See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245236152

Ammonia Production via a Two-Step Al 2 O 3 /AlN Thermochemical Cycle. 1. Thermodynamic, Environmental, and Economic Analyses

ARTICLE in INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH · MARCH 2007							
Impact Factor: 2.59 · DOI: 10.1021/ie061550u							
CITATIONS	READS						
19	39						

3 AUTHORS, INCLUDING:

Maria Elena Galvez

Pierre and Marie Curie University - Paris 6

66 PUBLICATIONS 828 CITATIONS

SEE PROFILE

PROCESS DESIGN AND CONTROL

Ammonia Production via a Two-Step Al₂O₃/AlN Thermochemical Cycle. 1. Thermodynamic, Environmental, and Economic Analyses

M. E. Gálvez,† M. Halmann,‡ and A. Steinfeld*,†,§

Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland, Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel, and Solar Technology Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

The production of ammonia via a two-step cyclic process is proposed as an alternative to its conventional production by the Haber–Bosch process. The first endothermic step is the production of AlN by carbothermal reduction of Al₂O₃ in a N₂ atmosphere at above 1500 °C. The second exothermic step is the steam-hydrolysis of AlN to produce NH₃ and reform Al₂O₃; the latter is recycled to the first step. Both reaction steps proceed at 1 bar, without added catalysts, and bypass the energy-intensive production of hydrogen, resulting in significant fuel and cost savings. Furthermore, the endothermic reduction step could be carried out using concentrated solar energy as the source of high-temperature process heat, eliminating concomitant CO₂ emissions derived from fossil-fuelled processes.

Introduction

More than 90% of the world consumption of ammonia, the second largest synthetic chemical product, is manufactured from N_2 and H_2 via the catalytic Haber-Bosch process.¹ Although this reaction is exothermic ($\Delta H_{25^{\circ}C}^0 = -46.2 \text{ kJ mol}^{-1}$) and should occur spontaneously, significant energy input is needed for N₂ to achieve the activated state because of its high dissociation energy (941 kJ mol⁻¹). The use of catalysts lowers the activation energy and effects the reaction in the range of 250-400 °C, but even with added catalysts, the yield is low because of the unfavorable thermodynamic equilibrium. At 30 MPa, the yield after one pass usually does not surpass 25%, requiring separation by condensation and recycling of the unreacted H₂-N₂ mixture, about 4-6 kg per kg of NH₃ synthesized.² Furthermore, the overall process is characterized by the high-energy consumption associated with the production of the reactants. Usually, H₂ is obtained by steam-reforming of natural gas, while N₂ is obtained by cryogenic separation from air. Both of these processes require a major input of energy, either in the form of high-temperature process heat or in the form of electricity, and consequently cause a significant concomitant pollution derived from the combustion of fossil fuels for heat and electricity generation. In modern plants, the total energy requirement is estimated to be 28 GJ ton⁻¹.^{2,3}

In the present work, a novel cyclic process is proposed for the production of NH_3 that involves two thermochemical noncatalytic steps. The first, high-temperature, endothermic step is the production of AlN and CO by carbothermal reduction of Al_2O_3 in a N_2 atmosphere. Either C (e.g., charcoal, petcoke, etc.) as in reaction 1a or CH_4 (e.g., natural gas) as in reaction 1b can be used as reducing agents. The second exothermic step is the hydrolysis of AlN to produce NH₃ and reform Al₂O₃; the latter is recycled to the first step. The overall reaction steps can be represented by (first endothermic step)

$$Al_2O_3 + 3C + N_2 = 2AlN + 3CO$$

 $(\Delta H_{25^{\circ}C}^0 = 708.1 \text{ kJ mol}^{-1}) (1a)$

$$Al_2O_3 + 3CH_4 + N_2 = 2AlN + 6H_2 + 3CO$$

 $(\Delta H_{25^{\circ}C}^0 = 931.9 \text{ kJ mol}^{-1}) \text{ (1b)}$

and (second exothermic step)

