

113864

U.S. DEPARTMENT OF COMMERCE
Patent and Trademark Office

R-E-M-SC1 SEARCH REQUEST FORM

Requestor's Name: Hong Liu Serial Number: 10/075,847
 Date: 2/9/04 Phone: 1-0669 Art Unit: 1624

Search Topic:

Please write a detailed statement of search topic. Describe specifically as possible the subject matter to be searched. Define any terms that may have a special meaning. Give examples or relevant citations, authors, keywords, etc., if known. For sequences, please attach a copy of the sequence. You may include a copy of the broadest and/or most relevant claim(s).

Barb please

FEB 12 2004
FEB 12 2004
SEARCHED
INDEXED
FILED

A, B can also be naphthyl

R², R³ can be independent, they may also form a ring.

STAFF USE ONLY

Date completed: 2/11/04
 Searcher: Jayne P. Dreyer
 Terminal time: 1:5
 Elapsed time: 1.5 days
 CPU time: 1.5 h
 Total time: 1.5 h
 Number of Searches: 1
 Number of Databases: 3

Search Site

- STIC
- CM-1
- Pre-S

Vendors

- IG
- STN
- Dialog
- APS
- Geninfo
- SDC
- DARC/Questel
- Other

Type of Search

- N.A. Sequence
- A.A. Sequence
- Structure
- Bibliographic

STIC SEARCH RESULTS FEEDBACK FORM

Biotech-Chem Library

Questions about the scope or the results of the search? Contact *the searcher or contact:*

Mary Hale, Information Branch Supervisor
308-4258, CM1-1E01

Voluntary Results Feedback Form

➤ I am an examiner in Workgroup: Example: 1610

➤ Relevant prior art found, search results used as follows:

- 102 rejection
- 103 rejection
- Cited as being of interest.
- Helped examiner better understand the invention.
- Helped examiner better understand the state of the art in their technology.

Types of relevant prior art found:

- Foreign Patent(s)
- Non-Patent Literature
(journal articles, conference proceedings, new product announcements etc.)

➤ Relevant prior art not found:

- Results verified the lack of relevant prior art (helped determine patentability).
- Results were not useful in determining patentability or understanding the invention.

Comments:

Drop off or send completed forms to STIC/Biotech-Chem Library CM1 – Circ. Desk

[4-(3,4-dichlorophenoxy)-biphenyl-3-ylmethyl]-methylamine

[2-(3,4-dichlorophenoxy)-5-fluorobenzyl]-dimethylamine

Epicupreine. L. Prajer and J. Suszko (Poznań Univ.). *Bull. soc. amis sci. et lettres Poznań Ser. B* 13, 53-66, 67-77, 79-89 (1956) (in English).—See *C.A.* 49, 2448f.

H. M. Leicester

Chelates and conformation of cinchona bases. Zoltán a Földi, Tamás Földi, and András Földi (Authors' Lab., Budapest). *Chem. & Ind. (London)* 1957, 465-6.—Epiquinidine (648 mg.) ground with 5 ml. 0.2M CuSO₄ gives an addn. compd. which with N NaOH yields microcrystals of the chelate (C₂₀H₂₂O₂N₂)Cu. The chelate of epiquinine is similarly obtained. Both chelates decom. 150-90° and show no characteristic m.p. All attempts to prepare chelates from quinine, quinidine, cinchonine, and cinchonidine failed. The readiness to form a chelate suggests that in the epi-bases the alc. H is chelated by O and N, giving rise to a 5-membered ring and to an addnl. asymmetry absent in the C-9 epimers.

Blanche B. White

Asymmetric induction and absolute configuration in the biphenyl series. Jerome A. Berson and Michael A. Greenbaum (Univ. of S. California, Los Angeles). *J. Am. Chem. Soc.* 79, 2340 (1957); cf. *C.A.* 51, 1108i.—MeMgI converted the phenylglyoxylates of phenyldihydrothebaïne (I) and its derivs., 2,5,6-R'(MeO)(HO)C₆H₄C₆H₃(OME)R-3,6 (II) (IIa, R = CH₂:CH₂; R¹ = CH₂CHPhNMe₂) (IIb, R = Et; R¹ = CH₂CHPhNMe₂) (IIc, R = CH:CH₂; R¹ = CH:CHPh) to atrolactic esters. Sapon. and isolation without optical fractionation gave (-)-atrolactic acid (III) (abs. configuration shown) in optical yields of 70% from I and 91, 89, and 93% from IIa, IIb, and IIc, resp. Mechanisms for the formation of III are discussed. Felix Saunders

The structure of pseudomorphine. K. W. Bentley and S. F. Dyk (Univ. Aberdeen, Scot.). *Chem. & Ind. (London)* 1957, 398.—Pseudomorphine was shown to be 2,2'-dimorphine (cf. Small and Turnball, *C.A.* 31, 6663^a, and Goto and Kitasato, *C.A.* 24, 4299). Oxidation of 1-bromodihydromorphine with alk. K₂Fe(CN)₆ at 70-80° gave a poor yield of dibromotetrahydropseudomorphine (I), m. above 350°, [α]_D²⁵ -46° ± 10° (0.518%, N HCl). It was prep'd. by bromination of tetrahydropseudomorphine in HOAc.

