$12n_{0291} (K12n_{0291})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.93542 \times 10^{17} u^{55} - 6.67587 \times 10^{17} u^{54} + \dots + 2.93396 \times 10^{17} b - 4.34022 \times 10^{16}, \\ &\quad 2.00229 \times 10^{18} u^{55} - 6.17396 \times 10^{18} u^{54} + \dots + 2.93396 \times 10^{17} a - 3.02275 \times 10^{18}, \ u^{56} - 4 u^{55} + \dots + 2 u + 1 \\ I_2^u &= \langle -u^2 a + u^2 + b, \ 2 u^2 a + a^2 + a u - 2 u^2 - a - 2 u - 1, \ u^3 + u^2 - 1 \rangle \\ I_3^u &= \langle b, \ a - 1, \ u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 2.94 \times 10^{17} u^{55} - 6.68 \times 10^{17} u^{54} + \dots + 2.93 \times 10^{17} b - 4.34 \times 10^{16}, \ 2.00 \times 10^{18} u^{55} - 6.17 \times 10^{18} u^{54} + \dots + 2.93 \times 10^{17} a - 3.02 \times 10^{18}, \ u^{56} - 4u^{55} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -6.82450u^{55} + 21.0431u^{54} + \dots + 1.50746u + 10.3026 \\ -1.00050u^{55} + 2.27537u^{54} + \dots - 2.44477u + 0.147930 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3.65406u^{55} - 10.3520u^{54} + \dots + 5.15325u - 4.23694 \\ 4.10204u^{55} - 12.0354u^{54} + \dots - 2.31411u - 2.32151 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{8} + u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -6.34999u^{55} + 19.7941u^{54} + \dots - 0.691497u + 9.35095 \\ -0.586914u^{55} + 1.14134u^{54} + \dots - 2.44719u + 0.0395175 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2.57455u^{55} + 8.57238u^{54} + \dots - 0.0350557u + 6.04787 \\ 3.43407u^{55} - 10.9313u^{54} + \dots - 6.20880u - 2.54966 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3.42363u^{55} + 10.3054u^{54} + \dots - 4.48816u + 4.34550 \\ -3.87161u^{55} + 11.9888u^{54} + \dots + 2.97921u + 2.43006 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{6957411366946544141}{146698213939434107} u^{55} + \frac{43997122065882996801}{293396427878868214} u^{54} + \cdots + \frac{49895915246887856523}{293396427878868214} u + \frac{19684211083463159307}{293396427878868214}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{56} + 20u^{55} + \dots + 94u + 1$
c_2, c_5	$u^{56} + 4u^{55} + \dots - 2u + 1$
<i>c</i> ₃	$u^{56} - 2u^{55} + \dots - 37222u + 7489$
c_4, c_8	$u^{56} + 4u^{55} + \dots + 416u - 64$
c_7, c_{11}	$u^{56} - 4u^{55} + \dots - 2u - 2$
c_9, c_{10}, c_{12}	$u^{56} + 5u^{55} + \dots + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{56} + 36y^{55} + \dots - 6302y + 1$
c_2,c_5	$y^{56} - 20y^{55} + \dots - 94y + 1$
<i>c</i> 3	$y^{56} - 24y^{55} + \dots - 5793307970y + 56085121$
c_4, c_8	$y^{56} + 34y^{55} + \dots - 21504y + 4096$
c_7, c_{11}	$y^{56} - 18y^{55} + \dots - 80y + 4$
c_9, c_{10}, c_{12}	$y^{56} - 47y^{55} + \dots - 71y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.555632 + 0.820839I		
a = -1.310140 + 0.452763I	6.89840 - 1.70687I	11.04654 + 2.11039I
b = -0.50995 + 1.32573I		
u = -0.555632 - 0.820839I		
