CLAIM AMENDMENTS

Claims 1 to 28 (cancelled).

- 29. (new) A process for deformation of an element by the application of con rolled pressure on said element or for coupling a thermoplastic material and fibers of a composite of co-mixed fibers which comprises one of the steps of:
- 5 (a) applying pressure to said element through compression
 6 means sensitive to the variation of the chemical-physical
 7 characteristics of said element when it is subjected to a
 8 predetermined temperature; and
- 9 (b) applying a calibrated pressure onto the composite

 10 with compression means sensitive to the variation of the

 11 chemical-physical characteristics of said thermoplastic material

 12 when it is subjected to a predetermined temperature.
- 30. (new) The process defined in claim 29 wherein said compression means is made from a heat-shrinking product.
- 31. (new) The process defined in claim 29 wherein said compression means is made from a tensoelastic product.

- 2 **-**

32. (new) The process defined in claim 29 wherein said element is made from thermoplastic material.

- 33. (new) The process defined in claim 32 wherein said element is made from thermoplastic composite material.
- 34. (new) The process defined in claim 33 wherein said thermoplastic composite material comprises at least one substance selected from glass, carbon, Kevlar, natural or metal fibers and mixtures thereof.
- 35. (new) The process defined in claim 33 wherein said
 thermoplastic composite material is made with a thermosetting
 composite material before a polymerization step.
- for an element through the application or calibrated pressure on
 it, wherein said element is made from thermoplastic material and in
 that said pressure is realized through compression means arranged
 on an outer surface of a zone of the element that one wishes to
 deform and suitable for applying said pressure when said composite
 element is taken to a temperature at which its chemical-physical

characteristics change and it reaches a predetermined degree of

malleability.

- 37. (new) A process as defined in claim 29 for realizing
 an element on a mold, characterized in that said element is made
 from thermoplastic material that can be applied to the mold and on
 which calibrated pressure is applied through compression means
 suitable for applying said pressure when said thermoplastic
 composite element is taken to a temperature at which its
 chemical-physical characteristics change and it reaches a
 predetermined degree of malleability.
- between a thermoplastic material and fibers of a composite of
 co-mixed fiber, wherein a calibrated pressure is applied onto the
 composite realized through compression means arranged on the outer
 surface of said composite of co-mixed fiber and suitable for
 applying said pressure when said thermoplastic material is taken to
 a temperature which its chemical-physical characteristics change in
 such a way as to determine the impregnation thereof with said
 fibers.

- 4 -

1 39. (new) A deformation process of an element defined

- in claim 29 wherein said element has a core inside of it to
- configure it with a shape matching said core.
- 1 40. (new) The deformation process defined in claim 39
- wherein said core is removable.
- 1 41. (new) The deformation process defined in claim 39
- wherein said core is wooden and is integrally connected to said
- element.
- 1 42. (new) The deformation process defined in claim 39
- wherein said core is made from plastic and is fixedly connected to
- said element through a chemical link due to the compatibility of
- 4 plastic with the resin matrix of the composite.
- 1 43. (new) The deformation process defined in claim 29
- wherein said core is an integral part of another element such as a
- tool or connection member.

44. (new) The deformation process defined in claim 39
wherein said core is made from a thermally conductive material to
take said element to said predetermined temperature.

- 45. (new) The deformation process defined in claim 39
 wherein said core has a surface configuration suitable for
 realizing a deformation zone with the same configuration only on an
 inner surface of said element.
- 46. (new) The deformation process defined in claim 39
 wherein said core has a surface configuration suitable for
 realizing a deformation zone with the same configuration on inner
 and outer surfaces of said element.
- 47. (new) The deformation process defined in claim 36
 wherein said zone is coated with a thermoplastic composite
 material having arrangement of the fibers perpendicular to those of
 said element.
- 48. (new) The deformation process defined in claim 29
 wherein said compression means is a shrinking or tensoelastic
 product in the form of a sheath, band or cap, to be uniformly

associated with the outer surface of said element at a temperature

- lower than said predetermined temperature.
- 1 49. (new) The deformation process of an element
- according to claim 29 wherein said compression means is a heat
- shrinking product activated at an activation temperature
- 4 close to said predetermined temperature at which said element
- 5 becomes malleable.
- 50. (new) The coupling process according to claim 29
- wherein said composite of co-mixed fiber has one or more layers
- that can be applied to a mold.
- 1 51. (new) The coupling process according to claim 50
- wherein at least one insert is present between the layers of said
- 3 co-mixed fiber composite.
- 1 52. (new) The coupling process according to claim 50
- wherein layers of said co-mixed fiber composite have different
- orientations of the fibers.

53. (new) A deformed element made from thermoplastic
material and having a deformation obtained through the action of a

heat shrinking or tensoelastic product associated with the outer

surface.

1 54. (new) The use of a heat shrinking or tensoelastic

product associated with the outer surface of a thermoplastic

composite element for its deformation.