1 - VETTORI DELLA GEOMETRIA EUCLIDEA

- 1. Verificare che il vettore $\mathbf{u}=(4,-10,8)\in\mathbf{R}^3$ è combinazione lineare dei due vettori $\mathbf{v}=(1,-2,3)$ e $\mathbf{w}=(0,-1,-2)$ con coefficienti rispettivi 4 e 2.
- 2. Verificare che ogni vettore $\mathbf{u}=(x,y,z)\in\mathbf{R}^3$ si può scrivere come combinazione lineare dei vettori $\mathbf{v_1}=(1,1,0),\,\mathbf{v_2}=(0,1,1)$ e $\mathbf{v_3}=(0,0,1).$
- 3. Dato $\mathbf{u} = \mathbf{i} + \mathbf{j} 2\mathbf{k}$, scrivere i vettori di modulo 3 e un versore aventi la stessa direzione di \mathbf{u} .
- 4. Dati $\mathbf{u} = h\mathbf{i} + 2h\mathbf{j}$ e $\mathbf{v} = \mathbf{j} + 2\mathbf{k}$, determinare il parametro reale h tale che $|\mathbf{u} + \mathbf{v}| = \sqrt{6}$.
- 5. Dato $\mathbf{w} = 3\mathbf{i} + 5\mathbf{j}$, determinare (se possibile) $a \in b$ reali tali che $\mathbf{w} = a(3\mathbf{i} + 6\mathbf{j}) + b(2\mathbf{i} + 4\mathbf{j})$.
- 6. Dato $\mathbf{w} = 3\mathbf{i} + 9\mathbf{j}$, determinare (se possibile) $a \in b$ reali tali che $\mathbf{w} = a(2\mathbf{i} + 6\mathbf{j}) + b(\mathbf{i} + 3\mathbf{j})$.
- 7. I vettori $\mathbf{u} = \mathbf{i} \mathbf{j}$, $\mathbf{v} = \mathbf{j} + \mathbf{k}$, $\mathbf{w} = \mathbf{k}$ sono linearmente indipendenti?
- 8. Determinare l'angolo $\widehat{\mathbf{u}}\mathbf{v}$, sapendo che $|\mathbf{u}|=2$, $|\mathbf{v}|=3$, $\mathbf{u}\cdot\mathbf{v}=-3$.
- 9. Determinare $\mathbf{u} \cdot \mathbf{v}$, sapendo che $|\mathbf{u}| = 4$, $|\mathbf{v}| = 2$, $|\mathbf{u} \mathbf{v}| = 2\sqrt{3}$.
- 10. Determinare l'angolo $\widehat{\mathbf{u}}\mathbf{v}$, sapendo che $\mathbf{u},\mathbf{v},\mathbf{u}+\mathbf{v}$ sono versori.
- 11. Dati i vettori $\mathbf{u} = \mathbf{i} + 3\mathbf{j} \mathbf{k}$ e $\mathbf{v} = \mathbf{i} \mathbf{j}$, scomporre \mathbf{u} nella somma di un vettore perpendicolare a \mathbf{v} con uno che ha la stessa direzione di \mathbf{v} .
- 12. Calcolare l'area del parallelogramma individuato dai vettori $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ e $\mathbf{w} = \mathbf{i} + \mathbf{j} 2\mathbf{k}$.
- 13. Calcolare il prodotto scalare e il prodotto vettoriale dei vettori $\mathbf{u} = (1, 2, -2)$ e $\mathbf{v} = (-2, 0, 1)$ e verificare che il vettore $\mathbf{w} = (2, 3, 4)$ risulta ortogonale sia a \mathbf{u} che a \mathbf{v} . Determinare i vettori di modulo 2 ortogonali sia a \mathbf{u} che a \mathbf{v} .
- 14. Dati $\mathbf{u} = \mathbf{i} \mathbf{j}$, $\mathbf{v} = \mathbf{j} + \mathbf{k}$, determinare:
 - (a) la proiezione ortogonale di **v** su **u**;
 - (b) i vettori di modulo 2 ortogonali a **u** e a **v**;
 - (c) verificare che i vettori $\mathbf{u}, \mathbf{v}, \mathbf{w} = \mathbf{i} + \mathbf{k}$ sono complanari.
- 15. Dati $\mathbf{u} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i}$, $\mathbf{w} = \mathbf{i} \mathbf{j}$, determinare il vettore proiezione ortogonale di \mathbf{w} sul piano di \mathbf{u} e di \mathbf{v}
- 16. Dire per quali valori del parametro reale h i vettori $\mathbf{u}=(1,h,0), \mathbf{v}=(2h,0,1), \mathbf{w}=(1,0,1)$ sono linearmente dipendenti e, in corrispondenza dei valori trovati, scrivere uno di essi come combinazione lineare degli altri due.
- 17. Siano dati i vettori applicati $\mathbf{u} = \mathbf{i} \mathbf{j} + 3\mathbf{k}, \mathbf{v} = \mathbf{j} 2\mathbf{k}, \mathbf{w} = 3\mathbf{i} 6\mathbf{j} 3\mathbf{k}$. Quale affermazione è vera?
 - (a) **u**, **v**, **w** sono complanari.
 - (b) \mathbf{w} è parallelo a \mathbf{v} .
 - (c) \mathbf{u} e \mathbf{w} formano un angolo acuto.
 - (d) \mathbf{w} è parallelo ad $\mathbf{u} \wedge \mathbf{v}$.
- 18. Siano dati i vettori $\mathbf{u} = (0, 1, 0), \mathbf{v} = (1, 1, 0), \mathbf{w} = (0, 0, 1).$ Quale affermazione è vera?
 - (a) $\mathbf{u} + \mathbf{v}$ è ortogonale a \mathbf{w}
 - (b) il volume del parallelepipedo generato dai tre vettori vale 3
 - (c) \mathbf{u} forma un angolo ottuso con $\mathbf{v} + \mathbf{w}$
 - (d) Il prodotto misto dei tre vettori vale 0

1 - SOLUZIONI

- 3. Dalla definizione di modulo di un vettore si ha che $|\mathbf{u}| = \sqrt{6}$, perciò i vettori di modulo 3 paralleli a u sono $\mathbf{v}_1 = (3/\sqrt{6})(\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ e $\mathbf{v}_2 = (-3/\sqrt{6})(\mathbf{i} + \mathbf{j} - 2\mathbf{k})$. Un versore parallelo a u è per esempio $\mathbf{w}_1 = (-1/\sqrt{6})(\mathbf{i} + \mathbf{j} - 2\mathbf{k}).$
- 4. Dall'ipotesi si ha $|\mathbf{u} + \mathbf{v}|^2 = 6$, mentre $\mathbf{u} + \mathbf{v} = h\mathbf{i} + (2h+1)\mathbf{j} + 2\mathbf{k}$; quindi deve essere $6 = h^2 + (2h+1)^2 + 4$, da cui segue h = -1 oppure h = 1/5.
- 5. Non è possibile trovare $a \in b$ tali che $\mathbf{w} = (3a + 2b)(\mathbf{i} + 2\mathbf{j})$, infatti $\mathbf{w} = 3\mathbf{i} + 5\mathbf{j}$ non è multiplo di $(\mathbf{i} + 2\mathbf{j})$.
- 6. Per determinare $a \in b$ tali che $\mathbf{w} = (2a + b)(\mathbf{i} + 3\mathbf{j})$ basta osservare che $\mathbf{w} = 3(\mathbf{i} + 3\mathbf{j})$ e quindi la relazione è soddisfatta per ogni coppia (a, b) tale che 2a + b = 3.
- 7. Si ha $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = a\mathbf{i} + (-a+b)\mathbf{j} + (b+c)\mathbf{k} = \mathbf{0}$ se e solo se a=b=c=0, quindi $\mathbf{u}, \mathbf{v}, \mathbf{w}$ sono linearmente indipendenti.
- 8. Si ha $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \widehat{\mathbf{u}} \mathbf{v}$; ossia $\cos \widehat{\mathbf{u}} \mathbf{v} = -1/2$ e quindi $\widehat{\mathbf{u}} \mathbf{v} = 2\pi/3$.
- 9. Per le proprietà del prodotto scalare $|\mathbf{u} \mathbf{v}|^2 = (\mathbf{u} \mathbf{v}) \cdot (\mathbf{u} \mathbf{v}) = |\mathbf{u}|^2 + |\mathbf{v}|^2 2|\mathbf{u}||\mathbf{v}|\cos\widehat{\mathbf{u}}$ quindi $\cos\widehat{\mathbf{u}}\mathbf{v} = 1/2 \text{ e } \mathbf{u} \cdot \mathbf{v} = 4.$
- 10. Si ha $|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2|\mathbf{u}||\mathbf{v}|\cos\widehat{\mathbf{u}}\mathbf{v}$, quindi $\cos\widehat{\mathbf{u}}\mathbf{v} = -1/2$ e $\widehat{\mathbf{u}}\mathbf{v} = 2\pi/3$.
- 11. Un vettore (a, b, c) è perpendicolare a \mathbf{v} se e solo se $(a, b, c) \cdot (1, -1, 0) = 0$ cioè se e solo se a b = 0. Per poter scrivere (1,3,-1)=(a,a,c)+(k,-k,0), basta quindi che sia a=2,k=-1,c=-1.
- 12. $|\mathbf{v} \wedge \mathbf{w}| = -5\mathbf{i} + 3\mathbf{j} \mathbf{k}$, quindi l'area richiesta è $\sqrt{3}5$.
- 14. (a) La proiezione ortogonale di \mathbf{v} su \mathbf{u} è $\mathbf{v}_{\mathbf{u}} = -\frac{1}{2}(1, -1, 0) = -\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$. (b) Un vettore è ortogonale a \mathbf{u} e a \mathbf{v} se è parallelo al loro prodotto vettoriale $-\mathbf{i} \mathbf{j} + \mathbf{k}$, cioè è del tipo k(-1,-1,1); un tale vettore ha modulo 2 se e solo se $|k|=2/\sqrt{3}$, quindi si ottengono i vettori $\mathbf{v} = \pm (2/\sqrt{3})(-1, -1, 1).$
- 15. Per determinare il vettore \mathbf{z} richiesto occorre determinare il vettore \mathbf{r} proiezione ortogonale di \mathbf{w} sulla direzione ortogonale a \mathbf{u} e a \mathbf{v} :

$$\mathbf{r} = -\frac{1}{2}(0, 1, -1)$$

- Si ha poi $\mathbf{r} + \mathbf{z} = \mathbf{w}$ e quindi $\mathbf{z} = \mathbf{w} \mathbf{r} = (1, -1, 0) + \frac{1}{2}(0, 1, -1)$.
- 16. $\mathbf{u}, \mathbf{v}, \mathbf{w}$ sono linearmente dipendenti se e solo se il loro prodotto misto si annulla. Si ha $\mathbf{u} \cdot \mathbf{v} \wedge \mathbf{w} =$ -h(2h-1). Se h=0, si ottiene $\mathbf{u}=-\mathbf{v}+\mathbf{w}$; se h=1/2, $\mathbf{v}=\mathbf{w}$, mentre se $h\neq 0$ e $h\neq 1/2$, i tre vettori sono linearmente indipendenti.

2