math

Joey Yu Hsu

2024-02-16

Contents

m	nex	Э
Ι	A Minimal Book Example	7
1	About 1.1 Usage 1.2 Render book 1.3 Preview book	9 9 9
2		11 11
3	3.1 Chapters and sub-chapters	13 13 13
4	Parts	15
5	Footnotes and citations 5.1 Footnotes	
6	6.1 Equations	
7		
II	by discipline	23
8	8.1 link and reference	25 26

4 CONTENTS

8.5 bookdown environment for definition, theorem, proof	26
9 test cross-link 2	2 9
10 math	31
equivalence relation	33
equivalence class	35
partition	37
11 physics	39
12 plot	41
	43 55
xy-pic	57
III by date	59
13 by date	61
partition	63
202401281000	65
equivalence class	67
equivalence relation	69
14 Python	71
	75 87
xy-pic	89
15.1 Markdown	91 91 91
references	93

index

math on bookdown started on 2024/01/28

6 CONTENTS

Part I A Minimal Book Example

About

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports; for example, a math equation $a^2 + b^2 = c^2$.

1.1 Usage

Each **bookdown** chapter is an .Rmd file, and each .Rmd file can contain one (and only one) chapter. A chapter *must* start with a first-level heading: # A good chapter, and can contain one (and only one) first-level heading.

Use second-level and higher headings within chapters like: ## A short section or ### An even shorter section

The index.Rmd file is required, and is also your first book chapter. It will be the homepage when you render the book.

1.2 Render book

You can render the HTML version of this example book without changing anything:

- 1. Find the **Build** pane in the RStudio IDE, and
- 2. Click on **Build Book**, then select your output format, or select "All formats" if you'd like to use multiple formats from the same book source files.

Or build the book from the R console:

bookdown::render_book()

To render this example to PDF as a bookdown::pdf_book, you'll need to install XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.org/tinytex/.

1.3 Preview book

As you work, you may start a local server to live preview this HTML book. This preview will update as you edit the book when you save individual .Rmd files. You can start the server in a work session by using the RStudio add-in "Preview book", or from the R console:

10 CHAPTER 1. ABOUT

bookdown::serve_book()

Hello bookdown

All chapters start with a first-level heading followed by your chapter title, like the line above. There should be only one first-level heading (#) per .Rmd file.

2.1 A section

All chapter sections start with a second-level (##) or higher heading followed by your section title, like the sections above and below here. You can have as many as you want within a chapter.

An unnumbered section

Chapters and sections are numbered by default. To un-number a heading, add a {.unnumbered} or the shorter {-} at the end of the heading, like in this section.

Cross-references

Cross-references make it easier for your readers to find and link to elements in your book.

3.1 Chapters and sub-chapters

There are two steps to cross-reference any heading:

- 1. Label the heading: # Hello world {#nice-label}.
 - Leave the label off if you like the automated heading generated based on your heading title: for example, # Hello world = # Hello world {#hello-world}.
 - To label an un-numbered heading, use: # Hello world {-#nice-label} or {# Hello world .unnumbered}.
- 2. Next, reference the labeled heading anywhere in the text using \@ref(nice-label); for example, please see Chapter 3.
 - If you prefer text as the link instead of a numbered reference use: any text you want can go here.

3.2 Captioned figures and tables

Figures and tables with captions can also be cross-referenced from elsewhere in your book using \@ref(fig:chunk-label) and \@ref(tab:chunk-label), respectively.

