Indice globale di definizioni, teoremi, proposizioni, lemmi, osservazioni, corollari, esempi, esercizi per fisica II, 2015-2016

	lice			Serre: Rappresentazioni lineari di gruppi finiti, 1971
	Serre: Rappresentazioni lineari di gruppi initi, 1971	1		
1		1	1	Generalità sulle rappresentazioni
2		1	d. :	rappresentazione unitaria4
3	Sottogruppi, prodotti, rappresentazioni indotte	2	d. :	rapp. regolare 5
5		3	d. :	rapp. di permutazioni
•	Vinberg: Rappresentazioni lineari di gruppi,		d. s	sottorappresentazione 5
1	989	3	т.	$\left(1\right)$ un sottospazio stabile ha un complemento stabile 6
1		3	d.	somma diretta7
2		3	d.	rapp. irriducibile7
3	di gruppi compatti	4 5	т.	(2) le rapp. si scompongono in rapp. irr7
4	Proprietà delle rappresentazioni irriducibili		d.	prodotto tensoriale8
5	complesse	6 7	d.	prodotto tensoriale di rapp. (su un gruppo)8
6	Relazioni di ortogonalità	8	d.	quadrati simmetrico e alternante
7 9	5 11 2 0	8	2	Teoria dei caratteri
				carattere
	Bracci: Appunti del corso Metodi matematici		a. (carattere10
	per la Fisica I, 2004	9	Ρ.	(1) proprietà di base del carattere10
1	r	9	d.	funzione di classe11
	1.1 Definizioni e proprietà elementari	9		
	1.2 Topologia	10 10	Р.	(2) carattere della somma e del prodotto11
	1.4 Prodotti scalari	11	P.	(3) carattere dei quadrati simm. e alt
	1.5 Proprietà elementari degli spazi di		E .	(1) carattere dei quadrati simm. e alt. della somma 12
9	Hilbert	11 11	Ε.	(2) carattere della rapp. di perm
_	2.1 Serie di Fourier	11	Ε.	(3) rapp. duale
	2.2 Problema ai limiti per il quadrato 29	12		
	2.3 Problema ai limiti per il cerchio . 33 2.3.3 Funzioni armoniche	12 12	Е.	(4) rapp. sugli omomorfismi tra spazi di rappresenta- zione
	2.3.3 Funzioni armoniche 2.3.4 Lemma di Green e sue	12	Ρ.	(4) lemma di Schur
	conseguenze $\dots \dots \dots$	12 12	C.	(1) applicazione alla media
3	•	12	C.	(2) media del prodotto dei coefficienti di matrici di due
	3.1 Geometria degli spazi di Hilbert	12		rapp. irr. non isomorfe
	3.2 Operatori e funzionali lineari	12	$\mathbf{C}.$	(3) media del prodotto dei coefficienti di matrici di una
	3.3 Proiettori	13		rapp. irr
	3.4 Particolari classi di operatori	13 14	d.	prodotto scalare sui caratteri15
	3.6 Operatori chiusi e chiudibili	15	т.	(3) ortonormalità dei caratteri irr

т.	(4) calcolo del numero di componenti irr. isomorfe a una data rapp. irr	3	Sottogruppi, prodotti, rappresentazioni indotte
C.	(1) la scomposizione in rapp. irr. è unica a meno di	d.	gruppo abeliano
	ordine e isomorfismi16	Т.	(9) abeliano equivale ad avere rapp. irr. solo di grado 1
С.	(2) rapp. con lo stesso carattere sono isomorfe 16	d.	indice di un sottogruppo
т.	(5) criterio di irriducibilità	C.	limite superiore ai gradi delle rapp. irr. dato un sottogruppo abeliano
	orbita	Ε.	(1) anche i gruppi abeliani infiniti hanno rapp. irr. solo di grado 1
a.	transitività	d.	centro di un gruppo
Ε.	(6a) la rapp. di perm. contiene rapp. unitarie quante le orbite		(2a) le rapp. irr. sono omotetie sul centro 26
Ε.	(6b) carattere della rapp. di perm. sul prodotto cartesiano	Ε.	(2b) limite superiore al grado di una rapp. irr. dato il centro
	cartesiano	d.	rapp. fedele
d.	doppia transitività	Ε.	(2c) rapp. fedele implica centro ciclico26
Ε.	(6c) fatti equivalenti alla doppia transitività17	Ε.	(3) gruppo duale
D	(5) constitute della ropp, rec.	d.	gruppo prodotto
Р.	(5) carattere della rapp. reg	d.	prodotto diretto di sottogruppi27
C.	(1) scomposizione della rapp. reg	d.	prodotto tensoriale di rapp. (su gruppi diversi) 27
C.	(2) relazione sui gradi delle rapp. irr18	Т.	(10i) irriducibilità del prodotto di irriducibili27
Ρ.	(6) somma lungo il gruppo di una funzione di classe per una rapp. irr	Т.	(10ii) tutti gli irriducibili sul prodotto sono prodotto di irriducibili
	una 1app. 111	d.	classe laterale sinistra
d.	spazio delle funzioni di classe	d.	congruenza modulo un sottogruppo28
т.	(6) i caratteri delle rapp. irr. sono una base delle	d.	quoziente su un sottogruppo
	funzioni di classe	d.	rapp. indotta
т.	(7) numero di rapp. irr	Χ.	(1) induzione della rapp. reg
Ρ.	(7) relazioni sulla grandezza delle classi e sui caratteri irr	Χ.	(2) la rapp. unitaria induce la rapp. di perm. sul quoziente
		Χ.	. (3) l'induzione della somma è la somma degli indotti
d.	scomposizione canonica		
т.	(8) proiezioni sulla scomposizione canonica $\dots\dots 21$. (4) sottorapp. indotta
Е.	(8a) dimesione dello spazio delle applicazioni lineari		(5) induzione del prodotto tensore su un fattore29
	dallo spazio di rappresentazione di una componente irr. a quello della rapp. scomposta che commutano con	L.	(1) una mappa da uno spazio di rappresentazione a un altro che porta fuori la rapp. si estende univocamente alla rapp. indotta
	la rapp	Т.	(11) esistenza e unicità della rapp. indotta 30
Ε.	(8b) isomorfismo tra il prodotto della comp. irr. con lo	т.	(12) carattere di una rapp. indotta30
	spazio dell'es. (8a) e la corrispondente comp. canonica	Ε.	(4) le rapp. irr. sono contenute in indotte di rapp. irr. di sottogruppi
Ρ.	(8) scomposizione di una comp. canonica23	Ε.	(5) induzione attraverso isomorfismo allo spazio di fun-
Ε.	(9) isomorfismo tra lo spazio dell'es. 8a e il sottospazio della comp. canonica associato alla mappa della		zioni dal gruppo allo spazio di rappresentazione che portano fuori la rapp
	prop. 8	$\mathbf{E}.$	(6) la rapp. sul prodotto diretto indotta da una rapp.
Ε.	(10) sottorapp. minima per un punto24		del primo fattore è isomorfa al prodotto della rapp. del primo fattore con la rapp. reg. del secondo31

