Logistic regression for a binary classification with a regularization

```
In [549]:
```

```
import warnings
warnings.filterwarnings(action='ignore')
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import math
from matplotlib import cm
```

1. Training Data

```
In [114]:
```

```
data = pd.read_csv("training.txt", names=['x','y','label'])
```

In [115]:

data

Out[115]:

	x	у	label
0	0.76090	0.116706	0.0
1	0.99777	0.082345	0.0
2	1.02459	0.291094	0.0
3	1.07755	0.091764	0.0
4	0.91385	0.054629	0.0
195	1.00000	1.000000	1.0
196	1.00000	1.000000	1.0
197	1.00000	1.000000	1.0
198	1.00000	1.000000	1.0
199	1.00000	1.000000	1.0

200 rows × 3 columns

2. Testing Data

In [116]:

```
test_data = pd.read_csv("testing.txt", names=['x','y','label'])
```

In [117]:

test_data

Out[117]:

	x	у	label
0	1.00726	0.268272	0.0
1	0.87378	0.204539	0.0
2	0.98254	0.245526	0.0
3	1.05977	0.265070	0.0
4	0.74250	0.228713	0.0
195	1.00000	1.000000	1.0
196	1.00000	1.000000	1.0
197	1.00000	1.000000	1.0
198	1.00000	1.000000	1.0
199	1.00000	1.000000	1.0

200 rows × 3 columns

• 라벨값을 저장하고 \$g(x,y,\theta)\$ 함수를 정의하겠습니다.

In [119]:

```
data_1 = data[data['label'] == 1]
dataX_1 = data_1['x']
dataY_1 = data_1['y']

data_0 = data[data['label'] == 0]
dataX_0 = data_0['x']
dataY_0 = data_0['y']

test_data_1 = test_data[test_data['label'] == 1]
test_dataX_1 = test_data_1['x']
test_dataY_1 = test_data_1['y']

test_dataY_0 = test_data[test_data['label'] == 0]
test_dataX_0 = test_data_0['x']
test_dataY_0 = test_data_0['y']
```

In [120]:

```
label = data['label']
test_label = test_data['label']
```

In [379]:

In [380]:

train_new_data

Out[380]:

	x0y0	x0y1	x0y2	x0y3	x0y4	x0y5	x0y6	x0y7	x0y8	x0y9	 x9y0	x9y1	x9y2
0	1.0	0.116706	0.013620	0.001590	0.000186	2.165069e-05	2.526773e-06	2.948903e-07	3.441556e-08	4.016514e-09	 0.085496	0.009978	0.001164
1	1.0	0.082345	0.006781	0.000558	0.000046	3.785956e-06	3.117530e-07	2.567118e-08	2.113883e-09	1.740668e-10	 0.980108	0.080707	0.006646
2	1.0	0.291094	0.084736	0.024666	0.007180	2.090092e-03	6.084129e-04	1.771053e-04	5.155426e-05	1.500713e-05	 1.244374	0.362230	0.105443
3	1.0	0.091764	0.008421	0.000773	0.000071	6.506846e-06	5.970966e-07	5.479219e-08	5.027971e-09	4.613886e-10	 1.958560	0.179726	0.016492
4	1.0	0.054629	0.002984	0.000163	0.000009	4.865555e-07	2.658024e-08	1.452063e-09	7.932531e-11	4.333495e-12	 0.444503	0.024283	0.001327
195	1.0	1.000000	1.000000	1.000000	1.000000	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	 1.000000	1.000000	1.000000
196	1.0	1.000000	1.000000	1.000000	1.000000	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	 1.000000	1.000000	1.000000
197	1.0	1.000000	1.000000	1.000000	1.000000	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	 1.000000	1.000000	1.000000
198	1.0	1.000000	1.000000	1.000000	1.000000	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	 1.000000	1.000000	1.000000
199	1.0	1.000000	1.000000	1.000000	1.000000	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	 1.000000	1.000000	1.000000

