TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4511BP, TC4511BF

TC4511B BCD - TO - SEVEN SEGMENT LATCH / DECODER / DRIVER

TC4511B is decoder which converts the input of BCD code into the 7 segment display element driving signal and the output has complementary connection of NPN bipolar transistor and N-channel MOS FET. Therefore, not only capability of directly driving cathode common type LED, this has capability of driving various display elements with simple interface circuits. \overline{LT} input and \overline{BI} input are to force all the outputs to be "H" (illuminated) and "L" (not illuminated) respectively regardless of BCD input. As the latch controlled by common LE input is inserted in each of four input lines, static display of dynamic information can be achieved. When an invalid BCD input, "10" or higher is applied, all the outputs become "L" (not illuminated).

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	V _{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	I _{IN}	± 10	mA
Output High Current	I _{OH}	– 50	mΑ
Power Dissipation	P _D	300 (DIP) / 180 (SOIC)	mW
Operating Temperature Range	T _{opr}	- 40∼85	°C
Storage Temperature Range	T _{stg}	- 65∼150	°C

TRUTH TABLE

		I	NPU1	Ī			OUTPUT						DISPLAY	
LE	ΒĪ	ĪΤ	۵	C	В	Α	а	Ь	v	а	e	f	g	MODE
*	*	L	*	*	*	*	Η	Н	Н	Н	Н	Н	Н	8
*	L	Н	*	*	*	*	L	L	L	L	L	L	L	BLANK
L	Н	Н	L	L	L	L	Η	Ι	Η	Ι	Н	Н	L	0
L	Н	Н	┙	L	L	Ι	L.	Ι	Ι	L.	L	L	L	1
L	Н	Н	L	L	Н	L	Η	Н	L	Н	Н	L	Н	2
L	Н	Н	٦	L	Н	Η	Ξ	Ξ	Η	Ξ	L	L	Н	3
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	L	Н	L	Η	Η	١	Η	Ι	L	Н	Н	5
L	Н	Н	ш	Н	Η	L	ш	لــ	Τ	Ι	Η	Н	Н	6
L	Н	Н	١	Η	Ι	Н	Τ	Ι	Ι	ا ـ	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Η	Н	Н	L	L	Н	Н	9
L	Н	Н	Η	L	Н	L	٦	٦	L	٦	L	L	L	BLANK
L	Н	Н	Η	L	Н	Η	┙	اـ	L	٦	L	L	L	BLANK
L	Н	Н	Η	Н	*	*	٦	٦	L	L	L	L	L	BLANK
Н	Н	Н	*	*	*	*		ΔΔ						

DON'T CARE

DEPENDS UPON THE BCD CODE PREVIOUSLY APPLIED WHEN LE "L"

PIN ASSIGNMENT

DISPLAY

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

RECOMMENDED OPERATING CONDITIONS ($V_{SS} = 0V$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	V _{DD}		3	_	18	٧
Input Voltage	V _{IN}		0	_	V_{DD}	٧

STATIC ELECTRICAL CHARACTERISTICS ($V_{SS} = 0V$)

