Problem session 2

Reza Mohammadpour
Department of Mathematics
Uppsala University, Sweden
reza.mohammadpour@math.uu.se

- 1. (2020-08-19)A metric space (X, d) is called discrete if d(x, y) = 1 for all points $x \neq y$ in X. Prove that
 - a) a discrete metric space (X, d) is compact if and only if the set X is finite, and
 - b) a discrete metric space (X, d) is complete.
- 2. (2021-06-08)On the set \mathbb{Z}^2 of integer points in the plane, denote L = (0,0) and define the distance function $d: \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{R}$ by

$$d(P,Q) := \begin{cases} 0, & P = Q \\ |P - L| + |Q - L|, & P \neq Q \end{cases}$$

where $P,Q\in\mathbb{Z}^2$ and $|(x,y)|:=\sqrt{x^2+y^2}$ is the Euclidean metric on \mathbb{R}^2 .

- a) Show that (\mathbb{Z}^2, d) defines a metric space. (Amusingly, if L is London, d might be called the British Railway metric).
- b) Does this metric space have the Heine-Borel property? Explain!
- 3.(2020-03-16) Let X be a metric space and let A be a subset of X. Assume that A is not closed. Prove that there exists a Cauchy sequence (x_n) in A which does not converge to any point in A.
- 4.(2020-08-19) Give an example of a sequence of nonempty compact subsets C_1, C_2, \ldots of \mathbb{R}^2 (equipped with its standard metric) such that the union $\bigcup_{n=1}^{\infty} C_n$ is an open set. Prove your claim.
 - 5. (2021-03-15) Give examples or claim non-existence (with brief motivations) of:
 - a) A bounded subset of \mathbb{R}^2 with the same cardinality as \mathbb{R} .
 - b) A bounded metric space which is complete but not compact.
- 6. (2019-06-15) Give an example of an open cover of the interval (0, 1] which has no finite subcover. (Note: You must prove that your open cover indeed does not have any finite subcover.)
 - 7. (Rudin 4.2) If f is a continuous mapping of a metric space X into a metric space Y, prove that

$$f(\overline{E}) \subset \overline{f(E)}$$

for every set $E \subset X$. (\overline{E} denotes the closure of E.) Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.

8. (Rudin 4.4) Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) = f(p) for all $p \in E$, prove that g(p) = f(p) for all $p \in X$. (In other words, a continuous mapping is determined by its values on a dense subset of its domain.)

Also, one must look at the following exercises 4.1, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 in Rudin's book.