Выводы:

- 1. В отличие от схемы с общей базой схема с общим эмиттером наряду с усилением по напряжению даёт также усиление по току. Транзистор, включенный по схеме с общим эмиттером, усиливает ток базы в десятки сотни раз. Усиление по напряжению в данной схеме остается таким же, как в схеме с общей базой. Поэтому усиление по мощности в схеме с общим эмиттером значительно больше, чем в схеме с общей базой.
- 2. Схема с общим эмиттером имеет более приемлемые значения входного и выходного сопротивлений входное больше, а выходное сопротивление меньше, чем в схеме с общей базой.
- 3. Благодаря указанным преимуществам схема с общим эмиттером находит наибольшее применение на практике.
- 4. Схема с общей базой хоть и имеет меньшее усиление по мощности и имеет меньшее входное сопротивление, все же ее иногда применяют на практике, т.к. она имеет лучшие температурные свойства.
- 5. Схема с общим коллектором дает усиление по току и по мощности, но не дает усиления по напряжению.
- 6. Схему с общим коллектором очень часто применяют в качестве входного каскада усиления из-за его высокого входного сопротивления и способности не нагружать источник входного сигнала, а также данная схема имеет наименьшее выходное сопротивление.

3.4 Статические характеристики биполярного транзистора

Статическими характеристиками называются зависимости между входными и выходными токами и напряжениями транзистора при отсутствии нагрузки. Каждая из схем включения транзистора характеризуется четырьмя семействами статических характеристик:

1. *Входные характеристики* — это зависимость входного тока от входного напряжения при постоянстве напряжения на выходе:

$$I_{\text{ex}} = f(U_{\text{ex}})_{U_{\text{essx}}=const} \,. \tag{3.22}$$

2. *Выходные характеристики* — это зависимость выходного тока от выходного напряжения при фиксированном значении входного тока:

$$I_{\text{\tiny obst}} = f(U_{\text{\tiny obst}})|_{I_{\text{\tiny ex}} = const} . \tag{3.23}$$

3. Характеристики обратной связи по напряжению:

$$U_{ex} = f(U_{ebx})|_{I_{ex} = const}. ag{3.24}$$

4. Характеристики передачи по току:

$$I_{\text{\tiny GBAX}} = f(I_{\text{\tiny GN}})_{U_{\text{\tiny GBAX}} = const} \,. \tag{3.25}$$

Наиболее часто на практике используют входные и выходные характеристики, которые обычно приводятся в справочной литературе и представляют собой усредненные зависимости большого числа однотипных транзисторов. Две последние характеристики применяют реже и, к тому же, они могут быть построены из входных и выходных характеристик.

3.4.1 Статические характеристики для схемы с общей базой

1. Семейство входных статических характеристик (рисунок 3.8) представляет собой зависимость $I_{\mathfrak{g}} = f(U_{\mathfrak{g}\mathfrak{g}})|_{U_{\mathfrak{g}\mathfrak{g}}=const}$

При $U_{_{\kappa\delta}}=0$ входная характеристика представляет собой прямую ветвь вольт-амперной характеристики эмиттерного перехода. При $U_{_{\kappa\delta}}<0$ данная характеристика смещается немного выше оси абсцисс, т. к. при отсутствии входного сигнала $(E_{_1}=0)$ через запертый коллекторный переход протекает маленький обратный ток $I_{_{\kappa0}}$, который создает на объемном сопротивлении базовой области $r_{_{\!\delta}}$ падение напряжения, приложенное к эмиттерному переходу в прямом направлении (рисунок 3.8, а).

Это падение напряжения и обусловливает протекание через эмиттерный переход маленького прямого тока и смещение вверх входной характеристики (рисунок 3.8, б).

При $U_{\kappa\delta}>0$ коллекторный переход смещается в прямом направлении, через него протекает прямой ток, и следовательно падение напряжения на сопротивлении базы r_{δ} изменит полярность на противоположную, что вызовет при отсутствии входного сигнала протекание через эмиттерный переход маленького обратного тока и, следовательно, смещение входной характеристики вниз (рисунок 3.8, б).

Рисунок 3.8 – Входные характеристики схеме с общей базой

2. Семейство выходных статических характеристик (рисунок 3.9) представляет собой зависимость $I_{\kappa} = f(U_{\kappa \delta})_{I_{\alpha}=const}$.

