Сложные случаи: \mathcal{PAL} - \mathcal{C} , \mathcal{EL} - \mathcal{RC} , \mathcal{PAL} - \mathcal{RC}

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

Сложные случаи

- Как аксиоматизировать \mathcal{PAL} - \mathcal{C} ?
- ullet Как связаны [!arphi] и $\mathcal{C}_{\mathcal{G}}\psi$
- ullet Есть ли аксиома редукции для $[!arphi]\psi?$

PALC

Утверждение 1: Формула $[!\varphi]C_G\psi\leftrightarrow (\varphi\to C_G[!\varphi]\psi)$ не является общезначимой.

Доказательство.

Рассмотрим модель M, x

- 1. $M, x \models [!p]C_{ab}q$
- 2. $M, x \models p$
- 3. $M, x \not\models C_{ab}[!p]q$, поскольку $M, x \models \hat{K}_a \hat{K}_b \langle !p \rangle \neg q$

Пути

Определение 1. Пусть $M=(W,(\sim_i)_{i\in Ag},V)$ – модель Крипке, $x,y\in W$, $G\subseteq Ag$, $x,y\in W$, $G\subseteq Ag$, будем говорить, что существует G-путь из x в y (обозначение: $x\sim_G y$), если найдутся такие $y_1,\ldots,y_n\in W$ и $i_1,\ldots,i_n\in G$, что $x\sim_{i_1}y_1\sim_{i_2}\cdots\sim_{i_n}y_n=y$.

Определение 2. Пусть $M=(W,(\sim_i)_{i\in Ag},V)$ – модель Крипке, $x,y\in W, G\subseteq Ag$, будем говорить, что существует G- φ -путь из x в y (обозначение: $x\sim_{G,\varphi}y$), если найдутся такие $y_1,\ldots,y_n\in W$ и $i_1,\ldots,i_n\in G$, что $x\sim_{i_1}y_1\sim_{i_2}\cdots\sim_{i_n}y_n=y$ и $M,x\models\varphi,M,y_1\models\varphi,\ldots,M,y_n\models\varphi$.

Упражнение 1. Докажите, что $\big(\bigcup\limits_{i\in G}\sim_i^{!arphi}\big)^+=\sim_{G,arphi}$

1.
$$M, x \models [!\varphi]C_G\psi \iff$$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M,x \models \varphi \land x \sim_{G,\varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M,x \models \varphi \land x \sim_{G,\varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 9. $\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 9. $\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 10. $\forall y (x \sim_{G,\varphi} y \Rightarrow M, y \models [!\varphi]\psi)$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 9. $\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 10. $\forall y (x \sim_{G,\varphi} y \Rightarrow M, y \models [!\varphi]\psi)$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 7. $\forall y (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 9. $\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 10. $\forall y (x \sim_{G,\varphi} y \Rightarrow M, y \models [!\varphi]\psi)$

Публичные объявления и общее знание

Лемма

$$\frac{\models \chi \to [!\varphi]\psi \quad \models (\chi \land \varphi) \to E_G \chi}{\models \chi \to [!\varphi]C_G \psi}$$

1 (a)
$$\models \chi \rightarrow [!\varphi]\psi$$
, (b) $\models (\chi \land \varphi) \rightarrow E_G \chi$
2 M,x $M,x \models \chi$ $\triangleright M,x \models [!\varphi]C_G \psi \Leftrightarrow \triangleright \forall y(x \sim_{G,\varphi} y \Rightarrow M,y \models [!\varphi]\psi)$
3 Y $x \sim_{G,\varphi} y$ $\triangleright M,y \models [!\varphi]\psi$
4 $X \sim_{i_1} y_1 \sim_{i_2} \cdots \sim_{i_n} y_n = y \text{ T.4.}$
5 $i_1,\ldots,i_n \in G \text{ is } M,x,y_1,\ldots,y_n \models \varphi$ is 4 no onp. $x \sim_{G,\varphi} y$
6 $M,x \models \chi \land \varphi$ 2, 3
7 $M,x \models E_G \chi$ 1b, 6 no MP
8 $M,x \models K_i \chi$ is 7 t.k. $i_1 \in G$
9 $M,y_1 \models \chi$ is 5, 8
10 \vdots nobtopsem 6–9 dar y_2,\ldots,y_n
11 $M,y \models \chi$ is 10
12 $M,y \models [!\varphi]\psi$ 1, 11
13 $\forall y(x \sim_{G,\varphi} y \Rightarrow M,y \models [!\varphi]\psi)$ B $\forall \Rightarrow 4$ –12
14 $M,x \models [!\varphi]C_G \psi$ def
15 $\models \chi \rightarrow [!\varphi]C_G \psi$ B $\forall \Rightarrow 2$ –14

Упражнение

Переписать предыдущее доказательство в более строгом виде: индукцией по n в пункте $x\sim_{i_1}y_1\sim_{i_2}\cdots\sim_{i_n}y_n=y$ и далее.

