Estabilidad y Precesión de Órbitas

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

12 de septiembre de 2024

Agenda

- Estabilidad de órbitas circulares
- 2 Perturbaciones $r = r_0 + \eta$
- Oscilaciones radiales
- 4 Estabilidad para $V(r) = \frac{-k}{r}e^{-(r/a)}$
- O Precesión
- 6 Precesión de orbitas planetarias
- Orbitas Cerradas
- 8 Precesión para $V(r) = g(r) \frac{k}{r}$

• Sea radio r_0 de una órbita circular descrita por una partícula sujeta a un potencial efectivo $V_{\rm ef}(r) = V(r) + \frac{L^2}{2ur^2}$

- Sea radio r_0 de una órbita circular descrita por una partícula sujeta a un potencial efectivo $V_{\rm ef}(r)=V(r)+\frac{L^2}{2\mu r^2}$
- Entonces, un mínimo es $\frac{\partial V_{\rm ef}}{\partial r}\Big|_{r_0} = 0 \Rightarrow \frac{\partial V}{\partial r}\Big|_{r_0} \frac{L^2}{\mu r_0^3} = 0$

- Sea radio r_0 de una órbita circular descrita por una partícula sujeta a un potencial efectivo $V_{\rm ef}(r)=V(r)+\frac{L^2}{2ur^2}$
- Entonces, un mínimo es $\left. \frac{\partial V_{\rm ef}}{\partial r} \right|_{r_0} = 0 \Rightarrow \left. \frac{\partial V}{\partial r} \right|_{r_0} \frac{L^2}{\mu r_0^3} = 0$
- y un verdadero mínimo cumple $\left. \frac{\partial^2 V_{\rm ef}}{\partial r^2} \right|_{r_0} > 0 \Rightarrow \left. \frac{\partial^2 V}{\partial r^2} \right|_{r_0} + \frac{3L^2}{\mu r_0^4} > 0$

- Sea radio r_0 de una órbita circular descrita por una partícula sujeta a un potencial efectivo $V_{\rm ef}(r) = V(r) + \frac{L^2}{2ur^2}$
- Entonces, un mínimo es $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = 0 \Rightarrow \frac{\partial V}{\partial r}\Big|_{r_0} \frac{L^2}{\mu r_0^3} = 0$
- y un verdadero mínimo cumple $\left. \frac{\partial^2 V_{\rm ef}}{\partial r^2} \right|_{r_0} > 0 \Rightarrow \left. \frac{\partial^2 V}{\partial r^2} \right|_{r_0} + \frac{3L^2}{\mu r_0^4} > 0$
- La fuerza central atractiva sobre una partícula en la órbita circular de radio r_0 es $f\left(r_0\right) = -\left.\frac{\partial V}{\partial r}\right|_{r_0} = -\frac{L^2}{\mu r_0^2}$

- Sea radio r_0 de una órbita circular descrita por una partícula sujeta a un potencial efectivo $V_{\rm ef}(r) = V(r) + \frac{L^2}{2ur^2}$
- Entonces, un mínimo es $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = 0 \Rightarrow \frac{\partial V}{\partial r}\Big|_{r_0} \frac{L^2}{\mu r_0^3} = 0$
- y un verdadero mínimo cumple $\left. \frac{\partial^2 V_{\rm ef}}{\partial r^2} \right|_{r_0} > 0 \Rightarrow \left. \frac{\partial^2 V}{\partial r^2} \right|_{r_0} + \frac{3L^2}{\mu r_0^4} > 0$
- La fuerza central atractiva sobre una partícula en la órbita circular de radio r_0 es $f\left(r_0\right)=-\left.\frac{\partial V}{\partial r}\right|_{r_0}=-\frac{L^2}{\mu r_0^3}$
- con lo cual $-\frac{\partial f}{\partial r}\Big|_{r_0} \frac{3f(r_0)}{r_0} > 0 \Rightarrow \frac{3f(r_0)}{r_0} + f'(r_0) < 0$

