Применение больших языковых моделей для иерархической суммаризации текстов научных публикаций

Соболевский Ф. А. Научный руководитель: д. ф.-м. н. Воронцов К. В.

Московский физико-технический институт

2025

Цели исследования

- Применить большие языковые модели (БЯМ) для иерархической суммаризации научных статей и определить оптимальный метод работы с моделью, позволяющий максимизировать качество генерации для выбранной БЯМ.
- Предложить новый способ измерения качества иерархической суммаризации, основанный на многокритериальном сравнении текстовых деревьев.
- Формализовать требования к адекватности метрики на множестве текстовых деревьев и исследовать свойства предложенной метрики.

Основная идея

- Объект генерации текстовые деревьев.
- ▶ Критерий качества сходство с авторской сводкой.
- ▶ Проблема: как сравнивать текстовые деревья?
- Многокритериальная оценка сходства (по структуре, семантике и т. д.);
- TTED информативная единая метрика на множестве текстовых деревьев;
- Качество метрики чувствительность к значимым различиям по отношению к незначимым.

Рис.: Пример иерархической сводки по научному исследованию

Постановка задачи иерархической суммаризации

- ightharpoonup Пусть S множество возможных фрагментов текста.
- ▶ Текстовое дерево дерево T=(V,E), где $E\subset V^2$ и для каждого $v\in V$ определен текст $s(v)\in \mathcal{S}$.
- $ightharpoonup \mathcal{T}$ множество рассматриваемых текстовых деревьев.
- $ho:T^2
 ightarrow\mathbb{R}^+$ числовая метрика различия текстовых деревьев.
- ightharpoonup Задача: найти отображение $f:D\mapsto T$, строящее иерархическую сводку $T\in \mathcal{T}$ по документу D, минимизирующее ее отличие от авторской сводки T^* :

$$\rho(f(D), T^*) \longrightarrow \min_{f}.$$

Требования к метрике сходства текстовых деревьев

Пусть $T, T' \in \mathcal{T}$. Зададим следующие требования к метрике ρ на множестве \mathcal{T} :

- 1. Симметричность: $\rho(T, T') = \rho(T', T)$.
- 2. Равенство нулю в случае равенства аргументов: $\rho(T,T)=0$.
- 3. ho удовлетворяет неравенству треугольника:

$$\forall T, T', T'' \in \mathcal{T} \quad \rho(T, T'') \le \rho(T, T') + \rho(T', T''). \tag{1}$$

- 4. Существует некоторая неубывающая функция $f: \mathbb{R}^+ \to \mathbb{R}^+$, такая что:
 - 4.1 Если T' получено из T добавлением в T вершины v, то $\rho(T,T')=f(r(v));$
 - 4.2 Если T' получено из T удалением из T вершины v, то $\rho(T,T')=f(r(v));$
 - 4.3 Если T' получено из T заменой вершины v на v', то $\rho(T,T')=f(r(v,v')).$

Предлагаемая метрика — *TTED*

- TTED (text tree edit distance) расстояние редактирования¹, стоимости операций редактирования в котором определяются заданной мерой семантического расстояния между текстами в вершинах.
- ▶ В качестве метрики семантического расстояния можно применить языковую модель LM : $S \to \mathbb{R}^n$ и определить для $s, s' \in \mathcal{S}$ семантическое расстояние как $r(s, s') = \rho_n(\mathsf{LM}(s), \mathsf{LM}(s'))$, где ρ_n функция расстояния в \mathbb{R}^n .

Используемые эвристики:

- Использование родительских вершин в качестве контекста для текстов в дочерних.
- ▶ Предварительное вычисление эмбеддингов и попарных расстояний для всех текстов в вершинах.

¹Zhang Kaizhong, Statman Richard, Shasha Dennis. On the Editing Distance Between Unordered Labeled Trees

Базовый метод

Для сравнения используется оценка сходства текстовых деревьев из работы Zhang et al., 2024^2 . Для текстовых деревьев T = (V, E) и T' = (V', E') она определяется как:

$$\mathsf{Sim}(\mathcal{T},\mathcal{T}') = \min_{P \subset E \times E'} \sum_{(e,e') \in P} \sum_{i=0,1} \mathsf{ROUGE}(e_i,e_i').$$

где P — однозначное сопоставление ребер T ребрам T' (оптимальное ищется жадных алгоритмом), ROUGE(v,v') — усредненная оценка ROUGE-1, ROUGE-2 и ROUGE-L сходства s(v) и s(v').

