Desenvolvimento de um sistema de simulação de geração de energia eólica e análise de eficiência para a região de Bauru/SP

Orientador: Professor Doutor João Eduardo Machado Perea Martins

Sumário

- 1. Introdução
- 2. Objetivo
- 3. Material e Métodos
- 4. Resultados
- 5. Discussão
- 6. Conclusão
- 7. Referências

Introdução - Matriz Energética Brasileira

 Segundo maior gerador de energia no Brasil;

 Continua sendo desenvolvido e implementado, potencialmente podendo crescer ainda mais no país;

Introdução - Energia Eólica

Primeiros usos, Egito e barcos a vela 3.000 a.C.;

 Moinhos foram inicialmente desenvolvidos para moer grãos e bombear água, na Pérsia (BRIESCH, 2016);

Tecnologia para energia elétrica foi desenvolvida em paralelo por várias pessoas;

Introdução - Turbinas Eólicas

Primeira turbina eólica criada por Josef Friedländer em 1883 na Áustria (WWEA, 2023);

Primeiros modelos comerciais apresentavam geração de 30 kW até 55 kW;

Modelos novos conseguem gerar 2 MW, evolução grande;

- Impactos sociais e ambientais:
 - Barulho constante em regiões com aerogeradores;
 - Morte de aves.

Introdução - Atlas do Potencial Eólico Brasileiro 2001

 O Atlas do Potencial Eólico Brasileiro possui diversos dados referentes a geração de energia por aerogeradores;

 Fatores geográficos, meteorológicos, sistema elétrico do país;

Regiões de alto desempenho: Costas;

Possibilidades no estado de São Paulo;

Introdução - Trabalhos Semelhantes

 "Simulador didático para estudo de controle de potência de turbinas eólicas", (SOUZA, 2022);

- Modelos matemáticos para potencial elétrico, usando MATLAB também, utiliza Betz como uma variável e sistema não ideal;
- Foca na geração de energia para um modelo de turbina em um intervalo de valores de velocidade de vento.

 "Modelagem e Simulação de um Aerogerador com Gerador de Indução Duplamente Alimentado e Controle de Velocidade para Maximização da Potência Gerada", (RAMOS, 2021);

- Estuda fatores internos do gerador interno que converte a energia cinética em elétrica;
- Foca em resultados de cada componente e fator,
 Lei de Betz, pás e potência elétrica.

Objetivo

 Desenvolver um programa, em MATLAB, para a simulação da geração de energia de turbinas eólicas, a partir de dados meteorológicos e os parâmetros de um aerogerador.

Material e Métodos - Modelo Matemático

$$E_t = \frac{\frac{1}{2} \cdot \rho \cdot A \cdot C_p(\lambda, \beta) \cdot V_v^3 \cdot 300}{1.000.000}$$

 Et → Energia Total: É a quantidade de energia gerada, dado em Megajoules;

 p → Densidade do Ar: Valor de 1,225 quilogramas por metros cúbicos; A → Área: Área dada pela circunferência das pás, em metros quadrados;

 Coeficiente de Potência: Lei de Betz, para o projeto foi feito em 35% e 50%;

Material e Métodos - Modelo Matemático

$$E_t = \frac{\frac{1}{2} \cdot \rho \cdot A \cdot C_p(\lambda, \beta) \cdot V_v^3 \cdot 300}{1.000.000}$$

- Vv → Velocidade de Vento: Velocidade em metros por segundo, dados meteorológicos;
- 300 → Usado devido aos 5 minutos entre cada entrada de dados do IPMET;

 1.000.000 → Conversão de Joules para Megajoules, melhor leitura dos resultados;

Material e Métodos - Dados Meteorológicos

Adquiridos a partir do IPMET da UNESP de Bauru;

Periodicidade de 5 minutos, marcado por ano, dia juliano e hora;

 Dados presentes: temperatura, velocidade de vento, umidade, radiação solar e precipitação acumulada;

- Dados abrangem de 1997 até 2022;
 - Falta de dados perceptível em 2000, 2002 e 2020;

Material e Métodos - Modelo da Turbina

- Enercon E-53 800,00 kW
 - Diâmetro: 52.9 metros → Raio: 26.45 metros;

- Velocidade do vento:
 - Mínima: 3,0 m/s;
 - Avaliada: 12 m/s;
 - Máxima/de Corte: 34 m/s

Fonte: Site wind-turbine-models.com, página sobre a E-53.

Energia gerada máxima: 800,00 kW.

Material e Métodos - Fluxograma do Projeto

Material e Métodos - Programa "arruma-tabela"

- Entrada: Dados Meteorológicos do IPMET de um ano;
- Feito em Java, utiliza um loop para leitura de arquivo e formatação dos dados;
 - Adiciona o 0 antes do . em valores decimais < 1;

- Salva dados processados no formato "Processados-%s.csv":
 - Formato dos dados: Ano, Dia Juliano, Hora, Velocidade de Vento Média e Velocidade de Vento Máxima;

No caso de erros no arquivo sendo lido, gera um arquivo de texto

com nome "ErrosEncontrados-%s.txt" que contém:

- Quando os valores de velocidade são zerados;
- Quando um período de tempo é "pulado";

• %s é o ano processado.