Рисунок – 3.9 Входные характеристики схемы с обшей базой

Если $I_{_{\scriptscriptstyle 9}}=0$, то выходная характеристика представляет собой обратную ветвь вольт-амперной характеристики коллекторного перехода. При $I_{_{\scriptscriptstyle 9}}>0$ ток в коллекторной цепи будет протекать даже при отсутствии источника коллекторного питания $(E_{_{\scriptscriptstyle 2}}=0)$ за счет экстракции инжектированных в базу носителей полем коллекторного перехода. При увеличении напряжения $U_{_{\kappa\delta}}$ коллекторный ток практически не меняется, т. к. количество инжектированных в базу носителей не меняется $(I_{_{\scriptscriptstyle 9}}=const)$, а возрастает только скорость их перемещения через коллекторный переход. Чем больше уровень тока $I_{_{\scriptscriptstyle 9}}$, тем больше и коллекторный ток $I_{_{\scriptscriptstyle 6}}$.

При изменении полярности $U_{\kappa\delta}$ на противоположную меняется и включение коллекторного перехода с обратного на прямое. Поэтому ток I_{κ} вначале очень быстро снижается до нуля, а затем изменяет свое направление на противоположное.

3.4.2 Статические характеристики для схемы с общим эмиттером

1. Семейство входных статических характеристик представляет собой зависимость $I_{\delta} = f(U_{\delta})|_{U_{\kappa_2}=const}$. Вид этих характеристик показан на рисунке 3.10.

Рисунок – 3.10 Входные характеристики схемы с общим эммитером

Рисунок 3.11 – Схема включения транзистора, поясняющие особенность входных характеристик с общим эммитером

При $U_{\kappa_9} = 0$ эта характеристика представляет собой прямую ветвь вольтамперной характеристики эмиттерного перехода. При этом коллекторный переход оказывается включенным в прямом направлении на напряжение источника E_1 (рисунок 3.11, a).

При включении источника E_2 ($U_{\kappa_9} < 0$) характеристика пойдет несколько ниже предыдущей, т. к. в случае $U_{\delta_9} = 0$ (рисунок 3.11, б) источник E_1 отсутствует и через коллекторный переход протекает маленький обратный ток I_{κ_0} под действием источника E_2 , направление которого в базе противоположно тому, когда включен источник E_1 .

При включении E_1 ($U_{69}>0$) этот ток будет уменьшаться, т. к. в цепи его протекания E_1 и E_2 будут включены встречно, а затем он перейдет через ноль и будет возрастать в положительном направлении под действием E_1 . Однако в справочной литературе этим малым значением тока пренебрегают, и входные характеристики представляют исходящими из начала координат.

3. Выходные статические характеристики (рисунок 3.12) представляют собой зависимости $I_{\kappa} = f(U_{\kappa j})_{I_{\delta}=const}$.

Рисунок 3.12 – Выходные характеристики схемы с общим эммитером

При $I_{\scriptscriptstyle \delta}=0$ эта характеристика представляет собой обратную ветвь вольтамперной характеристики коллекторного перехода. При $I_{\scriptscriptstyle \delta}>0$ характеристики имеют большую крутизну в области малых значений $U_{\scriptscriptstyle \kappa 3}$, т. к. при условии $E_2 < E_1$ (рисунок 3.11, а), коллекторный переход включен в прямом направлении; поэтому сопротивление его незначительно и достаточно небольшого изменения напряжения на нем, чтобы ток $I_{\scriptscriptstyle \kappa}$ изменился значительно. Более того, при $U_{\scriptscriptstyle \kappa 3}=0$ все характеристики кроме начальной $(I_{\scriptscriptstyle \delta}=0)$, исходят не из начала координат, а ниже (рисунок 3.13), так как ток коллекторного перехода в этом случае является прямым и имеет направление противоположное по отношению к обычному току коллектора.

