Importing Required Libraries

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
from sklearn.model_selection import train_test_split # Import train_test_split function
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
```

Loading Data

Let's first load the required 'Pima Indian Diabetes dataset' using pandas read CSV function.

```
# load dataset
pima = pd.read_csv('diabetes.csv')
pima.head()
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigre
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
A	^	127	40	25	169	12 1	•

pima.info()

```
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
                             Non-Null Count Dtype
# Column
    Pregnancies
                             768 non-null
                                             int64
    Glucose
                             768 non-null
                                            int64
    BloodPressure
                             768 non-null
                                             int64
    SkinThickness
                             768 non-null
    Insulin
                             768 non-null
                                             int64
    BMI
                             768 non-null
                                             float64
```

DiabetesPedigreeFunction 768 non-null

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

pima.describe()

6

7 Age 8 Outcome

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000
mav ∢	17 000000	100 000000	122 000000	00 00000	8ላዬ ሀሀሀሀሀሀ	67 100000

768 non-null

768 non-null

float64

int64

int64

Feature Selection

Here, you need to divide given columns into two types of variables dependent(or target variable) and independent variable(or feature variables).

```
#split dataset in features and target variable
feature_cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']
```

```
X = pima[feature_cols] # Features
y = pima.Outcome # Target variable
```

Splitting Data

To understand model performance, dividing the dataset into a training set and a test set is a good strategy.

Let's split the dataset by using function train_test_split(). Ratio is 80:20

 $\textbf{X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) \# 80\% \ training \ and \ 20\% \ test \ test_size=0.2) \# 80\% \ training \ and \ 20\% \ training \ and \ 20\%$

Building Decision Tree Model

Let's create a Decision Tree Model using Scikit-learn.

```
# Create Decision Tree classifer object
clf = DecisionTreeClassifier(criterion='entropy')

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)
```

Evaluating Model

Let's estimate, how accurately the classifier or model can predict.

```
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.6883116883116883

Plotting the Tree

```
clf = clf.fit(X,y)
```

from sklearn import tree
tree.plot_tree(clf)

