Package 'radiant.model'

October 11, 2024

```
Type Package
Title Model Menu for Radiant: Business Analytics using R and Shiny
Version 1.6.7
Date 2024-10-7
Description The Radiant Model menu includes interfaces for linear and logistic
     regression, naive Bayes, neural networks, classification and regression trees,
     model evaluation, collaborative filtering, decision analysis, and simulation.
     The application extends the functionality in 'radiant.data'.
Depends R (>= 4.3.0), radiant.data (>= 1.6.6)
Imports radiant.basics (>= 1.6.6), shiny (>= 1.8.1), nnet (>= 7.3.12),
     NeuralNetTools (>= 1.5.1), sandwich (>= 2.3.4), car (>= 2.1.3),
     ggplot2 (>= 3.4.2), scales (>= 1.2.1), data.tree (>= 0.7.4),
     stringr (>= 1.1.0), lubridate (>= 1.7.2), tidyr (>= 0.8.2),
     dplyr (>= 1.1.2), tidyselect (>= 1.2.0), rlang (>= 0.4.10),
     magrittr (>= 1.5), DiagrammeR (>= 1.0.9), import (>= 1.1.0),
     psych (>= 1.8.4), e1071 (>= 1.6.8), rpart (>= 4.1.11), ggrepel
     (>= 0.8), broom (>= 0.7.0), patchwork (>= 1.0.0), ranger (>=
     0.11.2), xgboost (>= 1.6.0.1), pdp (>= 0.8.1), vip (>= 0.3.2),
     stringi, yaml
Suggests testthat (>= 2.0.0), pkgdown (>= 1.1.0)
URL https://github.com/radiant-rstats/radiant.model/,
     https://radiant-rstats.github.io/radiant.model/,
     https://radiant-rstats.github.io/docs/
BugReports https://github.com/radiant-rstats/radiant.model/issues/
License AGPL-3 | file LICENSE
LazyData true
Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
NeedsCompilation no
```

2 Contents

Author Vincent Nijs [aut, cre]

Maintainer Vincent Nijs <radiant@rady.ucsd.edu>

Repository CRAN

Date/Publication 2024-10-11 05:50:02 UTC

Contents

4
5
5
6
7
7
9
0
2
3
5
6
8
9
20
20
21
22
23
24
25
27
27
28
28
9
0
1
31
3
3
4
6
7
8
9
9
1
2
3

Contents 3

plot.gbt	43
plot.logistic	45
plot.mnl	
plot.mnl.predict	
plot.model.predict	
plot.nb	
plot.nb.predict	
plot.nn	
plot.regress	
plot.repeater	
plot.rforest	
1	
plot cimulator	
plot.simulater	
plot.uplift	
predict.crtree	
predict.gbt	
predict.logistic	
predict.mnl	
predict.nb	
predict.nn	
predict.regress	
predict.rforest	67
predict_model	68
pred_plot	69
print.crtree.predict	70
print.gbt.predict	71
print.logistic.predict	71
print.mnl.predict	72
print.nb.predict	
print.nn.predict	
print.regress.predict	
print.rforest.predict	
print_predict_model	
profit	
radiant.model	
radiant.model-deprecated	
radiant.model_viewer	
radiant.model_window	
ratings	
regress	
remove_comments	
render.DiagrammeR	
repeater	
rforest	
rig	
RMSE	85
Rsq	85
scale df	86

.as_int

sensitivity	. 86 . 87
sensitivity.dtree	
simulater	
sim cleaner	
sim_cor	. 91
sim_splitter	
sim_summary	
store.crs	. 93
store.mnl.predict	. 94
store.model	
store.model.predict	
store.nb.predict	
store.rforest.predict	
summary.confusion	
summary.crs	
summary.crtree	
summary.dtree	
summary.evalbin	
summary.evalreg	
summary.gbt	
summary.logistic	
summary.mnl	
summary.nb	
summary.nn	
summary.regress	
summary.repeater	
summary.rforest	
summary.simulater	
summary.uplift	
test_specs	
uplift	
varimp	
varimp_plot	
var check	
write.coeff	
	116
	110

Convenience function used in "simulater"

Description

.as_int

Convenience function used in "simulater"

.as_num 5

Usage

```
.as_int(x, dataset = list())
```

Arguments

x Character vector to be converted to integer

dataset Data list

Value

An integer vector

.as_num

Convenience function used in "simulater"

Description

Convenience function used in "simulater"

Usage

```
.as_num(x, dataset = list())
```

Arguments

x Character vector to be converted to an numeric value

dataset Data list

Value

An numeric vector

auc

Area Under the RO Curve (AUC)

Description

Area Under the RO Curve (AUC)

Usage

```
auc(pred, rvar, lev)
```

6 catalog

Arguments

pred Prediction or predictor rvar Response variable

lev The level in the response variable defined as success

Details

```
See \ https://radiant-rstats.github.io/docs/model/evalbin.html \ for \ an \ example \ in \ Radiant
```

Value

AUC statistic

See Also

```
evalbin to calculate results
summary.evalbin to summarize results
plot.evalbin to plot results
```

Examples

```
auc(runif(20000), dvd$buy, "yes")
auc(ifelse(dvd$buy == "yes", 1, 0), dvd$buy, "yes")
```

catalog

Catalog sales for men's and women's apparel

Description

Catalog sales for men's and women's apparel

Usage

```
data(catalog)
```

Format

A data frame with 200 rows and 5 variables

Details

Description provided in attr(catalog, "description")

confint_robust 7

Description

Confidence interval for robust estimators

Usage

```
confint_robust(object, level = 0.95, dist = "norm", vcov = NULL, ...)
```

Arguments

object	A fitted model object
level	The confidence level required
dist	Distribution to use ("norm" or "t")
vcov	Covariance matrix generated by, e.g., sandwich::vcovHC
	Additional argument(s) for methods

Details

Wrapper for confint with robust standard errors. See https://stackoverflow.com/questions/3817182/vcovhc-and-confidence-interval/3820125#3820125

confusion

Confusion matrix

Description

Confusion matrix

Usage

```
confusion(
  dataset,
  pred,
  rvar,
  lev = "",
  cost = 1,
  margin = 2,
  scale = 1,
  train = "All",
  data_filter = "",
  arr = "",
```

8 confusion

```
rows = NULL,
envir = parent.frame(),
...
)
```

Arguments

dataset	Dataset
pred	Predictions or predictors
rvar	Response variable
lev	The level in the response variable defined as success
cost	Cost for each connection (e.g., email or mailing)
margin	Margin on each customer purchase
scale	Scaling factor to apply to calculations
train	Use data from training ("Training"), test ("Test"), both ("Both"), or all data ("All") to evaluate model evalbin
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from
	further arguments passed to or from other methods

Details

Confusion matrix and additional metrics to evaluate binary classification models. See https://radiant-rstats.github.io/docs/model/evalbin.html for an example in Radiant

Value

A list of results

See Also

```
summary.confusion to summarize results plot.confusion to plot results
```

Examples

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  confusion(c("pred1", "pred2"), "buy") %>%
  str()
```

crs 9

crs

Collaborative Filtering

Description

Collaborative Filtering

Usage

```
crs(
  dataset,
  id,
  prod,
  pred,
  rate,
  data_filter = "",
  arr = "",
  rows = NULL,
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
id	String with name of the variable containing user ids
prod	String with name of the variable with product ids
pred	Products to predict for
rate	String with name of the variable with product ratings
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "training == 1")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/model/crs.html for an example in Radiant

Value

A data frame with the original data and a new column with predicted ratings

See Also

```
summary.crs to summarize results
plot.crs to plot results if the actual ratings are available
```

10 crtree

Examples

```
crs(ratings,
  id = "Users", prod = "Movies", pred = c("M6", "M7", "M8", "M9", "M10"),
  rate = "Ratings", data_filter = "training == 1"
) %>% str()
```

crtree

Classification and regression trees based on the rpart package

Description

Classification and regression trees based on the rpart package

Usage

```
crtree(
  dataset,
  rvar,
 evar,
  type = "",
 lev = "",
 wts = "None",
 minsplit = 2,
 minbucket = round(minsplit/3),
 cp = 0.001,
  pcp = NA,
  nodes = NA,
 K = 10,
  seed = 1234,
  split = "gini",
  prior = NA,
  adjprob = TRUE,
  cost = NA,
 margin = NA,
  check = "",
  data_filter = "",
 arr = "",
  rows = NULL,
 envir = parent.frame()
)
```

Arguments

dataset	Dataset
rvar	The response variable in the model
evar	Explanatory variables in the model

crtree 11

Model type (i.e., "classification" or "regression") type lev The level in the response variable defined as success Weights to use in estimation wts The minimum number of observations that must exist in a node in order for a minsplit split to be attempted. minbucket the minimum number of observations in any terminal <leaf> node. If only one of minbucket or minsplit is specified, the code either sets minsplit to minbucket*3 or minbucket to minsplit/3, as appropriate. Minimum proportion of root node deviance required for split (default = 0.001) ср Complexity parameter to use for pruning рср Maximum size of tree in number of nodes to return nodes Number of folds use in cross-validation Random seed used for cross-validation seed split Splitting criterion to use (i.e., "gini" or "information") Adjust the initial probability for the selected level (e.g., set to .5 in unbalanced prior samples) Setting a prior will rescale the predicted probabilities. Set adjprob to TRUE to adjprob adjust the probabilities back to their original scale after estimation Cost for each treatment (e.g., mailing) cost Margin associated with a successful treatment (e.g., a purchase) margin check Optional estimation parameters (e.g., "standardize") Expression entered in, e.g., Data > View to filter the dataset in Radiant. The data_filter expression should be a string (e.g., "price > 10000") Expression to arrange (sort) the data on (e.g., "color, desc(price)") arr

Details

rows

envir

See https://radiant-rstats.github.io/docs/model/crtree.html for an example in Radiant

Rows to select from the specified dataset

Environment to extract data from

Value

A list with all variables defined in crtree as an object of class tree

See Also

```
summary.crtree to summarize results
plot.crtree to plot results
predict.crtree for prediction
```

Examples

```
crtree(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>% summary()
result <- crtree(titanic, "survived", c("pclass", "sex")) %>% summary()
result <- crtree(diamonds, "price", c("carat", "clarity"), type = "regression") %>% str()
```

12 cv.crtree

cv.crtree

Cross-validation for Classification and Regression Trees

Description

Cross-validation for Classification and Regression Trees

Usage

```
cv.crtree(
   object,
   K = 5,
   repeats = 1,
   cp,
   pcp = seq(0, 0.01, length.out = 11),
   seed = 1234,
   trace = TRUE,
   fun,
   ...
)
```

Arguments

object	Object of type "rpart" or "crtree" to use as a starting point for cross validation
K	Number of cross validation passes to use
repeats	Number of times to repeat the K cross-validation steps
ср	Complexity parameter used when building the (e.g., 0.0001)
рср	Complexity parameter to use for pruning
seed	Random seed to use as the starting point
trace	Print progress
fun	Function to use for model evaluation (e.g., auc for classification or RMSE for regression)
	Additional arguments to be passed to 'fun'

Details

 $See \ https://radiant-rstats.github.io/docs/model/crtree.html \ for \ an \ example \ in \ Radiant$

Value

A data.frame sorted by the mean, sd, min, and max of the performance metric

cv.gbt

See Also

crtree to generate an initial model that can be passed to cv.crtree

Rsq to calculate an R-squared measure for a regression

RMSE to calculate the Root Mean Squared Error for a regression

MAE to calculate the Mean Absolute Error for a regression

auc to calculate the area under the ROC curve for classification

profit to calculate profits for classification at a cost/margin threshold

Examples

```
## Not run:
result <- crtree(dvd, "buy", c("coupon", "purch", "last"))
cv.crtree(result, cp = 0.0001, pcp = seq(0, 0.01, length.out = 11))
cv.crtree(result, cp = 0.0001, pcp = c(0, 0.001, 0.002), fun = profit, cost = 1, margin = 5)
result <- crtree(diamonds, "price", c("carat", "color", "clarity"), type = "regression", cp = 0.001)
cv.crtree(result, cp = 0.001, pcp = seq(0, 0.01, length.out = 11), fun = MAE)
## End(Not run)</pre>
```

cv.gbt

Cross-validation for Gradient Boosted Trees

Description

Cross-validation for Gradient Boosted Trees

Usage

```
cv.gbt(
  object,
  K = 5,
  repeats = 1,
  params = list(),
  nrounds = 500,
  early_stopping_rounds = 10,
  nthread = 12,
  train = NULL,
  type = "classification",
  trace = TRUE,
  seed = 1234,
  maximize = NULL,
  fun,
  ...
)
```

14 cv.gbt

Arguments

object Object of type "gbt" or "ranger"

K Number of cross validation passes to use (aka nfold)

repeats Repeated cross validation

params List of parameters (see XGBoost documentation)

nrounds Number of trees to create

early_stopping_rounds

Early stopping rule

nthread Number of parallel threads to use. Defaults to 12 if available

train An optional xgb.DMatrix object containing the original training data. Not needed

when using Radiant's gbt function

type Model type ("classification" or "regression")

trace Print progress

seed Random seed to use as the starting point

maximize When a custom function is used, xgb.cv requires the user indicate if the function

output should be maximized (TRUE) or minimized (FALSE)

fun Function to use for model evaluation (i.e., auc for classification and RMSE for

regression)

... Additional arguments to be passed to 'fun'

Details

See https://radiant-rstats.github.io/docs/model/gbt.html for an example in Radiant

