Base de Données de Séquences Nucléotidiques

Par Joel sandé

https://www.ncbi.nlm.nih.gov/pubmed

Entrez le nom du gène X01714

Vous verrez les informations sur le gène apparaisant par défaut en format Genbank.

Vous avez toutes les informations sur le gène.

E. coli dut gene for dUTPase (EC 3.6.1.23) (deoxyuridine 5'-triphosphate nucleotidohydrolase)

>X01714.1 E. coli dut gene for dUTPase (EC 3.6.1.23) (deoxyuridine 5'-triphosphate nucleotidohydrolase) CAGAGAAAATCAAAAAGCAGGCCACGCAGGGTGATGAATTAACAATAAAAATGGTTAAAAAACCCCGATAT CGTCGCAGGCGTTGCCGCACTAAAAGACCATCGACCCTACGTCGTTGGATTTGCCGCCGAAACAAATAAT GTGGAAGAATACGCCCGGCAAAAACGTATCCGTAAAAACCTTGATCTGATCTGCGCGAACGATGTTTCCC AGCCAACTCAAGGATTTAACAGCGACAACAACGCATTACACCTTTTCTGGCAGGACGGAGATAAAGTCTT ACCGCTTGAGCGCAAAGAGCTCCTTGGCCAATTATTACTCGACGAGATCGTGACCCGTTATGATGAAAAA TCTGCCGGACTTGACCTGCGTGCCTGTCTCAACGACGCCGTAGAACTGGCTCCGGGTGACACTACGCTGG TTCCGACCGGGCTGGCGATTCATATTGCCGATCCTTCACTGGCGGCAATGATGCTGCCGCGCTCCGGATT GGGACATAAGCACGGTATCGTGCTTGGTAACCTGGTAGGATTGATCGATTCTGACTATCAGGGCCAGTTG ATGATTTCCGTGTGGAACCGTGGTCAGGACAGCTTCACCATTCAACCTGGCGAACGCATCGCCCAGATGA CGGCTTTGGTCACTCTGGTCGTCAGTAACACATACGCATCCGAATAACGTCATAACATAGCCGCAAACAT TTCGTTTGCGGTCATAGCGTGGGTGCCGCCTGGCAAGTGCTTATTTTCAGGGGTATTTTGTAACATGGCA GAAAAACAAACTGCGAAAAGGAACCGTCGCGAGGAAATACTTCAGTCTCTGGCGCTGATGCTGGAATCCA GCGATGGAAGCCAACGTATCACGACGGCAAAACTGGCCGCCTCTGTCGGCGTTTCCGAAGCGGCACTGTA TCGCCACTTCCCCAGTAAGACCCGCATGTTCGATAGCCTGATTGAGTTTATCGAAGATAGCCTGATTACT CGCATCAACCTGATTCTGAAAGATGAGAAAGACACCACAGCGCGCCTGCGTCTGATTGTGTTGCTGCTTC TURGETTTTGGTGAGUGTAATUUTGGUUTGAUUUGUATUUTGATUATGUGUTAATGTTTGAAUAGGA TCGCCTGCAAGGGCGCATCAACCAGCTGTTCGAGCGTATTGAAGCGCAGCTGCGCCAGGTATTGCGTGAA AAGAGAATGCGTGAGGGTGAAGGTTACACCACCGATGAAACCCTGCTGGCAAGCCAGATCCTGGCCTTCT GTGAAGGTATGCTGTCACGTTTTGTCCGCAGCGAATTTAAATACCGCCCGACGGATGATTTTGACGCCCG CTGGCCGCTAATTGCGGCCAGTTGCAGTAATATGACGCCGGATGACTTTTCATCCGGCGAGTTTCTTTAA ACGCCAAACTCTTCGCGATAGGCCTTAACCGCCGCCAGATGTTCCGCCATTTCCGGCTTCTCTTCCAGG

GenBank: X01714.1

GenBank Graphics

Genome complet d'un organisme

https://www.ncbi.nlm.nih.gov/

Genome Complet de l'humain

Clickez sur human genome et clikez sur l'un des chromosomes.

En passant, voyez la différence de taille entre le chromosome X de la femme et le chromosome Y de l'homme.

Distes-donc au hommes de respecter la femmes.

Allons chercher le genome d'un Oiseau

- Browse by organism : Voyez-vous ? Il y a plein de bactéries et virus répertoriés dans cette base de données.
- Il est plus facile de trouver le génome d'un micro-organisme que de trouver le genome d'un mammifère.
- On peut pour chaque organisme, la taille du génome, le nombre de chromosomes, le nombre d'organels, de plasmides, ...
- Pour trouver le génome d'un Oiseau:
 - Sélectionnez Eucaryote
 - Utilisez l'option Filter
 - Cochez et décochez les options qui vous conviennent. : la page se mettra automatiquement à jours de vos sélections.

