15

POLYKETIDE SYNTHASE ENZYMES AND RECOMBINANT DNA CONSTRUCTS THEREFOR

Cross-Reference to Related Applications

The present application claims priority to related U.S. patent application Serial Nos. 60/102,748, filed 2 Oct. 1998; 60/139,650, filed 17 June 1999; and 60/123,810, filed 11 Mar. 1999, each of which is incorporated herein by reference.

Field of the Invention

The present invention relates to polyketides and the polyketide synthase (PKS) enzymes that produce them. The invention also relates generally to genes encoding PKS enzymes and to recombinant host cells containing such genes and in which expression of such genes leads to the production of polyketides. The present invention also relates to compounds useful as medicaments having immunosuppressive and/or neurotrophic activity. Thus, the invention relates to the fields of chemistry, molecular biology, and agricultural, medical, and veterinary technology.

Background of the Invention

Polyketides are a class of compounds synthesized from 2-carbon units through a series of condensations and subsequent modifications. Polyketides occur in many types of organisms, including fungi and mycelial bacteria, in particular, the actinomycetes. Polyketides are biologically active molecules with a wide variety of structures, and the class encompasses numerous compounds with diverse activities. Tetracycline, erythromycin, epothilone, FK-506, FK-520, narbomycin, picromycin, rapamycin, spinocyn, and tylosin are examples of polyketides. Given the difficulty in producing

spinocyn, and tylosin are examples of polyketides. Given the difficulty in producing polyketide compounds by traditional chemical methodology, and the typically low production of polyketides in wild-type cells, there has been considerable interest in finding improved or alternate means to produce polyketide compounds.

10

15

20

25

30

This interest has resulted in the cloning, analysis, and manipulation by recombinant DNA technology of genes that encode PKS enzymes. The resulting technology allows one to manipulate a known PKS gene cluster either to produce the polyketide synthesized by that PKS at higher levels than occur in nature or in hosts that otherwise do not produce the polyketide. The technology also allows one to produce molecules that are structurally related to, but distinct from, the polyketides produced from known PKS gene clusters. See, e.g., PCT publication Nos. WO 93/13663; 95/08548; 96/40968; 97/02358; 98/27203; and 98/49315; United States Patent Nos. 4,874,748; 5,063,155; 5,098,837; 5,149,639; 5,672,491; 5,712,146; 5,830,750; and 5,843,718; and Fu et al., 1994, Biochemistry 33: 9321-9326; McDaniel et al., 1993, Science 262: 1546-1550; and Rohr, 1995, Angew. Chem. Int. Ed. Engl. 34(8): 881-888, each of which is incorporated herein by reference.

Polyketides are synthesized in nature by PKS enzymes. These enzymes, which are complexes of multiple large proteins, are similar to the synthases that catalyze condensation of 2-carbon units in the biosynthesis of fatty acids. PKSs catalyze the biosynthesis of polyketides through repeated, decarboxylative Claisen condensations between acylthioester building blocks. The building blocks used to form complex polyketides are typically acylthioesters, such as acetyl, butyryl, propionyl, malonyl, hydroxymalonyl, methylmalonyl, and ethylmalonyl CoA. Other building blocks include amino acid like acylthioesters. PKS enzymes that incorporate such building blocks include an activity that functions as an amino acid ligase (an AMP ligase) or as a non-ribosomal peptide synthetase (NRPS). Two major types of PKS enzymes are known; these differ in their composition and mode of synthesis of the polyketide synthesized. These two major types of PKS enzymes are commonly referred to as Type I or "modular" and Type II "iterative" PKS enzymes.

In the Type I or modular PKS enzyme group, a set of separate catalytic active sites (each active site is termed a "domain", and a set thereof is termed a "module") exists for each cycle of carbon chain elongation and modification in the polyketide synthesis pathway. The typical modular PKS is composed of several large polypeptides, which can be segregated from amino to carboxy termini into a loading module, multiple extender

10

15

20

25

30

modules, and a releasing (or thioesterase) domain. The PKS enzyme known as 6-deoxyerythronolide B synthase (DEBS) is a Type I PKS. In DEBS, there is a loading module, six extender modules, and a thioesterase (TE) domain. The loading module, six extender modules, and TE of DEBS are present on three separate proteins (designated DEBS-1, DEBS-2, and DEBS-3, with two extender modules per protein). Each of the DEBS polypeptides is encoded by a separate open reading frame (ORF) or gene; these genes are known as *eryAI*, *eryAII*, and *eryAIII*. See Caffrey *et al.*, 1992, *FEBS Letters* 304: 205, and U.S. Patent No. 5,824,513, each of which is incorporated herein by reference.

Generally, the loading module is responsible for binding the first building block used to synthesize the polyketide and transferring it to the first extender module. The loading module of DEBS consists of an acyltransferase (AT) domain and an acyl carrier protein (ACP) domain. Another type of loading module utilizes an inactivated ketosynthase (KS) domain and AT and ACP domains. This inactivated KS is in some instances called KS^Q, where the superscript letter is the abbreviation for the amino acid, glutamine, that is present instead of the active site cysteine required for ketosynthase activity. In other PKS enzymes, including the FK-506 PKS, the loading module incorporates an unusual starter unit and is composed of a CoA ligase like activity domain. In any event, the loading module recognizes a particular acyl-CoA (usually acetyl or propionyl but sometimes butyryl or other acyl-CoA) and transfers it as a thiol ester to the ACP of the loading module.

The AT on each of the extender modules recognizes a particular extender-CoA (malonyl or alpha-substituted malonyl, i.e., methylmalonyl, ethylmalonyl, and 2-hydroxymalonyl) and transfers it to the ACP of that extender module to form a thioester. Each extender module is responsible for accepting a compound from a prior module, binding a building block, attaching the building block to the compound from the prior module, optionally performing one or more additional functions, and transferring the resulting compound to the next module.

Each extender module of a modular PKS contains a KS, AT, ACP, and zero, one, two, or three domains that modify the beta-carbon of the growing polyketide chain. A

10

15

20

25

30

typical (non-loading) minimal Type I PKS extender module is exemplified by extender module three of DEBS, which contains a KS domain, an AT domain, and an ACP domain. These three domains are sufficient to activate a 2-carbon extender unit and attach it to the growing polyketide molecule. The next extender module, in turn, is responsible for attaching the next building block and transferring the growing compound to the next extender module until synthesis is complete.

Once the PKS is primed with acyl- and malonyl-ACPs, the acyl group of the loading module is transferred to form a thiol ester (trans-esterification) at the KS of the first extender module; at this stage, extender module one possesses an acyl-KS and a malonyl (or substituted malonyl) ACP. The acyl group derived from the loading module is then covalently attached to the alpha-carbon of the malonyl group to form a carbon-carbon bond, driven by concomitant decarboxylation, and generating a new acyl-ACP that has a backbone two carbons longer than the loading building block (elongation or extension).

The polyketide chain, growing by two carbons each extender module, is sequentially passed as covalently bound thiol esters from extender module to extender module, in an assembly line-like process. The carbon chain produced by this process alone would possess a ketone at every other carbon atom, producing a polyketone, from which the name polyketide arises. Most commonly, however, additional enzymatic activities modify the beta keto group of each two carbon unit just after it has been added to the growing polyketide chain but before it is transferred to the next module.

Thus, in addition to the minimal module containing KS, AT, and ACP domains necessary to form the carbon-carbon bond, and as noted above, other domains that modify the beta-carbonyl moiety can be present. Thus, modules may contain a ketoreductase (KR) domain that reduces the keto group to an alcohol. Modules may also contain a KR domain plus a dehydratase (DH) domain that dehydrates the alcohol to a double bond. Modules may also contain a KR domain, a DH domain, and an enoylreductase (ER) domain that converts the double bond product to a saturated single bond using the beta carbon as a methylene function. An extender module can also contain other enzymatic activities, such as, for example, a methylase or dimethylase activity.

10

15

20

25

30

After traversing the final extender module, the polyketide encounters a releasing domain that cleaves the polyketide from the PKS and typically cyclizes the polyketide. For example, final synthesis of 6-dEB is regulated by a TE domain located at the end of extender module six. In the synthesis of 6-dEB, the TE domain catalyzes cyclization of the macrolide ring by formation of an ester linkage. In FK-506, FK-520, rapamycin, and similar polyketides, the TE activity is replaced by a RapP (for rapamycin) or RapP like activity that makes a linkage incorporating a pipecolate acid residue. The enzymatic activity that catalyzes this incorporation for the rapamycin enzyme is known as RapP, encoded by the *rapP* gene. The polyketide can be modified further by tailoring enzymes; these enzymes add carbohydrate groups or methyl groups, or make other modifications, i.e., oxidation or reduction, on the polyketide core molecule. For example, 6-dEB is hydroxylated at C-6 and C-12 and glycosylated at C-3 and C-5 in the synthesis of erythromycin A.

In Type I PKS polypeptides, the order of catalytic domains is conserved. When all beta-keto processing domains are present in a module, the order of domains in that module from N-to-C-terminus is always KS, AT, DH, ER, KR, and ACP. Some or all of the beta-keto processing domains may be missing in particular modules, but the order of the domains present in a module remains the same. The order of domains within modules is believed to be important for proper folding of the PKS polypetides into an active complex. Importantly, there is considerable flexibility in PKS enzymes, which allows for the genetic engineering of novel catalytic complexes. The engineering of these enzymes is achieved by modifying, adding, or deleting domains, or replacing them with those taken from other Type I PKS enzymes. It is also achieved by deleting, replacing, or adding entire modules with those taken from other sources. A genetically engineered PKS complex should of course have the ability to catalyze the synthesis of the product predicted from the genetic alterations made.

Alignments of the many available amino acid sequences for Type I PKS enzymes has approximately defined the boundaries of the various catalytic domains. Sequence alignments also have revealed linker regions between the catalytic domains and at the N-and C-termini of individual polypeptides. The sequences of these linker regions are less

well conserved than are those for the catalytic domains, which is in part how linker regions are identified. Linker regions can be important for proper association between domains and between the individual polypeptides that comprise the PKS complex. One can thus view the linkers and domains together as creating a scaffold on which the domains and modules are positioned in the correct orientation to be active. This organization and positioning, if retained, permits PKS domains of different or identical substrate specificities to be substituted (usually at the DNA level) between PKS enzymes by various available methodologies. In selecting the boundaries of, for example, an AT replacement, one can thus make the replacement so as to retain the linkers of the recipient PKS or to replace them with the linkers of the donor PKS AT domain, or, preferably, make both constructs to ensure that the correct linker regions between the KS and AT domains have been included in at least one of the engineered enzymes. Thus, there is considerable flexibility in the design of new PKS enzymes with the result that known polyketides can be produced more effectively, and novel polyketides useful as pharmaceuticals or for other purposes can be made.

By appropriate application of recombinant DNA technology, a wide variety of polyketides can be prepared in a variety of different host cells provided one has access to nucleic acid compounds that encode PKS proteins and polyketide modification enzymes. The present invention helps meet the need for such nucleic acid compounds by providing recombinant vectors that encode the FK-520 PKS enzyme and various FK-520 modification enzymes. Moreover, while the FK-506 and FK-520 polyketides have many useful activities, there remains a need for compounds with similar useful activities but with better pharmacokinetic profile and metabolism and fewer side-effects. The present invention helps meet the need for such compounds as well.

25

30

20

5

10

15

Summary of the Invention

In one embodiment, the present invention provides recombinant DNA vectors that encode all or part of the FK-520 PKS enzyme. Illustrative vectors of the invention include cosmid pKOS034-120, pKOS034-124, pKOS065-C31, pKOS065-C3, pKOS065-M27, and pKOS065-M21. The invention also provides nucleic acid compounds that

10

15

20

25

30

encode the various domains of the FK-520 PKS, i.e., the KS, AT, ACP, KR, DH, and ER domains. These compounds can be readily used, alone or in combination with nucleic acids encoding other FK-520 or non-FK-520 PKS domains, as intermediates in the construction of recombinant vectors that encode all or part of PKS enzymes that make novel polyketides.

The invention also provides isolated nucleic acids that encode all or part of one or more modules of the FK-520 PKS, each module comprising a ketosynthase activity, an acyl transferase activity, and an acyl carrier protein activity. The invention provides an isolated nucleic acid that encodes one or more open reading frames of FK-520 PKS genes, said open reading frames comprising coding sequences for a CoA ligase activity, an NRPS activity, or two or more extender modules. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides isolated nucleic acids that encode all or a part of a PKS that contains at least one module in which at least one of the domains in the module is a domain from a non-FK-520 PKS and at least one domain is from the FK-520 PKS. The non-FK-520 PKS domain or module originates from the rapamycin PKS, the FK-506 PKS, DEBS, or another PKS. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides a method of preparing a polyketide, said method comprising transforming a host cell with a recombinant DNA vector that encodes at least one module of a PKS, said module comprising at least one FK-520 PKS domain, and culturing said host cell under conditions such that said PKS is produced and catalyzes synthesis of said polyketide. In one aspect, the method is practiced with a *Streptomyces* host cell. In another aspect, the polyketide produced is FK-520. In another aspect, the polyketide produced is a polyketide related in structure to FK-520. In another aspect, the polyketide produced is a polyketide related in structure to FK-506 or rapamycin.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of ethylmalonyl CoA in a heterologous host cell. These genes and the methods of the invention enable one to create recombinant host cells with the

10

15

20

25

ability to produce polyketides or other compounds that require ethylmalonyl CoA for biosynthesis. The invention also provides recombinant nucleic acids that encode AT domains specific for ethylmalonyl CoA. Thus, the compounds of the invention can be used to produce polyketides requiring ethylmalonyl CoA in host cells that otherwise are unable to produce such polyketides.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA in a heterologous host cell. These genes and the methods of the invention enable one to create recombinant host cells with the ability to produce polyketides or other compounds that require 2-hydroxymalonyl CoA for biosynthesis. The invention also provides recombinant nucleic acids that encode AT domains specific for 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA. Thus, the compounds of the invention can be used to produce polyketides requiring 2-hydroxymalonyl CoA or 2-methoxymalonyl CoA in host cells that are otherwise unable to produce such polyketides.

In another embodiment, the invention provides a compound related in structure to FK-520 or FK-506 that is useful in the treatment of a medical condition. These compounds include compounds in which the C-13 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. Such compounds are less susceptible to the main *in vivo* pathway of degradation for FK-520 and FK-506 and related compounds and thus exhibit an improved pharmacokinetic profile. The compounds of the invention also include compounds in which the C-15 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. The compounds of the invention also include the above compounds further modified by chemical methodology to produce derivatives such as, but not limited to, the C-18 hydroxyl derivatives, which have potent neurotrophin but not immunosuppresion activities.

10

15

Thus, the invention provides polyketides having the structure:

wherein, R₁ is hydrogen, methyl, ethyl, or allyl; R₂ is hydrogen or hydroxyl, provided that when R₂ is hydrogen, there is a double bond between C-20 and C-19; R₃ is hydrogen or hydroxyl; R₄ is methoxyl, hydrogen, methyl, or ethyl; and R₅ is methoxyl, hydrogen, methyl, or ethyl; but not including FK-506, FK-520, 18-hydroxy-FK-520, and 18-hydroxy-FK-506. The invention provides these compounds in purified form and in pharmaceutical compositions.

In another embodiment, the invention provides a method for treating a medical condition by administering a pharmaceutically efficacious dose of a compound of the invention. The compounds of the invention may be administered to achieve immunosuppression or to stimulate nerve growth and regeneration.

These and other embodiments and aspects of the invention will be more fully understood after consideration of the attached Drawings and their brief description below, together with the detailed description, examples, and claims that follow.

Brief Description of the Drawings

Figure 1 shows a diagram of the FK-520 biosynthetic gene cluster. The top line provides a scale in kilobase pairs (kb). The second line shows a restriction map with selected restriction enzyme recognition sequences indicated. K is *KpnI*; X is *XhoI*, S is *SacI*; P is *PstI*; and E is *EcoRI*. The third line indicates the position of FK-520 PKS and related genes. Genes are abbreviated with a one letter designation, i.e., C is *fkbC*.

10

15

20

25

Immediately under the third line are numbered segments showing where the loading module (L) and ten different extender modules (numbered 1 - 10) are encoded on the various genes shown. At the bottom of the Figure, the DNA inserts of various cosmids of the invention (i.e., 34-124 is cosmid pKOS034-124) are shown in alignment with the FK-520 biosynthetic gene cluster.

Figure 2 shows the loading module (load), the ten extender modules, and the peptide synthetase domain of the FK-520 PKS, together with, on the top line, the genes that encode the various domains and modules. Also shown are the various intermediates in FK-520 biosynthesis, as well as the structure of FK-520, with carbons 13, 15, 21, and 31 numbered. The various domains of each module and subdomains of the loading module are also shown. The darkened circles showing the DH domains in modules 2, 3, and 4 indicate that the dehydratase domain is not functional as a dehydratase; this domain may affect the stereochemistry at the corresponding position in the polyketide. The substituents on the FK-520 structure that result from the action of non-PKS enzymes are also indicated by arrows, together with the types of enzymes or the genes that code for the enzymes that mediate the action. Although the methyltransferase is shown acting at the C-13 and C-15 hydroxyl groups after release of the polyketide from the PKS, the methyltransferase may act on the 2-hydroxymalonyl substrate prior to or contemporaneously with its incorporation during polyketide synthesis.

Figure 3 shows a close-up view of the left end of the FK-520 gene cluster, which contains at least ten additional genes. The ethyl side chain on carbon 21 of FK-520 (Figure 2) is derived from an ethylmalonyl CoA extender unit that is incorporated by an ethylmalonyl specific AT domain in extender module 4 of the PKS. At least four of the genes in this region code for enzymes involved in ethylmalonyl biosynthesis. The polyhydroxybutyrate depolymerase is involved in maintaining hydroxybutyryl-CoA pools during FK-520 production. Polyhydroxybutyrate accumulates during vegetative growth and disappears during stationary phase in other *Streptomyces* (Ranade and Vining, 1993, *Can. J. Microbiol. 39*:377). Open reading frames with unknown function are indicated with a question mark.

10

15

25

30

Figure 4 shows a biosynthetic pathway for the biosynthesis of ethylmalonyl CoA from acetoacetyl CoA consistent with the function assigned to four of the genes in the FK-520 gene cluster shown in Figure 3.

Figure 5 shows a close-up view of the right-end of the FK-520 PKS gene cluster (and of the sequences on cosmid pKOS065-C31). The genes shown include *fkbD*, *fkbM* (a methyl transferase that methylates the hydroxyl group on C-31 of FK-520), *fkbN* (a homolog of a gene described as a regulator of cholesterol oxidase and that is believed to be a transcriptional activator), *fkbQ* (a type II thioesterase, which can increase polyketide production levels), and *fkbS* (a crotonyl-CoA reductase involved in the biosynthesis of ethylmalonyl CoA).

Figure 6 shows the proposed degradative pathway for tacrolimus (FK-506) metabolism.

Figure 7 shows a schematic process for the construction of recombinant PKS genes of the invention that encode PKS enzymes that produce 13-desmethoxy FK-506 and FK-520 polyketides of the invention, as described in Example 4, below.

Figure 8, in Parts A and B, shows certain compounds of the invention preferred for dermal application in Part A and a synthetic route for making those compounds in Part B.

20 <u>Detailed Description of the Invention</u>

Given the valuable pharmaceutical properties of polyketides, there is a need for methods and reagents for producing large quantities of polyketides, as well as for producing related compounds not found in nature. The present invention provides such methods and reagents, with particular application to methods and reagents for producing the polyketides known as FK-520, also known as ascomycin or L-683,590 (see Holt *et al.*, 1993, *JACS 115*:9925), and FK-506, also known as tacrolimus. Tacrolimus is a macrolide immunosuppressant used to prevent or treat rejection of transplanted heart, kidney, liver, lung, pancreas, and small bowel allografts. The drug is also useful for the prevention and treatment of graft-versus-host disease in patients receiving bone marrow transplants, and for the treatment of severe, refractory uveitis. There have been additional

15

20

5

reports of the unapproved use of tacrolimus for other conditions, including alopecia universalis, autoimmune chronic active hepatitis, inflammatory bowel disease, multiple sclerosis, primary biliary cirrhosis, and scleroderma. The invention provides methods and reagents for making novel polyketides related in structure to FK-520 and FK-506, and structurally related polyketides such as rapamycin.

The FK-506 and rapamycin polyketides are potent immunosuppressants, with chemical structures shown below.

FK-520 differs from FK-506 in that it lacks the allyl group at C-21 of FK-506, having instead an ethyl group at that position, and has similar activity to FK-506, albeit reduced immunosuppressive activity.

These compounds act through initial formation of an intermediate complex with protein "immunophilins" known as FKBPs (FK-506 binding proteins), including FKBP-12. Immunophilins are a class of cytosolic proteins that form complexes with molecules such as FK-506, FK-520, and rapamycin that in turn serve as ligands for other cellular targets involved in signal transduction. Binding of FK-506, FK-520, and rapamycin to FKBP occurs through the structurally similar segments of the polyketide molecules, known as the "FKBP-binding domain" (as generally but not precisely indicated by the stippled regions in the structures above). The FK-506-FKBP complex then binds calcineurin, while the rapamycin-FKBP complex binds to a protein known as RAFT-1.

Binding of the FKBP-polyketide complex to these second proteins occurs through the dissimilar regions of the drugs known as the "effector" domains.

5

The three component FKBP-polyketide-effector complex is required for signal transduction and subsequent immunosuppressive activity of FK-506, FK-520, and rapamycin. Modifications in the effector domains of FK-506, FK-520, and rapamycin that destroy binding to the effector proteins (calcineurin or RAFT) lead to loss of immunosuppressive activity, even though FKBP binding is unaffected. Further, such analogs antagonize the immunosuppressive effects of the parent polyketides, because they compete for FKBP. Such non-immunosuppressive analogs also show reduced toxicity (see Dumont *et al.*, 1992, *Journal of Experimental Medicine 176*, 751-760), indicating that much of the toxicity of these drugs is not linked to FKBP binding.

15

10

In addition to immunosuppressive activity, FK-520, FK-506, and rapamycin have neurotrophic activity. In the central nervous system and in peripheral nerves, immunophilins are referred to as "neuroimmunophilins". The neuroimmunophilin FKBP is markedly enriched in the central nervous system and in peripheral nerves. Molecules that bind to the neuroimmunophilin FKBP, such as FK-506 and FK-520, have the remarkable effect of stimulating nerve growth. *In vitro*, they act as neurotrophins, i.e.,

10

. 15

20

25

they promote neurite outgrowth in NGF-treated PC12 cells and in sensory neuronal cultures, and in intact animals, they promote regrowth of damaged facial and sciatic nerves, and repair lesioned serotonin and dopamine neurons in the brain. See Gold *et al.*, Jun. 1999, *J. Pharm. Exp. Ther. 289*(3): 1202-1210; Lyons *et al.*, 1994, *Proc. National Academy of Science 91*: 3191-3195; Gold *et al.*, 1995, *Journal of Neuroscience 15*: 7509-7516; and Steiner *et al.*, 1997, *Proc. National Academy of Science 94*: 2019-2024. Further, the restored central and peripheral neurons appear to be functional.

Compared to protein neurotrophic molecules (BNDF, NGF, etc.), the small-

molecule neurotrophins such as FK-506, FK-520, and rapamycin have different, and often advantageous, properties. First, whereas protein neurotrophins are difficult to deliver to their intended site of action and may require intra-cranial injection, the small-molecule neurotrophins display excellent bioavailability; they are active when administered subcutaneously and orally. Second, whereas protein neurotrophins show quite specific effects, the small-molecule neurotrophins show rather broad effects. Finally, whereas protein neurotrophins often show effects on normal sensory nerves, the small-molecule neurotrophins do not induce aberrant sprouting of normal neuronal processes and seem to affect damaged nerves specifically. Neuroimmunophilin ligands have potential therapeutic utility in a variety of disorders involving nerve degeneration (e.g. multiple sclerosis, Parkinson's disease, Alzheimer's disease, stroke, traumatic spinal cord and brain injury, peripheral neuropathies).

Recent studies have shown that the immunosuppressive and neurite outgrowth activity of FK-506, FK-520, and rapamycin can be separated; the neuroregenerative activity in the absence of immunosuppressive activity is retained by agents which bind to FKBP but not to the effector proteins calcineurin or RAFT. See Steiner *et al.*, 1997, *Nature Medicine 3*: 421-428.

10

15

Available structure-activity data show that the important features for neurotrophic activity of rapamycin, FK-520, and FK-506 lie within the common, contiguous segments of the macrolide ring that bind to FKBP. This portion of the molecule is termed the "FKBP binding domain" (see VanDuyne *et al.*, 1993, *Journal of Molecular Biology 229*: 105-124.). Nevertheless, the effector domains of the parent macrolides contribute to conformational rigidity of the binding domain and thus indirectly contribute to FKBP binding.

- 15 -

"FKBP binding domain"

There are a number of other reported analogs of FK-506, FK-520, and rapamycin that bind to FKBP but not the effector protein calcineurin or RAFT. These analogs show effects on nerve regeneration without immunosuppressive effects.

Naturally occurring FK-520 and FK-506 analogs include the antascomycins, which are FK-506-like macrolides that lack the functional groups of FK-506 that bind to calcineurin (see Fehr *et al.*, 1996, *The Journal of Antibiotics 49*: 230-233). These molecules bind FKBP as effectively as does FK-506; they antagonize the effects of both FK-506 and rapamycin, yet lack immunosuppressive activity.

10

Antascomycin A

Other analogs can be produced by chemically modifying FK-506, FK-520, or rapamycin. One approach to obtaining neuroimmunophilin ligands is to destroy the effector binding region of FK-506, FK-520, or rapamycin by chemical modification. While the chemical modifications permitted on the parent compounds are quite limited, some useful chemically modified analogs exist. The FK-520 analog L-685,818 (ED₅₀ = 0.7 nM for FKBP binding; see Dumont *et al.*, 1992), and the rapamycin analog WAY-124,466 (IC₅₀ = 12.5 nM; see Ocain *et al.*, 1993, *Biochemistry Biophysical Research Communications 192*: 1340-134693) are about as effective as FK-506, FK-520, and rapamycin at promoting neurite outgrowth in sensory neurons (see Steiner *et al.*, 1997).

One of the few positions of rapamycin that is readily amenable to chemical modification is the allylic 16-methoxy group; this reactive group is readily exchanged by

acid-catalyzed nucleophilic substitution. Replacement of the 16-methoxy group of rapamycin with a variety of bulky groups has produced analogs showing selective loss of immunosuppressive activity while retaining FKBP-binding (see Luengo *et al.*, 1995, *Chemistry & Biology 2*: 471-481). One of the best compounds, **1**, below, shows complete loss of activity in the splenocyte proliferation assay with only a 10-fold reduction in binding to FKBP.

reflect an approach to obtaining neuroimmunophilin ligands based on "rationally designed" molecules that retain the FKBP-binding region in an appropriate conformation for binding to FKBP, but do not possess the effector binding regions. In one example, the ends of the FKBP binding domain were tethered by hydrocarbon chains (see Holt *et al.*, 1993, *Journal of the American Chemical Society 115*: 9925-9938); the best analog, 2, below, binds to FKBP about as well as FK-506. In a similar approach, the ends of the FKBP binding domain were tethered by a tripeptide to give analog 3, below, which binds to FKBP about 20-fold poorer than FK-506. These compounds are anticipated to have neuroimmunophilin binding activity.

į.

5

10

15

20

In a primate MPTP model of Parkinson's disease, administration of FKBP ligand GPI-1046 caused brain cells to regenerate and behavioral measures to improve. MPTP is a neurotoxin, which, when administered to animals, selectively damages nigral-striatal dopamine neurons in the brain, mimicking the damage caused by Parkinson's disease. Whereas, before treatment, animals were unable to use affected limbs, the FKBP ligand restored the ability of animals to feed themselves and gave improvements in measures of locomotor activity, neurological outcome, and fine motor control. There were also corresponding increases in regrowth of damaged nerve terminals. These results demonstrate the utility of FKBP ligands for treatment of diseases of the CNS.

From the above description, two general approaches towards the design of non-immunosuppressant, neuroimmunophilin ligands can be seen. The first involves the construction of constrained cyclic analogs of FK-506 in which the FKBP binding domain is fixed in a conformation optimal for binding to FKBP. The advantages of this approach are that the conformation of the analogs can be accurately modeled and predicted by computational methods, and the analogs closely resemble parent molecules that have proven pharmacological properties. A disadvantage is that the difficult chemistry limits the numbers and types of compounds that can be prepared. The second approach involves the trial and error construction of acyclic analogs of the FKBP binding domain by conventional medicinal chemistry. The advantages to this approach are that the chemistry is suitable for production of the numerous compounds needed for such interactive chemistry-bioassay approaches. The disadvantages are that the molecular types of compounds that have emerged have no known history of appropriate pharmacological

10

15

20

25

30

properties, have rather labile ester functional groups, and are too conformationally mobile to allow accurate prediction of conformational properties.

The present invention provides useful methods and reagents related to the first approach, but with significant advantages. The invention provides recombinant PKS genes that produce a wide variety of polyketides that cannot otherwise be readily synthesized by chemical methodology alone. Moreover, the present invention provides polyketides that have either or both of the desired immunosuppressive and neurotrophic activities, some of which are produced only by fermentation and others of which are produced by fermentation and chemical modification. Thus, in one aspect, the invention provides compounds that optimally bind to FKBP but do not bind to the effector proteins. The methods and reagents of the invention can be used to prepare numerous constrained cyclic analogs of FK-520 in which the FKBP binding domain is fixed in a conformation optimal for binding to FKBP. Such compounds will show neuroimmunophilin binding (neurotrophic) but not immunosuppressive effects. The invention also allows direct manipulation of FK-520 and related chemical structures via genetic engineering of the enzymes involved in the biosynthesis of FK-520 (as well as related compounds, such as FK-506 and rapamycin); similar chemical modifications are simply not possible because of the complexity of the structures. The invention can also be used to introduce "chemical handles" into normally inert positions that permit subsequent chemical modifications.

Several general approaches to achieve the development of novel neuroimmunophilin ligands are facilitated by the methods and reagents of the present invention. One approach is to make "point mutations" of the functional groups of the parent FK-520 structure that bind to the effector molecules to eliminate their binding potential. These types of structural modifications are difficult to perform by chemical modification, but can be readily accomplished with the methods and reagents of the invention.

A second, more extensive approach facilitated by the present invention is to utilize molecular modeling to predict optimal structures *ab initio* that bind to FKBP but not effector molecules. Using the available X-ray crystal structure of FK-520 (or FK-506) bound to FKBP, molecular modeling can be used to predict polyketides that should

10

15

20

25

optimally bind to FKBP but not calcineurin. Various macrolide structures can be generated by linking the ends of the FKBP-binding domain with "all possible" polyketide chains of variable length and substitution patterns that can be prepared by genetic manipulation of the FK-520 or FK-506 PKS gene cluster in accordance with the methods of the invention. The ground state conformations of the virtual library can be determined, and compounds that possess binding domains most likely to bind well to FKBP can be prepared and tested.

Once a compound is identified in accordance with the above approaches, the invention can be used to generate a focused library of analogs around the lead candidate, to "fine tune" the compound for optimal properties. Finally, the genetic engineering methods of the invention can be directed towards producing "chemical handles" that enable medicinal chemists to modify positions of the molecule previously inert to chemical modification. This opens the path to previously prohibited chemical optimization of lead compounds by time-proven approaches.

Moreover, the present invention provides polyketide compounds and the recombinant genes for the PKS enzymes that produce the compounds that have significant advantages over FK-506 and FK-520 and their analogs. The metabolism and pharmacokinetics of tacrolimus has been exstensively studied, and FK-520 is believed to be similar in these respects. Absorption of tacrolimus is rapid, variable, and incomplete from the gastrointestinal tract (Harrison's Principles of Internal Medicine, 14th edition, 1998, McGraw Hill, 14, 20, 21, 64-67). The mean bioavailability of the oral dosage form is 27%, (range 5 to 65%). The volume of distribution (VoID) based on plasma is 5 to 65 L per kg of body weight (L/kg), and is much higher than the VoID based on whole blood concentrations, the difference reflecting the binding of tacrolimus to red blood cells. Whole blood concentrations may be 12 to 67 times the plasma concentrations. Protein

whole blood concentrations may be 12 to 67 times the plasma concentrations. Protein binding is high (75 to 99%), primarily to albumin and alpha1-acid glycoprotein. The half-life for distribution is 0.9 hour; elimination is biphasic and variable: terminal-11.3 hr (range, 3.5 to 40.5 hours). The time to peak concentration is 0.5 to 4 hours after oral administration.

10

15

20

25

30

Tacrolimus is metabolized primarily by cytochrome P450 3A enzymes in the liver and small intestine. The drug is extensively metabolized with less than 1% excreted unchanged in urine. Because hepatic dysfunction decreases clearance of tacrolimus, doses have to be reduced substantially in primary graft non-function, especially in children. In addition, drugs that induce the cytochrome P450 3A enzymes reduce tacrolimus levels, while drugs that inhibit these P450s increase tacrolimus levels. Tacrolimus bioavailability doubles with co-administration of ketoconazole, a drug that inhibits P450 3A. See, Vincent et al., 1992, In vitro metabolism of FK-506 in rat, rabbit, and human liver microsomes: Identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism, Arch. Biochem. Biophys. 294: 454-460; Iwasaki et al., 1993, Isolation, identification, and biological activities of oxidative metabolites of FK-506, a potent immunosuppressive macrolide lactone, Drug Metabolism & Disposition 21: 971-977; Shiraga et al., 1994, Metabolism of FK-506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog, and human liver microsomes, Biochem. Pharmacol. 47: 727-735; and Iwasaki et al., 1995, Further metabolism of FK-506 (Tacrolimus); Identification and biological activities of the metabolites oxidized at multiple sites of FK-506, Drug Metabolism & Disposition 23: 28-34. The cytochrome P450 3A subfamily of isozymes has been implicated as important in this degradative process.

Structures of the eight isolated metabolites formed by liver microsomes are shown in Figure 6. Four metabolites of FK-506 involve demethylation of the oxygens on carbons 13, 15, and 31, and hydroxylation of carbon 12. The 13-demethylated (hydroxy) compounds undergo cyclizations of the 13-hydroxy at C-10 to give MI, MVI and MVII, and the 12-hydroxy metabolite at C-10 to give I. Another four metabolites formed by oxidation of the four metabolites mentioned above were isolated by liver microsomes from dexamethasone treated rats. Three of these are metabolites doubly demethylated at the methoxy groups on carbons 15 and 31 (M-V), 13 and 31 (M-VI), and 13 and 15 (M-VII). The fourth, M-VIII, was the metabolite produced after demethylation of the 31-methoxy group, followed by formation of a fused ring system by further oxidation. Among the eight metabolites, M-II has immunosuppressive activity comparable to that of

10

15

20

25

30

FK-506, whereas the other metabolites exhibit weak or negligible activities. Importantly, the major metabolite of human, dog, and rat liver microsomes is the 13-demethylated and cyclized FK-506 (M-I).

Thus, the major metabolism of FK-506 proceeds via 13-demethylation followed by cyclization to the inactive M-I, this representing about 90% of the metabolic products after a 10 minute incubation with liver microsomes. Analogs of tacrolimus that do not possess a C-13 methoxy group would not be susceptible to the first and most important biotransformation in the destructive metabolism of tacrolimus (i.e. cyclization of 13-hydroxy to C-10). Thus, a 13-desmethoxy analog of FK-506 should have a longer half-life in the body than does FK-506. The C-13 methoxy group is believed not to be required for binding to FKBP or calcineurin. The C-13 methoxy is not present on the identical position of rapamycin, which binds to FKBP with equipotent affinity as tacrolimus. Also, analysis of the 3-dimensional structure of the FKBP-tacrolimus-calcineurin complex shows that the C-13 methoxy has no interaction with FKBP and only a minor interaction with calcineurin. The present invention provides C-13-desmethoxy analogs of FK-506 and FK-520, as well as the recombinant genes that encode the PKS enzymes that catalyze their synthesis and host cells that produce the compounds.

These compounds exhibit, relative to their naturally occurring counterparts, prolonged immunosuppressive action *in vivo*, thereby allowing a lower dosage and/or reduced frequency of administration. Dosing is more predictable, because the variability in FK-506 dosage is largely due to variation of metabolism rate. FK-506 levels in blood can vary widely depending on interactions with drugs that induce or inhibit cytochrome P450 3A (summarized in USP Drug Information for the Health Care Professional). Of particular importance are the numerous drugs that inhibit or compete for CYP 3A, because they increase FK-506 blood levels and lead to toxicity (Prograf package insert, Fujisawa US, Rev 4/97, Rec 6/97). Also important are the drugs that induce P450 3A (e.g. Dexamethasone), because they decrease FK-506 blood levels and reduce efficacy. Because the major site of CYP 3A action on FK-506 is removed in the analogs provided by the present invention, those analogs are not as susceptible to drug interactions as the naturally occurring compounds.

10

15

20

25

30

Hyperglycemia, nephrotoxicity, and neurotoxicity are the most significant adverse effects resulting from the use of FK-506 and are believed to be similar for FK-520. Because these effects appear to occur primarily by the same mechanism as the immunosuppressive action (i.e. FKBP-calcineurin interaction), the intrinsic toxicity of the desmethoxy analogs may be similar to FK-506. However, toxicity of FK-506 is dose related and correlates with high blood levels of the drug (Prograf package insert, Fujisawa US, Rev 4/97, Rec 6/97). Because the levels of the compounds provided by the present invention should be more controllable, the incidence of toxicity should be significantly decreased with the 13-desmethoxy analogs. Some reports show that certain FK-506 metabolites are more toxic than FK-506 itself, and this provides an additional reason to expect that a CYP 3A resistant analog can have lower toxicity and a higher therapeutic index.

Thus, the present invention provides novel compounds related in structure to FK-506 and FK-520 but with improved properties. The invention also provides methods for making these compounds by fermentation of recombinant host cells, as well as the recombinant host cells, the recombinant vectors in those host cells, and the recombinant proteins encoded by those vectors. The present invention also provides other valuable materials useful in the construction of these recombinant vectors that have many other important applications as well. In particular, the present invention provides the FK-520 PKS genes, as well as certain genes involved in the biosynthesis of FK-520 in recombinant form.

FK-520 is produced at relatively low levels in the naturally occurring cells, *Streptomyces hygroscopicus* var. *ascomyceticus*, in which it was first identified. Thus, another benefit provided by the recombinant FK-520 PKS and related genes of the present invention is the ability to produce FK-520 in greater quantities in the recombinant host cells provided by the invention. The invention also provides methods for making novel FK-520 analogs, in addition to the desmethoxy analogs described above, and derivatives in recombinant host cells of any origin.

The biosynthesis of FK-520 involves the action of several enzymes. The FK-520 PKS enzyme, which is composed of the fkbA, fkbB, fkbC, and fkbP gene products,

10

15

20

25

synthesizes the core structure of the molecule. There is also a hydroxylation at C-9 mediated by the P450 hydroxylase that is the fkbD gene product and that is oxidized by the fkbO gene product to result in the formation of a keto group at C-9. There is also a methylation at C-31 that is mediated by an O-methyltransferase that is the fkbM gene product. There are also methylations at the C-13 and C-15 positions by a methyltransferase believed to be encoded by the fkbG gene; this methyltransferase may act on the hydroxymalonyl CoA substrates prior to binding of the substrate to the AT domains of the PKS during polyketide synthesis. The present invention provides the genes encoding these enzymes in recombinant form. The invention also provides the genes encoding the enzymes involved in ethylmalonyl CoA and 2-hydroxymalonyl CoA biosynthesis in recombinant form. Moreover, the invention provides Streptomyces hygroscopicus var. ascomyceticus recombinant host cells lacking one or more of these genes that are useful in the production of useful compounds.

The cells are useful in production in a variety of ways. First, certain cells make a useful FK-520-related compound merely as a result of inactivation of one or more of the FK-520 biosynthesis genes. Thus, by inactivating the C-31 O-methyltransferase gene in Streptomyces hygroscopicus var. ascomyceticus, one creates a host cell that makes a desmethyl (at C-31) derivative of FK-520. Second, other cells of the invention are unable to make FK-520 or FK-520 related compounds due to an inactivation of one or more of the PKS genes. These cells are useful in the production of other polyketides produced by PKS enzymes that are encoded on recombinant expression vectors and introduced into the host cell.

Moreover, if only one PKS gene is inactivated, the ability to produce FK-520 or an FK-520 derivative compound is restored by introduction of a recombinant expression vector that contains the functional gene in a modified or unmodified form. The introduced gene produces a gene product that, together with the other endogenous and functional gene products, produces the desired compound. This methodology enables one to produce FK-520 derivative compounds without requiring that all of the genes for the PKS enzyme be present on one or more expression vectors. Additional applications and benefits of such cells and methodology will be readily apparent to those of skill in the art

30

10

15

20

25

30

after consideration of how the recombinant genes were isolated and employed in the construction of the compounds of the invention.

The FK-520 biosynthetic genes were isolated by the following procedure. Genomic DNA was isolated from *Streptomyces hygroscopicus* var. *ascomyceticus* (ATCC 14891) using the lysozyme/proteinase K protocol described in Genetic Manipulation of *Streptomyces* - A Laboratory Manual (Hopwood *et al.*, 1986). The average size of the DNA was estimated to be between 80 - 120 kb by electrophoresis on 0.3% agarose gels. A library was constructed in the SuperCosTM vector according to the manufacturer's instructions and with the reagents provided in the commercially available kit (Stratagene). Briefly, 100 μg of genomic DNA was partially digested with 4 units of *Sau*3A I for 20 min. in a reaction volume of 1 mL, and the fragments were dephosphorylated and ligated to SuperCos vector arms. The ligated DNA was packaged and used to infect log-stage XL1-BlueMR cells. A library of about 10,000 independent cosmid clones was obtained.

Based on recently published sequence from the FK-506 cluster (Motamedi and Shafiee, 1998, *Eur. J. Biochem. 256*: 528), a probe for the *fkbO* gene was isolated from ATCC 14891 using PCR with degenerate primers. With this probe, a cosmid designated pKOS034-124 was isolated from the library. With probes made from the ends of cosmid pKOS034-124, an additional cosmid designated pKOS034-120 was isolated. These cosmids (pKOS034-124 and pKOS034-120) were shown to contain DNA inserts that overlap with one another. Initial sequence data from these two cosmids generated sequences similar to sequences from the FK-506 and rapamycin clusters, indicating that the inserts were from the FK-520 PKS gene cluster. Two *Eco*RI fragments were subcloned from cosmids pKOS034-124 and pKOS034-120. These subclones were used to prepare shotgun libraries by partial digestion with *Sau*3AI, gel purification of fragments between 1.5 kb and 3 kb in size, and ligation into the pLitmus28 vector (New England Biolabs). These libraries were sequenced using dye terminators on a Beckmann CEQ2000 capillary electrophoresis sequencer, according to the manufacturer's protocols.

To obtain cosmids containing sequence on the left and right sides of the sequenced region described above, a new cosmid library of ATCC 14891 DNA was

10

15

20

25

prepared essentially as described above. This new library was screened with a new fkbM probe isolated using DNA from ATCC 14891. A probe representing the fkbP gene at the end of cosmid pKOS034-124 was also used. Several additional cosmids to the right of the previously sequenced region were identified. Cosmids pKOS065-C31 and pKOS065-C3 were identified and then mapped with restriction enzymes. Initial sequences from these cosmids were consistent with the expected organization of the cluster in this region. More extensive sequencing showed that both cosmids contained in addition to the desired sequences, other sequences not contiguous to the desired sequences on the host cell chromosomal DNA. Probing of additional cosmid libraries identified two additional cosmids, pKOS065-M27 and pKOS065-M21, that contained the desired sequences in a contiguous segment of chromosomal DNA. Cosmids pKOS034-124, pKOS034-120, pKOS065-M27, and pKOS065-M21 have been deposited with the American Type Culture Collection, Manassas, VA, USA. The complete nucleotide sequence of the coding sequences of the genes that encode the proteins of the FK-520 PKS are shown below but can also be determined from the cosmids of the invention deposited with the ATCC using standard methodology.

Referring to Figures 1 and 3, the FK-520 PKS gene cluster is composed of four open reading frames designated fkbB, fkbC, fkbA, and fkbP. The fkbB open reading frame encodes the loading module and the first four extender modules of the PKS. The fkbC open reading frame encodes extender modules five and six of the PKS. The fkbA open reading frame encodes extender modules seven, eight, nine, and ten of the PKS. The fkbP open reading frame encodes the NRPS of the PKS. Each of these genes can be isolated from the cosmids of the invention described above. The DNA sequences of these genes are provided below preceded by the following table identifying the start and stop codons of the open reading frames of each gene and the modules and domains contained therein.

