

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta elektrotechnická Katedra elektrických pohonů a trakce

Technická zpráva

1. úloha předmětu XP14DES

OBSAH

l	Rovnice asynchronniho motoru - využívané pro řízení	1
1.1	Rovnice pro soustavu spojenou se statorovým vinutím	1
1.2	Rovnice pro soustavu spojenou s rotorovým vinutím	2
1.3	Rovnice pro soustavu spojenou s točivým magnetickým polem	2
2	Rovnice asynchronního motoru - využívané pro modelování	3
3	Simulované závislosti elektromagnetického momentu na otáčkách stroje	4
3.1	Změna rezistivity rotorového vinutí	4
3.2	Změna rezistivity statorového vinutí	5
3.3	Změna magnetizační indukčnosti stroje	5
3.4	Změna rozptylové indukčnosti statorového vinutí stroje	6
3.5	Změna rozptylové indukčnosti rotorového vinutí stroje	6
	Conclusion	8
	References	9
Příloha	A Seznam symbolů a zkratek	10
A.1	Seznam zkratek	10
A.2	Seznam symbolů	11

SEZNAM OBRÁZKŮ

3 - 1	Závislost elektromagnetického hnacího momentu $M_{\rm h}$ na otáčkách stroje, vynesená při	
	změně rezistivity rotorového viutí o $\pm 10\%$.	5
3 - 2	Závislost elektromagnetického hnacího momentu $M_{\rm h}$ na otáčkách stroje, vynesená při	
	změně rezistivity statorového viutí o $\pm 10\%$.	5
3 - 3	Závislost elektromagnetického hnacího momentu $M_{\rm h}$ na otáčkách stroje, vynesená při	
	změně magnetizační indukčnosti o $\pm 10\%$.	6
3 - 4	Závislost elektromagnetického hnacího momentu $M_{\rm h}$ na otáčkách stroje, vynesená při	
	změně rozptylové indukčnosti statorového vinutí o $\pm 10\%$	6
3 - 5	Závislost elektromagnetického hnacího momentu $M_{\rm h}$ na otáčkách stroje, vynesená při	
	změně rozptylové indukčnosti rotorového vinutí o $\pm 10\%$.	7

SEZNAM TABULEK

3 - 1	Štítkové údaje stroje.	4
3 - 2	Změřené parametry stroje.	4

1 Rovnice asynchronního motoru - využívané pro řízení

Rovnice pro ASM je možné odvodit při uvažování následujících zjednodušení:

- tloušťka vzduchové mezery je po celém obvodu mezi rotorem a statorem konstatní,
- statorová a rotorová vinutí jsou rozložena podél obvodu vzduchové mezery sinusově, vinutí jednotlivých fází jsou proti vůči sobě natočeny o 120°,
- ztráty v železe jsou zanedbány,
- není uvažováno sycení magnetického obvodu,
- aktivní železo stroje má nekonečnou relativní permeabilitu,
- statorová a rotorová vinutí jsou souměrná, tj. činné odpory, indukčnosti a vzájemné indukčnosti jednotlivých fází jsou identické.

Při uvažování uvedených zjednodušení je poté možné psát rovnice v obecném souřadnicovém systému k

$$\underline{u_1^k} = R_1 \underline{i_1^k} + \frac{\mathrm{d}\psi_1^k}{\mathrm{d}t} + \mathrm{j}\omega_k \underline{\psi_1^k},\tag{1-1}$$

$$\underline{u_2^k} = R_2 \underline{i_2^k} + \frac{\mathrm{d}\psi_2^k}{\mathrm{d}t} + \mathrm{j}(\omega_k - \omega)\underline{\psi_2^k},\tag{1-2}$$

$$\psi_1^k = L_1 i_1^k + L_m i_2^k, \tag{1-3}$$

$$\psi_2^k = L_2 i_2^k + L_m i_1^k. \tag{1-4}$$

Kde k v horním indexu značí obecný souřadnicový systém, $\underline{u_1^k}$ (V) značí prostorový vektor napětí statorového vinutí, $\underline{u_2^k}$ (V) prostorový vektor napětí rotorového vinutí, $\underline{\psi_1^k}$ (Wb) prostorový vektor spřaženého magnetického toku statorového vinutí, $\underline{\psi_2^k}$ (Wb) prostorový vektor spřaženého magnetického toku rotorového vinutí, R_1 () rezistivita statorového vinutí, R_2 (Ω) rezistivita rotorového vinutí, $\underline{i_1^k}$ (A) prostorový vektor proudu statorového vinutí, $\underline{i_2^k}$ (A) prostorový vektor proudu rotorového vinutí, $\underline{u_1^k}$ (α) elektrická úhlová rychlost rotoru, α_s (s⁻¹) skluzová rychlost, α_s (s⁻¹) obecná úhlová rychlost, α_s (H) indukčnost rotorového vinutí.

