

4.6.2 路由信息协议RIP的基本工作原理

4.6.2 路由信息协议RIP的基本工作原理

- 路由信息协议RIP(Routing Information Protocol)是内部网关协议IGP中最先得到广泛使用的协议之一,其相关标准文档为RFC 1058。
- RIP要求自治系统AS内的每一个路由器都要维护从它自己到AS内其他每一个网络的距离记录。这是一组距离,称为"距离向量D-V(Distance-Vector)"。
- RIP使用跳数(Hop Count)作为度量(Metric)来衡量到达目的网络的距离。
 - □ 路由器到直连网络的距离定义为1。
 - □ 路由器到非直连网络的距离定义为所经过的路由器数加1。
 - □ 允许一条路径最多只能包含15个路由器。"距离"等于16时相当于不可达。 因此,RIP只适用于小型互联网。

4.6.2 路由信息协议RIP的基本工作原理

■ RIP认为好的路由就是"距离短"的路由,也就是所通过路由器数量最少的路由。

RIP认为R1到R5的好路由是: R1 → R4 → R5

4.6.2 路由信息协议RIP的基本工作原理

- RIP认为好的路由就是"距离短"的路由,也就是所通过路由器数量最少的路由。
- **■** 当到达同一目的网络有多条"距离相等"的路由时,可以进行<mark>等价负载均衡</mark>。

4.6.2 路由信息协议RIP的基本工作原理

- RIP认为好的路由就是"距离短"的路由,也就是所通过路由器数量最少的路由。
- 当到达同一目的网络有多条"距离相等"的路由时,可以进行等价负载均衡。
- RIP包含以下三个要点:
 - □ 和谁交换信息 仅和相邻路由器交换信息
 - □ 交换什么信息 自己的路由表
 - □ 何时交换信息 周期性交换 (例如每30秒)

4.6.2 路由信息协议RIP的基本工作原理

【举例】RIP的基本工作过程

 路由器刚开始工作时,只知道自己到直 连网络的距离为1。

4.6.2 路由信息协议RIP的基本工作原理

【举例】RIP的基本工作过程

 路由器刚开始工作时,只知道自己到直 连网络的距离为1。

4.6.2 路由信息协议RIP的基本工作原理

【举例】RIP的基本工作过程

- 路由器刚开始工作时,只知道自己到直 连网络的距离为1。
- ② 每个路由器仅和相邻路由器周期性地交换并更新路由信息。

4.6.2 路由信息协议RIP的基本工作原理

【举例】RIP的基本工作过程

- 路由器刚开始工作时,只知道自己到直 连网络的距离为1。
- ② 每个路由器仅和相邻路由器周期性地交换并更新路由信息。
- ③ 若干次交换和更新后,每个路由器都知 道到达本AS内各网络的最短距离和下一 跳地址,称为收敛。

4.6.2 路由信息协议RIP的基本工作原理

【举例】RIP的基本工作过程

- 路由器刚开始工作时,只知道自己到直 连网络的距离为1。
- ② 每个路由器仅和相邻路由器周期性地交换并更新路由信息。
- ③ 若干次交换和更新后,每个路由器都知 道到达本AS内各网络的最短距离和下一 跳地址,称为收敛。

4.6.2 路由信息协议RIP的基本工作原理

【举例】RIP的路由条目的更新规则

c <mark>≵≹</mark> 封装有路由信息的 RIP更新报文

X

路由表	}
距离	下一跳
4	?
8	?
4	?
3	?
5	?
	距离 4 8 4 3

DÉ	路由港	Ę
目的网络	距离	下一跳
N1	7	Α
N2	2	C
N6	8	F
N8	4	E
N9	4	F
\		

4.6.2 路由信息协议RIP的基本工作原理

CÉ	路由港	Į
目的网络	距离	下一跳
N2	4	?
N3	8	?
N6	4	?
N8	3	?
N9	5	?

DÉ	路由港	ŧ
目的网络	距离	下一跳
N1	7	Α
N2	2	C
N6	8	F
N8	4	E
N9	4	F
		,

4.6.2 路由信息协议RIP的基本工作原理

4.6.2 路由信息协议RIP的基本工作原理

4.6.2 路由信息协议RIP的基本工作原理

【练习】请给出路由器B更新后的路由表

封装有路由信息的 RIP更新报文

Afr	路由港	Ę
目的网络	距离	下一跳
N1	7	?
N3	5	?
N5	4	?
N7	6	?
N9	5	?
/		,

BAS	路由港	Ę
目的网络	距离	下一跳
N2	7	E
N3	9	C
N5	5	F
N7	6	Α
N9	5	F
\		

4.6.2 路由信息协议RIP的基本工作原理

【练习】请给出路由器B更新后的路由表

Afr	路由港	Ę
目的网络	距离	下一跳
N1	7	?
N3	5	?
N5	4	?
N7	6	?
N9	5	?
/		, ,

到达目的网络, 不同下一跳,新路由优势,更新

到达目的网络, 不同下一跳, 等价负载均衡

到达目的网络, 相同下一跳,最新消息,更新

到达目的网络,不同下一跳,新路由劣势,不更新

4.6.2 路由信息协议RIP的基本工作原理

【2010年 题35】某自治系统内采用RIP协议,若该自治系统内的路由器R1收到其邻居路由器R2的距离矢量,距离矢量中包含信息<net1, 16>,则能得出的结论是 ▶

- A. R2可以经过R1到达net1, 跳数为17
- B. R2可以到达net1, 跳数为16
- C. R1可以经过R2到达net1, 跳数为17
- D. R1不能经过R2到达net1

