Bookdown-dokumetti - testi 1

Jussi Hirvonen 2018-10-26 (Versio 3.03)

Sisältö

1	Bookdown-paketin testidokumentti	5
2	Johdanto2.1 Alkutoimia2.2 Tärkeimmät ohjelmistot2.3 Muutoksia ja tilannetietoja	7
3	Kaavat ja matemattiset merkinnät 3.1 Kahden luokittelumuuttuja taulukko	(
4	Taulukot ja kuvat 4.1 Taulukoita	12
5	Bookdown ja Rmarkdown	17

4 SISÄLTÖ

Bookdown-paketin testidokumentti

Esimerkki Rmarkdownin ja bookdown-paketin käytöstä. Kuvat, taulukot ja kaavat numeroidaan ja niihin voi viitata tekstissä. Lähdeviitteet toimivat, myös ne joissa on ns.

A sample document using RMarkdown with bookdown-package to do statistical analysis and publish a report in html and pdf formats.

Johdanto

2.1 Alkutoimia

Ero YAML-headerissa lang-parametri (lang: fi). (verrattuna bookdown-demoon). Bookdown-demossa lisäksi output: pdf_document, mutta lienee tarpeeton kun kaksi outputformaattia annettu output.yaml-tiedostossa

20.7.2018 poistetaan tästä dokkarista child-item - jutut. Jätetään r-pakettien lataus.

Bookdown - formaatissa "juuritiedoston" indexBD.Rmd tekstit eivät tulostu jos siellä ei ole luvun (chapter) aloittavaa ensimmäisen tason otsikkoa.Siellä on YAML-headeri (metadata).

Lisää YAML-parametreja voi antaa tiedostoissa _bookdown.yml ja _output.yml. Nämä lienee välittyvät Pandocille?

Bookdown - demon esimerkkitiedostot ovat nämä:

ouput.yml (huomaa, että $_$ - merkki jätetty pois!) (tässä oli bookdown-demo-paketin yml-tiedostot, poistin 3.7.2018)

2.2 Tärkeimmät ohjelmistot

```
system("pdflatex --version")
#getwd()
rmarkdown::pandoc_version()
```

[1] '2.2.1'

Viimeinen rivi kertoo pandoc-version.

2.3 Muutoksia ja tilannetietoja

Nyt toimii gitbook ¹ ja pdf_book tulostusformaatteina. Molemmat ovat html-paketteja, ja tarvitsevat ehkä r-datahakemistosta (omalta koneelta) libs-hakemiston jQuery- ja Gitbook-paketit (javaskriptiä ja css-tyylitiedostoja).

Bookdown-tulostuksessa voisi käyttää "one document" - optioita (funktioita)?

 $^{^{1}}$ Virheilmoitukset ovat aika hyödyttömiä. Niiden sijaan tähän alkuun sopisi kuvaus perusideoista ja tekstin muotoiluista. Alaviitteistä esimerkiksi.

8 LUKU 2. JOHDANTO

3.7.2018 PDF-tulostuksen säätöä, nyt saadaan jo virheilmoituksiakin! Piti tallentaa utf-8 - muodossa kertaalleen. Tulostus kaatuu valituksiin puuttuvista \$-merkeistä kaavoissa (test_kaavat1.rmd). TeX-tiedoston voi kääntää PDF:ksi, mutta kaavat sekaisin ja paljon muutakin. Esim. sisällysluettelo.

Merkistöt olivat pielessä (ei utf-8!), ja samoin test1_preamble.tex -tiedosto. Laitoin kuntoon, nyt asiallinen virheilmoitus:

! LaTeX Error: Two documents or documents tyle commands.

Error: Failed to compile indexBD.tex. See indexBD.log for more info. Execution halted Poistetaan test1_preambe.tex eka rivi kokonaan: % documentclass[12pt,a4paper,leqno] (alusta puuttuu takakeno) % dispositiopaperista, poistettiin ekalta riviltä {article} Lisäksi usepackage[utf8]{inputenc}.

LaTeX Font Info: Redeclaring font encoding T1 on input line 48.))

! LaTeX Error: Option clash for package babel.

Palautetaan eka rivi, documeteclass {book}. Taas virheilmoitus ! LaTeX Error: Two documentclass or documentstyle commands. Poistetaan eka rivi. Ja sama virheilmoitus "option clash".

Pahin virhe: equation-tägien välissä ei saa olla tyhjiä rivejä! Ongelmia on myös lähdeluettelon aakkostuksessa, Å-ä- ö näyttävät aakkostuvan kuten A, a ja o. Pitää testailla vielä.

