Theoretische Informatik: Blatt 4

Abgabe bis 16. Oktober 2015 Assistent: Jerome Dohrau

Patrick Gruntz, Panuya Balasuntharam

Aufgabe 10

- (a) TODO
- (b) Wir zeigen indirekt, dass, $L_2 \notin L_{EA}$. Annahme: L sei regulaer. Sei $A = (Q, \Sigma, \delta_A, q_0, F)$ ein EA mit L(A) = L.

Wir betrachten die Woerter

$$b^1, b^2, ..., b^{|Q|+1}$$

Weil die Anzahl dieser Woerter |Q|+1 ist, existieren $i, j \in \{1, 2, ..., |Q|+1\}, i < j$, so dass

$$\hat{\delta}(q_0, b_i) = \hat{\delta}(q_0, b_i)$$

Nach Lemma 3.3 gilt $b^iz \in L \Longleftrightarrow b^jz \in L$

fuer alle $z \in \Sigma^*$. Dies gilt aber nicht , weil $z = a^{2i}$ das Wort $b^i a^2 i \in L$ und das Wort $b^j a^{2i} \not\in L$.

Weil j > i

 $\Rightarrow 2j > 2i$

 $\Rightarrow 2j > |w|_a$

 $\Rightarrow |w|_b > |w|_a$

 $\Rightarrow w \not\in L$

Aufgabe 11

(a) Wir fuehren ein Widerspruchsbeweis. Annahme: L ist regulaer. Dann gilt das Pumping Lemma. // Dann existiert eine Konstante n_0 mit den in Lemma 3.4 beschriebenen Eigenschaften. Wir betrachten das Wort

$$w = 0n_01n_0$$
.

Es ist klar, dass $|w| = 2n_0 \ge n_0$. Es existiert nach Lemma 3.4 eine Zerlegung w = xyz

$$y = 0^a$$

$$x = 0^b$$

$$z = 0^{n_0 - a - b} 1_0^n$$

fuer irgendwelche $a, b \in \mathbb{N}$. Nach (i) gilt $b \neq 0$.

(b) Es sei $L := \{w \in \{0,1\}^* | |w|_0 = |w|_1\}$. Es existiert eine Konstante n_0 . Alle Woerter in der Sprache mit einer Laenge von mindestens n_0 muss eine Zerlegung besitzen, die die Eigenschaften (i'), (ii), (iii') erfuellt. Wir waehlen fuer w=yxz die folgende Zerlegung:

$$y := \lambda$$

$$x := a$$

$$z := a^{|w|-1}$$

$$a \in \{0, 1\}$$

Offensichtlich gilt $|w| \ge n_0$.

Fall 1:

Fall 2:

Aufgabe 12

(b) Aus dem NEA generieren wir mit Hilfe der Potenzmengenkonstruktion einen aequivalenten EA. Da der NEA genau einen aktzeptierenden Zustand s hat und aus diesem keine Transitionen herausgeht, koennen wir bei der Durchfuerung der Potenzmengenkonstruktion einen neuen Zustand k verwenden, die s beinhaltet.

Es ergibt sich die folgende Transitionstabelle:

Zust and	a	b
$\{p\}$	$\{p,q\}$	{ <i>p</i> }
$\{p,q\}$	$\{p,q,r\}$	$\{p,r\}$
$\{p,r\}$	$\{k\}$	{ <i>p</i> }
$\{p,q,r\}$	$\{k\}$	$\{p,r\}$
$\{k\}$	$ \{k\}$	$ \{k\}$

In dieser Abbildung sind zur Vereinfachung der Darstellung die Klammern in den Zustandsnamen weggelassen worden dh. p steht fuer $<\{p\}>$ und pq steht fuer $<\{p,q\}>$

