

Sujets de l'année 2006-2007

1 Devoir à la maison

Exercice 1

Soit $a \in \mathbb{R}$, notons A la matrice suivante

$$A = \begin{pmatrix} 0 & 1 \\ -a & 1+a \end{pmatrix}.$$

On définit une suite $(u_n)_{n\in\mathbb{N}}$, par la donnée de u_0 et u_1 et la relation de récurrence suivante, pour $n\in\mathbb{N}$

$$u_{n+2} = (1+a)u_{n+1} - au_n$$

- 1. Pour quelles valeurs de *a* la matrice *A* est-elle diagonalisable?
- 2. Lorsque *A* est diagonalisable, calculer A^n pour $n \in \mathbb{N}$.
- 3. On suppose A diagonalisable. On note U_n le vecteur $U_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$, exprimer U_{n+1} en fonction de U_n et de A, puis U_n en fonction de U_0 et de A.

Correction ▼ [002591]

Exercice 2

Soit *A* la matrice de $M_3(\mathbb{R})$ suivante :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}.$$

- 1. La matrice *A* est-elle diagonalisable?
- 2. Calculer $(A-2I_3)^2$, puis $(A-2I_3)^n$ pour tout $n \in \mathbb{N}$. En déduire A^n .

Correction ▼ [002592]

Exercice 3

Soit f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -8 & -3 & -3 & 1 \\ 6 & 3 & 2 & -1 \\ 26 & 7 & 10 & -2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- 1. Démontrer que 1 et 2 sont des valeurs propres de f.
- 2. Déterminer les vecteurs propres de f.
- 3. Soit \vec{u} un vecteur propre de f pour la valeur propre 2. Trouver des vecteurs \vec{v} et \vec{w} tels que

$$f(\vec{v}) = 2\vec{v} + \vec{u}$$
 et $f(\vec{w}) = 2\vec{w} + \vec{v}$.

- 4. Soit \vec{e} un vecteur propre de f pour la valeur propre 1. Démontrer que $(\vec{e}, \vec{u}, \vec{v}, \vec{w})$ est une base de \mathbb{R}^4 . Donner la matrice de f dans cette base.
- 5. La matrice *A* est-elle diagonalisable?

Correction ▼ [002593]

2 Partiel

Exercice 4

Soit A la matrice suivante

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{pmatrix}$$

- 1. Déterminer et factoriser le polynôme caractéristique de A.
- 2. Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles $A = PDP^{-1}$.
- 3. Donner en le justifiant, mais sans calcul, le polynôme minimal de A.
- 4. Calculer A^n pour $n \in \mathbb{N}$.

Correction ▼ [002594]

Exercice 5

Soit A la matrice suivante

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$

- 1. Calculer le polynôme caractéristique et déterminer les valeurs propres de A.
- 2. On note $\lambda_1 > \lambda_2$ les valeurs propres de A, E_1 et E_2 les sous-espaces propres associés. Déterminer une base $(\vec{\epsilon}_1, \vec{\epsilon}_2)$ de \mathbb{R}^2 telle que $\vec{\epsilon}_1 \in E_1$, $\vec{\epsilon}_2 \in E_2$, les deux vecteurs ayant des coordonnées de la forme (1, y).
- 3. Soit \vec{x} un vecteur de \mathbb{R}^2 , on note (α, β) ses coordonnées dans la base $(\vec{\epsilon_1}, \vec{\epsilon_2})$. Démontrer que, pour $n \in \mathbb{N}$, on a

$$A^n\vec{x} = \alpha\lambda_1^n\vec{\varepsilon_1} + \beta\lambda_2^n\vec{\varepsilon_2}$$

- 4. Notons $A^n \vec{x} = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ dans la base canonique de \mathbb{R}^2 . Exprimer a_n et b_n en fonction de α , β , λ_1 et λ_2 . En déduire que, si $\alpha \neq 0$, la suite $\frac{b_n}{a_n}$ tend vers $\sqrt{2}$ quand n tend vers $+\infty$.
- 5. Expliquer, sans calcul, comment obtenir à partir des questions précédentes une approximation de $\sqrt{2}$ par une suite de nombres rationnels.

Correction ▼ [002595]

Exercice 6

Soit P(X) un polynôme de $\mathbb{C}[X]$, soit A une matrice de $M_n(\mathbb{C})$. On note B la matrice : $B = P(A) \in M_n(\mathbb{C})$.

- 1. Démontrer que si \vec{x} est un vecteur propre de A de valeur propre λ , alors \vec{x} est un vecteur propre de B de valeur propre $P(\lambda)$.
- 2. Le but de cette question est de démontrer que les valeurs propres de B sont toutes de la forme $P(\lambda)$, avec λ valeur propre de A.