- Sea radio r_0 de una órbita circular descrita por una partícula sujeta a un potencial efectivo $V_{\rm ef}(r) = V(r) + \frac{L^2}{2ur^2}$
- Entonces, un mínimo es $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = 0 \Rightarrow \frac{\partial V}{\partial r}\Big|_{r_0} \frac{L^2}{\mu r_0^3} = 0$
- y un verdadero mínimo cumple $\left. \frac{\partial^2 V_{\rm ef}}{\partial r^2} \right|_{r_0} > 0 \Rightarrow \left. \frac{\partial^2 V}{\partial r^2} \right|_{r_0} + \frac{3L^2}{\mu r_0^4} > 0$
- La fuerza central atractiva sobre una partícula en la órbita circular de radio r_0 es $f\left(r_0\right)=-\left.\frac{\partial V}{\partial r}\right|_{r_0}=-\frac{L^2}{\mu r_0^3}$
- con lo cual $-\left.\frac{\partial f}{\partial r}\right|_{r_0}-\frac{3f(r_0)}{r_0}>0\Rightarrow \frac{3f(r_0)}{r_0}+f'\left(r_0\right)<0$
- En general para fuerzas de la forma $f(r) = -kr^n(k > 0)$, la condición de estabilidad se cumple para n > -3

- Sea radio r_0 de una órbita circular descrita por una partícula sujeta a un potencial efectivo $V_{\rm ef}(r) = V(r) + \frac{L^2}{2ur^2}$
- Entonces, un mínimo es $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = 0 \Rightarrow \frac{\partial V}{\partial r}\Big|_{r_0} \frac{L^2}{\mu r_0^3} = 0$
- y un verdadero mínimo cumple $\left. \frac{\partial^2 V_{\rm ef}}{\partial r^2} \right|_{r_0} > 0 \Rightarrow \left. \frac{\partial^2 V}{\partial r^2} \right|_{r_0} + \frac{3L^2}{\mu r_0^4} > 0$
- La fuerza central atractiva sobre una partícula en la órbita circular de radio r_0 es $f\left(r_0\right)=-\left.\frac{\partial V}{\partial r}\right|_{r_0}=-\frac{L^2}{\mu r_0^3}$
- con lo cual $-\left.\frac{\partial f}{\partial r}\right|_{r_0}-\frac{3f(r_0)}{r_0}>0\Rightarrow \frac{3f(r_0)}{r_0}+f'\left(r_0\right)<0$
- En general para fuerzas de la forma $f(r) = -kr^n(k > 0)$, la condición de estabilidad se cumple para n > -3
- La fuerza gravitacional (n = -2) y la fuerza de un resorte (n = 1) producen órbitas circulares estables.

• Supongamos que la energía de la partícula es $E > V_{\rm ef}(r_0)$, donde r_0 es el radio de la órbita circular estable.

- Supongamos que la energía de la partícula es $E > V_{\rm ef}(r_0)$, donde r_0 es el radio de la órbita circular estable.
- Consideremos una oscilación radial de pequeña amplitud η alrededor del radio de la órbita circular r_0 . Esto es $r = r_0 + \eta$, con $\eta/r_0 \ll 1$

- Supongamos que la energía de la partícula es $E > V_{\rm ef}(r_0)$, donde r_0 es el radio de la órbita circular estable.
- Consideremos una oscilación radial de pequeña amplitud η alrededor del radio de la órbita circular r_0 . Esto es $r=r_0+\eta$, con $\eta/r_0\ll 1$

• Desarrollamos por Taylor de la función $V_{\rm ef}(r)$ alrededor de r_0 , y tenemos $V_{\rm ef}(r) = V_{\rm ef}\left(r_0\right) + \frac{\partial V_{\rm ef}}{\partial r}\bigg|_{r_0} (r-r_0) + \frac{1}{2} \frac{\partial^2 V_{\rm ef}}{\partial r^2}\bigg|_{r_0} (r-r_0)^2 + \dots$

- Supongamos que la energía de la partícula es $E > V_{\rm ef}(r_0)$, donde r_0 es el radio de la órbita circular estable.
- Consideremos una oscilación radial de pequeña amplitud η alrededor del radio de la órbita circular r_0 . Esto es $r = r_0 + \eta$, con $\eta/r_0 \ll 1$

