TEST REPORT

Reference No. : WTS17S1196404E

FCC ID : 2AIOC-MS03W

Applicant: HANK ELECTRONICS CO., LTD.

Address : Floor 2nd-7th,A8,Hongye Industry City, Lezhujiao, Zhoushi Road,

Baoan District, Shenzhen, Guangdong, 518000, China.

Manufacturer : The same as above

Address : The same as above

Product : Motion Sensor

Model(s) : HKWL-MS03W, EMX4-1001-WHT

Standards : FCC CFR47 Part 15 C Section 15.247:2016

Date of Receipt sample : 2017-11-27

Date of Test : 2017-11-28 to 2017-12-19

Date of Issue : 2017-12-20

Test Result : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen,

Guangdong, China Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Jack Wen / Test Engineer

Philo Zhong / Manager

rlo zhous

Laboratories Introduction 2

Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen (CNAS Registration No. L3110, A2LA Certificate Number: 4243.01) and have branches in Foshan (CNAS Registration No. L6478), Dongguan (CNAS Registration No. L9950), Zhongshan, Suzhou (CNAS Registration No. L7754), Ningbo and Hong Kong, Our test capability covered four large fields: safety test. Electronic Magnetic Compatibility(EMC), reliability and energy performance, Chemical test. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek(ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Waltek Services (Shenzhen) Co., Ltd.

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada	CNAC	IC ID \ VOC	2
Japan	CNAS	MIC-T \ MIC-R	-
Europe	─ (Registration No.: L3110) ─ A2LA	EMCD \ RED	-
Taiwan	(Certificate No.: 4243.01)	NCC	-
Hong Kong	(Certificate NO., 4243.01)	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	-
Note:			

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	Ontional
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

Reference No.: WTS17S1196404E Page 3 of 58

3 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
Radiated Emissions	15.247 15.205(a) 15.209(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

Reference No.: WTS17S1196404E

4 Contents

	Page
COVER PAGE	1
LABORATORIES INTRODUCTION	
TEST SUMMARY	
CONTENTS	4
GENERAL INFORMATION	
5.1 GENERAL DESCRIPTION OF E.U.T.	
6.1 EQUIPMENTS LIST	
6.2 DESCRIPTION OF SUPPORT UNITS	
7.3 MEASUREMENT DESCRIPTION	10
8.4 TEST PROCEDURE	16
10.2 TEST RESULT:	
MAXIMUM PEAK OUTPUT POWER	36
11.1 TEST PROCEDURE:	36
11.2 TEST RESULT:	
15.1 CONDUCTED EMISSION	
PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	47
	LABORATORIES INTRODUCTION. TEST SUMMARY

Reference No.: WTS17S1196404E Page 5 of 58

16.1	MODEL HKWL-MS03W EXTERNAL VIEW	4
16.2	MODEL HKWI -MS03W INTERNAL VIEW	5

Reference No.: WTS17S1196404E Page 6 of 58

5 General Information

5.1 General Description of E.U.T.

Product: Motion Sensor

Model(s): HKWL-MS03W, EMX4-1001-WHT

Model Description: Only the model names are different. Model HKWL-MS03W is the test

sample.

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz

The Lowest Oscillator: 26MHz

Antenna type PCB printed antenna

Antenna Gain: 0dBi

Type of modulation: IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)

IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max.)

5.2 Details of E.U.T.

Technical Data: DC 6V power by batteries,

Input: DC 5V by USB port

5.3 Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

Reference No.: WTS17S1196404E Page 7 of 58

5.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/6/11	TX
Power Spectral Density	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/11	TX
6dB Bandwidth	802.11g	54 Mbps	1/11	TX
	802.11n HT20	108 Mbps	1/11	TX
	802.11b	11 Mbps	1/6/11	TX
Band Edge	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