Исчисление PALC

- Аксиомные схемы $S5_m$ -C
- $[!\varphi]p \leftrightarrow (\varphi \rightarrow p)$
- $[!\varphi]\neg\psi\leftrightarrow(\varphi\rightarrow\neg[!\varphi]\psi)$
- $[!\varphi](\psi \wedge \chi) \leftrightarrow ([!\varphi]\psi \wedge [!\varphi]\chi)$
- $[!\varphi]K_i\psi \leftrightarrow (\varphi \rightarrow K_i[!\varphi]\psi)$
- $[!\varphi][!\psi]\chi \leftrightarrow [!(\varphi \land [!\varphi]\psi)]\chi$
- ullet Правила вывода: MP, NEC для K_i
- Правило вывода:

$$\frac{\chi \to [!\varphi]\psi \quad (\chi \land \varphi) \to E_G \chi}{\chi \to [!\varphi]C_G \psi}$$

Полнота и корректность

Теорема о полноте: схема доказательства

- Замыкание $cl(\varphi)$
- $c(\varphi)$ переопределить
- ullet Случай $[!arphi] {\it C}_{\it G} \psi$

Утверждение: $\vdash [!\varphi]C_G\psi \to (\varphi \to \mathcal{K}_i[!\varphi]C_G\psi)$ для $i \in G$

- 1. $C_G \psi \rightarrow K_i C_G \psi$
- 2. $[!\varphi]C_G\psi \rightarrow [!\varphi]K_iC_G\psi$
- 3. $[!\varphi]K_iC_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$
- 4. $[!\varphi]C_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$

Лемма об истинности

Лемма

Пусть Φ – замыкание некоторой формулы, $M^{\Phi}=(W^{\Phi},(R_i^{\Phi})_{i\in Ag},V^{\Phi})$ – конечная каноническая модель, $X\in W^{\Phi}$ тогда

$$\forall \varphi' \in \Phi : \varphi' \in X \iff M^{\Phi}, X \models \varphi'$$

Доказательство

Будем доказывать (возвратной) индукцией по $c(\varphi')$.

Предположение индукции Обозначим $c(\varphi') = n$.

$$\forall \psi \in \Phi : c(\psi) < n \Rightarrow (\psi \in X \iff M^{\Phi}, X \models \psi)$$

Шаг индукции Рассмотрим следующие случаи.

C.n.1
$$\varphi' = p$$

C.n.2 $\varphi' = \neg \varphi$
C.n.3 $\varphi' = \varphi \wedge \psi$
C.n.4 $\varphi' = K_i \varphi$
C.n.5 $\varphi' = C_G \varphi$
C.n.6 $\varphi' = [\varphi] \psi$
C.n.6a $\varphi' = [\varphi] p$
C.n.6b $\varphi' = [\varphi] \neg \psi$
C.n.6c $\varphi' = [\varphi] (\psi \wedge \chi)$
C.n.6d $\varphi' = [\varphi] K_i \psi$
C.n.6e $\varphi' = [\varphi] [\psi] \chi$
C.n.6f $\varphi' = [\varphi] C_G \psi p$

Сл. 6а-6е

- Сл.6а $c(\varphi \to p) < c([!\varphi]p)$ $[!\varphi]p \in X \Leftrightarrow (\varphi \to p) \in X \Leftrightarrow M^{\Phi}, X \models \varphi \to p \Leftrightarrow M^{\Phi}, X \models [!\varphi]p$
- Сл.6b-d. Упражнение.
- Сл.6е

