VACUUM FLUORESCENT DRIVER

VACUUM FLUORESCENT DRIVER DATA BOOK 1989 / 1990

VACUUM FLUORESCENT DISPLAY TUBE DRIVER LINE-UP AND TYPICAL CHARACTERISTICS

PACKAGING

RELIABILITY INFORMATION

DATA SHEETS

CONTENTS

1.	VACUUM FLUORESCENT LINE-UP AND TYPICAL (DISPLAY TUBE DRIVER CHARACTERISTICS	3
	•		
2.	PACKAGING		
	• 18 PIN PLASTIC DIP	······································	10
	• 28 PIN PLASTIC DIP		10
	• 40 PIN PLASTIC DIP		11
	• 30 PIN PLASTIC SDIP		11
	• 42 PIN PLASTIC SDIP		12
	• 64 PIN PLASTIC SDIP		12
	• 44 PIN PLASTIC QFP		13
	• 56 PIN PLASTIC QFP		15
	• 60 PIN PLASTIC QFP		17
	• 64 PIN PLASTIC QFP		18
	• 32 PIN PLASTIC SOP		20
-	• 60 PIN PLASTIC SOP		22
	• 44 PIN PLASTIC QFJ (P	LCC)	23
3.	RELIABILITY INFORMATI	ON	
4.	DATA SHEETS		
	• DRIVER		
	MSL912	8-Bit Parallel-in Parallel-out	39
	MSL915	8-Bit Parallel-in Parallel-out	42
	MSL917	8-Bit Parallel-in Parallel-out	45
	MSL918	8-Bit Parallel-in Parallel-out	48
	MSC1163	40-Bit Anode Driver	51
	MSC7751	40-Bit Anode Driver	61
	MSC7701	40-Bit Grid Driver	72
	MSC1150/1171/1173	10-Bit/20-Bit/32-Bit Anode/Grid Driver	83

MSC1164	20-Bit Anode/Grid Driver 90
MSC1165	20 Bit Anada/Crid Driver
MSC1162	40 Dit Amada/Caid Dairea
MSC1172	40 Bit Anada/Crid Driver
	40-Bit Anode/Grid Driver 120
MSC1149-XX	Dot Driver
MSC1187-XX	Dot Driver with Dimming Function 146
MSM5267B-15	Dot Driver 165
MSM5328	Dot Driver 172
MSC1178/1179	7-Segment Driver 179
MSC1190	7-Segment Driver 192
CONTROLLER	
MSC7110-XX/7112-XX	12-Segment, 16 Digit/16-Segment, 12-Digit . 207
MSC1937-01	16-Segment, 16-Digit (Alphanumeric) 224
MSC1951-01	16-Segment, 16-Digit (Bargraph and Numeric) 235
MSC7125-XX	5 x 7 Dot Matrix, 8-Digit 249
MSC7128-XX	5 x 7 Dot Matrix, 16-Digit 262
• LEVEL METER	
MSC1124	2-channel 12-Dot Level Meter IC (Static) 283
MSC1146B	2-channel 15-Dot Level Meter IC (Dynamic) 294

VACUUM FLUORESCENT DISPLAY TUBE DRIVER LINE-UP AND TYPICAL CHARACTERISTICS

VACUUM FLUORESCENT DISPLAY TUBE DRIVER LINE-UP AND TYPICAL CHARACTERISTICS '

		NUMBER OF	OUTPUT	ОИТРИТ	CURRENT		SHIFT	LATCH	REMARKS
DEVICE NAME	TYPE	OUTPUT	VOLTAGE	SINK	SOURCE	OUTPUT CIRCUIT	RESISTER		REMARKS
MSL912RS	_	8	+ 30V		- 40mA	EMITTER FOLLOWER + PULL DOWN	_		8 Drivers
MSL915RS		8	- 60V	-	- 40mA	EMITTER FOLLOWER + PULL DOWN	-	-	8 Drivers
MSL917RS	-	8	- 80V	-	-90mA	EMITTER FOLLOWER	-	-	8 Drivers
MSL918RS	_	8	+30V	-	- 40mA	EMITTER FOLLOWER	-	-	8 Drivers
MSC1149-XX RS/GS	=	Large 8 Small 25	+ 18V	Large 0.5mA Small 0.5mA	Large -2mA Small -0.8mA	PUSH PULL	34	33	Auto Load Circuit
MSC1150RS	DATA/SCAN	10	+ 60V	2mA	- 25mA	PUSH PULL	10	10	
MSC1162GS	DATA/SCAN	40	+ 65V	2mA	-40mA	PUSH PULL	40	40	Bi-directional S/R
MSC1163GS	DATA	40	+ 65V	2mA	-2mA	PUSH PULL	40	40	Bi-directional S/R
MSC1164GS	DATA/SCAN	20	+ 65V	2mA	- 40mA	PUSH PULL _	20	20	
MSC1165RS	DATA/SCAN	20	+ 65V	2mA	- 40mA	PUSH PULL	20	20	
MSC1171RS	DATA/SCAN	20	+ 60V	2mA	25mA	PUSH PULL	20	20	-
MSC1172GS	DATA/SCAN	- 40	+ 70V	2mA	-40mA	PUSH PULL	40	40	Bi-directional S/R
MSC1173RS	DATA/SCAN	32	+ 60V	2mA	- 25mA	PUSH PULL	32	32	
MSC1178/79GS	-	VF 13+7x3 LED 9	+ 18V	VF 0.1mA LED 20mA	VF -1mA	PUSH PULL (VF) OPEN COLLECTOR (LED)	35	35	7 Segment Decoder Dimming Circuits
MSC1187 - XX GS	-	Large 8 Small 25	+ 18V	Large 0.5mA Small 0.5mA	Large -2mA Small -0.8mA	PUSH PULL (VF)	34	33	MSC1149 + Dimming
MSC1190	•	VF 13+7x3 LED 9	+ 18V	VF 0.1mA LED 25mA	VF -1mA	PUSH PULL (VF) OPEN COLLECTOR (LED)	35	35	7 Segment Decoder Dimming Circuits
MSC7701GS	SCAN	40	+ 130V	2mA	-40mA	PUSH PULL .	40	40	Bi-directional S/R
MSC7751GS	DATA	40	+ 200V	2mA	-2mA	PUSH PULL	40	40	Bi-directional S/R
MSM5267B- 15RS/GS	-	Large 8 Small 25	+ 18V	Large 0.5mA Small 0.5mA	Large -6mA Small -1.5mA	PUSH PULL	34	33	
MSM5328RS	-	Large 8 Small 25	+ 18V	Large 0.5mA Small 0.5mA	Large -3.5mA Small -0.8mA	PUSH PULL	34	33	

• CONTROLLER

		NUMBER OF	OUTPUT	ОПТРИТ	CURRENT		REMARKS
DEVICE NAME	. TYPE	ОИТРИТ	VOLTAGE	SINK	SOURCE	OUTPUT CIRCUIT	REMARKS
MSC1937-01 RS/GS	CONTROLLER	GRID 16 SEG 18	-58V	-	GRID -10mA SEG -10mA	EMITER FOLLOWER	16 Segment + Decimal point & Comma Tail 16 Digits Character Generator, Dimming Circuits
MSC1951-01 RS/GS	CONTROLLER	GRID 16 SEG 18	-58V	_	GRID -10mA SEG -10mA	EMITER FOLLOWER	16 Segment + Decimal point & Comma Tail 16 Digits Character Generator, Dimming Circuits
MSC7110-01 RS/GS	CONTROLLER	GRID 16 SEG 12 LED 5	-45V	GRID 0.2mA SEG 0.2mA LED 0.1mA	GRID -40mA SEG -6mA LED -10mA	PUSH PULL	16 Segment 16 Digits Character Generator, Dimming Circuits
MSC7112-01 RS/GS	CONTROLLER	GRID 12 SEG 16 LED 5	-45V	GRID 0.2mA SEG 0.2mA LED 0.1mA	GRID -40mA SEG -6mA LED -10mA	PUSH PULL	16 Segment 16 Digits Character Generator, Dimming Circuits
MSC7125-XX GS	CONTROLLER	GRID 8 SEG 40	+ 52V	GRID 10μA SEG 10μA	GRID -31mA SEG -0.3mA	PUSH PULL	5 x 7 Dot + 5 Annunciators 8 Digits Character Generator, Dimming Circuits
MSC7128-XX SS	CONTROLLER	GRID 16 SEG 35 CURSOR 1	-60V	GRID 0.1mA SEG 0.1mA CURSOR 0.1mA	GRID -30mA SEG -2mA CURSOR -10mA	PUSH PULL	5 x 7 Dot + Cursor 16 Digits Character Generator, Dimming Circuits

• LEVEL METER

		NUMBER OF	OUTPUT	OUTPUT	CURRENT		· REMARKS
DEVICE NAME	TYPE	OUTPUT	VOLTAGE	SINK	SOURCE	OUTPUT CIRCUIT	REMARKS
MSC1124 RS/GS	2-CH, 12-DOT	SEG 12×2	+ 37V	SEG 0.1mA	SEG -0.2mA	PUSH PULL	for Static VFD -20 dB~8 dB Peak Hold
MSC1146B RS/GS	2-CH, 15-DOT	GRID 2 SEG 15	-37V	-	GRID -20mA SEG -0.2mA	EMITER FOLLOWER + PULL DOWN	for Dynamic VFD -40 dB~10 dB Peak Hold

• ONE CHIP MICROCONTROLLER

۱			NUMBER OF	OUTPUT	OUTPUT	CURRENT		DEMARKS
١	DEVICE NAME	TYPE	OUTPUT	VOLTAGE	SINK	SOURCE	OUTPUT CIRCUIT	REMARKS
	I NACCEAEO CCICC I	4BIT MICROCOMPUTER	12 x 12	+ 40V	Large 1mA Small 1mA	large -20mA Small -6mA	PUSH PULL	4.3 MHz

PACKAGING

PACKAGING

	1		PACKAGES										
1		NO. OF	BARE	RS	_	S	JS	ss					
		PINS	CHIP	DIP	QFP	SOP	QFJ	SDIP	.				
VF DRIVER	MSL912	18		0	4	30.							
VF DRIVER	MSL915	18		0									
VF DRIVER	MSL917	18		0									
VF DRIVER	MSL918	18		0									
VF DRIVER	MSC1163	60				0							
VF DRIVER	MSC7701	60				0							
VF DRIVER	MSC7751	60				0		l					
VF DRIVER	MSC1150	18		0									
VF DRIVER	MSC1164	32				0							
VF DRIVER	MSC1165	28		0									
VF DRIVER	MSC1171	28		0									
VF DRIVER	MSC1173	40		0									
VF DRIVER	MSC1162	60				0							
VF DRIVER	M5C1172	60				0							
VF DRIVER	MSC1149-XX	40		0									
		44			0	 							
VF DRIVER	MSC1187-XX MSM5267B-	44		0	-								
VF DRIVER	15	44		<u> </u>	0		0						
VF DRIVER	MSC5328	40		0									
		44	ļ		0		0	· ·	ļ				
VF DRIVER	MSC1178	56			9								
VF DRIVER	MSC1179	56	 		0			 					
VF DRIVER	MSC1190	56	 		0			 					
VF CONTROLLER	MSC7110-01	42	 		0			-0-	<u> </u>				
VF CONTROLLER	MSC1937-01	40		0									
VI CONTROLLER	10/30/37-01	44	ļ		0								
VF CONTROLLER	MSC1951-01	40		0_	0								
VF CONTROLLER	MMSC7112-	42						0					
 	01	44			0								
VF CONTROLLER	MSC7125-XX	60			0				ļ				
VF CONTROLLER	MSC7128-XX	64						0					
LEVEL METER	MSC1124	40		0	0								
LEVEL METER	MSC1146B	28		0									
		30						0					
ONECHIP MICRO	MSC6458	64	<u> </u>		0	<u> </u>	<u> </u>	0	L				

PLASTIC DIP

PLASTIC SDIP

PLASTIC SOP

PLASTIC SOP

PLASTIC SOP

PLASTIC SOP

PLASTIC QFJ

RELIABILITY INFORMATION

RELIABILITY INFORMATION

1. INTRODUCTION

Semiconductor devices play a leading role in the explosive progress of semiconductor technology. They use some of the most advanced design and manufacturing technology developed to date. With greater integration, diversity and reliability, their applications have expanded enormously. Their use in large scale computers, control equipment, calculators, electronic games and in many other fields has increased at a fast rate.

A failure in electronic banking or telephone switching equipment, for example, could have far reaching effects and can cause incalculable losses. So, the demand, for stable high quality memory devices is strong.

We, at Oki are fully aware of this demand. So we have adopted a comprehensive quality assurance system based on the concept of consisten-

cy in development, manufacturing and sales. With the increasing demand for improvement in function, capability and reliability, we will expand our efforts in the future. Our quality assurance system and the underlying concepts are outlined briefy below.

2. QUALITY ASSURANCE SYSTEM AND UNDERLYING CONCEPTS

The quality assurance system employed by Oki can be divided into four major stages: device planning, developmental prototype, production prototype, and mass production. This system is outlined in the following block diagram (Fig. 1).

1) Device planning stage

To manufacture devices that meet market demands and satisfy customer needs, we carefully consider functional and failure rate requirements, utilization form, environment and other conditions. Once we determine the proper type, material and structure, we check the design and manufacturing techniques, and the line processing capacity. Then we prepare the development planning and time schedule.

2) Developmental prototype stage

We determine circuits, pattern design, process settings, assembly techniques and structural requirements during this stage. At the same time, we carry out actual prototype reliability testing. Since device quality is largely determined during the designing stage, Oki pays careful attention to quality confirmation during this stage. This is how we do it:

 After completion of circuit design (or pattern design), personnel from the design, process technology, production technology, installation technology and reliability departments get together for a thorough review to ensure

- design quality and to anticipate problems that may occur during mass production. Past experience and know-how guide these discussions.
- (2) Since many semiconductor memories involve new concepts and employ high level manufacturing technology, the TEG evaluation test is often used during this stage.

Note: TEG (Test Element Group) refers to the device group designed for stability evaluation of MOS transistors, diodes, resistors, capacitors and other circuit component element used in LSI memories.

(3) Prototypes are subjected to repeated reliability and other special evaluation tests. In addition, the stability and capacity of the manufacturing process are checked.

3) Production prototype stage

During this stage, various tests check the reliability and other special features of the production prototype at the mass production factory level. After confirming the quality of a device, we prepare the various standards required for mass production, and then start production. Although reliability and other special tests performed on the production prototype are much the same as those performed on the developmental prototype, the personnel, facilities and production site differ for the two prototypes, necessitating repeated confirmation tests.

4) Mass production

During the mass production stage, careful management of purchased materials, parts and facilities used during the manufacturing process, measuring equipment, manufacturing conditions and environment is necessary to ensure device quality first stipulated during the designing stages. The manufacturing process (including inspection of the completed device) is followed by a lot guarantee inspection to check that the specified quality is maintained under conditions identical to those under which a customer would actually use the device. This lot guarantee inspection is performed in three different forms as shown below.

- (1) Group A tests: appearance, labels, dimensions and electrical characteristics inspection
- (2) Group B tests: check of durability under thermal and mechanical environmental stresses, and operating life characteristics
- (3) Group C tests: performed periodically to check operational life, etc., on a long term basis.

Note: Like the reliability tests, the group B tests conform to the following standards.

MIL-STD-883B, JIS C 7022, EIAJ-IC-121

Figure 2 Manufacturing Process

Devices which pass these lot guarantee inspections are stored in a warehouse awaiting shipment to customers. Standards are also set up for handling, storage and transportation during this period, thereby ensuring quality prior to delivery. Figure 2 shows the manufacturing flow of the completed device.

5) At Oki, all devices are subjected to thorough quality checks. If, by chance, a failure does occur after delivery to the customer, defective devices are processed and the problem rectified immediately to minimize the inconvenience to the customer in accordance with the following flowchart.

Figure 3 Failure report process

3. EXAMPLE OF RELIABILITY TEST RESULTS

We have outlined the quality assurance system and the underlying concepts employed by Oki. Now, we will give a few examples of the reliability tests performed during the developmental and production prototype stages. All reliability tests performed by Oki conform to the following standards.

MIL-STD-883B, JIS C 7022, EIAJ-IC-121

Since these reliability tests must determine performance under actual working conditions in a short period of time, they are performed under severe test conditions. For example, the 125°C high temperature continuous operation test performed for 1000 hours is equivalent to testing device life from 2 to 300 years of use at Ta = 40°C.

By repeating these accelerated reliability tests, device quality is checked and defects analyzed. The resulting information is extremely useful in improving the manufacturing processes. Some of the more common defects in LSI elements and their analysis are described on next page.

LIFE TEST RESULTS

	Part Name	MSL915RS 8-BIT PARALLEL-IN PARALLEL-OUT			₩ MSM5267B-XXGS-VK			MSC7110SS			₩ MSC1162GS-V1K			
	Function				D	DOT DRIVER			12-SEGMENT, 16-DIGIT			40-BIT NODE/GRI DRIVER		
Test Item	Test Condition	Sample Size (pcs)	Test Hours or Cycles	Failures	Sample Size (pcs)	Test Hours or Cycles	Failures	Sample Size (pcs)	Test Hours or Cycles	Failures	Sample Size (pcs)	Test Hours or Cycles	Failures	Referred Standard
High Temperature Bias Test	Ta = 125°C Bias Condition MSL915RS	88	2000 (H)	0	88	2000 (H)	0	88	2000 (H)	0	88	2000 (H)	0	MIL-STD-883C Method 1005
Temperature Humidity Bias Test	Ta = 85°C PH = 85% Bias Condition MSL915RS Note 1 MSM5267B-XXGS-XX Note 2 MSC7110SS Note 3 MSC1162GS-V1K Note 4	100	2000 (H)	0	100	2000 (H)	0	100	2000 (H)	0	100	2000 (H)	0	-
High Temperature Storage	Ta = 150°C	22	1000 (H)	0	22	1000 (H)	0	22	1000 (H)	0	22	1000 (H)	0	MIL-STD-883C Method 1008
Temperature Cycling Test	- 65°C → RT → 150°C (30 min) (5 min) (30 min)	100	500 (Cy)	0	100	500 (Cy)	0	100	500 (Cy)	0	100	500 (Cy)	0	MIL-STD-883C Method 1010
Pressure Cooker Test	Ta = 121°C RH = 100% 2 atm	50	200 (H)	0	50	200 (H)	0	50	200 (H)	0	50	200 (H)	0	-

Note 4 (MSC1162GS-V1K)
 VCC-GND = 5.5V, VHV-GND = 65V

Note 2 (MSM5267B-XXGS-VK)
 VDD-GND = 18V

Note 3 (MSC7110SS)VDD-VSS = 5.5V, VDD-VEE = 45V

ENVIRONMENTAL TEST RESULTS

			Part Name	MSL9	15RS	MSM5 XXG		MSC7	11055	MSC1162	2GS-V1K	
			Function	8-E PARAL PARALL	LEL-IN	DOT D	RIVER	12-SEG 16-D		40- ANODI DRI	E/GRID	
Test	t Item		Test Condition	Sample Size (pcs)	Failures	Sample Size (pcs)	Failures	Sample Size (pcs)	Failures	Sample Size (pcs)	Failures	Referred Standard
Soldering Heat Te		Heat Test	260°C 10 sec	22	0		-		•		÷	MIL-STD-883C Method 2003
Environ- mental Test	Temperature Cycling Test		- 65°C → RT → 150°C (30 min) (5 min) (30 min) (20 cycles)			22	0	22	0	22	0	MIL-STD-883C Method 1010
	Thermal S	hock Test	100°C 0°C (5 min) (5 min) 10 cycles	·								MIL-STD-883C Method 1011
	Lead	Tensile	18P/42P Dip 500g 10 sec 44P/60P Flat 100g 10 sec				1 0	11				MIL-STD-883C
Other Test	Intgrity	Bending	18P/42P Dip 250g 90° 3 times 44P/60P Flat 50g 90° 2 times	11	0	11			0	11	0	Method 2004
	Solderabil	lity	230°C 5 sec 22	22	0	22	0	22	0	22	0	MIL-STD-883C Method 2003

4. SEMICONDUCTOR MEMORY FAILURES

The life-span characteristics of semiconductor elements in general (not only semiconductor IC devices) is described by the curve shown in the diagram below. Although semiconductor memory failures are similar to those of ordinary integrated circuits, the degree of integration (miniaturization), manufacturing complexity and other circuit element factors influence their incidence.

Semiconductor Element Failure Rate Curve

1) Surge Destruction

This is destruction of the input/output stage circuits by external surge currents or static electricity. The accompanying photograph shows a point of contact between aluminum and polysilicon that has been dissolved by a surge current. A hole has formed in the substrate silicon, leading to a short circuit. This kind of failure is traceable in about 30% of defective devices returned to the manufacturer. Despite miniaturization of semiconductor memory component elements (which means the elements themselves are less resistant), these failures usually occur during assembly and other handling operations. At Oki, all devices are subjected to static electricity intensity tests (under simulated operation-

Example of surge destruction

al conditions) in the development stage to reduce this type of failure. In addition to checking endurance against surge currents, special protective circuits are incorporated in the input and output sections.

2) Oxide Film Insulation Destruction (Pin Holes)

Unlike surge destruction, this kind of failure is caused by manufacturing defects. Local weakened sections are ruptured when subjected to external electrical stress. Although this problem is accentuated by the miniaturization of circuit elements, it can be resolved by maintaining an ultra-clean manufacturing environment and through 100% burn-in screening.

3) Surface Deterioration due to lonic Impurities Under some temperature and electric field conditions, charged ionic impurities moving within the oxide film previously resulted in occasional deterioration of silicon surfaces. This problem has been eliminated by new surface stabilization techniques.

4) Photolithographic Defects

Integrated circuits are formed by repeated photographic etching processes. Dust and scratches on the mask (which corresponds to a photographic negative) can cause catastrophic defects. At present, component elements have been reduced in size to the order of 10 cm through miniaturization. However, the size of dust and scratches stays the same. At Oki, a high degree of automation, minimizing human intervention in the process, and unparalleled cleanliness, solves this problem.

Photolithographic Defect

5) Aluminum Corrosion

Aluminum corrosion is due to electrolytic reactions caused by the presence of water and minute impurities. When aluminum dissolves, lines break. This problem is unique to the plastic capsules now used widely to reduce costs. Oki has carefully studied the possible cause and effect relationship between structure and manufacturing conditions on the one hand, and the generation of aluminum corrosion on the other. Refinements incorporated in Oki LSIs permit superior endurance to even the most severe high humidity conditions.

6) Alpha-Particle Soft Failure

This problem occurs when devices are highly miniaturized, such as in 1 megabit RAMs. The inversion of memory cell data by alpha-particle generated by radio-active elements like uranium and thorium (present in minute quantities, measured in ppb) in the ceramic package material causes defects. Since failure is only temporary and normal operation restored quickly, this is referred to as a "soft" failure. At Oki we have eliminated the problem by coating the chip surface of 1 megabit RAMs with a resin which effectively screens out these alpha-particles.

7) Degradation in Performance Characteristics Due to Hot Electrons

With increased miniaturization of circuit elements, internal electric field strength in the channels increases since the applied voltage remains the same at 5V. As a result, electrons flowing in the channels, as shown in the accompanying diagram, tend to enter into the oxide film near the drain, leading to degradation of performance. Although previous low-temperature operation tests have indicated an increase of this failure, we have confirmed by our low-temperature acceleration tests, including checks on test element groups, that no such problem exists in Oki LSIs.

Characteristic deterioration caused by hot electrons

With further progress in the miniaturization of circuit components, failures related to pin hole oxide film destruction and photolithography have increased. To eliminate these defects during manufacturing, Oki has been continually improving its production processes based on reliability tests and information gained from the field. And we subject all devices to high-temperature burnin screening for 48 to 96 hours to ensure even greater reliability.

DATA SHEETS

Driver

OKI semiconductor MSL912

8-BIT PARALLEL-IN PARALLEL-OUT

GENERAL DESCRIPTION

The MSL912 is a high voltage vacuum fluorescent display tube driver, which uses positive voltage and contains eight circuits. Each output contains a pull-down resistor, which allows the driver to directly drive the vacuum fluorescent display tube.

Input may be driven directly by the TTL or CMOS.

PIN CONFIGURATION

CIRCUIT CONFIGURATION

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit	
Supply voltage	V+	Ta = 25 °C	- 0.3~35	V	
Input voltage	Vi	Ta = 25 °C	-0.5~10	V	
Output voltage	Vo	Ta = 25 °C	-0.3~35	V	
Output current	lo	Ta = 25 °C, only one circuit ON	+ 0.6~ - 45	mA	
Storage temperature	Tstg	_	- 55~ + 150	°C	

• Recommended Operating Conditions

Parameter	Symbol	Condition	Limits	Unit	
Supply voltage	V+	_	15~30	V	
Input voltage	Vı	_	0~7	V	
		Only one circuit ON*	+ 0.5~ - 40	mA	
Output current	lo	Per circuit when all circuits are ON*	+ 0.5~ - 5	mA	
		Total output current*	+ 0.5x8~ - 40	mA	
Operating temperature	Тор	_	- 30∼ + 75	°C	

^{*} Duty: 50% max.

DC Characteristics

 $(Ta = -30 \sim +75$ °C, TYP: Ta = 25°C)

D	Ch al		Condition		Specification			Unit
Parameter	Symbol	V + (V)	V ₁ (V)	IO(mA)	MIN	TYP	MAX	Unit
High input voltage	V _{IH}	30	_	_	2.5		_	V
Low input voltage	V _{IL}	30	_	_		_	1.0	ν.
Low input current	l _{IL}	30	1.0	-	_	20	80	μА
High input current	I _{IH1}	30	2.5		_	0.09	0.22	mA
	I _{IH2}	30	7			0.29	0.7	mA
High output voltage	, V _{OH}	30	2.5	- 40	27	28.5	_	v
Low output voltage	Vol	30	1.0	0		1.0	3.0	v
S	ICC OFF	30	ALL INPUTS 1.0	0	_	0.04	0.4	mA
Supply current	I _{CC ON}	30	ALL INPUTS 2.5	0	_	12	17	mA
Pull-down resistor	R _{PD}	30	ALL INPUTS O	Vo = 27V	60	150	270	ΚΩ

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSL915

8-BIT PARALLEL-IN PARALLEL-OUT

GENERAL DESCRIPTION

The MSL915 is a high voltage vacuum fluorescent display tube driver, which uses negative voltage and contains eight circuits. Each output contains a pull-down resistor, which allows the driver to directly drive the vacuum fluorescent display tube.

Input may be driven directly by the TTL or CMOS.

PIN CONFIGURATION

CIRCUIT CONFIGURATION

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit	
Supply voltage	v-	Ta = 25 ℃	GND + 0.3~GND - 65	٧	
Input voltage	VI	Ta = 25 °C	GND + 0.5~GND - 10	V	
Output voltage .	Vo	Ta = 25 °C	GND + 0.3~V 0.5	٧	
Output current	lo	Ta = 25 °C, only one circuit ON	+ 0.9~ - 45	mA	
Storage temperature	Tstg	_	- 55~ + 150	°C	

Recommended Operating Conditions

Parameter	Symbol	Condition	Limits	Unit
Supply voltage	v-	_	GND - 20~GND - 60	V
Input voltage	Vı	_	GND~GND - 7	
		Only one circuit ON*	+ 0.8~ - 40	mA
Output current	lo	Per circuit when all circuits are ON*	+0.8~-5	mA
		Total output current*	+ 0.8x8~ - 40	mA
Operating temperature	Top	_	- 30~ + 75	°C

^{*} Duty: 50% max.

DC Characteristics

 $(Ta = -30 \sim +75$ °C, TYP: Ta = 25°C)

			Condition		Sp	n	Unit		
Parameter	Symbol	V-(V)	V _I (V)	IO(mA)	MIN	TYP	MAX	Unit	
High input voltage	V _{IH}	- 60	_	_	_	_	- 1.5	٧	
Low input voltage	VIL	- 60	_	_	- 4		_	٧	
High input current	l _{IH}	- 60	- 1.5	_	_	- 70	- 280	μA	
Lawinaut aurant	I _{IL1}	- 60	- 4	_	_	- 0.23	- 1.2	mA	
Low input current	I _{IL2}	- 60	-7	_	_	- 0.58	- 2.6	mA	
High output voltage	V _{OH}	- 60	- 4	- 40		- 1.5	- 3	٧	
Low output voltage	V _{OL}	- 60	- 1.5	0	- 55	- 59	-	٧	
Supply surrent	I _{CC OFF}	- 60	ALL INPUTS - 1.5	0	_	0.7	1.3	mA	
Supply current	I _{CC ON}	- 60	ALL INPUTS -4	0		6	12	mA	
Pull-down resistor	R _{PD}	- 60	ALL INPUTS	Vo= -3V	60	150	270	ΚΩ	

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor

MSL917

8-BIT PARALLEL-IN PARALLEL-OUT

GENERAL DESCRIPTION

The MSL917 is a high voltage vacuum fluorescent display tube driver, which uses negative voltage and contains eight circuits. Each output does not contain a pull-down resistor, hence it should be connected to an external resistor (about $150K\Omega$).

Input may be driven directly by the TTL or CMOS. The vacuum fluorescent display tube driver may also be used as a high voltage and current driver.

PIN CONFIGURATION

CIRCUIT CONFIGURATION

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit	
Supply voltage	V-	Ta = 25 ℃	GND + 0.3~GND - 85	ν	
Input voltage	Vı	Ta = 25 °C	GND + 0.5~GND - 10	٧	
Output voltage	Vo	Ta = 25 °C	GND + 0.3~GND - 85	٧	
Output current	lo	Ta = 25 °C, only one circuit ON	0~-100	mA	
Storage temperature	Tstg	_	- 55~ + 150	°C	

• Recommended Operating Conditions

Parameter	Symbol	Condition	Limits	Unit
Supply voltage	v-	_	GND - 20~GND - 80	V
Input voltage	Vı	_	GND~GND - 7	٧
		Only one circuit ON*	0~ - 90	mA
Output current	lo	Per circuit when all circuits are ON*	0~-11	mA
		Total output current	0~ - 90	mΑ
Operating temperature	Тор	_	- 30~ + 75	°C

^{*} Duty: 50% max.

DC Characteristics

 $(Ta = -30 \sim +75$ °C, TYP: Ta = 25°C)

Danamatan	Complete al		Cond	ition	Specification			Unit		
Parameter	Symbol	V-(V)	V _I (V)	lo(mA)	RL(Ω)	MIN	TYP	MAX	Onit	
High input voltage	V _{IH}	- 80	_	_	_	_		- 1.5	V	
Low input voltage	, V _{IL}	- 80	_	_	_	4		_	V	
High input current	lін	- 80	- 1.5	· —	_	_	- 70	- 280	μА	
Low input current	I _{IL1}	- 80	-4	_	_		- 0.23	- 1.2	mA	
	I _{IL2}	- 80	-7	_	_	_	- 0.58	- 2.6	mA	
High output voltage	V _{OH}	- 80	- 4	- 90	_	_	- 2.0	- 3.0	V	
Low output voltage	VOL	- 80	- 1.5	0	*1 150K	- 75	- 79	-	V	
Supply current	ICC OFF	- 80	ALL INPUTS - 1.5	_	*1 150	_	0.7	1.3	mA	
	ICC ON	-80	ALL INPUTS -4	_	*1 150K	_	8	14	mA .	

^{*1} R_L connection method

R_I CONNECTION METHOD

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor

MSL918

8-BIT PARALLEL-IN PARALLEL-OUT

GENERAL DESCRIPTION

The MSL918 is a high voltage vacuum fluorescent display tube driver, which uses positive voltage and contains eight circuits. Each output does not contain a pull-down resistor, hence it should be connected to an external resistor (about 150 K Ω).

Input may be driven directly by the TTL or CMOS. The vacuum fluorescent display tube driver may also be used as a high voltage and current driver.

PIN CONFIGURATION

CIRCUIT CONFIGURATION

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit	
Supply voltage	V+	Ta = 25 °C	-0.3~+35	V	
Input voltage	Vı	Ta = 25 °C	- 0.5~ + 10	V	
Output voltage	Vo	Ta = 25 °C	-0.3~V+	V	
Output current	· lo	Ta = 25 °C, only one circuit ON	- 45	mA	
Storage temperature	Tstg		- 55~ + 150	•€	

• Recommended Operating Conditions

Parameter	Symbol	Condition	Limits	Unit	
Supply voltage	V+	_	+ 15~ + 30		
Input voltage	Vı		0~+7	V	
		Only one circuit	0~-40	mA	
Output current	lo	Per circuit when all circuits are ON*	0~-11	mA	
	{	Total output current*	0~-90	mA	
Operating temperature	Тор	_	- 30~ + 75	°C	

^{*} Duty: 50% max.

DC Characteristics

 $(Ta = -30 \sim +75$ °C, TYP: Ta = 25°C)

Danasata	C	Condition				Specification			11-14
Parameter	Symbol	V+(V)	V ₁ (V)	lo(mA)	RL(Ω)	MIN	TYP	MAX	Unit
High input voltage	V _{IH}	+ 30	_	_	_	2.5	_	_	V
Low input voltage	VIL	+ 30	_	_	_	_	_	1.0	٧
Low input current	I _{IL}	+ 30	1.0		_	_	- 20	- 80	μА
High input current	l _{IH1}	+ 30	2.5	_		_	_	0.15	mA
	l _{IH2}	+ 30	7	_	_		_	0.5	mA
High output voltage	V _{OH}	+ 30	2.5	- 40	_	27	_	_	V
Low output voltage	V _{OL}	+ 30	1.0	0	*1 150K	_	_	3.0	V
	Icc off	+ 30	ALL INPUTS 1.0	-	*1 150	_	_	0.4	mA
Supply current	I _{CC ON}	+ 30	ALL INPUTS 2.5	_	*1 150K		9.5	14	mA

^{*1} R_L connection method

RL CONNECTION METHOD

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1163

40-BIT ANODE DRIVER

GENERAL DESCRIPTION

The MSC1163 is a monolithic IC using the Bi-CMOS process for hybridizing CMOS and bipolar transistors on the same chip. The logic portion such as the input stage, shift register and latch is formed by CMOS and the output driver requiring a high withstand voltage is formed by bipoalr transistors.

Since the pin asignment allows single side pattern formation on the printed circuit board, the display unit size can be reduced.

The bidirectional shift register facilitates the pattern design when the deivces are arranged symmetrically with the display as the center axis.

FEATURES

Designed as a VFD anode driver for emitter-follower force output with 40-bit active pull down by builtin 40-bit bidirectional shift register and latch.