Value

A data.frame sorted by the mean of the performance metric

See Also

gbt to generate an initial model that can be passed to cv.gbt

Rsq to calculate an R-squared measure for a regression

RMSE to calculate the Root Mean Squared Error for a regression

MAE to calculate the Mean Absolute Error for a regression

auc to calculate the area under the ROC curve for classification

profit to calculate profits for classification at a cost/margin threshold

cv.nn

Examples

```
## Not run:
result <- gbt(dvd, "buy", c("coupon", "purch", "last"))
cv.gbt(result, params = list(max_depth = 1:6))
cv.gbt(result, params = list(max_depth = 1:6), fun = "logloss")
cv.gbt(
    result,
    params = list(learning_rate = seq(0.1, 1.0, 0.1)),
    maximize = TRUE, fun = profit, cost = 1, margin = 5
)
result <- gbt(diamonds, "price", c("carat", "color", "clarity"), type = "regression")
cv.gbt(result, params = list(max_depth = 1:2, min_child_weight = 1:2))
cv.gbt(result, params = list(learning_rate = seq(0.1, 0.5, 0.1)), fun = Rsq, maximize = TRUE)
cv.gbt(result, params = list(learning_rate = seq(0.1, 0.5, 0.1)), fun = MAE, maximize = FALSE)
## End(Not run)</pre>
```

cv.nn

Cross-validation for a Neural Network

Description

Cross-validation for a Neural Network

Usage

```
cv.nn(
  object,
  K = 5,
  repeats = 1,
  decay = seq(0, 1, 0.2),
  size = 1:5,
  seed = 1234,
  trace = TRUE,
  fun,
  ...
)
```

Arguments

object Object of type "nn" or "nnet"

K Number of cross validation passes to use

repeats Repeated cross validation

decay Parameter decay

size Number of units (nodes) in the hidden layer

16 cv.rforest

seed	Random seed to use as the starting point
trace	Print progress
fun	Function to use for model evaluation (i.e., auc for classification and RMSE for regression)
	Additional arguments to be passed to 'fun'

Details

See https://radiant-rstats.github.io/docs/model/nn.html for an example in Radiant

Value

A data.frame sorted by the mean of the performance metric

See Also

```
nn to generate an initial model that can be passed to cv.nn

Rsq to calculate an R-squared measure for a regression

RMSE to calculate the Root Mean Squared Error for a regression

MAE to calculate the Mean Absolute Error for a regression

auc to calculate the area under the ROC curve for classification

profit to calculate profits for classification at a cost/margin threshold
```

Examples

```
## Not run:
result <- nn(dvd, "buy", c("coupon", "purch", "last"))
cv.nn(result, decay = seq(0, 1, .5), size = 1:2)
cv.nn(result, decay = seq(0, 1, .5), size = 1:2, fun = profit, cost = 1, margin = 5)
result <- nn(diamonds, "price", c("carat", "color", "clarity"), type = "regression")
cv.nn(result, decay = seq(0, 1, .5), size = 1:2)
cv.nn(result, decay = seq(0, 1, .5), size = 1:2, fun = Rsq)
## End(Not run)</pre>
```

cv.rforest

Cross-validation for a Random Forest

Description

Cross-validation for a Random Forest

cv.rforest 17

Usage

```
cv.rforest(
  object,
  K = 5,
  repeats = 1,
  mtry = 1:5,
  num.trees = NULL,
  min.node.size = 1,
  sample.fraction = NA,
  trace = TRUE,
  seed = 1234,
  fun,
  ...
)
```

Arguments

object Object of type "rforest" or "ranger"

K Number of cross validation passes to use

repeats Repeated cross validation

mtry Number of variables to possibly split at in each node. Default is the (rounded

down) square root of the number variables

num. trees Number of trees to create

min.node.size Minimal node size

sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement

and 0.632 for sampling without replacement

trace Print progress

seed Random seed to use as the starting point

fun Function to use for model evaluation (i.e., auc for classification and RMSE for

regression)

... Additional arguments to be passed to 'fun'

Details

See https://radiant-rstats.github.io/docs/model/rforest.html for an example in Radiant

Value

A data frame sorted by the mean of the performance metric

18 direct_marketing

See Also

rforest to generate an initial model that can be passed to cv.rforest
Rsq to calculate an R-squared measure for a regression
RMSE to calculate the Root Mean Squared Error for a regression
MAE to calculate the Mean Absolute Error for a regression
auc to calculate the area under the ROC curve for classification
profit to calculate profits for classification at a cost/margin threshold

Examples

```
## Not run:
result <- rforest(dvd, "buy", c("coupon", "purch", "last"))
cv.rforest(
    result,
    mtry = 1:3, min.node.size = seq(1, 10, 5),
    num.trees = c(100, 200), sample.fraction = 0.632
)
result <- rforest(titanic, "survived", c("pclass", "sex"), max.depth = 1)
cv.rforest(result, mtry = 1:3, min.node.size = seq(1, 10, 5))
cv.rforest(result, mtry = 1:3, num.trees = c(100, 200), fun = profit, cost = 1, margin = 5)
result <- rforest(diamonds, "price", c("carat", "color", "clarity"), type = "regression")
cv.rforest(result, mtry = 1:3, min.node.size = 1)
cv.rforest(result, mtry = 1:3, min.node.size = 1, fun = Rsq)
## End(Not run)</pre>
```

direct_marketing

Direct marketing data

Description

Direct marketing data

Usage

```
data(direct_marketing)
```

Format

A data frame with 1,000 rows and 12 variables

Details

Description provided in attr(direct_marketing, "description")

dtree 19

Description

Create a decision tree

Usage

```
dtree(yl, opt = "max", base = character(0), envir = parent.frame())
```

Arguments

yl	A yaml string or a list (e.g., from yaml::yaml.load_file())
opt	Find the maximum ("max") or minimum ("min") value for each decision node
base	List of variable definitions from a base tree used when calling a sub-tree
envir	Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/model/dtree.html for an example in Radiant

Value

A list with the initial tree, the calculated tree, and a data.frame with results (i.e., payoffs, probabilities, etc.)

See Also

```
summary.dtree to summarize results plot.dtree to plot results sensitivity.dtree to plot results
```

Examples

```
yaml::as.yaml(movie_contract) %>% cat()
dtree(movie_contract, opt = "max") %>% summary(output = TRUE)
dtree(movie_contract)$payoff
dtree(movie_contract)$prob
dtree(movie_contract)$solution_df
```

20 dvd

dtree_parser

Parse yaml input for dtree to provide (more) useful error messages

Description

Parse yaml input for dtree to provide (more) useful error messages

Usage

```
dtree_parser(y1)
```

Arguments

y1

A yaml string

Details

See https://radiant-rstats.github.io/docs/model/dtree.html for an example in Radiant

Value

An updated yaml string or a vector messages to return to the users

See Also

```
dtree to calculate tree
summary.dtree to summarize results
plot.dtree to plot results
```

dvd

Data on DVD sales

Description

Data on DVD sales

Usage

data(dvd)

Format

A data frame with 20,000 rows and 4 variables

Details

Binary purchase response to coupon value. Description provided in attr(dvd, "description")

evalbin 21

evalbin

Evaluate the performance of different (binary) classification models

Description

Evaluate the performance of different (binary) classification models

Usage

```
evalbin(
   dataset,
   pred,
   rvar,
   lev = "",
   qnt = 10,
   cost = 1,
   margin = 2,
   scale = 1,
   train = "All",
   data_filter = "",
   arr = "",
   rows = NULL,
   envir = parent.frame()
)
```

Arguments

dataset	Dataset
pred	Predictions or predictors
rvar	Response variable
lev	The level in the response variable defined as success
qnt	Number of bins to create
cost	Cost for each connection (e.g., email or mailing)
margin	Margin on each customer purchase
scale	Scaling factor to apply to calculations
train	Use data from training ("Training"), test ("Test"), both ("Both"), or all data ("All") to evaluate model evalbin
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

22 evalreg

Details

Evaluate different (binary) classification models based on predictions. See https://radiant-rstats.github.io/docs/model/evalbin.html for an example in Radiant

Value

A list of results

See Also

```
summary.evalbin to summarize results plot.evalbin to plot results
```

Examples

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  evalbin(c("pred1", "pred2"), "buy") %>%
  str()
```

evalreg

Evaluate the performance of different regression models

Description

Evaluate the performance of different regression models

Usage

```
evalreg(
  dataset,
  pred,
  rvar,
  train = "All",
  data_filter = "",
  arr = "",
  rows = NULL,
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
pred	Predictions or predictors
rvar	Response variable
train	Use data from training ("Training"), test ("Test"), both ("Both"), or all data ("All") to evaluate model evalreg

find_max 23

data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The	

expression should be a string (e.g., "training == 1")

arr Expression to arrange (sort) the data on (e.g., "color, desc(price)")

rows Rows to select from the specified dataset

envir Environment to extract data from

Details

Evaluate different regression models based on predictions. See https://radiant-rstats.github.io/docs/model/evalreg.html for an example in Radiant

Value

A list of results

See Also

```
summary.evalreg to summarize results plot.evalreg to plot results
```

Examples

```
data.frame(price = diamonds$price, pred1 = rnorm(3000), pred2 = diamonds$price) %>%
  evalreg(pred = c("pred1", "pred2"), "price") %>%
  str()
```

find_max

Find maximum value of a vector

Description

Find maximum value of a vector

Usage

```
find_max(x, y)
```

Arguments

x Variable to find the maximum for

y Variable to find the value for at the maximum of var

Details

Find the value of y at the maximum value of x

24 find_min

Value

Value of val at the maximum of var

Examples

```
find_max(1:10, 21:30)
```

find_min

Find minimum value of a vector

Description

Find minimum value of a vector

Usage

```
find_min(x, y)
```

Arguments

x Variable to find the minimum for

y Variable to find the value for at the maximum of var

Details

Find the value of y at the minimum value of x

Value

Value of val at the minimum of var

Examples

```
find_min(1:10, 21:30)
```

gbt 25

gbt

Gradient Boosted Trees using XGBoost

Description

Gradient Boosted Trees using XGBoost

Usage

```
gbt(
 dataset,
  rvar,
 evar,
  type = "classification",
 lev = "",
 max_depth = 6,
  learning_rate = 0.3,
 min_split_loss = 0,
 min_child_weight = 1,
  subsample = 1,
 nrounds = 100,
  early_stopping_rounds = 10,
 nthread = 12,
 wts = "None",
  seed = NA,
  data_filter = "",
  arr = "",
 rows = NULL,
 envir = parent.frame(),
)
```

Arguments

dataset	Dataset	
rvar	The response variable in the model	
evar	Explanatory variables in the model	
type	Model type (i.e., "classification" or "regression")	
lev	Level to use as the first column in prediction output	
max_depth	Maximum 'depth' of tree	
learning_rate	Learning rate (eta)	
min_split_loss	Minimal improvement (gamma)	
min_child_weight		

Minimum number of instances allowed in each node

26 gbt

Subsample ratio of the training instances (0-1) subsample nrounds Number of trees to create early_stopping_rounds Early stopping rule nthread Number of parallel threads to use. Defaults to 12 if available Weights to use in estimation wts Random seed to use as the starting point seed Expression entered in, e.g., Data > View to filter the dataset in Radiant. The data_filter expression should be a string (e.g., "price > 10000") Expression to arrange (sort) the data on (e.g., "color, desc(price)") arr Rows to select from the specified dataset rows Environment to extract data from envir

Details

See https://radiant-rstats.github.io/docs/model/gbt.html for an example in Radiant

Value

A list with all variables defined in gbt as an object of class gbt

Further arguments to pass to xgboost

See Also

```
summary.gbt to summarize results
plot.gbt to plot results
predict.gbt for prediction
```

Examples

```
## Not run:
gbt(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>% summary()
gbt(titanic, "survived", c("pclass", "sex")) %>% str()
## End(Not run)
gbt(
  titanic, "survived", c("pclass", "sex"), lev = "Yes",
  early_stopping_rounds = 0, nthread = 1
) %>% summary()
gbt(
  titanic, "survived", c("pclass", "sex"),
  early_stopping_rounds = 0, nthread = 1
) %>% str()
gbt(
  titanic, "survived", c("pclass", "sex"),
  eval_metric = paste0("error@", 0.5 / 6), nthread = 1
) %>% str()
```

houseprices 27

```
gbt(
  diamonds, "price", c("carat", "clarity"), type = "regression", nthread = 1
) %>% summary()
```

houseprices

Houseprices

Description

Houseprices

Usage

```
data(houseprices)
```

Format

A data frame with 128 home sales and 6 variables

Details

Description provided in attr(houseprices, "description")

ideal

Ideal data for linear regression

Description

Ideal data for linear regression

Usage

```
data(ideal)
```

Format

A data frame with 1,000 rows and 4 variables

Details

Description provided in attr(ideal, "description")

28 ketchup

kaggle_uplift

Kaggle uplift

Description

Kaggle uplift

Usage

```
data(kaggle_uplift)
```

Format

A data frame with 1,000 rows and 22 variables

Details

Use uplift modeling to quantify the effectiveness of an experimental treatment

ketchup

Data on ketchup choices

Description

Data on ketchup choices

Usage

data(ketchup)

