

Departamento de Engenharia Informática

Multimédia

Fundamentos de Multimédia: Áudio Digital

Prof. Dr. Rui Pedro Paiva

Sumário Sumário

- Bibliografia
- Som e Áudio
- Audição Humana
- Representação Computacional de Áudio

Bibliografia

◆ Li et al (2014). "Fundamentals of Multimedia", Springer.

Som

 Fenómeno físico causado pela vibração da matéria (e.g., corda de guitarra, lápis a cair no chão)

Áudio

- Som audível pelo ser humano
- Frequências de som detectáveis pelo ouvido humano (jovem e saudável): 20Hz a 20 kHz (música, voz, ruído, ...)

Formação do som

- A vibração da matéria provoca alterações de pressão no ar que rodeia o objecto em causa
- Estas alterações de pressão são propagadas no ar em movimentos ondulatórios

- Formação do som (cont.)
 - Onda mecânica
 - Necessita de um meio para se propagar (n\u00e3o pode propagar-se no vazio)
 - Onda longitudinal
 - Direcção da oscilação = direcção de propagação
 - Quando uma onda sonora na gama do áudio atinge o ouvido humano, o som é percebido

Propagação do som

- Mecanismo de interacção de partículas
 - Vibração de objecto causa movimento das partículas à sua volta
 - As partículas de ar em vibração causam, por sua vez, a vibração das partículas à sua volta → propagação da vibração no espaço
 - Movimento de "aproximação" do objecto:
 - Empurra as partículas de ar circundante
 - Partículas colidem com as partíclas à sua frente, e assim por diante → zonas de compressão de ar (i.e., pressão alta)

 Compressions
 - Movimento de "afastamento" do objecto:
 - Zona de rarefacção criada (i.e., pressão baixa) → partículas comprimidas encontra deslocam, em propagação

© http://www.physicsclassroom.com/Class/sound/

Rarefactions

Características das ondas sonoras

Comprimento de onda (λ)

 Distância entre duas zonas sucessivas de compressão

Frequência

- Número de oscilações por segundo (mede-se em Hz); inverso do período (intervalo de repetição)
- Inversamente proporcional ao comprimento de onda
- Objectos têm frequências naturais de vibração
- Variações interpretadas como variações da altura do tom

Sound is a Pressure Wave

NOTE: "C" stands for compression and "R" stands for rarefaction

© http://www.physicsclassroom.com/Class/sound/

- Características das ondas sonoras (cont.)
 - Frequência (cont.)
 - Qualquer sinal pode ser decomposto por um somatório de sinusoidais (infinito, se necessário)
 - Parciais: Frequência
 Fundamental (F0)
 +overtones (múltiplos inteiros e não inteiros de F0)
 - Harmónicos: múltiplos inteiros (parciais harmónicos)

Fundamental frequency

 $+0.5 \times 2 \times \text{fundamental}$

 $+0.33 \times 3 \times 4$ fundamental

 $+0.25 \times 4 \times \text{fundamental}$

 $+0.5 \times 5 \times \text{fundamental}$

© Ze-Nian Li 2014, p. 141

- Características das ondas sonoras (cont.)
 - Frequência (cont.)
 - Espectro do som
 - Infrassom: < 20Hz
 - Ultrassom: > 20KHz

© https://noji.com/hamradio/glossary.php

- Características das ondas sonoras (cont.)
 - Frequência (cont.)
 - Espectro do áudio
 - Gama de frequências de som detectáveis pelo ouvido humano: corresponde aproximadamente a frequências de som entre 20 Hz
 e 20 kHz

- Características das ondas sonoras (cont.)
 - Frequência (cont.)
 - Espectro do áudio
 - Voz humana: ~125Hz até ~8kHz → região onde o ouvido humano é mais sensível
 - Frequência fundamental (F0) homem: 85 180Hz
 - F0 mulher: 165 255 Hz

- Características das ondas sonoras (cont.)
 - Amplitude
 - Som: sinal unidimensional
 - Amplitude varia ao longo do tempo
 - (Imagem: sinal 2D; Vídeo: sinal 3D)
 - Medida do deslocamento da onda sonora relativamente ao seu valor médio
 - Mais energia \Rightarrow mais partículas em vibração (no mesmo λ) \Rightarrow maior compressão \Rightarrow pressão mais alta