a = -1.310140 - 0.452763I	6.89840 + 1.70687I	11.04654 - 2.11039I
b = -0.50995 - 1.32573I		
u = -0.746093 + 0.643224I		
a = 1.79687 - 0.81232I	2.14654 + 0.63049I	4.81685 + 0.I
b = 0.61922 - 1.61203I		
u = -0.746093 - 0.643224I		
a = 1.79687 + 0.81232I	2.14654 - 0.63049I	4.81685 + 0.I
b = 0.61922 + 1.61203I		
u = 0.611315 + 0.811190I		
a = 0.82986 + 1.25644I	-1.11438 + 4.39097I	2.00000 - 3.05982I
b = -0.84573 + 1.32108I		
u = 0.611315 - 0.811190I		
a = 0.82986 - 1.25644I	-1.11438 - 4.39097I	2.00000 + 3.05982I
b = -0.84573 - 1.32108I		
u = 0.639496 + 0.745500I		
a = 0.21432 + 1.59797I	2.28095 + 2.17813I	5.60335 - 1.04644I
b = -0.18371 + 1.40658I		
u = 0.639496 - 0.745500I		
a = 0.21432 - 1.59797I	2.28095 - 2.17813I	5.60335 + 1.04644I
b = -0.18371 - 1.40658I		
u = -1.057330 + 0.031394I		
a = 1.059980 + 0.396752I	-3.27157 + 1.64123I	0
b = 1.037210 - 0.754122I		
u = -1.057330 - 0.031394I		
a = 1.059980 - 0.396752I	-3.27157 - 1.64123I	0
b = 1.037210 + 0.754122I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.815754 + 0.715389I		
a = 2.13178 - 1.95768I	4.64235 + 1.91730I	0
b = 0.80101 - 3.45506I		
u = -0.815754 - 0.715389I		
a = 2.13178 + 1.95768I	4.64235 - 1.91730I	0
b = 0.80101 + 3.45506I		
u = 0.646892 + 0.638776I		
a = -0.850743 - 0.918967I	1.49600 - 0.77880I	5.52001 + 0.97967I
b = 0.826318 - 0.495030I		
u = 0.646892 - 0.638776I		
a = -0.850743 + 0.918967I	1.49600 + 0.77880I	5.52001 - 0.97967I
b = 0.826318 + 0.495030I		
u = 0.655547 + 0.884678I		
a = -1.01004 - 1.55997I	3.85590 + 9.25734I	0
b = 0.57473 - 1.83740I		
u = 0.655547 - 0.884678I		
a = -1.01004 + 1.55997I	3.85590 - 9.25734I	0
b = 0.57473 + 1.83740I		
u = 0.859653 + 0.688129I		
a = 0.664066 - 0.017009I	11.29430 - 2.64795I	0
b = -0.054388 - 0.658388I		
u = 0.859653 - 0.688129I		
a = 0.664066 + 0.017009I	11.29430 + 2.64795I	0
b = -0.054388 + 0.658388I		
u = 0.876983 + 0.151494I		
a = 0.1160180 + 0.0212256I	-1.49543 - 0.33054I	-5.58521 + 0.41922I
b = -0.393762 - 0.405166I		
u = 0.876983 - 0.151494I		
a = 0.1160180 - 0.0212256I	-1.49543 + 0.33054I	-5.58521 - 0.41922I
b = -0.393762 + 0.405166I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.115310 + 0.073858I		
a = -0.302761 + 0.507491I	-7.34462 + 3.52834I	0
b = -0.541213 - 0.678094I		
u = -1.115310 - 0.073858I		
a = -0.302761 - 0.507491I	-7.34462 - 3.52834I	0
b = -0.541213 + 0.678094I		
u = -0.947166 + 0.640358I		
a = -1.40216 + 1.01867I	1.51907 + 4.39807I	0
b = -0.74124 + 2.06542I		
u = -0.947166 - 0.640358I		
a = -1.40216 - 1.01867I	1.51907 - 4.39807I	0
b = -0.74124 - 2.06542I		
u = -0.904546 + 0.704031I		
a = -2.66914 + 2.18937I	4.37132 + 3.51272I	0
b = -0.75000 + 3.34742I		
u = -0.904546 - 0.704031I		
a = -2.66914 - 2.18937I	4.37132 - 3.51272I	0
b = -0.75000 - 3.34742I		
u = 0.199557 + 0.823827I		
a = -0.188450 + 0.800184I	1.27100 - 5.53243I	6.88478 + 5.95128I
b = -0.896805 - 0.162123I		
u = 0.199557 - 0.823827I		
a = -0.188450 - 0.800184I	1.27100 + 5.53243I	6.88478 - 5.95128I
b = -0.896805 + 0.162123I		
u = -1.149520 + 0.171385I		
a = -0.352409 - 0.425484I	-3.37562 + 8.61142I	0
b = 0.086994 + 0.749495I		
u = -1.149520 - 0.171385I		
a = -0.352409 + 0.425484I	-3.37562 - 8.61142I	0
b = 0.086994 - 0.749495I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877750 + 0.767459I $a = 0.61912 + 1.30040I$ $b = 1.71436 + 0.44120I$	3.73144 + 2.89531I	0
u = -0.877750 - 0.767459I $a = 0.61912 - 1.30040I$ $b = 1.71436 - 0.44120I$	3.73144 - 2.89531I	0
u = 0.996417 + 0.644457I $a = 1.098620 - 0.312059I$ $b = 1.46572 + 1.16153I$	0.45076 - 4.30103I	0
u = 0.996417 - 0.644457I $a = 1.098620 + 0.312059I$ $b = 1.46572 - 1.16153I$	0.45076 + 4.30103I	0
u = 0.807123 $a = 3.25049$ $b = -1.20792$	0.339779	61.8040
u = 1.041510 + 0.583028I $a = 1.391730 - 0.045593I$ $b = 1.52856 + 0.47260I$	-4.20570 - 3.27627I	0
u = 1.041510 - 0.583028I $a = 1.391730 + 0.045593I$ $b = 1.52856 - 0.47260I$	-4.20570 + 3.27627I	0
u = 0.386849 + 0.703387I $a = 0.080082 - 1.229030I$ $b = 0.502755 - 0.488230I$	-2.39037 - 1.55268I	1.61575 + 2.61232I
u = 0.386849 - 0.703387I $a = 0.080082 + 1.229030I$ $b = 0.502755 + 0.488230I$	-2.39037 + 1.55268I	1.61575 - 2.61232I
u = 1.115730 + 0.439932I $a = -0.739493 + 0.517959I$ $b = -1.131660 + 0.027778I$	-1.67584 + 0.98983I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.115730 - 0.439932I		
a = -0.739493 - 0.517959I	-1.67584 - 0.98983I	0
b = -1.131660 - 0.027778I		
u = 1.21660		
a = -0.482061	0.661022	0
b = 0.154807		
u = 1.013820 + 0.677594I		
a = -1.87407 - 0.28208I	1.16708 - 7.61471I	0
b = -1.80895 - 0.83661I		
u = 1.013820 - 0.677594I		
a = -1.87407 + 0.28208I	1.16708 + 7.61471I	0
b = -1.80895 + 0.83661I		
u = 1.043410 + 0.693114I		
a = -1.80141 - 0.10454I	-2.41199 - 10.04440I	0
b = -1.81609 - 1.65261I		
u = 1.043410 - 0.693114I		
a = -1.80141 + 0.10454I	-2.41199 + 10.04440I	0
b = -1.81609 + 1.65261I		
u = -1.063310 + 0.686319I		
a = 1.20482 - 1.11113I	5.39990 + 7.34868I	0
b = 0.57272 - 1.88306I		
u = -1.063310 - 0.686319I		
a = 1.20482 + 1.11113I	5.39990 - 7.34868I	0
b = 0.57272 + 1.88306I		
u = -0.906500 + 0.883744I		
a = 0.426122 + 0.260836I	8.38533 + 3.24583I	0
b = 0.259723 + 0.288378I		
u = -0.906500 - 0.883744I		
a = 0.426122 - 0.260836I	8.38533 - 3.24583I	0
b = 0.259723 - 0.288378I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.055930 + 0.737690I		
a = 2.11012 + 0.58896I	2.6209 - 15.2730I	0
b = 1.89812 + 2.08623I		
u = 1.055930 - 0.737690I		
a = 2.11012 - 0.58896I	2.6209 + 15.2730I	0
b = 1.89812 - 2.08623I		
u = -0.665378		
a = -2.70313	7.93809	29.4940
b = -1.90693		
u = 0.372658 + 0.279589I		
a = -1.53134 - 0.64420I	1.155810 - 0.800051I	6.92184 - 0.19721I
b = 1.017650 - 0.002132I		
u = 0.372658 - 0.279589I		
a = -1.53134 + 0.64420I	1.155810 + 0.800051I	6.92184 + 0.19721I
b = 1.017650 + 0.002132I		
u = -0.112048		
a = 5.51199	0.859867	11.9670
b = 0.496888		

