(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年4 月24 日 (24.04.2003)

PCT

(10) 国際公開番号 WO 03/033139 A1

(51) 国際特許分類?:

B01J 23/88,

27/057, 27/192, C07C 253/26, 255/08

[JP/JP]; 〒104-0031 東京都 中央区 京橋一丁目 1 2 番 5 号 Tokyo (JP).

(21) 国際出願番号:

PCT/JP02/09832

(22) 国際出願日:

2002 年9 月25 日 (25.09.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2001-314054

, 2001年10月11日(11.10.2001) JP

(71) 出願人 (米国を除く全ての指定国について): ダイヤニトリックス株式会社 (DIA-NITRIX CO., LTD.)

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 宮氣 健一 (MIYAKI,Kenichi) [JP/JP]; 〒230-0053 神奈川県 横 浜市 鶴見区大黒町 1 0番 1 号 ダイヤニトリック ス株式会社 技術研究所内 Kanagawa (JP). 柳田 元男 (YANAGITA,Motoo) [JP/JP]; 〒230-0053 神奈川県 横 浜市 鶴見区大黒町 1 0番 1 号 ダイヤニトリック ス株式会社 技術研究所内 Kanagawa (JP). 森 邦夫 (MORI,Kunio) [JP/JP]; 〒230-0053 神奈川県 横浜市 鶴見区大黒町 1 0番 1 号 三菱レイヨン株式会社 化 成品開発研究所内 Kanagawa (JP).

[続葉有]

(54) Title: METHOD FOR PRODUCING AMMOXIDATION CATALYST

(54) 発明の名称: アンモ酸化用触媒の製造方法

(57) Abstract: A method for producing a catalyst for the ammoxidation of an organic compound which contains molybdenum (component (1)), bismuth (component (2)), al least one element selected from the group consisting of nickel, cobalt, zinc, magnesium, manganese and copper (component (3)), and al least one element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium (component (4)), characterized in that it comprises a first liquid preparation step of preparing a first liquid which contains at least a part of the material of the component (1), at least a part of the material of the component (2) and at least a part of the material of the component (3) and does not contain the material of the component (4), and a second liquid preparation step of adding at least the material of the component (4) to the first liquid, to thereby prepare a second liquid. A catalyst produced by the method is useful for the ammoxidation of an organic compound, especially for the synthesis of acrylonitrile by the ammoxidation of propylene.

(57) 要約:

本発明は、有機化合物のアンモ酸化、特にプロピレンのアンモ酸化によるアクリロニトリルの合成に有用な触媒の製造方法を提供する事を目的とする。

本発明は、モリブデン(成分(1))と、ビスマス(成分(2))と、ニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび鍋よりなる群から選ばれた少なくとも一種の元素(成分(3))と、ランタン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少なくとも一種の元素(成分(4))とを含有する有機化合物のアンモ酸化用触媒の製造方法であって、前記成分(1)の原料の少なくとも一部と、前記成分(3)の原料の少なくとも一部と、前記成分(3)の原料の少なくとも一部と、前記成分(3)の原料の少なくとも一部と含み、前記成分(4)の原料を含まない第1液を調製する第1液調製工程と、前記第1液に、少なくとも前記成分(4)の原料を添加して第2液を調製する第2液調製工程とを有するものである。

31,436 PeT

Sich

WO 03/033139 A1

- (74) 代理人: 志賀正武、外(SHIGA,Masatake et al.); 〒 169-8925 東京都 新宿区 高田馬場三丁目 2 3 番 3 号 O R ビル Tokyo (JP).
- (81) 指定国 (国内): CN, KR, RO, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

アンモ酸化用触媒の製造方法

技術分野

本発明は、有機化合物のアンモ酸化に用いられる複合酸化物系触媒の製造方法に関する。

背景技術

有機化合物のアンモ酸化に用いられる触媒として、これまでに種々の 触媒が開示されている。

例えば、プロピレンをアンモ酸化してアクリロニトリルを合成する触媒として、特公昭38-17967号公報にはモリブデン、ビスマスおよび鉄を含む酸化物触媒が、特公昭38-1911号公報には鉄およびアンチモンを含む酸化物触媒が開示されている。

これらの触媒の改良はその後も精力的に続けられ、近年、希土類元素を必須成分として含む触媒が数多く提案されている。

例えば、特開昭51-40391号公報、特開昭59-204163号公報、特開平7-47272号公報、特開平7-51570号公報、特開平11-169715号公報、特開2000-5603号公報、特開2001-114740号公報などには、モリブデンと、ビスマスと、鉄と、ランタン、セリウム、プラセオジム、ネオジム等の希土類元素とを含む触媒が開示されている。

また、これらの触媒については、目的生成物の収率をより向上させるため、触媒製造法の検討も行われている。

例えば、特開平6-9530号公報にはモリブデン、ビスマス、ニッケル、コバルトを含むスラリーを90℃で3時間加熱する方法が、特許2520282号公報には触媒成分を含むスラリーをpH5以下に調整する方法が、特許2640356号公報にはモリブデンおよび鉄を含むスラリーのpHを5以下に調整し、50~120℃の範囲で加熱処理する方法などが開示されている。

しかしながら、これらの触媒製造法によれば、目的生成物の収率の改善や、長時間にわたる反応成績の維持の面において、ある程度の効果は得られたものの、そのレベルは工業的には必ずしも満足できるものではなく、目的生成物収率が高く、しかもその収率を長時間維持できる触媒の開発が強く求められていた。

本発明は上記の課題を解決するためになされたものであり、有機化合物のアンモ酸化、特にプロピレンのアンモ酸化によるアクリロニトリルの合成に有用な触媒の製造方法を提供するものである。

発明の開示

本発明者らは、上記の課題を解決するために鋭意検討した結果、有機化合物のアンモ酸化に用いられる複合酸化物系触媒を製造するに際し、各原料を特定の順序で混合した場合に、目的生成物の収率を、長時間にわたって高レベルに維持できることを見出し、本発明に到達した。

本発明のアンモ酸化用触媒の製造方法は、前記第2液を、50~12 0℃の範囲で10分以上加熱する加熱処理工程を有することが好ましい。 前記第2液のpHは、加熱処理工程を行う前に1~6の範囲に調整す ることが好ましい。