V tomto textu jsou rovnice uvedeny obecně. Ovšem velmi často bývá uvažován ASM s kotvou nakrátko. Pro jeho model je možné uvažovat $\underline{u_k}=0$.

1.1 Rovnice pro soustavu spojenou se statorovým vinutím

V případě uvažování souřadné soustavy spojené se statorovým vinutím stroje, je možné upravit a zjedodušit rovnice popisující systém dle následujících vztahů. Souřadnicový systém spojený se statorovým vinutím se v literatuře často označuje jako systém $\alpha\beta$. Pro obecnou otáčivou rychlost ω_k soustavy platí $\omega_k = 0$.

$$\underline{u_1^{\alpha\beta}} = R_1 \underline{i_1^{\alpha\beta}} + \frac{\mathrm{d}\psi_1^{\beta}}{\mathrm{d}t},\tag{1-5}$$

$$\underline{u_2^{\alpha\beta}} = R_2 \underline{i_2^{\alpha\beta}} + \frac{\mathrm{d}\psi_2^{\alpha\beta}}{\mathrm{d}t} - \mathrm{j}\omega\underline{\psi_2^{\alpha\beta}},\tag{1-6}$$

$$\psi_1^{\alpha\beta} = L_1 i_1^{\alpha\beta} + L_m i_2^{\alpha\beta},\tag{1-7}$$

$$\psi_2^{\alpha\beta} = L_2 i_2^{\alpha\beta} + L_{\rm m} i_1^{\alpha\beta}. \tag{1-8}$$

1.2 Rovnice pro soustavu spojenou s rotorovým vinutím

V případě uvažování modelu ASM v souřadnicovém systému spojeném s rotorovým vinutím platí pro obecnou otáčivou rychlost obecných rovnic $\omega_k = \omega$, kde ω (s¹) je elektrická úhlová rychlost otáčení rotoru (rotorového vinutí). Souřadnicový systém je možné označit jako kl.

$$\underline{u_1^{kl}} = R_1 \underline{i_1^{kl}} + \frac{\mathrm{d}\psi_1^{kl}}{\mathrm{d}t} + \mathrm{j}\omega\underline{\psi_1^k},\tag{1-9}$$

$$\underline{u_2^{kl}} = R_2 \underline{i_2^{kl}} + \frac{d\underline{\psi_2^{kl}}}{dt},\tag{1-10}$$

$$\underline{\psi_1^{kl}} = L_1 \underline{i_1^{kl}} + L_{\rm m} \underline{i_2^{kl}},\tag{1-11}$$

$$\psi_2^{kl} = L_2 i_2^{kl} + L_{\rm m} i_1^{kl}. \tag{1-12}$$

1.3 Rovnice pro soustavu spojenou s točivým magnetickým polem

Souřadnicový systém spojený s točivým magentickým polem je velmi často označován jako systém dq. Pro obecnou úhlovou rychlost platí $\omega_k = \omega_1$, kde ω_1 (s¹) je elektrická úhlová rychlost točivého magnetického pole statoru, resp. rotoru.

$$\underline{u_1^{dq}} = R_1 \underline{i_1^{dq}} + \frac{d\psi_1^{dq}}{dt} + j\omega_1 \psi_1^{dq}, \qquad (1 - 13)$$

$$\underline{u_2^{dq}} = R_2 \underline{i_2^{dq}} + \frac{d\underline{\psi}_2^{dq}}{dt} + j(\omega_1 - \omega)\underline{\psi}_2^{dq}, \qquad (1 - 14)$$

$$\underline{\psi_1^{dq}} = L_1 i_1^{dq} + L_m i_2^{dq}, \tag{1-15}$$

$$\psi_2^{dq} = L_2 i_2^{dq} + L_{\rm m} i_1^{dq}. \tag{1-16}$$

Velmi často se rozdíl $\omega_1 - \omega$ označuje jako skluzuvá rychlost ω_s (s⁻¹).

2 Rovnice asynchronního motoru - využívané pro modelování

Představené rovnice jsou např. vhodné pro modelování stroje při využívání FOC. Existuje mnoho dalších vyjádření představených rovnic podle toho, co je od modelu očekáváno a jaké veličiny je snadné měřit a které dopočítávat pomocí modelu.