$$2AIN + 3H_2O = Al_2O_3 + 2NH_3$$

 $(\Delta H_{25^{\circ}C}^0 = -274.1 \text{ kJ mol}^{-1}) (2)$

Figure 1 illustrates the proposed cycle. The CO produced in the first step when employing a source of fixed carbon as the reducing agent, reaction 1a, may be water-gas shifted to syngas and further used as a fuel or as an intermediate to methanol or Fischer—Tropsch products. Syngas with a H₂/CO molar ratio of 2 suitable for CH₃OH synthesis would be directly produced by employing CH₄ as the reducing agent (reaction 1b). Relative to the conventional production of NH₃ via the Haber—Bosch process, the proposed two-step process offers the following 3-fold advantages: (1) it eliminates the need for high pressure, minimizing costs and safety concerns; (2) it eliminates the need for catalysts; minimizing costs associated with their production and recycling; and (3) it eliminates the need for hydrogen as feedstock, reducing energy consumption and associated CO₂ emissions. It does not, however, eliminate the need for nitrogen.

Furthermore, the endothermic reduction of Al_2O_3 , either by reaction 1a or by reaction 1b, is an attractive candidate for the use of concentrated solar energy as the source of high-temperature process heat, avoiding the discharge of greenhouse gases and other pollutants derived from the combustion of fossil

^{*} Author to whom correspondence should be addressed. Fax: +41 44 6321065. E-mail: aldo.steinfeld@eth.ch.

[†] ETH Zurich.

[‡] Weizmann Institute of Science.

[§] Paul Scherrer Institute.

Figure 1. Scheme of the two-step cyclic solar thermochemical cyclic process for ammonia production. The first endothermic step is the solar production of AlN by carbothermic reduction of Al₂O₃ in a N₂ atmosphere. The second exothermic step is the steam-hydrolysis of AlN to produce NH₃ and to reform Al₂O₃; the latter is recycled to the first step.

Figure 2. Equilibrium composition of the system $Al_2O_3 + 3C + N_2$ (reaction 1a) as a function of temperature at 1 bar.

fuels. Previous relevant thermochemical processes effected in solar furnaces include the carbothermal reductions of Fe₃O₄, MgO, and ZnO with C(gr) and CH₄ to produce Fe, Mg, and Zn, respectively;⁴⁻⁹ the carbothermal reductions of Al₂O₃, CaO, SiO₂, and TiO₂ with C(gr) in an inert atmosphere to produce Al₃C₄, CaC₂, SiC, and TiC, respectively; and the carbothermal reductions of Al₂O₃, SiO₂, TiO₂, and ZrO₂ with C (g) in a N₂ atmosphere to produce AlN, Si₃N₄, TiN, and ZrN, respectively. 10-12 Specifically, experimental studies on the carbothermal reduction of Al₂O₃ in the presence of N₂ have been carried out at above 1500 °C using a graphite crucible reactor, directly exposed to high-flux solar irradiation. 11,12 A review of the solar chemical process technology is found in ref 13. The chemical kinetics of the pertinent reactions has been investigated in the accompanying article.¹⁴

Thermodynamic Analysis

Thermochemical equilibrium calculations were performed using the FactSage, 15 CET85, 16 and HSC Outokumpu 17 program codes. Product species with mol fractions less than 10⁻⁵ have been omitted. Figure 2 shows the equilibrium composition of the system $Al_2O_3 + 3C + N_2$ (reaction 1a) at 1 bar and as a function of temperature in the range of 1000-2000 °C. The

Figure 3. Equilibrium composition of the system $Al_2O_3 + 3CH_4 + N_2$ (reaction 1b) as a function of temperature at 1 bar.

