

A New Structural-Differential Property of 5-Round AES

Lorenzo Grassi, Christian Rechberger and Sondre Rønjom

May, 2017

Introduction (1/2)

Secret-Key Distinguisher: one of the weakest cryptographic attack.

Setting: Two Oracles:

- one simulates the block cipher for which the cryptography key has been chosen at random;
- the other simulates a truly random permutation.

Goal: distinguish the two oracles, i.e. decide which oracle is the cipher.

Introduction (2/2)

AES is probably the most widely studied and used block cipher.

So far, non-random properties which are independent of the secret key are known for up to 4 rounds of AES.

We propose a new structural property for up to 5 rounds of AES which is independent of the secret key.

Table of Contents

- 1 AES and its Subspace Trail
- 2 State of Art: Secret-Key Distinguisher on 4 Rounds of AES
- 3 Structural Property for up to 5 Rounds of AES
 - Details and Sketch of the Proof
- 4 Conclusion and Open Problems

Part I

AES Subspace Trail

AES

High-level description of AES:

- block cipher based on a design principle known as substitution-permutation network;
- block size of 128 bits = 16 bytes, organized in a 4 × 4 matrix;
- key size of 128/192/256 bits;
- 10/12/14 rounds:

$$R^{i}(x) = k^{i} \oplus MC \circ SR \circ S\text{-Box}(x).$$

Subspace Trail

Recently introduced at FSE 2017.

Definition

Let $(V_0, V_1, ..., V_r)$ denote a set of r+1 subspaces with $\dim(V_i) \leq \dim(V_{i+1})$. If for each i=0,...,r-1 and for each $a_i \in V_i^\perp$, there exists (unique) $a_{i+1} \in V_{i+1}^\perp$ such that

$$F(V_i \oplus a_i) \subseteq V_{i+1} \oplus a_{i+1}$$
,

then $(V_0, V_1, ..., V_r)$ is a subspace trail of length r for the function F.

It allows to describe key-recovery attacks and secret-key distinguisher in an *easier and more formal way* than "classical notation".

Subspace Trail - Example

Example of Subspace Trail: $\forall a \in V_1^{\perp}$ there exists $b \in V_2^{\perp}$ s.t.

$$F_k(V_1 \oplus a) \subseteq V_2 \oplus b$$
.

Subspaces for AES

We define the following subspaces:

- column space C_l ;
- diagonal space D_I;
- inverse-diagonal space \mathcal{ID}_I ;
- mixed space M_I.

The Column Space

Definition

The *column spaces* C_i for $i \in \{0, 1, 2, 3\}$ are defined as

$$C_i = \langle e_{0,i}, e_{1,i}, e_{2,i}, e_{3,i} \rangle.$$

E.g. C_0 corresponds to the symbolic matrix

$$C_0 = \left\{ \begin{bmatrix} x_1 & 0 & 0 & 0 \\ x_2 & 0 & 0 & 0 \\ x_3 & 0 & 0 & 0 \\ x_4 & 0 & 0 & 0 \end{bmatrix} \middle| \forall x_1, x_2, x_3, x_4 \in \mathbb{F}_{2^8} \right\} \equiv \begin{bmatrix} x_1 & 0 & 0 & 0 \\ x_2 & 0 & 0 & 0 \\ x_3 & 0 & 0 & 0 \\ x_4 & 0 & 0 & 0 \end{bmatrix}$$

The Diagonal Space

Definition

The *diagonal spaces* \mathcal{D}_i for $i \in \{0, 1, 2, 3\}$ are defined as

$$\mathcal{D}_i = SR^{-1}(\mathcal{C}_i) = \langle e_{0,i}, e_{1,(i+1)}, e_{2,(i+2)}, e_{3,(i+3)} \rangle.$$

E.g. \mathcal{D}_0 corresponds to symbolic matrix

$$\mathcal{D}_0 \equiv \begin{bmatrix} x_1 & 0 & 0 & 0 \\ 0 & x_2 & 0 & 0 \\ 0 & 0 & x_3 & 0 \\ 0 & 0 & 0 & x_4 \end{bmatrix}$$

for all $x_1, x_2, x_3, x_4 \in \mathbb{F}_{2^8}$.