Nucleotides	Gene or Domain
complement (412 - 1836)	fkbW
complement (2020 - 3579)	fkbV
complement (3969 - 4496)	fkbR2
complement (4595 - 5488)	fkbR1
5601 - 6818	fkbE
	complement (412 - 1836) complement (2020 - 3579) complement (3969 - 4496) complement (4595 - 5488)

```
6808 - 8052
                                        fkbF
       8156 - 8824
                                        fkbG
      complement (9122 - 9883)
                                        fkbH
      complement (9894 - 10994)
                                        fkbI
  5
      complement (10987 - 11247)
                                        fkbJ
      complement (11244 - 12092)
                                        fkbK
      complement (12113 - 13150)
                                        fkbL
      complement (13212 - 23988)
                                        fkbC
      complement (23992 - 46573)
                                       fkbB
 10
      46754 - 47788
                                       fkbO
      47785 - 52272
                                        fkbP
      52275 - 71465
                                       fkbA
      71462 - 72628
                                       fkbD
      72625 - 73407
                                       fkbM
15
      complement (73460 - 76202)
                                       fkbN
      complement (76336 - 77080)
                                       fkbQ
      complement (77076 - 77535)
                                       fkbS
      complement (44974 - 46573)
                                        CoA ligase of loading domain
      complement (43777 - 44629)
                                       ER of loading domain
20
      complement (43144 - 43660)
                                        ACP of loading domain
      complement (41842 - 43093)
                                       KS of extender module 1 (KS1)
      complement(40609 - 41842)
                                       AT1
      complement (39442 - 40609)
                                       DH1
      complement (38677 - 39307)
                                       KR1
25
      complement (38371 - 38581)
                                       ACP1
      complement (37145 - 38296)
                                       KS2
      complement (35749 - 37144)
                                       AT2
      complement (34606 - 35749)
                                       DH2 (inactive)
      complement (33823 - 34480)
                                       KR2
30
     complement (33505 - 33715)
                                       ACP2
     complement (32185 - 33439)
                                       KS3
     complement (31018 - 32185)
                                       AT3
     complement (29869 - 31018)
                                       DH3 (inactive)
     complement (29092 - 29740)
                                       KR3
35
     complement (28750 - 28960)
                                       ACP3
     complement (27430 - 28684)
                                       KS4
     complement (26146 - 27430)
                                       AT4
     complement (24997 - 26146)
                                       DH4 (inactive)
     complement (24163 - 24373)
                                       ACP4
40
     complement (22653 - 23892)
                                       KS5
     complement (21420 - 22653)
                                       AT5
     complement (20241 - 21420)
                                       DH5
     complement (19464 - 20097)
                                       KR5
     complement (19116 - 19326)
                                       ACP5
```

```
complement (17820 - 19053)
                                      KS<sub>6</sub>
       complement (16587 - 17820)
                                      AT6
       complement (15438 - 16587)
                                      DH<sub>6</sub>
       complement (14517 - 15294)
                                      ER6
      complement (13761 - 14394)
                                      KR6
      complement (13452 - 13662)
                                      ACP6
      52362 - 53576
                                      KS7
      53577 - 54716
                                      AT7
      54717 - 55871
                                      DH7
 10
      56019 - 56819
                                      ER7
      56943 - 57575
                                      KR7
      57710 - 57920
                                      ACP7
      57990 - 59243
                                     KS8
      59244 - 60398
                                     AT8
      60399 - 61412
 15
                                     DH8 (inactive)
      61548 - 62180
                                     KR8
      62328 - 62537
                                     ACP8
      62598 - 63854
                                     KS9
      63855 - 65084
                                     AT9
 20
      65085 - 66254
                                     DH9
      66399 - 67175
                                     ER9
      67299 - 67931
                                     KR9
      68094 - 68303
                                     ACP9
      68397 - 69653
                                     KS10
25
      69654 - 70985
                                     AT10
      71064 - 71273
                                     ACP10
          1 GATCTCAGGC ATGAAGTCCT CCAGGCGAGG CGCCGAGGTG GTGAACACCT CGCCGCTGCT
         61 TGTACGGACC ACTTCAGTCA GCGGCGATTG CGGAACCAAG TCATCCGGAA TAAAGGGCGG
30
       121 TTACAAGATC CTCACATTGC GCGACCGCCA GCATACGCTG AGTTGCCTCA GAGGCAAACC
       181 GAAAGGGCGC GGGCGGTCCG CACCAGGGCG GAGTACGCGA CGAGAGTGGC GCACCCGCGC
       241 ACCGTCACCT CTCTCCCCCG CCGGCGGGAT GCCCGGCGTG ACACGGTTGG GCTCTCCTCG
       301 ACGCTGAACA CCCGCGCGGT GTGGCGTCGG GGACACCGCC TGGCATCGGC CGGGTGACGG
       361 TACGGGGAGG GCGTACGGCG GCCGTGGCTC GTGCTCACGG CCGCCGGGCG GTCATCCGTC
35
       421 GAGACGCAC TCGGCGAGCA GGGACGCCTG GTCGGCACCT GCGGGCCGGA CGACCGTGTG
       481 GTTCGCGGGC GGGCGGTGGC CGGTGGTGAG CCAGCTCTCC AGGGCGGTGA AGGCTGAGCG
       541 GTGACACGGC AGCAAAGGCC GGAGTCGGTC GGGGAAGGTG TCGACGAGGG CGTCGGTGTG
       601 CGTGCCGTCC TCGATGCGGT AGTAGCGGTA CCGGCCGCCA GGCCGCTGCC GGACATACGC
       661 GCGTACACGT CGGAGCCCGG GCGGCAGGCA GCAGCACGTC GAGAGTGCCT GGATGGTGAT
40
       721 CAGCGGCTTG CCGATACGAC CGGTCAACGC GATGCGTTCC ACGGCCGCGT GGACGCCGGA
       781 GGAGCGGGTG GCGTAGTCGT AGTCGGCATC GCAGCCCGGG ACCGTCCCCG GGGCGCAATA
       841 CGGTGTGCCG GCTTCCTTCT CCCCATCGAA GCCGGGGTCG AACTCCTCGC GGTAGACGCG
       901 CTGCGTCAGA TCCCAGTAGA CCTCGTGGTG GTACGGCCAC AAGAACTCGG AGTCGGCCGG
       961 GAACCCGGCG CGGAGCAGCG CCTCGCGCGC CTGGCCGGCT GCGGGGCCGC CTGCCGCGTA
45
      1021 GGTGGGGTAG TCGCGCAGGG CGGCCGGCAG GAAGGTGAAG AGGTTGGGAC CCTCCGCGCG
      1081 CCACAGGGTG CCTTCCCAGT CGACTCCTCC GTCGTACAGC TCGGGATGGT TCTCCAGCTG
      1141 CCAGCGCACG AGGTAGCCGC CGTTGGACAT CCCGGTGACC AGGGTGCGCT CGAGCGGCCG
      1201 GTGGTAGCGC TGGGCGACCG ACGCGCGGGC GGCCCGGGTC AGCTGGGTGA GGCGGGTGTT
```

	1261	CCACTCGGCG	ACGGCGTCGC	CCGGCCGGGA	GCCATCACGG	TAGAACGCGG	GGCCGGTGTT
					GCGGGCGAGC		
					GGTGCCGGCC		
					GTCGTGGTTC		
5					CTGGATCCCG		
					CGCCGGGTCG		
					GGCCTGCTGA		
					CGGGGCATCG		
					CAGGGTGAGA		
10					AACCATGGAG		
					GTGGAGACGA		
					ATGACGGGCG		
					GTCCCCGGGT		
					CAAGGTGGTC		
15					GGTGTAACCG		
					CCAGCAGACG		
					CTTGCCGTCC		
					GGTGTCCGTG		
	2341	GGTGATCTGG	GCACCGTCGC	GGTGGACGGC	GTAGTCGGTG	GCGCCGTCGA	CGGGTTTCCA
20	2401	GGTCAGGCTG	ATGGTGGTGT	CGGTGGCGCC	GGTGGCGGCC	AGGCCGGACG	GAGCGGGCAG
	2461	CGAACCGGGG	TCGGAGGCGG	ATCCGCTCAG	GCCGAAGAAC	TGCGTGATCC	AGTAGCTGGA
	2521	ACAGATCGAG	TCCAGGAAGT	AGGCGGCGCC	GGTGCTGCCG	CACTGCTGTG	CTCCGGTGCC
	2581	GGGATCGACC	GGGGTGCCGT	GCCCGATGCC	CGGCACCCGG	TTCACCTCCA	CGGCCACCGA
	2641	TCCGTCCGCG	GCCAGGTACT	CCTCGTGCCG	GGTGGAGTTC	GGGCCGATCA	CCGAGGTACG
25	2701	GTCCGGCGTC	TGGGACACGC	CGTGCACAGC	GGTCCACTGG	TCGCGCAACT	CGTCGGCGTT
					GTGCCAGATG		
					CCGCGCCCAC		
					GACGTCGGTG		
20					CGGATAGGTG		
30					GGTGCGCTGG		
					CGCGGCTTCG		
					CGCGTTGTTC		
					TGAGAGCAGG		
25					GAACACCACC		
35					GCCCGGGTTC		
					GGCCAGGCCC		
					GAGGGCCACG		
					CCCGACCGGC		
40					CGGCTGCATG		
70					TCAGTGGGAG CCGGAGCACC		
					AATCTGATAC		
					GACTCGGCCG		
					GCGGGCTGGG		
45					CAGTACGCCG		
					CGGGACCGCT		
					TAGACCATCA		
					GTGCGCACGC		
					TCGGACTGCG		
50					CAGCCGAGGT		
					GCGAGGGTGA		
					CGGTCGAAGT		
					TCCAGGACCG		
					TAGCGGCCCT		
			-3010010111	0100100,1140	1.10000001		D. DOLLIGOTIC

P A T E N T Atty Dkt: 300622002600

- 30 -

	4501	CECCOCO CO					
	4501	GIGCGGGIGG	CGTCCTGGTC	CGGGTTCTC	GTCGTCATGO	GCTCATTCT	GGGAAGTCCC
	4561	CGGTCCGCTG	TGAAATGCCG	AACCTTCACC	GGGCTCATAC	: GTGCGGCGCA	TGAGCCCTGG
	4621	ACCGTACGTA	GTCGTAGAAC	CTCGCCACCA	CIGGCGCGCG	TGGTCCTCCG	GCGAGTGTGA
5	4681	CCACGCCGAC	CGTGCGCCGC	GCCTGCGGG1	CGTCGAGCGG	CACGGCGACG	GCGTGGTCAC
3	4/41	CGGGCCCGGA	CGGGCTGCCG	GTGAGGGGG	GCGACGGCCAC	ACCGAGGCCG	GCGGCGACCA
	4801	GGGCCCGCAG	CGTGCTCAGC	TCGGTGCTCT	CCAGGACGAC	CCGCGGCACG	AATCCGGCCG
	4861	CGGCGCACAG	CCGGTCGGTG	ATCTGGCGCA	GTCCGAAGAC	CGGCTCCAGT	GCCACGAACG
	4921	CCTCATCGGC	CAGCTCCGCG	GTCCGCACCC	GGCGGCGTCT	GGCCAGCCGG	TGTCCGGGTG
10	4981	GGACGAGCAG	GCACAGTGCC	TCGTCCCGCA	GTGGTGTCCA	CTCCACATCG	TCCCCGGCGG
10	5041	GTCGTGGGCT	GGTCAGCCCC	AGGTCCAGCC	TGCTGTTGCG	GACGTCGTCG	ACCACGGCGT
	5101	CGGCGGCGTC	GCCGCGCAGT	TCGAAGGTGG	TGCCGGGAGC	CAGCCGGCGG	TACCCGGCGA
		GGAGGTCGGG	CACCAGCCAG	GTGCCGTAGG	AGTGCAGGAA	ACCCAGTGCC	ACGGTGCCGG
	5221	TGTCGGGGTC	GATCAGGGCG	GTGATGCGCT	GCTCGGCGCC	GGAGACCTCA	CTGATCGCGC
1.5	5281	GCAGGGCGTG	GGCGCGGAAG	ACCTCGCCGT	ACTTGTTGAG	CCGGAGCCGG	TTCTGGTGCC
15	5341	GGTCGAACAG	CGGCACGCCC	ACTCGTCGCT	CCAGCCGCCG	GATGGCCCTG	GACAGGGTCG
	5401	GCTGGGAGAT	GTTGAGCCGT	TCCGCGGTGA	TCGTCACGTG	CTCGTGCTCG	GCCAAGGCCG
	5461	TGAACCACTG	CAACTCCCGT	ATCTCCATGC	AGGGACTATA	CGTACCGGGC	ATGGTCCTGG
	5521	CGAGGTTTCG	TCATTTCACA	GCGGCCGGGC	GGCGGCCCAC	AGTGAGTCCT	CACCAACCAG
• •	5581	GACCCCATGG	GAGGGACCCC	ATGTCCGAGC	CGCATCCTCG	CCCTGAACAG	GAACGCCCCG
20	5641	CCGGGCCCCT	GTCCGGTCTG	CTCGTGGTTT	CTTTGGAGCA	GGCCGTCGCC	GCTCCGTTCG
	5701	CCACCGCCA	CCTGGCGGAC	CTGGGCGCCC	GTGTCATCAA	GATCGAACGC	CCCGGCAGCG
	5761	GCGACCTCGC	CCGCGGCTAC	GACCGCACGG	TGCGTGGCAT	GTCCAGCCAC	TTCGTCTGGC
	5821	TGAACCGGGG	GAAGGAGAGC	GTCCAGCTCG	ATGTGCGCTC	GCCGGAGGGC	AACCGGCACC
	5881	TGCACGCCTT	GGTGGACCGG	GCCGATGTCC	TGGTGCAGAA	TCTGGCACCC	GGCGCCGCGG
25	5941	GCCGCCTGGC	ATCGGCCACC	AGGTCCTCGC	GCGGAGCCAC	CGAGGCTGAT	CACCTGCGGA
	6001	CATATCCGGC	TACGGCAGTA	CCGGCTGCTA	CCGCGGACCG	CAAGGCGTAC	GACCTCCTGG
	6061	TCCAGTGCGA	AGCGGGGCTG	GTCTCCATCA	CCGGCACCCC	CGAGACCCCG	TCCAAGGTGG
	6121	GCCTGTCCAT	CGCGGACATC	TGTGCGGGGA	TGTACGCGTA	CTCCGGCATC	CTCACGGCCC
• •	6181	TGCTGAAGCG	GGCCCGCACC	GGCCGGGGCT	CGCAGTTGGA	GGTCTCGATG	CTCGAAGCCC
30	6241	TCGGTGAATG	GATGGGATAC	GCCGAGTACT	ACACGCGCTA	CGGCGGCACC	GCTCCGGCCC
	6301	GCGCCGGCGC	CAGCCACGCG	ACGATCGCCC	CCTACGGCCC	GTTCACCACG	CGCGACGGGC
	6361	AGACGATCAA	TCTCGGGCTC	CAGAACGAGC	GGGAGTGGGC	TTCCTTCTGC	GGTGTCGTGC
	6421	TACAACGCCC	CGGTCTCTGC	GACGACCCGC	GCTTTTCCGG	CAACGCCGAC	CGGGTGGCGC
	6481	ACCGCACCGA	GCTCGACGCC	CTGGTGAGCG	AGGTGACGGG	CACGCTCACC	GGCGAGGAAC
35	6541	TGGTGGCGCG	GCTGGAGGAG	GCGTCGATCG	CCTACGCACG	CCAGCGCACC	GTGCGGGAGT
	6601	TCAGCGAACA	CCCCCAACTG	CGTGACCGTG	GACGCTGGGC	TCCGTTCGAC	AGCCCGGTCG
	6661	GTGCGCTGGA	GGGCCTGATC	CCCCGGTCA	CCTTCCACGG	CGAGCACCCG	CGGCGGCTGG
	6721	GCCGGGTCCC	GGAGCTGGGC	GAGCATACCG	AGTCCGTCCT	GGCGTGGCTG	GCCGCGCCCC
40	6781	ACAGCGCCGA	CCGCGAAGAG	GCCGGCCATG	CCGAATGAAC	TCACCGGAGT	CCTGATCCTG
40	6841	GCCGCCGTGT	TCCTGCTCGC	CGGCGTACGG	GGGCTGAACA	TGGGCCTGCT	CGCGCTGGTC
	6901	GCCACCTTTC	TGCTCGGGGT	GGTCGCACTC	GACCGAACGC	CGGACGAGGT	GCTGGCGGGT
	6961	TTCCCCGCGA	GCATGTTCCT	GGTGCTGGTC	GCCGTCACGT	TCCTCTTCGG	GATCGCCCGC
	7021	GTCAACGGCA	CGGTGGACTG	GCTGGTACGT	GTCGCGGTGC	GGGCGGTGGG	GGCCCGGGTG
4.5	7081	GGAGCCGTCC	CCTGGGTGCT	CTTCGGCCTG	GCGGCACTGC	TCTGCGCGAC	AGGCGCGGCC
45	/141	TCGCCCGCGG	CGGTGGCGAT	CGTGGCGCCG	ATCAGCGTCG	CGTTCGCCGT	CAGGCACCGC
	7201	ATCGATCCGC	TGTACGCCGG	ACTGATGGCG	GTGAACGGGG	CCGCAGCCGG	CAGTTTCGCC
	/261	CCCTCCGGGA	TCCTGGGCGG	CATCGTCCAC	TCGGCGCTGG	AGAAGAACCA	TCTGCCCGTC
	7321	AGCGGCGGGC	TGCTCTTCGC	AGGCACCTTC	GCCTTCAACC	TGGCGGTCGC	CGCGGTGTCA
	7381	TGGCTCGTCC	TCGGGCGCAG	GCGCCTCGAA	CCACATGACC	TGGACGAGGA	CACCGATCCC
50	/441	ACGGAAGGGG	ACCCGGCTTC	CCGCCCCGGC	GCGGAACACG	TGATGACGCT	GACCGCGATG
	7501	GCCGCGCTGG	TGCTGGGAAC	CACGGTCCTC	TCCCTGGACA	CCGGCTTCCT	GGCCCTCACC
	/561	TTGGCGGCGT	TGCTGGCGCT	GCTCTTCCCG	CGCACCTCCC	AGCAGGCCAC	CAAGGAGATC
	1021	GCCTGGCCCG	TGGTGCTGCT	GGTATGCGGG	ATCGTGACCT	ACGTCGCCCT	GCTCCAGGAG
	7681	CTGGGCATCG	TGGACTCCCT	GGGGAAGATG	ATCGCGGCGA	TCGGCACCCC	GCTGCTGGCC
				_			

grey first street that the street street and the street st

					GTCTCGGCCT		
					TTCCTGAAGT		
					ACCGTGGTGG		
_					GAGCGGCTGC		
5					CTGGCTCCCG		
	8041	GTGGTGGCGT	GAGCGCAGCG	GAGCGGGAAT	CCCCTGGAGC	CCGTTTCCCG	TGCTGTGTCG
	8101	CTGACGTAGC	GTCAAGTCCA	CGTGCCGGGC	GGGCAGTACG	CCTAGCATGT	CGGGCATGGC
	8161				CGCTTACGTA		
4.0	8221	TGACGAGGTG	CTGAGCCGGC	TGCGCGCGCA	GACGGCCGAG	CTGCCGGGCG	GTGGCGTACT
10	8281	GCCGGTGCAG	GCCGAGGAGG	GACAGTTCCT	CGAGTTCCTG	GTGCGGTTGA	CCGGCGCGCG
	8341	TCAGGTGCTG	GAGATCGGGA	CGTACACCGG	CTACAGCACG	CTCTGCCTGG	CCCGCGGATT
	8401	GGCGCCCGGG	GGCCGTGTGG	TGACGTGCGA	TGTCATGCCG	AAGTGGCCCG	AGGTGGGCGA
	8461	GCGGTACTGG	GAGGAGGCCG	GGGTTGCCGA	CCGGATCGAC	GTCCGGATCG	GCGACGCCCG
	8521	GACCGTCCTC	ACCGGGCTGC	TCGACGAGGC	GGGCGCGGG	CCGGAGTCGT	TCGACATGGT
15	8581	GTTCATCGAC	GCCGACAAGG	CCGGCTACCC	CGCCTACTAC	GAGGCGGCGC	TGCCGCTGGT
	8641	ACGCCGCGGC	GGGCTGATCG	TCGTCGACAA	CACGCTGTTC	TTCGGCCGGG	TGGCCGACGA
	8701	AGCGGTGCAG	GACCCGGACA	CGGTCGCGGT	ACGCGAACTC	AACGCGGCAC	TGCGCGACGA
	8761	CGACCGGGTG	GACCTGGCGA	TGCTGACGAC	GGCCGACGGC	GTCACCCTGC	TGCGGAAACG
	8821	GTGACCGGGG	CGATGTCGGC	GGCGGTCAGC	GTCAGCGTCG	TCGGCGCGGG	CCTCGCGGAG
20	8881	GGCTCCAGAT	GCAGGCGTTC	GACGCCGGCG	GCGGAAGCGC	CCGCCACCTC	GGACACGCAG
	8941	GGGCAGTCGG	AGTCCGCGAA	GCCCGCGAAC	CGGTAGGCGA	TCTCCATCAT	GCGGTTGCGG
	9001	TCCGTACGCC	GGAAGTCCGC	CACCAGGTGC	GCCCCGCGC	GGGCGCCCTG	GTCCGTGAGC
	9061	CAGTTCAGGA	TCGTCGCACC	GGCACCGAAC	GACACGACCC	GGCAGGACGT	GGCGAGCAGT
	9121				AGCAGGATGA		
25					ACCTCATGGG		
					TCGCGTTCAT		
					CCGCGGGTGC		
	9361	GCGAGCGCAG	GAAGTCCTCG	TCGGGACCGG	AGTACGCCTC	CCGGGCCTGG	TCGCGCGCGA
••					GCGAGTCGAC		
30					GCTCGGCCGG		
					GCTGGTCGTC		
					GGACGGACTG		
					CGAGGCGTTC		
2.5					GGATGCCGCG		
35					CGTCGTCCTC		
					TGACAATGGT		
					ACCCGGCACA		
	9961	ATCTCCATGA	GCTTGGCGTC	GCGGTACGCC	CGTTCGACGA	CGTGTCCCTC	TCTCGCGCCT
40	10021	GCCGACGCGA	GCACCTGTGC	GGCGGTCGCG	GCCCCGGCGG	CGGCTCGTTC	GGCGGCGACG
40					TCGGGCGAGC		
					TCCGCGGTCC		
					CCGAACTGCT		
					CCGACGCAGC		
45					GGCAGTGACG		
43					TGCAGATCGG		
					ACGCCGGGGG		
					AAGACGACCA		
					ACAGCGGTGT		
50					TGCCGCTCAC		
50					GCCCGCTGAC		
					ATGACACTGC		
	10801	CCGACGTGTG	CGGTGAACTC	GCCGTTCTCC	CGGCTGCCGA	GTCCCAGACC	GCCGTGCTCG
					GCGCCGAGCC		
	10921	AGTTCGCCGG	ACGTGTCCCA	CTCGGCGGCC	CGGTCACCGA	CAAGGTCGGT	CAGCAGCGCG

						GCGACCATGG	
	11041	ACGGAAGTTC	GCGAGCTGGA	GGTCCGGGCC	GGCGATCGTG	ACGTCGAACG	TCTTCTCCAG
						CCCTCCGCGA	
	11161	GTCCACGGGC	CAGTCCGACC	TGGTCTTCGT	CTTGAGGAAC	GCGACCAACG	CGTGCGCGAC
5						CGTATTCGTA	
						GCAGCAGGTC	
						CGTCGACGAG	
						CGAGGCACCC	
						TCCGCGCCGC	
10						CCCGGACGAC	
						CCTTCTCACC	
						TCATGAAGTG	
						CCGGGATCGA	
						CGAGTACCTC	
15						TACCGATCGC	
						GCCCGGCCAC	
						GGATCTCCTC	
						TGATGCCGGT	
						CTCCCTCCGG	
20						GATCGCGTCC	
						GATGTGGTCG	
						CGCCGCGGTG	
						CAGTTGCTGG	
						GTCGTCGAGC	
25						CACATGCAGG	
						CGAGGTGACG	
						GACCGGCAGT	
						GTCGCTGACC	
						CGCCTGTGCG	
30						GCTCGCGACG	
	12781	CGCCGGTCCG	CATCGCGGTG	ATCACGCCTG	CGTCGGCGAG	GGCGGTCAGA	CTGCCGCTGT
						CCGGAAGCGC	
	12901	GCGGACTGTA	CGAAACCGTC	TTCATGGTCA	CGCCGACACC	GGGGACCCGG	TACGGCATGA
						GGTACGCGGC	
35	13021	CGAACTCGCC	GCGGCCGAGC	GCGGCGAACC	CGTCGTGCAG	CTCGCTGATC	AGCCGGTCCA
	13081					GTCACGTTGG	
	13141					CTTGGTGGTG	
						AAAATCTCGT	
							AGCGGTTGAG
40						GCGCCCGGGT	
							CGTCCGGGGA
						GGGTAGTCGA	
						CGCAGCTGCA	
						ATGTCCTCCG	
45						AGGTCGGTGG	
						CCACGCAGCA	
						CCGGTGTGGA	
						CCACCCTTGC	
. .						TGGTCCCACA	
50						GCGAGCGCGT	
							CCGACGAGTA
						TGCAGGTGCC	
						AGGTTGTCGA	
	14161	GTCGAGGGTT	CCGGCGGTGT	GGAAGACGGC	GGTGAGGGGT	TGAGGGATGT	GGGCGAGGGT

	14221	GGTGGCGAGT	TGGTGGGGGT	CGCCGACGTC	GCAGGGGAGG	TGGGTGCCGG	GGGTGGTGTC
	14281	GGGGGGTGGG	GTGCGGGAGA	GGAGGTAGGT	GTGGGGGTGG	TTCAGGTGGC	GGGCGAGGAT
	14341	. GCCGGCGAGG	GTGCCGGAGC	CGCCGGTGAT	GACGACGGCC	CCCTCGGGGT	CCAGCGGCCG
_	14401	. CGGGACCGTG	AGGACGATCT	TGCCGGTGTG	CTCGCCGCGG	CTCATGGTCG	CCAGCGCCTC
5	14461	GCGGACCTGC	CGCATGTCGT	GCACCGTCAC	CGGCAGCGG	TGCAGCACAC	CGCGCGCGAA
	14521	CAGGCCGAGC	AGCTCCGCGA	TGATCTCCTT	GAGCCGGTCG	GGCCCCGCGT	CCATCAGGTC
	14581	GAACGGTCGC	TGGACGGCGT	GCCGGATGTC	CGTCTTCCCC	ATCTCGATGA	ACCGGCCACC
	14641	CGGCGCGAGC	AGGCCGACGG	ACGCGTCGAG	GAGTTCACCG	GTGAGCGAGT	TGAGCACGAC
	14701	GTCGACCGGC	GGGAACGCGT	CGGCGAACGC	GGTGCTGCGG	GAATCGGCCA	GATGCGCTCC
10	14761	GTCCAGGTCC	ACCAGATGGC	GCTTCGCGGC	GCTGGTGGTC	GCGTACACCT	CCGCGCCCAG
	14821	GTGCCGCGCG	ATCTGCCGGG	CGGCGGAACC	GACACCGCCG	GTGGCCGCGT	GGATCAGGAC
	14881	CTTCTCGCCG	GGGCGCAGCC	CGGCGAGGTC	GACCAGGCCG	TACCACGCGG	TCGCGAACGC
	14941	GGTCATCACG	GACGCCGCCT	GCGGGAACGT	CCAGCCGTCC	GGCATCCGGC	CGAGCATCCG
	15001	GTGGTCGGCG	ATGACCGTGG	GGCCGAAGCC	GGTGCCGACG	AGGCCGAAGA	CGCGGTCGCC
15	15061	CGGTGCCAGA	CCGGAGACGT	CGGCGCCGGT	CTCCAGGACG	ATGCCCGCGG	CCTCGCCGCC
	15121	GAGCACGCCC	TGACCGGGGT	AGGTGCCGAG	CGCGATCAGC	ACATCGCGGA	AGTTGAGGCC
	15181	CGCCGCACGC	ACACCGATCC	GGACCTCGGC	CGGGGCGAGG	GGGCGCCGGG	GCTCCGCCGA
	15241	GTCGGCCGCG	GTGAGGCCGT	CGAGGGTGCC	CGTCCGCGCC	GGCCGGATCA	CCCACCTCTC
	15301	GCTGTCCGGC	ACGGTGAGCG	GCTCCGGCAC	CCGGGTGAGG	CGGGCCGCCT	CGAACCGGCC
20	15361	GCCGCGCAGC	CGCAGACGCG	GCTCGCCGAG	TGCGACGGCG	ATGCGCTGCT	GCTCGGGGG
	15421	GAGCGTGACG	CCGGACTCGG	TCTCGACGTG	GACGAACCGG	CCGGGCTGCT	CGGCCTGGGC
	15481	GGCGCGCAGC	AGTCCGGCCG	CCGCGCCGGT	GGCGAGGCCC	GCGGTGGTGT	GCACGAGCAG
	15541	ATCCCCGCCG	GAGCCGGTCA	GGGCGGTCAG	CAGCCGGGTG	GTGAGCGCAC	GCGTCTCGGC
	15601	CACCGGGTCG	TCGCCATCAG	CGGCAGGCAA	CGTGATGACG	TCCACGTCGG	TCGCGGGGAC
25	15661	ATCCGTGGGT	GCGGCGACCT	CGATCCAGGT	GAGACGCATC	AGGCCGGTGC	CGACGGGTGG
	15721	GGACAGCGGG	CGGGTGCGGA	CCGTCCGGAT	CTCGGCGACG	AGTTGGCCGG	CGGAGTCGGC
	15781	GACGCGCAGA	CTCAGCTCGT	CGCCGTCACG	AGTGATCACG	GCTCGGAGCA	TGGCCGAGCC
	15841	CGTGGCGACG	AACCGGGCCC	CCTTCCAGGC	GAACGGCAGA	CCCGCAGCGC	TGTCGTCCGG
	15901	CGTGGTGAGG	GCGACGGCGT	GCAGGGCCGC	GTCGAGCAGC	GCCGGATGCA	CACCGAAACC
30	15961	GTCCGCCTCG	GCGGCCTGCT	CGTCGGGCAG	CGCCACCTCG	GCATACACGG	TGTCACCATC
	16021	ACGCCAGGCA	GCCCGCAACC	CCTGGAACGC	CGACCCGTAC	TCATAACCGG	CATCCCGCAG
	16081	TTCGTCATAG	AACCCCGAGA	CGTCGACGGC	CACGGCCGTG	ACCGGCGGCC	ACTGCGAGAA
	16141	CGGCTCCACA	CCGACAACAC	CGGGGGTGTC	GGGGGTGTCG	GGGGTCAGGG	TGCCGCTGGC
	16201	GTGCCGGGTC	CAGCTGCCCG	TGCCCTCGGT	ACGCGCGTGG	ACGGTCACCG	GCCGCCGTCC
35	16261	GGCCTCATCA	GCCCCTTCCA	CGGTCACCGA	CACATCCACC	GCTGCGGTCA	CCGGCACCAC
	16321	AAGGGGGGAT	TCGATGACCA	GCTCGTCCAC	TATCCCGCAA	CCGGTCTCGT	CACCGGCCCG
	16381	GATGACCAGC	TCCACAAACG	CCGTACCCGG	CAGCAGGACC	GTGCCCCGCA	CCGCGTGATC
	16441	AGCCAGCCAG	GGGTGAGTGC	GCAATGAGAT	CCGGCCAGTG	AGAACAACAC	CACCATCGTC
	16501	GGCGGGCAGC	GCTGTGACAG	CGGCCAGCAT	CGGATGCGCC	GCACCCGTCA	ACCCCGCCGC
40	16561	CGACAGATCG	GTGGCACCGG	CCGCCTCCAG	CCAGTACCGC	CTGTGCTCGA	ACGCGTACGT
	16621	GGGCAGATCC	AGCAGCCGTC	CCGGCACCGG	TTCGACCACC	GTGTCCCAGT	CCACTGCCGT
	16681	GCCCAGGGTC	CACGCCTGCG	CCAACGCCGT	CAGCCACCGC	TCCCAGCCGC	CGTCACCGGT
	16741	CCGCAACGAC	GCCACCGTGT	GAGCCTGCTC	CATCGCCGGC	AGCAGCACCG	GATGGGCACT
	16801	GCACTCCACG	AACACCGACC	CATCCAGCTC	CGCCACCGCC	GCGTCCAACG	CCACCGGACG
45	16861	ACGCAGATTC	CGGTACCAGT	ACCCCTCATC	CACCGGCTCC	GTCACCCAGG	CGCTGTCCAC
	16921	GGTCGACCAC	CACGCCACCG	ACGCGGCCTT	CCCTGCCACC	CCCTCCAGTA	CCTTGGCCAG
	16981	TTCATCCTCG	ATGGCTTCCA	CGTGGGGCGT	GTGGGAGGCG	TAGTCGACCG	CGATACGACG
	17041	CACCCGCACG	CCTTCGGCCT	CATACCGCGC	CACCACCTCC	TCCACCGCCG	ACGGGTCCCC
	17101	CGCCACCACC	GTCGAAGCCG	GGCCGTTACG	CGCCGCGATC	CACACACCCT	CGACCAGACC
50	17161	GACCTCACCG	GCCGGCAACG	CCACCGAAGC	CATCGCTCCC	CGCCCGGCCA	GTCGCGCCGC
	17221	GATGACCTGA	CTGCGCAATG	CCACCACGCG	GGCGGCGTCC	TCGAGGCTGA	GGGCTCCGGC
	17281	CACGCACGCC	GCCGCGATCT	CGCCCTGGGA	GTGTCCGATC	ACCGCGTCCG	GCACGACCCC
	17341	ATGCGCCTGC	CACAGCGCGG	CCAGGCTCAC	CGCGACCGCC	CAGCTGGCCG	GCTGGACCAC
	17401	CTCCACCCGC	TCCGCCACAT	CCGGCCGCGC	CAACATCTCC	CGCACATCCC	AGCCCGTGTG

	1746	l CGGCAGCAAC	GCCTGAGCGC	ACTCCTCCAT	T ACGCGCGGC	AACACCGCGG	አርጥርርርርር አጥ
	1752	L GAGTTCCACG	CCCATGCCGA	CCCACTGGG	CCCCTGGCC	GGGAAGACGA	ACICCCTICC
	17581	LCGGCTGGTCC	ACCGCCACAC	CCGTCACCC	GGCATCGCC	AGCAGCACCG	CACCCTCACC
	17641	GAAGACAGCA	CGCTCCCGCA	CCAACCCCTC	G CGCGACCGC	GCCACATCCA	CACCACCCCC
5	17701	GCGCAGATAC	CCCTCCAGCC	GCTCCACCTC	G CCCCCGCAG	CTCACCTCAC	CACCACCCCA
	17761	CACCGGCAAC	GGCACCAACC	CGTCAACAAC	C CGACTCCCC	CGCGACGGCC	CACCAACACC
	1782]	CTCAAGGATC	ACGTGCGCGT	TCGTACCGCT	CACCCCGAAC	GACGACACAC	CCGCATGCCC
	17881	TGCCCGATCC	GACTCGGGCC	ACGGCCTCGC	CTCGGTGAGC	AGCTCCACCG	CACCGCCGA
	1794]	CCAGTCCACA	TGCGACGACG	GCTCGTCCAC	C ATGCAGCGTC	TTCGGCGCGA	TCCCGTACCG
10	18001	CATCGCCATG	ACCATCTTGA	TCACACCGGC	GACACCCGCC	GCCGCCTGCG	CATGACCGAT
	18061	. GTTCGACTTC	AACGAACCCA	GCAGCAGCGG	AACCTCACGC	TCCTGCCCGT	ACCTCCCCAC
	18121	. AATGGCCTGC	GCCTCGATGG	GATCGCCCAG	CGTCGTCCCC	GTCCCGTGCG	CCTCCACCAC
	18181	GTCCACATCG	GCGGCGCGCA	GTCCGGCGTT	CACCAACGCC	TGCTGGATGA	CACGCTGCTG
	18241	GGACGGGCCG	TTGGGGGCGG	ACAGCCCGTT	' GGAGGCACCG	TCCTGGTTCA	CCCCCCACCC
15	18301	GCGGACGACC	GCGAGAACGG	TGTGTCCGTT	GCGCTCGGCG	TCGGAGAGCC	GCTCCAGCAC
	18361	AAGAACGCCG	GCGCCCTCCG	CCCAGCCGGT	' GCCGTTGGCG	GCGTCCGCGA	ACGCGCGGCA
	18421	GCGGCCGTCG	GGGGAGAGTC	CGCCCTGCTG	CTGGAATTCC	ACGAACCCGG	TOGGGGTOGO
	18481	CATGACGGTG	ACACCGCCGA	CCAGCGCCAG	CGAGCACTCC	CCGTGGCGCA	GTGCGTGCCC
20	18541	GGCCTGGTGC	AGCGCGACCA	GCGACGACGA	GCACGCCGTG	TCCACCGTGA	ACGCCGGTCC
20	18601	CTGGAGCCCA	TAGAAGTACG	AGATCCGGCC	GGTGAGCACG	CTGGGCTGCA	TGCCGATCGA
	1800T	GCCGAACCCG	TCCAGGTCCG	CGCCGACGCC	GTACCCGTAC	GAGAAGGCGC	CCATGAACAC
	18/21	GCCGGTGTCG	CTGCCGCGCA	GTGTGCCCGG	CACGATGCCC	GCGCTCTCGA	ACGCCTCCCA
	18/81	TGTCGTTTCC	AGCAGGATCC	GCTGCTGGGG	GTCCATGGCC	CGTGCCTCAC	GGGGGCTGAT
25	18841	GCCGAAGAAC	GCGGCATCGA	AGCCGGCGGC	GTCGGAGAGG	AAGCCGCCGC	GGTCCGTGTC
25	18901	CGATCCGCCG	GTGAGGCCGG	ACGGGTCCCA	GCCACGGTCG	GCCGGGAAGC	CGGTGACCGC
	18961	GTCGCCGCCA	CTGTCCACCA	TGCGCCACAG	GTCGTCGGGC	GAGGTGACGC	CGCCCGGCAG
	19021	TCGGCAGGCC	ATGCCCACGA	TGGCCAGCGG	TTCGTCACGG	GTCGCGGCGG	CTGTGGGAAC
	19081	AGCGACCGGT	GCGGCACCAC	CGACCAGAGC	CTCGTCCAAC	CGCGACGCGA	TGGCCCGCGG
30	19141	CGTCGGGTAG	TCGAAGACAA	GCGTGGCGGG	CAGTCGGACA	CCGGTCGCCG	CGGCGAGTCG
30	19201	GTTCCGCAGT	TCGACGGCGG	TCAGCGAGTC	GATACCCAGT	TCCTTGAAGG	CCGCGTCCGC
	19261	GGACACGTCC	GCGGCGTCCG	CGTGGCCGAG	CACCGCCGCC	GCGTTGTCGC	GGACCAGTGC
	19321	CAGCAGCGCG	GTGTCCCGCT	CAGCGCCGGA	CATGGTGCCG	AGCCGGTCGG	CGAGCGGAAC
	19381	GGCGGTGGCC	GCCGCCGGGC	GCGATACGGC	GCGGCGCAGA	TCGGCGAAAA	GCGGCGATGT
35	19441	GIGCGCGGIG	AGGTCCATCG	TGGCCGCCAC	GGCGAACGCG	GTGCCGGTTC	CGGCCGCGGC
33	10561	COTCOCCTOC	CGCATGCCCA	CACCGGCCGA	CATGGGGCGG	AAACCGCCGC	GGCGGACACG
	19501	CCCCACCCAC	GTGCCGCTCA	TGCTGCCGGT	GAGTCCGCTG	TCATCGGCCC	AGAGGCCCCA
	19621	CCCCTTCCCC	AGCGCGGGCA	GTCCTTCGGC	ATGGCGCAGC	GTCGCGAGTC	CGTCGAGGAA
	19741	GTAGACCACC	AACCACCCA	TGCCCTGGCC	GCGGCCGCCC	ATGATGCCCG	CGACGGACGA
40	19801	GTAGAGGACG	CCCCCCACTC	GGTCCGCGTC	CCGGGTCAGC	TCGTGCAGGT	GCCAGGCGCC
	19861	GTCGTCGAGC	ACCCCTCCCC	TGGTGGCGAG	CCGCTCCGGG	GTGAGTGCCG	TGGTCACGCC
	19921	CGCGGCGGCG	ACCTCCTCCC	CCTCCCCCAC	CGCCGTGAGC	GGCCTGCCGG	CGGCGGCGAG
	19981	CGCCGGCGGT	TCCCTCCCCC	ACACCA ACAC	GTCACAGCGG	ATGTGGACAC	CGGGAGTGTC
	20041	ATGCCGGGCG	ACCACACCTC	CCACCACACAC	GAGGTGGCGG	GCGCCATGCT	CGGCGACGAG
45	20101	CGGGTCGAGC	AGCGGTTCGG	CCAGCACACC	CGAGCCGCCG	GTGATGACCA CGGGTGAACC	CCGTGCCGTC
	20161	GTACCGGCCG	TCGGTGACGC	GCGTTTCCGC	CTCCCCCACT	GTCGTGGCGG	GCGGCGCTTC
	20221	CTCGATGGGG	GTGTCGGTGC	CCCTCTCCAC	CICGCCAGI	CGGCCCGGGT	CGGCCAGCGC
	20281	GGCGGACCGG	ACGAGGCCGG	CGACCGCTCC	TCCCACCCCT	CCCCCCGGGT	GCTCGGCCTG
	20341	GAGGGTGGTC	TCCGCAGGGC	CGTCCTCGGC	CATCACCCCC	TGCAGCTCGC	TCCGGACGAC
50	20401	CTCGGTGAGC	CGGTACGTCT	CGTCGAGGAC	ATCCCCCCC	GGTTCCGGGA	CCACCACGAA
	20461	GATGTGGACC	GCGTCCGCAG	GACCGGGCCC	GGGAGTGGGC	AGCTCGGGGA	ACCACACACAC
	20521	GTACAAGGAG	TTCCGTACGA	CGGCGGCGTC	GCCGTCGACG	TTCACCGGTCC	CCCCCCCCC
	20581	CGCGGCGACG	GTCACCACCG	GTTGGCCGAC	CGGGTCCGTC	GCATGCACGG (CACCCCCCTC
	20641	CGGGCCCTGA	GTGATCGTGA	CGCGCAGCGT	GGTGGCCCCG	GTCGTGTGGA	OUGCGCCGIC
						CICCIGIGA I	100000000000000000000000000000000000000

