Álgebra computacional. Tarea 1. Fecha límite: 21/03/2019 Universidad de El Salvador, ciclo impar 2019

Ejercicio 1. Implemente en Macaulay2 la función mcd(f, g) que calcula el máximo común divisor de $f, g \in k[x]$ usando el algoritmo de Euclides. (Para el resto de división, use el operador %.)

Ejercicio 2. Demuestre que sobre los polinomios en una variable k[x] hay un solo orden monomial que viene dado por

$$1 < x < x^2 < x^3 < \cdots$$

es decir, $x^m < x^n \iff m < n$.

Ejercicio 3. Demuestre que \prec_{lex} , $\prec_{grevlex}$ son órdenes monomiales.

Ejercicio 4. Consideremos la siguiente propiedad: para cualesquiera α, β existe un número finito de monomios x^{γ} tales que $x^{\alpha} < x^{\gamma} < x^{\beta}$. ¿Para cuáles órdenes monomiales entre $<_{lex}$, $<_{grlex}$ y $<_{grevlex}$ esto es cierto?

Ejercicio 5. Fijemos algún orden monomial sobre $k[x_1,...,x_n]$. Sean $f,g \in k[x_1,...,x_n]$ polinomios no nulos. Demuestre las siguientes propiedades.

- 1) $\operatorname{multideg}(fg) = \operatorname{multideg}(f) + \operatorname{multideg}(g)$.
- 2) Si $f+g \neq 0$, entonces multideg $(f+g) \leq \max(\text{multideg}(f), \text{multideg}(g))$. Además, si multideg $(f) \neq \text{multideg}(g)$, entonces se cumple la igualdad.

Ejercicio 6. Demuestre que para ideales monomiales $I, J \in k[x_1, ..., x_n]$ los ideales $IJ, I + J, I \cap J$ son también monomiales.

Ejercicio 7. Demuestre que el lema de Dickson es equivalente al siguiente resultado: para todo subconjunto $A \subseteq \mathbb{N}^n$ existe un número finito de elementos $\alpha(1), \ldots, \alpha(s) \in A$ tales que para todo $\alpha \in A$ se tiene $\alpha = \alpha(i) + \gamma$ para algún $i = 1, \ldots, s$ y $\gamma \in \mathbb{N}^n$.

Ejercicio 8. Para un ideal monomial I digamos que un conjunto de generadores $\{x^{\alpha(1)}, \dots, x^{\alpha(s)}\}$ es **minimal** si $x^{\alpha(i)} \nmid x^{\alpha(j)}$ para $i \neq j$. Demuestre que todo ideal monomial posee un conjunto de generadores minimal y este es único.

Ejercicio 9. Consideremos los ideales monomiales

$$I_i := (x_1, \dots, \widehat{x_i}, \dots, x_n) \subset k[x_1, \dots, x_n], \quad j = 1, \dots, n,$$

donde $\widehat{x_i}$ significa que x_i se omite de la lista. Encuentre el conjunto de generadores minimal para el ideal

$$I_1 \cap \cdots \cap I_n$$

Por ejemplo, para n = 2 tenemos $(x_2) \cap (x_1) = (x_1x_2)$; para n = 3 tenemos

$$(x_2, x_3) \cap (x_1, x_3) \cap (x_1, x_2) = (x_1 x_2, x_1 x_3, x_2 x_3)$$

(¡demuéstrelo!), etcétera.

Ejercicio 10. Fijemos un vector $u = (u_1, ..., u_n) \in \mathbb{R}^n$ tal que los números u_i son positivos y linealmente independientes sobre \mathbb{Q} . Demuestre que

$$x^{\alpha} <_{u} x^{\beta} \iff u \cdot \alpha < u \cdot \beta$$

donde · denota el producto escalar habitual, define un orden monomial. ¿Qué sucede si los u_i no son linealmente independientes?