The Inverse-Diagonal Space

Definition

The *inverse-diagonal spaces* \mathcal{ID}_i for $i \in \{0, 1, 2, 3\}$ are defined as

$$\mathcal{ID}_i = SR(\mathcal{C}_i) = \langle e_{0,i}, e_{1,(i-1)}, e_{2,(i-2)}, e_{3,(i-3)} \rangle.$$

E.g. \mathcal{ID}_0 corresponds to symbolic matrix

$$\mathcal{ID}_0 \equiv \begin{bmatrix} x_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 \\ 0 & 0 & x_3 & 0 \\ 0 & x_4 & 0 & 0 \end{bmatrix}$$

for all $x_1, x_2, x_3, x_4 \in \mathbb{F}_{2^8}$.

The Mixed Space

Definition

The *i-th mixed spaces* \mathcal{M}_i for $i \in \{0, 1, 2, 3\}$ are defined as

$$\mathcal{M}_i = MC(\mathcal{ID}_i).$$

E.g. \mathcal{M}_0 corresponds to symbolic matrix

$$\mathcal{M}_0 \equiv \begin{bmatrix} 0x02 \cdot x_1 & x_4 & x_3 & 0x03 \cdot x_2 \\ x_1 & x_4 & 0x03 \cdot x_3 & 0x02 \cdot x_2 \\ x_1 & 0x03 \cdot x_4 & 0x02 \cdot x_3 & x_2 \\ 0x03 \cdot x_1 & 0x02 \cdot x_4 & x_3 & x_2 \end{bmatrix}$$

for all $x_1, x_2, x_3, x_4 \in \mathbb{F}_{2^8}$.

Subspace Trail for AES (1/2)

Definition

Let $I \subseteq \{0, 1, 2, 3\}$. The subspaces C_I , D_I , $\mathcal{I}D_I$ and \mathcal{M}_I are defined as:

$$\mathcal{C}_I = \bigoplus_{i \in I} \mathcal{C}_i, \quad \mathcal{D}_I = \bigoplus_{i \in I} \mathcal{D}_i, \quad \mathcal{I}\mathcal{D}_I = \bigoplus_{i \in I} \mathcal{I}\mathcal{D}_i, \quad \mathcal{M}_I = \bigoplus_{i \in I} \mathcal{M}_i.$$

For each $a \in \mathcal{D}_{I}^{\perp}$, there exists unique $b \in \mathcal{C}_{I}^{\perp}$ s.t.

$$R(\mathcal{D}_I \oplus a) = \mathcal{C}_I \oplus b$$

For each $b \in \mathcal{C}_L^{\perp}$, there exists unique $c \in \mathcal{M}_L^{\perp}$ s.t.

$$R(C_I \oplus b) = \mathcal{M}_I \oplus c$$

Subspace Trail for AES (1/2)

Definition

Let $I \subseteq \{0, 1, 2, 3\}$. The subspaces C_I , D_I , $\mathcal{I}D_I$ and \mathcal{M}_I are defined as:

$$\mathcal{C}_I = \bigoplus_{i \in I} \mathcal{C}_i, \quad \mathcal{D}_I = \bigoplus_{i \in I} \mathcal{D}_i, \quad \mathcal{I}\mathcal{D}_I = \bigoplus_{i \in I} \mathcal{I}\mathcal{D}_i, \quad \mathcal{M}_I = \bigoplus_{i \in I} \mathcal{M}_i.$$

For each $a \in \mathcal{D}_L^{\perp}$, there exists unique $b \in \mathcal{C}_L^{\perp}$ s.t.

