LOGISTIC REGRESSION ON AMAZON FINE FOOD REVIEWS DATASET

Data Source https://www.kaggle.com/snap/amazon-fine-food-reviews

The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon. It consist of data collected from past many years. This dataset consist of approx 550k reviews.

Logistic regression model

SNIPPET

- 1. Converted the reviews using NLP techniques i.e BOW, tf-IDF, Word2Vec and tf-IDF Word2Vec.
- 2. Applied Logistic Regression on the dataset with both CV techniques i.e GridSearchCV as well as RandomSearchCV.
- 3. Calculated Train Error, CV Error and Test Error to determine the performance and to ensure best fit.
- 4. Compared performance of each model using accuracy, f1-score, recall, precision.
- 5. Made confusion matrix between predicted and tested data.
- 6. Shown the variation of Error & Sparsity with increse in lambda.
- 7. Performed Perturbation Testing.
- 8. Conclusion based on the obtained results.

DATA INFORMATION

Number of reviews: 568,454
Number of users: 256,059
Number of products: 74,258
Timespan: Oct 1999 - Oct 2012

• Number of Attributes/Columns in data: 10

ATTRIBUTE INFORMATION

- Id
- 2. Productld unique identifier for the product
- 3. Userld unqiue identifier for the user
- 4. ProfileName

- 5. HelpfulnessNumerator number of users who found the review helpful
- 6. HelpfulnessDenominator number of users who indicated whether they found the review helpful or not
- 7. Score rating between 1 and 5
- 8. Time timestamp for the review
- 9. Summary brief summary of the review
- 10. Text text of the review

OBJECTIVE

Predict the polarity of the review using Logistic Regression and Compare both CV techniques and regularizers i.e GridSearchCV & RandomSearchCV to find the best one and ensure that the model is neither overfitting nor underfitting. Moreover to check that the features are dependent or related to each other or not.

IMPORTING

In [2]:

```
import re
import time
import gensim
import pickle
import sqlite3
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
import seaborn as sns
import statistics as s
from scipy import sparse
from scipy.sparse import find
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import RandomizedSearchCV
from prettytable import PrettyTable
from sklearn.metrics import accuracy score
from sklearn.metrics import f1 score
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision score
from sklearn.metrics import recall score
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
from sklearn.metrics import accuracy score
from sklearn.model_selection import TimeSeriesSplit
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
```

LOADING

```
In [3]:
```

```
conn=sqlite3.connect('./final.sqlite') # making a connection with sqlite
Data=pd.read_sql_query("""SELECT * FROM Reviews""",conn)
```

```
In [4]:
```

```
Data.head(3)
```

Out[4]:

	index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score
C								

	index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score
	138706	150524	0008841040	ACITT7DI6IDDL	zychinski	0	0	positive
1	138688	150506	0006641040	A2IW4PEEKO2R0U	Tracy	1	1	positive
2	138689	150507	0006641040	A1S4A3IQ2MU7V4	sally sue "sally sue"	1	1	positive

MAPPING

```
In [5]:
\# function to map the polarity as 0 or 1
def sign(x):
   if x=='positive':
        {f return} \ 1
    else:
        return 0
Data['Score'] = Data['Score'].map(sign)
In [6]:
# Dimension
print(Data.shape)
(364171, 12)
In [7]:
Data['Score'].value_counts()
Out[7]:
1 307061
0 57110
Name: Score, dtype: int64
```

SORTING

```
In [8]:
# Sorting the data according to Time.
Data.sort_values('Time',inplace=True)
```

FUNCTIONS

Split Function

In [9]: /// This function is used to split that data into train and test. It uses the function to split it into 70-30 %. It does not shuffle so the data is distributed sequentially. /// def Split(d1,d2): a,b,c,d= train_test_split(d1,d2,test_size=0.3,shuffle=False) # Splitting it in 70-30 without sh uffling. return a,b,c,d