- Desarrollamos por Taylor de la función $V_{\rm ef}(r)$ alrededor de r_0 , y tenemos $V_{\rm ef}(r) = V_{\rm ef}\left(r_0\right) + \frac{\partial V_{\rm ef}}{\partial r}\bigg|_{r_0} (r-r_0) + \frac{1}{2} \frac{\partial^2 V_{\rm ef}}{\partial r^2}\bigg|_{r_0} (r-r_0)^2 + \ldots$
- El primer término es una constante, $V_{\rm ef}\left(r_0\right)=$ cte, y puede ser suprimido el segundo término se anula por ser un mínimo.

Oscilaciones radiales

• A segundo orden $V_{\rm ef}(r)=\left.\frac{1}{2}\frac{\partial^2 V_{\rm ef}}{\partial r^2}\right|_{r_0}(r-r_0)^2+\ldots\approx\frac{1}{2}K\eta^2$, con $K\equiv\left.\frac{\partial^2 V_{\rm ef}}{\partial r^2}\right|_{r_0}={
m cte}$

Oscilaciones radiales

- A segundo orden $V_{\rm ef}(r)=\left.\frac{1}{2}\frac{\partial^2 V_{\rm ef}}{\partial r^2}\right|_{r_0}(r-r_0)^2+\ldots\approx\frac{1}{2}K\eta^2$, con $K\equiv \left.\frac{\partial^2 V_{\rm ef}}{\partial r^2}\right|_{r_0}={
 m cte}$
- La ecuación de movimiento radial, $\mu \ddot{r} = f_{\rm ef}(r)$ para $r = r_0 + \eta$ resulta $\ddot{\eta} + \omega_r^2 \eta = 0$

Oscilaciones radiales

- A segundo orden $V_{\rm ef}(r)=\left.rac{1}{2}rac{\partial^2 V_{\rm ef}}{\partial r^2}
 ight|_{r_0}(r-r_0)^2+\ldotspprox rac{1}{2}K\eta^2$, con $K\equiv \left.rac{\partial^2 V_{\rm ef}}{\partial r^2}
 ight|_{r_0}={
 m cte}$
- La ecuación de movimiento radial, $\mu\ddot{r}=f_{\rm ef}(r)$ para $r=r_0+\eta$ resulta $\ddot{\eta}+\omega_r^2\eta=0$
- Que la ecuación de un oscilador armónico con frecuencia de oscilación radial $\omega_r^2 = \frac{K}{\mu} = \frac{1}{\mu} \frac{\partial^2 V_{\rm ef}}{\partial r^2} \bigg|_{\Gamma}$

Investigar la estabilidad de órbitas circulares descritas por el potencial $V(r) = \frac{-k}{r}e^{-(r/a)}$ donde k > 0 y a > 0.

• Es el potencial de Coulomb apantallado (cuando $k=Ze^2/4\pi\varepsilon_0$, donde Z es el número atómico y e es la carga del electrón)

- Es el potencial de Coulomb apantallado (cuando $k=Ze^2/4\pi\varepsilon_0$, donde Z es el número atómico y e es la carga del electrón)
- disminuye con la distancia más rápidamente que 1/r. Por tanto, aproxima el potencial electrostático del núcleo atómico en las proximidades del núcleo teniendo en cuenta la «cancelación» parcial o el «apantallamiento» de la carga nuclear por los electrones atómicos.

- Es el potencial de Coulomb apantallado (cuando $k=Ze^2/4\pi\varepsilon_0$, donde Z es el número atómico y e es la carga del electrón)
- disminuye con la distancia más rápidamente que 1/r. Por tanto, aproxima el potencial electrostático del núcleo atómico en las proximidades del núcleo teniendo en cuenta la «cancelación» parcial o el «apantallamiento» de la carga nuclear por los electrones atómicos.
- la fuerza será $f(r) = -\frac{\partial V}{\partial r} = -k \left(\frac{1}{ar} + \frac{1}{r^2}\right) e^{-(r/a)}$