	20701	GCTCCACGAC	AACGGCAGCC	GCACCTCCG	C TTCCTGTTCC	GCGAGCAGCG	GCAGGCAGGT
	20761	GACGTGCAAG	GCCGCGTCGA	ACAGCGCCG	G GTGGACGCCA	TAGTGCGGCG	TGTCGTCCGC
	20821	CTGTTCCCC	GCGATCTCCA	CCTCGGCGTA	A CAGGGTTTC	CCGTCGCGCC	AGGCGGTGCG
	20881	CAGTCCCTGG	AACGCTGGGC	CGTAGCTGTA	A GCCGGTCTC	GCCAGCCGCT	CGTAGAACGC
5	20941	GCTCACGTCG	ACGCGTCGCG	CGCCCGGCGG	GGCCACGC	GGCGGCGGGA	CCGCCGCGAC
	21001	GCTTCCGGCC	CGGCCGAGGG	TGCCGCTGGC	GTGCCGGGTC	CAGCTGTCCG	TECCCTCEGT
	21061	ACGCGCGTGG	ACGGTCACTC	GCCGCCGTCC	GGCCTCATCG	GCCCCTTCGA	CGGTCACCGA
	21121	CACATCCACC	GCGCCGGTCA	CCGGCACCAC	GAGCGGGGTC	TCGATGACCA	CTTCATCCAC
	21181	CACCCCGCAA	CCGGTCTCGT	CACCGGCCCG	GATGACCAGO	TCCACAAACG	CCGTACCCG
10	21241	CAGCAGAACC	GTGCCCCGCA	CCGCGTGATC	: AGCCAGCCAG	GGATGCGTAC	CCAACCACAT
	21301	CCGGCCAGTG	AGAACAACAC	CACCACCGTC	GTCGGCGGGC	AGTGCTGTGA	CGCCGCCAG
	21361	CATCGGATGC	GCCGCCCCGG	TCAGCCCGGC	. CCCCCACACA	TCGGTGGCAC	CGGCGGCCAG
	21421	CAGCCAGTAC	CGCCTGTGCT	CGAACGCGTA	GETEGECAGA	TCGAGCAGCC	CTCCCCCCAC
	21481	CGGTTCGACC	ACCGTGTCCC	AGTCCACTGC	CGTGCCCAGG	GTCCACGCCT	CCCCCAACCC
15	21541	CGTCAGCCAC	CGCTCCCAGC	CGCCGTCACC	CGIGCCCAGG	GACGCCACCG	TCTCACCCTC
	21601	TTCCATCGCC	GGCAGCAGCA	CCGGATGGGC	GOICCGCAAC	ACGAACACGG	ACCCCMCCAC
	21661	CTCCGCCACC	GCCGCGTCCA	GCGCGACGGG	GCTGCACTCC	TTCCGGTACC	ACCCGICCAG
	21721	ATCCACCGGC	TCGGTCACCC	AGGCGCTGTC	CACCCTCCAC	CACCAGGCCA	AGTAGCCCTC
	21781	CCCGCCGGAA	ATCCCCTCCA	CTACCTCCC	CACCGIGGAC	TCGATGGCTT	CCGACCCGGT
20	21841	CGTGTGGGAG	GCGTAGTCGA	CCCCCATACC	CAACICGICC	ACGCCTTCGG	CCACGTGGGG
	21901	CGTCACCACT	TCTTCCACCC	CCCACCCCTC	CCCCCCCACC	ACGCCTTCGG	CCTCGTACCG
	21961	ACGCGCCGCG	ATCCACACCC	CCTCCACCAC	CTCCACCTCA	CCGGCCGGCA	ACGGGCCGTT
	22021	AGCCATCGCC	CCCCCCCCC	CCICGACCAG	CCCCATCACC	TGGCTGCGCA	ACGCCACCGA
	22081	GCGGGCGGCG	TCCTCAAGGC	TCACCCCTCC	CCCCACACACA	GCCGCCGCGA	AGGCCACCAC
25	22141	GGAGTGTCCG	ACCACCGCGT	CCGCCACGAC	CCCATCCCCC	TGCCACAGCG	CCCCCACCCTG
	22201	CACCGCGACC	GCCCAGCTGG	CCGCCTGGAC	CACCTCCACC	CGCTCCGCCA	CAMCOCCOCC
	22261	CGCCAACATC	TCCCGCACAT	CCCACCCCCT	CECCCCAAC	AACGCCCGCG	CATCCGGCCG
	22321	CATACGAGCC	CCGAACACCC	CAGAACACGC	CATCAACTCC	ACACCCATGC	CACACTCCTC
	22381	AGCACCCTGC	CCGCGAAACA	CAGAACACGC	ACCCCCCTCA	TCCACCGCCA	CCACCCACTG
30	22441	CCGGGCATCG	CCCDDCDCD	CCCCACCCTC	ACCCAACACA	GCACGCTCAC	CACCCATCAC
	22501	CTGCGCGACC	GCGGCCACAT	CCACACCACC	CCCCCCCACA	TACCCCTCCA	GCACCAACCC
	22561	CTGCCCCCCC	ACACTCACCT	CACACCACC	CCACACCCC	AACGGCACCA	GCCGCTCCAC
	22621	AGCCGACTCC	CCACGCGACC	CCCCCCAAC	A COCTTON A CO	ATCACGTGCG	ACCCATCGAC
	22681	GCTCACCCCG	AAAGCGGAGA	CACCCCCCCC	CCCCCCACCE	CCCGCGTCGG	CGTTCGTACC
35	22741	CGCCTCGGTG	ACCACTTCCA	CCCCCCCCCC	CCTCCACTCC	ACATGCGACG	GCCACGCCCG
	22801	CACATGCAGC	GTCTTCGGCG	CCATCCCATA	CCCCATCCCC	ATGACCATCT	ACGGCTCGTC
	22861	GGCGACACCC	GCACCCCCT	CCCCATCACC	CATCTTCCAC	TTCAACGAAC	TGATGACACC
	22921	CGGAACCTCA	CGCTCCTGCC	CGTACGTCCC	CACAATCCCC	TGCGCCTCGA	CCAGCAGCAG
	22981	CAGCGTCGTC	CCCGTCCCGT	CCCCTCCAC	CACARICGCG	TCGGCGGGGG	CCACCCCCC
40	23041	CTTGTGGAGG	GCCTGGCGGA	TEACCCCCTC	CTCCCACCC	CCGTTGGGTG	CGAGCCCCCGC
	23101	GTTGGAGGCG	CCCTCCTCCT	TCACCCCCCA	CIGGGAGGGG	ACCGCGAGGA	CGGAGATGCC
	23161	GTTGCGCTCG	GCGTCGGACA	CCTTTTCCAC	CACCACCACC	CCGGCCCCCT	CGGTGTGTCC
	23221	GGTGCCGTCC	GCCGCGTCNC	CCAACCCCTT	CCACCCCCCC	TCCGGCGCGA	CGGCGAAACC
	23281	CCGGGAGAAC	TCCACCAACC	TCTCTCTCTCT	GCACCGTCCG	GTGACACCAC	CGCCGCCCTG
45	23341	CAGCGAGCAC	TCCACGAAGG	CCACCCCCCC	TGCCATCACT	GTGACACCAC	CGACCAGCGC
	23401	CGAACACGCC	CTCTCCACCC	TCACCCCCCC	ACCOMOGRAM	TGCAGCGCGA	CCAGCGACGA
	23461	TCCGGCGAGC	ACCCCCCCC	CTCTCCTCTT	ACCCTCCATG	CCGAAGAAGT	ACGACAGCCG
	23521	GCCGTAGCCC	TACTACAACC	GIGIGCIGIA	GGCGCCGAAT	CCGCCCAGGT	CCGCGCCCGT
	23581	CGGCACGATG	CCCCCCTCTT	CGCCGACGAA	GACGCCGGTG	TCGCTGCCGC	GCAGGGTGTC
50	23641	CGGGTCGAGT	CCCCTCCCCT	CGAGCGCCTC	CCAGGCGATT	TCGAGGAGGA	TCCGCTGCTG
	23701	GGCGCCGAGI	ACTCCCCCC	CCCCCCCCCCCC	GATGCCGAAG	AACGCGGCAT	CGAAGTCGGC
	23761	CACCTCCCAC	TO I GCGCCEG	TCCCCT TCTC	GGCGGACTCG	GCGGCGGCGT	GCAGCGCGGC
	23821	CTCCCACACC	TCTTCCCCTC	1 GGGGAAGTC	GCCGATCGCG	TCGCGGCCGT	CCGCGACGAG
	23881	CCCACACC	TCTTCCGGTG	AGGTGACGCC	GCCCGGCAGT	CGGCAGGCCA	TGCCGACGAC
		Journaled	1001106006	CGGCGCAG	CGCGGTGTTC	TCCCGGCGGA	GCTGCGCGTT

ıÏ.

fij

fU

M

M

W

47

	2718	1 CGACGTCGT	C GTCGAGCAG	ACGGCGCGG	GCGGGAACGI	CGTACGCCTG	GCGAGCAGGC
	2/24]	l CCGCGGCGA	I GGCGCGCGG	G TCGTGGCCGC	GACGGGCGGC	GAGGTGCTCG	CGGAGTCGGC
	2730	l GGACCTGGC	CGTCGAGGGC	CGTGGCGGTC	CGCCGAGAC	GGGCAGTGGT	GTGAGCGGCG
_	2736.	l TGGCGATCA	G CGGCTCACC	GGCTTCGAGG	CCGACGGCTC	CTCGGCCGGC	GGCTCCCCGG
5	27423	L CCGGGTGGG	C TTCCAGCAG	ACGTGGGCG1	TGGTGCCGCT	GACGCCGAAG	GAGGACACAC
	27483	CGGCGCGCCC	G CGGGCGGTC	GTCTCGGGCC	AGGGCCGGGC	ATCGGTGAGG	AGTTCGACGG
	27541	L CGCCGGCCG1	CCAGTCGAC	TGCGAGGACG	GCGTGTCCAC	GTGCAGGGTG	CGCGGCAGGG
	27601	TGCCGTGCC	CATGGCGAGG	ACCATCTTGA	TGACACCGGC	GACACCCGCG	GCGGCCTGAG
	27661	LTGTGGCCGAT	GTTGGACTTC	AGCGAGCCCA	GCAGCACCGG	GGTGTCGCGC	CCCTGCCCGT
10	27721	AGGTGGCCAG	G CACCGCCTGT	GCCTCGATGG	GATCGCCCAG	CCTGGTGCCG	GTGCCGTGCG
	27781	CCTCCACGGC	CGTCCACGTCC	GCCGGGGTGA	GCCCGGCGTT	' GGCCAGGGCC	TGCCGGATCA
	27841	CCCGCTCCTG	GAGGGCCCG	TTCGGCGCCG	ACAACCCGTT	GGAAGCACCG	TCCTGGTTGA
	27901	CCGCCGAACC	CCGGACAACC	GCCAGCACAC	GGTGGCCGTT	GCGCTCGGCA	TCGGAGAGCC
	27961	TCTCGACGAT	CAGCACACCG	GACCCCTCGG	CGAAACCGGT	GCCGTCAGCC	GCATCCGCGA
15	28021	ACGCCTTGCA	GCGCGCGTCG	GGCGCGAGAC	CCCGCTGCTG	GGAGAACTCG	ACGAAGCCGG
	28081	. ACGGCGAGGC	CATCACCGTG	ACGCCGCCGA	CCAGGGCGAG	CGAGCATTCG	CCGGAGCGCA
	28141	GTGACTGCCC	GGCCTGGTGC	AGCGCCACCA	GCGACGACGA	ACACGCCGTG	TCGACCGTGA
	28201	CCGCCGGACC	CTCCAGACCG	TAGAAGTACG	ACAGCCGACC	GGACAGCACA	CTGGTCTGGG
	28261	TGCCGGTCGC	GCCGAAACCG	CCCAGGTCGG	TGCCGAGTCC	GTACCCGTCG	GAGAAGGCGC
20	28321	CCATGAACAC	GCCGGTGTCG	CTTCCGCGCA	GCGACTCCGG	GAGGATCCCG	GCGTGTTCCA
	28381	GCGCCTCCCA	CGAGGTCTCC	AGGACCAGAC	GCTGCTGCGG	GTCCATCGCC	ACCCCTCAC
	28441	GCGGACTGAT	CCCGAAGAAC	GCCGCGTCGA	AGTCCGCCAC	CCCGGCGAGG	AGCCCACCAT
	28501	GACGCACGGT	CGACGTGCCC	GGATGATCCG	GATCGGGATC	GTACAGCCCG	TCCACCTCCC
	28561	AACCACGGTC	CGTCGGAAAC	GCCGTGATCC	CGTCACCACC	CGACTCCAGC	ACCCCCACA
-25	28621	AGTCCTCCGG	CGACGCGACC	CCACCGGGCA	GCCGGCAGGC	CATCCCCACG	ATCCCCAACC
	28681	GCTCGTCCTG	CCGGACGGCC	GCGGTCGTGG	TGCGGGTCGG	CGATGCCGTC	CCCCCCACA
	28741	GCGCCGCGGT	GAGCTTCGCC	GCGACGGCGC	GCGGCGTCGG	GAAGTCGAAG	ACCECETEC
	28801	CGGGCAGCCG	TACGCCCGTC	GCCTCGGTGA	AGGCGTTGCG	CAGCCGGATC	GCCATGAGCG
	28861	AGTCGACGCC	GAGTTCCTTG	AACGTGGCGG	TCGCCTCGAC	CCGTGCGGCA	CCGTCGTGGC
30	28921	CGAGTACGGC	CGCGGTGCAC	TGCCGGACGA	CGGCGAGCAC	GTCCTTTTCG	CCGTCCCCC
	28981	CGGAGAGCCG	CGCGATCCGG	TCGGCGAGGG	TGGTGGCGCC	GGCCGCCCGG	CGCCGCCGCT
	29041	CCCGGCGCGG	TGCGCGCAGC	AGGGGCGAGC	TGCCGAGGCC	GGCCGGGTCG	GCGCCGACCA
	29101	GCGCCGGGTC	CGAGGACCGC	AACGCCGCGT	CGAACAGCGT	CAGTCCGCCT	TCGGCGGTCA
	29161	GCGCCGTCAC	GCCGTCGCGG	CGCATGCGGG	CGCCGGTGCC	GACCGTCAGC	ССССТСТССС
35	29221	GTTCCCACAG	GCCCCAGGCC	ACGGACAACG	CGGGCAGTCC	GGCTGCCCGG	CGCTGTTCGG
	29281	CCAGCGCGTC	GAGGAACGCG	TTCGCGGCCG	CGTAGTTGCC	CTGTCCGGGG	CTGCCGAGCA
	29341	CACCGGCGGC	CGACGAGTAG	AGGACGAACG	CGGCCAGTTC	CGTGTCCTGG	GTGAGTTCGT
	29401	GCAGGTGCCA	CGCGGCGTCC	ACCTTCGGGC	GCAGCACCGT	CTCGAGCCGG	TCGGGGGTGA
4.0	29461	GCGCGGTGAG	GACGCCGTCG	TCGAGGACGG	CCGCGGTGTG	CACGACGGCC	GTGAGCGGGT
40	29521	GCGCCGGGTC	GATCCCCGCC	AGTACGGAGG	CGAGTTCGTC	CCGGTCGGCG	ACGTCGCAGG
	29581	CGATCGCCGT	GACCTCGGCG	CCGGGCACGT	CGCTCGCCGT	GCCGCTGCGC	GACAGCATCA
	29641	GCAGCCGGCG	CACGCCGTGG	CGTTCGACGA	GGTGGCGGCT	GATGATGCCG	GCCAGCGTCC
	29/01	CGGAGCCACC	GGTGACGAGC	ACGGTGCCGT	CCGGGTCGAG	CGCCGGAGCG	TCACCCGCCG
4.5	29/61	GGACCGCCGG	GGCCAGACGG	CGGGCGTACA	CCTGGCCGTC	ACGCAGCACC	ACCTGGGGGCT
45	2982I	CATCGAGCGC	GGTGGCCGCT	GCGAGCAGCG	GCTCGGCGGT	GTCCGGGGCG	GCGTCGACGA
	2988I	GGACGATCCG	GCCGGGGTGT	TCGGCCTGCG	CGGTCCGCAC	CAGTCCGGCG	GCCGCGGCCG
	29941	ACGCGAGACC	GGGCCCGGTG	TGGACGGCCA	GGACCGCGTC	GGCGTACCGG	TCGTCGGTGA
	30001	GGAAGCGCTG	CACGGCGGTC	AGGACGCCGG	CGCCCAGTTC	GCGGGTGTCG	TCGAGCGGGG
~^	30061	CACCGCCGCC	GCCGTGCGCG	GGGAGGATCA	CCACGTCCGG	GACCGTCGGG	TOGTOGAGGO
50	30121	GGCCGGTCGT	CGCGGTCGTG	GGCGGCAGCT	CCGGGAGCTC	GGCCAGCACC	GGGCGCAGCA
	20181	GGCCCGGAAC	GGCTCCCGTG	ATCGTCAGGG	GGCGCCTGCG	CACGGCGCCG	ATGGTGGCGA
	30241	CGGGCCCGCC	GGTCTCGTCC	GCGAGGTGTA	CGCCGTCAGC	GGTGACGGCG	ACGCGTACCG
	20201	CCGTGGCGCC	GGTGGCGTGG	ACGCGGACGT	CGTCGAACGC	GTACGGAAGG	TGGTCCCCTT
	30361	CCGCGGCGAG	GCGGAGTGCG	GCGCCGAGCA	GCGCCGGGTG	CAGGCCGTAC	CGTCCGGCGT

Atty Dkt: 300622002600

	33661	GGGCGTCGCG	GTGGCCGAGC	ACCGCGGCA	G CGCTGGTAC	GACGAGGTCG	AGCATGTCGC
	33723	L GCGCGGCCGG	G AGGTGCGGAC	GTGCGCCGG	A CGGCCGGCAC	CGAGGGTGCGT	AGGACCGGCG
	33781	GGACCCGGTC	GGACGCGGCG	ACGGCGGCGA	A GGTCGAGCC	GATCGGCACG	AGCGCGGGCC
_	33841	L GGTCGGTGTG	CAGGGCCGCG	TCGAACAGG	G CGAGCCCCTC	G TGCGGCCGTC	ATCGGGGTCA
5	33901	TGCCGTTGCG	GGCGATGCGG	GCCAGGTCG	G TGGCGGTCAC	CCGCCCGCCC	ATCCCGTCCG
	33961	CCGCGTCCCA	CAGTCCCCAG	GCGAGCGAGA	A CGGCGGGCAG	CCCCTGGTGG	TGCCGGTGGC
	34021	GGGCGAGCGC	GTCGAGGAAC	GCGTTGCCG	TCGCGTAGTT	GGCCTGACCC	GCGCCGCCGA
	34081	. ACGTGGCGGA	TATGGACGAG	TACAGGACGA	A ACGCGGCCAG	GTCGAGATCG	CGCGTCAGCT
1.0	34141	. CGTGCAGGTG	CCAGGCGACG	TCCGCCTTGA	CCCGCAGCAC	GGCGTCCCAC	TGCTCCGGCC
10	34201	. GCATGGTCGT	CACGGCCGCG	TCGTCGACGA	A TCCCGGCCAT	GTGCACGACG	GCGCGCAGCC
	34261	. GCTGGGCGAC	GTCGGCGACG	ACTGCGGCCA	A GCTCGTCGCG	GTCGACGACG	TCGGCGGCCA
	34321	. CGTACCGCAC	GCGGTCGTCC	TCCGGCGTGT	CGCCGGGCCG	GCCGTTGCGG	GACACCACGA
	34381	CGACCTCGGC	GGCCTCGTGC	ACGGTGAGCA	GGTGGTCCAC	GAGGAGGCGG	CCGAGCCCGC
	34441	CGGTGCCGCC	GGTGACGAGG	ACGGTCCCGC	CGGTCAGCGG	GGAGGTTCCG	GTGGCCGCGG
15	34501	CGACACGGCG	CAGACGGGCC	GCACGCGCTG	TGCCGTCGGC	GACCCGGACG	TGCGGCTCGT
	34561	CGCCGGCGGC	GAGCCCGGCC	GCTATGGCGG	CGGGCGTGAT	' CTCGTCCGCT	TCGATCAGGG
	34621	CGACGCGGCC	GGGATGCTCC	GTCTCCGCCG	TCCGGACCAG	GCCGCCGAGC	GCTTCCTGCG
	34681	CGGGATCGCC	GGTACGGGTG	GCCACGATGA	GCCGGGATCG	CGCCCAGCGC	GGCTCGGCGA
20	34741	GCCAGGTCTG	CACGGTGGTG	AGCAGGTCGC	GGCCCAGCTC	CCGGGTCCGG	GCGCCGGGCG
20	34801	AGGTGCCCGG	GTCGCCGGGT	TCCACGGCCA	GGACCACGAC	CGGGGGGTGC	TCGCCGTCGG
	34861	GCACGTCGGC	GAGGTACGTC	CAGTCGGGGA	CGGGTGACGC	GGGCACGGGC	ACCCAGGCGA
	34921	TCTCGAACAG	CGCCTCGGCA	TCGGGGTCGG	CGGCCCGCAC	GGTCAGGCTG	TCGACGTCAA
	34981	GGACCGGTGA	GCCGTGCTCG	TCCGTGGCGA	CGATGCGGAC	CATGTCGGGG	CCGACGCGTT
25	35041	CCAGCAGCAC	GCGCAGCGCG	GTCGCGGCGC	GCGCGTGGAT	CCTCACGCCG	GACCAGGAGA
25	35101	ACGCCAGCCG	GCGCCGCTCC	GGGTCCGTGA	AGACCGTCCC	GAGGGCGTGC	AGGGCCGCGT
	35161	CGAGCAGCAC	GGGGTGCAGC	CCGTACCGGG	CGTCGGTGAG	CTGTTCGGCG	AGGCGGACCG
	35221	ACGCGTAGGC	GCGGCCCTCC	CCCGTCCACA	TCGCGGTCAT	GGCCCGGAAC	GCGGGCCCGT
	35281	ACGAGAGCGG	CAGCGCGTCG	TAGAAGCCGG	TCAGGTCGGC	CGGGTCGGCG	TCGGCGGGCG
20	35341	GCCAGTCCAC	GGGCTCCGCC	GGACCGCCAG	TGTCCACGCT	CAGCGCTCCG	GTCGCACTGA
30	35401	GCGCCCAGGG	GCCCGTGCCG	GTACGGCTGT	GCAGACTCAC	CGACCGCCGT	CCGGACACCT
	35461	CGGTTCCGAC	GGTGGCCTGG	ATCTCCGTGT	CGCCGTCGCC	GTCGACCACC	ACCGGCGCGA
	35521	CGATGGTCAG	CTCCGCGATC	TCCGGCGTGC	CGAGCCGGGC	TCCCGCTTCG	GCGAGCAGTT
	35581	CCACGAGCGC	CGAGCCGGGC	ACGATGACCC	GGCCGTCCAC	CTCGTGGTCG	GCGAGCCAGG
35	35041	GCTGACGGCG	TACCGAGACA	CCGCGGTGGC	CAGCGCGCCC	TCGCCGTCGG	GCGAGGTCGA
33	35701	CCCACGAGCC	GAGCAGCGGG	TGGCCGGACG	TTCCCGCCGG	TTCCGCGTCG	ATCCAGTAGC
	35031	GGTCACGGCG	GAACGGGTAC	GTGGGCAGCG	GCACCACCCG	ACGCGTCGCG	AACGACCAGG
	35001	CCTCCCCTTCC	GCCCCGGACC	CAGAGCGCGG	CGAGCGACCG	AGTGAAGCGG	TCCAGGCCGC
	350/1	CCICGCCICG	CCGCAGTGTG	CCGGTGACGA	CCGTATGCGC	ATGCCCGGCG	AGCGTGTCCT
40	36001	CCCCCACCMC	GGTGAGCACG	GGATGCGCGC	TGACCTCGAC	GAACGCGCGG	TATCCGCGGT
••	36061	ACCCCCCCTC	GCCGGTCGCG	GCGGCGAACC	GAACGGTGCG	GCGCAGGTTG	TCGTACCAGT
	36121	CCCCCCTCCC	CGCGGGCCGG	TCCAGCCACG	CCTCGTCCAC	GGTGGAGAAG	AACGGGACGT
	36181	CATECCCCCT	CGGAGTGATG	CCGGCGAGAG	CGTCGAGCAG	CGCGCCGCGG	ATCGTTTCGA
	36241	GCACCTCCTC	GTGCGACGCG	COCCOROGGO	CGATCCGGCG	GGCGCGGGG	GTGGCGGCCA
45	36301	CGGCGACCTC	CACGGCGTCG	CCCCACCGG	CGACAACGAT	CGACGCGGGT	CCGTTGACCG
	36361	CCATGCCGCC	CAGGCGCCCG	ACTION	CGGCGTCGAA	GTCGGCGGGC	GGCACCGAGA
	36421	TOGOGGGGTC	CTGCCCGGCC	AGTICGGIGG	CGACGAGTCG	GCTGCGCACC	GCGACGACCT
	36481	AGTGGCCGAC	GTCCAGGGTG	CCCCCACCC	CGACGCAGGC	CGCGGCGACT	TCGCCCTGGG
	36541	CCATCACCGC	GACCGCGGCC GAACGACGCG	CCCTCCACCA	CGTGCGCACG	CCACAGCTCC	GCCAGCGCCA
50	36601	GCCGCTGGGC	GATGACGTCC	ACCACCACGA	AMOGGGMCMG	GTCGAACGCG	GGCGCTCCGG
	36661	ACTCGCGGAG	CCGCCGGGCG	VOCUGGICCC	ATCCGGTGTG	CACRECCCC	GCCGTGGCGC
	36721	CCCACTGGGA	GCCCTGCCCG	CCCDDCCCCD	ACACCACACC	TCTCTCCCCC	ACCECCOCC
•	36781	TTCCCGTCAC	GGCCCCCGGC	ACTTCGGCAC	CACCCCCCAA	CCCCTCCCCC	ACGTCGGCGG
	36841	GCACGACCGC	CCGGTGGCGC	ATGGCCGTCC	GGGTGGTCCC	CACCACECC	CCCACCCCC
	•			00000100	7991991990	ONGCONG 166	CCGACCGCGG

	36901	CCGCGGCGCC	AGTGAGCGGG	GCCAGCTGTC	CCGCGACGTC	CCGCAGTCCC	TCCGGGGTCC
	36961	GGGCCGACAT	CGGCCAGACC	ACGTCCTCGG	GCACCGGCTC	GGCTTCGGGT	GCGGACACGG
	37021	GTGCGGGCGC	GGCGGGGGC	CCGGCCTCCA	GGACGACATG	GGCGTTGGTG	CCGCTGATGC
	37081	CGAACGACGA	GACACCCGCA	CGCCGGGCGC	GCCCGGTGAC	CGGCCACGGC	TCACTGCGGT
5	37141	GCAGCAGCCG	GATGTCGCCG	TCCCAGTCGA	CGTGCCGGGA	CGGCTCGTCG	ACGTGCAGCG
	37201	TGCGCGGCAG	GACGCCGTGC	CGCATCGCCA	TGACCATCTT	GATGACGCCG	GCGACGCCGG
	37261	CCGCGGCCTG	GGTGTGGCCG	ATGTTCGACT	TGAGCGAGCC	GATCAGCAGC	GGATGCACGC
	37321	GTTCGCGCCC	GTAGGCCACT	TGCAGGGCCT	GGGCCTCGAC	GGGGTCGCCG	AGACGGGTGC
	37381	CGGTGCCGTG	TGCCTCCACG	GCGTCGACGT	CACCCGGCGC	CAGGCCGGCG	TCGGCGAGCG
10	37441	CACGCTGGAT	GACGCGCTGC	TGCGCAGGCC	CGTTCGGGGC	GGACAGCCCG	TTCGACGCGC
					GCGCCAGCAC		
					CGGCGCCCTC		
					CGGGGGCGAG		
					TGACACCGCC		
15					GCAGCGCCAC		
					CGAAGTAGTA		
					CGCCCAGGTC		
					CGCTGCCGCG		
					CGAGGACCAG		
20					ACGCGGCGTC		
					CGACCGCGTC		
					ACTCGGTGAT		
					CGCCACCGGG		
					TCGGTGCGGG		
25					CCAGGCGGGC		
					GTACCCCCGT		
					CGAGGTCCTT		
					CGGCCGTGGC		
	38581				GGTTGTCCTC		
30	38641				GAATCGCCGC		
	38701				CCTCGGCCTC		
					GTTGTCCGGT		
					GGCCGAGGGT		
					TTCCTTGTCC		
35					GGGGTTGGTT		
					CGGTGGTGAG		
	39061				TGTGGAAGAC		
	39121				GGTCGCCGAC		
					AGAGGAGGTA		
40					AGCCGCCGGT		
					TGGTGTGGAG		
					GGTGGTCGAG		
					TGAGGCGGAT		
					CGCCGGCGGG		
45					GTTGCAGGGC		
					GGTCGTCGGG		
					CCGCCTCGGC		
					CCCGCTCCCT		
					CGCGCACGGC		
50					TGGCGTTCAG		
					GGCGCCCGGC		
					CGGCGGCCTG		
					CAGCCCGCAA		
					AGAACCCCGA		

	4014	1 TGGCCGGCG	G CCACTGCGA	G AACGGCTCA	C CGGAAGCGT	F GGAGGTATCO	GGGGTGTCGG
	4020	1 GGGTCAGGG	T GCCGCTGGC	G TGCCGGGTC	C AGCTGCCCG'	F GCCCTCGGTZ	CGCGCGTGGA
	4026	I CGGTCACCG	G CCGCCGTCC	G GCCTCATCG	G CCCCTTCCA	GGTCACCGAC	ACATCCACCG
_	4032	I CTGCGGTCA	C CGGCACCAC	G AGCGGGGAT'	T CGATGACCA	TTCATCCACC	ACCCCCCAAC
5	4038	1 CGGTCTCGT	C ACCGGCCCG	G ATGACCAGC'	I CCACAAACG	CGTACCCGGC	AGCAGAACCG
	4044	I TGCCCCGCA	C CGCGTGATC	A GCCAGCCAG	G GATGCGTAC	G CAATGAGATO	CGGCCGGTGA
	4050	1 GAACAACAC	C ACCACCGTC	G TCGGCGGGC	A GTGCTGTGAC	GGCGGCCAGC	ATCGGATGCG
	4056	1 CCGCCCCGG	T CAGCCCGGC	C GCGGACAGG	I CGGTGGCAC		AGCCAGTACC
• •	4062	I GCCTGTGCT(C GAACGCGTA(G GTGGGCAGA:	I CCAGCAGCC	CCCCGGCACC	CGTTCGACCA
10	4068.	1 CCGTGCCCC	A GTCCACCCC	C GCACCCAGA(G TCCACGCCTC	CGCCAACGCC	CCCAGCCACC
	4074.	I GCTCCCAGC	C ACCGTCACC	A GTCCGCAAC	ACGCCACCG	GCGGGCCTGT	TCCATCCCCC
	4080	l GCAGCAGCA	C CGGATGGGC	A CTGCACTCCA	A CGAACACCGA	CCCGTCCAGC	TCCGCCACCG
	4086:	l CCGCATCCA	G CGCGACAGG	GCGACGCAGG	TCCGGTACCA	GTACCCCTCA	TCCACCGGCT
	4092.	L CGGTCACCC	A GGCGCTGTCC	C ACGGTCGACC	C ACCACGCCAC	CGACCCGGTC	CCCCCCCAAA
15	40983	1 TTCCCTTCAC	G TACCTCAGC	AGTTCGTCCT	CGATGGCCTC	CACGTGAGGC	GTGTGGGAGG
	41043	CGTAGTCGAC	CGCGATACGA	CGCACCCGCA	A CCCCATCAGO	CTCATACCGC	GCCACCACCT
	41101	L CCTCCACCG	CGACGGGTCC	CCCGCCACCA	CCGTCGAAGC	CCCACCATTA	CGCGCCGCGA
	41161	I TCCACACAC	CTCGACCAGA	CCCACCTCAC	CGGCCGGCAA	CGCCACCGAA	GCCATCGCCC
	41221	CCCGGCCGGC	CAGCCGCGC	GCGATCACCC	GACTGCGCAA	CGCCACCACA	CGGGCGGCGT
20	41281	. CCTCCAGGCT	GAGGGCTCC	GCCACACAC	CCGCCGCGAT	CTCCCCCTCC	GAGTGTCCGA
	41341	CCACAGCGTC	CGGCACGACC	CCATGCGCCT	, eccacaeceu	GGCCAGGCTC	ACCGCGACCG
	41401	CCCAGCTGGC	CGGCTGGACC	ACCTCCACCC	GCTCCGCCAC	ATCCGACCGC	CNCNNCNTCT
	41461	. CCCGCACATC	CCAGCCCGTG	TGCGGCAACA	ACGCCCGCGC	ACACTCCTCC	ATACGAGCCC
	41521	. CGAACACCGC	GGAACGGTCC	ATGAGTTCCA	CGCCCATGCC	CACCCACTGG	GCACCCTGCC
25	41581	CGGGGAAGAC	GAACACCGTA	CGCGGCTGAT	CCACCGCCAC	ACCCATCACC	CGGGCATCAC
	41041	CCAGCAGCAC	: CGCACGGTGA	. CCGAAGACAG	CACGCTCACG	CACCAACCCC	TECECENCE
	41/01	. CGGCCACATC	CACCCCACCC	CCGCGCAGAT	ACCCCTCCAG	CCGCTCCACC	TECCCCCCCA
	41761	GACTCACCTC	ACCACGAGCC	GACACCGGCA	ACGGCACCAA	CCCATCACCA	CCCGACTCCA
• •	41071	CAUGUGACGG	CCCAGGAACA	CCCTCCAGGA	TCACGTGCGC	GTTCGTACCG	CTCACCCCCA
30	41001	ACGACGACAC	ACCCGCATGC	GGTGCCCGAT	CCGACTCGGG	CCACGGCCTC	GCCTCGCTGA
	41241	GCAGCTCCAC	CGCACCGGCC	GACCAGTCCA	CATGCGACGA	CGGCTCGTCC	ACGTGCAGCG
	42001	TCTTCGGCGC	GATCCCATGC	CGCATCGCCA	TGACCATCTT	GATGACACCG	GCGACACCCC
	42001	CAGCCGCCTG	CGCATGACCG	ATGTTCGACT	TGACCGAACC	GAGGTAGAGC	GGCGTGTCCC
2.5	42121	GGTCCTGCCC	GTAGGCCGCG	AGGACGGCCT	GCGCCTCGAT	CGGGTCGCCC	AGCCCCCTCC
35	45101	CGGIGCCGIG	CGCCTCCACC	ACGTCCACAT	CGGCGGCGCG	CAGTCCGGCG	ጥጥር አ ሮር አአርር
	47741	CCIGCGGAT	CACGCGCTGC	TGGGCGACGC	CGTTGGGGGC	GGACAGTCCG	TTCCACCCAC
	4220I	CGICCIGGII	CACCGCCGAG	CCGCGGACGA	CCGCGAGAAC	GGTGTGCCCG	TTCCCCTCCC
	42301	CGICGGAGAG	CCGCTCCAGC	ACGAGAACGC	CGACGCCCTC	GGCGAAGCCG	CTCCCCTCCC
40	4545T	CCGCG TCGGC	GAACGCCTTG	CACCGTCCGT	CCGGGGAGAG	TCCGCGCTGC	CCCCACAACT
40	4740T	CCACGAGCIC	TGCGGTGTTC	GCCATGACGG	TGACACCGCC	CACCACCCCC	A C C C A C C A C M
	42341		CAGTGCCTGT	GCCGCCTGGT	GCAGGGCGAC	CAGCGACGAC	GAGCACCCCC
	42001	1 G I C GACCGT	GACCGCCGGG	CCCTGAAGTC	CCTACACCTA	CCACACCCCC	CCCCACACCA
	42001	CGCICGICIG	CGTCGCCGTG	ACACCGAGCC	CGCCCAGGTC	CCGGCCGACG	CCCTACCCCT
15	72121	GGIIGAACGC	GCCCATGAAC	ACGCCGGTGT	CGCTCTCCC	CACCCTCTCC	CCCACCAMCC
45	42/01	CGGCGIICIC	GAACGCCTCC	CAGGAGGTCT	CCAGGATCAG	CCCCTCCTCC	CCCTCCATCC
	72041	CCAGCGCCTC	GTTCGGACTG	ATGCCGAAGA	ACGCGGCGTC	CAACCCCCCC	CCCCCCACCA
	42 JUI	AICCGCCGTG	GCGTGTCGTG	GAGCGGCCGG	CCGCGTCCGG	GTCCGGGTCG	TACACCCCC
	42301	CGACGICCCA	GCCCCGGTCG	GTGGGGAACT	CGGTGATCGC	CTCGGTACCG	CCCCCCACCA
50	40021	GCCGCCACAG	GTCCTCCGGC	GAGGCGACCC	CGCCGGGCAG	TCGGCACGCC	<u>ስጥርርርር አርር አ</u>
50	4 200 T	1 CGCGACGGG	GTCGCCGGAG	CCGAGGGTCT	GGGCGGTCGC	GGGTGCCGCT I	GTCGCCCACC
	ADIAI	5155A65365	GGCGGCGAAC	GCACGCGGAG	TEGGGGTGGTC	GAACGCGGTT I	CACCCCCCA
	42201	CCCGCAGACC	CGTCCGCGCGC	GCGACGGTGT	TCCTCDDCTC	CACCCTCCTC	7 C C C 7 C M C C 7
	30201	GGCCGIICIC	GUGGAACGIG	CGGTCCGGGG	AGCAGTGTCC	GGCGCCCCCC :	7 CCCCC7 CC7
	43321	CGGTGGCGAC	GCTGTCGCGG	ACCAGGTCGA	GCAGTACGTC	CTCCCGGCC (GCACGGGCCG

	43381	CGGCGAGGC	G GTTCGCCCAC	TCCTGTTCC	TGGCGTCGG	CTCGGCCGGT	CCGGTCAGTG
	43441	CGGTGAGGAT	CGGCGGCGTG	GCGCCCGCC	A TCGTCGCGGC	CCGCGCCCCG	GCGGAACCGG
	43501	TCCGGGCCAC	GATGTACGAG	CCGCCGCCCG	G CGATGGCCTT	CTCGATCAGG	TCGCCGGTGA
_	43561	GCGCCGGCCG	TTCGATGCCG	GGCAGCGCGC	GGACGGTGAC	GGTGGGGAGT	CCCTCCGCGG
5	43621	CCCGTGGCCG	GGTGTGGGCG	TCGGCGCCGG	CCGGGCCGTC	GAGCAGGACG	TGCACGAGCG
	43681	CGCCGGGGTT	CGCGGCTTCC	TCGGCTGCGG	TGGTCACGTG	GGTGAGGCCG	GTCTCGTCGC
	43741	GGAGCAGGCC	GGCGACGGTG	TCGGCGTCCT	CCCCGGTGAC	CAGGACCGGC	GCGTCCGGGC
	43801	CGATCGGAGG	GCGCACGGTG	AGGACCATCT	TGCCGGTGTG	CCGGGCGTGG	CTCATCCACG
	43861	CGAACGCGTC	CCGCGCACGG	CGGATGTCCC	ACGGCTGCAC	CGGCAGCGGG	CACAGCTCAC
10	43921	CGCGGTCGAA	CAGGTCGAGG	AGCAGTTCGA	GGATCTCCCG	CAGGCGCGCG	GGATCCACGT
	43981	CGGCCAGGTC	GAACGGCTGC	TGGGCGGCGT	GGCGGATGTC	GGTCTTGCCC	ATCTCGACGA
	44041	ACCGGCCGCC	CGGTGCGAGC	AGGCCGATGG	ACGCGTCGAG	GAGTTCACCG	GTGAGCGAGT
	44101	TGAGCACGAC	GTCGACCGGC	GGGAAGGTGT	' CGGCGAACGC	GGCGCTGCGG	GAGTTCGCCA
	44161	CATGGTCGGT	GTCGAAGCCG	TCGGCGTGCA	GCAGGTGTTG	TTTGGCGGGA	CTGGCGGTGG
15	44221	CGTACACCTC	GGCGCCGAGG	TGGCGGGCGA	TCCGGGTCGC	CGCCATGCCG	ACACCGCCCG
	44281	TCGCGGCGTG	GACCAGGACC	TTCTGGCCGG	GTCGCAGCTC	GCCCGCGTCG	ACGAGGCCGT
	44341	ACCAGGCGGT	GGCGAACACG	ATGGGCACGG	ACGCGGCGAT	GGGGAACGAC	CATCCCCCTC
	44401	GGATCCGTGC	GACCAGCCGC	CGGTCCGCGA	CCACGCTGCG	CCGGAACGCG	TCCTCCACCA
	44461	GACCGAACAC	GCGGTCGCCG	GGGGCCAGGT	CGTCGACGCC	GGGTCCGACT	TCGGTCACGA
20	44521	TGCCCGCGGC	CTCCCCGCCC	ATCTCGCCCT	CGCCCGGGTA	GGTGCCGAGC	CCCATCACCA
	44581	CGTCGCGGAA	GTTCAGCCCC	GCGGCGCGGA	CGTCGATGCG	GACCTCGCCG	GCGCCAGGG
	44641	GCGCGGCGGG	ACGTCGAGCG	GGGCGACGAC	GAGGTCGCGG	AGCGTTCCGG	AGGCGGGGG
	44701	GCGCAGCGCC	CACTGGCGCG	GTCGGCAGGG	GGGTGGTGTC	CGCGCGTACC	AGCCGGGGCA
	44761	CGTAGGCCAC	GCCGGCCCGC	AGCGCGATCT	GGGGTTCGCC	GAGCGAGGCC	GCGCCGGGGA
25	44821	CGAGGTCGTC	ATCGCCGTCC	GTGTCCACCA	GCACGAACGA	TCCGGGTTCG	GCGGCCTGGC
	44881	GGCGCAGCGC	CTCGTCCCAG	AGCCGGGCCT	GGTCCGCGTC	CGGGATCTCG	GCCGGGCCGA
	44941	CGCCCACCGC	GCGGCGGGTG	ACGACCGTCC	GGCGGGGTGA	CGGGGTGCCG	GGCAGGTCGC
	45001	GCCGCTCCCA	GACCAGTTCG	CACAGCGTGG	CCTCGCCACT	GCCGGTGGCG	ACCAGATGGG
	45061	CCGGCAGCCC	CGCGAGCCGC	GCGCGCTGGA	CCTTGCCCGA	CGCGGTGCGG	GGGATCGTGG
30	45121	TGACGTGCCA	GATCTCGTCG	GGCACCTTGA	AGTAGGCGAG	CCGGCGGCGG	CACTCGGCGA
	45181	GGATCGCCTC	GGCGGGGACG	CGGGGGCCGT	CGGAAACGAC	GTAGAGCACG	GGTATGTCGC
	45241	CGAGGACGGG	GTGCGGGCGG	CCCGCCGCGG	CGGCGTCCCG	GACACCGGCC	ACCTCCTGGG
	45301	CGACGGTCTC	GATCTCCCGG	GGGTGGATGT	TCTCCCCGCC	GCGGATGATC	AGCTCCTTGA
	45361	CCCGGCCGGT	GATCGTCACG	TGTCCGGTCT	CGGCCTGACG	TGCGAGGTCC	CCGGTGCGGT
35	45421	ACCAGCCGTC	CACGAGCACC	TGGGCGGTCG	CCTCCGGCTG	GGCGTGGTAG	CCGAGCATGA
	45481	GGCTCGGCCC	GCTCGCCCAC	AGCTCGCCCT	CCTCGCCGGG	TGCCACGTCG	GCGCCGGACA
	45541	CCGGGTCGAC	GAACCGCAGC	GACAGGCCCG	GCACGGGCAG	CCCGCACGAG	CCGGGAACCC
	45601	GCGCATCCTC	CAGGGTGTTG	GCGGTGAGCG	AGCCGGTCGT	CTCGGTGCAG	CCGTACGTGT
	45661	CGAGCAGGG	CACGCCGAAC	GTCGCCTCGA	AATCCCTGGT	GAGCGACGCC	GGCGAGGTGG
40	45/21	ATCCGGCGAC	CAGCGCCACG	CGCAGCGCGC	GAGCCCGCGG	CTCGCCGGAC	ACGGCGCCGA
	45/81	GGAGGTAGCG	GTACATCGTC	GGCACGCCGA	CGAGCACGGT	GCTGGAGTGT	TCGGCCAGGG
	45841	CGTCGAGGAC	GTCACGCGCG	ACGAAGCCGC	CCAGGATACG	GGCGGACGCG	CCGACCGTGA
	45901	GGACGGCGAG	CAGGCAGAGG	TGGTGGCCGA	GGCTGTGGAA	CAGCGGGGCG	GGCCAGAGCA
	45961	GTTCGTCGTC	CTCGGTCAGC	CGCCAGGACG	GCACGTCGCA	GTGCATCGCG	GACCACAGGC
45	46021	CGCTGCGCTG	TGCGGAAACC	ACGCCCTTGG	GACGGCCGGT	GGTGCCGGAG	GTGTAGAGCA
	46081	TCCAGGCGGG	TTCGTCCAGG	CCGAGGTCGT	CGCGGGGCGG	GCACGGCGGC	TOGGTOCOGG
	46141	CGAGGTCCTC	GTAGGAGACG	CAGTCCGGTG	CCCGGCGCCC	GACGAGCACG	ACGGTGGCGT
	46201	CGGTGCCGGT	GCGGCGCACC	TGGTCGAGGT	GGGTTTCGTC	GGTGACCAGC	ACGGTCGCGC
	46261	CGGAGTCCGT	CAGGAAGTGG	GCGAGTTCGG	CGTCGGCGGC	GTCCGGGTTG	AGCGGGACGG
50	46321	CGACGGCGGC	GGCGCGGGCG	GCGGCGAGGT	AGACCTCGAT	GGTCTCGATC	CGGTTGCCGA
	46381	GCAGCATCGC	GACCCGGTCG	CCGCGGTCGA	CGCCGGACGC	GGCGAGGTGT	CCGGCGAGCC
	46441	GGCCGGCCCG	GAGCCGGAGT	TGCGTGTACG	TCACGGCGCG	TTGGGAATCC	GTGTAGGCGA
	46501	TCCGGTCGCC	GCGTCGCTCG	GCATGGATGC	GGAGCAATTC	GTGCAACGGC	CGGATTGGTT
	46561	CCACACGCGC	CATGGAAACA	CCTTTCTCTC	GACCAACCGC	ACAACAGCAC	GGAACCGGCC