$$R(\mathcal{D}_I \oplus a) = \mathcal{C}_I \oplus b.$$

For each $b \in \mathcal{C}_L^{\perp}$, there exists unique $c \in \mathcal{M}_L^{\perp}$ s.t.

$$R(C_I \oplus b) = \mathcal{M}_I \oplus c.$$

Subspace Trail for AES (2/2)

Theorem

For each $a \in \mathcal{D}_{I}^{\perp}$, there exists unique $b \in \mathcal{M}_{I}^{\perp}$ s.t.

$$R^2(\mathcal{D}_I \oplus a) = \mathcal{M}_I \oplus b.$$

Lemma

For each x, y:

$$Prob(R^2(x) \oplus R^2(y) \in \mathcal{M}_I | x \oplus y \in \mathcal{D}_I) = 1$$

Subspace Trail for AES (2/2)

Theorem

For each $a \in \mathcal{D}_L^{\perp}$, there exists unique $b \in \mathcal{M}_L^{\perp}$ s.t.

$$R^2(\mathcal{D}_I \oplus a) = \mathcal{M}_I \oplus b.$$

Lemma

For each x, y:

$$Prob(R^2(x) \oplus R^2(y) \in \mathcal{M}_I | x \oplus y \in \mathcal{D}_I) = 1.$$

Example: the diagonal space \mathcal{D}_i

Plaintexts p^1 and p^2 satisfy $p^1 \oplus p^2 \in \mathcal{D}_i$ if and only if p^1 and p^2 are equal in all bytes expect for ones in the *i*-th diagonal.

E.g. $p^1 \oplus p^2 \in \mathcal{D}_0$ iff

$$p^1 \oplus p^2 \equiv \begin{bmatrix} ? & 0 & 0 & 0 \\ 0 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{bmatrix}$$

Example: the mixed space \mathcal{M}_I

Assume final MixColumns is omitted. Ciphertexts c^1 and c^2 satisfy $c^1 \oplus c^2 \in \mathcal{ID}_{\{0,1,2,3\}\setminus i}$ if and only if c^1 and c^2 are equal in the bytes in the *i*-th anti-diagonal.

E.g.
$$c^1\oplus c^2\in \mathcal{ID}_{\{0,1,2,3\}\setminus 3}\equiv \mathcal{ID}_{0,1,2}$$
 iff

$$c^1 \oplus c^2 \equiv egin{bmatrix} ? & ? & ? & 0 \ ? & ? & 0 & ? \ ? & 0 & ? & ? \ 0 & ? & ? & ? \end{bmatrix}$$

If the final MixColumns is not omitted, then $c^1 \oplus c^2 \in \mathcal{M}_{\{0,1,2,3\}\setminus i}$ iff $MC^{-1}(c^1 \oplus c^2) \equiv MC^{-1}(c^1) \oplus MC^{-1}(c^2) \in \mathcal{ID}_{\{0,1,2,3\}\setminus i}$.

Part II

Secret-Key Distinguisher on 4 Rounds of AES

Secret Key Distinguisher on to 4 Rounds

Let $I,J\subseteq\{0,1,2,3\}$. Consider $2^{32\cdot|I|}$ plaintexts in the same coset of \mathcal{D}_I - i.e. $p^0,p^1,...,p^{32\cdot|I|-1}\in\mathcal{D}_I\oplus a$ - an the corresponding ciphertexts $c^0,c^1,...,c^{32\cdot|I|-1}$ - i.e. $c^i=R^4(p^i)$.

Integral Property

$$\bigoplus_{i} p_{j,k}^{i} = \bigoplus_{i} c_{j,k}^{i} = 0 \qquad \forall j,k = 0,...,3;$$

Impossible Differential Property

$$c^{j} \oplus c^{k} \notin \mathcal{M}_{J} \qquad \forall |J| + |I| \leq 4.$$

Impossible Differential Distinguisher - 4 Rounds

$$Prob(R^4(p^1) \oplus R^4(p^2) \in \mathcal{M}_{0,1,2} | p^1 \oplus p^2 \in \mathcal{D}_0) = 0.$$

Balance Property - 4-round AES

Given 2^{32} plaintexts in the same coset of a diagonal space \mathcal{D}_0 :

Given the same set of plaintexts \mathcal{D}_0 , is there any property which is independent of the secret key after 5-round AES?

