LEARNING BAYESIAN NETWORKS

Outline

- 1 Introduction
- 2 Learning Parameters
- 3 Learning Structures
- 4 Summary

Outline

- 1 Introduction
- 2 Learning Parameters
- 3 Learning Structures
- 4 Summary

From data to Bayesian networks

Learning structure and parameters

Discovering associations

The task of learning Bayesian networks from data

- Given a data set of cases $D = \{x^{(1)}, ..., x^{(N)}\}$ drawn at random from a joint probability distribution $p_0(x_1, ..., x_n)$ over $X_1, ..., X_n$, and possibly some domain expert background knowledge
- The task consists of identifying (learning) a DAG (directed acyclic graph) structure S and a set of corresponding parameters Θ

Discovering associations

The task of learning Bayesian networks from data

- When discovering associations all the variables have the same treatment
- There is not a target variable, as in supervised classification
- There is not a hidden variable, as in clustering

Outline

- 1 Introduction
- 2 Learning Parameters
- 3 Learning Structures
- 4 Summary

Maximum likelihood estimation

Parameter space

- Consider a variable X with r possible values: {1,2,....,r}
- We have N observations (cases) of X: $D = \{x_1, ..., x_N\}$, that is a sample of size N extracted from X
 - Example: X variable measuring the result obtained after rolling a dice five times. $D = \{1, 6, 4, 3, 1\}, r = 6, \text{ and } N = 5$
- We are interested in estimating: P(X = k)
- The parametric space is $\Theta = \{\theta = (\theta_1, ..., \theta_r) | \theta_i \in [0, 1], \sum_{i=1}^r \theta_i = 1\}$
- $P(X = k | \theta_1, ..., \theta_r) = \theta_k$

Maximum likelihood estimation

Likelihood function

- $L(D:\theta) = P(D|\theta) = P(X = x_1, ..., X = x_N|\theta)$
- The likelihood function measures how probable is to obtain the dataset of cases for a concrete value of the parameter θ
- Assuming that the cases are independent:

$$P(D|\theta) = \prod_{i=1}^{N} P(X = x_i | \theta) = \prod_{k=1}^{r} \theta_k^{N_k}$$

 N_k = number of cases in the dataset for which X = k

Likelihood function

Example

1 2 3 4 5	0 0 0 0	$\theta = P(X = 1) = \frac{1}{4}$ $L(D : \frac{1}{4}) = P(D \frac{1}{4})$ $= P(X = 0,, X = 1 \frac{1}{4}) = \frac{3}{4} \cdot \frac{1}{4}^{5}$
6		$\theta = P(X = 1) = \frac{1}{2}$
7	1	$L(D:\frac{1}{2}) = P(D \frac{1}{2})$
8	1	
9	1	$= P(X = 0,, X = 1 \frac{1}{2}) = \frac{15}{2} \frac{15}{2}$
_10	1	$=\frac{1}{2}^{10}>\frac{3}{4}^{5}\frac{1}{4}^{5}$

Maximum likelihood estimation

Categorical distribution: relative frequencies

- $\theta^* = (\theta_1^*, \theta_2^*, ..., \theta_r^*) = \arg \max_{(\theta_1, \theta_2, ..., \theta_r)} P(D|\theta)$
- In a categorical distribution, the maximum likelihood estimator for P(X = k) is:

$$\theta_k^* = \frac{N_k}{N}$$

i.e., the relative frequency

• In the previous example, the maximum likelihood estimator of $\theta = P(X = 1)$ is $\theta^* = \frac{5}{10}$

Bayesian estimation

Prior, posterior distributions

- $\theta = (\theta_1, \theta_2, ..., \theta_r)$ is assumed to be a random variable
- $f(\theta|S) \sim Dir(a_1,...,a_r)$ PRIOR distribution
- $\Rightarrow f(\theta|D,S) \propto p(D|S,\theta)f(\theta|S) \sim Dir(a_1 + N_1,...,a_r + N_r)$ POSTERIOR distribution
- The Bayesian estimation is the posterior mean:

$$\theta_k^* = \frac{N_k + a_k}{N + \sum_{i=1}^r a_i}$$

•
$$Dir(\theta_1,...,\theta_r;a_1,...,a_r) = \frac{\Gamma(\sum_{i=1}^r a_i)}{\prod_{i=1}^r \Gamma(a_i)} \theta_1^{a_1-1}...\theta_r^{a_r-1}$$

