Catalogue

Niels Feld*

12 octobre 2024

Question 1 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

On peut définir une courbe elliptique E sur K comme l'ensemble

$$\{(x,y) \in \overline{K} \mid y^3 = x^2 + Ax + B\}.$$

30% 70%	0% $10%$ $20%$ $30%$	40% 50% 60% 70%	80% 90% 100%
---------	----------------------	--------------------------	--------------------

Commentaire après réponse: On préfère l'équation

$$y^2 = x^3 + Ax + b.$$

Question 2 Vrai ou faux ? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et L/K une extension de K.

et L/K une extension de K. Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soient $A, B \in K$ teis que $4A^{\circ} + 2tB^{\circ} \neq 0$. Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Alors, l'ensemble de points L-rationnels est défini par

$$E(L) = \{(x,y) \in L \times L \, | \, y^2 = x^3 + Ax + B\} \cup \{\infty\}.$$

	0%	40%	80%
	10%	50%	90%
	20%	60%	100%
	30%	70%	

Commentaire après réponse:

Question 3 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soient $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\overline{K}) \setminus \{\infty\} \text{ et } P_3 = (x_3, y_3) \text{ tels que } P_1 + P_2 = P_3 \text{ et } y_1 \neq y_2.$ Alors,

$$x_3 = m^2 - x_1 - x_2, y_3 = m(x_1 - x_3) - y_1$$

où $m = \frac{x_2 - x_1}{y_2 - x_1}$.

0%	$\boxed{40\%}$	80%
10%		90%
\square 20%	\square 60%	100%
30%	\square 70%	

Commentaire après réponse: Voir le cours [Washington, p. 28].

^{*}Merci à Damien Mégy

Vrai ou faux? Donner votre Question 4 degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soient $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\overline{K}) \setminus$ $\{\infty\}$ et $P_3 = (x_3, y_3)$ tels que $P_1 + P_2 = P_3$ et $P_1 = P_2 \text{ et } y_1 = 0.$ Alors,

 $P_1 + P_2 = \infty.$

0%	40%	80%
10%	50%	90%
20%	60%	100%
30%	70%	

Commentaire après réponse: Voir le cours [Washington, p. 28].

Question 5 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$. Soit une courbe elliptique E sur K définie par l'équation

$$u^2 = x^3 + Ax + B.$$

Soit $P = (x, y) \in E(\overline{K}) \setminus \{\infty\}.$ Alors,

-P = (x, -y).

Commentaire après réponse: Voir le cours [Washington, p. 29].

Question 6 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soit E la courbe elliptique sur \mathbb{Q} définie par l'équation

$$y^2 = \frac{x(x+1)(2x+1)}{6}$$

Alors, on a

$$(0,0) + (1,1) = (\frac{1}{2}, \frac{-1}{2})$$

dans E.

Commentaire après réponse: On a $(0,0) + (1,1) = (\frac{1}{2}, \frac{-1}{2})$.

Question 7 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soit E la courbe elliptique sur \mathbb{Q} définie par l'équation

$$y^2 = x^3 - 25x.$$

Alors, on a

$$(0,0) + (-5,0) = (5,0)$$

dans E.

Commentaire après réponse:

Vrai ou faux? Donner votre Question 8 degré de confiance dans ce qui suit :

Soit E une courbe elliptique sur \mathbb{Q} .

Alors, l'ensemble $E(\mathbb{Q})$ est un groupe fini.

Commentaire après réponse: Cf le théorème de Mordell-Weil.

