Permit Nos. 6308 and PSD-TX-137M1

This table lists the maximum allowable emission caps and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source A	Air Contaminant	<u>Emission Rates</u>
<u>*</u> Point No. (1)	Name (2)	Name (3)	lb/hr TPY
1, 2 33, 34 35, 36 37, 38 65A 65B 66A 66B 77 69, 70 67, 68 110 111 101, 102 99, 100 120 74 FL-118 3 4A 4 25 80	Alky Reboiler BTX Depentanizer Rebo BTX Rx No. 1 Heater BTX Rx No. 2 Heater Crude II Charge Heate Crude II Vacuum Heate Crude II Vacuum Heate Crude II Vacuum Heate Crude II Vacuum Heate DHDS Charge Heater DIH A Heater DIH B Heater FCCU II Charge Heater FCCU II Scrubber Hydrobon Charge Heater Hydrobon Reboiler Isom DIH Reboiler Isom DIH Reboiler KHDS Charge Heater Marine VRU MFP Rx No. 1 Heater MFP Rx No. 2 Heater MFP Stabilizer Reboil Sulfolane Heater VGO Charge Heater	NOx piler NOx NOx Pr A Pr A Pr B Pr B NOx	NO _x NO _x NO _x NO _x NO _x NO _x
81	VGO Fractionator Heat Emissions Cap	NO _x	NO _x 411.7 1519.1
1, 2 33, 34 35, 36 37, 38	Alky Reboiler BTX Depentanizer Rebo BTX Rx No. 1 Heater BTX Rx No. 2 Heater	CO Diler CO CO	CO

Emission *	Source	Air Contaminant	<u>Emiss</u>	ion Rates
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
65A 65B 66A 66B 77 69, 70 67, 68 110 111 101, 102 99, 100	Crude II Charge Hea Crude II Vacuum Hea Crude II Charge Hea Crude II Vacuum Hea DHDS Charge Heater DIH A Heater DIH B Heater FCCU II Charge Heat FCCU II Scrubber Hydrobon Charge Hea	ter A ter A ter B ter B CO CO CO er CO CO	C0 C0 C0 C0	
120 74 FL-118 3 4A 4 25 80	Isom DIH Reboiler KHDS Charge Heater Marine VRU MFP Rx No. 1 Heater MFP Rx No. 2 Heater MFP Stabilizer Rebo Sulfolane Heater VGO Charge Heater VGO Fractionator He	C0 C0 C0 C0 co iler C0	CO CO	
1, 2 33, 34 35, 36 37, 38 65A 65B 66A 66B 77 69, 70 67, 68 110 111 101, 102	Alky Reboiler BTX Depentanizer Re BTX Rx No. 1 Heater BTX Rx No. 2 Heater Crude II Charge Hea Crude II Vacuum Hea Crude II Vacuum Hea Crude II Vacuum Hea DHDS Charge Heater DIH A Heater DIH B Heater FCCU II Charge Heat FCCU II Scrubber Hydrobon Charge Hea	SO_2 SO_2 ter A ter A ter B SO_2 SO_2 SO_2 SO_2 SO_2 SO_2 SO_2	SO ₂ SO ₂ SO ₂ SO ₂ SO ₂ SO ₂	530.9

Emission *	Source	Air Contaminant	<u>Emission Rates</u>
Point No. (1)	Name (2)	Name (3)	lb/hrTPY
99, 100 120 74 3 4A 4 25	Hydrobon Reboiler Isom DIH Reboiler KHDS Charge Heater MFP Rx No. 1 Heater MFP Rx No. 2 Heater MFP Stabilizer Reboi Sulfolane Heater	SO ₂ SO ₂ SO ₂ SO ₂ SO ₂ Ter SO ₂	SO ₂
80 81	VGO Charge Heater VGO Fractionator Hea Emissions Cap	SO ₂	SO ₂ 262.0 499.3
1, 2 33, 34 35, 36	Alky Reboiler BTX Depentanizer Reb BTX Rx No. 1 Heater	PM poiler PM	PM
37, 38 65A 65B 66A 66B	BTX Rx No. 2 Heater Crude II Charge Heat Crude II Vacuum Heat Crude II Charge Heat Crude II Vacuum Heat	cer A cer B	PM PM PM PM
77 69, 70 67, 68 110	DHDS Charge Heater DIH A Heater DIH B Heater FCCU II Charge Heate	PM PM PM	•••
111 101, 102 99, 100 120	FCCU II Scrubber Hydrobon Charge Heat Hydrobon Reboiler Isom DIH Reboiler	PM	
74 3 4A 4	KHDS Charge Heater MFP Rx No. 1 Heater MFP Rx No. 2 Heater MFP Stabilizer Reboi	PM PM PM ler	PM
25 80	Sulfolane Heater VGO Charge Heater	PM PM	
81	VGO Fractionator Hea	icer.	PM

