

Algèbre

Polycopié du cours

A1 - S1 Année 2023/2024

Jad Dabaghi & Raafat Talhouk

Enseignants chercheurs en Mathématiques
jad.dabaghi@devinci.fr, raafat.talhouk@devinci.fr

Chapitre 1

Applications

Dans toute cette section, E et F désignent des ensembles quelconques.

Définition 1.0.1 (graphe, application). • On appelle graphe de E vers F toute partie du produit cartésien $E \times F$.

• Une application (ou fonction) est un triplet $u = (E, F, \Gamma)$ où Γ est un graphe de E vers F tel que, pour tout $x \in E$, il existe un unique $y \in F$ tel que $(x,y) \in \Gamma$. On dit aussi que u est une application de E dans F ou de E vers F.

Remarque 1.0.2. Dans la Définition 1.0.1, E est appelé l'ensemble de départ ou ensemble de définition de u et F est l'ensemble d'arrivée de u. En général on note $u: E \to F$. De plus, pour $x \in E$, l'unique $y \in F$ tel que $(x,y) \in \Gamma$ s'appelle image de x par u et se note u(x). Pour $y \in F$, tout $x \in E$ tel que y = u(x) est appelé antécédent de y. L'ensemble

$$Im(u) = \{ y \in F \mid \exists x \in E \ y = u(x) \} = \{ u(x) \mid x \in E \}$$

est l'ensemble image de u, c'est une partie de F

Conséquence : Égalité de deux applications

L'égalité de deux applications u et v signifie :

- l'égalité des ensembles de départ
- l'égalité des ensembles d'arrivée
- l'égalité u(x) = v(x) pour tout x appartenant à l'ensemble de départ commun.

Définition 1.0.3. Soit E un ensemble et I un ensemble dont les éléments sont appelés indices. On appelle famille d'éléments de E indexée par I toute application de I dans E.

Définition 1.0.4 (Fonction identité). Soit E un ensemble. On appelle identité de E l'application notée $\mathrm{Id}_E: E \to E$ définie par

$$\mathrm{Id}_E(x) = x. \tag{1.1}$$

Définition 1.0.5 (Restriction, prolongement). Soit u une application de E vers F. Si A est une partie de E, la restriction de u à A, notée $u_{|A}$ est l'application de A dans F définie par :

$$\forall x \in A, \quad u_{|A}(x) = u(x)$$

On appelle prolongement de u toute application v définie sur un ensemble A contenant E et vérifiant :

$$\forall x \in E, \quad v(x) = u(x).$$

1.1 Fonction indicatrice

Définition 1.1.1 (Fonction indicatrice). Soit E un ensemble et $A \subset E$. On appelle fonction indicatrice ou fonction caractéristique de A, l'application définie sur E par

$$\mathbb{1}_A : E \to \mathbb{R}$$

$$x \mapsto \mathbb{1}_A(x) = \begin{cases} 1 & si \ x \in A \\ 0 & sinon. \end{cases}$$
(1.2)

Propriété 1.1.2. Soit E un ensemble et A, B deux sous-ensembles de E. Alors

$$A = B \iff \mathbb{1}_A = \mathbb{1}_B$$

Démonstration. Procédons par double implication. Supposons que A = B. Si $x \in A$ alors $\mathbb{1}_A(x) = 1$. Puisque A = B on a $\mathbb{1}_A(x) = 1 = \mathbb{1}_B(x)$.

Réciproquement, supposons que $\mathbb{1}_A = \mathbb{1}_B$ et montrons que A = B par double inclusion. Soit $x \in A$. Alors, $\mathbb{1}_A(x) = \mathbb{1}_B(x) = 1$ et donc $x \in B$. De manière analogue, si $x \in B$ l'égalité des fonctions indicatrices entraı̂ne que $x \in A$.

Propriété 1.1.3. Soit E un ensemble et A, B deux sous-ensembles de E. Alors,

- 1. $\mathbb{1}_A^2 = \mathbb{1}_A$
- 2. $1_{\overline{A}} = 1 1_A$
- 3. $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$
- 4. $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_A \mathbb{1}_B$

Démonstration.

