Bases de datos semi-estructurados

Dr. José Luis Zechinelli Martini joseluis.zechinelli@udlap.mx
LIS – 3071

Administración de datos y de conocimiento LAFMIA – UDLAP

Introducción

- Generaciones de bases de datos:
 - Red y jerárquico 70 80
 - Relacional 80 90
 - Objeto-relacional 90 ...
- WEB y bases de datos:
 - Pérdida de RDV (conexiones)
 - Servidores de aplicaciones débilmente acopladas
 - La WEB es una base distribuida muy voluminosa
 - Estructuración débil (flexible)
 - Orientado a documentos ...

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

UDLAP: © J.L. Zechinelli Martini

XML

- · Integración de datos y meta-datos
- Las bases de datos no pueden ser indiferentes:
 - Almacenamiento de documentos XML
 - Consulta de documentos XML
 - ¿Evolución o revolución?
- ¿Qué modelo de datos?
- ¿Qué lenguaje de consulta?
- ¿Cómo integrar soluciones nuevas y viejas?

UDLAP: © J.L. Zechinelli Martini

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

3

Modelo interno y productos

- Middleware XML BD:
 - Arriba de un SGBD
 - Técnicas de mapeo sofisticadas
- Sistemas nativos:
 - Técnicas de investigación y almacenamiento especializado
- Extensión de SGBD relacionales:
 - Agregar tipos de datos nativos
 - Soportar documentos extendidos
- Bases de datos orientadas a objetos:
 - Uso de modelos orientados a objetos

.

UDLAP: © J.L. Zechinelli Martini

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

Contenido

- Modelos de datos semi-estructurados:
 - ✓ Principio
 - Introducción a XML
- Bases de datos XML:
 - Conceptos de base
 - DTD y esquemas XML
 - XPath y XQuery
- Conclusiones

UDLAP: © J.L. Zechinelli Martini

5

Introducción a XML

- XML es un meta-lenguaje universal para datos en la Web
- Permite el intercambio de contenido entre aplicaciones y/o entre navegadores
- XML apoya la estandarización de la manera de procesar la información:
 - Intercambio (XML)
 - Presentación (XSL)
 - Recuperación (XQuery)
 - Seguridad (Encriptación, Autentificación)
 - Ligado (XLink)
 - **–** ...

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

UDLAP: © J.L. Zechinelli Martini

La galaxia de estándares

- XMLSchema: esquema de documentos
- XSL: hojas de estilo
- SAX: API para la programación orientada a eventos
- DOM: API para la programación orientada a objetos
- SOAP: Protocolo de servicios Web
- RDF: Descripción de recursos
- ebXML: Estándares e-Commerce
- **Xxx**: Estándares de negocio

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

UDLAP: © J.L. Zechinelli Martini

XML: Objetivos

- XML = un lenguaje de intercambio nuevo basado en tags
- XML = más simple que SGML
- XML = más complejo y eficiente que HTML
- XML = desarrollado por XML Working Group encabezado por W3C (desde 1996)
- XML 1.0 = recomendación oficial de W3C desde 10/02/1998

ni

UDLAP: © J.L. Zechinelli Martini

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

Elementos XML

- Elemento: Componente básico en XML
 - Delimitado por tags
 - Conteniendo texto (contexto de un elemento), otros elementos
- Ejemplo de elemento:

UDLAP: © J.L. Zechinelli Martini

UDLAP: © J.L. Zechinelli Martini

9

10

Elementos XML

```
<description> People on the fourth floor </description>
  <people>
      <person>
             <name> Alan </name>
             <age> 42 </age> <email> alan@abc.com </email>
      </person>
             <name> Ryan </name>
             <age> 36 </age> <email> ryan@abc.com </email>
      </person>
      <person>
             <name> Patsy </name>
             <age> 58 </age> <email> patsy@abc.com </email>
      </person>
  </people>
```

HTML

<h1> People on the fourth floor </h1>

- Alan , 42 years, <i> alan@abc.com </i>
- Ryan , 58 years, <i> ryan@abc.com </i>
- Patsy , 36 years, <i> patsy@abc.com </i>

UDLAP: © J.L. Zechinelli Martini

. .

