SC1015 Mini project

FCSI Group 4 Kalaiselvan Shanmugapriyan (U2323515D) Manikandan Yuvana (U2322251E) Rajadharshini Nedumaran (U2322490L)

TABLE OF CONTENTS

01. Data Set 02. Data

Cleaning

03.

04. Lasso Regression 05. Linear Regression 06.

Video Games Sales & Rating

Source from: Kaggle

Description of Dataset

ategorical	1. 2. 3. 4. 5. 6.	Name Platform Year_of_Release Genre Publisher Developer Rating
lumeric	1. 2. 3. 4.	NA_Sales, EU_Sales, JP_Sales & Other_Sales Global_Sales Critic_Score & User_score Critic_Count & User_Count

Description of Dataset

Г	index	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score
0	0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53	76.0
1	1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24	NaN
2	2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52	82.0
3	3	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77	80.0
4	4	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22	1.00	31.37	NaN

raw data: (16928,17)

Motivation

Predicting the **global sales** from various game-related variables such as domestic sales, ratings, genre, platform, user & critic scores and gain insights into **consumer preferences** and **market dynamics**.

Our Models

Linear Regression

Lasso Regression

Radial Basis Function Network

Data Cleaning

Removing

main_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16928 entries, 0 to 16927
Data columns (total 17 columns):

```
Column
                    Non-Null Count
                                   Dtype
    index
                    16928 non-null int64
    Name
                    16926 non-null object
    Platform
                    16928 non-null object
    Year of Release 16655 non-null float64
    Genre
                    16926 non-null object
    Publisher
                    16873 non-null object
    NA Sales
                    16928 non-null float64
    EU Sales
                    16928 non-null float64
  JP Sales
                    16928 non-null float64
    Other Sales
                    16928 non-null float64
    Global Sales
                    16928 non-null float64
    Critic Score
                    8260 non-null float64
12 Critic count
                    8260 non-null
                                   Tivato
                    10159 non-null object
13 User Score
                    7710 nor null float64
14 User Count
15 Developer
                    10240 non-null object
    Rating
                    10092 non-null object
dtypes: float64(9), i t64(1), object(7)
memory usage: 2.2+ MB
```

Null Values

User_Score to numeric

Outliers

Dropped JP_Sales & User_Count

```
Number of outliers of index :
Number of outliers of NA Sales:
686
Number of outliers of EU Sales :
771
Number of outliers of JP Sales :
1516
Number of outliers of Other Sales:
799
Number of outliers of Critic Score :
100
Number of outliers of Critic Count :
176
Number of outliers of User Score :
269
Number of outliers of User Count :
1006
```

Target Encoding

- 1. Regression models needs numeric inputs
- 2. Need to convert categorical inputs into numeric inputs
- **3.** Target encoding: replaces the object input with a number that represents the mean target value for each category
- **4.** Calculated: mean Global_Sale for that category
- **5.** Target encoding for categorical values Platform, Genre, Publisher, Developer, Rating

	Platform	mean_Platform
4653	WiiU	0.134103
4720	PS2	0.152714
4751	PS3	0.180270
4788	GC	0.141435
4813	PSV	0.144886
4875	Wii	0.160289
4877	PS3	0.180270
4883	3DS	0.167342
4905	3DS	0.167342
4911	Wii	0.160289

Cleaned Data

cleaned data: (3186,20)

```
    main data.info()

  <class 'pandas.core.frame.DataFrame'>
  Int64Index: 3186 entries, 4653 to 16753
  Data columns (total 20 columns):
       Column
                        Non-Null Count Dtype
       index
                        3186 non-null
                                         int64
       Name
                        3186 non-null
                                         object
       Platform
                                         object
                         3186 non-null
       Year of Release
                        3186 non-null
                                         float64
       Genre
                        3186 non-null
                                         object
       Publisher
                        3186 non-null
                                         object
       NA Sales
                        3186 non-null
                                         float64
       EU Sales
                        3186 non-null
                                         float64
       Other Sales
                                         float64
                         3186 non-null
       Global Sales
                        3186 non-null
                                         float64
       Critic Score
                                         float64
                         3186 non-null
       Critic Count
                        3186 non-null
                                         float64
       User Score
                        3186 non-null
                                         float64
       Developer
                        3186 non-null
                                         object
       Rating
                        3186 non-null
                                         object
       mean Platform
                        3186 non-null
                                         float64
       mean Genre
                                         float64
                         3186 non-null
       mean Publisher
                        3186 non-null
                                         float64
       mean Developer
                        3186 non-null
                                         float64
       mean Rating
                        3186 non-null
                                         float64
  dtypes: float64(13), int64(1), object(6)
  memory usage: 522.7+ KB
```


<u> Univariate (Numeric)</u>

Boxplot

Show median, quartiles, symmetry Histograms and spread of data. Spread of data similar for the all sales.
Global_Sales highest mean followed by NA_Sales, EU_Sales and Other_Sales

Univariate (Numeric)

Histograms

Show distribution shape, central tendency, spread of data and most importantly **frequency**. From histograms we can analyse that Critic_Score of 72 and User_Score of about 7.8 have highest frequency.

