MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

5. december 2024

Vsebina

Deljivost

2 / 40

Jan Kastelic (GAA) MATEMATIKA

Section 1

Deljivost

- Deljivost
 - Relacija deljivosti
 - Kriteriji deljivost
 - Osnovni izrek o deljenju
 - Praštevila in sestavljena števila
 - Osnovni izrek aritmetike
 - Največji skupni delitelj in najmanjši skupni večkratnik
 - Številski sestavi

4 / 40

Jan Kastelic (GAA)

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n}=\mathbf{k}\cdot\mathbf{m}.$$

5 / 40

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

5 / 40

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

Število m je delitelj samega sebe in vseh svojih večkratnikov.

5 / 40

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

Število m je delitelj samega sebe in vseh svojih večkratnikov.

1 je delitelj vsakega naravnega števila.

5 / 40

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

Število m je delitelj samega sebe in vseh svojih večkratnikov.

1 je delitelj vsakega naravnega števila.

Če d deli naravni števili m in $n,\ n>m$, potem d deli tudi vsoto in razliko števil m in n.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Relacija deljivosti je:

6 / 40

Relacija deljivosti je:

refleksivna:

5. december 2024

Relacija deljivosti je:

refleksivna:

 $n \mid n$;

Relacija deljivosti je:

refleksivna:

 $n \mid n$;

antisimetrična:

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

tranzitivna:

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

1 tranzitivna:

$$m \mid n \wedge n \mid o \Rightarrow m \mid o$$
.

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

tranzitivna:

$$m \mid n \wedge n \mid o \Rightarrow m \mid o$$
.

Relacija s temi lastnostmi je relacija **delne urejenosti**, zato relacija deljivosti delno ureja množico \mathbb{N} .

Zapišite vse delitelje števil.

Zapišite vse delitelje števil.

- 6
- 16
- 37
- 48
- 120

Pokažite, da trditev velja.

Pokažite, da trditev velja.

• Izraz x - 3 deli izraz $x^2 - 2x - 3$.

• Izraz x + 2 deli izraz $x^3 + x^2 - 4x - 4$.

• Izraz x - 2 deli izraz $x^3 - 8$.

Pokažite, da trditev velja.

Pokažite, da trditev velja.

•
$$19 \mid (3^{21} - 3^{20} + 3^{18})$$

$$\bullet$$
 7 | $(3 \cdot 4^{11} + 4^{12} + 7 \cdot 4^{10})$

• 14 |
$$(5 \cdot 3^6 + 2 \cdot 3^8 - 3 \cdot 3^7)$$

•
$$25 \mid (7 \cdot 2^{23} - 3 \cdot 2^{24} + 3 \cdot 2^{25} - 2^{22})$$

•
$$11 \mid (2 \cdot 10^6 + 3 \cdot 10^7 + 10^8)$$

•
$$35 \mid (6^{32} - 36^{15})$$

Pokažite, da trditev velja.

Pokažite, da trditev velja.

•
$$3 \mid (2^{2n+1} - 5 \cdot 2^{2n} + 9 \cdot 2^{2n-1})$$

• 29 |
$$(5^{n+3} - 2 \cdot 5^{n+1} + 7 \cdot 5^{n+2})$$

• 10 |
$$(3 \cdot 7^{4n-1} - 4 \cdot 7^{4n-2} + 7^{4n+1})$$

•
$$10 \mid (9^{3n-1} + 9 \cdot 9^{3n+1} + 9^{3n} - 9^{3n+2})$$

•
$$5 \mid (7 \cdot 2^{4n-2} + 3 \cdot 4^{2n} - 16^n)$$

10 / 40

Pokažite, da je za poljubno naravno število u vrednost izraza

$$(u+7)(7-u)-3(3-u)(u+5)$$

večkratnik števila 4.

11 / 40

Kriteriji deljivosti

Jan Kastelic (GAA) MATEMATIKA

Kriteriji deljivosti

Deljivost z 2

5. december 2024

Jan Kastelic (GAA)

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

12 / 40

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

12 / 40

Jan Kastelic (GAA) MATEMATIKA

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

12 / 40

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

12 / 40

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

Število je deljivo s 4 oziroma 25 natanko takrat, ko je dvomestni konec števila deljiv s 4 oziroma 25.

