The Baltic Seminar Notes #5 Lecturer: Prof. Grigor Sargsyan

Last time we showed the procedure of constructing ultrapower with a possibly outside extender, and showed that this ultrapower is well-founded. We now summarize some basic properties of extender ultrapower

Lemma 1. Given that E is a (κ, λ) -extender in V, Ult(V; E) satisfies the following properties:

- 1. $crit(j_E) = \kappa \ and \ j_E(\kappa) > \lambda;$
- 2. Let $\alpha \leq \kappa$. If $\alpha \leq Ult(V; E)$, then Ult(V; E) is closed under α -sequences;*
- 3. $E \notin Ult(V; E)$.

Proof.

- 1. Recall that $j_E(\alpha) = [\{\kappa\}, c_\alpha]$. If $\alpha < \kappa$, then by Los' lemma and κ -completeness of the ultrafilter $E_{\{\kappa\}}$, $j_E(\alpha) = \alpha$ for all $\alpha < \kappa$. We claim that $[\{\kappa\}, \mathbb{U}] = \kappa$ in Ult(V; E), where $\mathbb{U} : x \mapsto [Jx]$.
- 2. Let $[a_{\xi}, f_{\xi}] \in Ult(V; E)$ for all $\xi < \alpha$. Since

$$j_E(\langle f_{\xi} : \xi < \alpha \rangle) = \langle j_E(f_{\xi}) : \xi < \alpha \rangle \upharpoonright \alpha,$$

we only need $(a_{\xi}: \xi < \alpha) \in Ult(V; E)$ to have $\langle j_E(f_{\xi})(a_{\xi}): \xi < \alpha \rangle \in Ult(V; E)$.

3. Suppose $E \in M$, then we can define a surjection $e: {}^{\kappa}\kappa \to j_E(\kappa)$ in Ult(V; E) by $e(f) = [\{\kappa\}, f]$. This shows $Ult(V; E) \models j(\kappa) \leq 2^{\kappa}$, which contradicts with the inaccessibility of $j(\kappa)$ in Ult(V; E).

Remark. Suppose $\kappa < \kappa'$ are measurable cardinals with normal measures μ on κ and μ' on κ' . Then

- a. Let E be the (κ, κ^+) -extender derived from the canonical ultrapower embedding j_{μ} : $V \to Ult(V; \mu)$. Then $Ult(V; E) = Ult(V; \mu)$ and $j_E = j_{\mu}$;
- b. Suppose $\kappa_0 < \kappa_1$ such that there is a (κ_0, λ_0) -extender E such that

•
$$\lambda_0 > \kappa_1$$
; • $Ult(V; E) \models \kappa_1$ is strong; • $V_{\lambda_0} \subseteq Ult(V; E)$.

Let F be a (κ_1, λ_1) -extender in Ult(V; E) such that $\lambda_1 > \lambda_0$. Then we can construct Ult(V; F) and it is also well-founded.

^{*}It is not hard to see that Ult(V; E) is not always closed under ω -sequences.

February 21, 2021 Jiaming Zhang

Definition. We call κ a λ -strong cardinal iff there is an elementary embedding $j:V\to M$ such that:

•
$$crit(j) = \kappa$$
; • $j(\kappa) > \lambda$; • $V \sim_{\lambda} M$.

If κ is λ -strong for all λ , then κ is called a strong cardinal.

Lemma 2. Let E be a (κ, λ) -extender. Then the canonical ultrapower elementary embedding j_E satisfies:

•
$$crit(j_E) = \kappa$$
; • $j_E(\kappa) > \lambda$; • $V \sim_{\lambda} Ult(V; E)$.

Thus, κ is λ -strong iff there is a (κ, λ) -extender.

We now state the procedure of iteration, sometime called an iteration tree.