NOTE: "C" stands for compression and "R" stands for rarefaction

- Características das ondas sonoras (cont.)
 - Intensidade
 - Quantidade de energia transportada por unidade de área e por unidade de tempo

$$Intensidade = \frac{Energia}{Tempo \times \acute{A}rea} = \frac{Potência}{\acute{A}rea} \quad (W/m^2)$$

- Limiar da audição (LDA)
 - $I = 10-12 \text{ W/m2} \Leftrightarrow P = 2*10-5 \text{ N/m2} \text{ (deslocamento 10-9 cm)}$

- Características das ondas sonoras (cont.)
 - Intensidade (cont.)
 - Som mais intenso audível: biliões de vezes superior ao limiar da audição
 - Gama muito larga → utilizar escala logarítmica: escala de decibeis
 - Escala de decibeis
 - Escala relativa: razão entre a intensidade em causa e intensidade do LDA numa escala logarítmica

 Intensidade = $10 \log_{10} \frac{I}{I_{LDA}}$ (dB)

 Ouvido humano: pressão aumenta 10x, percepção de intensidade aumenta 2x

- LDA = 0 dB
- Conversa normal: 60 dB; Concertos rock: 110 dB
- Limiar do desconforto: 120 dB; Limiar da Dor: = 140 dB
- Perfuração instantânea do tímpano: 160 dB

Exemplos de espectros de potência: $I(\lambda)$, I(f)

Ruído branco

- Mistura uniforme de todas frequências da gama do áudio
 - Amostras com amplitudes aleatórias no domínio temporal

© https://www.researchgate.net/figure/Power-spectral-densities-of-white-noise-and-colored-noise_fig1_328591123

Fisiologia

Ouvido humano

Amplificador

- Ouvido externo: 3x (canal auditivo)
- Ouvido médio:
 - Tímpano: 15x
 - Ossículos: 2, 3x

Transdutor

- Energia sonora → mecânica (ouvido médio: ossículos)
- Energia mecânica → onda de compressão (ossículos induzem vibração no fluido do ouvido interno)
- Onda de compressão → impulsos eléctricos conduzidos ao cérebro (ouvido interno: células nervosas da cóclea)

- Fisiologia (cont.)
 - Cóclea: órgão do ouvido interno em forma de caracol responsável pela transformação da vibração do fluido no ouvido interno em impulsos nervosos
 - Dividida por duas membranas: a membrana de Reissner e a membrana basilar
 - Movimentos do estribo → vibrações propagadas ao líquido que enche a cóclea → vibrações na membrana basilar
 - Órgão de Corti (por cima da membrana basilar) aloja células sensorias designadas por células ciliadas, as quais convergem para fibras do nervo auditivo

Legenda

- 1. Canais semicirculares
- 2. Nervo Auditivo
- 3. Membrana Basilar
- 4. Cóclea

©http://telecom.inescn.pt/research/a udio/cienciaviva/constituicao_audicao. html

- Fisiologia (cont.)
 - Cóclea (cont.)
 - Vibrações na membrana basilar → disparo das células ciliadas → propagação para o nervo auditivo → envio de informação para o cérebro
 - Detecção de frequência:
 - Células ciliadas diferentes respondem a frequências diferentes (teoria do lugar)

Percepção de áudio

- Depende de aspectos físicos (sensoriais) e perceptuais
- Aspectos físicos

Componentes de frequência e intensidade do sinal áudio que chega ao ouvido

Fundamentos de Multimédia: Áudio Digital

- Percepção de áudio (cont.)
 - Aspectos físicos
 - **Loudness**: percepção de intensidade
 - Influenciado pela frequência do som
 - Pitch: percepção de frequência
 - Influenciado pela intensidade do som

- Percepção de áudio (cont.)
 - Aspectos físicos (cont.)
 - Fletcher-Munson's Equal Loudness Contours

- Percepção de áudio (cont.)
 - Aspectos perceptuais
 - Contexto, expectativas, memória, etc...
 - Ilusões auditivas: contexto envolvente permite ouvir o que não está lá, e.g.,
 - Restauração auditiva

Circularidade

 Deficiências auditivas (anomalias a nível do ouvido ou do córtex cerebral)

Estereoscopia

- Som estereoscópico = som com dois canais
 - Cinema e animação 3D
 - Baseado no princípio da audição esteroscópica
 - Cada ouvido recebe um som ligeiramente diferente
 - Da integração perceptual dos dois emerge a noção de localização 3D (dimensão de profundidade emerge)
- Audição
 - E.g., auscultadores stereo → um som para cada ouvido

