Trabalho Prático 3 - Grupo 4

João Abreu, pg55895, Luís Vilas, pg57888, e Ricardo Pereira, pg56001

Index Terms

Free5GC, 5G CORE, UERANSIM, UE, gNB, NFV, SBA, UPF, AMF, SMF, Curl, Wget, Traceroute.

I. Introdução

Este relatório foi desenvolvido no âmbito do Trabalho Prático 3 da unidade curricular de Redes Fixas e Móveis do Mestrado em Engenharia Informática da Universidade do Minho. O objetivo deste trabalho é compreender, de forma prática, o funcionamento de uma rede móvel 5G através da análise e experimentação com uma implementação do core 5G open-source, nomeadamente o Free5GC.

Para simular o comportamento de dispositivos móveis e o acesso à rede de acesso rádio (RAN), foi utilizado o simulador UERANSIM, que emula tanto o UE (User Equipment) como a estação base 5G (gNodeB). A partir da simulação de ligações de dispositivos móveis (UEs) à rede, pretende-se entender o papel de cada função de rede (NF – Network Function) na gestão da mobilidade, autenticação, estabelecimento de sessões e encaminhamento de tráfego até à Internet.

Neste projeto, serão testadas duas abordagens distintas para a implementação da arquitetura 5G:

- Implementação monolítica: todas as componentes da rede (UERANSIM, plano de controlo, UPF e DN) são executadas numa única máquina virtual (VM), permitindo validar a funcionalidade geral do sistema de forma simplificada.
- 2) Implementação distribuída: a rede é segmentada em duas VMs distintas:
 - uma VM dedicada ao **UERANSIM**, que simula o equipamento do utilizador (UE) e o gNodeB;
 - uma VM que executa o plano de controlo e o UPF (User Plane Function);

Esta segunda abordagem visa refletir uma topologia mais realista, tentando simular o comportamento real. Devido a problemas de interligação, não foi possível realizar a funcionalidade completa desta implementação.

II. INTRODUÇÃO À TECNOLOGIA 5G

O 5G representa uma evolução significativa face ao 4G, destacando-se pela introdução da **arquitectura baseada em serviços (SBA** – *Service-Based Architecture*). Esta arquitectura assenta num *core* completamente novo — o 5G Core (5GC) — concebido de forma modular, onde as funções de rede (*Network Functions* – NFs) comunicam entre si através de interfaces orientadas a serviços, utilizando protocolos modernos como HTTP/2 e JSON.

Fig. 1. Figura ilustrativa da representação da arquitectura de uma rede 5G. O UE, gNB, UPF e DN correspondem ao Data Plane, enquanto as funções AMF, AUSF, UDM, PCF, SMF e AF integram o plano de controlo

A. Componentes Principais

A arquitetura da rede 5G é composta por componentes essenciais, divididos em duas partes principais: o UERANSIM, que inclui o *gNodeB* e o *UE*, e o Núcleo 5G (*Core Network*).

UERANSIM:

- **gNodeB** (**gNB**): Estação base 5G que estabelece a ligação entre o equipamento do utilizador (UE) e a rede. A comunicação ocorre via a interface aérea (*Uu*), enquanto a interface **N2** é usada para o controlo (AMF) e a interface **N3** para o tráfego de dados com o núcleo (UPF).
- Equipamento do Utilizador (UE): São os dispositivos finais (ex.: smartphones) que se conectam ao gNodeB, estabelecendo a interface rádio com a rede 5G.

Núcleo 5G:

O núcleo 5G é dividido em dois planos funcionais principais: o **Plano de Controlo** e o **Plano de Dados**.

Plano de Controlo: Responsável pela gestão da mobilidade, autenticação e configuração de sessões. As funções principais incluem:

- AMF (Access and Mobility Management Function): Gestão de registo, autenticação e mobilidade do UE.
- SMF (Session Management Function): Estabelecimento e controlo das sessões PDU, coordenação com o UPF (User Plane Function).
- AUSF (Authentication Server Function): Função de autenticação do subscriber.
- UDM (Unified Data Management): Gestão centralizada dos dados do subscriber.
- UDR (User Data Repository): Repositório de dados do utilizador.
- NRF (Network Repository Function): Descoberta e registo das funções de rede.
- PCF (Policy Control Function): Aplicação de políticas de QoS.
- NSSF (Network Slice Selection Function): Seleção da fatia de rede adequada.
- NEF (Network Exposure Function): Exposição de serviços para interação com redes externas.

