Machine Learning Modeling of the Microstructural Evolution of Strained Materials

Candidate: Angelo Monteleone

Supervisor: Prof. Francesco Montalenti

Co-supervisor: Dott. Daniele Lanzoni

Academic year 2023/2024

Motivations of the study

- Spontaneous phase separation through spinodal decomposition.
- Influence on alloy mechanics.
- → Simple hypotheses, but complex phenomena.

W.A. Soffa, D. E. Laughlin, 8 - *Diffusional Phase Transformations in the Solid State*, Physical Metallurgy (Fifth Edition), Elsevier, 2014

- ML methods for evolution prediction: already explored by the research group.
- Goals: strain effects and parameter extraction.

D. Lanzoni et al. Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired Neural Networks for the 3D microstructure evolution of materials. Mach. Learn.: Sci. Technol. 2024

Phase separation: hypotheses

- Two atomic species A and B with the same crystal structure, concentrations c_A and c_B
- Constant temperature and pressure
- Driving potential: Gibbs free energy

$$g = c_A g_A^0 + c_B g_B^0 + Z c_A c_B \Omega + RT (c_A \log(c_A) + c_B \log(c_B))$$
Pure Enthalpic Entropic term components term

If $\Omega > 0$ and $T < T_C$

The sign of $\Omega = e_{AB} - \frac{1}{2}(e_{AA} + e_{BB})$

enables **phase separation**

Phase separation

- Two atomic species A and B with the same crystal structure, concentrations c_A and c_B
- Constant temperature and pressure
- Driving potential: Gibbs free energy

$$g = c_A g_A^0 + c_B g_B^0 + Z c_A c_B \Omega + RT (c_A \log(c_A) + c_B \log(c_B))$$

$$\text{Pure} \qquad \text{Enthalpic} \qquad \text{Entropic term}$$

$$\text{components} \qquad \text{term}$$

Cahn-Hilliard equation:

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot (M\nabla(\frac{\delta G}{\delta \varphi}))$$

Ginzburg-Landau: free energy functional

$$G[\varphi] = \int_{\Omega} [k|\nabla \varphi|^2 + g_B(\varphi)]d^3x$$

The sign of

$$\Omega = e_{AB} - \frac{1}{2}(e_{AA} + e_{BB})$$

enables **phase separation**

If $\Omega > 0$ and $T < T_C$

Red: $\varphi \simeq 1$

Blue: $\varphi \simeq 0$

Coherent spinodal decomposition dynamics

$$G[\varphi] = \int_{\Omega} [k|\nabla \varphi|^2 + g_B(\varphi) + \rho_{\eta}(\varphi)]d^3x$$

$$\eta = \frac{l_{\alpha} - l_{\beta}}{l_{\beta}}$$

Elastic effects \rightarrow new energy term, elastic energy density $\rho_{\eta}(\varphi)$.

- Dependence on the **concentration** $oldsymbol{arphi}$
- Parametrized by the **lattice misfit** η
- Anisotropy of elastic constants

Experimentally

J.L. Li, Z. Li, Q. Wang, C. Dong, P.K. Liaw, *Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys*, Acta Materialia, Volume 197, 2020, Pages 10-19, ISSN 1359-6454

Parameter extraction: Evaluation metrics

Functioning

- Input: 3D tensor
- Output: parameter prediction $\hat{\eta}$

ML approach: the model must be able to treat:

- Images → Convolutional networks
- Ordered data → Recurrent networks

Dataset:

- 1000 sequences
- 44 frames per sequence
- 128x128 frame resolution

At the end we have:

- $\hat{\vec{\eta}}$: a set of **predictions**
- $\hat{\vec{\eta}}$: a set of true values
- → Compare through

loss function

$$l(\vec{\eta}, \hat{\vec{\eta}}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{\eta}_i - \eta_i)^2$$

Convolutional networks: designed for images

Discrete convolution operation: $R_{ij} = (I * V)_{ij} = \sum_{a,b} I_{ab} V_{i-a,j-b}$

- I: image
- R: resulting representation
- V: kernel → detects local features

1	2	1	2					11	7	11
2	1	2	1	*	0	1	_	7	11	7
1	2	1	2		4	1	_	11	7	11
2	1	2	1				'	11		11

Image

Kernel

Hidden representation

Visually:

The kernel slides over the image, returning a **linear combination** of the pixels according to its weights.