5 Esempi 3

5	Esempi	$\mathbf{d}.$	azione
х.	(1) gruppo ciclico	d.	traslazioni a destra e a sinistra 8
х.	(2) rotazioni sul piano	d.	(0.9) rapp. lineare associata a un'azione
х.	(3) gruppo diedrale	х.	(1) rapp. associata all'azione del gruppo delle rotazion
Ε.	(1) classi di coniugio del gruppo diedrale $\ldots\ldots 38$		del cubo sulle facce
Ε.	(2) prodotto di caratteri e caratteri dei quadrati simmetrico e alternante (sul gruppo diedrale)38	Х.	(2) isomorfismo tra la rapp. associata all'azione naturale di S_n e la rapp. dell'esempio $0.2 \dots \dots$
Ε.	(3) riducibilità e carattere della rapp. usuale del gruppo	d.	rapp. regolari destra e sinistra
	diedrale	Ο.	(0.10) la composizione di una rapp. con un omomorfismo è una rapp
Χ.	(4) gruppo diedrale più riflessioni per l'origine $\ldots40$	v	
х.	(5) rotazioni e riflessioni sul piano $\hdots \dots 39$		restrizione come composizione con omomorfismo10
Χ.	(6) rotazioni e riflessioni sul piano più riflessioni per l'origine		(1) la composizione con il coniugio è una rapp. isomorfa
X.	(7) gruppo alternante		$(1) \det e^A = e^{\operatorname{tr} A} \dots \dots$
d.	prodotto semidiretto di sottogruppi41		(2a) trovare A tale che $e^{\chi A}$ è un boost
Ε.	(4) induzione della rapp. irr. di grado 3 del gruppo		(2b) trovare A tale che $e^{tA} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$
	alternante dal sottogruppo di elementi di ordine 2 41		(3) caratterizzare le rapp. matriciali unidimensionali 11
х.	(8) gruppo simmetrico	Ε.	(4) mostrare che la traccia della rapp. dell'esempio 0.2 è il numero di punti fissati dalla permutazione11
Χ.	(9) gruppo del cubo	Ε.	(5) caratterizzare le rapp. matriciali triviali di un
Ε.	(4) decomposizione semidiretta del gruppo del cubo con		gruppo arbitrario
	il gruppo simmetrico 3 passando da quella diretta con il gruppo simmetrico 4	Ε.	(6) $e^{C^{-1}AC} = C^{-1}e^{A}C$, C invertibile
Ε.	(5) isomorfismo tra il gruppo di rotazioni del cubo e il	Ε.	(9) trovare le rapp. di grado finito di (a) \mathbb{Z} (b) \mathbb{Z}_m 12
	gruppo simmetrico 4	Ε.	(10) trovare le rapp. complesse differenziabili di grado finito di (a) \mathbb{R}^+ (b) $\{z \in \mathbb{C} \mid z = 1\}$
	Vinberg: Rappresentazioni lineari	Ε.	(11) l'azione sull'identità è l'identità
0	di gruppi, 1989	Ε.	(12) le iperboli con asintoti paralleli agli assi con coefficienti da una matrice inducono un'azione da $GL_2(\mathbb{R})$
0	Nozioni di base		su $\mathbb{R} \cup \{\pm \infty\}$
	rotazioni come omomorfismo di \mathbb{R} in $\mathrm{GL}_2(\mathbb{R})$ 2	Ε.	(13) formula esplicita per la rapp. reg. destra12
Χ.	(0.2) omomorfismo di S_n in GL_n usando la base canonica	Ε.	(14) le rapp. reg. destra e sinistra sono isomorfe $\dots12$
d.	(0.3) rappresentazione matriciale	Ε.	(15) ogni gruppo ha una rapp. lineare fedele12
	nucleo	Ε.	(16) le rapp. di $\mathbb Z$ sono restrizioni di rapp. di $\mathbb C?\dots 12$
	rapp. fedele	Ε.	(17) trovare le rapp. complesse di grado finito di \mathbb{Z}_m che rimangono isomorfe per inversione dell'asse 12
d.	rapp. triviale	1	Sottospazi invarianti
$\mathbf{d}.$	rapp. lineare		(1.1) sottospazio invariante sotto rapp
d.	equivalenza di rapp. matriciali		i polinomi di grado limitato sono sottospazi invarianti
d.	isomorfismo di rapp. lineari5	∠1.	per la rapp. di \mathbb{R} come traslazioni
х.	(1) rapp. di $\mathbb R$ con le rotazioni	ο.	invarianza di somme e intersezioni di sottospaz
х.	(2) rapp. di $\mathbb R$ sullo spazio dei polinomi 7	_	invarianti
х.	(3) rapp. di $\mathbb R$ sullo spazio di (a) funzioni continue (b) polinomi di grado limitato (c) polinomi in sin e		forma della rapp. matriciale con base estesa da ur sottospazio invariante
	cos (d) span di sin e cos	d.	(1.2) sottorappresentazione e rapp. quoziente 14

х.	forma matriciale delle sottorapp. e rapp. quoziente 14	Ε.	(10) le rapp. monomiali di S_n su un campo a caratteristica zero sono compl. rid
d.	(1.3) rapp. irriducibile	I.	•
	(1) irriducibilità delle rapp. unidimensionali15	Ŀ.	(11) la restrizione ad A_n della sottorapp. sui vettori cor somma dei coefficienti nulla della rapp. monomiale di S_n è irr. per $n \geq 4$
	(2) irr. della rapp. identica di $GL(V)$	Ε.	(12) i sottospazi invarianti di rapp. di grado finito com-
	 (3) irr. della rapp. di ℝ come rotazioni		pl. rid. sono somma diretta di sottospazi invarianti minimali della decomposizione analoga della rapp. 21
		Ε.	(14) sottospazi invarianti della rapp. di $GL(V)$ in $L(V)$
	(5) irr. delle rapp. monomiali di S_n		con il coniugio
	le rapp. irr. sono compl. rid	Ε.	(15) le funzioni commutative e anticommutative sono sottospazi invarianti minimali per rapp. di $GL(V)$ d
			B(V)
х.	isomorfismo tra la sottorapp. su un sottospazio complementare e la rapp. quoziente, e descrizione matriciale	2	Completa riducibilità delle rappresenta- zioni di gruppi compatti
т.	(1) le sottorapp. di una rapp. compl. rid. sono compl. rid	d.	invarianza di una funzione sotto rapp
TT.		d.	rapp. ortogonale e rapp. unitaria
т.	(2) lo spazio di rappresentazione di una rapp. compl. rid. di grado finito è somma diretta di sottospazi	Ρ.	le rapp. ortogonali e unitarie sono compl. rid 23
	invarianti minimali	т.	(1) le rapp. di gruppi finiti sono ortogonali/unitarie 23
т.	(3) se una rapp. è somma di finiti sottospazi invarianti minimali allora, dato un sottospazio invariante, è somma diretta di alcuni di essi e del sottospazio $\dots 18$	C.	le rapp. reali/complesse di gruppi finiti sono compl. rid
o.	(1) applicare il teorema 3 con un sottospazio nullo 19	d.	(2.4) gruppo topologico
o.	(2) sotto le ipotesi del teorema 3, un sottospazio inva-	Χ.	(1) gruppo con topologia discreta
	riante non è necessariamente somma di quelli minimali dati	х.	(2) topologia di $\operatorname{GL}(V)$
v		Χ.	(3) sottogruppi topologici
Λ.	(1) rapp. di $GL(V)$ in $L(V)$ con moltiplicazione a sinistra	d.	gruppo compatto
х.	(2) rapp. di $\mathrm{GL}(V)$ in $\mathrm{L}(V)$ con il coniugio $\dots\dots 19$	Χ.	(1) gruppo finito con topologia discreta 24
х.	(3) rapp. naturale di $\mathrm{GL}(V)$ in $\mathrm{B}(V)$ 20	Χ.	(2) gruppo ortogonale24
Ε.	(1) l'azione della rapp. su un sottospazio invariante è	Χ.	(3) gruppo unitario
	l'identità	Χ.	(4) sottogruppi chiusi di gruppi compatti 24
Ε.	(2) trovare i sottospazi dei polinomi invarianti per rapp. di $\mathbb R$ come traslazioni	Ρ.	compattezza del gruppo ortogonale24
TC.		d.	rapp. continua
£.	(3) trovare i sottospazi invarianti nella rapp. esponenziale di \mathbb{C} dove l'esponente non ha radici multiple nel polinomio caratteristico	Χ.	(1) rapp. reali/complesse di gruppi con topologia discreta
Ε.	(5) le sottorapp. sui complementi dello stesso sottospazio invariante sono isomorfe	Х.	(2) le rapp. di $GL(V)$ in $L(V)$ per moltiplicazione a destra e coniugio e in $B(V)$ naturale con V reale/complesso sono continue
Ε.	(6) le rapp. quoziente di una rapp. compl. rid. sono compl. rid	т.	(2) le rapp. di un gruppo compatto sono ortogona- li/unitarie
Ε.	(7) dire se è compl. rid. (a) la rapp. di $\mathbb R$ come traslazioni di polinomi (b) la rapp. esponenziale di $\mathbb C$ senza radici multiple nel polinomio caratteristico	C.	le rapp. reali/complesse di un gruppo compatto sono compl. rid
Ε.	dell'esponente	d.	integrazione invariante normalizzata su un gruppo compatto
-	l'esponente è diagonalizzabile	Χ.	(1) integrazione sui gruppi finiti26
E	(9) la rapp identica del gruppo ortogonale è irr 21	\mathbf{x}	(2) integrazione su II.

