

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информа	тика и системы управл	ения				
КАФЕДРА Системы обра	аботки информации и у	<u>/правления</u>				
Отчёт по рубежному контролю №2						
По дисциплине: «Технологии машинного обучения»						
«Технологии	машинного обучения»					
Выполнил:						
Студент группы ИУ5Ц-83Б		<u>Донченко М.А.</u>				
	(Подпись, дата)	(Фамилия И.О.)				
Проверил:						
		Гапанюк Ю. Е				
	(Подпись, дата)	(Фамилия И.О.)				

Задание:

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Для студентов групп ИУ5Ц-81Б, ИУ5Ц-82Б, ИУ5Ц-83Б номер варианта = 25 +номер в списке группы.

Набор данных: hhttps://www.kaggle.com/brsdincer/star-type-classification

B [7]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 240 entries, 0 to 239 Data columns (total 5 columns): # Column Non-Null Count Dtype 0 Temperature 240 non-null int64 240 non-null float64 2 R 240 non-null float64 3 A_M 240 non-null float64 4 Type 240 non-nul dtypes: float64(3), int64(2) memory usage: 9.5 KB 240 non-null int64 B [8]: data.head() 0.1503 B [8]: data.head() Out[8]: R A_M Type Temperature 0 3068 0.002400 0.1700 16.12 3042 0.000500 0.1542 16.60 2600 0.000300 0.1020 18.70 0 2800 0.000200 0.1600 16.65 4 1939 0.000138 0.1030 20.06 0 fig, ax = plt.suplots(figsize=(15,7)) sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.2f') Out[9]: <AxesSubplot:> - 1.00 1.00 Temperature - 0.75 - 0.50 _ -- 0.25 œ -0.06 1.00 0.66 - 0.00 - -0.25 - -0.50 -0.75 0.68 0.66 -0.96 1.00 I Temperature R ΑM Type print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head()) Входные данные: Type 3068 0.1700 16.12 3042 0.1542 16.60 Θ 0 2600 0.1020 18.70 0 2800 0.1600 16.65 0 4 1939 0.1030 20.06 Выходные данные: 0 0 2 0 Name: L, dtype: int64

Входные параметры обучающей выборки:

	Temperature	R	A_M	Туре
5	2840	0.110	16.980	0
22	7220	0.011	14.230	2
199	3463	0.675	14.776	1
97	7720	1.340	2.440	3
12	3134	0.196	13.210	1

Входные параметры тестовой выборки:

	Temperature	R	A_M	Type
109	33421	67.000	-5.79	4
71	3607	0.380	10.12	1
37	6380	0.980	2.93	3
74	3550	0.291	10.89	1
108	24345	57.000	-6.24	4

Выходные параметры обучающей выборки:

```
5 0
22 0
199 0
97 7
12 0
```

Name: L, dtype: int64

Выходные параметры тестовой выборки:

```
109 352000
71 0
37 1
74 0
108 142000
```

Name: L, dtype: int64

```
B [12]: from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz from sklearn.tree import export_graphviz from sklearn import tree import re
```

```
B [13]:
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
from IPython.core.display import HTML
from sklearn.tree.export import export_text
tree_rules = export_text(clf, feature_names=list(X.columns))
HTML('' + tree_rules + '')
```

```
Out[13]: |--- A_M <= 4.57
           |--- R <= 1.23
            | |--- class: 1
            |--- R > 1.23
            | |--- Temperature <= 3830.00
                | |--- Temperature <= 3766.00
                       |--- Temperature <= 3544.00
                           |--- A_M <= -6.71
                              --- A_M <= -11.55
                               | |--- class: 263000
                              |--- A_M > -11.55
                               | |--- Type <= 4.50
                                   | |--- class: 195000
                                   |--- Type > 4.50
                                   | |--- R <= 1286.50
                                        |--- class: 174000
```

```
B [14]: from sklearn.ensemble import RandomForestRegressor
                                  from \ sklearn.metrics \ import \ mean\_absolute\_error, \ mean\_squared\_error, \ median\_absolute\_error, \ r2\_score
  B [15]: forest_1 = RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)
forest_1.fit(X, Y)
Out[15]: RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)
   B [16]: Y_predict = forest_1.predict(X_test)
                                 Y_predict = forest_1.predict(X_test)
print('Средняя абсолютная ошибка:',
print('Средняя квадратичная ошибка:',
print('Меdian absolute error:',
print('Коэффициент детерминации:',
print('Kоэффициент детерминации:',
print('Kоэффициент детерминации:',
print('Kоэффициент детерминации:',
print('Kоэффициент детерминации:',
print('Kоэфф
                                  Средняя абсолютная ошибка: 29120.574999999997
                                   Средняя квадратичная ошибка: 5203187720.595
                                   Median absolute error: 0.0
                                   Коэффициент детерминации: 0.9230465292619281
           B [17]: plt.scatter(X_test.R, Y_test, marker = 'o', label = 'Тестовая выборка') plt.scatter(X_test.R, Y_predict, marker = '.', label = 'Предсказанные данные') plt.legend(loc = 'lower right')
                                          plt.xlabel('R')
plt.ylabel('L')
                                           plt.show()
                                                      800000
                                                                                 •
                                                     700000
                                                      600000
                                                     500000 -
                                               → 400000 -
                                                      300000 -
                                                      200000 -

    Тестовая выборка
    Предсказанные дан

                                                                                                                                                                                    800
```