

SEQUENCE LISTING

<110> Farn, Jacinta
Strugnell, Richard
Tennent, Jan

<120> Vaccine antigens of Moraxella

<130> 20-02

<140> US 10/069,799

<141> 2002-02-28

<150> PCT/AU00/01048

<151> 2000-08-31

<150> AU PQ2571

<151> 1999-08-31

<160> 9

<170> PatentIn Ver. 2.1

<210> 1

<211> 1114

<212> PRT

<213> Moraxella bovis

<400> 1

Met Ser Leu Gln Thr Gln Pro Ala Lys Arg Gly Phe Tyr Val Lys Pro
1 5 10 15

Leu Ser Met Ala Cys Met Leu Val Ile Ser Ala Ser Ser Thr Val Ser
20 25 30

Tyr Ala Asn Ser Ala Pro Met Ile Val Asp Ser Gln Tyr Asn Ser Ser
35 40 45

Lys Tyr Ser Phe Tyr Asp Tyr Tyr Leu Asp Phe Leu Lys Arg Phe Arg
50 55 60

Pro Thr Pro Thr Pro Val Pro Ser Pro Val Arg Pro Ala Pro Glu Leu
65 70 75 80

Val Arg Pro Thr Pro Ala Pro Ile Pro Ala Pro Thr Pro Val Pro Thr
85 90 95

Pro Ala Pro Ile Ser Gly Gly Ile Ser Gly Ser Tyr Ile Ala Pro Val
100 105 110

Ser Pro Ser Glu Val Arg Gln Pro Asp Tyr Thr Arg Arg Val Gln Ala
115 120 125

Asn Leu Lys Arg Asn Gln Pro Ala Pro Ser Ala Gly Thr Arg Thr Gly
130 135 140

Tyr Ser Val Met Asp Thr Ser Asn Asn Ser Asn Leu Thr Ser Lys Phe
 145 150 155 160
 Tyr Gly Thr Thr Glu Asp Gly Tyr Ala Glu Arg Leu Asp Asn Leu Lys
 165 170 175
 Asn Thr Ile Asp Thr Arg Gln Ala Lys Val Gly Val Ile Asp Thr Gly
 180 185 190
 Ile Asn Arg Phe Asn Arg Asp Leu Val Gly Ala Asn Val His Asp Thr
 195 200 205
 Gln Ile Glu Cys Val Ser Ala Gly Arg Ser Thr Cys Tyr Thr Pro Glu
 210 215 220
 Asn Asp Ser Gly Ile Val Glu Ile Pro Thr Thr Ser Ala Ser Gly Ser
 225 230 235 240
 His Gly Asn Gln Met Ala Ala Val Ile Ala Gly Asn Asn Gly Met Thr
 245 250 255
 Asn Ala Lys Ile Tyr Gly Ser Asp Ser Ile Asp Arg Arg Ser Asn Gly
 260 265 270
 Gly Asn His Phe Leu Met Met Arg Lys Leu Asn Gln Asp His Gly Val
 275 280 285
 Lys Ile Phe Asn Asn Ser Trp Gly Ser Asn Asn Thr Asp Gln Trp Tyr
 290 295 300
 Tyr Asp Ala Gln Arg Leu Asn Tyr Asn Pro Thr Thr Gly Gln Ile Asn
 305 310 315 320
 Pro Asn Pro Tyr Arg Thr Ser Ile Thr Asn Ala Glu Val Thr Leu Pro
 325 330 335
 Val Ile His Asp Leu Ile Met Asn Arg Asp Ser Leu Ile Ile Lys Ala
 340 345 350
 Thr Gly Asn Glu Gly Leu Asn Asp Ala His Asp Glu Asn Leu Ala Pro
 355 360 365
 Leu Met Asn Ser Asn Phe Lys Lys Gly Phe Ile Thr Val Ser Ser Pro
 370 375 380
 Arg Glu Asp Phe Gly Lys Ala Asn His Cys Gly Arg Thr Ala Glu Trp
 385 390 395 400
 Cys Val Ser Ala Thr Ser Ser Thr Gln Asn Tyr Ala Asn Asp Gly Arg
 405 410 415
 Leu Ser Ser Tyr Lys Gly Thr Ser Pro Ala Thr Ala Arg Val Ser Gly
 420 425 430
 Thr Ala Val Leu Val Gln Ser Ala Tyr Pro Trp Met Lys Asn Glu Asn
 435 440 445

