# ତ୍ରିକୋଶମିତି (TRIGONOMETRY)

# 11.1 ଉପକ୍ରମଣିକା (Introduction) :

ନବମ ଶ୍ରେଣୀରେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ  $\sin \theta$ ,  $\cos \theta$ ,  $\tan \theta$ ,  $\cot \theta$ ,  $\sec \theta$  ଓ  $\csc \theta$  ର ସଂଜ୍ଞା, ଏହି ଅନୁପାତଗୁଡ଼ିକୁ ନେଇ କେତେଗୁଡ଼ିଏ ସୂତ୍ର ଏବଂ  $30^\circ$ ,  $45^\circ$  ଓ  $60^\circ$  ପରିମାଣ ବିଶିଷ୍ଟ କେତେକ ନିର୍ଦ୍ଦିଷ୍ଟ କୋଣର ତ୍ରିକୋଣମିତିକ ଅନୁପାତର ମୂଲ୍ୟ ସମ୍ପର୍କରେ ଆଲୋଚନା କରାଯାଇଥିଲା ।

ଏବେ  $0^\circ$  ଓ  $90^\circ$  କଥା ବିଚାରକୁ ନେବା । ଉଲ୍ଲେଖଯୋଗ୍ୟ ଯେ  $0^\circ$  ଏକ କୋଣ ପରିମାଣ ନୁହେଁ । ସେହିପରି  $90^\circ$  କ୍ଷେତ୍ରରେ ମଧ୍ୟ ସମକୋଣ ଗଠନ କରି p, b ଓ h ର ଭିନ୍ନ ଭିନ୍ନ ଅନୁପାତ ମାଧ୍ୟମରେ  $\sin\theta$ ,  $\cos\theta$  ଆଦିର ମୂଲ୍ୟ ନିର୍ଣ୍ଣୟ ସମ୍ଭବ ନୁହେଁ ।

ତେଣୁ ସ୍ୱତନ୍ତ ସଂଜ୍ଞା ପ୍ରଶୟନ କରାଗଲା ।

 $\sin \theta$ ,  $\cos \theta$  ଆଦି ଛଅଗୋଟି ତ୍ରିକୋଣମିତିକ ଅନୁପାତକୁ ବ୍ୟାପକ ଅର୍ଥରେ ତଥା ଉଚ୍ଚତର ଗଣିତରେ ତ୍ରିକୋଣମିତିକ ଫଳନ (Trigonometric functions) କୁହାଯାଏ ।  $\theta$  ହେଉଛି ଏକ ଚଳରାଶି (Variable ବା argument), ଅର୍ଥାତ୍  $\theta$  ଭିନ୍ନ ଭିନ୍ନ ମୂଲ୍ୟ ଗ୍ରହଣ କରିପାରେ ।  $\theta$  ପରିବର୍ତ୍ତେ ଅନ୍ୟ ପ୍ରକାରର ସଂକେତ ମଧ୍ୟ ବ୍ୟବହାର କରାଯାଏ ।

# 11.2 ଯୌଗିକ ଚଳ ଓ ତାହାର ତ୍ରିକୋଣମିତିକ ଫଳନ (Compound argument and its trigonometric functions) :

ଯଦି A ଓ B ଉଭୟ ଚଳରାଶି ଓ  $\theta = A + B$  ବା A - B ହୁଏ, ତେବେ  $\theta$  ର ମୂଲ୍ୟ ଉଭୟ A ଓ B ଉପରେ ନିର୍ଭର କରିବ । A ଓ B ମଧ୍ୟରୁ କୌଣସି ଗୋଟିଏ ବା ଉଭୟ ପରିବର୍ତ୍ତିତ ହେଲେ  $\theta$  ମଧ୍ୟ ଭିନ୍ନ ଭିନ୍ନ ମୂଲ୍ୟ ଗ୍ରହଣ କରିପାରେ । ଏ ପରିସ୍ଥିତିରେ  $\theta$  ଅର୍ଥାତ୍ A + B ବା A - B କୁ ଯୌଗିକ ଚଳ (Compound argument) କୁହାଯାଏ ।

ଯୌଗିକ ଚଳ ପାଇଁ ତ୍ରିକୋଣମିତିକ ଫଳନର କେତେଗୁଡ଼ିଏ ବିଶେଷ ଧର୍ମ ରହିଛି । ସେଥି ମଧ୍ୟରୁ କେତେକ ପ୍ରମୁଖ ଧର୍ମକୁ ସୂତ୍ର ରୂପରେ ପ୍ରକାଶ କରିବା ।

$$\mathfrak{P} : \sin (\mathbf{A} + \mathbf{B}) = \sin \mathbf{A} \cdot \cos \mathbf{B} + \cos \mathbf{A} \cdot \sin \mathbf{B} \qquad \dots \qquad (1)$$

ପ୍ରମାଣ : ଚିତ୍ର 11.1 ରେ  $\angle QOP$  ଓ  $\angle POR$  ର ପରିମାଣ ଯଥାକ୍ରମେ A ଓ B, ତେଣୁ  $\angle QOR$  ର ପରିମାଣ A+B ଅଟେ ।

$$\therefore \sin (A + B) = \frac{RS}{OR} = \frac{RT + TS}{OR} = \frac{RT + PQ}{OR} = \frac{PQ}{OR} + \frac{RT}{OR} \quad (\because TS = PQ)$$

$$= \frac{PQ}{OP} \cdot \frac{OP}{OR} + \frac{RT}{RP} \cdot \frac{RP}{OR}$$

= sin\( QOP \). cos\( POR + cos\( PRT \). sin\( POR \)

= sin A. cos B + cos A . sin B

[∵ m∠QOP = A = m∠PRT ..... (ii)] (ପ୍ରମାଶିତ)

ମନ୍ତବ୍ୟ : (i)  $\sin A$  କୁ  $\sin m\angle QOP$  ଅଥିବା  $\sin m\angle PRT$  ନ ଲେଖି  $\sin \angle QOP$  ଅଥିବା  $\sin \angle PRT$  ଲେଖାଯାଏ । ସେହିପରି  $\cos A$  କୁ  $\cos m\angle QOP$  ଅଥିବା  $\cos m\angle PRT$  ନ ଲେଖି  $\cos \angle QOP$  ଅଥିବା  $\cos \angle PRT$  ଲେଖାଯାଏ । ଅନ୍ୟାନ୍ୟ ଦ୍ରିକୋଣମିତିକ ଅନୁପାତ ପାଇଁ ମଧ୍ୟ ଏହି ପ୍ରଥା ଅନୁସୃତ ହୁଏ ।

(2) ∠PRT ଓ ∠QOP ସମପରିମାଣ ବିଶିଷ ହୋଇଥିବାରୁ ଆମେ PRT ବା QOP ଯେକୌଣସି ସମକୋଣୀ ଡ୍ରିଭୁଜରୁ ଡ୍ରିକୋଣମିତିକ ଅନୁପାତଗୁଡ଼ିକ ନିର୍ଷୟ କରିପାରିବା । ଡ୍ରିଭୁଜଦ୍ୱୟ ସଦୃଶ ହୋଇଥିବାରୁ ସମ୍ମୃକ୍ତ ଅନୁପାତଗୁଡ଼ିକ ସମାନ ଅଟନ୍ତି - ଏକଥା ସଦୃଶ ଡ୍ରିଭୁଜ ପ୍ରସଙ୍ଗରେ ଆଲୋଚିତ ହୋଇଛି ।

$$\Im \Theta : \cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B \qquad \dots (2)$$

ପ୍ରମାଶ : ଚିତ୍ର 
$$11.1$$
 ରୁ  $\cos (A + B) = \frac{OS}{OR} = \frac{OQ - SQ}{OR} = \frac{OQ - TP}{OR}$ 

$$= \frac{OQ}{OR} - \frac{TP}{OR} = \frac{OQ}{OP} \cdot \frac{OP}{OR} - \frac{TP}{RP} \cdot \frac{RP}{OR}$$

= cos A . cos B - sin A . sin B (ପ୍ରମାଣିତ)

$$99 : \sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B \qquad ....(3)$$

$$\overline{RS} \perp \overline{OQ}$$
,  $\overline{PR} \perp \overline{OR}$ ,  $\overline{PT} \perp \overline{RS}$   $\overline{G}$   $\overline{PQ} \perp \overline{OQ}$ 

ଅଙ୍କନ ଅନୁଯାୟୀ PQST ଏକ ଆୟତଚିତ୍ର ।

∠ROS ସମକୋଣୀ ତ୍ରିଭୁକରେ m∠ROS + m∠ORS = 90°

ପୁନଣ୍ଡ 
$$\overline{PR} \perp \overline{OR}$$
 ହେଡୁ m $\angle PRT + m \angle ORS = 90^{\circ}$ 

$$\therefore$$
 m $\angle$ ROS = m $\angle$ PRT = A ( $\cdot \cdot \cdot$  m $\angle$ ROS = m $\angle$ QOR = A)

$$sin(A - B) = sin \angle QOP = \frac{PQ}{OP} = \frac{TS}{OP}$$
 (: PQ = TS)

$$= \frac{RS - RT}{OP} = \frac{RS}{OP} - \frac{RT}{OP} = \frac{RS}{OR} \cdot \frac{OR}{OP} - \frac{RT}{RP} \cdot \frac{RP}{OP}$$

= sin\(^ROS\) . cos\(^POR\) - cos\(^PRT\) . sin\(^POR\)

$$= \sin A \cdot \cos B - \cos A \cdot \sin B$$



ସୂହ : 
$$\cos(\mathbf{A} - \mathbf{B}) = \cos \mathbf{A} \cdot \cos \mathbf{B} + \sin \mathbf{A} \cdot \sin \mathbf{B}$$
 ....(4)

ପ୍ରମାଶ : ଚିତ୍ର 11.2 ରେ  $\cos(\mathbf{A} - \mathbf{B}) = \cos\angle \mathsf{QOP}$ 

$$= \frac{\mathsf{OQ}}{\mathsf{OP}} = \frac{\mathsf{OS} + \mathsf{SQ}}{\mathsf{OP}} = \frac{\mathsf{OS} + \mathsf{TP}}{\mathsf{OP}} ( \cdot \cdot \cdot \mathsf{SQ} = \mathsf{TP})$$

$$= \frac{\mathsf{OS}}{\mathsf{OP}} + \frac{\mathsf{TP}}{\mathsf{OP}} = \frac{\mathsf{OS}}{\mathsf{OR}} \cdot \frac{\mathsf{OR}}{\mathsf{OP}} + \frac{\mathsf{TP}}{\mathsf{RP}} \cdot \frac{\mathsf{RP}}{\mathsf{OP}}$$

$$= \cos\angle \mathsf{ROS} \cdot \cos\angle \mathsf{POR} + \sin\angle \mathsf{PRT} \cdot \sin\angle \mathsf{POR}$$

$$= \cos\mathsf{A} \cdot \cos\mathsf{B} + \sin\mathsf{A} \cdot \sin\mathsf{B}$$

$$( \cdot \cdot \cdot \mathsf{m} \angle \mathsf{ROS} = \mathsf{m} \angle \mathsf{PRT} = \mathsf{A} \; \Im \; \mathsf{m} \angle \mathsf{POR} = \mathsf{B} \; ) \; ( \mathsf{GPI} \hat{\mathsf{GP}} )$$