12 / 40

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

Število je deljivo s 4 oziroma 25 natanko takrat, ko je dvomestni konec števila deljiv s 4 oziroma 25.

Deljivost s 5

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

Število je deljivo s 4 oziroma 25 natanko takrat, ko je dvomestni konec števila deljiv s 4 oziroma 25.

Deljivost s 5

Število je deljivo s 5 natanko takrat, ko so enice števila enake 0 ali 5.

Jan Kastelic (GAA) MATEMATIKA

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

13 / 40

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

13 / 40

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

13 / 40

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

Deljivost z 10 oziroma 10ⁿ

13 / 40

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

Deljivost z 10 oziroma 10ⁿ

Število je deljivo z 10 natanko takrat, ko so enice števila enake 0.

13 / 40

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

Deljivost z 10 oziroma 10ⁿ

Število je deljivo z 10 natanko takrat, ko so enice števila enake 0. Število je deljivo z 10^n natanko takrat, ko ima število na zadnjih n mestih števko 0.

Jan Kastelic (GAA)

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

14 / 40

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

14 / 40

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

Vzamemo enice danega števila in jih pomnožimo s 5,

14 / 40

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- 2 prvotnemu številu brez enic prištejemo dobljeni produkt,

14 / 40

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- 2 prvotnemu številu brez enic prištejemo dobljeni produkt,
- o vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

14 / 40

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- prvotnemu številu brez enic prištejemo dobljeni produkt,
- o vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

Postopek ponavljamo, dokler ne dobimo dvomestnega števila – če je to deljivo s 7, je prvotno število deljivo s 7.

14 / 40

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- prvotnemu številu brez enic prištejemo dobljeni produkt,
- o vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

Postopek ponavljamo, dokler ne dobimo dvomestnega števila – če je to deljivo s 7, je prvotno število deljivo s 7.

Deljivost s sestavljenim številom

Jan Kastelic (GAA)

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- prvotnemu številu brez enic prištejemo dobljeni produkt,
- 3 vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

Postopek ponavljamo, dokler ne dobimo dvomestnega števila – če je to deljivo s 7, je prvotno število deljivo s 7.

Deljivost s sestavljenim številom

Število zapišemo kot produkt dveh (ali več) tujih števil in preverimo deljivost z vsakim faktorjem posebej.

Naloga

S katerimi od števil 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 so deljiva naslednja števila?

15 / 40

Naloga

S katerimi od števil 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 so deljiva naslednja števila?

• 84742

• 393948

• 12390

• 19401

Naloga

Določite vse možnosti za števko a, da je število $\overline{65833}a$:

16 / 40

Naloga

Določite vse možnosti za števko a, da je število 65833a:

- deljivo s 3,
- deljivo s 4,
- deljivo s 5,
- deljivo s 6.

Naloga

Določite vse možnosti za števko b, da je število $\overline{65b90b}$:

17 / 40

Naloga

Določite vse možnosti za števko b, da je število $\overline{65b90b}$:

- deljivo z 2,
- deljivo s 3,
- deljivo s 6,
- deljivo z 9,
- deljivo z 10.

Kriteriji deljivost

Določite vse možnosti za števki c in d, da je število $\overline{115c1d}$ deljivo s 6.

18 / 40

Določite vse možnosti za števki c in d, da je število $\overline{115c1d}$ deljivo s 6.

Naloga

Določite vse možnosti za števki e in f, da je število $\overline{115e1f}$ deljivo z 8.

Kriteriji deljivost

Pokažite, da za vsako naravno število n 12 deli $n^4 - n^2$.

19 / 40

Pokažite, da za vsako naravno število n 12 deli $n^4 - n^2$.

Naloga

Preverite, ali je število 8641969 deljivo s 7.

