

CEFET-MG — Centro Federal de Educação Tecnológica de Minas Gerais

DEPARTAMENTO DE COMPUTAÇÃO DE DIVINÓPOLIS — DECOM-DV

Microprocessadores e Microcontroladores

Primeira Atividade Avaliativa

Aluno: LEANDRO SOUSA COSTA

Valor: 30 pontos (cada questão vale 5 pontos)

Turma: 2024/1

Prof. M. Sc. Diego Ascânio Santos

Respostas:

1 2 3 4 5 6

Questão 1

A respeito de saídas digitais do arduino escolha a alternativa correta:

- a) O arduino é capaz de acionar diretamente quaisquer tipos de cargas, independente da corrente que elas demandem.
- b) Não é possível realizar configurações de acionamento de cargas em nível lógico BAIXO.
- c) Em um circuito para acionamento de um motor de corrente contínua não é necessário adicionar um diodo para proteção do circuito.
- d) As saídas digitais do Arduino podem, virtualmente, controlar quaisquer tipos de dispositivos atuadores, cada qual com suas particularidades.
- e) Nenhuma das alternativas anteriores.

Questão 2

A respeito de entradas e saídas digitais do Arduino, resistores pull-up e pull-down, contatos normalmente abertos e normalmente fechados, avalie as assertivas:

- I. Por padrão as entradas digitais do Arduino estão preparadas para receber sinais digitais em nível lógico TTL (0V a 5V).
- II. Não é necessário realizar quaisquer tipos de adaptações para conectar circuitos digitais não-TTL (por exemplo, CMOS) ao Arduino.
- III. Um contato normalmente aberto é um contato que, em repouso, não permite a passagem de corrente elétrica.
- IV. O nível lógico de uma entrada digital do Arduino conectada a um contato normalmente aberto em seu estado de repouso é sempre 0V.
- V. Resistores pull-up são utilizados para garantir que uma entrada digital do Arduino esteja sempre em nível lógico alto em seu estado padrão.
- VI. O Arduino não dispõe de resistores pull-up internos, sendo necessário adicionar resistores externos para este fim.

São verdadeiras as assertivas:

a) I, II, III, IV, V e VI.

- b) I, III, IV, V e VI.
- c) I, III, IV e V.
- d) II e V.
- e) II e VI.

Questão 3

Avalie as assertivas:

- I. Todos os sinais de circuitos são elétricos, porém, podem ser categorizados em dois tipos: analógicos e digitais.
- II. Não é possível para sinais analógicos assumirem qualquer valor arbitrário dentro de um intervalo especificado.
- III. Sinais digitais são representados por valores contínuos.
- IV. Sinais digitais são representados por valores discretos.
- V. A tensão digital em nível lógico ALTO em circuitos digitais de lógica CMOS é de +5V.

Assinale a alternativa que contém todas as assertivas corretas:

- a) I, II, III e V.
- b) I, III e V.
- c) II, III, IV e V.
- d) I, IV e V.
- e) I e IV.

Questão 4

Leia o seguinte código em Arduino:

```
int greenLED = 3, redLED = 4;
int leftButton = 6, rightButton = 7;
void setup() {
 pinMode(greenLED, OUTPUT);
 pinMode(redLED, OUTPUT);
 pinMode(leftButton, INPUT_PULLUP);
 pinMode(rightButton, INPUT_PULLUP);
void loop() {
 while (digitalRead(leftButton) == LOW) {
   digitalWrite(redLED, HIGH);
  while (digitalRead(rightButton) == LOW) {
   digitalWrite(greenLED, HIGH);
   delav(1000);
   digitalWrite(greenLED, LOW);
   delay(1000);
 while (digitalRead(leftButton) == HIGH && digitalRead(rightButton) == HIGH) {
   digitalWrite(greenLED, LOW);
   digitalWrite(redLED, LOW);
```

O que este programa faz?

- a) Acende o LED verde quandorightButton é pressionado e apaga o LED vermelho quando leftButton é pressionado.
- b) Apaga os LEDs se nenhuma das teclas for pressionada, acende o LED vermelho enquanto leftButton é pressionado e pisca o LED verde de 1 em 1 segundo enquantorightButton é pressionado.

- c) Acende o LED verde quando rightButton é pressionado e apaga o LED vermelho quando leftButton é pressionado, mas não apaga os LEDs se nenhuma das teclas for pressionada.
- d) Apaga os LEDs se as teclas forem processionadas, acende o LED vermelho enquantoleftButton não é pressionado e pisca o LED verde de 1 em 1 segundo enquanto rightButton não é pressionado.
- e) Nenhuma das alternativas anteriores, pois, não existe configuração de entrada do tipo INPUT PULLUP.

Questão 5

Cláudia perguntou ao professor Ascânio se sua rotina de interrupções de overflow do Timer 2 estava correta para contar intervalos de tempo de 10 em 10 segundos, pois, estava com duvidas se seus cálculos de quantidade de overflows e o modo de prescaling que havia definido para o Timer 2 estavam corretos. O professor Ascânio verificou o código apresentado por Cláudia e disse que tanto os cálculos quanto o prescaling estavam corretos, mas, que a rotina de interrupção de overflow do Timer 2 — Flag TOIE 2 — estava desabilitada.

Qual deve ser a instrução que Cláudia deve adicionar à função setup () de seu código para habilitar a interrupção de *overflow* do Timer2?

```
a) TIMSK2 = TIMSK2 | 0b00000000;
b) TIMSK2 = 0b00000000;
c) TIMSK2 = TIMSK2 | 0b00000001;
d) TIMSK2 = TIMSK2 | 0b00000010;
e) TIMSK2 = TIMSK2 | 0b00000100;
```

Questão 6

A respeito do ambiente de desenvolvimento do Arduino, da sua linguagem de programação *sketch* e de demais conceitos relacionados, julgue os itens a seguir.

- I. A função setup () é executada uma única vez, quando o programa é inicializado;
- II. A função setup () é usada para inicializar configurações e preparar o estado inicial do programa;
- III. A função loop() é executada continuamente, em um loop infinito, até que o microcontrolador seja desligado;
- IV. A instrução pinMode (3, INPUT_PULLUP); configura o pino 3 como entrada digital com nível lógico invertido;
- V. O Arduino pode acionar diretamente atuadores elementos de carga de baixa potência e que suportem o nível de tensão de saída do microcontrolador;
- VI. Para atuadores de média / alta potência é necessário o uso de circuitos auxiliares de acionamento comumente baseados em transistores.

Estão incorretos:

- a) Nenhum item está incorreto.
- b) I, III e V.
- c) II, IV e VI.
- d) I, II, III, V e VI.
- e) Todos os itens estão incorretos.