

Title

Group 4

Shiyu Lyu & Zonglin Wu & Shiqi Huang

School of Mathematics & Statistics

March 2022

Binary response variable

- IMDB Rating of the Film (rating out of 10)
- A new binary variable named over7
- Indicates whether over 7 or not

Numerical explanatory variable

- Year of release
- Length of Film (in minutes)
- Budget of the Film (in \$1,000,000s)
- Number of positive votes (received by viewers)

Categorical explanatory variable

- Genre of the Film (7 kinds)
- 1. Action

- 5. Drama
- 2. Animation
- 6. Romance
- 3. Comedy
- 7. Short
- 4. Documentary

Which properties of a film influence whether a film receives an IMBD rating greater than 7 or not.

Fit logistic regression models with different combinations of the explanatory variables to see which variables are the most significant predictors.

PART 02

Exploratory Data Analysis

Table 1: Summary statistics on number of films which are rating larger than 7

Variable	n	Mean	SD	Min	Q1	Median	Q3	Max	IQR
year	641	1974.91	26.41	1896.0	1951.0	1984.0	1999.0	2005	15.0
length	641	56.12	39.76	1.0	12.0	71.5	91.0	220	19.5
budget	641	13.08	2.84	3.7	11.1	13.0	15.1	21	2.1
votes	641	438.65	4459.97	5.0	10.0	23.0	66.0	103854	43.0

Table 2: Summary statistics on number of films which are rating smaller than 7

Variable	n	Mean	SD	Min	Q1	Median	Q3	Max	IQR
year	1296	1976.85	21.81	1899.0	1960.0	1981.0	1997.00	2005.0	16.00
$_{ m length}$	1296	96.02	25.43	1.0	85.0	94.0	105.00	316.0	11.00
budget	1296	11.51	2.82	3.2	9.5	11.5	13.50	21.2	2.00
votes	1296	665.56	3581.20	5.0	14.0	37.0	158.25	89722.0	121.25

1.Numerical variables

2.Categorical variables

Proportion of Films that are Rated Over/Under 7 by Genre

PART 03

Statistical Modelling and Results

Case 1: One numerical explanatory variable

$$4 \qquad \ln\left(\frac{p}{1-p}\right) = \alpha + \beta \cdot \log(\text{votes})$$

- p is the probability that the film is ranked over 7
- α is the intercept value
- β is the regression coefficient
- year, length, budget and log(votes) are numerical explanatory variables, respectively

Confident Intervals

$$\boxed{4} \quad \ln\left(\frac{p}{1-p}\right) = \alpha + \beta \cdot \log(\text{votes})$$

95% CI	Model 1	Model 2	Model 3	Model 4
Intercept (α)	(-1.66 , 14.51)	(2.25, 3.00)	(-3.46 , -2.53)	(-0.18, 0.31)
regression coefficient (β)	(-0.01, 0.00)	(-0.05, -0.04)	(0.15, 0.22)	(-0.27, -0.14)

$$\boxed{4} \quad \ln\left(\frac{p}{1-p}\right) = \alpha + \beta \cdot \log(\text{votes})$$

	Model 1	Model 2	Model 3	Model 4
AIC	2332.500	1764.540	2224.033	2288.244
BIC	2343.528	1775.569	2235.062	2299.272

Result

Model 2 is the best

$$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta \cdot \text{length}$$

Case2: One categorical explanatory variable

$$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta_{genre}$$

- p is the probability that the film is ranked over 7
- α is the intercept value
- β_{genre} is the regression value of the categorical variable (Animation as the baseline)

~~~~

Base research

3

Base reality

3

4

C log-log and Probit Models

Full model with every explanatory variables

Best AIC Model

Case3: Full Model1- with every explanatory variables

$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta_{genre} + \beta_2 \cdot \log(\text{votes}) + \beta_3 \cdot \text{length} + \beta_4 \cdot \text{budget} + \beta_5 \cdot \text{year}$

where

- p is the probability that the film is ranked over 7
- votes is the number of positve votes the film received by viewers
- genre is the genre of the film
- length is the length of the film in minutes
- budget is the budget of the film in \$100000
- α is the intercept value
- \bullet β genre is the regression value for the i genre

Full Model– Log–Odds (Excellent films)

Case3: Full Model2- Best AIC Model

$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta_{genre} + \beta_2 \cdot \text{length} + \beta_3 \cdot \text{budget} + \beta_4 \cdot \text{year}$

Optimal AIC Model- Log-Odds (Excellent films)

Case3: Full Model2- Optimal Model with only Significant

Variables

$$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta_{genre} + \beta_2 \cdot \text{length} + \beta_3 \cdot \text{budget} + \beta_4 \cdot \text{year}$$

Genre is the genre of the film without Romance and Animation

Optimal Model (sig. factors only)-Log-Odds (Excellent films)

Case3: Full Model4- Simplified Optimal Model

$$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta_{genre} + \beta_2 \cdot \text{length} + \beta_3 \cdot \text{budget}$$

where

- p is the probability that the film is ranked over 7
- genre is the genre of the film
- length is the length of the film in minutes
- budget is the budget of the film in \$1000000
- α is the intercept value
- \bullet β genre is the regression value for the i genre

Simplified Optimal Model- Log-Odds (Excellent films)

Case3: Full Model5- C log-log and Probit Models

Probit Model - Log - Odds (Excellent films)

Case3: Full Model-Comparison

Full Model

958.8695

BIC 1019.526

AIC

C Log-log Model

1004.9769

1065.634

Pobit Model

967.8979

1028.555

Case3: Full Model

Result

Choose Full model with every explanatory variables to explain the research question

$$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta_{genre} + \beta_2 \cdot \log(\text{votes}) + \beta_3 \cdot \text{length} + \beta_4 \cdot \text{budget} + \beta_5 \cdot \text{year}$$

One numerical explanatory variable

Length

One categorical explanatory variable

Animation Comedy Documentary Short

Full model

year of release length of film budget of film positive votes genre of the film

IMBD rating greater than 7

1.

3.

A THANK YOU