Kaavat ja matemattiset merkinnät

Kaavat on esitettävä bookdown-paketin määrityksillä. Viittausnimien on oltava yksikäsitteisiä koko dokumentissa, jos käytetään "merge and knit" menetelmää. Jos taas jokainen lapsidokumentti on "itsenäinen" ("knit and merge"), tämä koskee vain kyseistä dokumenttia (kts. Bookdown - webkirja).

3.1 Kahden luokittelumuuttuja taulukko

Kahden luokittelumuuttujan riippuvuutta voidaan testata χ^2 - testillä. Testisuure saadaan laskemalla yhteen jokaisen solun havaittujen ja odotetettujen (riippumattomuushypoteesi) frekvenssien erotukset muodossa

$$\chi^2 = \frac{(havaittu - odotettu)^2}{odotettu} \tag{3.1}$$

Tämä voidaan esittää ca:han sopivammalla tavalla parilla muunnoksella, jolloin saamme riveittäin vastaavat termit rivisummalla painotettuna:

$$rivisumma \times \frac{(havaittu\ riviprofiili - odotettu\ riviprofiili)^2}{odotettu\ riviprofiili}$$
 (3.2)

Kun jaamme nämä tekijät havaintojen kokonaismäärällä n, rivisumma muuntuu rivin massaksi, ja niiden summa muotoon $\frac{\chi^2}{n}$.

$$\frac{\chi^2}{n} = \phi^2 \tag{3.3}$$

Tunnusluku ϕ^2 on korrespondenssianalyysissä kokonaisinertia (total inertia). Se kuvaa, kuinka paljon varianssia taulukossa on ja on riippumaton havaintojen lukumäärästä. Tilastotieteessä tunnusluvulla on useita vaihtoehtoisia nimiä (esim. mean square contingency coefficient), ja sen neliöjuurta kutsutaan ϕ - kertoimeksi.

Tässä siirrytään kahden luokittelumuuttujan taulukosta suhteellisten frekvenssien taulukkoon, ja pieni pohdinta taulukoista yleensä olisi paikallaan. Yhtälöihin voi viitata (3.1) . Kokeillaan vielä, toimivatko kirjallisuusviittet, kuten tärkeä lähde(Greenacre, 2017).

Taulukot ja kuvat

Tähän taulukoita ja kuvia, esimerkkiaineistoilla.

Kirjallisuutta on myös (Roux and Rouanet, 2004), ja (Greenacre and Hastie, 1987) esittelee geometrisen tulkinnan peruskäsitteet yksinkertaisen kahden luokittelumuuttujan korrespondenssianalyysin avaulla. Mitenköhän skandit toimivat lähteissä, bib-tiedostossa on niitä myös escape-muodossa (katso esim. (Älli Åhlgren, 1994), kritiikkiä on esittänyt (Ahlgren, 1994))

Viitteet saa tulostusasetuksilla yhdelle sivulle, oletuksena on viitteiden esittäminen jokaisen sivun alareunassa.

4.1 Taulukoita

Tästä poistettu koodilohko data_1, ei tarvita jos ca-paketti on ladattu. Ja alaviiva on aikanakin ref-labeleissa kielletty. Koodilohkojen nimissä taitaa olla sallittu?

Taulukot tulostetaan funktiolla knitr::kable(). Taulukko numeroidaan ja se saa automaattisesti labelin etutunnisteella 'tab', ja siihen liitetään chunk-label (esim alla tab:smoketable1).

Tämä koodipätkä ei antaa yhden kappaleen esikatselussa virheilmoituksen, "smoke"-dataa ei löydy.

```
knitr::kable(smoke[,1:4], booktabs = TRUE,
    caption = 'CA-paketin smoke-data (keinotekoinen)'
)
# Taulukkoon viittaaminen tekstissä \@ref(label)
```

Taulukossa 4.1 on kahden luokittelumuuttujan keinotekoinen esimerkkiaineisto tupakonnin määrästä henkilöstöryhmittäin (SM = senior managemet, JM = junior management, SE ja JE vastaavasti ryhmälle employee, SC = secretary).

