

OKAN ÜNİVERSİTESI MÜHENDİSLİK-MİMARLIK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2015-16

MAT372 K.T.D.D. - Ödev 6

N. Course

SON TESLİM TARİHİ: Çarşamba 13 Nisan 2016 saat 12:00'e kadar.

Egzersiz 10 (Separation of Variables). Consider

$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ X(0) = 0 \\ X'(L) = 0. \end{cases}$$

- (a) [40p] Find all the eigenvalues $\lambda \in \mathbb{R}$ and eigenfunctions, if $\lambda < 0$.
- (b) [20p] Find all the eigenvalues $\lambda \in \mathbb{R}$ and eigenfunctions, if $\lambda = 0$.
- (c) [40p] Find all the eigenvalues $\lambda \in \mathbb{R}$ and eigenfunctions, if $\lambda > 0$.

x.co/mat372 1

Ödev 5'in çözümleri

9. (a)
$$\begin{cases} \frac{du}{dt} = 0\\ \frac{dx}{dt} = \frac{u}{2} \end{cases}$$
 (b)

(c) The solution of the first ODE (away from the shock) is $u(x,t) = u(x_0,0)$. Then $\frac{dx}{dt} = \frac{1}{2}u = \frac{1}{2}u(x_0,0)$ has solution $x = \frac{1}{2}u(x_0,0)t + x_0 = \begin{cases} \frac{1}{2}t + x_0 & x_0 < 1\\ \frac{3}{2}t + x_0 & 1 < x_0 < 5\\ \frac{1}{2}t + x_0 & x_0 > 5 \end{cases}$

We can see from (b) that there is a shock wave starting at $x_0=5$. Since $[u]=\lim_{x\searrow 5}u(x,0)-\lim_{x\nearrow 5}u(x,0)=1-3=-2$, $q(u)=\frac{1}{4}u^2$ (because $\frac{dq}{du}=\frac{1}{2}u$) and $[q]=\lim_{x\searrow 5}q(u(x,0))-\lim_{x\nearrow 5}q(u(x,0))=\frac{1}{4}\cdot 1^2-\frac{1}{4}\cdot 3^2=-2$, the shock characteristic is obtained by solving $\frac{dx_s}{dt}=\frac{[q]}{[u]}=1$. So $x_s=t+x_s(0)=t+5$. This is where the behaviour of the solution changes.

A priori, we know that the solution is

$$u(x,t) = \begin{cases} 1 & x < something \\ something & something < x < something \\ 3 & something < x < 5 + t \\ 1 & x > 5 + t. \end{cases}$$

Next we look at the fan-like characteristics starting at $x_0=1$. From the characteristics, we can see that $x_0<1\iff x-\frac{1}{2}t<1\iff x<\frac{1}{2}t+1$ and $x_0>1\iff x-\frac{3}{2}t>1\iff x>\frac{3}{2}t+1$. Therefore

$$u(x,t) = \begin{cases} 1 & x < \frac{1}{2}t+1 \\ something & \frac{1}{2}t+1 < x < \frac{3}{2}t+1 \\ 3 & \frac{3}{2}t+1 < x < 5+t \\ 1 & x > 5+t. \end{cases}$$

To complete our solution, we use the equation $x(t) = \frac{1}{2}ut + x_0$ with $x_0 = 1$. Rearranging gives $u = \frac{2x-2}{t}$. Therefore

$$u(x,t) = \begin{cases} 1 & x < \frac{1}{2}t + 1 \\ \frac{2x-2}{t} & \frac{1}{2}t + 1 < x < \frac{3}{2}t + 1 \\ 3 & \frac{3}{2}t + 1 < x < 5 + t \\ 1 & x > 5 + t. \end{cases}$$

