Scilab Textbook Companion for Engineering Physics by V. Yadav¹

Created by
Ujval Gupta
Modern Physics
Physics
Shri Mata Vaishno Devi University
College Teacher
Dr. Yugal Khajuria
Cross-Checked by
Lavitha Pereira

April 11, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: V. Yadav

Publisher: Tata McGraw-Hill

Edition: 1

Year: 2009

ISBN: 978-0-07-008569-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Quantum Mechanics	12
2	Interference	41
3	Diffraction	90
4	Polarization	125
5	Nuclear Physics	141
6	Semiconductors and Nano Physics	146
7	Fiber Optics	148
8	Laser	156

List of Scilab Codes

Exa 1.1	Energy of the particle from de Broglie wavelength	12
Exa 1.2	de Broglie wavelength of the particle	12
Exa 1.3	de Broglie wavelength of an accelerated electron	13
Exa 1.4	Energy of the electron from de Broglie wavelength	13
Exa 1.5	Velocity and de Broglie wavelength of a neutron	14
Exa 1.6	Wavelength of thermal neutron at room temperature .	15
Exa 1.7	Angle of deviation for first order diffraction maxima .	15
Exa 1.8	de Broglie wavelength of a moving electron	16
Exa 1.9	de Broglie wavelength of a neutron of given kinetic en-	
	ergy	17
Exa 1.10	de Broglie wavelength associated with moving proton .	17
Exa 1.11	Wavelength of matter wave associated with moving pro-	
	ton	18
Exa 1.12	de Broglie wavelength of an electron accelerated through	
	a given potential	18
Exa 1.13	Interplanar spacing of the crystal	19
Exa 1.14	Interplanar spacing using Bragg law	20
Exa 1.15	de Broglie wavelength of electron accelerated at V volts	20
Exa 1.16	de Broglie wavelength of electron accelerated from rest	21
Exa 1.17	The wavelength associated with moving mass	22
Exa 1.18	Wavelength of an electron from its kinetic energy	22
Exa 1.19	Kinetic energy of electron	22
Exa 1.20	Speed of proton for an equivalent wavelength of that of	
	electron	23
Exa 1.21	de Broglie wavelength of the electron	24
Exa 1.23	Minimum accuracy to locate the position of an electron	24
Exa 1.24	Uncertainty in energy of an emitted photon	25
Exa 1.25	Minimum uncertainty in velocity of electron	26

Exa 1.26	Minimum uncertainty in momentum and minimum ki-
D 107	netic energy of proton
Exa 1.27	Uncertainty in momentum of electron
Exa 1.28	Uncertainty in position of the particle
Exa 1.29	Uncertainty in position of the moving electron
Exa 1.30	Smallest possible uncertainty in position of the electron
Exa 1.31	Difference in the energy between the neighboring levels of Na at the highest state
Exa 1.32	Energy of the neutron confined in a nucleus
Exa 1.33	Energy of an electron moving in one dimensional infinitely high potential box
Exa 1.34	Lowest energy of an electron in a one dimensional force free region
Exa 1.35	First three energy levels of an electron in one dimen-
	sional box
Exa 1.36	Lowest two permitted energy values of the electron in a 1D box
Exa 1.37	Lowest energy of the neutron confined to the nucleus .
Exa 1.38	X ray scattering
Exa 1.39	Wavelength of scattered Xray
Exa 1.40	Wavelength of scattered radiation with changed angle of view
Exa 1.41	Compton scattering through aluminium foil
Exa 1.42	Energetic electrons in the Xray tube
Exa 2.1	Slit separation in Double Slit experiment
Exa 2.2	Wavelength of light in Young Double Slit experiment .
Exa 2.3	Ratio of maximum intensity to minimum intensity of interference fringes
Exa 2.4	Wavelength of light from monochromatic coherent sources
Exa 2.5	Separation between fourth order dark fringes
Exa 2.6	Distance between two coherent sources
Exa 2.7	Fringe width of the interference pattern due to biprism
Exa 2.7 Exa 2.8	Angle of vertex of the biprism
Exa 2.9	Number of interference fringes for changed wavelength
Exa 2.10	Wavelength of light in a biprism experiment
Exa 2.10	Fringe width at a certain distance from biprism
Exa 2.11	Distance between coherent sources in biprism experiment
Exa 2.12 Exa 2.13	Effect of slit separation on fringe width
±xa 4.10	Enect of site separation on image width

D 045 D: 1 1 : 1 C 1 1	F O
Exa 2.15 Distance between interference bands	50
Exa 2.16 Angle of vertex of Fresnel biprism	51
Exa 2.17 Wavelength of light used in biprism experiment to illu-	
minate slits	52
Exa 2.18 Vertex angle of Fresnel biprism	52
Exa 2.19 Order of visible fringe for changed wavelength of light	53
Exa 2.20 Angle of vertex of biprism	54
Exa 2.21 Separation between two coherent sources	55
Exa 2.22 Refractive index of the glass sheet	55
Exa 2.23 Refractive index of material of sheet	56
Exa 2.24 Wavelength of light used in biprism arrangement	56
Exa 2.25 Thickness of the transparent sheet	57
Exa 2.26 Thickness of the transparent sheet from fringe shift	57
Exa 2.27 Refractive index of thin mica sheet	58
Exa 2.28 Wavelength of light used in double slit experiment	59
Exa 2.29 Thickness of mica sheet from central fringe shift	59
Exa 2.30 Refractive index of material from shifting fringe pattern	60
Exa 2.31 Fringe width and optical path change during interfer-	
ence of waves through mica and glass	60
Exa 2.32 Thickness of mica sheet from Fresnel biprism experiment	61
Exa 2.33 Smallest thickness of glass plate for a fringe of minimum	
intensity	62
Exa 2.34 The wavelength reflected strongly from the soap film .	63
Exa 2.35 Order of interference of the dark band	63
Exa 2.36 Absent wavelength of reflected light in the visible spec-	
trum	64
Exa 2.37 Minimum thickness of the plate that will appear dark	
in the reflection pattern	65
Exa 2.38 Thickness of the thin soap film	66
Exa 2.39 Order of interference for which light is strongly reflected	67
Exa 2.40 Minimum thickness of the film for which light is strongly	
reflected	68
Exa 2.41 Thickness of the soap film for dark fringe in reflected	
pattern	68
Exa 2.42 Wavelength in the visible range which is intensified in	
the reflected beam	69
Exa 2.43 Thickness of the film with incident white light	70

Exa 2.44	Thickness of the film with parallel beam of yellow light
Exa 2.46	Refractive index of oil
Exa 2.47	Thickness of the soap film to produce constructive in-
	terference during reflection
Exa 2.48	Wavelength of light falling on wedge shaped film
Exa 2.49	Difference between the thicknesses of the films
Exa 2.50	Angle of thin wedge shaped film
Exa 2.51	Wavelength of light used to illuminate a wedge shaped
	film
Exa 2.52	Thickness of the wire separating two glass surfaces
Exa 2.53	Angle of the wedge shaped air film
Exa 2.54	Acute angle of the wedge shaped film
Exa 2.55	Diameter of nth dark ring due to first wavelength
Exa 2.56	Diameter of fifteenth dark ring
Exa 2.57	Order of a dark ring having thrice the diameter of the
	thirtieth ring
Exa 2.58	Radius of curvature of lens and thickness of air film
Exa 2.59	Refractive index of the liquid
Exa 2.60	Wavelength of light used in Newton rings experiment .
Exa 2.61	Diameter of fifteenth bright ring
Exa 2.62	Wavelength of light used in Newton rings experiment .
Exa 2.63	Diameter of fifteenth dark Newton ring
Exa 2.64	Diameter of fifteenth dark ring due to first wavelength
Exa 2.65	Refractive index of the liquid filled into container
Exa 2.67	Refractive index of the liquid
Exa 2.68	Diameter of eighteenth dark ring
Exa 2.69	Wavelength of light used to illuminate plano convex lens
	in Newton rings experiment
Exa 2.70	Wavelength of monochromatic light used in Michelson
	Interferometer
Exa 2.71	Number of fringes that passes across the cross wire of
	telescope
Exa 2.72	Distance between two successive positions of movable
	mirror
Exa 2.73	Thickness of the transparent glass film
Exa 3.1	Position of the screen so that light is focused on the
	brightest spot
Exa 3 2	Zone plate with a point source of light on the axis

Exa 3.3	Position of the first image in a zone plate 91
Exa 3.4	Principal focal length of zone plate 92
Exa 3.5	Half angular width at central maximum in Fraunhoffer
	diffraction
Exa 3.6	Width of the slit
Exa 3.7	Angular width of central maximum
Exa 3.8	Distance between first minima and the next minima
	from the axis
Exa 3.9	Width of central maxima in diffraction pattern 96
Exa 3.10	Slit width in Fraunhoffer single slit experiment 96
Exa 3.11	Half angular width of central maxima 9'
Exa 3.12	Wavelength of light used in Fraunhoffer diffraction due
	to single slit
Exa 3.13	Width of central maxima from position of first secondary
	minima
Exa 3.14	Wavelength of monochromatic light used in illuminating
	a slit
Exa 3.15	Distance between second dark and next bright fringe on
	the axes
Exa 3.16	Width of the slit from first order diffraction 100
Exa 3.18	Fraunhoffer diffraction due to double slits 103
Exa 3.19	Fringe separation in Fraunhoffer double slit diffraction
	pattern
Exa 3.20	Positions of first secondary maxima and minima in dou-
	ble slit diffraction
Exa 3.21	Missing orders of spectra in Fraunhoffer double slit diffrac-
	tion
Exa 3.22	Angles of diffraction for the principal maxima for two
	lines of sodium
Exa 3.23	Highest order spectrum which can be seen in monochro-
	matic light
Exa 3.24	Angle of separation in second order of diffraction spec-
	trum
Exa 3.25	Separation of two lines in first order spectrum 100
Exa 3.26	Difference in the deviation in the first and third order
	spectra
Exa 3.27	Order of diffraction for the given grating element and
	wavelength of light

Exa 3.28	Number of lines ruled on the grating surface	109
Exa 3.29	Angles at which first and second order maxima are observed	110
Exa 3.30	Least width of plane transmission grating	110
Exa 3.31	Minimum grating width required to resolve two wave-	110
211a 0.01	lengths	111
Exa 3.32	Angle of diffraction for maxima in first order	113
Exa 3.33	Wavelength of light used in obtaining second order diffrac-	110
2120 3133	tion maximum	113
Exa 3.34	Number of visible orders using diffraction grating	114
Exa 3.35	Distance between two wavelengths seen as separate	115
Exa 3.36	Number of lines per cm on grating surface	115
Exa 3.37	Total number of lines on grating surface	116
Exa 3.38	Angular separation between the sodium D1 and D2 lines	117
Exa 3.39	Minimum number of lines in a grating	118
Exa 3.40	Linear separation of two points on the moon	119
Exa 3.41	Minimum required number of lines on the plane trans-	
	mission grating	119
Exa 3.42	Number of lines on the plane transmission grating to	
	just resolve the sodium lines	120
Exa 3.43	Minimum width of the grating to resolve the sodium	
	lines in third order	121
Exa 3.44	Dispersive power and diffraction angle for grating	121
Exa 3.45	Distance between centres of images of the two stars	123
Exa 3.46	Aperture of the objective of the microscope	123
Exa 4.1	Refractive index of the material	125
Exa 4.2	Polarization by reflection	125
Exa 4.3	Angle of refraction of the ray	126
Exa 4.4	Angle of minimum deviation for green light	126
Exa 4.5	Polarizing angles of the materials for given refractive	
	indices	127
Exa 4.6	Angle of rotation of analyser	128
Exa 4.7	Angles of rotation of analyser for given transmitted light	
	intensities	128
Exa 4.8	Angle of minimum deviation for green light	129
Exa 4.9	Ratio of ordinary to extraordinary ray intensities	130
Exa 4.10	Thickness of quarter wave plate	130

Exa 4.11	Least thickness of plate for which emergent beam is
	plane polarised
Exa 4.12	Difference in refractive indices of rays
Exa 4.13	The thickness of a half wave plate
Exa 4.14	The thickness of a quarter wave plate
Exa 4.15	The thickness of a half wave plate quartz
Exa 4.16	Difference between refractive indices
Exa 4.17	Specific rotation of superposition
Exa 4.18	Strength of sugar solution
Exa 4.19	Quantity of sugar contained in the tube in the form of
	solution
Exa 4.20	Specific rotation of sugar solution from the given data
Exa 4.21	Angle of rotation of the plane of polarization
Exa 4.22	Angle of rotation of the optically active solution
Exa 4.23	Angle of rotation in a tube of new length
Exa 4.24	Mass of sugar in the solution contained in the tube
Exa 4.25	Percentage purity of the sugar sample
Exa 4.26	Angle of rotation produced by the polarimeter plate .
Exa 5.1	Mass defect of He
Exa 5.3	Maximum energy of proton in a cyclotron
Exa 5.4	Energy of an electron in a betatron
Exa 5.5	Final energy gained by electrons in a betatron
Exa 5.6	Energy produced in fission of U235
Exa 5.7	Power output of nuclear reactor
Exa 5.8	Average current in the GM counter circuit
Exa 5.9	Energy needed to remove a neutron from Ca nucleus .
Exa 6.1	Resistivity of intrinsic semiconductor at 300 K
Exa 6.2	Velocity of electron at Fermi level
Exa 7.1	Critical angle and acceptance angle in an optical fibre
Exa 7.2	Critical angle acceptance angle and numerical aperture
	in an optical fibre
Exa 7.3	Parameters of an optical fibre using relative refractive
	index difference
Exa 7.4	Refractive index of cladding
Exa 7.5	Numerical aperture for an optical fibre
Exa 7.6	Refractive index of the cladding
Exa 7.7	Comparison of the acceptance angle for meridional rays
	with that for the skew rays

Exa 7.8	Normalized frequency for V number for the fibre	153
Exa 7.9	Number of modes in the step index fibre	153
Exa 7.10	Radius of core for single mode operation in step index	
	fibre	154
Exa 7.11	Signal attenuation in optical fibre	155
Exa 8.1	Difference between upper and lower energy levels for the	
	most prominent wavelength	156
Exa 8.2	Frequency and wavelength of carbon dioxide laser	156
Exa 8.3	Energy of one emitted photon and total energy available	
	per laser pulse	157
Exa 8.4	Relative population of levels in Ruby laser	158
Exa 8.5	Population of two states in He Ne laser	158

Chapter 1

Quantum Mechanics

Scilab code Exa 1.1 Energy of the particle from de Broglie wavelength

```
1 // Scilab Code Ex1.1: Page -1.5 (2009)
2 clc; clear;
3 lambda = 2.1e-010; // de Broglie wavelength of the
      particle, m
                       // Mass of the particle, kg
4 m = 1.67e-027;
                       // Planck's constant, Js
5 h = 6.626e - 034;
6 \text{ e} = 1.6\text{e}-019; // Energy equivalent of 1 eV, J/eV
7 // From de Broglie relation, lambda = h/sqrt(2*m*E),
       solving for E
8 E = h^2/(2*m*lambda^2*e); // Energy of the
      particle, eV
9 printf("\nThe energy of the particle from de Broglie
       wavelength = \%5.3 \,\mathrm{e} eV", E);
10
11 // Result
12 // The energy of the particle from de Broglie
      wavelength = 1.863e-002 eV
```

Scilab code Exa 1.2 de Broglie wavelength of the particle

```
1 // Scilab Code Ex1.2: Page -1.5 (2009)
2 clc; clear;
                  // Mass of the particle, kg
3 \text{ m} = 1.67 \text{e} - 027;
4 h = 6.626e-034;
                       // Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 E = 1e+011*e; // Energy of the particle, J
7 lambda = h/sqrt(2*m*E);
                            // de Broglie wavelength
      of the particle, m
8 printf("\nThe de Broglie wavelength of the particle
     = \%4.2 \, e \, m, lambda);
9
10 // Result
11 // The de Broglie wavelength of the particle = 9.06e
     -017 \text{ m}
```

Scilab code Exa 1.3 de Broglie wavelength of an accelerated electron

```
// Scilab Code Ex1.3: Page-1.5 (2009)
clc; clear;
V = 20e+03; // Accelerating voltage of electron,
V
lambda = 12.25/sqrt(V); // de Broglie wavelength
    of the accelerated electron, m
printf("\nThe de Broglie wavelength of the electron
    = %6.4 f angstrom", lambda);
// Result
// The de Broglie wavelength of the electron =
    0.0866 angstrom
```

Scilab code Exa 1.4 Energy of the electron from de Broglie wavelength

```
1 // Scilab Code Ex1.4: Page -1.6 (2009)
```

```
2 clc; clear;
3 lambda = 5.2e-03; // de Broglie wavelength of the
      electron, m
                    // Mass of the electron, kg
4 m = 9.1e-031;
                       // Planck's constant, Js
5 h = 6.626e - 034;
6 \text{ e} = 1.6\text{e}-019; // Energy equivalent of 1 eV, J/eV
7 // From de Broglie relation, lambda = h/sqrt(2*m*E),
       solving for E
8 E = h^2/(2*m*lambda^2*e); // Energy of the
      electron, eV
9 printf("\nThe energy of the electron from de Broglie
       wavelength = \%5.3 \,\mathrm{e} eV", E);
10
11 // Result
12 // The energy of the electron from de Broglie
      wavelength = 5.576e-014 eV
```

Scilab code Exa 1.5 Velocity and de Broglie wavelength of a neutron

```
1 // Scilab Code Ex1.5: Page -1.6 (2009)
2 clc; clear;
3 \text{ m} = 1.67 \text{ e} - 027;
                        // Mass of the neutron, kg
                    // Planck's constant, Js
4 h = 6.626e - 034;
                   // Energy equivalent of 1 eV, J/eV
5 e = 1.6e - 019;
                   // Energy of the neutron, J
6 E = 1e+04*e;
7 // As E = 1/2*m*v^2, solving for v
8 v = sqrt(2*E/m); // Velocity of the neutron, m/s
9 lambda = h/(m*v); // de Broglie wavelength of the
      neutron, m
10 printf("\nThe velocity of the neutron = \%4.2 \,\mathrm{e} m/s",
11 printf("\nThe de Broglie wavelength of the neutron =
       \%4.2 \,\mathrm{e} m", lambda);
12
13 // Result
```

```
14 // The velocity of the neutron = 1.38\,\mathrm{e}+006\,\mathrm{m/s}
15 // The de Broglie wavelength of the neutron = 2.87\,\mathrm{e}
-013~\mathrm{m}
```

Scilab code Exa 1.6 Wavelength of thermal neutron at room temperature

```
1 // Scilab Code Ex1.6: Page -1.6 (2009)
2 clc; clear;
3 m = 1.67e - 027;
                      // Mass of the neutron, kg
4 k = 1.38e-023;
                     // Boltzmann constant, J/mol/K
                     // Room temperature, K
5 T = 27 + 273;
                      // Planck's constant, Js
6 h = 6.626e - 034;
7 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
8 v = sqrt(3*k*T/m);
                     // Velocity of the neutron,
  lambda = h/(m*v); // de Broglie wavelength of the
     neutron, m
10 printf("\nThe de Broglie wavelength of the thermal
     neutrons = \%4.2 f angstrom", lambda/1e-010);
11
12 // Result
13 // The de Broglie wavelength of the thermal neutrons
      = 1.45 angstrom
```

Scilab code Exa 1.7 Angle of deviation for first order diffraction maxima

```
8 v = sqrt(2*E/m); // Velocity of the electron,
     m/s
9 lambda = h/(m*v); // de Broglie wavelength of the
     electron, m
10 n = 1; // First order diffraction
11 d = 9.8e-011; // Atomic spacing for thin gold
     foil, m
12 // Using Bragg's equation, 2*d*sin(theta) = n*lambda
     and solving for theta
13 theta = asind(n*lambda/(2*d)); // Angle of
     deviation for first order diffraction maxima,
     degree
14 printf("\nThe angle of deviation for first order
     diffraction maxima = \%4.2 \,\mathrm{f} degrees", theta);
15
16 // Result
17 // The angle of deviation for first order
     diffraction maxima = 2.54 degrees
```

Scilab code Exa 1.8 de Broglie wavelength of a moving electron

```
12 // Result
13 // The de Broglie wavelength of the electron = 5.5
angstrom
```

Scilab code Exa 1.9 de Broglie wavelength of a neutron of given kinetic energy

```
// Scilab Code Ex1.9: Page-1.7 (2009)
clc; clear;
m = 1.67e-027;  // Mass of the neutron, kg
e = 1.6e-019;  // Energy equivalent of 1 eV, J/eV
h = 6.626e-034;  // Planck's constant, Js
E = 1*e;  // Energy of the electron, J
lambda = h/sqrt(2*m*E);  // de Broglie wavelength of the neutron, m
printf("\nThe de Broglie wavelength of the neutron = %4.2 f angstrom", lambda/1e-010);
```

Scilab code Exa 1.10 de Broglie wavelength associated with moving proton

Scilab code Exa 1.11 Wavelength of matter wave associated with moving proton

```
// Scilab Code Ex1.11: Page-1.8 (2009)
clc; clear;
m = 1.67e-027;  // Mass of the proton, kg
v = 2e+08;  // Velocity of the proton, m/s
h = 6.626e-034;  // Planck's constant, Js
lambda = h/(m*v);  // de Broglie wavelength of the neutron, m
printf("\nThe wavelength of matter wave associated with moving proton = %5.3e m", lambda);

// Result
// The wavelength of matter wave associated with moving proton = 1.984e-15 m
```