Taulukko 4.1: CA-paketin smoke-data (keinotekoinen)

	none	light	medium	heavy
SM	4	2	3	2
$_{ m JM}$	4	3	7	4
SE	25	10	12	4
$_{ m JE}$	18	24	33	13
SC	10	6	7	2

	none	light	medium	heavy	none	light	medium	heavy
SM	0.364	0.182	0.273	0.182	0.316	0.233	0.321	0.13
$_{ m JM}$	0.222	0.167	0.389	0.222	-			
$_{ m SE}$	0.490	0.196	0.235	0.078				
$_{ m JE}$	0.205	0.273	0.375	0.148				
SC	0.400	0.240	0.280	0.080				

Taulukko 4.2: Riviprofiilit ja keskiarvoprofiili

Useampi taulukko saadaan taulukkoympäristöön (table environment) yhdistämällä data-objektit listaksi.

```
# riviprofitlit
smoke.rpro <- smoke / rowSums (smoke)
# keskiarvoprofitli
smoke.avrpro <- colSums(smoke) / sum(smoke)
knitr::kable(
  list(smoke.rpro, t(smoke.avrpro) ), digits = 3,
  caption = 'Riviprofitlit ja keskiarvoprofitli', booktabs = TRUE
)</pre>
```

Taulukossa 4.2 on laskettu jokaisen rivin riviprofiilit. Ne saadan kun rivin luvut jaetaan rivin summalla. Yhden rivin taulukossa on esitetty riviprofiilien keskikarvo, sarakesummat jaettuna koko taulukon havaintojen lukumäärällä. Sen prosenttiluvut kertovat tupakoititapojen jakauman koko henkilöstössä.

Jos PDF-tulostuksessa ei haluta ns. kelluvaa taulukkoa (float), voi kable-funktiossa käyttää LaTeXin pakettia longtable. Silloin on myös muistettava ottaa paketti käyttöön (usepackage{}) LaTeX - pohjatiedostossa (preamble).

Pandoc tukee monia Markdownin taulukkotyyppejä. Viittaaminen vaaati labeloidun otsikon, ja sen on oltava otsikkotestin alussa määrämuotoisena (esim. ab:hienotaulu). Tämä vaatii tarkkuutta, jos taulukon pitää toimia html- ja LaTex-outputissa. kable-funktiota kannattaa käyttää!

4.2 Korrespondenssianalyysin numeeriset tulokset taulukoina

Korrespondenssianalyysin idea on vähentää aineiston dimensioita, ja esittää taulukon rivien ja sarakkeiden riippuvuudet yleensä kaksiulotteisena karttana.

```
smokeCA <- ca(smoke)
temp1 <- smokeCA
numres1CA1 <- summary(smokeCA)
#str(smokeCA)
#knitr::kable( smokeCA,
# digits = 3,
# caption = 'Riviprofilit ja keskiarvoprofili', booktabs = TRUE
#)
#str(temp1)
#stargazer(temp2$rows, type = "text", title = "CA-tuloksia")
# LateX-tulostuksessa float vaatii jotain tällaista:Table: (\#tab:cataul1)
#str(temp2)
#str(temp2$scree)
#temp2$scree</pre>
```

Taulukot ovatkin aika vaikeita, tulostiedoista! Stargazer toki tekee monenlaista, mutta kun kyse on hyvin

Taulukko 4.3: Korrespondenssianalyysin diagnostiikkaa - rivit

name	mass	qlt	inr	k=1	cor	ctr	k=2	cor	ctr
SM	57	893	31	-66	92	3	-194	800	214
$_{ m JM}$	93	991	139	259	526	84	-243	465	551
SE	264	1000	450	-381	999	512	-11	1	3
$_{ m JE}$	456	1000	308	233	942	331	58	58	152
SC	130	999	71	-201	865	70	79	133	81

Taulukko 4.4: Korrespondenssianalyysin diagnostiikkaa - sarakkeet

name	mass	qlt	inr	k=1	cor	ctr	k=2	cor	ctr
none	316	1000	577	-393	994	654	-30	6	29
lght	233	984	83	99	327	31	141	657	463
medm	321	983	148	196	982	166	7	1	2
hevy	130	995	192	294	684	150	-198	310	506

yksinkertaisista tulostaulukoista kablen pitäisi toimia.

Kokeillaan summary(smokeCA) - listan dataframe-olioden tulostusta kablella. Voisi harkita funktiota, joka poimii CA:n tuloslistasta sopivat objektit kable-funktiolle? Stargazer taas vaatisi (luultavasti) jonkun ehdollisen tulostuksen (PDF ja html)?

```
knitr::kable( numres1CA1$rows,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - rivit', booktabs = TRUE
)
```

Rivien ja sarakkeiden diagnotiikkataulukot eivät mahdu rinnakkain, siksi ne tulostetaan erikseen.

