Randomized Primality Testing

COMP 3711H - HKUST Version of 22/12/2014 M. J. Golin

Introduction

- Many algorithms require large primes,
 e.g., Universal Hashing and RSA public key cryptography.
 How can we find them?
- Known (Lagrange Prime Number Theorem) that a random n bit number has around a 1/n chance of being prime. So, if looking for a random n bit prime, can just choose a random 1000 bit number and check if it's prime. After average O(n) steps will find a prime.
- How can we check if it's prime? Standard Sieve of Eratosthenes requires $O(\sqrt{N})$ time to check number N. If number has 1000 bits, that's $2^{\sqrt{N}}$ time. Much too slow to be useful.
- In this class we will see a $Randomized\ Algorithm$ for checking primality that will run in $O(\log N)$ time (or $O(\log^3 N)$ bit operations). Until 2002, only randomized algorithms were known. Deterministic algorithms developed since then are still not as simple as the randomized ones, so randomized ones are still used.

Las Vegas vs. Monte Carlo

There are two very different types of Randomized Algorithms

Las Vegas vs. Monte Carlo

There are two very different types of Randomized Algorithms

• Las-Vegas Algorithms: Algorithms always give correct answer but their running time is random.

All randomized algroithms we have seen so far are Las-Vegas.

Las Vegas vs. Monte Carlo

There are two very different types of Randomized Algorithms

- Las-Vegas Algorithms: Algorithms always give correct answer but their running time is random.
 - All randomized algroithms we have seen so far are Las-Vegas.
- Monte Carlo Algorithms: Algorithm is deterministic but only has a given probability of being correct.
 - Can run algorithm many times to push probability of correctness higher.
 - The Rabin-Miller primality testing algorithm we will see, will be a Monte Carlo Algorithm.

Input is p the number to check, and a, integer 1 < a < p.

Prime(p, a):

Input is p the number to check, and a, integer 1 < a < p.

• If p prime, then Prime(p, a) always returns True.

Prime(p, a):

Input is p the number to check, and a, integer 1 < a < p.

- If p prime, then Prime(p, a) always returns True.
- If p composite, then Prime(p, a) may return False or True.
 - If it returns False, α is a *proof* of compositeness.
 - Less than 1/4 of a's will return True.

Input is p the number to check, and a, integer 1 < a < p.

- If p prime, then Prime(p, a) always returns True.
- If p composite, then Prime(p, a) may return False or True.
 - If it returns False, α is a *proof* of compositeness.
 - Less than 1/4 of a's will return True.

Lemma: If p is composite then

$$\left| \{ a : 1 < a < p \text{ and } Prime(p, a) = True \} \right| \le \frac{1}{4}.$$

Prime(p, a):

Input is p the number to check, and a, integer 1 < a < p.

Prime(p, a):

Input is p the number to check, and a, integer 1 < a < p.

Algorithm:

```
For i=1 to k

Choose a at random from \{2,3,\ldots,p-1\}

If Prime(p,a) == False

Return(p is composite with proof a).

Return(p is Prime).
```

Prime(p, a):

Input is p the number to check, and a, integer 1 < a < p.

Algorithm:

```
For i=1 to k

Choose a at random from \{2,3,\ldots,p-1\}

If Prime(p,a) == False

Return(p is composite with proof a).

Return(p is Prime).
```

If algorithm returns composite, the number is composite. If algorithm returns prime the algorithm is only wrong with probability $\left(\frac{1}{4}\right)^k$.

Prime(p, a):

Input is p the number to check, and a, integer 1 < a < p.

Algorithm:

```
For i=1 to k

Choose a at random from \{2,3,\ldots,p-1\}

If Prime(p,a) == False

Return(p is composite with proof a).

Return(p is Prime).
```

If algorithm returns composite, the number is composite. If algorithm returns prime the algorithm is only wrong with probability $\left(\frac{1}{4}\right)^k$.

For reference, if k=100, program has higher chance of being wrong due to cosmic ray hitting computer memory than from always choosing bad a.