Plano de Dados: Responsável pelo encaminhamento eficiente do tráfego do utilizador. A função principal é:

• UPF (User Plane Function): Encaminha dados entre o gNodeB e a rede externa (ex.: Internet) via túneis GTP-U.

III. CONFIGURAÇÃO DOS SLICES

Fig. 3. Topologia Distribuída. Constituída por 2VMs interligadas pelo Lbridge. A VM free5GC tem uma segunda interface que está conectada à internet

Fig. 2. Topologia monolítica constituída por apenas 1 VM. A VM contém todos os containers com as Funções e o UERANSIM

No desenvolvimento deste trabalho prático foram construídos dois slices apresentados nas Figuras 2 e 3.

A. Versão Monolítica

A versão Monolítica, representada pela Figura 2, é constituída por apenas 1 VM (My5G) conectada com a internet através de uma conexão inet. Esta versão possuia os seguintes recursos:

• CPU: 16 cores

• Memória RAM: 32 GB

• Armazenamento: 200 GB de disco

• Imagem: Ubuntu 20

• Interface de rede: eth0 com suporte SharedNIC através do adaptador ConnectX-6

• Serviço de rede: FABNetv4 com endereço inet

B. Versão Distribuída

A versão Distribuída, representada pela Figura 3, é constituída por 2 *VMs* (free5GC e UERANSIM). A free5GC implementa as funções do core 5G, enquanto o UERANSIM simula a conexão dos dispositivos UE à rede.

VM free5GC:

• **CPU**: 16 cores

• Memória RAM: 32 GB

Armazenamento: 200 GB de disco

• Imagem: Ubuntu 20

• Interface de rede: eth1 com suporte SharedNIC através do adaptador ConnectX-6

• Interface de rede: eth0 com suporte Lbridge para interligação com o eth0.

• Serviço de rede: FABNetv4 com endereço inet

VM UERANSIM:

• CPU: 4 cores

• Memória RAM: 16 GB

• Armazenamento: 100 GB de disco

• Imagem: Ubuntu 20

• Interface de rede: eth0 com suporte Lbridge para interligação com o eth0.

IV. CONFIGURAÇÃO E DESENVOLVIMENTO DO FREE5GC

A configuração do ambiente com o free5GC foi realizada utilizando o Docker Compose disponibilizado oficialmente pelo projeto.

Após a configuração dos slices, que foi descrita na secção III, podemos aceder à VM através do seguinte comando **ssh**, utilizando os ficheiros gerados no Jupyter Hub do Fabric e o endereço IP disponibilizados no portal do FABRIC:

```
ssh -i slice_key -F ssh_config ubuntu@<IP_VM>
```

 Pré-requisito 1: Instalação do Docker: O Docker é necessário para a executar os Services do free5GC nos containers:

```
sudo apt install docker.io
```

2) **Pré-requisito 2: Instalação do Docker Compose (versão:2.24.5):** O Docker Compose permite realizar a orquestração dos múltiplos containers:

```
sudo curl -L "https://github.com/docker/compose/releases/download/
v2.24.5/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin
/docker-compose
sudo chmod +x /usr/local/bin/docker-compose
export PATH=$PATH:/usr/local/bin
```

3) Instação de outros Pré-requisitos adicionais Algumas ferramentas de desenvolvimento que são ou poderão vir a ser necessárias:

```
sudo apt install git make gcc golang
```