- Tipos de som computacional
 - Áudio digital
 - Som realista (e.g., música, fala, sons ambientais)
 - Sons complexos, com requisitos elevados de detalhe

- Som simbólico
 - E.g., MIDI (Musical Instrument Digital Interface)
- step sync « | | > | REC | HREC General MIDI - Auri Flute nstrument General MIDI - Auri Flute General MIDI - Auri 1 Flute nstrument Trumpet General MIDI - Auri 3 Harpsicord General MIDI - Auri 2 If this song had lyrics they would appear here □ Harmonize ☐ Include 7th Chords Time: 4/4 Show: 32nd notes ▼ Duration Note: C 5 (midi 60) ☐ Dotted Force stem to point down Triplet This page shows the music for the active tra ☐ Stacatto Since the track's Type attribute is set to In: edit a Piano Roll format, click the field that If you would rather enter notes using guitar reces runner and

_ | D | X

 Sons representáveis com base em comandos com assinatura temporal (e.g., nota, duração, instante, velocidade (intensidade), instrumento, ...)
 Fundamentos de Multimédia: Áudio Digital

File Edit Track View Practice Help Back

Áudio digital

 Áudio digital é, de forma simples, som analógico digitalizado, i.e., amostrado e quantizado

© https://www.sciencephoto.com/media/901952/view/digital-audio-waveform

- Áudio digital (cont.)
 - Um computador não é capaz de representar directamente uma onda sonora
 - → Sinal áudio deve ser amostrado no tempo e quantizado (cada amostra representada digitalmente)

© https://en.wikipedia.org/wiki/Pulse-code_modulation

- Áudio digital (cont.)
 - Representação
 - Codificação PCM (Pulse-Code Modulation, ver Secção. 1.1)
 - Padrão básico de representação digital de sinais analógicos (sinais não-multimédia, em geral) em dispositivos digitais
 - Amostragem
 - Amplitude onda sonora (tensão eléctrica analógica dos sensores acústicos) é **amostrada** a intervalos de tempo uniformes
 - Quantização
 - Amostras são quantizadas para uma conjunto de valores num código digital (habitualmente binário)

- Áudio digital (cont.)
 - Amostragem
 - Recolha de medições (amostras) na dimensão temporal (tipicamente, intervalos regulares).
 - ADC: conversor analógico-digital
 - DAC: conversor digital-analógico
 - Frequência de amostragem, f_s
 - Frequência a que a onda sonora é amostrada,
 - Tipicamente de 8 a 48 KHz
 - Voz humana: até 8 kHz, mas info mais relevante até 4 kHz → fs ≥ 8 kHz (16 KHz mínimo ideal)
 - Ouvido humano: até 20 KHz → fs ≥ 40 kHz
 - Intervalo de amostragem: intervalo de tempo entre amostras (inverso da frequência de amostragem)

© Ze-Nian Li 2014, p. 142

- Áudio digital (cont.)
 - Amostragem (cont.)
 - Que frequência (temporal) de amostragem , i.e., quantas amostras por unidade de tempo?
 - Teorema de Nyquist
 - Se uma onda sonora contém componentes com uma frequência temporal máxima f_{maxi} então a frequência de amostragem deve ser maior que 2f_{max} por forma a reconstruir a onda sonora fielmente
 - E.g., onda sonora com com frequência máxima de 5 kHz deve ser amostrado com frequência > 10 kHz
 - f_N = frequência de Nyquist = fs / 2
 - Alternativamente, poderá aplicar-se um filtro passa-baixo e amostrar a uma frequência mais baixa (anti-alias filter)

- Áudio digital (cont.)
 - Amostragem (cont.)
 - Que frequência (temporal) de amostragem?
 - Teorema de Nyquist
 - Aliasing temporal

(a) Onda sonora

Aliasing:

(b) $fs = fmax \rightarrow constante$

(c) fs = $1.5 \text{ fmax} \rightarrow \text{falsa baixa}$ frequência

 $f_{alias} = f_s - f_{true}$, se $f_s \le f_N$

© Ze-Nian Li 2014, p. 143

- Áudio digital (cont.)
 - Quantização (Quantization)
 - Amostragem na dimensão da amplitude (voltagem)
 - Processo de restrição de uma fonte de informação contínua (ou discreta, mas com gama larga de valores) para um conjunto discreto (e.g., valores inteiros)

