - \frac{1}{2(0^+)} \right)$$

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{1}{\ln x} - \frac{1}{2(\ln x)^2} \right] \\
= 0 - 0 \\
= 0$$

- التفسير الهندسي:
- $\pm\infty$ بجوار x=-1 بجوار مستقیم مقارب عمودی (\mathcal{C}_f) .
 - $-\infty$ بجوار x=1 عمودی یقبل مستقیم مقارب عمودی (C_f)
 - $+\infty$ بجوار y=0 بجوار مستقیم مقارب أفقی y=0 بجوار
 - :f'(x) حساب -

$$x \in \mathbb{R}^*_- - \{-1\}$$
لمّا

$$f'(x) = \frac{-\left(-\frac{1}{x}\right)}{(\ln(-x))^2} + 1$$
$$= \frac{-1}{x(\ln(-x))^2} + 1$$

f'(x) > 0 ومنه: x < 0 لاحظ أنّ

اذن:

X	-∞ -	-1 0
f'(x)	+	+

 $x \in \mathbb{R}_{+}^{*} - \{1\}$ لمّا

$$f'(x) = -\left(\frac{\frac{1}{x}}{(\ln x)^2}\right) - \left(-\frac{4\left(\frac{1}{x}\right)\ln x}{4(\ln x)^4}\right)$$

$$= -\frac{1}{x(\ln x)^2} + \frac{1}{x(\ln x)^4}$$

$$= \frac{-\ln x + 1}{x(\ln x)^3}$$

$$= \frac{-\ln x + 1}{[x(\ln x)^2] \ln x}$$
: $\frac{-\ln x + 1}{\ln x}$ ومنه إشارة المشتقة من إشارة x

$$\ln x = 0 \Rightarrow x = 1$$

ولدينا:

$$-\ln x + 1 = 0 \Rightarrow \ln x = 1$$
$$\Rightarrow x = e$$

ومنه:

X	0	1	e	+∞
$-\ln x + 1$	+	+	0	_
$\ln x$	_	+		+
f'(x)	_	+	0	_

ومنه:

جدول التغيرات:

x	$-\infty$ –	-1	0	1	1	e	+∞
f'(x)	+	+	_		+	0	_
f(x)	-∞	-∞	* 0	*	-8	$\sqrt{\frac{1}{2}}$	•0

 $\cdot -\infty$ يقبل مستقيما مقاربا مائلا (Δ) يقبل عبد عبد (C_f) يقبل عبد (Δ) بجوار (3

إذا استطعنا كتابة عبارة دالة f على الشكل:

 $\lim_{x \to +\infty} [\varphi(x)] = 0$

y مائل معادلته مقارب مائل معادلته و فإن (\mathcal{C}_f)

لدينا:

$$f(x) = x + \frac{1}{\ln(-x)}$$
$$= y + \varphi(x)$$

حيث:

$$\begin{cases} \varphi(x) = \frac{1}{\ln(-x)} \\ y = x \end{cases}$$

ولدينا:

$$\lim_{x \to -\infty} [\varphi(x)] = 0$$

 $0.-\infty$ ومنه المستقيم ذو المعادلة y=x مقارب مائل بجوار

 $\mathbb{R}_{-}^{*}-\{-1\}$ المنحني (C_{f}) بالنسبة للمستقيم (Δ) على المجال بالمنحني بالنسبة للمستقيم بالمجال المنحني وضعية المنحني بالنسبة للمستقيم بالمجال المنحني بالمنحني بالمن بالمنحني بالمنحني بالمنحني بالمنحني بالمن

f(x) - y ندرس إشارة الفرق

$$f(x) - y = x + \frac{1}{\ln(-x)} - x$$
$$= \frac{1}{\ln(-x)}$$

لدينا:

$$\ln(-x) = 0 \Rightarrow -x = e^{0}$$

$$\Rightarrow -x = 0$$

$$\Rightarrow x = 0$$

X	8	-1	0
f(x) - y	+	_	_

- الوضعية:
- $[x\in]-\infty;-1[$ لما (Δ) فوق (C_f) فوق
 - $x \in]-1;0[$ لما (Δ) تحت (C_f) •
- $\mathbb{R}_+^*-\{1\}$ عن المجال f(x)=0 عل المعادلة: (4

$$\frac{1}{\ln x} - \frac{1}{2(\ln x)^2} = 0 \Rightarrow \frac{2\ln x - 1}{2(\ln x)^2} = 0$$

لدينا: $0 > 2(\ln x)^2 > 0$ ومنه:

$$2 \ln x - 1 = 0 \Rightarrow 2 \ln x = 1$$
$$\Rightarrow \ln x = \frac{1}{2}$$
$$\Rightarrow x = e^{\frac{1}{2}}$$
$$\Rightarrow x = \sqrt{e}$$

- الاستنتاج:
- \sqrt{e} يقطع محور الفواصل في النقطة ذات الفاصلة (C_f)
- :]-1.77; -1.76[في المجال في نقطة وحيدة فاصلتها lpha في المجال (C_f) تبيين أن (C_f) تبيين أن

المنحني (C_f) يقطع محور الفواصل في نقطة وحيدة فاصلتها lpha في المجال a المنحني المواصل في نفس المجال a تقبلا حلا وحيدا في نفس المجال

[-1.77; -1.76] لدينا الدالة f مستمرة ومتزايدة على المجال

$$f(-1.76)=0.008$$
 و $f(-1.77)=-0.01$ الدينا: $f(-1.77)\times f(-1.76)<0$

]-1.77;-1.76[ومنه حسب مبرهنة القيم المتوسطة المعادلة f(x)=0 تقبلا حلا وحيدا في المجال

6) التمثيل البيانى:

خطوات التمثيل على معلم متعامد ومتجانس:

- y=0 و x=1 و x=-1 نرسم المستقيمات المقاربة:
 - نعين نقطتي تقاطع المنحني (C_f) مع محور الفواصل
 - نرسم المستقيم المقارب المائل (∆)
 - (C_f) أثمّ باستعمال جدول التغيرات نرسم •

7) المناقشة البيانية:

 $y_m = -(m^2-e)$ على المعادلة (E) هي فواصل نقط تقاطع المنحني المنحني مع المستقيمات ذات المعادلة

$$|m|>\sqrt{e}$$
 لما $m^2>e$ أي $m^2-e>0$ أي $-(m^2-e)<0$ لما $-(m^2-e)<0$ لما أي $m\in]-\infty; -\sqrt{e}$ المعادلة تقبل حلين موجبين وحلين سالبين.

$$|m|=\sqrt{e}$$
 لما $m^2=e$ أي $m^2-e=0$ أي $-(m^2-e)=0$ لما $m=-\sqrt{e}$. المعادلة تقبل حل موجب وحل معدوم وحل سالب

المعادلة تقبل حلين موجبين وحل سالب.

$$|m|=\sqrt{e-rac{1}{2}}$$
لما $m^2=e-rac{1}{2}$ أي $m^2-e=-rac{1}{2}$ أي $m^2-e=-rac{1}{2}$ أي $m^2-e=-rac{1}{2}$ المعادلة تقبل حل مضاعف وحل سالب $m=-\sqrt{e-rac{1}{2}}$ و $m=\sqrt{e-rac{1}{2}}$

$$|m| < \sqrt{e - \frac{1}{2}} \inf_{a} m^2 < e - \frac{1}{2} \inf_{a} m^2 - e < -\frac{1}{2} \inf_{a} (m^2 - e) > \frac{1}{2} \inf_{a} e$$

$$m \in \left] - \sqrt{e - \frac{1}{2}} ; \sqrt{e - \frac{1}{2}} \left[\inf_{a} - \sqrt{e - \frac{1}{2}} < m < \sqrt{e - \frac{1}{2}} \right] \right]$$

المعادلة تقبل حل وحيد سالب

نعتبر الدالة
$$g$$
 المعرفة على $]0;+\infty[$ كما يلي:

$$g(x) = (\ln x)^3 + 1$$

- . g ادرس تغيرات الدالة (1
- g(x) = 0 حل المعادلة (2
- .]0; + ∞ [على المجال g(x) على استنتج إشارة (3
- نعتبر الدالة f المعرفة على $]0;1[U]1;+\infty[$ كما يلى:

$$f(x) = (\ln x)^2 + 1 - \frac{2}{\ln x}$$

. $(o; \vec{\iota}, \vec{j})$ تمثيلها البياني في مستو منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

- ا حسب نهایات الدالة f عند أطراف مجموعة تعریفها.
- يكون: [0;1[U]]; $+\infty$ من المجال [0;1[U]] يكون:

$$f'(x) = 2\frac{g(x)}{x(\ln x)^2}$$

- . f ثم شكل جدول تغيرات الدالة f'(x) ثم شكل جدول تغيرات الدالة
- $h(x)=(\ln x)^2+1$ نعتبر الدالة h المعرفة على $0;+\infty[$ كما يلي: $(0;\vec{\iota},\vec{j})$ نعتبر الدالة (C_h) تمثيلها البياني في مستو منسوب إلى المعلم المتعامد المتجانس نعتبر ونسمي المتعامد ا
 - h ادرس تغيرات الدالة h .
 - احسب $\lim_{x \to +\infty} [f(x) h(x)]$ احسب (2
 - . (C_h) و (C_f) ادرس الوضع النسبي بين المنحنيين (3
 - . يقبل A نقطة انعطاف يُطلب احداثييها (C_h) بين أن
 - . A اكتب معادلة المماس (T) لـ (C_h) في النقطة (5
 - (C_f) احسب، f(e) ماذا تستنتج بالنسبة للمنحني (6
 - (T) و (C_h) ، (C_f) مثل بيانيا في نفس المعلم كلا من
 - نعتبر المعادلة ذات المجهول x والوسيط الحقيقي m التالية: (8)

$$e^{m}(\ln x)^{3} + e^{m}(\ln x) - \ln x - 2e^{m} = 0 \dots (E)$$

(E) عدد حلول المعادلة عدد m عدد حلول المعادلة -

04

...

