1 Uniqueness of boos someque 2) Equality of rector spaces. Covered 1) Same field toolong.
2) Same ops. Required for equality. 3 Recorp (7, F, +,*) ⇒ give F ,+ , * L the books, we can generate v. 1 Basis ∑ (?. 9; not all ce=0 9, 9, 1 lindep => N= deme of vector 2 Span.

(See Previous).

s Crênen that they are not lindep, how many of them can be lindep?

(5)	Equality of Vector spaces
	1) Same Field
	2) Same ops.
	3) Same basis.
	but boos isn't unique!
	i. if they're diff, then check if
	content of the bosis
	coio be reprious
	of the other basis.
	(then the two basis would
	be equivalent)
6	Some the foll set of eggs

(6) Some the four set of ears -
$$x_1 + x_2 + x_3 = 0$$

 $2x_1 + 3x_2 + x_3 = 0$
 $5x_1 + 6x_2 + 4x_3 = 0$

0

0

2 3 1 5 6 4

$$x_2 - x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

egns, 2 & 3 are lin. dep.

Do F analysis

$$# var = 3$$

$$# eq = 2$$

$$\therefore \quad \text{let} \quad x_2 = \alpha$$

$$x_3 = +\infty$$

$$x_1 = -2x$$

$$\begin{cases} 3c \cdot 1 \\ 3c \cdot 2 \\ 3c \cdot 3 \end{cases} = \begin{cases} -2x \\ x \\ x \end{cases} = \begin{cases} -2 \\ x \\ x \end{cases} = \begin{cases} -2 \\ x \\ x \end{cases} = \begin{cases} -2x \\ x \\ x \end{cases} = \begin{cases} -2x \\ x \\ x \end{cases} = \begin{cases} -2x \\ x \\ x \end{cases} = \begin{cases} -2x \\ x \\ x \\ x \end{cases} = \begin{cases} -2x \\$$

=> all # rectors are lindep.

[Solvent Solvent Solvent

8 Fond c s.t. Ax = B can

be solved

$$x_1 + x_2 + 2 \cdot x_3 = 2$$

$$2 \cdot x_1 + 3 \cdot x_2 - x_3 = 5$$

$$3 \cdot x_1 + 4 \cdot x_2 + x_3 = C$$

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 3 & -1 & 5 \\ 3 & 4 & 1 & C \end{bmatrix}$$

(Rank (A) = 2

for the system to be solvable,

O

0

$$33 - 64 - 3\alpha = 0$$

$$\begin{bmatrix} 5, 1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ (x-\beta) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -3 \end{bmatrix}$$

i. The lin. I space which solvis $A \propto = b$ has a dim. of 2 outh bases > [1 2 0 -3] 2 [0 0 , 3] T. This space closes not some the Problem. It only allows fix = b to have a solution. range Space". o If Ax = 0 has only a trivial will have Soln, then A > c = ba unique soln. (for any b). 3010 Jun = 5 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ may or may not have a solo. If ot uses, then of u have ∞ 30/n

(10) Determine dine 2 bossis of rue 2 range spaces of A 0 0 2] <u>b</u> = [3
 7
 -1
 2
 0

 -1
 -2
 0

 0
 3
 1
 0

 0
 3
 -3
 0
 -1 2 O 1-3(-2) $-12 + 3 \times (+6)$ - 3 - 1

only trand som Nuu 8pace = [0 0 00] only trivial, dim. DNE A x = b will have a unique Solution. Sowing for range space (for b always use b,, b2, b3, b4) (see photos Por 301m). Dom (vange) * o Dim (null) + = Dim (original Space) - No midsem 3 tuff in endsem.