4) **Pré-requisito 3 : Instalação do módulo gtp5g:** O gtp5g é um módulo do *kernel* necessário para o funcionamento do *UPF (User Plane Function)* no free5GC. Este módulo implementa o protocolo *GTP-U*, utilizado para encaminhar o tráfego de dados dos utilizadores na rede 5G. Foi desenvolvido para oferecer suporte completo ao *3GPP Release 16*, com um melhor desempenho e uma maior compatibilidade em comparação com o módulo gtp padrão do Linux.

```
git clone https://github.com/free5gc/gtp5g.git
cd gtp5g
make
sudo make install
sudo modprobe gtp5g
```

5) Download do código do free5GC: Fazer o git clone do repositório oficial do free5gc:

```
git clone https://github.com/free5gc/free5gc-compose.git
cd free5gc-compose
```

6) Download das imagens Docker necessárias:

```
sudo docker-compose pull
```

7) **Executar o free5GC:** Iniciar o Free5GC em segundo plano:

```
sudo docker-compose up -d
```

Ao executar o comando docker-compose up, o ficheiro de configuração docker-compose.yaml é interpretado, iniciando todos os serviços definidos. Cada serviço utiliza os ficheiros presentes na pasta config para aplicar as suas respetivas configurações.

Fig. 4. Containers das NFs do Free5GC em execução após a inicialização com o comando sudo docker compose up -d

A. Criação de um subscriber (UE) com recurso ao WebUI

É necessário criar um cliente (UE) através do *container* associado ao WebUI. Para isso, deve ser estabelecido um túnel utilizando o seguinte comando num novo terminal:

```
ssh -i slice_key -F ssh_config -L 5000:localhost:5000 ubuntu@<IP_VM>
```

De seguida, no browser, aceder à url http://localhost:5000/ e autenticar-se com as credenciais:

Username: admin Password: free5gc

Na secção "Subscribers", criar um novo utilizador utilizando os parâmetros padrão (Tabela I, nos Anexos). O resultado final será como o apresentado na Figura 5. Este cliente será, então, guardado na base de dados mongo DB.

Fig. 5. Configuração no WebUI após a criação de um novo subscritor, exibindo os detalhes da sua configuração. Os logs desta configuração podem ser visualizados na Figura 35 nos anexos

B. Configuração e execução do UERANSIM

Após a criação e registo do UE e dos Containers com as Network Functions, podemos proceder à execução do UE dentro do container dedicado ao UERANSIM.

É importante salientar que, durante este processo, não foi necessária a configuração manual dos endereços IP do UE e do gNodeB. Estes parâmetros foram automaticamente configurados na inicialização dos containers na estrtura do docker-compose.yaml. O gnbcfg.yaml foi executado automaticamente durante a inicialização do container UERANSIM, procedendo à configuração e inicialização do gNB de forma transparente.

Para aceder aos Ficheiros de configuração do UE e gNB, é necessário o seguinte comando para aceder ao container UERANSIM descrito na Figura 6:

sudo docker exec -it ueransim /bin/bash

Componentes do UERANSIM

O **Binder** é uma ferramenta utilizada no UERANSIM para gerir a comunicação entre o **UE** e o **gNB** (estação base 5G), permitindo a simulação e o controlo de redes 5G.

```
ubuntwill5fc2ac9.thub-4T/dc-863f-a888cb8df3e-my5g:-$ sudo docker exec -it ueransim /bin/basl
root@d6e986b98d3d:/ueransim# ls
binder config nr-cli nr-gnb nr-ue
```

Fig. 6. Componentes do UERANSIM: Pasta com os configs gnbcfg.yaml e uecfg.yaml e os binários binder, nr-gn e nr-ue

Binários nr-gnb e nr-ue

- nr-gnb: Binário que simula o gNB, a estação base 5G, utilizando as configurações do qnbcfq. yaml.
- nr-ue: Binário que simula o UE, o dispositivo do utilizador, utilizando as configurações do uecfq.yaml.

Estes binários são utilizados para simular a comunicação entre o **UE** e o **gNB** na rede 5G, e por conseguinte a internet (DN). Na Pasta config estão localizados os ficheiros de configuração do UE e do gNB, que são necessários para as suas conexões à rede 5G.