Balance Property - 4-round AES

Given 2^{32} plaintexts in the same coset of a diagonal space \mathcal{D}_0 :

Given the same set of plaintexts \mathcal{D}_0 , is there any property which is independent of the secret key after 5-round AES?

Part III

Structural Property for up to 5 Rounds of AES

Structural Property for 5 Rounds of AES

Given $\mathcal{D}_I \oplus a$ (i.e. an arbitrary coset of \mathcal{D}_I), consider all the $2^{32 \cdot |I|}$ plaintexts and the corresponding ciphertexts after 5 rounds, i.e. $(p^i, c^i \equiv R^5(p^i))$ for $i = 0, ..., 2^{32 \cdot |I|} - 1$ where $p^i \in \mathcal{D}_I \oplus a$.

Theorem

For a fixed $J \subseteq \{0, 1, 2, 3\}$, let n the number of different pairs of ciphertexts (c^i, c^j) for $i \neq j$ such that $c^i \oplus c^j \in \mathcal{M}_J$ (i.e. c^i and c^j belong to the same coset of \mathcal{M}_J)

$$n:=|\{(p^i,c^i),(p^j,c^j)\,|\,\forall p^i,p^j\in\mathcal{D}_I\oplus a,\,p^i< p^j\text{ and }c^i\oplus c^j\in\mathcal{M}_J\}|.$$

The number n is a multiple of 8, i.e. $\exists n' \in \mathbb{N} \text{ s.t. } n = 8 \cdot n'$.

Partial Order of the Plaintexts

Definition

Given two different texts t^1 and t^2 , we say that $t^1 \le t^2$ if $t^1 = t^2$ or if there exists $i, j \in \{0, 1, 2, 3\}$ such that

- 11 $t_{k,l}^1 = t_{k,l}^2$ for all $k, l \in \{0, 1, 2, 3\}$ with $k + 4 \cdot l < i + 4 \cdot j$
- 2 $t_{i,j}^1 < t_{i,j}^2$.

If $t^1 \le t^2$ and $t^1 \ne t^2$, then $t^1 < t^2$.

Distinguisher on 5-round of AES (1/2)

Goal: Distinguish 5-round of AES from random permutation.

Consider 2^{32} plaintexts in the same coset of \mathcal{D}_I for |I| = 1.

Count the number n of pairs of ciphertexts (after 5 rounds) that belong to the same coset of \mathcal{M}_J for fixed |J|=3.

If $n \mod 8 \neq 0$, then the permutation is a random one.

Distinguisher on 5-round of AES (1/2)

Goal: Distinguish 5-round of AES from random permutation.

Consider 2^{32} plaintexts in the same coset of \mathcal{D}_I for |I| = 1.

Count the number n of pairs of ciphertexts (after 5 rounds) that belong to the same coset of \mathcal{M}_J for fixed |J|=3.

If $n \mod 8 \neq 0$, then the permutation is a random one.

Distinguisher on 5-round of AES (1/2)

Goal: Distinguish 5-round of AES from random permutation.

Consider 2^{32} plaintexts in the same coset of \mathcal{D}_I for |I| = 1.

Count the number n of pairs of ciphertexts (after 5 rounds) that belong to the same coset of \mathcal{M}_J for fixed |J|=3.

If $n \mod 8 \neq 0$, then the permutation is a random one.

Distinguisher on 5-round of AES (2/2)

Using an initial coset of \mathcal{D}_I for |I| = 1, the probability of success is higher than 99.5%:

- data cost: 2³² chosen plaintexts/ciphertexts;
- computational cost: 2^{35.6} table look-ups on table of size 2³⁶ bytes.