```
 [\text{Text}(0.43926299778761063, 0.9705882352941176, 'X[1] <= 127.5 \\ | \text{Text}(0.160329092920354, 0.9117647058823529, 'X[7] <= 28.5 \\ | \text{Text}(0.160329092920354, 0.9117647058, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.911764705, 0.9117647
    Text(0.160329092920354, 0.9117647058823529, 'X[7] <= 28.5\nentropy = 0.709\nsamples = 485\nvalue = [391, 94]'),
Text(0.05641592920353982, 0.8529411764705882, 'X[5] <= 30.95\nentropy = 0.419\nsamples = 271\nvalue = [248, 23]'),
Text(0.02654867256637168, 0.7941176470588235, 'X[0] <= 7.5\nentropy = 0.102\nsamples = 151\nvalue = [149, 2]'),
Text(0.017699115044247787, 0.7352941176470589, 'X[6] <= 0.672\nentropy = 0.0958\nsamples = 150\nvalue = [149, 1]'),
Text(0.008849557522123894, 0.6764705882352942, 'entropy = 0.0\nsamples = 131\nvalue = [31, 0]'),
Text(0.02654867256637168, 0.6764705882352942, 'Y[6] <= 0.686\nentropy = 0.297\nsamples = 19\nvalue = [18, 1]'),
Text(0.017699115044247787, 0.6176470588235294, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.035398230088495575, 0.6176470588235294, 'entropy = 0.0\nsamples = 18\nvalue = [18, 0]'),
Text(0.035398230088495575, 0.7352941176470588, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.08628318584070796, 0.7941176470588235, 'X[2] <= 37.0\nentropy = 0.669\nsamples = 120\nvalue = [99, 21]'),
Text(0.09513274336283185, 0.7352941176470589, 'entropy = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(0.09513274336283185, 0.7352941176470589, 'X[6] <= 0.501\nentropy = 0.637\nsamples = 118\nvalue = [99, 19]'),
Text(0.061946902654867256, 0.6764705882352942, 'X[5] <= 45.35\nentropy = 0.456\nsamples = 73\nvalue = [66, 7]'),
       Text(0.061946902654867256, 0.6764705882352942, 'X[5] <= 45.35\nentropy = 0.456\nsamples = 73\nvalue = [66, 5]'),
Text(0.06309734513274336, 0.6176470588235294, 'X[6] <= 0.279\nentropy = 0.367\nsamples = 71\nvalue = [66, 5]'),
Text(0.04424778761061947, 0.5588235294117647, 'X[4] <= 89.0\nentropy = 0.562\nsamples = 38\nvalue = [33, 5]'),
      Text(0.035398230088495575, 0.5, 'X[2] <= 55.0\nentropy = 0.755\nsamples = 23\nvalue = [18, 5]'),
Text(0.02654867256637168, 0.4411764705882353, 'entropy = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(0.04424778761061947, 0.4411764705882353, 'X[6] <= 0.273\nentropy = 0.592\nsamples = 21\nvalue = [18, 3]'),
      Text(0.035398230088495575, 0.38235294117647056, 'X[3] <= 0.273\lientropy = 0.392\lientropy = 0.469\nsamples = 21\linvalue = [18, 3] ),
Text(0.035398230088495575, 0.38235294117647056, 'X[3] <= 30.5\nentropy = 0.469\nsamples = 20\nvalue = [18, 2]'),
Text(0.02654867256637168, 0.3235294117647059, 'X[3] <= 29.0\nentropy = 0.684\nsamples = 11\nvalue = [9, 2]'),
Text(0.017699115044247787, 0.2647058823529412, 'X[2] <= 81.5\nentropy = 0.469\nsamples = 10\nvalue = [9, 1]'),
    Text(0.017699115044247787, 0.2647058823529412, 'X[2] <= 81.5\nentropy = 0.469\nsamples = 10\nvalue = [9, 1] Text(0.008849557522123894, 0.20588235294117646, 'entropy = 0.0\nsamples = 8\nvalue = [8, 0]'), Text(0.0265486725637168, 0.20588235294117646, 'X[0] <= 2.0\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]'), Text(0.017699115044247787, 0.14705882352941177, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'), Text(0.035398230088495575, 0.14705882352941177, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'), Text(0.035398230088495575, 0.2647058823529412, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'), Text(0.04424778761061947, 0.3235294117647059, 'entropy = 0.0\nsamples = 9\nvalue = [9, 0]'), Text(0.05309734513274336, 0.38235294117647056, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'), Text(0.05309734513274336, 0.5, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'), Text(0.061946902654867256, 0.5588235294117647, 'entropy = 0.0\nsamples = 33\nvalue = [33. 0]').
