El siguiente gráfico muestra la función $f(x) = \tan^{-1}(X)$

1 / 1 punto

Usando la serie de Maclaurin o de otra manera, determine si la función que se muestra arriba es par, impar o ninguna.

- Raro
- Incluso
-) Ni impar ni par
 - ✓ Correcto

Para una función impar, -f(x) = f(-x). También podemos determinar si una función es impar observando su simetría. Si tiene simetría rotacional con respecto al origen, es una función impar.

2. El siguiente gráfico muestra la función discontinua $f(x) = \frac{2}{(X^2 - x)}$. Para esta función, seleccione los puntos de partida que permitirán realizar una aproximación de Taylor.

1 / 1 punto

- X = 2
- ✓ Correcto Una aproximación de Taylor centrada enX = 2nos permitirá aproximarnos f(x) por X > 1solo.
- X = 0.5
- ✓ Correcto Una aproximación de Taylor centrada enX = 0.5nos permitirá aproximarnos f(x) por 0 < X < 1solo.
- $\prod X = 1$
- X = -3
- ✓ Correcto Una aproximación de Taylor centrada enX = -3nos permitirá aproximarnos f(x) por X < 0solo.
- **3.** Para la misma función que se discutió anteriormente, $f(x) = \frac{2}{(X^2 x)}$, seleccione todas las afirmaciones que sean verdaderas sobre la aproximación de Taylor resultante.

1/1 punto

- La aproximación captura con precisión las asíntotas
- ✓ La aproximación ignora segmentos de la función
 - **⊘** Correcto

Debido a la función discontinua y al rango deXvalores en los que se comporta bien, el punto de partida de la serie de Taylor dicta el dominio de la función que intentamos aproximar.

- ✓ La aproximación ignora las asíntotas
 - ✓ Correcto

Las aproximaciones de la serie de Taylor a menudo tienen dificultades para capturar las asíntotas correctamente. Por ejemplo, los términos de primer y cero orden cortan directamente a través de una asíntota en la mayoría de los casos.

- ☐ La aproximación converge rápidamente
- Esta es una función de buen comportamiento.
- **4.** El siguiente gráfico destaca la función $f(x) = \frac{1}{(1+x^2)}$ (línea verde), con las expansiones de Taylor para los primeros 3 términos también se muestran sobre el punto X = 2. La expansión de Taylor es $f(x) = \frac{1}{5} \frac{4(X-2)}{25} + \frac{11(X-2)^2}{125} + \dots$ Aunque la función parece bastante

1/1 punto

normal, encontramos que la serie de Taylor hace una mala aproximación más allá de su punto de partida y no captura el punto de inflexión. ¿Cuál podría ser la razón por la cual esta aproximación es pobre para la función descrita?

- Las asíntotas están en el plano complejo.
 - ✓ Correcto

Aunque esta función se comporta bien en el plano real, en el plano imaginario las asíntotas limitan su convergencia y el comportamiento de la expansión de Taylor, que se muestra mal para funciones que son discontinuas.

- La función no tiene raíces reales.
- La función no diferencia bien
- Ninguna de estas opciones
- Es una función discontinua en el plano complejo.
 - ✓ Correcto

Aunque esta función se comporta bien en el plano real, en el plano imaginario las asíntotas limitan su convergencia y el comportamiento de la expansión de Taylor, que se muestra mal para funciones que son discontinuas.

5. para la función $f(x) = \frac{1}{X}$, proporcione la aproximación lineal sobre el punto X = 4, asegurando que es de segundo orden preciso.

1/1 punto

$$\bigcirc f(x) = 1/4 + X/16 - O(\Delta x^2)$$

(a)
$$f(x) = 1/4 - (X-4)/16 + O(\Delta x^2)$$

$$\bigcap f(x) = 1/4 - (X-4)/16 + O(\Delta x)_{-}$$

$$\bigcirc f(x) = 1/4 - X/16 + O(\Delta x^2)$$

✓ Correcto

Preciso de segundo orden significa que tenemos una serie de Taylor de primer orden. Todos los términos anteriores son suficientemente pequeños, asumiendo Δx _es pequeño.