Total: 100 points

- 1. (20 points) Answer the following question:
 - (a) Evaluate $\int_{\pi}^{3\pi/2} \cot^5\left(\frac{\theta}{6}\right) \sec^2\left(\frac{\theta}{6}\right) d\theta$ (b) If $f(x) = \int_{1/x}^x \frac{1}{t} dt$, find f'(x).

Solution:

(a) Let
$$u = \tan\left(\frac{\theta}{6}\right) \Rightarrow du = \frac{1}{6}\sec^2\left(\frac{\theta}{6}\right)d\theta$$
, $\cot^5\left(\frac{\theta}{6}\right) = \frac{1}{\tan^5\left(\frac{\theta}{6}\right)} = \frac{1}{u^5}$, $u: \frac{1}{\sqrt{3}} \to 1$
Therefore, $\int_{\pi}^{3\pi/2} \cot^5\left(\frac{\theta}{6}\right)\sec^2\left(\frac{\theta}{6}\right)d\theta = \int_{\frac{1}{6}}^1 6u^{-5}du = -\frac{3}{2} + \frac{27}{2} = 12$

(b)
$$\frac{d}{dx} \left(\int_{1/x}^{x} \frac{1}{t} dt \right) = \frac{1}{x} \cdot 1 - \frac{1}{1/x} \cdot \left(-\frac{1}{x^2} \right) = \frac{1}{x} + \frac{1}{x} = \frac{2}{x}$$

2. (30 points) Find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and y = 2x about the y-axis.

Solution:

• The cross-section is a washer. $V = \int_0^4 \left[\pi \left(\sqrt{y} \right)^2 - \pi \left(\frac{y}{2} \right)^2 \right] dy = \pi \left[\frac{y^2}{2} - \frac{y^3}{12} \right]_0^4 = \frac{8}{3}\pi$

3. (20 points) Find the areas of the regions enclosed by the curves:

$$y = \cos x$$
, $y = 1 - \cos x$, $0 \le x \le \pi$

Solution:

• The intersection of these two curves on $[0, \pi]$ can be found by solving $\cos x = 1 - \cos x$. Thus, the curves intersects when $2\cos x = 1 \Rightarrow \cos x = 1/2 \Rightarrow x = \pi/3$.

The area is
$$A = \int_0^{\pi/3} [\cos x - (1 - \cos x)] dx + \int_{\pi/3}^{\pi} [(1 - \cos x) - \cos x] dx$$

$$\Rightarrow A = \left[2\sin x - x\right] \Big|_{0}^{\pi/3} + \left[x - 2\sin x\right] \Big|_{\pi/3}^{\pi} = 2\sqrt{3} + \frac{\pi}{3}$$

4. (30 points) Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $x = 2y^2$ and $x = y^2 + 1$ about the axis y = -2.

Solution:

• The shell has radius y-(-2)=y+2, circumference $2\pi(y+2)$, and height $(y^2+1)-2y^2=1-y^2$. Therefore, $V=\int_{-1}^1 \left[2\pi(y+2)\cdot(1-y^2)\right]dy=2\pi\int_{-1}^1 \left(-y^3-2y^2+y+2\right)dy=\frac{16\pi}{3}$ In this case, one can also utilize the symmetry (even/odd function) to simplify the integral.

$$\int_{-1}^{1} (-y^3 + y) \, dy = 0 \text{ and } \int_{-1}^{1} (-2y^2 + 2) \, dy = 2 \int_{0}^{1} (-2y^2 + 2) \, dy = 2 \cdot \frac{4}{3} = \frac{8}{3}$$

Therefore,
$$V = 2\pi \int_{-1}^{1} (-y^3 - 2y^2 + y + 2) dy = 2\pi \cdot 2 \int_{0}^{1} (-2y^2 + 2) dy = 2\pi \cdot \frac{8}{3} = \frac{16\pi}{3}$$