Introduction to Numerical Analysis for Engineers

Systems of Linear Equations	Mathews
- Cramer's Rule	
- Gaussian Elimination	3.3-3.5
 Numerical implementation 3.3-3.4 	
 Numerical stability 	
 Partial Pivoting 	
Equilibration	
 Full Pivoting 	
 Multiple right hand sides 	
 Computation count 	
 LU factorization 	3.5
 Error Analysis for Linear Systems 	3.4
 Condition Number 	
 Special Matrices 	
 Iterative Methods 	3.6
 Jacobi's method 	
 Gauss-Seidel iteration 	
Convergence National Methods for Engineers	

Systems of Linear Equations Gaussian Elimination

Multiple Right-hand Sides

Computation Count Reduction Step k

$$n \gg 1$$

$$N_r = \sum_{k=1}^{n-1} (n-k)(n-k+p) \simeq \frac{1}{3}n^3 + \frac{1}{2}n^2(p-1)$$

Back Substitution

$$N_b = \sum_{k=1}^{n-1} (n-k)p \simeq \frac{1}{2}n^2p$$

Reduction for each right-hand side inefficient. However, RHS may be result of iteration and unknown a priori (e.g. Euler's method) -> LU Factorization

$$n \gg 1 \Rightarrow N_r \gg N_b$$

The coefficient Matrix $\overline{\overline{\mathbf{A}}}$ is decomposed as

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{L}}} \cdot \overline{\overline{\mathbf{U}}}$$

where $\overline{\overline{U}}$ is a lower triangular matrix and $\overline{\overline{U}}$ is an upper triangular matrix

Then the solution is performed in two simple steps

- 1. $\overline{\overline{\mathbf{L}}}\vec{y} = \vec{b}$ Forward substitution
- 2. $\overline{\overline{\mathbf{U}}}\vec{x} = \vec{y}$ Back substitution

How to determine $\overline{\overline{L}}~$ and $\overline{\overline{U}}~$?

After reduction step *i-1*:

Above and on diagonal

$$i \leq j$$

Unchanged after step i-1

$$a_{ij}^{(n)} = \cdots a_{ij}^{(i)}$$

Below diagonal

Become and remain θ in step j

$$a_{ij}^{(n)} = \cdots a_{ij}^{(j+1)} = 0$$

Change in reduction steps 1 - i-1:

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}, \quad m_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$$

Total change above diagonal

$$i \leq j : a_{ij}^{(i)} = a_{ij} - \sum_{k=1}^{i-1} m_{ik} a_{kj}^{(k)}$$

Total change below diagonal

$$i > j$$
: $a_{ij}^{(i)} = 0 = a_{ij} - \sum_{k=1}^{j} m_{ik} a_{kj}^{(k)}$

Define

$$m_{ii} = 1, i = 1, \dots n$$

=>

$$i \leq j : a_{ij} = \sum_{k=1}^{i} m_{ik} a_{kj}^{(k)}$$

$$i > j$$
: $a_{ij} = \sum_{k=1}^{j} m_{ik} a_{kj}^{(k)}$

$$\Rightarrow a_{ij} = \sum_{k=1}^{\min(i,j)} m_{ik} a_{kj}^{(k)}$$

Sum stops at diagonal

i

 m_{ik}

Upper triangular

 $a_k^{(l)}$

Below diagonal

i > j:

 a_{ij}

Above diagonal

 $i \leq j$:

k

GE Reduction directly yields LU factorization

$$\overline{\overline{A}} = \overline{\overline{L}} \cdot \overline{\overline{U}}$$

Lower triangular

$$\overline{\overline{\mathbf{L}}} = l_{ij} = \left\{ egin{array}{ll} 0 & i < j \\ 1 & i = j \\ m_{ij} & i > j \end{array} \right.$$

Upper triangular

$$\overline{\overline{\mathbf{U}}} = u_{ij} = \begin{cases} a_{ij}^{(i)} & i \leq j \\ 0 & i > j \end{cases}$$

