A. P. M. E. P.

10 points

Lors de l'étude des signaux, on rencontre des signaux de type créneau qui sont modélisés par des fonctions en escalier.

Soit la fonction f paire et périodique de période 2π définie de la façon suivante :

$$\begin{cases} f(t) = 2\pi & \text{lorsque} \quad 0 \leqslant t < \frac{\pi}{4} \\ f(t) = 3\pi & \text{lorsque} \quad \frac{\pi}{4} \leqslant t < \frac{3\pi}{4} \\ f(t) = 0 & \text{lorsque} \quad \frac{3\pi}{4} \leqslant t < \pi \end{cases}$$

Partie A. Étude de la fonction

- 1. Tracer une représentation de la fonction f sur l'intervalle $[-\pi\,;3\pi]$ dans le repère figurant dans le document réponse 1.
- 2. Calculer $\int_0^{\pi} f(t) dt$.
- 3. En déduire la valeur moyenne $\mu(f)$ de f sur une période. On rappelle que : $\mu(f)=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\,dt$.

n rappelle que :
$$\mu(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$$
.

Partie B. Série de Fourier associée à la fonction $\,f\,$

On rappelle que la série de Fourier associée à une fonction T-périodique continue par morceaux sur \mathbb{R} est

$$s(t) = a_0 + \sum_{n \ge 1} (a_n \cos(n\omega t) + b_n \sin(n\omega t), \text{ avec } \omega = \frac{2\pi}{\mathrm{T}}.$$

 a_0 est la valeur moyenne de la fonction sur une période. La fonction f étant paire, les coefficients b_n sont nuls et pour les entiers non nuls n les coefficients a_n vérifient : $a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega t) \, \mathrm{d}t$.

- 1. Montrer que pour les entiers n non nuls : $a_n = \frac{2}{n} \left[3 \sin \left(\frac{3n\pi}{4} \right) \sin \left(\frac{n\pi}{4} \right) \right]$.
- 2. Exprimer simplement a_1 et a_2 puis compléter le tableau du document ré-
- **3.** On appelle somme partielle d'ordre n de la série de Fourier de la fonction f, la fonction s_n telle que : $s_n(t) = a_0 + \sum_{k=1}^n (a_k \cos(k\omega t) + b_k \sin(k\omega t))$.
- ${\bf b.} \;$ Les sommes partielles d'ordres 2 et 11 de la série de Fourier de font été **a.** Écrire la somme partielle d'ordre 7 de la série de Fourier de la fonction f .
- représentées sur le graphique donné dans le document réponse 1, l'une Qu'observe-t-on si on compare ces représentations à celle de la fonction

Indiquer à quelle somme partielle correspond chaque courbe du graphique

Brevet de technicien supérieur

A. P. M. E. P.

Partie C. Puissance moyenne du signal sur l'intervalle $[0\,;2\pi]$

1. Montrer que:
$$\frac{1}{2\pi} \int_0^{2\pi} (f(t))^2 dt = \frac{11}{2} \pi^2$$
.

2. On pose:
$$p(n) = a_0^2 + \frac{1}{2} \sum_{k=1}^{n} (a_k^2 + b_k^2)$$
.

a. Calculer p(9). Arrondir la réponse au millième.

b. Montrer que si on prend p(9) comme valeur approchée de $\frac{1}{2\pi} \int_0^{2\pi} (f(t))^2 dt$ on commet une erreur inférieure à 3 %.

On étudie un système chargé de réguler la variation de pression à l'intérieur d'un

On choisit une échelle dans laquelle la valeur initiale de la pression est prise en origine et la valeur à atteindre vaut 1

On rappelle que la fonction échelon unité, notée ${\cal U}$, est définie par :

$$\begin{cases} U(t) &= 0 \text{ lorsque } t < 0 \\ U(t) &= 1 \text{ lorsque } t \geqslant 0. \end{cases}$$

On donne un extrait de formulaire pour la transformation de Laplace :

Fonction causale	Transformée de Laplace
$t \mapsto U(t-\alpha)$, avec α constante réelle	$p \longmapsto \frac{1}{p} e^{-\alpha p}$
$t \longrightarrow e^{-at} \sin(\omega t) U(t)$, avec ω constante réelle $p \longrightarrow 0$	$p \longrightarrow \frac{\omega}{(p+a)^2 + \omega^2}$
$t \longrightarrow e^{-at}\cos(\omega t)U(t)$, avec ω constante réelle $p \longrightarrow 0$	$p \longrightarrow \frac{p+a}{(p+a)^2 + \omega^2}$

$p \longrightarrow F(p)$	Ile $p \mapsto F(p)e^{-\alpha p}$	$p \mapsto pF(p) - f(0^+)$	$p \longmapsto p^2 F(p) - p f(0^+) - f'(0^+)$
$t \longrightarrow f(t)U(t)$	$t \mapsto f(t-a)U(t-a)$, avec a constante réelle	$t \longrightarrow f'(t)U(t)$	$t \longrightarrow f''(t)U(t)$

Partie A: Première commande

À l'instant t=0, on commande le passage de la pression initiale (0 dans l'échelle choisie) à la pression souhaitée (1 dans l'échelle choisie).

La pression à l'instant t à l'intérieur du caisson (dans l'échelle choisie) est modélisée par une fonction s qui vérifie :

$$\frac{1}{101}s''(t) + \frac{2}{101}s'(t) + s(t) = U(t)$$
 (1)

On admet de plus que : s'(0) = 0. On note S la transformée de Laplace de la fonction s.

La pression initiale valant 0 dans l'échelle choisie, on a : s(0) = 0.