Material e Métodos - Programa "arruma-tabela"

Processado-2021.csv:

```
ANO, DIA, HORA, VELOCIDADE_VENTO_MEDIA, VELOCIDADE_VENTO_MAX
2021,1,5,0.232,0.686
2021,1,10,0.108,0.784
2021,1,15,0.551,1.274
2021,1,20,0.553,1.274
2021,1,25,0.716,1.274
2021.1.30.0.367.1.078
2021,1,35,0.319,1.274
2021,1,40,0.5,1.176
2021.1.45.0.426.1.078
2021,1,50,0.17,0.686
2021,1,55,0,0
2021,1,100,0.381,0.784
2021,1,105,0.393,1.666
2021,1,110,0.272,1.372
```

ErrosEncontrados-1997.txt:

```
Linha* do loop/arquivo 3723: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 3724: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 3724: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 3725: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 3726: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 3781: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 5996: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 5997: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 6249: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 13807: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 13807: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 13807: Os valores relevantes de velocidade do vento (média e máxima) são iguais a 0, possível erro no sensor meteorológico.

Linha* do loop/arquivo 15058: Un dia Juliano foi pulado. Ocorreu en dia anterior: 55 --> dia: 59.
```

Material e Métodos - Programa Principal MATLAB

Entrada: Arquivo .csv criado por "arruma-tabela";

- Utilizando o MATLAB, gera arrays de diferentes períodos de tempo para então consolidar estes dados em um array de resultados;
 - Energia total de cada mês para cada ano;

Depois, processa array de resultados para criar e salvar gráficos e tabelas;

 Usando o array de resultados, é gerado um gráfico para cada ano e para cada coeficiente;

 É a soma da energia gerada em cada mês, também trazendo a energia total do ano;

 Foram gerados 52 gráficos deste tipo;

Figura 1: Gráfico de potência total de cada mês do ano 1997 para coeficiente de potência 35%. Energia gerada no ano inteiro: 29847.77 MJ.

Fonte: O autor, página 27 na monografia.

 Novamente com o array, dessa vez mostra a energia gerada para cada ano em um mês específico;

 Soma da energia de cada dia do mês.

 São ao todo 24 gráficos, devido aos dois valores do coeficiente de potência.

Figura 53: Gráfico de potência total gerada no mês de Janeiro em cada ano analisado para coeficiente de potência 35%.

Fonte: O autor, página 37 na monografia.

 Array usado é criado com média dos meses de todos os anos, a partir do array de resultados;

 São gerados dois no total, um para cada coeficiente de potência;

Figura 77: Gráfico de potência média gerada de todos os gráficos para coeficiente de potência em 35%.

Fonte: O autor, página 43 na monografia.

 Tabela com medidas de posição e dispersão;

 Médias são as mesmas usadas no gráfico anterior;

 Usa dados de todos os anos processados e tem variação para coeficiente da Lei de Betz;

Tabela 1: Dados de medida de posição e dispersão do potencial de energia eólico gerado para um Coeficiente de Potência de 35%.

Mês	Média (MJ)	Desvio Padrão (MJ)	Coeficiente de Variação (%)
Janeiro	1598	525	33
Fevereiro	1230	480	39
Março	1628	695	43
Abril	1636	553	34
Maio	1571	643	41
Junho	1437	605	42
Julho	1891	748	40
Agosto	2231	595	27
Setembro	2284	846	37
Outubro	2270	738	33
Novembro	2147	572	27
Dezembro	1784	583	33

Fonte: O autor, página 44 na monografia.

Discussão - Considerações

Para poder adquirir resultados mais concretos relacionados a gastos energéticos as seguintes considerações foram feitas:

- A conversão de Quilowatts-hora para Megajoules, que pode ser estabelecida por 1 kWh= 3,6 Megajoules.
- 2. O consumo médio de uma residência brasileira na região sudeste do Brasil é de 174,5 kWh/mês (Empresa de Pesquisa Energética, 2022).
- 3. Com os valores estabelecidos anteriormente, sabemos que o consumo aproximado em Megajoules de uma casa brasileira por mês tem um valor de 628,2 Megajoules.
- 4. A quantidade de domicílios na cidade de Bauru no ano de 2022, a partir de um censo do IBGE, foi de 171.155 casas ocupadas (SILVA, 2023).

Discussão

Tabela 3: Tabela com o valor médio de energia gerada em cada um dos meses, a quantidade de casas que podem ser supridas com tal média e a porcentagem em relação com a cidade de Bauru para um Coeficiente de Potência de 35%.

Tabela 4: Tabela com o valor médio de energia gerada em cada um dos meses, a quantidade de casas que podem ser supridas com tal média e a porcentagem em relação com a cidade de Bauru para um Coeficiente de Potência de 50%.

