H2 Physics (Practical)

Ryan Joo Rui An ryanjooruian18@gmail.com

January 28, 2024

Contents

1	\mathbf{Pre}	requisite Knowledge	2				
	1.1	General format and procedure	2				
	1.2	Decimal places and significant figures	2				
2	Qua	antitative Aspects	3				
	2.1	Measure and record	3				
	Estimate percentage uncertainty	3					
	2.3	Table for recording readings	3				
	2.4	Graph	3				
		2.4.1 Linearising	3				
		2.4.2 Graph plotting	3				
		2.4.3 Gradient and y-intercept	3				
3	Qualitative Aspects						
	3.1	Support suggested relationship	4				
	3.2	Source of error and improvement	4				
	3.3	Comment on the value	4				
4	Pla	nning	5				
Α	Cor	nmon experiments	6				

1 Prerequisite Knowledge

1.1 General format and procedure

1.2 Decimal places and significant figures

Decimal places are henceforth known as "d.p.", significant figures as "s.f.".

- For addition and subtraction, follow least d.p.
- For multiplication and division, follow least s.f.

•

2 Quantitative Aspects

2.1 Measure and record

- 1. Explicitly state what you are measuring and/or number of measurements.
- 2. Show evidence of repeated measurements

2.2 Estimate percentage uncertainty

Use minimum $2 \times \Delta R$ for actual uncertainty

2.3 Table for recording readings

Presentation:

- Solidus notation (symbol + notation) to denote physical quantities.
- Header in the order of experiment, record raw data followed by calculated values.
- Follow d.p. for raw data, s.f. for calculated values.
- Correct number of data sets: minimum 6 for straight line, 8 for curve.

Format of table:

r	ı	t_1/s	t_2/s	$t_{\rm avg}/{ m s}$	T/s	\sqrt{n}
6	;	20.0	20.2	20.1	1.05	2.45
:		:	:	:	:	:

2.4 Graph

2.4.1 Linearising

- 1. Manipulate the given equation such that the independent variable is on one side, the dependent variable on the other side.
- 2. The "golden" statement:

Plot T against \sqrt{n} . If the relationship is valid, a straight line graph with gradient P, y-intercept Q will be obtained.

2.4.2 Graph plotting

1. Scale

No odd scale; the acceptable ratios of big squares to small squares are only 1:1, 1:2, 1:5. Label all bold lines (do not skip any). Plotted points must take up at least half of the space.

2. Line

Line of best fit, equal number of points on both sides.

3. Points

Points plotted to half the smallest square. Circle and label any anomalies.

2.4.3 Gradient and y-intercept

3 Qualitative Aspects

3.1 Support suggested relationship

- 1. My measurements do / do not support the relationship because ...
- 2. % difference is smaller/larger than % uncertainty.

$$\%$$
 difference = $\left|\frac{\rm difference}{\rm average}\right| \times 100\%$

% uncertainty =
$$\frac{2\Delta R}{R} \times 100\%$$

(Percentage uncertainty would have already been calculated in an earlier question.)

3.2 Source of error and improvement

3.3 Comment on the value

- 1. The value is correct / wrong.
- 2. (How it affects graph)

4 Planning

A Common experiments