Алгебра и геометрия

Григорян Сергей 5 марта 2025 г.

Содержание

1	Лен	кция 4	3
	1.1	Структура линейного оператора	3
		1.1.1 Алгебраическая и геометрическая кратности собствен-	
		ных значений	6
	1.2	Приведение линейно факторизуемого лин. оператора к верх-	
		нетреугольному виду	9
2	Лен	кция 5	13
	2.1	Аннулирующие многочлены	13
	2.2	Корневые подпространства	17
	2.3	Нильпотентные операторы	21

1 Лекция 4

1.1 Структура линейного оператора

ОСЛУ:

$$\begin{cases}
(a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0
\end{cases}$$
(1)

Характеристический многочлен

$$\chi_A(\lambda) = \det(A_\phi - \lambda E) = 0$$

- **Утверждение** 1.1 (О свойствах характеристического многочлена матрицы A). a) *Корни характеристического многочлена* $\chi_A(\lambda)$, *принадлежащие* \mathbb{F} , *и только они являются собственными значениями лин. оператора* ϕ .
 - б) Характеристический многочлен лин. оператора ϕ не зависит от выбора базиса (хотя A_{ϕ} зависит).
- Доказательство. а) Пусть $\chi_A(\lambda_0)=0$. Тогда существует ненулевое решение x_0 , такое что $\phi(x_0)=\lambda_0 x_0 \Rightarrow \lambda_0$ собственное значение оператора ϕ .

Пусть λ_0 — собственное значение ϕ . $\exists x_0 \neq 0$, т. ч. $\phi(x_0) = \lambda_0 x_0 \Rightarrow$ система (1) имеет при $\lambda = \lambda_0$ имеет ненулевое решение при $\lambda = \lambda_0 \Rightarrow \chi_A(\lambda_0) = 0 \Rightarrow \lambda_0$ — корень.

б) Пусть e, f — базисы в V.

$$B = S^{-1}AS, S = S_{e \to f}$$

$$\chi_B(\lambda) = \det(B - \lambda E) = \det(S^{-1}AS - S^{-1}(\lambda E)S) =$$

$$= \underbrace{\det S^{-1}}_{y} \cdot \det(A - \lambda E) \cdot \underbrace{\det S}_{y} = \det = \det(A - \lambda E) = \chi_A(\lambda)$$

Обозначение.

$$\chi_{\phi}(\lambda) := \chi_{A_{\phi}}(\lambda)$$
$$\operatorname{tr} \phi := \operatorname{tr} A_{\phi}$$
$$\det \phi := \det A_{\phi}$$

Следствие. Если V — линейное пр-во над \mathbb{C} , $\dim V \geq 1$, то $\forall \phi \colon V \to V$ имеет хотя бы один вектор.

Доказательство. $\chi_{\phi}(\lambda)$ по ОТА имеет хотя бы один корень $\in \mathbb{C}$.

Следствие. Если V — линейное пространство над \mathbb{C} , а также

$$\dim V = 2k + 1, k \in \mathbb{N}$$

 $mo \ \forall \phi \colon V \to V \ u$ меет хотя бы один собственный вектор.

Доказательство. $\chi_{\phi}(\lambda)$ имеет хотя бы один вещественный корень. \square

<u>Замечание</u>. ∃ линейный оператор, не имеющий собственный векторов:

$$R(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}, \phi \neq \pi n, n \in \mathbb{Z}$$
$$\chi_{R(\phi)}(\lambda) = \lambda^2 - 2\cos \phi \lambda + 1$$
$$D = 4\cos^2 \phi - 4 = -4\sin^2 \phi < 0$$

 $Ha\partial \mathbb{C} \ \partial a$ корня: $e^{-i\phi}, e^{i\phi}$

$$B = \begin{pmatrix} e^{-i\phi} & 0\\ 0 & e^{i\phi} \end{pmatrix}$$

Определение 1.1. Линейный оператор $\phi: V \to V, V$ над \mathbb{F} называется диагонализируемым, если в $V \exists$ базис e, в котором A_{ϕ} диагональна:

$$A_{\phi} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Теорема 1.1 (Критерий Диагонализируемости). $\phi: V \to V$ — лин. оператор и пусть $\lambda_1, \dots, \lambda_k$ — все попарно различные собственные значения ϕ . Тогда следующие условия эквивалентны:

- a) ϕ диагонализируем
- б) $BV \exists$ базис e, состоящий из собственных векторов для ϕ
- e) $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_k}$

$$V_{\lambda} = \ker(\phi - \lambda id)$$

Доказательство. • a) \Rightarrow б):

$$\exists e \colon A_{\phi} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \iff \phi(e_i) = \lambda_i e_i$$

