Convex Optimization

Matlab Assignment

Feb. 28, 2018

Note: Use SeDuMi (solver) and Yalmip (solver interface) to solve the following optimization problems. Please read the usage of following commands in Yalmip: 'sdpvar', 'sdpsettings', 'optimize' etc. (https://yalmip.github.io/tutorial/basics/).

Q1: Solve the following linear feasibility problem:

$$p^* = f_0(x_1^*, x_2^*) = \min_{x_1, x_2} 0$$

- s.t. $x_1 \ge 0$, $x_2 \ge 0$, $x_1 + x_2 \ge 1$, $x_1 + x_2 \le 2$, $x_1 + 2x_2 \ge 2$
- (a) locate the feasible point (x_1^*, x_2^*) in the polyhedron defined by the constraints.
- **Q2:** Solve the following linear optimization problem:

$$p^* = f_0(x_1^*, x_2^*) = \min_{x_1, x_2} 2x_1 + 3x_2$$

- s.t. $x_1 \ge 0$, $x_2 \ge 0$, $x_1 + x_2 \ge 1$, $x_1 + x_2 \le 2$, $x_1 + 2x_2 \ge 2$
- (a) locate the optimal point (x_1^*, x_2^*) in the polyhedron defined by the constraints.
- **Q3:** Solve the following linear optimization problem:

$$p^* = f_0(x_1^*, x_2^*) = \min_{x_1, x_2} 2x_1 + 3x_2$$

s.t. $x_1 \ge 0$, $x_2 \ge 0$, $x_1 + x_2 \ge 1$, $x_1 + x_2 \le 2$, $x_1 + 2x_2 \ge 2$, $-x_1 + x_2 \le 1$

- (a) locate the optimal point (x_1^*, x_2^*) in the polyhedron defined by the constraints and,
- (b) compare the optimal value $p^* = f_0(x_1^*, x_2^*)$ to the optimal value obtained in **Q2**.
- **Q4:** Consider the following semidefinite program:

$$p^* = f_0(Q^*) = \min_{Q} Trace(Q)$$

s.t.
$$Q \succeq 0$$
, $x_1^T Q x_1 \geq \gamma_1$, $x_2^T Q x_2 \geq \gamma_2$, $x_3^T Q x_3 \leq \gamma_3$,

where $x_1, x_2, x_3 \in \mathbb{R}^{n \times 1}$ are known vectors which can be generated randomly (e.g. using 'randn' function in Matlab); $\gamma_1 = 3, \ \gamma_2 = 2, \ \gamma_3 = 1$; $Q \in \mathbb{S}^n_+$ is unknown. Find:

- (a) the optimal point Q^* and optimal value $p^* = f_0(Q^*)$ of the above semidefinite program and,
- (b) using eigen vector decomposition (EVD), verify if the optimal point Q^* is a positive semidefinite matrix.