Appln. No.: 10/583,016 Amendment Dated October 28, 2009 Reply to Office Action of April 28, 2009

Amendments to the Claims: This listing of claims will replace all prior versions, and listings, of claims in the application

Listing of Claims:

1-4. (Canceled)

5. (Currently Amended) The polyester of claim 1, the polyester comprising a unit having the structural formula:

$$[-[A]_m-[B]-[A]_m-[D]-]_x$$

wherein A is a monomeric ring-opened lactone unit selected from the group consisting of Llactide, glycolide, p-dioxanone, lactones of beta-hydroxy acids, lactones of gamma-hydroxy acids, lactones of delta-hydroxy acids, cyclic carbonates, depsipeptide and mixtures of any of thesederived unit;

- -B is the initiating-corea diol residue derived from a diol according to the formula HO- (R_3) -OH wherein R_1 is a member selected from the group consisting of C_2 - C_{14} linear alkanediyl, substituted C_2 - C_{14} alkanediyl having at least one substituent group, C_2 - C_{14} branched alkanediyl and alkanediyl having at least one unsaturated bond₇:
- -[[C]]D is a diacid residuethe coupling unit;7 and

m is a number of repeats from about 4 to about 60, and x is a number of macromeric units from 1 to about 100.

- 6. (Original) The polyester of claim 5, wherein m is 10 to 40.
- 7. (Currently Amended) The polyester of claim 5, wherein A is represented by at least one of the formulas:

$$-[-(R_2)-C(=O)-O-]-$$
 and $-[-O-C(=O)-(R_2)-]-$

wherein R_2 is at least one of C_1 - C_8 alkylalkanediyl and a substituted C_1 - C_8 alkylalkanediyl having at least one carbon substituted with an aromatic group and/or a heteroatom.

Appln. No.: 10/583,016 Amendment Dated October 28, 2009

Amendment Dated October 28, 2009 Reply to Office Action of April 28, 2009

- (Currently Amended) The polyester of claim 5, wherein the at-least twomonomeric ringopened lactone derived-units constitute about 10%50wt% to about 99%99wt% of the polyester.
- (Currently Amended) The polyester of claim 8, wherein the at-least twomonomeric ringopened lactone derived—units constitute 59%80wt% to 99%99wt% of the polyester.
- 10. (Currently Amended) The olyesterpolyester of claim 5, wherein the lactone derived unit [A]_m has a number average molecular weight of about 59 in a range from about 288 to about 12.000.
- (Currently Amended) The polyester of claim 10, wherein the number average molecular weight is 50in a range from 288 to 6,000.
- 12. (Currently Amended) The polyester of claim 10, wherein the number average molecular weight is 50in a range from 288 to 2,000.
- 13. (Canceled)
- 14. (Currently Amended) The polyester of claim 513, wherein R₁ is a member selected from the group consisting of C₆, C₈, C₁₀ and C₁₂ alkyls<u>alkanedivls</u>, a poly(ether), poly(ethyleneglycol), poly(amine), poly(propyleneoxide), a block ABA copolymer of poly(oxyethylene) and poly(oxypropylene).
- 15. (Original) The polyester of claim 5, wherein D is represented by the formula:

$$[-C(=O)-(R_3)-C(=O)-]$$

wherein R_3 is a C_4 - C_{10} aliphatic or aromatic group.

16. (Currently Amended) The polyester of claim 15, wherein R_3 is a member selected from the group consisting of C_4 , C_6 , C_8 , and C_{10} alkylsalkanediyls.

RCHP-102US

Appln. No.: 10/583,016 Amendment Dated October 28, 2009 Reply to Office Action of April 28, 2009

- 17. (Currently Amended) The polyester of claim 5±, wherein the polyester has a molecular weight from about 20 KDa to about 120 KDa.
- 18. (Currently Amended) A polyester comprising a macromeric unit, wherein the macromeric unit comprises:
 - (a) at least two lactone derived units;
- (b) an initiating core, wherein a diol derived unit is linking the at least two lactone derived units to form a macromerdiol; and
- (c) a coupling unit, wherein the coupling unit is linking a plurality of macromerdiols and wherein the coupling unit and the diol derived unit have a carbon chain of a length sufficient to alter hydrophobicity of the polyester and thereby enable the polyester to degrade the polyester of claim 5 wherein the polyester is capable of being degraded according to a 25 surface erosion mechanism.
- 19-21. (Canceled)
- 22. (Currently Amended) A process of making the polyester of claim 51, the process comprising:

providing a lactone;

providing a diol;

providing a coupling agent;