• б) \Rightarrow в): разобъём базисные векторы по группам с собственным значениями:

$$\lambda_1 \colon e_{11}, e_{12}, \dots, e_{1s_1}$$

$$\vdots$$

$$\lambda_k$$
: $e_{k1}, e_{k2}, \dots, e_{ks_k}$

Тогда верно, что:

$$Q_1 = \langle e_{11}, \dots, e_{1s_1} \rangle \leq V_{\lambda 1}$$

:

$$Q_k = \langle e_{k1}, \dots, e_{ks_k} \rangle \leq V_{\lambda_k}$$

Поэтому:

$$Q_1 \oplus Q_2 \oplus \ldots \oplus Q_k = V$$

Следовательно:

$$V_{\lambda_1} + V_{\lambda_2} + \ldots + V_{\lambda_k} = V$$

А т. к. λ_i попарно различны, то по теореме о характеризации прямой суммы, т. к. V_{λ_i} — ЛНЗ, то:

$$V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_k} = V$$

А также:

$$Q_i = V_{\lambda_i}$$

• a): пусть:

$$V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_k} = V$$

Пусть $(e_{i1} \ldots e_{is_i})$ — базис в V_{λ_i} , а $e = \{e_{ij}\}$, тогда:

$$A_{\phi} = \begin{pmatrix} \lambda_1 & \dots & \dots & & & \\ \dots & \ddots & \dots & & & \\ \dots & \dots & \lambda_1 & \dots & & \\ \dots & \dots & \dots & \lambda_2 & & & \\ \dots & \dots & \dots & \dots & \ddots & \dots \\ \dots & \dots & \dots & \dots & \lambda_2 & & \\ \dots & \dots & \dots & \dots & \dots & \lambda_2 & \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

1.1.1 Алгебраическая и геометрическая кратности собственных значений

Пусть $\phi \colon V \to V$ — лин. оператор V над \mathbb{F} :

$$\chi_{\phi}(t) = \det(A - tE)$$

Пусть λ — корень $\chi_{\phi}(t)$, т. е. λ — собственное значение оператора ϕ .

Определение 1.2. Кратность λ , как корня $\chi_{\phi}(t)$, наз-ся алгебраической кратностью собсвтенного значения λ .

$$alg(\lambda)$$

Определение 1.3. Размерность собственного подпространства V_{λ} называется геометрической кратностью собственного значения λ .

$$geom(\lambda)$$

Замечание. Если λ — собственное значения оператора ϕ , тогда:

$$alg(\lambda) \ge 1$$

$$geom(\lambda) \ge 1$$

Утверждение 1.2. Пусть $\phi: V \to V$ — лин. оператор. $U \leq V$ — инвариантно отн-но ϕ . $\psi = \phi|_U \in \mathcal{L}(U)$. Тогда:

$$\chi_{\phi}$$
: χ_{ψ}

Доказательство. Выберем базис в V, согласованный с инвариантным подпространством U:

$$\underbrace{e_1,\dots,e_k,e_{k+1},\dots,e_n}_{\text{базис в }U} = e$$

$$A_{\phi} = \left(\frac{A_{\psi}}{O} \quad \frac{B}{C}\right), k = \dim U$$

$$\chi_{\phi}(t) = \left|\frac{A_{\psi} - tE_k}{O} \quad \frac{B}{C - tE}\right| = \det(A_{\psi} - tE) \left|C - tE\right| = \chi_{\psi}(t) \cdot \chi_{C}(t)$$

$$\Rightarrow \chi_{\phi}(t) : \chi_{\psi}(t)$$

<u>Следствие</u>. Пусть $\lambda-$ произв. собственное значение оператора $\phi\colon V\to \overline{V}$. Тогда $\mathrm{geom}(\lambda) \leq \mathrm{alg}(\lambda)$

Доказательство. V_{λ} — инвариантно отн-но ϕ . $\psi = \phi | V_{\lambda}$

$$\chi_{\phi} : \chi_{\psi}$$

$$\chi_{\psi} = (\lambda - t)^{k}, k = \dim(V_{\lambda})$$

$$\Rightarrow \chi_{\phi}(t) : (\lambda - t)^{k} \Rightarrow \operatorname{alg}(\lambda) \ge k = \operatorname{geom}(\lambda)$$

<u>Замечание</u>. Пусть $\phi - \partial u$ агонализируем, значит $\exists e = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix}$, m. q.

$$A_{\phi} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & v_n \end{pmatrix}$$

Тогда $\phi(e_i) = \lambda_i e_i, \forall i = \overline{1,n}$. Базис, в кот. ϕ диагональная — это базис, состоящий, из собственных векторов, а числа на главной диагонали — собственные значения.

$$\operatorname{tr} \phi = \operatorname{tr} A = \sum_{i=1}^{n} \lambda_i$$

$$\det \phi = \det A = \prod_{i=1}^{n} \lambda_i$$

$$\chi_\phi(t) = \prod_{i=1}^n (\lambda_i - t)$$
 над $\mathbb F$ — линейно факторизуем

Вывод: всякий диагонализируемый оператор линейно факторизуем, т. е. его характеристический многочлен линейно факторизуем.

Следствие. Если ϕ не является линейно факторизуем, то он и не диагонализируем.