	46621	ACGAGTAGAC	GCCGGCGACG	CTAGCAGCGT	TTTCCGGACC	GCCACCCCCT	GAAGATCCCC
	46681	CTACCGTGGC	CGGCCTCCCC	GGACGCTCAT	CTAGGGGGTT	GCACGCATAC	CGCCGTGCGT
	46741	AATTGCCTTC	CTGATGACCG	ATGCCGGACG	CCAGGGAAGG	GTGGAGGCGT	TGTCCATATC
	46801	TGTCACGGCG	CCGTATTGCC	GCTTCGAGAA	GACCGGATCA	CCGGACCTCG	AGGGTGACGA
5	46861	GACGGTGCTC	GGCCTGATCG	AGCACGGCAC	CGGCCACACC	GACGTGTCGC	TGGTGGACGG
		TGCTCCCCGG					
		GCACGCACAG					
		CGCGTACCTG					
		GGCCCTCTAC					
10		GACCTGGAAC					
		GGACTTCTGC					
		GCCCGCGGCC					
		CCGGGGCGGA					
		GACGACGTAC					
15		GGGGGGCCGG					
		CGGTGATGTG					
		GGAGAACCTG					
		CAAGGTCTAC					
•		CCTGTCGAGC					
20		CGTCGAAATC					
		CTCGGCGGAT					
		TCGTCCTTCG					
	47941	TATAATCTCC	CGCTCGTGCA	ACGCCTGCGC	GGTCTATTGG	ACGCGCCGGC	CCTGGAGCGT
		GCGCTGGCGC					
25		GGCGAGCCCC					
	48121	GGCAGCGAGG	AGGACGCCGC	CCGGCTCGTC	CGCGACGAGA	TCGCCGCGCC	GTTCGACCTC
	48181	GCCACCGGGC	CGTTGATCAG	GGCCCTGCTG	ATCCGCCTCG	GTGACGACGA	CCACGTTCTC
	48241	GCGGTGACCG	TGCACCATGT	CGCCGGCGAC	GGCTGGTCGT	TCGGGCTCCT	CCAACATGAA
	48301	CTCGCAGCCC	ACTACACGGC	GCTGCGCGAC	ACTGCCCGCC	CTGCCGAACT	GCCGCCGTTG
30	48361	CCGGTGCAGT	ACGCCGACTT	CGCCGCCTGG	GAGCGGCGCG	AACTCACCGG	CGCCGGACTG
	48421	GACAGGCGTC	TGGCCTACTG	GCGCGAGCAA	CTCCGGGGCG	CCCCGGCGCG	GCTCGCCCTC
	48481	CCCACCGACC	GTCCCCGCCC	GCCGGTCGCC	GACGCGGACG	CGGGCATGGC	CGAGTGGCGG
		CCGCCGGCCG					
2.5		TTCATGACCC					
35		GTGCTGGTCG					
		ATGTTCGTCA					
		CTCCTCGACC					
		GAGAACGTCA					
40		GTGCTGTTGC					
40		GAACCGTTCC					
		GAGCCGGGTG					
		CGGATCACGG					
		GACGTACGGC					
15		TCGAACGACA					
45		GCCGCACGCA					
		CAGCTGGACC					
		GGCGACCTGG					
		ATCCTCAAGG					
50		GCGTTCGTGC					
50		CGGTTCCCCG					
		GACGACACGG					
		TCCGGGTCGA					
		CTGCTCTGGC					
	43801	ACGCCCACGT	TCGACTACTC	GGTGCAGGAG	ATCTTTTCCG	CGCTGCTGGG	CGGCACGCTC

	49861	GTCATCCCGC	CGGACGAGGT	GCGGTTCGAC	CCGCCGGGAC	TCGCCCGGTG	GATGGACGAA
	49921	CAGGCGATTA	CCCGGATCTA	CGCGCCGACG	GCCGTACTGC	GCGCGCTGAT	CGAGCACGTC
	49981	GATCCGCACA	GCGACCAGCT	CGCCGCCCTG	CGGCACCTGT	GCCAGGGCGG	CGAGGCGCTG
_					CGGCACCGGC		
5	50101	CACTACGGTC	CGGCCGAAAG	CCAGCTCATC	ACCGGGTACA	CGCTGCCCGC	CGACCCCGAC
	50161	GCGTGGCCCG	CCACCGCACC	GATCGGCCCG	CCGATCGACA	ACACCCGCAT	CCATCTGCTC
	50221	GACGAGGCGA	TGCGGCCGGT	TCCGGACGGT	ATGCCGGGGC	AGCTCTGCGT	CGCCGGCGTC
	50281	GGCCTCGCCC	GTGGGTACCT	GGCCCGTCCC	GAGCTGACCG	CCGAGCGCTG	GGTGCCGGGA
	50341	GATGCGGTCG	GCGAGGAGCG	CATGTACCTC	ACCGGCGACC	TGGCCCGCCG	CGCGCCCGAC
10	50401	GGCGACCTGG	AATTCCTCGG	CCGGATCGAC	GACCAGGTCA	AGATCCGCGG	CATCCGCGTC
	50461	GAACCGGGTG	AGATCGAGAG	CCTGCTCGCC	GAGGACGCCC	GCGTCACGCA	GGCGGCGGTG
	50521	TCCGTGCGCG	AGGACCGGCG	GGGCGAGAAG	TTCCTGGCCG	CGTACGTCGT	ACCGGTGGCC
	50581	GGCCGGCACG	GCGACGACTT	CGCCGCGTCG	CTGCGCGCGG	GACTGGCCGC	CCGGCTGCCC
	50641	GCCGCGCTCG	TGCCCTCCGC	CGTCGTCCTG	GTGGAGCGAC	TGCCGAGGAC	CACGAGCGGC
15	50701	AAGGTGGACC	GGCGCGCGCT	GCCCGACCCG	GAGCCGGGCC	CGGCGTCGAC	CGGGGCGGTT
	50761	ACGCCCCGCA	CCGATGCCGA	GCGGACGGTG	TGCCGGATCT	TCCAGGAGGT	GCTCGACGTC
	50821	CCGCGGGTCG	GTGCCGACGA	CGACTTCTTC	ACGCTCGGCG	GGCACTCCCT	GCTCGCCACC
	50881	CGGGTCGTCT	CCCGCATCCG	CGCCGAGCTG	GGTGCCGATG	TCCCGCTGCG	TACGCTCTTC
	50941	GACGGGCGGA	CGCCCGCCGC	GCTCGCCCGT	GCGGCGGACG	AGGCCGGCCC	GGCCGCCCTG
20	51001	CCCCCGATCG	CGCCCTCCGC	GGAGAACGGG	CCGGCCCCCC	TCACCGCGGC	ACAGGAACAG
	51061	ATGCTGCACT	CGCACGGCTC	GCTGCTCGCC	GCGCCCTCCT	ACACGGTCGC	CCCGTACGGG
					GCGCTCGACG		
	51181	GCGCGCCACG	AGCCGCTGCG	GACCGGGTTC	CGCGATCGGG	AACAGGTCGT	CCGGCCGCCC
	51241	GCTCCGGTGC	GCGCCGAGGT	GGTTCCGGTG	CCGGTCGGCG	ACGTCGACGC	CGCGGTCCGG
25	51301	GTCGCCCACC	GGGAGCTGAC	CCGGCCGTTC	GACCTCGTGA	ACGGGTCGTT	GCTGCGTGCC
	51361	GTGCTGCTGC	CGCTGGGCGC	CGAGGATCAC	GTGCTGCTGC	TGATGCTGCA	CCACCTCGCC
	51421	GGTGACGGAT	GGTCCTTCGA	CCTCCTGGTC	CGGGAGTTGT	CGGGGACGCA	ACCGGACCTT
					GAACGGAGTC		
	51541	GAGAACGACC	GGGCCTACTG	GCGCCGGCGG	CTGGGGGGCG	CCACCGCGCC	GGAGCTGCCC
30	51601	GCGGTCCGGC	CCGGCGGGGC	ACCGACCGGG	CGGGCGTTCC	TGTGGACGCT	CAAGGACACC
					GCCCACGACG		
	51721	CTCGGCGCCT	TCGCCCTGGT	CGTGGCGGAG	ACCGCCGACA	CCGACGACGT	GCTCGTCGCG
	51781	ACGCCGTTCG	CGGACCGGGG	GTACGCCGGG	ACCGACCACC	TCATCGGCTT	CTTCGCGAAG
	51841	GTCCTCGCGC	TGCGCCTCGA	CCTCGGCGGC	ACGCCGTCGT	TCCCCGAGGT	GCTGCGCCGG
35	51901	GTGCACACCG	CGATGGTGGG	CGCGCACGCC	CACCAGGCGG	TGCCCTACTC	CGCGCTGCGC
	51961	GCCGAGGACC	CCGCGCTGCC	GCCGGCCCCC	GTGTCGTTCC	AGCTCATCAG	CGCGCTCAGC
	52021	GCGGAACTGC	GGCTGCCCGG	CATGCACACC	GAGCCGTTCC	CCGTCGTCGC	CGAGACCGTC
	52081	GACGAGATGA	CCGGCGAACT	GTCGATCAAC	CTCTTCGACG	ACGGTCGCAC	CGTCTCCGGC
	52141	GCGGTGGTCC	ACGATGCCGC	GCTGCTCGAC	CGTGCCACCG	TCGACGATTT	GCTCACCCGG
40	52201	GTGGAGGCGA	CGCTGCGTGC	CGCCGCGGC	GACCTCACCG	TACGCGTCAC	CGGTTACGTG
	52261	GAAAGCGAGT	AGCCATGCCC	GAGCAGGACA	AGACAGTCGA	GTACCTTCGC	TGGGCGACCG
	52321	CGGAACTCCA	GAAGACCCGT	GCGGAACTCG	CCGCGCACAG	CGAGCCGTTG	GCGATCGTGG
	52381	GGATGGCCTG	CCGGCTGCCC	GGCGGGGTCG	CGTCGCCGGA	GGACCTGTGG	CAGTTGCTGG
	52441	AGTCCGGTGG	CGACGGCATC	ACCGCGTTCC	CCACGGACCG	GGGCTGGGAG	ACCACCGCCG
45	52501	ACGGTCGCGG	CGGCTTCCTC	ACCGGGGCGG	CCGGCTTCGA	CGCGGCGTTC	TTCGGCATCA
	52561	GCCCGCGCGA	GGCGCTGGCG	ATGGACCCGC	AGCAGCGCCT	GGCCCTGGAG	ACCTCGTGGG
	52621	AGGCGTTCGA	GCACGCGGGC	ATCGATCCGC	AGACGCTGCG	GGGCAGTGAC	ACGGGGGTGT
	52681	TCCTCGGCGC	GTTCTTCCAG	GGGTACGGCA	TCGGCGCCGA	CTTCGACGGT	TACGGCACCA
	52741	CGAGCATTCA	CACGAGCGTG	CTCTCCGGCC	GCCTCGCGTA	CTTCTACGGT	CTGGAGGGTC
50					CGTCGCTGGT		
					CCCTGGTCGG		
					AGGGCGGCCT		
					GTTTCGCCGA		
					GCCACCGCGT		

	53101	CCGCCGTCAA	CCAGGACGGT	GCCTCCAACG	GGCTGTCCGC	GCCGAACGGG	CCGTCGCAGG
	53161	AGCGGGTGAT	CCGGCAGGCC	CTGGCCAACG	CCGGACTCAC	CCCGGCGGAC	GTGGACGCCG
	53221	TCGAGGCCCA	CGGCACCGGC	ACCAGGCTGG	GCGACCCCAT	CGAGGCACAG	GCCGTGCTGG
	53281	CCACCTACGG	GCAGGGGCGC	GACACCCCTG	TGCTGCTGGG	CTCGCTGAAG	TCCAACATCG
5	53341	GCCACACCCA	GGCCGCCGCG	GGCGTCGCCG	GTGTCATCAA	GATGGTCCTC	GCCATGCGGC
						CTCGCACGTC	
						CGAAACCGAC	
						CCACATCATC	
						CGGACCGCTG	
10	53641	TCTCGGCCCG	CACCCGCAG	GCACTCGACG	CACAGGTACA	CCGCCTGCGC	GCGTTCCTCG
						ACTCGCCCGG	
	53761	TCGAGCACCG	CGCCGTGCTG	CTCGGCGACA	CGCTCATCAC	CGTGAGCCCG	AACGCCGGCC
						GCACCCGCAC	
						CGAGGCCCTC	
15						CGCGCTCACC	
						CCTCGGTGAG	
						GCTCCTCACC	
						CGTCCTGACC	
						CGTCAACGGC	
20						CCGGCAGCTC	
						GCAGCCACTC	
	54361	TCCTCGACGT	CGCCCGGACC	CTGACGTACC	ACCAGCCCCA	CACCGCCATC	CCCGGCGACC
						AGTACGTTTC	
						CAACCAGGAC	
25						GGTGCGGGCG	
	54601	CGCTCGCGCA	GCTCCACGTC	CGCGGCGTCG	CGATCGACTG	GACGCTCGTC	CTCGGCGGGG
	54661	ACCGCGCGCC	CGTCACGCTG	CCCACGTATC	CGTTCCAGCA	CAAGGACTAC	TGGCTGCGGC
	54721	CCACCTCCCG	GGCCGATGTG	ACCGGCGCGG	GGCAGGAGCA	GGTGGCGCAC	CCGCTGCTCG
	54781	GCGCCGCGGT	CGCGCTGCCC	GGCACGGGCG	GAGTCGTCCT	GACCGGCCGC	CTGTCGCTGG
30	54841	CCTCCCATCC	GTGGCTCGGC	GAGCACGCGG	TCGACGGCAC	CGTGCTCCTG	CCCGGCGCGG
	54901	CCTTCCTCGA	ACTCGCGGCG	CGCGCCGGCG	ACGAGGTCGG	CTGCGACCTG	CTGCACGAAC
	54961	TCGTCATCGA	GACGCCGCTC	GTGCTGCCCG	CGACCGGCGG	TGTGGCGGTC	TCCGTCGAGA
	55021	TCGCCGAACC	CGACGACACG	GGGCGGCGGG	CGGTCACCGT	CCACGCGCGG	GCCGACGGCT
	55081	CGGGCCTGTG	GACCCGACAC	GCCGGCGGAT	TCCTCGGCAC	GGCACCGGCA	CCGGCCACGG
35	55141	CCACGGACCC	GGCACCCTGG	CCGCCCGCGG	AAGCCGGACC	GGTCGACGTC	GCCGACGTCT
	55201	ACGACCGGTT	CGAGGACATC	GGGTACTCCT	ACGGACCGGG	CTTCCGGGGG	CTGCGGGCCG
						CCCCGACGAG	
	55321					CGCGTTCCAG	
4.0	55381					GTTCTCGTTC	
40						CGGCCGCGAC	
						CGTGGTCGGT	
						CCCGGTCTGG	
						CCTCGGCGCC	
4.5						CGTCCTCGGC	
45						GACCGGCACC	
						GAACCCCGGC	
						CGCGTGCGCC	
						GCGGCTGGTC	
5 0						GCTGCTCACC	
50						GCCCGGCGG	
						CTTCCGCGAT	
						GGCCGCGGGC	
						GGTGTTCGGC	
	56281	GCGGCATCGG	CCCGACGGCC	GTCACCGACC	GGCGCTGGCT	GGCCCGGATC	CCCGACGGCT

	56341	GGAGCTTCAC	CACGGCGGCG	TCCGTCCCGA	TCGTGTTCGC	GACCGCGTGG	TACGGCCTGG
	56401	TCGACCTCGG	CACACTGCGC	GCCGGCGAGA	AGGTCCTCGT	CCACGCGGCC	ACCGGCGGTG
	56461	TCGGCATGGC	CGCCGCACAG	ATCGCCCGCC	ACCTGGGCGC	CGAGCTCTAC	GCCACCGCCA
	56521	GTACCGGCAA	GCAGCACGTC	CTGCGCGCCG	CCGGGCTGCC	CGACACGCAC	ATCGCCGACT
5	56581	CTCGGACGAC	CGCGTTCCGG	ACCGCTTTCC	CGCGCATGGA	CGTCGTCCTG	AACGCGCTGA
	56641	CCGGCGAGTT	CATCGACGCG	TCGCTCGACC	TGCTGGACGC	CGACGGCCGG	TTCGTCGAGA
	56701	TGGGCCGCAC	CGAGCTGCGC	GACCCGGCCG	CGATCGTCCC	CGCCTACCTG	CCGTTCGACC
	56761	TGCTGGACGC	GGGCGCCGAC	CGCATCGGCG	AGATCCTGGG	CGAACTGCTC	CGGCTGTTCG
	56821	ACGCGGGCGC	GCTGGAGCCG	CTGCCGGTCC	GTGCCTGGGA	CGTCCGGCAG	GCACGCGACG
10	56881	CGCTCGGCTG	GATGAGCCGC	GCCCGCCACA	TCGGCAAGAA	CGTCCTGACG	CTGCCCCGGC
	56941	CGCTCGACCC	GGAGGGCGCC	GTCGTCCTCA	CCGGCGGCTC	CGGCACGCTC	GCCGGCATCC
	57001	TCGCCCGCCA	CCTGCGCGAA	CGGCATGTCT	ACCTGCTGTC	CCGGACGGCA	CCGCCCGAGG
	57061	GGACGCCCGG	CGTCCACCTG	CCCTGCGACG	TCGGTGACCG	GGACCAGCTG	GCGGCGGCCC
	57121	TGGAGCGGGT	GGACCGGCCG	ATCACCGCCG	TGGTGCACCT	CGCCGGTGCG	CTGGACGACG
15	57181	GCACCGTCGC	GTCGCTCACC	CCCGAGCGTT	TCGACACGGT	GCTGCGCCCG	AAGGCCGACG
10	57241	GCGCCTGGTA	CCTGCACGAG	CTGACGAAGG	AGCAGGACCT	CGCCGCGTTC	GTGCTCTACT
	57301	CGTCGGCCGC	CGGCGTGCTC	GGCAACGCCG	GCCAGGGCAA	CTACGTCGCC	GCGAACGCGT
	57361	TCCTCGACGC	GCTCGCCGAG	CTGCGCCACG	GTTCCGGGCT	GCCGGCCCTC	TCCATCGCCT
	57421	GGGGGCTCTG	GGAGGACGTG	AGCGGGCTCA	CCGCGGCGCT	CGGCGAAGCC	GACCGGGACC
20	57481	GGATGCGGCG	CAGCGGTTTC	CGGGCCATCA	CCGCGCAACA	GGGCATGCAC	CTGTACGAGG
20	57541	CGGCCGGCCG	CACCGGAAGT	CCCGTGGTGG	TCGCGGCGGC	GCTCGACGAC	GCGCCGGACG
	57601	TECCECTECT	GCGCGGCCTG	CGGCGGACGA	CCGTCCGGCG	GGCCGCCGTC	CGGGAGTGTT
	57661	CGTCCGCCGA	CCGGCTCGCC	GCGCTGACCG	GCGACGAGCT	CGCCGAAGCG	CTGCTGACGC
	57721	TCGTCCGGGA	GAGCACCGCC	GCCGTGCTCG	GCCACGTGGG	TGGCGAGGAC	ATCCCCGCGA
25	57781	CGCCGCGTT	CAAGGACCTC	GGCATCGACT	CGCTCACCGC	GGTCCAGCTG	CGCAACGCCC
20	57841	TCACCGAGGC	GACCGGTGTG	CGGCTGAACG	CCACGGCGGT	CTTCGACTTC	CCGACCCCGC
	57901	ACGTGCTCGC	CGGGAAGCTC	GGCGACGAAC	TGACCGGCAC	CCGCGCGCCC	GTCGTGCCCC
	57961	GGACCGCGGC	CACGGCCGGT	GCGCACGACG	AGCCGCTGGC	GATCGTGGGA	ATGGCCTGCC
	58021	GGCTGCCCGG	CGGGGTCGCG	TCACCCGAGG	AGCTGTGGCA	CCTCGTGGCA	TCCGGCACCG
30	58081	ACGCCATCAC	GGAGTTCCCG	ACGGACCGCG	GCTGGGACGT	CGACGCGATC	TACGACCCGG
50	58141	ACCCCGACGC	GATCGGCAAG	ACCTTCGTCC	GGCACGGTGG	CTTCCTCACC	GGCGCGACAG
	58201	GCTTCGACGC	GGCGTTCTTC	GGCATCAGCC	CGCGCGAGGC	CCTCGCGATG	GACCCGCAGC
	58261	AGCGGGTGCT	CCTGGAGACG	TCGTGGGAGG	CGTTCGAAAG	CGCCGGCATC	ACCCCGGACT
	58321	CGACCCGCGG	CAGCGACACC	GGCGTGTTCG	TCGGCGCCTT	CTCCTACGGT	TACGGCACCG
35	58381	GTGCGGACAC	CGACGGCTTC	GGCGCGACCG	GCTCGCAGAC	CAGTGTGCTC	TCCGGCCGGC
	58441	TGTCGTACTT	CTACGGTCTG	GAGGGTCCGG	CGGTCACGGT	CGACACGGCG	TGTTCGTCGT
	58501	CGCTGGTGGC	GCTGCACCAG	GCCGGGCAGT	CGCTGCGCTC	CGGCGAATGC	TCGCTCGCCC
	58561	TGGTCGGCGG	CGTCACGGTG	ATGGCGTCTC	CCGGCGGCTT	CGTGGAGTTC	TCCCGGCAGC
	58621	GCGGCCTCGC	GCCGGACGGC	CGGGCGAAGG	CGTTCGGCGC	GGGTGCGGAC	GGCACGAGCT
40	58681	TCGCCGAGGG	TGCCGGTGTG	CTGATCGTCG	AGAGGCTCTC	CGACGCCGAA	CGCAACGGTC
	58741	ACACCGTCCT	GGCGGTCGTC	CGTGGTTCGG	CGGTCAACCA	GGATGGTGCC	TCCAACGGGC
	58801	TGTCGGCGCC	GAACGGGCCG	TCGCAGGAGC	GGGTGATCCG	GCAGGCCCTG	GCCAACGCCG
	58861	GGCTCACCCC	GGCGGACGTG	GACGCCGTCG	AGGCCCACGG	CACCGGCACC	AGGCTGGGCG
	58921	ACCCCATCGA	GGCACAGGCG	GTACTGGCCA	CCTACGGACA	GGAGCGCGCC	ACCCCCTGC
45	58981	TGCTGGGCTC	GCTGAAGTCC	AACATCGGCC	ACGCCCAGGC	CGCGTCCGGC	GTCGCCGGCA
	59041	TCATCAAGAT	GGTGCAGGCC	CTCCGGCACG	GGGAGCTGCC	GCCGACGCTG	CACGCCGACG
	59101	AGCCGTCGCC	GCACGTCGAC	TGGACGGCCG	GCGCCGTCGA	ACTGCTGACG	TCGGCCCGGC
	59161	CGTGGCCCGA	GACCGACCGG	CCACGGCGTG	CCGCCGTCTC	CTCGTTCGGG	GTGAGCGGCA
	59221	CCAACGCCCA	CGTCATCCTG	GAGGCCGGAC	CGGTAACGGA	GACGCCCGCG	GCATCGCCTT
50	59281	CCGGTGACCT	TCCCCTGCTG	GTGTCGGCAC	GCTCACCGGA	AGCGCTCGAC	GAGCAGATCC
- -	59341	GCCGACTGCG	CGCCTACCTG	GACACCACCC	CGGACGTCGA	CCGGGTGGCC	GTGGCACAGA
	59401	CGCTGGCCCG	GCGCACACAC	TTCGCCCACC	GCGCCGTGCT	GCTCGGTGAC	ACCGTCATCA
	59461	CCACACCCCC	CGCGGACCGG	CCCGACGAAC	TCGTCTTCGT	CTACTCCGGC	CAGGGCACCC
	59521	AGCATCCCGC	GATGGGCGAG	CAGCTCGCCG	CCGCCCATCC	CGTGTTCGCC	GACGCCTGGC
					_		

P A T E N T Atty Dkt: 300622002600

- 47 -

	59581	ATGAAGCGCT	CCGCCGCCTT	GACAACCCCG	ACCCCCACGA	CCCCACGCAC	AGCCAGCATG
	59641	TGCTCTTCGC	CCACCAGGCG	GCGTTCACCG	CCCTCCTGCG	GTCCTGGGGC	ATCACCCCGC
	59701	ACGCGGTCAT	CGGCCACTCG	CTGGGCGAGA	TCACCGCGGC	GCACGCCGCC	GGCATCCTGT
	59761	CGCTGGACGA	CGCGTGCACC	CTGATCACCA	CGCGCGCCCG	CCTCATGCAC	ACGCTCCCGC
5	59821	CACCCGGTGC	CATGGTCACC	GTACTGACCA	GCGAAGAGAA	GGCACGCCAG	GCGTTGCGGC
-	59881	CGGGCGTGGA	GATCGCCGCC	GTCAACGGGC	CCCACTCCAT	CGTGCTGTCC	GGGGACGAGG
	59941	ACGCCGTGCT	CACCGTCGCC	GGGCAGCTCG	GCATCCACCA	CCGCCTGCCC	GCCCCGCACG
	60001	CCGGGGCACTC	CGCGCACATG	GAGCCCGTGG	CCGCCGAGCT	GCTCGCCACC	ACCCGCGGGC
	60061	TCCGCTACCA	CCCTCCCCAC	ACCTCCATTC	CGAACGACCC	CACCACCGCT	GAGTACTGGG
10	60121	CCGAGCAGGT	CCGCAAGCCC	GTGCTGTTCC	ACGCCCACGC	GCAGCAGTAC	CCGGACGCCG
10	60181	TGTTCGTGGA	GATCGGCCCC	GCCCAGGACC	TCTCCCCGCT	CGTCGACGGG	ATCCCGCTGC
	60241	AGAACGGCAC	CGCGGACGAG	GTGCACGCGC	TGCACACCGC	GCTCGCGCAC	CTCTACGCGC
	60301	GCGGTGCCAC	GCTCGACTGG	CCCCGCATCC	TCGGGGCTGG	GTCACGGCAC	GACGCGGATG
	60361	TGCCCGCGTA	CGCGTTCCAA	CGGCGGCACT	ACTGGATCGA	GTCGGCACGC	CCGGCCGCAT
15	60421	CCGACGCGGG	CCACCCCGTG	CTGGGCTCCG	GTATCGCCCT	CGCCGGGTCG	CCGGGCCGGG
1.5	60421	TGTTCACGGG	TTCCGTGCCG	ACCGGTGCGG	ACCGCGCGGT	GTTCGTCGCC	GAGCTGGCGC
	605/1	TGGCCGCCGC	CCACCCCGTC	GACTGCGCCA	CGGTCGAGCG	GCTCGACATC	GCCTCCGTGC
	60601	CCGGCCGGCC	GGGCCATGGC	CGGACGACCG	TACAGACCTG	GGTCGACGAG	CCGGCGGACG
	60661	ACGGCCGGCG	CCGCTTCACC	GTGCACACCC	GCACCGGCGA	CGCCCCGTGG	ACGCTGCACG
20	60721	CCGAGGGGGT	CCTCCCCCCC	CATEGCACEG	CCCTGCCCGA	TGCGGCCGAC	GCCGAGTGGC
20	60701	CCCCACCGGG	CCCCCTCCCC	CCCCACCCC	TGCCGGGTGT	GTGGCGCCGG	GGGGACCAGG
	60041	TCTTCGCCGA	CCCCCACCTC	CACCCACCCC	ACGGTTTCGT	GGTGCACCCC	GACCTGCTCG
	00041	ACGCGGTCTT	CTCCCCCCTC	CCCCACGGA	GCCGCCAGCC	GGCCGGATGG	CGCGACCTGA
	60901	CGGTGCACGC	CTCCGCGGTC	ACCCTACTCC	CCCCCTCCCT	CACCCGGCGC	ACCGACGGAG
25	60961	CCATGGGATT	CCCCCCCTTC	CACCGCACCC	CCCTCCCGT	ACTCACCGCG	GAGGCGGTGA
25	61021	CGCTGCGGGA	CCTCCCCTCA	CCCTCCCCCT	CCGAGGAGTC	GGACGGCCTG	CACCGGTTGG
	01081	AGTGGCTCGC	CCTCCCCAC	CCCCTCTACG	ACCCTGACCT	GCCCGAGGGA	CATGTCCTGA
	61141	TCACCGCCGC	CCACCCCAC	CACCCCCACC	ACATACCCAC	CCGCGCCCAC	ACCCGCGCCA
	61201	CCCGCGTCCT	COACCCCCTC	CARCCCCGAGG	TCACCACCAC	CGACCACACC	CTCATCGTCC
30	01201	ACACCACCAC	CCACCCCCC	CAACACCACC	TCACCACCAC	CACCCGCACC	GCCCAGAACG
30	01321	AACACCCCCA	CCCCAMCCCC	CTCATCAAA	CCCACCACCC	CCACACCCCC	CTCCCCCTGG
	01301	CCCAACTCGC	CACCERCCAC	CACCCCACC	TCCCCCTCAC	CCACCACACC	CTCCACCACC
	61441	CCCACCTCAC	CACCCICGAC	ACCACCACC	CACCCACCAC	CACCCCCCTC	AACCCCGAAC
	61201	ACGCCATCAT	COCCCTCCAC	CCCTCCCCC	CACCACCAC	CATCCTCGCC	CGCCACCTGA
25	61561	ACCACCCCA	CATCACCGGC	GGCICCGGCA	CCCCACCCC	CGACGCCACC	CCCGGCACCC
35	61621	ACCTCCCCTG	CACCTACCTC	CACCCCCACC	AACTCGCCAC	CACCCTCACC	CACATCCCCC
	01081	ACCTCCCCTG	CGACGICGGC	GACCCCCACC	CCACCCTCCA	CCACGCCATC	CTCCACGCCC
	61/41	TCACCCCCGA	CGCCATCTTC	ACCCTCCTCC	ACCCCAAACC	CAACGCCGCC	TGGCACCTGC
	61001	ACCACCTCAC	CCGCCICACC	ACCGICCICC	ACTTCCTCCT	CTACTCCAGC	GCCGCCGCCG
40	61001	TCCTCGGCAG	CCCCCCACAA	CCCCICACCC	CCCCCCCAA	CGCCTTCCTC	GACGCCCTCG
40	61921	CCACCCACCG	CCCCGGACAA	CCCCDACCCC	CCACCTCCAT	CGCCTGGGGC	ATGTGGCACA
	61981	CCACCCACCG	CCACACCCIC	CARCTCACC	ACCCCCACCC	CGACCGCATC	CGCCGCGGCG
	62041	GTTTCCTCCC	CCTCACCGGA	CAACICGACG	TCCCCCTCTA	CCACCCCCCC	GTCGGCTCCG
	62101	GCGAGGACTT	GATCACGGAC	GACGAGGGCA	ACCCCCCACA	CCCCATGACC	GGCTCCGTAC
4.5	62161	CGCCCATCCT	CGTCATGGCC	GCCGCGAIGG	ACCCGGCACA	CCCCCCTCCC	GGGCAGACGT
45	62221	TCGCCCAGCG	GAGCGGCCTG	CUCAGGAGCG	CGCGGCGCGC	CCCCCCCCCC	ACCACCCTCG
	62281	TCGCCCAGCG	GCTCGCCGAG	CTGCCCGACG	ACCCCCACCC	CTCCCACATC	CCCCCCACCA
	62341	TCTCGGACGC	CACGGCCGCC	GTGCTCGGCC	ACGCCGACGC	CICCGAGAIC	AACCGCCTCG
	62401	CGACGTTCAA	GGACCTCGGC	ATCGACTCGC	TCACCGCGAI	CGAGCIGCGC	AACCGGCICG
5 0	62461	CGGAGGCGAC	CGGGCTGCGG	CTGAGTGCCA	. CGCTGGTGTT	CGACCACCCG	CCCCCCCCC
50	62521	TCCTCGCCGC	CAAGCTCCGC	ACCGATCTGT	TUGGUAUGGU	CATCCCCACC	CCACTCCCC
	62581	CGGCACGGAC	CCACCACGAC	GAGCCACTCG	CGATCGTCGG	CTCCCCCACC	CATCIGCCCG
	62641	GCGGGGTCGC	CTCGCCGGAG	GACCTGTGGC	AGCTCGTGGC	GICCGGCACC	CACCCCCACC
	62701	CCGAGTTCCC	CACCGACCGC	GGCTGGGACA	TCGACCGGCT	GTTCGACCCG	CCCTTCCATC
	62761	CCCCGGCAA	. GACCTACGTC	CGGCACGGCG	GCTTCCTCGC	CGAGGCCGCC	GGCTTCGHTG

the first that the man the three that the

affer the figure that it is the its

Łij.

Ti.

fii

Ϊij

ļ., į,

ti

14

ļ.

Lij.

	69301	AGGGGCACGG	CACCGGCACC	CGGCTCGGCG	ACCCGGTCGA	GGCGGACGCG	CTGCTCGCGA
	69361	CGTACGGGCA	GGACCGTCCG	GCACCGGTCT	GGCTGGGCTC	GCTGAAGTCG	AACATCGGAC
	69421	ATGCCACGGC	CGCGGCCGGT	GTCGCGGGCG	TCATCAAGAT	GGTGCAGGCG	ATCGGCGCGG
	69481	GCACGATGCC	GCGGACGCTG	CATGTGGAGG	AGCCCTCGCC	CGCCGTCGAC	TGGAGCACCG
5		GACAGGTGTC			CCTGGCCGGA	CGACGAGCGT	CCGCGCCGGG
J	69601	CGCCCGTCTC	CGCGTTCGGG				
		GTCCGGCGCC	CGTGGCGTCC	CAGCCGCCCC	GGCCGCCCCG	TGAGGAGTCC	CAGCCGCTGC
	69721	CGTGGGTGCT	CTCCGCGCGG	ACTCCGGCCG	CGCTGCGGGC	CCAGGCGGCC	CGGCTGCGCG
	69781	ACCACCTCGC	GGCGGCACCG	GACGCGGATC	CGTTGGACAT	CGGGTACGCG	CTGGCCACCA
10	69841	GCCGCGCCCA	GTTCGCCCAC	CGTGCCGCGG	TCGTCGCCAC	CACCCGGAC	GGATTCCGTG
10	69901	CCGCGCTCGA	CGGCCTCGCG	GACGGCGCGG	AGGCGCCCGG	AGTCGTCACC	GGGACCGCTC
	69961	AGGAGCGGCG	CGTCGCCTTC	CTCTTCGACG	GCCAGGGCGC	CCAGCGCGCC	GGAATGGGGC
	70021	GCGAGCTCCA	CCGCCGGTTC	CCCGTCTTCG	CCGCCGCGTG	GGACGAGGTC	TCCGACGCGT
		TCGGCAAGCA			ACGTCTACCA	CGGCGAACAC	GGCGCTCTCG
15	70141	CCCATGACAC	CCTGTACGCC				
	70201	TGCTGGAGCA	CTGGGGGGTG	CGGCCGGACG	TGCTCGTCGG	GCACTCCGTC	GGCGAGGTGA
		CCGCGGCGTA	CGCGGCGGGG	GTGCTCACCC	TGGCGGACGC	GACGGAGTTG	ATCGTGGCCC
	70321	GGGGGGGGC	GCTGCGGGCG	CTGCCGCCCG	GGGCGATGCT	CGCCGTCGAC	GGAAGCCCGG
	70381	CGGAGGTCGG	CGCCCGCACG	GATCTGGACA	TCGCCGCGGT	CAACGGCCCG	TCCGCCGTGG
20	70441	TGCTCGCCGG	TTCGCCGGAC	GATGTGGCGG	CGTTCGAACG	GGAGTGGTCG	GCGGCCGGGC
	70501	GGCGCACGAA	ACGGCTCGAC	GTCGGGCACG	CGTTCCACTC	CCGGCACGTC	GACGGTGCGC
	70561	TCGACGGCTT	CCGTACGGTG	CTGGAGTCGC	TCGCGTTCGG	CGCGGCGCGG	CTGCCGGTGG
	70621	TGTCCACGAC	GACGGGCCGG	GACGCCGCGG	ACGACCTCAT	AACGCCCGCG	CACTGGCTGC
	70681		TCGGCCGGTG	CTGTTCTCGG	ATGCCGTCCG	GGAGCTGGCC	GACCGCGGCG
25	70741	TCACCACGTT	CGTGGCCGTC	GGCCCCTCCG	GCTCCCTGGC	GTCGGCCGCG	GCGGAGAGCG
	70801	CCGGGGAGGA	CGCCGGGACC		TGCTGCGCGC		
	70861	CGGCGCTGAC	CGCCCTCGCC	GAGCTGCACG	CCCACGGCGT	CCCGGTCGAC	CTGGCCGCGG
	70921	TACTGGCCGG	TGGCCGGCCA	GTGGACCTTC	CCGTGTACGC	GTTCCAGCAC	CGTTCCTACT
	70981	GGCTGGCCCC	GGCCGTGGCG	GGGGCGCCGG	CCACCGTGGC	GGACACCGGG	GGTCCGGCGG
30	71041	AGTCCGAGCC	GGAGGACCTC	ACCGTCGCCG	AGATCGTCCG	TCGGCGCACC	GCGGCGCTGC
	71101	TCGGCGTCAC	GGACCCCGCC	GACGTCGATG	CGGAAGCGAC	GTTCTTCGCG	CTCGGTTTCG
	71161	ACTCACTGGC	GGTGCAGCGG	CTGCGCAACC	AGCTCGCCTC	GGCAACCGGG	CTGGACCTGC
	71221	CGGCGGCCGT	CCTGTTCGAC	CACGACACCC	CGGCCGCGCT	CACCGCGTTC	CTCCAGGACC
	71281	GGATCGAGGC	CGGCCAGGAC	CGGATCGAGG	CCGGCGAGGA	CGACGACGCG	CCCACCGTGC
35	71341	TCTCGCTCCT	GGAGGAGATG	GAGTCGCTCG	ACGCCGCGGA	CATCGCGGCG	ACGCCGGCCC
	71401	CGGAGCGTGC	GGCCATCGCC	GATCTGCTCG	ACAAGCTCGC	CCATACCTGG	AAGGACTACC
	71461	GATGAGCACC	GATACGCACG	AGGGAACGCC	GCCCGCCGGC	CGCTGCCCAT	TCGCGATCCA
	71521	GGACGGTCAC	CGCGCCATCC	TGGAGAGCGG	CACGGTGGGT	TCGTTCGACC	TGTTCGGCGT
	71581	CAAGCACTGG	CTGGTCGCCG	CCGCCGAGGA	CGTCAAGCTG	GTCACCAACG	ATCCGCGGTT
40	71641	CAGCTCGGCC	GCGCCGTCCG	AGATGCTGCC	CGACCGGCGG	CCCGGCTGGT	TCTCCGGGAT
	71701	GGACTCACCG	GAGCACAACC	GCTACCGGCA	GAAGATCGCG	GGGGACTTCA	CACTGCGCGC
	71761	GGCGCGCAAG	CGGGAGGACT	TCGTCGCCGA	GGCCGCCGAC	GCCTGCCTGG	ACGACATCGA
	71821	GGCCGCGGGA	CCCGGCACCG	ACCTCATCCC	CGGGTACGCC	AAGCGGCTGC	CCTCCCTCGT
4.5	71881	CATCAACGCG	CTGTACGGGC	TCACCCCTGA	GGAGGGGGCC	GTGCTGGAGG	R.CETTICETTCCC
45	71941	CGACATCACC	GGCTCGGCCG	ATCTGGACAG	CGTCAAGACG	CTGACCGACG	ACTICITOGG
	72001	GCACGCGCTG	CGGCTGGTCC	GCGCGAAGCG	TGACGAGCGG	GGCGAGGACC	CCCCCCTCTT
	72061	GCTGGCCTCG	GCCGACGACG	GCGAGATCTC	GCTCAGCGAC	ARCCRCCCC	A CTCCCTCTA
	72121	CGCGACGCTG	CTGTTCGCCG	GCCACGACTC	GGTGCAGCAG	ATGGTCGGCT	ACTGCCTCTA
50	72181	CGCACTGCTC	AGCCACCCCG	AGCAGCAGGC	GGCGCTGCGC	GCGCGCCCGG	TACCCCCCCCT
50	/2241	CAACGCGGTC	GAGGAGATGC	TCCGTTTCCT	GCCCGTCAAC	CAGATGGGCG	ACCECATOCC I
	72301	CTGTGTCGAG	GACGTCGATG	TGUGGGGGGT	CCTCTTCCCT	CACCCCCACA	VCG I GW I CCC
	/2361	GCTCTACTCG	AUGGCCAACC	GUGAUCUUGA	CCCCC CCCC	AUROLOCGACA	CTICGAIGI
	72421	GACGCGCCCG GCACATCGCC	CTGGAGGGCA	ACTTCGCGTT	CTCCCTCCCC	MIICHCHAGI	CTTTCCCCCA
	12481	GCACATCGCC	CGGGTGCTCA	LCAAGGTCGC	C16CC16C66	1101100400	GIIICCCGGA

