PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-226193

(43)Date of publication of application: 14.08.1992

(51)Int.CI.

C10M105/34 C10M105/36 // C10N 40:30

(21)Application number: 03-131288

(71)Applicant:

HOECHST AG

(22)Date of filing:

03.06.1991

(72)Inventor:

CORNILS BOY

WEBER JUERGEN LAPPE PETER SPRINGER HELMUT PREISEGGER EWALD **HENRICI RAINER**

(30)Priority

Priority number: 90 4018562

Priority date: 09.06.1990

Priority country: DE

(54) USE OF PHTHALIC, ISOPHTHALIC OR TEREPHTHALIC ESTER ZS LUBRICANT FOR FREEZING COMPRESSOR (57) Abstract:

PURPOSE: To use aromatic carboxylic acid as an inexpensive and stable lubricant for a freezing compressor by using an ester produced from an aromatic carboxylic acid and a monohydric alcohol as a lubricant for a specific freezing compressor. CONSTITUTION: An ester produced from an aromatic carboxylic acid and a monohydric alcohol is used as a lubricant for a freezing compressor operated by using a partially fluorinated hydrocarbon containing no chlorine as a freezing agent. The above mentioned lubricant has good compatibility with respect to the partially fluorinated hydrocarbon containing no chlorine used as the freezing agent at −40° C, that is, within a temp. range capable of being generated in compression freezing equipment. The viscosity thereof is about 10-150 cSt at 40° C and conforms to the demand imposed on the lubricant with respect to the above mentioned applied range.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平4-226193

(43)公開日 平成 4年(1992) 8月14日

(51) Int.Cl.5

識別記号 庁内整理番号 F [

技術表示简所

C 1 0 M 105/34

8217-4H

105/36

8217-4H

C 1 0 N 40:30

審査請求 有 請求項の数5(全 5 頁)

(21)出願番号

特願平3-131288

(22)出願日

平成3年(1991)6月3日

(31)優先権主張番号 P 40 18 562 1

(32)優先日

1990年6月9日

(33)優先権主張国

ドイツ (DE)

(71)出願人 590000145

ヘキスト・アクチエンゲゼルシヤフト

ドイツ連邦共和国、フランクフルト・ア

ム・マイン(番地無し)

(72)発明者 ボイ・コルニルス

ドイツ連邦共和国、ホーフハイム、キルシ

ユガルテンストラーセ、6

(72)発明者 ユルゲン・ウエーベル

ドイツ連邦共和国、オーベルハウゼン11、

ブンゼンストラーセ、17

(74)代理人 弁理士 江崎 光史 (外3名)

最終頁に続く

(54) 【発明の名称】 芳香族カルポン酸を冷凍圧縮器用潤滑剤として使用する方法

(57)【要約】

【構成】 芳香族カルボン酸および一価アルコールから 製造されるエステルを、冷凍剤として、塩素を含まな い、部分的にフッ素化された炭化水素を用いて動かされ る冷凍圧縮器用の潤滑剤として使用する。

【効果】 本発明により使用される潤滑剤は、冷凍剤と して使用される塩素を含まない、部分的にフッ素化され た炭化水素と、圧縮冷凍設備内で発生し得る温度範囲で 良好な混和性を有している。

【特許請求の範囲】

【請求項1】 芳香族カルボン酸および一価アルコールから製造されるエステルを、冷凍剤として、塩素を含まない、部分的にフッ素化された炭化水素を用いて動かされる冷凍圧縮器用の潤滑剤として使用する方法。

【請求項2】 エステルがモノカルボン酸、特に安息香酸から誘導される、請求項1記載の方法。

【請求項3】 エステルが芳香族ジカルボン酸、特にフタル酸、イソフタル酸またはテレフタル酸から誘導される、請求項1記載の方法。

【請求項4】 エステルが芳香族カルボン酸、特にトリメリト酸およびピロメリト酸から誘導される、請求項1 記載の方法。

【請求項5】 エステルが、直鎖または枝分かれした、 $4\sim20$ 個の炭素原子を有する一価の第一アルコールから誘導される、請求項 $1\sim4$ のいずれか1 項に記載の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、芳香族カルボン酸エス 20 テルを、冷凍剤として、塩素を含まない、部分的にフッ 素化した炭化水素を用いて動かされる冷凍圧縮器用の潤 滑剤として使用することに関する。