Χ.	(3) integrazione su SU_2 attraverso S^3	d.	(3.5) estensione del campo di base
т.	$(2.6,2.7)$ dimostrazione alternativa del teorema $2\;$. $27\;$	d.	(3.6) complessificazione
Ε.	(1) gli autovalori complessi di una rapp. ortogona-	х.	complessificazione della rapp. di $\mathbb R$ come rotazioni $.3$
Ε.	le/unitaria hanno modulo 1	Т.	(5) rapp. reali di grado finito sono isomorfe se e solo s lo sono le complessificazioni
Ε.	\mathbb{Z}		(3.7) la complessificazione di un sottospazio invariante è un sottospazio invariante della complessificata 3
Ε.	(4) dire se sono compatti: \mathbb{Z} , \mathbb{Z}_m , \mathbb{T} , $\mathrm{SL}_n(\mathbb{R})$ 30		coniugazione di vettori
	(5) la continuità di una rapp. reale/complessa passa alle sottorapp. e rapp. quoziente30		la coniugazione è antilineare
Е.	(6) la rapp. di $\mathrm{GL}(V)$ in $\mathrm{L}(V)$ con il coniugio, V reale/complesso, è continua	0.	ne di un sottospazio se e solo se è uguale al coniugat la somme e l'intersezione con il coniugato sono ugua
3	Operazioni di base sulle rappresentazioni	т.	ai loro coniugati
d.	(3.1) rapp. duale	v	di due rapp. irr. con spazi coniugati
Χ.	forma matriciale della rapp. duale31		, , , , , , , , , , , , , , , , , , , ,
Ο.	le rapp. ortogonali sono isomorfe alla duale $\ \ldots \ 31$		(3.7) sollevamento e fattorizzazione di rapp
Ο.	ogni rapp. è isomorfa alla biduale31	U.	bigezione tra le rapp. del quoziente e le rapp. il conucleo contiene il sottogruppo normale
т.	(1) la duale di una rapp. irr. di grado finito è irr. $\dots 31$	X.	(1) SL_n è normale ed è nucleo del determinante4
d.	annullatore	х.	(2) gruppo di Klein
d.	(3.2) somma di rapp	X.	(3) tutte le rapp. di \mathbb{Z}_m fattorizzando quelle di \mathbb{Z}_m
Χ.	forma matriciale della somma di rapp 32	d.	sottogruppo commutatore4
Т.	(2) compl. rid. di grado finito equivale a somma di rapp. irr. (a meno di isomorfismi) $\dots 32$	Ο.	ogni rapp. monodimensionale è sollevamento di ur rapp. monodimensionale del quoziente sul commuta
Т.	(3) se una rapp. è isomorfa a una somma di rapp. irr. allora le sue sottorapp. e rapp. quoziente sono isomorfe a somme di alcune delle rapp. irr	х.	tore
C.	se le sottorapp. su finiti sottospazi minimali inva-	Ε.	(1) descrivere la duale di una rapp. triviale
	rianti sono a coppie non isomorfe, i sottospazi sono indipendenti	Ε.	(2) irriducibilità della duale implica irriducibilità $\dots 4$
т	(4) la scomposizione in rapp. irr. è unica a meno di	Ε.	(3) il passaggio alla duale commuta con la somma $$. 4
1.	ordine e isomorfismi	Ε.	(4) la completa irriducibilità passa alla duale 4
d.	(3.3) prodotto di rapp	Ε.	(5) la rapp. identica di SL_2 è isomorfa alla duale \ldots
Χ.	forma matriciale del prodotto di rapp	Ε.	(6) ogni rapp. compl. rid. è isomorfa alla somma de
Χ.	(1) prodotto con una rapp. triviale35		la sottorapp. e della rapp. quoziente su uno stess sottospazio invariante
Χ.	(2) prodotto con la duale $\dots 36$	Ε.	(7) regola di cancellazione per la somma di rapp. comp
х.	(3) quadrato della duale		rid. di grado finito
X.	(4) prodotto con una rapp. monodimensionale $\ldots36$	Ε.	(8) il prodotto di rapp. commuta con la somma 4
o.	il prodotto di irr. non è necessariamente irr36	Ε.	(9) il prodotto di rapp. è commutativo
d.	(3.4) prodotto tensoriale di rapp	Ε.	(10) descrizione matriciale del quadrato di una rapp
х.	forma matriciale del prodotto tensoriale37	IF:	(11) il prodotto di due rapp. esponenziali di $\mathbb C$ è un
х.	prodotto tensoriale con la duale	Ľ.	rapp. esponenziale; trovare l'esponente4

Ε.	(12) il prodotto di una rapp. irr. con una monodimen-	d.	rapp. regolare (bilatera)49
Ε.	sionale è irr	т.	(7) isomorfismo tra il prodotto tensoriale di una rapp irr. complessa con la duale e la rapp. reg. ristretta allo spazio dei coeff. mat
Ε.	(14) forma matriciale del quadrato tensoriale e	С.	(1) dimensione dello spazio dei coeff. mat 49
	confronto con il quadrato	C.	(2) isomorfismo tra il prodotto di una rapp. triviale con la duale di una rapp. irr. complesa e la rapp. reg. sini- stra ristretta allo spazio dei coeff. mat. della rapp. irr. isomorfismo tra il prodotto di una rapp. irr. comples- sa con la duale di una triviale e la rapp. reg. destra
Ε.	(17) trovare le rapp. monodimensionali di $A_4 \dots 44$		ristretta allo spazio dei coeff. mat della rapp. irr 50
	(18) SL_n è il commutatore di GL_n	С.	(3) la rapp. reg. sinistra ristretta allo spazio dei coeff mat. di una rapp. irr. complessa è isomorfa a un multi- plo della duale della rapp. irr.; per la rapp. reg. destra
4	Proprietà delle rappresentazioni irriducibili complesse		vale con un multiplo della rapp. irr 50
d.	(4.1) morfismo di rapp	С.	(4) le rapp. reg. ristrette agli spazi dei coeff. mat. di due rapp. irr. complesse non isomorfe non sono isomorfe 50
Χ.	la proiezione su un sottospazio invariante parallela a un suo complemento invariante è un morfismo dalla rapp. alla sottorapp	С.	(5) gli spazi dei coeff. mat. di rapp. irr. complesse a coppie non isomorfe sono indipendenti50
Ο.	il nucleo e l'immagine di un morfismo sono sottospazi invarianti	х.	scomposizione dello spazio dei coeff. mat. in una somma diretta di sottospazi invarianti per rapp. reg sinistra o destra minimali
т.	(1) i morfismi di rapp. irr. sono isomorfismi o nulli $\ 45$	х.	rapp. monodimensionali esponenziali di un gruppo
т.	(2) se lo spazio di una rapp. si scompone in sottospazi invarianti minimali tali che le sottorapp. sono a coppie non isomorfe, allora ogni altro sottospazio invariante è somma di alcuni di essi		ciclico
	(4.2) endomorfismo di rapp. 45 (3) lemma di Schur 46	т.	(8) il prodotto hermitiano invariante di una rapp. irr unitaria è unico a meno di un fattore costante52
	tutti i morfismi di due rapp. irr. complesse isomorfe sono isomorfismi multipli tra loro	т.	(9) spazi invarianti minimali con sottorapp. non isomorfe di una rapp. unitaria sono ortogonali rispetto a qualunque prodotto hermitiano invariante52
1.	(4) tutti i sottospazi del prodotto tensoriale dello spazio di una rapp. irr. complessa con quello di una triviale invarianti per il prodotto delle rapp. e minimali sono prodotti tensoriali dello spazio della rapp. irr. con un	Ε.	(1) l'immagine attraverso morfismo di rapp. di un sottospazio invariante è un sottospazio invariante .52
т.	vettore nello spazio della triviale	Е.	(2) gli endomorfismi della rapp. monomiale di S_n ristretta a un sottogruppo doppiamente transitivo sono combinazione lineare dell'identità e dell'operatore che manda la base nella somma della base
С.	ogni rapp. complessa di un gruppo abeliano ha un sottospazio invariante minimale	Ε.	(3) dimensione dello spazio dei morfismi da una com-
т.	(6) il prodotto tensoriale di due rapp. irr. complesse è irr		binazione lineare a coefficienti naturali a un'altra di rapp. irr. complesse a coppie non isomorfe53
т.	ogni rapp. irr. complessa del prodotto di due gruppi è il prodotto tensoriale di due rapp. irr. dei gruppi . 48	Ε.	(4) la sottorapp. monomiale sul sottospazio di vettori con somma delle componenti nulla ristretta a un sottogruppo doppiamente transitivo è irr
d.	(4.5)elementi matriciali di una rapp 48	Ε.	(5) trovare gli automorfismi della rapp. di $\mathbb R$ come
d.	spazio dei coefficienti matriciali48		rotazioni53
Ρ.	(1) gli spazi dei coeff. mat. di rapp. isomorfe sono uguali	Ε.	(6) nello spazio di una rapp. complessa di un gruppo abeliano c'è una base che triangolarizza la rapp 53
Ρ.	(2) lo spazio dei coeff. mat. di una somma di rapp. è la somma dei rispettivi spazi di coeff. mat. 48		(7) le rapp. irr. reali di un gruppo abeliano sono al più bidimensionali