Logic Supply Voltage : Vcc : +5V

Driver Supply Voltage: Vhv : +65V

■ Driver Output Current : lohvh : -2 mA

Iohvl: 2 mA

Built-in 40-Bit latch

• Built-in 40-Bit bidirectional shift register

• Clock frequency: 4 MHz

• 60 pin FLAT Package

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

PIN DESCRIPTION

Pin No.	Symbol	Terminal Name	Description
1~20 41~60	HVO1~ HVO40	Driver Output	Driver output terminal, applicable to each bit of shift resistor.
21 40	Vhv	Driver Power Supply	Power supply terminal for driver circuit.
22 39	GND 1	Driver GND	GND pin for driver circuit.
23 38	GND 2	Logic GND	GND pin for the logic circuit. As GND1 and GND2 are not connected inside of the LSI, they need to be connected outside by same wiring.
24	टा	Clear Input	Clear input pin with pull-up resister. Normally "H" level, in this condition driver output change "H" or "L" according to latch output level. when "L" driver output pins are fixed to "L" and have no relation with latch outputs.
26	LS	Latch Strobe Input	Latch strobe input pin. When LS is "H", information present at the data input is transferred to output. The information is kept latched and the output remains the same, even then LS changes to "L".
28	R√L	Shift Direction Control	Shift direction control pin with pull-up resistetr. Normally "H", and in this condition, information of Bidirectional SR is shifted to the direction of R-1 from R-40. When this pin is "L", Bi-directional SR shifts information to the direction of R-40 from R-1.

Pin No.	Symbol	Terminal Name	Description
29	DIN	Data Input	Data input pin for bidirectional SR
30 31	V _{cc}	Logic Power Supply	Power supply pin for logic (except driver). V_{cc} should be 4.5V~5.5V.
32	DOUT	Data Output	Serial output pin of bidirectional SR. When R/L is "H", D OUT outputs R-40. When R/L is "L", D OUT outputs R-1.
34	CLK	Clock Input	Clock input pin. Data of bidirectional SR is shifted from one stage to the next during the positive going clock transition.
36	СНС	Test input	Test input pin with pull-down resister. Normally "L" when CHG is "H" and CL is "H" driver outputs are fixed to "H" for test.

SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMIANL CIRCUIT

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

CLK	R/L	Din	R-1	R-2	R-3	R-4	R-40	Dout
	Н	н	Н	R1 _n	R2 _n	R3 _n	R39 _n	R39 _n
	н	L	L	RIn	R2 _n	R3 _n	R39 _n	R39 _n
<u></u>	L	Н	R2 _n	R3 _n	R4 _n	R5 _n	Н	R2 _n
<u>_</u>	L	L	R2 _n	R3 _n	R4 _n	R5 _n	L	R2 _n

CL	CHG	LS	R.X	HVO. X
L	х	Х	х	L
Н	Н	×	х	н
н	L	Н	Н	Н
Н	L	Н	L	L
Н	L	L	х	NC

L: Low Level, H: High Level, X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit	Note
Logic Supply Voltage	V _{cc}	Applicable to logic supply voltage terminal	-0.3~+6.5	v	1
Driver Supply Voltage	V _{hv}	Applicable to driver supply voltage terminal	Vcc~ + 70	V	1
Input Voltage	V _{in}	Applicable to all input terminal	- 0.3~Vcc + 0.3	v	1
Data Output Voltage	V _{out}	Applicable to all output terminal	- 0.3~Vcc + 0.3	v	1
Driver Driving Frequency	f _{drv}	Duty cycle 50% max	. 0~+15	KHz	-
Power Dissipation	P _d	Ta≦25°C	860 [Derate 6.9 mW/C above 25°C]	mW	-
Attenuation Rate	R _{j-a}	Ta>25°C	145	°C/W	2
Operating Temperature	Тор	Thv≦50V	- 40~ + 85	°C	-
Storage Temperature	T _{stg}	_	- 55~ + 150	°C	_

NOTES:

- 1) Maximum Supply Voltage for GND
- 2) Derate 6.9 mW/Ck above 25°C
 Refer to the following formula.
 T_j = P x R_j a + Ta (P: Max current consumption)

• Recommended Operating Conditions

Parameter	Symbol	Condition	Min.	Max.	Unit	
Logic Supply Voltage	V _{cc}	Applicable to logic supply terminal	4.5	5.5	V	
Driver Supply Voltage	V _{hv}	Applicable to driver suppl terminal	y voltage	10	65	V
High Level Input Voltage	V _{ih}	Applicable to all input terminals	$V_{cc} = 4.5V$ $V_{cc} = 5.5V$	3.6 4.4	-	V V
Low Level Input Voltage	V _{il}	Applicable to all output terminals	$V_{cc} = 4.5V$ $V_{cc} = 5.5V$	-	0.9	>
Driver High Level Output Current	l _{ohvh}	Applicable to all driver ou		-	- 2	mA
Driver Low Level Output Current	l _{ohvl}	Applicable to all driver ou	tput terminal	-	2	mA
CLK Frequency	fф	See timing ch	nart	_	4	MHz
CLK Pulse width	t wclk	See timing ch	75	_	ns	
Data in Setup Time	t _{ds}	See timing ch	50	_	ns	
Data in Hold Time	1 _{dh}	See timing ch	50	_	ns	
LS Pulse Width	t _{wis}	See timing ch	nart	80	_	ns
CLK - LS Delay Time	t _{dcl}	See timing ch	nart	50	-	ns
LS - CLK Delay Time	t _{dlc}	See timing ch	nart	0	-	ns
LS - CHG Delay Time	t _{dlcg}	See timing ch	nart	0	-	μs
LS - CL Delay Time	t dicī	See timing ch	0	-	·µs	
CHG Pulse Width	t _{wchg}	See timing ch	2	-	μs	
CL PUlse width	twcī	See timing ch	2	_	μs	
Operating Temperature	Тор	-		- 40	+ 85	°C

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Logic Standby	I _{cc 1}	No Load	No Load All Input: Low		4.3	6.65	
Current	I _{cc 2}	$V_{cc} = 5.5V$	All Input: High, All Driver Output: High, Ta = 25°C		0.5	1.0	mA
Driver Standby	I _{hV 1}	No Load	All Driver Output: Low	-	ı	• 1	μА
Current	I _{hV 2}	V _{cc} = 5.5V	All Driver Output: High, Ta = 25°C	-	2.45	3.8	mA
High Level Input	V _{ih}		V _{cc} = 4.5V	3.15	-	-	ν
Voltage	Vih		V _{cc} = 5.5V	3.85	1	-	٧
Low Level Input	Vil		V _{cc} = 4.5V	-	-	1.35	V
Voltage	Vii		V _{cc} = 5.5V	-	ı	1.65	>
Input Leakage Current	l _{in}	Ta = 25°C		-	-	± 1	μА
Input Capacitance	C _{in}		Ta = 25°C	-	15		pF
High Level Data		lo = - 20μA	V _{cc} = 4.5V	4.2	_	_	V
Output Voltage	V _{odh 1}	10 = - 20μA	V _{cc} = 5.5V	5.2	-	_ ·	V
Low Level Data	V	lo = 20µA	V _{cc} = 4.5V	-	•	0.2	٧
Output Voltage	V _{odi 1}	10 = 20μΑ	V _{cc} = 5.5V	_	-	0.2	V
High Level Data	V _{odh 2}	lo = - 0.1mA	$V_{cc} = 4.5V$	3.5		-	V
Output Voltage	Vodh 2	10 = - 0.11112	V _{cc} = 5.5V	4.5	_	-	V
Low Level Data	V _{odl 2}	lo = 0.1mA	V _{cc} = 4.5V			1.1	V
Output Voltage	V 001 2	10 = 0:11112	$V_{cc} = 5.5V$			1.1	V
Driver High Level Output Voltage	Vohvh	I _{ohv} = -2mA		Vhv – 3	-	-	V
Driver Low Level Output Voltage	Vohvi	I _{ohv} = 2mA		_	-	3.0	·v

AC Characteristics

Vcc = 5V, Vhv = 65V, Ta = 25°C

Item	Symbol	Remarks	Min.	Тур.	Max.	Unit
CLK - Dout Delay Time	t _{pd}	See timing chart and test circuit	-	100	150	nS .
Delay Time Low - High	t _{dlh}	See timing chart and test circuit	-	0.3	1	μS
Transit Time Low - High	t _{tlh}	See timing chart and test circuit	T -	2	5	μS
Delay Time High – Low	t _{dhl}	See timing chart and test circuit	-	0.3	1	μS
Transit Time High - Low	t _{thl}	See timing chart and test circuit	-	2	5	μS

• Timing Chart

TEST CIRCUIT

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor

MSC7751

(Underdevelopment)

40-Bit ANODE DRIVER

GENERAL DESCRIPTION

The MSC7751 is a monolithic IC using the high withstand voltage driver process for hybridizing CMOS and DMOS transistors on one chip.

The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by DMOS transistors.

Since the pin assignment allows single side pattern formation on the printed circuit board, the display unit can be reduced.

The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis.

FEATURES

Logic supply voltage (V_{CC}) : +5 V

VF driver supply voltage (V_{hv}): −200 V

• Driver output current

(lohyh) : -2 mA (All driver output high)

 (I_{ohvl}) : +2 mA

Clock frequency : 5.5 MHz

Built-in 40-bit latch

Built-in 40-bit bidirectional shift register

60 Pin FLAT Package

BLOCK DIAGRAM

PIN CONFDIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Name	Description
20 41 60	HVO 1	Driver output	 Each terminal is a high withstand voltage driver output terminal to drive the anode of the VF display tube, which corresponds to easch bit of the shift register. Each terminal can be directly connected to the anode terminal of the VF display tube.
22 39	V _{HV}	Driver supply voltage	This is a power terminal of the high withstand voltage driver to drive the VF display tube.
28	V _{CC}	Logic supply voltage	2. This is a power terminal of the logic portion.
36	<u>a</u> .	Clear input	 This is an input terminal containing a pull-down resistor. The terminal is generally kept High. The driver output, High of Low, is driven by the output of the corresponding latch circuit. When the terminal is Low, the driver outputs are fixed to "Low" regardless of the output of the latch circuit.
26	LS	Latch strobe input	1. When the terminal is High, the latch circuit is slewed, and the output of the shift register is read into the latch circuit. 2. When the terminal is Low, the latch circuit holds the output of the shift register immediately before the terminal is turned Low.
34	CLOCK	Clock input	This is a clock terminal of the shift register. The data of the shift register is shifted at the falling edge of a clock pulse.
32	RESET	Reset input	1. When the terminal is Low, all the data of the shift register is Low. Generally and when not in use, connect the terminal to the V _{CC} terminal.
38	F/B	Shift direction control input	 When the terminal is Low, data is shifted from 1 to 40, and Pin 31 is a serial in terminal and Pin 30 is a serial out terminal. When the terminal is High, data is shifted from 40 to 1, and Pin 30 is a serial in terminal and Pin 31 is a serial out terminal.
31	SI/SO	Serial input/serial output	 When the F/B terminal is Low, this terminal is a serial data input terminal. When the F/B terminal is High, this terminal is a serial data output terminal.
30	SO/SI	Serial input/serial output	 When the F/B terminal is Low, this terminal is a serial data output terminal. When the F/B terminal is High, this terminal is a serial data input terminal.
24	GND	GND	1. This is a grounding (GND) terminal.

SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMINAL CIRCUITS

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

RESET	CLK	F/B	SI/SO	Q1	Q2	Q3	 Q39	Q40	SO/SI
L	х	L	х	L	L	L	L	L	L
L	X	Н	L	L	L	L	L	L	Х
Н	1	L	Н	Н	Q _{1n}	Q _{2n}	Q _{38n}	Q _{39n}	Q _{39n}
Н	7	L	L	L	Q _{1n}	Q _{2n}	Q _{38n}	Q _{39n}	Q _{39n}
Н	7	Н	Q _{2n}	Q _{2n}	Q _{3n}	Q _{4n}	Q _{40n}	Н	Н
Н	1	Н	Q _{2n}	Q _{2n}	Q _{3n}	Q _{4n}	Q _{40n}	L	L

CL	LS	Qn	HVOn	
L	х	Х	L	
Н	Н	Н	Н	
Н	Н	L	L	
Н	L	Х	NC	

L: Low Level, H: High Level X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratingds

Parameter	Symbol	Conditios	Limits	Unit	Note
Logic supply voltage	V _{CC}	Applicable to logic power terminal	-0.3~6.5	٧	1
Driver supply voltage	V _{HV}	Applicable to driver power terminal	V _{CC} ~230	V	1
Input voltage	V _{IN}	Applicable to all input teminals	-0.3~V _{CC} +0.3	V	1
Data ouptput voltage	Vod	Applicable to data output terminal	- 0.3~V _{CC} + 0.3	٧	1
Driver output voltage	Vohv	Applicable to all driver terminals	-0.3~V _{CC} +0.3	V	1
Power Dissipation	Pd	Ta≦25°C	860	mW	
Attenuation Rate	Rj-a	Ta>25°C	145	°C/W	2
Operating temperature	Тор	V _{HV} ≦ 130V	- 40∼ + 85	°C	
Storage temperature	Tstg		- 55~ + 150	°C	

Notes: 1. The maximum voltage which can be applied to the GND terminal.

2. Thermal resistance of the package (between junction and atmosphere).

The junction temperature (Tj) expressed by the equation indicated below should not exceed 150°C.

 $T_j = P \times R_j - a + Ta (P : Maximum power consumption of IC)$

• Recommended Operating Conditions

Parameter	Symbol	Conditions		MIN	MAX	Unit
Logic supply voltage	V _{CC}	Applicable to logic power terminal		4.5	5.5	٧
Driver supply voltage	V _{HV}	Applicable to driver terminal	10	200	V	
High level input voltage	VIH	Applicable to all $V_{CC} = 4.5V$		3.6		
		input terminals	V _{CC} = 5.5V	4.4	_	
Low level input voltage	VIL	Applicable to all	V _{CC} = 4.5V	_	0.9	V
- Low level input voitage	V 1L	input terminals	V _{CC} = 5.5V	_	1.1	
Driver high level output current	Гонун	Applicable to all dri terminals	_	- 2	mA	
Driver low level output current	I _{OHVL}	Applicable to all dri terminals	_	2	mA	
Clock frequency	fØ	See Timing chart	_	5.5	MHz	
Clock pulse width	t _{wclkl}	See Timing chart		70	_	nS
Data setup time	t _{ds}	See Timing chart		20	_	nS
Data hold time	t _{dh}	See Timing chart		45	_	nS
LS pulse width	t _{wls}	See Timing chart		80	_	nS
CLK-LS delay time	t _{dcl}	See Timing chart		45	_	nS
LS-CL delay time	t _{dlcl}	See Timing chart		0	_	nS
CL pulse width	t _{wcl}	See Timing chart		2	-	μS
Operating temperature range	Тор	See Timing chart		- 40	+ 85	°C

DC Characteristics

Parameter .	Symbol		Conditions	MIN	TYP	MAX	Unit
Logic supply current	I _{CC1}	No load	All inputs : Low	_	1	50	
Logic Jappiy Current	I _{CC2}		All inputs : High All driver outputs : High	_	-	200	μА
Driver supply	I _{HV1}	No load	All driver outputs : Low	_	_	50	μΑ
current	I _{HV2}	V _{CC} = 5.5V	All driver outputs : High		2.5	4.0	mA
High level input	VIH	V _{CC} = 4.5V	4.5V Applicable to all input				V
voltage		V _{CC} = 5.5V	terminals	3.85	ı	_	٧
Low level input	V _{IL}	V _{CC} = 4.5V	.5V Applicable to all input	-	1	1.35	V
voltage		V _{CC} = 5.5V	terminals	_	_	1.65	V
Input leak current	IILEEK	Ta = 25°C	Input terminals except CL terminal	_	—	± 1	μА
High level input	l _{IH}	V _{CC} = 4.5V	Applicable to CL terminal	20	50	100	
current	I UH	V _{CC} = 5.5		25	60	200	μА
Input capacity	C _{IN}	Ta = 25°C		-	15	_	рF
High level data	Vooh	lo = -0.1mA	V _{CC} = 4.5V	3.5	_	_	,,
output voltage		102 -0.11114	V _{CC} = 5.5V	4.5	-	_	٧
Low level data	V _{ODL}	lo = ÷0.1mA	V _{CC} = 4.5V	_	_	0.9	v
output voltage	"	10 = -0.111114	V _{CC} = 5.5V	_	<u> </u>	1.1	\ \ \
High level driver output voltae	V _{ОНVН}	I _{OHV} = -2mA		195	_	_	٧
Low level driver output voltae	V _{OHVL}	I _{OHV} = 2mA	I _{OHV} = 2mA			5	V

AC Characteristics

 $V_{CC} = 5V$, $V_{HV} = 200V$, Ta = 25°C Parameter Symbol Conditios MIN TYP MAX Unit Note See Timing Chart and CLK-DOUT delay time 100 150 nS 4 t_{pd} **Test Circuit** See Timing Chart and Test Circuit Delay time: L→H t_{dlh} 0.3 5,6 μς Transit time: t_{tlh} See Timing Chart and Test Circuit L→H 2 5. 5 μς See Timing Chart and Delay time: H→L t_{dhl} 0.3 1 5, 6 μs **Test Circuit** See Timing Chart and Test Circuit Transit time: H→L t_{thl} 2 5 μs 5

Note 4: Applicable to data output terminal.

Note 5: Applicable to driver output terminal.

Note 6: t_{dlh} and T_{dhl} are delay times from CL signal.

Timing Chart

TEST CIRCUIT

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor

MSC7701

(Underdevelopment)

40-BIT GRID DRIVER

GENERAL DESCRIPTION

The MSC7701 is a monolithic IC using the high withstand voltage driver process for hybridizing CMOS and DMOS transistors on one chip.

The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by DMOS transistors.

Since the pin assignment allows single side pattern formation on the printed circuit board, the display unit size can be reduced.

The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis.

FEATURES

• Logic supply voltage

(V_{CC}) : +5 V

VF driver supply voltage

 (V_{hv}) : + 130 V

VF driver output current

(I_{ohyh}) : -40 mA (1 driver output high)

(I_{ohvl}) : +2 mA

Clock frequency

: 5.5 MHz

Built-in 40-Bit latch

Built-in 40-Bit bidirectional shift register

60 Pin FLAT Package

BLOCK DIAGRAM

PIN CONFDIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Name	Description
20 41 60	HVO 1	Driver output	 Each terminal is a high withstand voltage driver output terminal to drive the grid of the VF display tube, which corresponds to each bit of the shift register. Each terminal can be directly connected to the grid terminal of the VF display tube.
22 39	V _{HV}	Driver supply voltage	This is a power terminal of the high withstand voltage driver to drive the VF display tuve.
28	V _{CC}	Logic supply voltage	2. This is a power terminal of the logic portion.
36	<u>c</u>	Clear input	 This is an input terminal containing a pull-down resistor. The terminal is generally kept High. The driver output, High or Low, is driven by the output of the corresponding latch circuit. When the terminal is Low, the driver outputs are fixed to "Low" regardless of the output of the latch circuit.
26	LS	Latch strobe input	 When the terminal is High, the latch circuit is slewed, and the output of the shift register is read into the latch circuit. When the terminal is Low, the latch circuit holds the output of the shift register immediately before the terminal is turned Low.
34	CLOCK	Clock input	This is a clock terminal of the shift registerThe data of the shift register is shifted at the falling edge of a clock pulse.
32	RESET	Reset input	1. When the terminal is Low, all the data of the shift register is Low. Generally and when not in use, connect the terminal to the V _{CC} terminal.
38	F/B	Shift direction control input	 When the terminal is Low, data is shifted from 1 to 40, and Pin 31 is a serial in terminal and Pin 30 is a serial out terminal. When the terminal is High, data is shifted from 40 to 1, and Pin 30 is a serial in terminal and Pin 31 is a serial out terminal.
31	SI/SO	Serial input/serial output	 When the F/B terminal is Low, this terminal is a serial data input terminal. When the F/B terminal is High, this terminal is a serial data output terminal.
30	SO/SI	Serial output/serial input	 When the F/B terminal is Low, this terminal is a serial data output terminal. When the F/B terminal is High, this terminal is a serial data input terminal.
24	GND	GND	1. This is a grounding (GND) terminal.

SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMINAL CIRCUITS

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

RESET	CLK	F/B	SI/SO	Q1	Q2	Q3		Q39	Q40	SO/SI
L	Х	L	х	L	L.	L	,	L	L	L
L	Х	Н	L	L	L	L		L	L	Х
Н	7	L	н	н	Q _{1n}	Q _{2n}		Q _{38n}	Q _{39n}	Q _{39n}
Н	7	L	L	L	Q _{1n}	Q _{2n}		Q _{38n}	Q _{39n}	Q _{39n}
Н	7	Н	Q _{2n}	Q _{2n}	Q _{3n}	Q _{4n}		Q _{40n}	Н	Н
Н	7	Н	Q _{2n}	Q _{2n}	Q _{3n}	Q _{4n}		Q _{40n}	L	L

CL	LS	Qn	HVOn
L	Х	Х	L
Н	Н	Н	Н
Н	Н	L	L
Н	L	Х	NC

L: Low Level, H: High Level X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Conditios	Limits	Unit	Note
Logic supply voltage	V _{CC}	Applicable to logic power terminal	- 0.3~6.5	٧	1
Driver supply voltage	V _{HV}	Applicable to driver power terminal	V _{CC} ~150	V	1
Input voltage	V _{IN}	Applicable to all input teminals	-0.3~V _{CC} +0.3	V	1
Data ouptput voltage	Vod	Applicable to data output terminal	- 0.3~V _{CC} + 0.3	V	1
Driver output voltage	Vohv	Applicable to all driver terminals	-0.3~V _{CC} +0.3	V	1
Power Dissipation	Pd	Ta≦25°C	860	mW	
Attenuation Rate	Rj-a	Ta>25°C	145	°C/W	2
Operating temperature	Тор	VHV≦ 130V	- 40~ + 85	°C	
Storage temperature	Tstg		- 55∼ + 150	°C .	

Notes: 1. The maximum voltage which can be applied to the GND terminal.

2. Thermal resistance of the package (between junction and atmosphere).

The junction temperature (Tj) expressed by the equation indicated below should not exceed 150°C.

 $Tj = P \times Rj - a + Ta (P : Maximum power consumption of IC)$

• Recommended Operating Conditions

Parameter	Symbol	Condition	MIN	MAX	Unit	
Logic supply voltage	V _{CC}	Applicable to logic p	4.5	5.5	٧	
Driver supply voltage	V _{HV}	Applicable to logic p	oower	10	130	٧
High level input voltage	VIH	Applicable to all $V_{CC} = 4.5V$		3.6	_	V
	_ "	input terminals	V _{CC} = 5.5V	4.4	_	
Low level input voltage	VIL	Applicable to all	V _{CC} = 4.5V	_	0.9	V
Low level input voltage	VIL.	input terminals	V _{CC} = 5.5V		1.1	V
Driver high level output current	Іонун	1 driver output Other driver output	_	- 40	mA	
Driver low level output current	l _{OHVL}	Applicable to all driverminals	_	2	mA	
Clock frequency	fØ	See timing chart.			5.5	MHz
Clock pulse width	t _{wclkl}	See timing chart.		70	_	nS
Data setup time	t _{ds}	See timing chart.		20	_	nS
Data hold time	t _{dh}	See timing chart.		45	_	nS
LS pulse width	t _{wis}	See timing chart.		80	_	nS
CLK-LS delay time	t _{dcl}	See timing chart.		45	_	nS
LS-CL delay time	t _{dlcl}	See timing chart.	0	_	nS	
CL pulse width	t _{wcl}	See timing chart.	2	_	μS	
Operating temperature	Тор	See timing chart.		- 40	+ 85	°C

DC Characteristics

 $V_{CC} = 5V \pm 10\%$, $V_{HV} = 110V$, $T_{A} = -40^{\circ}C + 85^{\circ}C$

Parameter	Symbol		Conditions	MIN	TYP	MAX	Unit
Logic supply current	l _{CC1}	No load	All inputs : Low	_	_	50	
Logic supply current	l _{CC2}	V _{CC} = 5.5V	All inputs : High 1 driver output : High Other driver outputs : Low			200	μА
Driver supply	I _{HV1}	No load	All driver outputs : Low	_	-	50	μА
current	I _{HV2}	V _{CC} = 5.5V	1 driver output , : High	_	1.1	1.5	mA
High level input	VIH	V _{CC} = 4.5V	Applicable to all input	3.15	-	_	٧
voltage		V _{CC} = 5.5V	terminals	3.85	_	_	V
Low level input	VIL	V _{CC} = 4.5V	Applicable to all input	_	-	1.35	٧
voltage		V _{CC} = 5.5V	terminals	-	-	1.65	V
Input leak current	I _{ILEEK}	Ta = 25°C	Input terminals except CL terminal	_	_	± 1	μА
High level input	I _{IH}	V _{CC} = 4.5V	Applicable to CL terminal	20	50	100	
current	114	V _{cc} = 5.5V	Applicable to CE terminar	25	60	200	μΑ
Input capacitance	C _{IN}	Ta = 25°C		-	15		рF
High level data	V _{ODH}	lo = -0.1mA	V _{CC} = 4.5V	3.5			
output voltage		10 = -0.11112	V _{CC} = 5.5V	4.5	_	-	V
Low level data	V _{ODL}	lo = -0.1mA	V _{CC} = 4.5V		_	0.9	
output voltage	052	102 - 0.11112	V _{CC} = 5.5V	_	_	1.1	
High level driver output voltae	V _{OHVH}	I _{OHV} = -40 mA		106	_		V
Low level driver output voltae	V _{OHVL}	I _{OHV} = 2mA		_	_	4	V

AC Characteristics

			Vcc	= 5V, V	$t_{HV} = 200$	V, Ta =	25°C
Parameter	Symbol	Conditios	MIN	TYP	MAX	Unit	Note
CLK-DOUT delay time	t _{pd}	See timing chart and test chart.	_	100	150	nS	4
Delay time : L→H	t _{dlh}	See timing chart and test chart.	_	0.3	1	μs	5, 6
Transit time : L→H	t _{tlh}	See timing chart and test chart.	-	2	5	μs	5
Delay time : H→L	t _{dhl}	See timing chart and test chart.		0.3	1	μs	5, 6
Transit time: H→L	t _{thl}	See Timing chart and test chart.	_	3	6	μs	5

Note 4: Applicable to data output terminal.

Note 5: Applicable to driver output terminal.

Note 6: t_{dlh} and T_{dhl} are delay times from CL signal.

Timing Chart

TEST CIRCUIT

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor

MSC1150 / MSC1171 / MSC1173 (Underdevelopment)

10-bit/20-bit/32-bit ANODE/GRID DRIVER

GENERAL DESCRIPTION

The MSC1150/MSC1171/MSC1173 are vacuum fluorescent display tube. ICs which consist of shift registers, latches and VF driver outputs.

FEATURES

- 60-V output Voltage Swing Capability
- 25-mA output Source Current Capability
- Latches on all Driver outputs
- POWER-ON-RESET circuit built in

BLOCK DIAGRAM

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter		Symbol	Limits	Unit
Logic Supply Voltag	е	Vdd	- 0.3 ∼ 6.5	V
Driver Supply Voltag	ge .	Vcc	- 0.3 ~ 65	V
Input Voltage		Vin	- 0.3 ~ Vdd + 0.3	V
Maximum Output C	urrent	lo 30		mA
	MSC1173RS	33200	1300 (Ta = 25°C)	mW
Package Power	MSC1171RS	Pd	1200 (Ta = 25°C)	mW
Dissipation	MSC1150RS		1000 (Ta = 25°C)	mW
Operating Tempera	ture	Тор	- 40 ~ 85	°C
Storage Temperature		Tstg	- 55 ∼ 150	°C

DC Characteristics

Ta = -40°C to +85°C, Vdd = 4.5V to 5.5V, Vcc = 10V to 60V unless otherwise specified.

Parameter	Symbol	Conditions	Min	Max	Unit
Logic Supply Voltage	Vdd		4.5	5.5	V
Driver Supply Voltage	Vcc		10	60	٧
Logic Supply Current	Idd ,	All Outputs High MSC1150 MSC1171 MSC1173		1 2 3	mA mA mA
		All Outputs Low MSC1150 MSC1171 MSC1173		4 6 7	mA mA mA
Driver Supply Current	Icc	All Outpts High (No Load) MSC1150 MSC1171 MSC1173		3 4 6	mA mA mA
	,	All Outputs Low		0.1	mA
High Level Input Voltage	Vih		0.7Vdd	_	٧
Low Level Input Voltage	Vil			0.8	٧
High Level Input Current	lih	Vih = Vdd		1	μΑ
Low Level Input Current	lil	Vil = Gnd	_	-1	μΑ
High Level Output Voltage (Q Outputs)	Voh1	Ioh1 = - 25mA	Vcc – 3.5	_	V
Low Level Output Voltage	Vol1	Iol1 = 1mA	_	3	V
(Q Outputs)		iol1 = 200μA	_	1.5	٧.
High Level Output Voltage (Serial Out)	Voh2	loh2 = - 20μA	Vdd - 0.5	-	٧
Low Level Output Voltage (Serial Out)	Vol2	lol = 20μA		0.8	V

AC Characteristics

Ta = -40°C to +85°C, Vdd = 4.5V to 5.5V, Vcc = 10V to 60V unless othervise specified.

Parameter	Symbol	Conditions	Min	Max	Unit
Clock Frequency	f (CLOck)	See Figure 1	-	1	MHz
Pulse Duration, Clock High	tw (CKH)	See Figure 1	250	-	nS
Pulse Duration, Clock Low	tw (CKL)	See Figure 1	250	-	nS *
Setup Time, Data Before Rising Clock Edge	tsu	See Figure 1	100	-	nS
Hold Time, Data After Rising Clock Edge	th	See Figure 1	100	-	nS
Delay Time, Clock to Serial Out	td	CL = 15pF, See Figure 1	-	600	nS
Delay Time, Colck Rising Edge to Latch Enable High	tCKH-LEH	See Figure 2	200	-	nS
Pulse Duration, Latch Enable High	tw (LEH)	See Figure 2	250	<u>-</u>	nS
Delay Time, High-to-Low Level Q Output	tDHL	from LATCH ENABLE from BLANKING See Figure 2&3, CL = 50PF	-	1.5	μS μS
Delay Time, Low-to-High Level Q Output	tDLH	form LATCH ENABLE from BLANKING See Figure 2&3, CL = 50PF	-	1.5 1	μS μS
TRANSITION TIME, High-to-Low level Q Output	tTHL	CL = 50PF See Figure 3	<u>-</u>	3	μЅ
TRANSITION TIME, Low-to-High level Q Output	tTLH	CL = 50PF See Figure 3	•	2	μS

• Timing Chart

FUNCTION TABLE

Serial	Clock	Shift Register Contents	Sarial Data	Strobe Input	Latch Contents	Blacking Input	Output Contents	
Data	1	I1 I2 IN-1 IN	Output		11' 12' IN-1' IN'	"	I1 I2 IN-1 IN	
1		1 R1 RN-2 RN-1	RN-1					
0	J	0 R1 RN-2 RN-1	RN-1	1	1	1		
×		R1 R2 RN-1 RN	RN		R1 R2 RN-1 RN	1		
		× × × ×	×	0	P1 P2 PN-1 PN	0	P1 P2 PN-1 PN	
		P1 P2 PN-1 PN	PN	1	× × × ×	1	0 0 0 0	

0 = Low Logic Level

1 = High Logic Level

x = Irrelevent

P = Present Stats

R = Previous Stats

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1164

20-BIT ANODE/GRID DRIVER

GENERAL DESCRIPTION

The MSC1164 is a monolithic IC using the Bi-CMOS process for hybridizing CMOS and bipolar transistors on the same chip. The logic portion such as the input stage, shift register and latch is formed by CMOS and the output driver requiring a high withstand voltage is formed by bipoalr transistors.

Since A 32 pins plastic flat package is adopted, the display unit size can be reduced.

FEATURES

Designed as a VFD grid/anode driver for emitter-follower force output with 20-bit active pull down by built-in 20-bit bidirectional shift register and latch.

Logic Supply Voltage : Vcc : +5V

• Driver Supply Voltage: VhV : +65V

● Driver Output Current: lohvh: -40 mA

iohvi: 2 mA

• Built-in 20-bit latch

Built-in 20-bit shift register

Clock frequency: 4 MHz

32 pin FLAT package

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)	
NC 1 NC 2 DOUT 3 LS 4 CL 5 Vee 6 HV020 7 HV019 8 HV017 10 HV016 11 HV016 11 HV014 13 HV013 14 HV012 15 HV011 16	32 NC 31 CHG 30 DIN 29 CLK 28 GND 27 V _n , 26 HV01 25 HV02 24 HV03 23 HV04 22 HV05 21 HV06 20 HV07 19 HV08 18 HV09 17 HV010

PIN DESCRIPTION

Pin No.	Symbol	Terminal Name	Description
26~7	HVO1~ HVO20	Driver Output	Driver output terminal, applicable to each bit of shift resistor.
27	Vhv	Driver Power Supply	Power supply terminal for driver circuit.
28	GND	Driver GND Logic GND	GND pin for driver circuit. GND pin for the logic circuit.
5	ਕ	Clear Input	Clear input pin with pull-up resister. Normally "H" level, in this condition driver output change "H" or "L" according to latch output level. when "L" driver output pins are fixed to "L" and have no relation with latch outputs.
4	LS	Latch Strobe Input	Latch strobe input pin. When LS is "H", information present at the data input is transferred to output. The information is kept latched and the output remains the same, even then LS changes to "L".
30	DIN	Data Input	Data input pin for SR

Pin No.	Symbol	Terminal Name	Description
6	V _{cc}	Logic Power Supply	Power supply pin for logic (except driver). V _{cc} should be 4.5V~5.5V.
3	DOUT	Data Output	Serial output pin of SR.
29 ·	CLK	Clock Input	Clock input pin. Data of SR is shifted from one stage to the next during the positive going clock transition.
31	CHG	Test input	Test input pin with pull-down resister. Normally "L" when CHG is "H" and CL is "H" driver outputs are fixed to "H" for test.

SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMINAL CIRCUITS

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

CLK	Din	R-1	R-2	R-3	R-4	 R-20	Dout
<u></u>	Н	Н	R1 _n	R2 _n	R3 _n	R19 _n	R19 _n
<u>_</u>	L	L	RIn	R2 _n	R3 _n	R19 _n	R19 _n

CL	CHG	LS	R.X	HVO. X
L	х	х	х	Ļ
Н	н	х	х	н
Н	L	н	н	Н
Н	L	Н	L	L
Н	L	L	х	NĊ

L: Low Level, H: High Level, X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Item	Symbol	Condition	Limits	Unit	Note
Logic Supply Voltage	V _{cc}	Applicable to logic supply voltage terminal	- 0.3~ + 6.5	v	1
Driver Supply Voltage	V _{hv}	Applicable to driver supply voltage terminal	Vcc~ + 70	V	1
Input Voltage	Vin	Applicable to all input terminal	- 0.3~Vcc + 0.3	V	- 1
Data Output Voltage	V _{out}	Applicable to all output terminal	- 0.3~Vcc + 0.3	V	1
Driver Driving Frequency	f _{drv}	Duty cycle 50% max	0~+50	KHz	-
Power Dissipation	Pd	Ta≦ 25°C `	790 [Derate 6.3 mW/C above 25°C]	mW	· <u>-</u>
Attenuation Rate	R _{j-a}	Ta>25℃	158	°C/W	2
Operating Temperature	Тор	Thv≦ 50V	- 40∼ + 85	°C	-
Storage Temperature	T _{stg}	_	- 55∼ + 150	°C	<u>-</u>

NOTES:

- 1) Maximum Supply Voltage for GND
- 2) Derate 6.9 mW/Ck above 25°C Refer to the following formula.