Question 9 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soit E une courbe elliptique sur \mathbb{Q} . Alors, l'ensemble $E(\mathbb{Q})$ est un corps finiment engendré.	Question 12 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K , A_1 , A_2 , B_1 , $B_2 \in K$ et, pour $i \in \{1,2\}$, E_i la courbe elliptique sur K , de j -invariant notée j_i , définie par l'équation
$ \begin{array}{c cccc} & 0\% & & & & & & & & & 80\% \\ \hline & 10\% & & & & 50\% & & & 90\% \\ \hline & 20\% & & & & 60\% & & & 100\% \\ \hline & 30\% & & & 70\% & & & \end{array} $	$y_i^2=x_i^3+A_ix_i+B_i.$ Alors, $j_1=j_2$ si, et seulement si, il existe $\mu\in\overline{K}$ tel que
Commentaire après réponse: Cf le théorème de Mordell-Weil. Il n'y a a priori pas de structure de corps.	$A_2 = \mu^4 A_1$ $B_2 = \mu^6 B_1.$
Question 10 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Le polynôme	$\begin{array}{c cccc} & 0\% & & & & & & & & & & & & & & & & & $
$x^3 + 3x^2z + 2yz^2$ est homogène.	Commentaire après réponse: Cf [Washington, p.60].
$\begin{array}{c ccccc} & 0\% & & & & & & & & & & & & & & & & & $	Question 13 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K et α un endomorphisme non-trivial de E . On écrit
Commentaire après réponse: Voir le cours [Washington, p. 32-33]	$\alpha(x,y) = (r_1(x), r_2(x)y)$
Question 11 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps, soit $G(u,v) \in K[u,v]$ un	où r_1,r_2 sont des fractions rationnelles. On écrit $r_1(x)=p(x)/q(x)$ où p,q sont des polynômes. Alors,
polynôme homogène non-nul et $(u_0, v_0) \in K^2 \setminus$	$\deg(\alpha) = \max(\deg(p), \deg(q)).$
$\{0,0\}$. Alors, il existe un entier $k \geq 0$ et un polynôme $H(u,v) \in K[u,v]$ tels que $H(u_0,v_0) \neq 0$ et $G(u,v) = (v_0u - u_0v)H(u,v).$	$ \begin{array}{c cccc} \hline & 0\% & & & & & & & & & & & & & & & & & $
$\begin{array}{c cccc} & 0\% & & & & & & & & 80\% \\ \hline & 10\% & & & & 50\% & & & 90\% \\ \hline & 20\% & & & & 60\% & & & 100\% \end{array}$	Commentaire après réponse: On aimerait que p, q soient des polynômes premiers entre eux. Cf [Washington, p.65].

miers entre eux. Cf [Washington, p.65].

Commentaire après réponse: Voir le cours [Washington, p. 36]

70%

30%

$$\alpha(x,y) = (r_1(x), r_2(x)y)$$

où r_1, r_2 sont des fractions rationnelles. On écrit $r_1(x) = p(x)/q(x)$ où p,q sont des polynômes premiers entre eux.

Alors, α est séparable si $p' \neq 0$.

	0%	40%	80%
	10%	50%	90%
	20%	60%	100%
	30%	70%	

Commentaire après réponse: Cf [Washington, p.65].

Question 15 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $n \in \mathbb{N}^*$, p un nombre premier, $q = p^n$, \mathbb{F}_q un corps à q éléments, $A, B \in \mathbb{F}_q$, E la courbe elliptique sur \mathbb{F}_q d'équation

$$y^2 = x^3 + Ax + B.$$

Pour tout point (x, y) de E, on note

$$\Phi(x,y) = (x^p, y^p).$$

Alors, Φ est un endomorphisme de E.

0%	40%	80%
10%	50%	90%
20%	60%	100%
30%	70%	

Commentaire après réponse:

A priori, on n'a pas $A^p = A$ mais seulement $A^q = A$.

Question 16 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K, α un endomorphisme non-trivial inséparable de E.

Alors,

$$deg(\alpha) > Card ker(\alpha)$$

Commentaire après réponse: Voir [Washington, p.67]. Question 17 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, $A,B \in K$, E la courbe elliptique sur K définie par l'équation

$$y^2 = x^3 + Ax + B$$

et α un endomorphisme non-trivial séparable de E. On considère r_1, r_2 des fractions rationnelles et p, q des polynômes premiers entre eux tels que, pour tout point (x, y) de E, on a $\alpha(x, y) = (r_1(x), r_2(x)y)$ et $r_1 = p/q$. On note S l'ensemble des $x \in \overline{K}$ tel que

$$(pq' - p'q)(x)q(x) = 0.$$

Alors, il existe $(a,b) \in E(\overline{K})$ tel que toutes les conditions suivantes sont satisfaites :

- 1. $a \neq 0$,
- 2. $b \neq 0$,
- $3. (a,b) \neq \infty,$
- 4. $deg(p(x) aq(x)) = deg(\alpha)$,
- 5. $a \notin r_1(S)$,
- 6. $(a,b) \in \alpha(E(\overline{K}))$.