GridSearchCV & RandomizedSearchCV

```
In [10]:
. . .
This function takes training data and algorithm as input and gives execution time, accuracy and
the optimal value of alpha
on that data.
It uses GridSearch CV.
def LR(X,Y,s):
    tscv = TimeSeriesSplit(n splits=10)
    tuned parameters = {'C': [0.001, 0.01, 1, 10, 100, 1000], 'penalty': ['ll','l2']}
    clf = LogisticRegression()
    if s=='Grid':
       start = time.time()
       model = GridSearchCV(clf, tuned_parameters, cv=tscv)
        model.fit(X,Y)
        end = time.time()
       t=end-start
       print("Time taken to complete -: ",t,"sec\n")
       print("Best Hyperparameter -: ", model.best_params_,"\n")
       print("Accuracy -: ",round(model.best_score_*100,3),"%")
        return model
    else:
       start = time.time()
       model = RandomizedSearchCV(clf, tuned parameters, cv=tscv)
       model.fit(X,Y)
        end = time.time()
        t=end-start
       print("Time taken to complete -: ",t,"sec\n")
       print("Best Hyperparameter -: ", model.best_params_,"\n")
       print("Accuracy -: ",round(model.best_score_*100,3),"%")
        return model
```

Hyperparameters vs Accuracy

```
In [11]:
. . .
Calculates the accuracy on 11 & 12 regularizer and plot it against hyperparameters.
def Accplot(h,nlp):
    11=[]
    12=[]
    j=0
    #print(h.cv results )
    acu = h.cv_results_['mean_test_score']
    alp = [0.001, 0.01, 1, 10, 100, 1000]
    for i in acu:
       if j%2==0:
            11.append(i)
        else:
           12.append(i)
       j+=1
    sns.set style("darkgrid")
    plt.figure(figsize=(17,5))
    plt.figure(1)
    plt.subplot(121)
```

```
plt.plot(alp,11,'b--')
plt.xlabel("Hyperparameter", fontsize=15, color='black')
plt.ylabel("Accuracy", fontsize=15, color='black')
plt.title("Accuracy -" + nlp + " -l1 regularizer", fontsize=15, color='black')
plt.subplot(122)
plt.plot(alp,12,'r--')
plt.xlabel("Hyperparameter", fontsize=15, color='black')
plt.ylabel("Accuracy", fontsize=15, color='black')
plt.title("Accuracy -" + nlp + " -l2 regularizer", fontsize=15, color='black')
plt.show()
print("\n")
print("Average Accuracy on l1 reg -: ",round(s.mean(11),3)*100)
print("Average Accuracy on 12 reg -: ",round(s.mean(12),3)*100)
```

Hyperparameter vs Error

```
In [12]:
```

```
Calculates Error on both 11 regularizer as well as 12 regularizer and plots the train and Cv error
hyperparameters for each 11 & 12.
def Errorplot(h):
    11_test = []
    11_train = []
    12_test = []
    12 train = []
    i=0
    j1=0
    alp = [0.001, 0.01, 1, 10, 100, 1000]
    cv acc = list(h.cv results ['mean test score'])
    train_acc = list(h.cv_results_['mean_train_score'])
    a = [1 - x \text{ for } x \text{ in } cv acc]
    b = [1 - x \text{ for } x \text{ in } train acc]
    for i in a:
        if j%2==0:
            11_test.append(i)
        else:
            12 test.append(i)
        j += 1
    for k in b:
        if j1%2==0:
             11_train.append(k)
            12 train.append(k)
    plt.figure(figsize=(17,5))
    plt.figure(1)
    plt.subplot(121)
    plt.plot(alp, l1 test, '-b', label='CV Error')
    plt.plot(alp, l1_train, '-r', label='Train Error')
    plt.legend(loc='upper right')
    plt.xlabel("Hyperparameters", fontsize=15, color='black')
    plt.ylabel("Train Error & Cv Error", fontsize=15, color='black')
    plt.title("Train vs CV Error on 11 regularizer", fontsize=15, color='black')
    plt.subplot(122)
    plt.plot(alp, 12_test, '-b', label='CV Error')
plt.plot(alp, 12_train, '-r', label='Train Error')
    plt.legend(loc='upper right')
    plt.xlabel("Hyperparameters", fontsize=15, color='black')
    plt.ylabel("Train Error vs Cv Error",fontsize=15, color='black')
    plt.title("Train vs CV Error on 12 regularizer" ,fontsize=15, color='black')
    plt.show()
    x = PrettyTable()
```

```
x.field_names = ["Regularizer", "CV Error", "Train Error"]

x.add_row(["L1", round(s.mean(l1_test),3)*100, round(s.mean(l1_train),3)*100])
x.add_row(["L2", round(s.mean(l2_test),3)*100, round(s.mean(l2_train),3)*100])

print("\n")
print(x)
```

