

FCC PART 15C TEST REPORT No. 2014EEB00058-BLE

For

LOCCA lost&found services GmbH

GPS tracker

Model Name: T100

Market Name: Locca Mini

With

Hardware Version: V3.1

Software Version: V2.0

FCC ID: 2ABNZ-LOCCAMINI

IC Number: 11840A-LOCCAMINI

Issued Date: Jun 11th, 2014

Test Laboratory:

FCC 2.948 Listed: No.310359 IC O.A.T.S listed: No.6629C-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191

Tel:+86(0)10-62304633-2678, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com. www.emcite.com

CONTENTS

1.	TEST LABORATORY	4
1	1.1. TESTING LOCATION	4
1	1.2. TESTING ENVIRONMENT	4
1	1.3. PROJECT DATA	4
1	1.4. SIGNATURE	4
2.	CLIENT INFORMATION	5
2	2.1. APPLICANT INFORMATION	5
2	2.2. MANUFACTURER INFORMATION	5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3	3.1. About EUT	6
3	3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3	3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
4.	REFERENCE DOCUMENTS	7
4	4.1. DOCUMENTS SUPPLIED BY APPLICANT	7
4	4.2. REFERENCE DOCUMENTS FOR TESTING	7
5.	LABORATORY ENVIRONMENT	8
6.	SUMMARY OF TEST RESULTS	9
6	6.1. SUMMARY OF TEST RESULTS	9
6	5.2. Statements	9
6	5.3. TERMS USED IN THE RESULT TABLE	9
7.	TEST EQUIPMENTS UTILIZED	10
AN	NEX A: EUT PHOTOGRAPH	11
AN	NNEX B: MEASUREMENT RESULTS	13
E	B.0 Antenna requirement	13
	B.1 MAXIMUM PEAK OUTPUT POWER	
	B.2 PEAK POWER SPECTRAL DENSITY	
	B.3 OCCUPIED 6DB BANDWIDTH	
	B.4 BAND EDGES COMPLIANCE	
	B.5 Transmitter Spurious Emission	
	B.5.1 Transmitter Spurious Emission - Conducted	
	B.5.2 TRANSMITTER SPURIOUS EMISSION - RADIATED	
	B.6 AC POWERLINE CONDUCTED EMISSION	
AN	NNEX C: TEST FIGURE LIST	25

FIG. I	POWER SPECTRAL DENSITY (CH 0)	25
FIG. 2	POWER SPECTRAL DENSITY (CH 19)	25
FIG. 3	POWER SPECTRAL DENSITY (CH 39)	26
FIG. 4	OCCUPIED 6DB BANDWIDTH (CH 0)	26
FIG. 5	OCCUPIED 6DB BANDWIDTH (CH 19)	27
FIG. 6	OCCUPIED 6DB BANDWIDTH (CH 39)	27
Fig. 7	BAND EDGES (CH 0)	28
FIG. 8	BAND EDGES (CH 39)	28
FIG. 9	CONDUCTED SPURIOUS EMISSION (CH0, CENTER FREQUENCY)	29
FIG. 10	CONDUCTED SPURIOUS EMISSION (CH0, 30 MHz-3 GHz)	29
FIG. 11	CONDUCTED SPURIOUS EMISSION (CH0, 3 GHz-18 GHz)	30
FIG. 12	CONDUCTED SPURIOUS EMISSION (CH19, CENTER FREQUENCY)	30
FIG. 13	CONDUCTED SPURIOUS EMISSION (CH19, 30 MHz-3 GHz)	31
FIG. 14	CONDUCTED SPURIOUS EMISSION (CH19, 3 GHz-18 GHz)	31
FIG. 15	CONDUCTED SPURIOUS EMISSION (CH39, CENTER FREQUENCY)	32
FIG. 16	CONDUCTED SPURIOUS EMISSION (CH39, 30 MHz-3 GHz)	32
FIG. 17	CONDUCTED SPURIOUS EMISSION (CH39, 3 GHz-18 GHz)	33
FIG. 18	CONDUCTED SPURIOUS EMISSION (ALL CHANNELS, 18 GHz-26 GHz)	33
FIG. 19	RADIATED SPURIOUS EMISSION (CH0, 30 MHz-1 GHz)	34
FIG. 20	RADIATED SPURIOUS EMISSION (CH0, 1 GHz-3 GHz)	34
FIG. 21	RADIATED SPURIOUS EMISSION (CH0, 3 GHz-18 GHz)	35
FIG. 22	RADIATED SPURIOUS EMISSION (CH19, 30 MHz-1 GHz)	35
FIG. 23	RADIATED SPURIOUS EMISSION (CH19, 1 GHz-3 GHz)	36
FIG. 24	RADIATED SPURIOUS EMISSION (CH19, 3 GHz-18 GHz)	36
FIG. 25	RADIATED SPURIOUS EMISSION (CH39, 30 MHz-1 GHz)	37
FIG. 26	RADIATED SPURIOUS EMISSION (CH39, 1 GHz-3 GHz)	37
FIG. 27	RADIATED SPURIOUS EMISSION (CH39, 3 GHz-18 GHz)	38
FIG. 28	RADIATED EMISSION POWER (GFSK, CH0, 2380GHz~2450GHz)	38
FIG. 29	RADIATED EMISSION POWER (GFSK, CH39, 2450GHz~2500GHz)	39
FIG. 30	RADIATED EMISSION: 18 GHz - 26 GHz	39
FIG. 31	AC POWERLINE CONDUCTED EMISSION(TRAFFIC, AE2)	40
FIG. 32	AC POWERLINE CONDUCTED EMISSION(IDLE, AE2)	41
FIG. 33	OCCUPIED BANDWIDTH (CH 0)	42
FIG. 34	OCCUPIED BANDWIDTH (CH 19)	42
FIG. 35	OCCUPIED BANDWIDTH (CH 39)	43