	0%	40%	80%
	10%	50%	90%
	20%	60%	100%
	30%	70%	

Commentaire après réponse: Voir [Washington, p.68].

Question 18 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, E une courbe elliptique sur K, α un endomorphisme non-trivial de E.

Alors,

$$\alpha: E(\overline{K}) \to E(\overline{K})$$

est surjectif.

0%	40%	80%
10%	50%	90%
\square 20%	60%	100%
\square 30%	70%	

Commentaire après réponse: Voir [Washington, p.69]. Vrai ou faux? Donner Question 22 Vrai ou faux? Donner

Question 19

simple, donc $p'(x) \neq 0$.

votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K , et $n \in \mathbb{N}^*$. On note $[n]$ l'endomorphisme de E défini par la mul- tiplication par n . Alors, $[n]$ est séparable.	votre degré de confiance dans ce qui suit : Soient $\mathbb{P}^2_{\mathbb{R}}$ le plan projectif réel et $\mathbb{S}^2 = \{(x,y,z) \in \mathbb{R}^3 x^2 + y^2 + z^2 = 1\}$. On note $\psi: \mathbb{S}^2 \to \mathbb{P}^2_{\mathbb{R}}$ définie, pour tout $(x,y,z) \in \mathbb{S}^2$ par $\psi(x,y,z) = [x:y:z]$.			
	Alors, ψ est une bijection. 0% $40%$ $90%$ $90%$ $30%$ $70%$			
Voir [Washington, p.72]. Question 20 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :	contiont doug álámonte			
Soient $n \in \mathbb{N}$, $p \notin \{2,3\}$ un nombre premier, $q = p^n$, \mathbb{F}_q un corps à q élément, $(r,s) \in \mathbb{Z}^2 \setminus \{0,0\}$, ϕ_q l'endomorphisme de Frobenius de E . Alors, $r \cdot \phi_q + s$ est inséparable si, et seulement si, p ne divise pas s .	Question 23 Vrai ou faux? Donner votre degré de confiance dans ce qui suit Soient K un corps de caractéristique $p \notin \{2,3\}$ \overline{K} sa clôture algébrique, $A,B \in K$, E la courbe elliptique sur K définie par l'équation			
	$y^2=x^3+Ax+B$ et α un endomorphisme non-trivial de E . I existe des polynômes $p,q,s,t\in K[x]$ tels que p et q sont premiers entre eux, r,s sont premiers entre eux, et $\alpha(x,y)=(p(x)/q(x),ys(x)/t(x))$			
Question 21 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K , A , $B \in K$, E la courbe elliptique sur K définie par l'équation	pour tout point (x, y) de E tels que $q(x) \neq 0$ et $t(x) \neq 0$. Soit $x_0 \in \overline{K}$ tel que $q(x_0) \neq 0$. Alors, $t(x_0) \neq 0$.			
$y^2 = x^3 + Ax + B$ et $(x,y) \neq \infty$ un point de E . Si $y=0$, alors, $3x^2 + A \neq 0$.	$\begin{array}{c cccc} & 0\% & & & & 40\% & & 80\% \\ & 10\% & & 50\% & & 90\% \\ & 20\% & & 60\% & & 100\% \\ & 30\% & & 70\% & & \end{array}$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Commentaire après réponse: Voir [Washington, p.89].			
Commentaire après réponse: Par hypothèse, le polynôme $p(X) = X^3 + AX + B$ possède x comme racine et x est une racine				

