Aprendizagem por Reforço

Fabrício Barth

Outubro de 2021

Contexto

Até o momento vimos nesta disciplina:

- Conceito de Agente Autônomo;
- Solução de problemas usando busca em espaço de estados:
 - * Algoritmos de busca cega, e;
 - * Algoritmos de busca informados.
- Busca competitiva.

Conteúdo desta aula

- Visão Geral sobre Aprendizagem por Reforço
- Algoritmo Q-Learning
- Implementações com o projeto GYM
- Considerações Finais
- Material de Consulta

Ao final desta aula você saberá

- o que é Aprendizagem por Reforço e como as suas principais ideias funcionam;
- como o algoritmo Q-Learning funciona e como implementá-lo;
- como implementar um agente autônomo usando aprendizagem por reforço, e;
- como implementar um agente autônomo para atuar nos ambientes do projeto Gym.

Taxi Driver

```
>>> import gym
>>> env = gym.make("Taxi-v3").env
>>> env.render()
+----+
|R: | : :G|
| : | : : |
| : : : |
| | : | : |
| Y| : |B: |
+-----+
```

Podemos implementar uma solução para este problema usando o algoritmo A^* . Neste caso, **o que é necessário** fazer?

Definir uma Heurística H que seja admissível e que traga algum valor para o processo de busca.

Ambientes competitivos

Podemos implementar uma solução para este tipo de problema usando o algoritmo $M_{\rm IN}$ - $M_{\rm AX}$. Neste caso, o que é necessário fazer?

Definir uma função de utilidade que consegue descrever a utilidade dos estados possíveis para o meu agente.

E se fosse possível desenvolver um agente autônomo sem ter que codificar nenhum conhecimento sobre a tarefa que ele precisa executar (heurísticas ou funções de utilidade específicas)?

Aprendizagem por Reforço: Visão Geral

Um agente aprende a resolver uma tarefa através de repetidas interações com o ambiente, por tentativa e erro, recebendo (esporadicamente) reforços (punições ou recompensas) como retorno.

Aprendizagem por Reforço: Visão Geral

- Este agente não tem conhecimento algum sobre a tarefa que precisa executar (heurísticas ou funções de utilidade específicas).
- A tarefa deste agente é executar uma sequência de ações, observar as suas consequências e aprender uma política de controle.

O que é uma política de controle?

Política de Controle

• A política de controle desejada é aquela que **maximiza** os reforços (*reward*) acumulados ao longo do tempo pelo agente: $r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$ onde $0 \le \gamma < 1$.

- O $V(s_1)$ será a soma de r_1 com o $V(s_2)$. No entanto, considerando o fator de desconto γ , temos: $V(s_1) = r_1 + \gamma V(s_2)$.
- O valor de um estado final leva-se em consideração apenas o reforço: $V(s_n) = r_n$.

Fator de desconto γ

- O fator de desconto (γ) é um hiperparâmetro que consiste em um número entre 0 e 1 que define a importância das recompensas futuras em relação a atual $(0 \le \gamma < 1)$.
- Valores mais próximos ao 0 dão mais importância a recompensas imediatas enquanto os mais próximos de 1 tentarão manter a importância de recompensas futuras.

Exemplo

Início	Campo	Campo	Campo
Campo	Buraco	Campo	Buraco
Campo	Campo	Campo	Buraco
Buraco	Campo	Campo	Objetivo

Ações:

- (0) Mover para Baixo; (1) Mover para Cima;
- (2) Move para Direita; (3) Move para Esquerda.

- Considerando que o local do objetivo, dos buracos e dos campos serão sempre os mesmos então temos 16 estados possíveis.
- Este problema tem 4 ações possíveis.
- Se o agente cair em um buraco ele recebe -1 como recompensa, se ele ir para um campo ele recebe 0 e ao chegar no objetivo ele recebe 1.
- Para que agente possa identificar uma política de controle ótima este agente precisa criar um mapeamento entre estados (S) e ações (A)

• Este mapeamento pode ser representado por uma função Q(S,A) onde S são todos os estados possíveis (s_1,s_2,\cdots) e onde A são todas as ações possíveis (a_1,a_2,\cdots)

Q-table	a_1	a_2	a_3	a_4
s_1				
s_2				
s_n				

• Para criar um **mapeamento** Q(S,A) é necessário executar o agente no ambiente considerando o **reforço** dado por cada ação.

reforço

	esquerda	baixo	
S1	0	0	
S2	0	-1	
S3	-1	0	
S4	0	0	
S5	0	0	

• Como é que o agente pode saber quais são as melhores ações em cada estado?

Algoritmo Q-Learning

- A ideia é fazer com que o agente aprenda a função de mapeamento Q(S,A). Ou seja, que seja capaz de identificar qual é a melhor ação para cada estado através das suas **experiências**.
- Testando infinitas vezes o ambiente. Ou seja, testando muitas vezes as combinações entre estados (S) e ações (A).

Início	Campo	Campo	Campo
Campo	Buraco	Campo	Buraco
Campo	Campo	Campo	Buraco
Buraco	Campo	Campo	Objetivo

Primeiro episódio ($\gamma = 0.9$):

$$Q(s_1, baixo) \leftarrow r + \gamma \max_{a'} Q(s', a')$$
$$Q(s_1, baixo) \leftarrow 0 + 0.9 \times \max[0, 0, 0]$$
$$Q(s_2, direita) \leftarrow -1 + 0.9 \times \max[0, 0, 0, 0]$$

(1)

Q-table resultante da execução do 1^o episódio.

