PATENT ABSTRACTS OF JAPAN

(11)Publication number .:

11-068698

(43) Date of publication of application: 09.03.1999

(51)Int.CI.

H04J 13/00

H04B 1/10 HO4B 1/26

(21)Application number: 09-238951

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

20.08.1997

(72)Inventor: NAKANO TAKAYUKI

(54) SPREAD SPECTRUM DEMODULATOR AND SPREAD SPECTRUM DEMODULATION **METHOD**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a spread spectrum demodulator and a spread spectrum demodulation method where an interfering component remaining in a pilot symbol in pilot synchronization detection is reduced, while reception quality in the case of obtaining a demodulation signal from a reception signal is enhanced.

SOLUTION: An amplitude/frequency/phase estimate means 302 estimates the amplitude/frequency/phase of a pilot signal by observing the amplitude and the phase of the pilot symbol that is an output of a pilot channel inverse spread processing means 301. A sine wave generating means 303 generates a sine wave equivalent to the signal with the estimated amplitude/frequency/ phase. A synchronization detection means 305 uses the generated sine wave and an output of a data channel inverse spread processing means 304 to conduct pilot synchronization detection.

[Date of request for examination]

07.03.2000

[Date of sending the examiner's decision of

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3335887

[Date of registration]

02.08.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-68698

(43)公開日 平成11年(1999)3月9日

(51) Int.Cl. ⁶ H 0 4 J H 0 4 B	13/00 1/10 1/26	識別記号	FI H04J 13/00 H04B 1/10 1/26		A L J		
			審査請求	未請求	請求項の数13	FD	(全 9 頁)
(21)出願番号		特願平9-238951	(71)出願人				
(22)出顧日		平成9年(1997)8月20日	(72)発明者 (74)代理人	大阪府門中野 阿石川県金会社松丁	器產業株式会社 門真市大字門真1 全之 全沢市彦三町二〕 「通信金沢研究所 第田 公一	「目1番	

(54) 【発明の名称】 スペクトル拡散復調装置及びスペクトル拡散復調方法

(57)【要約】

【課題】 パイロット同期検波において、パイロットシンボルに残留する干渉成分を低減し、受信信号から 復調信号を得る際の、受信品質を向上することができる スペクトル拡散復調装置及びスペクトル拡散復調方法を提供する。

【解決手段】 振幅・周波数・位相推定手段302は、パイロットチャネル逆拡散手段301の出力であるパイロットシンボルの振幅と位相を観測することで、パイロット信号の振幅・周波数・位相を推定する。正弦波生成手段303は、推定した振幅・周波数・位相の正弦波を生成する。同期検波手段305は、この生成された正弦波とデータチャネル逆拡散手段304の出力を用いてパイロット同期検波を行う。

【特許請求の範囲】

【請求項1】 受信したパイロットシンボルの逆拡散出 力を用いて、干渉成分を除去したパイロットシンボルを 生成することを特徴とするスペクトル拡散復調装置。

1.

【請求項2】 受信したパイロットシンボルの逆拡散出 力を用いてパイロットチャネル信号の予測を行うパイロ ットシンボル予測手段と、パイロットシンボルの逆拡散 出力とパイロットシンボル予測手段の出力信号との間の 誤差が最小となる予測係数を推定する予測係数推定手段 とを具備することを特徴とするスペクトル拡散復調装

【請求項3】 受信したパイロットシンボルの逆拡散出 力をフィルタリングするフィルタリング手段と、パイロ ットシンボルの逆拡散出力によりキャリア周波数オフセ ットの値を推定してフィルタリング手段の時定数を決定 する周波数オフセット推定手段とを具備することを特徴 とするスペクトル拡散復調装置。

【請求項4】 受信したパイロットシンボルの逆拡散出 力を用いてパイロットチャネル信号の振幅と位相の推定 を行う振幅・周波数・位相推定手段と、推定した振幅・ 周波数・位相の正弦波を生成する正弦波生成手段とを具 備することを特徴とするスペクトル拡散復調装置。

【請求項5】 受信したパイロットシンボルの逆拡散出 力により各多重波のドップラーシフト量を推定する多重 波ドップラーシフト推定手段と、パイロットシンボルの 逆拡散出力に対し推定したドップラーシフトの周波数成 分を通過するフィルタから構成されるドップラーシフト 成分通過手段とを具備することを特徴とするスペクトル 拡散復調装置。