1. a. En appliquant la transformation de Laplace aux deux membres de l'égal101lité (1) ci-dessus, montrer que : $S(p) = \frac{p(p^2 + 2p + 101)}{p(p^2 + 2p + 101)}$

b. À l'aide d'un logiciel de calcul formel, on a obtenu :

1 ElémentsSimples [101/ (
$$p(p^2 + 2p + 101)$$
)]
 $\rightarrow \frac{1}{p} + \frac{-p - 2}{p^2 + 2p + 101}$
2 FormeCanonique [$p^2 + 2p + 101$]
 $\rightarrow (p + 1)^2 + 100$

Nouvelle-Calédonie Groupe A

9 novembre 2015

En déduire que :
$$S(p) = \frac{1}{p} - \frac{p+1}{(p+1)^2 + 10^2} - \frac{1}{(p+1)^2 + 10^2}$$
.

 ${\bf c}.$ Montrer que pour tout réel positif ou nul t :

$$s(t) = 1 - \left[\cos(10t) + \frac{1}{10}\sin(10t)\right] e^{-t}.$$

- 2. Montrer que pour tout réel positif ou nul $t: s'(t) = \frac{101}{10} \sin(10t)e^{-t}$.
- **3.** On note f la fonction définie sur l'intervalle $[0; +\infty[$ par : $f(t) = \sin(10t)$.
- **a.** Montrer que f est périodique de période $\frac{2\pi}{10}$.
 - b. Recopier et compléter le tableau suivant:

t	$0 \frac{\pi}{10}$	$\frac{2\pi}{10}$	_
Signe de $f(t) = \sin(10t)$			
Sens de variation de s			

4. Les maximums relatifs successifs de la courbe représentant la fonction s ont pour coordonnées $\left(\frac{\pi}{10} + \frac{k\pi}{5}; 1 + e^{-\left(\frac{\pi}{10} + \frac{k\pi}{5}\right)}\right)$, avec k entier naturel.

On pose pour tout entier naturel k: $m_k = 1 + e^{-\left(\frac{\pi}{10} + \frac{k\pi}{5}\right)}$

- a. Compléter le tableau de valeurs donné dans le document réponse 2.
- **b.** On considère que l'équilibre du système est atteint dès qu'un maximum de la courbe représentant la fonction s a une ordonnée m_k inférieure ou

Sachant que l'unité de temps est la seconde, combien de temps faut-il pour que l'équilibre soit atteint? Arrondir au centième.

Partie B: Modification de la commande

On souhaite réduire l'amplitude des variations de la pression à l'intérieur du caisson ment l'équilibre du système. Pour cela, on commande l' augmentation de pression pendant le passage de la valeur initiale à la valeur souhaitée et atteindre plus rapideà l'intérieur du caisson en deux temps.

À l'instant t=0, on demande le passage de 0 à 0,5 (dans l'échelle choisie) puis, à l'instant $t=\frac{\pi}{10}$, on demande le passage de 0,5 à 1. La pression à l'instant t à l'intérieur du caisson (dans l'échelle choisie) est alors modélisée par une fonction r qui, sauf en $\frac{\pi}{10}$, vérifie :

$$\frac{1}{101}r''(t) + \frac{2}{101}r'(t) + r(t) = \frac{1}{2}U(t) + \frac{1}{2}U\left(t - \frac{\pi}{10}\right). \tag{2}$$

De plus r(0) = 0 et on admet que r'(0) = 0.

1. On note R la transformée de Laplace de la fonction r. Montrer que :

$$R(p) = \frac{1}{2} \frac{101}{p \left(p^2 + 2p + 101 \right)} \left(1 + e^{-\frac{\pi}{10}p} \right).$$

- 2. En déduire que : $r(t) = \frac{1}{2} s(t) U(t) + \frac{1}{2} s \left(t \frac{\pi}{10}\right) U\left(t \frac{\pi}{10}\right)$.

 3. On admet que la courbe de la fonction r présente des maximums relatifs suc-
- cessifs d'abscisses $\frac{\pi}{5} + \frac{k\pi}{5}$ et d'ordonnées $n_k = 1 + \frac{1 e^{-\frac{10}{10}}}{2} e^{-\frac{\pi}{10} \frac{k\pi}{5}}$, avec k entier naturel non nul.

On donne dans le **document réponse 2** les premières valeurs de n_k .

9 novembre 2015

Nouvelle-Calédonie Groupe A

Brevet de technicien supérieur

A. P. M. E. P.

- \mathbf{a} . La fonction s étudiée dans la **Partie A** et la fonction r sont représentées sur le graphique du document réponse 2.
 - Indiquer sur le graphique la fonction représentée par chaque courbe.
- b. La commande en deux temps étudiée dans la Partie B répond-elle aux objectifs que l'on s'était fixés? Justifier.

Nouvelle-Calédonie Groupe A

9 novembre 2015

Brevet de technicien supérieur

9 novembre 2015

Document réponse 1 à rendre avec la copie

Partie A question 1

Partie B question 2

n	0	1	2	က	4	2	9	7	æ	6	
valeur exacte de a_n	2π			$\frac{2\sqrt{2}}{3}$	0	$-\frac{2\sqrt{2}}{5}$	418	$-\frac{2\sqrt{2}}{7}$	0	$\frac{2\sqrt{2}}{9}$	

Partie B question 3

Document réponse 2 à rendre avec la copie

Partie A question 4. a.

k	0	1	2	3	4	2	9	2
valeur arrondie au			000 1					
millième de m_k			1,200					

Partie B question 3.

k	1	2	3	4	5	9	7
valeur arrondie au	1 052	1 000	1 015	1 000	1 004	1 000	1001
millième de n_k	1,033	1,020	010,1	1,000	1,004	1,002	1,001

