Цель лабораторной работы

Изучить различные методы визуальзации данных

Задание

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из Scikit-learn.
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.
- Для лабораторных работ не рекомендуется выбирать датасеты большого размера.
- Создать ноутбук, который содержит следующие разделы:
- Текстовое описание выбранного Вами набора данных.
- Основные характеристики датасета.
- Визуальное исследование датасета.
- Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Ход выполнения работы

1) Текстовое описание набора данных

В качестве набора данных используется набор по исследованию качества белых вин

Датасет состоит из одного файла:

wine.csv

Файл содержит следующие колонки:

- 1. fixed acidity фиксированная кислотность
- 2. volatile acidity летучая кислотность
- 3. citric acid лимонная кислота
- 4. residual sugar остаточный сахар
- 5. chlorides хлориды
- 6. free sulfur dioxide свободный диоксид серы
- 7. total sulfur dioxide общая двуокись серы
- 8. density плотность
- 9. рН потенциал водорода
- 10. sulphates сульфаты
- 11. alcohol алкоголь
- 12. quality качество алкоголя (выходной параметр)

Импортируем библиотеки

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(style="ticks")

Загрузим данные датасета

data = pd.read_csv('wine.csv', sep=";")

Проверим корректность загрузки

data.head()

In [1]:

In [4]:

In [5]:

													Out[5]:
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6	
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6	
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6	
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6	

Размер датасета

In [6]:

data.shape

Out[6]:

(4898, 12)

Список атрибутов

In [7]:

data.dtypes

Out[7]:

fixed acidity float64 volatile acidity float64 citric acid float64 residual sugar float64 chlorides float64 free sulfur dioxide float64 total sulfur dioxide float64 density float64 float64 рΗ sulphates float64 float64 alcohol int64 quality dtype: object

Проверка датасета на наличие пустых значений

In [8]:

for col in data.columns:

temp_null_count = data[data[col].isnull()].shape[0]
print('{} - {}'.format(col, temp_null_count))

fixed acidity - 0
volatile acidity - 0
citric acid - 0
residual sugar - 0
chlorides - 0
free sulfur dioxide - 0
total sulfur dioxide - 0
density - 0
pH - 0
sulphates - 0
alcohol - 0
quality - 0

Основные статистические характеристки набора данных

In [9]:

data.describe()

											Oı	ut[9]:
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138.360657	0.994027	3.188267	0.489847	10.514267	ţ
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.498065	0.002991	0.151001	0.114126	1.230621	(
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.000000	0.987110	2.720000	0.220000	8.000000	(
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.000000	0.991723	3.090000	0.410000	9.500000	ţ
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.000000	0.993740	3.180000	0.470000	10.400000	•
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.000000	0.996100	3.280000	0.550000	11.400000	ť
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440.000000	1.038980	3.820000	1.080000	14.200000	Ę

Уникальные значения для целевого признака

In [10]:

Out[10]:

data['quality'].unique()

array([6, 5, 7, 8, 4, 3, 9])

2) Визуальное исследование датасета

In [11]:

fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='density', y='alcohol', data=data)

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a24f23750>

Можно заметить, что между атрибутами density и alcohol пристутствует что-то похожее на линейную зависимость

Введем в зависимость целевой признак

In [12]:

fig, ax = plt.subplots(figsize=(8,8)) sns.scatterplot(ax=ax, x='density', y='alcohol', data=data, hue='quality')

Распределение качества алкоголя

fig, ax = plt.subplots(figsize=(13,13)) sns.distplot(data['quality'], color="g")

In [14]:

sns.jointplot(x='density', y='alcohol', data=data, kind="hex")

In [15]:

sns.jointplot(x='density', y='alcohol', data=data, kind="kde")

<seaborn.axisgrid.JointGrid at 0x1a25e87890>

Парные диаграммы

sns.pairplot(data)

In [16]:

Out[16]:

In [17]:

Группирование по значению целевого признака

In [18]:

sns.pairplot(data, hue="quality")

Сгруппируем по целевому признаку

In [23]:

sns.violinplot(x='quality', y='alcohol', data=data)

3) Информация о корреляции признаков

In [24]:

data.corr()