19 / 40

20 / 40

5. december 2024

Jan Kastelic (GAA) MATEMATIKA

Osnovni izrek o deljenju

5. december 2024

Jan Kastelic (GAA)

Osnovni izrek o deljenju

Za poljubni naravni števili \mathbf{m} (**deljenec**) in \mathbf{n} (**delitelj**), $m \ge n$, obstajata natanko določeni nenegativni števili \mathbf{k} (**količnik/kvocient**) in \mathbf{r} (**ostanek**), da velja:

20 / 40

Osnovni izrek o deljenju

Za poljubni naravni števili \mathbf{m} (**deljenec**) in \mathbf{n} (**delitelj**), $m \geq n$, obstajata natanko določeni nenegativni števili \mathbf{k} (**količnik**/**kvocient**) in \mathbf{r} (**ostanek**), da velja:

$$m = k \cdot n + r$$
; $0 \le r < n$; $m, n \in \mathbb{N}$; $k, r \in \mathbb{N}_0$.

20 / 40

Osnovni izrek o deljenju

Za poljubni naravni števili \mathbf{m} (**deljenec**) in \mathbf{n} (**delitelj**), $m \ge n$, obstajata natanko določeni nenegativni števili \mathbf{k} (**količnik**/**kvocient**) in \mathbf{r} (**ostanek**), da velja:

$$m = k \cdot n + r$$
; $0 \le r < n$; $m, n \in \mathbb{N}$; $k, r \in \mathbb{N}_0$.

Če je ostanek pri deljenju enak 0, je število m **večkratnik** števila n. Tedaj je število m deljivo s številom n. Pravimo, da n deli število m: $n \mid m$.

20 / 40

Osnovni izrek o deljenju

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

- številom 3;
- številom 7;
- številom 365.

21 / 40

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

- številom 3;
- številom 7;
- številom 365.

Naloga

Zapišite prvih nekaj naravnih števil, ki dajo:

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

- številom 3;
- številom 7;
- številom 365.

Naloga

Zapišite prvih nekaj naravnih števil, ki dajo:

- pri deljenju s 4 ostanek 3;
- pri deljenju s 7 ostanek 4;
- pri deljenju z 9 ostanek 4.

21 / 40

Zapišite naravno število, ki da:

Zapišite naravno število, ki da:

- pri deljenju s 7 količnik 5 in ostanek 3;
- pri deljenju z 10 količnik 9 in ostanek 1;
- pri deljenju s 23 količnik 2 in ostanek 22.

22 / 40

Zapišite naravno število, ki da:

- pri deljenju s 7 količnik 5 in ostanek 3;
- pri deljenju z 10 količnik 9 in ostanek 1;
- pri deljenju s 23 količnik 2 in ostanek 22.

Naloga

Zapišite množico vseh naravnih števil *n*, ki dajo:

Zapišite naravno število, ki da:

- pri deljenju s 7 količnik 5 in ostanek 3;
- pri deljenju z 10 količnik 9 in ostanek 1;
- pri deljenju s 23 količnik 2 in ostanek 22.

Naloga

Zapišite množico vseh naravnih števil *n*, ki dajo:

- pri deljenju z 2 ostanek 1;
- pri deljenju z 2 ostanek 0;
- pri deljenju s 5 ostanek 2.

22 / 40

5 december 2024

Jan Kastelic (GAA) MATEMATIKA

Osnovni izrek o deljenju

Katero število smo delili s 7, če smo dobili kvocient 3 in ostanek 5?

23 / 40

Jan Kastelic (GAA) MATEMATIKA

Katero število smo delili s 7, če smo dobili kvocient 3 in ostanek 5?

Naloga

S katerim številom smo delili število 73, če smo dobili kvocient 12 in ostanek 1?

Katero število smo delili s 7, če smo dobili kvocient 3 in ostanek 5?

Naloga

S katerim številom smo delili število 73, če smo dobili kvocient 12 in ostanek 1?

Naloga

Marjeta ima čebulice tulipana, ki jih želi posaditi v več vrst. V vsaki od 3 vrst je izkopala po 8 jamic, potem pa ugotovila, da ji bosta 2 čebulici ostali. Koliko čebulic ima Marjeta?