Scilab code Exa 1.12 de Broglie wavelength of an electron accelerated through a given potential

Scilab code Exa 1.13 Interplanar spacing of the crystal

```
1 // Scilab Code Ex1.13: Page -1.17 (2009)
2 clc; clear;
3 theta = 45;
                   // Diffraction angle, degrees
4 h = 6.626e-034;
                     // Planck's constant
                       // Mass of a neutron, kg
5 m = 1.67e - 027;
               // Order of diffraction
6 n = 1;
7 k = 1.38e-023; // Boltzmann constant, J/mol/K
                   // Absolute room temperature, K
8 T = 27+273;
9 E = 3/2*k*T; // Energy of the neutron, J
10 lambda = h/sqrt(2*m*E); // de-Broglie wavelength of
     neutrons, m
11 // From Bragg's law, 2*d*sin(theta) = n*lambda,
     solving for d
12 d = n*lambda/(2*sind(theta));
13 printf("\nThe interplanar spacing of the crystal =
     \%4.2 \, \text{f} \, \text{angstrom}", d/1e-010);
14
15 // Result
16 // The interplanar spacing of the crystal = 1.03
     angstrom
```

Scilab code Exa 1.14 Interplanar spacing using Bragg law

```
1 // Scilab Code Ex1.14: Page -1.18 (2009)
2 clc; clear;
3 \text{ theta} = 70;
                // Glancing angle at which
      reflection occurs, degrees
4 h = 6.626e-034; // Planck's constant
5 m = 9.1e-031; // Mass of a electron, kg
6 e = 1.6e-019; // Electronic charge, C
7 V = 1000; // Accelerating potential, V
               // Order of diffraction
8 n = 1;
9 E = e*V; // Energy of the electron, J
10 lambda = h/sqrt(2*m*E); // de-Broglie wavelength of
      electron, m
11 // From Bragg's law, 2*d*sin(theta) = n*lambda,
      solving for d
12 d = n*lambda/(2*sind(theta)); // Interplanar
      spacing, m
13 printf("\nThe interplanar spacing of the crystal =
      \%6.4 \,\mathrm{e}\ \mathrm{m}, d);
14
15 // Result
16 // The interplanar spacing of the crystal = 2.0660e
      -11 \, \text{m}
```

Scilab code Exa 1.15 de Broglie wavelength of electron accelerated at V volts

```
1 // Scilab Code Ex1.15: Page-1.18 (2009)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant
4 m = 9.1e-031; // Mass of a electron, kg
```

Scilab code Exa 1.16 de Broglie wavelength of electron accelerated from rest

```
// Scilab Code Ex1.16: Page-1.18 (2009)
clc; clear;
h = 6.6e-034; // Planck's constant
m = 9.1e-031; // Mass of a electron, kg
e = 1.6e-019; // Electronic charge, C
V = 100; // Accelerating potential for electron, V
E = e*V; // Energy of the electron, J
lambda = h/sqrt(2*m*E); // de-Broglie wavelength of electron, m
printf("\nde-Broglie wavelength of electron accelerated at %d volts = %6.4e m", V, lambda);
// Result
// Result
// de-Broglie wavelength of electron accelerated at 100 volts = 1.2231e-10 m
```

Scilab code Exa 1.17 The wavelength associated with moving mass

```
// Scilab Code Ex1.17: Page-1.19 (2009)
clc; clear;
m = 10e-03;  // Mass of the body, kg
v = 110;  // Velocity of the mass, m/s
h = 6.6e-034;  // Planck's constant
lambda = h/(m*v); // de-Broglie wavelength of electron, m
printf("\nThe wavelength associated with mass moving with velocity %d m/s = %1.0e m", v, lambda);

// Result
// The wavelength associated with mass moving with velocity 110 m/s = 6e-34 m
```

Scilab code Exa 1.18 Wavelength of an electron from its kinetic energy

```
// Scilab Code Ex1.18: Page-1.19 (2009)
clc; clear;
m = 9.1e-031; // Mass of the electron, kg
Ek = 1.27e-017; // Kinetic energy of electron, J
h = 6.6e-034; // Planck's constant
lambda = h/sqrt(2*m*Ek); // de-Broglie wavelength of electron, m
printf("\nThe wavelength associated with moving electron = %4.2 f angstrom", lambda/1e-010);

// Result
// The wavelength associated with moving electron = 1.37 angstrom
```

Scilab code Exa 1.19 Kinetic energy of electron

```
1 // Scilab Code Ex1.19: Page -1.19 (2009)
2 clc; clear;
                  // Mass of the electron , kg
3 m = 9.1e-031;
4 h = 6.6e-034; // Planck's constant
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 lambda = 9.1e-012; // de-Broglie wavelength of
      electron, m
7 // We have lambda = h/(m*v), solving for v
8 v = h/(m*lambda); // Velocity of the electron, m/s
9 K = 1/2*m*v^2; // Kinetic energy of electron, J
10 printf("\nThe kinetic energy of electron having
      wavelength \%3.1e m = \%4.2e eV", lambda, K/e);
11
12 // Result
13 // The kinetic energy of electron having wavelength
      9.1e - 12 m = 1.81e + 04 eV
```

Scilab code Exa 1.20 Speed of proton for an equivalent wavelength of that of electron

```
1 // Scilab Code Ex1.20: : Page -1.19 (2009)
2 clc; clear;
3 m_e = 9.1e-031;
                         // Mass of the electron, kg
4 \text{ m_p} = 1.67 \text{e-}027; // Mass of the proton, kg
5 \text{ v_e} = 1; // For simplicity assume velocity of
      electron to be unity, m/s
6 // From de-Broglie relation,
7 // lambda_p = lambda_e = h(m*v_p), solving for v_p
8 \text{ v_p} = \text{m_e*v_e/m_p}; // \text{Velocity of the proton}, \text{m/s}
9 // As lambda_e = h/sqrt(2*m_e*K_e) and lambda_p = h/sqrt(2*m_e*K_e)
      sqrt(2*m_p*K_p), solving for K_e/K_p
10 K_ratio = m_p/m_e; // Ratio of kinetic energies
       of electron and proton
11
12 printf("\nThe speed of proton for an equivalent
```

```
wavelength of that of electron = %3.1e ve", v_p);

printf("\nRatio of kinetic energies of electron and proton = %3.1e, therefore Ke > Kp", K_ratio);

// Result
// The speed of proton for an equivalent wavelength of that of electron = 5.4e-04 ve
// Ratio of kinetic energies of electron and proton = 1.8e+03, therefore Ke > Kp
```

Scilab code Exa 1.21 de Broglie wavelength of the electron

```
// Scilab Code Ex1.21: Page-1.20 (2009)
clc; clear;
V = 50; // Potential difference, V
m = 9.1e-031; // Mass of the electron, kg
e = 1.6e-019; // Electronic charge, C
h = 6.6e-034; // Planck's constant, Js
lambda = h/sqrt(2*m*e*V); // From de-Broglie relation,
printf("\nde-Broglie wavelength of the electron = %4.2f angstrom", lambda/1e-010);
// Result
// de-Broglie wavelength of the electron = 1.73 angstrom
```

Scilab code Exa 1.23 Minimum accuracy to locate the position of an electron

```
1 // Scilab Code Ex1.23:: Page-1.31 (2009)
2 clc; clear;
3 v = 740; // Speed of the electron, m/s
```

Scilab code Exa 1.24 Uncertainty in energy of an emitted photon

```
1 // Scilab Code Ex1.24: : Page -1.31 (2009)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
4 h_cross = h/(2*%pi); // Reduced Planck's constant
     , Js
5 delta_t = 1e-010; // Uncertainty in time, s
6 // From Energy-time uncertainty,
7 // delta_E * delta_t = h_cross/2, solving for delta_E
8 delta_E = h_cross/(2*delta_t); // Uncertainty in
     energy of an emitted photon, J
10 printf("\nThe uncertainty in energy of an emitted
     photon = \%5.3 \, e \, eV", delta_E/1.6e-019);
11
12 // Result
13 // The uncertainty in energy of an emitted photon =
     3.283e-06 \text{ eV}
```

Scilab code Exa 1.25 Minimum uncertainty in velocity of electron

```
1 // Scilab Code Ex1.25: : Page -1.31 (2009)
2 clc; clear;
3 h = 6.6e - 034;
                  // Planck's constant, Js
4 delta_x_max = 1e-007; // Uncertainty in length, m
5 m = 9.1e-031; // Mass of an electron, kg
6 // From Position-momentum uncertainty,
7 // delta_p_min = m*delta_v_min = h/delta_x_max
     solving for delta_v_min
8 delta_v_min = h/(delta_x_max*m);
                                        // Minimum
     uncertainty in velocity of electron, m/s
9
10 printf ("\nThe minimum uncertainty in velocity of
     electron = \%4.2 \,\mathrm{e} m/s", delta_v_min);
11
12 // Result
13 // The minimum uncertainty in velocity of electron =
       7.25 e + 03 m/s
```

Scilab code Exa 1.26 Minimum uncertainty in momentum and minimum kinetic energy of proton

```
// Scilab Code Ex1.26: Page-1.32 (2009)
clc; clear;
h = 6.6e-034; // Planck's constant, Js
delta_x_max = 8.5e-014; // Uncertainty in length,
m

m = 1.67e-027; // Mass of proton, kg
// From Position-momentum uncertainty,
// delta_p_min*delta_x_max = h, solving for delta_p_min
```

```
8 delta_p_min = h/delta_x_max;  // Minimum
        uncertainty in momentum of electron, kg-m/s
9 p_min = delta_p_min;  // Minimum momentum of the
        proton, kg.m/s
10 delta_E = p_min^2/(2*m);
11
12 printf("\nThe minimum uncertainty in momentum of
        proton = %4.2e kg-m/s", p_min);
13 printf("\nThe kinetic energy of proton = %6.3e eV",
        delta_E/1.6e-019);
14
15 // Result
16 // The minimum uncertainty in momentum of proton =
        7.76e-21 kg-m/s
17 // The kinetic energy of proton = 1.128e+05 eV
```

Scilab code Exa 1.27 Uncertainty in momentum of electron

```
1 // Scilab Code Ex1.27:: Page -1.32 (2009)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 E = 0.15*1e+03*e; // Energy of the electron, J
6 \text{ m} = 9.1\text{e}-031; // Mass of electron, kg
7 delta_x = 0.5e-010; // Position uncertainty of
     electron, m
8 p = (2*m*E)^(1/2); // Momentum of the electron, kg-
9 // delta_x*delta_p = h/(4*\%pi), solving for delta_p
10 delta_p = h/(4*%pi*delta_x); // Uncertainty in
     momentum of electron, kg-m/s
11 frac_p = delta_p/p*100; // Percentage
     uncertainty in momentum of electron, kg-m/s
12
13 printf("\nThe percentage uncertainty in momentum of
```

```
electron = %2d percent", frac_p);

14
15 // Result
16 // The percentage uncertainty in momentum of electron = 15 percent
```

Scilab code Exa 1.28 Uncertainty in position of the particle

```
1 // Scilab Code Ex1.28:: Page -1.33 (2009)
2 clc; clear;
3 h = 6.6e - 034;
                   // Planck's constant, Js
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 delta_v = 7.54e-015; // Uncertainty in velocity
     of the particle, m/s
6 m = 0.25e-06; // Mass of particle, kg
7 // delta_x*delta_p = h/(4*\%pi), solving for delta_x
8 delta_x = h/(4*%pi*m*delta_v); // Position
     uncertainty of particle, m
9
10 printf ("\nThe position uncertainty of particle = \%4
     .2e m, delta_x);
11
12 // Result
13 // The position uncertainty of particle = 2.79e-14 \text{ m}
```

Scilab code Exa 1.29 Uncertainty in position of the moving electron

```
6 delta_v = v*0.05/100;  // Uncertainty in velocity
    of the particle, m/s
7 m = 9.1e-031;  // Mass of electron, kg
8 // delta_x*delta_p = h/(4*%pi), solving for delta_x
9 delta_x = h/(4*%pi*m*delta_v);  // Position
    uncertainty of particle, m
10
11 printf("\nThe position uncertainty of moving
    electron = %4.2e m", delta_x);
12
13 // Result
14 // The position uncertainty of moving electron =
    2.57e-04 m
```

Scilab code Exa 1.30 Smallest possible uncertainty in position of the electron

```
1 // Scilab Code Ex1.30:: Page -1.33 (2009)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js 4 e = 1.6e-019; // Energy equivalent of 1
                    // Energy equivalent of 1 eV, J/eV
                    // Speed of light, m/s
5 c = 3e + 08;
                    // Velocity of the electron, m/s
6 v = 3e + 07;
7 m0 = 9.1e-031; // Rest mass of electron, kg
8 m = m0/sqrt(1-v^2/c^2); // Mass of moving electron,
      kg
  delta_p_max = m*v;  // Maximum uncertainty in
     momentum of the particle, m/s
10 // delta_x_min*delta_p_max = h/(4*\%pi), solving for
      delta_x_min
11 delta_x_min = h/(4*%pi*delta_p_max); // Minimum
      position uncertainty of particle, m
12
13 printf("\nThe smallest possible uncertainty in
      position of the electron = \%5.3 \,\mathrm{f} angstrom",
```

```
delta_x_min/1e-010);

14

15 // Result

16 // The smallest possible uncertainty in position of the electron = 0.019 angstrom
```

Scilab code Exa 1.31 Difference in the energy between the neighboring levels of Na at the highest state

```
1 // Scilab Code Ex1.31: : Page -1.44 (2009)
2 clc; clear;
                 // Planck's constant, Js
3 h = 6.6e - 034;
4 m = 9.1e-031; // Electronic mass, kg
                   // Energy equivalent of 1 eV, J/eV
5 e = 1.6e - 019;
                  // Length of the side of the cube, m
6 \ 1 = 2e-002;
7 E_F = 9*e; // Fermi energy, J
8 // As E_F = h^2/(8*m*l^2)*(nx^2 + ny^2 + nz^2) and
     nx = ny = nz for a cube, solving for nx
9 nx = sqrt(E_F*(8*m*1^2)/(3*h^2)); // Value of
     integer for a cube
10 E = h^2/(8*m*1^2)*3*nx^2; // Fermi energy, J
11 E1 = h^2/(8*m*l^2)*((nx-1)^2 + nx^2 + nx^2);
     Energy of the level just below the fermi level, J
12 delta_E = E - E1; // Difference in the energy
     between the neighbouring levels of Na at the
     highest state, J
13
14 printf("\nThe energy difference between the
     neighbouring levels of Na at the highest state =
     \%4.2\,\mathrm{e} eV", delta_E/e);
15
16 // Result
17 // The energy difference between the neighbouring
     levels of Na at the highest state = 1.06e-07 eV
```

Scilab code Exa 1.32 Energy of the neutron confined in a nucleus

```
1 // Scilab Code Ex1.32:: Page -1.45 (2009)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
4 m = 1.67e-027; // Electronic mass, kg
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 nx = 1, ny = 1, nz = 1; // Principle quantum numbers
       in 3D corresponding to the longest energy state
7 lx = 1e-014, ly = 1e-014, lz = 1e-014;
      Dimensions of the box to which the neutron is
      confined, m
8 E = h^2/(8*m)*(nx^2/1x^2+ny^2/1y^2+nz^2/1z^2);
       Energy of the neutron confined in the nucleus, J
9
10 printf("\nThe energy of the neutron confined in a
      nucleus = \%4.2 \,\mathrm{e} eV", E/e);
11
12 // Result
13 // The energy of the neutron confined in a nucleus =
       6.11e+06 \text{ eV}
```

Scilab code Exa 1.33 Energy of an electron moving in one dimensional infinitely high potential box

```
1 // Scilab Code Ex1.33:: Page-1.46 (2009)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
4 m = 9.1e-031; // Electronic mass, kg
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 n = 1; // For simplicity assume principle quantum number to be unity
```

```
7 l = 2.1e-010;  // Length of one dimensional
        potential box, m
8 E = h^2*n^2/(8*m*1^2);  // Energy of the electron ,
        J
9
10 printf("\nThe energy of the electron moving in one
        dimensional infinitely high potential box = %4.2 f
        n^2 eV", E/e);
11
12 // Result
13 // The energy of the electron moving in one
        dimensional infinitely high potential box = 8.48
        n^2 eV
```

Scilab code Exa 1.34 Lowest energy of an electron in a one dimensional force free region

```
1 // Scilab Code Ex1.34:: Page -1.46 (2009)
2 clc; clear;
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 n = 1; // The lowest energy state of electron
7 1 = 3.5e-010; // Length of one dimensional
     potential box, m
                          // Energy of the electron
8 E = h^2*n^2/(8*m*1^2);
     in the lowest state, J
10 printf("\nThe lowest energy of the electron in a one
      dimensional force free region = \%1d \text{ eV}", E/e);
11
12 // Result
13 // The lowest energy of an electron in a one
     dimensional force free region = 3 eV
```

Scilab code Exa 1.35 First three energy levels of an electron in one dimensional box

```
1 // Scilab Code Ex1.35:: Page -1.46 (2009)
2 clc; clear;
3 h = 6.6e - 034;
                    // Planck's constant, Js
4 m = 9.1e-031; // Electronic mass, kg
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 1 = 9.5e-010; // Length of one dimensional
      potential box, m
8 // First energy level
9 n = 1; // The first energy state of electron
10 E1 = h^2*n^2/(8*m*1^2); // Energy of the electron
       in first state, J
11
12 // Second energy level
13 n = 2; // The second energy state of electron
14 E2 = h^2*n^2/(8*m*1^2); // Energy of the electron
       in second state, J
15
16 // Third energy level
17 n = 3; // The third energy state of electron
18 E3 = h^2*n^2/(8*m*1^2); // Energy of the electron
       in third state, J
19
20 printf("\nThe energy of the electron in first state
      = \%4.1 \,\mathrm{e}\ \mathrm{J}", E1);
21 printf("\nThe energy of the electron in second state
       = \%4.1 \,\mathrm{e}\ \mathrm{J}", E2);
22 printf("\nThe energy of the electron in third state
      = \%4.1 \,\mathrm{e}\ \mathrm{J}", E3);
23
24 // Result
```

```
25 // The energy of the electron in first state = 6.6e -20 J

26 // The energy of the electron in second state = 2.7 e-19 J

27 // The energy of the electron in third state = 6.0e -19 J
```

Scilab code Exa 1.36 Lowest two permitted energy values of the electron in a 1D box

```
1 // Scilab Code Ex1.36:: Page -1.47 (2009)
2 clc; clear;
                    // Planck's constant, Js
3 h = 6.6e - 034;
4 m = 9.1e-031;  // Electronic mass, kg
5 e = 1.6e-019;  // Energy equivalent of 1 eV, J/eV
                   // Length of one dimensional
6 \ 1 = 2.5e-010;
     potential box, m
8 // First energy level
9 n = 1; // The lowest energy state of electron
10 E1 = h^2*n^2/(8*m*l^2); // Energy of the electron
      in first state, J
11
12 // Second energy level
13 n = 2; // The second energy state of electron
14 E2 = h^2*n^2/(8*m*1^2); // Energy of the electron
       in second state, J
15
16 printf("\nThe energy of the electron in lowest state
        = \%5.2 \, f \, eV", E1/e);
17 printf("\nThe energy of the electron in second state
        = \%5.2 \, f \, eV", E2/e);
18
19
20 // Result
```

```
21 // The energy of the electron in lowest state = 5.98 eV
22 // The energy of the electron in second state = 23.93 eV
```

Scilab code Exa 1.37 Lowest energy of the neutron confined to the nucleus

```
1 // Scilab Code Ex1.37:: Page -1.47 (2009)
2 clc; clear;
                   // Planck's constant, Js
3 h = 6.6e - 034;
4 m = 1.67e-027; // Electronic mass, kg
5 e = 1.6e - 019;
                   // Energy equivalent of 1 eV, J/eV
                   // Length of one dimensional
6 \ 1 = 2.5e-010;
      potential box, m
7 \text{ delta_x} = 1e-014;
                      // Uncertainty in position of
     neutron, m
8 // From uncertainty principle,
9 // delta_x*delta_p = h/(4*\%pi), solving for delta_p
10 delta_p = h/(4*%pi*delta_x); // Uncertainty in
     momentum of neutron, kg-m/s
11 p = delta_p; // Momentum of neutron in the box,
     kg-m/s
12 KE = p^2/(2*m); // Kinetic energy of neutron in the
     box, J
13
14 printf("\nThe lowest energy of the neutron confined
      to the nucleus = \%4.2 \, \text{f MeV}, KE/(e*1e+06));
15
16 // Result
17 // The lowest energy of the neutron confined to the
      nucleus = 0.05 \text{ MeV}
```

