

ELEC 341: Systems and Control

Lecture 15

Root locus: PID controller design

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- Transient
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Important remarks on using MATLAB

- It is convenient to use **MATLAB Control System Toolbox** in practical controller design problems.
 - ☐ Hand-calculations are often impractical for real-life engineering problems.
- Theory that you have learned so far is still very important!
 - ☐ These theories include topics such as, Routh-Hurwitz, how to sketch RL, how to use RL for controller design, etc.
 - ➤ You have to detect errors, if any, in the results that MATLAB returns.
 - ➤ You have to interpret what MATLAB returns.
 - ➤ If we know theory, we can take full advantage of MATLAB to design controllers effectively.

SISO Design Tool in Matlab

- Graphical-user interface (GUI) that allows you to design compensators.
- Type "sisotool" in Matlab prompt.
 - >> sisotool
- Select "Root locus" from *View* → *Design Plots* configuration.

SISO Design Tool (Gain Compensator)

Input the plant

>> sisotool(sysG)

SISO Design Tool (Gain Compensator), (cont'd)

 You will see the root locus plot for

$$G(s) = \frac{1}{s(s+2)}$$

- The default setting is C(s) = 1.
- You can right-click on the plots to change the gain (among other things).

SISO Design Tool (Gain Compensator), (cont'd)

• Modify the gain for "good" step response.

 By right-clicking on these figures, you can add various specs on the figures.

SISO Design Tool (Lead Compensator)

 Add a pole & a zero of a compensator, and adjust its gain:

$$C_{Lead}(s) = \frac{15.84(s+2.5)}{s+6.86}$$

- If necessary, move the pole and zero
 - by click-and-drag, or
 - Design → Edit Compensator...

This is not with the gain we wanted (i.e., 15.84).

SISO Design Tool (Lead Compensator), (cont'd)

 Adjust the gain to 15.84 in order to obtain the final step response.

a place of mind

SISO Design Tool (Lead-Lag Compensator)

- *Add* a pole & a zero of $C_{Lag}(s) = \frac{s + 0.05}{s + 0.005}$
- Adjust controller gain to 15.84.

$$C_{LL}(s) = \underbrace{\frac{15.84(s+2.5)}{s+6.86}}_{C_{Lead}(s)} \times \underbrace{\frac{s+0.05}{s+0.005}}_{C_{Lag}(s)}$$

Useful MATLAB commands in Control System Toolbox

- sys=tf(num,den): Transfer function generation with numerator and denominator coefficient vector (num and den)
- pole(sys), zero(sys): Pole/zero calculations
- step(sys), impulse(sys): Step and impulse responses
- feedback(sys1,sys2): Calculation of closed-loop transfer function (Black's formula)
- rlocus(sys): Root locus drawing
- sisotool(sys): GUI for controller design

See the manual or help-command (e.g., >> help tf)

PID controller

t-domain:
$$x(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Proportional Integral Derivative

s-domain:
$$C(s) = K_p + \frac{K_i}{s} + K_d s = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$$

Parallel form

Standard form

$$T_D = \frac{K_d}{K_p}$$
; $T_I = \frac{K_p}{K_i}$

Notes on PID controller

- Most popular in process and robotics industries
 - Good performance
 - Functional simplicity (operators can easily tune.)
- To avoid high frequency noise amplification, derivative term is often implemented as

$$K_d s \approx \frac{K_d s}{\tau_d s + 1}$$

with τ_d much smaller than plant time constant.

- PI controller $C(s) = K_p + K_i/s$
- PD controller $C(s) = K_p + K_d s$

Example 1

- Plot y(t) for unit step input r(t) with
 - P controller
 - PI controller
 - PID controller

Example 1 (cont'd) P controller

$$C(s) = K_p$$

- Simple
- Steady state error
 - Higher gain gives smaller SS error
- Stability
 - Higher gain gives faster (shorter rise time) and more oscillatory response

Example 1 (cont'd) Interpretation: P controller

Steady state error

$$e_{ss} = \frac{1}{1 + G(0)C(0)}$$

= $\frac{1}{1 + K_p}$

(This K_p is the P controller gain.)

Example 1 (cont'd) PI controller

$$C(s) = K_p + \frac{K_i}{s}$$

- Zero steady state error (provided that CL is stable.)
- Stability
 - Higher gain (K_i) gives faster (shorter rise time) and more oscillatory response

Example 1 (cont'd) Interpretation: PI controller

Root locus by increasing K_i

$$1 + \frac{1}{(s+1)^3} \cdot \frac{s + K_i}{s} = 0$$

$$\rightarrow s \{1 + (s+1)^3\} + K_i = 0$$

Steady state error

$$e_{ss} = \frac{1}{1 + G(0)C(0)} = 0$$

(due to an integrator in C(s))

Example 1 (cont'd) PID controller

$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

- Zero steady state error (due to integral control)
- Stability
 - Higher gain (K_d) gives more damped response.
- Too high gain (K_d) worsens performance.

Example 1 (cont'd) Interpretation: PID controller

Root locus

$$1 + \frac{1}{(s+1)^3} \cdot \frac{K_d s^2 + 2.5s + 1.5}{s} = 0$$

$$1 + K_d \frac{s^2}{s(s+1)^3 + 2.5s + 1.5} = 0$$

Steady state error

$$e_{ss} = \frac{1}{1 + G(0)C(0)} = 0$$

(due to an integrator in C(s))

How to tune PID parameters

- Empirical (Model-free)
 - Trial and error
 - > Useful only when trial-and-error tuning is allowed.
 - ❖ Ziegler-Nichols tuning rule
 - Useful even if a system is too complex to model.
- Model-based
 - ❖ Root locus (RL)
 - Frequency response (FR) approach
 - Both RL and FR are useful only when a model is available.
 - ➤ Both RL and FR become necessary if a system has to work at the first trial.

Ziegler-Nichols PID tuning rules

Step response method (only for stable systems)

Open-loop step response PID parameters

$$C(s) = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$$

Туре	K_p	T_I	T_D
Р	1/a		
ΡI	0.9/a	3 au	
PID	1.2/a	2τ	0.5 au

Ziegler-Nichols PID tuning rules

Ultimate sensitivity method

Closed-loop step response with a gain controller

PID parameters

$$C(s) = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$$

y(t)	Increase gain and find K_c generating oscillation				
	(marginally stable case).				
	$T_{c} \rightarrow t$				

Type	K_p	T_{I}	T_D
Р	$0.5K_{c}$		
ΡI	$0.4K_c$	$0.8T_c$	
PID	$0.6K_{c}$	$0.5T_c$	$0.125T_{c}$

Example 1 (revisited) $G(s) = \frac{1}{(s+1)^3}$

Step response method

Ultimate sensitivity method

Example 1: Open-loop step response for "step response method"

Example 1 (cont'd): Closed-loop step responses for "Ultimate sensitivity method"

Summary

- Controller design based on root locus in MATLAB
- PID control
 - Most popular controller in industry
 - Simple controller structure & controller tuning
- Next
 - Frequency response