

About This Course

What You Need

What you need to follow along

- Linux Academy Lab servers cannot have KVM installed
- Host testing machine with a minimum of 6GB of memory
- AMD or Intel processor with virtualization enabled
- You can use Fedora 22+, CentOS 7, or a RHEL 7 host

What is KVM

KVM

- KVM is a hypervisor built into the Linux Kernel
- Allows Linux desktops or servers to simulate multiple pieces of of hardware
- KVM uses the QEMU virtual machine format

What is the Difference Between QEMU and KVM?

- QEMU and KVM are two separate software projects
- QEMU is primarily a hardware emulator
- KVM is a kernel module that is used to expose hardware virtualization technologies such as:
 - Intel VT-x or AMD SVM
 - KVM then uses QEMU for the device emulation
- When QEMU and KVM work together, KVM arbitrates access to the CPU and memory, while QEMU emulates hardware resources like hard disks, video cards, USBs and more.

Virtualization

Hardware Virtualization

- Full virtualization
 - Complete simulation of the actual hardware to allow software, which typically consists of a guest machine or virtual machine
 - KVM uses full virtualization
- Para-virtualization
 - The hardware environment is not simulated

Desktop Virtualization

- Desktop virtualization is the concept of separating the logical desktop from the physical machine
- VDI Virtual Desktop Infrastructure

Hypervisors

- VMM/Hypervisor is a piece of software that is responsible for monitoring and controlling virtual machines or guest operating systems
- Type 1 Hypervisor
 - The Hypervisor runs directly on top of the hardware
- Type 2 Hypervisor
 - The Hypervisor acts as a separate layer often on top of a base Operating System

Type 1 Hypervisor

Type 2 Hypervisor

Overcommitting

- To allocate more virtualized CPUs or virtual memory than the available resources on the host system provides
- Overcommitting can cause possible risk to your host system's stability

Thin Provisioning

- Allows you to optimize available storage space for the guest virtual machines
- Similar to overcommitting, but only pertains to storage, not CPU and memory
- Can also pose risk to the system stability

Linux Virtualization

Linux Virtualization

- Process through which one or more virtual machines can be installed, executed and maintained on top of the Linux operating system
- Linux Virtualization brings openness, flexibility, and high performance

Open Source Virtualization projects

- KVM Kernel-based Virtual Machine
- Xen
- VirtualBox
- UML User Mode Linux

Kernel Same-Page Merging (KSM)

- Allows KVM guests to share identical memory pages
- Shared common libraries or other identical, high-use data
- KSM allows for greater guest density of identical or similar guest operating systems by avoiding memory duplication

QEMU Guest Agent

 Runs on the guest virtual machine's operating system in order to issue commands to the guest OS from the host OS

Nested Virtualization

 For example, it is possible so that the KVM guest can operate as virtual hosts, essentially allowing users to create one or more KVM guests within each KVM guest

Linux Virtualization and the cloud

- OpenStack
- Eucalytus
- Cloudstack

KVM Overview

What is KVM Kernel-based Virtual Machine

- KVM is a hypervisor which is built into the Linux Kernel
- Allows Linux desktops or servers to simulate multiple pieces of hardware
- Full virtualization solution for Linux on x86 hardware that contains virtualization extensions such as Intel VT or AMD-V
- KVM uses the QEMU (Quick Emulator) virtual machine format

KVM overview

- The KVM module creates a bare metal hypervisor on the Linux Kernel
- Virtual machines can be loaded onto this hypervisor, running separate OSes
- Any storage that is supported by Linux can store virtual machine images (local disks, SCSI or networking-attached storage such as NFS and SAN)

KVM overview

- KVM supports a variety of operating system guest such as:
 - Linux distributions, Microsoft Windows, OpenBSD, FreeBSD, Open Solaris, MS DOS and more

KVM Benefits of Use

- Lower cost
- Enterprise performance and higher scalability
- Advanced security
- High Quality of Service (QoS)
- The open ecosystem

