MAE 6110: HW #2

Hanfeng Zhai*

September 14, 2021

1. Show that a dyad **ab** as defined in class is a linear transformation. In particular, find the matrix representing $\mathbf{e}_2\mathbf{e}_1$ and $\mathbf{e}_1\mathbf{e}_2$ with respect to the basis \mathbf{e}_i .

Solution: To show **ab** is a linear transformation, we need to show $\mathbf{ab}(m\mathbf{c} + n\mathbf{d}) = m\mathbf{ab}(\mathbf{x}) + n\mathbf{ab}(\mathbf{y})$. The left hand side writes:

$$\mathbf{ab}(m\mathbf{x} + n\mathbf{y}) = \mathbf{a}(m\mathbf{b} \cdot \mathbf{x} + n\mathbf{b} \cdot \mathbf{y})$$

$$= m\mathbf{ab} \cdot \mathbf{x} + n\mathbf{ab} \cdot \mathbf{y}$$

$$= ma_ib_j\mathbf{e}_i\mathbf{e}_j \cdot x_j\mathbf{e}_k + na_ib_j\mathbf{e}_i\mathbf{e}_j \cdot y_l\mathbf{e}_l$$

$$= ma_ib_jx_j\mathbf{e}_i\delta_{jk} + na_ib_jy_l\mathbf{e}_i\delta_{jl}$$

$$= ma_ib_jx_j\mathbf{e}_i + na_ib_jy_j\mathbf{e}_i$$

$$= m\mathbf{ab}(\mathbf{x}) + n\mathbf{ab}(\mathbf{y})$$

Hence we can deduce that **ab** is a linear transformation.

This linear transformation in the matrix representing e_1e_2 writes: a_1b_2 . and e_2e_1 : b_2a_1 .

2. A positive definite tensor **A** is a linear transformation that obeys $\mathbf{v} \cdot (\mathbf{A} \cdot \mathbf{v}) > \mathbf{0}$, for all non-zero vectors \mathbf{v} .

2a. For tensor \mathbf{F} , show that $\mathbf{C} = \mathbf{F}^t \mathbf{F}$ is a symmetric tensor.

Solution: Let $\mathbf{F} = f_{ij}\mathbf{e}_i\mathbf{e}_j$, therefore we can write \mathbf{C} :

$$\mathbf{C} = (f_{ii}\mathbf{e}_{i}\mathbf{e}_{i})(f_{ij}\mathbf{e}_{i}\mathbf{e}_{j})$$

and \mathbf{C}^t can be written as:

$$\mathbf{C}^t = (f_{ij}\mathbf{e}_i\mathbf{e}_j)^t (f_{ji}\mathbf{e}_j\mathbf{e}_i)^t$$
$$= (f_{ji}\mathbf{e}_j\mathbf{e}_i)(f_{ij}\mathbf{e}_i\mathbf{e}_j)$$

Therefore we can easily observe $\mathbf{C} = \mathbf{C}^t$. Hence \mathbf{C} is a symmetric tensor.

2b. If in addition **F** is invertible, show **C** is positive definite, that is, $\mathbf{v} \cdot \mathbf{C} \cdot \mathbf{v} > \mathbf{0}$ for all non-zero vector \mathbf{v} .

Solution: If **F** is invertible, we set vector $\mathbf{v} = v_k \mathbf{e}_k$; following the previous form, we can expand the term $\mathbf{v} \cdot \mathbf{C} \cdot \mathbf{v}$:

$$\mathbf{v} \cdot \mathbf{C} \cdot \mathbf{v} = v_k \mathbf{e}_k \cdot (f_{ji} \mathbf{e}_j \mathbf{e}_i) (f_{ij} \mathbf{e}_i \mathbf{e}_j) \cdot v_k \mathbf{e}_k$$

$$= v_k f_{ji} f_{ij} v_k \mathbf{e}_k \cdot \mathbf{e}_j \mathbf{e}_i \mathbf{e}_j \cdot \mathbf{e}_k$$