Soit $\mu \in \mathbb{C}$, on décompose le polynôme $P(X) - \mu$ en produit de facteurs de degré 1 :

$$P(X) - \mu = a(X - \alpha_1) \cdots (X - \alpha_r).$$

(a) Démontrer que

$$\det(B - \mu I_n) = a^n \det(A - \alpha_1 I_n) \cdots \det(A - \alpha_r I_n).$$

- (b) En déduire que si μ est valeur propre de B, alors il existe une valeur propre λ de A telle que $\mu = P(\lambda)$.
- 3. On note S_A l'ensemble des valeurs propres de A, démontrer que

$$S_B = \{P(\lambda)/ \lambda \in S_A\}.$$

4. Soient $\lambda_1, \ldots, \lambda_r$ les valeurs propres de A et soit Q(X) le polynôme :

$$Q(X) = (X - \lambda_1) \cdots (X - \lambda_r),$$

on note C la matrice C = Q(A).

- (a) Démontrer que $S_C = \{0\}$.
- (b) En déduire que le polynôme caractéristique de C est $(-1)^n X^n$ et que $C^n = 0$.

Correction ▼ [002596]

3 Examen

Exercice 7

Soit A la matrice

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 2 \end{pmatrix}$$

et f l'endomorphisme de \mathbb{R}^3 associé.

- 1. Factoriser le polynôme caractéristique de *A*.
- 2. Déterminer les sous-espaces propres et caractéristiques de *A*.
- 3. Démontrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

et trouver une matrice P inversible telle que $A = PBP^{-1}$.

- 4. Ecrire la décomposition de Dunford de B (justifier).
- 5. Pour $t \in \mathbb{R}$, calculer $\exp tB$.
- 6. Donner les solutions des systèmes différentiels Y' = BY et X' = AX.

Correction ▼ [002597]

Exercice 8

1. On note $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ la base canonique de \mathbb{R}^3 . Soit A la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Donner sans calcul les valeurs propres de A et une base de vecteurs propres.

- 2. On cherche à déterminer, s'il en existe, les matrices B telles que $\exp B = A$.
 - (a) Montrer que si $A = \exp B$, alors AB = BA.
 - (b) En déduire que la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ est une base de vecteurs propres de B.
 - (c) Déterminer toutes les matrices $B \in M_3(\mathbb{R})$ telles que $\exp B = A$. Justifier.
- 3. Soit la matrice C,

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Montrer qu'il n'existe pas de matrice $D \in M_3(\mathbb{R})$ telle que $C = \exp D$.

- 4. Calculer le polynôme caractéristique et le polynôme minimal de *C*.
- 5. Supposons qu'il existe une matrice $E \in M_3(\mathbb{R})$ telle que $E^2 = C$. Notons $Q_E(X)$ son polynôme minimal et $Q_C(X)$ le polynôme minimal de C.
 - (a) Montrer que $Q_E(X)$ divise $Q_C(X^2)$.
 - (b) En déduire que $E^3 = 0$ et que $C^2 = 0$.
 - (c) Déduire de ce qui précède qu'il n'existe pas de matrice E telle que $E^2 = C$.
- 6. Soient F et G des matrices de $M_3(\mathbb{R})$ telles que $F = \exp G$. Démontrer que pour tout $n \in \mathbb{N}^*$, il existe une matrice H telle que $H^n = F$.

Correction ▼ [002598]

4 Rattrapage

Exercice 9

Soit $m \in \mathbb{R}$, et A la matrice

$$A = \begin{pmatrix} 1 + m & 1 + m & 1 \\ -m & -m & -1 \\ m & m - 1 & 0 \end{pmatrix}$$

- 1. Factoriser le polynôme caractéristique de A et montrer que les valeurs propres de A sont -1 et 1.
- 2. Pour quelles valeurs de *m* la matrice est-elle diagonalisable ? (justifier). Déterminer suivant les valeurs de *m* le polynôme minimal de *A* (justifier).

Correction ▼ [002599]

Exercice 10

- 1. Donner un exemple de matrice dans $M_2(\mathbb{R})$, diagonalisable sur \mathbb{C} mais non diagonalisable sur \mathbb{R} (justifier).
- 2. Donner un exemple de matrice dans $M_2(\mathbb{R})$ non diagonalisable, ni sur \mathbb{C} , ni sur \mathbb{R} (justifier).

Correction ▼ [002600]

Exercice 11

Soit A la matrice suivante :

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- 1. Diagonaliser la matrice A.
- 2. Exprimer les solutions du système différentiel X' = AX dans une base de vecteurs propres et tracer ses trajectoires.

Correction ▼ [002601]

Exercice 12

Soit A la matrice

$$A = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 3 & -1 \\ -2 & -1 & -3 \end{pmatrix}$$

et f l'endomorphisme de \mathbb{R}^3 associé.

- 1. Factoriser le polynôme caractéristique de *A*.
- 2. Déterminer les sous-espaces propres et caractéristiques de A.

3. Démontrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est

$$B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

et trouver une matrice P inversible telle que $A = PBP^{-1}$.

- 4. Ecrire la décomposition de Dunford de *B* (justifier).
- 5. Calculer exp*B*.

Correction ▼ [002602]