1. Test Laboratory

1.1. Testing Location

Company Name:

TMC Shenzhen, Telecommunication Metrology Center of MIIT

Address:

No. 12 Building, Shangsha Innovation and Technology Park, Futian

District, Shenzhen, P. R. China

Postal Code:

518048

Telephone:

+86(0)755-33322000

Fax:

+86(0)755-33322001

1.2. Testing Environment

Normal Temperature:

15℃-30℃

Extreme Temperature:

-20°C/+55°C

Relative Humidity:

30%-60%

1.3. Project data

Project Leader:

Zhang Bojun

Test Engineer:

Tang Weisheng

Testing Start Date:

Jan 6th, 2014

Testing End Date:

May 27th, 2014

1.4. Signature

Tang Weisheng

(Prepared this test report)

Zhang Bojun

(Reviewed this test report)

Lu Minniu

Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: LOCCA lost&found services GmbH

Address /Post: Liechtensteinstr. 25/DG 1090 Vienna, Austria

City: Vienna

Postal Code: /

Country: Austria
Contact Persons: Keith Chan

E-mail: keith.chan@emporiatelecom.com

Telephone: (86) 755 2391 0500 Fax: (86) 755 2351 0530

2.2. Manufacturer Information

Company Name: emporia INDUSTIES

Address /Post: No 367 avendia da praia grande keng ou commercial building 16

andar a, macau

City: Macau

Postal Code: /

Country: China

Contact Persons: Michael Sun

E-mail: Michael.sun@emporiatelecom.com

Telephone: (86) 755 2391 0500 Fax: (86) 755 2351 0530

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GPS tracker

Model Name T100

Market Name Locca Mini

Frequency Band 2402MHz~2480MHz

Type of Modulation GFSK

FCC ID 2ABNZ-LOCCAMINI IC Number 11840A-LOCCAMINI

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	/	V3.1	V2.0

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	SN
AE1	Li-ion Battery	AK-T100	/
AE2	Charger	TPA-655055UU	1

^{*}AE ID: is used to identify the test accessory in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C:	Oct,2012
	15.205 Restricted bands of operation;	Edition
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz, 2400-2483.5	
	MHz, and 5725-5850 MHz.	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2009
	Low-Voltage Electrical and Electronic Equipment in the Range	
	of 9 kHz to 40 GHz	
KDB558074	Measurement of Digital Transmission Systems	April,
	Operating under Section 15.247	2013
IC RSS-210	RSS-210 Spectrum Management and Telecommunications	Issue 8
	Radio Standards Specification - Low-power Licence-exempt	Dec,2010
	Radiocommunication Devices (All Frequency Bands): Category	
	I Equipment	
IC RSS-Gen	General Requirements and Information for the Certification of	Issue 3
	Radio Apparatus	Dec,2010

5. Laboratory Environment

Half-anechoic chamber (11.20 meters×6.10 meters×5.60 meters) did not exceed following limits:

Temperature	Min. = 15 °C, Max. = 30 °C		
Relative humidity	Min. = 30 %, Max. = 60 %		
Shielding effectiveness > 110 dB			
Electrical insulation $> 2M \Omega$			
Ground system resistance $< 0.5 \Omega$			
Normalized Site Attenuation (NSA)	< ±3.5dB, with 3m of Measuring distance, 30MHz 1000MHz		
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz		

Fully-anechoic chamber (11.20 meters×6.10 meters×6.60 meters) did not exceed following limits:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C		
Relative humidity	Min. = 30 %, Max. = 60 %		
Shielding effectiveness	> 110 dB		
Electrical insulation	> 2M Ω		
Ground system resistance	< 0.5 Ω		
VSWR	Between 0 and 6 dB, from 30MHz to 18 000 MHz		

Conduction Lab did not exceed following limits:

Temperature	Min.=15 ℃, Max.=30 ℃
Relative humidity	Min.=30 %, Max.= 60 %
Shielding effectiveness	> 80 dB
Electrical insulation	> 2M Ω
Ground system resistance	< 0.5 Ω

6. Summary of Test Results

6.1. Summary of Test Results

Na	Tost coops	Sub-clause of	Sub-clause of	Vondiet	
No	Test cases	Part15C	IC	Verdict	
0	Antenna Requirement	15.203	1	Р	
1	Maximum Peak Output Power	15.247 (a)	RSS-210	-	
ı	Maximum Feak Output Fower	15.247 (a)	Issue8 A8.4	Р	
2	Peak Power Spectral Density	15.247 (e)	RSS-210	ь	
	reak rower Spectral Delisity	13.247 (e)	Issue8 A8.2	P	
3	Occupied 6dB Bandwidth	15.247 (a)	RSS-210	Р	
3	Occupied odb Baildwidti	13.247 (a)	Issue8 A8.2		
4	Band Edges Compliance	R 15 247 (d)		Р	
7	Band Edges Compliance	15.247 (d)	Issue8 A8.5		
5	Transmitter Spurious Emission - Conducted	15.247(d)	RSS-210	Р	
	Transmitter opunous Emission - Conducted	15.247 (d)	Issue8 A8.5	ľ	
6	Transmitter Spurious Emission - Radiated	15.247, 15.205,	RSS-210	P	
	Transmitter Spunous Emission - Tradiated	15.209	Issue8 A8.5	Г	
7	AC Powerline Conducted Emission	15.207	RSS-Gen	Р	
	AC Fowerline Conducted Emission	13.207	Issue3 7.2.4	F	
8	Occupied Bandwidth	,	RSS-Gen	,	
0	Occupied Baildwidth	1	Issue3 4.6.1	,	

6.2. Statements

TMC has evaluated the test cases requested by the applicant/manufacturer as listed in section 6.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2

6.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current	
AFH	Adaptive Frequency Hopping	
BW	Band Width	
E.I.R.P.	equivalent isotropical radiated power	
ISM	SM Industrial, Scientific and Medical	
R&TTE	Radio and Telecommunications Terminal Equipment	
RF	Radio Frequency	
Tx	Transmitter	

7. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2015-04-22	1 year

Radiated emission test system

	Radiated Chilosion test system					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Chamber	FACT5-2.0	4166	ETS-Lindgren	2016-05-29	3 years
2	Test Receiver	ESCI	100701	Rohde & Schwarz	2014-07-31	1 year
3	Spectrum Analyzer	FSP40	100378	Rohde & Schwarz	2014-12-20	1 year
4	BiLog Antenna	VULB9163	9163-329	Schwarzbeck	2017-01-20	3 years
5	Dual-Ridge Waveguide Horn Antenna	3160-09	00118383	ETS-Lindgren	2015-09-05	3 years
6	Test Receiver	ESCI	100702	Rohde & Schwarz	2014-07-31	1 year
7	LISN	ESH2-Z5	100196	Rohde & Schwarz	2015-01-14	1 year
8	Signal Generator	SMR40	100541	Rohde & Schwarz	2014-12-26	1 year
9	Dual-Ridge Waveguide Horn Antenna	3117	00066577	ETS-Lindgren	2016-04-01	3 years
10	Loop Antenna	HLA6120	35779	TESEQ	2016-02-25	3 years

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren.

