

Page No. 2 Date
b) $x_{m1} = mail 1$
$7m_2 = mail 2.$
oc: Temproture daily higher
P(x m) = 0.80, P(x s) = 0.90.
$P(xm_1) = P(xm_1/m) \cdot P(m) +$
P(xm2/s). P(s)
$P(2m_2 \wedge 2m_1) = P(2m_2 \wedge 2m_1/m) \cdot P(m_1)$
+ P(xm2 12m1/s). P(s)
$= P(x_m) \cdot P(x_m m) \cdot P(m) +$
P(xm2/s). P(xm1/s). P(s)
Complete Parties
= 0.80 x 0.80 + 0.05 + 0.10 x 0.10
× 0.95
= 0.032 + 0.095
= 0.127.4
- 1000 x 2000 = (000 100)
c) $xm_1 = mail 1$
ama - mail 2
$2m_3 = mail3$
PCxmer man non
P(m) + P(xm1) = P(xm1) xm2) xm3/m)
00 x 0.80 x 0.00 t 1
0190x0.30x0.30x0.95
10206 + D. MAR AST COMOC
= 0.02655.

Page No.

.

b) P(A|B=T, C=T) = X < P(A=T, B=T, C=V) P(A=F, B=T, (=T)> X <0.048,0.12 = <0.8,0.2> X=0.06 P(A|B=F, C=F) = X < P(A=T, B=F, C=F)P(A=F, B=F, C=F) = 0.0084, 0.1262<0.4,0.62 P(A|B=T, (=F)=A<P(A=T, B=T, C=F) P(A=F, B=T, C=F) = Q (0.084, 0.126) 6 < 0.4, 0.6) x=0.2 P(A|B=F, C=T) = X < P(A=T, B=F, C=T) P(A=F, B=F, C=F) ac0.192,0.04R) - < 0.8,0.25 P(A)B, C) = <0.8,0.2) <0.4,0.63 CO. \$, 0.60 (0.8, 0.2) P(A, C|B=T)=XP(A=T, C=T, B=T') P(A=F, (=T, B=T), P(A=T, (=F, B=T), P(A=F,C=F,B=7) = X < 0.048, 0.012, 0.196, 0.294) = <0.087, 0.022, 0.356, 0.534)