 $T_j = P \times R_j - a + Ta$ (P: Max current consumption)

Recommended Operating Conditions

ltem	Symbol	Condition	Min.	Max.	Unit	
Logic Supply Voltage	V _{cc}	Applicable to logic supply terminal	4.5	5.5	٧	
Driver Supply Voltage	V _{hv}	Applicable to driver suppl terminal	y voltage	10	65	V
High Level Input Voltage	V _{ih}	Applicable to all input terminals	$V_{cc} = 4.5V$ $V_{cc} = 5.5V$	3.6		V
Low Level Input		Applicable to all output	$V_{cc} = 3.5V$ $V_{cc} = 4.5V$	4.4	0.9	$\frac{v}{v}$
Voltage	V _{il}	terminals	V _{cc} = 5.5V	-	1.1	V
Driver High Level Output Current	I _{ohvh 1}	1 Output is High at a time		-	- 40	mA
Driver High Level Output Current	I _{ohvh 2}	All driver output are High	at a time	-	- 2	mA
Driver Low Level Output Current	l _{ohvl}	Applicable to all driver ou	tput terminal		2	, mA
CLK Frequency	fф	See timing ch	_	4	MHz	
CLK Pulse width	t wclk	See timing ch	75	-	ns	
Data in Setup Time	t _{ds}	See timing ch	50	_	ns	
Data in Hold Time	t _{dh}	See timing ch	50	_	ns	
LS Pulse Width	t wis	See timing ch	nart	80	_	ns
CLK - LS Delay Time	t _{dcl}	See timing ch	nart	50	-	ns
LS - CLK Delay Time	t _{dlc}	See timing ch	nart '	0	-	ns
LS - CHG Delay Time	t _{dlcg}	See timing ch	nart	0	-	μs
LS - CL Delay Time	t dicī	See timing ch	0	-	μs	
CHG Pulse Width	t _{wchg}	See timing ch	2	-	μs	
CL PUlse width	twci	See timing ch	2	-	μs	
Operating Temperature	T _{op}	-	- 40	+85	°C	

		,					
Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Logic Standby	I _{cc 1}	No Load	All Input: Low	_	2.3	3.4	
Current	I _{cc 2}	$V_{cc} = 5.5V$	All Input: High, All Driver Output: High, Ta = 25°C	-	0.5	1.0	mA
Driver Standby	I _{hV 1}	No Load	All Driver Output: Low	-	1	1	μА
Current	l _{hV 2}	V _{cc} = 5.5V	All Driver Output: High, Ta = 25°C	_	1.3	2.0	mA
High Level Input	V _{ih}		$V_{cc} = 4.5V$	3.15	-	-	V
Voltage	Vih		$V_{cc} = 5.5V$	3.85	-	_	V
Low Level Input	Vil		$V_{cc} = 4.5V$	_	-	1.35	V
Voltage	V11		$V_{cc} = 5.5V$	_	_	1.65	V
Input Leakage Current	l _{in}		-	-	± 1	μΑ	
Input Capacitance	C _{in}	Ta = 25°C		-	15	_	pF
High Level Data	V	lo = - 20µA	V _{cc} = 4.5V	4.2	-	-	V
Output Voltage	V _{odh 1}	10 = - 20μΑ	V _{cc} = 5.5V	5.2	ı	-	V
Low Level Data	V _{odl 1}	lo = 20μΑ	V _{cc} = 4.5V			0.2	V
Output Voltage	0011	10 – 20µл	V _{cc} = 5.5V	-		0.2	V
High Level Data	V _{odh 2}	lo = -0.1mA	V _{cc} = 4.5V	3.5	-	-	V
Output Voltage	Voon 2	10 - 0.71113	V _{cc} = 5.5V	4.5		-	V
Low Level Data	V _{odl 2}	lo = 0.1mA	$V_{cc} = 4.5V$			1.1	V
Output Voltage	10012		V _{cc} = 5.5V		-	1.1	V
Driver High Level Output Voltage	Vohvh	l _{ohv} = -40mA		Vhv – 4	-	-	V
Driver Low Level Output Voltage	V _{ohvi}		I _{ohy} = 2mA	-	-	3.0	V

AC Characteristics

Vcc = 5V, Vhv = 65V, Ta = 25°C

ltem	Symbol	Remarks	Min.	Тур.	Max.	Unit
CLK - Dout Delay Time	t _{pd}	See timing chart and test circuit	-	100	150	nS
Delay Time Low – High	t _{dlh}	See timing chart and test circuit	-	0.3	1	μS
Transit Time Low - High	t _{tlh}	See timing chart and test circuit	-	2	5	μS
Delay Time Low – High	t _{dhl}	See timing chart and test circuit	-	0.3	1	μS
Transit Time High - Low	t _{thl}	See timing chart and test circuit	T -	2	5	μS

Timing Chart

TEST CIRCUIT

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1165

20-BIT ANODE/GRID DRIVER

GENERAL DESCRIPTION

The MSC1165 is a monolithic IC using the Bi-CMOS process for hybridizing CMOS and bipolar transistors on one chip.

The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by bipolar transistors.

FEATURES

Logic supply voltage (V_{CC}) : +5 \

VF driver supply voltage (V_{hv}): +65 V

• VF driver output current

 (l_{ohvh1}) : - 40 mA (1 driver output high)

(I_{ohvh2}): -2 mA (All driver output high)

 (I_{ohv1}) : +2 mA

• Clock frequency : 4 MHz

Built-in 20-bit latch

• Built-in 20-bit shift register

28 Pin DIP Package

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Name	Description
17 1 28	HVO 01 HVO 17 HVO 18 HVO 20	Driver output	Each terminal is a driver output terminal, which corresponds to each bit of the shift register.
18	Vhv	Driver supply voltage	1. This is a power terminal of the driver circuit.
19	GND	Driver GND LOgic portion GND	This is a grounding terminal of the driver circuit, and the logic portion.
24	<u>.</u>	Clear input	 This is an input terminal containing a pull-up resistor. The terminal is generally kept High. The driver output, High of Low, is driven by the output of the corresponding latch circuit. When the terminal is Low, the driver outputs are fixed to "Low" regardless of the output of the latch circuit.
23	LS	Latch strobe input	 This is an input terminal without a pull-up or pull-down registor. When the terminal is High, the latch circuit is slewed, and the output of the shift register is that of the latch circuit. When the terminal is Low, the latch circuit holds the output of the shift register immediately before the terminal is turned Low.
21	DIN	Data input	This is an input terminal of the shift register to input the display data in synchronization wiht a clock pulse. (Positive logic)
25	V _{CC}	Logic supply voltage	This is a power terminal of the logic portion (other than the driver circuit).
20	CLK	Clock input	This is an input terminal without a pull-up or pull-down resistor The data of the shift register is shifted at the rising edge of a clock pulse.
22	CHG	Test input	 This is an input terminal containing a pull-down resistor. The terminal is generally kept Low. When the CL terminal is High, the driver output, High or Low, is driven by theoutput of the corresponding latch circuit. The terminal is Low and the CL terminal is High, the driver output can be fixed to High regardless of the output of the latch circuit.

SCHEMATIC DIAGRAM OF LOGIC PORTION INPUT TERMINAL CIRCUIT

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

CLK	DIN	R – 1	R – 2	R – 3	R-4	R – 20
	н	н	R1n	R2n	R3n	R19n
	L	L	R1n	R2n	R3n	R19n

CL	CHG	LS	R.X	нvо.х
L	х	х	Х	L
Н	Н	х	Х	Н
Н	L	Н	Н	Н
Н	L	Н	L	L
Н	L	L	Х	NC

L: Low Level, H: High, Level, X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit	Note
Logic portion supply voltage	V _{CC}	Applicable to logic power terminal	-0.3~6.5	٧	1
Driver supply voltage	Vhv	Applicable to driver power terminal	V _{CC} ~70	V	1.2
Input voltage	Vin	Applicable to all the input terminals	0.3~V _{CC} + 0.3	V	1
Driver drive frequency	fdrv	Duty less than 50%	0~50	kHz	
Power Dissipation	Pd	Ta≦25°C	1020	mW	
Attenuation Rate	Rj – a	Ta>25°C	122	°C/w	2
Operating temperature	Тор	Vhv≦50V	- 40~ + 85	°C	
Storage temperature	Tstg		- 55~ + 150	°C	

Note 1: The maximum voltage which can be applied t the GND terminal.

Note 2: Thermal resistance of the package (between junction and atmosphere)

The junction temperature (Tj) expressed by the equation indicated below should not exceed 150°C.

 $T_i = P \times R_i - a + Ta$ (P: Maximum power consumption of IC)

• Recommended Operating Conditions

Parameter	Symbol	Condition		MIN	MAX	Unit
Logic supply voltage	Vcc	Applicable to logic power terminal		4.5	5.5	V
Driver supply voltage	V _{hv}	Applicable to driver power	terminal	10	65	V
High level input	1	Applicable to all input	Vcc = 4.5V	3.6	_	V
voltage	VIH	terminals	Vcc = 5.5V	4.4	_	V
Low level input		Applicable to all input	Vcc = 4.5V	-	0.9	٧
voltage	V _{IL}	terminals	Vcc = 5.5V	-	1.1	٧
Driver high level output current	IOHVH 1	1 driver output: High Other drive outputs: Low		_	- 40	mA
Driver high level output current	IOHVH 2	All driver output : High	All driver output : High		- 2	mA
Driver low level output current	IOHVL	Applicable to all driver output terminals		_	2	mA
Clock frequency	fØ	See Timing Chart			4	MHz
Clock pulse width	twclk	See Timing Chart		75	_	n\$
Data setup time	tds	See Timing Chart		50	_	nS
Data hold time	tdh	See Timing Chart		50	_	nS
LS pulse width	twis	See Timing Chart		80	_	nS
CLK-LS delay time	tdcl	See Timing Chart		50	_	nS
LS-CLK delay time	tdlc	See Timing Chart		0	-	nS
LS-CHG delay time	tdlcg	See Timing Chart		0	_	μS
LS-CL delay time	tdlcl	See Timing Chart		0	_	μS
CHG pulse width	twchg	See Timing Chart		2	_	μS
CL pulse width	twcl	See Timing Chart		2	-	μS
Operating temperature range	Тор	_		- 40	+ 85	°C

DC Characteristics

 $V_{CC} = 5V \pm 10\%$, $Vhv = 10V \sim 65V$, Ra = -40°C ~ 85 °C

Parameter	Symbol	(Condition	MIN	TYP	MAX	Unit	
	lcc1		All inputs:Low	_	2.3	3.4		
Logic supply current	lcc2	No load V _{CC} = 5.5V	All inputs:High All driver outputs: High Ta = 25°C	-	0.5	1.0	mA	
Driver supply current	lhv ₂	No load	All driver outputs: Low		_	50	μΑ	
Driver supply current	lhv ₂	$V_{CC} = 5.5V$	All driver oututs: High Ta = 25°C	_	1.3	2.0	mA	
High input voltage	Vih		V _{CC} = 4.5V	3.15	-	-	v	
High input voltage			V _{CC} = 4.5V	3.85	_	_	L <u> </u>	
Law input valtage	Vil		V _{CC} = 4.5V	_	_	1.35	V	
Low input voltage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V _{CC} = 4.5V	_	_	1.65	ľ	
Input leak current	V _{OH}	Ta = 25°C		_	_	±1	μА	
Input capacity	VoL	Ta = 25°C	Ta = 25°C		15	-	pF	
High driver output voltage	Vohvh	lohv= -40mA		Vhv – 4		-	V	
Low driver output voltage	Vohvl	Iohv = 2mA			_	3.0	٧	

AC Characteristics

 $V_{cc} = 5V$, Vhv = 65V, Ta = 25°C

and the second s			14-25	-		
Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Delay time L - H	tdlh	See Timing Chart and Test circuit.	-	0.3	1	μS
Transit time L - H	ttlh	See Timing Chart and Test circuit.		2	5	μS
Delay time H - L	tdhl	See Timing Chart and Test circuit.		0.3	1	μS
Transit time H - L	tthl	See Timing Chart and Test circuit.	_	2	5	μS

• Timing Chart

Test Circuit

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1162

40-BIT ANODE/GRID DRIVER

GENERAL DESCRIPTION

The MSC1162 is a monolithic IC using the Bi-CMOS process for hybridizing CMOS and bipolar transistors on the same chip. The logic portion such as the input stage, shift register and latch is formed by CMOS and the output driver requiring a high withstand voltage is formed by bipoalr transistors.

Since the pin asignment allows single side pattern formation on the printed circuit board, the display unit size can be reduced.

The bidirectional shift register facilitates the pattern design when the deivces are arranged symmetrically with the display as the center axis.

FEATURES

Designed as a VFD grid driver for emitter-follower force output with 40-bit active pull down by built-in 40-bit bidirectional shift register and latch.

Logic Supply Voltage: Vcc

Driver Supply Voltage: Vhv : +65V

Driver Output Current: Iohvh: -40 mA

Iohvl: 2 mA

Built-in 40-Bit latch

• Built-in 40-Bit bidirectional shift register

• Clock frequency: 4 MHz

• 60 pin FLAT Package

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

PIN DESCRIPTION

Pin No.	Symbol	Terminal Name	Description
1~20 41~60	HVO1~ HVO40	Driver Output	Driver output terminal, applicable to each bit of shift resistor
21 40	Vhv	Driver Power Supply	Power supply terminal for driver circuit
22 39	GND 1	Driver GND	GND pin for driver circuit
23 38	GND 2	Logic GND	GND pin for the logic circuit. As GND1 and GND2 are not connected inside of the LSI, they need to be connected outside by same wiring.
24	CI.	Clear Input	Clear input pin with pull-up resister. Normally "H" level, in this condition driver output change "H" or "L" according to latch output level. when "L" driver output pins are fixed to "L" and have no relation with latch outputs.
26	LS	Latch Strobe Input	Latch strobe input pin. When LS is "H", information present at the data input is transferred to output. The information is kept latched and the output remains the same, even then LS changes to "L".
28	R/L	Shift Direction Control	Shift direction control pin with pull-up resistetr. Normally "H", and in this condition, information of Bidirectional SR is shifted to the direction of R-1 from R-40. When this pin is "L", Bi-directional SR shifts information to the direction of R-40 from R-1.

Pin No.	Symbol	Terminal Name	Description
29	DIN	Data Input	Data input pin for bidirectional SR
30 31	V _{cc}	Logic Power Supply	Power supply pin for logic (except driver). V_{cc} should be 4.5V~5.5V.
32	DOUT	Data Output	Serial output pin of bidirectional SR. When R/L is "H", D OUT outputs R-40. When R/L is "L", D OUT outputs R-1.
34	CLK	Clock Input	Clock input pin. Data of bidirectional SR is shifted from one stage to the next during the positive going clock transition.
36	СНБ	Test input	Test input pin with pull-down resister. Normally "L" when CHG is "H" and CL is "H" driver outputs are fixed to "H" for test.

SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMINAL CIRCUITS

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

CLK	R∕L	D in.	R-1	R-2	R-3	R-4	R-40	Dout
	Н	Н	Н	R1 _n	R2 _n	R3 _n	R39 _n	R39 _n
<u></u>	Н	L	L	Rin	.R2 _n	R3 _n	R39 _n	R39 _n
	L	Н	R2 _n	R3 _n	R4 _n	R5 _n	Н	R2 _n
<u>_</u>	L	L	R2 _n	R3 _n	R4 _n	R5 _n	L	R2 _n

CL	CHG	CHG LS		HVO. X
L	×	х	х	L
Н	н	х	×	Н
н	L	Н	н	н
Н	L	Н	L	L
Н	L	L	х	. NC

L: Low Level, H: High Level, X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit	Note
Logic Supply Voltage	V _{cc}	Applicable to logic supply voltage terminal	- 0.3~ + 6.5	v .	1
Driver Supply Voltage	V _{hv}	Applicable to driver supply voltage terminal	Vcc~ + 70	v	, 1
Input Voltage	V _{in}	Applicable to all input terminal	− 0.3~Vcc + 0.3	V	1
Data Output Voltage	V _{out}	Applicable to all output terminal	- 0.3~Vcc + 0.3	v	1
Driver Driving Frequency	f _{drv}	Duty cycle 50% max	0~+15	KHz	-
Power Dissipation	P _d	Ta≤ 25°C	860 [Derate 6.9 mW/C above 25°C]	mW	-
Attenuation Rate	R _{j-a}	Ta>25°C	145	°C/W	2 ،
Operating Temperature	Тор	Thv≦50V	- 40~ + 85	°C	-
Storage Temperature	T _{stg}	-	- 55~ + 150	°C	-

NOTES:

- 1) Maximum Supply Voltage for GND
- Derate 6.9 mW/Ck above 25°C Refer to the following formula.

 $T_i = P \times R_i - a + Ta$ (P: Max current consumption)

• Recommended Operating Conditions

parameter	Symbol	Condition	Min.	Max.	Unit	
Logic Supply Voltage	V _{cc}	Applicable to logic supply terminal	voltage	4.5	5.5	V
Driver Supply Voltage	V _{hv}	Applicable to driver suppl terminal	y voltage	10	65	v
High Level Input Voltage	V _{ih}	Applicable to all input terminals	$V_{cc} = 4.5V$ $V_{cc} = 5.5V$	3.6		V
Low Level Input Voltage	Vil	Applicable to all output terminals	$V_{cc} = 4.5V$ $V_{cc} = 5.5V$	-	0.9	V
Driver High Level Output Current	l _{ohvh}	1 Output is High at a time		_	- 40	mA
Driver Low Level Output Current	I _{ohvl}	Applicable to all driver ou	tput terminal	-	2	mΑ
CLK Frequency	fф	See timing ch	nart	_	4	MHz
CLK Pulse width	t _{wclk}	See timing ch	75	-	ns	
Data in Setup Time	t _{ds} ,	See timing ch	50	_	ns	
Data in Hold Time	t _{dh}	See timing ch	50	-	ns	
LS Pulse Width	t wis	See timing ch	nart	80	-	ns
CLK - LS Delay Time	t _{dcl}	See timing ch	nart	50	_	ns
LS - CLK Delay Time	. t _{dlc}	See timing ch	nart	0	_	ns
LS - CHG Delay Time	t _{dlcg}	See timing ch	nart	0	_	μs
LS - CL Delay Time	t _{dicī}	See timing ch	0	-	μs	
CHG Pulse Width	t _{wchg}	See timing chart		2	_	μs
CL PUlse width	t _{wcl}	See timing cl	2	-	μѕ	
Operating Temperature	Top	-	- 40	+ 85	,•c	

DC Characteristics

$Vcc = 5V \pm 10\%$, $Vhv = 10V \sim 65V$, Ta = -40°C to +85°C

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Logic Standby	I _{cc 1}	No Load	All Input: Low	-	4.3	6.65	
Current	I _{cc 2}	V _{cc} = 5.5V	All Input: High, All Driver Output: High, Ta = 25°C	-	0.5	1.0	mA
Driver Standby	I _{hV 1}	No Load	All Driver Output: Low	-	•	1	μА
Current	I _{hV 2}	V _{cc} = 5.5V	All Driver Output: High, Ta = 25°C	-	2.45	3.8	mA
High Level Input	Vih		$V_{cc} = 4.5V$	3.15	-		V
Voltage	Vih	·	V _{cc} = 5.5V	3.85	-	-	V
Low Level Input	Vil		V _{cc} = 4.5V	-	-	1.35	V
Voltage	Vil	}	-	1	1.65	V	
Input Leakage Current	l _{in}		_	-	± 1	μА	
Input Capacitance	C _{in}		Ta = 25°C	-	15	-	pF
High Level Data	V _{odh 1}	lo = - 20µA	V _{cc} = 4.5V	4.2	-		V
Output Voltage	Vodh 1	10 = - 20μΑ	V _{cc} = 5.5V	5.2			V
Low Level Data	V _{odl 1}	lo = 20μA	$V_{cc} = 4.5V$			0.2	V
Output Voltage	Vodii	10 = 20µА	V _{cc} = 5.5V			0.2	V
High Level Data	V _{odh 1}	lo = -0.1 mA	V _{cc} = 4.5V	3.5			V
Output Voltage	V OGIT I		V _{cc} = 5.5V	4.5	-	-	V
Low Level Data	V _{odl 2}	lo = 0.1mA	V _{cc} = 4.5V			1.1	V
Output Voltage	- 0012		V _{cc} = 5.5V			1.1	V
Driver High Level Output Voltage	V _{ohvh}	Io	Vhv – 4	-		v	
Driver Low Level Output Voltage	V _{ohvl}		I _{ohv} = 2mA	_	-	3.0	v

ltem	Symbol	Symbol Remarks		Тур.	Max.	Unit
CLK - Dout Delay Time	t _{pd}	See timing chart and test circuit	-	100	150	nS
Delay Time Low – High	t _{dih}	See timing chart and test circuit	-	0.3	1	μS
Transit Time Low - High	t _{tlh}	See timing chart and test circuit	-	2	5	μS
Delay Time Low - High	t _{dhi}	See timing chart and test circuit	-	0.3	1	μS
Transit Time High – Low	t _{thl}	See timing chart and test circuit	-	2	5	μS

• Timing Chart

TEST CIRCUIT

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1172

40-BIT ANODE / GRID DRIVER

GENERAL DESCRIPTION

The MSC1172 is a monolithic IC using Bi-CMOS process for hybridizing CMOS and bipolar transistors on one chip.

The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by bipolar transistors.

Since the pin assignment allows single side pattern formation on the printed circuit board, the display unit size can be reduced.

The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis.

FEATURES

Logic supply voltage (V_{CC}): +5 V

Driver supply voltage (V_{hv}): +70 V

• Driver output current

(l_{ohvh1}) : -40 mA (1 driver output_high)

(I_{ohvh2}) : -2 mA (All driver output_high)

 (I_{ohyl}) : +2 mA

Clock frequency : 4 MHz

Built-in 40-Bit latch

Built-in 40-Bit bidirectional shift register

60 Pin FLAT Package

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Name	Description
1~20 41~60	HV0 1 \$ HVO 40	Driver output	1. Each terminal is a driver output terminal, which corresponds to each bit of the shift register. 2. Each terminal can be connected directly to the VF tube grid or anode terminal.
21 41	Vhv	Driver supply voltage	This is a power terminal of the driver circuit. Pins 21 and 40 are not connected inside the IC. Connect them outside the IC.
22 39	GND 1	Driver GND	This is a grounding terminal of the driver circuit. Pins 22 and 39 are not connected inside the IC. Connect them outside the IC.
23 38	GND 2	Logic GND	This is a grounding terminal of the logic portion (other than the driver circuit). Pins 23 and 38 are not connected inside the IC. Connect them outside the IC.
24	<u>cr</u>	Clear input	 This is an input terminal containing a pull-up resistor. The terminal is generally kept high. The driver output, High or Low, is driven by the output of the corresponding latch circuit. When the terminal is Low, the driver outputs are fixed to "Low" regardless of the output of the latch circuit.
26	LS	Latch strobe input	 This is an input terminal without a pull-up or pull-down resistor. When the terminal is High, the latch circuit is slowed, and the output of the shift register is that of the latch circuit. When the terminal is Low, the latch circuit holds the output of the shift register immediately before the terminal is turned Low.
28	R√L	Shift direction control input	 This is an input terminal containing a pull-up resistor. This terminal is generally kept High. The bidirectional shift register transfers data from R-1 to R-40. When the terminal is made Low, the bidirectional shift register transfers data from R-40 to R-1.
29	DIN	Data input	This is an input terminal without a pull-up or pull-down resistor. The is an input terminal of the shift register to input the display data in synchronization with a clock pulse. (Positive logic)

Pin No.	Symbol	Name	Description
30 31	Vcc	Logic supply voltage	1. This is a power terminal of the logic portion (other than the driver circuit). 2. The terminal is used at 4.5 to 5.5 V.
32	DOUT	Data output	 This is a serial-out output terminal of the shift register. When the R/L terminal is High, the terminal outputs the output of the shift register R-40. When the R/L terminal is Low, the terminal outputs the output of the shift register R-1.
34	CLK	Clock input	This is an input terminal without a pull-up or pull-down resistor. The data of the shift register is shifted at the rising edge of a clock pulse.
36	СНС	Test input	1. This is an input terminal containing a pull-down resistor. 2. The terminal is generally kept Low. When the CL terminal is High, the driver output, High or Low, is driven by the output of the corresponding latch circuit. 3. The terminal is Low and the CL terminal is High, the driver output can be fixed to "High" regardless of the output of the latch circuit.

SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMINAL CIRCUITS

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

CLK	R√Ĺ	DIN	R-1	R-2	R-3	R-4	 R-40	DOUT
1	Н	Н	Н	R1n	R2n	R3n	R39n	R39n
	H	L	L	R1n	R2n	R3n	R39n	R39n
	L	Н	R2n	R3n	R4n	R5n	Н	R2n
	L	Ŀ	R2n	R3n	R4n	R5n	L	R2n

ζĹ	CHG	LS	R.X	HVO,X
L	·X	Х	Х	L
Н	Н	Х	Х	н.
Н	L	Н	Н	Н
Н	L	Н	L	L
Н	L	L	Х	NC

L: Low Level, H: High Level, X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Conditions	Limits	Unit	Note
Logic Power Supply	V _{CC}	Applicable to logic power terminal	- 0.3~6.5	V	1
Driver Power Supply	V _{HV}	Applicable to driver power terminal	V _{CC} ~75	V	1.2
Input voltage	ViN	Applicable to all input terminals	-0.3~V _{CC} +0.3	V	1
Data output voltage	Vod	Applicable to data output terminal	-0.3~V _{CC} +0.3	V	1
Driver output voltage	Vohv	Applicable to all driver terminals	-0.3~V _{HV} +0.3	V	1
Power Dissipation	Pd	Ta≦25°C	860 [Delete 6.9 mw/°C above 25°C]	mW	_
Attenuation Rate	Rj-a	Ta>25°C	145	°C/W	2
Operating temperature	Тор	V _{HV} ≦70V	-40∼+85	°C	-
Storage temperature	Tstg [·]	_	- 55~ + 150	°C	_

Note 1: Maximum Supply Voltage for GND.

Note 2: Delete 6.9 mw/°C above 25°C.

Refer to the following formula.

 $Tj = P \times Rj - a + Ta$ (P: Maximum power consumption)

• Recommended Operating Conditions

Parameter	Symbol	Condition	MIN	MAX	Unit	
Logic supply voltage	V _{CC}	Applicable to logic pow	4.5	5.5	V	
Driver supply voltage	V _{HV}	Applicable to driver pov terminal	wer	10	70	V
High level input voltage	VIH	Applicable to all	V _{CC} = 4.5V	3.6		
	.10	input terminals	V _{CC} = 5.5V	4.4		
Low level input voltage	VIL.	Applicable to all	V _{CC} = 4.5V		0.9	V
	,,,,	input terminals	V _{CC} = 5.5V		1.1	•
Driver high level output	V _{OHVH1}	Applicable to all	1 output High		- 40	mΑ
current	V _{OHVH2}	driver output terminals	All outpts High		- 2	
Driver low level output current	V _{OHVL}	Applicable to all driver terminals	- .	2	mA	
Clock frequency	fø	See timing chart		4	MHz	
Clock pulse width	t _{wclk}	See timing chart	75	_	ns	
Data setup time	t _{ds}	See timing chart		50	_	ns
Data hold time	t _{dh}	See timing chart		50	_	ns
LS pulse width	t _{wis}	See timing chart		80		ns
CLK-LS delay time	t _{dcl}	See timing chart		50	_	ns
LS-CLK delay time	t _{dlc}	See timing chart		0		ns
LS-CHG delay time	t _{dlcg}	See timing chart	0	_	μs	
LS-CL delay time	t _{dlcl}	See timing chart	0	_	μs	
CHG pulse width	t _{wchg}	See timing chart	2	_	μs	
CL pulse width	t _{wcl}	See timing chart	2	_	μs	
Operating temperature	t _{op}			- 40	+ 85	°C

DC Characteristics

 $V_{CC} = 5V \pm 10\%$, $V_{HV} = 10 \sim 70V$, $T_{a} = -40^{\circ}C \sim +85^{\circ}C$

Parameter	Symbol	C	onditions	MIN	TYP	MAX	Unit
Logic supply current	l _{CC1}	No load	All inputs: Low	_	3.98	7.08	
Logic supply current	I _{CC2}	V _{CC} = 5.5V	All inputs: High All driver outputs: High Ta = 25°C	_	0.5	1.0	μΑ
	l _{HV1}	No load	All driver outputs: Low		_	1.0	μΑ
Driver supply current	I _{HV2}	$V_{CC} = 5.5V$	All driver outputs: High Ta = 25°C	_	2.31	4.22	mA
High level input voltage	V _{IH}	V _{CC} = 4.5V	All input terminals	3.15			٧
	VIH	V _{CC} = 5.5V	Animput terminais	3.85			٧
Low level input voltage	VII	V _{CC} = 4.5V	All input terminals		_	1.35	V
Low level input voltage	V L	V _{CC} = 5.5V	Antiput terminais	1	_	1.65	V
High level input current	l _{IH1}	$V_{IN} = V_{CC}$	Input terminals except the CHG terminal	_	_	1.0	1.0 80 μA
	I _{IH2}	 v v v c	CHG terminal	10		80	
Low level input current	I _{IL1}	V _{IN} = GND	LS, DIN, CLK, CHG terminals	-	1	1.0	μA
Low level input current	I _{IL2}	VIN - GIVD	CL, R/L terminals		_	- 10	μΑ.
Input capacitance	C _{IN}	Ta = 25°C	All input terminals	_	15	_	pF
High level data output	V _{ODH}	I _O = - 0.1mA	V _{CC} = 4.5V	3.5	_	_	v
voltage	VODH .	10 = - 0.111A	V _{CC} = 5.5V	4.5	_		ľ
Low level data output	Vodl	l _O = 0.1mA	V _{CC} = 4.5V	_	_	0.9	v
voltage	VODL	10 = 0. IIIA	V _{CC} = 5.5V			1.1	"
High level driver output voltage	V _{OHVH}	I _{OHV} = -40mA		V _{HV} – 40	_	_	٧
Low level driver output voltage	V _{OHVL}	I _{OHV} = 2mA	. <u>—</u>	_	3.0	٧	

AC Characteristics

 $V_{CC} = 5V$, $V_{HV} = 130V$ $T_a = 25^{\circ}C$

Parameter	Symbol	Conditions	MİN	TYP	MAX	Unit	Note
CLK-DOUT delay time	t _{pd}	See timing chart and test circuit.	-	100	150	ns	4
Delay time: L-H	t _{dlh}	See timing chart and test circuit.	_	0.3	1.0	μs	5.6
Transit time: L-H	t _{tlh}	See timing chart and test circuit.		2.0	5.0	μs	5
Delay time: H-L	t _{dhl}	See timing chart and test circuit.	-	0.3	1.0	μs	5.6
Transit time: H-L	t _{thl}	See timing chart and test circuit.	_ :	2.0	5.0	μs	5

Note 4: Applicable to data output terminal. Note 5: Applicable to driver output terminal.

Note 6: T_{dlh} and T_{dhl} are delay times from the CL signal.

• Timing Chart

TEST CIRCUIT

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1149-XX

DOT DRIVER

GENERAL DESCRIPTION

The MSC1149-XX is a vacuum fluorescent display tube driver IC, which consists of a 34-bit shift register, a 33-bit latch circuit (the 33 bits of the latch circuit correspond to bit 1 to bit 33 of the shift register), and a matrix circuit for latch output and VF driver output.

FEATURES

- Power supply voltage: 8V to 18V
- Input: TTL level
- One-to-one correspondence established between latch output and VF driver output by matrix cord
- POWER ON RESET circuit built in
- Latch operation and shift register RESET performed sequentially by LOAD ENABLE signal
 Self load mode generated by connection of LOAD ENABLE terminal and DATA OUT terminal
- Number of bits increased by cascade connection
- VF tube lighting test simplified by all VF outputs on H level via TEST terminal
- 33-bit VF output: -2 mA for 8 bits, -0.8 mA for 25 bits Terminal connections

PIN CONFDIGURATION

PIN DESCRIPTION

(1) DATA IN

This is a serial data input terminal of the 34-stage shift register.

(2) CLOCK

This is a clock input terminal of the shift register to shift an input signal at its leading edge (Low to High).

(3) LOAD ENABLE

This is an input terminal to transfer the data of the shift register to the data latch circuit to hold it. After the data is held, the terminal initializes the data of the shift register. These functions are executed at the leading edge of an input signal.

(4) BLANK

This is an input terminal to turn all the OUTPUT terminals OFF (Low), which contains a pull-up resistor.

(5) OUTPUT1 to OUTPUT33

These are output terminals for the VF tube driver. Each terminal outputs data which is transferred from the corresponding bit of the shift register and held in the data latch circuit.

(6) DATA OUT

This is a data output terminal of the shift register to output data on the last stage of the 34-stage shift register.

(7) TEST

This is a terminal to turn all the OUTPUT terminals ON (High), which contains a pull-up resistor. The terminal is used for the VF tube lighting test.

(8) V_{DD}

This is a terminal to supply positive potential.