[0002]

【従来の技術】工業上、営業上、および家庭内装置における冷凍冷却のため、広範囲で冷凍圧縮器が使用される。この装置は、機械的な圧縮器で動き、圧縮器は冷凍剤を圧縮し、凝縮装置内で冷却により空気、水または別の媒体で凝縮しそして蒸発器内で冷却すべき媒体から熱吸収して蒸発させる。冷凍剤として、主として、大規模30設備の場合アンモニアが、そして大規模設備、工業上の冷凍設備および家庭用装置の場合ジクロロジフルオロメタンおよびクロロトリフルオロメタンおよびクロロトリフルオロメタンのようなクロロフルオロカーボンが使用される。

【0003】冷凍圧縮器の潤滑のため、高度に精製された白油に似た、一般にナフテンに基づいた鉱油が使用される。冷凍圧縮器用の完全合成油としては、アルキル芳香族およびボリー α -オレフィンが使用される。

【0004】潤滑油の機能は、可動性の圧縮器部品を潤滑すること、熱い圧縮器部品から熱を排除することおよび圧縮室およびバルブを密封することである。この機能は、潤滑油が満足しなければならない特性をも決定する。潤滑油は、熱の負荷に抵抗しなければならずそして同様に蒸発器の温度で流動性のままでなければならない。さらに、潤滑油は圧縮室から冷凍循環に運ばれそして後に連結された油分離器により完全には除去され得ないことが考慮されるべきである。潤滑油は、それ故、冷凍剤と広い温度および濃度範囲で混和できなければならず、その結果、冷凍循環に入った潤滑油をもとに戻すことが、圧縮器において保証される。

[0005]

【発明が解決しようとする課題】クロロフルオロカーボンは、しばらく前から、地球の大気圏のオゾン層を破壊するという疑いをかけられている。それ故、それが置き換え得ない場合にその使用を制限する努力がなされている。さらに、それを、同一の効果を有するがしかし無害の物質に置き換えることが試みられている。冷凍設備用の冷凍剤として、将来、塩素を含まない、部分的にフッ素化された炭化水素、例えば1、1、1、2ーテトラフルオロエタン、1、1、1、2、3、3、3・ヘーペーンフルオロプロパン、ペンタフルオロエタン、1、1、1、3、3、3、1、1・ペーンフロパンおよびトリフルオロプロパン、ペンタフルオロエタン、1、1、1、1、3、3、3、1、1・ペーキサフルオロプロパンおよびトリフルオロメタンが使用されるであろう。当該物質は、冷凍圧縮器の運転の際に生じる温度範囲において、高い熱安定性および関連した熱力学的特性に卓越している。

【0006】しかしながら、当該塩素を含まない、脂肪族フルオロ炭化水素は、従来使用されている潤滑剤と非常に僅かな混和性しか示さないという欠点がある。広い
遠度範囲で二つの物質類が二相混合物を形成し、その結果、圧縮器から運ばれた潤滑剤をもとに戻すことはとり
わけ低い蒸気温度で著しく妨害される。既知の潤滑剤は
それ故設備内で、塩素を含まない冷凍剤代替物と共に、
一般にもはや使用され得ない。

【0007】この困難を、ポリアルキレングリコールに基づいた潤滑剤の使用によって回避することが試みられた。大抵のポリアルキレングリコール類は、上述の塩素を含まない潤滑剤と $-40\sim+50$ ℃の間で完全に混和し得る。約50℃より高い温度で初めて混合間隙が現れ、混合隙間は、温度が高くなるにつれて、広い濃度範囲に広がる。

