Theorem Random variates from the arctangent distribution with parameters λ and ϕ can be generated in closed-form by inversion.

Proof The arctangent(λ, ϕ) distribution has cumulative distribution function

$$F(x) = 2\left(\frac{\arctan(\lambda \phi) - \arctan(-x\lambda + \lambda \phi)}{2\arctan(\lambda \phi) + \pi}\right) \qquad x \ge 0$$

Equating the cumulative distribution function to u, where 0 < u < 1 yields an inverse cumulative distribution function

$$F^{-1}(u) = \frac{\lambda \phi + \tan[-\arctan(\lambda \phi) + u\pi/2 + u\arctan(\lambda \phi)]}{\lambda} \qquad 0 < u < 1.$$

So a closed-form variate generation algorithm using inversion for the $\arctan(\lambda, \phi)$ distribution is

generate
$$U \sim U(0,1)$$

 $X \leftarrow (\lambda \phi + \tan[-\arctan(\lambda \phi) + U\pi/2 + U\arctan(\lambda \phi)])/\lambda$
return(X)

APPL verification: The APPL statements

```
X := ArcTanRV(lambda, phi);
CDF(X);
IDF(X);
```

verify the inverse distribution function of an arctangent random variable.