(9) GND

This is a grounding terminal.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit
Power supply voltage	V _{DD}	Ta = 25 °C	-0.3~2.0	V
Input voltage	V _{IN}	Ta = 25 °C	-0.3~V _{DD} +0.3	V
Storage temperature range	Tstg		- 65~150	°C

Operating Conditions

Parameter	Symbol	Range	Unit
Power supply voltage	V _{DD}	8~18	V
Operating temperature range	T _{OP}	- 40~ + 85	°C

DC Characteristics

 $V_{DD} = 8 \sim 18V$ $Ta = -40 \sim +85$ °C

Parameter	Symbol	. Con	dition	MIN	TYP	MAX	Unit
High input voltage	V _{IH}	-		3.8	_	6	٧
Low input voltage	V _{IL}	_		- 0.3		0.8	٧
High output voltage	V _{OH1}	V _{DD} = 9.5V, I _{OH1} = -2mA OUTPUT14~21		V _{DD} - 0.8	_	_	٧
High output voltage	V _{OH2}	V _{DD} = 9.5V, I _{OH2} = -0.8mA OUTPUT1~13, 22~33		V _{DD} - 0.8	_	_	V
Low output voltage	V _{OL1}	$V_{DD} = 9.5V$ OUTPUT1~33	I _{OL} = 500μA	-	_	2	V
		"	I _{OL} = 200μA	_		1	٧
		, ,	I _{OL} = 2μA	_		0.3	V
High output voltage	V _{OH3}	V _{DD} = 9.5V DATA OUT	I _{OH3} = -200μA	4	_	6	V
		"	No load	4.5	_	6	V
Low output voltage	V _{OL2}	V _{DD} = 9.5V DATA OUT	I _{OL} = 200μA		-	0.8	μА
High input current	l _{iH1}	CLOCK, DATA LOAD	IN V _{IH} = 5.5V	- 5	_	5	μА
High input current	I _{IH2}	BLANK Ta = 25°C	V _{IH} = 5.5V	- 20	-	5	μА
Low input current	I _{IL1}	CLOCK, DATA LOAD	IN V _{IL} = 0V	- 5	_	5	μА
Low input current	I _{IL2}	BLANK Ta = 25°C	V _{IL} = 0V	- 125	_	- 10	μА
High input current	I _{IH3}	TEST Ta = 25°C	V _{IH} = 5.5V	- 100	_	5	μА
Low input current	I _{IL3}	TEST Ta = 25°C	V _{IL} = 0V	- 400	_	- 20	μА
Operating current	I _{DD}	No load		_	10	15	mA

AC Characteristics

 $V_{DD} = 8 \sim 18V$ $Ta = -40 \sim +85$ °C

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Clock frequency	f _C			_	250	kHz
Clock pulse width	Pwc	HIGH pulse	1.3		· —	μS
Data set up	ts	.—	1	_	_	μS
Data hold time	t _H		200	_	_	nS
Load pulse width	P _{WL}	-	1.3	_	_	μS
Output delay time	t _{ODB}	C _L = 100PF BLANK	_	-	7	μS
	t _{ODL}	C _L = 100PF LOAD		_	8	μS
Slew rate	t _R	C _L = 100PF 20%~80% of V _{DD}	_	_	5	μS
LOAD ENABLE→CLOCK setup time	t _{sc}	_	2	_	_	μS
CLOCK→LOAD ENABLE setup time	t _{SL}		0	_	_	nS

Timing Chart

FUNCTIONAL DESCRIPTION

Shift Register Output Designation

First data bit read-in is stored in shift register #1, the last data bit read-in is stored in shift register #33. When the shift registers are full, a high voltage level applied to the load enable input will transfer the data from the shift register to the data latch, and then to the output through the 33×33 matrix. This matrix determines shift register output designation. the device is mask programmable for the 33×33 matrix, thus providing the capability of changing the shift register output designation. The device has 34 shift registers and 33 data latches as shown in the functional block diagram.

Self-Load Mode

In this mode data out (pin 4) is connected to load enable (pin 7), and the data word is constructed with 34 bits (including the one self-load bit set to logic 1). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers through the 33 × 33 matrix. Before the next clock pulse, the registers are zeroed.

Non-Self-Load Mode

In this mode, the data out and the load enable pins are not connected, and the load enable input is controlled by an external source. There are two types of operation in this mode.

- The data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the load enable pin before the rise of the clock pulse following the 34th clock pulse.
- The data word consists of 33 bits without the self-load bit. To transfer the data, a high voltage level is applied to the load enable pin before the rise of the 34th clock pulse.

Data load timing example

LOAD ENABLE singal externally supplied
1) Bit 1 to Bit 33 used
CLOCK 1 2 (33 34 35
DATA IN DATA0 DATA1 DATA32 DATA33 DATA0' DATA1'
LOAD ENABLE
OUTPUT
S/R RESET (Internal)
Notes: 1. The data of DATA0 is negligible. 2. When the LOAD ENABLE signal is held in the High level state as shown by the dotted line, the shift register is held in the RESET state as shown by the dotted line.
2) Bit n to Bit 33 used (1 < n ≤ 33)
CLOCK 1 2 (33-n 34-n
DATA IN DATA0 DATA1 DATA(32 - n) DATA(33 - n)
LOAD ENABLE
ОПТРИТ
Notes: 1. The data of DATAO is the data of Bitn. 2. The data of Bit1 to Bit(n – 1) goes low.
2. Self LOAD operations (DATA OUT terminal connected to LOAD ENABLE termianl)
CLOCK 1 2 ((33 34 35
DATA IN DATA0 DATA1 DATA32 DATA33 DATA0' DATA1'
DATAOUT
ОПТРИТ
Notes: 1. Set the data of DATA0 high. 2. Transfer the data of DATA0 to DATA33 to the shift register.

MSC1149-01 MATRIX (OUTPUTIN VS LATCH BIT)

PIN NAME	OUT PUT BIT	PIN NAME	OUT PUT BIT	PIN NAME	OUT PUT BIT
OUTPUT 1	BIT 2	OUTPUT 12	BIT 28	OUTPUT 23	BIT 26
OUTPUT 2	BIT 13	OUTPUT 13	BIT 27	OUTPUT 24	BIT 25
OUTPUT 3	BIT 12	OUTPUT 14	BIT 6	OUTPUT 25	BIT 30
OUTPUT 4	BIT 11	OUTPUT 15	BIT 7	OUTPUT 26	BIT 23
OUTPUT 5	BIT 4	OUTPUT 16	BIT 3	OUTPUT 27	BIT 18
OUTPUT 6	BIT 21	OUTPUT 17	BIT 16	OUTPUT 28	BIT 17
OUTPUT 7	BIT 20	OUTPUT 18	BIT 32	OUTPUT 29	BIT 22
OUTPUT 8	BIT 19	OUTPUT 19	BIT 24	OUTPUT 30	BIT 15
OUTPUT 9	BIT 33	OUTPUT 20	BIT 8	OUTPUT 31	BIT 10
OUTPUT 10	BIT 1	OUTPUT 21	BIT 5	OUTPUT 32	BIT 9
OUTPUT 11	BIT 29	OUTPUT 22	BIT 31	OUTPUT 33	BIT 14

MSC1149-15 MATRIX (OUTPUTIN VS LATCH BIT)

PIN NAME	OUT PUT BIT	PIN NAME	OUT PUT BIT	PIN NAME	OUT PUT BIT
OUTPUT 1	BIT 32	OUTPUT 12	BIT 6	OUTPUT 23	BIT 8
OUTPUT 2	BIT 21	OUTPUT 13	BIT 7	OUTPUT 24	BIT 9
OUTPUT 3	BIT 22	OUTPUT 14	BIT 28	OUTPUT 25	BIT 4
OUTPUT 4	BIT 23	OUTPUT 15	BIT 27	OUTPUT 26	BIT 11
OUTPUT 5	BIT 30	OUTPUT 16	BIT 31	OUTPUT 27	BIT 16
OUTPUT 6	BIT 13	OUTPUT 17	BIT 18	OUTPUT 28	BIT 17
OUTPUT 7	BIT 14	OUTPUT 18	BIT 2	OUTPUT 29	BIT 12
OUTPUT 8	BIT 15	OUTPUT 19	BIT 10	OUTPUT 30	BIT 19
OUTPUT 9	BIT 1	OUTPUT 20	BIT 26	OUTPUT 31	BIT 24
OUTPUT 10	BIT 33	OUTPUT 21	BIT 29,	OUTPUT 32	BIT 25
OUTPUT 11	BIT 5	OUTPUT 22	BIT 3	OUTPUT 33	BIT 20

APPLICATION NOTE

a) Single

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

b) Cascading

145

OKI semiconductor MSC1187-XX

DOT DRIVER WITH DIMMING FUNCTION

GENERAL DESCRIPTION

The MSC1187-XX is a vacuum fluorescent display tube driver IC using the Bi-CMOS process for integrating CMOS and bipolar transistors on one chip. The CMOS transistors are used in the logic portion including the input stage (except the VD), shift register, and dimming circuit, and the bipolar transistors are used in the regulator, Vref, comparator, and output drivers.

Display data, which is input to the shift register of the MSC1187-XX by DATA IN and CLOCK signals, is transferred to the data latch circuit by a LOAD ENABLE signal and output via the output drivers.

The MSC1187-XX contains a dimming function which accepts an analog voltage to control the duty cycle of the output drivers.

FEATURES

- Supply voltage: 8V to 18V
- Operating temperature range: -40°C to + 85°C
- Up to 52 steps of dimming adjustment, mask-programmable
- Shift register output designation by built-in PLA, mask-programmable
- PWM up to 12.5%, 25% and 50%, mask-programmable
- RC oscillation with external C
- Accepts analog inputs to control dimming.
- 44-pin plastic flat package

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Terminal No.	Terminal Name	ľΟ	Function
1	VK	!	This is a dimming function selector terminal. When the terminal is Low, the output duty cycle is 100%. When the terminal is High, the dimming function is performed.
2	OSC	· 1	This terminal generates an oscillation of 500KHz with an external capacitor of 47pF.
3	GND ·		This is a GND terminal.
4 `	DATA OUT	1/0	This terminal outputs the data of bit 0 of the 34-bit shift register. Connecting the terminal to the DATA IN terminal on the next stage provides a cascade connection. Connecting the terminal to the LOAD ENABLE terminal allows the shift register to be latched at the leading edge of the output of the terminal. (Auto load function). In the TEST mode, the terminal functions as an input terminal.
. 5	BLANK IN/ PWM OUT	1/0	When the dimming function is not used, the terminal receives a external BLANK signal and controls the output duty cycle. In the TEST mode, the terminal functions as an output terminal.
6	TEST2	ı	This terminal is used to select TEST MODE.
7	LOAD ENABLE	1	This is a load signal input terminal to latch the data of the shift register. When the terminal is High, the data of the shift register is loaded into the latch circuit, then the register is reset to 0.
8	DĄTA IN	ı	This is a data input terminal to input data to the shift register. When data is High, the output is ON. When data is Low, the output is OFF.
9	CLOCK	ij	This is a shift clock input terminal of the shift register. The shift register operates at the leading edge of a shift clock pulse.
10	VD	1	This is an analog voltage input terminal to input the potential to specify the output duty cycle.
11	VDD		Power supply terminal.
12 5 24	OUTPUT1 \$ OUTPUT13	0	These terminals are low current output terminals.
25 5 32	OUTPUT14 } OUTPUT21	0	These terminals are high current output terminals.
33 \$ 44	OUTPUT22 { OUTPUT33	0	These terminals are low current output terminals.

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

RATING	SYMBOL	VALUE	UNIT
Supply Voltage	V _{DD}	- 0.3 to 20	V
Input Voltage	V _{IN}	- 0.3 to VDD + 0.3	V
Operating Temperature Range	T _{OP}	- 40 to 85	°C
Storage Temperature Range	Tstg	- 65 to 150	°C

Operating Condition

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage	.V _{DD}		8		18	V
High Level Input Voltage	V _{IH}		3.8		6	V
Low Level Input Voltage	V _{IL}		0		0.8	V
Clock Frequency	fc				250	KHz
OSC Frequency	fosc			512		KHz

DC CHARACTERISTICS

Ta = -40 to 85°C, $V_{DD} = 8$ TO 18V unless otherwise noted. All voltages are referenced to GND.

PARAMETER	SYMBOL	CONDITION	MIN	MAX	UNIT
High Level Input Voltage (All Inputs)	V _{IH}		3.8	6.0	٧
Low Level Input Voltage (All Inputs)	· V _{IL}		0	0.8	٧
High Level Input Current (Clock Data In, Load, VK)	l _{ін1}	V _{IH1} = 5.0V	- 5	5	μА
High Level Input Current (Blank)	I _{IH2}	V _{IH2} = 5.0V, Ta = 25∘C	- 20	10	μА
High Level Input Current (Test 2)	I _{IH3}	V _{IH3} = 5.0V, Ta = 25∘C	- 100	20	μА
Low Level Input Current (Clock, Data In, Load, VK)	J _{IL1}	V _{IL1} = 0V	- 5	5	μА
Low Level Input Current (Blank In)	I _{IL2}	V _{IL2} = 0V, Ta = 25∘C	- 125	- 5	μА
Low Level Input Current (Test 2)	I _{IL3}	V _{IL3} = 0V, Ta = 25∘C	- 700	- 100	μА
Input Leak Current (VD)	ILI	V ₁ = 0~6V	- 5	5	μА
High Level Output Voltage (Low Current Driver)	V _{OH1}	$V_{DD} = 9.5V, I_{OH1} = -0.8 \text{mA}$	V _{DD} – 0.8	1	٧
High Level Output Voltage (High Current Driver)	V _{OH2}	$V_{DD} = 9.5V, I_{OH2} = -2mA$	V _{DD} – 0.8		V
High Level Output Voltage DATA OUT, PWM OUT	V _{OH3}	V _{DD} = 9.5V, I _{OH3} = - 200μA Output Open	4 4.5	6 6	V
Low Level Output Voltage (All Drivers)	V _{OL1}	$V_{DD} = 9.5V$, $I_{OL1} = 500 \mu A$ $I_{OL1} = 200 \mu A$ $I_{OL1} = 2 \mu A$		2 1 0.3	v
Low Level Output Voltage DATA OUT, PWM OUT	V _{OL2}	V _{DD} = 9.5V, I _{OL2} = -200μA	_	0.8	V
Supply Current	I _{DD}	NO LOAD		20	mA

AC CHARACTERISTICS

 $Ta = -40 \text{ to } 85^{\circ}\text{C}$, $V_{DD} = 8 \text{ TO}$ 18V unless otherwise noted. All voltages are referenced to GND.

PARAMETER	SYMBOL	CONDITION	MIN	MAX	UNIT
Clock Frequency	fc		. —	250	KHz
Clock Pulse Width	PWc		1.3	_	μS
Data Set-Up Time	ts		1	_	μS
Data Hold Time	t _H		200	. —	. nS
Load Pulse Width	PWL		1.3		μS
Output Delay from Blank	to _{DB}	C _L = 100pF	-	7	μS
Output Delay from Load	to _{DL}	C _L = 100pF		8	μS
Slew Rate (All Driver)	tr	C _L = 100pF,t = 20% to 80% or 80%, to 20% of V _{DD}	– .	5	μS

DIMMING CHARACTERISTICS

DC CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Comparator Offset Voltage	_	_	_	± 10	mV
D/A Output Voltage Error		_	_	± 3	%
Reference Voltage Accuracy	Note 1	-		±6	%

Note 1: Reference Voltage is 6.6V Typical.

AC CHARACTERISTICS .

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Pulse Width Error	No Load, Note 2		_	± 100	nsec
PWM OUT Frequency		150	250	400	Hz
OSC Frequency	C = 47pF	307.2	512	819.2	KHz

Note 2: Under the ideal condition of DC parameters.

Timing Chart

FUNCTIONAL DESCRIPTION

• Shift Register Output Designation

First data bit read-in is stored in shift register #0, the last data bit read-in is stored in shift register #33. When the shift registers are full, a high voltage level applied to the load enable input will transfer the data from the shift register to the data latch, and then to the output through the 33×33 matrix. This matrix determines shift register output designation. the device is mask programmable for the 33×33 matrix, thus providing the capability of changing the shift register output designation. The device has 34 shift registers and 33 data latches as shown in the block diagram.

Self-Load Mode

In this mode data out (pin 4) is connected to load enable (pin 7), and the data word is constructed with 34 bits (including the one self-load bit set to logic 1). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers through the 33 x 33 matrix. Before the next clock pulse, the registers are zeroed.

Non-Self-Load Mode

In this mode, the data out and the load enable pins are not connected, and the load enable input is controlled by an external source. There are two types of operation in this mode.

- The data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the load enable pin before the rise of the clock pulse following the 34th clock pulse.
- The data word consists of 33 bits without the self-load bit. To transfer the data, a high voltage level is applied to the load enable pin before the rise of the 34th clock pulse.

Dimming function

When the VK terminal (pin 1) is Low, the BLANK IN/PWM OUT terminal (pin 5) functions as a BLANK signal input terminal, and the output duty cycle is controlled by an external BLANK signal. When the terminal with a built-in pull-up resistor is open, the output duty cycle is 100%.

When the VK terminal is High, the output driver turns ON and OFF repeatedly in the output duty cycle corresponding to the analog voltage which is applied to the VD terminal. The analog voltage vs output duty cycle (dimming curve) is user-programmable under the restrictions indicated below.

- 1. Select one of the three maximum duty cycles indicated below.
- 12.5%

• 25%

• 50%

- 2. The maximum number of duty cycle steps is 52.
- 3. The VD input voltage should be generally 1/3 VD-IN.

4. Select "Use" or "Non-use" of the funeral mode.

5. Select the initial duty cycle (minimum output width of the PWM when VD = 0V).

- 6. The voltage at the maximum step number of the dimming curve should not exceed 5.0V.
- 7. The minimum voltage at each step of the dimming curve is 20mV. The voltage between pulse step No. 0 and 1 may be programmable from 0V to 3V.

APPLICATION NOTE

a) Single use

b) Cascading

159

Note 1: When placing an order of this IC with OKI, please send the attached dimming curve sheet and PLA code table sheet filled in together with the written order.

Note 2: Values of resistor network connected to VD terminal may be changed after ES evaluation.

					•
PIN NAME	OUTPUT BIT	PIN NAME	OUTPUT BIT	PIN NAME	OUTPUT BIT
OUTPUT 1	BIT	OUTPUT 12	віт	OUTPUT 23	віт
OUTPUT 2	BIT	OUTPUT 13	BIT	OUTPUT 24	BIT
OUTPUT 3	BIT	OUTPUT 14	BIT	OUTPUT 25	BIT
OUTPUT 4	BIT	OUTPUT 15	BIT	OUTPUT 26	BIT
OUTPUT 5	BIT	OUTPUT 16	ВІТ	OUTPUT 27	BIT
OUTPUT 6	BIT	OUTPUT 17	BIT	OUTPUT 28	BIT
OUTPUT 7	· BIT	OUTPUT 18	BIT	OUTPUT 29	BIT
OUTPUT 8	BIT	OUTPUT 19	BIT	OUTPUT 30	BIT
OUTPUT 9	BIT	OUTPUT 20	BIT	OUTPUT 31	BIT
OUTPUT 10	BIT	OUTPUT 21	ВІТ	OUTPUT 32	BIT
OUTPUT 11	¹ BIT.	OUTPUT 22	ВІТ	OUTPUT 33	BIT

VD Threshold dimming voltage V.S. PWM duty cycle (Typical Value) 12.5% PWM maximum table

Pulse Step	PWM Duty	Cycle	Threshold Voltage	Pulse Step	PWM Duty	Cycle	Threshold Voltage
Number	Pulse Count	%	Voltage	Number	Pulse Count	%	Voitage
52	256/2048	12.5		26	56/2048	2.73	
51	240/2048	11.7		25	52/2048	2.54	· · · · · ·
50	224/2048	10.9		24	48/2048	2.34	
49	208/2048	10.2		23	46/2048	2.25	
48	· 192/2048	9.38		22	44/2048	2.15	<u> </u>
47	184/2048	8.98	<u> </u>	21	42/2048	2.05	
46	176/2048	8.59		20	40/2048	1.95	
45	168/2048	8.20		19	38/2048	1.86	
44	160/2048	7.81		18	36/2048	1.76	
43	152/2048	7.42		17	34/2048	1.66	
42	144/2048	7.03		16 -	32/2048	1.56	
41	136/2048	6.64		15	30/2048	1.46	}
40	128/2048	6.25		14	28/2048	1.37	
39	120/2048	5.86		13	26/2048	1.27	ļ
38	112/2048	5.47		12	24/2048	1.17	<u> </u>
37	104/2048	5.08		11	23/2048	1.12	<u> </u>
36	96/2048	4.69		10	22/2048	1.07	
35	92/2048	4.49		9	21/2048	1.03	ļ
34	88/2048	4.30		- 8	20/2048	0.98	<u></u>
33	84/2048	4.10	ļ	7	19/2048	0.93	<u></u>
32	80/2048	3.91		6	18/2048	0.88	<u> </u>
31	76/2048	3.71		5	17/2048	0.83	
30	72/2048	3.52		4	16/2048	0.78	<u> </u>
29	68/2048	3.32	<u></u>	3	15/2048	0.73	
28	64/2048	3.12		2	14/2048	0.68	
27	60/2048·	2.93	ļ	1	13/2048	0.63	
							0.000

Note: VD input voltage must not exceed the Vref voltage.

VD Threshold dimming voltage V.S. PWM duty cycle (Typical Value) 25% PWM maximum table

Pulse Step	PWM Duty	Cycle	Threshold	Pulse Step	PWM Duty	Cycle	Threshold
Number	Pulse Count	%	Voltage	Number	Pulse Count	%	Voltage
52	256/1024	25.0		26	56/1024	5.47	
51	240/1024	23.4		25	52/1024	5.08	<u> </u>
50	224/1024	21.9		24	48/1024	4.69	
49	208/1024	20.3	}	23	46/1024	4.49	
48	192/1024	18.8		22	44/1024	4.30	
47	184/1024	18.0		21	42/1024	4.10]
46	176/1024	17.2		20	40/1024	3.91	
45	168/1024	16.4		19	38/1024	3.71	<u> </u>
44	160/1024	15.6		18	36/1024	3.52	<u> </u>
43	152/1024	14.8	ļ	17	34/1024	3.32	ļ
42	144/1024	14.1		16	32/1024	3.13	ļ
41	136/1024	13.3		15	30/1024	2.93	<u> </u>
40	128/1024	12.5	·	14	28/1024	2.73	
39	120/1024	11.7	<u> </u>	13	26/1024	2.54	
38	112/1024	10.9		12	24/1024	2.34	
37	104/1024	10.2		11	23/1024	2.25	
36	96/1024	9.38		10	22/1024	2.15	
35	92/1024	8.98	· · · · · ·	9	21/1024	2.05	<u> </u>
34	88/1024	8.59		8	20/1024	1.95	<u> </u>
33	84/1024	8.20		7	19/1024	1.86	
32	80/1024	7.81		6	18/1024	1.76	
31	76/1024	7.42		5	17/1024	1,66	<u> </u>
30	72/1024	7.03	<u> </u>	4	16/1024	1.56	·
29	. 68/1024	6.64	<u> </u>	3	15/1024	1.46	<u> </u>
28	64/1024	6.25	ļ	2	14/1024	1.37	
27	60/1024	5.86		1	13/1024	1.27	
			ļ				0.000
							

Note: VD input voltage must not exceed the Vref voltage.

VD Threshold dimming voltage V.S. PWM duty cycle (Typical Value) 50% PWM maximum table

Pulse Step	PWM Duty	Cycle	Threshold Voltage	Pulse Step	PWM Duty	Cycle	Threshold Voltage
Number	Pulse Count	%	voitage	Number	Pulse Count	%	Voltage
52	256/512	50.0		26	56/512	10.9	<u> </u>
51	240/512	46.9]	25	52/512	10.2	
50	224/512	43.8		24	.48/512	9.38	
.49	208/512	40.6		23	46/512	8.98	
48	192/512	37.5		22	44/512	8.59	
47	184/512	35.9		21	42/512	8.20	ļ
46	176/512	34.4		20	40/512	7.81	<u> </u>
45	168/512	32.8]	19	38/512	7.42	
44	160/512	31.3	} -	18	36/512	7.03	<u></u>
43	152/512	29.7		17	34/512	6.64	
42	144/512	28.1	}	16	32/512	6.25	}
41	136/512	26.6	·	15	30/512	5.86	
40	128/512	25.0]	14	28/512	5.47	<u> </u>
39	120/512	23.4	}	13	26/512	5.08	
38	112/512	21.9		12	24/512	4.69	
37	104/512	20.3	}	11	. 23/512	4.49	<u> </u>
36	96/512	18.8		1 0	22/512	4.30	
35	92/512	18.0		9	21/512	4.10	
34	88/512	17.2		8	20/512	3.91	
33	84/512	16.4]	7	19/512	3.71	}
32	80/512	15.6		6	18/512	3.52	
31	76/512	14.8	<u> </u>	5	17/512	3.32	}
30	72/512	14.1	}	4	16/512	3.13	
29	68/512	13.3		3	15/512	2.93]
28	64/512	12.5	ļ	2	14/512	2.73	<u> </u>
27	60/512	11.7]	1	13/512	2.54	0.000
							0.000

Note: VD input voltage must not exceed the Vref voltage.

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSM5267B-15

DOT DRIVER

GENERAL DESCRIPTION

The MSM5267B-15 is a CMOS multi-digit display driver and consists of a 34-bit shift register, a 33-bit latch, and a 33-bit VF tube driver.

FEATURES

- Complete static operation to ensure stability against noise
- 3 or 4-signal line connection with microcomputers.
- Direct drive of VF tubes (8 outputs of high-current drive, 25 outputs of low-current drive)
- Capability of self-load mode.
- Low power consumption.
- Single power supply and operating voltage range of 8V to 18V

BLOCK DIAGRAM

PIN CONFIGURATION

	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MSM 5267B-15	40		

PIN DESCRIPTION

PIN#	Pin Name	Comments
1	V _{dd}	Input Positive supply voltage Terminal
2	Data	Input Data Acquisition Terminal
3	Clock	Input Clock Terminal
4	Output 1	Output Shift Register 32
5	Output 2	Output Shift Register 21
6	Out put 3	Output Shift Register 22
7	Output 4	Output Shift Register 23
8	Output 5	Output Shift Register 30
9	Output 6	Output Shift Register 13
10	Output 7	Output Shift Register 14
11	Output 8	Output Shift Register 15
12	Output 9	Output Shift Register 1
13	Output 10	Output Shift Register 33
14	Output 11	Output Shift Register 5

PIN DESCRIPTION

PIN#	Pin Name	Comments
15	Output 12	Output Shift Register 6
16	Output 13	Output Shift Register 7
17	Out put 14	Output Shift Register 28
18	Output 15	Output Shift Register 27
19	Output 16	Output Shift Register 31
20	Output 17	Output Shift Register 18
21	Output 18	Output Shift Register 2
22	Output 19	Output Shift Register 10
23	Output 20	Output Shift Register 26
24	Output 21	Output Shift Register 29
25	Output 22	Output Shift Register 3
26	Output 23	Output Shift Register 8
27	Output 24	Output Shift Register 9
28	Out put 25	Output Shift Register 4
29	Output 26	Output Shift Register 11
30	Output 27	Output Shift Register 16
31	Output 28	Output Shift Register 17
32	Output 29	Output Shift Register 12
33	Output 30	Output Shift Register 19
34	Output 31	Output Shift Register 24
35	Output 32	Output Shift Register 25
36	Output 33	Output Shift Register 20
37	Data Out	Output Data Shift Register
38	Load Enable	Input for Loading Word into Data Latch from Data Shift Register
39	Vss	Ground Potential Terminal
40	Blank	Input for Turning Output Drivers Off

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Ta = 25°C, Unless otherwise specified

Parameter	Symbol	Condition	Min	Max	Unit
Supply Voltage	V _{DD}	_	- 0.3	20	ν
Input Voltage	V,	_	- 0.3	VDD + 0.3	ν
Operating Temp	Ta		- 40	85	°C
Storage Temp	T _{st}	_	- 65	150	°C

AC Characteristics

Ta = -40°C to +85°C, $V_{DD} = 8V$ to 18V Unless otherwise specified

Characteristics	Symbol	Condition	MIN	MAX	Units
Clock Frequency	Fċ			160	KHz
Clock Pulse Width	Pwc	Either positive or negative	2.5		μs
Slew Rate Outputs; (1-33)	. t _R	$C_L = 100_P Ft = 20\% to 80\%$ or 80% to 20% of V_{DD} $V_{DD} = 8V$ or $V_{DD} = 18V$		5	μς
Data Setup Time	ts		1		μs
Data Hold Time	t _H		200		ns
OUTput Delay from Blank	t _{ODB}	C _L = 100 _P FV _{DD} = 8V ·		7	μs
OUTput Delay from Load	topl	$C_L = 100_P FV_{DD} = 8V$		8	μς
Power on Reset Slew Rate	PRSR		0.001	10	V/µs
Load Pulse Width	PWL		1.6		μs

Timing Chart

DC Characteristics

Ta = -40 to 85°C Unless otherwise specified

Characteristic	SYM	Conditi	MIN	MAX	Unit	
High Level Input Voltage	V _{IH}	V _{DD} = 8 to 18V	3.5	V _{DD} + 0.3	٧	
Low Level Input Voltage	V _{IL}	V _{DD} = 8 to 18V		- 0.3	0.8	٧
High Input Current (PIN 2, 3, 38)	l _{IH} 1	V _{DD} = 8to 18V. V _I	= V _{DD}		1	μА
Low Input Current (PIN 2, 3, 38)	l _{IL} 1	$V_{DD} = 8 \text{ to } 18V, V_1$	= V _{SS}		- 1	μА
High Input Current (PIN 40)	I _{IH} 2	$V_{DD} = 8 \text{ to } 18V, V_{I}$	= 3.5V	- 5	- 125	μА
Low Input Current (PIN 40)	l _{IL} 2	$V_{DD} = 8 \text{ to } 18V, V_1$	= VSS	- 5	- 125	μА
Supply Current		$V_{DD} = 8$ to 16V, All Outputs open $T_a = -40$ °C, 25°C		,	10	mA
зарріу сипенс	I _{DD}	$V_{DD} = 8 \text{ to } 16V, \text{ Al}$ open $T_a = 85^{\circ}\text{C}$	8 to 16V, All Ouputs 5°C		7	mA
Low Current Output Drivers	V _{OH} 1	V _{DD} = 9.5V, I _{OH}	Ta= 25°C - 40°C	VDD - 0.3		v
(ON) (PIN4 – 16, 25 – 36)		= - 1.5mA	Ta = 85°C	VDD - 0.5		
Low Current Output Drivers	V _{OH} 2	V _{DD} = 9.5V, I _{OH}	Ta = 25°C - 40°C	VDD - 0.3		V
(ON) (PIN 17 – 24)		= - 6mA	Ta= 85°C	VDD - 0.5		
High Current OutPut Drivers	V _{OH} 2	V _{DD} = 9.5V, I _{OH}	Ta = 25°C - 40°C	VDD - 2.0		v
(ON) (PIN 17 – 24)	0	= - 30mA	Ta= 85℃	VDD - 2.5		
Output Drivers (OFF) (PIN 4-36)	V _{OL}	V _{DD} = 9.5V, I _{OL} = 1μA / 500μA			V _{SS} + 0.2 /V _{SS} + 5	٧
High Voltage Data out (PIN37)	V _{OHD}	V _{DD} = 9.5V, I _{OHD} =	= - 500μA	. VDD - 5		٧
Low Voltage Dataout (PIN37)	V _{OLD}	I _{OLD} = 1µA			V _{SS} + 0.4	٧

FUNCTIONAL DESCRIPTION

Data Input

The data pattern (33 bits) supplied to the device through this input controls the output driver state (On or Off).

- 1. A high level turns the output driver on.
- 2. A low level turns the output driver off.

Clock input

A Positive transition of the clock loads and shifts the data. This input also has a Schmitt trigger which provides 0.3 volts of hysteresis.

Blanking Input

A low-level voltage at this pin turns the output drivers off; an internal pull up is provided on this pin.

Load Enable

A high-level at this input transfers the data from the shift register to the data latch, and sets the shift register to zero.

First data bit read-in is stored in shift register #1, the last data bit read-in is stored in shift register #33. When the shift registers are full, a high Voltage level applied to the load enable input will transfer the data from the shift register to the data latch, and then to the output through the 33 x 33 matrix. This matrix determines shift register out put designation. The device is mask programmable for the 33 x 33 matrix, thus providing the capability of changing the shift register output designation. The device has 34 shift registers and 33 data latches as shown in the functional block diagram.

There are two modes of operation:

Self-Load Mode

In this mode Data Out (pin 37) is connected to Load Enable (pin 38), and the data word is constructed with 33 bits (including the one self-load bit set to logic 1). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers through the 33 × 33matrix. Before the next clock pulse, the registers are zeroed.

Non-Self-Load Mode

In this mode, the Data Out and the Load Enable pins are not connected, and the Load Enable input is controlled by an external source. There are two types of operation in this mode.

- the data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the Load Enable pin before the rise of the clock pulse following the 34th clock pulse.
- The data word consists of 33bits without the self-load bit. To transfer the data, an high voltage level is applied to the Load Enable pin before the rise of the 34th clock pulse.

When the display driver is used in a cascade configuration, a filler bit must be inserted between each group of 33 data bits. The filler bit must be logic 1 when used with the self-loading mode and a logic 0 when used in the non-self-loading mode.

When the cascaded devices are used in self-load mode. the Data Out pin of the last device must be connected to the load enable pin of all devices as shown in the above figure.

When two display drivers are cascaded, sufficient on-chip time delays allow the system to operate within the specification of the device and work in a system.

Up to 10 driver inputs may be connected to the Data Out pin (pin 37) of the last device.

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor

MSM5328

DOT DRIVER

GENERAL DESCRIPTION

The MSM5328RS is a CMOS multi-digit display driver and consists of a 34-bit shift register, a 33-bit latch, and a 33-bit VF tube driver.