- Es el potencial de Coulomb apantallado (cuando $k=Ze^2/4\pi\varepsilon_0$, donde Z es el número atómico y e es la carga del electrón)
- disminuye con la distancia más rápidamente que 1/r. Por tanto, aproxima el potencial electrostático del núcleo atómico en las proximidades del núcleo teniendo en cuenta la «cancelación» parcial o el «apantallamiento» de la carga nuclear por los electrones atómicos.
- la fuerza será $f(r) = rac{\partial V}{\partial r} = k \left(rac{1}{ar} + rac{1}{r^2}
 ight) e^{-(r/a)}$
- con lo cual $\frac{\partial f}{\partial r} = k \left(\frac{1}{a^2 r} + \frac{2}{a r^2} + \frac{2}{r^3} \right) e^{-(r/a)}$

- Es el potencial de Coulomb apantallado (cuando $k=Ze^2/4\pi\varepsilon_0$, donde Z es el número atómico y e es la carga del electrón)
- disminuye con la distancia más rápidamente que 1/r. Por tanto, aproxima el potencial electrostático del núcleo atómico en las proximidades del núcleo teniendo en cuenta la «cancelación» parcial o el «apantallamiento» de la carga nuclear por los electrones atómicos.
- la fuerza será $f(r) = -\frac{\partial V}{\partial r} = -k\left(\frac{1}{\mathsf{ar}} + \frac{1}{r^2}\right) \mathrm{e}^{-(r/\mathsf{a})}$
- con lo cual $\frac{\partial f}{\partial r} = k \left(\frac{1}{a^2 r} + \frac{2}{ar^2} + \frac{2}{r^3} \right) e^{-(r/a)}$
- la condicion de estabilidad es $\frac{3f(r_0)}{r_0}+f'(r_0)<0\Rightarrow 3+\frac{r_0\,f'(r_0)}{f(r_0)}>0$

- Es el potencial de Coulomb apantallado (cuando $k=Ze^2/4\pi\varepsilon_0$, donde Z es el número atómico y e es la carga del electrón)
- disminuye con la distancia más rápidamente que 1/r. Por tanto, aproxima el potencial electrostático del núcleo atómico en las proximidades del núcleo teniendo en cuenta la «cancelación» parcial o el «apantallamiento» de la carga nuclear por los electrones atómicos.
- la fuerza será $f(r) = rac{\partial V}{\partial r} = k \left(rac{1}{ar} + rac{1}{r^2}
 ight) e^{-(r/a)}$
- con lo cual $\frac{\partial f}{\partial r} = k \left(\frac{1}{a^2 r} + \frac{2}{ar^2} + \frac{2}{r^3} \right) e^{-(r/a)}$
- la condicion de estabilidad es $\frac{3f(r_0)}{r_0}+f'\left(r_0\right)<0\Rightarrow 3+\frac{r_0\,f'(r_0)}{f(r_0)}>0$
- $\bullet \ \, \text{Por lo tanto: } 3 + \frac{ r_0 k \left(\frac{1}{a^2 r_0} + \frac{2}{a r_0^2} + \frac{2}{r_0^3} \right) }{ k \left(\frac{1}{a r_0} + \frac{1}{r_0^2} \right) } > 0 \Rightarrow \textit{fraca}^2 r_0^2 + \frac{a}{r_0} 1 > 0$

- Es el potencial de Coulomb apantallado (cuando $k = Ze^2/4\pi\varepsilon_0$, donde Z es el número atómico y e es la carga del electrón)
- disminuye con la distancia más rápidamente que 1/r. Por tanto, aproxima el potencial electrostático del núcleo atómico en las proximidades del núcleo teniendo en cuenta la «cancelación» parcial o el «apantallamiento» de la carga nuclear por los electrones atómicos.
- la fuerza será $f(r) = -\frac{\partial V}{\partial r} = -k \left(\frac{1}{2r} + \frac{1}{r^2}\right) e^{-(r/a)}$
- con lo cual $\frac{\partial f}{\partial r} = k \left(\frac{1}{2^2 r} + \frac{2}{2r^2} + \frac{2}{r^3} \right) e^{-(r/a)}$
- la condicion de estabilidad es $\frac{3f(r_0)}{r_0}+f'(r_0)<0\Rightarrow 3+\frac{r_0\,f'(r_0)}{f(r_0)}>0$
- Por lo tanto: $3 + \frac{r_0 k \left(\frac{1}{a^2 r_0} + \frac{2}{a r_0^2} + \frac{2}{r_0^3}\right)}{-k \left(\frac{1}{a r_0} + \frac{1}{2}\right)} > 0 \Rightarrow fraca^2 r_0^2 + \frac{a}{r_0} 1 > 0$
- Entonces, $q^2+q-1=0$, con $q\equiv a/r_0$, solución $q=\frac{a}{r_0}\gtrsim 0.62$

