Bits, Bytes, and Integers

Lecture 2

Yeongpil Cho

Hanyang University

Topics

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Use of Unsigned

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimal Binary

0	0	0000
1	1	0001
2	2	0010
	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Topics

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Use of Unsigned

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Or

■ A | B = 1 when either A=1 or B=1

I	0	1
0	0	1
1	1	1

Not

~A = 1 when A=0

~	
0	1
1	0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

&	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 & 0xBE
 - ~010000012 & 101111102
- ~0x00 | 0xFF
 - ~00000000₂ | 11111111₂
- 0x69 & 0x55 | 0x41
 - 01101001₂ & 01010101₂ | 01000001₂
- 0x69 | 0x55 ^ 0x7D
 - 01101001₂ | 01010101₂ ^ 01111101₂

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&** &&, ||,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
 - There are cases that we can know the result early.

Examples (char data type)

- !0x41 && 0x00
- !0x00 || 0x01
- !!0x41 && 0x01
- 0x69 && 0x55 || 0x01
- 0x69 || 0x55 && 0x01
- p && *p (avoids null pointer access)
 - If p is null, *p is skipped due to the early termination.

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&**&, ||,!
 - View 0 as "Fall
 - Anything ponzo
 - Alway
 - Early
 - Th
- Example
 - !0x41 &8C programming
 - !0x00 ||
 - !!0x41 &&
 - 0x69 && 0x55 || 0x01
 - 0x69 || 0x55 && 0x01
 - p && *p (avoids null pointer access)
 - If p is null, *p is skipped due to the early termination.

Watch out for && vs. & (and || vs. |)...

one of the more common oopsies in

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

Uln	defin	ed Ra	haviعhد	ior

Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Topcis

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
short int $\mathbf{x} = 15213$;
short int $\mathbf{y} = -15213$;
Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 15213 -15213

17

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$
111...1

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 000000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- |TMin| = TMax + 1
 - Asymmetric range
- \blacksquare UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX, UINT_MAX
 - LONG_MAX, INT_MAX
 - LONG_MIN, INT_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Topics

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Use of Unsigned

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

Conversion Visualized

2's Comp. \rightarrow Unsigned **UMax Ordering Inversion** UMax - 1Negative → Big Positive TMax + 1Unsigned TMax **TMax** Range 2's Complement Range

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffixOU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

What if maxlen is negative?

void *memcpy(void *dest, const void *src, size_t n);

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Topics

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Use of Unsigned

Zero Extension

Task:

- Given w-bit unsigned integer x
- Convert it to w+k-bit unsigned integer with same value

Rule:

add k zeros to the front:

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit signed integer with same value

Rule:

Make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Proof: Signed extension of Two's complement number

$$B2T_{w+k}$$
 ([$x_{w-1},...,x_{w-1},x_{w-1},x_{w-2},...,x_0$]) = $B2T_w$ ([$x_{w-1},x_{w-2},...,x_0$])

 $k \text{ times}$

Apply induction to k

When k is 1:

$$B2T_{w+1}([x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0]) = -x_{w-1}2^{w} + \sum_{i=0}^{w-1} x_i 2^{i}$$

$$= -x_{w-1}2^{w} + x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^{i}$$

$$= -x_{w-1}(2^{w} - 2^{w-1}) + \sum_{i=0}^{w-2} x_i 2^{i}$$

$$= -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^{i}$$

$$= B2T_{w}([x_{w-1}, x_{w-2}, ..., x_0])$$

Truncation

```
int x = 53191;
short sx = (short) x;  /* -12345 */
int y = sx;  /* -12345 */
```

truncation on unsigned

 truncation from w-bit number to k-bit number is to zero the [w:k] bits by applying modulo 2^k

■
$$B2U_w$$
 ([x_{w-1} , x_{w-2} ,..., x_0]) mod $2^k = [\sum_{i=0}^{w-1} x_i 2^i]$ mod 2^k

$$= [\sum_{i=0}^{k-1} x_i 2^i]$$
 mod 2^k

$$= \sum_{i=0}^{k-1} x_i 2^i$$

$$= B2U_k$$
 ([x_{k-1} , x_{k-2} ,..., x_0])

truncation on signed

- convert to unsigned, truncate, and revert to signed
- $B2T_k([x_{k-1}, x_{k-2}, ..., x_0]) = U2T_k(B2U_w([x_{w-1}, x_{w-2}, ..., x_0]) \mod 2^k)$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Topics

