A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR PREDICTION OF SOLAR GENERATION

These datasets are meteorological data from the HI-SEAS weather station from four months (September through December 2016) between Mission IV and Mission V.

For each dataset, the fields are:

A row number (1-n) useful in sorting this export's results The UNIX time_t date (seconds since Jan 1, 1970). Useful in sorting this export's results with other export's results The date in yyyy-mm-dd format The local time of day in hh:mm:ss 24-hour format The numeric data, if any (may be an empty string) The text data, if any (may be an empty string)

The units of each dataset are:

Solar radiation: watts per meter^2

Temperature: degrees Fahrenheit

Humidity: percent

Barometric pressure: Hg

Wind direction: degrees

Wind speed: miles per hour

Sunrise/sunset: Hawaii time

Data can be downloaded from this link: https://www.kaggle.com/dronio/SolarEnergy

```
In [ ]:
```

```
# Import library
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder
import statsmodels.formula.api as smf
from sklearn import preprocessing
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import pandas
```

```
In [8]:
```

```
#import the data file
df=pd.read_csv("SolarPrediction.csv")
#print(df1)
```

```
In [3]:
```

```
df.info()
print("\n")
df.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32686 entries, 0 to 32685
Data columns (total 11 columns):
    # Column Non-Null Count Dtype
```

```
      0
      UNIXTime
      32686 non-null int64

      1
      Data
      32686 non-null object

      2
      Time
      32686 non-null float64

      3
      Radiation
      32686 non-null float64
```

```
4
  Temperature
                         32686 non-null int64
5
  Pressure
                         32686 non-null float64
6 Humidity
                         32686 non-null int64
7
  WindDirection(Degrees) 32686 non-null float64
                         32686 non-null float64
8 Speed
9
  TimeSunRise
                         32686 non-null object
10 TimeSunSet
                         32686 non-null object
```

dtypes: float64(4), int64(3), object(4)

memory usage: 2.7+ MB

Out[3]:

	UNIXTime	Data	Time	Radiation	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	TimeSunRise
0	1475229326	9/29/2016 12:00:00 AM	23:55:26	1.21	48	30.46	59	177.39	5.62	06:13:00
1	1475229023	9/29/2016 12:00:00 AM	23:50:23	1.21	48	30.46	58	176.78	3.37	06:13:00
2	1475228726	9/29/2016 12:00:00 AM	23:45:26	1.23	48	30.46	57	158.75	3.37	06:13:00
3	1475228421	9/29/2016 12:00:00 AM	23:40:21	1.21	48	30.46	60	137.71	3.37	06:13:00
4	1475228124	9/29/2016 12:00:00 AM	23:35:24	1.17	48	30.46	62	104.95	5.62	06:13:00
4										Þ

In [4]:

df.tail()

Out[4]:

	UNIXTime	Data	Time	Radiation	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	TimeSur
32681	1480587604	12/1/2016 12:00:00 AM	00:20:04	1.22	44	30.43	102	145.42	6.75	06:
32682	1480587301	12/1/2016 12:00:00 AM	00:15:01	1.17	44	30.42	102	117.78	6.75	06:
32683	1480587001	12/1/2016 12:00:00 AM	00:10:01	1.20	44	30.42	102	145.19	9.00	06:
32684	1480586702	12/1/2016 12:00:00 AM	00:05:02	1.23	44	30.42	101	164.19	7.87	06:
32685	1480586402	12/1/2016 12:00:00 AM	00:00:02	1.20	44	30.43	101	83.59	3.37	06:
4										Þ

In [5]:

#step 3
print(df.describe())

	UNIXTime	Radiation	Temperature	Pressure	Humidity	\
count	3.268600e+04	32686.000000	32686.000000	32686.000000	32686.000000	
mean	1.478047e+09	207.124697	51.103255	30.422879	75.016307	
std	3.005037e+06	315.916387	6.201157	0.054673	25.990219	
min	1.4727240+09	1.110000	34.000000	30.190000	8.000000	

	± • 1 , E , E 10 . 0 3		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00.10000	0.00000
25%	1.475546e+09	1.2300	00 46.00000	0 30.400000	56.000000
50%	1.478026e+09	2.6600	00 50.00000	0 30.430000	85.000000
75%	1.480480e+09	354.2350	00 55.00000	0 30.460000	97.000000
max	1.483265e+09	1601.2600	00 71.00000	0 30.560000	103.000000
	WindDirection	(Degrees)	Speed		
			1		
count	3268	86.000000	32686.000000		
mean	1.	43.489821	6.243869		
std	8	83.167500	3.490474		
min		0.090000	0.00000		
25%	8	82.227500	3.370000		
50%	1	47.700000	5.620000		
75%	1	79.310000	7.870000		
max	3.	59.950000	40.500000		

Step 1 Pre Process

In [9]:

```
df.hist(figsize=(10,10))
plt.show()
```


In [9]:

```
# scatter plot matrix
from pandas.plotting import scatter_matrix
scatter_matrix(df)
plt.show()
```



```
Wind Direction (Degrees)

Wind Direction (Degrees)
```

In [10]:

```
#step 6
c=df.corr(method='pearson')
print("The correlation matrix: ",c)
The correlation matrix:
                                                  UNIXTime Radiation Temperature
                                                                                     Press
ure Humidity \
                        1.000000
                                  -0.081286
                                                -0.369169 -0.332016 -0.063117
UNIXTime
                                                 0.734955 0.119016 -0.226171
                       -0.081286
Radiation
                                   1.000000
                                                           0.311173 -0.285055
                       -0.369169
                                   0.734955
Temperature
                                                 1.000000
Pressure
                       -0.332016
                                   0.119016
                                                 0.311173
                                                           1.000000 -0.223973
Humidity
                       -0.063117
                                   -0.226171
                                                -0.285055 -0.223973 1.000000
WindDirection(Degrees)
                        0.152613
                                  -0.230324
                                                -0.259421 -0.229010 -0.001833
Speed
                        0.173860
                                   0.073627
                                                -0.031458 -0.083639 -0.211624
                        WindDirection(Degrees)
                                                    Speed
                                       0.152613 0.173860
UNIXTime
Radiation
                                     -0.230324 0.073627
                                     -0.259421 -0.031458
Temperature
Pressure
                                     -0.229010 -0.083639
Humidity
                                     -0.001833 -0.211624
WindDirection (Degrees)
                                       1.000000
                                               0.073092
                                       0.073092
Speed
                                                1.000000
```

In [11]:

```
#step -7
#Correlation map to see how features are correlated with radiation
corrmat = df.corr()
plt.subplots()
#figsize=(12,9)
sns.heatmap(corrmat, vmax=0.9, square=True)
plt.show()
```



```
In [12]:

# step-8
# TimeSunRise and TimeSunSet columns are used to find length of the day.
#It is then converted into seconds
# ie the length of the day is measured in seconds
time1=df[['TimeSunRise']].values
time2=df[['TimeSunSet']].values
i=0
DayLen=[]
for i in range(len(time1)):
    temp1=(int(time1[i][0][0:2])*3600+int(time1[i][0][3:5])*60+int(time1[i][0][6:8]))
    temp2=(int(time2[i][0][0:2])*3600+int(time2[i][0][3:5])*60+int(time2[i][0][6:8]))
    DayLen.append(temp2-temp1)
DayLen
df['DayLengthinsec']=DayLen
```

In [14]:

```
# step-9
# The time variable is converted into seconds.
#the time at which data was collected
time=df[['Time']].values
#print(time[0][0][0:2]) #hour
#print(time[0][0][3:5]) #min
#print(time[0][0][6:8]) #second

i=0
TimeX=[]
for i in range(len(time)):
    temp=(int(time[i][0][0:2])*3600+int(time[i][0][3:5])*60+int(time[i][0][6:8]))
    TimeX.append(temp)

TimeX
df['time_in_sec']=TimeX
```

In [16]:

```
# step-10
# graph is plotted between time and radiation
# it comes out as perfectly skewed

plt.scatter(df.time_in_sec,df.Radiation,color='green')
plt.xlabel("time_in_sec")
plt.ylabel("Radiation")
plt.title("Graph")
plt.show()
```