R. H. Loepert

Synthesis in the morphinan group. II. The structure of 3-hydroxy-N-methyl-C-normorphinan. Sciichi Saito (Univ. Tokyo). *Pharm. Bull. (Tokyo)* 4, 438-43 (1956); cf. *C.A.* 51, 8117d.—As conclusive evidence of the structure of the previously synthesized (*loc. cit.*) title compd. (I) it was submitted to the Hofmann degradation and its degradation products were synthesized. Excess CH₂N₂ in ether added to 2.5 g. I suspended in 25 cc. MeOH, the mixt. kept 5 days at room temp., the solvents evapd., and the residue distd. *in vacuo* yielded 2.3 g. O-Me deriv. (II) of I, b₁₀₋₁₅ 152-3°; picrate, m. 167-9° (from AcOH). Refluxing 40 min. 2.8 g. MeI salt of II with 30 cc. 16% KOH, dissolving the sep'd. oil in C₆H₆, and distg. the residue from the C₆H₆ soln. *in vacuo* yielded 1.6 g. 9b-(Me₂NCH₂CH₂) deriv. (III) of 8-methoxy-2,3a,9b-tetrahydro-1H-benz[e]indene (IV), b₁₀₋₀₆ 160° (bath temp.); HCl salt, m. 181-3° (from MeOH-ether). The MeI salt of III (1.4 g.) in 30 cc. warm H₂O shaken 4 hrs. at room temp. with fresh Ag₂O (from 2.4 g. AgNO₃ and 10 cc. 3N NaOH), the filtrate evapd. to dryness below 50°, and the residue heated *in vacuo* (2-3 mm.) evolved NMe₂ at 90° and distd. 0.6 g. liquid at 90-140°, which, dissolved in ether, washed with 10% HCl, dried, the ether removed, and the residue distd. *in vacuo* yielded 0.5 g. 9b-(CH₂:CH) deriv. (V) of IV, b₁₋₁ 130° (bath temp.). V (0.3 g.) in 20 cc. EtOH catalytically reduced (10% Pd-C) absorbed 2 molar equivs. H in 3 hrs. and yielded 0.3 g. 8-methoxy-9b-ethyl-2,3a,4,5,-9b-hexahydro-1H-benz[e]indene (VI), b₁₋₆ 100-20° (bath temp.); penta-Br deriv. (VII), m. 168-70° (decompn.); λ_{CCl_4} 288 and 298 m μ . Synthesis of VI confirmed its structure and thus indirectly the structure of I. 2-Ethoxycarbonylcyclopentanone (VIII) (23.5 g.) added slowly to 5.6 g. K suspended in 220 cc. abs. PhMe, stirred 1 hr. at room temp., 23.5 g. *p*-MeOC₆H₄CH₂CH₂Br added dropwise, the mixt. refluxed 10 hrs., cooled, and H₂O added yielded from the org. layer 20 g. 2-(*p*-MeOC₆H₄CH₂CH₂) deriv. of VIII, b₁₋₅ 168-70°, which refluxed 3 hrs. with 95 cc. AcOH, 45 cc. concd. HCl, and 150 cc. H₂O, the mixt. concd. to 0.25 vol. *in vacuo*, and extd. with C₆H₆ was converted to 12 g. 2-(*p*-methoxyphenethyl)cyclopentanone (IX), b₁₋₆ 130-7°; semi-carbazone, m. 205-7° (decompn.). IX (12 g.) in 50 cc. Ph-Me added to the Grignard reagent from 26.4 g. EtBr, 6 g. Mg, and 30 cc. abs. ether, distd. to 85°, refluxed 5 hrs., decompd. with ice H₂O contg. HCl, and worked up as usual

yielded 11 g. 1-ethyl-2-(*p*-methoxyphenethyl)cyclopentene, b₂ 138-43°, which, added to 35 cc. 85% H₂SO₄ at 0-5°, stirred 30 min. at 15-20°, and extd. with C₆H₆, was cyclized to 8.5 g. VI, b₁₋₄ 116-18°; penta-Br deriv. (X), m. 168-70° (decompn.), undepressed by VII. The ultraviolet and infrared spectra of both VI obtained by degradation and by synthesis agreed well (curves shown). Detn. of the positions of Br in X was attempted. VI (0.5 g.) in 20 cc. CHCl₃ kept at room temp. 1 hr. with 0.4 cc. Br, refluxed 30 min., CHCl₃ evapd., the residue heated 10 min. on a steam bath with 15 cc. AcOH and 0.01 cc. Br yielded 9% tetra-Br deriv. (XI) of VI, m. 172-4° (decompn.), λ_{CCl_4} 287 m μ (log ε 3.74). X (0.7 g.) refluxed 5 hrs. with 0.7 g. MgCO₃, 15 cc. dioxane, and 15 cc. H₂O, poured into 30 cc. H₂O, and extd. with C₆H₆ yielded 0.35 g. (probably) 5-hydroxy deriv. (XII) of XI, m. 168-70°, λ_{EtOH} 282 and 291 m μ (log ε 3.46 and 3.53), and this by oxidation with CrO₃ yielded 65% 5-oxo deriv. (XIII) of XI, m. 186-8°, λ_{EtOH} 245 and 287 m μ (log ε 4.11 and 3.89). These results, together with the infrared spectra of X-XIII, lead to the tentative conclusion that X is the 4,5,6,7,9-Br₅ deriv. of VI.

H. S. French

Alkaloid studies. XVII. The structure of the cactus alkaloid pilocereine. Carl Djerassi, S. K. Figdor, J. M. Bobbitt, and F. X. Markley (Wayne State Univ., Detroit, Mich.). *J. Am. Chem. Soc.* 79, 2203-10 (1957); cf. *C.A.* 51, 8118d.—Structure I (R = CH₂CHMe₂) was elucidated for the cactus alkaloid pilocereine. I (8.5 g.) in 200 cc.

MeOH-280 cc. Et₂O treated 6 days at 0° with 2.2 g. distd. CH₂N₂, the mixt. treated with an addnl. 2.2 g. CH₂N₂, kept 3 days at 0°, and evapd. and the residue recrystd. from hexane yielded 6.5 g. Me ether (II) of I, m. 92-105°, resolidified and m. 153-5° (all m.p.s. were detd. on a Köfler block). II, m. 153-5° (from EtOAc), was transformed to a 2nd cryst. form, m. 133-5°; the transformation was reversed by recrystn. from hexane. I (3.0 g.) in 100 cc. abs. EtOH treated with 3.6 g. MeCHN₂ in 150 cc. Et₂O, kept 24 hrs. at room temp., treated with an addnl. 3.6 g. MeCHN₂, refrigerated 6 days, and evapd. yielded 2.07 g. Et ether (III) of I, m. 90-5° and 152-3° (from hexane); 2nd crop, 0.32 g. Amberlite IRA-400 (HCl) (200 g.) treated with 500 cc. 50% aq. NaOH, 2 l. H₂O, and finally 250 g. NaHCO₃ in satd. aq. soln. and washed with 12-16 l. H₂O gave the bicarbonate salt IRA-400-HCO₃ which was stored under distd. H₂O. Styphnates and picrates in EtOH or Me₂CO contg. about 5% H₂O passed dropwise over a column of IRA-400-HCO₃, the column washed with 2 vols. 10% aq. Me₂CO, the Me₂CO removed *in vacuo*, acid added, the aq. soln. washed with Et₂O and basified with NH₄OH, and the base isolated with Et₂O gave the corresponding free amines. II (2.5 g.) in 100 cc. 10% H₂SO₄ made just alk. with 2N NaOH, treated dropwise at room temp. with 250 cc. 2% aq. KMnO₄, allowed to stand overnight, acidified with H₂SO₄, and extd. continuously with Et₂O, the residue from the ext. treated with SO₂Cl₂ and then PhNH₂, and the product chromatographed yielded 35 mg. iso-PrCONHPh and 10 mg. iso-BuCONHPh. I (5.0 g.) in 200 cc. dry Et₂O added slowly with stirring to 1.5 l. liquid NH₃ at -60° during 5 hrs., the mixt. warmed during 3 hrs. to -30°, treated cautiously with NH₄Cl and evapd. overnight, the residue partitioned between Et₂O and 3% aq. NaOH, the alk. layer acidified with 40% H₂SO₄, washed with Et₂O, basified with concd. NH₄OH, and extd. with Et₂O, and the ext. evapd. gave 2.46 g. phenolic basic oil (IV); the original Et₂O layer extd. with 10% HCl, dried, and evapd. left only a small amt. of nonphenolic, nonbasic oil which was discarded; the acid ext. basified with NH₄OH and extd. with Et₂O gave 2.40 g. nonphenolic, basic, glassy material (V). V consisted mainly of *isopilocereine* (VI); dipicrate, m. 235-7° (from Me₂CO). VI dipicrate (3.5 g.) treated with LiOH and the resulting free base treated with CH₂N₂ in Et₂O-MeOH yielded 55% Me ether (VII) of VI. VII 180-90° (evaporatively distd.). In 1 run, a 75-mg. i aldehyde V treated with 40 mg. picric acid yielded 70 mg. 1-isobutyl-2-methyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline (VIII) picrate, m. 150-1° (from MeOH). IV (0.26 g.) treated 6 days at 0° with CH₂N₂ in Et₂O contg. a small amt.

