FUNDAMENTOS E TÉCNICAS EM CIÊNCIAS DE DADOS

PROF. JOSENALDE OLIVEIRA

josenalde.oliveira@ufrn.br https://github.com/josenalde/datascience

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS - UFRN

OBJETIVOS

O(a) discente selecionará, com base na origem dos dados, as ferramentas e técnicas para pré-processamento (limpeza), tratamento e processamento de dados, com a respectiva saída gráfica ou textual para auxílio à tomada de decisão. Adquirirá uma visão ampla dos softwares, bibliotecas, métodos estatísticos e linguagens utilizadas na área de ciência de dados, de modo a incorporar tais soluções no desenvolvimento de software.

CONTEÚDO

Unidade I: introdução à ciência de dados, big data e suas etapas (produção; armazenamento (nosql); transformação e armazenamento analítico (olap, data warehouse, BI, data discovery), dashboards; **Unidade II**: processamento paralelo, distribuído e tempo real (hadoop, spark, spark streaming); **Unidade III**: análise de dados, métricas estatísticas e visualização, noções de mineração de dados e técnicas de predição (regressão linear simples, logística, séries temporais)

PLANO DE CURSO

ARMAZENAMENTO

ESCRIÇÃO,

Introdução a ciência de dados e Big Data; Banco de dados não relacionais (desnormalização); Conceitos e definições sobre Ciência dos Dados; produção de dados; armazenamento; análise de dados; visualização, agrupamento e análise em rede. Caracterização, importância das etapas de modelagem e análise científica de dados. Ferramentas e linguagens para análise científica de dados.

Aquisição e formatação de dados. Análise estatística de dados. Agrupamento classificação de dados. Visualização científica de dados. Principais conceitos para gerenciamento de Big Data; Tecnologias para Big Data; Técnicas estatísticas de predição; Data Discovery, OLAP e Visualização de Dados; Processamento paralelo e distribuído de dados; Visualização de dados: estática e interativa. Desenvolvimento de painéis de visualização (dashboards).

PREDIÇÃO

Introdução a mineração de dados; Análise de dados de redes sociais. Modelagem de dados em grafos. Introdução a raspagem de dados (scraping). Coleta de dados estruturados e não estruturados. Desenvolvimento de raspadores de dados (scrapers). Ética e legislação sobre a raspagem de dados.

O que define um projeto de ciência de dados? A melhoria de algum aspecto no/do cliente

PLANO DE CURSO

Referências

Notas de aula .pdf disponibilizadas de autoria do docente (slides)

IGUAL, Laura; SEGUÍ, Santi. Introduction to Data Science: a Python approach to concepts, techniques and applications. Springer, 2017. https://github.com/DataScienceUB/introduction-datascience-python-book

E-book disponível em: https://www.springer.com/qp/book/9783319500164

AMARAL, Fernando. Introdução à Ciência de Dados: mineração de dados e big data. Rio de Janeiro: Alta Books, 2016.

* McKINSEY, Wes. Python para análise de dados. São Paulo: Novatec, 2018. https://github.com/wesm/pydata-book

https://github.com/josenalde/datascience www.kaggle.com

Complementar:

KELLEHER, John D.; TIERNEY, Brendan. Data Science. MIT Press, 2018.

>FERRAMENTAS (SUGERIDAS)

• Dentro da miríade (crescente) de ferramentas, é selecionado um ambiente interativo (Jupyter notebooks) baseado em **Python** para desenvolvimento de nossos estudos, a partir do qual bibliotecas e recursos extras vão sendo apresentados/explorados no tempo...

import csv

>FERRAMENTAS (SUGERIDAS)

• Ganho de produtividade...


```
import pandas as pd
acervobczm = pd.read_csv('../datasets/acervoaquisicao.csv', sep=';')
```

- Provê estruturas de dados de alto nível para dados estruturados ou tabulares (Series, DataFrames)
- Início: 2010 (chave para o Python ganhar espaço em CD
- Facilita reformatação, manipulação, agregação, seleção
- Tratamento flexível para dados ausentes

- Provê objeto array multidimensional *ndarray* rápido e eficiente (alto desempenho) que as estruturas built-in
 - Funções para processamento dos arrays
- Algebra linear, Fourier, aleatórios etc.
- Escrita e leitura de blocos ndarray em disco
- API C para interoperabilidade C-python numPy

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import statsmodels as sm

with open('../datasets/acervoaquisicao.csv', encoding='utf8') as f:
 reader = csv.DictReader(f, delimiter=';')
 for row in reader:
 print(row['titulo'])

ADS-UFRN: FUNDAMENTOS E TÉCNICAS EM CIÊNCIAS DE DADOS, PROF. JOSENALDE OLIVEIRA

6

>FERRAMENTAS (SUGERIDAS)