$$= v_k f_{ji} f_{ij} v_k \delta_{kj} \mathbf{e}_i \mathbf{e}_i \delta_{jk}$$

$$= v_k f_{ki} f_{ik} v_k \mathbf{e}_i \mathbf{e}_i$$

www.hanfengzhai.net

Sibley School of Mechanical and Aerospace Engineering, Cornell University

Here, k is the dummy index and \mathbf{e}_i marks the direction. Therefore the equation writes:

$$\mathbf{v} \cdot \mathbf{C} \cdot \mathbf{v} = ||\mathbf{v}||^2 ||\mathbf{F}||^2$$

and we can easily deduce $\mathbf{v} \cdot \mathbf{C} \cdot \mathbf{v} > 0$. Hence, \mathbf{C} is positive definite.

2c. Find a tensor **H** such that $\mathbf{H}^2 \equiv \mathbf{H} \cdot \mathbf{H} = \mathbf{C}$. **H** is often defined as the square root of the tensor **C**.

Solution: On the basis of 2a and 2b, we already know C is symmetric and positive definite, therefore we know that C can be diagonized. And in the new coordinate of diagonization C writes: $C = \lambda_i \mathbf{E}_i \mathbf{E}_i$.

We can therefore write \mathbf{C} as $\mathbf{C} = \lambda_1 \mathbf{E}_1 \mathbf{E}_1 + \lambda_2 \mathbf{E}_2 \mathbf{E}_2 + \lambda_3 \mathbf{E}_3 \mathbf{E}_3$.

Then $\mathbf{H} = \sqrt{\lambda_1} \mathbf{E}_1 \mathbf{E}_1 + \sqrt{\lambda_2} \mathbf{E}_2 \mathbf{E}_2 + \sqrt{\lambda_3} \mathbf{E}_3 \mathbf{E}_3$.

3. Let **W** be a second order tensor, **W** is called skew symmetric if $\mathbf{W} = -\mathbf{W}^t$.

3a. For any second order tensor **T**, show that $skew(\mathbf{T}) = \frac{\mathbf{T} - \mathbf{T}^t}{2}$ is skew symmetric.

Solution: With the given definition, and expand the tensor **T** as $t_{ij}\mathbf{e}_i\mathbf{e}_j$, we can write expand form $skew(\mathbf{T})$:

$$skew(\mathbf{T}) = \frac{1}{2}(t_{ij}\mathbf{e}_i\mathbf{e}_j - t_{ji}\mathbf{e}_j\mathbf{e}_i)$$

We can also write the term

$$-skew(\mathbf{T})^t = -\frac{1}{2}(t_{ij}\mathbf{e}_i\mathbf{e}_j - t_{ji}\mathbf{e}_j\mathbf{e}_i)^t$$
$$= -\frac{1}{2}(t_{ji}\mathbf{e}_j\mathbf{e}_i - t_{ij}\mathbf{e}_i\mathbf{e}_j)$$
$$= \frac{1}{2}(-t_{ji}\mathbf{e}_j\mathbf{e}_i + t_{ij}\mathbf{e}_i\mathbf{e}_j)$$

We can then easily get $skew(\mathbf{T}) = -skew(\mathbf{T})^t$.

3b. Show that for any skew tensor \mathbf{W} , there is a unique vector \mathbf{w} (called the axial vector of \mathbf{W}) such that $\mathbf{W}(\mathbf{x}) = \mathbf{w} \times \mathbf{x}$ for every vector \mathbf{x} . Hint: show that $\mathbf{W} = \frac{1}{2}w_{ij}(\mathbf{e}_i\mathbf{e}_j - \mathbf{e}_j\mathbf{e}_i)$ and $\mathbf{W} \cdot \mathbf{v} = \frac{1}{2}(w_{ij}\mathbf{e}_j \times \mathbf{e}_i) \times \mathbf{v}$.