Format

A data frame with 2,798 rows and 14 variables

Details

Choice behavior for a sample of 300 individuals in a panel of households in Springfield, Missouri (USA). Description provided in attr(ketchup, "description")

logistic 29

logistic

Logistic regression

Description

Logistic regression

Usage

```
logistic(
  dataset,
  rvar,
  evar,
  lev = "",
  int = "",
  wts = "None",
  check = "",
  form,
  ci_type,
  data_filter = "",
  arr = "",
  rows = NULL,
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
rvar	The response variable in the model
evar	Explanatory variables in the model
lev	The level in the response variable defined as _success_
int	Interaction term to include in the model
wts	Weights to use in estimation
check	Use "standardize" to see standardized coefficient estimates. Use "stepwise-backward" (or "stepwise-forward", or "stepwise-both") to apply step-wise selection of variables in estimation. Add "robust" for robust estimation of standard errors (HC1)
form	Optional formula to use instead of rvar, evar, and int
ci_type	To use the profile-likelihood (rather than Wald) for confidence intervals use "profile". For datasets with more than 5,000 rows the Wald method will be used, unless "profile" is explicitly set
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

MAE

Details

See https://radiant-rstats.github.io/docs/model/logistic.html for an example in Radiant

Value

A list with all variables defined in logistic as an object of class logistic

See Also

```
summary.logistic to summarize the results
plot.logistic to plot the results
predict.logistic to generate predictions
plot.model.predict to plot prediction output
```

Examples

```
logistic(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>% summary()
logistic(titanic, "survived", c("pclass", "sex")) %>% str()
```

MAE

Mean Absolute Error

Description

Mean Absolute Error

Usage

```
MAE(pred, rvar)
```

Arguments

pred Prediction (vector)
rvar Response (vector)

Value

Mean Absolute Error

minmax 31

minmax

Calculate min and max before standardization

Description

Calculate min and max before standardization

Usage

```
minmax(dataset)
```

Arguments

dataset

Data frame

Value

Data frame min and max attributes

mn1

Multinomial logistic regression

Description

Multinomial logistic regression

Usage

```
mnl(
    dataset,
    rvar,
    evar,
    lev = "",
    int = "",
    wts = "None",
    check = "",
    data_filter = "",
    arr = "",
    rows = NULL,
    envir = parent.frame()
)
```

32 mnl

Arguments

dataset	Dataset
rvar	The response variable in the model
evar	Explanatory variables in the model
lev	The level in the response variable to use as the baseline
int	Interaction term to include in the model
wts	Weights to use in estimation
check	Use "standardize" to see standardized coefficient estimates. Use "stepwise-backward" (or "stepwise-forward", or "stepwise-both") to apply step-wise selection of variables in estimation.
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/model/mnl.html for an example in Radiant

Value

A list with all variables defined in mnl as an object of class mnl

See Also

```
summary.mnl to summarize the results
plot.mnl to plot the results
predict.mnl to generate predictions
plot.model.predict to plot prediction output
```

Examples

```
result <- mnl(
   ketchup,
   rvar = "choice",
   evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
   lev = "heinz28"
)
str(result)</pre>
```

movie_contract 33

 $movie_contract$

Movie contract decision tree

Description

Movie contract decision tree

Usage

```
data(movie_contract)
```

Format

A nested list for decision and chance nodes, probabilities and payoffs

Details

Use decision analysis to create a decision tree for an actor facing a contract decision

nb

Naive Bayes using e1071::naiveBayes

Description

Naive Bayes using e1071::naiveBayes

Usage

```
nb(
  dataset,
  rvar,
  evar,
  laplace = 0,
  data_filter = "",
  arr = "",
  rows = NULL,
  envir = parent.frame()
)
```

nn

Arguments

dataset	Dataset
rvar	The response variable in the logit (probit) model
evar	Explanatory variables in the model
laplace	Positive double controlling Laplace smoothing. The default (0) disables Laplace smoothing.
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/model/nb.html for an example in Radiant

Value

A list with all variables defined in nb as an object of class nb

See Also

```
summary.nb to summarize results
plot.nb to plot results
predict.nb for prediction
```

Examples

```
nb(titanic, "survived", c("pclass", "sex", "age")) %>% summary()
nb(titanic, "survived", c("pclass", "sex", "age")) %>% str()
```

nn Neural Networks using nnet

Description

Neural Networks using nnet

nn 35

Usage

```
nn(
  dataset,
  rvar,
  evar,
  type = "classification",
  lev = "",
  size = 1,
  decay = 0.5,
  wts = "None",
  seed = NA,
  check = "standardize",
  form,
  data_filter = "",
  arr = "",
  rows = NULL,
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
rvar	The response variable in the model
evar	Explanatory variables in the model
type	Model type (i.e., "classification" or "regression")
lev	The level in the response variable defined as _success_
size	Number of units (nodes) in the hidden layer
decay	Parameter decay
wts	Weights to use in estimation
seed	Random seed to use as the starting point
check	Optional estimation parameters ("standardize" is the default)
form	Optional formula to use instead of rvar and evar
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/model/nn.html for an example in Radiant

Value

A list with all variables defined in nn as an object of class nn

36 onehot

See Also

```
summary.nn to summarize results
plot.nn to plot results
predict.nn for prediction
```

Examples

```
nn(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>% summary()
nn(titanic, "survived", c("pclass", "sex")) %>% str()
nn(diamonds, "price", c("carat", "clarity"), type = "regression") %>% summary()
```

onehot

One hot encoding of data.frames

Description

One hot encoding of data.frames

Usage

```
onehot(dataset, all = FALSE, df = FALSE)
```

Arguments

dataset	Dataset to endcode
all	Extract all factor levels (e.g., for tree-based models)
df	Return a data.frame (tibble)

Examples

```
head(onehot(diamonds, df = TRUE))
head(onehot(diamonds, all = TRUE, df = TRUE))
```

pdp_plot 37

pdp_plot

Create Partial Dependence Plots

Description

Create Partial Dependence Plots

Usage

```
pdp_plot(
    x,
    plot_list = list(),
    incl,
    incl_int,
    fix = TRUE,
    hline = TRUE,
    nr = 20,
    minq = 0.025,
    maxq = 0.975
)
```

X	Return value from a model
plot_list	List used to store plots
incl	Which variables to include in PDP plots
incl_int	Which interactions to investigate in PDP plots
fix	Set the desired limited on yhat or have it calculated automatically. Set to FALSE to have y-axis limits set by ggplot2 for each plot
hline	Add a horizontal line at the average of the target variable. When set to FALSE no line is added. When set to a specific number, the horizontal line will be added at that value
nr	Number of values to use to generate predictions for a numeric explanatory variable
minq	Quantile to use for the minimum value for simulation of numeric variables
maxq	Quantile to use for the maximum value for simulation of numeric variables

38 plot.confusion

plot.confusion

Plot method for the confusion matrix

Description

Plot method for the confusion matrix

Usage

```
## S3 method for class 'confusion'
plot(
    x,
    vars = c("kappa", "index", "ROME", "AUC"),
    scale_y = TRUE,
    size = 13,
    ...
)
```

Arguments

Х	Return value from confusion
vars	Measures to plot, i.e., one or more of "TP", "FP", "TN", "FN", "total", "TPR", "TNR", "precision", "accuracy", "kappa", "profit", "index", "ROME", "contact", "AUC"
scale_y	Free scale in faceted plot of the confusion matrix (TRUE or FALSE)
size	Font size used
• • •	further arguments passed to or from other methods

Details

 $See \ https://radiant-rstats.github.io/docs/model/evalbin.html \ for \ an \ example \ in \ Radiant$

See Also

```
confusion to generate results summary. confusion to summarize results
```

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  confusion(c("pred1", "pred2"), "buy") %>%
  plot()
```

plot.crs 39

plot.crs

Plot method for the crs function

Description

Plot method for the crs function

Usage

```
## S3 method for class 'crs' plot(x, ...)
```

Arguments

x Return value from crs

... further arguments passed to or from other methods

Details

Plot that compares actual to predicted ratings. See https://radiant-rstats.github.io/docs/model/crs.html for an example in Radiant

See Also

```
crs to generate results
summary.crs to summarize results
```

plot.crtree

Plot method for the crtree function

Description

Plot method for the crtree function

Usage

```
## $3 method for class 'crtree'
plot(
    x,
    plots = "tree",
    orient = "LR",
    width = "900px",
    labs = TRUE,
    nrobs = Inf,
    dec = 2,
```

40 plot.crtree

```
incl = NULL,
incl_int = NULL,
shiny = FALSE,
custom = FALSE,
...
)
```

Arguments

x	Return value from crtree
plots	Plots to produce for the specified rpart tree. "tree" shows a tree diagram. "prune" shows a line graph to evaluate appropriate tree pruning. "imp" shows a variable importance plot
orient	Plot orientation for tree: LR for vertical and TD for horizontal
width	Plot width in pixels for tree (default is "900px")
labs	Use factor labels in plot (TRUE) or revert to default letters used by tree (FALSE)
nrobs	Number of data points to show in dashboard scatter plots (-1 for all)
dec	Decimal places to round results to
incl	Which variables to include in a coefficient plot or PDP plot
incl_int	Which interactions to investigate in PDP plots
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

Plot a decision tree using mermaid, permutation plots, prediction plots, or partial dependence plots. For regression trees, a residual dashboard can be plotted. See https://radiant-rstats.github.io/docs/model/crtree.html for an example in Radiant.

See Also

```
crtree to generate results
summary.crtree to summarize results
predict.crtree for prediction
```

```
result <- crtree(titanic, "survived", c("pclass", "sex"), lev = "Yes")
plot(result)
result <- crtree(diamonds, "price", c("carat", "clarity", "cut"))
plot(result, plots = "prune")
result <- crtree(dvd, "buy", c("coupon", "purch", "last"), cp = .01)</pre>
```

plot.dtree 41

```
plot(result, plots = "imp")
```

plot.dtree

Plot method for the dtree function

Description

Plot method for the dtree function

Usage

```
## S3 method for class 'dtree'
plot(
    x,
    symbol = "$",
    dec = 2,
    final = FALSE,
    orient = "LR",
    width = "900px",
    ...
)
```

Arguments

X	Return value from dtree
symbol	Monetary symbol to use (\$ is the default)
dec	Decimal places to round results to
final	If TRUE plot the decision tree solution, else the initial decision tree
orient	Plot orientation: LR for vertical and TD for horizontal
width	Plot width in pixels (default is "900px")
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/dtree.html for an example in Radiant

See Also

```
dtree to generate the result
summary.dtree to summarize results
sensitivity.dtree to plot results
```

```
dtree(movie_contract, opt = "max") %>% plot()
dtree(movie_contract, opt = "max") %>% plot(final = TRUE, orient = "TD")
```

42 plot.evalbin

plot.evalbin

Plot method for the evalbin function

Description

Plot method for the evalbin function

Usage

```
## S3 method for class 'evalbin'
plot(
    x,
    plots = c("lift", "gains"),
    size = 13,
    shiny = FALSE,
    custom = FALSE,
    ...
)
```

Arguments

x	Return value from evalbin
plots	Plots to return
size	Font size used
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

 $See \ https://radiant-rstats.github.io/docs/model/evalbin.html \ for \ an \ example \ in \ Radiant$

See Also

```
evalbin to generate results summary. evalbin to summarize results
```

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  evalbin(c("pred1", "pred2"), "buy") %>%
  plot()
```

plot.evalreg 43

plot.evalreg

Plot method for the evalreg function

Description

Plot method for the evalreg function

Usage

```
## S3 method for class 'evalreg'
plot(x, vars = c("Rsq", "RMSE", "MAE"), ...)
```

Arguments

```
    x Return value from evalreg
    vars Measures to plot, i.e., one or more of "Rsq", "RMSE", "MAE"
    ... further arguments passed to or from other methods
```

Details

See https://radiant-rstats.github.io/docs/model/evalreg.html for an example in Radiant

See Also

```
evalreg to generate results summary. evalreg to summarize results
```

Examples

```
data.frame(price = diamonds$price, pred1 = rnorm(3000), pred2 = diamonds$price) %>%
  evalreg(pred = c("pred1", "pred2"), "price") %>%
  plot()
```

plot.gbt

Plot method for the gbt function

Description

Plot method for the gbt function

plot.gbt

Usage

```
## S3 method for class 'gbt'
plot(
    x,
    plots = "",
    nrobs = Inf,
    incl = NULL,
    incl_int = NULL,
    shiny = FALSE,
    custom = FALSE,
    ...
)
```

Arguments

X	Return value from gbt
plots	Plots to produce for the specified Gradient Boosted Tree model. Use "" to avoid showing any plots (default). Options are
nrobs	Number of data points to show in scatter plots (-1 for all)
incl	Which variables to include in a coefficient plot or PDP plot
incl_int	Which interactions to investigate in PDP plots
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/gbt.html for an example in Radiant

See Also

```
gbt to generate results
summary.gbt to summarize results
predict.gbt for prediction
```

```
result <- gbt(
   titanic, "survived", c("pclass", "sex"),
   early_stopping_rounds = 0, nthread = 1
)
plot(result)</pre>
```

plot.logistic 45

plot.logistic

Plot method for the logistic function

Description

Plot method for the logistic function

Usage

```
## S3 method for class 'logistic'
plot(
    x,
    plots = "coef",
    conf_lev = 0.95,
    intercept = FALSE,
    incl = NULL,
    excl = NULL,
    incl_int = NULL,
    nrobs = -1,
    shiny = FALSE,
    custom = FALSE,
    ...
)
```