حل المسألة الشاملة رقم:

مشاهـــدة المسألة

(I)

: g دراسة تغيرات الدالة (1

- حساب النهايات:

•
$$\lim_{x \to 0} [g(x)] = \lim_{x \to 0} [(\ln x)^3 + 1] = -\infty$$

• $\lim_{x \to 0} [g(x)] = \lim_{x \to 0} [(\ln x)^3 + 1] = +\infty$

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} [(\ln x)^3 + 1] = +\infty$$

g'(x) دراسة

$$g'(x) = 3\frac{1}{x}(\ln x)^2$$

$$g'(1) = 0$$
 و $g'(x) > 0$ لدينا:

ومنه

جدول التغيرات:

X	0	1	+∞
g'(x)	+	0	+
g(x)	-∞	ð	+∞

g(x) = 0 حل المعادلة (2

لدينا:

$$g(x) = 0 \Rightarrow (\ln x)^3 + 1$$
$$\Rightarrow (\ln x)^3 = -1$$
$$\Rightarrow \ln x = -1$$
$$\Rightarrow x = e^{-1}$$

$$s = \{e^{-1}\} : g(x) = 0$$
 اذن حلول المعادلة

 $:]0; +\infty[$ استنتاج إشارة g(x) على المجال (3

X	0	e^{-1}	+∞
g(x)	_	0	+

(II)

1) حساب نهایات الدالة f عند أطراف مجموعة تعریفها:

$$\bullet \lim_{\substack{x \to 0 \\ x \to 0}} [f(x)] = \lim_{\substack{x \to 0 \\ x \to 0}} \left[(\ln x)^2 + 1 - \frac{2}{\ln x} \right]$$

$$= +\infty$$

$$\bullet \lim_{x \to 1} [f(x)] = \lim_{x \to 1} \left[(\ln x)^2 + 1 - \frac{2}{\ln x} \right]$$

$$= -\frac{2}{0}$$

$$= +\infty$$

•
$$\lim_{\substack{x \to 1 \\ x \to 1}} [f(x)] = \lim_{\substack{x \to 1 \\ x \to 1}} \left[(\ln x)^2 + 1 - \frac{2}{\ln x} \right]$$

= $-\frac{2}{0^+}$

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[(\ln x)^2 + 1 - \frac{2}{\ln x} \right] \\
= +\infty$$

- التفسير الهندسي:
- x=0 يقبل مستقيم مقارب عمودي بجوار $+\infty$ معادلته $+\infty$ يقبل مستقيم مقارب
- x=1 معادلته $\pm\infty$ معادلته عمودي بجوار مستقيم مقارب عمودي بجوار \bullet
- $f'(x) = 2 \frac{g(x)}{x(\ln x)^2}$: يكون: $g(x) = 2 \frac{g(x)}{x(\ln x)^2}$ يكون: $g(x) = 2 \frac{g(x)}{x(\ln x)^2}$ (2)

$$f'(x) = 2\frac{1}{x}\ln x - \left(\frac{-\frac{2}{x}}{(\ln x)^2}\right)$$

$$= \frac{2\ln x}{x} + \frac{2}{x(\ln x)^2}$$

$$= 2\left[\frac{(\ln x)^3 + 1}{x(\ln x)^2}\right]$$

$$= \frac{2g(x)}{x(\ln x)^2}$$

: f'(x) استنتاج إشارة (3

g(x) من اشارة f'(x) من اشارة $x(\ln x)^2>0$ لدينا:

f جدول تغيرات الدالة f

х	0	e^{-1}	1	1 +∞
f'(x)	_	0	+	+
f(x)	+8	4	8	-8

(III)

1) دراسة تغيرات الدالة *h* :

- النهايات:

•
$$\lim_{\substack{x \to 0 \\ x \to 0}} [h(x)] = \lim_{\substack{x \to 0 \\ x \to +\infty}} [(\ln x)^2 + 1] = +\infty$$

• $\lim_{\substack{x \to +\infty \\ x \to +\infty}} [h(x)] = \lim_{\substack{x \to +\infty \\ x \to +\infty}} [(\ln x)^2 + 1] = +\infty$

$$\bullet \lim_{x \to +\infty} [h(x)] = \lim_{x \to +\infty} [(\ln x)^2 + 1] = +\infty$$

: h'(x) - دراسة

$$h'(x) = \frac{2}{x} \ln x$$

ادينا $0 < \frac{2}{x}$ ومنه:

$$\ln x = 0 \Rightarrow x = 1$$

جدول تغيرات الدالة h:

 $:\lim_{x \to +\infty} [f(x) - h(x)]$ حساب (2

$$\lim_{x \to +\infty} [f(x) - h(x)] = \lim_{x \to +\infty} \left[(\ln x)^2 + 1 - \frac{2}{\ln x} - (\ln x)^2 - 1 \right]$$
$$= \lim_{x \to +\infty} \left[-\frac{2}{\ln x} \right]$$
$$= 0$$

- التفسير الهندسي:

 $+\infty$ و (C_f) متقاربان بجوار (C_h)

 $:(C_h)$ و روم النسبي بين المنحنيين (3 دراسة الوضع النسبي بين المنحنيين (3

f(x) - h(x) ندرس إشارة الفرق

$$f(x) - h(x) = \frac{2}{-\ln x}$$

لدينا:

$$-\ln x = 0 \Rightarrow x = 1$$

ومنه:

x	0	1	+∞
f(x) - h(x)	+		_

الوضعية:

- $x \in]0;1[$ لما (C_h) فوق (C_f) •
- $x \in]1; +\infty[$ لما (C_h) تحت (C_f) •
- نقطة انعطاف: A نقطة انعطاف: (4

لدينا:

$$h''(x) = \frac{-2}{x^2} \ln x + \frac{1}{x} \times \frac{2}{x}$$
$$= \frac{-2 \ln x + 2}{x^2}$$
$$= \frac{2}{x^2} (1 - \ln x)$$

 $(1 - \ln x)$ دينا 2 ومنه الإشارة من

$$1 - \ln x = 0 \Rightarrow \ln x = 1$$
$$\Rightarrow x = e$$

			_
x	0	e	+∞
h''(x)	+	0	_

A(e;2) انعدمت وغيرت اشارتها ومنه المنحني (C_h) يقبل نقطة انعطاف احداثييها h''(x)

:A كتابة معادلة المماس (T) لـ ((C_h) غي النقطة (5

$$(T): y = h'(e)(x - e) + h(e)$$

$$= \frac{2}{e} \ln e (x - e) + (\ln e)^2 + 1$$

$$= \frac{2}{e} x$$

: f(e) حساب (6

$$f(e) = (\ln e)^2 + 1 - \frac{2}{\ln e} = 0$$

- الاستنتاج:

. e يقطع حامل محور الفواصل في النقطة ذات الفاصلة (\mathcal{C}_f)

7) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- x = 0 و x = 1 نرسم المستقيمات المقاربة:
 - (T) نرسم المماس \bullet
 - (C_h) نعين A نقطة انعطاف المنحني \bullet
 - (C_h) باستعمال جدول تغيرات الدالة h نرسم •
- نعين نقطة تقاطع المنحنى (C_f) مع محور الفواصل
 - $ig(\mathcal{C}_fig)$ نرسم f نرسم غيرات الدالة f نرسم •

8) المناقشة البيانية:

لدينا:

$$e^{m}(\ln x)^{3} + e^{m}\ln x - \ln x - 2e^{m} = 0$$

$$\Rightarrow e^{m}[(\ln x)^{3} + \ln x - 2] = \ln x$$

$$\Rightarrow e^{m}[(\ln x)^{2} + 1 - \frac{2}{\ln x}] = 1$$

$$\Rightarrow e^{m}[f(x)] = 1$$

$$\Rightarrow f(x) = e^{-m}$$

 $y_m=e^{-m}$ هل فواصل نقط تقاطع المنحني (C_f) مع المستقيمات ذات المعادلة (E) هل فواصل نقط تقاطع المنحني المنادن:

لما
$$e^{-m} < 4$$
 أي $-m < \ln 4$ أي $-m < \ln 4$ المعادلة تقبل حل وحيد $-m < \ln 4$ أي $-m = \ln 4$ المعادلة تقبل حلين احدهما مضاعف $-m = \ln 4$ أي $-m = \ln 4$ المعادلة تقبل ثلاث حلول لما $-m > \ln 4$ أي $-m > \ln 4$ المعادلة تقبل ثلاث حلول

لتكن الدالة f المعرفة على $\mathbb{R}-\{-1;1\}$ بجدول تغيراتها التالى:

x	-∞	***	• 1	 -	1	$\sqrt{3}$	
f'(x)		0	_			0	+
f(x)		$-\sqrt{3} - \ln(2 +$	√3)				+∞

. $(o;ec{\imath},ec{j})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس ونسمي (C_f)

علما أن الدالة f فردية:

. f مع التبرير ، ثم استنتج اتجاه تغير الدالة f'(x) مع التبرير

$$f\left(\sqrt{3}\right)=\sqrt{3}+\ln\left(2+\sqrt{3}\right)$$
و $\lim_{\stackrel{>}{x\to 1}}[f(x)]=+\infty$ و $\lim_{\stackrel{>}{x\to \infty}}[f(x)]=-\infty$ برا بيتن أنّ

ج/ أكمل جدول تغيرات الدالة f السابق.

