ON (LOGICALITY), INVARIANCE, AND DEFINABILITY

Intensionality in Mathematics
Lund

Fredrik Engström, Göteborg Joint work with Denis Bonnay, Paris

May 12, 2013

Introduction

Invariance and Definability

- ► An automorphism of a structure *M* mapping *a* to *b*. Expressing similarity.
- ► A definable set separating *a* from *c*. Expressing dissimilarity.

What is the relationship between

- \blacktriangleright having no automorphism mapping a to b, and
- ▶ having a definable set separating *a* and *b*?

What is the relationship between

- ▶ $A \subseteq \Omega$ is definable, and
- ► *A* is invariant wrt all automorphisms?

What about the level of quantifiers?

QUANTIFIERS

DEFINITION (LINDSTRÖM, 1966; MOSTOWSKI, 1957)

- ▶ A generalized quantifier Q of type $\langle n_1, \ldots, n_k \rangle$ is a (class) of structures in the language $\{R_1, \ldots, R_k\}$ where R_i is of arity n_i .
- $\blacktriangleright M \vDash_s Q\bar{x}_1, \ldots, \bar{x}_k(\varphi_1, \ldots, \varphi_k) \text{ iff } (\text{dom}(M), \varphi_1^{M,s}, \ldots, \varphi_k^{M,s}) \in Q.$

Examples:

- $\blacktriangleright \exists = \{ (\Omega, A) \mid A \subseteq \Omega, A \neq \emptyset \}$
- $\blacktriangleright \ \forall = \{ (\Omega, \Omega) \mid \top \}$
- $Q_0 = \{ (\Omega, A) \mid A \subseteq \Omega, |A| \ge \aleph_0 \}$
- ▶ $I = \{ (\Omega, A, B) \mid |A| = |B| \}$

A quantifier Q is definable in the logic \mathscr{L} if there is φ of $\mathscr{L}(R_1, \ldots, R_k)$, such that

$$(\Omega, R_1, \ldots, R_k) \vDash \varphi \text{ iff } (\Omega, R_1, \ldots, R_k) \in Q.$$

Logicality

Logic considers the **form** of sentences and arguments. To determine this form we need to know what the **logical constants** are.

(Mautner, 1946; Tarski, 1986)

Logic is the the study of the invariants wrt the most general transformations.

Compare with Klein's Erlangen program for classifying geometries in terms of invariance.

TARSKI'S THESIS

A quantifier on a domain Ω is logical iff it is invariant wrt all **permutations** of Ω .

THEOREM (McGee, 1996; Krasner, 1938)

A quantifier is permutation invariant iff it is $\mathscr{L}_{\infty\infty}$ -definable.

INVARIANCE

- ► Klein's Erlangen Program: Invariance as the defining property for geometries.
- ► Tarski's thesis: Extend to logics; use invariance as defining property for logics and logical operators. (Tarski, 1986)
- ► Idea: Extend the correspondence of invariance and operators to a (antitone) Galois connection: Inv maps invariance criteria to sets of operators, and Aut maps sets of operators to invariance critera such that

$$q \subseteq \operatorname{Inv}(G) \text{ iff } G \subseteq \operatorname{Aut}(q).$$

- ▶ Inv(Aut(q)) should correspond to definability in $\mathcal{L}(q)$ for some logic \mathcal{L} .
- ▶ McGee's result can be interpreted as characterizing Inv(Aut(\emptyset)) as definability in $\mathscr{L}_{\infty\infty}$.

Folklore:

00000

```
\{G \subseteq \operatorname{Sym}(\Omega)\} \iff \{M \text{ set of relations on } \Omega\}
least closed group
```

Krasner's Galois theory:

```
\{ G \subseteq \operatorname{Sym}(\Omega) \} \implies \{ M \text{ set of infinite-ary rel. on } \Omega \}
                                        definability in \mathscr{L}_{\infty\infty}
         least group
```

With equality:

```
\{G \subseteq \operatorname{Sym}(\Omega)\} \implies \{g \text{ set of quantifiers on } \Omega\}
        least group
                                      definability in \mathcal{L}_{\infty\infty}
```

Without equality:

```
\{ \Pi \text{ set of similarities on } \Omega \} \implies \{ q \text{ set of quantifiers on } \Omega \}
                  least full monoid
                                                          \vdash-definability in \mathscr{L}_{\infty\infty}^-
```

WITH EQUALITY

A GALOIS CONNECTION

- Fix a domain Ω . Quantifier means local quantifier on Ω .
- ightharpoonup q is a set of quantifiers.
- *G* subgroup of the full symmetric group $Sym(\Omega)$.