Predicting On Best Hyperparameter

```
In [13]:

///

It runs the desired algorithm on the optimal value of Alpha we get from training part.

It also returns predicted values.

///

def predict(c,p,x_tr,y_tr,ts):
    clf = LogisticRegression(C = c, penalty = p)
    clf.fit(x_tr, y_tr)
    pred=clf.predict(ts)
    return clf,pred
```

Performance Measurement

```
In [14]:

///

It gives the performance in terms of accuracy, F1 Score, recall, precision and test error also.

It gives confusion matrix between actual and predicted values.

///

def Measure(test,pre):
    print("Accuracy on Test Data -: ",round(((accuracy_score(test,pre))*100),3),"% \n")
    print("F1 Score -: ",round(((f1_score(test,pre))),3),"\n")
    print("Precision Score -: ",round(((precision_score(test,pre))),3),"\n")
    print("Recall Score -: ",round(((accuracy_score(test,pre))),3),"\n")
    print("Test Error -: ",100-round(((accuracy_score(test,pre))*100),3))
    cf = confusion_matrix(test,pre)
    df =pd.DataFrame(cf,index=[0,1],columns=[0,1])
    sns.set(font_scale=1.5)
    sns.heatmap(df,annot=True,annot_kws={"size" :20},fmt='g')
    return plt.show()
```

Sparsity & Error with I1 Regularizer

```
In [15]:

///

It takes hyperparameter values and regularizer and train & test datasets.

It returns error and sparsity.

///

def Spar(c,x_tr,y_tr,x_ts,y_ts):
    clf = LogisticRegression(C = c, penalty = 'll')
    clf.fit(x_tr, y_tr)
    pred=clf.predict(x_ts)
    print("\nFOR C = ",c)
    print("Error -: ",100-(round(((accuracy_score(y_ts,pred))*100),3)),"%")
    print("Sparsity -: ",np.count_nonzero(clf.coef_),"\n")
    print("______")
```

MultiCollinearity Check

```
In [31]:

This function checks multicollinearity or the realtion between the features.
```

```
Reference From StackOverflow
def muc(c, p, cnt, x tr, y tr, x ts, y ts):
   clf = LogisticRegression(C = c, penalty = p)
   clf.fit(x tr, y tr)
   pred=clf.predict(x_ts)
   print("
                                       Without Adding Weights
   print("Accuracy -: ",round(((accuracy_score(y_ts,pred))*100),3),"%")
print("Sparsity -: ",np.count_nonzero(clf.coef_),"\n")
   w1=find(clf.coef_[0])[2]
   print("
                                      Weights Before Adding Noise
                                                                                                     ")
   print(w1[20:40])
   x_t = x_t
    s = find(x tr t)[0].size
    noise = np.random.uniform(low = -0.0001, high=0.0001, size=s)
    i,j,k = find(x tr t)
    x tr t[i,j] = noise + x tr t[i,j]
    clf = LogisticRegression(C = c, penalty = p)
    clf.fit(x tr t, y_tr)
    pred=clf.predict(x ts)
    print("
                                       After Adding Weights
   print("Accuracy -: ",round(((accuracy score(y ts,pred))*100),3),"%")
   print("Sparsity -: ",np.count_nonzero(clf.coef_),"\n")
    w2=find(clf.coef_[0])[2]
                                     ___ Weights After Adding Noise ___
                                                                                                    ")
    print("
    print(w2[20:40])
    w diff = (abs(w1-w2)/w1)*100
    # I have varied the percentage for different models.
    f = w diff[np.where(w diff > 20)].size
    print("\n")
   print("The no. of features which are changing greater than 20% - : ",f)
    print("\n")
    if f>0:
        IF(clf,cnt)
    else:
       print("Therefore, the features are not multicollinear")
       print("\n")
```

