1. This question is about atomic spectra and energy levels.

Diagram 1 below shows part of the emission line spectrum of atomic hydrogen. The wavelengths of the principal lines in the visible region of the spectrum are shown.

Diagram 2 shows some of the principal energy levels of atomic hydrogen.

-13.6

(a) Name the spectral series shown in diagram 1.

(1)

(b) Show, by calculation, that the energy of a photon of red light of wavelength 656 nm is 1.9 eV.

(3)

(1)

- (b) On diagram 2, draw arrows to represent
 - (i) the electron transition that gives rise to the red line (label this arrow R).
 - (ii) a possible electron transition that gives rise to the blue line (label this arrow B).

 (1)

 (Total 6 marks)

	State the names of the two particles emitted in this decay.						
(b)	A sample of the isotope potassium-40 initially contains 1.5×10^{16} atoms. On average, 16 nuclei in this sample of the isotope undergo radioactive decay every minute.						
	Deduce that the decay constant for potassium-40 is 1.8×10^{-17} s ⁻¹ .						
(c)	Determine the half-life of potassium-40.						
ection:	$T(1/2) = \ln(2) / (1.8 \times 10^{-17}) = 3.8 \times 10^{16}$ (Total 6 m						
	question is about particle physics.						
	utron can decay into a proton, an electron and an antineutrino according to the reaction						
	$n \rightarrow p + e + \overline{v}_e$.						
(a)	Deduce the value of the electric charge of the antineutrino.						

This question is about the radioactive decay of potassium-40.

2.

	(b)	State the name of the fundamental interaction (force) that is responsible for this decay.					
	(c)	State how an antineutrino differs from a neutrino.					
		(Total 4 marks)	(1				
an a		no has lepton number -1 as lepton number 1					
4.	Nucl	ear binding energy and nuclear decay					
	(a)	State what is meant by a <i>nucleon</i> , giving an example of two nucleons.					
			(2				
	(b)	Explain what a nucleon is made of and what force holds it together. Include a description of the exchange particle that mediates the interaction between nucleons.					
			(2				
	(c)	Define what is meant by the <i>mass defect</i> of a nucleus.					
			(1				
	(c)	Define what is meant by the <i>binding energy</i> of a nucleus.					

The graph below shows the variation with nucleon (mass) number of the binding energy per nucleon.

	the grapl cesses.	i to expi	iaiii wiiy	reneigy	can oc	Torouso	u 111 00ti			a the r	uoioii	
					•••••	•••••		•••••				
Use	the grapl	ı to expl	lain why	there is	s an abu	ındance	of iron	(Fe) in	he univ	erse.		
Use	the graph	to expl	lain why	there is	s an abu	ındance	of iron	(Fe) in 1	he univ	erse.		
Use	the graph	ı to expl	lain why	there is	s an abu	ındance	of iron	(Fe) in t	he univ	verse.	 	
Use	the graph	to expl	lain why	there is	s an abu	indance	of iron	(Fe) in 1	he univ	verse.	 	

(2)

	A sample of carbon-11 has an initial mass of 4.0×10^{-15} kg. Carbon-11 has a half-life of approximately 20 minutes. Calculate the mass of carbon-11 remaining after one hour has elapsed.
(2) Correction	$: ((((4.0 \times 10^{-15} \text{ kg}) / 2) / 2) / 2) = 5 \times 10^{-16}$
(e)	Uranium-238, $^{238}_{92}$ U, undergoes α -decay to form an isotope of thorium. Write down the nuclear equation for this decay.
	(2) (Total 11 marks)
Correction	$: {}^{238}_{92}\text{U}, \longrightarrow 234 \text{ Th } 90 + 4 \text{ H } 2$
5. This	$e^{\frac{238}{92}U}$, -> 234 Th 90 + 4 H 2
5. This	2^{38} U, → 234 Th 90 + 4 H 2 question is about a proton.
5. This	2^{238} U, → 234 Th 90 + 4 H 2 question is about a proton. proton is made out of three quarks.
5. This The (a)	238 U, → 234 Th 90 + 4 H 2 question is about a proton. proton is made out of three quarks. Explain why the three quarks in the proton do not violate the Pauli exclusion principle.
5. This The (a)	e 238 U, → 234 Th 90 + 4 H 2 question is about a proton. proton is made out of three quarks. Explain why the three quarks in the proton do not violate the Pauli exclusion principle.
5. This The (a)	question is about a proton. proton is made out of three quarks. Explain why the three quarks in the proton do not violate the Pauli exclusion principle. prection: The two up quarks have opposite spin (cancel) and only the down quark interfere.

6. Which **one** of the following correctly gives the number of electrons, protons and neutrons in a neutral atom of the nuclide $^{65}_{29}$ Cu?

	Number of electrons	Number of protons	Number of neutrons
A.	65	29	36
B.	36	36	29
C.	29	29	65
D.	29	29	36

(1)

7. The unified mass unit is defined as

- A. the mass of one neutral atom of ${}^{12}_{6}$ C.
- B. $\frac{1}{12}$ of the mass of one neutral atom of ${}^{12}_{6}$ C.
- C. $\frac{1}{6}$ of the mass of one neutral atom of ${}^{12}_{6}$ C.
- D. the mass of the nucleus of ${}^{12}_{6}$ C.

(1)

8. Which of the following provides evidence for the existence of atomic energy levels?

- A. The absorption line spectra of gases
- B. The existence of isotopes of elements
- C. Energy release during fission reactions
- D. The scattering of α -particles by a thin metal film

(1)

Correction: A