ସୂଚନା : ସୂତ୍ର -1ରୁ ସୂତ୍ର - 4 ଅତ୍ୟନ୍ତ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ଓ ଏହାକୁ ସ୍ମରଣ ରଖିବା ବାଞ୍ଚନୀୟ; କାରଣ ଏହାପରେ ଆଲୋଚିତ ହେବାକୁ ଥିବା ବିଷୟବସ୍ତୁ ପାଇଁ ଏହି ଚାରିଗୋଟି ସୂତ୍ର ହିଁ ଆଧାର । ଏହି ସୂତ୍ରଗୁଡ଼ିକର ପ୍ରମାଣ ସୂଷ୍ଟକୋଣ ଆଧାରିତ ହୋଇଥିଲେ ହେଁ A ଓ B ର ଯେକୌଣସି ମାନ ପାଁଇ ସୂତ୍ରଗୁଡ଼ିକ ପ୍ରଯୁକ୍ୟ - ଏହାର ପ୍ରମାଣ ଉଚ୍ଚତର ଶ୍ରେଣୀରେ ଦିଆଯିବ ।

ଉପରୋକ୍ତ ସୂତ୍ରଗୁଡ଼ିକ ସାହାଯ୍ୟରେ  $\tan{(A\pm B)}$  ଏବଂ  $\cot{(A\pm B)}$ ର ତ୍ରିକୋଣମିତିକ ଫଳନର ସୂତ୍ର ନିର୍ଣ୍ଣୟ କରିପାରିବା ।

(i) 
$$\tan (A + B) = \frac{\sin(A + B)}{\cos(A + B)} = \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B}$$

$$= \frac{\frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B}}{\frac{\cos A \cdot \cos B - \sin A \cdot \sin B}{\cos A \cdot \cos B}} \quad (\text{ଲବ ଓ ହରକୁ } \cos A \cdot \cos B) \quad \text{ହାରା ଭାଗ କରାଗଲା})$$

$$= \frac{\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}} = \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}$$

$$= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

$$\therefore \tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

$$\begin{array}{ll} \hbox{(ii)} & \tan \ (A-B) = \frac{\sin (A-B)}{\cos (A-B)} = \frac{\sin A. \cos B - \cos A. \sin B}{\cos A. \cos B + \sin A. \sin B} \\ & = \frac{\frac{\sin A. \cos B - \cos A. \sin B}{\cos A. \cos B}}{\frac{\cos A. \cos B}{\cos A. \cos B} + \sin A. \sin B} \ \left( \mbox{ଲବ ଓ ହରକୁ } \cos A. \cos B \ \mbox{ଦାରୀ ଭାଗ କରାଗଲା} \right) \\ & = \frac{\cos A. \cos B}{\cos A. \cos B}$$

$$= \frac{\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}}$$
$$= \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$$

$$\therefore \tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$$

(iii) cot 
$$(A + B) = \frac{\cos(A + B)}{\sin(A + B)} = \frac{\cos A \cdot \cos B - \sin A \cdot \sin B}{\sin A \cdot \cos B + \cos A \cdot \sin B}$$

$$\frac{\cos A. \cos B - \sin A. \sin B}{\sin A. \cos B + \cos A. \sin B} = \frac{\cos A. \cos B}{\sin A. \sin B} = \frac{\sin A. \sin B}{\sin A. \sin B} = \frac{\sin A. \sin B}{\sin A. \sin B}$$

$$\frac{\sin A. \sin B}{\sin A. \sin B} = \frac{\cos A. \cos B}{\sin A. \sin B} = \frac{\sin A. \sin B}{\sin A. \sin B}$$

$$= \frac{\cot A \cdot \cot B - 1}{\cot B + \cot A}$$

$$\therefore \cot (A + B) = \frac{\cot A \cdot \cot B - 1}{\cot B + \cot A}$$

(iv) 
$$\cot (A - B) = \frac{\cos(A - B)}{\sin(A - B)} = \frac{\cos A \cdot \cos B + \sin A \cdot \sin B}{\sin A \cdot \cos B - \cos A \cdot \sin B}$$

$$= \frac{\frac{\cos A. \cos B + \sin A. \sin B}{\sin A. \cos B - \cos A. \sin B}}{\frac{\sin A. \cos B - \cos A. \sin B}{\sin A. \sin B}} = \frac{\frac{\cos A. \cos B}{\sin A. \sin B} + \frac{\sin A. \sin B}{\sin A. \sin B}}{\frac{\sin A. \sin B}{\sin A. \sin B}}$$

$$= \frac{\cot A \cdot \cot B + 1}{\cot B - \cot A}$$

$$\therefore \cot (A - B) = \frac{\cot A \cdot \cot B + 1}{\cot B - \cot A}$$

ଆଲୋଚିତ୍ର ସ୍ତୁଗୁଡ଼ିକୁ ନେଇ ନିମ୍ନ ଉପ-ସୂତ୍ରଗୁଡ଼ିକୁ ନିଜେ ସ୍ଥିର କର ।

(a) 
$$\sin (A + B) + \sin (A - B) = 2 \sin A \cdot \cos B$$

(b) 
$$\sin (A + B) - \sin (A - B) = 2 \cos A \cdot \sin B$$

(c) 
$$\cos (A + B) + \cos (A - B) = 2 \cos A \cdot \cos B$$

(d) 
$$\cos (A-B) - \cos (A+B) = 2 \sin A \cdot \sin B$$

ଭଦାହରଣ
$$-1$$
: ପ୍ରମାଶ କର :  $\frac{\sin(A-B)}{\cos A.\cos B}=\tan A-\tan B$ 

ସମାଧାନ : ବାମପକ୍ଷ = 
$$\frac{\sin(A-B)}{\cos A. \cos B} = \frac{\sin A. \cos B - \cos A. \sin B}{\cos A. \cos B}$$

$$=\frac{\sin A. \cos B}{\cos A. \cos B} - \frac{\cos A. \sin B}{\cos A. \cos B} = \tan A - \tan B =$$
 ଦକ୍ଷିଣପକ୍ଷ (ପ୍ରମାଶିତ)

ଭଦାହରଣ-2: ଦର୍ଶାଅ ଯେ,  $\tan 7\theta - \tan 5\theta - \tan 2\theta = \tan 7\theta$ .  $\tan 5\theta$ .  $\tan 2\theta$ 

ସମାଧାନ : 
$$7\theta = 5\theta + 2\theta \Rightarrow \tan 7\theta = \tan (5\theta + 2\theta)$$

$$\Rightarrow \tan 7\theta = \frac{\tan 5\theta + \tan 2\theta}{1 - \tan 5\theta \cdot \tan 2\theta}$$

$$\Rightarrow$$
 tan 7 $\theta$  (1 - tan 5 $\theta$  . tan 2 $\theta$ ) = tan 5 $\theta$  + tan 2 $\theta$ 

$$\Rightarrow$$
 tan 70 - tan 70 . tan 50 . tan 20 = tan 50 + tan 20

$$\Rightarrow \tan 7\theta - \tan 5\theta - \tan 2\theta = \tan 7\theta$$
 .  $\tan 5\theta$  .  $\tan 2\theta$  (ପ୍ରମାଣିତ)

ଜଦାହରଣ
$$-3$$
: ପ୍ରମାଶ କର :  $\frac{\cos 17^0 + \sin 17^0}{\cos 17^0 - \sin 17^0} = \tan 62^0$ 

ସମାଧାନ : ଦକ୍ଷିଶପକ୍ଷ = 
$$\tan 62^\circ = \tan (45^\circ + 17^\circ) = \frac{\tan 45^\circ + \tan 17^\circ}{1 - \tan 45^\circ \cdot \tan 17^\circ}$$

$$= \frac{1 + \tan 17^{0}}{1 - \tan 17^{0}} \qquad (\because \tan 45^{0} = 1)$$

$$=\frac{1+\frac{\sin 17^{0}}{\cos 17^{0}}}{1-\frac{\sin 17^{0}}{\cos 17^{0}}}=\frac{\frac{\cos 17^{0}+\sin 17^{0}}{\cos 17^{0}}}{\frac{\cos 17^{0}-\sin 17^{0}}{\cos 17^{0}}}=\frac{\cos 17^{0}+\sin 17^{0}}{\cos 17^{0}-\sin 17^{0}}=$$
 ବାମପକ୍ଷ (ପ୍ରମାଶିତ)

ଭଦାହରଣ- 4 : sin 15º ଓ cos 75º ର ମାନ ନିରୂପଣ କର ।

ସମାଧାନ :  $\sin 15^\circ = \sin (45^\circ - 30^\circ) = \sin 45^\circ \cdot \cos 30^\circ - \cos 45^\circ \cdot \sin 30^\circ$ 

$$=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\cdot\frac{1}{2}=\frac{\sqrt{3}-1}{2\sqrt{2}}$$

$$[\because \sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}, \sin 30^\circ = \frac{1}{2}, \cos 30^\circ = \frac{\sqrt{3}}{2}]$$

$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cdot \cos 30^{\circ} - \sin 45^{\circ} \cdot \sin 30^{\circ}$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\cdot\frac{1}{2}=\frac{\sqrt{3}-1}{2\sqrt{2}}$$
 (ଉତ୍କର)

ଭଦାହରଣ– 
$$\mathbf{5}$$
 :  $\sin \mathbf{A} = \frac{3}{5}$  ଏବଂ  $\cos \mathbf{B} = \frac{5}{13}$  ହେଲେ  $\sin (\mathbf{A} + \mathbf{B})$  ର ମାନ ସ୍ଥିର କର ।

ସମାଧାନ : 
$$\sin A = \frac{3}{5}$$
 :  $\cos A = \sqrt{1-\sin^2 A} = \sqrt{1-\left(\frac{3}{5}\right)^2} = \sqrt{1-\frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$ 

ପୁନୟ 
$$\cos B = \frac{5}{13}$$
 :  $\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13}$ 