Q-table	esquerda	baixo	direita	$\begin{array}{ c c } cima \end{array}$
s_1	0	0	0	0
s_2	0	0	-1	0
s_3	0	0	0	0
s_4	0	0	0	0
s_n	0	0	1	0

Q-table resultante da execução do n-éssimo episódio.

Q-table	esquerda	baixo	direita	cima
s_1	0.02	0.03	0.0001	0.0001
s_2	0.00	0.05	-0.003	0.001
	• • •		• • •	• • •
s_n	0.985	0.0001	0.003	0.002

Após a execução de n episódios o agente conhece qual a melhor ação para cada estado.

Algoritmo Q-Learning

```
function Q-Learning(env, \alpha, \gamma, episódios)
inicializar os valores de Q(s,a) arbitrariamente
for todos os episódios do
  inicializar s a partir de env
  repeat
     escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
     s \leftarrow s'
  until s ser um estado final
end for
return Q(s,a)
```

```
function Q-Learning(env, \alpha, \gamma, episódios)
inicializar os valores de Q(s,a) arbitrariamente
for todos os episódios do
  inicializar s a partir de env
  repeat
     escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
     s \leftarrow s'
  until s ser um estado final
end for
return Q(s,a)
```

```
function Q-Learning(env, \alpha, \gamma, episódios)
inicializar os valores de Q(s,a) arbitrariamente
for todos os episódios do
  inicializar s a partir de env
  repeat
     escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
     s \leftarrow s'
  until s ser um estado final
end for
return Q(s,a)
```

Algoritmo Q-Learning: hiperparâmetro α

• α é a taxa de aprendizado ($0 < \alpha \le 1$), quanto maior, mais valor dá ao novo aprendizado.

Que ação escolher?

```
function Q-Learning(env, \alpha, \gamma, episódios)
inicializar os valores de Q(s,a) arbitrariamente
for todos os episódios do
  inicializar s a partir de env
  repeat
     escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
     s \leftarrow s'
  until s ser um estado final
end for
return Q(s,a)
```

Exploration vs Exploitation

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado infinitas (muitas) vezes.
- Por isso, que a escolha de determinada ação em um estado poderia ser feita de forma aleatória.

- Porém, normalmente se utiliza uma política que inicialmente escolhe aleatoriamente as ações, e, à medida que vai aprendendo, passa a utilizar cada vez mais as decisões determinadas pela política derivada de Q.
- Esta estratégia inicia **explorando** (tentar uma ação mesmo que ela não tenha o maior valor de Q) e termina escolhendo a ação que tem o maior valor de Q (exploitation).

Exemplo de função para escolha de ações

A escolha de uma ação para um estado é dada pela função:

```
function escolha(s, \epsilon): a

rv = random (0 < rv \le 1)

if rv < \epsilon then

return uma ação \alpha aleatória em A

end if

return \max_a Q(s, a)
```

O fator de exploração ϵ $(0 \le \epsilon \le 1)$ inicia com um valor alto (0.7, por exemplo) e, conforme a simulação avança, diminiu: $\epsilon \leftarrow \epsilon \times \epsilon_{dec}$, onde $\epsilon_{dec} = 0.99$

Epsilon

Algoritmo Q-Learning

```
function Q-Learning(env, \alpha, \gamma, \epsilon, \epsilon_{min}, \epsilon_{dec}, episódios)
inicializar os valores de Q(s,a) arbitrariamente
for todos os episódios do
   inicializar s a partir de env
   repeat
      a \leftarrow escolha(s, \epsilon)
      s', r \leftarrow executar a ação a no env
      Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
      s \leftarrow s'
   until s ser um estado final
   if \epsilon > \epsilon_{min} then \epsilon \leftarrow \epsilon \times \epsilon_{dec}
end for
return Q
```

Implementações com o projeto GYM

- Siga as orientações que estão no arquivo README.md da pasta https://github.com/fbarth/reinLearn.
- Execute as atividades que estão descritas no arquivo atividades_01.md no mesmo diretório (https://github.com/fbarth/reinLearn/atividades_01.md).

Considerações Finais

- O algoritmo Q Learning pode ser utilizado por agentes que não tem conhecimento prévio sobre o problema.
- Diversos autores já provaram que o algoritmo Q Learning converge para a função correta Q dentro de certas condições. Por exemplo, uma delas é garantir que o agente avalie um par Q(s,a) diversas vezes.

- Q Learning converge tanto para processos de decisão de Markov (MDP) determinísticos e não-determinísticos.
- Na prática, o algoritmo Q Learning necessita de muitas iterações de treinamento até convergir, inclusive para problemas que não tem um espaço de busca tão grande.

• E quando o espaço de busca for muito grande?

- Usar Deep Learning com Reinforcement Learning!
 Assunto do nosso próximo encontro!
- Ler o capítulo 18. Reinforcement Learning até a seção Implementing Deep Q-Learning do livro Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition do Aurélien Géron.
- Referência adicional: https://deepmind.com/research/case-studies/alphagothe-story-so-far

O que vimos até o momento?

- Conceitos básicos de Aprendizagem por Reforço.
- Funcionamento do algoritmo Q-Learning.
- Funcionamento da biblioteca Gym.

Material de consulta

- Tom Mitchell. Machine Learning. McGraw-Hill, 1997.
- Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. Second Edition, in progress. The MIT Press, 2015.
- Projeto Gym: https://gym.openai.com/
- https://deepmind.com/research/case-studies/alphago-thestory-so-far
- Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, 2019.