Question 24 Vrai ou faux? Donner Question 26 Vrai ou faux? Donner

votre degré de confiance dans ce qui suit :	votre degré de confiance dans ce qui suit :
Soient K un corps, p et q deux polynômes à co-	Soient K un corps de caractéristique $p \notin \{2,3\}$,
efficients dans K sans racines communes et tel	\overline{K} une clôture algébrique de K , et E une courbe
que $q \neq 0$.	elliptique sur K .
Alors, la dérivée de la fraction rationnelle $\frac{p}{q}$ est	Alors, le groupe $E[3]$ est isomorphe au groupe
identiquement nulle si, et seulement si les poly-	$\mathbb{Z}/(3)\oplus\mathbb{Z}/(3)$.
nômes p et q sont constants.	
$ \begin{array}{c cccc} \hline & 0\% & & & & & & & & & & & & & & & & & $	
Commentaire après réponse:	Voir [Washington, p. 92].
	von [washington, p. 92].
En fait, on a que la dérivée de la fraction ration-	Question 27 Vrai ou faux? Donner
nelle \underline{p}	votre degré de confiance dans ce qui suit :
\overline{q}	Soient K un corps de caractéristique $p \notin \{2,3\}$,
est identiquement nulle si, et seulement si p'	E une courbe elliptique sur K et $n \in \mathbb{N}^*$.
q'=0.	Si p divise n , alors le groupe $E[n]$ est isomorphe
En effet, on suppose $\frac{p}{q}$ possède une dérivée nulle.	au groupe $\mathbb{Z}/(n) \oplus \mathbb{Z}/(n)$.
Alors, $p'q = q'p$ donc q divise q' (car q est pre-	and groups $\mathcal{L}_{f}(n) \oplus \mathcal{L}_{f}(n)$.
mier à p) donc $q' = 0$; de même pour p . La	0% $40%$ $80%$
réciproque est triviale.	10% 50% 90%
Il se peut que $p' = 0$ sans pour autant que p soit	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
constant (e.g. $p = X^p$ où $p > 0$ est la caractéris-	30% 70%
tique de K).	
ilque de 11).	Commentaire après réponse:
Question 25 Vrai ou faux? Donner	Voir [Washington, p. 93].
votre degré de confiance dans ce qui suit :	ron [masimigeon, proof.
Soient K un corps de caractéristique $p \notin \{2,3\}$,	Question 28 Vrai ou faux? Donner
\overline{K} une clôture algébrique de K , et E une courbe	votre degré de confiance dans ce qui suit :
elliptique sur K .	Soient K un corps de caractéristique $p \notin \{2,3\}$,
Alors, le groupe $E[2]$ est isomorphe au groupe	E une courbe elliptique sur K et $n \in \mathbb{N}^*$.
$\mathbb{Z}/(2)$.	Si $p > 0$ et p divise n , alors on écrit $n = p^r n'$ où
=/ (-)·	$p \not n'$ et $r \in \mathbb{N}^*$ de sorte que le groupe $E[n]$ est
$\boxed{0\%}$ $\boxed{40\%}$ $\boxed{80\%}$	isomorphe au groupe $\mathbb{Z}/(n) \oplus \mathbb{Z}/(n)$ ou bien au
10% 50% 90%	groupe $\mathbb{Z}/(n) \oplus \mathbb{Z}/(n')$.
20% 60% 100%	
30% 70%	$\bigcirc 0\%$ $\bigcirc 40\%$ $\bigcirc 80\%$
	10% 50% 90%
Commentaire après réponse:	20% 60% 100%
Voir [Washington, p. 91].	\square 30% \square 70%
. 0 /1 1	<u>—</u>
	Commentaire après réponse:
	Voir [Washington, p. 93].