200 rows × 100 columns

1

•

In [381]:

test_new_data

Out[381]:

	x0y0	x0y1	x0y2	x0y3	x0y4	x0y5	x0y6	x0y7	x0y8	x0y9	 x9y0	x9y1	x9y2	x9y3	x9]
0	1.0	0.268272	0.071970	0.019308	0.005180	0.001390	0.000373	0.000100	0.000027	7.197514e-06	 1.067270	0.286319	0.076811	0.020606	0.0055
1	1.0	0.204539	0.041836	0.008557	0.001750	0.000358	0.000073	0.000015	0.000003	6.265953e-07	 0.296906	0.060729	0.012421	0.002541	0.0005
2	1.0	0.245526	0.060283	0.014801	0.003634	0.000892	0.000219	0.000054	0.000013	3.242486e-06	 0.853399	0.209532	0.051445	0.012631	0.00310
3	1.0	0.265070	0.070262	0.018624	0.004937	0.001309	0.000347	0.000092	0.000024	6.460147e-06	 1.686183	0.446956	0.118475	0.031404	0.0083
4	1.0	0.228713	0.052310	0.011964	0.002736	0.000626	0.000143	0.000033	0.000007	1.712468e-06	 0.068591	0.015688	0.003588	0.000821	0.0001
195	1.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000e+00	 1.000000	1.000000	1.000000	1.000000	1.00000
196	1.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000e+00	 1.000000	1.000000	1.000000	1.000000	1.00000
197	1.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000e+00	 1.000000	1.000000	1.000000	1.000000	1.00000
198	1.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000e+00	 1.000000	1.000000	1.000000	1.000000	1.00000
199	1.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000e+00	 1.000000	1.000000	1.000000	1.000000	1.00000

200 rows × 100 columns

3. Logistic regression with a high dimensional feature function

• 필요 함수들을 선언하겠습니다.

In [382]:

```
def logistic(x):
    return 1 / (1 + math.e ** -x)
```

```
In [383]:
```

```
def check_accuracy(result):
    match = 0
    for i in range(len(result)):
        if result[i] < 0.5 and label[i] == 0:
            match += 1
        if result[i] >= 0.5 and label[i] == 1:
            match += 1
        return match/len(label)
```

In [443]:

```
def function_f(x, y, k):
    return (x ** int(k/10)) * (y ** int(k%10))
```

4. Hyper-parameter

In [488]:

```
ephochs = 5000
m = len(label)
learning_rate = 0.1
train_new_data_array = np.array(train_new_data)

lamda_list = [0.00001, 0.0001, 0.001, 0.01]
training_loss_list = []
testing_loss_list = []
train_accuracy_list = []
test_accuracy_list = []
coef_list = []
```

5. Training

In [489]:

```
for idx, lamda in enumerate(lamda list):
   training loss = []
   testing loss = []
   train accuracy = []
   test accuracy = []
    coef = np.zeros(100)
   for i in range(ephochs):
        if i % 1000 == 0:
            print(str(i) + " times running..")
        h = np.array(logistic(train new data.dot(coef)))
       test h = np.array(logistic(test new data.dot(coef)))
        train loss = -(1/m) * np.sum(label * np.log(h) + (1 - label) * np.log(1 - h)) + lamda * (t0 ** 2 + np.sum(coef ** 2))
        test loss = -(1/m) * np.sum(test label * np.log(test h) + (1 - test label) * np.log(1 - test h)) + lamda * (t0 ** 2 + np.sum(coef *
* 2))
        training loss.append(train loss)
        testing loss.append(test loss)
       train accuracy.append(check accuracy(h))
        test accuracy.append(check accuracy(test h))
        for i in range(len(coef)):
            coef[i] = coef[i] - learning rate * (np.sum((h - label) * train_new_data_array[:,i] / m) + lamda * coef[i])
    ## 결과 저장
    coef list.append(coef)
   testing loss list.append(testing loss)
   training loss list.append(training loss)
   train accuracy list.append(train accuracy[-1])
   test accuracy list.append(test accuracy[-1])
```

```
0 times running..
C:\Users\alber\Anaconda3\lib\site-packages\ipykernel launcher.py:14: RuntimeWarning: divide by zero encountered in log
C:\Users\alber\Anaconda3\lib\site-packages\ipykernel_launcher.py:15: RuntimeWarning: divide by zero encountered in log
  from ipykernel import kernelapp as app
1000 times running..
2000 times running..
3000 times running..
4000 times running..
0 times running..
1000 times running..
2000 times running..
3000 times running..
4000 times running..
0 times running..
1000 times running..
2000 times running..
3000 times running..
4000 times running..
0 times running..
1000 times running..
2000 times running..
3000 times running..
4000 times running..
0 times running..
1000 times running..
2000 times running..
3000 times running..
```

[Output]

4000 times running..