Ficheiros de configuração

gnbcfg.yaml

```
mcc: "208" # Mobile Country Code value
mnc: "93" # Mobile Network Code value (2 or 3 digits)
nci: "0x000000010" # NR Cell Identity (36-bit)
idLength: 32 # NR gNB ID length in bits [22...32]
tac: 1 # Tracking Area Code
linkIp: 127.0.0.1 # gNB's local IP address for Radio Link Simulation
ngapIp: gnb.free5gc.org # gNB's local IP address for N2 Interface
gtpIp: gnb.free5gc.org # gNB's local IP address for N3 Interface
# List of AMF address information
amfConfigs:
  - address: amf.free5gc.org
    port: 38412
# List of supported S-NSSAIs by this gNB
slices:
   -sst: 0x1
    sd: 0x010203
  -sst:0x1
    sd: 0x112233
# Indicates whether or not SCTP stream number errors should be ignored.
ignoreStreamIds: true
```

No ficheiro gnbcfg.yaml, são definidos vários parâmetros essenciais para a comunicação do gNB com os restantes componentes da rede 5G. O parâmetro linklp especifica o endereço IP local do gNB utilizado para simulação da ligação com o UE. O parâmetro ngaplp define o endereço IP do gNB utilizado para a interface N2, que estabelece a comunicação com o AMF para o registo e autenticação (Na versão distribuída teria que ser o IP da VM do free5GC).

Já o parâmetro gtpIp define o endereço IP utilizado para a interface N3, destinada ao plano de utilizador, permitindo a transmissão dos dados entre o gNB e o UPF com o protocolo GTP-U (GPRS Tunneling Protocol - User Plane). Por fim, a secção amfConfigs define uma lista de configurações onde o gNB pode encontrar o(s) AMF(s), especificando o endereço e a porta de comunicação (normalmente 38412) através de SCTP. Mais detalhes sobre cada parâmetro podem ser consultados na Tabela II dos Anexos.

uecfg.yaml

```
# IMSI number of the UE. IMSI = [MCC|MNC|MSISDN] (In total 15 digits)
supi: "imsi-208930000000001"

# Mobile Country Code value of HPLMN
mcc: "208"

# Mobile Network Code value of HPLMN (2 or 3 digits)
mnc: "93"

# Permanent subscription key
```

Já o ficheiro uecfg.yaml define os parâmetros essenciais de identificação e autenticação do UE para o registo na rede 5G. O parâmetro supi corresponde ao identificador único do utilizador, derivado do IMSI (formado por MCC, MNC e MSISDN). Os campos mec e mne identificam a rede do operador. O campo key contém a chave de subscrição permanente, enquanto op e opType especificam o código do operador e o seu tipo (neste caso, OPC). O parâmetro amf representa um valor associado à gestão da autenticação. Os campos imei e imeisv identificam o dispositivo em caso de ausência do SUPI. Por fim, gnbSearchList indica os endereços IP dos gNodeBs a contactar para simular a ligação rádio. Estas configurações tem que ser compatíveis com o subscriber guardado na base de dados do MongoDB. Mais detalhes sobre cada parâmetro podem ser consultados na Tabela III dos Anexos.

Com os restantes passos já concluídos, resta apenas executar o binário do UE, utilizando o seguinte comando para iniciar o processo:

```
./nr-ue -c ./config/uecfg.yaml
```


Fig. 7. Fluxo de Inicialização do UE e Logs Correspondentes. O processo de inicialização do cliente é realizado ao executar o comando ./nr-ue -c ./config/uecfg.yaml, onde são executadas as interações e autenticações necessárias para a configuração e comunicação do UE com a rede 5G. O fluxo detalhado dos processos é ilustrado na Figura 8.

C. Análise dos Logs e Processo de inicialização de uma rede 5G

Com a inicialização dos containers e do cliente UE no ambiente Free5GC, é desencadeado um fluxo de mensagens entre as diversas Network Functions que compõem o núcleo 5G, que foram explicadas na secção II. Este fluxo, detalhado na Figura 8, descreve as etapas fundamentais para o registo de um UE, o estabelecimento de uma sessão PDU e o encaminhamento de dados no plano de dados.

