Lecture 5: Model-Free Control

1. Introduction

Model-Free Reinforcement Learning

- Last lecture:
 - Model-free prediction
 - Estimate the value function of an unknown MDP
- This lecture:
 - Model-free control
 - o Optimise the value function of an unknown MDP

Uses of Model-Free Control

Some example problems that can be modelled as MDPs

Elevator	Robocup Soccer
Parallel Parking	Quake
Ship Steering	Portfolio management
Bioreactor	Protein Folding
Helicopter	Robot walking
Aeroplane Logistics	Game of Go

For most of these problems, either:

- MDP model is unknown, but experience can be sampled
- MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

On and Off-Policy Learning

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - "Look over someone's shoulder"
 - \circ Learn about policy π from experience sampled from μ

2. On-Policy Monte-Carlo Control

Generalised Policy Iteration

Generalised Policy Iteration (Refresher)

Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$

e.g. Greedy policy improvement

Generalised Policy Iteration With Monte-Carlo Evaluation

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$? Policy improvement Greedy policy improvement?

Model-Free Policy Iteration Using Action-Value Function

• Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = rg \max_{a \in A} R^a_s + P^a_{ss'} V(s')$$

• Greedy policy improvement over Q(s,a) is model-free

$$\pi'(s) = \argmax_{a \in A} Q(s,a)$$

Generalised Policy Iteration with Action-Value Function

Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

Exploration

Example of Greedy Action Selection

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

- There are two doors in front of you.
- You open the left door and get reward 0 V(left) = 0
- You open the right door and get reward +1V(right) = +1
- You open the right door and get reward +3V(right) = +2
- You open the right door and get reward +2V(right) = +2

■ Are you sure you've chosen the best door?

$\epsilon ext{-Greedy Exploration}$

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1ϵ choose the greedy action
- With probability ϵ choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} rac{\epsilon}{m} + 1 - \epsilon & ext{if} \quad a^* = rg \max_{a \in A} Q(s,a) \ rac{\epsilon}{m} & ext{otherwise} \end{array}
ight.$$

$\epsilon ext{-Greedy Policy Improvement}$

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_π is an improvement, $v_{\pi'} \geq v_\pi(s)$

$$egin{aligned} q_\pi(s,\pi'(s)) &= \sum_{a\in A} \pi'(a|s) q_\pi(s,a) \ &= rac{\epsilon}{m} \sum_{a\in A} q_\pi(s,a) + (1-\epsilon) \max_{a\in A} q_\pi(s,a) \ &\geq rac{\epsilon}{m} \sum_{a\in A} q_\pi(s,a) + (1-\epsilon) \sum_{a\in A} rac{\pi(a|s) - rac{\epsilon}{m}}{1-\epsilon} q_\pi(s,a) \ &= \sum_{a\in A} \pi(a|s) q_\pi(s,a) \ &= v_\pi(s) \end{aligned}$$

Therefore from policy improvement theorem, $v_{\pi'}(s) \geq v_{\pi}(s)$

Monte-Carlo Policy Iteration

Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$ Policy improvement ϵ -greedy policy improvement

Monte-Carlo Control

Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

GLIE

• All state-action pairs are explored infinitely many times,

$$\lim_{k o\infty}N_k(s,a)=\infty$$

• The policy converges on a greedy policy,

$$\lim_{k o\infty}\pi_k(a|s)=\mathbf{1}(a=rg\max_{a'\in A}Q_k(s,a'))$$

• For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

GLIE Monte-Carlo Control

- Sample kth episode using $\pi: \{S_1, A_1, R_2, \ldots, S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$egin{aligned} N(S_t,A_t) \leftarrow N(S_t,A_t) + 1 \ Q(S_t,A_t) \leftarrow Q(S_t,A_t) + rac{1}{N(S_t,A_t)} (G_t - Q(S_t,A_t)) \end{aligned}$$

• Improve policy based on new action-value function

$$\epsilon \leftarrow \frac{1}{k}$$
$$\pi \leftarrow \epsilon - greedy(Q)$$

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s,a) o q_*(s,a)$

Monte-Carlo Control in Blackjack

3. On-Policy Temporal-Difference Learning

MC vs. TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - o Online
 - Incomplete sequences

- Natural idea: use TD instead of MC in our control loop
 - \circ Apply TD to Q(S,A)
 - Use ϵ -greedy policy improvement
 - Update every time-step

$Sarsa(\lambda)$

Updating Action-Value Functions with Sarsa

Updating Action-Value Functions with Sarsa

$$Q(S, A) \leftarrow Q(S, A) + \alpha (R + \gamma Q(S', A') - Q(S, A))$$

On-Policy Control With Sarsa

Every time-step:

Policy evaluation Sarsa, $Q pprox q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Sarsa Algorithm for On-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Convergence of Sarsa

Sarsa converges to the optimal action-value function, $Q(s,a) \to q_*(s,a)$, under the following conditions:

- GLIE sequence of policies $\pi_t(a|s)$
- ullet Robbins-Monro sequence of step-sizes $lpha_t$

$$\sum_{t=1}^{\infty} lpha_t = \infty$$
 $\sum_{t=1}^{\infty} lpha_t^2 < \infty$

Windy Gridworld Example

- Reward = -1 per time-step until reaching goal
- Undiscounted

Sarsa on the Windy Gridworld

n-Step Sarsa

■ Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$\begin{array}{ll} \textit{n} = 1 & \textit{(Sarsa)} & q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}) \\ \textit{n} = 2 & q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}) \\ \vdots & \vdots & \vdots \\ \textit{n} = \infty & \textit{(MC)} & q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T \end{array}$$