Рисунок 3.13 – Особенность выходных характеристик с общим эммитером

Но этим маленьким смещением характеристик пренебрегают и в справочниках представлены характеристики, исходящие из начала координат. При больших значениях U_{κ_2} характеристики идут значительно положе, так как практически все носители, инжектированные из эмиттера в базу, принимают уча-

стие в образовании коллекторного тока и дальнейшее увеличение U_{κ_2} не приводит к пропорциональному росту тока I_{κ} . Однако небольшой наклон характеристики все же имеется, так как с увеличением U_{κ_2} увеличивается ширина коллекторного перехода, а ширина базовой области, с учетом ее и без того малой величины, уменьшается. Это приводит к уменьшению числа рекомбинаций инжектированных в базу носителей и, следовательно, к увеличению количества носителей, переброшенных в область коллектора. Кроме того, по этой же причине несколько снижается базовый ток I_{δ} , а поскольку характеристики снимаются при условии $I_{\delta} = const$, то при этом необходимо несколько увеличивать напряжение U_{δ_2} , что приводит к некоторому возрастанию тока эмиттера I_{κ} и, следовательно, тока коллектора I_{κ} . Еще одной причиной некоторого роста I_{κ} является то, что с увеличением U_{κ_2} возрастает и та его часть, которая приложена к эмиттерному переходу в прямом направлении. Это тоже приводит к некоторому увеличению тока эмиттера I_{κ} и, следовательно, тока коллектора I_{κ} .

Статические характеристики транзистора, включенного по схеме с общим коллектором, аналогичны характеристикам транзистора с общим эмиттером.

Две оставшиеся статические характеристики – характеристика обратной связи по напряжению (3.24) и характеристика передачи по току (3.25) могут быть построены для всех схем включения транзистора из его входных и выходных характеристик. Пример такого построения для схемы с общим эмиттером для транзистора КТ201Б представлен на рисунке 3.14.

Рисунок 3.13 – Это повтор рисунка......

Рисунок 3.14 – Семейство статических характеристик биполярного транзистора

В первом квадранте размещаются выходные статические характеристики

транзистора $I_{\kappa}=f(U_{\kappa_9})\Big|_{I_{\delta}=const}$. В третьем квадранте размещено семейство входных характеристик $I_{\delta}=f(U_{\delta_9})\Big|_{U_{\kappa_9}=const}$, снятые для фиксированных зна-

чений напряжения $U_{\kappa_2} \neq 0$. В справочниках чаще всего даются эти характеристики для значений $U_{_{\kappa_{2}}}=0$, $U_{_{\kappa_{2}}}=5~B$. Тогда, откладывая влево от начала координат по оси абсцисс токи базы $I_{\scriptscriptstyle \delta}$, можно построить характеристику передачи

по току $I_{\kappa}=f(I_{\delta})\Big|_{U_{\kappa 9}}=5\,B$. Для этого из точки $U_{\kappa 9}=5\,B$ восстанавливаем пер-

пендикуляр ДО пересечения выходными характеристиками (точки 1, 2, 3, 4, 5, 6), а затем проецируем эти точки до пересечения с перпендикулярами, соответствующими базовым токам, при которых сняты выходные характеристики ($I_6 = 0.06$; 0,1; 0,2; 0,3; 0,4; 0,5 мкА). По этим точкам пересече-

ния и строим искомую характеристику
$$I_{\kappa} = f(I_{\delta}) \Big|_{U_{\kappa_2}} = 5 B$$
 .

Аналогично для $U_{\kappa_9}=2$ B . А теперь можно построить характеристики обратной связи по напряжению: $U_{\delta_9}=f(U_{\kappa_9})\Big|_{I_\delta=const}$. Для этого, задавая дискретные значения напряжений U_{κ_9} на оси абсцисс и восстанавливая из этих точек перпендикуляры, переносим точки пересечения с соответствующими выходными характеристиками в четвертый квадрант, используя при этом в качестве переходной характеристику $I_{\kappa}=f(I_{\delta})$ и характеристику входную $I_{\delta}=f(U_{\delta_9})$. При этом считаем, что при $U_{\kappa_9}>5$ B все входные характеристики идут настолько близко друг к другу, что практически сливаются с характери-

3.5 Эквивалентные схемы транзистора

стикой при $U_{r_2} = 5 \ B$.

Реальный транзистор при расчете электронных схем можно представить в виде эквивалентной схемы (рисунок 3.15). Здесь оба электронно-дырочных перехода, эмиттерный и коллекторный, представлены диодами VD1 и VD2, а их взаимодействие учитывается генераторами токов, которые генерируют токи: $\alpha_N I_1$ — в нормальном включении (α_N — коэффициент передачи транзистора в нормальном включении); $\alpha_1 I_1$ — в инверсном включении (α_1 — коэффициент передачи по току в инверсном включении).