Inicialmente, o UE, simulado pelo UERANSIM, realiza o registo na rede através do AMF, que coordena a autenticação com outras NFs, como o UDM e o AUSF. Seguidamente, o UE requisita uma sessão PDU, a qual é gerida pelo SMF em conjunto com o UPF, sendo então configurados túneis GTP-U para o tráfego de dados. Por fim, os pacotes IP gerados pelo UE são encaminhados pelo UPF para a Internet (DN), com as respostas a retornarem pelo mesmo percurso.

Os registos correspondentes a cada etapa deste fluxo, captados por NFs como o AMF, SMF, UPF e CHF, estão representados nas Figuras 9 a 17. Este processo ilustra a modularidade da arquitectura 5G, onde cada NF desempenha uma função específica e interage de forma orquestrada por meio de interfaces baseadas em serviços (SBI).

Fig. 8. Fluxo completo de mensagens para o estabelecimento de uma sessão PDU a partir da inicialização do cliente (UE), incluindo o registo na rede 5G, a criação dos túneis GTP-U via UPF, e o subsequente encaminhamento de pacotes IP para a Internet.

Fig. 9. AMF (1) — Receção e processamento da mensagem de registo inicial do UE.

Fig. 10. AMF (2) — Início da autenticação do UE e transição para procedimentos de segurança.

Fig. 11. NRF — Fornece informação de descoberta dos serviços.

Fig. 12. UDM — Responsável pela gestão dos dados de subscrição.

Fig. 13. UDR — Base de dados que armazena os perfis dos utilizadores (UEs).

Fig. 14. AUSF — Executa o processo de autenticação do utilizador (UE).

Fig. 15. SMF — Gere a sessão e atribui endereços IP ao UE.

Fig. 16. PCF — Aplica políticas e controlo de QoS ao utilizador.

Fig. 17. CHF — Garante a contabilidade tarifária das sessões dos UEs.

Fig. 18. UPF — Encaminha os pacotes de dados entre o UE e a rede externa.

Fig. 19. PCF — Reforça políticas durante o estabelecimento da sessão.

Fig. 20. CHF — Relata o consumo para efeitos de cobrança.

D. Testes

Antes de iniciar os testes propriamente ditos, foram realizados *pings* básicos entre os vários containers, com o objetivo de verificar a conectividade entre os diferentes componentes internos da rede. Esta verificação foi bem-sucedida, confirmando que todos os elementos estavam interligados corretamente.

Para realizar testes de conectividade e análise de tráfego entre o *UE* e o exterior da rede 5G simulada, foi necessário instalar algumas ferramentas básicas de rede no *container* do *UERANSIM*, nomeadamente o topdump, wget, curl e traceroute. Estas ferramentas permitem verificar a chegada de pacotes, realizar requisições HTTP e diagnosticar a rota até destinos remotos, respetivamente.

Instalação de ferramentas de rede no UERANSIM:

- # Instalar o tcpdump para capturar pacotes sudo docker exec ueransim apt-get install -y tcpdump
- # Instalar o wget para testar acessos HTTP
 sudo docker exec ueransim apt-get install -y wget
- # Instalar o curl como alternativa ao wget sudo docker exec ueransim apt-get install -y curl
- # Instalar o traceroute para diagnosticar caminhos de rede sudo docker exec ueransim apt-get install -y traceroute

Foi também necessário configurar regras de NAT (MASQUERADE) com o iptables, no *container* upf, para permitir que os pacotes IP oriundos do UE sejam encaminhados para o exterior da rede (Internet) pelo UPF. Estas regras garantem que os pacotes provenientes das sub-redes atribuídas aos UEs (10.60.0.0/24 e 10.61.0.0/24) possam ser corretamente mascarados com o IP do UPF ao sair para a Internet (DN).