Solution: With the given condition of **W** is a skew vector, we know that $w_{ij} = -w_{ji}$.

To show $\mathbf{W} = \frac{1}{2}w_{ij}(\mathbf{e}_i\mathbf{e}_j - \mathbf{e}_j\mathbf{e}_i)$, we can expand the form:

$$\mathbf{W} = \frac{1}{2}w_{ij}(\mathbf{e}_i\mathbf{e}_j - \mathbf{e}_j\mathbf{e}_i)$$
$$= \frac{1}{2}w_{ij}\mathbf{e}_i\mathbf{e}_j - \frac{1}{2}w_{ij}\mathbf{e}_j\mathbf{e}_i$$

Substituting $w_{ij} = -w_{ji}$ we therefore obtain:

$$\mathbf{W} = \frac{1}{2}w_{ij}\mathbf{e}_{i}\mathbf{e}_{j} + \frac{1}{2}w_{ji}\mathbf{e}_{j}\mathbf{e}_{i}$$
$$= \frac{1}{2}\mathbf{W} + \frac{1}{2}\mathbf{W} = \mathbf{W}$$

Therefore the equation is proved.

To show $\mathbf{W} \cdot \mathbf{v} = \frac{1}{2}(w_{ij}\mathbf{e}_j \times \mathbf{e}_i) \times \mathbf{v}$, we first expand the left hand side:

$$\mathbf{W} \cdot \mathbf{v} = \left(\frac{1}{2}w_{ij}(\mathbf{e}_{i}\mathbf{e}_{j} - \mathbf{e}_{j}\mathbf{e}_{i})\right) \cdot v_{k}\mathbf{e}_{k}$$

$$= \left(\frac{1}{2}w_{ij}\mathbf{e}_{i}\mathbf{e}_{j} - \frac{1}{2}w_{ij}\mathbf{e}_{j}\mathbf{e}_{i}\right) \cdot v_{k}\mathbf{e}_{k}$$

$$= \frac{1}{2}w_{ij}\mathbf{e}_{i}\delta_{jk} - \frac{1}{2}w_{ij}\mathbf{e}_{j}\delta_{ik}$$

$$= \frac{1}{2}w_{ik}v_{k}\mathbf{e}_{i} - \frac{1}{2}w_{kj}v_{k}\mathbf{e}_{j}$$

$$(1)$$

We then expand the right hand side, and substitute the previous term:

$$\frac{1}{2}(w_{ij}\mathbf{e}_{j} \times \mathbf{e}_{i}) \times \mathbf{v} = \frac{1}{2}(w_{ij}\mathbf{e}_{j} \times \mathbf{e}_{i}) \times v_{k}\mathbf{e}_{k}$$

$$= \frac{1}{2}w_{ij}v_{k}(\mathbf{e}_{j} \times \mathbf{e}_{i}) \times \mathbf{e}_{k}$$

$$= \frac{1}{2}w_{ij}v_{k}\left[-(\mathbf{e}_{k} \cdot \mathbf{e}_{i})\mathbf{e}_{j} + (\mathbf{e}_{k} \cdot \mathbf{e}_{j})\mathbf{e}_{i}\right]$$

$$= \frac{1}{2}w_{ij}v_{k}\left[-(\delta_{ki})\mathbf{e}_{j} + (\delta_{kj})\mathbf{e}_{i}\right]$$

$$= -\frac{1}{2}w_{kj}v_{k}\mathbf{e}_{j} + \frac{1}{2}w_{ik}v_{k}\mathbf{e}_{i}$$
(2)

From the above equations we can easily get equation (1) equals equation (2). The equation is therefore proved.

3c. How many linearly independent eigenvectors does W has?