Теорема 1.2. Линейный оператор $\phi: V \to V$ с собственными значениями $\lambda_1, \ldots, \lambda_k$ является диагонализируемым \iff

- а) ϕ линейно факторизуем над \mathbb{F} (т. е. $\chi_{\phi}(t)$ линейно факторизуем)
- 6) $\forall i = 1, ..., k : \operatorname{alg}(\lambda_i) = \operatorname{geom}(\lambda_i)$

Доказательство. а) Необх.: пусть ϕ — диагонализируем по Th (1.1)

$$V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_k}$$

$$n = \sum_{i=1}^{k} \dim(V_{\lambda_i}) = \sum_{i=1}^{k} \operatorname{geom}(\lambda_i) = \operatorname{deg} \chi_{\phi} \ge \sum_{i=1}^{k} \operatorname{alg}(\lambda_i)$$

Ho $\forall i = \overline{1, n}$: geom $(\lambda_i) \leq \operatorname{alg}(\lambda_i)$

$$\Rightarrow \forall i = \overline{1, n}$$
: geom $(\lambda_i) = alg(\lambda_i)$

б) Дост.: пусть а) и б) выполнены:

$$\dim(\underbrace{V_{\lambda_1}\oplus\ldots\oplus V_{\lambda_k}}_{\text{т. к. }\lambda_i\text{ попарно различны}})=\sum_{i=1}^k\dim V_{\lambda_i}=\sum_{i=1}^k\operatorname{geom}\lambda_i=\sum_{i=1}^k\operatorname{alg}(\lambda_i)=\operatorname{deg}\chi_\phi=\dim V$$

$$V = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_k} \underset{\operatorname{Th} \ 1.1}{\Longrightarrow} \phi$$
 — диагонализируем

<u>Пример</u> (Одной лишь лин. факторизуемости ϕ , даже в случае алг. замкнутого поля не достаточно, чтобы утверждать его диагонализируемост).

 $J_n(\lambda) = egin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \ddots & \dots & 0 \\ 0 & 0 & \dots & \dots & 1 \\ 0 & 0 & \dots & \dots & \lambda \end{pmatrix} - Жорданова клетка порядка <math>n, \ omsev. \ \lambda$

$$\chi_{J_n(\lambda)}(t) = \begin{vmatrix} \lambda - t & 1 \\ 0 & \lambda - t & 1 \\ & & \ddots & \\ & & 1 \\ & & \lambda - t \end{vmatrix} = (\lambda - t)^n$$

$$\operatorname{geom}(\lambda) := \dim V_{\lambda} = \dim \ker(\phi - \lambda id) = \dim \ker(A - \lambda E) =$$

$$= n - \operatorname{rk}(A - \lambda E) = n - \operatorname{rk}(A_{\lambda})$$

$$\operatorname{geom}(\lambda) = n - \operatorname{rk} J_{n}(\lambda) = n - (n - 1) = 1 < n$$

1.2 Приведение линейно факторизуемого лин. оператора к верхнетреугольному виду

Утверждение 1.3. Пусть $\phi: V \to V$ — лин. оператор:

$$\phi_{\lambda} = \phi - \lambda id$$

Тогда следующие условия эквивалентны:

- а) Подпространство $U \leq V$ инвариантно отн-но ϕ
- б) $\exists \lambda \in \mathbb{F} \colon U$ инвариантно отн-но ϕ_{λ}
- в) $\forall \lambda \in \mathbb{F} \colon U u$ нвариатно отн-но ϕ_{λ}

 \mathcal{A} оказательство. $(a) \Rightarrow (b) \underset{\text{очев.}}{\Longrightarrow} (b) \Rightarrow (a)$

• a)
$$\Rightarrow$$
 b): $x \in U, \phi_{\lambda}(x) := (\phi - \lambda id)(x) = \underbrace{\phi(x)}_{\in U} - \underbrace{\lambda x}_{\in U} \in U$

• б) \Rightarrow а): $\exists \lambda$, т. ч. U — инвариантно отн-но $\phi - \lambda id$. Покажем, что U инвариантно относительно ϕ .

$$x \in U : \phi(x) = (\phi - \lambda id + \lambda id)(x) = \underbrace{(\phi - \lambda id)(x)}_{\in U} + \underbrace{(\lambda id)(x)}_{\in U} \in U$$

Утверждение 1.4. Пусть $\phi: V \to V$ — лин. оператор и $\chi_{\phi}(t)$ раскладывается на линейные множители (т. е. лин. факторизуем). $\dim_{\mathbb{F}} V = n$. Тогда у ϕ найдётся (n-1)-мерное инвариантное подпространство.

Доказательство.

$$\chi_{\phi}(t) = \prod_{i=1}^{n} (\lambda_i - t) \Rightarrow \exists \lambda_n \in \mathbb{F}, \text{ кот. явл-ся собств. знач.}$$

$$V_{\lambda_n}=\ker(\phi-\lambda_nid)\neq \{\,0\,\} \Rightarrow \dim \mathrm{Im}(\phi-\lambda_nid)\leq n-1$$
 Пусть $U\leq V$, т. ч. $\mathrm{Im}(\phi-\lambda_nid)\leq U$, $\dim U=n-1$

$$(\phi-\lambda_n id)(U)\subseteq {\rm Im}(\phi-\lambda_n id)\subseteq U\Rightarrow U-\text{ инв. отн-но }\phi-\lambda id$$

$$\Rightarrow U-\text{ инвариатно отн-но }\phi$$

Замечание. Условие утв-я можно ослабить (необходимо наличие хотя бы одного собств. знач-я у ϕ)