∴ 
$$\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B = \frac{3}{5} \cdot \frac{5}{13} + \frac{4}{5} \cdot \frac{12}{13} = \frac{15}{65} + \frac{48}{65} = \frac{63}{65}$$
 (QQQ)

# ଅନୁଶୀଳନୀ - 11 (a)

#### ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

(i) 
$$\sin (A + B) = \frac{\sin A}{----} + \frac{\cos A}{----}$$
 (ii)  $\cos (A + B) = \frac{\cos A}{----} - \frac{\sin A}{----}$ 

(iii) 
$$\sin (30^0 + A) + \sin (30^0 - A) = ----- (iv) \cos (45^0 - A) - \cos (45^0 + A) = ----$$

(v) 
$$\sin(\alpha + \beta) - \cdots = 2\cos\alpha \cdot \sin\beta$$
 (vi)  $-\cdots + \cos(\alpha + \beta) = 2\cos\alpha \cdot \cos\beta$ 

(vii) 
$$2 \sin A \cdot \sin B = ---- - \cos (A + B)$$

#### 2. ପ୍ରମାଣ କର ।

(i) 
$$\frac{\sin(A+B)}{\cos A \cdot \cos B} = \tan A + \tan B$$
 (ii)  $\frac{\cos(A-B)}{\cos A \cdot \sin B} = \cot B + \tan A$ 

(iii) 
$$\frac{\cos(A+B)}{\cos A \cdot \cos B} = 1 - \tan A \cdot \tan B$$
 (iv)  $\frac{\sin \alpha}{\sin \beta} - \frac{\cos \alpha}{\cos \beta} = \frac{\sin(\alpha - \beta)}{\sin \beta \cdot \cos \beta}$ 

(v) 
$$\frac{\cos \alpha}{\sin \beta} - \frac{\sin \alpha}{\cos \beta} = \frac{\cos(\alpha + \beta)}{\sin \beta \cdot \cos \beta}$$

# 3. ପ୍ରମାଣ କର ।

(i) 
$$\cos (A + 45^{\circ}) = \frac{1}{\sqrt{2}} (\cos A - \sin A)$$

(ii) 
$$\sin(45^{\circ}-\theta) = -\frac{1}{\sqrt{2}}(\sin\theta - \cos\theta)$$

(iii) 
$$\tan (45^{\circ} + \theta) = \frac{1 + \tan \theta}{1 - \tan \theta}$$

(iv) 
$$\sin (40^0 + A) \cdot \cos (20^0 - A) + \cos (40^0 + A) \cdot \sin (20^0 - A) = \frac{\sqrt{3}}{2}$$

(v) 
$$\cos (48^0 + \theta) \cdot \cos (12^0 - \theta) - \sin (48^0 + \theta) \cdot \sin (12^0 - \theta) = \frac{1}{2}$$

(vi) 
$$\tan (60^{\circ} - A) = \frac{\sqrt{3}\cos A - \sin A}{\cos A + \sqrt{3}\sin A}$$

(vii) 
$$\cot (A - 30^{\circ}) = \frac{\sqrt{3}\cos A + \sin A}{\sqrt{3}\sin A - \cos A}$$

#### ପୁମାଣ କର ।

(i) 
$$\frac{\cos(A+B)}{\sin A \cdot \cos B} + \frac{\cos(A-B)}{\sin A \cdot \cos B} = 2 \cot A$$

(ii) 
$$\cos(\alpha + \beta) + \sin(\alpha - \beta) = (\cos \alpha + \sin \alpha)(\cos \beta - \sin \beta)$$

(iii) 
$$\tan 7A \cdot \tan 4A \cdot \tan 3A = \tan 7A - \tan 4A - \tan 3A$$

(iv) 
$$\tan (x+y) - \tan x - \tan y = \tan (x+y) \cdot \tan x \cdot \tan y$$

(v) 
$$\tan (45^{\circ} + \theta) \times \tan (45^{\circ} - \theta) = 1$$

#### ପ୍ରମାଶ କର ।

(i) 
$$\frac{\cos 16^0 + \sin 16^0}{\cos 16^0 - \sin 16^0} = \tan 61^0$$
 (ii) 
$$\frac{\cos 35^0 - \sin 35^0}{\cos 35^0 + \sin 35^0} = \tan 10^0$$

(iii) 
$$(1 + \tan 15^{\circ})(1 + \tan 30^{\circ}) = 2$$
 (iv)  $(\cot 10^{\circ} - 1)(\cot 35^{\circ} - 1) = 2$ 

$$(v) \qquad \frac{1}{\cot A + \tan B} - \frac{1}{\tan A + \cot B} = \tan (A - B)$$

6. cos 15º ଏବଂ sin 75º ର ମାନ ନିରୂପଣ କର ।

7. (i) 
$$\sin A = \frac{9}{41}$$
 ଏବଂ  $\cos B = \frac{8}{17}$  ହେଲେ  $\sin (A + B)$ ,  $\cos (A + B)$  ର ମାନ ନିରୂପଣ କର ।

$$(ii) \sin \alpha = \frac{7}{25}, \ \sin \beta = \frac{5}{13}, \$$
ହେଲେ  $\sin (\alpha - \beta)$  ଏବଂ  $\cos (\alpha - \beta)$  ର ମାନ ନିରୂପଣ କର ।

8. 
$$\tan{(A+B)}$$
 ର ସୂତ୍ର ପ୍ରୟୋଗରେ  $\tan{(A+B+C)}$  ର ସୂତ୍ର ନିରୂପଣ କର ।

9. 
$$\sin{(A+B)}$$
 ଓ  $\cos{(A+B)}$  ର ସୂତ୍ରଗୁଡ଼ିକରେ  $A=B$  ନେଇ ଦର୍ଶାଅ ଯେ,  $\sin{2A}=2\sin{A}$ .  $\cos{A}$  ଏବଂ  $\cos{2A}=\cos^2{A}-\sin^2{A}$ 

10. (i) 
$$\tan A = \frac{1}{2}$$
,  $\cot B = 3$  ହେଲେ, ଦର୍ଶାଅ ଯେ  $A + B = 45^\circ$ 

(ii) 
$$\tan \beta = \frac{1 - \tan \alpha}{1 + \tan \alpha}$$
 ହେଲେ, ଦର୍ଶାଅ ଯେ  $\tan (\alpha + \beta) = 1$ 

# 11. ପ୍ରମାଣ କର ।

(i) 
$$\sin 50^\circ + \sin 40^\circ = \sqrt{2} \sin 85^\circ$$

(ii) 
$$\cos 70^{\circ} + \cos 50^{\circ} = \sin 80^{\circ}$$

11.3  $0^{\circ} \le \theta \le 90^{\circ}$  ପାଇଁ ଛଅଗୋଟି ତ୍ରିକୋଣମିତିକ ଫଳନ ଯଥା  $\sin \theta$ ,  $\cos \theta$ ,  $\tan \theta$ ,  $\cot \theta$ ,  $\sec \theta$  ଓ  $\csc \theta$  ର ଅବତାରଣା କରାଯାଇଛି । ବର୍ତ୍ତମାନ  $0^{\circ} \le \theta \le 180^{\circ}$  ପାଇଁ ଆବଶ୍ୟକ ଆଲୋଚନା କରାଯିବ । ପୂର୍ବରୁ  $0^{\circ}$  ଓ  $90^{\circ}$  ପାଇଁ ତ୍ରିକୋଣମିତିକ ଫଳନ  $\sin 0^{\circ}$ ,  $\cos 0^{\circ}$ ,  $\sin 90^{\circ}$ ,  $\cos 90^{\circ}$  ଇତ୍ୟାଦିର ମୂଲ୍ୟ ସଂଜ୍ଞା ରୂପେ ଗ୍ରହଣ କରାଯାଇଛି । ଏଠାରେ ଉଲ୍ଲେଖଯୋଗ୍ୟ ଯେ, ପୂର୍ବ ଆଲୋଚିତ  $\sin (A \pm B)$  ଓ  $\cos (A \pm B)$  ସୂତ୍ରଗୁଡ଼ିକ ବ୍ୟବହାର କରି ଆମେ  $\sin 0^{\circ} = 0$ ,  $\cos 0^{\circ} = 1$ ,  $\sin 90^{\circ} = 1$ ,  $\cos 90^{\circ} = 0$  ଇତ୍ୟାଦି ପାଇପାରିବା ।  $\sin 0^{\circ}$ ,  $\cos 0^{\circ}$  ଇତ୍ୟାଦିର ମୂଲ୍ୟ ପୂର୍ବେ ପ୍ରଦର ସଂଜ୍ଞାଗୁଡ଼ିକ ଯଥାର୍ଥ; ଏହା ଦର୍ଶାଇବା ଆମର ଉଦ୍ଦେଶ୍ୟ । ଆହୁରି ମଧ୍ୟ ଉଲ୍ଲେଖଯୋଗ୍ୟ ଯେ  $\sin 180^{\circ}$ ,  $\cos 180^{\circ}$ ର ମୂଲ୍ୟ  $\sin (A + B)$  ଓ  $\cos (A + B)$ ର ସୂତ୍ର ପ୍ରୟୋଗ କରି ନିର୍ଗ୍ୟ କରାଯାଇପାରିବ । ନିମ୍ମ ଉଦାହରଣଗୁଡ଼ିକ ଦେଖ ।

ଭଦାହରଣ – 6: ନିମ୍ନଲିଖିତ ତ୍ରିକୋଣମିତିକ ଅନୁପାତଗୁଡ଼ିକର ମୂଲ୍ୟ ନିରୂପଣ କର । (a)  $\sin 0^\circ$ ,  $\cos 0^\circ$  (b)  $\sin 90^\circ$ ,  $\cos 90^\circ$  (c)  $\sin 180^\circ$ ,  $\cos 180^\circ$  ସମାଧାନ :

(a) 
$$\sin (A - B)$$
 ଓ  $\cos (A - B)$  ରେ  $A = B = 45^{\circ}$  (ମନେକର) ନେଲେ  $\sin 0^{\circ} = \sin (45^{\circ} - 45^{\circ}) = \sin 45^{\circ}$ .  $\cos 45^{\circ} - \cos 45^{\circ}$ .  $\sin 45^{\circ} = 0$   $\cos 0^{\circ} = \cos (45^{\circ} - 45^{\circ}) = \cos 45^{\circ}$ .  $\cos 45^{\circ} + \sin 45^{\circ}$ .  $\sin 45^{\circ}$   $= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{2} + \frac{1}{2} = 1$   $\therefore \sin 0^{\circ} = 0$  ଓ  $\cos 0^{\circ} = 1$ 

