QUIZ 7

ALLEN WILLIAMS

- (1) Are the following functions homomorphisms? If so give the kernel.
 - (a) $\phi: \mathbb{R}^* \to GL_2(\mathbb{R})$ defined by $\phi(a) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$ is a homomorphism and $ker(\phi) = \{1\}$.
 - (b) $\phi : \mathbb{R} \to GL_2(\mathbb{R})$ defined by $\phi(a) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$ is a homomorphism with $ker(\phi) = \{0\}$.
 - (c) $\phi: GL_2(\mathbb{R}) \to \mathbb{R}$ defined by $\phi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a + d$ is not a homomorphism.
 - (d) $\phi: GL_2(\mathbb{R}) \to \mathbb{R}^*$ defined by $\phi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = ad bc$ is a homomorphism with $ker(\phi) = SL_2(\mathbb{R})$
- (e) $\phi: \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ defined by $\phi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = b$ is a homomorphism with $ker(\phi) = \left\{\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{R}\right\}$.

 (2) Let $\phi: \mathbb{Z} \to \mathbb{Z}$ be given by $\phi(n) = 7n$. Prove the ϕ is a group homo-
- (2) Let $\phi: \mathbb{Z} \to \mathbb{Z}$ be given by $\phi(n) = 7n$. Prove the ϕ is a group homomorphism. Find the kernel and the image of ϕ . $\phi(m+n) = 7(m+n) = 7m + 7n = \phi(m) + \phi(n)$ so ϕ is a homomorphism. $ker(\phi) = \{n \mid \phi(n) = 0\}$ or the solution set to the equation 7n = 0, so $ker(\phi) = \{0\}$. The image of ϕ is $\phi(\mathbb{Z})$ or $\{7z \mid z \in \mathbb{Z}\}$, or $7\mathbb{Z}$.
- (3) In \mathbb{Z}_{40} let $H = \langle 4 \rangle$ and let $N = \langle 10 \rangle$.
 - (a) List the elements in H+N and $H\cap N$ $H+N=\{0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38\}$ $H\cap N=\{0,20\}$
 - (b) list the cosets in $\frac{HN}{N}$ $\frac{H+N}{N} = \{\{0, 10, 20, 30\}N = \{0, 10, 20, 30\}, \{2, 12, 22, 32\}N = \{2, 12, 22, 32\}, \{4, 14, 24, 34\}N = \{4, 14, 24, 34\}, \{6, 16, 26, 36\}N = \{6, 16, 26, 36\}, \{8, 18, 28, 38\}N = \{8, 18, 28, 38\}\}$
 - (c) List the cosets in $\frac{H}{H\cap N}$ $\frac{H}{H\cap N}$ = $\{0(H\cap N) = \{0,20\}, 4(H\cap N) = \{4,24\}, 8(H\cap N) = \{8,28\}, 12(H\cap N) = \{12,32\}, 16(H\cap N) = \{16,36\}\}$
 - (d) Give the correspondence between $\frac{H+N}{N}$ and $\frac{H}{H\cap N}$. Define $\varphi: \frac{H}{H\cap N} \to \frac{H+N}{N}$ by $\varphi(g(H\cap N)) = gN$ Suppose $\varphi(g(H\cap N)) = \varphi(h(H\cap N))$

1

Date: April 5, 2018.

Observe that gN=g'N when $g\equiv g'\mod(10)$, so $g\equiv h\mod(10)$. Also notice that $g(H\cap N)=g'(H\cap N)$ whenever $g\equiv g'\mod(10)$ so $g(H\cap N)=h(H\cap N)$, so φ is injective. Let gN be arbitrary, then $gN=\varphi(g(H\cap N))$ so φ is surjective. Also $\varphi(g(H\cap N)h(H\cap N))=\varphi(gh(H\cap N))=ghN=gNhN=\varphi(g(H\cap N))\varphi(h(H\cap N))$ so φ is an isomorphism meaning $\frac{H}{H\cap N}\cong \frac{H+N}{N}$.

