Monte-Carlo Planning: Introduction and Bandit Basics

Alan Fern

Large Worlds

- We have considered basic model-based planning algorithms
- Model-based planning: assumes MDP model is available
 - Methods we learned so far are at least poly-time in the number of states and actions
 - Difficult to apply to large state and action spaces (though this is a rich research area)
- We will consider various methods for overcoming this issue

Approaches for Large Worlds

Planning with compact MDP representations

- 1. Define a language for compactly describing an MDP
 - MDP is exponentially larger than description
 - E.g. via Dynamic Bayesian Networks
- Design a planning algorithm that directly works with that language
- Scalability is still an issue
- Can be difficult to encode the problem you care about in a given language
- Study in last part of course

Approaches for Large Worlds

- Reinforcement learning w/ function approx.
 - 1. Have a learning agent directly interact with environment
 - 2. Learn a compact description of policy or value function

- Often works quite well for large problems
- Doesn't fully exploit a simulator of the environment when available
- We will study reinforcement learning later in the course

Approaches for Large Worlds: Monte-Carlo Planning

 Often a simulator of a planning domain is available or can be learned/estimated from data

Klondike Solitaire

Fire & Emergency Response

Large Worlds: Monte-Carlo Approach

 Often a simulator of a planning domain is available or can be learned from data

 Monte-Carlo Planning: compute a good policy for an MDP by interacting with an MDP simulator

Example Domains with Simulators

- Traffic simulators
- Robotics simulators
- Military campaign simulators
- Computer network simulators
- Emergency planning simulators
 - large-scale disaster and municipal
- Forest Fire Simulator
- Board games / Video games
 - ▲ Go / RTS

In many cases Monte-Carlo techniques yield state-of-the-art performance. Even in domains where exact MDP models are available.

MDP: Simulation-Based Representation

- A <u>simulation-based representation</u> gives: S, A, R, T, I:
 - finite state set S (|S|=n and is generally very large)
 - ★ finite action set A (|A|=m and will assume is of reasonable size)
 - |S| is too large to provide a matrix representation of R, T, and I (see next slide for I)

- A simulation based representation provides us with callable functions for R, T, and I.
 - Think of these as any other library function that you might call
- Our planning algorithms will operate by repeatedly calling those functions in an intelligent way

MDP: Simulation-Based Representation

- A <u>simulation-based representation</u> gives: S, A, R, T, I:
 - ★ finite state set S (|S|=n and is generally very large)
 - ★ finite action set A (|A|=m and will assume is of reasonable size)
 - Stochastic, real-valued, bounded reward function R(s,a) = r
 - Stochastically returns a reward r given input s and a (note: here rewards can depend on actions and can be stochastic)
 - Stochastic transition function T(s,a) = s' (i.e. a simulator)
 - Stochastically returns a state s' given input s and a
 - Probability of returning s' is dictated by Pr(s' | s,a) of MDP
 - Stochastic initial state function I.
 - Stochastically returns a state according to an initial state distribution

These stochastic functions can be implemented in any language!

Monte-Carlo Planning Outline

- Single State Case (multi-armed bandits)
 - A basic tool for other algorithms
- Monte-Carlo Policy Improvement
 - Policy rollout
 - Policy Switching
 - Approximate Policy Iteration
- Monte-Carlo Tree Search
 - Sparse Sampling
 - UCT and variants

Single State Monte-Carlo Planning

- Suppose MDP has a single state and k actions
 - Can sample rewards of actions using calls to simulator
 - ◆ Sampling action a is like pulling slot machine arm with random payoff function R(s,a)

Single State Monte-Carlo Planning

- Bandit problems arise in many situations
 - Clinical trials (arms correspond to treatments)
 - Ad placement (arms correspond to ad selections)

Single State Monte-Carlo Planning

- We will consider three possible bandit objectives
 - ▲ PAC Objective: find a near optimal arm w/ high probability
 - ▲ Cumulative Regret: achieve near optimal cumulative reward over lifetime of pulling (in expectation)
 - Simple Regret: quickly identify arm with high reward (in expectation)

Multi-Armed Bandits

 Bandit algorithms are not just useful as components for multi-state Monte-Carlo planning

Pure bandit problems arise in many applications

- Applicable whenever:
 - We have a set of independent options with unknown utilities
 - There is a cost for sampling options or a limit on total samples
 - Want to find the best option or maximize utility of our samples