 $\pm\infty$ عند (\mathcal{C}_f) . خقبل أن المستقيم (D) ذو المعادلة y=x مقارب مائل لـ

 $\left(\sqrt{3}
ight)\cong 1.7$ و $f\left(\sqrt{3}
ight)\cong 3$: نأخذ: $f\left(\sqrt{3}
ight)$ و المنحني $f\left(\sqrt{3}
ight)$ و أ $f\left(\sqrt{3}
ight)$ و أ $f\left(\sqrt{3}
ight)$ و أ

نفرض أن عبارة الدالة f هي من الشكل:

$$f(x) = ax + b + \ln\left(c + \frac{2}{x - 1}\right)$$

. عداد حقیقیه c, b, a

 $\,\cdot\,c=1\,$ و و b=0 ، a=1 و أغلاه، بيّن أنّa=1 و b=0

ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد واشارة حلول المعادلة (E) ذات المجهول x التالية:

$$x - \frac{e^m + e^x}{e^m - e^x} = 0 \dots (E)$$

نعتبر الدالة g المعرفة على]1; $+\infty$ [كما يلي: (II)

$$g(x) = \ln(f(x))$$

. g ادرس تغيرات الدالة

05)

حل المسألة الشاملة رقم:

مشاهــدة المسألة

(I)

اً أر تعيين إشارة f'(x) مع التبرير:

 \cdot نضع γ, β, α حیث

х	$-\infty$	α	Į.	3	1	L	$\sqrt{3}$	γ
f'(x)		0	_				0	+

لدينا الدالة f فردية ، معناه:

$$\begin{cases} (-x) \in D_f \\ f(-x) = -f(x) \end{cases}$$

ومنه:

$$-f'(-x) = -f'(x) \Rightarrow f'(-x) = f'(x)$$

لدينا من جدول التغيرات (المُعطى):

$$x \in]\alpha; \beta[$$
 لما $f'(x) < 0$

$$-x \in]\alpha; \beta[$$
 $\beta[$ $\beta[$ $\beta[$

$$x \in]-\beta;-\alpha[$$
 لما $f'(x) < 0 \leftarrow$

ولدىنا كذلك:

$$x \in]\sqrt{3}$$
; γ [لما $f'(x) > 0$

$$-x \in]\sqrt{3};\gamma[$$
 لما $\underbrace{f'(-x)}_{=f'(x)} > 0$ \Leftarrow

$$x=-\sqrt{3}$$
 ولدينا: $f'(x)=0$ معناه $x=\sqrt{3}$ لما $x=\sqrt{3}$ لما $x=\sqrt{3}$ لما ولدينا:

$$\gamma=+\infty$$
 ومنه: $lpha=-\sqrt{3}$ ومنه:

اذن:

$$x \in \left] -\infty; -\sqrt{3} \right[\cup \left] \sqrt{3}; +\infty \right[$$
 لما: $f'(x) > 0$

$$x \in \left] -\sqrt{3}; -1\right[\cup \left] 1; \sqrt{3}\right[$$
 لما: $f'(x) < 0$

$$\lim_{x \to -\infty} [f(x)] = -\infty$$
 برا تبیین أن

$$\lim_{x \to +\infty} [f(x)] = +\infty$$
 لدينا من الجدول السابق:

$$(f(-t)=-f(t):$$
نضع $x=-t$ (الدالة f فردية أي: $x=-t$ ومنه:

$$\lim_{x \to -\infty} [f(x)] = \lim_{-t \to -\infty} [f(-t)]$$

$$= \lim_{t \to +\infty} [f(-t)]$$

$$= \lim_{t \to +\infty} [-f(t)]$$

$$= -\lim_{t \to +\infty} [f(x)]$$

$$= -(+\infty)$$

$$= -\infty$$

$$\lim_{\substack{x > x \to 1}} [f(x)] = +\infty$$
 - تبيين أن: - -

$$\lim_{\substack{x \to 1 \\ x \to 1}} [f(x)] = +\infty$$

بنفس الفكرة السابقة (نضع
$$x=-t$$
) نجد:

$$f(\sqrt{3}) = \sqrt{3} + \ln(2 + \sqrt{3})$$
 تبيين أن:

لدينا:

$$\underbrace{f(-\sqrt{3})}_{f(-\sqrt{3})=-f(\sqrt{3})} = -\sqrt{3} - \ln(2 + \sqrt{3})$$

$$\Rightarrow -f(\sqrt{3}) = -\sqrt{3} - \ln(2 + \sqrt{3})$$

$$\Rightarrow f(\sqrt{3}) = \sqrt{3} + \ln(2 + \sqrt{3})$$

ج/ اکمال جدول تغیرات الدالهٔ f السابق:

2) التمثيل البياني:

قبل أن نشرع في التمثيل البياني، نستخرج من جدول التغيرات المستقيمات المقاربة

لدينا:

- x=-1 يقبل مستقيم مقارب عمودي بجوار ر $-\infty$ معادلته (C_f) .
 - x=1 يقبل مستقيم مقارب عمودي بجوار $\infty+$ معادلته. (C_f)

خطوات التمثيل على معلم متعامد ومتجانس:

x=-1و x=1 و نرسم المستقيمات المقاربة: •

- نرسم القارب المائل (D)
 - نعين النِقط الحدية
- $\binom{C_f}{f}$ نرسم و ثم باستعمال جدول تغیرات الداله f

: c=1 و b=0 ، a=1 و (3

لدينا:

$$f'(x) = a + \frac{-\frac{2}{(x-1)^2}}{c + \frac{2}{x-1}}$$
$$= a - \frac{\frac{2}{(x-1)^2}}{\frac{c(x-1)+2}{x-1}}$$
$$= a - \frac{\frac{2}{x-1}}{\frac{c(x-1)+2}{x-1}}$$

$$= a - \frac{2}{c(x-1)^2 + 2(x-1)}$$

ولدينا:

$$\begin{cases} f'(\sqrt{3}) = 0 \\ f'(-\sqrt{3}) = 0 \end{cases} \Rightarrow \begin{cases} a - \frac{2}{c(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \\ a - \frac{2}{c(-\sqrt{3} - 1)^2 + 2(-\sqrt{3} - 1)} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a - \frac{2}{c(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \dots (*) \\ a - \frac{2}{c(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \dots (*) \end{cases}$$

$$\Rightarrow \begin{cases} a - \frac{2}{c(\sqrt{3} + 1)^2 - 2(\sqrt{3} + 1)} = 0 \dots (*) \end{cases}$$

بطرح (*) من (**) نجد:

$$-\frac{2}{c(\sqrt{3}-1)^{2}+2(\sqrt{3}-1)} + \frac{2}{c(\sqrt{3}+1)^{2}-2(\sqrt{3}+1)} = 0$$

$$\Rightarrow c(\sqrt{3}+1)^{2}-2(\sqrt{3}+1) = c(\sqrt{3}-1)^{2}+2(\sqrt{3}-1)$$

$$\Rightarrow c(4+2\sqrt{3})-2\sqrt{3}-2 = c(4-2\sqrt{3})+2\sqrt{3}-2$$

$$\Rightarrow c(4+2\sqrt{3})-c(4-2\sqrt{3})-4\sqrt{3} = 0$$

$$\Rightarrow c(4\sqrt{3}) = 4\sqrt{3}$$

$$\Rightarrow c = 1$$

نعوض قیمة c فی (*) نجد:

$$a - \frac{2}{(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \Rightarrow a = \frac{2}{(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)}$$
$$\Rightarrow \frac{2}{4 - 2\sqrt{3} + 2\sqrt{3} - 2}$$
$$\Rightarrow a = \frac{2}{4 - 2}$$
$$\Rightarrow a = 1$$

ولدينا:

$$f(\sqrt{3}) = \sqrt{3} + \ln(2 + \sqrt{3}) \Rightarrow \sqrt{3} + b + \ln\left(1 + \frac{2}{\sqrt{3} - 1}\right) = \sqrt{3} + \ln(2 + \sqrt{3})$$

$$\Rightarrow b + \ln\left(1 + \frac{2}{\sqrt{3} - 1}\right) = \ln(2 + \sqrt{3})$$

$$\Rightarrow b = \ln(2 + \sqrt{3}) - \ln\left(1 + \frac{2}{\sqrt{3} - 1}\right)$$

$$\Rightarrow b = \ln\left(\frac{2 + \sqrt{3}}{1 + \frac{2}{\sqrt{3} - 1}}\right)$$

$$\Rightarrow b = \ln\left(\frac{2 + \sqrt{3}}{\sqrt{3} + 1}\right)$$

$$\Rightarrow b = \ln\left(\frac{(2 + \sqrt{3})(\sqrt{3} - 1)}{\sqrt{3} + 1}\right)$$

$$\Rightarrow b = \ln\left(\frac{2\sqrt{3} - 2 + 3 - \sqrt{3}}{\sqrt{3} + 1}\right)$$

$$\Rightarrow b = \ln(1)$$

$$\Rightarrow b = \ln(1)$$

$$\Rightarrow b = 0$$

4) المناقشة البيانية:

لدينا:

$$x - \frac{e^m + e^x}{e^m - e^x} = 0 \Rightarrow \frac{xe^m - xe^x - e^m - e^x}{e^m - e^x} = 0$$

$$\Rightarrow xe^m - xe^x - e^m - e^x = 0$$

$$\Rightarrow e^m(x - 1) - e^x(x + 1) = 0$$

$$\Rightarrow e^m(x - 1) = e^x(x + 1)$$

$$\Rightarrow e^m = e^x \left(\frac{x + 1}{x - 1}\right)$$

$$\Rightarrow m = \ln\left[e^x \times \left(\frac{x + 1}{x - 1}\right)\right]$$

$$\Rightarrow m = \ln(e^x) + \ln\left(\frac{x + 1}{x - 1}\right)$$

$$\Rightarrow m = x + \ln\left(\frac{x+1+1-1}{x-1}\right)$$
$$\Rightarrow m = x + \ln\left(1 + \frac{2}{x-1}\right)$$
$$\Rightarrow f(x) = m$$

 $y_m=m$ ومنه حلول المعادلة (E) هي فواصل نقط تقاطع المنحني المنحني ومنه:

لما
$$m \in]-\infty; f\left(-\sqrt{3}\right)$$
 اي $m < f\left(-\sqrt{3}\right)$ لما $m < f\left(-\sqrt{3}\right)$ لما $m = f\left(-\sqrt{3}\right)$ لما $m = f\left(-\sqrt{3}\right)$ لما $m = f\left(-\sqrt{3}\right)$ لما $m = f\left(-\sqrt{3}\right)$ لما المعادلة حل مضاعف هو $m = f\left(-\sqrt{3}\right)$ لما $m = f\left(-\sqrt{3}\right)$ من المعادلة حل مضاعف هو $m = f\left(-\sqrt{3}\right)$ لما المعادلة على المعادلة المعادلة على المعادلة المع

لما
$$m \in]f(-\sqrt{3}); f(\sqrt{3})[$$
 المعادلة لا تقبل حلول $m \in [f(-\sqrt{3}); f(\sqrt{3})]$ المعادلة لا تقبل حلول

$$x=\sqrt{3}$$
 ما $m=f(\sqrt{3})$ للمعادلة حل مضاعف هو

لما
$$m \in \left] f\left(\sqrt{3}\right); +\infty \right[$$
 اي $m > f\left(\sqrt{3}\right)$

g دراسة تغيرات الدالة (II)

$$g(x) = \ln(f(x))$$
 دينا:

$$k(x) = \ln x$$
 حيث: $g(x) = k \circ f = k(f(x))$: نلاحظ أن

- حساب النهايات:

$$\lim_{x \to +\infty} [k(x)] = +\infty$$
 و $\lim_{\substack{x \to +\infty \\ x \to 1}} [f(x)] = +\infty$

