

shahab SHARIAT BAGHERI

Luca MUSCARIELLO Beatrice PESQUET Pablo PIANTANIDA

Internship Defense Salle F801, TELECOM ParisTech

Plan

Internship Environment

CISCO & PIRL Goals and Perspectives

Ideas and Strategies

NFD

ICN brief Introduction

NDN networks

Linux Containers and Virtualization

Choix du Filtre Gaussien

Routing Algorithms

Routing Algorithms

Les Codes Proposés

Les Résultats et les Courbes BLER des Nouveaux Codes

Conclusion

Internship Environment CISCO & PIRL Goals and Perspectives

CISCO & PIRL

Paris Innovation and Research Laboratory.

Wizzilab

-En France, Réseau de Capteurs de DASH7, Paris, 75018

- Les Sensors Developpés par Wizzilab.

- Application :

- Les Sensors Developpés par Wizzilab.

Les Objectifs et Outils

Objectif de Stage

Développer la Couche Physique de DASH7

Modèle Mathématiques de Système de Communication (DASH7)

> **Transport** End-to-end Connections Network 3 Address and Best Path -Header, CRC, ... FER, Flow Control,... **Data Link** → Binary Transmission BER, Rate, BW, Physical -Modulation, Channel Coding, MIMO,...

7/19

Institut Mines-Telecom

Les Objectifs et Outils

Objectif de Stage

Développer la Couche Physique de DASH7

Modèle Mathématiques de Système de Communication (DASH7) \rightarrow Simulator.

Les Objectifs et Outils

Objectif de Stage

Développer la Couche Physique de DASH7

Modèle Mathématiques de Système de Communication (DASH7) \rightarrow Simulator.

Ideas and Strategies

ICN brief Introduction Linux Containers and Virtualization Routing Algorithms

Choix du Filtre Gaussien

- GFSK modulation \rightarrow BT(Paramètre de filtre Gaussien) = 1,0.5,0.3
 - ▶ Bit Error Rate
 - ► Intérference entre canaux adjacents

Choix du Filtre Gaussien

- GFSK modulation $o BT(\mathsf{Paramètre} \ \mathsf{de} \ \mathsf{filtre} \ \mathsf{Gaussien}) = \mathbf{1} o \mathsf{Normal-Rate}$

Design Mask

Publié la nouvelle Spécification de DASH7 (Version 1.0), En Mai 2015.

Design Mask

Publié la nouvelle Spécification de DASH7 (Version 1.0), En Mai 2015.

Design Mask

Publié la nouvelle Spécification de DASH7 (Version 1.0), En Mai 2015.

Linux Containers and Virtualization Routing Algorithms

Codages du Canal

- Les Codes de Contrôle d'erreur
 - ► Codage à Détecter les erreurs (CRC, CheckSum, Parité, ...).
 - Codage à Détecter et Corriger les erreurs(LDPC, Convolutif, Turbo, RS, BCH, ...).

Le Concept Principal de Notre Proposition

Header + Payload + CRC (Convolutif) → Header (RS), Payload (LDPC) + CRC

- ▶ Header: RS → La longeur petite -RS(60,28)
 - Encodage: Structure algébrique des polynomials (g(x)).
 - Décodage: Error Trapping.
- Payload: LDPC → Pourquoi?

Header	Payload	CRC16
28Bit	16 – 255 <i>Byte</i>	2Byte

LDPC vs Convolutif dans les expériences et Handbooks ...

Pourquoi LDPC?

- ► Très proche à la limite de Shannon (0.042dB).
- lacktriangle Augmentation la taille de Matrice Parité Check ightarrow Meilleur Performance.
- Pour changer le taux on peut juste modifier les lignes.
- Ils ne sont pas brevetés et très répandu.
- ▶ Application Réseau: 5G, Wi-Fi, IEEE 802.16 (WiMAX), 10GBase-T de Ethernet, DVB-S2.

Choix de LDPC (Méthodes Aléatoires)

- ▶ En vert: Gallagar, Computer generated, 1963 \rightarrow Dégradation, girth = 4-cycle \rightarrow Matrice de Génératrice (Encodage: non complèxe)
- ► En rouge: Mackay-Neal, 1996 [1] → Eviter les 4-cycles → Matrice **Génératrice** (Encodage: complèxe)

LDPC Contre Convolutif (Encodage)

- LDPC Mackay-Neal: Complèxe \rightarrow Algorithm de Richardson-Urbanke \rightarrow Diréctement a travers de $\mathbf{H} \longrightarrow O(n^2) \rightarrow O(n+g^2)$.
- Convolutif: Circuit de Shift Register.

LDPC Contre Convolutif (Décodage)

LDPC:

- \blacktriangleright Hard: Algorithme de Bit flipping \rightarrow Graph Tanner (iteration = 10) .
- ► Soft: Algorithme de Log-DomainSimple (Version simplifiée de l'algorithm SPA) \rightarrow Probabilité a priori (ML) (iteration = 10)
- Convolutif: Algorithm de Viterbi → Graph Trellis

16/19

Institut Mines-Telecom

LDPC(1/2) vs Convolutif(1/2)

Modèle de canal: AWGN & TU5 (Typical-Urban)→ Jakes algorithm

Plan

Conclusion

Conclusion

- Les Travaux de recherche dovient avoir toujours à la tête les aspects et contraintes pratiques.
- La Simulation est un trés bons moyen pour avoir un preuve théorique Mathèmatique.
- ► Les Nouvelle Propositions des canaux et Nouveaux Codage du canal peut utiliser au sein de protocole de DASH7.
- Les Autres développements peut se faire au future comme avoir un Relay, Egaliseur, Software Defined Radio

Shu Lin, Daniel J.Costello, Jr. Error Control Coding. (Second Edition), 2004.