See Figure 3.1.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Don't miss Table 3.1.

```
knitr::kable(
  head(pressure, 10), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```


Figure 3.1: Here is a nice figure!

Table 3.1: Here is a nice table!

temperature	pressure	
0	0.0002	
20	0.0012	
40	0.0060	
60	0.0300	
80	0.0900	
100	0.2700	
120	0.7500	
140	1.8500	
160	4.2000	
180	8.8000	

Parts

You can add parts to organize one or more book chapters together. Parts can be inserted at the top of an .Rmd file, before the first-level chapter heading in that same file.

Add a numbered part: # (PART) Act one {-} (followed by # A chapter)

Add an unnumbered part: # (PART*) Act one {-} (followed by # A chapter)

Add an appendix as a special kind of un-numbered part: # (APPENDIX) Other stuff {-} (followed by # A chapter). Chapters in an appendix are prepended with letters instead of numbers.

16 CHAPTER 4. PARTS

Footnotes and citations

5.1 Footnotes

Footnotes are put inside the square brackets after a caret ^[]. Like this one ¹.

5.2 Citations

Reference items in your bibliography file(s) using @key.

For example, we are using the **bookdown** package¹ (check out the last code chunk in index.Rmd to see how this citation key was added) in this sample book, which was built on top of R Markdown and **knitr**² (this citation was added manually in an external file book.bib). Note that the .bib files need to be listed in the index.Rmd with the YAML bibliography key.

The RStudio Visual Markdown Editor can also make it easier to insert citations: https://rstudio.github.io/visual-markdown-editing/#/citations

¹This is a footnote.

Blocks

6.1 Equations

Here is an equation.

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
(6.1)

You may refer to using \Oref(eq:binom), like see Equation (6.1).

6.2 Theorems and proofs

Labeled theorems can be referenced in text using \@ref(thm:tri), for example, check out this smart theorem 6.1.

Theorem 6.1. For a right triangle, if c denotes the length of the hypotenuse and a and b denote the lengths of the **other** two sides, we have

 $a^2 + b^2 = c^2$

Read more here https://bookdown.org/yihui/bookdown/markdown-extensions-by-bookdown.html.

6.3 Callout blocks

The R Markdown Cookbook provides more help on how to use custom blocks to design your own callouts: https://bookdown.org/yihui/rmarkdown-cookbook/custom-blocks.html

Sharing your book

7.1 Publishing

HTML books can be published online, see: https://bookdown.org/yihui/bookdown/publishing.html

7.2 404 pages

By default, users will be directed to a 404 page if they try to access a webpage that cannot be found. If you'd like to customize your 404 page instead of using the default, you may add either a _404.Rmd or _404.md file to your project root and use code and/or Markdown syntax.

7.3 Metadata for sharing

Bookdown HTML books will provide HTML metadata for social sharing on platforms like Twitter, Facebook, and LinkedIn, using information you provide in the index.Rmd YAML. To setup, set the url for your book and the path to your cover-image file. Your book's title and description are also used.

This gitbook uses the same social sharing data across all chapters in your book- all links shared will look the same.

Specify your book's source repository on GitHub using the edit key under the configuration options in the _output.yml file, which allows users to suggest an edit by linking to a chapter's source file.

Read more about the features of this output format here:

https://pkgs.rstudio.com/bookdown/reference/gitbook.html

Or use:

?bookdown::gitbook

Part II by discipline

test cross-link

 $\operatorname{script}^{\operatorname{superscript}}_{\operatorname{subscript}}$

8.1 link and reference

$$E = mc^2 (8.1)$$

 $\ensuremath{\texttt{Qref(nice-label)}}\ 10$

[link to partition] [partition] link to partition

[partition] \@ref(partition)

partition [#partition] (10) @ref(#partition)

[equivalence class] \@ref(equivalence class)

equivalence class [#equivalence class] (@ref(equivalence class)) @ref(#equivalence class)

[equivalence-class] [#equivalence-class] (10) @ref(#equivalence-class)

 $[equivalence-class.html] \quad [equivalence-class.html\#equivalence-class] \quad (@ref(equivalence-class.html)) \\ @ref(equivalence-class.html\#equivalence-class)$

equivalence relation [#equivalence relation] (@ref(equivalence relation)) @ref(#equivalence relation)

[equivalence-relation] [#equivalence-relation] (10) @ref(#equivalence-relation)

[equivalence-relation.html] [equivalence-relation.html#equivalence-relation] (@ref(equivalence-relation.html)) @ref(equivalence-relation.html#equivalence-relation)

8.2 number and reference equations

https://bookdown.org/yihui/rmarkdown/bookdown-markdown.html#equations

\#eq:emc \@ref(eq:emc)

C is an equivalence class of a on A

$$\Leftrightarrow [a]_{\sim} = C = \left\{ x \middle| \begin{cases} a \in A \\ x \in A \\ x \sim a \\ \sim \text{ is an equivalence relation over } A \times A = A^2 \end{cases} \right\} \subseteq A \neq \emptyset$$

$$\Leftrightarrow [a] = [a]_{\sim} = \left\{ x \middle| \begin{cases} a \in A \\ x \in A \\ x \sim a \\ \sim \text{ is an equivalence relation on } A \end{cases} \right\} \subseteq A \neq \emptyset$$

$$\Rightarrow [a] = \{x | x \sim a\} \subseteq A \neq \emptyset$$

https://bookdown.org/yihui/rmarkdown/bookdown-markdown.html#cross-referencing

This cross reference is the Fig. 8.1

https://stackoverflow.com/questions/51595939/bookdown-cross-reference-figure-in-another-file

I ran into the same issue and came up with this solution if you aim at compiling 2 different pdfs. It relies on LaTeX's xr package for cross references: https://stackoverflow.com/a/52532269/576684

8.3 footnote

noun¹

8.4 citation

https://stackoverflow.com/questions/48965247/use-csl-file-for-pdf-output-in-bookdown/49145699#49145699

citation 1^3 citation 2^3

citation 3⁴ citation 4⁴

8.5 bookdown environment for definition, theorem, proof

https://bookdown.org/yihui/rmarkdown/bookdown-markdown.html

Theorem 8.1 (Theorem Name). Here is my theorem.

Proof Name. Here is my proof.

Theorem 8.2 (Pythagorean theorem). For a right triangle, if c denotes the length of the hypotenuse and a and b denote the lengths of the other two sides, we have

$$a^2 + b^2 \stackrel{8.1}{=} c^2$$

¹This is a footnote.

Definition 8.1 (Definition Name). Here is my definition.

number and reference equations

(??)

(8.1)

8.2

Figure 8.1: parabola arc with points

test cross-link 2

math

equivalence relation 10 equivalence class 10 partition 10

32 CHAPTER 10. MATH

equivalence relation

等價關係 equivalence relation

R is an equivalence relation over $A \times B$

$$\Leftrightarrow \begin{cases} R = \sim = \{\langle x, y \rangle | x \sim y\} \subseteq A \times B & \text{(e) equivalence $\mathfrak{P}(g)$} \\ \vdots & \vdots & \vdots \\ R = \{\langle x, y \rangle | xRy\} \subseteq A \times B & \text{(R) relation} \\ \forall \langle x, y \rangle \in R (xRx) & \text{(r) reflexive} \\ \forall \langle x, y \rangle \in R (xRy) \Rightarrow yRx) & \text{(s) symmetric $\mathfrak{P}(g)$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R \left(\begin{cases} xRy \\ yRz \end{cases} \Rightarrow xRz \right) & \text{(t) transitive} \end{cases} \begin{cases} R = \{\langle x, y \rangle | xRy\} \subseteq A \times B & \text{關}(g) \\ \forall \langle x, y \rangle \in R (\langle x, x \rangle \in R) & \text{if } f(g) \\ \forall \langle x, y \rangle \in R (\langle x, x \rangle \in R) & \text{if } f(g) \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{if } f(g) \end{cases}$$

34 CHAPTER 10. MATH

equivalence class

C is an equivalence class of a on A

$$\Leftrightarrow [a]_{\sim} = C = \begin{cases} x \\ \begin{cases} a \in A \\ x \in A \\ x \sim a \\ \\ \sim \text{ is an equivalence relation over } A \times A = A^2 \end{cases} \end{cases} \subseteq A \neq \emptyset$$

$$\Leftrightarrow [a] = [a]_{\sim} = \begin{cases} x \\ x \\ x \in A \\ x \in A \\ x \sim a \\ \\ \sim \text{ is an equivalence relation on } A \end{cases} \Rightarrow [a]_{\sim} = \{x | x \sim a\} \subseteq A \neq \emptyset$$

where the definition of equivalence relation can be found in 10.

number and reference equations

(??)

(8.1)

8.2

36 CHAPTER 10. MATH

partition

$$\begin{aligned} \left\{A_{i}\right\}_{i\in I} &= \left\{A_{i}|i\in I\right\} \text{ is a partition of a set } A \\ \Leftrightarrow \begin{cases} \forall i\in I\,(A_{i}\neq\emptyset)\\ A=\bigcup\limits_{i\in I}A_{i}\\ \forall i,j\in I\,(i\neq j\Rightarrow A_{i}\cap A_{j}=\emptyset) \end{cases} \end{aligned}$$

https://proofwiki.org/wiki/Definition:Set_Partition

38 CHAPTER 10. MATH

Chapter 11

physics

Chapter 12

plot

TiKZ

TiKZ and PGFplots

What's the relation between packages PGFplots and TikZ?

https://tex.stackexchange.com/questions/285925/whats-the-relation-between-packages-pgfplots-and-tikz

https://www.youtube.com/watch?v=bQugbYq0BVA

https://www.youtube.com/watch?v=ft4Kg9emK1k&list=PLg5nrpKdkk2DWcg3scb75AknF7DJXs8lk&index=18