اذن:

$$\lim_{\substack{x \to +\infty}} [g(x)] = +\infty$$
 ولدینا: $\lim_{x \to +\infty} [k(x)] = +\infty$ $\lim_{x \to +\infty} [g(x)] = +\infty$ $\lim_{x \to +\infty} [g(x)] = +\infty$

g'(x) دراسة

$$g'(x) = \frac{f'(x)}{f(x)}$$

f'(x) لما g'(x) من إشارة $x\in]1;+\infty[$ لما f(x)>0 لدينا:

 $\cdot g$ جدول تغيرات الدالة -

х	1	$\sqrt{3}$	+∞		
g'(x)	_	0	+		
$\frac{g'(x)}{g(x)}$	+∞		* +∞		
		$a(\sqrt{2})$			
	$g(\sqrt{3})$				

06)

المسألة الشاملة رقم:

مشاهـــدة الحل

نعتبر الدالة f المعرفة على المجال]0; $+\infty$ [كما يلي:

$$f(x) = \frac{(\ln x)^2}{x}$$

 (c_f) ونسمي و (\mathcal{C}_f) تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس

. (C_f) مبينا المستقيبات المقاربة لـ $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to 0} f(x)$ (1

ب/ ادرس اتجاه تغير الدالة f ، ثم شكل جدول تغيراتها .

عدد حقیقی موجب تماما. m (2

. A_m نقط A_m ذوات الفاصلة m ، والمستقيم (T_m) مماس A_m نقط النقط التكن النقط

 $.\ (T_m)$ معادلة المماس أ $/\ 1$

O(0;0) بـ/ عين قيم m التى من أجلها (T_m) يشمل المبدأ

ج/ اكتب معادلة كل مماس من أجل قيم m المحصل عليها.

- $.\left(\mathcal{C}_{f}
 ight)$ والمنحني (3 مثّل بيانيا المستقيمات (T_{m}) والمنحني (3
 - نعتبر الدالة g المعرفة على \mathbb{R}^* كما يلى:

$$g(x) = \frac{(ln|x|)^2}{x}$$

- 1) بيّن أن الدالة g فردية.
- بيّن أنه يمكن رسم (C_g) منحني الدالة g انطلاقا من (C_f) ، ثم ارسمه.

حل المسألة الشاملة رقم:

مشاهدة المسألة

(I)

 $\lim_{\substack{x > 0 \ x o 0}} [f(x)]$ أf(x) (1)

•
$$\lim_{\substack{x \to 0 \ x \to 0}} [f(x)] = \lim_{\substack{x \to 0 \ x \to 0}} \left[\frac{(\ln x)^2}{x} \right] = +\infty$$

 $\lim_{x\to+\infty}[f(x)]$ حساب

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{(\ln x)^2}{x} \right]$$

نضع $t = \ln x$ نجد:

- التفسير الهندسي:
- x=0 عمادلته: $+\infty$ يقبل مستقيم مقارب عمودي بجوار (C_f) . •
- y=0 :معادلته: $+\infty$ يقبل مستقيم مقارب عمودي بجوار (\mathcal{C}_f) .

f دراسة اتجاه تغير الدالة f

f'(x) دراسة

$$f'(x) = \frac{\left(2\frac{1}{x}\ln x\right)(x) - (\ln x)^2}{x^2}$$
$$= \frac{2\ln x - (\ln x)^2}{x^2}$$
$$= \frac{(2 - \ln x)\ln x}{x^2}$$

لدينا: $x^2>0$ ومنه إشارة البسط:

$$1) \ln x = 0 \Rightarrow x = 1$$

2)
$$2 - \ln x = 0 \Rightarrow \ln x = 2$$

 $\Rightarrow x = e^2$

ومنه:

f جدول تغيرات الدالة

x	0	1		e^2	+∞
$\ln x$	_	0	+		+
$2 - \ln x$	+		+	0	
f'(x)	_	0	+	0	1
f(x)	+8	0		√ 4e ⁻²	0

(T_m) أ/ كتابة معادلة المماس (2

$$(T_m): y = f'(m)(x - m) + f(m)$$

$$= \left(\frac{(2 - \ln m) \ln m}{m^2}\right) (x - m) + \frac{(\ln m)^2}{m}$$

$$= \left(\frac{(2 - \ln m) \ln m}{m^2}\right) x - \frac{(2 - \ln m) \ln m}{m} + \frac{(\ln m)^2}{m}$$

$$= \left(\frac{(2 - \ln m) \ln m}{m^2}\right) x + \frac{2(\ln m)^2 - 2\ln m}{m}$$

$$= \left(\frac{(2 - \ln m) \ln m}{m^2}\right) x + \frac{2\ln m (\ln m - 1)}{m}$$

:O(0;0) يشمل المبدأ m التى من أجلها بر T_m يشمل المبدأ

يشمل المبدأ معناه: (T_m)

$$0 = \left(\frac{(2 - \ln m) \ln m}{m^2}\right) (0) + \frac{2 \ln m (\ln m - 1)}{m}$$

$$\Rightarrow \frac{2 \ln m (\ln m - 1)}{m} = 0$$

$$\Rightarrow 2 \ln m (\ln m - 1) = 0$$

$$\Rightarrow \begin{cases} 2 \ln m = 0 \\ \ln m - 1 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \ln m = 0 \\ \ln m = 1 \end{cases}$$

$$\Rightarrow \begin{cases} m = 1 \\ m = e \end{cases}$$

ج/ كتابة معادلة كل مماس من أجل قيم m المحصل عليها:

$$(T_1): y = 0x + 0$$

$$= 0$$

$$(T_e): y = \left(\frac{(2-1) \times 1}{e^2}\right)x + \frac{2(1-1)}{e}$$

$$= \frac{1}{e^2}x$$

$$= e^{-2}x$$

3) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- $\underline{y} = \underline{0}$ و $\underline{x} = \underline{0}$ نرسم المستقيمات المقاربة: •
- $(e^2;4e^{-2})$ نعين النقطة الحدية ذات الاحداثيات
 - (T_e) و نرسم المماسين: (T_1) و ullet
- $\left(\mathcal{C}_{f}\right)$ نرسم f نرسم ثم باستعمال جدول تغیرات الدالة

تبيين أن الدالة g فردية:

$$\begin{cases} (-x) \in D_f \\ f(-x) = -f(x) \end{cases}$$
 ٽبيين اُنّ الدالة f فردية نبين اُنّ الدالة f زوجية نبين اُنّ الدالة f زوجية نبين اُنّ الدالة f

 $(-x) \in \mathbb{R}^*$ لدينا

ولدينا:

$$g(-x) = \frac{(\ln|-x|)^2}{-x}$$
$$= -\frac{(\ln|x|)^2}{x}$$
$$= -g(x)$$

ومنه الدالة g فردية.

 $:\left(\mathcal{C}_{f}
ight)$ ناه يمكن رسم و منحني الدالة الدالة و ناطلاقا من (2

لدينا:

$$g(x) = \begin{cases} \frac{(\ln x)^2}{x}, & x > 0\\ \frac{(\ln(-x))^2}{x}, & x < 0 \end{cases}$$
$$= \begin{cases} \frac{(\ln x)^2}{x}, & x > 0\\ -\frac{(\ln(-x))^2}{-x}, & x < 0 \end{cases}$$
$$= \begin{cases} f(x), & x > 0\\ -f(-x), & x < 0 \end{cases}$$

 (C_f) لما $(C_g): x > 0$ لما

ولما (\mathcal{C}_g) يناظر ولما يناظر ((\mathcal{C}_g) بالنسبة للمبدأ

 (C_a) تمثیل -

William Control

نعتبر الدالة f المعرفة على المجال $]0;+\infty[$ كما يلى:

$$f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$$

. $(o; ec{t}, ec{f})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

المناب النتيجة هندسيا. أراحسب $\lim_{x \to 0} [f(x)]$ ثم فسر النتيجة هندسيا.

 $\lim_{x\to+\infty}[f(x)]$ ب/ احسب

 $x = [1; +\infty[$ وأن لكل x من المجال $[0; 1] = [1; +\infty[$ وأن لكل x من المجال $x = [1; +\infty[$ وأن لكل $x = [1; +\infty[$

 $\cdot:]0; +\infty[$ بين أنه من أجل كل من المجال

$$f'(x) = \frac{x - 1 + \ln x}{x}$$

f شكل جدول تغيرات الدالة f

- . (C_f) والمنحني $y=x+rac{1}{2}$ درس الوضع النسبي بين المستقيم (D) دو المعادلة (3
- عين احداثيي النقطة ω من (C_f) التي يكون فيها المماس (T) موازيا للمستقيم (D) ، ثم اكتب (4 معادلة المستقيم (T) .
 - $0; +\infty[$ أ/ بين أنه من أجل كل x من المجال $\infty+\infty[$ (5

$$f''(x) = \frac{2 - \ln x}{x^2}$$

ب/ استنتج أن المنحنى (C_f) يقبل نقطة انعطاف يطلب تعيين احداثييها.

