

57

Janvier 2012

Cours 3

Philippe LAHIRE - Cours Base de Données L2I

Algèbre relationnelle Ensemble d'opérateurs définis sur l'ensemble des relations: Ile résultat de toute opération algébrique est une relation (*propriété de fermeture*) In une base formelle pour les requêtes In utiles pour l'implémentation et l'optimisation des requêtes Relation Philippe LAHIRE - Cours Base de Données 121 Cours 3 Janvier 2012 58

Opérateurs algébriques

Opérateurs ensemblistes:

UNION, INTERSECTION, DIFFERENCE, PRODUIT reformulés spécifiquement pour le modèle relationnel

Opérateurs relationnels spécifiques :

SELECTION, PROJECTION, JOINTURE, DIVISION

Opérateurs dérivés :

JOINTURE EXTERNE, SEMI-JOINTURE, ...

Faire des couper/coller de lignes et de colonnes

Philippe LAHIRE - Cours Base de Données L21

Cours 3

Janvier 2012

59

3.1 Opérations Ensemblistes

 OPERATIONS ENSEMBLISTES POUR DES RELATIONS DE MEME SCHEMA

UNION INTERSECTION

DIFFERENCE

OPERATIONS ENSEMBLISTES POUR DES RELATIONS DE SCHEMAS QUELCONQUES
PRODUIT CARTESIEN

OPERATIONS BINAIRES
 Relation1 op Relation2 --> Relation3

L'ordre de des lignes importe peu

Philippe LAHIRE – Cours Base de Données L21

Cours 3

Janvier 2012

Opérateur UNION

Soit deux relations R1 et R2 de même schéma

R1 ∪ R2 est la relation contenant les tuples appartenant à R1 ou à R2

R1	A1	A2	А3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	43	İ

R2	A1	A2	А3	
ΝZ	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

UNION	A1	A2	А3
R1∪R2	a1	a2	a3
RIOR2	b1	b2	b3
	c1	c2	c3
Relation temporaire	d1	d2	d3
	e1	e2	63

Suppression des lignes identiques

commutatif: $[R1 \cup R2] = [R2 \cup R1]$

associatif: $[(R1 \cup R2) \cup R3] = [R2 \cup (R1 \cup R3)]$

Philippe LAHIRE – Cours Base de Données L2I

Cours 3

Janvier 2012

61

Opérateur INTERSECTION

Soit deux relations R1 et R2 de même schéma

R1 ∩ R2 est la relation contenant les tuples appartenant à R1 et à R2

R1	A1	A2	A3	
	a1	a2	a3	4
	b1	b2	b3	,
	c1	c2	c3	
	d1	d2	d3]

R2	A1	A2	А3	
112	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

INTERSECTION

R1 R2 A1 A2 A3 a1 a2 a3 b1 b2 b3

On garde que les lignes identiques

commutatif: [R1 \cap R2] = [R2 \cap R1]

associatif: $[(R1 \cap R2) \cap R3] = [R2 \cap (R1 \cap R3)]$

Philippe LAHIRE – Cours Base de Données L21

Relation temporaire

Cours 3

Janvier 2012

Opérateur DIFFERENCE

Soit deux relations R1 et R2 de même schéma

R1 - R2 est la relation contenant les tuples de R1 n'appartenant pas à R2

R1	A1	A2	А3]
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	43]

R2	A1	A2	А3	
112	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

DIFFERENCE

R1-R2

Relation temporaire

A1	A2	A3
c1	c2	c3
d1	d2	d3

Non commutatif: $[R1 - R2] \neq [R2 - R1]$ Non associatif: $[(R1 - R2) - R3] \neq [R2 - (R1 - R3)]$

Philippe LAHIRE – Cours Base de Données L21

Cours 3

Janvier 2012

63

Opérateur Produit cartésien

Soient les relations $R(A_1, ..., A_n)$ et $S(B_1, ..., B_p)$ avec $\{A_1, ..., A_n\} \cap \{B_1, ..., B_p\}$ éventuellement vide

Le **produit cartésien** de S et de R noté $\mathbf{R} \times \mathbf{S}$ est défini par la relation $\mathbf{Q}(\mathbf{A_1}, ..., \mathbf{A_n}, \mathbf{B_1}, ..., \mathbf{B_n})$ telle que :

$$(a_1, ..., a_n, b_1, ..., b_p) \in Q$$
ssi $(a_1, ..., a_n) \in R$ et $(b_1, ..., b_p) \in S$

R1	Α	В	С
	a1	b1	c1
	a2	b2	c2
	a3	b3	c3

R2	Х	Υ
	x1	y1
	x2	y2

PRODUIT CARTESIEN

R1XR2

commutatif: [R1 x R2] = [R2 x R1] associatif: [(R1 x R2) x R3] = [R2 x (R1 x R3)]

Α	В	С	Х	Υ
a1	b1	c1	x1	у1
a2	b2	c2	x1	у1
a3	b3	c3	x1	y1
a1	b1	c1	x2	y2
a2	b2	c2	x2	y2
a3	b3	c3	x2	y2

Philippe LAHIRE – Cours Base de Données L2I

Cours 3

Janvier 2012

Propriétés de la structure

Même schéma

 $degré(R1 \cup R2) = degré(R1) = degré(R2)$

 $degré(R1 \cap R2) = degré(R1) = degré(R2)$

degré(R1 - R2) = degré(R1) = degré(R2)

