# 2023HW05 常用组合逻辑电路OK!

1、用 74LS138 设计一个 4线-10 线译码器。

# 参考解答:

# 方案 1:



# 方案 2:

| $A_3^{\varphi}$ | $A_2$ | $A_{1}^{\omega}$ | $A_0$ | $ST_A, \overline{ST_B}, \overline{ST_C}$ | $\overline{Y}_{0}$ | $ar{Y}_{\!\!1}{}^{\scriptscriptstylearphi}$ | $\overline{Y}_2$ . | $\overline{Y}_3$ | $\overline{Y}_4$ . | $\overline{Y}_{5}$ | $\overline{Y}_{6}$ . | $\overline{Y}_7$ . | $\overline{Y}_{8}$ , | $\overline{Y}_{9}$ , |
|-----------------|-------|------------------|-------|------------------------------------------|--------------------|---------------------------------------------|--------------------|------------------|--------------------|--------------------|----------------------|--------------------|----------------------|----------------------|
| <b>0</b> 6      | 0.    | 06               | 06    | 100₽                                     | 0.                 | 1₽                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1.                 | 1.                   | 1₽                   |
| <b>0</b> 6      | 0.    | 0.               | 1.    | 100₽                                     | 1.                 | 06                                          | 1.                 | 1.               | 1.                 | 1,                 | 1.                   | 1.                 | 1,                   | 1.                   |
| 0.              | 06    | 1.               | 06    | 100.                                     | 1.                 | 1.                                          | 0.                 | 1.               | 1.                 | 1,                 | 1.                   | 1.                 | 1.                   | 1.                   |
| <b>0</b> 5      | 0.    | 1.               | 1.    | 100.,                                    | 1₽                 | 1.                                          | 1.                 | 0.               | 1.                 | 1₽                 | 1.                   | 1.                 | 1₽                   | 1₽                   |
| <b>0</b> 6      | 1.    | 0.               | 0.    | 100.                                     | 1.                 | 1.                                          | 1.                 | 1.               | 0.                 | 1.                 | 1.                   | 1.                 | 1.                   | 1.                   |
| <b>0</b> 6      | 1.    | 0.               | 1.    | 100.                                     | 1.                 | 1.                                          | 1.                 | 1.               | 1.                 | 0.                 | 1.                   | 1.                 | 1.                   | 1.                   |
| <b>0</b> 6      | 1.    | 1.               | 0.    | 100.,                                    | 1.                 | 1.                                          | 1.                 | 1.               | 1.                 | 1.                 | 0.                   | 1.                 | 1.                   | 1.                   |
| 0.              | 1.    | 1.               | 1.    | 100.                                     | 1.                 | 1.                                          | 1.                 | 1.               | 1.                 | 1,                 | 1.                   | 0.                 | 1.                   | 1.                   |
| 1₽              | 0     | 06               | 06    | 111₽                                     | 1₽                 | 1.                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1.                 | <b>0</b> ₽           | 1₽                   |
| 1₽              | 0.    | 0.               | 1.    | 111.                                     | 1₽                 | 1₽                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1.                 | 1.                   | 0.                   |
| 1₽              | 0.    | 1.               | 0.    | 111.                                     | 1₽                 | 1₽                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1.                 | 1.                   | 1₽                   |
| 1₽              | 06    | 1.               | 1.    | 111.                                     | 1₽                 | 1₽                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1.                 | 1.                   | 1₽                   |
| 1.              | 1₽    | 0⁴               | 1.    | 111.                                     | 1.                 | 14                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1,                 | 1₽                   | 1₽                   |
| 1₽              | 1₽    | 1.               | 0.    | 111.                                     | 1.                 | 1.                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1.                 | 1₽                   | 1₽                   |
| 1.              | 1,    | 1.               | 1.    | 111.                                     | 1.                 | 1.                                          | 1.                 | 1.               | 1.                 | 1.                 | 1.                   | 1.                 | <b>1</b> 4           | 1₽                   |