of MeOH and evapd., the residue extd. with Et₂O and washed with 3% aq. NaOH, and the resulting oil (0.2 g.) chromatographed on 9 g. Al₂O₃ gave 0.155 g. 7-MeO deriv. (IX) of VII, n_D^{20} 1.5284; *styphnate*, m. 212–13°; *picrate*, m. 184–5°. I (5 g.) in 1.5 l. dry NH₃ treated at –30° with 6 g. K, and the mixt. worked up in the usual manner gave 1.79 g. V and 2.68 g. IV; the IV dissolved in Et₂O, dried, and concd. yielded 1.45 g. *demethylisopilocereine* (X), m. 177.5–78°. X (100 mg.) treated 2 days at 0° with excess CH₂N₂ in Et₂O and evaporatively distd. yielded 81 mg. glass, the infrared spectrum of which closely resembled that of VI; treatment with picric acid gave a small amt. of VI picrate. X (210 mg.) in Et₂O-MeOH treated 7 days with CH₂N₂ yielded 120 mg. VII. IV (300 mg.) treated 7 days at room temp. with 0.84 g. MeCHN₂ in Et₂O, washed with alkali, and treated with picric acid gave the *picrate* of the 7-EtO deriv. of VIII, m. 151.5–2.5°. Natural IX (2.2 g.) oxidized with KMnO₄ yielded 310 mg. *m*-hemipinic acid, characterized as the di-Me ester, m. 89.5–90°; iso-PrCO₂H and iso-Bu-CO₂H were identified as their anilides. IX (2.47 g.) and 10 cc. MeI kept overnight at room temp., the resulting methiodide (5.17 g.) dissolved in a small amt. of H₂O, added to 120 cc. 50% aq. KOH, and refluxed 2 hrs., and the product isolated in the usual manner yielded 2.05 g. 2,4,5-[iso-Bu(Me₂N)CH](MeO)₂C₆H₂CH:CH₂ (XI), oil. XI (185 mg.) in glacial AcOH ozonized 0.5 hr. at 15° and steam distd. into dimedon in MeOH, and the mixt. kept 24 hrs. at 0° gave 39 mg. CH₂O deriv., m. 193–5°. XI (1.87 g.) in MeOH hydrogenated 1 hr. over 5% Pd-C yielded the 1-Et analog (XII) of XI. XII converted to the methiodide (3.94 g.) and boiled with 50% aq. KOH yielded 1.06 g. neutral N-free oil, apparently 3,4,5-Et(MeO)₂C₆H₂CH:CHCHMe₂; a 90-mg. portion ozonized and steam distd. into acidified aq. 2,4-(O₂N)₂C₆H₄NHNNH₂, extd. with C₆H₆, and chromatographed on Al₂O₃ yielded 20 mg. iso-PrCHO deriv., m. 181–2°. IX oxidized with KMnO₄ in the same manner as I gave iso-PrCO₂H and iso-BuCO₂H. VII (104 mg.) in C₆H₆—treated 4.5 hrs. with 1 cc. MeI gave 153 mg. VII.2MeI, m. 191–4° (from hexane-Me₂CO). VII.2MeI (150 mg.) in 5 cc. MeOH and 20 cc. H₂O passed 4 times over IRA-400-OH resin, the column washed with 20 cc. 50% aq. MeOH, and the residue from the eluates distd. yielded 89 mg. gummy methine, C₃₃H₅₀N₂O₄, $b_{10,000}$ 170–5°; a 100-mg. sample ozonized in CHCl₃ at –60° gave 55 mg. CH₂O-dimedon deriv.; a 500-mg. sample in EtOH hydrogenated 10 min. over Pd-C yielded 450 mg. reduced methine (XIII), $b_{10,000}$ 160° (bath temp.). XIII (130 mg.) in Et₂O treated with MeI, the dimethiodide (180 mg.) decompd. by the ion exchange resin method, the resulting neutral olefin (76 mg.), $b_{10,000}$ 160–80°, ozonized in CHCl₃ at –60°, and the distillate passed into 2,4-(O₂N)₂C₆H₄NHNNH₂ soln. yielded 44% 2,4-(O₂N)₂C₆H₄NHNNH₂:CHCHMe₂ (XIIIa). II (2.56 g.) treated with MeI, the II.MeI (3.9 g.), m. 137–50° (decompn.), powd., added to 100 cc. refluxing 40% aq. NaOH, and refluxed 2.5 hrs., a 160-mg. portion of the resulting methine 4,2-, 5-R(MeO)[CH(NMe₂)(CH₂CHMe₂)C₆H₂OC₆H(OMe)₂[CH-(NMe₂)(CH₂CHMe₂)R-2,3,6,5 (XIV) (R = CH:CH₂) (2.0 g.) ozonized in AcOH, and the mixt. steam distd. into 2,4-(O₂N)₂C₆H₄NHNNH₂ gave only 47 mg. CH₂O deriv. XIV (R = CH:CH₂) (1.9 g.) in 50 cc. 95% EtOH hydrogenated over 300 mg. 10% Pd-C, and the crude product (1.85 g.) recrystd. from MeCN gave 0.92 g. XIV (R = Et), m. 101.5–3.5°. XIV (R = Et) (1.21 g.) subjected to a 2nd stage Hofmann degradation gave 0.45 g. MeN picrate, m. 206–10°, and 0.84 g. N-free degradation product which ozonized in EtOAc at –60° and worked up in the usual manner yielded only 3% XIIIa. XIV (R = Et) converted to the dimethiodide (1.72 g.) and subjected to a Hofmann degradation in the usual manner except that the compd. was first dissolved in EtOH gave a substance, $b_{10,000}$ 155–70°, which appeared to be the di-CH(OEt)CH₂CH-Me₂ analog (XV) of XIV (R = Et). II (1.98 g.) cleaved in the usual manner with 90 cc. Et₂O, 600 cc. liquid NH₃, and 2.5 g. K at –60° during 7 hrs. gave 1.30 g. nonphenolic basic and 0.67 g. phenolic basic fractions. The nonphenolic fractions dissolved in 20 cc. hexane and chromatographed on 80 g. Al₂O₃ (deactivated with 2.4 cc. 10% AcOH), giving 114 fractions, and fractions 20–46 (hexane up to 1:1 hexane-C₆H₆) treated with alc. picric acid gave 0.53 g. picrate of VIII, m. 152–3°; fractions 47–83 (1:1 hexane-C₆H₆ to 99:1 C₆H₆-Et₂O) treated with alc. picric acid gave 0.196 g. IX picrate, m. 183–5°. Fractions 100–12 (9:1 C₆H₆-Et₂O) gave similarly 10% picrate of the 8-OH deriv. (XVI) of IX,

