07 调制、解调和滤波

从频域角度"控制"信号

通信系统

- 通信: 把发送者拥有的消息传递给接收者
- 为达到通信的目的,
 - 要把信源消息经发送设备转变为适合信道传输的信号,因此需要进行调制、编码、放大等操作。
 - 发送和接收设备还可能包括多路复用、加密、纠错等处理设备

 传输媒介也成为信道,可为导线、电缆、光纤等。混入信道的噪声无法避免,在构建通信系统时需要考虑 噪声的影响。

通信系统分类

- 按照传输介质分类:
 - 有线信道 (电缆、光缆等)
 - 无线信道(长波、中波、短波、微波、光通信)

- 按照频率范围分类,不同波段使用的传输媒质不同
 - 如短波使用同轴电缆

波长
$$(m) = \frac{$$
波速 (m/s)
频率 (Hz)

•任何频率的无线电波在真空中的传播速度为 $3 \times 10^8 m/s$

通信的波段和频段

- 高于30 MHz 的电波成为微波
- 长、中、短波所占频带总和约30MHz, 而微波频带约300GHz

波段	超长波	长波	中波	短波	超短波	分米波	厘米波	毫米波
频段	甚低频	低频	中频	高频	甚高频	特高频	超高频	极高频
符号	VLF	LF	MF	HF	VHF	UHF	SHF	EHF
波长范围	100000 -10000m	10000 -1000m	1000-100 m	100-10 m	10-1m	1-0.1m	10-1cm	10-1mm
频率范围	3-30kHz	30-300kHz	300kHz -3MHz	3-30M Hz	30 -300MHz	300-3000 MHz	3-30 GHz	30-300G Hz
应用	海岸—潜艇 通信;海上 导航。	大气层内中 等距离通信; 地下岩层通 信;海上导 航。	广播;海 上导航。	远波 短波信; 短波播。	对大气层内、外空间飞行体(飞机、导弹、卫星)的通信; 电视、雷达、导航、移动通信。	对流层工 散射通信 (700- 1000MHz)	数字通信; 卫星通信; 波导通信。	穿入大气 层时的通 信

通信的频段

- 频率范围为 20Hz-20kHz的音频信号,在大气层传输时会剧烈衰减,但高频率信号可在大气层中传播 到较远距离
- 若音频信号频率为10kHz,直接传输需要7.5km长的天线,需要在大气层中传输音频,需要将低频信号"加载"或"嵌入"到一个高频信号上,再通过天线向空间辐射。
- 天线长度与辐射电波波长数量级一致(1/4波长以上)时,才能有较好的辐射特性,将信号传递到远方。
 - 不同通信波段使用不同尺寸的通信天线
 - 天线尺寸和波长成正比关系

短波天线

微波天线

信道传输

• 调制:将低频信号"加载"或"嵌入"到一个高频振荡信号上

• 解调: 从含有低频信号的高频振荡信号中提取低频信号

信号调制

- 待发送的信号x(t)为**调制信号**,用于完成载送信号任务的高频振荡信号c(t)为**载波信号**,调制后的高频信号称为已调波。
 - x(t)不一定是低频信号
- 载波c(t)的某个参数(幅度、频率或相位)随x(t)做有规律变化:

• 调制过程中, $A, \omega_c, \varphi, \theta(t)$ 都可以随x(t)变化

信号调制

• 载波c(t)的某个参数(幅度、频率或相位)随x(t)做有规律变化:

- 幅度调制 (Amplitude Modulation, AM)
 - A随x(t)线性改变,而 ω_c , φ 不变
- 角度调制
 - $\theta(t)$ 随x(t)线性改变,而A不变,分为频率调制 (FM) 和相位调制 (PM)