Important Features

```
In [30]:

///

This functions draws a pretty table of important features according to the Weights.

///

def IF(c,co):
    a = c.coef_[0]
    f = co.get_feature_names()
    l1 = list(zip(a,f))
    l1 = sorted(l1,reverse=True)
    x = PrettyTable()
    x.field_names = ["Rank","Most Important Features", "Weight"]
    for i in range(25):
        x.add_row([i+1,l1[i][1],l1[i][0]])
    print(x)
```

Using Pickle

```
In [18]:

///
These functions are used to save and retrieve the information and use it afterwards for future ref erence.
///
# Method to Save the data.
def save(o,f):
    op=open(f+".p","wb")
    pickle.dump(o,op)
```

```
# Method to retrieve the data.
def retrieve(f):
    op=open(f+".p","rb")
    ret=pickle.load(op)
    return ret
```

LOGISTIC REGRESSION MODEL ON BAG OF WORDS (BOW)

SPLITTING INTO TRAIN AND TEST

```
In [19]:
```

```
x_train, x_test, y_train, y_test = Split(Data['CleanedText'].values,Data['Score'].values)
```

CONVERTING REVIEWS INTO VECTORS USING BOW

```
In [20]:
```

```
count = CountVectorizer(ngram_range=(1,2))
x_train = count.fit_transform(x_train)
x_test = count.transform(x_test)
```

```
In [21]:
```

```
print("Train Dataset Shape -: ",x_train.shape)
print("Test Dataset Shape -: ",x_test.shape)

Train Dataset Shape -: (254919, 2290079)
Test Dataset Shape -: (109252, 2290079)
```

NORMALIZING THE DATA

```
In [22]:
```

```
x_train = preprocessing.normalize(x_train)
x_test = preprocessing.normalize(x_test)
```

GridSearchCV

Optimizing a Classifier Using GridSearchCV

HyperParameter Tuning

```
In [23]:
```

```
m = LR(x_train,y_train,'Grid')
Time taken to complete -: 2147.6635541915894 sec
Best Hyperparameter -: {'C': 1000, 'penalty': '12'}
Accuracy -: 93.636 %
```

Hyperparameter vs Accuracy plot

In [24]:

Accplot(m, "BOW")

Average Accuracy on 11 reg -: 90.3 Average Accuracy on 12 reg -: 90.5

Hyperparameter vs Error Plot

In [25]:

Errorplot (m) Train vs CV Error on I1 regularizer Train vs CV Error on I2 regularizer 0.16 0.16 CV Error
Train Error CV Error 0.14 0.14 120 Cv Error & Cv Error 0.10 0.00 0.00 0.004 0.02 0.02 0.00 0.00 400 600 Hyperparameters 400 600 Hyperparameters

+	+		-+-		+
Regularizer	C7	V Error		Train Error	
+	+		-+-		+
L1	1	9.7		5.4	
I T.2	1	9.5	1	5 - 4	1

Predicting on best Hyperparameter

```
In [26]:
```

```
cl, pr = predict(1000,'12',x_train,y_train,x_test)
```

Performance Measurement

```
In [27]:
```

```
Measure (y_test,pr)

Accuracy on Test Data -: 93.845 %

F1 Score -: 0.963

Precision Score -: 0.952

Recall Score -: 0.974

Test Error -: 6.155
```


RandomSearchCV

HyperParameter Tuning

```
In [28]:
```

```
m = LR(x_train,y_train,'Random')
Time taken to complete -: 1940.7424070835114 sec

Best Hyperparameter -: {'penalty': '12', 'C': 1000}
Accuracy -: 93.636 %
```

Predict on Best Hyperparameter

```
In [110]:
```

```
cl, pr = predict(1000,'12',x_train,y_train,x_test)
```

Performance Measurement

In [111]:

```
Measure(y_test,pr)
```

Accuracy on Test Data -: 93.845 %

F1 Score -: 0.963

Precision Score -: 0.952

Recall Score -: 0.974

Test Error -: 6.155

Perturbation Testing & Most Important Features

In [158]:

The no. of features which are changing greater than 45% - : 1058 Therefore, the features are multicollinear

_		. +		+-		+
	Rank	į	Most Important Features		Weight	
	1		not disappoint		36.4888980682	1
	2	1	wont disappoint	1	22.9286291075	1
	3	1	four star		22.3045466572	1
	4	1	high recommend		20.5661521681	1
	5	1	not overpow		20.1878946005	1
	6		pleasant surpris		19.479181032	
	7	1	veri pleas		18.5076717285	1
	8		skeptic	1	18.48538805	1

			<u>+</u>			
	9		never disappoint		17.8893788386	
	10		delici		17.8237239249	
	11		hook		17.7900360811	
	12		not overwhelm		16.4691033854	
	13		not bitter		16.2426136023	
	14		right amount		15.8806423808	
	15		not weak		15.7845434612	
	16		perfect		15.2592540859	
	17		not bad		15.1765061171	
	18		addict		14.9960733986	
	19		wont sorri		14.8989421479	
	20		amaz		14.8925408812	
	21		excel		14.6725370909	
	22		cant wrong		14.6499793641	
	23		wasnt sure		14.646643426	
	24		awesom		14.4595837864	
	25		noth wrong		14.1007767654	
+-		-+-		+		-+

LOGISTIC REGRESSION MODEL ON tf-IDF

TF-IDF: Term Frequency Inverse Document Frequency

SPLITTING INTO TRAIN AND TEST

```
In [159]:
```

```
x_train, x_test, y_train, y_test = Split(Data['CleanedText'].values,Data['Score'].values)
```

CONVERTING REVIEWS INTO VECTORS USING tf-IDF

```
In [160]:
```

```
tf_idf_vect = TfidfVectorizer(ngram_range=(1,2))
x_train = tf_idf_vect.fit_transform(x_train)
x_test = tf_idf_vect.transform(x_test)
```

In [161]:

```
print("Train Dataset Shape -: ",x_train.shape)
print("Test Dataset Shape -: ",x_test.shape)
```

Train Dataset Shape -: (254919, 2290079)
Test Dataset Shape -: (109252, 2290079)

NORMALIZING THE DATA

```
In [162]:
```

```
x_train = preprocessing.normalize(x_train)
x_test = preprocessing.normalize(x_test)
```

GridSearchCV

HyperParameter Tuning

In [164]:

```
m = LR(x_train,y_train,'Grid')
Time taken to complete -: 1353.2826647758484 sec

Best Hyperparameter -: {'C': 1000, 'penalty': '12'}
Accuracy -: 93.429 %
```

Hyperparameter vs Accuracy plot

In [167]:

Average Accuracy on 11 reg -: 90.3 Average Accuracy on 12 reg -: 90.1

Hyperparameter vs Error Plot

In [168]:

+		-+-		+-		-+
	Regularizer		CV Error		Train Error	
+		-+-		+-		-+
	L1		9.7		5.4	
	L2		9.9		5.3	
+		+-		-+-		-+

Predicting on best Hyperparameter

```
In [169]:
```

```
cl, pr = predict(1000,'12',x_train,y_train,x_test)
```

Performance Measurement

In [170]:

```
Measure(y_test,pr)

Accuracy on Test Data -: 93.898 %

F1 Score -: 0.964

Precision Score -: 0.951

Recall Score -: 0.976

Test Error -: 6.102
```


RandomSearchCV

HyperParameter Tuning

```
In [171]:
```

```
m = LR(x_train,y_train,'Random')
Time taken to complete -: 1148.8976826667786 sec
Best Hyperparameter -: {'penalty': '12', 'C': 1000}
Accuracy -: 93.429 %
```

Predicting on best Hyperparameter

```
In [172]:
```

```
cl, pr = predict(1000,'12',x_train,y_train,x_test)
```