FEATURES

- Complete static operation to ensure stability against noise
- 3 or 4-signal line connection with microcomputers.
- Direct drive of VF tubes (8 outputs of high-current drive, 25 outputs of low-current drive)
- Capability of self-load mode.
- Low power consumption.
- Single power supply and operating voltage range of 8V to 18V

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN#	Pin Name	Comments
1	V _{dd}	Input Positive supply voltage Terminal
2	Data	Input Data Acquisition Terminal
3	Clock	Input Clock Terminal
4	Output 1	Output Shift Register 32
5	Output 2	Output Shift Register 21
6	Out put 3	Output Shift Register 22
7	Output 4	Output Shift Register 23
8	Output 5	Output Shift Register 30
9	Output 6	Output Shift Register 13
10	Output 7	Output Shift Register 14
11	Output 8	Output Shift Register 15
12	Output 9	Output Shift Register 1
13	Output 10	Output Shift Register 33
14	Output 11	Output Shift Register 5

PIN DESCRIPTION

PIN#	Pin Name	Comments
15	Output 12	Output Shift Register 6
16	Output 13	Output Shift Register 7
17	Out put 14	Output Shift Register 28
18	Output 15	Output Shift Register 27
19	Output 16	Output Shift Register 31
20	Output 17	Output Shift Register 18
21	Output 18	Output Shift Register 2
22	Output 19	Output Shift Register 10
23	Output 20	Output Shift Register 26
24	Output 21	Output Shift Register 29
25	Output 22	Output Shift Register 3
26	Output 23	Output Shift Register 8
27	Output 24	Output Shift Register 9
28	Out put 25	Output Shift Register 4
29	Output 26	Output Shift Register 11
30	Output 27	Output Shift Register 16
31	Output 28	Output Shift Register 17
32	Output 29	Output Shift Register 12
33	Output 30	Output Shift Register 19
34	Output 31	Output Shift Register 24
35	Output 32	Output Shift Register 25
36	Output 33	Output Shift Register 20
37	Data Out	Output Data Shift Register
38	Load Enable	Input for Loading Word into Data Latch from Data Shift Register
39	Vss	Ground Potential Terminal
40	Blank	Input for Turning Output Drivers Off

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Ta = 25°C, Unless otherwise specified

Parameter	Symbol	Condition	Min	Max	Unit
Supply Voltage	V _{DD}	-	- 0.3	20	V
Ir:put Voltage	V,	_	- 0.3	VDD + 0.3	V
Operating Temp	Ta	_	- 40	85	°C
Storage Temp	T _{st}	· 	- 65	150	°C

AC Characteristics

Ta = -40°C to +85°C, $V_{DD} = 8V$ to 18V Unless otherwise specified

Characteristics	Symbol	Condition	MIN	MAX	Units
Clock Frequency	Fc		 	160	KHz
Clock Pulse Width	Pwc	Either positive or negative	2.5		μs
Slew Rate Outputs; (1-33)	t _R	$C_L = 100_P Ft = 20\% to 80\%$ or 80% to 20% of V_{DD} $V_{DD} = 8V$ or $V_{DD} = 18V$		5	рs
Data Setup Time	. ts		1		μs
Data Hold Time	t _H		200		ns
OUTput Delay from Blank	t _{ODB}	$C_L = 100_P FV_{DD} = 8V$		7	μs
OUTput Delay from Load	t _{ODL}	$C_{L} = 100_{P} FV_{DD} = 8V$		8	μs
Power on Reset Slew Rate	PRSR		0.001	10	V/µs
Load Pulse Width	PWL	1	1.6		μs

Timing Chart

DC Characteristics

Ta = -40 to 85°C Unless otherwise specified

Characteristic	SYM	Conditi	ons	MIN	MAX	Unit	
High Level Input Voltage	V _{IH}	V _{DD} = 8 to 18V		3.5	V _{DD} + 0.3	٧	
Low Level Input Voltage	V _{IL}	V _{DD} = 8 to 18V		- 0.3	0.8	٧	
High Input Current (PIN 2, 3, 38)	l _{IH} 1	V _{DD} = 8to 18V. V _I	= V _{DD}	-	1	μА	
Low Input Current (PIN 2, 3, 38)	l _{IL} 1	$V_{DD} = 8 \text{ to } 18V_{1}V_{1}$	= V _{\$\$}		- 1	μА	
High Input Current (PIN 40)	l _{IH} 2	$V_{DD} = 8 \text{ to } 18V, V_1$	= 3.5V	- 5	- 125	μА	
Low Input Current (PIN 40)	I _{IL} 2	$V_{DD} = 8 \text{ to } 18V, V_{I}$	= VSS	- 5	- 125	μА	
Supply Current	I _{DD}	$V_{DD} = 8 \text{ to } 16V, All open$ $T_a = -40^{\circ}C, 25^{\circ}C$	l Outputs		10	mA	
зарру ситепс		$V_{DD} = 8 \text{ to } 16V, \text{ Al}$ open $T_a = 85^{\circ}\text{C}$		7	mA		
Low Current Output Drivers	V _{OH} 1	V _{DD} = 9.5V, I _{OH}	Ta = 25°C - 40°C	V _{DD} - 0.3		V	
(ON) (PIN4 – 16, 25 – 36)	0,17	= - 0.8mA	Ta = 85°C	V _{DD} 0.5]	
High Current OutPut Drivers	V _{OH} 2	V _{DD} = 9.5V, I _{OH}	Ta = 25°C - 40°C	V _{DD} - 0.3		V	
(On) (PIN 17 – 24)		= - 3.5mA	Ta = 85°C	V _{DD} - 0.5			
Output Drivers (OFF) (PIN 4-36)	V _{OL}	V _{DD} = 9.5V, I _{OL} =	1μΑ / 500μΑ		V _{SS} + 0.2 /V _{SS} + 5	V	
High Voltage Data out (PIN37)	V _{OHD}	V _{DD} = 9.5V, I _{OHD} =	= – 500μA	V _{DD} - 5		V	
Low Voltage Dataout (PIN37)	V _{OLD}	I _{OLD} = 1μA			V _{SS} + 0.4	V	

FUNCTIONAL DESCRIPTION

Data Input

The data pattern (33 bits) supplied to the device through this input controls the output driver state (On or Off).

- 1. A high level turns the output driver on.
- 2. A low level turns the output driver off.

Clock Input

A Positive transition of the clock loads and shifts the data. This input also has a Schmitt trigger which provides 0.3 volts of hysteresis.

Blanking Input

A low-level voltage at this pin turns the output drivers off; an internal pull up is provided on this pin.

Load Enable

A high-level at this input transfers the data from the shift register to the data latch, and sets the shift register to zero.

First data bit read-in is stored in shift register #1, the last data bit read-in is stored in shift register #33. When, the shift registers are full a high Voltage level applied to the load enable input will transfer the data from the shift register to the data latch. The device has 34 shift registers and 33 data latches as shown in the functional block diagram.

There are two modes of operation:

Self-Load Mode

In this mode Data Out (pin 37) is connected to Load Enable (pin 38), and the data word is constructed with 33 bits (including the one self-load bit set to logic 1). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers. Before the next clock pulse, the registers are zeroed.

Non-Self-Load Mode

In this mode, the Data Out and the Load Enable pins are not connected, and the Load Enable input is controlled by an external source. There are two types of operation in this mode.

- the data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the Load Enable pin before the rise of the clock pulse following the 34th clock pulse.
- 2. The data word consists of 33bits without the self-load bit. To transfer the data, an high voltage level is applied to the Load Enable pin before the rise of the 34th clock pulse.

When the display driver is used in a cascade configuration, a filler bit must be inserted between each group of 33 data bits. The filler bit must be logic 1 when used with the self-loading mode and a logic 0 when used in the non-self-loading mode.

When the cascaded devices are used in self-load mode. the Data Out pin of the last device must be connected to the load enable pin of all devices as shown in the above figure.

When two display drivers are cascaded, sufficient on-chip time delays allow the system to operate within the specification of the device and work in a system.

Up to 10 driver inputs may be connected to the Data Out pin (pin 37) of the last device.

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1178 / MSC1179

7-SEGMENT DRIVER

GENERAL DESCRIPTION

The MSC1178/79 is a BiCMOS structure static display driver to directly drive a vacuum fluorescent (VF) display tube. The driver has a structure of a 56-pin flat package, which consists of a 35 bits shift register, latch circuit, 7 segment decoder, VF high voltage driver, LED dot driver, dimming OSC circuit, and dimming control circuit.

The driver is suited to a driver for frequency or clock display of an automobile digital tuning system.

FEATURES

- 56-pin flat package (small)
- 2 supply voltages

Interface, logic portion, LED driver: $V_{CC} = +4.5 \text{ to } +5.5 \text{ V}$

.VF display driver: $V_{DD} = +9 \text{ V to } + 18 \text{ V}$

- VF tube driven by positive voltage (V_{DD} = + 18 V MAX)
- VF tube directly connected: No pull down resistor required (CMOS push pull output)
- Dimming oscillation circuit built in (capacitor and resistor externally connected)
- Dimming control circuit built in, with duty (100%, 1/8, or 1/16) selector input terminal (LIGHT-SW). Use the most significant bit (MSB) to select 1/8 or 1/16. L: 1/8, H: 1/16
- With PWM IN input terminal to allow the PWM to continuously control dimming, with external PWM generation circuit
- 3-digit 7 segment output, 13-flag output (I_O = -1 mA TYP)
- 9-LED dot display (I_O = 20 mA MAX)
- Easy control by microprocessor and easy signal line connection (connected by three signal lines, DATA IN, CLOCK, and LOAD)
- 7 display patterns selected by device (The MSC1178GS-K and the MSC1179GS-K differ in the 7 display patterns from each other.)

MSC1178GS-K MSC1179GS-K

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

• Absolute maximum ratings

Parameter	Symbol	Conditions	Limits	Unit	
Supply voltage	V _{DD}		-0.3~+19	V	
Supply voltage	V _{CC}		-0.3~+6.5	V.	
Input voltage	Vı	DATA IN, CLOCK, LOAD LIGHT SW, PWMIN, O·E, OSC	-0.3~V _{CC} +0.3	V	
Maximum output current	lold	LD1~LD9	25	mA	
Allowable package loss	PD	·	300	mW	
Storage temperature	T _{stg}		- 55~ + 150	°C	

• Recommended operating range

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Supply voltage	V _{DD}		9	12	18	· V
Supply voltage	V _{CC}		4.5	5	5.5	V
Input voltage	VIH	DATA IN, CLOCK, LOAD LIGHT SW, PWM IN, O-E	0.7V _{.CC}		Vcc	V
Input voltage	V _{IL}	DATA IN, CLOCK, LOAD LIGHT SW, PWM IN, O·E	0		0.2V _{CC}	٧.
Output current	lold	LD1~LD9		10	20	mA
Operating temperature	TOP		- 40		+ 85	ů

DC characteristics

(Unless otherwise specified, $V_{CC} = 5V$, $V_{DD} = 12V$, $Ta = -40 \text{ to } +85^{\circ}\text{C}$)

. (611)		vise specifie	.u, v((= 3V, VDD	- 12V,	1a	10 to + 8:	, c,
Parameter	Symbol	(Conditio	n	MIN	TYP	MAX	Unit
Supply voltage	V _{DD}				9	12	18	٧
Supply voltage	V _{CC}				4.5	5	5.5	V
High level input voltae	V _{IH}	DATA IN,	CLOCK,	LOAD	0.7V _{CC}		V _{CC}	V
Low level input voltage	VIL	LIGHT SW,	PWM II	V, O·E	0		0.2V _{CC}	V
Input leak	l _{IL1}	DATA IN, O LOAD PWM IN, O	\	V _{CC} = 5.5V V _{CC} or 0V			±1	μА
High level input leak current	I _{IH}	LIGHT SW V _I = VCC = 5.5V					1	μА
Low level input current	I _{IL2}	$V_1 = 0V, VCC = 5.0V$			- 20	- 68	- 200	μΑ
High level output voltage	V _{OH1}	DATA OUT, PWM OUT, $I_O = -40\mu A$			4.3	4.9		V
High level output voltage	V _{OH2}	a1~g3, D1~D13, l _O = -1mA			11.4	11.8		٧
Low level output voltage	V _{OL1}	DATA OUT, PWM OUT, I _O = 40µA				0.1	0.4	٧
Low level output voltage	V _{OL2}	a1~g3, D1~D13, I _O = 100μA				0.2	0.7	V
Low level output voltage	V _{OL3}	LD1~LD9, I _O = 20mA			·	0.2	1	V
High level output leak current	I _{TH}	LD1~LD9,	$V_0 = V_0$	_{DD} = 18V			10	μА
V _{DD} line supply current	I _{DD1}	PWM IN = $a1 \sim g3 \rightarrow i$ $D_1 \text{ to } D_{13} \text{ is output, ot terminals output at}$	icharad licharad all high her inpo at 0V or	cter level ut Vcc,			0.1	mA
	I _{DD2}	O·E = 0V, 0 terminals output at	at 0V or				0.1	mA
	l _{CC1}	OSC = 0V		Other input			0.1	mA
		LIGHT SW =	Vcc	terminals at	·			
V _{CC} line supply current	I _{CC2}	R = 51kΩ C = CR oscillator LIGHT SW =	ı, İ	0V or V _{CC} , output at no load		0.3	1	
	I _{CC3}	OSC = 0V, PV O·E = V _{CC} ,LD input termin at no load	1~9:ON(9	20	mA

AC characteristics

 $V_{CC} = 5V \pm 10\%$. $Ta = -40 \sim +85$ °C, $C_L = 10_{PF}$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Maximum clock frequency	fclk	CLOCK			1	MHz
Minimum clock pulse width	twc	. CLOCK	400			nS
Minimum load pulse width	t _{WL}	LOAD	400			nS
Clock input rise and breaking time	t _{fc} ·	CLOCK			1	μS
DATA IN→ CLOCK setup time	t _{SC}		200			nS
CLOCK→ DATA IN hold time	t _{HOLD}		100			ņS
CLOCK→ DATA OUT propagation delay time	t _{PD}				700	nS
DATA OUT hold time	t _{DH}		150			nS
CLOCK→ LOAD setup time	t _{SL}		500			nS
CR oscillation frequency	fosc	$C = 0.047 \mu F$, $R = 51 k\Omega$	1	2	4	kHz

Timing Chart

MAJOR SECTIONS EQUIVALENT CIRCUIT

DATA DESCRIPTION

(Table a)

			· · · · · · · · · · · · · · · · · · ·	·	
No.	Symbol	Function	Output terminal		escription
1	DIM(MSB)	Dimming control		"0": 1/8d	uty, "1" 1/16duty
2	D13		D13		
3	D12		D12	, ,	
4	D11		D11' -]	•
5	D10		D10		
6	D9] .	D9]	"0" : OFF
7	D8	Flag(VF)	D8	VF	"1": ON
8	D7 -]	D7 ·	driver	
9	D6]	D6]	
10	D5		D5	1	
11	D4]	D4]	
12	D3]	D3] .	
13	D2	7	D2	1	
14	D1		D1		
15	LD9	Flag(LED)	LD9	LED driver	
16	D1-8				
17	D1-4	7 segment	a1~g1		
18	D1-2	decoder(1st digit)			
19	D1-1			j	
20	D2-8	,		VF	Seé Table b.
21	D2-4	7 segment	a2~g2	driver	
22	D2-2	decoder(2nd digit)			
23	D2-1				
24	D3-8				
25	D3-4	7 segment	a3~g3		
26	D3-2	decoder(3rd digit)			
27	D3-1				
28	LD8		LD8		
29	LD7		LD7		
30	LD6	Flag(LED)	LD6	LED	"0" : OFF
31	LD5	riag(LED)	LD5	driver	
32	LD4		LD4		"1":ON
33	LD3		LD3		
34	LD2		LD2] .	
35	LD1(LSB)	1	LD1	7	

Note: "No." indicates the output number of the shift register. The first bit for data transfer is No. 1.

7 SEGMENT DECODER DISPLAY PATTERN

(Table b)

	Input data Output												
													Remarks
	8	4	2	1	а	b	c	d	е	f	g	Display pattern	
0	0	0	0	0	1	1	1	1	1	1	0	1221	
1	0	0	0	1	0	1	1	0	0	0	0	1	
2	0	0	1	0	1	1	0	1	1	0	1	1111	
3	0	0	1	1	1	1	1	1	0	0	1	11	
4	0	1	0	0	0	1	1	0	0	1	1	<u> </u>	
5	0	1	0	1	1	0	1	1	0	1	1	1111	
- 6	0	1	1	0	1	0	1	1	1	1	1		
7 :	0	1	1	. 1	1	1	1	0	0	1	0	- · 	MSC1179GS-K:" "
8	1	0	0	0	1	1	1	1	1	1	1	177	
. 9	1	0	0	1	1	1	1	1	0	1	1		
Α	1	0	1	0	1	1	1	0	1	1	1	11	
В	1	0	1	1	0	0	1	1	1	1	1	<u>.</u>	
С	1	1	0	0	0	0	0	1	1	0	1		
D	1	1	0	1	0	1	1	1	1	0	1	<u> </u>	
E	1	1	1	0	1	0	0	1	1	1	1	<u> </u>	
F	1	1	1	1	0	0	0	0	0.	0	0	Blank	

FUNCTIONAL DESCRIPTION

• DATA IN, CLOCK, LOAD: Data set input terminals

DATA IN is a data input terminal, which is read into the internal shift register at the leading edge of the clock input terminal CLOCK.

LOAD is a load input terminal, which loads data of the shift register, data of 35 bits at a time, into the latch circuit. The timing chart above shows that, when a pulse is input to the LOAD terminal after the data of 35 bits is input, the display data is changed to a new one.

DATA OUT: Data output terminal

DATA OUT is a terminal for cascade connection, the output of which is connected to the DATA IN terminal on the next stage.

OSC: Oscillation terminal

OSC is a capacitor (C) and resistor (R) connection terminal of the oscillation circuit for dimming control. The oscillation frequency depends on the values of the external capacitor (C) and resistor (R).

The value for R should not be less than 30 k Ω . The oscillation frequency f_{OSC} is expressed by the following equation:

$$f_{OSC} = \frac{k}{C \cdot R}$$
 (k \div 5)

When no oscillation circuit is used (i.e the PWM OUT terminal is not used), connect the OSC terminal to V_{SS} .

LIGHT SW: Light switch input terminal

LIGHT SW is an input terminal with a pull-up resistor, which controls the PWM OUT output waveform. (See Table c.)

• PWM OUT: PWM output terminal

PWM OUT is a dimming PWM output terminal. When this terminal is connected to the PWM IN input terminal, the display duty ratio can be changed to 1/1, 1/8, or 1/16. Table c is a function table. (Table c)

LIGHT SW input	MSB of data	Display duty ratio		
Open or "H"	<u>-</u>	1/1		
"L"	0 .	1/8		
"L"	1	1/16		

The frequency of a PWM OUT output signal is fosc/16.

• PWM IN: PWM input terminal

PWM IN is a dimming PWM input terminal. If the input is made High when the O·E is High, the display is turned ON. If the input is made Low, the display is turned OFF.

Accordingly, when a signal at 100 to several 100s Hz (the duty ratio is variable) is input to the PWM IN terminal, the display brightness can be continuously controlled.

When the PWM OUT output is connected to the PWM IN terminal, the display duty ratio, as mentioned above, can be changed to one of the three values.

• O·E: Display output enable input terminal

When the input is High, the display state is normal. When the input is Low, all displays are turned OFF.

If the O·E is kept Low until the data of the latch circuit is determined when power is turned ON, unnecessary displays can be eliminated.

Two O·E and PWN IN input signals are ANDed in the IC to a PWM signal. The display is ON (normal) when PWM = "1" or OFF when PWM = "0".

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1190

7-SEGMENT DRIVER

GENERAL DESCRIPTION

The MSC1190GS is a Bi-CMOS structure static display driver to directly drive a vacuum fluorescent (VF) display tube. The driver has a structure of a 56-pin flat package, which consists of a 35-bit shift register, latch circuit, 7 segment decoder, VF high voltage driver, LED dot driver, and dimming control circuit.

The driver is suited to a driver for frequency or clock display of an automobile digital tuning system.

FEATURES

- 56-pin flat package
- 2 supply voltages (+ side)

Interface, logic portion, LED driver: $V_{CC} = +4.5 \text{ to } +5.5 \text{ V}$

VF display driver: $V_{DD} = +9 \text{ to } +18V$

- VF tube driven by positive voltage (V_{DD} = + 18V_{MAX})
- VF tube directly connected without a pull-down resistor (CMOS push pull output)
- Dimming oscillation circuit built in (capacitor and resistor externally connected)
- Dimming control circuit built in, with duty (1/1, 1/8, or 1/16) selector input terminal (LIGHT-SW). Use the most significant bit (MSB) to select 1/8 or 1/16.
- With PWM IN input terminal to allow the PWM to continuously control dimming, with external PWM generation circuit (the LED driver is not affected by PWM IN input)
- VF driver: 3-digit 7 segment output, 13 flag outputs

 $(I_O = -1 \text{ mA}_{TYP})$

- LED driver: 9 dot outputs (I_O = 25mA_{MAX})
- Easily interfaced with microprocessor (by three inputs of DATA IN, CLOCK, and LOAD)

PIN CONFDIGURATION

ELECTRICAL CHARACTERISTICS

Absolute maximum ratings

Parameter	Symbol	Condition	Limits	Unit
Supply voltage	V _{DD}		-0.3~+19	٧
Supply voltage	V _{CC}		- 0.3~ + 6.5	٧
Input voltage	Vı	DATA IN, CLOCK, LOAD LIGHT SW, PWMIN, O·E, OSC	-0.3~V _{CC} +0.3	V
Maximum output current	lold	LD1~LD9	30	mA.
Allowable package loss	PD		300	mW
Storage temperature	T _{stg}		- 55∼ + 150	°C

• Recommended Operating Conditions

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Supply voltage	V _{DD}		9	12	18	V
Supply voltage	V _{CC}		4.5	5	5.5	. A
Input voltage	ViH	DATA IN, CLOCK, LOAD LIGHT SW, PWMIN, O-E	0.7V _{CC}		V _{CC}	٧
Input voltage	V _{IL}	DATA IN, CLOCK, LOAD LIGHT SW, PWMIN, O-E	0	-	0.2V _{CC}	٧
Output current	lold	LD1~LD9		15	25	mA
Operating temperature	T _{OP}		- 40		+ 85	°C

DC characteristics

(Unless otherwise specified, $V_{CC} = 5V$, $V_{DD} = 12V$, $Ta = -40 \text{ to } + 85^{\circ}\text{C}$)

(Uni	ess otnerv	vise specifie	ed, V _{CC}	$=5V$, V_{DD}	= 12V,	Ta = - 4	10 to +8!	5°C)
Parameter	Symbol	. (Conditio	n	MIN	TYP	MAX	Unit
Supply voltage	V _{DD}				9	12	18	V
Supply voltage	V _{CC}				4.5	5	5.5	· v
High level input voltae	VIH	DATA IN,	CLOCK, I	OAD	0.7V _{CC}		Vcc	V
Low level input voltage	V _{IL}	LIGHT SW	, PWM II	N, O∙E	0		0.2V _{CC}	V
Inputleak	l _{IL1}	DATA IN, C LOAD PWM IN, C	V	/ _{CC} = 5.5V V _{CC} or 0V			± 1	μА
High level input leak current	I _{IH} .	LIGHT SW	V ₁ = VCC	= 5.5V			1.	μА
Low level input current	I _{IL2}	V ₁ = 0V, VCC = 5:0V			- 20	- 68	- 200	μА
High level output voltage	V _{OH1}	DATA OUT, PWM OUT, I _O = -40μA			4.3	4.9		٧
High level output voltage	V _{OH2}	a1~g3, D1~D13, I _O = -1mA			11.4	11.8		v
Low level output voltage	V _{OL1}	DATA OUT, PWM OUT, $I_0 = 40\mu A$				0.1	0.4	v
Low level output voltage	V _{OL2}	a1~g3, D1~D13, I _O = 100μA				0.2	0.7	٧
Low level output voltage	V _{OL3}	LD1~LD9, I _O = 25mA				0.25	0.8	v
High level output leak current	I _{TH}	LD1~LD9	, V _O = V _C	_{DD} = 18V		-	10	μА
V _{DD} line supply current	I _{DD1}	PWM IN = $a1\sim g3\rightarrow i$ $D_1 \text{ to } D_{13}$ output, of terminals output at	icharad all high ther inpu	iter level ut			0.1	mA
	I _{DD2}	O·E = 0V, terminals output at	at 0 V or				0.1	mA
•	I _{CC1}	OSC = 0V LIGHT SW =	vcc	Other input terminals at			0.1	mA
V _{CC} line supply current	I _{CC2}	R = 51kΩ C = CR oscillato LIGHT SW =	n,	0 V or VCC, output at no load		0.3	1	
	l _{CC3}		D1~9:0N	cc (Low), Other or V _{cc} , output		9	20	mA

AC characteristics

 $V_{CC} = 5V \pm 10\%$, $T_0 = -40 \sim +85$ °C, $C_L = 10_{PF}$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Maximum clock frequency	f _{CLK}	CLOCK			1	MHz
Minimum clock pulse width	twc	CLOCK	. 400			nS
Minimum load pulse width	t _{WL}	LOAD	400			nS
Clock input rise and breaking time	t _{fc}	CLOCK			1	μS
DATA IN→ CLOCK setup time	t _{SC}		200			nS
CLOCK→ DATA IN hold time	t _{HOLD}		100			nS
CLOCK→ DATA OUT propagation delay time	t _{PD}	,			700	nS
DATA OUT hold time	t _{DH}		150			nS
CLOCK→ LOAD setup time	t _{SL}		500	,		nS
CR Oscillating frequency	fosc	$C = 0.047 \mu F$, $R = 51 k\Omega$	1	2	4	, kHz

TIMING CHART

MAJOR SECTIONS EQUIVALENT CIRCUIT

DATA DESCRIPTION

(Table a)

No.	Symbol	Function	Output terminal	D	Description	
1	DIM(MSB)	Dimming control		"0" : 1/8d	uty, "1" 1/16duty	
2	D13		D13			
3	D12		D12			
4	D11		D11			
5	D10		D10	1		
6	D9		D9]	"0" : OFF	
7	D8	Flag(VF)	D8	VF	"1":ON	
8	D7		D7	driver	lii	
9	D6		D6]	,	
10	D5		D5			
11	D4	·	D4	1		
12	D3	1	D3	1	,	
13	D2		D2			
14	D1		D1			
15	LD9	Flag(LED)	LD9	LED driver		
16	D1-8					
17	D1-4	7 segment	a1~g1		,	
18	D1-2	decoder(1st digit)				
19	D1-1					
20	D2-8			VF	See Table b.	
21	D2-4	7 segment	a2~g2	driver		
22	D2-2	decoder(2nd digit)				
23	D2-1					
24	D3-8			1		
25	D3-4	.7 segment	a3~g3			
26	D3-2	decoder(3rd digit)	1		· •	
27	D3-1		1			
28	LD8		LD8			
29	LD7	1	LD7	1		
30	LD6	1	LD6	1	#0# OFF	
31	LD5	Flag(LED)	LD5	LED driver	"0":OFF	
32	LD4	1	ĽD4	1	"1":ON	
33	LD3		LD3	1		
34	LD2	1	LD2	1		
35	LD1(LSB)	1	LD1	1	1	

Note: "No." indicates the output number of the shift register. The first bit for data transfer is No. 1.

7 SEGMENT DECODER DISPLAY PATTERN

												(Table b)
Input data				Output								
	8	4	2	1	а	b	с	d	е	f	g	Display pattern
0	0	0	0	Ö	1	1	1	1	1	1	0	
1	0	0	0	1	0	1	1	0	0	0	0	
2	0	0	1	0	1	1	0	1	1	0 .	1	
3	0	0	1	1	1	1	1	1	0	0	1	11
4	0	1	0	0	0	1	1	0	0	1	1	Ľ
5	0	1	0	1	1	0	1	1	0	1	1	1_71
6	0	1	1	0	1	0	1	1	1	1	1	1_1_1
7	0	1	1	1	1	1	1	0	0	1	0	T
8	1	0	0	0	1	1 4	1	1	1	1	1	12:01
9	1	0	0	1	1	1	1	1	0	1 -	1	
Α	1	0	1	0	1	1	1	0	1	1	1	
В	1	0	1	1	0	0	1	1	1	1	1	<u>-</u>
С	1	1	0	0	1	0	0	1	1	1	0	
D	1	1	0	1	0	1	1	1	1	0	1	ᆜ
E	1	1	1 .	0	1	0.	0	1	1	1	1	-
F	1	1	1	. 1	0	0	0	0	0	0	0	Blank

FUNCTIONAL DESCRIPTION

• DATA IN, CLOCK, LOAD: Data set input terminals

DATA IN is a data input terminal, which is read into the internal shift register at the leading edge of the clock input terminal CLOCK.

LOAD is a load input terminal, which loads data of the shift register, data of 35 bits at a time, into the latch circuit. The timing chart above shows that, when a pulse is input to the LOAD terminal after the data of 35 bits is input, the display data is changed to a new one.

DATA OUT: Data output terminal

DATA OUT is a terminal for cascade connection, the output of which is connected to the DATA IN terminal on the next stage.

• OSC: Oscillation terminal

OSC is a capacitor (C) and resistor (R) connection terminal of the oscillation circuit for dimming control. The oscillation frequency depends on the values of the external capacitor (C) and resistor (R).

The value for R should not be less than 30 k Ω . The oscillation frequency f_{OSC} is expressed by the following equation:

$$f_{OSC} = \frac{k}{C \cdot R} \quad (k = 5)$$

When no oscillation circuit is used (i.e the PWM OUT terminal is not used), connect the OSC terminal to V_{SS} .

• LIGHT SW: Light switch input terminal

LIGHT SW is an input terminal with a pull-up resistor, which controls the PWM OUT output waveform. (See Table c.)

• PWM OUT: PWM output terminal

PWM OUT is a dimming PWM output terminal. When this terminal is connected to the PWM IN input terminal, the display duty ratio can be changed to 1/1, 1/8, or 1/16. Table c is a function table. (Table c)

LIGHT SW input	MSB of data	Display duty ratio			
Open or "H"	-	1/1			
"L"	0	1/8			
"L"	1 .	. 1/16			

The frequency of a PWM OUT output signal is fosc/16.

PWM IN: PWM input terminal

PWM IN is a dimming PWM input terminal. If the input is made High when the O·E is High, the VF display is turned ON. If the input is made Low, the display is turned OFF.

Accordingly, when a signal at 100 to several 100s Hz (the duty ratio is variable) is input to the PWM IN terminal, the display brightness can be continuously controlled.

When the PWM OUT output is connected to the PWM IN terminal, the display duty ratio, as mentioned above, can be changed to one of the three values.

• O.E: Display output enable input terminal

When the input is High, the display state is normal. When the input is Low, all displays are turned OFF.

IF the O·E is kept Low until the data of the latch circuit is determined when power is turned ON, unnecessary displays can be eliminated.

Two O·E and PWN IN input signals are ANDed in the IC to a PWM signal. The VF display is ON (normal) when PWM = "1" or OFF when PWM = "0". The LED display is turned ON or OFF by O·E input but not affected by PWM IN input.

under any patent rights of OKI. Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise

*4 R = 51kΩ, C = 0.047μF (example)

- *1 The voltage for the LED may be supplied from $+12 \text{ V (V}_{DD})$.
- *2 When the DATA OUT terminal is connected to the DATA IN terminal on the next stage, the system is made expandable. (See Fig. b.)
- *3 If the dimming control switch is turned ON, the VF display output duty
- · ratio is changed from 1/1 to 1/8 or 1/16 (depending on the MSB of data). (See Tables a and c.)

Controller

OKI semiconductor MSC7110-xx / MSC7112-xx

12-SEGMENT, 16-DIGIT / 16-SEGMENT, 12-DIGIT

GENERAL DESCRIPTION

The MSC7110-xx and MSC7112-xx are general purpose display controllers for vacuum fluorescent display tube.

The MSC7110-xx drives 12-segment bargraph or 7-segment plus comma and decimal point alphanumeric displays with up to 16 display positions, and drives 5 LEDs.

The MSC7112-xx drives 16-segment bargraph, 7-segment plus comma and decimal point or 16-segment alphanumeric displays with up to 12 display positions, and drives 5LEDs.

The controller accepts command and display data input words on a clocked serial input line.

Commands control the on/off duty cycle, starting character position, number of characters to be displayed and display modes (PLA mode, PLA bypass mode and LED mode).

Encoded data words display bargraph position (single segment or increasing length), characters, decimal point, comma and LEDs.

No external drive circuit is required for displays that operate on 40mA of drive current up to 45 volts.

A 32 x 16 bit PLA (ROM) code is programmable.

FEATURES

Logic and LED driver supply voltage (VDD) : +5V

VF driver supply voltage (V_{EE}): -40V

• Driver output current

VF grid driver (source): -40mA
VF segment driver (source): -6mA
LED driver (source): -10mA

- Direct drive capability for vacuum fluorescent display
- 12 segment drivers (MSC7110-xx)
 16 segment drivers (MSC7112-xx)
- 16 digit drivers (MSC7110-xx)
 12 digit drivers (MSC7112-xx)
- 5 LED drivers
- Built-in oscillator circuit
- Built-in power-on-reset circuit with external C
- Serial host interface (data in, clock, load)
- Serial data input for 18-bit control and display data words

Command functions

On/off duty cycle

Starting character position

- : 1 to 16 (MSC7110-xx)
- : 1 to 12 (MSC7112-xx)

Number of characters

- : 1 to 16 (MSC7110-xx)
 - 1 to 12 (MSC7112-xx)
- 3-display modes

PLA mode, PLA bypass mode and LED mode

• 32 x 16 bit PLA provides data decoding to drive

1 to 12 bargraph segments

Any 1 of 12 bargraph segment

7-segment plus comma and decimal point alphanumeric characters (MSC7110-xx)

1 to 16 bargraph segment

Any 1 of 16 bargraph segment

7-segment plus comma and decimal point alphanumeric characters

14-segment alphanumeric characters (MSC7112-xx)

- The number of character decoded by PLA is 32
- Programmable PLA code
- 42 pin shrink DIP package/44 pin flat pacage

PIN DESCRIPTION

Terminal name	No. of terminals	Input, output	Connected to	Function
V _{DD} V _{SS} V _{EE}	1 1 1		Power source	V _{DD} -V _{SS} : Supply voltage for internal logic V _{DD} -V _{EE} : Supply voltage for VF driving circuit logic
DATA IN	1	Input	Microcomputer	Input shift register display data from the MSB (positive logic).
SCLK	1	Input	Microcomputer	Shift clock of the shift register. Data is shifted at the falling edge of SCLK.
LOAD	1	Input	Microcomputer	When the terminal is high, transfer of data from the shift register to the latch occurs.
POR	1	Input Schmitt with pull-up register and diode		Internal logic reset input when power is turned on. When the terminal is Low, the 18-bit latch, the duty cycle register, the digit register, the LED register and the write/read address register are all reset. And the outputs of SEGA to SEGP (*a), D ₁ to D ₁₂ (*b), and LED ₁ to LED ₅ are all turned off. When the terminal is connected to an external capacitor, the auto-poweron-reset function can be executed.
OSC I OSCO	1 1	Input Output		When an external resistor and a capacitor are connected, an oscillation circuit is formed. $C = 100 \text{ pF}, r = 47k\Omega,$ $f_{OSC} = 235 \text{ KHz} \pm 20\%$
SEGA~L SEGA~P	12*1 16*2	Output	Anode side of VF display tube	VF display tube driving output. The output is complementary.
D ₁ ~D ₁₂ D ₁ ~D ₁₆	12*2 16*1	Output	Grid side of VF display tube	VF display tube driving output. The output is complementary.
LED1 ~LED5	5	Output	LED	LED driving output. The output is complementary.

