Aggregate Method:

• Let's say c_i be the cost of i^{th} operation, It is given that, $c_i = i$ if i an exact power of 2 and $c_i = 1$ otherwise. This implies we will have a cost like this.

Operation : i	1	2	3	4	5	6	7	8	9
$Cost : c_i$	1	2	1	4	1	1	1	8	1

$$\sum_{i=1}^{n} c_i = \sum_{j=0}^{\log n} 2^j + \sum_{j=1}^{n} 1 - \sum_{j=1}^{\log n-1} 1$$

$$= \sum_{j=1}^{\log n} 2^j + n - (\log n - 1)$$

$$<= n + \sum_{j=1}^{\log n} 2^j \text{ for all } n > 0.$$

$$<= n + (2n - 1)$$

$$< 3n => O (3n)$$

Average Cost of Operation = Total Cost / No of Operations = 3n / n = 3.

So, the amortized cost per operation = O(3) = O(1).

Accounting Analysis Method:

Operation : i	1	2	3	4	5	6	7	8	9
$Cost : c_i$	1	2	1	4	1	1	1	8	1
Amortized Cost	3	3	3	3	3	3	3	3	3

Let's assume amortized cost be 3 and we need to prove that 3 is actually amortized value.

This implies amortized
$$Cost = \sum_{i=1}^{n} c_{i (amortized)} = 3n$$

The summation of cost for each operation of i from time to time cannot be greater than the value of the sum of 3 as the value of i increases.

$$\sum_{i=1}^{n} c_{i\;(amortized)} > = \sum_{i=1}^{n} c_{i}$$

This implies the amortized cost the operation become O(3) = O(1).