Simple Wireless Link Simulations

Armaan Kohli

Department of Electrical Engineering
The Cooper Union for the Advancement of Science and Art
New York City, United States
kohli@cooper.edu

Abstract—We simulate three different wireless channels to demonstrate understanding of the fundamentals of communication theory.

Index Terms—wireless link simulations, turbo codes, adaptive equalization

I. INTRODUCTION

We simulate three different wireless links. First, we verify simulating 4QAM and 16QAM simulations match theoretical bit error rate (BER) curves. Next, we design an adaptive equalizer to mitigate inter-symbol-interference over a wireless channel and achieve a BER less than 10^{-4} at 12dB signal-tonoise ratio (SNR) for BPSK. Finally, we use error correcting codes to maximize bit rate and achieve a BER less than 10^{-6} at 12dB SNR.

II. 40AM & 160AM PERFORMANCE

We were able to successfully match theoretical performance for both 4 and 16-ary QAM schemes over additive white Gaussian noise (AWGN) channels.

We simulated performance by computing the bit error rate for a single 1000 symbol packet, averaged over 10 iterations. BER curves and constellation diagrams for 4QAM can be seen in Fig. 1 and 2. BER curves and constellation diagrams for 16QAM can be seen in Fig. 5 and 6

A. 4QAM

Fig. 1. BER Curve for 4QAM over an AWGN channel

Fig. 2. 4QAM constellation

Fig. 3. BER Curve for 16QAM over an AWGN channel

B. 16QAM

III. EQUALIZING A MODERATE ISI CHANNEL

Next, we attempt to equalize a frequency selective channel that introduces ISI, using a BPSK modulation scheme. We attempted several different adaptive filtering algorithms in an attempt to equalize the channel. Generally speaking, we found RLS based algorithms difficult to stabilize, and linear equalizers tended to require long training sequences. We found that we achieved the best performance using a decision feedback equalizer (DFE) with a signed-LMS algorithm.

We simulated the channel with 100,000 symbols in order to ensure we met the performance specification of a BER less

Fig. 4. 16QAM constellation

than 10^{-4} at 12dB, averaged over five iterations. We were

Fig. 5. BER Curve for BPSK over a frequency selective channel

able to successfully meet the specification, achieving a BER of approximately 10^{-6} at 12dB SNR.

IV. MAXIMIZING BIT RATE VIA CODING

Finally, we attempted to further improve the performance of our wireless communication system by introducing error control codes. In order to maximize bit rate while still achieving the 10^{-6} BER requirement at 12dB SNR, we decided to increase the order of modulation and use turbo codes.

We used 16QAM and a code rate of $\frac{2}{3}$ for the turbo codes. We generated the BER curve in Fig. 7 using the standard 1000 symbol packet, averaged over five iterations.

V. CONCLUSION

We were able to successfully demonstrate understanding of communication theory fundamentals. We simulated AWGN and frequency selective channels, and corrected ISI both via adaptive equalization and error correcting codes.

Fig. 6. BPSK constellation

Fig. 7. BER curve for 16QAM w/ using turbo error control codes