- . (C_f) و (T)، (D) مثل بیانیا کلا من
- : ناقش بيانيا حسب قيم الوسيط الحقيقى m عدد حلول المعادلة (7)

$$f(x) = x - 2m$$

حل المسألة الشاملة رقم:

مشاهدة المسألة

 $\lim_{\substack{x \to 0 \ x o 0}} [f(x)]$ اً/ حساب (1

•
$$\lim_{x \to 0} [f(x)] = \lim_{x \to 0} \left[x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2 \right]$$

$$= \lim_{x \to 0} \left[x + \frac{1}{2} + \underbrace{\ln x}_{-\infty} \underbrace{\left(\frac{1}{2} \ln x - 1 \right)}_{-\infty} \right]$$

$$= +\infty$$

التفسير الهندسي:

x=0 يقبل مستقيم مقارب أفقي بجوار $\infty+$ معادلته (\mathcal{C}_f

 $\lim_{x \to +\infty} [f(x)]$ برا حساب

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2 \right]$$

$$= \lim_{x \to +\infty} \left[\underbrace{x}_{+\infty} + \frac{1}{2} + \underbrace{\ln x}_{+\infty} \underbrace{\left(\frac{1}{2} \ln x - 1\right)}_{+\infty} \right]$$

$$= +\infty$$

 $: [1; +\infty[$ من المجال $(x-1) + \ln x \le 0:]0; 1]$ من المجال (2 المجال من عن المجال (3 المجال المجال المجال المجال المجال (3 المجال المجال المجال المجال المجال المجال المجال (3 المجال ال

$$: (x-1) + \ln x \ge 0$$

$$h(x) = x - 1 + \ln x$$
 نضع: الدالة h المعرفة على 0 ; $+\infty$ إن الدالة المعرفة على h

لدينا:

$$h'(x) = 1 + \frac{1}{x} = \frac{x+1}{x}$$

لدينا: h'(x) > 0 ولدينا: ومنه:

x	0	1	+∞
h'(x)		+	
h(x)	-8	ð	+∞

 $(x-1) + \ln x \le 0$: [0; 1] من جدول تغيرات الدالة h نجد أن: لكل x من المجال

$$(x-1) + \ln x \ge 0 : [1; +\infty[$$
 وأنّ لكل x من المجال

$$f'(x) = \frac{x-1+\ln x}{x}$$
:]0; + ∞ [برا تبیین أنّه من أجل كل من

$$f'(x) = 1 - \frac{1}{x} + \frac{1}{2} \frac{2}{x} \ln x$$
$$= \frac{x - 1 + \ln x}{x}$$

h(x) من إشارة البسط أي من إشارة f'(x) من إشارة x>0

f : f تشكيل جدول تغيرات الدالة

x	0	1	+∞
f'(x)	_	0	+
f(x)	+∞	$\frac{3}{2}$	+∞

: (C_f) والمنحنى (D) دراسة الوضع النسبى بين المستقيم (D) والمنحنى (B

f(x)-y ندرس إشارة الفرق

$$f(x) - y = 0 \Rightarrow \ln x \left(\frac{1}{2} \ln x - 1\right) = 0$$

$$\Rightarrow \begin{cases} \ln x = 0 \\ \frac{1}{2} \ln x - 1 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x = 1 \\ \ln x = 2 \end{cases}$$

$$\Rightarrow \begin{cases} x = 1 \\ x = e^2 \end{cases}$$

ومنه:

x	0	1		e^2	+∞
$\ln x$	_	0	+		+
$\frac{1}{2}\ln x - 1$	_		_	0	+
f(x) - y	+	0	_	0	+

- الوضعية:
- $]0;1[\ \cup\]e^2;+\infty[\$ لما: (D) فوق (\mathcal{C}_f) •
- $B\left(e^2;e^2+rac{1}{2}
 ight)$ وَ $A\left(1;rac{3}{2}
 ight)$ وَ النقطتين: $A\left(1;rac{3}{2}
 ight)$
 - .]1; e^2 [الما: (D) تحت (C_f)
- (D) تعيين احداثيى النقطة (C_f) من (C_f) التى يكون فيه المماس ((C_f) موازيا للمستقيم (4

المماس (T) يوازى المستقيم المماس المماس الم

$$f'(a) = 1 \Rightarrow \frac{a - 1 + \ln a}{a} = 1$$
$$\Rightarrow a - 1 + \ln a = a$$
$$\Rightarrow \ln a = 1$$
$$\Rightarrow a = e$$

ومنه:

$$(T): y = f'(e)(x - e) + f(e)$$

$$= x - e + e + \frac{1}{2} - 1 + \frac{1}{2}$$

$$= x$$

 $\omega(e;e)$ في النقطة (\mathcal{C}_f) مماس لـ اذن المستقيم

$$f''(x) = \frac{2 - \ln x}{x^2}$$
:]0; + ∞ [من أجل كل x من أجل كل أ (5

$$f''(x) = \frac{\left(1 + \frac{1}{x}\right)x - (x - 1 + \ln x)}{x^2}$$
$$= \frac{x + 1 - x + 1 - \ln x}{x^2}$$
$$= \frac{2 - \ln x}{x^2}$$

ب/ استنتاج أن المنحنى (C_f) يقبل نقطة انعطاف يطلب تعيين احداثييها:

$$(2 - \ln x)$$
 من إشارة $f''(x)$ من إشارة $x^2 > 0$ لدينا:

$$2 - \ln x = 0 \Rightarrow \ln x = 2$$
$$\Rightarrow x = e^2$$

ومنه:

x	0	e^2	+∞
f'(x)	-	0	+

 $B\left(e^2;e^2+rac{1}{2}
ight)$ تنعدم وتغير اشارتها، ومنه المنحني C_f) يقبل نقطة انعطاف f''(x) لدينا

6) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- x=0 نرسم المستقيم المقارب: •
- (D) نرسم المستقيم المقارب المائل ullet
- (C_f) مع (D) نعین B و B نقط تقاطع \bullet
 - (T) :نرسم المماس \bullet
- $\left(\mathcal{C}_{f} \right)$ نرسم f نرسم غیرات الداله f

7) المناقشة البيانية:

 $y_m = x - 2m$:مع المستقيمات ذات المعادلة هي فواصل نقط تقاطع المنحني $\binom{C_f}{2}$ مع المستقيمات ذات المعادلة: ومنه:

لما
$$-2m < 0$$
 أي $m > 0$ المعادلة لا تقبل حلول $m = 0$ أي $-2m = 0$ المعادلة تقبل حل مضاعف لما $-2m = 0$ أي $-2m < 0$ أي $-2m < 0$ المعادلة تقبل حلان $0 < -2m < \frac{1}{2}$ لما $-2m = \frac{1}{2}$ أي $-2m = \frac{1}{4}$ المعادلة تقبل حلان أحدهما مضاعف لما $-2m = \frac{1}{2}$ لما $-2m > \frac{1}{2}$ أي $-2m > \frac{1}{4}$ المعادلة تقبل حلان

لتكن الدالة
$$g$$
 المعرفة على $g=1;+\infty$ لتكن الدالة (I)

$$g(x) = \frac{x}{x+1} - 2\ln(x+1)$$

- ا حسب نهایات الدالة g عند أطراف مجموعة تعریفها.
 - ادرس اتجاه تغير الدالة g ثم شكل جدول تغيراتها. (2)
 - g(0) أg(0) أ

-0.72 < lpha < -0.71 حيث: lpha < a حيث: g(x) = 0 تقبل حلين أده المعادلة g(x) = 0 على المجال a على المجال a على المجال a على المجال a

:کما یلي $D_f=]-1;0$ المعرفة على المجال $D_f=]-1;0$ کما یلي (II)

$$f(x) = \frac{\ln(x+1)}{x^2}$$

 $\cdot (o; ec{t}, ec{f})$ ونسمى (C_f) تمثيلها البياني في مستوٍ منسوب إلى المعلم المتعامد المتجانس

- ا حسب نهایات الدالة f عند أطراف مجموعة تعریفها. ثم فسر النتائج هندسیا.
 - D_f من x من أجل كل x من أجل (2

$$f'(x) = \frac{g(x)}{x^3}$$

ب/ استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها

3) بين أن:

$$f(\alpha) = \frac{1}{2\alpha(\alpha+1)}$$

 10^{-2} بالتدوير إلى f(lpha) بالتدوير الع

- . (C_f) مثل بیانیا (4
- m>0: ناقش بيانيا حسب قيم الوسيط m عدد واشارة حلول المعادلة (E) حيث: (5

$$f(x) = \ln m \dots (E)$$

حل المسألة الشاملة رقم:

(I)

عند أطراف مجموعة تعريفها: g عند أطراف مجموعة تعريفها:

•
$$\lim_{\substack{x \to -1 \\ x \to -1}} [g(x)] = \lim_{\substack{x \to -1 \\ x \to -1}} \left[\frac{x}{x+1} - 2\ln(x+1) \right]$$

$$= -\infty$$

$$\lim_{\substack{x \to -1 \\ x \to -1}} \left[\frac{x}{x+1} \right] = -\frac{1}{0^+} = -\infty$$

$$\lim_{\substack{x \to -1 \\ x \to -1}} \left[\frac{x}{x+1} \right] = -\frac{1}{0^+} = -\infty$$

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} \left[\frac{x}{x+1} - 2\ln(x+1) \right]$$

: g دراسة اتجاه تغير الدالة (2

g'(x) دراسة

$$g'(x) = \frac{x+1-x}{(x+1)^2} - 2\frac{1}{x+1}$$
$$= \frac{1-2x-2}{(x+1)^2}$$
$$= \frac{-(2x+1)}{(x+1)^2}$$

لدينا: $(x+1)^2 > 0$ ومنه إشارة ($(x+1)^2 > 0$

$$-(2x+1) = 0 \Rightarrow 2x = -1$$
$$\Rightarrow x = -\frac{1}{2}$$

ومنه:

g جدول تغيرات الدالة

x	-1	$-\frac{1}{2}$	+∞
g'(x)	+	0	-
g(x)	-&	$f\left(-\frac{1}{2}\right)$	

$: g(0) \to (3)$

$$g(0) = 0$$

-0.72 < lpha < -0.71: حيث أن المعادلة g(x) = 0 تقبل حلين أحدهما lpha حيث

h(0) = 0 لدينا

اذن منحني الدالة g يقطع محور الفواصل فى المبدا

$$g(-0.72) = -0.02$$
 ولدينا: $g(-0.71) = 0.02$

$$g(-0.72) \times g(-0.71) < 0$$
 ولدينا

g(x)=0.72;-0.71 في المجال lpha في المجال g(x)=0 تقبل حلا وحيدا lpha في المجال g(x)=0.72;-0.71 في المجال g(x)=0.72;-0.71 على المجال g(x)=0.72;-0.71 على المجال g(x)=0.72;-0.71

X	-1	α		0	+∞
g(x)	_	0	+	0	

(II)

الدالة f عند أطراف مجموعة تعريفها وتفسير النتائج:

•
$$\lim_{\substack{x \to -1 \\ x \to -1}} [f(x)] = \lim_{\substack{x \to -1 \\ x \to -1}} \left[\frac{\ln(x+1)}{x^2} \right]$$

= $-\infty$

•
$$\lim_{\substack{x \to 0}} [f(x)] = \lim_{\substack{x \to 0}} \left[\frac{\ln(x+1)}{x^2} \right]$$