Ile Ser Gln Thr Ile Leu Gly Thr Ala Lys Asp Phe Ser Glu Ile Thr
450 455 460

Ala Asn Ser Pro Asn Gly Tyr Gln Gly Leu Arg Lys Val Ser Arg Leu
465 470 475 480

Pro Ser Gly Tyr Tyr Gly Ser Tyr Tyr Thr Asp Asn Gln Gly Asn Phe
485 490 495

Tyr Val Pro Gly Asn Val Asn Trp Glu Asn Arg Arg Ile Val Ala Asn
500 505 510

His Asn Gly Lys Asn Ile Thr Trp Glu Asp Gly Trp Gly Leu Leu Asp
515 520 525

Pro Glu Ala Ala Ala Lys Gly Tyr Gly Gly Phe Tyr Trp Asp Asn Val
530 535 540

Glu Leu Asp Thr Lys Gly Thr Pro Leu Ser Val Phe Tyr Asn Asp Leu
545 550 555 560

Lys Gly Asp Lys Gly Phe Thr Lys Lys Gly Glu Gly Lys Leu Val Phe
565 570 575

Thr Gly Asn Asn Ser Tyr Lys Gly Asp Ser Val Ile Glu Gly Gly Ser
580 585 590

Leu Glu Val Asn Gly Asn Asn Gly Gly Ser Thr Met Val Val Lys Gly
595 600 605

Gly Glu Leu Thr Gly Tyr Gly Asn Val Ala Asn Val Arg Gln Thr Gly
610 615 620

Gly Trp Val Asn Asn Glu Gly Asn Leu Asn Ile Arg Gly Asp Tyr Asn
625 630 635 640

Ile Asn Thr Gln Arg Gly Val Asp Ala Gly Leu Lys Ala Gln Phe Gly
645 650 655

Asn Met Leu Thr Val Asp Gly Lys Ala Lys Leu Gly Gly Thr Leu Asn
660 665 670

Leu Thr Gly Glu Thr Lys Asp Gly Ile Ile Ser Lys Ser Gly Ser Arg
675 680 685

Ser Thr Val Leu Arg Ala Lys Arg Gly Leu Glu Gly Gln Phe Asp Asn
690 695 700

Tyr Arg Ser Ser Asn Pro Leu Phe Glu Val Thr Asn Val Glu Tyr Thr
705 710 715 720

Pro Glu Val Asp Arg Asn Gly Arg Val Val Gly Gly Ser Arg Thr Asn
725 730 735

Asn Asp Val Gln Val Thr Ala Lys Arg Leu Ser Ala Gly Asn Val Val
740 745 750

Tyr Gly Ile Ser Met Asn Asp Ser Gly Ser Arg Val Ala Gln Asn Leu
755 760 765

Asp Lys Val Leu Asn Asp Leu Asp Lys Lys Gln Glu Thr Gln Gly Ser
770 775 780

Leu Thr Ser Asp Glu Lys Gln Phe Ala Asn Arg Val Phe Thr Gly Phe
785 790 795 800

Glu Asn Met Asn Ser Gly Ala Glu Ser Lys Leu Ser Thr Val Ser Thr
805 810 815

Asn Arg Glu Leu Tyr Lys Leu Asp Pro Thr Phe Tyr Ala Asp Ser Ala
820 825 830

Leu Asn Ala Val Glu Asp Ser Ala Asn His Ala Thr Glu Phe Gly Lys
835 840 845

Arg Val Ser Ala Pro Arg Gly Val Trp Gly Asn Ile Ser His His Asp
850 855 860

Tyr Asp Val Glu Leu Glu His Ala Thr Ser Ala Arg Lys Gly Asn Asn
865 870 875 880

Ile Ser Val Gly Ala Ser Thr Gln Thr Ala Ala Asp Ile Ser Val Gly
885 890 895

Ala Gln Leu Asp Val Ser Lys Leu Asp Leu Glu Glu Ser Val Tyr Gly
900 905 910

Ile Gly Asn Lys Thr Lys Thr Asp Ser Ile Gly Leu Thr Val Gly Ala
915 920 925

Ser Lys Lys Leu Gly Asp Ala Tyr Leu Ser Gly Trp Val Lys Gly Ala
930 935 940

Lys Val Asp Thr Glu Ala Asn Arg Gly Glu Asn Ser Asn Lys Val Glu
945 950 955 960

Tyr Asn Gly Lys Leu Tyr Gly Ala Gly Ile Gln Ala Gly Thr Asn Ile
965 970 975

Asp Thr Ala Ser Gly Val Ser Val Gln Pro Tyr Ala Phe Val Asn His
980 985 990

Gln Gln Tyr Lys Asn Asp Gly Ser Phe Asn Asp Gly Leu Asn Val Val
995 1000 1005

Asp Asp Ile Glu Ala Lys Gln Thr Gln Val Gly Val Gly Ala Asp Met
1010 1015 1020

Val Phe Gln Ala Thr Pro Ala Leu Gln Leu Thr Gly Gly Val Gln Val
1025 1030 1035 1040