▶ В экспериментах для единообразия в качестве оценки расстояния используется $\rho(T, T') = \operatorname{Sim}^{\max} - \operatorname{Sim}(T, T')$, где $\operatorname{Sim}^{\max} = \operatorname{Sim}(T, T)$.

² Zhang Zhuowei, Hu Mengting, Bai Yinhao, and Zhang Zhen. Coreference Graph Guidance for Mind-Map Generation

Критерии качества метрики

Пусть для $T \in \mathcal{T}$:

- \triangleright P(T) множество деревьев парафразов T;
- \triangleright S(T) множество деревьев реструктуризаций T;
- ▶ M(T) набор деревьев с такой же структурой, как у T, но с разной семантикой: $M(T) = \mathcal{T}_{\sim T} \setminus P(T)$.

Задача оптимизации:

$$R_S(\rho) \longrightarrow \min_{\rho}, \quad R_M(\rho) \longrightarrow \min_{\rho},$$

где

$$R_{S}(\rho) = \mathbb{E}_{T \sim T}[r_{S}(\rho, T)], \quad R_{M}(\rho) = \mathbb{E}_{T \sim T}[r_{M}(\rho, T)],$$

$$r_{S}(\rho, T) = \mathbb{E}_{T' \sim P(T), \ T'' \sim S(T)} \left[\frac{\rho(T, T')}{\rho(T, T'')} \right],$$

$$r_{M}(\rho, T) = \mathbb{E}_{T' \sim P(T), \ T''' \sim M(T)} \left[\frac{\rho(T, T')}{\rho(T, T''')} \right].$$

Оценка коэффициентов качества по выборке

Рассмотрим случайную выборку текстовых деревьев $\mathcal{D} = \{T, T_1', \dots, T_p', T_1'', \dots, T_s'', T_1''', \dots, T_m'''\}$, где $T \sim \mathcal{T}$, $T_i' \sim P(T)$, $T_j'' \sim S(T)$, $T_k''' \sim M(T)$. Введем следующие оценки на $R_S(\rho)$ и $R_M(\rho)$ по \mathcal{D} :

$$R_{S}^{\mathcal{D}}(\rho) = \frac{1}{sp} \sum_{i=1}^{p} \sum_{j=1}^{s} \frac{\rho(T, T_{i}')}{\rho(T, T_{j}'')}, \quad R_{S}^{\mathcal{D}}(\rho) = \frac{1}{mp} \sum_{i=1}^{p} \sum_{k=1}^{m} \frac{\rho(T, T_{i}')}{\rho(T, T_{k}'')}.$$

Теорема (Соболевский, 2025)

Пусть для заданного класса текстовых деревьев \mathcal{T} и метрики $\rho: \mathcal{T} \times \mathcal{T} \longrightarrow [0, +\infty)$ существуют конечные $R_S(\rho)$ и $R_M^{\mathcal{D}}(\rho)$. Тогда $R_S^{\mathcal{D}}(\rho)$ и $R_M^{\mathcal{D}}(\rho)$ являются несмещенными оценками $R_S(\rho)$ и $R_M(\rho)$ соответственно по случайной выборке \mathcal{D} :

$$\mathbb{E}_{\mathcal{D}}[R_{\mathcal{S}}^{\mathcal{D}}(\rho)] = R_{\mathcal{S}}(\rho), \quad \mathbb{E}_{\mathcal{D}}[R_{\mathcal{M}}^{\mathcal{D}}(\rho)] = R_{\mathcal{M}}(\rho).$$

Многокритериальное сравнение текстовых деревьев

Для сравнения текстовых деревьев по различным аспектам сходства применимы следующие метрики:

- ► Семантическое сходство: сравнение текстов из вершин деревьев как линейных с помощью BERTScore³;
- Структурные различия: сравнение деревьев без разметки с помощью расстояния редактирования (TED);
- Сходство ранжирования предложений в иерархии: сопоставление предложений в вершинах по семантической близости и сравнение ранжирования с помощью коэффициента корреляции Спирмена⁴ (r₅).

³Zhang Tianyi, Kishore Varsha, Wu Felix, Weinberger Kilian Q, Artzi Yoav. BERTScore: Evaluating text generation with BERT

 $^{^4}$ Spearman Charles. The Proof and Measurement of Association between Two Thing

Тестирование метрик — постановка эксперимента

Для оценки семантической близости в TTED использовался ряд языковых моделей из библиотеки $sentence-transformers^5$.

Эксперименты — вычисление расстояний на выборке, состоящей из:

- 1. Основного дерева T, с которым сравнивались остальные;
- 2. Парафразов T (подвыборка paraphrase);
- 3. Реструктуризаций T (подвыборка restructure);
- 4. Деревьев, отличных от T только по смыслу (подвыборка meaning).

Цель эксперимента — найти среди предложенных такую метрику ρ , для которой будут минимальными оценки $R_S^{\mathcal{D}}(\rho)$ и $R_M^{\mathcal{D}}(\rho)$.

⁵https://sbert.net/

Тестирование метрик — результаты

TTED with fine-tuned MPNet restructure meaning paraphrase 2 4 6 8 Distance scores

Рис.: Оценки базового метода

Рис.: Оценки нашего метода

Модель	$R^{\mathcal{D}}_{S}(ho)$	$R_{M}^{\mathcal{D}}(ho)$		
Baseline	6,29±3,58	1,22±0,24		
DistilRoBERTa	$0,38\pm0,11$	$0,89\pm0,28$		
SPECTER	0,41±0,14	$0,92\pm0,27$		
MPNet	0,27±0,07	$1,07\pm0,59$		
Fine-tuned MPNet	$0,21{\pm}0,05$	0,88±0,37		

12 / 16

Тестирование БЯМ — постановка эксперимента

Используемая для тестирования БЯМ — модель mistral-large-latest из библиотеки langchain-mistralai⁶. Исследованные методы генерации иерархических сводок:

- 1. **Прямой промптинг** (direct prompting) модели созданными вручную запросами;
- 2. Оптимизация запросов (prompt optimization) с помощью библиотеки langmem⁷ с использованием многокритериальной оценки генерации с помощью человеческих запросов;
- 3. Последовательный промптинг (sequential prompting) модели с выбором пользователем генерируемых вершин дерева.

Метрики сходства по различным аспектам — BERTScore, TED, r_s , а также единая метрика TTED.

⁷https://langchain-ai.github.io/langmem/

https://python.langchain.com/docs/integrations/providers/mistralai/

Тестирование БЯМ — результаты

Метод	BERTScore	TED	TTED
Direct prompting	0,41	11,0	14,13
Prompt optimization	0,72	4,0	7,26
Sequential prompting	0,78*	0,0*	3,35*

Таблица: Результаты тестирования БЯМ для иерархической суммаризации

^{*}При оптимальном сценарии взаимодействия пользователя с системой.

Заключение

Положения, выносимые на защиту

- Введен новый коэффициент качества метрик на множестве текстовых деревьев и предложена несмещенная оценка данного коэффициента по случайной выборке текстовых деревьев.
- Разработан новый алгоритм оценки расстояния между текстовыми деревьями, лучше отражающий значимые отличия текстовых деревьев в терминах введенного коэффициента качества, чем используемые до этого методы.
- Проведено многокритериальное исследование методов иерархической суммаризации при помощи БЯМ с использованием предложенных новых методов сравнения с экспертными сводками.

Литература

- Zhang Z., Hu M., et al. Coreference Graph Guidance for Mind-Map Generation // Proceedings of the AAAI Conference on Artificial Intelligence. — 2024. — Vol. 38. — P. 19623–19631.
- ➤ Zhang K., Statman R., Shasha D. On the editing distance between unordered labeled trees. // Information processing letters. 1992 May 25; 42(3): 133-9.
- Vrbanec T., Meštrović A. Comparison study of unsupervised paraphrase detection: Deep learning — The key for semantic similarity detection. // Expert systems. 2023 Nov; 40(9): e13386.