# Università di Verona A.Y. 2021-22

# Machine Learning & Artificial Intelligence

**Bayes Decision theory** 

# Rev. Thomas Bayes, F.R.S (1702-1761)



#### Introduction

- Fundamental statistical approach to pattern classification
- Hypothesis:
  - 1. The decision problem is cast in probabilistic terms;
  - 2. All relevant probabilities are known;

#### Goal:

Discriminate the different **decision rules** using the **probabilities** and the associated **costs** 

- The classification problem is not different from regression:
  - given x you have to estimate the relative value of y where y is continuous in regression problems, while it is discrete (class labels) in classification problems
- Estimating the joint probability  $p(\mathbf{x}, \mathbf{y})$  from the training data set is a classic *inference* problem

• Many times it is not required, and the problem is to predict a value of y associated with a certain x, or more generally to make a decision (action) based on the prediction of the value y.

# An easy example

- Let  $\omega$  be the **state of nature** to be probabilistically described
- There are:
  - 1. Two classes  $\omega_1$  and  $\omega_2$  for which are known
    - a)  $P(\omega = \omega_1) = 0.7$
    - b)  $P(\omega = \omega_2) = 0.3$

- → a-priori o prior probability
- 2. No measurements/observations.

- Decision rule:
  - Decide  $\omega_1$  if  $P(\omega_1) > P(\omega_2)$ ; otherwise decide  $\omega_2$
- Rather than decide, I guess the state of nature.

# Another example – Bayes' formula

In the previous hypothesis, with in addition the single measurement x, random variable dependent on  $\omega_{\rm j}$ , we can get

$$p(x \mid \omega_j)_{j=1,2}$$
 = Likelihood or class-conditional probability density function

i.e. the probability of having the measurement x knowing that the state of nature is  $\omega_i$ .

Fixed the measurement x, the higher  $p(x|\omega_j)$  is the more likely  $\omega_j$  the "right" state.



# Another example – Bayes' formula (2)

Assuming known  $P(\omega_j)$  and  $p(x|\omega_j)$ , the decision of the state of nature becomes, for Bayes

$$p(\omega_j, x) = P(\omega_j \mid x) p(x) = p(x \mid \omega_j) P(\omega_j)$$

that is

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j) P(\omega_j)}{p(x)} \propto p(x \mid \omega_j) P(\omega_j)$$

where:

• 
$$P(\omega_j)$$
 = Prior

• 
$$p(x | \omega_j) = \text{Likelihood}$$

$$ightharpoonup P(\omega_j \mid x) = Posterior$$

$$p(x) = \sum_{j=1}^{J} p(x \mid \omega_j) P(\omega_j)$$

= Evidence



# Bayes decision rule

$$P(\omega_{j} \mid x) = \frac{p(x \mid \omega_{j})P(\omega_{j})}{p(x)}$$

$$posterior = \frac{likelihood \times prior}{evidence}$$

- The posterior or **a-posteriori probability** is the probability that the state of nature is  $\omega_i$  given the observation x.
- The most important factor is the product  $likelihood \times prior$ ; the evidence p(x) is simply a scale factor, which ensures that

$$\sum_{j} P(\omega_{j} \mid x) = 1$$

• From the formula of Bayes derives the **Bayes' decision rule**:

Decide  $\omega_1$  if  $P(\omega_1/x) > P(\omega_2/x)$ ,  $\omega_2$  otherwise

## Bayes decision rule (2)

To prove the effectiveness of the Bayes decision rule:

1) We define the *probability of error* attached to this decision:

$$P(error \mid x) = \begin{cases} P(\omega_1 \mid x) & \text{if we decide } \omega_2 \\ P(\omega_2 \mid x) & \text{if we decide } \omega_1 \end{cases}$$

- I prove that the **Bayes decision rule minimizes the probability of error.** We decide  $\omega_1$  if  $P(\omega_1 \mid x) > P(\omega_2 \mid x)$  and viceversa.
- 3) So, if I want to minimize the average probability of error on all possible observations,

$$P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error \mid x) p(x) dx$$

if, for every x, I take P(error/x) as small as possible I secure the least probability of error (the factor p(x) is irrelevant).