Случай 6f⇒

```
\rhd M^{\Phi}, X \models [!\varphi]C_{G}\psi \Leftrightarrow \rhd \forall Y(X \sim_{G,\varphi} Y \Rightarrow M^{\Phi}, Y \models [!\varphi]\psi)
             [!\varphi]C_G\psi\in X
             X \sim_{G,\omega}^{\Phi} Y
                                                                                                   \triangleright M^{\Phi}, Y \models [!\varphi]\psi
 3
               X\sim_{i_1}^{\Phi}Y_1\sim_{i_2}^{\Phi}\cdots\sim_{i_n}^{\Phi}Y_n=Y т.ч. i_1,\ldots,i_n\in G из 2 по опр.
                и M^{\Phi}, X \models \varphi, M^{\Phi}, Y_1 \models \varphi, ..., M^{\Phi}, Y_n \models \varphi
             \varphi \in X, \varphi \in Y_1, \ldots, \varphi \in Y_n
 4
                                                                                                     ПИ
 5
               \varphi \to K_i[!\varphi]C_G\psi \in X
                                                                                                     по утв. на сл. 10 и \varphi \to K_i[!\varphi]C_G\psi \in X \in \Phi
 6
                K_{i_1}[!\varphi]C_G\psi\in X
                                                                                                     из 4.5 по МР
 7
                 X \sim^{\Phi}_{i} Y_{1}
                                                                                                     из 3
 8
                 [!\varphi]C_G\psi\in Y_1
                                                                                                     из 6,7 по опр.
 9
                                                                                                     повторяем шаги 5–8 для Y_2 и т.д. до Y_n = Y
                 [!\varphi]C_G\psi\in Y
10
                                                                                                     из 9
                 [!\varphi]\psi\in Y
11
                                                                                                     из 10, \vdash C_G \psi \rightarrow [!\varphi]\psi и [!\varphi]\psi \in \Phi
12
             M^{\Phi}, Y \models [!\varphi]\psi
                                                                                                     ПИ
              \forall Y(X \sim^{\Phi}_{G,G} Y \Rightarrow [!\varphi]\psi \in Y)
13
                                                                                                     2–11 B∀ ⇒
```

Случай 6f←

Лемма $(\chi \wedge \varphi) \to E_G \neg \underline{Y}$

Достаточно доказать, для любых $X \in S, Y \in \overline{S}, i \in G \vdash (\underline{X} \land \varphi) \to K_i \neg \underline{Y}$

1	$X \in S$	9	$X\sim^{igoplus}_i Y$	
2	$Y \in \overline{S}$	10	$M^{\Phi},X\modelsarphi$	из 6 по ПИ
3		11	$\models [!\varphi] C_G \psi \to (\varphi \to K_i [!\varphi] C_G \psi)$	
4	$\underline{X}, \varphi, \neg K_i \neg \underline{Y} \not\vdash \bot$	12	$M^{\Phi}, X \models \varphi \to K_i[!\varphi]C_G\psi$	
5	$X, \varphi, \hat{K}_i \underline{Y} \not\vdash \bot$	13	$M^{\Phi}, X \models K_i[!\varphi]C_G\psi$	
6	$X, arphi ot \perp$	14	$M^{\Phi}, Y \models [!\varphi]C_G\psi$	
	$\varphi \in X$	15	$Y \in S$	
8	$X, \hat{K}_i \underline{Y} \not\vdash \bot$	16	«⊥»	1, 14

Как быть с *RE*?

 $[!\varphi][!\psi]\chi$

Аксиомы редукции

- $\mathcal{EL} \equiv \mathcal{PAL}$
- \mathcal{EL} - $\mathcal{D} \equiv \mathcal{PAL}$ - \mathcal{D}
- \mathcal{EL} - $\mathcal{C} \prec \mathcal{PAL}$ - \mathcal{C}
- \mathcal{EL} - \mathcal{C} +? $\equiv \mathcal{PAL}$ - \mathcal{C} +?
- \mathcal{EL} - $\mathcal{RC} \equiv \mathcal{PAL}$ - \mathcal{RC}

Условное общее знание

Определение 3.
$$M, x \models C_G^{\psi} \varphi$$
 е.т.е. $\forall y (x (\bigcup_{i \in G} \sim_i \cap (W \times [\psi]_M))^+ y \Rightarrow M, y \models \varphi)$