1. Plot the training data

In [490]:

```
plt.scatter(dataX_0, dataY_0, color ='r')
plt.scatter(dataX_1, dataY_1, color ='b')
plt.title('training data')
plt.show()
```


2. Plot the testing data

In [491]:

```
plt.scatter(test_dataX_0, test_dataY_0, color ='r')
plt.scatter(test_dataX_1, test_dataY_1, color ='b')
plt.title('training data')
plt.show()
```


3. Plot the learning curve with λ =0.00001

In [493]:

```
plt.plot([i for i in range(len(training_loss_list[0]))], training_loss_list[0], c = 'b', linewidth=1)
plt.plot([i for i in range(len(testing_loss_list[0]))], testing_loss_list[0], c = 'r', linewidth=1)
plt.title('Training Error')
plt.xlabel('time')
plt.ylabel('val')
plt.show()
```


4. Plot the learning curve with λ =0.0001

In [494]:

```
plt.plot([i for i in range(len(training_loss_list[1]))], training_loss_list[0], c = 'b', linewidth=1)
plt.plot([i for i in range(len(testing_loss_list[1]))], testing_loss_list[0], c = 'r', linewidth=1)
plt.title('Training Error')
plt.xlabel('time')
plt.ylabel('val')
plt.show()
```


5. Plot the learning curve with λ =0.001

In [495]:

```
plt.plot([i for i in range(len(training_loss_list[2]))], training_loss_list[0], c = 'b', linewidth=1)
plt.plot([i for i in range(len(testing_loss_list[2]))], testing_loss_list[0], c = 'r', linewidth=1)
plt.title('Training Error')
plt.xlabel('time')
plt.ylabel('val')
plt.show()
```


6. Plot the learning curve with λ =0.01

In [496]:

```
plt.plot([i for i in range(len(training_loss_list[3]))], training_loss_list[0], c = 'b', linewidth=1)
plt.plot([i for i in range(len(testing_loss_list[3]))], testing_loss_list[0], c = 'r', linewidth=1)
plt.title('Training Error')
plt.xlabel('time')
plt.ylabel('val')
plt.show()
```


7. Plot the learning curve with λ =0.1

In [497]:

```
plt.plot([i for i in range(len(training_loss_list[4]))], training_loss_list[0], c = 'b', linewidth=1)
plt.plot([i for i in range(len(testing_loss_list[4]))], testing_loss_list[0], c = 'r', linewidth=1)
plt.title('Training Error')
plt.xlabel('time')
plt.ylabel('val')
plt.show()
```


8. Plot the probability map of the obtained classifier with λ =0.00001

In [550]:

```
x1 coordinate = np.linspace(-2, 3, 100)
x2 coordinate = np.linspace(-1 , 1.1, 100)
xx1, xx2 = np.meshgrid(x1 coordinate, x2 coordinate) # create meshgrid
X2 = np.zeros((len(xx1), len(xx2)))
for i in range(len(x1 coordinate)):
    for j in range(len(x2 coordinate)):
        sum = 0
        for k in range(len(coef list[0])):
            sum += coef list[0][k] * function f(x1 coordinate[i], x2 coordinate[j], k)
        X2[i,i] = logistic(sum)
fig = plt.figure(figsize=(15,6))
ax1 = plt.subplot(121)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(dataX 0, dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(dataX 1, dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('Decision boundary')
# right
ax1 = plt.subplot(122)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(test dataX 0, test dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(test dataX 1, test dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('Decision boundary')
```

.

Out[550]:

Text(0.5, 1.0, 'Decision boundary')

In [551]:

```
x1 coordinate = np.linspace(-2, 3, 100)
x2 coordinate = np.linspace(-1 , 1.1, 100)
xx1, xx2 = np.meshgrid(x1 coordinate, x2 coordinate) # create meshgrid
X2 = np.zeros((len(xx1), len(xx2)))
for i in range(len(x1 coordinate)):
   for j in range(len(x2 coordinate)):
        sum = 0
        for k in range(len(coef list[1])):
            sum += coef list[1][k] * function f(x1 coordinate[i], x2 coordinate[j], k)
        X2[i,i] = logistic(sum)
fig = plt.figure(figsize=(15,6))
ax1 = plt.subplot(121)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(dataX 0, dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(dataX 1, dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('train')
# right
ax1 = plt.subplot(122)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(test dataX 0, test dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(test dataX 1, test dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('test')
```

.