In [17]:

```
# step-12
model=smf.ols('Radiation ~ Temperature+ Humidity +Humidity*Temperature', df)
```

```
Fitting_results=model.fit()
print(Fitting_results.summary().tables[1])
______
                                                t P>|t| [0.025 0.975]
                         coef std err

    -2336.4971
    27.626
    -84.575
    0.000
    -2390.646
    -2202.032

    49.7311
    0.515
    96.473
    0.000
    48.721
    50.741

    0.000
    9.127
    10.642

Intercept
Temperature

      49.7311
      0.515

      9.8844
      0.386

Humidity
Humidity:Temperature -0.1952 0.007 -26.356 0.000
                                                                            -0.181
                                                                 -0.210
______
In [18]:
## step-13
# therefore we make it a new data frame
Temp multiply humid=df.Humidity *df.Temperature
df['Temp multiply humid']=Temp multiply humid
In [24]:
#step 14
df['Month']=[d.split('/')[0] for d in df.Data]
df['Day of month']=[d.split('/')[1] for d in df.Data]
In [19]:
#step 15
df['wind dir'] = df['WindDirection(Degrees)']
In [26]:
#step 16
#We drop the following columns
df = df.drop(['UNIXTime','Data','TimeSunRise','TimeSunSet','WindDirection(Degrees)'], ax
is=1)
In [24]:
#step 18
#We now check the data-set
print(df.columns)
Index(['UNIXTime', 'Data', 'Time', 'Radiation', 'Temperature', 'Pressure',
      'Humidity', 'WindDirection(Degrees)', 'Speed', 'TimeSunRise',
      'TimeSunSet', 'DayLengthinsec', 'time in sec', 'Temp multiply humid',
      'wind dir'],
     dtype='object')
In [29]:
#step 19
c=df.corr(method='pearson')
print("The correlation matrix: ",c)
The correlation matrix:
                                           Radiation Temperature Pressure Humidity
Speed \
                    1.000000
                               0.734955 0.119016 -0.226171 0.073627
Radiation
Temperature
                               1.000000 0.311173 -0.285055 -0.031458
                   0.734955
                   0.119016
                               0.311173 1.000000 -0.223973 -0.083639
Pressure
                              -0.285055 -0.223973 1.000000 -0.211624
Humidity
                  -0.226171
                   0.073627 -0.031458 -0.083639 -0.211624 1.000000
Speed
DayLengthinsec 0.073456 time_in_sec 0.013143
                   0.073456
                               0.355509 0.278614 0.087356 -0.174944
                               0.204372 0.090749 0.077038 -0.057445
Temp_multiply_humid -0.020549
                               0.011732 -0.124006 0.947963 -0.225835
                   Day_of_month
wind_dir
                   -0.230324
                               -0.259421 -0.229010 -0.001833 0.073092
                   DayLengthinsec time in sec Temp multiply humid \
```

D = 41 = 4 = -

0 072456

0 012142

IICODUIC	0.2	70011 0.0	, , , , , , ,	0.121000
Humidity	0.0	87356 0.0	77038	0.947963
Speed	-0.1	74944 -0.0	57445	-0.225835
DayLengthinsec	1.0	00000 0.0	07510	0.225333
time in sec	0.0	07510 1.0	00000	0.146242
Temp multiply humid	0.2	25333 0.1	46242	1.000000
Month		68679 0.0	02507	0.080076
Day of month	0.0	15016 -0.0	00756	0.034480
wind dir	-0.1	29434 -0.0	80159	-0.081217
_				
	Month	Day of month	wind dir	
Radiation	-0.035496	-0.025539	0.230324	
Temperature	-0.010335	-0.070179	-0.259421	
Pressure	-0.199199	-0.062723	3 -0.229010	
Humidity	0.072388	0.052788	3 -0.001833	
Speed	-0.035145	-0.075062	0.073092	
DayLengthinsec	0.268679	0.015016	-0.129434	
time in sec	0.002507	-0.000756	-0.080159	
Temp multiply humid	0.080076	0.034480	-0.081217	
Month	1.000000	-0.041591	0.106103	
Day of month	-0.041591	1.000000	0.039874	
wind dir	0.106103	0.039874	1.000000	
_				
Tm [25].				

U.U/3430

0.355509

0.278614

In [25]:

Radiation Temperature

Pressure

```
c=df['Pressure'].corr(df['Speed'])
print("The correlation matrix: ",c)
```

U.U13143

0.204372

0.090749

-0.020349

0.011732

-0.124006

The correlation matrix: -0.08363929418151313

In [26]:

```
Presssure_multiply_speed=df.Pressure *df.Speed df['Presssure_multiply_speed']=Presssure_multiply_speed
```

In [32]:

```
c=df['Month'].corr(df['Humidity'])
print("The correlation matrix: ",c)
```

The correlation matrix: 0.07238769376476024

In [33]:

```
Month_multiply_Temperature=df.Temperature *df.Month
df['Month_multiply_Temperature']=Month_multiply_Temperature
```

In [27]:

```
#Correlation map to see how features are correlated with Radiation
corrmat = df.corr()
plt.subplots(figsize=(12,9))
sns.heatmap(corrmat, vmax=0.9, square=True)
plt.show()
```


In [35]:

```
pclass_group=df.groupby(['Month']).mean()
print(pclass_group)
```

	Radiation	Temperature	Pressure	Humidity	Speed	\
Month						
0	230.582292	52.468654	30.438463	78.946378	5.880243	
1	226.727750	50.785007	30.445780	62.384959	6.852886	
2	141.283240	47.608893	30.374428	79.526458	6.733328	
3		53.681138				
-		11.001100	551.152050		21237007	
	DavLengthin	sec time in	sec Temp m	nultiply hum	nid Dav o	f month
Month	24, 20119 011111	222 61110_111_		.arorpry_nan		
0	42065 502	777 4211.301	666	4083.7714	154 15	.006008
1	40351.122			3099.4534	-	.366731
2	39428.098			3760.5743		.842479
3	44096.076	581 4214.919	240	4233.8607	725 14	.134556
		_		1 24 11	1. 1. 1. m	
	wind_dir	Presssure_mu	Ttibīh_sbee	ed Month_mu	ııtıpıy_'l'er	nperatur
Month						
0	126.036855		178.98780	15		0.00000
1	135.261972		208.63760	15	Į.	50.78500
2	177.431927		204.48639	1	(95.21778
3	136.075603		166.07300	17	1	61.04341

In [36]:

```
pclass_group['Radiation'].plot.bar()
plt.show()
```



```
In [37]:

#We drop the following columns
df = df.drop(['Time'], axis=1)
```

Train and Test

In [29]:

In [30]:

```
linreg= LinearRegression().fit(X_train, Y_train)
print("Score: ",linreg.score(X,Y))
from sklearn.metrics import mean_squared_error
Target_predicted= linreg.predict(X_test)
MSE=mean_squared_error(Y_test,Target_predicted)
print('mean_square_error', MSE)
```

Score: 0.6204710002875158 mean square error 37504.873939162055

Step 2 Data Visualization

In [31]:

```
df.hist(figsize=(10,10))
plt.show()
```



```
4000 2000 300 1000 200 300 4000 6000 8000 0 100 200 300
```

In [43]:

```
fig, ax = plt.subplots()
ax.scatter(x = df['DayLengthinsec'], y = df['Radiation'])
plt.ylabel('Radiation', fontsize=13)
plt.xlabel('DayLengthinsec', fontsize=13)
plt.show()
```


In [44]:

```
df= df.drop(df[(df['Radiation']>1400)].index)
```

In [45]:

```
df= df.drop(df[(df['wind_dir']>8000)].index)
```

In [46]:

```
fig, ax = plt.subplots()
ax.scatter(x = df['Speed'], y = df['Radiation'])
plt.ylabel('Radiation', fontsize=13)
plt.xlabel('Speed', fontsize=13)
plt.show()
```


In [47]:

```
df= df.drop(df[(df['Speed']>35)].index)
```

In [48]:

```
print(df.shape)
```

```
(32672, 13)
```

In [49]:

```
fig, ax = plt.subplots()
ax.scatter(x = df['Day_of_month'], y = df['Radiation'])
plt.ylabel('Radiation', fontsize=13)
plt.xlabel('Day_of_month', fontsize=13)
plt.show()
```


In [39]:

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone
from sklearn.model_selection import KFold, cross_val_score, train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
```

In [40]:

```
sub = pd.DataFrame()
sub = sub.reset_index()
sub['Radiation'] = Target_predicted
sub.to_csv('SolarPrediction.csv',index=False)
```

In [41]:

Random Forest

In [42]:

RandomForest = RandomForestRegressor(n estimators=300. random state=0).fit(X train. Y tr

ain)

In [43]:

```
# scores
model_score_error(RandomForest)
```

Score: 0.9313959733168413

mean square error 6799.1878187607645

Decision Tree

In [44]:

```
DTregressor = DecisionTreeRegressor(random_state=0).fit(X_train, Y_train)
```

In [45]:

```
# scores
model_score_error(DTregressor)
```

Score: 0.8654033024590941

mean square error 13339.57014785854

Final Result

In []:

#Linear Regrassion

Score: 0.6204710002875158

mean square error 37504.873939162055

#RNN

Score: 0.9313959733168413

mean square error 6799.1878187607645

#Decision Tree

Score: 0.8654033024590941

mean square error 13339.57014785854