Solution: Based on the previous given information, for tensor **W**, we can write it in the form

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ -w_{12} & w_{22} & w_{23} \\ -w_{13} & -w_{23} & w_{33} \end{bmatrix}$$

To compute its eigenvectors, we compute:

$$\det(\mathbf{W} - \lambda) = \begin{vmatrix} w_{11} - \lambda & w_{12} & w_{13} \\ -w_{12} & w_{22} - \lambda & w_{23} \\ -w_{13} & -w_{23} & w_{33} - \lambda \end{vmatrix} = 0$$
$$= (w_{11} - \lambda)(w_{22} - \lambda)(w_{33} - \lambda) + w_{13}^2(w_{22} - \lambda)^2 + w_{23}(w_{11} - \lambda) + w_{12}^2(w_{33} - \lambda)$$

From the equations we can easily deduce that there are three eigenvalues $\lambda_1 = w_{11}$, $\lambda_2 = w_{22}$, $\lambda_3 = w_{33}$. Hence there are three independent eigenvectors of **W**.

4a The action of a certain tensor (call this the stress tensor) **S** on an orthonormal basis \mathbf{e}_i is:

$$\mathbf{S} \cdot \mathbf{e}_1 = 6\mathbf{e}_1 - 2\mathbf{e}_2 - \mathbf{e}_3$$

 $\mathbf{S} \cdot \mathbf{e}_2 = -2\mathbf{e}_1 + 6\mathbf{e}_2 - \mathbf{e}_3$
 $\mathbf{S} \cdot \mathbf{e}_3 = -\mathbf{e}_1 - \mathbf{e}_2 + 5\mathbf{e}_3$

Diagonalize S, i.e., find a basis such that the matrix representing S is diagonal. Express S in dyadic notation using this new basis.

Solution: With the given condition, we could write S in matrix format:

$$\mathbf{S} = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$

To diagonize this matrix, we first find the characteristic polynomial p(t):

$$p(t) = \det(\mathbf{S} - \lambda \mathbf{I}) = \begin{vmatrix} 6 - \lambda & -2 & -1 \\ -2 & 6 - \lambda & -1 \\ -1 & -1 & 5 - \lambda \end{vmatrix}$$
$$= (6 - \lambda)(6 - \lambda)(5 - \lambda) - 2 - 2 - 2(6 - \lambda) - 4(5 - \lambda)$$
$$= -\lambda^3 + 17\lambda^2 - 90\lambda + 144$$

Solving the above equation, we can then obtain there are three eigenvalues with $\lambda_1 = 3$, $\lambda_2 = 6$, $\lambda_3 = 8$.

With each eigenvectors we can deduce the eigenspace E_i ; for E_1 :

$$(\mathbf{S} - 3\mathbf{I})(\mathbf{x}) = \begin{bmatrix} 3 & -2 & -1 \\ -2 & 3 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Solving the equation we have $x_1 = x_2 = x_3$, therefore we write $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

For E_2 :

$$(\mathbf{S} - 6\mathbf{I})(\mathbf{x}) = \begin{bmatrix} 0 & -2 & -1 \\ -2 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Solving the equation we have $x_1 = x_2$ and $2x_1 = -x_3$, therefore we writes $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$

For E_3 :

$$(\mathbf{S} - 8\mathbf{I})(\mathbf{x}) = \begin{bmatrix} -2 & -2 & -1 \\ -2 & -2 & -1 \\ -1 & -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Solving the equation we have $x_3 = 0$ and $x_1 = -x_2$, therefore we writes $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$

We therefore obtain the linearly independent eigenvectors:

$$\mathbf{v} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -1 & 0 \end{bmatrix},$$

Now we diagonize matrix \mathbf{v} as a new matrix $\mathbf{\mathcal{S}} = \mathbf{v}\mathbf{S}\mathbf{v}^t = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 36 & 0 \\ 0 & 0 & 16 \end{bmatrix}$. Writing \mathbf{S} in dyadic

notation using the new basis that representing S is diagonal is:

$$\mathcal{S} = 9\mathbf{E}_1\mathbf{E}_1 + 36\mathbf{E}_2\mathbf{E}_2 + 16\mathbf{E}_3\mathbf{E}_3$$

4b. Find $\mathbf{S} \cdot \mathbf{n}$, where $\mathbf{n} = \mathbf{e}_1 + \mathbf{e}_2$ using both the new and old basis.

