Apply machine learning to Performance trend analysis

Araya Eamrurksiri

March 28, 2017

Araya Eamrurksiri Midterm report March 28, 2017 1 / 16

Overview

- Recall: Thesis objectives
- Markov switching model
 - Markov switching autoregressive model
 - Model estimation
- What has been done?
- 4 Next step

Araya Eamrurksiri Midterm report March 28, 2017 2 / 16

Objectives

- Detect the state of the CPU utilization (degrading, improving or steady state)
- Detect whether there is any change in the test environment that effects the CPU utilization

Araya Eamrurksiri Midterm report March 28, 2017 3 / 16

Markov switching model, [Hamilton, 1989]

- A technique uses for describing the evolution of the process at different period of time
- Model involves multiple structures that can characterize the time series behaviors in different states
- The switching mechanism between the states is assumed to be an unobserved Markov chain - a stochastic process which contains the probability of transition from one state to any other state

Figure: regime shift between states

Araya Eamrurksiri Midterm report March 28, 2017 4 / 16

Markov switching model, [Hamilton, 1989]

Assuming that S_t denote an unobservable state variable

$$y_t = X_t' \beta_{S_t} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{S_t}^2)$$

 y_t is the observed value of time series at time t X_t are the predictor variables of time series at time t β_{S_t} are the coefficients in state S_t , where $S_t = 1, 2, ..., k$

Figure: Model structure

Araya Eamrurksiri Midterm report March 28, 2017 5 / 16

Markov switching model

Given dataset,

$$y_t = X_t' \beta_{S_t} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{S_t}^2)$$

- y_t is the CPU utilization
- ullet X_t are components which have an impact on the CPU utilization
- Assume there are three states (k = 3): normal, good, bad

Figure: Model structure

Araya Eamrurksiri Midterm report March 28, 2017 6 / 16

Markov switching autoregressive model

Autoregressive model

$$y_t = c + \sum_{i=1}^p \phi_p y_{t-i} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2)$$

where c is constant and ϕ_p are parameters

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ からぐ

Araya Eamrurksiri Midterm report March 28, 2017 7 / 16

Markov switching autoregressive model

The observation are drawn from the first order autoregressive model, AR(1).

$$y_t = X_t' \beta_{S_t} + \phi_{1,S_t} y_{t-1} + \varepsilon_t$$

Figure: Model with additional dependencies at observation level

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Araya Eamrurksiri Midterm report March 28, 2017 8 / 16

Model estimation

Model Likelihood

$$L(\theta; y_t) = f(y_t | \theta) = \sum_{t=1}^{T} \sum_{j=1}^{k} f(y_t | S_t = j; \theta) P(S_t = j)$$

and S_t is non-observable variable

A weighted average of the likelihood function in each state where weights are given by state's probabilities.

<□ > <□ > <□ > < = > < = > < ○

One software product \Rightarrow many software packages One software package \Rightarrow many different types of test cases

Data preprocessing

- Select a test case which has a minimum value of CPU utilization for each software package
- Multiple values separated by a tab character are stored together in column ⇒ split a tab-separated values to columns
- Remove incomplete test cases which are not executed properly

ID	Variable1	Variable2		ID	Variable1	Α	В	С
1	х	A=2 B=1 C=5		1	х	2	1	5
2	Υ	A=4 B=2 C=8		2	Υ	4	2	8
3	Z	A=1 C=6	\Box	3	Z	1	0	6
				٠				

Figure: Data example

Study and review source code in the R package in detail

 MSwM: An univariate autoregressive Markov switching model for linear and generalized model by using the E-M algorithm [Sanchez-Espigares, 2014]

11 / 16

Implement and modify code in the package

- Small typo in the code when computing residual variance
- Solve non-invertible Hessian using generalized inverse procedure [Gill, 2004]
- Extension for categorical predictor variables
- Deal with NAs coefficients

Araya Eamrurksiri Midterm report March 28, 2017 12 / 16

Implement and modify code in the package

- Deal with NAs coefficients
 A function first initial coefficients with random subsets
 - Continuous variable: contains same value in all observations
 Solution: Reshuffle data
 - Categorical variable: not contain all levels of variable conditional means for each state: $\hat{y} = X\hat{\beta}$ \Rightarrow NAs
 - Solution: Remove variables with NAs coefficient before performing matrix multiplication

13 / 16

Araya Eamrurksiri Midterm report March 28, 2017

Next step

References

James D Hamilton (1989)

A new approach to the economic analysis of nonstationary time series and the business cycle

Econometrica: Journal of the Econometric Society, pages 357-384.

Jeff Gill and Gary King (2004)

What to do when your hessian is not invertible: Alternatives to model respecification in nonlinear estimation

Sociological methods & research, 33(1):54-87.

Josep A. Sanchez-Espigares and Alberto Lopez-Moreno (2014)

MSwM: Fitting Markov Switching Models
CRAN R