Section for Applied Statistics and Data Analysis

TA: Cong Mu

Office Hour: Wednesday 10:00AM - 12:00PM

November 22, 2019

Overview

- Some Statistics
 - Changes of Scale
 - Collinearity
 - Weighted Least Squares

- Some Programming
 - Examples in Faraway

Changes of Scale

- A change of scale is often helpful when values of variables are all very large or all very small
 - Interpretation
 - Numerical stability
- $ullet x_i
 ightarrow rac{x_i + a}{b}$
 - t-statistic, F-statistic, R^2 and $\hat{\sigma}^2$ unchanged
 - $\widehat{\beta}_i \to b \widehat{\beta}_i$
- $y \rightarrow \frac{y+a}{b}$
 - t-statistic, F-statistic and R² unchanged
 - $\widehat{\beta} \rightarrow b\widehat{\beta}$, $\widehat{\sigma} \rightarrow b\widehat{\sigma}$

Collinearity

- Collinearity leads to imprecise estimates of β
- Detection of collinearity
 - Correlation matrix of the predictors
 - Regression of x_i on all other predictors
 - Eigenvalues of X^TX
 - Variance inflation factor $\frac{1}{1-R_i^2}$

Weighted Least Squares

- $Var[\varepsilon] = \sigma^2 I \rightarrow Var[\varepsilon] = \sigma^2 \Sigma$
- Generalized Least Squares
 The errors are dependent

$$\widehat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{y}, \quad \text{Var} \left[\widehat{\boldsymbol{\beta}} \right] = \sigma^2 \left(\boldsymbol{X}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^{-1}.$$

Weighted Least Squares
 The errors are independent but not identically distributed

$$\Sigma = \operatorname{diag}\left(\frac{1}{w_1}, \cdots, \frac{1}{w_n}\right).$$

Examples in Faraway Chapter 7 & 8

• Example: savings dataset

• Example: seatpos dataset

• Example: fpe dataset

Thanks for listening!