Ionization Energy

As they do for the main-group elements, ionization energies of the d-block and f-block elements generally increase across the periods. In contrast to the decrease down the main groups, however, the first ionization energies of the d-block elements generally increase down each group. This is because the electrons available for ionization in the outer s sublevels are less shielded from the increasing nuclear charge by electrons in the incomplete (n-1)d sublevels.

Ion Formation and Ionic Radii

Among all atoms of the d-block and f-block elements, electrons in the highest occupied sublevel are always removed first. For the d-block elements, this means that although newly added electrons occupy the d sublevels, the first electrons to be removed are those in the outermost s sublevels. For example, iron, Fe, has the electron configuration $[Ar]3d^64s^2$. First, it loses two 4s electrons to form Fe^{2+} ($[Ar]3d^6$). Fe^{2+} can then lose a 3d electron to form Fe^{3+} ($[Ar]3d^5$).

Most *d*-block elements commonly form 2+ ions in compounds. Some, such as iron and chromium, also commonly form 3+ ions. The Group 3 elements form only ions with a 3+ charge. Copper forms 1+ and 2+ ions, and silver usually forms only 1+ ions. As expected, the cations have smaller radii than the atoms do. Comparing 2+ ions across the periods shows a decrease in size that parallels the decrease in atomic radii.

Electronegativity

The *d*-block elements all have electronegativities between 1.1 and 2.54. Only the active metals of Groups 1 and 2 have lower electronegativities. The *d*-block elements also follow the general trend for electronegativity values to increase as radii decrease, and vice versa. The *f*-block elements all have similar electronegativities, which range from 1.1 to 1.5.

SECTION REVIEW

- **1.** State the general period and group trends among main-group elements with respect to each of the following properties:
 - a. atomic radii
- d. ionic radii
- **b.** first ionization energy
- **e.** electronegativity
- **c.** electron affinity
- **2. a.** In general, how do the periodic properties of the *d*-block elements compare with those of the main-group elements?
 - **b.** Explain the comparisons made in (a).

3. For each main-group element, what is the relationship between its group number and the number of valence electrons that the group members have?

Critical Thinking

4. RELATING IDEAS Graph the general trends (left to right and top to bottom) in the second ionization energy (IE_2) of an element as a function of its atomic number, over the range Z = 1–20. Label the minima and maxima on the graph with the appropriate element symbol.