CCAGCAGCTG	CAAGGTGCAA	GAAGAAGAAG	ATCCCAGGGA	GGAAAATGTG	50
CTGGAGACCC	CTGTGTCGG-	TTCCTGTGGC	TTTGGTCCTA	TCTGTCTTAT	100
GTTCAAGCAG	TGCCTATCCA	GAAAGTCCAG	GATGACACCA	AAACCCTCAT	150
CAAGACCATT	GTCACCAGGA	TCAATGACAT	TTCACACACG	CAGTCGGTAT	200
CCGCCAAGCA	GAGGGTCACT	GGCTTGGACT	TCATTCCTGG	GCTTCACCCC	250
ATTCTGAGTT	GTTCCAAGAT	GGACCAGACT	CTGGCAGTCT	ATCAACAGGT	300
CCTCACCAGC	CTGCCTTCCC	AAAATGTGCT	GCAGATAGCC	AATGACCTGG	350
AGAATCTC:CG	AGACCTCCTC	CATCTGCTGG	CCTTCTCCAA	GAGCTGCTCC	400
CTGCCTCAGA	CCAGTGGCCT	GCAGAAGCCA	GAGAGCCTGG	ATGGCGTCCT	450
GGAAGCCT'CA	CTCTACTCCA	CAGAGGTGGT	GGCTTTGAGC	AGGCTGCAGG	500
GCTCTCTGCA	GGACATTCTT	CAACAGTTGG	ATGTTAGCCC	TGAATGCTGA	550
AGTTTCAAAG	GCCAC-CAGG	CTCCCAAGAA	TCATGTAGAG	GGAAGAAACC	600
TTGGCTTCCA	GGGGTCTTCA	GGAGAAGA	G-AGC-CATG	TGCACAC	650
ATCCAT	CATTCA-TTT	CTCTCCCTCC	TGTAGACCAC	CCAT	700
					701

FIG.1

GGTTG	CAAGGCCCAA	GAAGCCCA	-TCCTGGGAA	GGAAAATGCA	50
TTGGGGAACC	CTGTG-CGGA	TTCTTGTGGC	TTTGGCCCTA	TCTTTTCTAT	100
GTCCAAGCTG	TGCCCATCCA	AAAAGTCCAA	GATGACACCA	AAACCCTCAT	150
CAAGACAATT	GTCACCAGGA	TCAATGACAT	TTCACACACG	CAGTCAGTCT	200
CCTCCAAACA	GAAAGTCACC	GGTTTGGACT	TCATTCCTGG	GCTCCACCCC	250
ATCCTGACCT	TATCCAAGAT	GGACCAGACA	CTGGCAGTCT	ACCAACAGAT	300
CCTCACCAGT	ATGCCTTCCA	GAAACGTGAT	CCAAATATCC	AACGACCTGG	350
AGAACCTCCG	GGATCTTCTT	CACGTGCTGG	CCTTCTCTAA	GAGCTGCCAC	400
TTGCCCTGGG	CCAGTGGCCT	GGAGACCTTG	GACAGCCTGG	GGGGTGTCCT	450
GGAAGCTTCA	GGCTACTCCA	CAGAGGTGGT	GGCCCTGAGC	AGGCTGCAGG	500
GGTCTCTGCA	GGACATGCTG	TGGCAGCTGG	ACCTCAGCCC	TGGGTGCTGA	550
GGCCTTGAAG	GTCACTCTTC	CTGCAAGGAC	T-ACGTTAAG	GGAAGGAACT	600
CTGGTTTCCA	GGTATCTCCA	GGATTGAAGA	GCATTGCATG	GACACCCCTT	650
ATCCAGGACT	CTGTCAATTT	CCCTGACTCC	TCTAAGCCAC	TCTTCCAAAG	700
G					701

FIG.2

						•									
						·									
₩	Met	Ćγs	Trp	Arg	Pro	Leu	Cys	Arg	Phe	Leu	Trp	Leu	Irp	Ser	Tyr
16	Leu	Ser	Tyr	Val	Gln		Ala	Pro	Ile	Gln	Lys	Val	Gln	Asp	Asp
31	Thr	Lys	Thr	Leu	Ile	Lys	Thr	Ile	Val	Thr	Arg	Ile	Asn	Asp	Ile
46	Ser	His	Thr	Gln	Ser	Val	Ser	Ala	ĽÝS	Gln	Arg	Val	Thr	G1y	Leu
61	Asp	Phe	Ile	Pro	G1y	Leu	His	Pro	Ile	Leu	Ser	Leu	Ser	Lys	Met
76	Asp (Gln	Thr	Leu	Ala	Val	Tyr	Gln	Gln	Val	Leu	Thr	Ser	Leu	Pro
91	Ser	Gln	Asn	Val	ren	Gln	Ile	Ala	Asn	Asp	ren	Glu	Asn	Leu	Arg
106	Asp L	Leu	Leu	His	Leu	Leu Ala		Phe	Ser	Lys	Ser	Cys	Ser	Leu	Pro
121	Gln	Thr	Ser		Gly Leu	Gln	Lys	Pro	Glu	Ser	Leu	Asp	G1y	Val	Leu
136	Glu	Ala	Ser	Leu	Tyr	Ser	Thr	Glu	Val	Val	Ala	ren	Ser	Arg	Leu
151	Gln	G1y	Ser	Leu	Gln	Asp	Ile	Leu	Gln	Gln	Leu Asp		Val	Ser	Pro
166	Glu	Cys	End												

