LINEAR REGRESSION REPORT

Yuhuan Huang

Part 1

Console Output:

My reflection: Age might not be a very good predictor of glucose.

Part 2


```
**************************
File "__main__", line 3, in __main__
Failed example:
   print('b1:', simple_LR_coeffs_sklearn(Age_reshaped, Glucose_reshaped)[0][0])
Expected:
   b1: [0.35391241]
Got:
   b1: 0.3539124057393233
************************
File "__main__", line 5, in __main__
Failed example:
   print('b0:', simple_LR_coeffs_sklearn(Age_reshaped, Glucose_reshaped)[1][0])
Expected:
   b0: 67.34791357165692
Got:
   b0: 67.34791357165693
*************************
1 items had failures:
  2 of
        3 in __main_
***Test Failed*** 2 failures.
```

Although the tests failed, I think the result is okay(?).

Part 3

I preserved the results in rst.txt:

```
# write into log
with open("rst.txt","w") as f:

print('\nOutput linear model intercept, coefficients, score')
Y = df['Stock_Index_Price'] #dependent var

#Case 1: Interest Rate only
print('Case 1: Interest Rate only:', file=f)
X1 = df['Interest_Rate'] #extract interest rate from the dataframe as the indep vari
X1out = MLR_sklearn(X1,Y) #call your MLR function
print(X1out[0],' ', X1out[1], ' ', X1out[2], '\n', file=f)
```

[25]							
		Year	Month	Interest_Rate	Unemployment_Rate	GDP	\
	count	36.000000	36.00000	36.000000	36.000000	36.000000	
	mean	2017.000000	6.50000	2.183333	5.891667	20.450000	
	std	0.828079	3.50102	0.351308	0.175507	1.053565	
	min	2016.000000	1.00000	1.600000	5.600000	18.700000	
	25%	2016.000000	3.75000	1.892500	5.745000	19.575000	
	50%	2017.000000	6.50000	2.185000	5.890000	20.450000	
	75%	2018.000000	9.25000	2.477500	6.035000	21.325000	
	max	2018.000000	12.00000	2.770000	6.180000	22.200000	
		Stock_Index_	Price				
	count	36.000000					
	mean	1065.9	44444				
	std	178.3	32746				
	min	704.0	00000				
	25%	955.7	50000				
	50%	1054.5	00000				
	75%	1180.0	00000				
	max	1464.0	00000				
	Output	linear model	intercept	, coefficients,	score		

My Reflections:

From the graphs, we can see that the stock price is positively correlated with the interest rate and GDP, and the stock price is negatively correlated with the unemployment rate.

From the results, we can see that when we extract some features in X to predict y, we can more clearly see the relationships between the features. For example, when we only use the interest rate and the unemployment rate as the "X" to predict the stock price, we can see that it is still highly-predictable, and they are positively related. But as we include more explanatory variables, the R-square increases,

showing that our model becomes better at predictions.