Lecture 5 - 20/03

-> 5.1 Companison test for positive series San sum ± 00 (div.) $a_n > 0$, $n \in \mathbb{N}$ Theorem 1 (companison tent): Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} a_n$ be two positive series, then

(i) if $x_n \leq a_n$ for $n \in \mathbb{N}$ => $\sum_{n=1}^{\infty} a_n$ is convagant => $\sum_{n=1}^{\infty} x_n \leq a_n$ if $\sum_{n=1}^{\infty} x_n \leq a_n$ divergent => $\sum_{n=1}^{\infty} x_n \leq a_n$ divergent => $\sum_{n=1}^{\infty} x_n \leq a_n$ (Proof in Noter!) → example 1 • Show that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. Recall $\frac{5}{n-1}$ $\frac{1}{n(n+1)} = 1$ $\frac{1}{n^2} < \frac{1}{n(n+1)} \cdot 2$ $n^2(n+1)$ n+1 < 2n 1 < n true for n > 1 So: $\frac{1}{n^2} < \frac{2}{n(n+1)}$, $\forall n > 1$ Since $\sum \frac{2}{n(n+1)} = 2 = 2 \sum \frac{1}{n(n+1)} = 2 \cdot 1 = 1$, so $\Sigma \frac{1}{n^2}$ is convergent as well! Question: does \(\sum_{n=1}^{\infty} \) \(\alpha \in \mathbb{R} \) \(\converges \)? Theorem 2: let a e R, then (i) if $\alpha > 1$, then seven $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ convergen (ii) if $\alpha < 1$, then seven $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ divergen example $\sum_{\substack{n=1\\ 00}} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}} \frac{1}{\sqrt{2}} \rightarrow DIV.$ $\sum_{\substack{n=1\\ 00}} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}} \frac{3}{\sqrt{2}} \rightarrow CONV.$ → 5.2 Asymptotic Test another example: $\frac{(n+1)}{n^3-n-1}$ $\frac{2n}{n^3-\frac{1}{2}n^3} = \frac{2n}{\frac{1}{2}n^3} = \frac{4}{n^2}$ in creasing decreasing En s convergent, since \(\sum_{n=1}^{\infty} \) 1/n2 is convergent by comparison test $\sum_{n=1}^{\infty} \frac{n+1}{n^3 - n - 1}$ is also convergent another example: $\sum_{n=1}^{\infty} a_n$ $a_n = \frac{n+1}{n^2+2n+4} \qquad \qquad \frac{n}{n^2} = \frac{1}{n} \quad DIV.$ $\frac{n+1}{n^2+2n+4} > \frac{n}{n^2+2n+4} > \frac{n}{3n^2} = \frac{1}{3} \cdot \frac{1}{n}$ decrease increase $\sum_{n=1}^{\infty} \frac{1}{3} \frac{1}{n} = \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n} = + \infty , \text{ from comparison test } \sum_{n=1}^{\infty} \frac{n+1}{n^2 + 2n + 4} = + \infty$ Δ an and xn be two positive sequences, we say that xn is behaving (asymptotically) similar to Xn ~ an if $\lim_{n \to \infty} x_n = k$ $k \in (a + \infty)$ ex. 5 $\sqrt{n^2+1} \sim n$, $obv. n^2+1 \sim n$ Theorem 3 (Asymptotic Theorem): Let Zan and Zxn be a serier of positive terms, → 5.3 Rabio Test Theorem 4 (Rahio Test): Let Ean be a positive term sever, then, (i) if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, then the series CONV. DIV. $\sum_{n=1}^{\infty} \frac{1}{n} z$ $\sum_{n=1}^{\infty} \frac{1}{n}$ $\lim_{n\to\infty} \frac{1}{n^2} = \frac{n^2}{n^{-1}} = 1$ DIV. $\lim_{n\to\infty}\frac{x^{n+1}/(n+1)!}{x^n/n!}=\frac{x}{n+1}=0$ CONV.