به نام خدا

گزارشکار آزمایش نهم مدارهای الکتریکی و الکترونیکی

آشنایی با ترانزیستورهای MOS

چمران معینی

9971-27

هدف آزمایش: در آزمایش به طور مختصر با ترانزیستورهای MOS و عملکردشان آشنا میشویم.

(1

تعیین ولتاژ اَستانهی ترانزیستور NMOS

مداری مانند مدار زیر میبندیم:

ولتاژی که از V3 به ترانزیستور متصل می شود V gate source است که می خواهیم ببینیم باید به چه مقداری برسد تا ترانزیستور روشن شود، پس از تحلیل DC Sweep استفاده می کنیم و ولتاژهای ۲۰ تا ۵ را امتحان می کنیم:

میبینیم که از حدود ۱.۷ تا ۱.۸ ولت، ترانزیستور جریان رو از خود عبور داده. روی این ناحیه بیشتر زوم می کنیم:

میبینیم که مقدار دقیق تر در نزدیکی ۱.۷۹ ولت است.

بایاس سادهی ترانزیستور NMOS

مداری مشابه شکل زیر میبندیم:

هدف این است مقاومت سورس و مقاومت درین را طوری تنظیم کنیم که جریان درین mA و ولتاژ درین 8 V بشود.

مدار را به این شکل میبندیم:

خروجی را بررسی می کنیم:

میبینیم که هنگامی که ولتاژ گیت حدود 5.518 V باشد، جریان برابر با 20 mA میشود.

برای این که ولتاژ گیت برابر با V 5.5 باشد، باید Rg را تنظیم کنیم. این طور محاسبه می کنیم:

$$5.518 = 10 * \frac{R_G}{100k + R_G} \rightarrow 10R_G = 551.8k + 5.518R_G \rightarrow R_G = \frac{551.8k}{10 - 5.518} = 123114\Omega$$

پس مدارمان را به این شکل میبندیم:

میبینیم که جریان و ولتاژ درین، دقیقا برابر با مقداری که میخواستیم، شدند.

تقویت کننده ی سورس مشتر ک با ترانزیستور NMOS

مداری به این شکل میبندیم:

با تحلیل Bias Point ، خروجی به این شکل خواهد بود:

براساس این مقادیر، جدول زیر را پر می کنیم:

I_d (A)	V_d (V)	V_g (V)	پارامتر
297 * 10 ⁻⁶	7.027	1.826	مقدار اندازهگیری شده

در تحلیل Time Domain نیز خواهیم داشت:

رنگ سبز، ولتاژ ورودی و رنگ قرمز، ولتاژ خروجی را نشان میدهد.

مشخص است که ولتاژ ورودی ما هم سینوسیست اما در شکل چندان به نظر نمی آید. اگر روی آن زوم کنیم، میبینیم:

میخواهیم جدول زیر را پر کنیم.

مىبينيم كه دامنهى موج خروجى 648 mV است.

درصد خطا	تئورى A_{v}	عملی A_{v}	$V_o(\text{mV})$	$V_{in}(mV)$	$R_d(k\Omega)$
		64.8	648	10	10
					5

.حال همین مراحل را با $R_d=6k\Omega$ تکرار می کنیم

درصد خطا	تئورى A_v	عملی A_{v}	$V_o(mV)$	$V_{in}(mV)$	$R_d(k\Omega)$
	3.848	64.8	648	10	10
		32.4	324	10	5

حال مقادیر تئوری را محاسبه می کنیم تا بتوانیم خطا را محاسبه کنیم:

$$A_v = \frac{v_{ds}}{v_{gs}} = \frac{7.027}{10 * \frac{10.5}{47 + 10.5}} = \frac{7.027}{1.826} = 3.848$$

درصد خطا	تئورى A_v	عملی A_{v}	$V_o(\text{mV})$	$V_{in}(mV)$	$R_d(k\Omega)$
	3.848	64.8	648	10	10
	4.662	32.4	324	10	5