Packing Spheres in the Grassmann Manifold A Geometric Approach to the Noncoherent Multi-Antenna Channel

Lizhong Zheng David Tse Dept. of EECS, U.C. Berkeley

EPFL

Multi-antenna Rayleigh Fading Channel

$$y = Hx + w,$$

where H is the $N \times N$ Rayleigh fading gain matrix. (i.i.d. complex Gaussian $\mathcal{CN}(0,1)$ entries)

Coherent Capacity

Assume H is perfectly tracked at the receiver:

$$C = \mathbf{E} \log \det \left(I + \frac{\rho}{N} H H^{\dagger} \right)$$
$$= \sum_{i=1}^{N} E \log(1 + \rho \lambda_i),$$

where ρ is the total SNR at each receive antenna. $\lambda_i, i = 1, ... N$ are the eigenvalues of $\frac{1}{N}HH^{\dagger}$.

Equivalent to N sub-channels. Spatial diversity provides N degrees of freedom to communicate.

(Foschini 96)

High SNR Coherent Capacity

At high SNR,

$$C = \mathbf{E} \log \det \frac{1}{N} H H^{\dagger} + N \log \rho + o(1),$$

where $\mathbf{E} \log \det HH^{\dagger} = \sum_{i=1}^{N} \mathbf{E} \log \chi_{2i}^{2}$.

Every 3db increase in SNR yields N additional bps/Hz.

Assumption of Perfect Knowledge of H

This result assumes perfect tracking of the channel gains at the receiver.

In practice:

- channel may vary rapidly
- many parameters to estimate in large antenna arrays

Marzetta and Hochwald's Noncoherent Model

- Channel remains constant for intervals of T symbol times, and is independent from interval to interval.
- No side information of the channel state is assumed at the receiver or the transmitter.

Interpretations:

- 1) rough approximation of a continuous fading channel with coherence time T;
- 2) model for frequency-hopped, TDMA or packet-based systems;
- 3) model for noncoherent communication. (Think Differential PSK)

Model

Channel over a coherent interval:

$$Y = HX + W$$

$$X = \begin{bmatrix} x_1^t \\ x_2^t \\ \vdots \\ x_N^t \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1^t \\ y_2^t \\ \vdots \\ y_N^t \end{bmatrix}$$

The i th row of X is the transmitted signal x_i from the ith antenna over the coherent interval.

Capacity per coherence time:

$$C(\rho) = \sup_{p_X} I(X;Y)$$

This is not a Gaussian channel!

Main Questions

- What is the high SNR capacity of this non-coherent channel?
- How many degrees of freedom are available for noncoherent communications?
- How to achieve capacity?

Known Results

- Capacity for N > T transmit antennas can be achieved using only T of the N transmit antennas.
- Partial characterization of optimal input distribution.
- High SNR capacity obtained for single antenna case $(N = 1, T \ge 2)$.

High SNR Capacity for $N \leq T/2$

Theorem:

For $N \leq T/2$, the capacity $C(\rho)$ at high SNR ρ is :

$$C(\rho) = C_0 + N(T - N)\log \rho + o(1)$$

where C_0 is an explicitly computable constant.

Every 3dB increase in SNR yields N(1 - N/T) additional bps/Hz.

New Coordinate System

For matrix $R \in \mathcal{C}^{N \times T}$, consider the coordinate change

$$R \to (\Omega_R, C_R),$$

- Ω_R is the N dimension subspace of \mathcal{C}^T spanned by the row vectors of R.
- C_R is a $N \times N$ matrix, the expansion of row vectors w.r.t a canonical orthonormal basis of Ω_R

Key Observation:

$$\Omega_{HX} = \Omega_X$$
 with probability 1.

The row space of X is invariant to the channel fading H, and is perturbed only by the additive noise W.

Decomposition of Mutual information

$$Y = HX + W$$

$$X \to (\Omega_X, C_X).$$

The new coordinate system decomposes the problem into

- communicating via transmitted signal subspace Ω_X
- \bullet communicating within the subspace using C_X

$$I(X;Y) = I(\Omega_X;Y) + I(C_X;Y \mid \Omega_X)$$

Optimal Input

Result:

At high SNR, the optimal input distribution of X is to choose:

- \bullet C_X unitary
- Ω_X uniformly distributed in the set of N-dim subspaces in \mathbf{C}^T .

Observe that in the new coordinates:

$$HX \to (HC_X, \Omega_X)$$

Conditional on the unitary C_X , HC_X has the same distribution as H; thus the output Y is independent of C_X .

All the information is conveyed by the row space Ω_X

Communicating via Subspaces is not New!

