ROB311 Quiz 1

Hanhee Lee

April 13, 2025

Contents

1	Con	straint Satisfaction Problems	2
	1.1	Setup of CSP	2
	1.2	Assignment	2
	1.3	Formulating a CSP as a Search Problem	2
	1.4	Consistent	2
		1.4.1 Complete Assignment	2
		1.4.2 Partial Assignment	
		1.4.3 k-Consistent	2
	1.5	Constraint Satisfaction Algorithm	3
		1.5.1 Satisfy	
		1.5.2 Enforce: Enforcing k-Consistency	3
		1.5.3 EnforceVar: Enforcing k-Consistency	3
	1.6	Canonical Problems	4

1 Constraint Satisfaction Problems

1.1 Setup of CSP

Definition: A constraint satisfaction problem (CSP) consists of:

- a set of variables, \mathcal{V} , where the domain of $V \in \mathcal{V}$ is dom(V)
- a set of **constraints**, C, where the scope of $C \in C$ is $scp(C) \subseteq V$

1.2 Assignment

Definition: An **assignment** is a set of pairs, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}$, where $v\in \text{dom}(V)$, and $\tilde{\mathcal{V}}\subseteq\mathcal{V}$. It is **complete** if $\tilde{\mathcal{V}}=\mathcal{V}$, and **partial** otherwise.

1.3 Formulating a CSP as a Search Problem

Motivation: We don't formulate a CSP as a search problem because the path tree of all possible ways to build a complete assignment is too large. The number of paths in the three is

$$\mathcal{O}\left(|\mathcal{V}|! \times b^d\right)$$

- $b = \max_{V \in \mathcal{V}} |\mathrm{dom}(V)|$
- $d = |\mathcal{V}|$

1.4 Consistent

1.4.1 Complete Assignment

Definition: A complete assignment, A, is **consistent** if it satisfies every constraint \mathcal{C} with $scp(\mathcal{C}) \subseteq \tilde{\mathcal{V}}$.

Warning: A solution to a CSP is any complete and consistent assignment.

1.4.2 Partial Assignment

Definition: A (possibly partial) assignment, $\{(V, v)\}_{V \in \tilde{\mathcal{V}}}$, is **consistent** if it satisfies every constraint, $C \in \mathcal{C}$ such that $\text{scp}(C) \subseteq \tilde{\mathcal{V}}$.

1.4.3 k-Consistent

Definition: A CSP is k-consistent if for any consistent assignment of k-1 variables, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}$, and any k^{th} variable, V', there is a value, $v'\in \text{dom}(V')$, so the assignment, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}\cup\{(V',v')\}$ is consistent.

Notes:

• Edge/Arc Consistent: k=2

1.5 Constraint Satisfaction Algorithm

1.5.1 Satisfy

```
Algorithm:
    procedure SATISFY (V, C, D, A):
            if COMPLETE(A, V) then
                    return A

    ▷ a solution was found

            V \leftarrow \mathtt{REMOVE}(\mathcal{V}, A)
            for v \in \mathcal{D}(V) do
                                                                                                                                 \triangleright try each value in V's current domain
                   \mathcal{D}' \leftarrow \mathtt{COPY}(\mathcal{D})
                                                                                                                        \triangleright cache the current domains for backtracking
                    A \leftarrow A \cup \{(V, v)\}
                   \mathcal{D}(V) \leftarrow \{v\}
                    \mathcal{D}, success \leftarrow ENFORCE(\mathcal{V}, \mathcal{C}, \mathcal{D}, \mathcal{V}, k)
10
                    if success then
                                                                                                                                                           ▷ enforce k consistency
                           A \leftarrow \mathtt{SATISFY}(\mathcal{V}, \mathcal{C}, \mathcal{D}, A)
                                                                                                                                         \triangleright recursively continue if possible
                            if A \neq \mathtt{NULL} then
13
                                    return A
                    \mathcal{D} \leftarrow \mathcal{D}'
                                                                                                                                                    \triangleright backtrack if not possible
14
                    A \leftarrow A \setminus \{(V,v)\}
15
            return NULL
                                                                                                                                         ▷ No solution found in this branch
```