前記アンモ酸化用触媒は、下記の実験式(I)で表される組成を有することが好ましい。

 $M \circ_{10} B i_a F e_b X_c C r_d E_e K_f G_g S b_b M_B Z_b O_I (S i O_l)_y \cdot \cdot \cdot$ (I) (式中、Mo、Bi、Fe、Cr、K、SbおよびSiは、それ ぞれモリブデン、ビスマス、鉄、クロム、カリウム、アンチモンおよび ケイ素を表し、Xはニッケル、コバルト、亜鉛、マグネシウム、マンガ ンおよび銅よりなる群から選ばれた少なくとも一種の元素、Eはランタ ン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少 なくとも一種の元素、Gはカルシウム、ストロンチウム、バリウム、カ ドミウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、タ ングステン、ゲルマニウム、スズ、イットリウム、サマリウム、アルミ ニウム、ガリウムおよび鉛よりなる群から選ばれた少なくとも一種の元 素、Mはルテニウム、ロジウム、パラジウム、レニウム、オスミウム、 イリジウム、白金、銀、ホウ素、リンおよびテルルよりなる群から選ば れた少なくとも一種の元素、Zはリチウム、ナトリウム、ルビジウムお よびセシウムよりなる群から選ばれた少なくとも一種の元素、Oは酸素 を表す。そして添字a、b、c、d、e、f、g、h、m、n、xおよびyは原子比 を表し、Mo=10のとき、 $a=0.1\sim2.5$ 、 $b=0.1\sim10$ 、 $c = 2 \sim 12$, d = 0. $1 \sim 2$. 5, e = 0. $1 \sim 2$. 5, f = 0. 0

 $1 \sim 2$ 、 $g = 0 \sim 5$ 、 $h = 0 \sim 20$ 、 $m = 0 \sim 3$ 、 $n = 0 \sim 1$ であり、xは上記各成分が結合して生成する金属酸化物の酸素の数である。また、 $y = 0 \sim 20$ である。)

また、前記アンモ酸化用触媒が流動層反応用触媒であり、その組成が下記式(II)で表されることが好ましい。

 $Mo_{10}Bi_{3}Fe_{b}X_{c}Cr_{d}E_{e}K_{1}G_{g}Sb_{b}M_{n}Z_{n}O_{x}(SiO_{2})_{10\sim200}$. (II)

また、前記有機化合物は、プロピレンであることが好ましい。

発明を実施するための最良の形態

以下、本発明をさらに詳細に説明する。

本発明の製造方法で製造されるアンモ酸化用触媒は、モリブデン(成分(1))と、ビスマス(成分(2))と、ニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくとも一種の元素(成分(3))と、ランタン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少なくとも一種の元素(成分(4))とを含有する複合酸化物系触媒であって、例えば、オレフィン、アルコール、エーテル、芳香族化合物、ヘテロ環芳香族化合物等の有機化合物のアンモ酸化に好適に使用されるものである。また、本発明の製造方法で製造されるアンモ酸化用触媒には、成分(1)~(4)以外の元素が含まれていてもよい。

有機化合物の具体例としては、プロピレン、イソブテン、メタノール、エタノール、ターシャリーブタノール、メチルターシャリーブチルエーテル、トルエン、キシレン、ピコリン、キナルジンなどを例示できるが、本発明の製造方法で得られるアンモ酸化触媒は、中でもプロピレンをアンモ酸化して、アクリロニトリルを合成する際の使用に特に適していて、高い収率でアクリロニトリルを製造でき、しかもその収率を長時間維持できる。

本発明のアンモ酸化用触媒の製造方法では、まず、モリブデン(成分(1))の原料の少なくとも一部と、ビスマス(成分(2))の原料の少なくとも一部と、ニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくとも一種の元素(成分(3))の原料の少なくとも一部と含み、一方、ランタン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少なくとも一種の元素(成分(4))の原料を含まない第1液を調製する第1液調製工程を行う。

ここで、成分(1)の原料としては特に制限はなく、例えば、三酸化モリブデンのようなモリブデン酸化物;モリブデン酸、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウムのようなモリブデン酸;これらモリブデン酸のアンモニウム塩;リンモリブデン酸、ケイモ

リブデン酸のようなモリブデンを含むヘテロポリ酸;これらヘテロポリ酸の塩などを用いることができる。

これら成分(1)の原料は、固体のまま使用しても、あらかじめ水などの溶媒に溶解、あるいは分散させて使用してもよい。

成分(2)の原料としては、金属ビスマスまたはその化合物であれば特に制限はなく、例えば、硝酸ビスマス、炭酸ビスマス、硫酸ビスマス、酢酸ビスマス等のビスマス塩;三酸化ビスマス等を用いることができる。

また、これら成分(2)の原料は、固体のままで使用する以外に、水や硝酸水溶液などにあらかじめ溶解させた溶液として使用する方法、あるいは、これら溶液から析出した固体を含むビスマス化合物のスラリーとして使用する方法などがある。

成分(3)、すなわち、ニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくとも一種の元素の原料としては、通常、これらの酸化物、あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物や、それらの混合物などを用いることができる。

第1液調製工程においては、成分(4)の原料を加えず、成分(1) \sim (3)のそれぞれの原料の少なくとも一部を加えればよく、必ずしも成分(1) \sim (3)のそれぞれの全量を混合しなくてもよい。その場合には、成分(1) \sim (3)の残りの原料を、この第1液調製工程よりも後の任意の段階で適宜添加すればよい。

また、第1液調製工程では、水などの溶媒が使用されて第1液が調製されるが、溶媒としては水の他、必要に応じて硝酸水溶液などの酸溶液や、アンモニア水などのアルカリ溶液等を使用してもよい。また、これら溶媒は加温して使用してもよい。

また、成分(4)の原料を含まず、成分(1)~(3)のそれぞれの原料の少なくとも一部を含む第1液を調製する限りにおいては、各成分(1)~(3)の混合方法、混合順序には制限はない。

例えば、成分(1)、(2)、(3)の各原料をそれぞれ水などの溶媒に溶解あるいは分散させた後、各溶液あるいはスラリーを混合して、第1液としてもよいし、固体状態にある成分(1)、(2)、(3)の各原料を混合したものに、溶媒を加えて第1液としてもよい。

また、ここで製造するアンモ酸化用触媒が、成分(1)~(4)以外の元素(以下、成分(5)という。)を含む場合には、この第1液調製工程で、その原料の全量または一部を混合してもよい。

成分(5)の原料としては、これら元素の酸化物、あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物や、それらの混合物などを用いることができる。

なお、第1液の形態は、各成分が溶解した溶液状態でも、各成分の少なくとも一部は溶解していないスラリー状態でもよい。

ついで、第1液調製工程で得られた第1液に、少なくとも成分(4)、 すなわち、ランタン、セリウム、プラセオジムおよびネオジムよりなる 群から選ばれた一種以上の元素の原料を添加して、第2液を調製する第2液調製工程を行う。

