Universidad de El Salvador. 29.09.2018 Álgebra II. Examen parcial 1

Problema 1 (2 puntos). Consideremos el anillo de los enteros de Gauss $\mathbb{Z}[\sqrt{-1}]$.

- 1) Demuestre que el ideal $\mathfrak{m} := (1 + \sqrt{-1})$ es maximal. [1 punto]
- 2) Demuestre que $\mathfrak{m}^2 = (2)$. [1 punto]

Problema 2 (2 puntos). Sea *R* un anillo conmutativo no nulo.

- 1) Sea $R \supset \mathfrak{p}_0 \supseteq \mathfrak{p}_1 \supseteq \mathfrak{p}_2 \supseteq \cdots$ una cadena descendente de ideales primos. Demuestre que $\mathfrak{p} := \bigcap_i \mathfrak{p}_i$ es un ideal primo. [1 *punto*]
- 2) Deduzca del lema de Zorn que en R existen **ideales primos minimales**; es decir, ideales primos $\mathfrak{p} \subset R$ tales que si $\mathfrak{q} \subseteq \mathfrak{p}$ para otro ideal primo \mathfrak{q} , entonces $\mathfrak{q} = \mathfrak{p}$. [1 *punto*]

Problema 3 (2 puntos). Sea R un anillo conmutativo y $U \subseteq R$ un subconjunto multiplicativo.

- 1) Demuestre que $R[U^{-1}] = 0$ si y solo si $0 \in U$. [1 *punto*]
- 2) Demuestre que para un elemento $x \in R$ se tiene $R[x^{-1}] = 0$ si y solo si x es un nilpotente. [1 punto]

Problema 4 (2 puntos). Sea R un anillo conmutativo y $U \subseteq R$ un subconjunto multiplicativo.

- 1) Para un ideal $I \subseteq R$ y un elemento $x \in R$ verifique que $(I : x) := \{r \in R \mid xr \in I\}$ es un ideal en R. [1 punto]
- 2) Demuestre que hay una biyección entre los ideales en la localización $R[U^{-1}]$ y los ideales en R tales que (I:u)=I para todo $u\in U$. [1 punto]

Problema 5 (2 puntos). Sea R un anillo conmutativo y $U \subseteq R$ un subconjunto multiplicativo. Denotemos por $\phi \colon R \to R[U^{-1}]$ el homomorfismo canónico $r \mapsto \frac{r}{1}$.

1) Supongamos que para un ideal $J \subseteq R[U^{-1}]$ su preimagen $\phi^{-1}(J) \subseteq R$ está generada por algunos elementos $x_1, \ldots, x_n \in R$:

$$\phi^{-1}(J)=(x_1,\ldots,x_n).$$

Demuestre que $J = (\phi(x_1), \dots, \phi(x_n))$. [1 *punto*]

2) Demuestre que si R es un anillo noetheriano, entonces $R[U^{-1}]$ es también noetheriano. [1 punto]