Taulukoiden 4.3 ja 4.4 luvut on kerrottu tuhannella ("per milles").

Dimensioiden ominaisarvot (eli niiden osuus kokonaisinertiasta) saadaan ca-funktion tuloslistasta taulukoksi. Se esitetään joskus myös ns. scree - kuvana, jos dimensoita on paljon ja joudutaan pohtimaan kuinka monta valitaan (vaikea kysymys!).

Taulukko 4.5: Korrespondenssianalyysin diagnostiikkaa - ominaisarvot

	values	values2	values3
1	0.075	87.756	87.756
2	0.010	11.759	99.515
3	0.000	0.485	100.000

Taulukko 4.5 vaatii selityksen, mutta kuvaa ei tässä tapauksessa tarvita.

4.3 Kuvat

chunk-optiot

fig.cap: R plot - kuvat figure-ympäristöön, automaattiset labelit (fig: + koodipätkän label) ja niihin voi viitata.

fig.asp oikeaan arvoon 1.

plot(smokeCA)

Kuviin (kuten 4.1) ja taulukoihin voi viitata tekstissä. Kuvan otsikko tulostuu kuvan alapuolelle, ehkä vähän huono idea?

Näköjään stargazer-kokeilu tulostusoptiolla "html" loi R-projektihakemistoon kansion ja sinne png-kuvan. finnish.ldf tiedoston muokkaus MikTeX:ssä tehty, mutta se ei vaikuta html-viiteotsikkoon. Korjattu "ehdollisessa viitesivussa" viitteet.Rmd jossa html-viiteluettelon otsikko annetaan.

Saisiko numeeristen tulosten scree-kuvan samalla tavalla kuvaksi?

4.3. KUVAT 15

Kuva 4.1: CA-kartta

Bookdown ja Rmarkdown

Bookdown- R-paketti "paketoi" RMarkdownin tulostutoiminnot (output) ja sen monet säädettävät optiot. Samat Rmd-dokumentit saadaan koottua moneen eri formaattiin: html- sivuiksi, PDF-dokumentiksi tai Ebook-kirjaksi. Kaikissa tulostusvaihtoehdoissa on monia eri vaihtoehtoja. Html-tulostuksessa voi valita yhden tai useamman html-sivun lisäksi gitbook- tai Tufte- vaihtoehdon. Ne on toteutettu css-tyylitiedostoilla ja JavaScript-kirjastoilla. Tässä on käytetty gitbook-formaattia.

LaTeX-formaatti renderöidään jollain LaTeX-vaihtoehdolla PDF-tiedostoksi. **ToDo** PDF-formaattejakin on useita variantteja, mikä niistä. Tässä vaihtoehdossa konfigurointimahdollisuudet ovat käytännössä rajattomat, sillä välitulosteena syntyvää TeX-tiedostoa voi muokata ja muuntaa sen sitten PDF-muotoon.

Prosessissa on monta vaihtetta, ja eri parametrien yhteisvaikutusta on vaikea hahmottaa.

```
knitr::include graphics('BookdownProc.png')
```

Perusopas bookdown paketin käyttöön on Yihui Xien "bookdown: Authoring Books and Technical Documents with R Markdown". Siinä pääidea on tuottaa yhdellä Rmd-koodilla kuvan ?? kolme vaihtoehtoista tulostiedostoa mahdollisimman yksinkertaisesti. Knitr- ohjelma "kutoo" Rmd-tiedoston r-koodilohkojen tulokset ja tekstin markdown-tiedostoksi (md). Rmd-tiedostojen YAML-asetukset siirtyvät Pandocille, joka täydentää niillä omia mallitiedostojaan (template).

Laajempi ja tarkempi opas ilmestyi 15.7.2018, kolmen kirjoittajan "R Markdown: The Definitive Guide". Siinä eri asetusten hierarkia on kuvattu tarkemmin ja selkeämmin. Tulostusvaihtoehtoja esitellään laajemmin, bookdown on vain yksi luku.

R Studiolla alkuun pääse helposti, kun lataa bookdown-paketin, ja luo uuden bookdown-projektin. Xien ensimmäisen kirjan alku-luvut ja uudemman teoksen johdattelut auttavat jatkoon.