Ala His Ala Val Ser Arg Asp Thr Asn Leu Asp Thr Arg Tyr Val Gly
1045 1050 1055

Thr Ala Thr Asp Val Gln Tyr Gly Thr Trp Asp Thr Asp Lys Thr Lys
1060 1065 1070

Trp Ser Ala Lys Val Gly Ala Asn Tyr Asn Val Thr Pro Asn Ser Gln
1075 1080 1085

Val Gly Leu Asn Tyr Ser Tyr Thr Gly Ser Gly Asp Ser Asp Ala Ser
1090 1095 1100

Gln Val Gly Val Ser Phe Thr Ser Lys Phe
1105 1110

<210> 2
<211> 4384
<212> DNA
<213> *Moraxella bovis*

<400> 2
ttctcatgtt tgacagctta tcatcgataa gctttaatgc ggtagtttat cacagttaaa 60
ttgtaacgc agtcaggcac cgtgtatgaa atctaacaat gcgcctcatcg tcatcctcgg 120
caccgtcacc ctggatgctg taggcatagg ctgggtttagt ccggtaactgc cgggccttt 180
gcgggatatc gtccattccg acagcatcg cagtcaactat ggcgtgctgc tagcgctata 240
tgcgttgatg caatttctat ggcgaccctgt tctcgagca ctgtccgacc gcttggccg 300
ccgcccagtc ctgctcgctt cgctacttgg agccactatc gactacgcga tcatggcgac 360
cacaccgtc ctgtggatca ataattaaatg aacatatata ctctattaa tatttcttat 420
ttattcgtaa tattgccata aaaataatac attatttcttata tattaactaa actgttaata 480
tttgtaaata ataaacattt gttatctaa aaaaataaaat aatataaatac aagcaattac 540
aatcttattt ttgaaaatac aataatactg caattgcttta atctagacat taagtttt 600
tttGattaaaa attgccaaaa ctgtgtaaa taagtttccac cgaattgata ctttaaggg 660
atcaaatattg caacatggta aatgattgct atgttgtgg gcattgcata aattgtctat 720
aataacttgt tatggatgat tgcgttgcata gataaaactta gtgacaatga taaacgcaaa 780
gagggtgtat atgtcattac aaactcaacc tgccaagaga gggttctatg ttaagcctt 840
aagtatggct tgcatgctgg taattagtgc tagtagtac gtaagttatg ccaactcagc 900
tccaaatgatt gttgattcac agtacaatag ttctaaatac tctttctacg attactattt 960
agatttcctt aaacgtttta gaccaactcc aactccagtg ccaaggccctg tgagaccggc 1020
tcctgaactc gttcgccga ccccagcccc gattccggct ccaacgcctg tgccaacacc 1080
ggcaccaatt agtggcggtt gatcaggtag ctatattgct ccagtatcgc catcagaggt 1140
gagacagcct gattacacaa aacgttca accaaatcta aaacgcaccc aacctgcacc 1200
aagtgttggc acacgtacag gttatagtgt catggatacg tcaaataatt ctaatttgcac 1260
atctaaattt tatggcacaa cccaagatgg ttatgcccgg 1320
caccattgtt acacgtcaag ccaaagttagg tttgattgtt acaggcatta accggttcaa 1380
ccgagacttg gttgtgc当地 atgtgc当地 tacacagatt gagtggttt ctgctggacg 1440
ttccacctgc tatacgccag aaaatgattt aggcatgtt gaaatccca caacctctgc 1500
tagtggtagt catggcaacc aaatggccgc tgc当地 catcgct ggtaacaacg gcatgaccaaa 1560
cgccaaaatt tacggcagtg acagtattga tcgacgttca aatggggca accatttctt 1620
gatgatgcgt aagctgaacc aagaccatgg tgc当地 agattt ttaacaact cttgggttc 1680
taacaacact gaccaatggt actacgtgc tcagcgc当地 aattacaatc ctactacagg 1740
acagattaat ccaaattcctt acagaaccag tattaccaat gctgaagtgat cttgc当地 1800
cattcatgtt ttatattgtt atcgtgactc gtttatcatt aaagcaacag gtaacgaagg 1860
cttgaacat gctcatgtt gggacttgc当地 accgctcatg aacagcaact tcaaaaaagg 1920
tttcattact gtccctcgc ctagagaaga tttggtaaa gcaatcattt gtggc当地 1980
tgccgaatgg tggatccgg 1980
gagtagctat aagggtacat caccgtcaac cgctcggtt tccggcacgg cagtgctcgt 2100
gcaatctgtt tattcttggaa tgaaaaatga aataatcttcaaaaccattt tgggtactgc 2160
caaggatttcc tcaagagatta ctgccaattt acctaattggc taccaaggac taagaaagg 2220
tagtagatttcc ccatctgggtt attacgtgc当地 ttattacact gacaatcagg gtaatttctt 2280
tgttctggc aatgtcaatt gggaaaaccg tcaattgttca gctaattcata acggcaagaa 2340
cattacatgg gaagatgggt ggggtttgtt agatccagaa gccc当地 gcttatac 2400
tggtttctat tggataatg tggatattttca cactaaaggc acgcctttat ctgtattctt 2460
caatgacccaa aagggtgata aaggcttac caaaaaaggtaaaac ttgtctttac 2520

tggtaataat agctataaaag gcgactctgt catcgagggt ggttcaactag aagtaaatgg 2580
 taacaacgtt ggttcaacca tgggtgttaa aggtggtaa ctaacagggtt atggtaatgt 2640
 agctaattgtt cgtcaaacacg gtgggtgggt taacaacgaa ggttaacctaa acatcagagg 2700
 tgactacaac atcaacactc aacgtggcgt ggatgctgggt ctaaaagctc aatttggcaa 2760
 catgcttacc gtggacggta aggccaaact aggtggtaca ctaaatctaa ctggtgagac 2820
 caaagatgtt atcatcagca aatcaggtag ccgtagcaact gtacttcgtg ctaagcgtgg 2880
 tcttgaagt caatttgaca attatcggtt aagcaaccca ttatttgaag taacaaatgt 2940
 tgaatatacg ccagaagtag acagaaatgg cagagtggta ggtgggtcac gcacgaacaa 3000
 tgacgtgcaa gtaactgcca aacgtctaag tgccaggaaat gttgtttagt gcatcagcat 3060
 gaatgacagt ggtagccgtt ttgcacaaaaa cctagacaaaaa gtacttaatg atttagataa 3120
 aaaacaagaa acacaagggtt cactgaccag ttagtggaaag caatttgcta accgtgtatt 3180
 cactgggtt gaaaacatga attctgggtc agaatctaaa ctttctacag taagcaccaa 3240
 ccgtgagcta tacaagctt acccaactt ctatgctgac agtgcattaa acgcagtaga 3300
 agacagtgtt aaccatgcaa ccgaatttgg taagcgtgtt agcgcacccaa gaggtgtttg 3360
 gggtaatatac agtcaccatg attatgtatg agaactagag catgctacaa gtgcacgtaa 3420
 aggcaacaac attagtgtt gtcgaagcac tcaaactgca gccgacattaa gtgttgggtc 3480
 acaacttgat gtaagtaaac ttgacttggaa agaatctgtt tatggattt gcaacaaaaac 3540
 caaaaactgac agcattggct tgactgttgg tgcttctaaag aagttgggtg atgcctatct 3600
 atcagggttgg gtaaaagggtt ccaaagggttga tacagaagcg aaccgtgggtg aaaaactctaa 3660
 caaagtttagt tacaatgttga agctatattgg tgctgggttca caagcgggtt caaacattgt 3720
 tactgcattc ggcgtgagtt tacaacccctt tgcccttggt aaccatcagc agtacaaaaaa 3780
 cgatggtagt ttcaatgacg gtcttaacgt tggtagcgtt atcgaagcaa aacaaactca 3840
 gtaggtgtt ggtgctgata tgggttcca agcaacacctt gctctacacgc ttactgggtt 3900
 tggtaggtgtt gtcacgctt ttagccgttga caccaaccta gacactcgct atgttgggtac 3960
 agcgcacagat gtacagtatg gcacttgggtt tactgacaaaa accaaatggt cagccaaggt 4020
 tggtaggtgtt gtcacgctt ttagccgttga caccaacacgg ccaagtggtt cttaactaca gctacacagg 4080
 tagtggcgat tcagatgtt cccaaagggtt tgtaggttca accagcaagt tctaattcat 4140
 taataaggca acaaaaaaaca gcacaatttc ggttgtgtctg tttttgtga tgccgagcgt 4200
 aaaattttcc caaaaaaaaaacg gtgataattt ccacgctttt ttattgcata ttgcaaaata 4260
 gtattgcatt tatgggttggtaaagcaaccc gtcacaaatac cccctaaaca actccacccc 4320
 aatcgggtgtt aacttggtttt gccacaggct cgtcaatgtt tcggcatcat caaccattac 4380
 cgac 4384