ସୂଚନା : (I)  $\tan 0^\circ = \frac{0}{1} = 0$  ମାତ୍ର  $\cot 0^\circ$  ଅର୍ଥହୀନ କାରଣ ଭାଜକ ଶୂନ ହେବା ଅସୟବ । ସେହିପରି  $\csc 0^\circ$  ନିରର୍ଥକ (ସଂଜ୍ଞା ନାହିଁ) ମାତ୍ର  $\sec 0^\circ = \frac{1}{\cos 0^\circ} = \frac{1}{1} = 1$  (b)  $\sin (A+B)$  ଓ  $\cos (A+B)$  ସୂତ୍ର ଦ୍ୱୟରେ  $A=B=45^\circ$  ଲେଖିଲେ

$$\sin 90^{\circ} = \sin (45^{\circ} + 45^{\circ}) = \sin 45^{\circ} \times \cos 45^{\circ} + \cos 45^{\circ} \times \sin 45^{\circ}$$
$$= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{2} + \frac{1}{2} = 1$$

$$\cos 90^{0} = \cos (45^{0} + 45^{0}) = \cos 45^{0} \times \cos 45^{0} - \sin 45^{0} \times \sin 45^{0}$$
$$= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{2} - \frac{1}{2} = 0$$

$$\therefore \sin 90^0 = 1 \ 3 \cos 90^0 = 0$$

ସୂଚନା (II) :  $\cot 90^\circ = 0$ ,  $\csc 90^\circ = 1$  ମାତ୍ର  $\sec 90^\circ$  ଓ  $\tan 90^\circ$  ନିରର୍ଥକ ଅର୍ଥାଚ୍ ସଂଜ୍ଞା ନାହିଁ । ସୂଚନା (III) : (a) ର ଉତ୍ତର ପାଇଁ  $30^\circ - 30^\circ$  କିୟା  $60^\circ - 60^\circ$  ଓ (b) ର ଉତ୍ତର ପାଇଁ  $30^\circ + 60^\circ$  ଲେଖିଥିଲେ ମଧ୍ୟ ଆବଶ୍ୟକୀୟ ଉତ୍ତର ମିଳିବ ।

(c) 
$$\sin (A + B)$$
 ଓ  $\cos (A + B)$  ସୂତ୍ରରେ  $A = B = 90^\circ$  ଲେଖିଲେ  $\sin 180^\circ = \sin (90^\circ + 90^\circ)^\circ = \sin 90^\circ$  .  $\cos 90^\circ + \cos 90^\circ$  .  $\sin 90^\circ$   $\sin 180^\circ = 1 \times 0 + 0 \times 1 = 0$   $\cos 180^\circ = \cos (90^\circ + 90^\circ) = \cos 90^\circ$  .  $\cos 90^\circ - \sin 90^\circ$  .  $\sin 90^\circ$   $= 1 \times 0 - 1 \times 1 = -1$  ∴  $\sin 180^\circ = 0$  ଏବ°  $\cos 180^\circ = -1$ 

ସୂଚନା (IV) : tan  $180^\circ = 0$ , sec  $180^\circ = -1$  ମାତ୍ର cot  $180^\circ$  ଏବଂ cosec  $180^\circ$  ନିର୍ଯ୍କ ଅଟନ୍ତି ।

ମନେରଖ :

ସାରଣୀ - 11.1

| $\theta_0$ | sin θ | cosθ | tan θ        | cot θ        | sec θ        | cosec θ      |
|------------|-------|------|--------------|--------------|--------------|--------------|
| 00         | 0     | 1    | 0            | ସଂଜ୍ଞା ନାହିଁ | 1            | ସଂଜ୍ଞା ନାହିଁ |
| 90°        | 1     | 0    | ସଂଜ୍ଞା ନାହିଁ | 0            | ସଂଜ୍ଞା ନାହିଁ | 0            |
| 180°       | 0     | -1   | . 0          | ସଂଜ୍ଞା ନାହିଁ | -1           | ସଂଜ୍ଞା ନାହିଁ |

# 11.4 90 $^{\circ}$ $\pm$ $^{\circ}$ $\pm$ $^{\circ}$ $^{\circ}$

 $90^{\circ}-A$ ,  $90^{\circ}+A$  ଓ  $180^{\circ}-A$  କୋଣଗୁଡ଼ିକ  $0^{\circ}$  ରୁ  $180^{\circ}$  ମଧ୍ୟ ଅଟେ । ଏହି କୋଣମାନଙ୍କ ପାଇଁ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ  $\sin{(90^{\circ}\pm A)}$ ,  $\cos{(90^{\circ}\pm A)}$  ଓ  $\sin{(180^{\circ}-A)}$ ,  $\cos{(180^{\circ}-A)}$  ମାନଙ୍କ ସୂତ୍ର ଗୁଡ଼ିକ ନିମ୍ନରେ ଦିଆଗଲା ।  $\sin{(A\pm B)}$  ଓ  $\cos{(A\pm B)}$  ସୂତ୍ରମାନଙ୍କର ପ୍ରୟୋଗ କରି ଏ ସମୟ ସୂତ୍ରକୁ ସାବ୍ୟୟ କରାଯାଇପାରିବ ।

(a) 
$$\sin (90^{\circ} - A) = \cos A$$
,  $\cos (90^{\circ} - A) = \sin A$ ,  $\tan (90^{\circ} - A) = \cot A$ 

(b) 
$$\sin (90^{\circ} + A) = \cos A$$
,  $\cos (90^{\circ} + A) = -\sin A$ ,  $\tan (90^{\circ} + A) = -\cot A$ 

(c) 
$$\sin (180^{\circ} - A) = \sin A$$
,  $\cos (180^{\circ} - A) = -\cos A$ ,  $\tan (180^{\circ} - A) = -\tan A$ 

ପୁନଷ  $\cos (90^{\circ} - A) = \cos 90^{\circ}$  ,  $\cos A + \sin 90^{\circ}$  ,  $\sin A [\cos (A - B)$  ସୂତ୍ର ପ୍ରୟୋଗ କରି]  $= 0 \times \cos A + 1 \times \sin A = \sin A$ ;

ଓ 
$$\tan (90 - A) = \frac{\sin(90^{\circ} - A)}{\cos(90^{\circ} - A)} = \frac{\cos A}{\sin A} = \cot A \left[ \widehat{aQ} \sin A \neq 0 \right]$$

(b) 
$$\sin (90^{\circ} + A) = \sin 90^{\circ} \cdot \cos A + \cos 90^{\circ} \cdot \sin A [\sin (A + B) \ \ \ \ \ \ \ \ \ \ ]$$
  
= 1 x cos A + 0 x sin A = cos A;

ପୁନଷ 
$$\cos (90^{\circ} + A) = \cos 90^{\circ} \cdot \cos A - \sin 90^{\circ} \cdot \sin A [\cos (A + B) ସୂତ୍ର ]$$
  
= 0 x cos A - 1 x sinA = - sin A;

3 
$$\tan (90^0 + A) = \frac{\sin(90^0 + A)}{\cos(90^0 + A)} = \frac{\cos A}{-\sin A} = -\cot A$$

ଯଦି sin A ≠ 0 । ଅଥାଚ୍ A ≠ 0°

(c) 
$$\sin (180^{\circ} - A) = \sin 180^{\circ} \cdot \cos A - \cos 180^{\circ} \cdot \sin A [\sin (A - B) \ QQ ]$$
  
=  $0 \times \cos A - (-1) \times \sin A [\because \sin 180^{\circ} = 0 \ \Im \cos 180^{\circ} = -1]$   
=  $\sin A$   
 $\cos (180^{\circ} - A) = \cos 180^{\circ} \cdot \cos A + \sin 180^{\circ} \cdot \sin A [\cos (A - B) \ QQ ]$ 

$$\tan (180^{\circ} - A) = \frac{\sin(180^{\circ} - A)}{\cos(180^{\circ} - A)} = \frac{\sin A}{-\cos A} = -\tan A$$
  
ଯଦି  $\cos A \neq 0$  । ଅଥାଚ୍ଚି  $A \neq 90^{\circ}$ 

#### ସୂତ୍ର - A

$$0^{\circ} < 90^{\circ}$$
 ପରିସରରେ ନିମ୍ନ ସ୍ତୁଗୁଡ଼ିକୁ ମନେରଖ ।

 $= (-1) \times \cos A + 0 \times \sin A = -\cos A$ ;

$$\sin (90^{\circ} - \theta) = \cos \theta,$$
  $\cos (90^{\circ} - \theta) = \sin \theta$   
 $\tan (90^{\circ} - \theta) = \cot \theta,$   $\cot (90^{\circ} - \theta) = \tan \theta$ 

$$\sec (90^{\circ} - \theta) = \csc \theta$$
,  $\csc (90^{\circ} - \theta) = \sec \theta$ 

# ସୂତ୍ର - B

$$\begin{vmatrix}
\sin (180^{\circ} - \theta) = \sin \theta \\
\cos (180^{\circ} - \theta) = -\cos \theta \\
\tan (180^{\circ} - \theta) = -\tan \theta, \theta \neq 90^{\circ}
\end{vmatrix}$$

$$\cot (180^{\circ} - \theta) = -\cot \theta$$

$$0^{\circ} < \theta < 180^{\circ}$$

$$\sec (180^{\circ} - \theta) = -\sec \theta$$
  $\theta \neq 90^{\circ}, 0^{\circ} \leq \theta \leq 180^{\circ}$ 

$$\csc (180^{\circ} - \theta) = \csc \theta, \quad 0^{\circ} < \theta < 180^{\circ}$$

#### ସୂତ୍ର - C

$$\sin (90^{0} + \theta) = \cos \theta \qquad 0^{0} \le \theta \le 90^{0}$$

$$\cos (90^{0} + \theta) = -\sin \theta \qquad 0^{0} \le \theta \le 90^{0}$$

$$\tan (90^{0} + \theta) = -\cot \theta \qquad 0^{0} < \theta \le 90^{0}$$

$$\cot (90^{0} + \theta) = -\tan \theta \qquad 0^{0} \le \theta < 90^{0}$$

$$\sec (90^{0} + \theta) = -\csc \theta \qquad 0^{0} < \theta \le 90^{0}$$

$$\csc (90^{0} + \theta) = \sec \theta \qquad 0^{0} \le \theta < 90^{0}$$

# 11.5 କେତେକ ନିର୍ଦ୍ଦିଷ୍ଟ ତ୍ରିକୋଣମିତିକ ମାନ :

 $\theta=30^\circ,45^\circ,60^\circ$  ପାଇଁ ବିଭିନ୍ନ ତ୍ରିକୋଶମିଡିକ ମାନ ନିରୂପଣ କରାଯାଇଥିଲା । ଏମାନଙ୍କ ସାହାଯ୍ୟରେ ଏବଂ ପୂର୍ବ ଅନୁହ୍ଲେଦରେ ବର୍ଷିତ ତଥ୍ୟମାନଙ୍କ ଦ୍ୱାରା  $\theta=120^\circ,135^\circ$  ଓ  $150^\circ$  ପାଇଁ ତ୍ରିକୋଣମିତିକ ମାନ ସବୁ ମଧ୍ୟ ନିରୂପିତ ହୋଇପାରିବ । ଏହାର ଆଲୋଚନା ନିମ୍ନରେ କରାଯାଇଛି ।

