Amendments to the Specification:

Please replace the paragraph (<u>List of Variables</u>) beginning at page 10, line 7 and ending on page 11, line 7 with the following rewritten paragraph:

List of Variables

5

 \dot{m} Mass flow (kg/sec)

 P_{in} Inlet pressure

P_{out} Outlet pressure

V Flow velocity

10 ρ Gas density

 γ Ratio of specific heats, c_p/c_v

$$\alpha = \sqrt{\gamma \left(\frac{2}{1+\gamma}\right)^{\frac{\gamma+1}{\gamma-1}}}$$

$$\delta = \sqrt{\frac{2\gamma}{(\gamma - 1)}}$$

R Gas constant in $p = \rho RT$ (8314 m²/K-sec² divided by molecular weight)

15 W Microvalve valve seat periphery length

A Microvalve area enclosed by the valve seat periphery

 D_h Microvalve inlet length parameter (= \sqrt{A})

 A_{eff} Microvalve effective flow area

z Microvalve membrane-to-inlet gap

20 r Ratio of gap to inlet length parameter: $r=z/D_h$

2

Appl. No.: 10/676,469

The ratio of gap to inlet length parameter which defines the boundary between seat-controlled flow and transition flow, according to Reference [10] [9]

3

- ϕ Ratio of valve seat periphery length to inlet length parameter: $\phi = W/D_h$
- C_d Microvalve inlet coefficient of discharge
- 5 C_{ν} Microvalve coefficient of flow

Appl. No.: 10/676,469

RED-P001