Benjamin Schrever

<u>Überblick:</u> Bachelor-Titeln in Bereichen Physik und Informatik an der University of Maryland, Nebenfach in der deutschen Sprache. Momentan arbeite ich in der Forschung der adaptiven Optik, Optimierungsprobleme in Metrologie, und Kombinatorik.

Berufserfahrung

- (Herbst 2022-Frühling 2023) University of Maryland, Lehrassistent, Wellenphysik. Diskussionsabschnitt und Benotung Pflichten.
- (Frühling 2021) Montgomery College, Lehrassistent, diskrete Mathematik.
- (2023-2025) MITRE/Naval Research Lab Praktikant, adaptive Optik Regeltechnik, Fresnel-Beugung Simulationen, und statistische Stichprobenziehung korrelierter Felder.
- (Herbst 2024-aktuell) National Institute of Standards and Technology Praktikant, Metrologie
- (Sommer 2025) Radtour Teen Treks, New York. Ich habe eine Radtour für Schüler von NYC nach Montreal geleitet

Forschung

- (Herbst 2022) MITRE, Virginia. Entwicklung der drop-in-kompatibel Plot-Software und homogen Farbräume für Nichtlineare Optik Simulationen.
- (2023-2025) MITRE/Naval Research Lab, Washington, D.C. Ich entwickelte einer adaptive Optik System, um korrelierter Laserfelder zu erreichen. Ich habe Programmen und Simulationen (numerische lineare Algebra, Kurven-Fitten, Signalanalyse) geschrieben für statistische Analyse und Stichprobenziehung der optischen Felder und Experimentautomatisierung. <u>Poster</u>.
- (Herbst 2024-aktuell) National Institute of Standards and Technology, Gaithersburg. Ich arbeite, um neue effizientere Computermethoden (Runge-Kutta-Fehlberg, beliebiger Stellenzahl, Schießverfahren) zu schaffen für Optimierungsprobleme in mechanischen Oszillator Entwürfe.
- (Frühling 2024-Frühling 2025) Kombinatorische Enumerationsforschung, Operatorzählung für eingeschränkte Permutationen und modulare Periodizität kombinatorischer Folgen. Poster

Forschungspublikationen

- Schreyer, Benjamin; Younis, Daniel; Kaganovich, Dmitri; Johnson, Luke; Antonsen, Thomas; Hafizi, B. (2025). *Realization of Nontrivial Partial Spatial Coherence by Deformable Mirror*. Applied Optics https://doi.org/10.1364/AO.557755
- Realization of phase perturbations by deformable mirror towards testing statistical nonlinear optics Proceedings Volume 12939, HPLA VIII (2024) https://doi.org/10.1117/12.3012409 B. Schreyer, D. Younis, D. Kaganovich, L. A. Johnson, B. Hafizi, T. M. Antonsen Jr. (Feb 2024)
- Benjamin Schreyer, *Rigged Horse Numbers and their Modular Periodicity*, journal Artikel, (Aug. 2024)

Forschungspublikationen in Einreichung*, in Vorbereitung^, Sonstiges

- Benjamin Schreyer, Lorenz Keck, Jon R. Pratt, Stephan Schlamminger, *Stable numerical technique to calculate the bending of flexures with extreme aspect ratios*, (submitted Precision Engineering), pdf (Jul. 2025)* **Präsentationen/Vorträge**
- Wöchentliche Vorträge, Kurs für Kredit: Intro Computational Fourier optics (Herbstsemester 2024) (Code und Notizen)
 - Vierzehn Hausaufgaben und Vorträge für drittes Jahr Studenten. Studenten haben eine Simulation eines stabiler Laserresonator mit einem einfachen Verstärkungsmedium geschafft als Abschlussprojekt.
- Studentkolloquium Shift Symmetry in Physics and Combinatorics (October 2024)
- Progress Report on Statistical Nonlinear Optics Projects, Naval Research Lab Plasma Physics Meeting (October 2023)

- Studentkolloquium Perturbing Laser Initial Conditions with Deformable Mirror (March 2024)
- Studentkonferenz CU2MIP presentation of poster *Realization of phase perturbations by deformable mirror towards testing statistical nonlinear optics* (April 2024)

<u>Studium</u>

Bachelor-Titeln in Bereichen Physik und Informatik University of Maryland: GPA 3.7

Auszeichnungen*, freiwilliger Dienst^

- SPIE Mirror Technology (Telescope and Laser) Konferenzfreiwilliger (Nov. 2024)*
- SPIE Optics and Photonics Scholarship, Optikforschung spie.org (2024)*
- Maryland Space Grant Scholarship, Optikforschung (2023, 2024)*
- University of Maryland Bardasis Fellowship, Seminar Physikkommunikator (2022-2024)*
- Gutachter, American Journal of Physics^
- Computer Science Departmental Scholarship (2022-2023)*
- Tutor Uni Physik (2021-2022, 2025)^

Projekte

- ESP32 LED-Audiovisualisierungsraster, parallelisierte Mikrofonauslesung/-verarbeitung und Displaysteuerung auf eingebetteter C-Plattform zur Steuerung des LED-Spektrogramms, Webserver-Steuerungsschnittstelle
- C++, OpenGL-Rendering-Engine und parallelisierte Simulation von Kugelkollisionen mittels räumlichen Hashing

Sprachen: Englisch, Deutsch