Permit Nos. 6308 and PSD-TX-137M1 Page 4

EMISSION SOURCES - FINAL EMISSION CAPS

Emission *	Source	Air Contaminant	<u>Emissi</u>	on Rates
Point No. (1)	Name (2)	Name (3)	lb/hrl	PY
	Emissions Cap	PM	57.1	220.5
E14T505	Aerobic Digester (E14TK202,E14T203, and E14TK527)	VOC		
1, 2	Alky Reboiler	VOC		
C-103	Alkylation Cooling T		VOC	
F-50	Alkylation Fugitives	5 (4)	VOC	

Emission *	Source	Air Contaminant	<u>Emission Rates</u>
Point No. (1)	Name (2)	Name (3)	lb/hrTPY
F-200	Benzene Tank Piping Fugitives (4)	VOC	
C-108	BTX Cooling Tower	VOC	
33, 34	BTX Depentanizer Reb	ooiler	VOC
F-55	BTX Fugitives (4)	VOC	
35, 36	BTX Rx No. 1 Heater	VOC	
37, 38	BTX Rx No. 2 Heater	VOC	
F-58	Butadiene Saturation Fugitives (4)	n VOC	
C-106	Crude I Cooling Towe	er VOC	
C-109	Crude II Cooling Tow	ver VOC	
65A	Crude II Charge Heat		VOC
65B	Crude II Vacuum Heat		VOC
66A	Crude II Charge Heat	er B	VOC
66B	Crude II Vacuum Heat	er B	VOC
F-61	Crude II/DIH Fugitiv	/es (4)	VOC
F-124	Cyclohexane Fugitive		VOC
77	DHDS Charge Heater	VOC	
69, 70	DIH A Heater	VOC	
67, 68	DIH B Heater	VOC	
F-DIM	Dimersol Fugitives ((4) VOC	
C-105	FCCU I Cooling Tower		
C-113	FCCU II Cooling Towe		
110	FCCU II Charge Heate		
111	FCCU II Scrubber	VOC	
F-112	FCCU II Fugitives (4	I) VOC	
F-44	FCCU I Fugitives (4)	VOC	
F-202	Gas Blending Fugitiv	/es (4)	VOC
101, 102	Hydrobon Charge Heat	er VOC	
C-110	Hydrobon Cooling Tow	ver VOC	
99, 100	Hydrobon Reboiler	VOC	
F-98	Hydrobon Fugitives ((4) VOC	
120	Isom DIH Reboiler	VOC	
F-121	Isom Fugitives (4)	VOC	