^{*}a SEGA to SEGL in case of MSC7110-xx *b D₁ to D₁₆ in case of MSC7110-xx *1 In case of MSC7110-xx *2 In case of MSC7112-xx

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Conditions	Limits	Unit
Supply voltage (1)	V _{DD}	_	-0.3~+6.5	V
Supply voltage (2)	V _{DD} – V _{EE}		0~50	V
Input voltage	Vi		-0.3~V _{DD} +0.3	V
Allowable loss	Pd	Ta≧25°C	~500	mW
Storage temperature	t _{STg}	- .	- 55∼ + 150	°C
	l ₀₁	All SEG output	- 10	
Output current	I ₀₂	All digit output	- 60	mA
	I ₀₃	LED1~LED5	- 20	

Operating Range

Parameter	Symbol	Conditions	Limits	Unit
Supply voltage (1)	V _{DD}	·	4.5~5.5	V
Supply voltage (2)	V _{DD} -V _{EE}	_	25~45	V
Oscillation frequency	fosc	C = 100pF R = 47kΩ	235 ± 20%	kHz
Operating temperature	TOP	_	- 20~ + 75	°C

DC Characteristics

$$\begin{cases} V_{DD} - V_{EE} = 45V \\ V_{DD} = 5V \pm 10\% & Ta = -20 \sim +75^{\circ}C \end{cases}$$

				\			./
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Terminal
High level input voltage	V _{IH}	-	0.7V _{DD}	_	_	>	All input
Low level input voltage	VIL	· –		_	0.3V _{DD}	٧	All input
High level input current	l _{IH}	$V_{DD} = 5.5V$ $V_{I} = V_{DD}$	_	_	1	μА	All input
Low level input current (1)	l _{IL1}	V _{DD} = 5.5V V _I = 0V	_	_	- 1	μА	All input except POR
Low level input current (2)	l _{IL2}	$V_{DD} = 5.5V$ $V_{I} = 0V$	– 27	- 55	- 110	μА	POR
High level output voltage (1)	V _{OH1}	V _{DD} = 4.5 I _{OH} = - 6mA	V _{DD} - 2.2	V _{DD} – 1.5	-	٧	All SEG output
Low level output voltage (1)	V _{OL1}	$V_{DD} = 4.5$ $I_{OL} = 0.2 \text{mA}$	_	V _{EE} + 0.8	V _{EE} + 1.3	V	All SEG output
High level output vltage (2)	V _{OH2}	V _{DD} = 4.5 I _{OH} = -30mA	V _{DD} – 2.9	V _{DD} – 2.3	_	V	All digit output
Low level output voltage (2)	V _{OL2}	$V_{DD} = 4.5$ $I_{OL} = 02.mA$		V _{EE} + 0.8	V _{EE} + 1.3	V	All digit output
High level input voltage (3)	V _{OH3}	V _{DD} = 4.5 I _{OH} = -10mA	V _{DD} – 1.5		-	٧	LED1~ LED5
High level output voltage (3)	V _{OL3}	$V_{DD} = 4.5$ $I_{OL} = 0.1 \text{mA}$	_	. —	0.5	V	LED1~ LED5
Supply current	I _{DD}	$V_{DD} = 5.5V$ No load $f_{OSC} = 245kHz$	_	8.5	15	mA	

AC Characteristics

 $V_{DD} = 5V \pm 10\%$ $Ta = -20 \sim +75$ °C

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
SCLK cycle time	t _{CP}		. 2	_	-	μS
SCLK, LOAD pulse width	t _W	_	1	_	_	μS
Data setup time	t _{DSU}		500	_	_	nS
Data hold time	t _{DHD}	_	500	-		nS
SCLK-LOAD time	t _{SL}	_	2	_	_	μS
LOAD-SCLK time	t _{LS}	_	2	-		μS
LOAD cycle time 1	t _{LCYC1}	f _{OSC} = 245kHz	205	_	—	μS
LOAD cycle time 2	t _{LCYC2}	f _{OSC} = 245kHz	200	_		μS

• Timing Chart

FUNCTIONAL DESCRIPTION

• LED display

Display data is output to the LED1 to LED5 terminals in correspondence with each bit by executing the L. R LOAD command. Input data uses positive logic. When the data is 1, the LED lights. When the data is 0, the LED goes off.

VF display (PLA (ROM) used)

Set optional data in the digit register and the duty register, and execute the W. A. C LOAD command to set the display digit position. Execute the PLA (ROM) DISPLAY command to write the display character address (PLA (ROM) address) in the RAM. The write address counter is incremented by one. The write address counter counts sequentially 0, 1, 2, -----, 14, 15, 0, 1, ---- regardless of the value of the digit register.

The segment code (ROM code) corresponding to the PLA (ROM) address is a user option.

• VF display (RAM direct display)

Set optional data in the digit resister and the duty register, and execute the W. A. C LOAD command to set the display digit position. Execute the DATA DISPLAY command to write the b_0 to b_{15} (*1) display data in the RAM. The write address counter is incremented by one. The write address counter counts sequentially 0, 1, 2, -----, 14, 15, 0, 1, ----- regardless of the value of the digit register.

*1: b₀ to b₁₁ display data in case of MSC7110-xx.

Brightness adjustment

The drightness can be adjusted by using the values of the duty cycle register and the digit register. The value of the duty cycle register changes the pulse width (B) at the D₁ to D₁₆ output terminals, and the value of the digit register changes the cycle (A).

The table indicated below gives the relation between the value of the duty cycle register and the duty. When all the values of the duty cycle register are 0 (in the case of 16-digit display), the display is blank.

Ī		D. (C. R		DUTY		D. (C. R		DUTY		D. (C. R		DUTY		D. (C. R		DUTY
ŀ	03	b ₂	b ₁	b ₀	<u>B</u> A	b ₃	b ₂	b ₁	b ₀	<u>В</u> А	b ₃	b ₂	b ₁	b ₀	<u>В</u> А	b ₃	b ₂	b ₁	b ₀	<u>B</u>
_	0	0	0	0	1	0	1	0	0	<u>16</u> 1024	1	0	0	0	<u>32</u> 1024	1	1	0	0	<u>48</u> 1024
_	0	0	0	1	<u>4</u> 1024	0.	1	0	1	<u>20</u> 1024	1	0	0	1	<u>36</u> 1024	1	1	0	1	<u>52</u> 1024
_	0	0	1	0	<u>8</u> 1024	0	1	1	0	<u>24</u> 1024	1	0	1	0	40 1024	1	-1	1	0	<u>56</u> 1024
	0.	0	1	1	<u>12</u> 1024 ·	0	1	1	1	<u>28</u> 1024	1	0	1	1	44 1024	1	1	1	1	<u>60</u> 1024
_				احا	3_1						V _{DD}				,					

Number of display digits

The number of display digits is set by the digit register. The number of display digits ranges from 1 to 16 (*1). The value of the digit register and the number of digits are as follows:

<i>-</i>	D.	R		Control		D.	R		Control		D.	R		Control		D.	R		Control
b ₃	b ₂	b ₁	b ₀	digit	b ₃	b ₂	b ₁	b ₀	digit	b ₃	b ₂	b ₁	b ₀	digit	b ₃	b ₂	b ₁	b ₀	digit
0	0	0	0	*2 D ₁ ~D ₁₆	0	1	0	0	D ₁ ~D ₄	1	0	0	0	D ₁ ~D ₈	1	1	0	0	D ₁ ~D ₁₂
0	0	0	1	D ₁ ~D ₁	0	1	0	1	D ₁ ~D ₅	1	0	0	1	D1~D9	1	1	0	1	*2 D ₁ ~D ₁₃
0	0	1	0	D ₁ ~D ₂	0	1	1	0	D ₁ ~D ₆	1	0	1	0	D ₁ ~D ₁₀	1	1	1	0	*2 D ₁ ~D ₁₄
0	0	1	1	D ₁ ~D ₃	0	1	1	1	D ₁ ~D ₇	1	0	1	1	D ₁ ~D ₁₁	1	1	1	1	*2 D ₁ ~D ₁₅

1 to 12 digita in the case of the MSC7112-xx Ignored in the case of the MSC7112-xx

			-							Input	data								
Command	Function	MSB b ₁₇	b ₁₆	b ₁₅	b ₁₄	b ₁₃	b ₁₂	ь,,	b ₁₀	bg	b ₈	ь,	b ₆	b ₅	b ₄	b ₃	b ₂	bı	LSB b ₀
DATA DISPLAY	The RAM data is output directly to the SEGA to SEGP terminals. (Positive logic)	0	0,	*1 SEGP	*1 SEGO	*2 SEGN	*3 SEGM	SEGL	SEGK	SEGJ	SEGI	SEGH	SEGG	SEGF	SEGE	SEGD	SEGC	SEGB	SEGA
PLA DISPLAY	The RAM data is converted in code by the PLA and output to the SEGA to SEGP terminals. (Positive logic) *2	0	1	×	×	×	×	×	×	×	×	×	×	×	24	23	22	21	, 20
L. R LOAD	Display data is set in the LED register and output to the LED1 to LED5 terminals. (Positive logic)	1	0	0	×	×	×	×	×	×	×	×	×	· ×	LEDS	LED4	LED3	LED2	LED1
D, R LOAD	The number of digits is set in the digit register.	1	0	1	0	×	×	×	×	×	×	×	×	×	×	23	22	21	20
W. A. CLOAD	The write address is set in the write address counter. (The write position is set.)	1	1	0	×	×	×	×	×	×	×	×	×	×	×	23	22	21	20
D. C. R LOAD	The duty value is set in the duty cycle register.	1	1	1	×	×	×	×	×	×	×	×	×	×	×	23	22	21	20
TEST LOAD	The TEST mode is set.	1	0	1	1	×	×	×	×	×	×	×	×	×	×	×	×	×	·×

*1: Ignored in case of MSC7110-xx

x: Don't Care

*2: Output to the SEGA to SEGL terminals in case of MSC7110-xx

Relation between write address and digit output

Write address count	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
Corresponding digit output	D ₁	D ₂	D ₃	D ₄	Ds	D ₆ .	D,	D ₈	Dg	D ₁₀	D ₁₁	D ₁₂	*1 D ₁₃	*1. D ₁₄	*1 D ₁₅	*1 D ₁₆

*1: Ignored in case of MSC7112-xx

SCHEMATIC DIAGRAMS OF INPUT AND OUTPUT CIRCUIT

• Input terminal

Output terminal

APPLICATION NOTE (MSM7112-xx)

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1937-01

16-SEGMENT, 16-DIGIT (ALPHANUMERIC)

GENERAL DESCRIPTION

MSC1937-01 is a Bi-COMS alphanumeric display controller designed to interface with either vacuum fluorescent or LED type displays.

MSC1937-01 can drive displays with up to 16 digits with either 14 or 16 segments plus a decimal point and commatail.

MSC1937-01 adopts a serial interface system, which allows data transfer from the CPU of microcomputer only by two signal lines.

FEATURES

- Provides the interface with the microcomputer by DATA and SCLK.
- Can display up to 16 digits with either 14 or 16 segments plus comma/point.
- The number of display digits is programmable within 16.
- The brightness adjustment is programmable by 1/32 step.
- The display contents can be changed at any digit.
- Built-in PLA (64 types of ASCII characters (capital letters only)).
- Data transfer speed: Up to 66 KHz
- Drive capability

Current : Up to - 20 mA (Digit)

- 10 mA (Segment): DIP package

- 5 mA (Segment): Flat package

Output voltage : 58V

Can be used for LED.

Pin compatible with 10937 manufactured by Rockwell.

Supply voltage: 5V ± 10%

• 40-pin plastic DIP package and 44-pin flat package

PIN CONFIGURATION.

V _{SS} AD16 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 Vdd A POR	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	40	PNT TAIL SGP SGO SGM SGL SGK SGJ SGG SGF SGE SGC SGB SGC SGB SGC SGB

MSC1937-01RS 40 pin DIP PINOUT (Top View)

PIN NO.	FUNCTION
1	Power supply (+ 5V)
2	Digit output terminal 16
	5
- 17	Digit output terminal 1
18	GND
19	TEST terminal
20	POWER-ON-RESET terminal
21	Data input terminal
22	Shift clock terminal
23	Segment output terminal A
S	S
38	Segment output terminal P
39	TAIL output terminal
40	POINT output terminal

MSC1937-01GS-K 44 pin QFP PINOUT (Top View)

PIN ŃO.	FUNCTION	PIN NO.	FUNCTION
1	No connection	22	No connection
2	Digit output terminal 12	23	Segment output terminal C
5	\$. 5	\$
13	Digit output terminal 1	36	Segment output terminal P
14	GND	37	TAIL output terminal
15	TEST terminal	38	POINT output terminal
16	POWER-ON-RESET terminal	39	GND
17	- GND	.40	Power supply (+ 5V)
18	Data input terminal	41	Digit output terminal 16
19	Shift clock terminal	5	5
20	Segment output terminal·A	44	Digit output terminal 13
21	Segment output terminal B		

PIN DESCRIPTION

Terminal Name	1/0	Function
V _{SS}	_	Power supply terminal.
V _{dd}		GND terminal.
DATA	-	Input of display data/control data. Input from MSB.
SCLK	ı	Shift clock of shift register. Shifts data at the falling edge of SCLK.
POR	l	Power-on-reset input. Input of "H" level into this terminal with the power turned on initializes this IC. The internal state after the initialization is as follows:
		AD1 to AD16, SGA to SGP, TAIL and PNT output are in the off state.
		2) The duty cycle is set to "0".
		3) The digit counter value is set to 16 digits.
	,	4) The buffer counter is set to AD1.
		5) Terminal "A" is in the output mode.
A	1/0	Usually used as an output mode, and outputs 1/5 of the internal oscillation frequency. In the test mode, operates as an input terminal.
AD16~	0	Grid output terminal. The output type ia an emitter follower.
SGA~SGP TAIL PNG	0	Segment output terminal. The output type is an emitter follower.

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

lter	n	Symbol	Condition	Unit	
Power supply volta	ge	V _{SS}	- 0.3 to 6.5	V	
Input voltage		V _{in}	- 0.3 to V _{SS} + 0.3	V	
Output voltage		V _{gg}	V _{SS} + 0.3 to V _{SS} - 58	V	
Output current Digit Segment		l _{load}	- 20 - 10 (- 5 * 1)	mA mA	
Operating temperature		T _{op}	- 40 to 85	°€	
Storage Temperature		T _{stg}	- 55 to 150	°C	

^{*1} In case of flat package

• DC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$, $V_{SS} = 5V \pm 10\%$)

Parameter	Symbol	Condition	Min	Max	Unit
Power supply voltage	V _{SS}		4.5	5.5	٧
Power supply current	ISS	NO LOAD		-10.0	mA
Input voltage "H" level "L" level	V _{ih} V _{il}	DATA, SCLK, POR	3.6 0	V _{SS} + 0.3	V
Input leak current	lit	DATA, SCLK, POR, VI = V _{SS} or 0V		± 10	μА
Output voltage "H" output voltage "L" output voltage	V _{oh1} V _{oh2} V _{ol1}	V _{SS} = 5V I _{load} = -10mA (DIGIT STROBES) I _{load} = -10mA (-5 mA *2) (SEGMENTS) *3	3.0 2.5 V _{SS} – 58		> >
Output leak current	V _{ol2}	*3	V _{SS} - 58	10	V μA

^{*2} In case of flat package

• AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$, $V_{SS} = 5V \pm 10\%$)

Parameter	Symbol	Condition	Min	Max	Unit
Internal clock frequency	T _{cyc}		58.8	22.1	μs
SCLK "H" time "L" time	T _{on} T _{off}		1.0 1.0	20:0	μs μs
Data set up time Hold time	T _{boff} T _{aoff}		200 100		ns ns

^{*3 &}quot;L" output voltage depends on the external PULL-DOWN resistor.

Timing Chart

a) SCLK and Data Timing

b) Data Word LSB/MSB Timing

FUNCTIONAL DESCRIPTION

. The MSB value of 8-bit serial data determines whether the input data into MSC1937-01 is control data or display data.

CONTROL DATA

The control data can be input by setting MSB to "1". In addition, a command type and associated data with the command is determined by the bit 6 to bit 0.

Command	Function	MSB bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	LSB bit 0
Buffer Pointer Control	Specifies the RAM address.	1	0	1	0	23	22	21	20
Digit Counter Control	Sets the number of display digits.	1	1	0	0	23	2 ² .	21	20
Duty Cycle Control	Sets the duty value.	1	1	1	24	23	22	21	20
TEST MODE	Sets the test mode.	1	0	0	20	х	х	х	х

X: Don't care

a) Buffer Pointer Control

This command changes the display contents only at an arbitrary digit. (The RAM write address is set.)

Adecimal equivallent value of bits 0 - 4 should be set (desired digit number - 2).

(Example) When specifying AD4, the set value is 2 (0010).

Specified digit	Set value of bits 0 to 4	Specified digit	Set value of bits 0 to 4
AD1	15 (1111)	AD9	7 (0111)
AD2	0 (0000)	AD10	8 (1000)
AD3	1 (0001)	, AD11	9 (1001)
AD4	2 (0010)	AD12	10 (1010)
AD5	3 (0011)	AD13	11 (1011)
AD6	4 (0100)	AD14	12 (1100)
AD7	5 (0101)	AD15	13 (1101)
AD8	6 (0110)	AD16	14 (1110)

b) Digit Counter Control

This command sets the number of display digits. Set the desired number of digits in bits 0 to 4.

Number of display digits	Set value of bits 0 to 4	Number of display digits	Set value of bit 0 to 4
i	1 (0001)	9	9 (1001)
2	2 (0010)	10	10 (1010)
3	3 (0011)	11	11 (1011)
4	4 (0100)	12	12 (1100)
5	5 (0101)	13	13 (1101)
6 ·	6 (0110)	14	14 (1110)
7	7 (0111)	15	15 (1111)
8	8 (1000)	16	0 (0000)

c) Duty Cycle Control

This command sets the duty cycle of the driver output. This command allows the brightness to be adjusted by 1/32 step. As shown in Figure 1, the blank type between digits or between the segments is specified by 1 bit time on the hardware. Therefore, the set value ranges from 0 to 31.

Figure 1 Output timing

d) TEST MODE

This mode is not a user function, but is used for outgoing inspection.

DISPLAY DATA

By setting MSB = '0', the display data can be entered. The address of PLA is specified by bit 6 to bit 0 following MSB.

Table-1 provides the PLA code table.

	·	-													
∞		08	 	10		18	\times	20		28	/	30	1 71 1 1 1	38	
01		09		11	- -	19	\ /	21	<u>-</u>	29	\ /	31	1	39	
02		a	 	12		1A		22	 	2A	米	32	 	34	1 2
03	1	0В	_/ -\	13	 	18		23		28		33		3В	
04	- - _ _	0С	l 	14	- -	1C	//	24		2C	:	34		3C	/
05	 - -	0D	\	15	 	10	_	25		20		35		30	
06	- - -	0E	\	16	/ /	1E	/\	26	<u> </u>	2E	•	36		3E	//
	!	0F		.17		1F		27	/	2F	/	37		зғ	1
07			<u>'</u> '							1			'		' '
07	<u> </u>		<u>'</u> '	_		10	 Segme	nl D	isplay	lj					
07		08	 	10		18	Segme	nl D 20	isplay	28	/	30		38	
 		08	 	10			Segme	_	isplay	28	\ \ \ /	30	 <u> </u> 	38	
 		-		-		18	Segme	20							
00		09	 	"		18	Segme	20	=	29	\ /	31		39	
00 01 02 03 04		09 0A		11		18 	Segme	20		29 2A		31		39 3A	
00 01 02 03		09 0A 0B		112		18 19 1A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20 21 22 23		29 2A 2B	· / /	31 32 33		39 3A	
00 01 02 03 04		09 0A 0B 0C		11 12 13 14		18	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20 21 22 23 24		29 2A 2B	· / /	31 32 33 34		39 3A 3B	
00 01 02 03 04 05		09 0A 0B 0C		113		18	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20 21 22 23 24 25		29 2A 2B 2C 2C	· / /	31 32 33 34 35		39 3A 3B 3C	

Table-1 PLA Code Table

Fig.-1 Segment-Output Assignment

* To set the comma and point, the display data at the display digit is input, then 2C and 2E data are input.

(Note) Only when 2C and 2E data are entered, the write address in the RAM is not automatically incremented. For other data, the address specified by the Buffer Pointer Control command is automatically incremented by one each time the display dadta is input.

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1951-01

16-SEGMENT, 16-DIGIT (BARGRAPH and NUMÉRIC)

GENERAL DESCRIPTION

MSC1951-01 is a Bi-CMOS bargraph and alphanumeric display controller designed to interface with either vacuum fluorescent or LED displays.

MSC1951-01 can drive displays with up to 16 positions with either 16 segment bargraph or seven segment plus a decimal point and commatail.

MSC1951-01 adopts a serial interface system, which allows data transfer from the CPU of microcomputer only by two signal lines.

FEATURES

- Provides the interface with the microcomputer by DATA and SCLK.
- Can display up to 16 digits of 7-segment typed characters with comma/point or of 16-segment type bargraph.
- The number of display digits is programmable within 16.
- The brightness adjustment is programmable by 1/32 step.
- The display contents can be changed at any digit.
- Built-in PLA, alphanumeric characters, e.g., 0 to 9, A, C, E, F, P, L (capital letters), b, and d (small letters) can be displayed. In addition, 16-segment dot display and bar display are allowed.
- Data transfer speed: Up to 66 KHz
- Drive capability

Current : Up to - 20 mA (Digit)

– 10 mA (Segment): DIP package

5 mA (Segment): Flat package

Output voltage : 58V

- Can be used for LED.
- Pin compatible with 10951 manufactured by Rockwell.
- Supply voltage: 5V ± 10%
- 40-pin plastic DIP package and 44-pin flat package

PIN CONFIGURATION

MSC1951-01RS 40 pin DIP PINOUT (Top View)

PIN NO.	FUNCTION .
1	Power supply (+ 5V)
2	Digit output terminal 16
5	S
17	Digit output terminal 1
18	GND
19	TEST terminal
20	POWER-ON -ESET terminal
21	Data input terminal
22	Shift clock terminal
23	Segment output terminal A
S	\$
38	Segment output terminal P
39	TAIL output terminal
40	POINT output terminal

MSC1951-01GS-K 44 pin QFP PINOUT (Top View)

PIN NO.	FUNCTION	PIN NO.	FUNCTION
1	No connection	22	No connection
2	Digit output terminal 12	23	Segment output terminal C
5	S	. 3	S
13	Digit output terminal 1	36	Segment output terminal P
14	GND	37	TAIL output terminal
15	TEST terminal	38	POINT output terminal
.16	POWER-ON-RESET terminal	39	GND
17	GND	40	Power supply (+ 5V)
18	Data input terminal	41	Digit output terminal 16
19	Shift clock terminal	5	\$
20	Segment output terminal A	44	Digit output terminal 13
21	Segment output terminal B		

PIN DESCRIPTION

Terminal Name	1/0	Function
Vss		Power supply terminal.
V _{dd}		GND terminal.
DATA	ı	Input of display data/control data. Input from MSB.
SCLK	1	Shift clock of shift register. Shifts data at the falling edge of SCLK.
POR	1	Power-on-reset input. Input of "H" level into this terminal with the power turned on initializes this IC. The internal state after the initialization is as follows: 1) AD1 to AD16, SGA to SGP, TAIL and PNT output are in the off state. 2) The duty cycle is set to "0". 3) The digit counter value is set to 16 digits. 4) The buffer counter is set to AD1. 5) Terminal "A" is in the output mode.
A	1/0	Usually used as an output mode, and outputs 1/5 of the internal oscillation frequency. In the test mode, operates as an input terminal.
AD16~ AD1	0	Grid output terminal. The output format ia an emitter follower.
SGA~SGP TAIL PNG	0	Segment output terminal. The output format is an emitter follower.

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

lten	n	Symbol	Condition	Unit	
Power supply volta	ge	V _{SS}	- 0.3 to 6.5		
Input voltage		Vin	- 0.3 to V _{SS} + 0.3	V	
Output voltage		V _{gg}	V _{SS} + 0.3 to V _{SS} - 58	V	
Output current	Digit Segment	load load	- 20 - 10 (-5*1)	mA mA	
Operating temperature		. T _{op}	- 40 to 85	°C	
Storage Temperatu	ıre	T _{stg}	- 55 to 150	°C	

^{*1} In case of flat package

DC Characteristics (Ta = -40 to 85°C, V_{SS} = 5V ± 10%)

Parameter	Symbol	Condition	Min	Max	Unit
Power supply voltage	V _{SS}		4.5	5.5	V
Power supply current	Iss	NO LOAD		10.0	mA
Input voltage "H" level "L" level	V _{ih} V _{il}	DATA, SCLK, POR	3.6 0	V _{SS} + 0.3	V
Input leak current	lii	DATA, SCLK, POR, VI = V _{SS} or 0V		± 10	μΑ
Output voltage "H" output voltage	V _{oh1}	V _{SS} = 5V I _{load} = -10mA (DIGIT STROBES)	3.0		۰۷
"L" output voltage	V _{oh2}	I _{load} = - 10mA (- 5 mA *2) (SEGMENTS)	2.5		V
	V _{ol1} V _{ol2}	*3 *3	V _{SS} - 58 V _{SS} - 58		V
Output leak current	lout			10	μА

^{*2} In case of flat package

• AC Characteristics (Ta = -40 to 85° C, $V_{SS} = 5V \pm 10\%$)

Parameter	Symbol	Condition	Min	Max	Unit	
Internal clock frequency	T _{cyc}		58.8	22.1	μs	
SCLK "H" time "L" time	T _{on} T _{off}		1.0 1.0	20.0	µs µs	
Data set up time Hold time	T _{boff} T _{aoff}		200 100		ns ns	

^{*3 &}quot;L" output voltage depends on the external PULL-DOWN resistor.

Timing chart

a) SCLK and Data Timing

b) Data Word LSB/MSB Timing

FUNCTIONAL DESCRIPTION

The MSB value of 8-bit serial data determines whether the input data into MSC1951-01 is control data or display data.

CONTROL DATA

The control data can be input by setting MSB to "1". In addition, a command type is determined by the bit 6 to bit 0 following MSB.

Command	Function	MSB bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	LSB bit 0
Buffer Pointer Control	Specifies the RAM address.	1	0	1	0	23	22	21	20
Digit Counter Control	Sets the number of display digits.	1	1	0	0	23	22	21	20
Duty Cycle Control	Sets the duty value.	1	1	1	24	23	22	21	20
TEST MODE	Sets the test mode.	1	0	0	20	×	х	×	х

X: Don't care

a) Buffer Pointer Control

This command changes the display contents only at an arbitrary digit. (The RAM write address is set.)

To input data into bits 0 to 4, set (desired digit - 2).

(Example) When specifying AD4, the set value is 2 (0010).

Specified digit	Set value of bits 0 to 4	Specified digit	Set value of bits 0 to 4				
AD1	15 (1111)	AD9	7 (0111)				
AD2	0 (0000)	AD10	8 (1000)				
AD3	1 (0001)	AD11	9 (1001)				
AD4	2 (0010)	AD12	10 (1010)				
AD5	3 (0011)	AD13	11 (1011)				
AD6	4 (0100)	AD14	12 (1100)				
AD7	5 (0101)	AD15	13 (1101)				
AD8	6 (0110)	AD16	14 (1110)				

b) Digit Counter Control

This command sets the number of display digits. Set the desired number of digits in bits 0 to 4.

Number of display digits	Set value of bits 0 to 4	Number of display digits	Set value of bit 0 to 4				
1	1 (0001)	9	9 (1001)				
2	2 (0010)	10	10 (1010)				
3	3 (0011)	. 11	11 (1011)				
4	4 (0100)	12	12 (1100)				
5	5 (0101)	13	13 (1101)				
6	6 (0110)	14	14 (1110)				
7	7 (0111)	15	15 (1111)				
8	8 (1000)	16	0 (0000)				

c) Duty Cycle Control

This command sets the duty cycle of the driver output. This command allows the brightness to be adjusted by 1/32 step. As shown in Figure 1, the blank type between digits or between the segments is specified by 1 bit time on the hardware. Therefore, the set value ranges from 0 to 31.

Figure 1 Output timing

d) TEST MODE

This mode is not a user function, but is used for outgoing inspection.

DISPLAY DATA

By setting MSB = '0', the display data can be entered. The address of PLA is specified by bit 6 to bit 0 following MSB.

Table-1 provides the PLA code table.

Input Code	Function	Segment Driver Output Patterns (1 = On)										1								
7 6 5 4 3 2 1 0	1000000	SGA	sgs	sgc	SGD	SGE	SGF	sgg	SGH	SGI	\$GJ	sgk	SGL	SGM	SGN	sgo	SGP	PNT	TAIL]
0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0	Segment A On Segment B On Segment C On Segment D On Segment E On Segment F On Segment H On Segment H On Segment I On Segment L On Segment L On Segment N On Segment N On Segment On Segment O On Segment P On	1		1	1	1	1	1	1	1 1	1	1	1	1	1	1	1			h Any 1 of 16 Segments
0 X 0 1 0 0 0 0 0 X 0 1 0 0 0 1 0 X 0 1 0 0 1 0 0 X 0 1 0 0 1 1 0 X 0 1 0 1 0 0	Segment A On Segment A & B On Segment A-C On Segment A-D On Segment A-E On	1 1 1 1	1 1 1	1 1 1	1 1	1													<u>-</u>	Bargraph
0 X 0 1 0 1 0 1 0 X 0 1 0 1 1 0 0 X 0 1 0 1 1 1 0 X 0 1 1 1 0 0 0 X 0 1 1 0 0 0 0 X 0 1 1 0 1 0 0 X 0 1 1 0 1 0 0 X 0 1 1 1 1 0 0 X 0 1 1 1 1 0 0 X 0 1 1 1 1 0 0 X 0 1 1 1 1 1	Segment A-F On Segment A-H On Segment A-H On Segment A-I On Segment A-J On Segment A-K On Segment A-L On Segment A-M On Segment A-M On Segment A-N On Segment A-O On Segment A-P On	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1	1 1	1			1 to 16 Segments
0 X 1 0 0 0 0 0 0 X 1 0 0 0 0 1 0 X 1 0 0 0 1 0 X 1 0 0 0 1 0 X 1 0 0 1 1 0 X 1 0 0 1 1 0 X 1 0 0 1 1 0 X 1 0 0 1 1 0 X 1 0 0 1 1 0 X 1 0 0 1 1 0 X 1 0 1 0 1 0 X 1 0 1 0 0 1 0 X 1 0 1 0 1 0 X 1 0 1 0 1 0 X 1 0 1 0 1 0 X 1 0 1 0 1 0 X 1 0 1 0 1 0 X 1 0 1 1 0 1 0 X 1 0 1 1 1 1 0 X 1 0 1 1 1 1 0 X 1 0 1 1 1 1	Number 0 Number 1 Number 2 Number 3 Number 4 Number 5 Number 6 Number 7 Number 8 Number 9 Letter P Letter L Comma Blank	1 1 1 1 1 1 1 1 1	1, 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1 1	1 1 1	1.	1•	Alphanumeric and Special Codes
0 X 1 1 0 0 0 0 0 X 1 1 0 0 1 0 0 X 1 1 0 0 1 0 0 X 1 1 0 0 1 0 0 X 1 1 0 1 0 0 0 X 1 1 0 1 0 1 0 X 1 1 0 1 0 1 0 X 1 1 0 1 1 0 0 X 1 1 1 0 1 1 0 X 1 1 1 0 0 1 0 X 1 1 1 0 0 1 0 X 1 1 1 0 0 1 0 X 1 1 1 0 0 1 0 X 1 1 1 0 1 0 0 X 1 1 1 1 1 1 0 0 X 1 1 1 1 1 1 0 0 X 1 1 1 1 1 1 1	Number 0 Number 1 Number 2 Number 3 Number 4 Number 5 Number 5 Number 7 Number 7 Number 8 Number 9 Letter A Letter B Letter C Letter D Letter E Letter F	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1		1•	Alphanur Special Co

Table-1 PLA Code Table

00	*****	08		10		18	20		28		30	- - -	38	
01	1	09		11	I	19	21	1	29		31	1	39	
02	1	0А		12	- <u> </u> 	1A	22		2A		32		3А	
03		0В	•	13		18	23		2B	I · · · · ·	33		3В	
04	1	ос		14		1C	24	<u> - </u>	2C	;	34	1_	3C	
05	1	0D		15		1D	25		2D	•	35		3D	<u>-</u> [_]
06	•	0E		16		1E	26		2E	•	36		3E	
07		OF		17		1F	27	_ 	2F		37	-!	3F	

Table-2 PLA Code (At the time of 7-segment display)

Table-3 PLA Code (At the time of bar display)

- To set the comma and point, the display data at the display digit is input, then 2C and 2E data are input.
 - (Note) Only when 2C and 2E data are entered, the write address in the RAM is not automatically incremented. For other data, the address specified by the Buffer Pointer Control command is automatically incremented by one each time the display dadta is input.

APPLICATION CIRCUIT

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC7125-XX

5 x 7 DOT MATRIX, 8-DIGIT

GENERAL DESCRIPTION

The MSC7125-XX is a BiCMOS dot matrix display controller for vacuum fluorescent display tube.

The MSC7125-XX drives displays with up to 8 grids with 35 anodes (dots) plus 5 annunciators. The controller receives the serial data (command and display data) consisted of 2 bytes (16 bits) on the high to low transition of the clock. The serial data entered into 16-bit shift register via DATA IN terminal is automatically latched after 2 bytes data input is completed. Commands control the on/off duty, starting character position, number of characters to display. An internal PLA-type character generator provides character decoding and dot pattern generation for 128 types of characters.