- Áudio digital (cont.)
 - Quantização (cont.)
 - Quantização pode ser uniforme (intervalos iguais) ou não uniforme (intervalos desiguais)
 - **E**.g., *μ*-law, mp3

Electronics Desk

- Áudio digital (cont.)
 - Quantização (cont.)
 - Intensidade de cada amostra
 - De acordo com a profundidade de bit de áudio (bit depth)
 - Nr. de bits por amostra

- Áudio digital (cont.)
 - Quantização (cont.)
 - Bit depth
 - O número de valores que é possível representar depende do número de bits empregue na sua representação
 - Tipicamente: 8 ou 16 bits
 - O valor de cada amostra é "arredondado" para o valor digital mais próximo
 - → ruído (erro) de quantização
 - 16 bits → cada amostra pode ter 65536 valores diferentes
 - → Maior fidelidade da representação digital obtida

- Áudio digital (cont.)
 - Quantização (cont.)
 - Ruído (erro) de quantização
 - Diferença entre os valores quantizados e os valores reais da onda

Fundamentos de Multimédia: Áudio Digital

- Áudio digital (cont.)
 - Quantização (cont.)
 - Qualidade da quantização
 - Signal-to-Quantization Noise Ratio (SQNR)
 - Relação entre o sinal original e o erro de quantização → Rácio entre a potência do sinal e o ruído de quantização
 - Tipicamente medido em **decibéis** (dB): escala logarítmica → compressão da gama

$$SQNR = 10\log_{10} \frac{V_{signal}^2}{V_{Qnoise}^2} = 20\log_{10} \frac{V_{signal}}{V_{Qnoise}}$$

- SQNR = nr bits x 6dB
 - 16 bits: SQNR = 96 dB → ruído, em geral, imperceptível

- Áudio digital (cont.)
 - Número de canais
 - Sinal estereofónico (stereo)
 - 2 canais, inspirado no facto dos seres humanos terem dois ouvidos
 - Cada canal pode ter elementos áudio distintos
 - Sinal monoaural (mono)
 - 1 só canal
 - Menos realistas e mais "amorfos" que sinais stereo
 - Metade do espaço de sinais stereo
 - Som 5.1
 - Home cinema

- Áudio digital (cont.)
 - Qualidade de som digitalizado (em geral)
 - Atributo subjectivo, influenciado pelo:
 - Equipamento utilizado na audição
 - Sujeito (acuidade auditiva, atenção, treino)
 - Tipo de som
 - Parâmetros utilizados na aquisição do som analógico original (amplificação, filtros, etc.)
 - Tipo de **compressão** utilizada (taxa, algoritmo)

- Áudio digital (cont.)
 - Qualidade de CD
 - Padrão projectado com o objectivo de possibilitar a reprodução de todos os sons que o ouvido humano consegue ouvir
 - Frequência de amostragem necessária: **44.1 KHz**
 - Como o ouvido humano médio só capta frequências até cerca de 20Khz, frequências de amostragem superiores seriam inúteis
 - Quantização: 16 bits
 - Nr. canais: 2 (stereo)
 - Será que abarca tudo?
 - Semelhante a som analógico para a maioria dos ouvintes
 - Pessoas com maior acuidade auditiva podem ouvir ruído de quantização e ausência de altas frequências

- Áudio digital (cont.)
 - Qualidade e fluxo de dados

Quality	Sampling rate (kHz)	Bits per sample	Mono/ Stereo	Bitrate (if uncompressed) (kB/s)	Signal bandwidth (Hz)
Telephone	8	8	Mono	8	200-3,400
AM radio	11.025	8	Mono	11.0	100-5,500
FM radio	22.05	16	Stereo	88.2	20-11,000
CD	44.1	16	Stereo	176.4	5-20,000
DVD audio	192 (max)	24 (max)	Up to 6 channels	1,200.0 (max)	0–96,000 (max)

© Ze-Nian Li 2014, p. 152

- Som não comprimido com qualidade CD: ~ 10.6 MB/minuto
- Quanto maior o fluxo, melhor a qualidade

Nota: Bps ≠ bps (Bytes/seg vs bits/seg)