Multi-Armed Bandits: Examples

Clinical Trials

- ▲ Arms = possible treatments
- Arm Pulls = application of treatment to inidividual
- Rewards = outcome of treatment
- Objective = maximize cumulative reward = maximize benefit to trial population (or find best treatment quickly)

Online Advertising

- Arms = different ads/ad-types for a web page
- ▲ Arm Pulls = displaying an ad upon a page access
- Rewards = click through
- Objective = maximize cumulative reward = maximum clicks (or find best add quickly)

PAC Bandit Objective: Informal

Probably Approximately Correct (PAC)

- Select an arm that probably (w/ high probability) has approximately the best expected reward
- Design an algorithm that uses as few simulator calls (or pulls) as possible to guarantee this

PAC Bandit Algorithms

• Let k be the number of arms, R_{max} be an upper bound on reward, and $R^* = \max_i E[R(s, a_i)]$ (i.e. R^* is the best arm reward in expectation)

Definition (Efficient PAC Bandit Algorithm): An algorithm ALG is an efficient PAC bandit algorithm iff for any multi-armed bandit problem, for any $0<\delta<1$ and any $0<\epsilon<1$ (these are inputs to ALG), ALG pulls a number of arms that is **polynomial in 1/\epsilon, 1/\delta,** k, and R_{max} and returns an arm index j such that with probability at least $1-\delta$ $R^* - E[R(s,a_i)] \le \varepsilon$

• Such an algorithm is efficient in terms of # of arm pulls, and is probably (with probability 1- δ) approximately correct (picks an arm with expected reward within ϵ of optimal).

UniformBandit Algorithm

Even-Dar, E., Mannor, S., & Mansour, Y. (2002). PAC bounds for multi-armed bandit and Markov decision processes. In *Computational Learning Theory*

- 1. Pull each arm w times (uniform pulling).
- 2. Return arm with best average reward.

Can we make this an efficient PAC bandit algorithm?

Aside: Additive Chernoff Bound

- Let R be a random variable with maximum absolute value Z. An let $r_i = 1, ..., w$ be i.i.d. samples of R
- The Chernoff bound gives a bound on the probability that the average of the r_i are far from E[R]

$$\Pr\left(\left|E[R] - \frac{1}{w} \sum_{i=1}^{w} r_i\right| \ge \varepsilon\right) \le \exp\left(-\left(\frac{\varepsilon}{Z}\right)^2 w\right)$$

Equivalent Statement:

With probability at least $1-\delta$ we have that,

$$\left| E[R] - \frac{1}{w} \sum_{i=1}^{w} r_i \right| \leq Z \sqrt{\frac{1}{w} \ln \frac{1}{\delta}}$$

Aside: Coin Flip Example

- Suppose we have a coin with probability of heads equal to p.
- Let X be a random variable where X=1 if the coin flip gives heads and zero otherwise. (so Z from bound is 1)

$$E[X] = 1*p + 0*(1-p) = p$$

- After flipping a coin w times we can estimate the heads prob. by average of x_i .
- The Chernoff bound tells us that this estimate converges exponentially fast to the true mean (coin bias) *p*.

$$\Pr\left(\left|p - \frac{1}{w} \sum_{i=1}^{w} x_i\right| \ge \varepsilon\right) \le \exp\left(-\varepsilon^2 w\right)$$

UniformBandit Algorithm

Even-Dar, E., Mannor, S., & Mansour, Y. (2002). PAC bounds for multi-armed bandit and Markov decision processes. In *Computational Learning Theory*

- 1. Pull each arm w times (uniform pulling).
- 2. Return arm with best average reward.

Can we make this an efficient PAC bandit algorithm?

UniformBandit PAC Bound

For a single bandit arm the Chernoff bound says:

With probability at least $1-\delta$ ' we have that,

$$\left| E[R(s, a_i)] - \frac{1}{w} \sum_{j=1}^{w} r_{ij} \right| \le R_{\text{max}} \sqrt{\frac{1}{w} \ln \frac{1}{\delta'}}$$

• Bounding the error by **E** gives:

$$R_{\max} \sqrt{\frac{1}{w} \ln \frac{1}{\delta'}} \le \varepsilon$$
 or equivalently $w \ge \left(\frac{R_{\max}}{\varepsilon}\right)^2 \ln \frac{1}{\delta'}$