												Out[24]:
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.022697	0.289181	0.089021	0.023086	-0.049396	0.091070	0.265331	0.425858	-0.017143	0.120881	0.113663
volatile acidity	-0.022697	1.000000	0.149472	0.064286	0.070512	-0.097012	0.089261	0.027114	0.031915	-0.035728	0.067718	0.194723
citric acid	0.289181	-0.149472	1.000000	0.094212	0.114364	0.094077	0.121131	0.149503	0.163748	0.062331	0.075729	0.009209
residual sugar	0.089021	0.064286	0.094212	1.000000	0.088685	0.299098	0.401439	0.838966	0.194133	-0.026664	0.450631	0.097577
chlorides	0.023086	0.070512	0.114364	0.088685	1.000000	0.101392	0.198910	0.257211	0.090439	0.016763	0.360189	0.209934
free sulfur dioxide	-0.049396	-0.097012	0.094077	0.299098	0.101392	1.000000	0.615501	0.294210	0.000618	0.059217	0.250104	0.008158
total sulfur dioxide	0.091070	0.089261	0.121131	0.401439	0.198910	0.615501	1.000000	0.529881	0.002321	0.134562	0.448892	- 0.174737
density	0.265331	0.027114	0.149503	0.838966	0.257211	0.294210	0.529881	1.000000	0.093591	0.074493	0.780138	0.307123
рН	-0.425858	-0.031915	0.163748	-0.194133	0.090439	-0.000618	0.002321	0.093591	1.000000	0.155951	0.121432	0.099427
sulphates	-0.017143	-0.035728	0.062331	-0.026664	0.016763	0.059217	0.134562	0.074493	0.155951	1.000000	0.017433	0.053678
alcohol	-0.120881	0.067718	0.075729	-0.450631	0.360189	-0.250104	-0.448892	0.780138	0.121432	-0.017433	1.000000	0.435575
quality	-0.113663	-0.194723	0.009209	-0.097577	0.209934	0.008158	-0.174737	0.307123	0.099427	0.053678	0.435575	1.000000

In [25]:

data.corr(method='pearson')

												Out[25]:
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.022697	0.289181	0.089021	0.023086	-0.049396	0.091070	0.265331	0.425858	-0.017143	0.120881	0.113663
volatile acidity	-0.022697	1.000000	0.149472	0.064286	0.070512	-0.097012	0.089261	0.027114	0.031915	-0.035728	0.067718	0.194723
citric acid	0.289181	-0.149472	1.000000	0.094212	0.114364	0.094077	0.121131	0.149503	0.163748	0.062331	0.075729	0.009209
residual sugar	0.089021	0.064286	0.094212	1.000000	0.088685	0.299098	0.401439	0.838966	0.194133	-0.026664	0.450631	0.097577
chlorides	0.023086	0.070512	0.114364	0.088685	1.000000	0.101392	0.198910	0.257211	0.090439	0.016763	0.360189	0.209934
free sulfur dioxide	-0.049396	-0.097012	0.094077	0.299098	0.101392	1.000000	0.615501	0.294210	0.000618	0.059217	0.250104	0.008158
total sulfur dioxide	0.091070	0.089261	0.121131	0.401439	0.198910	0.615501	1.000000	0.529881	0.002321	0.134562	0.448892	0.174737
density	0.265331	0.027114	0.149503	0.838966	0.257211	0.294210	0.529881	1.000000	0.093591	0.074493	0.780138	0.307123
рН	-0.425858	-0.031915	0.163748	-0.194133	0.090439	-0.000618	0.002321	0.093591	1.000000	0.155951	0.121432	0.099427
sulphates	-0.017143	-0.035728	0.062331	-0.026664	0.016763	0.059217	0.134562	0.074493	0.155951	1.000000	0.017433	0.053678
alcohol	-0.120881	0.067718	0.075729	-0.450631	0.360189	-0.250104	-0.448892	0.780138	0.121432	-0.017433	1.000000	0.435575
quality	-0.113663	-0.194723	0.009209	-0.097577	0.209934	0.008158	-0.174737	0.307123	0.099427	0.053678	0.435575	1.000000

In [26]:

data.corr(method='kendall')