1. On a

$$\mathbb{1}_A^2(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon.} \end{cases} = \mathbb{1}_A(x).$$

2. Par définition

$$\mathbb{1}_{\overline{A}}(x) = \begin{cases} 1 & \text{si } x \in \overline{A} \\ 0 & \text{sinon.} \end{cases}$$

Nécessairement,

$$\mathbb{1}_{\overline{A}}(x) + \mathbb{1}_{A}(x) = 1.$$

J. Dabaghi & R. Talhouk

Module Algèbre

3. On a

$$\mathbb{1}_{A\cap B}(x) = \left\{ \begin{array}{ll} 1 & \text{si} \quad x \in A \cap B \\ 0 & \text{sinon.} \end{array} \right. = \left\{ \begin{array}{ll} 1 & \text{si} \quad x \in A \text{ et } x \in B \\ 0 & \text{sinon.} \end{array} \right. = \mathbb{1}_A(x)\mathbb{1}_B(x).$$

4. On a

$$\mathbb{1}_{A \cup B}(x) = \begin{cases} 1 & \text{si } x \in A \cup B \\ 0 & \text{sinon.} \end{cases}$$

Si $x \in A$ alors $\mathbb{1}_B(x) = 0$ ce qui prouve bien l'égalité souhaitée. Dans le cas où $x \in B$ alors $\mathbb{1}_A$ est nulle ce qui prouve également l'égalité souhaitée. Si $x \in A \cap B$ alors $x \in A \cup B$ et donc $\mathbb{1}_{A \cup B}(x) = 1$. De plus, $\mathbb{1}_A(x) + \mathbb{1}_B(x) - \mathbb{1}_{A \cap B}(x) = 2 - 1 = 1$ ce qui conduit à l'égalité souhaitée. Par ailleurs, dans le cas où $x \notin A \cup B$, $\mathbb{1}_{A \cup B}(x) = 0$ et également $\mathbb{1}_A(x) + \mathbb{1}_B(x) - \mathbb{1}_{A \cap B}(x) = 0 - 0 - 0 = 0$.

Exemple : Montrer que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

On a

$$\mathbb{1}_{A \cap (B \cup C)}(x) = \mathbb{1}_A \mathbb{1}_{B \cup C}(x) = \mathbb{1}_A(x) \left(\mathbb{1}_B(x) + \mathbb{1}_C(x) - \mathbb{1}_{B \cap C}(x) \right)
= \mathbb{1}_A(x) \mathbb{1}_B(x) + \mathbb{1}_A(x) \mathbb{1}_C(x) - \mathbb{1}_A(x) \mathbb{1}_B(x) \mathbb{1}_C(x).$$

De plus,

$$\mathbb{1}_{(A \cap B) \cup (A \cap C)}(x) = \mathbb{1}_{A \cap B}(x) + \mathbb{1}_{A \cap C}(x) - \mathbb{1}_{A \cap B}(x) \mathbb{1}_{A \cap C}(x)
= \mathbb{1}_{A}(x) \mathbb{1}_{B}(x) + \mathbb{1}_{A}(x) \mathbb{1}_{C}(x) - \mathbb{1}_{A}(x) \mathbb{1}_{B}(x) \mathbb{1}_{A}(x) \mathbb{1}_{C}(x)
= \mathbb{1}_{A}(x) \mathbb{1}_{B}(x) + \mathbb{1}_{A}(x) \mathbb{1}_{C}(x) - \mathbb{1}_{A}(x) \mathbb{1}_{B}(x) \mathbb{1}_{C}(x).$$

1.2 Image directe et réciproque

Définition 1.2.1 (Image directe). Soit E, F deux ensembles et $f: E \to F$ et $X \subset E$. On appelle image de X par f le sous-ensemble de F défini par :

$$f(X) = \{ y \in F \ \exists x \in X, \ f(x) = y \}.$$
 (1.3)

Propriété 1.2.2. Soit E, F deux ensembles et $f: E \to F$ et $(A, B) \in \mathcal{P}(E) \times \mathcal{P}(E)$. Alors,

- 1. Si $A \subset B$, alors $f(A) \subset f(B)$
- 2. $f(A \cap B) \subset f(A) \cap f(B)$
- 3. $f(A \cup B) = f(A) \cup f(B)$.

Démonstration. 1. Supposons que $A \subset B$. Soit $y \in f(A)$. Par définition, $\exists x \in A$ tel que f(x) = y. Puisque $x \in B$ il vient que $y \in f(B)$.

- 2. Soit $y \in f(A \cup B)$. Par définition, $\exists x \in A \cap B$ tel que f(x) = y. Alors, $\exists x \in A$ et $\exists x \in B$ tels que f(x) = y. Ainsi, $y \in f(A) \cap f(B)$.
- J. Dabaghi & R. Talhouk

3. Procédons par double inclusion. Supposons que $y \in f(A \cup B)$. Par définition $\exists x \in A \cup B$ tel que f(x) = y. En somme, $\exists x \in A$ tel que f(x) = y ou $\exists x \in B$ tel que f(x) = y. D'où $y \in f(A) \cap f(B)$.

Réciproquement, supposons que $y \in f(A) \cap f(B)$. Alors, $y \in f(A)$ et $y \in f(B)$. Alors, $\exists x \in A$ tel que f(x) = y et $\exists x \in B$ tel que f(x) = y. Ainsi, $\exists x \in A \cup B$ tel que f(x) = y. Cela prouve que $y \in f(A \cup B)$.

Définition 1.2.3 (Image réciproque). Soit E et F deux ensembles, $f \in \mathcal{F}(E, F)$ et $Y \subset F$. On appelle image réciproque de Y par f le sous-ensemble de E défini par

$$f^{-1}(Y) = \{ x \in E, \ f(x) \in Y \}$$
 (1.4)

Propriété 1.2.4. Soit E, F deux ensembles, $f \in \mathcal{F}(E, F)$ et $(C, D) \in \mathcal{P}(F) \times \mathcal{P}(F)$. Alors,

- 1. Si $C \subset D$, alors $f^{-1}(C) \subset f^{-1}(D)$
- 2. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 3. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.

Démonstration. 1. Supposons que $C \subset D$. Soit $x \in f^{-1}(C)$. Par définition $\exists y \in C$ tel que f(x) = y. Puisque $C \subset D$ il vient que $y = f(x) \in D$.

- 2. Procédons par double inclusion. Supposons que $x \in f^{-1}(C \cap D)$. Alors par définition, $\exists y \in C \cap D$ tel que f(x) = y. Ainsi, $\exists y \in C$ tel que f(x) = y et $\exists y \in D$ tel que f(x) = y. D'où $x \in f^{-1}(C) \cap f^{-1}(D)$. Réciproquement, si $x \in f^{-1}(C) \cap f^{-1}(D)$ alors $x \in f^{-1}(C)$ et $x \in f^{-1}(D)$. Donc $\exists y \in C$ tel que y = f(x) et $\exists y \in D$ tel que y = f(x). Ainsi, $\exists y \in C \cap D$ tel que y = f(x). D'où $x \in f^{-1}(C \cap D)$. En conclusion, $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 3. Procédons par double inclusion. Soit $x \in f^{-1}(C \cup D)$. Par définition, $\exists y \in C \cup D$ tel que f(x) = y. Alors, $\exists y \in C$ ou $\exists y \in D$ tel que y = f(x). Finalement, $x \in f^{-1}(C) \cup f^{-1}(D)$. Réciproquement, si $x \in f^{-1}(C) \cup f^{-1}(D)$ alors $x \in f^{-1}(C)$ ou $x \in f^{-1}(D)$. Alors, $\exists y \in C$ tel que y = f(x) ou $\exists y \in D$ tel que y = f(x). Ainsi, $\exists y \in C \cup D$ tel que y = f(x). En conclusion: $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.

Remarque 1.2.5. On a

$$A \subset f^{-1}(f(A)). \tag{1.5}$$

En effet, si $x \in A$ alors $f(x) \in f(A)$. Il s'ensuit que $x \in f^{-1}(f(A))$. Cependant, l'égalité $A = f^{-1}(f(A))$ est vraie que si f est injective. En effet, soit A = [-1, 4] et considérons la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors, f(A) = [0, 16] et $f^{-1}(f(A)) = f^{-1}([0, 16]) = [-4, 4]$.

Module Algèbre

FIGURE 1.1 – Injectivité de la fonction $f:[0,10] \to [0,10]$ définie par f(x)=x.

FIGURE 1.2 – exemple d'une fonction non injective $f: [-10, 10] \rightarrow [0, 100]$ définie par $f(x) = x^2$.

1.3 Injectivité, surjectivité, bijectivité

Définition 1.3.1. On dit qu'une application $u: E \to F$ est une injection ou est injective si elle vérifie l'une des trois propriétés équivalentes suivantes :

- 1. Tout element de F a au plus un antécédent par u.
- 2. Pour tout $y \in F$, l'équation u(x) = y possède au plus une solution
- 3. $\forall (x_1, x_2) \in E^2$, $u(x_1) = u(x_2) \implies x_1 = x_2$.