この第2液調製工程においては、少なくとも成分(4)の原料を第1液に添加する限りは、必要に応じて成分(5)の原料をここで添加したり、成分(1)~(3)の原料の残量分を添加してもよい。また、成分(4)を添加する場合には、これの固体原料をそのまま第1液に添加してもよいし、あらかじめ溶媒に溶解または分散させた後、第1液に添加してもよい。

なお、第2液の形態は、目的とするアンモ酸化用触媒の組成や、原料として使用する化合物の種類などによって異なり、各成分が溶解した溶液状態でも、各成分の少なくとも一部が溶解していないスラリー状態でもよい。

このようにして、第1液調製工程後に、少なくとも成分(4)の原料を添加する第2液調製工程を行うことによって、目的生成物の収率を、長時間にわたって高レベルに維持できるアンモ酸化用触媒を製造できる。このような効果が発現する理由については未だ明らかではないが、まず、成分(1)の原料の少なくとも一部と、成分(2)の原料の少なくとも一部と、成分(2)の原料の少なくとも一部と含み、前記成分(4)の原料を含まない第1液を調製し、その後、これに、少なくとも成分(4)の原料を添加することにより、アンモ酸化に好ましい触媒構造、あるいは触媒前駆体構造の生成が促進されるためと考えられる。

ついで、このようにして得られた第2液のpHを必要に応じて1~6の範囲に調整する。

ここで、第 2 液の p H は $1\sim 6$ の範囲外であってもよいが、 $1\sim 6$ の範囲内であると、後述する加熱処理工程を効果的に行うことができ、最終的に得られるアンモ酸化用触媒が、目的生成物を高収率で製造可能なものとなる。 p H が 1 未満あるいは 6 を超えると目的生成物収率が低下することがある。

第2液のpHは、より好ましくは下限が1.5であり、上限は5.5である。pHの調整方法としては、例えばpHを高くするにはアンモニア水溶液などのアルカリ性水溶液を添加する方法が例示でき、一方、pHを低くするには硝酸水溶液などの酸性水溶液を添加する方法を例示できる。

また、ここで、特許2747920号公報にも示されているように、第2液のゲル化抑制のために、エチレンジアミン四酢酸、乳酸、クエン酸、酒石酸、グルコン酸などのキレート剤を第1液または第2液に添加し、これを共存させてもよい。これらキレート剤の添加は、pHが高くゲル化が起こりやすい場合に有効であるが、pHを、例えば1~3の範囲など比較的低い値に調整する場合であっても、少量添加することにより、目的生成物収率や活性の向上という効果を示すことがある。

ついで、必要に応じてpH調整された第2液を加熱する加熱処理工程 を行うことが好ましい。加熱処理工程を行うことによって、触媒の構造、 あるいは、触媒前駆体の構造がより安定となり、高性能なアンモ酸化用 触媒を再現性よく、安定に製造することができる。

加熱処理工程は加圧下で行っても常圧下で行ってもよい。また、処理温度には特に制限はないが、50 \mathbb{C} 以上が好ましく、80 \mathbb{C} 以上が好ましく、0 \mathbb{C} 以上が好ました。0 \mathbb{C} 以上が好まが発現しない場合がある。好ました。 0 \mathbb{C} 以下である。処理時間は、短すぎると、の効果が不十分となる場合がある。処理時間の上限には特に制限はない。 0 \mathbb{C} 以上である。処理時間の上限には特に制ないより好ましくは 0 \mathbb{C} 以上である。処理時間の上限には特に制なが、必要以上に長時間処理しても、得られる効果は同程度であるので、通常 1 0 \mathbb{C} \mathbb

こうして加熱処理工程を行った後に、必要に応じて成分(5)の原料を添加したり、これ以前の各段階で添加していなかった成分(1)~(3)の原料の残量を添加してもよい。

ついで、第2液を乾燥し、焼成することによりアンモ酸化用触媒を得ることができる。

乾燥方法には特に制限はなく、公知の方法を用いることができる。この触媒を、プロピレンをアンモ酸化してアクリロニトリルを製造する際に使用する場合には、噴霧乾燥法で乾燥して流動層で使用可能な略球形の触媒粒子とすることが好ましい。

噴霧乾燥には、回転円盤式、ノズル式などの一般的な噴霧乾燥装置を使用できる。また、ここで噴霧乾燥の条件は、最終的に得られるアンモ酸化用触媒が流動層反応器で使用されるものであれば、流動層において好ましく使用できるような後述の粒径範囲となるように適宜条件設定されることが好ましい。

ついで、乾燥して得られた乾燥粒子を焼成するが、焼成方法としては、 $200\sim500$ $\mathbb C$ の範囲で $0.1\sim20$ 時間焼成する低温焼成の後に、 $500\sim700$ $\mathbb C$ の範囲で $0.1\sim20$ 時間焼成する高温焼成を行うことが好ましい。 このように焼成を低温と高温の2 段階で行うと、得られるアンモ酸化用触媒の性能が、向上する場合がある。また、このように焼成を低温範囲と高温範囲の2つの温度範囲でそれぞれ行う限り、各温度範囲内において異なる温度で複数回焼成してもよい。

また、低温焼成および高温焼成は、いずれも酸素含有ガス雰囲気中で行うことが好ましく、空気中の他、酸素と、窒素、炭酸ガス、水蒸気などとが適宜混合された雰囲気中で行うことができる。

また、焼成には、箱型炉、トンネル炉、回転焼成炉、流動焼成炉等を用いることができるが、アンモ酸化用触媒を流動層で使用可能な流動層触媒とする場合には、最も後段の焼成時に流動焼成炉を用いることが好ましい。

このようにして製造された触媒の粒径は、 $5\sim200\mu$ mとすることが好ましい。粒径の下限は 10μ mがより好ましく、上限は 150μ mがより好ましい。このような粒径であれば、流動性が優れ、流動層反応

器での使用に適する。

このような粒径の制御は、前述した乾燥時の条件を制御することなどにより行える。なお、ここでいう粒径とは、粒子全体の平均粒径ではなく、各々の粒子の粒径を表す。

以上説明した方法で製造されるアンモ酸化用触媒としては、モリブデン(成分(1))と、ビスマス(成分(2))と、ニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくとも一種の元素(成分(3))と、ランタン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少なくとも一種の元素(成分(4))とを含有する複合酸化物系の触媒であれば制限はないが、特に、下記(I)式で示される組成範囲のものが好ましい。