**说明**: 当 $A_3 = 1$ 时, $ST_A$ , $\overline{ST_B}$ , $\overline{ST_C}$  可以是 100 以外的任意组合,选择 111 比较简单!

因此: 
$$ST_A = 1$$
,  $\overline{ST_B} = \overline{ST_C} = A_3$ ,  $\overline{Y}_8 = \overline{A}_3 + A_2 + A_1 + A_0$ ,  $\overline{Y}_8 = \overline{A}_3 + A_2 + A_1 + \overline{A}_0$ 



# 2、用 74LS138 实现逻辑函数: $F(A,B,C) = \sum m(0,2,3,4,5,7)$

### 参考解答:

#### 方案 1: -

$$F(A, B, C) = \sum_{x} m(0, 2, 3, 4, 5, 7)$$
$$= \sum_{x} \overline{\overline{Y}}(0, 2, 3, 4, 5, 7)$$



# 方案 2: #

$$F(A, B, C) = \sum \overline{\overline{Y}}(0, 2, 3, 4, 5, 7)$$

$$= \overline{\prod \overline{Y}(0, 2, 3, 4, 5, 7)}$$



方案 3: 』

$$F(A,B,C) = \prod M(1,6)$$

$$= \prod \overline{Y}(1,6)$$



方案 4: +

$$F(A, B, C) = \prod M(1, 6)$$
  
=  $\prod \overline{Y}(1, 6) = \overline{\sum \overline{Y}(1, 6)}$ 



3、用 74LS138 设计一个 1 位全减器。

参考解答: A 为被减数, B 为减数, C-1为低位的借位;

S为本位差,C为向高位的借位

#### 真值表如下:

| A | В | $C_{-1}$ | S | C | A | В | $C_{-1}$ | S | C |
|---|---|----------|---|---|---|---|----------|---|---|
| 0 | 0 | 0        | 0 | 0 | 1 | 0 | 0        | 1 | 0 |
| 0 | 0 | 1        | 1 | 1 | 1 | 0 | 1        | 0 | 0 |
| 0 | 1 | 0        | 1 | 1 | 1 | 1 | 0        | 0 | 0 |
| 0 | 1 | 1        | 0 | 1 | 1 | 1 | 1        | 1 | 1 |

$$S = \sum m(1,2,4,7)$$
,  $C = \sum m(1,2,3,7)$ , 图略!

4、用 74LS151 实现下列逻辑函数:

1) 
$$F(A,B,C) = \sum m(0,2,3,4,5,7)$$

参考解答:直接将输入变量 A、B、C 作为选择输入(注意高低位顺序!),此时各数据输入应该是逻辑常量。

由
$$F(A,B,C) = \sum m(0,2,3,4,5,7)$$
知:

$$I_0 = 1, I_1 = 0, I_2 = 1, I_3 = 1, I_4 = 1, I_5 = 1, I_6 = 0, I_7 = 1$$



2) 
$$F(A,B,C,D) = \sum m(1,2,3,5,6)$$

#### 参考解答:

方案 1: 在四个输入变量中任选三个作为选择输入端(即地址输入端),余下的一个输入变量用来构造数据输入端。为此,将逻辑函数按照选择输入端的 8 个最小项洗牌,即可得到各数据输入端关于余下变量的逻辑函数。

比如,选择A、B、C作为选择输入端,则D用来构造数据输入端:

$$\begin{split} F(A,B,C,D) &= \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} \\ &= \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C(\overline{D}+D) + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} \\ &= \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} \\ &= m_0D + m_1 \cdot 1 + m_2D + m_3\overline{D} + m_4 \cdot 0 + m_5 \cdot 0 + m_6 \cdot 0 + m_7 \cdot 0 \end{split}$$

由此:  $I_0 = D, I_1 = 1, I_2 = D, I_3 = \overline{D}, I_4 = 0, I_5 = 0, I_6 = 0, I_7 = 0$ 

再如,选择B、C、D作为选择输入端,则A用来构造数据输入端:

$$F(A,B,C,D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= 0 \cdot m_0 + \overline{A} \cdot m_1 + \overline{A} \cdot m_2 + \overline{A} \cdot m_3 + 0 \cdot m_4 + \overline{A} \cdot m_5 + \overline{A} \cdot m_6 + 0 \cdot m_7$$
由此:  $I_0 = 0, I_1 = \overline{A}, I_2 = \overline{A}, I_3 = \overline{A}, I_4 = 0, I_5 = \overline{A}, I_6 = \overline{A}, I_7 = 0$ 

问题: 能在 4 个输入变量 A、B、C、D 中选择 2 个作为选择输入吗?