Velmi často se v literatuře objevuje stavový popis modelu stroje s různými stavovými veličinami. V případě již zmiňovaného FOC se jako stavových proměnných využívá prostorových vektorů proudu statorového vinutí $\underline{i_1}$ např. v souřadnicové soustavě spojené se statorovým vinutím $(\underline{i_1^{\alpha\beta}})$ a spřažených magnetických toků rotorového vinutí ψ_2 (opět např. vyjádřených v systému spojeném se statorovým vinutím $\psi_2^{\alpha\beta}$).

V [1] jsou uvedeny stavové popisy pro uvedený systém v poměrných jednotkách. Pokud poměrné jednotky nejsou využívány, je možné modely převést na zjednodušené popisy v absolutních jednotkách, jako je tomu např. v [2].

Model implementovaný v prostředí MATLAB je převzat ze stavového popisu uvedeném v [2]. Tento stavový popis je uveden v rovnici 2 - 1.

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} i_{1\alpha} \\ i_{1\beta} \\ \psi_{2\alpha} \\ \psi_{2\beta} \end{bmatrix} = \begin{bmatrix} -\frac{R_2 L_{\mathrm{m}}^2 + L_2^2 R_1}{\sigma L_1 L_2^2} & 0 & \frac{L_{\mathrm{m}} R_2}{\sigma L_1 L_2^2} & \frac{L_{\mathrm{m}}}{\sigma L_1 L_2} \omega \\ 0 & -\frac{R_2 L_{\mathrm{m}}^2 + L_2^2 R_1}{\sigma L_1 L_2^2} & -\frac{L_{\mathrm{m}}}{\sigma L_1 L_2} \omega & \frac{L_{\mathrm{m}} R_2}{\sigma L_1 L_2} \\ \frac{L_{\mathrm{m}} R_2}{L_2} & 0 & -\frac{R_2}{L_2} & -\omega \\ 0 & \frac{L_{\mathrm{m}} R_2}{L_2} & \omega - \frac{R_2}{L_2} \end{bmatrix} \begin{bmatrix} i_{1\alpha} \\ i_{1\beta} \\ \psi_{2\alpha} \\ \psi_{2\beta} \end{bmatrix} + \begin{bmatrix} \frac{1}{\sigma L_1} & 0 \\ 0 & \frac{1}{\sigma L_1} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1\alpha} \\ u_{2\beta} \end{bmatrix}. \tag{2-1}$$

Stavový popis je vhodné doplnit o další rovnice, jež budou v simulaci využity.

$$M = \frac{3}{2} p_{\rm p} \frac{L_{\rm m}}{L_2} (\psi_{2\alpha} i_{1\beta} - \psi_{2\beta} i_{1\alpha}), \tag{2-2}$$

$$M - M_{\rm z} = J \frac{\mathrm{d}\Omega}{\mathrm{d}t},\tag{2-3}$$

$$\omega = p_{\rm p}\Omega,\tag{2-4}$$

kde $\sigma=1-L_{\rm m}^2/(L_1L_2)$ (-) je tzv. rozptyl, $i_{1\alpha}$ (A) a $i_{1\beta}$ (A) jsou složky vektoru statorového proudu $\underline{i_1}$ (A), $\psi_{2\alpha}$ (Wb) a $\psi_{2\beta}$ (Wb) jsou složky vektoru rotorového magnetického toku $\underline{\psi_2}$ (Wb), $u_{1\alpha}$ (V) a $u_{1\beta}$ (V) jsou složky statorového napětí $\underline{u_1}$ (V), $p_{\rm p}$ (-) je počet polpárů stroje, ω (s⁻¹) je elektrická úhlová rychlost hřídele, Ω (s⁻¹) je mechanická úhlová rychlost hřídele, M je vnitřní elektromechanický moment stroje a $M_{\rm z}$ (Nm) je moment zátěžný.

3 Simulované závislosti elektromagnetického momentu na otáčkách stroje

Díky matematickému modelu stroje, vytvořeném v prostředí MATLAB Simulink, je možné vynést charakteristik veličin, které jsou v reálném prostředí neměřitelné. V případě této práce je vynesena závislost elektromagnetického (hnacího) momentu stroje na otáčkách stroje při změně vybraných veličin.

