Solutions to some exercises from Walter Rudin's $Functional\ Analysis$

gitcordier

July 24, 2020

Contents

1	Topological Vector Spaces	1
	1.1 Exercise 7. Metrizability & number theory	2

CONTENTS

Chapter 1

Topological Vector Spaces

1.1 Exercise 7. Metrizability & number theory

Let be X the vector space of all complex functions on the unit interval [0,1], topologized by the family of seminorms

$$p_x(f)=|f(x)|\quad (0\leq x\leq 1).$$

This topology is called the topology of pointwise convergence. Justify this terminology. Show that there is a sequence $\{f_n\}$ in X such that (a) $\{f_n\}$ converges to 0 as $n \to \infty$, but (b) if $\{\gamma_n\}$ is any sequence of scalars such that $\gamma_n \to \infty$ then $\{\gamma_n f_n\}$ does not converge to 0. (Use the fact that the collection of all complex sequences converging to 0 has the same cardinality as [0,1].) This shows that metrizability cannot be omited in (b) of Theorem 1.28.

Proof. Our justification consists in proving that τ -convergence and pointwise convergence are the same one. To do so, remark first that the family of the seminorms p_x is separating. By [1.37], the collection \mathscr{B} of all finite intersections of the sets

$$V^{((x,k)} \triangleq \{p_x < 2^{-k}\} \quad (x \in [0,1], k \in \mathbf{N})$$
 (1.1)

is then a local base for a topology τ on X. Given $\{f_n : n = 1, 2, 3, \dots\}$, we set

$$off(U) \triangleq \sum_{n=1}^{\infty} [f_n \notin U] \quad (U \in \tau),$$
 (1.2)

with the convention $off(U) = \infty$ whether the sum has no finite support. So,

$$\sum_{i=1}^{m} \mathsf{off}(U^{(i)}) = \sum_{n=1}^{\infty} \sum_{i=1}^{m} [f_n \notin U^{(i)}] \ge \mathsf{off}(U^{(1)} \cap \dots \cap U^{(m)})$$
 (1.3)

We first assume that $\{f_n\}$ τ -converges to some f in X, i.e.

$$off(f+V) < \infty \quad (V \in \mathcal{B}).$$
 (1.4)

The special cases $V = V^{(x,k)}$ mean the pointwise convergence of $\{f_n\}$. Conversely, assume that $\{f_n\}$ does not τ -converges to any g in X, *i.e.*

$$\forall g \in X, \exists V^{(g)} \in \mathscr{B}: \mathsf{off}(g + V^{(g)}) = \infty. \tag{1.5}$$

Given g, $V^{(g)}$ is then an intersection $V^{(x^{(1)},k^{(1)})} \cap \cdots \cap V^{(x^{(m)},k^{(m)})}$. Thus

$$\sum_{i=1}^{m} \text{off}(g + V^{(x^{(i)}, k^{(i)})}) \stackrel{(1.3)}{\geq} \text{off}(g + V^{(g)}) \stackrel{(1.5)}{=} \infty.$$
 (1.6)

One of the sum $\operatorname{off}(g+V^{(x^{(i)},k^{(i)})})$ must then be ∞ . This implies that convergence of f_n to g fails at point x_i . g being arbitrary, we so conclude that f_n does not converge pointwise. We have just proved that τ -convergence is a rewording of pointwise convergence. We now aim to prove the second part. From now on, k, n and p run on \mathbb{N}_+ . Let $\operatorname{dyadic}(x)$ be the usual dyadic expansion of a real number x, so that $\operatorname{dyadic}(x)$ is an aperiodic binary sequence $\inf x$ is irrational. Define

$$f_n(x) \triangleq \begin{cases} 2^{-\sum_{k=1}^n \mathsf{dyadic}(x)_{-k}} & (x \in [0,1] \setminus \mathbf{Q}) \\ 0 & (x \in [0,1] \cap \mathbf{Q}) \end{cases}$$
 (1.7)

so that $f_n(x) \xrightarrow[n \to \infty]{} 0$ and take scalars γ_n such that $\xrightarrow[n \to \infty]{} \infty$, *i.e.* at fixed p, γ_n is greater than 2^p for almost all n. Next, choose $n^{(p)}$ among those almost all n that are large enough to satisfy

$$n^{(p-1)} - n^{(p-2)} < n^{(p)} - n^{(p-1)}$$
 (1.8)

(start with $n^{(-1)} = n^{(0)} = 0$) and so obtain

$$2^p < \gamma_{n^{(p)}}: \ 0 < n^{(p)} - n^{(p-1)} \underset{p \to \infty}{\longrightarrow} \infty. \tag{1.9} \label{eq:1.9}$$

The indicator χ of $\{n^{(1)}, n^{(2)}, \dots\}$ is then aperiodic, *i.e.*

$$\mathbf{x}^{(\gamma)} \triangleq \sum_{k=1}^{\infty} \chi_k 2^{-k} \tag{1.10}$$

is irrational. Consequently,

$$dyadic(x^{(\gamma)})_{-k} = \chi_k. \tag{1.11}$$

We now easily see that

$$\chi_1 + \dots + \chi_{n(p)} = p, \tag{1.12}$$

which, combined with (1.7), yields

$$f_{n(p)}(x^{(\gamma)}) = 2^{-p}.$$
 (1.13)

Finally,

$$\gamma_{n(p)} f_{n(p)}(x^{(\gamma)}) > 1.$$
 (1.14)

We have so established that the subsequence $\{\gamma_{n^{(p)}}f_{n^{(p)}}\}$ does not tend pointwise to 0, hence neither does the whole sequence $\{\gamma_n f_n\}$. In other words, (b) holds, which is in violent contrast with [1.28]: X is then not metrizable. So ends the proof.