1.5.2 Enforce: Enforcing k-Consistency

1.5.3 EnforceVar: Enforcing k-Consistency

```
Algorithm:
     procedure ENFORCEVAR (\mathcal{V}, \mathcal{C}, \mathcal{D}, V, k):
             for v \in \mathcal{D}(V) do
                     for C \in \mathcal{C} do
                              if V \in \operatorname{scp}(C) and |\operatorname{scp}(C)| \leq k then
                                       \mathtt{flag} \; \leftarrow \; \mathtt{False}
                                       for A \in \mathcal{X} \times \mathcal{D}(V') do
                                               if A \cup \{(V,v)\} \in \mathcal{C} then
                                                       \texttt{flag} \, \leftarrow \, \texttt{True}
                                                       break
                                       if not flag then
10
                                              \mathcal{D}(V) \leftarrow \mathcal{D}(V) \setminus \{v\}
11
                                       if \mathcal{D}(V)=\emptyset then
12
13
                                               return False
                                                                                                                                             \triangleright no valid domain values remain for V
             return True
```

1.6 Canonical Problems

Process: Setup of CSP:

1. Determine variables to track, domain of each variable, and constraints.

Example:

Figure 1: Information

Figure 2: Variables

Figure 3: Constraints

Process: How to build a hyper-graph?

1. Circle the variables that appear in constraint $C_i \, \forall i$.

We can visualize the constraints using a hyper-graph. fat protein carbs Figure 4

Process: How to Enforce k-Consistency?

- 1. Given \mathcal{V} w/ dom $(V) = \{v_1, \dots, v_{|\text{dom}(V)|}\}\ \forall V \in \mathcal{V}$ and \mathcal{C} w/ scp $(C) = \{V_1, \dots, V_{|\text{scp}(C)|}\}\ \forall C \in \mathcal{C}$.
- 2. Remove all constraints that have k+1 or more variables and add the rest to a queue.
- 3. **Pre-pruning:** For each remaining $C \in \mathcal{C}$, do the following:
 - (a) For each $V \in \operatorname{scp}(C)$, do the following:
 - i. For each $v \in \text{dom}(V)$, do the following:
 - Fix V to v.
 - For the other $V \in \operatorname{scp}(C)$, check if the constraint is satisfied by trying all combinations (need only one).
 - **Key:** If the constraint is not satisfied, then remove the value from dom(V). Add any affected constraints back to the queue.
- 4. Repeat until the queue is empty.

Warning: Can think of checking as picking k-1 variables, then choosing any value for the k^{th} variable that satisfies all constraints. While enforcing is fixing a variable to a value, then checking if there is a combination for the other variables that satisfies all constraints.

Warning: Enforcing k-consistency is enforcing $k-1,\ldots,1$ -consistency.

Process: How to determine a solution to a CSP?

- 1. After pre-pruning the domains.
- 2. Assign variables in alphabetical order and values in numerical order.
- 3. Prune the pre-pruned domains.
- 4. If you can assign all variables, then you have a solution. If you have domain wipeout, backtrack.
- 5. Repeat the process until you find all solutions.

Process: Checking k-Consistency

- 1. Enforce k-consistency.
- 2. If you have to pre-prune, then not k-consistent.

Example: Pre-Pruning Domains

•
$$V = \{ \begin{subarray}{ll} & & & \\$$

Figure 5

•
$$dom()) = \{1, 2, 3\}$$

• $dom()) = \{2, 3, 4\}$

• dom $\left(\mathscr{P} \right) = \left\{ \mathscr{I}, \mathscr{Z}, 4 \right\}$

Figure 6: Pre-pruning. Since only one constraint, it is also pruning.

Example:

1. **Given:** Consider a CSP in which $V = \{A, B, C, D, E\}$, where:

$$dom(A) = \{0, 1, 2, 3, 4\}$$

$$dom(B) = \{0, 1, 2, 3, 4\}$$

$$dom(C) = \{0, 1, 2, 3\}$$

$$dom(D) = \{0, 1, 2, 3, 4, 5\}$$

$$dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$$

and $C = \{C_1, C_2, C_3, C_4\}$, where:

$$C_1: 8 \le 2a + 2b + 2d + 3e \le 10$$

$$C_2: 3 \le a + c \le 4$$

$$C_3: 2 \le a + b + 2c \le 5$$

$$C_4: 1 \le b \le 2$$

2. **Problem:** Solve the following CSP using k = 4 consistency. Pre-prune the domains using k = 4 consistency. Assign variables in alphabetical order and values in numerical order.

