LÓGICA DE PROGRAMAÇÃO

Engenharia de Controle e Automação & Engenharia Mecânica Lista Geral de exercícios Prof. Jonatha Costa jonatha.costa@ifce.edu.br

Abstract

Este documento apresenta uma lista abrangente de exercícios de lógica de programação elaborada para os cursos de Engenharia de Controle e Automação e Engenharia Mecânica do IFCE campus Maracanaú. Os exercícios cobrem tópicos fundamentais como fluxogramas, estruturas condicionais if e switch, estruturas de repetição (while, do-while e for), operações com operadores ternários, ponteiros, uso de macros #define e geração de números aleatórios com rand(). Incluem-se também questões aplicadas à engenharia, abordando problemas reais de automação industrial, controle de processos e instrumentação. O objetivo principal é consolidar o aprendizado de algoritmos e lógica de programação, além de desenvolver a capacidade de resolução de problemas práticos pelos alunos, preparando-os para aplicações computacionais nas disciplinas avançadas do curso.

Exercícios de Fluxograma

- 1. Construa um fluxograma para os seguintes algoritmos:
 - a) Realizar a troca de pneu de um veículo de passeio;
 - b) Trocar uma lâmpada residencial de teto;
 - c) Receber três números e classificar o tipo de triângulo por eles formado (escaleno, isósceles ou equilátero). Informar se os números não formarem um triângulo;
 - d) Calcular as raízes de uma equação quadrática qualquer.

Exercícios de Fixação: comandos printf e scanf

- 2. Escreva um código (script) que declare quatro variáveis inteiras no código principal e atribua a elas os valores 10, 20, 30 e 40. Declare também seis variáveis caracteres e atribua as letras 'c', 'o', 'e', 'l', 'h', 'a'. Finalmente, o programa deverá imprimir todas as variáveis declaradas.
- 3. Escreva um código (script) que receba os coeficientes de uma função quadrática e retorne:
 - (a) f(x); (c) f(x) para x = 3;
 - (b) df/dx; (d) df/dx para x = 3.
- 4. Escreva um programa que declare três variáveis inteiras x, y e z. Seu programa deve solicitar ao usuário os três números e armazenar esses números nas variáveis x, y e z. Após isso, deve imprimir em tela o resultado de x, y e z após cada operação:

(a) y = x + +

(c) x = x - y + z

(b) z = + + y

(d) y = x - z - -

Exercícios com o Comando if

- 5. Escreva um programa que leia os coeficientes a, b e c de uma equação do 2^{0} grau e determine se ela possui raízes reais distintas, iguais ou complexas, com base no valor do discriminante $\Delta = b^{2} 4ac$.
- 6. Crie um programa que leia um valor real x e classifique o valor da função $f(x) = x^2 4x + 3$ como positivo, negativo ou nulo.
- 7. Escreva um programa que leia uma nota e verifique se o aluno está aprovado ou reprovado, considerando nota de aprovação igual a 7,0.
- 8. Escreva um programa que leia duas notas, calcule a média e verifique se o aluno está aprovado ou reprovado (7,0).
- 9. Escreva um programa que leia duas notas, calcule a média ponderada e verifique se o aluno foi aprovado ou reprovado (7,0).

 Utilize como peso: $nota_1 = 2$ e $nota_2 = 3$.
- 10. Escreva um programa que leia 5 valores inteiros, encontre o maior, o menor e calcule a média.
- 11. Escreva um programa que leia 5 valores reais (float), encontre o maior, o menor e calcule a média.

Exercícios com o Comando switch

- 12. Escreva um programa em C para ler uma letra e verificar se é uma vogal ou não.
- 13. Escreva um programa em C que imprima o nome de um mês de acordo com o número digitado pelo usuário e informe se o número possui mês correspondente ou não. (Use o calendário gregoriano).
- 14. Escreva um programa em C que leia um número entre 0 e 10 e escreva este número por extenso. Utilize o comando *switch*.
- 15. Escreva um programa em C que receba um dígito e informe se é um sinal de pontuação, identificando-o (. : ; ! ?).
- 16. Escreva um programa em C que receba o preço de um produto e o tipo de pagamento. Apresente o preço líquido com:
 - desconto de 10% para pagamento à vista,
 - desconto de 5% para pagamento no cartão em 1 vez,
 - acréscimo de 10% se parcelado.

Estruturas de Controle de Repetição – while e do-while

- 17. Escreva um programa que mostre todos os números ímpares de 1 até 100.
- 18. Escreva um programa que imprima todos os divisores de um número inteiro positivo.
- 19. Escreva um programa que leia um número e verifique se ele é um número primo.
- 20. Escreva um programa que solicite um número ao usuário e mostre sua tabuada completa (de 1 até 10).
- 21. Escreva um programa que solicite 10 números ao usuário, através de um laço while, e ao final mostre qual destes números é o maior.
- 22. Escreva um programa que leia 10 números e escreva a diferença entre o maior e o menor valor lido.
- 23. Implemente um programa que calcule a potência x^n , em que x é um número real e n é um número natural informado pelo usuário.

Estruturas de Controle de Iteração - for

- 24. Escreva um programa que faça uma contagem regressiva de 10 até 1.
- 25. Escreva um programa que leia a idade de 10 pessoas e imprima quantas são maiores de idade.
- 26. Escreva um programa que leia a idade e o peso de 8 pessoas. Calcule e imprima as médias de peso das pessoas de cada faixa etária e quantas são de cada faixa. As faixas são: 1 a 10 anos; 11 a 20 anos; 21 a 30 anos; e maiores de 30 anos.
- 27. Escreva um programa que calcule o fatorial de um número.
- 28. Escreva um programa que imprima todos os divisores de um número, usando o laço for.
- 29. Escreva um programa que calcule a soma de todos os números pares entre 1 e 100.

Exercícios com Vetores

- 30. Escreva um código em C que preencha um vetor com 10 números e indique o maior número ao varrer o vetor preenchido.
- 31. Escreva um código em C que preencha um vetor com 10 números e indique o maior, o menor número e a diferença entre eles.
- 32. Escreva um código em C que preencha um vetor com 10 números e retorne quais são os números ímpares deste vetor.
- 33. Escreva um código em C que preencha um vetor com 10 números e retorne quais são os números primos deste vetor.

Exercícios com Matrizes

- 34. Escreva um código em C que preencha uma matriz 3×3 e imprima-a.
- 35. Escreva um código em C que crie um algoritmo que leia os elementos de uma matriz inteira 3×3 e imprima outra matriz multiplicando cada elemento da primeira matriz por 2.
- 36. Escreva um código em C que receba 6 valores numéricos inteiros numa matriz 2×3 e mostre a soma destes 6 números.
- 37. Escreva um código em C que receba os elementos de uma matriz inteira 4×4 e imprima os elementos da diagonal principal.
- 38. Escreva um código em C que receba os elementos de uma matriz inteira 3×3 e imprima todos os elementos, exceto os elementos da diagonal principal.

Exercícios com Blocos de Funções

Para cada item proposto, desenvolva funções definidas pelo programador (por exemplo, void soma(int a,int b)) que solucionem o problema de forma modular e organizada. Utilize, sempre que possível, pelo menos duas ou três estruturas de controle de fluxo em cada implementação.

- 39. Ler um número e informar se o número é maior, menor ou igual a 7,0;
- 40. Ler um número e informar se o número é par ou ímpar;
- 41. Ler um número e informar se o número é primo ou não;
- 42. Ler um número e informar se o número pertence aos \mathbb{N} .
- 43. Ler 5 valores, encontrar o maior, o menor e a média utilizando números reais (float).
- 44. Ler uma letra e verificar se é uma vogal ou não.
- 45. Ler um número entre 0 e 10 e escrevê-lo por extenso.
- 46. Elaborar um código que receba dois números, a e b, tal que $0 \le a \le 10$ e $25 \le b \le 100$, identifique e informe os valores ímpares e primos contidos nesse intervalo.
- 47. Para $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e $y = \{10, 9, 8, 7, 6, 5, 4, 3, 2, 1\}$, calcule:

(a)
$$\sum_{i=1}^{10} x_i$$
 (c) $\sum_{i=1}^{10} x_i y_i$ (e) $z^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ (b) \bar{x} , média de x (d) $\sum_{i=1}^{10} \sqrt[i]{x_i^2 + y_i^2}$ (f) $\sigma^1 = \sqrt{z^2}$

 $^{^1\}sigma$ (sigma minúscula) e Σ (sigma maiúscula), letras do alfabeto grego.

- 48. Ler uma matriz de 3×3 , exibi-la e verificar se esta é triangular inferior; informar ao usuário.
- 49. Ler e preencher uma matriz de 3×3 , exibi-la e verificar se esta é triangular inferior, superior ou diagonal; informar ao usuário.
- 50. Escrever um programa que retorne ao usuário o k-ésimo dígito da parte não inteira de π e o valor de π até o k-ésimo dígito. Assuma que π tem apenas 13 dígitos em sua parte não inteira, que o usuário desconhece.

Exercícios de modularização em arquivos distintos

Desenvolva programas que utilizem sub-rotinas (funções) organizadas em arquivos separados, promovendo modularidade e organização no seu código. (Dica: Utilize arquivos como: "main.c", "bib.h", "rotinas-auxiliares.c".)

- 51. Ler dez (10) números, ou 'n' números conforme escolha do usuário;
- 52. Informar o maior, o menor e a média aritmética entre os números;
- 53. Informar quais números são pares, ímpares e primos;
- 54. Calcular a variância e o desvio padrão da série de números;
- 55. Reiniciar o processo até que o usuário informe que deseja encerrá-lo.

Questões Propostas Aplicadas à Engenharia

56. Controle de Temperatura de um Forno

Um forno industrial precisa manter a temperatura dentro de uma faixa de 5°C em relação à temperatura desejada. Escreva um programa em C que receba a temperatura desejada e a temperatura atual do forno. O programa deve acionar um alarme se a temperatura atual estiver fora da faixa permitida.

57. Monitoramento de Nível de Líquido

Um tanque de líquidos possui sensores que medem o nível atual de um líquido em mililitros. Escreva um programa em C que monitore o nível do tanque e ative uma bomba de escoamento quando o nível do líquido exceder um determinado limite, e desative a bomba quando o nível estiver abaixo do limite.

58. Aquisição de Dados de um Sensor de Pressão

Você está implementando um sistema de aquisição de dados para monitorar a pressão em um tubo. Escreva um programa em C que leia os valores de um sensor de pressão a cada segundo e calcule a média desses valores a cada minuto.

59. Sistema de Alarme de Incêndio

Um sistema de alarme de incêndio em um prédio monitora a temperatura e a concentração de fumaça. Escreva um programa em C que ative o alarme se a temperatura ultrapassar 70°C ou se a concentração de fumaça ultrapassar um limite seguro.

60. Controle de Nível de Água em uma Caldeira

Um sistema de controle precisa manter o nível de água em uma caldeira entre dois valores limites. Escreva um programa em C que monitore o nível de água e ative a entrada de água se o nível estiver abaixo do mínimo e a desligue se o nível estiver acima do máximo.

61. Controle de Iluminação Automática

Em um sistema de iluminação inteligente, a intensidade das luzes deve ser ajustada automaticamente com base na luz ambiente medida por um sensor LDR (Light Dependent Resistor). Escreva um programa em C que ajuste a intensidade da iluminação interna com base na leitura do sensor LDR.

62. Detecção de Obstáculos em um Veículo Autônomo

Um veículo autônomo utiliza sensores de proximidade para evitar colisões. Escreva um programa em C que analise os dados de múltiplos sensores de proximidade e acione uma mudança de direção ou freio se algum obstáculo for detectado a menos de 1 metro do veículo.

