

André Furlan

Autenticação Biométrica de Locutores Drasticamente Disfônicos Aprimorada pela *Imagined Speech*

São José do Rio Preto 2022

André Furlan

Autenticação Biométrica de Locutores Drasticamente Disfônicos Aprimorada pela *Imagined Speech*

Tese apresentada como parte dos requisitos para obtenção do título de Doutor em Ciência da Computação, junto ao Programa de Pós-Graduação em Ciência da Computação, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista 'Júlio de Mesquita Filho", Campus de São José do Rio Preto.

Orientador: Prof. Dr. Rodrigo Capobianco Guido

São José do Rio Preto

André Furlan

Autenticação Biométrica de Locutores Drasticamente Disfônicos Aprimorada pela *Imagined Speech*

Tese apresentada como parte dos requisitos para obtenção do título de Doutor em Ciência da Computação, junto ao Programa de Pós-Graduação em Ciência da Computação, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista 'Júlio de Mesquita Filho", Campus de São José do Rio Preto.

Comissão Examinadora

Prof. Dr. Rodrigo Capobianco Guido UNESP – Câmpus de São José do Rio Preto Orientador

Prof. Dr. Exemplo Jr Universidade – Câmpus

Prof. Dr. Exempl2 Universidade – Câmpus

> São José do Rio Preto 06 de Agosto de 2022

Agradecimentos

Resumo

Abstract

Lista de ilustrações

Figura 1 –	Residual learning: a building block	13
Figura 2 –	Comparação entre uma rede neural regular e uma rede neural residual .	14

Lista de tabelas

Sumário

1	INTRODUÇÃO	12
1.1	Considerações Iniciais e Objetivos	12
1.2	Estrutura do trabalho	12
2	REVISÃO BIBLIOGRÁFICA	13
2.1	Breve revisão dos conceitos utilizados neste trabalho	13
2.1.1	Sinais digitais e sub-amostragem (downsampling)	13
2.1.2	Caracterização dos processos de produção da voz humana	13
2.2	Estado-da-arte em Imagined Speech	15
3	ABORDAGEM PROPOSTA	16
3.1	A Base de sinais	16
3.1.1	Coleta dos sinais	16
3.1.2	Organização da base de sinais	16
3.2	Estrutura da estratégia proposta	16
3.3	Procedimentos	16
3.3.1	Procedimento 01	16
4	TESTES E RESULTADOS	17
4.1	Procedimento 01	17
5	CONCLUSÕES E TRABALHOS FUTUROS	18
	REFERÊNCIAS	10

1 Introdução

- 1.1 Considerações Iniciais e Objetivos
- 1.2 Estrutura do trabalho

2 Revisão bibliográfica

2.1 Breve revisão dos conceitos utilizados neste trabalho

De acordo com (HE et al., 2015) Redes neurais residuais são aquelas que "pulam" algumas camadas, ou seja, a saída de uma camada vai para a próxima mas também vai para uma outra mais à frente.

2.1.1 Sinais digitais e sub-amostragem (downsampling)

2.1.2 Caracterização dos processos de produção da voz humana

Figura 1 – Residual learning: a building block.

Figura 2 – Comparação entre uma rede neural regular e uma rede neural residual, a direita a rede neural regular percorre sequencialmente todas as suas camadas, a esquerda a rede neural residual "pula" algumas camadas reiteradamente.

2.2 Estado-da-arte em *Imagined Speech*

3 Abordagem proposta

- 3.1 A Base de sinais
- 3.1.1 Coleta dos sinais
- 3.1.2 Organização da base de sinais
- 3.2 Estrutura da estratégia proposta
- 3.3 Procedimentos
- 3.3.1 Procedimento 01

4 Testes e Resultados

4.1 Procedimento 01

5 Conclusões e Trabalhos Futuros

Referências

HE, K. et al. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015. Disponível em: $\langle \text{http://arxiv.org/abs/1512.03385} \rangle$.

TERMO DE REPRODUÇÃO XEROGRÁFICA

Autorizo	a reprod	lução	xerográfica	do	presente	Trabalho	de	Conclusão,	na	íntegra	ou	em	partes,
para fins de pesquisa.													

São José do Rio Preto, 06 de Agosto de 2022

André Furlan