

Deep Dive: Which LPWAN Technology is Right for IoT?

Kannan D.R. - CEO

Dave Sheehan - Strategic Marketing Director

Connectivity Use Cases in IoT

Diverse use cases and solutions that encompass competing requirements:

- Bandwidth
- Latency
- Power Use (Battery)
- Remoteness
- Reliability
- Device to device
- Device to cloud
- Cloud to device

Remote Sensor

Personal Area Network

Mobile Devices

Ethernet WiFi

Connectivity Options for IoT

Existing Technologies

strongly address shortrange and long-range, high-power cases

Business Cases

many long-range technologies are expensive and only use public networks

IoT Technologies

optimized for their task communication aspects must be, too

Short Range High Speed

- Ethernet
- Wi-Fi

Short Range Moderate Speed

- 802.15.4
- ZigBee
- ZWave
- Bluetooth
- Thread

Long Range High Power

- Cellular
- Satellite
- Microwave

Long Range Low Power

Supplemental Selection Factors

Usage Models/Licensing

- SIGFOX Required to utilize their public network
- LoRa Proprietary physical layer but open MAC
- Weightless Entirely open

Regional Regulatory Differences

- Example: In Europe, an 868 MHz ISM gateway cannot transmit more than 10% of the time.
- Example: LoRaWAN in Japan/Korea require use of the 433 MHz band with specific spacing requirements

Upstream/Downstream Biases

- Example: SIGFOX is nearly entirely upstream so use is typically limited to sensor networks
- Example: LoRaWAN has three device classes supporting different balances of upstream/downstream data

Hardware/Network Availability

LPWAN - Pros/Cons

Pros

- Private and public networks
- MAC & network layers are open
- Good hardware availability
- Flexible for broad uses
- Inexpensive
- Excellent battery life

Cons

- Proprietary PHY layer
- Transceivers only available from Semtech
- High downstream latency

Pros

- Easy/quick product development
- Well capitalized and good network availability
- Inexpensive

Cons

- Must use public network
- Very limited data transfer
- Use is limited and caters to sensor networks, status monitoring, etc.

Pros

- Public and private networks
- Great use of spectrum
- Good hardware availability
- Excellent link budget and performance in varied environments

Pros

- Private and public networks
- Excellent bi-directional communication
- Scalable base stations
- Good bandwidth utilization

Cons

- High latency
- Very low speed
- Less flexibility than LoRa, Weightless

Cons

- Works in crowded 2.4 GHz band
- Higher frequency less penetrable

LPWAN - Pros/Cons

ADAPTRUM

Pros

- Very similar to SIGFOX great for sensor networks
- Good urban range
- Open standard

Pros

- Bi-directional communication
- Variable data rates offer flexibility (200bps-100kbps)
- Open standard

Pros

- Wide channels (5MHz) leads to high data rates (10Mbps)
- Little contention for spectrum
- Great range and signal penetration
- Open standard

Pros

- Supported whitespace technology with good hardware availability
- Flexible to adapt data rates and communication directionality
- Mobile device support

Cons

- Upstream data only
- Very slow (100bps)

Cons

- Limited hardware availability
- Wider channels offer slightly less scalability than Weightless N
- Limited communication range

Cons

- Differing country-specific regulations on use of whitespace
- Slow adoption leads to lower support in the marketplace

Cons

Differing country-specific regulations on use of whitespace

LPWAN - Comparisons

LPWAN - Technology Details

	UNB	UNB	NB	LoRa	NB-Fi	RPMA	OFDM
Implementation	SIGFOX	Weightless-N	Weightless-P	LoRa	WAVIoT	Ingenu	GreenWaves
Frequency Range	Sub-GHz	Sub-GHz	Sub-GHz	Sub-GHz	Sub-GHz	2.4 GHz	2.4 GHz Sub-GHz
Modulation	BPSK	DBPSK	FDMA/TDMA	CSS	DBPSK	DSSS	OFDM
Channel Width	100 Hz	200 Hz	12.5 kHz	125 kHz	100 Hz	1 MHz	-
Typical Range	10-50 km	5 km	2 km	22 km	17 km	4 km	-
Typical Data Rate	100 bps	30-100 kbps	0.2–100 kbps	0.3-50 kbps	10-100 bps	0.0-8 kbps AVIOT, GreenWaves, Weightless SI	1 Mbps G, LoRa Alliance, and EE Journal.

Weightless-N - DBPSK

LoRa - CSS

GreenWaves - OFDM

LPWAN - Looking Toward the Future

OSI Model	Web Request	REST 6LoWPAN	LPWAN				
Layer 7 Application	Web Browser						
Layer 6 Presentation	HTML	REST					
Layer 5 Session	НТТР						
Layer 4 Transport	ТСР	ТСР					
Layer 3 Network	IPv4	IPv6	L o Do MAN				
Layer 2	Ethernet MAC	6LoWPAN	LoRaWAN				
Data Link		802.15.4 MAC	Weightless MAC				
Layer 1 Physical	Ethernet PHY	802.15.4 PHY	LoRa SIGFOX Weightless				

LPWAN - Looking Toward the Future

Thanks!

Kannan D.R. - CEO

Dave Sheehan - Strategic Marketing Director