CHARACTERISTIC		SYMBOL	TEST CONDITION	W	– 40°C		25°C			85	UNIT	
		SYMBOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
High-Level Output Voltage		V _{OH}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.1 9.1 14.1	 - -	4.1 9.1 14.1	4.41 9.41 14.41	_ _ _	4.2 9.2 14.2	_ _ _	\ \ \
Low-Level Output Voltage		V _{OL}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15		0.05 0.05 0.05	_ _ _	0.00 0.00 0.00	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	
Output High Voltage			$\begin{split} I_{OH} &= 0 \text{mA} \\ I_{OH} &= 10 \text{mA} \\ I_{OH} &= 20 \text{mA} \\ V_{IN} &= V_{DD}, \ V_{SS} \end{split}$	5	4.10 3.90 3.55		4.10 3.90 3.55	4.41 4.25 4.19		4.20 3.90 3.30		
		V _{OH}	$I_{OH} = 0mA$ $I_{OH} = 10mA$ $I_{OH} = 20mA$ $V_{IN} = V_{DD}, V_{SS}$	10	9.10 9.00 8.70	_ _ _	9.10 9.00 8.70	9.41 9.25 9.20	_ _ _	9.20 9.00 8.40		V
			$\begin{split} I_{OH} &= 0 mA \\ I_{OH} &= 10 mA \\ I_{OH} &= 20 mA \\ V_{IN} &= V_{DD}, \ V_{SS} \end{split}$	15	14.10 14.00 13.75	_ _ _	14.10 14.00 13.75	14.41 14.26 14.21		14.20 14.00 13.50		
Output Low Voltage		I _{OL}	$V_{OUT} = 0.4V$ $V_{OUT} = 0.5V$ $V_{OUT} = 1.5V$ $V_{IN} = V_{DD}, V_{SS}$	5 10 15	0.61 1.5 4.0	_ _ _	0.51 1.3 3.4	1.2 3.2 12.0	_ _ _	0.42 1.1 2.8	_ 	mA
Input High Voltage		V _{IH}	$V_{OUT} = 0.5V, 4.5V$ $V_{OUT} = 1.0V, 9.0V$ $V_{OUT} = 1.5V, 13.5V$ $ I_{OUT} < 1\mu A$	5 10 15	3.5 7.0 11.0	_ _ _	3.5 7.0 11.0	2.75 5.50 8.25	_ _ _	3.5 7.0 11.0	_ _ _	V
Input Low Voltage		V _{IL}	$V_{OUT} = 0.5V, \ 4.5V \ V_{OUT} = 1.0V, \ 9.0V \ V_{OUT} = 1.5V, \ 13.5V \ \ I_{OUT} < 1\mu A$	5 10 15	111	1.5 3.0 4.0		2.25 4.5 6.75	1.5 3.0 4.0	<u> </u>	1.5 3.0 4.0	V
Input Current	"H"Level	I _{IH}	V _{IH} = 18V	18	_	0.3	_	10-5	0.3	_	1.0	
	"L" Level	I _{IL}	V _{IL} = 0V	18		- 0.3	_	– 10 ⁻⁵	- 0.3	_	- 1.0	μΑ
Quiescent Supply Current		I _{DD}	$V_{IN} = V_{SS}, V_{DD} *$	5 10 15		5 10 20	_ _ _	0.005 0.010 0.015	5 10 20	_ _ _	150 300 600	μΑ

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vss = 0V, C_L = 50_PF , R_L = $10k\Omega$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	_	25	80	
(Low to High)	t _{TLH}		10	_	15	60	
(Low to riigh)			15	-	15	50	
Output Transition Time			5		70	200	
(High to Low)	t _{THL}		10	_	35	100	
(flight to Low)			15	_	30	80	
Propagation Dalay Time			5	_	200	1040	
Propagation Delay Time (DATA - OUT)	t _{pLH}		10	_	90	420	
(DATA - 001)			15		65	300	
Dunna nation Dalay Time			5	_	230	1040	
Propagation Delay Time	t _{pHL}		10	_	110	420	
(DATA - OUT)	·		15	_	80	300	
D : D T			5	_	75	640	
Propagation Delay Time	t _{pLH}		10		45	260	
(BI - OUT)	P =		15	_	35	200	
			5	_	90	640	
Propagation Delay Time	t _{pHL}		10		50	260	
(BI - OUT)	P		15		45	200	
			5	_	60	300	
Propagation Delay Time	t _{pLH}		10	_	40	150	ns
(LT - OUT)	*PLH		15	_	35	100	
			5		75	300	_
Propagation Delay Time	t _{pHL}		10		45	150	
(LT - OUT)	PITE		15	_	35	100	
			5	_	180	600	7
Propagation Delay Time	t _{pLH}		10		90	300	
(LE - OUT)	ФЕП		15	_	65	250	
			5		230	600	
Propagation Delay Time	t _{pHL}		10		110	300	
(LE - OUT)	ФНГ		15	_	85	250	
			5		40	300	
Min. Pulse Time	t _{wL}		10	_	20	150	
(LE)	- CVVL		15	<u> </u>	15	120	
			5	_	35	150	\dashv
Min. Set - up Time	_{to:}		10	_	15	70	
(DATA - LE)	t _{su}		15	<u> </u>	10	40	
			5		10	0	\dashv
Min. Hold Time			10	_	_	0	
(DATA - LE)	t _H		15	_	_	0	
Innut Conscitones	+_		1 13	_		7.5	—
Input Capacitance	C _{IN}			_	5	/.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

DIP 16PIN OUTLINE DRAWING (DIP16-P-300-2.54A)

Unit in mm

SOP 16PIN (200mil BODY) OUTLINE DRAWING (SOP16-P-300-1.27)

Unit in mm