Scilab code Exa 1.38 X ray scattering

```
1 // Scilab Code Ex1.38: : Page -1.56 (2009)
2 clc; clear;
3 h = 6.6e - 034;
                   // Planck's constant, Js
4 m0 = 9.1e-031; // Electronic mass, kg
5 c = 3e+08; // Speed of light, m/s
6 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
7 phi = 45; // Scattering angle of X-rays, degrees
              // Incident energy of X-rays, keV
8 E = 75;
9 // As from Compton shift formula
10 // 1/E_{prime} - 1/E = 1/(m0*c^2)*(1-cosd(phi))
11 // Solving for E_prime
12 E_{prime} = 1/((1/(m0*c^2/(e*1e+03)))*(1-cosd(phi))+1/
     E); // Energy of scattered photon, keV
13 E_recoil = E - E_prime; // Energy of recoil
     electron, keV
14
15 printf("\nThe energy of scattered X-ray = \%4.1 \,\mathrm{f} keV"
      , E_prime);
16 printf("\nThe energy of recoil electron = \%3.1 f keV"
      , E_recoil);
17
18 // Result
19 // The energy of scattered X-ray = 71.9 \text{ keV}
20 // The energy of recoil electron = 3.1 keV
```

Scilab code Exa 1.39 Wavelength of scattered Xray

```
7 phi = 60; // Scattering angle of X-rays, degrees
              // Incident energy of X-rays, keV
8 E = 75;
9 // As from Compton shift formula
10 delta_L = h/(m0*c)*(1-cosd(phi)); // Change in
     photon wavelength, m
11 \quad lambda = 0.198e-010;
                           // Wavelength of incident
     photon, m
12 lambda_prime = (lambda+delta_L)/1e-010;
     Wavelength of scattered X-ray, angstrom
13
14 printf ("\nThe wavelength of scattered X-ray = \%6.4 \,\mathrm{f}
     angstrom", lambda_prime);
15
16 // Result
17 // The wavelength of scattered X-ray = 0.2101
     angstrom
```

Scilab code Exa 1.40 Wavelength of scattered radiation with changed angle of view

```
1 // Scilab Code Ex1.40:: Page -1.57 (2009)
2 clc; clear;
                  // Planck's constant, Js
3 h = 6.6e - 034;
                  // Electronic mass, kg
// Speed of light, m/s
4 \text{ mO} = 9.1e-031;
5 c = 3e + 08;
                   // Energy equivalent of 1 eV, J/eV
6 = 1.6e - 019;
7 \text{ phi} = 180;
                   // Scattering angle of X-rays,
      degrees
  lambda = 1.78;
                      // Wavelength of incident photon,
9 lambda_prime = 1.798; // Wavelength of scattered X-
      ray, angstrom
10 // As from Compton shift formula
11 // lambda_prime - lambda = h/(m0*c)*(1-cosd(phi)),
      Change in photon wavelength, m
```

```
12 // Or we may write, lambda_prime - lambda = k*(1-
      cosd (phi))
13 // solving for k
14 k = (lambda_prime - lambda)/(1-cosd(phi)); // k = h
      /(m0*c) value, angstrom
15
16 // \text{ For phi} = 60
17 phi = 60;
                    // New angle of scattering, degrees
18 lambda_prime = lambda + k*(1-cosd(phi)); //
      Wavelength of scattered radiation at 60 degree
      angle, angstrom
19 printf("\nThe wavelength of scattered X-ray at %d
      degrees view = \%6.4 \, \mathrm{f} angstrom", phi, lambda_prime
      );
20 // Recoil energy of electron
21 E = h*c*(1/lambda - 1/lambda_prime)*1e+010;
      Recoil energy of electron, joule
22 printf("\nThe recoil energy of electron scattered
      through %d degrees = \%4.1 \,\mathrm{f} eV", phi, E/e);
23
24 // Result
25 // The wavelength of scattered X-ray at 60 degrees
      view = 1.7845 angstrom
26 // The recoil energy of electron scattered through
      60 \text{ degrees} = 17.5 \text{ eV}
```

Scilab code Exa 1.41 Compton scattering through aluminium foil

```
1 // Scilab Code Ex1.41:: Page-1.58 (2009)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
4 m0 = 9.1e-031; // Electronic mass, kg
5 c = 3e+08; // Speed of light, m/s
6 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
7 phi = 90; // Scattering angle of X-rays, degrees
```

```
// Energy of incident photon, J
8 E = 510*1e+03*e;
9 // As E = h*c/lambda, solving for lambda
10 lambda = h*c/E;
                    // Wavelength of incident photon,
      m
11 // As from Compton shift formula
12 // lambda_prime - lambda = h/(m0*c)*(1-cosd(phi))
      solving for lambda_prime
13 lambda_prime = lambda + h/(m0*c)*(1-cosd(phi)); //
      Wavelength of scattered X-ray, m
14 printf("\nThe wavelength of scattered X-ray as
      viewed at %d degrees = \%4.2e m", phi,
      lambda_prime);
15
16 // Recoil energy of electron
17 E = h*c*(1/lambda - 1/lambda_prime); // Recoil
      energy of electron, joule
18 printf("\nThe recoil energy of electron scattered
      through \%d degrees = \%4.2\,\mathrm{e} eV", phi, E/e);
19
20 // Direction of recoil electron
21 theta = atand(lambda*sind(phi)/(lambda_prime-lambda*
      cosd(phi))); // Direction of recoil electron,
      degrees
22 printf("\nThe direction of emission of recoil
      electron = \%5.2 \, \text{f} degrees", theta);
23
24
25 // Result
26 // The wavelength of scattered X-ray as viewed at 90
       degrees = 4.84e-12 \text{ m}
  // The recoil energy of electron scattered through
      90 \text{ degrees} = 2.55 \text{ e} + 05 \text{ eV}
28 // The direction of emission of recoil electron =
      26.61 degrees
```

Scilab code Exa 1.42 Energetic electrons in the Xray tube

```
1 // Scilab Code Ex1.42: : Page -1.59 (2009)
2 clc; clear;
3 m = 9.1e-031;
                   // Electronic mass, kg
4 c = 3e + 08;
                  // Speed of light, m/s
5 e = 1.6e-019; // Charge on the electron, C
                 // Potential diffeence applied
6 V = 12.4e+03;
     across the X-ray tube, V
  i = 2e-03; // Current through the X-ray tube, A
8 t = 1; // Time for which the electrons strike the
     target material, s
9 N = i*t/e; // Number of electrons striking the
     target per sec, per sec
10 v_max = sqrt(2*e*V/m); // Maximum speed of the
     electrons, m/s
11
12 printf("\nThe number of electrons striking the
     target per \sec = \%4.2e electrons/sec", N);
13 printf("\nThe maximum speed of the electrons when
     they strike = \%3.1e \text{ m/s}, v_max);
14
15
16 // Result
17 // The number of electrons striking the target per
     sec = 1.25e+16 \ electrons/sec
18 // The maximum speed of the electrons when they
     strike = 6.6e + 07 m/s
```

Chapter 2

Interference

Scilab code Exa 2.1 Slit separation in Double Slit experiment

```
// Scilab Code Ex2.1:: Page-2.9 (2009)
clc; clear;
lambda = 5893e-008; // Wavelength of light used, m
D = 200; // Distance of the source from the screen, m
b = 0.2; // Fringe separation, cm
d = lambda*D/b; // Separation between the slits, cm

printf("\nThe separation between the slits = %3.1e cm", d);

// Result
// The separation between the slits = 5.9e-002 cm
```

Scilab code Exa 2.2 Wavelength of light in Young Double Slit experiment

```
1 // Scilab Code Ex2.2:: Page-2.10 (2009) 2 clc; clear;
```

Scilab code Exa 2.3 Ratio of maximum intensity to minimum intensity of interference fringes

```
1 // Scilab Code Ex2.3:: Page -2.10 (2009)
2 clc; clear;
              // For simplicity assume intensity from
3 I2 = 1:
     slit 2 to be unity, W/sq-m
4 I1 = I2*25; // Intensity from slit 1, W/sq-m
5 I_ratio = I1/I2; // Intensity ratio
6 a_ratio = sqrt(I_ratio); // Amplitude ratio
7 a2 = 1; // For simplicity assume amplitude from
     slit 2 to be unity, m
8 a1 = a_ratio*a2; // Amplitude from slit 1, m
9 I_max = (a1 + a2)^2; // Maximum intensity of wave
     during interference, W/sq-m
10 I_min = (a1 - a2)^2; // Minimum intensity of wave
     during interference, W/sq-m
11 cf = 4; // Common factor
12 printf("\nThe ratio of maximum intentisy to minimum
     intensity of interference fringes = \%d/\%d", I_max
     /cf, I_min/cf);
13
14 // Result
15 // The ratio of maximum intentisy to minimum
```

Scilab code Exa 2.4 Wavelength of light from monochromatic coherent sources

```
// Scilab Code Ex2.4:: Page-2.10 (2009)
clc; clear;
d = 0.02; // Separation between the slits, cm
D = 100; // Distance of the source from the screen, m
n = 6; // No. of bright fringe from the centre
x = 1.22; // Position of 6th bright fringe, cm
lambda = x*d/(n*D); // Wavelength of light used, m
printf("\nThe wavelength of the light from coherent sources = %5.3e cm", lambda);
// Result
// The wavelength of the light from coherent sources = 4.067e-005 cm
```

Scilab code Exa 2.5 Separation between fourth order dark fringes

```
1 // Scilab Code Ex2.5:: Page-2.10 (2009)
2 clc; clear;
3 lambda1 = 5890e-008; // Wavelength of D1 line of sodium, cm
4 lambda2 = 5896e-008; // Wavelength of D2 line of sodium, cm
5 D = 120; // Distance between source and the screen, cm
6 d = 0.025; // Separation between the slits, cm
7 n = 4; // Order of dark fringe
```

Scilab code Exa 2.6 Distance between two coherent sources

```
1 // Scilab Code Ex2.6:: Page -2.11 (2009)
2 clc; clear;
3 lambda = 5500e-008; // Wavelength of light used,
     cm
            // Distance of biprism from the source,
4 \text{ Y1} = 10;
     cm
5 \quad Y2 = 90;
            // Distance of biprism from the screen,
     cm
6 D = Y1 + Y2;
                   // Distance between slits and the
     screen, cm
7 b = 8.526e-02; // Fringe width, cm
8 d = lambda*D/b; // Separation between the slits, cm
10 printf("\nThe distance between two coherent sources
     = \%4.2 e \text{ cm}, d);
11
12 // Result
13 // The distance between two coherent sources = 6.45e
     -02 cm
```

Scilab code Exa 2.7 Fringe width of the interference pattern due to biprism

```
1 // Scilab Code Ex2.7:: Page -2.11 (2009)
2 clc; clear;
3 alpha = %pi/180; // Acute angle of biprism,
     radian
4 mu = 1.5; // Refractive index of biprism
5 lambda = 5500e-008; // Wavelength of light used,
6 y1 = 5; // Distance of biprism from the source,
     cm
7 y2 = 75; // Distance of biprism from the screen,
8 D = y1 + y2; // Distance between slits and the
     screen, cm
9 d = 2*(mu-1)*alpha*y1; // Separation between the
     slits, cm
10 b = lambda*D/d; // Fringe width of the interfernce
     pattern due to biprism, cm
11
12 printf("\nThe fringe width of the interfernce
     pattern due to biprism = \%4.2e cm, b;
13
14 // Result
15 // The fringe width of the interfernce pattern due
     to biprism = 5.04e-02 cm
```

Scilab code Exa 2.8 Angle of vertex of the biprism

```
1 // Scilab Code Ex2.8:: Page-2.11 (2009)
2 clc; clear;
3 mu = 1.5; // Refractive index of biprism
```

```
4 lambda = 5500e-008; // Wavelength of light used,
     cm
5 y1 = 5; // Distance of biprism from the source,
     cm
6 y2 = 95;
           // Distance of biprism from the screen,
7 D = y1 + y2; // Distance between slits and the
     screen, cm
8 b = 0.025; // Fringe width of the interfernce
     pattern due to biprism, cm
9 // As d = 2*(mu-1)*alpha*y1, solving for alpha
10 alpha = lambda*D/(b*2*(mu-1)*y1) // Angle of
     vertex of the biprism, radian
11
12 printf("\nThe angle of vertex of the biprism = \%3.1e
      rad", alpha);
13
14 // Result
15 // The angle of vertex of the biprism = 4.4e-02 rad
```

Scilab code Exa 2.9 Number of interference fringes for changed wavelength

```
1 // Scilab Code Ex2.9:: Page-2.12 (2009)
2 clc; clear;
3 n1 = 69;  // Number of interference fringes
    obtained with yellow wavelength
4 lambda1 = 5893e-008;  // Wavelength of yellow
    light used, cm
5 lambda2 = 5461e-008;  // Wavelength of green light
    used, cm
6 // As n*lambda = l*d/D = constant, therefore
7 n2 = n1*lambda1/lambda2;  // Number of
    interference fringes for green wavelength
8
9 printf("\nThe number of interference fringes for
```

```
changed wavelength = %2d", ceil(n2));

10

11 // Result
12 // The number of interference fringes for changed wavelength = 75
```

Scilab code Exa 2.10 Wavelength of light in a biprism experiment

Scilab code Exa 2.11 Fringe width at a certain distance from biprism

```
// Wavelength of light used,
5 \text{ lambda} = 5900e-008;
     cm
               // Distance of biprism from the source,
6 y1 = 10;
     cm
7 y2 = 100; // Distance of biprism from the screen,
8 D = y1 + y2; // Distance between slits and the
     screen, cm
9 d = 2*(mu-1)*alpha*y1; // Separation between the
      slits, cm
10 b = lambda*D/d; // Fringe width of the interfernce
     pattern due to biprism, cm
11
12 printf("\nThe fringe width at a distance of %d cm
     from biprism = \%4.2 \,\mathrm{e} cm", y2, b);
13
14 // Result
15 // The fringe width at a distance of 100~\mathrm{cm} from
      biprism = 3.72e-02 cm
```

Scilab code Exa 2.12 Distance between coherent sources in biprism experiment

```
// Scilab Code Ex2.12:: Page-2.13 (2009)
clc; clear;
lambda = 5893e-008; // Wavelength of light used,
cm

y1 = 10; // Distance of biprism from the source,
cm

y2 = 100; // Distance of biprism from the screen,
cm

D = y1 + y2; // Distance between slits and the
screen, cm

b = 3.5e-02; // Fringe width of the interfernce
pattern due to biprism, cm
```

Scilab code Exa 2.13 Effect of slit separation on fringe width

```
1 // Scilab Code Ex2.13:: Page -2.13 (2009)
2 clc; clear;
3 b = 0.125; // Fringe width of the interfernce
     pattern due to biprism, cm
4 d = 1; // For simplicity assume distance between
     sources to be unity, cm
5 d_prime = 3/4*d; // New distance between sources,
      cm
6 // As b is proportional to 1/d, so
7 b_prime = b*d/d_prime; // New fringe width of the
     interfernce pattern due to biprism, cm
9 printf("\nThe new value of fringe width due to
     reduced slit separation = \%5.3 f cm", b_prime);
10
11 // Result
12 // The new value of fringe width due to reduced slit
      separation = 0.167 cm
```

Scilab code Exa 2.14 Effect of slit biprism separation on fringe width

```
1 // Scilab Code Ex2.14:: Page -2.13 (2009)
```

```
2 clc; clear;
3 b = 0.187; // Fringe width of the interfernce
     pattern due to biprism, cm
4 y1 = 1; // For simplicity assume distance between
     slit and biprism to be unity, cm
5 y1_prime = 1.25*y1;
                       // New distance between slit
     and biprism, cm
6 // As d is directly proportional to y1 and b is
     directly proportional to d, so
7 // b is inversely proportional to y1
8 b_prime = b*y1/y1_prime; // New fringe width of the
      interfernce pattern due to biprism, cm
9
10 printf("\nThe new value of fringe width due to
     increased slit-biprism separation = \%5.3 f cm",
     b_prime);
11
12 // Result
13 // The new value of fringe width due to increased
     slit-biprism separation = 0.150 cm
```

Scilab code Exa 2.15 Distance between interference bands

```
// Scilab Code Ex2.15:: Page-2.14 (2009)
clc; clear;
d1 = 5e-01; // First distance between images of the slit, cm
d2 = 2.25e-01; // Second distance between images of the slit, cm
lambda = 5896e-008; // Wavelength of the light used, cm
D = 120; // Distance between screen and the slits, cm
d = sqrt(d1*d2); // Geometric mean of distance between the two slits, cm
```

Scilab code Exa 2.16 Angle of vertex of Fresnel biprism

```
1 // Scilab Code Ex2.16:: Page -2.14 (2009)
2 clc; clear;
3 mu = 1.5; // Refractive index of biprism
4 \quad lambda = 5500e-008;
                       // Wavelength of light used,
5 y1 = 25;
              // Distance of biprism from the source,
     cm
6 y2 = 150; // Distance of biprism from the screen,
7 D = y1 + y2; // Distance between slits and the
     screen, cm
8 b = 0.05; // Fringe width of the interfernce
     pattern due to biprism, cm
9 // As d = 2*(mu-1)*alpha*y1, solving for alpha
10 alpha = lambda*D/(b*2*(mu-1)*y1)
                                     // Angle of
     vertex of the biprism, radian
11
12 printf("\nThe angle of vertex of the biprism = \%6.4 \,\mathrm{f}
      rad", alpha);
13
14 // Result
15 // The angle of vertex of the biprism = 0.0077 rad
```

Scilab code Exa 2.17 Wavelength of light used in biprism experiment to illuminate slits

```
1 // Scilab Code Ex2.17:: Page -2.15 (2009)
2 clc; clear;
3 theta = 178; // Vertex angle of biprism, degrees
4 alpha = (180-theta)/2*%pi/180; // Acute angle of
     biprism, radian
              // Refractive index of biprism
5 \text{ mu} = 1.5;
6 y1 = 20;
              // Distance of biprism from the source,
     cm
7 y2 = 125; // Distance of biprism from the screen,
8 D = y1 + y2; // Distance between slits and the
     screen, cm
9 d = 2*(mu-1)*alpha*y1; // Separation between the
     slits, cm
10 b = 0.025; // Fringe width of the interfernce
     pattern due to biprism, cm
11
 lambda = b*d/D; // Wavelength of light used, cm
12
13 printf("\nThe wavelength of light used to illuminate
      slits = \%4d angstrom", lambda/1e-08);
14
15 // Result
16 // The wavelength of light used to illuminate slits
     = 6018 angstrom
```

Scilab code Exa 2.18 Vertex angle of Fresnel biprism

```
1 // Scilab Code Ex2.18:: Page -2.15 (2009) 2 clc; clear;
```

```
3 mu = 1.5; // Refractive index of biprism
4 lambda = 6600e-008; // Wavelength of light used,
5 y1 = 40; // Distance of biprism from the source,
6 y2 = 175; // Distance of biprism from the screen,
      cm
7 D = y1 + y2;
                 // Distance between slits and the
     screen, cm
8 b = 0.04; // Fringe width of the interfernce
     pattern due to biprism, cm
9 // As d = 2*(mu-1)*alpha*y1, solving for alpha
10 alpha = lambda*D/(b*2*(mu-1)*y1) // Acute angle
     of the biprism, radian
11 theta = (\%pi-2*alpha); // Vertex angle of the
     biprism, radian
12
13 printf("\nThe vertex angle of the biprism = \%6.2 \,\mathrm{f}
     degrees", theta*180/%pi);
14
15 // Result
16 // The vertex angle of the biprism = 178.98 degrees
```

Scilab code Exa 2.19 Order of visible fringe for changed wavelength of light

```
// Scilab Code Ex2.19: : Page-2.16 (2009)
clc; clear;
lambda1 = 7000e-008; // Original wavelength of light, cm
lambda2 = 5000e-008; // New wavelength of light, cm
n1 = 10; // Order of the fringes with original wavelength
// As x = n*lambda*D/d, so n*lambda = constant
```

```
7 // n1*lambda1 = n2*lambda2, solving for n2
8 n2 = n1*lambda1/lambda2; // Order of visible
    fringe for changed wavelength of light
9
10 printf("\nThe order of visible fringe for changed
    wavelength of light = %2d", ceil(n2));
11
12 // Result
13 // The order of visible fringe for changed
    wavelength of light = 14
```

Scilab code Exa 2.20 Angle of vertex of biprism

```
1 // Scilab Code Ex1.20:: Page -2.16 (2009)
2 clc; clear;
3 y1 = 40;
               // Distance between biprism from the
     slit, cm
               // Distance between slit and the screen,
4 D = 160;
      cm
5 mu = 1.52; // Refractive index of material of the
     prism
6 lambda = 5893e-008; // Wavelength of light used, cm
7 b = 0.01;
              // Fringe width, cm
8 // As b = lambda*D/d, solving for d
                     // Distance between virtual
9 d = lambda*D/b;
     sources, cm
10 // But d = 2*y1*(mu-1)*alpha, solving for alpha
11 alpha = d/(2*y1*(mu-1))*180/\%pi; // Angle of
     biprism, degrees
12 theta = 180-2*alpha; // Angle of vertex of
     biprism, degrees
13
14 printf("\nThe angle of vertex of biprism = \%5.1 \,\mathrm{f}
     degree", theta);
15
```

```
16 // Result
17 // The angle of vertex of biprism = 177.4 degree
```