X	Return value from logistic
plots	Plots to produce for the specified GLM model. Use "" to avoid showing any plots (default). "dist" shows histograms (or frequency bar plots) of all variables in the model. "scatter" shows scatter plots (or box plots for factors) for the response variable with each explanatory variable. "coef" provides a coefficient plot and "influence" shows (potentially) influential observations
conf_lev	Confidence level to use for coefficient and odds confidence intervals (.95 is the default)
intercept	Include the intercept in the coefficient plot (TRUE or FALSE). FALSE is the default
incl	Which variables to include in a coefficient plot
excl	Which variables to exclude in a coefficient plot
incl_int	Which interactions to investigate in PDP plots
nrobs	Number of data points to show in scatter plots (-1 for all)
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

46 plot.mnl

Details

See https://radiant-rstats.github.io/docs/model/logistic.html for an example in Radiant

See Also

```
logistic to generate results
plot.logistic to plot results
predict.logistic to generate predictions
plot.model.predict to plot prediction output
```

Examples

```
result <- logistic(titanic, "survived", c("pclass", "sex"), lev = "Yes")
plot(result, plots = "coef")</pre>
```

plot.mnl

Plot method for the mnl function

Description

Plot method for the mnl function

Usage

```
## S3 method for class 'mnl'
plot(
    x,
    plots = "coef",
    conf_lev = 0.95,
    intercept = FALSE,
    nrobs = -1,
    shiny = FALSE,
    custom = FALSE,
    ...
)
```

X	Return value from mn1
plots	Plots to produce for the specified MNL model. Use "" to avoid showing any plots (default). "dist" shows histograms (or frequency bar plots) of all variables in the model. "scatter" shows scatter plots (or box plots for factors) for the response variable with each explanatory variable. "coef" provides a coefficient plot
conf_lev	Confidence level to use for coefficient and relative risk ratios (RRRs) intervals (.95 is the default)

plot.mnl.predict 47

intercept	Include the intercept in the coefficient plot (TRUE or FALSE). FALSE is the default
nrobs	Number of data points to show in scatter plots (-1 for all)
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/mnl.html for an example in Radiant

See Also

```
mnl to generate results
predict.mnl to generate predictions
plot.model.predict to plot prediction output
```

Examples

```
result <- mnl(
   ketchup,
   rvar = "choice",
   evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
   lev = "heinz28"
)
plot(result, plots = "coef")</pre>
```

plot.mnl.predict

Plot method for mnl.predict function

Description

Plot method for mnl.predict function

Usage

```
## S3 method for class 'mnl.predict'
plot(x, xvar = "", facet_row = ".", facet_col = ".", color = ".class", ...)
```

48 plot.model.predict

Arguments

X	Return value from predict function predict.mnl
xvar	Variable to display along the X-axis of the plot
facet_row	Create vertically arranged subplots for each level of the selected factor variable
facet_col	Create horizontally arranged subplots for each level of the selected factor variable
color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different color
	further arguments passed to or from other methods

See Also

```
predict.mnl to generate predictions
```

Examples

```
result <- mnl(
   ketchup,
   rvar = "choice",
   evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
   lev = "heinz28"
)
pred <- predict(result, pred_cmd = "price.heinz28 = seq(3, 5, 0.1)")
plot(pred, xvar = "price.heinz28")</pre>
```

plot.model.predict

Plot method for model.predict functions

Description

Plot method for model.predict functions

Usage

```
## S3 method for class 'model.predict'
plot(
    x,
    xvar = "",
    facet_row = ".",
    facet_col = ".",
    color = "none",
    conf_lev = 0.95,
    ...
)
```

plot.nb 49

Arguments

X	Return value from predict functions (e.g., predict.regress)
xvar	Variable to display along the X-axis of the plot
facet_row	Create vertically arranged subplots for each level of the selected factor variable
facet_col	Create horizontally arranged subplots for each level of the selected factor variable
color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different color
conf_lev	Confidence level to use for prediction intervals (.95 is the default)
	further arguments passed to or from other methods

See Also

```
predict.regress to generate predictions
predict.logistic to generate predictions
```

Examples

```
regress(diamonds, "price", c("carat", "clarity")) %>%
   predict(pred_cmd = "carat = 1:10") %>%
   plot(xvar = "carat")
logistic(titanic, "survived", c("pclass", "sex", "age"), lev = "Yes") %>%
   predict(pred_cmd = c("pclass = levels(pclass)", "sex = levels(sex)", "age = 0:100")) %>%
   plot(xvar = "age", color = "sex", facet_col = "pclass")
```

plot.nb

Plot method for the nb function

Description

Plot method for the nb function

Usage

```
## S3 method for class 'nb'
plot(x, plots = "correlations", lev = "All levels", nrobs = 1000, ...)
```

X	Return value from nb
plots	Plots to produce for the specified model. Use "" to avoid showing any plots. Use "vimp" for variable importance or "correlations" to examine conditional independence

50 plot.nb.predict

lev	The level(s) in the response variable used as the basis for plots (defaults to "All levels") $$
nrobs	Number of data points to show in scatter plots (-1 for all)
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/nb.html for an example in Radiant

See Also

```
nb to generate results
summary.nb to summarize results
predict.nb for prediction
```

Examples

```
result <- nb(titanic, "survived", c("pclass", "sex"))
plot(result)
result <- nb(titanic, "pclass", c("sex", "age"))
plot(result)</pre>
```

plot.nb.predict

Plot method for nb.predict function

Description

Plot method for nb.predict function

Usage

```
## S3 method for class 'nb.predict'
plot(x, xvar = "", facet_row = ".", facet_col = ".", color = ".class", ...)
```

X	Return value from predict function predict.nb
xvar	Variable to display along the X-axis of the plot
facet_row	Create vertically arranged subplots for each level of the selected factor variable
facet_col	Create horizontally arranged subplots for each level of the selected factor variable
color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different color
	further arguments passed to or from other methods

plot.nn 51

See Also

predict.nb to generate predictions

Examples

```
result <- nb(titanic, "survived", c("pclass", "sex", "age"))
pred <- predict(
    result,
    pred_cmd = c("pclass = levels(pclass)", "sex = levels(sex)", "age = seq(0, 100, 20)")
)
plot(pred, xvar = "age", facet_col = "sex", facet_row = "pclass")
pred <- predict(result, pred_data = titanic)
plot(pred, xvar = "age", facet_col = "sex")</pre>
```

plot.nn

Plot method for the nn function

Description

Plot method for the nn function

Usage

```
## S3 method for class 'nn'
plot(
    x,
    plots = "vip",
    size = 12,
    pad_x = 0.9,
    nrobs = -1,
    incl = NULL,
    incl_int = NULL,
    shiny = FALSE,
    custom = FALSE,
    ...
)
```

X	Return value from nn
plots	Plots to produce for the specified Neural Network model. Use "" to avoid showing any plots (default). Options are "olden" or "garson" for importance plots, or "net" to depict the network structure
size	Font size used
pad_x	Padding for explanatory variable labels in the network plot. Default value is 0.9, smaller numbers (e.g., 0.5) increase the amount of padding

52 plot.regress

nrobs	Number of data points to show in dashboard scatter plots (-1 for all)
incl	Which variables to include in a coefficient plot or PDP plot
incl_int	Which interactions to investigate in PDP plots
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/nn.html for an example in Radiant

See Also

```
nn to generate results
summary.nn to summarize results
predict.nn for prediction
```

Examples

```
result <- nn(titanic, "survived", c("pclass", "sex"), lev = "Yes")
plot(result, plots = "net")
plot(result, plots = "olden")</pre>
```

plot.regress

Plot method for the regress function

Description

Plot method for the regress function

Usage

```
## S3 method for class 'regress'
plot(
    x,
    plots = "",
    lines = "",
    conf_lev = 0.95,
    intercept = FALSE,
    incl = NULL,
    excl = NULL,
    incl_int = NULL,
    nrobs = -1,
```

plot.regress 53

```
shiny = FALSE,
  custom = FALSE,
  ...
)
```

Arguments

x Return value from regress

plots Regression plots to produce for the specified regression model. Enter "" to

avoid showing any plots (default). "dist" to shows histograms (or frequency bar plots) of all variables in the model. "correlations" for a visual representation of the correlation matrix selected variables. "scatter" to show scatter plots (or box plots for factors) for the response variable with each explanatory variable. "dashboard" for a series of six plots that can be used to evaluate model fit visually. "resid_pred" to plot the explanatory variables against the model residuals. "coef" for a coefficient plot with adjustable confidence intervals and "influence"

to show (potentially) influential observations

lines Optional lines to include in the select plot. "line" to include a line through a

scatter plot. "loess" to include a polynomial regression fit line. To include both

use c("line", "loess")

conf_lev Confidence level used to estimate confidence intervals (.95 is the default)

intercept Include the intercept in the coefficient plot (TRUE, FALSE). FALSE is the de-

fault

incl Which variables to include in a coefficient plot or PDP plot

excl Which variables to exclude in a coefficient plot incl_int Which interactions to investigate in PDP plots

nrobs Number of data points to show in scatter plots (-1 for all)

shiny Did the function call originate inside a shiny app

custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects)

should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.

org for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant

See Also

```
regress to generate the results
summary.regress to summarize results
predict.regress to generate predictions
```

54 plot.repeater

Examples

```
result <- regress(diamonds, "price", c("carat", "clarity"))
plot(result, plots = "coef", conf_lev = .99, intercept = TRUE)
## Not run:
plot(result, plots = "dist")
plot(result, plots = "scatter", lines = c("line", "loess"))
plot(result, plots = "resid_pred", lines = "line")
plot(result, plots = "dashboard", lines = c("line", "loess"))
## End(Not run)</pre>
```

plot.repeater

Plot repeated simulation

Description

Plot repeated simulation

Usage

```
## S3 method for class 'repeater'
plot(x, bins = 20, shiny = FALSE, custom = FALSE, ...)
```

Arguments

X	Return value from repeater
bins	Number of bins used for histograms (1 - 50)
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

See Also

```
repeater to run a repeated simulation
```

summary.repeater to summarize results from repeated simulation

plot.rforest 55

plot.rforest

Plot method for the rforest function

Description

Plot method for the rforest function

Usage

```
## S3 method for class 'rforest'
plot(
    x,
    plots = "",
    nrobs = Inf,
    incl = NULL,
    incl_int = NULL,
    shiny = FALSE,
    custom = FALSE,
    ...
)
```

Arguments

X	Return value from rforest
plots	Plots to produce for the specified Random Forest model. Use "" to avoid showing any plots (default). Options are
nrobs	Number of data points to show in dashboard scatter plots (-1 for all)
incl	Which variables to include in PDP or Prediction plots
incl_int	Which interactions to investigate in PDP or Prediction plots
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

```
See https://radiant-rstats.github.io/docs/model/rforest.html for an example in Radiant
```

See Also

```
rforest to generate results
summary.rforest to summarize results
predict.rforest for prediction
```

56 plot.rforest.predict

Examples

```
result <- rforest(titanic, "survived", c("pclass", "sex"), lev = "Yes")</pre>
```

```
\verb|plot.rforest.predict|| \textit{Plot method for rforest.predict function}|
```

Description

Plot method for rforest.predict function

Usage

```
## S3 method for class 'rforest.predict'
plot(x, xvar = "", facet_row = ".", facet_col = ".", color = "none", ...)
```

Arguments

X	Return value from predict function predict.rforest
xvar	Variable to display along the X-axis of the plot
facet_row	Create vertically arranged subplots for each level of the selected factor variable
facet_col	Create horizontally arranged subplots for each level of the selected factor variable
color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different color
	further arguments passed to or from other methods

See Also

```
predict.mnl to generate predictions
```

```
result <- mnl(
   ketchup,
   rvar = "choice",
   evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
   lev = "heinz28"
)
pred <- predict(result, pred_cmd = "price.heinz28 = seq(3, 5, 0.1)")
plot(pred, xvar = "price.heinz28")</pre>
```

plot.simulater 57

1		_ :	1		
nι	\cap t	sim	1 I I	ate	٦r

Plot method for the simulater function

Description

Plot method for the simulater function

Usage

```
## S3 method for class 'simulater'
plot(x, bins = 20, shiny = FALSE, custom = FALSE, ...)
```

Arguments

x	Return value from simulater
bins	Number of bins used for histograms (1 - 50)
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/simulater for an example in Radiant

See Also

```
simulater to generate the result summary. simulater to summarize results
```

```
simdat <- simulater(
  const = "cost 3",
  norm = "demand 2000 1000",
  discrete = "price 5 8 .3 .7",
  form = "profit = demand * (price - cost)",
  seed = 1234
)
plot(simdat, bins = 25)</pre>
```

58 plot.uplift

plot.uplift

Plot method for the uplift function

Description

Plot method for the uplift function

Usage

```
## S3 method for class 'uplift'
plot(
    x,
    plots = c("inc_uplift", "uplift"),
    size = 13,
    shiny = FALSE,
    custom = FALSE,
    ...
)
```

Arguments

x	Return value from evalbin
plots	Plots to return
size	Font size used
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	further arguments passed to or from other methods

Details

 $See \ https://radiant-rstats.github.io/docs/model/evalbin.html \ for \ an \ example \ in \ Radiant$

See Also

```
evalbin to generate results summary. evalbin to summarize results
```

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  evalbin(c("pred1", "pred2"), "buy") %>%
  plot()
```

predict.crtree 59

predict.crtree

Predict method for the crtree function

Description

Predict method for the crtree function

Usage