Question 29 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p>3$, E une courbe elliptique sur K . On dit que E est $ordinaire$ si $E[p] \simeq \{0\}$.	Question 31 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de $K,\ n \in \mathbb{N}^*$, et $\mu_n = \{x \in \overline{K} x^n = 1\}$. Alors, $\operatorname{Card}(\mu_n) = n$.
$ \begin{array}{c cccc} E[p] = \{0\}. \\ \hline 0\% & 40\% & 80\% \\ 10\% & 50\% & 90\% \\ 20\% & 60\% & 100\% \\ \hline 30\% & 70\% & 100\% \end{array} $	$\begin{array}{c cccc} & 0\% & & & & 40\% & & 80\% \\ \hline & 10\% & & & 50\% & & 90\% \\ \hline & 20\% & & 60\% & & 100\% \\ \hline & 30\% & & 70\% & & \end{array}$
Commentaire après réponse: Voir [Washington, p. 93].	Commentaire après réponse: On veut que $n \in \mathbb{N}^*$ soit premier avec p (sinon, on peut avoir des racines multiples).
Question 30 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient x,y,A,B des indéterminées. On définit les polynômes de division $\psi_m \in \mathbb{Z}[x,y,A,B]$ par $\psi_0 = 0$ $\psi_1 = 1$	Question 32 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K , E une courbe elliptique sur K , $n \in \mathbb{N}^*$ premier à p , e_n l'accouplement de Weil associé à E et $\{T_1, T_2\}$ une base du \mathbb{Z} -module $E[n]$. Si $S \in E[n]$ vérifie $e_n(S, T_1) = e_n(S, T_2) = 1$, alors $S = \infty$.
$\psi_2 = 2y$ $\psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2$ $\psi_4 =$ $4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\psi_{2m+1} = \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3 \text{pour } m \ge 2$ $\psi_{2m} = (2y)^{-1} \left(\psi_m\right) \left(\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2\right)\right)$	Commentaire après réponse: Voir [Washington, p.101].
pour $m \geq 3$. Si $n > 5$ est pair, alors ψ_n est un polynôme dans $2y\mathbb{Z}[x,y^2,A,B]$. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Question 33 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de $K, n \in \mathbb{N}^*$ premier à $p, \ \mu_n = \{x \in \overline{K} x^n = 1\}$, et E une courbe elliptique sur K Alors $E[n] \subset E(K)$ et $\mu_n \not\subset K$.
30% 70% Commentaire après réponse: Voir [Washington, p. 95].	$ \begin{array}{c cccc} \hline & 0\% & & \hline & 40\% & & \hline & 80\% \\ \hline & 10\% & & \hline & 50\% & & \hline & 90\% \\ \hline & 20\% & & \hline & 60\% & & \hline & 100\% \\ \hline \hline & 30\% & & \hline & 70\% \\ \hline \end{array} $
	Commentaire après réponse: Voir [Washington, p. 102].

Question 34 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, $n \in \mathbb{N}^*$ premier à p, E une courbe elliptique sur K, α un endomorphisme de E, α_n l'endomorphisme $\mathbb{Z}/(n)$ -linéaire de E[n] induit par α . Alors,

Commentaire après réponse: Voir [Washington, p. 103].

Question 35 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, $n \in \mathbb{N}^*$ premier à p, E une courbe elliptique sur K, e_n l'accouplement de Weil associé à E, P un point d'ordre n et $Q \in E[n]$.

Il existe $k \in \mathbb{N}, Q = kP$ si, et seulement si, $e_n(P,Q) = 1$.

0%	40%	80%
10%	50%	90%
20%	60%	100%
30%	70%	

Commentaire après réponse:

Supposons $e_n(P,Q)=1$. On sait que $E[n]=\mathbb{Z}/(n)\oplus\mathbb{Z}/(n)$ donc Q=kP+k'P' où $k,k'\in\{0,\ldots,n-1\}$ et P' est tel que (P,P') forme une base de E[n]. On a alors $e_n(P,P')^k=e_n(P,k'P')=e_n(P,Q-kP)=1$. Or $e_n(P,P')$ est une racine n-ème primitive donc n divise k' donc k'=0.

La réciproque est claire.

Question 36 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soit E une courbe elliptique sur un corps fini \mathbb{F}_q . Alors, il existe $n \in \mathbb{N}^*$ tel que

$$E(\mathbb{F}_q) \simeq \mathbb{Z}/(n)$$

ou

$$E(\mathbb{F}_q) \simeq \mathbb{Z}/(n) \oplus \mathbb{Z}/(n)$$
.

Commentaire après réponse: Voir [Washington, p.110]. Question 37 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E, et $a=q+1-\operatorname{Card}(\mathbb{F}_q)$.

Alors,

Commentaire après réponse: Voir [Washington, p.114].