```
\begin{tikzpicture}
  \def\a{1.5} % amplitude
  \def\b{2}  % frequency
  \draw[->] (-0.2,0) -- (4.2,0) node[right, font=\small] {\$x\$};
  \draw[->] (0,-4) -- (0,0.5) node[above] {\$y\$};
  \draw[domain=0:4,smooth,variable=\t,blue,thick]
    plot ({\a * (\b*\t - sin(deg(\b*\t)))},{-\a * (1 - cos(deg(\b*\t)))});
    % \node[above] at (2, 0.5) {\begin{aligned} Brachistochrone Curve};
    \node[above, font=\footnotesize] at (2, 1) {\Brachistochrone Curve};
    \node[above, font=\footnotesize] at (2, 0) {\$\begin{aligned} \} \x=r(t-\sin t) \\ \x* y=r(1-\cos t)
  \end{aligned}\$\};
  \end{tikzpicture}
```


Figure 12.1: Brachistochrone Curve


```
Figure 12.2: Brachistochrone Curve
https://zhuanlan.zhihu.com/p/127155579?utm_psn=1741479950987960320
1
\begin{tikzpicture}
  draw (-1,1)--(0,0)--(1,2);
\end{tikzpicture}
2
3
\begin{tikzpicture}
  \draw[rounded corners] (-1,1)--(0,0)--(1,2)--(-1,1);
\end{tikzpicture}
\begin{tikzpicture}
  \draw[rounded corners] (-1,1)--(0,0)--(1,2)--cycle;
\end{tikzpicture}
\begin{tikzpicture}
  \draw (0,0) rectangle (4,2);
\end{tikzpicture}
\begin{tikzpicture}
```

\draw (0,0) rectangle (2,2);

\end{tikzpicture}

Figure 12.3: rounded corner pseudo-closed triangle

Figure 12.4: rounded corner triangle

Figure 12.5: triangle vs. pseudo-closed triangle

Figure 12.6: rectangle

Figure 12.7: square

```
\begin{tikzpicture}
  \draw (0,0) circle (1);
\end{tikzpicture}
```


Figure 12.8: circle

```
\begin{tikzpicture}
  \draw (0,0) circle (1);
  \draw (0,0) rectangle (2,2);
\end{tikzpicture}
```


Figure 12.9: circle and square

```
\begin{tikzpicture}
  \draw (1,1) ellipse (2 and 1);
\end{tikzpicture}

\begin{tikzpicture}
  \draw (1 ,1) arc (0:270:1);
  \draw (6 ,1) arc (0:270:2 and 1);
\end{tikzpicture}

\begin{tikzpicture}
  \draw (-1,1) parabola bend (0,0) (2,4);
\end{tikzpicture}

\begin{tikzpicture}
  \draw (-1,1) parabola bend (0,0) (2,4);
\end{tikzpicture}
```


Figure 12.10: ellipse

Figure 12.11: circle and ellipse arcs $\,$