Рисунок 3.15 – Эквивалентная схема транзистора по постонному току

Собственные сопротивления различных областей транзистора учитываются сопротивлениями:

 $r_{_{\scriptscriptstyle 9}}$ – сопротивление эмиттерной области,

 $r_{\scriptscriptstyle \delta}$ —сопротивление базы,

 r_{κ} — сопротивление коллектора.

Рассмотренная схема, является эквивалентной схемой транзистора по постоянному току, так как не учитывает ряда факторов, оказывающих существенное влияние на переменную составляющую. Поскольку транзистор в большинстве случаев усиливает сигналы переменного тока, то в этом случае его эквивалентная схема будет несколько иной (рисунок 3.16).

Рисунок 3.16 – Эквивалентная схема транзистора по переменном току

Здесь
$$\beta = \frac{dI_\kappa}{dI_9}\Big|_{U_\kappa = const}$$
 — динамический коэффициент передачи по току;
$$r_9 = \frac{dU_9}{dI_9}\Big|_{U_\kappa = const}$$
 — динамическое сопротивление эмиттера;
$$r_\kappa = \frac{dU_\kappa}{dI_\kappa}\Big|_{I_9 = const}$$
 — динамическое сопротивление коллектора;
$$\mu_{9\kappa} = \frac{dU_9}{dI_\kappa}\Big|_{I_9 = const}$$
 — динамический коэффициент внутренней об-

ратной связи по напряжению;

 $r_{\scriptscriptstyle \delta}$ – объемное сопротивление базы;

 $C_{\scriptscriptstyle \kappa}$ – ёмкость коллекторного перехода.

3.6 Транзистор как линейный четырехполюсник

Транзистор с его внутренними параметрами, определяемыми эквивалентной схемой, можно представить в виде линейного четырехполюсника (рисунок 3.17) — «черного ящика» с произвольной, но неизменной структурой, которая определяет соответствующие зависимости между входными и выходными параметрами (U_1 , I_1 , U_2 , I_2).

Рисунок 3.17 – Схема четырехполюсника

В зависимости от того, какие из этих величин взять за независимые переменные, а какие — зависимые, линейный четырехполюсник можно описать шестью различными системами уравнений. Однако, наибольшее распространение получила система, где за независимые переменные принимаются входной ток I_1 и выходное напряжение U_2 , а за зависимые — выходной ток I_2 и входное напряжение U_1 . Тогда система уравнений, связывающая между собой зависимые и независимые переменные, выглядит так:

$$U_{1} = h_{11} \cdot I_{1} + h_{12} \cdot U_{2} I_{2} = h_{21} \cdot I_{1} + h_{22} \cdot U_{2}$$
(3.26)

Физический смысл коэффициентов h_{11} , h_{12} , h_{21} , h_{22} , называемых h-параметрами, установим следующим образом.

Если в первом уравнении положить $U_2=0$ (короткое замыкание на выходе), то параметр $h_{\!\scriptscriptstyle 11}$, можно найти: $h_{\!\scriptscriptstyle 11}=\!\frac{U_1}{I_1}\Big|_{U_2=0}-$ входное сопротивление транзистора при коротком замыкании на выходе.

Если в этом же уравнении положить $I_1=0$ (холостой ход на входе), то параметр h_{12} равен: $h_{12}=\frac{U_1}{U_2}\bigg|_{I_1=0}-$ коэффициент внутренней обратной связи транзистора по напряжению при холостом ходе во входной цепи.

Аналогичным образом из второго уравнения находим: $h_{21} = \frac{I_2}{I_1} \Big|_{U_2 = 0} -$ коэффициент передачи транзистора по току при коротком замыкании на выходе; $h_{22} = \frac{I_2}{U_2} \Big|_{I_1 = 0} -$ выходная проводимость транзистора при холостом ходе во входной цепи.

С учетом h-параметров эквивалентная схема транзистора выглядит следующим образом (рисунок 3.18).

Рисунок 3.18 – Схема замещения транзистора

Здесь во входной цепи транзистора включен генератор напряжения $h_{12}U_2$, который учитывает взаимовлияние между коллекторным и эмиттерным переходом в результате модуляции ширины базы, а генератор тока $h_{21}I_1$ в выходной цепи учитывает усилительные свойства транзистора, когда под действием входного тока I_1 , в выходной цепи возникает пропорциональный ему ток $h_{21}I_1$. Параметры h_{11} и h_{22} — это соответственно, входное сопротивление и выходная проводимость транзистора. Для различных схем включения транзистора h-параметры будут различны.