DEFINITION

▶ Let $\operatorname{Aut}(q)$ be the group of all permutations of Ω fixing all quantifiers in q:

$$\operatorname{Aut}(q) = \{ g \in \operatorname{Sym}(\Omega) \mid g(Q) = Q \text{ for all } Q \in q \}.$$

► Let Inv(G) be the set of quantifiers fixed by G: $Inv(G) = \{ Q \mid g(Q) = Q \text{ for all } g \in G \}.$

Theorem (Krasner, 1938, 1950), (B/E)

- ► Aut(Inv(G)) = G
- ► Inv(Aut(q)) is the set of quantifiers definable in $\mathcal{L}_{\infty\infty}(q)$

Proof

Aut(Inv(G)) = G: Let \leq well-order Ω , and $Q = \{ g(\leq) \mid g \in G \}$ of type $\langle 2 \rangle$. If $h \in$ Aut(Inv(G)) then $h(\leq) \in Q$ and so there is $g \in G$ such that $h(\leq) = g(\leq)$, implying h = g.

Inv(Aut(q)) is the set of Qs definable in $\mathscr{L}_{\infty\infty}(q)$: We assume all quantifiers of type $\langle 1 \rangle$ and $\Omega = \omega$. $Q' \in \text{Inv}(\text{Aut}(q))$ is defined by

$$\forall x_0, x_1, \dots \left[\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \bigvee_i y = x_i \land \left(\left(\bigwedge_{A \in Q} Qy \bigvee_{i \in A} y = x_i \right) \land \left(\bigwedge_{A \notin Q} \neg Qy \bigvee_{i \in A} y = x_i \right) \right) \rightarrow \left(\bigvee_{A \in Q'} \left(\bigwedge_{i \in A} Px_i \land \bigwedge_{i \notin A} \neg Px_i \right) \right]$$

THEOREM

If $\operatorname{Inv}_m(G)$ are all **monadic** quantifiers invariant wrt G then there is a subgroup G such that $\operatorname{Aut}(\operatorname{Inv}_m(G)) \supseteq G$.

Proof. Let G be the group of **piecewise monotone** permutations on ω : $g \in S_{\omega}$ is piecewise monotone if there exists partitions $A_1 \cup \ldots \cup A_k = B_1 \cup \ldots \cup B_k = \omega$ such that $g|A_i$ is the unique increasing function $A_i \to B_i$.

 $Aut(Inv_m(G))$ is closed in the topology generated by

$$U_{\bar{A},\bar{B}} = \{ h \in \operatorname{Sym}(\omega) \mid h(A_i) = B_i \text{ all } i < k \}$$

as basic open sets, where $\bar{A} = A_0, \dots, A_{k-1}$ and $\bar{B} = B_0, \dots, B_{k-1}$ are subsets of ω .

The closure of G is $Sym(\omega)$.

WITHOUT EQUALITY

SIMILARITY RELATIONS

- π is a similarity relation on Ω if $dom(\pi) = rng(\pi) = \Omega$.
- ► Every onto function is a similarity relation.
- ► For every similarity π there are onto functions $f, g : \Omega \to \Omega'$ such that $\pi = f \circ g^{-1}$.
- ► $R \pi S$ if $\forall \bar{a}, \bar{b} \in \Omega$ such that $\bar{a} \pi \bar{b}$: $\bar{a} \in R$ iff $\bar{b} \in S$.
- ▶ R is **invariant** wrt π if R π R.

THEOREM (FEFERMAN)

Quantifiers of type $\langle 1, \dots, 1 \rangle$ are invariant wrt similarity relations iff they are definable in \mathcal{L}_{uu}^- .

Can we extend the previous Galois connection to an equality-free setting, generalizing Feferman's thm?

Leibniz equality

 $a \sim_q b$ iff

$$\forall \bar{x} \bigwedge_{\varphi \in \mathcal{L}_{\infty}^{-}(q)} (\varphi(a, \bar{x}) \leftrightarrow \varphi(b, \bar{x}))$$

Let
$$q = \{ \top, \bot, Q^E \}$$
, where $Q^E = \{ \{ 0, 2, 4, \dots \} \}$. Clearly $Q^O = \{ \{ 1, 3, 5, \dots \} \}$ is definable in $\mathcal{L}_{\omega\omega}^-(q)$ by

$$Q^E x \neg Px$$
.