Question 38 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E, α, β les deux racines du polynôme caractéristique de ϕ_q et $n \in \mathbb{N}^*$. Alors,

$$E(\mathbb{F}_{q^n}) = q^n + 1 + (\alpha^n + \beta^n).$$

$$\begin{array}{c|cccc} & 0\% & & & & 80\% \\ & 10\% & & & 50\% & & 90\% \\ & 20\% & & & 60\% & & 100\% \\ & & 30\% & & & 70\% & & \end{array}$$

Commentaire après réponse: Voir [Washington, p.116].

Question 39 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , $a=q+1-\operatorname{Card}(E(\mathbb{F}_q))$, ϕ_q le Frobenius de E, α,β les deux racines du polynôme caractéristique de ϕ_q et $n\in\mathbb{N}$. On note $s_n=\alpha^n+\beta^n$. Alors, si n>0,

Commentaire après réponse: Voir [Washington, p.116].

80%

90%

100%

Commentaire après réponse: Voir [Washington, p.143].

40%

50%

60%

0%

10%

20%

30%

Commentaire après réponse: Voir [Washington, p.168].

50%

60%

70%

10%

20%

30%

80%

90%

100%

Question 46 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier, $n \in \mathbb{N}^*$, $q = p^n$, E une courbe elliptique sur \mathbb{F}_q , et $m \in \mathbb{N}^*$. Soit l un nombre premier tel que l divise $\operatorname{Card}(E(\mathbb{F}_q)), E[l] \not\subset E(\mathbb{F}_q)$, et l ne divise pas $q(q-1)$. Si $E[l] \subset E(\mathbb{F}_{q^m})$, alors	Question 49 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier tel que $p \equiv 1 \pmod{3}, \ b \in \mathbb{F}_p^{\times}, \ E$ la courbe elliptique sur \mathbb{F}_p définie par l'équation $y^2 = x^3 + b.$ Alors, le groupe $E(\mathbb{F}_p)$ est cyclique.
$q^m \equiv 1 \pmod{l}.$	
Voir [Washington, p.171]. Question 47 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier, $n \in \mathbb{N}^*$, $q = p^n$, E une courbe elliptique sur \mathbb{F}_q , et $m \in \mathbb{N}^*$. Alors,	Question 50 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$. E une courbe elliptique sur K , α et β deux endomorphismes non-nuls de E . Si α est inséparable et β est inséparable, alors $\alpha + \beta$ est inséparable.
$Card(E(\mathbb{F}_q)[m]) = Card(E(\mathbb{F}_q)/mE(\mathbb{F}_q)).$	
Commentaire après réponse: D'après le premier théorème d'isomorphisme et le théorème de Lagrange, si f est un endomorphisme d'un groupe fini G , alors l'indice de $f(G)$ dans G est égal au cardinal du noyau de G . En particulier, c'est vrai si $G = E(\mathbb{F}_q)$ et f est la multiplication par m .	Question 51 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$. E une courbe elliptique sur K , α et β deux endomorphismes non-nuls de E . Si α est inséparable et β est inséparable, alors $\alpha + \beta$ est séparable.
Question 48 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier, $n \in \mathbb{N}^*$, $q = p^n$, E une courbe elliptique sur \mathbb{F}_q . Si	$\begin{array}{c cccc} & 0\% & & & & & & & & & & 80\% \\ \hline & 10\% & & & & & 50\% & & & 90\% \\ \hline & 20\% & & & & 60\% & & & 100\% \\ \hline & 30\% & & & 70\% & & & \end{array}$
$\operatorname{Card} E(\mathbb{F}_q) = q,$ alors $\operatorname{Card} E(\mathbb{F}_{q^2}) \neq q^2,$	Commentaire après réponse: Si α est inséparable et β est inséparable, alors $\alpha + \beta$ est inséparable.
$\begin{array}{c ccccc} & 0\% & & & & & & & & & & & & & & & & & $	

Commentaire après réponse: Cf [Washington, p. 180].

Question 52

On admet qu'il existe un unique couple $(a,b) \in \mathbb{N}^2$ tel que a>1 et

$$b^2 = \sum_{i=1}^{a} i^2.$$

Calculer b.

