Programação Linear Relatório EP3 – Método Simplex

Daniel Augusto Cortez – 2960291 Lucas Rodrigues Colucci – 6920251

17 de junho de 2012

1 Introdução

Apresentamos neste relatório a implementação do método simplex (full tableau), utilizando a linguagem de programação Octave. O algoritmo é desenvolvido em detalhes em [1]. Considera-se o problema de programação linear em seu formato padrão

minimizar
$$\mathbf{c}^T \mathbf{x}$$

sujeito a $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$,

onde $\mathbf{x}, \mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ e $\mathbf{A} \in \mathbb{R}^{m \times n}$. O algoritmo pode ser descrito pelos seguintes passos:

Fase I.

- 1. Multiplique algumas das restrições por -1, modificando o problema de tal forma que $\mathbf{b} \geq 0$.
- 2. Introduza variáveis artificiais y_1,\ldots,y_m e aplique o método simplex ao problema auxiliar com custo $\sum_{i=1}^m y_i$.
- 3. Se o custo ótimo do problema auxiliar é positivo, o problema original é inviável e o algoritmo termina.
- 4. Se o custo ótimo do problema auxiliar é nulo, uma solução viável do problema original é obtida. Se nenhuma variável artificial está na base

- final, as variáveis artificiais e respectivas colunas são eliminadas, e uma base viável para o problema original está disponível.
- 5. Se a ℓ -ésima variável básica é artificial, examine a ℓ -ésima entrada das colunas $\mathbf{B}^{-1}\mathbf{A}_j,\ j=1,\ldots,n$. Se todas as entradas são nulas, então a ℓ -ésima linha representa uma restrição redundante e é eliminada. De outra forma, se a ℓ -ésima entrada da j-ésima coluna é diferente de zero, aplique uma mudança de base: a ℓ -ésima variável básica sai e x_j entra na base. Repita esse procedimento até que todas as variáveis artificiais sejam levadas para fora da base.

Fase II.

- 1. Faça a base e o tableau final obtidos na fase I serem a base e o tableau inicial para a fase II.
- 2. Calcule o custo reduzido de todas as variáveis para essa base inicial, usando o vetor de custos do problema original.
- 3. Aplique o método simplex ao problema original.

Uma iteração da implementação através do tableau.

- 1. Uma iteração típica começa com um tableau associado com uma matriz básica ${\bf B}$ e a solução básica correspondente ${\bf x}$.
- 2. Examine todos os custos reduzidos na linha zero do tableau. Se todos forem não-negativos, a solução viável básica atual é ótima, e o algoritmo termina. Caso contrário, escolha algum j tal que $\bar{c}_j < 0$.
- 3. Considere o vetor $\mathbf{u} = \mathbf{B}^{-1}\mathbf{A}_j$, que é a j-ésima coluna (a coluna pivô) do tableau. Se nenhuma componente de \mathbf{u} é positiva, o custo ótimo é $-\infty$ e o algoritmo termina.
- 4. Para cada i tal que $u_i > 0$, calcule a razão $x_{B(i)}/u_i$. Seja ℓ o índice da linha que corresponde à menor razão. A coluna $\mathbf{A}_{B(\ell)}$ saí da base e a coluna \mathbf{A}_j entra.
- 5. Adicione a cada linha do tableau um múltiplo constante da ℓ -ésima linha tal que o u_{ℓ} (elemento pivô) se torne um e todas as outras entradas da coluna pivô se tornem zero.

A implementação do método simplex em Octave seguiu extamente os passos acima, conforme descrevemos a seguir.

- 2 Funções Implementadas
- 3 Alguns Exemplos
- 4 Utilização do Programa

Referências

[1] D. Bertsimas & J. N. Tsitsiklis, *Introduction to Linear Optimization*, 1997, Athena Scientific.