Рисунок 3.19 – Эквивалентная схема четырехполюсника для схемы

Так, для схемы с общей базой входными и выходными величинами являются (рисунок 3.19):

$$U_1 = U_{so};$$
 $I_1 = I_s;$ $U_2 = U_{\kappa s};$ $I_2 = I_{\kappa}.$

Так как транзистор чаще усиливает сигнал переменного тока, то и hпараметры по переменному току должны определяться не как статические, а как динамические (дифференциальные). Для схемы с общей базой они определяются по выражениям:

$$h_{11\delta} = \frac{\Delta U_{3\delta}}{\Delta I_{3}} \bigg|_{U_{\kappa\delta} = const}$$
 (3.27)

$$h_{12\delta} = \frac{\Delta U_{9\delta}}{\Delta U_{\kappa\delta}} \bigg|_{I_{9} = const}$$
 (3.28)

$$h_{21\delta} = \frac{\Delta I_{\kappa}}{\Delta I_{2}} \Big|_{U_{\kappa\delta}} = const \tag{3.29}$$

$$h_{22\delta} = \frac{\Delta I_{\kappa}}{\Delta U_{\kappa\delta}} \bigg|_{I_{2} = const}$$
 (3.30)

Индекс «б» говорит о принадлежности этих параметров к схеме с общей базой.

Рисунок 3.20 — Эквивалентная схема четырехполюсника для схемы с общим эммитером

Для схемы с общим эмиттером входными и выходными величинами являются (рисунок 3.20): $U_1 = U_{_{\mathfrak{O}^9}}; \ I_1 = I_{_{\mathfrak{G}}}; \ U_2 = U_{_{\kappa^9}}; \ I_2 = I_{_{\kappa}}.$

Для схемы с общим эмиттером h-параметры определяются из соотношений:

$$h_{119} = \frac{\Delta U_{69}}{\Delta I_{6}} \bigg|_{U_{69} = const}$$
(3.31)

и составляет от сотен Ом до единиц кОм

$$h_{129} = \frac{\Delta U_{69}}{\Delta U_{69}} \Big|_{I_{6} = const}$$
(3.32)

и обычно равен $10^{-3} ... 10^{-4}$, т. е. напряжение передаваемое с выхода на вход за счет обратной связи, составляет тысячные или десятитысячные доли выходного напряжения;

$$h_{219} = \frac{\Delta I_{\kappa}}{\Delta I_{\delta}} \bigg|_{U_{\kappa 9} = const}$$
 (3.33)

и составляет десятки – сотни единиц;

$$h_{229} = \frac{\Delta I_{\kappa}}{\Delta U_{\kappa 9}} \Big|_{I_{\delta} = const}.$$
(3.34)

и равна десятым – сотым долям ${\it mCM}$, а выходное сопротивление $\frac{1}{h_{22}}$, получается от единиц до десятков ${\it \kappaOM}$.

Используя семейства входных и выходных характеристик транзистора h-параметры можно определить и графическим путем. Так, для схемы с общим эмиттером семейства входных и выходных характеристик представлены на рисунке 3.21.

Рисунок 3.21 — Определение *h*-параметров по статическим характеристикам транзистора

Входные характеристики транзистора в справочниках обычно представлены двумя кривыми, снятыми при $U_{_{\kappa_{9}}}=0$ и $U_{_{\kappa_{9}}}=5$ B (рисунок 3.21, а). Все остальные входные характеристики при $U_{_{\kappa_{9}}}<5$ B настолько близко расположены друг от друга, что практически сливаются в одну характеристику. Поэтому, откладывая на оси абсцисс выходных характеристик (рисунок 3.21, б) $U_{_{\kappa_{9}}}=5$ B, восстанавливаем из этой точки перпендикуляр до пересечения с какой-либо из средних характеристик, например, $I_{_{62}}$ (точка A). Точке A соответствует коллекторный ток $I_{_{\kappa_{A}}}$. Тогда, давая приращение току $I_{_{\kappa}}$ при неизменном $U_{_{\kappa_{9}}}$ на величину $\Delta I_{_{\kappa}}$, например до пересечения со следующей характеристикой ($I_{_{63}}$), получим точку B. Приращение базового тока $\Delta I_{_{6}}$ при этом соответствует разности:

$$\Delta I_{\scriptscriptstyle 6} = I_{\scriptscriptstyle 63} - I_{\scriptscriptstyle 62}. \tag{3.35}$$