Bayesian estimation

Many rules for estimation

• Lindstone rule, with $a_k = \lambda, \forall k$:

$$\theta_k^* = \frac{N_k + \lambda}{N + r\lambda}$$

• Laplace rule with $\lambda = 1$:

$$\theta_k^* = \frac{N_k + 1}{N + r}$$

• Jeffreys-Perks rule with $\lambda = 0.5$:

$$\theta_k^* = \frac{N_k + 0.5}{N + \frac{r}{2}}$$

• Schurmann-Grassberger rule with $\lambda = \frac{1}{r}$: $\theta_k^* = \frac{N_k + \frac{1}{r}}{N+1}$

Estimation of parameters

Parameters θ_{ijk}

- Bayesian network structure S = (X, A) with $X = (X_1, ..., X_n)$ and A denoting the set of arcs
- Variable X_i has r_i possible values: $x_i^1, \ldots, x_i^{r_i}$
- Local probability distribution $P(x_i | pa_i^{j,S}, \theta_i)$:

$$P(x_i^k \mid \boldsymbol{pa}_i^{j,S}, \theta_i) = \theta_{x_i^k \mid \boldsymbol{pa}_i^j} \equiv \frac{\theta_{ijk}}{\theta_{ijk}}$$

- The parameter θ_{ijk} represents the conditional probability of variable X_i being in its k-th value, knowing that the set of its parent variables is in its j-th value
- $pa_i^{1,S}, \dots, pa_i^{q_i,S}$ denotes the values of Pa_i^S , the set of parents of the variable X_i in the structure S
 - The term q_i denotes the number of possible different instances of the parent variables of X_i . Thus, $q_i = \prod_{X_a \in \mathcal{P}_{a_i}} r_g$
- The local parameters for variable X_i are given by $\theta_i = ((\theta_{ijk})_{k=1}^{r_i})_{j=1}^{q_i})$
- Global parameters: $\theta = (\theta_1, ..., \theta_n)$

Parameters θ_{ijk} example

Factorisation of the joint mass probability $P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2)P(x_3|x_1, x_2)P(x_4|x_3)$

Figure: Structure, local probabilities and resulting factorization for a Bayesian network with four variables $(X_1, X_3$ and X_4 with two possible values, and X_2 with three possible values)

variable	possible values	parent variables	possible values of the parents
X_i	r_i	Pa _i	q_i
X ₁	2	Ø	0
X_2	3	Ø	0
X_3	2	$\{X_1, X_2\}$	6
X_4	2	{X ₃ }	2

Table: Variables (X_i) , number of possible values of variables (r_i) , set of variable parents of a variable (Pa_i) , number of possible instantiations of the parent variables (q_i)

Global independence of the parameters

Assuming global independence of the parameters:

$$L(D:\theta) = \prod_{i=1}^{n} L(D_i:\theta_i)$$

 It is possible to estimate the parameter for each variable X_i independently of the other variables

Figure: Dataset D_2 for estimating the parameters of variable X_2

Global independence: $L(D:\theta) = \prod_{i=1}^{n} L(D_i:\theta_i)$

Figure: Dataset D_1 for estimating the parameters of variable X_1

Local independence of the parameters

Assuming local independence of the parameters:

$$L(D:\theta) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} L(D_{ij}:\theta_{ij})$$

Local independence: $L(D:\theta) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} L(D_{ij}:\theta_{ij})$

Figure: Dataset D_{21} for estimating the parameters of variable X_2 when $X_1 = 0$

$$L(D:\theta) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \prod_{k=1}^{r_i} \theta_{ijk}^{N_{ijk}}$$

- $P(X_i = x_i^k \mid \mathbf{pa}_i^j) = \theta_{ijk}$ with $i = 1, ..., n; j = 1, ..., q_i$ and $k = 1, ..., r_i$
- N_{ij} number of cases in D where the configuration pa_i has been observed
- N_{ijk} number of cases in D where simultaneously $X_i = x_i^k$ and $Pa_i = pa_i^j$ has been observed $(N_{ij} = \sum_{k=1}^{r_i} N_{ijk})$

$$L(D:\theta) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \prod_{k=1}^{r_i} \theta_{ijk}^{N_{ijk}}$$

Outline

- 1 Introduction
- **2** Learning Parameters
- 3 Learning Structures
- 4 Summary

Introduction

Learning structure (DAG) and parameters (conditional tables)

Introduction

Three types of methods

- Based on detecting conditional independencies (Constraint-based methods)
 - Study the (in)dependence relationships between the variables by means of statistical tests
 - Try to find the structure(s) that represents the most (or all) of these relationships
- Based on score + search
 - Try to find the structure that best "fit" the data
 - They need:
 - A score (metric or evaluation function) to measure the fitness of each candidate structure
 - 2 A search method (heuristic) to explore in an intelligent manner the space of possible solutions
 - Several types of spaces can be considered
- Hybrid methods
 - Based on a search technique guided by a score and the detection of conditional independencies

