B. Tech. Degree III Semester Regular/Supplementary Examination January 2023

CS 19-202-0302 LOGIC DESIGN

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Understand about the basic number systems and the conversion between them.
- CO2: Manipulate Boolean expressions and simplify them.
- CO3: Design combinational circuits for any given problem.
- CO4: Design sequential circuits, flip-flops etc.
- CO5: Design circuits like counters, registers etc.
- CO6: Familiarize with the basic principles of memory, design of memory etc.
- CO7: Gain knowledge about the basics of integrated circuits.

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze, L5 – Evaluate, L6 – Create

PO - Programme Outcome

PART A
(Answer ALL questions

		(Answer ALL questions)				
	- 7	$(8\times3=24)$	Marks	BL	CO	PO
1.	(a)	Convert the decimal number 2795.36 to base 2, 8, and 16.	3	L1-	- 1	1,2,4
-	(b)	Show that the dual of Exclusive-OR gate is equal to its complement.	3	Ll	2	1,2,4
	(c)	How are the carry bits generated in a 4-bit fast adder circuit? Derive the carry input for each stage.	3	L2	3	1,2,4
	(d)	Derive the characteristic equations of JK, RS, D and T flip flops?	3	L2	4	1,2,4
	(e)	Design a Johnson counter with 12 timing signals.	3	L3	5	1,2,4
	(f)	Define the term steering logic in synchronous counters and what is the main disadvantage of ripple counter over synchronous counter?	3	L2	5	1,2,4
	(g)	Differentiate between PLA and PAL. Draw the PLA for the function $F1 = (AC + BC)'$	3,	L2	6	1,2,4
	(h)	What are the different TTL circuits based on power dissipation and propagation delay?	3	L2	7	1,2,4
		PART B				
		$(4\times12=48)$				
П.		Simplify the Boolean function $F(A,B,C,D,E) = \Sigma(0,2,4,6,9,11,13,15,16,20,25,27,29,31)$ using K-map and draw the NAND realization of the logic circuit.	12	L3	2	1,2,3,4,
		OR				
III.		Simplify $F(A, B, C, D, E, F, G) = \sum (20, 28, 52, 60)$ using Quine-McCluskey method.	12	L3	2	1,2,4,12
		Michigan Michigan				
						(P.T.O.)

BTS-III(R/S)-01-23-1435

		Marks	BL	CO	PO
IV.	Design a combinational circuit that compares two 4-bit numbers.	12	L4	3	1,2,3,4, 12
V.	OR Design a sequential circuit using reduced state table whose specification is given in the following state diagram.	12	L4	3	1,2,12

Design a BCD counter using RS-flip flops and draw the waveforms 5 12 L4 1,2,3,4, VI. 12 of the counting operation. OR L2 5 1,2,4,12 Draw and explain the working of a 4-bit bidirectional shift register. 12 VII. L2 7 1,2,4,12 6 Explain the working of basic RTL NOR gate with diagram. VIΠ. (a) 7 Explain the interfacing of CMOS driver and TTL load? 6 L2 1,2,4,12 (b) 7 12 L2 1,2,12 Explain the working of a TTL circuit with an example. IX.

Blooms's Taxonomy Levels L1 - 12%, L2 - 50%, L3 - 19%, L4 - 19%.