正弦载波调幅

- 信号调幅,设置c(t)为正弦信号
- 为使幅度A随调制信号x(t)线性变化(将x(t)嵌入c(t)),将二者相乘:

$$y(t) = x(t) \cdot c(t)$$

正弦载波调幅

- 信号调幅,设置c(t)为正弦信号,载波信号 $c(t) = \cos(\omega_c t)$
- 为使幅度A随调制信号x(t)线性变化(将x(t)嵌入c(t)),将二者**相乘**: $y(t) = x(t) \cdot c(t) = x(t) \cdot \cos(\omega_c t)$
- 设 $x(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(j\omega)$
- 由于 $\cos(\omega_c t) \stackrel{\mathcal{F}}{\leftrightarrow} \pi [\delta(\omega + \omega_c) + \delta(\omega \omega_c)]$
- 根据调制定理

$$Y(j\omega) = \frac{1}{2\pi} \left[X(j\omega) * \pi [\delta(\omega + \omega_c) + \delta(\omega - \omega_c)] \right]$$
$$= \frac{1}{2} \left[X(j(\omega + \omega_c)) + X(j(\omega - \omega_c)) \right]$$

调制后,原始频谱 <mark>幅度减半,左右移动</mark>

正弦载波调幅

• 为使幅度A随调制信号x(t)线性变化(将x(t)嵌入c(t)),将二者相乘:

$$y(t) = x(t) \cdot c(t) = x(t) \cdot \cos(\omega_c t)$$

- 若 $\omega_c > \omega_m$,则两部分频谱不会发生重叠
- 调制前后总能量不变

幅度调制方块图

复指数载波调制

• 设 $c(t) = e^{j(\omega_c t + \varphi)}$, $\varphi = 0$ 进行调幅, 可得

$$Y(j\omega) = \frac{1}{2\pi} [X(j\omega) * 2\pi [\delta(\omega - \omega_c)]]$$
$$= X(j(\omega - \omega_c))$$

• 不要求 $\omega_c > \omega_m$

可通过滤波法(高通、低通滤波器)分别得到上下边带

• 复指数信号的产生 $c(t) = e^{j(\omega_c t + \varphi)} = \cos(\omega_c t + \varphi) + j\sin(\omega_c t + \varphi)$

单边带调幅

- 单边带调制: 只发送上边带或者下边带信号, 节省能量和带宽
- 采用带通滤波器实现单边带幅度调制
 - 上边带调制框图: 改变带通滤波器的通频带可实现下边带调制

$$Y_{\rm D}(j\omega) = \frac{1}{2} \{ X[j(\omega + \omega_{\rm c})] + X[j(\omega - \omega_{\rm c})] \}$$

单边带调幅

- 单边带调制: 只发送上边带或者下边带信号, 节省能量和带宽
- 采用带通滤波器实现单边带幅度调制
 - 上边带调制框图: 改变带通滤波器的通频带可实现下边带调制

同步解调

- $M_{Y}(t)$ 中恢复出X(t), 即 $M_{Y}(j\omega)$ 中恢复出 $X(j\omega)$
- 由于

$$y(t) = x(t) \cdot c(t) = x(t) \cdot \cos(\omega_c t)$$

• 为移回 $X(j\omega)$,用 $\cos(\omega_c t)$ 再次乘y(t)

$$r(t) = y(t)\cos(\omega_c t) = x(t)\cos^2(\omega_c t) = x(t)\left(\frac{1}{2} + \frac{1}{2}\cos(2\omega_c t)\right) = \frac{1}{2}x(t) + \frac{1}{2}x(t)\cos(2\omega_c t)$$

■ 因此

$$R(j\omega) = \frac{1}{2}X(j\omega) + \frac{1}{4}\left[X(j(\omega + 2\omega_c)) + X(j(\omega - 2\omega_c))\right]$$

同步解调

■ 解调后,原始信号信息保存完好,仅有1/2系数差别

单边带调幅

- 单边带幅度调制已调信号的解调
 - 采用同步解调

 $X_0(j\omega) = \frac{1}{2} \{ Y_{dn}[j(\omega + \omega_c)] + Y_{dn}[j(\omega - \omega_c)] \}$