$\bigcirc 0 \bigcirc 1$	$\square_2 \square_3$	$\Box 4 \Box 5$	\Box 6 \Box	7 8 9	
				$7 \boxed{8} \boxed{9}$	
				7	

Commentaire après réponse: On vérifie que a=24, y=70 conviennent. Voir aussi [Washington, pages 15-17].

Question 53

On considère l'équation

$$v^2 = u^4 + 1$$

et on pose

Calculer λ .

$$x = \frac{2(v+1)}{u^2}$$

$$y = \frac{4(v+1)}{u^3}.$$

Il existe $\lambda \in \mathbb{N}$ tel que

$$y^2 = x^3 - \lambda x.$$

Question 55

Soient A=123 et B=456. Soit E la courbe elliptique sur $\mathbb Q$ définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P)=2P$. Alors α est un homomorphisme et

$$\alpha(x,y) = (R_1(x,y), R_2(x,y)),$$

 \mathfrak{M} R_1, R_2 sont des fractions rationnelles. Il existe $\lambda \in \mathbb{N}$ tel que

$$R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(\lambda x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - y.$$

Calculer λ .

Commentaire après réponse:

On a

 et

$$R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x$$

 $=x^{3}-\lambda x.$

 $R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - y.$

Commentaire après réponse:

Voir aussi [Washington, p. 52].

Question 54

On note j le j-invariant de la courbe elliptique définie sur $\mathbb Q$ par

$$y^2 = x^3 + \frac{3 \times 728}{1000}x + \frac{2 \times 728}{1000}.$$

Calculer j.

Commentaire après réponse:

Voir aussi [Washington, p. 61].

Question 56

Soient A = 123 et B = 789. Soit E la courbe elliptique sur \mathbb{Q} définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P) = 2P$. Alors α est un homomorphisme et on écrit

$$\alpha(x,y) = (r_1(x), r_2(x)y),$$

où r_1, r_2 sont des fractions rationnelles. Il existe $\lambda \in \mathbb{N}$ tel que

$$r_1(x) = \frac{x^4 - \lambda \cdot x^2 - 8 \cdot Bx + A^2}{4(x^3 + Ax + B)}.$$

Calculer λ .

Commentaire après réponse:

$$r_1(x) = \frac{x^4 - 2Ax^2 - 8Bx + A^2}{4(x^3 + Ax + B)}.$$

Voir aussi [Washington, p. 66].

Question 57

Si $\lambda \in \mathbb{Q} \setminus \{0, 1\}$, on note $j(\lambda)$ le j-invariant de la courbe elliptique d'équation

$$y^2 = x(x-1)(x-\lambda).$$

On note a le nombre de $\lambda \in \mathbb{Q} \setminus \{0,1\}$ tel que $j(\lambda) = 1728.$

Calculer a.

Commentaire après réponse:

Cf [Washington, p. 87].

Question 58

Soient A = 123, B = -321, E la courbe elliptique sur O définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soient $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ trois points deux à deux distincts de $E[2] \setminus \{\infty\}$.

Calculer $x_1x_2x_3$.

Commentaire après réponse:

Cf [Washington, p. 91].

Question 59

Soient A = 21, B = -12, E la courbe elliptique

Pur Q définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soit $(x, y) \in E[3] \setminus \{\infty\}$. Calculer $3x^4 + 6Ax^2 + 12Bx$.

$\boxed{ 0 \ \boxed{1} \ \boxed{2} \ \boxed{3} \ \boxed{4} \ \boxed{5} \ \boxed{6} \ \boxed{7} \ \boxed{8} \ \boxed{9}$
$\boxed{0} \boxed{1} \boxed{2} \boxed{3} \boxed{4} \boxed{5} \boxed{6} \boxed{7} \boxed{8} \boxed{9}$
$\boxed{0} \boxed{1} \boxed{2} \boxed{3} \boxed{4} \boxed{5} \boxed{6} \boxed{7} \boxed{8} \boxed{9}$

Commentaire après réponse:

On a $3x^4 + 6Ax^2 + 12Bx = A^2$. Cf [Washington, p. 92].