- reactingcontacting the lactone with the diol in athe presence of a catalyst to form a macromerdiol; and reactingcontacting the macromerdiol with the coupling agent to form the polyester.
- 23. (Currently Amended) The process of claim 22, wherein the lactone and the diol are provided at a first molar ratio of from about $5\underline{:}1$ to about $120\underline{:}1$.
- 24. (Currently Amended) The process of claim 22, wherein the lactone and the diol are provided at a first molar ratio of about 5:1 to about 60:1.
- (Currently Amended) The process of claim 22, wherein the macrodiol macromerdiol and Page 6 of 18

Appln. No.: 10/583,016 Amendment Dated October 28, 2009 Reply to Office Action of April 28, 2009

the coupling agent are provided at a second molar ratio of about 1:1 to about 20:1.

- 26. (Currently Amended) The process of claim 22, wherein the catalyst is a member selected from the group consisting of tin(II)-2-ethylhexanoate, aluminum isopropoxide, salts and oxides of yttrium and lanthanide.
- 27. (Currently Amended) The process of claim 22, wherein the lactone is a member selected from the group consisting of lactones of alpha-hydroxy acids_lactide, glvcolide, p-dioxanone, lactones of beta-hydroxy acids, lactones of omega-hydroxy acids, lactones of gamma-hydroxy acids, lactones of delta-hydroxy acids, lactones of epsilon-hydroxy-acids, p-dioxanone, cyclic carbonates, depsilon-hydroxy-acids, p-dioxanone, depsilon-hydroxy-acids, depsilon-hydroxy-ac
- 28. (Currently Amended) The process of claim 27, wherein the lactone is a member selected from the group consisting of <u>L</u>-lactide, <u>E-caprolactone</u>, propiolactone, butyrolactone, valerolactone, p-dioxanone, <u>glycolide</u>, <u>and</u> depsipeptide, <u>and mixtures of these</u>.
- 29. (Currently Amended) The process of claim 22, wherein the diol has the following structural formula:

HO-(R₁)-OH

wherein R_1 is a member selected from the group consisting of \mathbf{a} - C_2 - C_{14} linear \mathbf{a} -lkylalkanediyl, a substituted C_2 - C_{14} alkylalkanediyl having at least one substituent group, \mathbf{a} - C_2 - C_{14} heteroalkylalkanediyl, \mathbf{a} - C_2 - C_{14} branched alkylalkanediyl, \mathbf{a} -alkylalkanediyl having at least one unsaturated bond, and \mathbf{a} -polymers.

- 30. (Currently Amended) The process of claim 29, wherein R_1 is a member selected from the group consisting of C_6 , C_8 , C_{10} and C_{12} alkylsalkanediyl, a-polyethers, poly(ethylene_glycol), polyamines, poly(propylene_oxide), and_block ABA copolymers of poly(oxyethylene) and poly(oxypropylene).
- 31. (Original) The process of claim 22, wherein the coupling agent is an acyl halide.

Appln. No.: 10/583,016 Amendment Dated October 28, 2009 Reply to Office Action of April 28, 2009

- 32. (Currently Amended) The process of claim 31, wherein the coupling agent is a diacyl chloride derived from adipic acid, suberoicsuberic acid, sebacic acid, or dodecanoicdodecanedioic acid.
- 33. (Currently Amended) A device manufactured from the polyester of claim 51.
- 34. (Original) The device of claim 33, wherein at least a part of the device is adapted to be implanted in a body.
- 35. (Original) The device of claim 33, wherein the at least a part of the device is adapted to deliver a bioactive agent.
- 36. (Currently Amended) The device of claim 35, wherein the bioactive gentagent is a member selected from the group consisting of an antibody, a viral vector, a growth factor, a bioactive polypeptide, a polynucleotide coding for the bioactive polypeptide, a cell regulatory small molecule, a peptide, a protein, an oligonucleotide, a gene therapy agent, a gene transfection vector, a receptor, a cell, a drug, a drug delivering agent, nitric oxide, an antimicrobial agent, an antibiotic, an antimitotic, an antisecretory agent, an anti-cancer chemotherapeutic agent, steroidal and non-steroidal anti-inflammatories, a hormone, an extracellular matrix, a free radical scavenger, an iron chelator, an antioxidant, an imaging agent, and a radiotherapeutic agent.