Solution: We first write S in the old basis:

$$S = 6e_1e_1 - 4e_1e_2 - 2e_1e_3 + 6e_2e_2 - 2e_2e_3 + 5e_3e_3$$

Computing $\mathbf{S} \cdot \mathbf{n}$ we have:

$$\mathbf{S} \cdot \mathbf{n} = (6\mathbf{e}_1 \mathbf{e}_1 - 4\mathbf{e}_1 \mathbf{e}_2 - 2\mathbf{e}_1 \mathbf{e}_3 + 6\mathbf{e}_2 \mathbf{e}_2 - 2\mathbf{e}_2 \mathbf{e}_3 + 5\mathbf{e}_3 \mathbf{e}_3) \cdot (\mathbf{n}_1 + \mathbf{n}_2)$$
$$= 13\mathbf{e}_1 + 13\mathbf{e}_1 - 4\mathbf{e}_3 - 2\mathbf{e}_2 \delta_{31} - 2\mathbf{e}_1 \delta_{32}$$

On the new basis where S is diagonal, we have:

$$S \cdot \mathbf{n} = (9\mathbf{E}_1\mathbf{E}_1 + 36\mathbf{E}_2\mathbf{E}_2 + 16\mathbf{E}_3\mathbf{E}_3) \cdot (\mathbf{E}_1 + \mathbf{E}_2)$$
$$= 61\mathbf{E}_1 + 61\mathbf{E}_2$$

5. In rigid body mechanics, we are often interested in rotation of a rigid body about a fixed point (say the origin). Because of rigidity, rotation must preserve distance and angles in the body. Let $\mathbf{x} \cdot \mathbf{y}$ denote the usual dot product of two vectors and let $||\mathbf{x}|| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$ denote the length or norm of \mathbf{x} . Let us assume that there exist a transformation \mathbf{R} (at this point you do not know that it is linear) that carries a vector \mathbf{x} . (e.g. the position vector of a particle on the body with respect to the origin) into another vector $\mathbf{R}(\mathbf{x})$. We assume that \mathbf{R} preserves dot product, that is

$$\mathbf{R}(\mathbf{x}) \cdot \mathbf{R}(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}, \quad \forall \mathbf{x}, \mathbf{y}$$

5a. Show that **R** also preserve length, that is, $||\mathbf{R}(\mathbf{x}) - \mathbf{R}(\mathbf{y})|| = ||\mathbf{x} - \mathbf{y}||$.

Solution: To show the given equation, we first expand the left hand side of the equation:

$$\begin{split} ||\mathbf{R}(\mathbf{x}) - \mathbf{R}(\mathbf{y})|| &= \sqrt{(\mathbf{R}(\mathbf{x}) - \mathbf{R}(\mathbf{y})) \cdot (\mathbf{R}(\mathbf{x}) - \mathbf{R}(\mathbf{y}))} \\ &= \sqrt{\mathbf{R}(\mathbf{x}) \cdot \mathbf{R}(\mathbf{x}) - \mathbf{R}(\mathbf{y}) \cdot \mathbf{R}(\mathbf{x}) - \mathbf{R}(\mathbf{x}) \cdot \mathbf{R}(\mathbf{y}) + \mathbf{R}(\mathbf{y}) \cdot \mathbf{R}(\mathbf{y})} \\ &= \sqrt{\mathbf{x} \cdot \mathbf{x} - \mathbf{y} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y}} \end{split}$$

We then write the right hand side of the equation:

$$\begin{aligned} ||\mathbf{x} - \mathbf{y}|| &= \sqrt{(\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})} \\ &= \sqrt{\mathbf{x} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{y} - \mathbf{y} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{y}} \end{aligned}$$

Therefore we can observe that the left hand side equals the right hand side, and the equation is proved.