回答: 当然可以! 比如选择 A、B 作为选择输入, 余下的 C、D 用来构造数据输入。

$$F(A,B,C,D) = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D}$$
$$= \overline{A}\overline{B}(\overline{C}D + C\overline{D} + CD) + \overline{A}B(\overline{C}D + C\overline{D})$$
$$= \overline{A}\overline{B}(C + D) + \overline{A}B(C \oplus D)$$

接下来的问题: A、B分别连接到3个选择输入端中的哪2个?

回答: 哪 2 个都行! 比如, S<sub>1</sub>、S<sub>0</sub>。

接下来的问题: S2怎么处理?

回答: 怎么处理都行! 比如,接逻辑常量1。

方案 2: A、B 分别连接到 S<sub>1</sub>、S<sub>0</sub>, S<sub>2</sub>接逻辑常量 1。

$$F(A,B,C,D) = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D}$$

$$= \overline{A}\overline{B}(C+D) + \overline{A}B(C \oplus D)$$

$$= \overline{S_1}\overline{S_0}(C+D) + \overline{S_1}S_0(C \oplus D)$$

$$= S_2\overline{S_1}\overline{S_0}(C+D) + S_2\overline{S_1}S_0(C \oplus D)$$

$$I_0 = I_1 = I_2 = I_3 = 0, I_4 = C + D, I_5 = C \oplus D, I_6 = I_7 = 0$$

方案 3: 用两片 74LS151 扩展成 16 路数据选择器,在四个输入变量中任选一个实现两片选一,再用余下的输入变量实现片内的 8 选 1



$$F(A,B,C,D) = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BC\overline{D}$$
$$= (\overline{A}\overline{B}C + \overline{A}BC)\overline{D} + (\overline{A}\overline{B}\overline{C} + \overline{A}BC)D + (\overline{A}B\overline{C} + \overline{A}BC)D$$

$$F_0(A,B,C) = \overline{A}\overline{B}C + \overline{A}BC$$
,  $F_1(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$ 

对 $F_0(A,B,C) = \overline{ABC} + \overline{ABC}$ 来说:

$$I_0 = 0, I_1 = 1, I_2 = 0, I_3 = 1, I_4 = 0, I_5 = 0, I_6 = 0, I_7 = 0$$

对 $F_1(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$ 来说:

$$I_0 = 1, I_1 = 1, I_2 = 1, I_3 = 0, I_4 = 0, I_5 = 0, I_6 = 0, I_7 = 0$$

方案 4: 用两片 74LS151 扩展成 16 路数据选择器,在 4 个输入变量中任选 3 个同时在各片中 8 选 1,再用余下的输入变量实现 2 选 1。



$$F(A,B,C,D) = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D}$$
$$= (\overline{A}\overline{B}C + \overline{A}BC)\overline{D} + (\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C})D$$

$$F_0 = \overline{A}\overline{B}C + \overline{A}BC$$
 ,  $F_1 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$ 

对
$$F_0(A,B,C) = \overline{ABC} + \overline{ABC}$$
来说:

$$I_0 = 0, I_1 = 1, I_2 = 0, I_3 = 1, I_4 = 0, I_5 = 0, I_6 = 0, I_7 = 0$$

对 $F_1(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC}$ 来说:

$$I_0 = 1, I_1 = 1, I_2 = 1, I_3 = 0, I_4 = 0, I_5 = 0, I_6 = 0, I_7 = 0$$

方案 5: B、C、D 依次接  $S_2$ 、 $S_1$ 、 $S_0$ ,A 接 $\overline{EN}$ 

$$F(A,B,C,D) = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D}$$

$$I_0 = 0, I_1 = 1, I_2 = 1, I_3 = 1, I_4 = 0, I_5 = 1, I_6 = 1, I_7 = 0$$

5、用 4 位数值比较器和 4 位全加器设计一个 4 位 2 进制数转换成 8421BCD 码的转换电路。

#### 参考解答:

| 4位2进制数。 | 8421BCD 码。 | 进位。        | 4位2进制数。 | 8421BCD 码。 | 进位.      |
|---------|------------|------------|---------|------------|----------|
| 0000    | 0000       | <b>0</b> 4 | 1000₽   | 1000₽      | <b>0</b> |
| 0001    | 0001       | <b>0</b> 4 | 1001₽   | 1001₽      | <b>0</b> |
| 0010-   | 0010       | <b>0</b> 6 | 1010₽   | 0000       | 1₽       |
| 0011    | 0011       | <b>0</b> 4 | 1011₽   | 00014      | 1₽       |
| 0100-   | 0100       | <b>0</b> 4 | 1100₽   | 0010       | 1₽       |
| 0101-   | 0101       | <b>0</b> 4 | 1101₽   | 0011       | 1₽       |
| 0110-   | 0110       | <b>0</b> 4 | 1110₽   | 01004      | 1₽       |
| 01114   | 0111       | 0.         | 1111₽   | 0101       | 1₽       |

用一片数值比较器判断输入的 4 位 2 进制数是否小于 10, 其一个数据输入为 4 位 2 进制数, 另一个数据输入为 10。

用一片 4 位全加器求输入的 4 位 2 进制数的 8421BCD 码,其一个数据输入为 4 位

- 2进制数,另一个数据输入分2种情况:
- 1) 如果 4 位 2 进制数小于 10,则另一个数据输入为 0;
- 2) 如果 4 位 2 进制数大于或等于 10,则另一个数据输入为 6。



也可以跟9比较!

6、用 74LS148 设计一个 10 线-4 线优先编码器。

# 参考解答:

方案 1: 用 1 片 74LS148

# 真值表

|                                | 输入                                                                                                                 |                 |                                                    |         |                     | 7                | 输出                                           | 或者                                                         |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------|---------|---------------------|------------------|----------------------------------------------|------------------------------------------------------------|--|
|                                | 74                                                                                                                 |                 |                                                    |         |                     |                  |                                              |                                                            |  |
| $\overline{I}_9\overline{I}_8$ | $\overline{I}_7\overline{I}_6\overline{I}_5\overline{I}_4\overline{I}_3\overline{I}_2\overline{I}_1\overline{I}_0$ | $\overline{ST}$ | $\overline{Y}_{2}\overline{Y}_{1}\overline{Y}_{0}$ | $Y_{S}$ | $\overline{Y_{EX}}$ | $\overline{Y}_3$ | $\overline{Y}_2\overline{Y}_1\overline{Y}_0$ | $\overline{Y}_3\overline{Y}_2\overline{Y}_1\overline{Y}_0$ |  |
| 0x                             | XXXXXXX                                                                                                            | 1               | 111                                                | 1       | 1                   | 0                | 110                                          | 0000                                                       |  |
| 10                             | XXXXXXX                                                                                                            | 1               | 111                                                | 1       | 1                   | 0                | 111                                          | 0001                                                       |  |
|                                |                                                                                                                    |                 |                                                    |         |                     |                  |                                              |                                                            |  |
| 11                             | 0xxxxxxx                                                                                                           | 0               | 000                                                | 1       | 0                   | 1                | 000                                          | 0010                                                       |  |
| 11                             | 10xxxxxx                                                                                                           | 0               | 001                                                | 1       | 0                   | 1                | 001                                          | 0011                                                       |  |
| 11                             | 110xxxxx                                                                                                           | 0               | 010                                                | 1       | 0                   | 1                | 010                                          | 0100                                                       |  |
| 11                             | 1110xxxx                                                                                                           | 0               | 011                                                | 1       | 0                   | 1                | 011                                          | 0101                                                       |  |

| 11 | 11110xxx | 0 | 100 | 1 | 0 | 1 | 100 | 0110 |
|----|----------|---|-----|---|---|---|-----|------|
| 11 | 111110xx | 0 | 101 | 1 | 0 | 1 | 101 | 0111 |
| 11 | 1111110x | 0 | 110 | 1 | 0 | 1 | 110 | 1000 |
| 11 | 11111110 | 0 | 111 | 1 | 0 | 1 | 111 | 1001 |
|    |          |   |     |   |   |   |     |      |
| 11 | 11111111 | 0 | 111 | 0 | 1 | d | ddd | dddd |

$$\overline{Y}_3=\overline{I}_9\cdot\overline{I}_8$$
,  $\overline{ST}=\overline{\overline{I}_9\cdot\overline{I}_8}=\overline{\overline{Y}_3}$ ,  $\overline{Y}_2=\overline{Y}_2$ ,  $\overline{Y}_1=\overline{Y}_1$ ,  $\overline{Y}_0=\overline{Y}_0\cdot\overline{I}_9$ 