Утверждение: Общее знание выразимо через условное общее знание:

$$C_{G}\varphi \equiv C_{G}^{\top}\varphi$$

Доказательство: упражнение

Определение 3. Пусть $M=(W,(\sim_i)_{i\in Ag},V)$ – модель Крипке, $x,y\in W$, $G\subseteq Ag$, будем говорить, что существует $G\cdot \varphi$ -путь из x в y (обозначение: $R_{G,+\varphi}$), если найдутся такие $y_1,\ldots,y_n\in W$ и $i_1,\ldots,i_n\in G$, что $xR_{i_1}y_1R_{i_2}\ldots R_{i_n}y_n=y$ и $M,y_1\models \varphi,\ldots,M,y_n\models \varphi$.

$$M,x\models \mathcal{C}_{G}^{\psi}arphi$$
 е.т.е. $orall y(xR_{G,\cdot\psi}y\Rightarrow M,y\modelsarphi)$

Исчисление для условного общего знания

Исчисление $S5_m$ -RC

Аксиомные схемы:

$$(S5_K)$$
 Аксиомные схемы $S5$ для K_i (K_{RC}) $C_G^\chi(\varphi \to \psi) \to (C_G^\chi \varphi \to C_G^\chi \psi)$ (mix_{RC}) $C_G^\psi \varphi \leftrightarrow E_G(\psi \to (\varphi \land C_G^\psi \varphi))$ (ind_{RC}) $C_G^\psi(\varphi \to E_G(\psi \to \varphi)) \to (E_G(\psi \to \varphi) \to C_G^\psi \varphi)$

Правила вывода:

$$\frac{\varphi \qquad \varphi \rightarrow \psi}{\psi} \quad MP \qquad \qquad \frac{\varphi}{K_i \varphi} \quad G_K \qquad \qquad \frac{\varphi}{C_G^{\psi} \varphi} \quad G_C F_C \qquad \qquad \frac{\varphi}{C_G^{\psi} \varphi} \quad G_C \qquad \frac{\varphi}{C_G^{\psi} \varphi} \quad \frac{\varphi}{C_G^{\psi$$

Некоторые полезные теоремы

Упражнение. Найдите доказательства для следующих теорем исчисления $S5_m$ –RC:

- 1. $C_G^{\psi}\varphi \to E_G(\psi \to \varphi)$
- 2. $C_G^{\psi}\varphi \to E_G(\psi \to E_G(\psi \to \varphi))$
- 3. $C_G^{\varphi}\varphi$
- 4. $C_G^{\psi}\varphi \rightarrow C_G^{\psi}C_G^{\psi}\varphi$
- 5. $C_G^{\psi}\varphi \leftrightarrow C_G^{\psi}(\psi \wedge \varphi)$
- 6. $C_G^{\psi}\varphi \leftrightarrow C_G^{\psi}(\psi \rightarrow \varphi)$

Полнота $S5_m$ -RC

Сборка доказательства.

- $\Phi = cl(\varphi)$
- ullet Лемма об истинности: случай $C_G^\psi arphi$

Замыкание

Определение. K определению Φ добавляем правило

•
$$C_G^{\psi}\varphi \in \Phi \Rightarrow \{K_i(\psi \to (\varphi \land C_G^{\psi}\varphi) \mid i \in G\} \subset \Phi$$

Лемма об истинности: Сл. $\psi' = C_G^{\psi} \varphi$. (\Rightarrow)

1
$$C_G^{\psi} \varphi \in X$$
 $\rhd M^{\Phi}, X \models C_G^{\psi} \varphi \Leftrightarrow \rhd \forall Y (X(R_{G,+\psi}^{\Phi})Y \Rightarrow M^{\Phi}, Y \models \varphi)$
2 $X(R_{G,+\psi}^{\Phi})Y$ $\rhd M^{\Phi}, Y \models \varphi$
3 $X(R_{i_1}^{\Phi}Y_1R_{i_2}^{\Phi} \dots R_{i_n}^{\Phi}Y_n = Y \text{ T. H.})$
4 $\{i_1, \dots, i_n\} \subseteq G$
5 $M^{\Phi}, Y_1 \models \psi, \dots, M^{\Phi}, Y_n \models \psi$
6 $\psi \in Y_1, \dots, \psi \in Y_n$ no ΠΜ
7 $K_{i_1}(\psi \rightarrow (\varphi \land C_G^{\psi} \varphi)) \in X$
8 $\psi \rightarrow (\varphi \land C_G^{\psi} \varphi) \in Y_1$
9 $\varphi \land C_G^{\psi} \varphi \in Y_1$
10 повторяем до $Y_n = Y$
11 $\varphi \land C_G^{\psi} \varphi \in Y_n$
12 $\varphi \in Y_n$
13 $M^{\Phi}, Y \models \varphi$ по ПМ