Scilab code Exa 2.21 Separation between two coherent sources

Scilab code Exa 2.22 Refractive index of the glass sheet

Scilab code Exa 2.23 Refractive index of material of sheet

```
1 // Scilab Code Ex2.23:: Page -2.19 (2009)
2 clc; clear;
3 t = 2.1e-03;
               // Thickness of the glass sheet, cm
4 lambda = 5400e-008; // Wavelength of light used,
      cm
5 n = 11;
               // Order of interference fringes
6 // As path difference, (mu - 1)*t = n*lambda
7 mu = n*lambda/t + 1; // Refractive index of the
     glass sheet
9 printf("\nThe refractive index of the glass sheet =
     \%4.2 f", mu);
10
11 // Result
12 // The refractive index of the glass sheet= 1.28
```

Scilab code Exa 2.24 Wavelength of light used in biprism arrangement

```
1 // Scilab Code Ex2.24:: Page-2.19 (2009)
2 clc; clear;
3 t = 9.21e-05; // Thickness of the mica sheet, cm
4 mu = 1.5; // Refractive index of material of sheet
5 n = 1; // Order of interference fringes
```

Scilab code Exa 2.25 Thickness of the transparent sheet

Scilab code Exa 2.26 Thickness of the transparent sheet from fringe shift

```
1 // Scilab Code Ex2.26:: Page -2.20 (2009) 2 clc; clear;
```

```
3 lambda = 5400e-008; // Wavelength of light used,
      cm
4 \text{ mu} = 1.7;
            // Refractive index of material sheet
     convering the first slit
5 mu_prime = 1.5; // Refractive index of material
     sheet convering the seecond slit
6 // As shift, S = D/d*(mu - mu\_prime)*t = b/lambda*(
     mu - mu_prime)*t, solving for t
7 t = 8*lambda/(mu-mu\_prime) // Thickness of the
     glass sheet, cm
9 printf("\nThe thickness of the glass sheet = \%4.2e
     cm", t);
10
11 // Result
12 // The thickness of the glass sheet = 2.16e-003 cm
```

Scilab code Exa 2.27 Refractive index of thin mica sheet

```
// Scilab Code Ex2.27:: Page-2.20 (2009)
clc; clear;
t = 21.5e-05; // Thickness of the glass sheet, cm
lambda = 5890e-008; // Wavelength of light used,
cm
n = 1; // Order of interference fringes
// As path difference, (mu - 1)*t = n*lambda
mu = n*lambda/t + 1; // Refractive indexof the glass sheet

printf("\nThe refractive index of the glass sheet = %5.3f", mu);
// Result
// The refractive index of the glass sheet = 1.274
```

Scilab code Exa 2.28 Wavelength of light used in double slit experiment

```
1 // Scilab Code Ex2.28:: Page -2.20 (2009)
2 clc; clear;
3 D = 1; // For simplicity assume distance between
     source and slits to be unity, unit
           // For simplicity assume slit separation to
      be unity, unit
5 t = 2.964e-06; // Thickness of the mica sheet, cm
6 mu = 1.5; // Refractive index of material of shee
7 L = poly(0, 'L');
8 // As b = b_prime or 2.25*D*L/d = D/d*(mu-1)*t, or
     we may write
9 L = roots(2.25*D*L/d-D/d*(mu-1)*t);
     Wavelength of the light used, m
10
11 printf("\nThe wavelength of the light used = \%4.0 \,\mathrm{f}
      angstrom", L/1e-010);
12
13 // Result
14 // The wavelength of the light used = 6587 angstrom
```

Scilab code Exa 2.29 Thickness of mica sheet from central fringe shift

Scilab code Exa 2.30 Refractive index of material from shifting fringe pattern

```
1 // Scilab Code Ex2.30:: Page -2.21 (2009)
2 clc; clear;
3 b = 1;
              // For simplicity assume fringe width to
      be unity, cm
4 S = 30*b; // Fringe shift, cm
5 lambda = 6600e-008; // Wavelength of light used,
      cm
6 t = 4.9e-003; // Thickness of the film, cm
7 // As S = b/lambda*(mu-1)*t, solving for mu
8 mu = S*lambda/t + 1; // Refractive index of
     material from shifting fringe pattern
10 printf("\nThe refractive index of material from
     shifting fringe pattern = \%3.1 \, \text{f}", mu);
11
12 // Result
13 // The refractive index of material from shifting
     fringe pattern = 1.4
```

Scilab code Exa 2.31 Fringe width and optical path change during interference of waves through mica and glass

```
1 // Scilab Code Ex2.31:: Page -2.22 (2009)
2 clc; clear;
3 \text{ mu1} = 1.55;
                    // Refractive index of mica
                   // Refractive index of glass
4 \text{ mu2} = 1.52;
                    // Thickness of the sheets, m
5 t = 0.75e - 003;
6 d = 0.25e-02; // Separation between the slits, m
7 lambda = 5896e-010; // Wavelength of light used, m
8 D = 1.5;
                // Distance between the source ans the
      slits, m
9 // Fringe width
                    // Fringe width, m
10 b = lambda*D/d;
11 // Optical path difference
12 delta_x = (mu1-1)*t-(mu2-1)*t; // Optical path
      change, m
13
14 printf("\nThe fringe width = \%3.1e m", b);
15 printf("\nThe optical path change = \%5.3e m",
      delta_x);
16
17 // Result
18 // The fringe width = 3.5e-004 \text{ m}
19 // The optical path change = 2.250 \,\mathrm{e} - 005 \,\mathrm{m}
```

Scilab code Exa 2.32 Thickness of mica sheet from Fresnel biprism experiment

Scilab code Exa 2.33 Smallest thickness of glass plate for a fringe of minimum intensity

```
1 // Scilab Code Ex2.33: : Page -2.26 (2009)
2 clc; clear;
3 \text{ mu} = 1.5;
                   // Refractive index of glass
4 lambda = 5100e-008; // Wavelength of light used, cm
              // Angle of incidence, degrees
6 n = 1; // Order of interference fringes
7 // From Snell's law, mu = sind(i)/sind(r), solving
     for r
8 r = asind(sind(i)/mu); // Angle of refraction,
     degrees
9 // For a dark fringe in reflection, 2*mu*t*cosd(r) =
     n*lambda, solving for t
10 t = n*lambda/(2*mu*cosd(r));
                                  // Smallest
     thickness of glass plate for a fringe of minimum
     intensity, cm
11 printf("\nThe smallest thickness of glass plate for
     a fringe of minimum intensity = \%4.2 \,\mathrm{e} cm", t);
12
13 // Result
14 // The smallest thickness of glass plate for a
      fringe of minimum intensity = 1.80e-005 cm
```

Scilab code Exa 2.34 The wavelength reflected strongly from the soap film

```
1 // Scilab Code Ex2.34:: Page -2.26 (2009)
2 clc; clear;
3 t = 3.1e-05;
                   // Thickness of the soap film, cm
                   // Refractive index of the soap film
4 \text{ mu} = 1.33;
           // Angle of refraction of the light ray
5 r = 0;
     on the soap film, degrees
  // For bright fringe in reflected pattern,
7 // 2*mu*t*cosd(r) = (2*n+1)*lambda/2
8 \text{ lambda} = zeros(3);
9 	 for n = 1:1:3
       lambda(n) = 4*mu*t*cosd(r)/(2*(n-1)+1);
10
          Wavelengths for n = 1, 2 and 3
       if lambda(n) > 4000e-008 & lambda(n) < 7500e-008
11
           then
12
           lambda_reflected = lambda(n);
13
       end
14 end
15
16 printf("\nThe wavelength reflected strongly from the
       soap film = \%5.3e cm", lambda_reflected);
17
18 // Result
19 // The wavelength reflected strongly from the soap
      film = 5.497e - 05 cm
```

Scilab code Exa 2.35 Order of interference of the dark band

```
1 // Scilab Code Ex2.35:: Page -2.27 (2009) 2 clc; clear;
```

```
3 t = 3.8e-05; // Thickness of the transparent film
    , cm
4 \text{ mu} = 1.5;
               // Refractive index of the
     transparent film
             // Angle of incidence of the light ray
     on the transparent film, degrees
6 \text{ lambda} = 5700e-008; // Wavelength of light, cm
7 // As mu = sind(i)/sind(r), solving for r
8 r = asind(sind(i)/mu);
9 // For dark fringe in reflected pattern,
10 // 2*mu*t*cosd(r) = 2*n*lambda, solving for n
                                // Order of
11 n = 2*mu*t*cosd(r)/lambda;
     interference of dark band
12
13 printf("\nThe order of interference of dark band =
     %d", ceil(n));
14
15 // Result
16 // The order of interference of dark band = 2
     velength reflected strongly from the soap film =
     5.497e - 05 cm
```

Scilab code Exa 2.36 Absent wavelength of reflected light in the visible spectrum

```
1 // Scilab Code Ex2.36:: Page-2.27 (2009)
2 clc; clear;
3 t = 4.5e-05; // Thickness of the soap film, cm
4 mu = 1.33; // Refractive index of the soap film
5 i = 45; // Angle of incidence of the light ray on the soap film, degrees
6 // As mu = sind(i)/sind(r), solving for r
7 r = asind(sind(i)/mu);
8 // For dark fringe in reflected pattern,
9 // 2*mu*t*cosd(r) = n*lambda, solving for lambda for
```

```
different n's
10 \text{ lambda} = zeros(4);
11 \quad for \quad n = 1:1:4
12
       lambda(n) = 2*mu*t*cosd(r)/n; // Wavelengths
            for n = 1, 2, 3 \text{ and } 4
13
       if lambda(n) > 4000e-008 & lambda(n) < 7500e-008
            then
14
            lambda_absent = lambda(n);
15
       end
16 end
17 printf("\nThe absent wavelength of reflected light
      in the visible spectrum = \%4.2\,\mathrm{e}, lambda_absent);
18
19 // Result
20 // The absent wavelength of reflected light in the
      visible spectrum = 5.07e-05
```

Scilab code Exa 2.37 Minimum thickness of the plate that will appear dark in the reflection pattern

```
1 // Scilab Code Ex2.37:: Page -2.28 (2009)
2 clc; clear;
3 \text{ mu} = 1.6;
                  // Refractive index of the mica plate
             // Angle of refraction of the light ray
4 r = 60;
     on the mica plate, degrees
  lambda = 5500e-008;
                           // Wavelength of light used,
6 n = 1;
         // Order of interference for minimum
     thickness
7 // For dark fringe in reflected pattern,
8 // 2*mu*t*cosd(r) = 2*n*lambda, solving for t
9 t = n*lambda/(2*mu*cosd(r)); // Minimum thickness
      of the plate that will appear dark in the
     reflection pattern
10
```

```
11 printf("\nThe minimum thickness of the plate that
      will appear dark in the reflection pattern = %4.2
      e cm", t);
12
13 // Result
14 // The minimum thickness of the plate that will
      appear dark in the reflection pattern = 3.44e-05
      cm
```

Scilab code Exa 2.38 Thickness of the thin soap film

```
1 // Scilab Code Ex2.38:: Page -2.28 (2009)
2 clc; clear;
3 \text{ mu} = 1.33;
                   // Refractive index of the thin soap
       film
4 \quad lambda1 = 5500e-008;
                        // Wavelength of the first
     dark fringe, cm
  lambda2 = 5400e-008;
                            // Wavelength of the
     consecutive dark fringe, cm
6 i = 30;
              // Angle of incidence of the light ray
     on the soap film, degrees
7 // For overlapping fringes,
8 // n*lambda1 = (n+1)*lambda2, solving for n
9 n = lambda2/(lambda1-lambda2); // Order of
     interference fringes
10 // As mu = sind(i)/sind(r), solving for r
11 r = asind(sind(i)/mu);
12 // For dark fringe in reflected pattern,
13 // 2*mu*t*cosd(r) = 2*n*lambda1, solving for t
14 t = n*lambda1/(2*mu*cosd(r)); // Thickness of the
       thin soap film
15
16 printf("\nThe thickness of the thin soap film = \%5.3
     e cm", t);
17
```

```
18 // Result  
19 // The thickness of the thin soap film = 1.205e-03 cm
```

Scilab code Exa 2.39 Order of interference for which light is strongly reflected

```
1 // Scilab Code Ex2.39:: Page -2.29 (2009)
2 clc; clear;
3 t = 0.75e-06; // Thickness of the glass plate, m
                  // Refractive index of the glass
4 \text{ mu} = 1.5;
     plate
                           // First wavelength of
  lambda1 = 4000e-010;
      visible range, cm
  lambda2 = 7000e-010;
                           // Last wavelength of
     visible range, cm
7 r = 0; // Angle of refraction for normal
     incidence, degrees
8 n = zeros(2);
9 // For bright fringe in reflected pattern,
10 // 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for n
11 // For lambda1
12 n(1) = (4*mu*t*cosd(r)/lambda1-1)/2;
13 // For lambda2
14 n(2) = (4*mu*t*cosd(r)/lambda2-1)/2;
15
16 printf("\nFor n = \%d and n = \%d the light is
     strongly reflected.", n(1), ceil(n(2)));
17
18 // Result
19 // For n = 5 and n = 3 the light is strongly
      reflected.
```

Scilab code Exa 2.40 Minimum thickness of the film for which light is strongly reflected

```
1 // Scilab Code Ex2.40:: Page -2.30 (2009)
2 clc; clear;
3 \text{ mu} = 1.45;
                   // Refractive index of the film
4 lambda = 5500e-010; // First wavelength of
      visible range, cm
             // Angle of refraction for normal
5 r = 0;
     incidence, degrees
          // Order of interference is zero for
6 n = 0;
     minimum thickness
7 // For bright fringe in reflected pattern,
8 // 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for t
9 t = (2*n+1)*lambda/(4*mu*cosd(r)); // Minimum
     thickness of the film for which light is strongly
      reflected
10
11 printf("\nThe minimum thickness of the film for
     which light is strongly reflected = \%4.2e cm<sup>"</sup>, t)
12
13 // Result
14 // The minimum thickness of the film for which light
      is strongly reflected = 9.48e-08 cm
```

Scilab code Exa 2.41 Thickness of the soap film for dark fringe in reflected pattern

```
1 // Scilab Code Ex2.41:: Page-2.30 (2009)
2 clc; clear;
3 mu = 5/4; // Refractive index of the film
4 lambda = 5890e-010; // Wavelength of visible light, cm
5 i = 45; // Angle of incidence, degrees
```

Scilab code Exa 2.42 Wavelength in the visible range which is intensified in the reflected beam

```
1 // Scilab Code Ex2.42:: Page -2.30 (2009)
2 clc; clear;
3 \text{ mu} = 1.5;
                   // Refractive index of the plate
4 t = 0.5e-006; // Thickness of the plate, m
5 r = 0;
               // Angle of refraction for normal
      incidence, degrees
6 // For bright fringe in reflected pattern,
7 // 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for
      lambda for different n's
8 \text{ lambda} = \text{zeros}(4);
9 \text{ for } n = 0:1:3
       lambda(n+1) = 4*mu*t*cosd(r)/(2*n+1);
                                                     //
10
          Wavelengths for n = 0, 1, 2 and 3
       lambda_strong = lambda(n+1);
11
12
       if lambda(n+1) >= 4000e-010 \& lambda(n+1) <=
          7500e-010 then
```

```
if lambda_strong > lambda(n+1) then
13
                Search for the stronger wavelength
                  lambda_strong = lambda(n+1);
14
15
             end
16
       end
17 end
18
19 printf("\nFor n = \%d, \%4.0 f angstrom will be
      reflected strongly", n, lambda_strong/1e-010);
20
21 // Result
22 // For n = 3, 4286 angstrom will be reflected
      strongly
```

Scilab code Exa 2.43 Thickness of the film with incident white light

```
1 // Scilab Code Ex2.43:: Page -2.31(2009)
2 clc; clear;
3 \text{ mu} = 1.33;
                  // Refractive index of the film
4 i = asind(0.8);
                        // Angle of refraction for
     normal incidence, degrees
5 // As mu = sind(i)/sind(r), solving for r
6 r = asind(sind(i)/mu);
7 \quad lambda1 = 6100e-010;
                          // First wavelength of dark
     band, m
 lambda2 = 6000e-010; // Second wavelength of dark
      band, m
9 // For consecutive overlapping wavelenghts
10 // n*lambda1 = (n+1)*lambda2, solving for n
11 n = lambda2/(lambda1-lambda2);
12 // For dark fringe in reflected pattern,
13 // 2*mu*t*cosd(r) = n*lambda1, solving for t
14 t = n*lambda1/(2*mu*cosd(r)); // Thickness of the
     film with incident white light. m
15 printf("\nThickness of the film with incident white
```

```
light = \%3.1\,\mathrm{e} m", t); 16 17 // Result 18 // Thickness of the film with incident white light = 1.7\,\mathrm{e}{-05} m
```

Scilab code Exa 2.44 Thickness of the film with parallel beam of yellow light

```
1 // Scilab Code Ex2.44:: Page -2.31(2009)
2 clc; clear;
3 \text{ mu} = 1.5;
                  // Refractive index of the film
4 i = 45;
                // Angle of incidence, degrees
5 // As mu = sind(i)/sind(r), solving for r
6 r = asind(sind(i)/mu);
7 \text{ lambda} = 5500e-010;
                          // Wavelength of parallel
     beam of light, m
              // Order of dark band
8 n = 15;
9 // For dark fringe in reflected pattern,
10 // 2*mu*t*cosd(r) = n*lambda, solving for t
11 t = n*lambda/(2*mu*cosd(r)); // Thickness of the
     film with incident parallel beam of light. m
12
13 printf("\nThe thickness of the film with paralle
     beam of yellow light = \%4.2e m", t);
14
15 // Result
16 // The thickness of the film with paralle beam of
     yellow light = 3.12e-06 m
```

Scilab code Exa 2.46 Refractive index of oil

```
1 // Scilab Code Ex2.46:: Page -2.33(2009)
```

```
2 clc; clear;
3 V = 0.58e-006; // Volume of oil, metre cube
4 A = 2.5;
                  // Area of water surface, metre
     square
            // Thickness of film, m
5 t = V/A;
           // Angle of refraction for normal
6 r = 0;
     incidence, degrees
          // Order of interference for minimum
7 n = 1;
     thickness
 lambda = 4700e-010; // Wavelength of light used,
9 // For dark fringe in reflected pattern,
10 // 2*mu*t*cosd(r) = n*lambda, solving for mu
11 mu = n*lambda/(2*t*cosd(r)); // Refractive index
     of oil
12
13 printf("\nThe refractive index of oil = \%5.3 \, \text{f}", mu);
14
15 // Result
16 // The refractive index of oil = 1.013
```

Scilab code Exa 2.47 Thickness of the soap film to produce constructive interference during reflection

Scilab code Exa 2.48 Wavelength of light falling on wedge shaped film

```
1 // Scilab Code Ex2.48: : Page -2.35(2009)
2 clc; clear;
3 \text{ mu} = 1.4;
                  // Refractive index of the film
4 alpha = 1.07e-004; // Acute angle of the wedge,
     radian
5 b = 0.2;
               // Fringe width, cm
6 // As b = lambda/(2*mu*alpha), solving for lambda
7 lambda = 2*mu*alpha*b; // Wavelength of light
      falling on wedge shaped film, m
9 printf("\nThe wavelength of light falling on wedge
     shaped film = \%4d ansgtrom", lambda/1e-008);
10
11 // Result
12 // The wavelength of light falling on wedge shaped
      film = 5991 \text{ ansgtrom}
```

Scilab code Exa 2.49 Difference between the thicknesses of the films

```
1 // Scilab Code Ex2.49:: Page -2.35(2009)
2 clc; clear;
3 mu = 1.4; // Refractive index of the film
4 lambda = 5500e-008; // Wavelength of the light, cm
```

Scilab code Exa 2.50 Angle of thin wedge shaped film

Scilab code Exa 2.51 Wavelength of light used to illuminate a wedge shaped film

```
1 // Scilab Code Ex2.51:: Page - 2.36(2009)
2 clc; clear;
```

```
3 \text{ mu} = 1.5;
                 // Refractive index of the film
4 b = 0.20; // Fringe width, cm
5 theta = 25/(60*60)*\%pi/180; // Angle of the
     wedge, radian
6 // As b = lambda/(2*mu*theta), solving for lambda
7 lambda = 2*mu*b*theta; // Wavelength of light
     used to illuminate a wedge shaped film, cm
9 printf("\nThe wavelength of light used to illuminate
      a wedge shaped film = \%4d angstrom", lambda/1e
     -008);
10
11 // Result
12 // The wavelength of light used to illuminate a
     wedge shaped film = 7272 angstrom
13 // The answer is given wrong in the textbook
```

Scilab code Exa 2.52 Thickness of the wire separating two glass surfaces

```
1 // Scilab Code Ex2.52:: Page -2.36(2009)
2 clc; clear;
3 lambda = 5893e-010; // Wavelength of light used,
               // Refractive index of the glass
4 \text{ mu} = 1;
               // Assume fringe width to be unity, cm
5 b = 1;
6 // As b = 1/20, solving for 1
7 1 = b*20; // Length of the film, m
8 // As b = lambda/(2*mu*theta) and theta = t/l,
     solving for t
9 t = lambda*1/(2*mu); // Thickness of the wire
     separating two glass surfaces, m
10
11 printf("\nThe thickness of the wire separating two
     glass surfaces = \%4.2e m", t);
12
```

```
13 // Result  
14 // The thickness of the wire separating two glass surfaces = 5.89\,\mathrm{e}{-06} m
```