 $M \circ_{0} B i_{a} F e_{b} X_{c} C r_{d} E_{e} K_{f} G_{g} S b_{b} M_{n} Z_{n} O_{I} (S i O_{i})_{y} \cdot \cdot \cdot$ (I)

式(I)中、Mo、Bi、Fe、Cr、K、SbおよびSiは、それ ぞれモリブデン、ビスマス、鉄、クロム、カリウム、アンチモンおよび ケイ素を表す。

Xはニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくとも一種の元素を表すが、Xとしてニッケルおよび/またはコバルトを含むことが好ましい。

Eはランタン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少なくとも一種の元素を表すが、Eとしてはランタンおよび/またはセリウムを含むことが好ましい。

Gはカルシウム、ストロンチウム、バリウム、カドミウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、タングステン、ゲルマニウム、スズ、イットリウム、サマリウム、アルミニウム、ガリウムおよび鉛よりなる群から選ばれた少なくとも一種の元素を表す。

Mはルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム、白金、銀、ホウ素、リンおよびテルルよりなる群から選ばれた少なくとも一種の元素を表す。

Zはリチウム、ナトリウム、ルビジウムおよびセシウムよりなる群から選ばれた少なくとも一種の元素を表す。また、Oは酸素を表す。

そして添字a、b、c、d、e、f、g、h、m、n、xおよびyは原子比を表し、Mo=10のとき、aの下限は好ましくは0.1、より好ましくは0.2、上限は好ましくは2.5、より好ましくは2である。

bの下限は好ましくは 0 . 1 、より好ましくは 0 . 3 、上限は好ましくは 1 0 、より好ましくは 8 である。

cの下限は好ましくは2、より好ましくは3、上限は好ましくは12、より好ましくは10である。

dの下限は好ましくは 0. 1、より好ましくは 0. 2、上限は好ましくは 2. 5、より好ましくは 2 である。

eの下限は好ましくは 0 . 1 、より好ましくは 0 . 2 、上限は好まし

くは2.5、より好ましくは2である。

f の下限は好ましくは0. 0 1 、より好ましくは0. 0 5 、上限は好ましくは2 、より好ましくは1. 5 である。

xは、上記各成分が結合して生成する金属酸化物の酸素の数であって、 自ずから決まる数値である。

また、gの下限は0、上限は好ましくは5、hの下限は0、上限は好ましくは20、mの下限は0、上限は好ましくは3、nの下限は0、上限は好ましくは1である。また、yの下限は0、上限は好ましくは20 0であるが、特に触媒を流動層反応用触媒として用いる場合には、yを10 \sim 20 0、好ましくは20 \sim 15 00 の範囲で用いると触媒強度と目的生成物収率の向上の両立がはかれ好ましい。

すなわち、流動層反応用触媒として用いる場合の、好ましい触媒成分の組成は下記式(II)で示される。

 $M \circ_{10} B i_{a} F e_{b} X_{c} C r_{d} E_{e} K_{f} G_{g} S b_{h} M_{n} Z_{n} O_{x} (S i O_{2})_{10 \sim 200}$. (II)

このように上記式(I)や(II)で表される組成のアンモ酸化用触媒を、特に上述のような製造方法で製造することによって、目的物収率が高く、また、そのような高い収率が長時間維持され、特にプロピレンからアクリロニトリルを製造する際に適した高性能な触媒が得られる。

また、ここで製造されるアンモ酸化用触媒が、特に、鉄とアンチモンを含むものである場合には、アンチモン酸鉄をその原料として使用することも可能である。触媒中にアンチモンと鉄が、アンチモン酸鉄の形態で含まれると、より一層触媒性能が向上する場合がある。

アンチモン酸鉄は、特開平4-118051号公報、特開平10-231125号公報等に記載されている化学式 $FeSbO_4$ で表される化合物であり、X線回折により同定できる。アンチモン酸鉄の調製法としては種々提案されているが、例えば、特開平4-118051号公報、特開平10-231125号公報等に記載の方法から適宜選択すればよい。また、アンチモン酸鉄は、アンチモンと鉄以外の元素を少量含んでいてもよい。

アンモ酸化用触媒中にアンチモン酸鉄を含有させる場合には、別途アンチモン酸鉄を上記の各公報に開示された調製法などで調製し、添加することが好ましい。アンチモン酸鉄は触媒製造工程の中の任意の場所で添加することができる。

得られたアンモ酸化用触媒は、そのままでも、あるいは担体に担持し て用いることもできる。

このアンモ酸化用触媒を、プロピレンのアンモ酸化によるアクリロニトリルの製造に使用する場合には、特に担体としてシリカを使用して、流動層触媒として用いるのが好ましい。担体としてシリカを用いる場合、シリカの原料としてはシリカゾル、ヒュームド・シリカ等が用いられ、これらの中では、取り扱い性などに優れていることからシリカゾルを用

いるのが好ましい。

また、担体として使用されるシリカは、式(I)および(II)中のSiの元素比内、すなわち、Mo=10において200以下の範囲で使用されることが好ましい。

本発明の製造方法で製造されたアンモ酸化用触媒は、種々の有機化合物をアンモ酸化する際に、固定床反応器や流動層反応器内に充填されて使用される。

反応が、気相流通系で行われる場合、その好適な反応条件としては、供給ガスの組成が、原料有機化合物/アンモニア/空気= $1/0.1\sim 3/8\sim 12$ (モル比)の範囲で、反応温度が $370\sim 500$ C、反応圧力が常圧 ~ 500 k P a である。また、見掛け接触時間は $0.1\sim 20$ の秒の範囲である。なお、酸素源としては空気を単独で用いる以外にも、これを水蒸気、窒素、炭酸ガス、飽和炭化水素等で希釈して用いてもよいし、酸素を富化して、酸素濃度をより高めてもよい。

このようなアンモ酸化触媒の製造方法は、特に、モリブデン(成分(1)と、ビスマス(成分(2))と、ニッケル、コバルト、亜鉛・マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくおよりなる群から選ばれた少なくとも一種の元素(成分(3))と、ランタン、セリウム、プラセオジム(4)を含有する有機化合物のアンモ酸化用触媒の製造方法であり、前記は分(1)の原料の少なくとも一部と、前記成分(2)の原料の少なくたも一部と、前記成分(2)の原料の少なくたも一部と、前記成分(2)の原料の少なくたも前記成分(4)の原料を含まない第1液を調製工程と、前記成分(4)の原料を添加して第2液を調製工程とを有しているので、目的生成物の収率が高く、の収率を長時間維持できる高性能触媒を製造することができる。

また、第 2 液を、 5 0 \sim 1 2 0 \sim 0

さらに、加熱処理工程前に第2液のpHを、1~6の範囲に調整することによって、最終的に得られるアンモ酸化用触媒を使用した場合の目的生成物の収率が向上する。

このような方法で製造されるアンモ酸化用触媒としては上記式(I)および(II)で示される組成のものが好ましい。

また、このような方法で得られるアンモ酸化用触媒は、特にプロピレンからのアクリロニトリルの合成に適している。

実施例

以下、本発明を実施例及び比較例により具体的に説明する。なお、本発明は実施例の範囲に限定されるものではない。

[触媒の活性試験]

以下の実施例および比較例で製造したアンモ酸化用触媒を使用して、 プロピレンのアンモ酸化によるアクリロニトリル合成を行い、アクリロ ニトリルの収率を求めることによって、各触媒の活性評価をした。なお、 アクリロニトリルの収率は、反応開始50時間後、500時間後、10 00時間後にそれぞれ測定した。

反応条件は下記の通りである。

触媒流動部の内径が25mm、高さ400mmの流動層反応器に触媒 を充填し、反応ガスとして、組成がプロピレン/アンモニア/空気/水 蒸気 =1/1.2/9.5/0.5 (モル比)の混合ガスを、ガス線速 度4.5 cm/secで流通させた。反応圧力は200kPaとした。

なお、表1に示す接触時間、アクリロニトリル収率は下記の式により 定義されるものである。

接触時間 (sec) =見掛け嵩密度基準の触媒容積 (ml) /供 給ガス流量 (ml/sec)

ここで、供給ガス流量は、反応条件(温度、圧力)に換算した値であ る。

アクリロニトリル収率 (%) = (生成したアクリロニトリルのモル 数 /供給したプロピレンのモル数)×100

[実施例1]

下記式で示される組成のアンモ酸化用触媒を以下のようにして製造し

 $M \circ_{10} B i_{0.6} F e_{1.3} N i_{5.5} C \circ_{0.5} C r_{0.7} C e_{0.5} K_{0.2} P_{0.2} O_{1} (S i O_{2})_{40}$ ここで、酸素の原子比xは他の元素の原子価により自然に決まる値で ある。以降、記載を省略する。

純水1000gにパラモリブデン酸アンモニウム300. 7gを溶解 した(A液)。

別途、3.3%硝酸270gに、硝酸ビスマス49.6g、硝酸ニッ ケル272.4g、硝酸コバルト24.8g、硝酸クロム47.7g、 硝酸カリウム3.4gを溶解した(B液)。

A液に、85%リン酸3.9g、B液を順次混合して第1液を調製し た。続いてこの第1液に、純水100gに硝酸セリウム37.0gを溶 解した液 (C液)、20%シリカゾル2046.5g、純水270gに 硝酸第二鉄89.5g、クエン酸20gを溶解した液(D液)を順次混 合して第2液を調製した。

得られたスラリー状の第2液に、15%アンモニア水を添加してpH を2.0に調整したのち、99℃で1.5時間加熱処理した。

得られたスラリーを回転円盤式噴霧乾燥機で、入口温度を330℃、 出口温度を160℃として噴霧乾燥した。得られた乾燥粒子を空気雰囲 気中250℃で2時間、400℃で2時間熱処理し、最終的に650℃ で3時間流動焼成した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[実施例2]

組成が、 $Mo_{10}Bi_{1.0}Fe_{1.5}Ni_{4.0}Co_{1.0}Mg_{1.0}Cr_{0.4}Ce_{0.4}La_{0.3}K_{0.15}V_{0.05}$ (SiO_2)40で表される触媒を、実施例 1 と同様の方法で製造した。

ただし、85%リン酸は使用せず、マグネシウムの原料として硝酸マグネシウムをB液に、ランタンの原料として硝酸ランタンをC液に、バナジウムの原料としてメタバナジン酸アンモニウムをA液にそれぞれ混合して用いた。

またpHは2.2に調整し、最終焼成温度は640℃とした。 触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[実施例3]

組成が、 $MO_{10}Bi_{1.8}Fe_{1.9}Ni_{3.0}Mg_{2.0}Zn_{1.5}Cr_{1.8}Ce_{1.3}Pr_{1.1}K$ $0.25W_{0.1}$ (SiO $_2$) $_{50}$ で表される触媒を、実施例1と同様の方法で製造した。

ただし、硝酸コバルト、85%リン酸は使用せず、マグネシウムの原料として硝酸マグネシウム、亜鉛の原料として硝酸亜鉛をB液に、プラセオジムの原料として硝酸プラセオジムをC液に、タングステンの原料としてパラタングステン酸アンモニウムをA液にそれぞれ混合して用いた。

また、最終焼成温度は640℃とした。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[実施例4]

組成が、 $M \circ_{i} B i_{l,l} F \circ_{i,l} N i_{l,l} C \circ_{l,l} C \circ_{l,l} C \circ_{l,l} L \circ_{l,l} K_{l,l} R o_{l,l} (S i O_{l})$ $_{l}$ で表される触媒を実施例1と同様の方法で製造した。

ただし、85%リン酸は使用せず、ランタンの原料として硝酸ランタンをC液に、ルビジウムの原料として硝酸ルビジウムをB液にそれぞれ混合して用いた。

また、pHは1.8に調整し、最終焼成温度を630℃とした。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)

の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条 件、反応条件、アクリロニトリルの収率を表 2 に示す。

[実施例5]

組成が、 $M \circ_{\mathfrak{l} \mathfrak{l}} B i_{\mathfrak{l}, \mathfrak{l}} F e_{\mathfrak{l}, \mathfrak{l}} N i_{\mathfrak{l}, \mathfrak{l}} C \circ_{\mathfrak{l}, \mathfrak{l}} M g_{\mathfrak{l}, \mathfrak{l}} C r_{\mathfrak{l}, \mathfrak{l}} C e_{\mathfrak{l}, \mathfrak{l}} L a_{\mathfrak{l}, \mathfrak{l}} K_{\mathfrak{l}, \mathfrak{l}}$ | S m _{0.1} T e _{0.2} C s _{0.1} (S i O ₂) ₄₀で表される触媒を実施例1と同様の方法 で製造した。

ただし、85%リン酸は使用せず、マグネシウムの原料として硝酸マ グネシウム、サマリウムの原料として硝酸サマリウム、セシウムの原料 として硝酸セシウムをB液に、ランタンの原料として硝酸ランタンを用 いてC液に、テルルの原料としてテルル酸をA液にそれぞれ混合して用す いた。

また、最終焼成温度は640℃とした。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素) の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条 件、反応条件、アクリロニトリルの収率を表 2 に示す。

[実施例6]

組成が、 $M \circ_{10} B i_{0.5} F e_{1.1} N i_{6.0} C r_{0.6} C e_{0.5} K_{0.2} P_{0.2} (S i O_2)$ 似で 表される触媒を実施例1と同様の方法で製造した。

ただし、硝酸コバルトは使用しなかった。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(I I)中、Eで表される元素) の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条 件、反応条件、アクリロニトリルの収率を表2に示す。

[実施例7]

組成が、 $M \circ_{10} B i_{0.6} F e_{1.1} N i_{5.5} C \circ_{0.5} M n_{0.7} C r_{0.8} C e_{0.4} K_{0.7}$ (S

ただし、85%リン酸は使用せず、マンガンの原料として硝酸マンガ ンをB液に混合して用いた。

また、pHは2.2に調整し、最終焼成温度は640℃とした。 触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素) の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条 件、反応条件、アクリロニトリルの収率を表2に示す。

[実施例8]

組成が、 $M \circ_{10} B i_{0.4} F e_{4.3} N i_{5.5} M n_{0.5} C u_{0.1} C r_{0.6} C e_{0.4} N d_{0.7} K_{0.5}$ $_{1}$ Z r $_{0.1}$ S b $_{3.5}$ P $_{0.2}$ B $_{0.2}$ R b $_{0.1}$ (S i O $_{2}$) $_{40}$ で表される触媒を下記の要領 で製造した。

純水1000gにパラモリブデン酸アンモニウム257. 5gを溶解

した(A液)。

別途、3.3%硝酸270gに硝酸ビスマス28.3g、硝酸ニッケル233.2g、硝酸マンガン20.9g、硝酸銅7.1g、硝酸クロム35.0g、硝酸カリウム1.5g、オキシ硝酸ジルコニウム3.9g、硝酸ルビジウム2.2gを溶解した(B液)。

A液に85%リン酸3.4g、ホウ酸1.8g、B液を順次混合して第1液を調製した。続いて、この第1液に、純水100gに硝酸セリウム25.3g、硝酸ネオジム12.8gを溶解した液(C液)、20%シリカゾル1752.2g、純水270gに硝酸第二鉄64.8g、クエン酸20gを溶解した液(D液)を順次混合して第2液を調製した。

得られたスラリー状の第 2 液に 15% アンモニア水を添加して、pH を 2.0 に調整したのち、99 ℃で 1.5 時間加熱処理した。

加熱処理後のスラリー状の第2液に、別途後述の方法で調製した40%アンチモン酸鉄スラリー290.5gを添加した。

得られたスラリーを回転円盤式噴霧乾燥機で、入口温度を330℃、 出口温度を160℃として噴霧乾燥した。この乾燥粒子を空気雰囲気中 250℃で2時間、400℃で2時間熱処理し、最終的に650℃で3 時間流動焼成した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

なお、ここで用いたアンチモン酸鉄スラリーは、次の要領で調製した。 硝酸 $(65 \pm 18.0 \pm 15 \pm 15 \pm 10.0 \pm 10$

以下の実施例でもこの様にして調製したアンチモン酸鉄スラリーを用いた。

[実施例9]

組成が $Mo_{||}Bi_{||,|}Fe_{||,|}Ni_{||,|}Co_{||,|}Cr_{||,|}Ce_{||,|}La_{||,|}K_{||,|}$ ($SiO_{||}$) $_{||}$ で表される触媒を下記の要領で製造した。

純水1000gにパラモリプデン酸アンモニウム301.5gを溶解した(A液)。

別途、3.3%硝酸270gに硝酸ピスマス41.4g、硝酸ニッケル198.7g、硝酸コバルト99.4g、硝酸クロム54.7g、硝

酸カリウム3.5gを溶解した(B液)。

A液にB液を混合して第1液を調製し、続いてこの第1液に、純水100gに硝酸セリウム37.1g、硝酸ランタン7.4gを溶解した液(C液)、20%シリカゾル2052.2gを順次混合して第2液を調製した。

得られたスラリー状の第 2 液に、1 5 % アンモニア水を添加して p H 5. 0 に調整したのち、9 9 $\mathbb C$ で 1 . 5 時間加熱処理した。別途、純水 2 7 0 g に硝酸第二鉄 8 9 . 7 g 、クエン酸 2 0 g を溶解した液(D 液)を調製し、加熱処理後のスラリー状の第 2 液に混合した。

得られたスラリーを回転円盤式噴霧乾燥機で、入口温度を330℃、出口温度を160℃として噴霧乾燥した。この乾燥粒子を空気雰囲気中250℃で2時間、400℃で2時間熱処理し、最終的に660℃で3時間流動焼成した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[実施例10]

組成が $M \circ_{0} B i_{0.6} F e_{1.3} N i_{2.0} C \circ_{3.5} C r_{0.7} C e_{0.6} K_{0.25} P_{0.2}$ (S $i \circ Q_{0.5}$) 似で表される触媒を実施例 9 と同様の方法で製造した。

ただし、硝酸ランタンは使用せず、リンの原料として85%リン酸を B液の前にA液に混合して用いた。また、pHは4.5に調整し、最終 焼成温度は630℃とした。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[実施例11]

組成が $Mo_{10}Bi_{0.5}Fe_{4.9}Ni_{3.0}Co_{1.0}Mg_{1.0}Cr_{0.6}Ce_{0.4}La_{0.1}K_{0.2}Sb_{4.2}P_{0.3}(SiO_2)$ 40で表される触媒を下記の要領で製造した。

純水1000gにパラモリブデン酸アンモニウム253.5gを溶解 した(A液)。

別途、3.3%硝酸270gに硝酸ビスマス34.9g、硝酸ニッケル125.3g、硝酸コバルト83.6g、硝酸マグネシウム36.8g、硝酸クロム34.5g、硝酸カリウム2.9gを溶解した(B液)。A液に85%リン酸5.0g、B液を順次混合して第1液を調製した。続いて、この第1液に、純水100gに硝酸セリウム24.9g、硝酸ランタン6.2gを溶解した液(C液)、20%シリカゾル1725.

3 g を順次混合して第 2 液を調製した。このスラリー状の第 2 液に 15% アンモニア水を添加して p H を 5 . 2 に調整したのち、 9 9 \mathbb{C} で 1 .

5時間加熱処理した。別途、純水270gに硝酸第二鉄63.8g、クエン酸20gを溶解した液(D液)を調製し、加熱処理後のスラリー状の第2液に混合した。

さらに実施例7と同様にして調製した40%アンチモン酸鉄スラリー340.7gを混合した。

得られたスラリーを回転円盤式噴霧乾燥機で、入口温度を330℃、出口温度を160℃として噴霧乾燥した。この乾燥粒子を空気雰囲気中250℃で2時間、400℃で2時間熱処理し、最終的に650℃で3時間流動焼成した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[比較例1]

実施例1と同一組成の触媒を実施例1と同様の方法で製造した。ただし、硝酸セリウムはB液に混合した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[比較例2]

実施例3と同一組成の触媒を実施例3と同様の方法で製造した。ただし、硝酸セリウム、硝酸プラセオジムはB液に混合した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[比較例3]

実施例4と同一組成の触媒を実施例4と同様の方法で製造した。ただし、硝酸セリウム、硝酸ランタンはB液に混合した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

[比較例4]

実施例9と同一組成の触媒を実施例9と同様の方法で製造した。ただし、硝酸セリウム、硝酸ランタンはB液に混合した。

触媒の組成を表1に示す。

また、成分(4)(式(I)および(II)中、Eで表される元素)の原料を含む液、第2液のpH、加熱処理工程の条件、最後段の焼成条件、反応条件、アクリロニトリルの収率を表2に示す。

以上の実施例および比較例で得られたアンモ酸化用触媒を用い、上記

の反応条件下、プロピレンのアンモ酸化反応を行い、触媒評価した。そ の結果を表 2 に示した。

表 1

(以下余白)

		触媒組成 (原子比)														
	Мо	Вi	Fe		X		Cr	1	Е	K	G	Sb	N	M	Z	SiO2
実施 例 l	10	0.6	1.3	Ni 5.5	Co 0.5		0.7	Ce 0.5		0.2			P 0.2			40
2	10	1.0	1.5	Ni 4.0	Co 1.0	Mg 1.0	0.4	Ce 0.4	La 0.3	0.1 5	V 0.0 5					40
3	10	0.8	0.9	N i 3.0	Mg 2.0	Zn 0.5	0.8	Ce 0.3	Pr 0.1	0. 2 5	₩ 0.1					50
4	10	0.5	1.0	N i 2.0	Co 4.0		1.0	Ce 0.4	La 0.2	0.1					Rb 0.1	40
5	10	0.3	1.0	N i 3.0	Co 3.0	Mg 1.0	0.5	Ce 0.4	La 0.4	0.1 5	Sm 0.1		T e 0.2		Cs 0.1	40
6.	10	0.5	1.1	N i 6.0			0.6	Ce 0.5		0.2			P 0.2			60
7	10	0.6	1.1	N i 5.5	Co 0.5	Mn 0.2	0.8	Ce 0.4		0.2						40
8	10	0.4	4.3	N i 5.5	Mn 0.5	Cu 0.2	0.6	Ce 0.4	Nd 0.2	0.1	Zr 0.1	3.5	P 0.2	B 0.2	Rb 0.1	40
9	10	0.5	1.3	Ni 4.0	C o 2.0		0.8	Ce 0.5	La 0.1	0.2						40
10	10	0.6	1.3	N i 2.0	Co 3.5		0.7	Ce 0.6		0. 2 5			P (0. 2			40
11	10	0.5	4.9	N i 3.0	C o 2.0	Mg 1.0	0.6	Ce 0.4	La 0.1	0.2		4.2	P 0.3			40
比較 1	10	0.6	1.3	N i 5.5	Co 0.5		0.7	Ce 0.5		0. 2			P 0.2			40
2	10	0.8	0.9	N i 3.0	Mg 2.0	Zn 0.5	0.8	Ce 0.3	Pr 0.1	0.2 5	W 0.1					50
3	10	0.5	1.0	N i 2.0	Co 4.0		1.0	Ce 0.4	La 0.2	0.1					Rb 0.1	40
4	10	0.5	1.3	Ni 4.0	C o 2.0		0.8	Ce 0.5	La 0.1	0.2						40

DOCID: <WO_03033139A1_i_>

表 2		E成 分	рH	加熱処理		焼成条件		反応	条件	アクリロニトリル収率 [%]			
		混合方法		温度 [℃	時間 [hr]	温度 [℃	時間 [hr]	温度 [℃	接触 時間 [sec]	50h 後	500h 後	1000 h 後	
実施例	1	C液	2.	99	1.5	650	3	440	3.0	82.9	82.5	81.7	
	2	C液	2. 2	99	1.5	640	3	440	2.7	82.3	82.0	81.2	
	3	C液	2. 0	99	1.5	640	3	440	3.2	83.1	82.4	81.2	
	4	C液	1. 8	99	1.5	630	3	440	3.0	82.5	81.9	81.2	
	5	C液	2. 0	99	1.5	640	3	440	3.0	82.6	81.8	81.1	
	6	C液	2. 0	99	1.5	650	3	440	2.8	83.0	82.4	81.6	
	7	C液	2.	99	1.5	640	3	440	2.6	82.7	82.1	81.0	
	8	C液	2. 0	99	1.5	650	3	440	3.2	82.1	81.5	80.9	
	9	C液	5. 0	99	1.5	660	3	440	3.0	82.8	82.3	81.6	
	10	C液	4. 5	99	1.5	630	3	440	2.7	82.4	81.7	80.9	
	11	C液	5. 2	99	1.5	650	3	440	3.2	82.5	81.9	81.1	
比較例	1	B液	2. 0	99	1.5	650	3	440	3.0	83.0	81.9	80.8	
	2	B液	2. 0	99	1.5	640	3	440	3.2	82.9	81.5	80.3	
	3	B液	2. 0	99	1.5	630	3	440	3.0	82.3	80.8	79.7	
	4	B液	5. 0	99	1.5	660	3	440	3.0	82.6	81.3	80.1	

表2から明らかなように、実施例の方法で得られたアンモ酸化用触媒を使用すると、反応開始後50時間後のアクリロニトリル収率が良好なだけでなく、反応開始後1000時間後の収率も高く維持されていた。一方、比較例で得られた触媒は、時間の経過に伴うアクリロニトリル収率の低下が大きかった。

産業上の利用性

以上説明したように本発明のアンモ酸化触媒の製造方法によれば、目的生成物の収率が高く、しかもその収率を長時間維持できる高性能触媒を製造することができる。

本発明の製造方法で得られるアンモ酸化用触媒は、特にプロピレンからのアクリロニトリルの合成に適している。

請求の範囲

1. モリブデン(成分(1))と、ビスマス(成分(2))と、ニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくとも一種の元素(成分(3))と、ランタン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少なくとも一種の元素(成分(4))とを含有する、有機化合物のアンモ酸化用触媒の製造方法であって、

