INE5403 - Fundamentos de Matemática Discreta para a Computação

- 4) Relações
 - 4.1) Relações e Dígrafos
 - 4.2) Caminhos em Relações e Dígrafos
 - 4.3) Propriedades de Relações
 - 4.4) Relações de Equivalência
 - 4.5) Manipulação e Fecho de Relações

- Ligações entre elementos de conjuntos são representadas utilizando uma estrutura chamada <u>relação</u>.
- Relações podem ser usadas para resolver problemas tais como:
 - Determinar quais pares de cidades são ligadas por linhas aéreas em uma rede
 - Busca de uma ordem viável para as diferentes fases de um projeto
 - Elaboração de um modo útil de armazenar informação em bancos de dados computacionais

<u>Definição</u>: Um par ordenado (a,b) é uma lista de objetos a e b em uma ordem estabelecida, com a aparecendo em primeiro e b em segundo.

- dois pares ordenados (a_1,b_1) são ditos iguais (a_2,b_2) se e somente se $a_1=a_2$ e $b_1=b_2$.

<u>Definição</u>: Se A e B são dois conjuntos não-vazios, define-se o produto cartesiano $A \times B$ como o conjunto de *todos* os pares ordenados (a,b), com $a \in A$ e $b \in B$:

$$A \times B = \{(a,b) \mid a \in A \in b \in B\}$$

Exemplo:
$$A=\{1,2,3\}$$
 e $B=\{r,s\}$
 $A\times B=\{(1,r),(1,s),(2,r),(2,s),(3,r),(3,s)\}$

<u>Exemplo</u>: Uma firma de pesquisa em marketing classifica uma pessoa de acordo com 2 critérios:

- 1. sexo: m=masculino; f=feminino
- 2. grau de escolaridade: g=ginásio; m=médio; f=faculdade; p=pós-graduação
- sejam $S=\{m,f\}$ e $L=\{g,m,f,p\}$
- S×L contém todas as categorias de classificação (8)
- (f,f) representa mulheres que completaram a faculdade
- Obs.: para quaisquer conjuntos finitos não-vazios A e B, temos:

$$|A\times B| = |A|.|B|$$

<u>Definição</u>: Sejam A e B conjuntos. Uma *relação binária* R de A em B é um subconjunto de A×B.

- Ou: uma relação binária de A em B é um conjunto R de pares ordenados, onde o 1º elemento de cada par vem de A e o 2º vem de B, ou seja, R ⊆ A×B.
- Quando (a,b) ∈ R, diz-se que a está relacionado com b por R.
- Usa-se a notação a R b para denotar que (a,b)∈ R.
- Se a não está relacionado com b por R, escreve-se a R b.
- Relações binárias representam ligações entre elementos de 2 conjuntos.
 - veremos também relações n-árias
 - vamos omitir a palavra "binária"

Exemplo: Sejam $A=\{1,2,3\}$ e $B=\{r,s\}$.

 $-R=\{(1,r),(1,s),(2,s),(3,r)\}$ é uma relação de A em B.

Pode-se dizer: 1 R r, 1 R s, 2 R s, 3 R r

- Mas: 3 ₱ s

Esta relação também pode ser representada por:

R	r	S
1	×	×
2		×
3	×	

Exemplo: Seja A=B={1,2,3,4,5}. Define-se a relação R (menor do que) sobre A como:

- a R b se e somente se a < b.
- Neste caso: $R=\{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}$

Exemplo: Seja A o conjunto de todas as cidades e seja B o conjunto dos 3 estados da região sul do Brasil.

- (a,b) ∈ R se a cidade a está no estado b
- Por exemplo, (Florianópolis, SC), (Maringá, PR),
 (Curitiba, PR) e (Porto Alegre, RS) estão em R.

 Observe que o que realmente importa em uma relação é que nós saibamos precisamente quais elementos em A estão relacionados a quais elementos em B.

Exemplo: $A=\{1,2,3,4\}$ e R é uma relação de A em A.

- Se sabemos que 1 R 2, 1 R 3, 1 R 4, 2 R 3, 2 R 4 e 3 R 4, então nós sabemos tudo que é preciso saber sobre R
- Na verdade, R é a relação < (menor do que), mas isto nós não precisamos saber: a lista já é suficiente.
- Podemos então escrever:
 R={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}
 pois R é completamente determinada pela lista de pares.

Relações sobre um conjunto

<u>Definição</u>: Uma *relação sobre o conjunto A* é uma relação de A para A.

ou seja, é um subconjunto de A×A.

