Import libraries

```
In [1]: import numpy as np import pandas as pd
```

```
In [2]: data = pd.read_csv(r"C:\Users\user\Downloads\4_drug200.csv")
    data
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]: print(data.info())

None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

	0010					
#	Column	Non-Null	Count	Dtype		
0	Age	200 non-n	ull	int64		
1	Sex	200 non-n	ull	object		
2	BP	200 non-n	ull	object		
3	Cholesterol	200 non-n	ull	object		
4	Na_to_K	200 non-n	ull	float64		
5	Drug	200 non-n	ull	object		
<pre>dtypes: float64(1), int64(1), object(4)</pre>						
memory usage: 9.5+ KB						

```
In [4]:
         print(data.describe())
                        Age
                                 Na to K
                200.000000
                              200.000000
         count
                  44.315000
                               16.084485
         mean
                  16.544315
         std
                                7.223956
         min
                  15.000000
                                6.269000
         25%
                  31.000000
                               10.445500
         50%
                  45.000000
                               13.936500
         75%
                  58.000000
                               19.380000
                  74.000000
         max
                               38.247000
In [5]: data.size
Out[5]: 1200
In [6]: data.shape
Out[6]: (200, 6)
In [7]: data1 = data.drop(["Sex","BP","Cholesterol","Drug"],axis=1)
         data1
Out[7]:
              Age Na_to_K
            0
                23
                     25.355
            1
                47
                     13.093
            2
                47
                     10.114
            3
                28
                      7.798
            4
                61
                     18.043
                ...
          195
                56
                     11.567
          196
                16
                     12.006
          197
                52
                      9.894
          198
                23
                     14.020
          199
                40
                     11.349
         200 rows × 2 columns
In [8]:
         print(data1.mean())
                     44.315000
         Age
         Na_to_K
                     16.084485
```

dtype: float64

```
In [9]: print(data.median())
                      45.0000
          Age
                     13.9365
          Na_to_K
          dtype: float64
In [10]:
         print(data1.mode())
                   Na_to_K
              Age
             47.0
                     12.006
                     18.295
              NaN
In [11]: print(data1.isna().sum())
          Age
          Na_to_K
          dtype: int64
In [12]: print(data1.isna().sum())
                      0
          Age
          Na_to_K
                      0
          dtype: int64
In [13]: |print(data1.sum())
          Age
                      8863.000
          Na_to_K
                      3216.897
          dtype: float64
In [14]:
         import matplotlib.pyplot as plot
In [15]: data1.plot.line()
Out[15]: <AxesSubplot:>
           70
           60
           50
           40
           30
           20
           10
                    25
                          50
                               75
                                    100
                                         125
                                              150
                                                    175
                                                         200
```

In [20]: data.plot.scatter("Age","Na_to_K")

Out[20]: <AxesSubplot:xlabel='Age', ylabel='Na_to_K'>

In [22]: data3 = data[["Age","Na_to_K"]][0:8]
 data3

Out[22]:

	Age	Na_to_K
0	23	25.355
1	47	13.093
2	47	10.114
3	28	7.798
4	61	18.043
5	22	8.607
6	49	16.275
7	41	11.037

```
In [24]: slice = data3["Na_to_K"]
    country = data3["Age"]
    #col = ["r", "g", "b", "orange", "y", "black", "white", "violet", "brown"]
    plot.pie(slice,labels=country,startangle=90,shadow=True,explode=(0,0,0,0,0,0,0,0,5,0)
    plot.show()
```


In [25]: data.plot.box()

Out[25]: <AxesSubplot:>

In [27]: data1.plot.hist()

Out[27]: <AxesSubplot:ylabel='Frequency'>

In [28]: data1.plot.bar()

Out[28]: <AxesSubplot:>

In []: