Compilers: DFA Minimization

a topic in

DM565 - Formal Languages and Data Processing

Kim Skak Larsen

Department of Mathematics and Computer Science (IMADA) University of Southern Denmark (SDU)

kslarsen@imada.sdu.dk

October, 2019

DFA Minimization

One can prove that given a regular language L, the DFA with the fewest states recognizing L is unique (up to renaming of states).

On the next slides, we will see how to compute such a smallest DFA.

The algorithm we use assumes that all states are reachable, so to arrive at the correct result in all cases, we start by removing unreachable states.

Computing Reachable States for DFA

```
let reachable states := {q0};
let new states := {q0};
do {
    temp := the empty set;
    for each q in new states do
        for each c in \Sigma do
             temp := temp u \{ p \text{ such that } p = \delta(q,c) \};
        end:
    end:
    new states := temp \ reachable states;
    reachable states := reachable states u new states;
} while (new states ≠ the empty set);
unreachable states := Q \ reachable states;
```

DFA Minimization

Next, we run the DFA Minimization Algorithm on the next slide with one modification:

It has been proven that it is sufficient to add only one of the sets F or $Q \setminus F$ to W. That is what we will do in the example following the presentation of the algorithm, including the smallest of those two sets (for efficiency).

DFA Minimization Algorithm

```
P := \{F, 0 \setminus F\}:
W := \{F, Q \setminus F\};
while (W is not empty) do
     choose and remove a set A from W
     for each c in \Sigma do
           let X be the set of states for which a transition on c leads to a state in A
           for each set Y in P for which X n Y is nonempty and Y \ X is nonempty do
                 replace Y in P by the two sets X n Y and Y \ X
                if Y is in W
                      replace Y in W by the same two sets
                el se
                      if |X \cap Y| \ll |Y \setminus X|
                            add X n Y to W
                      else
                            add Y \ X to W
           end:
     end:
end:
```

Example DFA

P: $\{\{c, d, e\}, \{a, b, f\}\}$ W: $\{\{c, d, e\}\}$

1. iteration: $A = \{c, d, e\}$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$:

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$:

$$\frac{1. \text{ iteration: } A = \{c, d, e\}}{c = 0: \ X = \{c, d, e\}}$$
$$c = 1: \ X = \{a, b\}$$

P:
$$\{\{c, d, e\}, \{a, b, f\}, \{a, b\}, \{f\}\}\$$

W: $\{\{c, d, e\}\}\$

$$\frac{1. \text{ iteration: } A = \{c, d, e\}}{c = 0: \ X = \{c, d, e\}}$$
$$c = 1: \ X = \{a, b\}$$

P:
$$\{\{c,d,e\},\{a,b,f\},\{a,b\},\{f\}\}\$$
W: $\{\{c,d,e\},\{f\}\}\$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$: $X = \{a, b\}$

P:
$$\{\{c,d,e\},\{a,b,f\},\{a,b\},\{f\}\}\$$
W: $\{\{c,d,e\},\{f\}\}\$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$: $X = \{a, b\}$

2. iteration:
$$A = \{f\}$$

P:
$$\{\{c,d,e\},\{a,b,f\},\{a,b\},\{f\}\}\$$
W: $\{\{c,d,e\},\{f\}\}\$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$: $X = \{a, b\}$

2. iteration:
$$A = \{f\}$$

 $c = 0$:

P:
$$\{\{c,d,e\},\{a,b,f\},\{a,b\},\{f\}\}\$$
W: $\{\{c,d,e\},\{f\}\}\$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$: $X = \{a, b\}$

2. iteration:
$$A = \{f\}$$

 $c = 0$: $X = \{f\}$

P:
$$\{\{c,d,e\},\{a,b,f\},\{a,b\},\{f\}\}\$$
W: $\{\{c,d,e\},\{f\}\}\$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$: $X = \{a, b\}$

2. iteration:
$$A = \{f\}$$

 $c = 0$: $X = \{f\}$
 $c = 1$:

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$: $X = \{a, b\}$

2. iteration:
$$A = \{f\}$$

 $c = 0$: $X = \{f\}$
 $c = 1$: $X = \{c, d, e, f\}$

P:
$$\{\{c,d,e\},\{a,b,f\},\{a,b\},\{f\}\}\$$
W: $\{\{c,d,e\},\{f\}\}\$

1. iteration:
$$A = \{c, d, e\}$$

 $c = 0$: $X = \{c, d, e\}$
 $c = 1$: $X = \{a, b\}$

2. iteration:
$$A = \{f\}$$

 $c = 0$: $X = \{f\}$
 $c = 1$: $X = \{c, d, e, f\}$

Constructing the Minimal DFA

- The set P is the set of states.
- The start state is the state containing the original start state.
- Any state containing an original final state is a final state.
- If original states a and b are contained in new states S_a and S_b and there is a transition on $\alpha \in \Sigma$ from a to b, then there is a transition on α from S_a to S_b .

Example (continued)

An Application in Type Checking

See the lecture notes for a discussion of how this can be used to decide structural equivalence very efficiently.