PC algorithm (Spirtes et al. 1993)

- General idea is based on generating a skeleton derived through statistical tests for detecting conditional independencies
- Start from the complete undirected graph
- Recursive conditional independence tests for deleting edges
- The output is a CPDAG where the edges should be transformed into arcs

Some considerations

- X_i and X_j are independent given **Z** iff $2NMI(X_i, X_j | \mathbf{Z}) \to \chi^2_{(r_i-1)(r_i-1)|\mathbf{Z}|}$
- The reliability of the test:
 - Increases with *N*, the number of cases (it is an asymptotic test)
 - Reduces dramatically with the order of the test (number of variables in Z)

Introduction Learning Parameters Learning Structures Summary

Testing conditional independencies

Completed Partially DAG (CPDAG)

- Using only conditional independence tests: not possible to obtain a unique DAG
- Usually a completed partially DAG (CPDAG) is obtained
- Each CPDAG represents an equivalent class of DAGs
- Two DAGs, S_1 and S_2 are equivalent (or Markov equivalent) if for all W, Y, Z

$$I_{S_1}(\boldsymbol{W},\boldsymbol{Y}|\boldsymbol{Z}) \Longleftrightarrow I_{S_2}(\boldsymbol{W},\boldsymbol{Y}|\boldsymbol{Z})$$

• Two DAGs, S₁ and S₂ are equivalent iff they have the same edges (no direction) and the same head to head patterns (arcs X → Z and Y → Z and X and Y are not adjacent)

Figure: Equivalent DAGs

Completed Partially DAG (CPDAG)

- Arcs in the CPDAG appear in all DAGs of its equivalent class
- Edges in the CPDAG can be orientated in different ways in each DAG of its class (without new head to head patterns or cycles)

PC algorithm (Spirtes et al. 1993)

```
Form complete, undirected graph S t=-1 repeat t=t+1 repeat t=t+1 select ordered pair of adjacent nodes A,B in S select neighborhood C of A of size t (if possible) delete edge A-B in S if A and B cond. ind. given C until all ordered pairs have been tested until all neighborhood are of size smaller than t Transform edges in arcs by applying some simple rules
```


PC algorithm (Spirtes et al. 1993). Example with t=2

Figure: Example of the PC algorithm with t=2

Introduction

- They try to find the structure that best "fit" the data
- They are characterized by:
 - A score (metric or evaluation function) to measure the fitness of each candidate structure
 - Penalized log-likelihood
 - Bayesian metrics
 - A space of structures where the search is carried out
 - Directed acyclic graphs
 - Equivalence classes
 - Order between the variables
 - A search method to explore in an intelligent manner the space of possible solutions
 - Local search
 - Heuristics

Score metrics. Penalized log-likelihood

- Log-likelihood of the data: $\log P(D:S,\theta) = \sum_{i=1}^n \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} \log(\theta_{ijk})^{N_{ijk}}$
- $\log P(D: S, \widehat{\theta}) = \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} N_{ijk} \log \frac{N_{ijk}}{N_{ij}}$ with $\widehat{\theta}_{ijk} = \frac{N_{ijk}}{N_{ij}}$ (maximum likelihood estimate)

Figure: Likelihood increases monotonically wrt model complexity

Score metrics. Penalized log-likelihood

 Avoid overfitting penalizing the complexity of the Bayesian network in the log-likelihood:

$$\sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} N_{ijk} \log \frac{N_{ijk}}{N_{ij}} - dim(S)pen(N)$$

- $dim(S) = \sum_{i=1}^{n} q_i(r_i 1)$ model dimension
- pen(N) no negative penalization function
 - pen(N) = 1: Akaike's information criterion (AIC) (Akaike, 1974)
 - pen(N) = ½ log N: Bayesian information criterion (BIC) (Schwarz, 1978). It is equivalent to the minimum description length (MDL) (Lam and Bacchus, 1994) criterion

Score metrics. Bayesian model selection

- Try to obtain the structure with maximum a posteriori probability given the data: that is arg max_SP(S|D)
- Using Bayes formula:

$$P(S|D) = \frac{P(D|S)P(S)}{P(D)}$$

$$P(S|D) \propto P(D|S)P(S)$$

- P(D|S) is the marginal likelihood of the data
- P(S) denotes the prior distribution over structures
- If P(S) is uniform $(maxP(S|D) \equiv maxP(D|S))$ we try to obtain the structure with maximum marginal likelihood