 $k(x) = \ln(x+1)$ نضع:

لدىنا:

$$\lim_{x \to 0} \left[\frac{k(x) - k(0)}{x - 0} \right] = \lim_{x \to 0} [\ln(x + 1)]$$

$$= k'(0)$$

$$= 1$$

ومنه

$$\lim_{\substack{x \to 0 \\ x \to 0}} \left[\frac{\ln(x+1)}{x^2} \right] = \frac{1}{0^-}$$

$$\bullet \lim_{\substack{x \to 0 \\ x \to 0}} [f(x)] = \lim_{\substack{x \to 0 \\ x \to 0}} \left[\frac{\ln(x+1)}{x^2} \right]$$

$$= \frac{1}{0^+}$$

$$= +\infty$$

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{\ln(x+1)}{x^2} \right]$$

= 0

- التفسير الهندسي:

- x=-1 يقبل مستقيم مقارب عمودي بجوار ر $-\infty$ معادلته (\mathcal{C}_f) .
 - x=0 يقبل مستقيم مقارب عمودي بجوار $\pm\infty$ معادلته (\mathcal{C}_f) .
 - y=0 يقبل مستقيم مقارب أفقى بجوار $\infty+$ معادلته (\mathcal{C}_f) •

$$f'(x) = \frac{g(x)}{x^3} D_f$$
 من f من أجل كل f من أجل كل (2

$$f'(x) = \frac{\frac{1}{x+1}x^2 - 2x\ln(x+1)}{x^4}$$
$$= \frac{\frac{1}{x+1}x - 2\ln(x+1)}{x^3}$$
$$= \frac{g(x)}{x^3}$$

f استنتاج اتجاه تغیر الداله f

x	-1	α	0 +∞
g(x)	_	0 +	0 –
$\frac{g(x)}{x^3}$	_	_	+
f'(x)	+	0 –	_
f(x)	-80	$f(\alpha)$	0

$$f(\alpha) = \frac{1}{2\alpha(\alpha+1)}$$
: 3 تبيين أن

لدينا:

$$g(\alpha) = 0 \Rightarrow \frac{\alpha}{\alpha + 1} - 2\ln(\alpha + 1)$$
$$\Rightarrow 2\ln(\alpha + 1) = \frac{\alpha}{\alpha + 1}$$
$$\Rightarrow \ln(\alpha + 1) = \frac{\alpha}{2(\alpha + 1)}$$

ولدينا:

$$f(\alpha) = \frac{\ln(\alpha + 1)}{\alpha^2}$$
$$= \frac{\frac{2(\alpha + 1)}{\alpha^2}}{\alpha}$$
$$= \frac{\alpha}{2\alpha^2(\alpha + 1)}$$
$$= \frac{1}{2\alpha(\alpha + 1)}$$

 $f(\alpha)$ حصر

لدينا:

$$-0.72 < \alpha < -0.71$$

 $0.28 < \alpha + 1 < 0.29 \dots (*)$

ولدينا:

$$-1.44 < 2\alpha < -1.42 \dots (**)$$

بضرب (*) في (**) نجد:

$$-0.41 < 2\alpha(\alpha + 1) < -0.39$$
$$-2.56 < \frac{1}{2\alpha(\alpha + 1)} < -2.43$$

اذن:

$$-2.56 < f(\alpha) < -2.43$$

4) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- y=0 و x=-1 و x=0 نرسم المستقيمات المقاربة:
 - $ig(\mathcal{C}_fig)$ نرسم f نرسم عمال جدول تغیرات الداله f

5) المناقشة البيانية:

 $y_m = \ln m$ علول المعادلة (E) هي فواصل نقط تقاطع المنحني المنحني مع المستقيمات ذات المعادلة ومنه:

لما
$$m < e^{f(\alpha)}$$
 اي $\ln m < f(\alpha)$ للمعادلة حلان سالبان $m = e^{f(\alpha)}$ اي $\ln m = f(\alpha)$ لما $\ln m = f(\alpha)$ أي $f(\alpha) < \ln m < 0$ المعادلة لا تقبل حلول لما $f(\alpha) < \ln m < 0$ لما $\ln m > 0$ أي $\ln m > 0$

 \mathbb{R} بـ: f المعرفة على

$$f(x) = \ln\left(\frac{2e^{2x} + 1}{e^x + 2}\right)$$

. $(o; ec{t}, ec{f})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

اً الحسب $\lim_{x \to -\infty} [f(x)]$ ، ثم فسر النتيجة هندسيا.

ب/بین أن:

$$f(x) = x + \ln 2 + \ln \left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}} \right)$$

 $\lim_{x\to+\infty} [f(x)]$ ج/ استتنتج

- ادرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها. (2)
- . (C_f) المنحني (C_f) يقبل مستقيم مقارب مائل (D) بجوار D يطلب تعيين معادلته. (D) المنحني (D) و المنحني بين المستقيم (D) و المنحني (D) و المن
 - . (C_f) نقطة تقاطع مقاربي المنحنى (C_f) تنتمي إلى (4
 - اكتب معادلة للمماس (T) عند المبدأ.
 - (C_f) و (T) ، (D) مثل بیانیا کلا من (6
 - m>0 وسیط حقیقی حیث: m

ناقش بيانيا حسب قيم m عدد حلول المعادلة (E) حيث:

$$x - \ln\left(\frac{2e^{2x} + 1}{me^x + 2m}\right) = 0 \dots (E)$$

حل المسألة الشاملة رقم:

مشاهدة المسألة

 $\lim_{x \to -\infty} [f(x)]$ أ/ حساب (1

$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[\ln \left(\frac{2e^{2x} + 1}{e^x + 2} \right) \right]$$
$$= \ln \left(\frac{1}{2} \right)$$
$$= -\ln 2$$

التفسير الهندسي:

 $y=-\ln 2$ يقبل مستقيم مقارب أفقي بجوار معادلته (\mathcal{C}_f)

$$f(x) = x + \ln 2 + \ln \left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}}\right)$$
ب/ تبیین أن:

$$f(x) = \ln\left(\frac{2e^{2x} + 1}{e^x + 2}\right)$$

$$= \ln\left(\frac{2e^{2x}\left(1 + \frac{1}{2e^{2x}}\right)}{e^x\left(1 + \frac{2}{e^x}\right)}\right)$$

$$= \ln\left(\frac{2e^{2x}}{e^x}\right) + \ln\left(\frac{1 + \frac{1}{2e^{2x}}}{1 + \frac{2}{e^x}}\right)$$

$$= \ln(2e^x) + \ln\left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}}\right)$$

$$= \ln 2 + x + \ln\left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}}\right)$$

 $\lim_{x\to +\infty} [f(x)]$ ج/ استتنتاج

$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\ln 2 + \underbrace{x}_{+\infty} + \ln \left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}} \right) \right]$$
$$= +\infty$$

2) دراسة اتجاه تغير الدالة f وتشكيل جدول تغيراتها:

f'(x) دراسة

$$f'(x) = \frac{\left(\frac{4e^{2x}(e^x + 2) - e^x(2e^{2x} + 1)}{(e^x + 2)^2}\right)}{\left(\frac{2e^{2x} + 1}{e^x + 2}\right)}$$

$$= \frac{4e^{2x}(e^x + 2) - e^x(2e^{2x} + 1)}{(e^x + 2)(2e^{2x} + 1)}$$

$$= \frac{4e^{3x} + 8e^{2x} - 2e^{3x} - e^x}{(e^x + 2)(2e^{2x} + 1)}$$

$$= \frac{e^x(2e^{2x} + 8e^x - 1)}{(e^x + 2)(2e^{2x} + 1)}$$

لدينا:

$$\left\{egin{aligned} e^x > 0 \ e^x + 2 > 0 \ 2e^{2x} + 1 > 0 \ & : (2e^{2x} + 8e^x - 1) \end{aligned}
ight.$$
 ومنه إشارة $f'(x)$ من إشارة أ

$$2e^{2x} + 8e^x - 1 = 0$$

 $x = \ln t$ نضع $e^x = t$ نضع

فنحد:

$$2t^2 + 8t - 1 = 0$$

لدينا:

$$\Delta = b^2 - 4ac = 64 - 4(2)(-1) = 72 = (6\sqrt{2})^2$$

لدينا: $0 < \Delta$ ومنه:

$$\begin{cases} t_1 = \frac{-8 + 6\sqrt{2}}{4} = -2 + \frac{3}{2}\sqrt{2} \\ t_2 = \frac{-8 + 6\sqrt{2}}{4} = -2 - \frac{3}{2}\sqrt{2} \end{cases}$$

$$\Rightarrow \begin{cases} x_1 = \ln t_1 = \ln\left(-2 + \frac{3}{2}\sqrt{2}\right) \\ x_2 = \ln t_2\left(\text{غير ممكن}\right) \end{cases}$$

ولدينا أيضا f(0) = 0 ومنه:

- جدول التغيرات:

x	-∞	ln (-	$-2 + \frac{3}{2}$	$\overline{2}$	0	+∞
f'(x)	_	-	0	+		+
f(x)	- ln 2					+∞
					0	
		$f(\ln($	$\left(-\frac{1}{2} + \frac{3}{2}\sqrt{\frac{3}{2}}\right)$	$(\overline{2}))$		

3) أ/ تبيين أن المنحني (C_f) يقبل مستقيم مقارب مائل (D) بجوار (C_f) يطلب تعيين معادلته:

◄ شاهد هذا التذكير ◄

(اثبات ان منحنی یقبل مستقیم مقارب مائل)

لدينا:

$$f(x) = \ln\left(\frac{2e^{2x} + 1}{e^x + 2}\right)$$
$$= x + \ln 2 + \ln\left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}}\right)$$
$$= y + \varphi(x)$$

حيث:

$$\begin{cases} \varphi(x) = \ln\left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}}\right) \\ y = x + \ln 2 \end{cases}$$

ولدينا:

$$\lim_{x\to+\infty} [\varphi(x)] = 0$$

 $+\infty$ بجوار (\mathcal{C}_f) بجوار مائل لـ $y=x+\ln 2$ بجوار بمائل المستقيم ذو المعادلة