conversion of Al₂O₃ begins at about 1300 °C, is notably accelerated at 1500 °C, and reaches completion at 2000 °C. At this temperature, the gas phase consists of 94.9% CO, 2.2% N₂, 1.3% Al (g), and 1.6% Al₂O (g), while the solid phase consists of 97.4% AIN and 2.6% C. Figure 3 shows the equilibrium composition of the system $Al_2O_3 + 3CH_4 + N_2$ (reaction 1b) at 1 bar and as a function of temperature in the range of 1000-2000 °C. Methane cracking occurs at relatively low temperatures and is completed at 600 °C, leading to the formation of C (s), which in turn reacts with Al₂O₃ at higher temperatures. Al₂O₃ conversion reaches completion at 1900 °C. At 2000 °C, the gas phase consists of 31.3% CO, 63.4% H₂, 1.5% N₂, small amounts of Al (g), Al₂O (g), H (g), C₂H₂ (g), AlH (g), and HCN (g), while the solid phase consists of 100% AlN. By applying either C or CH₄ as reducing agents in a N₂ atmosphere, no formation of Al₄C₃ or oxycarbides (e.g., Al₂O₂C, Al₄O₂C) is foreseen by the thermodynamic calculations in this temperature range.

Since the presence of unreacted solids C or Al₂O₃ within the AlN produced is undesirable, the effect of adding O₂ was evaluated in an effort to select the optimal conditions that minimize the inclusion of these residues in the final product. Results of thermodynamic equilibrium computations at 1800

Table 1. Thermochemical Equilibrium Composition at 1800 °C and 1 Bar, for an Initial Mixture of 1 mol of $Al_2O_3 + 1.1$ mol of $N_2 + 3.05$ mol of Either C or CH_4 as Reducing Agents in the Presence of Varying Amounts of O_2 ^a

Initial			Equilib	rium Mole Fra	ection			
reducing agent	O ₂ (mol)	AlN (s)	Al ₂ O ₃	C (g)	H_2	СО	H ₂ /CO molar ratio	yield of AlN(s) (%)
С	0	0.362	0.0128	0.048		0.544		99.8
C	0.05	0.360	0.0138	0.032		0.560		99.8
CH_4	0	0.176	0	0.0018	0.540	0.267	2.03	98.7
CH_4	0.02	0.175	0	0	0.540	0.269	2.01	98.3
CH_4	0.05	0.171	0.0016	0	0.540	0.270	2.00	97.9

^a Products are expressed in mol fractions. A mole fraction value of "0" means $<10^{-5}$. Yield is defined as the number of moles of AlN in equilibrium, relative to the initial number of moles of Al₂O₃.

 $^{\circ}$ C and 1 bar are presented in Table 1. Using either C or CH₄ as reducing agents in the absence of added O₂, the products of both reaction 1a and reaction 1b would contain unreacted Al₂O₃. Adding 0.05 mol of O₂ to the mixture of reaction 1b eliminates both Al₂O₃ and C. The equilibrium mixture would contain only some traces of the gaseous products Al₂O and Al. Under these conditions, the reaction at 1800 $^{\circ}$ C can be represented as

$$Al_2O_3 + 3.05CH_4 + 1.1N_2 + 0.05O_2 = 1.96AlN + 6.17H_2 + 3.08CO + 0.13N_2 + 0.01Al_2O + 0.01Al$$
 (3)

In the case of reaction 1a in the presence of 0.05 mol of O_2 , the total absence of unreacted C and Al_2O_3 is predicted at above 1900 °C, according to

$$Al_2O_3 + 3.05C + 1.1N_2 + 0.05O_2 = 1.94AlN + 3.05CO + 0.13N_2 + 0.02Al_2O + 0.01Al$$
 (4)

The operation of the cyclic process based on reaction 3 could involve periodic switching between a gas stream of N_2 , CH_4 , and a small amount of air at a higher temperature, about $1800-1900\,^{\circ}C$, and between a gas stream of H_2O at a lower temperature, while the Al_2O_3 and AlN solids would remain as a stationary bed. A cyclic process based on reaction 4 would presumably require a more complicated recharging of solids to make up for the consumed carbon.