Osnovni izrek o deljenju

Če neko število delimo z 8, dobimo ostanek 7. Kolikšen je ostanek, če to isto število delimo s 4?

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

Če neko število delimo z 8, dobimo ostanek 7. Kolikšen je ostanek, če to isto število delimo s 4?

Naloga

Če neko število delimo s 24 dobimo ostanek 21. Kolikšen je ostanek, če to isto število delimo s 3?

5. december 2024

Jan Kastelic (GAA)

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

25 / 40

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

• **število** 1 – število, ki ima samo enega delitelja (samega sebe);

25 / 40

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ - 巻 - 夕へ@

25/40

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

25/40

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

$$\mathbb{N} = \{1\} \cup \mathbb{P} \cup \{sestavljena \ ext{stevila}\}$$

25/40

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

$$\mathbb{N} = \{1\} \cup \mathbb{P} \cup \{\textit{sestavljena števila}\}$$

Praštevil je neskončno mnogo.

25/40

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

$$\mathbb{N} = \{1\} \cup \mathbb{P} \cup \{sestavljena \ \mathsf{\check{s}}tevila\}$$

Praštevil je neskončno mnogo.

Število n je praštevilo, če ni deljivo z nobenim praštevilom, manjšim ali enakim \sqrt{n} .

25/40

Praštevila in sestavljena števila

Eratostenovo sito

5. december 2024

Eratostenovo sito

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

26 / 40

Praštevila in sestavljena števila

Preverite, ali so dana števila praštevila.

27 / 40

Preverite, ali so dana števila praštevila.

- 103
- 163
- 137
- 197
- 147
- 559

Osnovni izrek aritmetike

Jan Kastelic (GAA)

Osnovni izrek aritmetike

Vsako naravno število lahko enolično/na en sam način (do vrstnega reda faktorjev natančno) zapišemo kot produkt potenc s praštevilskimi osnovami:

28 / 40

Osnovni izrek aritmetike

Vsako naravno število lahko enolično/na en sam način (do vrstnega reda faktorjev natančno) zapišemo kot produkt potenc s praštevilskimi osnovami:

$$n=p_1^{k_1}\cdot p_2^{k_2}\cdot\ldots\cdot p_l^{k_l}.$$

28 / 40

Osnovni izrek aritmetike

Vsako naravno število lahko enolično/na en sam način (do vrstnega reda faktorjev natančno) zapišemo kot produkt potenc s praštevilskimi osnovami:

$$n=p_1^{k_1}\cdot p_2^{k_2}\cdot\ldots\cdot p_l^{k_l}.$$

Zapis naravnega števila kot produkt potenc s praštevilskimi osnovami imenujemo tudi **praštevilski razcep**.

28 / 40

Zapišite število 8755 kot produkt sami praštevil in njihovih potenc.

Zapišite število 8755 kot produkt sami praštevil in njihovih potenc.

Naloga

Razcepite število 3520 na prafaktorje.

Zapišite praštevilski razcep števila 38250.

30 / 40

5. december 2024

Zapišite praštevilski razcep števila 38250.

Naloga

Zapišite praštevilski razcep števila 3150.

Razcepite število 66 na prafaktorje in zapišite vse njegove delitelje.

31 / 40

Razcepite število 66 na prafaktorje in zapišite vse njegove delitelje.

Naloga

Razcepite število 204 na prafaktorje in zapišite vse njegove delitelje.

Zapišite vse izraze, ki delijo dani izraz.

32 / 40

5. december 2024

Zapišite vse izraze, ki delijo dani izraz.

•
$$x^2 + x - 1$$

•
$$x^3 - x^2 - 4x + 4$$

•
$$x^3 - 27$$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ©

33 / 40

Največji skupni delitelj

33 / 40

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

33 / 40

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

Najmanjši skupni večkratnik

33 / 40

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

Najmanjši skupni večkratnik

Najmanjši skupni večkratnik števil m in n je najmanjše število od tistih, ki so deljiva s številoma m in n.

Oznaka: v(m, n).

33 / 40

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

Najmanjši skupni večkratnik

Najmanjši skupni večkratnik števil m in n je najmanjše število od tistih, ki so deljiva s številoma m in n.