Coulomb Apantallado

• El ángulo de precesión $\Delta\theta$ es el recorrido por la dirección del perihelio en el plano del movimiento durante un período de oscilación radial T_r .

- El ángulo de precesión $\Delta\theta$ es el recorrido por la dirección del perihelio en el plano del movimiento durante un período de oscilación radial T_r .
- Esto es $\Delta \theta = \dot{\theta} T_r = 2\pi \frac{\dot{\theta}}{\omega_r}$, y como $\dot{\theta} = \frac{L}{\mu r_0^2}$,

- El ángulo de precesión $\Delta\theta$ es el recorrido por la dirección del perihelio en el plano del movimiento durante un período de oscilación radial T_r .
- Esto es $\Delta \theta = \dot{\theta} T_r = 2\pi \frac{\dot{\theta}}{\omega_r}$, y como $\dot{\theta} = \frac{L}{\mu r_0^2}$, tenemos $\Delta \theta = 2\pi \frac{L}{\mu r_0^2} \left(\left. \frac{1}{\mu} \frac{\partial^2 V_{\rm ef}}{\partial r^2} \right|_{r_0} \right)^{-1/2}$

- El ángulo de precesión $\Delta\theta$ es el recorrido por la dirección del perihelio en el plano del movimiento durante un período de oscilación radial T_r .
- Esto es $\Delta \theta = \dot{\theta} T_r = 2\pi \frac{\dot{\theta}}{\omega_r}$, y como $\dot{\theta} = \frac{L}{\mu r_0^2}$,
- ullet tenemos $\Delta heta = 2\pi rac{L}{\mu r_0^2} \left(\left. rac{1}{\mu} rac{\partial^2 V_{
 m ef}}{\partial r^2}
 ight|_{m{r}_0}
 ight)^{-1/2}$
- La dirección del perihelio $r_{\rm mín}$ cambia en un ángulo $\Delta \theta$ durante la precesión de la órbita.

- El ángulo de precesión $\Delta\theta$ es el recorrido por la dirección del perihelio en el plano del movimiento durante un período de oscilación radial T_r .
- Esto es $\Delta \theta = \dot{\theta} T_r = 2\pi \frac{\dot{\theta}}{\omega_r}$, y como $\dot{\theta} = \frac{L}{\mu r_0^2}$,
- ullet tenemos $\Delta heta = 2\pi rac{L}{\mu r_0^2} \left(\left. rac{1}{\mu} rac{\partial^2 V_{
 m ef}}{\partial r^2}
 ight|_{r_0}
 ight)^{-1/2}$
- La dirección del perihelio $r_{\rm mín}$ cambia en un ángulo $\Delta \theta$ durante la precesión de la órbita.
- La condición para que ocurra precesión es que $\Delta \theta < 2\pi$; es decir, $\dot{\theta} < \omega_r$.

Precesión de orbitas planetarias

Precessional Rates Of Planetary Perihelia

	Planet	Observed (arcseconds/century)	Newtonian Calculated (arcseconds/century)	General Relativity Contribution (arcseconds/century)
1	Mercury	575.31	531.63	43.0
2	Venus	204.52	204.44	8.6
3	Earth	100.29	100.03	3.83
4	Mars	53.49	53.07	1.35
5	Jupiter	11.73	11.55	0.07
6	Saturn	6.62	6.54	0.014
7	Uranus	2.02	2.0	0.0004
8	Neptune	0.7	0.67	
9	Pluto	0.4		

• Una órbita finita, con $r \in [r_{min}, r_{max}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.

