PENENTUAN CADANGAN PREMI DENGAN METODE PREMIUM SUFFICIENCY PADA ASURANSI JIWA SEUMUR HIDUP JOINT LIFE

Ni Putu Mirah Permatasari^{1§}, I Nyoman Widana², Kartika Sari³

¹Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: mirahpermataa@gmail.com]

ABSTRACT

The aim of this research was to get the formula of premium reserves through the premium sufficiency method. Premium reserve is the amount of fund that is collected by the insurance company in preparation for the claim's payment. Premium sufficiency method is gross premium calculation. To construct that formula, this research used Tabel Mortalitas Indonesia (TMI) 2011, interest rate 2.5% and cost of alpha 0.05%. Based on simulation result in men premium reserve value of age 1 of 56 years propotional with insured periods, but after 56 years enhancement of premium reserve value.

Keywords: Joint Life Insurance, Premium Reserve, Premium Sufficiency

1. PENDAHULUAN

Asuransi jiwa seumur hidup adalah asuransi yang memberikan perlindungan mulai dari awal disepakatinya kontrak sampai meninggal dunia (Sembiring, 1986). Berdasarkan banyaknya tertanggung asuransi jiwa dibedakan menjadi 2, yaitu asuransi jiwa tunggal dan asuransi jiwa kumpulan. Asuransi jiwa *Joint Life* adalah asuransi jiwa yang menanggung 2 orang pemegang polis atau lebih (Futami [2]).

Salah satu metode perhitungan cadangan premi dengan perhitungan premi kotor adalah metode *premium sufficiency*. Premi kotor dihitung dengan melibatkan biaya yang diperlukan perusahaan (Futami, 1994).

Pada penelitian sebelumnya siregar (2014), telah melakukan perhitungan cadangan premi asuransi dwiguna joint life status last survivor dengan metode premium sufficienc. Sementara itu, sejauh ini peneliti belum menemukan penelitian mengenai perhitungan cadangan premi dengan metode premium sufficiency pada asuransi jiwa seumur hidup joint life. Oleh karena itu dalam penelitian ini dibahas perhitungan cadangan premi dengan metode

premium sufficiency pada asuransi jiwa seumur hidup joint life.

Selanjutnya dibahas konsep-konsep yang digunakan untuk menentukan formula cadangan premi.

Anuitas hidup adalah suatu anuitas yang pembayarannya dilakukan selama tertanggung masih hidup (Futami, 1993). Nilai sekarang anuitas awal dari anuitas seumur hidup untuk pemegang polis berusia x tahun dengan uang pertanggungan sebesar Rp.1, — dirumuskan sebagai (Futami, 1993):

$$\ddot{a}_{x} = 1 + vp_{x} + v^{2} {}_{2}p_{x} + \dots + v^{\omega - x - 1} p_{x}$$
(1)

Persamaan (1) dapat digeneralisasikan untuk merumuskan nilai sekarang anuitas awal dari anuitas seumur hidup *joint life* pada pemegang polis berusia *x* tahun dan *y* tahun dengan uang pertanggungan sebesar *Rp*. 1, — menjadi:

$$\ddot{a}_{xy} = 1 + vp_{xy} + v^2 {}_{2}p_{xy} + \cdots + v^{\omega - x, \omega - y} {}_{\omega - x - 1, \omega - y - 1}p_{xy}$$
 (2)

²Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: nwidana@yahoo.com]

³Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: sari_kaartika@yahoo.co.id] **Corresponding Author*

Karena $p_{xy} = \frac{l_{x+1,y+1}}{l_{xy}}$, maka persamaan (2) dapat ditulis sebagai:

$$\ddot{a}_{xy} = 1 + v \frac{l_{x+1,y+1}}{l_{xy}} + v^2 99 \frac{l_{x+2,y+2}}{l_{xy}} + \cdots + v^{\omega - x - 1,\omega - y - 1} \frac{l_{\omega,\omega}}{l_{xy}}$$
(3)