ANNEX A: EUT photograph

Pic A-1 GPS tracker

Pic A-2 GPS tracker

Pic A-3 Docker

Pic A-4 Charger

ANNEX B: MEASUREMENT RESULTS

B.0 Antenna requirement

Measurement Limit:

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of
FCC CRF Part 15.203	this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, § 15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is -1.0 dBi.

The RF transmitter uses an integrate antenna without connector.

B.1 Maximum Peak Output Power

Measurement Limit and Method:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1)	< 30
RSS-210 Issue8 A8.4	\ 30

Test Condition:

Hopping Mode	RBW	VBW	SPAN	Sweeptime
Hopping off	3MHz	3MHz	10MHz	Auto

Measurement Results:

Mode	Channel	Maximum Peak Output Power (dBm)	Conclusion
	0	-6.15	Р
GFSK	19	-4.85	Р
	39	-4.83	Р

B.2 Peak Power Spectral Density

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(d)	< 0 dDm/2 kH -
RSS-210 Issue8 A8.2	< 8 dBm/3 kHz

Measurement Results:

Mode	Channel	Peak Power Spectral Density (dBm)		Conclusion
	0	Fig.1	-21.45	Р
GFSK	19	Fig.2	-21.28	Р
	39	Fig.3	-21.26	Р

See ANNEX C for test graphs.

B.3 Occupied 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	> 500
RSS-210 Issue8 A8.2	≥ 500

Measurement Result:

Mode	Channel	Test Results (kHz)		conclusion
	0	Fig.4	687.4	Р
GFSK	19	Fig.5	687.4	Р
	39	Fig.6	687.4	Р

See ANNEX C for test graphs.

B.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)	
FCC 47 CFR Part 15.247 (d)	> 20	
RSS-210 Issue8 A8.5	> 20	

Measurement Result:

Mode	Channel	Test Results	Conclusion
GFSK	0	Fig.7	Р
Grak	39	Fig.8	Р

See ANNEX C for test graphs.

B.5 Transmitter Spurious Emission

B.5.1 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
RSS-210 Issue8 A8.5	bandwidth

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion	
		2.402 GHz	Fig.9	Р	
	0	30 MHz-3 GHz	Fig.10	Р	
		3GHz-18GHz	Fig.11	Р	
		2.440 GHz	Fig.12	Р	
GFSK	19	19	30 MHz-3 GHz	Fig.13	Р
GFSK			3GHz-18GHz	Fig.14	Р
		2.480 GHz	Fig.15	Р	
	39	30 MHz-3 GHz	Fig.16	Р	
			3GHz-18GHz	Fig.17	Р
	All channels	18GHz-26GHz	Fig.18	Р	

See ANNEX C for test graphs.

B.5.2 Transmitter Spurious Emission - Radiated Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dP holow pook output nower	
RSS-210 Issue8 A8.5	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field atronath(u)//m)	Measurement
(MHz)	Field strength(μV/m)	distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Note:

According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band below 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
		30 MHz ~1 GHz	Fig.19	Р
	0	1 GHz ~ 3 GHz	Fig.20	Р
		3 GHz ~ 18 GHz	Fig.21	Р
		30 MHz ~1 GHz	Fig.22	Р
	19	1 GHz ~ 3 GHz	Fig.23	Р
GFSK		3 GHz ~ 18 GHz	Fig.24	Р
		30 MHz ~1 GHz	Fig.25	Р
	39	1 GHz ~ 3 GHz	Fig.26	Р
		3 GHz ~ 18 GHz	Fig.27	Р
	Power(CH0)	2.38 GHz ~ 2.45 GHz	Fig.28	Р
	Power(CH39)	2.45 GHz ~ 2.5 GHz	Fig.29	Р
1	All channels	18 GHz~ 26.5 GHz	Fig.30	Р

GFSK CH0 (1-18GHz)

SI SI SI SI (1 10SI 12)					
Frequency	Average	Polariza	Corr.	Margin	Limit
(MHz)	-ClearW	tion	(dB)	(dB)	(dBµV/m)
7446.7500	43.5	Н	8.7	10.5	54.0
10513.000	41.5	Н	12.0	12.5	54.0
12156.000	43.6	V	13.1	10.4	54.0
13813.000	44.7	V	13.0	9.3	54.0
15777.000	48.1	V	14.5	5.9	54.0
16779.000	48.9	V	15.5	5.1	54.0

GFSK CH0 (1-18GHz)