m. 150–5°. XVI (73 mg.) (from the picrate) treated 10 days at 0° with CH₂N₂ in Et₂O-MeOH and the product treated with alc. picric acid yielded the *picrate* of the 8-MeO analog (XVII) of XVI, m. 132–4°. Fractions 112–14 (Et₂O and 9:1 Et₂O-MeOH) gave a picrate, m. unsharply above 210°, which may represent dimeric material. The phenolic cleavage product (0.67 g.) and CH₂N₂ in MeOH-Et₂O refrigerated 8 days yielded 0.43 g. picrate of IX, m. 181–4°; the mother liquors transformed to the free amine by the ion exchange method and chromatographed on deactivated Al₂O₃ gave 0.164 g. oil which treated with picric acid yielded 0.175 g. picrate of XVII. III (2.04 g.) in 80 cc. Et₂O and 600 cc. liquid NH₃ treated at –60° with 3.3 g. K and the mixt. worked up after 24 hrs. gave 1.30 g. nonphenolic basic and 0.51 g. phenolic basic fractions. The nonphenolic portion chromatographed in the usual manner gave 0.576 g. VIII picrate, m. 151–3°, 0.227 g. *picrate* of the 7-EtO analog (XVIII) of IX, m. 152–3°, and 0.244 g. *picrate* of the 8-OH deriv. of XVII, m. 153–4°. The phenolic portion (0.51 g.) methylated in the usual manner and treated with picric acid gave 0.356 g. picrate of IX, m. 183–5°.

F. W. Hoffmann

Veratrum alkaloids. IV. Analysis of veratrine by paper chromatography. Karel Macek, Stanislav Vaněček, Vendula Pelcová, and Zdeněk J. Vejdělek. *Collection Czech. Chem. Communs.* 21, 1182–7 (1956) (in German).—See *C.A.* 59, 10115*i*.

E. J. C.

Alkaloids of the amaryllidaceae. X. The structure of caranine. E. W. Warnhoff and W. C. Wildman (Nat'l. Insts. of Health, Bethesda, Md.). *J. Am. Chem. Soc.* 79, 2192–8 (1957); cf. *C.A.* 50, 16803*h*; 51, 3624*d*.—A combination of degradative expts. substantiated structure

I for the alkaloid caranine. I was recovered unchanged after 2 hrs. reflux in 10% HCl, 1 hr. reflux in 10% alc. NaOH, and 4 hrs. reflux in 90% HCO₂H. The pK_a values were detd. in 3:7 HCONMe₂-H₂O for the following compds.: I 7.60, α -dihydrocaranine (II) 9.00, lycorine 6.90, and dihydrolycorine 8.67. I (150 mg.) in 10 cc. dry tetrahydrofuran refluxed 25 hrs. with 150 mg. LiAlH₄ gave 138 mg. oily product which crystd. from EtOAc gave 111 mg. unchanged I, m. 178.5–81° (all m.p.s. are cor.). I (200 mg.) stirred 2 hrs. with 1.00 g. MnO₂ in 10 cc. CHCl₃, filtered, and evapd., and the residual brown glass (146 mg.) sublimed at 145° and 2 mm. gave 106 mg. crude I and 40 mg. unsublimed brown residue, insol. in org. solvents and dil. HCl. I (1.00 g.) in 50 cc. H₂O contg. 6 cc. 10% HCl made just basic with 10% aq. NaOH, treated with stirring with 5.0 g. KMnO₄ in 250 cc. H₂O dropwise during 45 min., stirred 15 min., treated with SO₂ and then a few cc. dil. H₂SO₄, and extd. with EtOAc, the yellow solid residue (413 mg.) from the ext. triturated with 10% aq. KHCO₃ and filtered, the filtrate acidified and extd. with EtOAc, the solid residue (178 mg.) from the ext. refluxed 3.5 hrs. with 8 cc. 20% aq. NaOH under N, the mixt. acidified and extd. with EtOAc, and the residual gum (84 mg.) sublimed at 160° and 0.3 mm. gave 12.5 mg. crude *hydrastic anhydride* (III), m. 168–75°; the original aq. layer from the oxidation extd. continuously with Et₂O and the resulting brown oil (83 mg.) sublimed at 160° and 0.3 mm. gave 8.5 mg. crude III, m. 140–55°. Sublimed III (4.5 mg.) recrystd. from cyclohexane-Me₂CO yielded 3.0 mg. pure III, m. 179–80.5°. Crude III (8.0 mg.) triturated with 2 drops 30% aq. EtNH₂ and evapd., and the residue sublimed at 160° and 0.3 mm. gave 8.0 mg. *N*-ethylhydrastimide, m. 168.5–9.5° (from EtOH). I (5.000 g.) in 30 cc. glacial AcOH and 400 mg. prerduced PtO₂ in 5 cc. glacial AcOH hydrogenated 2 hrs., filtered, and evapd., the residue basified with 10% aq. KOH and extd. with EtOAc, and the ext. evapd. yielded 3.626 g. II, m. 170.5–72° (from EtOAc), $[\alpha]_D^{20} -126^\circ$ (*c* 0.441) (all rotations were taken in CHCl₃); *picrate*, clusters of yellow needles, m. 149–50° and 172–3° (decompn.) (from Me₂CO-EtOH). II was identical with *monodeoxydihydrolycorine* (cf. Takeda and Kotera, *C.A.* 50, 16802*a*). I (300 mg.) in 9 cc. EtOH hydrogenated at ambient conditions over 100 mg. 10% Pd-C, filtered, and evapd., and the