<210> 3
 <211> 616
 <212> PRT
 <213> Moraxella bovis

<400> 3
 Met Lys Ser Ala Phe Ala Lys Tyr Ser Ala Leu Ala Leu Met Val
 1 5 10 15
 Gly Met Cys Leu His Thr Ala Tyr Ala Lys Glu Phe Ser Gln Val Ile
 20 25 30
 Ile Phe Gly Asp Ser Leu Ser Asp Thr Gly Arg Leu Lys Asp Met Val
 35 40 45
 Ala Arg Lys Asp Gly Thr Leu Gly Asn Thr Leu Gln Pro Ser Phe Thr
 50 55 60
 Thr Asn Pro Asp Pro Val Trp Ser Ser Leu Phe Ala Gln Ser Tyr Gly
 65 70 75 80
 Lys Thr Ala Ser Ala Asn Thr Pro Tyr Asn Pro Thr Gly Thr Asn Tyr
 85 90 95

Ala Val Gly Gly Ala Arg Ser Gly Ser Glu Val Asn Trp Asn Gly Phe
100 105 110

Val Asn Val Pro Ser Thr Lys Thr Gln Ile Thr Asp His Leu Thr Ala
115 120 125

Thr Gly Gly Lys Ala Asp Pro Asn Thr Leu Tyr Ala Ile Trp Ile Gly
130 135 140

Ser Asn Asp Leu Ile Ser Ala Ser Gln Ala Thr Thr Thr Ala Glu Ala
145 150 155 160

Gln Asn Ala Ile Lys Gly Ala Val Thr Arg Thr Val Ile Asp Ile Glu
165 170 175

Thr Leu Asn Gln Ala Gly Ala Thr Thr Ile Leu Val Pro Asn Val Pro
180 185 190

Asp Leu Ser Leu Thr Pro Arg Ala Ile Tyr Gly Glu Ser Leu Met Ala
195 200 205

Gly Val Gln Asp Lys Ala Lys Leu Ala Ser Ser Leu Tyr Asn Ser Gly
210 215 220

Leu Phe Glu Ala Leu Asn Gln Ser Thr Ala Asn Ile Ile Pro Ala Asn
225 230 235 240

Thr Phe Ala Leu Leu Gln Glu Ala Thr Thr Asn Lys Glu Ala Phe Gly
245 250 255

Phe Lys Asn Thr Gln Gly Val Ala Cys Gln Met Pro Ala Arg Thr Thr
260 265 270

Gly Ala Asp Asp Val Ala Ser Thr Ser Leu Ala Cys Thr Lys Ala Asn
275 280 285

Leu Ile Glu Asn Gly Ala Asn Asp Thr Tyr Ala Phe Ala Asp Asp Ile
290 295 300

His Pro Ser Gly Arg Thr His Arg Ile Leu Ala Gln Tyr Tyr Arg Ser
305 310 315 320

Ile Met Asp Ala Pro Thr His Met Gly Lys Leu Ser Gly Glu Leu Val
325 330 335

Lys Thr Gly Ser Ala His Asp Arg His Val Tyr Arg Gln Leu Asp Arg
340 345 350

Leu Ser Gly Ser Gln His Ser Ile Trp Ala Asn Val His Ala Ser Asp
355 360 365

Arg Thr Asp Pro Thr Thr Gln Ile Gly Leu Asp Val Ala Gly Ser Ser
370 375 380

Ser His Thr Gly Ala Tyr Leu Ser His Gln Asn Gln Asp Tyr Val Leu
385 390 395 400

Asp Asp Thr Leu Ser Ser Asp Val Lys Thr Ile Gly Met Gly Leu Tyr
405 410 415

His Arg His Asp Ile Gly Asn Val Arg Leu Lys Gly Val Ala Gly Ile
 420 425 430
 Asp Arg Leu Ser Val Asp Thr His Arg His Ile Asp Trp Glu Gly Ala
 435 440 445
 Ser Arg Ser His Thr Ala Asp Thr Thr Ala Arg Arg Phe His Ala Gly
 450 455 460
 Leu Gln Ala Ser Tyr Gly Ile Asp Met Gly Lys Ala Thr Val Arg Pro
 465 470 475 480
 Leu Ile Gly Val His Ala Gln Lys Val Lys Val Arg Asp Leu Val Glu
 485 490 495
 Asn Glu Pro Thr Leu Ser Thr Ala Met Arg Phe Gly Glu Gln Glu Gln
 500 505 510
 Lys Ser Leu Gln Gly Glu Ile Gly Val Asp Val Ala Tyr Pro Ile Ser
 515 520 525
 Pro Ala Leu Thr Leu Thr Gly Gly Ile Ala His Ala His Glu Phe Asn
 530 535 540
 Asp Asp Glu Arg Thr Ile Asn Ala Thr Leu Thr Ser Ile Arg Glu Tyr
 545 550 555 560
 Thr Lys Gly Phe Asn Thr Ser Val Ser Thr Asp Lys Ser His Ala Thr
 565 570 575
 Thr Ala His Leu Gly Val Gln Gly Gln Leu Gly Lys Ala Asn Ile His
 580 585 590
 Ala Gly Val His Ala Thr His Gln Asp Ser Asp Thr Asp Val Gly Gly
 595 600 605
 Ser Leu Gly Val Arg Leu Met Phe
 610 615

<210> 4
 <211> 2110
 <212> DNA
 <213> Moraxella bovis

<400> 4
 tgacaaataa ttggcattg ggcagataac ccatcaaaga cccaaagcaa cccataaatc 60
 aaaaaaacac ttgtatattt tggatatct tttacactt tacaagtgtt ttactttga 120
