IMAGE PROCESSING

- Image Enhancement
 - Brightness mapping
 - Contrast stretching/enhancement
 - Histogram modification
 - Noise Reduction
- Mathematical Techniques
 - Convolution
 - Mean filtering
 - Gaussian filtering
- Edge and Line Detection and Extraction
- Contour Extraction
- Corner Detection
- Region Segmentation

Computer Vision Histogram-based transformations

- Thresholding
 - threshold selection (manual & automatic)
- Transformations for contrast enhancement
 - linear
 - linear stretching
 - non-linear
 - power law
 - logarithmic
 - equalization
 - CLAHE

Filtering for noise reduction

- Linear filters: mean and Gaussian
 - convolution operation
- Non-linear filters
 - median
 - anisotropic diffusion filter
 - bilateral filter
- Frequency domain filters

- Goal: improve the 'visual quality' of the image
 - for human viewing
 - for subsequent processing
- Two typical methods
 - spatial domain techniques....
 - operate directly on image pixels
 - <u>frequency domain</u> techniques....
 - operate on the Fourier transform of the image
- No general theory of 'visual quality'
 - General assumption: if it looks better, it is better
 - Often not a good assumption

Spatial domain methods

I'(x,y) = T(I(x,y))

- Transformation T
 - point pixel to pixel
 - local local area to pixel
 - global output value at a specific coordinate depends on all values in the input image. (ex: DFT)
- Local neighborhoods
 - typically quadrangular
 - typically an odd size: 3x3, 5x5, etc. (why odd size? see later)
 - centered on pixel I(x,y)

Point transformations

Histogram-based transformations

$$O = T(I)$$

Input pixel value, I, mapped to output pixel value, O, via transfer function T.

Point transformations:thresholding

- T is a point-to-point transformation
 - only information at I(x,y) used to generate I'(x,y)
- Thresholding

$$I'(x,y) = \begin{cases} I_{max} & \text{if } I(x,y) > t \\ I_{min} & \text{if } I(x,y) \le t \end{cases}$$

Color image

Graylevel image

Thresholded graylevel image (t=89)

- Arbitrary selection
 - select visually
- Use image histogram

<u>Later</u>, we'll be back to <u>threshold selection methods</u>

Point transformations: brightness

Non-linear scaling: power law

- γ < 1 to enhance contrast in dark regions
- γ > 1 to enhance contrast in bright regions.

Computer Vision

Point transformations: color images

- Technique can be applied to <u>color images</u>
 - same curve to all color bands
 - different curves to separate color bands:

- but ... be careful, colors may become distorted...!
- Point transformations are usually applied using LUT's (Look Up Tables)

Computer Vision

Histogram equalization

source: http://docs.opencv.org/

Using the cumulative distribution function to equalize a Gaussian distribution

After equalization the cumulative distribution function is almost linear

Original

Histogram stretching

Histogram equalization

- The contrast enhancement is better after the histogram equalization, which more easily detects structures located in the shade.
- In fact any strongly represented gray-level is stretched while any weakly represented graylevel is merged with other close levels

Equalization of color images

In color images,
 <u>only the luminance</u> channel is usually equalized
 as otherwise the colors can become distorted.

- Acquisition process degrades image
- Brightness and contrast enhancement implemented by pixel operations
- No one algorithm universally useful
- γ > 1 enhances contrast in bright images
- γ < 1 enhances contrast in dark images
- Transfer function for histogram equalization proportional to cumulative histogram
- It is essential a process of trial-and-error to determine whether a particular type of images will benefit from histogram transformation operations.

Computer Vision

CLAHE – Contrast Limited Adaptive Histogram Equalization

- Considering the global contrast of the image is not a good idea, in some cases ... (look at the face of the statue, in the middle image)
- For some images, it might be preferable to apply different kinds of equalization in different regions.
- Instead of computing a single curve, the image is divided into MxM pixel non-overlapped sub-blocks and separate histogram equalization is performed in each sub-block.
- To avoid blocking artifacts (i.e., intensity discontinuities at block boundaries)
 in the resulting image,
 the equalization functions are smoothly interpolated as we move between blocks.
- This technique is known as <u>adaptive histogram equalization</u> (AHE) and its contrast limited (gain-limited, to avoid noise amplification) version is known as CLAHE.

Original image

After global equalization (notice the effect on the face of the statue)

After CLAHE

Filtering

- What is noise?
- How is noise reduction performed?
 - Noise reduction from first principles
 - Neighbourhood operators
 - linear filters (low pass)
 - non-linear filters (median)

'grainy' image noise

Sources of Noise

- Electronic signal fluctuations in detector.
 - Caused by thermal energy.
 - Worse for infra-red sensors.
- Other electronics
- Transmission (analog)

Radiation from the long wavelength IR band is used in most infrared imaging applications

- Plot of image brightness.
- Noise models:
 - additive
 - f(i,j) = g(i,j) + v(i,j)
 - Gaussian
 - salt and pepper
 - multiplicative
 - f(i,j) = g(i,j) + g(i,j).v(i,j)

where

- f(i,j) acquired signal (noisy)
- g(i,j) uncorrupted signal
- v(i,j) noise component
- Noise fluctuations are rapid
 - high frequency.

- Impulse noise
 - Noise is maximum or minimum values

- Good approximation to real noise
- Distribution is Gaussian (mean & standard deviation)

- Plot noise histogram
- Typical noise distribution is normal or Gaussian
- Mean(noise) μ = 0
- Standard deviation σ

$$\eta(x) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma}\right)$$

Noise varies above and below uncorrupted image.

Image

Image Noise

- Removing (?) or <u>reducing</u> noise...
- Linear smoothing transformations
 - frame averaging (=> acquire several frames of static scene)
 - local averaging
 - Gaussian smoothing
- Non-linear transformations
 - median filter
 - rotating mask

Image Data:

10	12	40	16	19	10
14	22	52	10	55	41
10	14	51	21	14	10
32	22	9	9	19	14
41	18	9	22	27	11
10	7	8	8	4	5

Mask / Filter / Kernel:

$$F \circ I(x,y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i,j)I(x+i,y+j)$$

Computer Vision

- Kernel is aligned with pixel in image, multiplicative sum is computed, normalized,
- and stored in result image.
- Process is repeated across image.
- What happens when kernel is near edge of input image?

- missing samples are zero
- missing samples are gray
- copying last lines
- reflected indexing (mirror)
- circular indexing (periodic)
- reduce size of resulting image
- **OpenCV** allows some control on how to do this; see CopyMakeBorder(): copies the source 2D array into the interior of the destination array and makes a border of the specified type around the copied area

Border problem

1/9	1/9	1/9			
1/9	1/9	1/9			
1/9	1/9	1/9			

F

8	3	4	5
7	6	4	5
4	5	7	8
6	5	5	6

Ī

8	8	3	4	5	5
8	8	3	4	5	5
7	7	6	4	5	5
4	4	5	7	8	8
6	6	5	5	6	6
6	6	5	5	6	6

I with padded boundaries

 $J = F \circ I$

A **convolution** operation is a correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$F * I(x, y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i, j) I(x - i, y - j)$$

Suppose F is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

- Extremely important concept in computer vision, image processing, signal processing, etc.
- Lots of related mathematics (we won't do)
- General idea: reduce a filtering operation to the repeated application of a mask (or filter kernel) to the image
 - Kernel can be thought of as an NxN image
 - N is usually odd so kernel has a central pixel
- In practice
 - (flip kernel)
 - Align kernel center pixel with an image pixel
 - Pointwise multiply each kernel pixel value with corresponding image pixel value and add results
 - Resulting sum is normalized by kernel weight
 - Result is the value of the pixel centered on the kernel

Correlation vs Convolution

Correlation

7	- In	itia	ıl p	osit	ion	for w	Cor	rela	tio	n r	esult	Fu	II c	orre	elat	ion	res	ult
1	2	3	0	0	0	0						0	0	0	0	0	0	0
14	5	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	8	9	0	0	0	0	0	9	8	7	0	0	0	9	8	7	0	0
0	0	0	1	0	0	0	0	6	5	4	0	0	0	6	5	4	0	0
0	0	0	0	0	0	0	0	3	2	1	0	0	0	3	2	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0	0	0
0	0	0	0	0	0	0						0	0	0	0	0	0	0
			(c)						(d)						(e)			

source: https://towardsdatascience.com/convolution-vs-correlation-af868b6b4fb5

Correlation vs Convolution

Convolution

7	R	otat	ed	w			Con	vol	utio	n r	esult	Ful	l co	nv	olu	tior	ı re	sult
9	8	7!	()	0	0	0						0	0	0	0	0	0	0
6	5	4	0	0	()	()	()	()	()	0	0	()	0	()	()	()	()	0
3	2	1	0	0	()	0	0	1	2	3	0	0	0	1	2	3	()	0
				0	0	()	0	4	5	6	0	0	0	4	5	6	()	0
0	()	0	0	0	0	0	0	7	8	9	0	0	0	7	8	9	0	0
0	0	0	0	0	()	()	0	0	0	0	0	()	0	0	0	0	0	0
0	0	0	0	0	0	0						0	0	0	0	0	0	0
			(f)						(g)						(h)			

source: https://towardsdatascience.com/convolution-vs-correlation-af868b6b4fb5

Notes:

- 1) Correlation and convolution are identical when the filter is symmetric.
- 2) The key difference between the two is that convolution is associative, that is, if F and G are filters, then F*(G*Img) = (F*G)*Img
- 3) In general, people use **convolution** <u>for image processing operations</u> <u>such as smoothing</u>, and they use <u>correlation</u> <u>to match a template</u> to an image (see <u>later</u>).

Noise reduction - 1

Uncorrupted Image

Uncorrupted Image + Noise

Image + Noise - Blurred

Noise neduction - 1

- Technique relies on high frequency noise fluctuations being 'blocked' by filter.
 Hence, low-pass filter.
- Fine detail in image may also be smoothed.
- Balance between keeping image fine detail and reducing noise.

Noise reduction - 1

- Saturn image (previous slide) has coarse detail
- Boat image contains fine detail
- Noise reduced but fine detail also smoothed

Gaussian smoothing

- Smoothing operator should be
 - 'tunable' in what it leaves behind
 - smooth and localized in image space.
- One operator which satisfies these two constraints is the Gaussian

OpenCV: Smooth()

The two-dimensional Gaussian distribution is defined by:

$$G(x,y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\left[\frac{(x^2+y^2)}{2\sigma^2}\right]}$$

From this distribution, can generate smoothing masks

whose width depends upon σ:

σ defines kernel "width"

$$\sigma^2 = 1.0$$

$$\sigma^2 = 4.0$$

• Choose $\sigma^2 = 2$ and n = 7, then:

7x7 Gaussian filter

$$\frac{W(1,2)}{k} = \exp(-\frac{1^{2}+2^{2}}{2*2})$$

To make this value 1, choose k=91

Kernel Application

7x7 Gaussian kernel

15x15 Gaussian kernel

Why Gaussian for smoothing

- Gaussian is not the only choice, but it has a number of important properties
 - If we convolve a Gaussian with another Gaussian, the result is a Gaussian
 - This is called linear scale space

$$G_{\sigma_1} * G_{\sigma_2} = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}.$$

Efficiency: <u>separable</u>

$$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^{2}} \exp\left(-\frac{(x^{2} + y^{2})}{2\sigma^{2}}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x^{2})}{2\sigma^{2}}\right)\right) \times \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{2})}{2\sigma^{2}}\right)\right),$$

Mean vs. Gaussian filtering

After Gaussian filtering

Computer Vision

hmmmmm.....

Computer Vision Noise reduction - 2: Median filter

- Compute median of points in neighborhood
- Nonlinear filter
 - example of a larger class of filters named "rank-filters" (ex: min, median, max)
- Has a tendency to blur detail less than averaging
- Works very well for 'shot' or 'salt and pepper' noise

Linear vs Non-linear

Mean(I1+I2) = =Mean (I1) + Mean (I2)

Median(I1+I2) != Median(I1)+Median(I2)

Original

Low-pass

Median

Mean

- Linear
- Signal frequencies shared with noise are lost, resulting in blurring.
- Impulsive noise is diffused but not removed.
- It spreads the noise, resulting in blurring.
- Blurs edges.

Median

- Non-linear
- Does not spread the noise.
- Can remove spike noise.
- Preserves (some) edges.
- Small details
 (small regions, this edges, ...)

 may be lost.
- Expensive to run.

Edge Preserving Smoothing

Smooth (average, blur) an image without disturbing

- sharpness or
- positionof the edges
- Nagao-Matsuyama filter
- Kuwahara filter
- Anisotropic diffusion filters (Perona & Malik,)
- Bilateral filtering
- •

- Calculate the variance within nine subwindows of a 5x5 moving window
- Output value is the mean of the subwindow with the smallest variance
- Nine subwindows used:

Principle:

- divide filter mask into four regions (a, b, c, d).
- in each compute the mean brightness and the variance
- the output value of the center pixel (abcd) in the window is the mean value of that region that has the smallest variance.

a	a	ab	٩	ъ
81	a .	ab	ъ	ъ
ac	ac	abcd	bd	bd
C	Ċ	cđ	đ	d
C	C	cd	đ	d

Kuwahara filter example

Original

Kuwahara

Median (1 iteration)

Median (10 iterations)