Table 2 Tests Carried Out Under FCC part 15.207 & FCC part 15.209

Test Item	Test Mode	
Conduction Emission, 0.15MHz to 30MHz	Transmitting	

6 Equipment Used during Test

6.1 Equipments List

Condu	Conducted Emissions Test Site 1#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	2017-09-15	2018-09-14
2.	LISN	R&S	ENV216	101215	2017-09-15	2018-09-14
3.	Cable	Тор	TYPE16(3.5M)	-	2017-09-15	2018-09-14
Condu	cted Emissions Test S	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-15	2018-09-14
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-15	2018-09-14
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-15	2018-09-14
4.	Cable	LARGE	RF300	-	2017-09-15	2018-09-14
3m Ser	mi-anechoic Chamber f	or Radiation Emissio	ns Test site 1#			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	2017-09-15	2018-09-14
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2017-09-15	2018-09-14
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2017-04-08	2018-04-07
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-13	2018-09-12
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2017-09-15	2018-09-14
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-09-15	2018-09-14
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2017-09-15	2018-09-14
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2017-09-15	2018-09-14
3m Ser	mi-anechoic Chamber fo	or Radiation Emissio	ns Test site 2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2017-09-15	2018-09-14
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2017-09-15	2018-09-14
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2017-09-15	2018-09-14
4	Cable	HUBER+SUHNER	CBL2	525178	2017-09-15	2018-09-14

RF Coi	RF Conducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-15	2018-09-14
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-15	2018-09-14
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-15	2018-09-14

6.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	/

6.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS17S1196404E Page 10 of 58

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB μ V between 0.5MHz & 5MHz 60 dB μ V between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

No.	Freq. (MHz)	(dBuV)	Factor (dB)	(dBuV)	dBuV	margin (dB)	Detector	Remark
1	0.1539	48.19	9.64	57.83	65.78	-7.95	QP	
2	0.1539	33.39	9.64	43.03	55.78	-12.75	AVG	
3	0.4020	36.46	9.64	46.10	57.81	-11.71	QP	
4	0.4020	32.39	9.64	42.03	47.81	-5.78	AVG	
5	0.4420	39.42	9.64	49.06	57.02	-7.96	QP	
6	0.4420	31.29	9.64	40.93	47.02	-6.09	AVG	
7	1.5380	32.25	9.90	42.15	56.00	-13.85	QP	
8	1.5380	23.90	9.90	33.80	46.00	-12.20	AVG	
9	14.5419	37.62	10.23	47.85	60.00	-12.15	QP	
10	14.5419	29.37	10.23	39.60	50.00	-10.40	AVG	
11	27.0100	36.89	10.41	47.30	60.00	-12.70	QP	
12	27.0100	29.59	10.41	40.00	50.00	-10.00	AVG	

Reference No.: WTS17S1196404E Page 12 of 58

Neutral line:

Reference No.: WTS17S1196404E Page 13 of 58

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	20log ^{(2400/F(kHz))} + 80				
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS17S1196404E Page 15 of 58

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS17S1196404E Page 16 of 58

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

8.6 Summary of Test Results

Test Frequency: 26MHz~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Compated	FCC F 15.247/2		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
11b: Low Channel 2412MHz										
229.56	41.29	QP	285	1.3	Н	-11.62	29.67	46.00	-16.33	
229.56	36.22	QP	306	1.0	V	-11.62	24.60	46.00	-21.40	
4824.00	50.12	PK	14	1.8	V	-1.06	49.06	74.00	-24.94	
4824.00	46.02	Ave	14	1.8	V	-1.06	44.96	54.00	-9.04	
7236.00	40.18	PK	189	1.2	Н	1.33	41.51	74.00	-32.49	
7236.00	41.04	Ave	189	1.2	Н	1.33	42.37	54.00	-11.63	
2329.61	45.49	PK	234	1.2	V	-13.19	32.30	74.00	-41.70	
2329.61	39.49	Ave	234	1.2	V	-13.19	26.30	54.00	-27.70	
2358.24	43.96	PK	80	1.6	Н	-13.14	30.82	74.00	-43.18	
2358.24	38.27	Ave	80	1.6	Н	-13.14	25.13	54.00	-28.87	
2497.05	43.34	PK	71	1.5	V	-13.08	30.26	74.00	-43.74	
2497.05	36.24	Ave	71	1.5	V	-13.08	23.16	54.00	-30.84	