 aagcaactca gagagtaata atgaaaaaat ccgccttgca caaatactca gcacttgccc 180
 taatggttgg gatgtgcctg cacaccgctt acgccaagga gtttagccaa gtcatcattt 240
 ttggggacag cttgtccat acaggtcgcc taaaagatat ggtcgcccgaa aaagatggca 300
 cccttggcaa cacccatcag ccatcttta ccaccaaccc cgaccctgtt tggcaagct 360
 tatttgccta aagttatggc aaaaccgcca gtgcacac gcccataat cccactggca 420
 ctaactatgc cgtggcgga gctcgctctg gctcgaggat caattggat ggttttgtga 480
 atgtaccctc caccaaaacg caaatcaccg accatttgac cgccacaggat ggcaaaagccg 540
 accctaatac cctgtatgcc atttggattt gctctaatttca gcttctcaag 600
 ccaccacaac agccgaagcc caaaacgcca taaaagggtgc ggtactcgcc accgtgata 660

acatcgaaac	actcaatcaa	gcaggggcga	caaccatttt	ggtgccaaat	gtgcctgatt	720
ttagccctac	gcccccggc	atctatggcg	aaaggcctat	ggcaggcggt	caagacaag	780
ccaaactcgc	ctcaagtctg	tataatagcg	gtctgttga	agcattaaat	caatccaccg	840
ccaacatcat	ccctgccaac	accttgc	tactccaaga	agcgaccaca	aataaagaag	900
ccttggttt	taaaaacacg	caaggcgtgg	cgtgtcaat	gccccgtcg	accacagggg	960
cggatgtatgt	ggcttctact	tccttggcat	gtaccaaagc	caatctata	aaaaacgggg	1020
caaatacgac	ctacgcctt	gccgatgaca	ttcacccatc	gggacgcacg	caccgcattt	1080
tggcacagta	ttaccgttct	atcatggacg	cccctactca	catgggtaaa	ctctcaggcg	1140
agcttgc	aaacagggttca	gcccacgacc	gtcatgttta	ccgtcagctt	gacaggctta	1200
gtggctcaca	gcacagcatt	tgggcaaacg	tccatgccag	cgaccgtacc	gaccccacca	1260
ccaaatcgg	cttggacgtg	gcaggttcat	caagccatac	aggggcgtat	ctgagccacc	1320
aaaaccaaga	ttatgtgctg	gatgacaccc	tatcatcaga	tgtcaaaaacc	attggcatgg	1380
ggctgtatca	tcgccatgac	atcggaatg	tccgtctaaa	aggcgtggca	ggtatcgacc	1440
gacttagcgt	ggatacgcac	cgccatatcg	actgggaggg	ggcaagccgt	tcgcacacagg	1500
cagacaccac	cgccagacgt	tttcatgcag	ggctacaagc	cagctatggc	atagacatgg	1560
gcaaagccac	cgtgcgtccg	cttacatggcg	tacatgccc	aaaagtcaaa	gtgcgtgatt	1620
tggtagagaa	tgaggcttacc	ctatccacccg	ccatgcgtt	tggcagca	gaacaaaagt	1680
ccctacaagg	cgagattggc	gtcgatgtgg	cttacatccat	tagccctgt	ttgactctga	1740
cgggcgttat	cgctcacgct	catgagttt	acgatgtatg	acgcaccatt	aatgccactt	1800
taacctccat	tcgtqaatac	acgaagggt	ttaatacaag	cgtagcacc	gacaaatctc	1860
acgccaccac	cgctcatctg	ggcgtacaag	ggcaacttgg	caaggcaat	attcatgcag	1920
gcgttacgc	cacccaccaa	gacagcgata	cagacgtgg	tggtcgctt	ggggttcgct	1980
tgtatgtttt	attggctttt	aaagataaaa	agtggatata	tgccactttt	tatTTGCCA	2040
aaaatctatg	tttgagtgaca	tcaaaagcctt	tcacatcatc	gccatgcgt	gataagctgt	2100
caaacatgag						2110

```

<210> 5
<211> 927
<212> PRT
<213> Moraxella bovis

<400> 5
Met Ser Asn Ile Asn Val Ile Lys Ser Asn Ile Gln Ala Gly Leu Asn
   1           5           10          15

Ser Thr Lys Ser Gly Leu Lys Asn Leu Tyr Leu Ala Ile Pro Lys Asp
   20          25          30

Tyr Asp Pro Gln Lys Gly Gly Thr Leu Asn Asp Phe Ile Lys Ala Ala
   35          40          45

Asp Glu Leu Gly Ile Ala Arg Leu Ala Glu Glu Pro Asn His Thr Glu
   50          55          60

Thr Ala Lys Lys Ser Val Asp Thr Val Asn Gln Phe Leu Ser Leu Thr
   65          70          75          80

Gln Thr Gly Ile Ala Ile Ser Ala Thr Lys Leu Glu Lys Phe Leu Gln
   85          90          95

Lys His Ser Thr Asn Lys Leu Ala Lys Gly Leu Asp Ser Val Glu Asn
  100         105         110

Ile Asp Arg Lys Leu Gly Lys Ala Ser Asn Val Leu Ser Thr Leu Ser
  115         120         125

Ser Phe Leu Gly Thr Ala Leu Ala Gly Ile Glu Leu Asp Ser Leu Ile
  130         135         140

