Introduction to Computer Networks

Message Confidentiality

(§8.1.1, §8.2-8.3)

Topic

- Encrypting information to provide confidentiality
- Symmetric and public key encryption
- Treat crypto functions as black boxes

Goal and Threat Model

- Goal is to send a private message from Alice to Bob
 - This is called confidentiality
- Threat is Eve will read the message
 - Eve is a passive adversary (observes)

Encryption/Decryption Model

- Alice encrypts private message (<u>plaintext</u>) using key
- Eve sees <u>ciphertext</u> but can't relate it to private message
- Bob decrypts using key to obtain the private message

Encryption/Decryption (2)

- Encryption is a reversible mapping
 - Ciphertext is confused plaintext
- Assume attacker knows algorithm
 - Security does not rely on its secrecy
- Algorithm is parameterized by keys
 - Security does rely on key secrecy
- → Must be distributed (Achilles' heel)

Encryption/Decryption (3)

Two main kinds of encryption:

- 1. Symmetric key encryption », e.g. (AES
 - Alice and Bob share secret key
 - Encryption is a bit mangling box
- 2. Public key encryption », e.g., RSA
 - Alice and Bob each have a key in two parts: a public part (widely known), and a private part (only owner knows)
 - Encryption is based on mathematics (e.g., RSA is based on difficulty of factoring)

Symmetric (Secret Key) Encryption

- Alice and Bob have the same secret key, KAB
 - Anyone with the secret key can encrypt/decrypt

Public Key (Asymmetric) Encryption

- Alice and Bob each have public/private key pa(r (K_B / K_B-1)
 - Public keys are well-known, private keys are secret to owner

Public Key Encryption (2)

Alice encrypts with Bob's public key K_B; anyone can send Bob decrypts with his private key K_B-1; only he can do so

Key Distribution

- This is a big problem on a network!
 - Often want to talk to new parties
- Symmetric encryption problematic
 - Have to first set up shared secret
- Public key idea has own difficulties
 - Need trusted directory service
 - We'll look at <u>certificates</u> later

Symmetric vs. Public Key

Have complementary properties

Want the best of both!

Property	Symmetric	Public Key
Key Distribution	Hard – share secret per pair of users	Easier – publish public key per user
Runtime Performance	Fast – good for high data rate	Slow – few, small, messages

Winning Combination

- Alice uses public key encryption to send Bob a small private message
 - It's a key! (Say 256 bits.)
- Alice and Bob send large messages with symmetric encryption
 - Using the key they now share
- The key is called a <u>session key</u>
 - Generated for short-term use

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey