

Institut Supér	ieur D'Informatique ISIN		tiques de Monastir
Examen	Final - Session P	rincipal - S2 -	2024/2025
Filière:	Matière:		Enseignant:
L1 INFO	Algèbre 2		Rym BETTAIEB
Date: 19/5/2025	Nbr de Crédits: 2	Coefficient: 1	Nombre de pages: 1
Durée de l'examen : 1h30	Régime d'évaluation: Mixte/ CC		Calculatrices autorisés: Non
	EX(70%) - DS(20%) + OR(10%)		Documents autorisés: Non

On considère f_m l'endomorphisme de \mathbb{R}^3 défini par:

$$f_m(x,y,z) = (y, z, -mx + y + mz), m \in \mathbb{R}$$

- 1. Ecrire la matrice A_m de f_m relativement à la base canonique Bc de \mathbb{R}^3 .
- 2. Calculer le polynôme caractéristique P_m de f_m .
- 3. Pour quelles valeurs de m, l'endomorphisme f_m est-il inversible.
- 4. Pour quelles valeurs de m, l'endomorphisme f_m est-il diagonalisable.
- 5. Dans la suite, on prend m = 2, on note $A = A_2$ et $f = f_2$.
 - (a) Déterminer les sous espaces propres de f et déduire que f est diagonalisable.
 - (b) Diagonaliser la matrice A.
 - (c) Vérifier que A est inversible et montrer que la matrice $N = A + 2A^{-1} + 3I_3$ est diagonalisable, préciser ses valeurs propres et les sous espaces propres associés.
 - (d) Pour tout $n \in \mathbb{N}$, calculer A^n .
- 6. Soit $(x_n)_n$ une suite réelle vérifiant: $x_0 = x_1 = 1, x_2 = -1,$ et

$$\forall n \in \mathbb{N}, \ x_{n+3} = -2x_n + x_{n+1} + 2x_{n+2}$$

- (a) On pose $U_n = \begin{pmatrix} x_n \\ x_{n+1} \\ x_{n+2} \end{pmatrix}$. Montrer que pour tout $n \in \mathbb{N}, \ U_n = A^n U_0$.
- (b) En déduire l'expression de x_n en fonction de n, pour tout $n \in \mathbb{N}$.
- 7. Pour $k \in \mathbb{R}$, on considère le système

$$(S_k): \left\{ egin{array}{ll} kx + y &= 1 \ ky + z &= 0 \ -2x + y + (2+k)z &= d \end{array}
ight., \quad d \in \mathbb{R}$$

- (a) Ecrire la matrice M_k du système S_k en fonction de k, A et I_3 .
- (b) En déduire, (en utilisant le polynôme caractéristique de A), les valeurs de k, pour lesquelles (S_k) est un système de Cramer.
- (c) Pour k = 2, résoudre (S_2) par les formules de Cramer.
- (d) Pour k = -1, résoudre (S_{-1}) par la méthode des pivots de Gauss.