P8106-hw4

Renjie Wei

rw2844

4/10/2022

```
library(ISLR)
library(mlbench)
library(caret)
library(rpart)
library(part.plot)
library(party)
library(partykit)
library(pROC)
#library(randomForest)
library(gbm)
library(pdp)
library(ggplot2)
```

Split the dataset into two parts: training data (80%) and test data (20%).

```
# I removed the id variable `College`
data <- read.csv("College.csv")[,-1]
data <- na.omit(data)
set.seed(2022)
# sum(is.na(data)) = 0
rowTrain <- createDataPartition(y = data$Outstate, p = 0.8, list = FALSE)</pre>
```

Problem 1

Part A

Build a regression tree on the training data to predict the response. Create a plot of the tree.

Answers

First, I built the regression tree model using caret.

cp = 0.00482795

From the final model, we know that the best tuning parameter $\tt cp$ is 0.0048279. And the following plot shows the final tree.

rpart.plot(rpart.fit\$finalModel)

Part B

Perform random forest on the training data. Report the variable importance and the test error.

Answers

I built the random forest model using caret.

```
trControl = ctrl)

stopCluster(cl)
registerDoSEQ()
ggplot(rf.fit, highlight = TRUE)
```


rf.fit\$bestTune

```
## mtry splitrule min.node.size
## 64 11 variance 4
```

The best tuning parameters are mtry = 11, splitrule = variance and min.node.size = 4. I extracted the variable importance from the fitted model by permutation.

From the variable importance plot we can see that Expend, Room.Board and Accept are the top 3 most important variables.

```
rf.predict <- predict(rf.fit, newdata = data[-rowTrain,])
rf.RMSE <- RMSE(rf.predict, data$Outstate[-rowTrain])</pre>
```

The RMSE of test set is 1960.044.

Part C

Perform boosting on the training data. Report the variable importance and the test error.

Answers

I built the boosting model using caret.

gbm.fit\$bestTune

```
## n.trees interaction.depth shrinkage n.minobsinnode
## 593 2000 6 0.003 8
```

The best tuning parameters are n.trees = 2000, interaction.depth = 6, shrinkage = 0.003 and nminobsinode = 8.

I extracted the variable importance from the fitted model by permutation.

From the variable importance plot we can see that Expend, Room.Board and Apps are the top 3 most important variables, which are slightly different from what we got from random forest model.

```
gbm.predict <- predict(gbm.fit, newdata = data[-rowTrain,])
gbm.RMSE <- RMSE(gbm.predict, data$Outstate[-rowTrain])</pre>
```

The RMSE of test set is 1898.73.

Problem 2

I split the dataset into two parts: training data (80%) and test data (20%).

```
data(OJ)
OJ <- na.omit(OJ)
set.seed(2022)
# sum(is.na(data)) = 0
rowTrain1 <- createDataPartition(y = OJ$Purchase, p = 0.8, list = FALSE)</pre>
```

Part A

Build a classification tree using the training data, with Purchase as the response and the other variables as predictors. Use cross-validation to determine the tree size and create a plot of the final tree. Which tree size corresponds to the lowest cross-validation error? Is this the same as the tree size obtained using the 1 SE rule?

I use caret to fit the classification tree, and plot the final tree. Mentioning that I use metric = "Accuracy" to make the model from caret comparable to the model from rpart. And I plot the final tree.

rpart.plot(rpart.fit.OJ\$finalModel)

Using the lowest cross-validation error, we can see the tree size = 4.

For the implementation of 1SE rule, I use rpart to fit the model. And plot the pruned tree under 1SE rule.

```
set.seed(2022)
tree1 <- rpart(formula = Purchase ~ . ,</pre>
               data = OJ,
               subset = rowTrain1,
               control = rpart.control(cp = 0))
cpTable <- printcp(tree1)</pre>
##
## Classification tree:
## rpart(formula = Purchase ~ ., data = OJ, subset = rowTrain1,
##
       control = rpart.control(cp = 0))
##
## Variables actually used in tree construction:
##
   [1] ListPriceDiff LoyalCH
                                       PctDiscCH
                                                       PriceDiff
                                                                       PriceMM
   [6] SalePriceCH
                        SalePriceMM
                                       SpecialCH
                                                       STORE
                                                                       StoreID
## [11] WeekofPurchase
## Root node error: 334/857 = 0.38973
##
## n= 857
##
```

```
CP nsplit rel error xerror
## 1 0.5029940
                        1.00000 1.00000 0.042745
                    0
                        0.49701 0.49701 0.034638
## 2 0.0224551
## 3 0.0119760
                    3
                        0.45210 0.49401 0.034559
## 4 0.0069860
                    5
                        0.42814 0.52395 0.035332
## 5 0.0014970
                   13
                        0.35629 0.50299 0.034796
## 6 0.0011976
                        0.35030 0.52395 0.035332
                   17
                        0.34431 0.53293 0.035556
## 7 0.0000000
                   22
```

plotcp(tree1)

size of tree 1 2 6 14 4 18 23 1.0 X-val Relative Error 0.8 9.0 0.4 0.0032 Inf 0.11 0.016 0.0091 0.0013 0 ср

#rpart.plot(tree1)

```
# 1SE rule
minErr <- which.min(cpTable[,4])
tree2 <- prune(tree1,cp = cpTable[cpTable[,4]<cpTable[minErr,4]+cpTable[minErr,5],1][1])
rpart.plot(tree2)</pre>
```


plotcp(tree2)

size of tree

From the cp plot and cp table, using the 1 SE rule, we can see the tree size = 2.

The tree size obtained by using cross validation is different from the tree size obtained by using 1 SE rule.

Part B

Perform boosting on the training data and report the variable importance. What is the test error rate?

```
tuneGrid = gbmA.grid,
    trControl = ctrl2,
    method = "gbm",
    distribution = "adaboost",
    metric = "ROC",
    verbose = FALSE)

stopCluster(cl)
registerDoSEQ()

ggplot(gbmA.fit, highlight = TRUE)
```



```
gbmA.pred <- predict(gbmA.fit, newdata = OJ[-rowTrain1,], type = "raw")
error.rate.gbmA <- mean(gbmA.pred != OJ$Purchase[-rowTrain1])</pre>
```

summary(gbmA.fit\$finalModel, las = 2, cBars = 19, cex.names = 0.6) %>% knitr::kable(digits = 3, caption

Table 1: Variable importance from boosting model

	var	$\operatorname{rel.inf}$
LoyalCH	LoyalCH	74.336
PriceDiff	PriceDiff	11.207
SalePriceMM	SalePriceMM	3.059
StoreID	StoreID	2.757
WeekofPurchase	WeekofPurchase	2.013
STORE	STORE	1.249
SpecialCH	SpecialCH	1.188
ListPriceDiff	ListPriceDiff	1.139
$\mathrm{Disc}\mathrm{CH}$	$\mathrm{Disc}\mathrm{CH}$	0.573
SpecialMM	SpecialMM	0.517
SalePriceCH	SalePriceCH	0.435
PriceMM	$\operatorname{PriceMM}$	0.398
DiscMM	DiscMM	0.355
Store7Yes	Store7Yes	0.306
PctDiscMM	PctDiscMM	0.238
PctDiscCH	PctDiscCH	0.138
PriceCH	PriceCH	0.092

From the variable importance plot (the relative influence plot), we can see that LoyalCH and PriceDiff are the top 2 most important variables.

The test error rate is 0.136.