(i) 
$$\theta = 120^{\circ}$$

ପୂର୍ବରୁ କଣା ଅଛି ଯେ 
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$
,  $\cos 60^\circ = \frac{1}{2}$  ଏବଂ  $\tan 60^\circ = \sqrt{3}$   $\therefore \sin 120^\circ = \sin (180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}$   $\cos 120^\circ = \cos (180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}$   $\tan 120^\circ = \tan (180^\circ - 60^\circ) = -\tan 60^\circ = -\sqrt{3}$   $\cot 120^\circ = \frac{1}{\tan 120^\circ} = -\frac{1}{\sqrt{3}}$ ;  $\sec 120^\circ = \frac{1}{\cos 120^\circ} = -2$  ଏବଂ  $\csc 120^\circ = \frac{1}{\sin 120^\circ} = \frac{2}{\sqrt{3}}$ 

### (i) $\theta = 135^{\circ}$

ଏଠାରେ 
$$\theta=180^{\circ}-45^{\circ}$$
 ଏବଂ ପୂର୍ବରୁ କଣା ଅଛି ଯେ -  $\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$  ,  $\tan 45^{\circ}=1$ 

$$\therefore \sin 135^{\circ}=\sin 45^{\circ}=\frac{1}{\sqrt{2}} \text{ ; } \cos 135^{\circ}=-\cos 45^{\circ}=-\frac{1}{\sqrt{2}} \text{ ; } \tan 135^{\circ}=-\tan 45^{\circ}=-1$$
[ $\sin (180^{\circ}-\theta), \cos (180^{\circ}-\theta), \tan (180^{\circ}-\theta)$  ର ସୂତ୍ର ପ୍ରୟୋଗ କରି ]  $\cot 135^{\circ}=\frac{1}{\tan 135^{\circ}}=-1 \text{; } \sec 135^{\circ}=\frac{1}{\cos 135^{\circ}}=-\sqrt{2}$ 
ଏବଂ  $\csc 135^{\circ}=\frac{1}{\sin 135^{\circ}}=\sqrt{2}$ 

(iii) ପୂର୍ବରୁ ଜଣା ଅଛି 
$$\sin 30^\circ = \frac{1}{2}$$
,  $\cos 30^\circ = \frac{\sqrt{3}}{2}$ ,  $\tan 30^\circ = \frac{1}{\sqrt{3}}$ 

$$\therefore \sin 150^{0} = \sin 30^{0} = \frac{1}{2}, \cos 150^{0} = -\cos 30^{0} = -\frac{\sqrt{3}}{2}$$

$$\tan 150^{\circ} = -\tan 30^{\circ} = \frac{1}{\sqrt{3}}, \cot 150^{\circ} = \frac{1}{\tan 150^{\circ}} = -\sqrt{3}$$
  
 $\sec 150^{\circ} = \frac{1}{\cos 150^{\circ}} = \frac{-2}{\sqrt{3}} \, \triangleleft \, \text{Q° cosec } 150^{\circ} = \frac{1}{\sin 150^{\circ}} = 2$ 

ଏ ପର୍ଯ୍ୟନ୍ତ ଜଣା ଥିବା ତ୍ରିକୋଣମିତିକ ମାନଗୁଡ଼ିକୁ ନିମ୍ନସ୍ଥ ସାରଣୀରେ ଉପସ୍ଥାପିତ କରାଯାଇଛି ।

ସାରଣୀ 11.2

| θ =  | sin                  | cos                   | tan                   | cot                   | sec                   | cosec                |
|------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|
| 00   | 0                    | 1                     | 0                     | ସଂଜ୍ଞା ନାହିଁ          | 1                     | ସଂଜ୍ଞା ନାହିଁ         |
| 30°  | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$  | $\frac{1}{\sqrt{3}}$  | $\sqrt{3}$            | $\frac{2}{\sqrt{3}}$  | 2                    |
| 450  | $\frac{1}{\sqrt{2}}$ | $\frac{1}{\sqrt{2}}$  | 1                     | 1                     | $\sqrt{2}$            | $\sqrt{2}$           |
| 60°  | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$         | $\sqrt{3}$            | $\frac{1}{\sqrt{3}}$  | 2                     | $\frac{2}{\sqrt{3}}$ |
| 90°  | 1                    | 0                     | ସଂଜ୍ଞା ନାହିଁ          | 0                     | ସଂଜ୍ଞା ନାହିଁ          | 1                    |
| 120° | $\frac{\sqrt{3}}{2}$ | $-\frac{1}{2}$        | - √3                  | $-\frac{1}{\sqrt{3}}$ | -2                    | $\frac{2}{\sqrt{3}}$ |
| 135° | $\frac{1}{\sqrt{2}}$ | $\frac{-1}{\sqrt{2}}$ | )-1                   | 1-1                   | - √ <u>2</u>          | $\sqrt{2}$           |
| 150° | 1/2                  | $-\frac{\sqrt{3}}{2}$ | $-\frac{1}{\sqrt{3}}$ | - √3                  | $-\frac{2}{\sqrt{3}}$ | 2                    |
| 180° | 0                    | -1                    | 0                     | ସଂଜ୍ଞା ନାହିଁ          | -1                    | ସଂଜ୍ଞା ନାହିଁ         |

ଭବାହରଣ -6: ପ୍ରମାଣ କର ଯେ,  $\sin 120^\circ + \tan 150^\circ$  .  $\cos 135^\circ = \frac{3+\sqrt{2}}{2\sqrt{3}}$ 

ସମାଧାନ : ବାମପାର୍ଶ୍ୱ = sin 120° + tan 150° . cos 135°

$$= \frac{\sqrt{3}}{2} + \left(-\frac{1}{\sqrt{3}}\right) \cdot \left(-\frac{1}{\sqrt{2}}\right) = \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{3}\sqrt{2}}$$
$$= \frac{3+\sqrt{2}}{2\sqrt{3}} = \text{ ଜିଣ ପାର୍ଶ (ପ୍ରମାଣିତ)}$$

ଭଦାହରଣ – 7 : ମାନ ନିର୍ଣ୍ଣୟ କର :  $\frac{\cos 29^{\circ} + \sin 159^{\circ}}{\sin 61^{\circ} + \cos 69^{\circ}}$ 

ସମାଧାନ : 
$$\frac{\cos 29^{\circ} + \sin 159^{\circ}}{\sin 61^{\circ} + \cos 69^{\circ}} = \frac{\cos (90^{\circ} - 61^{\circ}) + \sin (90^{\circ} + 69^{\circ})}{\sin 61^{\circ} + \cos 69^{\circ}} = \frac{\sin 61^{\circ} + \cos 69^{\circ}}{\sin 61^{\circ} + \cos 69^{\circ}} = 1 \text{ (ଭରର)}$$

∴ 
$$B = 135^{\circ} - 90^{\circ} = 45^{\circ}$$
  
∴  $A = 90^{\circ}$  ও  $B = 45^{\circ}$  (ଉତ୍ତର)

ଭଦାହରଣ - 12 : ପ୍ରମାଣ କର ଯେ,  $\cos^2 135^0 - 2\sin^2 180^0 + 3 \cot^2 150^0 - 4 \tan^2 120^0 = \frac{-5}{2}$ 

ସମାଧାନ : ବାମପକ୍ଷ = 
$$\cos^2 135^0 - 2\sin^2 180^0 + 3 \cot^2 150^0 - 4 \tan^2 120^0$$
 =  $\left(-\frac{1}{\sqrt{2}}\right) - 2 \cdot (0)^2 + 3 \cdot (-\sqrt{3})^2 - 4 \cdot (-\sqrt{3})^2$  =  $\frac{1}{2} - 0 + 3 \times 3 - 4 \times 3$  =  $\frac{1}{2} + 9 - 12 = \frac{1}{2} - 3 = \frac{-5}{2} =$  କରିଶପକ୍ଷ (ପ୍ରମାଣିତ)

# ଅନୁଶୀଳନୀ - 11 (b)

# 1. ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସାନ ପୂରଣ କର ।

(a) 
$$\sin 80^{\circ} = \dots$$

(b) 
$$\cos 65^\circ = \dots$$

(c) 
$$\sin 180^\circ = \dots$$

(d) 
$$\cos 90^\circ = \dots$$

(e) 
$$\cos 110^{\circ} + \sin 20^{\circ} = \dots$$

(f) 
$$\sin 75^{\circ} - \cos 15^{\circ} = \dots$$

(g) 
$$\sin 0^{\circ} = \dots$$

(h) 
$$\sin 15^{\circ} + \cos 105^{\circ} = \dots$$

(i) 
$$\cos 121^{\circ} + \sin 149^{\circ} = \dots$$

(j) 
$$\tan 102^{\circ} - \cot 168^{\circ} = \dots$$

#### 2. ସରଳ କର ।

(i) 
$$\sin^2(180^0 - \theta) \times \sec^2(90^0 + \theta)$$

(v) 
$$\cos^2(90^0 + \alpha) + \cos^2(180^0 - \alpha)$$

(vi) 
$$\sec^2 (180^0 - \theta) - \cot^2 (90^0 + \theta)$$

(vii) 
$$\sec^2 (90^0 + \theta) - \cot^2 (180^0 - \theta)$$

(viii) 
$$\csc^2(97^0 + \alpha) - \cot^2(83^0 - \alpha)$$

(ix) 
$$\sec^2 (105^0 + \alpha) - \tan^2 (75^0 - \alpha)$$

(x) 
$$\sin^2(110^0 + \alpha) + \cos^2(70^0 - \alpha)$$

[sin 10°, sin 20°, cos 10°, cos 20°]

