```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Set a global seaborn theme with magma palette
sns.set_theme(style="darkgrid", palette="magma")
```

In [5]: # Load the dataset and display the first few rows
 shopdata = pd.read_csv(r"C:\Users\ADMIN\Desktop\shopping_trends.csv")
 shopdata.head()

Out[5]: **Purchase** Customer Item Location Size Category Age Gender Amount ID **Purchased** (USD) 0 Kentucky 1 55 Male Blouse Clothing 53 L 1 2 19 Male Sweater Clothing 64 Maine 2 3 50 Male Jeans Clothing 73 Massachusetts S Sandals 90 Rhode Island 3 21 Male Footwear M 4 5 45 Male Blouse Clothing 49 Oregon M

In [6]: # Check number of rows and columns in dataset
shopdata.shape

Out[6]: (3900, 19)

In [7]: # Summary statistics of the dataset
shopdata.describe()

_			$\Gamma \rightarrow 1$	
()	11	Τ.	1 / 1	
v	u	L.	1 / 1	

	Customer ID	Age	Purchase Amount (USD)	Review Rating	Previous Purchases
count	3900.000000	3900.000000	3900.000000	3900.000000	3900.000000
mean	1950.500000	44.068462	59.764359	3.749949	25.351538
std	1125.977353	15.207589	23.685392	0.716223	14.447125
min	1.000000	18.000000	20.000000	2.500000	1.000000
25%	975.750000	31.000000	39.000000	3.100000	13.000000
50%	1950.500000	44.000000	60.000000	3.700000	25.000000
75%	2925.250000	57.000000	81.000000	4.400000	38.000000
max	3900.000000	70.000000	100.000000	5.000000	50.000000

In [8]: # Get a concise summary of the DataFrame including data types and non-nul
shopdata.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3900 entries, 0 to 3899
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype			
0	Customer ID	3900 non-null	int64			
1	Age	3900 non-null	int64			
2	Gender	3900 non-null	object			
3	Item Purchased	3900 non-null	object			
4	Category	3900 non-null	object			
5	Purchase Amount (USD)	3900 non-null	int64			
6	Location	3900 non-null	object			
7	Size	3900 non-null	object			
8	Color	3900 non-null	object			
9	Season	3900 non-null	object			
10	Review Rating	3900 non-null	float64			
11	Subscription Status	3900 non-null	object			
12	Payment Method	3900 non-null	object			
13	Shipping Type	3900 non-null	object			
14	Discount Applied	3900 non-null	object			
15	Promo Code Used	3900 non-null	object			
16	Previous Purchases	3900 non-null	int64			
17	Preferred Payment Method	3900 non-null	object			
18	Frequency of Purchases	3900 non-null	object			
dtypes: float64(1), int64(4), object(14)						

In [9]: # Checking for missing values in each column
shopdata.isna().sum()

memory usage: 579.0+ KB

```
0
Out[9]: Customer ID
                                      0
         Age
          Gender
                                      0
          Item Purchased
                                      0
          Category
                                      0
          Purchase Amount (USD)
                                      0
          Location
                                      0
          Size
                                      0
          Color
                                      0
          Season
                                      0
          Review Rating
                                      0
          Subscription Status
                                      0
          Payment Method
                                      0
          Shipping Type
                                      0
          Discount Applied
                                      0
          Promo Code Used
          Previous Purchases
                                      0
          Preferred Payment Method
                                      0
          Frequency of Purchases
                                      0
          dtype: int64
In [10]: # Checking for duplicate rows in the dataset
         shopdata.duplicated().sum()
Out[10]: 0
In [11]: # VISUALIZATION
         # Histogram showing the frequency distribution of the Age
         age_color = sns.color_palette("magma", 1)[0]
         shopdata["Age"].plot(kind="hist", edgecolor="black", color=age_color)
         plt.title("Histogram of Age")
         plt.xlabel("Age")
         plt.ylabel("Frequency")
```

plt.show()


```
In [12]: # List all columns present in the dataset
         shopdata.columns
Out[12]: Index(['Customer ID', 'Age', 'Gender', 'Item Purchased', 'Category',
                 'Purchase Amount (USD)', 'Location', 'Size', 'Color', 'Season',
                 'Review Rating', 'Subscription Status', 'Payment Method',
                 'Shipping Type', 'Discount Applied', 'Promo Code Used',
                 'Previous Purchases', 'Preferred Payment Method',
                 'Frequency of Purchases'],
                dtype='object')
In [18]: # Barplot of Gender Distribution
         gender_counts = shopdata["Gender"].value_counts()
         gender_colors = sns.color_palette("magma", len(gender_counts))
         gender_counts.plot(kind="bar", color=gender_colors, edgecolor="black")
         plt.title("Barplot of Gender Distribution")
         plt.xlabel("Gender")
         plt.ylabel("Count")
         plt.show()
```

