16.5 Time Complexity using

Masters Theorem

Time Complexity

Recurrence Relation

A recurrence relation is an equation that recursively defines a sequence.

Let's see it with an example

Fibonacci Series:

F(n) = F(n-1) + F(n-2)

Master Theorem

Gives the Time Complexity for the recurrence telation:

T(n) = aT(n/b) + f(n)

Master Theorem

For the Recurrence: T(n)=aT(n/b)+ B(ne), a>=1, b>1

There are following three cases:

Problems:

1.
$$T(n) = 2 \cdot T(n/2) + \Theta(n)$$

 $a=2$, $b=2$, $c=1$
 $\rightarrow c = \log_b a$
Time Complexity: $\Theta(n \log_2 n)$

2.
$$T(n) = 3T(n/2) + n^2$$

 $a=3$, $b=2$, $c=2$
 $\rightarrow c > \log_b a$
Time Complexity: $\Theta(n^2)$

Recurrence Tree Method:

1.
$$T(n) = T(n-1) + n$$

 $T(n) = T(n-1) + n$
 $T(n-1) = T(n-2) + n-1$
 $T(n-2) = T(n-3) + n-2$
 $T(1) = 1$

Adding all the terms, we get

 $T(n) = n + (n-1) + (n-2) + (n-3) + \dots + 1$ T(n) = (n + (n+1))/2

T(n) = 0 (n2)