Basi di Dati - IV

Corso di Laurea in Informatica
Anno Accademico 2013/2014

Alessandra Raffaetà

raffaeta@dsi.unive.it

Progettazione Logica

Il modello dei dati relazionale (Edgar F. Codd, 1970)

 Trasformazione dal modello concettuale ad oggetti al modello logico relazionale

Algebra relazionale

Il Modello Relazionale

Il Modello Relazionale: intuizione

Collezioni come relazioni (tabelle)

Nome: string
Cognome: string
Matricola: string
AnnoCorso: int

Codice: string
Candidato: string
Materia: string
Data: date
Voto: int
Lode: bool

Associazioni tramite chiavi

I meccanismi per definire una base di dati con il modello relazionale sono l'ennupla e la relazione.

- Dal punto di vista matematico
 - relazione $R \subseteq D1 \times D2 \times ... \times Dn$
 - D1, ..., Dn domini
 - ennupla $\langle d1,, dn \rangle \in R$
 - $d1 \in D1$, ..., $dn \in Dn$

in Informatica si associa un'etichetta distinta a ciascun dominio D1, ..., Dn (record!)

Modello Relazionale (cont.)

- Tipo ennupla T: insieme finito di coppie (Attributo, Tipo primitivo):
 (A1: T1, ..., An: Tn)
- Schema di relazione

```
R: { T } (T tipo ennupla, {T} tipo relazione)
```

Spesso scriveremo R(T) invece di R:{T}.

- Istanza di uno schema R:{T} o relazione: insieme finito di ennuple di tipo T.
 - cardinalità: numero delle sue ennuple.
- Schema relazionale di una BD:
 - insieme di schemi di relazione Ri:{Ti};
 - vincoli di integrità

Esempio

Studenti (Nome: string, Cognome: string, Matricola: string, Anno:int)

Nome	Cognome	Matricola	Anno
Paolo	Verdi	71523	2005
Anna Rossi		76366	2006
Giorgio	Zeri	71347	2005

Studenti

se non interessa evidenziare il tipo degli attributi scriviamo Studenti(Nome, Cognome, Matricola, Anno)

Modello Relazionale: Schema

Schema:

Studenti (Nome: string, Cognome: string, Matricola: string, Anno: int)

Esami (Codice: string, Materia: string, Candidato: string, Data: string,

Voto: int, Lode:char)

Studenti

Nome	Cognome	Matricola	Anno
Paolo	Verdi	71523	2005
Anna	Rossi	76366	2006
Giorgio	Zeri	71347	2005

Esami

Codic	Materia	Candidato	Data	Voto	Lode
B112	BD	71523	08.07.06	27	N
F31	FIS	76366	08.07.07	26	N
B247	CN	71523	28.12.06	30	5

Vincoli di integrità

- Considereremo
 - chiavi
 - chiavi esterne
 - valori non nulli

r è un'istanza valida di uno schema di relazione R se rispetta tutti i vincoli definiti su R.

- Superchiave in R: sottoinsieme X di attributi di R tale che il valore degli attributi in X determina univocamente una ennupla
 - Esempio: (Matricola) e (Cognome, Matricola) sono superchiavi in:
 Studenti(Nome, Cognome, Matricola, Anno)
- Chiave: superchiave minimale; gli attributi che appartengono ad una chiave sono detti primi
 - Esempio: Matricola
- Chiave primaria: una delle chiavi, in genere di lunghezza minima

Chiavi esterne ed Associazioni

Chiave esterna in R

- insieme di attributi $X = \{A1, ..., An\}$ di R che riferisce la chiave primaria $Y = \{B1, ..., Bn\}$ di S:
- per ogni ennupla r in R esiste una ennupla s in S t.c.
 r.X = s.Y (r "riferisce" s). [integrità referenziale]

Associazioni

realizzate con il meccanismo di chiave

Esempio

Schema:

Studenti(Nome: string, Cognome: string, Matricola: string, Anno: int)

Esami(<u>Codice</u>: string, <u>Materia</u>: string, <u>Candidato*</u>: string, <u>Data</u>: string, Voto: int, Lode:char)

Studenti

Esami

Associazione:

Nome	Cognome	<u>Matricola</u>	Anno
Paolo	Verdi	71523	2005
Anna	Rossi	76366	2006
Giorgio	Zeri	71347	2005

<u>Codic</u>	Materia	Candidato*	Data	Voto	Lode
B112	BD1	71523	08.07.06	27	2
F31	FIS	76366	08.07.07	26	7
B247	BD2	71523	28.12.06	30	5

4. Modello Relazionale

Esempio: altre soluzioni

- Studenti(Nome, Cognome, <u>Matricola</u>, Anno, Esame*)
 Esami(<u>Codice</u>, Materia, Data, Voto, Lode)
- Studenti(Nome, Cognome, <u>Matricola</u>, Anno, <u>Esame</u>*)
 Esami(<u>Codice</u>, Materia, Data, Voto, Lode)
- Studenti(Nome, Cognome, <u>Matricola</u>, Anno)
 Esami(<u>Codice</u>, Materia, Data, Voto, Lode)
 StudentiEsami(<u>Esame</u>*, <u>Candidato</u>*)
- Studenti(Nome, Cognome, <u>Matricola</u>, Anno)
 Esami(<u>Materia</u>, Crediti)
 ProvaEsame(<u>Codice</u>, Esame*, Candidato*, Data, Voto, Lode)
- Quali sono sensate?