```
\filldraw
    (-1,1) circle (.05)
    (0,0) circle (.05)
    (1,1) circle (.05)
    (2,4) circle (.05);
\end{tikzpicture}
\begin{tikzpicture}
  \draw [step=20pt] (0,0) grid (3,2);
  \draw [help lines ,step=20pt] (4,0) grid (7,2);
\end{tikzpicture}
\begin{tikzpicture}[scale=0.25]
  \frac{-}{0,0} = (0,0) - (9,0);
  \frac{(0,1)--(9,1)}{}
  \text{draw} [<->] (0,2)--(9,2);
  \frac{\text{draw}}{\text{o},3} = (0,3) = (9,3);
  \frac{\text{draw }[|<->|] (0,4)--(9,4);}
\end{tikzpicture}
\begin{tikzpicture}
  \draw [line width =2pt] (0,6)--(9,6);
  \draw [dotted]
                            (0,5)--(9,5);
  \draw [densely dotted] (0,4)--(9,4);
```


Figure 12.12: parabola arc

Figure 12.13: parabola arc with points ${\bf r}$

Figure 12.14: grid and help lines

Figure 12.15: grid and help lines $\,$

Figure 12.16: arrows

```
\draw [loosely dotted] (0,3)--(9,3);
 \draw [dashed]
                           (0,2)--(9,2);
  \draw [densely dashed] (0,1)--(9,1);
  \draw [loosely dashed] (0,0)--(9,0);
\end{tikzpicture}
                                   Figure 12.17: arrows
\begin{tikzpicture}[dline/.style={color= blue, line width=2pt}]
  \frac{draw[dline]}{(0,0)--(9,0)};
\end{tikzpicture}
```

Figure 12.18: head styling

\begin{tikzpicture}

\end{tikzpicture}

```
\draw (0,0) rectangle (2,2);
  \frac{draw[shift={(3,0)}] (0,0) rectangle (2,2);}
  \draw[shift={(0, 3)}] (0,0) rectangle (2,2);
  \frac{\text{draw}[\text{shift}=\{(0,-3)\}] (0,0) \text{ rectangle } (2,2);}
  \frac{\text{draw}[\text{shift}=\{(-3, 0)\}]}{(0,0)} rectangle (2,2);
  \draw[shift={(3, 3)}] (0,0) rectangle (2,2);
  \frac{\text{draw}[\text{shift}=\{(-3, 3)\}]}{(0,0)} rectangle (2,2);
  \frac{draw[shift={(3,-3)}]}{(0,0)} rectangle (2,2);
  \frac{\text{draw}[\text{shift}=\{(-3,-3)\}]}{(0,0)} rectangle (2,2);
\end{tikzpicture}
\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw[xshift= 100pt] (0,0) rectangle (2,2);
  \frac{\text{draw}[xshift=-100pt]}{(0,0)} rectangle (2,2);
  \draw[yshift= 100pt] (0,0) rectangle (2,2);
  \draw[yshift=-100pt] (0,0) rectangle (2,2);
```


Figure 12.20: transform: shift $\mathbf{x},\,\mathbf{y}$

```
\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
 \draw[xshift= 100pt, xscale=1.5] (0,0) rectangle (2,2);
 \draw[yshift= 100pt, xscale=0.5] (0,0) rectangle (2,2);
 \draw[xshift=-100pt, yscale=1.5] (0,0) rectangle (2,2);
 \draw[yshift=-100pt, yscale=0.5] (0,0) rectangle (2,2);
\end{tikzpicture}
                            Figure 12.21: transform: scale x, y
\begin{tikzpicture}
 \draw (0,0) rectangle (2,2);
```

```
\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw[xshift= 100pt, xscale=1.5] (0,0) rectangle (2,2);
  \draw[yshift= 100pt, yscale=1.5] (0,0) rectangle (2,2);
  \draw[xshift=-100pt, xscale=0.5] (0,0) rectangle (2,2);
  \draw[yshift=-100pt, yscale=0.5] (0,0) rectangle (2,2);
  \end{tikzpicture}

\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw[xshift=125pt,rotate=45] (0,0) rectangle (2,2);
  \draw[xshift=175pt,rotate around={45:(2,2)}] (0,0) rectangle (2,2);
  \end{tikzpicture}

\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw (0,0) rectangle (2,2);
```


Figure 12.22: transform: scale

Figure 12.23: transform: rotate

```
\draw[xshift=70pt,xslant=1] (0,0) rectangle (2,2);
\draw[yshift=70pt,yslant=1] (0,0) rectangle (2,2);
\end{tikzpicture}
```


Figure 12.24: transform: slant

```
\tikzset{
  box/.style={
    draw=blue,
    rectangle,
    rounded corners=5pt,
    minimum width=50pt,
```

```
minimum height=20pt,
  inner sep=5pt
}

begin{tikzpicture}
  \node[box] (1) at(0,0) {1};
  \node[box] (2) at(4,0) {2};
  \node[box] (3) at(8,0) {3};
  \draw[->] (1)--(2);
  \draw[->] (2)--(3);
  \node at(2,1) {a};
  \node at(6,1) {b};

\end{tikzpicture}
```


Figure 12.25: flowchart

```
\tikzset{
  box/.style={
    draw=blue,
    fill=blue!20,
    rectangle,
    rounded corners=5pt,
    minimum height=20pt,
    inner sep=5pt
  }
}
\begin{tikzpicture}
  \node[box] {1}
      child {node[box] {2}}
      child {node[box] {3}
          child {node[box] {4}}
          child {node[box] {5}}
          child {node[box] {6}}
      };
\end{tikzpicture}
```

