UNIT 1

Lecture 27 & 28 E R Model to Relational Mapping

ER Model to Relational Mapping

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

Step 1: Mapping of Regular Entity Types.

- 1. For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
- 2. Choose one of the key attributes of E as the primary key for R. If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.

Step 2: Mapping of Weak Entity Types

- 1. For each weak entity type W in the ER schema with owner entity type E, create a relation R and include all simple attributes (or simple components of composite attributes) of W as attributes of R.
- 2. In addition, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
- 3. The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.

Mapping of Weak Entity Sets

loan (loan-number, amount)

payment (loan-number, payment-number, payment-date, payment-amount)

For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R. There are three possible approaches:

- (1) Foreign Key approach: Choose one of the relations-S, say-and include a foreign key in S the primary key of T. It is better to choose an entity type with total participation in R in the role of S.
- (2) Merged relation option: An alternate mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when both participations are total.
- (3) Cross-reference or relationship relation option: The third alternative is to set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types.

STUDENT

rollno	sname
1	RAM
2	SHYAM
3	MOHAN
4	GOPAL

PROJECT

pno	pname	rollno
121	P1	1
122	P2	2

STUDENT (<u>rollno</u>, sname)

PROJECT (pno, pname, rollno)

STUDENTPROJECT

STUDENT

rollno	sname	pno
1	RAM	121
2	SHYAM	122
3	MOHAN	123
4	GOPAL	124

PROJECT

pno	pname	rollno
121	P1	1
122	P2	2
123	Р3	3
124	P4	4

rollno	sname	pno	pname
1	RAM	121	P1
2	SHYAM	122	P2
3	MOHAN	123	Р3
4	GOPAL	124	P4

STUDENTPROJECT (rollno, sname, pno, pname)

STUDENT

rollno	sname
1	RAM
2	SHYAM
3	MOHAN
4	GOPAL

WORKS

rollno	pno
1	121
2	122

STUDENT (<u>rollno</u>, sname)

WORKS (rollno, pno)

PROJECT (pno, pname)

PROJECT

pno	pname
121	P1
122	P2
123	Р3
124	P4

Dinesh Kumar Bhawnani, BIT DURG

- 1. For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the N-side of the relationship type.
- 2. Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
- 3. Include any simple attributes of the 1:N relation type as attributes of S.

STUDENT

rollno	sname	pno
1	RAM	121
2	SHYAM	122
3	MOHAN	
4	GOPAL	

STUDENT (rollno, sname, pno)

PROJECT (pno, pname)

PROJECT

pno	pname
121	P1
122	P2
123	Р3
124	P4

Step 5: Mapping of Binary M:N Relationship Types.

- 1. For each regular binary M:N relationship type R, create a new relation S to represent R.
- 2. Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
- 3. Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.

Step 5: Mapping of Binary M:N Relationship Types.

STUDENT

rollno	sname
1	RAM
2	SHYAM
3	MOHAN
4	GOPAL

WORKS

rollno	pno
1	121
1	122
2	121
2	122
2	123

PROJECT

pno	pname
121	P1
122	P2
123	Р3
124	P4

PROJECT (pno, pname)

WORKS (rollno, pno)

STUDENT (<u>rollno</u>, sname)

Dinesh Kumar Bhawnani, BIT DURG

Step 6: Mapping of Multivalued attributes

- 1. For each multivalued attribute A, create a new relation R. This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type of relationship type that has A as an attribute.
- 2. The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.

Dinesh Kumar Bhawnani, BIT DURG

Step 7: Mapping of N-ary Relationship Types

- 1. For each n-ary relationship type R, where n>2, create a new relation S to represent R.
- 2. Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
- 3. Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.

Step 5 : Complete E R Diagram

PARTICIPATED (pid, engineno, reportno, damageamount)

EMPLOYEE

FNAME MINIT I	LNAME SSN BDATE	ADDRESS SEX	SALARY SUPERSS	N DNO
---------------	-----------------	-------------	----------------	-------

DEPARTMENT

DEPT_LOCATIONS

PROJECT

WORKS_ON

DEPENDENT

ESSN DEPENDENT_NAM	SEX	BDATE	RELATIONSHIP
--------------------	-----	-------	--------------

In an Entity-Relationship (ER) model, suppose R is a many-to-one relationship from entity set E1 to entity set E2. Assume that E1 and E2 participate totally in R and that the cardinality of E1 is greater than the cardinality of E2. Which one of the following is true about R?

- (A) Every entity in E1 is associated with exactly one entity in E2.
- (B) Some entity in E1 is associated with more than one entity in E2.
- (C) Every entity in E2 is associated with exactly one entity in E1.
- (D) Every entity in E2 is associated with at most one entity in E1.

[GATE 2018]

An ER model of a database consists of entity types A and B. These are connected by a relationship R which dose not have its own attribute. Under which one of the following conditions, can the relational table for R be merged with that of A?

- (A) Relationship R is one-to-many and the participation of A in R is total.
- (B) Relationship R is one-to-many and the participation of A in R is partial.
- (C) Relationship R is many-to-one and the participation of A in R is total.
- (D) Relationship R is many-to-one and the participation of A in R is partial.

[GATE 2017]

Consider an Entity-Relationship(ER) model in which entity sets E1 and E2 are connected by an m:n relationship R12. E1 and E3 are connected by a 1: n (1 on the side of E1 and n on the side of E3) relationship R13.

E1 has two single-valued attributes a11 and a12 of which a11 is the key attribute. E2 has two single-valued attributes a21 and a22 of which is a21 the key attribute. E3 has two single-valued attributes a31 and a32 of which a31 is the key attribute. The relationships do not have any attributes.

If a relational model is the derived from the above ER model, then the minimum number of relations that would be generated if all the relations are in 3NF is .

[GATE 2015]

Consider the following ER diagram.

The minimum number of tables needed to represent M, N, P, R1, R2 is (a) 2 (b) 3 (c) 4 (d) 5

[GATE 2008]

Consider the following ER diagram.

Which of the following is a correct attribute set for one of the tables for the correct answer to the above question?

- (a) {M1, M2, M3, P1}
- (b) {M1, P1, N1, N2}
- (c) {M1, P1, N1}
- (d) {M1, P1}

[GATE 2008]

Let E1 and E2 be two entities in an ER diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relational model? (a) 2 (b) 3 (c) 4 (d) 5

[GATE 2005]

For Video lecture on this topic please subscribe to my youtube channel.

The link for my youtube channel is

https://www.youtube.com/channel/UCRWGtE76JlTp1iim6aOTRuw?sub confirmation=1