Reg. No													TV		
---------	--	--	--	--	--	--	--	--	--	--	--	--	----	--	--

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Seventh Semester

18EEE405T - POWER ELECTRONICS IN RENEWABLE ENERGY SYSTEM

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
ii. Part - B and Part - C should be answered in answer booklet.

Tim	e: 3 Hours		Max.	Marks	: 100
 -	PART - A (20 × 1 Answer all (Mar	ks BL	CO
_1.	Which one of the following energy is generation? (A) Wind energy (C) Biomass	easily accessible for heating and electricity (B) Solar Energy	1 .	1	1
2.	is a non-renewable energy (A) Solar (C) Biomass	(D) Fuel Cell y source. (B) Wind (D) Coal	1	1	1
3.	What is the advantage of biomass? (A) Renewable (C) Intermittent	(B) Non versatile (D) Construction cost	1	- 1	1
4.	Which state in India has the highest win (A) Gujarat (C) Karnataka	d energy generation (B) Rajasthan (D) Tamilnadu	1	1	1
5.	Identify the correct relation with respect (A) Cell < array < module < farm (C) farm < cell < array < module	ive to solar panels. (B) cell < module < array < farm (D) cell < farm < array < module	1	12	₽2
6.	Factors for selection of battery and invert (A) temperature of the environment (C) PV model	rters for PV interface include (B) irradiation level (D) Size, Power rating, Discharge rate	1	2	2
7.	Reverse saturation current in a PV mode (A) Voc (C) Imp	eling is a function of (B) Vmp (D) Ioc	1	2	. 2
8.	Major difference between isolated and n (A) Voltage ratio (C) power ratio	on-isolated DC DC converters is (B) current ratio (D) transformer ratio	1	2	2
9.	Which site is not suitable for establishme (A) Open plains (C) High on the mountains	ent of wind energy systems? (B) Sea shore (D) Near high raised buildings	1	l, İ	3
10.	Which kind of generator is used in wind (A) DC Shunt (C) DFIG	energy systems? (B) DC series (D) SFIG	1	2	3 .
11.	Disadvantage of matrix converters include (A) modularity	(B) Power loss	1	2	3
	(C) Controller design	(D) Low power operation			

12.	What are the positive impacts of wind powe (A) Power quality issues (C) Frequency variation	r penetration in power grid? (B) Voltage misbalancing (D) Fuel cost minimization	1	1	3
10		(D) I del cost minimization	1	1	4
13.	Fuel cell has (A) High power density (C) High voltage density	(B) High energy density(D) High hydration density			
14.	Which fuel cell operates at high temperature (A) PEMFC (C) AFC	1	1	4	
15.	In which part of the fuel cell, water is obser (A) Anode (C) Electrolyte	ved as bi-product? (B) Cathode (D) Terminals	1	2	4
16.	Major issue in a fuel cell for power converte (A) Change in temperature (C) Change in voltage	er design is (B) Change in input gas pressure (D) Change in hydration	1	2	4
17.	What is the need of hybrid energy conversion (A) To improve steady state response (C) To improve both steady state and transient response	on systems? (B) To improve transient response (D) To improve steady state and deteriorate transient response.	1	2	5
18.	Major issue among the given list that is renewable energy systems is (A) Economic aspect (C) Sustainability aspect	(B) Technical aspect (D) Social aspect	1	2	5
19.	Select major power quality issue in hybrid s (A) Voltage stability (C) Generator field current	systems. (B) Efficiency (D) Resonance	1	2	5
20.	Multi-port n x 1 DC DC converters have (A) (n-1) input port and 1 output port (C) n input port and 1 output port	(B) 1 input port and n output port (D) 1 input port and (n-1) output port	1	·2	5
	$PART - B (5 \times 4 = 2)$	0 Marks)	Marl	ks BL	СО
	Answer any 5 Qu	estions			
21.	Draw the block diagram of a typical verticits parts.	al axis and horizontal axis turbines, name	4	1	1
22.	Design an appropriate PV array of 160 W, panel for the given load	4	3	2	
23.	Explain the working principle of a fuel cell	and draw its characteristic curve	4	1	1
24.	Explain with suitable diagram the role standalone PV system	4	2	2	
25.	Draw and explain the working of a single advantages	e phase matrix converter and mention its	4	1	3
26.	 a. Classify the fuel cell in accordance to the b. What type of dc- dc converters are premarks) 	e nature of electrolyte (2 marks) eferred for fuel cell interfaces? Justify (2	4	2	4
27.	Assume that the load current needed in a both sources are capable of feeding 10 A, it is ensured?	PV - Diesel hybrid system is 10 A, when which of the two sources is preferred? how	4	3	5

	DADEL COST (12 to CO Manks)	Marks	BL	CO
	PART - C ($5 \times 12 = 60 \text{ Marks}$)			
	Answer all Questions		0 6	
28.	(a) Discuss in detail the current energy scenario in India with respective to solar, wind and biomass (OR)	12	1	1
	(b) (i) Which renewable energy source deployment is more advisable in India? Justify. (6 Marks)			
	(ii) With necessary data, discuss the scenario of renewable energy power resources in India. (6 Marks)			
29.	(a) Explain any two MPPT techniques applied for PV system with necessary flow charts	12	2	2
	(OR)			
	(b) Explain the working of buck boost converter in a PV standalone system feeding a variable load			
30	(a) Derive necessary expressions for deducing Betz limit in a wind electric conversion system and state your inferences. (OR)	12	1	3
	(b) Explain with neat diagrams the various parts of wind energy conversion system			
31.	(a) i) Discuss in detail the working of PEMFC with necessary equations. (6 Marks)	12	2	4
	ii) Explain the working of a fuel cell interfaced boost converter. (6 Marks) (OR)			
	(b) Why does a fuel cell need a MPPT system? Develop an MPPT system for a fuel cell stack of 180 W. Assume one stack composition is 12V, 10A. Apply appropriate dc-dc converter and use P&O algorithm.			
32.	(a) i) With a neat diagram explain the working of hybrid energy system along with a suitable hybrid controller (8 marks)	12	2	5
	ii) Mention the advantages and disadvantages of hybrid energy systems (4 marks)			
	(OR)			
	(b) i) Explain various synchronization issues in a grid tied hybrid system (6 marks)			
	ii) Explain the advantage of multi-port converter and also explain how a multi-port buck-boost structure can be derived from a basic buck boost converter. (6 marks)			

de de de de de