Misura indiretta della velocità della luce

C.d.L. in Fisica, a.a. 2023-2024 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi

19 ottobre 2023

1 Prova

Lorem ipsum $\vec{F} = \oint ma$.

$$\vec{F} = \oint ma$$
 (1.1)
$$\vec{F} = \oint ma$$
 (1.2)

Per quanto riguarda l'analisi del moto oscillatorio, prima di tutto è stata associata un'incertezza alle misure della posizione: per ogni posizione h_i una buona stima dell'incertezza è data dall'intervallo che essa percorrerebbe nel tempo che intercorre tra due misurazioni del photogate nel caso ideale di moto non smorzato, quindi $\Delta h_i = v_i \Delta t = \frac{v_i}{\nu}$ e $\sigma_{h_i} = \frac{1}{2} \Delta h_i = \frac{v_i}{2\nu}$; per compensare la sottostima dell'errore che si verifica per valori piccoli della velocità, ovvero agli estremi

1.1 ciao

ciao

del moto, abbiamo preso come incertezza uguale per tutti gli h_i la massima incertezza associabile con questo metodo, ovverosia quella corrispondente al valore massimo di velocità (non smorzata), quindi $v_m = \omega A$ con A ampiezza dell'oscillazione (già stimata nella sezione 4 sulle Misure) e $\omega = \frac{2\pi}{T}$ pulsazione del moto ottenibile dal periodo.

Abbiamo allora che $\sigma_h = \frac{\pi A}{\nu T}$, quindi che rimane soltanto da stimare il periodo d'oscillazione. Per fare ciò, abbiamo considerato il set di dati dei massimi d'oscillazioni, il set dei minimi e quello di massimi e minimi insieme; per i primi due sono stati calcolati i multipli del periodo (opportunamente divisi dal rispettivo numero di periodi intercorsi) associati a tutte le possibili combinazioni di coppie di massimi o minimi, per poi calcolare sia T_{max} che T_{min} come la media campionaria di questi periodi ottenuti, associando come incertezze $\sigma_{T_{max}}$ e $\sigma_{T_{min}}$ le corrispondenti deviazioni standard; per il set di dati contenente sia massimi che minimi, abbiamo ripetuto lo stesso procedimento calcolando però tutti i possibili mezzi periodi, ottenendo quindi $\tau = \frac{1}{2} T_{mm}$ e $\sigma_{\tau} = \frac{1}{2} \sigma_{T_{mm}}$. I valori così ottenuti sono:

Colonna 1	Colonna 2	Colonna 3
1387	8714.778021	9.69
1406	8834.158542	9.69
1407	8840.441727	9.70
1391	8739.910762	9.70
1382	8683.362095	9.69
1402	8809.025801	9.70
1394	8758.760318	9.69
1419	8915.839951	9.70
1369	8601.680686	9.69
1419	8915.839951	9.70
1424	8947.255877	9.69
1419	8915.839951	9.69
1404	8821.592171	9.70
1312	8243.539123	9.66
1409	8853.008098	9.69
1394	8758.760318	9.68
1315	8262.388679	9.66
1369	8601.680686	9.66
1384	8695.928465	9.70
1329	8350.353273	9.63
1349	8476.016979	9.69
1383	8689.645280	9.69
1317	8274.955050	9.65
1314	8256.105494	9.66
1331	8362.919644	9.66
1381	8677.078909	9.69
1385	8702.211650	9.70
1375	8639.379797	9.67
1310	8230.972752	9.67
1325	8325.220532	9.68