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
11b: Middle Channel 2437MHz											
229.56	41.91	QP	265	1.6	Н	-11.62	30.29	46.00	-15.71		
229.56	34.92	QP	129	1.9	V	-11.62	23.30	46.00	-22.70		
4874.00	51.28	PK	278	1.3	V	-0.62	50.66	74.00	-23.34		
4874.00	46.71	Ave	278	1.3	V	-0.62	46.09	54.00	-7.91		
7311.00	40.24	PK	287	1.2	Н	2.21	42.45	74.00	-31.55		
7311.00	41.77	Ave	287	1.2	Н	2.21	43.98	54.00	-10.02		
2333.52	46.47	PK	93	1.6	V	-13.19	33.28	74.00	-40.72		
2333.52	37.16	Ave	93	1.6	V	-13.19	23.97	54.00	-30.03		
2360.79	44.44	PK	345	1.5	Н	-13.14	31.30	74.00	-42.70		
2360.79	38.61	Ave	345	1.5	Н	-13.14	25.47	54.00	-28.53		
2489.57	44.00	PK	224	1.7	V	-13.08	30.92	74.00	-43.08		
2489.57	37.08	Ave	224	1.7	V	-13.08	24.00	54.00	-30.00		

-	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
11b: High Channel 2462MHz										
229.56	41.07	QP	72	1.4	Н	-11.62	29.45	46.00	-16.55	
229.56	35.23	QP	128	1.5	V	-11.62	23.61	46.00	-22.39	
4924.00	51.13	PK	341	1.9	V	-0.24	50.89	74.00	-23.11	
4924.00	46.53	Ave	341	1.9	V	-0.24	46.29	54.00	-7.71	
7386.00	41.05	PK	175	1.6	Н	2.84	43.89	74.00	-30.11	
7386.00	40.88	Ave	175	1.6	Н	2.84	43.72	54.00	-10.28	
2327.45	45.59	PK	235	1.2	V	-13.19	32.40	74.00	-41.60	
2327.45	38.20	Ave	235	1.2	V	-13.19	25.01	54.00	-28.99	
2386.44	43.33	PK	196	1.7	Н	-13.14	30.19	74.00	-43.81	
2386.44	38.63	Ave	196	1.7	Н	-13.14	25.49	54.00	-28.51	
2486.14	43.64	PK	33	1.5	V	-13.08	30.56	74.00	-43.44	
2486.14	37.37	Ave	33	1.5	V	-13.08	24.29	54.00	-29.71	

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	11g: Low Channel 2412MHz										
229.56	39.70	QP	307	1.6	Н	-11.62	28.08	46.00	-17.92		
229.56	35.33	QP	332	1.7	V	-11.62	23.71	46.00	-22.29		
4824.00	51.83	PK	57	1.5	V	-1.06	50.77	74.00	-23.23		
4824.00	47.56	Ave	57	1.5	V	-1.06	46.50	54.00	-7.50		
7236.00	40.86	PK	358	2.0	Н	1.33	42.19	74.00	-31.81		
7236.00	40.39	Ave	358	2.0	Н	1.33	41.72	54.00	-12.28		
2348.78	45.23	PK	211	1.1	V	-13.19	32.04	74.00	-41.96		
2348.78	38.29	Ave	211	1.1	V	-13.19	25.10	54.00	-28.90		
2360.53	43.38	PK	278	1.1	Н	-13.14	30.24	74.00	-43.76		
2360.53	38.20	Ave	278	1.1	Н	-13.14	25.06	54.00	-28.94		
2487.14	43.80	PK	28	1.8	V	-13.08	30.72	74.00	-43.28		
2487.14	37.90	Ave	28	1.8	V	-13.08	24.82	54.00	-29.18		