FEATURES

Operating temperature : -40°C ~ +85°C

• Logic supply voltage (V_{DD}): + 5V ± 10%

Display voltage : + 50V max

Driver output current : -31 mA (GRID 1,8)
-16 mA (GRID 2-7)

-4.5 mA (SEG 36-40) -0.3 mA (SEG 1-35)

Data transfer speed : 203KHz max

Built-in oscillation circuit

Built-in Power-on-reset circuit with external C

Serial data input for 2 bytes (16 bits) control and display data

Command functions : on/off duty cycle (1024 steps)

starting character position (1 to 8)

number of characters (1 to 8)

Built-in PLA-type character generator : 128 types of characters (user programmable)

60 pin flat package

PIN CONFIGURATION

PIN DESCRIPTION

PIN#	PIN NAME	DESCRIPTION	PIN#	PIN NAME	DESCRIPTION
1	VDISP	DISPLAY VOLTAGE	31	SEG18	ANODE18 DRIVER OUTPUT
2	SEG31	ANODE31 DRIVER OUTPUT	32	SEG17	ANODE17 DRIVER OUTPUT
3	GRID6	GRID6 DRIVER OUTPUT	33	SEG16	ANODE16 DRIVER OUTPUT
4	GRID5	GRID5 DRIVER OUTPUT	34	SEG15	ANODE15 DRIVER OUTPUT
5	SEG26	ANODE26 DRIVER OUTPUT	35	SEG14	ANODE14 DRIVER OUTPUT
6	SEG32	ANODE32 DRIVER OUTPUT	36	SEG13	ANODE13 DRIVER OUTPUT
7	SEG39	ANODE39 DRIVER OUTPUT	37	SEG12	ANODE12 DRIVER OUTPUT
8	SEG33	ANODE33 DRIVER OUTPUT	38	SEG11	ANODE11 DRIVER OUTPUT
9	SEG38	ANODE38 DEIVER OUTPUT	39	SEG1	ANODE1 DRIVER OUTPUT
10	SEG27	ANODE27 DRIVER OUTPUT	40	SEG2	ANODE2 DRIVER OUTPUT
11	GRID8	. GRID8 DEIVER OUTPUT	41	SEG5	ANODES DRIVER OUTPUT
12	SEG28	ANODE28 DRIVER OUTPUT	42	SEG6	ANODE6 DRIVER OUTPUT
13	GRID7	GRID7 DRIVER OUTPUT	43	SEG7	ANODE7 DRIVER OUTPUT
14	SEG29	ANODE29 DRIVER OUTPUT	44	SEG8	ANODES DRIVER OUTPUT
. 15	SEG30	ANODE28 DRIVER OUTPUT	45	SEG3	ANODE3 DRIVER OUTPUT
16	SEG34	ANODE34 DRIVER OUTPUT	46	SEG4	ANODE4 DRIVER OUTPUT
16	GRID4	GRID4 DRIVER OUTPUT	47	SEG9	ANODE9 DRIVER OUTPUT
18	GRID3	GRID3 DRIVER OUTPUT	48	SEG10	ANODE10 DRIVER OUTPUT
19	SEG35	ANODE35 DRIVER OUTPUT	49	SEG36	ANODE36 DRIVER OUTPUT
20	SEG40	ANODE40 DRIVER OUTPUT	50	SEG37	ANODE37 DRIVER OUTPUT
21	SEG25	ANODE25 DRIVER OUTPUT	51	POR	POWER-ON-RESET INPUT
22	GRID2	GRID2 DRIVER OUTPUT	52	VDD	LOGIC VOLTAGE
23	GND	POWER & SIGNAL REFERENCE	53	OSC1	RC OSCILLATION
24	SEG24	ANODE24 DRIVER OUTPUT	54	OSC0	RC OSCILLATION
25	GRID1	GRID1 DRIVER OUTPUT	55	GND	POWER & SIGNAL REFERENCE
26	SEG23	ANODE23 DRIVER OUTPUT	56	TEST1	TEST SIGNAL INPUT
27	SEG22	ANODE22 DRIVER OUTPUT	57	DATA IN	SERIAL DATA INPUT
28	SEG21	ANODE21 DRIVER OUTPUT	58	SCLK	SHIFT CLOCK INPUT
29	SEG20	ANODE20 DRIVER OUTPUT	59	<u>cs</u>	CHIP SELECT INPUT
30	SEG19	ANODE19 DRIVER OUTPUT	60	TEST2	TEST SIGNAL INPUT

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power supply voltage	V _{DD}	-0.3~6.5	V
Display voltage	V _{DISP}	- 0.3~52	V
Input voltage	V _{IN}	- 0.3~V _{DD} + 0.3	V
Operating temperature range	TOP	- 40~85	°C
Storage temperature range	Tstg	- 65~150	°C

Operating Condition

Parameter	Symbol	Condition	MIN	TYPE	MAX	Unit
Power supply voltage	V _{DD}		4.5		5.5	٧.
Display voltage	V _{DISP}		V _{DD} + 2		50	V
High level input voltage	V _{IH}		3.6		VDD	V
Low level input voltage	VIL		0		0.8	V
Clock Frequency	fc				500	KHz
OSC Frequency	fosc	75pf, 4.7KΩ	1	2	4	MHz

DC Characteristics

Ta = $-40\sim +85^{\circ}$ C, V_{DD} = 5V \pm 10% unless otherwise noted. All voltages are referenced to GND.

Parameter	Symbol	Condition	MIN	MAX	Unit
High level input voltage (All inputs except OSC0)	V _{IH1}		3.6	-	V
High level input voltage (OSC0)	V _{IH2}		4.2	_	٧
Low level input voltage (All input except OSC0)	V _{IL1}		_	0.8	٧
Low level input voltage (OSC0)	V _{IL2}		_	0.5	V
High level input current (SCLK, DATA IN, CS, POR)	l _{IH1}	$V_{IH1} = V_{DD}$	- 5	5	μΑ
High level input current (TEST1, TEST2)	I _{IH2}	$V_{IH2} = V_{DD}$	250	900	μА
High level input current (OSC0)	I _{IH3}	V _{IH3} = V _{DD}	- 10	10	μA
Low level input current (SCLK, DATA IN, CS, TEST1, TEST2)	I _{IL1}	V _{IL1} = OV	- 5	5	μА
Low <u>level</u> input current (POR)	I _{IL2}	V _{IL2} = OV	- 27	- 110	μА
Low level input current (OSC0)	I _{IL3}	V _{IL3} = OV	- 10	10	μA
High level output voltage (SEG 1-35)	V _{OH1}	I _{OH1} = -0.3mA	V _{DISP} -2.0	-	V
High level output voltage (SEG36-40)	V _{OH2}	I _{OH2} = -4.5mA	V _{DISP} -2.0	_	v.
High level output voltage (GRID1, GRID8)	V _{OH3}	I _{OH3} = -31mA	V _{DISP} -2.7	_	V
High level output voltage (GRID2-7)	V _{OH4}	I _{OH4} = - 16mA	V _{DISP} -2.7	_	٧
Low level output voltage (SEG1-40, GRID1-8)	V _{OL1}	I _{OL1} = 10UA		1	٧
Logic supply current	l _{DD}	fosc = 2.0MHz, No. load		15	mA
Display supply current	I _{DISP}	No load		10	mA

AC Characteristics

Ta = $-40\sim +85$ °C, V_{DD} = 5V \pm 10% unless otherwise noted. All voltages are referenced to GND.

Parameter	Symbol	Condition	MIN	MAX	Unit
SCLK cycle time	t _{cycsc}		_	2	μS
SCLK clock pulse width	t _{wsc}		1	_	μS
Data set-up time	t _{os}		0.5	T -	μS
Data hold time	t _{DH}		0.5	-	μS
CS set-up time	t _{css}		1	T-	μS
CS hold time	t _{csh}		1	T -	μS
OSC frequency	f _{osc}	$R = 4.7K\Omega$, $C = 75pf$	1	4	MHz

• Timing Chart

• Data Word LSB/MSB Timing

• Power-on-Reset Timing

FUNCTIONAL DESCRIPTION

The data input of MSC 7125-XX consists of 2 byte (16 bits) serial data but the 3 bits (bit 15, 14, 13) from MSB are taken as null data. This is because a number of data bis required for MSC 7125-XX is 13 bits but 2 bytes construction is used for easy interface with CPU. When the 16-bit data input has been completed, MSC 7125-XX generates the load signal automatically and begins execution.

The value of bit 12 of 16-bit serial data determines whether the input data is control data or display data.

Control Data

When bit 12 is "1", input data is recognized as control data. A type of command and the associated data with the command are extracted from bit 11-0.

16-Bit Serial Input Words Function LSB MSB 14 13 12 11 10 9 8 5 4 3 2 15 LOAD BUFFER POINTER Х Х Х 1 0 0 х Х Х Х Х Х Х 22 21 2° (Position of character to be changed) OAD DIGIT COUNTER (Number of Х Х 1 0 Х Х Х Х Х Х **2**² 21 20 Х 1 Х characters to be displayed) LOAD DUTY CYCLE 29 28 27 26 25 24 2³ 2² 21 20 (On/off and dimming Х х 1 0 Х 1 control) ENTER TEST MODE Х Х Х 1 Х Х Х Х Х Х Х Х х Х (Not a user function)

TABLE-1 Control data table

Note: X means this bit is "don't care" bit.

a) Load buffer pointer

This command is used to modify individual characters by setting buffer pointer to any digit position. (RAM write address is set)

A decimal equivalent value of bits 0-2 should be (the desired digit number-2). (Example) In case of GRID 4, the setting value is 2 (010).

TABLE -2 Load buffer pointer codes

Buffer Pointer Value (lower 3 bits)	7	0	1	2	3	4	5	6
Character Controlled By	GRID 1	GRID 2	GRID 3	GRID 4	GRID 5	GRID 6	GRID 7	GRID 8

b) Load digit counter

This command sets the number of display digits.

Set the desired digit number in bits 0-2.

TABLE-3 Digit counter control codes

Digit Counter Value (lower 3 bits)	0	1	2	3	4	5	6	7
Number of Digits	8	1	2	3	4	5	6	7

c) Load duty cycle

This command sets the duty cycle of driver output. With this command, 1024 step adjustments of brightness can be done. As shown in Fig.-1, the blank time between the GRIDS is 32 bit times, and between the segments, 20 bit times on the hardware, hence the setting range is $0 \sim 992$.

Fig-1 Display timing chart

d) Enter test mode

This mode is used for outgoing inspection and is not a user function.

Display Data

Display data can be input by setting bit 12 = "0". 5 bits annunciator data are extracted from bits 11 - 7 and PLA address from bits 6 - 0.

Table 4 Display data

					16-	Bit Se	erial I	nput	Wo	rds			_			
MSB 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB 0	Function
Х	х	х	0.	211	2 ¹⁰	2 ⁹	28	27	2 ⁶	25	24	2 ³	2²	21	2º	LOAD DISPLAY DATA (Annunciator 5 bits and pla 7 bits)

PLA Code is User Programmable.

The relation between the dots of vacuum fluorescent display tube and Segment output of MSC 7125-XX is as shown in Fig-2.

Fig-2 Dot-Segment output assignment

Power-On-Reset (POR)

The Power -On-Reset initializes the internal circuits when power is applied. The following condition is established after Power-On-Reset.

- a. The segment drivers are in the "L" state.
- b. The grid drivers are in the "L" state.
- c. The duty cycle is set to "0".
- d. The digit counter is set to "8".
- e. The buffer pointer points to the character controlled by GRID1.

APPLICATION NOTE

a) Application circuit

b) Data set up flow

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC7128-XX

5 x 7 DOT MATRIX, 16-DIGIT

GENERAL DESCRIPTION

The MSC7128-XX is a general purpose display controllers for vacuum fluorescent display tube.

The MSC7128-XX drives displays with up to 35 anodes (dots) and up to 16 grids (characters) plus a cursor

The controller accepts command and display data input words on a clocked serial input line.

Commands control the on/off duty cycle, starting character position, number of characters to display and display modes (PLA mode and Lamp Test mode). An internal PLA-type character generator provides character decoding and dot pattern generation for the full 128 characters.

No external drive circuit is required for displays that operate on 30mA of drive current up to 45 volts.

A 35x128-bit PLA (ROM) code is programmable.

FEATURES

Logic supply voltage (V_{DD}): +5V

VF driver supply voltage (VEE): - 55\

• Driver output current

VF grid driver (source): -30mA
 VF anode driver (source): -2mA
 VF cursor driver (source): -10mA

- Direct drive capability for vacuum fluorescent display
- Built-in oscillation circuit
- Built-in power-on-reset circuit with external C
- Serial host interface (data in, clock, chip select)
- Serial data input for 8-bit control and display data words
- Command functions

On/off duty cycle

Starting character position : 1 to 16
 Number of characters : 1 to 16

Choice of 2-display modes : PLA mode, and Lamp Test mode

Built-in 35x128-bit PLA-type character generator

Character font : 5x7Number of characters : 128

Programmable PLA code

64 Pin shrink DIP package

PIN CONFIGURATION

(Ton View) 641 and Shrink Du	al Inline Parks a	
(Top View) 64 Lead Shrink Du	ar mine rackage	
osco [1 64	CS
osci [2 63	DA
TEST COUNT	3 62	CP ·
TEST STEP [61	RESET
VSS [<u></u> <u> </u>	VDD1
VEE [59	VDD2
COM 1 [. <u>· 58</u>	SEG 1
сом 2	B 57	SEG 2
сом з	56	SEG 3
сом 4 [0 55	SEG 4
сом 5 [1 54	SEG 5
сом 6	2 53	SEG 6
COM 7 [3 52	SEG 7
COM 8 [4 51	SEG 8
COM 9 [5	SEG 9
COM 10 1	6 49	SEG 10
COM 11 [17 48	SEG 11
COM 12 1	8 47	SEG 12
СОМ 13 [9	SEG 13
COM 14 [2	20 45	SEG 14
COM 15 2	1	SEG 15
COM 16 2		SEG 16
SEG 36 2		SEG 17
SEG 35 2	=	SEG 18
!	25	SEG 19
SEG 33 2	39	SEG 20
1'	27 8 37	SEG 21
SEG 30 2		SEG 22
1	30 35	SEG 24
1	11 34	SEG 25
1	33	SEG 26

PIN DESCRIPTION

Pin Name	Pin No.	Input, Output	Connected to	Function
V _{DD1}	60			V _{DD1} – V _{SS} : Inner logic supply voltage
V _{DD2}	59		Power source	V _{DD2} – V _{EE} : VF tube driving
V _{SS}	5			circuit supply voltage
VEE	6		:	
DA	63	Input	Microcomputer	Serial data input from LSB (positive logic)
CP	63	Input	Microcomputer	Shift clock input. Data is shifted at the leading edge of the CP.
<u>c</u> s	64	Input	Microcomputer	Chip select input. When the pin is High, the serial data transfer is inhibited.
OSCI	2	Input		CR oscillation, external CR pin. fosc = 250KHz at C = 100pF and
osco	1	Output	· ·	R = 47K
RESET	61	Input		Reset input (pull-up resistor built in). When the pin is Low, the internal logic is reset, and the outputs of SBG1 to SBG36 and COM1 to COM16 are Low.
COM 1 S COM 16	7 5 22	Output	VF tube grid electrode	VF tube grid electrode driving output. This pin can be connected directly to the VF tube. No pull-down resistor is required. I _{OH} >–30mA
SEG 1 SEG35	58 \$ 24	Output	VF tube anode electrode	VF tube 5x7-dot anode electrode driving output. This pin can be connected directly to the VF tube. No pull-down resistor is required. IOH>-2mA
SEG 36	23	Output	VF tube anode electrode	VF tube cursor anode electrode driving output. This pin can be connected directly to the VF tube. No pull-down resistor is required. I _{OH} >-10mA
TEST STEP	4	Input		Test mode setting input (normally open)
TEST COUNT	4	Input		Test clock input (normally open)

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage (1)	V _{DD} - V _{SS}		- 0.3~ + 6.5	V
Power supply voltage (2)	V _{DD} - V _{EE}		0~ + 65	V
Input voltage	V _{IH} - V _{SS}		- 0.3~V _{DD} + 0.3	V
Power dissipation	Pd	Ta≦25°C	~1.0	w.
Storage temperature	Tstg		- 55~ + 150	°C
0	l ₀₁	COM1 ~ COM16	– 40mA	mA
Output current	I _{O2}	SEG1 ~ SEG35	– 40mA	mA
*	103	SEG 36	– 40mA	- mA

Recommended Operating Condition

Parameter	Symbol	Condition	MIN	TYPE	MAX	Unit
Power supply voltage (1)	V _{DD} - V _{SS}		4.5		5.5	٧
Power supply voltage (2)	V _{DD} - V _{EE}		10		60	٧.
High level input voltage	V _{IH} - V _{SS}		0.7V _{DD}			٧
Low level input voltage	. V _{IL} - V _{SS}				0.3V _{DD}	٧
CP Frequency	• fcp				500	KHz
OSC Frequency	fosc	100pF, 47KΩ	170	220	270	KHz
Operating temperature	Тор		- 20		+ 75	°C

DC Characteristics

 $V_{DD} - V_{SS} = 5V \pm 10\%$, $V_{DD} - V_{EE} = 60V$, $Ta = -20 \sim +75 ^{\circ} C$

Parameter	Symbol	Condition	MIN	MAX	Unit
High level input voltage	V _{IH}		0.7V _{DD}		V
Low level input voltage	V _{IL}			0.3V _{DD}	V
High level input surrent	l _{ін1}	\overline{DA} , \overline{CP} , \overline{CS} $V_{DD} = 5.5V$ \overline{RESET} , \overline{POR} $V_{IN} = 5V$	- 5	5	μΑ
High level input current	l _{IH2}	TEST STEP V _{DD} = 5.5V TEST COUNT V _{IN} = 5V	0.25	1	mA
Low level input current	l _{1L1}	DA, CP, CS POR TEST STEP V _{DD} = 5.5V TEST COUNT V _{IH} = 0.5V	- 5	5	. µA
	I _{IL2}	RESET V _{DD} = 5.5V V _{IH} = 0.5V	- 25	- 100	μА
	V _{OH1}	OSC O I _{OH} = - 500μA	V _{DD} - 0.6		V
High level output voltage	V _{OH2}	COM1~16 I _{OH} = -30mA	V _{DD} – 4		V
High level output voltage	V _{OH3}	SEG1~35 I _{OH} = -2mA	V _{DD} - 3		V
	V _{OH4}	SEG36 I _{OH} = - 10mA	V _{DD} - 4		V
	V _{OL1}	OSCO I _{OL} = 500μA		V _{SS} + 0.6	V
Low level output voltage	V _{OL2}	COM1~16 I _{OL} = 100μA		V _{EE} + 3	V
Low level output voltage	V _{OL3}	SEG1~35 I _{OL} = 100μA		V _{EE} + 3	V
•	V _{OL4}	SEG36 I _{OL} = 100μA		V _{EE} + 3	V
	l _{SS1}	All SEGs on, 16-digit display, duty cycle 15/16, no load		15	mA
Evenly surrent	I _{SS2}	All SEG s Low, all COMs High		1.5	mA
Supply current	I _{EE1}	All SEG s on, 16-digit display, duty cycle 15/16, no load		1.0	mΑ
	I _{EE2}	All SEGs Low, all COMs High		15	mA

AC Characteristics

 $V_{DD} - V_{SS} = 5V \pm 10\%$, $Ta = -20 \sim +75$ °C

Parameter	Symbol	Condition	MIN	MAX	Unit
CP cycle time	t _{CP}			2	μS
CP pulse width	. t _{wcr}		1	_	μS
Data set-up time	t _{DS}		0.5	_	μS
Data hold time	t _{DH}		0.5	_	μS
CS set-up time	t _{css}	`	1	_	μS
CS hold time	t _{csH}		32T*	_	S
OSC frequency	f _{osc}	$R = 47K\Omega$, $C = 100pF$	170	270	KHz

 $T = 1/f_{osc}$

• Data Timing Chart

• Data Word LSB/MSB Timing

• Reset Timing

FUNCTIONAL DESCRIPTION

Data Transfer Method And Command Write Method

A display control command or data is written by the 8-bit serial transfer method. The figure below shows the write timing chart. When the $\overline{\text{CS}}$ pin is Low, data can be transferred. Data 8 bits in length is input to the DA pin sequentially starting with the LSB. (LSB first)

Data is shifted at the rising edge of a shift clock pulse which is input to the $\overline{\text{CP}}$ pin as shown in the figure below. When data 8 bits in length is entered, an inner LOAD signal is automatically generated, and data is written into the registers and RAM. Accordingly, there is no need to input an external LOAD signal.

If the $\overline{\text{CS}}$ pin is changed from Low to High, the serial transfer is inhibited, and data, which is entered after the $\overline{\text{CS}}$ pin is changed from High to Low, is recognized in units of 8 bits.

Command Type

		First byte						Second byte									
No.	Command	b7	b6	b5	b4	b3	b2	b1	ь0	b7	b6	b5	b4	b3	b2	b1	ь0
0	Address Set	1	0	0	0	х	х	х	х	х	X	x	х	X ₃	X ₂	X ₁	X ₀
1	Character Code Set	1	0	0	1	Χ.	х	х	х	cu	СН6	CH ₅	СН₄	CH ₃	CH ₂	СН₁	сн₀
2	Display Duty Set	1	0	1	0	х	. x	х	х	x	x	×	х	DC ₃	DC ₂	DC ₁	DC ₀
3	Number of Display Digits Set	1	0	1	1	х	х	х	х	х	х	х	х	DG ₃	DG₂	DG ₁	DG ₀
4	Lamp Test	1	1	0	0	х	х	x	х	x	×	x	x	x	х	x	LT

^{*1} When character codes are to be continuously transferred, addresses are automatically incremented (internally). Accordingly, neither the Address Set command nor the first byte of the Character Code Set command are required to set the second and following character codes.

^{*2} X: Don't care

Address Set Command

When the code of a display character is to be set, this command is used to specify the display location (digit number) of the character.

The relation between the digit number X and common outputs COM1 to COM16 is as follows:

X	COM input
0	сом1
1	СОМ2
15	COM16

Command format

Character Code Set Command

This command is used to specify the character to be displayed in the digit place specified by the Address Set command. Bits 0 to 6 of the second byte are used to specify the character code, and bit 7 is used to specify "Yes" or "No" of cursor display.

An automatic address increment function is built in. to write multidigit display character codes, just issue the Address Set command. To transfer the second and following digit display character codes, the first byte (operation code) of the Character Code command is not required. Just input the second byte.

When this command is executed, 8-bit data after the second byte, which is provided before the \overline{CS} pin is turned High, is all treated as display character data.

Transfer examples of the Address Set command and the Character Set command

Example 1: The display for COM3 and the following is changed.

X = 15 (COM16) is followed by X = 0 (COM1)

• Number of Display Digits Set command

This command is used to set the digit count register and the number of display digits. The number of digits to be set ranges from 1 to 16.

Command format

The relation between the value for DG to be set and COM under display control is as follows:

DG	COM displayed	DG	COM displayed
0	COM ₁ ~ COM ₁₆	8	COM₁ ~ COM8
1	COM ₁	9	COM₁ ~ COM ₉
2	$COM_1 \sim COM_2$,	10	COM ₁ ~ COM ₁₀
3	COM₁ ~ COM₃	11	COM ₁ ~ COM ₁₁
4	COM₁ ~ COM₄	12	$COM_1 \sim COM_{12}$
5	COM₁ ~ COM₅	13	$COM_1 \sim COM_{13}$
6	COM ₁ ~ COM ₆	14	COM ₁ ~ COM ₁₄
7	COM ₁ ~ COM ₇	15	COM ₁ ~ COM ₁₅

Display Duty Set command

Assuming the original oscillation cycle as T, the time allocated to 1-digit display is 64 T. The actual display time may be specified as 0 to 60 T in increments of 4T. Assuming the number of display digits as n and the parameter provided by the Display Duty Set command as DC, the resultant display duty cycle ratio is as follows:

$$\frac{4 \, (DC)}{64n} = \frac{(DC)}{16n}$$

Command format

Lamp Test command

This command is used to set the All-Segment Display mode. If this occurs, the 36 segments for each digit to be displayed are put into the ON state. The number of display digits and the display duty cycle depend on the contents of the digit count register and of the duty register.

The contents of the internal RAM are not affected by this command. When the command is released, the original display appears once again.

Command format

POWER ON RESET OPERATION

Operations when the RESET pin is Low are as follows:

- a. All segment driver outputs are Low.
- b. All grid driver outputs are Low.
- c. The number of display digits is set to 16.
- d. The display duty cycle is set to 0.

TEST STEP AND TEST COUNT

These pins are used for inspection before shipment, and should not be used by the user.

When an IC is mounted, leave them open or connect to V_{SS} . If they are connected to other pins, a malfunction may be caused.

RELATION BETWEEN SEGMENT OUTPUT AND VF TUBE DOTS

APPLICATION NOTE

Heater transformer

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

Level Meter

OKI semiconductor MSC1124

2-CHANNEL 12-DOT LEVEL METER IC (STATIC)

GENERAL DESCRIPTION

The MSC1124 is a static FLT driving audio 2-channel level meter, which can be used for high fidelity VTRs and audio equipment.

FEATURES

- Direct in put of audio (analogue) signals
- Log compression circuit built in (-20 dB to 8 dB, 12 dots)
- High withstand voltage output, output voltage 35 V, supply voltage 36.5 V
- Peak hold function built in, automatic and manual reset
- Power ON reset circuit built in
- 2-power-source (GND shared) system
- 40-pin plastic DIP, 44-pin V plastic QFP

BLOCK DIAGRAM

PIN CONFIGURATION

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rated value	Unit	Terminal
Supply voltage 1	V _{DD}	Ta = 25°C	-0.2~7.0	V	V _{DD} , V _{REF}
Supply voltage 2 (Between VCC and VEE)	V _{DDH}	Ta = 25°C	-0.2~40	v	V _{DDH}
Input voltage	V _{I1}	Ta = 25°C	-0.2~VDD+0.2	٧	Except Rin and Lin
Input reverse current	1 _t	Ta = 25°C VI = - 1.0V	10max	mA	All input pins
Output current	l ₀₁	Ta = 25°C, source current	– 10max	mA	R1~R12
Output current	. 102	Ta = 25°C, sink current	3max	mA	L1~L12
Input voltage	V ₁₂	Ta = 25°C	-0.7~VDD+0.2	٧	Rin, Lin
Allowable loss	P _D	Ta = 25°C	650	mW	
Storage temperature	Ts tg	-	- 50~125	° C 、	

Operating Condition

Parameter	Symbol	Conditions	Rated value	Unit	• Terminal
Supply voltage 1	V _{DD}		4.5~5.5	V	V _{DD}
Supply voltage 2	V _{DDH}	. –	8~37	V	V _{DDH}
Operating temperature	Тор	-	- 10~70	°C	

DC Characteristics

 $(V_{DD} = 5.0V \pm 0.5V, Ta = -10~70^{\circ}C)$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Terminal
Input bias current	l _{IL1}	V _{IN} = 0V	_	_	± 1	μA	Rin, Lin
Input voltage	Vi	_	_	-	350	mVrms	
High level input voltage	V _{IH1}		V _{DD} ×80%	_	_	٧	
Low level input voltage	V _{IL}	- .	_	-	V _{DD} × 20%	٧	A. MODE M.MODE
High level input current	I _{IH}	$V_i = V_{DD}$			± 1	μА	P.O.R TEST
Low level input current	l _{IL2}	V _I = 0V	- 25	- 50	- 100	μА	
High level output voltage	VoH	l ₀ = -0.2mA V _{DDH} = 36.5V			-,	٧	R1~R12
Low level output voltage	V _{OL1}	l ₀ = 0.1mA V _{DDH} = 36.5V	_		2	٧	L1~L12
Low level output voltage	V _{OL2}	I ₀ = 0mA V _{DDH} = 40V	_	_	100	mV	R1~R12 L1~L12
Oscillation frequency	f(osc)	R = 10KΩ C = 0.02μF	6	10	14	KHz	osc
L/R sampling frequency	FLR		f(osc) >	c 1/32			·
Peak hold reset timing	p.f	_	f(osc) >	< 1/8192	2		
POR release voltage	V _{IH2}		4.0	_	_	٧	POR, V _{DD}
Supply current 1	I _{DDH}	V _{DDH} = 36.5V No load, all DOTs ON	_	_	15	mA	V _{DDH}
Supply current 2	I _{DD}	V _{DDH} = 36.5V No load, all DOTs OFF		_	15	mA	V _{DD}
Supply current 3 .	I _{DDH} OFF	V _{DDH} = 36.5V No load, all DOTs OFF	_	_	2.2	mA	V _{DDH}

FUNCTIONAL DESCRIPTION

osc

This is a C (capacitor) and R (resistor) oscillation connection terminal to specify the R/L sampling switching frequency and the peak hold reset timing.

• POR

The POR terminal with a capacitor connected is used for power on reset. The reset release threshold voltage is 4.0V max. The built-in pull-up resistor is about 100 K Ω . Select the capacitor value according to the supply voltage at its leading edge.

• M, MODE

When this terminal is made Low, the manual peak hold reset mode is set, and the peak hold state is reset. For that purpose, the A. MODE terminal should be kept open.

When only the AUTO mode is to be used, connect the terminal to the V_{DD} terminal.

A. MODE

If this terminal is made Low when M.MODE is selected, the system enters the AUTO mode reset state. The AUTO mode reset timing is fosc x 1/8192.

When only the AUTO mode is to be used, keep the terminal Low. When power is turned on, the AUTO mode is automatically set.

• Rin, Lin

These are an analogue input terminal to input an audio level signal.

Max. 350mVrms

• Rout, Lout

These are a capacitor (C) and resistor (R) connection terminal to hold the analogue input peak.

Example: $R = 10K\Omega$, $C = 10\mu F$

• R1 to R12, L1 to L12

These are a FLT dot output terminal

V_{DDH}

This is a power terminal for R1 to R12 and L1 to L12.

• GNDH

This is a GND terminal for R1 to R12 and L1 to L12.

V_{DD}

This is an analogue or logic system supply voltage terminal.

• GND

This is an analogue or logic system grounding terminal.

• TEST

This is a measurement input terminal, which is generally to be connected to the VDD terminal.

V_{REF}

This is a comparator reference power terminal, which is generally to be connected to the VDD terminal

R/L THRESHOLD VOLTAGE TABLE

 $(Vref = 5V \pm 1\%, Ta = 25^{\circ}C, f = 1 KHz)$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Terminal
Threshold voltage 1	C1	The output should be offset. AJD	_	- 2,0	_	dB	
Threshold voltage 2	C2		- 17	- 15	- 13	dB	
Threshold voltage 3	С3		- 11.5	- 10	- 8.5	dB	
Threshold voltage 4	C4		- 8.0	-7	6.0	dB	
Threshold voltage 5	C5		- 6.0	- 5	- 4.0	dB	
Threshold voltage 6	C6		- 4.0	- 3	- 2.0	dB	
Threshold voltage 7	C 7		- 1.5	– 1	- 0.5	dB	
Threshold voltage 8	C8	The output C8 level should be 0 dB.	_	0	_	dB	
Threshold voltage 9	C9		+ 0.5	+ 1	+ 1.5	dB	
Threshold voltage 10	C10		+ 2.0	+ 3	+ 4.0	dB	
Threshold voltage 11	C11		+ 4.0	+ 5	+ 6.0	dB	
Threshold voltage 12	C12		+ 6.5	+8	+9.5	dB	

When the input is set to - 30 dB, all DOTs are off.

AC INPUT LEVEL VS DC INPUT LEVEL.

Threshold voltage	1	2	3	4	5	6	7	8	9	10	11	12
Display [dB]	- 20	- 15	- 10	-7	- 5	-3	-1	0	+1	+3	+5	+8
AC input level [mV rms]	11	20	36	51	64	81	102	114	128	161	203	286
DC input level [mV]*	14	26	47	67	84	106	133	149	167	211	265	374

^{*}The values in the table are TYP values.

INPUT/OUTPUT CIRCUIT

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

OKI semiconductor MSC1146B

2-CHANNEL 15-DOT LEVEL METER IC (DYNAMIC)

GENERAL DESCRIPTION

The OKI MSC 1146B Bar graph Display Level Meter is a Bi-CMOS LSI general purpose display Level Meter designed to interface with vacuum fluorescent type display.

FEATURES

- Direct input of audio signals (AC signals)
- DC input
- Peak hold function provided
- Decibel display by anti-log compression (+ 10 B to 40dB)
- Power ON reset circuit built in
- FLT direct driving by high withstand voltage process (Pull-down resistor built in)
- Grid driver output duty simply changed by C and R
- 28-pin lead plastic DIP, 30-pin shrink plastic DIP

BLOCK DIAGRAM

PIN CONFIGURATION

			30PIN	I Shrink DIP				. •		
		1			30					
		2			29]				
		3			28]				
		4			27]				
ı		5		•	26]				
		6			25]				
		7			24]				•
The state of the s		8		**	23]				
	•	9			22]				
		10	÷		21]				
		11			20]				
		12			19]				
		13			18]				
		14			17]		•		
		15		•	16]			•	
		· · · · · ·					•			
	1	vcc	11	NC .	21	O ₆	-			
	2	Rin	12	VEE	22	07	-	ŝ		
	3	Rout	13	L-Grid	23	O ₈	-			
	4	GND	14	R-Grid	24	09	-			
	5	Lin	15	O ₁	25-	O ₁₀	-			
	6	Lout	16	O ₂	26	011	-			
	7 8	Vref PHR	17	O ₃	27	O ₁₂	-			
	9	OSC	19	O ₅	29	O ₁₃	-			
	10	DUTY	20	NC	30	O ₁₅	-			
				(This specif	ication	may be cha	– nged v	vithout	noti	ce.)

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rated value	Unit	Terminal
Supply voltage 1	Vcc	Ta = 25°C	-0.2~7.0	v	vcc _
Supply voltage 2 (Between VCC and VEE)	V _{EE}	Ta = 25°C	VCC + 0.2~ - 38	٧	VEE
Input voltage	V _{I1}	Ta = 25°C	-0.2~VDD+0.2	٧	Except Rin
Input reverse current	lı	Ta = 25°C, V _I = - 1.0V	10MAX	mA	and Lin
Output current	101	Ta = 25°C, source current	- 10MAX	mA	O ₁ ~O ₁₅
Output current	102	Ta = 25°C, source current	- 50	mA	L-Grid, R-Grid
Input voltage	V ₁₂	Ta = 25°C	-3.0∼VDD+0.2	٧.	Rin, Lin
Allowable loss	P _{D2}	Ta = 70°C	480	mW	
Storage temperature	Ts tg		- 50~ + 125	°C	

Operating Condition

Parameter	Symbol	Conditions	Rated value	Unit	Terminal
Supply voltage	V _{CC}		4.5~5.5	V	vcc
Supply voltage	V _{EE}	Between V _{CC} and V _E	-8~-37	V	VEE
Operating temperature	T _{OP}		- 10~ + 70	°C	

DC Characteristics

 $Ta = -10 \sim 70^{\circ}C$, $VCC = 5.0 \pm 0.5V$

Parameter	Symbol	Conditions	Spe	cificati	ons		Terminal
raianietei	Symbol	Conditions	MIN	TYP	МАХ	Unit	Terminar
Input bias current	1 _{IL}	Vin = 0V			± 1.0	μΑ ՝	D' - L'
Input voltage	Vı				3.5	VP.P	Rin, Lin
High level input voltage	V _{IH1}		VCC ×80%			٠.٧	
Low level input voltage	V _{IL1}	, ,			VCC × 20%	. V	
High level input current	l _{IH1}				± 1	μΑ	PHR
Low level input current	f _{IL1} .		- 20	- 50	- 100	μΑ	
High level output voltage	V _{OH1}	I _O = -0.2mA V _{EE} = -36.0V, V _{CC} = 5V	3.5			>	01~015
Low level output voltage	V _{OL1}	$I_0 = 0$ mA, $V_{EE} = -36.5$ V (Between VCC and VEE)			.200	mV	01~015
Pull-down resistor	Ro	V _{CC} = 5V, V _{EE} = -36.5V	70	200	500	ΚΩ	R-Grid L-Grid
High level output voltage	V _{OH2}	I _O = -20mA, V _{EE} = -36.5V, V _{CC} = 5V (Between V _{CC} and V _{EE})	2.5			V	R-Grid L-Grid
Oscillation frequency	f _{osc}	R = 10KΩ, C = 0.022μF	6	10	14	KHz	osc
L/R sampling frequency	f. L/R		fosc×	1/32			·
Peak hold reset timing	P.f	1	fosc ×	1/8192			
POR release voltage	V _{IH2} .		4.0			٧٠	vcc
Voltage V _{REF}	V _{REF}	$V_{CC} = 5V,$ $V_{EE} = -36.5V$	-8	- 5	- 2	v	V _{REF}
Supply current	I _{EE1}	$V_{CC} = 5V, V_{EE} = -36.5$ No load, all DOTs Of			5	mA	VEE
Supply current	I _{EE2}	V _{CC} =5V,V _{EE} =-36.5V DUTY No load, all DOTs OFF 1/12				mA	V _{EE}
Supply current	lcc	$V_{CC} = 5V, V_{EE} = -36.5V$ No load, all DOTs OFF			10	mΑ	V _{CC}

Note: Voltage V_{EE} is a voltage between the V_{CC} and V_{EE} terminals.