```
\begin{tikzpicture}
  \draw[->] (-0.2,0)--(6,0) node[right] {$x$};
  \draw[->] (0,-0.2)--(0,6) node[above] {$f(x)$};
  \draw[domain=0:4] plot (\x ,{0.1* exp(\x)}) node[right] {$f(x)=\frac{1}{10}e^x$};
  \end{tikzpicture}
```

https://stackoverflow.com/questions/64897575/tikz-libraries-in-bookdown

It turns out that you can simply put the \usetikzlibrary{...} command directly before the \begin{tikzpicture} and everything works fine:)

Figure 12.26: tree

Figure 12.27: tree

12.1. 3D 55

https://stackoverflow.com/questions/56211210/r-markdown-document-with-html-docx-output-using-latex-package-bbm

https://tex.stackexchange.com/questions/171711/how-to-include-latex-package-in-r-markdown

12.1 3D

 $https://zhuanlan.zhihu.com/p/431732330?utm_psn=1741857547550638080$

```
\begin{tikzpicture}
  \coordinate (A) at (1, 1, 1);
 \coordinate (B) at (1, 1,-1);
 \coordinate (C) at (1,-1,-1);
 \coordinate (D) at (1,-1, 1);
  \coordinate (E) at (-1,-1, 1);
 \coordinate (F) at (-1,-1,-1);
  \coordinate (G) at (-1, 1,-1);
  \coordinate (H) at (-1, 1, 1);
  \draw (A) node[right=1pt] {$A$}--
        (B) node[right=1pt] {$B$}--
        (C) node[right=1pt] {$C$}--
        (D) node[right=1pt] {$D$}--
        (E) node[left= 1pt] {$E$}--
        (F) node[right=1pt] {$F$}--
        (G) node[right=1pt] {$G$}--
        (H) node[left= 1pt] {$H$}--
        (A) node[right=1pt] {$A$};
\end{tikzpicture}
```


Figure 12.28: cube

https://tex.stackexchange.com/questions/388621/optimizing-perspective-tikz-graphic

Figure 12.29: cube rotate

https://github.com/XiangyunHuang/bookdown-broken/blob/master/index.Rmd

Figure 12.30: cube rotate

Figure 12.31: 《代形》的技能

Figure 12.32: cube rotate

xy-pic

https://bookdown.org/yihui/rmarkdown-cookbook/install-latex-pkgs.html

tinytex::install_tinytex()

the following xymatrix from LaTeX package xy for xy-pic is not shown or rendered in HTML:

\$\LaTeX\$ can only be used in HTML, not PDF

Part III

by date

Chapter 13

by date

partition

$$\begin{aligned} \left\{A_{i}\right\}_{i\in I} &= \left\{A_{i}|i\in I\right\} \text{ is a partition of a set } A \\ \Leftrightarrow \begin{cases} \forall i\in I\,(A_{i}\neq\emptyset)\\ A=\bigcup\limits_{i\in I}A_{i}\\ \forall i,j\in I\,(i\neq j\Rightarrow A_{i}\cap A_{j}=\emptyset) \end{cases} \end{aligned}$$

https://proofwiki.org/wiki/Definition:Set_Partition

equivalence class

C is an equivalence class of a on A

$$\Leftrightarrow [a]_{\sim} = C = \begin{cases} x \\ \begin{cases} a \in A \\ x \in A \\ x \sim a \\ \\ \sim \text{ is an equivalence relation over } A \times A = A^2 \end{cases} \end{cases} \subseteq A \neq \emptyset$$

$$\Leftrightarrow [a] = [a]_{\sim} = \begin{cases} x \\ x \\ x \in A \\ x \in A \\ x \sim a \\ \\ \sim \text{ is an equivalence relation on } A \end{cases} \Rightarrow [a]_{\sim} = \{x | x \sim a\} \subseteq A \neq \emptyset$$

where the definition of equivalence relation can be found in 10.

number and reference equations

(??)

(8.1)

8.2

equivalence relation

等價關係 equivalence relation

R is an equivalence relation over $A \times B$

$$\Leftrightarrow \begin{cases} R = \sim = \{\langle x, y \rangle | x \sim y\} \subseteq A \times B & \text{(e) equivalence $\mathfrak{F}(\mathbf{f})$} \\ \vdots & \vdots & \vdots \\ R = \{\langle x, y \rangle | xRy\} \subseteq A \times B & (R) \text{ relation} \\ \forall \langle x, y \rangle \in R (xRx) & (r) \text{ reflexive} \\ \forall \langle x, y \rangle \in R (xRy \Rightarrow yRx) & (s) \text{ symmetric } \Leftrightarrow \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R \left(\begin{cases} xRy \\ yRz \end{cases} \Rightarrow xRz \right) & \text{(t) transitive} \end{cases} \begin{cases} R = \{\langle x, y \rangle | xRy\} \subseteq A \times B & \text{關}(\mathbb{F}) \\ \forall \langle x, y \rangle \in R (\langle x, x \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle \in R (\langle x, x \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle \in R (\langle x, x \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle y, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle x, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle x, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle x, z \rangle \in R (\langle x, z \rangle \in R) & \text{Importance $\mathfrak{F}(\mathbf{f})$} \\ \forall \langle x, y \rangle, \langle x, z$$

Chapter 14

names(knitr::knit_engines\$get())

Python

[1] "awk"

[6] "haskell"

##

##

https://bookdown.org/yihui/rmarkdown/language-engines.html

"bash"

"lein"

