Control Systems Engineering (EYAG-1005): **Unit 03**

Luis I. Reyes-Castro

Escuela Superior Politécnica del Litoral (ESPOL)

Guayaquil - Ecuador

Semester: 2017-T1

Control Systems Engineering - Unit 03

- First-order Systems
- 2 Second-order Systems
- 3 Steady-state Errors
- 4 Evan's Root Locus
- 5 Bode Plots

Control Systems Engineering - Unit 03

- First-order Systems
- 2 Second-order Systems
- **3** Steady-state Errors
- 4 Evan's Root Locus
- 5 Bode Plots

First-order Systems

Definition:

We say that a system with transfer function G(s) is of first-order if:

$$G(s) = \frac{K}{s + \sigma}$$
 for some $K, \sigma > 0$

First-order Systems

Step response, *i.e.*, r(t) = u(t):

$$R(s) = \frac{1}{s} \implies c(t) = \mathcal{L}^{-1}[R(s)G(s)]$$

$$\Rightarrow c(t) = \mathcal{L}^{-1}\left[\frac{K}{s(s+\sigma)}\right]$$

$$\Rightarrow c(t) = \mathcal{L}^{-1}\left[\frac{K/\sigma}{s} - \frac{K/\sigma}{s+\sigma}\right]$$

$$\Rightarrow c(t) = \left[\frac{K}{\sigma} - \frac{K}{\sigma}e^{-\sigma t}\right]u(t), \quad \forall t \in \mathbb{R}$$

$$\Rightarrow c(t) = \frac{K}{\sigma} - \frac{K}{\sigma}e^{-\sigma t}, \quad \forall t \geq 0$$

Control Systems Engineering - Unit 03

- First-order Systems
- Second-order Systems
- **3** Steady-state Errors
- 4 Evan's Root Locus
- 5 Bode Plots

Second-order Systems

Recall the following results from elementary algebra:

■ For any $\alpha, \beta, \gamma \in \mathbb{R}$ the roots of the second-order polinomial

$$D(s) = \alpha s^2 + \beta s + \gamma$$

are as follows:

$$s_1 = -rac{eta}{2lpha} + rac{\sqrt{eta^2 - 4lpha\gamma}}{2lpha} \qquad \qquad s_2 = -rac{eta}{2lpha} + rac{\sqrt{eta^2 - 4lpha\gamma}}{2lpha}$$

Therefore:

- If $\beta^2 > 4 \alpha \gamma$ then the roots are repeated and different.
- If $\beta^2 = 4 \alpha \gamma$ then the roots are repeated and identical.
- If β^2 < 4 $\alpha \gamma$ then the roots are complex conjugates.

Second-order Systems

lacksquare For any $a,b\in\mathbb{R}$ the roots of the second-order polinomial

$$D(s) = s^2 + as + b$$

are as follows:

$$s_1 = -\frac{a}{2} + \frac{\sqrt{a^2 - 4b}}{2}$$
 $s_2 = -\frac{a}{2} - \frac{\sqrt{a^2 - 4b}}{2}$

Therefore:

- If $a^2 > 4b$ then the roots are repeated and different.
- If $a^2 = 4b$ then the roots are repeated and identical.
- If $a^2 < 4b$ then the roots are complex conjugates.

Control Systems Engineering - Unit 03

- First-order Systems
- 2 Second-order Systems
- **3** Steady-state Errors
- 4 Evan's Root Locus
- 5 Bode Plots

Recall the reference signals:

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems

Name	Physical interpretation	Time function		
Step	Constant position	1	$\frac{1}{s}$	
Ramp	Constant velocity	t	$\frac{1}{s^2}$	
Parabola	Constant acceleration	$\frac{1}{2}t^2$	$\frac{1}{s^3}$	
	Step	Name interpretation Step Constant position Ramp Constant velocity	Name interpretation function Step Constant position 1 Ramp Constant velocity t	

Recall the following property of the Laplace Transform:

Final Value Theorem

For any function f(t) defined for $t \ge 0$ with Laplace Transform F(s) we have that:

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} s F(s)$$

Steady-state errors for simple feedthrough systems:

$$E(s) = R(s) - C(s) = R(s) - T(s)R(s)$$

$$\implies E(s) = R(s)[1 - T(s)]$$

$$\implies e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(t) = \lim_{s \to 0} s R(s)[1 - T(s)]$$

■ Step input r(t) = u(t) :

$$R(s) = \frac{1}{s} \implies e_{step}(\infty) = \lim_{s \to 0} 1 - T(s)$$

■ Ramp input r(t) = t u(t):

$$R(s) = \frac{1}{s^2} \implies e_{ramp}(\infty) = \lim_{s \to 0} \frac{1 - T(s)}{s}$$

■ Parabolic input $r(t) = (1/2) t^2 u(t)$:

$$R(s) = \frac{1}{s^3} \implies e_{parabolic}(\infty) = \lim_{s \to 0} \frac{1 - T(s)}{s^2}$$

Steady-state errors for unity-feedback systems:

$$E(s) = R(s) - C(s) = R(s) - G(s) E(s)$$

$$\implies E(s) [1 + G(s)] = R(s)$$

$$\implies E(s) = \frac{R(s)}{1 + G(s)}$$

$$\implies e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(t) = \lim_{s \to 0} \frac{s R(s)}{1 + G(s)}$$

■ Step input r(t) = u(t):

$$R(s) = rac{1}{s} \qquad \Longrightarrow \qquad e_{step}(\infty) \ = \ \lim_{s o 0} \ rac{1}{1 + G(s)}$$

■ Ramp input r(t) = t u(t):

$$R(s) = rac{1}{s^2} \qquad \Longrightarrow \qquad e_{ramp}(\infty) \ = \ \lim_{s o 0} \ rac{1}{s \ G(s)}$$

■ Parabolic input $r(t) = (1/2) t^2 u(t)$:

$$R(s) = \frac{1}{s^3} \implies e_{parabolic}(\infty) = \lim_{s \to 0} \frac{1}{s^2 G(s)}$$

Furthermore, for unity-feedback systems:

■ Position constant K_p :

$$K_p = \lim_{s \to 0} G(s) \implies e_{step}(\infty) = \frac{1}{1 + K_p}$$

■ Velocity constant K_v :

$$K_{\nu} = \lim_{s \to 0} s G(s) \implies e_{ramp}(\infty) = \frac{1}{K_{\nu}}$$

■ Acceleration constant K_a :

$$K_a = \lim_{s \to 0} s^2 G(s) \implies e_{parabolic}(\infty) = \frac{1}{K_a}$$

System Type: Number of integrators (poles at s = 0) on the forward path.

Steady-state error as a function of system type:

		Type 0		Type 1		Type 2	
Steady-state Input error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error	
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_v = \text{Constant}$	$\frac{1}{K_{\nu}}$	$K_{\nu}=\infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$

For non-unity non-unity-feedback systems, simply re-write the system in unity-feedback form:

Control Systems Engineering - Unit 03

- First-order Systems
- 2 Second-order Systems
- 3 Steady-state Errors
- 4 Evan's Root Locus

Motivating example:

K	Pole 1	Pole 2	
0	-10	0	
5	-9.47	-0.53	
10	-8.87	-1.13	
15	-8.16	-1.84	
20	-7.24	-2.76	
25	-5	-5	
30	-5 + j2.24	-5 - j2.24	
35	-5 + j3.16	-5 - j3.16	
40	-5 + j3.87	-5 - j3.87	
45	-5 + j4.47	-5 - j4.47	
50	-5 + j5	-5 - j5	

The root locus concerns the design of closed-loop control systems with the following architecture:

Definitions:

- Loop gain: K
- Open-loop transfer function: G(s) H(s)

Objective:

■ Sketch the roots of the closed-loop transfer function as the loop gain K ranges from near zero (i.e., $K \to 0^+$) to infinity (i.e., $K \to +\infty$).

Root locus sketching rules:

- The root locus is symmetric about the real axis.
- The number of branches, *i.e.*, pole trayectories, equals the number of poles of the open-loop transfer function.
- Each branch begins at an open-loop pole and ends either:
 - At an open-loop zero.
 - At infinity along an asymptote.
- Along the real line, root locus branches can be found to the left of any odd number of real open-loop poles or open-loop zeros.