but with morpholine, XVII, XVIII, XLI, XLII, XXIX, XXX, XXXI, XXVIII, LIII, and LIV gave 75% LXV, LXVI, 75% LXVII, LXVIII, LXII, LXIII, 80% LXIV, LXI, 80% LXIX, and LXX, resp. XI (25 g.) refluxed 15 hrs. at 50° with 16.5 g. glacial HOAc and 17 g. chloromethyl ether, H₂O added, the mixt. extd. with Et₂O, the Et₂O layer washed, dried, and distd. gave 50% mixt. (CI), b₆₅ 140–50°, of LI and LII. CI treated with XCIX gave a mixt. of HCl salts of LIII and LIV, from which LIV, but not LIII, could be recovered by crystn. from abs. EtOH. The HCl salts of XLVI, LX, LVIII, and LV were hygroscopic and difficult to recrystallize.

J. March

1-Oxa-7,8-benzodidehydroindolizidine from 3,4-dihydroisoquinoline and study of 1-methyl-3,4,5,6,7,8-hexahydroisoquinoline. Woldemar Schneider and Bertold Müller (Tech. Hochschule, Karlsruhe, Ger.). *Arch. Pharm.* 294, 360–5 (1961).—3,4-Dihydroisoquinoline (I) (5 g.) in 20 ml. C₆H₆ was treated with 4.8 g. BrCH₂CH₂OH 6 days at room temp. to give 92% 2-(β-hydroxyethyl)-3,4-dihydroisoquinolinium bromide (II), m. 157°, which was alkalinized with aq. NaOH to give quant. 1-oxa-7,8-benzodidehydroindolizidine (III), b₆₅ 84–7°, m. 50°, also prep'd. by treating I with ethylene oxide in MeOH 2 days. III with HBr gave II.

To 80 g. (CH₂)₄.CH:CCH₂CH₂NH₂ (IV) with cooling and stirring was added dropwise 60 g. AcOH, the salt heated 2 hrs. under reflux, 2 hrs. with no condenser at 160–80°, 30 min. *in vacuo* at 120° to remove H₂O, and then distd. to give 89% the Ac deriv. (V), m. 53°. V (70 g.) in 350 ml. C₆H₆ refluxed 3 hrs. with 75 g. POCl₃ gave 42% 1-methyl-5,6,7,8-tetrahydroisoquinoline [b₁₂ 114–16°; HCl salt m. 233° (decompn.); HBr salt m. 231°], and 35% 1-methyl-1,2,3,4,5,6,7,8-octahydroisoquinoline, b₁₂ 101–2° (*N*-p-nitrobenzoyl deriv. m. 101°; 9,10-dibromide HBr salt m. 145–7° (decompn.); NAc deriv. b₁₂ 158°). The *N*-formyl deriv. of IV failed to cyclize with POCl₃ to hexahydroisoquinoline.

Norman Hosansky

Synthesis and halomethylation of bis(3,4-dimethoxyphenyl) ether. Reaction of halomethyl derivatives with secondary amines and pyridines. Élisabeth Matarasso-Tchiroukhine (Sorbonne, Paris). *Compt. rend.* 250, 1867–9 (1960).—[3,4-(MeO)₂C₆H₃]₂O (I) was prep'd. by refluxing 3,4-(MeO)₂C₆H₃OK, 3,4-(MeO)₂C₆H₃I, and Cu powder in HCONMe₂ 18 hrs. Ether extrn. of the dild., acidified mixt. and removal of the ether gave I, m. 94.5–95°. Treatment of I with MeCl in glacial HOAc gave [2,4,5-Cl(MeO)₂C₆H₃]₂O (II), m. 121–22°. I, MeCl, HI, and Ac₂O gave the 2-ICH₂ analog (III) of II, m. 152°. The following derivs. of II and III were prep'd.: pyridinium salts of II and III, m.p. not given and m. 172–3° (decompn.) (MeOH), resp.; isoquinolinium salts of II and III, m. 188–9° (decompn.) (MeOH–HCONMe₂) and m. 203–5° (decompn.) (MeOH), resp.; 2-morpholinomethyl analog of II, m. 216–17° (EtOH); and the 2-(Et₂NCH₂) analog of II, m. 142–4° (EtOH).

John W. Hylin

The synthesis of esters of some amino acids having pharmacological importance. I. The synthesis of esters of piperidino carboxylic acids. Béla Matkovics, Sándor Foldeak, János Pórsász, and György Sipos (Tudományegyetem, Szeged, Hung.). *Acta Pharm. Hung.* 31, 113–21 (1961) (in Hungarian).—RCH₂CO₂R' (I), RCH₂CH₂CO₂R' (II), BzOCH₂CH₂R (III), and AcOCHMeCH₂R (IV) were prep'd. I were prep'd. by condensing CICH₂CO₂R' with a secondary amine, II by boiling CICH₂CH₂CO₂R' with the amine, and III by the reaction of an amino alc. with BzCl. The following I were obtained (R, R', b.p./mm., m.p. of picrate, m.p. of HCl salt, and m.p. of methiodide are given): piperidino, Me, 69°/5, 115°, 214°, 163–4°; piperidino, Et, 68°/1, 122°, 117–17.5°, 160–60.3°; piperidino, Bu, 100–1°/4, 85°, —, 178°; piperidino, PhCH₃, 134–5°/1, 137°, 133°, 91–6°; morpholino, Me, 77°/2, 143°, 150.5°, 147.5°; morpholino, Et, 86–7°/4, 163°, 181°, 132–3°; morpholino, Bu, 105.5–106°/3, —, 127–9°, 95–6°; morpholino, PhCH₃, 184–5°/5, 143°, 149°, —; pyrrolidino, Me, 72–3°/8, 104°, —, 153°; pyrrolidino, Et, 59–60°/2, 119.5°, 133–3.5°, —; pyrrolidino, Bu, 81–2°/3, 109.5°, —, —; pyrrolidino, PhCH₃, 134–5°/1, 159–60°, 139–40°, 156°. The following II were prep'd. (data as above): piperidino, Me, 72°/2, 164°, 189°, 147–8°; piperidino, Et, 102–3°/5, 131.5°, 169°, —; piperidino, Bu, 124–5°/6, 108–9°, 164.7°, —; piperidino, PhCH₃, 149–50°/1, 113°, 193.5°, —; piperidino, Ph, 114–20°/3, —, 192–5°, —; piperidino, CPh, 171°/1, —, 214°, —; morpholino, Me, 82°/2, 129°, 203°, 151°; mor-

