LIST OF SYMBOLS

$x \in A$	x is an element of A
$x \not\in A$	x is not an element of A
N	set of all natural numbers (including 0)
\mathbb{Z}	set of all integers
Q	set of all rational numbers
\mathbb{R}	set of all real numbers
\mathbb{Z}^+	set of all positive integers
\mathbb{Z}^-	set of all negative integers
$\mathbb{Z}_{\geq 0}$	set of all non-negative integers
$\left\{x_1, x_2, \dots, x_n\right\}$	set whose only elements are x_1, x_2, \ldots, x_n
$\{x_1,x_2,x_3,\dots\}$	set whose only elements are x_1, x_2, x_3, \ldots
$\{x \in U : P(x)\}$	set of all $x \in U$ such that $P(x)$ is true
$\{x \in U \mid P(x)\}$	set of all $x \in U$ such that $P(x)$ is true
Ø	empty set
$A \subseteq B$	A is a subset of B
$A \subsetneq B$	A is a proper subset of B
P(A)	power set of A
A	cardinality of A
(x,y)	ordered pair consisting of x, y
$A \times B$	Cartesian product of A and B
(x_1, x_2, \dots, x_n)	ordered <i>n</i> -tuple consisting of x_1, x_2, \ldots, x_n
$A_1 \times A_2 \times \cdots \times A_n$	Cartesian product of A_1, A_2, \ldots, A_n
A^n	$A \times A \times \cdots \times A$ with <i>n</i> -many A's
$A \cup B$	union of A and B
$A \cap B$	intersection of A and B
$A \setminus B$	complement of B in A
\overline{B}	complement of B

$f \colon A \to B$	f is a function from A to B
f(x)	the element that f assigns x to
$f \colon x \mapsto y$	f maps x to y
id_A	identity function on A
x	absolute value of x
$\lfloor x \rfloor$	floor of x
$\lceil x \rceil$	ceiling of x
$g \circ f$	g composed with f
f(X)	(setwise) image of X under f
$f^{-1}(Y)$	(setwise) preimage of Y under f
f^{-1}	inverse of f
$\sum_{i=m}^{n} a_i$	$a_m + a_{m+1} + a_{m+2} + \dots + a_n$
$d \mid n$	d divides n
$d \operatorname{\mathbf{div}} n$	quotient when n is divided by d
$d \bmod n$	remainder when n is divided by d
$(a_{\ell}a_{\ell-1}\dots a_0)_b$	base-b representation of a positive integer
gcd(m,n)	greatest common divisor of m and n
$a \equiv b \pmod{n}$	a is congruent to b modulo n
xRy	x is R related to y
$yR^{-1}x$	xRy
$[x]_R$	equivalence class of x with respect to R
A/R	$\{[x]_R : x \in A\}$