On Machines and CPMIP Metrics Underlying CMIP Simulations

Sadie Bartholomew

University of Reading and National Centre for Atmospheric Science

On behalf of the wider ES-DOC team

MS389 Advances in High Performance Computing for Earth Science (Part II of II)

SIAM Conference on Computational Science and Engineering (CSE23) 03.03.23

Context: the big picture

So we can adapt as necessary to keep the planet and its populations safe and healthy it's crucial that we understand (the Earth's) climate. Therefore we need to study climate science and make useful predictions about future scenarios. Planetary systems are incredibly complicated, the Earth From this we know we need especially due to the presence of humans with our large-scale to reduce energy consumption. environmentally-disruptive activity and unpredictable behaviour! We need highly-sophisticated models, and e.g. to run these in ensembles, Supercomputers need much energy to generate projections of the Earth's future behaviour that are sufficiently useful. to run at a given performance... We require state-of-the-art supercomputers with adequate (high!) computational performance to run such models. Also we need to study and advance HPC hardware and its ...that's a 'necessary evil' and we should optimised use to continue to run the increasingly intensive simulations. aim to minimise the carbon footprint. It is really useful to survey the machines used, and performance attained, in recent climate model runs.

Role of CMIP(6)

- CMIP == WCRP (World Climate Research Programme) Coupled 'MIP' (Model Intercomparison Project)
- In the words of WCRP (from www.wcrp-climate.org/wgcm-cmip):

- CMIP6 is the latest phase of CMIP and is now winding up, with planning for CMIP7 underway.
- Therefore the climate science community is at a critical period to consider lessons learnt from CMIP6 to ensure CMIP7 is as successful as possible.

Project

Party Citation 27 66

Role of ES-DOC

- ES-DOC == Earth System
 Documentation project, tasked with documenting all aspects of CMIP6...
- ...notably including the 'model run' component covering platform aspects
- Steps in depicted workflow either:
 - automated or generated by ES-DOC
 - produced when ready by the modelling groups (~50)

ES-DOC builds on previous work of other projects for CMIP ≤5

Experiment

Characterising HPC machines and performance in CMIP(6)

- Classification according to nowmature CIM (== Common Information Model) canonical standard, current version 2.x:
 - All open source, stored and developed on GitHub at github.com/ES-DOC/esdoc-cimv2-schema
 - Machine and performance contained within 'platform' classes: see link above>/blob/ master/platform classes.py for relevant schema

```
def machine():
    """A computer/system/platform/machine which is used for
    simulation."""
    return {
        "type": "class",
        "base": "platform.partition",
        "is abstract": False,
        "pstr": ("{}", ("name",)),
        "is document": True,
        "properties": [
                "peak performance",
                "shared.numeric",
                "0.1",
                "Total peak performance (RPeak in Top500 lingo)",
                "linpack_performance",
                "shared.numeric",
                "0.1",
                "Linpack performance (RMax in Top500 lingo)",
```


. . .

- Platform properties in CIM based on established CPMIP (== Computational Performance MIP) metrics
 - See 'CPMIP: measurements of real computational performance of Earth system models in CMIP6', V. Balaji et al. (2017), doi.org/10.5194/gmd-10-19-2017
 - These metrics cover aspects such as model e.g. resolution; platform e.g. clock speed; computational cost e.g. Joules per simulated year; and coupling, memory and I/O considerations such as memory bloat and data intensity.

Similar/parallel work to note

- Also under the project IS-ENES3, Mario Acosta and collaborators evaluated and studied CPMIP metrics for CMIP6 model runs, though for only a subset (~ 10) of the modelling groups in CMIP6 (~ 50) that ES-DOC had the potential (with sufficient group engagement) to capture.
 - See: 'IS-ENES3 D4.3: CPMIP performance metrics evaluation for CMIP6 and community advice', Mario Acosta et al. (2021), doi.org/10.5281/zenodo.6394049

Documentation collection and publication

Archived documentation access + linkage

• As well as collecting the information, ES-DOC archives it and makes it openly available as published documentation, notably through a dedicated website (root <u>es-doc.org</u>) e.g. via the 'explorer' (<u>explore.es-doc.org</u>).

Submitted results, 1. machines (hardware)

 All documented machines, but only a subset of the collected machine information for each, shown, where a dot indicates no value was provided:

Modelling group (acronym or identifier)	Group machine(s)	Overall		Example compute pool (first one documented, if multiple) information					Exampl doc	e storage pool (first one umented, if multiple) information	Interconnect	Benchmark performances (all Tflops/s)	
		os	Vendor	Model number	Number of nodes	Memory per node (GiB)	CPU cores per node	Clock speed (GHz)	File system size (TB)	Storage type	Topology	Peak	LINPACK
EC-EARTH- CONSORTIUM	Beskow	Cray Linux Environment	Cray		2060	64	32	2.3				2438.14	1802.51
	Teralith	CentOS 7.7			1908	96	32	2.1				4335.21	2969.19
	Rhino	Red Hat Enterprise Linux Server 7.3 (Maipo)			180		28	3.07					
	Marenostrum 4	SUSE Linux Enterprise Server 12 SP2	Lenovo		3240	96	48	2.1		IBM GPFS		5765.9	6227.2
CCCR-IITM	INTEL AADITYA	RHEL v6.x			2384	60	16						
СМСС	ATHENA	CentOS Linux release 6.2	IBM	DX 360M4	482	64	16	2.6	300	IBM GPFS	Spine - Leaf	160	
	ZEUS	CentOS Linux release 7.6	Lenovo	SD530	348	96	36	3	4000	IBM GPFS	Spine - Leaf	1202	
DKRZ	Mistral			E5-2680v3 12C	1550		2	2.5	54 000	Lustre parallel file system		3600	
INPE	xc50	Cray Linux Environment	Cray XC-50		96	192	40	2.4		Lustre parallel file system			
MPI-M	Mistral			E5-2680v3 12C	1550		2	2.5	54 000	Lustre parallel file system		3600	
CNRM-CERFACS	beaufix2	bullx SCS			1836	64	40	2.2		Lustre parallel file system			
DWD	(Unnamed)	Cray Linux Environment	Cray	E5-2680v3	432	128	24	2.5	7204		Dragonfly	1459.81	1214.2
монс	xce	Cray Linux Environment	Cray		12932	192	36	2.1		Lustre parallel file system		15 400	13 800
	xcf	Cray Linux Environment	Cray		12932	192	36	2.1		Lustre parallel file system		15 400	13800
	xcs-r	Cray Linux Environment	Cray		12932	192	36	2.1		Lustre parallel file system		15 400	13800
NERC	Archer	Cray Linux Environment	Cray		4920	64	24	2.7		Lustre parallel file system		2550.53	1642.54
IPSL	Curie	Linux		Sandy Bridge	5040	64	8	2.26	<1	Lustre parallel file system	QDR Full Fat Tree	1667.2	1359
	Joliot-Curie	Linux		Skylake (Intel Xeon Platinum 8168 CPU)	1656	192	48	2.7	<1	Lustre parallel file system	Multiple	12039.4	6988
MIROC	Earth Simulator (ES3)	SUPER-UX	NEC		5120	64	4	1	13 500	Other	2-level Fat-tree	1310.72	n/a
	Earth Simulator (ES4)	CentOS 8	NEC	B401-8 Type 20B	684	128	64	3.4	60 000	Lustre parallel file system	Dragonfly+	13448	9990.7
NOAA-GDFL	Gaea C3	Cray Linux Environment 7	Cray	Cray XC40-LC Haswell	1504	64	32	2.3	32 000	Lustre parallel file system	Dragonfly	1770	1280
	Gaea C4	Cray Linux Environment 7	Cray	Cray XC40-LC Broadwell	2656	64	36	2.1	32 000	Lustre parallel file system	Dragonfly	2982	3213
NASA-GISS	DISCOVER	SuSE Linux Enterprise			1824	128	28		10 000	Disk		7000	. 7

... 2. computational performance

- Very sadly, groups are (yet?) to submit performance documentation other than that which was submitted to Mario Acosta and collaborators for their IS-ENES3 work (see slide 6 reference)
- Therefore let's delegate to their work and advertise their analysis! Figure to right attributed to, and credit to, Mario Acosta et al. (2021) (full reference on slide 6).

Figure 2. Pearson's correlation among all metrics after cleaning the data.

Challenges and looking ahead to CMIP7

- Core challenge: engagement has been very low, with only 16/49 groups submitting any platform documentation \odot
 - Though strictly modelling groups are obliged to submit full documentation for their CMIP6 contribution, many haven't at all, most not fully. It seems they feel they are too busy otherwise to do this and there isn't adequate reward for doing it or punishment for not doing it that ES-DOC can provide as persuasion. That said, ES-DOC did start the collection late in the CMIP6 timeline (not ideal).
 - In summary: <u>computers</u> will do what they are asked to do (for better or for worse...), <u>people</u> might not!
- I fully agree with recommendations for actions concluded by Mario Acosta and team in the 'IS-ENES3 D4.3 ...' report (see reference slide 6):
 - Collect CPMIP metrics before or during the CMIP experiment: Spend some resources before the CMIP experiments or at least during the spinup/tuning process... ~ ... The development of portable and automatic processes such as the integration with workflow managers could be a solution ... ~ ... normalize the way to collect some specific metrics ...

Summary

- Ultimately it is really useful to survey the HPC machines used, and performance attained, in recent climate model runs...
- ... so here we consider the <u>hardware and computational performance</u> across <u>CMIP6 (last stage, ending)</u>, looking ahead to <u>CMIP7 (next stage)</u>.
- Machine and performance were <u>characterised</u> via <u>CIM data model</u> which notably use CPMIP performance metrics.
- ES-DOC collects & publishes documentation for the full CMIP6 workflow:
 - For machine and performance, had a two-stage collection process with modelling groups submitting CIM platform information via spreadsheets processed by ES-DOC infrastructure.
 - Documents connected to relevant ensemble; linked to other aspects via further_info_URL concept; and accessible via website (root <u>es-doc.org</u>) such as the 'explorer' (<u>explore.es-doc.org</u>).
- Sadly, <u>low engagement meant limited results submitted</u> so for CMIP7 we also recommend effort to <u>enable (some) auto-generation</u> of such data.
- (But) there is still useful information found in/across the limited results.

