CSCI 5521: Introduction to Machine Learning (Spring 2020)

Local Models

Rui Kuang

Department of Computer Science and Engineering
University of Minnesota

Introduction

Divide the input space into local regions and learn simple (constant/linear) models in each patch

- Unsupervised: Competitive, online clustering
- Supervised: Radial-basis functions, mixture of experts

Ŋ.

K-means Revisit

$$E(\{\mathbf{m}_{i}\}_{i=1}^{k} | \mathcal{X}) = \sum_{t} \sum_{i} b_{i}^{t} \|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}$$

$$b_{i}^{t} = \begin{cases} 1 & \text{if } \|\mathbf{x}^{t} - \mathbf{m}_{i}\| = \min_{l} \|\mathbf{x}^{t} - \mathbf{m}_{l}\| \\ 0 & \text{otherwise} \end{cases}$$

Batch
$$k$$
-means: $\mathbf{m}_i = \frac{\sum_t b_i^t \mathbf{x}^t}{\sum_t b_i^t}$

Online k - means :

$$\Delta m_{ij} = -\eta \frac{\partial E^t}{\partial m_{ij}} = \eta b_i^t \left(x_j^t - m_{ij} \right)$$

Online K-means

$$E^{t} = \sum_{i} b_{i}^{t} \|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}$$
$$\Delta m_{ij} = -\eta \frac{\partial E^{t}}{\partial m_{ij}} = \eta b_{i}^{t} (x_{j}^{t} - m_{ij})$$

Initialize $\mathbf{m}_i, i = 1, \dots, k$, for example, to k random \mathbf{x}^t Repeat

For all $\boldsymbol{x}^t \in \mathcal{X}$ in random order

$$i \leftarrow \arg\min_{j} \|\boldsymbol{x}^t - \boldsymbol{m}_j\|$$

$$\boldsymbol{m}_i \leftarrow \boldsymbol{m}_i + \eta(\boldsymbol{x}^t - \boldsymbol{m}_f)$$

Until m_i converge

Network Interpretation

Winner-take-all network

Renormalizing:

$$\left|\mathbf{m}_{i}\right| = 1, \forall i$$

Weight decay term:

$$\Delta m_{ij} = \eta b_i^t \left(x_j^t - m_{ij} \right) = \eta b_i^t x_j^t - \eta b_i^t m_{ij}$$

SOM - Scheme

- Randomly choose a data point.
- Find its closest map node
- Move this map node towards the data point
- Move the neighbor map nodes towards this point, but to lesser extent
- Iterate over data points

- •The extent of node displacements is relaxed with the iteration number
- After thousands of iterations:
- Assign each data point to the map node (cluster) it is most similar to

Self-Organizing Maps

■ Units have a neighborhood defined; m_i is "between" m_{i-1} and m_{i+1} , and are all updated together

$$\Delta \mathbf{m}_{l} = \eta e(l,i) \left(\mathbf{x}^{t} - \mathbf{m}_{l} \right)$$

$$e(l,i) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(l-i)^{2}}{2\sigma^{2}} \right]$$

Radial-Basis Functions

Locally-tuned units:

$$p_h^t = \exp\left[-\frac{\left\|\mathbf{x}^t - \mathbf{m}_h\right\|^2}{2s_h^2}\right]$$

$$y^{t} = \sum_{h=1}^{H} w_{h} p_{h}^{t} + w_{0}$$

b/A

Radial-Basis vs Linear Functions

What does the hidden layer do?

Local vs Distributed Representation

Local representation in the space of (p_1, p_2, p_3)

 x^a : (1.0, 0.0, 0.0)

 \mathbf{x}^b : (0.0, 0.0, 1.0)

 x^c : (1.0, 1.0, 0.0)

Distributed representation in the space of (h_1, h_2)

 x^a : (1.0, 1.0)

 x^b : (0.0, 1.0)

 x^c : (1.0, 0.0)

Regression

$$E\left(\left\{\mathbf{m}_{h}, s_{h}, w_{ih}\right\}_{i,h} \mid \mathcal{X}\right) = \frac{1}{2} \sum_{t} \sum_{i} \left(r_{i}^{t} - y_{i}^{t}\right)^{2}$$

$$y_{i}^{t} = \sum_{h=1}^{H} w_{ih} p_{h}^{t} + w_{i0}$$

$$\Delta w_{ih} = \eta \sum_{t} (r_i^t - y_i^t) p_h^t$$

$$\Delta m_{hj} = \eta \sum_{t} \left[\sum_{i} \left(r_i^t - y_i^t \right) w_{ih} \right] p_h^t \frac{\left(x_j^t - m_{hj} \right)}{s_h^2}$$

$$\Delta S_h = \eta \sum_{t} \left[\sum_{i} (r_i^t - y_i^t) w_{ih} \right] p_h^t \frac{\left\| \mathbf{x}^t - \mathbf{m}_h \right\|^2}{S_h^3}$$

Classification

$$E\left(\left\{\mathbf{m}_{h}, s_{h}, w_{ih}\right\}_{i,h} \mid \mathcal{X}\right) = -\sum_{t} \sum_{i} r_{i}^{t} \log y_{i}^{t}$$

$$y_{i}^{t} = \frac{\exp\left[\sum_{h} w_{ih} p_{h}^{t} + w_{i0}\right]}{\sum_{k} \exp\left[\sum_{h} w_{kh} p_{h}^{t} + w_{k0}\right]}$$

The updates are the same as the regression problem.