Problems 5

Fall 2020

10/26/2020

1) Let F be a field.

Math 328

- (i) Let G be a finite group of order $n \ge 1$. Show that G is isomorphic to a subgroup of $GL_n(F)$.
- (ii) Show that A_n is isomorphic to a subgroup of $SL_n(F)$ for all $n \geq 1$.
- 2) Show that a non trivial abelian group is simple if and only if it is cyclic of prime order.
- 3) Let $\sigma_1, \ldots, \sigma_l \in S_n$ be permutations, such that

$$X_{\sigma_i} \cap X_{\sigma_i} = \emptyset$$

for all $1 \le i \ne j \le l$. Prove:

$$\operatorname{ord}(\sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_l) = \operatorname{lcm}(\operatorname{ord}(\sigma_1), \operatorname{ord}(\sigma_2), \ldots, \operatorname{ord}(\sigma_l)).$$

(Here lcm denotes the least common multiple.)

- 4) Show that $Aut(A_4) \simeq S_4$.
- 5) Show that the alternating group A_4 has no subgroup of order 6.
- 6) Let G be a group (finite or infinite). Show that if G has a subgroup H of index n then G has a normal subgroup K, such that n divides the index [G:K], and this index divides $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$.
- 7) Show that A_5 has no subgroups of order 15, 20, or 30.
- 8) A subgroup G of the symmetric group S_n is called *l-transitive* for some $l \geq 1$ if given two ordered sets

$$\{i_1, i_2, \dots, i_l\}, \{j_1, j_2, \dots, j_l\} \subseteq \{1, 2, \dots, n\}$$

of l different integers then there exists $g \in G$, such that $g(i_r) = j_r$ for all $1 \le r \le l$.

Show that the alternating group A_n is (n-2)-transitive but not (n-1)-transitive.