```
## [11] "perl"
                       "php"
                                       "psql"
                                                     "Rscript"
                                                                     "ruby"
## [16] "sas"
                                      "sed"
                                                     "sh"
                       "scala"
                                                                     "stata"
                                                     "block"
## [21] "zsh"
                       "asis"
                                       "asy"
                                                                     "block2"
## [26] "bslib"
                       "c"
                                      "cat"
                                                     "cc"
                                                                     "comment"
## [31] "css"
                                                     "embed"
                                                                     "eviews"
                       "ditaa"
                                      "dot"
## [36] "exec"
                       "fortran"
                                      "fortran95"
                                                     "go"
                                                                     "highlight"
## [41] "js"
                       "julia"
                                      "python"
                                                     "R"
                                                                    "Rcpp"
## [46] "sass"
                       "scss"
                                      "sql"
                                                     "stan"
                                                                     "targets"
## [51] "tikz"
                       "verbatim"
                                      "theorem"
                                                     "lemma"
                                                                     "corollary"
## [56] "proposition" "conjecture"
                                      "definition"
                                                     "example"
                                                                     "exercise"
## [61] "hypothesis"
                       "proof"
                                      "remark"
                                                     "solution"
                                                                    "glue"
## [66] "glue_sql"
                       "gluesql"
https://rstudio.github.io/reticulate/articles/python_packages.html
x = 'hello, python world!'
print(x.split(' '))
## ['hello,', 'python', 'world!']
library(reticulate)
## Warning: package 'reticulate' was built under R version 4.2.3
virtualenv_python()
## [1] "D:/Users/115381/Documents/.virtualenvs/r-reticulate/Scripts/python.exe"
library(reticulate)
conda list()
##
                   name
                                                                      python
```

"coffee"

"mysql"

"gawk"

"node"

"groovy"

"octave"

```
base
                                                 D:\\Anaconda3/python.exe
## 1
## 2
              fiftyone
                                 D:\\Anaconda3\\envs\\fiftyone/python.exe
                                    D:\\Anaconda3\\envs\\keras/python.exe
## 3
                 keras
## 4
               labelme
                                 D:\\Anaconda3\\envs\\labelme/python.exe
## 5
                                    D:\\Anaconda3\\envs\\manim/python.exe
                 manim
## 6
                mmyolo
                                   D:\\Anaconda3\\envs\\mmyolo/python.exe
## 7 rsconnect-jupyter D:\\Anaconda3\\envs\\rsconnect-jupyter/python.exe
## 8
               sandbox
                                  D:\\Anaconda3\\envs\\sandbox/python.exe
## 9
           sandbox-3.9
                             D:\\Anaconda3\\envs\\sandbox-3.9/python.exe
library(reticulate)
virtualenv list()
```

```
## [1] "r-reticulate"
```

https://rstudio.github.io/reticulate/reference/install_python.html

```
library(reticulate)
version <- "3.9.12"
# install_python(version)

# create a new environment
# virtualenv_create("r-reticulate", version = version)

# use_virtualenv("r-reticulate")

# install MatPlotLib
# virtualenv_install("r-reticulate", "matplotlib")

# import MatPlotLib (it will be automatically discovered in "r-reticulate")
matplotlib <- import("matplotlib")</pre>
```

 $\label{local-reticulate-reticulate-pyenv-win-versions} 2.9.12 to and C:\Users\RW\AppData\Local\r-reticulate\r-reticulate\pyenv\pyenv-win\versions\\ 3.9.12 to two folders to the folder C:\Users\RW\AppData\Local\r-reticulate\r-reticulate\pyenv\pyenv-win\versions\\ 2.9.12 to 2.00 to 3.9.12 to 3.9.1$

```
# library(reticulate)
# use_virtualenv("r-reticulate")
# # matplotlib <- import("matplotlib")
# matplotlib$use("Agg", force = TRUE)

import matplotlib.pyplot as plt
plt.plot([0, 2, 1, 4])
plt.show()</pre>
```


TiKZ

TiKZ and PGFplots

What's the relation between packages PGFplots and TikZ?

https://tex.stackexchange.com/questions/285925/whats-the-relation-between-packages-pgfplots-and-tikz

https://www.youtube.com/watch?v=bQugbYq0BVA

https://www.youtube.com/watch?v=ft4Kg9emK1k&list=PLg5nrpKdkk2DWcg3scb75AknF7DJXs8lk&index=18

```
\def\a{1.5} % amplitude
\def\b{2}  % frequency
\draw[->] (-0.2,0) -- (4.2,0) node[right, font=\small] {\$x\$};
\draw[->] (0,-4) -- (0,0.5) node[above] {\$y\$};
\draw[domain=0:4,smooth,variable=\t,blue,thick]
    plot ({\a * (\b*\t - sin(deg(\b*\t)))},{-\a * (1 - cos(deg(\b*\t)))};
    % \node[above] at (2, 0.5) {\begin{array}{c} Brachistochrone Curve};
    \node[above, font=\footnotesize] at (2, 1) {\Brachistochrone Curve};
    \node[above, font=\footnotesize] at (2, 0) {\$\begin{aligned}}
& x=r(t-\sin t) \\
& y=r(1-\cos t)
\end{aligned}\$\};
\end{tikzpicture}
```


Figure 14.1: Brachistochrone Curve