Qual linguagem base devo utilizar?
 Ver esta análise <u>aqui</u>

Example 1: European Food Consumption

Step 3a: Perform PCA

R

```
out.cor <- princomp(data, cor=TRUE)

lambda_perc <- out.cor$sdev^2/sum(out.cor$sdev^2)

V <- out.cor$loadings

Y <- cor(data) %+% V # Y = XV

PC <- out.cor$scores # PC = (standardized dataset) V

### Compare with ?prcomp and ?svd
```

Python

Ambas possuem suas especificidades, qualidades e, em geral, a escolha principal tem sido associada ao background do desenvolvedor, se em computação (python) ou de matemática/estatística (R)

OBS: python necessário para a análise de dados (codificação)

>JUPYTER LAB (NOTEBOOK):

Anaconda Navigator

>JUPYTER LAB (NOTEBOOK):

- Ambiente para execução interativa (Ipython), com mescla de código interpretável, texto, imagens, LaTeX — linguagem Markdown e HTML
- No Anaconda Prompt:
 - conda update jupyter
 - <u>notebook jupyter</u>

- Baseado no projeto Ipython (Fernando Pérez, 2001...)
- Projeto Jupyter (2014...)
- Desenvolvimento baseado no fluxo execução-exploração ao invés de edição-compilação-execução
- Em ciência de dados, as análises envolvem exploração, tentativa e erro e iteração

GOOGLE COLAB

🗰 O que é o Colaboratory?

O Colaboratory ou "Colab" permite escrever código Python no seu navegador, com:

- · Nenhuma configuração necessária
- · Acesso gratuito a GPUs
- · Compartilhamento fácil

Você pode ser um **estudante**, um **cientista de dados** ou um **pesquisador de IA**, o Colab pode facilitar seu trabalho. Assista ao vídeo <u>Introdução</u> <u>ao Colab</u> para saber mais ou simplesmente comece a usá-lo abaixo!

- Desenvolvimento online com integração Gdrive e Github

Dito isto...

The Periodic Table of Data Science Data-Science-Periodic-Table.pdf

An overview of key companies, resources and tools in data science (as of 4/12/2017)

Dc	Ga General	Sd						
DataCamp	Assembly	Strata Data						
Sb	M	Od						
SpringBoard	Metis	ODSC						
Ex	Di	Tc Tableau						
Edx	Data Incubator	Conference						
С	In	U						
Coursera	Insight	UseR!						
Uda	Dsa	Pd						
Udacity	NYC Data Science Academy	PyData						
Ude	G	Paw						
Udemy	Galvanize	Predictive Analytics World						
Ps	Dsg	Kdd						
Pluralsight	Data Science for Social Good	ACM SIGKDD Conference						
Ly	Dsy	Трс						
Lynda	Data Society	Teradata Partners Conference						
Tt	Dsj	Icd IEEE International						
TeamTreeHouse	Data Science Dojo	Conference on Data Mining						
Bdu Big Data								

						Symbol —	Г)c]									
						Name	Data	Camp										
						l		_	J									
	Courses		Data		1		Search	& Data N	Management			Collabora	ition	- 1			News, Newslette	rs & Blogs
	Boot camps		Projects & Ch	ects & Challenges, Competitions			Machine Learning & Stats				Community & Q&A				Podcasts			
	Conferences		Programming	Languages & Di		Data Visualization & Reporting												
Py	Js	Vb	Pgs	Sli	Ah Apache	W	F	Bml	Kn		Sm	Pb	'	Obi	Shn	l .	Ddl Domino Data	De Data Science
Python	JavaScript	Visual Basic	PostgreSQL	SQLite	Hadoop	Weka	Bi	gML	Knime	Spark	k MlLib	Power BI	Ora	acle BI	Shiny	y	Lab	Experience
R	Ср	Sc	Ar	Bq	Hw	0	I	Dar	Lib	1	Но	Во		Alt	Mpl	l	Nt	Rs
R	C++	Scala	Amazon Redshift	Google BigQuery	Hortonworks	Oracle	Data	Robot	LibSVM	Н	120	BusinessObjects Altery		teryx	Matplot	tlib	Nteract	Rstudio
s	Pl	Ca	Hb	Td	cı	Mss	I	Rm	Mat		Th	Sp		Sav	Ply		Ro	Be
SQL	Perl	Cassandra	HBase	Teradata	Cloudera	Microsoft SQL server	Rapio	dMiner	Mathematica	Th	neano	Spotfire		Visual alytics	Plotly	у	Rodeo	Beaker Notebook
В	Mr	P	Mdb	То	Aem	Spl	(Cho	Mah		Aml	QI		Po	Me		Spy	Ze
Bash	Microsoft R Open	Pig	Mongo DB	Toad	Amazon Elastic Mapreduce	Splunk	Ch	orus	Mahout		Machine arning	Qlikview	Pow	erPivot	Micros Excel		Spyder	Apache Zeppelin
Mtl	Су	Im	К	Ms	Mar	Sr		Tf	St		D	Co		Gch	Pe		Dst	Ju
Matlab	Canopy	Impala	Kafka	MySQL	MapR	Solr	Tens	orflow	Stata	D3		Cognos	Google Charts		Pental	ho	Data Science Studio	Jupyter
J	An	Sp	Hi	Idb	Lu	El		Sk	Da	1	Му	Aa		T	В		Db	Gh
Java	Anaconda	Spark	Hive	IBM DB2	Lucene	ElasticSearch	Sciki	t-Learn	Dato/Graphla	Micro	ostrategy	Adobe Analytics	Ta	bleau	Bokel	h	Databricks notebook	Github
Dw		Fte			Dg	К		I		So	c		Qu	A		Dse		
Data.world	Quandl	FiveThirtyEight	Socrata	Google Public	Data.gov	Kaggle						cross idated Quora			Analytics Data S Vidhya Stack E		cience change	
St	Uci UCI Machine	Wb	At Academic	Bf	Dk	Dd		N	Au I	ldm								

Kdn	Ibd								
KDnuggets	insideBIGDATA								
Rb	Pp								
R-Bloggers	PlanetPython								
Hn	Dt								
HackerNews	DataTau								
Dsc	Dsr								
Data Science	Data Science								
Central	Roundup								
Dsw	Or								
Data Science									
Weekly	O'Reilly								
Dr	Pw								
	Python								
Data Elixir	Weekly								
Rw	Pd								
	Partially								
R Weekly	Derivative								
Bds	Tm								
Becoming a	Talking								
Data Scientist	Machines								
Ds	Dsk								
Data Stories	Data Skeptic								
Ld	Ns								
Linear	Not So Standard								
Digressions	Deviations								

ELEMENTOS BASE: DADO, INFORMAÇÃO, SISTEMA,

CONHECIMENTO

Sistema de informação

Informação: dado analisado e com algum significado X Conhecimento: informação interpretada, entendida e aplicada

 Sabemos que os dados podem vir de várias FONTES (do ponto de vista de codificação entender os formatos e como atuar sobre os mesmos (ler, manipular)

Data Files (XML, CSV, Excel, JSON, ...)

Database (MySQL, Oracle, ...)

API

Sites

Text and reports

Maps

Image and videos

Social Media

- Exemplo de dado X informação X conhecimento
 - Projeto palmaS (UFRN@Tapioca, EMPARN 11.2019...)

Conhecimento (negócio): tratamento A, em relação ao tratamento B possui eficácia X, devido à ..., sendo recomendado a aplicação da seguinte forma: ...

Dado: imagem da presença de uma praga chamada cochonilha de escama na palma forrageira após aplicação de determinado tratamento (produto etc.)

Informação: contagem das cochonillas fêmeas = 114

• Exemplo de dado X informação X conhecimento

Projeto palma\$

Separação por CLASSES

Para pensar (exemplos): pulverização autônoma <u>aérea</u> ou <u>térrea</u>

Portanto, estudos de ciência de dados em nosso contexto:

Desenvolvedor Danger zone! Negócio Hacking Substantive Expertise **Data Science** Traditional Machine Learning Research **Math and Statistics Técnicas** Knowledge estatísticas

Devido a sua natureza interdisciplinar, requer intersecção de habilidades (codificação, negócio, matemática e estatística)

Necessário para trabalhar com massa de dados que precisa ser adquirida, limpa e manipulada

Permite a escolha de métodos e ferramentas para extrair conhecimento a partir dos dados

Conhecimento do negócio para demandar questões, estabelecer hipóteses e interpretar os resultados

Pesquisa tradicional com aplicações estatísticas ao domínio do problema

Isoladamente não requer conhecimento do negócio, pois pode-se limitar a aplicação de algoritmos, sem propósito individualmente

Pode levar a análises incorretas, pela falta de métodos matemáticos e estatísticos rigorosos

Fonte: Kirk Bourne

- Na aquisição de dados, independente da fonte, pode comprometer o conhecimento, se os dados não apresentam tais características (não necessariamente todas, mas conjuntos razoáveis e lógicos)
 - **Relevantes**: são importantes para o tomador de decisões. Exemplo: se o preço de um tecido vai subir não é relevante para um fabricante de circuitos integrados
 - **Simples**: dados sofisticados e/ou detalhados podem não ser necessários. Sobrecarga de informações dificulta tomada de decisão ao invés de auxiliar
 - Apresentadas no momento exato: saber como foi o tempo semana passada não ajuda a definir que roupa devo usar hoje
 - **Verificáveis:** deve ser possível checar dados para garantir que estejam corretos, checando por exemplo várias fontes
 - Acessíveis: fácil acesso para usuários autorizados, com o formato correto e no momento correto
 - Seguras: evitar acesso não autorizado

Exemplos: Concursos públicos, setor privado, <u>parcerias pp</u>etc.

<u>Cientista de dados – aplicações agrícolas</u>