Our ref: 0548-8679-USF/dennis/kevin

What is claimed is:

1.

1. A test device for detecting alignment of deep trench capacitors and word lines in DRAM devices, wherein the test device is disposed in a scribe line region of a wafer, the scribe line region having a plurality of pairs of memory cells, each having two deep trench capacitors deposed at two ends of an active area, two word lines disposed above the active area, and a bit line contact disposed between the two word lines and electrically coupled to the active area, the test device comprising:

parallel first and second bar-type deep trenches capacitors disposed in the scribe line region; wherein the first and second bar-type deep trenches capacitors extend to the first and second pairs of memory cells adjacent to the first active area respectively, and are electrically coupled to bit line contacts of the first and second pairs of memory cells respectively;

- a first transistor having a source coupled to the first bar-type deep trench capacitor;
- a second transistor having a source coupled to the second bar-type deep trench capacitor; and
- a first bit line contact electrically coupled to drains of the first and second transistors.
- 2. The test device as claimed in claim 1, wherein two word lines are disposed on two sides of the first bit

Our ref: 0548-8679-USF/dennis/kevin

line contact respectively, as gates of the first and the second transistors respectively.

- 3. The test device as claimed in claim 2, wherein a first resistance between the first bit line contact and the bit line contact of the first pair of memory cells is detected by turning on the first transistor, and a second resistance between the second bit line contact and the bit line contact of the second pair of memory cells is detected by turning on the second transistor.
- 4. A semiconductor device with a test device, comprising:
 - a substrate having a least one scribe line region and a memory region, wherein the scribe line region and the memory region both have a plurality of pairs of memory cells, each including:

an active area;

two deep trench capacitors deposed at two ends of the active area;

two word lines disposed above the active area; and

- a bit line contact disposed between the two word lines and electrically coupled to the active area; and
- a test device disposed in the scribe line region, comprising:

parallel first and second bar-type deep trenches capacitors disposed in the scribe line region; wherein the first and second

Our ref: 0548-8679-USF/dennis/kevin

21	bar-type deep trenches capacitors extend
22	to the first and second pairs of memory
23	cells adjacent to the first active area
24	respectively, and electrically coupled to
25	bit line contacts of the first and second
26	pairs of memory cells respectively;
27	a first transistor having a source coupled to
28	the first bar-type deep trench capacitor;
29	a second transistor having a source coupled to
30	the second bar-type deep trench capacitor;
31	and
32.	a first bit line contact electrically coupled
33	to drains of the first and second
34	transistors.

- 5. The semiconductor device as claimed in claim 4, wherein two word lines are disposed on two sides of the first bit line contact respectively, as gates of the first and the second transistors respectively.
- 6. The semiconductor device as claimed in claim 4, wherein a first resistance between the first bit line contact and the bit line contact of the first pair of memory cells is detected by turning on the first transistor, and a second resistance between the second bit line contact and the bit line contact of the second pair of memory cells is detected by turning on the second transistor.
- 7. A method for detecting alignment of deep trench capacitors and word lines in DRAM devices, comprising:

Our ref: 0548-8679-USF/dennis/kevin

3	providing a wafer with at least one scribe line
4	region and at least one memory region;
5	forming a plurality of pairs of memory cells in the
6	memory region and at least one test device in
7	the scribe line simultaneously, wherein each
8	pair of memory cells includes an active area,
9	two deep trench capacitors deposed at two ends
10	of the active area, two word lines disposed
11	above the active area, and a bit line contact
12	disposed between the two word lines and
13	electrically coupled to the active area, the
14	test device including:
15	parallel first and second bar-type deep
16	trenches capacitors disposed in the scribe
17	line region; wherein the first and second
18	bar-type deep trenches capacitors extend
19	to the first and second pairs of memory
20	cells adjacent to the first active area
21	respectively, and electrically coupled to
22	bit line contacts of the first and second
23	pairs of memory cells respectively;
24	a first transistor having a source coupled to
25	the first bar-type deep trench capacitor;
26	a second transistor having a source coupled to
27	the second bar-type deep trench capacitor;
28	and
29	a first bit line contact electrically coupled
30	to drains of the first and second
31	transistors;

11

Our ref: 0548-8679-USF/dennis/kevin

32	measuring a first resistance between the first bit
33	line contact and the bit line contact of the
34	first pair of memory cells and a second
35	resistance between the second bit line contact
36	and the bit line contact of the second pair of
3 7	memory cell; and
38	determining alignment of the deep trench capacitors
39	and word lines in the memory regions according
4 O	to alignment of the first and second
11	resistance.
_	
1	8. The method as claimed in Claim 7, wherein two
2	word lines are disposed on two sides of the first bit
3	line contact respectively, as gates of the first and the
4	second transistors respectively.
1	9. The method as claimed in Claim 8, further
2	comprising:
3	determining alignment of the first and second bar-
4	type deep trenches capacitors and two word
5	lines of the test device according to the first
6	resistance and the second resistance; and
7	determining alignment of the deep trench capacitors
8	and word lines in the memory regions according
9	to alignment of the first and second bar-type
L 0	deep trenches capacitors and two word lines of

the test device.