【0008】それにもかかわらず、ポリアルキレングリ コールは、強い吸湿性のため、制限的にしか潤滑剤とし て使用され得ないことが予期される。ポリアルキレング リコールを<100ppmの残留水分まで乾燥すること は高い費用を必要とする。さらに、完全な空気遮断によ って、新たな水分吸収を回避することに配慮しなければ ならない。ポリアルキレングリコールはそれ故気密に密 封した小さい冷凍システム、例えば、家庭用冷蔵庫にお いてのみ使用され得る。維持作業が冷凍剤循環の時折の 開放を必要とする、大規模な冷凍設備において、その過 40 程で著しい水分吸収が予想され得る。ポリアルキレング リコールに結合した水分は、フィルター乾燥器によって すらもはや除去され得ない。それ故、このシステムにお ける原料についての問題は、その結果である。さらに、 ポリアルキレングリコールの熱安定性は全ての要求を満 たさない。すでに約180℃より高い温度(このような 温度は、最高の作業条件で圧縮器の圧力バルブ内に発生 し得る)で、ポリアルキレングリコールの分解が開始す

50 【0009】それ故、本発明の課題は、上記の欠点がな

く、かつ、塩素を含まない、部分的にフッ素化された炭 化水素が冷凍剤として使用されている場合に常に使用し 得る、冷凍圧縮器用潤滑剤を提供することにある。

[0010]

ide in

【課題を解決するための手段】それ故、本発明は、芳香 族カルボン酸および一価アルコールから製造されるエス テルを、冷凍剤として、塩素を含まない、部分的にフッ 素化された炭化水素を用いて動かされる冷凍圧縮器用の 潤滑剤として使用することにある。

ら誘導されるカルボン酸エステルは広い範囲でポリビニ ルクロリド用可塑剤として使用される。しかしながら、 カルポン酸エステルのこの使用のため必要とされる特性 像は、圧縮冷凍機用の潤滑剤が示さなければならない特 徴と根本的に異なる。それ故、とりわけプラスチック領 域で役立つ化合物類が、完全に異なる技術範囲内で同様 に効果的に使用され得ることは予見され得なかった。

【0012】本発明により使用されるエステルは、芳香 族のモノー、ジーおよびポリカルボン酸から誘導され タル酸、テレフタル酸、トリメリト酸、ピロメリト酸お よびトリメシン酸である。

【0013】これらのカルボン酸またはその酸無水物 を、直鎖または枝分かれした一価の第一アルコールと反 応し、その際、2~20個の炭素原子を有するアルコー ルが好ましい。少なくとも4個の炭素原子を持つ枝分か れした第一アルコールが、特に好ましいものとして証明 された。このようなアルコールの例は、n-ブタノー ル、イソプタノール、n-ペンタノール、2-メチルペ ンタノール、3-メチルブタノール、2-エチルブタノ 30 ール、2-メチルペンタノール、n-ヘキサノール、ヘ プタノール (異性体混合物の形で)、オクタノール (異 性体混合物の形で)、2-エチルヘキサノール、n-オ クタノール、iーノナノール、iーデカノール、iート リデカノール、i-ヘキサデカノールおよびi-オクタ デカノールである。

【0014】上記アルコールは主としてオレフィンか ら、オキソ合成そして相当するアルデヒドの続く水素添 加により、または、アルドール縮合により得られる。オ キソ合成のため、すべてのオレフィンが適当である。オ 40 ール292g(2.2モル)と混合しそして添加溶剤と キソ合成は、一般に、異性体アルコールの混合物を生じ させる。エステルの製造のため、この混合物を分離する ことは必要でない。

【0015】潤滑剤として使用するのに適当なエステル は、例えば、ジー2-エチルヘキシルフタラート、ジー イソノニルフタラートおよびジーイソデシルフタラー ト、ジ-n-プチルフタラート、ジ-2-エチルヘキシ ルテレフタラート、ジーイソデシルテレフタラートであ る。フタル酸のエステル、例えば、ジー2-エチルヘキ デシルフタラートが特に重要である。

【0016】エステルは、既知の方法で、上記酸および アルコールから酸性触媒の存在下に製造される。触媒と して、鉱酸、例えば硫酸、リン酸、ならびにその酸性 塩、さらにトリアルキルホスファートまたはトリアリー ルホスファートおよびp-トルエンスルホン酸が適して いる。できる限り完全に反応を達成するために、反応成 分を過剰に使用するおよび/または反応水を蒸留して、 場合により共沸混合物を形成するもの、例えばペンゼン 【0011】芳香族カルポン酸および一価アルコールか 10 またはトルエンを用いて、分離することが推奨される。 エステルを可塑剤として使用する場合に講じられなけれ ばならない高い色安定性を達成するための特別な対策 は、潤滑剤として使用する場合には不必要である。

