18.656 Notes

Lecturer:

Andrew Liu

Spring 2024

Contents

1	February 8, 2024	3
	1.1 Recap	3
	1.2 More on sub-Gaussians	4
2	February 15, 2024	6
	2.1 Randomized dimension reduction	6

1 February 8, 2024

1.1 Recap

Definition 1.1

A random variable X with mean $\mu = \mathbb{E}[X]$ is σ -sub-Gaussian if $\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{\lambda^2 \sigma^2/2}$ for all $\lambda \in \mathbb{R}$.

Equality if and only if $X \sim \mathcal{N}(\mu, \sigma^2)$.

Example 1.2

Given r.v. $X \in [a, b]$, $\mathbb{E}[X] = \mu$. Then, X is sub-Gaussian with $\sigma = (b - a)$.

It turns out that we can also show $\sigma = (b - a)/2$, but we won't show this during lecture, since the technique used to show the weaker result is more interesting.

Proof. Let \tilde{X} be i.i.d. to X. Then,

$$\mathbb{E}_{X}[e^{\lambda(X-\mu)}] = \mathbb{E}_{X}[e^{\lambda(X-\mathbb{E}_{\tilde{X}}[\tilde{X}])}]$$

$$\leq \mathbb{E}_{X,\tilde{X}}[e^{\lambda(X-\tilde{X})}],$$

by Jensen's inequality. Since X, \tilde{X} are i.i.d., $(X - \tilde{X})$ has a distribution symmetric around 0. Now, we also have that

$$(X - \tilde{X}) \stackrel{\text{dist}}{=} \varepsilon (X - \tilde{X}),$$

where $\varepsilon \in \{\pm 1\}$ with equal probability (also called a **Rademacher** random variable). Therefore,

$$\begin{split} \mathbb{E}_{\tilde{X}}[e^{\lambda(X-\mu)}] &\leq \mathbb{E}_{\tilde{X},X}[\mathbb{E}_{\varepsilon}[e^{\lambda\varepsilon(X-\tilde{X})}]] \\ &\leq \mathbb{E}_{X,\tilde{X}}[e^{\lambda^2(X-\tilde{X})^2/2}], \end{split}$$

since ε is 1-sub-gaussian. Finally, since X is bounded,

$$\mathbb{E}_{X,\tilde{X}}[e^{\lambda^2(X-\tilde{X})^2/2}] \le e^{\lambda^2(b-a)^2/2}.$$

1.2 More on sub-Gaussians

Definition 1.3 (Addition property of Gaussians)

Given $X_1 \sim \mathcal{N}(0, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(0, \sigma_2^2)$,

$$X_1 + X_2 \sim \mathcal{N}(0, \sigma_1^2 + \sigma_2^2).$$

Claim 1.4 (Addition property of sub-Gaussians)

Given $X_i \sim \sigma_i$ -sub-Gaussian, $i \in \{1, 2\}$, then $X_1 + X_2$ is $\sqrt{\sigma_1^2 + \sigma_2^2}$ -sub-Gaussian.

Proof.

$$\begin{split} \mathbb{E}_{X_1, X_2}[e^{\lambda(X_1 + X_2)}] &= \mathbb{E}_{X_1, X_2}[e^{\lambda X_1} e^{\lambda X_2}] \\ &= \mathbb{E}_{X_1}[e^{\lambda X_1}] \mathbb{E}_{X_2}[e^{\lambda X_2}] \\ &\leq e^{\lambda^2 \sigma_1^2 / 2} e^{\lambda^2 \sigma_2^2 / 2} = e^{\lambda^2 (\sigma_1^2 + \sigma_2^2) / 2}. \end{split}$$

A consequence of this fact is that given $X_i \sim \sigma$ -sub-Gaussian, i.i.d. with zero-mean, then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}\sim\sigma\text{-sub-Gaussian,}$$

or equivalently

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\sim\frac{\sigma}{\sqrt{n}}\text{-sub-Gaussian}.$$

Example 1.5 (Survey sampling)

Two candidates for an election *A* and *B*.

Sample people i = 1,...,n, giving responses $X_i = 1$ if A or 0 if B. Let μ^* be the actual fraction of people who will vote A. Let $\hat{\mu}$ be our estimator for μ^* :

$$\hat{\mu} = \sum_{i=1}^{n} X_i.$$

We can construct a confidence interval $\hat{\mathcal{I}}$ for our estimator, and we would like to know at what point we can say

$$\mathbb{P}[\hat{\mathcal{I}} \ni \mu^*] \ge 1 - \delta.$$

For example, with $\delta = 0.02$, interval width of 0.03, we require $n \approx 10000$ to make this guarantee.