Elementos XML

- · Contenido del documento "People on the fourth floor":
 - Nombres separados de las edades y de las direcciones email
 - Fácil de entender por cualquier aplicación
 - No hay información de cómo debe ser presentada
 - Texto del documento → PCDATA (Parser Character Data)
- · Elementos vacíos:
 - <married> </married>
 - <married/>

UDLAP: © J.L. Zechinelli Martini

Atributos XML

- Atributo:
 - Propiedad definida por la relación (nombre, valor)
 - Usado para especificar la lengua, el tipo de moneda, el formato, etc.
- · Ejemplo:

```
<name language="Spanish"> flauta transversal </name>
  <price currency="Pesos"> 4200.12 </price>
```

UDLAP: © J.L. Zechinelli Martini

13

Atributos XML vs. Elementos XML

- Número de ocurrencias:
 - Un atributo puede ocurrir una sola vez
 - Un elemento puede repetirse varias veces
- · Contenido:
 - El valor de un atributo es siempre una cadena
 - Un elemento puede contener sub-elementos

UDLAP: © J.L. Zechinelli Martini

Problemas de ambigüedad

Documentos bien formados

- · Documento bien formado:
 - Tags anidados apropiadamente
 - Atributos únicos
- El orden de los sub-elementos es relevante

UDLAP: © J.L. Zechinelli Martini

Espacios de nombres

 ¿Cómo combinar tags provenientes de diferentes espacios?

Taxonomy = tag

<t xmlns:Guide="http://www.michelin.com/2001/Guide",
xmlns:Annuaire="http://www.pageblanche.com/2001/Guide">

Mecanismos interesantes para integrar contenido

<Guide:Nom>Le Moulin</Guide:Nom>
<Annuaire:Nom>Le Moulin de Mougin</Annuaire:Nom>

UDLAP: © J.L. Zechinelli Martini

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

17

Espacio de nombres

- Especificar globalmente nombres únicos para la definición de elementos
- Anteponer a cada etiqueta o atributo un identificador de recursos universal
- Usar un URL como identificador único:
 - Se puede definir una abreviatura para los identificadores
 - Se puede usar el atributo xmlns en el elemento raíz para definir un espacio de nombres predeterminado

UDLAP: © J.L. Zechinelli Martini

Espacio de nombres: Ejemplo1

Espacio de nombres: Ejemplo2

Contenido

- Modelos de datos semi-estructurados:
 - ✓ Principio
 - ✓ Introducción a XML
- Bases de datos XML:
 - Conceptos de base
 - DTD y esquemas XML
 - XPath y XQuery
- Conclusiones

UDLAP: © J.L. Zechinelli Martini

21

Modelo XML basado en grafos

• Expresión XML:

```
<person>
     <name> Alan </name>
     <age> 42 </age>
     <email> alan@abc.com </email>
</person>
```

• Expresión SSD (Semi-Structured Data):

```
{person: {name: "Alan", age: 42, email: "alan@abc.com"}}
```

UDLAP: © J.L. Zechinelli Martini

Referencias

• XML permite asociar un identificador a los elementos como valor de un atributo específico:

UDLAP: © J.L. Zechinelli Martini

23

Orden

```
<person>
     <firstname> John </firstname>
     <lastname> Smith </lastname>
</person>

<person>
     <lastname> Smith </lastname>
          <firstname> John </firstname>
          <firstname> John </firstname>
</person>

<person firstname = "John" lastname = "Smith" />
          <person lastname = "Smith" firstname = "John" />
```

UDLAP: © J.L. Zechinelli Martini

Otros constructores

· Comentarios en XML:

```
<!-- this is a comment -->
```

• Instrucción de procesamiento:

UDLAP: © J.L. Zechinelli Martini

25

Otros constructores

• CDATA: caracteres que podrían confundirse con marcas:

```
<![CDATA[<start> an incorrect element </end>]]>
```

• Macros tales como el carácter "<":

<

• DTD:

<!DOCTYPE name [markupdeclarations]>

UDLAP: © J.L. Zechinelli Martini

Otros constructores

• Documento completo en XML:

```
<?xml . . . ?>
<!DOCTYPE name [markupdeclarations]>
<name> . . . </name>
```

• Ejemplo:

```
<?xml version = "1.0" ?>
<!DOCTYPE db SYSTEM "person.dtd">
<db> <person> . . . </person> </db>
```

UDLAP: © J.L. Zechinelli Martini

27

Contenido

- Modelos de datos semi-estructurados:
 - ✓ Principio
 - ✓ Introducción a XML
- Bases de datos XML:
 - ✓ Conceptos de base
 - DTD y esquemas XML
 - XPath y XQuery
- Conclusiones

UDLAP: © J.L. Zechinelli Martini

DTD (Document Type Definitions)

- Servir de gramática para documentos XML
- Algunas extensiones sirven como esquemas para representar información
- Expresiones regulares:
 - e* (cualquier número de elementos)
 - e+ (una o más ocurrencias)
 - e? (cero o una)
 - e | e' (alternancia)
 - e , e' (concatenación)

UDLAP: © J.L. Zechinelli Martini

29

DTD: Gramáticas

DTD: Gramáticas

UDLAP: © J.L. Zechinelli Martini

31

DTD: Esquemas

Esquema relacional:

```
- R1 ( A: D1, B: D2, C: D3 )
- R2 ( C: D3, D: D4 )
```

R1

А	В	С
a1	b1	c1
a2	b2	c2

R2

С	D
с2	d2
с3	d3
c4	d4

UDLAP: © J.L. Zechinelli Martini

DTD: Esquemas

```
<!DOCTYPE db [
      <!ELEMENT db (r1*, r2*)>
       <!ELEMENT r1 (a,b,c)>
       <!ELEMENT r2 (c,d)>
       <!ELEMENT a (#PCDATA)>
       <!ELEMENT b (#PCDATA)>
       <!ELEMENT c (#PCDATA)>
       <!ELEMENT d (#PCDATA)>
  ]>
  <db> <r1> <a> a1 </a> <b> b1 </b> <c> c1 </c> </r1>
        <r1> <a> a2 </a> <b> b2 </b> <c> c2 </c> </r1>
        <r2> <c> c2 </c> <d> d2 </d> </r2>
        <r2> <c> c3 </c> <d> d3 </d> </r2>
        <r2> <c> c4 </c> <d> d4 </d> </r2>
  </db>
UDLAP: © J.L. Zechinelli Martini
```

DTD: Esquemas

 Permitir que los elementos de R1 y R2 aparezcan mezclados:

```
<!ELEMENT db ((r1|r2)*)>
```

• Describir componentes opcionales o repetidos:

```
<!ELEMENT r1 (a,b?,c+)>
```

 Almacenar la definición del esquema fuera del documento:

```
<!DOCTYPE db SYSTEM "schema.dtd">
<!DOCTYPE db SYSTEM "http://.../schema.dtd">
```

UDLAP: © J.L. Zechinelli Martini

DTD: Atributos

DTD: Referencias

UDLAP: © J.L. Zechinelli Martini

DTD: Referencias

- · Redundancia:
 - Representación anidada de la información
 - Evitar reuniones de elementos para obtener la información asociada
- · Producto cartesiano:
 - Representación normalizada
 - Combinar la información de la base de datos usando los identificadores

UDLAP: © J.L. Zechinelli Martini

37

Documentos XML válidos

- Documento válido:
 - Bien formado
 - Conforme a una DTD
- · Los identificadores deben ser valores distintos
- Los valores de las referencias deben ser identificadores existentes