Valori non nulli

Un attributo può avere valore non specificato (proprietà parziali), per varie ragioni:

- non applicabile
- sconosciuto
- si usa NULL
- Es.: Per lo schema di relazione nella biblioteca

Utente(Nome, Cognome, CodiceFiscale, ...)

CodiceFiscale per un ospite potrebbe non aver valore perché nel paese di provenienza il CF non si usa o perché il CF non cioè noto nel momento della creazione dell'utente.

Negli schemi relazionali si può imporre il vincolo NOT NULL per un attributo

Gli attributi della chiave primaria (e delle chiavi in generale) devono assumere valori non nulli

Una chiave esterna può avere valore nullo se rappresenta una associazione parziale.

Rappresentazione grafica

		Esami		
Studenti		Codice:	string	< <pk>>></pk>
Nome: string	Candidato	Materia:	string	
Cognome: string	←	Candidato:	string	< <fk(studenti)>> <<not null="">></not></fk(studenti)>
Matricola: string < <pk>>></pk>		Data:	date	
Anno: year		Voto:	int	
		Lode:	bool	

Dal Modello a Oggetti al Modello Relazionale

- Trasformazione per passi:
 - associazioni molti a uno (e uno a uno)
 - associazioni molti a molti
 - gerarchie di inclusione
 - identificazione chiavi primarie
 - attributi multivalore
 - attributi composti

Associazioni N:1 (univoche)

- totalità di R con vincolo not-null sulla chiave esterna
- totalità dell'inversa non rappresentabile
- eventuali attributi dell'associazione si possono inserire in A

- Prestiti <<- |---> Utenti
- EsamiEsterni <<-|---|-> EsamiInterni (attributo: Colloquio)

Associazioni 1:1 (univoche con inversa univoca)

- univocità di R⁻¹ (inversa di R) con vincolo di chiave («unique», «key») sulla chiave esterna
 - possibile solo se R è totale
 - la direzione di R scelta in modo che sia totale, se possibile

Es.: Domande Trasferimento <--- | -> Pratiche Trasferimento

Associazioni N:M (multivalore con inversa multivalore)

- eventuali attributi dell'associazione si inseriscono in R
 (e possono far parte della chiave primaria)
- totalità non rappresentabile

• Es.:

Relazione HaSostenuto, con attributo Data TipoEsami <<---->> Studenti

Trasformazione di Schemi a Oggetti in Relazionali

• Data la classe A (attr. X_A , chiave K_A) con sottoclassi B (attr. X_B) e C (attr. X_C)

24

- Tre possibili soluzioni
 - Relazione unica
 - $R(X_A, X_B, X_C, Discr)$
 - Discr indica la classe alla quale appartiene l'elemento
 - XB e Xc possono avere valore nullo
 - Partizionamento verticale
 - $R_A(X_A)$: tutti gli elementi di A,
 - $R_B(X_B,K_A)$: attributi propri per gli elementi di B
 - $R_c(X_c,K_A)$: attributi propri per gli elementi di C

25

- Partizionamento orizzontale
 - $R_A(X_A)$: solo gli elementi di A (B \cup C)
 - $R_B(X_A, X_B)$: elementi di B (tutti gli attributi)
 - $R_c(X_A, X_c)$: elementi di C (tutti gli attributi)

Esempio

Si consideri la gerarchia seguente:

27

L'attributo InterniEsterni svolge il ruolo di discriminatore

Corsi

Codice <<PK>>>

Nome

Crediti

CorsoLaurea

Anno

InterniEsterni

Partizionamento

Orizzontale

Come scegliere?

Tabella unica

- conveniente se le sottoclassi differiscono per pochi attributi

Partizionamento orizzontale

- complica la visita di tutti gli elementi della superclasse
- divide la superclasse in più relazioni: sconsigliato se vi è una associazione entrante nella superclasse
- problematico senza vincolo di disgiunzione

Partizionamento verticale

- complica il recupero di tutte le informazioni relative ad un'entità (distribuite in varie relazioni)

4. Modello Relazionale

Definizioni delle chiavi primarie

- Relazioni corrispondenti a classi radice (prive di superclasse)
 - attributo univoco, totale, costante
 - attributo artificiale (chiave sintetica)
- Relazioni che corrispondono a sottoclassi
 - chiave della superclasse
- Relazioni per associazioni N:M
 - concatenazione delle chiavi esterne

Attributi Multivalore e Strutturati

Corsilnterni

Codice: int <<PK>>>

Nome: string Crediti: int

Docenti: seq [Nome:string, Cognome: string]

Corsilnterni

Codice: int <<PK>>>

Nome: string Crediti: int

Codice

DocentiCorsiInterni

Codice: int <<PK>>> <<FK(CorsiInterni)>>

Docente: [Nome:string, Cognome: string] << PK>>

Attributi Multivalore e Composti (cont.)

4. Modello Relazionale

- Modello relazionale
 - relazione + { chiave primaria + chiave esterna + not null }
- Dal modello concettuale (a oggetti) al modello logico relazionale
 - associazioni A <--> B (N:1 oppure 1:1) con chiave esterna in A
 - associazioni A <-->> B (M:N) con una nuova relazione R che riferisce con chiave esterna sia A che B
 - sottoclassi: relazione unica, partizionamento (verticale, orizzontale)
 - attributi multivalore e strutturati

Un esempio: BD per una Biblioteca

Modello concettuale

Schema Logico (solo relazioni)

Schema delle relazioni (attributi, tipi, vincoli)

- Termini(<u>Termine</u>: string, Descrizione: string, Generalizzazione*: string, Standard*: string)
 - PK(Termine)
 - Generalizzazione FK(Termini), Standard FK(Termini)
- DescrizioneBib(<u>Codice</u>: string. Titolo: string, Editore: string, Anno: int)
 - PK(Codice)
- Indicizza (<u>Termine</u>*: string, <u>Codice</u>*: string)
 - PK(Termine, Codice)
 - Termine FK(Termini), Codice FK(DescrizioniBib)
- Autori (<u>Codice</u>: string, NomeCognome: string, Nazionalita: string, AnnoNascita: string)
 - PK(Codice)
- HaScritto(<u>CodAutore</u>*: string, <u>CodDescr</u>*: string)
 - PK(CodAutore,CodDescr)
 - CodAutore FK(Autori), CodDescr FK(DescrizioniBib)

Schema delle relazioni (Cont.)

- Documenti(<u>Collocazione</u>: string, NumeroCopia: int, CodDesc*: string)
 - PK(Collocazione)
 - CodDesc FK(DescrizioniBib) NOT NULL
- InConsultazione(<u>Collocazione</u>*: string, FinoA: string)
 - PK(Collocazione)
 - Collocazione FK(Documenti)
- NonInConsultazione(<u>Collocazione</u>*: string)
 - PK(Collocazione)
 - Collocazione FK(Documenti)
- Utenti (<u>Codice</u>: string, NomeCognome: string, Indirizzo: string, Sospeso:bool)
 - PK(Codice)
- RecapitiTel(Numero: string, Utente*: string)
 - PK(Numero, Utente)
 - Utente FK(Utenti)

Schema delle relazioni (Cont.)

- Studenti (<u>CodUtente</u>*: string, Matricola: string)
 - PK(CodUtente)
 - CodUtente FK(Utenti)
- Docenti (<u>CodUtente</u>*: string, TelUfficio: string)
 - PK(CodUtente)
 - CodUtente FK(Utenti)
- PrestitiOrdinari(DataPrestito: data, DataRestituzione: data, CodUtente*: string, Collocazione*: string)
 - PK(Collocazione)
 - CodUtente FK(Utenti) NOT NULL, Collocazione FK(NonInConsultazione)
- PrestitiSpeciali(DataPrestito: data, DataRestituzione: data, CodUtente*: string, Collocazione*: string)
 - PK(Collocazione)
 - CodUtente FK(Docenti) NOT NULL, Collocazione FK(InConsultazione)

Schema relazionale con attributi, tipi, vincoli

Esercizio: studio dentistico

Si vogliono rappresentare informazioni relative alle visite di uno studio dentistico. Dottori, infermieri e pazienti hanno cognome e nome, codice fiscale, indirizzo, telefono. Un paziente può prenotare una visita in una certa data e ora con un certo dottore. Per ogni visita effettuata c'è un costo, e il tipo di visita (una stringa). Inoltre, se è la prima visita, ci sarà una diagnosi (una stringa) e un preventivo. Ogni paziente ha un totale da saldare.

Si dia uno schema grafico a oggetti (secondo la notazione del libro di testo) della base di dati e si trasformi nello schema relazionale mostrandone la rappresentazione grafica (anche questa secondo la notazione del libro di testo, indicando la chiave primaria e le chiavi esterne).

Esercizio: Sito di musica

• Si vogliono memorizzare informazioni per un sito che vende brani musicali da scaricare. Gli utenti hanno nome, cognome, login (unica), password, e possono acquistare sia brani singoli che album, composti da più brani. Di un album interessa il nome, l'autore, l'interprete, il genere, la casa discografica, la data e il prezzo. Di un brano interessa il titolo, la durata, il prezzo. Un acquisto può riguardare un numero qualunque di prodotti, e ha una data e un numero di carta di credito usato per il pagamento. I clienti possono giudicare sia brani che album, dando un numero di stelle (da 1 a 5) e un commento.