A testbed to evaluate postquantum cryptography in DNSSEC

pq-dnssec side meeting at IETF 121

07 Nov 2024

Prio	Requirement	Good	Accepted Conditionally
#1	Signature Size	≤ 1,232 bytes	_
#2	Validation Speed	≥ 1,000 sig/s	_
#3	Key Size	≤ 64 kilobytes	> 64 kilobytes
#4	Signing Speed	≥ 100 sig/s	_

Table 2: Requirements for quantum-safe algorithms.

Scheme	Parameterset	NIST level	Pk bytes	Sig bytes	pk+sig
EdDSA 🍂	Ed25519	Pre-Q	32	64	96
MAYO	two	1	5,488	180	5,668
RSA 🥟	2048	Pre-Q	272	256	528
SNOVA	(24, 5, 16, 4)	1	1,016	248	1,264
SNOVA	(25, 8, 16, 3)	1	2,320	165	2,485
SNOVA	(28, 17, 16, 2)	1	9,842	106	9,948
SQlsign	1	1	64	177	241
VOX	128	1	9,104	102	9,206

Scheme	Parameterset	NIST level	Sign (cycles)	Verify (cycles)
EdDSA .	Ed25519	Pre-Q	42,000	130,000
MAYO	two	1	563,900	91,512
RSA 🔔	2048	Pre-Q	27,000,000	45,000
SNOVA	(24, 5, 16, 4)	1	19,681,409	8,086,815
SNOVA	(25, 8, 16, 3)	1	12,408,096	3,959,869
SNOVA	(28, 17, 16, 2)	1	10,964,945	3,161,199
SQlsign	I	1	5,669,000,000	108,000,000
VOX	128	1	664,265	168,567

https://pqshield.github.io/nist-sigs-zoo

S LABS

PATAD testbed is available

- Prebuilt docker images plus testbed using docker-compose
 - Specify your own topology.
 - Run your own experiments.

- Currently supported software:
 - PowerDNS with algorithms:
 - SQIsign-I
 - MAYO-2
 - Falcon-512

Testbed "example" overview

Configuring the testbed

P main → pqc-testbed / example / □

ElmerLastdrager Initial commit

Name	Last commit message
	
README.md	Initial commit
docker-compose.yml	Initial commit
generate-testbed.sh	Initial commit
named-nl.conf	Initial commit
named-root.conf	Initial commit
named-sidnlabs.conf	Initial commit
D pdns.conf	Initial commit
recursor-dnssec.conf	Initial commit

Starting the testbed

Forcing sidnlabs.nl to sign all records

Finished signing sidnlabs.nl

```
patad$ ./generate-testbed
setting up dnssec on root server
Jul 31 12:26:17 [bindbackend] Done parsing domains, 0 rejected, 1 new, 0 removed
pub: [omitted] 1
Added a KSK with algorithm = 250, active=0
Jul 31 12:26:19 [bindbackend] Done parsing domains, 0 rejected, 1 new, 0 removed
pub: [omitted] 2
Added a ZSK with algorithm = 250, active=0
exporting trust anchor
setting up trust between root and nl
Jul 31 12:26:21 [bindbackend] Done parsing domains, 0 rejected, 1 new, 0 removed
pub: [omitted] 1
Added a ZSK with algorithm = 249, active=1
Jul 31 12:26:21 [bindbackend] Done parsing domains, 0 rejected, 1 new, 0 removed
nl. IN DS 16434 249 2 [omitted] ; ( SHA256 digest )
nl. IN DS 16434 249 4 [omitted]; (SHA-384 digest)
           parsed into memory at 2024-07-31 12:26:21 +0000
setting up trust between nl and sidnlabs
Jul 31 12:26:21 [bindbackend] Done parsing domains, 0 rejected, 1 new, 0 removed
pub: [omitted] 1
Added a ZSK with algorithm = 251, active=1
Jul 31 12:26:22 [bindbackend] Done parsing domains, 0 rejected, 1 new, 0 removed
sidnlabs.nl. IN DS 11468 251 2 [omitted] ; ( SHA256 digest )
sidnlabs.nl. IN DS 11468 251 4 [omitted]; (SHA-384 digest)
           parsed into memory at 2024-07-31 12:26:22 +0000
nl:
Forcing root to sign all records
 ... waiting for nameserver
Finished signing root
```