      Text(0.061946902654867256, 0.5588235294117647, 'entropy = 0.0\nsamples = 33\nvalue = [33, 0]'),
Text(0.07079646017699115, 0.6176470588235294, 'entropy = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(0.12831858407079647, 0.6764705882352942, 'X[5] <= 38.65\nentropy = 0.837\nsamples = 45\nvalue = [33, 12]'),
Text(0.09734513274336283, 0.6176470588235294, 'X[3] <= 39.5\nentropy = 0.928\nsamples = 32\nvalue = [21, 11]'),
Text(0.07964601769911504, 0.5588235294117647, 'X[5] <= 32.2\nentropy = 0.826\nsamples = 27\nvalue = [20, 7]'),
       Text(0.07079646017699115, 0.5, 'entropy = 0.0\nsamples = 5\nvalue = [5, 0]'),
Text(0.08849557522123894, 0.5, 'X[2] <= 61.0\nentropy = 0.902\nsamples = 22\nvalue = [15, 7]'),
      Text(0.08849557522123894, 0.5, 'X[2] <= 61.0\nentropy = 0.90\nsamples = 22\nvalue = [15, 7]'),
Text(0.07964601769911504, 0.4411764705882353, 'entropy = 0.0\nsamples = 4\nvalue = [4, 0]'),
Text(0.07964601769911504, 0.38235294117647058, 'X[5] <= 34.3\nentropy = 0.964\nsamples = 18\nvalue = [11, 7]'),
Text(0.07964601769911504, 0.38235294117647056, 'X[5] <= 32.7\nentropy = 0.954\nsamples = 8\nvalue = [3, 5]'),
Text(0.07079646017699115, 0.3235294117647059, 'X[1] <= 117.5\nentropy = 0.811\nsamples = 4\nvalue = [3, 1]'),
Text(0.07964601769911504, 0.2647058823529412, 'entropy = 0.0\nsamples = 3\nvalue = [3, 0]'),
Text(0.08849557522123894, 0.3235294117647059, 'entropy = 0.0\nsamples = 4\nvalue = [0, 1]'),
Text(0.150402477876106), 0.38335294117647059, 'entropy = 0.0\nsamples = 4\nvalue = [0, 4]'),
      Text(0.11504424778761062, 0.38235294117647056, 'X[5] <= 36.45\nentropy = 0.722\nsamples = 10\nvalue = [8, 2]'),
Text(0.11504424778761062, 0.3235294117647056, 'X[5] <= 36.45\nentropy = 0.722\nsamples = 10\nvalue = [8, 2]'),
Text(0.10619469026548672, 0.3235294117647059, 'entropy = 0.0\nsamples = 6\nvalue = [6, 0]'),
Text(0.12389380530973451, 0.3235294117647059, 'X[6] <= 0.652\nentropy = 1.0\nsamples = 4\nvalue = [2, 2]'),
Text(0.11504424778761062, 0.2647058823529412, 'entropy = 0.0\nsamples = 2\nvalue = [2, 0]'),
Text(0.13274336283185842, 0.2647058823529412, 'entropy = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(0.11504424778761062, 0.558823529417647, 'X[4] <= 143.5\nentropy = 0.722\nsamples = 5\nvalue = [1, 4]'),
Text(0.10619469026548672, 0.5, 'entropy = 0.0\nsamples = 3\nvalue = [0, 3]'),
Text(0.12389380530973451, 0.5, 'X[0] <= 1.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]'),
Text(0.1150442778761062, 0.44176470882353, 'entropy = 1.0\nsamples = 1\nvalue = [0, 1]')
      Text(0.125638673673491, 0.3, X[0] <- 1.5 \text(0.11504424778761062, 0.4411764705882353, 'entropy = 0.0 \text(0.13274336283185842, 0.4411764705882353, 'entropy = 0.0 \text(0.13274336283185842, 0.4411764705882353, 'entropy = 0.0 \text(0.1592920353982301, 0.6176470588235294, 'X[7] <= 21.5 \text(0.1592920353982301, 0.6176470588235294, 'X[7] <= 21.5 \text(0.1504424778761062, 0.5588235294117647, 'X[1] <= 104.0 \text(0.150442478761062, 0.5588235294117647, 'X[1] <= 104.0 \text(0.150442478761062, 0.5588235294117647, 'X[1] <= 104.0 \text(0.1504424778761062, 0.5588235294117647, 'X[1] <= 104.0 \text(0.1504424778761062, 0.5588235294117647, 'X[1] <= 104.0 \text(0.150442478761062, 0.5588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.588235294117647, 0.58823294117647, 0.588235294117647, 0.588235294117647, 0.588235294117
       Text(0.1415929203539823, 0.5, 'entropy = 0.0\nsamples = 1\nvalue = [1, 0]'), Text(0.1592920353982301, 0.5, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'),
    Text(0.1592920353982301, 0.5, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.168141592920354, 0.5588235294117647, 'entropy = 0.0\nsamples = 11\nvalue = [11, 0]'),
