ECE 532 - Period / Activity. Ayan Deep Hazra

1)
$$x = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
 $w = \begin{bmatrix} 6 \\ 4 \\ d \end{bmatrix}$

Thus,
$$x^T = \begin{bmatrix} 1 & 6 & 3 \end{bmatrix}$$

$$\omega^T = \begin{bmatrix} c & 4 & d \end{bmatrix}$$

a)
$$x^T \omega = [163] \begin{bmatrix} c \\ 4 \end{bmatrix} = 1 \times c + 6 \times 4 + 3 \times d$$

= $c + 46 + 3d$

6)
$$\omega^{T}x = \int c 4d \int_{3}^{1} \int_{3}^{1} = cx1 + 4xb + dx^{3}$$

= $c + 4b + 3d$

2)
$$y = 2(x-1)^{2}$$

= $2(x^{2}-2x+1)$
= $2x^{2}-4x+2$

a)
$$x^T = \begin{bmatrix} x^2 & x & 1 \end{bmatrix}$$
 $\omega = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$

$$\omega = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix} \Rightarrow y = \begin{bmatrix} x^2 \\ 1 \end{bmatrix}^T \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$$

3 a) fince $X = \begin{bmatrix} X_1 \\ Y_2 \end{bmatrix}$, where X_1 is the number of grams of protein 2 x3 is the number of grams of carbs. We can define w= \[\frac{9}{4} \] so that each index corresponds to each food component in the inner product. b) $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$ if given $w = \begin{bmatrix} 9 \\ 4 \\ 4 \end{bmatrix}$ as before coreal data forms

the x matrix $x = \begin{bmatrix} 1 & 8 & 44 \\ 0.5 & 2 & 25 \\ 1.3 & 2.7 & 29.3 \end{bmatrix}$ 1.3 2.7 29.3 Thuy, $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & 8 & 44 \\ 0.5 & 2 & 25 \\ 1.3 & 2.7 & 29.3 \\ 9 & 4 & 16 \end{bmatrix} \begin{bmatrix} 9 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 217 \\ 112.5 \\ 139.7 \\ 161 \end{bmatrix}$