Лемма об истинности: Сл. $\psi' = C_G^{\psi} \varphi$. (\Leftarrow)

- $\underline{X} \to E_G(\psi \to \chi)$
- $\chi \to E_G(\psi \to \chi)$
- $\chi \to (\psi \to \varphi)$

Утверждение. $\vdash \underline{X} \to E_G(\psi \to \chi)$.

Доказательство.

Достаточно доказать, что $\vdash \underline{X} \to K_i(\psi \to \chi)$ для $i \in G$. Вспомним, что $\chi \leftrightarrow \bigwedge \{\neg \underline{Y} \mid Y \in \overline{S}\}$. Тогда, нам нужно доказать, что $\vdash \underline{X} \to K_i(\psi \to \bigwedge \{\neg \underline{Y} \mid Y \in \overline{S}\})$, что эквивалентно $\vdash \underline{X} \to \bigwedge \{K_i(\psi \to \neg \underline{Y}) \mid Y \in \overline{S}\}$. Значит, достаточно доказать, что для $Y \in \overline{S}$: $\vdash \underline{X} \to K_i(\psi \to \neg \underline{Y})$.

Утверждение. Пусть $X \in S$, $Y \in \underline{S}$, тогда $\vdash \underline{X} \to K_i(\psi \to \neg \underline{Y})$

1
$$X \in S, Y \in \underline{S}$$
 9 $XR_i^{\Phi}Y$ 8 по утв. (*)
2 $M^{\Phi}, X \models C_G^{\psi}\varphi$ 10 $\psi \in Y$ 8 по утв. (*)
3 $M^{\Phi}, Y \not\models C_G^{\psi}\varphi$ 11 $X \models K_i(\psi \to C_G^{\psi}\varphi)$
4 $\psi \not\vdash X \to K_i(\psi \to \neg Y)$ $\mapsto \ll \bot$ 12 $Y \models \psi \to C_G^{\psi}\varphi$
5 $X \not\vdash K_i(\psi \to \neg Y)$ 13 $Y \models \psi$ по ПИ
6 $X \not\vdash \neg K_i(\psi \to \neg Y) \to \bot$ 14 $Y \models C_G^{\psi}\varphi$
7 $X, \neg K_i(\psi \to \neg Y) \not\vdash \bot$ 15 $\ll \bot$ 8 по утв. (*)
8 $X, \hat{K}_i(\psi \to \neg Y)$ $\mapsto \ll \bot$ 10 $\psi \in Y$ 8 по утв. (*)

Утверждение (*). Пусть $X, Y \in W^{\Phi}$, тогда

$$\underline{X}, \hat{K}_i(\varphi \wedge \underline{Y}) \not\vdash \bot \Rightarrow (XR_i^{\Phi} Y \text{ in } \varphi \in Y)$$

Аксиома редукции для условного общего знания

Исчисление
$$S5_m[]$$
- RC (PAL - RC) ($S5_mRC$) Аксиомные схемы и правила вывода исчисления $S5_mRC$

$$(R_{RC})$$
 $[!arphi]C_G^\chi\psi\leftrightarrow (arphi o C_G^{arphi\wedge[!arphi]\chi}[!arphi]\psi)$

Упражнение

Сформулируйте аксиому редукции для общего знания: $[!\varphi]C_G\psi\leftrightarrow?$

Упражнение

Для формулы $[!p]C_Gq$ найдите эквивалентную, но из языка $\mathcal{EL} ext{-}\mathcal{RC}$.

Сравнение языков по выразительной силе

•
$$\mathcal{EL}$$
- $\mathcal{C} \prec \mathcal{PAL}$ - \mathcal{C}

$$[!(\neg p o K_a \neg p)]C_{ab} \neg p$$

- \mathcal{EL} - $\mathcal{RC} \equiv \mathcal{PAL}$ - \mathcal{RC}
- $PAL-C \prec EL-RC$

$$C_{ab}^p \neg K_a p$$

Подробнее: [vanDitmarsch2008]