# Bayes decision rule (3)

In such a case, the probability of error becomes

$$P(error/x) = min[P(\omega_1/x), P(\omega_2/x)]$$

This ensures that the Bayes decision rule

decide 
$$\omega_1$$
 if  $P(\omega_1/x) > P(\omega_2/x)$ , otherwise  $\omega_2$  minimizes the error!

#### Rule of equivalent decision:

■ The shape of the decision rule highlights the importance of the posterior probability, and emphasizes the irrelevance of the evidence, just a scale factor that shows how frequently you observe a pattern x. By eliminating it, you get the equivalent decision rule:

decide 
$$\omega_1$$
 if  $p(x/\omega_1)P(\omega_1) > p(x/\omega_2)P(\omega_2)$ , otherwise  $\omega_2$ 

### Extension of Bayes decision theory

- It's possible to extend the Bayesian approach by using:
  - More than one type of observations or **feature** x, e.g. weight, height, ...

$$x \rightarrow \mathbf{x} = \{x_1, x_2, ..., x_d\}, \mathbf{x} \in \mathbf{R}^d \text{ with } \mathbf{R}^d \text{ feature space}$$

More than two states of nature or categories, c

$$\omega_1, \omega_2 \rightarrow \{\omega_1, \omega_2, ..., \omega_c\}$$

- Different actions, in addition to the choice of states of nature

$$\{\alpha_1, \alpha_2, ..., \alpha_a\}$$

– A **cost function**, more general than the probability of error, i.e.  $\lambda(\alpha_i / \omega_j)$  which describes the cost (or loss) of the action  $\alpha_i$  when the state is  $\omega_i$ .

## Extension of Bayes decision theory (2)

This extension does not change the shape of the posterior probability, which remains:

$$P(\omega_j \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_j)P(\omega_j)}{p(\mathbf{x})}, \mathbf{x} = \{x_1, x_2, ..., x_d\}, \mathbf{x} \in \mathbb{R}^d$$

- Suppose we observe a particular  $\mathbf{X}$ , and we decide to carry out the action  $\alpha_i$ : by definition, we will be subject to loss  $\lambda(\alpha_i/\omega_j)$ .
  - Given the indeterminacy of  $\omega_j$ , the expected loss (or **risk**) <u>associated with this decision</u> will be:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$
 Conditional risk

• In this case, Bayes decision theory indicates to carry out the action that minimizes the conditional risk or, formally, a decision function  $\alpha(x)$  such that:

$$\alpha(\mathbf{x}) \to \alpha_i$$
,  $\alpha_i \in \{\alpha_1, \alpha_2, ..., \alpha_a\}$ , such that  $R(\alpha_i / \mathbf{x})$  is minimal.

## Extension of Bayes decision theory (3)

- To evaluate such a function, the overall risk is introduced, i.e. the expected loss given a decision rule.
- Since  $R(\alpha_i / x)$  is the conditional risk associated to the action and since the decision rule specifies the action, the overall risk is

$$R = \int R(\alpha(\mathbf{x}) \,|\, \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

• Clearly, if  $\alpha(x)$  is chosen so that  $R(\alpha_i/x)$  is as little as possible for each  $\mathbf{X}$ , the overall risk is minimized. So Bayes extended decision rule is:

1) Calculate 
$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

2) Choose the action  $i^* = arg \min_{i} R(\alpha_i | \mathbf{x})$ 

The resulting minimum overall risk is called **Bayes Risk**  $R^*$  and it is *the best performance that can be achieved.* 

### Two-category classification problems

- Consider Bayes' decision rule applied to binary classification problems, i.e., with two possible states of nature  $\omega_1$ ,  $\omega_2$ , with  $\alpha_i \rightarrow$  the right state is  $\omega_i$ . By definition,  $\lambda_{ij} = \lambda(\alpha_i / \omega_j)$
- Conditional risk becomes