Practically verified on a small-scale AES

https://github.com/Krypto-iaik/AES_5round_SKdistinguisher

It works also in the decryption direction (i.e. using chosen ciphertexts instead of plaintexts).

Distinguisher on 5-round of AES (2/2)

Using an initial coset of \mathcal{D}_I for |I| = 1, the probability of success is higher than 99.5%:

- data cost: 2³² chosen plaintexts/ciphertexts;
- computational cost: 2^{35.6} table look-ups on table of size 2³⁶ bytes.

Practically verified on a small-scale AES

https://github.com/Krypto-iaik/AES_5round_SKdistinguisher

It works also in the decryption direction (i.e. using chosen ciphertexts instead of plaintexts).

Part IV

Sketch of the Proof

Reduction to a Single Round (1/2)

Remember:

$$R^2(\mathcal{D}_I \oplus a) = \mathcal{M}_I \oplus b.$$

Given a coset of \mathcal{D}_I , count the number of collisions among the ciphertexts after 5 rounds in the same coset of \mathcal{M}_J .

Since

$$\mathcal{D}_I \oplus a \xrightarrow[\text{prob. 1}]{R^2(\cdot)} \mathcal{M}_I \oplus b \xrightarrow[]{R(\cdot)} \mathcal{D}_J \oplus a' \xrightarrow[\text{prob. 1}]{R^2(\cdot)} \mathcal{M}_J \oplus b'$$

we can focus only on the middle round

Reduction to a Single Round (1/2)

Remember:

$$R^2(\mathcal{D}_I \oplus a) = \mathcal{M}_I \oplus b.$$

Given a coset of \mathcal{D}_{I} , count the number of collisions among the ciphertexts after 5 rounds in the same coset of $\mathcal{M}_{.I}$.

Since

$$\mathcal{D}_I \oplus a \xrightarrow[\text{prob. 1}]{R^2(\cdot)} \mathcal{M}_I \oplus b \xrightarrow[]{R(\cdot)} \mathcal{D}_J \oplus a' \xrightarrow[\text{prob. 1}]{R^2(\cdot)} \mathcal{M}_J \oplus b'$$

we can focus only on the middle round

Reduction to a Single Round (1/2)

Remember:

$$R^2(\mathcal{D}_I \oplus a) = \mathcal{M}_I \oplus b.$$

Given a coset of \mathcal{D}_{I} , count the number of collisions among the ciphertexts after 5 rounds in the same coset of \mathcal{M}_{I} .

Since

$$\mathcal{D}_{I} \oplus a \xrightarrow[\text{prob. 1}]{R^{2}(\cdot)} \mathcal{M}_{I} \oplus b \xrightarrow[]{R(\cdot)} \mathcal{D}_{J} \oplus a' \xrightarrow[\text{prob. 1}]{R^{2}(\cdot)} \mathcal{M}_{J} \oplus b',$$

we can focus only on the middle round!

Reduction to a Single Round (2/2)

Given $\mathcal{M}_I \oplus a$ (i.e. an arbitrary coset of \mathcal{M}_I), consider all the $2^{32\cdot |I|}$ plaintexts and the corresponding ciphertexts after 1 round, i.e. $(p^i, c^i \equiv R(p^i))$ for $i = 0, ..., 2^{32\cdot |I|} - 1$ where $p^i \in \mathcal{M}_I \oplus a$.

Lemma

Let n the number of different pairs of ciphertexts (c^i, c^j) for $i \neq j$ such that $c^i \oplus c^j \in \mathcal{D}_J$ (i.e. c^i and c^j belong to the same coset of \mathcal{D}_J)

$$n:=|\{(p^i,c^i),(p^j,c^j)\,|\,\forall p^i,p^j\in\mathcal{M}_I\oplus a,\,p^i< p^j\text{ and }c^i\oplus c^j\in\mathcal{D}_J\}|.$$

The number n is a multiple of 8, i.e. $\exists n' \in \mathbb{N} \text{ s.t. } n = 8 \cdot n'$.