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	11g: Middle Channel 2437MHz										
229.56	39.83	QP	292	1.0	Н	-11.62	28.21	46.00	-17.79		
229.56	35.69	QP	137	1.2	V	-11.62	24.07	46.00	-21.93		
4874.00	52.69	PK	120	2.0	V	-0.62	52.07	74.00	-21.93		
4874.00	48.67	Ave	120	2.0	V	-0.62	48.05	54.00	-5.95		
7311.00	39.46	PK	291	1.9	Н	2.21	41.67	74.00	-32.33		
7311.00	40.53	Ave	291	1.9	Н	2.21	42.74	54.00	-11.26		
2323.13	46.72	PK	2	1.9	V	-13.19	33.53	74.00	-40.47		
2323.13	38.27	Ave	2	1.9	V	-13.19	25.08	54.00	-28.92		
2354.89	42.83	PK	57	1.9	Н	-13.14	29.69	74.00	-44.31		
2354.89	38.27	Ave	57	1.9	Н	-13.14	25.13	54.00	-28.87		
2496.87	44.49	PK	29	1.9	V	-13.08	31.41	74.00	-42.59		
2496.87	36.01	Ave	29	1.9	V	-13.08	22.93	54.00	-31.07		

	Receiver	Datastas	Turn	RX An	tenna	Corrected	On manufact	FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
11g: High Channel 2462MHz										
229.56	41.08	QP	250	1.3	Н	-11.62	29.46	46.00	-16.54	
229.56	36.73	QP	19	1.3	V	-11.62	25.11	46.00	-20.89	
4924.00	53.29	PK	360	1.8	V	-0.24	53.05	74.00	-20.95	
4924.00	47.91	Ave	360	1.8	V	-0.24	47.67	54.00	-6.33	
7386.00	39.76	PK	328	1.1	Н	2.84	42.60	74.00	-31.40	
7386.00	41.36	Ave	328	1.1	Н	2.84	44.20	54.00	-9.80	
2321.39	45.50	PK	320	1.5	V	-13.19	32.31	74.00	-41.69	
2321.39	37.52	Ave	320	1.5	V	-13.19	24.33	54.00	-29.67	
2363.73	43.67	PK	154	1.0	Н	-13.14	30.53	74.00	-43.47	
2363.73	38.03	Ave	154	1.0	Н	-13.14	24.89	54.00	-29.11	
2489.54	42.19	PK	153	1.6	V	-13.08	29.11	74.00	-44.89	
2489.54	38.26	Ave	153	1.6	V	-13.08	25.18	54.00	-28.82	

_	Receiver		Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		1	1n HT20:	Low Cha	innel 24	12MHz			
229.56	42.16	QP	238	1.4	Н	-11.62	30.54	46.00	-15.46
229.56	35.95	QP	22	1.4	V	-11.62	24.33	46.00	-21.67
4824.00	52.66	PK	166	1.4	V	-1.06	51.60	74.00	-22.40
4824.00	47.56	Ave	166	1.4	V	-1.06	46.50	54.00	-7.50
7236.00	38.97	PK	63	1.6	Н	1.33	40.30	74.00	-33.70
7236.00	42.34	Ave	63	1.6	Н	1.33	43.67	54.00	-10.33
2314.23	45.29	PK	217	1.6	V	-13.19	32.10	74.00	-41.90
2314.23	39.29	Ave	217	1.6	V	-13.19	26.10	54.00	-27.90
2361.53	42.21	PK	273	1.0	Н	-13.14	29.07	74.00	-44.93
2361.53	38.39	Ave	273	1.0	Н	-13.14	25.25	54.00	-28.75
2485.87	44.25	PK	74	1.5	V	-13.08	31.17	74.00	-42.83
2485.87	37.32	Ave	74	1.5	V	-13.08	24.24	54.00	-29.76

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205				
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin			
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
	11n HT20: Middle Channel 2437MHz											
229.56	40.96	QP	108	1.6	Н	-11.62	29.34	46.00	-16.66			
229.56	35.34	QP	112	1.6	V	-11.62	23.72	46.00	-22.28			
4874.00	51.84	PK	37	1.1	V	-0.62	51.22	74.00	-22.78			
4874.00	47.99	Ave	37	1.1	V	-0.62	47.37	54.00	-6.63			
7311.00	39.88	PK	47	1.8	Н	2.21	42.09	74.00	-31.91			
7311.00	41.77	Ave	47	1.8	Н	2.21	43.98	54.00	-10.02			
2343.50	46.54	PK	212	1.4	V	-13.19	33.35	74.00	-40.65			
2343.50	38.27	Ave	212	1.4	V	-13.19	25.08	54.00	-28.92			
2350.45	44.21	PK	341	1.0	Н	-13.14	31.07	74.00	-42.93			
2350.45	37.30	Ave	341	1.0	Н	-13.14	24.16	54.00	-29.84			
2498.05	44.84	PK	218	1.9	V	-13.08	31.76	74.00	-42.24			
2498.05	37.98	Ave	218	1.9	V	-13.08	24.90	54.00	-29.10			