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Use of Unsigned
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits

u •••

True Sum: w+1 bits

u + v

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = (u + v) \mod 2^w$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
 - rotate through modulo operations
- At most once

True Sum

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

- Will give s == t
- TAdd can be done by (1) converting to unsigned (2) performing UAdd, and
 (3) applying U2B & B2T

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

Positive Overflow

overflows at positive

Negative Overflow

overflows at negative

True Sum

Visualizing 2's Complement Addition

NegOver

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Positive overflow
 - Becomes negative
- If sum $< -2^{w-1}$
 - Negative overflow
 - Becomes positive

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" or "big num" arithmetic packages
 - without libraries, the system applies a w-bit truncation

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = (u \cdot v) \mod 2^{w}$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same
- Signed multiplication can be done by (1) converting to unsigned (2) performing unsigned multiplication, and (3) applying U2B & B2T

Code Security Example

SUN XDR library

A library for data transfer between machines

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```


malloc(ele_cnt * ele_size)

Code Security Example

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
        /* malloc failed */
        return NULL;
    void *next = result;
    int i:
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
        /* Move pointer to next memory region */
        next += ele size;
    return result;
```

```
• ele_cnt = 2<sup>20</sup> + 1
• ele_size = 4096 = 2<sup>12</sup>
• malloced size (elc cnt * ele size) is 4096
```

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

k

Examples

$$u << 5$$
 - $u << 3$ == $u * 24$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

Compilers try to improve multiplications through addition and shift operations.

C Function

```
long mul12(long x)
{
  return x*12;
}
```

Compiled Arithmetic Operations

```
leaq (%rax,%rax,2), %rax
salq $2, %rax
```

Explanation

```
t <- x + (x << 1)
return t << 2;
```

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Uses logical shift
 - ">>" for unsigned is logical shift in C

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of Positive Signed by Power of 2
 - s \rightarrow k gives $\lfloor s / 2^k \rfloor$
 - arithmetic right shift
 - ">>" for signed is arithmetic shift in C

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

Quotient of Positive Signed by Power of 2

Proof

•
$$x = [x_{w-1}, x_{w-2}, ..., x_0]$$
 "2's comp of w bits"
 $x' = [x_{w-1}, x_{w-2}, ..., x_k]$ "upper w-k bits of x"
 $x'' = [x_{k-1}, x_{k-2}, ..., x_0]$ "lower k bits of x"

- $x = 2^k x' + x''$ where $0 \le x'' < 2^k$ and $x' = \lfloor x/2^k \rfloor$
- Apply arithmetic right shift to x by k

$$- x = [x_{w-1}, x_{w-1}, ..., x_{w-1}, x_{w-2}, ..., x_k]$$

- which has the same bit pattern as x' sign extended to w-bit
- As a result, arithmetic shifted x is equal to the quotient by power of 2

Signed Power-of-2 Divide with Shift

- Quotient of Negative Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - round down the result
 - ex) When the quotient is $\lfloor -1.5 \rfloor$, the shifted result is -2 $-3/2 \rightarrow 0b1101/2 \rightarrow 0b1110 = -2$

Result: RoundDown $(x / 2^k)$

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

Quotient of Negative Signed by Power of 2

- Want $\lceil \mathbf{x} / \mathbf{2}^k \rceil$ (Round Toward 0)
- Solution: add a bias to a negative dividend
- $\lfloor (x+2^k-1)/2^k \rfloor$
 - bias = $2^k 1$
 - In C: (x + (1 << k) -1) >> k

Case 1: No rounding (bias has no effect)

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding (bias adds 1 to the result)

Compiled Unsigned Division Code

- Logical shift on unsigned
 - in Java, >>>

C Function

```
unsigned long udiv8
      (unsigned long x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
shrq $3, %rax
```

Explanation

```
# Logical shift
return x >> 3;
```

Compiled Signed Division Code

Arithmetic shift on signed

```
In java, >>
```

C Function

```
long idiv8(long x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
testq %rax, %rax //%rax&%rax
  js L4 //sign==1?
L3:
  sarq $3, %rax
  ret
L4:
  addq $7, %rax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

Topic

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Use of Unsigned

Be careful with Unsigned

- *Don't* use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>