Multi-Layer Perception (MLP)

⇒ When multiple perceptrons are stacked together one after another, it is called a multi-layer perceptron.

Components of MLP

⇒ Linear Function

 Linear Function/Aggregation: Input will be given, weights will be associated, and we will get the sum.

- W is a matrix here.
- X is a vector.

function output inputs term feature vector
$$\mathbf{x}$$

$$z_m = f(x_n, w_{mn}) = b + \sum_{m} x_n w_{mn}$$
function index for each neuron and natrix row element m of feature matrix W

$$x = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} \quad W = egin{bmatrix} w_{11} & w_{12} \ w_{21} & w_{22} \ w_{31} & w_{32} \end{bmatrix}$$

$$z = W^T x \ = egin{bmatrix} w_{11} & w_{12} & w_{13} \ w_{21} & w_{22} & w_{23} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

$$=egin{bmatrix} x_1w_{11}+x_2w_{12}+x_3w_{13}\ x_1w_{21}+x_2w_{22}+x_3w_{23} \end{bmatrix}$$

• Z is the output of a linear function.

$$= egin{bmatrix} z_1 \ z_2 \end{bmatrix}$$

Sigmoid Function

$$a = egin{bmatrix} a_1 \ a_2 \end{bmatrix}$$

- The mid-portion is "kind of" linear.
- But the whole function has nonlinearity. It's getting saturated on both ends.
- Linear models can not do well with the data that is not linearly separable.

- Requirements for AN
 - 1. Aggregation Function
 - 2. Activation function
- If the input is not strong, the activation function will not fire. The value of the activation function will not be **activated**.

Output Function

$$\hat{y} = f(a_m) egin{cases} +1, & ext{if } a > 0.5 \ -1, & ext{otherwise} \end{cases}$$

- · Threshold function
- Binary Classification

 $\hat{y} = f(a_m) = a_m$

- Identity Function
- Regression Problem
- Softmax Function
- Multiclass Classification

$\hat{y} = \sigma(a)_i = rac{e^{eta a_i}}{\sum_{j=1}^k e^{eta z_j}}$

Cost Function

- Loss Function
- Cost Function
- Objective Function
- i. mean squared error
- ii. sum of squared error
- iii. binary cross entropy

Forward Propagation

Forward Propagation/Forward Pass

- Each layer has an output and an activation function.
- Weight matrix(w, transposed) and feature matrix(x).
- z value is passed through the activation function. Then prediction is based on threshold value.

Backpropagation Algorithm

- Minimize the error via gradient descent
- Convex and non-convex optimization, Introducing nonlinearities.
- Multiple "valleys" with "local minima".

• We have to find the global minima/minimum from multiple local minima.

Backprop for multilayer single-unit perceptron

$$E = \frac{1}{2} \sum_k (a_k - y_k)^2$$

- How the error E change when we change the activation by a tiny amount.
- How the activation a changes when we change the a0ctivation z by a tiny amount.
- How z changes when we change the weights w by a tiny amount.

$$rac{\partial E}{\partial w^{(L-1)}} = rac{\partial E}{\partial a^{(L)}} imes rac{\partial a^{(L)}}{\partial z^{(L)}} imes rac{\partial z^{(L)}}{\partial a^{(L-1)}} imes rac{\partial a^{(L-1)}}{\partial z^{(L-1)}} imes rac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$

$$rac{\partial E}{\partial w^{(L-1)}} = rac{\partial E}{\partial a^{(L)}} imes rac{\partial a^{(L)}}{\partial z^{(L)}} imes rac{\partial z^{(L)}}{\partial a^{(L-1)}} imes rac{\partial a^{(L-1)}}{\partial z^{(L-1)}} imes rac{\partial z^{(L-1)}}{\partial w^{(L-1)}}$$

How do I learn the bias value?

Backpropagation for multi-layer multi-unit perceptron

- Modern Neural Nets
- Shallow networks
- Feed forward neural network
- Artificial Neural Networks
- ANN
- Fully Connected Neural Networks
- FCNN
- FC

MLP Learning Rule

$$w^L_{jk} = w^L_{jk} - \eta imes rac{\partial E}{\partial w^L_{jk}}$$

$$b^{(L)} = b^{(L)} - \eta imes rac{\partial E}{\partial b^{(L)}}$$

- We will get derivatives from the backpropagation.
- Weights will be updated based on derivatives.
- There is a learning rate multiplied by the derivative.

Finding the global minima

 The optimal point / global minimum will be found only when

How learning rate affect the weights

the conditions are met. So, **learning rate** affects the weight.

- We may miss the expected weight or global minima if the learning rate is high.
- If the learning rate is small, more time will take to converge.
- ⇒ Optimal Learning Rate: Start with a high value, which will get lower with the steps.

Plot of learning rate

MP neuron vs. Perceptron vs. ADALINE vs. MLP				
	MP neuron, 1943	Perceptron, 1958	ADALINE, 1960	MLP, 1986
	Linear aggregation f	Linear aggregation f	Linear aggregation f	Linear aggregation f
	No weight	Weighted sum	Weighted sum	Weighted sum
	No bias	No bias	No bias	Bias
	Manual threshold f	Heaviside step f	Heaviside step f	Sigmoid f
	Linear units	Linear units	Linear units	Non-linear units
	Cannot solve XOR	Cannot solve XOR	Sub-optimal solution	Can solve
	No Learning rule	Simple learning rule	Learning rule on GD	Learning rule on BP
	No LR	No LR	LR	LR
	Slowest	Faster	More Faster	Fastest