

nfografo tem como objetivo esboçar os paradigmas das rentes linguagens de programação de computadores.

PARADIGMAS DE PROGRAMAÇÃO

O QUE SÃO PARADIGMAS DE PROGRAMAÇÃO?

Paradigma de programação é um meio de se classificar as linguagens de programação baseado em suas funcionalidades. Um paradigma de programação fornece e determina a visão que o programador possui sobre a estruturação e execução do programa.

TIPOS DE PARADIGMAS DE PROGRAMAÇÃO

PARADIGMA IMPERATIVO

LINGUAGENS DE PROGRAMAÇÃO QUE BASEIAM-SE NO MODELO IMPERATIVO

O Paradigma Imperativo é baseado na arquitetura de Von Neumann. É o primeiro paradigma a existir e até hoje é o dominante.

Esse paradigma segue o conceito de um estado e de ações que manipulam esse estado, nele encontramos procedimentos que servem de mecanismos de estruturação. Podemos denominá-lo de procedural por incluir subrotinas ou procedimentos para estruturação.

ADA * ALGOL * ASSEMBLER *
BASIC * C * COBOL * FORTRAN
* PASCAL * PYTHON * LUA

VANTAGENS

As vantagens desse paradigma são: eficiência (porque embute o modelo de Von Neumann); modelagem "natural" de aplicações do mundo real; paradigma dominante e bem estabelecido; e também muito flexível.

DESVANTAGENS

As desvantagens são: difícil legibilidade; as instruções são centradas no como e não no o que.

PARADIGMA ESTRUTURADO

LINGUAGENS DE PROGRAMAÇÃO QUE BASEIAM-SE NO MODELO ESTRUTURADO

Este paradigma preconiza que todos os programas possíveis podem ser reduzidos a apenas três estruturas: seqüência, decisão e iteração. Tendo, na prática, sido transformada na Programação modular, a Programação estruturada orienta os programadores para a criação de estruturas simples em seus programas, usando as subrotinas e as funções. Foi a forma dominante na criação de software entre a programação linear e a programação

C * BASIC * PASCAL * COBOL

VANTAGENS

Os problemas podem ser quebrados em vários subproblemas, a boa legibilidade e a boa compreensão da estrutura deste paradigma motivam os programadores a iniciarem a programação pelo modelo estruturado.

DESVANTAGENS

Os dados são separados das funções; Mudanças na estrutura dos dados acarreta alteração em todas as funções relacionadas. Gera sistemas difíceis de serem mantidos;

PARADIGMA ORIENTADO **A OBJETOS**

LINGUAGENS DE PROGRAMAÇÃO **OUE BASEIAM-SE NO MODELO** ORIENTADO A OBJECTOS

Conceito A programação Orientada a Objetos é baseada na composição e interação de diversas unidades de softwares denominados objetos. O funcionamento de um software orientado a objetos se dá através relacionamento e troca de mensagens entre esses objetos. Esses objetos são classes, e nessas classes os comportamentos chamados de métodos e os estados possíveis da classe são chamados de atributos.

SMALLTALK * PYTHON * RUBY C++ * OBJECT PASCAL * JAVA C# * OBERON * ADA * EIFFEL * **SIMULA * NET**

VANTAGENS

DESVANTAGENS

Esse paradigma possui todas as vantagens do paradigma imperativo entre outras: a alteração de um módulo não incorre na modificação de outros módulos; quanto mais um módulo for independente, maior a chance dele poder ser reutilizado em outra aplicação.

PARADIGMA FUNCIONAL

LINGUAGENS DE PROGRAMAÇÃO **OUE BASEIAM-SE NO MODELO FUNCIONAL**

Este paradigma trata a computação como uma avaliação de funções matemáticas. Este método enfatiza a aplicação de funções, as quais são tratadas como valores de primeira importância, ou seja, funções podem ser parâmetros ou valores de entrada para outras funções e podem ser os valores de retorno ou saída de uma função.

LAMBDA * LISP * SCHEME * ML * **MIRANDA * HASKELL**

VANTAGENS

Devido ao processo automático de alocação de memória, então efeitos colaterais no cálculo da função são eliminados. Sem estes efeitos, a linguagem assegura que o resultado da função será o mesmo para um dado conjunto de parâmetros não importando onde, ou quando, seja avaliada e é empregado em computações independentes para execução paralela. A recursividade em programação funcional pode assumir várias formas e é em geral uma técnica mais poderosa que o uso de laços do paradigma imperativo.

DESVANTAGENS

Na programação funcional parecem faltar diversas construções frequentemente (embora incorretamente) consideradas essenciais em linguagens imperativas, como C. Por exemplo, não há alocação explícita de memória nem de variáveis.

PARADIGMA LÓGICO

LINGUAGENS DE PROGRAMAÇÃO QUE BASEIAM-SE NO MODELO LÓGICO

Nesse paradigma programas são relações entre Entrada/Saída. Possui estilo declarativo. paradigma funcional. características imperativas, por questões de eficiência. Aplicações em prototipação em geral, sistemas especialistas, bancos de dados, etc.

POPLER * CONNIVER * QLISP * PLANNER * PROLOG * MERCURY **OZ * FRILL**

VANTAGENS

Possui a princípio todas as vantagens do paradigma funcional. E permite concepção da aplicação em um alto nível de abstração (através de associações entre E/S).

Variáveis de programa não possuem tipos, nem são de alta ordem.

DESVANTAGENS

REFERÊNCIAS

SAMPAIO, A. (2008) "PARADIGMAS DE LINGUAGENS DE PROGRAMAÇÃO", HTTP://WWW.CIN.UFPE.BR/~IN1007/TRANSPARENCIAS/AULAINTRODUCAOPLP.PPT, AGOSTO.

PAULA, A. (2008) "PARADIGMAS DE LINGUAGENS DE PROGRAMAÇÃO MOTION CAPTURE WHITE PAPER", HTTP://HTTP://WWW.INF.UNISINOS.BR/~ANAPAULA/DISCIPLINAS/60023/, AGOSTO.

FERNANDES, E., CARVALHO, K., VILLAR, L., GETIRANA, N. E GAUDÊNCIO, V. (2008) "PARADIGMAS DE LINGUAGEM DE PROGRAMAÇÃO MOTION CAPTURE WHITE PAPER", HTTP://HTTP://WWW.INF.UNISINOS.BR/~ANAPAULA/DISCIPLINAS/60023/, AGOSTO.

PROGRAMAÇÃO FUNCIONAL HTTP://PT.WIKIPEDIA.ORG/WIKI/PROGRAMA%C3%A7%C3%A3O_FUNCIONAL

PROGRAMAÇÃO ESTRUTURADA HTTP://LABES.INF.UFES.BR/VSOUZA/SITES/DEFAULT/FILES/CURSOOOSLIDES03.PDF