Здесь и далее будем считать, что $\xi \sim Be(p)$ если

$$\xi = \begin{cases} +1, c \text{ Bep. } p \\ -1, c \text{ Bep. } 1 - p \end{cases}$$

 $\it 3adaua$ 1. Пусть ξ,η – i.i.d. Найти $\mathbb{E}[\xi|\xi+\eta]$.

 $3a \partial a a a 2.$ (Условное мат. ожидание). Пусть $(X,Y) \sim N(\mu,\Sigma)$ – двумерный гауссовский вектор. Найти $\mathbb{E}[X|Y]$. Убедиться, что

- $\mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right] = \mathbb{E}X$
- Если cov(X,Y) = 0, то $\mathbb{E}[X|Y] = \mathbb{E}X$.

 $3a\partial a$ ча 3. Пусть $\xi_t \sim Be(1/2)$ – i.i.d., $X_t = \sum_{s=1}^t \xi_s$ – случайное блуждание. Убедитесь, что процесс $M_t = X_t^2 - t$ мартингал.

 $3a \partial a$ ча 4. Пусть $\xi_t \sim Be(p)$ – i.i.d., $p \neq 1/2$, $X_t = \sum_{s=1}^t \xi_s$ – несимметричное случайное блуждание.

- При каком α процесс $Y_t = X_t \alpha t$ является мартингалом?
- При каком β процесс $Y_t = \beta^{X_t}$ является мартингалом?

 $3adaчa\ 5.\ ($ Задача о разорении) Пусть X_t – симметричное случайное блуждание, $(\mathcal{F}_t)_{t\geq 0}$ – фильтрация, порождённая X_t . Пусть:

$$\tau = \inf_{t \ge 0} \{ X_t = a \land X_t = -b \}$$

где a, b > 0 — целые числа.

- Убедитесь, что au момент остановки
- Найти $\mathbb{P}(X_{\tau}=a)$
- Найти $\mathbb{E} \tau$

 $У \kappa a s a h u e$ Воспользуйтесь мартингальным свойством $X_t, X_t^2 - t$ и теоремой Дуба.

 $3a \partial a$ ча 6. (Задача о разорении) Пусть $\xi_t \sim Be(p)$ – i.i.d., $p \neq 1/2, X_t = \sum_{s=1}^t \xi_s$ – несимметричное случайное блуждание.Пусть:

$$\tau = \inf_{t>0} \{ X_t = a \land X_t = -b \}$$

где a,b>0 – целые числа.

• Найти $\mathbb{P}(X_{\tau}=a)$

• Найти $\mathbb{E} \tau$

 $У \kappa a s a h u e$. Используйте результаты из задачи 3, или выпишите линейное рекуретное соотношение на $\mathbb{P}(X_{\tau}=a)$, используя формулу полной вероятности.

 $3a\partial a$ ча 7. Пусть ξ_t – квадратично-интегрируемый мартингал, докажите, что:

$$cov(\xi_p - \xi_q, \xi_t - \xi_s) = 0$$

при $s \le t \le q \le p$

 $3a\partial a$ ча 8. Пусть W_t – броуновское движение относительно непрерывной фильтрации $(\mathcal{F}_t)_{t\geq 0}$, т.е.:

- $W_0 = 0$
- Траектории W_t непрерывны почти наверное
- $W_t W_s \sim N(0, t s)$ и $W_t W_s \perp \mathcal{F}_s$

Докажите, что:

- W_t мартингал относительно фильтрации $(\mathcal{F}_t)_{t\geq 0}$
- $W_t^2 t$ мартингал относительно фильтрации $(\mathcal{F}_t)_{t\geq 0}$
- Пусть $\lambda \in \mathbb{R}$. При каких α процесс $Y_t = e^{\alpha t + \lambda W_t}$ является мартингалом?

Задача 9. Пусть

- $\Omega = \mathbb{R}, = \mathcal{B}(\mathbb{R})$
- $\mathbb{P}(dx) = \frac{1}{\sqrt{2\pi}}e^{-0.5x^2}dx$
- $f(x) = e^{-0.5a^2 + a \cdot x}$
- $d\mathbb{Q}(x) = f(x)d\mathbb{P}(x)$

Показать, что $\mathbb Q$ – вероятностная мера. Найти $\mathbb E^{\mathbb Q}\xi$ и распределение ξ относительно меры $\mathbb Q$.

 $3a\partial a ua$ 10. Покажите, что в дискретном времени в определении момента остановки достаточно потребовать $\{\tau=t\}\in\mathcal{F}_t,\ \forall t.$