```
Figure 14.2: Brachistochrone Curve
https://zhuanlan.zhihu.com/p/127155579?utm_psn=1741479950987960320
1
\begin{tikzpicture}
  \draw (-1,1)--(0,0)--(1,2);
\end{tikzpicture}
2
3
\begin{tikzpicture}
  \draw[rounded corners] (-1,1)--(0,0)--(1,2)--(-1,1);
\end{tikzpicture}
\begin{tikzpicture}
  \draw[rounded corners] (-1,1)--(0,0)--(1,2)--cycle;
\end{tikzpicture}
\begin{tikzpicture}
  \draw (0,0) rectangle (4,2);
\end{tikzpicture}
\begin{tikzpicture}
```

\draw (0,0) rectangle (2,2);

\end{tikzpicture}

Figure 14.3: rounded corner pseudo-closed triangle

Figure 14.4: rounded corner triangle

Figure 14.5: triangle vs. pseudo-closed triangle

Figure 14.6: rectangle

Figure 14.7: square

```
\begin{tikzpicture}
  \draw (0,0) circle (1);
\end{tikzpicture}
```


Figure 14.8: circle

```
\begin{tikzpicture}
  \draw (0,0) circle (1);
  \draw (0,0) rectangle (2,2);
\end{tikzpicture}
```


Figure 14.9: circle and square

```
\begin{tikzpicture}
  \draw (1,1) ellipse (2 and 1);
\end{tikzpicture}

\begin{tikzpicture}
  \draw (1 ,1) arc (0:270:1);
  \draw (6 ,1) arc (0:270:2 and 1);
\end{tikzpicture}

\begin{tikzpicture}
  \draw (-1,1) parabola bend (0,0) (2,4);
\end{tikzpicture}

\begin{tikzpicture}
  \draw (-1,1) parabola bend (0,0) (2,4);
\end{tikzpicture}
```


Figure 14.10: ellipse

Figure 14.11: circle and ellipse arcs $\,$

```
\filldraw
    (-1,1) circle (.05)
    (0,0) circle (.05)
    (1,1) circle (.05)
    (2,4) circle (.05);
\end{tikzpicture}
\begin{tikzpicture}
  \draw [step=20pt] (0,0) grid (3,2);
  \draw [help lines ,step=20pt] (4,0) grid (7,2);
\end{tikzpicture}
\begin{tikzpicture}[scale=0.25]
  \frac{-}{0,0} = (0,0) - (9,0);
  \frac{(0,1)--(9,1)}{}
  \text{draw} [<->] (0,2)--(9,2);
  \frac{\text{draw}}{\text{o},3} = (0,3) = (9,3);
  \frac{\text{draw }[|<->|] (0,4)--(9,4);}
\end{tikzpicture}
\begin{tikzpicture}
  \draw [line width =2pt] (0,6)--(9,6);
  \draw [dotted]
                            (0,5)--(9,5);
  \draw [densely dotted] (0,4)--(9,4);
```


Figure 14.12: parabola arc

Figure 14.13: parabola arc with points ${\bf r}$

Figure 14.14: grid and help lines

Figure 14.15: grid and help lines $\,$

Figure 14.16: arrows

```
\draw [loosely dotted] (0,3)--(9,3);
 \draw [dashed]
                           (0,2)--(9,2);
  \draw [densely dashed] (0,1)--(9,1);
  \draw [loosely dashed] (0,0)--(9,0);
\end{tikzpicture}
                                   Figure 14.17: arrows
\begin{tikzpicture}[dline/.style={color= blue, line width=2pt}]
  \frac{draw[dline]}{(0,0)--(9,0)};
\end{tikzpicture}
```

Figure 14.18: head styling

\begin{tikzpicture}

\end{tikzpicture}

```
\draw (0,0) rectangle (2,2);
  \frac{draw[shift={(3,0)}] (0,0) rectangle (2,2);}
  \draw[shift={(0,3)}] (0,0) rectangle (2,2);
  \frac{\text{draw}[\text{shift}=\{(0,-3)\}] (0,0) \text{ rectangle } (2,2);}
  \frac{\text{draw}[\text{shift}=\{(-3, 0)\}]}{(0,0)} rectangle (2,2);
  \draw[shift={(3, 3)}] (0,0) rectangle (2,2);
  \frac{\text{draw}[\text{shift}=\{(-3, 3)\}]}{(0,0)} rectangle (2,2);
  \frac{draw[shift={(3,-3)}]}{(0,0)} rectangle (2,2);
  \frac{\text{draw}[\text{shift}=\{(-3,-3)\}]}{(0,0)} rectangle (2,2);
\end{tikzpicture}
\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw[xshift= 100pt] (0,0) rectangle (2,2);
  \frac{\text{draw}[xshift=-100pt]}{(0,0)} rectangle (2,2);
  \draw[yshift= 100pt] (0,0) rectangle (2,2);
  \draw[yshift=-100pt] (0,0) rectangle (2,2);
```


Figure 14.20: transform: shift $\mathbf{x},\,\mathbf{y}$

