Chapter Nine

Chapter Nine

Asset Returns and Stylized Facts of Financial Data

1/40

Outline

- Asset Returns
- Behavior and Stylized Features of Financial Return Data

Section One

Section One: Asset Returns

S&P 500 Index: January 1985 - February 2011

▶ Back

Apple Stock: January 1985 - February 2011

Reasons for using returns

- complete summary of the investment opportunity
- unit-free
- more attractive statistical properties

Simple Returns: One-period

- Let P_t be the price of an asset at time t. Assume that the asset pays no *dividends*.
- One-period Simple Return:

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{P_t}{P_{t-1}} - 1$$

which is the profit rate of holding the asset from time t-1 to t. Often, we write $R_t = 100R_t\%$.

One-period Gross Return is defined as

$$\frac{P_t}{P_{t-1}} = R_t + 1.$$

Simple Returns: Multiperiod

• *k*-period Simple Return:

$$R_t[k] = \frac{P_t - P_{t-k}}{P_{t-k}} = \frac{P_t}{P_{t-k}} - 1.$$

k-period Gross Return is defined as

$$1 + R_t[k] = \frac{P_t}{P_{t-k}}.$$

Compound Return:

$$1 + R_{t}[k] = \frac{P_{t}}{P_{t-1}} \times \frac{P_{t-1}}{P_{t-2}} \times \dots \times \frac{P_{t-k+1}}{P_{t-k}}$$

$$= (1 + R_{t})(1 + R_{t-1}) \dots (1 + R_{t-k+1})$$

$$= \prod_{j=0}^{k-1} (1 + R_{t-j}).$$

Simple Returns: Multiperiod (Cont'd)

- That is, k-period gross return is the product of the k one-period gross returns involved.
- When the time unit is small,

$$R_t[k] \approx R_t + R_{t-1} + \dots + R_{t-k+1}.$$

Annualized Returns

The actual holding period is important in comparing returns.

Asset Returns

- If the time interval is not given, it is implicitly assumed to be one year.
- If the asset was held for k years, the annualized return is defined as

Annualized
$$\{R_t[k]\}$$
 = $\left[\prod_{j=0}^{k-1} (1 + R_{t-j})\right]^{1/k} - 1$
 = $\exp\left[\frac{1}{k} \sum_{j=0}^{k-1} \ln(1 + R_{t-j})\right] - 1$.

Annualized Returns (Cont'd)

If the one-period returns are small, using first-order Taylor expansion, we have

Annualized
$$\{R_t[k]\} \approx \frac{1}{k} \sum_{j=0}^{k-1} R_{t-j}$$
.

Accuracy of the approximation may not be sufficient in some application.

Qiuhua Xu (SWUFE)

Log Returns

Log Return:

$$r_t = \ln(P_t) - \ln(P_{t-1}) = \ln(1 + R_t)$$

which is also called continuously compounded return.

- Advantage:
 - comparable (frequency of compounding of the return does not matter)
 - time-additive

$$r_t[k] = \ln(1 + R_t[k]) = \ln\left[\prod_{j=0}^{k-1} (1 + R_{t-j})\right]$$

= $\sum_{j=0}^{k-1} \ln(1 + R_{t-j}) = \sum_{j=0}^{k-1} r_{t-j}$.

Qiuhua Xu (SWUFE)

Log Returns (Cont'd)

- Disadvantage: not additive across a portfolio
 - The simple return of an N-asset portfolio is the weighted average of the individual simple returns of the N assets, denoted R_{it} , for $i=1,\cdots,N$.
 - Let p denote the portfolio with investment weight ω_i on asset i and $\sum_{i=1}^N \omega_i = 1$. The portfolio return is

$$R_{p,t} = \sum_{i=1}^{N} \omega_i R_{it}.$$

• The portfolio log return $r_{p,t}$ satisfies

$$e^{r_{p,t}} = \sum_{i=1}^{N} \omega_i e^{r_{it}}.$$

• However, $r_{p,t} \neq \sum_{i=1}^{N} \omega_i r_{it}$.

Log Returns (Cont'd)

• If the simple returns are all small in magnitude, then

$$r_t = \ln(1 + R_t) \approx R_t,$$

$$r_{p,t} \approx \sum_{i=1}^{N} \omega_i r_{it}.$$

Log Returns (Cont'd)

- When the holding period increases, the discrepancy is more apparent.
- Simple returns are always greater than the corresponding log returns.

Continuous Compounding

- The log return r_t is also called *continuously compounded return* due to its close link with the concept of compound rates or interest rates.
- Suppose that the quoted simple interest rate per annum is r and is unchanged, and the earnings are paid m times per annum.
- Let the initial deposit be \$1.00. One year later, the value of the deposit becomes

$$\$1(1+\frac{r}{m})^m$$

• Let $m \to \infty$, $\lim_{m \to \infty} (1 + \frac{r}{m})^m = e^r$.