Barplot of Gender Distribution

In [21]: # Calculate and display the top 2 categories with the highest average pur shopdata.groupby("Category")["Purchase Amount (USD)"].mean().sort_values(

Out[21]: Category

Footwear 60.255426 Clothing 60.025331

Name: Purchase Amount (USD), dtype: float64

In [24]: # Sorting dataset based on Review Rating in descending order
shopdata.sort_values("Review Rating", ascending = False, inplace = True)
shopdata.head()

\sim		$\Gamma \cap A T$	
11	ut	1 //11	
U	uч	1441	

	Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size
776	777	49	Male	Shirt	Clothing	60	Alabama	М
1664	1665	19	Male	Handbag	Accessories	53	Minnesota	М
1277	1278	19	Male	Blouse	Clothing	97	Rhode Island	L
2632	2633	24	Male	Scarf	Accessories	27	Alaska	М
965	966	43	Male	Boots	Footwear	55	Delaware	L

```
In [26]: # Pie chart to display the proportion of each subscription status.
subs_counts = shopdata["Subscription Status"].value_counts()
subs_colors = sns.color_palette("magma", len(subs_counts))
subs_counts.plot(kind="pie", autopct="%1.1f%", startangle=90, colors=sub
plt.title("Pie Chart of Subscription Status")
plt.ylabel("") # Hide default y-label
plt.savefig("Pie_Chart_of_Subscription_Status", dpi=300, bbox_inches ="ti
plt.show()
```

Pie Chart of Subscription Status


```
top5_colors = shopdata["Color"].value_counts().head()
colors_palette = sns.color_palette("magma", len(top5_colors))
top5_colors.plot(kind="pie", autopct="%1.1f%%", startangle=90, colors=col
plt.title("Top 5 Colors Distribution (Pie Chart)")
plt.ylabel("")
plt.savefig("Top 5 Colors Distribution (Pie Chart)", dpi=300, bbox_inches
plt.show()
```

Top 5 Colors Distribution (Pie Chart)

In [34]: # Scatter plot showing the relationship between Previous Purchases and Re
 scatter_color = sns.color_palette("magma", 1)[0]
 shopdata.plot(x="Previous Purchases", y="Review Rating", kind="scatter",
 plt.title("Scatter Plot: Previous Purchases vs. Review Rating")
 plt.xlabel("Previous Purchases")
 plt.ylabel("Review Rating")
 plt.savefig("ScatterPlot_PreviousPurchases_vs_Review_Rating", dpi=300, bb
 plt.show()

Scatter Plot: Previous Purchases vs. Review Rating


```
# Sum of Purchase Amounts grouped by Season
In [62]:
         shopdata.groupby("Season")["Purchase Amount (USD)"].sum()
Out[62]:
         Season
          Fall
                    60018
          Spring
                    58679
          Summer
                    55777
                    58607
          Winter
         Name: Purchase Amount (USD), dtype: int64
In [36]: # Boxplot of Purchase Amount by Frequency of Purchases
         # Helps identify the distribution and outliers in purchase amounts across
         shopdata.boxplot(column="Purchase Amount (USD)", by="Frequency of Purchas")
                           boxprops=dict(facecolor=sns.color_palette("magma", 1)[0]
         plt.title("Boxplot of Purchase Amount by Frequency of Purchases")
         plt.suptitle("") # Remove automatic subtitle
         plt.xlabel("Frequency of Purchases")
         plt.ylabel("Purchase Amount (USD)")
         plt.xticks(rotation=45, fontsize=8)
```

plt.savefig("Boxplot_of_Purchase_Amount_by_Frequency_of_Purchases", dpi=3

plt.show()

Boxplot of Purchase Amount by Frequency of Purchases

In [28]: # Compare Preferred Payment Method frequency (lowest vs. highest)
low = shopdata["Preferred Payment Method"].value_counts().sort_values(asc high = shopdata["Preferred Payment Method"].value_counts().sort_values(asc print("Least frequent Preferred Payment Method:", low)
print("Most frequent Preferred Payment Method:", high)

Frequency of Purchases

Least frequent Preferred Payment Method: Preferred Payment Method

Bank Transfer 612 Name: count, dtype: int64

Most frequent Preferred Payment Method: Preferred Payment Method

PayPal 677

Name: count, dtype: int64

In [82]: # Pivot Table: Average Purchase Amount by Location and Item Purchased
 pd.pivot_table(shopdata, values = "Purchase Amount (USD)", index = "Locat")

