Uebung 03

Gruppe 60

Yi Cui 2758172

Yuting Li 2547040

Xiaoyu Wang 2661201

Ruiyong Pi 2309738

Aufgabe 1: Komplexe Zahlen

Gegeben sei die komplexe Zahl: z = 2i + 5.

a) Geben Sie den Realteil Re(z) und den Imaginärteil Im(z) an. (0,5 Punkte)

$$Re(z) = 5$$

$$Im(z) = 2$$

b) Berechnen Sie z^2 . (1 Punkt)

$$z^2 = -2^2 + 5^2 + 2 \cdot 2i \cdot 5 = 21 + 20i$$

c) Berechnen Sie die Polardarstellung von z² und tragen Sie die Polarkoordinate in ein passendes Koordinatensystem (kartesisch reicht aus). Runden Sie auf 2 Nachkommastellen und geben Sie den Winkel als Radiant an. (1,5 Punkte)

$$\phi = \arctan\left(\frac{Im(z)}{Re(z)}\right) = \arctan\left(\frac{2}{5}\right) \approx 0.38$$

$$|z| = \sqrt[2]{2^2 + 5^2} \approx 5.39$$

$$z = |z| \cdot e^{i\phi} = 5.39 \cdot e^{0.38i}$$

Aufgabe 2: Abtastung

Gegeben sei das Signal: f(t) = 2 * sin(0.5 * t) + 3 * cos(6 * t)

a) Tasten Sie das Signal an den Werten t = 0, 1, 2.5, 4.75 ab und geben Sie die gewonnenen Samples an. Runden Sie die Ergebnisse gegebenenfalls auf 2 Nachkommastellen. (1 Punkt)

$$f(t = 0) = 3$$

 $f(t = 1) = 3.00$
 $f(t = 2.5) = 2.94$
 $f(t = 4.75) = 2.72$

b) Reicht eine Abtastfrequenz von 5Hz für eine fehlerfreie Rekonstruktion des Signals aus? Was ist die minimale Frequenz mit der erfolgreich abgetastet werden kann? (1 Punkt)

Eine Abtastfrequenz von 5Hz kann für **KEINE** fehlerfreie Rekonstruktion des Signals f(t) ausreichen.

$$f(t) = a*sin(\omega_1*t) + b*cos(\omega_2*t)$$

$$f_1 = \frac{2\pi}{\omega_1} = 6\pi \approx 12.56Hz, \quad f_2 = \frac{2\pi}{\omega_2} = 1.05Hz$$
 Nach Shannon-Abtasttheorem:
$$f_{\text{abtast,min}} = 2*max(f_1, f_2) = 12\pi Hz$$

 Nennen und erklären Sie den Effekt, der beim Unterschreiten der Minimalfrequenz auftritt. (1 Punkt)

Alias-Effekt wird auftreten, falls die Abtastfrequenz die Minimalfrequenz unterschritten hat.

Grund: Die Kopien der Fouriertransformierten F(u) überlappen sich

Aufgabe 3: Fourierreihe

Bestimmen Sie die reellen Fourierkoeffizienten der 2π -periodischen Funktion.

$$f(x) = \begin{cases} \frac{1}{\pi} * x, & x \in [0 \dots \pi[\\ 0, & x \in [\pi. 2\pi[\\ \end{bmatrix}] \end{cases}$$

In komplexer Darstellung:

$$f(t) = \sum_{n=-\infty}^{\infty} c_n \cdot e^{i \cdot n \cdot \omega_0 t}$$

mit:

$$a_n = 2 * Re(c_n)$$

$$b_n = -2 * Im(c_n)$$

$$a_0 = c_0$$

In reeller Darstellung:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cdot \cos(n \cdot \omega_0 t) + b_n \cdot \sin(n \cdot \omega_0 t) \right)$$

mit:

$$a_n = \frac{2}{T} \cdot \int_0^T y(t) \cdot \cos(n \cdot \omega_0 t) dt$$

$$b_n = \frac{2}{T} \cdot \int_0^T y(t) \cdot \sin(n \cdot \omega_0 t) dt$$

$$a_0 = \frac{2}{T} \cdot \int_0^T y(t) dt$$

wobei:

$$T = 2\pi, \qquad \omega_0 = 1$$

$$a_0 = \frac{2}{T} \cdot \int_0^T y(t)dt$$

$$= \frac{2}{2\pi} \left(\int_0^{\pi} \frac{t}{\pi} dt + \int_{\pi}^{2\pi} 0 dt \right)$$

$$= \frac{1}{\pi} \left(\frac{1}{2\pi} t^2 \right) |_0^{\pi}$$

$$= \frac{1}{2}$$

$$\begin{aligned} \mathbf{a}_{\mathbf{n}} &= \frac{2}{\mathbf{T}} \cdot \int_{0}^{\mathbf{T}} \mathbf{y}(\mathbf{t}) \cdot \cos(\mathbf{n} \cdot \boldsymbol{\omega}_{0} \mathbf{t}) d\mathbf{t} \\ &= \frac{2}{2\pi} \left(\int_{0}^{\pi} \frac{t}{\pi} \cos(nt) \, dt + \int_{\pi}^{2\pi} 0 \cdot \cos(nt) \, dt \right) \\ &= \frac{1}{\pi^{2}} \left[\left(\frac{1}{n} t sin(nt) \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{n} sin(nt) \, dt \right] \end{aligned}$$

$$= \frac{1}{\pi^2} \left[\left(\frac{1}{n} t sin(nt) \right) \Big|_0^{\pi} - \left(\frac{1}{n^2} cos(nt) \right) \Big|_0^{\pi} \right]$$

$$= \frac{1}{\pi^2} \left[0 + \frac{1}{n^2} (cos(n\pi) - 1) \right]$$

$$= \frac{1}{n^2 \pi^2} [(-1)^n - 1]$$

$$\begin{split} \mathbf{b}_{\mathbf{n}} &= \frac{2}{\mathbf{T}} \cdot \int_{0}^{\mathbf{T}} \mathbf{y}(\mathbf{t}) \cdot \sin(\mathbf{n} \cdot \omega_{0} \mathbf{t}) d\mathbf{t} \\ &= \frac{2}{2\pi} \left(\int_{0}^{\pi} \frac{t}{\pi} \operatorname{sind}(nt) \, dt + \int_{\pi}^{2\pi} 0 \cdot \sin(nt) \, dt \right) \\ &= \frac{1}{\pi^{2}} \left[\left(-\frac{1}{n} t \cos(nt) \right) |_{0}^{\pi} + \int_{0}^{\pi} \frac{1}{n} \cos(nt) \, dt \right] \\ &= \frac{1}{\pi^{2}} \left[\left(-\frac{1}{n} t \cos(nt) \right) |_{0}^{\pi} + \left(\frac{1}{n^{2}} \sin(nt) \right) |_{0}^{\pi} \right] \\ &= \frac{1}{\pi^{2}} \left[-\frac{1}{n} \pi \cos(n\pi) \right] \\ &= \frac{1}{n\pi} (-1)^{n+1} \end{split}$$

Wenn reellen Fourierkoeffizienten in reeller Darstellung, dann:

$\mathbf{a_0}$	a_1	a_2	a_3	a_4
0.5	-0.2026	0	-0.0225	0
	b_1	b_2	b_3	b_4
	0.3183	-0.1592	0.1061	-0.0796

.

Wenn reellen Fourierkoeffizienten in komplexer Darstellung, dann:

c_0	
0.5	

Aufgabe 4: Quiz

a) Jede periodische integrierbare Funktion kann als Fourierreihe dargestellt werden. (0,5 Punkte)

Falsch

Die periodische integrierbare Funktion könnte Dirichlet-Bedingungen nicht erfüllen.

z.B. Dirichlet-Funktion: $D: \mathbb{R} \to \mathbb{R}, x \mapsto D(x) = \begin{cases} 1, & \text{wenn } x \text{ rational,} \\ 0, & \text{wenn } x \text{ irrational.} \end{cases}$

hat Lebesgue-Integrierbarkeit, aber kann nicht als Fourierreihe dargestellt werden.

b) Eine Faltung im Frequenzraum entspricht einer Addition im Ortsraum. (0,5 Punkte)

Falsch

Einer Faltung im Ortsraum entspricht eine Multiplikation im Frequenzraum