Univariate (Categorical)

Histograms

Grouped Year_of_Release as there were too many categories

- 1. 1985-1999
- 2. 2000-2009
- 3. 2010-2016

Multivariate

Correlation Matrix

Display the degree of correlation between multiple variables.

Columns with high correlation with Global_Sales are NA_Sales (0.82), Other_Sales (0.70), EU_Sales (0.55) and mean_Developer (0.63)

														_
NA_Sales	1.00	0.28	0.50	0.82	-0.05	0.11	-0.04	0.43	0.19	0.32	0.54	0.05	- 1.0	10
EU_Sales	0.28	1.00	0.63		0.09	0.13	0.02	0.02	0.02	0.14	0.28	-0.01	- 0.7	5
Other_Sales		0.63	1.00	0.70	-0.04	0.17	-0.07	0.28	0.11	0.22	0.40	-0.04		
Global_Sales	0.82	0.55	0.70	1.00	0.03	0.16	0.02	0.41	0.21	0.37	0.63	0.05	- 0.5	0
Critic_Score	-0.05	0.09	-0.04	0.03	1.00	0.22	0.50	-0.29	-0.04	0.05	-0.00	0.06	- 0.2	5
Critic_Count	0.11	0.13	0.17	0.16	0.22	1.00	0.12	-0.03	-0.07	0.06	0.07	-0.11		
User_Score	-0.04	0.02	-0.07	0.02	0.50	0.12	1.00	-0.07	-0.04	0.02	-0.01	0.07	- 0.0	10
mean_Platform	0.43	0.02	0.28	0.41	-0.29	-0.03	-0.07	1.00	0.23	0.22	0.34	0.06	0	.25
mean_Genre	0.19	0.02	0.11	0.21	-0.04	-0.07	-0.04	0.23	1.00	0.17	0.29	0.08		
mean_Publisher	0.32	0.14	0.22	0.37	0.05	0.06	0.02	0.22	0.17	1.00	0.44	0.03	0	.50
mean_Developer	0.54	0.28	0.40	0.63	-0.00	0.07	-0.01	0.34	0.29	0.44	1.00	0.05	0	.75
mean_Rating	0.05	-0.01	-0.04	0.05	0.06	-0.11	0.07	0.06	0.08	0.03	0.05	1.00		
	NA_Sales	EU_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count	User_Score	mean_Platform	mean_Genre	mean_Publisher	mean_Developer	mean_Rating	1	.00

Data Preparation

Train and Test data

Train Data	1985 - 2009
Test Data	2010-2016

Long-term trends, seasonal variations, and shifts in patterns over time, and models can be used for time-series forecasting.

Linear Regression

What is Linear Regression?

Equation

relationship between the variables

Code breakdown

- 1. Data preparation
- 2. Model Fitting and Prediction
- 3. Model Evaluation (Finding intercept and coefficient)
- 4. Results Storage
- 5. Visualisation using regression line
- DataFrame Creation

Numerical Columns: Results

	Numeric_Columns	Intercept	Coefficient	Explained Variance (R^2)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)
0	NA_Sales	[0.03431150532383362]	[[1.1729032092117528]]	0.544756	0.003901	0.062455
1	EU_Sales	[0.0806625861972747]	[[1.8266635892450092]]	0.223909	0.006650	0.081546
2	Other_Sales	[0.0742045066073027]	[[6.243742322558052]]	0.532308	0.004007	0.063303
3	Critic_Score	[0.11566661332890484]	[[0.0002539577662829581]]	-0.001720	0.008583	0.092644
4	Critic_Count	[0.11296655583315984]	[[0.0008813888936803135]]	0.047500	0.008161	0.090340
5	User_Score	[0.12918207984238958]	[[0.0005001121337913807]]	-0.001469	0.008581	0.092633

Categorical Columns: Results •

	Categorical_Columns	Intercept	Coefficient	Explained Variance (R^2)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)
0	mean_Platform	[-0.02293693431815408]	[[1.1472728071350073]]	0.128325	0.007469	0.086422
1	mean_Genre	[0.010144210707715984]	[[0.9237169141415654]]	0.049086	0.008148	0.090264
2	mean_Publisher	[-0.003168052280176137]	[[1.0114283738921628]]	0.146923	0.007309	0.085495
3	mean_Developer	[0.0003642005507176749]	[[0.9867659447434065]]	0.431708	0.004869	0.069780
4	mean_Rating	[-0.027304667139201017]	[[1.192478098091714]]	-0.000871	0.008576	0.092605

Lasso Regression

What is Lasso Regression?

