Sequential-based & Context-based approaches

Михаил Печатов (tg: @pechatov)

Sequential-based подходы

		Items					
	Γ			L O	BE	Pau famail	16
Users –	•	10	-1	8	10	9	4
		8	9	10	-1	-1	8
	A.	10	5	4	9	-1	-1
		9	10	-1	-1	-1	3
	Ř	6	-1	-1	-1	8	10

Минусы такого подхода:

Минусы такого подхода:

• Теряется фактор времени

Минусы такого подхода:

- Теряется фактор времени
- Теряется фактор последовательности

Минусы такого подхода:

- Теряется фактор времени
- Теряется фактор последовательности
- Получаем очень разреженные матрицы


```
Имеем:
user_0: [token_0, token_1, token_2, ..., token_n]
user_1: [token_0, token_1, token_2, ..., token_m]
...
```

```
Имеем: user_0: [token_0, token_1, token_2, ..., token_n] \rightarrow token_(n + 1) user_1: [token_0, token_1, token_2, ..., token_m] \rightarrow token_(m + 1) ...
```

Идея: Давайте попробуем рассмотреть транзакции/просмотры/взаимодействия пользователя как последовательность

```
Имеем:
```

```
user_0: [token_0, token_1, token_2, ..., token_n] \rightarrow token_(n + 1) user_1: [token_0, token_1, token_2, ..., token_m] \rightarrow token_(m + 1)
```

. . .

Давайте делать NLP-магию в RecSys

GRU4Rec(2015):

GRU4Rec(2015):

DREAM(2015):

Второй шаг: Encoder-decoder

Второй шаг: Encoder-decoder

Второй шаг: Encoder-decoder

RepeatNet(2019):

Второй шаг: Encoder-decoder + attention

RepeatNet(2019):

<u>Sets2Sets</u>(2019):

SASRec(2018):

SASRec(2018):

BERT4Rec(2019):

7

Пришли трансформеры = задача RecSys решена

Are we really making much progress?

Ожидания:

Реальность:

NLP: BERT >>> tf-idf

RecSys: BERT4Rec ~ top popular ~ linear model ~ MF

NLP: BERT >>> tf-idf

RecSys: BERT4Rec ~ top popular ~ linear model ~ MF

• Поведение пользователей не подчиняется законам

NLP: BERT >>> tf-idf

RecSys: BERT4Rec ~ top popular ~ linear model ~ MF

- Поведение пользователей не подчиняется законам
- Нет ультимативного датасета

NLP: BERT >>> tf-idf

RecSys: BERT4Rec ~ top popular ~ linear model ~ MF

- Поведение пользователей не подчиняется законам
- Нет ультимативного датасета
- Одной последовательности транзакций недостаточно

Context-based подходы

Контекстные модели

Идея: Давайте попробуем учесть контекст при котором была совершена транзакция

Идея: Давайте попробуем учесть контекст при котором была совершена транзакция

Обычные рекомендации:

R: User x Item → Rating

Идея: Давайте попробуем учесть контекст при котором была совершена транзакция

Обычные рекомендации:

R: User x Item → Rating

Контекстные рекомендации:

R: User x Item x Context → Rating

Идея: Давайте попробуем учесть контекст при котором была совершена транзакция

Примеры:

• Рекомендовать сырники в 10 утра – ок, в 8 вечера – не ок

Идея: Давайте попробуем учесть контекст при котором была совершена транзакция

Примеры:

- Рекомендовать сырники в 10 утра ок, в 8 вечера не ок
- Рекомендовать телефон, хотя последние 20 товаров которые просмотрел пользователь были телевизорами

Идея: Давайте попробуем учесть контекст при котором была совершена транзакция

Примеры:

- Рекомендовать сырники в 10 утра ок, в 8 вечера не ок
- Рекомендовать телефон, хотя последние 20 товаров которые просмотрел пользователь были телевизорами
- Рекомендовать обогреватель, когда на улице +40

Что такое контекст?

Что такое контекст?

Все что не является постоянным свойством пользователя или товара

Что такое контекст?

Все что не является постоянным свойством пользователя или товара

- Время
- Погода
- Настроение пользователя
- Текущая сессия
- итд

Context-based models

Context-aware Sequential Recommendation (2016)

• NLP подходы для RecSys работают

- NLP подходы для RecSys работают
- Но не стоит ждать от них чудес

- NLP подходы для RecSys работают
- Но не стоит ждать от них чудес
- С помощью контекста можно учитывать дополнительные факторы

- NLP подходы для RecSys работают
- Но не стоит ждать от них чудес
- С помощью контекста можно учитывать дополнительные факторы
- Но вероятно потребуется более сложная архитектура или больше данных

- NLP подходы для RecSys работают
- Но не стоит ждать от них чудес
- С помощью контекста можно учитывать дополнительные факторы
- Но вероятно потребуется более сложная архитектура или больше данных
- Надо пробовать!