Assignment #1

Due Friday, 27 January 2023, at the start of class

Please read sections 1.1–1.4 and 2.1–2.6 from the textbook.¹ The Problems on this assignment are designed to encourage additional review of certain important topics. In fact, please find three representative textbooks:

- Find a calculus book.
- Find an introductory textbook on **ordinary differential equations** (ODEs).
- Find an introductory textbook on linear algebra.

You will need these references throughout the semester. In particular, for this assignment, please review these two topics:

Calculus book: Taylor's theorem with the remainder formula.²

ODEs book: The solution of linear homogeneous constant-coefficient ODEs.

Problem P1. Calculate $257^{1/8}$ to within 10^{-5} of the exact value *without* any computing machinery except a pencil or pen. Prove that your answer has this accuracy. (You should use a computer to check your by-hand value! Hint: $f(x) = x^{1/4}$.)

Problem P2. Assume f' is continuous. Derive the remainder formula

(1)
$$\int_0^a f(x) \, dx = af(0) + \frac{1}{2}a^2 f'(\nu)$$

for some (unknown) ν between zero and a. (Hint: Start by showing $f(x)=f(0)+f'(\xi)x$ where $\xi=\xi(x)$ is some number between 0 and x.) Use two sentences to explain the meaning of (1) as an approximation to the integral. That is, answer the question "What properties of f(x) or a would make the left-endpoint rule $\int_0^a f(x) \, dx \approx a f(0)$ inaccurate?"

Problem P3. Get started in the programming language of your choice.³ Now work at the command line to compute a finite sum approximation to

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^3 + 1}.$$

Compute at least three partial (finite) sums, with increasing numbers of terms N. Turn your command-line work into a function mysum (N), defined in a file mysum.m,

¹R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM Press 2007

²Taylor's theorem may be best explained by an undergraduate **numerical analysis** textbook.

³MATLAB/OCTAVE or PYTHON or JULIA.

and show that it works. Turn in both the command line session and the code. (*Hint: These can be very brief.*) Do you think you are getting close to the infinite sum, and if so, why?

Problem P4. Solve, by hand,

(2)
$$y'' + y' - 6y = 0$$
, $y(2) = 0$, $y'(2) = -1$,

for the solution y(t). Then find y(4). (This is a prediction of the outcome at t=4, given initial data at t=2 and a precise "law" about how y(t) evolves in time, namely the differential equation itself.) Give a reasonable by-hand sketch on t,y axes which shows the initial values, the solution, and the value y(4).

Problem P5. Using Euler's method for approximately solving ODEs, write your own program to solve initial value problem (2) to find y(4). A first step is to convert the second-order ODE into a system of two first-order ODEs. Use a few different step sizes, decreasing as needed, so that you get apparent three-digit accuracy. (*Hint: You can use a black-box ODE solver to* check *your work, but this is not required.*)

Problem P6. Solve, by hand, the ODE boundary value problem

(3)
$$y'' + 2y' - 3y = 0, \quad y(0) = \alpha, \quad y(\tau) = \beta,$$

for the solution y(t). Note that α, β, τ are the data of the problem, so the solution will have these parameters in it.