

ÁRVORE DE DECISÃO

MÉTODO BASEADO EM ÁRVORES

APRENDIZAGEM DE ÁRVORES DE DECISÃO É UM DOS MÉTODOS DE APRENDIZAGEM MAIS PRÁTICOS E MAIS UTILIZADOS PARA A APRENDIZAGEM INDUTIVA.

CARACTERÍSTICAS

O CONHECIMENTO É BASEADO EM ÁRVORES

Sdco

CARACTERÍSTICAS

ALGORITMOS DE ÁRVORES DE DECISÃO E REGRAS ADQUIREM CONHECIMENTO SIMBÓLICO A PARTIR DE DADOS DE TREINAMENTO

CARACTERÍSTICAS

AMPLA CLASSE DE ALGORITMOS DE APRENDIZADO

EXEMPLO: ID3, C4.5, CART,...

Sdco

CARACTERÍSTICAS

UTILIZA UM VÍES INDUTIVO:

PREFERÊNCIA POR ÁRVORES

MENORES.

Sdco

CARACTERÍSTICAS

ÁRVORES DE DECISÃO TAMBÉM PODEM SER REPRESENTADAS COMO CONJUNTOS DE REGRAS SE-ENTÃO (IF-THEN).

EXEMPLO

VAMOS JOGAR

TÊNIS?

SÓ JOGAREMOS QUANDO

(Outlook=Sunny && Humidity=Normal)

|| (Outlook=Overcast)

|| (Outlook=Rain && Wind=Weak)

REPRESENTAÇÃO

- CADA NÓ INTERNO TESTA UM ATRIBUTO
- CADA RAMO CORRESPONDE AO VALOR DO ATRIBUTO
- CADA FOLHA ATRIBUI UMA CLASSIFICAÇÃO

SÓ JOGAREMOS QUANDO

(Outlook=Sunny AND Humidity=Normal)

OR

(Outlook=Overcast)

OR

(Outlook=Rain AND Wind=Weak)

DECISIONTREE - 1D3

Sdco

ID3

ALGORITMO BÁSICO PARA APRENDIZAGEM DE ÁRVORES DE DECISÃO

DECISIONTREE - ID3

O ALGORITMO ID3 "APRENDE" ÁRVORES DE DECISÃO CONSTRUINDO-AS DE CIMA PARA BAIXO (TOP-DOWN).

COMEÇANDO COM SEGUINTE QUESTÃO:

OATRIBUTO

O QUE TIVER MELHOR GANHO DE INFORMAÇÃO

DECISIONTREE - ID3

ENTROPIA

NÍVEL DE BAGUNÇA

CARACTERIZA A (IM)PUREZA DE UMA COLEÇÃO ARBITRÁRIA DE EXEMPLOS.

ENTROPIA

Dado uma coleção S contendo exemplos + e – de algum conceito alvo, a entropia de S relativa a esta classificação booleana é:

Entropia (S) =
$$-p_+ \log_2 p_+ - p_- \log_2 p_-$$

p+ é a proporção de exemplos positivos em S p- é a proporção de exemplos negativos em S

EXEMPLO

Exemplo: Sendo *S* uma coleção de 14 exemplos de algum conceito booleano, incluindo 9 exemplos positivos e 5 negativos [9+, 5–].

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

ENTROPIA - EXEMPLO

Exemplo: Sendo *S uma coleção de 14 exemplos* de algum conceito booleano, incluindo 9 exemplos positivos e 5 negativos [9+, 5–].

Entropia ([9+,5-]) =
$$-(\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14})$$

= 0.940

ENTROPIA - VARIAÇÃO

A função *entropia relativa a uma classificação* booleana, como a proporção, *p*+ *de exemplos* positivos varia entre 0 e 1.

ENTROPIA - MULTICLASSES

Generalizando para o caso de um atributo alvo aceitar *c* diferentes valores, a entropia de S relativa a esta classificação *c*–classes é definida como:

Entropia
$$(S) \equiv \sum_{i=1}^{c} -p_i \log_2 p_i$$

onde pi é a proporção de S pertencendo a classe i.