Keeping track of the past: Recurrent Networks

A single image is not enough to determine the parameter!

→We need to deal with **sequences**

Difficulties:

- Arbitrary number of frames
- Influence of the first frames

Solution: memory through hidden units

Example: **output at every step** with one hidden layer

 y_i i-th frame

 $\widehat{y_i}$ i-th output

 h_i i-th hidden unit

Parameter extraction: results

Regression plot

- Comparison between true and predicted value
- Typical absolute error: 3×10^{-3}
- Analysis of
 - Overestimates:

$$\hat{\eta} > \eta_{true}$$

• Underestimates:

$$\hat{\eta} < \eta_{true}$$

• Outliers:

$$|\hat{\eta} - \eta_{true}| > 5\sigma_{\eta}$$

Differences within the error

- Evolutions from the same initial profile end up in very similar states.
- Low degree of difference within the chosen threshold and time sequence limit.

Higher resolution sequences

11

Evolution simulations

The network output is defined as a current to ease parameter conservation.

This is just a way to encode an inductive bias, which mimics the continuity equation.

Instead of:
$$\frac{\partial \varphi}{\partial t} = -\nabla \cdot \vec{I}$$

Predict:
$$\varphi_{t+dt} = \varphi_t - \nabla \cdot \overrightarrow{I_t}$$

Prediction capabilities

Process:

- Input: initial state
- Output: evolution for n frames

Compare predicted and real sequence

Absolute error

Conclusions and perspectives

Parameter extraction:

Being able to apply the model on experimental sequences would be the ultimate goal.

Evolution simulation:

The predictions still present some problems, further research is needed for their resolution.

Outliers analysis

This same sequence deceived every model we trained. Including more anomalous examples could lead to more effective NN models.

21 October 2024 17

Evolution simulations

The predicted current could be different from the real one. What matters is the divergence: If $\vec{l} \mapsto \vec{l} + \nabla \times \vec{F}$ then $\nabla \cdot \vec{I} \mapsto \nabla \cdot \vec{I}$

The divergence presents major differences in the first frames.

What does the loss mean?

- Optimization algorithm: Stochastic Gradient Descent (SGD).
- $\nabla_W l(\vec{\eta}, \hat{\vec{\eta}}; W)$ represents the direction of greatest increase of the loss.
- Parameter update:

$$W_{new} = W - \frac{\xi}{|D_t|} \nabla_W (\sum_{i=D_t} l(\eta_i, \hat{\eta}_i; W))$$

• Learning rate ξ

Parameter extraction: results

Loss plot

- Visualization of loss minimization.
- No sign of overfitting, the validation loss stays low

21 October 2024 20

				1
	TRAINING TYPE	SELECTED EPOCH	VALIDATION LOSS (\times 10^{-7})	
	Sequences of 22 frames	72	1.786	
	Sequences of 11 frames	74	3.360	
	Whole sequences (44 frames)	155	5.364	
	Casual length	138	0.653	ı
	Casual length with noise	123	2.723	
	Whole sequences with noise	145	0.750	
	Whole sequences with average pooling	142	2.390	

Parameter extraction: Extended results

• Learning rate: 10^{-4}

• Training epochs: 200

• Batch size: 2

• Training time: from 5 to 20

hours

21 October 2024 21

Results: tests on random sequences

Training on whole sequences

Validation loss: 5.36 x 1e-7

Training on halved sequences

Validation loss: 1.79 x 1e-7 **Slight overfitting**: the model tends to memorize properties of the training data

Training on random sequences

Validation loss: 6.53 x 1e-8 **Better generalization**: the

performance is better on a wider

22

class of data