

Building security that thinks

Machine learning fundamentals for cybersecurity professionals

Chris Morales, Head of security analytics chris@Vectra.ai

The five questions that data science answers

- Is this A or B (or C or D)?
 - Classification
- How much / How many?
 - Regression
- How is this data organized?
 - Clustering
- Is this weird?
 - Anomaly
- What action should be taken?
 - Reinforcement

How does data science create intelligent machines?

Supervised and unsupervised machine learning

ata driven

Supervised Classification - Is this A or B (or C or D)?

Supervised Classification - Random Forest

Supervised Regression - How much / How many?

Unsupervised Clustering - How is this data organized?

Unsupervised Anomaly – Is this weird?

Good user

Attacker

Rogue employee

Deep learning - Using artificial neural networks

Choosing traditional machine learning or deep learning

Applying data science to threat detection

Signature

How the threat looks

Find threats that you've seen before

Snapshot in time

No local context

Data science

What the threat does

Find what all threats have in common

Learning over time

Local learning and context

Looking for what the threat does

Durable coverage

- Both novel and known attacks
- Difficult and expensive to evade

Fast, labeled coverage of known threats

- Tools
- Exploits
- Known attacker infrastructure
- Environment-specific indicators

Combine data science with security research

Attacker Behavior models

- High-fidelity detection of things attackers must do
- No signatures: find known and unknown

Security Research

- Identify, prioritize, and characterize fundamental attacker behaviors
- Validate models

Data Science

- Determine best approach to identify behavior
- Develop and tune models

Supervised deep learning to detect remote access

External Remote Access

- Traffic to a multi-dimensional time series
- Deep learning model to featurize the data flow
- Discovers the human on the outside taking control

Security Research

Data Science

Unsupervised learning to detect admin misuse

Suspicious Kerberos Client Suspicious Admin Suspicious Remote Exec

Security Research

Authenticate using a stolen credential

Administer a host using the stolen credential

Move laterally using credential for remote execution (RPC)

Data Science

Controller for each host and identify mismatches

Learn which systems each host administers, via which protocols, and identify abnormal administration

Learn normal RPC usage (target, UUID, named pipe, account tuples) for each host and identify abnormal usage

Prioritizing incidents using a time series of events

What it takes to a build an algorithm

What to ask when applying AI to threat detection

- What type of machine learning algorithms are used?
- How many machine learning algorithms are applied, and how are they categorized?
- How frequently are algorithms updated and new algorithms released?
- How many algorithms require a learning period, and how long does that take?
- How are critical and high-risk threats prioritized?
- What kind of efficacy can be expected?

Thank you

Chris Morales chris@Vectra.ai