Set Operators

24

- □ Union, Intersection and Difference are defined only for **union compatible** relations.
- □ Two relations are union compatible if they have the same set of attributes and the types (domains) of the attributes are the same.
- □ E.g., two relations that are not union compatible:
 - Student (sNumber, sName)
 - Course (cNumber, cName)

24

26

Union: ∪

□ Consider two bags R_1 and R_2 that are union-compatible. Suppose a tuple t appears in R_1 m times, and in R_2 n times. Then in the union, t appears m + n times.

R_1		
Α	В	
1	2	
3	1	

R	2
Α	В
1	2
3	4
5	6

$R_1 \cup R_2$			
	Α	В	
	1	2	
	1	2	
	1	2	
	3	4	
	3	4	
	5	6	

Relational Algebra on Bags

- □ A bag (or *multiset*) is like a set, but an element may appear more than once.
- □ Example: {1,2,1,3} is a bag.
- □ Example: {1,2,3} is also a bag that happens to be a set.

25

27

Intersection: \(\Omega\)

Consider two bags R_1 and R_2 that are union-compatible. Suppose a tuple t appears in R_1 m times, and in R_2 n times. Then in the intersection, t appears min (m, n) times.

Α	В
1	2
3	4
1	2

 R_1

K ₂			
Α	В		
1	2		
3	4		
5	6		

R₁ ∩	R ₂
Α	В
1	2
3	4

Difference: -

□ Consider two bags R_1 and R_2 that are union-compatible. Suppose a tuple t appears in R_1 m times, and in R_2 n times. Then in $R_1 - R_2$, t appears max (0, m - n) times.

 R_2

 R_1

3

В	
2	
4	
2	

 $R_1 - R_2$

Α	В
1	2

28

Sequences of Assignments

- □ Create temporary relation names.
- Renaming can be implied by giving relations a list of attributes.
 - $\blacksquare \pi_{A+B->C,A->A1,A->A2}$ (R)
- □ Example: R3 := R1 \bowtie _C R2 can be written:

$$R4 := R1 X R2$$

$$R3 := \mathbf{O}_{C}(R4)$$

Building Complex Expressions

29

- Combine operators with parentheses and precedence rules.
- □ Three notations, just as in arithmetic:
 - Sequences of assignment statements.
 - Expressions with several operators.
 - Expression trees.

Credit-Renee | Mille

29

Expressions in a Single Assignment

Example: the theta-join R3 := R1 \bowtie_{C} R2 can be written as

- \blacksquare R3 := σ_{C} (R1 X R2)
- □ Precedence of relational operators: (parentheses supercedes)
 - [σ, π, ρ] (highest).
 - [X, ⋈].
 - (
 - **.** [∪, —]

30

Expression Trees

32

- □ Leaves are operands --- either variables standing for relations or particular, constant relations.
- □ Interior nodes are operators, applied to their child or children.

32

34

Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3. The price of the

Example: Tree for a Query

33

□ Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

33

Example: Self-Join

35

- □ Using Sells(bar, beer, price), find the bars that sell two different beers at the same price.
- □ Strategy: by renaming, define a copy of Sells, called S(bar, beer1, price). The natural join of Sells and S consists of quadruples (bar, beer, beer1, price) such that the bar sells both beers at this price.

Schemas for Results

□ Union, intersection, and difference: the schemas of the two operands must be the same, so use that schema for the result.

□ Selection: schema of the result is the same as the schema of the operand.

□ Projection: list of attributes tells us the schema.

36

Schemas for Results

□ Product: schema is the attributes of both relations.

□ Distinguish two attributes with the same name.

 $\hfill\Box$ Theta-join: same as product.

Natural join: union of the attributes of the two relations. Keep only one copy of the equated attributes.

 $\hfill\square$ Renaming: the operator tells the schema.

37

39

Lecture Example

The Extended Algebra

40

 δ = eliminate duplicates from bags.

T =sort tuples.

Y = grouping and aggregation.

Outerjoin: avoids "dangling tuples" = tuples that do not join with anything.

Credit: Renee J. Miller

40

Example: Duplicate Elimination

42

$$\delta_{(R)} = \begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Duplicate Elimination

41

$$\square$$
 R1 := δ (R2).

□ R1 consists of one copy of each tuple that appears in R2 one or more times.

41

Sorting

43

$$\square$$
 R1 := T_{L} (R2).

 \square L is a list of some of the attributes of R2.

- \square R1 is the list of tuples of R2 sorted first on the value of the first attribute on L, then on the second attribute of L, and so on.
 - Break ties arbitrarily.