We can model $X_i \sim \text{Bern}(\mu^*)$. Since $X_i \in [0,1]$, our earlier result shows that X_i is 1/2-sub-Gaussian. Using additivity and i.i.d., our sample mean $\hat{\mu}$ is $1/(2\sqrt{n})$ -sub-Gaussian. Thus,

$$\mathbb{E}\left[e^{\lambda(\hat{\mu}-\mu^*)}\right] \le e^{\lambda^2/2 \cdot 1/(4n)} = e^{\lambda^2/(8n)}.$$

Using Chernoff,

$$\mathbb{P}[|\hat{\mu} - \mu^*| \ge s] \le 2e^{2ns^2},$$

for some s > 0. So for some fixed δ , we can make a guarantee about interval width $s = \sqrt{\log(2/\delta)/(2n)}$.

Theorem 1.6 (Hoeffding bound)

Let $X_i \sim \sigma_i$ -sub-Gaussian, with $\mathbb{E}[X_i] = \mu_i$ and all independent. Then

$$\mathbb{P}\left[\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right] \le e^{-t^2/(2\sum_{i=1}^{n} \sigma_i^2)}.$$

Example 1.7

 $X \sim \mathcal{N}(0,1)$ is 1-sub-Gaussian. Let $Y = X^2$ is not sub-Gaussian.

$$\mathbb{E}[e^{\lambda X^2}] = \frac{1}{\sqrt{1-\lambda}},$$

 $\lambda \in (0,1)$.

Despite not being sub-Gaussian, it is close. Consider an n-dimensional Gaussian, $X = (X_1, ..., X_n)$, where each $X_i \sim \mathcal{N}(0,1)$. Then $\mathbb{E}[\|X\|_2^2/n] = \mathbb{E}[\sum X_i^2/n] = 1$, and we can further show that

$$\mathbb{P}\left[\left|\frac{\|X\|^2}{n^2} - 1\right| \ge \delta\right] \le 2e^{-cn\delta^2},$$

for all $\delta \in (0,1)$. This looks very similar to the sub-gaussian tail bound from earlier, but will only hold for small delta. For larger delta, the tail bound becomes linear in δ (because X is not truly sub-Gaussian).

2 February 15, 2024

2.1 Randomized dimension reduction

Example 2.1

Dataset is a set of *N* points $\{u^1, ..., u^N\}$ where $u^j \in \mathbb{R}^d$.

Storing the entire dataset gets very expensive very quickly when *N*, *d* are large. Is there a lower-dimensional representation of this dataset that is still useful? Things that might be useful to preservere:

• pairwise distances

$$||u_i - u_j||_2^2 \quad \forall i \neq j$$

useful for estimating clustering algorithms, densities (computing neighborhoods of points)

•

Dimension reduction, formally:

$$\mathcal{F}: \mathbb{R}^d \to \mathbb{R}^m$$

We call m the **sketch dimension**, or the **embedding dimension**. The goal is for us to find a "useful" representation where $m \ll d$, which, using the distance metric as our notion of usefulness, we can bound w.r.t. a new parameter ε :

$$1 - \varepsilon \le \frac{\|\mathcal{F}(u_i) - \mathcal{F}(u_j)\|_2^2}{\|u^i - u^j\|_2^2} \le 1 + \varepsilon.$$

We'll solve this from the perspective of a fixed ϵ , so that our goal is to minimize m while preserving some notion of distance. We'll also introduce another parameter δ , so that this equation holds w.p. $1 - \delta$.

Example 2.2 (Motivating Bernstein's Condition)

Given $X_i \sim \text{Bern}(p)$ for $i \in \{1, ..., n\}$. We have $\mathbb{E}[X_i] = p$, $\text{Var}[X_i] = p(1-p)$, and $|X_i| \le b := 1$.

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i}X_{i}-p\right|\geq t\right)\leq 2e^{-nt^{2}/(2p(1-p)+2t)}$$

If t is small, then we get a sub-Gaussian tail bound. If t is large, then our bound converges to $e^{-nt/2}$, which are sub-Exponential.

Definition 2.3 (Bernstein's Condition)

Given random variable with parameters $\mu = \mathbb{E}[X]$, $\sigma^2 = \text{Var}[X]$, and b satisfying

$$|\mathbb{E}[(X-\mu)^k]| \le \frac{1}{2}k!\sigma^2b^{k-2}$$

for k = 2, 3, Then,

Example 2.4

Bounded random variables satisfy the Bernstein condition. Let's say $|X - \mu| \le b$. We can show that this satisfies the Condition in a pretty strong sense; we won't need the extra factor of k! on the RHS.

Proof.

$$\begin{split} |\mathbb{E}[(X-\mu)^k]| &\leq \mathbb{E}|X-\mu|^2|X-\mu|^{k-2} \\ &\leq \sigma^2 b^{k-2} \ll \frac{1}{2}k!\sigma^2 b^{k-2}. \end{split}$$

Example 2.5

The Bernstein Condition also implies a nice bound on MGFs. Prof emphasizes that the fact that bounds on the polynomial moments of a r.v. can imply bounds on the MGF is quite a deep idea.

$$\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{(\lambda^2\sigma^2/2)/(1-b|\lambda|)},$$

for all $|\lambda|b < 1$.

Proof.

$$\mathbb{E}[e^{\lambda(X-\mu)}] = 1 + \lambda \mathbb{E}[X-\mu] + \frac{\lambda^2}{2} + \sum_{k \ge 3} \frac{\lambda^k \mathbb{E}[(X-\mu)^k]}{k!}$$

$$\leq 1 + \frac{\lambda^2}{2} \sigma^2 + \sum_{k \ge 3} \frac{|\lambda|^k k! / 2 \cdot \sigma^2 b^{k-2}}{k!}$$

$$\leq 1 + \frac{\lambda^2}{2} \sigma^2 + \frac{\lambda^2}{2} \sigma^2 \sum_{k \ge 3} |\lambda|^{k-2} b^{k-2}$$

$$\leq 1 + \frac{\lambda^2}{2} \sigma^2 \left(\sum_{k \ge 0} |\lambda|^k b^k\right)$$

$$= 1 + \frac{\lambda^2 \sigma^2 / 2}{1 - b|\lambda|},$$

as long as $|\lambda|b < 1$. Now we are done by the fact that $1 + a \le e^a$.

We will leave as an exercise :skull: that this result can be used to show that

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|\geq t\right]\leq 2e^{-nt^{2}/(2\sigma^{2}+2bt)}.$$

Definition 2.6

X is (ν, α) -sub-exponential if $\mathbb{E}[e^{\lambda(x-\mu)}] \le e^{\nu^2 \lambda^2/2}$ for all $|\lambda| < 1/\alpha$.

This is a relaxation on sub-Gaussianness. For example, $(\nu, 0)$ -sub-exponentials are sub-Gaussian.

Example 2.7

If the previous Example holds, then $|\lambda| < 1/(2b)$ implies $1 - |\lambda|b > 1/2$ implies $\mathbb{E}[e^{\lambda(x-\mu)}] \le e^{\lambda^2(\sqrt{2}\sigma^2)^2/2}$, which is $(\sqrt{2}\sigma, 2b)$ -sub-exponential.

Example 2.8

 $X \sim \mathcal{N}(0,1)$ and $Z = X^2$.

Then $\mathbb{E}[Z] = 1$, and we can also show that

$$\mathbb{E}[e^{\lambda(X^2-1)}] = \frac{e^{-\lambda}}{\sqrt{1-2\lambda}}$$

as long as $|\lambda|$ < 1/2. It can further be shown that

$$\frac{e^{-\lambda}}{\sqrt{1-2\lambda}} \le e^{2\lambda^2} = e^{\frac{\lambda^2(2)^2}{2}}$$

for all $|\lambda|$ < 1/4. So, this r.v. is (2, 4)-sub-exponential.

Proposition 2.9

If *X* is (ν, α) -sub-exponential, then

$$\mathbb{P}[X-\mu \geq t] \leq \begin{cases} e^{-t^2/(2\nu^2)} & t \in [0,\nu^2/\alpha] \\ e^{-t/(2\alpha)} & t > \nu^2/\alpha. \end{cases}$$

A more compact way of writing this:

$$\mathbb{P}[X-\mu \geq t] \leq e^{\frac{-t^2}{2\nu^2+2\alpha t}}.$$

Proof. Using Markov,

$$\begin{split} \mathbb{P}[X - \mu \ge t] \le \mathbb{E}[e^{\lambda(X - \mu)}]e^{-\lambda t} \\ \le e^{\lambda^2 v^2 / 2 - \lambda t} \quad \forall 0 < \lambda < \frac{1}{\alpha}. \end{split}$$

Let $g(\lambda)$ be the exponent. $g'(\lambda) = \lambda v^2 - t$, so the unconstrained optimum occurs at $\lambda^* = t/v^2$. This unconstrained optimum is achievable precisely when $t \in$

 $[0, v^2/\alpha]$; plugging in this value gives the first bound. When $t > v^2/\alpha$, we can choose the boundary point closest to this unconstrained optimum, giving the second bound.