2022 华为软件精英挑战赛

初赛任务书

文档版本 01

发布日期 2022-03-14

修订记录

版本	发布日期	修改说明
01	2022-03-14	第一次正式发布。

修	:订记录	. ii
	背景信息	
	题目	
	, , . L 题目介绍	
2.2	2 题目数学描述	3
3	输入说明	5
	输出说明	
	评分规则	

1 背景信息

提升用户体验的同时降低运营成本是云服务竞争力的关键。

在视频直播场景中,网络成本是影响服务成本的关键因素之一,不同的流量调度方案 会产生不同的网络使用成本。本赛题以华为云视频直播服务流量调度问题为基础,并 进行一定的抽象、调整和简化。参赛选手需要设计高效的调度算法,在满足客户要求 的前提下,通过对流量的合理调度,最小化网络使用成本。

期待您的精彩解决方案。

2 题目

2.1 题目介绍

术语

表2-1 术语

名词	解释
时刻	流量调度沿时间线进行,将时间线划分成若干个独立的调度单元,用单元的起始时间来指代这个单元,称为时刻。
带宽	在一个时刻,某个节点的流量大小称为带宽。
客户节点	一种抽象节点,在每个时刻,每个客户节点会产生新的带宽需求。
边缘节点	一种抽象节点,和客户节点直接交互的网络节点。客户节点通过 边缘节点获取数据流量。在每个时刻,每个边缘节点可以为若干 客户节点提供带宽,但它能提供的带宽之和有上限。在每个时 刻,一个客户节点的带宽需求可以分配到一个或多个边缘节点。
QoS	客户节点和边缘节点之间的网络质量。不同客户节点和边缘节点之间的网络会因距离、网络连接状况有差别。本题中 QoS 简化成一个数值,表示时延大小(单位: ms)。
边缘节点带宽序列	对于某个边缘节点,统计它在每个时刻分配的带宽之和,这些值在整个时间线上形成一个带宽序列。
95 百分位带宽	对一个边缘节点带宽序列进行升序排序,以其 95%位置(向上 取整)的带宽值作为该节点的 95 百分位带宽。
	示例: 假设一个节点的带宽序列长度为 8928。首先对这 8928 个 带宽值升序排列。其 95%位置是 8481.6,向上取整为 8482。则以排序序列中第 8482 个点的带宽值,作为这个节点的 95 百分位 带宽。
边缘节点成本	每个边缘节点的 95 百分位带宽值乘上带宽的单位成本。本题

名词	解释	
	中,带宽的单位成本默认是单位1。	
带宽总成本	求和所有边缘节点成本得到带宽总成本。	

题目描述

某个时刻边缘节点为客户节点分配的带宽资源示意图如图 2-1 示。

图2-1 某时刻带宽分配示意图

- 1. 共有M个客户节点和N个边缘节点。
- 2. 在每个时刻,要决策如何把每个客户节点的带宽需求分配到边缘节点。
- 3. 为了确保调度质量,每个客户节点的需求只能分配到满足 QoS 约束的边缘节点上。即: 当客户节点和边缘节点之间的 QoS 小于"QoS 上限"时,才会进行流量分配。
- 4. 在每个时刻,每个边缘节点接收的带宽需求总和不能超过其带宽上限。
- 5. 合理分配所有时刻的客户节点带宽需求,使得最终的带宽总成本尽量小。

2.2 题目数学描述

题目的数学模型抽象如下:

定义

- 1. 集合 T (1 < |T| ≤ 8928) 为所有时刻的集合。
- 2. 共有 M (1 \leq M \leq 35) 个客户节点,第 i 个客户节点在时刻 t 的带宽需求为 D_i^t (1 \leq i \leq M, t \in T)。
- 3. 共有 N (1 \leq N \leq 135) 个边缘节点,第 j 个边缘节点在任何时刻的带宽上限都 是 C_i (1 \leq j \leq N)。
- 4. 第 i 个客户节点与第 j 个边缘节点之间的 QoS 为 $Y_{ij}(1 \le i \le M, 1 \le j \le N)$ 。
- 5. QoS 约束上限为 Q (从配置文件读取)。
- 6. 用 X 表示一组流量分配方案,即 t 时刻第 i 个客户节点向第 j 个边缘节点分配的带宽为 $X_{ij}^t(1 \le i \le M, \ 1 \le j \le N, \ t \in T)$ 。
- 7. 第 j 个边缘节点在 t 时刻的总带宽需求为 $w_j^t = \sum_{i=1}^M X_{ij}^t$ $(1 \le j \le N, t \in T)$ 。对 所有 $t \in T$,计算边缘节点 j 的 95 百分位带宽值 W_j ,则成本为 $s_j = W_j \times 1$ 。

约束

- 1. $\forall t \in T, 1 \leq i \leq M, 1 \leq j \leq N$ $X_{ij}^t \in Z_0^+$ X_{ij}^t 为非负整数。
- 2. $\forall t \in T, 1 \leq i \leq M, 1 \leq j \leq N, Y_{ij} \geq Q$ $X_{ij}^t = 0$ 客户节点带宽需求只能分配到满足 QoS 约束的边缘节点。
- 3. $\forall t \in T, 1 \leq i \leq M$ $\sum_{j=1}^{N} X_{ij}^{t} = D_{i}^{t}$ 客户节点带宽需求必须全部分配给边缘节点。
- 4. $\forall t \in T, 1 \leq j \leq N$ $\sum_{i=1}^{M} X_{ij}^t \leq C_j$ 边缘节点接收的带宽需求不能超过其带宽上限。

