Lesson 1

1. Discuss some everyday examples of uses of supervised learning.

2. Discuss some every day examples of uses of unsupervised learning.

- 3. Discuss some everyday examples of uses of reinforcement learning.
- 4. Why should AI/ML systems be able to explain themselves?

5. How can we measure/assess interpretability in ML models?

6. Are there any other types of learning problems? Examples: Learning to rank Self-supervised learning

7. Social Media Intrinsic Popularity Assessment Problem

- 1. In each of the following scenarios, determine whether supervised, unsupervised, semi-supervised, or reinforcement learning is needed (18 pts).
 - (a) We have a dataset of images. There are more than one million distinct colors in the images. We wish to find 256 colors that represent those colors the best.
 - (b) We have a large corpus of webpages labeled by their topics. We also used a crawler to download a large number of webpages from the internet. We whish to use both datasets to build a machine learning algorithm that determines the topic of a webpage.
 - (c) We have a dataset of state-issued photo IDs. We want to build a machine learning algorithm that estimates the age of a person based on their ID portrait.
 - (d) We wish to build a vacuum cleaner that learns to clean a room and avoid obstacles.
 - (e) We have electronic health records of 2,000,000 patients. Each patient has 200 numeric features. We wish to build an algorithm that summarizes the numeric features of each patient into 20 features.
 - (f) We have a dataset of insurance claims that includes the time each claim has been processed. We want to build a model that predicts insurance claim processing time.
- 2. In the following, determine regression and classification problems (15 pts):
 - (a) Separating seabass and salmon based on their lightness and length in a food factory.
 - (b) Estimating the price of a house based on features such as location, number of bedrooms, etc.
 - (c) Diagnosis of diabetes based on electronic health records.
 - (d) Determining the MPG of a car based on its specifications.
 - (e) Determining the Myers-Briggs personality type ¹ of a person based on their writing style.
- 3. Explain if the following cases defy the no free lunch theorem (20 pts).
 - (a) Five different algorithms perform approximately similar on a data set on pregnancy diabetes.
 - (b) A special type of classifier (called the Naïve Bayes Classifier) often works particularly well with text data.
- 4. A Machine Learning engineer is designing an expert system for simple diagnosis tasks. The data set contains information about persons with a number of features describing their symptoms and the labels are the diagnosis. The data set contains the seven cases provided in the table below. (30 pts)

¹Research what it is, if you like!

Person	Fever	Vomiting	Diarrhea	Shivering	Classification
1	No	No	No	No	Healthy
2	Low	No	No	No	Flu
3	High	No	No	Yes	Flu
4	High	Yes	Yes	No	Food Poisoning
5	Low	No	Yes	No	Food Poisoning
6	No	Yes	Yes	No	Stomach Flu
7	Low	Yes	Yes	No	Stomach Flu

Sometimes, instead of a distance measure between two instances, we use a similarity measure between two instances. The higher the similarity between two instances, the lower the distance between them. The Machine Learning Engineer has determined a similarity measure according to her expertise, using local similarity measures as specified in the tables below and feature weights that are given in the sequel.

Instance	No	Low	High
No	1	0.7	0.2
Low	0.5	1	0.8
High	0	0.3	1

Table: Local similarity for feature fever.

Instance	No	Yes
No	1	0
Yes	0	1

Table: Local similarity for features vomiting, diarrhea, and shivering.

(a) Compute the similarity between all instances and the query (High, No, Yes, Yes) according to the formula:

$$sim(I,Q) = w_F sim_F + w_V sim_V + w_D sim_D + w_S sim_S$$

where sim(I,Q) is the total similarity between the instance I and the query, i.e. the test point, and $sim_F, sim_V, sim_D, sim_S$ are respectively the local similarities for features fever, vomiting, diarrhea, and shivering, and w_F, w_V, w_D , and w_S are their corresponding weights. Use $w_F = 0.25, w_V = .2, w_D = 0.3$, and $w_S = 0.25$.