Compact storage

Lower diagonal implied

$$m_{ii} = 1, i = 1, \dots n$$

Systems of Linear Equations Pivoting in LU Factorization

Before reduction, step *k*

Pivoting if

$$\left|a_{ik}^{(k)}\right| \gg \left|a_{kk}^{(k)}\right| \;, \quad i > k$$

Interchange rows i and k

$$p_k = i$$

else

$$p_k = k$$

Pivot element vector

$$p_i, i = 1, ... n$$

Forward substitution, step *k*

$$\overline{\overline{\mathbf{L}}}\vec{y} = \vec{b}$$

Interchange rows i and k

$$p_k = i \Rightarrow \begin{cases} b_i^{(k)} = b_k \\ b_k = b_i \\ b_i = b_i^{(k)} \end{cases}$$

Linear Systems of Equations Error Analysis

Function of one variable

$$y = f(x)$$

Condition number

$$\left| \frac{f(\overline{x}) - f(x)}{f(x)} \right| = K \left| \frac{\overline{x} - x}{x} \right| , \quad \overline{x} = x + \delta x$$

$$\left| \frac{\delta y}{y} \right| = K \left| \frac{\delta x}{x} \right|$$

The condition number K is a measure of the amplification of the relative error by the function f(x)

Linear systems

How is the relative error of \overline{x} dependent on errors in \overline{b} ?

$$\overline{\overline{A}}\overline{x} = \overline{b}$$

Example

$$\overline{\overline{\mathbf{A}}} = \begin{bmatrix} 1.0 & 1.0 \\ 1.0 & 1.0001 \end{bmatrix}, \det(\overline{\overline{\mathbf{A}}}) = 0.0001$$

$$\overline{\mathbf{b}} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \Rightarrow \overline{\mathbf{x}} = \left\{ \begin{array}{c} 2 \\ 0 \end{array} \right\}$$

$$\overline{\mathbf{b}} = \left\{ \begin{array}{c} 2 \\ 2.0001 \end{array} \right\} \Rightarrow \overline{\mathbf{x}} = \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$$

Small changes in $\overline{\mathbf{b}}$ give large changes in $\overline{\mathbf{x}}$ The system is ill-Conditioned

Linear Systems of Equations Error Analysis

Vector and Matrix Norm

$$||\overline{\mathbf{x}}||_{\infty} = \max_{i} |x_{i}|$$

$$\left\| \overline{\overline{\mathbf{A}}} \right\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

Properties

$$\overline{\overline{\mathbf{A}}} \neq \overline{\overline{\mathbf{0}}} \Rightarrow \left| \left| \overline{\overline{\mathbf{A}}} \right| \right| > 0$$

$$\left\| \alpha \overline{\overline{\mathbf{A}}} \right\| = \left| \alpha \right| \left\| \overline{\overline{\mathbf{A}}} \right\|$$

$$\left|\left|\overline{\overline{\mathbf{A}}} + \overline{\overline{\mathbf{B}}}\right|\right| \leq \left|\left|\overline{\overline{\mathbf{A}}}\right|\right| + \left|\left|\overline{\overline{\mathbf{B}}}\right|\right|$$

$$\left|\left|\overline{\overline{\mathbf{A}}}\overline{\overline{\mathbf{B}}}\right|\right| \leq \left|\left|\overline{\overline{\mathbf{A}}}\right|\right| \left|\left|\overline{\overline{\mathbf{B}}}\right|\right|$$

$$\left|\left|\overline{\overline{A}}\overline{x}\right|\right| \leq \left|\left|\overline{\overline{A}}\right|\right| \left|\left|\overline{x}\right|\right|$$

Perturbed Right-hand Side

$$\overline{\overline{\mathbf{A}}}\overline{\mathbf{x}} = \overline{\mathbf{b}}$$

$$\overline{\overline{\mathbf{A}}}(\overline{\mathbf{x}} + \delta \overline{\mathbf{x}}) = \overline{\mathbf{b}} + \delta \overline{\mathbf{b}}$$