AXFR to force sign the zone

Verifying the status of the testbed

Querying the root authoritative

```
patad$ dig . NS -p 5302 @::1
; <<>> DiG 9.18.27 <<>> . NS -p 5302 @::1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60209
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 5
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
;; QUESTION SECTION:
                                 IN NS
;; ANSWER SECTION:
                                 3600 IN
                                           NS s.root-servers.net.
                                 3600 IN
                                           RRSIG NS 250 0 3600 (
                                            20240808000000 20240718000000 15317 .
                                            [omitted] )
;; ADDITIONAL SECTION:
s.root-servers.net. 3600 IN
                                AAAA fc01::2
s.root-servers.net. 3600 IN
                                 RRSIG AAAA 250 3 3600 (
                                            20240808000000 20240718000000 15317 .
                                            [omitted] )
;; Query time: 3 msec
;; SERVER: ::1#5302(::1) (UDP)
;; WHEN: Wed Jul 31 14:27:08 CEST 2024
;; MSG SIZE rcvd: 726
```

AA bit set

250 = SQISign-I

Querying the resolver

```
patad$ dig sidnlabs.nl txt -p 5311 @::1
; <<>> DiG 9.18.27 <<>> sidnlabs.nl txt -p 5311 @::1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31760
                                                                                             AD bit set
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 512
;; QUESTION SECTION:
;sidnlabs.nl.
                                IN TXT
;; ANSWER SECTION:
                                           TXT "This is the sidnlabs.nl zone"
sidnlabs.nl.
                                3600 IN
                                                                                             251 = MAYO-2
sidnlabs.nl.
                                           RRSIG TXT 251 2 3600 (
                                3600 IN
                                           20240808000000 20240718000000 11468 sidnlabs.nl.
                                           [omitted] )
;; Query time: 57 msec
;; SERVER: ::1#5311(::1) (UDP)
;; WHEN: Wed Jul 31 14:27:19 CEST 2024
;; MSG SIZE rcvd: 783
patad$
```


DNSViz

249 = Falcon-512

251 = MAYO-2

Id: 251/10603/2

Description: DS record(s) corresponding to DNSKEY for sidnlabs.nl (algorithm 251 (MAYO-2), key tag 10603)

Algorithm: 251 (MAYO-2)

Key tag: 10603

Digest type: 2 (SHA-256), 4 (SHA-384)

TTL: 3600 (1 hour)
Status: SECURE

Servers: 2001:67c:6ec:2076:145:220:76:232

NS names: ns1._dnsviz.*.
NSID values: aba118afc1f1

Query options: UDP_+_EDNS0_4096_D_NK

Running PQC testbed yourself

https://patad.sidnlabs.nl

https://github.com/SIDN/pqc-testbed

PowerDNS with PQC patches:

https://github.com/SIDN/pdns/tree/ master-pqc-20240606

Next steps for us

Research paper under submission.

Work together with SURF (Dutch NREN) to measure impact on DNSSEC signing and resolvers: validation timings, response times, packet sizes.

Implement/investigate other Round 2 candidate algorithms:

- SQIsign variant SQIsign2D-West
- SNOVA (24, 5, 4), UOV (Ip-pkc)

Look further at Merkle-Trees/MTL based solutions.

Questions for the group:

- Should we as a group ask cryptographers to develop parameter sets that give more properties that are more suitable for DNSSEC?
- What are our constraints regarding cryptographic strengths?
- How long do we need to keep zones signed with a particular key secure?

• Can we somehow pinpoint a moment when quantum computers become a threat to DNS security?

We are open for collaboration, let's discuss.

sidnlabs@sidn.nl

