Analysis of Coral Growth Lab Report

Philip Kim

${\rm April}\ 1,\ 2021$

#	TREATMENT (°C)	$\left(mg/cm^2 ight)$	$\left(mg/cm^2 ight)$	$\left(mg/cm^2\right)$
1	26	552	563	11
	26	341	352	11
3	26	461	467	6
4	26	430	437	7
5	26	312	320	8
6	26	364	374	10
7	26	468	479	11
8	26	449	460	11
9	26	398	415	17
10	26	394	401	7
11	26	360	369	9
12	28	517	528	11
13	28	428	443	15
14	28	407	415	8
15	28	441	452	11
16	28	472	488	16
17	28	383	391	8
18	28	466	479	13
19	28	345	354	9
20	28	382	393	11
21	28	494	503	9
22	30	573	585	12
23	30	354	369	15
24	30	532	545	13
25	30	393	410	17
26	30	269	277	8
27	30	517	526	9
28	30	469	484	15
29	30	306	322	16
30	30	431	446	15
31	26-30	306	312	6
32	26-30	372	378	6
33	26-30	333	344	11
34	26-30	567	578	11
35	26-30	379	392	13

# '	TREATMENT (°C)	$\left(mg/cm^2\right)$	$\left(mg/cm^2\right)$	$\left(mg/cm^2\right)$
36	26-30	490	505	15
37	26-30	391	401	10
38	26-30	509	523	14
39	26-30	369	377	8
40	26-30	337	351	14
41	26-30	365	373	8

Sample Size, N

Final - Initial, CHANGE (C)

Average Change, MEAN (\overline{C})

Standard Deviation, **STD** (σ)

Standard Error, **ERR** (ϵ)

N	MEAN	STD	ERR
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{C_{01}+\cdots+C_{11}}{11}=09.82 $	$\sqrt{rac{\left C_{01}-\overline{C} ight ^{2}+\cdots+\left C_{11}-\overline{C} ight ^{2}}{11-1}}=03.03$	$\frac{\overline{\sigma}_{\{01-11\}}}{\sqrt{11}} = 0.91$
$28^{\circ}C_{\{12-21\}}=10$	$\left\ \frac{C_{12} + \dots + C_{21}}{10} = 11.10 \right\ $	$ \sqrt{\frac{\left C_{12} - \overline{C}\right ^2 + \dots + \left C_{21} - \overline{C}\right ^2}{10 - 1}} = 02.81 $	$\frac{\overline{\sigma}_{\{12-21\}}}{\sqrt{10}} = 0.89$
$30^{\circ}C_{\{22-30\}} = 09$	$ \frac{C_{22} + \dots + C_{30}}{09} = 13.33 $	$ \sqrt{\frac{\left C_{22}-\overline{C}\right ^2+\dots+\left C_{30}-\overline{C}\right ^2}{09-1}} = 03.12 $	$\left \frac{\overline{\sigma}_{\{22-30\}}}{\sqrt{09}} = 1.04 \right $
$26\text{-}30^{\circ}\text{C}_{\{31-41\}}=11$	$\left\ \frac{C_{31} + \dots + C_{41}}{11} = 10.55 \right\ $	$\sqrt{rac{ig C_{31}-\overline{C}ig ^2+\cdots+ig C_{41}-\overline{C}ig ^2}{11-1}}=03.24$	$ \frac{\overline{\sigma}_{\{31-41\}}}{\sqrt{11}} = .98 $

1. What was the mean \pm standard error of coral growth at each of the four temperature categories?

$$26 \cdot \mathbf{c} = \boxed{09.82 \pm 0.91}, \ 28 \cdot \mathbf{c} = \boxed{11.10 \pm 0.84}, \ 30 \cdot \mathbf{c} = \boxed{13.33 \pm 1.04}, \ 26 - 30 \cdot \mathbf{c} = \boxed{10.55 \pm 0.98}$$

2. What would happen if global climate change causes the average seawater temperature to increase to 30°c?

By analyzing the bar graph above, 30°C is significantly different with all of the temperature regimes since the error bar does not overlap with any the other temperature regimes. This means the corals growth rate at 30°C is significantly the highest. If global climate change causes the average seawater to increase from 26°C to 30°C, then it would be safe to assume that corals in the ocean would significantly increase.