Subtract original equation

$$\overline{\overline{\mathbf{A}}}\delta\overline{\mathbf{x}} = \delta\overline{\mathbf{b}}$$

$$\delta\overline{\mathbf{x}} = \overline{\overline{\mathbf{A}}}^{-1}\delta\overline{\mathbf{b}}$$

$$||\delta\overline{\mathbf{x}}|| \leq ||\overline{\overline{\mathbf{A}}}^{-1}|| ||\delta\overline{\mathbf{b}}||$$

$$||\overline{\mathbf{b}}|| = ||\overline{\overline{\mathbf{A}}}\overline{\mathbf{x}}|| \leq ||\overline{\overline{\mathbf{A}}}|| ||\overline{\mathbf{x}}||$$

Relative Error Magnification

$$\frac{||\delta \overline{\mathbf{x}}||}{||\overline{\mathbf{x}}||} \le \left\| \overline{\overline{\mathbf{A}}}^{-1} \right\| \left\| \overline{\overline{\mathbf{A}}} \right\| \frac{\left||\delta \overline{\mathbf{b}}|\right|}{\left||\overline{\mathbf{b}}|\right|}$$
Condition Number
$$K(\overline{\overline{\mathbf{A}}}) = \left\| \overline{\overline{\mathbf{A}}}^{-1} \right\| \left\| \overline{\overline{\mathbf{A}}} \right\|$$

Linear Systems of Equations **Error Analysis**

Vector and Matrix Norm

$$||\overline{\mathbf{x}}||_{\infty} = \max_{i} |x_i|$$

$$\left\| \overline{\overline{\mathbf{A}}} \right\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

Properties

$$\overline{\overline{\mathbf{A}}} \neq \overline{\overline{\mathbf{0}}} \Rightarrow \left\| \overline{\overline{\mathbf{A}}} \right\| > 0$$

$$\left\| \alpha \overline{\overline{\mathbf{A}}} \right\| = \left| \alpha \right| \left\| \overline{\overline{\mathbf{A}}} \right\|$$

$$\left|\left|\overline{\overline{\mathbf{A}}} + \overline{\overline{\mathbf{B}}}\right|\right| \leq \left|\left|\overline{\overline{\mathbf{A}}}\right|\right| + \left|\left|\overline{\overline{\mathbf{B}}}\right|\right|$$

$$\left|\left|\overline{\overline{\mathbf{A}}}\overline{\overline{\mathbf{B}}}\right|\right| \leq \left|\left|\overline{\overline{\mathbf{A}}}\right|\right| \left|\left|\overline{\overline{\mathbf{B}}}\right|\right|$$

$$\left|\left|\overline{\overline{\mathbf{A}}}\overline{\mathbf{x}}\right|\right| \leq \left|\left|\overline{\overline{\mathbf{A}}}\right|\right| \left|\left|\overline{\mathbf{x}}\right|\right|$$

Perturbed Coefficient Matrix

$$\left(\overline{\overline{\mathbf{A}}} + \delta \overline{\overline{\mathbf{A}}}\right) \left(\overline{\mathbf{x}} + \delta \overline{\mathbf{x}}\right) = \overline{\mathbf{b}}$$

Subtract unperturbed equation

$$\overline{\overline{\mathbf{A}}} \delta \overline{\mathbf{x}} + \delta \overline{\overline{\mathbf{A}}} (\overline{\mathbf{x}} + \delta \overline{\mathbf{x}}) = \overline{\mathbf{0}}$$

$$\delta \overline{\mathbf{x}} = -\overline{\overline{\mathbf{A}}}^{-1} \delta \overline{\overline{\mathbf{A}}} (\overline{\mathbf{x}} + \delta \overline{\mathbf{x}}) \simeq -\overline{\overline{\mathbf{A}}}^{-1} \delta \overline{\overline{\mathbf{A}}} \overline{\mathbf{x}}$$

$$||\delta \overline{\mathbf{x}}|| \leq \left|\left|\overline{\overline{\mathbf{A}}}^{-1}\right|\right| \left|\delta \overline{\overline{\mathbf{A}}}\right| \left|\left|\overline{\mathbf{x}}\right|\right|$$