Configuração de NAT (MASQUERADE) no UPF:

- # Adicionar regra de NAT para a sub-rede 10.60.0.0/24 sudo docker exec upf iptables -t nat -A POSTROUTING -s 10.60.0.0/24 -o eth0 -j MASQUERADE
- # Adicionar regra de NAT para a sub-rede 10.61.0.0/24
 sudo docker exec upf iptables -t nat -A POSTROUTING -s 10.61.0.0/24 -o
 eth0 -j MASQUERADE
- # Eliminar o ip default que sai pela interface eth0 sudo docker exec ueransim ip route del default sudo docker exec ueransim ip route add default dev uesimtun0

Por fim, na máquina *host*, foi ativado o encaminhamento de pacotes IP com o comando sysctl, essencial para que os pacotes possam efetivamente atravessar o *UPF* em direção à rede externa.

Ativação do encaminhamento de IP na máquina host:

Ativar o IP forwarding para permitir o encaminhamento de pacotes sudo sysctl -w net.ipv4.ip_forward=1

Envio de Pings, Traceroute, Curl e Wget do UE para a Internet (DN)

Fig. 21. Execução de um teste de conectividade ICMP (ping) do UE para o exterior (8.8.8.8), utilizando o comando: sudo docker exec -w /ueransim/binder/nr-binder ueransim /ueransim/binder/nr-binder 10.60.0.2 ping -c 4 8.8.8.8.

Fig. 23. Execução de uma requisição HTTP ao site da Google a partir do UE, com o comando: sudo docker exec -w /ueransim/binder ueransim /ueransim/binder/nr-binder 10.60.0.1 curl -I http://www.google.com.

Fig. 22. Utilização do comando traceroute a partir do UE para o endereço 8.8.8.8, com: sudo docker exec -w /ueransim/binder ueransim /ueransim/binder/nr-binder 10.60.0.1 traceroute 8.8.8.8.

Fig. 24. Execução de um download de página web a partir do UE utilizando o comando wget: sudo docker exec -w /ueransim/binder ueransim /ueransim/binder/nr-binder 10.60.0.1 wget http://www.google.com -O test.html.

Após a execução destes comandos, foi necessário verificar se os pacotes IP estavam a ser corretamente encaminhados através do *UPF*. Para isso, utilizou-se a ferramenta topdump, que permite capturar e visualizar pacotes de rede em tempo real. Através da escuta da interface de rede do *UPF*, foi possível confirmar o envio e a receção de pacotes entre o *UE* e a Internet, validando assim o correto funcionamento do encaminhamento de tráfego.

sudo docker exec -w /ueransim/binder ueransim /ueransim/binder/nr-binder 10.60.0.1 $tcpdump - i uesimtun0 - n - v > tcpdump_Ficheiro.txt$

Fig. 25. Neste Log é possível observar que os pacotes ICMP enviados pelo Ping passaram pelo IP do túnel ueransim0 (10.60.0.1) para o 8.8.8.8 (google.com) e vice-versa

Fig. 27. Fluxo de uma requisição HTTP com o curl: handshake TCP (SYN, SYN-ACK, ACK), requisição e resposta HTTP entre UE (10.60.0.1) e www.google.com (142.251.167.99), com encapsulamento GTP-U pelo gNodeB e encaminhamento pelo UPF via UERANSIM (nr-binder).

Fig. 26. Neste Log é possível observar que os pacotes enviados pelo Traceroute passou do IP do túnel ueransim0 (10.60.0.1) para o 8.8.8.8 (google.com)

Fig. 28. Requisição HTTP GET com wget: handshake TCP, requisição e resposta segmentada (pacotes de 1348 bytes) entre UE (10.60.0.1) e www.google.com.

Logs das NFs: Durante a realização dos testes, foi validado se as Network Functions (NFs) estavam a responder adequadamente aos pedidos emitidos pelo UE. Esta verificação permitiu confirmar a correta integração e comunicação entre os componentes do core 5G. Para além disso, de forma a garantir que o encaminhamento do tráfego estava a ser realizado corretamente através da porta do túnel atribuída no UPF, foram inspecionadas as regras configuradas nas IPTables com exibido na Figura 29.

Fig. 29. A interface 10.60.0.0 registou a passagem de 148 pacotes após vários testes, confirmando que o tráfego do UE foi encaminhado corretamente através do UPF.

Fig. 30. Log do SMF a criar uma sessão PDU para o UE (IP 10.60.0.1), utilizada nos testes HTTP e traceroute. Mostra a interação entre AMF, SMF e UPF para estabelecer a conectividade.