```

Lys Lys Gly Asp Ala Ala Pro Asp Ala Leu Ala Lys Ala Ser Ile Asp
 145 150 155 160
 Leu Ile Asn Glu Ile Ile Gly Asn Leu Ser Gln Ser Thr Gln Thr Ile
 165 170 175
 Glu Ala Phe Ser Ser Gln Leu Ala Lys Leu Gly Ser Thr Ile Ser Gln
 180 185 190
 Ala Lys Gly Phe Ser Asn Ile Gly Asn Lys Leu Gln Asn Leu Asn Phe
 195 200 205
 Ser Lys Thr Asn Leu Gly Leu Glu Ile Ile Thr Gly Leu Leu Ser Gly
 210 215 220
 Ile Ser Ala Gly Phe Ala Leu Ala Asp Lys Asn Ala Ser Thr Gly Lys
 225 230 235 240
 Lys Val Ala Ala Gly Phe Glu Leu Ser Asn Gln Val Ile Gly Asn Val
 245 250 255
 Thr Lys Ala Ile Ser Ser Tyr Val Leu Ala Gln Arg Val Ala Ala Gly
 260 265 270
 Leu Ser Thr Thr Gly Ala Val Ala Ala Leu Ile Thr Ser Ser Ile Met
 275 280 285
 Leu Ala Ile Ser Pro Leu Ala Phe Met Asn Ala Ala Asp Lys Phe Asn
 290 295 300
 His Ala Asn Ala Leu Asp Glu Phe Ala Lys Gln Phe Arg Lys Phe Gly
 305 310 315 320
 Tyr Asp Gly Asp His Leu Leu Ala Glu Tyr Gln Arg Gly Val Gly Thr
 325 330 335
 Ile Glu Ala Ser Leu Thr Thr Ile Ser Thr Ala Leu Gly Ala Val Ser
 340 345 350
 Ala Gly Val Ser Ala Ala Ala Val Gly Ser Ala Val Gly Thr Pro Ile
 355 360 365
 Ala Leu Leu Val Ala Gly Val Thr Gly Leu Ile Ser Gly Ile Leu Glu
 370 375 380
 Ala Ser Lys Gln Ala Met Phe Glu Ser Val Ala Asn Arg Leu Gln Gly
 385 390 395 400
 Lys Ile Leu Glu Trp Glu Lys Gln Asn Gly Gly Gln Asn Tyr Phe Asp
 405 410 415
 Lys Gly Tyr Asp Ser Arg Tyr Ala Ala Tyr Leu Ala Asn Asn Leu Lys
 420 425 430
 Phe Leu Ser Glu Leu Asn Lys Glu Leu Glu Ala Glu Arg Val Ile Ala
 435 440 445