Persamaan (3) dikalikan dengan $\left(\frac{v^{\frac{1}{2}(x+y)}}{v^{\frac{1}{2}(x+y)}}\right)$, diperoleh:

$$\ddot{a}_{xy} = \frac{1}{v^{\frac{1}{2}(x+y)}l_{xy}} \left(v^{\frac{1}{2}(x+y)}l_{xy} + v^{\frac{1}{2}(x+y+2)}l_{x+1,y+1} + v^{\frac{1}{2}(x+y+4)}l_{x+2,y+2} + \dots + v^{\omega-x,\omega-y}l_{\omega,\omega}\right)$$

$$(4)$$

Selanjutnya karena $D_{xy} = v^{\frac{1}{2}(x+y)} \times l_{xy}$, maka persamaan (4) menjadi:

$$\ddot{a}_{xy} = \frac{1}{D_{xy}} \left(D_{xy} + D_{x+1,y+1} + D_{x+2,y+2} + \cdots + D_{\omega,\omega} \right)$$
(5)

Karena $N_{xy} = D_{xy} + D_{x+1,y+1} + D_{x+2,y+2} + \cdots + D_{\omega,\omega}$, maka persamaan (5) menjadi:

$$\ddot{a}_{xy} = \frac{N_{xy}}{D_{xy}} \tag{6}$$

Sedangkan untuk pemegang polis berusia x + t tahun dan y + t tahun maka persamaan (6) menjadi:

$$\ddot{a}_{x+t,y+t} = \frac{N_{x+t,y+t}}{D_{x+t,y+t}}$$
 (7)

Premi adalah sejumlah uang yang wajib dibayarkan oleh tertanggung kepada perusahaan sesuai dengan kontrak yang telah disepakati. Premi yang dibayarkan sekaligus disebut premi tunggal sedangkan premi yang dibayar berkala setiap tahun disebut premi tahunan (Futami, 1993

Perhitungan premi tunggal asuransi jiwa seumur hidup untuk pemegang polis berusia x tahun dinotasikan A_x dan dirumuskan sebagai (Futami, 1993):

$$A_{x} = v \frac{l_{x} - l_{x+1}}{l_{x}} + v^{2} \frac{l_{x+1} - l_{x+2}}{l_{x}} + \dots + v^{\omega - x} \frac{l_{\omega - x - 1}}{l_{x}}$$
(8)

Persamaan (8) dapat digeneralisasikan untuk merumuskan premi tunggal asuransi jiwa seumur hidup *joint life* pada pemegang polis berusia x tahun dan y tahun dengan uang pertanggungan sebesar Rp. 1, — diperoleh:

$$A_{xy} = v \frac{l_{xy} - l_{x+1,y+1}}{l_{xy}} + v^2 \frac{l_{x+1,y+1} - l_{x+2,y+2}}{l_{xy}} + \dots + v^{\omega - x - 1,\omega - y - 1} \frac{l_{\omega,\omega}}{l_{xy}}$$
(9)

Persamaan (9) dikalikan dengan $\left(\frac{v^{\frac{1}{2}(x+y)}}{v^{\frac{1}{2}(x+y)}}\right)$, menjadi

$$A_{xy} = \frac{1}{v^{\frac{1}{2}(x+y)}l_{xy}} \left(v^{\frac{1}{2}(x+y)+1}(l_{xy} - l_{x+1,y+1}) + v^{\frac{1}{2}(x+y)+2}(l_{x+1,y+1} - l_{x+2,y+2}) + \dots + v^{\omega-x,\omega-y}l_{\omega,\omega}\right)$$
(10)

Karena $C_{xy} = v^{\frac{1}{2}(x+y)+1} \times d_{xy}$, maka persamaan (10) menjadi:

$$A_{xy} = \frac{1}{D_{x,y}} \left(C_{x,y} + C_{x+1,y+1} + C_{x+2,y+2} + \cdots + C_{\omega,\omega} \right)$$
(11)

Selanjutnya karena $M_{xy} = C_{xy} + C_{x+1,y+1} + C_{x+2,y+2} + \cdots + C_{\omega,\omega}$, maka persamaan (11) dapat ditulis sebagai:

$$A_{xy} = \frac{M_{xy}}{D_{xy}} \tag{12}$$

Sama halnya dengan nilai anuitas hidup, untuk pemegang polis berusia x + t dan pemegang polis berusia y + t persamaan (12) menjadi:

$$A_{x+t,y+t} = \frac{M_{x+t,y+t}}{D_{x+t,y+t}}$$
 (13)