Теорема 1.3. Пусть $\phi: V \to V$ — лин. факторизуем над \mathbb{F} . Тогда $\exists e = (e_1 \ldots e_n)$ в V, в котором:

$$A_{\phi} = \begin{pmatrix} \lambda_1 & * & * & \dots & * \\ 0 & \lambda_2 & * & \dots & * \\ 0 & 0 & \ddots & \dots & * \\ 0 & 0 & 0 & \ddots & * \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Доказательство. Покажем, что в V, \exists цепочка вложенных подпространств, которые инв. отн-но ϕ

$$\{0\} < U_1 < U_2 < \ldots < U_n = V, \dim U_i = i$$
 флаг. подпространств

Докажем \exists -ие флага индукцией по $\dim V$:

- База: $\{\,0\,\} < V_1 = V$ флаг
- Переход: пусть для $\phi \colon W \to W, \dim W < n,$ утв-е доказано. (ϕ линейно факторизуем).

По утверждению (1.4) в V найдётся U_{n-1} , инвариантное отн-но ϕ :

$$\psi = \phi | U_{n-1} - \text{линейно факторизуем (?)}$$

$$\chi_{\phi} : \chi_{\psi}$$

$$\chi_{\phi}(t) = \prod_{i=1}^{n} (\lambda_{i} - t) \Rightarrow \chi_{\psi}(t) = \prod_{i=1}^{n} (\lambda_{i} - t)$$

По предположению индукции \exists флаг ψ – инв, поэтому:

$$\{0\} < U_1 < U_2 < \ldots < U_{n-1} < U_n = V$$
 ϕ — инв.

Тогда в базисе e, согласов. с флагом, $(e_1 \ldots e_k)$ — базис в U_k .

Следствие. В условиях Th (1.3), $\forall k = \overline{0, n-1}$ справедливо утвее:

$$(\phi - \lambda_{k+1}id) \dots (\phi - \lambda_n id)V \subseteq U_k$$

Доказательство. Индукцией по количеству скобок слева:

$$(\phi - \lambda_n id)V \stackrel{?}{\subseteq} U_{n-1}$$

$$A - \lambda_n E = \begin{pmatrix} \lambda_1 - \lambda_n & \dots & * \\ \dots & \dots & \dots \\ \dots & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_{n-1} \\ 0 \end{pmatrix} \in U_{n-1} = \langle e_1, \dots, e_{n-1} \rangle$$

Предполжение индукции:

$$(\phi - \lambda_{k+2}id) \dots (\phi - \lambda_n id)V \subseteq U_{k+1}$$

$$(\phi - \lambda_{k+1})U_{k+1} \subseteq U_k$$

$$(\phi - \lambda_{k+1})U_{k+1} = U_k$$

$$(0) < U_1 < U_2 < \dots < U_n = V$$

$$U_{k+1} = U_k \oplus < e_{k+1} >$$

$$(\phi - \lambda_{k+1}id)(U_k) \subseteq U_k - \text{т. к. } \phi - \text{инв.}$$

$$(\phi - \lambda_{k+1}id)(e_{k+1}) = \phi(e_{k+1}) - \lambda_{k+1}e_{k+1} =$$

$$= \sum_{i=1}^k a_{ik+1}e_i + \lambda_{k+1}e_{k+1} - \lambda_{k+1}e_{k+1} = \sum_{i=1}^k e_{ik+1}e_i \in U_k$$

Теорема 1.4 (Гамильтона, Кэли). Пусть $\phi: V \to V$ — лин. факторизу-ем над \mathbb{F} (лин. оператор). $\chi_{\phi}(t)$ — его характеристический многочлен. Тогда:

$$\chi_{\phi}(\phi) = O -$$
нулевой оператор

Эквив. формулировка в терминах матрицы: пусть $A \in M_n(\mathbb{F}), \chi_A(t)$ — характ. многочлен матрицы A, и он лин. фактор. над \mathbb{F} , тогда:

$$\chi_A(A) = 0$$

Доказательство.

$$k = 0 \Rightarrow (\phi - \lambda_1 id) \dots (\phi - \lambda_n id) V \subset U_0 = \{0\}$$

$$\forall x \colon \prod_{i=1}^n (\phi - \lambda_i id)(x) = (-1)^n \chi_{\phi}(\phi)(x) = 0$$

$$\Rightarrow \chi_{\phi}(\phi)(x) = 0$$

Замечание. Гамильтон и Кэли, независимо друг от друга, доказали это утв-е только для $\dim_{\mathbb{C}} V \leq 4$. Современное доказательство для общего случая принадлежит Фробениусу (1878 г.).