```
\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
 \draw[xshift= 100pt, xscale=1.5] (0,0) rectangle (2,2);
 \draw[yshift= 100pt, xscale=0.5] (0,0) rectangle (2,2);
 \draw[xshift=-100pt, yscale=1.5] (0,0) rectangle (2,2);
 \draw[yshift=-100pt, yscale=0.5] (0,0) rectangle (2,2);
\end{tikzpicture}
                            Figure 14.21: transform: scale x, y
\begin{tikzpicture}
```

```
\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw[xshift= 100pt, xscale=1.5] (0,0) rectangle (2,2);
  \draw[yshift= 100pt, yscale=1.5] (0,0) rectangle (2,2);
  \draw[xshift=-100pt, xscale=0.5] (0,0) rectangle (2,2);
  \draw[yshift=-100pt, yscale=0.5] (0,0) rectangle (2,2);
  \end{tikzpicture}

\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw[xshift=125pt,rotate=45] (0,0) rectangle (2,2);
  \draw[xshift=175pt,rotate around={45:(2,2)}] (0,0) rectangle (2,2);
  \end{tikzpicture}

\begin{tikzpicture}
  \draw (0,0) rectangle (2,2);
  \draw (0,0) rectangle (2,2);
```


Figure 14.22: transform: scale

Figure 14.23: transform: rotate

```
\draw[xshift=70pt,xslant=1] (0,0) rectangle (2,2);
\draw[yshift=70pt,yslant=1] (0,0) rectangle (2,2);
\end{tikzpicture}
```


Figure 14.24: transform: slant

```
\tikzset{
  box/.style={
    draw=blue,
    rectangle,
    rounded corners=5pt,
    minimum width=50pt,
```

```
minimum height=20pt,
   inner sep=5pt
}

}

begin{tikzpicture}
   \node[box] (1) at(0,0) {1};
   \node[box] (2) at(4,0) {2};
   \node[box] (3) at(8,0) {3};
   \draw[->] (1)--(2);
   \draw[->] (2)--(3);
   \node at(2,1) {a};
   \node at(6,1) {b};
   \end{tikzpicture}
```


Figure 14.25: flowchart

```
\tikzset{
  box/.style={
    draw=blue,
    fill=blue!20,
    rectangle,
    rounded corners=5pt,
    minimum height=20pt,
    inner sep=5pt
  }
}
\begin{tikzpicture}
  \node[box] {1}
      child {node[box] {2}}
      child {node[box] {3}
          child {node[box] {4}}
          child {node[box] {5}}
          child {node[box] {6}}
      };
\end{tikzpicture}
```

```
\begin{tikzpicture}
  \draw[->] (-0.2,0)--(6,0) node[right] {$x$};
  \draw[->] (0,-0.2)--(0,6) node[above] {$f(x)$};
  \draw[domain=0:4] plot (\x ,{0.1* exp(\x)}) node[right] {$f(x)=\frac{1}{10}e^x$};
  \end{tikzpicture}
```

https://stackoverflow.com/questions/64897575/tikz-libraries-in-bookdown

It turns out that you can simply put the \usetikzlibrary{...} command directly before the \begin{tikzpicture} and everything works fine:)

Figure 14.26: tree

Figure 14.27: tree

14.1. 3D

https://stackoverflow.com/questions/56211210/r-markdown-document-with-html-docx-output-using-latex-package-bbm

https://tex.stackexchange.com/questions/171711/how-to-include-latex-package-in-r-markdown

14.1 3D

https://zhuanlan.zhihu.com/p/431732330?utm_psn=1741857547550638080

```
\begin{tikzpicture}
  \coordinate (A) at (1, 1, 1);
 \coordinate (B) at (1, 1,-1);
 \coordinate (C) at (1,-1,-1);
 \coordinate (D) at (1,-1, 1);
  \coordinate (E) at (-1,-1, 1);
 \coordinate (F) at (-1,-1,-1);
  \coordinate (G) at (-1, 1,-1);
  \coordinate (H) at (-1, 1, 1);
  \draw (A) node[right=1pt] {$A$}--
        (B) node[right=1pt] {$B$}--
        (C) node[right=1pt] {$C$}--
        (D) node[right=1pt] {$D$}--
        (E) node[left= 1pt] {$E$}--
        (F) node[right=1pt] {$F$}--
        (G) node[right=1pt] {$G$}--
        (H) node[left= 1pt] {$H$}--
        (A) node[right=1pt] {$A$};
\end{tikzpicture}
```


Figure 14.28: cube

https://tex.stackexchange.com/questions/388621/optimizing-perspective-tikz-graphic

Figure 14.29: cube rotate

https://github.com/XiangyunHuang/bookdown-broken/blob/master/index.Rmd

Figure 14.30: cube rotate

Figure 14.31: 《代形》的技能

Figure 14.32: cube rotate

xy-pic

https://bookdown.org/yihui/rmarkdown-cookbook/install-latex-pkgs.html

tinytex::install_tinytex()

the following xymatrix from LaTeX package xy for xy-pic is not shown or rendered in HTML:

 $\Delta E\$ can only be used in HTML, not PDF

Chapter 15

RMarkdown

- 15.1 Markdown
- 15.2 Bookdown

references

- 1. Xie, Y. Bookdown: Authoring Books and Technical Documents with r Markdown. (2023).
- 2. Xie, Y. Dynamic Documents with R and Knitr. (Chapman; Hall/CRC, Boca Raton, Florida, 2015).
- 3. Bookdown books on the web: Downloading and converting to pdf R Markdown. Posit Community (2019).
- 4. ccjou. 二次型與正定矩陣. (2009).