■ If the root locus has asymptotes, then the number of asymptotes is:

(number of open-loop poles)
$$-$$
 (number of open-loop zeros)

■ If the root locus has asymptotes, then the centroid of the asymptotes is located along the real axis at the point:

$$\sigma_{\rm a} \ = \ \frac{\sum {\rm (open\hbox{-}loop\ pole\ locations)} - \sum {\rm (open\hbox{-}loop\ zero\ locations)}}{{\rm number\ of\ asymptotes}}$$

If the root locus has asymptotes, then their angles in radians are:

$$\theta_a = \frac{(2k+1)\pi}{\text{number of asymptotes}}$$
 for $k = 0, \pm 1, \pm 2, \dots$

Control Systems Engineering - Unit 03

- First-order Systems
- 2 Second-order Systems
- **3** Steady-state Errors
- 4 Evan's Root Locus
- 5 Bode Plots

Consider a stable system with transfer function G(s).

- Suppose the input r(t) is a sinusoid with frequency ω and unit amplitude.
- Then the steady-state output $c_{ss}(t)$ must be a a sinusoid with the same frequency ω but with a particular amplitude M and phase ϕ which depend on the transfer function G(s) and on the input frequency ω .

- Given G(s) and a frequency ω we can evaluate the amplitude and phase of the steady-state output by computing the phasor $G(j\omega)$. In particular:
 - The phasor's magnitude yields the amplitude $M(\omega)$.
 - The phasor's angle with $+\mathbb{R}$ yields the phase $\phi(\omega)$.

■ We can also estimate $M(\omega)$ and $\phi(\omega)$ experimentally:

- Furthermore, notice that:
 - Amplitude M is always positive.
 - If $M \in (0,1)$ we get attenuation.
 - If M = 1 we get amplitude matching.
 - If M > 1 we get amplification.
 - Phase may be negative, zero or postive.
 - If ϕ < 0 then the output lags the input.
 - If $\phi = 0$ then the output matches the input.
 - If $\phi > 0$ then the output leads the input.

Bode Plots are diagrams of $M(\omega)$ and $\phi(\omega)$. More precisely, they consist of the following two plots:

- Magnitude Plot: Amplitude $M(\omega)$ versus frequency ω .
 - The x-axis is frequency ω in decades, i.e., $x = \log_{10}(\omega)$.
 - The y-axis is amplitude $M(\omega)$ in decibels, i.e., $y = 20 \cdot \log(M(\omega))$.
- **Phase Plot**: Phase $\phi(\omega)$ versus frequency ω .
 - The *x*-axis is frequency ω in decades, *i.e.*, $x = \log_{10}(\omega)$.
 - The *y*-axis is phase in degrees, *i.e.*, $y = \phi(\omega)$.

Notice that when sketching Bode Plots by hand, we usually don't draw exactly the functions $M(\omega)$ and $\phi(\omega)$ but instead sketch asymptotic approximations.

Bode plot for a simple amplifier: G(s) = K

- Magnitude plot is constant at $y = 20 \cdot \log_{10}(K)$ decibels.
- Phase plot is constant at y = 0 degree.

Bode plot for an integrator: $G(s) = \frac{1}{s}$

 \blacksquare Phasor as a function of ω :

$$G(j\omega) = \frac{1}{j\omega} = -\frac{j}{\omega} \implies M(\omega) = \frac{1}{\omega} \& \phi(\omega) = -90^{\circ}$$

- Magnitude plot is $y = -20 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of -20 decibels per decade which hits zero decibels at $\omega = 1$ rad/s.
- Phase plot is constant at y = -90 degree.

Bode plot for a differentiator: G(s) = s

■ Phasor as a function of ω :

$$G(j\omega) = j\omega \implies M(\omega) = \omega \& \phi(\omega) = +90^{\circ}$$

- Magnitude plot is $y = +20 \cdot \log_{10}(\omega)$ decibels, i.e., it is a line with slope of +20 decibels per decade which hits zero decibels at $\omega = 1$ rad/s.
- Phase plot is constant at y = +90 degree.