La dernière caractérisation de 1.3.1 équivalente aussi à

$$\forall (x_1, x_2) \in E^2 \quad x_1 \neq x_2 \Rightarrow u(x_1) \neq u(x_2).$$
 (1.6)

Dans la Figure 1.1 nous apportons une illustration de l'injectivité de la fonction identité. Pour prouver mathématiquement l'injectivité de cette fonction on revient à la définition. On considère $(x_1, x_2) \in [0, 10] \times [0, 10]$ quelconque tel que $f(x_1) = f(x_2)$. Alors, il vient que $x_1 = x_2$ ce qui prouve que f est injective. D'ailleurs, on verra plus loin que cette fonction est bijective. La Figure 1.2 est un exemple de fonction non injective. Ici, $f(x) = x^2$. On observe que f(-5) = f(5) = 25 ce qui contredit le caractère injectif de f. Toutefois, la restriction de f à l'intervalle [0, 10] est une application injective.

Définition 1.3.2. On dit qu'une application $u: E \to F$ est une surjection ou ou est surjective si elle vérifie l'une des trois propriétés équivalentes suivantes :

- 1. Tout élément de F a au moins un antécédent par u.
- 2. Pour tout $y \in F$, l'équation u(x) = y possède au moins une solution.
- 3. $\forall y \in F, \exists x \in E \text{ tel que } u(x) = y.$

La fonction $f:[-10,10] \to [0,100]$ définie dans 1.2 est bien surjective. En effet, l'équation f(x) = y admet au moins une solution donnée par $x = \sqrt{y}$ ou $x = -\sqrt{y}$. Toutefois, la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$ n'est pas surjective car toutes les valeurs négatives n'ont aucun antécédents par f.

Définition 1.3.3. On dit qu'une application $u: E \to F$ est une bijection ou ou est bijective si elle vérifie l'une des trois propriétés équivalentes suivantes :

- 1. Tout élément de F a un unique antécédent par u.
- 2. Pour tout $y \in F$, l'équation u(x) = y possède une unique solution.
- 3. $\forall y \in F, \exists ! x \in E \text{ tel que } u(x) = y.$

Ainsi, une application bijective est une application à la fois injective et surjective. La fonction $f:[0,10] \to [0,10]$ définie dans 1.1 est bien bijective. En effet, l'équation f(x) = y admet une unique solution donnée par x = y.

1.4 Composition d'applications

Définition 1.4.1. Soient E, F, G et H quatre ensembles. Soient $u \in \mathcal{F}(E,F)$, $v \in \mathcal{F}(F,G)$. L'application $x \mapsto v(u(x))$ définie sur E et à valeurs dans G est appelée composée des applications v et u et on la note $v \circ u$.

Remarque 1.4.2. Pour que la composition soit bien définie, il faut que l'ensemble d'arrivée de u soit égal à l'ensemble de départ de v.

Exemple : Considérons la fonction $h: \mathbb{R} \to \mathbb{R}_+$ définie par

$$h(x) = \sqrt{x^2 + 1}.$$

La fonction h peut s'écrire comme la composée de deux fonctions. En effet,

$$h(x) = (g \circ f)(x) \tag{1.7}$$

où $f: \mathbb{R} \to \mathbb{R}_+$ est définie par $f(x) = x^2 + 1$ et $g: \mathbb{R}_+ \to \mathbb{R}_+$ est définie par $g(x) = \sqrt{x}$.

Propriété 1.4.3. [Associativité] Soient $u: E \to F$, $v: F \to G$, $w: G \to H$. On a

$$w \circ (v \circ u) = (w \circ v) \circ u. \tag{1.8}$$

Démonstration. Les applications $w \circ (v \circ u)$ et $(w \circ v) \circ u$ ont même ensemble de départ E et même ensemble d'arrivée H. Par ailleurs,

$$\forall x \in E, \ (w \circ (v \circ u))(x) = w((v \circ u)(x)) = w(v(u(x))) = (w \circ v)(u(x)). \tag{1.9}$$

Cela prouve l'égalité souhaitée.

Propriété 1.4.4. L'application identité est neutre pour la composition i.e.

$$f \circ Id_E = f = Id_F \circ f$$

Propriété 1.4.5. Soient $u \in \mathcal{F}(E, F)$ et $v \in \mathcal{F}(F, G)$.