<u>Замечание</u>. В теореме Гамильтона-Кэли можно отказаться от линейной факторизуемости. Пусть $\mathbb F$ не алгебраически замкнуто и $\chi_{\phi}(t)$ не раскладывается на линейные множители над $\mathbb F$.

$$F \subset K$$

$$\chi_{\phi}(\phi) = O, \phi - \epsilon$$
 лин. пр-ве над K

$$\chi_{\phi}(t) \in F(t)$$
 — в лин. пр-ве над $\mathbb F$

2 Лекция 5

2.1 Аннулирующие многочлены

 $\phi \colon V \to V$ — линейный оператор V над $\mathbb{F}, \, P$ — ненулевой многочлен из $\mathbb{F}[t]$

Определение 2.1. Многочлен P называется аннулирующим для $\phi \iff P(\phi) = 0$

Пример.

$$id(x) = x$$

$$P = t - 1 \Rightarrow P(\phi) = \phi - 1 \cdot id = id - id = 0$$

Теорема 2.1 (Гамильтон-Кэли).

$$\chi_{\phi}(\phi) = 0$$

Т. о. аннулирующий многочлен всегда существует.

$$\dim \mathcal{L}(V) = \dim^2 V = n^2$$

$$id, \phi, \phi^2, \dots, \phi^{n^2} \in \mathcal{L}(V) \Rightarrow \exists \alpha_i \in \mathbb{F} \colon \alpha_0 \cdot id + \alpha_1 \cdot \phi + \dots + \alpha_{n^2} \phi^{n^2} = 0$$

Определение 2.2. Минимальным многочленом (μ_{ϕ}) линейного оператора $\phi \colon V \to V$ называется аннулирующим многочленом минимальной степени.

$$\deg \mu_\phi \leq \deg P, P$$
 — аннулирующий мн-н

Утверждение 2.1. $\phi: V \to V$, μ_{ϕ} — минимальный многочлен ϕ , P — произвольный аннулирующий многочлен, тогда:

$$P:\mu_{\phi}$$

Доказательство.

$$P(t) = \mu_{\phi}(t) \cdot Q(t) + R(t)$$

Покажем, что либо $R(t) \equiv 0$, либо $\deg P < \deg \mu_{\phi}$. Действительно:

$$R(\phi) = \underbrace{P(\phi)}_{0} - \underbrace{\mu_{\phi}(\phi)}_{0} \cdot Q(\phi) = 0$$

Следствие. μ_{ϕ} определён с точностью до ассоциированности.

Доказательство.

 μ_{ϕ}, μ'_{ϕ} — мин. мн-ны $\phi \Rightarrow \mu_{\phi} : \mu'_{\phi} \land \mu'_{\phi} : \mu_{\phi} \Rightarrow$ они ассоциированы.

Следствие.

$$\chi_{\phi}$$
: μ_{ϕ}

Следствие. Корни $\chi_{\phi}(t)$, принадлежащие полю \mathbb{F} , являются корнями μ_{ϕ} и наоборот.

Доказательство. **Heoб.:** λ — корень $\chi_{\phi}(t) \Rightarrow \lambda$ — собств. значение $\phi \Rightarrow \exists x \neq 0$, т. ч. $\phi(x) = \lambda x \Rightarrow \phi^n(x) = \lambda^n x$

$$0 = \mu_{\phi}(\phi)(x) = \left(\sum_{i} \alpha_{i} t^{i}\right)\Big|_{t=\phi}(x) =$$

$$= \left(\sum_{i} \alpha_{i} \lambda^{i}\right)(x) = \mu_{\phi}(\lambda) \cdot x = 0$$

Поэтому λ — корень μ_{ϕ}

Теорема 2.2 (О взаимнопростых делителях аннулирующего многочлена). $\phi: V \to V, \ f-$ аннулирующий многочлен $\phi.$

$$f = f_1 \cdot f_2$$
, где f_1, f_2 — взаимнопросты.

Тогда, если $V_i = \ker f_i(\phi)$, то:

$$V = V_1 \oplus V_2$$

Причём V_1 и V_2 — инвариантны относительно ϕ .

Доказательство. a) ϕ — инв-ть?

$$f_i(\phi) \cdot \phi = \phi \cdot f_i(\phi) \Rightarrow V_i = \ker f_i(\phi)$$

 $\ker f_i(\phi) - \phi$ инвариантно по утв. о коммутирующих операторах.

б)

$$\exists u_1, u_2 \in F(t)$$
:

$$u_1(t)f_1(t) + u_2(t)f_2(t) = 1$$

Покажем, что $\operatorname{Im} f_1(\phi) \subset V_2$ и $\operatorname{Im} f_2(\phi) \subset V_1$.

$$y \in \operatorname{Im} f_1(\phi) \colon \exists x \in V \colon y = f_1(\phi)(x)$$

$$f_2(y) = \underbrace{f_1(\phi) \circ f_2(\phi)}_{f(\phi)}(x) = 0$$

в) Покажем, что $x \in V \stackrel{?}{=} V_1 + V_2$

$$x = id \cdot x = (f_1(\phi) \cdot u_1(\phi) + f_2(\phi) \cdot u_2(\phi))(x) =$$

$$= \underbrace{f_1(\phi)(x')}_{x_2} + \underbrace{f_2(\phi)(x'')}_{x_1} = x_1 + x_2$$