Relative Error Magnification

$$\frac{\left|\left|\delta\overline{\mathbf{x}}\right|\right|}{\left|\left|\overline{\mathbf{x}}\right|\right|} \leq \left\|\overline{\overline{\mathbf{A}}}^{-1}\right\| \left\|\overline{\overline{\mathbf{A}}}\right\| \frac{\left\|\delta\overline{\overline{\mathbf{A}}}\right\|}{\left\|\overline{\overline{\mathbf{A}}}\right\|}$$

Condition Number

$$K(\overline{\overline{\mathbf{A}}}) = \left\| \overline{\overline{\mathbf{A}}}^{-1} \right\| \left\| \overline{\overline{\mathbf{A}}} \right\|$$

III-Conditioned System

$$\begin{bmatrix} 1.0 & 1.0 \\ 1.0 & 1.0001 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\det(\overline{\overline{\mathbf{A}}}) = 0.0001$$

$$a_{11} = \frac{1.0001}{0.0001} = 10,001$$

$$a_{12} = \frac{-1}{0.0001} = -10,000$$

$$a_{21} = \frac{-1}{0.0001} = -10,000$$

$$a_{11} = \frac{1.0}{0.0001} = 10,000$$

$$\left\| \overline{\overline{\mathbf{A}}} \right\|_{\infty} = 2.0001 \\ \left\| \overline{\overline{\mathbf{A}}}^{-1} \right\|_{\infty} = 20,001$$
 $\Rightarrow K(\overline{\overline{\mathbf{A}}}) \simeq 40,000$ Ill-conditioned system

```
n=4
a = [[1.0 \ 1.0]' \ [1.0 \ 1.0001]']
                                  tbt6.m
b= [1 2]'
ai=inv(a);
a nrm=max( abs(a(1,1)) + abs(a(1,2)),
           abs(a(2,1)) + abs(a(2,2)))
ai nrm=max( abs(ai(1,1)) + abs(ai(1,2)),
           abs(ai(2,1)) + abs(ai(2,2)))
k=a nrm*ai nrm
r=ai * b
x=[0 \ 0];
m21=a(2,1)/a(1,1);
a(2,1)=0;
a(2,2) = radd(a(2,2), -m21*a(1,2), n);
b(2) = radd(b(2), -m21*b(1), n);
x(2) = b(2)/a(2,2);
x(1) = (radd(b(1), -a(1,2)*x(2),n))/a(1,1);
x '
```


Well-Conditioned System

$$\begin{bmatrix} 0.0001 & 1.0 \\ 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\det(\overline{\overline{\mathbf{A}}}) = 0.9999$$

$$a_{11} = \frac{-1}{0.9999} = -1,0001$$

$$a_{12} = \frac{1}{0.9999} = 1.0001$$

$$a_{21} = \frac{1}{0.9999} = 1.0001$$

$$a_{11} = \frac{-0.0001}{0.9999} = -0.0001$$

$$\begin{split} \left\| \overline{\overline{\mathbf{A}}} \right\|_{\infty} &= 2.0 \\ \left\| \overline{\overline{\mathbf{A}}}^{-1} \right\|_{\infty} &= 2.0002 \end{split} \right\} \Rightarrow K(\overline{\overline{\mathbf{A}}}) \simeq \boxed{4} \\ \text{Well-conditioned system} \end{split}$$

4-digit Arithmetic

```
n=4
a = [0.0001 1.0]' [1.0 1.0]']
                                  tbt7.m
b= [1 2]'
ai=inv(a);
a nrm=max( abs(a(1,1)) + abs(a(1,2)),
           abs(a(2,1)) + abs(a(2,2)))
ai nrm=max( abs(ai(1,1)) + abs(ai(1,2)),
            abs(ai(2,1)) + abs(ai(2,2))
k=a nrm*ai nrm
r=ai * b
x=[0 \ 0];
m21=a(2,1)/a(1,1);
a(2,1)=0;
a(2,2) = radd(a(2,2), -m21*a(1,2), n);
b(2) = radd(b(2), -m21*b(1), n);
x(2) = b(2)/a(2,2);
x(1) = (radd(b(1), -a(1,2)*x(2),n))/a(1,1);
```

Algorithmically ill-conditioned