【発明の効果】本発明により使用される潤滑剤は、冷凍 剤として使用される塩素を含まない、部分的にフッ素化 された炭化水素と、なお−40℃で、つまり、圧縮冷凍 設備内で発生し得る温度範囲で良好な混和性を有してい る。その粘度は、40℃で約10~150cSTの間に る。このような酸の例は、安息香酸、フタル酸、イソフ 20 ありそして上述の適用範囲について潤滑剤に課されられ た要求にあてはまる。当該潤滑剤は、さらに、空気酸素 および水分を除外して、つまり、冷凍剤循環において満 たされなければならない条件下で、優れた熱安定性を示 す。当該エステルは吸湿性でない。それ故、当該エステ ルは大きい費用なしに乾燥され得る。ドイツ標準DIN 51503により35ppmを越えてはならない残留水 分は簡単に達成され得る。

> 【0018】潤滑剤として使用されるエステルは、純粋 な形で、異性体化合物の混合物としておよび異なる化学 組成の2またはそれ以上のエステルの混合物として用い られ得る。

[0019]

【実施例】次の例において、エステルの製造を記載し、 そのほかに、物理的特性のうちエステルを潤滑剤として 使用するのに重要なものを載せる。勿論、本発明の範囲 は、記述する実施態様に制限されない。

【0020】実施例1:ジー(2-エチルヘキシル)-フタラート(DOP)の製造

無水フタル酸148g(1モル)を2-エチルヘキサノ してのシクロヘサン65gおよび触媒としての、水1. 48gで稀釈した遺硫酸0.59g(0.006モル) の存在下に7時間にわたって135℃でエステル化す る。反応水は共沸混合物として除去される。後処理のた め、粗エステルを5重量%濃度の苛性ソーダ溶液で中和 し、その後、5重量%濃度の苛性ソーダ溶液の存在下に 135℃かつ150mbar (15kPa) で3時間に わたって水蒸気で蒸留し次いで水で洗浄する。150m bar (15kPa) の圧力そして1.35℃で、エステ シルフタラート、ジーイソノニルフタラート、ジーイソ 50 ルを3時間窒素流中で乾燥する。濾過後、362gの生 ō

成物が得られ、これは93%の収率に相当する。

【0021】実施例2:ジー(イソノニル) - フタラート(DINP)の製造

無水フタル酸 148g (1 モル) およびイソノニルアルコール 322g (2.23 モル) の混合物をシクロヘキサン 70g と混合しそして触媒としての、水 1.48g で稀釈した遺硫酸 0.59g (0.006 モル) の存在下に 12 時間にわたって 135 でエステル化する。反応水は共沸混合物として除去される。

【0022】後処理のため、租工ステルを先ず5重量% 濃度の苛性ソーダ溶液で中和し、次いで3時間にわたっ て150mbar(15kPa)そして135℃で5重 量%濃度の苛性ソーダ溶液の存在下に水蒸気で蒸留する。

【0023】中和点に達するまで水で洗浄後、150m bar (15kPa) の圧力そして135℃の温度で4 時間窒素流中で乾燥する。濾過後、388gのDINP が得られ、これは93%の収率に相当する。

【0024】実施例3:ジー(n-ブチル)-フタラート(DBP)の製造

無水フタル酸 148g (1 モル) およびn - ブタノール 152g (2.05 モル) の混合物を、シクロヘキサン 50g および触媒としてのp - トルエンスルホン酸 5.7g (0.03 モル) の添加後 6 時間 130 で反応する。エステル化の間に遊離した反応水を共沸混合物として除去する。

【0025】5重量% 浪度のNaOHを添加して先ず粗 エステルに含まれている酸性触媒を中和する。次いで繰 り返し水で洗浄した後、生成物を4時間150mbar (15kPa)の圧力そして135℃の温度で乾燥す 30 る。濾過後、262gのジー(n-ブチル)-フタラー トが得られ、これは94%の収率に相当する。