Question 60

Soit E la courbe elliptique sur \mathbb{F}_7 définie par l'équation

$$y^2 = x^3 + 2.$$

Commentaire après réponse:

Voir [Washington, p. 109].

Question 61

Soit E une courbe elliptique sur \mathbb{F}_{103} . On suppose qu'il existe un point P de E d'ordre 13 et un point Q de E d'ordre 2.

Commentaire après réponse:

Voir [Washington, p.120].

Question 62

Soient $B \in \mathbb{F}_{11}^{\times}$ et E la courbe elliptique sur \mathbb{F}_{11} définie par l'équation

$$y^2 = x^3 + B.$$

Calculer $Card(E(\mathbb{F}_{11}))$.

Question 65

Il existe $\lambda \in \{0, \dots, 810\}$ tel que, pour tout $x \in \mathbb{F}_{811}$,

$$\left(\frac{x}{\mathbb{F}_{811}}\right) = x^{\lambda}$$

(où le symbole de Legendre est utilisé dans le membre de gauche).

	Galculer λ .
Commentaire après répenses	

Commentaire après réponse:

Voir [Washington, p.144].

Commentaire après réponse:

On a pour tout q impair,

$$\left(\frac{x}{\mathbb{F}_q}\right) = x^{(q-1)/2}.$$

Question 63

Soit E la courbe elliptique sur \mathbb{F}_{107} définie par l'équation

$$y^2 = x^3 + 41.$$

Calculer $Card(E(\mathbb{F}_{107}))$.

Question 66

Soient q = 625, E une courbe elliptique sur le

$$0 \blacksquare 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$
 corps fini \mathbb{F}_q telle que

Commentaire après réponse: Voir [Washington, p.144].

$$\operatorname{Card}(E(\mathbb{F}_q)) = q + 1 - 2\sqrt{q}.$$

On note ϕ_q le Frobenius de E. Il existe un entier A tel que ϕ_q soit égal à l'endomorphisme de multiplication par A.

Calculer A.

Question 64

Soit E la courbe elliptique sur \mathbb{F}_5 définie par l'équation

$$y^2 = x^3 + x + 1$$
.

Soit $P = (2, 1) \in E$.

Calculer l'ordre de P.

Commentaire après réponse:

 $A = p^m$ où m = 2, p = 5.

0 1 2 3 4 5 6 7 8 Voir [Washington, p.154].

Commentaire après réponse: Voir [Washington, p.152].

Correction

Question 67

Soient $p \notin \{2,3\}$ un nombre premier, $A,B \in \mathbb{F}_p$, E la courbe elliptique sur le corps fini \mathbb{F}_p définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soit $d \in \mathbb{F}_p$ ne pouvant pas s'écrire sous la forme $d = s^2$ avec $s \in \mathbb{F}_p$. On considère E' la courbe elliptique d'équation

$$y^2 = x^3 + Ad^2x + Bd^3.$$

On suppose p = 307 et $Card(E(\mathbb{F}_p)) = 300$. Calculer $Card(E'(\mathbb{F}_p))$.

Commentaire après réponse:

Si
$$a = p + 1 - \#E(\mathbb{F}_p)$$
, alors $\#E'(\mathbb{F}_p) = p + 1 + a = 2 \times 307 + 2 - 300 = 316$.

change of variable $y'=d^2y$ and x'=dx shows that E' is equivalent to the equation $dy^2=x^3+Ax+B$. Since, we see that x^3+Ax+B is a square if and only if $x^3+Ad^2x+Bd^3$ is NOT a square, so the formula with the Legendre symbols yields $\#E(\mathbb{F}_q)+\#E'(\mathbb{F}_q)=2q+2$.

Question 68

Soit E une courbe elliptique sur \mathbb{F}_{841} . On note α et β les racines du polynôme caractéristique du Frobenius ϕ_{841} .

Calculer $|\alpha|$ (la valeur absolue de α).

Commentaire après réponse: On a $841 = 29^2$.

$$|\alpha| = |\beta|$$

car ce sont les racines complexes d'un polynôme de degré de 2 donc elles sont conjuguées. Comme produit des racines est q, on a $|\alpha| = \sqrt{q} = 29$.