(4) If $\phi: G \to H$ is a group homomorphism and G is abelian, prove that $\phi(G)$ is also abelian. Let $\phi: G \to H$ be a homomorphism and let G be an abelian group. Let $a, b \in G$ then ab = ba so $\phi(ab) = \phi(a)\phi(b) = \phi(ba) = \phi(b)\phi(a)$ so since $\phi(a)\phi(b) = \phi(b)\phi(a)$, $\phi(G)$ is abelian.

If $\phi: G \to H$ is a group homomorphism and G is cyclic, prove that $\phi(G)$ is also cyclic. Let G be a cyclic group and let $\phi: G \to H$ be a homomorphism then $G = \langle g \rangle$ for some element $g \in G$, and an arbitrary element in G can be written g^k for integer k. Then $\phi(g^k) = \phi(g)^k$. The proof of which is by induction. Clearly when k = 1 $\phi(g^1) = \phi(g)^1$ establishing the basis of induction. Now assume $\phi(g^k) = \phi(g)^k$ for arbitrary $k \in \mathbb{Z}$. Then

$$\phi(g^k)\phi(g) = \phi(g)^k \phi(g)\phi(g^{k+1}) = \phi(g)^{k+1}$$

So by induction $\phi(g^k) = \phi(g)^k$ for all $k \in \mathbb{N}$, so $\phi(G)$ is cyclic.

- (5) Let G be a group with N a normal subgroup and both N and $\frac{G}{N}$ are abelian. Does this imply that G is abelian? No. Consider $G = S_3$ and $N = A_3$. A_3 is cyclic and therefore abelian since $|A_3| = 3$ and 3 is prime. Also $|\frac{G}{N}| = \frac{|G|}{|N|} = \frac{6}{3} = 2$ which is prime so $\frac{G}{N}$ is cyclic and therefore abelian. But $G = S_3$ is not abelian since $(12)(13) = (132) \neq (123) = (13)(12)$.
- (6) Let G be a group with N a normal subgroup and both N and $\frac{G}{N}$ are cyclic. Does this imply that G is cyclic? Again, no. The response to question 5 holds for question 6 as well as groups with prime order are cyclic and therefore abelian.
- (7) Let $\phi: G \to H$ be a homomorphism. Define a relation on G by a b if $\phi(a) = \phi(b)$. Let $a, b, c \in G$ be arbitrary. Clearly $\phi(a) = \phi(a)$ since ϕ is a function, so is reflexive. Suppose a b, that is $\phi(a) = \phi(b)$ then by the symmetric property of equality $\phi(b) = \phi(a)$, so b a, so ϕ is symmetric. Now suppose a b and b c, that is $\phi(a) = \phi(b)$ and $\phi(b) = \phi(c)$, then by the transitive property of equality $\phi(a) = \phi(c)$ so ϕ is transitive, and therefore an equivalence relation on G. The equivalence classes are sets of elements of G that map to the same element in H under ϕ .
- (8) Let G be a group and define $\phi: G \to Aut(G)$ by $g \mapsto i_g$. Then $\phi(gh) = i_{gh} = ghxh^{-1}g^{-1} = i_g(hxh^{-1}) = i_gi_h(x) = \phi(g)\phi(h)$ so ϕ is a homomorphism. $i_g(x) = gxg^{-1}$ so $\phi(G) = inn(G)$. $ker(\phi) = \{g \in G \mid \phi(g) = e_{Aut(G)}\}$ and $e_{Aut(G)} = \epsilon$ where $\epsilon(x) = x$, then g must commute with an arbitrary element of G so $g \in Z(G)$, so $ker(\phi) = Z(G)$. By the first isomorphism theorem $\frac{G}{Z(G)} \cong Inn(G)$.

QUIZ 7

- (10) (a) Let G be a group with H a normal subgroup and both H and $\frac{G}{H}$ are abelian and $\frac{G}{H}$ is cyclic. Does this imply that G is cyclic?
 - (b) Let G be a group with H a normal subgroup and both H and $\frac{G}{H}$ are abelian. Does this imply that G is abelian?

For both a and b let $G = S_3$, $H = A_3$ then as described in question 5 both H and $\frac{G}{H}$ have prime order so are cyclic and therefore abelian, although G was shown to not be abelian and therefore cannot be cyclic. So the answer to both a and b is no.