Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 06.05.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 29

Anomalia rozszerzalności cieplnej wody

Spis treści

1 Wstęp teoretyczny		2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów 3.1 Tabele pomiarowe	
4	Ocena niepewności pomiaru	4
5	Wnioski	4
6	Wykresy	5

- 1 Wstęp teoretyczny
- 2 Opis doświadczenia
- 3 Opracowanie wyników pomiarów
- 3.1 Tabele pomiarowe

T [°C]	h [mm]		
	Seria 1	Seria 2	
11.0	80	71	
10.8	77	70	
10.6	75	68	
10.4	74	66	
10.2	72	64	
10.0	69	62	
9.8	68	60	
9.6	66	58	
9.4	64	56	
9.2	63	55	
9.0	61	54	
8.8	61	51	
8.6	60	51	
8.4	56	49	
8.2	55	48	
8.0	53	46	
7.8	52	44	
7.6	51	44	
7.4	50	43	
7.2	49	41	
7.0	47	40	
6.8	46	39	
6.6	45	37	
6.4	44	37	
6.2	43	36	
6.0	42	40	
5.8	42	36	
5.6	42	34	
5.4	40	32	
5.2	40	32	
5.0	39	< 30	
4.8	38	< 30	
4.6	38	< 30	
4.4	38	< 30	
4.2	37	< 30	
4.0	37	< 30	
3.8 37		< 30	
3.6	37	< 30	
3.4	37	< 30	

T [°C]	h [mm]		
	Seria 1	Seria 2	
3.2	37	< 30	
3.0	37	< 30	
2.8	37	30	
2.6	37	30	
2.4	38	30	
2.2	38	32	
2.0	38	33	
1.8	39	34	
1.6	39	34	
1.4	40	35	
1.2	40	36	
1.0	41	37	
0.8	41	38	
0.6	42	39	
0.4	43	40	
0.2	43	41	

Tabela 1: Wyniki pomiarów wysokości słupa wody w zależności od temperatury

Średnica wewnętrzna kapilary wynosi d = 1,7 mm.

3.2 Zmiana objętości wody

Na podstawie zmierzonej wysokości słupa wody obliczono objętość wody w kapilarze według wzoru:

$$V = \pi \cdot \frac{d^2}{4} \cdot h \tag{1}$$

gdzie d=1,7 mm jest średnicą wewnętrzną kapilary, a h jest wysokością słupa wody. Obliczono również zmianę objętości ΔV względem objętości początkowej (dla temperatury $11,0^{\circ}$ C):

$$\Delta V = V - V_{11,0C} \tag{2}$$

Tabela 2: Wartości objętości wody oraz zmiany objętości (wybrane temperatury)

T [°C]	$V_1 [{ m m}^3]$	V_2 [m ³]	$\Delta V_1 [\mathrm{m}^3]$	$\Delta V_2 [\mathrm{m}^3]$
11,0	$1,82 \cdot 10^{-7}$	$1,61\cdot10^{-7}$	0	0
10,0	$1,57\cdot10^{-7}$	$1,41\cdot10^{-7}$	$-2,50\cdot10^{-8}$	$-2,04\cdot10^{-8}$
9,0	$1,38 \cdot 10^{-7}$	$1,23\cdot10^{-7}$	$-4,31\cdot10^{-8}$	$-3,86\cdot10^{-8}$
8,0	$1,20\cdot10^{-7}$	$1,04\cdot10^{-7}$	$-6,13\cdot10^{-8}$	$-5,67\cdot10^{-8}$
7,0	$1,07 \cdot 10^{-7}$	$9,08\cdot10^{-8}$	$-7,49\cdot10^{-8}$	$-7,04\cdot10^{-8}$
6,0	$9,53\cdot10^{-8}$	$9,08\cdot10^{-8}$	$-8,63\cdot10^{-8}$	$-7,04\cdot10^{-8}$
5,0	$8,85 \cdot 10^{-8}$	$6.81 \cdot 10^{-8}$	$-9,31\cdot10^{-8}$	$-9,31\cdot10^{-8}$
4,0	$8,40\cdot10^{-8}$	$6.81 \cdot 10^{-8}$	$-9,76\cdot10^{-8}$	$-9,31\cdot10^{-8}$
3,0	$8,40\cdot10^{-8}$	$6.81 \cdot 10^{-8}$	$-9,76\cdot10^{-8}$	$-9,31\cdot10^{-8}$
2,0	$8,63\cdot10^{-8}$	$7,49 \cdot 10^{-8}$	$-9,53\cdot10^{-8}$	$-8,63\cdot10^{-8}$
1,0	$9,31\cdot10^{-8}$	$8,40\cdot10^{-8}$	$-8,85 \cdot 10^{-8}$	$-7,72 \cdot 10^{-8}$
0,2	$9,76\cdot10^{-8}$	$9,31\cdot10^{-8}$	$-8,40\cdot10^{-8}$	$-6.81 \cdot 10^{-8}$

Pełne dane objętości dla wszystkich pomiarów przedstawiono na wykresie (Rys. 1). Można zauważyć, że woda osiąga najmniejszą objętość (największą gęstość) w okolicy temperatury 4°C, co potwierdza zjawisko anomalii rozszerzalności cieplnej wody.

4 Ocena niepewności pomiaru

5 Wnioski

6 Wykresy

Rysunek 1: Wysokość słupa wody w zależności od temperatury

Literatura