г) Проверим, что $V_1 \cap V_2 = \{0\}$. Пусть $x \in V_1 \cap V_2$, т. е.:

$$f_1(\phi)(x) = f_2(\phi)(x) = 0$$

$$x = id \cdot x = (u_1(\phi)f_1(\phi) + u_2(\phi) \cdot f_2(\phi))(x) = 0 + 0 = 0$$

Следствие.

$$\phi\colon V o V$$
 — лин. оп., f — аннул. ϕ $f=f_1\cdot f_2\cdot f_3\cdot\ldots\cdot f_s, f_i$ — причём f_i попарно взаимнопросты. $V_i=\ker f_i(\phi_i)\Rightarrow V=V_1\oplus V_2\oplus\ldots\oplus V_s$

Доказательство. ММИ по s:

- База: s = 2 доказано в теореме (2.2)
- Переход: пусть для s-1 взаимнопростых делителей утверждение доказано, докажем для s:

$$f = \underbrace{(f_1 \cdot \ldots \cdot f_{s-1})}_p \cdot \underbrace{f_s}_q$$
, где p и q взаимнопросты.

$$\stackrel{\text{по теореме (2.2)}}{\Rightarrow} V = \underbrace{\ker(f_1(\phi) \cdot \ldots \cdot f_{s-1}(\phi))}_{V'} \oplus V_s$$

Рассмотрим $\phi|_{V'}$, $f_1 \cdot \ldots \cdot f_{s-1}$ — аннулирует $\phi|_{V'}$, тогда по предположению индукции:

$$V' = \ker(f_1(\phi)|_{V'}) \oplus \ldots \oplus \ker(f_{s-1}(\phi)|_{V'})$$

Покажем, что:

$$\ker(f_i(\phi)|_{V'}) = \ker(f_i(\phi))$$

- $-\subseteq: x \in \ker(f_i(\phi)|_{V'}) \Rightarrow x \in V'$ на $V' \phi$ и $\phi|_{V'}$ совпадают \Rightarrow включение доказано.
- ⊇: пусть $x \in \ker f_i(\phi)$, т. е. $f_i(\phi)(x) = 0$

$$(f_1(\phi) \cdot \ldots \cdot f_i(\phi) \cdot \ldots \cdot f_{s-1}(\phi))(x) =$$

$$(f_1(\phi) \cdot \ldots \cdot f_{i-1}(\phi) \cdot f_{i+1}(\phi) \cdot \ldots \cdot f_{s-1}(\phi)) \cdot f_i(\phi)(x) = 0$$

$$\Rightarrow x \in \ker(f_1(\phi) \cdot \ldots \cdot f_i(\phi) \cdot \ldots \cdot f_{s-1}(\phi)) \Rightarrow x \in V' \Rightarrow$$

$$\Rightarrow \ker f_i(\phi) \subseteq \ker(f_i(\phi|_{V'}))$$

2.2 Корневые подпространства

 $\phi \colon V \to V$ — лин. оператор.

Определение 2.3. Вектор x называется корневым для ϕ_i отвечающим $\lambda \in \mathbb{F}$, если $\exists k \in \mathbb{N}$:

$$(\phi - \lambda id)^k(x) = 0 (2)$$

Наименьшее k, удовлетворяющее (2) называется **высотой корневого** вектора.

<u>Замечание</u>. Будем считать, что $0-\kappa$ орневой, высоты 0

Корневые векторы высоты 1, отвечающие λ — это собственные векторы ϕ , отвеч. λ , и только они.

Пример.

$$\phi = D = \frac{d}{dx}$$

$$V = \mathbb{R}_n[x] = \{ f \in \mathbb{R}[x] \mid \deg f \le n \}$$

 x^n — наибольший вектор и n+1 — его высота

$$\Rightarrow D^{n+1}(V) = 0$$

 $\Rightarrow V$ — корневое для D, отвечающее $\lambda=0$

$$\underbrace{x^n}_{n+1} \stackrel{D}{\mapsto} \underbrace{nx^{n-1}}_{n} \mapsto \ldots \mapsto \underbrace{n! \cdot 1}_{1} \mapsto \underbrace{0}_{0}$$

(Вектора и их высоты)

Утверждение 2.2. *Множество всех корневых векторов для оператора* ϕ , *отвечающее* λ , является подпространством в V.

Доказательство. Пусть x — корневое высторы m,y — корневое высоты $l,\,k=\max{\{\,m,l\,\}}$

$$(\phi - \lambda id)^k(x+y) = (\phi - \lambda id)^k(x) + (\phi - \lambda id)^k(y) = 0 + 0 = 0$$

Обозначение. $V^{\lambda}-$ корневое для $\phi,$ отвечающее $\lambda.$

Утверждение 2.3. Подпространство $V^{\lambda} \neq \{0\} \iff \lambda - coбсытенное$ значение on. ϕ .

Доказательство. $\bullet \Rightarrow \Pi$ усть $V^{\lambda} \neq \{0\}$, т. е. $\exists y \neq 0, y \in V^{\lambda}$

$$\exists k \in \mathbb{N} \colon \begin{cases} (\phi - \lambda id)^k(y) = 0 \\ x = (\phi - \lambda id)^{k-1}(y) \neq 0 \end{cases} \Rightarrow (\phi - \lambda id)(x) = 0$$

$$\phi(x) = \lambda x \Rightarrow \lambda$$
 — собств. знач. ϕ

• $\Leftarrow \lambda ...$

Теорема 2.3 (О свойствах корневых подпространств.). $\phi: V \to V - \lambda uh$. $on., V^{\lambda}$ — его корневое подпространство, отвечающее собственному значению λ . Тогда:

- a) V^{λ} инвариантное относительно ϕ
- б) На V^{λ} оператор ϕ имеет единственное собственное значение, которое равно λ .
- в) Если W дополнительные к V^{λ} , т. е. $V=V^{\lambda}\oplus W$; тогда:

$$(\phi - \lambda id)|_W$$
 — невырожден

 \mathcal{A} оказательство. а) Пусть m — максимальная высота векторов из V^{λ} :

$$V^{\lambda} = \ker(\phi - \lambda id)^m, (\phi - \lambda id)^m \phi = \phi(\phi - \lambda id)^m$$

По утв. о коммут. операторах V^{λ} — инв. относительно ϕ .

б) От противного, пусть $\mu \neq \lambda$ и μ тоже явл. собственным значением V^{λ}

$$\exists x \in V^{\lambda} : \phi(x) = \mu x \Rightarrow (\phi - \lambda id)(x) = \mu x - \lambda x = (\mu - \lambda)x$$
$$(\phi - \lambda id)^{m}(x) = (\mu - \lambda)^{m}x = 0 \Rightarrow (\mu - \lambda)^{m} = 0$$
$$\Rightarrow \mu = \lambda \Rightarrow \bot$$

в) Выберем базим в V, согласованный с разлложением:

$$V=V^\lambda\oplus W$$

$$(\phi-\lambda id)_e=\left(\frac{A-\lambda E}{O}\quad\frac{O}{B-\lambda E}\right)$$

$$B-\lambda E=(\phi-\lambda id)|_W$$
 От противного, пусть $\deg(B-\lambda E)=0\Rightarrow \ker(\phi-\lambda id)|_W\neq\{\,0\,\}$

 $\Rightarrow \exists x \neq 0 \in W : (\phi - \lambda id)(x) = 0 \Rightarrow x \in V^{\lambda}$

Теорема 2.4 (О разложении пространства V, в котором действует лин. факт. оп. ϕ , в прямую сумму корневых). ϕ : $V \to V$, V = nad \mathbb{F}

$$\chi_{\phi}$$
 — лин. факт. над $\mathbb F$

Tогда, если $\lambda_1, \lambda_2, \ldots, \lambda_s$ — все попарно различные собств. знач.:

$$\Rightarrow V = V^{\lambda_1} \oplus \ldots \oplus V_{\lambda_s}$$

Доказательство.

$$\chi_{\phi}(t)=(-1)^n\prod_{i=1}^s(t-\lambda_i)^{m_i}$$
 $m_i=\mathrm{alg}(\lambda_i)$ $(t-\lambda_1)^{m_1},(t-\lambda_2)^{m_2},\ldots,(t-\lambda_s)^{m_s}$ — попарно взаимнопросты.
$$\overset{\text{по теореме (2.3)}}{\Rightarrow}V=\ker(\phi-\lambda_1id)^{m_1}\oplus\ldots\oplus\ker(\phi-\lambda_sid)^{m_s}$$
 $x\in V\Rightarrow x=x_1+\ldots+x_s,x_i\in V^{\lambda_i}$

Покажем, что $V^{\lambda_i} \subseteq \ker(\phi - \lambda_i id)^{m_i}$.

От противного, пусть $0 \neq x \in V^{\lambda_i}$, но $x \notin \ker(\phi - \lambda_i id)^{m_i}$, т. е. x — корневое для ϕ , но высота x равна $M > m_i$:

$$\chi_{\phi}(\phi)(x) = \left((-1)^n \prod_{i=1}^s (\phi - \lambda_i i d)^{m_i} \right)(x) =$$

$$= (-1)^n \left(\prod_{j \neq i} (\phi - \lambda_j i d)^{m_j} \right) \underbrace{(\phi - \lambda_i i d)^{m_i} x}_{\neq 0} \neq 0$$

$$(\phi - \lambda_i id)|_{V^{\lambda_i}}$$
 — невырожд.

Однако, это противоречит теореме Гамильтона-Кэли. $\Rightarrow V^{\lambda_i} = \ker(\phi - \lambda_i id)^{m_i}$, Ч. Т. Д.