[sin 25°, sin 35°, cos 25°, cos 35°]

$$[1, -1, 0, \pm 1]$$

$$[1, -1, 0, \pm 1]$$

[2 cos 110°, 2 sin20°, 0, 1]

$$\left[\frac{\sqrt{3}}{2}, \frac{1}{2}, 0, 1\right]$$

[cos 0°, sin 90°, sin 180°, cos 180°]

$$[0, 1, -1, \pm 1]$$

$$[1, -1, 0, \pm 1]$$

$$[0,-1,1,\pm 1]$$

tan2600

cosec1500

#### 3. ମାନ ନିର୍ଷୟ କର ।

(i) 
$$\sin 28^{\circ} + \cos 118^{\circ}$$
 (ii)

(iii) 
$$\frac{\sin 51^{0} + \sin 156^{0}}{\cos 39^{0} + \cos 66^{0}}$$
 (iv)  $\sin {}^{2}70^{0} + \cos^{2} 110^{0}$ 

(v) 
$$\frac{\cos 68^{\circ} + \sin 131^{\circ}}{\sin 22^{\circ} + \cos 41^{\circ}}$$
 (vi)  $\frac{\sin 162^{\circ} + \cos 153^{\circ}}{\cos 72^{\circ} - \cos 27^{\circ}}$ 

#### 4. ସରଳ କର ।

(i) 
$$\frac{\sec 31^{\circ} + \csc 120^{\circ}}{\sqrt{3} \csc 29^{\circ} + 2}$$
 (ii)  $\frac{\sec 62^{\circ} + \csc 150^{\circ}}{\csc 28^{\circ} + 2}$ 

(iii) 
$$\frac{\sin^2 125^0 + \cos^2 55^0}{\cos^2 125^0 + \sin^2 55^0}$$
 (iv) 
$$\frac{\sec^2 180^0 + \tan 150^0}{\csc^2 90^0 + \cot 120^0}$$

(v) 
$$\frac{\csc 38^0 + \sin 120^0}{2\sin 52^0 + \sqrt{3}}$$
 (vi)  $\tan 180^0 \cdot \tan 135^0 \cdot \tan 150^0 \cdot \tan 45^0$ 

# 5. ମୂଲ୍ୟ ନିରୁପଣ କର ।

(a) tan 10 x tan 20 x tan 30 x ... x tan 880 x tan 890

(b) tan 10° x tan 20° x tan 30° x ... x tan 70° x tan 80°

6. (i)  $A + B + C = 180^{\circ}$  ହେଲେ ପ୍ରମାଶ କର ଯେ,  $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$ 

$$(ii)$$
  $A+B+C=180^\circ$  ଏବଂ  $\sin C=1$  ହେଲେ ପ୍ରମାଶ କର ଯେ,  $\tan A$  .  $\tan B=1$ 

(iii) A + B + C = 180° ହେଲେ ପ୍ରମାଶ କର ଯେ,cot A . cot B + cot B . cot C + cot C . cot A = 1

(iv)  $A + B + C = 180^{\circ}$  ଏବଂ  $\cos A = \cos B \cdot \cos C$  ହେଲେ ପ୍ରମାଶ କର ଯେ, (a)  $\tan A = \tan B + \tan C$ ; (b)  $\tan B \cdot \tan C = 2$ 

#### 7. ସମାଧାନ କର :

(i) 
$$\sin(A + B) = \frac{1}{\sqrt{2}}, \cos(A - B) = \frac{1}{\sqrt{2}}$$
 (ii)  $\cos(A + B) = -\frac{1}{2}, \sin(A - B) = \frac{1}{2}$ 

(iii) 
$$\tan (A - B) = \frac{1}{\sqrt{3}} = \cot (A + B)$$
 (iv)  $\tan (A + B) = -1$ ,  $\csc(A - B) = \sqrt{2}$ 

# 8. ଦର୍ଶାଅ ଯେ,

(i) 
$$\sin (A + B) \times \sin (A - B) = \sin^2 A - \sin^2 B$$

(ii) 
$$\cos (A + B) \times \cos (A - B) = \cos^2 A - \sin^2 B$$

#### ପୁମାଣ କର :

(i) 
$$\frac{\sin^2 135^0 + \cos^2 120^0 - \sin^2 150^0 + \tan^2 150^0}{\sin^2 120^0 + \cos^2 150^0 + \tan^2 120^0 + \tan 135^0 + \cos 180^0} = \frac{5}{18}$$

(ii) 
$$\frac{\sec^2 180^0 + \tan 45^0}{\csc^2 90^0 - \cot 120^0} = 3 - \sqrt{3}$$

(iii) 
$$\frac{\cot 60^{\circ} \cdot \cot 30^{\circ} + 1}{\cot 30^{\circ} + \cot 120^{\circ}} = \sqrt{3}$$

(iv) 
$$\frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ}, \tan 30^{\circ}} = 2 + \sqrt{3}$$

(v) 
$$\frac{5\sin^2 150^0 + \cos^2 45^0 + 4\tan^2 120^0}{2\sin 30^0 \cdot \cos 60^0 - \tan 135^0} = \frac{55}{6}$$

# 11.6 ଭଟ୍ଟତା ଓ ଦୂରତା (Heights and distances) :

ଗଣିତ ପାଠକୁ ସୁଖପ୍ରଦ କରିବା ପାଇଁ ଏହାର ପ୍ରୟୋଗାତ୍ସକ ଦିଗ ବିଷୟରେ ଆଲୋଚନା କରାଯିବା ଉଚିତ୍ । ପ୍ରତ୍ୟେଷ ମାପ ନ କରି ପଠାଣି ସାମନ୍ତ ଏକ ନଳୀ ସାହାଯ୍ୟରେ ଶୀର୍ଷ ଦେଶକୁ ନିରୀୟଣ କରି ପାହାଡ଼ର ଉଚ୍ଚତା ନିର୍ଶ୍ୟ କରି ପାରୁଥିଲେ । ଏହା ପ୍ରୟୋଗାତ୍ସକ ଗଣିତର ଏକ ନମୁନା । ଆସ ଆମେ ପ୍ରିକୋଣମିତିର ବାଞ୍ଚବ କ୍ଷେତ୍ରରେ ପ୍ରୟୋଗ ସମ୍ଭନ୍ଧରେ ଆଲୋଚନା କରିବା ।

କେତେକ ସ୍ଥଳରେ ଯନ୍ତ୍ରୀମାନେ ପାହାଡ଼, ମନ୍ଦିର ପ୍ରଭୃତିର ଉଚ୍ଚତା ଏ**ବଂ ନଦୀର ଦୁଇ ବିପରୀତ ଧାରରେ ଥିବା ବୟୁମାନଙ୍କର** ଦୂରତା ମାପଫିତା ଦ୍ୱାରା ନିର୍ଣ୍ଣୟ କରିପାରନ୍ତି ନାହିଁ । ତ୍ରିକୋଣମିତିର ପ୍ରୟୋଗରେ ଏପରି ସମସ୍ୟାର ସମାଧାନ କରାଯାଇପାରେ । ଉଚ୍ଚତା ଓ ଦୂରତା ସୟନ୍ଧୀୟ ପ୍ରଶ୍ମର ସମାଧାନ ପୂର୍ବରୁ ନିମ୍ନୟ କେତୋଟି **ତତ୍ତ୍ୱ ସହିତ ଅବଗତ ହେବା ଦରକାର** ।

1. ପୃଥିବୀ ଏକ ଗୋଲାକାର ବସ୍ତୁ ହେଲେ ମଧ୍ୟ ଏହାର ବିଶାଳତା ହେତୁ ଏହାର ପୃଷର ଏକ କ୍ଷୁଦ୍ର ଅଂଶକୁ ଆମେ ଗୋଟିଏ ସମତଳ ବୋଲି ଧରିପାରିବା । ଏହି ସମତଳ ସହିତ ସମାନ୍ତରାଳ ଯେ କୌଣସି ସରଳରେଖାକୁ ଆନୁଭୂମିକ ସରଳରେଖା କୁହାଯାଏ ।

ଯଥା : ପାର୍ଶ୍ୱସ ଚିତ୍ରରେ ⇔ ଏକ ଆନୁଭୂମିକ ରେଖା ।

2. ଚିତ୍ରରେ O ବିହୁଠାରେ ଅବସ୍ଥିତ ଏକ ଦର୍ଶକର ଚକ୍ଷୁ, ଅଧିକ ଉଚ୍ଚରେ ଥିବା ଏକ ବସ୍ତୁ P ଦିଗରେ ତୃଷି ନିକ୍ଷେପ କରୁଥିବାର ଦେଖାଯାଉଛି ।  $\overrightarrow{OA}$ ,  $\overrightarrow{OP}$  ମଧ୍ୟ ଲୟ ସମତଳରେ ଅବସ୍ଥିତ ଏକ ଆନୁଭୂମିକ ରଶ୍ମି ।  $\overrightarrow{OA}$  ଓ  $\overrightarrow{OP}$  ରଶ୍ମିଦ୍ୱୟର ଅନ୍ତର୍ଗତ କୋଣକୁ O ବିହୁରେ P ବିହୁର କୌଣିକ ଉନ୍ନତି (Angle of elevation) ବୋଲି କୁହାଯାଏ । ଚିତ୍ରରେ ଏହାର ପରିମାଣ  $\theta$  ଅଟେ ।



ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ ଚକ୍ଷୁର ଅବସ୍ଥିତି ଲକ୍ଷ୍ୟ କର । ଏଠାରେ ଦୃଷି ନିକ୍ଷେପର ଦିଗ  $\overrightarrow{OP}$  ମଧ୍ୟସ୍ଥ ଲୟ ସମତଳରେ  $\overrightarrow{OA}$  ଏକ ଆନୁଭୂମିକ ରଶ୍ମି ।  $\overrightarrow{OP}$  ଏବଂ  $\overrightarrow{OA}$  ଅନ୍ତର୍ଗତ କୋଣକୁ O ବିନ୍ଦୁରେ P ବିନ୍ଦୁର **କୌଣିକ ଅବନତି** (Angle of depression) ବୋଲି କୁହାଯାଏ । ଚିତ୍ରରେ ଏହାର ପରିମାଣ  $\Theta$  ଅଟେ ।