```
## S3 method for class 'crtree'
predict(
  object,
  pred_data = NULL,
  pred_cmd = "",
  conf_lev = 0.95,
  se = FALSE,
  dec = 3,
  envir = parent.frame(),
  ...
)
```

Arguments

object	Return value from crtree
pred_data	Provide the dataframe to generate predictions (e.g., titanic). The dataset must contain all columns used in the estimation
pred_cmd	Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)')
conf_lev	Confidence level used to estimate confidence intervals (.95 is the default)
se	Logical that indicates if prediction standard errors should be calculated (default = FALSE)
dec	Number of decimals to show
envir	Environment to extract data from
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/crtree.html for an example in Radiant

See Also

```
crtree to generate the result
summary.crtree to summarize results
```

60 predict.gbt

Examples

```
result <- crtree(titanic, "survived", c("pclass", "sex"), lev = "Yes")
predict(result, pred_cmd = "pclass = levels(pclass)")
result <- crtree(titanic, "survived", "pclass", lev = "Yes")
predict(result, pred_data = titanic) %>% head()
```

predict.gbt

Predict method for the gbt function

Description

Predict method for the gbt function

Usage

```
## S3 method for class 'gbt'
predict(
  object,
  pred_data = NULL,
  pred_cmd = "",
  dec = 3,
  envir = parent.frame(),
   ...
)
```

Arguments

object	Return value from gbt
pred_data	Provide the dataframe to generate predictions (e.g., diamonds). The dataset must contain all columns used in the estimation
pred_cmd	Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)')
dec	Number of decimals to show
envir	Environment to extract data from
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/gbt.html for an example in Radiant

See Also

```
gbt to generate the result
summary.gbt to summarize results
```

predict.logistic 61

Examples

```
result <- gbt(
   titanic, "survived", c("pclass", "sex"),
   early_stopping_rounds = 2, nthread = 1
)
predict(result, pred_cmd = "pclass = levels(pclass)")
result <- gbt(diamonds, "price", "carat:color", type = "regression", nthread = 1)
predict(result, pred_cmd = "carat = 1:3")
predict(result, pred_data = diamonds) %>% head()
```

predict.logistic

Predict method for the logistic function

Description

Predict method for the logistic function

Usage

```
## S3 method for class 'logistic'
predict(
   object,
   pred_data = NULL,
   pred_cmd = "",
   conf_lev = 0.95,
   se = TRUE,
   interval = "confidence",
   dec = 3,
   envir = parent.frame(),
   ...
)
```

object	Return value from logistic
pred_data	Provide the dataframe to generate predictions (e.g., titanic). The dataset must contain all columns used in the estimation
pred_cmd	Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = $seq(0.100,20)$ ')
conf_lev	Confidence level used to estimate confidence intervals (.95 is the default)
se	Logical that indicates if prediction standard errors should be calculated (default = FALSE)
interval	Type of interval calculation ("confidence" or "none"). Set to "none" if se is FALSE

62 predict.mnl

dec	Number of decimals to show
envir	Environment to extract data from
	further arguments passed to or from other methods

Details

```
See https://radiant-rstats.github.io/docs/model/logistic.html for an example in Radiant
```

See Also

```
logistic to generate the result
summary.logistic to summarize results
plot.logistic to plot results
plot.model.predict to plot prediction output
```

Examples

```
result <- logistic(titanic, "survived", c("pclass", "sex"), lev = "Yes")
predict(result, pred_cmd = "pclass = levels(pclass)")
logistic(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>%
    predict(pred_cmd = "sex = c('male', 'female')")
logistic(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>%
    predict(pred_data = titanic)
```

predict.mnl

Predict method for the mnl function

Description

Predict method for the mnl function

Usage

```
## S3 method for class 'mnl'
predict(
  object,
  pred_data = NULL,
  pred_cmd = "",
  pred_names = "",
  dec = 3,
  envir = parent.frame(),
  ...
)
```

predict.nb 63

Arguments

object	Return value from mnl
pred_data	Provide the dataframe to generate predictions (e.g., ketchup). The dataset must contain all columns used in the estimation
pred_cmd	Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = $seq(0.100,20)$ ')
pred_names	Names for the predictions to be stored. If one name is provided, only the first column of predictions is stored. If empty, the levels in the response variable of the mnl model will be used
dec	Number of decimals to show
envir	Environment to extract data from
• • •	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/mnl.html for an example in Radiant

See Also

```
mnl to generate the result
summary.mnl to summarize results
```

Examples

```
result <- mnl(
   ketchup,
   rvar = "choice",
   evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
   lev = "heinz28"
)
predict(result, pred_cmd = "price.heinz28 = seq(3, 5, 0.1)")
predict(result, pred_data = slice(ketchup, 1:20))</pre>
```

predict.nb

Predict method for the nb function

Description

Predict method for the nb function

64 predict.nb

Usage

```
## $3 method for class 'nb'
predict(
  object,
  pred_data = NULL,
  pred_cmd = "",
  pred_names = "",
  dec = 3,
  envir = parent.frame(),
  ...
)
```

Arguments

object Return value from nb pred_data Provide the dataframe to generate predictions (e.g., titanic). The dataset must contain all columns used in the estimation pred_cmd Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)') pred_names Names for the predictions to be stored. If one name is provided, only the first column of predictions is stored. If empty, the level in the response variable of the nb model will be used Number of decimals to show dec Environment to extract data from envir

Details

. . .

See https://radiant-rstats.github.io/docs/model/nb.html for an example in Radiant

further arguments passed to or from other methods

See Also

```
nb to generate the result summary.nb to summarize results
```

```
result <- nb(titanic, "survived", c("pclass", "sex", "age"))
predict(result, pred_data = titanic)
predict(result, pred_data = titanic, pred_names = c("Yes", "No"))
predict(result, pred_cmd = "pclass = levels(pclass)")
result <- nb(titanic, "pclass", c("survived", "sex", "age"))
predict(result, pred_data = titanic)
predict(result, pred_data = titanic, pred_names = c("1st", "2nd", "3rd"))
predict(result, pred_data = titanic, pred_names = "")</pre>
```

predict.nn 65

predict.nn

Predict method for the nn function

Description

Predict method for the nn function

Usage

```
## $3 method for class 'nn'
predict(
  object,
  pred_data = NULL,
  pred_cmd = "",
  dec = 3,
  envir = parent.frame(),
   ...
)
```

Arguments

object	Return value from nn
pred_data	Provide the dataframe to generate predictions (e.g., diamonds). The dataset must contain all columns used in the estimation
pred_cmd	Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = $seq(0,100,20)$ ')
dec	Number of decimals to show
envir	Environment to extract data from
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/nn.html for an example in Radiant

See Also

```
nn to generate the result summary.nn to summarize results
```

predict.regress

Examples

```
result <- nn(titanic, "survived", c("pclass", "sex"), lev = "Yes")
predict(result, pred_cmd = "pclass = levels(pclass)")
result <- nn(diamonds, "price", "carat:color", type = "regression")
predict(result, pred_cmd = "carat = 1:3")
predict(result, pred_data = diamonds) %>% head()
```

predict.regress

Predict method for the regress function

Description

Predict method for the regress function

Usage

```
## S3 method for class 'regress'
predict(
  object,
  pred_data = NULL,
  pred_cmd = "",
  conf_lev = 0.95,
  se = TRUE,
  interval = "confidence",
  dec = 3,
  envir = parent.frame(),
  ...
)
```

object	Return value from regress
pred_data	Provide the dataframe to generate predictions (e.g., diamonds). The dataset must contain all columns used in the estimation
pred_cmd	Command used to generate data for prediction
conf_lev	Confidence level used to estimate confidence intervals (.95 is the default)
se	Logical that indicates if prediction standard errors should be calculated (default = FALSE)
interval	Type of interval calculation ("confidence" or "prediction"). Set to "none" if se is FALSE
dec	Number of decimals to show
envir	Environment to extract data from
	further arguments passed to or from other methods

predict.rforest 67

Details

See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant

See Also

```
regress to generate the result
summary.regress to summarize results
plot.regress to plot results
```

Examples

```
result <- regress(diamonds, "price", c("carat", "clarity"))
predict(result, pred_cmd = "carat = 1:10")
predict(result, pred_cmd = "clarity = levels(clarity)")
result <- regress(diamonds, "price", c("carat", "clarity"), int = "carat:clarity")
predict(result, pred_data = diamonds) %>% head()
```

predict.rforest

Predict method for the rforest function

Description

Predict method for the rforest function

Usage

```
## S3 method for class 'rforest'
predict(
   object,
   pred_data = NULL,
   pred_cmd = "",
   pred_names = "",
   OOB = NULL,
   dec = 3,
   envir = parent.frame(),
   ...
)
```

Arguments

object Return value from rforest

pred_data Provide the dataframe to generate predictions (e.g., diamonds). The dataset must

contain all columns used in the estimation

68 predict_model

pred_cmd	Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)')
pred_names	Names for the predictions to be stored. If one name is provided, only the first column of predictions is stored. If empty, the levels in the response variable of the rforest model will be used
OOB	Use Out-Of-Bag predictions (TRUE or FALSE). Relevant when evaluating predictions for the training sample. If set to NULL, datasets will be compared to determine if OOB predictions should be used
dec	Number of decimals to show
envir	Environment to extract data from
	further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/model/rforest.html \ for \ an \ example \ in \ Radiant$

See Also

```
rforest to generate the result summary.rforest to summarize results
```

Examples

```
result <- rforest(titanic, "survived", c("pclass", "sex"), lev = "Yes")
predict(result, pred_cmd = "pclass = levels(pclass)")
result <- rforest(diamonds, "price", "carat:color", type = "regression")
predict(result, pred_cmd = "carat = 1:3")
predict(result, pred_data = diamonds) %>% head()
```

predict_model

Predict method for model functions

Description

Predict method for model functions

pred_plot 69

Usage

```
predict_model(
  object,
  pfun,
  mclass,
  pred_data = NULL,
  pred_cmd = "",
  conf_lev = 0.95,
  se = FALSE,
  dec = 3,
  envir = parent.frame(),
  ...
)
```

Arguments

object	Return value from regress
pfun	Function to use for prediction
mclass	Model class to attach
pred_data	Dataset to use for prediction
pred_cmd	Command used to generate data for prediction (e.g., 'carat = 1:10')
conf_lev	Confidence level used to estimate confidence intervals (.95 is the default)
se	Logical that indicates if prediction standard errors should be calculated (default = FALSE)
dec	Number of decimals to show
envir	Environment to extract data from
	further arguments passed to or from other methods

Details

See $\verb|https://radiant-rstats.github.io/docs/model/regress.html| for an example in Radiant$

pred_plot Prediction Plots

Description

Prediction Plots

70 print.crtree.predict

Usage

```
pred_plot(
    x,
    plot_list = list(),
    incl,
    incl_int,
    fix = TRUE,
    hline = TRUE,
    nr = 20,
    minq = 0.025,
    maxq = 0.975
)
```

Arguments

X	Return value from a model
plot_list	List used to store plots
incl	Which variables to include in prediction plots
incl_int	Which interactions to investigate in prediction plots
fix	Set the desired limited on yhat or have it calculated automatically. Set to FALSE to have y-axis limits set by ggplot2 for each plot
hline	Add a horizontal line at the average of the target variable. When set to FALSE no line is added. When set to a specific number, the horizontal line will be added at that value
nr	Number of values to use to generate predictions for a numeric explanatory variable
minq	Quantile to use for the minimum value for simulation of numeric variables
maxq	Quantile to use for the maximum value for simulation of numeric variables

Details

Faster, but less robust, alternative for PDP plots. Variable values not included in the prediction are set to either the mean or the most common value (level)

```
print.crtree.predict Print method for predict.crtree
```

Description

Print method for predict.crtree

Usage

```
## S3 method for class 'crtree.predict' print(x, ..., n = 10)
```

print.gbt.predict 71

Arguments

x Return value from prediction method	od
---------------------------------------	----

... further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

print.gbt.predict

Print method for predict.gbt

Description

Print method for predict.gbt

Usage

```
## S3 method for class 'gbt.predict'
print(x, ..., n = 10)
```

Arguments

x Return value from prediction method

... further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

```
print.logistic.predict
```

Print method for logistic.predict

Description

Print method for logistic.predict

Usage

```
## S3 method for class 'logistic.predict' print(x, ..., n = 10)
```

Arguments

x Return value from prediction method

... further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

72 print.nb.predict

print.mnl.predict

Print method for mnl.predict

Description

Print method for mnl.predict

Usage

```
## S3 method for class 'mnl.predict'
print(x, ..., n = 10)
```

Arguments

x Return value from prediction method

. . . further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

print.nb.predict

Print method for predict.nb

Description

Print method for predict.nb

Usage

```
## S3 method for class 'nb.predict' print(x, ..., n = 10)
```

Arguments

x Return value from prediction method

... further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

print.nn.predict 73

print.nn.predict

Print method for predict.nn

Description

Print method for predict.nn

Usage

```
## S3 method for class 'nn.predict' print(x, ..., n = 10)
```

Arguments

x Return value from prediction method

. . . further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

print.regress.predict Print method for predict.regress

Description

Print method for predict.regress

Usage

```
## S3 method for class 'regress.predict'
print(x, ..., n = 10)
```

Arguments

x Return value from prediction method

... further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

74 print_predict_model

```
print.rforest.predict Print method for predict.rforest
```

Description

Print method for predict.rforest

Usage