Qiuhua Xu (SWUFE)

Continuous Compounding (Cont'd)

Туре	Number of Payments	Interest Rate per Period	Net Value
Annual	1	0.1	\$1.10000
Semiannual	2	0.05	\$1.10250
Quarterly	4	0.025	\$1.10381
Monthly	12	0.0083	\$1.10471
Weekly	52	0.1/52	\$1.10506
Daily	365	0.1/365	\$1.10516
Continuously	∞	·	\$1.10517

Table: Illustration of effects of compounding: r = 10%.

 $e^{0.1} = 1.105170918075648 \cdots$

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ √○⟨○⟩

Continuous Compounding (Cont'd)

- r has two interpretations:
 - the simple annual return if the interest is only paid once at the end of the year
 - the annual log return if the interest is compounded continuously

Adjustment for Dividends

- Many assets pay dividends to their shareholders.
- A dividend is typically allocated as a fixed amount of cash per share.
- Assume that all dividends are cashed out and are not re-invested in the asset, then

$$R_t = \frac{P_t + D_t}{P_{t-1}} - 1, \quad r_t = \ln(P_t + D_t) - \ln P_{t-1},$$

where D_t is the dividend payment of an asset between dates t-1 and t.

Excess Returns

 Excess Return: the difference between an asset's return and the return on some reference asset (risk-free asset*):

$$Z_t = R_t - R_{0t}, \quad z_t = r_t - r_{0t},$$

where R_{0t} and r_{0t} are the simple and log returns of the reference asset, respectively.

- Commonly used referene rates:
 - 3-month U.S. Treasury bill return
 - LIBOR rate
 - S&P 500 index or CRSP value-weighted index

Section Two

Section Two: Behavior and Stylized Features of Financial Return Data

 Moments of a Random Variable: the l-th moment of a continuous random variable X is

$$m'_l = E(X^l) = \int_{-\infty}^{\infty} x^l f(x) dx,$$

where $E(\cdot)$ stands for expectation and f(x) is the pdf of X. If l=1, E(X) is the mean or expectation of X, denoted as μ_X .

The l-th central moment of X is

$$m_l = E[(X - \mu_X)^l] = \int_{-\infty}^{\infty} (x - \mu_X)^l f(x) dx,$$

• When l=2, $E[(X-\mu_X)^2]$ is called the variance of X, denoted as σ_V^2 . The square root, σ_X , of variance is called standard deviation.

22/40

Two useful normalized central moments:

• skewness: $S(X)=E[\frac{(X-\mu_X)^3}{\sigma_X^3}]$, which measures the symmetry of X with respect to its mean.

Qiuhua Xu (SWUFE)

Two useful normalized central moments:

• kurtosis: $K(X) = E[\frac{(X - \mu_X)^4}{\sigma_X^4}]$, which measures the tail behavior of X, and K(X) - 3 is called excess kurtosis.

Kurtosis for Different Distributions With a Mean of 0 and SD of 1

24/40

- In practice, moments can be estimated by their sample counterparts.
- Let $\{x_1, \ldots, x_T\}$ be a random sample of X with T observations.
- Sample mean: $\hat{\mu}_X = \frac{1}{T} \sum_{t=1}^T x_t$
- Sample variance: $\hat{\sigma}_X^2 = \frac{1}{T-1} \sum_{t=1}^T (x_t \hat{\mu}_X)^2$
- Sample skewness: $\hat{S}(X) = \frac{1}{(T-1)\hat{\sigma}_X^3} \sum_{t=1}^T (x_t \hat{\mu}_X)^3$
- Sample kurtosis: $\hat{K}(X) = \frac{1}{(T-1)\hat{\sigma}_X^4} \sum_{t=1}^T (x_t \hat{\mu}_X)^4$

- **◆ □ ▶ ◆ □ ▶ ◆ 恵 ▶ ◆ 恵 ・ 夕** �� ��

Some useful test:

• For an asset, an interesting question is whether the mean of its return is zero. We can consider the hypothesis testing $H_0: \mu_X = 0$ vs. $H_a: \mu_X \neq 0$. The test statistic is

$$t = \frac{\sqrt{T}\hat{\mu}_X}{\hat{\sigma}_X},$$

which $\xrightarrow{d} N(0,1)$.

26/40

- If X is normal, then $\hat{S}(X)$ and $\hat{K}(X)-3$ are distributed asymptotically as normal with zero mean and variances 6/T and 24/T, respectively.
- Given an asset return series $\{r_1, \ldots, r_T\}$, to test the skewness of the returns, we consider $H_0: S(r) = 0$ vs. $H_a: S(r) \neq 0$. The test statistic is

$$t = \frac{\hat{S}(r)}{\sqrt{6/T}},$$

which $\xrightarrow{d} N(0,1)$.