Questões Propostas com Ternários, ponteiros e #define

- 63. **Operador Ternário com Números**: Escreva um programa que utilize o operador ternário para verificar se um número é positivo, negativo ou zero. O programa deve imprimir a mensagem correspondente:
 - Se o número for positivo, deve imprimir "Número positivo".
 - Se o número for negativo, deve imprimir "Número negativo".
 - Se o número for zero, deve imprimir "Número zero".
- 64. Uso de #define para Definir Constantes: Utilize a diretiva #define para definir uma constante para o valor de PI e calcule a área de um círculo de raio 5. A fórmula para calcular a área de um círculo é:

$$A = \pi \times r^2$$

Em que r é o raio do círculo.

- 65. Ponteiro para String: Implemente um programa que utilize um ponteiro para armazenar e imprimir uma string. O programa deve armazenar a string "Bemvindo ao C!" em um ponteiro de caractere e imprimi-la utilizando printf.
- 66. Operador Ternário com Ponteiros: Escreva um programa que, utilizando o operador ternário, decida qual das duas variáveis ponteiro ptr1 ou ptr2 deve ser utilizada com base no valor de um número inteiro a. Se a > 10, o programa deve usar ptr1, caso contrário, ptr2. Ambas as variáveis ponteiro devem apontar para um valor inteiro.
- 67. Uso de #define para Função de Cálculo: Utilizando #define, crie uma macro chamada SQUARE(x) que calcula o quadrado de um número x. Use essa macro para calcular o quadrado de um número inserido pelo usuário e imprima o resultado.

- 68. Uso de Ponteiros para Funções: Escreva uma função que receba um ponteiro para um número inteiro e altere seu valor para 100. No programa principal, crie uma variável inteira, passe seu ponteiro para a função e imprima o valor alterado.
- 69. **Operador Ternário e Arrays**: Dado um array de inteiros, escreva um programa que utilize o operador ternário para verificar se o primeiro elemento é maior que 10. Se for, imprima "Maior que 10", caso contrário, imprima "Menor ou igual a 10".
- 70. Manipulação de Ponteiros em Arrays: Crie um programa que utilize ponteiros para manipular um array de inteiros. O programa deve imprimir os elementos do array, acessando-os através de ponteiros.
- 71. Estrutura com Ponteiros: Defina uma estrutura chamada Pessoa com os campos nome e idade. Crie um ponteiro para uma variável do tipo Pessoa, atribua valores a esses campos e imprima as informações.
- 72. Uso de #define para Definir Tipos: Utilize a diretiva #define para criar um tipo de dado float32, que seja equivalente a float. Em seguida, crie uma variável desse tipo e imprima seu valor.

Exercícios de Fixação — Utilização de rand()

- 73. Gere e imprima 10 números aleatórios entre 1 e 100.
- 74. Simule o lançamento de um dado (números entre 1 e 6) e exiba o resultado.
- 75. Crie um vetor com 20 posições e preencha com números aleatórios entre 0 e 9.
- 76. Simule uma moeda (cara ou coroa) utilizando o rand() e repita a simulação 50 vezes, contando o número de ocorrências de cada lado.
- 77. Simule 3 partidas entre Ceará e Fortaleza. Para cada jogo, gere dois números aleatórios (0 a 5), representando os gols de cada time, e exiba o resultado.

Referências Basilares

- DEITEL, P. J.; DEITEL, H. M. *C: Como programar*. 6. ed. São Paulo: Pearson, 2011. E-book. Disponível em: (https://plataforma.bvirtual.com.br). Acesso em: 28 jun. 2025.
- PUD da Disciplina de Lógica de Programação.

Referências Complementares - Material do professor

- Material auxiliar
 - Slides disponíveis em: (https://github.com/JonathaCosta-IA/PL/tree/main/A-PL_Slides)
- Repositório geral da disciplina
 - ⟨https://github.com/jonathacosta-IA/PL⟩