Recursion

— >	Re	Cursion	is not	just a	computer	devence topic
	1+	corelato	with	ma ths	as well:	

Mathematically, recursion means

$$f(a_1b) = a \times f(a_1b-1)$$
thin function
$$(alculates)$$

$$a^b = a \times a^{b-1}$$

In computer science, recursion nears function calling itself. function fun(x)

function gun (x) ((onoole.log(x); function fem (x) 6 gun (x-1); fun (x-1); > This is not recusion > This is recurion

f (n) this function $0 \times f(n-1)$ returns n! The mathematical supresentation of a recensive function is called Recurrence Relation 2 x

What is 112=

Recursion > 10 recursion, a function calls itself, where it tries to solve a smaller problem and then calc value of a layer problem

PMI (principal of Mathemateal Induction)) n What is the Sem of first N natural rumbers ??

Ans -> 1x(n+1)

3 step brocess 1) Base Case -> The smallest value for which we can directly verify the ans-2) Assumption 3) Verufication / Self task

Par n=1 -> nx(n+1) -> is correct

Base lase

for some n=K -> the formula is correct i.e. Kr(K+1)

n=(K+1) vk (N+1) → (k+1) (K+1+1) # Components Of Recursion 1) Bau Can 2) Assumption 3) Selfwork

Write a recursur Solt for factoriel of n We will write a func f(n) Bane (n==1) f (1) -> 1 if (n==1) return

Assemption -> assume the function works

fine for _n-1 f (n-1) correctly cales (n-1)! Selfwork $\rightarrow f(n) = n \times f(n-1)$

Power function f(a,b) returns ab Base lase - if (b==0) then an is 1

Assemption - assum functionals fine for b-1
i.e. $f(q_1b-1)$ is correct.

Solvark
$$\Rightarrow a^{5} = a \times a^{5-1}$$

$$f(a_{1}b) \leftarrow a \times f(a_{1}b-1)$$

$$27$$

$$27$$

$$47 \times (27)$$

$$47 \times (27)$$

Des What happens when we call a function_ In our memory, we have a lot of things part of the memory is call

Wheneur une call a neur function it adds a nem entry in the stack. Phis neu entry is called stack to ace Inside a trave un stere cell the variables and mare data like current line of execution of Lunction.

When	me hit	a return	, the sta	ek hau is
vemou	ر لما	Ze value	is gumen	back to the
Caller.			U	

reuren a valur n, celc nth fibonacci

Jens le f(n-z) works feir Selfwork -> f(n-i) + f(n-) $\int \int (n) = \int (n-1) + \int (n-2)$

1 function fib(n) [
2 // base case		
3 if(n == 0) return 0;		
4 if(n == 1) return 1;		
5 // assumption		
6 let a = fib(n-1);		
<pre>7 let b = fib(n-2);</pre>		
8 // self work		
9 return a+b;	•	
10	<u>•</u>	
11		
_12 console.log(fib(3))		
Recursion fakes	_	
Marcon Con Fabrary		
ALWIS .	-	
Extra span		
Gold Star		
5/11/201		
-41		•
MADAM \		
[\(\gamma\)		
·		
		•

$$f(n) + f(n+1) = f(n+2)$$

$$f(n-1) + f(n) = f(n+1)$$

$$f(n-2) + f(n-1) = f(n)$$

Soy
$$n+2:x$$

$$f(x-2) + f(x-1) = f(x)$$