- Una órbita finita, con $r \in [r_{mín}, r_{máx}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.
- Se cierra si el ángulo de precesión $\Delta \theta$ es múltiplo racional de 2π .

- Una órbita finita, con $r \in [r_{mín}, r_{máx}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.
- Se cierra si el ángulo de precesión $\Delta \theta$ es múltiplo racional de 2π .
- Esto es $\Delta \theta = \left(\frac{m}{n}\right) 2\pi$, con m,n, enteros, $\frac{\dot{\theta}}{\omega_r} = \frac{m}{n} \quad \Rightarrow nT_r = mT_{\theta}$

- Una órbita finita, con $r \in [r_{\min}, r_{\max}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.
- Se cierra si el ángulo de precesión $\Delta \theta$ es múltiplo racional de 2π .
- Esto es $\Delta \theta = \left(\frac{m}{n}\right) 2\pi$, con m, n, enteros, $\frac{\theta}{\omega_r} = \frac{m}{n} \quad \Rightarrow nT_r = mT_{\theta}$
- Después de n períodos radiales ($r_{\min} \rightarrow r_{\max} \rightarrow r_{\min}$), el perihelio completa m revoluciones ($m2\pi$) y la órbita se cierra.

- Una órbita finita, con $r \in [r_{mín}, r_{máx}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.
- Se cierra si el ángulo de precesión $\Delta \theta$ es múltiplo racional de 2π .
- Esto es $\Delta \theta = \left(\frac{m}{n}\right) 2\pi$, con m,n, enteros, $\frac{\dot{\theta}}{\omega_r} = \frac{m}{n} \quad \Rightarrow nT_r = mT_{\theta}$
- Después de n períodos radiales ($r_{\min} \rightarrow r_{\max} \rightarrow r_{\min}$), el perihelio completa m revoluciones ($m2\pi$) y la órbita se cierra.
- Si $\dot{\theta}/\omega_r$ es un número irracional, la órbita resultante se denomina cuasiperiódica y nunca se cierra.

- Una órbita finita, con $r \in [r_{mín}, r_{máx}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.
- Se cierra si el ángulo de precesión $\Delta \theta$ es múltiplo racional de 2π .
- Esto es $\Delta \theta = \left(\frac{m}{n}\right) 2\pi$, con m, n, enteros, $\frac{\theta}{\omega_r} = \frac{m}{n} \quad \Rightarrow nT_r = mT_{\theta}$
- Después de n períodos radiales ($r_{\min} \rightarrow r_{\max} \rightarrow r_{\min}$), el perihelio completa m revoluciones ($m2\pi$) y la órbita se cierra.
- Si $\dot{\theta}/\omega_r$ es un número irracional, la órbita resultante se denomina cuasiperiódica y nunca se cierra.
- El ángulo θ en función de r puede calcularse $\theta = \frac{L}{\sqrt{2\mu}} \int_{r_0}^r \frac{dr}{r^2 \sqrt{E V(r) \frac{L^2}{2\mu r^2}}} + \theta_0 \Leftrightarrow \Delta\theta = \frac{2L}{\sqrt{2\mu}} \int_{r_{\min}}^{r_{\max}} \frac{dr}{r^2 \sqrt{E \frac{L^2}{2\mu r^2} V(r)}}$

- Una órbita finita, con $r \in [r_{mín}, r_{máx}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.
- Se cierra si el ángulo de precesión $\Delta \theta$ es múltiplo racional de 2π .
- Esto es $\Delta \theta = \left(\frac{m}{n}\right) 2\pi$, con m, n, enteros, $\frac{\dot{\theta}}{\omega_r} = \frac{m}{n} \quad \Rightarrow nT_r = mT_{\theta}$
- Después de n períodos radiales ($r_{\min} \rightarrow r_{\max} \rightarrow r_{\min}$), el perihelio completa m revoluciones ($m2\pi$) y la órbita se cierra.
- Si $\dot{\theta}/\omega_r$ es un número irracional, la órbita resultante se denomina cuasiperiódica y nunca se cierra.
- El ángulo θ en función de r puede calcularse $\theta = \frac{L}{\sqrt{2\mu}} \int_{r_0}^r \frac{dr}{r^2 \sqrt{E V(r) \frac{L^2}{2\mu r^2}}} + \theta_0 \Leftrightarrow \Delta\theta = \frac{2L}{\sqrt{2\mu}} \int_{r_{\min}}^{r_{\max}} \frac{dr}{r^2 \sqrt{E \frac{L^2}{2\mu r^2} V(r)}}$
- ullet El ángulo de precesión $\Delta heta$ depende del potencial central V(r)