Scilab code Exa 2.53 Angle of the wedge shaped air film

```
1 // Scilab Code Ex2.53:: Page -2.37(2009)
2 clc; clear;
3 \text{ mu} = 1;
                // Refractive index of the air film
4 b = 1.5/25; // Fringe width, cm
  lambda = 5893e-008; // Wavelength of light used
     to illuminate a wedge shaped film, cm
 // As b = lambda/(2*mu*theta), solving for theta
7 theta = lambda/(2*mu*b); // Angle of the wedge,
     radian
8
  printf("\nThe angle of the wedge shaped air film =
     \%5.3 \, f \, degrees, theta*180/%pi);
10
11 // Result
12 // The angle of the wedge shaped air film = 0.028
     degrees
```

Scilab code Exa 2.54 Acute angle of the wedge shaped film

Scilab code Exa 2.55 Diameter of nth dark ring due to first wavelength

```
1 // Scilab Code Ex2.55:: Page -2.46(2009)
2 clc; clear;
3 lambda1 = 6000e-008; // First visible wavelength,
4 lambda2 = 4500e-008; // Second visible wavelength
               // Radius of curvature of the lens,
5 R = 100;
     cm
6 // As diameter of nth dark ring due to lambda1 is
7 // D_n^2 = 4*n*R*lambda1 and D_nplus1^ = 4*(n+1)*R*
     lambda2, so that D_n^2 = D_nplus1^2 gives
                                      // Order of
8 n = lambda2/(lambda1-lambda2);
     interference for dark fringes
9 D_n = sqrt(4*n*R*lambda1);
                                 // Diameter of nth
     dark ring due to lambda1
10
11 printf("\nThe diameter of nth dark ring due to
     wavelength of %4d angstrom = \%4.2 \,\mathrm{f} cm", lambda1/1
     e-008, D_n);
12
13 // Result
14 // The diameter of nth dark ring due to wavelength
     of 6000 \text{ angstrom} = 0.27 \text{ cm}
```

Scilab code Exa 2.56 Diameter of fifteenth dark ring

```
1 // Scilab Code Ex2.56:: Page -2.46(2009)
2 clc; clear;
3 R = 1;
               // For simplicity assume radius of
     curvature of the lens to be unity, cm
4 D_n = 0.251; // Diameter of 3rd dark ring, cm
5 D_nplusp = 0.548; // Diameter of 9th dark ring,
     cm
              // Order of 3rd Newton ring
6 n = 3;
7 p = 9 - n; // Order of 6th Newton ring from 3rd
     ring
8 // As D_nplusp^2 - D_n^2 = 4*p*R*lambda, solving for
      lambda
9 lambda = (D_nplusp^2 - D_n^2)/(4*p*R);
                                                //
     Wavelength of light used
10 D_15 = sqrt(D_n^2+4*(15-n)*lambda*R);
                                                //
     Diameter of 15th dark ring, cm
11
12 printf("\nThe diameter of 15th dark ring = \%5.3 f cm"
      , D<sub>15</sub>);
13
14 // Result
15 // The diameter of 15th dark ring = 0.733 cm
```

Scilab code Exa 2.57 Order of a dark ring having thrice the diameter of the thirtieth ring

```
1 // Scilab Code Ex2.57: : Page-2.47(2009)
2 clc; clear;
3 R = 1; // For simplicity assume radius of curvature of the lens to be unity, cm
```

```
4 n = 30; // Order of 3rd Newton ring
             // Assume diameter of thirtieth ring to
5 D_30 = 1;
     be unity, cm
6 // As D_30^2 = 4*n*R*lambda, solving for lambda
7 lambda = D_30^2/(4*n*R); // Wavelength of light
     used, cm
8 D_n = 3*D_{30}; // Diameter of nth dark ring
     having thrice the diameter of the thirtieth ring,
9 n = D_n^2/(4*R*lambda); // Order of a dark ring
     having thrice the diameter of the thirtieth ring
10
11 printf("\nThe order of the dark ring having thrice
     the diameter of the thirtieth ring = \%3d", n);
12
13 // Result
14 // The order of the dark ring having thrice the
     diameter of the thirtieth ring = 270
```

Scilab code Exa 2.58 Radius of curvature of lens and thickness of air film

```
", R);
12 printf("\nThe thickness of air film = %3.1e cm", t);
13
14 // Result
15 // The radius of curvature of lens = 159.2 cm
16 // The thickness of air film = 4.4e-004 cm
```

Scilab code Exa 2.59 Refractive index of the liquid

```
1 // Scilab Code Ex2.59:: Page -2.47(2009)
2 clc; clear;
3 D_15 = 1.62;
                       // Diameter of 15th dark ring
     with air film, cm
                            // Diameter of 15th dark
4 D_15_prime = 1.47;
     ring with liquid, cm
5 R = 1; // For simplicity assume radius of
     curvature to be unity, cm
6 n = 15; // Order of 15rd Newton ring
7 // As for ring with air film , D_15^2 = 4*15*R*lambda
     , solving for lambda
8 lambda = D_15^2/(4*15*R); // Wavelength of light
     used, cm
9 // As for ring with liquid, D_15_prime^2 = 4*15*R*
     lambda/mu, solving for mu
10 mu = 4*15*R*lambda/D_15_prime^2;
     Refractive index of the liquid
11 printf ("\nThe refractive index of the liquid = \%4.2 \,\mathrm{f}
     ", mu)
12
13 // Result
14 // The refractive index of the liquid = 1.21
```

Scilab code Exa 2.60 Wavelength of light used in Newton rings experiment

```
1 // Scilab Code Ex2.60:: Page -2.48(2009)
2 clc; clear;
3 D_{10} = 0.48;
                       // Diameter of 10th dark ring
     with air film, cm
4 D_3 = 0.291;
                       // Diameter of 3rd dark ring
     with air film, cm
               // Order of the 10th ring next to the 3
  p = 7;
     rd ring
               // Radius of curvature of the lens, cm
6 R = 90;
7 lambda = (D_10^2-D_3^2)/(4*p*R);
                                         // Wavelength
     of light used in Newton rings experiment
9 printf("\nThe wavelength of light used in Newton
     rings experiment = \%4d angstrom", lambda/1e-008);
10
11 // Result
12 // The wavelength of light used in Newton rings
     experiment = 5782 angstrom
```

Scilab code Exa 2.61 Diameter of fifteenth bright ring

```
Radius of nth ring, cm

9 D_15 = 2*r_n; // Daimeter of 15th bright ring, cm

10

11 printf("\nThe daimeter of 15th bright ring = %4.2f cm", D_15);

12

13 // Result

14 // The daimeter of 15th bright ring = 1.79 cm
```

Scilab code Exa 2.62 Wavelength of light used in Newton rings experiment

```
1 // Scilab Code Ex2.62:: Page -2.49(2009)
2 clc; clear;
3 R = 80;
                 // Radius of curvature of the convex
     surface, cm
4 D5 = 0.192; // Diameter of 5th dark ring, cm
5 D25 = 0.555; // Diameter of 25th dark ring, cm
            // Order of interfernce Newton ring
6 n = 5;
7 P = 25 - n;
8 lambda = (D25^2 - D5^2)/(4*P*R); // Wavelength of
      light used, cm
9 printf("\nThe wavelength of light used = \%5.3e cm",
     lambda);
10
11 // Result
12 // The wavelength of light used = 4.237e-005 cm
13 // The expression for lambda is given wrong in the
     textbook but solved correctly
```

Scilab code Exa 2.63 Diameter of fifteenth dark Newton ring

```
1 // Scilab Code Ex2.63:: Page -2.49(2009)
2 clc; clear;
3 R1 = 4;
                  // Radius of curvature of the convex
      surface, m
                 // Radius of curvature of the concave
4 R2 = 5;
      surface, m
5 lambda = 6600e-010; // Wavelength of light used, cm
6 n = 15; // Order of Newton ring
7 // As D_n^2*(1/R1-1/R2) = 4*n*lambda, solving for
     D_n
8 D_15 = \frac{\sqrt{4*n*lambda}}{(1/R1-1/R2)};
                                              // Diameter
       of 15th dark ring, cm
9
10 printf("\nThe diameter of %dth dark ring = \%4.2e m",
      n, D<sub>15</sub>;
11
12 // Result
13 // The diameter of 15th dark ring = 2.81e-002 \text{ m}
14 // The answer is given wrong in the textbook (the
      square root is not solved)
```

Scilab code Exa 2.64 Diameter of fifteenth dark ring due to first wavelength

```
8 n = lambda2/(lambda1-lambda2);  // Order of
    interference for dark fringes
9 printf("\nThe value of n = %d", n);
10 n = 15;  // Order of interference fringe
11 D_n = sqrt(4*n*R*lambda1);  // Diameter of nth
    dark ring due to lambda1
12 printf("\nThe diameter of 15th dark ring due to
    wavelength of %4d angstrom = %4.2 f cm", lambda1/1
    e-008, D_n);
13
14 // Result
15 // The value of n = 3
16 // The diameter of 15th dark ring due to wavelength
    of 6000 angstrom = 0.66 cm
```

Scilab code Exa 2.65 Refractive index of the liquid filled into container

```
1 // Scilab Code Ex2.65:: Page -2.49(2009)
2 clc; clear;
3 lambda = 5896e-008; // Wavelength of light used,
4 R = 100;
              // Radius of curvature of the lens,
     cm
5 D10 = 0.4;
                  // Diametre of 10th dark ring, cm
6 n = 10; // Order of Newton ring
7 // As for a dark ring, 2*mu*t = n*lambda and 2*t = (
     D10/2)^2/R, solving for mu
8 mu = 4*n*lambda*R/D10^2; // Refractive index of
     the liquid filled into container
10 printf("\nThe refractive index of the liquid filled
     into container = \%4.2 \,\mathrm{f}", mu);
11
12 // Result
13 // The refractive index of the liquid filled into
```

Scilab code Exa 2.67 Refractive index of the liquid

```
// Scilab Code Ex2.67:: Page - 2.50(2009)
clc; clear;
Dn = 1.8;  // Diameter of 15th dark ring, cm
Dn_prime = 1.67;  // Diameter of 15th dark ring
with liquid, cm
mu = (Dn/Dn_prime)^2;  // Refractive index of the
liquid

printf("\nThe refractive index of the liquid = %4.2 f
", mu);

Result
// The refractive index of the liquid = 1.16
```

Scilab code Exa 2.68 Diameter of eighteenth dark ring

```
1 // Scilab Code Ex2.68:: Page -2.51(2009)
2 clc; clear;
3 R = 1;
              // For simplicity assume radius of
     curvature to be unity, cm
                 // Diameter of 8th dark ring, cm
4 D8 = 0.45;
5 D15 = 0.81; // Diameter of 15th dark ring, cm
                 // Order of 8th Newton ring
6 n = 8;
7 p = 7;
                 // Order of 7th Newton ring after 8
     th ring
8 lambda = (D15^2-D8^2)/(4*p*R); // Wavelength of
      light used, cm
9 // As D18^2-D15^2 = 4*p*lambda*R
10 p = 3; // For 18th and 15th rings
```

Scilab code Exa 2.69 Wavelength of light used to illuminate plano convex lens in Newton rings experiment

```
1 // Scilab Code Ex2.69:: Page -2.51(2009)
2 clc; clear;
3 R = 100;
                   // Radius of curvature of plano-convex
       lens, cm
4 D15 = 0.590;  // Diameter of 15th dark ring, cm
5 D5 = 0.336;  // Diameter of 5th dark ring, cm
                     // Order of 10th Newton ring after
6 p = 10;
      5th ring
  lambda = (D15^2-D5^2)/(4*p*R); // Wavelength of
       light used, cm
9 printf("\nThe wavelength of light used = \%4.0 \,\mathrm{f}
      ansgtrom", lambda/1e-008);
10
11 // Result
12 // The wavelength of light used = 5880 ansgtrom
```

Scilab code Exa 2.70 Wavelength of monochromatic light used in Michelson Interferometer

```
1 // Scilab Code Ex2.70:: Page -2.57(2009)
```

Scilab code Exa 2.71 Number of fringes that passes across the cross wire of telescope

```
1 // Scilab Code Ex2.71:: Page - 2.58(2009)
2 clc; clear;
3 delta_x = 0.02559e-01; // Displacement in movable mirror, cm
4 lambda = 5890e-008; // Wavelength of light used , cm
5 // As N*lambda/2 = delta_x , solving for N
6 N = 2*delta_x/lambda; // Number of fringes crossing the field of view
7
8 printf("\nThe number of fringes that passes across the cross wire of telescope = %2d", ceil(N));
9
10 // Result
11 // The number of fringes that passes across the
```

Scilab code Exa 2.72 Distance between two successive positions of movable mirror

```
1 // Scilab Code Ex2.72:: Page -2.58(2009)
2 clc; clear;
3 \quad lambda1 = 5890e-008;
                           // Wavelength corresponding
     to the D1 line, cm
  lambda2 = 5896e-008;
                            // Wavelength corresponding
     to the D2 line, cm
5 delta_lambda = lambda2 - lambda1; // Difference in
      the wavelengths, cm
6 // As delta_lambda = lambda1*lambda2/(2*x), solving
     for x
7 x = lambda1*lambda2/(2*(lambda2-lambda1)); //
     Distance between two successive positions of
     movable mirror
9 printf("\nThe distance between two successive
      positions of movable mirror = \%3.1e cm<sup>"</sup>, x);
10
11 // Result
12 // The distance between two successive positions of
     movable mirror = 2.9e-002
```

Scilab code Exa 2.73 Thickness of the transparent glass film

```
1 // Scilab Code Ex2.73:: Page-2.58(2009)
2 clc; clear;
3 N = 550; // Number of fringes crossing the field of view
```

```
4 lambda = 5500e-008; // Wavelength of light used,
     cm
5 \text{ mu} = 1.5;
                   // Refractive index of the glass
     slab
6 // As 2*(mu-1)*t = N*lambda, solving for t
7 t = N*lambda/(2*(mu-1));
                                // Thickness of the
     transparent glass film
8
9 printf("\nThe distance between two successive
     positions of movable mirror = \%3.1e cm, t;
10
11 // Result
12 // The distance between two successive positions of
     movable mirror = 3.0e-002 cm
```

Chapter 3

Diffraction

Scilab code Exa 3.1 Position of the screen so that light is focused on the brightest spot

```
// Scilab Code Ex3.1:: Page-3.9 (2009)
clc; clear;
lambda = 5890e-008; // Wavelength of light used, cm
fried = 0.2; // Radius of first ring of zone plate,
cm
n = 1; // Order of zone plate
fried fried = r1^2/(n*lambda); // Position of the screen so that light is focused on the brightest spot, cm

printf("\nThe position of the screen so that light is focused on the brightest spot = %3.1e cm",
lambda);

// Result
// Result
// The position of the screen so that light is focused on the brightest spot = 5.9e-005 cm
```

Scilab code Exa 3.2 Zone plate with a point source of light on the axis

```
1 // Scilab Code Ex3.2:: Page -3.9 (2009)
2 clc; clear;
3 v1 = 36;
                // Position of the strongest image from
      the zone plate, cm
             // Position of the next image from the
4 v2 = 9;
     zone plate, cm
  lambda = 5890e-008; // Wavelength of light used, cm
6 r1 = 1; // For simplicity assume radius of first
      ring of zone plate to be unity, cm
7 n = 1; // Order of zone plate
8 // As 1/v1-1/u = n*lambda/r1^2 = 1/3*(1/v2-1/u),
     solving for u
                      // Distance of the zone
9 u = 2/(3/36-1/9);
      plate from source, cm
10 // As 1/v-1/u = n*lambda/r1^2, solving for r1
11 r1 = sqrt(lambda/(1/v1-1/abs(u)));
                                             // Radius
     of first zone, cm
12 f1 = r1^2/(n*lambda); // Principal focal length,
     cm
13
14 printf("\nThe distance of the zone plate from source
      = \%2d \text{ cm}, u);
15 printf("\nThe radius of first zone = \%3.1e cm", r1);
16 printf("\nThe principal focal length = \%4.1 \, \mathrm{f} cm", f1
     );
17
18 // Result
19 // The distance of the zone plate from source = -72
20 // The radius of first zone = 6.5e-002 cm
21 // The principal focal length = 72.0 \text{ cm}
```

Scilab code Exa 3.3 Position of the first image in a zone plate

```
1 // Scilab Code Ex3.3:: Page -3.10 (2009)
```

```
2 clc; clear;
3 lambda = 5500e-010; // Wavelength of light used, cm
4 u = -4; // Distance of the zone plate from
     source, cm
5 D = 3.7e-003; // Diameter of central zone of zone
     plate, cm
6 r = D/2; // Radius of central zone of zone plate,
      cm
7 n = 1; // Order of zone plate
8 f1 = r^2/(n*lambda); // Principal focal
     length, cm
9 v1 = 36; // Position of the strongest image from
     the zone plate, cm
10 v2 = 9; // Position of the next image from the
     zone plate, cm
11 // As 1/v - 1/u = 1/f, solving for v
12 v = 1/(1/f1+1/u); // Position of the first
     image in a zone plate, cm
13
14 printf("\nThe position of the first image in a zone
     plate = \%2d cm", floor(v));
15
16 // Result
17 // The position of the first image in a zone plate =
      -12 cm
```

Scilab code Exa 3.4 Principal focal length of zone plate

```
1 // Scilab Code Ex3.4:: Page-3.11 (2009)
2 clc; clear;
3 lambda = 1;    // For simplicity assume wavelength
    of light used to be unity, unit
4 R = 150;    // Radius of curvature of the curved
        surface, cm
5 r1 = sqrt(lambda*R);    // For Newton's ring, cm
```

Scilab code Exa 3.5 Half angular width at central maximum in Fraunhoffer diffraction

```
1 // Scilab Code Ex3.5:: Page -3.22 (2009)
2 clc; clear;
3 \text{ lambda} = 5000e-008;
                       // Wavelength of light used,
4 = 15e-005; // Width of the slit, cm
              // Order of diffraction
6 // For a single slit Fraunhofer diffraction, a*sin(
     theta) = n*lambda, solving for theta
7 theta = asin(n*lambda/a); // Half angular width at
     central maximum in Fraunhoffer diffraction,
     radian
9 printf("\nThe half angular width at central maximum
     in Fraunhoffer diffraction = \%5.3 \, \text{f} rad", theta);
10
11 // Result
12 // The half angular width at central maximum in
     Fraunhoffer diffraction = 0.340 rad
```

Scilab code Exa 3.6 Width of the slit

```
1 // Scilab Code Ex3.6:: Page -3.23 (2009)
2 clc; clear;
3 lambda = 5000e-010; // Wavelength of light used,
         // Order of diffraction
4 n = 1;
5 x = 5e-003; // Position of first minima on
     either sides of central maximum, m
              // Distance of screen from the narrow
6 D = 2.5;
     slir, m
  sin\_theta = x/sqrt(x^2+D^2); // Sine of angle
     theta, rad
  // For a single slit Fraunhofer diffraction, a*sin(
     theta) = n*lambda, solving for a
9 a = n*lambda/sin_theta; // Width of the slit, m
10
11 printf("\nThe Width of the slit = \%3.1e m", a);
12
13 // Result
14 // The Width of the slit = 2.5e-004 m
```

Scilab code Exa 3.7 Angular width of central maximum

```
10\ //\ Result 11\ //\ The\ angular\ width\ of\ central\ maximum = 48\ degrees
```

Scilab code Exa 3.8 Distance between first minima and the next minima from the axis

```
1 // Scilab Code Ex3.8:: Page -3.23 (2009)
2 clc; clear;
3 lambda = 5000e-010; // Wavelength of light used,
4 a = 0.7e-002; // Width of the slit, m
5 f = 0.5;
                  // Focal length of the lens, m
6 n = 1; // Order of diffraction
7 // For minima, a*sind(theta_n) = n*lambda
8 // Also theta_n = n*lambda/a = x1/f, solving for x1
9 x1 = f*n*lambda/a; // Position of first
     minima, cm
10 // For secondary maxima, a*sind(theta_n) = (2*n+1)*
     lambda/2
11 // Also theta_n = 3*lambda/(2*a) = x2/f, solving for
      x2
12 n = 1;
         // Order of diffraction for first
     secondary minima
13 x2 = 3*f*lambda/(2*a);
                          // Position of first
     secondary maxima, cm
14
15 printf("\nThe distance between first minima and the
     next minima from the axis = \%4.2e cm, x2-x1;
16
17 // Result
18 // The distance between first minima and the next
     minima from the axis = 1.79e-005 cm
```

Scilab code Exa 3.9 Width of central maxima in diffraction pattern

```
1 // Scilab Code Ex3.9:: Page -3.24 (2009)
2 clc; clear;
3 lambda = 6600e-008; // Wavelength of light used,
       cm
4 a = 0.018; // Width of the slit, cm
5 f = 200; // Focal length of the lens, cm 6 n = 1; // Order for first order diffraction
7 \ // \ As \ a*sin(theta) = n*lambda, \ a*theta = n*lambda
8 // As theta = lambda/a and theta = x/f, solving for
      \mathbf{X}
9 x = lambda*f/a; // Half angular width at central
       maximum, cm
10
11 printf("\nThe width of central maximum = \%3.1 \,\mathrm{f} cm",
      2*x);
12
13 // Result
14 // The width of central maximum = 1.5 cm
```

Scilab code Exa 3.10 Slit width in Fraunhoffer single slit experiment

```
11 // Result
12 // The slit width = 0.017 cm
```

Scilab code Exa 3.11 Half angular width of central maxima

```
1 // Scilab Code Ex3.11:: Page -3.25 (2009)
2 clc; clear;
                          // Wavelength of light used,
3 \text{ lambda} = 5500e-008;
      cm
4 a = 8.5e-005; // Width of the slit, cm
              // Order of diffraction
6 // For a single slit Fraunhofer diffraction, a*sind(
     theta) = n*lambda, solving for theta
7 theta = asind(n*lambda/a); // Half angular width at
      central maximum in Fraunhoffer diffraction,
     degrees
9 printf("\nThe half angular width at central maximum
     in Fraunhoffer diffraction = %4.1f degrees",
     theta);
10
11 // Result
12 // The half angular width at central maximum in
     Fraunhoffer diffraction = 40.3 degrees
```

Scilab code Exa 3.12 Wavelength of light used in Fraunhoffer diffraction due to single slit

```
6 // As x = lambda*f/a, solving for lambda
7 lambda = a*x/f; // Wavelength of light used in
        Fraunhoffer diffraction due to single slit, cm
8
9 printf("\nThe wavelength of light used in
        Fraunhoffer diffraction due to a single slit =
        %4d angstrom", lambda/1e-008);
10
11 // Result
12 // The wavelength of light used in Fraunhoffer
        diffraction due to a single slit = 6666 angstrom
```

Scilab code Exa 3.13 Width of central maxima from position of first secondary minima

```
1 // Scilab Code Ex3.13:: Page -3.25 (2009)
2 clc; clear;
                     // Slit width, cm
3 = 0.045;
                        // Wavelength of light used,
4 \text{ lambda} = 5500e-008;
      cm
5 f = 250;
                // Focal length of the lens, cm
6 x = lambda*f/a; // Position of central maxima,
     cm
8 printf("\nThe position of central maxima = \%5.3 \, \text{f} cm"
      , x);
9 printf("\nThe width of central maxima from first
     minima = \%5.3 \text{ f cm}", 2*x);
10
11 // Result
12 // The position of central maxima = 0.306 cm
13 // The width of central maxima from first minima =
      0.611 \, \mathrm{cm}
```

Scilab code Exa 3.14 Wavelength of monochromatic light used in illuminating a slit

```
1 // Scilab Code Ex3.14:: Page -3.26 (2009)
2 clc; clear;
3 = 0.025;
                  // Slit width, cm
                 // Order of diffraction
4 n = 2;
                 // Focal length of the lens, cm
5 f = 400;
6 x = 2.1; // Position of central maxima, cm
7 // As theta = n*lambda/a and theta = x/f, solving
     for lambda
 lambda = x*a/(n*f); 	 // Wavelength of light used,
9 printf("\nThe wavelength of light used = \%4d
     angstrom", lambda/1e-008);
10
11 // Result
12 // The wavelength of light used = 6562 angstrom
```

Scilab code Exa 3.15 Distance between second dark and next bright fringe on the axes

```
1 // Scilab Code Ex3.15:: Page-3.26 (2009)
2 clc; clear;
3 a = 0.25; // Slit width, cm
4 lambda = 5890e-008; // Wavelength of light, cm
5 f = 80; // Focal length of the lens, cm
6 n = 2; // Order of diffraction
7 // As for minima, theta = n*lambda/a and theta = x/f, solving for x
8 x2 = 2*lambda*f/a; // Position of 2nd dark fringe, cm
```

Scilab code Exa 3.16 Width of the slit from first order diffraction

```
1 // Scilab Code Ex3.16:: Page -3.27 (2009)
2 clc; clear;
3 lambda = 5500e-008; // Wavelength of light used,
      cm
4 \times = 3.9e-001; // Half width of central maximum
    , cm
5 f = 220;
                 // Focal length of the lens, cm
6 n = 1; // Order for first order diffraction
7 // As a*sin(theta) = n*lambda, a*theta = n*lambda
8 // As theta = lambda/a and theta = x/f, solving for
                  // Half angular width at central
9 a = lambda*f/x;
      maximum, cm
10
11 printf("\nThe width of the slit = \%3.1e cm", a);
12
13 // Result
14 // The width of the slit = 3.1e-002 cm
```

Scilab code Exa 3.18 Fraunhoffer diffraction due to double slits

```
1 // Scilab Code Ex3.18:: Page -3.30 (2009)
2 clc; clear;
3 = 0.019e-003;
                       // Width of each slit, m
                       // Width of opacity between two
4 b = 2.0e-004;
      slits, m
  lambda = 5000e-010; // Wavelengh of light used, m
6 D = 0.6;
                   // Distance between slit and the
     screen, m
  // As angular separation, theta = x/D = lambda/(a+b)
     , solving for x
                        // Fringe spacing on the
8 x = D*lambda/(a+b);
     screen, m
9 // As half angular separation, theta1 = x1/D =
     lambda/(2*(a+b)), solving for x1
10 x1 = D*lambda/(2*(a+b));
                              // Distance between
      central maxima and first minima, m
11
12 printf("\nThe fringe spacing on the screen = \%4.2 \,\mathrm{f}
     mm, x/1e-003);
13 printf("\nThe distance between central maxima and
      first minima = \%4.2 \text{ f mm}, x1/1e-003);
14
15 // Result
16 // The fringe spacing on the screen = 1.37 \text{ mm}
17 // The distance between central maxima and first
     minima = 0.68 mm
```

Scilab code Exa 3.19 Fringe separation in Fraunhoffer double slit diffraction pattern

```
1 // Scilab Code Ex3.19:: Page -3.31 (2009)
2 clc; clear;
3 f = 150;
               // Distance between screen and slit, cm
4 a = 0.005; // Slit width, cm
5 b = 0.06; // Distance between slits, cm
6 \text{ lambda} = 5500e-008;
                           // Wavelength of light used,
      cm
7 // As half angular separation, theta1 = x1/f =
     lambda/(2*(a+b)), solving for x1
8 x1 = f*lambda/(2*(a+b)); // Distance between
     central maxima and first minima, cm
9 delta_theta = lambda/(2*(a+b)); // Angular
     separation between two consecutive minima,
     radians
10 printf("\nThe distance between central maxima and
     first minima = \%4.2e cm, x1);
11 printf("\nThe angular separation between two
     consecutive minima = \%3.1e radians", delta_theta)
12
13 // Result
14 // The distance between central maxima and first
     minima = 6.35 e - 002 cm
15 // The angular separation between two consecutive
     minima = 4.2e-004 radians
```

Scilab code Exa 3.20 Positions of first secondary maxima and minima in double slit diffraction

```
cm
7 // As theta1 = x1/f = lambda/(2*(a+b)), solving for
x1
8 x1 = f*lambda/(2*(a+b)); // Position of first
    secondary minima, cm
9 // As theta2 = x2/f = lambda/(a+b), solving for x2
10 x2 = f*lambda/(a+b); // Position of first
    secondary maxima, cm
11
12 printf("\nThe position of first secondary minima =
    %5.3 f cm", x1);
13 printf("\nThe position of first secondary maxima =
    %4.2 f cm", x2);
14
15 // Result
16 // The position of first secondary minima = 0.065 cm
17 // The position of first secondary maxima = 0.13 cm
```

Scilab code Exa 3.21 Missing orders of spectra in Fraunhoffer double slit diffraction

```
1 // Scilab Code Ex3.21:: Page-3.34 (2009)
2 clc; clear;
3 a = 0.2; // Slit width, mm
4 b = 0.8; // Distance between slits, mm
5 p = [1 2 3 4]; // Orders of pth diffraction maxima
6 // As diffraction of pth diffraction maxima, a*sin( theta)=p*lambda --- (i)
7 // and that of nth diffraction maxima, (a+b)*sin( theta)=n*lambda --- (ii)
8 // Dividing (ii) by (i), we have
9 // (a+b)/a = n/p, solving for n
10 n = (a+b)/a*p; // Orders of nth diffraction maxima
```

Scilab code Exa 3.22 Angles of diffraction for the principal maxima for two lines of sodium

```
1 // Scilab Code Ex3.22:: Page -3.45 (2009)
2 clc; clear;
3 \quad lambda1 = 5890e-008;
                            // Wavelength of D1 line of
     Na, cm
4 \quad lambda2 = 5896e-008;
                            // Wavelength of D2 line of
     Na, cm
5 N = 3000/0.5;
                            // No. of lines per cm of
      grating, lines/cm
6 \text{ a_plus_b} = 1/N;
                            // Grating element, cm
7 n = 1;
              // Order of diffraction for principal
     maxima
8 // As (a+b)*sin(theta1) = n*lambda, solving for
      theta1
9 theta1 = asind(n*lambda1/(a_plus_b)); // Angle of
      diffraction for the principal maxima of D1 line,
      degrees
10 theta2 = asind(n*lambda2/(a_plus_b)); // Angle of
      diffraction for the principal maxima of D2 line,
      degrees
11 printf("\nThe angle of diffraction for the principal
      maxima of D1 line = \%5.2 \,\mathrm{f} degrees", theta1);
12 printf("\nThe angle of diffraction for the principal
       maxima of D2 line = \%5.2 \, \text{f degrees}", theta2);
```

```
13
14 // Result
15 // The angle of diffraction for the principal maxima
          of D1 line = 20.70 degrees
16 // The angle of diffraction for the principal maxima
          of D2 line = 20.72 degrees
```

Scilab code Exa 3.23 Highest order spectrum which can be seen in monochromatic light

```
1 // Scilab Code Ex3.23:: Page -3.45 (2009)
2 clc; clear;
3 lambda = 5500e-008; // Wavelength of light used,
     cm
4 N = 15000;
                        // No. of lines per inch of
     grating, lines/inch
5 \text{ a_plus_b} = 2.54/N; // Grating element, cm
6 n = 1;
              // Order of diffraction for principal
     maxima
7 // As (a+b)*sin(theta_n) = n*lambda and for maximum
     possible order of spectra \sin(\text{theta_n}) = 1
8 // So (a+b) = n*lambda, solving for n
9 n = (a_plus_b)/lambda; // The highest order
     spectrum which can be seen in monochromatic light
10
11 printf("\nThe highest order spectrum which can be
     seen in monochromatic light = %d", n);
12
13 // Result
14 // The highest order spectrum which can be seen in
     monochromatic light = 3
```

Scilab code Exa 3.24 Angle of separation in second order of diffraction spectrum

```
1 // Scilab Code Ex3.24: : Page -3.46 (2009)
2 clc; clear;
3 \quad lambda1 = 5890e-008;
                         // Wavelength of D1 line, cm
                            // Wavelength of D2 line, cm
4 \quad lambda2 = 5896e-008;
                         // No. of lines per inch of
5 N = 15000;
     grating, lines/inch
6 \text{ a_plus_b} = 2.54/N;
                               // Grating element, cm
7 n = 2;
          // Order of diffraction for secondary
     maxima
8 // As (a+b)*sin(theta_n) = n*lambda, solving for
     theta1 and theta2
9 theta1 = asind(n*lambda1/a_plus_b);
                                            // Direction
      of secondary maxima with lambda1, degrees
10 theta2 = asind(n*lambda2/a_plus_b); // Direction
      of secondary maxima with lambda2, degrees
11
12 printf("\nThe angle of separation in second order
      diffraction spectrum = \%3.1 \, \mathrm{f} degrees", theta2-
     theta1);
13
14 // Result
15 // The angle of separation in second order
      diffraction spectrum = 0.1 degrees
```

Scilab code Exa 3.25 Separation of two lines in first order spectrum

```
6 \text{ a_plus_b} = 2.54/N; // Grating element, cm
7 f = 120;
               // Focal length of the lens, cm
              // Order of diffraction for principal
8 n = 1;
     maxima
9 // As (a+b)*sin(theta_n) = n*lambda, solving for
     theta1 and theta2
10 theta1 = asind(n*lambda1/a_plus_b); // Direction
      of principal maxima with lambda1, degrees
11 theta2 = asind(n*lambda2/a_plus_b);
                                        // Direction
      of principal maxima with lambda2, degrees
12 // As tand(theta) = x/f, solving for x1 - x2 = dx
13 dx = f*(tand(theta1)-tand(theta2)); // Linear
     separation of two lines in first order spectrum,
     cm
14
15 printf("\nThe linear separation of two lines in
     first order spectrum = \%5.2 f cm", dx);
16
17 // Result
18 // The linear separation of two lines in first order
      spectrum = 14.34 cm
```

Scilab code Exa 3.26 Difference in the deviation in the first and third order spectra

```
theta for first and third orders
8 theta1 = asind(n*lambda/a_plus_b); // Direction
     of principal maxima with lambda1, degrees
9 n = 3; // Order of diffraction for third order
     spectra
10 theta3 = asind(n*lambda/a_plus_b);  // Direction
     of principal maxima with lambda2, degrees
11 delta_theta = theta3 - theta1; // Angular
     separation in the first and third order spectra,
12
13 printf("\nThe difference in the deviation in the
     first and third order spectra = \%4.1f degrees",
     delta_theta);
14
15 // Result
16 // The difference in the deviation in the first and
     third order spectra = 34.1 degrees
```

Scilab code Exa 3.27 Order of diffraction for the given grating element and wavelength of light

```
// Scilab Code Ex3.27:: Page-3.48 (2009)
clc; clear;
lambda = 6500e-008;  // Wavelength of light used,
cm

N = 10000;  // No. of lines per cm of
    grating, lines/cm

a_plus_b = 1/N;  // Grating element, cm
theta_n = 90;  // Direction for maximum possible
    orders, degrees
// As (a+b)*sin(theta_n) = n*lambda, solving for
    theta for n

n = a_plus_b*sind(theta_n)/lambda;  // Order of
    diffraction for
```

Scilab code Exa 3.28 Number of lines ruled on the grating surface

```
1 // Scilab Code Ex3.28:: Page -3.48 (2009)
2 clc; clear;
                           // Wavelength of first line,
3 \quad lambda1 = 6500e-008;
4 \quad lambda2 = 4500e-008; // Wavelength of second
     line, cm
                  // Direction of lower order,
5 \text{ theta1} = 18;
      degrees
                       // Direction of higher order,
  theta2 = 18;
      degrees
7 // As (a+b)*sin(theta1) = n*lambda1 and (a+b)*sin(
     theta2) = (n+1)*lambda2, solving for n
                                        // Order of
8 n = lambda2/(lambda1 - lambda2);
      diffraction for first wavelength
9 // As a_plus_b = n*lambda1/sind(theta1), solving for
      a_plus_b
10 a_plus_b = ceil(n)*lambda1/sind(theta1); // Grating
      element, cm
                   // No. of lines on the grating
11 N = 1/a_plus_b;
     surface, lines/cm
12
13 printf("\nThe number of lines ruled on the grating
      surface = \%4d lines/cm, N);
14
15 // Result
```

```
16 // The number of lines ruled on the grating surface = 1584 \text{ lines/cm}
```

Scilab code Exa 3.29 Angles at which first and second order maxima are observed

```
1 // Scilab Code Ex3.29:: Page -3.48 (2009)
2 clc; clear;
3 lambda = 6328e-008; // Wavelength of He-Laser, cm
4 a_plus_b = 1/6000; // Grating element, cm
5 n = 1; // First order of diffraction for given
     wavelength
6 // As (a+b)*sin(theta1) = n*lambda, solving for
     theta1
7 theta1 = asind(n*lambda/a_plus_b); // Angle at
     which first order maximum is observed, degrees
8 n = 2;
         // second order of diffraction for given
      wavelength
  which second order maximum is observed, degrees
10
11 printf("\nThe angle at which first order maximum is
     observed = \%4.1 \, f degrees", theta1);
12 printf("\nThe angle at which second order maximum is
      observed = %4.1 f degrees", theta2);
13
14 // Result
15 // The angle at which first order maximum is
     observed = 22.3 degrees
16 // The angle at which second order maximum is
     observed = 49.4 degrees
```

Scilab code Exa 3.30 Least width of plane transmission grating

```
1 // Scilab Code Ex3.30:: Page -3.49 (2009)
2 clc; clear;
3 lambda1 = 5890e-008; // Wavelength of D1 line of
     Na, cm
4 lambda2 = 5896e-008; // Wavelength of D2 line of
     Na, cm
5 d_lambda = lambda2-lambda1; // Linear
     separation of two lines just seen as separate, cm
6 P = 500;
                   // Number of lines per cm on grating
     , lines/cm
7 n = 2; // Order of diffraction
8 // As resolving power of grating, lambda/d_lambda =
     n*N, solving for N
9 N = lambda1/(d_lambda*n); // No. of lines
     required per cm on grating, lines/cm
                  // Least width of grating, cm
11
12 printf("\nThe least width of plane transmission
     grating = \%5.3 \, \text{f cm}", w);
13
14 // Result
15 // The least width of plane transmission grating =
     0.982 cm
```

Scilab code Exa 3.31 Minimum grating width required to resolve two wavelengths

```
6 	 d_lambda = 50e-010;
                             // Linear separation of two
       spectral lines just seen as separate, cm
7 DP = d_theta/d_lambda;
                                // Dispersive power of
     grating
8 n = 1;
               // Order of diffraction
9 // As dispersive power of grating d_theta/d_lambda =
      DP = n/((a_plus_b)*cosd(theta1)), solving for
      a_plus_b
10 a_plus_b = n/(DP*cosd(theta1));
                                         // Grating
      element, cm
11 // But a_plus_b*sind(theta1)=n*lambda1, solving for
     lambda1
12 lambda1 = a_plus_b*sind(theta1)/n;
      Wavelength of first spectral line, cm
13 lambda2 = lambda1+d_lambda/1e-002;
                                                     //
      Wavelength of second spectral line, cm
14 // As resolving power of grating, lambda/d_lambda =
     n*N, solving for N
                               // No. of lines
15 N = lambda1/(d_lambda*n);
      required per cm on grating
16 w = N*a_plus_b; // Minimum grating width
      required to resolve two wavelengths, cm
17
18 printf("\nThe wavelength of first spectral line = \%4
      .0 f \quad angstrom, lambda1/1e-008);
19 printf("\nThe wavelength of second spectral line =
     \%4.0 \, \text{f} \, \text{angstrom}, lambda2/1e-008);
20 printf("\nThe minimum grating width required to
      resolve two wavelengths = \%3.1 \, \text{f} \, \text{cm}, w);
21
22 // Result
23 // The wavelength of first spectral line = 6702
      angstrom
24 // The wavelength of second spectral line = 6752
      angstrom
25 // The minimum grating width required to resolve two
      wavelengths = 2.9 cm
```

Scilab code Exa 3.32 Angle of diffraction for maxima in first order

```
1 // Scilab Code Ex3.32:: Page -3.50 (2009)
2 clc; clear;
3 // Function to convert theta into degree-minute
4 function[degre, minute]=deg_2_degminsec(theta)
      degre = floor(theta);
6
      minute = (theta-floor(theta))*60;
7 endfunction
9 N = 15000; // No. of lines on the grating per
     inch, lines/inch
                       // Grating element, cm
10 a_{plus_b} = 2.54/N;
11 lambda = 6000e-008; // Wavelength of light used,
12 n = 1;
             // Order of diffraction spectra
13 // But a_plus_b*sind(theta)=n*lambda, solving for
     theta
in which first order spectra is seen, degrees
15 [deg, mint] = deg_2_degminsec(theta);
16 printf("\nThe angle of diffraction for maxima in
     first order = %2d degrees %2d min", deg, mint);
17
18 // Result
19 // The angle of diffraction for maxima in first
     order = 20 degrees 45 min
```

Scilab code Exa 3.33 Wavelength of light used in obtaining second order diffraction maximum

```
1 // Scilab Code Ex3.33:: Page - 3.50 (2009)
```

```
2 clc; clear;
3 N = 12000;
               // No. of lines on the grating per
     inch, lines/inch
                      // Grating element, cm
4 \text{ a_plus_b} = 2.54/N;
5 n = 2; // Order of diffraction spectra
6 theta = 39; // Angle of diffraction for maxima in
     second order, degrees
7 // But a_plus_b*sind(theta)=n*lambda, solving for
     lambda
  lambda = a_plus_b*sind(theta)/n;  // Wavelength
     of light used, cm
10 printf("\nThe wavelength of light used in obtaining
     second order diffraction maximum = %4d angstrom",
      lambda/1e-008);
11
12 // Result
13 // The wavelength of light used in obtaining second
     order diffraction maximum = 6660 angstrom
```

Scilab code Exa 3.34 Number of visible orders using diffraction grating

Scilab code Exa 3.35 Distance between two wavelengths seen as separate

```
1 // Scilab Code Ex3.35:: Page -3.51 (2009)
2 clc; clear;
3 lambda = 5500e-008; // Mean of two wavelengths,
     cm
4 \text{ theta} = 35;
                       // Angle of diffraction for
     maxima in second order
                       // Angular separation between
5 	ext{ d_theta} = 0.15;
     two neighbouring wavelengths, radians
  d_lambda = lambda*cotd(theta)*d_theta; // Distance
     between two wavelengths seen as separate, cm
8 printf("\nThe distance between two wavelengths seen
     as separate = \%d angstrom", d_lambda/1e-008);
10 // Result
11 // The distance between two wavelengths seen as
     separate = 1178 angstrom
```

Scilab code Exa 3.36 Number of lines per cm on grating surface

```
1 // Scilab Code Ex3.36:: Page -3.51 (2009) 2 clc; clear;
```

```
// First wavelength of
3 \quad lambda1 = 5500e-008;
      light, cm
4 \text{ lambda2} = 4500e-008;
                             // Second wavelength of
      light, cm
                  // Angle of diffraction for lower
5 theta = 45;
      order, degrees
6 n = lambda2/(lambda1-lambda2); // Lower order of
      diffraction
7 // But a_plus_b*sind(theta)=n*lambda, solving for
      a_plus_b
8 a_plus_b = floor(n)*lambda1/sind(theta);
     Grating element, cm
9 N = 1/a_plus_b; // No. of lines per cm on grating surface, lines/cm
10
11 printf("\nThe number of lines per cm on grating
      surface = \%4d lines/cm, ceil(N));
12
13 // Result
14 // The number of lines per cm on grating surface =
      3215 \, \text{lines/cm}
```

Scilab code Exa 3.37 Total number of lines on grating surface

Scilab code Exa 3.38 Angular separation between the sodium D1 and D2 lines

```
1 // Scilab Code EX3.38:: Page -3.52 (2009)
2 clc; clear;
3 function [mint, secnd] = degmin(theta)
      mint = (theta-floor(theta))*60;
       secnd = (mint-floor(mint))*60
6 endfunction
  lambda_D1 = 5890e-008; // Wavelength of sodium D1
     line, cm
  lambda_D2 = 5896e-008; // Wavelength of sodium D2
     line, cm
9 n = 2; // Order of diffraction
              // Number of lines per cm on grating,
10 N = 6500;
     lines/cm
11 a_plus_b = 1/6500; // Grating element, cm
12 // As a_plus_b*sin(theta1)=n*lambda1, solving for
     theta1
13 theta1 = asind(n*lambda_D1/a_plus_b);
14 // As a_plus_b*sin(theta2)=n*lambda2, solving for
     theta1
```

```
15 theta2 = asind(n*lambda_D2/a_plus_b);
16 d_theta = theta2-theta1; // Angular separation
     between the sodium D1 and D2 lines, degrees
 [mint, secnd] = degmin(d_theta); // Call
17
     deg_2_degmin function
18
19 printf("\nThe angular separation between the sodium
     D1 and D2 lines = %d minutes %d seconds", mint,
     secnd);
20
21 // Result
22 // The angular separation between the sodium D1 and
     D2 lines = 4 minutes 10 seconds
23 // Since thetal and thetal are rounded off in the
     textbook, therefore the answer is mismatching.
```

Scilab code Exa 3.39 Minimum number of lines in a grating

```
1 // Scilab Code EX3.39:: Page -3.55 (2009)
2 clc; clear;
3 lambda1 = 5890e-008; // Wavelength of sodium D1
     line, cm
4 lambda2 = 5896e-008; // Wavelength of sodium D2
     line, cm
5 d_lambda = lambda2-lambda1; // Difference in the
     wavelength of two lines, cm
6 n = 2; // Order of diffraction
7 // As lambda/d_lambda = n*N, solving for N
8 N = lambda1/(d_lambda*n); // Minimum number of
     lines in a grating
9 printf("\nThe minimum number of lines in a grating =
      %3d lines", N);
10
11 // Result
12 // The minimum number of lines in a grating = 490
```

Scilab code Exa 3.40 Linear separation of two points on the moon

```
1 // Scilab Code EX3.40:: Page -3.56 (2009)
2 clc; clear;
                       // Wavelength of most sensitive
3 \text{ lambda} = 5500e-008;
       color to an eye, cm
4 a = 400; // Aperture of the telescope, cm
5 D = 3.8e+010; // Distance of the moon from the
     earth, cm
  d_{theta} = 1.22*lambda/a;
                             // Limit of resolution
      of telescope, radians
7 // As d_{theta} = x/D, solving for x
8 x = d_theta*D; // Linear separation of two points
     on the moon, cm
10 printf("\nThe linear separation of two points on the
      moon = \%5.2 f m, x/1e+002);
11
12 // Result
13 // The linear separation of two points on the moon =
       63.74 \text{ m}
```

Scilab code Exa 3.41 Minimum required number of lines on the plane transmission grating

```
1 // Scilab Code EX3.41:: Page-3.56 (2009)
2 clc;clear;
3 lambda1 = 5890e-008; // Wavelength of sodium D1
    line, cm
4 lambda2 = 5896e-008; // Wavelength of sodium D2
    line, cm
```

```
5 d_lambda = lambda2-lambda1; // Wavelength difference
    , cm
6 n = 2; // Order of diffraction
7 // As lambda/d_lambda = n*N, solving for N
8 N = 1/n*(lambda1+lambda2)/(2*d_lambda); //
    Minimum required number of lines on the plane
    transmission grating
9
10 printf("\nThe minimum required number of lines on
    the plane transmission grating = %3d", N);
11
12 // Result
13 // The minimum required number of lines on the plane
    transmission grating = 491
```

Scilab code Exa 3.42 Number of lines on the plane transmission grating to just resolve the sodium lines

```
1 // Scilab Code EX3.42:: Page -3.57 (2009)
2 clc; clear;
3 lambda1 = 5890e-008; // Wavelength of sodium D1
     line, cm
4 lambda2 = 5896e-008; // Wavelength of sodium D2
     line, cm
  d_lambda = lambda2-lambda1; // Wavelength difference
     , cm
6 \quad w = 2.5;
              // Width of the grating, cm
7 n = 2;
              // Order of diffraction
8 // As \ lambda/d\_lambda = n*N, \ solving \ for \ N
9 N = 1/n*(lambda1+lambda2)/(2*d_lambda);
     Minimum required number of lines on the plane
     transmission grating
10
11 printf("\nThe number of lines on the plane
     transmission grating to just resolve the sodium
```

Scilab code Exa 3.43 Minimum width of the grating to resolve the sodium lines in third order

```
1 // Scilab Code EX3.43:: Page -3.57 (2009)
2 clc; clear;
3 lambda1 = 5890e-008; // Wavelength of sodium D1
      line, cm
  lambda2 = 5896e-008; // Wavelength of sodium D2
     line, cm
  d_lambda = lambda2-lambda1; // Wavelength difference
     , cm
               // Order of diffraction
6 n = 3;
               // Number of lines per unit length of
7 P = 2500;
      grating
8 // As \ lambda/d\_lambda = n*N, \ solving \ for \ N
9 N = 1/n*(lambda1+lambda2)/(2*d_lambda);
                                               // Total
     lines on the grating
10 \quad w = N/P;
              // Minimum width of the grating, cm
11 printf("\nThe minimum width of the grating to
      resolve the sodium lines in third order = \%5.3 \,\mathrm{f}
     \mathrm{cm}", w);
12
13 // Result
14 // The minimum width of the grating to resolve the
     sodium lines in third order = 0.131 cm
```

Scilab code Exa 3.44 Dispersive power and diffraction angle for grating

```
1 // Scilab Code EX3.44:: Page -3.57 (2009)
2 clc; clear;
               // Width of the grating, cm
3 w = 2;
4 P = 4500; // Total number of lines on the grating
5 \text{ a\_plus\_b} = \text{w/P}; \text{ // Grating element}, \text{ cm}
6 lambda1 = 5890e-008; // Wavelength of sodium D1
     line, cm
7 lambda2 = 5896e-008; // Wavelength of sodium D2
      line, cm
8 lambda = (lambda1+lambda2)/2; // Mean wavelength of
       light used, cm
9 d_lambda=lambda2-lambda1; // Difference in
      wavelengths of D-lines of sodium, cm
10 n = 2; // Order of diffraction
11 // As a_plus_b*sind(theta)=n*lambda, solving for
12 theta = asind(n*lambda/a_plus_b); // Angle of
      diffraction, degrees
13 DP = n/(a_plus_b*cosd(theta));
                                     // Dispersive
     power of grating
14 d_theta = DP*d_lambda*180/%pi; // Angular
      separation between D-lines, degrees
15 RP = lambda/d_lambda; // Required resolving power
      of grating for sodium lines
16 N = 2.54/a_plus_b; // No. of lines per cm on
      grating, lines/cm
17 RP_cal = n*N;
                   // Calculated resolving power of
       grating
18
19 printf("\nThe angle of diffraction for maxima in
      second order = \%6.4 \, \text{f} degrees", d_theta);
20 printf("\nAs \%5.3\,\mathrm{e} > \%3\mathrm{d}, D-lines can be resolved.",
       RP_cal, RP);
21
22 // Result
23 // The angle of diffraction for maxima in second
      order = 0.0160 degrees
24 // \text{ As } 1.143 \, \text{e} + 04 > 982, D-lines can be resolved.
```

Scilab code Exa 3.45 Distance between centres of images of the two stars

```
1 // Scilab Code EX3.45:: Page -3.58 (2009)
2 clc; clear;
3 lambda = 5500e-010; // Wavelength of light used, m
4 a = 0.01;
              // Diameter of objective of telescope, m
             // Focal length of tlescope objective, m
5 f = 3.0;
6 // For telescope, the limit of resolution,
7 // theta = x/f = 1.22*lambda/a, solving for x
8 x = 1.22*lambda/a*f; // Distance between centres
     of imgaes of the two stars
9
10 printf("\nThe distance between centres of imgaes of
     the two stars = \%4.2 \,\mathrm{e} m", x);
11
12 // Result
13 // The distance between centres of imgaes of the two
      stars = 2.01e-04 m
```

Scilab code Exa 3.46 Aperture of the objective of the microscope

```
8
9 // Result
10 // The numerical aperture of the objective of the microscopes = 0.8328 cm
```

Chapter 4

Polarization

Scilab code Exa 4.1 Refractive index of the material

```
// Scilab Code Ex4.1:: Page-4.5 (2009)
clc; clear;
ip = 60; // Polarizing angle, degrees
mu = tand(ip); // Refractive index of the material from Brewster's law
printf("\nThe refractive index of the material = %5 .3f", mu);

// Result
// The refractive index of the material = 1.732
```

Scilab code Exa 4.2 Polarization by reflection

```
1 // Scilab Code Ex4.2:: Page-4.6 (2009)
2 clc; clear;
3 ip = 57; // Polarizing angle, degrees
4 mu = tand(ip); // Refractive index of the material from Brewster's law
```

Scilab code Exa 4.3 Angle of refraction of the ray

Scilab code Exa 4.4 Angle of minimum deviation for green light

```
1 // Scilab Code Ex4.4:: Page-4.6 (2009)
2 clc; clear;
3 ip = 60; // Polarizing angle, degrees
4 A = 60; // Angle of equilateral prism, degrees
5 mu = tand(ip); // Refractive index of the material from Brewster's law
```

Scilab code Exa 4.5 Polarizing angles of the materials for given refractive indices

```
1 // Scilab Code Ex4.5:: Page -4.7 (2009)
2 clc; clear;
3 mu = [1.33 1.65 1.55]; // Refractive indices of
       the material
4 // As mu = tand(ip), solving for ip
5 ip = atand(mu); // Brewster's law gives
      polarizing angle, degrees
6 for i =1:1:3
7 printf("\nmu = \%4.2 \,\mathrm{f}, ip = \%4.1 \,\mathrm{f} degrees", mu(i), ip
      (i));
8 end
9
10 // Result
11 // \text{mu} = 1.33, ip = 53.1 degrees
12 // \text{mu} = 1.65, ip = 58.8 degrees
13 / \text{mu} = 1.55, ip = 57.2 degrees
```

Scilab code Exa 4.6 Angle of rotation of analyser

Scilab code Exa 4.7 Angles of rotation of analyser for given transmitted light intensities

```
1 // Scilab Code Ex4.7:: Page-4.8 (2009)
2 clc; clear;
3 E0 = 1;    // For simplicity assume maximum
    intensity through polarizer and analyser to be
    unity, unit
4 light_fraction = [0.25 0.45 0.65 0.75 0.0];
5 for i = 1:1:5
6 E = light_fraction(i)*E0; // Light fraction of the
    maximum intensity, unit
```

Scilab code Exa 4.8 Angle of minimum deviation for green light

Scilab code Exa 4.9 Ratio of ordinary to extraordinary ray intensities

```
1 // Scilab Code Ex4.9:: Page -4.9 (2009)
2 clc; clear;
3 \text{ theta} = 30;
                  // Angle which the plane of
      vibration makes with the incident beam, degrees
  // As intensity of ordinary and extraordinary ray
      are
  // E<sub>E</sub> = A<sup>2</sup>*cosd(theta)<sup>2</sup> and E<sub>O</sub> = A<sup>2</sup>*sind(theta)
      ^2, solving for E_E/E_O
6 EE_ratio_EO = cotd(30)^2; // Ratio of ordinary
      and extraordinary ray intensities
8 printf("\nThe ratio of ordinary to extraordinary ray
       intensities = \%d", EE_ratio_E0);
9
10 // Result
11 // The ratio of ordinary to extraordinary ray
      intensities = 3
```

Scilab code Exa 4.10 Thickness of quarter wave plate

```
// Scilab Code Ex4.10:: Page-4.23 (2009)
clc; clear;
mu_o = 1.658; // Refractive index of ordinary wave
mu_e = 1.486; // Refractive index of extraordinary
wave
lambda = 5893e-008; // Wavelength of light used, m
// As (mu_o - mu_e)*t = lambda/4, solving for t
t = lambda/(4*(mu_o - mu_e)); // Thickness of
quarter-wave plate, cm

printf("\nThe thickness of quarter-wave plate = %3.1
e cm", t);
```

Scilab code Exa 4.11 Least thickness of plate for which emergent beam is plane polarised

```
1 // Scilab Code Ex4.11:: Page -4.23 (2009)
2 clc; clear;
3 mu_o = 1.5442; // Refractive index of ordinary
     wave
4 mu_e = 1.5533; // Refractive index of
     extraordinary wave
5 lambda = 5000e-008; // Wavelength of light used, m
6 // As (mu_o - mu_e)*t = lambda/4, solving for t
7 t = lambda/(4*(mu_e - mu_o)); // Least thickness
     of plate for which emergent beam is plane
     polarised, cm
9 printf("\nThe least thickness of plate for which
     emergent beam is plane polarised = \%4.2 e cm", t);
10
11 // Result
12 // The least thickness of plate for which emergent
     beam is plane polarised = 1.37e-003 cm
```

Scilab code Exa 4.12 Difference in refractive indices of rays

```
1 // Scilab Code Ex4.12:: Page-4.23 (2009)
2 clc; clear;
3 lambda = 5893e-008; // Wavelength of light used, m
4 t = 0.005; // Thickness of the crystal, cm
5 // As for quarter wave plate, mu_diff*t = (mu_o - mu_e)*t = lambda/4, solving for mu_diff
```

Scilab code Exa 4.13 The thickness of a half wave plate

```
1 // Scilab Code Ex4.13:: Page -4.24 (2009)
2 clc; clear;
3 \text{ mu_o} = 1.54;
                  // Refractive index of ordinary wave
                  // Refractive index of extraordinary
4 \text{ mu_e} = 1.45;
     wave
5 lambda = 5500e-008; // Wavelength of light used, m
6 // As for a half wave plate, (mu_o - mu_e)*t =
     lambda/4, solving for t
7 t = lambda/(2*(mu_o - mu_e)); // The thickness of
     a half wave plate for wavelength, cm
9 printf("\nThe thickness of a half wave plate for
      wavelength = \%4.2e cm", t);
10
11 // Result
12 // The thickness of a half wave plate for wavelength
      = 3.06 e - 004 cm
```

Scilab code Exa 4.14 The thickness of a quarter wave plate

```
1 // Scilab Code Ex4.14:: Page -4.24 (2009)
```

```
2 clc; clear;
                  // Refractive index of ordinary wave
3 \text{ mu_o} = 1.55;
4 mu_e = 1.52; // Refractive index of extraordinary
      wave
5 lambda = 5500e-008; // Wavelength of light used, m
6 // As for a half wave plate, (mu_o - mu_e)*t =
     lambda/4, solving for t
7 t = lambda/(4*(mu_o - mu_e)); // The thickness of
      a quarter wave plate for wavelength, cm
9 printf("\nThe thickness of a quarter wave plate for
      wavelength = \%4.2 \,\mathrm{e} cm<sup>"</sup>, t);
10
11 // Result
12 // The thickness of a quarter wave plate for
      wavelength = 4.58e - 004 cm
```

Scilab code Exa 4.15 The thickness of a half wave plate quartz

```
1 // Scilab Code Ex4.15:: Page -4.24 (2009)
2 clc; clear;
3 \text{ mu_o} = 1.51;
                  // Refractive index of ordinary wave
                // Refractive index of extraordinary
4 \text{ mu_e} = 1.55;
     wave
5 lambda = 6000e-008; // Wavelength of light used, m
6 // As for a half wave plate, (mu_o - mu_e)*t =
     lambda/4, solving for t
7 t = lambda/(2*(mu_e - mu_o)); // The thickness of
     a quarter wave plate for wavelength, cm
9 printf("\nThe thickness of a half wave plate quartz
     = \%4.2 e \text{ cm}, t);
10
11 // Result
12 // The thickness of a half wave plate quartz = 7.50e
```

Scilab code Exa 4.16 Difference between refractive indices

```
// Scilab Code Ex4.16:: Page-4.24 (2009)
clc; clear;
lambda = 5890e-008; // Wavelength of light used, m
t = 7.5e-004; // Thickness of the crystal, cm
// As for quarter wave plate, mu_diff*t = (mu_e - mu_o)*t = lambda/4, solving for mu_diff
mu_diff = lambda/(4*t); // The difference in refractive indices of rays, cm
printf("\nThe difference between refractive indices = %6.4 f cm", mu_diff);
// Result
// The difference between refractive indices = 0.0196 cm
```

Scilab code Exa 4.17 Specific rotation of superposition

```
// Scilab Code Ex4.17:: Page-4.34 (2009)
clc; clear;
theta = 15.2;  // Angle through which plane of polarization is rotated, degrees
c = 0.2;  // Concentration of sugar, g/cc
l = 25;  // Length of sugar, cm
S = 10*theta/(1*c);  // Specific rotation of superposition, degrees
printf("\nThe specific rotation of superposition = %4.1 f cm", S);
```

```
10 // Result 11 // The specific rotation of superposition = 30.4 cm
```

Scilab code Exa 4.18 Strength of sugar solution

```
1 // Scilab Code Ex4.18: : Page -4.34 (2009)
2 clc; clear;
3 theta = 15.2; // Angle through which plane of
     polarization is rotated, degrees
4 S = 65;
           // Specific rotation of sugar solution,
     degrees
              // Length of sugar, cm
5 1 = 15;
6 // As S = 10*theta/(1*c), solving for c
7 c = 10*theta/(1*S); // Concentration of sugar, g
     /cc
9 printf("\nThe strength of sugar solution = \%4.2 f g/
     cc", c);
10
11 // Result
12 // The strength of sugar solution = 0.16 \text{ g/cc}
```

Scilab code Exa 4.19 Quantity of sugar contained in the tube in the form of solution

```
1 // Scilab Code Ex4.19:: Page-4.34 (2009)
2 clc; clear;
3 theta = 15; // Angle through which plane of
    polarization is rotated, degrees
4 S = 69; // Specific rotation of sugar solution,
    degrees
5 l = 10; // Length of sugar, cm
6 V = 50; // Volume of the tube, cc
```

Scilab code Exa 4.20 Specific rotation of sugar solution from the given data

```
1 // Scilab Code Ex4.20:: Page -4.35 (2009)
2 clc; clear;
3 \text{ theta} = 8;
               // Angle through which plane of
      polarization is rotated, degrees
               // Amount of sugar, g
4 M = 10;
5 1 = 14;
              // Length of the tube, cm
              // Volume of sugar solution, cc
6 V = 44;
7 c = M/V; // Concentration of sugar, g/cc
8 S = 10*theta/(1*c); // Specific rotation of sugar
     solution from the given data, degrees
10 printf("\nThe specific rotation of sugar solution
     from the given data = \%4.1 \,\mathrm{f} degrees", S);
11
12 // Result
13 // The specific rotation of sugar solution from the
     given data = 25.1 degrees
```

Scilab code Exa 4.21 Angle of rotation of the plane of polarization

```
1 // Scilab Code Ex4.21:: Page -4.35 (2009)
2 clc; clear;
3 m = 15;
              // Amount of sugar, g
4 S = 66; // Specific rotation of sugar solution from
     the given data, degrees
5 1 = 20; // Length of the tube, cm
            // Volume of sugar solution, cc
6 V = 100;
7 c = m/V; // Concentration of sugar, g/cc
8 // As S = 10*theta/(1*c), solving for theta
9 theta = S*l*c/10; // Angle of rotation of the
     plane of polarization, degrees
10
11 printf("\nThe angle of rotation of the plane of
     polarization = \%4.1 f degrees", theta);
12
13 // Result
14 // The angle of rotation of the plane of
     polarization = 19.8 degrees
```

Scilab code Exa 4.22 Angle of rotation of the optically active solution

```
11 printf("\nThe angle of rotation of the optically
        active solution = %4.1f degrees", theta);
12
13 // Result
14 // The angle of rotation of the optically active
        solution = 83.3 degrees
```

Scilab code Exa 4.23 Angle of rotation in a tube of new length

```
1 // Scilab Code Ex4.23:: Page -4.35 (2009)
2 clc; clear;
              // Length of the tube, dm
3 1 = 3;
4 theta = 17.0; // Angle of rotation of the
      plane of polarization, degrees
                 // For simplicity assume concentration
       of solution to be unity, g/cc
6 l_prime = 2.5; // New length of the tube, dm
7 c_prime = 1.25*c; // Concentration of solution with
       25 cm length of tube, g/cc
8 theta_prime = theta*l_prime*c_prime/(1*c); // Angle
       of rotation in a tube of new length
9
10
11 printf("\nThe angle of rotation in a tube of new
      length of \%3.1 \, \text{f cm} = \%4.1 \, \text{f degrees}, l_prime,
      theta_prime);
12
13 // Result
14 // The angle of rotation in a tube of new length of
      2.5 \text{ cm} = 17.7 \text{ degrees}
```

Scilab code Exa 4.24 Mass of sugar in the solution contained in the tube

```
1 // Scilab Code Ex4.24:: Page -4.36 (2009)
2 clc; clear;
3 1 = 17;
           // Length of the tube, cm
4 V = 37; // Volume of sugar solution, cc
5 theta = 15; // Angle of rotation of the plane
     of polarization, degrees
6 S = 68; // Specific rotation of sugar
     solution, degrees
7 \ // \ As \ S = 10*theta/(1*c), solving for c
8 c = 10*theta/(1*S); // Concentration of sugar
     solution, g/cc
           // Mass of sugar in the solution
9 \quad m = c * V;
     contained in the tube, g
10
11 printf("\nThe mass of sugar in the solution
     contained in the tube = \%3.1 \,\mathrm{f} g", m);
12
13 // Result
14 // The mass of sugar in the solution contained in
     the tube = 4.8 g
```

Scilab code Exa 4.25 Percentage purity of the sugar sample

Scilab code Exa 4.26 Angle of rotation produced by the polarimeter plate

```
1 // Scilab Code Ex4.26:: Page -4.42 (2009)
2 clc; clear;
3 \text{ lambda} = 6600e-010;
                           // Wavelength of circularly
      polarized light, cm
4 \text{ mu}_R = 1.53914;
                           // Refractive index of right
     -handed circularly polarized light
5 \text{ mu}_L = 1.53920;
                            // Refractive index of left -
     handed circularly polarized light
6 t = 0.0005; // Thickness of polarimeter plate, m
7 theta = %pi/lambda*(mu_L-mu_R)*t; // Angle of
      rotation produced by the polarimeter plate,
      radian
8
9 printf("\nThe angle of rotation produced by the
      polarimeter plate = \%4.2 \, \mathrm{f} degrees", theta*180/%pi
     );
10
11 // Result
12 // The angle of rotation produced by the polarimeter
      plate = 8.18 degrees
```

Chapter 5

Nuclear Physics

Scilab code Exa 5.1 Mass defect of He

```
1 // Scilab Code Ex5.1 :: Page-5.2 (2009)
2 clc; clear;
3 m_p = 1.007826;  // Mass of a proton, amu
4 m_n = 1.008665;  // Mass of a neutron, amu
5 M_He = 4.002604;  // Measured mass of He nucleuc, amu
6 delta_m = 2*m_p+2*m_n - M_He;  // Mass defect of He, amu
7 printf("\nThe mass defect of He = %f amu", delta_m);
8
9 // Result
10 // The mass defect of He = 0.030378 amu
```

Scilab code Exa 5.3 Maximum energy of proton in a cyclotron

```
4 q = 1.6e-019;  // Charge of the proton, C
5 R = 3;  // Radius of Dee's, m
6 m = 1.67e-027;  // Mass of the proton, kg
7 E_max = B^2*q^2*R^2/(2*m);  // Maximum energy of the proton in the cyclotron, joule
8 printf("\nThe maximum energy of the proton in the cyclotron = %4.2 e MeV", E_max/1.6e-013);
9
10 // Result
11 // The maximum energy of the proton in the cyclotron = 2.11 e+02 MeV
12 // The unit has been given wrong in the textbook. It should be MeV instead of eV
```

Scilab code Exa 5.4 Energy of an electron in a betatron

Scilab code Exa 5.5 Final energy gained by electrons in a betatron

```
1 // Scilab Code Ex5.5 :: Page -5.20 (2009)
```

```
2 clc; clear;
3 = 1.6e-019; // Charge on an electron, C
               // Diameter of the stable orbit in
     betatron, m
               // Radius of the stable orbit in
5 R = D/2;
     betatron, m
               // Magnetic field of betatron, wb/metre
6 B = 0.5;
     square
7 c = 3e+08; // final speed of electron in betatron,
     m/s
                   // Final energy gained by electrons
8 E = B*e*R*c;
     in a betatron, eV
9 printf("\nThe final energy gained by electrons in
     the betatron = \%3.1e eV", E/e);
10
11 // Result
12 // The final energy gained by electrons in the
     betatron = 1.5e + 08 eV
```

Scilab code Exa 5.6 Energy produced in fission of U235

```
1 // Scilab Code Ex5.6 :: Page-5.27 (2009)
2 clc; clear;
3 e = 1.6e-019;  // Energy equivalent of 1 eV, J/eV
4 A = 235;  // Atomic weight of uranium, gm/mol
5 N_A = 6.023e+026;  // No. of atoms present in 235
    kg of uranium
6 N = N_A/(A*1000);  // No. of nuceli of uranium per
    gram
7 E = N*200;  // Energy produced by 1 g of U-235, MeV
8 printf("\nThe energy produced by 1 g of U-235 = %3.1
    e joule", E*e*1e+06);
9
10 // Result
11 // The energy produced by 1 g of U-235 = 8.2e+10
```

Scilab code Exa 5.7 Power output of nuclear reactor

```
1 // Scilab Code Ex5.7 :: Page -5.32 (2009)
2 clc; clear;
            // Atomic weight of uranium, gm/mol
3 A = 235;
                       // No. of atoms present in 235
4 N_A = 6.023e + 026;
     kg of uranium -235
5 N = N_A*5/A; // No. of nuceli of uranium in 5 kg of
     U - 235
6 E = N*200; // Energy released in the fission of 5
     kg of U-235, MeV
7 t = 24*3600;
                 // Time taken to consume 5 kg of U
     -235, sec
8 P = E/t;
              // Total power output of the nuclear
     reactor, MeV per second
9 printf("\nThe total power output of the nuclear
     reactor = \%4.2e MeV per second", P);
10
11 // Result
12 // The total power output of the nuclear reactor =
     2.97e+22 MeV per second
```

Scilab code Exa 5.8 Average current in the GM counter circuit

```
1 // Scilab Code Ex5.8 :: Page-5.34 (2009)
2 clc;clear;
3 e = 1.6e-019; // Electronic charge, C
4 f = 450; // Count rate of GM counter, counts/min
5 N = f*1e+08; // Total number of electrons collected per min
6 Q = N*e; // Charge collected per min, C
```

```
7 I = Q/60; // Averge current in the GM counter, A
8 printf("\nThe averge current in the GM counter= %3.1
        e A", I);
9
10 // Result
11 // The averge current in the GM counter= 1.2e-10 A
```

Scilab code Exa 5.9 Energy needed to remove a neutron from Ca nucleus

```
1 // Scilab Code Ex5.9 :: Page -5.39 (2009)
2 clc; clear;
3 \text{ m}_{Ca}_{41} = 40.962278; // Mass of one Ca-41 nuclei,
4 \text{ m}_{Ca}_{42} = 41.958618; // Mass of one Ca-41 nuclei,
     amu
5 \text{ m_n} = 1.008665; // Mass of a neutron, amu
6 delta_m = m_Ca_42 - (m_Ca_41 + m_n);
      Difference in the mass of Ca-42 and Ca-41 nuclei,
7 E = delta_m*(931.49);
                         // Binding energy of the
      missing neutron, MeV
8 printf("\nThe energy needed to remove a neutron from
      Ca-42 nucleus = \%5.2 f MeV", abs(E));
10 // Result
11 // The energy needed to remove a neutron from Ca-42
      nucleus = 11.48 \text{ MeV}
```

Chapter 6

Semiconductors and Nano Physics

Scilab code Exa 6.1 Resistivity of intrinsic semiconductor at 300 K

```
1 // Scilab Code Ex6.1:: Page -6.19 (2009)
2 clc; clear;
3 T = 300;
              // Temperature of pure semiconductor, K
4 n_i = 2.5e+019; // Intrinsic carrier density, per
     metre square
5 e = 1.6e - 019;
                   // Charge on an electron, C
6 mu_e = 0.39; // Mobility of electrons, Sq.m/V/s
7 mu_h = 0.19; // Mobility of holes, Sq.m/V/s
8 sigma_i = e*n_i*(mu_e+mu_h); // Conductivity of
      intrinsic semiconductor at 300 K, mho/m
9 rho_i = 1/sigma_i; // Resistivity of intrinsic
      semiconductor at 300 K, ohm-m
10
11 printf("\nThe resistivity of intrinsic semiconductor
       at 300 \ \mathrm{K} = \%4.2 \, \mathrm{f} \ \mathrm{ohm}\text{--m}, rho_i);
12
13 // Result
14 // The resistivity of intrinsic semiconductor at 300
      K = 0.43 ohm-m
```

Scilab code Exa 6.2 Velocity of electron at Fermi level

```
1 // Scilab Code Ex6.2: Page -6.19 (2009)
2 clc; clear;
3 e = 1.6e - 019;
                   // Energy equivalent of 1 eV, J/eV
                  // Fermi level of Po, J
4 E_F = 2.0*e;
5 m = 9.1e-031; // Mass of an electron, kg
6 // As E_F = 1/2*m*v^2, solving for v
7 v = sqrt(2*E_F/m); // Velocity of electron at
     Fermi level, m/s
8 printf("\nThe Velocity of electron at Fermi level =
     \%4.2 \, e \, m/s", v);
9
10 // Result
11 // The Velocity of electron at Fermi level = 8.39e
     +05 \text{ m/s}
```

Chapter 7

Fiber Optics

Scilab code Exa 7.1 Critical angle and acceptance angle in an optical fibre

```
1 // Scilab Code Ex7.1:: Page -7.7 (2009)
2 clc; clear;
                   // Refractive index of core material
3 \text{ n1} = 1.6;
      of fibre
4 n2 = 1.3;
                 // Refractive index of cladding
      material of fibre
5 phi_C = asind(n2/n1); // Critical angle of optical
      fibre, degrees
6 theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance
      angle of optical fibre, degrees
8 printf("\nThe critical angle of optical fibre = \%4.1
     f degrees", phi_C);
9 printf("\nThe angle of acceptance cone = \%5.1 \,\mathrm{f}
      degrees", 2*theta_Q);
10
11 // Result
12 // The critical angle of optical fibre = 54.3
      degrees
13 // The angle of acceptance cone = 137.7 degrees
```

Scilab code Exa 7.2 Critical angle acceptance angle and numerical aperture in an optical fibre

```
1 // Scilab Code Ex7.2:: Page -7.8 (2009)
2 clc; clear;
3 \text{ n1} = 1.50;
                    // Refractive index of core
      material of fibre
                  // Refractive index of cladding
4 n2 = 1.47;
      material of fibre
5 \text{ phi\_C} = asind(n2/n1);
                           // Critical angle of optical
      fibre, degrees
6 NA = sqrt(n1^2-n2^2); // Numerical aperture for
      the fibre
7 theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance
      angle of optical fibre, degrees
9 printf("\nThe critical angle of optical fibre = \%4.1
      f degrees", phi_C);
10 printf("\nThe numerical aperture for the fibre = \%5
      .3 f", NA);
11 printf("\nThe angle of acceptance cone = \%5.1 \,\mathrm{f}
      degrees", theta_Q);
12
13 // Result
14 // The critical angle of optical fibre = 78.5
      degrees
15 // The numerical aperture for the fibre = 0.298
16 // The angle of acceptance cone = 17.4 degrees
```

Scilab code Exa 7.3 Parameters of an optical fibre using relative refractive index difference

```
1 // Scilab Code Ex7.3:: Page -7.8 (2009)
2 clc; clear;
3 \text{ n1} = 1.46;
                  // Refractive index of the core
     material
4 delta = 0.01; // Relative refractive index
      difference
5 NA = n1*sqrt(2*delta); // Numerical aperture for
     the fibre
6 theta_Q = %pi*NA^2; // Solid acceptance angle of
     optical fibre for small angles, radians
7 // As relative refractive index, delta = 1-n2/n1,
     solving for n2
8 n2 = n1*(1-delta);
                      // Refractive index of cladding
9 phi_C = asind(n2/n1); // Critical angle of optical
      fibre, degrees
10
11 printf("\nThe numerical aperture for the fibre = \%4
     .2 f", NA);
12 printf("\nThe solid acceptance angle of the optical
      fibre = \%4.2 \, \text{f radians}", theta_Q);
13 printf("\nThe critical angle of optical fibre = \%4.1
     f degrees", phi_C);
14
15 // Result
16 // The numerical aperture for the fibre = 0.21
17 // The solid acceptance angle of the optical fibre
     = 0.13 \text{ radians}
18 // The critical angle of optical fibre = 81.9
     degrees
```

Scilab code Exa 7.4 Refractive index of cladding

```
1 // Scilab Code Ex7.4:: Page-7.9 (2009)
2 clc; clear;
3 n1 = 1.54; // Refractive index of the core
```

Scilab code Exa 7.5 Numerical aperture for an optical fibre

```
// Scilab Code Ex7.5:: Page-7.9 (2009)
clc; clear;
n1 = 1.544;  // Refractive index of the core
    material
n2 = 1.412;  // Refractive index of cladding
NA = sqrt(n1^2-n2^2);  // Numerical aperture for
    the fibre

printf("\nThe numerical aperture for an optical
    fibre = %4.2 f", NA);

// Result
// The numerical aperture for an optical fibre =
    0.62
```

Scilab code Exa 7.6 Refractive index of the cladding

```
1 // Scilab Code Ex7.6:: Page -7.9 (2009)
2 clc; clear;
```

Scilab code Exa 7.7 Comparison of the acceptance angle for meridional rays with that for the skew rays

```
1 // Scilab Code Ex7.7:: Page -7.10 (2009)
2 clc; clear;
3 \text{ NA} = 0.4;
                  // Numerical aperture of the optical
     fibre
4 n0 = 1;
           // Refractive index of fibre in air
5 theta_a = asind(NA/n0); // Acceptance angle for
     meridional rays, degrees
                  // Direction through which the skew
6 \text{ theta} = 100;
     rays are bent at each reflection, degrees
7 r = theta/2; // Angle of reflection, degrees
8 theta_as = asind(NA/(cosd(r)*n0)); // Acceptance
     angle for skew rays, degrees
10 printf("\nAcceptance angle for meridional rays = \%4
     .1f degrees", theta_a);
11 printf("\nAcceptance angle for skew rays = \%4.1 \,\mathrm{f}
     degrees", theta_as);
```

```
12
13 // Result
14 // Acceptance angle for meridional rays = 23.6
degrees
15 // Acceptance angle for skew rays = 38.5 degrees
```

Scilab code Exa 7.8 Normalized frequency for V number for the fibre

```
1 // Scilab Code Ex7.8: : Page -7.13 (2009)
2 clc; clear;
3 \text{ NA} = 0.16;
                   // Numerical aperture of the step
     index fibre
4 n1 = 1.50;
                   // Refractive index of the core
     material
5 d = 65e-006; // Diameter of the core, m
6 lambda = 0.9e-006; // Wavelength of transmitted
     light, m
7 V = \%pi*d/lambda*NA; // V-number for the optical
9 printf("\nThe V-number for the optical fibre = \%5.2 \,\mathrm{f}
     ", V);
10
11 // Result
12 // The V-number for the optical fibre = 36.30
```

Scilab code Exa 7.9 Number of modes in the step index fibre

```
1 // Scilab Code Ex7.9:: Page-7.13 (2009)
2 clc; clear;
3 NA = 0.28; // Numerical aperture of the step index fibre
4 d = 55e-006; // Diameter of the core, m
```

Scilab code Exa 7.10 Radius of core for single mode operation in step index fibre

```
1 // Scilab Code Ex7.10:: Page -7.14 (2009)
2 clc; clear;
3 \text{ n1} = 1.480;
                  // Refractive index of core material
                  // Refractive index of cladding
4 n2 = 1.47;
     material
5 lambda = 850e-006; // Wavelength of light used, m
6 \text{ NA} = \text{sqrt}(n1^2-n2^2);
                           // Numerical aperture of
     the step index fibre
7 \text{ theta0} = asind(NA);
                           // Maximum acceptance angle
     for the fibre, degrees
8 M_N = 1; // Number of modes in step index cable
9 // As number of modes, M_N = 1/2*V^2, solving for V
10 V = sqrt(2*M_N); // V-number for the fibre
11 // As V = 2*\%pi*a/lambda*NA, solving for a
12 a = V*lambda/(2*\%pi*NA); // Radius of core for
      single mode operation in step index fibre, m
13
14 printf("\nThe radius of core for single mode
      operation in step index fibre = \%3.1e", a);
15
```

```
16 // Result
17 // The radius of core for single mode operation in step index fibre = 1.1e-03
18 // The ansswer is quoted wrong in the textbook
```

Scilab code Exa 7.11 Signal attenuation in optical fibre

```
1 // Scilab Code Ex7.11: : Page-7.16 (2009)
2 clc; clear;
3 Pi = 1.5; // Input power to the optical fibre, mW
4 Po = 0.5; // Output power to the optical fibre, mW
5 L = 0.12; // Length of the optical fibre, km
6 alpha_dB = 10/L*log10(Pi/Po); // Signal attenuation in optical fibre, dB/km
7
8 printf("\nThe signal attenuation in optical fibre = %4.1 f dB/km", alpha_dB);
9
10 // Result
11 // The signal attenuation in optical fibre = 39.8 dB /km
```

Chapter 8

Laser

Scilab code Exa 8.1 Difference between upper and lower energy levels for the most prominent wavelength

```
// Scilab Code Ex8.1:: Page-8.8 (2009)
clc; clear;
lambda = 31235; // Wavelength of prominent
    emission of laser, aangstrom

E = 12400/lambda; // Energy difference between the
    two levels, eV

printf("\nThe difference between upper and lower
    energy levels for the most prominent wavelength
    = %5.3 f eV", E);

Result
// Result
// The difference between upper and lower energy
levels for the most prominent wavelength = 0.397
eV
```

Scilab code Exa 8.2 Frequency and wavelength of carbon dioxide laser

```
1 // Scilab Code Ex8.2:: Page -8.8 (2009)
2 clc; clear;
3 E = 0.121;
               // Energy difference between the two
     levels, eV
4 lambda = 12400/E; // Wavelength of the radiation,
      angstrom
5 f = 3e+08/(lambda*1e-010); // Frequency of the
      radiation, Hz
7 printf("\nThe wavelength of the radiation = \%8.1 \,\mathrm{f}
      angstrom", lambda);
8 printf("\nThe frequency of the radiation = \%4.2 \,\mathrm{e} Hz"
      , f);
9
10 // Result
11 // The wavelength of the radiation = 102479.3
      angstrom
12 // The frequency of the radiation = 2.93e+13 Hz
```

Scilab code Exa 8.3 Energy of one emitted photon and total energy available per laser pulse

Scilab code Exa 8.4 Relative population of levels in Ruby laser

```
1 // Scilab Code Ex8.4:: Page -8.9 (2009)
2 clc; clear;
                   // Wavelength of the emitted light,
3 \text{ lambda} = 7000;
     angstrom
4 k = 8.6e-005;
                   // Boltzmann constant, eV/K
5 dE = 12400/lambda; // Energy difference of the
     levels, eV
6 T = [300 500];
                    // Temperatures of first and second
       states, K
  for i = 1:1:2
       N2\_ratio\_N1 = exp(-(dE/(k*T(i)))); // Relative
          population
       printf ("\nThe relative population at \%d K = \%3.1
          e", T(i), N2_ratio_N1);
10 \text{ end}
11
12 // Result
13 // The relative population at 300 K = 1.5e-30
14 // The relative population at 500 K = 1.3e-18
15 // The answer is given wrong in the textbook for
      first part.
```

Scilab code Exa 8.5 Population of two states in He Ne laser

```
1 // Scilab Code Ex8.5:: Page -8.9 (2009)
2 clc; clear;
3 lambda = 7000; // Wavelength of the emitted light,
     angstrom
4 k = 8.6e-005; // Boltzmann constant, eV/K
5 dE = 12400/lambda; // Energy difference of the
     levels, eV
6 T = 27+273; // Temperatures of the state, K
7 N2_{ratio}N1 = exp(-(dE/(k*T))); // Relative
     population
8 printf("\nThe relative population of two states in
     He-Ne laser at \%d K = \%3.1e", T, N2_ratio_N1);
9
10
11 // Result
12 // The relative population of two states in He-Ne
     laser at 300 \text{ K} = 1.5 \,\text{e} - 30
13 // The answer is given wrong in the textbook
```