Out[82]:	Item Purchased	Backpack	Belt	Blouse	Boots	Coat	Dre
	Location						
	Alabama	74.000000	26.500000	52.000000	73.666667	54.500000	55.20000
	Alaska	74.600000	76.750000	67.500000	56.000000	45.500000	74.50000
	Arizona	48.600000	84.500000	61.000000	NaN	65.333333	71.00000

Arkansas	90.000000	55.000000	66.000000	50.000000	54.250000	62.80000
California	57.400000	61.666667	39.500000	62.500000	55.000000	58.4285
Colorado	57.000000	68.500000	55.000000	NaN	46.000000	39.75000
Connecticut	60.000000	47.666667	67.400000	64.250000	44.500000	65.00000
Delaware	33.000000	41.500000	42.200000	44.500000	57.500000	46.0000
Florida	59.000000	94.000000	31.000000	51.500000	51.166667	48.50000
Georgia	44.750000	62.000000	64.857143	85.000000	93.000000	69.75000
Hawaii	96.000000	44.000000	50.600000	74.000000	69.666667	42.00000
Idaho	53.250000	61.000000	65.000000	60.333333	65.250000	47.50000
Illinois	93.000000	66.800000	55.000000	60.250000	44.000000	61.3333
Indiana	44.500000	63.400000	33.333333	62.333333	48.666667	Na
Iowa	51.000000	49.666667	59.500000	49.333333	40.666667	92.50000
Kansas	20.000000	74.500000	48.833333	57.400000	62.000000	69.0000
Kentucky	53.500000	42.666667	77.333333	69.000000	58.833333	58.00000
Louisiana	54.000000	52.000000	67.500000	55.000000	44.000000	61.33333
Maine	NaN	34.000000	73.250000	55.600000	59.000000	81.00000
Maryland	42.000000	66.000000	52.500000	57.000000	74.000000	59.50000
Massachusetts	57.500000	64.000000	52.000000	48.000000	55.000000	66.8333
Michigan	35.500000	64.750000	57.000000	97.000000	39.000000	89.0000
Minnesota	45.000000	54.000000	55.500000	38.000000	55.000000	51.00000
Mississippi	85.000000	52.250000	54.833333	73.000000	70.250000	47.60000
Missouri	94.000000	36.333333	22.000000	72.666667	40.000000	44.0000
Montana	45.200000	80.250000	61.500000	52.750000	65.375000	84.6666
Nebraska	59.000000	70.500000	45.000000	62.200000	68.000000	50.3333
Nevada	64.900000	73.428571	64.333333	48.500000	25.000000	60.6666
New Hampshire	68.250000	69.000000	64.142857	62.000000	52.200000	49.6666
New Jersey	45.000000	64.142857	37.333333	82.000000	33.000000	Na
New Mexico	62.666667	41.400000	74.000000	48.000000	64.500000	Nŧ
New York	72.000000	75.666667	59.800000	75.000000	78.500000	53.75000
North Carolina	52.500000	65.000000	82.000000	48.000000	90.000000	67.50000
North Dakota	49.000000	66.200000	68.000000	44.000000	61.166667	74.3333

Ohio	40.000000	45.000000	56.333333	80.400000	27.500000	66.00000
Oklahoma	55.000000	50.000000	51.000000	59.750000	59.500000	99.0000
Oregon	73.000000	39.000000	58.800000	69.333333	40.666667	81.6666
Pennsylvania	94.000000	78.500000	73.666667	81.000000	60.000000	71.40000
Rhode Island	80.500000	40.666667	79.000000	66.000000	90.000000	41.50000
South Carolina	70.500000	75.333333	55.000000	74.400000	43.333333	57.0000
South Dakota	59.600000	78.000000	60.333333	54.666667	26.250000	81.00000
Tennessee	79.000000	77.666667	26.000000	69.750000	67.000000	52.25000
Texas	73.000000	59.500000	85.333333	31.000000	72.333333	45.40000
Utah	NaN	42.000000	56.666667	66.250000	59.000000	84.0000
Vermont	59.500000	50.000000	76.500000	67.000000	60.000000	67.50000
Virginia	71.400000	82.000000	56.000000	48.750000	27.000000	44.0000
Washington	65.333333	60.000000	75.333333	82.000000	73.000000	65.00000
West Virginia	59.500000	82.000000	71.250000	72.750000	69.375000	79.0000
Wisconsin	35.000000	59.750000	79.285714	86.000000	NaN	43.00000
Wyoming	76.250000	46.500000	73.750000	68.000000	62.200000	64.50000