Enhance the accuracy of statistical linear regression models

lacksquare = lacksquare =

Process of coding Lasso

Numerical Columns

Categorical Columns

All columns

Code breakdown

- 1. Data preparation
- Lasso Regression Model without HyperparameterTuning
- 3. Hyperparameter Tuning using GridSearchCV (alpha:0.01)
 - a. param_grid = { 'alpha': [0.01, 0.1, 1, 10, 100, 1000] }
- 4. Lasso Regression Model with Hyperparameter Tuning
- 5. Visualisation using KDE plot

Numerical Columns: Results

MAE: 0.07659789363324908MSF: 0.00858404990760388

R^2 Score: -0.0018429077763817414

Best hyperparameters found by GridSearchCV: alpha = 0.01

Metrics for Lasso model with hyperparameter tuning:

MAE: 0.029376156814276903
 MSE: 0.0023583904186542043
 R^2 Score: 0.7247526819941321

Intercept of Lasso model with best hyperparameters: 0.13290056448111157

Coefficients of Lasso model with best hyperparameters:

Categorical Columns: Results •

MAE: 0.07659789363324908MSE: 0.00858404990760388

R^2 Score: -0.0018429077763817414

Best hyperparameters found by GridSearchCV: alpha = 0.01

Metrics for Lasso model with hyperparameter tuning:

MAE: 0.0519497308344659

MSE: 0.0046613346947428445

R^2 Score: 0.4559764732304953

Intercept of Lasso model with best hyperparameters:

0.1329005644811116

Coefficients of Lasso model with best hyperparameters:

Numerical and Categorical Columns: Results

Metrics for Lasso model without hyperparameter tuning:

MAE: 0.07659789363324908MSE: 0.00858404990760388

R^2 Score: -0.0018429077763817414

Best hyperparameters found by GridSearchCV: alpha = 0.01

Metrics for Lasso model with hyperparameter tuning:

MAE: 0.02777958365283314
 MSE: 0.002086901063474002
 R^2 Score: 0.7564381553955781

Intercept of Lasso model with best hyperparameters: 0.13290056448111157

Coefficients of Lasso model with best hyperparameters:

Overall results of Lasso

- ★ Significant improvements in predictive performance following hyperparameter tuning
- ★ By adjusting the regularization parameter, the tuned model exhibited lower prediction errors and better captured the underlying patterns in the data
- ★ Improves predictive modeling accuracy and decision-making processes

Radial Basis Function Network (RBF)

What is Radial Basis Function Network?

Definition

Type of feed forward neural network composed of three layer, the input layer, the hidden layer and the output layer

Function

Increase the accuracy of prediction better the other regression methods

Equation

$$y(\mathbf{x}) = \sum_{i=1}^N w_i \, arphi(\|\mathbf{x} - \mathbf{x}_i\|),$$

Process of coding RBF

Numerical Columns

Categorical Columns

All columns

Code breakdown

- Data preparation
- 2. Defining the functions for RBF
- 3. Defining the hyperparameters for tuning
- 4. Fitting the training data
- 5. Predicting in test data
- 6. Evaluating the model

```
import numpy as np
from sklearn, base import BaseEstimator, RegressorMixin
from sklearn.cluster import KMeans
from sklearn.linear_model import Ridge
from sklearn.metrics import mean squared error
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
class RBFNRegressor(BaseEstimator, RegressorMixin):
   def __init__(self, n_centers=10, gamma=1.0, alpha=1.0): #initializes the RBFNRegressor with default values
       self.n centers = n centers
       self.gamma = gamma
       self.alpha = alpha
                            #alpha gives regularization strength for Ridge Regression
       self.centers = None
       self.linear_model = None
   def fit(self, X, y):
       #Fits the RBFNRegressor to training data
       # Step 1: Initialize centers using K-Means clustering
       kmeans = KMeans(n_clusters=self.n_centers, random_state=42) # Ensure reproducibility
       kmeans.fit(X)
       self.centers = kmeans.cluster_centers_
       # Step 2: Compute radial basis functions
       rbf = self, compute rbf(X)
       # Step 3: Train linear model with RBF features
       self.linear model = Ridge(alpha=self.alpha)
       self.linear_model.fit(rbf, y)
   def predict(self, X): #predicts target value for given input data using trained RBFNRegressor
       rbf = self, compute rbf(X)
       return self.linear model.predict(rbf)
   def _compute_rbf(self, X): #computes RBF features for input data based on centre centres
       rbf = np.array([np.exp(-self.gamma * np.linalg.norm(x - c) ** 2)
                       for x in X for c in self.centers1)
       return rbf.reshape(len(X), self.n centers)
   def get_params(self, deep=True):
       return {'n centers': self.n centers, 'gamma': self.gamma, 'alpha': self.alpha}
   def set_params(self, **parameters):
       for parameter, value in parameters.items():
           setattr(self, parameter, value)
       return self
```

