Universidad Nacional Autónoma de Honduras

Departamento de Matemática Aplicada Sistemas Dinámicos II Ejercicios de Repaso para el Parcial III

Profesor: Dr. Fredy Vides

1. Considere la relación recursiva

$$\begin{cases} x_{n+1} = x_n + x_{n-1}, & n \ge 1 \\ x_0 = 1 & x_1 = c. \end{cases}$$

Probar que:

(a) Si $c = (1 + \sqrt{5})/2$:

$$x_n = \left(\frac{1+\sqrt{5}}{2}\right)^n$$

(b) Si $c = (1 - \sqrt{5})/2$:

$$x_n = \left(\frac{1 - \sqrt{5}}{2}\right)^n$$

(c) Si c = 1:

$$x_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$$

- 2. Demustre que si L_1 y L_2 son combinaciones lineales de potencias de E, y $x \in \ker L_1$, entonces $x \in \ker L_1L_2$.
- 3. Calcular ker E^r , $r \in \mathbb{Z}_0^+$.
- 4. Dé bases que consten de sucesiones reales para el espacio solución de:

(a)
$$(4E - 3E^2 + E^3)x = 0$$

(b)
$$(\pi E^2 - \sqrt{2}E + \log(2)E^0)x = 0$$

(c)
$$(3E^0 - 2E + E^2)x = 0$$

- 5. Sea $p \in \mathbb{C}[z]$ tal que p(0) = 0. Calcular ker p(E).
- 6. Considere la ecuación en diferencias $4x_{n+2} 8x_{n+1} + 3x_n = 0$. Determine si es estable. Encuentre la solución general. Suponiendo que $x_0 = 1$ y $x_1 = -2$, calcule x_100 con el método que usted considere más eficiente.
- 7. Considere la relación recurrente $x_n = 2(x_{n-1} + x_{n-2})$. Demuestre que la solución general es $z_n = \alpha(1+\sqrt{3})^n + \beta(1-\sqrt{3})^n$. Demuestre que si $x_1 = 1$ y $x_2 = 1 \sqrt{3}$, entonces $\alpha = 0$ y $\beta = (1-\sqrt{3})^{-1}$.

8. Dada $m \geq 2$. Estudiar la estabilidad del SDD determinado por la ED matricial:

$$\begin{cases} X_{n+1} = C_m X_n \\ X_0 = \hat{X} \in \mathbb{C}^m \end{cases}$$

donde $C_m \in \mathbb{C}^{m \times m}$ está definida por la expresión:

$$C_m = \begin{bmatrix} \mathbf{0}_{(m-1)\times 1} & \mathbf{1}_{m-1} \\ 1 & \mathbf{0}_{1\times (m-1)} \end{bmatrix}$$