ଦୃଷ୍ଟି ନିକ୍ଷେପର ଦିଗ ଓ ଏହାର ଲୟ ସମତଳରେ ଥିବା ଚକ୍ଷୁ ମଧ୍ୟସ୍କ ଆନୁଭୂମିକ ରଶ୍ମି ଅନ୍ତର୍ଗତ କୋଣକୁ ଦୃଷ୍ଟିବଦ୍ଧ ବୟୁର କୌଣିକ ଉନ୍ନତି ବା କୌଣିକ ଅବନତି କୁହାଯାଏ । ସେକ୍ସ୍ଟାଣ୍ଡ (sextant) ବା ଥଓଡୋଲାଇଟ୍ (Theodolite) ଯନ୍ତ୍ର ସାହାଯ୍ୟରେ କୌଣିକ ଉନ୍ନତି ବା ଅବନତି ନିର୍ଣ୍ଣୟ କରାଯାଇପାରେ । ଏହି କୋଣର ମାପ ବ୍ୟବହାର କରି ତ୍ରିକୋଣମିତିକ ପ୍ରଣାଳୀଦ୍ୱାରା ଦୂରରେ ଅବସ୍ଥିତ ଦୂର୍ଗ, ପାହାଡ଼ ଓ ଅଟ୍ଟାଳିକା ପ୍ରଭୃତିର ଦୂରତା ବା ଉଚ୍ଚତା ନିରୂପଣ କରିହେବ ।

କୌଣସି ବସ୍ତୁ ଏକ ବିନ୍ଦୁଠାରେ ଉପ୍ନ କରୁଥିବା କୋଣ :

ପାର୍ଶ୍ୱୟ ଚିତ୍ରରେ  $\overline{PM}$  ଏକ ଷୟ ।  $\overline{BA}$  ଏକ ମନ୍ଦିର । ମନ୍ଦିରର ପ୍ରାନ୍ତ ଓ ଶୀର୍ଷ ବିନ୍ଦୁ ଯଥାକୁମେ  $\overline{PM}$  ଷୟର ଶୀର୍ଷ ବିନ୍ଦୁ P କୁ A ଓ B ବିନ୍ଦୁ ସହ ଯୋଗ କରାଯାଇଛି ।  $\overline{AB}$  ମନ୍ଦିରଟି P ବିନ୍ଦୁଠାରେ  $\angle APB$  ଉତ୍ପନ୍ନ କରୁଥିବାର କୁହାଯାଏ ।



ତ୍ରିକୋଣମିତିକ ଅନୁପାତଗୁଡ଼ିକର ପ୍ରୟୋଗ କରି ଉଚ୍ଚତା ଓ ଦୂରତା ସମ୍ପର୍କିତ ପ୍ରଶ୍ନମାନଙ୍କ ସମାଧାନ ସହକରେ କରାଯାଇପାରେ । ନିମ୍ନ ଉଦାହରଣଗୁଡ଼ିକୁ ଦେଖ ।

#### ଉଦାହରଣ - 1:

ଏକ ଅଟାଳିକାର ପାଦଦେଶଠାରୁ 75 ମିଟର ଦୂରରେ ଏକ ସମତଳରେ ଥିବା ଗୋଟିଏ ବିନ୍ଦୁରୁ ଅଟାଳିକାର ଶୀର୍ଷର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ  $30^\circ$  । ଅଟାଳିକାର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର । ( $\sqrt{3}=1.732$ )

ସମାଧାନ :  $\overline{\mathrm{BC}}$  ସମତଳ ଉପରିସ୍ଥ ରେଖାଖଣ୍ଡ,  $\mathrm{BA}$  ଅଟାଳିକାର ଉଚ୍ଚତା ଓ  $\mathrm{A}$  ଅଟାଳିକାର ଶୀର୍ଷ ହେଉ ।

ABC ସମକୋଣୀ ତ୍ରିଭୁକରେ

$$\tan 30^0 = \frac{BA}{BC} = \frac{BA}{75}$$
 କିହା  $BA = 75 \tan 30$ 



$$= 75 \times \frac{1}{\sqrt{3}} = 75 \times \frac{\sqrt{3}}{3} = 25 \sqrt{3} = 25 \times 1.732 = 43.3$$
 ମିଟର

: ଅଟ୍ରାଳିକାର ଉଚ୍ଚତା 43.3 ମିଟର

(ଉତ୍ତର)

#### ଉଦାହରଣ - 2:

30 ମିଟର ଉଚ୍ଚ ଗୋଟିଏ ବୃକ୍ଷର ଅଗ୍ରଭାଗରୁ ଏକ ସମତଳରେ ଓ ବୃକ୍ଷର ପାଦଦେଶରୁ କିଛି ଦୂରରେ ଥିବା ଗୋଟିଏ ବିହୁର କୌଣିକ ଅବନତିର ପରିମାଣ  $30^\circ$  । ବୃକ୍ଷ ପାଦଦେଶରୁ ବିହୁର ଉକ୍ତ ଦୂରତା ସ୍ଥିର କର । (ଦଭ ଅଛି,  $\sqrt{3}$  =1.732)

#### ସମାଧାନ :

 ${
m BA}=$ ବୃକ୍ଷର ଉଚ୍ଚତା = 30 ମିଟର, m $\angle{
m DAP}=30^{\circ}$  ବୃକ୍ଷର ପାଦ ଦେଶ B ରୁ ଏକ ସମତଳରେ ଥିବା ବିହୁଟି P, BP ଦୈର୍ଘ୍ୟଟି ଆବଶ୍ୟକ । ଏଠାରେ ABP ସମକୋଣୀ ତ୍ରିଭୁକରେ m $\angle{
m APB}=30^{\circ}$ 

∴ 
$$\tan 30^{\circ} = \frac{AB}{BP} = \frac{30}{BP}$$

⇒  $\frac{1}{\sqrt{3}} = \frac{30}{BP}$ 

∴  $BP = 30\sqrt{3}$  ମିଟର =  $(30 \times 1.732)$  ମିଟର =  $51.96$  ମିଟର (ଉଉର)



#### ଉଦାହରଣ - 3:

ଏକ ସ୍ତୟ  $\overline{AB}$ ର ପାଦଦେଶ B ରୁ ଆନୁଭୂମିକ ସରଳରେଖା ଉପରିଷ୍ଟ ଦୁଇଟି ବିନ୍ଦୁ P ଓ Q ର B ଠାରୁ ଦୂରତା ଯଥାକ୍ରମେ a ମି ଓ b ମି । P ଓ Q, ସ୍ତୟର ଶୀର୍ଷ A ର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ ଯଥାକ୍ରମେ  $\alpha^{\circ}$  ଓ  $\beta^{\circ}$  ।

ଯଦି  $\alpha + \beta = 90^\circ$  ତେବେ ସମ୍ଭର ଉଚ୍ଚତା AB ନିରୂପଣ କର ।

ସମାଧାନ : ମନେକର AB = h ମିଟର । ଦଉ ଅଛି BP = a ମି ଓ BQ = b ମି.,

$$\angle APB=\alpha$$
,  $\angle AQB=\beta$  ଏବଂ  $\alpha+\beta=90^\circ$  AQB ସମକୋଶୀ ତ୍ରିଭୁକରେ  $\tan\beta=\frac{AB}{BQ}=\frac{h}{b}$  APB ସମକୋଶୀ ତ୍ରିଭୁକରେ  $\tan\alpha=\frac{AB}{BP}=\frac{h}{a}$ 



ଆମେ ଜାଗୁ, 
$$\tan{(\alpha+\beta)}=\frac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}+\tan{\beta}}=\frac{\frac{h}{a}+\frac{h}{b}}{1-\frac{h^2}{ab}}=\frac{h(a+b)}{ab-h^2}$$

$$\Rightarrow$$
 cot  $(\alpha + \beta) = \frac{ab - h^2}{h(a+b)}$ 

ମାତ୍ର 
$$\cot (\alpha + \beta) = \cot 90^\circ = 0$$

∴ 
$$ab - h^2 = 0 \implies h = \sqrt{ab} \ \widehat{\mathfrak{A}}$$
. I  $AB = h \ \widehat{\mathfrak{A}} = \sqrt{ab} \ \widehat{\mathfrak{A}}$ . (@)

#### ଉଦାହରଣ - 4:

ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ  $30^\circ$  ଥିବା ବେଳେ ଗୋଟିଏ ଷୟର ଛାଇର ଦୈର୍ଘ୍ୟ ଯେତେ, ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ  $45^\circ$  ବେଳେ ଛାଇର ଦୈର୍ଘ୍ୟ ତା'ଠାରୁ 30 ମିଟର କମ୍ । ଷ୍ୟଟିର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର । (  $\sqrt{3}$  =1.732)

ସମାଧାନ : ଚିତ୍ର 11.9 ରେ AB ଷୟର ଉଚ୍ଚତା, BD ଓ BC ଯଥାକ୍ରମେ ଷୟର ଛାଇ ଦୈର୍ଘ୍ୟ ଯେତେବେଳେ

ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ  $45^{\circ}$  ଓ  $30^{\circ}$  ଏବଂ CD = BC - BD = 30 ମିଟର ।

ମନେକର ୟୟର ଉଚ୍ଚତା = AB = x ମିଟର

BAD ସମକୋଣୀ ତ୍ରିଭୁକରେ  $\tan 45^\circ = \frac{x}{BD}$ 

$$\Rightarrow BD = \frac{x}{\tan 45^0} = \frac{x}{1} = x$$



ଓ BAC ସମକୋଣୀ ତ୍ରିଭୁକରେ 
$$\tan 30^\circ = \frac{x}{BC} \Rightarrow BC = \frac{x}{\tan 30^\circ} = \frac{x}{\frac{1}{\sqrt{3}}} = x$$
 ,  $\sqrt{3}$ 

ପ୍ରଶ୍ରାନୁଯାୟୀ BC – BD = DC = 30 ମି. 
$$\Rightarrow x\sqrt{3} - x = 30$$

$$\Rightarrow x = \frac{30}{\sqrt{3} - 1} = \frac{30(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{30(\sqrt{3} + 1)}{3 - 1}$$
$$= \frac{30(1.732 + 1)}{(3 - 1)} = \frac{30 \times 2.732}{2} = 15 \times 2.732 = 40.98$$
 ମିଟର

#### ଉଦାହରଣ - 5:

ଗୋଟିଏ ପାହାଡ଼ ଉପରୁ 100 ମିଟର ଉଚ୍ଚ ଏକ ସମତଳରେ ଥିବା ଗୋଟିଏ ସ୍ତୟର ଶୀର୍ଷ ଓ ପାଦଦେଶର କୌଣିକ ଅବନତିର ପରିମାଣ ଯଥାକ୍ରମେ  $30^\circ$  ଓ  $60^\circ$  । ପାହାଡ଼ର ଉଚ୍ଚତା ନିର୍ଦ୍ଦଣ କର ।