	72541	CGTCCGGCTG	GCCGGCGACG	TGCCGATGAA	CGAGGGGCTC	GGGCTGTTCA	GCCCGGCCGA
	72601	GCTGCGGGTC	ACCTGGGGGG	CGGCATGAGT	CACCCGGTGG	AGACGTTGCG	GTTGCCGAAC
	72661	GGGACGACGG	TCGCGCACAT	CAACGCGGGC	GAGGCGCAGT	TCCTCTACCG	GGAGATCTTC
	72721	ACCCAGCGCT	GCTACCTGCG	CCACGGTGTC	GACCTGCGCC	CGGGGGACGT	GGTGTTCGAC
5	72781	GTCGGCGCGA	ACATCGGCAT	GTTCACGCTT	TTCGCGCATC	TGGAGTGTCC	TGGTGTGACC
	72841	GTGCACGCCT	TCGAGCCCGC	GCCCGTGCCG	TTCGCGGCGC	TGCGGGCGAA	CGTGACGCGG
	72901	CACGGCATCC	CGGGCCAGGC	GGACCAGTGC	GCGGTCTCCG	ACAGCTCCGG	CACCCGGAAG
	72961	ATGACCTTCT	ATCCCGACGC	CACGCTGATG	TCCGGTTTCC	ACGCGGATGC	CGCGGCCCGG
	73021	ACGGAGCTGT	TGCGCACGCT	CGGCCTCAAC	GGCGGCTACA	CCGCCGAGGA	CGTCGACACC
10	73081	ATGCTCGCGC	AACTGCCCGA	CGTCAGCGAG	GAGATCGAAA	CCCCTGTGGT	CCGGCTCTCC
	73141	GACGTCATCG	CGGAGCGCGG	TATCGAGGCC	ATCGGCCTGC	TGAAGGTCGA	CGTGGAGAAG
	73201	AGCGAACGGC	AGGTCTTCGC	CGGCCTCGAG	GACACCGACT	GGCCCCGTAT	CCGCCAGGTC
	73261	GTCGCGGAGG	TCCACGACAT	CGACGGCGCG	CTCGAGGAGG	TCGTCACGCT	GCTCCGCGGC
	73321	CATGGCTTCA	CCGTGGTCGC	CGAGCAGGAA	CCGCTGTTCG	CCGGCACGGG	CATCCACCAG
15	73381	GTCGCCGCGC	GGCGGGTGGC	CGGCTGAGCG	CCGTCGGGGC	CGCGGCCGTC	CGCACCGGCG
13	73441	GCCGCGGTGC	GGACGGCGGC	TCAGCCGGCG	TCGGACAGTT	CCTTGGGCAG	TTGCTGACGG
	73501	CCCTTCACCC	CCAGCTTGCG	GAACACGTTG	GTGAGGTGCT	GTTCCACCGT	GCTGGAGGTG
	73561	ACGAACAGCT	GGCTGGCGAT	CTCCTTGTTG	GTGCGCCCGA	CCGCGGCGTG	CGACGCCACC
	73621	CGCCGCTCCG	CCTCGGTCAG	CGATGTGATC	CGCTGCGCCG	GCGTCACGTC	CTGGGTGCCG
20	73681	TCCGCGTCCG	AGGACTCCCC	ACCGAGCCGC	CGGAGGAGCG	GCACGGCTCC	GCACTGGGTC
20	73741	GCGAGGTGCC	GTGCGCGGCG	GAACAGTCCC	CGCGCACGGC	TGTGCCGCCG	GAGCATGCCG
	73801	CACGCTTCGC	CCATGTCGGC	GAGGACGCGG	GCCAGCTCGT	ACTGGTCGCG	GCACATGATG
	73861	AGCAGATCGG	CGGCCTCGTC	GAGCAGTTCG	ATCCGCTTGG	CCGGCGGACT	GTAGGCCGCC
	73001	TGCACCCGCA	CCCTCATCAC	CCGCGCCCGG	GACCCCATCG	GCCGGGACAG	CTGCTCGGAG
25	73921	ATGAGCCTCA	GCCCCTCGTC	ACGGCCGCGG	CCGAGCAGCA	GAAGCGCTTC	GGCGGCGTCG
20	74041	ACCCGCCACA	GGGCCAGGCC	CGGCACGTCG	ACGGACCAGC	GTCGCATCCG	CTCCCCGCAG
	74101	TCCCGGAACG	CGTTGTACGC	CGCCCGGTAC	CGCCCGGCCG	CGAGATGGTG	TTGCCCACGG
	74161	GCCCAGACCA	TGTGCAGTCC	GAAGAGGCTG	TCGGAGGTCT	CCTCCGGCAA	CGGCTCGGCG
	74221	AGCCACCGCT	CCCCCCGGTC	CAGGTCGCCC	AGTCGGATCG	CGGCGGCCAC	GGTGCTGCTC
30	74281	AGCGGCAATG	CGGCGGCCAT	CCCCCAGGAG	GGCACGACCC	GGGGGGCGAG	CGCGGCCTCG
50	74341	CCGCATTCGA	CGGCGGCGGT	CAGGTCGCCG	CGGCGCAGCG	CGGCCTCGGC	GCGGAACCCC
	74401	GCGTGGACCG	CCTCGTCGGC	CGGGGTCCGC	ATGTTGTCGT	CACCGGCCAG	CTTGTCGACC
	74461	CAGGACTGGA	CGGCATCGGT	GTCCTCGGCG	TAGAGCAGGG	CCAGCAACGC	CATCATGGTC
	74521	GTGGTCCGGT	CCGTCGTGAC	CCGGGAGTGC	TGGAGCACGT	ACTCGGCTTT	GGCCTCGGCC
35	74581	TGTTCGGACC	AGCCGCGCAG	CGCGTTGCTC	AGGGCCTTGT	CGGCGACGGC	GCGGTGCCGG
55	74641	ACGGCTCCGG	AAAACGAGGC	GACCTCGTCC	TCGGCCGGCG	GATCGGCCGG	ACGCGGCGGA
	74701	TCGGCCGCGC	CGGGATAGAT	CAGCGCGAGG	GACAGGTCCG	CGACGCGCAG	GTGCGCCCGG
	74761	CCCTGCTCGC	TCGGGGCGGC	GGAGCGCTGG	GCCGCCAGGA	CCTCGGCGGC	CTCGCCCGGC
	74821	CGCCCGTCCA	TCGCCAGCCA	GCAGGCGAGC	GACACGGCGT	GCTCGCTGGA	GAGGAGCCGT
40	74881	TCCCGCGACG	CGGTGAGCAG	CTCGGGCACA	TGCCGGCCGG	ATCTGGCGGG	ATCGCAGAGC
••	74941	CGCTCGATGG	CGGCGGTGTC	GACGCGCAGT	GCGGCGTGGA	CGGCGGGGTC	GTCGGAGGCC
	75001	CGGTAGGCGA	ACTCCAGGTA	GGTGACGGCC	TCGTCGAGCT	CGCCGCGCAG	GTGGTGCTCG
	75061	CGCGCGGCGT	CGGTGAACAG	CCCGGCGACC	TCGGCGCCGT	GCACCCGGCC	GGTACCCATC
	75121	TGGTGGCGGG	CGAGCACCTI	GCTGGCCACG	CCGCGGTCCC	GCAGCAGTTC	CAGCGCCAGC
45	75181	TCGTGCAGGC	CACGCCGCTC	GGCGGCGGAG	AGGTCGTCGA	GTACGACGGA	GCGGGCCGCG
	75241	GGGTGCGGGA	ACCGCCCTIC	CCGCAGCAGC	CGCCCCTCGA	CCAGCTGTTC	GTGGGCCTGC
	75301	TCGACCGCCT	CGGTGTCGAG	GCCGGTCATC	CGCTGGACGA	GGGTGAGTTC	GACACTCTCG
	75361	CCGAGCACGG	CGGAAGCTCG	GGCGACGCTC	AGCGCGGCCG	GGCCGCAACG	ATAGAGCGAC
	75421	CCGAGGTAGG	CGAGCCGGTA	CGCCCGCCCC	GCGACCACTT	CCAGGCACCC	TGAGGTCCGT
50	75481	GTCCGTGCCT	CCCGGATGTC	GTCGATCAGG	CCGTGGCCGA	GGAGCAGGTT	GCCGCCGGTC
20	75541	GCCCGGAACG	CCTGGGCCAC	CACGTCGTCG	TGCGCGTCCT	GGCCGAGGTG	CCGGCGCACG
	75601	AGTTCGGTGG	TOTGOGCOTO	GGTGAGCGGG	CGCAGCGCGA	TCTCCTGGTA	GTGGCGCAGA
	75661	. CTCAGCAGTG	CCGCCCGGAA	TTGGGAGTGG	GCGGGCGTCG	GCCGGAGCAG	CTCGGTCAGC
	75721	. ACGATGGCGA		GCTGATGCGG	CGCGCGAGGT	GGAGCAGGCA	GCGCAGCGAC
	, , , , , ,	iconii eecan	. 0,,00000000	5515115566			

40

75781 GGCGCGTCGG CGTGGTGCAC GTCGTCGATG CCGATCAGTA CGGGCCGCTC CGCGGCGAGC 75841 GTCAGCACCG TGCGGGTGAG TTCGGTCCCC AGGCGGTTGT CGACGTCGGC CGGCAGGTTT 75901 TCGCACGATG CCGTCAGCCG GACCAGCTCC GGTGTCCGGG CGGCCAGCTC GGGCTGGTCG 75961 AGGAGCTGGC CGAGCATGCC GTACGGCAGG GCCCGCTCCT CCATGGAGCA CACCGCGCGA 76021 AGGGTGACGA AGCCGGCCTT GGCCGCGGCG GCGTCGAGGA GTTCGGTCTT GCCGCAGGCG 5 76081 ATCGGCCCGG TGACGGCGGC GACGACGCCC CGCCCGCCCC CCGCTCGGGT GAGCGCCCGG 76141 TGGAGGGAAC CGAACTCGTC ATCGCGGGCG ATCAGGTCTG GGGGAGATAA GCGCGCTATC 76201 ACGAATGGAA CTACCTCGCG ACCGTCGTGG AAACCCATAG GCATCACATG GCTTGTTGAT 76261 CTGTACGGCT GTGATTCAGC CTGGCGGGAT GCTGTGCTAC AGATGGGAAG ATGTGATCTA 76321 GGGCCGTGCC GTTCCCTCAG GAGCCGACCG CCCCCGGCGC CACCCGCCGT ACCCCCTGGG 10 76381 CCACCAGCTC GGCGACCCGC TCCTGGTGGT CGACGAGGTA GAAGTGCCCG CCGGGGAAGA 76441 CCTCCACCGT GGTCGGCGCG GTCGTGTGCC CGGCCCAGGC GTGGGCCTGC TCCACCGTCG 76501 TCTTCGGATC GTCGTCACCG ATGCACACCG TGATCGGCGT CTCCAGCGGC GGCGCGGGCT 76561 CCCACCGGTA CGTCTCCGCC GCGTAGTAGT CCGCCCGCAA CGGCGCCAGG ATCAGCGCGC 76621 GCATTTCGTC GTCCGCCATC ACATCGGCGC TCGTCCCGCC GAGGCCGATG ACCGCCGCCA 15 76681 GCAGCTCGTC GTCGGACGCG AGGTGGTCCT GGTCGGCGCC CGGCTGCGAC GGCGCCCGCC 76741 GGCCCGAGAC GATCAGGTGC GCCACCGGGA GCCGCTGGGC CAGCTCGAAC GCGAGTGTCG 76801 CGCCCATGCT GTGGCCGAAC AGCACCAGCG GACGGTCCAG CCCCGGCTTC AACGCCTCGG 76861 CCACGAGGCC GGCGAGAACA CGCAGGTCGC GCACCGCCTC CTCGTCGCGG CGGTCCTGGC 76921 GGCCGGGGTA CTGCACGGCG TACACGTCCG CCACCGGGGC GAGCGCACGG GCCAGCGGAA 20 76981 GGTAGAACGT CGCCGATCCG CCGGCGTGGG GCAGCAGCAC CACCCGTACC GGGGCCTCGG 77041 GCGTGGGGAA GAACTGCCGC AGCCAGAGTT CCGAGCTCAC CGCACCCCCT CGGCCGCGAC 77101 CTGGGGAGCC CGGAACCGGG TGATCTCGGC CAAGTGCTTC TCCCGCATCT CCGGGTCGGT 77161 CACGCCCCAT CCCTCCCG GCGCCAGACA GAGGACGCCG ACTTTGCCGT TGTGCACATT 77221 GCGATGCACA TCGCGCACCG CCGACCCGAC GTCGTCGAGC GGGTAGGTCA CCGACAGCGT 25 77281 CGGGTGCACC ATCCCCTTGC AGATCAGGCG GTTCGCCTCC CACGCCTCAC GATAGTTCGC 77341 GAAGTGGGTA CCGATGATCC GCTTCACGGA CATCCACAGG TACCGATTGT CAAAGGCGTG 77401 CTCGTATCCC GAGGTTGACG CGCAGGTGAC GATCGTGCCA CCCCGACGTG TCACGTAGAC 77461 ACTCGCGCCG AACGTCGCGC GCCCCGGGTG CTCGAACACG ATGTCGGGAT CGTCACCGCC 30 77521 GGTCAGCTCC CGGATC

Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be used to encode a given amino acid sequence of the invention. The native DNA sequence encoding the FK-520 PKS of *Streptomyces hygroscopicus* is shown herein merely to illustrate a preferred embodiment of the invention, and the present invention includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the invention. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The present invention includes such polypeptides with alternate amino acid sequences, and the amino acid sequences shown merely illustrate preferred embodiments of the invention.

10

15

20

25

30

The recombinant nucleic acids, proteins, and peptides of the invention are many and diverse. To facilitate an understanding of the invention and the diverse compounds and methods provided thereby, the following general description of the FK-520 PKS genes and modules of the PKS proteins encoded thereby is provided. This general description is followed by a more detailed description of the various domains and modules of the FK-520 PKS contained in and encoded by the compounds of the invention. In this description, reference to a heterologous PKS refers to any PKS other than the FK-520 PKS. Unless otherwise indicated, reference to a PKS includes reference to a portion of a PKS. Moreover, reference to a domain, module, or PKS includes reference to the nucleic acids encoding the same and vice-versa, because the methods and reagents of the invention provide or enable one to prepare proteins and the nucleic acids that encode them.

The FK-520 PKS is composed of three proteins encoded by three genes designated fkbA, fkbB, and fkbC. The fkbA ORF encodes extender modules 7 - 10 of the PKS. The fkbB ORF encodes the loading module (the CoA ligase) and extender modules 1 - 4 of the PKS. The fkbC ORF encodes extender modules 5 - 6 of the PKS. The fkbP ORF encodes the NRPS that attaches the pipecolic acid and cyclizes the FK-520 polyketide.

The loading module of the FK-520 PKS includes a CoA ligase, an ER domain, and an ACP domain. The starter building block or unit for FK-520 is believed to be a dihydroxycyclohexene carboxylic acid, which is derived from shikimate. The recombinant DNA compounds of the invention that encode the loading module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of methods and in a variety of compounds. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for the loading module of the heterologous PKS is replaced by the coding sequence for the FK-520 loading module, provides a novel PKS coding sequence. Examples of heterologous PKS coding sequences include the rapamycin, FK-506, rifamycin, and avermectin PKS coding sequences. In another

10

15

20

25

30

embodiment, a DNA compound comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the loading module coding sequence is utilized in conjunction with a heterologous coding sequence. In this embodiment, the invention provides, for example, either replacing the CoA ligase with a different CoA ligase, deleting the ER, or replacing the ER with a different ER. In addition, or alternatively, the ACP can be replaced by another ACP. In similar fashion, the corresponding domains in another loading or extender module can be replaced by one or more domains of the FK-520 PKS. The resulting heterologous loading module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide.

The first extender module of the FK-520 PKS includes a KS domain, an AT domain specific for methylmalonyl CoA, a DH domain, a KR domain, and an ACP domain. The recombinant DNA compounds of the invention that encode the first extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 first extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the first extender module of the FK-520 PKS or the latter is merely added to coding sequences for modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the first extender module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or only a portion of the first extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-

10

15

20

25

30

hydroxymalonyl CoA specific AT; deleting either the DH or KR or both; replacing the DH or KR or both with another DH or KR; and/or inserting an ER. In replacing or inserting KR, DH, and ER domains, it is often beneficial to replace the existing KR, DH, and ER domains with the complete set of domains desired from another module. Thus, if one desires to insert an ER domain, one may simply replace the existing KR and DH domains with a KR, DH, and ER set of domains from a module containing such domains. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a gene for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous first extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the first extender module of the FK-520 PKS.

In an illustrative embodiment of this aspect of the invention, the invention provides recombinant PKSs and recombinant DNA compounds and vectors that encode such PKSs in which the KS domain of the first extender module has been inactivated. Such constructs are especially useful when placed in translational reading frame with the remaining modules and domains of an FK-520 or FK-520 derivative PKS. The utility of these constructs is that host cells expressing, or cell free extracts containing, the PKS encoded thereby can be fed or supplied with N-acylcysteamine thioesters of novel precursor molecules to prepare FK-520 derivatives. See U.S. patent application Serial No. 60/117,384, filed 27 Jan. 1999, and PCT patent publication Nos. US97/02358 and US99/03986, each of which is incorporated herein by reference.

The second extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the second extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes

15

20

25

30

the FK-520 second extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the second extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the second extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or a portion of the second extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the KR with another KR; and/or inserting an active DH or an active DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous second extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the second extender module of the FK-520 PKS.

The third extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the third extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 third extender module is inserted into a DNA compound that comprises the coding

10

15

20

25

30

sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the third extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the third extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or a portion of the third extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the KR with another KR; and/or inserting an active DH or an active DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous third extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the third extender module of the FK-520 PKS.

The fourth extender module of the FK-520 PKS includes a KS, an AT that binds ethylmalonyl CoA, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the fourth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fourth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence

10

15

20

25

30

for a module of the heterologous PKS is either replaced by that for the fourth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the fourth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the fourth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the ethylmalonyl CoA specific AT with a malonyl CoA, methylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or deleting the inactive DH, inserting a KR, a KR and an active DH, or a KR, an active DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, a PKS for a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fourth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the fourth extender module of the FK-520 PKS.

As illustrative examples, the present invention provides recombinant genes, vectors, and host cells that result from the conversion of the FK-506 PKS to an FK-520 PKS and vice-versa. In one embodiment, the invention provides a recombinant set of FK-506 PKS genes but in which the coding sequences for the fourth extender module or at least those for the AT domain in the fourth extender module have been replaced by those for the AT domain of the fourth extender module of the FK-520 PKS. This recombinant PKS can be used to produce FK-520 in recombinant host cells. In another embodiment, the invention provides a recombinant set of FK-520 PKS genes but in which the coding sequences for the fourth extender module or at least those for the AT domain in the fourth

10

15

20

25

30

extender module have been replaced by those for the AT domain of the fourth extender module of the FK-506 PKS. This recombinant PKS can be used to produce FK-506 in recombinant host cells.

Other examples of hybrid PKS enzymes of the invention include those in which the AT domain of module 4 has been replaced with a malonyl specific AT domain to provide a PKS that produces 21-desethyl-FK520 or with a methylmalonyl specific AT domain to provide a PKS that produces 21-desethyl-21-methyl-FK520. Another hybrid PKS of the invention is prepared by replacing the AT and inactive KR domain of FK-520 extender module 4 with a methylmalonyl specific AT and an active KR domain, such as, for example, from module 2 of the DEBS or oleandolide PKS enzymes, to produce 21-desethyl-21-methyl-22-desoxo-22-hydroxy-FK520. The compounds produced by these hybrid PKS enzymes are neurotrophins.

The fifth extender module of the FK-520 PKS includes a KS, an AT that binds methylmalonyl CoA, a DH, a KR, and an ACP. The recombinant DNA compounds of the invention that encode the fifth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fifth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fifth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the fifth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the fifth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one or both of the DH and KR; replacing any one or both of the

10

15

20

25

30

DH and KR with either a KR and/or DH; and/or inserting an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fifth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the fifth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the DH domain of the fifth extender module have been deleted or mutated to render the DH non-functional. In one such mutated gene, the KR and DH coding sequences are replaced with those encoding only a KR domain from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-19 to C-20 double bond of FK-520 and has a C-20 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant activity. This recombinant fifth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this fifth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (lacking the C-19 to C-20 double bond of FK-506 and having a C-20 hydroxyl group) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH domain of module 5 has been deleted or otherwise rendered inactive and thus produces this novel polyketide.

10

15

20

25

The sixth extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the sixth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 sixth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the sixth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the sixth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the sixth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing any one, two, or all three of the KR, DH, and ER with another KR, DH, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous sixth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the sixth extender module of the FK-520 PKS.

10

15

20

25

30

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the DH and ER domains of the sixth extender module have been deleted or mutated to render them non-functional. In one such mutated gene, the KR, ER, and DH coding sequences are replaced with those encoding only a KR domain from another PKS gene. This can also be accomplished by simply replacing the coding sequences for extender module six with those for an extender module having a methylmalonyl specific AT and only a KR domain from a heterologous PKS gene, such as, for example, the coding sequences for extender module two encoded by the eryAI gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that has a C-18 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant activity. This recombinant sixth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this sixth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (having a C-18 hydroxyl group) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH and ER domains of module 6 have been deleted or otherwise rendered inactive and thus produces this novel polyketide.

The seventh extender module of the FK-520 PKS includes a KS, an AT specific for 2-hydroxymalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the seventh extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 seventh extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the seventh

10

15

20

25

30

extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the seventh extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion or all of the seventh extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the 2-hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or malonyl CoA specific AT; deleting the KR, the DH, and/or the ER; and/or replacing the KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous seventh extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the seventh extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the seventh extender module has been replaced with those encoding an AT domain for malonyl, methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-15 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant seventh extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that

10

15

20

25

30

contains both this seventh extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (C-15-desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 7 has been replaced and thus produces this novel polyketide.

In another illustrative embodiment, the present invention provides a hybrid PKS in which the AT and KR domains of module 7 of the FK-520 PKS are replaced by a methylmalonyl specific AT domain and an inactive KR domain, such as, for example, the AT and KR domains of extender module 6 of the rapamycin PKS. The resulting hybrid PKS produces 15-desmethoxy-15-methyl-16-oxo-FK-520, a neurotrophin compound.

The eighth extender module of the FK-520 PKS includes a KS, an AT specific for 2-hydroxymalonyl CoA, a KR, and an ACP. The recombinant DNA compounds of the invention that encode the eighth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 eighth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the eighth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the eighth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the eighth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the 2-

10

15

20

25

hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or malonyl CoA specific AT; deleting or replacing the KR; and/or inserting a DH or a DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous eighth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the eighth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the eighth extender module has been replaced with those encoding an AT domain for malonyl, methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-13 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant eighth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this eighth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (C-13desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 8 has been replaced and thus produces this novel polyketide.

compounds of the invention that encode the ninth extender module of the FK-520 PKS

methylmalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA

The ninth extender module of the FK-520 PKS includes a KS, an AT specific for

ij

£1

(ii fil

L

L)

20

25

In another embodiment, a portion of the ninth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing any one, two, or all three of the KR, DH, and ER with another KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous ninth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a

heterologous PKS can be replaced by one or more domains of the ninth extender module

of the FK-520 PKS.

10

15

20

25

30

The tenth extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, and an ACP. The recombinant DNA compounds of the invention that encode the tenth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 tenth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the tenth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the tenth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion or all of the tenth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or inserting a KR, a KR and DH, or a KR, DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous tenth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the tenth extender module of the FK-520 PKS.

The FK-520 polyketide precursor produced by the action of the tenth extender module of the PKS is then attached to pipecolic acid and cyclized to form FK-520. The

10

15

20

25

enzyme FkbP is the NRPS like enzyme that catalyzes these reactions. FkbP also includes a thioesterase activity that cleaves the nascent FK-520 polyketide from the NRPS. The present invention provides recombinant DNA compounds that encode the fkbP gene and so provides recombinant methods for expressing the fkbP gene product in recombinant host cells. The recombinant fkbP genes of the invention include those in which the coding sequence for the adenylation domain has been mutated or replaced with coding sequences from other NRPS like enzymes so that the resulting recombinant FkbP incorporates a moiety other than pipecolic acid. For the construction of host cells that do not naturally produce pipecolic acid, the present invention provides recombinant DNA compounds that express the enzymes that catalyze at least some of the biosynthesis of pipecolic acid (see Nielsen et al., 1991, Biochem. 30: 5789-96). The fkbL gene encodes a homolog of RapL, a lysine cyclodeaminase responsible in part for producing the pipecolate unit added to the end of the polyketide chain. The fkbB and fkbL recombinant genes of the invention can be used in heterologous hosts to produce compounds such as FK-520 or, in conjunction with other PKS or NRPS genes, to produce known or novel polyketides and non-ribosmal peptides.

The present invention also provides recombinant DNA compounds that encode the P450 oxidase and methyltransferase genes involved in the biosynthesis of FK-520. Figure 2 shows the various sites on the FK-520 polyketide core structure at which these enzymes act. By providing these genes in recombinant form, the present invention provides recombinant host cells that can produce FK-520. This is accomplished by introducing the recombinant PKS, P450 oxidase, and methyltransferase genes into a heterologous host cell. In a preferred embodiment, the heterologous host cell is *Streptomyces coelicolor* CH999 or *Streptomyces lividans* K4-114, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference. In addition, by providing recombinant host cells that express only a subset of these genes, the present invention provides methods for making FK-520 precursor compounds not readily obtainable by other means.

10

15

20

25

In a related aspect, the present invention provides recombinant DNA compounds and vectors that are useful in generating, by homologous recombination, recombinant host cells that produce FK-520 precursor compounds. In this aspect of the invention, a native host cell that produces FK-520 is transformed with a vector (such as an SCP2* derived vector for *Streptomyces* host cells) that encodes one or more disrupted genes (i.e., a hydroxylase, a methyltransferase, or both) or merely flanking regions from those genes. When the vector integrates by homologous recombination, the native, functional gene is deleted or replaced by the non-functional recombinant gene, and the resulting host cell thus produces an FK-520 precursor. Such host cells can also be complemented by introduction of a modified form of the deleted or mutated non-functional gene to produce a novel compound.

In one important embodiment, the present invention provides a hybrid PKS and the corresponding recombinant DNA compounds that encode those hybrid PKS enzymes. For purposes of the present invention a hybrid PKS is a recombinant PKS that comprises all or part of one or more modules and thioesterase/cyclase domain of a first PKS and all or part of one or more modules, loading module, and thioesterase/cyclase domain of a second PKS. In one preferred embodiment, the first PKS is all or part of the FK-520 PKS, and the second PKS is only a portion or all of a non-FK-520 PKS.

One example of the preferred embodiment is an FK-520 PKS in which the AT domain of module 8, which specifies a hydroxymalonyl CoA and from which the C-13 methoxy group of FK-520 is derived, is replaced by an AT domain that specifies a malonyl, methylmalonyl, or ethylmalonyl CoA. Examples of such replacement AT domains include the AT domains from modules 3, 12, and 13 of the rapaymycin PKS and from modules 1 and 2 of the erythromycin PKS. Such replacements, conducted at the level of the gene for the PKS, are illustrated in the examples below. Another illustrative example of such a hybrid PKS includes an FK-520 PKS in which the natural loading module has been replaced with a loading module of another PKS. Another example of such a hybrid PKS is an FK-520 PKS in which the AT domain of module three is replaced with an AT domain that binds methylmalonyl CoA.

In another preferred embodiment, the first PKS is most but not all of a non-FK-520 PKS, and the second PKS is only a portion or all of the FK-520 PKS. An illustrative example of such a hybrid PKS includes an erythromycin PKS in which an AT specific for methylmalonyl CoA is replaced with an AT from the FK-520 PKS specfic for malonyl CoA.

Those of skill in the art will recognize that all or part of either the first or second PKS in a hybrid PKS of the invention need not be isolated from a naturally occurring source. For example, only a small portion of an AT domain determines its specificity. See U.S. provisional patent application Serial No. 60/091,526, incorporated herein by reference. The state of the art in DNA synthesis allows the artisan to construct *de novo* DNA compounds of size sufficient to construct a useful portion of a PKS module or domain. For purposes of the present invention, such synthetic DNA compounds are deemed to be a portion of a PKS.

Thus, the hybrid modules of the invention are incorporated into a PKS to provide a hybrid PKS of the invention. A hybrid PKS of the invention can result not only:

- (i) from fusions of heterologous domain (where heterologous means the domains in that module are from at least two different naturally occurring modules) coding sequences to produce a hybrid module coding sequence contained in a PKS gene whose product is incorporated into a PKS,
- 20 but also:

5

10

15

- (ii) from fusions of heterologous module (where heterologous module means two modules are adjacent to one another that are not adjacent to one another in naturally occurring PKS enzymes) coding sequences to produce a hybrid coding sequence contained in a PKS gene whose product is incorporated into a PKS,
- 25 (iii) from expression of one or more FK-520 PKS genes with one or more non-FK-520 PKS genes, including both naturally occurring and recombinant non-FK-520 PKS genes, and
 - (iv) from combinations of the foregoing.

Various hybrid PKSs of the invention illustrating these various alternatives are described herein.

10

15

20

25

Examples of the production of a hybrid PKS by co-expression of PKS genes from the FK-520 PKS and another non-FK-520 PKS include hybrid PKS enzymes produced by coexpression of FK-520 and rapamycin PKS genes. Preferably, such hybrid PKS enzymes are produced in recombinant *Streptomyces* host cells that produce FK-520 or FK-506 but have been mutated to inactivate the gene whose function is to be replaced by the rapamycin PKS gene introduced to produce the hybrid PKS. Particular examples include (i) replacement of the *fkbC* gene with the *rapB* gene; and (ii) replacement of the *fkbA* gene with the *rapC* gene. The latter hybrid PKS produces 13,15-didesmethoxy-FK-520, if the host cell is an FK-520 producing host cell, and 13,15-didesmethoxy-FK-506, if the host cell is an FK-506 producing host cell. The compounds produced by these hybrid PKS enzymes are immunosuppressants and neurotrophins but can be readily modified to act only as neurotrophins, as described in Example 6, below.

Other illustrative hybrid PKS enzymes of the invention are prepared by replacing the fkbA gene of an FK-520 or FK-506 producing host cell with a hybrid fkbA gene in which: (a) the extender module 8 through 10, inclusive, coding sequences have been replaced by the coding sequnces for extender modules 12 to 14, inclusive, of the rapamycin PKS; and (b) the module 8 coding sequences have been replaced by the module 8 coding sequence of the rifamycin PKS. When expressed with the other, naturally occurring FK-520 or FK-506 PKS genes and the genes of the modification enzymes, the resulting hybrid PKS enzymes produce, respectively, (a) 13-desmethoxy-FK-520 or 13-desmethoxy-FK-506; and (b) 13-desmethoxy-13-methyl-FK-520 or 13desmethoxy-13-methyl-FK-506. In a preferred embodiment, these recombinant PKS genes of the invention are introduced into the producing host cell by a vector such as pHU204, which is a plamsid pRM5 derivative that has the well-characterized SCP2* replicon, the colE1 replicon, the tsr and bla resistance genes, and a cos site. This vector can be used to introduce the recombinant fkbA replacement gene in an FK-520 or FK-506 producing host cell (or a host cell derived therefrom in which the endogenous fkbA gene has either been rendered inactive by mutation, deletion or homologous recombination with the gene that replaces it) to produce the desired hybrid PKS.

In constructing hybrid PKSs of the invention, certain general methods may be helpful. For example, it is often beneficial to retain the framework of the module to be altered to make the hybrid PKS. Thus, if one desires to add DH and ER functionalities to a module, it is often preferred to replace the KR domain of the original module with a KR, DH, and ER domain-containing segment from another module, instead of merely 5 inserting DH and ER domains. One can alter the stereochemical specificity of a module by replacement of the KS domain with a KS domain from a module that specifies a different stereochemistry. See Lau et al., 1999, "Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of 10 extender units," Biochemistry 38(5):1643-1651, incorporated herein by reference. Stereochemistry can also be changed by changing the KR domain. Also, one can alter the specificity of an AT domain by changing only a small segment of the domain. See Lau et al., supra. One can also take advantage of known linker regions in PKS proteins to link modules from two different PKSs to create a hybrid PKS. See Gokhale et al., 16 Apr. 1999, "Dissecting and Exploiting Intermodular Communication in Polyketide Synthases," 15 Science 284: 482-485, incorporated herein by reference.

The following Table lists references describing illustrative PKS genes and corresponding enzymes that can be utilized in the construction of the recombinant PKSs and the corresponding DNA compounds that encode them of the invention. Also presented are various references describing tailoring enzymes and corresponding genes that can be employed in accordance with the methods of the present invention.

Avermectin

20

U.S. Pat. No. 5,252,474 to Merck.

MacNeil et al., 1993, Industrial Microorganisms: Basic and Applied Molecular

Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256, A Comparison of the
Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and
Nemadectin.

MacNeil et al., 1992, Gene 115: 119-125, Complex Organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase.

Ikeda *et al.*, Aug. 1999, Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in *Streptomyces avermitilis*, *Proc. Natl. Acad. Sci. USA 96*: 9509-9514.

Candicidin (FR008)

5 Hu et al., 1994, Mol. Microbiol. 14: 163-172.

Epothilone

U.S. Pat. App. Serial No. 60/130,560, filed 22 April 1999.

Erythromycin

PCT Pub. No. 93/13663 to Abbott.

10 US Pat. No. 5,824,513 to Abbott.

Donadio et al., 1991, Science 252:675-9.

Cortes et al., 8 Nov. 1990, Nature 348:176-8, An unusually large multifunctional polypeptide in the erythromycin producing polyketide synthase of Saccharopolyspora erythraea.

15 <u>Glycosylation Enzymes</u>

PCT Pat. App. Pub. No. 97/23630 to Abbott.

FK-506

Motamedi et al., 1998, The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506, Eur. J. biochem. 256: 528-534.

Motamedi *et al.*, 1997, Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506, *Eur. J. Biochem. 244*: 74-80.

Methyltransferase

US 5,264,355, issued 23 Nov. 1993, Methylating enzyme from

25 Streptomyces MA6858. 31-O-desmethyl-FK-506 methyltransferase.

Motamedi *et al.*, 1996, Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK-506 and FK-520, *J. Bacteriol.* 178: 5243-5248.

Streptomyces hygroscopicus

U.S. patent application Serial No. 09/154,083, filed 16 Sep. 1998.

Atty Dkt: 300622002600

- 74 -

Lovastatin

U.S. Pat. No. 5,744,350 to Merck.

Narbomycin

U.S. patent application Serial No. 60/107,093, filed 5 Nov. 1998, and Serial No. 60/120,254, filed 16 Feb. 1999.

Nemadectin

5

ij

Han mile

Test man

į.i

T.

15

MacNeil et al., 1993, supra.

Niddamycin

Kakavas et al., 1997, Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis, J. Bacteriol. 179: 7515-7522.

Oleandomycin

Swan et al., 1994, Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence, Mol. Gen. Genet. 242: 358-362.

U.S. patent application Serial No. 60/120,254, filed 16 Feb. 1999.

Olano et al., 1998, Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring, Mol. Gen. Genet. 259(3): 299-308.

20 Picromycin

PCT patent application US99/15047, filed 2 Jul. 1999.

Xue et al., 1998, Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae, Chemistry & Biology 5(11): 661-667.

Xue et al., Oct. 1998, A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity, Proc. Natl. Acad. Sci. USA 95: 12111 12116.

Platenolide

EP Pat. App. Pub. No. 791,656 to Lilly.

30

Rapamycin

Schwecke *et al.*, Aug. 1995, The biosynthetic gene cluster for the polyketide rapamycin, *Proc. Natl. Acad. Sci. USA 92*:7839-7843.

Aparicio et al., 1996, Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase, Gene 169: 9-16.

Rifamycin

August et al., 13 Feb. 1998, Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S669, Chemistry & Biology, 5(2): 69-79.

Sorangium PKS

U.S. patent application Serial No. 09/144,085, filed 31 Aug. 1998.

Soraphen

10

U.S. Pat. No. 5,716,849 to Novartis.

Schupp *et al.*, 1995, *J. Bacteriology 177*: 3673-3679. A *Sorangium cellulosum* (Myxobacterium) Gene Cluster for the Biosynthesis of the Macrolide Antibiotic Soraphen A: Cloning, Characterization, and Homology to Polyketide Synthase Genes from Actinomycetes.

Spiramycin

20 U.S. Pat. No. 5,098,837 to Lilly.

Activator Gene

U.S. Pat. No. 5,514,544 to Lilly.

Tylosin

EP Pub. No. 791,655 to Lilly.

25 U.S. Pat. No. 5,876,991 to Lilly.

Kuhstoss et al., 1996, Gene 183:231-6., Production of a novel polyketide through the construction of a hybrid polyketide synthase.

10

15

20

25

30

Tailoring enzymes

Merson-Davies and Cundliffe, 1994, *Mol. Microbiol. 13*: 349-355. Analysis of five tylosin biosynthetic genes from the *tylBA* region of the *Streptomyces fradiae* genome.

As the above Table illustrates, there are a wide variety of polyketide synthase genes that serve as readily available sources of DNA and sequence information for use in constructing the hybrid PKS-encoding DNA compounds of the invention. Methods for constructing hybrid PKS-encoding DNA compounds are described without reference to the FK-520 PKS in PCT patent publication No. 98/51695; U.S. Patent Nos. 5,672,491 and 5,712,146 and U.S. patent application Serial Nos. 09/073,538, filed 6 May 1998, and 09/141,908, filed 28 Aug 1998, each of which is incorporated herein by reference.

The hybrid PKS-encoding DNA compounds of the invention can be and often are hybrids of more than two PKS genes. Moreover, there are often two or more modules in the hybrid PKS in which all or part of the module is derived from a second (or third) PKS. Thus, as one illustrative example, the present invention provides a hybrid FK-520 PKS that contains the naturally occurring loading module and FkbP as well as modules one, two, four, six, seven, and eight, nine, and ten of the FK-520 PKS and further contains hybrid or heterologous modules three and five. Hybrid or heterologous module three contains an AT domain that is specific of methylmalonyl CoA and can be derived for example, from the erythromycin or rapamycin PKS genes. Hybrid or heterologous module five contains an AT domain that is specific for malonyl CoA and can be derived for example, from the picromycin or rapamycin PKS genes.

While an important embodiment of the present invention relates to hybrid PKS enzymes and corresponding genes, the present invention also provides recombinant FK-520 PKS genes in which there is no second PKS gene sequence present but which differ from the FK-520 PKS gene by one or more deletions. The deletions can encompass one or more modules and/or can be limited to a partial deletion within one or more modules. When a deletion encompasses an entire module, the resulting FK-520 derivative is at least two carbons shorter than the gene from which it was derived. When a deletion is within a module, the deletion typically encompasses a KR, DH, or ER domain, or both

10

15

20

25

30

DH and ER domains, or both KR and DH domains, or all three KR, DH, and ER domains.

To construct a hybrid PKS or FK-520 derivative PKS gene of the invention, one can employ a technique, described in PCT Pub. No. 98/27203 and U.S. patent application Serial No. 08/989,332, filed 11 Dec. 1997, each of which is incorporated herein by reference, in which the large PKS gene is divided into two or more, typically three, segments, and each segment is placed on a separate expression vector. In this manner, each of the segments of the gene can be altered, and various altered segments can be combined in a single host cell to provide a recombinant PKS gene of the invention. This technique makes more efficient the construction of large libraries of recombinant PKS genes, vectors for expressing those genes, and host cells comprising those vectors.

Thus, in one important embodiment, the recombinant DNA compounds of the invention are expression vectors. As used herein, the term expression vector refers to any nucleic acid that can be introduced into a host cell or cell-free transcription and translation medium. An expression vector can be maintained stably or transiently in a cell, whether as part of the chromosomal or other DNA in the cell or in any cellular compartment, such as a replicating vector in the cytoplasm. An expression vector also comprises a gene that serves to produce RNA that is translated into a polypeptide in the cell or cell extract. Furthermore, expression vectors typically contain additional functional elements, such as resistance-conferring genes to act as selectable markers.

The various components of an expression vector can vary widely, depending on the intended use of the vector. In particular, the components depend on the host cell(s) in which the vector will be used or is intended to function. Vector components for expression and maintenance of vectors in *E. coli* are widely known and commercially available, as are vector components for other commonly used organisms, such as yeast cells and *Streptomyces* cells.

In a preferred embodiment, the expression vectors of the invention are used to construct recombinant *Streptomyces* host cells that express a recombinant PKS of the invention. Preferred *Streptomyces* host cell/vector combinations of the invention include *S. coelicolor* CH999 and *S. lividans* K4-114 host cells, which do not produce

10

15

20

25

actinorhodin, and expression vectors derived from the pRM1 and pRM5 vectors, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference.

The present invention provides a wide variety of expression vectors for use in Streptomyces. For replicating vectors, the origin of replication can be, for example and without limitation, a low copy number vector, such as SCP2* (see Hopwood et al., Genetic Manipulation of Streptomyces: A Laboratory manual (The John Innes Foundation, Norwich, U.K., 1985); Lydiate et al., 1985, Gene 35: 223-235; and Kieser and Melton, 1988, Gene 65: 83-91, each of which is incorporated herein by reference), SLP1.2 (Thompson et al., 1982, Gene 20: 51-62, incorporated herein by reference), and SG5(ts) (Muth et al., 1989, Mol. Gen. Genet. 219: 341-348, and Bierman et al., 1992, Gene 116: 43-49, each of which is incorporated herein by reference), or a high copy number vector, such as pIJ101 and pJV1 (see Katz et al., 1983, J. Gen. Microbiol. 129: 2703-2714; Vara et al., 1989, J. Bacteriol. 171: 5782-5781; and Servin-Gonzalez, 1993, *Plasmid 30*: 131-140, each of which is incorporated herein by reference). Generally, however, high copy number vectors are not preferred for expression of genes contained on large segments of DNA. For non-replicating and integrating vectors, it is useful to include at least an E. coli origin of replication, such as from pUC, p1P, p1I, and pBR. For phage based vectors, the phages phiC31 and KC515 can be employed (see Hopwood et al., supra).

Typically, the expression vector will comprise one or more marker genes by which host cells containing the vector can be identified and/or selected. Useful antibiotic resistance conferring genes for use in *Streptomyces* host cells include the *ermE* (confers resistance to erythromycin and other macrolides and lincomycin), *tsr* (confers resistance to thiostrepton), *aadA* (confers resistance to spectinomycin and streptomycin), *aacC4* (confers resistance to apramycin, kanamycin, gentamicin, geneticin (G418), and neomycin), *hyg* (confers resistance to hygromycin), and *vph* (confers resistance to viomycin) resistance conferring genes.

10

15

20

25

30

The recombinant PKS gene on the vector will be under the control of a promoter, typically with an attendant ribosome binding site sequence. The present invention provides the endogenous promoters of the FK-520 PKS and related biosynthetic genes in recombinant form, and these promoters are preferred for use in the native hosts and in heterologous hosts in which the promoters function. A preferred promoter of the invention is the *fkbO* gene promoter, comprised in a sequence of about 270 bp between the start of the open reading frames of the *fkbO* and *fkbB* genes. The *fkbO* promoter is believed to be bi-directional in that it promotes transcription of the genes *fkbO*, *fkbP*, and *fkbA* in one direction and *fkbB*, *fkbC*, and *fkbL* in the other. Thus, in one aspect, the present invention provides a recombinant expression vector comprising the promoter of the *fkbO* gene of an FK-520 producing organism positioned to transcribe a gene other than *fkbO*. In a preferred embodiment the transcribed gene is an FK-520 PKS gene. In another preferred embodiment, the transcribed gene is a gene that encodes a protein comprised in a hybrid PKS.

Heterologous promoters can also be employed and are preferred for use in host cells in which the endogenous FK-520 PKS gene promoters do not function or function poorly. A preferred heterologous promoter is the actI promoter and its attendant activator gene actII-ORF4, which is provided in the pRM1 and pRM5 expression vectors, supra. This promoter is activated in the stationary phase of growth when secondary metabolites are normally synthesized. Other useful Streptomyces promoters include without limitation those from the ermE gene and the melC1 gene, which act constitutively, and the tipA gene and the merA gene, which can be induced at any growth stage. In addition, the T7 RNA polymerase system has been transferred to Streptomyces and can be employed in the vectors and host cells of the invention. In this system, the coding sequence for the T7 RNA polymerase is inserted into a neutral site of the chromosome or in a vector under the control of the inducible merA promoter, and the gene of interest is placed under the control of the T7 promoter. As noted above, one or more activator genes can also be employed to enhance the activity of a promoter. Activator genes in addition to the actII-ORF4 gene discussed above include dnrI, redD, and ptpA genes (see U.S. patent application Serial No. 09/181,833, supra) to activate promoters under their control.

10

15

20

25

30

Atty Dkt: 300622002600

In addition to providing recombinant DNA compounds that encode the FK-520 PKS, the present invention also provides DNA compounds that encode the ethylmalonyl CoA and 2-hydroxymalonyl CoA utilized in the synthesis of FK-520. Thus, the present invention also provides recombinant host cells that express the genes required for the biosynthesis of ethylmalonyl CoA and 2-hydroxymalonyl CoA. Figures 3 and 4 show the location of these genes on the cosmids of the invention and the biosynthetic pathway that produces ethylmalonyl CoA.

For 2-hydroxymalonyl CoA biosynthesis, the *fkbH*, *fkbI*, *fkbJ*, and *fkbK* genes are sufficient to confer this ability on *Streptomcyces* host cells. For conversion of 2-hydroxymalonyl to 2-methoxymalonyl, the *fkbG* gene is also employed. While the complete coding sequence for *fkbH* is provided on the cosmids of the invention, the sequence for this gene provided herein may be missing a T residue, based on a comparison made with a similar gene cloned from the ansamitocin gene cluster by Dr. H. Floss. Where the sequence herein shows one T, there may be two, resulting in an extension of the *fkbH* reading frame to encode the amino acid sequence:

MTIVKCLVWDLDNTLWRGTVLEDDEVVLTDEIREVITTLDDRGILQAVASKNDH DLAWERLERLGVAEYFVLARIGWGPKSQSVREIATELNFAPTTIAFIDDQPAERA EVAFHLPEVRCYPAEQAATLLSLPEFSPPVSTVDSRRRRLMYQAGFARDQAREA YSGPDEDFLRSLDLSMTIAPAGEEELSRVEELTLRTSQMNATGVHYSDADLRALL TDPAHEVLVVTMGDRFGPHGAVGIILLEKKPSTWHLKLLATSCRVVSFGAGATIL NWLTDQGARAGAHLVADFRRTDRNRMMEIAYRFAGFADSDCPCVSEVAGASA AGVERLHLEPSARPAPTTLTLTAADIAPVTVSAAG.

