- Les documents, calculatrices et téléphones sont interdits.
- Le sujet contient deux parties indépendantes. Répondre sur le sujet

Partie I (4 points): Les questions sont indépendantes.

1) 1.25 pt Soit la fonction
$$F(x) = \int_{x}^{x^2} \frac{e^{-t}dt}{\sqrt{t}}$$
; $x > 0$.

a) Etudier la dérivabilité de F

Réponse : Posons $f(t,x) = \frac{e^{-t}dt}{\sqrt{t}}$ On a

•
$$f$$
 et $\frac{\partial f}{\partial x} = 0$ sont continues sur $]0, +\infty[\times]0, +\infty[$,

•
$$f$$
 et $\frac{\partial f}{\partial x} = 0$ sont continues sur $]0, +\infty[\times]0, +\infty[$,
• les bornes variables $u(x) = x$ et $v(x) = x^2$. sont C^1 sur $]0, +\infty[$ dans $]0, +\infty[$,

donc, d'après le théorème de conservation de la dérivabilité pour les intégrales paramétrées propres avec bornes variables, on déduit que F est dérivable sur \mathbb{R}_{+}^{*} .

b) Calculer F'.

Réponse : $\forall x > 0$,

$$F'(x) = \int_{x}^{x^{2}} \underbrace{\frac{\partial f}{\partial x}(t, x)}_{-0} dt + v'(x) f(v(x), x) - u'(x) f(u(x), x) = 2x \frac{e^{-x^{2}}}{|x|} - \frac{e^{-x}}{\sqrt{x}} = 2e^{-x^{2}} - \frac{e^{-x}}{\sqrt{x}}.$$

2)
$$\overline{1,25 \text{ pt}}$$
 Soit la fonction $F(x) = \int_{1}^{+\infty} f(t,x)dt; \ x \in \mathbb{R}$ où $f(t,x) = \frac{(\sin x + \sin t)}{1 + x^2 + t^2}$.

a) Compléter :
$$|f(t,x)| \leq g(t) \quad \forall x \in \mathbb{R} \text{ et } \int_{1}^{+\infty} g(t)dt \text{ converge, où }$$

Réponse :
$$g(t) = \frac{2}{1+t^2}$$

b) Etudier la continuité de F.

Réponse : On a

- f est continues sur $[1, +\infty] \times \mathbb{R}$ (car c'est la composée de fonctions continues)
- F vérifie la condition de la convergence dominée \mathbb{R} ,

Utilisons le théorème de conservation de la continuité sous f pour le cas intégrale impropre paramétrée, on en déduit que F est continue sur \mathbb{R}

- 3) $\boxed{1,5 \text{ pt}}$ Soit la fonction $F(x) = \int_{1}^{+\infty} f(t,x)dt; x \in]0,+\infty[$ où f(t,x) = $\frac{c}{(1+t)\sqrt{t}}.$
- a) Calculer $\frac{\partial f}{\partial x}(t,x)$. Réponse : $\frac{\partial f}{\partial x}(t,x) = \frac{-\sqrt{t}e^{-xt}}{1+t}$ pour tout $(t,x) \in [1,+\infty[\times]0,+\infty[$.

- et $\int_{-\infty}^{+\infty} g(t)dt$ converge, où **Réponse :** $g(t) = e^{-\alpha t}$
 - c) Montrer que F est dérivable sur $]0, +\infty[$:

Réponse : On a

- $\exists x_0 = 1$ tel que $F(x_0) = \int_1^{+\infty} \frac{e^{-t}}{(1+t)\sqrt{t}} dt$ converge (la rèle de l'ordre).
- $\frac{\partial f}{\partial x}(t,x) = \frac{\sqrt{t}e^{-xt}}{1+t}, \ \forall \ (t,x) \in [1,+\infty[\times]0,+\infty[$
- f et $\frac{\partial f}{\partial x}$ sont continues sur $[1, +\infty[\times[\alpha, \beta]$ (car c'est la composée de fonctions continues),
- $\int_{1}^{+\infty} \frac{\partial f}{\partial x}(t,x)dt$ vérifie la condition de la convergence dominée sur tout $[\alpha, \beta] \subset]0, +\infty[,$

Utilisons le théorème de conservation de la dérivabilité sous f pour le cas intégrale impropre paramétrée, on en déduit que F est dérivable sur tout $[\alpha, \beta] \subset$ $[0, +\infty[$, on en déduit par recrouvrement la dérivabilité de F sur $[0, +\infty[$.

Partie II (6 points): Soit $f(x,y) = x^3 + y^3 - 3axy + 1$, avec $a \in \mathbb{R}$.

1) 1,25 pt Calculer les dérivées partielles premières de f, puis déterminer les points critiques de f suivant les valeurs de a.