Performance Measurement

```
In [173]:
```

, , , , ,

```
Measure (y test, pr)
Accuracy on Test Data -: 93.898 %
F1 Score -: 0.964
Precision Score -: 0.951
Recall Score -: 0.976
Test Error -: 6.102
                                 75000
       14566
                    4515
0
                                 60000
                                 45000
                                 30000
       2152
                    88019
                                 15000
         0
Perturbation Testing & Most Important Features
In [175]:
muc(1000,'12',count,x train,y train,x test,y test)
                    ____ Without Adding Weights
Accuracy -: 93.898 %
Sparsity -: 2290079
                      Weights Before Adding Noise
0.00782466 0.04067399 0.04067399 0.04067399 0.04067399 -0.19896223
 -0.19896223 \quad 0.00381418 \quad 0.00381418 \quad 0.00899722 \quad 0.00899722 \quad 0.07032526
 0.01165108 0.06098302]
                   ____ After Adding Weights
Accuracy -: 93.897 %
Sparsity -: 2290079
                      Weights After Adding Noise
0.01166215 0.06116929]
The no. of features which are changing greater than 45% -: 224
Therefore, the features are multicollinear
| Rank | Most Important Features | Weight
                      | 52.3630679374 |
| 1 |
          great
| 2 |
          not disappoint | 50.4487266416 |
     delici
                           | 48.9219650623 |
               best
                           | 41.6275842281 |
```

love

8 1

9

10

perfect

excel

good

amaz

| 40.6020040497 |

| 35.6073114593 |

| 34.6374096333 | | 31.5810296627 |

perfect | 40.3694787044 | high recommend | 39.0835074114 |

	11		wont disappoint		30.7952536126	
	12		awesom		27.8381684494	
	13		happi		27.7729795824	
	14		addict		27.3728283387	
	15		yummi		27.1973177899	
	16		favorit		26.9485405379	
	17		hook		26.7420606633	
	18		veri pleas		26.2754042232	
	19		fantast		26.136676439	
	20		four star		26.0739362273	
	21		not bad		25.2953598582	
	22		tasti		25.2389106226	
-	23		nice		24.4594323043	
-	24		not overpow		24.4435167537	
Ì	25	Ì	pleasant surpris	i	24.0065823029	
+-		-+-		+	+	-

LOGISTIC REGRESSION MODEL ON Avg Word2Vec

Loading Data From File

```
In [244]:
x_train = retrieve("Word2Vec-Train")
x_test = retrieve("Word2Vec-Test")

In [245]:
print("Train Dataset Shape -: ",x_train.shape)
print("Test Dataset Shape -: ",x_test.shape)

Train Dataset Shape -: (254919, 100)
Test Dataset Shape -: (109252, 100)

In [246]:
x_train = preprocessing.normalize(x_train)
x_test = preprocessing.normalize(x_test)
```

GridSearchCV

HyperParameter Tuning

```
In [183]:
```

```
m = LR(x_train,y_train,'Grid')
Time taken to complete -: 1866.907469034195 sec
Best Hyperparameter -: {'C': 10, 'penalty': '11'}
Accuracy -: 90.613 %
```

Hyperparameter vs Accuracy plot

In [184]:

Hyperparameter

Average Accuracy on 11 reg -: 89.9 Average Accuracy on 12 reg -: 90.3

Hyperparameter

Hyperparameter vs Error Plot

In [185]:

| Regularizer | CV Error | Train Error |

Predicting on best Hyperparameter

```
In [186]:
```

```
cl, pr = predict(10,'11',x_train,y_train,x_test)
```

Performance Measurement

In [187]:

```
Measure (y_test,pr)

Accuracy on Test Data -: 89.951 %

F1 Score -: 0.941

Precision Score -: 0.916

Recall Score -: 0.967

Test Error -: 10.049
```


RandomSearchCV

HyperParameter Tuning

```
In [191]:
```

```
m = LR(x_train,y_train,'Random')
Time taken to complete -: 1255.9150743484497 sec
Best Hyperparameter -: {'penalty': 'll', 'C': 100}
Accuracy -: 90.613 %
```

Predicting on best Hyperparameter

```
In [192]:
```

```
cl, pr = predict(100,'l1',x_train,y_train,x_test)
```