Exemplo: Seja A o conjunto {1,2,3,4}. Quais pares ordenados estão na relação R={(a,b) | a divide b}?

$$R = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$$

Note que:

$$A \times A = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}$$

Relações sobre um conjunto

Exemplo: Considere as seguintes relações sobre o conjunto dos inteiros:

$$R_1 = \{ (a,b) \mid a \le b \}$$

 $R_2 = \{ (a,b) \mid a > b \}$
 $R_3 = \{ (a,b) \mid a = b \text{ ou } a = -b \}$
 $R_4 = \{ (a,b) \mid a = b \}$
 $R_5 = \{ (a,b) \mid a = b+1 \}$
 $R_6 = \{ (a,b) \mid a+b \le 3 \}$

Quais destas relações contêm cada um dos pares (1,1),(1,2),(2,1),(1,-1) e (2,2)?

```
Resp.: (1,1) está em R_1, R_3, R_4 e R_6 (1,2) está em R_1 e R_6 (2,1) está em R_2, R_5 e R_6 (1,-1) está em R_2, R_3 e R_6 (2,2) está em R_1, R_3 e R_4
```

Relações sobre um conjunto

- Quantas relações podem ser construídas sobre um conjunto com n elementos?
 - Uma relação sobre A é um subconjunto de A×A
 - A×A tem n² elementos
 - Um conjunto com m elementos tem 2^m subconjuntos
 - Logo, há 2^{n²} subconjuntos de A×A
 - O que significa que há 2^{n²} relações possíveis sobre um conjunto com n elementos.

Definição: Seja R ⊆ A×B uma relação de A em B. Então:

- a) **Domínio** de R, denotado por Dom(R):
 - Conjunto dos elementos em A que estão relacionados com algum elemento em B
 - ou: Dom(R) é o subconjunto de A formado por todos os primeiros elementos nos pares que aparecem em R
- b) *Imagem* de R, denotado por Ran(R):
 - Conjunto dos elementos em B que s\u00e3o segundos elementos de pares de R
 - ou: Ran(R) é o conjunto de todos os elementos em B que são relacionados a algum elemento em A
- ou seja: elementos de A que não estão em Dom(R) não estão envolvidos na relação R de modo algum
 - idem para elementos de B que não estão em Ran(R)

Exemplo: Se R é a relação sobre A={1,2,3,4,5} dada por a R b se e somente se a < b, então:

$$Dom(R) = \{1,2,3,4\}$$

$$Ran(R) = \{2,3,4,5\}$$

Nota: $R = \{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}$

<u>Definição</u>: Se x∈A, define-se o conjunto R(x) dos <u>R-relativos de x</u> como sendo o conjunto de todos os y em B com a propriedade de que x está relacionado a y por R (x R y).

- ou seja: $R(x) = \{ y \in B \mid x R y \}$

<u>Definição</u>: Similarmente, se $A_1 \subseteq A$, então $R(A_1)$, o conjunto dos R
<u>relativos de A_1 </u> é o conjunto de todos os y em B com a

propriedade de que x está relacionado a y por R com $x \in A_1$.

- ou seja: $R(A_1) = \{ y \in B \mid x R y \text{ para algum } x \in A_1 \}$

<u>**Obs**</u>: note que $R(A_1)$ é a união dos conjuntos R(x), onde x∈ A_1

Conjuntos R-relativos

```
Exemplo: Seja A=B=\{a,b,c,d\} e seja R=\{(a,a),(a,b),(b,c),(c,a),(d,c),(c,b)\} Então: R(a) = \{a,b\} R(b) = \{c\} se A_1 = \{c,d\}, então R(A_1) = \{a,b,c\} Dom(R) = \{a,b,c,d\} Ran(R) = \{a,b,c\}
```

Operações em conjuntos R-relativos

Teorema: Seja R uma relação de A em B e sejam A₁ e A₂ subconjuntos de A. Então:

- a) Se $A_1 \subseteq A_2$, então $R(A_1) \subseteq R(A_2)$
- b) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
- c) $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

Exemplo: Seja A=B=Z, seja R a relação \leq , e sejam A₁= $\{0,1,2\}$ e A₂= $\{9,13\}$. Então:

- R(A₁) consiste de todos os n tais que 0≤n ou 1≤n ou 2≤n.
- Portanto, R(A₁)={0,1,2,...}
- Similarmente, R(A₂)={9,10,...}
- De modo que $R(A_1) \cap R(A_2) = \{9,10,...\}$
- Entretanto, $A_1 \cap A_2 = \emptyset$, o que indica que $R(A_1 \cap A_2) = \emptyset$

- Note que os conjuntos R(a), para a em A, determinam completamente uma relação R.
- <u>Teorema</u>: Sejam R e S relações de A em B. Se R(a)=S(a) para todo a∈ A, então R=S.