W.l.o.g. $I = \{0\}$.

Given $p^1, p^2 \in \mathcal{M}_0 \oplus a$, there exist $x^1, y^1, z^1, w^1 \in \mathbb{F}_{2^8}$ and $x^2, y^2, z^2, w^2 \in \mathbb{F}_{2^8}$ s.t.:

$$p^{i} = a \oplus \begin{bmatrix} 2 \cdot x^{i} & y^{i} & z^{i} & 3 \cdot w^{i} \\ x^{i} & y^{i} & 3 \cdot z^{i} & 2 \cdot w^{i} \\ x^{i} & 3 \cdot y^{i} & 2 \cdot z^{i} & w^{i} \\ 3 \cdot x^{i} & 2 \cdot y^{i} & z^{i} & w^{i} \end{bmatrix},$$

for i = 1, 2 and where $2 \equiv 0x02$ and $3 \equiv 0x03$.

For the following: p^1 " \equiv " $\langle x^1, y^1, z^1, w^1 \rangle$ and p^2 " \equiv " $\langle x^2, y^2, z^2, w^2 \rangle$.

Study the following cases:

- 3 variables are equal, e.g. $x^1 \neq x^2$ and $y^1 = y^2$, $z^1 = z^2$, $w^1 = w^2$;
- 2 variables are equal, e.g. $x^1 \neq x^2, y^1 \neq y^2$ and $z^1 = z^2, w^1 = w^2$;
- 1 variable is equal, e.g. $x^1 \neq x^2$, $y^1 \neq y^2$, $z^1 \neq z^2$ and $w^1 = w^2$;
- all variables are different, e.g. $x^1 \neq x^2$, $y^1 \neq y^2$, $z^1 \neq z^2$, $w^1 \neq w^2$.

If 3 variables are equal, then $R(p^1) \oplus R(p^2) = c^1 \oplus c^2 \notin \mathcal{D}_J$ with prob. 1.

Study the following cases:

- 3 variables are equal, e.g. $x^1 \neq x^2$ and $y^1 = y^2$, $z^1 = z^2$, $w^1 = w^2$:
- 2 variables are equal, e.g. $x^1 \neq x^2, y^1 \neq y^2$ and $z^1 = z^2, w^1 = w^2$;
- 1 variable is equal, e.g. $x^1 \neq x^2$, $y^1 \neq y^2$, $z^1 \neq z^2$ and $w^1 = w^2$;
- all variables are different, e.g. $x^1 \neq x^2$, $y^1 \neq y^2$, $z^1 \neq z^2$, $w^1 \neq w^2$.

If 3 variables are equal, then $R(p^1)\oplus R(p^2)=c^1\oplus c^2\notin \mathcal{D}_J$ with prob. 1.

W.l.o.g. consider $p^1 \equiv \langle x^1, y^1, z, w \rangle$ and $p^2 \equiv \langle x^2, y^2, z, w \rangle$. $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ if and only if

$$R(\hat{p}^1) \oplus R(\hat{p}^2) \in \mathcal{D}_J$$

where

$$\hat{p}^1 \equiv \langle x^1, y^2, z, w \rangle, \qquad \hat{p}^2 \equiv \langle x^2, y^1, z, w \rangle.$$

It is sufficient to prove that $R(p^1) \oplus R(p^2) = R(\hat{p}^1) \oplus R(\hat{p}^2)$.

$$(R(p^{1}) \oplus R(p^{2}))_{0,0} =$$
=2 · [S-Box(2 · $x^{1} \oplus a_{0,0}$) \oplus S-Box(2 · $x^{2} \oplus a_{0,0}$)] \oplus
 \oplus 3 · [S-Box($y^{1} \oplus a_{1,1}$) \oplus S-Box($y^{2} \oplus a_{1,1}$)] =
= $(R(\hat{p}^{1}) \oplus R(\hat{p}^{2}))_{0,0}$.