Performance Measurement

i citorinanoc measurement

In [193]:

```
Measure (y_test,pr)

Accuracy on Test Data -: 89.952 %

F1 Score -: 0.941

Precision Score -: 0.916

Recall Score -: 0.967

Test Error -: 10.048
```


Perturbation Testing & Most Important Features

In [248]:

```
muc(10,'11',count,x_train,y_train,x_test,y_test)
                          Without Adding Weights
Accuracy -: 90.079 %
Sparsity -: 100
                          Weights Before Adding Noise
 \begin{bmatrix} -0.65328423 & 4.30807754 & 2.75024395 & 0.7504924 & 4.66648608 & -3.91403971 \end{bmatrix} 
 0.58927849 -1.80202248]
                         __ After Adding Weights <sub>.</sub>
Accuracy -: 90.079 %
Sparsity -: 100
Weights After Adding Noise [-0.65264396 4.30672336 2.75060328 0.75085858 4.66567812 -3.91399743
 3.16143489 3.63322853 1.50077616 1.32082567 1.31192407 -3.84329915
 -1.07015799 \; -1.85242117 \quad 0.66271248 \quad 1.84079513 \quad 2.66226709 \quad 4.33954868
 0.58822809 -1.80177214]
The no. of features which are changing greater than 40\% - : 0
Therefore, the features are not multicollinear
```

LOGISTIC REGRESSION MODEL ON tf-IDF Word2Vec

LOADING DATA FROM FILE

```
In [195]:
x train = retrieve("tfidf-W2v-train")
x_test = retrieve("tf-idf-w2v-test")
In [196]:
print("Train Dataset Shape -: ",x train.shape)
print("Test Dataset Shape -: ",x_test.shape)
Train Dataset Shape -: (254919, 100)
Test Dataset Shape -: (109252, 100)
In [198]:
# Creating new dataframes and putting array values in it.
train d = pd.DataFrame(x train)
test d = pd.DataFrame(x test)
In [199]:
111
replacing Nan values with constant in whole dataframes.
x train = train d.fillna(0)
x_test = test_d.fillna(0)
In [200]:
print(train d.shape)
print(test_d.shape)
(254919, 100)
(109252, 100)
In [203]:
# Saving for future assignments.
save(x train,"tfidf w2v train")
save(x test,"tfidf w2v test")
Normalizing the Data
In [204]:
x train = preprocessing.normalize(x train)
x_test = preprocessing.normalize(x_test)
GridSearchCV
HyperParameter Tuning
In [205]:
```

```
In [205]:

m = LR(x_train,y_train,'Grid')

Time taken to complete -: 834.3468735218048 sec

Best Hyperparameter -: {'C': 10, 'penalty': '12'}

Accuracy -: 89.185 %
```

myperparameter vs Accuracy plot

In [206]:

Average Accuracy on 11 reg -: 88.1 Average Accuracy on 12 reg -: 88.1

Hyperparameter vs Error Plot

In [207]:

Errorplot (m)

L1 11.9 10.2	_
L2 11.9 10.3	

Predicting on best Hyperparameter

In [208]:

```
cl, pr = predict(10, '12', x_train, y_train, x_test)
```

Performance Measurement

In [209]:

```
F1 Score -: 0.931
Precision Score -: 0.898
Recall Score -: 0.967
Test Error -: 11.787
                                      75000
        9171
                        9910
0
                                      60000
                                      45000
                                      30000
        2968
                       87203
                                      15000
          0
                          1
```

RandomSearchCV

Measure(y_test,pr)

Accuracy on Test Data -: 88.213 %

HyperParameter Tuning

```
In [210]:
```

```
m = LR(x_train,y_train,'Random')
Time taken to complete -: 703.25212931633 sec
Best Hyperparameter -: {'penalty': '12', 'C': 1000}
Accuracy -: 89.185 %
```

Predicting on best Hyperparameter

```
In [211]:
```

```
cl, pr = predict(1000, '12', x_train, y_train, x_test)
```

Performance Measurement

```
In [212]:
Measure(y test,pr)
Accuracy on Test Data -: 88.207 %
F1 Score -: 0.931
Precision Score -: 0.898
Recall Score -: 0.967
Test Error -: 11.793
```