Ε.	(8) la rapp. reg. destra di un gruppo finito è isomorfa alla somma di tutte (a meno di isomorfismi) le rapp.		funzione di classe
	irr. del gruppo moltiplicate per il loro grado53	U.	funzioni dal gruppo a valori complessi59
Ε.	(9) i sottospazi del prodotto tensoriale dello spazio di una rapp. irr. complessa con quello di una triviale in-	Ο.	dimensione dello spazio delle funzioni di classe $\ldots59$
	varianti per il prodotto delle rapp. sono prodotti ten- soriali dello spazio della rapp. irr. con un sottospazio della triviale	т.	(3) i caratteri delle rapp. irr. complesse di un gruppo finito sono una base delle funzioni di classe 59
Ε.	(10) gli elementi matriciali di una rapp. irr. complessa sono indipendenti; è vero anche per una reale? 53	L.	le funzioni di classe nello spazio dei coeff. mat. d una rapp. irr. complessa di un gruppo finito sono proporzionali al carattere della rapp
Ε.	(11) lo span dell'immagine di una rapp. irr. complessa è $\mathrm{L}(V)$	C.	(1) il numero di rapp. irr. complesse di un gruppo finite è il numero di classi di coniugio 60
Ε.	(12) le rapp. irr. sono isomorfe a una sottorapp. della rapp. reg. destra	C.	(2) le rapp. irr. complesse di un gruppo finito sono uni vocamente identificate dal loro carattere (a meno d
Ε.	(13) le rapp. irr. sono isomorfe a una sottorapp. della rapp. reg. sinistra	X.	isomorfismo)
Ε.	(14) dimostrare i corollari 4 e 5 su campi arbitrari $.54$		finito
Ε.	(15)il prodotto scalare invariante di una rapp. irr. ortogonale è unico a meno di un fattore costante positivo		(2) classi di coniugio di S_4 e rapp. come rotazioni di un cubo
	54		(5.5) azione transitiva
5	Scomposizione della rappresentazione		(1) transitività della'azione naturale di $S_n cdots cdots 6$
	regolare		(2) transitività della'azione di O_n sulla sfera 6:
т.	(1) le rapp. irr. complesse di un gruppo finito sono finite a meno di isomorfismi	d.	azione l^H di un gruppo G sulle classi laterali di $H\subseteq G$
т.	-	d.	stabilizzatore
	gruppo finito è la somma diretta degli spazi dei coeff. mat. delle rapp. irr. complesse del gruppo 56	Ρ.	ogni azione transitiva è isomorfa a un'azione $l^H\ \dots 6$
С.	(1) la somma dei quadrati dei gradi delle rapp. irr. complesse di un gruppo finito è l'ordine del gruppo	stra di un gruppo finito ristretta a u la somma lungo le rapp. irr. comples	(4) il sottospazio dei vettori invarianti per rapp. reg. de stra di un gruppo finito ristretta a un sottogruppo H la somma lungo le rapp. irr. complesse del gruppo delle immagini attraverso l'isomorfismo dal prodotto tenso
C.	(2) le rapp. reg. destra e sinistra di un gruppo finito sono isomorfe alla somma delle rapp. irr. complesse del gruppo moltiplicate per il loro grado57		riale con la duale allo spazio dei coeff. mat. del prodotto tensoriale del sottospazio dei vettori invariant per la rapp. irr. complessa ristretta a H con lo spazio della duale
х.	(1) il numero di rapp. irr. complesse di un gruppo finito abeliano è l'ordine del gruppo57	C.	la rapp. come funzioni associata a l^H è isomorfa al la somma delle rapp. irr. complesse del gruppo finite
Χ.	(2) rapp. irr. complesse di S_3 57		moltiplicate per la dimensione del loro sottospazio de
d.	$(5.3) \ {\rm carattere} \ {\rm di} \ {\rm una} \ {\rm rapp}. \ \dots $		vettori invarianti per la rapp. irr. ristretta a H 63
х.	(1) carattere di una rapp. monodimensionale $\ldots \ldots 57$	L.	il sottospazio massimale invariante per rapp. compl. rid ha la stessa dimensione di quello per la duale63
Χ.	(2) carattere di una rapp. triviale57	х.	azione del gruppo delle rotazioni del cubo sulle facco
х.	(3) carattere della rapp. di $\mathbb R$ come rotazioni $\ldots\ldots57$		65
х.	(4) carattere della rapp. monomiale di $S_n \ \dots \dots 58$	Χ.	(5.7) rappresentazioni di A_5
Χ.	(5) carattere della rapp. di S_3 con un triangolo $\dots.58$	Ε.	(1) trovare una base degli elementi matriciali di S_3 68
o.	i caratteri di rapp. isomorfe sono uguali $\ldots \ldots 58$	Ε.	(2) valore del carattere sull'identità 68
o.	carattere della somma e del prodotto di rapp 58	Ε.	(3) calcolare i caratteri (a) delle rapp. irr. complesse d S_3 (b) delle rapp. reg. sinistra e destra di un gruppe
х.	carattere della rapp. monomiale di S_n ristretta ai valori con somma delle componenti nulla	T.	finito qualsiasi
\mathbf{O}	il corattore è una funzione di classe	Ľ.	(4) trovare le rapp. irr. complesse di A_4 e i loro caratter

	(5) un gruppo con tutte le rapp. irr. complesse monodimensionali è abeliano	Е.	(3) scrivere la tavola dei caratteri di S_4 e scomporr il quadrato della rapp. monomiale ristretta ai vettor con somma delle componenti nulla
	due rapp. irr. complesse	Е.	(4) scomporre le rapp. di S_4 nello spazio delle funzion (a) sui vertici del cubo (b) sugli spigoli del tetraedre
Ε.	(7) trovare le rapp. irr. complesse (a) del gruppo die- drale (b) del gruppo generalizzato delle unità dei qua- ternioni; verificare i corollari 1 dei teoremi 2 e 3 per questi esempi	Е.	(5) scomporre $L(V)$ in sottospazi minimali invarianti per il prodotto di una rapp. irr. compless
Ε.	(8) usando i caratteri, trovare per quali n la sottorapp. monomiale di S_n sui vettori con somma delle componenti nulla è isomorfa al suo prodotto con la rapp. di parità	Е.	tridimensionale di A_5 con la duale
Ε.	(9) l'indice di H nel gruppo finito G è la somma lungo le rapp. irr. complesse di G del grado della rapp. moltiplicato per il grado della rapp. ristretta a H 65	Е.	(7) la somma lungo un gruppo finito di una rapp. irr complessa moltiplicata per il carattere coniugato l'ordine del gruppo diviso il grado della rapp
Ε.	(10) scomporre la rapp. come funzione associata a (a) l'azione del gruppo delle rotazioni del cubo sui vertici (b) l'azione del gruppo di simmetria completo del totro alco guelli priggli.	Е.	(8) i gradi delle rapp. irr. complesse di un gruppo finite dividono l'ordine del gruppo
T.	tetraedro sugli spigoli	7	I gruppi SU_2 e SO_3
Ŀ.	(11) trovare il carattere della rapp. irr. complessa di grado 5 di A_5	d.	algebra dei quaternioni
Ε.	$\left(12\right)$ una rapp. di un gruppo finito è isomorfa alla duale	d.	base dei quaternioni
	se e solo se il carattere è a valori reali	o.	regole di moltiplicazione per la base dei quaternioni $7 $
6	Relazioni di ortogonalità	ο.	SU_2 come sfera nei quaternioni
d.	prodotto hermitiano nello spazio delle funzioni da un	d.	omomorfismo da SU ₂ in SO ₃
	gruppo finito a valori complessi invariante per rapp. reg	т.	l'omomorfismo da SU_2 in SO_3 è suriettivo; nucle dell'omomorfismo
т.	(1) gli elementi matriciali delle rapp. irr. complesse di un gruppo finito scritti in una base ortonormale rispet- to al prodotto hermitiano invariante di ogni rapp. sono una base ortogonale delle funzioni dal gruppo a valori complessi; la norma quadra di un elemento matriciale è l'inverso della dimensione della rapp. irr 67		 (1) un sottogruppo di SO₃ che agisce transitivament sulla sfera e contiene le rotazioni intorno a un asse SO₃
С.	(1) i caratteri delle rapp. irr. complesse di un gruppo finito sono una base ortonormale delle funzioni di classe	Р.	a traccia nulla
C.	(2) i coefficienti nella scomposizione in rapp. irr. di		tità e sul suo opposto
	una rapp. complessa di un gruppo finito sono dati dal prodotto invariante per rapp. reg. dei caratteri 68		topologia quoziente
С.	(3) una rapp. complessa di un gruppo finito è irr. se e solo se il carattere ha norma 1 secondo il prodotto		le rapp. continue di un gruppo quoziente si ottengone fattorizzando le rapp. continue del numeratore 7
v	invariante per rapp. reg	L.	isomorfismo tra un gruppo topologico e il quozient sul nucleo del dominio di un omomorfismo continu- al gruppo
Λ.	abeliano finito	0	~ · ·
Χ.	(2) tavola dei caratteri di A_5 69		SO ₃ è isomorfo allo spazio proiettivo
Ε.	(1) calcolare la norma quadra del carattere della rapp. reg. destra sia direttamente che usando la scomposizione in rapp. irr		le rapp. continue di SO_3 si ottengono fattorizzando l rapp. continue di SU_2 il cui nucleo contiene l'oppost dell'identità
Ε.	(2) la dimensione dello spazio dei vettori invarianti per rapp. complessa di un grupo finito è il pro-	d.	rapp. di SL_2 come polinomi omogenei in due variabili restrizione a SU_2
	dotto hermitiano del carattere della rapp. con quello identicamento unitario	Р.	la rapp. di SU_2 come polinomi omogenei in due variabil