Definition. Let M be some model of set theory(may not be full ZFC). We say $\mathcal{I} = (T, M_{\alpha}, E_{\alpha} : \alpha < \eta)$ is an iteration of M iff:

- $T = (\eta, <_T)$ is a tree on η , which means:
 - $-<_T$ is a tree order on η ; $-\alpha <_T \beta \implies \alpha < \beta$; $-pd_T(\alpha) = \{\beta < \eta : \beta <_T \alpha\}$ is a club of α .
- $E_{\alpha} \in M_{\alpha}$ and $M_{\alpha} \models E_{\alpha}$ is a countably complete $(\kappa_{\alpha}, \lambda_{\alpha})$ -extender.
- $M_0 = M$.
- $M_{\alpha+1} = Ult(M_{\beta}, E_{\alpha})$ where β is the $<_T$ predecessor of $\alpha + 1$. With the above definition, one can compose all the intermediate embeddings between β and α given that $\beta <_T \alpha$. We denote this embedding by $j_{\beta\alpha}^{\mathcal{I}}$.
- If $\lambda < \eta$ is a limit ordinal, then $M_{\lambda} = \operatorname{dirlim}(M_{\beta}, j_{\beta\alpha}^{\mathcal{I}} : \beta <_{T} \alpha <_{T} \lambda)$.

Remark. Some examples of iteration:

• Linear iteration is the easiest iteration:

$$V = M_0 \xrightarrow{j_{01}} M_1 \xrightarrow{j_{12}} M_2 \xrightarrow{j_{23}} \dots \xrightarrow{j_{n\omega}} M_{\omega} \xrightarrow{j_{\omega,\omega+1}} M_{\omega+1} \xrightarrow{j_{\omega_1,\omega+2}} \dots \xrightarrow{j_{\alpha\infty}} M_{\infty}$$

Here we take some extender from our last model and try to build the ultrapower with it, though it may not be the same extender every time.

• The iteration below is impossible:

$$M_2$$
 M_3
 M_4
 $M_1 \longleftarrow V = M_0 \longrightarrow \dots$

February 21, 2021 Jiaming Zhang

I.e., a tree with infinite order must have an infinite branch. We shall explain the reason next time.

Definition. We say an iteration \mathcal{I} is normal iff:

- For all $\alpha < \beta$, $\lambda_{\alpha} < \lambda_{\beta}$;
- For all α , let β be the predecessor of $\alpha + 1$. Then β is the least ordinal such that $\kappa_{\alpha} < \lambda_{\beta}$.
- There is no overlapping extender. I.e., if $\alpha <_T \beta < \eta$ then $\kappa_\beta > \lambda_\alpha$.

Comment. The tree structure in the iteration is not removeable when considering very large cardinals. As an example, Foreman-Magidor-Shelah proved that a supercompact cardinal implies that there would be no projective well-ordering of reals. However, a linear iteration is well-founded is a Π_1^1 -condition of reals, thus there would be a Δ_3^1 well-ordering of reals[‡], which contradicts the existence of the supercompact. Therefore, considering iterations with higher complexity would be generally useful for very large cardinals.

Theorem 3. Suppose \mathcal{I} is a finite iteration of length n. Let $E_n \in M_n$ and let $M_{n+1} = Ult(M_i; E_n)$ where i < n is the least such that $P(\kappa_n) \cap M_n = P(\kappa_n) \cap M_i$. Then M_{n+1} is well-founded.

Proof. (Sketched) One can in fact collapse the whole picture down to a countable size and consider the following diagram:

Here, solid lines indicate the ultrapower embedding relation between models and dashed lines indicate the pull-back embeddings and embeddings realized by copying procedure. With an argument of proving well-foundedness, we can show that the countable completness of each E_n implies the well-foundedness of N_{n+1} , so M_{n+1} is well-founded.

[†]Or: $\left(H_{\kappa_{\alpha}^{+}}\right)^{M_{\beta}} = \left(H_{\kappa_{\alpha}^{+}}\right)^{M_{\alpha}}$.

[†]Idea: Let $x, y \in \mathbb{R}$ and define x < y iff there exists some M such that M is iterable, x, y are both in some iteration of M and x < y in that iteration.