The first step of the cycle proceeds endothermically. The enthalpy change of reactions 1a and 1b is defined for reactants fed at ambient temperature (25 $^{\circ}$ C) and products obtained at the reaction temperature T and having an equilibrium composition given in Figures 2 and 3, respectively

$$\Delta H = H_{\rm T}^{\rm products \ in \ equilibrium} - H_{\rm 25^{\circ}C}^{\rm reactants} \tag{5}$$

Figure 4 shows ΔH of reactions 1a and 1b as a function of temperature. For reaction 1a, $\Delta H = 1147.5 \text{ kJ mol}^{-1}$ at 2000 °C. The change in the slope of the curve is due to the sensible heat needed to heat the reactants from ambient to the reaction temperature and to the process heat for the chemical transformation at above 1300 °C. For reaction 1b, $\Delta H = 1859.2 \text{ kJ mol}^{-1}$ at 2000 °C. The changes in the slope of the curve are mainly due to methane cracking in the range of 400–700 °C and to the Al_2O_3 reduction at above 1300 °C.

The reaction extent for the first step of the cycle, $X_{\text{firststep}}$, is defined as

$$X_{\text{firststep}} = 1 - \frac{n_{\text{Al}_2\text{O}_3}^{\text{T}}}{n_{\text{Al}_2\text{O}_3}^{\text{0}}}$$
 (6)

where $n_{\text{Al},\text{O}_3}^0$ and $n_{\text{Al}_2\text{O}_3}^T$ denote the initial number of moles and the equilibrium number of moles at temperature T. Figure 5 shows the reaction extent for reactions 1a and 1b as a function of temperature at 0.1, 1, and 10 bar. At higher pressures, as

Figure 4. Enthalpy change of reactions 1a and 1b as a function of temperature.

Figure 5. Extent of reactions 1a and 1b as a function of temperature at 0.1, 1, and 10 bar.

preferred in industrial applications, the thermodynamic equilibrium is shifted to the left in such a way so as to relieve the pressure in accordance with Le Chatelier's principle. For example, at 2000 °C, $X_{\rm firststep}$ for reaction 1a decreases from 100 to 58.5% when the pressure is increased from 1 to 10 bar. In contrast, reaction 1b is less affected: $X_{\rm firststep} = 90.7\%$ at 2000 °C and 10 bar. Both reaction 1a and reaction 1b reach completion already at 1700 °C when operating at 0.1 bar, while their extent reaches only 8 and 28%, respectively, when operating at 10 bar.

The equilibrium composition for reaction 2 is shown in Figure 6 in the range of 0–1500 °C. Thermodynamically, NH₃ is only partly stable until 375 °C, while AlN can be fully converted to Al₂O₃ at any temperature. However, the presence of metastable NH₃ is possible in the absence of catalysts. As it was shown experimentally in a dynamic thermogravimeter run under a 80% H₂O–Ar gas stream (nonequilibrium open system),¹⁴ almost complete hydrolysis of AlN to Al₂O₃ (93% reaction extent) was achieved within 100 min at 1000 °C and 1 bar, with a NH₃

Figure 6. Equilibrium composition of the system $2AlN + 3H_2O$ (reaction 2), as a function of temperature at 1 bar.

Figure 7. Ammonia yield as a function of temperature at 1, 10, and 50

yield of 88%. Higher pressures favor the thermodynamic stability of NH₃. Figure 7 shows the NH₃ yield as a function of temperature for 1, 10, and 50 bar. For example, increasing the pressure from 1 to 50 bar results in an increase of the NH₃ yield from 26 to 84% at 200 °C.

The enthalpy change for reaction 2, as defined in eq 5, is shown in Figure 8. The slope change in the range of 0-375 °C is due to the different composition of the gaseous products, with decreasing NH₃ content. Above 375 °C, the enthalpy change increases monotonically due to the constant composition of the products, becoming positive (endothermic) at above 800 °C.