Anisotropic diffusion filtering

- The anisotropic diffusion is a <u>nonlinear filter</u>that smoothes the intraregions of an image without blurring the strong edges
 - Encourages the **smoothing in homogeneous regions** in preference to smoothing across the boundaries.
- Based on the solution of a partial differential equation, inspired in heat diffusion equation
 - The algorithm results from the discretization of the non-linear diffusion equation.
 - The derivatives are approximated by differences.
- Diffusion methods average over extended regions by solving partial differential equations, and are therefore inherently iterative. Iteration may raise issues of stability and, depending on the computational architecture, efficiency.
- This algorithm is also used to detect the edges

Anisotropic diffusion filtering

Original

Perona, Malik, 1987

$$\frac{\partial u}{\partial t} = div \left(\frac{Du}{\left| Du \right|^2 + \lambda^2} \right)$$

Weickert, 1994

$$\frac{\partial u}{\partial t} = D^2 u(d, d)$$
$$d = SEigen(k * (Du \otimes Du))$$

Caselles, Sbert, 1997

$$\frac{\partial u}{\partial t} = \frac{1}{|Du|^2} D^2 u(Du, Du)$$

Rudin, Osher, Fatemi, 1992

$$\frac{\partial u}{\partial t} = div \left(\frac{Du}{|Du|} \right)$$

Zhong Carmona, 1998

$$\frac{\partial u}{\partial t} = D^2 u(d, d)$$
$$d = SEigen(D^2 u)$$

Alvarez, Lions, 1992

$$\frac{\partial u}{\partial t} = \frac{|Du|}{|k*Du|} div \left(\frac{Du}{|Du|} \right)$$

Sochen, Kimmel, Malladi, 1998

$$\frac{\partial u}{\partial t} = div \left(\frac{Du}{\sqrt{|Du|^2 + 1}} \right)$$

Note: Original Perona-Malik diffusion process is NOT anisotropic, although they erroneously said it was.

Anisotropic diffusion filtering

Bilateral filtering

- A bilateral filter is an <u>edge-preserving</u> and <u>noise reducing</u> smoothing filter.
- Traditional filtering is domain filtering, and enforces closeness by weighing pixel values with weights that fall off with distance.
- Similarly, we define range filtering, which averages image values with weights that decay with dissimilarity.
- Range filters
 - are nonlinear because their weights depend on image intensity or color
 - preserve edges
 - by themselves, my distort an image's color map (see C.Tomasi at al., Bilateral Filtering for Gray and Color, ICCV 1998)
- Bilateral filtering combines range and domain filtering.
- The intensity value at each pixel in an image is replaced by a weighted average of intensity values from nearby pixels.
- This weight is based on a Gaussian distribution.
 The weights depend not only on <u>Euclidean distance</u> but also on the <u>radiometric differences</u> (e.g. color intensity).
- It <u>preserves sharp edges</u> by systematically <u>looping</u> through each pixel and attributing weights to the adjacent pixels accordingly.
- OpenCV: Smooth()

Bilateral filtering

Computer Vision

Frequency domain filtering

- An image can be represented in the frequency domain, using the Fourier Transform (FT).
- The FT encodes the amplitude and phase of each frequency component.
- The values near the origin of the transformed space are called low-frequency components of the FT, and those distant from the origin are the high-frequency components.
- Convolution in the <u>image domain</u> corresponds to <u>multiplication</u> in the spatial <u>frequency domain</u>.
- Therefore, convolution with large filters, which would normally be expensive in the image domain, can be implemented efficiently using the Fast Fourier Transform (FFT).
- This is an important technique in many image processing applications.

Fourier transform

- Any function that periodically repeats itself
 can be expressed as a sum of sines and cosines of
 different frequencies
 each multiplied by a different coefficient
 - a Fourier series

Discrete Fourier Transform - DFT

The Discrete Fourier Transform of f(x, y), for x = 0, 1, 2...M-1 and y = 0,1,2...N-1, denoted by F(u, v), is given by the equation:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for u = 0, 1, 2...M-1 and v = 0, 1, 2...N-1.

 The DFT of a 2D image can be visualised by showing the spectrum of the images component frequencies

Fourier spectrum of the image

Frequency domain filtering

To filter an image in the frequency domain:

- 1. Compute F(u,v) the DFT of the image
- 2. Multiply F(u,v) by a filter function H(u,v)
- 3. Compute the inverse DFT of the result

Frequency domain filtering operation

Frequency domain filtering

High Pass Filter

Frequency domain filtering

After filtering

2D Fourier transform