UDLAP: © J.L. Zechinelli Martini

Limitaciones de las DTD

- Imponen orden (usar "|" como alternativa)
- No hay noción de tipos atómicos: sólo el tipo #PCDATA
- No hay restricciones sobre las referencias: no se puede definir una referencia específica (ID, IDREF, IDREFS)
- Los tags son globales: usar espacios de nombres (xmlns), v.g., person: name y course: name

UDLAP: © J.L. Zechinelli Martini

39

Esquema XML (XMLSchema)

- Lenguaje de especificación de esquemas más sofisticado: resuelve muchas de las deficiencias de las DTD
- Cuenta con tipos de datos para restringir los elementos: xsd:string, xsd:decimal
- Permite indicar el número mínimo y máximo de apariciones de los sub-elementos:
 - Usando minOccurs y maxOccurs
 - Por defecto, minOccurs = "1", maxOccurs = "1"

UDLAP: © J.L. Zechinelli Martini

DTD: Ejemplo

Esquema XML: Ejemplo

Esquemas XML: Ventajas

- Permite crear tipos definidos por el usuario
- Permite restringir los textos de los elementos a tipos específicos: numérico, lista, etc.
- Permite restringir los tipos para crear tipos especializados: valor mínimo y máximo
- Permite la extensión de tipos complejos mediante el uso de una forma de herencia
- · Permite restricciones de unicidad y de clave externa
- Está integrado con espacio de nombres para permitir a diferentes partes de un documento adaptarse a un esquema diferente

UDLAP: © J.L. Zechinelli Martini

13

Contenido

- Modelos de datos semi-estructurados:
 - ✓ Principio
 - ✓ Introducción a XML
- Bases de datos XML:
 - ✓ Conceptos de base
 - ✓ DTD y esquemas XML
 - XPath y XQuery
- Conclusiones

UDLAP: © J.L. Zechinelli Martini

Consulta y transformación

- El resultado de una consulta XML puede ser un documento XML:
 - Extraer información de grandes volúmenes de datos
 - Convertir los datos entre distintas representaciones (esquemas) en XML
- Lenguajes de consulta y transformación:
 - XPath, expresiones de rutas de acceso (constructor)
 - XSLT, lenguaje de transformación (formato de datos)
 - XQuery, estándar para consultar datos XML

UDLAP: © J.L. Zechinelli Martini

45

Modelo de árbol

- Nodos:
 - Atributos
 - Elementos que pueden tener nodos hijos
- Contenido textual de un nodo:

```
<element>
    Éste es un <bold> buen </bold> libro
</element>
```

· Orden de los elementos y atributos

UDLAP: © J.L. Zechinelli Martini

XPath

- Expresiones de ruta de acceso:
 - Secuencia de pasos de ubicación separados por "/"
 (en lugar del "." de OQL)
 - El resultado es un conjunto de valores
- **Ejemplo**: /family/person/name

UDLAP: © J.L. Zechinelli Martini

47

/family/person/name

UDLAP: © J.L. Zechinelli Martini

/family/person/name

UDLAP: © J.L. Zechinelli Martini

40

XPath

- Expresiones de ruta de acceso:
 - Secuencia de pasos de ubicación separados por "/"
 (en lugar del "." de OQL)
 - El resultado es un conjunto de valores
- Ejemplo: /family/person/name

```
<name> Jane Doe </name>
```

<name> John Doe </name>

<name> Mary Smith </name>

<name> Jack Smith </name>

UDLAP: © J.L. Zechinelli Martini

XPath

· Acceder a los valores de los elementos:

/family/person/name/text()

Acceder a los valores de los atributos:

/family/person/@children

 De forma predeterminada, no se siguen las referencias IDREF

UDLAP: © J.L. Zechinelli Martini

51

XPath

• Expresión regular:

Nombre de todas las personas

/family//name

· Acceder a través de un índice a un atributo:

Hijos de la primera persona

/family/person[1]/@children

UDLAP: © J.L. Zechinelli Martini

XPath

• Predicados de selección:

```
/family/person[ age > 18 ]
```

· Contar nodos coincidentes:

```
/family[ count(person) > 2 ]
```

- Saltar niveles (//)
- La función "id"
- El operador "₁" (unión)
- Padre (/..) y descendientes (//)

UDLAP: © J.L. Zechinelli Martini

UDLAP: © J.L. Zechinelli Martini

53

XPath

Selector	Nodos seleccionados
1	Raíz del documento
II .	Saltar niveles o descendientes
*	Cualquier elemento
nombre	Elemento de tag "nombre"
@*	Todos los atributos
@nombre	Atributo de nombre "nombre"
text()	Cualquier nodo texto
processing-instruction('nombre')	Instrucción de procesamiento "nombre"
comment()	Cualquier nodo comentario
node()	Cualquier nodo
id('valor')	Elemento cuyo id es "valor"

XQuery

- Consultas:
 - Parecidas a las consultas SQL
 - Organizadas en expresiones FLWR
- Cuatro secciones:
 - for: similar a la cláusula from de SQL
 - **let**: asignación de expresiones a variables
 - where: similar a la cláusula where de SQL
 - return: construcción de resultados en XML

UDLAP: © J.L. Zechinelli Martini

55

XQuery: Consulta simple

 Obtener las referencias de los hijos de los adultos mayores:

```
▶ for $p in /family/person
let $lista := $p/@children
where $p/age >= 60
return <hijos> {$lista} </hijos>
```

▶ for \$p in /family/person[age > 60]
 return <hijos> {\$p/@children} </hijos>

UDLAP: © J.L. Zechinelli Martini

XQuery: Ordenar

 Usar al final de cualquier expresión la cláusula order by:

```
For $p in /family/person
order by $p/name
return <result> {$p/*} </result>
```

▶order by \$p/name descending

UDLAP: © J.L. Zechinelli Martini

57

XQuery: Funciones

- Funciones sobre conjuntos:
 - Eliminar duplicados: distinct-value
 - Funciones de agregación: sum, count, etc.
- El operador "->" se puede aplicar sobre valores de tipo:
 - IDREF para obtener el elemento
 - IDREFS para obtener un conjunto de elementos

UDLAP: © J.L. Zechinelli Martini

XQuery: Funciones

Lista con los nombres de las personas con el promedio de edades de sus hijos:

UDLAP: © J.L. Zechinelli Martini

59

XQuery: Funciones

- Funciones incorporadas:
 - document (name)
 - number(string)
- · Otras características:
 - if-then-else
 - some \$e in path satisfies P
 - every \$e in path satisfies P

UDLAP: © J.L. Zechinelli Martini

XQuery: Funciones

Dar un documento con **encabezado**, **título** y **lista** de personas con todos sus hijos mayores y otro con las personas con al menos un hijo menor de edad:

```
<documento>
```

UDLAP: © J.L. Zechinelli Martini

61

Contenido

- Modelos de datos semi-estructurados:
 - ✓ Principio
 - ✓ Introducción a XML
- Bases de datos XML:
 - ✓ Conceptos de base
 - √ DTD y esquemas XML
 - √ XPath y XQuery
- Conclusiones

UDLAP: © J.L. Zechinelli Martini

Conclusiones

- ¿XML puede cambiar la construcción de bases de datos?
 - Investigación en BD semi-estructuradas
 - Necesidad de esquemas flexibles (XML Schema)
 - Lenguajes de consulta estandarizados (XQuery)
 - El efecto de la Web ...
- · ¿Integración débil usando objeto-relacional?
 - Transformación a tablas
 - Administración de grafos
 - ¿Middleware o SGBD?

UDLAP: © J.L. Zechinelli Martini

Autor: G. Gardarin Traducido: J.L. Zechinelli Martini