Example: 4-Consistency Pre-Pruning

Queue

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

 $\{C_2, C_3, C_1\}$ b = 0, b = 1, b = 2, b = 3, b = 4 No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- $\{C_2, C_3, C_1\}$

$$C_2: 3 \le a + c \le 4$$

$$\{C_3,C_1\} \qquad a=0,\ a=1,\ a=2,\ a=3,\ a=4 \quad \text{Yes, Yes, Yes, Yes, Yes} \\ c=0,\ c=1,\ c=2,\ c=3 \quad \text{Yes, Yes, Yes, Yes}, \text{Yes}$$

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, A\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- $\{C_3, C_1\}$

$$C_3: 2 \le a+b+2c \le 5$$

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- $\{C_1, C_2\}$

Example: 4-Consistency Continued:

Queue Fixed Value

Satisfactory Combination?

$$C_1: 8 \le 2a + 2b + 2d + 3e \le 10$$

$$\{C_2\}$$
 $a = 0, a = 1, a = 2, a = 3, a = 4$
- $b = 1, b = 2$

Yes, Yes, Yes, Yes, Yes

Yes, Yes

d = 0, d = 1, d = 2, d = 3, d = 4, d = 5

Yes, Yes, Yes, Yes, Yes, No

e = 0, e = 1, e = 2, e = 3, e = 4, e = 5, e = 6 Yes, Yes, Yes, No, No, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- \bullet $\{C_2\}$

$$C_2: 3 \le a + c \le 4$$

No, Yes, Yes, Yes, Yes Yes, Yes, Yes

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- $\{C_3, C_1\}$

$$C_3: 2 \le a+b+2c \le 5$$

$$\{C_1\}$$
 $a = 1, a = 2, a = 3, a = 4$
- $b = 1, b = 2$

c = 0, c = 1, c = 2

Yes, Yes, Yes, Yes

- Yes, Yes
- Yes, Yes, No

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- $\{C_1, C_2\}$

Example: 4-Consistency Continued:

Queue Fixed Value

Satisfactory Combination?

$$C_1: 8 \le 2a + 2b + 2d + 3e \le 10$$

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- $\{C_2\}$

$$C_2: 3 \le a + c \le 4$$

No, Yes, Yes, Yes Yes, Yes

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- dom(B) = $\{\emptyset, 1, 2, 3, \cancel{4}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, \cancel{4}, \cancel{5}\}\$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- $\{C_3, C_1\}$

$$C_3: 2 \le a+b+2c \le 5$$

$$\{C_1\}$$
 $a=2, a=3, a=4$ Yes, Yes, Yes
- $b=1, b=2$ Yes, Yes
- $c=0, c=1$ Yes, Yes

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}, dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}, dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- \bullet $\{C_1\}$

$$C_1: 8 \le 2a + 2b + 2d + 3e \le 10$$

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}, dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}, dom(D) = \{0, 1, 2, 3, 4, 5\}$
- dom(E) = {0, 1, 2, 3, 4, 5, \emptyset }
- {}

```
Example: 4-Consistency Post-Pre-Pruning:
                                          C_1: 8 \le 2a + 2b + 2d + 3e \le 10
                                          C_2: 3 \le a+c \le 4
                                          C_3: 2 \le a+b+2c \le 5
                                          C_4: 1 \le b \le 2
  Solution
                                        Updated Necessary Domains After Assignment
  A=2
                                        dom(B) = \{1, 2\}, dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1
                                        dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1, C = 1
                                        dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1, C = 1, D = 0
                                        dom(E) = \{\emptyset, 1\}
  A = 2, B = 1, C = 1, D = 0, E = 1
                                        Solution Found
                                        dom(B) = \{1, 2\}, dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A=2
  A = 2, B = 1
                                        dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1, C = 1
                                        dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1, C = 1, D = 1
                                        dom(E) = \{0, 1\}
                                        Solution Found
  A = 2, B = 1, C = 1, D = 1, E = 0
  A = 2
                                        dom(B) = \{1, 2\}, dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1
                                        dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1, C = 1
                                        dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 1, C = 1, D = 2
                                        dom(E) = \{0, 1/\}
  A = 2, B = 1, C = 1, D = 2, E = 0
                                        Solution Found
  A=2
                                        dom(B) = \{1, 2\}, dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 2, B = 2
                                        dom(C) = \{\emptyset, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
                                        No Solution Found
  A = 3
                                        dom(B) = \{1, 2\}, dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
                                        dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 3, B = 1
  A = 3, B = 1, C = 0
                                        dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 3, B = 1, C = 0, D = 0
                                        dom(E) = \{0, 1/\}
  A = 3, B = 1, C = 0, D = 0, E = 0
                                        Solution Found
                                        dom(B) = \{1, 2\}, dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 3
  A = 3, B = 1
                                        dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 3, B = 1, C = 0
                                        dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 3, B = 1, C = 0, D = 1
                                        dom(E) = \{0, 1\}
  A = 3, B = 1, C = 0, D = 1, E = 0
                                        Solution Found
  A = 3
                                        dom(B) = \{1, 2\}, dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 3, B = 2
                                        dom(C) = \{0, 1/2\}, dom(D) = \{0, 1/2\}, dom(E) = \{0, 1/2\}
  A = 3, B = 2, C = 0
                                        dom(D) = \{0, 1/2\}, dom(E) = \{0, 1/2\}
  A = 3, B = 2, C = 0, D = 0
                                        dom(E) = \{0, 1\}
  A = 3, B = 2, C = 0, D = 0, E = 0
                                        Solution Found
  A = 4
                                        dom(B) = \{1, 2\}, dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 4, B = 1
                                        dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2\}, dom(E) = \{0, 1\}
  A = 4, B = 1, C = 0
                                        dom(D) = \{0, 1/2\}, dom(E) = \{0, 1/2\}
  A = 4, B = 1, C = 0, D = 0
                                        dom(E) = \{0, 1\}
  A = 4, B = 1, C = 0, D = 0, E = 0
                                        Solution Found
```

