Laplace transform and applications to ODEs

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

December 24, 2020

Content

- Properties
 - Integrals on t−domain
 - Derivatives on s-domain
 - Integrals on s− domain
 - Convolution

Content

- Properties
 - ullet Integrals on t-domain
 - Derivatives on s-domain
 - Integrals on s— domain
 - Convolution

Integrals on *t*—domain

Common assumptions: f(t) is piecewise continuous on $[0, \infty)$ and exponentially bounded.

Theorem

$$\mathcal{L}\Big\{\int\limits_{0}^{L}f(v)dv\Big\}(s)=\frac{F(s)}{s}.$$

$$\mathcal{L}^{-1}\left\{\frac{F(s)}{s}\right\}(t) = \int_{0}^{t} f(v)dv.$$

Example

Calculate

1
$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\}(t).$$
2 $\mathcal{L}^{-1}\left\{\frac{1}{s^2(s+4)}\right\}(t).$

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2(s+4)}\right\}(t)$$

Derivatives on s-domain

Theorem

$$\mathcal{L}\{-tf(t)\}(s)=F'(s).$$

$$\mathcal{L}^{-1}\{F'(s)\}(t)=-tf(t).$$

Proof.

Generally,

$$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s).$$

Example

Find the Laplace and inverse Laplace transform

- ② $\mathcal{L}((t-e^{2t})^2)(s)$,

Example (Application to linear ODEs)

Solve the following ODEs:

$$tx'' + (3t-1)x' + 3x = 0, x(0) = 0.$$

$$2 tx'' - tx' + x = 2, x(0) = 2.$$

Integrals on s-domain

Theorem

Assume there exists $\lim_{t\to 0^+} \frac{f(t)}{t}$. Then

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s) = \int_{s}^{\infty} F(u)du.$$

$$\mathcal{L}^{-1}\big\{\int\limits_{s}^{\infty}F(u)du\big\}(t)=\frac{f(t)}{t}.$$

Example

Calculate $\mathcal{L}\left\{\frac{\sin t}{t}\right\}(s)$.

Linearity

$$\mathcal{L}\lbrace f+g\rbrace(s)=\mathcal{L}\lbrace f\rbrace(s)+\mathcal{L}\lbrace g\rbrace(s).$$

Does it hold for a product?

$$\mathcal{L}\lbrace f.g\rbrace(s)=\mathcal{L}\lbrace f\rbrace(s).\mathcal{L}\lbrace g\rbrace(s).$$

WRONG!!!

Convolution

Definition

Let f, g be piecewise continuous functions. Convolution of f and g is

$$(f*g)(t)=\int_{0}^{t}f(u)g(t-u)du.$$

Example

$$\cos t * \sin t = \frac{1}{2}t \sin t.$$

Properties

- Commutativity g * f = f * g.
- 2 Associativity f * (g * h) = (f * g) * h.
- 3 Distributivity f * (g + h) = f * g + f * h.

Theorem

$$\mathcal{L}\{f * g\}(s) = F(s).G(s).$$

 $\mathcal{L}^{-1}\{F(s).G(s)\}(t) = (f * g)(t).$

Example

Find the inverse Laplace transform

1
$$\mathcal{L}^{-1}\left\{\frac{2sk}{(s^2+k^2)^2}\right\}(t).$$

2
$$\mathcal{L}^{-1}\left\{\frac{1}{(s^2+k^2)^2}\right\}(t)$$
.