pholino, Et, 108°/6, 108°, 188–9°, —; morpholino, Bu, 131–2°/6, 150°, 173°, 115°; morpholino, PhCH₃, 154°/1, 125°, 189–90°, —; pyrrolidino, Me, 76°/5, 147°, 123°, 166°; pyrrolidino, Et, 85°/6, 114°, 146°, —; pyrrolidino, Bu, 106–8°/5, 97°, 74–5°, 115°; pyrrolidino, PhCH₂, 145–6°/3, 102°, 152°, 154°. IV (R = pyrrolidino) (V), b₅ 75°, picrate m. 111–12°, gave a hygroscopic HCl salt. III (R = piperidino) b₂ 141°; HCl salt m. 184°; methiodide m. 141.5°. The action of the compds. on blood pressure and on respiration was given. II (R = N-piperidino, R' = CPh) and V had strong antinicotinic action. The effect of the piperidino and pyrrolidino propionates was increased by quaternization.

E. Kasztreiner

Molecular structure of cyclic compounds containing sulfur. Kenjiro Hayasaki (Tokyo Gakugei Univ.). *J. Sci. Hiroshima Univ. Ser. A* 24, 679–90 (1960).—Dipole moments of tri(thiobenzaldehyde) (I) (Baumann and Fromm, *Ber.*, 24, 1436 (1891)), tri(thio-*p*-bromo- (II), and *p*-chlorobenzaldehyde (III) were detd. The values were used to investigate the structures and isomerism of trithiane rings. Infrared and Raman spectra of 1,4-dithiane (IV) were measured, and the structure of this ring system discussed. The skeletal frequencies of IV were calcd. by Wilson's method, assuming the Urey-Bradley-Shimanouchi field. III was prep'd. by the Wörner method (*Ber.* 29, 154 (1896)); α -isomer m. 162°, β -isomer 195.5°. Dipole moments reported were (compd., moment for α - and β -isomer given in D.): I, 2.09, 2.08; II, 2.17, 3.70; III, 2.21, 3.67. The α -isomers of I–III were assigned the chair (*a,e,e*) configuration and the β -isomers the chair (*e,e,e*) configuration. IV also had a chair configuration.

H. H. Jaffé

Preparation and polymerization of *S,S'*-divinyldithiocarbonate. Helmut Ringsdorf and C. G. Overberger (Polytech. Inst. of Brooklyn, Brooklyn, N.Y.). *Makromol. Chem.* 44–46, 418–26 (1961).—The title compd. (I) in benzene with free radical initiation gave a sol. polymer contg. the structural unit SC(O)SCH(CH₂)—CH₂CH— and some

residual unsatn. A soln. of 20 g. ethylene sulfide (II), 51 g. COCl₂ (III), and 3 drops pyridine was stirred 2 hrs. at –10 to –5°, then kept 10 hrs. at 25°, the excess III removed in a stream of N, and the residue distd. to give 65% CICOSCH₂CH₂Cl (IV), b₅ 57.5°, a strong lacrimator and vesicant. A mixt. of 15.9 g. IV in 100 cc. CHCl₃ and 31.2 g. BrCH₂CH₂NH₂·HBr vigorously stirred at 0° with 100 cc. 8% NaOH gave 91% BrCH₂CH₂NHCOSCH₂CH₂Cl, m. 89–90°. IV and PhSNa gave 93% PhSCOSCH₂CH₂Cl, b₅ 114–15°. II (60 g.), 49.6 g. III, and 3 drops pyridine kept at –5° and then 10 hrs. at 60° gave (on distn.) 12 g. IV and 76% CO(SCH₂CH₂Cl), (V), b₅ 96–7°, m. 40–1°, a vesicant. V (60 g.) in 150 cc. anhyd. *tert*-BuOH was added dropwise to 60.5 g. *tert*-BuOK in 405 ml. *tert*-BuOH while the mixt. warmed to 50°. The mixt. was boiled 3 hrs., neutralized with HOAc, filtered, and distd. Redistn. of the fraction b₅ 60–80° gave 11% I, b₅ 73–4°. Other products of this reaction were (*tert*-Bu)₂CO, CH₂:CHSCO₂Bu-*tert*, and II. Polymerization of I was initiated by (NCCMe₂N₂)₂ (VI). In bulk, conversion of 20% or more gave insol. polymers swelled by C₆H₆, CHCl₃, and HCONMe₂. C₆H₆ solns. contg. approx. 1–30% I and 0.7–1.5% VI (calcd. on I) were polymerized at 60° under N with 11.5–60.9% conversion. The polymers were filtered, and pptd. from CHCl₃ soln. by MeOH. They softened at 300–10° with discoloration from 280° and rapid decompn. above 310°. The infrared spectrum showed only very weak absorption at 1590 cm^{–1} (vinyl group). Hydrolysis with KOH–MeOH under N gave a (CH₂CHSH)_n sol. in dil. NaOH, cross-linked by traces of O.

Otto S. Kauder

Condensation of ethyl nitroacetate with *o*-aminophenyl mercaptan. A. I. Kipriyanov and T. M. Verbovskaya (Inst. Org. Chem., Kiev). *Zhur. Obshchel Khim.* 31, 531–7 (1961); cf. CA 50, 9387c; Mills, CA 16, 1954.—Heating *o*-H,N₂C₆H₄SH with O₂NCH₂CO₂Et 4 hrs. at 100° gave 74% 2,3-dioxodihydrobenzo-1,4-thiazine 2-oxime, decompd. at 267°, also formed from HONH₂ and 2,2-dichloro-3-oxido-dihydrobenzo-1,4-thiazine (I) in EtOH in 79% yield; the oxime formed a mono-K salt, yellow, decompd. at 270°. The latter heated in xylene with Me₂SO₄ 6 hrs. gave 79% Me ether (II), m. 251°, also formed from I and MeONH₂ in EtOH. The oxime refluxed with Ac₂O 2 hrs. gave the monoacetate, decompd. at 218°; BzCl in pyridine similarly gave monobenzoate, decompd. at 235°. Heating *o*-MeNH-C₆H₄SH with O₂NCH₂CO₂Et 2 hrs. at 100° gave 54% 2,3-

2,4- and 3,5-Et₂C₆H₃OH. *o*-EtC₆H₃OH b_{765.7} 202–3°, d₂₀ 1.0177, n_D²⁰ 1.5363; *p*-isomer b_{765.7} 214–15°, 1.0097, 1.5328; 2,4-Et₂C₆H₃OH b_{765.7} 229–30°, 0.9811, 1.5264; 3,5-isomer b_{765.7} 242.5–5°, m. 76–6.5°. The neutral oil contains EtOPh and EtC₆H₃OEt.