Score metrics. Bayesian model selection. K2 metric

Accounts for uncertainty also in the parameters:

$$P(D|S) = \int P(D|S,\theta)p(\theta|S)d\theta$$

- P(D|S) posterior probability of the data given the structure
- $P(D|S, \theta)$ likelihood of the data given the Bayesian network (structure + parameters)
- $p(\theta|S)$ prior distribution over the parameters

Score metrics. Bayesian model selection. K2 metric

• Assuming that $p(\theta_{ij}|S)$ is uniform, it is possible to obtain a closed formula for P(D|S) (Cooper and Herskovits, 1992)

$$P(D|S) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} \prod_{k=1}^{r_i} N_{ijk}!$$

- n: number of variables
- r_i : number of states X_i can have
- q_i: number of possible state combinations of **Pa**_i
- N_{ijk}: number of cases in D where X_i takes its k-th value and the parent set of X_i are on their j-th combination of values
- N_{ij} : $\sum_{k=1}^{r_i} N_{ijk}$

Score metrics. Bayesian model selection. K2 algorithm

- An ordering between the nodes is assumed
- An upper bound is set on the number of parents for any node
- For every node, X_i , K2 searches for the set of parent nodes that maximizes:

$$g(X_i, \mathbf{Pa}_i) = \prod_{j=1}^{q_i} \frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} \prod_{k=1}^{r_i} N_{ijk}!$$

- K2 assumes initially that a node does not have parents
- At each step K2 incrementally adds the parent whose addition provides the best value for $g(X_i, Pa_i)$
- K2 stops when adding a single parent to any node cannot increase $g(X_i, Pa_i)$
- K2 is a greedy algorithm

Score metrics. Bayesian model selection. BDe metric

• Assuming that $p(\theta_{ij}|S)$ follows a Dirichlet distribution, it is possible to obtain a closed formula for P(D|S)

$$P(D|S) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

- This is called the Bayesian Dirichlet (BD) score
- lacktriangle α_{iik} denotes the parameters of the Dirichlet distribution
 - $\alpha_{ijk} = 1$: K2 metric (Cooper and Herskovits, 1992)
 - $\alpha_{ijk} = \alpha P(x_i^k, \mathbf{Pa}_i = \mathbf{pa}_i^j | S)$: likelihood-equivalent Bayesian Dirichlet (BDe) score (Heckerman et al., 1995)
 - $\alpha_{ijk} = \alpha/q_i r_i$: BDeu score (Buntine, 1991)
- Decomposable score = can be expressed as a sum of values that depend on only one node and its parents. All (estimated log-likelihood, AIC, BIC/MDL, BD, K2, BDe and BDeu)
- Score equivalence property = two Markov equivalent graphs score the same. All but K2 and BD are score equivalent

Different spaces for search

Space of directed acyclic graphs

$$d(n) = \sum_{i=1}^{n} (-1)^{i+1} {n \choose i} 2^{i(n-i)} d(n-i); \quad d(0) = 1; \quad d(1) = 1$$

E.g.,
$$d(10) \simeq 4.2 \times 10^{18}$$

- Space of equivalence classes (each class reflects the same set of conditional independencies)
 - Scores: score equivalent (Chickering, 1996)
- Ordering between the variables (Larrañaga et al., 1996, Friedman and Koller, 2002): cardinality of the search space n!

Search algorithms. Local search. B algorithm (Buntine, 1991)

- Local operators: insert, delete and invert an arc
- Efficient search due to the decomposability of the scores

Search algorithms. Metaheuristics and exact methods

- Greedy search (Buntine, 1991; Cooper and Herskovits, 1992), simulated annealing (Heckerman et al., 1995), genetic algorithms (Larrañaga et al., 1996), MCMC methods (Giudici and Green, 1999; Friedman and Koller, 2003; Grzegorczyk and Husmeier, 2008) and estimation of distribution algorithms (Larrañaga et al., 2000; Blanco et al., 2003)
- Exact methods (several dozens of variables only): dynamic programming (Koivisto and Sood, 2004; Silander and Myllymäki, 2006; Malone et al., 2011), branch and bound (de Campos and Ji, 2011), and mathematical programming (Martínez-Rodríguez et al., 2008; Jaakkola et al., 2010)

Outline

- 1 Introduction
- **2** Learning Parameters
- 3 Learning Structures
- 4 Summary

Learning Bayesian networks

Structure + parameters

- Learning parameters
 - Maximum likelihood estimation
 - Bayesian estimation (Dirichlet distribution)
- Learning structures
 - Detecting conditional independencies (PC algorithm)
 - Score + search (penalized log-likelihood (AIC, BIC, MDL), Bayesian metrics (K2, BD, BDe, BDeu); local, metaheuristics)
 - Hybrid methods