For ethylmalonyl CoA biosynthesis, one requires only a crotonyl CoA reductase, which can be supplied by the host cell but can also be supplied by recombinant expression of the *fkbS* gene of the present invention. To increase yield of ethylmalonyl CoA, one can also express the *fkbE* and *fkbU* genes as well. While such production can be achieved using only the recombinant genes above, one can also achieve such production by placing into the recombinant host cell a large segment of the DNA provided by the cosmids of the invention. Thus, for 2-hydroxymalonyl and 2-methoxymalonyl CoA biosynthesis, one can simply provide the cells with the segment of

10

15

20

25

30

DNA located on the left side of the FK-520 PKS genes shown in Figure 1. For ethylmalonyl CoA biosynthesis, one can simply provide the cells with the segment of DNA located on the right side of the FK-520 PKS genes shown in Figure 1 or, alternatively, both the right and left segments of DNA.

The recombinant DNA expression vectors that encode these genes can be used to construct recombinant host cells that can make these important polyketide building blocks from cells that otherwise are unable to produce them. For example, *Streptomyces coelicolor* and *Streptomyces lividans* do not synthesisze ethylmalonyl CoA or 2-hydroxymalonyl CoA. The invention provides methods and vectors for constructing recombinant *Streptomyces coelicolor* and *Streptomyces lividans* that are able to synthesize either or both ethylmalonyl CoA and 2-hydroxymalonyl CoA. These host cells are thus able to make polyketides, those requiring these substrates, that cannot otherwise be made in such cells.

In a preferred embodiment, the present invention provides recombinant *Streptomyces* host cells, such as *S. coelicolor* and *S. lividans*, that have been transformed with a recombinant vector of the invention that codes for the expression of the ethylmalonyl CoA biosynthetic genes. The resulting host cells produce ethylmalonyl CoA and so are preferred host cells for the production of polyketides produced by PKS enzymes that comprise one or more AT domains specific for ethylmalonyl CoA. Illustrative PKS enzymes of this type include the FK-520 PKS and a recombinant PKS in which one or more AT domains is specific for ethylmalonyl CoA.

In a related embodiment, the present invention provides *Streptomyces* host cells in which one or more of the ethylmalonyl or 2-hydroxymalonyl biosynthetic genes have been deleted by homologous recombination or rendered inactive by mutation. For example, deletion or inactivation of the *fkbG* gene can prevent formation of the methoxyl groups at C-13 and C-15 of FK-520 (or, in the corresponding FK-506 producing cell, FK-506), leading to the production of 13,15-didesmethoxy-13,15-dihydroxy-FK-520 (or, in the corresponding FK-506 producing cell, 13,15-didesmethoxy-13,15-dihydroxy-FK-506). If the *fkbG* gene product acts on 2-hydroxymalonyl and the resulting 2-methoxymalonyl substrate is required for incorporation by the PKS, the AT domains of

10

15

20

25

30

modules 7 and 8 may bind malonyl CoA and methylmalonyl CoA. Such incorporation results in the production of a mixture of polyketides in which the methoxy groups at C-13 and C-15 of FK-520 (or FK-506) are replaced by either hydrogen or methyl.

This possibility of non-specific binding results from the construction of a hybrid PKS of the invention in which the AT domain of module 8 of the FK-520 PKS replaced the AT domain of module 6 of DEBS. The resulting PKS produced, in *Streptomyces lividans*, 6-dEB and 2-desmethyl-6-dEB, indicating that the AT domain of module 8 of the FK-520 PKS could bind malonyl CoA and methylmalonyl CoA substrates. Thus, one could possibly also prepare the 13,15-didesmethoxy-FK-520 and corresponding FK-506 compounds of the invention by deleting or otherwise inactivating one or more or all of the genes required for 2-hydroxymalonyl CoA biosynthesis, i.e., the *fkbH*, *fkbI*, *fkbJ*, and *fkbK* genes. In any event, the deletion or inactivation of one or more biosynthetic genes required for ethylmalonyl and/or 2-hydroxymalonyl production prevents the formation of polyketides requiring ethylmalonyl and/or 2-hydroxymalonyl for biosynthesis, and the resulting host cells are thus preferred for production of polyketides that do not require the same.

The host cells of the invention can be grown and fermented under conditions known in the art for other purposes to produce the compounds of the invention. See, e.g., U.S. Patent Nos. 5,194,378; 5,116,756; and 5,494,820, incorporated herein by reference, for suitable fermentation processes. The compounds of the invention can be isolated from the fermentation broths of these cultured cells and purified by standard procedures. Preferred compounds of the invention include the following compounds: 13-desmethoxy-FK-506; 13-desmethoxy-FK-520; 13,15-didesmethoxy-FK-506; 13-desmethoxy-FK-520; 13-desmethoxy-18-hydroxy-FK-506; 13-desmethoxy-18-hydroxy-FK-520; 13,15-didesmethoxy-18-hydroxy-FK-520. These compounds can be further modified as described for tacrolimus and FK-520 in U.S. Patent Nos. 5,225,403; 5,189,042; 5,164,495; 5,068,323; 4,980,466; and 4,920,218, incorporated herein by reference.

Other compounds of the invention are shown in Figure 8, Parts A and B. In Figure 8, Part A, illustrative C-32-substituted compounds of the invention are shown in two

10

15

20

25

30

columns under the heading R. The substituted compounds are preferred for topical administration and are applied to the dermis for treatment of conditions such as psoriasis. In Figure 8, Part B, illustrative reaction schemes for making the compounds shown in Figure 8, Part A, are provided. In the upper scheme in Figure 8, Part B, the C-32 substitution is a tetrazole moiety, illustrative of the groups shown in the left column under R in Figure 8, Part A. In the lower scheme in Figure 8, Part B, the C-32 substitution is a disubstituted amino group, where R₃ and R₄ can be any group similar to the illustrative groups shown attached to the amine in the right column under R in Figure 8, Part A. While Figure 8 shows the C-32-substituted compounds in which the C-15-methoxy is present, the invention includes these C-32-substituted compounds in which C-15 is ethyl, methyl, or hydrogen. Also, while C-21 is shown as substituted with ethyl or allyl, the compounds of the invention includes the C-32-substituted compounds in which C-21 is substituted with hydrogen or methyl.

To make these C-32-substituted compounds, Figure 8, Part B, provides illustrative reaction schemes. Thus, a selective reaction of the starting compound (see Figure 8, Part B, for an illustrative starting compound) with trifluoromethanesulfonic anhydride in the presence of a base yields the C-32 O-triflate derivative, as shown in the upper scheme of Figure 8, Part B. Displacement of the triflate with 1H-tetrazole or triazole derivatives provides the C-32 tetrazole or teiazole derivative. As shown in the lower scheme of Figure 8, Part B, reacting the starting compound with p-nitrophenylchloroformate yields the corresponding carbonate, which, upon displacement with an amino compound, provides the corresponding carbamate derivative.

The compounds can be readily formulated to provide the pharmaceutical compositions of the invention. The pharmaceutical compositions of the invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid, or liquid form. This preparation contains one or more of the compounds of the invention as an active ingredient in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any

10

15

20

25

30

other form suitable for use. Suitable formulation processes and compositions for the compounds of the present invention are described with respect to tacrolimus in U.S. Patent Nos. 5,939,427; 5,922,729; 5,385,907; 5,338,684; and 5,260,301, incorporated herein by reference. Many of the compounds of the invention contain one or more chiral centers, and all of the stereoisomers are included within the scope of the invention, as pure compounds as well as mixtures of stereoisomers. Thus the compounds of the invention may be supplied as a mixture of stereoisomers in any proportion.

The carriers which can be used include water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquified form. In addition, auxiliary stabilizing, thickening, and coloring agents and perfumes may be used. For example, the compounds of the invention may be utilized with hydroxypropyl methylcellulose essentially as described in U.S. Patent No. 4,916,138, incorporated herein by reference, or with a surfactant essentially as described in EPO patent publication No. 428,169, incorporated herein by reference.

Oral dosage forms may be prepared essentially as described by Hondo *et al.*, 1987, *Transplantation Proceedings XIX*, Supp. 6: 17-22, incorporated herein by reference. Dosage forms for external application may be prepared essentially as described in EPO patent publication No. 423,714, incorporated herein by reference. The active compound is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the disease process or condition.

For the treatment of conditions and diseases relating to immunosuppression or neuronal damage, a compound of the invention may be administered orally, topically, parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvant, and vehicles. The term parenteral, as used herein, includes subcutaneous injections, and intravenous, intramuscular, and intrasternal injection or infusion techniques.

Dosage levels of the compounds of the present invention are of the order from about 0.01 mg to about 50 mg per kilogram of body weight per day, preferably from

10

15

20

25

about 0.1 mg to about 10 mg per kilogram of body weight per day. The dosage levels are useful in the treatment of the above-indicated conditions (from about 0.7 mg to about 3.5 mg per patient per day, assuming a 70 kg patient). In addition, the compounds of the present invention may be administered on an intermittent basis, i.e., at semi-weekly, weekly, semi-monthly, or monthly intervals.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for oral administration to humans may contain from 0.5 mg to 5 g of active agent compounded with an appropriate and convenient amount of carrier material, which may vary from about 5 percent to about 95 percent of the total composition. Dosage unit forms will generally contain from about 0.5 mg to about 500 mg of active ingredient. For external administration, the compounds of the invention can be formulated within the range of, for example, 0.00001% to 60% by weight, preferably from 0.001% to 10% by weight, and most preferably from about 0.005% to 0.8% by weight. The compounds and compositions of the invention are useful in treating disease conditions using doses and administration schedules as described for tacrolimus in U.S. Patent Nos. 5,542,436; 5,365,948; 5,348,966; and 5,196,437, incorporated herein by reference. The compounds of the invention can be used as single therapeutic agents or in combination with other therapeutic agents. Drugs that can be usefully combined with compounds of the invention include one or more immunosuppressant agents such as rapamycin, cyclosporin A, FK-506, or one or more neurotrophic agents.

It will be understood, however, that the specific dosage level for any particular patient will depend on a variety of factors. These factors include the activity of the specific compound employed; the age, body weight, general health, sex, and diet of the subject; the time and route of administration and the rate of excretion of the drug; whether a drug combination is employed in the treatment; and the severity of the particular disease or condition for which therapy is sought.

15

20

25

30

A detailed description of the invention having been provided above, the following examples are given for the purpose of illustrating the present invention and shall not be construed as being a limitation on the scope of the invention or claims.

5 Example 1

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-520

The C-13 methoxyl group is introduced into FK-520 via an AT domain in extender module 8 of the PKS that is specific for hydroxymalonyl and by methylation of the hydroxyl group by an S-adenosyl methionine (SAM) dependent methyltransferase. Metabolism of FK-506 and FK-520 primarily involves oxidation at the C-13 position into an inactive derivative that is further degraded by host P450 and other enzymes. The present invention provides compounds related in structure to FK-506 and FK-520 that do not contain the C-13 methoxy group and exhibit greater stability and a longer half-life *in vivo*. These compounds are useful medicaments due to their immunosuppressive and neurotrophic activities, and the invention provides the compounds in purified form and as pharmaceutical compositions.

The present invention also provides the novel PKS enzymes that produce these novel compounds as well as the expression vectors and host cells that produce the novel PKS enzymes. The novel PKS enzymes include, among others, those that contain an AT domain specific for either malonyl CoA or methylmalonyl CoA in module 8 of the FK-506 and FK-520 PKS. This example describes the construction of recombinant DNA compounds that encode the novel FK-520 PKS enzymes and the transformation of host cells with those recombinant DNA compounds to produce the novel PKS enzymes and the polyketides produced thereby.

To construct an expression cassette for performing module 8 AT domain replacements in the FK-520 PKS, a 4.6 kb *Sph*I fragment from the FK-520 gene cluster was cloned into plasmid pLitmus 38 (a cloning vector available from New England Biolabs). The 4.6 kb *Sph*I fragment, which encodes the ACP domain of module 7 followed by module 8 through the KR domain, was isolated from an agarose gel after digesting the cosmid pKOS65-C31 with *Sph* I. The clone having the insert oriented so

10

15

20

25

30

the single SacI site was nearest to the SpeI end of the polylinker was identified and designated as plasmid pKOS60-21-67. To generate appropriate cloning sites, two linkers were ligated sequentially as follows. First, a linker was ligated between the SpeI and SacI sites to introduce a BglII site at the 5' end of the cassette, to eliminate interfering polylinker sites, and to reduce the total insert size to 4.5 kb (the limit of the phage KC515). The ligation reactions contained 5 picomolar unphosphorylated linker DNA and 0.1 picomolar vector DNA, i.e., a 50-fold molar excess of linker to vector. The linker had the following sequence:

5'-CTAGTGGGCAGATCTGGCAGCT-3' 3'-ACCCGTCTAGACCG-5'

The resulting plasmid was designated pKOS60-27-1.

Next, a linker of the following sequence was ligated between the unique *Sph*I and *Afl*II sites of plasmid pKOS60-27-1 to introduce an *Nsi*I site at the 3' end of the module 8 cassette. The linker employed was:

5'-GGGATGCATGGC-3'
3'-GTACCCCTACGTACCGAATT-5'

The resulting plasmid was designated pKOS60-29-55.

To allow in-frame insertions of alternative AT domains, sites were engineered at the 5' end (Avr II or Nhe I) and 3' end (Xho I) of the AT domain using the polymerase chain reaction (PCR) as follows. Plasmid pKOS60-29-55 was used as a template for the PCR and sequence 5' to the AT domain was amplified with the primers SpeBgl-fwd and either Avr-rev or Nhe-rev:

SpeBgl-fwd 5'-CGACTCACTAGTGGGCAGATCTGG-3'

Avr-rev 5'-CACGCCTAGGCCGGTCGGTCTCGGGCCAC-3'

Nhe-rev 5'-GCGGCTAGCTGCTCGCCCATCGCGGGATGC-3'

The PCR included, in a 50 μ l reaction, 5 μ l of 10x Pfu polymerase buffer (Stratagene), 5 μ l 10x z-dNTP mixture (2 mM dATP, 2 mM dCTP, 2 mM dTTP, 1 mM dGTP, 1 mM 7-deaza-GTP), 5 μ l DMSO, 2 μ l of each primer (10 μ M), 1 μ l of template DNA (0.1 μ g/ μ l), and 1 μ l of cloned Pfu polymerase (Stratagene). The PCR conditions were 95°C for 2 min., 25 cycles at 95°C for 30 sec., 60°C for 30 sec., and 72°C for 4

10

15

min., followed by 4 min. at 72°C and a hold at 0°C. The amplified DNA products and the Litmus vectors were cut with the appropriate restriction enzymes (*BgI*II and *Avr*II or *Spe*I and *Nhe*I), and cloned into either pLitmus 28 or pLitmus 38 (New England Biolabs), respectively, to generate the constructs designated pKOS60-37-4 and pKOS60-37-2, respectively.

Plasmid pKOS60-29-55 was again used as a template for PCR to amplify sequence 3' to the AT domain using the primers BsrXho-fwd and NsiAfl-rev:

BsrXho-fwd 5'-GATGTACAGCTCGAGTCGGCACGCCCGGCCGCATC-3'
NsiAfl-rev 5'-CGACTCACTTAAGCCATGCATCC-3'

PCR conditions were as described above. The PCR fragment was cut with *Bsr*GI and *Afl*II, gel isolated, and ligated into pKOS60-37-4 cut with *Asp*718 and *Afl*II and inserted into pKOS60-37-2 cut with *Bsr*GI and *Afl*II, to give the plasmids pKOS60-39-1 and pKOS60-39-13, respectively. These two plasmids can be digested with *Avr*II and *Xho*I or *Nhe*I and *Xho*I, respectively, to insert heterologous AT domains specific for malonyl, methylmalonyl, ethylmalonyl, or other extender units.

Malonyl and methylmalonyl-specific AT domains were cloned from the rapamycin cluster using PCR amplification with a pair of primers that introduce an *AvrII* or *NheI* site at the 5' end and an *XhoI* site at the 3' end. The PCR conditions were as given above and the primer sequences were as follows:

RATN1 5'-ATCCTAGGCGGCRGGYGTGTCGTCCTTCGG-3'
(3' end of Rap KS sequence and universal for malonyl and methylmalonyl CoA),
RATMN2 5'-ATGCTAGCCGCCGCGTTCCCCGTCTTCGCGCG-3'
(Rap AT shorter version 5'- sequence and specific for malonyl CoA),

25 RATMMN2 5'-ATGCTAGCGGATTCGTCGGTGGTGTTCGCCGA-3' (Rap AT shorter version 5'- sequence and specific for methylmalonyl CoA), and RATC 5'-ATCTCGAGCCAGTASCGCTGGTGYTGGAAGG-3' (Rap DH 5'- sequence and universal for malonyl and methylmalonyl CoA).

Because of the high sequence similarity in each module of the rapamycin cluster, each primer was expected to prime any of the AT domains. PCR products representing ATs specific for malonyl or methylmalonyl extenders were identified by sequencing individual cloned PCR products. Sequencing also confirmed that the chosen clones contained no cloning artifacts. Examples of hybrid modules with the rapamycin AT12 and AT13 domains are shown in a separate figure.

The *AvrII-XhoI* restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 12 of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below. The AT of rap module 12 is specific for incorporation of malonyl units.

20 AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC 50 WQLAEALLTLVRE GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100 AAVLGHVGGE D Ι P A T A A GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150 25 FKDLGI D S L T A V Q L CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200 E A Τ G Α VRLN Т AVFD TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG 250 Η V Α Т Р L G K L G D Ε 30 CACCCGCGCCCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300 V V P R T Α Α T Α ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC 350 DEPLA IVGMACRLPGGV GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400 35 ASPEELWHLVASGT CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450 TEFPTDRGWDVDA I Y D CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500 PDAIGKT F V R H G F L G 40 ACCGGCGCGACAGGCTTCGACGCGGCGTTCTTCGGCATCAGCCCGCGCGA 550 ATGFD Α Α F G Ι GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600 ALAMDPQQR V L L E AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC 650

	EAFESAGITPDSTRGSD	
	ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA T G V F V G A F S Y G Y G T G A D	700
5		750
	GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG R L S Y F Y G L E G P A V T V D T	800
	GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG A C S S S L V A L H Q A G Q S L R	850
10	CTCCGGCGAATGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT S G E C S L A L V G G V T V M A	900
	CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC S P G G F V E F S R Q R G L A P D	
15	GGCCGGGCGAAGGCGTTCGCCGAGCTGCGCACGAGCTTCGCCGAGGCACGAGCTTCGCCGAGGCACGAGCTTCGCCGAGGCACGAGCTTCGCCGAGCTGCGACGAGCTTCGCCGAAGCACGAGCTTCGCCGAAGCACGAGCTTCGCCGAAGCACGAGCTTCGCCGAAGCTTCGCCGAAGCTTCGCCGAAGCACGAGCTTCGCCGAAGCACGAGCTTCGCCGAAGCTTCGCCAAGAAGCTTCGCCAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	
	G A G V L I V E R L S D A E R N	1050
20	GTCACACCGTCCTGGCGGTCGTCCGTGGTTCGGCGGTCAACCAGGATGGT G H T V L A V V R G S A V N Q D G	1100
20	GCCTCCAACGGGCTGTCGGCGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT A S N G L S A P N G P S Q E R V I	1150
	CCGGCAGGCCCTGGCCAACGCCGGGCTCACCCCGGCGGACGTGGACGCCG R Q A L A N A G L T P A D V D A	1200
25	TCGAGGCCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG V E A H G T G T R L G D P I E A Q GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCCTGCTGCTGGG	1250 1300
	AVLATYGQERATPLLLG	1350
30	S L K S N I G H A Q A A S G V A GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG	1400
30	G I I K M V ·Q A L R H G E L P P T CTGCACGCCGACGACGCCGCCGCACGTCGACTGGACGGCCGCCGCGCGCG	1450
	L H A D E P S P H V D W T A G A V	1500
35	ELLTSARPWPETDRPR	1550
	R A G V S S F G I S G T N A H V I CTGGAAAGCGCACCCCCACTCAGCCTGCGGACAACGCGGTGATCGAGCG	1600
40	L E S A P P T Q P A D N A V I E R GGCACCGGAGTGGGTGCCGTTGGTGATTTCGGCCAGGACCCAGTCGGCTT	1650
	A P E W V P L V I S A R T Q S A TGACTGAGCACGAGGCCGGTTGCGTGCGTATCTGGCGGGCG	1700
	L T E H E G R L R A Y L A A S P G GTGGATATGCGGGCTGTGGCATCGACGCTGGCGATGACACGGTCGGT	1750
45	V D M R A V A S T L A M T R S V F CGAGCACCGTGCCGTGCTGGGAGATGACACCGTCACCGGCACCGCTG	1800
	E H R A V L L G D D T V T G T A TGTCTGACCCTCGGGCGGTGTTCGTCTTCCCGGGACAGGGGTCGCAGCGT	1850
50	V S D P R A V F V F P G Q G S Q R GCTGGCATGGGTGAGGAACTGGCCGCGCGTTCCCCGTCTTCGCGCGGAT	1900
	A G M G E E L A A A F P V F A R I CCATCAGCAGGTGTGGGGACCTGCTCGATGTGCCCGATCTGGAGGTGAACG	1950
	H Q Q V W D L L D V P D L E V N AGACCGGTTACGCCCAGCCGGCCCTGTTCGCAATGCAGGTGGCTCTGTTC	2000

E T G Y A Q P A L F A M Q V A L F GGGCTGCTGGAATCGTGGGGTGTACGACCGGACGCGGTGATCGGCCATTC 2050 G L L E S W G V R P D A V I G H S GGTGGGTGAGCTTGCGGCTGCGTATGTGTCCGGGGTGTGGTCGTTGGAGG 2100 5 V G E L A A A Y V S G V W S L E ATGCCTGCACTTTGGTGTCGGCGCGGGCTCGTCTGATGCAGGCTCTGCCC 2150 D A C T L V S A R A R L M Q A L P GCGGGTGGGGTGATGGTCGCTGTCCCGGTCTCGGAGGATGAGGCCCGGGC 2200 A G G V M V A V P V S E D E A R A CGTGCTGGGTGAGGGTGTGGAGATCGCCGCGGTCAACGGCCCGTCGTCGG 2250 10 V L G E G V E I A A V N G P S S TGGTTCTCCCGGTGATGAGGCCGCCGTGCTGCAGGCCGCGGAGGGGCTG 2300 V V L S G D E A A V L Q A A E G L GGGAAGTGGACGCGCTGGCGACCAGCCACGCGTTCCATTCCGCCCGTAT 2350 15 G K W T R L A T S H A F H S A R M GGAACCCATGCTGGAGGAGTTCCGGGCGGTCGCCGAAGGCCTGACCTACC 2400 EPMLEEFRAVAEGLTY GGACGCCGCAGGTCTCCATGGCCGTTGGTGATCAGGTGACCACCGCTGAG 2450 RTPQVSMAVGDQVTTAE TACTGGGTGCGGCAGGTCCGGGACACGGTCCGGTTCGGCGAGCAGGTGGC 2500 Y W V R Q V R D T V R F G E Q V A CTCGTACGAGGACGCCGTGTTCGTCGAGCTGGGTGCCGACCGGTCACTGG 2550 SYEDAVFVELGADRSL CCCGCCTGGTCGACGGTGTCGCGATGCTGCACGGCGACCACGAAATCCAG 2600 25 A R L V D G V A M L H G D H E I Q GCCGCGATCGGCCCCTGGCCCACCTGTATGTCAACGGCGTCACGGTCGA 2650 A A I G A L A H L Y V N G V T V D CTGGCCCGCGCTCCTGGGCGATGCTCCGGCAACACGGGTGCTGGACCTTC 2700 WPALLGDAPATRVLDL 30 CGACATACGCCTTCCAGCACCAGCGCTACTGGCTCGAGTCGGCACGCCCG 2750 PTYAFQHQRYWLESARP GCCGCATCCGACGCGGGCCACCCCGTGCTGGGCTCCGGTATCGCCCTCGC 2800 AASDAGHPVLGSGIALA CGGGTCGCCGGGCCGGGTGTTCACGGGTTCCGTGCCGACCGGTGCGGACC 2850 G S P G R V F T G S V P T G A D 35 GCGCGGTGTTCGTCGCCGAGCTGGCGCTGGCCGCCGCGGACGCGGTCGAC 2900 RAVFVAELALAAADAVD CATVERLDIASVPGRPG 40 CCATGGCCGGACGACCGTACAGACCTGGGTCGACGAGCCGGCGGACGACG 3000 H G R T T V Q T W V D E P A D D GCCGGCGCCGGTTCACCGTGCACACCCGCACCGGCGACGCCCCGTGGACG 3050 GRRRFTVHTRTGDAPWT CTGCACGCCGAGGGGGTGCTGCGCCCCCATGGCACGGCCCTGCCCGATGC 3100 45 L H A E G V L R P H G T A L P D A GGCCGACGCCGAGTGGCCCCCACCGGGCGCGGTGCCCGCGGACGGGCTGC 3150 A D A E W P P P G A V P A D G L CGGGTGTGTGGCGCCGGGGGGACCAGGTCTTCGCCGAGGCCGAGGTGGAC 3200 P G V W R R G D Q V F A E A E V D 50 GGACCGGACGGTTTCGTGGTGCACCCCGACCTGCTCGACGCGGTCTTCTC 3250 G P D G F V V H P D L L D A V F S CGCGGTCGGCGACGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGG 3300 A V G D G S R Q P A G W R D L T TGCACGCGTCGGACGCCACCGTACTGCGCGCCTGCCTCACCCGGCGCACC 3350

H A S VLRACLTRRT D Α T GACGGAGCCATGGGATTCGCCGCCTTCGACGGCGCCGGCCTGCCGGTACT 3400 GAMGFAA F D GAGLPVL CACCGCGGAGGCGGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGCTCCG 3450 5 AEAVT L R E V A AGGAGTCGGACGGCCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCG 3500 EESDGL HRLEWLAVAEA GTCTACGACGGTGACCTGCCCGAGGGACATGTCCTGATCACCGCCGCCCA 3550 DLPEGH 10 CCCCGACGACCCCGAGGACATACCCACCCGCGCCCACACCCGCGCCACCC 3600 PDDPEDIPTRAH GCGTCCTGACCGCCCTGCAACACCACCTCACCACCACCGACCACCACCCTC 3650 RVLTALQHHLTT T D H T L ATCGTCCACACCACCGACCCGCCGCCGCCGCCACCGTCACCGGCCTCAC 3700 15 I V H T TTDPAGATV CCGCACCGCCAGAACGAACACCCCCACCGCATCGCCTCATCGAAACCG 3750 T A Q N Ε HPHRI R L ACCACCCCACACCCCCTCCCCTGGCCCAACTCGCCACCCTCGACCAC 3800 DHPHTPLPLAQLAT 20 PHLRLTHHTLHHPHLT CCTCCACACCACCACCACCACCACCCCCTCAACCCCGAACACG 3900 TTPPTTTPLNPEH CCATCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGCCCGC 3950 25 AIIITGGSGTLAGILAR H L N H P H T Y L L S R T PPPD CGCCACCCCGGCACCCACCTCCCCTGCGACGTCGGCGACCCCCACCAAC 4050 ATPGTHLPCDVG 30 TCGCCACCACCCTCACCCACATCCCCCAACCCCTCACCGCCATCTTCCAC 4100 L T H Ι Ρ Q P L ACCGCCGCCACCCTCGACGACGGCATCCTCCACGCCCTCACCCCCGACCG 4150 LDDG Ι LHAL T P CCTCACCACCGTCCTCCACCCCAAAGCCAACGCCGCCTGGCACCTGCACC 4200 35 TTVLHPKANAAWHLH ACCTCACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCC 4250 H L T Q N Q P L T H F V L Y S S A GCCGCCGTCCTCGGCAGCCCCGGACAAGGAAACTACGCCGCCGCCAACGC 4300 A A V L G S P G Q G N Y A A A N A 40 CTTCCTCGACGCCCTCGCCACCCCCCCCCCCCCCCCCCACCCCCCCA 4350 FLDALAT HRHTLGQPA CCTCCATCGCCTGGGGCATGTGGCACACCACCACCACCACCACCACCACCACAA 4400 T S I A W G M W Н T S T $_{
m L}$ CTCGACGACGCGGGCGCGCGCGCGCGCGTTTCCTCCCGAT 4450 45 LDDADRDRIRRGGF CACGGACGACGAGGCATGCAT DDEG

The AvrII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 13 (specific for

50

A H G T G T R L G D P I È A Q

IJ

ų)

įij

M

Ŋ

Į.ė

GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG 1300 AVLATYGQERATPLLLG CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG 1350 S L K S N I G H A Q A A S G V A 5 GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG 1400 GIIKM V Q A L R H G E L P P T L H A D E P S P H V D W T A G A V ELLTSARPWPETDRPR 10 GGGCGGCCTGTCGTCCTTCGGAGTCAGCGCCACCACGCCCACGTCATC 1550 RAGVSSFGVSGTNAHVI CTGGAGAGCGCACCCCCGCTCAGCCCGCGGAGGAGGCGCAGCCTGTTGA 1600 L E S A P P A Q P A E E A Q P V E GACGCCGGTGGTGGCCTCGGATGTGCTGCCGCTGGTGATATCGGCCAAGA 1650 15 T P V V A S D V L P L V I S A K CCCAGCCCGCCCTGACCGAACACGAAGACCGGCTGCGCGCCTACCTGGCG 1700 TOPALTEHEDRLRAYLA GCGTCGCCCGGGGCGGATATACGGGCTGTGGCATCGACGCTGGCGGTGAC 1750 A S P G A D I R A V A S T L A V T 20 ACGGTCGGTGTTCGAGCACCGCGCCGTACTCCTTGGAGATGACACCGTCA 1800 R S V F E H R A V L L G D D T V CCGGCACCGCGGTGACCGACCCCAGGATCGTGTTTGTCTTTCCCGGGCAG 1850 T G T A V T D P R I V F V F P G Q GGGTGGCAGTGGCTGGGGATGGGCAGTGCACTGCGCGATTCGTCGGTGGT 1900 25 G W Q W L G M G S A L R D S S V V GTTCGCCGAGCGGATGGCCGAGTGTGCGCGGCGTTGCGCGAGTTCGTGG 1950 F A E R M A E C A A A L R E F V ACTGGGATCTGTTCACGGTTCTGGATGATCCGGCGGTGGTGGACCGGGTT 2000 D W D L F T V L D D P A V V D R V 30 GATGTGGTCCAGCCCGCTTCCTGGGCGATGATGGTTTCCCTGGCCGCGGT 2050 D V V Q P A S W A M M V S L A A V GTGGCAGGCGGCCGGTGTGCGGCCGGATGCGGTGATCGGCCATTCGCAGG 2100 W Q A A G V R P D A V I G H S Q GTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGTGTCACTACGCGATGCC 2150 35 G E I A A A C V A G A V S L R D A GCCCGGATCGTGACCTTGCGCAGCCAGGCGATCGCCCGGGGCCTGGCGGG 2200 ARIVTLRSQAIARGLAG CCGGGGCGCGATGCCATCCGTCGCCCTGCCCGCGCAGGATGTCGAGCTGG 2250 R G A M A S V A L P A Q D V E L 40 TCGACGGGGCCTGGATCGCCGCCCACAACGGGCCCGCCTCCACCGTGATC 2300 V D G A W I A A H N G P A S T V I GCGGGCACCCCGGAAGCGGTCGACCATGTCCTCACCGCTCATGAGGCACA 2350 A G T P E A V D H V L T A H E A Q AGGGGTGCGGGTGCGGCGGATCACCGTCGACTATGCCTCGCACACCCCGC 2400 45 GVRVRRITVDYASHTP ACGTCGAGCTGATCCGCGACGAACTACTCGACATCACTAGCGACAGCAGC 2450 HVELIRDELLDITSDSS TCGCAGACCCCGCTCGTGCCGTGGCTGTCGACCGTGGACGGCACCTGGGT 2500 50 S Q T P L V P W L S T V D G T W V CGACAGCCCGCTGGACGGGGAGTACTGGTACCGGAACCTGCGTGAACCGG 2550 D S P L D G E Y W Y R N L R E P TCGGTTTCCACCCGCCGTCAGCCAGTTGCAGGCCCAGGGCGACACCGTG 2600 V G F H P A V S Q L Q A Q G D T V

TTCGTCGAGGTCAGCGCCAGCCCGGTGTTGTTGCAGGCGATGGACGACGA 2650 F V E V S A S P V L L Q A M D D D TGTCGTCACGGTTGCCACGCTGCGTCGTGACGACGCCACCCGGA 2700 V V T V A T L R R D D G D A T R TGCTCACCGCCCTGGCACAGGCCTATGTCCACGGCGTCACCGTCGACTGG 2750 M L T A L A Q A Y V H G V T V D W CCCGCCATCCTCGGCACCACACCCGGGTACTGGACCTTCCGACCTA 2800 PAILGTTTTRVLDLPTY CGCCTTCCAACACCAGCGGTACTGGCTCGAGTCGGCACGCCCGGCCGCAT 2850 A F Q H Q R Y W L E S A R P A A 10 CCGACGCGGGCCACCCCGTGCTGGGCTCCGGTATCGCCCTCGCCGGGTCG 2900 S D A G H P V L G S G I A L A G S CCGGGCCGGGTGTTCACGGGTTCCGTGCCGACCGGTGCGGACCGCGCGGT 2950 P G R V F T G S V P T G A D R A V GTTCGTCGCCGAGCTGGCGCTGGCCGCCGCGGACGCGGTCGACTGCGCCA 3000 15 F V A E L A L A A A D A V D C A CGGTCGAGCGGCTCGACATCGCCTCCGTGCCCGGCCGGGCCATGGC 3050 T V E R L D I A S V P G R P G H G RTTVQTWVDEPADDGRR 20 CCGGTTCACCGTGCACACCCGCACCGGCGACGCCCCGTGGACGCTGCACG 3150 R F T V H T R T G D A P W T L H CCGAGGGGGTGCTGCCCCCATGGCACGGCCCTGCCCGATGCGGCCGAC 3200 A E G V L R P H G T A L P D A A D GCCGAGTGGCCCCACCGGGCGCGGTGCCCGCGGACGGGCTGCCGGGTGT 3250 25 A E W P P P G A V P A D G L P G V W R R G D Q V F A E A E V D G P ACGGTTTCGTGGTGCACCCCGACCTGCTCGACGCGGTCTTCTCCGCGGTC 3350 $\hbox{\tt D} \hbox{\tt G} \hbox{\tt F} \hbox{\tt V} \hbox{\tt V} \hbox{\tt H} \hbox{\tt P} \hbox{\tt D} \hbox{\tt L} \hbox{\tt L} \hbox{\tt D} \hbox{\tt A} \hbox{\tt V} \hbox{\tt F} \hbox{\tt S} \hbox{\tt A} \hbox{\tt V}$ 30 GGCGACGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGGTGCACGC 3400 G D G S R Q P A G W R D L T V H A GTCGGACGCCACCGTACTGCGCGCCTCCCTCACCCGGCGCACCGACGGAG 3450 S D A T V L R A C L T R R T D G CCATGGGATTCGCCGCCTTCGACGGCCCCGGCCTGCCGGTACTCACCGCG 3500 35 A M G F A A F D G A G L P V L T A GAGGCGGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGCTCCGAGGAGTC 3550 EAVTLREVASPSGSEES GGACGGCCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCGGTCTACG 3600 D G L H R L E W L A V A E A V Y 40 ACGGTGACCTGCCCGAGGGACATGTCCTGATCACCGCCGCCCACCCCGAC 3650 D G D L P E G H V L I T A A H P D GACCCCGAGGACATACCCACCCGCGCCCACACCCGCGCCACCCGCGTCCT 3700 D P E D I P T R A H T R A T R V L GACCGCCCTGCAACACCACCTCACCACCACCGACCACCCTCATCGTCC 3750 45 TALQHHLTTTDHTLIV ACACCACCACCGACCCGCCGGCGCCACCGTCACCGGCCTCACCCGCACC 3800 H T T T D P A G A T V T G L T R T GCCCAGAACGAACACCCCCACCGCATCCGCCTCATCGAAACCGACCACCC 3850 AQNEHPHRIRLIETDHP 50 CCACACCCCCTCCCCTGGCCCAACTCGCCACCCTCGACCACCCCCACC 3900 H T P L P L A Q L A T L D H P H LRLTHHTLHHPHLTPLH

ACCACCACCCACCACCACCACCCCCTCAACCCCGAACACGCCATCAT 4000 TTTPPTTTPLNPEHAII ITGGSGTLA G L Α 5 ACCACCCCACACCTACCTCCTCCCGCACCCCACCCCCGACGCCACC 4100 YLLSRT P P CCCGGCACCCACCTCCCCTGCGACGTCGGCGACCCCACCAACTCGCCAC 4150 PGTHLP С D A G D PHOLAT CACCCTCACCCACATCCCCCAACCCCTCACCGCCATCTTCCACACCGCCG 4200 10 TLTHIP 0 Р Т Α Τ. CCACCCTCGACGACGCCATCCTCCACGCCCTCACCCCGACCGCCTCACC 4250 ATLDDGILHALT ACCGTCCTCCACCCCAAAGCCAACGCCGCCTGGCACCTGCACCACCTCAC 4300 V L H P K A N A A W H L H H L 15 CCAAAACCAACCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCCGCCG 4350 Q N Q P L T H F V L Y S S A A A TCCTCGGCAGCCCGGACAAGGAAACTACGCCGCCGCCAACGCCTTCCTC 4400 V L G S P G Q G N Y A A ANAFL 20 DALATHRHT L G Q PATSI CGCCTGGGGCATGTGGCACACCACCACCACCACCACCGGACAACTCGACG 4500 AWGMWHTTS \mathtt{T} \mathtt{L} T G ACGCCGACCGGGACCGCATCCGCCGCGGGGGTTTCCTCCCGATCACGGAC 4550 DADRDR IRRGGFLPITD 25 GACGAGGGCATGGGGATGCAT E G

The *NheII-XhoI* restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 12 (specific for malonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC 50 QLAEALLTLVREST GCCGCCGTGCTCGGCCACGTGGGTGGCGACGACATCCCCGCGACGCGGC 100 35 AAVLGHV G G E D IPATAA GTTCAAGGACCTCGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150 FKDLGIDSLT AVOLRN CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200 ALTEAT GVRL NATAVFD 40 TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG 250 F P T P H V L A G K L G DELTG CACCCGCGCCCCGTCGTGCCCCGGACCGCCGCCACGGCCGGTGCGCACG 300 V P R T A A T A G A H ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC 350 45 E P L A I V G M A C R L P G G V GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400 ASPEELWHLVASGTDAI CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450 TEFPTDRGWDVDAIYD 50 CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500

PDPDAIGKTFVRHGGFL ACCGGCGCGACAGGCTTCGACGCGGCGTTCTTCGGCATCAGCCCGCGCGA 550 TGATGFDAAFFGISPRE GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600 5 A L A M D P Q Q R V L L E T S W AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC 650 E A F E S A G I T P D S T R G S D ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA 700 TGVFVGAFSYGYGTGAD 10 CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750 T D G F G A T G S Q T S V L S G GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800 RLSYFYGLEGPAVTVDT GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG 850 15 A C S S S L V A L H Q A G Q S L R CTCCGGCGAATGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT 900 SGECSLALVGGVTVMA CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC 950 SPGGFVEFSRQRGLAPD 20 GGCCGGGCGAAGGCGTTCGGCGGGGTGCGGACGGCACGAGCTTCGCCGA 1000 G R A K A F G A G A D G T S F A E GGGTGCCGGTGTGCTGATCGTCGAGGGCTCTCCGACGCCGAACGCAACG 1050 G A G V L I V E R L S D A E R N GTCACACCGTCCTGGCGGTCGTCCGTGGTTCGGCGGTCAACCAGGATGGT 1100 25 G H T V L A V V R G S A V N Q D G GCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT 1150 A S N G L S A P N G P S Q E R V I CCGGCAGGCCCTGGCCAACGCCGGGCTCACCCCGGCGGACGTGGACGCCG 1200 RQALANAGLTPADVDA TCGAGGCCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG 1250 V E A H G T G T R L G D P I E A Q GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG 1300 AVLATYGQERATPLLLG CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG 1350 35 S L K S N I G H A Q A A S G V A G I I K M V Q A L R H G E L P P T LHADEPSPHVDWTAGAV 40 ELLTSARPWPETDRPR GTGCCGCCGTCTCCTCGTTCGGGGTGAGCGGCACCAACGCCCACGTCATC 1550 RAAVSSFGVSGTNAHVI CTGGAGGCCGGACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGA 1600 45 LEAGPVTETPAASPSGD CCTTCCCCTGCTGGTGTCGGCACGCTCACCGGAAGCGCTCGACGAGCAGA 1650 LPLLVSARSPEALDEQ TCCGCCGACTGCGCCCTACCTGGACACCCCCGGACGTCGACCGGGTG 1700 IRRLRAYLDTTPDVDRV 50 GCCGTGGCACAGACGCTGGCCCGGCGCACACACTTCGCCCACCGCGCCGT 1750 AVAQTLARRTHFAHRAV GCTGCTCGGTGACACCGTCATCACCACACCCCCGGGGACCGGCCCGACG 1800 LLGDTVITTPPADRPD AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGC 1850

ELVFVYSGOGTOHPAMG GAGCAGCTAGCCGCGCGTTCCCCGTCTTCGCGCGGATCCATCAGCAGGT 1900 EQLAAAFPVFARIHQQV GTGGGACCTGCTCGATGTGCCCGATCTGGAGGTGAACGAGACCGGTTACG 1950 5 WDLLDVPDLEVNETGY CCCAGCCGGCCTGTTCGCAATGCAGGTGGCTCTGTTCGGGCTGCTGGAA 2000 AQPALFAMQVALFGLLE S W G V R P D A V I G H S V G E L 10 TGCGGCTGCGTATGTGTCCGGGGTGTGGTCGTTGGAGGATGCCTGCACTT 2100 A A A Y V S G V W S L E D A C T TGGTGTCGGCGGGGCTCGTCTGATGCAGGCTCTGCCCGCGGGTGGGGTG 2150 LVSARARLMOALPAGGV ATGGTCGCTGTCCCGGTCTCGGAGGATGAGGCCCGGGCCGTGCTGGGTGA 2200 15 M V A V P V S E D E A R A V L G E GGGTGTGGAGATCGCCGCGGTCAACGGCCCGTCGTCGGTGGTTCTCTCCG 2250 G V E I A A V N G P S S V V L S GTGATGAGGCCGCGTGCTGCAGGCCGCGGAGGGGCTGGGGAAGTGGACG 2300 G D E A A V L Q A A E G L G K W T 20 CGGCTGGCGACCACGCGTTCCATTCCGCCCGTATGGAACCCATGCT 2350 RLATSHAFHSARMEPML GGAGGAGTTCCGGGCGGTCGCCGAAGGCCTGACCTACCGGACGCCGCAGG 2400 EEFRAVAEGLTYRTPQ TCTCCATGGCCGTTGGTGATCAGGTGACCACCGCTGAGTACTGGGTGCGG 2450 25 V S M A V G D Q V T T A E Y W V R CAGGTCCGGGACACGGTCCGGTTCGGCGAGCAGGTGGCCTCGTACGAGGA 2500 Q V R D T V R F G E O V A S Y E D CGCCGTGTTCGTCGAGCTGGGTGCCGACCGGTCACTGGCCCGCCTGGTCG 2550 AVFVELGADRSLARLV ACGGTGTCGCGATGCTGCACGGCGACCACGAAATCCAGGCCGCGATCGGC 2600 DGVAMLHGDHEIQAAIG GCCCTGGCCCACCTGTATGTCAACGGCGTCACGGTCGACTGGCCCGCGCT 2650 ALAHLYVNGVTVDWPAL CCTGGGCGATGCTCCGGCAACACGGGTGCTGGACCTTCCGACATACGCCT 2700 35 LGDAPATRVLDLPTYA TCCAGCACCAGCGCTACTGGCTCGAGTCGGCACGCCCGGCCGCATCCGAC 2750 F Q H Q R Y W L E S A R P A A S D GCGGCCACCCCGTGCTGGCCTCCGGTATCGCCCTCGCCGGGTCGCCGGG 2800 A G H P V L G S G I A L A G S P G 40 RVFTGSVPTGADRAVF TCGCCGAGCTGGCCGCCGCGGACGCGGTCGACTGCGCCACGGTC 2900 V A E L A L A A A D A V D C A T V GAGCGGCTCGACATCGCCTCCGTGCCCGGCCGGCCGGCCATGGCCGGAC 2950 45 ERLDIASVPGRPGHGRT T V Q T W V D E P A D D G R R R TCACCGTGCACACCCGCACCGCGACGCCCCGTGGACGCTGCACGCCGAG 3050 FTVHTRTGDAPWTLHAE 50 GGGGTGCTGCCCCATGGCACGCCCTGCCCGATGCGGCCGACGCCGA 3100 GVLRPHGTALPDAADAE GTGGCCCCACCGGGCGCGGTGCCCGCGGACGGGCTGCCGGGTGTGTGGC 3150 W P P P G A V P A D G L P G V W