												Out[26]:
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.029565	0.208569	0.074946	0.065361	-0.016940	0.077272	0.185510	0.294796	-0.008724	0.073241	- 0.065474
volatile acidity	-0.029565	1.000000	0.104012	0.072757	0.003523	-0.054751	0.081319	0.006600	0.030385	-0.011580	0.023495	0.154787
citric acid	0.208569	-0.104012	1.000000	0.015329	0.022292	0.060809	0.062188	0.061542	0.101307	0.054489	0.019981	0.014557
residual sugar	0.074946	0.072757	0.015329	1.000000	0.155274	0.236748	0.293319	0.588989	0.125553	-0.002545	0.305601	0.063087
chlorides	0.065361	-0.003523	0.022292	0.155274	1.000000	0.113851	0.257075	0.349119	0.037891	0.062555	0.404039	0.244856
free sulfur dioxide	-0.016940	-0.054751	0.060809	0.236748	0.113851	1.000000	0.444696	0.217295	0.005229	0.035621	0.182539	0.017164
total sulfur dioxide	0.077272	0.081319	0.062188	0.293319	0.257075	0.444696	1.000000	0.388378	0.008421	0.108697	0.325826	0.151230
density	0.185510	0.006600	0.061542	0.588989	0.349119	0.217295	0.388378	1.000000	0.075630	0.064202	0.635104	0.266598
рН	-0.294796	-0.030385	0.101307	-0.125553	0.037891	-0.005229	-0.008421	0.075630	1.000000	0.095823	0.102631	0.084441
sulphates	-0.008724	-0.011580	0.054489	-0.002545	0.062555	0.035621	0.108697	0.064202	0.095823	1.000000	0.026410	0.026403
alcohol	-0.073241	0.023495	0.019981	-0.305601	0.404039	-0.182539	-0.325826	0.635104	0.102631	-0.026410	1.000000	0.346672
quality	-0.065474	-0.154787	0.014557	-0.063087	0.244856	0.017164	-0.151230	0.266598	0.084441	0.026403	0.346672	1.000000

In [27]:

data.corr(method='spearman')

												Out[27]:
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.042865	0.297878	0.106725	0.094691	-0.024542	0.112649	0.270031	0.418341	-0.013238	0.106827	0.084485
volatile acidity	-0.042865	1.000000	0.150410	0.108627	0.004934	-0.081213	0.117614	0.010124	0.045204	-0.016902	0.033967	0.196562
citric acid	0.297878	-0.150410	1.000000	0.024621	0.032659	0.088314	0.093219	0.091425	0.146193	0.079766	0.029170	0.018333
residual sugar	0.106725	0.108627	0.024621	1.000000	0.227844	0.346107	0.431252	0.780365	0.180028	-0.003844	0.445257	0.082070
chlorides	0.094691	-0.004934	0.032659	0.227844	1.000000	0.167046	0.375244	0.508302	0.054006	0.093931	0.570806	0.314488
free sulfur dioxide	-0.024542	-0.081213	0.088314	0.346107	0.167046	1.000000	0.618616	0.327822	0.006274	0.052252	0.272569	0.023713
total sulfur dioxide	0.112649	0.117614	0.093219	0.431252	0.375244	0.618616	1.000000	0.563824	0.011829	0.157825	0.476619	0.196680
density	0.270031	0.010124	0.091425	0.780365	0.508302	0.327822	0.563824	1.000000	0.110061	0.095079	0.821855	- 0.348351
рН	-0.418341	-0.045204	0.146193	-0.180028	0.054006	-0.006274	-0.011829	0.110061	1.000000	0.140243	0.148857	0.109362
sulphates	-0.013238	-0.016902	0.079766	-0.003844	0.093931	0.052252	0.157825	0.095079	0.140243	1.000000	0.044868	0.033319
alcohol	-0.106827	0.033967	0.029170	-0.445257	0.570806	-0.272569	-0.476619	0.821855	0.148857	-0.044868	1.000000	0.440369
quality	-0.084485	-0.196562	0.018333	-0.082070	- 0.314488	0.023713	-0.196680	0.348351	0.109362	0.033319	0.440369	1.000000

Корреляционная матрица

In [28]:

fig, ax = plt.subplots(figsize=(15,10)) sns.heatmap(data.corr(), annot=**True**, fmt='.2f', cmap='GnBu')

Out[28]:

Выводы о коррелирующих признаках

- 1. Коэффициенты корреляции в данном наборе низкие.
- 2. Входные параметры влияют на качество алкоголя, так как они составляют его химический состав.
- 3. 'alcohol' и 'density' лучше всего коррелируют с целевым признаком, однако они очень сильно коррелируют друг с другом (|0.78|).
- 4. 'free sulfur' и 'total sulfur' довольно неплохо коррелируют друг с другом (|0.62|), что логично, так как общий дикосид серы является сумма связной и свободной серы. У них прослеживается явная заивисмость.