• One can also test the excess kurtosis of the return series using $H_0: K(r) - 3 = 0$ vs. $H_a: K(r) - 3 \neq 0$. The test statistic is

$$t = \frac{\hat{K}(r) - 3}{\sqrt{24/T}},$$

which $\xrightarrow{d} N(0,1)$.

Jarque & Bera (1987)'s normality test

$$JB = \frac{\hat{S}^2(r)}{6/T} + \frac{(\hat{K}(r) - 3)^2}{24/T},$$

which $\xrightarrow{d} \chi_2^2$.

28/40

Stylized Features of Financial Return Data

Stationarity: most return sequences can be modeled as a stochastic processes with at least time-invariant first two moments.

- Asymmetry: the distribution of return r_t is often negatively skewed, suggesting that extreme negative returns are more frequent than extreme positive returns.

Stylized Features of Financial Return Data (Cont'd)

- Volatility clustering: large price changes occur in clusters.
- Long range dependence: daily squared and absolute returns exhibit small and significant autocorrelations.

Distribution of Returns

• The most general model for $\{r_{it}; i=1,\ldots,N; t=1,\ldots,T\}$ is its joint distribution function

$$F_r(r_{11},...,r_{N1};...;r_{1T},...,r_{NT};Y;\theta),$$

where Y is a state vector and θ is a vector of parameters that uniquely determines the distribution function $F_r(\cdot)$.

• Cross-sectional aspect of financial econometrics: the distribution of $\{r_{1t}, \ldots, r_{Nt}\}$ for a given time index t.

• Time series aspect of financial econometrics: the distribution of $\{r_{i1}, \ldots, r_{iT}\}$ for a given asset i,

$$F(r_{i1}, \dots, r_{iT}; \boldsymbol{\theta}) = F(r_{i1})F(r_{i2}|r_{i1}) \cdots F(r_{iT}|r_{i,T-1}, \dots, r_{i1})$$

$$= F(r_{i1}) \prod_{t=2}^{T} F(r_{it}|r_{i,t-1}, \dots, r_{i1}).$$

and, using probability density functions,

$$f(r_{i1},\ldots,r_{iT};\boldsymbol{\theta}) = f(r_{i1};\boldsymbol{\theta}) \prod_{t=2}^{T} f(r_{it}|r_{i,t-1},\ldots,r_{i1};\boldsymbol{\theta}).$$

Qiuhua Xu (SWUFE)

Some useful statistical distributions:

- Normal Distribution: the simple returns $\{R_{it}|t=1,\ldots,T\}$ are traditionally assumed to be i.i.d. Normal.
 - Advantage: tractable statistical properties
 - Disadvantage:
 - (1) simple return has lower bound -1;
 - (2) $R_{it}[k]$ is not normally distributed;
 - (3) inconsistent with the stylized facts of asset returns.

• Lognormal Distribution: the log returns r_t of an asset are

$$r_t \sim i.i.d.N(\mu, \sigma^2).$$

The simple return are then i.i.d. lognormal random variables with mean and variance given by

$$E(R_t) = \exp(\mu + \frac{\sigma^2}{2}) - 1, Var(R_t) = \exp(2\mu + \sigma^2)[\exp(\sigma^2) - 1].$$

Let m_1 and m_2 be the mean and variance of the simple return R_t , which is lognormally distributed. Then the mean and variance of the corresponding log return r_t are

$$E(r_t) = \ln \left[\frac{m_1 + 1}{\sqrt{1 + m_2/(1 + m_1)^2}} \right], Var(r_t) = \ln \left[1 + \frac{m_2}{(1 + m_1)^2} \right].$$

- Advantage: (1) $r_t[k]$ is normally distributed; (2) no lower bound for r_t .
- Disadvantage: inconsistent with all the properties of historical stock returns, for example, many stock returns exhibit a positive excess kurtosis.

 Scale Mixture of Normal Distribution: Recent studies of stock returns tend to use scale mixture or finite mixture of normal distributions. An example of finite mixture of normal distributions is

$$r_t \sim (1 - X)N(\mu, \sigma_1^2) + XN(\mu, \sigma_2^2), \quad \sigma_1^2 < \sigma_2^2,$$

where X is a Bernoulli random variable such that $P(X=1)=\alpha$ and $P(X=0)=1-\alpha$ with $0<\alpha<1$.

For instance, $\alpha = 0.05$:

$$N(\mu, \sigma_1^2)$$
, with the probability 95%, $N(\mu, \sigma_2^2)$, with the probability 5%. Heavy Tails!

- Advantage: maintain the tractability of normal; have finite higher order moments; capture the excess kurtosis.
- Disadvantage: hard to estimate the mixture parameters.

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q や 。

35/40

Qiuhua Xu (SWUFE) Financial Econometrics July 10, 2022

Figure: S&P 500 in January 1985 - February 2011

Figure: Apple stock in January 1985 - February 2011

Figure: S&P 500 in January 1985 - February 2011

Figure: Apple stock in January 1985 - February 2011

Figure: Comparison of finite mixture and standard normal density functions.