Frequency	MaxPea	Polariza	Corr.	Margin	Limit
(MHz)	k-Clear	tion	(dB)	(dB)	(dBµV/m)
16220.000	59.8	V	14.8	14.2	74.0
16762.000	60.1	V	15.4	13.9	74.0
16854.000	60.0	V	15.9	14.0	74.0
17265.000	61.1	Н	15.5	12.9	74.0
17409.000	60.6	V	15.8	13.4	74.0
17484.000	60.0	Н	15.9	14.0	74.0

GFSK CH19 (1-18GHz)

Frequency (MHz)	Average -ClearW	Polariza tion	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
7019.7500	38.8	V	9.1	15.2	54.0
8082.8750	40.0	Н	9.3	14.0	54.0
9974.6250	41.8	V	11.7	12.2	54.0
11552.000	42.4	Н	12.3	11.6	54.0
13606.000	44.9	V	12.8	9.1	54.0
16768.000	49.6	V	15.5	4.4	54.0

GFSK CH19 (1-18GHz)

Frequency	MaxPea	Polariza	Corr.	Margin	Limit
(MHz)	k-Clear	tion	(dB)	(dB)	(dBµV/m)
16725.000	60.7	V	15.2	13.3	74.0
17248.000	60.7	Н	15.5	13.3	74.0
17334.000	60.7	Н	15.7	13.3	74.0
17377.000	60.7	V	15.7	13.3	74.0
17392.000	61.0	V	15.8	13.0	74.0
17477.000	60.6	V	15.9	13.4	74.0

GFSK CH39 (1-18GHz)

Frequency	Average	Polariza	Corr.	Margin	Limit
(MHz)	-ClearW	tion	(dB)	(dB)	(dBµV/m)
2356.5000	38.1	V	3.7	15.9	54.0
6256.7500	38.3	V	9.4	15.7	54.0
6304.8750	38.4	Н	9.3	15.6	54.0
12665.000	44.0	V	13.6	10.0	54.0
13799.000	44.7	V	13.0	9.3	54.0
15773.000	48.0	V	14.5	6.0	54.0

GFSK CH39 (1-18GHz)

Frequency (MHz)	MaxPea k-Clear	Polariza tion	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
15785.000	59.7	V	14.6	14.3	74.0
16351.000	59.9	V	15.6	14.1	74.0
16843.000	59.8	V	15.9	14.2	74.0
16858.000	60.0	V	15.9	14.0	74.0
16905.000	60.1	Н	16.0	13.9	74.0
17485.000	60.2	V	15.9	13.8	74.0

See ANNEX C for test graphs.

Conclusion: Pass

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

B.6 AC Powerline Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BT (Quasi-peak Limit)-AE2

Frequency range	Quasi-peak	Result	Result (dBμV)		
(MHz)	Limit (dBμV)	Traffic Idle		Conclusion	
0.15 to 0.5	66 to 56				
0.5 to 5	56	Fig.31	Fig.32	Р	
5 to 30	60				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

BT (Average Limit)-AE2

Frequency range	Average-peak	Result (dBμV)		Conclusion	
(MHz)	Limit (dBμV)	Traffic Idle			
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.31	Fig.32	Р	
5 to 30	50				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

Note: The measurement results include the L1 and N measurements.

See ANNEX C for test graphs.

B.7 Occupied Bandwidth

Measurement Limit:

Standard	Limit
RSS-Gen Issue3 4.6.1	/

Measurement Result:

Mode	Channel	Occupied Bandwidth (MHz)		conclusion
	0	Fig.33	1.143	1
GFSK	19	Fig.34	1.100	1
	39	Fig.35	1.100	1

See ANNEX C for test graphs.

Conclusion: PASS

ANNEX C: TEST FIGURE LIST

Fig. 1 Power Spectral Density (Ch 0)

Fig. 2 Power Spectral Density (Ch 19)

Fig. 3 Power Spectral Density (Ch 39)

Fig. 4 Occupied 6dB Bandwidth (Ch 0)

Fig. 5 Occupied 6dB Bandwidth (Ch 19)

Fig. 6 Occupied 6dB Bandwidth (Ch 39)

Fig. 7 Band Edges (Ch 0)

Fig. 8 Band Edges (Ch 39)

Fig. 9 Conducted Spurious Emission (Ch0, Center Frequency)

Fig. 10 Conducted Spurious Emission (Ch0, 30 MHz-3 GHz)