Example: 3-Consistency

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

b = 0, b = 1, b = 2, b = 3, b = 4 No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a + c \le 4$$

 $a=0,\ a=1,\ a=2,\ a=3,\ a=4$ Yes, Yes, Yes, Yes, Yes $c=0,\ c=1,\ c=2,\ c=3$ Yes, Yes, Yes, Yes

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a + b + 2c \le 5$$

a = 0, a = 1, a = 2, a = 3, a = 4 Yes, Yes, Yes, Yes, Yes

b = 1, b = 2

Yes, Yes

c = 0, c = 1, c = 2, c = 3

Yes, Yes, Yes, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

Example:

Fixed Value

Satisfactory Combination?

$$C_2: 3 \le a + c \le 4$$

a = 0, a = 1, a = 2, a = 3, a = 4 No, Yes, Yes, Yes, Yes c = 0, c = 1, c = 2Yes, Yes, Yes

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a + b + 2c \le 5$$

a = 1, a = 2, a = 3, a = 4

b = 1, b = 2

c = 0, c = 1, c = 2

Yes, Yes, Yes, Yes

Yes, Yes

Yes, Yes, No

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a+c \le 4$$

a = 1, a = 2, a = 3, a = 4

c = 0, c = 1

No, Yes, Yes, Yes

Yes, Yes

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a+b+2c \le 5$$

a = 2, a = 3, a = 4

b = 1, b = 2

c = 0, c = 1

Yes, Yes, Yes

Yes, Yes

Yes, Yes

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- \bullet dom $(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- 4. Conclusion: $dom(A) = \{2, 3, 4\}, dom(B) = \{1, 2\}, dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2, 3, 4, 5\}, dom(E) = \{0, 1, 2, 4, 5\}, dom(E$ $\{0, 1, 2, 3, 4, 5, 6\}$

Example: 2-Consistency

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

b = 0, b = 1, b = 2, b = 3, b = 4 No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- \bullet dom $(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a + c \le 4$$

 $a=0,\ a=1,\ a=2,\ a=3,\ a=4$ Yes, Yes, Yes, Yes, Yes $c=0,\ c=1,\ c=2,\ c=3$ Yes, Yes, Yes, Yes

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- 4. **Conclusion:** $dom(A) = \{0, 1, 2, 3, 4\}, dom(B) = \{1, 2\}, dom(C) = \{0, 1, 2, 3\}, dom(D) = \{0, 1, 2, 3, 4, 5\}, dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

Example: 1-Consistency

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

b = 0, b = 1, b = 2, b = 3, b = 4 No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- \bullet dom $(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- 4. **Conclusion:** $dom(A) = \{0, 1, 2, 3, 4\}, dom(B) = \{1, 2\}, dom(C) = \{0, 1, 2, 3\}, dom(D) = \{0, 1, 2, 3, 4, 5\}, dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$