#### 说明:

- 1) 左边的 $\bar{Y}_i$ 表示 10 线-4 线优先编码器的输出,右边的 $\bar{Y}_i$ 表示 74LS148 的输出。
- 2) 如果允许输入端全部无效,可以增加一个输出端!

### 逻辑电路: 略!

方案 2: 用 2 片 74LS148 设计一个 16 线-4 线的优先编码器。应用时, $\bar{I}_{15} \sim \bar{I}_{10}$ 全部接高电平!

# 真值表:

| 高位片                                                                                                                                      | 低位片                                                                                                                       | 高位片             |                                              |         | 低位                  | 输出              |                                                |         |                     |                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|---------|---------------------|-----------------|------------------------------------------------|---------|---------------------|--------------------------------------------------------------|
| $\overline{I}_{15}\overline{I}_{14}\overline{I}_{13}\overline{I}_{12}\overline{I}_{11}\overline{I}_{10}\overline{I}_{9}\overline{I}_{8}$ | $\overline{I}_7 \overline{I}_6 \overline{I}_5 \overline{I}_4 \overline{I}_3 \overline{I}_2 \overline{I}_1 \overline{I}_0$ | $\overline{ST}$ | $\overline{Y}_2\overline{Y}_1\overline{Y}_0$ | $Y_{S}$ | $\overline{Y_{EX}}$ | $\overline{ST}$ | $ \overline{Y}_2\overline{Y}_1\overline{Y}_0 $ | $Y_{S}$ | $\overline{Y_{EX}}$ | $ \overline{Y}_3\overline{Y}_2\overline{Y}_1\overline{Y}_0 $ |
| 0xxxxxxx                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 000                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0000                                                         |
| 10xxxxxx                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 001                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0001                                                         |
| 110xxxxx                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 010                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0010                                                         |
| 1110xxxx                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 011                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0011                                                         |
| 11110xxx                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 100                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0100                                                         |
| 111110xx                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 101                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0101                                                         |
| 1111110x                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 110                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0110                                                         |
| 11111110                                                                                                                                 | XXXXXXX                                                                                                                   | 0               | 111                                          | 1       | 0                   | 1               | 111                                            | 1       | 1                   | 0111                                                         |
|                                                                                                                                          |                                                                                                                           |                 |                                              |         |                     |                 |                                                |         |                     |                                                              |
| 11111111                                                                                                                                 | 0xxxxxxx                                                                                                                  | 0               | 111                                          | 0       | 1                   | 0               | 000                                            | 1       | 0                   | 1000                                                         |

| 11111111 | 10xxxxxx | 0 | 111 | 0 | 1 | 0 | 001 | 1 | 0 | 1001 |
|----------|----------|---|-----|---|---|---|-----|---|---|------|
| 11111111 | 110xxxxx | 0 | 111 | 0 | 1 | 0 | 010 | 1 | 0 | 1010 |
| 11111111 | 1110xxxx | 0 | 111 | 0 | 1 | 0 | 011 | 1 | 0 | 1011 |
| 11111111 | 11110xxx | 0 | 111 | 0 | 1 | 0 | 100 | 1 | 0 | 1100 |
| 11111111 | 111110xx | 0 | 111 | 0 | 1 | 0 | 101 | 1 | 0 | 1101 |
| 11111111 | 1111110x | 0 | 111 | 0 | 1 | 0 | 110 | 1 | 0 | 1110 |
| 11111111 | 11111110 | 0 | 111 | 0 | 1 | 0 | 111 | 1 | 0 | 1111 |
|          |          |   |     |   |   |   |     |   |   |      |
| 11111111 | 11111111 | 0 | 111 | 0 | 1 | 0 | 111 | 0 | 1 | dddd |