Maximiliano Belotti

¿Maquinas eternas?

Analisis de caso

Comisión 16330

Análisis inicial

Datos basicos

- 2 Variables Target.
- 2 ID columns
- 6 Features.
- 3 Features generado por nosotros.
- Datos desbalanceados.
- 10000 rows.
- Los datos analógicos se encuentran normalizados a una desviación estándar, etc.
- 🗲 Supervisado Clasificación

Preguntas

- ¿Falla o no falla?
- ¿Cuál es la falla?
- ¿Cómo mejoramos?

Pregunta 1

¿Falla o no falla?

¿COMO PREDECIMOS ESTO?

	Models	Accuracy	Runtime (s)
0	Random Forest Classifier	98.633	0.661124
1	Gradient Boosting Classifier	98.567	0.657201
2	Stacking Classifier	98.567	1.748083
3	Bagging Classifier	98.533	0.199664
4	AdaBoostClassifier	97.433	0.242290
5	LogisticRegression	97.367	0.081269
6	MLPClassifier	97.333	1.155732
7	KNeighborsClassifier	95.933	0.144476

MAS METRICAS

Mejor Modelo: RandomForestClassifier

Accuracy del modelo: 98.63300000000001

Runtime 0.682

Matriz de clasificacion:

	precision	recall	f1-score	support
0	0.99	1.00	0.99	2907
1	0.89	0.63	0.74	93
accuracy			0.99	3000
macro avg	0.94	0.82	0.87	3000
weighted avg	0.99	0.99	0.99	3000

Pregunta 2

¿Cuál es la falla?

Valores medianos de falla

		Air_temperature_[K]	Process_temperature_[K]	Rotational_speed_[rpm]	Torque_[Nm]	Tool_wear_[min]	Power_[W]	Overstrain_[minNm]	Heat dissipation_[rpminK]
Target	Failure_Type								
0	No Failure	300.00	310.0	1507.0	39.80	107.0	6243.035753	3951.20	15196.80
	Random Failures	300.75	311.1	1490.0	44.60	142.0	6915.074782	5645.40	14837.85
1	Heat Dissipation Failure	302.45	310.7	1346.0	52.35	106.0	7298.925044	5549.65	11050.85
	No Failure	300.50	309.9	1438.0	45.20	119.0	6811.266088	4449.90	15465.90
	Overstrain Failure	299.45	310.1	1362.5	56.75	207.0	8088.454402	11545.40	13862.65
	Power Failure	300.40	310.2	1386.0	63.60	100.0	9100.377103	3608.80	14188.20
	Tool Wear Failure	300.40	310.3	1521.0	37.70	215.0	5986.933120	7843.20	14706.00

Random Forest para multiclass


```
F1 Score TEST del classificador macro: 0.6893215601926945
```

F1 Score TEST del classificador micro: 0.9377

F1 Score TEST del classificador weighted: 0.9567192172908462

F1 Score TEST del classificador weighted: [0.65882353 0.96665061 0.76470588 0.87557604 0.69230769 0.17786561]

Jaccard Score TEST del classificador macro: 0.5752406088904434 Jaccard Score TEST del classificador micro: 0.8827073331450626 Jaccard Score TEST del classificador weighted: 0.9220200704474987

HIPER

Mejores parametros: {'criterion': 'entropy', 'max_depth': 8, 'max_features': 'log2', 'n_estimators': 200}

```
F1 Score TEST del classificador macro: 0.7723638369834158
F1 Score TEST del classificador micro: 0.9758299067295156
F1 Score TEST del classificador weighted: 0.9796009159998578
F1 Score TEST del classificador: [0.71565495 0.98583421 0.98113208 0.99470899 0.5 0.45685279]
Jaccard Score TEST del classificador macro: 0.6851834485708723
Jaccard Score TEST del classificador micro: 0.9528006267136702

Jaccard Score TEST del classificador weighted: 0.9633204605794284
```

Algunos de los parametros retrocedieron

Conclusiones

- Falla por desgaste de la herramienta (TWF): la herramienta se reemplazará por falla en un tiempo de desgaste de la herramienta seleccionado aleatoriamente entre 200 y 240 minutos (120). En este momento, la herramienta se reemplaza 69 veces y falla 51 veces (asignadas aleatoriamente).
- Falla por disipación de calor (HDF): la disipación de calor provoca una falla en el proceso, si la diferencia entre la temperatura del aire y la del proceso es inferior a 8,6 K y la velocidad de rotación de la herramienta es inferior a 1380 rpm. Este es el caso de 115 puntos de datos.
- Falla de energía (PWF): el producto del par y la velocidad de rotación (en rad/s) es igual a la potencia requerida para el proceso. Si esta potencia está por debajo de 3500 W o por encima de 9000 W, el proceso falla, que es el caso 95 veces en nuestro conjunto de datos.
- Fallo por sobreesfuerzo (OSF): si el producto del desgaste de la herramienta y el par supera los 11 000 minNm para la variante de producto L (12 000 M, 13 000 H), el proceso falla debido al sobreesfuerzo. Esto es cierto para 98 puntos de datos.