• Thus, using this many samples for a single arm will guarantee an **E**-accurate estimate with probability at least $1-\delta$ '

UniformBandit PAC Bound

- So we see that with $w \ge \left(\frac{R_{\text{max}}}{\varepsilon}\right)^2 \ln \frac{1}{\delta}$ samples per arm,
 - there is no more than a δ' probability that an individual arm's estimate will **not** be **E**-accurate
 - But we want to bound the probability of any arm being inaccurate

The **union bound** says that for *k* events, the probability that at least one event occurs is bounded by the sum of individual probabilities

$$\Pr(A_1 \text{ or } A_2 \text{ or } \cdots \text{ or } A_k) \leq \sum_{i=1}^k \Pr(A_k)$$

- Using the above # samples per arm and the union bound (with events being "arm i is not **E**-accurate") there is no more than $k\delta$ ' probability of any arm not being **E**-accurate
- Setting $\delta' = \frac{\delta}{k}$ all arms are **E**-accurate with prob. at least 1δ

UniformBandit PAC Bound

Putting everything together we get:

If
$$w \ge \left(\frac{R_{\max}}{\varepsilon}\right)^2 \ln \frac{k}{\delta}$$
 then for all arms simultaneously
$$\left|E[R(s,a_i)] - \frac{1}{w} \sum_{j=1}^w r_{ij}\right| \le \varepsilon$$

with probability at least $1-\delta$

- That is, estimates of all actions are \mathbf{E} accurate with probability at least 1- δ
- Thus selecting estimate with highest value is approximately optimal with high probability, or PAC

Simulator Calls for UniformBandit

- Total simulator calls for PAC: $k \cdot w = \left(\frac{R_{\text{max}}}{\varepsilon}\right)^{2} k \ln \frac{k}{\delta}$
 - So we have an efficient PAC algorithm
 - Can we do better than this?

Non-Uniform Sampling

- If an arm is really bad, we should be able to eliminate it from consideration early on
- Idea: try to allocate more pulls to arms that appear more promising

Median Elimination Algorithm

Even-Dar, E., Mannor, S., & Mansour, Y. (2002). PAC bounds for multi-armed bandit and Markov decision processes. In *Computational Learning Theory*

Median Elimination

```
A = set of all arms

For i = 1 to .....

Pull each arm in A \mathbf{w}_i times

m = median of the average rewards of the arms in A

A = A - {arms with average reward less than m}

If |A| = 1 then return the arm in A
```

Eliminates half of the arms each round. How to set the w_i to get PAC guarantee?

Median Elimination (proof not covered)

Theoretical values used by Median Elimination:

$$w_i = \frac{4}{\epsilon_i^2} \ln \frac{3}{\delta_i} \qquad \epsilon_i = \left(\frac{3}{4}\right)^{i-1} \cdot \frac{\epsilon}{4} \qquad \delta_i = \frac{\delta}{2^i}$$

Theorem: Median Elimination is a PAC algorithm and uses a number of pulls that is at most $O\left(\frac{k}{\varepsilon^2}\ln\frac{1}{\delta}\right)$

Compare to $O\left(\frac{k}{\varepsilon^2} \ln \frac{k}{\delta}\right)$ for UniformBandit

PAC Summary

- Median Elimination uses O(log(k)) fewer pulls than Uniform
 - Known to be asymptotically optimal (no PAC algorithm can use fewer pulls in worst case)
- PAC objective is sometimes awkward in practice
 - Sometimes we don't know how many pulls we will have
 - Sometimes we can't control how many pulls we get
 - \triangleright Selecting ϵ and δ can be quite arbitrary
- Cumulative & simple regret partly address this

Cumulative Regret Objective

- Problem: find arm-pulling strategy such that the expected total reward at time n is close to the best possible (one pull per time step)
 - ◆ Optimal (in expectation) is to pull optimal arm n times
 - UniformBandit is poor choice --- waste time on bad arms
 - Must balance exploring machines to find good payoffs and exploiting current knowledge

Cumulative Regret Objective

- Theoretical results are often about "expected cumulative regret" of an arm pulling strategy.
- **Protocol:** At time step n the algorithm picks an arm a_n based on what it has seen so far and receives reward r_n (a_n and r_n are random variables).

• Expected Cumulative Regret ($E[Reg_n]$): difference between optimal expected cumulative reward and expected cumulative reward of our strategy at time n

$$E[Reg_n] = n \cdot R^* - \sum_{i=1}^n E[r_n]$$

UCB Algorithm for Minimizing Cumulative Regret

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. *Machine learning*, *47*(2), 235-256.

- Q(a): average reward for trying action a (in our single state s) so far
- n(a): number of pulls of arm a so far
- Action choice by UCB after n pulls:

$$a_n = \arg\max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$$

 Assumes rewards in [0,1]. We can always normalize if we know max value.

UCB: Bounded Sub-Optimality

$$a_n = \arg\max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$$

Value Term:

favors actions that looked good historically

Exploration Term:

actions get an exploration bonus that grows with ln(n)

Expected number of pulls of sub-optimal arm **a** is bounded by:

$$\frac{8}{\Delta_a^2} \ln n$$

where Δ_a is the sub-optimality of arm **a**

Doesn't waste much time on sub-optimal arms, unlike uniform!

UCB Performance Guarantee

[Auer, Cesa-Bianchi, & Fischer, 2002]

Theorem: The expected cumulative regret of UCB $E[Reg_n]$ after n arm pulls is bounded by $O(\log n)$

Is this good?

Yes. The average per-step regret is $O\left(\frac{\log(n)}{n}\right)$

Theorem: No algorithm can achieve a better expected regret (up to constant factors)

What Else

- UCB is great when we care about cumulative regret
- But, sometimes all we care about is finding a good arm quickly
- This is similar to the PAC objective, but:
 - The PAC algorithms required precise knowledge of or control of # pulls
 - We would like to be able to stop at any time and get a good result with some guarantees on expected performance

 "Simple regret" is an appropriate objective in these cases

Simple Regret Objective

- **Protocol:** At time step n the algorithm picks an "exploration" arm a_n to pull and observes reward r_n and also picks an arm index it thinks is best j_n (a_n , j_n and r_n are random variables).
 - riangle If interrupted at time n the algorithm returns j_n .

• Expected Simple Regret ($E[SReg_n]$): difference between R^* and expected reward of arm j_n selected by our strategy at time n

$$E[SReg_n] = R^* - E[R(a_{j_n})]$$

Simple Regret Objective

- What about UCB for simple regret?
 - Intuitively we might think UCB puts too much emphasis on pulling the best arm
 - After an arm starts looking good, we might be better off trying figure out if there is indeed a better arm

Theorem: The expected simple regret of UCB after n arm pulls is upper bounded by $O(n^{-c})$ for a constant c.

Seems good, but we can do much better in theory.

Incremental Uniform (or Round Robin)

Bubeck, S., Munos, R., & Stoltz, G. (2011). Pure exploration in finitely-armed and continuous-armed bandits. Theoretical Computer Science, 412(19), 1832-1852

Algorithm:

- At round n pull arm with index (k mod n) + 1
- At round n return arm (if asked) with largest average reward

Theorem: The expected simple regret of Uniform after n arm pulls is upper bounded by $O(e^{-cn})$ for a constant c.

- This bound is exponentially decreasing in n!
 - Compared to polynomially for UCB $O(n^{-c})$.

Can we do better?

Tolpin, D. & Shimony, S, E. (2012). MCTS Based on Simple Regret. *AAAI Conference on Artificial Intelligence.*

Algorithm ϵ -Greedy : (parameter $0 < \epsilon < 1$)

- At round n, with probability ϵ pull arm with best average reward so far, otherwise pull one of the other arms at random.
- At round n return arm (if asked) with largest average reward

Theorem: The expected simple regret of ϵ -Greedy for $\epsilon = 0.5$ after n arm pulls is upper bounded by $O(e^{-cn})$ for a constant c that is larger than the constant for Uniform (this holds for "large enough" n).

Summary of Bandits in Theory

- PAC Objective:
 - UniformBandit is a simple PAC algorithm
 - MedianElimination improves by a factor of log(k) and is optimal up to constant factors
- Cumulative Regret:
 - Uniform is very bad!
 - UCB is optimal (up to constant factors)
- Simple Regret:
 - UCB shown to reduce regret at polynomial rate
 - Uniform reduces at an exponential rate
 - 0.5-Greedy may have even better exponential rate

Theory vs. Practice

- The established theoretical relationships among bandit algorithms have often been useful in predicting empirical relationships.
- But not always

Theory vs. Practice

b. regret vs. number of samples