```
## S3 method for class 'rforest.predict'
print(x, ..., n = 10)
```

Arguments

x Return value from prediction method

... further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

Description

Print method for the model prediction

Usage

```
print_predict_model(x, ..., n = 10, header = "")
```

Arguments

x Return value from prediction method

... further arguments passed to or from other methods

n Number of lines of prediction results to print. Use -1 to print all lines

header Header line

profit 75

profit

Calculate Profit based on cost:margin ratio

Description

Calculate Profit based on cost:margin ratio

Usage

```
profit(pred, rvar, lev, cost = 1, margin = 2)
```

Arguments

pred Prediction or predictor rvar Response variable

lev The level in the response variable defined as success

cost Cost per treatment (e.g., mailing costs)

margin Margin, or benefit, per 'success' (e.g., customer purchase). A cost:margin ratio

of 1:2 implies the cost of False Positive are equivalent to the benefits of a True

Positive

Value

profit

Examples

```
profit(runif(20000), dvd$buy, "yes", cost = 1, margin = 2)
profit(ifelse(dvd$buy == "yes", 1, 0), dvd$buy, "yes", cost = 1, margin = 20)
profit(ifelse(dvd$buy == "yes", 1, 0), dvd$buy)
```

radiant.model

radiant.model

Description

Launch radiant.model in the default web browser

Usage

```
radiant.model(state, ...)
```

Arguments

state Path to state file to load

... additional arguments to pass to shiny::runApp (e.g, port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

Examples

```
## Not run:
radiant.model()
## End(Not run)
```

radiant.model-deprecated

Deprecated function(s) in the radiant.model package

Description

These functions are provided for compatibility with previous versions of radiant. They will eventually be removed.

Usage

```
ann(...)
```

Arguments

... Parameters to be passed to the updated functions

Details

ann is now a synonym for nn scaledf is now a synonym for scale_df

radiant.model_viewer 77

Description

Launch radiant.model in the Rstudio viewer

Usage

```
radiant.model_viewer(state, ...)
```

Arguments

Path to state file to load
... additional arguments to pass to shiny::runApp (e.g, port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

Examples

```
## Not run:
radiant.model_viewer()
## End(Not run)
```

Description

Launch radiant.model in an Rstudio window

Usage

```
radiant.model_window(state, ...)
```

Arguments

Path to state file to load
... additional arguments to pass to shiny::runApp (e.g, port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

78 regress

Examples

```
## Not run:
radiant.model_window()
## End(Not run)
```

ratings

Movie ratings

Description

Movie ratings

Usage

```
data(ratings)
```

Format

A data frame with 110 rows and 4 variables

Details

Use collaborative filtering to create recommendations based on ratings from existing users. Description provided in attr(ratings, "description")

regress

Linear regression using OLS

Description

Linear regression using OLS

Usage

```
regress(
  dataset,
  rvar,
  evar,
  int = "",
  check = "",
  form,
  data_filter = "",
  arr = "",
  rows = NULL,
  envir = parent.frame()
)
```

regress 79

Arguments

dataset	Dataset
rvar	The response variable in the regression
evar	Explanatory variables in the regression
int	Interaction terms to include in the model
check	Use "standardize" to see standardized coefficient estimates. Use "stepwise-backward" (or "stepwise-forward", or "stepwise-both") to apply step-wise selection of variables in estimation. Add "robust" for robust estimation of standard errors (HC1)
form	Optional formula to use instead of rvar, evar, and int
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

Details

See $https://radiant-rstats.github.io/docs/model/regress.html \ for \ an \ example \ in \ Radiant$

Value

A list of all variables used in the regress function as an object of class regress

See Also

```
summary.regress to summarize results
plot.regress to plot results
predict.regress to generate predictions
```

```
regress(diamonds, "price", c("carat", "clarity"), check = "standardize") %>% summary()
regress(diamonds, "price", c("carat", "clarity")) %>% str()
```

80 render.DiagrammeR

remove_comments

Remove comments from formula before it is evaluated

Description

Remove comments from formula before it is evaluated

Usage

```
remove_comments(x)
```

Arguments

Х

Input string

Value

Cleaned string

render.DiagrammeR

Method to render DiagrammeR plots

Description

Method to render DiagrammeR plots

Usage

```
## S3 method for class 'DiagrammeR'
render(object, shiny = shiny::getDefaultReactiveDomain(), ...)
```

Arguments

object DiagrammeR plot

shiny Check if function is called from a shiny application

... Additional arguments

repeater 81

repeater

Repeated simulation

Description

Repeated simulation

Usage

```
repeater(
   dataset,
   nr = 12,
   vars = "",
   grid = "",
   sum_vars = "",
   byvar = ".sim",
   fun = "sum",
   form = "",
   seed = NULL,
   name = "",
   envir = parent.frame()
)
```

Arguments

dataset	Return value from the simulater function
nr	Number times to repeat the simulation
vars	Variables to use in repeated simulation
grid	Character vector of expressions to use in grid search for constants
sum_vars	(Numeric) variables to summaries
byvar	Variable(s) to group data by before summarizing
fun	Functions to use for summarizing
form	A character vector with the formula to apply to the summarized data
seed	Seed for the repeated simulation
name	Deprecated argument
envir	Environment to extract data from

See Also

```
summary.repeater to summarize results from repeated simulation plot.repeater to plot results from repeated simulation
```

82 rforest

Examples

```
simdat <- simulater(</pre>
  const = c("var_cost 5", "fixed_cost 1000"),
  norm = "E 0 100;",
  discrete = "price 6 8 .3 .7;",
  form = c(
    "demand = 1000 - 50*price + E",
    "profit = demand*(price-var_cost) - fixed_cost",
    "profit_small = profit < 100"</pre>
  ),
  seed = 1234
)
repdat <- repeater(</pre>
  simdat,
  nr = 12,
  vars = c("E", "price"),
  sum_vars = "profit",
  byvar = ".sim",
  form = "profit_365 = profit_sum < 36500",</pre>
  seed = 1234,
)
head(repdat)
summary(repdat)
plot(repdat)
```

rforest

Random Forest using Ranger

Description

Random Forest using Ranger

Usage

```
rforest(
  dataset,
  rvar,
  evar,
  type = "classification",
  lev = "",
  mtry = NULL,
  num.trees = 100,
  min.node.size = 1,
  sample.fraction = 1,
  replace = NULL,
  num.threads = 12,
```

rforest 83

```
wts = "None",
seed = NA,
data_filter = "",
arr = "",
rows = NULL,
envir = parent.frame(),
...
)
```

Arguments

dataset	Dataset
rvar	The response variable in the model
evar	Explanatory variables in the model
type	Model type (i.e., "classification" or "regression")
lev	Level to use as the first column in prediction output
mtry	Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables
num.trees	Number of trees to create
min.node.size sample.fraction	Minimal node size
	Fraction of observations to sample. Default is 1 for sampling with replacement and 0.632 for sampling without replacement
replace	Sample with (TRUE) or without (FALSE) replacement. If replace is NULL it will be reset to TRUE if the sample.fraction is equal to 1 and will be set to FALSE otherwise
num.threads	Number of parallel threads to use. Defaults to 12 if available
wts	Case weights to use in estimation
seed	Random seed to use as the starting point
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from
• • •	Further arguments to pass to ranger

Details

See $\verb|https://radiant-rstats.github.io/docs/model/rforest.html| for an example in Radiant$

Value

A list with all variables defined in rforest as an object of class rforest

rig rig

See Also

```
summary.rforest to summarize results
plot.rforest to plot results
predict.rforest for prediction
```

Examples

```
rforest(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>% summary()
rforest(titanic, "survived", c("pclass", "sex")) %>% str()
rforest(titanic, "survived", c("pclass", "sex"), max.depth = 1)
rforest(diamonds, "price", c("carat", "clarity"), type = "regression") %>% summary()
```

rig

Relative Information Gain (RIG)

Description

Relative Information Gain (RIG)

Usage

```
rig(pred, rvar, lev, crv = 1e-07, na.rm = TRUE)
```

Arguments

pred	Prediction or predictor
rvar	Response variable
lev	The level in the response variable defined as success
crv	Correction value to avoid log(0)
na.rm	Logical that indicates if missing values should be removed (TRUE) or not (FALSE)

Details

```
See \ https://radiant-rstats.github.io/docs/model/evalbin.html \ for \ an \ example \ in \ Radiant
```

Value

RIG statistic

See Also

```
evalbin to calculate results
summary.evalbin to summarize results
plot.evalbin to plot results
```

RMSE 85

Examples

```
rig(runif(20000), dvd$buy, "yes")
rig(ifelse(dvd$buy == "yes", 1, 0), dvd$buy, "yes")
```

RMSE

Root Mean Squared Error

Description

Root Mean Squared Error

Usage

```
RMSE(pred, rvar)
```

Arguments

pred Prediction (vector)
rvar Response (vector)

Value

Root Mean Squared Error

Rsq

R-squared

Description

R-squared

Usage

```
Rsq(pred, rvar)
```

Arguments

pred Prediction (vector)
rvar Response (vector)

Value

R-squared

86 sdw

scale_df

Center or standardize variables in a data frame

Description

Center or standardize variables in a data frame

Usage

```
scale_df(dataset, center = TRUE, scale = TRUE, sf = 2, wts = NULL, calc = TRUE)
```

Arguments

dataset Data frame

center Center data (TRUE or FALSE)
scale Scale data (TRUE or FALSE)
sf Scaling factor (default is 2)

wts Weights to use (default is NULL for no weights)

calc Calculate mean and sd or use attributes attached to dat

Value

Scaled data frame

sdw

Standard deviation of weighted sum of variables

Description

Standard deviation of weighted sum of variables

Usage

```
sdw(...)
```

Arguments

... A matched number of weights and stocks

Value

A vector of standard deviation estimates

sensitivity 87

sensitivity

Method to evaluate sensitivity of an analysis

Description

Method to evaluate sensitivity of an analysis

Usage

```
sensitivity(object, ...)
```

Arguments

object Object of relevant class for which to evaluate sensitivity

... Additional arguments

See Also

sensitivity.dtree to plot results

sensitivity.dtree

Evaluate sensitivity of the decision tree

Description

Evaluate sensitivity of the decision tree

Usage

```
## S3 method for class 'dtree'
sensitivity(
  object,
  vars = NULL,
  decs = NULL,
  envir = parent.frame(),
  shiny = FALSE,
  custom = FALSE,
  ...
)
```

88 simulater

Arguments

object	Return value from dtree
vars	Variables to include in the sensitivity analysis
decs	Decisions to include in the sensitivity analysis
envir	Environment to extract data from
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org for options.
	Additional arguments

Details

See https://radiant-rstats.github.io/docs/model/dtree.html for an example in Radiant

See Also

```
dtree to generate the result
plot.dtree to summarize results
summary.dtree to summarize results
```

Examples

```
dtree(movie_contract, opt = "max") %>%
  sensitivity(
   vars = "legal fees 0 100000 10000",
   decs = c("Sign with Movie Company", "Sign with TV Network"),
   custom = FALSE
)
```

simulater

Simulate data for decision analysis

Description

Simulate data for decision analysis

89 simulater

Usage

```
simulater(
  const = ""
  1norm = ""
  norm = ""
  unif = "".
  discrete = ""
  binom = "",
  pois = "".
  sequ = ""
  grid = "",
  data = NULL,
  form = "",
  funcs = ""
  seed = NULL,
  nexact = FALSE,
  ncorr = NULL,
  name = "",
  nr = 1000,
  dataset = NULL,
  envir = parent.frame()
)
```

Arguments

const	A character vector listing the constants to include in the analysis (e.g., $c("cost = $
	3'', "size = 4"))

lnorm A character vector listing the log-normally distributed random variables to include in the analysis (e.g., "demand 2000 1000" where the first number is the

log-mean and the second is the log-standard deviation)

A character vector listing the normally distributed random variables to include norm

in the analysis (e.g., "demand 2000 1000" where the first number is the mean and the second is the standard deviation)

unif A character vector listing the uniformly distributed random variables to include

in the analysis (e.g., "demand 0 1" where the first number is the minimum value

and the second is the maximum value)

discrete A character vector listing the random variables with a discrete distribution to

include in the analysis (e.g., "price 5 8 .3 .7" where the first set of numbers are

the values and the second set the probabilities

A character vector listing the random variables with a binomial distribution to binom

include in the analysis (e.g., "crash 100 .01") where the first number is the num-

ber of trials and the second is the probability of success)

A character vector listing the random variables with a poisson distribution to pois

include in the analysis (e.g., "demand 10") where the number is the lambda

value (i.e., the average number of events or the event rate)

90 simulater

sequ	A character vector listing the start and end for a sequence to include in the analysis (e.g., "trend 1 100 1"). The number of 'steps' is determined by the number of simulations
grid	A character vector listing the start, end, and step for a set of sequences to include in the analysis (e.g., "trend 1 100 1"). The number of rows in the expanded will over ride the number of simulations
data	Dataset to be used in the calculations
form	A character vector with the formula to evaluate (e.g., "profit = demand $*$ (price - cost)")
funcs	A named list of user defined functions to apply to variables generated as part of the simulation
seed	Optional seed used in simulation
nexact	Logical to indicate if normally distributed random variables should be simulated to the exact specified values
ncorr	A string of correlations used for normally distributed random variables. The number of values should be equal to one or to the number of combinations of variables simulated
name	Deprecated argument
nr	Number of simulations
dataset	Data list from previous simulation. Used by repeater function
envir	Environment to extract data from

Details

See $\label{lem:html} \textbf{See https://radiant-rstats.github.io/docs/model/simulater.html} \ for \ an \ example \ in \ Radiant$

Value

A data frame with the simulated data

See Also