Allons chercher le genome d'un Oiseau

Anser brachyrhynchus

Download sequences in FASTA format for genome Download genome annotation in GFF, GenBank format BLAST against Anser brachyrhynchus genome

Display Settings: ▼ Overview Send to: ▼

Organism Overview; Genome Assembly and Annotation report

Anser brachyrhynchus (pink-footed goose)

Whole genome sequencing of pink-footed goose

Lineage: Eukaryota[2762]; Metazoa[898]; Chordata[388]; Craniata[380]; Vertebrata[380]; Euteleostomi[374]; Archelosauria[107]; Archosauria[100]; Dinosauria[96]; Saurischia[96]; Theropoda[96]; Coelurosauria[96]; Aves[96]; Neognathae[93]; Galloanserae[13]; Anseriformes[4]; Anatidae[4]; Anserinae[2]; Anser[2]; Anser brachyrhynchus[1]

Summary

Assembly level: Scaffold

Assembly: GCA 002592135.1 ASM259213v1 scaffolds: 2,723 contigs: 28,533 N50: 97,462 L50: 3,034

BioProjects: PRJNA404647

Whole Genome Shotgun (WGS): INSDC: NXHY00000000.1 Statistics: total length (Mb): 1116.99

GC%: 41.1

Publications

1. First de novo whole genome sequencing and assembly of the pink-footed goose. Pujolar JM, et al. Genomics 2018 Mar

Vous pouvez googler son nom pour voir à quoi il ressemble.

Genome Assembly Annotation

Loc	Type	Name	RefSeq	INSDC	Size (Mb)	GC%
		master WGS	-	NXHY00000000.1	1,116.99	0.0

Anser brachyrhynchus ou pink-footed goose

Faisons la même expérience pour le Virus de la grippe H1N1

Il y en a 2 répertoriés dans la base de donnée NCBI

https://www.ncbi.nlm.nih.gov/genome/10290?genome_assembly_id=306186

Influenza A virus (A/California/07/2009(H1N1))

Download sequences in FASTA format for genome, protein

Download genome annotation in GFF, GenBank or tabular format

All 7 reference or representative genomes for species:

Browse the list

Display Settings: ▼ Overview

Send to: ▼

Organism Overview; Genome Assembly and Annotation report

Influenza A virus (A/California/07/2009(H1N1))

Lineage: Viruses[9563]; ssRNA viruses[2030]; ssRNA negative-strand viruses[523]; Orthomyxoviridae[10]; Alphainfluenzavirus[1]; Influenza A virus[1]; H1N1 subtype[1]; Influenza A virus (A/California/07/2009(H1N1))[1]

Summary

Submitter: 2009 H1N1 Flu Outbreak Sequencing Centers

Assembly level: Complete Genome

Human Pathogen

Assembly: GCA_001343785.1 ViralMultiSegProj274766 scaffolds: 8 contigs: 8 N50: 2,151 L50: 3

BioProjects: PRJNA274766, PRJNA37813 Statistics: total length (Mb): 0.013158

> protein count: 11 GC%: 43.6638

Publications

- 1. New genetic variants of influenza A(H1N1)pdm09 detected in Cuba during 2011-2013. Arencibia A, et al. Infect Genet Evol 2015 Jun
- Host Adaptation and the Alteration of Viral Properties of the First Influenza A/H1N1pdm09 Virus Isolated in Japan. Ainai A, et al. PLoS One 2015
- Molecular genetic analysis of the Influenza A(H1N1)pdm09 virus from lethal and recovered cases in Russia from 2009 to 2014: Deletions
 in the nucleoprotein. Yatsyshina S, et al. Infect Genet Evol 2015 Aug

More

Enseml Genome browser

Genome Humain

http://useast.ensembl.org/Homo_sapiens/Info/Annotation

On peut voir que le génome humain est doté de plus de 3 000 000 000 de pairs de bases, avec 20 000 gènes codant et 22 000 gènes non codant

Summary

Assembly	GRCh38.p10 (Genome Reference Consortium Human Build 38), INSDC Assembly CCA_000001405.25, Dec 2013
Base Pairs	3,554,996,726
Golden Path Length	3,00C,C10,72C
Annotation provider	Ensembl
Annotation method	Full genebuild
Genebuild started	Jan 2014
Genebuild released	Jul 2014
Genebuild last updated/patched	Jun 2017
Database version	91.38
Gencode version	GENCODE 27

Gene counts (Primary assembly)

Coding genes	20,338 (incl 562 readthrough)
Non coding genes	22,531
Small non coding genes	5,363
Long non coding genes	14,720 (incl 238 readthrough)
Misc non coding genes	2,222
Pseudogenes	14,638 (incl 6 readthrough)
Gene transcripts	200,310

Gene counts (Alternative sequence)

Coding genes	2,750 (incl 37 readthrough)
Non coding genes	1,288
Small non coding genes	242
Long non coding genes	877 (incl 33 readthrough)
Misc non coding genes	169
Pseudogenes	1,600

Other

Genome Humain

Les autres génomes sont accéssibles en tout temps.

Genome Humain chromosome 15

Human genome: Chromosome 15

Genome Humain: chromosome 15

Plus bas, vous verrez que le chromosome est doté de 100 000 000 de paires de bases.

BioMart

 L'outil Biomart a été mis au point pour repondre à des questions : Data mining.

Data set: Human gene.

Filters: pas mal de choses à filtrer

...

Voici de très bon tutoriels sur BioMart

https://www.youtube.com/watch?v=QvGT2G0-hYA

Usage de Perl

Pour ceux qui veulent rouler du code Perl, voici un lien qui vous sera super interessant.

http://useast.ensembl.org/info/docs/api/variation/variation_tutorial.html#structural