Premi tahunan asuransi jiwa seumur hidup untuk pemegang polis berusia x tahun yang

dibayarkan pada awal tahun dinotasikan dengan P_x dan dirumuskan sebagai

$$P_{\chi} = \frac{A_{\chi}}{\ddot{a}_{\chi}} \tag{14}$$

Persamaan (14) dapat digeneralisasikan untuk merumuskan premi tahunan asuransi jiwa seumur hidup *joint life* bagi pemegang polis berusia x tahun dan y tahun untuk uang pertanggungan sebesar Rp.1, — dibayarkan di akhir tahun menjadi:

$$P_{xy} = \frac{A_{xy}}{\ddot{a}_{xy}} \tag{15}$$

Selanjutnya, berdasarkan persamaan (6) dan persamaan (12), maka persamaan (15) menjadi:

$$P_{xy} = \frac{M_{xy}}{N_{xy}} \tag{16}$$

2. METODE PENELITIAN

Pada penelitian ini data yang digunakan adalah data sekunder yang bersumber dari artikel sebagai hasil penelitian siregar (2014).

Langkah yang dilakukan adalah menghitung nilai dari tabel mortalitas *joint life* berdasarkan Tabel Mortalitas Indonesia (TMI) 2011, selanjutnya menghitung nilai dari tabel komutasi *joint life* dengan tingkat bunga 2,5 %, lebih lanjut lagi dapat dilakukan perhitungan cadangan premi dengan metode *premium sufficiency* melalui simulasi dari peserta asuransi jiwa seumur hidup *joint life*.

Untuk memudahkan perhitungan, dalam penelitian ini digunakan program Software Microsoft Excel

3. HASIL DAN PEMBAHASAN

Sebelum memperoleh formula cadangan premi pada asuransi jiwa seumur hidup *joint life* maka terlebih dahulu ditentukan premi kotor pada asuransi jiwa seumur hidup *joint life*. Formula Premi Kotor pada Asuransi JIwa Seumur Hidup *Joint Life* diperoleh:

$$P_{xy}^* = \frac{1}{1-\beta} \left\{ P_{xy} + \frac{\alpha}{\ddot{a}_{xy}} + \gamma \right\} \tag{17}$$

Karena berlaku persamaan (6) dan persamaan (16) maka persamaan (17) dapat ditulis sebagai:

$$P_{xy}^* = \frac{1}{1-\beta} \left\{ \frac{M_{xy}}{D_{xy}} + \frac{\alpha D_{xy}}{N_{xy}} + \gamma \right\}$$
 (18)

Selanjutnya formula cadangan premi dengan metode *Premium Sufficiency* pada asuransi jiwa seumur hidup *Joint Life* diperoleh:

$$_{t}V_{xy} = A_{x+t,y+t} - \left(P_{xy}a_{x+t,y+t} + \frac{\alpha}{a_{xy}}\right)a_{x+t,y+t}$$

$$(19)$$

Karena berlaku persamaan (7), (13) dan (16) maka persamaan (19) menjadi:

$$_{t}V_{xy} = \frac{1}{D_{x+t,y+t}} \left(M_{x+t,y+t} - \left(M_{xy} + \alpha D_{xy} \right) \frac{N_{x+t,y+t}}{N_{xy}} \right) (22)$$

4. SIMULASI

Terdapat dua orang pemegang polis yang mengikuti asuransi jiwa seumur hidup *joint life* pada salah satu perusahaan asuransi jiwa. Usia pemegang polis mulai mengikuti asuransi jiwa adalah usia (x) = 35 tahun dan (y) = 30 tahun. Pembayaran premi dilakukan setiap tahun selama pemegang polis masih hidup. Uang pertanggungan sebesar Rp,10.000.000,-. Asuransi jiwa berakhir jika pemegang polis berusia x tahun atau y tahun meninggal dunia.

Berdasarkan Tabel 4.1 dapat dilihat apabila salah satu dari pemegang polis berusia x=35 dan pemegang polis berusia y=30 tahun meninggal 1 tahun kemudian maka nilai cadangan premi pada asuransi jiwa seumur hidup *joint life* adalah Rp.110313.07683, selanjutnya setelah 2 tahun nilai cadangan preminya adalah Rp.273801.78611 dan demikian seterusnya.