R R G D O V F A E A E V D G P D G TTCGTGGTGCACCCGACCTGCTCGACGCGGTCTTCTCCGCGGTCGGCGA 3250 F V V H P D L L D A V F S A V G D CGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGGTGCACGCGTCGG 3300 5 G S R Q P A G W R D L T V H A S ACGCCACCGTACTGCGCGCCTCACCCGGCGCACCGACGGAGCCATG 3350 DATVLRACLTRRTDGAM GGATTCGCCGCCTTCGACGGCCCGGCCTGCCGGTACTCACCGCGGAGGC 3400 G F A A F D G A G L P V L T A E A 10 GGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGCTCCGAGGAGTCGGACG 3450 V T L R E V A S P S G S E E S D GCCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCGGTCTACGACGGT 3500 G L H R L E W L A V A E A V Y D G GACCTGCCCGAGGGACATGTCCTGATCACCGCCGCCCACCCCGACGACCC 3550 15 DLPEGHVLITAAHPDDP CGAGGACATACCCACCGCGCCCACACCCGCGCCACCCGCGTCCTGACCG 3600 EDIPTRAHTRATRVLT CCCTGCAACACCACCTCACCACCACCGACCACCCTCATCGTCCACACC 3650 ALQHHLTTTDHTLIVHT 20 ACCACCGACCCGCCGCCCACCGTCACCGGCCTCACCCGCACCGCCCA 3700 TTDPAGATVTGLTRTAQ GAACGAACACCCCCACCGCATCCGCCTCATCGAAACCGACCACCCCCACA 3750 NEHPHRIRLIETDHPH CCCCCTCCCCTGGCCCAACTCGCCACCTCGACCACCCCCACCTCCGC 3800 T P L P L A Q L A T L D H P H L R LTHHTLHHPHLTPLHTT CACCCCACCACCACCACCCCCTCAACCCCGAACACGCCATCATCATCA 3900 T P P T T T P L N P E H A I I I CCGGCGCTCCGGCACCTCGCCGGCATCCTCGCCCGCCACCTGAACCAC 3950 TGGSGTLAGILARHLNH CCCCACACCTACCTCCTCCCGCACCCCACCCCCGACGCCACCCCCGG 4000 P H T Y L L S R T P P P D A T P G CACCCACCTCCCCTGCGACGTCGGCGACCCCCACCAACTCGCCACCACCC 4050 35 THLPCDVGDPHOLATT TCACCCACATCCCCCAACCCCTCACCGCCATCTTCCACACCGCCGCCACC 4100 LTHIPQPLTAIFHTAAT CTCGACGACGCCATCCTCCACGCCCTCACCCCGACCGCCTCACCACCGT 4150 LDDGILHALTPDRLTTV 40 CCTCCACCCAAAGCCAACGCCGCCTGGCACCTGCACCACCTCACCCAAA 4200 LHPKANAAWHLHHLTQ ACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCCGCCGTCCTC 4250 N Q P L T H F V L Y S S A A A V L GGCAGCCCGGACAAGGAAACTACGCCGCCGCCAACGCCTTCCTCGACGC 4300 45 G S P G Q G N Y A A A N A F L D A CCTCGCCACCGCCACACCCTCGGCCAACCCGCCACCTCCATCGCCT 4350 LATHRHTLGOPATSIA WGMWHTTSTLTGOLDDA 50 GACCGGGACCGCATCCGCCGCGGCGGTTTCCTCCCGATCACGGACGACGA 4450 D R D R I R R G G F L P I T D D E GGGCATGGGGATGCAT G

The *Nhe*II-*Xho*I restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 13 (specific for methylmalonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

5	AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC O L A E A L L T L V R E S T	50
	GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC	100
10	GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG	150
10	CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC	200
	A L T E A T G V R L N A T A V F D TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG	250
15	F P T P H V L A G K L G D E L T G CACCGGGGGGCGGTGCGTGCCCGGACGGGCCACGGCCGGTGCGCACG	300
	T R A P V V P R T A A T A G A H ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC	350
20	D E P L A I V G M A C R L P G G V GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT	400
20	A S P E E L W H L V A S G T D A I CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC	450
	T E F P T D R G W D V D A I Y D CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC	500
25	P D P D A I G K T F V R H G G F L ACCGGCGCGACAGGCTTCGACGCGGCGTTCTTCGGCATCAGCCCGCGCGA	550
	T G A T G F D A A F F G I S P R E GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG	600
	A L A M D P Q Q R V L L E T S W AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGCAGCGAC	650
30	E A F E S A G I T P D S T R G S D ACCGGCGTGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA	700
	T G V F V G A F S Y G Y G T G A D CACCGACGCTTCGGCGCGCCGCCGCCAGACCAGTGTGCTCTCCGGCC	750
35	T D G F G A T G S Q T S V L S G GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG	800
	R L S Y F Y G L E G P A V T V D T GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGCAGTCGCTGCG	
	A C S S S L V A L H Q A G Q S L R CTCCGGCGATGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT	900
40	S G E C S L A L V G G V T V M A CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC	
	S P G G F V E F S R Q R G L A P D	
45	GGCCGGGCGAAGGCGTTCGCCGA G R A K A F G A G A D G T S F A E	
40	GGGTGCCGGTGTGCTGATCGTCGAGGGCTCTCCGACGCCGAACGCAACG G A G V L I V E R L S D A E R N	
	GTCACACCGTCCTGGCGGTCGTCCGTGGTTCGGCGGTCAACCAGGATGGT G H T V L A V V R G S A V N Q D G	
50	GCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT A S N G L S A P N G P S Q E R V I	1150

CCGGCAGGCCCTGGCCAACGCCGGGGTCACCCCGGCGGACGTGGACGCCG 1200 ROALANAGLTPADVDA TCGAGGCCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG 1250 V E A H G T G T R L G D P I E A Q GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG 1300 AVLATYGQERATPLLLG CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG 1350 SLKSNIGHAQAASGVA GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG 1400 10 G I I K M V Q A L R H G E L P P T LHADEPSPHVDWTAGAV ELLTSARPWPETDRPR 15 GTGCCGCCGTCTCCTCGTTCGGGGTGAGCGGCACCAACGCCCACGTCATC 1550 R A A V S S F G V S G T N A H V I CTGGAGGCCGGACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGA 1600 L E A G P V T E T P A A S P S G D CCTTCCCCTGCTGGTGTCGGCACGCTCACCGGAAGCGCTCGACGAGCAGA 1650 20 L P L L V S A R S P E A L D E Q TCCGCCGACTGCGCCCTACCTGGACACCACCCCGGACGTCGACCGGGTG 1700 I R R L R A Y L D T T P D V D R V GCCGTGGCACAGACGCTGGCCCGGCGCACACACTTCGCCCACCGCGCCGT 1750 AVAQTLARRTHFAHRAV 25 GCTGCTCGGTGACACCGTCATCACCACACCCCCGGGGACCGGCCCGACG 1800 LLGDTVITTPPADRPD AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGC 1850 ELVFVYSGQGTQHPAMG GAGCAGCTAGCCGATTCGTCGGTGGTGTTCGCCGAGCGGATGGCCGAGTG 1900 E O L A D S S V V F A E R M A E C TGCGGCGCGTTGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGG 1950 AAALREFVDWDLFTVL ATGATCCGGCGGTGGTCGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGG 2000 D D P A V V D R V D V V Q P A S W 35 GCGATGATGGTTTCCCTGGCCGCGGTGTGGCAGGCGGCCGGTGTGCGGCC 2050 A M M V S L A A V W Q A A G V R P GGATGCGGTGATCGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGG 2100 D A V I G H S Q G E I A A A C V CGGGTGCGGTGTCACTACGCGATGCCGCCCGGATCGTGACCTTGCGCAGC 2150 40 AGAVSLRDAARIVTLRS CAGGCGATCGCCCGGGGCCTGGCGGGCCGGGGCGCGATGGCATCCGTCGC 2200 Q A I A R G L A G R G A M A S V A CCTGCCGCGCAGGATGTCGAGCTGGTCGACGGGGCCTGGATCGCCGCCC 2250 L P A Q D V E L V D G A W I A A 45 ACAACGGGCCCGCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGAC 2300 H N G P A S T V I A G T P E A V D CATGTCCTCACCGCTCATGAGGCACAAGGGGTGCGGGTGCGGCGGATCAC 2350 H V L T A H E A Q G V R V R R I T CGTCGACTATGCCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAAC 2400 50 V D Y A S H T P H V E L I R D E TACTCGACATCACTAGCGACAGCAGCTCGCAGACCCCGCTCGTGCCGTGG 2450 LLDITSDSSSQTPLVPW CTGTCGACCGTGGACGGCACCTGGGTCGACAGCCCGCTGGACGGGGAGTA 2500 LSTVDGTWVDSPLDGEY

CTGGTACCGGAACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCC 2550 WYRNLREPVGFHPAVS AGTTGCAGGCCCAGGCGACACCGTGTTCGTCGAGGTCAGCCCAGCCCG 2600 Q L Q A Q G D T V F V E V S A S P GTGTTGTTGCAGGCGATGGACGACGATGTCGTCACGGTTGCCACGCTGCG 2650 V L L O A M D D D V V T V A T L R TCGTGACGACGCCACCCGGATGCTCACCGCCCTGGCACAGGCCT 2700 RDDGDATRMLTALAQA ATGTCCACGGCGTCACCGTCGACTGGCCCGCCATCCTCGGCACCACCACA 2750 10 YVHGVTVDWPAILGTTT ACCCGGGTACTGGACCTTCCGACCTACGCCTTCCAACACCAGCGGTACTG 2800 TRVLDLPTYAFQHQRYW GCTCGAGTCGGCACGCCGGCCGCATCCGACGCGGGCCACCCCGTGCTGG 2850 L E S A R P A A S D A G H P V L 15 GCTCCGGTATCGCCCTCGCCGGGTCGCCGGGCCGGGTGTTCACGGGTTCC 2900 GSGIALAGSPGRVFTGS GTGCCGACCGGTGCGGACCGCGGGTGTTCGTCGCCGAGCTGGCGCTGGC 2950 V P T G A D R A V F V A E L A L A CGCCGCGGACGCTCGACTGCGCCACGGTCGACGCTCGACATCGCCT 3000 20 AADAVDCATVERLDIA CCGTGCCCGGCCGGCCGGCCATGGCCGGACGACCGTACAGACCTGGGTC 3050 SVPGRPGHGRTTVOTWV GACGAGCCGGCGGACGACGGCCGGCGCGGTTCACCGTGCACACCCGCAC 3100 DEPADDGRRRFTVHTRT CGGCGACGCCCGTGGACGCTGCACGCCGAGGGGGTGCTGCGCCCCCATG 3150 G D A P W T L H A E G V L R P H GCACGGCCCTGCCCGATGCGGCCGACGCCGAGTGGCCCCCACCGGGCGCG 3200 G T A L P D A A D A E W P P P G A GTGCCCGCGGACGGCTGCCGGGTGTGTGGCGCCGGGGGGACCAGGTCTT 3250 30 V P A D G L P G V W R R G D Q V F CGCCGAGGCCGAGGTGGACGGACGGTTTCGTGGTGCACCCCGACC 3300 AEAEVDGPDGFVVHPD TGCTCGACGCGGTCTTCTCCGCGGTCGGCGACGGAAGCCGCCAGCCGGCC 3350 LLDAVFSAVGDGSRQPA GGATGGCGCGACCTGACGGTGCACGCGTCGGACGCCACCGTACTGCGCGC 3400 GWRDLTVHASDATVLRA CTGCCTCACCCGGCGCACCGACGGAGCCATGGGATTCGCCGCCTTCGACG 3450 CLTRRTDGAMGFAAFD GCGCCGGCCTGCCGGTACTCACCGCGGAGGCGGTGACGCTGCGGGAGGTG 3500 40 G A G L P V L T A E A V T L R E V GCGTCACCGTCCGAGGAGTCGGACGGCCTGCACCGGTTGGAGTG 3550 A S P S G S E E S D G L H R L E W GCTCGCGGTCGCCGAGGCGGTCTACGACGGTGACCTGCCCGAGGGACATG 3600 L A V A E A V Y D G D L P E G H 45 V L I T A A H P D D P E D I P T R GCCCACACCCGCGCCACCCGCGTCCTGACCGCCCTGCAACACCACCTCAC 3700 AHTRATRVLTALQHHLT CACCACCGACCACCACCACCACCACCACCGACCCGCCGGCG 3750 50 TTDHTLIVHTTTDPAG CCACCGTCACCGGCCTCACCGCCCAGAACGAACACCCCCACCGC 3800 T V T G L T R T A Q N E H P H R ATCCGCCTCATCGAAACCGACCACCCCCACACCCCCCTCCCCCTGGCCCA 3850 IRLIETDHPHTPLPLAQ

35

40

ACTCGCCACCTCGACCACCCCCACCTCCGCCTCACCACCACCACCCTCC 3900 LATLDHPHLRLTHHTL HHPHLTPLHTTTPPTTT 5 CCCCTCAACCCCGAACACGCCATCATCATCACCGGCGGCTCCGGCACCCT 4000 PLNPEHAIIITGGSGT AGILARHLN н Р н Т CCCGCACCCCACCCCGACGCCACCCCGGCACCCACCTCCCCTGCGAC 4100 10 SRTPPPDATPG Τ H L P C D GTCGGCGACCCCACCACCACCACCCTCACCCACATCCCCCAACC 4150 VGDPHQLATT L T ΗI CCTCACCGCCATCTTCCACACCGCCGCCACCCTCGACGACGGCATCCTCC 4200 LTAIFHTAATLDDGIL 15 ACGCCCTCACCCCGACCGCCTCACCACCGTCCTCCACCCCAAAGCCAAC 4250 HALTPDRLTTVLHPKAN GCCGCCTGGCACCTGCACCACCTCACCCAAAACCAACCCCTCACCCACTT 4300 A A W H L H H L T O N O P L T H F CGTCCTCTACTCCAGCGCCGCCGCCGTCCTCGGCAGCCCCGGACAAGGAA 4350 20 V L Y S S A A A V L G S P G Q G Y A A A N A F L D A L A T ACCCTCGGCCAACCCGCCACCTCCATCGCCTGGGGCATGTGGCACACCAC 4450 TLGQPATSIAWGMWHT 25 CAGCACCCTCACCGGACAACTCGACGACGCCGACCGGGACCGCATCCGCC 4500 S T L T G Q L D D A D R D R GCGGCGGTTTCCTCCCGATCACGGACGACGAGGGCATGGGGATGCAT GFLPITDD

Phage KC515 DNA was prepared using the procedure described in Genetic Manipulation of *Streptomyces*, A Laboratory Manual, edited by D. Hopwood *et al*. A phage suspension prepared from 10 plates (100 mm) of confluent plaques of KC515 on *S. lividans* TK24 generally gave about 3 µg of phage DNA. The DNA was ligated to circularize at the cos site, subsequently digested with restriction enzymes *Bam*HI and *Pst*I, and dephosphorylated with SAP.

Each module 8 cassette described above was excised with restriction enzymes *Bgl*II and *Nsi*I and ligated into the compatible *Bam*HI and *Pst*I sites of KC515 phage DNA prepared as described above. The ligation mixture containing KC515 and various cassettes was transfected into protoplasts of *Streptomyces lividans* TK24 using the procedure described in Genetic Manipulation of *Streptomyces*, A Laboratory Manual edited by D. Hopwood *et al.* and overlaid with TK24 spores. After 16-24 hr, the plaques were restreaked on plates overlaid with TK24 spores. Single plaques were picked and resuspended in 200 μL of nutrient broth. Phage DNA was prepared by the boiling method

15

20

25

(Hopwood *et al.*, *supra*). The PCR with primers spanning the left and right boundaries of the recombinant phage was used to verify the correct phage had been isolated. In most cases, at least 80% of the plaques contained the expected insert. To confirm the presence of the resistance marker (thiostrepton), a spot test is used, as described in Lomovskaya *et al.* (1997), in which a plate with spots of phage is overlaid with mixture of spores of TK24 and phiC31 TK24 lysogen. After overnight incubation, the plate is overlaid with antibiotic in soft agar. A working stock is made of all phage containing desired constructs.

Streptomyces hygroscopicus ATCC 14891 (see US Patent No. 3,244,592, issued 5 Apr 1966, incorporated herein by reference) mycelia were infected with the recombinant phage by mixing the spores and phage (1 x 10⁸ of each), and incubating on R2YE agar (Genetic Manipulation of Streptomyces, A Laboratory Manual, edited by D. Hopwood et al.) at 30°C for 10 days. Recombinant clones were selected and plated on minimal medium containing thiostrepton (50 µg/ml) to select for the thiostrepton resistance-conferring gene. Primary thiostrepton resistant clones were isolated and purified through a second round of single colony isolation, as necessary. To obtain thiostrepton-sensitive revertants that underwent a second recombination event to evict the phage genome, primary recombinants were propagated in liquid media for two to three days in the absence of thiostrepton and then spread on agar medium without thiostrepton to obtain spores. Spores were plated to obtain about 50 colonies per plate, and thiostrepton sensitive colonies were identified by replica plating onto thiostrepton containing agar medium. The PCR was used to determine which of the thiostrepton sensitive colonies reverted to the wild type (reversal of the initial integration event), and which contain the desired AT swap at module 8 in the ATCC 14891-derived cells. The PCR primers used amplified either the KS/AT junction or the AT/DH junction of the wild-type and the desired recombinant strains. Fermentation of the recombinant strains, followed by isolation of the metabolites and analysis by LCMS, and NMR is used to characterize the novel polyketide compounds.

20

Example 2

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-506

The present invention also provides the 13-desmethoxy derivatives of FK-506 and the novel PKS enzymes that produce them. A variety of *Streptomyces* strains that produce FK-506 are known in the art, including *S. tsukubaensis* No. 9993 (FERM BP-927), described in U.S. Patent No. 5,624,852, incorporated herein by reference; *S. hygroscopicus* subsp. *yakushimaensis* No. 7238, described in U.S. patent No. 4,894,366, incorporated herein by reference; *S.* sp. MA6858 (ATCC 55098), described in U.S. Patent Nos. 5,116,756, incorporated herein by reference; and *S.* sp. MA 6548, described in Motamedi *et al.*, 1998, "The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506," *Eur. J. Biochem. 256*: 528-534, and Motamedi *et al.*, 1997, "Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506," *Eur. J. Biochem. 244*: 74-80, each of which is incorporated herein by reference.

The complete sequence of the FK-506 gene cluster from *Streptomyces* sp. MA6548 is known, and the sequences of the corresponding gene clusters from other FK-506-producing organisms is highly homologous thereto. The novel FK-506 recombinant gene clusters of the present invention differ from the naturally occurring gene clusters in that the AT domain of module 8 of the naturally occurring PKSs is replaced by an AT domain specific for malonyl CoA or methylmalonyl CoA. These AT domain replacements are made at the DNA level, following the methodology described in Example 1.

The naturally occurring module 8 sequence for the MA6548 strain is shown below, followed by the illustrative hybrid module 8 sequences for the MA6548 strains.

25 GCATGCGGCTGTACGAGGCGCACCGGCACCGGAAGTCCCGTGGTGGTG 50

M R L Y E A A R R T G S P V V V V

GCGGCCGCGCTCGACGACGCGCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100

A A A L D D A P D V P L L R G L R

GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150

R T T V R R A A V R E R S L A D

GCTCGCCGTGCTGCCCGACGACGACGACGCCTCCCTCGCGTTCG 200

R S P C C P T T S A P T P P S R S

TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250

S W N S T A T V L G H L G A E D I

CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 PATTFKELGIDSLTA TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 V Q L R N A L T T A T G V R L N A 5 T A V F D F P T P R A L A A R L G CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGCCA 450 DELAGTRAPVAARTAA CCGCGGCCGCACGACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 10 TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 L P G G V A S P Q E L W R L V A S CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 G T D A I T E F P A D R G W D V 15 ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFVR CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG 700 H G G F L D G A T G F D A A F F G GATCAGCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 20 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 LETSWEAFESAGITPDA GCGCGGGCAGCGACACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 ARGSDTGVFIGAFSYGY 25 CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S O T GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 S V L S G R L S Y F Y G L E G P S GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 30 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGCCGAATGCTCGCCCTGGTCGGCGGTG 1050 G Q S L R S G E C S L A L V G G TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R 35 GGGCTCGCGCCGGACGGCGGGCGAAGGCGTTCGGCGCGGGCGCGGACGG 1150 G L A P D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 T S F A E G A G A L V V E R L S ACGCGGAGCGCCACGGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250 40 D A E R H G H T V L A L V R G S A GCTAACTCCGACGGCGCTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 A N S D G A S N G L S A P N G P S CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG 1350 Q E R V I H Q A L A N A K L T P 45 CCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCACCGCCTCGGCGAC 1400 A D V D A V E A H G T G T R L G D CCCATCGAGGCGCAGGCGTGCTCGCGACGTACGGACAGGACCGGGCGAC 1450 PIEAQALLATYGQDRAT GCCCCTGCTGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 50 P L L L G S L K S N I G H A Q A CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 A S G V A G I I K M V Q A I R H G GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG 1600 ELPPTLHADEPSPHVDW

TAGAVELLTSARPWPG CCGGTCGCCCGCGCCGCGCTGCCGTCTCGTCGTTCGGCGTGAGCGGCACG 1700 TGRPRRAAVSSFGVSGT AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA 1750 5 N A H I I L E A G P V K T G P V E GGCAGGAGCGATCGAGGCAGGACCGGTCGAAGTAGGACCGGTCGAGGCTG 1800 A G A I E A G P V E V G P V E A GACCGCTCCCCGCGGCGCCGCCGTCAGCACCGGGCGAAGACCTTCCGCTG 1850 G P L P A A P P S A P G E D L P L 10 CTCGTGTCGGCGCGTTCCCCGGAGGCACTCGACGAGCAGATCGGGCGCCT 1900 L V S A R S P E A L D E Q I G R L GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC 1950 RAYLDTGPGVDRAAVA AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG 2000 15 Q T L A R R T H F T H R A V L L G GACACCGTCATCGGCGCTCCCCCCGCGGACCAGGCCGACGAACTCGTCTT 2050 D T V I G A P P A D Q A D E L V F CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAACTCG 2100 V Y S G Q G T Q H P A M G E Q L 20 CGGCCGCGTTCCCCGTGTTCGCCGATGCCTGGCACGACGCGCTCCGACGG 2150 A A A F P V F A D A W H D A L R R CTCGACGACCCCGACCGCACGACCCCACACGGAGCCAGCACACGCTCTT 2200 L D D P D P H D P T R S Q H T L F CGCCCACCAGGCGGCGTTCACCGCCCTCCTGAGGTCCTGGGACATCACGC 2250 25 A H Q A A F T A L L R S W D I T CGCACGCCGTCATCGGCCACTCGCTCGGCGAGATCACCGCCGCGTACGCC 2300 P H A V I G H S L G E I T A A Y A GCCGGGATCCTGTCGCTCGACGACGCCTGCACCCTGATCACCACGCGTGC 2350 A G I L S L D D A C T L I T T R A 30 CCGCCTCATGCACACGCTTCCGCCGCCCGGCGCCATGGTCACCGTGCTGA 2400 R L M H T L P P P G A M V T V L CCAGCGAGGAGGAGGCCCGTCAGGCGCTGCGGCCGGGCGTGGAGATCGCC 2450 T S E E E A R Q A L R P G V E I A GCGGTCTTCGGCCCGCACTCCGTCGTGCTCTCGGGCGACGAGGACGCCGT 2500 35 A V F G P H S V V L S G D E D A V GCTCGACGTCGCACAGCGGCTCGGCATCCACCACCGTCTGCCCGCGCCGC 2550 L D V A Q R L G I H H R L P A P ACGCGGGCCACTCCGCGCACATGGAACCCGTGGCCGCCGAGCTGCTCGCC 2600 H A G H S A H M E P V A A E L L A 40 ACCACTCGCGAGCTCCGTTACGACCGGCCCACACCGCCATCCCGAACGA 2650 TTRELRYDRPHTAIPND CCCCACCACCGCGAGTACTGGGCCGAGCAGGTCCGCAACCCCGTGCTGT 2700 PTTAEYWAEQVRNPVL TCCACGCCCACACCCAGCGGTACCCCGACGCCGTGTTCGTCGAGATCGGC 2750 45 F H A H T Q R Y P D A V F V E I G CCCGGCCAGGACCTCTCACCGCTGGTCGACGGCATCGCCCTGCAGAACGG 2800 P G Q D L S P L V D G I A L Q N G 50 TADEVHALHTALARLF CACGCGGCGCCACGCTCGACTGGTCCCGCATCCTCGGCGGTGCTTCGCGG 2900 TRGATLDWSRILGGASR CACGACCCTGACGTCCCCTCGTACGCGTTCCAGCGGCGTCCCTACTGGAT 2950 D P D V P S Y A F Q R R P Y W I

		0000
	CGAGTCGGCTCCCCGGCCACGGCCGACTCGGGCCACCCCGTCCTCGGCA	3000
	E S A P P A T A D S G H P V L G CCGGAGTCGCCGGGTCGCCGGGTCGCCGGGTGTTCACGGGTCCCGTG	3050
	T G V A V A G S P G R V F T G P V	5050
5	CCCGCCGGTGCGGACCGCGCGGTGTTCATCGCCGAACTGGCGCTCGCCGC	3100
J	PAGADRAVFIAELALAA	
	CGCCGACGCCACCGACTGCGCCACGGTCGAACAGCTCGACGTCACCTCCG	3150
	ADATDCATVEQLDVTS	2000
10	TGCCCGGCGGATCCGCCCGCGCAGACCTGGGTCGAT	3200
10	V P G G S A R G R A T A Q T W V D GAACCCGCCGCGACGGGCGGCGCCGCTTCACCGTCCACACCCGCGTCGG	3250
	E. P. A. D. G. R. R. F. T. V. H. T. R. V. G.	5250
		3300
	DAPWTLHAEGVLRPGR	
15	TGCCCCAGCCGAAGCCGTCGACACCGCCTGGCCCCCGCCGGGCGCGGTG	3350
	V P Q P E A V D T A W P P P G A V	2400
	CCCGCGGACGGGCTGCCCGGGGCGTGCCGGGACCAGGTCTTCGT P A D G L P G A W R R A D Q V F V	3400
	PADGLPGAWRRADQVFV CGAAGCCGAAGTCGACAGCCTTGACGGCTTCGTGGCACACCCCGACCTGC	3450
20	E A E V D S P D G F V A H P D L	
20	TCGACGCGGTCTCTCCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGA	3500
	L D A V F S A V G D G S R Q P T G	2550
	TGGCGCGACCTCGCGGTGCACCGTCGGACGCCACCGTGCTGCGCGCCTG	3550
25	W R D L A V H A S D A T V L R A C CCTCACCCGCCGCACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTG	3600
23	L T R R D S G V V E L A A F D G	
	CCGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCG	3650
	A G M P V L T A E S V T L G E V A	
20	TCGGCAGGCGGATCCGACGAGTCGGACGGTCTGCTTCGGCTTGAGTGGTT	3700
30	S A G G S D E S D G L L R L E W L GCCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCCGAGGGCT	3750
	P V A E A H Y D G A D E L P E G	5,00
	ACACCCTCATCACCGCCACACACCCCGACGACCCCGACGACCCCACCAAC	3800
	YTLITATHPDDPDDPTN	
35	CCCCACAACACCCCACACGCACCCACACACAAACCACACGCGTCCTCAC	3850
	P H N T P T R T H T Q T T R V L T CGCCCTCCAACACCACCACCACCACCACCACCACCACCACCA	3900
	A L Q H H L I T T N H T L I V H	5500
	CCACCACCGACCCCCAGGCGCCGCCGTCACCGGCCTCACCCGCACCGCA	3950
40	TTTDPPGAAVTGLTRTA	
	CAAAACGAACACCCCGGCCGCATCCACCTCATCGAAACCCACCACCCCCA	4000
	Q N E H P G R I H L I E T H H P H	4050
	CACCCCACTCCCCCTCACCCAACTCACCACCCTCCACCAACCCCACCTAC T P L P L T Q L T T L H Q P H L	4030
45	GCCTCACCAACACCCCTCCACACCCCCCACCTCACCCCCATCACCAC	4100
	RLTNNTLHTPHLTPITT	
	CACCACAACACCACCACAACCACCCCAACACCCCCACCCC	4150
	H H N T T T T T P N T P P L N P N	4200
50	CCACGCCATCCTCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCG	4200
20	CCCGCCACCTCAACCACCCCACACCTACCTCCTCTCCCGCACACCACCA	4250
	ARHLNHPHTYLLSRTPP	
	CCCCCACCACACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCAC	
	PPTTPGTHIPCDLTDPT	

CCAAATCACCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCT 4350 Q I T Q A L T H I P Q P L T G I TCCACACCGCCGCCACCTCGACGACGCCACCTCACCAACCTCACCCCC 4400 F H T A A T L D D A T L T N L T P 5 CAACACCTCACCACCCTCCAACCCAAAGCCGACGCCGCCTGGCACCT 4450 H L T T T L Q P K A D A A W H L CCACCACCACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCA 4500 H H H T Q N Q P L T H F V L Y S GCGCCGCCGCCACCCTCGGCAGCCCCGGCCAAGCCAACTACGCCGCCGCC 4550 10 SAAATLGSPGOAN AACGCCTTCCTCGACGCCCTCGCCACCCACCGCCACACCCAAGGACAACC 4600 N A F L D A L A T H R H T Q G Q P ATTIAWGMWHTTTTLT 15 GCCAACTCACCGACAGCGACCGCGACCGCATCCGCCGCGGCGCTTCCTG 4700 SQLTDSDRDRIRRGGFL CCGATCTCGGACGACGAGGGCATGC ISDDE

The *AvrII-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of module 12 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCGCACCGCGCACCGGAAGTCCCGTGGTGGTG 50 M R L Y E A A R R T G S P V V V GCGGCCGCGCTCGACGACGCCGCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 25 A A A L D D A P D V P L L R G L R GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD RSPCCPTTSAPTPPSRS 30 TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 PATTTFKELGIDSLTA TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 35 V Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARLG CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGCCA 450 D E L A G T R A P V A A R 40 CCGCGGCCGCACGACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 L P G G V A S P Q E L W R L V A S CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 45 G T D A I T E F P A D R G W D V ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFVR CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG 700 H G G F L D G A T G F D A A F F G 50 GATCAGCCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800

LETSWEAFESAGITPDA GCGCGGGGCACACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 A R G S D T G V F I G A F S Y G Y CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 5 G T G A D T N G F G A T G S Q T GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 SVLSGRLSYFYGLEGPS GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H Q A 10 AGGGCAGTCCCTGCGCTCGGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050 G Q S L R S G E C S L A L V G G TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R GGGCTCGCGCCGGACGGCGGGCGAAGGCGTTCGGCGCGGGCGCGACGG 1150 15 G L A P D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 T S F A E G A G A L V V E R L S ACGCGGAGCGCCACGCCACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250 D A E R H G H T V L A L V R G S A 20 GCTAACTCCGACGCCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 A N S D G A S N G L S A P N G P S CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG 1350 Q E R V I H Q A L A N A K L T P CCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCACCCGCCTCGGCGAC 1400 ADVDAVEAHGTGTRLGD CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC 1450 PIEAQALLATYGQDRAT GCCCTGCTGCTCGGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 P L L L G S L K S N I G H A Q A CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 A S G V A G I I K M V Q A I R H G GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG 1600 E L P P T L H A D E P S P H V D W GACGGCCGGTGCCGTCGACCTCGACGTCGGCCCGGCCGTGGCCGGGGA 1650 35 T A G A V E L L T S A R P W P G CCGGTCGCCCTAGGCGGCAGGCGTGTCGTCCTTCGGGATCAGTGGCACC 1700 TGRPRRAGVSSFGISGT AACGCCCACGTCATCCTGGAAAGCGCACCCCCACTCAGCCTGCGGACAA 1750 N A H V I L E S A P P T Q P A D N 40 CGCGGTGATCGAGCGGGCACCGGAGTGGGTGCCGTTGGTGATTTCGGCCA 1800 AVIERAPEWVPLVISA RTQSALTEHEGRLRAYL GCGGCGTCGCCCGGGGTGGATATGCGGGCTGTGGCATCGACGCTGGCGAT 1900 45 AASPGVDMRAVASTLAM GACACGGTCGGTGTTCGAGCACCGTGCCGTGCTGCTGGGAGATGACACCG 1950 TRSVFEHRAVLLGDDT TCACCGGCACCGCTGTGTCTGACCCTCGGGCGGTGTTCGTCTTCCCGGGA 2000 V T G T A V S D P R A V F V F P G 50 CAGGGGTCGCAGCGTGCTGGCATGGGTGAGGAACTGGCCGCCGCGTTCCC 2050 QGSQRAGMGEELAAAFP CGTCTTCGCGCGGATCCATCAGCAGGTGTGGGACCTGCTCGATGTGCCCG 2100 V F A R I H Q Q V W D L L D V P ATCTGGAGGTGAACGAGACCGGTTACGCCCAGCCGGCCCTGTTCGCAATG 2150

DLEVNETGYAOPALFAM CAGGTGGCTCTGTTCGGGCTGCTGGAATCGTGGGGTGTACGACCGGACGC 2200 Q V A L F G L L E S W G V R P D A GGTGATCGGCCATTCGGTGGGTGAGCTTGCGGCTGCGTATGTGTCCGGGG 2250 5 V I G H S V G E L A A A Y V S G TGTGGTCGTTGGAGGATGCCTGCACTTTGGTGTCGGCGCGGGCTCGTCTG 2300 V W S L E D A C T L V S A R A R L ATGCAGGCTCTGCCCGCGGGTGGGGTGATGGTCGCTGTCCCGGTCTCGGA 2350 M Q A L P A G G V M V A V P V S E 10 GGATGAGGCCCGGGCCGTGCTGGGTGAGGGTGTGGAGATCGCCGCGGTCA 2400 DEARAVLGEGVEIAAV ACGGCCCGTCGTCGTTGTTCTCTCCGGTGATGAGGCCGCCGTGCTGCAG 2450 N G P S S V V L S G D E A A V L Q 15 AAEGLGKWTRLATSHAF CCATTCCGCCGTATGGAACCCATGCTGGAGGAGTTCCGGGCGGTCGCCG 2550 H S A R M E P M L E E F R A V A AAGGCCTGACCTACCGGACGCCGCAGGTCTCCATGGCCGTTGGTGATCAG 2600 E G L T Y R T P Q V S M A V G D Q 20 GTGACCACCGCTGAGTACTGGGTGCGGCAGGTCCGGGACACGGTCCGGTT 2650 V T T A E Y W V R Q V R D T V R F CGGCGAGCAGGTGGCCTCGTACGAGGACGCCGTGTTCGTCGAGCTGGGTG 2700 G E O V A S Y E D A V F V E L G CCGACCGGTCACTGGCCCGCCTGGTCGACGGTGTCGCGATGCTGCACGGC 2750 25 A D R S L A R L V D G V A M L H G GACCACGAAATCCAGGCCGCGATCGGCGCCCTGGCCCACCTGTATGTCAA 2800 D H E I Q A A I G A L A H L Y V N CGGCGTCACGGTCGACTGGCCCGCGCTCCTGGGCGATGCTCCGGCAACAC 2850 GVTVDWPALLGDAPAT 30 GGGTGCTGGACCTTCCGACATACGCCTTCCAGCACCAGCGCTACTGGCTC 2900 RVLDLPTYAFQHQRYWL GAGTCGGCTCCCCGGCCACGGCCGACTCGGGCCACCCCGTCCTCGGCAC 2950 E S A P P A T A D S G H P V L G T CGGAGTCGCCGTCGCCGGGTCGCCGGGCCGGGTGTTCACGGGTCCCGTGC 3000 35 G V A V A G S P G R V F T G P V CCGCCGGTGCGGACCGCGCGGTGTTCATCGCCGAACTGGCGCTCGCCGCC 3050 P A G A D R A V F I A E L A L A A GCCGACGCCACCGACTGCGCCACGGTCGAACAGCTCGACGTCACCTCCGT 3100 ADATDCATVEQLDVTSV 40 GCCCGCCGATCCGCCGCGCAGGCCACCGCGCAGACCTGGGTCGATG 3150 P G G S A R G R A T A Q T W V D AACCCGCCGCCGACGGGCGCCGCTTCACCGTCCACACCCGCGTCGGC 3200 E P A A D G R R R F T V H T R V G GACGCCCGTGGACGCTGCACGCCGAGGGGGTTCTCCGCCCCGGCCGCCG 3250 45 D A P W T L H A E G V L R P G R V GCCCCAGCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGGCGCGGTGC 3300 PQPEAVDTAWPPGAV CCGCGGACGGGCTGCCCGGGGCGTGGCGACGCGCGGACCAGGTCTTCGTC 3350 P A D G L P G A W R R A D Q V F V 50 GAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGCT 3400 E A E V D S P D G F V A H P D L L CGACGCGGTCTTCTCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGAT 3450 D A V F S A V G D G S R Q P T G GGCGCGACCTCGCGGTGCACGCGTCGGACGCCACCGTGCTGCGCGCCCTGC 3500

WRDLAVHASDA TVLRAC CTCACCCGCCGCGACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTGC 3550 LTRRDSGVVELAAFDGA CGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCGT 3600 G M P V L T A E S V T L G E V A 5 CGGCAGGCGGATCCGACGAGTCGGACGGTCTGCTTCGGCTTGAGTGGTTG 3650 SAGGSDESDGLLRLEWL CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCCGAGGGCTA 3700 P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACACCCCGACGACCCCGACGACCCCACCAACC 3750 10 LITATHPDDPDDP CCCACACACACCCACACGCACCACACACACACACGCGTCCTCACC 3800 PHNTPTRTHTQT GCCCTCCAACACCACCTCATCACCACCAACCACCCTCATCGTCCACAC 3850 ALQHHLITTNHTL 15 CACCACCGACCCCCAGGCGCCGCCGTCACCGGCCTCACCCGCACCGCAC 3900 TDPPGAAVTGLTRTA AAAACGAACACCCCGGCCGCATCCACCTCATCGAAACCCACCACCCCCAC 3950 IETHHPH EHPGRIHL ACCCCACTCCCCCTCACCCAACTCACCACCCTCCACCAACCCCACCTACG 4000 20 T P L P L T Q L T T L H Q PHLTP TNNTLHT ACCACAACACCACCACACCCCCCAACACCCCCACCCCTCAACCCCAAC 4100 H H N T T T T P N T P P L N P N 25 CACGCCATCCTCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGC 4150 HAILITGGSGTLAGILA CCGCCACCTCAACCACCCCACACCTACCTCCTCTCCCGCACACCACCAC 4200 RHLNHPHTYLLSRTPP CCCCCACCACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCACC 4250 P P T T P G T H I P C D L T D P T CAAATCACCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCTT 4300 QITQALTHIPQPLTGI CCACACCGCCGCCACCCTCGACGACGCCACCCTCACCAACCTCACCCCCC 4350 35 LTNLTP H T A A T L D D A T AACACCTCACCACCACCCTCCAACCCAAAGCCGACGCCGCCTGGCACCTC 4400 Q H L T T T L Q P K A D A A CACCACCACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAG 4450 H H H T Q N Q P L T H F V L Y S CGCCGCCGCCACCCTCGGCAGCCCGGCCAAGCCAACTACGCCGCCGCCA 4500 40 A A A T L G S P G Q A N ACGCCTTCCTCGACGCCCTCGCCACCCCACCCCACACCCAAGGACAACCC 4550 N A F L D A L A T H R H T Q G Q P 45 ATTIAWGMWHTTTTLT CCAACTCACCGACAGCGACCGCGACCGCATCCGCCGCGGCGGCTTCCTGC 4650 Q L T D S D R D R I R R G G F L CGATCTCGGACGACGAGGGCATGC PISDDE G M

The AvrII-XhoI hybrid FK-506 PKS module 8 containing the AT domain of module 13 of rapamycin is shown below.