9 Armoniche sferiche 9

Ο.	la rapp. di SU ₂ come polinomi omogenei in due variabili	$\mathbf{d}.$	armoniche sferiche89
Ε.	si fattorizza a SO_3	C.	le armoniche sferiche sono un insieme ortonormale completo nello spazio delle funzioni continue sulla sfera
	(2) esplicitare un isomorfismo tra la complessificazione		90
	della rapp. di SU_2 come matrici 2×2 hermitiane a traccia nulla e quella come polinomi omogenei di secondo grado in due variabili	L.	ortogonalità dei polinomi di Legendre 91
		Т.	(3) espressione delle armoniche sferiche di ordine 0
Ε.	(b) le fanzioni di classe sa 502 sono determinate dai	Χ.	polinomi di Legendre fino al quinto ordine 92
		Χ.	espressione generale delle armoniche sferiche 92
E		Ε.	(3) le armoniche di ordine non nullo si annullano su
	di SU ₂ come polinomi omogenei in due variabili al	_	polo nord92
	sottogruppo diagonale80	E.	(4) espressioni esplicite per le armoniche di indice 1 e 2
Ε.	(5) lo span dei caratteri delle rapp. di SU ₂ come polinomi omogenei in due variabili ristretti al sotto-	Ε.	(5) espressione delle armoniche di ordine massimo . 92
	gruppo diagonale e visti come funzioni di un elemen- to della diagonale è lo spazio delle funzioni sul sot-	Ε.	(6) espressione delle armoniche di ordine negato 92
	togruppo diagonale scrivibili come polinomi nei due	Ε.	(7) formula di Rodrigues92
	elementi sulla diagonale e invarianti per coniugazione dell'argomento		
Ε.	(6) integrale invariante su SU ₂ ristretto alle funzioni di		Bracci: Appunti del corso Metodi
	classe continue		matematici per la Fisica I, 2004
9	Armoniche sferiche	1	Spazi normati e con prodotto scalare
	data un'azione transitiva continua di un gruppo com-	1.	1 Definizioni e proprietà elementari
	patto, la mappa naturale dal quoziente per uno sta- bilizzatore allo spazio di azione è un omeomorfismo 85	d.	(1.1.1) norma
		d.	(1.1.2) spazio normato
L.	(1) fissato SO ₂ , in ogni sottospazio di dimensione finita, SO ₃ -invariante e non nullo delle funzioni continue sulla sfera c'è una funzione non nulla SO ₂ -invariante86	d.	(1.1.3) limite
		d.	(1.1.4) punto di accumulazione
0	l'algebra dei polinomi complessi di tre variabili reali	d.	(1.1.5) insieme limitato
Ο.	è SO_3 -invariante e si scompone in somma diretta di	L.	(1.1.1) unicità del limite su un punto di accumulazione
	spazi di polinomi omogenei87		
d.	prodotto hermitiano sui polinomi complessi di tre variabili reali		$(1.1.2)$ unicità del limite per $x \to \infty$
L.	(2) sui polinomi complessi di tre variabili reali la		(1.1.6) limite di una successione
	moltiplicazione per una coordinata è l'aggiunto della	L.	(1.1.3) unicità del limite di una successione
~	derivazione per la stessa	d.	(1.1.7) continuità in un punto
С.	la moltiplicazione per il raggio quadro è l'aggiunto del laplaciano87	L.	(1.1.4) definizione di continuità con il limite
d.	funzioni armoniche	L.	(1.1.5) definizione di continuità con le successioni2
L.	(3) il nucleo dell'operatore restrizione dei polinomi alla	Т.	(1.1.1) la somma di funzioni continue è continua 3
	sfera non contiene polinomi omogenei	L.	$(1.1.6)$ la somma dei limiti è il limite della somma $\dots 3$
т.	(1) decomposizione dei polinomi omogenei in somma diretta di sottospazi ${\rm SO}_3$ -invarianti minimali 88	Т.	(1.1.2) la composizione di funzioni continue è continua
L.	(4) ogni spazio di polinomi omogenei di grado fissato	d.	(1.1.8) continuità sul dominio
	ammette una base di autofunzioni per una rotazione in SO ₂ ; formule per autovalori e molteplicità 89	d.	(1.1.9) funzione lipschitziana
т.	(2) lo spazio dei polinomi ristretto alla sfera si scom-	L.	$(1.1.7)$ lipschitziana \implies continua
	pone in somma diretta ortogonale di sottospazi SO ₃ -	т.	(1.1.3) la norma è lipschitziana
	invarianti minimali; dimensioni e basi dei sottospazi	d.	(1.1.10) norme equivalenti

L.	$(1.1.8)$ norme equivalenti \Longrightarrow limiti di successioni	1.3	B Spazi di Banach
	uguali	$\mathbf{d}.$	(1.3.1) successione di Cauchy ovvero fondamentale $. . 9$
L.	$(1.1.9)$ norme equivalenti \Longrightarrow limiti di funzioni uguali4	Ο.	le successioni di Cauchy per norme equivalenti sono le stesse
1.2	2 Topologia	L.	$(1.3.1)$ le successioni convergenti sono di Cauchy $\ldots.9$
d.	(1.2.1) palle aperte e chiuse	d.	(1.3.2)spazi completi e di Banach 9
	(1.2.2)insiemi aperti e chiusi	L.	(1.3.2)la completezza rispetto a norme equivalenti è equivalente
L.	(1.2.1) le palle aperte sono aperte e le palle chiuse sono chiuse	ο.	$\mathbb R$ è uno spazio di Banach
т.	(1.2.1) proprietà generali della famiglia degli aperti $.5$	Т.	$\left(1.3.1\right)$ gli spazi di dimensione finita sono completi 9
	(1.2.2) proprietà generali della famiglia dei chiusi5	C.	$\left(1.3.1\right)$ i sottospazi di dimensione finita sono chiusi $\ 10$
	(1.2.3) definizione di chiuso con le successioni 5	Т.	$(1.3.2)$ esistenza del completamento $\ldots \ldots 10$
	(1.2.4) i chiusi e gli aperti per norme equivalenti sono	d.	$(1.3.3)\ completamento\ \dots\dots\dots\dots11$
	gli stessi	d.	(1.3.4) spazi delle funzioni continua su un intervallo con e senza supporto compatto11
	(1.2.3) chiusura6	L.	(1.3.3) lo spazio delle funzioni continua su un interval-
Т.	(1.2.5) definizione di chiusura con le successioni 6		lo limitato a supporto compatto non è completo per norma L^1
C.	$\left(1.2.1\right)$ la chius ura della palla aperta è la palla chiusa 6	d.	$(1.3.5)$ spazio L^1
d.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.3.3) definizione di L^1 come funzioni integrabili11
	$(1.2.2)$ compatto \implies chiuso e limitato	т.	$(1.3.4)$ (Weierstrass) lo spazio dei polinomi in una variabile è denso nello spazio delle funzioni continue su un intervallo limitato per norma ∞
1.	(1.2.6) (Weierstrass) una funzione continua su un compatto ammette massimo e minimo6	v	controesempio con intervallo illimitato
d.	(1.2.5) continuità uniforme		(1.3.2) su un intervallo limitato i polinomi in una
o.	uniformemente continua \implies continua7	О.	variabile sono densi in L^1
т.	(1.2.7) (Heine-Cantor-Borel) continua su un compatto \implies uniformemente continua	d.	(1.3.6) spazi delle funzioni infinitamente derivabili con e senza supporto compatto
т.	(1.2.8) in uno spazio di dimensione finita tutte le norme sono equivalenti	C.	(1.3.3) su un intervallo limitato le funzioni liscie sono dense in L^1
х.	esempio di spazio di dimensione infinita con norme non equivalenti	т.	(1.3.5) su un intervallo limitato le funzioni liscie a supporto compatto sono dense in L^1 13
\mathbf{C}	(1.2.2) (Bolzano-Weierstrass) in uno spazio di dimen-	d.	$(1.3.7)$ funzione caratteristica di un insieme $\dots\dots 13$
О.	sione finita gli insiemi chiusi e limitati sono compatti	С.	$(1.3.4)$ su un intervallo illimitato le funzioni liscie a supporto compatto sono dense in L^1
Χ.	esempio di spazio di dimensione infinita con insieme	d.	(1.3.8) spazio L^p
	chiuso e limitato ma non compatto	т.	$(1.3.6)$ (Fisher-Riesz) gli spazi L^p sono di Banach $\ . 14$
С.	(1.2.3) (Bolzano-Weierstrass) in uno spazio di dimensione finita i sottoinsiemi infiniti e limitati hanno un punto di accumulazione	т.	(1.3.7) lo spazio delle funzioni liscie a supporto compatto è denso in L^p
Ь	(1.2.6) densità	т.	$(1.3.8)$ (Disuguaglianza di Hölder) \hdots 14
	(1.2.7) parte interna	C.	(1.3.5) su un intervallo limitato $p > q \implies L^p \subseteq L^q$
	definizione di parte interna con le palle aperte8		controesempio su un intervallo illimitato
L.	$(1.2.3)$ parte interna vuota \iff complementare denso	Т.	$(1.3.9)$ una successione convergente in L^p ammette una sottosuccessione puntualmente convergente 15

