ONE-PAGE REVIEW

MATH 1910 Recitation

 $\S7.1$ (Exponential Functions), $\S7.2$ (Inverse functions), $\S7.3$ (Logarithms)

September 29, 2016

- (1) $f(x) = b^x$ is increasing if b > 1 (1) and decreasing if b < 1 (2).
- (2) The derivative of $f(x) = b^x$ is $\frac{d}{dx}b^x = b^x \ln(b)$
- (3) $\frac{d}{dx}e^x = \boxed{e^x}^{(4)}$ and $\frac{d}{dx}e^{f(x)} = \boxed{f'(x)e^{f(x)}}^{(5)}$ and $\frac{d}{dx}e^{kx+b} = \boxed{ke^{kx+b}}^{(6)}$.
- (4) $\int e^x dx = e^x + C$ and $\int e^{kx+b} = \frac{1}{k} e^{kx+b} + C$ for constants k, b.
- (5) A function f with domain D is **one to one** if f(x) = c has at most one solution with $x \in D$.
- (6) Let f have domain D and range R. The **inverse** f^{-1} is the unique function with domain R and range D such that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$
- (7) The inverse of f exists if and only if f is one-to-one f on its domain.
- (8) **Horizontal Line Test:** f is one-to-one if and only if every horizontal line intersects the graph of f only once.
- (9) To find the inverse function, solve y = f(x) for x (13) in terms of y (14).
- (10) The graph of f^{-1} is obtained by reflecting (15) the graph of f through the line y = x (16).
- (11) If f is differentiable and one-to-one with inverse g, then for x such that $f'(g(x)) \neq 0$,

$$g'(x) = \frac{1}{f'(g(x))}.$$

- (12) The inverse of $f(x) = b^x$ is $f^{-1}(x) = \log_b(x)$ (17).
- (13) Logarithm Rules
 - (a) $\log_b(1) = \boxed{0}^{(18)}$ and $\log_b(b) = \boxed{1}^{(19)}$.
 - (b) $\log_b(xy) = \log_b(x) + \log_b(y)$ and $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$
 - (c) Change of Base: $\frac{\log_a(x)}{\log_a(b)} = \log_b(x)$
 - (d) $\log_b(x^n) = n \log_b(x)$ (23)
- (14) $\frac{d}{dx}\ln(x) = \boxed{\frac{1}{x}}^{(24)} \text{ and } \frac{d}{dx}\log_b(x) = \boxed{\frac{1}{\ln(b)x}}^{(25)}$
- (15) $\int \frac{1}{x} dx = \ln|x| + C$

§7.1 (Exponential Functions), §7.2 (Inverse functions), §7.3 (Logarithms)

(1) Calculate the derivative.

(a)
$$f(x) = 7e^{2x} + 3e^{4x}$$

SOLUTION: $f'(x) = 14e^{2x} + 12e^{4x}$.

(b)
$$f(x) = e^{e^x}$$

SOLUTION: $f'(x) = e^x e^{e^x}$

(c)
$$f(x) = 3^x$$

SOLUTION: $f'(x) = 3^x \ln(3)$

(d)
$$f(t) = \frac{1}{1 - e^{-3t}}$$

SOLUTION: $f'(t) = -3(1 - e^{-3t})^{-2}e^{-3t}$

(e)
$$f(t) = \cos(te^{-2t})$$

SOLUTION: $f'(t) = -\sin(te^{-2t})(e^{-2t} + -2te^{-2t})$

(f)
$$\int_{4}^{e^{x}} \sin t \, dt$$

Solution: Recall that $\frac{d}{dx} \int_a^{f(x)} g(t) dt = g(f(x))f'(x) dx$. So

$$\frac{d}{dx} \int_{4}^{e^{x}} \sin t \, dt = \sin(e^{x})e^{x}.$$

(g)
$$f(x) = x \ln x$$

SOLUTION: $f'(x) = \ln x + 1$

(h)
$$f(x) = \ln(x^5)$$

SOLUTION: $f'(x) = \frac{5}{x}$

(i)
$$f(x) = \ln(\sin(x) + 1)$$

SOLUTION: $f'(x) = \frac{\cos(x)}{\sin(x) + 1}$

(j)
$$f(x) = e^{\ln(x)^2}$$

SOLUTION:
$$f'(x) = e^{(\ln x)^2} 2 \frac{\ln(x)}{x}$$

(k)
$$f(x) = \log_a(\log_b(x))$$

Solution:
$$f'(x) = \frac{1}{\ln(a) x \ln(x)}$$

(1)
$$f(x) = 16^{\sin x}$$

SOLUTION:
$$f'(x) = \ln(16)\cos(x)16^{\sin x}$$
.

(2) Calculate the integral.

(a)
$$\int (e^x + 2) dx$$

SOLUTION:
$$e^x + 2x + C$$

(b)
$$\int \frac{7}{x} dx$$

SOLUTION:
$$7 \ln |x| + C$$

(c)
$$\int e^{4x} dx$$

SOLUTION:
$$\frac{1}{4}e^{4x} + C$$

(d)
$$\int \frac{\ln x}{x} \, dx$$

SOLUTION: Set
$$u = \ln x$$
, so $du = \frac{1}{x}dx$. Therefore,

$$\int \frac{\ln x}{x} dx = \int u du = \frac{u^2}{2} + C = \frac{1}{2} \ln(x)^2 + C.$$

(e)
$$\int \frac{1}{9x - 3} \, dx$$

SOLUTION: Let
$$u = 9x - 3$$
. Then $du = 9dx$ and substituting gives

$$\int \frac{1}{9u} du = \frac{1}{9} \ln|u| + C = \frac{1}{9} \ln|9x - 3| + C.$$

(f)
$$\int_2^3 (e^{4t-3}) dt$$

SOLUTION: $\int_2^3 (e^{4t-3}) dt = e^{-3} \int_2^3 e^{4t} dt = e^{-3} \left(\frac{1}{4}e^{4t}\right) \Big|_2^3 = \frac{e^{-3}}{4} \left(e^{12} - e^8\right) = \frac{1}{4}(e^9 - e^8)$

(g)
$$\int e^t \sqrt{e^t + 1} \, dt$$

SOLUTION: Let $u = e^t + 1$. Then $du = e^t dt$, so the integral becomes

$$\int \sqrt{u} \, du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} (e^t + 1)^{3/2} + C$$

(h)
$$\int e^x \cos e^x \, dx$$

SOLUTION: Let $u = e^x$. Then $du = e^x dx$, so

$$\int e^x \cos e^x dx = \int \cos u = \sin u + C = \sin e^x + C.$$

(i)
$$\int \tan(4x+1) \, dx$$

SOLUTION: First, rewrite the integral as

$$\int \tan(4x+1) \, dx = \int \frac{\sin(4x+1)}{\cos(4x+1)} \, dx$$

then let $u = \cos(4x + 1)$, so $du = -4\sin(4x + 1) dx$. Hence,

$$\int \frac{\sin(4x+1)}{\cos(4x+1)} dx = -\frac{1}{4} \int \frac{1}{u} du = -\frac{1}{4} \ln|\cos(4x+1)| + C$$

(j)
$$\int x3^{x^2} dx$$

SOLUTION: Let $u = x^2$. Then du = 2x dx, so

$$\int x3^{x^2} dx = \frac{1}{2} \int 3^u du = \frac{3^u}{2 \ln 3} + C = \frac{3^{x^2}}{2 \ln 3} + C.$$

SOLUTION:

(d) y

- (4) Calculate g(b) and g'(b), where g is the inverse of f.
 - (a) $f(x) = x + \cos x, b = 1.$

SOLUTION: g(1) = 0, g'(1) = 1.

(b) $f(x) = 4x^3 - 2x$, b = -2.

Solution: g(-2) = -1, $g'(-2) = \frac{1}{10}$.

(c) $f(x) = \sqrt{x^2 + 6x}$ for $x \ge 0$, b = 4.

SOLUTION: g(4) = 2, $g'(4) = \frac{4}{5}$.

(d) $f(x) = \frac{1}{x+1}$, $b = \frac{1}{4}$.

SOLUTION: g(1/4) = 3, g'(1/4) = -16.

- (5) Which of the following statements are true and which are false? If false, modify the statement to make it correct.
 - (a) If f is increasing, then f^{-1} is increasing.

SOLUTION: True.

(b) If f is concave up, then f^{-1} is concave up.

SOLUTION: False. Reflecting the graph of f across the line y = x to get the graph of f^{-1} means that if the graph of f is concave up, then the graph of f^{-1} is concave down.

(c) If f is odd then f^{-1} is odd.

SOLUTION: Think of what the graph of an odd function looks like. Reflecting the graph across the line y = x preserves this property.

(d) Linear functions f(x) = ax + b are always one-to-one.

SOLUTION: True. The inverse is $f^{-1}(x) = \frac{1}{a}(x-b)$.

(e) $f(x) = \sin(x)$ is one-to-one.

SOLUTION: False. The graph of $f(x) = \sin(x)$ fails the horizontal line test. But if we restrict he domain to $(-\pi, \pi)$, then this is true and $\arcsin(x)$ is the inverse of $\sin(x)$ on this domain.