In Differential PSK, encoding data by a phase difference ϕ is equivalent to representing it by the subspace of \mathbb{C}^2 spanned by

$$\left[\begin{array}{cc} 1 & e^{j\phi} \end{array}\right]$$

In multiple symbol DPSK (Divsalar and Simon 90), data is represented by a subspace in \mathbf{C}^T spanned by:

where $\phi_1, \ldots, \phi_{T-1}$ are the sequence of phase differences.

Communicating on Grassmann Manifold

Grassmann manifold G(T, N) = the set of all N-dimensional subspaces of \mathcal{C}^T .

$$\dim[G(T,N)] = N(T-N).$$

$$vol[G(T, N)] = \frac{\prod_{i=T-N+1}^{T} \frac{2\pi^{i}}{(i-1)!}}{\prod_{i=1}^{N} \frac{2\pi^{i}}{(i-1)!}}.$$

High SNR Capacity for $N \leq T/2$ (2)

$$C(\rho) = C_0 + N(T - N)\log\rho + o(1)$$

where

$$N(T - N) = \dim[G(T, N)]$$

 $C_0 = \log \operatorname{vol}[G(T, N)] + (T - N)\mathbf{E}[\log \det(\frac{T}{N\pi e}HH^{\dagger})]$

and $\mathbf{E} \log \det HH^{\dagger} = \sum_{i=1}^{N} \mathbf{E} \log \chi_{2i}^{2}$.

Sphere Packing for AWGN Channel

$$y = x + w$$

Codeword length = l. Packing in l dimensional space.

$$C \approx \frac{1}{l} \log \frac{\operatorname{vol}[B(\sqrt{l})]}{\operatorname{vol}[B(\sqrt{l\sigma^2})]} = \frac{1}{l} \log \frac{(\sqrt{l})^{2l}}{(\sqrt{l\sigma^2})^{2l}} = \log \rho, \qquad \rho = \frac{1}{\sigma^2}$$

Packing small noise spheres into a large sphere

Sphere Packing for Coherent Multi-Antenna Channel

$$y = Hx + w$$
, H is known.

Received signal lies in an ellipsoid of dimension Nl, scaled by H.

$$C \approx \frac{1}{l} \log \frac{V}{\text{vol}[B(\sqrt{Nl\sigma^2})]} = E \log \det HH^{\dagger} + N \log \frac{\rho}{N}, \quad \rho = \frac{N}{\sigma^2}$$

Packing small noise spheres into a large ellipsoid

Sphere Packing for Non-Coherent Channel

$$Y = HX + W$$
, H is unknown.

Received signal space is a product of l scaled Grassmann manifolds, of total dimension lN(T-N).

$$C \approx \frac{1}{l} \log \frac{\prod_{i=1}^{N} V_i}{\operatorname{vol}[B(\sqrt{N(T-N)l\sigma^2})]}$$

Packing noise spheres into a product of scaled Grassmann manifolds.

Number of Degrees of Freedom

ullet Communicating on the Grassmann manifold, the number of degrees of freedom in each coherence interval of length T is:

$$\dim[G(T,N)] = N(T-N)$$

• Compare to coherent capacity, we lose N^2 degrees of freedom in each coherence interval.

Capacity for N > T/2

For fixed T, if we use K transmit antennas, the number of degrees of freedom is $\dim[G(T,K)]$

When $N \ge T/2$, use only $K = \lfloor \frac{T}{2} \rfloor$ of the antennas to maximize the number of degrees of freedom K(T - K).

Training-Based Schemes

- \bullet Suppose we use M transmit antennas.
- N measurements are obtained at each symbol time during training.
- Training duration T_p has to be at least M to estimate all the MN parameters.
- degrees of freedom left for communication = M(T M)
- To maximize the number of d.o.f., use $M^* = \min\{N, \lfloor \frac{T}{2} \rfloor\}$ transmit antennas, and set $T_p = M^*$.
- Achieve the same number of d.o.f. as the channel capacity

Rectangular Systems

- Can compute high SNR capacity for the general case when number of transmit M is not equal to number of receive N.
- For M > N, optimal strategy is to use only N of the M transmit antennas.
- In general, use $M^* = \min\{M, N, \lfloor \frac{T}{2} \rfloor\}$ transmit antennas. The information carrying object is in $G(T, M^*)$. Achieve $M^*(T M^*)$ d.o.f. in each coherence interval.

Conclusions

• For the noncoherent $N \times M$ multi-antenna channel with coherence time T, every 3dB increase in SNR yields

$$M^*(1 - M^*/T)$$
 bps/Hz, $M^* \equiv \min(M, N, \lfloor T/2 \rfloor)$

- Given a fixed coherence time, capacity at high SNR is maximized by using T/2 transmit antennas. System is **coherence-time** limited rather than antenna limited.
- Geometric interpretation of capacity expression in terms of **sphere** packing in the Grassmann manifold.