FIG.3

Leu MET LEU LEU ASN VAL ILE GLN ILE SER ASN ASP LEU GLU ASN LEU ARG Leu Pro GLY THR LEU CYS GLY PHE LEU TRP LEU TRP PRO ARG GLN THR LEU ALA VAL TYR GLN GLN ILE LEU THR SER MET ALA SER GLY LEU GLU THR LEU ASP SER LEU GLY GLY VAL Leu Ser SER ASN THR GLN HIS SER ILE THR GLN SER VAL SER SER LYS GLN LYS VAL ASP LEU LEU HIS VAL LEU ALA PHE SER LYS SER CYS MET LEU TRP GLN LEU ASP SER GLY TYR SER THR GLU VAL VAL ALA LEU VAL ILE PRO GLY LEU HIS PRO ILE LEU THR LEU Lys LYS THR ILE VAL THR ARG GLN GLN ALA IVAL PRO ILE GLN ASP THR LEU ILE VAL SER LEU TRP T HIS AG Lys HIS PHE PHE SER ARG Asp TRP ASP gro MET THR SER GLY LEU 46 9/ 106 136 61 166 91 151 121

FIG.4

ASP ASP SER ASP GLN GLU SER ASP ASP MET LEU ARG LEU GLY LEU LEU Leu Pro Leu Pro SER PRO ASN GL_N Lys ARG LEU TRP VAL ILE THR SER SER ASN SER GLY SER VAL ILE LEU GLN GLN LEU ASP VAL GLU Lys VAL LEU CYS ARG PHE LEU TRP LEU THR LEU THR ARG Çγs GLU SER LEU ASP GLN ARG GLN VAL LEU ILE LEU SER ALA ASN ASP LEU THR GLU VAL VAL ALA SER LYS SER ILE ILE VAL GLN SER ALA LYS VAL PRO Pro GLN LYS THR Lys Pro LEU ALA PHE ALA HIS ILE TYR Pro GLN ILE LEU VAL SER VAL GLN GLN GLN ASP LEU VAL SER GLY ALA LEU LEU LEU CYS TRP ARG TYR THR LEU T∕R THR Pro HIS GLY LEU LEU ASN VAL Lxs SER HIS ILE SER THR SER SER LEU GLN MET THR SER PHE GLN LEU THR ALA LEU CYS 106 16 31 61 136 166 121 151

FIG. 5

FIG. 6

 $- = 100 \, \text{KB}$

FIG. 8

FIG. 9

1 2 3 4 5 6 7

+10 GTGCAAGAAG AAGAAGATC<u>C CAGGGCAGGA AAATGTG</u>CTG GAGACCCCTG CACGTTCTTC TTCTTCTAGG GTCCCGTCCT TTTACACGAC CTCTGGGGAC +10 +20 +30 +40 TATCCAGAAA GTCCAGGATG ACACCAAAAG CCTCATCAAG ACCATTGTCA ATAGGTCTTT CAGGTCCTAC TGTGGTTTTC GGAGTAGTTC TGGTAACAGT

FIG.10

NCAGGATCAC TGANATTTCA CACACG ?----- --?---- NGTCCTAGTG ACTNTAAAGT GTGTGC

FIG. 11

FIG. 12

C57BL/6J ob/ob
CKC/smj
CKC/smj ob/ob

FIG. 13

brain
CKC/smj fat
CKC/smj ob/ob fat
C57BL/6J fat
C57BL/6J ob/ob fat

2G7 -28S -18S

Actin -18S

FIG. 14

CKC/smj + / ?
CKC/smj ob/ob
CKC/smj + / ?
CKC/smj ob/ob
CKC/smj + / ? CKC/smj ob/ob

ap2

FIG.15

FIG. 16

FIG. 17

control

ob/ob

ob/+

ob/ob

ob/+

ob/ob

ob/+

ob/ob

+ / +

ob/ob

ob/ob

ob/ob

ob/ob

FIG. 18

T7 PROMOTER PRIMER 69348-1

T7 PROMOTER

BGLII
AGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTACA

THROMBIN

GCTGCCACCGCTGAGCATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTG **ALAALATHRALAGLUGLNEND**

T7 TERMINATOR PRIMER #69337-1

FIG. 19