Out[551]:

Text(0.5, 1.0, 'test')

10. Plot the probability map of the obtained classifier with λ =0.001

/

In [552]:

```
x1 coordinate = np.linspace(-2, 3, 100)
x2 coordinate = np.linspace(-1 , 1.1, 100)
xx1, xx2 = np.meshgrid(x1 coordinate, x2 coordinate) # create meshgrid
X2 = np.zeros((len(xx1), len(xx2)))
for i in range(len(x1 coordinate)):
    for j in range(len(x2 coordinate)):
        sum = 0
        for k in range(len(coef list[2])):
            sum += coef list[2][k] * function f(x1 coordinate[i], x2 coordinate[j], k)
        X2[i,i] = logistic(sum)
fig = plt.figure(figsize=(15,6))
ax1 = plt.subplot(121)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(dataX 0, dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(dataX 1, dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('train')
# right
ax1 = plt.subplot(122)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(test dataX 0, test dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(test dataX 1, test dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('test')
```

Out[552]:

Text(0.5, 1.0, 'test')

11. Plot the probability map of the obtained classifier with λ =0.01

/

In [553]:

```
x1 coordinate = np.linspace(-2, 3, 100)
x2 coordinate = np.linspace(-1 , 1.1, 100)
xx1, xx2 = np.meshgrid(x1 coordinate, x2 coordinate) # create meshgrid
X2 = np.zeros((len(xx1), len(xx2)))
for i in range(len(x1 coordinate)):
    for j in range(len(x2 coordinate)):
        sum = 0
        for k in range(len(coef list[3])):
            sum += coef list[3][k] * function f(x1 coordinate[i], x2 coordinate[i], k)
       X2[i,i] = logistic(sum)
fig = plt.figure(figsize=(15,6))
ax1 = plt.subplot(121)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(dataX 0, dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(dataX 1, dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('train')
# right
ax1 = plt.subplot(122)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(test dataX 0, test dataY 0, s=100, c='r', marker='.', label='class=0')
plt.scatter(test dataX 1, test dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('test')
```

Out[553]:

Text(0.5, 1.0, 'test')

12. Plot the probability map of the obtained classifier with λ =0.1

/

In [554]:

```
x1 coordinate = np.linspace(-2, 3, 100)
x2 coordinate = np.linspace(-1 , 1.1, 100)
xx1, xx2 = np.meshgrid(x1 coordinate, x2 coordinate) # create meshgrid
X2 = np.zeros((len(xx1), len(xx2)))
for i in range(len(x1 coordinate)):
   for j in range(len(x2 coordinate)):
        sum = 0
        for k in range(len(coef list[4])):
            sum += coef list[4][k] * function f(x1 coordinate[i], x2 coordinate[j], k)
        X2[i,i] = logistic(sum)
fig = plt.figure(figsize=(15,6))
ax1 = plt.subplot(121)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(dataX 0, dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(dataX 1, dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('train')
# right
ax1 = plt.subplot(122)
Cs = plt.contourf(xx1, xx2, np.transpose(X2), cmap=cm.coolwarm, alpha=0.5, levels = np.arange(0, 1.01, 0.01))
cbar = plt.colorbar( )
cbar.update ticks()
plt.scatter(test dataX 0, test dataY 0 , s=100, c='r', marker='.', label='class=0')
plt.scatter(test dataX 1, test dataY 1, s=100, c='b', marker='.', label='class=1')
plt.contour(xx1, xx2, np.transpose(X2), [0.5], linewidths=2, colors='k')
plt.legend()
plt.title('test')
```

Out[554]:

Text(0.5, 1.0, 'test')

13. Print the final training accuracy with the given regularization parameters

/

```
In [547]:
```

```
for i, acc in enumerate(train_accuracy_list):
    print("lamda : {}. Training Accuracy {}%.".format(lamda_list[i], acc))

lamda : 1e-05. Training Accuracy 0.965%.
lamda : 0.0001. Training Accuracy 0.965%.
```

lamda : 0.01. Training Accuracy 0.91%. lamda : 0.1. Training Accuracy 0.855%.

lamda: 0.001. Training Accuracy 0.965%.

14. Print the final testing accuracy with the given regularization parameters

In [555]:

```
for i, acc in enumerate(test_accuracy_list):
    print("lamda : {}. Testing Accuracy {}%.".format(lamda_list[i], acc))

lamda : 1e-05. Testing Accuracy 0.965%.
lamda : 0.0001. Testing Accuracy 0.965%.
```

lamda: 0.001. Testing Accuracy 0.965%. lamda: 0.01. Testing Accuracy 0.92%.

lamda : 0.1. Testing Accuracy 0.85%.