50

- 113 -

	GCATGCGGCTGTACGAGGCGGCACGGCACCGGAAGTCCCGTGGTGGTG	50
	M R L Y E A A R R T G S P V V V	100
	GCGGCCGCGCTCGACGACGCCCGGACGTGCCGCTGCTGCGCGGGCTGCG	100
_	A A A L D D A P D V P L L R G L R	1 5 0
5	GCGTACGACCGTCCGGCGTCCGGGAACGCTCTCTCGCCGACC	150
	R T T V R R A A V R E R S L A D	200
	GCTCGCCGTGCTGCCCGACGACGACGCGCGCGCGACGCCTCCCTC	200
	1. 6 1 6 6 1 1 1 6 11 1 2 2 1	250
1Λ	TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT S W N S T A T V L G H L G A E D I	230
10	S W N S T A T V L G H L G A E D I CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG	300
		500
	PATTFKELGIDSLTA TCCAGCTGCGCAACGCGTGACCACGCGACCGCGTACGCCTCAACGCC	350
	V O L R N A L T T A T G V R L N A	550
15	ACAGCGGTCTTCGACTTTCCGACGCCGCGCGCGCGCGCGC	400
15	T A V F D F P T P R A L A A R L G	200
	CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGCCA	450
	D E L A G T R A P V A A R T A A	
	CCGCGGCCGCACGACGAACCGCTGGCGATCGTGGGCATGGCCTGCCGT	500
20	T A A A H D E P L A I V G M A C R	
	CTGCCGGGCGGGGTCGCGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC	550
	L P G G V A S P Q E L W R L V A S	
	CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG	600
	G T D A I T E F P A D R G W D V	
25	ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG	650
	D A L Y D P D P D A I G K T F V R	
	CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG	700
	H G G F L D G A T G F D A A F F G	
20	GATCAGCCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC	750
30	I S P R E A L A M D P Q Q R V L	000
	TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG	800
	L E T S W E A F E S A G I T P D A GCGCGGGGCAGCGACACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA	950
		030
35	A R G S D T G V F I G A F S Y G Y CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA	900
55	G T G A D T N G F G A T G S Q T	300
	GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG	950
	S V L S G R L S Y F Y G L E G P S	
	GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC	1000
40	V T V D T A C S S S L V A L H Q A	
	AGGGCAGTCCCTGCGCTCGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG	1050
	GQSLRSGECSLALVGG	
	TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC	1100
	V T V M A S P G G F V E F S R Q R	
45	GGGCTCGCGCCGGACGGGCGGGCGAAGGCGTTCGGCGCGGGCGCGGACGG	1150
	G L A P D G R A K A F G A G A D G	
	TACGAGCTTCGCCGAGGGCGCCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG	1200
	T S F A E G A G A L V V E R L S	1050
50	ACGCGGAGCGCCACGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG	1250
50	DAERHGHTVLALVRGSA	1300
	GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCCGAACGGCCCCTC A N S D G A S N G L S A P N G P S	1200
	A N S D G A S N G L S A P N G P S CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG	1350
	Q E R V I H Q A L A N A K L T P	1000
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

CCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCCTCGGCGAC 1400 A D V D A V E A H G T G T R L G D CCCATCGAGGCGCAGGCGTGCTCGCGACGTACGGACAGGACCGGGCGAC 1450 PIEAQALLATYGQDRAT 5 GCCCCTGCTGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 P L L L G S L K S N I G H A Q A CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 A S G V A G I I K M V Q A I R H G GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG 1600 10 ELPPTLHADEPSPHVDW GACGGCCGGTGCCGTCGACCTCCTGACGTCGGCCCGTGGCCGGGGA 1650 T A G A V E L L T S A R P W P G CCGGTCGCCCTAGGCGGGCGGGCGTGTCGTCCTTCGGAGTCAGCGGCACC 1700 TGRPRRAGVSSFGVSGT 15 AACGCCCACGTCATCCTGGAGAGCGCACCCCCGCTCAGCCCGCGGAGGA 1750 N A H V I L E S A P P A Q P A E E GGCGCAGCCTGTTGAGACGCCGGTGGTGGCCTCGGATGTGCTGCCGCTGG 1800 AQPVETPVVASDVLPL TGATATCGGCCAAGACCCAGCCCGCCCTGACCGAACACGAAGACCGGCTG 1850 20 V I S A K T Q P A L T E H E D R L CGCGCCTACCTGGCGGCGTCGCCCGGGGCGGATATACGGGCTGTGGCATC 1900 R A Y L A A S P G A D I R A V A S GACGCTGGCGGTGACACGGTCGTTTCGAGCACCGCGCCGTACTCCTTG 1950 T L A V T R S V F E H R A V L L GAGATGACACCGTCACCGGCACCGCGGTGACCGACCCCAGGATCGTGTTT 2000 G D D T V T G T A V T D P R I V F GTCTTTCCCGGGCAGGGTGGCAGTGGCTGGGGATGGCAGTGCACTGCG 2050 V F P G O G W O W L G M G S A L R CGATTCGTCGGTGGTGTTCGCCGAGCGGATGGCCGAGTGTGCGGCGGCGT 2100 D S S V V F A E R M A E C A A A TGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGGATGATCCGGCG 2150 LREFVDWDLFTVLDDPA GTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGGGCGATGATGGT 2200 V V D R V D V V O P A S W A M M V 35 TTCCCTGGCCGCGTGTGCAGCCGCCGGTGTGCGCCGGATGCGGTGA 2250 SLAAVWQAAGVRPDAV TCGGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGTG 2300 IGHSQGEIAAACVAGAV TCACTACGCGATGCCGCCGGATCGTGACCTTGCGCAGCCAGGCGATCGC 2350 40 SLRDAARIVTLRSQAIA CCGGGGCCTGGCGGGCCGGGGCGCGATGGCATCCGTCGCCCTGCCCGCGC 2400 RGLAGRGAMASVALPA AGGATGTCGAGCTGGTCGACGGGGCCTGGATCGCCGCCCACAACGGGCCC 2450 Q D V E L V D G A W I A A H N G P 45 GCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGACCATGTCCTCAC 2500 ASTVIAGTPEAVDHVLT CGCTCATGAGGCACAAGGGGTGCGGGTGCGGCGGATCACCGTCGACTATG 2550 AHEAOGVRVRRITVDY CCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAACTACTCGACATC 2600 50 ASHTPHVELIRDELLDI ACTAGCGACAGCTCGCAGACCCCGCTCGTGCCGTGGCTGTCGACCGT 2650 T S D S S S Q T P L V P W L S T V GGACGGCACCTGGGTCGACAGCCCGCTGGACGGGAGTACTGGTACCGGA 2700 D G T W V D S P L D G E Y W Y R

ACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCCAGTTGCAGGCC 2750 N L R E P V G F H P A V S O L O A CAGGGCGACACCGTGTTCGTCGAGGTCAGCGCCAGCCCGGTGTTGTTGCA 2800 QGDTVFVEVSASPVLLQ 5 GGCGATGGACGACGTTGCCACGCTGCGTCGTGACGACG 2850 AMDDDVVTVATLRRDD GCGACGCCACCCGGATGCTCACCGCCCTGGCACAGGCCTATGTCCACGGC 2900 G D A T R M L T A L A Q A Y V H G GTCACCGTCGACTGGCCCGCCATCCTCGGCACCACCACACCCGGGTACT 2950 10 TVDWPAILGTTTTRVL GGACCTTCCGACCTACGCCTTCCAACACCAGCGGTACTGGCTCGAGTCGG 3000 D L P T Y A F O H O R Y W L E S CTCCCCGGCCACGGCCGACTCGGCCCCGTCCTCGGCACCGGAGTC 3050 A P P A T A D S G H P V L G T G V 15 GCCGTCGCCGGGTCGCCGGGCCGGGTGTTCACGGGTCCCGTGCCCGCCGG 3100 AVAGSPGRVFTGPVPAG TGCGGACCGCGGTGTTCATCGCCGAACTGGCGCTCGCCGCCGCCGACG 3150 ADRAVFIAELALAAAD CCACCGACTGCGCCACGGTCGAACAGCTCGACGTCACCTCCGTGCCCGGC 3200 20 ATDCATVEQLDVTSVPG GGATCCGCCGGGCAGGGCCACCGCGCAGACCTGGGTCGATGAACCCGC 3250 S A R G R A T A Q T W V D E P A CGCCGACGGGCGCCGCTTCACCGTCCACACCCGCGTCGGCGACGCCC 3300 A D G R R R F T V H T R V G D A CGTGGACGCTGCACGCCGAGGGGGTTCTCCGCCCCGGCCGCGTGCCCCAG 3350 PWTLHAEGVLRPGRVPQ CCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGGCGCGGTGCCCGCGGA 3400 PEAVDTAWPPPGAVPAD CGGGCTGCCCGGGGCGTGGCGACGCGCGGACCAGGTCTTCGTCGAAGCCG 3450 30 G L P G A W R R A D Q V F V E A AAGTCGACAGCCTGACGGCTTCGTGGCACACCCCGACCTGCTCGACGCG 3500 EVDSPDGFVAHPDLLDA GTCTTCTCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGATGGCGCGA 3550 V F S A V G D G S R Q P T G W R D 35 LAVHASDATVLRACLT GCCGCGACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTGCCGGAATG 3650 RRDSGVVELAAFDGAGM CCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCGTCGGCAGG 3700 40 PVLTAESVTLGEVASAG CGGATCCGACGAGTCGGACGGTCTGCTTCGGCTTGAGTGGTTGCCGGTGG 3750 G S D E S D G L L R L E W L P V CGGAGGCCCACTACGACGGTGCCGACGACTGCCCGAGGGCTACACCCTC 3800 A E A H Y D G A D E L P E G Y T L 45 ATCACCGCCACACCCCGACGACCCCGACGACCCCACAA 3850 I T A T H P D D P D D P T N P H N CACACCCACACGCACCCACACACACACGCGTCCTCACCGCCCTCC 3900 T P T R T H T Q T T R V L T A L 50 QHHLITTNHTLIVHTT GACCCCCAGGCGCCGTCACCGGCCTCACCCGCACCACAAAACGA 4000 D P P G A A V T G L T R T A Q N E ACACCCCGGCCGCATCCACCTCATCGAAACCCACCCCCCACACCCCCAC 4050 H P G R I H L I E T H H P H T P

TCCCCCTCACCCAACTCACCACCCTCCACCCACCCTACGCCTCACC 4100 LPLTQLTTLHQPHLRLT N N T L H T P H L T P I T T H H N TTTTPNTPPLNPNHA I L I T G G S G T L A G I L A R H CTCAACCACCCCACACCTACCTCCTCTCCCGCACACCACCACCCCCAC 4300 10 LNHPHTYLLSRTPPP TPGTHIPCDLTDPTQI CCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCTTCCACACC 4400 TQALTHIPQPLTGIFHT 15 GCCGCCACCCTCGACGACGCCACCCTCACCAACCTCACCCCCCAACACCT 4450 AATLDDATLTNLTPQHL CACCACCACCCTCCAACCCAAAGCCGACGCCGCCTGGCACCTCCACCACC 4500 TTTLQPKADAAWHLHH ACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCC 4550 20 H T Q N Q P L T H F V L Y S S A A GCCACCCTCGGCAGCCCGGCCAAGCCAACTACGCCGCCGCCAACGCCTT 4600 A T L G S P G Q A N Y A A A N A F CCTCGACGCCTCGCCACCCACCCACAGGACAACCCGCCACCA 4600 LDALATHRHTQGQPAT TIAWGMWHTT \mathbf{T} TLTSQL ACCGACAGCGACCGCATCCGCCGCGGGGGCTTCCTGCCGATCTC 4750 TDSDRDRIRRGGFLPI GGACGACGAGGCATGC 30 DEGM

The *NheI-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of module 12 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCGGCACGGCGCACCGGAAGTCCCGTGGTGGTG 50 35 M R L Y E A A R R T G S P V V V GCGGCCGCGCTCGACGACGCCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 A A A L D D A P D V P L L R G L R GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD 40 S P C C P T T S A P T P P S R S TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 WNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 45 P A T T T F K E L G I D S L T A TCCAGCTGCGCAACGCGTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 V Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARLG 50 CGACGAGCTGGCCGGTACCCGCGCCCGTCGCGGCCCGGACCGCGCCA 450 DELAGTRAPVAARTAA CCGCGCCCCCCACGACCGACCGCTGCCGATCGTGGCCATGGCCTGCCGT 500

TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 L P G G V A S P Q E L W R L V A S CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 G T D A I T E F P A D R G W D V ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 D A L Y D P D P D A I G K T F V R CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG 700 HGGFLDGATGFDAAFFG 10 GATCAGCCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 LETSWEAFESAGITPDA GCGCGGGGCAGCACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 15 ARGSDTGVFIGAFSYGY CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 SVLSGRLSYFYGLEGPS 20 GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050 G Q S L R S G E C S L A L V G G TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 25 V T V M A S P G G F V E F S R Q R GGGCTCGCGCCGGACGGCGGGCGAAGGCGTTCGGCGCGGGCGCGGACGG 1150 G L A P D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 TSFAEGAGALVVERLS ACGCGGAGCGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250 D A E R H G H T V L A L V R G S A GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 A N S D G A S N G L S A P N G P S CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG 1350 35 O E R V I H O A L A N A K L T P CCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCACCGCCTCGGCGAC 1400 A D V D A V E A H G T G T R L G D CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC 1450 PIEAQALLATYGQDRAT 40 GCCCCTGCTGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 P L L L G S L K S N I G H A Q A CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 ASGVAGIIKMVQAIRHG GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG 1600 45 E L P P T L H A D E P S P H V D W GACGGCCGGTGCCGTCGAGCTCCTGACGTCGGCCGGCCGTGGCCGGGGA 1650 TAGAVELLTSARPWPG CCGGTCGCCGCGCGCGCTGCCGTCTCGTCGTTCGGCGTGAGCGGCACG 1700 TGRPRRAAVSSFGVSGT 50 AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA 1750 N A H I I L E A G P V K T G P V E GGCAGGAGCGATCGAGGCAGGACCGGTCGAAGTAGGACCGGTCGAGGCTG 1800 AGAIEAGPVEVGPVEA GACCGCTCCCCGCGGCGCCGCCGTCAGCACCGGGCGAAGACCTTCCGCTG 1850

G P L P A A P P S A P G E D L P L CTCGTGTCGCGCGTTCCCCGGAGGCACTCGACGAGCAGATCGGGCGCCT 1900 LVSARSPEALDEQIGRL GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC 1950 RAYLD T G P G V D R A A V A AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG 2000 Q T L A R R T H F T H R A V L L G GACACCGTCATCGGCGCTCCCCCCGCGGACCAGGCCGACGAACTCGTCTT 2050 D T V I G A P P A D Q A D E L V F 10 CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAGCTAG 2100 V Y S G Q G T Q H P A M G E Q L CCGCCGCGTTCCCCGTCTTCGCGCGGATCCATCAGCAGGTGTGGGACCTG 2150 A A A F P V F A R I H Q Q V W D L CTCGATGTGCCCGATCTGGAGGTGAACGAGACCGGTTACGCCCAGCCGGC 2200 15 L D V P D L E V N E T G Y A Q P A CCTGTTCGCAATGCAGGTGGCTCTGTTCGGGCTGCTGGAATCGTGGGGTG 2250 L F A M Q V A L F G L L E S W G TACGACCGGACGCGTGATCGGCCATTCGGTGGGTGAGCTTGCGGCTGCG 2300 V R P D A V I G H S V G E L A A A 20 TATGTGTCCGGGGTGTGGTCGTTGGAGGATGCCTGCACTTTGGTGTCGGC 2350 Y V S G V W S L E D A C T L V S A GCGGGCTCGTCTGATGCAGGCTCTGCCCGCGGGTGGGGTGATGGTCGCTG 2400 RARLMQALPAGGVMVA TCCCGGTCTCGGAGGATGAGGCCCGGGCCGTGCTGGGTGAGGGTGTGGAG 2450 V P V S E D E A R A V L G E G V E ATCGCCGCGGTCAACGGCCCGTCGTCGGTGGTTCTCTCCGGTGATGAGGC 2500 I A A V N G P S S V V L S G D E A CGCCGTGCTGCAGGCCGCGGAGGGGCTGGGGAAGTGGACGCGGCTGGCGA 2550 AVLQAAEGLGKWTRLA CCAGCCACGCGTTCCATTCCGCCCGTATGGAACCCATGCTGGAGGAGTTC 2600 T S H A F H S A R M E P M L E E F CGGGCGTCGCCGAAGGCCTGACCTACCGGACGCCGCAGGTCTCCATGGC 2650 RAVAEGLTYRTPQVSMA CGTTGGTGATCAGGTGACCACCGCTGAGTACTGGGTGCGGCAGGTCCGGG 2700 35 V G D Q V T T A E Y W V R Q V R ACACGGTCCGGTTCGGCGAGCAGGTGGCCTCGTACGAGGACGCCGTGTTC 2750 D T V R F G E Q V A S Y E D A V F GTCGAGCTGGGTGCCGACCGGTCACTGGCCCGCCTGGTCGACGGTGTCGC 2800 V E L G A D R S L A R L V D G V A 40 GATGCTGCACGGCGACCACGAAATCCAGGCCGCGATCGGCGCCCTGGCCC 2850 M L H G D H E I Q A A I G A L A ACCTGTATGTCAACGGCGTCACGGTCGACTGGCCCGCGCTCCTGGGCGAT 2900 H L Y V N G V T V D W P A L L G D GCTCCGGCAACACGGGTGCTGGACCTTCCGACATACGCCTTCCAGCACCA 2950 45 A P A T R V L D L P T Y A F Q H Q GCGCTACTGGCTCGAGTCGGCTCCCCCGGCCACGGCCGACTCGGGCCACC 3000 R Y W L E S A P P A T A D S G H CCGTCCTCGGCACCGGAGTCGCCGTCGCCGGGTCGCCGGGCCGGGTGTTC 3050 P V L G T G V A V A G S P G R V F 50 ACGGGTCCCGTGCCGCGGTGCGGACCGCGCGGTGTTCATCGCCGAACT 3100 T G P V P A G A D R A V F I A E L GGCGCTCGCCGCCGACGCCACCGACTGCGCCACGGTCGAACAGCTCG 3150 ALAAADATDCATVEQL ACGTCACCTCCGTGCCCGCGGGTCCGCCGCGCGCACCGCGCAC 3200

- 119 -

	D V T S V P G G S A R G R A T A Q	
	ACCTGGGTCGATGAACCCGCCGCCGACGGGCGCGCCGCTTCACCGTCCA	3250
	T W V D E P A A D G R R R F T V H	
	CACCCGCGTCGGCCGCCCGTGGACGCTGCACGCCGAGGGGGTTCTCC	3300
5	T R V G D A P W T L H A E G V L	
9	GCCCGGCCGCGTGCCCCAGCCCGAAGCCGTCGACACCGCCTGGCCCCCG	3350
		5500
	R P G R V P Q P E A V D T A W P P CCGGGCGCGGTGCCCGCGGACGCGCGGACGCGCGGACGCGGGACGCGGGACGCGGGACGCGGGACGCGGGACGCGCGGACGCGGGACGCGGACGCGGGACGCGGGACGCGGGACGCGGGACGCGGGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGCGACGA	3/100
		3400
1Λ		3/50
10	CCAGGTCTTCGTCGAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCAC	3430
	Q V F V E A E V D S P D G F V A	2500
	ACCCCGACCTGCTCGACGCGGTCTTCTCCGCGGTCGGCGACGGGAGCCGC	3500
	H P D L L D A V F S A V G D G S R	2550
1.5	CAGCCGACCGGATGGCGCGACCTCGCGGTGCACGCGTCGGACGCCACCGT	3330
15	Q P T G W R D L A V H A S D A T V	2600
	GCTGCGCGCCTCACCCGCCGCGACAGTGGTGTCGTGGAGCTCGCCG	3600
	LRACLTRRDSGVVELA	
	CCTTCGACGGTGCCGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTG	3650
	A F D G A G M P V L T A E S V T L	
20	GGCGAGGTCGCGTCGGCAGGCGGATCCGACGAGTCGGACGGTCTGCTTCG	3700
	G E V A S A G G S D E S D G L L R	
	GCTTGAGTGGTTGCCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGC	3750
	LEWLPVAEAHYDGADE	
	TGCCCGAGGGCTACACCCTCATCACCGCCACACACCCCGACGACCCCGAC	3800
25	LPEGYTLITATHPDDPD	
	GACCCCACCAACCCCACAACACCCCACACGCACCCACACACACAAACCAC	3850
	D P T N P H N T P T R T H T Q T T	
	ACGCGTCCTCACCGCCCTCCAACACCACCTCATCACCACCACCACCACCACCCC	3900
	RVLTALQHHLITTNHT	
30	TCATCGTCCACACCACCACCGACCCCCAGGCGCCGCCGTCACCGGCCTC	3950
	LIVHTTTPPGAAVTGL	
	ACCCGCACCGCACAAAACGAACACCCCGGCCGCATCCACCTCATCGAAAC	4000
	TRTAQNEHPGRIHLIET	
	CCACCACCCCACACCCCACTCCCCTCACCCAACTCACCAC	4050
35	HHPHTPLPLTQLTTLH	
	AACCCCACCTACGCCTCACCAACAACACCCTCCACACCCCCCACCTCACC	4100
	Q P H L R L T N N T L H T P H L T	
	CCCATCACCACCACCACACACCACCACACACCCCCCAACACCCCC	4150
	PITTHHNTTTTPNTP	
40	CCTCAACCCCAACCACGCCATCCTCATCACCGGCGGCTCCGGCACCCTCG	4200
. •	L N P N H A I L I T G G S G T L	
	CCGGCATCCTCGCCCGCCACCTCAACCACCCCACACCTACCT	4250
	A G I L A R H L N H P H T Y L L S	
	CGCACACCACCCCCCACACCCGGCACCCACATCCCCTGCGACCT	4300
45	R T P P P T T P G T H I P C D L	
15	CACCGACCCAAATCACCCAAGCCCTCACCCACATACCACAACCCC	4350
	T D P T Q I T Q A L T H I P Q P	1000
	TCACCGGCATCTTCCACACCGCCGCCACCCTCGACGACGCCACCCTCACC	4400
	L T G I F H T A A T L D D A T L T	1100
50	AACCTCACCCCCAACACCTCACCACCACCCTCCAACCCAAAGCCGACGC	4450
20	N L T P O H L T T T L Q P K A D A	447C
		1500
	CGCCTGGCACCTCCACCACCACCACACCCAAAACCAACCCCTCACCCACTTCG	4000
	A W H L H H H T Q N Q P L T H F	1550
	TCCTCTACTCCAGCGCCGCCGCCACCCTCGGCAGCCCCGGCCAAGCCAAC	4556

The *NheI-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of module 13 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCGGCACGGCACCGGAAGTCCCGTGGTGGTG 50 MRLYEAARRTGSPVVV 15 GCGGCCGCGCTCGACGACGCGCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 A A A L D D A P D V P L L R G L R GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD 20 RSPCCPTTSAPTPPSRS TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 IDSLTA PATT TFKELG TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 25 V Q L R N A L T T A T G V R L N A ACAGCGGTCTTCGACTTTCCGACGCCGCGCGCGCGCCCCCGCGAGACTCGG 400 TAVFDFPTPRALAARLG CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGCCA 450 30 D E L A G T R A P V A A R T A A CCGCGGCCGCACGACGAACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 L P G G V A S P Q E L W R L V A S 35 CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 G T D A I T E F P A D R G W D V ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 D A L Y D P D P D A I G K T F V R CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGCGTTCTTCGG 700 40 H G G F L D G A T G F D A A F F G GATCAGCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 LETSWEAFESAGITPDA 45 GCGCGGGGCACCCGCCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 ARGSDTGVFIGAFSYGY CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 50 S V L S G R L S Y F Y G L E G P S GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000

A C S S S L V A L H Q A

V D T

	AGGGCAGTCCCTGCGCTCGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG G O S L R S G E C S L A L V G G	1050
	TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC V T V M A S P G G F V E F S R Q R	1100
5	GGGCTCGCGCGGACGGGCGGGCGGACGG G L A P D G R A K A F G A G A D G	1150
	TACGAGCTTCGCCGAGGGCGCCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG T S F A E G A G A L V V E R L S	1200
10	ACGCGGAGCGCCACGGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG D A E R H G H T V L A L V R G S A	1250
10	GCTAACTCCGACGGCGCTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC A N S D G A S N G L S A P N G P S	1300
	CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG O E R V I H O A L A N A K L T P	1350
15	CCGATGTCGACGCGTCGAGGCGCACCGGCACCGGCACCGGCGCGCACCGGCGCACCGGCA	1400
	CCCATCGAGGCGCAGGCGTCTCGCGACGTACGGACAGGACCGGGCGAC P I E A Q A L L A T Y G Q D R A T	1450
20	GCCCCTGCTGGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG P L L G S L K S N I G H A Q A	1500
	CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG A S G V A G I I K M V O A I R H G	1550
	GAACTGCCGCCGACACTGCACGGGACGACCGTCGCCGCACGTCGACTG	1600
25	GACGGCCGGTGCCGTCGAGCTCCTGACGTCGGCCGGCCGTGGCCGGGGA T A G A V E L L T S A R P W P G	1650
	CCGGTCGCCGCGCGCGCGCGTCGTCGTTCGGCGTGAGCGGCACG T G R P R R A A V S S F G V S G T	1700
30	AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA N A H I I L E A G P V K T G P V E	1750
50	GGCAGGAGCGATCGAGGCAGGACCGGTCGAGGCTG A G A I E A G P V E V G P V E A	1800
	GACCGCTCCCCGCGGCGCGCCGTCAGCACCGGGCGAAGACCTTCCGCTG G P L P A A P P S A P G E D L P L	1850
35	CTCGTGTCGGCGCGTTCCCCGGAGGCACTCGACGAGCAGATCGGGCGCCT L V S A R S P E A L D E Q I G R L	1900
	GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC R A Y L D T G P G V D R A A V A	1950
40	AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG Q T L A R R T H F T H R A V L L G	2000
	GACACCGTCATCGGCGCTCCCCCCGCGGACCAGGCCGACGAACTCGTCTT D T V I G A P P A D Q A D E L V F	2050
	CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAGCTAG V Y S G Q G T Q H P A M G E Q L	2100
45	CCGATTCGTCGGTGTTCGCCGAGCGGATGGCCGAGTGTGCGGCGGCG	2150
	TTGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGGATGATCCGGC L R E F V D W D L F T V L D D P A	2200
50	GGTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGGGCGATGATGG V V D R V D V V Q P A S W A M M	2250
23	TTTCCCTGGCCGCGGTGTGCAGGCGGCCGGTGTGCGGCGGTGTGCGGTGV S L A A V W Q A A G V R P D A V	2300
	ATCGGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGT I G H S Q G E I A A A C V A G A V	2350

GTCACTACGCGATGCCGCCCGGATCGTGACCTTGCGCAGCCAGGCGATCG 2400 SLRDAARIVTLRSQAI CCCGGGGCCTGGCGGGCCGGGGCGCATGGCATCGTCGCCCTGCCCGCG 2450 A R G L A G R G A M A S V A L P A CAGGATGTCGAGCTGGTCGACGGGGCCTGGATCGCCGCCCACAACGGGCC 2500 Q D V E L V D G A W I A A H N G P CGCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGACCATGTCCTCA 2550 A S T V I A G T P E A V D H V L CCGCTCATGAGGCACAAGGGGTGCGGGTGCGGCGGATCACCGTCGACTAT 2600 10 TAHEAQGVRVRRITVDY GCCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAACTACTCGACAT 2650 A S H T P H V E L I R D E L L D I CACTAGCGACAGCTCGCAGACCCCGCTCGTGCCGTGGCTGTCGACCG 2700 T S D S S S Q T P L V P W L S T 15 TGGACGGCACCTGGGTCGACAGCCCGCTGGACGGGGAGTACTGGTACCGG 2750 V D G T W V D S P L D G E Y W Y R AACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCCAGTTGCAGGC 2800 N L R E P V G F H P A V S Q L Q A CCAGGGCGACACCGTGTTCGTCGAGGTCAGCCCAGCCCGGTGTTGTTGC 2850 20 QGDTVFVEVSASPVLL AGGCGATGGACGATGTCGTCACGGTTGCCACGCTGCGTCGTGACGAC 2900 O A M D D D V V T V A T L R R D D GGCGACGCCACCCGGATGCTCACCGCCCTGGCACAGGCCTATGTCCACGG 2950 G D A T R M L T A L A Q A Y V H G 25 CGTCACCGTCGACTGGCCCGCCATCCTCGGCACCACCACACCCGGGTAC 3000 V T V D W P A I L G T T T R V TGGACCTTCCGACCTACGCCTTCCAACACCAGCGGTACTGGCTCGAGTCG 3050 LDLPTYAFQHQRYWLES GCTCCCCGGCCACGGCCGACTCGGGCCACCCCGTCCTCGGCACCGGAGT 3100 30 A P P A T A D S G H P V L G T G V CGCCGTCGCCGGGTCGCCGGGCCGGGTGTTCACGGGTCCCGTGCCCGCCG 3150 A V A G S P G R V F T G P V P A GTGCGGACCGCGCGTGTTCATCGCCGAACTGGCGCTCGCCGCCGCCGAC 3200 G A D R A V F I A E L A L A A A D 35 GCCACCGACTGCGCCACGTCGAACAGCTCGACGTCACCTCCGTGCCCGG 3250 A T D C A T V E Q L D V T S V P G CGGATCCGCCGCGCAGGCCACCGCGCAGACCTGGGTCGATGAACCCG 3300 G S A R G R A T A Q T W V D E P CCGCCGACGGGCGCCGCTTCACCGTCCACACCCGCGTCGGCGACGCC 3350 40 A A D G R R R F T V H T R V G D A CCGTGGACGCTGCACGCCGAGGGGGTTCTCCGCCCCGGCCGCGTGCCCCA 3400 PWTLHAEGVLRPGRVPQ GCCCGAAGCCGTCGACACCGCCTGGCCCCCGCCGGGCGCGCGGTGCCCGCGG 3450 PEAVDTAWPPPGAVPA 45 ACGGGCTGCCCGGGGCGTGGCGACGCGGGCCAGGTCTTCGTCGAAGCC 3500 DGLPGAWRRADQVFVEA GAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGCTCGACGC 3550 EVDSPDGFVAHPDLLDA GGTCTTCTCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGATGGCGCG 3600 50 V F S A V G D G S R Q P T G W R DLAVHASDATVLRACLT CGCCGCGACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTGCCGGAAT 3700 RRDSGVVELAAFDGAGM

GCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCGTCGGCAG 3750 PVLTAESVTLGEVASA GCGGATCCGACGACTCGGCTCTGCTTCGGCTTGAGTGGTTGCCGGTG 3800 GSDESDGLLRLEWLPV 5 GCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCCGAGGGCTACACCCT 3850 A E A H Y D G A D E L P E G Y T CATCACCGCCACACCCCGACGACCCCGACGACCCCACACCCCACA 3900 ITATHPDDPDDP \mathbf{T} ACACACCCACACGCACCACACAAACCACACGCGTCCTCACCGCCCTC 3950 10 Η T Q T R V QHHLITTNHTL D P P G A A V T G L T R T A Q N 15 AACACCCCGGCCGCATCCACCTCATCGAAACCCACCCCCACACCCCA 4100 EHPGRIHLIETHHPHTP CTCCCCCTCACCCAACTCACCACCCTCCACCAACCCCACCTACGCCTCAC 4150 L P L T Q L T T L H Q P H L R L T 20 NNTLHTPHLT PITT ACACCACCACACCCCCAACACCCCCACCCCTCAACCCCAACCACGCC 4250 N T T TTPNTP PLNPNHA G SGTLAG ILARH 25 LNHPHTYLLSRTP CCACACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCACAATC 4400 TPGTHIPCDL ACCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCTTCCACAC 4450 30 QALTHIPQPLTG I CGCCGCCACCCTCGACGACGCCACCCTCACCAACCCCCCCAACACC 4500 AATLDDATLTNLTPQH TCACCACCACCCTCCAACCCAAAGCCGACGCCGCCTGGCACCTCCACCAC 4550 LTTTLQPKADAAWHLHH 35 CACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCCGC 4600 H T Q N Q P L T H F V L Y S S A A CGCCACCCTCGGCAGCCCGGCCAAGCCAACTACGCCGCCGCCAACGCCT 4650 A T L G S P G Q A N YAAANA TCCTCGACGCCTCGCCACCCACCGCCACACCCAAGGACAACCCGCCACC 4700 40 LDALATHRHTQGQPAT ACCATCGCCTGGGGCATGTGGCACACCACCACCACCACCTCACCAGCCAACT 4750 IAWGMWHTTT T L CACCGACAGCGACCGCATCCGCCGCGGCGGCTTCCTGCCGATCT 4800 D S D R D R I R R G G F L P I 45 CGGACGACGAGGCATGC DDEGM

Example 3

Recombinant PKS Genes for 13-desmethoxy FK-506 and FK-520

The present invention provides a variety of recombinant PKS genes in addition to those described in Examples 1 and 2 for producing 13-desmethoxy FK-506 and FK-520

15

20

25

compounds. This Example provides the construction protocols for recombinant FK-520 and FK-506 (from *Streptomyces* sp. MA6858 (ATCC 55098), described in U.S. Patent Nos. 5,116,756, incorporated herein by reference) PKS genes in which the module 8 AT coding sequences have been replaced by either the *rap*AT3 (the AT domain from module 3 of the rapamycin PKS), *rap*AT12, *ery*AT1 (the AT domain from module 1 of the erythromycin (DEBS) PKS), or *ery*AT2 coding sequences. Each of these constructs provides a PKS that produces the 13-desmethoxy-13-methyl derivative, except for the rapAT12 replacement, which provides the 13-desmethoxy derivative, i.e., it has a hydrogen where the other derivatives have methyl.

Figure 7 shows the process used to generate the AT replacement constructs. First, a fragment of ~4.5 kb containing module 8 coding sequences from the FK-520 cluster of ATCC 14891 was cloned using the convenient restriction sites SacI and SphI (Step A in Figure 7). The choice of restriction sites used to clone a 4.0 - 4.5 kb fragment comprising module 8 coding sequences from other FK-520 or FK-506 clusters can be different depending on the DNA sequence, but the overall scheme is identical. The unique SacI and SphI restriction sites at the ends of the FK-520 module 8 fragment were then changed to unique Bgl II and NsiI sites by ligation to synthetic linkers (described in the preceding Examples, see Step B of Figure 7). Fragments containing sequences 5' and 3' of the AT8 sequences were then amplified using primers, described above, that introduced either an AvrII site or an NheI site at two different KS/AT boundaries and an XhoI site at the AT/DH boundary (Step C of Figure 7). Heterologous AT domains from the rapamycin and erythromycin gene clusters were amplified using primers, as described above, that introduced the same sites as just described (Step D of Figure 7). The fragments were ligated to give hybrid modules with in-frame fusions at the KS/AT and AT/DH boundaries (Step E of Figure 7). Finally, these hybrid modules were ligated into the BamHI and PstI sites of the KC515 vector. The resulting recombinant phage were used to transform the FK-506 and FK-520 producer strains to yield the desired recombinant cells, as described in the preceding Examples.

The following table shows the location and sequences surrounding the engineered site of each of the heterologous AT domains employed. The FK-506 hybrid construct was used as a control for the FK-520 recombinant cells produced, and a similar FK-520 hybrid construct was used as a control for the FK-506 recombinant cells.

5

Heterologous AT	Enzyme	Location of Engineered Site
FK-506 AT8	AvrII	GGCCGTccgcgCGTGCGGCGGTCTCGTCGTTC
(hydroxymalonyl)		GRPRRAAVSSF
(=5 == ==5 === = 5 =)	NheI	ACCCAGCATCCCGCGATGGGTGAGCGgctcgcC
	111161	TQHPAMGERLA
	V7 Y	TACGCCTTCCAGCGGCGCCCTACTGGatcgag
	XhoI	Y A F Q R R P Y W I E
rapamycin AT3	AvrII	GACCGGcccgtCGGGCGGGCGTGTCCTTC
(methylmalonyl)		D R P R R A G V S S F
	NheI	TGGCAGTGGCTGGGGATGGGCAGTGC_cctgcgG
		W Q W L G M G S A L R
	XhoI	TACGCCTTCCAACACCAGCGGTACTGGgtcgag Y A F O H O R Y W V E
ronomyroin AT12	AvrII	Y A F Q H Q R Y W V E GGCCGAgcgcCGGGCAGGCGTGTCGTCCTTC
rapamycin AT12	AVIII	G R A R R A G V S S F
(malonyl)		TCGCAGCGTGCTGGCATGGGTGAGGAactggcC
	NheI	SORAGMGEELA
		TACGCCTTCCAGCACCAGCGCTACTGGctcgag
	XhoI	Y A F Q H Q R Y W L E
DEBS AT1	AvrII	GCGCGAccgcgCGGGCGGGGGTCTCGTCGTTC
(methylmalonyl)		ARPRAGVSSF
(====, ===, ==, =)	NheI	TGGCAGTGGGCGGCATGGCCGTCGAcctgctC
	1vne1	WQWAGMAVDLL
	XhoI	TACCCGTTCCAGCGCGAGCGCGTCTGGctcgaa
		Y P F Q R E R V W L E
DEBS AT2	AvrII	GACGGGtgcgcCGGGCAGGTGTCCGCCGTTC
(methylmalonyl)		D G V R R A G V S A F
	NheI	GCCCAGTGGGAAGGCATGGCGCGGGAgttgttG
		A Q W E G M A R E L L
	XhoI	TATCCTTTCCAGGGCAAGCGGTTCTGGctgctg Y P F O G K R F W L L
	1227701	Y P F Q G K R F W L L

The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-520 module 8 coding sequences. Regions where *Avr*II and *Nhe*I sites were engineered are indicated by lower case and underlining.

5 AVELLTSARPWPE T GTGCCGCCGTCTCCTCGTTCGGGGTGAGCGGCACCAACGCCCACGTCATCCTGGAGGCCG V S S F G S G Τ Ν GACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGACCTTCCCCTGCTGGTGTCGG T E Ρ A A S S G D L L 10 CACGCTCACCGGAAGCGCTCGACGAGCAGATCCGCCGACTGCGCCCTACCTGGACACCA R Y L Ρ Ε Α L D Ε Q Ι R R L CCCCGGACGTCGACCGGGTGGCCGTGGCACAGACGCTGGCCCGGCGCACACACTTCGCCC V Α V Α T ACCGCGCCGTGCTCGGTGACACCGTCATCACCACACCCCCGCGGACCGGCCCGACG 15 Т Τ T Ρ Ρ Α L L G D V Ι AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGCGAGCAqctcg P F V Y S G Q G T 0 Η Α Μ G Ε CCGCCGCCATCCCGTGTTCGCCGACGCCTGGCATGAAGCGCTCCGCCGCCTTGACAACC Н Ρ Α D Α W Η Ε Α L A A A 20

The sequences shown below provide the location of the AT/DH boundary chosen in the FK-520 module 8 coding sequences. The region where an *XhoI* site was engineered is indicated by lower case and underlining.

TCCTCGGGGCTGGGTCACGGCACGCGGATGTGCCCGCGTACGCGTTCCAACGGCGGC 25 G A G S R Η D Α D V P A Y A F ${\tt ACTACTGGatcgag}{\tt TCGGCACGCCCGGCCGCATCCGACGCGGGCCACCCCGTGCTGGGCT}$ S A R P A A S D A G

The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-506 module 8 coding sequences. Regions where *Avr*II and *Nhe*I sites were engineered are indicated by lower case and underlining.

TCGGCCAGGCCGTGGCCGCACCGGCCGTccgcgcCGTGCGGCGGTCTCGTCGTTCGGG SARPWPRT G R Ρ R R A A V S GTGAGCGGCACCAACGCCCACATCATCCTGGAGGCCGGACCCGACCAGGAGGAGCCGTCG 35 Η Ε Α G Ρ D Ι Ι L GCAGAACCGGCCGGTGACCTCCCGCTGCTCGTGTCGGCACGGTCCCCGGAGGCACTGGAC Ρ V Α R S D L L L S GAGCAGATCGGGCGCCTGCGCGACTATCTCGACGCCCCCCGGCGTGGACCTGGCGGCC Α Q I R $_{
m L}$ R D Y L D Α G V 40 GTGGCGCGGACACTGGCCACGCGTACGCACTTCTCCCACCGCGCCGTACTGCTCGGTGAC V A R Α Η Η R Α V D T L Т R Т F S Τ, ACCGTCATCACCGCTCCCCCGTGGAACAGCCGGGCGAGCTCGTCTTCGTCTACTCGGGA Ρ Ρ V Ε Q Ρ G E L V F CAGGGCACCCAGCATCCCGCGATGGGTGAGCGqctcqcCGCAGCCTTCCCCGTGTTCGCC 45 R L A A A GTQHPAM G Ε F

20

GACCCGGACGTACCCGCCTACGCCTTCCAGCGGCGCCCTACTGGATCGAGTCCGCGCCG
D P D V P A Y A F Q R R P Y W I E S A P

The sequences shown below provide the location of the AT/DH boundary chosen in the FK-506 module 8 coding sequences. The region where an *XhoI* site was engineered is indicated by lower case and underlining.

GACCCGGACGTACCCGCCTACGCCTTCCAGCGGCGCCCTACTGGatcgagTCCGCGCCG
DPDVPAYAFQRRPYWIESAP

Example 4

Replacement of Methoxyl with Hydrogen or Methyl at C-15 of FK-506 and FK-520

The methods and reagents of the present invention also provide novel FK-506 and FK-520 derivatives in which the methoxy group at C-15 is replaced by a hydrogen or methyl. These derivatives are produced in recombinant host cells of the invention that express recombinant PKS enzymes the produce the derivatives. These recombinant PKS enzymes are prepared in accordance with the methodology of Examples 1 and 2, with the exception that AT domain of module 7, instead of module 8, is replaced. Moreover, the present invention provides recombinant PKS enzymes in which the AT domains of both modules 7 and 8 have been changed. The table below summarizes the various compounds provided by the present invention.

	Compound	C-13	C-15	Derivative Provided
25	FK-506	hydrogen	hydrogen	13, 15-didesmethoxy-FK-506
	FK-506	hydrogen	methoxy	13-desmethoxy-FK-506
	FK-506	hydrogen	methyl	13,15-didesmethoxy-15-methyl-FK-506
	FK-506	methoxy	hydrogen	15-desmethoxy-FK-506
	FK-506	methoxy	methoxy	Original Compound FK-506
30	FK-506	methoxy	methyl	15-desmethoxy-15-methyl-FK-506
	FK-506	methyl	hydrogen	13,15-didesmethoxy-13-methyl-FK-506
	FK-506	methyl	methoxy	13-desmethoxy-13-methyl-FK-506
	FK-506	methyl	methyl	13,15-didesmethoxy-13,15-dimethyl-FK-506
	FK-520	hydrogen	hydrogen	13, 15-didesmethoxy FK-520

20

30

	FK-520	hydrogen	methoxy	13-desmethoxy FK-520
	FK-520	hydrogen	methyl	13,15-didesmethoxy-15-methyl-FK-520
	FK-520	methoxy	hydrogen	15-desmethoxy-FK-520
	FK-520	methoxy	methoxy	Original Compound FK-520
5	FK-520	methoxy	methyl	15-desmethoxy-15-methyl-FK-520
	FK-520	methyl	hydrogen	13,15-didesmethoxy-13-methyl-FK-520
	FK-520	methyl	methoxy	13-desmethoxy-13-methyl-FK-520
	FK-520	methyl	methyl	13,15-didesmethoxy-13,15-dimethyl-FK-520

Example 5

Replacement of Methoxyl with Ethyl at C-13 and/or C-15 of FK-506 and FK-520

The present invention also provides novel FK-506 and FK-520 derivative compounds in which the methoxy groups at either or both the C-13 and C-15 positions are instead ethyl groups. These compounds are produced by novel PKS enzymes of the invention in which the AT domains of modules 8 and/or 7 are converted to ethylmalonyl specific AT domains by modification of the PKS gene that encodes the module. Ethylmalonyl specific AT domain coding sequences can be obtained from, for example, the FK-520 PKS genes, the niddamycin PKS genes, and the tylosin PKS genes. The novel PKS genes of the invention include not only those in which either or both of the AT domains of modules 7 and 8 have been converted to ethylmalonyl specific AT domain and the other is converted to a malonyl specific or a methylmalonyl specific AT domain.

25 <u>Example 6</u>
Neurotrophic Compounds

The compounds described in Examples 1 - 4, inclusive have immunosuppressant activity and can be employed as immunosuppressants in a manner and in formulations similar to those employed for FK-506. The compounds of the invention are generally effective for the prevention of organ rejection in patients receiving organ transplants and

10

15

20

25

30

in particular can be used for immunosuppression following orthotopic liver transplantation. These compounds also have pharmacokinetic properties and metabolism that are more advantageous for certain applications relative to those of FK-506 or FK-520. These compounds are also neurotrophic; however, for use as neurotrophins, it is desirable to modify the compounds to diminish or abolish their immunosuppressant activity. This can be readily accomplished by hydroxylating the compounds at the C-18 position using established chemical methodology or novel FK-520 PKS genes provided by the present invention.

Thus, in one aspect, the present invention provides a method for stimulating nerve growth that comprises administering a therapeutically effective dose of 18-hydroxy-FK-520. In another embodiment, the compound administered is a C-18,20-dihydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18-hydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18,20-dihydroxy-FK-520 derivative. In other embodiments, the compounds are the corresponding analogs of FK-506. The 18-hydroxy compounds of the invention can be prepared chemically, as described in U.S. Patent No. 5,189,042, incorporated herein by reference, or by fermentation of a recombinant host cell provided by the present invention that expresses a recombinant PKS in which the module 5 DH domain has been deleted or rendered non-functional.

The chemical methodology is as follows. A compound of the invention (~200 mg) is dissolved in 3 mL of dry methylene chloride and added to 45 μ L of 2,6-lutidine, and the mixture stirred at room temperature. After 10 minutes, tert-butyldimethylsilyl trifluoromethanesulfonate (64 μ L) is added by syringe. After 15 minutes, the reaction mixture is diluted with ethyl acetate, washed with saturated bicarbonate, washed with brine, and the organic phase dried over magnesium sulfate. Removal of solvent *in vacuo* and flash chromatography on silica gel (ethyl acetate: hexane (1:2) plus 1% methanol) gives the protected compound, which is dissolved in 95% ethanol (2.2 mL) and to which is added 53 μ L of pyridine, followed by selenium dioxide (58 mg). The flask is fitted with a water condenser and heated to 70°C on a mantle. After 20 hours, the mixture is

10

15

20

25

cooled to room temperature, filtered through diatomaceous earth, and the filtrate poured into a saturated sodium bicarbonate solution. This is extracted with ethyl acetate, and the organic phase is washed with brine and dried over magnesium sulfate. The solution is concentrated and purified by flash chromatography on silica gel (ethyl acetate: hexane (1:2) plus 1% methanol) to give the protected 18-hydroxy compound. This compound is dissolved in acetonitrile and treated with aqueous HF to remove the protecting groups. After dilution with ethyl acetate, the mixture is washed with saturated bicarbonate and brine, dried over magnesium sulfate, filtered, and evaporated to yield the 18-hydroxy compound. Thus, the present invention provides the C-18-hydroxyl derivatives of the compounds described in Examples 1 - 4.

Those of skill in the art will recognize that other suitable chemical procedures can be used to prepare the novel 18-hydroxy compounds of the invention. See, e.g., Kawai *et al.*, Jan. 1993, Structure-activity profiles of macrolactam immunosuppressant FK-506 analogues, *FEBS Letters 316*(2): 107-113, incorporated herein by reference. These methods can be used to prepare both the C18-[S]-OH and C18-[R]-OH enantiomers, with the *R* enantiomer showing a somewhat lower IC₅₀, which may be preferred in some applications. See Kawai *et al.*, *supra*. Another preferred protocol is described in Umbreit and Sharpless, 1977, JACS 99(16): 1526-28, although it may be preferable to use 30 equivalents each of SeO₂ and t-BuOOH rather than the 0.02 and 3-4 equivalents, respectively, described in that reference.

All scientific and patent publications referenced herein are hereby incorporated by reference. The invention having now been described by way of written description and example, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments, that the foregoing description and example is for purposes of illustration and not limitation of the following claims.