Ile Thr Gln Gln Arg Trp Asp Asn Asn Ile Gly Glu Leu Ala Gly Ile
 450 455 460

 Thr Lys Leu Gly Glu Arg Ile Lys Ser Gly Lys Ala Tyr Ala Asp Ala
 465 470 475 480

 Phe Glu Asp Gly Lys Lys Val Glu Ala Gly Ser Asn Ile Thr Leu Asp
 485 490 495

 Ala Lys Thr Gly Ile Ile Asp Ile Ser Asn Ser Asn Gly Lys Lys Thr
 500 505 510

 Gln Ala Leu His Phe Thr Ser Pro Leu Leu Thr Ala Gly Thr Glu Ser
 515 520 525

 Arg Glu Arg Leu Thr Asn Gly Lys Tyr Ser Tyr Ile Asn Lys Leu Lys
 530 535 540

 Phe Gly Arg Val Lys Asn Trp Gln Val Thr Asp Gly Glu Ala Ser Ser
 545 550 555 560

 Lys Leu Asp Phe Ser Lys Val Ile Gln Arg Val Ala Glu Thr Glu Gly
 565 570 575

 Thr Asp Glu Ile Gly Leu Ile Val Asn Ala Lys Ala Gly Asn Asp Asp
 580 585 590

 Ile Phe Val Gly Gln Gly Lys Met Asn Ile Asp Gly Asp Gly His
 595 600 605

 Asp Arg Val Phe Tyr Ser Lys Asp Gly Gly Phe Gly Asn Ile Thr Val
 610 615 620

 Asp Gly Thr Ser Ala Thr Glu Ala Gly Ser Tyr Thr Val Asn Arg Lys
 625 630 635 640

 Val Ala Arg Gly Asp Ile Tyr His Glu Val Val Lys Arg Gln Glu Thr
 645 650 655

 Lys Val Gly Lys Arg Thr Glu Thr Ile Gln Tyr Arg Asp Tyr Glu Leu
 660 665 670

 Arg Lys Val Gly Tyr Gly Tyr Gln Ser Thr Asp Asn Leu Lys Ser Val
 675 680 685

 Glu Glu Val Ile Gly Ser Gln Phe Asn Asp Val Phe Lys Gly Ser Lys
 690 695 700

 Phe Asn Asp Ile Phe His Ser Gly Glu Gly Asp Asp Leu Leu Asp Gly
 705 710 715 720

 Gly Ala Gly Asp Asp Arg Leu Phe Gly Gly Lys Gly Asn Asp Arg Leu
 725 730 735

 Ser Gly Asp Glu Gly Asp Asp Leu Leu Asp Gly Gly Ser Gly Asp Asp
 740 745 750

 Val Leu Asn Gly Gly Ala Gly Asn Asp Val Tyr Ile Phe Arg Lys Gly
 755 760 765

Asp	Gly	Asn	Asp	Thr	Leu	Tyr	Asp	Gly	Thr	Gly	Asn	Asp	Lys	Leu	Ala
770					775						780				
Phe	Ala	Asp	Ala	Asn	Ile	Ser	Asp	Ile	Met	Ile	Glu	Arg	Thr	Lys	Glu
785					790					795				800	
Gly	Ile	Ile	Val	Lys	Arg	Asn	Asp	His	Ser	Gly	Ser	Ile	Asn	Ile	Pro
				805					810				815		
Arg	Trp	Tyr	Ile	Thr	Ser	Asn	Leu	Gln	Asn	Tyr	Gln	Ser	Asn	Lys	Thr
				820				825				830			
Asp	His	Lys	Ile	Glu	Gln	Leu	Ile	Gly	Lys	Asp	Gly	Ser	Tyr	Ile	Thr
		835				840				845					
Ser	Asp	Gln	Ile	Asp	Lys	Ile	Leu	Gln	Asp	Lys	Lys	Asp	Gly	Thr	Val
		850				855				860					
Ile	Thr	Ser	Gln	Glu	Leu	Lys	Lys	Leu	Ala	Asp	Glu	Asn	Lys	Ser	Gln
				865		870				875				880	
Lys	Leu	Ser	Ala	Ser	Asp	Ile	Ala	Ser	Ser	Leu	Asn	Lys	Leu	Val	Gly
					885				890			895			
Ser	Met	Ala	Leu	Phe	Gly	Thr	Ala	Asn	Ser	Val	Ser	Ser	Asn	Ala	Leu
							900		905				910		
Gln	Pro	Ile	Thr	Gln	Pro	Thr	Gln	Gly	Ile	Leu	Ala	Pro	Ser	Val	
							915		920			925			

<210> 6
<211> 3231
<212> DNA
<213> *Moraxella bovis*

```

<400> 6
atgagaacgt tattttcaga tgaattgttt agaagcgattc gtgttagatgg aaattccatcg 60
catggtaaga tatctgaatt ttatggaaag tctgttgcatt caaaatttagc ctcaagaata 120
tttgcacaat atcacgaaga tttgacgagc aaattgtcaa ctcagaataa ttttattata 180
tctaaagata attaatacaa cctttctaa cacaacgagg agagacatat tatgtccat 240
ataaaatgtaa ttaaatctaa tattcaagca ggcttgaatt caacaaagtgc tggattaaaa 300
aatctttact tggctattcc caaagattat gatccgcaaa aaggtgggac tttaaatgtat 360
tttattaaag ctgctgtatga attaggtatt gctcgtagt cagaagagcc taatcacact 420
gaaacagcaa aaaaatctgt tgacacagta aatcagttc tctctctcac acaaactgg 480
attgctattt ctgcaacaaa attagaaaag ttcttacaaa aacattctac caataagtt 540
gccaaagggt tagacagtgt agaaaaattt gatcgtaat tagttaaagc aagtaatgtat 600
ttatcaacat taagctctt tttgggcact gcattagcgg gtatagaact tgattctta 660
atcaaaaaag gtgatgctgc acctgatgct ttggctaaag cttagtattga cttgattaat 720
gagataattt gtaatctatc tcagagtact caaacgattt aagcattttc ttcacagtt 780
gcaaaggtag gttctactat atcgcaggct aaaggcttct ctaatataagg aaacaagttg 840
caaaaacttaa attttctaa aacaaatctt ggtttgaaaa taattactgg tttgctatca 900
ggcatttctg caggctttgc tttagcggat aaaaatgcattt cgactggcaa aaaaggtagtgc 960
gcaggttttgc aattaagcaa tcaagttattt ggttaatgtaa caaaagcaat ttcttcataat 1020
gttttagcacc aacgtgttgc tgctggctta tcaactactg gtgctgttgc tgctttaatt 1080
acttcatcgat ttagtgcattt aattagtcct ttggcattta tgaatgcagc agataaaattc 1140
aatcatgcta atgcttgc ttagttgc aaaaatttgc aaacaattcc gaaaatttgg ctatgatggg 1200