Given $p^1 \equiv \langle x^1, y^1, z, w \rangle$ and $p^2 \equiv \langle x^2, y^2, z, w \rangle$ s.t. $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ then

$$R(\hat{p}^1) \oplus R(\hat{p}^2) \in \mathcal{D}_J$$

where

$$\hat{p}^1 \equiv \langle x^1, y^1, z, w \rangle, \qquad \hat{p}^2 \equiv \langle x^2, y^2, z, w \rangle$$

or

$$\hat{p}^1 \equiv \langle x^1, y^2, z, w \rangle, \qquad \hat{p}^2 \equiv \langle x^2, y^1, z, w \rangle$$

for all $z, w \in \mathbb{F}_{2^8}$.

It is sufficient to prove that $R(p^1) \oplus R(p^2) = R(\hat{p}^1) \oplus R(\hat{p}^2)$ doesn't depend on z and w.

Is it possible that $p^1 \equiv \langle x^1, y^1, 0, 0 \rangle$ and $p^2 \equiv \langle x^2, y^2, 0, 0 \rangle$ such that $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ exist? Answer: Yes, if |J| = 3 since the branch number of the MixColumns matrix is 5.

Indeed, consider the first column of:

$$(SR \circ S\text{-Box}(p^1) \oplus SR \circ S\text{-Box}(p^2))_{\cdot,0} \equiv$$

$$\begin{bmatrix} S\text{-Box}(2 \cdot x^1 \oplus a_{0,0}) \oplus S\text{-Box}(2 \cdot x^2 \oplus a_{0,0}) \\ S\text{-Box}(y^1 \oplus a_{1,1}) \oplus S\text{-Box}(y^2 \oplus a_{1,1}) \\ 0 \\ 0 \end{bmatrix}$$

Since...

Is it possible that $p^1 \equiv \langle x^1, y^1, 0, 0 \rangle$ and $p^2 \equiv \langle x^2, y^2, 0, 0 \rangle$ such that $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ exist? Answer: Yes, if |J| = 3 since the branch number of the

Indeed, consider the first column of:

MixColumns matrix is 5.

$$(SR \circ S\text{-Box}(p^1) \oplus SR \circ S\text{-Box}(p^2))_{\cdot,0} \equiv \begin{bmatrix} S\text{-Box}(2 \cdot x^1 \oplus a_{0,0}) \oplus S\text{-Box}(2 \cdot x^2 \oplus a_{0,0}) \\ S\text{-Box}(y^1 \oplus a_{1,1}) \oplus S\text{-Box}(y^2 \oplus a_{1,1}) \\ 0 \\ 0 \end{bmatrix}$$

Since...

W.l.o.g. consider $p^1 \equiv \langle x^1, y^1, z^1, w \rangle$ and $p^2 \equiv \langle x^2, y^2, z^2, w \rangle$. $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ if and only if $R(\hat{p}^1) \oplus R(\hat{p}^2) \in \mathcal{D}_J$ where

$$\hat{p}^{1} \equiv \langle x^{1}, y^{1}, z^{1}, w \rangle, \qquad \hat{p}^{2} \equiv \langle x^{2}, y^{2}, z^{2}, w \rangle
\hat{p}^{1} \equiv \langle x^{2}, y^{1}, z^{1}, w \rangle, \qquad \hat{p}^{2} \equiv \langle x^{1}, y^{2}, z^{2}, w \rangle
\hat{p}^{1} \equiv \langle x^{1}, y^{2}, z^{1}, w \rangle, \qquad \hat{p}^{2} \equiv \langle x^{2}, y^{1}, z^{2}, w \rangle
\hat{p}^{1} \equiv \langle x^{1}, y^{1}, z^{2}, w \rangle, \qquad \hat{p}^{2} \equiv \langle x^{2}, y^{2}, z^{1}, w \rangle$$

for each $w \in \mathbb{F}_{2^8}$.

