Nr Ćwiczenia 103	Data wykonania 12.11.2024	Wydział WIiT	Semestr 3	Grupa LAB L1
Prowadzący: mgr inż. Taras Zhezhera		Stanisław Fiedler		Ocena:

Sprawozdanie Laboratorium Fizyka dla informatyków

Wyznaczanie współczynnika rozszerzalności liniowej ciał stałych.

Stanisław Fiedler 160250

LAB 2, 12 listopada 2024

Spis treści

1 Wstęp teoretyczny Wyniki pomiarów 2 Opracowanie wyników 3 3 3.2 3 3 3.2.1 3.2.2 4 3.2.3 4 4 4

1 Wstęp teoretyczny

Zmianie temperatury ciała towarzyszy na ogół zmiana jego wymiarów linowych, a więc także zmiana jego objętości. Przyrost temperatury dT ciała, którego długość całkowita wynosi l, powoduje przyrost długości dl określony wzorem:

$$dl = \alpha l \, dT \tag{1}$$

Współczynnik α nazywamy współczynnikiem rozszerzalności liniowej. W zakresie niewielkich zmian temperatury możemy przyjąć, że współczynnik α jest stały, a długość wzrasta wprost proporcjonalnie do temperatury. W tym przypadku odpowiednikiem wzoru (1) jest wzór:

$$l - l_0 = \alpha_{sr} l_o \Delta T \tag{2}$$

$$\alpha_{sr} = \frac{l - l_0}{l_0 \Delta T} \tag{3}$$

Przyczyna rozszerzalności cieplnej leży w strukturze mikroskopowej ciał. Ciała zbudowane są z atomów tworzących sieć krystaliczną. Dostarczona energia cieplna powoduje drgania atomów wokół położeń równowagi. Amplituda tych drgań rośnie wraz z temperaturą. Wraz ze wzrostem amplitudy drgań roście średnia odległość między atomami co obserwujemy jako rozszerzalność cieplna.

2 Wyniki pomiarów

ZIVIOU		STAKYCH	DO252ERZACUCI At = 0,0°C AV = 00,5°C
1 1 500		Mujosic (mm)	stal (DL) = 0,02
temperatura (°C)	miech	morridz	3101
20,5	772,6 -1,\$	7715 -0,4	712,5 -0,9
25,1	+905	+ 9,06	+0,03
309	+0,11	× 0,12	+ 0,08
34,0	400,17	+000 20	40 000 11
39,5	+00,17	4025	40,16
1454	f0,31	+ 0, 34	4022
50,6	10,30	+0,43	40,27
0054,8	+0 44	+0,19	10,32
59,9	(0,00)	+0,57	+0,37
66,1	40,59	+0,665	+0,42
693	40,62	+0,609	40,44
	40,53	+0,58	+0,37-
65,2		t 9,50	40,32
60,1	+0,45	+0,642	40,26
55,2	+0,38		
50,5	40,32		+0,22
1,5(4	(+0, 25)	*0,27	+0,617
40,4	+0,10	+0,20	40,11
			1
			12-1

3 Opracowanie wyników

3.1 Wykres

Kolory:

- Czerwony mosiądz
- Czarny miedź
- Niebieski stal

3.2 Obliczenia

 ${\bf W}$ celu wyznaczenia współczynnika rozszerzalności z danych pomiarowych zapiszemy równanie (2) w postaci:

$$\Delta l = \alpha_{sr} l_0 T - \alpha_{sr} l_0 T_0 \tag{4}$$

Równanie to oznacza, że wydłużenie jest linową funkcją temperatury i że współczynnik nachylenia prostej $a=\alpha_{sr}l_0$. Więc współczynnik rozszerzalności wyznaczymy ze wzoru:

$$\alpha = \frac{a}{l_0} \tag{5}$$

3.2.1 Miedź

Równanie prostej:

$$y = 0,0129592x - 0,296283$$

3.2.2 Mosiądz

Równanie prostej:

$$y = 0,0142768x - 0,325362$$

3.2.3 Stal

Równanie prostej:

$$y = 0,00937915x - 0,223155$$

- 3.3 Wyniki
- 3.4 Wnioski