However $\{1, 3, 5, \dots\}$ is not definable in $\mathcal{L}_{\infty\infty}^-(q)$, so the previous strategy of defining Q^O 'from below' will not work.

Let $Q^{\restriction q}$ be Q restricted to $\mathscr{L}^-_{\infty\infty}(q)$ -definable sets.

Observe that

$$\mathscr{L}_{\infty\infty}^{-}(q) \equiv \mathscr{L}_{\infty\infty}^{-}(q^{\restriction q}).$$

PLAN

Introduction

▶ Work in Ω/\sim_a and apply the previous result.

- ▶ Observe that R is $\mathscr{L}_{\infty\infty}^-(q)$ -definable iff it is invariant wrt \sim_q . I.e., $\cup (Q/\sim) = Q^{\restriction q}$.
- ▶ Problem: Can we define \sim_q without knowing the language?
- ► Solution: Yes... sometimes.

THE MAPPINGS

 \triangleright Dually, a set Π of similarities defines an equivalence relation by the following condition:

 $a \approx_{\Pi} b$ if for all $\bar{c} \in \Omega^k$ there is $\pi \in \Pi$ such that $a, \bar{c} \pi b, \bar{c}$.

DEFINITION

A quantifier Q on Ω is \sim -invariant wrt π if for all relations $R_1, \ldots,$ R_k , S_1 , ..., S_k on Ω invariant wrt \sim such that R_i π S_i we have $\langle R_1, \ldots, R_k \rangle \in O \text{ iff } \langle S_1, \ldots, S_k \rangle \in O.$

The mappings for the Galois connection can now be defined:

- $ightharpoonup \operatorname{Sim}(q)$ is the set of similarities π such that all relations and quantifiers in q are \sim_q -invariant wrt π .
- ▶ $Inv(\Pi)$ is the set of all relations R and quantifiers Q on Ω which are \approx_{Π} -invariant wrt all similarities in Π .

THE THEOREM

- ► II is a monoid with involution if it is closed under composition and taking converses.
- ▶ Π is full if it includes \approx_{Π} , is a monoid with involution, and closed under taking subsimilarities, i.e., such that if $\pi \in \Pi$ and $\pi' \subseteq \pi$ is a similarity then $\pi' \in \Pi$.

LEMMA

- $ightharpoonup \sim_q = pprox_{\operatorname{Sim}(q)}$ and
- If Π is full then $\sim_{\operatorname{Inv}(\Pi)} = \approx_{\Pi}$.

THEOREM

Let q be a set of operators then

- 1. $Q \in \text{Inv}(\text{Sim}(q))$ iff $Q^{\dagger q}$ is definable in $\mathcal{L}_{\infty\infty}^{-}(q)$.
- 2. $Sim(Inv(\Pi))$ is the smallest full monoid including Π .

Summary

$$\left\{ \begin{array}{ll} G \subseteq \operatorname{Sym}(\Omega) \; \right\} & \rightleftharpoons & \left\{ \; q \; \text{set of quantifiers on } \Omega \; \right\} \\ & \operatorname{least group} & \operatorname{definability in} \mathscr{L}_{\infty\infty} \\ \\ \left\{ \; \Pi \; \text{set of similarities on } \Omega \; \right\} & \rightleftharpoons & \left\{ \; q \; \text{set of quantifiers on } \Omega \; \right\} \\ & \operatorname{least full monoid} & & \upharpoonright \operatorname{-definability in} \mathscr{L}_{\infty\infty}^- \\ \end{array}$$

OPEN QUESTION

Are all quantifiers invariant wrt all similarities fixing q definable in $\mathscr{L}_{\infty\infty}^-(q)?$

THANK YOU FOR YOUR ATTENTION.

BIBLIOGRAPHY

- M. Krasner. Généralisation abstraite de la théorie de galois. In Colloque d'algèbre et de théorie des nombres, pages 163–168, 1950.
- Marc Krasner. Une généralisation de la notion de corps. Journal de mathématiques pures et appliquées, 17 (3-4):367–385, 1938.
- Per Lindström. First-order predicate logic with generalized quantifiers. Theoria, 32: 165–171, 1966.
- FI Mautner. An extension of klein's erlanger program: logic as invariant-theory.

- American Journal of Mathematics, pages 345–384, 1946.
- Vann McGee. Logical operations. Journal of Philosophical Logic, 25:567–580, 1996.
- A. Mostowski. On a generalization of quantifiers. Fundamenta mathematicae, 44:12–36, 1957.
- Alfred Tarski. What are logical notions?

 History and Philosophy of Logic, 7:
 143–154, 1986.