- 1. Si u et v sont injectives alors $v \circ u$ est injective.
- 2. Si u et v sont surjectives alors $v \circ u$ est surjective.
- 3. Si u et v sont bijectives alors $v \circ u$ est bijective. Dans ce cas, $(v \circ u)^{-1} = u^{-1} \circ v^{-1}$.
- Démonstration. 1. Supposons que les applications u et v sont injectives et montrons que l'application $v \circ u$ est injective. Soit $(x,y) \in E^2$ tel que $(v \circ u)(x) = (v \circ u)(y)$. Il vient que v(u(x)) = v(u(y)). Comme l'application $v : F \to G$ est injective on a u(x) = u(y). Par ailleurs, l'application $u : E \to F$ est injective on il s'ensuit que x = y. Cela prouve que l'application $v \circ u$ est injective.
 - 2. Supposons que les applications u et v sont surjectives et montrons que l'application $v \circ u$ est surjective. Soit $z \in G$. Il s'agit montrer qu'il existe $x \in E$ tel que $(v \circ u)(x) = z$. On a v(u(x)) = z. Comme $v : F \to G$ est surjective $\exists y_1 \in F$ tel que $v(y_1) = z$. De plus, la surjectivité de $u : E \to F$ implique que $\exists x_1 \in E$ tel que $u(x_1) = y_1$. Finalement, $\exists x_1 \in E$ tel que $(v \circ u)(x_1) = z$.
 - 3. Supposons que u et v sont bijectives. Alors, par définition, u et v sont à la fois surjective et injective. Il vient que $v \circ u$ sont à la fois injective et surjective et par effet induit bijective.

Propriété 1.4.6. Soit $u: E \to F$ et $v: F \to E$ des applications.

- 1. Si $v \circ u$ est injective alors u est injective.
- 2. Si $v \circ u$ est surjective alors v est surjective.

J. Dabaghi & R. Talhouk

Module Algèbre

Démonstration. Supposons que $v \circ u$ est injective et montrons que u est injective. Soit $(x,y) \in E \times E$ tel que u(x) = u(y). Alors v(u(x)) = v(u(y)). Or, $v \circ u$ est injective et donc x = y. Cela prouve l'injectivité de $v \circ u$.

Supposons désormais que $v \circ u$ est surjective et montrons que v est surjective. Par hypothèse, $\forall y \in E, \ \exists x \in E \ \text{tel que} \ (v \circ u)(x) = y$. Pour $z = v(x) \in F$ on a bien v(z) = y ce qui prouve que v est surjective.

1.5 Application réciproque

Définition 1.5.1. Si u est une application bijective de E dans F, aiors l'application de F dans E qui associe à tout element de F son unique antécédent dans E s'appelle application réciproque de u et se note u^{-1} . On a donc

$$\forall (x,y) \in E \times F, \ u(x) = y \iff x = u^{-1}(y) \tag{1.10}$$

Exemples:

- L'application $u: \mathbb{R}_+ \to \mathbb{R}_+$ définie par $u(t) = t^2$ est bijective et sa réciproque est la fonction $v: \mathbb{R}_+ \to \mathbb{R}_+$ définie par $v(t) = \sqrt{t}$.
- L'application $u: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ définie par $u(x) = \sin(x)$ est bijective. Sa réciproque est la fonction $v: [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ définie par $v(x) = \arcsin(x)$.

FIGURE 1.3 – Exemples de fonctions réciproques. Gauche : $x \mapsto x^2$ et sa réciproque $x \mapsto \sqrt{x}$. Droite : $x \mapsto \sin(x)$ et sa réciproque $x \mapsto \arcsin(x)$.

Propriété 1.5.2. Soit
$$u: E \to F$$
 une application bijective. On a
$$u^{-1} \circ u = \operatorname{Id}_E \quad et \quad u \circ u^{-1} = \operatorname{Id}_F. \tag{1.11}$$

Propriété 1.5.3. Si $u \in \mathcal{F}(E,F)$ et $v \in \mathcal{F}(F,E)$ sont deux applications vérifiant $u \circ v = \operatorname{Id}_F$ et $v \circ u = \operatorname{Id}_E$ alors elles sont toutes les deux bijectives et

réciproques l'une de l'autre.

Démonstration. Montrons que u est bijective. Soit $(x_1, x_2) \in E \times E$ tel que $u(x_1) = u(x_2)$. Alors, $(v \circ u)(x_1) = (v \circ u)(x_2)$. Or par hypothèse, $v \circ u = \mathrm{Id}_E$ et donc $x_1 = x_2$ ce qui prouve que u est injective. Considérons $y \in F$ quelconque et montrons qu'il existe $x \in E$ tel que u(x) = y. Pour x = v(y) on a u(v(y)) = y car par hypothèse $u \circ v = \mathrm{Id}_F$. Finalement, l'application u est surjective. On en déduit que l'application u est bijective. On a de plus,

$$v = \mathrm{Id}_E \circ v = (u^{-1} \circ u) \circ v = u^{-1} \circ (u \circ v) = u^{-1} \circ \mathrm{Id}_F = u^{-1}.$$
 (1.12)

De manière analogue, v est bijective.