 $: (\mathcal{C}_f)$ و (D) دراسة الوضع النسبي بين

f(x) - y ندرس إشارة الفرق

$$f(x) - y = 0 \Rightarrow \ln\left(\frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}}\right) = 0$$

$$\Rightarrow \frac{1 + \frac{1}{2}e^{-2x}}{1 + 2e^{-x}} = 1$$

$$\Rightarrow 1 + \frac{1}{2}e^{-2x} = 1 + 2e^{-x}$$

$$\Rightarrow \frac{1}{2}e^{-2x} - 2e^{-x} = 0$$

$$\Rightarrow e^{-x} \left(\frac{1}{2} e^{-x} - 2 \right) = 0$$

$$\Rightarrow \frac{1}{2} e^{-x} - 2 = 0$$

$$\Rightarrow e^{-x} = 4$$

$$\Rightarrow -x = \ln 4$$

$$\Rightarrow x = -\ln 4$$

لدينا:

$$x > -\ln 4$$

$$\Rightarrow -x < \ln 4$$

$$\Rightarrow e^{-x} < 4$$

$$\Rightarrow \frac{1}{2}e^{-x} < 2$$

$$\Rightarrow \frac{1}{2}e^{-x} - 2 < 0$$

$$\Rightarrow e^{-x}\left(\frac{1}{2}e^{-x} - 2\right) < 0$$

$$\Rightarrow \frac{1}{2}e^{-2x} - 2e^{-x} < 0$$

$$\Rightarrow \frac{1}{2}e^{-x} + 1 < 2e^{-x} + 1$$

لدينا: $2e^{-x} + 1 > 0$ يمكن القسمة عليه

$$\Rightarrow \frac{\frac{1}{2}e^{-x} + 1}{2e^{-x} + 1} < 1$$

$$\Rightarrow \ln\left(\frac{\frac{1}{2}e^{-x} + 1}{2e^{-x} + 1}\right) < 0$$

 $f(x) - y < 0: x > -\ln 4$ ومنه لما

 $f(x) - y > 0: x < -\ln 4$ بنفس الطريقة نجد: لما لما

ومنه:

х	$-\infty$	$-\ln 4$	+∞
f(x) - y	+	0	_

- الوضعية:
- $x \in]-\infty; -\ln 4[$ لما (D) فوق (\mathcal{C}_f) •
- $(-\ln 4\,; -\ln 2)$ يقطع (D) في النقطة ذات الاحداثيات: (\mathcal{C}_f)
 - $x \in]-\ln 4$; $+\infty[$ لها (D) تحت (C_f) •
- (C_f) بنتمي إليه أي إلى المقاربين للمنحني المقاربين أن نقطة تقاطع المستقيمين المقاربين للمنحني (C_f)

نحدد أولا نقطة تقاطع المستقيم المقارب المائل (D) ذو المعادلة $y=x+\ln 2$ مع المستقيم المقارب الأفقي ذو المعادلة . $y=-\ln 2$

لدينا:

$$\begin{cases} y = x + \ln 2 \\ y = -\ln 2 \end{cases} \Rightarrow \begin{cases} x = -2 \ln 2 = -\ln 4 \\ y = -\ln 2 \end{cases}$$

 $\omega(-\ln 4;-\ln 2)$ ومنه نقطة تقاطع المستقيمين المقاربين هي

 $\omega \in (\mathcal{C}_f)$ ومنه $f(-\ln 4) = -\ln 2$ ولدينا:

كتابة معادلة للمواس (T) عند المبدأ:

لدينا:

$$(T): y = f'(0)(x - 0) + f(0)$$

= x

ومنه المستقيم ذو المعادلة y=x مماس للمنحني (\mathcal{C}_f) عند المبدأ.

6) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- $y = -\ln 2$ نرسم المستقيم المقارب العمودي:
 - (D) نرسم المستقيم المقارب المائل ullet
 - نعيّن w نقطة تقاطع المستقيمات المقاربة.
 - نرسم المماس (T)
 - $\binom{C_f}{f}$ نرسم f نرسم عمال جدول تغیرات الدالة f

7) المناقشة البيانية:

لدينا:

$$x - \ln\left(\frac{2e^{2x} + 1}{me^x + 2m}\right) = 0$$

$$\Rightarrow x = \ln\left(\frac{1}{m} \frac{2e^{2x} + 1}{e^x + 2}\right)$$

$$\Rightarrow x = \ln\left(\frac{1}{m}\right) + \ln\left(\frac{2e^{2x} + 1}{e^x + 2}\right)$$

$$\Rightarrow x = -\ln m + f(x)$$

$$\Rightarrow f(x) = x + \ln m$$

اذن حلول المعادلة (E) هي فواصل نقط تقاطع المنحني المعادلة $y_m = x + \ln m$

ومنه:

لما
$$\ln m < 0$$
 أي $m < 1$ المعادلة لا تقبل حلول $\ln m < 0$ لما $\ln m = 0$ أي $m = 1$ للمعادلة حل مضاعف لما $0 < \ln m < \ln 2$ لما $0 < \ln m < \ln 2$ لما $0 < \ln m < \ln 2$

لما $\ln m = \ln 2$ أي m = 2 للمعادلة حل مضاعف m > 2 لما $\ln m > \ln 2$ لما $\ln m > \ln 2$

المسألة الشاملة رقم:

مشاهـــدة الحل

 $[0; +\infty]$ المعرفة على المجال g بـ: **(I)**

$$g(x) = \ln x + x - 3$$

- \cdot g ادرس تغيرات الدالة (1
- a < 2.21 بين ان المعادلة a < 2.21 تقبل حلا وحيدا a < 2.21 تقبل (2
 - $[0; +\infty[$ عين إشارة g(x) على المجال (3
 - $0;+\infty$ ل المعرفة على المجال f المعرفة على المجال إ (II)

$$f(x) = \left(1 - \frac{1}{x}\right)(\ln x - 2)$$

. $(o; ec{t}, ec{f})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

- $\lim_{\substack{x \to 0 \\ x \to 0}} [f(x)]$ $\lim_{x \to +\infty} [f(x)]$
 - اً/ احسب f'(x) ، ثم ادرس اشارتها.
 - f شكل جدول تغيرات الدالة f
 - 3) عين دون حساب النهاية التالية:

$$\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right]$$

ثم فسر النتيجة هندسيا.

4) بين أن:

$$f(\alpha) = -\frac{(\alpha - 1)^2}{\alpha}$$

- . حل في المجال]0; $+\infty$ [المعادلة f(x)=0 ، ثم فسر النتيجة هندسيا.
- .]0; 10 على المجال (\mathcal{C}_f) مثل بيانيا المنحني ، $f(lpha)\cong -0.66$ بأخذ: (6

حل المسألة الشاملة رقم:

(I)

: g دراسة تغيرات الدالة (1

حساب النهايات:

$$\bullet \lim_{\substack{x \to 0 \\ x \to 0}} [g(x)] = \lim_{\substack{x \to 0 \\ x \to 0}} \left[\underbrace{\ln x}_{-\infty} + \underbrace{x}_{0} - 3 \right]$$

$$= -\infty$$

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} \left[\underbrace{\ln x}_{+\infty} + \underbrace{x}_{+\infty} - 3 \right]$$

= $+\infty$

: g'(x) دراسة -

$$g'(x) = \frac{1}{x} + 1$$

g'(x) > 0 الدينا

ومنه:

:g(x) جدول تغيرات

x	0	$+\infty$
g'(x)		+
g(x)	$-\infty$	+∞

$: \alpha$ تبيين ان المعادلة g(x) = 0 تقبل حلا وحيدا (2

 $[0; +\infty]$ مستمرة ومتزايدة تماما على المجال مستمرة ومتزايدة تماما على المجال

$$g(2.11) = 0.002$$
 $g(2.2) = -0.01$

$$g(2.2) = -0.01$$

$$g(2.2) \times g(2.11) < 0$$

2.2 < lpha < 2.21: تقبل حلا وحيدا lpha حيث: g(x) = 0 تقبل حلا وحيدا lpha حيث: lpha

 $:]0; +\infty[:]$ 3 على المجال (3

x	0	α	+8
g(x)	_	0	+

(II)

$$\lim_{\substack{x \to 0 \ x \to 0}} [f(x)]$$
 و $\lim_{x \to +\infty} [f(x)]$: دساب:

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\left(1 - \frac{1}{x} \right) \left(\underbrace{\ln x}_{+\infty} - 2 \right) \right]$$

$$\bullet \lim_{\substack{x \to 0 \\ x \to 0}} [f(x)] = \lim_{\substack{x \to 0 \\ x \to 0}} \left[\left(1 - \frac{1}{x} \right) \left(\underbrace{\ln x}_{-\infty} - 2 \right) \right]$$

اً أر حساب f'(x) ، ودراسة اشارتها:

$$f'(x) = \frac{1}{x^2} (\ln x - 2) + \frac{1}{x} \left(1 - \frac{1}{x} \right)$$

$$= \frac{1}{x^2} (\ln x - 2) + \frac{1}{x} - \frac{1}{x^2}$$

$$= \frac{1}{x^2} (\ln x - 2 + x - 1)$$

$$= \frac{1}{x^2} (\ln x + x - 3)$$

$$= \frac{g(x)}{x^2}$$

. g(x) من إشارة f'(x) من إشارة $x^2>0$

f : f الدالة جدول تغيرات الدالة

x	0	α	+∞
f'(x)	_	0	+
f(x)	+8	$f(\alpha)$	+∞

$: \lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right]$ تعيين دون حساب النهاية التالية (3

$$\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right] = f'(\alpha)$$

$$= \frac{g(\alpha)}{\alpha^2}$$

$$= 0$$

- التفسير الهندسي:

