Analiza algorytmów – Problem Wieży z Hanoi

Imię, nazwisko, klasa:

W problemie wież z Hanoi mamy trzy pręty oznaczone A, B i C oraz n okrągłych krążków o średnicach odpowiednio 1, 2, ..., n. Na początku wszystkie krążki nałożone są na pręt A, w kolejności od największego do najmniejszego (największy na dole, najmniejszy na górze). Układ ten (dla n = 3) został przedstawiony na poniższym rysunku.

Zgodnie z regułami problemu krążki można przekładać między prętami. W jednym ruchu możliwe jest przełożenie krążka znajdującego się na szczycie jednego z prętów na szczyt innego pręta, pod warunkiem że nie kładziemy przekładanego krążka na krążek mniejszy od niego. Na przykład na poniższym rysunku krążek 2 możemy przełożyć z pręta A na pręt C, natomiast niemożliwe jest przełożenie go na pręt B.

Zadanie polega na przełożeniu wszystkich krążków z pręta A na pręt B, przy czym można korzystać z pomocniczego pręta C. Na poniższym rysunku przedstawiono efekt końcowy.

Problem wież z Hanoi można rozwiązać za pomocą algorytmu rekurencyjnego. W algorytmie pręty: startowy, docelowy i pomocniczy, podane są jako parametry wejściowe, odpowiednio x, y i z. Algorytm polega na tym, że najpierw przenosimy n-1 krążków na pręt pomocniczy z, potem największy krążek zostaje przeniesiony na pręt docelowy y, a na koniec n-1 krążków zostaje przeniesionych z pręta pomocniczego z na pręt docelowy y, przy czym pręt startowy x traktowany jest jako pomocniczy.

Specyfikacja algorytmu:

Dane:

n — liczba całkowita dodatnia,

x — nazwa pręta startowego,

y — nazwa pręta docelowego,

z — nazwa pręta pomocniczego.

Wynik:

ciąg ruchów opisujący rozwiązanie problemu wież z Hanoi z n krążkami, w którym na początku wszystkie krążki znajdują się na pręcie x, a na końcu mają znaleźć się na pręcie y, zaś pomocniczym prętem jest z.

Uwaga: Pojedynczy ruch zapisujemy za pomocą znaku =>. Na przykład C => B oznacza przeniesienie krążka z pręta C na pręt B.

funkcja wieże(n, x, y, z)jeżeli n = 1wypisz x => yw przeciwnym razie wieże(n - 1, x, z, y)wypisz x => y

wieże(n-1, z, y, x)

Przykład

Wywołanie wieże(2, A, B, C) spowoduje dwa wywołania rekurencyjne: wieże(1, A, C, B) oraz wieże(1, C, B, A). Ciąg ruchów utworzony przez wieże(2, A, B, C) ma postać:

gdzie podkreślone ruchy są utworzone przez rekurencyjne wywołania wieże(1, A, C, B) oraz wieże(1, C, B, A).

Zadanie 1

Podaj wszystkie wywołania rekurencyjne funkcji wieże (wraz z ich parametrami), do których dojdzie w wyniku wywołania wieże (3, A, B, C). Odpowiedź podaj w poniższej tabeli, uzupełniając parametry wszystkich wywołań rekurencyjnych.

n	Х	у	Z
3	Α	В	С
2	Α	С	В
1	Α	В	С
1			
2			
1			
1			

Zadanie 2

Prześledź działanie wieże(3, A, B, C) i uzupełnij poniżej wygenerowany ciąg ruchów:

A => B; A => C;......

Odpowiedź:

Zadanie 3

Niech H(n) oznacza liczbę ruchów wykonanych przez podany algorytm dla n krążków. Zauważ, że rozwiązanie problemu dla n > 1 krążków wymaga jednego ruchu oraz dwukrotnego rozwiązania problemu dla n - 1 krążków. W oparciu o tę obserwację uzupełnij poniższą tabelę.

n	H(n)
1	1
2	3
3	
4	
5	
7	
10	

Podaj ogólny wzór określający liczbę ruchów dla n krążków:

Odpowiedź: H(n)=

Zadanie 4

Poniżej znajduje się nierekurencyjne rozwiązanie problemu wież z Hanoi:

Specyfikacja:

Dane:

n — liczba całkowita dodatnia,

Wynik:

ciąg ruchów opisujący rozwiązanie problemu wież z Hanoi z n krążkami, w którym na początku wszystkie krążki znajdują się na pręcie A, a na końcu powinny się znaleźć na pręcie B.

Algorytm

dopóki (pręt A jest niepusty lub pręt C jest niepusty) wykonuj
jeżeli n jest parzyste:
przenieś krążek nr 1 o jedną pozycję w lewo
w przeciwnym razie
przenieś krążek nr 1 o jedną pozycję w prawo
przenieś krążek między prętami, na których nie ma krążka nr 1

W powyższym algorytmie przeniesienie krążka nr 1 o jedną pozycję w prawo oznacza wykonanie jednego z ruchów A => B, B => C lub C => A, tak aby krążek nr 1 został przeniesiony na inny pręt. Analogicznie przeniesienie krążka w lewo oznacza wybranie jednego z ruchów A => C, B => A lub C => B, tak aby krążek nr 1 został przeniesiony na inny pręt.

Ruch w kroku (6) powyższego algorytmu jest określony jednoznacznie, gdyż dopuszczalne jest tylko położenie mniejszego krążka na większym, a nie odwrotnie.

Przykład

Dla n = 3 powyższy algorytm wykona następujący ciąg ruchów:

$$A => B$$
; $A => C$; $B => C$; $A => B$; $C => A$; $C => B$; $A => B$,

gdzie ruchy podkreślone przenoszą krążek nr 1 o jedną pozycję w prawo.

Wypisz ciąg ruchów, który poda powyższy algorytm dla n = 4. Uzupełnij poniższą tabelę:

Podkreśl przesunięcia które przenoszą krążek o 1 pozycje w prawo lub w lewo

W kolumnie "Stan wież po przesunięciu" zastosuj format a - b - c, gdzie a,b,c oznaczają krążki na prętach oraz stanem wejściowym jest 1234 - x - x, gdzie x to brak krążków na danym pręcie.

Nr operacji	Przesunięcie krążka	Stan wież po przesunięciu
1	<u>A => C</u>	234 - x – 1
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		