Som simbólico

- Definição
 - Objectos acústicos representados através de elementos simbólicos básicos, e.g., nota musical, duração, etc.
- Criação
 - Utilização de eventos simples (ou agregações) fornecidas pelo editor

https://www.soundonsound.com/techniques/midi-score-editors

- Som simbólico (cont.)
 - Exemplo: MIDI (Musical Instrument Digital Interface)
 - Standard de comunicação para interacção entre instrumentos electrónicos e computadores (comunicação, controlo e sincronização em tempo real)
 - Comunicação entre dispositivos por meio de mensagens
 - Mensagem enviada e interpretada por um dispositivo MIDI de playback → som correspondente produzido

© http://www.pctechguide.com/ 44SoundCards_MIDI.htm

- Som simbólico (cont.)
 - MIDI (cont.)
 - Protocolo para descrição detalhada de elementos musicais: nota, duração, instante, velocidade (intensidade), instrumento, ...
 - Ficheiro MIDI
 - Lista de comandos (mensagens MIDI) que inclui, e.g.,
 especificação do instrumento, as noções de início e fim de nota, frequência básica e volume do som (e.g., tocar a nota La num piano)
 - O padrão MIDI inclui 16 canais, cada um dos quais pode tratar um instrumento
 - O padrão MIDI identifica 128 instrumentos, incluindo sons sintéticos, instrumentos étnicos e efeitos sonoros. Por exemplo o violino é o instrumento 40 e a flauta é o 73

- Som simbólico (cont.)
 - Requisitos de armazenamento
 - Substancialmente menores: objecto acústico descrito "linguisticamente" e não na forma de amostras da onda sonora

Exemplo: MIDI

	Byte de Status (mensagem NOTE ON enviada para o canal MIDI 1	Byte de dados (nr. da nota)	Byte de dados (velocidade da nota)
Binário	10010000	00111110	01100100
Equivalent decimal	4 bits iniciais especificam a mensagem NOTE ON. 4 bytes finais especificam o canal	62 (D -Ré- a 293.66 Hz)	100 (mezzo forte)

- ... Byte NOTE OFF (1 byte), delta time (4 bytes)...
- É também armazenada informação do instante temporal de cada evnto Fundamentos de Multimédia: Áudio Digital

- Som simbólico (cont.)
 - Requisitos de armazenamento (cont.)
 - Exemplo anterior:
 - Simbólico:
 - Duração = 0.5s
 - 11 bytes (delta time, note on, nota, velocidade; delta time, note off; fora cabeçalhos, etc.)
 - Áudio digital (qualidade de CD): 44100Hz x 0.5s x 2 bytes = 44100 bytes!
 - Software interpreta as instruções e faz o reprodução do som de acordo

- Som simbólico vs áudio digital
 - Vantagens de som simbólico
 - Espaço em disco menor (no entanto, formatos digitais comprimidos podem ser utilizados)
 - 200 a 1000 vezes mais pequenos que ficheiros digitais com qualidade de CD (20 a 100 vezes mais pequenos que mp3)
 - Utilizando este formato, dez minutos de música correspondem a cerca de 200 KBytes
 - CD áudio: cerca de 106Mbytes
 - Tempo de transferência via web menor
 - Mais manipuláveis, uma vez que cada elemento pode ser seleccionado e manipulado individualmente
 - Tempo alterável sem mudança na altura do tom
 - Possível alterar objectos acústicos. E.g., nota, instrumento, intensidade, ...

- Som simbólico vs áudio digital (cont.)
 - Limitações de som simbólico
 - Som artificial (embora o realismo seja cada vez maior)
 - Áudio gerado dependente do dispositivo (tecnologia de síntese de som utilizada)
 - Síntese de voz cantada difícil
 - Dispositivos MIDI podem sintetizar sons vocais mas
 - Não são genéricos
 - Qualidade do som duvidosa
 - Utilização requer alguns conhecimentos de teoria musical

Conversão entre áudio digital e som digital

- Som simbólico → áudio digital: fácil
 - Na prática, um ficheiro MIDI, MusicXML, etc. é renderizado como áudio digital
 - Basta gravar o sinal de saída da placa de som
 - Software de edição permite guardar em formatos áudio digital
- Aúdio digital → som simbólico: difícil...
 - Software de transcrição automática (e.g., Solo Explorer, WidiSoft, Intelliscore)
 - Detectar elementos básicos no sinal digital (harmónicos, notas, instrumentos)
 - Resultados satisfatórios apenas em sinais monofónicos
 - Ainda assim, mudanças de timbre poderão ser notórias, dependendo do instrumento original e da tecnologia de síntese de som