. lpha يقبل مماس مواز لحامل محور الفواصل عند النقطة ذات الفاصلة (\mathcal{C}_f)

$$f(\alpha) = -\frac{(\alpha-1)^2}{\alpha}$$
: نبيين أن

لدينا:

$$g(\alpha) = 0 \Rightarrow \ln \alpha + \alpha - 3 = 0$$

 $\Rightarrow \ln \alpha = 3 - \alpha$

ولدينا:

$$f(\alpha) = \left(1 - \frac{1}{\alpha}\right)(\ln \alpha - 2)$$

$$= \left(1 - \frac{1}{\alpha}\right)(3 - \alpha - 2)$$

$$= \left(1 - \frac{1}{\alpha}\right)(1 - \alpha)$$

$$= \frac{(\alpha - 1)(1 - \alpha)}{\alpha}$$

$$= \frac{-(\alpha - 1)^2}{\alpha}$$

f(x) = 0 حل المعادلة (5

$$f(x) = 0 \Rightarrow \left(1 - \frac{1}{x}\right)(\ln x - 2) = 0$$

$$\Rightarrow \begin{cases} 1 - \frac{1}{x} = 0\\ \ln x - 2 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \frac{1}{x} = 1\\ \ln x = 2 \end{cases}$$

$$\Rightarrow \begin{cases} x = 1\\ x = e^2 \end{cases}$$

- التفسير الهندسي:
- . $B(e^2;0)$ و A(1;0) و النقطتين: (C_f)
 - 6) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- $(\alpha; f(\alpha))$ نعيّن النقطة ذات الاحداثيات
 - B و A نعين النقطتين \bullet
- $\left(\mathcal{C}_{f}
 ight)$ نرسم f نرسم عمال جدول تغیرات الداله f

11)

المسألة الشاملة رقم:

۾ مشاهـــدة الحل

 $[0;+\infty[$ نعتبر الدالة g المعرفة على المجال الدالة (I)

$$g(x) = x^2 - 2 + \ln x$$

- . g ادرس تغيرات الدالة (1
- .]0; $+\infty$ [في المجال lpha في المجال g(x)=0 تقبل حلا وحيدا (2

1.31 < lpha < 1.32 ب/ تحقق من أن

- g(x) استنتج إشارة (3
- نعتبر الدالة f المعرّفة على المجال $]0;+\infty[$ كما يلى:

$$f(x) = x^2 + (2 - \ln x)^2$$

. $(o; ec{\iota}, ec{\jmath})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

- ا حسب نهایات الدالة f عند أطراف مجموعة تعریفها.
 - g(x) من نفس إشارة f'(x) من نفس إشارة (2
 - f شكل جدول تغيرات الدالة (3
 - $f(\alpha) = \alpha^2 (1 + \alpha^2)$:بین أن (4
 - .]0; + ∞ [على المجال:]0; + ∞ (5)
- $[0;+\infty[$ التمثيل البياني للدالة المعرفة على المجال (C_h) نسمي المجال البياني للدالة المعرفة على المجال

$$h(x) = \ln x$$

. x_m ولتكن النقطة A ذات الاحداثيات (0;2) . و M نقطة من المنحنى A فاصلتها

بين أن المسافة AM تُعطى بـ:

$$AM = \sqrt{f(x)}$$

 $0;+\infty[$ نعتبر الدالة k المعرفة على المجال (2

$$k(x) = \sqrt{f(x)}$$

. $]0;+\infty[$ أ برهن أن للدالتين f و k نفس اتجاه التغير على المجال

ب/ برهن أن المسافة AM أصغرية في نقطة B من (\mathcal{C}_h) ، يُطلب تعيين احداثييها.

$$AB = \alpha\sqrt{1 + \alpha^2}$$
 چ/ برهن أن:

. B عمودي على المستقيم المماس للمنحني (C_h) عمودي على المستقيم المماس للمنحني (C_h) عمودي على المستقيم (3

حل المسألة الشاملة رقم:

مشاهــدة المسألة

(I)

: g دراسة تغيرات الدالة (1

النهابات:

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} \left[\underbrace{x^2}_{+\infty} - 2 + \underbrace{\ln x}_{+\infty} \right]$$

= $+\infty$

•
$$\lim_{\substack{x \to 0}} [g(x)] = \lim_{\substack{x \to 0}} \left[\underbrace{x^2}_{0} - 2 + \underbrace{\ln x}_{-\infty} \right]$$
$$= -\infty$$

g'(x) دراسة

لدينا: الدالة g معرفة وقابلة للاشتقاق على مجال تعريفها ومنه:

$$g'(x) = 2x + \frac{1}{x}$$
$$= \frac{2x^2 + 1}{x}$$

لدينا 0 < x > 1 + 2 و منه:

 $oxed{:} g$ جدول تغيرات الدالة

X	0 +∞
g'(x)	+
g(x)	8

 $:]0; +\infty[$ في المجال lpha في المجال عادلة g(x)=0 تقبل حلا وحيدا lpha

 $]0;+\infty[$ لدينا الدالة g مستمرة ومتزايدة على المجال

$$\lim_{\substack{> \ x \to 0}} [g(x)] \times \lim_{\substack{x \to +\infty}} [g(x)] < 0$$
 ولدينا:

 $[0;+\infty[$ في المجال α في المجال g(x)=0 تقبلا حلا وحيدا α في المجال

$$: 1.31 < lpha < 1.32$$
 برا التحقق من أن

$$g(1.32) = 0.02$$
 و $g(1.31) = -0.13$ لدينا:

1.31 < lpha < 1.32 اذن g(1.31) imes g(1.32) < 0 ولدينا:

 $:]0; +\infty[$ استنتاج إشارة g(x) على المجال (3

x	0	α	+∞
g(x)	_	0	+

(II)

1) حساب نهایات الدالة f عند أطراف مجموعة تعریفها:

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\underbrace{x^2}_{+\infty} + \left(2 - \underbrace{\ln x}_{+\infty} \right)^2 \right]$$

= $+\infty$

•
$$\lim_{\substack{x \to 0}} [f(x)] = \lim_{\substack{x \to 0}} \left[\underbrace{x^2}_{0} + \left(2 - \underbrace{\ln x}_{-\infty} \right)^2 \right]$$

= $+\infty$

g(x) عن نفس إشارة f'(x) عن نفس إشارة (2

 $]0;+\infty[$ لدينا: الدالة f معرفة وقابلة للاشتقاق على المجال

$$f'(x) = 2x + 2\left(-\frac{1}{x}\right)(2 - \ln x)$$

$$= 2x - \frac{2(2 - \ln x)}{x}$$

$$= \frac{2(x^2 - 2 + \ln x)}{x}$$

$$= \frac{2}{x}g(x)$$

g(x) من نفس إشارة f'(x) من الدينا $\frac{2}{x}>0$ لدينا

: f تشكيل جدول تغيرات الدالة (3

x	0	α	+∞
f'(x)	_	0	+
f(x)	+8	$f(\alpha)$	+∞

$$f(\alpha) = \alpha^2 (1 + \alpha^2)$$
 : تبيين أن

لدينا:

$$g(\alpha) = 0 \Rightarrow \alpha^2 - 2 + \ln \alpha = 0$$
$$\Rightarrow \ln \alpha = 2 - \alpha^2$$

ولدينا:

$$f(\alpha) = \alpha^2 + (2 - \ln \alpha)^2$$

= $\alpha^2 + (2 - 2 - \alpha^2)^2$

$$= \alpha^2 + \alpha^4$$
$$= \alpha^2 (1 + \alpha^2)$$

وهو المطلوب.

 $:]0; +\infty[$ استنتاج إشارة f(x) على المجال: (5

لدينا $f(\alpha) > 0$ ومنه نجد:

X	0		+∞
f(x)		+	

(III)

 $AM = \sqrt{f(x)}$ تبيين أن المسافة AM ثعطى بـ (1

لدينا M نقطة من المنحني (C_h) فاصلتها x_m أي تكتب على الشكل: $M(x;\ln x)$ أي: M(x;h(x))

$$AM = \sqrt{(x-0)^2 + (\ln x - 2)^2}$$

$$= \sqrt{x^2 + (-(2-\ln x))^2}$$

$$= \sqrt{x^2 + (2-\ln x)^2}$$

$$= \sqrt{f(x)}$$

 $:]0; +\infty[$ المجال المجال k و k نفس اتجاه التغير على المجال (2

نلاحظ أن:

$$k(x) = (u \circ f)(x)$$

حيث:

$$u(x) = \sqrt{x}$$

 $]0;+\infty[$ لدينا الدالة u متزايدة تماما على المجال

 $]0;+\infty[$ والدالة f موجبة تماما على

 $]0;+\infty[$ اذن $(u\circ f)(x)$ متزايدة تماما على المجال

 $]0;+\infty[$ ومنه للدالتين f و k نفس اتجاه التغير على المجال

 $: (C_h)$ من B أصغرية في نقطة AM أمنان أن المسافة

 $]0;+\infty[$ بما أن للدالتين f و k نفس اتجاه التغير في المجال

x=lpha فإن الدالة k تبلغ قيمة حدية صغرى هي

x=lpha ومنه المسافة أصغرية لما

إذن:

$$B(lpha;\lnlpha) \Leftrightarrow B(lpha;2-lpha^2)$$
 $:AB=lpha\sqrt{1+lpha^2}:AB=\sqrt{(lpha-0)^2+(2-lpha^2-2)^2}$

I دالة معرفة على مجال g دالة معرفة على المجال g

اذا کانت الدالتین f و g لهما فنس اتجاه التغیر فإن: g

I متزايدة على g متزايدة على f و g متعاكستان في اتجاه التغير

I فإن: $(f \circ g)$ متناقصة على

$$= \sqrt{\alpha^2 + \alpha^4}$$

$$= \sqrt{\alpha^2 (1 + \alpha^2)}$$

$$= |\alpha|\sqrt{1 + \alpha^2}$$

$$= \alpha\sqrt{1 + \alpha^2}$$

: B غمودي على المستقيم المماس للمنحني (C_h) عمودي على المستقيم المماس المنحني (AB) غمودي على النقطة

لدينا:

ميل المستقيم المماس لـ (C_h) في النقطة B هو:

$$h'(\alpha) = \frac{1}{\alpha}$$

ولدينا ميل المستقيم (AB) هو:

$$a = \frac{y_B - y_A}{x_B - x_A}$$

$$= \frac{2 - \alpha^2 - 2}{\alpha - 0}$$

$$= -\frac{\alpha^2}{\alpha}$$

$$= -\alpha$$

ightharpoonup -1تذكر أنّه ightharpoonup
ightharpoonup -1تذكر أنّه ightharpoonup
ightharpoonup -1تذكر أنّه ightharpoonup -1

لدينا:

$$-\alpha \times \frac{1}{\alpha} = -1$$

B ومنه المستقيم (AB) عمودي على مماس المنحني و(AB) في النقطة

◄ بالتوفيق في شهادة البكالوريا ◄