

Exercise 2A

$$= \left(15\frac{3}{4} + 12\frac{1}{2} + 15\frac{3}{4} + 12\frac{1}{2}\right) \text{ cm}$$

$$= \left(\frac{63}{4} + \frac{25}{2} + \frac{63}{4} + \frac{25}{2}\right) \text{ cm}$$

$$= \left(\frac{63 + 50 + 63 + 50}{4}\right) \text{ cm} \quad [\because \text{LCM of 2 and 4 = 4}]$$

$$= \left(\frac{226}{4}\right) \text{ cm} = \left(\frac{113}{2}\right) \text{ cm} = 56\frac{1}{2} \text{ cm}$$

Hence, the perimeter of ABCD is $56\,\frac{1}{2}~cm$

Solution 10

Answer:

Actual width of the picture = $7\frac{3}{5}$ cm = $\frac{38}{5}$ cm Required width of the picture = $7\frac{3}{10}$ cm = $\frac{73}{10}$ cm

$$\therefore \text{ Extra width } = \left(\frac{38}{5} - \frac{73}{10}\right) \text{ cm}$$

$$= \left(\frac{76 - 73}{10}\right) \text{ cm} \qquad [\because \text{ LCM of 5 and 10 is 10}]$$

$$= \frac{3}{10} \text{ cm}$$

Hence, the width of the picture should be trimmed by $\frac{3}{10}$ cm.

Solution 11

Answer:

Required number to be added = $18 - 7\frac{3}{5}$

$$= \frac{18}{1} - \frac{38}{5}$$

$$= \frac{90 - 38}{5}$$
 [:: LCM of 1 and 5 = 5]
$$= \frac{52}{5} = 10\frac{2}{5}$$

Hence, the required number is $10\frac{2}{5}$.

Solution 12

Answer:

Required number to be added = $8\frac{2}{5}-7\frac{4}{15}$ $=\frac{42}{5}-\frac{109}{15}$ $=\frac{126-109}{15}\quad [\because LCM \text{ of 5 and 15 = 15}]$ $=\frac{17}{15}=1\,\frac{2}{15}$

Hence, the required number should be $1\frac{2}{15}$

Solution 13

Answer:

Required length of other piece of wire =
$$\left(3\frac{3}{4}-1\frac{1}{2}\right)\mathbf{m}$$

= $\left(\frac{15}{4}-\frac{3}{2}\right)\mathbf{m}$
= $\left(\frac{15-6}{4}\right)\mathbf{m}$ [:: LCM of 4 and 2 = 4]
= $\frac{9}{4}\mathbf{m} = 2\frac{1}{4}\mathbf{m}$

Hence, the length of the other piece of wire is $2\,\frac{1}{4}\,m$

Solution 14

Answer:

Actual duration of the film =
$$\left(3\,\frac{2}{3}-1\,\frac{1}{2}\right)$$
 hours
$$= \left(\frac{11}{3}-\frac{3}{2}\right)$$
 hours
$$= \left(\frac{22-9}{6}\right)$$
 hours $[\because LCM \text{ of } 3 \text{ and } 2=6]$
$$= \frac{13}{6} \text{ hours} = 2\,\frac{1}{6} \text{ hours}$$

Hence, the actual duration of the film was $2\frac{1}{6}$ hours.

Solution 15

Answer:

First we have to compare the fractions: $\frac{2}{3}$ and $\frac{5}{9}$. By cross multiplication, we have:

$$2 \times 9 = 18$$
 and $5 \times 3 = 15$

However,
$$18 > 15$$

$$\therefore \frac{2}{3} > \frac{5}{9}$$

So,
$$\frac{2}{3}$$
 is larger than $\frac{5}{9}$. Now, $\frac{2}{3} - \frac{5}{9}$

$$= \frac{6-5}{9} \quad [\because LCM \text{ of 3 and 9} = 9]$$
$$= \frac{1}{9}$$

Hence, $\frac{2}{3}$ is $\frac{1}{9}$ part more than $\frac{5}{9}$.

Solution 16

Answer:

********* END *******