Emission *	Source	Air Contaminant	<u>Emission Rates</u>
Point No. (1)	Name (2)	Name (3)	lb/hrTPY
F-79 74 F-72	Isomax Fugitives (4) KHDS Charge Heater KHDS/DHDS Fugitives	VOC	VOC
FL-118	Marine VRU	VOC	
C-104	MFP Cooling Tower	VOC	
3	MFP Rx No. 1 Heater	VOC	
4A	MFP Rx No. 2 Heater	VOC	VOC
4	MFP Stabilizer Reboi	iler	
F-48	MFP Fugitives (4)	VOC	
F-123	MTBE Fugitives (4)	VOC	
20-J-1	Recovery Column Vacu		VOC
S-84	SRU Incinerator (E10TK105,E29TK111 and E29T211)	VOC 1,	
C-107	Sulfolane Cooling To	ower	VOC
25	Sulfolane Heater	VOC	
F-53 CAT	Sulfolane Fugitives Tank CAT		VOC
J-1	Tank J-1	VOC	
J-2	Tank J-2	VOC	
E0330T101	Tank E0330T101	VOC	
E10TK101	Tank E10TK101	VOC	
E11TKR5	Tank E11TKR5	VOC	
E11TKR7	Tank E11TKR7	VOC	
E11TKR9	Tank E11TKR9	VOC	
E11TKR11	Tank E11TKR11	VOC	
E11TKR16	Tank E11TKR16	VOC	
E11TKR17	Tank E11TKR17	VOC	
E11TKR18	Tank E11TKR18	VOC	
E11TKR19	Tank E11TKR19	VOC	
E11TKR20	Tank E11TKR20	VOC	
E11TKR20 E11TKR34 E11TKR36	Tank E11TKR20 Tank E11TKR34 Tank E11TKR36	VOC VOC	

Emission *	Source	Air Contaminant	Emission Rates
Point No. (1)	Name (2)	Name (3)	lb/hrTPY
E11TKR40	Tank E11TKR40	VOC	
E11TKS1	Tank E11TKS1	VOC	
E11TKS2	Tank E11TKS2	VOC	
E11TKS3	Tank E11TKS3	VOC	
E11TKS4	Tank E11TKS4	VOC	
E11TKS5	Tank E11TKS5	VOC	
E11TKS6	Tank E11TKS6	VOC	
E11TKS7	Tank E11TKS7	VOC	
E11TKS8	Tank E11TKS8	VOC	
E11TKS21	Tank E11TKS21	VOC	
E11TKS22	Tank E11TKS22	VOC	
E11TKS23	Tank E11TKS23	V0C	
E11TKS30	Tank E11TKS30	V0C	
E11TKS31	Tank E11TKS31	VOC	
E11TKS32	Tank E11TKS32	V0C	
E11TKS41	Tank E11TKS41	VOC	
E11TKS42	Tank E11TKS42	VOC	
E11TKS43	Tank E11TKS43	VOC	
E11TK319	Tank E11TK319	VOC	
E11TK320	Tank E11TK320	VOC	
E11TK321	Tank E11TK321	VOC	
E11TK322	Tank E11TK322	VOC	
E11TK323	Tank E11TK323	VOC	
E11TK324	Tank E11TK324	VOC	
E11TK327	Tank E11TK327	VOC	
E11TK328	Tank E11TK328	VOC	
E12TK52	Tank E12TK52	VOC	
E12TK113	Tank E12TK113	VOC	
E12TK114	Tank E12TK114	VOC	
E12TK115	Tank E12TK115	VOC	
E12TK117	Tank E12TK117	VOC	
E12TK145	Tank E12TK145	V0C	
E12TK146	Tank E12TK146	V0C	
E13TKE4	Tank TK13E4	V0C	

Emission *	Source	Air Contaminant	Emission Rates
Point No. (1)	Name (2)	Name (3)	<u>lb/hrTPY</u>
E13TKE5	Tank TK13E5	VOC	
E13TKS25	Tank E13TKS25	VOC	
E13TKS26	Tank E13TKS26	VOC	
E13TKS27	Tank E13TKS27	VOC	
E13TKS33	Tank E13TKS33	VOC	
E13TKS34	Tank E13TKS34	VOC	
E13TKS35	Tank E13TKS35	VOC	
E13TK11	Tank E13TK11	VOC	
E13TK12	Tank E13TK12	VOC	
E13TK36	Tank E13TK36	VOC	
E13TK37	Tank E13TK37	VOC	
E13TK38	Tank E13TK38	VOC	
E14TK526	Tank E14TK526	VOC	
E18TKCS3	Tank E18TKCS3	VOC	
E18TK100	Tank E18TK100	VOC	
E18TK101	Tank E18TK101	VOC	
E18TK102	Tank E18TK102	VOC	
E18TK103	Tank E18TK103	VOC	
E18TK107	Tank E18TK107	VOC	
E18TK108	Tank E18TK108	VOC	
E18TK110	Tank E18TK110	VOC	
E18TK109	Tank E18TK109	VOC	
E18TK112	Tank E18TK112	VOC	
E18TK121	Tank E18TK121	VOC	
E18TK122	Tank E18TK122	VOC	
E18TK123	Tank E18TK123	VOC	
E18TK125	Tank E18TK125	VOC	
E18TK140	Tank E18TK140	VOC	
E18TK141	Tank E18TK141	VOC	
E18TK143	Tank E18TK143	VOC	
E18TK144	Tank E18TK144	VOC	
E18TK160	Tank E18TK160	V0C	
E18TK161	Tank E18TK161	V0C	
E18TK421	Tank E18TK421	VOC	