Note: $p^1 \equiv \langle x^1, y^1, z^1, 0 \rangle$ and $p^2 \equiv \langle x^2, y^2, z^2, 0 \rangle$ such that $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ can exist if and only if $|J| \geq 2$.

W.l.o.g. consider $p^1 \equiv \langle x^1, y^1, z^1, w^1 \rangle$ and $p^2 \equiv \langle x^2, y^2, z^2, w^2 \rangle$. $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ if and only if $R(\hat{p}^1) \oplus R(\hat{p}^2) \in \mathcal{D}_J$ where

$$\begin{array}{lll} \hat{p}^{1} \equiv \langle x^{2}, y^{1}, z^{1}, w^{1} \rangle, & \hat{p}^{2} \equiv \langle x^{1}, y^{2}, z^{2}, w^{2} \rangle; \\ \hat{p}^{1} \equiv \langle x^{1}, y^{2}, z^{1}, w^{1} \rangle, & \hat{p}^{2} \equiv \langle x^{2}, y^{1}, z^{2}, w^{2} \rangle; \\ \hat{p}^{1} \equiv \langle x^{1}, y^{1}, z^{2}, w^{1} \rangle, & \hat{p}^{2} \equiv \langle x^{2}, y^{2}, z^{1}, w^{2} \rangle; \\ \hat{p}^{1} \equiv \langle x^{1}, y^{1}, z^{1}, w^{2} \rangle, & \hat{p}^{2} \equiv \langle x^{2}, y^{2}, z^{2}, w^{1} \rangle; \\ \hat{p}^{1} \equiv \langle x^{1}, y^{1}, z^{2}, w^{2} \rangle, & \hat{p}^{2} \equiv \langle x^{2}, y^{2}, z^{1}, w^{1} \rangle; \\ \hat{p}^{1} \equiv \langle x^{1}, y^{2}, z^{1}, w^{2} \rangle, & \hat{p}^{2} \equiv \langle x^{2}, y^{1}, z^{2}, w^{1} \rangle; \\ \hat{p}^{1} \equiv \langle x^{1}, y^{2}, z^{2}, w^{1} \rangle, & \hat{p}^{2} \equiv \langle x^{2}, y^{1}, z^{1}, w^{2} \rangle. \end{array}$$

Note: $p^1 \equiv \langle x^1, y^1, z^1, w^1 \rangle$ and $p^2 \equiv \langle x^2, y^2, z^2, w^2 \rangle$ such that $R(p^1) \oplus R(p^2) \in \mathcal{D}_J$ can exist if and only if $|J| \geq 1$.

$$n:=|\{(p^i,c^i),(p^j,c^j)\,|\,\forall p^i,p^j\in\mathcal{M}_I\oplus a,\,p^i< p^j\text{ and }c^i\oplus c^j\in\mathcal{D}_J\}|.$$

- If |J| = 1, then $n = 8 \cdot n'$;
- If |J| = 2, then $n = 8 \cdot n' + 4 \cdot 2^8 \cdot n''$;
- If |J| = 3, then $n = 8 \cdot n' + 4 \cdot 2^8 \cdot n'' + 2 \cdot 2^{16} \cdot n'''$.

The number of collisions n is a multiple of 8 independently of I, J, the secret key, the details of the S-Box and the MixColumns operation (expect for the branch number equal to 5).

Part V

Conclusion and Open Problems

Conclusion and Open Problems

 First 5-round Secret-Key Distinguisher for AES independent of the secret key.

■ Open Problems:

- Set up a 6-round Secret-Key Distinguisher for AES independent of the secret key;
- Set up a key recovery attack that exploits this 5-round secret key distinguisher (or a modified version of it);
- Apply "similar" distinguisher to other constructions.

Thanks for your attention!

Questions?

Comments?