50 rows × 25 columns

```
In [84]: # Mean Purchase Amount by Size
         shopdata.groupby("Size")["Purchase Amount (USD)"].mean()
Out[84]: Size
                58.563153
         L
         М
                59.924217
         S
                61.037707
         XL
                60.090909
         Name: Purchase Amount (USD), dtype: float64
In [30]: # Sum of Purchase Amount by Payment Method
         shopdata.groupby("Payment Method")["Purchase Amount (USD)"].sum()
Out[30]: Payment Method
         Bank Transfer
                           37123
         Cash
                           38833
         Credit Card
                           42567
                           37118
         Debit Card
         PayPal
                           37449
         Venmo
                           39991
         Name: Purchase Amount (USD), dtype: int64
In [90]: # Mean Review Rating by Discount Applied
         shopdata.groupby("Discount Applied")["Review Rating"].mean()
```

```
Out[90]: Discount Applied
                3.757715
         Nο
         Yes
                3.739654
         Name: Review Rating, dtype: float64
In [92]: # Count of Categories per Color
         shopdata.groupby("Color")["Category"].value_counts()
Out[92]: Color
                 Category
         Beige
                 Clothing
                                 65
                 Accessories
                                 44
                                 24
                 Footwear
                 Outerwear
                                 14
         Black
                 Clothing
                                 81
                                 . .
         White
                 Outerwear
                                15
         Yellow Clothing
                                75
                 Accessories
                                56
                 Footwear
                                30
                                 13
                 Outerwear
         Name: count, Length: 100, dtype: int64
In [94]: # Median of Previous Purchases grouped by Frequency of Purchases
         shopdata.groupby("Frequency of Purchases")["Previous Purchases"].median()
Out[94]: Frequency of Purchases
         Annually
                            24.0
         Bi-Weekly
                           24.0
         Every 3 Months
                           24.0
         Fortnightly
                           26.0
         Monthly
                           25.0
         Quarterly
                           28.0
         Weekly
                           26.0
         Name: Previous Purchases, dtype: float64
In [96]: # Mean Review Rating by Season
         shopdata.groupby("Season")["Review Rating"].mean()
Out[96]: Season
         Fall
                   3.729949
         Spring
                   3.790591
         Summer
                   3.725654
         Winter
                   3.752111
         Name: Review Rating, dtype: float64
In [38]: # Bar plot counting the number of purchases per Season
         season counts = shopdata["Season"].value counts()
         season_colors = sns.color_palette("magma", len(season_counts))
         season_counts.plot(kind="bar", color=season_colors, edgecolor="black")
         plt.xlabel("Season")
         plt.ylabel("Count")
         plt.title("Count of Purchases in Each Season")
         plt.savefig("Count_of_Purchases_in_Each_Season", dpi=300, bbox_inches ="t
         plt.show()
```



```
In [40]: # Pie chart for distribution of Purchases by Category

cat_counts = shopdata["Category"].value_counts()
cat_colors = sns.color_palette("magma", len(cat_counts))
cat_counts.plot(kind="pie", autopct="%1.1f%%", startangle=90, colors=cat_plt.title("Distribution of Purchases by Category")
plt.ylabel("")
plt.savefig("Distribution_of_Purchases_by_Category(Pie_Chart)", dpi=300, plt.show()
```

Distribution of Purchases by Category

Histogram of Purchase Amount Distribution


```
In [46]: # Bar plot of Mean Review Rating for each Color

mean_reviewrating = shopdata.groupby("Color")["Review Rating"].mean()
color_bar = sns.color_palette("magma", len(mean_reviewrating))
mean_reviewrating.plot(kind="bar", color=color_bar, edgecolor="black")
plt.xlabel("Color")
plt.ylabel("Mean Review Rating")
plt.title("Mean Review Rating for Each Color")
plt.savefig("Mean Review Rating for Each Color", dpi=300, bbox_inches ="tplt.show()
```


In [48]: # Visualization: Pie chart for Sum of Purchase Amount by Payment Method

pay_sum = shopdata.groupby("Payment Method")["Purchase Amount (USD)"].sum
pay_colors = sns.color_palette("magma", len(pay_sum))
pay_sum.plot(kind="pie", autopct="%1.1f%%", startangle=90, colors=pay_col
plt.title("Sum of Purchase Amount by Payment Method")
plt.ylabel("")
plt.savefig("Sum of Purchase Amount by Payment Method", dpi=300, bbox_inc
plt.show()

Sum of Purchase Amount by Payment Method

Frequency of Purchases

```
In [54]: # Pie chart for Sum(percentages) of Purchase Amount by Season

season_sum = shopdata.groupby("Season")["Purchase Amount (USD)"].sum()
season_sum_colors = sns.color_palette("magma", len(season_sum))
season_sum.plot(kind="pie", autopct="%1.1f%%", startangle=90, colors=seas
plt.xlabel("Season")
plt.ylabel(" ")
plt.title("Sum of Purchase Amount by Season")
plt.savefig("Sum of Purchase Amount by Season", dpi=300, bbox_inches ="ti
plt.show()
```

Sum of Purchase Amount by Season

Season

In []: