

mec

Fundamentals of machine learning methodologies for the design of modern RF and microwave systems

Domenico Spina

TUTORIAL ORGANIZATION

- Introduction
- Machine Learning for Electrical Engineering
 - Neural Networks
- Data–Efficient Machine Learning
 - Bayesian Optimization
- Conclusions

TUTORIAL ORGANIZATION

- Introduction
- Machine Learning for Electrical Engineering
 - Neural Networks
- Data–Efficient Machine Learning
 - Bayesian Optimization
- Conclusions

PROBLEMS IN ANALOG DESIGN

- Designing high-frequency analog circuits is a challenging task
 - Complex systems under several physical effects
 - Must be robust to external interferences and be integrated with other components (i.e. digital)
 - Computer Aided Simulations (CAD) can be computationally expensive

PROBLEMS IN ANALOG DESIGN

- Designing high-frequency analog circuits is a challenging task
 - Complex systems under several physical effects
 - Must be robust to external interferences and be integrated with other components (i.e. digital)
 - Computer Aided Simulations (CAD) can be computationally expensive
 - Design process with low-level of automation and computationally expensive

PROBLEMS IN ANALOG DESIGN

- Designing high-frequency analog circuits is a challenging task
 - Complex systems under several physical effects
 - Must be robust to external interferences and be integrated with other components (i.e. digital)
 - Computer Aided Simulations (CAD) can be computationally expensive
 - Design process with low-level of automation and computationally expensive
- Machine Learning (ML) promises to
 - Increase level of automation and efficiency design process

- What is ML?
 - ML is a set of methodologies in artificial intelligence (AI)
 - Mathematical techniques able to learn information from a set of data

- What is ML?
 - ML is a set of methodologies in artificial intelligence (AI)
 - Mathematical techniques able to learn information from a set of data
 - Supervised ML

- What is ML?
 - ML is a set of methodologies in artificial intelligence (AI)
 - Mathematical techniques able to learn information from a set of data
 - Supervised ML
- How can ML help in analog circuit design?
 - Let's see an example

unec

- 1. Design an analog device/circuit in a simulation program (CAD)
- 2. Define design parameters
- 3. Tune value of design parameters until desired performance are reached

- 1. Design an analog device/circuit in a simulation program (CAD)
- 2. Define design parameters
- 3. Tune value of design parameters until desired performance are reached

- 1. Design an analog device/circuit in a simulation program (CAD)
- 2. Define design parameters
- 3. Tune value of design parameters until desired performance are reached

Dataset

Samples of design parameters and corresponding values

$(x_1^1, x_2^1, x_3^1, x_N^1)$	y ¹
$\left(x_1^2, x_2^2, x_3^2, x_N^2\right)$	y^2
•	•
$(x_1^M, x_2^M, x_3^M,x_N^M)$	y^{M}

Ready for ML!

I. Training

Goal: tune model to learn relation between design parameters and performance metric

I. Training

ML does not return explicit analytical expression between design parameters and performance

I. Training

- ML does not return explicit analytical expression between design parameters and performance
- ML model is able to estimate performance value w.r.t. design parameters

I. Training

- ML does not return explicit analytical expression between design parameters and performance
- ML model is able to estimate performance value w.r.t. design parameters
- Tune model parameters until predictions are accurate

2. Application

- Feed new values of design parameters to ML model
- Model predicts performance of the system

- 1. Design an analog device/circuit in a simulation program (CAD)
- 2. Define design parameters
- 3. Tune value of design parameters until desired performance are reached

- 1. Design an analog device/circuit in a simulation program (CAD)
- 2. Define design parameters
- 3. Tune value of design parameters until desired performance are reached

2. Application

2. Application

- Macromodel (Surrogate model, Behavioral model): low-complexity model describing the
 I/O behaviour of the system under study
 - Vector Fitting
 - Response Surface Modeling

- Macromodel (Surrogate model, Behavioral model): low-complexity model describing the I/O behaviour of the system under study
 - Vector Fitting
 - Response Surface Modeling

Properties

- Able to describe complex systems
 - Resonance, nonlinear effects, crosstalk,

Properties

- Able to describe complex systems
 - Resonance, nonlinear effects, crosstalk,
- Accurate estimation
- Generalize well to unseen data

Properties

- Able to describe complex systems
 - Resonance, nonlinear effects, crosstalk,
- Accurate estimation
- Generalize well to unseen data
- Able to handle large amount of data or design parameters

TUTORIAL ORGANIZATION

- Introduction
- Machine Learning for Electrical Engineering
 - Neural Networks
- Data–Efficient Machine Learning
 - Bayesian Optimization
- Conclusions

Neural Network: overview

Neural Network: overview

Single Neuron

- Input X
- Create a weighted sum
- Pass through non-linear activation function (Introduces nonlinearity and bounds output)

unec

- Neural Network: How to train?
 - User has to decide architecture
 - Number of hidden layers
 - Size each hidden layer
 - Activation function

- Neural Network: How to train?
 - User has to decide architecture
 - Number of hidden layers
 - Size each hidden layer
 - Activation function
 - Purpose training
 - Find optimal value of hyperparameters
 - lacktriangle Weights and parameters $\sigma(ullet)$

- Neural Network: How to train?
 - User has to decide architecture
 - Number of hidden layers
 - Size each hidden layer
 - Activation function
 - Purpose training
 - Find optimal value of hyperparameters
 - lacktriangle Weights and parameters $\sigma(ullet)$
 - Number of hyperparameters can influence the size of training dataset

uniec

- Neural Network in electrical engineering
 - Model highly correlated elements

Frequency samples close to each other

- Neural Network in electrical engineering
 - Model highly correlated elements

- Frequency samples close to each other
- Magnitude and phase

- Neural Network in electrical engineering
 - Model highly correlated elements

- Frequency samples close to each other
- Magnitude and phase
- Different element of scattering matrix

- Neural Network in electrical engineering
 - Model highly correlated elements

- Recurrent Neural Network
 - Output depends on previous state

- Convolutional Neural Network
 - Convolutional layers in neural networks aim to learn local patterns from the input

- Convolutional Neural Network
 - Convolutional layers in neural networks aim to learn local patterns from the input
 - When modeling frequency responses, this corresponds to searching for patterns such as resonances, ripples and flat regions in small frequency bands

Examples of NNs applications in analog design

- Scattering parameters modeling [Jin 19, Torun 20]
- Transfer function extrapolation [Bhatti22]
- Inverse problems [Xiao21,Wu22]
- Power amplifier design [Wang20]
- Power delivery network design [Schierholz22]
- Active antenna design [Brihuega20]

Examples of NNs applications in analog design

- Scattering parameters modeling [Jin 19, Torun 20]
- Transfer function extrapolation [Bhatti22]
- Inverse problems [Xiao21,Wu22]
- Power amplifier design [Wang20]
- Power delivery network design [Schierholz22]
- Active antenna design [Brihuega20]

- Scattering parameters modeling via NN: linear and passive systems
 - First challenge: Output dimensionality >> Input dimensionality

- Scattering parameters modeling via NN: linear and passive systems
 - First challenge: Output dimensionality >> Input dimensionality

- Scattering parameters modeling via NN: linear and passive systems
 - First challenge: Output dimensionality >> Input dimensionality

Scattering parameters modeling via NN: linear and passive systems

Variation of CNN

Scattering parameters modeling via NN: linear and passive systems

We need

- I. To reduce modeling complexity
 - Input << Output</p>
- 2. To enforce physical properties

Scattering parameters modeling via NN: linear and passive systems

Variation of CNN

Scattering parameters modeling via NN: linear and passive systems

- Scattering parameters modeling via NN: linear and passive systems
 - Merging domain-expertise with ML fundamental!

Example: differential stripline pair

- Four port device
- Sparam [0.1 100] GHz via HFFS
- 8 Design parameters

Parameter		Unit	Min	Max
Line Width	$l_{\rm w}$	μ m	15	75
Pair Spacing	l_{s}	μ m	30	60
μ -via Diameter	d_{via}	μ m	30	70
μ -via Pad Diameter	d_{pad}	μ m	31	140
μ -via Antipad Radius	r_a	μ m	50	500
Via Pitch	Vp	μ m	300	1200
Copper Thickness	t_{c}	μ m	10	20
BU Layer Thickness	h_{BU}	$\mu \mathrm{m}$	20	35

[Torun20]

Example: differential stripline pair

Proposed

HFFS

- Training on 750 samples
- Validation on 190 samples

[Torun20]

Example: differential stripline pair

- Training on 750 samples
- Validation on 190 samples

[Torun20]

Examples of NNs applications in EE

- Scattering parameters modeling [Jin 19, Torun 20]
- Transfer function extrapolation [Bhatti22]
- Inverse problems [Xiao21,Wu22]
- Power amplifier design [Wang20]
- Power delivery network design [Schierholz22]
- Active antenna design [Brihuega20]

uniec

Transfer function extrapolation via NN

2-phases process

Transfer function extrapolation via NN

2-phases process

Transfer function extrapolation via NN

2-phases process

Transfer function extrapolation via NN

- 2-phases process
- Prediction model

Transfer function extrapolation via NN

- 2-phases process
- Prediction model

Transfer function extrapolation via NN

- 2-phases process
- Prediction model

Example: microstrip

- Two port device
- Modeling: Sparam [0 25] GHz
 - 750 samples
- Extrapolation: Sparam [25 50] GHz
 - 750 samples

Example: microstrip

Results S21

[Bhatti22]

Challenges

- Size training data influences complexity NN architecture
- Increase automation in building NN model

TUTORIAL ORGANIZATION

- Introduction
- Machine Learning for Electrical Engineering
 - Neural Networks
- Data–Efficient Machine Learning
 - Bayesian Optimization
- Conclusions

Problem

■ Simulations are expensive → High cost of generating a dataset

Problem

■ Simulations are expensive → High cost of generating a dataset

Goal Data-efficient ML

■ Minimize number of simulations to build dataset → Efficiency

Problem

■ Simulations are expensive → High cost of generating a dataset

Goal Data-efficient ML

- Minimize number of simulations to build dataset → Efficiency
- Maximize the information → Accuracy

Problem

■ Simulations are expensive → High cost of generating a dataset

Goal Data-efficient ML

- Minimize number of simulations to build dataset → Efficiency
- Maximize the information → Accuracy

Solution

- Iteratively acquire new data in order to maximize information
- Adapt ML model predictions according to new data

uniec

Data-efficient ML

DATA-EFFICIENT ML

Data-efficient ML

- General framework applicable to a large range of design activities
- Focus: optimization problems
 - Bayesian optimization (BO)

- Global optimization problem
 - Given $f: X \to \mathbb{R}$ where $X \in \mathbb{R}^D$

$$x_M = \underset{x \in X}{\operatorname{arg max}} f(x)$$
 or $x_M = \underset{x \in X}{\operatorname{arg min}} f(x)$

- Properties
 - "Black box": unknown and multimodal
 - Expensive
 - Noisy (possibly)

uniec

$$x^N = \left[x_i\right]_{i=1}^N$$

Performance evaluation $f(x^N)$

Distribution over functions

- Gaussian process (GP)
 - Generalization of Gaussian distribution
 - Fully characterized by mean and covariance function

$$GP(m(x), k(x, x'))$$

Mean function Covariance function

Distribution over functions

- Gaussian process (GP)
 - Generalization of Gaussian distribution
 - Fully characterized by mean and covariance function

$$GP(m(x), k(x, x'))$$

Mean function Covariance function

Example of Covariance functions

Squared exponential

Matern

Periodic

$$k(x,x') = \beta \exp\left(-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_d - x_d'}{l_d}\right)^2\right) \qquad k(x,x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|x - x'\|}{l}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu} \|x - x'\|}{l}\right) \qquad k(x,x') = \exp\left(-\frac{2\sin^2\left(0.5(x - x')\right)}{l^2}\right)$$

- Choosing the correct covariance function for our problem
 - User choice

umec

Example of Covariance functions

Squared exponential $k(x,x') = \beta \exp\left(-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_d - x_d'}{l_d}\right)^2\right) \quad k(x,x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|x - x'\|}{l}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu} \|x - x'\|}{l}\right) \quad k(x,x') = \exp\left(-\frac{2\sin^2\left(0.5(x - x')\right)}{l^2}\right)$ Hyperparameters

- Choosing the correct covariance function for our problem
 - User choice
- Estimating the value of the hyperparameters
 - Training phase

unec

Once the Covariance matrix is chosen

Bayesian inference gives analytical expression for model prediction and uncertainty

Once the Covariance matrix is chosen

Bayesian inference gives analytical expression for model prediction and uncertainty

- Once the Covariance matrix is chosen
 - Bayesian inference gives analytical expression for model prediction and uncertainty

How to use it to determine new point to sample?

- Acquisition function (AF)
 - Function of model's prediction estimating information in the design space

- Acquisition function (AF)
 - Function of model's prediction estimating information in the design space
 - Example Probability of Improvement

Model's prediction

$$\alpha(x) = \mathbb{P}(x > x_{best}) = \Phi\left(\frac{\mu(x) - f(x_{best})}{\sigma(x)}\right)$$

Normal cumulative distribution function (CDF)

Model's Uncertainty

- Acquisition function (AF)
 - Function of model's prediction estimating information in the design space
 - Example Probability of Improvement

Model's prediction

$$\alpha(x) = \mathbb{P}(x > x_{best}) = \Phi\left(\frac{\mu(x) - f(x_{best})}{\sigma(x)}\right)$$

Normal cumulative distribution function (CDF)

Model's Uncertainty

- Goal:
 - The design point maximizing AF's value is the best candidate to be chosen as next sample

uniec

- Using AF require to solve an optimization problem at every iteration!
 - AQ is fast to evaluate, its gradient are (typically) available

- Using AF require to solve an optimization problem at every iteration!
 - AQ is fast to evaluate, its gradient are (typically) available
- BO in a nutshell
 - Strategy to transform an unsolvable global optimization problem

$$x_M = \underset{x \in X}{\operatorname{arg max}} f(x)$$
 or $x_M = \underset{x \in X}{\operatorname{arg min}} f(x)$

In a series of optimization problems that are easy to solve

$$x_{i+1} = \arg\max_{x \in X} \alpha(x)$$

Example: find minimum ID function

Continue Until

Example: find minimum ID function

- Several AFs exist
 - Probability of Improvement (Kushner 1964)
 - Expected Improvement (Mockus 1978)
 - GP Upper confidence bound (Srinivas et al. 2010)
- Impossible to know a-priori which one is more suited to the problem at hand
 - User choice

Example: Optimization Bended Interconnection

2 design parameters

Example: Optimization Bended Interconnection

- 2 design parameters
 - Width $\in [0.5 2.1]$ mm
 - Length ∈ [45 55] mm

Example: Optimization Bended Interconnection

- 2 design parameters
 - Width $\in [0.5 2.1]$ mm
 - Length ∈ [45 55] mm
- Sparam \in [0 6] GHz simulated in Advanced Design System (ADS)

Example: Optimization Bended Interconnection

- 2 design parameters
 - Width $\in [0.5 2.1]$ mm
 - Length ∈ [45 55] mm
- Sparam \in [0 6] GHz simulated in Advanced Design System (ADS)
- Goal: minimize differential to common mode conversion

$$T_{\text{DMCM}} = \left(\int_{0GHz}^{6GHz} \left(\left| S_{cd11}(f) \right|^2 + \left| S_{cd21}(f) \right|^2 \right)^{1/2} df \right)^{1/2}$$

Elements of the modal S-parameters matrix

Example: Optimization Bended Interconnection

- Example: Optimization Bended Interconnection
 - GP model building
 - Covariance function: Matern 3/2
 - Able to model a wide class of functions (non-differentiable ones)

unec

- GP model building
 - Covariance function: Matern 3/2
 - Able to model a wide class of functions (non-differentiable ones)
- Acquisition function
 - **Expected Improvement**
 - Among "standard" options

- Example: Optimization Bended Interconnection
 - Optimization Results

Example: Optimization Bended Interconnection

Optimization Results

Design parameters
<i>w</i> =2.094 mm L=54.398 mm

Example: Optimization Bended Interconnection

Optimization Results

0.7		
• ea.o uction	•	•
Cost function Cost function 0.69		
0.67		0.5
50		0.5
Line lenght (mm)	55 2	Line width (mm)

Computational Time			
S-parameters simulations (ADS)	86 min 35.82 s (103.92 s per sample)		
Bayesian Optimization	58.58 s		
Total	87 min 34.4 s		

BO Advanced properties

- Constraints
 - Can be added by modifying AF
- Multi-objective formulation
- High-dimensional problems
 - Partitioning strategies design space

Examples of BO applications in EE

- Antenna Design: [Wang20]
- Microwave Filters optimization: [Jacobs 14], [Garbuglia22]
- High-speed channel optimization: [Kim21]
- Eye Diagram worst case analysis: [Dolatsara21]
- Power Amplifiers Optimization: [Guo22], [Knudde I 8]
- Analog circuit layout optimization: [Touloupas22]

BO Challenges

- Flexible problem formulation for analog engineering application
- Automated model building
- High-dimensional problems

TUTORIAL ORGANIZATION

- Introduction
- Machine Learning for EE
 - Neural Networks
- Data–Efficient Machine Learning
 - Bayesian Optimization
- Conclusions

Optimization Uncertainty quantification

Optimization Uncertainty quantification

Optimization Uncertainty quantification

ML promises to increase level of automation and efficiency design process

CONCLUSION

DESIGN PROCESS OVERVIEW

Human-in-the-loop

CONCLUSION

DESIGN PROCESS OVERVIEW

Device- and Circuit-level

Human-in-the-loop

Thanks for your attention!

Questions?

REFERENCES

- [Jin 19] J. Jin, C. Zhang, F. Feng, W. Na, J. Ma, and Q.-J. Zhang, "Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters," IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4140–4155, Oct. 2019.
- [Torun20] H. M. Torun, A. C. Durgun, K. Aygun, and M. Swaminathan, "Causal and passive parameterization of S-parameters using neural networks," IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 4290–4304, Oct. 2020.
- [Bhatti22] O.W. Bhatti, H. M. Torun and M. Swaminathan, "HilbertNet: A Probabilistic Machine Learning Framework for Frequency Response Extrapolation of Electromagnetic Structures," IEEE Transactions on Electromagnetic Compatibility, vol. 64, no. 2, pp. 405-417, Apr. 2022
- [Xiao21] L.-Y. Xiao, W. Shao, F.-L. Jin, B.-Z. Wang, and Q. H. Liu, "Inverse artificial neural network for multiobjective antenna design," IEEE Trans. Antennas Propag., vol. 69, no. 10, pp. 6651–6659, Oct. 2021.
- [Wu22] Y.Wu, G. Pan, D. Lu, and M.Yu, "Artificial neural network for dimensionality reduction and its application to microwave filters inverse modeling," IEEE Trans. Microw. Theory Techn., early access, Apr. 8, 2022,
- [Wang 19] S. Wang, M. Roger, J. Sarrazin, and C. Lelandais-Perrault, "Hyperparameter optimization of two-hidden-layer neural networks for power amplifiers behavioral modeling using genetic algorithms," IEEE Microw. Wireless Compon. Lett., vol. 29, no. 12, pp. 802–805, Dec. 2019.
- [Wang20] S.Wang, M. Roger, J. Sarrazin and C. Lelandais-Perrault, "Augmented Iterative Learning Control for Neural-Network-Based Joint Crest Factor Reduction and Digital Predistortion of Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4835-4845, Nov. 2020

REFERENCES

- [Schierholz22] M. Schierholz, I. Erdin, J. Balachandran, C. Yang and C. Schuster, "Parametric S-Parameters for PCB based Power Delivery Network Design Using Machine Learning," 2022 IEEE 26th Workshop on Signal and Power Integrity (SPI), 2022
- [Brihuega20] A. Brihuega, L. Anttila, and M. Valkama, "Neural-network-based digital predistortion for active antenna arrays under load modulation", IEEE Microw. Wireless Compon. Lett., vol. 30, no. 8, pp. 843–846, Aug. 2020.
- [Guo22] J. Guo, G. Crupi and J. Cai, "A Novel Design Methodology for a Multioctave GaN-HEMT Power Amplifier Using Clustering Guided Bayesian Optimization", IEEE Access, vol. 10, pp. 52771-52781, May 2022
- [Knudde18] N. Knudde, I. Couckuyt, D. Spina, K. Łukasik, P. Barmuta, D. Schreurs, T. Dhaene, "Data-Efficient Bayesian Optimization with Constraints for Power Amplifier Design", 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2018
- [Dolatsara21] M.A. Dolatsara, J.A. Hejase, W. D. Becker, J. Kim, S. K. Lim and M. Swaminathan, "Worst-Case Eye Analysis of High-Speed Channels Based on Bayesian Optimization", IEEE Transactions on Electromagnetic Compatibility, vol. 63, no. 1, pp. 246-258, Feb. 2021
- [Touloupas22] K. Touloupas and P. P. Sotiriadis, "LoCoMOBO: A Local Constrained Multiobjective Bayesian Optimization for Analog Circuit Sizing", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 9, pp. 2780-2793, Sept. 2022
- [Garbuglia22] F. Garbuglia, D. Spina, D. Deschrijver, I. Couckuyt, T. Dhaene, "S-Parameter Modeling and Optimization Using Deep Gaussian Processes", 24th International Microwave and Radar Conference (MIKON), 2022

REFERENCES

- [Wang20] M. Wang, Y. Zhu, H. Li, J. Zhou and P. Wang, "Bayesian Optimization for Antenna Design via Multi-Point Active Learning", 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2020
- [Kim21] J. Kim, H. Park, M. Kim, S. Kim, S. Choi, K. Son, J. Park, H. Kim, J. Song, Y. Ku, J. Park, J. Kim, "PAM-4 based PCIe 6.0 Channel Design Optimization Method using Bayesian Optimization", 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2021
- [Jacobs 14] J.P. Jacobs and S. Koziel, "Cost-effective global surrogate modeling of planar microwave filters using multi-fidelity Bayesian support vector regression," Int. J. RF & Microwave CAE, vol. 24, no. 1, pp. 11-17, 2014.
- [Gonzàlez I 7] J. Gonzàlez, "Introduction to Bayesian Optimization", Masterclass, Lancaster University, Lancaster, UK, 2107

mec

embracing a better life