KVM Use Cases

- Hypervisor of choice for cloud
- Enterprise virtualization for large-scale enterprises
- Virtualizing Linux servers
- Virtualization of compute, storage, networking

OpenStack and KVM

- OpenStack is a cloud platform that uses open source technology for both private and public clouds
- KVM is the hypervisor of choice for OpenStack deployments

User Space and Kernel Space

KVM and Linux

- KVM allows us to turn the Linux kernel into a hypervisor
- QEMU is used for I/O emulations with userland (user space) software
 - Userland is user space software that does not use the Linux kernel
 - Computer memory is managed and divided into kernel space and user space

User Space and Kernel Space

User Space and Kernel Space

KVM using user mode and kernel mode

qemu-kvm (USER MODE CODE)

kvm.ko (KERNEL MODE CODE)

kvm-amd.ko

kvm-intel.ko

Standalone KVM Virtualization

Virtual Machine Monitor - VMM/Hypervisor

- VMM (Hypervisor)
- Compute software, firmware, or hardware that creates and runs virtual machines
- The KVM kernel Module is not enough to just start running virtual machines...

Quick Emulator - QEMU

- ...In order to run these virtual machines KVM also needs an emulator to emaulate the hardware peripherals for the virtual machines
- Open source machine emulator that helps you to run the operating systems that are designed to run one architecture on top of another
- QEMU uses dynamic translation, which is a technique used to execute virtual machine instructions on the host machine

KVM Quick Emulator - KVM QEMU

- QEMU in general is slow
- KVM developers created qemu-kvm, which can interact with KVM modules directly and safely execute instructions from the VM directly to the CPU without using dynamic translations

Libvirt

- Libvirt is a set of API libraries that sites in between the end user and the hypervisor
- The hypervisor could be built to use any virtualization technology such as KVM/QEMU, XEN, LXC, VirtualBox, VMWARE ESX, MS HyperV and even Parallels
- Libvirt acts as a sort of transparent layer that can take commands from users, modifies them based on the underlying virtualization technology, and then executes them on the actual hypervisor
- Tools include the libvirtd daemon, API library, and command line utility called virsh

Libvirt-based tools virsh

A command line tool to manage VM Guests with similar functionality as the Virtual Machine Manager. Allows you to change a VM Guest's status (start, stop, pause, etc.), to set up new guests and devices, or to edit existing configurations. virsh is also useful to script VM Guest management operations.

Libvirt-based tools virt-viewer

- Libvirt is a set of API libraries that sits in between the end user and the hypervisor
- The hypervisor could be built to use any virtualization technology such as KVM/QEMU, XEN, LXC, VirtualBox, VMWARE ESX, MS HyperV and even Parallels
- Libvirt acts as a sort of transparent layer that can take commands from users, modifies them based on the underlying virtualization technology, and then executes them on the actual hypervisor
- Tools include the libvirtd daemon, API library, and command line utility called virsh

Libvirt-based tools virt-manager

■ The Virtual Machine Manager is a desktop tool for managing VM Guests. It provides the ability to control the life cycle of existing machines (start/shutdown, pause/resume, save/restore) and create new VM Guests. It allows managing various types of storage and virtual networks. It provides access to the graphical console of VM Guests with a built-in VNC viewer and can be used to view performance statistics. virt-manager supports connecting to a local libvirtd, managing a local VM Host Server, or a remote libvirtd managing a remote VM Host Server.

Libvirt

KVM Setup

System Requirements

Installing Virtualization Packages

Post Installation Task

Managing Virtual Machines

Using Virt-Manager
CentOS 7 Linux VM install

Using Virt-Manager Managing Instances

Using virt-install
Installing a Windows Guest

Disk Images
Using virt-builder

Using virsh and virt-viewer

KVM Network and Storage

libvirt and virtual networking

Virtual Networking

images from

Virtual Networking

NAT Network Address Translation

Routed Mode

Isolated Mode

Virtual Networking libvirt's default networking configuration

Virtual Networking - MacVTap

Creating an isolated network

Creating a routed network

Creating a Disk Image

Virtual Storage - Creating a disk image

Storage Pools

Backup and Recovery