- Una órbita finita, con $r \in [r_{mín}, r_{máx}]$, es cerrada si las coordenadas r y θ se repiten periódicamente.
- Se cierra si el ángulo de precesión $\Delta\theta$ es múltiplo racional de 2π .
- Esto es $\Delta \theta = \left(\frac{m}{n}\right) 2\pi$, con m, n, enteros, $\frac{\dot{\theta}}{\omega_r} = \frac{m}{n} \quad \Rightarrow nT_r = mT_{\theta}$
- Después de n períodos radiales ($r_{\min} \rightarrow r_{\max} \rightarrow r_{\min}$), el perihelio completa m revoluciones ($m2\pi$) y la órbita se cierra.
- Si $\dot{\theta}/\omega_r$ es un número irracional, la órbita resultante se denomina cuasiperiódica y nunca se cierra.
- El ángulo θ en función de r puede calcularse $\theta = \frac{L}{\sqrt{2\mu}} \int_{r_0}^r \frac{dr}{r^2 \sqrt{E V(r) \frac{L^2}{2\mu r^2}}} + \theta_0 \Leftrightarrow \Delta\theta = \frac{2L}{\sqrt{2\mu}} \int_{r_{\min}}^{r_{\max}} \frac{dr}{r^2 \sqrt{E \frac{L^2}{2\mu r^2} V(r)}}$
- ullet El ángulo de precesión $\Delta heta$ depende del potencial central V(r)
- **Teorema de Bertrand** Las únicas formas funcionales de potenciales centrales V(r) que producen órbitas cerradas son $V(r) \propto \frac{1}{r}$ (gravitacional) y $V(r) \propto r^2$ (oscilador armónico).

Calcular el ángulo de precesión $\Delta\theta$ para oscilaciones radiales alrededor de una órbita circular de radio r_0 para una partícula en el potencial $V(r) = g(r) - \frac{k}{r}$, donde g(r) es una función de r y k = cte.

• El potencial efectivo es $V_{\rm ef}(r)=V(r)+\frac{L^2}{2\mu r^2}=g(r)-\frac{k}{r}+\frac{L^2}{2\mu r^2}$

- El potencial efectivo es $V_{\rm ef}(r)=V(r)+rac{L^2}{2\mu r^2}=g(r)-rac{k}{r}+rac{L^2}{2\mu r^2}$
- Entonces $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = g'(r_0) + \frac{k}{r_0^2} \frac{L^2}{\mu r_0^3} = 0 \Rightarrow L^2 = \mu\left(g'(r_0)r_0^3 + kr_0\right)$

- El potencial efectivo es $V_{\rm ef}(r)=V(r)+rac{L^2}{2\mu r^2}=g(r)-rac{k}{r}+rac{L^2}{2\mu r^2}$
- Entonces $\left. \frac{\partial V_{\mathrm{ef}}}{\partial r} \right|_{r_0} = g'\left(r_0\right) + \frac{k}{r_0^2} \frac{L^2}{\mu r_0^3} = 0 \Rightarrow L^2 = \mu\left(g'\left(r_0\right)r_0^3 + kr_0\right)$
- La frecuencia radial es $\omega_r^2 = \frac{1}{\mu} \frac{\partial^2 V_{\text{ef}}}{\partial r^2} \Big|_{r_0} = \frac{1}{\mu} \left(g''(r_0) \frac{2k}{r_0^3} + \frac{3l^2}{\mu r_0^4} \right)$

