

Departamento de Matemáticas 4º Académicas

Examen parcial 3^a evaluación

Nombre:	Fecha:			
Tiempo: 50 minutos	Tipo: A			

Esta prueba tiene 6 ejercicios. La puntuación máxima es de 10. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	Total
Puntos:	1	2	1	2	2	2	10

1. Calcula, usando las identidades fundamentales de la trigonometría, las razones trigonométricas de un ángulo agudo α sabiendo que:

(a)
$$\cos \alpha = \frac{\sqrt{2}}{2}$$
 (1 punto)

Solución: $\sin \alpha = \frac{\sqrt{2}}{2}, \cos \alpha = \frac{\sqrt{2}}{2}, \tan \alpha = 1.$ El ángulo agudo con esas razones es: 45°.

2. Indica en qué cuadrante se encuentra y calcula, usando las identidades fundamentales de la trigonometría, las razones trigonométricas del ángulo α si:

(a)
$$\operatorname{tg} \alpha = \frac{\sqrt{3}}{3} y \cos \alpha < 0$$
 (2 puntos)

Solución:

$$\sin \alpha = -\frac{1}{2}, \cos \alpha = -\frac{\sqrt{3}}{2}, \tan \alpha = \frac{\sqrt{3}}{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 210°

- 3. Calcula los lados y los ángulos del triángulo rectángulo:
 - (a) Sabiendo que la hipotenusa mide 20 cm. y un ángulo 60°

(1 punto)

(2 puntos)

Solución: Los lados del triángulo miden: 17,32, 10, 20 cm. Y los ángulos: 60, 30, 90 °

- 4. Resuelve
 - (a) Un carpintero quiere construir una escalera de tijera cuyos brazos, una vez abiertos, formen un ángulo de 60°. Si la altura de la escalera, estando abierta es de 2m, ¿qué longitud deberá tener cada brazo?

Solución:
$$\frac{4\sqrt{3}}{3} \rightarrow 2,31 \ m$$

- 5. Resuelve:
 - (a) Desde el punto donde estoy, la visual al punto más alto de una torre de 100 m que tengo enfrente forma un ángulo de 30° con la horizontal. ¿Cuántos m me tengo que acercar para que el ángulo sea de 60°?¿A cuántos metros estaba inicialmente?.

Solución:
$$\begin{cases} \tan{(30)} = \frac{100}{x} \\ \tan{(60)} = \frac{100}{y} \end{cases} \to \begin{cases} x : 100\sqrt{3}, \ y : \frac{100\sqrt{3}}{3} \end{cases} \to 100\sqrt{3} \wedge \frac{100\sqrt{3}}{3} \to 115,47 \wedge 173,21 \ m \end{cases}$$

- 6. Resuelve las siguientes ecuaciones:
 - (a) $\cos x = -\frac{1}{2}$ (1 punto)

Solución: $x=120^{\circ}, x=240^{\circ}$

(b) $4(\cos x)^2 - 2 = 0$ (1 punto)

Solución: $x = 45^{\circ}, x = 135^{\circ}, x = 225^{\circ}, x = 315^{\circ}$