Χ.	$(1.3.1)$ la convergenza in L^p non implica la convergenza	т.	(1.5.4) serie di Fourier
т.	puntuale quasi ovunque	т.	(1.5.5) valore minimo della differenza tra un vetto re e una serie parziale lungo un insieme numerabile
3 7	che converge uniformemente converge in L^p 15	~	ortonormale
	(1.3.2) controesempio per un intervallo illimitato15 (1.3.11) una successione limitata in L^p che converge puntualmente converge in L^p	С.	(1.5.3) (identità di Parsevall) un insieme numerabile ortonormale è completo se e solo se la norma quadra di ogni vettore è la serie di Fourier delle norme quadra
х.	$(1.3.3) \ {\rm controesempio} \ {\rm per} \ {\rm una} \ {\rm successione} \ {\rm non} \ {\rm limitata} \\ \dots \\ 15$	т.	(1.5.6) (Fisher-Riesz) fatti equivalenti alla completezza per un insieme ortonormale numerabile
т.	(1.3.2) (delle contrazioni di Banach) in uno spazio di Banach le contrazioni ammettono uno e un solo punto fisso	т.	(1.5.7) una serie lungo una successione ortonormale completa converge se e solo se converge la serie de moduli quadri dei coefficienti
1.4	Prodotti scalari	2	Equazioni differenziali alle derivate
d.	(1.4.1) prodotto scalare	_	parziali
т.	(1.4.1) (Cauchy-Schwarz)	2.1	Serie di Fourier
o.	la maggiorazione di Cauchy-Schwarz vale anche per prodotti scalari degeneri	Т.	(2.1.1) (Lemma di Riemann-Lebesgue)
C.	(1.4.1) norma indotta da un prodotto scalare17		$f \in L^1(-\infty, \infty) \implies \lim_{\alpha \to \infty} \int_{-\infty}^{\infty} f(x)e^{i\alpha x} dx = 0$
т.	(1.4.2) un prodotto scalare è continuo per la norma che induce		24
т.	(1.4.3) identità del parallelogramma	т.	(2.1.2)
	norma che non deriva da un prodotto scalare18		$\phi \in C_c^{\infty}(-\infty, \infty) \implies \lim_{\alpha \to \infty} \alpha^r \int_{-\infty}^{\infty} \phi(x) e^{i\alpha x} dx = 0$
т.	$(1.4.4)$ formula di polarizzazione $\ldots \ldots 18$		
т.	(1.4.5) (von Neumann) una norma che soddisfa l'iden-	$\mathbf{d}.$	(2.1.1) polinomio trigonometrico
	tità del parallelogramma è indotta da un prodotto scalare	L.	(2.1.1) le potenze intere di funzioni trigonometrich sono polinomi trigonometrici
	(1.4.2) una norma è indotta da un prodotto scalare se e solo se soddisfa l'identità del parallelogramma 19	т.	(2.1.3) (Weierstrass) i polinomi trigonometrici sono densi nelle funzioni continue a supporto compatte
C.	(1.4.3) la norma p -esima è indotta da un prodotto scalare se e solo se $p=2$	C	sull'intervallo $[-\pi, \pi]$ con la norma ∞
1.5	Proprietà elementari degli spazi di Hilbert	C.	(2.1.1) i polinomi trigonometrici sono densi in $L^2(-\pi,\pi)$
d.	(1.5.1) spazio di Hilbert	L.	(2.1.2) $\{e^{inx}\}_{n\in\mathbb{Z}}$ è un insieme ortogonale in $L^2(-\pi,\pi)$
т.	$(1.5.1)$ L^2 è di Hilbert		
$\mathbf{d}.$	(1.5.2) insieme completo e base	т.	(2.1.4) $\{e^{inx}/\sqrt{2\pi}\}_{n\in\mathbb{Z}}$ è una base ortonormale in $L^2(-\pi,\pi)$
L.	(1.5.1) un vettore ortogonale a un insieme completo è nullo	т.	(2.1.5) $\{\sin(nx)/\sqrt{\pi}\}_{n\in\mathbb{N}_0} \cup \{\cos(nx)/\sqrt{\pi}\}_{n\in\mathbb{N}}$ è una base ortonormale in $L^2(-\pi,\pi)$
$\mathbf{d}.$	$(1.5.3) \ {\rm insieme \ ortonormale} \ \dots $	L.	$(2.1.3) \sum_{-\infty}^{\infty} z_n < \infty \implies \sum_{-\infty}^{\infty} z_n \frac{e^{inx}}{\sqrt{2\pi}} \text{ converge}$
т.	(1.5.2) (Disuguaglianza di Bessel) data una successione di vettori ortonormali $\{e_k\}: \sum (e_k, v) ^2 \leq v ^2 \dots 21$		uniformemente ed è continua
C.	(1.5.1) il prodotto scalare di un vettore con una successione ortonormale converge a 0		$(2.1.4) \sum_{-\infty}^{\infty} na_n < \infty \implies \sum_{-\infty}^{\infty} a_n \frac{e^{inx}}{\sqrt{2\pi}} \text{ è continua}$ e derivabile termine a termine
т.	(1.5.3) un insieme numerabile di vettori tale che ogni vettore ortogonale all'insieme è nullo è completo21		serie di Fourier in $L^1(-\pi,\pi)$
C.	(1.5.2) un insieme numerabile è completo se e solo se l'unico vettore ortogonale a esso è 0		incrementale di f intorno a x_0 è integrabile intorno a $x_0 \Longrightarrow$ la serie di Fourier di f converge puntualmenta f in $x_0 \ldots \ldots$