Oznaka: v(m, n).

Števili m in n, katerih največji skupni delitelj je 1, sta **tuji števili**.

33 / 40

5. december 2024

イロト イ団ト イヨト イヨト ヨー かなべ

• Števili *m* in *n* prafaktoriziramo.

34 / 40

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩@

34 / 40

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

| ロト 4回 ト 4 差 ト 4 差 ト | 差 | 夕 Q C

34 / 40

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m}, \mathbf{n}) \cdot \mathbf{v}(\mathbf{m}, \mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

34 / 40

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m}, \mathbf{n}) \cdot \mathbf{v}(\mathbf{m}, \mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m},\mathbf{n}) \cdot \mathbf{v}(\mathbf{m},\mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih.

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m},\mathbf{n}) \cdot \mathbf{v}(\mathbf{m},\mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih. V naslednjem koraku deljenec postane prejšnji delitelj, delitelj pa prejšnji ostanek.

4□ > 4□ > 4 = > 4 = > = 90

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m},\mathbf{n}) \cdot \mathbf{v}(\mathbf{m},\mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih. V naslednjem koraku deljenec postane prejšnji delitelj, delitelj pa prejšnji ostanek. V vsakem koraku immamo manjša števila, zato se algoritem konča v končno mnogo korakih.

34 / 40

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m}, \mathbf{n}) \cdot \mathbf{v}(\mathbf{m}, \mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih. V naslednjem koraku deljenec postane prejšnji delitelj, delitelj pa prejšnji ostanek. V vsakem koraku immamo manjša števila, zato se algoritem konča v končno mnogo korakih. Največji skupni delitelj danih števil m in n je zadnji od 0 različen ostanek pri deljenju v Evklidovem algoritmu.

5. december 2024

Izračunajte največji skupni delitelj in najmanjši skupni večkratnih danih parov števil.

35 / 40

Izračunajte največji skupni delitelj in najmanjši skupni večkratnih danih parov števil.

• 6 in 8

• 36 in 48

• 550 in 286

• 6120 in 4158

Preverite, ali sta števili 522 in 4025 tuji števili.

Preverite, ali sta števili 522 in 4025 tuji števili.

Naloga

Izračunajte največji skupni delitelj in najmanjši skupni večkratnik treh števil.

36 / 40

Preverite, ali sta števili 522 in 4025 tuji števili.

Naloga

Izračunajte največji skupni delitelj in najmanjši skupni večkratnik treh števil.

• 1320, 6732 in 297

• 372, 190 in 11264

36 / 40

Z Evklidovim algoritmom izračunajte največji skupni delitelj parov števil.

37 / 40

Z Evklidovim algoritmom izračunajte največji skupni delitelj parov števil.

• 754 in 3146

• 4446 in 6325

37 / 40

Naloga

Z Evklidovim algoritmom izračunajte največji skupni delitelj parov števil.

• 754 in 3146

• 4446 in 6325

Naloga

Izračuanjte število b, če velja: D(78166, b) = 418 in v(78166, b) = 1485154.

MATEMATIKA

Določite največji skupni delitelj izrazov.

38 / 40

5. december 2024 Jan Kastelic (GAA) MATEMATIKA

Naloga

Določite največji skupni delitelj izrazov.

•
$$x^3 - 5x^2 - 24x$$
 in $x^2 - 64$

•
$$x^2 + 3x + 10$$
, $x^3 - 4x$ in $x^3 - 8$

•
$$x^2 - 15$$
 in $x^3 - 27$

5. december 2024

Določite najmanjši skupni večkratnik izrazov.

< ロト < 個 ト < 重 ト < 重 ト ■ ● へ Q ○

Naloga

Določite najmanjši skupni večkratnik izrazov.

•
$$x^2 - 64$$
 in $x + 8$

•
$$x$$
, 8 – x in x^2 – 64

•
$$x^2 + 3x - 10$$
, $2x$ in $x^2 + 5x$

Številski sestavi

40 / 40

Jan Kastelic (GAA) MATEMATIKA