Write p-1 in form $2^t u$

Can be done in $O(\log p)$ time by successive division by 2 (or looking at trailing 0s in base 2 representation)

Write p-1 in form $2^t u$

Can be done in $O(\log p)$ time by successive division by 2 (or looking at trailing 0s in base 2 representation)

Calculate $a^u \mod p$

 $O(\log u) = O(\log p)$ time using repeated squarings,

Write p-1 in form $2^t u$

Can be done in $O(\log p)$ time by successive division by 2 (or looking at trailing 0s in base 2 representation)

Calculate $a^u \mod p$

 $O(\log u) = O(\log p)$ time using repeated squarings,

and then, using $O(t) = O(\log p)$ more squarings, calculate sequence

 $a^{u} \mod p, \ a^{2u} \mod p, \ a^{2^{2}u} \mod p, \dots, \ a^{2^{t}u} = a^{p-1} \mod p$

Write p-1 in form $2^t u$

Can be done in $O(\log p)$ time by successive division by 2 (or looking at trailing 0s in base 2 representation)

Calculate $a^u \mod p$

 $O(\log u) = O(\log p)$ time using repeated squarings, and then, using $O(t) = O(\log p)$ more squarings, calculate sequence $a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \ \dots, \ a^{2^tu} = a^{p-1} \mod p$

(i) If
$$a^{p-1} \mod p \neq 1$$

 $\Rightarrow Prime(p, a) = False$

Write p-1 in form $2^t u$

Can be done in $O(\log p)$ time by successive division by 2 (or looking at trailing 0s in base 2 representation)

Calculate $a^u \mod p$

 $O(\log u) = O(\log p)$ time using repeated squarings,

and then, using $O(t) = O(\log p)$ more squarings, calculate sequence

 $a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$

- (i) If $a^{p-1} \mod p \neq 1$ $\Rightarrow Prime(p, a) = False$
- (ii) If $a^{p-1} \mod p == 1$ and if $\exists s \geq 1$ s.t. $a^{2^{s-1}u} \mod p \not\equiv 1, -1$ and $a^{2^su} \mod p == 1$ $\Rightarrow Prime(p, a) = False$

Write p-1 in form $2^t u$

Can be done in $O(\log p)$ time by successive division by 2 (or looking at trailing 0s in base 2 representation)

Calculate $a^u \mod p$

 $O(\log u) = O(\log p)$ time using repeated squarings,

and then, using $O(t) = O(\log p)$ more squarings, calculate sequence

$$a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$$

- (i) If $a^{p-1} \mod p \neq 1$ $\Rightarrow Prime(p, a) = False$
- (ii) If $a^{p-1} \mod p == 1$ and if $\exists s \geq 1$ s.t. $a^{2^{s-1}u} \mod p \not\equiv 1, -1$ and $a^{2^su} \mod p == 1$ $\Rightarrow Prime(p, a) = False$

Else Prime(p, a) = True

 $a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$

 $a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$

```
(i) If a^{p-1} \mod p \neq 1

\Rightarrow Prime(p, a) = False
```

 $a^u \mod p$, $a^{2u} \mod p$, $a^{2^2u} \mod p$, ..., $a^{2^tu} = a^{p-1} \mod p$

(i) If
$$a^{p-1} \mod p \neq 1$$

 $\Rightarrow Prime(p, a) = False$

Fermat's Little Theorem is that, if p is prime $\Rightarrow \forall a < p, a^{p-1} \mod p = 1$.

 \Rightarrow if $a^{p-1} \mod p \neq 1$, a is a witness that p is not prime.

$$a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$$

Unfortunately the first condition is not sufficient. There are some composite numbers, p, such that $a^{p-1} = 1 \mod p$ for all 1 < a < p. These numbers are called Carmichael numbers. While relatively "rare", there are still an infinite number of them.

$$a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$$

Unfortunately the first condition is not sufficient. There are some composite numbers, p, such that $a^{p-1} = 1 \mod p$ for all 1 < a < p. These numbers are called Carmichael numbers. While relatively "rare", there are still an infinite number of them.

We therefore use the second condition:

```
(ii) If a^{p-1} \mod p == 1
and if \exists s \geq 1 s.t. a^{2^{s-1}u} \mod p \not\equiv 1, -1 and a^{2^su} \mod p == 1
\Rightarrow Prime(p, a) = False
```

$$a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$$

Unfortunately the first condition is not sufficient. There are some composite numbers, p, such that $a^{p-1} = 1 \mod p$ for all 1 < a < p. These numbers are called Carmichael numbers. While relatively "rare", there are still an infinite number of them.