Results

Numerical Columns: Results

Best Hyperparameters:

Best Hyperparameters: {'alpha': 0.0001, 'gamma': 0.001, 'n_centers': 40}

Performance of Model:

MSE: 0.0022036566695957252 **MAE:** 0.025192976277781668 **R^2 Score:** 0.742811629781769

Categorical Columns: Results

Best Hyperparameters:

Best Hyperparameters: {'alpha': 0.0001, 'gamma': 0.001, 'n_centers': 30}

Performance of Model:

MSE: 0.005907722580636701

MAE: 0.05300455005331339

R^2 Score: 0.3105107691325899

Numerical and Categorical Columns: Results

Best Hyperparameters:

Best Hyperparameters: {'alpha': 0.0001, 'gamma': 0.001, 'n_centers': 60}

Performance of Model:

MSE: 0.001976806785410951 **MAE:** 0.02454337259726001 **R^2 Score:** 0.7692872386198644

Analysis from Models used

	Numeric	Categorical	All
Best performance for Linear	R^2 Score :0.54476		
Linear	MSE: 0.00390		
Best performance for Lasso	R^2 Score: 0.72475	R^2 for RBF & Lasso >	
Ld550	MSE: 0.00236	Linear	
Best performance for RBF	R^2 Score :0.72475		
	MSE:0.002203		
	M	1SE for RBF < Lasso &	

Linear

Analysis from Models used

	Numeric	Categorical	All
Best performance for Linear	R^2 Score :0.54476	R^2 Score :0.431708	
Linear	MSE: 0.00390	MSE: 0.004869	
Best performance for	R^2 Score: 0.72475	R^2 Score : 0.455976	
Lasso	MSE: 0.00236	MSE: 0.0046613	R^2: Lasso > RBF MSE: Lasso < RBF
Best performance for	R^2 Score :0.72475	R^2 Score : 0.3105108	
RBF	MSE:0.002203	MSE: 0.0530046	

Analysis from Models used

	Numeric	Categorical	All
Best performance for Linear	R^2 Score :0.54476	R^2 Score :0.431708	-
Lilical	MSE: 0.00390	MSE: 0.004869	
Best performance for Lasso	R^2 Score: 0.72475	R^2 Score :0.455976	R^2 Score : 0.756438
LdSSU	MSE: 0.00236	MSE: 0.0046613	MSE: 0.002087
Best performance for RBF	R^2 Score :0.72475	R^2 Score :0.3105108	R^2 Score :0.769287
KDF	MSE:0.002203	MSE: 0.0530046	MSE: 0.0019767

R^2 > 0.7 for Lasso

& RBF

OUTCOME

- 1. Best Regression Model: Lasso Regression
- 2. Best model for prediction (overall): RBF Networks
- 3. No significant improvement when predicted using RBF network
- 4. Best columns for numeric prediction: NA_Sales, EU_Sales, Other_Sales
- 5. Best columns for categorical prediction: mean_Developer (Developer), mean_Platform (Platform), mean_Genre (Genre)

INSIGHTS

#Insight 1: Lasso > Linear

- Performs feature selection, reduces overfitting, manages multicollinearity, increases robustness to outliers, enhances model interpretability
- 2. Lasso has L1 regularization

INSIGHTS

#Insight 2: Lasso Linear ≅ RBF

- 1. RBF only shows slight improvement compared to Lasso
- Due to hyperparameter tuning sensitivity, unnecessary complexity for linear r/s and data size issues

INSIGHTS

#Insight 3: Predicted data and Real life example

- USA and Europe are the biggest market for gaming
- 2. Other sales includes Asian countries
- 3. Genre: Game appeal to user
- 4. Platform & Developer: Compatibility & Accessibility

1.	United States	\$46.4B	209.8M
2. *:	China	\$44.0B	696.5M
3.	Japan	\$19.1B	73.4M
4. 10 11	South Korea	\$7.4B	33.3M
5.	Germany	\$6.5B	49.5M
6.	United Kingdom	\$5.5B	38.5M

THANKS!