ସମାଧାନ : ମନେକର AB = ପାହାଡ଼ର ଉଚ୍ଚତା ଓ CD ଏକ ସମତଳସ୍ଥ ସୃମ୍ଭ ।

↔ BP ଭୂପୃଷ ସହ ସମାନ୍ତର ରେଖା ହେଲେ m∠PBD = 30° ଓ m∠PBC = 60° ଓ CD = 100 ମିଟର । ମନେକର ପାହାଡ଼ର ଉଚ୍ଚତା AB = x ମିଟର ଓ  $\overline{DO}$   $\parallel \overline{BP} \parallel \overline{AC}$ 

$$\therefore m\angle BCA = 60^{\circ} \text{ G } m\angle BDQ = 30^{\circ}$$

$$BQ = AB - AQ = AB - DC = (x - 100) \Re.$$

BQD ସମକୋଣୀ ତ୍ରିଭୁକରେ  $\tan 30^{\circ} = \frac{BQ}{QD}$ 

$$\Rightarrow$$
 QD =  $\frac{BQ}{\tan 30^{\circ}} \Rightarrow$  QD =  $\frac{x - 100}{\tan 30^{\circ}}$ 

BAC ସମକୋଣୀ ତ୍ରିଭୁକରେ  $\tan 60^\circ = \frac{AB}{AC}$ 

$$\Rightarrow$$
 AC =  $\frac{AC}{\tan 60^{\circ}} \Rightarrow$  AC =  $\frac{x}{\tan 60^{\circ}}$ 

ମାତ୍ର QD = AC 
$$\therefore$$
 (i) ଓ (ii) ରୁ  $\frac{x-100}{\tan 30^0} = \frac{x}{\tan 60^0}$ 

$$\Rightarrow \frac{x-100}{\frac{1}{\sqrt{3}}} = \frac{x}{\sqrt{3}} \Rightarrow \sqrt{3} (x-100) = \frac{x}{\sqrt{3}}$$

$$\Rightarrow$$
 3 (x-100) = x  $\Rightarrow$  3x-300 = x

$$\Rightarrow$$
 3x-x = 300  $\Rightarrow$  2x = 300  $\Rightarrow$  x = 150

∴ ପାହାଡ଼ର ଉଚ୍ଚତା 150 ମିଟର ।



# ଅନୁଶୀଳନୀ - 11 (c) କ - ବିଭାଗ

$$(\sqrt{3} = 1.732)$$

- ଗୋଟିଏ ବୃକ୍ଷର ପାଦଦେଶ ସହ ଏକ ସମତଳରେ ଏବଂ ଏହାଠାରୁ 120 ମି. ଦୂରରେ ଅବସ୍ଥିତ କୌଣସି ବିନ୍ଦୁରେ ବୃକ୍ଷର 1. ଅଗୁଭାଗର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30º ହେଲେ ବୃକ୍ଷର ଉଚ୍ଚତା ସ୍ଥିର କର ।
- 27 ମିଟର ଉଚ୍ଚ ଏକ ବତୀଘରର ଶୀର୍ଷରୁ ଏକ ଜାହାଜର କୌଣିକ ଅବନତିର ପରିମାଣ 30° । ବତୀଘରଠାରୁ ଜାହାଜର 2. ଦୂରତା ନିର୍ଣ୍ଣୟ କର ।
- 2 ମିଟର ଉଚ୍ଚ ଏକ ଦର୍ଶକ ଦେଖିଲା ଯେ, 24 ମିଟର ଦୂରରେ ଥବା ଏକ ୟୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30° । ୟୟର 3. ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।

- 4. ଏକ ସିଡ଼ି ଏକ କାଛର ଶାର୍ଷକୁ ସର୍ଶ କରୁଛି । ସିଡ଼ିର ପାଦ ଦେଶରୁ କାଛର ଦୂରତା 3 ମିଟର । ସିଡ଼ିଟି ଭୂମି ସହ 60º ରେ ଆନତ । ସିଡ଼ିର ଦୈର୍ଘ୍ୟ ସ୍ଥିର କର ।
- 5. 1.5 ମିଟର ଉଚ୍ଚ ତଣେ ଦର୍ଶକ ଏକ କୋଠାଘରଠାରୁ 12 ମିଟର ଦୂରସ୍ଥ ଏକ ବିନ୍ଦୁରୁ ଦେଖିଲା ଯେ, କୋଠାଘରର ଶୀର୍ଷର କୌଣିକ ଉନ୍ନତିର ପରିମାର  $60^{\circ}$  । କୋଠାଘରର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 6. ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ  $60^\circ$  ବେଳେ ଗୋଟିଏ ଗଛର ଛାଇର ଦୈର୍ଘ୍ୟ 15 ମିଟର ଥିଲା । ଗଛର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।

#### ଖ - ବିଭାଗ

- 7. 300 ମିଟର୍ ଉଚ୍ଚ ଏକ ପାହାଡ଼ ଉପରୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଗୋଟିଏ ୟୟର ଶୀର୍ଷ ଓ ପାଦଦେଶର କୌଣିକ ଅବନତିର ପରିମାଣ ଯଥାକ୍ରମେ 30º ଓ 60º ହେଲେ ୟୟର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 8. ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 60° ରୁ 45° କୁ ହ୍ରାସ ପାଇଥିବାରୁ ଏକ ଷୟର ଛାଇର ଦୈର୍ଘ୍ୟ 24 ମିଟର ବୃଦ୍ଧି ପାଇଲା । ଷୟର ଉଚ୍ଚତା ନିର୍ଶ୍ୱୟ କର ।
- ୨. ଏକ ସମତଳ ଭୂମି ଉପରେ 40 ମିଟର ବ୍ୟବଧାନରେ ଦୁଇଟି ଖୁଷ ଲୟ ଭାବରେ ପୋତା ଯାଇଛି । ଗୋଟିଏ ଖୁଷର ଉଚ୍ଚତା ଅନ୍ୟ ଖୁଷର ଉଚ୍ଚତାର ଦୁଇଗୁଣ । ଖୁଷଦ୍ୱୟ ସେମାନଙ୍କ ପାଦବିହୁ ଦ୍ୱୟକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡର ମଧ୍ୟ ବିହରେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ଧ କରନ୍ତି, ସେମାନେ ପରସର ଅନୁପୂରକ । ଖୁଷ ଦ୍ୱୟର ଉଚ୍ଚତା ନିର୍ଷ୍ଣୟ କର ।
- 10. ଗୋଟିଏ ଗଛର ଶୀର୍ଷରୁ ଭୂମି ଉପରେ ଥିବା ଗୋଟିଏ ବୟୁର କୌଣିକ ଅବନତିର ପରିମାଣ  $60^{\circ}$  ଥିଲା । ସେହି ଗଛର ଶୀର୍ଷରୁ 1.5 ମିଟର ତଳକୁ ଓହ୍ଲାଇ ଆସିଲେ ଉକ୍ତ ବୟୁରେ କୌଣିକ ଅବନତିର ପରିମାଣ  $30^{\circ}$  ହୁଏ । ଗଛର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 11. 10 ମିଟର ଉଚ୍ଚ ଏକ ଷୟର ଅଗ୍ରଭାଗରୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଗୋଟିଏ ମନ୍ଦିରର ଶୀର୍ଷର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ ଓ ପାଦଦେଶର କୌଣିକ ଅବନତିର ପରିମାଣ ଯଥାକ୍ରମେ 45° ଓ 30° ହୋଇଯାଏ । ଗଛର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 12. 12 ମିଟର ପ୍ରୟ ଏକ ରାୟାର ଏକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକ କୋଠାଘର, ଏହାର ଅପର ପାର୍ଶ୍ୱରେ ଥିବା ଅନ୍ୟ ଏକ ଘରର ଝରକାରେ ଏକ ସମକୋଣ ଅଙ୍କନ କରେ । କୋଠାଘରର ପାଦଦେଶରେ ଝରକାର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30º ହେଲେ କୋଠାଘରର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 13. କଣେ ଲୋକ ଗୋଟିଏ ନଦୀ କୂଳରେ ଠିଆ ହୋଇ ଦେଖିଲା ଯେ ନଦୀର ଅପର ପାର୍ଶ୍ୱୟ ଭୂମିରେ ଥିବା ଗୋଟିଏ ଦୂର୍ଗର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ  $60^{\circ}$ । ଦୁର୍ଗ ସହିତ ଏକ ସରଳରେଖାରେ 60 ମିଟର ପଛକୁ ଘୁଞ୍ଚି ଆସି ଦେଖିଲା ଯେ, ଉକ୍ତ କୌଣିକ ଉନ୍ନତିର ପରିମାଣ  $45^{\circ}$  ହେଲା । ନଦୀର ପ୍ରସ୍ଥ ନିର୍ଶ୍ୱୟ କର ।

- 14. ଦୁଇଟି ସ୍ତୟ ପରସରଠାରୁ 12 ମିଟର ଦୂରରେ ଏକ ସମତଳରେ ଅବସ୍ଥିତ । ଗୋଟିକର ଉଚ୍ଚତା ଅନ୍ୟଟିର ଦୁଇଗୁଣ । ସ୍ୱୟଦ୍ୱୟର ପାଦବିହୁକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡର ମଧ୍ୟବିହୁରୁ ଦେଖିଲେ ସ୍ଥୟଦ୍ୱୟର ଶୀର୍ଷବିହୁଦ୍ୱୟର କୌଣିକ ଉନ୍ନତି ପଚସର ଅନୁପୂରକ ହୁଏ, ସ୍ଥୟଦ୍ୱୟର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 15. ଗୋଟିଏ ଦୁର୍ଗର ପାଦ ଦେଶ ସହ ଏକ ସରଳରେଖାରେ ଥିବା ଦୁଇଟି ବିନ୍ଦୁରୁ ଦୁର୍ଗର ଶୀର୍ଷ ଭାଗର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ ଯଥାକ୍ରମେ 30° ଓ 45° । ଦୁର୍ଗର ଉଚ୍ଚତା 30 ମିଟର ହେଲେ, ବିନ୍ଦୁଦ୍ୱୟ ମଧ୍ୟରେ ବ୍ୟବଧାନ କେତେ ନିର୍ଣ୍ଣୟ କର ।
- 16. ଗୋଟିଏ କୋଠାର ଉଚ୍ଚତା 12 ମିଟର । କୋଠାର ଶୀର୍ଷରୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଏକ ସ୍ତମ୍ପର ଶୀର୍ଷ ଓ ପାଦଦେଶର କୌଣିକ ଉନ୍ନତି ଓ ଅବନତିର ପରିମାଣ ଯଥାକ୍ରମେ 60° ଓ 30° । ସ୍ତମ୍ଭର ଉଚ୍ଚତା ଓ ବୃକ୍ଷଠାରୁ ସ୍ତମ୍ପର ଦିର୍ଶ୍ୱୟ କର ।