Réponse : On a

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 3x^2 - 3ay, \\ \frac{\partial f}{\partial y}(x,y) = 3y^2 - 3ax, \end{cases}$$

 \rightarrow Recherche des points critiques : On

$$(p=(x,y) \text{ est un point critique de } f) \Leftrightarrow \left\{ \begin{array}{l} \frac{\partial f}{\partial x}(x,y)=0,\\ \frac{\partial f}{\partial y}(x,y)=0, \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x^2-ay=0,\\ y^2-ax=0. \end{array} \right. . (S)$$

one,
• si
$$a = 0$$
, (S) \Rightarrow $(x, y) = (0, 0)$,
• si $a \neq 0$, (S) \Rightarrow
$$\begin{cases} y = \frac{x^2}{a}, \\ \frac{x^4}{a^2} = ax \end{cases} \iff \begin{cases} y = \frac{x^2}{a}, \\ x(x^3 - a^3) = 0 \end{cases} \iff (x, y) = (0, 0) \lor$$

(x,y)=(a,a).

Conclusion: Si $a \in \mathbb{R}^*$, f admet (0,0) et (a,a) comme points critiques, et si a = 0 alors f admet (0,0) comme seul point critique

2) 3,25 pt Calculer les dérivées partielles secondes de f, puis déterminer la nature de chacun des points critiques de f.

Réponse : Ona

$$\rightarrow \forall (x,y) \in \mathbb{R}^2,$$

$$\begin{cases} \frac{\partial^2 f}{\partial x^2}(x,y) = 6x, \\ \frac{\partial^2 f}{\partial y^2}(x,y) = 6y, \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y) = -3a. \end{cases}$$

 \rightarrow Nature des points critiques :

$$r = \frac{\partial^2 f}{\partial x^2}(x, y) = 6x, \ s = \frac{\partial^2 f}{\partial x \partial y}(x, y) = -3a, \ t = \frac{\partial^2 f}{\partial y^2}(x, y) = 6y$$

Point	si	r	t	s	$rt-s^2$	Conclusion
(a,a)	a < 0	6a < 0	6a	-3a	$27a^2 > 0$	f admet en ce point un maximum local
	a > 0	6a > 0	6a	-3a	$27a^2 > 0$	f admet en ce point un minumum local
(0,0)		0	0	0	$-9a^2 < 0$	f n'a pas d'extremum local en ce point

• Cas a = 0. Le seul point critique est (0,0) et $rt - s^2 = 0$, donc on peut pas conclure. Utilisons alors la définition. On a $f(x,y) - f(0,0) = x^3 + y^3$ qui ne garde pas un signe constant, pour le constater il sufit de prendre le chemin (x,0), qui donne $f(x,0) - f(0,0) = x^3$. On en déduit que f n'admet pas d'extremum dans le cas a = 0.

Méthode 2 : On a

$$Hess_f(a,a) = \begin{pmatrix} 6a & -3a \\ -3a & 6a \end{pmatrix}$$

$$\begin{array}{l} \text{Donc, } \left\{ \begin{array}{l} \det \Delta_2 = 27a^2, \\ \det \Delta_1 = 6a. \end{array} \right. \\ \bullet \text{ Cas } a \neq 0 \text{ et } \text{ le point critique } (a,a) \end{array} \right. \\ \end{array}$$

. si a < 0, $Hess_f(a, a)$ est définie négative, ce qui implique que f présente un maximum local en (a, a).

- . si a > 0, $Hess_f(a, a)$ est définie positive, ce qui implique que f présente un minimum local en (a, a).
- Cas $a \neq 0$ et le point critique (0,0). On a det $(Hess_f(0,0)) = -9a^2 < 0$, donc f n'a pas d'extremum local en ce point
- Le cas a=0, Le seul point critique est (0,0). On peut pas conclure car $\det(Hess_f(0,0))=0$. Il se traite en utilisant la définition de la même manière que précédement (fin de la méthode 1).
- 3) 1,5 pt En prenant dans la suite a = -1, on s'intéresse à étudier les extrema éventuels de f sous la contrainte g(x) = 0 avec g est définie par g(x,y) = x+y-2.
- a) Vérifier que la contrainte définit explicitement y en fonction de x (c'est à dire y = h(x) et h est à déterminer).

Réponse : On a $g(x,y) = 0 \Leftrightarrow x + y - 2 = 0 \uparrow y = 2 - x$. On prend alors h(x) = 2 - x.

b) Étudier les variations de la fonction F définie par F(x) = f(x, h(x)).

Réponse : On a

$$F(x) = f(x, h(x)) = f(x, 2 - x) = x^{3} + (2 - x)^{3} + 3x(2 - x) + 1$$
$$= 3x^{2} - 6x + 9$$

On a

c) Que peu t-on déduire à propos des extrema de f sous la contrainte g(x) = 0.

Réponse : On en déduit que f admet un extremum (c'est en fait un minimum) en (1,1) sous la contrainte g(x,y)=0.