G. M. Kosolapoff

Synthesis of 2,6-diisopropylphenol. Shigeru Tsutsumi, Tadashi Yoshizawa, and Kikuhiko Koyama (Osaka Univ.). *Nippon Kagaku Zasshi* 77, 737–8 (1956).—In C.A. 52, 304b, lines 8 and 9, the compd. should be 2-isopropyl-4-chlorophenol, b₇ 121–26°, and I should be 2,6-diisopropyl-4-chlorophenol.

R. E. S.

Triphenyloxonium salts. A. N. Nesmeyanov and T. P. Tolstaya (M. V. Lomonosov State Univ., Moscow). *Doklady Akad. Nauk S.S.R.* 117, 626–8 (1957).—Ph₃O (150 g.) treated at 80–90° with 10.5 g. PhN₂BF₄ in 300 ml. Me₂CO, heated 0.5 hr., cooled, washed with 50% Me₂CO, the filtrate extd. with Et₂O, and the ext. evapd. gave 2% Ph₃OB₄, decomp. 226° (Et₂O–Me₂CO). Also prep'd. were: 62% Ph₃OCl, decomp. 193–4°; 72% Ph₃OB₄, decomp. 182–2.5°; Ph₃OI, decomp. 177–8°; Ph₃OHgI₂, decomp. 156–7°; Ph₃OBPh₄, decomp. about 165°; Ph₃OPtCl₄, decomp. 184–5°; Ph₃OCr₂O, decomp. 180°; Ph₃OICl₄, decomp. 167–71°; Ph₃O picrate, decomp. 155–7°. Refluxing Ph₃OB₄ 25 hrs. in H₂O left some 50% unchanged. Such refluxing with aq. NaNO₂ gave some 25% PhNO₂ isolated after reduction to PhNH₂. Refluxing Ph₃OB₄ with aq. NaN₃ 14.5 hrs. gave 27% PhN₃, isolated after reduction to PhNH₂. Ph₃OB₄ refluxed 8.5 hrs. with aq. Et₂NH gave 59% PhNET₂, isolated by azo coupling with nitraniline. Refluxing Ph₃OB₄ in pyridine 4 hrs. gave 1-phenylpyridinium fluoroborate, 89%, m. 177.5–8.5°. Absorption spectra of the Ph₃O salts are reproduced.

G. M. Kosolapoff

Preparation and transformation of *p*-diethylbenzene hydroperoxide. P. G. Sergeev and A. M. Sladkov. *Zhur. Obrabch. Khim.* 27, 3349–53 (1957).—Reduction of *p*-AcC₆H₄Et with 80% NaH₂O and KOH in O(CH₂CH₂OH), at 260° gave about 20% *p*-C₆H₄Et₂, b₇ 70°, d₂₀ 0.860, n_D²⁰ 1.4947. This percolated with air at 110° in the presence of Ni(OBz)₂ 15–18 hrs. gave after treatment with aq. NaOH and extn. with Et₂O followed by percolation of the alk. soln. with CO₂ and extn. with Et₂O an unstated yield (about 16%) of *p*-diethylbenzene hydroperoxide, n_D²⁰ 1.5231, 94.2% assay. This heated in Me₂CPh 3 hrs. at 130° gave 75% *p*-AcC₆H₄Et. Reduction of the hydroperoxide with LiAlH₄ gave 70% *p*-EtC₆H₄CHMeOH, b₇ 121–2°. Stirring the hydroperoxide in C₆H₆ with 1 drop H₂SO₄ 1 hr. gave C₆H₆, *p*-EtC₆H₄OH, and AcH.

G. M. Kosolapoff

The rearrangement of benzenesulfonyl chloride with sodium iodide in acetone. H. Kroepelin and K. Born (Tech. Hochschule, Braunschweig, Ger.). *Arch. Pharm.* 287, 561–5 (1954); cf. C.A. 21, 573.—Treating 15 g. f PhSO₂Cl with 26 g. NaI in 200 ml. Me₂CO gives after 2½ hrs. and subsequent processing 60.3% Na benzenesulfinate, 27.8% diphenyl disulfone, m. 191–2°, and 10.5% Ph phenylthiosulfinate, m. 41–2°. The reaction mechanism is discussed.

Henry B. Hastie

Some new phenethylamines. J. R. Merchant and A. J. Mountvala (Inst. Sci., Bombay). *Current Sci. (India)* 26, 211–12 (1957).—A series of phenethylamines was prep'd. by the reaction of an aldehyde and MeNO₂ in the presence of AcOH and NH₄OAc to give a β -nitrostyrene which was then reduced with LiAlH₄. The following substituted phenethylamines were isolated as their picrates (substituents and m.p. given): 2,4,6-(MeO)₂Me, 117°; 2,4,6-(EtO)₂Me, 115°; 2,4,6-(EtO)(MeO)Me, 135°; 2,6,4-Me₂(MeO), 115°; 2,6,4-Me₂(EtO), 81°; 2,4,6-Me₂(MeO), 140°; 2,4,6-Me₂(EtO), 113°; 2,3-PhCH₂O(MeO), —(oil); and 2,3,5-(MeO)₃, 102°.

P. McElroy

New method of syntheses of musk ambrette. Hiroshi Horiguchi (Kobe Univ.). *Koryo* No. 47, 18–39 (1957).—Musk ambrette (I) was synthesized from *o*-nitrotoluene. Thus, *o*-nitrotoluene was reduced to *o*-tolylhydroxylamine (II) with Zn powder in MeOH. When II was heated in MeOH with concd. H₂SO₄, II was rearranged to amino-*m*-cresol Me ether (III). *m*-Cresol Me ether (IV) was prep'd. by a deamination of diazotized III. The yield of IV was 45% from *o*-nitrotoluene. I was prep'd. from IV as usual.