 $-2\omega_{\rm c}$

收发端相位不等遇到的问题

若调制与解调端载波相位不等,则解调后的信号将会失真

$$r(t) = x(t)\cos(\omega_c t + \varphi)\cos(\omega_c t + \theta)$$

$$= x(t) \left[\frac{1}{2}\cos(\varphi - \theta) + \frac{1}{2}\cos(2\omega_c t + \varphi + \theta) \right]$$

$$= \frac{1}{2}x(t)\cos(\varphi - \theta) + \frac{1}{2}x(t)\cos(2\omega_c t + \varphi + \theta)$$

收发端相位不等遇到的问题

若调制与解调端载波相位不等,则解调后的信号将会失真

$$r(t) = x(t)\cos(\omega_c t + \varphi)\cos(\omega_c t + \theta)$$

$$= \frac{1}{2}x(t)\cos(\varphi - \theta) + \frac{1}{2}x(t)\cos(2\omega_c t + \varphi + \theta)$$

• 采样同步解调同样的滤波方案,滤波器输出为

$$x(t)\cos(\varphi-\theta)$$

因此

$$r(t) = \begin{cases} x(t), & \varphi = \theta \\ 0, & \varphi - \theta = \frac{\pi}{2} \end{cases}$$

• 相位差为元 时,无法恢复信号

信道复用: 频分复用

- 频分复用 (Frequency-division multiplexing, FDM)
- 不同信号占用不同的频带

信道复用: 频分复用

信道复用: 频分复用

• 频分复用的进一步完善

信道复用: 时分复用

• 时分复用 (Time-Division Multiplexing, TDM)

信道复用:码分复用

- 码分复用 (Code Division Multiplexing, CDM)
- 对信号乘正交随机码
 - •由于信号正交,因此可以恢复
 - 码分多址通信: CDMA, Code Division Multiple Access

$$y(t) = \sum_{i=1}^{N} x_i(t) \cdot c_i(t)$$

- 发送端信号 $x_1(t), x_2(t)$
- 发送时乘正交信号发送: $x_1(t) \sin(\omega_c t)$, $x_2(t) \cos(\omega_c t)$
- 接收时再乘 $sin(\omega_c t)$, $cos(\omega_c t)$ 进行恢复

如图所示系统中,已知输入信号x(t)的频谱 $X(j\omega)$,试分析系统中A、B、C、D及y(t)的频谱并画出频谱图,求出y(t)与x(t)的关系

$$X_{A}(j\omega) = \mathcal{F}[\cos(100t)] = \pi[\delta(\omega - 100) + \delta(\omega + 100)]$$

• A点

如图所示系统中,已知输入信号x(t)的频谱 $X(j\omega)$,试分析系统中A、B、C、D各点及y(t)的频谱并画出频谱图,求出y(t)与x(t)的关系

■ B点

$$X_{\rm B}(j\omega) = \frac{1}{2\pi}X(j\omega) * X_{\rm A}(j\omega) = \frac{1}{2}[X(\omega - 100) + X(\omega + 100)]$$

如图所示系统中,已知输入信号x(t)的频谱 $X(j\omega)$,试分析系统中A、B、C、D各点及y(t)的频谱并画出频谱图,求出y(t)与x(t)的关系

 $X_{\rm C}(j\omega) = X_{\rm B}(j\omega)H_1(j\omega)$

• C点

如图所示系统中,已知输入信号x(t)的频谱 $X(j\omega)$,试分析系统中A、B、C、D各点及y(t)的频谱并画出频谱图,求出y(t)与x(t)的关系

• D点

$$X_{\rm D}(j\omega) = \frac{1}{2}[X_{\rm C}(\omega + 100) + X_{\rm C}(\omega - 100)]$$

如图所示系统中,已知输入信号 x(t) 的频谱 $X(j\omega)$,试分析系统中A、B、C、D及y(t)的频谱并画出频谱图,求出y(t)与x(t)的关系

• 由于 $Y(j\omega) = X_D(j\omega)H_2(j\omega)$

$$Y(j\omega) = \frac{1}{4}X(j\omega)$$

- 因此