前記成分(1)の原料の少なくとも一部と、前記成分(2)の原料の少なくとも一部と、前記成分(3)の原料の少なくとも一部とを含み、前記成分(4)の原料を含まない第1液を調製する第1液調製工程と、

前記第1液に、少なくとも前記成分(4)の原料を添加して第2液を調製する第2液調製工程とを有することを特徴とするアンモ酸化用触媒の製造方法。

- 2. 前記第2液を、50~120℃の範囲で10分以上加熱する加熱処理工程を有することを特徴とする請求項1に記載のアンモ酸化用触媒の製造方法。
- 3. 前記第2液のpHを1~6の範囲に調整した後に加熱処理工程を行うことを特徴とする請求項2に記載のアンモ酸化用触媒の製造方法。
- 4. 前記アンモ酸化用触媒が、下記式(I)で表される組成を有することを特徴とする請求項1ないし3のいずれかに記載のアンモ酸化用触媒の製造方法。

 $M \circ_{i} B i_{i} F e_{i} X_{i} C r_{d} E_{e} K_{i} G_{g} S b_{i} M_{i} Z_{i} O_{i} (S i O_{i})_{v} \cdot \cdot \cdot$ (I) (式中、Mo、Bi、Fe、Cr、K、SbおよびSiは、それ ぞれモリブデン、ビスマス、鉄、クロム、カリウム、アンチモンおよび ケイ素を表し、Xはニッケル、コバルト、亜鉛、マグネシウム、マンガ ンおよび銅よりなる群から選ばれた少なくとも一種の元素、Eはランタ ン、セリウム、プラセオジムおよびネオジムよりなる群から選ばれた少 なくとも一種の元素、Gはカルシウム、ストロンチウム、バリウム、カ ドミウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、タ ングステン、ゲルマニウム、スズ、イットリウム、サマリウム、アルミ ニウム、ガリウムおよび鉛よりなる群から選ばれた少なくとも一種の元 素、Mはルテニウム、ロジウム、パラジウム、レニウム、オスミウム、 イリジウム、白金、銀、ホウ素、リンおよびテルルよりなる群から選ば れた少なくとも一種の元素、乙はリチウム、ナトリウム、ルビジウムお よびセシウムよりなる群から選ばれた少なくとも一種の元素、〇は酸素 を表す。そして添字a、b、c、d、e、f、g、h、m、n、xおよびyは原子比 を表し、Mo=10のとき、 $a=0.1\sim2.5$ 、 $b=0.1\sim10$ 、

 $c=2\sim1$ 2、 d=0. $1\sim2$. 5、 e=0. $1\sim2$. 5、 f=0. 0 $1\sim2$ 、 $g=0\sim5$ 、 $h=0\sim2$ 0、 $m=0\sim3$ 、 $n=0\sim1$ であり、 xは上記各成分が結合して生成する金属酸化物の酸素の数である。また、 $y=0\sim2$ 0 0 である。)

5. 前記アンモ酸化用触媒が流動層反応用触媒であり、その組成が下記式(II)で表されることを特徴とする請求項4に記載のアンモ酸化用触媒の製造方法。

 $M \circ_{10} B i_{a} F e_{b} X_{c} C r_{d} E_{e} K_{f} G_{g} S b_{h} M_{m} Z_{h} O_{x} (S i O_{i})_{10 \sim 100} \cdot \cdot \cdot$ (II)

6. 前記有機化合物がプロピレンであることを特徴とする請求項1ないし5のいずれかに記載のアンモ酸化用触媒の製造方法。

)OCID: <WO__03033139A1_I_>

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/09832

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ B01J23/88, 27/057, 27/192, C07C253/26, 255/08									
int.	CI BUIU23/88, 2//U5/, 2//I92,	CU/CZ53/Z6, Z55/U8							
According to International Patent Classification (IPC) or to both national classification and IPC									
	SEARCHED								
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ B01J21/00-37/36, C07B61/00									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2002 Kokai Jitsuyo Shinan Koho 1971-2002 Jitsuyo Shinan Toroku Koho 1996-2002									
Electronic d	ata base consulted during the international search (name	e of data base and, where practicable, sea	rch terms used)						
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.						
A	WO 01/28984 A1 (Mitsubishi Rayon Co., Ltd.), 26 April, 2001 (26.04.01), & JP 2001-187771 A								
A	JP 10-043595 A (Asahi Chemic Ltd.),	1-6							
	17 February, 1998 (17.02.98), (Family: none)								
A	JP 10-066874 A (Mitsubishi R	1-6							
A	(Family: none) A JP 03-021346 A (Mitsubishi Rayon Co., Ltd.),								
	·								
Furthe	or documents are listed in the continuation of Box C.	See patent family annex.							
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing "T" later document published after the international filing dat priority date and not in conflict with the application but considered to be of particular relevance; the claimed invention of document of particular relevance; the claimed invention of the conflict with the application but considered to be of particular relevance; the claimed invention of the conflict with the application but considered to be of particular relevance; the claimed invention of the conflict with the application but considered to be of particular relevance.									
date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot									
special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such									
means combination being obvious to a person skilled in the art "P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed									
Date of the actual completion of the international search 22 November, 2002 (22.11.02) Date of mailing of the international search report 10 December, 2002 (10.12.02)									
	nailing address of the ISA/	Authorized officer							
Facsimile N		Telephone No.							

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. B01J23/88, 27/057, 27/192, C07C253/26, 255/08

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. B01J21/00-37/36, C07B61/00

最小限資料以外の資料で調査を行った分野に含まれるもの

- 日本国実用新案公報 1926-1996年
- 日本国公開実用新案公報 1971-2002年
- 日本国登録実用新案公報 1994-2002年
- 日本国実用新案登録公報 1996-2002年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 WO 01/28984 A1(三菱レイヨン株式会社), 2001.04.26 & JP 2001-1 Α 1-6 87771 A JP 10-043595 A(旭化成工業株式会社),1998.02.17 Α 1-6(ファミリーなし) JP 10-066874 A(三菱レイヨン株式会社), 1998.03.10 Α 1-6 (ファミリーなし) JP 03-021346 A(三菱レイヨン株式会社), 1991. 01. 30 1-6(ファミリーなし)

」 C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

22.11.02

国際調査報告の発送日

10.12.02

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 繁田 えい子 4G 9342

電話番号 03-3581-1101 内線 3416

様式PCT/ISA/210 (第2ページ) (1998年7月)

THIS PROK BLANK USOTO,