We therefore use the second condition:

```
(ii) If a^{p-1} \mod p == 1
and if \exists s \geq 1 s.t. a^{2^{s-1}u} \mod p \not\equiv 1, -1 and a^{2^su} \mod p == 1
\Rightarrow Prime(p, a) = False
```

This works because if p is prime and $x^2 = 1 \mod p$ then p divides $x^2 - 1 = (x - 1)(x + 1)$, i.e., p divides (x + 1) or p divides (x - 1), i.e., $x = \pm 1 \mod p$.

$$a^u \mod p, \ a^{2u} \mod p, \ a^{2^2u} \mod p, \dots, \ a^{2^tu} = a^{p-1} \mod p$$

Unfortunately the first condition is not sufficient. There are some composite numbers, p, such that $a^{p-1} = 1 \mod p$ for all 1 < a < p. These numbers are called Carmichael numbers. While relatively "rare", there are still an infinite number of them.

We therefore use the second condition:

```
(ii) If a^{p-1} \mod p == 1
and if \exists s \geq 1 s.t. a^{2^{s-1}u} \mod p \not\equiv 1, -1 and a^{2^su} \mod p == 1
\Rightarrow Prime(p, a) = False
```

This works because if p is prime and $x^2 = 1 \mod p$ then p divides $x^2 - 1 = (x - 1)(x + 1)$, i.e., p divides (x + 1) or p divides (x - 1), i.e., $x = \pm 1 \mod p$.

So if red condition is true $\Rightarrow a$ is a witness that p is not prime. Because for $x = a^{2^{s-1}u} \bmod p, \ x \neq \pm 1 \bmod p$, but $x^2 = 1 \bmod p$.

Example

p=561 is a Carmichael number. $561=3\cdot 7\cdot 11$ so it is not prime. Yet, for every $2< a<561,\ a^{560}=1 \bmod p.$

Example

p = 561 is a Carmichael number.

 $561 = 3 \cdot 7 \cdot 11$ so it is not prime.

Yet, for every 2 < a < 561, $a^{560} = 1 \mod p$.

$$p-1=2^4 \cdot 35$$
.

If we choose a=7 then, $\mod 561$, we calculate

$$a^{35} = 241$$
, $a^{2 \cdot 35} = 298$, $a^{4 \cdot 35} = 166$, $a^{8 \cdot 35} = 67$, $a^{16 \cdot 35} = 1$.

Example

p = 561 is a Carmichael number.

 $561 = 3 \cdot 7 \cdot 11$ so it is not prime.

Yet, for every 2 < a < 561, $a^{560} = 1 \mod p$.

$$p-1=2^4 \cdot 35$$
.

If we choose a=7 then, $\mod 561$, we calculate

$$a^{35} = 241$$
, $a^{2 \cdot 35} = 298$, $a^{4 \cdot 35} = 166$, $a^{8 \cdot 35} = 67$, $a^{16 \cdot 35} = 1$.

This provides a proof of compositeness since

$$x = 67 \neq \pm 1 \mod 561$$
 but $x^2 = 1 \mod 561$.

- We just saw that both conditions (i) and (ii) provide witness a that p is not prime
- The last piece is that it is possible to prove that, if p is composite, then at least 3/4 of the numbers a between 2 and p-1 are witnesses from condition (i) or condition (ii).

This implies the lemma that was the source of the probabilistic gurantee of correctness of the algorithm.

Lemma: If p is composite then

$$\left| \{ a : 1 < a < p \text{ and } Prime(p, a) = True \} \right| \le \frac{1}{4}.$$

Wrap Up

• Developed a $O(\log p)$ procedure that checks to see if 1 < a < p is a *witness* that p is not prime

Wrap Up

- Developed a $O(\log p)$ procedure that checks to see if 1 < a < p is a *witness* that p is not prime
- Two cases
 - If p prime, no a is a witness
 - If p not prime, at least 3/4 possible a's are witnesses

Wrap Up

- Developed a $O(\log p)$ procedure that checks to see if 1 < a < p is a *witness* that p is not prime
- Two cases
 - If p prime, no a is a witness
 - If p not prime, at least 3/4 possible a's are witnesses
- Pick k random a's and run test with them
 - If one of the a's is a witness, then p is absolutely not prime
 - If none of the a's are witnesses, then p is prime with probability of error being at most $\frac{1}{4^k}$.