■ Define the *n*-step Q-return

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

lacktriangleq n-step Sarsa updates Q(s,a) towards the n-step Q-return

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

Forward View Sarsa (λ)

- The q^{λ} return combines all n-step Q-returns $q_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

Forward-view Sarsa(λ)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{\lambda} - Q(S_t, A_t)\right)$$

Backward View Sarsa(λ)

- Just like $TD(\lambda)$, we use **eligibility traces** in an online algorithm
- But $Sarsa(\lambda)$ has on eligibility trace for each state-action pair

$$E_0(s, a) = 0$$

 $E_t(s, a) = \gamma \lambda E_{t-1}(s, a) + \mathbf{1}(S_t = s, A_t = a)$

- Q(s,a) is updated for every state s and action a
- In proportion to TD-error δ_t and eligibility trace $E_t(s,a)$

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)$$

Sarsa(λ) Algorithm

```
Initialize Q(s,a) arbitrarily, for all s \in \mathbb{S}, a \in \mathcal{A}(s)

Repeat (for each episode):

E(s,a) = 0, for all s \in \mathbb{S}, a \in \mathcal{A}(s)

Initialize S, A

Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

\delta \leftarrow R + \gamma Q(S', A') - Q(S, A)

E(S, A) \leftarrow E(S, A) + 1

For all s \in \mathbb{S}, a \in \mathcal{A}(s):

Q(s, a) \leftarrow Q(s, a) + \alpha \delta E(s, a)

E(s, a) \leftarrow \gamma \lambda E(s, a)

S \leftarrow S'; A \leftarrow A'

until S is terminal
```

$Sarsa(\lambda)$ Gridworld Example

Path taken

Action values increased by one-step Sarsa

4. Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following behaviour policy $\mu(a|s)$

$$\{S_1, A_1, R_2, \dots, S_T\} \sim \mu$$

- Why is this important?
- · Learn from observing humans or other agents
- Re-use experience generated from old policies $\pi_1, \pi_2, \dots, \pi_{t-1}$
- Learn about optimal policy while following exploratory policy
- Learn about multiple policies while following one policy

Importance Sampling

• Estimate the expectation of a different distribution

$$\begin{split} E_{X \sim P}[f(X)] &= \sum P(X)f(X) \\ &= \sum Q(X)\frac{P(X)}{Q(X)}f(X) \\ &= E_{X \sim Q}[\frac{P(X)}{Q(X)}f(X)] \end{split}$$

Importance Sampling for Off-Policy Monte-Carlo

- Use returns generated from μ to evaluate π
- ullet Weight return G_t according to similarity between policies
- Multiply importance sampling corrections along whole episode

$$G_t^{rac{\pi}{\mu}} = rac{\pi(A_t|S_t)}{\mu(A_t|S_t)} rac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots rac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

• Update value towards corrected return

$$V(S_t) \leftarrow V(S_t) + lpha(G_t^{rac{\pi}{\mu}} - V(S_t))$$

- Cannot use if μ is zero when π is non-zero
- Importance sampling can dramatically increase variance

Importance Sampling for Off-Policy TD

- Use TD targets generated from μ to evaluate π
- Weight TD target $R + \gamma V(S')$ by importance sampling
- Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) + lpha(rac{\pi(A_t|S_t)}{\mu(A_t|S_t)}(R_{t+1} + \gamma V(S_{t+1})) - V(S_t))$$

- Much lower variance than Monte-Carlo importance sampling
- Policies only need to be similar over a single step

Q-Learning

- We now consider off-policy learning of action-values Q(s,a)
- No importance sampling is required
- ullet Next action is chosen using behaviour policy $A_{t+1} \sim \mu(\cdot|S_t)$
- ullet But we consider alternative successor action $A' \sim \pi(\cdot|S_t)$
- And update $Q(S_t, A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t))$$

Off-Policy Control with Q-Learning

- We now allow both behaviour and target policies to **improve**
- The target policy π is greedy w.r.t. Q(s,a)
- The behaviour policy μ is e.g. ϵ -greedy w.r.t Q(s,a)
- The Q-learning target then simplifies:

$$egin{aligned} R_{t+1} + \gamma Q(S_{t+1}, A') \ &= R_{t+1} + \gamma Q(S_{t+1}, rg \max_{a'} Q(S_{t+1}, a')) \ &= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a') \end{aligned}$$

Q-Learning Control Algorithm

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

Theorem

Q-learning control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

Q-Learning Algorithm for Off-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big]
S \leftarrow S';
until S is terminal
```

Cliff Walking Example

5. Summary

Relationship Between DP and TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\sigma}(s, a) \leftarrow s, a$ r s' $q_{\sigma}(s', a') \leftarrow a'$	S A R S'
Equation for $q_{\pi}(s,a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Relationship Between DP and TD (2)

Full Backup (DP)	Sample Backup (TD)
Iterative Policy Evaluation	TD Learning
$V(s) \leftarrow \mathbb{E}[R + \gamma V(S') \mid s]$	$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$
Q-Policy Iteration	Sarsa
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$
Q-Value Iteration	Q-Learning
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in A} Q(S',a')$

where
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$$