Fig. 31. Registo da libertação da mesma sessão PDU após os testes. O SMF coordena com o UPF e o AMF o encerramento controlado da sessão.

Fig. 32. O UPF responde ao pedido de libertação do SMF, encerrando o túnel GTP-U. Confirma o correto funcionamento do plano de utilizador e a libertação eficiente dos recursos

V. IMPLEMENTAÇÕES NÃO REALIZADAS E JUSTIFICAÇÃO

Apesar dos esforços do grupo para conceber o modelo distribuído descrito na Secção III, este acabou por ser abandonado. Uma das principais dificuldades encontradas prendeu-se com a complexidade da interligação entre uma VM que continha os containers com as NFs e outra VM que executava o UERANSIM. Esta configuração exigia alterações consideráveis nos ficheiros .yaml do free5GC-compose, o que se revelou moroso e propenso a erros.

Dado o calendário apertado e a necessidade de garantir uma implementação funcional, o grupo optou por concentrar os seus esforços na configuração e operação correta da rede 5G num ambiente monolítico.

VI. CONCLUSÕES

Este trabalho prático permitiu uma compreensão aprofundada da arquitetura de uma rede 5G, explicada na secção II, através da sua implementação prática com recurso ao Free5GC e ao UERANSIM. A abordagem monolítica, descrita na III, foi realizada com sucesso numa única máquina virtual, e validou a funcionalidade do sistema, demonstrando uma integração eficaz entre as diversas Network Functions (NFs), assim como a conectividade do User Equipment (UE) com a Internet (DN), através da User Plane Function (UPF) no plano de dados ($UE \rightarrow UPF \rightarrow DN$), como observado na secção IV.

Posteriormente, foram realizados testes de conectividade, como ping, traceroute, curl e wget, que confirmaram o correto encaminhamento do tráfego no plano de utilizador. A análise dos registos do *Session Management Function* (SMF) e do UPF demonstraram uma gestão correta das sessões PDU, desde a sua criação até à respetiva libertação, assegurando o tratamento do tráfego.

Adicionalmente, foi feita a inspeção das regras das iptables, permitindo validar que os pacotes gerados pelos testes estavam a ser corretamente encaminhados pelas interfaces e túneis configurados no UPF.

Este projeto permitiu também aplicar e consolidar os fundamentos teóricos da arquitetura 5G, nomeadamente os princípios de separação entre plano de controlo e plano de utilizador, a utilização de funções de rede virtualizadas e a lógica orientada a serviços (SBA). Através da prática, tornou-se evidente o papel de cada função na mobilidade, autenticação e autorização do UE, bem como no estabelecimento e término de sessões PDU.

O desenvolvimento deste trabalho evidenciou ainda como a modularidade das NFs é essencial para garantir a escalabilidade, flexibilidade e resiliência do núcleo da rede 5G face às gerações mais antigas de Redes Móveis, estando em linha com os requisitos definidos pelas especificações do 3GPP mais modernas.