【0026】実施例1~3に記載したエステルの特性 前述のエステルを潤滑剤として使用するのに重要な基準 として、熱による挙動、その粘度および冷凍剤とのその 混和性一原型は1、1、1、2ーテトラフルオロエタン および2H-ヘブタフルオロプロパンである一を詳述す る。

【0027】エステルの熱安定性の試験は、DIN51593にならってU字管内で250/40℃でそして96時間行われた。油を満たした、U字管の分枝は250℃に調整されそして冷凍剤の蒸気相と接触しており、冷凍剤は第二分枝中に凝縮され次いで40℃に調整される。評価は光学的に(油変色)行われる。補足的に、蒸気相の水性抽出物がイオン感受性電極によってフッ化物イオンについて試験される。

6

7 【0028】ガス相のガスクロマトグラフィーによる分析は、エステルまたは冷凍剤の生じ得る気体状の分解生成物に関する結論を与える。クロマトグラムの比較は空試験で行われる。

【0029】エステルの粘度の測定はUbbelohde粘度計内で40℃で行われる。

【0030】エステルと冷凍剤との混和性の試験のた

め、一定量のエステル(約0.2~3g)を約10ml 容量の小ガラス管に入れる。液体窒素中に液浸後、調整 された濃度により6~3gの冷凍剤をそこに凝縮する。 20 その後小ガラス管を真空にし、溶融により密封しそして 特定の組成の混合物を−40℃~+80℃の温度範囲に 通す。2相が形成される時または濁り始める時に、分解 点、すなわち混合性グラフの限界曲線上の点を決定する ことができる。認定された分解点の全体は従って混合間

【0031】ジー(2-エチルヘキシル)-フタラート(DOP)

熱安定性:分解せず

隙の限界曲線を与える。

粘度:ν=27.3mm²/s

30 混和性:通例の作業範囲を越えた混合間隙: ジー(イソノニル)ーフタラート(DINP)

熱安定性:分解せず

粘度: ν=37.1mm²/s

混和性:通例の作業範囲を越えた混合間隙 ジー(nープチル)-フタラート(DBP)

粘度: ν = 8.76 mm² /s 混和性:完全に混和し得る

【手続補正書】

【提出日】平成3年10月25日

【手統補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 芳香族カルボン酸エステルを冷凍圧縮 器用潤滑剤として使用する方法

【手統補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 芳香族カルボン酸および一価アルコールから製造されるエステルを、冷凍剤として、塩素を含まない、部分的にフッ素化された炭化水素を用いて動かされる冷凍圧縮器用の潤滑剤として使用する方法。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0018 【補正方法】変更

【補正内容】

experience . . .

【0018】 潤滑剤として使用されるエステルは、純粋な形で、異性体化合物の混合物としておよび異なる化学組成の2またはそれ以上のエステルの混合物として用いられ得る。本発明は、特許請求の範囲に記載の請求項1に関するものであるが、以下の記載の発明を実施の態様として包含している:

(1) エステルがモノカルボン酸、特に安息香酸から誘導される、請求項1記載の方法。

- (2) エステルが芳香族ジカルボン酸、特にフタル酸、イソフタル酸またはテレフタル酸から誘導される、 請求項1記載の方法。
- (3) エステルが芳香族カルポン酸、特にトリメリト酸およびピロメリト酸から誘導される、請求項1記載の方法。
- (4) エステルが、直鎖または枝分かれした、 $4\sim2$ 0個の炭素原子を有する一価の第一アルコールから誘導される、請求項1または上記(1) \sim (3)のいずれか1項に記載の方法。

フロントページの続き

(72)発明者 ペーテル・ラツペ ドイツ連邦共和国、デインスラーケン、ア イケンホフ、34

(72)発明者 ヘルムート・シュプリンゲル ドイツ連邦共和国、オーベルハウゼン11、 ボルベツケルストラーセ、19 (72)発明者 エウアルト・プライゼツガー ドイツ連邦共和国、ナウハイム、エンテン ストラーセ、17

(72)発明者 ライネル・ヘンリチ ドイツ連邦共和国、ノイ-アンシュパツ ハ、パーンホフストラーセ、110