Lec 9/15

Thursday, September 15, 2016 9:09 AM

Covers: Cl 1-6 + carmen lecture notes

Popcorn function:

$$pop(x) = \begin{cases} \frac{1}{4} & \text{if } x \in \mathbb{Q}, \ x = \frac{p}{1} \text{ in lowest terms} \end{cases} (p, q \text{ coprime integers, } q > 0)$$

$$0 & \text{if } x \notin \mathbb{Q}$$

Show that pop(x) is continuous at x & a . w.

discontinuous at x & a

homal agument: if $a \in \mathbb{R}$, $a = \frac{p}{q}$, then there are irratronal nums orbitrarily close to a, //so $J_{pea} = [0, \frac{1}{4}]$

50 for any $\delta \exists x \not\in Q$ so $|x-a| \cdot \xi$ but $|pep(x)-pop(a)| = |o-\frac{1}{\xi}| = \frac{1}{q} > \xi = \frac{1}{q}$.

OtOh, if a \$Q and |x-a| < S very small then either $x \notin Q$ (|x-ror(a)|=0 < E) or $x \in Q$, $x = \frac{\rho}{q}$, $|pop(x) - pop(Q)| = \frac{1}{q} < E$ from name $\frac{1}{q} < E$ for any E.

Lemma: Suppose $\alpha = \frac{p}{q}$, P,q coprime integers, q > 0 and $\alpha = \frac{m}{\eta}$ m,n coprime, or $\alpha < 1$.

Then $|x - \alpha| > \frac{1}{q^2}$.

 $\frac{P (roof)}{|x-a| = \left|\frac{m}{n} - \frac{p}{q}\right|} = \frac{|mq - pn|}{nq}$

|mq-pn| a positive integer since $x\neq a$, so $|\leq |mq-pn|$ otoh, $nq < q^2$ because 0 < n < q $\frac{|mq-pn|}{nq} > \frac{1}{q^2}$

Lemma 2: Suppose a & Q and $x = \frac{m}{n}$ min coprime, orns q where q a fixed positive integer.

Then there is some positive real number $\lambda_q > 0$ such that $|x-\alpha| > \frac{\lambda_q}{q!}$ only depends phere is a closest integer.

Proof: let $\lambda_q =$ the distance between q! and the closest integer. $q! x = q! \frac{m}{n}$ is an integer since n is a factor of q! $|q! x - q! a| \neq \lambda_q \Rightarrow |x - a| \neq \frac{\lambda_q}{q!}$

Theorem ! If $a = \frac{\rho}{q}$ and $0 < \delta \le \frac{1}{qz}$ then $J_{pop,a,\delta} = [0,\frac{1}{q}]$. Consequently, the jump interval $J_{pop,a} = [0,\frac{1}{2}]$. Hence pop is discontinuous at a.

Proof: $J_{\text{rep,a,8}} = \text{the Smallest closed interval containing } \{\text{pep(x)}: x \in [a-s,a+s]\}.$ first: [a-s,a+s] contains a and it contains some irrational x_o , thence $J_{\text{rep,a,8}} = \text{must contain } \text{pop}(x_o) = 0 \text{ and } \text{pop}(a) = \frac{1}{4} \implies [0,\frac{1}{4}] \subseteq J_{\text{pop,a,8}}$

Conversely, $\int_{\text{por,}\alpha,5}$ does not contain $\text{pop}(\frac{rn}{n})$ with orneq $\sin \alpha$, \sin

Theorem 2: If $a \notin Q$ and $0 < \delta < \frac{\lambda_k}{q!}$ Then $J_{pop,n,\delta} \subseteq [0, \frac{1}{q}]$ 50 $J_{pop,n} = \{03\}$ and pop is continuous at a.

. 7>0

so popis continuous at a.