Mês	Média (MJ)	Número de casas supridas	Quantidade de casas em Bauru (%)
Janeiro	1598	2,54	0,000014
Fevereiro	1230	1,95	0,000011
Março	1628	2,59	0,000015
Abril	1636	2,60	0,000015
Maio	1571	2,50	0,000014
Junho	1437	2,28	0,000013
Julho	1891	3,01	0,000017
Agosto	2231	3,55	0,000020
Setembro	2284	3,63	0,000021
Outubro	2270	3,61	0,000021
Novembro	2147	3,41	0,000019
Dezembro	1784	2,83	0,000016

Mês	Média (MJ)	Número de casas supridas	Quantidade de casas em Bauru (%)
Janeiro	2283	3,63	0,000021
Fevereiro	1756	2,79	0,000016
Março	2325	3,70	0,000021
Abril	2337	3,72	0,000021
Maio	2243	3,57	0,000020
Junho	2052	3,26	0,000019
Julho	2701	4,29	0,000025
Agosto	3186	5,07	0,000029
Setembro	3263	5,19	0,000030
Outubro	3243	5,16	0,000030
Novembro	3066	4,88	0,000028
Dezembro	2548	4,05	0,000023

Fonte: O autor, página 46 na monografia.

Fonte: O autor, página 47 na monografia.

- Capacidade para suprir a cidade de Bauru é muito baixa;
- Região com baixo potencial eólico, fazenda com 32978 turbinas eólicas para suprir.

Discussão

 Observando os gráficos de resultado ao todo, pode-se observar que o mês de Setembro é o que produz a maior quantidade de energia;

 Em um geral, o final do ano parece produzir mais energia, mas os gráficos são mais uniformes no início do período estudado em 1997 até 2005;

- O potencial eólico parece estar diminuindo com o tempo, sendo menor nos anos mais atuais;
 - Mesmo considerando que anos do início tem maior falta de dados.

Conclusão

- Resultados mostram que a região de Bauru não é ideal para aerogeradores;
- Porém, o programa foi capaz de gerar resultados para um sistema eólico ideal corretamente;

- Coeficiente de 35% teve média geral de 1809 MJ e para 50% teve geração média de 2583 MJ;
- Assim podendo suprir aproximadamente 2 a 4 casas na cidade de Bauru, com turbinas do modelo E-53 da Enercon;

 Seria necessário um parque enorme para suprir a cidade, algo ineficiente e incorreto na implementação de tal sistema.

Referências

- AMARANTE, O. A.; BROWER, M.; ZACK, J.; EOLICA, C. S. E. Atlas do potencial eólico brasileiro. Atlas do potencial eólico brasileiro, Ministerio de Minas e Energia Eletrobras.
 2001. Disponível em: https://cresesb.cepel.br/publicacoes/download/atlas_eolico/Atlas%20do%20Potencial%20Eolico%20Brasileiro.pdf. Acesso em: 10 de novembro de 2024.
- BRASIL. Matriz Energética e Elétrica. EPE, 2023. Disponível em: https://www.epe.gov.br/pt/abcdenergia/matriz-energetica-e-eletrica. Acesso em: 10 de novembro de 2024.
- BRIESCH, Franciele Cristina Cavalheiro. Simulação de um sistema de emulação de aerogeradores. 2016. Disponível em: https://dspace.unipampa.edu.br/jspui/bitstream/riu/1532/1/Simula%C3%A7%C3%A3o%20de%20um%20sistema%20de%20emula%C3%A7%C3%A3o%20de%20aerogerador es.pdf. Acesso em: 10 de novembro de 2024.
- RAMOS, Vítor M.; FERNANDES JR, Damásio; NEVES, Washington A. Modelagem e Simulação de um Aerogerador com Gerador de Indução Duplamente Alimentado e Controle de Velocidade para Maximização da Potência Gerada. In: **Simpósio Brasileiro de Automação Inteligente-SBAI**. 2021. Disponível em: https://www.sba.org.br/open_journal_systems/index.php/sbai/article/view/2777/2320. Acesso em: 10 de novembro de 2024.
- SOUZA, Pedro Hugo Barros de et al. Simulador didático para estudo de controle de potência de turbinas eólicas. 2022. Disponível em: https://repositorio.ifpe.edu.br/xmlui/handle/123456789/683. Acesso em: 10 de novembro de 2024.
- Wind Turbine Models. Enercon E-53 800,00 Kw Wind Turbine, 2024. Disponível em: https://en.wind-turbine-models.com/turbines/530-enercon-e-53. Acesso em: 10 de novembro de 2024.
- WWEA, World Wind Energy Association. 140 Years of Wind Power: As the World Reaches 1 Mio MW, New Discovery Shows that the World's First Wind Generator Was Installed in 1883, 31 de julho de 2023. Disponível em: https://wwindea.org/140-years-of-wind-power-as-the-world-reaches-1-mio-mw-new-discovery-shows-that-the-worlds-first-wind-generator-was-installed-in-1883. Acesso em: 10 de novembro de 2024.

Obrigado pela atenção!