Schéma quelconque

 $degré(R1 \times R2) = degré(R1) + degré(R2)$

Philippe LAHIRE - Cours Base de Données L2I

Cours 3

Janvier 2012

65

ré

Opérateur SELECTION

La sélection : opérateur **SELECT** - sélection d'un sous-ensemble de

tuples d'une relation qui vérifient une condition

exemple : $\sigma_{adresse=PARIS}$ (Client)

<u>Client</u>	numéro	nom	adresse	téléphone
_	101	Durand	NICE	0493942613
elation	106	Fabre	PARIS	
ésultante	110	Prosper	PARIS	
	125	Antonin	MARSEILLE	0491258472

La relation résultante :

même schéma que la relation sur laquelle porte la sélection

Expression de sélection: $= | \neq | \leq | < | > | \geq$

66

 $\Lambda \mid V \mid \neg$

Philippe LAHIRE – Cours Base de Données L21

Cours 3

Janvier 2012

Exercice

- 1. Afficher les clients qui habitent Paris ou Nice
- 2. Afficher les ventes du client n° 120 du 20 oct 04
- 3. Afficher les clients qui n'habitent pas Nice

Q1:
$$\sigma$$
 adresse = PARIS or adresse = Nice (Client)

Q2:
$$\sigma_{\text{num\'ero_client}} = 120 \text{ and date} = 20 \text{ oct } 04$$
 (Vente)

Q3:
$$\sigma$$
 adresse \neq Nice (Client)

<u>Vente</u>

numéro	référence_produit	numéro_client	date
00102	153	101	12/10/04
00809	589	108	20/01/05
11005	158	108	15/03/05
12005	589	125	30/03/05

Philippe LAHIRE – Cours Base de Données L2I Cours 3 Janvier 2012 67

Exercice

- 1. Afficher la référence du produit et numéro de client
- 2. Afficher le nom et l'adresse des clients de Nice

Q1 : π Référence_produit, numéro_client (Vente)

Q2 : π nom, adresse (Client)

Vente

numéro	référence_produit	numéro_client	date
00102	153	101	12/10/04
00809	589	108	20/01/05
11005	158	108	15/03/05
12005	589	125	30/03/05

Philippe LAHIRE – Cours Base de Données L2I Cours 3 Janvier 2012 69

Opérateur JOINTURE / Theta-JOINTURE

La jointure : opérateur JOIN, noté de deux relations en un seul tuple

Olicit				<u>vente</u>			
numéro	nom	adresse	téléphone	numéro	ref_produit	no_client	date
101	Durand	NICE	0493942613	00102	AF153	101	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	106	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	106	05/10/04
125	Antonin	MARSEILLE	0491258472	12005	BG589	125	25/10/04

La relation résultante :

Client

- autant d'attributs que le produit cartésien (degré(R1) + degré(R2))
- moins de tuples

Philippe LAHIRE – Cours Base de Données L2I Cours 3 Janvier 2012 70

La jointure externe entre les relations S et R notée S R :

✓ les tuples de S et R ne participant pas à la jointure

CLIENT VENTE

no_client	nom	adresse	téléphone	numéro	ref_produit	date
101	Durand	NICE	0493942613	00102	AF153	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	05/10/04
110	Prosper	PARIS	0491258472	12005	BG589	25/10/04
125	Antonin	MARSEILLE	NULL 🤾	NULL	NULL	NULL

A droite et à gauche

Pas d'informations

78

Philippe LAHIRE – Cours Base de Données L21 Janvier 2012 Cours 3

Opérateur SEMI_JOINTURE

La jointure externe entre les relations S et R notée S R :

✓ la jointure S 🔀 R

✓ les tuples de R (S) ne participant pas à la jointure

CLIENT VENTE

no_client	nom	adresse	téléphone	numéro	ref_produit	date
101	Durand	NICE	0493942613	00102	AF153	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	05/10/04
110	Prosper	PARIS	0491258472	12005	BG589	25/10/04
125	Antonin	MARSEILLE	NULL 🦿	NULL	NULL	NULL

Pas d'informations

Philippe LAHIRE - Cours Base de Données L21

Cours 3

Janvier 2012

Complexité des opérateurs

Sélection : σ [condition] R

- Au plus: balayer la relation + tester la condition sur chaque tuple.
- Complexité = card (R).
- Taille du résultat : [0 : card (R)].

Projection : π [Ai, Ak...] R

- Balayer la relation + élimination doublons
- Complexité = card (R). 0 si inclut dans une sélection
- Taille du résultat : [1 : card (R)].

Jointure (naturelle ou thêta) entre R et S

- Balayer R et pour chaque tuple de R faire : Balayer S et comparer chaque tuple de S avec celui de R.
- Complexité = card (R) x card (S).
- Taille du résultat : [0 : card (R) x card (S)].

Philippe LAHIRE – Cours Base de Données L2I

Cours 3

Janvier 2012

Exercice

Relations:

- Journal (<u>code-i</u>, titre, prix, type, périodicité)
- Dépôt (<u>no-dépôt</u>, nom-dépôt, adresse)
- Livraison (<u>no-dépôt</u>, <u>code-i</u>, <u>date-liv</u>, quantité-livrée)

Requêtes:

- Quel est le prix des journaux ?
- Donnez tous les renseignements connus sur les hebdomadaires.
- Donnez les codes des journaux livrés à Nice.
- Donnez les numéros des dépôts qui reçoivent tous les journaux.

Philippe LAHIRE – Cours Base de Données L21

Cours 3

Janvier 2012