- (b) How can you calculate the similarity of the training instances with the test instance (*, Yes, Yes, No), which is a patient whose fever level is unknown/missing? Calculate the similarity between the training instances and this test query using the weights in 4a.
- (c) Determine the k-nearest neighbors of the test instances in 4a and 4b and the determine the diagnosis using k = 3.

5. The conditional probability distribution function of the weight W (in kg) given the height H (in cm) in a population is Gaussian (normal), and (35 pts)

$$p_{W|H}(w|h) = \frac{1}{\sqrt{2\pi} \times 10} \exp\left(-\frac{(w - 0.5 * h^{1.001})^2}{200}\right)$$

- (a) What is the best estimate of the weight of a person as a function of their height in the sense of mean squared error? (Hint: look up the Gaussian distribution, its mean, and variance. This problem is asking you to determine the regression function w = f(h), which was shown in the lecture to be a statistical property of the conditional distribution of the output W given a particular value h of the input H.)
- (b) Use the result you obtained in 5a to estimate the weight of people whose heights are 155, 165, and 190 cm.
- (c) Would your answer to 5a and 5b change if the conditional variance of W given H = h were a function of h, say, $\sigma(h)$, i.e.:

$$p_{W|H}(w|h) = \frac{1}{\sqrt{2\pi} \times \sigma(h)} \exp\left(-\frac{(w - 0.5 * h^{1.001})^2}{2[\sigma(h)]^2}\right)$$

(d) Assume that instead of the conditional distribution, you have the following sample. Estimate the weight of people whose heights are 150, 155, 165, and 190 cm, using KNN with k=3:

$$\hat{y}_{KNN} = \frac{y_1 + y_2 + \dots + y_k}{k}$$

where y_1, y_2, \dots, y_k are the labels of the k nearest neighbors to your test instance.

Person	Height (cm)	Weight (kg)
1	171	80
2	168	78
3	191	100
4	182	80
5	150	65
6	178	83

(e) Repeat 5d, but instead of using the simple average of the labels of k nearest neighbors, which is use the following weighted average:

$$\hat{y}_{KNN} = \frac{w_1 y_1 + w_2 y_2 + \dots + w_k y_k}{w_1 + w_2 + \dots + w_k}$$

where the weight w_i for the label y_i of instance i is determined as $1/d_i$, where d_i the distance between the instance i and the test instance. It is worth noting

that normalized weights can be viewed as similarities of the training instances with the test instance. An alternative formula would be:

$$\hat{y}_{KNN} = s_1 y_1 + s_2 y_2 + \dots + s_k y_k$$

where $s_i = sim(x_i, x^*)$, where x^* is the test point.

- 4. Markov's inequality states that for any non-negative random variable X and any a>0: $P(X\geq a)\leq \frac{E[X]}{a}$, where E[X] is the expected value (average) of the random variable. Note that you do not need to have seen the Markov Inequality or its proof to answer this question. [By Sadra Sabouri Halestani]
 - (a) Apply Markov's inequality to the random variable mean squared error on the test set $(y_0 \hat{f}(x_0))^2$ and use the Bias-variance trade-off equation to derive an upper bound for the probability of squared error on the test set, $(y_0 \hat{f}(x_0))^2$, being more than a given threshold, δ , based on model bias and variance and $Var(\epsilon)$.

(b) Using the result in 4a, for a fixed δ , what models have a smaller probability of having large squared errors? (Assume that the mean squared error on the test set is less than δ)

- (c) Assume that that ϵ is distributed according to a zero-mean normal with a variance of 1.0, $\epsilon \sim N(0, 1.0)$, Compare the following models by average squared error and upper bound probability of squared error for $\delta = 1$, using the above results:
 - $Var(\hat{f}_1) = 2$, $Bias(\hat{f}_1) = -0.1$
 - $Var(\hat{f}_2) = 0.1$, $Bias(\hat{f}_2) = 2$
- (d) Repeat 4c with $\delta = 10$.

Prove that $\widehat{Y} = E[Y|X = x]$

minimizes the MSE at each x

$$E[\left(Y - \widehat{Y}\right)^2 | X = x]$$

and therefore the total MSE

$$E\left[\left(Y-\widehat{Y}\right)^2\right]$$