- El potencial efectivo es $V_{\rm ef}(r)=V(r)+rac{L^2}{2\mu r^2}=g(r)-rac{k}{r}+rac{L^2}{2\mu r^2}$
- Entonces $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = g'(r_0) + \frac{k}{r_0^2} \frac{L^2}{\mu r_0^3} = 0 \Rightarrow L^2 = \mu\left(g'(r_0)r_0^3 + kr_0\right)$
- La frecuencia radial es $\omega_r^2 = \frac{1}{\mu} \frac{\partial^2 V_{\text{ef}}}{\partial r^2} \Big|_{r_0} = \frac{1}{\mu} \left(g''(r_0) \frac{2k}{r_0^3} + \frac{3l^2}{\mu r_0^4} \right)$
- Con L^2 tendremos $\omega_r^2 = \frac{1}{\mu} \left[g''(r_0) \frac{2k}{r_0^3} + \frac{3}{r_0^4} \left(g'(r_0) r_0^3 + k r_0 \right) \right] = \frac{1}{\mu} \left(g''(r_0) + \frac{3}{r_0} g'(r_0) + \frac{k}{r_0^3} \right)$

- El potencial efectivo es $V_{\rm ef}(r)=V(r)+rac{L^2}{2\mu r^2}=g(r)-rac{k}{r}+rac{L^2}{2\mu r^2}$
- Entonces $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = g'(r_0) + \frac{k}{r_0^2} \frac{L^2}{\mu r_0^3} = 0 \Rightarrow L^2 = \mu\left(g'(r_0)r_0^3 + kr_0\right)$
- La frecuencia radial es $\omega_r^2 = \frac{1}{\mu} \frac{\partial^2 V_{\mathrm{ef}}}{\partial r^2} \Big|_{r_0} = \frac{1}{\mu} \left(g'' \left(r_0 \right) \frac{2k}{r_0^3} + \frac{3l^2}{\mu r_0^4} \right)$
- Con L^2 tendremos $\omega_r^2 = \frac{1}{\mu} \left[g''(r_0) \frac{2k}{r_0^3} + \frac{3}{r_0^4} \left(g'(r_0) r_0^3 + k r_0 \right) \right] = \frac{1}{\mu} \left(g''(r_0) + \frac{3}{r_0} g'(r_0) + \frac{k}{r_0^3} \right)$
- Además la velocidad angular es $\dot{\theta} = \frac{l}{\mu r_0^2} = \left[\frac{1}{\mu} \left(\frac{g'(r_0)}{r_0} + \frac{k}{r_0^3}\right)\right]^{1/2}$

- El potencial efectivo es $V_{\rm ef}(r)=V(r)+rac{L^2}{2\mu r^2}=g(r)-rac{k}{r}+rac{L^2}{2\mu r^2}$
- Entonces $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r_0} = g'(r_0) + \frac{k}{r_0^2} \frac{L^2}{\mu r_0^3} = 0 \Rightarrow L^2 = \mu\left(g'(r_0)r_0^3 + kr_0\right)$
- La frecuencia radial es $\omega_r^2 = \frac{1}{\mu} \frac{\partial^2 V_{\text{ef}}}{\partial r^2} \Big|_{r_0} = \frac{1}{\mu} \left(g''(r_0) \frac{2k}{r_0^3} + \frac{3l^2}{\mu r_0^4} \right)$
- Con L^2 tendremos $\omega_r^2 = \frac{1}{\mu} \left[g''(r_0) \frac{2k}{r_0^3} + \frac{3}{r_0^4} \left(g'(r_0) r_0^3 + k r_0 \right) \right] = \frac{1}{\mu} \left(g''(r_0) + \frac{3}{r_0} g'(r_0) + \frac{k}{r_0^3} \right)$
- Además la velocidad angular es $\dot{\theta} = \frac{l}{\mu r_0^2} = \left[\frac{1}{\mu} \left(\frac{g'(r_0)}{r_0} + \frac{k}{r_0^3}\right)\right]^{1/2}$
- El ángulo de precesión es

$$\Delta\theta = 2\pi \left(\frac{\dot{\theta}}{\omega_r}\right) = 2\pi \left(\frac{g'(r_o)r_o^2 + k}{g''(r_o)r_o^3 + 3g'(r_o)r_o^2 + k}\right)^{1/2}$$