Selanjutnya, jika dibuat grafik hubungan antara nilai cadangan premi dengan peningkatan tahunya berikut dapat dilihat grafik seperti pada gambar 1.

Tabel 4.1 Nilai Cadangan Premi dengan Metode *Premium Sufficiency* pada Asuransi Jiwa Seumur Hidup *Joint Life* untuk pemegang polis berusia x = 35 dan berusia y = 30

Jangka		Jangka	
Waktu	$_{t}V(Rp)$	Waktu	$_{t}V(Rp)$
(t)		(t)	
1	110313.077	39	6912912.050
2	273801.786	40	7069925.861
3	440395.614	41	7223596.827
4	610221.357	42	7373892.167
5	783041.369	43	7520010.182
6	958633.930	44	7661075.859
7	1136439.253	45	7796204.888
8	1316448.851	46	7925524.377
9	1498751.755	47	8048302.702
10	1683030.698	48	8165640.620
11	1869076.058	49	8278009.997
12	2056463.750	50	8385413.361
13	2244726.723	51	8487491.066
14	2433512.339	52	8582241.210
15	2622651.547	53	8669300.067
16	2811643.855	54	8749207.294
17	2999894.468	55	8822046.964
18	3186997.953	56	8887723.504
19	3372994.306	57	8950377.397
20	3557948.972	58	9007644.887
21	3741955.145	59	9059546.376
22	3925073.372	60	9105350.379
23	4107219.367	61	9145277.128
24	4288409.864	62	9187062.764
25	4468813.378	63	9228862.006
26	4648579.511	64	9268968.912
27	4827950.663	65	9305747.216
28	5007109.043	66	9335079.000
29	5186142.108	67	9360645.234
30	5364872.609	68	9379281.401
31	5543029.516	69	9400886.154
32	5720447.231	70	9423381.729
33	5897192.740	71	9444757.346
34	6072200.435	72	9465328.422
35	6246007.313	73	9486105.975
36	6417804.370	74	9512996.958
37	6587333.684	75	9584489.499
38	6752183.723	76	0

Gambar 1. Plot Hubungan antara Peningkatan Nilai Cadangan Premi dengan Periode Asuransi Jiwa.

Berdasarkan gambar 1, peningkatan nilai cadangan premi dari tahun ke 1 sampai tahun ke 56 proposional dengan peningkatan tahun, akan tetapi setelah tahun ke 56 peningkatan nilai cadangan premi mulai lambat.

5. KESIMPULAN

Penelitian ini bertujuan untuk mendapatkan formula cadangan premi pada asuransi jiwa seumur hidup joint life. Metode yang digunakan untuk menentukan formula tersebut adalah metode premium sufficiency, yaitu metode perhitungan premi kotor. Pada penelitian ini menggunakan Tabel Mortalitas Indonesia (TMI) 2011, tingkat suku bunga sebesar 2,5% dan biaya alpha (α) = 0.05%. Hasil penelitian ini adalah berupa formula cadangan premi untuk asuransi jiwa seumur hidup joint life bagi pemegang polis berusia x tahun dan y tahun. Berdasarkan hasil simulasi, dapat dilihat pada grafik 1, peningkatan nilai cadangan premi dari tahun ke 1 sampai tahun ke 56 proposional dengan peningkatan tahun, akan tetapi setelah tahun ke 56 peningkatan nilai cadangan premi mulai lambat.

DAFTAR PUSTAKA

- Futami, T., 1993. *Matematika Asuransi Jiwa Bagian I*. Herliyanto G, penerjemah. Tokyo (JP): Oriental Life Insurance Cultural Development Center. Terjemahan dari: *Seime Hoken Sugaku Gekan ("92 Revision)*.
- Siregar, M. T. 2014. Cadangan Asuransi Dwiguna *Last Survivo*r dengan Metode *Premium Sufficiency*. *JOM FMIPA*, 447-456.
- Sembiring, R.K., 1986. *Buku Materi PokokAsuransi I.* Jakarta: Universitas Terbuka, Depdikbud.
- Biro Pusat Aktuaria (Independent and Trusted).,2012. Tabel Mortalita Taspen 2012. Jakarta: PT.Taspen, https://ml.scribd.com/doc/211956752/TMT-2012, diakses tanggal 20 Juli 2015.