_	Receiver	D 4 4	Turn	RX An	tenna	Corrected		FCC F 15.247/2			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	11n HT20: High Channel 2462MHz										
229.56	40.56	QP	25	1.2	Н	-11.62	28.94	46.00	-17.06		
229.56	34.50	QP	172	1.5	V	-11.62	22.88	46.00	-23.12		
4924.00	53.09	PK	132	1.5	V	-0.24	52.85	74.00	-21.15		
4924.00	47.67	Ave	132	1.5	V	-0.24	47.43	54.00	-6.57		
7386.00	38.39	PK	88	1.1	Н	2.84	41.23	74.00	-32.77		
7386.00	42.14	Ave	88	1.1	Н	2.84	44.98	54.00	-9.02		
2326.09	45.89	PK	181	1.0	V	-13.19	32.70	74.00	-41.30		
2326.09	37.12	Ave	181	1.0	V	-13.19	23.93	54.00	-30.07		
2381.50	44.61	PK	351	1.8	Н	-13.14	31.47	74.00	-42.53		
2381.50	36.87	Ave	351	1.8	Н	-13.14	23.73	54.00	-30.27		
2498.90	43.37	PK	323	1.4	V	-13.08	30.29	74.00	-43.71		
2498.90	37.52	Ave	323	1.4	V	-13.08	24.44	54.00	-29.56		

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS17S1196404E Page 26 of 58

9 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Test result plots shown as follows:

Reference No.: WTS17S1196404E Page 30 of 58

10 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result:

ANT	Operation	Bandwidth (MHz)		
	mode	Low	Middle	High
ANT	11b	9.054	9.054	9.054
	11g	16.317	16.317	16.317
	11n HT20	16.707	16.707	16.707

Reference No.: WTS17S1196404E Page 36 of 58

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04

11.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r04 section 9.1.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

Operation	ANT	Maximum Peak Output Power (dBm)					
mode		Low	Middle	High			
11b	ANT	17.18	16.85	15.94			
11g	ANT	13.95	14.68	13.77			
11n HT20	ANT	13.90	14.07	12.03			
Limit							
1W/30dBm							

Reference No.: WTS17S1196404E Page 37 of 58

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04

12.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r04 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

Operation	ANT	Maximum Peak Output Power (dBm per 3kHz)		
mode		Low	Middle	High
11b	ANT	-8.76	-9.00	-10.57
11g	ANT	-19.87	-18.89	-19.59
11n HT20	ANT	-20.65	-19.91	-21.17
Limit				
8dBm per 3kHz				

Reference No.: WTS17S1196404E Page 43 of 58

13 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna fulfill the requirement of this section.

ANT

Reference No.: WTS17S1196404E Page 44 of 58

14 RF Exposure

Please refer to Maximum Permissible Exposure report.

15 Photographs – Model HKWL-MS03W Test Setup

15.1 Conducted Emission

15.2 Radiated Emission

16 Photographs - Constructional Details

16.1 Model HKWL-MS03W External View

Reference No.: WTS17S1196404E Page 48 of 58

Reference No.: WTS17S1196404E Page 49 of 58

Reference No.: WTS17S1196404E Page 50 of 58

Reference No.: WTS17S1196404E Page 51 of 58

16.2 Model HKWL-MS03W Internal View

Reference No.: WTS17S1196404E Page 52 of 58

Reference No.: WTS17S1196404E Page 53 of 58

Reference No.: WTS17S1196404E Page 54 of 58

Reference No.: WTS17S1196404E Page 55 of 58

Reference No.: WTS17S1196404E Page 56 of 58

Reference No.: WTS17S1196404E Page 57 of 58

=====End of Report=====