Vybrané veličiny jsou následující:

velikost rezistivity rotorového vinutí/kotvy stroje R_2 (např. při změně oteplení stroje), velikost rezistivity statorového vinutí R_1 (např. při změně oteplení stroje), velikost magnetizační indukčnosti stroje $L_{\rm m}$, velikost rozptylové indukčnosti rotorového vinutí $L_{1\sigma}$, velikost rozptylové indukčnosti rotorového vinutí $L_{2\sigma}$.

Model stoje byl vytvořen na základě reálného stroje, umístěného v laboratoři H-26. Vinutí stroje je spojeno do hvězdy.

Tab. 3 - 1 Štítkové údaje stroje.

P_{n}	12 kW
U_{n}	380 V
I_{n}	22 A
n_{n}	$1460 \; \mathrm{min}^{-1}$
f_{n}	50 Hz
$\cos(\varphi_n)$	0.8
p_{p}	2

Tab. 3 - 2 Změřené parametry stroje.

R_1	$370~\mathrm{m}\Omega$
R_2	$225~\mathrm{m}\Omega$
$L_{1\sigma}$	2,27 mH
$L_{2\sigma}$	2,27 mH
L_{m}	82,5 mH
L_1	84,77 mH
L_2	84,77 mH
J	$0.4 \text{ kg} \cdot \text{m}^2$

Kde $P_{\rm n}$ (W) je jmenovitý výkon stroje, $I_{\rm n}$ (A) je jmenovitý fázový proud stroje (efektivní hodnota), $U_{\rm n}$ (V) je jmenovité sdružené napájací napětí stroje, $f_{\rm n}$ (Hz) je jmenovitá napájecí frekvence stroje, $\cos(\varphi_{\rm n})$ (-) je jmenovitý účinník stroje, $n_{\rm n}$ (min $^{-1}$) jsou jmenovité otáčky stroje, $p_{\rm p}$ (-) je počet polpárů stroje, $R_{\rm 1}$ (Ω), resp. $R_{\rm 2}$ (Ω) je statorový, resp. rotorový odpor, $L_{\rm 1\sigma}$ (H), resp. $L_{\rm 2\sigma}$ (H) je statorová, resp. rotorová rozptylová indukčnost stroje, $L_{\rm m}$ (H) je magnetizační indukčnost stroje, $L_{\rm 1}$ (H), resp. $L_{\rm 2}$ (H) je statorová, resp. rotorová indukčnost, J (kg·m 2) je moment setrvačnosti hřídele.

3.1 Změna rezistivity rotorového vinutí

Obr. 3 - 1 Závislost elektromagnetického hnacího momentu M_h na otáčkách stroje, vynesená při změně rezistivity rotorového viutí o $\pm 10\%$.

3.2 Změna rezistivity statorového vinutí

Obr. 3 - 2 Závislost elektromagnetického hnacího momentu M_h na otáčkách stroje, vynesená při změně rezistivity statorového viutí o $\pm 10\%$.

3.3 Změna magnetizační indukčnosti stroje

Obr. 3 - 3 Závislost elektromagnetického hnacího momentu M_h na otáčkách stroje, vynesená při změně magnetizační indukčnosti o $\pm 10\%$.

3.4 Změna rozptylové indukčnosti statorového vinutí stroje

Obr. 3 - 4 Závislost elektromagnetického hnacího momentu M_h na otáčkách stroje, vynesená při změně rozptylové indukčnosti statorového vinutí o $\pm 10\%$.

3.5 Změna rozptylové indukčnosti rotorového vinutí stroje

Obr. 3 - 5 Závislost elektromagnetického hnacího momentu M_h na otáčkách stroje, vynesená při změně rozptylové indukčnosti rotorového vinutí o $\pm 10\%$.

Conclusion

And this is the conclusion of my report. P_n .

Literatura

- [1] M., Popescu. Induction Motor Modelling for Vector Control Purposes. In: *Helsinki University of Technology, Laboratory of Electromechanics* [online]. 2000 [cit. 2023-10-14]. Dostupné z: https://avys.omu.edu.tr/storage/app/public/mustafa.aktas/110896/induction_motor_modelling.pdf.
- [2] LIPČÁK, Ondřej; BAUER, Jan. Doprovodný materiál k přednáškám. In: *Materiál k přednáškám a cvičení v předmětu B1M14EPT* [online]. [B.r.] [cit. 2023-02-28]. Dostupné z: https://moodle.cvut.cz.

Appendix A: Seznam symbolů a zkratek

Seznam zkratek ASM Asynchronní Motor

FOC Field Oriented Control

A.2 Seznam symbolů P_n (W) nominal power