

Métodos Numéricos - Primer Parcial - 11/05/2021

- **1.** Sea $f(x) = x(1 \ln(1 + x^2)) + (x^2 1)\arctan(x)$ y sean los puntos $x_0 = 1$, $x_1 = 1.2$, $x_2 = 1.7$ y $x_3 = 2$. Use el polinomio interpolante de Lagrange para aproximar el valor de f(1.5). Acote el error y compare con el error "real".
- **2.** Halle todas las raíces de $f(x) = e^{\sin(x)} 2\cos(x)$ en el intervalo $[-\pi, \pi]$.
- **3.** La función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = x^3y^2 + x^4 xy^5 xy 3x 2y$ tiene un punto crítico $(x_0, y_0) \simeq (-0.25, -1.25)$. Calcule (x_0, y_0) y determine si es un punto de máximo, de mínimo o punto de ensilladura de f.
- **4.** Sea la función $f(x) = (1+x^2)^{\sin(x)}$ para $0 \le x \le \pi$. Calcule el menor valor de $n \in \mathbb{N}$ para el cual $\left|I(f) \int_0^\pi f(x) dx\right| \le 10^{-5}$ donde I(f) está calculado usando la fórmula de Simpson. Calcule I(f) usando el valor de n hallado.