```
summary.simulater to summarize results
plot.simulater to plot results
```

```
simulater(
  const = "cost 3",
  norm = "demand 2000 1000",
  discrete = "price 5 8 .3 .7",
  form = "profit = demand * (price - cost)",
  seed = 1234
) %>% str()
```

sim_cleaner 91

sim_cleaner	Clean input command string
-------------	----------------------------

Description

Clean input command string

Usage

```
sim_cleaner(x)
```

Arguments

x Input string

Value

Cleaned string

sim_cor	Simulate correlated normally distributed data

Description

Simulate correlated normally distributed data

Usage

```
sim_cor(n, rho, means, sds, exact = FALSE)
```

Arguments

n	The number of values to simulate (i.e., the number of rows in the simulated data)
rho	A vector of correlations to apply to the columns of the simulated data. The number of values should be equal to one or to the number of combinations of variables to be simulated
means	A vector of means. The number of values should be equal to the number of variables to simulate
sds	A vector of standard deviations. The number of values should be equal to the number of variables to simulate
exact	A logical that indicates if the inputs should be interpreted as population of sample characteristics

92 sim_summary

Value

A data.frame with the simulated data

Examples

```
sim <- sim_cor(100, .74, c(0, 10), c(1, 5), exact = TRUE) cor(sim) sim_summary(sim)
```

sim_splitter

Split input command string

Description

Split input command string

Usage

```
sim_splitter(x, symbol = " ")
```

Arguments

x Input string

symbol Symbol used to split the command string

Value

Split input command string

sim_summary

Print simulation summary

Description

Print simulation summary

Usage

```
sim_summary(dataset, dc = get_class(dataset), fun = "", dec = 4)
```

Arguments

dataset Simulated data dc Variable classes

fun Summary function to apply dec Number of decimals to show

store.crs 93

See Also

```
simulater to run a simulation repeater to run a repeated simulation
```

Examples

```
simulater(
  const = "cost 3",
  norm = "demand 2000 1000",
  discrete = "price 5 8 .3 .7",
  form = c("profit = demand * (price - cost)", "profit5K = profit > 5000"),
  seed = 1234
) %>% sim_summary()
```

store.crs

Deprecated: Store method for the crs function

Description

Deprecated: Store method for the crs function

Usage

```
## S3 method for class 'crs'
store(dataset, object, name, ...)
```

Arguments

```
dataset Dataset

object Return value from crs

name Name to assign to the dataset

... further arguments passed to or from other methods
```

Details

Return recommendations See https://radiant-rstats.github.io/docs/model/crs.html for an example in Radiant

94 store.model

store.mnl.predict

Store predicted values generated in the mnl function

Description

Store predicted values generated in the mnl function

Usage

```
## S3 method for class 'mnl.predict'
store(dataset, object, name = NULL, ...)
```

Arguments

dataset Dataset to add predictions to object Return value from model function

name Variable name(s) assigned to predicted values. If empty, the levels of the re-

sponse variable will be used

... Additional arguments

Details

See https://radiant-rstats.github.io/docs/model/mnl.html for an example in Radiant

Examples

```
result <- mnl(
   ketchup,
   rvar = "choice",
   evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
   lev = "heinz28"
)
pred <- predict(result, pred_data = ketchup)
ketchup <- store(ketchup, pred, name = c("heinz28", "heinz32", "heinz41", "hunts32"))</pre>
```

store.model

Store residuals from a model

Description

Store residuals from a model

Usage

```
## S3 method for class 'model'
store(dataset, object, name = "residuals", ...)
```

store.model.predict 95

Arguments

dataset	Dataset to append residuals to
object	Return value from a model function
name	Variable name(s) assigned to model residuals

... Additional arguments

Details

The store method for objects of class "model". Adds model residuals to the dataset while handling missing values and filters. See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant

Examples

```
regress(diamonds, rvar = "price", evar = c("carat", "cut"), data_filter = "price > 1000") %>%
   store(diamonds, ., name = "resid") %>%
   head()
```

store.model.predict

Store predicted values generated in model functions

Description

Store predicted values generated in model functions

Usage

```
## S3 method for class 'model.predict'
store(dataset, object, name = "prediction", ...)
```

Arguments

dataset Dataset to add predictions to
object Return value from model function

name Variable name(s) assigned to predicted values

... Additional arguments

Details

See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant

96 store.nb.predict

Examples

```
regress(diamonds, rvar = "price", evar = c("carat", "cut")) %>%
  predict(pred_data = diamonds) %>%
  store(diamonds, ., name = c("pred", "pred_low", "pred_high")) %>%
  head()
```

store.nb.predict

Store predicted values generated in the nb function

Description

Store predicted values generated in the nb function

Usage

```
## S3 method for class 'nb.predict'
store(dataset, object, name = NULL, ...)
```

Arguments

dataset Dataset to add predictions to

object Return value from model function

name Variable name(s) assigned to predicted values. If empty, the levels of the response variable will be used

... Additional arguments

Details

See https://radiant-rstats.github.io/docs/model/nb.html for an example in Radiant

```
result <- nb(titanic, rvar = "survived", evar = c("pclass", "sex", "age"))
pred <- predict(result, pred_data = titanic)
titanic <- store(titanic, pred, name = c("Yes", "No"))</pre>
```

store.rforest.predict 97

store.rforest.predict Store predicted values generated in the rforest function

Description

Store predicted values generated in the rforest function

Usage

```
## S3 method for class 'rforest.predict'
store(dataset, object, name = NULL, ...)
```

Arguments

dataset Dataset to add predictions to

object Return value from model function

name Variable name(s) assigned to predicted values. If empty, the levels of the response variable will be used

... Additional arguments

Details

See $https://radiant-rstats.github.io/docs/model/rforest.html \ for \ an \ example \ in \ Radiant$

Examples

```
result <- rforest(
  ketchup,
  rvar = "choice",
  evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
  lev = "heinz28"
)
pred <- predict(result, pred_data = ketchup)
ketchup <- store(ketchup, pred, name = c("heinz28", "heinz32", "heinz41", "hunts32"))</pre>
```

summary.confusion

Summary method for the confusion matrix

Description

Summary method for the confusion matrix

98 summary.crs

Usage

```
## S3 method for class 'confusion'
summary(object, dec = 3, ...)
```

Arguments

object Return value from confusion dec Number of decimals to show

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/evalbin.html for an example in Radiant

See Also

```
confusion to generate results
plot.confusion to visualize result
```

Examples

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  confusion(c("pred1", "pred2"), "buy") %>%
  summary()
```

summary.crs

Summary method for Collaborative Filter

Description

Summary method for Collaborative Filter

Usage

```
## S3 method for class 'crs'
summary(object, n = 36, dec = 2, ...)
```

Arguments

object	Return value from crs

n Number of lines of recommendations to print. Use -1 to print all lines

dec Number of decimals to show

... further arguments passed to or from other methods

summary.crtree 99

Details

See https://radiant-rstats.github.io/docs/model/crs.html for an example in Radiant

See Also

```
crs to generate the results
plot.crs to plot results if the actual ratings are available
```

Examples

```
crs(ratings,
  id = "Users", prod = "Movies", pred = c("M6", "M7", "M8", "M9", "M10"),
  rate = "Ratings", data_filter = "training == 1"
) %>% summary()
```

summary.crtree

Summary method for the crtree function

Description

Summary method for the crtree function

Usage

```
## S3 method for class 'crtree'
summary(object, prn = TRUE, splits = FALSE, cptab = FALSE, modsum = FALSE, ...)
```

Arguments

object	Return value from crtree
prn	Print tree in text form
splits	Print the tree splitting metrics used
cptab	Print the cp table
modsum	Print the model summary
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/crtree.html for an example in Radiant

See Also

```
crtree to generate results
plot.crtree to plot results
predict.crtree for prediction
```

100 summary.dtree

Examples

```
result <- crtree(titanic, "survived", c("pclass", "sex"), lev = "Yes")
summary(result)
result <- crtree(diamonds, "price", c("carat", "color"), type = "regression")
summary(result)</pre>
```

summary.dtree

Summary method for the dtree function

Description

Summary method for the dtree function

Usage

```
## S3 method for class 'dtree'
summary(object, input = TRUE, output = FALSE, dec = 2, ...)
```

Arguments

object Return value from simulater
input Print decision tree input
output Print decision tree output
dec Number of decimals to show

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/dtree.html for an example in Radiant

See Also

```
dtree to generate the results
plot.dtree to plot results
sensitivity.dtree to plot results
```

```
dtree(movie_contract, opt = "max") %>% summary(input = TRUE)
dtree(movie_contract, opt = "max") %>% summary(input = FALSE, output = TRUE)
```

summary.evalbin 101

summary.evalbin

Summary method for the evalbin function

Description

Summary method for the evalbin function

Usage

```
## S3 method for class 'evalbin'
summary(object, prn = TRUE, dec = 3, ...)
```

Arguments

object Return value from evalbin

prn Print full table of measures per model and bin

dec Number of decimals to show

... further arguments passed to or from other methods

Details

See $\verb|https://radiant-rstats.github.io/docs/model/evalbin.html| for an example in Radiant$

See Also

```
evalbin to summarize results plot. evalbin to plot results
```

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  evalbin(c("pred1", "pred2"), "buy") %>%
  summary()
```

102 summary.gbt

summary.evalreg

Summary method for the evalreg function

Description

Summary method for the evalreg function

Usage

```
## S3 method for class 'evalreg'
summary(object, dec = 3, ...)
```

Arguments

object Return value from evalreg dec Number of decimals to show

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/evalreg.html for an example in Radiant

See Also

```
evalreg to summarize results plot.evalreg to plot results
```

Examples

```
data.frame(price = diamonds$price, pred1 = rnorm(3000), pred2 = diamonds$price) %>%
  evalreg(pred = c("pred1", "pred2"), "price") %>%
  summary()
```

summary.gbt

Summary method for the gbt function

Description

Summary method for the gbt function

Usage

```
## S3 method for class 'gbt'
summary(object, prn = TRUE, ...)
```

summary.logistic 103

Arguments

object Return value from gbt prn Print iteration history

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/gbt.html for an example in Radiant

See Also

```
gbt to generate results
plot.gbt to plot results
predict.gbt for prediction
```

Examples

```
result <- gbt(
  titanic, "survived", c("pclass", "sex"),
  early_stopping_rounds = 0, nthread = 1
)
summary(result)</pre>
```

summary.logistic

Summary method for the logistic function

Description

Summary method for the logistic function

Usage

```
## S3 method for class 'logistic'
summary(object, sum_check = "", conf_lev = 0.95, test_var = "", dec = 3, ...)
```

Arguments

object	Return value from logistic
sum_check	Optional output. "vif" to show multicollinearity diagnostics. "confint" to show coefficient confidence interval estimates. "odds" to show odds ratios and confidence interval estimates.
conf_lev	Confidence level to use for coefficient and odds confidence intervals (.95 is the default)
test_var	Variables to evaluate in model comparison (i.e., a competing models Chi-squared test)
dec	Number of decimals to show
	further arguments passed to or from other methods

104 summary.mnl

Details

See https://radiant-rstats.github.io/docs/model/logistic.html for an example in Radiant

See Also

```
logistic to generate the results
plot.logistic to plot the results
predict.logistic to generate predictions
plot.model.predict to plot prediction output
```

Examples

```
result <- logistic(titanic, "survived", "pclass", lev = "Yes")
result <- logistic(titanic, "survived", "pclass", lev = "Yes")
summary(result, test_var = "pclass")
res <- logistic(titanic, "survived", c("pclass", "sex"), int = "pclass:sex", lev = "Yes")
summary(res, sum_check = c("vif", "confint", "odds"))
titanic %>%
   logistic("survived", c("pclass", "sex", "age"), lev = "Yes") %>%
   summary("vif")
```

summary.mnl

Summary method for the mnl function

Description

Summary method for the mnl function

Usage

```
## S3 method for class 'mnl'
summary(object, sum_check = "", conf_lev = 0.95, test_var = "", dec = 3, ...)
```

Arguments

object	Return value from mnl
sum_check	Optional output. "confint" to show coefficient confidence interval estimates. "rrr" to show relative risk ratios (RRRs) and confidence interval estimates.
conf_lev	Confidence level to use for coefficient and RRRs confidence intervals (.95 is the default)
test_var	Variables to evaluate in model comparison (i.e., a competing models Chi-squared test)
dec	Number of decimals to show
	further arguments passed to or from other methods

summary.nb 105

Details

See https://radiant-rstats.github.io/docs/model/mnl.html for an example in Radiant

See Also

```
mnl to generate the results
plot.mnl to plot the results
predict.mnl to generate predictions
plot.model.predict to plot prediction output
```

Examples

```
result <- mn1(
   ketchup,
   rvar = "choice",
   evar = c("price.heinz28", "price.heinz32", "price.heinz41", "price.hunts32"),
   lev = "heinz28"
)
summary(result)</pre>
```

summary.nb

Summary method for the nb function

Description

Summary method for the nb function

Usage

```
## S3 method for class 'nb'
summary(object, dec = 3, ...)
```

Arguments

```
object Return value from nbdec Decimals... further arguments passed to or from other methods
```

Details

See https://radiant-rstats.github.io/docs/model/nb.html for an example in Radiant

106 summary.nn

See Also