Text(0.26424225663716816, 0.8529411764705882, 'X[5] <= 26.35\nentropy = 0.917\nsamples = 214\nvalue = [143, 71]'),
Text(0.20353982300884957, 0.7941176470588235, 'X[5] <= 9.65\nentropy = 0.281\nsamples = 41\nvalue = [39, 2]'),
Text(0.19469026548672566, 0.7352941176470588), 'entropy = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(0.21238938053097345, 0.7352941176470588, 'entropy = 0.0\nsamples = 39\nvalue = [39, 0]'),
Text(0.3249446902654867, 0.7941176470588235, 'X[1] <= 99.5\nentropy = 0.97\nsamples = 173\nvalue = [104, 69]'),
Text(0.23008849557522124, 0.7352941176470588, 'X[1] <= 28.5\nentropy = 0.684\nsamples = 55\nvalue = [45, 10]'),
Text(0.22123893805309736, 0.6764705882352942, 'entropy = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(0.23893805309734514, 0.6764705882352942, 'X[6] <= 0.796\nentropy = 0.612\nsamples = 53\nvalue = [45, 8]'),
Text(0.21238938053097345, 0.6176470588235294, 'X[1] <= 94.5\nentropy = 0.433\nsamples = 45\nvalue = [41, 4]'),
Text(0.18584070796460178, 0.5588235294117647, 'X[0] <= 11.5\nentropy = 0.196\nsamples = 33\nvalue = [32, 1]'),
Text(0.17699115044247787, 0.5, 'entropy = 0.0\nsamples = 30\nvalue = [30, 0]'),
       Text(0.17699115044247787, 0.5, 'entropy = 0.0\nsamples = 30\nvalue = [30, 0]'),
Text(0.19469026548672566, 0.5, 'X[5] <= 31.25\nentropy = 0.918\nsamples = 3\nvalue = [2, 1]'),
      Text(0.19499203480/2306, 0.4411764705882353, 'entropy = 0.918\(\text{(0.184894070796460178}, 0.4411764705882353, 'entropy = 0.0\(\text{(0.20353982300884957}, 0.4411764705882353, 'entropy = 0.0\(\text{(0.20353982300884957}, 0.4411764705882353, 'entropy = 0.0\(\text{(0.2035398230934514}, 0.5588235294117647, 'X[1] <= 97.5\(\text{(0.20309849557522124}, 0.5, 'X[5] <= 36.2\(\text{(0.20309849557522124}, 0.5, 'X[5] <= 36.2\(\text{(0.20309849557522124}, 0.5, 'X[5] <= 36.2\(\text{(0.20309849557522124}, 0.5, X[5] <= 36.2\(\text{(0.20309849557522124}, 0.5, X[5] <= 36.2\(\text{(0.20309849557522124}, 0.5, X[5] <= 36.2\(\text{(0.2030984957522124}, 0.5, X[5] <= 36.2\(\text{(0.2030984957}, 0.5, X[5] <= 3
       Text(0.22123893805309736, 0.4411764705882353, 'entropy = 0.0\nsamples = 3\nvalue = [0, 3]'), Text(0.23893805309734514, 0.4411764705882353, 'entropy = 0.0\nsamples = 3\nvalue = [3, 0]'),
         Text(0.24778761061946902, 0.5, 'entropy = 0.0\nsamples = 6\nvalue = [6, 0]'),
    Text(0.24778761061946902, 0.5, 'entropy = 0.0\nsamples = 6\nvalue = [6, 0]'),
Text(0.26548672566371684, 0.6176470588235294, 'X[0] <= 3.0\nentropy = 1.0\nsamples = 8\nvalue = [4, 4]'),
Text(0.25663716814159293, 0.5588235294117647, 'entropy = 0.0\nsamples = 3\nvalue = [3, 0]'),
Text(0.2743362831858407, 0.5588235294117647, 'X[1] <= 94.0\nentropy = 0.722\nsamples = 5\nvalue = [1, 4]'),
Text(0.26548672566371684, 0.5, 'entropy = 0.0\nsamples = 3\nvalue = [0, 3]'),
Text(0.2831858407079646, 0.5, 'X[7] <= 37.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]'),
Text(0.2743362831858407, 0.4411764705882353, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.2920353982300885, 0.4411764705882353, 'entropy = 0.0\nsamples = 1\nvalue = [1, 0]'),
Text(0.4198008849557522, 0.7352941176470589, 'X[6] <= 0.561\nentropy = 1.0\nsamples = 118\nvalue = [59, 59]'),
Text(0.3528761061946903, 0.676470588235294, 'X[7] <= 54.5\nentropy = 0.974\nsamples = 8\nvalue = [6, 4]'),
Text(0.33517699115044247, 0.5588235294, 'X[5] <= 27.55\nentropy = 0.99\nsamples = 77\nvalue = [43, 34]'),
Text(0.33517699115044247, 0.5588235294, 'X[6] <= 0.00\nsamples = 4\nvalue = [0, 4]').
       Text(0.33517699115044247, 0.5588235294117647, 'entropy = 0.0\nsamples = 4\nvalue = [0, 4]'),
Text(0.3528761061946903, 0.5588235294117647, 'X[6] <= 0.2\nentropy = 0.977\nsamples = 73\nvalue = [43, 30]'),
```