Perturbation Testing & Most Important Features

```
In [226]:
muc(10,'12',count,x_train,y_train,x_test,y_test)
                         _ Without Adding Weights
Accuracy -:
             88.213 %
Sparsity -: 100
                          Weights Before Adding Noise
2.65292544 3.88932183 1.40524758 0.49444092 0.94394901 -3.21870626 -0.45658308 -1.37685048 0.62665631 1.22169452 2.13516832 3.15228367
 -0.42686414 -1.3344293 ]
                         _ After Adding Weights
Accuracy -: 88.213 %
Sparsity -: 100
                           Weights After Adding Noise
[-1.50395916 4.12481309 1.81556218 0.56452883 3.62891696 -4.06088593
 2.65063101 3.88818585 1.40405688 0.49288106 0.94383467 -3.21946672
 -0.4590658 \quad -1.37541519 \quad 0.62872374 \quad 1.21931655 \quad 2.13589464 \quad 3.15593736
 -0.42699785 -1.33466254]
The no. of features which are changing greater than 15\% - : 0
Therefore, the features are not multicollinear
```

ANALYZING ERROR & SPARSITY

```
In [242]:
```

```
Spar(100,x_train,y_train,x_test,y_test)
Spar(10,x_train,y_train,x_test,y_test)
Spar(1,x_train,y_train,x_test,y_test)
Spar(0.1,x_train,y_train,x_test,y_test)
Spar(0.01,x_train,y_train,x_test,y_test)
FOR C = 100
Error -: 11.789 %
Sparsity -: 100
FOR C = 10
Error -: 11.789 %
Sparsity -: 100
```

```
FOR C = 0.1

Error -: 11.873 %

Sparsity -: 98

FOR C = 0.01

Error -: 12.656 %

Sparsity -: 58
```

As we can analyze above that as the c value decreases error increases and sparsity also decreases.

In [230]:

```
x = PrettyTable()
x.field_names = ["NLP Technique", "CV", "Hyperparameter", "Regularizer", "Accuracy(%)"]
x.add_row(["BOW", "GridSearchCV", 100, "12", 93.721])
x.add_row(["BOW", "RandomSearchCV", 1000, "12", 93.845])
x.add_row(["tf-IDF", "GridSearchCV", 1000,"12", 93.898])
x.add_row(["tf-IDF", "RandomSearchCV", 1000,"12", 93.898])
x.add_row(["Avg Word2Vec", "GridSearchCV", 10,"12",89.951])
x.add_row(["Avg Word2Vec", "RandomSearchCV",100,"11",89.952 ])
x.add_row(["tf-IDF Word2Vec", "GridSearchCV", 10,"12",88.213])
x.add_row(["tf-IDF Word2Vec", "RandomSearchCV",1000,"12",88.207])
print(x)
```

NLP Technique	CV	Hyperparameter	Regularizer	Accuracy(%)
BOW	GridSearchCV	100	12	93.721
BOW	RandomSearchCV	1000	12	93.845
tf-IDF	GridSearchCV	1000	12	93.898
tf-IDF	RandomSearchCV	1000	12	93.898
Avg Word2Vec	GridSearchCV	10	12	89.951
Avg Word2Vec	RandomSearchCV	100	11	89.952
tf-IDF Word2Vec	GridSearchCV	10	12	88.213
tf-IDF Word2Vec	RandomSearchCV	1000	12	88.207

- 1. The comparison shows that tf-IDF is a good technique on Logistic Regression for this dataset with an accuracy of 93.898 %.
- 2. Therefore the best hyperparameter is 1000 with an F1 Score of 0.964, recall Score of 0.976 and a precision of 0.951
- 3. RandomSearchCV is giving better results as compared to GridSearchCV.
- 4. We can analyze that features in BOW and tf-IDF are changing massively therefore they are multicollinear but the features in Word2Vec are not changing at that extent.
- 5. As C decreases the sparsity also decreases but error increases.
- 6. Logistic Regression is better than Knn and Naive Bayes on this dataset as it is giving better accuracy.