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x})$$

$$R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$$

- There are many equivalent ways of expressing the minimum risk decision rule, each with its own advantages:
- Fundamental form: choose  $\omega_1$  if  $R(\alpha_1 | \mathbf{x}) < R(\alpha_2 | \mathbf{x})$ 
  - In terms of a posteriori probability choose  $\omega_1$  if

$$(\lambda_{21} - \lambda_{11})P(\omega_1 \mid \mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2 \mid \mathbf{x}).$$

# Two-category classification problems (2)

 Ordinarily, the loss for a wrong decision is greater than the loss for a right decision, therefore

$$(\lambda_{21} - \lambda_{11}), (\lambda_{12} - \lambda_{22}) > 0$$

- So, in practice, our decision is determined by the most likely state of nature (indicated by probability a posteriori), although scaled by the difference factor (however positive) given by the losses.
- Using Bayes, we replace the a-posteriori probability with

$$(\lambda_{21} - \lambda_{11})P(\omega_1 \mid \mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2 \mid \mathbf{x})$$

$$(\lambda_{21} - \lambda_{11})p(\mathbf{x} \mid \omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})p(\mathbf{x} \mid \omega_2)P(\omega_2).$$

obtaining the equivalent form dependent upon prior and conditional densities

### Two-category classification problems (3)

• Another alternative form, valid for the reasonable assumption that  $\lambda_{21}>\lambda_{11}$  is to decide  $\omega_1$  if

$$(\lambda_{21} - \lambda_{11}) p(\mathbf{x} \mid \omega_{1}) P(\omega_{1}) > (\lambda_{12} - \lambda_{22}) p(\mathbf{x} \mid \omega_{2}) P(\omega_{2}).$$

$$\frac{p(\mathbf{x} \mid \omega_{1})}{p(\mathbf{x} \mid \omega_{2})} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_{2})}{P(\omega_{1})}$$

This form of decision rule focuses on x's dependence on probability densities. Consider  $p(\mathbf{x}|\omega_j)$  a function of  $\omega_j$  that is, the likelihood function, and we calculate the **likelihood ratio**, which translates Bayes rule as *the choice of*  $\omega_1$  *if the* 

likelihood ratio exceeds a certain threshold, choice independent of observation X.

#### Minimum Error Rate Classification

- In classification problems, each state is associated with one of the c classes  $\omega_i$ , and actions  $\alpha_i$  mean that "the right state is  $\omega_i$ ".
- The loss function associated with this case is referred to as **0-1 loss** or **symmetric loss** . . .

$$\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & \text{se } i = j \\ 1 & \text{se } i \neq j \end{cases}$$

 The risk corresponding to this loss function is the average probability of error, since the conditional risk is

• 
$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x}) =$$
$$= \sum_{j\neq i}^c P(\omega_j \mid \mathbf{x}) = 1 - P(\omega_i \mid \mathbf{x})$$

and  $P(\omega_i | \mathbf{x})$  is the probability that action  $\alpha_i$  is correct.

# Classification *Minimum Error Rate* (2)

• To minimize the total risk, i.e. in this case to minimize the average probability of error, we must choose i that maximizes the probability a posteriori  $P(\omega_i \mid \mathbf{x})$ , that is, for the **Minimum Error Rate**:

decide 
$$\omega_i$$
 if  $P(\omega_i/x) > P(\omega_j/x)$  for each  $j \neq i$ 

#### Recap

Bayes' formula
$$P(\omega_j \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_j)P(\omega_j)}{p(\mathbf{x})}$$

#### Bayes decision rule:

decide  $\omega_1$  if  $P(\omega_1/\mathbf{x}) > P(\omega_2/\mathbf{x})$ ,  $\omega_2$  otherwise, equiv.  $p(\mathbf{x}/\omega_1)P(\omega_1) > p(\mathbf{x}/\omega_2)P(\omega_2)$ 



With the loss function, the rule does not change:

decide  $\omega_1$  if  $(\lambda_{21} - \lambda_{11}) p(\mathbf{x} \mid \omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) p(\mathbf{x} \mid \omega_2) P(\omega_2)$  otherwise  $\omega_2$ and allows you to minimize the risk!



By rearranging the likelihoods we have

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$$

where (Minimum Error Rate)

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & \text{se } i = j \\ 1 & \text{se } i \neq j \end{cases}$$

from which I reconnect to the initial rule!

# **Decision Theory**

- In practice, the problem can be split into an <u>inference</u> phase where data are used to train a model  $p(\omega_k|\mathbf{x})$  and a subsequent <u>decision</u> step, in which the *posterior* is used to make the choice of the class.
- An alternative is to solve the 2 problems at the same time and train a function that maps the input x directly in the space of decisions, that is, of the classes

#### → discriminating functions

- There are 3 approaches to solve the decision problem (in descending order of complexity):
  - Solve for the inference problem first to determine the *class-conditional* densities for each individual class, also infer the *priors* and then use Bayes to find the *posterior* and then determine the class (based on decision theory.

20

- o Alternatively, the joint  $p(\mathbf{x}, \omega_{\mathbf{k}})$  can be modeled directly and then normalize to obtain the posterior
  - **→** Generative models
- 2. Solve the inference problem first to determine the *posterior* directly and then use decision theory to decide the class
  - Discriminatory models
- 3. Find an f(x) function, called a discriminating function, that maps x input directly to a class label

- Each approach has some advantages and disadvantages.
- Generative methods are more complex, requiring "good" training sets, but have the advantage of being able to manipulate all the variables at play.
- But when the problem is classification (decision, action), then the discriminative methods are more efficient, also because sometimes the *class-conditional* probabilities have a complex profile but that does not affect the *posterior*.
- Even better would be to use the discriminating functions, that is, to find directly the separation surface between the classes.

22





#### ■ However, estimating the posterior is often times useful because:

- o the risk is minimized when the loss matrix changes over time;
- the priors of the classes can be balanced when the training set is unbalanced;
- one can combine the models in case a complex problem needs to be subdivided into simpler problems, and then "merge" the results (naive Bayes under the conditional independence hypothesis)

$$p(\omega_{j} | \mathbf{x}_{A}, \mathbf{x}_{B}) \propto p(\mathbf{x}_{A}, \mathbf{x}_{B} | \omega_{j}) p(\omega_{j})$$

$$\propto p(\mathbf{x}_{A} | \omega_{j}) p(\mathbf{x}_{B} | \omega_{j}) p(\omega_{j}) \quad naive \ Bayes$$

$$\propto \frac{p(\omega_{j} | \mathbf{x}_{A}) p(\omega_{j} | \mathbf{x}_{B})}{p(\omega_{j})}$$

#### Classifiers, discriminating functions and separation surfaces

- One of the various methods of representing pattern classifiers is a set of discriminating functions  $g_i(\mathbf{x})$ , i=1,...,c
- The classifier assigns the feature vector  ${\bf x}$  to the class  $\omega_i$  if

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for each  $j \neq i$ 

- Such a classifier can be considered as a network that calculates c discriminating functions and chooses the function that discriminates the most.
  - A Bayes classifier lends itself easily to this representation:

Generic Risk 
$$g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x})$$
  
Minimum Error Rate  $g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x})$ 



### Classifiers, discriminating functions and separation surfaces (2)

- There are many <u>equivalent</u> discriminating functions. For example, all those for which the classification results are the same
- For example, if f è una funzione monotona crescente, then

$$g_i(\mathbf{x}) \Leftrightarrow f(g_i(\mathbf{x}))$$

Some forms of discriminating functions are easier to understand or to be calculated

Minimum Error Rate



$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_i) P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} | \omega_j) P(\omega_j)}$$
$$g_i(\mathbf{x}) = p(\mathbf{x} | \omega_i) P(\omega_i)$$
$$g_i(\mathbf{x}) = \ln p(\mathbf{x} | \omega_i) + \ln P(\omega_i),$$

### Classifiers, discriminating functions and separation surfaces (3)

The effect of each decision is to divide the feature space into c separation or

decision surfaces  $R_1, ..., R_c$ 

 The regions are separated with decision boundaries, lines described by the maximum discriminating functions.

o In the case of two categories we have two discriminating functions,  $g_1 e g_2$ , for which assign x to  $\omega_1$  if  $g_1 > g_2$  or

o Using 
$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$
 
$$g(\mathbf{x}) = P(\omega_1 \mid \mathbf{x}) - P(\omega_2 \mid \mathbf{x})$$
 
$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$
 ittorio Murino



Just one discriminating function!

# The Normal density

• The structure of a Bayes classifier is determined by:

- Conditional densities  $p(\mathbf{x} \mid \omega_i)$ 

– A-priori probabilities  $P(\omega_i)$ 

- One of the most important densities is the **Normal density** or **Gaussian multivariate**, in fact:
  - is analytically manageable;
  - most important, provides the best modeling of both theoretical and practical problems
    - o the Central Limit theorem asserts that "under various conditions, the distribution of the sum of *d* independent random variables tends to a particular limit known as the Normal distribution".



## The Normal density (2)

- The Gaussian function has other properties
  - The Fourier transform of a Gaussian function is a Gaussian function;
  - It is optimal for localization over time or frequency
    - The uncertainty principle states that localization cannot occur simultaneously in time and frequency

### The univariate Normal density

• Let's start with the univariate Normal density. It is fully specified by two parameters, mean  $\mu$  and variance  $\sigma^2$ , it is indicated by  $N(\mu, \sigma^2)$  in the form:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

$$\text{Mean} \qquad \mu = E[x] = \int_{-\infty}^{\infty} xp(x)dx$$

$$\text{Variance} \qquad \sigma^2 = E[(x-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx$$

- With fixed mean and variance, the Normal density is the one with maximum entropy
  - Entropy measures the uncertainty of a distribution or the amount of information needed on average to describe the associated random variable, and is given by

$$H(p(x)) = -\int p(x) \ln p(x) \, dx$$

### **Multivariate Normal density**

• The generic multivariate Normal density at *d* dimensions is:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right\}$$

where

- $\mu = mean$  vector of d components
- $\Sigma$  = covariance matrix  $d \times d$ , where
  - $|\Sigma|$  = matrix determinant
  - $\Sigma^{-1}$  = inverse matrix





o Analytically 
$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t] = \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t p(\mathbf{x}) d\mathbf{x}$$

o Item by element 
$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)]$$

# Multivariate Normal density (2)

- Characteristics of the covariance matrix
  - Symmetric
  - Semi-defined positive ( $|\Sigma| \ge 0$ )
  - $\sigma_{ii}$ = variance of  $x_i$  (=  $\sigma_i^2$ )
  - $\sigma_{ij}$ = covariance between  $x_i$  and  $x_j$  (if  $x_i$  and  $x_j$  are statistically independent  $\sigma_{ij}$ = 0)
  - If  $\sigma_{ij} = 0 \quad \forall i \neq j \ p(\mathbf{x})$  is the product of the univariate density for  $\mathbf{x}$  component by component.
  - If
    - $p(\mathbf{x}) \approx N(\mathbf{\mu}, \Sigma)$
    - A matrix  $d \times k$
    - $\mathbf{y} = \mathbf{A}^{\mathsf{t}} \mathbf{x}$

$$\rightarrow p(\mathbf{y}) \approx N(A^t \boldsymbol{\mu}, A^t \Sigma A)$$



# Multivariate Normal density (3)

- SPECIAL CASE: k = 1
  - $-p(\mathbf{x}) \approx N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
  - -a vector  $d \times 1$  of unit length
  - $-y = a^t \mathbf{x}$
  - -y is a scalar that represents the projection of x on a line in the direction defined by a
  - $-a^t \sum a$  is the variance of x on a
- Generally,  $\Sigma$  allows you to calculate the *dispersion* of data in each surface or subspace.