【解析】

在RIP协议中, 距离16被定义为目的网络不可达。

因此,R2无法到达net1,R1也无法通过R2到达net1。

4.6.2 路由信息协议RIP的基本工作原理

■ RIP存在 "坏消息传播得慢" 的问题

4.6.2 路由信息协议RIP的基本工作原理

■ RIP存在 "坏消息传播得慢" 的问题

4.6.2 路由信息协议RIP的基本工作原理

■ RIP存在"坏消息传播得慢"的问题

4.6.2 路由信息协议RIP的基本工作原理

- RIP存在"坏消息传播得慢"的问题
- "坏消息传播得慢"又称为路由环路或距离无穷计数问题,这是距离向量算法的一个固有问题。可以采取多种措施减少出现该问题的概率或减小该问题带来的危害。
 - □ 限制最大路径距离为15 (16表示不可达)
 - □ 当路由表发生变化时就立即发送更新报文(即 "触发更新"),而不仅是周期性发送
 - □ 让路由器记录收到某特定路由信息的接口,而不让同一路由信息再通过此接口向反方向传送(即"水平分割")

4.6.2 路由信息协议RIP的基本工作原理

【2016年 题37】假设R1、R2、R3采用RIP协议交换路由信息,且均已收敛。若R3检测到网络201.1.2.0/25不可达,并向R2通告一次新的距离向量,则R2更新后,其到达该网络的距离是 B

A. 2 B. 3 C. 16 D. 17

R1

R2

R2

201.1.2.0/25

【解析】

根据题目所给"R3检测到网络201.1.2.0/25不可达"可知,R3与该网络是直连的。

4.6.2 路由信息协议RIP的基本工作原理

【2016年 题37】假设R1、R2、R3采用RIP协议交换路由信息,且均已收敛。若R3检测到网络201.1.2.0/25不可达,并向R2通告一次新的距离向量,则R2更新后,其到达该网络的距离是 B

A. 2 B. 3 C. 16 D. 17

【解析】

又根据题目所给"R1、R2、R3采用RIP协议交换路由信息,且均已收敛"可知, 先前它们各自的路由表中关于该目的网络的路由条目分别是:

R1	的路由表	
目的网络	下一跳	距离
201.1.2.0/25	R3	2
	:	

	R2	的路由表	
目	的网络	下一跳	距离
20	1.1.2.0/25	R3	2
(:	

R3	的路由表	
目的网络	下一跳	距离
201.1.2.0/25	直连	1
	:	

4.6.2 路由信息协议RIP的基本工作原理

【2016年 题37】假设R1、R2、R3采用RIP协议交换路由信息,且均已收敛。若R3检测到网络201.1.2.0/25不可达,并向R2通告一次新的距离向量,则R2更新后,其到达该网络的距离是 B

【解析】

再根据题目所给"R3检测到网络201.1.2.0/25不可达,并向R2通告一次新的距离向量"可知,

4.6.2 路由信息协议RIP的基本工作原理

【2016年 题37】假设R1、R2、R3采用RIP协议交换路由信息,且均已收敛。若R3检测到网络201.1.2.0/25不可达,并向R2通告一次新的距离向量,则R2更新后,其到达该网络的距离是 B

【解析】

再根据题目所给"R3检测到网络201.1.2.0/25不可达,并向R2通告一次新的距离向量"可知,最后根据题目所给"则R2更新后"可知,

4.6.2 路由信息协议RIP的基本工作原理

□ 限制最大路径距离为15 (16表示不可达)

□ 当路由表发生变化时就立即发送更新报文(即"触发更新"),而不仅是周期性发送

□ 让路由器记录收到某特定路由信息的接口,而不让同一路由信息再通过此接口向反方向传送(即"水平分割")

	路由信息协议RIP(Routing Information Protocol)是内部网关协议IGP中最先得到广泛使用的协议之一,其相关标准文档为RFC 1058。
	RIP要求自治系统AS内的每一个路由器都要维护从它自己到AS内其他每一个网络的距离记录。这是一组距离,称为"距离向量"。
	RIP使用跳数(Hop Count)作为度量(Metric)来衡量到达目的网络的距离。
	□ 路由器到直连网络的距离定义为1。 □ 路由器到非直连网络的距离定义为所经过的路由器数加1。
	□ 允许一条路径最多只能包含15个路由器。"距离"等于16时相当于不可达。因此,RIP只适用于小型互联网。
	RIP认为好的路由就是"距离短"的路由,也就是所通过路由器数量最少的路由。
	当到达同一目的网络有多条"距离相等"的路由时,可以进行 <mark>等价负载均衡。</mark>
	RIP包含以下三个要点:
	□ 和谁交換信息
	RIP的基本工作过程
	① 路由器刚开始工作时,只知道自己到直连网络的距离为1。
	② 每个路由器仅和相邻路由器周期性地交换并更新路由信
	③ 暑干次交换和更新后,每个路由器都知道到达本AS内各网络的最短距离和下一跳地址,称为收敛。
	RIP的路由条目的更新规则
_	□ 发现了新的网络,添加 □ 到达目的网络,相同下一跳,最新消息,更新
	□ 到达目的网络,不同下一跳,新路由优势,更新 □ 到达目的网络,不同下一跳,新路由劣势,不更新
	□ 到达目的网络,不同下一跳,等价负载均衡
_	
	RIP存在" <mark>坏消息传播得慢</mark> "的问题
	"坏消息传播得慢"又称为 路由环路或距离无穷计数 问题,这是 距离向量算法的一个固有问题。 可以采取各种措施 <mark>某小</mark> 出现该问题的概率或某小该问题带来的任宝