Prova:

- Se a R b, então b∈ R(a). Portanto, b∈ S(a) e a S b. (R \subseteq S)
- Se a S b, então b∈ S(a). Portanto, b∈ R(a) e a R b. (S \subseteq R)
- Logo, R=S

Representando relações

- Há muitas maneiras de representar uma relação entre conjuntos finitos.
- Uma maneira é listar os pares ordenados.
- Também se pode usar:
 - matrizes de zeros e 1's
 - grafos direcionados (dígrafos)

Matrizes de relações

<u>Definição</u>: Se $A=\{a_1,a_2,...,a_m\}$ e $B=\{b_1,b_2,...,b_n\}$ são conjuntos finitos e R é uma relação de A em B, então R pode ser representada pela matriz m×n $M_R=[m_{ii}]$, definida como:

$$\mathbf{m}_{i,j} = \begin{cases} 1 & \text{se } (\mathbf{a}_i, \mathbf{b}_j) \in \mathbf{R} \\ 0 & \text{se } (\mathbf{a}_i, \mathbf{b}_j) \notin \mathbf{R} \end{cases}$$

M_R é denominada de <u>matriz de R</u>

Exemplo: Sejam A= $\{1,2,3\}$ e B= $\{r,s\}$ e a relação R de A em B dada por R= $\{(1,r),(2,s),(3,r)\}$. Então a matriz M_R de R é:

$$\mathbf{M}_{\mathbf{R}(3\times2)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Matrizes de relações

Exemplo: Defina a relação representada pela matriz:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Solução: Como M é 3×4, fazemos:

$$A = \{a_1, a_2, a_3\}$$
 e $B = \{b_1, b_2, b_3, b_4\}$

Então, como (a_i,b_j)∈R se e somente se m_{ij}=1, temos:

$$R = \{(a_1,b_1),(a_1,b_4),(a_2,b_2),(a_2,b_3),(a_3,b_1),(a_3,b_3)\}$$

Representação de relações com dígrafos

- <u>Definição</u>: Se A é um conjunto finito e R é uma relação sobre A, então R pode ser representada graficamente como segue:
 - desenhe um pequeno círculo para cada elemento de A e o nomeie com o correspondente elemento de A → vértices
 - desenhe uma linha orientada, chamada de aresta, do vértice a
 para o vértice a
 i se (a
 i,a
 i)∈ R

A representação gráfica que resulta é chamada de "grafo direcionado" ou <u>dígrafo</u> de R.

 Portanto, se R é uma relação sobre A, as arestas do dígrafo de R correspondem exatamente aos pares em R e os vértices correspondem aos elementos do conjunto A.

Representação de relações usando dígrafos

Exemplo: Sejam $A=\{1,2,3,4\}$ e $R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\}$

O dígrafo de R é:

Representação de relações usando dígrafos

Exemplo: Encontre a relação determinada pela figura abaixo:

Solução:

$$R = \{(1,1),(1,3),(2,3),(3,2),(3,3),(4,3)\}$$

Representação de relações usando dígrafos

- Note que dígrafos nada mais são do que representações geométricas de relações.
 - ⇒ qualquer afirmação feita a respeito de um dígrafo é na verdade uma afirmação sobre a relação correspondente.
- Isto é especialmente importante para teoremas sobre relações e suas provas:
 - frequentemente é mais fácil ou mais claro estabelecer um resultado em termos gráficos, mas a prova vai sempre estar ligada à relação associada.

Relações e dígrafos

<u>Definição</u>: Se R é uma relação sobre um conjunto A e a∈A, então:

- i) O <u>grau de entrada de a</u> (com relação a R) é o número de elementos b∈ A tais que (b,a)∈ R.
- ii) O <u>grau de saída de a</u> é o número de elementos b∈ A tais que (a,b)∈ R.
 - Note que o grau de saída de a é |R(a)|

Relações e dígrafos

Exemplo: Seja A={a,b,c,d} e seja R uma relação sobre A que tenha como matriz:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Construa o dígrafo de R e liste os graus de entrada e de saída dos vértices.

Resp.: $R = \{(a,a),(b,b),(c,a),(c,b),(c,c),(d,b),(d,d)\}$

