Recommender Systems

- Problem formulation
- · optimization and update
- · Collaborative filtering
 - Low Rank Matrix Factorization
- Implementation Detail: Mean Normalization

Problem formulation

```
n_u = no. users n_m = no.movies r(i,j)=1 if user j has rated movie i y(i,j)=1 = rating given by user j to movie i (defined only if r(i,j)=1)
```

For each user j , learn a parameter $heta^{(j)}$. Predict user j as rating movie i with $(heta^{(j)})^T x^{(i)}$.

 $heta^{(j)}$ = parameters vector for user j $x^{(i)}$ = feature vector for movie i $m^{(j)}$ = no. of movies rated by user j

Given X, to learn $\theta^{(j)}$:

$$min_{ heta^{(j)}} \; rac{1}{2} \sum_{i:r(i,j)=1} ((heta^{(j)})^T(x^{(i)}) - y^{(i,j)})^2 + rac{\lambda}{2} \sum_{k=1}^n (heta_k^{(j)})^2$$

The difference between traditional linear regression is the absence of divisor m.

optimization and update

Further, Optimization objective:

$$min_{\Theta} \ J = rac{1}{2} \ \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} ((heta^{(j)})^T (x^{(i)}) - y^{(i,j)})^2 + rac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (heta_k^{(j)})^2$$

Gradient descent update:

$$\begin{array}{l} \theta_k^{(j)} = \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ for } k = 0 \\ \theta_k^{(j)} = \theta_k^{(j)} - \alpha (\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)}) \text{ for } k \neq 0 \end{array}$$

Given Θ , to learn $x^{(i)}$:

$$min_{\Theta} \ J = rac{1}{2} \ \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((heta^{(j)})^T (x^{(i)}) - y^{(i,j)})^2 + rac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(j)})^2$$

Now, we can update $heta o x o heta o \dots$ step by step.

Collaborative filtering

minimize X and Θ simultaneously:

$$J(x^{(1)},...,x^{(n_m)}, heta^{(1)},..., heta^{(n_u)}) = rac{1}{2}\sum_{(i,j):r(i,j)=1}((heta^{(i)})^Tx^{(i)} - y^{(i,j)})^2 + rac{\lambda}{2}\sum_{i=1}^{n_m}\sum_{k=1}^n(x_k^{(j)})^2 + rac{\lambda}{2}\sum_{j=1}^{n_u}\sum_{j=1}^n\sum_{k=1}^n(heta_k^{(j)})^2$$

It's important to note that we drop $x_0=1$

update formula:

$$egin{aligned} x_k^{(i)} &= x_k^{(i)} - lpha(\sum_{j:r(i,j)=1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)}) heta_k^{(j)} + \lambda x_k^{(i)}) \ heta_k^{(j)} &= heta_k^{(j)} - lpha(\sum_{i:r(i,j)=1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda heta_k^{(j)}) \end{aligned}$$

predict: $\theta^T x$

Low Rank Matrix Factorization

$$Y = X\Theta^T$$

Predicting how similar two movies i and j are can be done using the distnce between their respective feature vectors x. Specifically, we are looking for a small value of $\|x^{(i)} - x^{(j)}\|$

Implementation Detail: Mean Normalization

The new user don't have record $r_{(i,j)}=1$, which means θ won't be updated.

A method is that assigned by average value of $r_{(i,j)}=1$, of course it's for vectorization. $\mu_i=\frac{\sum_{j:r(i,j)=1}Y_{i,j}}{\sum_{j}r(i,j)}$

Or replace Y by $Y-\mu$, and prediction should be $(heta^{(j)})^T x^{(i)} + \mu_i$