5b. Show that \mathbf{R} is a linear transformation (more difficult than 5a).

Solution: To show \mathbf{R} is a linear transformation, we need to show

$$\mathbf{R}(m\mathbf{x} - n\mathbf{y}) = m\mathbf{R}(\mathbf{x}) - n\mathbf{R}(\mathbf{y})$$

We therefore expand the two terms on the two hand side:

$$m\mathbf{R} \cdot \mathbf{x} - n\mathbf{R} \cdot \mathbf{y} = m\mathbf{R}(\mathbf{x}) - n\mathbf{R}(\mathbf{y})$$

Based on the dyadic representation, we have

$$m\mathbf{R}(\mathbf{x}) - n\mathbf{R}(\mathbf{y}) = m\mathbf{R}(\mathbf{x}) - n\mathbf{R}(\mathbf{y})$$

and the equation is therefore proved.

5c. Show that $\mathbf{R}^t \mathbf{R} = \mathbf{R} \mathbf{R}^t = \mathbf{I}$ where \mathbf{I} is the identity transformation, that is $\mathbf{R}^{-1} = \mathbf{R}^t$. Solution: To show $\mathbf{R}^{-1} = \mathbf{R}^t$, we first multiply the two sides by $\mathbf{R} \mathbf{R}^t$:

$$\mathbf{R}^{-1}\mathbf{R}\mathbf{R}^t = \mathbf{R}^t\mathbf{R}\mathbf{R}^t$$
$$\mathbf{I}\mathbf{R}^t = \mathbf{R}^t\mathbf{R}\mathbf{R}^t$$

Therefore we get to know that $\mathbf{R}^t \mathbf{R} = \mathbf{I}$. And the equation is proved.

6. One way of saying that something is a tensor is that it obeys the transformation rule. Suppose it is given that $g_j dx_j = df$ for all dx_j , where dx_j is the components of $d\mathbf{x}$ and f is a scalar function of \mathbf{x} , show that g_j is the components of a vector. In a similar way, show that if $a_{ij}x_j = y_i$, where x_j , y_i , are the components of any two vectors \mathbf{x} and \mathbf{y} , then a_{ij} are the components of a tensor.

Solution: I provide the following two ways to show the proof:

METHOD I: To show the given statement, we first expand the given presumption:

$$a_{ij}x_j = y_i$$

$$a_{ij}x_j\mathbf{e}_i\mathbf{e}_j = y_i\mathbf{e}_i\mathbf{e}_j$$

$$a_{ij}\mathbf{x}\mathbf{e}_i = \mathbf{y}\mathbf{e}_j$$

$$a_{ij}\mathbf{x}\mathbf{e}_i \cdot \mathbf{e}_j = \mathbf{y}$$

$$a_{ij}x_j\mathbf{e}_i = \mathbf{y}$$

$$\mathbf{A}(\mathbf{x}) = \mathbf{y}$$

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$$

$$\mathbf{A}||\mathbf{x}|| = \mathbf{y}\mathbf{x}$$

Therefore **A** is the dyad of two vectors **x** and **y**, which is a tensor. And a_{ij} are the component of a tensor.

METHOD II: To show $g_j dx_j = df$, we first know that df is an invariant of the basis. Here, g_j and dx_j changes based on the basis, where g_j is the component of \mathbf{g} and dx_j is the component of $d\mathbf{x}$. Reconstructing the term:

$$g_j dx_j = df$$

$$g_j = \frac{df(x_j)}{dx_j}$$

$$\mathbf{g} = \frac{df(\mathbf{x})}{d\mathbf{x}}$$

Since f is the scalar function of \mathbf{x} , then $\frac{df(\mathbf{x})}{d\mathbf{x}}$ is a vector. Then \mathbf{g} is a vector, and therefore g_j is a component of a vector.