T. (2.1.7) (criterio di Dini) $f \in L^1(-\pi, \pi), \exists f(x_0^+), f(x_0^-), \vdots$	2.4 Equazione delle onde45
i rapporti incrementali di f a destra e a sinistra di x_0 sono in L^1 intorno a destra di $0 \implies$ la serie di Fourier	3 Spazi di Hilbert ed Operatori lineari
di f converge alla media dei limiti destro e sinistro di f in $x_0 cdots cdots $	3.1 Geometria degli spazi di Hilbert
T. (2.1.8) f periodica con periodo 2π , $f \in C^1 \implies 1$ a	d. (3.1.1) spazio ℓ^2
serie di Fourier di f converge uniformemente a f . 28	T. (3.1.1) lo spazio ℓ^2 è di Hilbert
2.2 Problema ai limiti per il quadrato29	L. (3.1.1) le successioni $e_n^{(i)} = \delta_{in}$ sono una base ortonormale di ℓ^2
2.3 Problema ai limiti per il cerchio33	T. (3.1.2) gli spazi di Hilbert di dimensione infinita con
2.3.3 Funzioni armoniche	una base numerabile sono isomorfi a ℓ^2 51
d. (2.3.1) funzione armonica	d. (3.1.2) spazio separabile
d. (2.3.2) problema di Dirichlet	T. (3.1.3) uno spazio Hilbert ha una base ortonormale finita o numerabile se e solo se è separabile
con condizione al bordo continua	T. (3.1.4) i sottoinsiemi ortonormali di uno spazio separabile sono al più numerabili
tinua sulla chiusura di un aperto limitato con la- placiano non negativo sull'aperto, l'estremo superiore	X. spazio di Hilbert non separabile
sull'aperto è maggiorato dal massimo sulla frontiera	X. altro spazio di Hilbert non separabile
C. (2.3.1) una soluzione del problema di Dirichlet su un	d. (3.1.3) sottospazio di Hilbert
aperto limitato è compresa tra il minimo e il massimo della condizione al bordo	L. (3.1.2) i vettori ortogonali a un sottoinsieme dato sono uno sottospazio di Hilbert
C. (2.3.2) l'unica soluzione del problema di Dirichlet su un aperto limitato con condizione al bordo nulla è la	L. (3.1.3) la chiusura di un sottospazio vettoriale è un sottospazio di Hilbert
funzione nulla	d. (3.1.4) insieme convesso
C. (2.3.3) unicità della soluzione del problema di Dirichlet40	T. $(3.1.5)$ (proiezione su un convesso chiuso) 54
${f C.}~~(2.3.4)$ unicità della soluzione del problema di Dirichlet	\mathbf{d} . (3.1.5) insieme ortogonale a uno dato54
su un disco con condizione al bordo continua $\dots 40$	\mathbf{T} . (3.1.6) (della proiezione ortogonale)
C. (2.3.5) (Teorema della media)40	d. $(3.1.6)$ somma diretta in uno spazio di Hilbert 55
C. (2.3.6) una funzione armonica su un aperto connesso il cui modulo ammette massimo è costante	3.2 Operatori e funzionali lineari
	d. (3.2.1) operatore lineare e nucleo
2.3.4 Lemma di Green e sue conseguenze L. (2.3.1) (lemma di Green) $f,g\in C^2\implies$	T. (3.2.1) fatti equivalenti alla continuità per un operatore lineare tra spazi normati
$\int_{S} (f\Delta g - g\Delta f) dS = \int_{\sigma} \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n} \right) d\sigma$	d. (3.2.2) norma di un operatore lineare tra spazi normati e operatore limitato
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L. (3.2.1) un operatore lineare tra spazi normati è continuo se e solo se è limitato
$\mathbf{d.}~(2.3.3)$ funzione di Green in due dimensioni $\ldots\ldots.42$	${f L.}$ (3.2.2) gli operatori lineari su spazi normati di
L. (2.3.2) f continua in $\underline{y} \Longrightarrow$	dimensione finita sono limitati
$\lim_{n \to \infty} \int f(n) \frac{\partial G}{\partial x} (x, y) dx = f(y)$	X. controesempio in dimensione infinita
$\lim_{\epsilon \to 0} \int_{ \underline{x} = \epsilon} f(\underline{x}) \frac{\partial G}{\partial n} (\underline{x}, \underline{y}) d\sigma = f(\underline{y})$	L. (3.2.3) definizione della norma di un operatore maggiorandola con la norma dell'argomento 56
T. (2.3.4) (simmetria della funzione di Green)43	T. (3.2.2) lo spazio degli operatori lineari da uno spazio normato a uno di Banach è di Banach
T. (2.3.5) soluzione del problema di Dirichlet con condizione al bordo nulla usando la funzione di Green	d. (3.2.3) funzionale lineare e spazio duale57
	T. (3.2.3) (di rappresentazione di Riesz)57

d.	(3.2.4) operatore aggiunto	3.4	Particolari classi di operatori
L.	(3.2.4) la norma della composizione di operatori lineari continui è minore o uguale del prodotto delle norme	d.	(3.4.1) operatore unitario
		L.	$(3.4.1)$ gli operatori unitari sono lineari $\ldots\ldots 63$
L.	(3.2.5) l'aggiunto di un operatore lineare continuo è continuo e ha la stessa norma	О.	per il lemma precedente non serve l'ipotesi di surgettività
L.	(3.2.6) la norma quadra di un operatore lineare con-	L.	(3.4.2) gli operatori unitari sono limitati, biunivoci e con inverso unitario
	tinuo è la norma della composizione con l'aggiunto	L.	(3.4.3) un operatore lineare surgettivo che lascia invariata la norma è unitario
т.	(3.2.4) un operatore lineare continuo su un sottospazio denso si estende in modo unico	L.	(3.4.4) un operatore limitato è unitario se e solo se è surgettivo e l'aggiunto è l'inverso
т.	una funzione uniformemente continua da un sottoinsieme di uno spazio normato a uno spazio di Banach si estende in modo unico alla chiusura del dominio59	d.	(3.4.2) isometria
		Ο.	se uno spazio di Hilbert è separabile allora è isometrico a ℓ^2
3.3	Proiettori	d.	(3.4.3) autovalore, autovettore, autospazio, spettro
d.	(3.3.1) proiettore		puntuale
т.	$(3.3.1)$ proprietà del proiettore $\ldots \ldots 59$	d.	(3.4.4) autoaggiunto, normale
	(3.3.1) $\forall x (Ax, x) = 0 \implies A = 0 \dots 60$	L.	(3.4.5)gli autovalori di un operatore autoaggiunto sono reali
Χ.	controesempio per spazi su \mathbb{R}	ο.	autoaggiunto \implies normale64
т.	(3.3.2) un operatore lineare di ordine 2 e autoaggiunto è un proiettore	L.	(3.4.6) gli autovettori dell'aggiunto di un operatore normale sono gli stessi ma con autovalore coniugato
$\mathbf{C}.$	l'immagine di un proiettore è di vettori fissati $\ldots\ldots61$		64
т.	(3.3.3) un operatore lineare limitato di ordine 2 tale che $(x - Px, Px) = 0$ è un proiettore	L.	(3.4.7) autovettori relativi ad autovalori distinti di un operatore normale sono perpendicolari 65
C.	(3.3.1) un operatore lineare limitato di ordine 2 con l'immagine ortogonale al nucleo è un proiettore61	d.	(3.4.5) sottospazio invariante
		т.	(3.4.1) (teorema spettrale normale) 65
L.	(3.3.2) l'immagine di un operatore di ordine 2 sono gli elementi fissati	L.	(3.4.8) in uno spazio di Hilbert di dimensione finita l'ortogonale di un sottospazio è invariante per un operatore normale se e solo se è invariante per l'aggiunto
т.	(3.3.4) un operatore lineare di ordine 2 con norma		65
т	minore o uguale a 1 è un proiettore	Χ.	controesempio al teorema spettrale in dimensione infinita
1.	tore se e solo se commutano, in tal caso l'immagine è l'intersezione delle immagini	d.	(3.4.6) polinomio minimo
			(3.4.2) gli autovalori sono le radici del polinomio
L.	(3.3.3) la composizione di due proiettori è nulla se e solo se le immagini sono ortogonali e se e solo se la		minimo
т	composizione nell'altro ordine è nulla61	d.	(3.4.7) operatore compatto ovvero completamente continuo
L.	(3.3.6) la somma di proiettori è un proiettore se e solo se le composizioni sono nulle e se e solo se le immagini	L.	$(3.4.9)$ gli operatori compatti sono limitati $\dots 66$
	sono ortogonali; in tal caso l'immagine della somma è la somma diretta delle immagini	L.	(3.4.10) comporre un operatore compatto con uno limitato dà operatori compatti
L.	(3.3.4) un'applicazione è un proiettore se e solo se il complemento all'identità è un proiettore62	т.	(3.4.3) un operatore limitato è compatto se e solo se lo è l'aggiunto
т.	(3.3.7) la differenza di due proiettori è un proiettore se e solo se la composizione del complemento all'identità del minuendo con il sottraendo è nulla e l'immagine è il		(3.4.11) un operatore limitato di rango finito è compatto
	complemento ortogonale dell'immagine del sottraendo rispetto a quella del minuendo	Т.	(3.4.4) il limite di una successione di operatori compatti è compatto