II. $I_2^u = \langle -u^2a + u^2 + b, \ 2u^2a + a^2 + au - 2u^2 - a - 2u - 1, \ u^3 + u^2 - 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ u^{2}a - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -au + 2u^{2} + 2u - 1 \\ -au + 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} au - 2u^{2} - u + 2 \\ au - 2u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2au + 3u^{2} + a + 3u - 2 \\ u^{2}a - 2au + 2u^{2} + 3u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au + 2u^{2} + 2u - 1 \\ -au + 2u^{2} + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^2a 4u^2 + 3a 10u + 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4, c_8	u^6
C ₅	$(u^3 - u^2 + 1)^2$
<i>C</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_9, c_{10}	$(u^2-u-1)^3$
c_{11}, c_{12}	$(u^2+u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_4, c_8	y^6
$c_7, c_9, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0.586612 + 0.101930I	11.90680 + 2.82812I	13.45212 - 4.14885I
b = 0.044325 + 0.562280I		
u = -0.877439 + 0.744862I		
a = 0.86067 + 1.76749I	4.01109 + 2.82812I	20.9825 + 0.8478I
b = 2.28039 + 0.56228I		
u = -0.877439 - 0.744862I		
a = 0.586612 - 0.101930I	11.90680 - 2.82812I	13.45212 + 4.14885I
b = 0.044325 - 0.562280I		
u = -0.877439 - 0.744862I		
a = 0.86067 - 1.76749I	4.01109 - 2.82812I	20.9825 - 0.8478I
b = 2.28039 - 0.56228I		
u = 0.754878		
a = 1.51473	-0.126494	0.305530
b = 0.293316		
u = 0.754878		
a = -2.40929	7.76919	-18.1750
b = -1.94275		

III.
$$I_3^u = \langle b, a-1, u-1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_{12}	u-1
c_5, c_6, c_8 c_9, c_{10}	u+1
c_7,c_{11}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_8, c_9, c_{10} c_{12}	y-1
c_7, c_{11}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	0	0
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u-1)(u^3 - u^2 + 2u - 1)^2(u^{56} + 20u^{55} + \dots + 94u + 1) $
c_2	$(u-1)(u^3+u^2-1)^2(u^{56}+4u^{55}+\cdots-2u+1)$
c_3	$(u-1)(u^3 - u^2 + 2u - 1)^2(u^{56} - 2u^{55} + \dots - 37222u + 7489)$
c_4	$u^{6}(u-1)(u^{56}+4u^{55}+\cdots+416u-64)$
<i>C</i> 5	$(u+1)(u^3-u^2+1)^2(u^{56}+4u^{55}+\cdots-2u+1)$
<i>C</i> ₆	$(u+1)(u^3+u^2+2u+1)^2(u^{56}+20u^{55}+\cdots+94u+1)$
<i>C</i> ₇	$u(u^{2}-u-1)^{3}(u^{56}-4u^{55}+\cdots-2u-2)$
c ₈	$u^{6}(u+1)(u^{56}+4u^{55}+\cdots+416u-64)$
c_9, c_{10}	$(u+1)(u^2-u-1)^3(u^{56}+5u^{55}+\cdots+3u+1)$
c_{11}	$u(u^2 + u - 1)^3(u^{56} - 4u^{55} + \dots - 2u - 2)$
c_{12}	$(u-1)(u^2+u-1)^3(u^{56}+5u^{55}+\cdots+3u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y-1)(y^3+3y^2+2y-1)^2(y^{56}+36y^{55}+\cdots-6302y+1)$
c_2, c_5	$(y-1)(y^3-y^2+2y-1)^2(y^{56}-20y^{55}+\cdots-94y+1)$
c_3	$(y-1)(y^3 + 3y^2 + 2y - 1)^2$ $\cdot (y^{56} - 24y^{55} + \dots - 5793307970y + 56085121)$
c_4, c_8	$y^{6}(y-1)(y^{56} + 34y^{55} + \dots - 21504y + 4096)$
c_7, c_{11}	$y(y^2 - 3y + 1)^3(y^{56} - 18y^{55} + \dots - 80y + 4)$
c_9, c_{10}, c_{12}	$(y-1)(y^2-3y+1)^3(y^{56}-47y^{55}+\cdots-71y+1)$