Example 6.4 (Orthonormal design matrix)

Consider an orthonormal design matrix X, i.e. $X^{T}X = I_{pp} = (X^{T}X)^{-1}$. The lasso estimator then is:

$$\hat{\beta}_j(\lambda_1) = \operatorname{sign}(\hat{\beta}_j)(|\hat{\beta}_j| - \frac{1}{2}\lambda_1)_+,$$

where $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y} = \mathbf{X}^{\top}\mathbf{Y}$ is the maximum likelihood estimator of β and $\hat{\beta}_j$ its j-th element and $f(x) = (x)_+ = max\{x, 0\}$. This expression for the lasso regression estimator can be obtained as follows. Rewrite the lasso regression loss criterion:

$$\begin{split} \min_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\,\boldsymbol{\beta}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1} &= \min_{\boldsymbol{\beta}} \mathbf{Y}^{\top}\mathbf{Y} - \mathbf{Y}^{\top}\mathbf{X}\,\boldsymbol{\beta} - \boldsymbol{\beta}^{\top}\mathbf{X}^{\top}\mathbf{Y} + \boldsymbol{\beta}^{\top}\mathbf{X}^{\top}\mathbf{X}\,\boldsymbol{\beta} + \lambda_{1} \sum_{j=1}^{p} |\beta_{j}| \\ &\propto \min_{\boldsymbol{\beta}} -\hat{\boldsymbol{\beta}}^{\top}\,\boldsymbol{\beta} - \boldsymbol{\beta}^{\top}\hat{\boldsymbol{\beta}} + \boldsymbol{\beta}^{\top}\,\boldsymbol{\beta} + \lambda_{1} \sum_{j=1}^{p} |\beta_{j}| \\ &= \min_{\boldsymbol{\beta}_{1},...,\boldsymbol{\beta}_{p}} \sum_{j=1}^{p} \left(-2\hat{\beta}_{j}^{\text{ols}}\,\beta_{j} + \beta_{j}^{2} + \lambda_{1} |\beta_{j}| \right) \\ &= \sum_{j=1}^{p} (\min_{\boldsymbol{\beta}_{j}} -2\hat{\beta}_{j}\,\beta_{j} + \beta_{j}^{2} + \lambda_{1} |\beta_{j}|). \end{split}$$

The minimization problem can thus be solved per regression coefficient. This gives:

$$\min_{\beta_j} -2\hat{\beta}_j \,\beta_j + \beta_j^2 + \lambda_1 |\beta_j| = \begin{cases} \min_{\beta_j} -2\hat{\beta}_j \,\beta_j + \beta_j^2 + \lambda_1 \beta_j & \text{if } \beta_j > 0, \\ \min_{\beta_j} -2\hat{\beta}_j \,\beta_j + \beta_j^2 - \lambda_1 \beta_j & \text{if } \beta_j < 0. \end{cases}$$

The minimization within the sum over the covariates is with respect to each element of the regression parameter separately. Optimization with respect to the j-th one gives:

$$\hat{\beta}_{j}(\lambda_{1}) = \begin{cases} \hat{\beta}_{j} - \frac{1}{2}\lambda_{1} & \text{if} \quad \hat{\beta}_{j}(\lambda_{1}) > 0\\ \hat{\beta}_{j} + \frac{1}{2}\lambda_{1} & \text{if} \quad \hat{\beta}_{j}(\lambda_{1}) < 0\\ 0 & \text{otherwise} \end{cases}$$

Example 6.5 (Orthogonal design matrix)

The analytic solution of the lasso regression estimator for experiments with an orthonormal design matrix applies to those with an orthogonal design matrix. This is illustrated by a numerical example. Use the lasso estimator with $\lambda_1=10$ to fit the linear regression model to the response data and the design matrix:

$$\mathbf{Y}^{\top} = \begin{pmatrix} -4.9 & -0.8 & -8.9 & 4.9 & 1.1 & -2.0 \end{pmatrix}, \\ \mathbf{X}^{\top} = \begin{pmatrix} 1 & -1 & 3 & -3 & 1 & 1 \\ -3 & -3 & -1 & 0 & 3 & 0 \end{pmatrix}.$$

Note that the design matrix is orthogonal, i.e. its columns are orthogonal (but not normalized to one). The orthogonality of X yields a diagonal $X^{\top}X$, and so is its inverse $(X^{\top}X)^{-1}$. Here diag $(X^{\top}X) = (22, 28)$. Rescale X to an orthonormal design matrix, denoted \tilde{X} , and rewrite the lasso regression loss function to:

$$\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda_{1}\|\boldsymbol{\beta}\|_{1} = \|\mathbf{Y} - \mathbf{X}\begin{pmatrix} \sqrt{22} & 0 \\ 0 & \sqrt{28} \end{pmatrix}^{-1} \begin{pmatrix} \sqrt{22} & 0 \\ 0 & \sqrt{28} \end{pmatrix} \boldsymbol{\beta} \|_{2}^{2} + \lambda_{1}\|\boldsymbol{\beta}\|_{1}$$
$$= \|\mathbf{Y} - \tilde{\mathbf{X}}\boldsymbol{\gamma}\|_{2}^{2} + (\lambda_{1}/\sqrt{22})|\gamma_{1}| + (\lambda_{1}/\sqrt{28})|\gamma_{2}|,$$

where $\gamma = (\sqrt{22}\beta_1, \sqrt{28}\beta_2)^{\top}$. By the same argument this loss can be minimized with respect to each element of γ separately. In particular, the soft-threshold function provides an analytic expression for the estimates of γ :

$$\hat{\gamma}_1(\lambda_1/\sqrt{22}) = \operatorname{sign}(\hat{\gamma}_1)[|\hat{\gamma}_1| - \frac{1}{2}(\lambda_1/\sqrt{22})]_+ = -[9.892513 - \frac{1}{2}(10/\sqrt{22})]_+ = -8.826509,$$

$$\hat{\gamma}_2(\lambda_1/\sqrt{28}) = \operatorname{sign}(\hat{\gamma}_2)[|\hat{\gamma}_2| - \frac{1}{2}(\lambda_1/\sqrt{28})]_+ = [5.537180 - \frac{1}{2}(10/\sqrt{28})]_+ = 4.592269,$$

where $\hat{\gamma}_1$ and $\hat{\gamma}_2$ are the ordinary least square estimates of γ_1 and γ_2 obtained from regressing \mathbf{Y} on the corresponding column of $\tilde{\mathbf{X}}$. Rescale back and obtain the lasso regression estimate: $\hat{\boldsymbol{\beta}}(10) = (-1.881818, 0.8678572)^{\top}$. \square

Ouestion 6.1

Find the lasso regression solution for the data below for a general value of λ and for the straight line model Y = $\beta_0 + \beta_1 X + \varepsilon$ (only apply the lasso penalty to the slope parameter, not to the intercept). Show that when λ_1 is chosen

as 14, the lasso solution fit is $\hat{Y} = 40 + 1.75X$. Data: $\mathbf{X}^{\top} = (X_1, X_2, \dots, X_8)^{\top} = (-2, -1, -1, -1, 0, 1, 2, 2)^{\top}$,

and $\mathbf{Y}^{\top} = (Y_1, Y_2, \dots, Y_8)^{\top} = (35, 40, 36, 38, 40, 43, 45, 43)^{\top}$.