

Charles W. Davidson College of Engineering

Department of Computer Engineering

Real-Time Embedded System
Co-Design
CMPE 146 Section 1
Fall 2024

MCU Architecture

Basic MCU Architecture

Intel 8051 8-bit MCU Architecture

- Maximum operating frequency: ~20 MHz
- Single bus
- A few peripherals

Advanced MCU Architecture

- High-performance processor core
 - Can run at hundreds of MHz
- Two-level bus infrastructure
 - High-speed system bus
 - Lower-speed peripheral bus
- Many peripherals
- Debug interface
 - Also for profiling
- Clock generator
 - Multiple outputs
 - Highly programmable

Features for Embedded Applications

- Simpler processor core
- Memory supports of different types
- Low power consumption
- Lots of interrupt inputs
- Plenty of peripherals
- Security
- Clock generation

Processor Core

- RISC (Reduced Instruction Set Computer) design
 - Load-store architecture
 - Separate instructions for memory access and computation
 - Short fixed length instructions (mostly)
 - Large register file
 - Frequent memory access can be costly
 - Single-clock-cycle instructions (mostly)
- Harvard architecture
 - Separate instruction and data buses
 - Improves execution performance
- Simple and short pipeline
 - For example, ARM Cortex-M3/M4 processors have 3 stages
 - High-end processors have many more stages
 - Less circuitry
- Multiply-Accumulate (MAC) instructions for digital signal processing (DSP)
 - One instruction, two operations

Processor Core (cont'd)

- Special bit-access operations
 - Special instructions for specific operations (in some processors)
 - Bit-Banding feature
 - In ARM Cortex-M3/M4 processors
 - Words in an alias region are mapped to individual bits in a memory region
 - Atomic operations
 - C friendly; no special instruction for compiler to deal with

On-Chip Memory

- Flash memory
 - Program and data storage
 - Non-volatile, programmable (writable with special circuitry)
- ROM
 - Non-volatile, read-only, non-programmable
 - Typically holds
 - System boot loader
 - Flash programming instructions
 - Built-In Self Test (BIST)
 - On-chip peripheral drivers

SRAM

- Volatile, readable, writable
- Provides stack space
- Can be used as memory cache
- Typically holds
 - Working program data
 - Instructions (for debugging or better performance)

Low Power Consumption

- Simple RISC core
 - Short pipeline, small instruction set, few advanced features
 - Less circuitry: fewer transistors, smaller area
 - Better code density
 - More power-efficient
- Power consumption of a CMOS circuit can be approximated as

$$P \approx \alpha C_L V_{DD}^2 f$$

where α is the switching activity, C_L is the load capacitance, V_{DD} is the supply voltage and f is the operating frequency.

- Therefore, in real time, we have two parameters V_{DD} and f to tweak
- Frequency adjustment
 - Put system to sleep; stop the clock when there is nothing to do
 - There is delay penalty when waking up
 - Slow down frequency when speed is not needed

Low Power Consumption (cont'd)

- Voltage adjustment
 - Turn off components when they are not needed
 - There is a delay penalty when need to turn them back on
 - Also reduces the leakage current
 - A good way to add more circuitry without incurring too much power
- Accelerator integration
 - Do things with dedicated hardware, not with CPU instructions
 - Fast, energy-efficient
 - There is communication overhead

Interrupts

- Able to handle many internal and external interrupt sources
 - Can be more than a hundred in total
 - Low interrupt latency
 - For example, ARM Cortex-M3/M4 processors take 12 cycles
- Let processor sleep most of the time and be waken by interrupts
 - Constant polling
 - Wastes energy
 - Input states usually don't change most of the time
 - May miss short events if polling frequency is not high enough
 - Creates unpredictable latency
 - More input signals to poll, more unpredicitabe
 - Could be much worse than using interrupt
 - Peripherals can generate interrupt when service is needed
 - Change of state in I/O pins can generate interrupt to wake up processor
- Abnormal operations (exception) can also generate interrupts
 - No need to actively check for errors by software

Security

- What must be protected
 - Code
 - Could be reverse-engineered to gain insights on how things work
 - Could be modified
 - Could be cloned to counterfeit systems
 - Data
 - Confidential personal information could be stolen
 - Functionality
 - System malfunction could occur if system is under attack
- What can be done
 - Secure communication channels
 - Secure boot process to ensure nothing has been modified
 - Monitor activities
 - Encrypt sensitive data
- Hardware support
 - Random number generator
 - Checksum generator
 - Encryption/Decryption accelerator

Clock Generation

- On-chip clocks can be generated by
 - Fixed oscillator module
 - Programmable phase-locked loop (PLL) module
- It is all about lowering power consumption
 - System clock rate can be from 0 to hundreds of MHz
- Different peripherals can have their own operating frequencies depending on the application
 - Each module may have its own clock signal
 - Programmable clock dividers provide different frequencies