FUNCTIONAL DESCRIPTION

VCC: This is an analogue or logic system voltage input terminal.

Rin, Lin: These are audio input terminals to directly input an alternating current via a capacitor coupling. Max. 3.5V P.P

Rout, Lout: These terminals rectify an audio alternating current with a capacitor and resistor connected.

OSC: This is a C (capacitor) and R(resistor) oscillation connection terminal to specify the L/R sampling and L/R-Grid switching frequency and the peak hold reset timing.

Vref: This is an amplifier built-in voltage output terminal. Connect a capacitor of about 10µF between the GND and Vref terminals.

P.H.R: This is a peak hold reset terminal.

When the terminal is Low, the reset state is fixed. (Peak hold function inhibition state: The peak hold function is performed for an input of – 10 dB or higher.)

DUTY: This terminal with a capacitor (C) and a resistor (R) connected is used to adjust the L/R-Grid duty ratio and to change the FLT brightness. When the terminal is fixed Low, the duty ratio is about 1/4.

Wt can be adjusted by C and R. The maximum duty ratio is 1/4.

Pulse width calculation method

 $Wt = 0.587 \times C \times R(S)$

When the value for R is not 10 K, the constant may be slightly changed.

Note: The resistance should not be less than 8K.

VEE: This is a FLT driving supply voltage terminal. The power supply system is as follows:

L/R-Grid: This is a FLT grid driving output terminal. The timing waveform is shown in the illustration for the DUTY terminal. The grid can be directly driven.

O₁ to O₁₅: These terminals are FLT segment terminal with a pull-down resistor built-in to directly drive the segment.

Note: Precautions for operation

Power ON and OFF sequence

Power connection diagram

When turning power on, turn the power source b on prior to or simultaneously with the power source a. When turning power off, turn the power source a on prior to or simultaneously with the power source b.

The time difference between a and b should be within 5 seconds as following time chart.

For 5 seconds, a current of 80 to 120mA (VCC = 5V) flows through the power source a.

This is a normal phenomenon. When the power source b is turned on, the system enters the normal state.

THRESHOLD VOLTAGE TABLE

Ta = 25°C $VCC = 5V \pm 1\%$

110

156

Parameter	Terminal	Conditions	Spe	cification	ons .	
rarameter	Terminai	Conditions	MIN	TYP	MAX	Unit
Threshold voltage 1	01		9	10	13	dB
Threshold voltage 2	O ₂		6	8	9	dB
Threshold voltage.3	O ³ ·		4	5	6	dB
Threshold voltage 4	04		1.5	3	4	dB
Threshold voltage 5	O ₅		0.5	1	1.5	dB
Threshold voltage 6	O ₆	The input should be adjusted to 0 dB.	_	0		dB
Threshold voltage 7	07		- 1.5	- 1	- 0.5	dB
Threshold voltage 8	O ₈		-4	- 3	- 2	dB
Threshold voltage 9	O ₉	·	- 6	, – 5	-4	dB .
Threshold voltage 10	O ₁₀	. '	- 8.5	-7	- 6	dB
Threshold voltage 11	011		- 13	- 10	- 8.5	dB
Threshold voltage 12	O ₁₂		- 18	- 15	- 13	dB
Threshold voltage 13	O ₁₃		- 25	- 20	- 18	dB
Threshold voltage 14	O ₁₄		- 35	- 30	- 25	dB
Threshold voltage 15	O ₁₅	OFF SET should be set to -40 dB.	- 45	- 40	- 35	dB

When the input is set to - 60 dB, all DOTs are off. The peak hold function is effective for an input of $-10 dB (O_{11})$ or higher.

AC INPUT LEVEL VS DC INPUT LEVEL

Threshold voltage	1	2	3	4	5	6	7	8	9	10
Display [dB]	10	8	5	3	1	0	- 1	- 3	- 5	- 7
AC input level [mV rms]	782	622	440	349	278	247	221	175	139	110
DC input level [mV]*	1,107	879	622	494	393	350	312	248	197	156
Threshold voltage	11	12	13	14	15	* Ir	nout fro	om the	Lout or	Rout
Display [dB]	- 10	- 15	- 20	- 30	- 40	te	erminal	Į,		
AC input level [mV rms]	78.5	44.0	24.7	7.85	2.47	1 '	ne valu YP valu		e table	are
DC input level [mV]*	111	62.2	35.0	11 1	3 50					

INPUT CIRCUIT

OUTPUT CIRCUIT

APPLICATION NOTE

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

One Chip Microcontroller

OKI semiconductor

MSC6458

OKI 4-BIT 1-CHIP MICROCONTROLLER

GENERAL DESCRIPTION

The MSC6458 is a high-speed, 4-bit 1-chip microcontroller with built-in FLT drivers/controllers developed to support relatively large control systems.

FEATURES

• ROM: 8000 × 8 bits RAM: 512 × 4 bits

• Ports: I/O 24 ports (8 having IOL = 20 mA) Input 9 (2 also serving as interrupt inputs)

• FLT drivers (Withstand 12 (IOH = 20mA) voltage 40V): 12 (IOH = 6mA)

LED direct drive available

• Interrupts: 7 lines (2 external, 5 internal)

· Built-in counters: 12 bits, timebase counter 16 bits, programmable counter 8 bits, high-speed

programmable timer/event

counter

Serial I/O: Built-in 8-bit SIO register

Oscillation circuit: Crystal or ceramic oscillation

 Number of instructions: 147 Cycle time: 930 ns (4.3MHz)

Operating ranges: 4.5 to 5.5V (4.3MHz)

Voltage: 3.0 to 6.0V (1MHz) Temperature: -40 to +85°C

Power dissipation (typical)

(display off): 9mA (5V, 4.3MHz) 2mA (3V, 1MHz)

Power down: STOP instruction.

Package: 64-pin shrink DIP/64-pin FLAT

BLOCK DIAGRAM

LOGIC SYMBOL

PIN CONFIGURATION (TOP VIEW)

PIN DESCRIPTION

Terminal	Input/ Output	Function	When reset
P00 P01/SCK P02/SO P03/SI	Input/ Output	I/O port I/O port (also used as serial clock input SCK) I/O port (also used as serial data output SO) I/O port (also serial data input SI)	"1"
P10/ <u>CIN</u> P11/ <u>TMO</u> P12/TCK P13	Input/ Output	I/O port (also used as count input CIN) I/O port (also used as timer output TMO) I/O port (also used timer clock input TCK) I/O port	"1"
P20/ <u>INTO</u> P22/INT1	Input	Input Port with Latch (falling edge sensitive) also used as interrupt input INTO Input Port with Latch ('0' level sensitive) also used as interrupt input INT1	-
P30 ~ P33	Input/ Output	I/O port	"1"
P60 ~ P63	Input/ Output	I/O port	"0"
P40 ~ P43 P50 ~ P53	Output/ Input	I/O port (I _{OL} =20mA MAX)	"0"
P70 ~ P72 P80 ~ P83	Input	Input port with pull down register Pull down register of P70 ~ P72 can be removed by instruction	
SEG0 ~ SEG11	Output	FLT segment driver (dynamic)	"0"
T11/SEG12 ~ T8/SEG15	Output	FLT segment driver (dynamic)/Timing output.	"0"
T7/OUT7 ~ T0/OUT0	Output	FLT segment driver (static)/Timing output	"0"
OSC0 OSC1	Input/ Output	Crystal connection terminal for system clock oscillation	-
RESET	Input	System reset input	_
TEST	Output	Test pin (Open)	
VFLT	Input	Power supply for FLT driving	-
VDD GND	Input	System Power Supply	

FUNCTIONAL DESCRIPTION

1. ROM

The ROM, organized in 8 bits, has a maximum capacity of 8000 bytes.

2. RAM

The RAM is organized in 4 bits per word, with a capacity of 512 words.

It is separated into two banks each 256 words long. Bank selection is accomplished via internal ports. The RAM location in the banks is addressed by the H and L registers or by the second byte of each instruction.

3. Ports (24 I/O, 7 input)

The 24 pseudo-bidirectional I/O ports effect or control the exchange of data with external sources. The ports are specified by the L register or by codes contained in instructions. Ports 4 and 5 may draw IOL up to 20mA.

The seven input ports have built-in pulldown resistors. Up to 84 keys can be scanned by assembling them in key matrices with the timing outputs of the FLT drivers (with 12 segments \times 12 timings on display; also during automatic display).

4. Interrupt Input Pins (2 terminals)

The INTO/P20 and INT1/P22 pins are interrupt input pins. External interrupt request flags of INTO/P20 pin and INT1/P22 pin can be set by using interrupt input pins:

INTO/P20 pin ... positive edge or negative edge input.

INT1/P22 pin ... "0" level input.

These flags are automatically reset when the appropriate external interrupts occur. These pins are available for use as input ports when not used as interrupt input pins.

5. FLT Drivers/Controllers (Automatic Display)

The FLT drivers have a withstand voltage of 40V in the positive direction from the GND level. They comprise 12 ports that can draw 20mA as IOH (Timing outputs) and 12 ports that can draw 6mA as such (Segment outputs).

A choice of four display modes is supported as listed below. A display RAM area is allocated as part of the RAM space. Data is automatically displayed when transferred to the display RAM. (Two different display frequencies are selectable.) Static output data can be displayed by controlling the FLT drivers by programming. Display modes (@4.194304 MHz)

(1) 12 Segments × 12 Timings

1/12 duty (85.3/341.3 Hz)

(2) 16 Segments × 8 Timings

1/8 duty (128/512 Hz) (3) 16 Segments × 4 Timings +4 output*

1/4 duty (256/1024Hz)

(4) 16 Segments+8 output*

Program controlled *output: static outputs

6. Stack (STACK) and Stack Pointer (SP)

The PC is saved in the stack when an interrupt occurs or a CAL instruction is executed. It is recovered by the execution of an RT instruction.

One fourth of the RAM space (128 words maximum, 32 levels) is available as a stack area. A 4-word RAM area is used for "one" level in the stack.

The stack pointer is an 8-bit up-down counter (the MSB and 2 bits from LSB being fixed at '1') indicating the next stack address to use. It enables the RAM space to be used as pushdown stack. Data can also be transferred between stack pointer and the H/L registers.

7. Interrupts

Seven interrupt lines are provided for eight sources and eight levels of interrupts as follows (two external inputs):

(1) Display interrupt

Update to timing signals (positive edge)

(2) External interrupt1

Negative edge on the INTO/P20 pin

(3) External interrupt2

Positive edge on the INTO/P20 pin

(4) External interrupt3

'0' input on the INT1/P22 pin

(5) Timebase interrupt

12-Bit timebase counter overflow
(6) Timer interrupt

16-Bit timer and timer register matched signal

(7) Counter interrupt
8-Bit counter and counter register matched

signal (8) Serial/O interrupt

8-Bit shift register shift end signal

8. 12-Bit Timebase Counter

The timebase counter is made up of a 12-bit binary counter. It generates an interrupt request every time it overflows as a result of dividing the OSC0 input 2¹².

9. 16-Bit Programmable Timer/Event Counter

Comprising a 16-bit register, a 16-bit binary counter, a comparator circiut, and a control circuit, the programmable timer generates an interrupt request when the register and counter values are matched.

10. 8-Bit High-Speed Programmable Timmer/Event Counter

The high-speed programmable timer/event counter comprises an 8-bit register, an 8-bit binary counter, a comparator circuit, and a control circuit. Starting and stopping the counter can be controlled by instructions. It generates an interrupt request when the register and counter values are matched.

11. 8-Bit Serial I/O

Serial I/O consists of an 8-bit shift register, a 3-bit shift counter, and a control circuit. It is used for serial data input and output. Serial data input and output takes place synchronized with a shift clock, which is selectable between internal and external clocks. The shift counter automatically terminates a data transfer on counting eight shift clock pulses and generates an interrupt request.

12. Registers (Acc, H, L, F)

The accumulator (Acc) is a 4-bit register used to perform data transfers or calculations with the RAM, other registers, ports and so on.

The H and L registers are each a 4-bit register. They transfer data to and from Acc and SP (stack pointer) and address the RAM. The L register is also used to specify ports to use.

The F register is made up of four independent flip-flops. It can be used as a program "flag" or general-purpose register because each of these flip-flops permits set/reset testing and transferring 4-bit parallel data to and from Acc by instructions.

13. Timing Control (TC)

A '0' input on the RESET pin for a certain period initializes internal circuitry and ports.

As the input side of clock pulses, the OSCO pin accepts clock pulses from an external source. Clock pulses may also be obtained by configuring an oscillation circuit with a crystal oscillator or ceramic resonator connected to OSCO and OSC1.

Load Instructions, etc.

Mne	monic	Code	Bytes	Cycles	Description
LAI	n	· 90-9F	1	1	A ← n
LLI	n	80-8F	1	1	L←n
LHI	n	3E · 7n	2	2	H←n
LHLI	nn	15 · nn	2	2	HL ← nn
LMI	nn	14 · nn	2	2	M (w) ← nn
LAL		· 21	1	1	A ← L
LLA		2D	· 1	1	L ← A
LAH		22	1	. 1	A ← H
LHA		2E	1	1	H←A
LAM		38	1	1	A ← M
LMA		2F	1	1	M ← A
LAM+		24	1	1	A ← M, L ← L+1, Skip if L = "0"
LAM-	,	25	1	1	A ← M, L ← L−1, Skip if L = "F"
LMA+		26	1	1	M ← A, L ← L+1, Skip if L = "0"
LMA-		27	1	1	M ← A, L ← L−1, Skip if L = "F"
LAMM	n2	39-3B	1	1	A ← M, H ← H ¥ n2
LAMD	mm	10 mm	2	2	A ← Md
LMAD	mm	11 mm	2	2	Md ← A
Х		28	1	1	$A \longleftrightarrow M$
X+		3C	1	1	A ←→ M, L ← L+1, Skip if L = "0"
X		2C	1	1	$A \longleftrightarrow M, L \leftarrow L-1, Skip if L = "F"$
XM ·	n2	29-2B	1	1	A ←→ M, H ← H → n2
LMT	mm	19 mm	. 2	4	M (w) ← T (Md (w), A)
LAF		3E · 54	2	, 2	A←F
LFA		3E · 5C	2	2	F←A
LHLS		3E · 53	2	2	HL ← SP
LSHL		3E · 5B	2	2	SP HL
IP		20	1	1	A←P
ОР		23	1	1	P←A
IPD	р	3D · pD	2	2	A ← Pp
OPD	р	3D pC	2	2	Pp ← A
OPT		18	1	3	P4, P5 ← T (M (w), A)

Interrupt Control Instructions

Mnemonic	Code	Bytes	Cycles	Description
MEI,	3E · 60	2 .	2	MEIF ← "1"
MDI	3E · 61	2	2	MEIF ← "0"
EIXD	3D · E8	2	2	EIXDF ← "1"
EIXU	3D · E9	2 .	2	EIXUF ← "1"
EIXL	3D · EA	2	2	EIXLF ← "1"
EIDP .	3D · EB	, 2	2	EIDPF ← "1"
EITB	3D · D8	2	2	EITBF ← "1"
EITM	3D · D9	2	2	EITMF ← "1"
EICT	3D · DA	2	2	EICTF ← "1"
EISR	3D · DB	2	2 .	EISRF ← "1"
DIXD	3D · E4	2	2 •	EIXDF ← "0"
DIXU	3D · E5	2	2	EIXUF ← "0"
DIXL	3D · E6	2	2	EIXLF ← "0"
DIDP	3D · E7	2	2	EIDPF ← "0"
DITB	. 3D · D4	2	2	EITBF ← "0"
DITM	3D · D5	2	2	EITMF ← "0"
DICT	3D · D6	2	2	EICTF ← "0"
DISR.	3D · D7	2	2	EISRF ← "0"
TIXD	3D · E0	2	2	Skip if EIXDF = "1"
TIXU	3D · E1	2	2	Skip if EIXUF = "1"
TIXL	3D · E2	2	2	Skip if EIXLF = "1"
TIDP	3D · E3	2	2	Skip if EIDPF = "1"
TITB	3D · D0	2 .	2	Skip if EITBF = "1"
TITM	3D · D1	2	2	Skip if EITMF = "1"
TICT	3D · D2	2	2	Skip if EICTF = "1"
TISR	3D · D3	2	2	Skip if EISRF = "1"
TQXD	3D · 20	2	2	Skip if IRQXDF = "1"
TQXU	3D · 21	. 2	2	Skip if IRQXUF = "1"
TQXL	3D · 22	2	2	Skip if IRQXLF = "1"
TQDP	3D 23	2	2	Skip if,IRQDPF = "1"
TQTB	3D · C0	2	2 ·	Skip if IRQTBF = "1"
TQTM	3D · C1	2	2	Skip if IRQTMF = "1"
TQCT	3D · C2	2	2	Skip if IRQCTF = "1"
TQSR	3D · C3	2	2	Skip if IRQSRF = "1"
RQXD	3D · 24	2	2	IRQXDF ← "0"
RQXU	3D · 25	2	2	IRQXUF ← "0"
RQXL	3D · 26	2	2	IRQXLF ← "0"
RQDP	3D · 27	2	2	IRQDPF ← "0"
RQTB	3D · C4	2	2	IRQTBF ← "0"
RQTM	3D · C5	2	2	IRQTMF ← "0"
RQCT	3D · C6	2	2	IRQCTF ← "0"
RQSR	3D · C7	2	2	IRQSRF ← "0"

Increment/Decrement Instructions

Mnemonic	Code	Bytes	Cycles	Description
INA	30	1	1	A ← A+1, Skip if A = "0"
INL	- 31	1	1	L ← L+1, Skip if L = "0"
INH	32	1	1	H ← H+1, Skip if H = "0"
INM	33	1	1	M ← M+1, Skip if M = "0"
DCA	34	1	1	A ← A−1, Skip if A = "F"
DCL	35	1	1	L ← L−1, Skip if L = "F" \
DCH	36	- 1	1	H ← H−1, Skip if H = "F"
DCM	37	1 .	1	M ← M−1, Skip if M = "F"
INMD mm	12 · mm	2	2	Md ← Md+1, Skip if Md = "0"
DCMD mm	13 · mm	2	2	Md ← Md−1, Skip if Md = "F"

Bit Handling Instructions, etc.

Mne	monic	Code	Bytes	Cycles	Description
TAB	n2	54-57	1	1	Skip if A (n2) = "1"
RAB	n2	64-67	1	1	A _. (n2) ← "0"
SAB	n2	74-77	1	1	A (n2) ← "1"
TPB	n2	50-53	1	1	Skip if P (n2) = "1"
RPB	n2	60-63	1	1	P (n2) ← "0"
SPB	n2	70-73	1	1	P (n2) ← "1"
ТМВ	n2	58-5B	1	1	Skip if M (n2) = "1"
RMB	n2	68-6B	1	1	M (n2) ← "0"
SMB	n2	78-7B	1	1	M (n2) ← "1"
TFB	n2	5C-5F	1	1	Skip if F (n2) = "1"
RFB	n2	6C-6F	1	1	F (n2) ← "0"
SFB	n2	7C-7F	1	11	F (n2) ← "1"
TPBD	p, n2	3D ⋅ p0~3	2	2	Skip if Pp (n2) = "1"
RPBD	p, n2	3D · p4~7	2	2	Pp (n2) ← "0"
SPBD	p, n2	3D · p8∼B	2	2	Pp (n2) ← "1"
TC	•	09	1	1	Skip if C = "1"
RC		08	1	1	C ← "0"
sc		07	1	1	C ← "1"

Arithmetic Instructions

Mnen	nonic	Code	Bytes	Cycles	Description
ADCS		01	1	1	C, A ← C+A+M, Skip if C = "1"
ADS		02	1	1	A ← A+M, Skip if Cy = "1"
ADC		03	1	1	C, A ← C+A+M
AIS	. n	3E - 4n	2	2	A ← A+n, Skip if Cy = "1"
DAA		06	1	1	A ← A+6
DAS		0A	1	1	A ← A+10
AND		0D	1	1	$A \leftarrow A \wedge M$
OR		05	1	1	$A \leftarrow A \lor M$
EOR		04	1	1 .	A'←A ¥ M
CMA		0B	1	1	$A \leftarrow \overline{A}$
CIA		0C	1	' 1	A ← Ā+1
RAL		0E	1	1	C- 3-2-1-05
RAR		0F	1	1	$ \begin{array}{c} C \leftarrow 3 \leftarrow 2 \leftarrow 1 \leftarrow 0 \\ C \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \end{array} $
CAM		16	1	1	Skip if A = M
CAI	n	3E · 0n	2	2	Skip if A = n
СМІ	n	3E - 1n	2	2	Skip if M = n
CLI	n	3E · 2n	2	2	Skip if L = n
CPI	р́, п	17 · pn	· 2	2	Skip if Pp = n

Branch Instructions, etc.

Mne	monic	Code	Bytes	Cycles	Description
JCP	а6	C0-FF	1	1	PC ← a6
JA		1A	1	2	PC ← (PC ← A) +1
JM		1B	1	2	PC ← (M (w), A)
JP	a12	40_4F 00_FF	2	2	PC ← a12
CAL	a12	A0_AF 00_FF	2	4	ST ← PC+2, PC ← a12, SP ← SP-4
CZP	а	Ва	1	- 4	ST ← PC+1, PC ← 2a, SP ← SP-4
ШP	a13	3F 3F 00-1F 00 FF	3	4	PC ← a13
LCAL	a13	3F 3F 80-9F 00 FF	3	4	ST ← PC+3, PC ← a13, SP ← SP-4
RT		1E	1	4	PC ← ST, SP ← SP+4
RTS		1F	1	4	PC ← ST, SP ← SP+4, then Skip

Counter Control Instructions, etc.

Mnemonic	Code	Bytes	Cycles	Description
LCTM .	3E · 51	2	2.	CTR ← M (w)
LMCT	3E · 59	2	2	M (w) ← CT
ECT	3D · BB	2	2	CTF ← "1" (Counter Start)
DCT	3D · B7	2 .	2	CTF ← "0" (Counter Stop)
тст	3D · B3	2	2	Skip if CTF = "1"
LTMM	3E · 50	2	3	TMR ← M (2w)
LMTM	3E · 58	2	3	M (2w) ← TM
LSRM	3E · 52	2	2	SR ← M (w), SC ← "0" SC: Shift Counter
LMSR .	3E 5A	2	2	M (w) ← SR
ESR	3D · BA	2	2	SRF ← "1" (Shift Register Start)
DSR	3D · B6	2	2	SRF ← "0" (Shift Register Stop)
TSR	3D · B2	2	2	Skip if SRF = "1"

CPU Control Instructions, etc.

Mnemonic	Code	Bytes	Cycles	Description
PUSH	1C	1	3	ST ← C, A, H, L, SP ← SP-4
POP	1D	1	3	C, A, H, L ← ST, SP ← SP+4
HALT	3D · B8	. 2	2	Halt CPU
STOP	3D · B9	2	2	Stop CPU
NOP	00	1	1	No Operation

Explanations of Instruction Symbols

: Accumulator (4-bit) Н : H register (4-bit) : L register (4-bit) : F register (4-bit)

: RAM word addressed by the H and L registers

Md : RAM word addressed by second byte of an instruction code

: Two RAM words addressed by the H and L register/H3-0 and L3-1 (8-bit) Md (w) : Two RAM words addressed by second byte of an instruction code (8-bit) : Four RAM words addressed by the H and L register/H3-0 and L3-2 (16-bit) M (2w)

: Four RAM words (16-bit) allocated as a stack area ST

SP : Stack pointer (8-bit)

PC : Program counter

Р : Port specified by the L register (4-bit)

Р́р СТЯ : Port specified by 4 high-order bits of second byte of an instruction code (4-bit)

: 8-Bit counter/register CT : 8-Bit programmable counter

CTF : Programmable counter start flag

TMR : 16-Bit timer/register

TM : 16-Bit programmable timer : 8-Bit shift register SR

SRF : Shift register start flag

: ROM address data specified by a11-4 as X and a3-0 as Y (12-bit) (X, Y) T (X, Y) : ROM table data specified by a11-4 as X and a3-0 as Y (8-bit)

: Immediate data (4-bit) : Immediate data (8-bit) nn

: Two low-order bits of an instruction code n2

(n2) : Bit specified by the two low-order bits of an instruction code

: ROM address data

аΧ : ROM address data (X-bit) mm : RAM address data (8-bit)

: Carry flag

Cy : Flag indicating a carry in a calculation result

ELECTRIC CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Cond	itions	Limits	Unit
Supply Voltage	VDD			_0.3 ~ 7	
Indicated Supply Voltage	VFLT	Ta =	25°C	V _{DD} ~ 45	V
Input Voltage	VI			-0.3 ~ V _{DD}	V
Input Voltage	V-2	T 25°C	Input/output	−0.3 ~ V _{DD}	V
input voitage	۷o	1a - 25 C	-0.3 ~ 7 Ta = 25°C VDD ~ 45 -0.3 ~ VDD -0.3 ~ VDD Indicated output -0.3 ~ VFLT SEG0 ~ SEG1 T0 ~ T11 OUT0 ~ OUT7 30 SEG0 ~ SEG11 T0 ~ T11 T2 Per terminal P4 total P5 total Per package G00 Input/output defining -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VDD -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -0.3 ~ VFLT -0.3 ~ VFLT -0.3 ~ VFLT -0.3 ~ VFLT -0.3 ~ VFLT -0.3 ~ VFLT -0.3 ~ VDD -0.3 ~ VFLT -	· V	
			SEG0 ~ SEG1	10	mA
"H" Output Current (Indicated Output)		Per pin	T0 ~ T11 '	40	mA
	Іон		OUTO ~ OUT7	* 30	mA
(maississ output)		Output terminal	-0.3 ~ 7 = 25°C	fπA	
		total	T0 ~ T11	72	mA
		Ta = 25°C Input/output Indicated output SEG0 ~ SEG1 T0 ~ T11 OUT0 ~ OUT7 * Output terminal total T0 ~ T11 Per terminal P4 total P5 total T5 T5 T5 T5 T5 T5 T5 T	` 20	mA	
"L" Output Current (P4, P5)	IOL	P4 1	total	.40	mA
		P5 1	total	40	mA
Danier Direitanier		Per pa	ckage	600	mW
Power Dissipation	PD	Per input/ou	-0.3 ~ 7 Ta = 25°C VDD ~ 45 -0.3 ~ VDD 25°C Input/output Indicated output -0.3 ~ VFL SEGO ~ SEG1 TO ~ T11 OUTO ~ OUT7 SEGO ~ SEG11 TO ~ T11 72 Per terminal P4 total P5 total Per package input/output terminal 50 VDD ~ 45 -0.3 ~ VFL 40 -0.3 ~ VFL 30 72 72 72 74 75 76 77 77 78 79 70 70 70 70 70 70 70 70 70	50	mW
Storage Temperature	Tstg	-	_	−55 ~ +150	°c

^{*} When timing output is used as static output

Operating Conditions

- Operating Contactions				
Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	\\ \tag{-}	f (osc) ≤ 4.3MHz	4.5 ~ 5.5	V
Supply Voltage	VDD -	f (osc) ≦ 1MHz	3 ~ 6	V
Indicated Supply Voltage	VFLT	_	10 ~ 40	V
Memory Retension Voltage	VDDH	Oscillation off	2 ~ 6	V
Operating Temperature	Topr		-40 ~ +85	°C
Memory Retension Voltage	N	MOS Load	15	T -
	I N	TTL Load	1	_

DC Characteristics

 $(V_{DD} = 5V \pm 10\%, Ta = -40 \sim +85^{\circ}C)$

Parameter	Terminal applied	Symbol	Conditions	Min.	Тур.	Max.	Unit
	*1			2.4		V _{DD}	V
"H" Input Voltage	OSCO, RESET	VIH	_	3.8	_	VDD	V
	P7, P8		_	3.4	_	VDD	V
"L" Input Voltage	*2	V	_	0	_	V _{DD}	V
L input voitage	P7, P8	VIL	-	0		1.6	V
	*3		IO = -15μA	4.2		_	٧
"H" Output Voltage	SEG0 ~ SEG11	Vон	10 = -6mA	VFLT-2.5	_	-	٧
	T0 ~ T11		10 = -20mA	V _{FLT} -3.5	_	- `	V
	P0, P1, P3, P6		IO = 1.6mA			0.4	V
	P4, P5		10 = 10mA		_	0.8	٧.
"L" Output Voltage	OSC1	VOL	IO = 15μA			0.4	٧
	SEG0 ~ SEG11		10 = 1mA		_	1.6	V
	T0 ~ T11		10 = 1mA		_	1.4	٧
,	OSC0	,				15	μА
III III Innus Ourress	P2, RESET		VI = VDD		_	1	μА
"H" Input Current	P7(P73=0), P8	ΉΗ	V1 - VDD			60	μА
	P7(P73=1)					1	μА

Parameter	Terminal applied	Symbol	Conditions	Min.	Тур.	Max.	Unit
	OSC0			_		-15	μА
	P2, RESET	11L	VI = 0V	_		-30	μΑ
	P7, P8		·	-	_	-1	μА
'H" Output Current	P0, P1, P3,	la	VO = 2.4V	-0.1	- ·	_	mA
n Output Current	P4, P5, P6	Іон	VO = 0.4V	_	_	-1.2	mA
Current Consumption		IDD	No load f (osc) = 4.3MHz	_	12	20	mA
			No load	_	1	100	μΑ
Current Consumption (When stop mode condition)	IDDS	No load VDD = 2V Ta = 25° C		0.5	10	μА
Current Consumption (FLT driver section)		IFLT	No load All FLT driver, "L" level	_	2	100	μA

^{*1.} Applied to P0, P1, P2, P3, P4, P5, P6

AC Characteristics

 $(V_{DD} = 5V_{\pm}10\%, Ta = 40 \sim +85^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Clock (O.S.C o) Pulse Width	t _φ W	_	116	_		nS
Cycle Time	tCY	-	928		_	nS
Input Data Setup Time	tDS	_	120	_	-	, nS
Input Data Hold Time	tDH	_	120	_	-	nS
P2 Input Data Pulse Width	tDWP2	Note 1	120	-	T -	nS
SR Clock, Pulse Width	tDW1	_	120		-	nS
CT Clock. Pulse Width	tDW2		2/8tCY+120	_	-	nS
TM Clock, Pulse Width	tDW3	_	tCY+120		-	nŞ
SR Data Setup Time	tSS	_	120		-	nS
SR Data Hold Time	tsH	-	120 .	_	-	nS
SR Clock Invalid Time *	tSINH	_ :	2/8tcy		_	nS
Data Delay Time	^t DR	CL = 15pF	_		300	nS
SR Clock Delay Time	tSP	CL = 15pF	_	_	360	nS
Reset Input. Rise Time	twrs	Note 2	2tcy	_	_	nS
Segment Output. Rise Time	tTLHS	VFLT = 40V	_		3	μSS
Segment Output, Rise Time	tTHLS	C _{LD} = 15pF		_	1	μS
Timing Output. Rise Time	tTLHT	VFLT = 40V	_	_	3	μS
Timing Output. Rise Time	tTHLT	C _{LD} = 15pF	_	_	1	μS
· · · · · · · · · · · · · · · · · · ·			·	·		

^{*1.} When stop mode is to be released by "L" level input from P20/INTO, it is necessary to keep the pulse width of more than oscillation stability time for OSC₀.

^{*2.} Applied to P0, P1, P2, P3, P4, P5, P6, OSC0, RESET¹

^{*3.} Applied to P0, P1, P3, P4, P5, P6, OSC1

^{*2.} This indicates when OSC₀ oscillation is stabilized. However, when stop mode is released by reset input, the pulse width of more than OSC₀ oscillation stability time as requested.

^{*3.} tSINH: When shift register commands LMSR during shift in operation, its inner part will not change if clock, which inputs P01/SCK during tSINH period, changes.

STANDARD CHARACTERISTICS

 "H" Output Current I_{OH} — Output Voltage V_{OH} Characteristics (Ta = 25°C)

 "L" Output Current IOL— Output Voltage VOL Characteristics (Ta = 25°C)

 "L" Output Current I_{OL}— Output Voltage V_{OL} Characteristics (Ta = 25°)

 "H" Output Current I_{OH}— Output Voltage V_{OH} Characteristics (Ta = 25° C, VFLT = 40V)

 "L" Output Current I_{OH}— Output Voltage V_{OL} Characteristics (Ta = 25°C, VFLT = 40V) Timing Output

 "L" Output Current I_{OL} — Output Current V_{OL} Characteristics (Ta = 25° C, VFLT = 40V) Segment Output

 "L" Output Current I_{OL} — Output Current V_{OL} Characteristics (Ta = 25°C, VFLT = 40V)

Timing Output

10
9
8
7
E 6
0 5
4
3
2
1

 Maximum Clock Frequency f(osc) — Supply Voltage V_{DD} Characteristics (Ta = 25°C, C_L = 15pF)

VOL (V)

 Maximum Clock Frequency f(osc) — Ambient Temperature Ta (VDD = 5V, CL = 15pF)

 Current Consumption IDD — Supply Voltage VDD (Ta = 25°C, No load)

TIMING CHART

osc.

PO, P1, P3, P4 P5, P6, P7, P8

PO, P1, P3 P4, P5, P6

T0 ≀ T11

Oki Semiconductor

785 North Mary Avenue, Sunnyvale, CA 94086, U.S.A. Tel: 408-720-1900 Fax: 408-720-1918

For further information please contact:

Oki Electric Industry Co., Ltd. Head Office Annex 7-5-25 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan Tel: 3-5386-8100 Fax: 3-5386-8110 Telex: J27662 OKIDENED Electronic Devices Group Overseas Marketing Dept. Oki Semiconductor 785 North Mary Avenue. Sunnyvale, CA 94086, U.S.A Tel: 408-720-1900 Fax: 408-720-1918 Telex: 296687 OKI SNTA Oki Electric Europe GmbH Hellersbergstraße 2 D-4040 Neuss Fed Rep. of Germany Tel 2101-15960 Fax 2101-103539 Telex 8517427 OKI D Oki Electronics (Hong Kong) Ltd. Suite 1801-4, Tower 1, China Hong Kong City. 33 Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: 3-7362336 Fax: 3-7362395 Telex: 45999 OKIHK HX