AGORA OGANHODE INFORMAÇÃO

GANHO DE INFORMAÇÃO

Redução esperada na entropia devido a ordenação sobre *A, ou seja, a redução* esperada na entropia causada pela partição dos exemplos de acordo com este atributo *A.*

$$Gain(S,A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$$

EXEMPLO

Vamos calcular o ganho de informação do atributo *Wind*

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Todo conjunto

S [9+,5-]

WIND

Weak [6+,2-]

Strong [3+,3-]

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

GANHO DE NFORMAÇÃO

Values(Wind) = Weak, Strong

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-\cdot]$$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

=
$$Entropy(S)$$
 - $(8/14)Entropy(S_{Weak})$ - $(6/14)Entropy(S_{Strong})$

$$= 0.940 - (8/14)0.811 - (6/14)1.00$$

$$= 0.048$$

DECISIONTREE - ID3

COMO O OBJETIVO DE ENCONTRAR A

RAIZ DA ÁRVORE, CALCULAMOS O

GANHO DE INFORMAÇÃO PARA TODOS

OS ATRIBUTOS DO DATASET

GANHO DE INFORMAÇÃO

Gain (S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain (S, Wind) = 0.048

Gain (S, Temperature) = 0.029

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

RAIZ DA ÁRVORE

Montar a raiz da árvore e distribuir seus ramos.

QUE ATRIBUTO VEM AQUI?

GANHO DE INFORMAÇÃO

LEVANDO EM CONSIDERAÇÃO SOMENTE
OUTLOOK(Sunny)

 $S_{sunny} = \{D1,D2,D8,D9,D11\}$

Gain $(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 + .970$ Gain $(S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$ Gain $(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

DECISIONTREE - 1D3

RECURSIVAMENTE

REPETE-SE O PROCESSO DE SELECIONAR UM NOVO ATRIBUTO E PARTICIONAR OS EXEMPLOS DE TREINAMENTO É REPETIDO PARA CADA NÓ DESCENDENTE NÃO TERMINAL.

DECISIONTREE - ID3

RECURSIVAMENTE

SÃO UTILIZADOS SOMENTE OS EXEMPLOS DE TREINAMENTO ASSOCIADOS COM ESTE NÓ.

DECISIONTREE - 1D3

ATRIBUTOS QUE FORAM INCORPORADOS ANTERIORMENTE A ÁRVORE SÃO EXCLUÍDOS. QUALQUER ATRIBUTO DEVE APARECER SOMENTE UMA VEZ AO LONGO DE QUALQUER CAMINHO NA ÁRVORE.

ÁRVORE - Recursivamente

Para cada ramo da árvore o processo continua até que uma das seguintes condições seja atendida:

- 1. Todos os atributos já estejam incluídos ao longo deste caminho da árvore;
- 2. Os exemplos de treinamento associados com este nó folha tenham todos o mesmo valor de atributo alvo.

DECISIONTREE - 1D3

ESPAÇO DE HIPÓTESES

O MÉTODO DE APRENDIZAGEM ID3 PODE

SER CARACTERIZADO COMO UM MÉTODO

DE BUSCA EM UM ESPAÇO DE HIPÓTESES,

POR UMA HIPÓTESE QUE SE AJUSTA AOS

EXEMPLOS DE TREINAMENTO.

DECISIONTREE - 1D3

ESPAÇO DE HIPÓTESES

O ESPAÇO DE HIPÓTESES BUSCADO

PELO ID3 É O CONJUNTO DE ÁRVORES

DE DECISÃO POSSÍVEIS.

SCIKIT LEARN

```
from sklearn import tree
```

```
clf = tree.DecisionTreeClassifier()
```

```
clf.fit(Features, classes)
```

```
clf.predict(new object)
```

http://scikit-learn.org/stable/modules/tree.html