С.	(3.4.1) gli operatori di Hilbert-Schmidt sono compatti 67	Т.	$(3.5.4)$ (Identità di Parsevall) vedi teorema 3.5.3, però in L^2
d.	operatore di Hilbert-Schmidt	C.	$(3.5.3)$ la trasformata in L^2 è biunivoca
L.	(3.4.12) l'aggiunto di un operatore di Hilbert-Schmidt si ottiene coniugando il moltiplicatore e invertendo le	т.	(Teorema di Plancherel) definizione unitaria della trasformata
	variabili	т.	$(3.5.5)$ trasformata in L^2 come limite lungo intervall
C.	(3.4.2) gli operatori di Hilbert-Schmidt con moltipli- catore coniusimmetrico sono compatti e autoaggiunti 	т.	di integrazione
L.	(3.4.13) T limitato $\implies T = \sup_{ x = y = 1} (x, Ty) $. 68	C.	intervalli di integrazione
L.	(3.4.14) T limitato autoaggiunto \Longrightarrow $ T = \sup_{ x =1} (x,Tx) $	C.	trasformata
т.	(3.4.5) un operatore compatto autoaggiunto ha un autovalore uguale in modulo alla norma69		allora vale la formula integrale per l'antitrasformata
L.	(3.4.15) gli autospazi di un operatore compatto diversi		trasformata di $1/(1+x^2)$
	dal nucleo hanno dimensione finita70		(3.5.4) trasformata e trasformata inversa in $L^1 \ldots 79$
т.	(3.4.6) (teorema spettrale compatto autoaggiunto) 70	Χ.	la trasformata inversa in generale non è l'inverso della trasformata
С.	(3.4.3) per ogni operatore compatto autoaggiunto esiste una base ortonormale di autovettori72	L.	(3.5.3) $\lim_{L \to \infty} \int_{-L}^{L} \frac{\sin x}{x} dx = \pi$
т.	(3.4.7) dati due operatori compatti autoaggiunti che commutano esiste una base ortonormale al più numerabile dell'ortogonale dell'intersezione dei nuclei composta di autovettori comuni	т.	$(3.5.7)$ se una funzione di L^1 è continua in un punto intorno al quale il rapporto incrementale è integrabile allora il valore in quel punto si ottiene come limite lungo intervalli di integrazione della trasformata inversa
L.	(3.4.16)la somma di operatori compatti è compatta 72		(25.4) 1.4.6.4.111.4.14.14.18.6.6.
	(3.4.4) (teorema spettrale compatto normale) 73	L.	(3.5.4) la trasformata della traslata di una funzione in $L^1 \cup L^2$ porta fuori una fase proporzionale alla traslazione
Х.	applicazione del teorema spettrale ai problemi di Dirichlet e Sturm-Liouville	L.	$(3.5.5)$ la trasformata del rifasamento di una funzione in $L^1 \cup L^2$ porta fuori una traslazione antiproporzionale
3.5	5 Trasformata di Fourier		alla fase
d.	(3.5.1)classe di Schwartz	d.	(3.5.5) prodotto di convoluzione in L^1
Ο.	la classe di Schwartz è non vuota, è contenuta in L^1 e il prodotto tra una potenza e una funzione della classe	L.	(3.5.6) il prodotto di convoluzione in L^1 è a valori in L^1
d.	è in L^1	т.	$(3.5.8)$ la trasformata del prodotto di convoluzione in L^1 è il prodotto delle trasformate
L.	$(3.5.1)$ la classe di Schwartz è densa in L^2 75	d.	(3.5.6) prodotto di convoluzione in $L^1 \times L^p$ 82
т.	(3.5.1) la trasformata di Fourier è a valori nella classe di Schwartz	т.	(3.5.9) il prodotto di convoluzione in $L^1 \times L^p$ è a valori in L^p e la norma del prodotto si maggiora con i
т.	$(3.5.2)$ antitrasformata di Fourier $\ldots \ldots 75$		prodotto delle norme82
	(3.5.1) la trasformata è suriettiva	Т.	(3.5.10) la trasformata del prodotto di convoluzione in $L^1 \times L^2$ è il prodotto delle trasformate83
Т.	(3.5.3) (Identità di Parsevall) in L^2 il prodotto scalare di due trasformate è 2π volte il prodotto delle funzioni	L.	(3.5.7) la traslazione di funzioni L^1 è uniformemente continua
С.	(3.5.2) la trasformata è biunivoca	L.	$(3.5.8) f \in L^1, h_{\lambda}(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} \implies (f * h_{\lambda})(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{- \lambda t } \hat{f}(t) e^{-ixt} dt \dots 85$
d.	$(3.5.3)$ estensione della trasformata a L^2 77	L.	$(3.5.9) \ f \in L^1 \implies \lim_{\lambda \to 0} \ f * h_{\lambda} - f\ = 0 \dots 84$
Ο.	in generale su L^2 non vale la formula integrale per la trasformata		(3.5.11) (formula di inversione) per una funzione in L^1 con trasformata in L^1 , la trasformata inversa
T,	$(3.5.2)$ la trasformata in L^2 è suriettiva 77		l'inverso della trasformata quasi ovunque

C. $(3.5.6)$ se due funzioni in L^1 hanno la stessa trasformata allora coincidono quasi ovunque	
L. (3.5.10) la trasformata inversa di una funzione L^1 è continua85	
C. $(3.5.7)$ per una funzione in L^1 con trasformata in L^1 , la trasformata inversa è l'inverso della trasformata quasi ovunque	
3.6 Operatori chiusi e chiudibili	
d. (3.6.1) operatore chiuso	
d. prodotto cartesiano di spazi di Hilbert85	
d. (3.6.2) grafico	
$\mathbf{O}.$ il grafico di un operatore lineare è un sottospazio 85	
L. (3.6.1) un operatore è chiuso se e solo se il grafico è un sottospazio chiuso	
L. $(3.6.2)$ gli operatori lineari limitati sono chiusi86	
T. (3.6.1) (teorema del grafico chiuso di Banach) gli operatori lineari chiusi sono limitati	
d. (3.6.3) valore aggiunto86	
O. unicità del valore aggiunto86	
L. (3.6.3) operatore aggiunto	
d. (3.6.4) operatore aggiunto	
L. (3.6.4) l'aggiunto è chiuso	
\mathbf{X} . (3.6.1) operatore lineare senza biaggiunto 86	
X. (3.6.2) operatore non chiuso	
$\mathbf{X}.$ (3.6.3) operatore chiuso non limitato	
X. (3.6.4) l'operatore derivata sulle funzioni L^2 su un intervallo aperto limitato con derivata in L^2 quasi ovunque non è chiuso	
T. (3.6.2) estensione di un operatore lineare chiuso sull'origine	
C. (3.6.1) un operatore lineare ha estensione chiusa se e solo se è chiuso sull'origine	
${\bf d.}\ (3.6.5)$ operatore chiudibile e estensione minimale $\dots 88$	
L. $(3.6.5)$ esistenza dell'estensione minimale	
X. (3.6.5) l'operatore derivata sulle funzioni C^1 su un intervallo compatto a valori in L^2 non è chiuso ma è chiudibile	
T. (3.6.3) gli operatori con biaggiunto sono chiudibili e estesi dal biaggiunto	
L. (3.6.6) la chiusura dell'immagine unitaria di un sottospazio è l'immagine della chiusura89	
T. (3.6.4) l'estensione minimale di un operatore lineare chiudibile con aggiunto è il biaggiunto90	
T. (3.6.5) (teorema fondamentale del calcolo secondo	

a	\mathbf{d} . (3.6.6) funzione assolutamente continua 91
4 è	O. assolutamente continua implica uniformemente continua
5 a	L. (3.6.7) la funzione integrale di una funzione L^1 è assolutamente continua
si 5	T. $(3.6.6)$ (teorema fondamentale del calcolo) le funzioni assolutamente continue sono derivabili quasi ovunque con derivata L^1 e sono la funzione integrale della derivata
5 5 5	C. $(3.6.2)$ una funzione su un intervallo compatto a valori complessi è la funzione integrale di una funzione L^1 se e solo se è assolutamente continua; in tal caso è funzione integrale della sua derivata quasi ovunque 91
5	\mathbf{T} . (3.6.7) (formula di integrazione per parti)91
n 5	X. funzione di Cantor-Vitali91
6 li	X. (3.6.6) l'estensione chiusa minimale dell'operatore derivata su funzioni C^1 su un intervallo compatto a valori in L^2 è l'operatore derivata sulle funzioni assolutamente continue