Windows-ympäristössä (Windows 10) MikTeXin kanssa voi tulla ongelmia, jos käytät konetta tavallisen käyttäjän oikeuksilla. Bookdown-paketin kanssa on kätevää käyttää tinytex - r-pakettia, ja konfiguroida oman koneen MikTeX - asennus asentamaan tarvittavat paketit "lennossa". Peruskäyttäjän omat paketit voivat

Kuva 5.1: Tulostiedoston prosessointi - png

Kuva 5.2: Tulostiedoston prosessointi - pdf

vaatia päivitystä, mutta oikeudet eivät riitä. Pulman voi ratkaista, kun käynnistää MikTeXin paketinhallintasovelluksen (jolla on monta nimeä, admin console jne) peruskäyttäjänä, ja katsoo mitä päivityksiä on tarjolla. Nämä paketit voi sitten asentaa admin-oikeuksilla.

Kokeillaan vielä PDF-kuvan liittämistä dokumenttiin. Ei näy html-tulosteessa.

```
knitr::include_graphics('BookdownProc.pdf')
```

Testataan koodilohkojen listausta, näyttää toimivan mutta vaatii vielä säätämistä. Ohje löytyi Yihui Xienin blogista (luettu 26.10.2018).

```
#pitääkö kirjastot ladata tässä, vai jokaisen rmd-tiedoston alussa?
library(rgl)
library(ca)
library(haven)
library(dplyr)
library(knitr)
library(tidyverse)
library(lubridate)
library(rmarkdown)
library(ggplot2)
library(furniture)
library(likert)
library(scales) # G_1_2 - kuva
library(reshape2) # G_1_2 - kuva
library(printr) #19.5.18 taulukoiden ja matriisien tulostukseen
library(stargazer) # 28.5.2018 taulukoiden yms. tulostietojen siistiin tulostukseen
library(bookdown)
library(tinytex)
system("pdflatex --version")
#getwd()
rmarkdown::pandoc_version()
knitr::kable(smoke[,1:4], booktabs = TRUE,
  caption = 'CA-paketin smoke-data (keinotekoinen)'
)
# Taulukkoon viittaaminen tekstissä \@ref(label)
# riviprofillit
smoke.rpro <- smoke / rowSums (smoke)</pre>
# keskiarvoprofiili
smoke.avrpro <- colSums(smoke) / sum(smoke)</pre>
knitr::kable(
  list(smoke.rpro, t(smoke.avrpro)
                                      ), digits = 3,
caption = 'Riviprofiilit ja keskiarvoprofiili', booktabs = TRUE
```

```
smokeCA <- ca(smoke)</pre>
temp1 <- smokeCA
numres1CA1 <- summary(smokeCA)</pre>
#str(smokeCA)
#knitr::kable( smokeCA,
# digits = 3,
# caption = 'Riviprofiilit ja keskiarvoprofiili', booktabs = TRUE
#str(temp1)
#stargazer(temp2$rows, type = "text", title = "CA-tuloksia")
# LateX-tulostuksessa float vaatii jotain tällaista:Table: (\#tab:cataul1)
#str(temp2)
#str(temp2$scree)
#temp2$scree
knitr::kable( numres1CA1$rows,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - rivit', booktabs = TRUE
)
knitr::kable( numres1CA1$columns,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - sarakkeet', booktabs = TRUE
)
knitr::kable( numres1CA1$scree,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - ominaisarvot', booktabs = TRUE
plot(smokeCA)
str(numres1CA1$scree)
test2 <- as.table(numres1CA1$scree)</pre>
#str(test1$V1)
str(test2)
test2[[dimnames]]
# Vielä kokeilua!
knitr::include_graphics('BookdownProc.png')
knitr::include_graphics('BookdownProc.pdf')
```

[&]quot;New line" vaaditaan koodilohkon jälkeen.

Lähteet

- Ahlgren, A. (1994). Öljyntuotanto Hämeessä outo idea. Kluwer Academic Publishers, Dordrecht.
- Greenacre, M. and Hastie, T. (1987). The geometric interpretation of correspondence analysis. *Journal of the American Statistical Association*, 82(398):437–447. doi: 10.1080/01621459.1987.10478446.
- Greenacre, M. J. (2017). Correspondence analysis in practice. CRC Press, Boca Raton, Florida, third edition edition.
- Älli Åhlgren (1994). Öljyntuotanto Hämeessä. Kluwer Academic Publishers, Dordrecht.
- Roux, B. L. and Rouanet, H. (2004). Geometric data analysis: from correspondence analysis to structured data analysis. Kluwer Academic Publishers, Dordrecht.