

BayesCog:

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 01

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

lei.zhang@univie.ac.at

Conduct at the University

- Read the current information provided on u:find and u:space. Information at short notice is sent via e-mail.
- Register for courses and exams.
- Always maintain a distance of I-metre from other persons.
- Wear a face mask during courses and if the minimum distance of I metre cannot be kept.
- Wash your hands regularly and thoroughly and sanitise work areas.
- Please do not use lifts, if possible.
- Do not come to the University when sick. In case of a suspected COVID-19 infection, call the hotline 1450 immediately.
- For further information, please go to studying.univie.ac.at/info.
- Register for the vaccination, http://impfservice.wien/

About me: Dr. Lei Zhang

Current: Postdoc @ <u>SCAN-Unit</u>, with <u>Prof. Claus Lamm</u>

• Ph.D. Cognitive computational neuroscience, summa cum laude

M.Sc. Cognitive neuroscience

B.Sc. Psychology

My research

Overarching goal:

Uncover the neuro-computational mechanisms underlying social affective decision-making and flexible behavior

My research:

I ask people to make decisions
 Computation

I build computational models
 Algorithm

I examine neural mechanisms
 Implementation

My research

SCIENCE ADVANCES | RESEARCH ARTICLE

A brain network supporting social influences COGNITIVE NEUROSCIENCE in human decision-making

Lei Zhang^{1,2}* and Jan Gläscher¹*[†]

Research Articles

Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package Authors: Woo-Young Ahn ≥, Nathaniel Haines, Lei Zhang

Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices

Lei Zhang, 101,2 Lukas Lengersdorff, 1,2 Nace Mikus, 1 Jan Gläscher, 3

PLOS BIOLOGY

Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in

Want to work with me?

- For planning your <u>own experiments</u>
 - decent understanding of learning theories

excellent planning and organizing skills

- For analyzing our/my existing data
 - great programming skills, e.g., R, Python
 - Ideally, have taken my SE or TEWAI

Get started? free textbook available

Get started?
Online planning tools or simply excel

Get started?

datacamp.com

Shameless self promotion

lei.zhang@univie.ac.at

https://lei-zhang.net/

@lei_zhang_lz

@LeiZhang

@lei-zhang

Goal of this course

Practical R programming, with DataCamp

Practical model-building in Stan, model diagnostics

(Enough) theory to ground you

 Be comfortable to use R/Stan for your own work + very basic knowledge of GitHub

Goal of this course

This course is **NOT** about...

- ... Bayes in the brain (e.g. predictive coding)
- ... Bayesian statistics to supersede classic statistics

However, Bayesian statistics offer great tools to analyze cognitive processes!

- Construct cognitive models
- Estimate posterior distributions of parameters
- Compare models: which is the best one, given the data
- Perform model-based analysis, e.g. model-based fMRI/EEG/eye-movement

A clear goal depends on knowledge & expectations

Pre-course survey

- sent to 20 (+5) registered students
- received 13
- 52% return rate, many thanks!

spontaneous feedback are still welcome at any time!

What is your experience with...

- Statistics?
- R? (and / or Matlab?)
- Cognitive Modeling?

You would like to...

- gain knowledge of Bayesian stats?
- be able to read "computational modeling" section in papers?
- write your own model?

Your knowledge of stats

Your knowledge of programming

Your expectations

Schedule of Lectures

19.03	L01	Introduction and overview	
26.03	L02	Introduction to R	
16.04	L03	Probability; Bayes' Theorem	
23.04	L04	Binomial model; MCMC & Stan	
30.04	L05	Simple linear model	
07.05	L06	Cognitive Modeling; Reinforcement learning model	On-going R tutorials
14.05	L07	More on RL model	on DataCamp
21.05	L08	Hierarchical modeling	
28.05	L09	More on hierarchical modeling	
04.06	L10	Optimizing Stan codes	Review a paper
11.06	L11	PRL task & model comparison	
18.06	L12	Stan style tip & debugging	
25.06	L13	Programming project + summary + HPC demo	Programming project

Course structure (from L02)

R Tutorials on DataCamp

Peer Review

researchers

read peer reviewed articles

researchers conduct new research

researchers

write an article describing their findings

experts

read article & make publication decision

journal

gives article to subject experts

submit the article to a peer reviewed journal

libraries

select most important journals for their users

libraries

pay journal subscription fees

so that YOU

have access to peer reviewed articles

preprintbioRχiv

THE PREPRINT SERVER FOR BIOLOGY

How to review a paper?

- Suppose you are invited by a journal editor to review a paper
- Of course, you have to read it⁽²⁾, carefully and critically
- Then write a review report to the editor
 - (I) Make a summary. What is this paper about? What was done? What was the conclusion?
 - (2) List your concerns. Is the design appropriate? Are the analyses sound? Do their data support the conclusion? What can be done better?
- For this course:
 - up to 3 pages (11pt, 1.5 space)
 - be independent: okay to discuss HOW to review, but do NOT discuss WHAT to review

Programming project

- already on Github
- should be summitted before the end of semester (31.07.2021)
- use R and RStan
- will be a real-world cognitive modeling problem

- hand in the *.R and *.stan files in a ZIP file
- name as: lastname matriculatenumber 200077.ZIP
- no need to write a report

Gradings

- Regular participation (25%; counting from the 26/03)
 - using Google Sheets (later via email); Be honest ©
- Regular programming tutorials (datacamp.com) (25%)
- Review a paper, 10 (25%), due on <u>23.05.2021</u>*
- Programming project, I0 (25%), due on 31.07.2021*

- Grades: >87% 1, >75% 2, >63% 3, >50% 4, <=50% 5
- At least <u>51%</u> to obtain 4 ECTS

More survey results.

More Qs about the course

NA In the course description on u:find it says that basic knowledge of R is a must. I have never worked with R, however, but I'm very interested in this course. If I put in some extra work alongside this course, is it still possible to achieve a good grade in your opinion? Yes No Is it ok if your'e not that experiencend in R yet, but are willing to learn it during the semester on your own?

Q regarding the instructor

NA

No

Recording our sessions might be helpful to look something up afterwards

misc.

No
I'm very excited for this course!

Further questions

- What knowledge is expected as a prerequisite?
 - some stats, some programming. I'll start from the beginning, but the pace may be fast

- How many R skills will we get taught?
 - As much as I could, but fit everything in one semester is difficult

- Is this course difficult?
 - this varies from person to person, but from my experience this course is indeed demanding, and can be overwhelming

What do other people say?

- SIPS commendation award
- UNIVIE teaching award for early career researchers

1/13) This semester's teaching on Bayesian stats and cognitive modeling is over! Thanks to COVID (ironically!), I recorded all my teaching sessions w/ @zoom_us, and they are available on #Youtube.

Wondered what have we covered to the cog-neuro audience? A thread

I say this a lot, bc I am also confused quite often.

Anna Jacobson @AnnaChingChing · Feb 21

"If you are confused, it is only because you are trying to understand." -@rlmcelreath in Statistical Rethinking

Anything else?

How to Get the Most out of the course

- Lecture structure: 60min theory + demo, 20-30min exercise + discussion
- Work in pairs: Talk to each other & help each other
- Ask questions
- Try the exercises

PAIR PROGRAMMING

A very quick look at GitHub

Resources

Statistical Thinking for the 21st Century

Copyright 2019 Russell A. Poldrack

Draft: 2020-03-15

http://statsthinking21.org/

https://www.datacamp.com/

https://jasp-stats.org/

Now welcome to Bayesland!

AN JEST ON

Happy Computing!