Подставляя найденные величины ΔI_{κ} и ΔI_{δ} в выражение (3.33), получаем параметр:

$$h_{219} = \frac{\Delta I_{\kappa}}{\Delta I_{\delta}} \bigg|_{U_{\kappa 9} = const}.$$
 (3.36)

Давая теперь приращение напряжению $U_{_{\kappa_9}}$ на величину $\Delta U_{_{\kappa_9}}$ от точки A до точки C, получим напряжение $U_{_{\kappa_9C}}$. Точке C соответствует коллекторный ток $I_{_{\kappa C}}$ на оси ординат.

Находя разность токов $I_{\kappa C}$ и $I_{\kappa A}$, получим:

$$\Delta I'_{\kappa} = I_{\kappa C} - I_{\kappa A}$$
.

Подставляя найденные значения $\Delta I'_{\kappa}$ и ΔU_{κ_9} в выражение (3.34), получим:

$$h_{229} = \frac{\Delta I'_{\kappa}}{\Delta U_{\kappa9}} \bigg|_{I_{\delta} = I_{\delta2} = const}.$$
(3.37)

Далее на оси ординат входной характеристики отложим величину тока базы $\Delta I_{\it 62} = I_{\it 64}$. Используя входную характеристику при $U_{\it \kappa 9} = 5~B$, найдем напряжение $U_{\it 694}$. Давая приращение напряжения $\Delta U_{\it 69}$: $\Delta U_{\it 69} = U_{\it 69D} - U_{\it 694}$ на величину $\Delta U_{\it 96}$, находим приращение тока базы $\Delta I'_{\it 6} = I_{\it 6D} - I_{\it 64}$.

Подставляя найденные значения $\Delta U_{\delta_{\vartheta}}$ и $\Delta I'_{\delta}$ в выражение (3.31), получаем:

$$h_{119} = \frac{\Delta U_{69}}{\Delta I'_{6}} \bigg|_{U_{89} = const}.$$
(3.38)

Для нахождения параметра $h_{\!\scriptscriptstyle 12}$ необходимы две входные характеристики, снятые для $U_{\scriptscriptstyle \kappa 3} \neq 0$.

Предположим, что кроме приведенных входных характеристик была бы еще одна, снятая, например, для $U_{\kappa_9}=3~B$ (показана на рисунке 3.21, а пунктиром). Тогда, находя на этой характеристике точку E, соответствующую базовому току I_{64} , можно было бы определить:

$$\Delta U'_{63} = U_{634} - U_{63E} \text{ if } \Delta U'_{63} = U_{634} - U_{63E} = 5 - 3 = 2 B$$

где $U_{\kappa_{2A}}$ и $U_{\kappa_{2E}}$ — значения напряжений на коллекторе, при которых сняты входные характеристики с точкой A и точкой E.

Подставляя найденные значения в выражение (3.32), можно было бы получить:

$$h_{129} = \frac{\Delta U'}{\Delta U'} \Big|_{I_{\delta}} = I_{\delta A} = const. \tag{3.39}$$

Использование для нахождения этого параметра входной характеристики при $U_{\kappa_9}=0$ дает большую погрешность, так как при малых значениях U_{κ_9} входные характеристики располагаются далеко друг от друга, а затем их частота возрастает и уже при $U_{\kappa_9}\approx 5~B$ они практически сливаются друг с другом. Поскольку в справочниках обычно приводится входная характеристика только для одного значения $U_{\kappa_9}\neq 0$, точно определить параметр h_{12} в нашем случае невозможно.

3.7 Режимы работы транзистора

Рассмотрим каскад усиления на транзисторе, включенном по схеме с общим эмиттером (рисунок 3.22). При изменении величины входного сигнала будет изменяться ток базы I_{δ} . Ток коллектора I_{κ} изменяется пропорционально току базы:

Рисунок 3.22 – Схема усилительного каскада

Изменение тока коллектора можно проследить по выходным характеристикам транзистора (рисунок 3.23). На оси абсцисс отложим отрезок, равный E_{κ} — напряжению источника питания коллекторной цепи, а на оси ординат отложим отрезок, соответствующий максимально возможному току в цепи этого источника:

$$I_{\kappa \max} = \frac{E_{\kappa}}{R_{\kappa}}.$$
 (3.41)