```

gatcatttat tggctgaata tcagcgtggt gtgggtacta ttgaagcttc attaactaca 1260
attagtacgg cattaggtgc agtttctgct ggtgtttccg ctgctgctgt aggatctgt 1320
gttggcac ac cgattgcact attagttgca ggtgttacag gattgatctc tggaaattta 1380
gaagcgctca aacaggcaat gtttgaaagt gttgctaacc gtttacaagg taaaattta 1440
gagtggaaaa agcaaaatgg cggtcagaac tattttgata aaggctatga ttctcgttat 1500
gctgcttatt tagctaataa cttaaaattt ttgtctgagc taaaataaga gttggaaagct 1560
gaacgtgtta ttgcaatcac ccaacaaacgt tgggataata atattggta gtttagcaggt 1620
attaccaa at tgggtgaacg cattaagagc ggaaaagctt atgcagatgc ttttgaagat 1680
ggcaagaag ttgaagctgg ttccaatatt actttggatg ctaaaactgg tatcatagac 1740
attagaatt caaatggaa aaaaacgca a g c g a t g c a t g a c g t t a a c a 1800
gcaggaactg aatcacgtga acgtttaact aatggtaat actcttata taataagtta 1860
aaattccggac gtgtaaaaaaaaa ctggcaagtt acagatggag aggctagttc taaaatttagat 1920
ttctctaaag ttattcagcg t g t a g c c g a g acagaaggca cagacgagat tggtctaata 1980
gtaaaatgca a a g c t g g c a a tgacgatata tttgttggc a a g t t a a a t g a t t g a t 2040
ggtggagatg gacacgatcg t g t c t t c t a t agttaaagacg gaggattgg taatattact 2100
gtagatggta cgagtgcac agaaggcagc agttatacag ttaatcgtaa gttgctcga 2160
ggtgatatatct accatgaagt t g t g a a g c g t a a g g a a c c a a g g t t g g a t 2220
actatccagt atcgtgatta t g a a t t a a g a a a g t t g g g t a t g g t t a t c a 2280
aatttgaat cagtagaaga agtaattggta tctcaattta atgatgtatt caaaggttct 2340
aaattcaacg acatattcca tagtggtaa ggtgatgatt tactcgatgg tggtgcgtt 2400
gacgaccgct t g t t t g g t g g t a a a g g c a a c g a t c g a c t t t c t g g a g a t g a t 2460
ttactcgatg g c g g t t c t g g t g a t g a t g t a t t a a t g g t g t g c t g g t a a t g a t 2520
atcttcgga a a g g t g a t g g t a a t g a t a c t t g t a c g a t g g c a c c g g g c a a t g a t 2580
gcatttgcag atgcaaatat atctgatatt atgattgaac gtaccaaaga gggatttata 2640
gttaaacgaa atgatcattt aggttagtatt a a c a t a c c a a g t g g t a c a t a a c a t c a a t 2700
ttacaattt atcaaagtaa taaaacagat c t a a a a t t g a c a a c t a a t t g t a a a g a t 2760
ggtagttata tcacttcgca tcaaattgtat a a a a t t t g c a a g a t a a g a a g a t g g t a c a 2820
gtaattacat ctcaagaatt gaaaaagctt gctgatgaga ataagagcca a a a a t t a t c t 2880
gcttcggaca ttgcaagtag cttaaataag c t a g t t g g g t c a a t g g c a c t a t t g g t a c a 2940
gcaaatagtg tgagttctaa c g c c t t a c a g c c a t t a c a a c c a a c t c a a g g a a t t t g 3000
gctccaagtg tttagtgatt taatttacta g a c a a t a t c a c c a c c a t a t c a t t g g t t a t 3060
agattatgaa actagtgata tgggtggta tacttctta attagactta atttacaaac 3120
ccttaatagt a a t t a g t t a t g a t a g a t t a t g c t c a a c a c t g c t c t a t 3180
tacccctgcc aaatactatg gtattctgc a a g t c c a q c a q a c a t t a t q c a a 3231

```
<210> 7
<211> 17
<212> PRT
<213> Moraxella bovis

<220>
<221> misc_feature
<222> (14) (16)
<223> Xaa = unsure

<400> 7
Lys Glu Phe Ser Gln Val Ile Ile Phe Gly Asp Ser Leu Xaa Asp Xaa
      1           5           10          15

Gly
```

<210> 8
<211> 64
<212> PRT
<213> Moraxella bovis

<400> 8
Met Arg Thr Leu Phe Ser Asp Glu Leu Phe Arg Ala Ile Arg Val Asp
1 5 10 15

Gly Asn Ser Ser His Gly Lys Ile Ser Glu Phe Tyr Gly Lys Ser Val
20 25 30

Asp Ser Lys Leu Ala Ser Arg Ile Phe Ala Gln Tyr His Glu Asp Leu
35 40 45

Thr Ser Lys Leu Ser Thr Gln Asn Asn Phe Ile Ile Ser Lys Asp Asn
50 55 60

<210> 9
<211> 57
<212> PRT
<213> Moraxella bovis

<400> 9
Met Gly Gly Asp Thr Ser Leu Ile Arg Leu Asn Leu Gln Thr Leu Asn
1 5 10 15

Ser Asn Leu Val Met Ile Asp Tyr Ala Gln Gln Pro Ala Leu Ser Ala
20 25 30

Leu Val Ile Leu Ala Lys Tyr Tyr Gly Ile Ser Ala Ser Pro Ala Asp
35 40 45

Ile Met His Arg Leu Ala Lys Lys Leu
50 55