

Practical Training

Design and Development of a Capacitance-to-Voltage Conversion System for Measuring Moisture in Raw Cashew Nuts

By-Rahul <u>G</u>

Table Of Contents

Part 01 Introduction and Objectives

Part 02 Motivation

Part 03 Methodology and Design

Part 04 Testing and Calibration

Part 05 Conclusion

Part 05 Future Scope

1.1 Introduction and Objectives

- The aim of the project is to design and development of a Capacitance-to-Voltage Conversion System (CVCS) for measuring moisture in raw cashew nuts
- Project provide a cost-effective, high-precision, and nondestructive solution for moisture measurement, which is crucial for the quality control and preservation of cashew nuts.
- The project uses advanced capacitance sensing techniques and a combination of innovative filters to achieve accurate moisture content quantification

1.2 Motivation

- Quality Assurance: By accurately measuring and controlling moisture levels, we can ensure that consumers consistently receive top-quality cashew nuts.
- Safety and Shelf Life: High moisture content in cashew nuts not only affects taste but also poses health risks due to microbial growth.
- Sustainable Agriculture: Accurate moisture measurement can assist in optimizing the drying process of cashew nuts, reducing energy consumption, and contributing to sustainable agriculture practices.

<u>B</u>

• • • • • • • •

1.3 Methodology and Design

- The CVCS consists of a custom-designed capacitance sensor, an all-pass filter, a zero-crossing detector (ZCD), an XOR gate, a low-pass filter, an offset removal circuit, an amplifier, and a voltmeter.
- The capacitance sensor measures the changes in capacitance between two parallel plates due to varying moisture levels in cashew nuts.
- The all-pass filter captures the phase changes due to capacitance variations and passes them to the ZCD and XOR gate, which convert them into voltage signals proportional to moisture content.
- The low-pass filter removes the noise from the voltage signals and the offset removal circuit corrects the baseline voltage for open circuit conditions.
- The amplifier boosts the voltage signals and the voltmeter displays the moisture content in terms of voltage.

Fig 14: Overall Circuit Diagram of the system:- Consists of all-pass filters, ZCD, and filter(4th order).

(h)

1.4 Testing and Calibration

- The CVCS was tested and calibrated with different values of capacitance and moisture content using a waveform generator, an oscilloscope, and a multimeter.
- The results showed that the CVCS was sensitive and responsive to variations in moisture content and had a high resolution and accuracy.
- The CVCS was also validated with a representative sample of raw cashew nuts under practical conditions.

Fig 16: Circuit Implementation, Power Supply, and Wave Generator

(P)

1.5 Conclusion

- - The CVCS represents a significant advancement in the field of moisture measurement for agricultural products, especially raw cashew nuts.
- The CVCS offers significant benefits to the cashew nut industry by reducing product wastage, enhancing product quality, and increasing profitability and sustainability.
- - The CVCS also holds potential for broader applications in other agricultural and food processing domains where accurate moisture measurement is pivotal.
- - The project opens several avenues for future research and development, such as advanced calibration, real-time processing, wireless connectivity, data analytics, cross-industry applications, and commercialization.

Fig 24: parallel plate capacitor box used to measure the moisture of the cashew

1.6 Future Scope

- Advanced Calibration: Conduct further calibration with a larger and more diverse sample of raw cashew nuts to refine the system's accuracy and reliability.
- Real-Time Processing: Explore the possibility of real-time data analysis and processing to provide instant feedback to cashew nut processing units.
- Wireless Connectivity: Integrate wireless communication capabilities to enable remote monitoring and control of moisture measurement systems in processing facilities.
- Data Analytics: Develop advanced data analytics and machine learning algorithms to analyze the collected moisture data and provide predictive insights for quality control and decision-making.

Reference

- [1] Daniele, M., Sardini, E., & Taroni, A., Measurement of Small Capacitance Variations: IEEETransactions on Instrumentation and Measurement, 40 (4): 426-428 (1991).
- [2] Li, X., & Meijer, C. M., A Novel Smart Resistive-Capacitive Position Sensor: IEEE Transactions on Instrumentation and Measurement, 44 (3): 768-7 (1995).
- [3] Arshad A., Kadir. K.A., Khan S., Alam AHM Z., & Tasnim R., A Pressure Sensor Based Inductive Transducer Designed for Biomedical Applications, IEEE International Conference on Smart Instrumentation, Measurement and Applications, 2015.
- [4] Goes, F.M.L. van der, & Meijer, G.C.M., A Novel Low-Cost Capacitive Sensor Interface: IEEE Transactions on Instrumentation and Measurement: 45 (2): 536-540 (1996)