```
nb to generate results
plot.nb to plot results
predict.nb for prediction
```

Examples

```
result <- nb(titanic, "survived", c("pclass", "sex", "age"))
summary(result)</pre>
```

summary.nn

Summary method for the nn function

Description

Summary method for the nn function

Usage

```
## S3 method for class 'nn'
summary(object, prn = TRUE, ...)
```

Arguments

object Return value from nn
prn Print list of weights

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/nn.html for an example in Radiant

See Also

```
nn to generate results
plot.nn to plot results
predict.nn for prediction
```

```
result <- nn(titanic, "survived", "pclass", lev = "Yes")
summary(result)</pre>
```

summary.regress 107

summary regress	Summary met

Summary method for the regress function

Description

Summary method for the regress function

Usage

```
## S3 method for class 'regress'
summary(object, sum_check = "", conf_lev = 0.95, test_var = "", dec = 3, ...)
```

Arguments

object	Return value from regress
sum_check	Optional output. "rsme" to show the root mean squared error and the standard deviation of the residuals. "sumsquares" to show the sum of squares table. "vif" to show multicollinearity diagnostics. "confint" to show coefficient confidence interval estimates.
conf_lev	Confidence level used to estimate confidence intervals (.95 is the default)
test_var	Variables to evaluate in model comparison (i.e., a competing models F-test)
dec	Number of decimals to show
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant

See Also

```
regress to generate the results
plot.regress to plot results
predict.regress to generate predictions
```

```
result <- regress(diamonds, "price", c("carat", "clarity"))
summary(result, sum_check = c("rmse", "sumsquares", "vif", "confint"), test_var = "clarity")
result <- regress(ideal, "y", c("x1", "x2"))
summary(result, test_var = "x2")
ideal %>%
    regress("y", "x1:x3") %>%
    summary()
```

108 summary.rforest

summary.repeater

Summarize repeated simulation

Description

Summarize repeated simulation

Usage

```
## S3 method for class 'repeater'
summary(object, dec = 4, ...)
```

Arguments

object Return value from repeater dec Number of decimals to show

... further arguments passed to or from other methods

See Also

```
repeater to run a repeated simulation
plot.repeater to plot results from repeated simulation
```

summary.rforest

Summary method for the rforest function

Description

Summary method for the rforest function

Usage

```
## S3 method for class 'rforest'
summary(object, ...)
```

Arguments

object Return value from rforest

... further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/model/rforest.html \ for \ an \ example \ in \ Radiant$

summary.simulater 109

See Also

```
rforest to generate results
plot.rforest to plot results
predict.rforest for prediction
```

Examples

```
result <- rforest(titanic, "survived", "pclass", lev = "Yes")
summary(result)</pre>
```

summary.simulater

Summary method for the simulater function

Description

Summary method for the simulater function

Usage

```
## S3 method for class 'simulater'
summary(object, dec = 4, ...)
```

Arguments

object Return value from simulater dec Number of decimals to show

... further arguments passed to or from other methods

Details

```
See \ https://radiant-rstats.github.io/docs/model/simulater.html \ for \ an \ example \ in \ Radiant
```

See Also

```
simulater to generate the results plot.simulater to plot results
```

```
simdat <- simulater(norm = "demand 2000 1000", seed = 1234)
summary(simdat)</pre>
```

110 summary.uplift

summary.uplif	t
---------------	---

Summary method for the uplift function

Description

Summary method for the uplift function

Usage

```
## S3 method for class 'uplift'
summary(object, prn = TRUE, dec = 3, ...)
```

Arguments

object	Return value from evalbin
--------	---------------------------

prn Print full table of measures per model and bin

dec Number of decimals to show

... further arguments passed to or from other methods

Details

```
See \verb|https://radiant-rstats.github.io/docs/model/evalbin.html| for an example in Radiant
```

See Also

```
evalbin to summarize results plot.evalbin to plot results
```

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  evalbin(c("pred1", "pred2"), "buy") %>%
  summary()
```

test_specs 111

test_specs

Add interaction terms to list of test variables if needed

Description

Add interaction terms to list of test variables if needed

Usage

```
test_specs(tv, int)
```

Arguments

tv List of variables to use for testing for regress or logistic

int Interaction terms specified

Details

See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant

Value

A vector of variables names to test

Examples

```
test_specs("a", "a:b")
test_specs("a", c("a:b", "b:c"))
test_specs("a", c("a:b", "b:c", "I(c^2)"))
test_specs(c("a", "b", "c"), c("a:b", "b:c", "I(c^2)"))
```

uplift

Evaluate uplift for different (binary) classification models

Description

Evaluate uplift for different (binary) classification models

112 uplift

Usage

```
uplift(
  dataset,
  pred,
  rvar,
  lev = "",
  tvar,
  tlev = "",
  qnt = 10,
  cost = 1,
  margin = 2,
  scale = 1,
  train = "All",
  data_filter = "",
  arr = "",
  rows = NULL,
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
pred	Predictions or predictors
rvar	Response variable
lev	The level in the response variable defined as success
tvar	Treatment variable
tlev	The level in the treatment variable defined as the treatment
qnt	Number of bins to create
cost	Cost for each connection (e.g., email or mailing)
margin	Margin on each customer purchase
scale	Scaling factor to apply to calculations
train	Use data from training ("Training"), test ("Test"), both ("Both"), or all data ("All") to evaluate model evalbin
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
arr	Expression to arrange (sort) the data on (e.g., "color, desc(price)")
rows	Rows to select from the specified dataset
envir	Environment to extract data from

Details

Evaluate uplift for different (binary) classification models based on predictions. See https://radiant-rstats.github.io/docs/model/evalbin.html for an example in Radiant

varimp 113

Value

A list of results

See Also

```
summary.evalbin to summarize results
plot.evalbin to plot results
```

Examples

```
data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>%
  evalbin(c("pred1", "pred2"), "buy") %>%
  str()
```

varimp	Variable importance using the vip package and permutation impor-
	tance

Description

Variable importance using the vip package and permutation importance

Usage

```
varimp(object, rvar, lev, data = NULL, seed = 1234)
```

Arguments

object	Model object created by Radiant
rvar	Label to identify the response or target variable
lev	Reference class for binary classifier (rvar)
data	Data to use for prediction. Will default to the data used to estimate the model
seed	Random seed for reproducibility

114 var_check

varimp_plot Plot permutation importance

Description

Plot permutation importance

Usage

```
varimp_plot(object, rvar, lev, data = NULL, seed = 1234)
```

Arguments

C		
object	Model object created by Radiant	
rvar	Label to identify the response or target variable	
lev	Reference class for binary classifier (rvar)	
data	Data to use for prediction. Will default to the data used to estimate the model	
seed	Random seed for reproducibility	
var_check	Check if main effects for all interaction effects are included in the model	

Description

Check if main effects for all interaction effects are included in the model

Usage

```
var_check(ev, cn, intv = c())
```

Arguments

ev	List of explanatory variables provided to regress or logistic
cn	Column names for all explanatory variables in the dataset
intv	Interaction terms specified

Details

If ':' is used to select a range evar is updated. See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant

write.coeff 115

Value

vars is a vector of right-hand side variables, possibly with interactions, iv is the list of explanatory variables, and intv are interaction terms

Examples

```
var_check("a:d", c("a", "b", "c", "d"))
var_check(c("a", "b"), c("a", "b"), "a:c")
var_check(c("a", "b"), c("a", "b"), "a:c")
var_check(c("a", "b"), c("a", "b"), c("a:c", "I(b^2)"))
```

write.coeff

Write coefficient table for linear and logistic regression

Description

Write coefficient table for linear and logistic regression

Usage

```
write.coeff(object, file = "", sort = FALSE, intercept = TRUE)
```

Arguments

object A fitted model object of class regress or logistic

file A character string naming a file. "" indicates output to the console

sort Sort table by variable importance

intercept Include the intercept in the output (TRUE or FALSE). TRUE is the default

Details

Write coefficients and importance scores to csv or or return as a data.frame

```
regress(
    diamonds,
    rvar = "price", evar = c("carat", "clarity", "color", "x"),
    int = c("carat:clarity", "clarity:color", "I(x^2)"), check = "standardize"
) %>%
    write.coeff(sort = TRUE) %>%
    format_df(dec = 3)

logistic(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>%
    write.coeff(intercept = FALSE, sort = TRUE) %>%
    format_df(dec = 2)
```

Index

* datasets	ideal, 27
catalog, 6	kaggle_uplift, 28
direct_marketing, 18 dvd, 20	ketchup, 28
houseprices, 27	•
ideal, 27	logistic, 29, 45, 46, 61, 62, 103, 104, 114
$kaggle_uplift, 28$	MAE, 13, 14, 16, 18, 30
ketchup, 28	minmax, 31
movie_contract, 33	mnl, 31, 46, 47, 63, 104, 105
ratings, 78	movie_contract, 33
.as_int, 4	
.as_num, 5	nb, 33, 49, 50, 64, 105, 106
ann (radiant.model-deprecated), 76	nn, 16, 34, 51, 52, 65, 76, 106
auc, 5, 13, 14, 16, 18	onehot, 36
446, 5, 15, 17, 16, 16	oneno e, so
catalog, 6	pdp_plot, 37
confint_robust, 7	plot.confusion, $8, 38, 98$
confusion, 7, 38, 98	plot.crs, 9, 39, 99
crs, 9, 39, 93, 98, 99	plot.crtree, 11, 39, 99
crtree, 10, 13, 40, 59, 99	plot.dtree, 19, 20, 41, 88, 100
cv.crtree, 12	plot.evalbin, 6, 22, 42, 84, 101, 110, 113
cv.gbt, 13	plot.evalreg, 23, 43, 102
cv.nn, 15	plot.gbt, 26, 43, 103
cv.rforest, 16	plot.logistic, 30, 45, 46, 62, 104 plot.mnl, 32, 46, 105
dinast manhatina 10	plot.mn1.predict, 47
direct_marketing, 18 dtree, 19, 20, 41, 88, 100	plot.model.predict, 30, 32, 46, 47, 48, 62,
dtree_parser, 20	104, 105
dvd, 20	plot.nb, 34, 49, 106
uvu, 20	plot.nb.predict, 50
evalbin, 6, 21, 42, 58, 84, 101, 110	plot.nn, 36, 51, 106
evalreg, 22, 43, 102	plot.regress, 52, 67, 79, 107
	plot.repeater, 54, 81, 108
find_max, 23	plot.rforest, 55, 84, 109
find_min, 24	plot.rforest.predict, 56
	plot.simulater, 57, 90, 109
gbt, 14, 25, 44, 60, 103	plot.uplift, 58
h	pred_plot, 69
houseprices, 27	predict.crtree, 11, 40, 59, 99

INDEX 117

predict.gbt, 26, 44, 60, 103	summary.crs, $9, 39, 98$
predict.logistic, 30, 46, 49, 61, 104	summary.crtree, 11, 40, 59, 99
predict.mnl, 32, 47, 48, 56, 62, 105	summary.dtree, 19, 20, 41, 88, 100
predict.nb, 34, 50, 51, 63, 106	summary.evalbin, 6, 22, 42, 58, 84, 101, 113
predict.nn, 36, 52, 65, 106	summary.evalreg, 23, 43, 102
predict.regress, 49, 53, 66, 79, 107	summary.gbt, 26, 44, 60, 102
predict.rforest, 55, 67, 84, 109	summary.logistic, $30, 62, 103$
predict_model, 68	summary.mn1, <i>32</i> , <i>63</i> , 104
print.crtree.predict, 70	summary.nb, <i>34</i> , <i>50</i> , <i>64</i> , 105
print.gbt.predict, 71	summary.nn, <i>36</i> , <i>52</i> , <i>65</i> , 106
print.logistic.predict, 71	summary.regress, <i>53</i> , <i>67</i> , <i>79</i> , 107
print.mnl.predict, 72	summary.repeater, <i>54</i> , <i>81</i> , 108
print.nb.predict, 72	summary.rforest, 55, 68, 84, 108
print.nn.predict, 73	summary.simulater, <i>57</i> , <i>90</i> , 109
print.regress.predict, 73	summary.uplift, 110
print.rforest.predict, 74	
print_predict_model, 74	test_specs, 111
profit, 13, 14, 16, 18, 75	
provide, 13, 17, 10, 10, 73	uplift,111
radiant.model, 75	var_check, 114
radiant.model-deprecated, 76	varimp, 113
radiant.model_viewer,77	varimp, 113 varimp_plot, 114
radiant.model_window,77	vai iliip_piot, 114
ratings, 78	write.coeff, 115
regress, 53, 66, 67, 69, 78, 107, 114	W 100.00011, 113
remove_comments, 80	
render.DiagrammeR, 80	
repeater, 54, 81, 93, 108	
rforest, 18, 55, 67, 68, 82, 108, 109	
rig, 84	
RMSE, 13, 14, 16, 18, 85	
Rsq, 13, 14, 16, 18, 85	
scale_df, 76, 86	
sdw, 86	
sensitivity, 87	
sensitivity.dtree, 19, 41, 87, 87, 100	
sim_cleaner, 91	
sim_cor, 91	
sim_splitter, 92	
sim_summary, 92	
simulater, 57, 88, 93, 100, 109	
store.crs, 93	
store.mnl.predict, 94	
store.model, 94	
store.model.predict, 95	
store.nb.predict, 96	
store.rforest.predict, 97	
summary.confusion, 8, 38, 97	
January . Com do ton, 0, 50, 77	