VII. ANEXOS

A. Tabela com a configuração padrão de um Cliente (UE)

TABLE I: Configuração padrão do Subscriber

	Subscriber Identity		
PLMN ID	20893		
SUPI (IMSI)	20893000000001		
GPSI (MSISDN)	(not set)		
Authentication Method	5G_AKA		
Authentication Management	8000		
Field (AMF)			
K	8baf473f2f8fd09487cccbd7097c6862		
Operator Code Type	OPc		
Operator Code Value	8e27b6af0e692e750f32667a3b14605d		
SQN	00000000023		
Subscribed UE AMBR			
Uplink	1 Gbps		
Downlink	2 Gbps		
24.5cmS-NSSAI 1	SST: 1, SD: 010203		
	Uplink AMBR: 1000 Mbps, Downlink AMBR: 1000 Mbps, Default 5QI:		
	9, Static IPv4: Not Set		
34.5cmFlow Rules (S-NSSAI 1)	IP Filter: 1.1.1.1/32, Precedence: 128, 5QI: 8		
	Uplink GBR: 108 Mbps, Downlink GBR: 108 Mbps		
	Uplink MBR: 208 Mbps, Downlink MBR: 208 Mbps		
24.5cmCharging Config (S-	Method: Offline, Unit Cost: 1		
NSSAI 1)			
24.5cmS-NSSAI 2	SST: 1, SD: 112233		
	Uplink AMBR: 1000 Mbps, Downlink AMBR: 1000 Mbps, Default 5QI:		
	8, Static IPv4: Not Set		
34.5cmFlow Rules (S-NSSAI 2)	IP Filter: 1.1.1.1/32, Precedence: 127, 5QI: 7		
	Uplink GBR: 207 Mbps, Downlink GBR: 207 Mbps		
	Uplink MBR: 407 Mbps, Downlink MBR: 407 Mbps		
24.5cmCharging Config (S-	Method: Online, Quota (1): 5000, Quota (2): 100000		
NSSAI 2)			
	Unit Cost: 1		

B. Tabelas com a descrição detalhadas dos parâmetros gnbcfg.yaml e uecfg.yaml

Parâmetro	Descrição
mcc	Código do País Móvel (Mobile Country Code). Identifica a rede nacional. Ex: "208"
	(França).
mnc	Código da Rede Móvel (Mobile Network Code). Identifica a operadora dentro do país.
	Ex: "93".
nci	Identidade da Célula NR (New Radio Cell Identity), identificador único para uma célula
	5G. Ex: "0x000000010".
idLength	Comprimento do ID do gNB (gNodeB) em bits, indicando a capacidade do sistema.
	Ex: "32".
tac	Código da Área de Rastreamento (Tracking Area Code), utilizado para identificar áreas
	geográficas na rede. Ex: "1".
linkIp	Endereço IP local do gNB para simulação do link de rádio. Ex: "127.0.0.1".
ngapIp	Endereço IP do gNB para a interface N2 (comunicação com o AMF).
gtpIp	Endereço IP do gNB para a interface N3 (comunicação com o UPF).
amfConfigs	Lista de endereços e portas do AMF para a comunicação.
slices	Lista de network slices suportadas pelo gNB, permitindo personalização de serviços.
	Ex: "sst: 0x1, sd: 0x010203".
ignoreStreamIds	Define se os erros de número de stream SCTP devem ser ignorados. Ex: "true".

TABLE II

Explicação dos parâmetros de configuração no gneceg. Yaml

Parâmetro	Descrição
supi	Identificador único do UE, derivado do IMSI (International Mobile Subscriber Identity).
	Ex: "imsi-20893000000001".
key	Chave permanente de assinatura, utilizada para autenticação do UE na rede. Ex:
	"8baf473f2f8fd09487cccbd7097c6862".
ор	Código do operador (OP ou OPC) do UE. Ex: "8e27b6af0e692e750f32667a3b14605d".
орТуре	Tipo de operação do operador, podendo ser "OP" ou "OPC".
amf	Valor do campo AMF, utilizado na autenticação e controlo de mobilidade. Ex: "8000".
imei	Número IMEI (International Mobile Equipment Identity) do dispositivo, usado se o
	SUPI não for fornecido. Ex: "356938035643803".
imeiSv	Número IMEISV (IMEI Software Version), usado se nem SUPI nem IMEI forem
	fornecidos. Ex: "4370816125816151".
gnbSearchList	Lista de endereços IP do gNB para a simulação. Ex: "127.0.0.1, gnb.free5gc.org".
TABLE III	

EXPLICAÇÃO DOS PARÂMETROS DE CONFIGURAÇÃO NO UECFG. YAML

C. Logs de Network Functions

Fig. 33. N3IWF — Função que permite a interligação do UE à rede 5G através de redes não confiáveis, como Wi-Fi, encaminhando os dados para a AMF.

Fig. 34. NEF — Permite a exposição e o controlo de políticas da rede 5G por aplicações externas.

Fig. 35. Disponibiliza uma interface gráfica que oferece diversas funcionalidades, como criar/eliminar/visualizar um subscriber, entre outras