Exercise 1 (Exercise 1). Prove that all three definitions of representations of finite groups given in the lecture notes are equivalent. Then, for the examples of the groups G and H from Examples 2.1 and 2.2 in the lecture notes, express these representations as a vector space with an action, and as a module.

The definitions in question are:

Definition 1. A representation of a group G over a field \mathbb{F} is a homomorphism

$$\rho: G \to \mathrm{GL}_n(\mathbb{F})$$

where $GL_n(\mathbb{F})$ is the group of invertible $n \times n$ matrices over \mathbb{F} .

Definition 2. A representation of a group G over a field \mathbb{F} is an \mathbb{F} -vector space V along with an action $G \rhd V$ by linear transformations, i.e. a homomorphism $\rho : G \to \mathrm{GL}(V)$.

Definition 3. A representation of a group G over a field \mathbb{F} is an $\mathbb{F}G$ -module V. (Here $\mathbb{F}G$ is the group ring consisting of formal linear combinations of elements of G over \mathbb{F} . A module is essentially a "vector space over a ring".)

Answer

We begin by showing that the first definition implies the second. Let $\rho: G \to GL_n(\mathbb{F})$ be a representation and take the vector space $V = \mathbb{F}^n$. As $GL_n(\mathbb{F}) = GL(\mathbb{F}^n)$, we define the action via

$$G\times V\to V,\; (g,v)\mapsto \rho(g)v.$$

This map is an action by linear transformations because:

- \diamond Every $\rho(g)$ is a linear transformation.
- \diamond (id, v) $\mapsto \rho(\mathrm{id})v = I_{n \times n}v$. Because ρ is a group homomorphism and it sends the identity to the identity.
- \diamond $(g,(h,v))=(g,\rho(h)v)=\rho(g)\rho(h)v=\rho(gh)v=(gh,v)$ by virtue of ρ being a homomorphism.

Now assume we would like to create a module over the group ring $\mathbb{F}G$. Recall every element of $\mathbb{F}G$ is of the form

$$\sum_{g \in G} a_g g$$

as a formal linear combination. Given an action $G \rhd V$, we may extend it to a $\mathbb{F} G$ action via

$$\rho\left(\sum_{g\in G}a_gg\right)=\sum_{g\in G}a_g\rho(g)$$