# Multivariate Normal density (4)

- Let's define the whitening transform, being:
  - ullet  $\Phi$  the matrix of orthonormal eigenvectors of  $oldsymbol{\Sigma}$  in column
  - ullet  $\Lambda$  the diagonal matrix of the corresponding eigenvalues
- The transformation  $A_w = \Phi \Lambda^{-1/2}$ , applied to feature space coordinates, provides a covariance matrix distribution = I (identity matrix)
- The d-dimensional density  $N(\mu, \Sigma)$  needs d+d(d+1)/2 parameters to be defined

But what  $\Phi$  and  $\Lambda$  represent graphically?

Mean identified by  $\mu$  the coordinates of  $\mu$ 



# Multivariate Normal density (5)

The main axes of the hyper-ellipsoids

are given by the eigenvectors of  $\Sigma$  (described by  $\Phi$ )

Hyper-ellipsoids are those places of the points for which the distance of  $\mathbf{x}$  from  $\mathbf{m}$ 

$$r^2 = (\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$

also called *Mahalanobis* distance, is constant

The lengths of the main axes of the hyper-ellipsoids are given by the

eigenvalues of  $\Sigma$  (described by  $\Lambda$ )



### Discriminating Functions - Normal Density

 Back to the Bayesian classifiers, and in particular to the discriminating functions, we analyze the discriminating function as it translates into the case of Normal density and *minimum error* rate

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$



• Depending on the nature of  $\Sigma$ , the formula above can be simplified. Let's see some examples ...

### Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$

 This is the simplest case where features are statistically independent  $(\sigma_{ij}=0, i\neq j)$ , and each class has the same variance (1-D case):

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{\mu}_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} \left[ \mathbf{x}^t \mathbf{x} - 2\mathbf{\mu}_i^t \mathbf{x} + \mathbf{\mu}_i^t \mathbf{\mu}_i \right] + \ln P(\omega_i)$$

where the term  $\mathbf{x}^t\mathbf{x}$ , equal for every  $\mathbf{x}$ , can be ignored, leading to the form:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + \mathbf{w}_{i0},$$

where





# Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$ (2)

- The above functions are called linear discriminant functions (or linear machines)
  - O The **decision boundaries** are given by  $g_i(\mathbf{x}) = g_j(\mathbf{x})$  for the two classes with the highest probability a posteriori
  - In this particular case, we have:

where
$$\mathbf{w}^{t}(\mathbf{x} - \mathbf{x}_{0}) = 0$$
where
$$\mathbf{w} = \mathbf{\mu}_{i} - \mathbf{\mu}_{j}$$

$$\mathbf{x}_{0} = \frac{1}{2}(\mathbf{\mu}_{i} + \mathbf{\mu}_{j}) - \frac{\sigma^{2}}{\|\mathbf{\mu}_{i} - \mathbf{\mu}_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})}(\mathbf{\mu}_{i} - \mathbf{\mu}_{j})$$

#### Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$ (3)

- Linear discriminant functions define a hyper-plane through  $\mathbf{x}_0$  and orthogonal to  $\mathbf{w}$ :
  - since  $\mathbf{w} = \boldsymbol{\mu}_i \boldsymbol{\mu}_j$ , the hyperplane that separates  $R_i$  from  $R_j$  is orthogonal to the line joining the means.
- From the previous formula, it can be noted that, with the same variance, the larger prior determines the classification result



## Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$ (4)



# Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$ (5)



## Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$ (6)

$$\mathbf{x}_{0} = \frac{1}{2} (\mathbf{\mu}_{i} + \mathbf{\mu}_{j}) - \frac{\sigma^{2}}{\|\mathbf{\mu}_{i} - \mathbf{\mu}_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mathbf{\mu}_{i} - \mathbf{\mu}_{j})$$

- PLEASE NOTE: If the prior probabilities  $P(\omega_i)$ , i=1,...,c are equal, then the term with the logarithm is equal to 0 and can be ignored, reducing the classifier to a **minimum distance** classifier.
- In practice, the optimal decision rule has a simple geometric interpretation
  - Assigns x to the class whose mean  $\mu$  is closer

## Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$ (7)



## Discriminating Functions - Normal Density $\Sigma_i = \sigma^2 I$ (8)





#### Discriminating Functions - Normal Density $\Sigma_i = \Sigma$

- Another simple case occurs when the covariance matrices for all classes are equal, but arbitrary.
- In this case, the ordinary formula:

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \boldsymbol{\Sigma}_i \right| + \ln P(\omega_i)$$

can be simplified to

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

which is further manageable, with a process similar to the previous case (developing the product and eliminating the term  $\mathbf{x}^t \mathbf{\Sigma}^{-1} \mathbf{x}$ ).

#### Discriminating Functions - Normal Density $\Sigma_i = \Sigma$ (2)

• This, we still obtain linear discriminating functions, in the form:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

where

$$\mathbf{w}_{i} = \mathbf{\Sigma}^{-1} \mathbf{\mu}_{i}$$

$$w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(\boldsymbol{\omega}_i)$$

 Since the discriminants are linear, the decision boundaries are still hyper-planes.

#### Discriminating Functions - Normal Density $\Sigma_i = \Sigma$ (3)

If the decision-making regions  $R_i$  and  $R_j$  are contiguous, the boundary between them becomes:

where 
$$\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0,$$
 where 
$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$
 and 
$$\mathbf{x}_0 = \frac{1}{2}(\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \frac{\ln[P(\omega_i)/P(\omega_j)]}{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j).$$

#### Discriminating Functions - Normal Density $\Sigma_i = \Sigma$ (4)

• Since  ${\bf w}$  in general (differently from before) it is not the vector that joins the 2 means ( ${\bf w}={\bf \mu}_i$  -  ${\bf \mu}_j$ ), the hyperplane that divides  $R_i$  from  $R_j$  it is not orthogonal to the line between the means. However, it intersects this line in  ${\bf x}_0$ 

• If the *priors* are equal, then  $\mathbf{x}_0$  is in the middle of the means, otherwise the optimal hyper-plane of separation will be shifted towards the average of the least likely class.

## Discriminating Functions - Normal Density $\Sigma_i = \Sigma$ (5)



49

## Discriminating Functions - Normal Density $\Sigma_i = \Sigma$ (6)



#### Discriminating Functions - Normal Density $\Sigma_i$ arbitrary

- Covariance matrices are different for each category;
- Discriminating functions are inherently quadratic;

$$g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0},$$
 where 
$$\mathbf{W}_i = -\frac{1}{2} \mathbf{\Sigma}_i^{-1},$$
 
$$\mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i$$
 and 
$$w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i).$$

#### Discriminating Functions - Normal Density $\Sigma_i$ arbitrary (2)

- In case 2-D the decision surfaces are hyper-quadric:
  - Hyper-planes
  - Pair of hyper-planes
  - Hyper-spheres
  - Hyper-paraboloids
  - Hyperboloids of various types

• Even in the 1-D case, due to arbitrary variance, the decision regions are usually unconnected.

# Discriminating Functions - Normal Density $\Sigma_i$ arbitrary (3)



# Discriminating Functions – Normal Density $\Sigma_i$ arbitrary (4)



# Discriminating Functions – Normal Density $\Sigma_i$ arbitrary (5)



# Discriminating Functions – Normal Density $\Sigma_i$ arbitrary (6)



# Discriminating Functions – Normal Density $\Sigma_i$ arbitrary (7)



# Discriminating Functions – Normal Density $\Sigma_i$ arbitrary (8)

