24-650 Applied Finite Element Analysis Assignment 4

submitted by

Letian Leng

Objective

The goal of this assignment is to perform a stress analysis, fatigue analysis, and propose design modifications for a trailer hitch as shown in Fig. 1. The material is structural steel, and there are 4 different loading conditions.

Assumptions and Loading Conditions

- 1) Tongue Load of 2500 N, Drop, design life = infinite(1e6). Load is applied and then removed.
- 2) Tongue Load of 2500 N, Rise, design life = infinite(1e6). Load is applied and then removed.
- 3) Trailer Load Small Hill: 5,000 N, design life = 1e5 cycles. The load is applied and then reversed in the opposite direction.
- 4) Trailer Load Steep Hill: 11,000 N, design life = 5000 cycles. The load is applied and then reversed in the opposite direction.
- 5) Apply the loads to the cylindrical hole, where the ball would be attached.

Model and Geometry

The standard trailer hitch has a 7.6 cm drop or rise, 22,000 N max towing capacity, and 2,500 N tongue weight. The Stress Life Fatigue Properties are presented in Fig. 2.

Figure 1. The Model

Figure 2. S-N Curve

Boundary Conditions (Part A)

The boundary conditions of support on four side and radial are indicated below:

Figure 3. BCs

Scope				
Scoping Method	Geometry Selection	Scope		
Geometry	2 Faces	Scoping Method	Geometry Selection	
Definition		Geometry	4 Faces	
		Definition		
Type	Cylindrical Support	Туре	Fixed Support	
Radial	Fixed		**	
Axial	Fixed	Suppressed	No	
Tangential	Fixed			
Suppressed	No			

Force BCs are indicated below:

Scope					
Scoping Method	Geometry Selection				
Geometry	1 Face				
Definition					
Туре	Force				
Define By	Vector				
Applied By	Surface Effect				
Magnitude	2500. N (ramped)				
Direction	Click to Change				
Suppressed	Yes				

Scope					
Scoping Method Geometry Selection					
Geometry	eometry 1 Face				
Definition					
Туре	Force				
Define By	Vector				
Applied By Surface Effect					
Magnitude 5000. N (ramped)					
Direction	Click to Change				
Suppressed No					

Scope					
Scoping Method Geometry Selection					
Geometry	1 Face				
Definition					
Type Force					
Define By	By Vector				
Applied By Surface Effect					
Magnitude 2500. N (ramped)					
Direction Click to Change					
Suppressed	Yes				

Scope				
Scoping Method	Geometry Selection			
Geometry	1 Face			
Definition				
Туре	Force			
Define By	Components			
Applied By	Surface Effect			
Coordinate System	Global Coordinate System			
X Component	11000 N (ramped)			
Y Component	0. N (ramped)			
Z Component	0. N (ramped)			
Suppressed	Yes			

Results (Part A)

Figure 4. Singularity Point

Figure 5. Critical Position

From figure above, the peak equivalent stress happens at the curve surface of the hitch (see in Fig. 5, the red "Max" mark). The location of an artificial stress singularity is the red "Max" mark on Figure 4.

The stress value is presented below:

Mesh convergence study table:

Mesh Settings	Element Size: 0.005m Critical Size: 0.005m	Element Size: 0.005m Critical Size: 0.0025m	Element Size: 0.001m Critical Size: 0.0005m
Result LC1 (stress, MPa)	58.615	58.582	58.417 (within +/- 5%)
Result LC2 (stress, MPa)	58.615	58.582	58.417 (within +/- 5%)
Result LC3 (stress, MPa)	36.106	36.457	36.846 (within +/- 5%)
Result LC4 (stress, MPa)	79.432	80.205	81.132 (within +/- 5%)

From the table above, one can see that as the mesh element increases from 0.005m to 0.0005m, the peak equivalent stress increment is below the +/- %5 requirement. Also, we do not need to consider all 4, a subset is sufficient, which means the stress location does **NOT** change with either the direction of the load nor its magnitude.

Boundary Conditions (Part B)

The boundary conditions are same with Part A. Fatigue setting are below:

Details of "Fatigue Tool" ▼ Д □ X		Details of "Fatigue Tool" ➤ Д 🗆 🗙				
□ Domain		□ Domain				
	Domain Type	Time		Domain Type	Time	
⊟	Materials		▣	Materials		
	Fatigue Strength Factor (Kf)	1.		Fatigue Strength Factor (Kf)	1.	
⊟	Loading		▣	□ Loading		
	Type	Zero-Based		Туре	Fully Reversed	
	Scale Factor	1.		Scale Factor	1.	
□ Definition		▣	Definition			
	Display Time	End Time		Display Time	End Time	
⊟	Options		⊡ Options			
	Analysis Type	Stress Life		Analysis Type	Stress Life	
	Mean Stress Theory	Goodman		Mean Stress Theory	Goodman	
	Stress Component	Signed von-Mises		Stress Component	Signed von-Mises	
☐ Life Units		⊟	Life Units			
	Units Name	cycles		Units Name	cycles	
	1 cycle is equal to	1. cycles		1 cycle is equal to	1. cycles	

(For LC 1 &2) (For LC 3 &4)

Results (Part B)

Fatigue Equivalent Alternating Stress

The Master Table:

Result Case	Peak Stress (MPa)	Life	Damage	Safety Factor (Min, All Max is 15)	Fatigue Equivalent Alternating Stress (MPa)
Load Case 1	58.417	1E6	N/A	2.5738	3.1232
Load Case 2	58.417	1E6	N/A	3.0773	2.9246
Load Case 3	36.846	1E6	0.1	5.4280	36.846
Load Case 4	81.132	5.53E5	0.005	4.2328	81.311

Results (Part C)

Modified Hitch (Blue Support Part Added)

Fatigue Equivalent Alternating Stress

Damage

Life	Safety Factor
------	---------------

Load Cases	LC1	LC2	LC3	LC4
Safety Factor (Original)	2.5738	3.0773	5.4280	4.2328
Safety Factor (Modified)	2.5836	3.089	5.4332	4.2360

Conclusion

In this assignment, we can find that how different load cases and fatigue settings influence the stress, life, safety factor, and damage of a steel part. Moreover, those performances can be improved by improving the weak part of the original model.