Economic Estimate, Fuel Saving, and CO₂ Emission Avoidance

A preliminary economic analysis is presented in Table 2 for the proposed thermochemical cycle that coproduces ammonia and methanol. It has been carried out for one complete cycle, assuming the formation of AlN according to the thermochemical equilibrium reaction at 1900 °C and 1 bar described in reaction 4, followed by CO conversion by water-gas shift (WGS) to a syngas mixture with a H₂/CO molar ratio of 2, which then undergoes methanol synthesis. In a subsequent hydrolysis step, AlN is reformed to Al₂O₃, releasing NH₃. The reference plant is designed for an initial capacity load of 10 kmol (or 1.02 ton) of Al₂O₃ per cycle. The assumed loss of Al₂O₃ per cycle is 5%, which accounts for the possible formation of volatile Al₂O.

Figure 8. Enthalpy change of reaction 2 as a function of temperature.

Table 2. Preliminary Economic Analysis for the Combined Production of CH₃OH and NH₃ via One Complete Cycle with 10 kmol of Al₂O₃a

- v	
Design Parameters	
Design Al ₂ O ₃ load (kmol)	10
Design Al ₂ O ₃ load (ton)	1.02
Makeup Al ₂ O ₃ (ton/cycle)	0.051
Carbon feed (kmol/cycle)	30.5
Carbon feed (GJ/cycle) ^b	11.97
Carbon feed (ton/cycle)	0.366
N ₂ feed (kmol/cycle)	11
Methanol production (kmol/cycle) ^c	9.0
Methanol production (ton/cycle)	0.288
NH ₃ production (kmol/cycle) ^d	17.7
NH ₃ production (ton/cycle)	0.301
CO ₂ release (kmol/cycle)	20
CO ₂ release (ton/cycle)	0.88
Cost per Cycle (USD)	
CH ₃ OH production (30 USD/ton) ^e	8.6
NH ₃ production (33 USD/ton) ^f	10.0
Coke cost (99 USD/ton) ^g	36.2
Al ₂ O ₃ makeup (257 USD/ton) ^h	13.1
Total	67.9
Sales per Cycle (USD)	
CH ₃ OH (323 USD/ton) ⁱ	98.8
NH ₃ (280 USD/ton) ^f	84.3
Total	183.1

^a Assumed are the formation of AlN according to eq 4, followed by 2/3 WGS conversion of CO to a syngas mixture for CH₃OH synthesis. In the subsequent hydrolysis step, eq 2, AlN is reformed to Al₂O₃, releasing NH₃. Ton = metric ton. ^b Taken as the HHV of carbon the value for graphite, 0.3935 GJ/kmol. ^c Assume 90% yield of methanol from syngas. ^d Assume 90% yield of NH3 per cycle. ^e Estimated cost of conversion of syngas to methanol. f See www.potashcorp.com/npk_markets/industry_overview/ nitrogen. g May 2006. See www.eia.doe.gov/cneaf. h Al₂O₃ price usually linked 11-13% to the London Metal Exchange aluminum price. August 2006 aluminum price 2140 USD/ton. See www.lme.com. i August 2006. See www.methanex.com.

The cost of producing the N2 gas feed has not been considered but may be compensated by the lower cost of coke or petcoke relative to natural gas. The combined production per cycle of 0.288 ton of CH₃OH and of 0.301 ton of NH₃ would require 11.97 GJ of carbon. By the conventional separate productions of CH₃OH and NH₃ via coal gasification to syngas, the corresponding specific fuel consumptions are 44.5 GJ/ton of CH₃OH¹ and 165.9 GJ/ton of NH₃,² and the corresponding specific CO₂ emissions are 2.088 ton of CO₂/ton of CH₃OH and 16.7 ton of CO₂/ton of NH₃.18,19 Thus, the production of 0.288 ton of CH₃OH and 0.301 ton of NH₃ by coal gasification would require an input of energy of 12.8 and 49.9 GJ, respectively, or a total of 62.7 GJ, and would discharge 5.03 and 0.60 ton of CO₂, respectively, or a total of 5.63 ton of CO₂.