Следствие. Пусть $\phi - \Lambda u H$. факториз. оператора : $V \to V$:

$$\chi_{\phi}(t)=(-1)^n\prod_{i=1}^s(t-\lambda_i)^{m_i}, \lambda_i$$
 — попарно разл. $m_i=\mathrm{alg}(\lambda_i)$

 $Tor \partial a \dim V^{\lambda_i} = m_i$

Доказательство. Пусть e — базис в V, согласов. с теоремой (2.4). Тогда:

$$\phi = \begin{pmatrix} A_1 & & & 0 \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_s \end{pmatrix}$$

где $A_i = \phi|_{V^{\lambda_i}}$

$$\chi_{\phi}(t) = (-1)^n \prod_{i=1}^s \chi_{\phi|_{V^{\lambda_i}}}$$

$$\Rightarrow \chi_{\phi|_{V^{\lambda_i}}} - \text{тоже лин. факт.}$$

$$\Rightarrow \chi_{\phi|_{V^{\lambda_i}}} = (t - \lambda_i)^{n_i}, n_i \le m_i$$

$$\Rightarrow \sum_i \chi_{\phi|_{V^{\lambda_i}}} = \sum_i n_i = \deg \chi_{\phi} = n = \sum_i m_i \Rightarrow \forall i, n_i \le m_i$$

$$\Rightarrow n_i = \dim V^{\lambda_i} = m_i$$

Следствие. Корневое подпространство V^{λ} — это наибольшее (по включению) подпространство в V_i , на котором оператор ϕ имеет λ единственным собственным значением.

Доказательство.

 $V^{\lambda}\subset U$ — такое подпр-во \Rightarrow кратность λ больше $\mathrm{alg}(\lambda)\Rightarrow\perp$

2.3 Нильпотентные операторы

Определение 2.4. $\phi \colon V \to V$ — называется нильпотентным, если

$$\exists k \in \mathbb{N} \colon \phi^k = 0$$

Наименьшее k, для которого выполняется это условие называется **индексом нильпотнентности** ϕ

Пример. V^{λ} , $\exists m : \forall x \in V^{\lambda} \Rightarrow (\phi - \lambda id)^m(x) = 0$

$$\Rightarrow \phi - \lambda id -$$
 нильпонтен на V^{λ}

Вопрос: какие бывают собств. знач. у нильп. оператора?

$$\phi(x) = \lambda x \Rightarrow \phi^k(x) = \lambda^k x = 0 \Rightarrow \lambda = 0$$

<u>Замечание</u>. Всякий нильпотентным оператор не имеет собственных значений, кроме 0.

Определение 2.5. Пусть ϕ — нильпотентный оператор с инд. нильпотентности k, тогда

$$\exists x \in V : \phi^k(x) = 0, \phi^{k-1}(x) \neq 0$$

Тогда лин. оболочка:

$$U = \langle x, \phi(x), \dots, \phi^{k-1}(x) \rangle$$

называется **циклическим пространством** для ϕ , порожд. вектором x.

<u>Замечание</u>. *Циклическое пространство инв. отн-но* ϕ .

Утверждение 2.4. Векторы $x, \phi(x), \dots, \phi^{k-1}(x)$ образуют базис цикл. nodnp-ва U:

Доказательство. Проверим ЛНЗ. От прот.:

$$\alpha_0 x + \alpha_1 \phi(x) + \ldots + \alpha_{k-1} \phi^{k-1}(x) = 0$$

Пусть α_j — лидер (т. е. не равен 0, но для $i < j \ \alpha_i = 0$). Умножим рав-во на ϕ^{k-1-j}

$$\alpha_j \phi^{k-1}(x) + \phi_{j+1} \underbrace{\phi^k(x)}_0 + \underbrace{\dots}_0 = 0 \Rightarrow \alpha_j = 0 \Rightarrow \bot$$

$$\frac{\phi^{k-1}(x)}{e_1}, \underbrace{\phi^{k-2}(x)}_{e_2}, \dots, \underbrace{x}_{e_k}$$

$$\phi(e_1) = 0$$

$$\phi(e_2) = e_1$$

$$\phi(e_k) = e_{k-1}$$

$$A_{\phi}^e = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix} = J_k(0)$$

$$\begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda \end{pmatrix} = J_k(\lambda)$$

Теорема 2.5. (О нильпотентном операторе) $\phi: V \to V$ — нильпотентный оператора (инд. нильпотнентности = k). Пусть x — вектор высоты k, m. e.

$$\phi^{k}(x) = 0, \phi^{k-1}(x) \neq 0$$

$$U = \langle x, \phi(x), \dots, \phi^{k-1}(x) \rangle$$

Tогда в V найдётся W-дополнительное к U ϕ инвариантное подпр-во.

$$V = U \oplus W$$

Доказательство. Идея:

$$\begin{cases} U \cap W = \{0\} \\ V = U + W \end{cases}$$

Первому условию (и ϕ инвариатности) удовлетворяет $\{0\}$. Далее надо выбрать максимальное по размерности ϕ инвариатное подпространство, удовл. этому условию. Пусть W — такое подпр-во. Покажем, что если второе условие не удовл., то всегда существует большее подпространство.

а) Пусть для W, макс. размерность, не выполняется второе условие, т. е. $U+W< V\iff \exists a\in V,$ т. ч. $a\not\in U+W.$

$$< a, \phi(a), \phi^2(a), \dots, \underbrace{\phi^k(a)}_{0 \in U+W} >$$

Пусть $z \notin U + W$, а $\phi(z) \in U + W$:

$$\phi(z) = \underbrace{\sum_{s=0}^{k-1} \alpha_s \phi^s(x)}_{\in U} + \underbrace{w}_{\in W}$$