Emission *	Source	Air Contaminant	Emission Rates
Point No. (1)	Name (2)	Name (3)	lb/hrTPY
E18TK422 E18TK423 E18TK424 E18TK426 E18TK53 E20V21A E20V21B E20V22 E20V4 E29T111 E29T411	Tank E18TK422 Tank E18TK423 Tank E18TK424 Tank E18TK426 Tank E18TKF3 Tank E20V21A Tank E20V21B Tank E20V22 Tank E20V4 Tank E20V4 Tank E29T111 Tank E29T411	VOC VOC VOC VOC VOC VOC VOC VOC VOC VOC	
E29T511 F-140 F-26 F-30	Tank E29T511 Tank 140 Fugitives Terminal No. 2 Fugiterminal No. 3 Fugit	VOC VOC tives (4)	VOC VOC

Emission *	Source	Air Contaminant	<u>Emissi</u>	on Rates
Point No. (1)	Name (2)	Name (3)	lb/hrl	ΓΡΥ
71	Vapor Recovery Unit (E18TK55, E18TK14:	V0C 1)		
80	VGO Charge Heater	VOC		
81	VGO Fractionator Hea	ater	VOC	
92	Xylene Loading	VOC		
Emis	sions Cap	VOC	843.73	729.23
E11TKS23	Tank E11TKS23	Toluene		
E11TKR17	Tank E11TKR17	Toluene		
E11TKR18	Tank E11TKR18	Toluene		
	Emissions Cap	Toluene	0.96	2.53
E11TKS32	Tank E11TKS32	Xylene		
E11TKR9	Tank E11TKR9	Xylene		
E11TKR11	Tank E11TKR11	Xylene		
	Emissions Cap	Xylene	11.92	13.06
E11TKS22	Tank E11TKS22	Benzene		
E11TKR5	Tank E11TKR5	Benzene		
E11TKR7	Tank E11TKR7	Benzene		
	Emissions Cap	Benzene	1.34	2.77
E11TKS21	Tank E11TKS21	Cyclohexane		
E11TKR34	Tank E11TKR34	Cyclohexane		
E11TKR40	Tank E11TKR40	Cyclohexane		
	Emissions Cap	Cyclohexane	0.86	2.94
E12TK146	Tank E12TK146	MTBE		
E18TK125	Tank E18TK125	MTBE		
	Emissions Cap	MTBE	2.11	4.28

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

⁽²⁾ Specific point source name. For fugitive sources use area name or fugitive source name.

⁽³⁾ VOC - volatile organic compounds as defined in General Rule 101.1

	NO_x	_	total oxides of nitrogen
	SO_2	_	sulfur dioxide
			particulate matter
	CO	_	carbon monoxide
			methyl-tert-butyl ether
(4)			gitive emissions are an estimate only and should not be
			red as a maximum allowable emission rate.
(5)			alternative tank may be used for the storage of toluene,
	•		l it meets the requirements of Special Condition No. 20 and the
	tank	em	ssion cap for toluene is not exceeded.
ماد	- •		and the second control of the Control of the second
*			rates are based on and the facilities are limited by the
	тотто	ow i r	ng maximum operating schedule:
		Ц	rs/day Days/week Weeks/year or <u>8,760</u> Hrs/year
		- ''	13/day Days/week weeks/year or <u>0,700</u> 1113/year

Dated____