Design Parameters				
Design Al ₂ O ₃ load (kmol)	10			
Design Al ₂ O ₃ load (ton)	1.02			
Makeup Al ₂ O ₃ (ton/cycle)	0.051			
NG feed (kmol/cycle)	30.5			
NG feed (GJ/cycle)	27.17			
NG feed (mmbtu/cycle)	25.74			
N ₂ feed (kmol/cycle)	11			
CH ₃ OH production (kmol/cycle) ^b	27.27			
CH ₃ OH production (ton/cycle)	0.87			
NH ₃ production (kmol/cycle) ^c	17.7			
NH ₃ production (ton/cycle)	0.301			
Cost per Cycle (USD)				
CH ₃ OH production (30 USD/ton) ^d	26.1			
NH ₃ production (33 USD/ton) ^e	10.0			
NG cost (6.927 USD/mm Btu) ^f	178.3			
Al ₂ O ₃ makeup (306 USD/ton) ^g	15.6			
Total	230.0			
Sales per Cycle (USD)				
$CH_3OH (365 USD/ton)^h$	294.9			
NH ₃ (280 USD/ton) ^e	84.3			
Total	379.2			

^a Assumed are the formation of AlN according to eq 3, followed by syngas conversion to CH₃OH. In the subsequent hydrolysis step, eq 2, AlN is reformed to Al₂O₃, releasing NH₃. NG = natural gas and ton = metric ton. ^b Assume 90% yield of methanol from syngas. ^c Assume 90% yield of NH₃ per cycle. ^d Estimated cost of conversion of syngas to methanol. ^e Se www.potashcorp.com/npk_markets/industry_overview/nitrogen. ^f April 6, 2006. See www.nymex.com. ^g Al₂O₃ price usually linked 11−13% to the London Metal Exchange aluminum price. April 2006 aluminum price 2551 USD/ton. See www.lme.com. ^h April 2006. See www.methanex.com.

The predicted fuel saving by the proposed combined production of CH₃OH and NH₃ via the cyclic process relative to the conventional separate processes would be 81%, and the CO₂ emission avoidance would be 84%. No correction has been applied for the economic cost, fuel consumption, and CO₂ emissions per cycle associated with the construction and maintenance of the solar concentrating plant. In a previous life cycle assessment of the solar coproduction of syngas and zinc metal from ZnO and CH₄, the equivalent CO₂ emissions derived from the solar heliostat field were reported to be negligible.¹⁸ Table 3 shows the preliminary economic estimate for the cycle using NG (natural gas) as reducing agent (reaction 1b) at 1800 °C and 1 bar. In this case, the combined production per cycle of 0.87 ton of CH₃OH and of 0.272 ton of NH₃ would require an input of energy of 27.17 GJ, resulting in fuel savings of 18% relative to the conventional separate processes. There would not be any CO₂ emission discharged directly from the chemical process.

Conclusion

In the proposed cyclic process, the carbothermal reduction of Al_2O_3 by C or CH_4 in N_2 to AlN and syngas (which may be converted to methanol) is followed by steam-hydrolysis of AlN back to Al_2O_3 , with simultaneous formation of NH_3 . In contrast to the Haber–Bosch process, both reaction steps proceed at 1 bar, without added catalysts, and bypass the energy-intensive production of hydrogen. Preliminary environmental and economic analyses indicate favorable fuel economy and hence cost. The predicted fuel saving by the combined production of CH_3 -

OH and NH_3 via the proposed cyclic process relative to the coal-gasification-based separate processes would be 81%, by employing carbon as reducing agent. Furthermore, the use concentrated solar energy as the source of process heat for the endothermic carbothermic reduction reduces significantly or completely eliminates concomitant CO_2 emissions, as demonstrated experimentally in a high-flux solar furnace. A major drawback, however, remains the energy-intensive separation of N_2 from air. It would also be necessary to determine if inexpensive carbonaceous reducing agents (petcoke or low grade coals) could be used as reducing agents.

Literature Cited

- (1) Ullmann's Encyclopedia of Industrial Chemistry, 6th ed; John Wiley and Sons: New York, 2002.
- (2) Kirova-Yordanova, K. Exergy analysis of industrial ammonia synthesis. *Energy* **2004**, *29*, 2373–2384.
- (3) Rafiqul, I.; Weber, C.; Lehman, B.; Voss, A. Energy efficiency improvements in ammonia production perspectives and uncertainties. *Energy* **2005**, *30*, 2487–2504.
- (4) Steinfeld, A.; Fletcher, E. A. Theoretical and experimental investigation of the carbothermic reduction of Fe_2O_3 , using solar energy. *Energy* **1991**, *16*, 1011–1019.
- (5) Steinfeld, A.; Kuhn, P.; Karni, J. High-temperature solar thermochemistry: Production of iron and synthesis gas by Fe_3O_4 reduction with methane. *Energy* **1993**, *18*, 239–249.
- (6) Steinfeld, A.; Frei, A.; Kuhn, P. Thermoanalysis of the combined Fe₃O₄-reduction and CH₄-reforming processes. *Metall. Mater. Trans. B* **1995**, 26, 509–515.
- (7) Steinfeld, A.; Brack, M.; Meier, A.; Weidenkaff, A.; Wuillemin, D. A solar chemical reactor for the co-production of zinc and synthesis gas. *Energy* **1998**, *23*, 803–814.
- (8) Kräupl, S.; Steinfeld, A. Operational performance of a 5 kW solar chemical reactor for the co-production of zinc and syngas. *J. Solar Energy Eng.* **2003**, *125*, 124–126.
- (9) Osinga, T.; Olalde, G.; Steinfeld, A. Solar carbothermal reduction of ZnO: Shrinking packed-bed reactor modelling and experimental validation. *Ind. Eng. Chem. Res.* **2004**, *43*, 7981–7988.
- (10) Duncan, D. A.; Dirksen, H. A. Calcium carbide production in a solar furnace; Technical Report No. SERI/TR-98326-1: Golden, CO, 1980.
- (11) Murray, J. P.; Steinfeld, A.; Fletcher, E. Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides. *Energy* **1995**, 20, 695–704.
- (12) Murray, J. P. Solar production of aluminum by direct reduction of ore to Al–Si alloy: Preliminary results for two processes. *J. Solar Energy Eng.* **2001**, *123*, 125–132.
- (13) Steinfeld, A.; Palumbo, R. Solar thermochemical process technology. *Encycl. Phys. Sci. Technol.* **2001**, *15*, 237–256.
- (14) Gálvez, M. E.; Frei, A.; Halmann, M.; Steinfeld, A. Ammonia production via a two-step Al₂O₃/AlN thermochemical cycle. 2. Kinetic analysis. *Ind. Eng. Chem. Res.* **2007**, *46*, 2047–2053.
- (15) Thermochemical Software and Database Package FactSage, Centre for Research in Computational Thermochemistry, Ecole Polytechnique de Montreal, Canada; www.crct.polymtl.ca.
- (16) Gordon, S.; McBride, J. B. *NASA SP-273*; NASA Lewis Research: Cleveland, OH, 1976. (A PC version was prepared by Kappauf, T.; Pipho, M; Whitby, E. for Fletcher, E. E. at the University of Minnesota.)
- (17) Roine, A. *Outokumpu HSC chemistry for Windows*; Outokumpu Research: Pori, Finland, 1997.
- (18) http://www.potashcorp.com/npk_markets/industry_overview/
- (19) Werder, M.; Steinfeld, A. Life cycle assessment of the conventional and solar thermal production of zinc and synthesis gas. *Energy* **2000**, *25*, 395–409

Received for review December 3, 2006 Revised manuscript received January 8, 2007 Accepted January 18, 2007