42

Example: Sorting $R = \begin{pmatrix} A & B \\ 1 & 2 \\ 3 & 4 \\ 5 & 2 \end{pmatrix}$ $T_{B}(R) = \begin{pmatrix} A & B \\ 5 & 2 \\ 1 & 2 \\ 3 & 4 \end{pmatrix}$

44

Example: Aggregation R = (A B) 1 3 3 4 3 2 SUM(A) = 7 COUNT(A) = 3 MAX(B) = 4 AVG(B) = 3

Aggregation Operators

45

- □ Aggregation operators are not formally operators of relational algebra.
- □ Rather, they apply to entire columns of a table and produce a single result.
- □ The most important examples: SUM, AVG, COUNT, MIN, and MAX.

45

Grouping Operator

47

- \square R1 := \mathbf{Y}_{L} (R2). L is a list of elements that are either:
 - 1. Individual (grouping) attributes.
 - 2. AGG(A), where AGG is one of the aggregation operators and A is an attribute.
 - An arrow and a new attribute name renames the component.

46

Applying $Y_L(R)$

8

- Group R according to all the grouping attributes on list L.
 - That is: form one group for each distinct list of values for those attributes in R.
- Within each group, compute AGG(A) for each aggregation on list L.
- Result has one tuple for each group:
 - 1. The grouping attributes and
 - 2. The group's aggregations.

48

Recall: Outerjoin

50

- \square Suppose we join $R \bowtie_C S$.
- \square A tuple of R that has no tuple of S with which it joins is said to be <u>dangling</u>.
 - □ Similarly for a tuple of S.
- □ Outerjoin preserves dangling tuples by padding them NULL.

49

52

Outer Join – Example ■ instructor teaches name dept_name course_id Srinivasan 10101 Comp. Sci. 10101 CS-101 Wυ 12121 Finance 12121 FIN-201 15151 Mozart Music BIO-101 76766 ID dept_name course_id ■ instructor teaches 10101 Srinivasan CS-101 Comp. Sci. 12121 Wυ Finance FIN-201 76766 BIO-101 dept_name course_id ■ instructor teaches 10101 CS-101 Srinivasan Comp. Sci. 12121 FIN-201 Wu Finance 15151 Mozart Music null 76766 null BIO-101

53

Why Bags?

- SQL, the most important query language for relational databases, is actually a bag language.
- □ Some operations, like projection, are more efficient on bags than sets.

54 55

Operations on Bags

- □ Selection applies to each tuple, so its effect on bags is like its effect on sets.
- □ Projection also applies to each tuple, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

56

Example: Bag Projection

R

A, B

1 2
5 6
1 2

 $\Pi_{A}(R) =$

1 5 1 **Example:** Bag Selection

R(

Α,	В
1	2
5	6 2
1	2

 $\sigma_{A+B<5}$ (R) =

Α	В
1	2
1	2

57

Example: Bag Product

R(A, B)

S(B, C

R **X** S =

A	K.B	5.B	C
1	2	3 7	4
1	2	7	8
5 5	2 2 6 6 2 2	3 7	4
5	6	7	8
1	2	3 7	4
1	2	7	8

58

Example: Bag Theta-Join

R(A, B)

1 2
5 6

S(B, C 3 4 7 8

 $_{R} \bowtie_{_{R,B \leq S,B} S} =$

A R.B S.B C

1 2 3 4
1 2 7 8
5 6 7 8
1 2 3 4
1 2 7 8
1 2 3 4
1 2 7 8

60

Bag Intersection

An element appears in the intersection of two bags the minimum of the number of times it appears in either bag

□ Example: $\{1,2,1,1\} \cap \{1,2,1,3\} = \{1,1,2\}.$

Bag Union

61

□ An element appears in the union of two bags the sum of the number of times it appears in each bag.

□ Example: $\{1,2,1\} \cup \{1,1,2,3,1\} = \{1,1,1,1,1,2,2,3\}$

61

Bag Difference

63

 \square An element appears in the difference A-B of bags as many times as it appears in A, minus the number of times it appears in B.

 \square Example: $\{1,2,1,1\} - \{1,2,3\} = \{1,1\}.$

62

Beware: Bag Laws != Set Laws

64

- □ Some, but *not all* algebraic laws that hold for sets also hold for bags.
- \square Example: the commutative law for union $(R \cup S = S \cup R)$ does hold for bags.
 - □ Since addition is commutative, adding the number of times x appears in R and S doesn't depend on the order of R and S.

64

Lecture Example

66

66

Example: A Law That Fails

65

- \square Set union is idempotent, meaning that $S \cup S = S$.
- \square However, for bags, if x appears n times in S, then it appears 2n times in S \cup S.
- \square Thus S \bigcup S != S in general.

$$\blacksquare$$
 e.g., $\{1\} \cup \{1\} = \{1,1\} := \{1\}.$

What about Intersection?