S. Inokawa

Synthesis of guanidine compounds of diphenyl ether. I. Genzo Ito (Pharm. Hochschule Meiji, Tokyo). *Pharm. Bull. (Tokyo)* 5, 397–400 (1957) (in German).—To find new compds. active against tuberculosis, there were synthesized 8 derivs. of PhOC₆H₄NHC(:NH)NH₂ (I) and 3 derivs. of

PhOC₆H₄CH₂NHC(:NH)NH₂ (II). The HCl salt of 4-H₂NC₆H₄OPh (III) (5.5 g.) and 1.6 g. H₂NCO refluxed 3 hrs. in 35 cc. abs. EtOH, the solvent removed, and the sirupy residue dissolved in H₂O and made alk. with NaOH yielded 5.9

a g. I (guanidino group in 4-position), m. 137° (C₆H₆); nitrate, m. 173°; picrate, m. 205°. Similarly from 2- and 3-H₂N derivs. of Ph₂O were synthesized I (guanidino group in 2- and 3-positions), nitrates, m. 139° and 173°, resp.; and from the 4'-Me, 4'-Cl, 4'-Br, and 4'-guanidino derivs. of III, the corresponding derivs. of I, nitrates, m. 162°, 186°, 189°, and 223°, resp. The 4'-HO deriv. of I was prep'd. in 3

steps: adding 2.5 g. 4,4'-O₂N(MeO) deriv. (IV) of Ph₂O to 2.7 g. dry AlCl₃ in 20 cc. warm PhNO₂, heating the mixt. 2 hrs. at 50–5°, pouring it gradually into H₂O contg. 10 cc. concd. HCl and ice, steam-distg. the org. layer to remove PhNO₂, and extg. the residue with hot 5% NaOH yielded from the ext. 1 g. solid unchanged IV, and from the acidified filtrate 1 g. 4,4'-O₂N(HO) deriv. (V) of Ph₂O, m. 172° (C₆H₆). V (2.3 g.) reduced in 20 cc. abs. EtOH with 3 g.

N₂H₄·H₂O and a little Raney Ni (Balcom and Furst, C.A. 49, 8158d) yielded 1.8 g. of the corresponding 4,4'-H₂N(HO) deriv., m. 152° (C₆H₆), and this treated as III was with H₂N-CN gave the 4'-HO deriv. of I, m. 223°; HCl salt, m. 242°; flavianate, m. 200°. For the prepn. of II, 92 g. 4-MeC₆H₄OPh in 200 g. (CH₂Br)₂ gently boiling on an oil bath was treated dropwise in sunlight with 80 g. Br in 50 g. (CH₂Br)₂, with stirring during 1 hr., stirred an addnl. 1 hr., and the cooled mixt. neutralized with solid K₂CO₃ and distd. *in vacuo* to yield 97 g. 4-BrCH₂C₆H₄OPh (VI), b₆ 157–60°. 2-Br-CH₂C₆H₄OPh, b₆ 135–40°, was similarly prep'd. Dry HCl passed through 68 g. VI, 38 g. (CH₂)₆N₄, and 42 g. NaI in 350 cc. 95% EtOH ppts. NH₄Cl, and the filtrate evapd.

d yielded 25 g. HCl salt of 4-H₂NCH₂C₆H₄OPh (VII), which in concd. aq. soln. made alk. and extd. with CHCl₃ gave an oil; nitrate, m. 170° (decompn.) (H₂O); benzoate, m. 127° (MeOH). 2-H₂NCH₂C₆H₄OPh (VIII), nitrate, m. 153° (decompn.) (H₂O), was similarly prep'd. Similarly, from 26.4 g. 4-O₂N deriv. of the Cl analog of VI (Southwick, et al., C.A. 49, 955c) was prep'd. 10 g. HCl salt of the 4'-O₂N deriv. of VII; the free base an orange-yellow viscous oil; Ac deriv. (IX), m. 120°. IX (28.6 g.) reduced as V was yielded 21 g. 4-AcNHCH₂C₆H₄OC₆H₄NH₂-4' (X), m. 146°. X (12.8 g.) diazotized in the usual way, the mixt. refluxed 3 hrs. with 2 g. urea, and worked up as usual yielded 3.1 g. 4'-HO deriv. (XI) of VII, m. 182° (EtOH); picrolonate, m. 230–2° (decompn.) (MeOH-AcOEt). VII (2 g.) in 30 cc. abs. EtOH refluxed 3 hrs. with 2.6 g. MeSC(:NH)NH₂·HI (XII), EtOH distd. off, and the residue in a little H₂O treated with NH₄NO₃ gave the nitrate of II, m. 157° (Me₂CO-AcOEt).

Similar treatment of VIII gave the nitrate of its corresponding guanidino compd., m. 132°. XI (1.8 g.) in 20 cc. abs. EtOH refluxed 2 hrs. with 2.2 g. XII yielded on evapn. of EtOH 2.4 g. 4'-HO deriv. of II; HI salt, m. 227° (decompn.); picrolonate, m. 265–70° (decompn.) (EtOH). All 11 guanidine derivs. gave a pos. Sakaguchi reaction, a violet-red color with 2-naphthol and NaOBr. The effect of these 11 compds. against tuberculosis bacilli *in vitro* was detd. according to Tomita and Watanabe (C.A. 46, 7617h), and none was very effective. II. A new synthesis of diphenyl ether aldehyde by the Sommelet reaction and experiments with methylguanidine derivatives. 1. *Ibid.* 401–5.

Four compds. similar to the preceding but contg. 2 CH₂ groups between the guanidino group and the Ph₂O nucleus were prep'd. According to the Sommelet reaction 66 g. 4-BrCH₂C₆H₄OPh (I) and 38.5 g. (CH₂)₆N₄ in 200 cc. CHCl₃ were refluxed 4 hrs., and cooled to yield 85 g. of the condensation product, which (101 g.) with 35 g. addnl. (CH₂)₆N₄ was hydrolyzed by refluxing 2 hrs. with 400 cc. 50% AcOH, an addnl. 10 min. with 100 cc. concd. HCl, cooling, and extg. with ether to yield 33.5 g. 4-OHC-C₆H₄OPh (II), b₆ 157–60°; phenylhydrazone, m. 144°; semicarbazone, m. 214–15°. 2-OHCC₆H₄OPh (III) was similarly prep'd., b₆ 156–9; semicarbazone, m. 207–8°. Bromination of 107 g. 4'-MeO deriv. of 4-MeC₆H₄OPh with Br in (CH₂Br)₂ (preceding abstr.) yielded the 4'-MeO deriv. of I, which without isolation underwent the Sommelet reaction (like I above) to yield 51 g. 4'-MeO deriv. (IV) of II, m. 57–9° (petr. ether); semicarbazone, m. 212°. Reaction

with MeNO₂ changed the CHO group of II, III, and IV to O₂NCH₂CH (IIa, IIIa, and IVa); IIa, m. 100°, 21 g. from 30 g. II; IIIa, m. 107°; IVa, m. 77°, 11.3 g. from 38 g. IV. IIa, IIIa, and IVa were reduced by LiAlH₄ in the usual way to the corresponding H₂NCH₂CH₂ derivs. (IIb, IIIb, IVb):

ACKNOWLEDGMENT