优化目标

$$\min_{X} \sum_{j=1}^{N} s_j$$

找到一组满足约束的流量分配方案 X, 使其在时间集合 T 内的总带宽成本尽可能小。

3 输入说明

线上评测时,输入数据从/data 目录读取,涉及多个文件,文件的换行符为\r\n。

- 1. demand.csv: 逗号分割的 CSV 文件,包含所有客户节点在不同时刻的带宽需求信息。数据含义如下:
 - 第1列:即 mtime 列,表示不同时刻。
 - 第2列~第 M+1列:
 - 第1行:表示客户节点 ID,唯一标识一个客户节点。长度不超过2的字符串,由大小写字母或数字组成。
 - 第2行~最后一行:表示客户节点在该时刻的带宽需求。非负整数,单位 是 MB。
 - **客户节点数:** *M* ≤ 35。
 - **带宽值:** 不超过 550,000MB。
 - 一个M = 4, |T| = 3的例子如下:

mtime, CB, CA, CE, CX 2021-10-19T00:00, 9706, 13409, 5209, 0 2021-10-19T00:05, 8127, 11154, 4262, 300 2021-10-19T00:10, 7243, 9865, 3713, 500

- 2. site_bandwidth.csv: 以逗号分割的 CSV 文件,包含边缘节点列表以及每个边缘节点的带宽上限。数据含义如下:
 - **第1列:** 即 site_name 列,表示边缘节点 ID,唯一标识一个边缘节点。长度不超过 2 的字符串,由大小写字母或数字组成。
 - **第2列:**即 bandwidth 列,表示对应边缘节点的带宽上限。非负整数,单位为MB。
 - 边缘节点数: *N* ≤ 135
 - **带宽值:** 不超过 1,000,000MB。
 - 一个N=3的例子如下:

site_name,bandwidth S1,81920 SB,87040 SD,74586

- 3. qos.csv: 以逗号分割的 CSV 文件,包含客户节点与边缘节点之间的网络时延。数据含义如下:
 - **第1列**:即 site_name 列,表示边缘节点 ID。
 - 第2列~第 M+1列:
 - 第1行:表示客户节点的 ID。
 - **第2行~最后一行**:边缘节点到客户节点的时延,非负整数,单位为 ms。
 - 网络时延取值范围: 0 < QoS ≤ 1000ms。
 - 一个M = 4, N = 3的例子如下:

site name, CB, CA, CE, CX S1,200,186,125,89 SB,190,48,458,45 SD,340,45,124,335

- 4. config.ini:参数配置文件。格式为:
 - [config]: 参数配置开头
 - qos_constraint=value: QoS 约束上限 *Q* 的配置信息, value 为非负整数,单位为 ms。

假设配置 QoS 约束上限值为 400ms, 那么配置文件示例如下:

[config]
qos_constraint=400

4 输出说明

输出说明

线上评测时,带宽的调度分配方案输出路径为:/output/solution.txt。

输出要求:

- 1. 按照输入文件的时刻顺序,输出分配方案。
- 2. 每个时刻,所有客户节点的带宽需求分配方案用*M*行表示。每行表示一个客户节点的带宽需求分配方案,每行的格式为:

customer_ID1:<site_id_1,bandwidth_1>,<site_id_2, bandwidth _2>... 其中,

- **customer_ID1**:表示客户节点 ID。
- **<site_id_1,bandwidth_1>**: 表示把该客户节点的大小为 bandwidth_1 的带宽需求分配给 ID 为 site id 1 的边缘节点。
- 3. 如果在某个时刻,一个客户节点的带宽需求为 0 (表示没有带宽需求),则只输出客户 ID。格式为:

customer_ID1:

- 4. 每个时刻,客户节点的顺序不做要求;每一行内,边缘节点顺序不做要求。
- 5. 最终输出文件包含 $|T| \times M$ 行,换行符为|r|n或|n|,不允许有空行。

输出示例

以前面输入说明示例数据为基础,在 QoS 约束上限为 400ms 的情况下,一组流量分配方案为:

```
CB:<S1,9700>,<SB,6>
CA:<S1,6704>,<SB,3352>,<SD,3353>
CE:<S1,5209>
CX:
CB:<S1,8000>,<SB,120>,<SD,7>
CA:<S1,10000>,<SB,1100>,<SD,54>
CE:<S1,2>,<SD,4260>
CX:<CB:<S1,300>
CB:<S1,4243>,<SB,1500>,<SD,1500>
CA:<S1,1234>,<SB,4500>,<SD,4131>
```

CE:<S1,371>,<SD,3342> CX:<SB,500>

5 评分规则

- 1. 判题程序会从选手程序输出的 solution.txt 文件读取分配方案, 计算带宽总成本并记录程序运行时间(单位为 ms)。
- 2. 带宽总成本低的方案胜出。
- 3. 如果不同选手的输出方案的总成本相同,则运行时间少者胜出;如果运行时间也相同,则先提交代码者胜出。
- 4. 若采用多组数据,则多组结果求和后进行排名。
- 5. 对于每组数据,选手的程序所有计算步骤(包含读取输入、计算、输出方案)所用时间总和不超过 300 秒。若程序运行超时、运行出错或输出不合法的解(包括调度分配方案不满足题目约束或解格式不正确),则判定无成绩。
- 6. 对于多组数据,选手的程序在任意一组数据上无成绩,则判定整体无成绩。

注意

因为进程调用存在一定的时间开销,用时统计在判题程序侧和选手程序侧可能存在细微差异。建议选手控制算法用时的时候要留有一定的冗余。