Fig. 11 Conducted Spurious Emission (Ch0, 3 GHz-18 GHz)

Fig. 12 Conducted Spurious Emission (Ch19, Center Frequency)

Fig. 13 Conducted Spurious Emission (Ch19, 30 MHz-3 GHz)

Fig. 14 Conducted Spurious Emission (Ch19, 3 GHz-18 GHz)

Fig. 15 Conducted Spurious Emission (Ch39, Center Frequency)

Fig. 16 Conducted Spurious Emission (Ch39, 30 MHz-3 GHz)

Fig. 17 Conducted Spurious Emission (Ch39, 3 GHz-18 GHz)

Fig. 18 Conducted Spurious Emission (All channels, 18 GHz-26 GHz)

Fig. 19 Radiated Spurious Emission (Ch0, 30 MHz-1 GHz)

Fig. 20 Radiated Spurious Emission (Ch0, 1 GHz-3 GHz)

Fig. 21 Radiated Spurious Emission (Ch0, 3 GHz-18 GHz)

Fig. 22 Radiated Spurious Emission (Ch19, 30 MHz-1 GHz)

Fig. 23 Radiated Spurious Emission (Ch19, 1 GHz-3 GHz)

Fig. 24 Radiated Spurious Emission (Ch19, 3 GHz-18 GHz)

Fig. 25 Radiated Spurious Emission (Ch39, 30 MHz-1 GHz)

Fig. 26 Radiated Spurious Emission (Ch39, 1 GHz-3 GHz)

Fig. 27 Radiated Spurious Emission (Ch39, 3 GHz-18 GHz)

Fig. 28 Radiated Emission Power (GFSK, Ch0, 2380GHz~2450GHz)

2500

Fig. 29 Radiated Emission Power (GFSK, Ch39, 2450GHz~2500GHz)

Frequency in MHz

2470

2480

2490

2450

2460

Fig. 30 Radiated emission: 18 GHz - 26 GHz

ESH2-Z5 Scan-FCC

Fig. 31 AC Powerline Conducted Emission(Traffic, AE2)

2M

Frequency in Hz

3M 4M 5M 6

20M

MEASUREMENT RESULT: " QuasiPeak "

10

150k

300 400 500

800 1M

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.450000	49.1	FLO	L1	10.0	7.8	56.9
0.466000	47.0	FLO	L1	10.0	9.6	56.6
0.482000	46.4	FLO	L1	10.0	9.9	56.3
0.510000	42.2	FLO	L1	10.0	13.8	56.0
0.762000	41.4	FLO	L1	10.1	14.6	56.0
0.790000	40.8	FLO	L1	10.1	15.2	56.0

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.450000	36.7	FLO	L1	10.0	10.2	46.9
0.458000	37.1	FLO	L1	10.0	9.7	46.7
0.466000	35.6	FLO	L1	10.0	11.0	46.6
0.474000	35.2	FLO	L1	10.0	11.3	46.4
0.482000	34.8	FLO	L1	10.0	11.5	46.3
0.658000	30.3	FLO	L1	10.0	15.7	46.0

Fig. 32 AC Powerline Conducted Emission(Idle, AE2)

ESH2-Z5 Scan-FCC

MEASUREMENT RESULT: " QuasiPeak "

60

50

20

10

Vevelin dBµV

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.462000	49.4	FLO	L1	10.0	7.3	56.7
0.474000	46.7	FLO	L1	10.0	9.8	56.4
0.518000	41.6	FLO	L1	10.0	14.4	56.0
0.678000	41.9	FLO	L1	10.0	14.1	56.0
0.694000	42.2	FLO	L1	10.0	13.8	56.0
0.830000	41.9	FLO	L1	10.0	14.1	56.0

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.466000	36.6	FLO	L1	10.0	10.0	46.6
0.474000	35.6	FLO	L1	10.0	10.8	46.4
0.482000	34.8	FLO	L1	10.0	11.5	46.3
0.490000	34.5	FLO	L1	10.0	11.7	46.2
0.726000	29.9	FLO	L1	10.0	16.1	46.0
0.918000	31.6	FLO	L1	10.1	14.4	46.0

Fig. 33 Occupied Bandwidth (Ch 0)

Fig. 34 Occupied Bandwidth (Ch 19)

Fig. 35 Occupied Bandwidth (Ch 39)

*** END OF REPORT BODY ***