【請求項6】 受信したパイロットシンボルの逆拡散出 力をフィルタリングするフィルタリング手段と、受信品 質を測定する受信品質測定手段と、フィルタリング手段 の時定数を受信品質が最適となるように選択する最適時 定数選択手段とを具備することを特徴とするスペクトル 拡散復調装置。

【請求項7】 請求項1乃至請求項6のいずれかに記載 のスペクトル拡散復調装置を備えることを特徴とする基 地局装置。

【請求項8】 請求項1乃至請求項6のいずれかに記載 のスペクトル拡散復調装置を備えることを特徴とする移 動局装置。

【請求項9】 受信したパイロットシンボルの逆拡散出 力を用いてパイロットチャネル信号の予測を行い、パイ ロットシンボルの逆拡散出力とパイロットシンボル予測 手段の出力信号との間の誤差が最小となる予測係数を推 定し、干渉成分を除去したパイロットシンボルを生成す ることを特徴とするスペクトル拡散復調方法。

【請求項10】 受信したパイロットシンボルの逆拡散 出力をフィルタリングし、パイロットシンボルの逆拡散 ィルタリング手段の時定数を決定し、干渉成分を除去し たパイロットシンボルを生成することを特徴とするスペ クトル拡散復調方法。

【請求項11】 受信したパイロットシンボルの逆拡散 出力を用いてパイロットチャネル信号の振幅と位相の推 定を行い、推定した振幅・周波数・位相の正弦波を生成 し、干渉成分を除去したパイロットシンボルを生成する ことを特徴とするスペクトル拡散復調方法。

【請求項12】 受信したパイロットシンボルの逆拡散 10 出力により各多重波のドップラーシフト量を推定し、パ イロットシンボルの逆拡散出力に対し推定したドップラ ーシフトの周波数成分を通過し、干渉成分を除去したパ イロットシンボルを生成することを特徴とするスペクト ル拡散復調方法。

【請求項13】 受信したパイロットシンボルの逆拡散 出力をフィルタリングし、受信品質を測定し、フィルタ リング手段の時定数を受信品質が最適となるように選択 し、干渉成分を除去したパイロットシンボルを生成する ことを特徴とするスペクトル拡散復調方法。

【発明の詳細な説明】 20

[0001]

【発明の属する技術分野】本発明は、パイロット同期検 波方式によるスペクトル拡散復調装置及びスペクトル拡 散復調方法に関する。

[0002]

30

40

【従来の技術】近年、自動車・携帯電話等の陸上移動通 信に対する需要が著しく増加しており、限られた周波数 帯域上でより多くの加入者容量を確保するための周波数 有効利用技術が重要となってきている。周波数有効利用 のための多元接続方式の一つとして、符号分割多元接続 (CDMA) 方式が注目されている。CDMA方式は、 スペクトル拡散多元接続(SSMA)方式とも呼ばれ、 広帯域性や、擬似雑音(PN)系列等の符号による鋭い相 関特性等により、優れた通信品質を達成することができ る。

【0003】CDMA方式を用いた陸上移動通信システ ムに関しては、例えば、米国特許第4,901,307 号に開示されている。CDMA方式の中には、直接拡散 方式がある。この方式は、RAKE受信装置を用いて、 マルチパス成分を最大比合成するものであり、これによ りダイバーシチ効果をあげることができる。RAKE受 信装置に関しては、例えば、米国特許第5,109,3 90号に開示されている。

【0004】以下、直接拡散方式を用いたCDMAシス テムの概要について、図6を用いて説明する。図6は、 直接拡散方式を用いたCDMAシステムの構成を示すプ ロック図である。

【0005】CDMAシステムの送信装置は、送信デー 夕信号を変調する情報変調装置601と、擬似雑音系列 出力によりキャリア周波数オフセットの値を推定してフ 50 等の符号を発生する拡散符号発生装置602と、信号の

帯域幅を拡散するスペクトル拡散変調装置603と、信号を送信する送信アンテナ604とから主に構成されている。また、同システムの受信装置は、信号を受信する受信アンテナ605と、送信側で発生した拡散符号と同じ符号を同じタイミングで発生する拡散符号同期獲得装置606と、スペクトル拡散変調装置603と逆の処理を行うスペクトル拡散復調装置607と、変調された信号を復調する情報復調装置608とから主に構成されている。

【0006】CDMAシステムにおいて、音声などの送信データ信号は、情報変調装置601にて変調される。変調された信号は、送信データを伝送するために必要な帯域幅のみを有している狭帯域の信号である((a)参照)。また、拡散符号発生装置602にて発生される拡散信号の帯域幅は、情報変調装置601にて変調された信号の帯域幅に比べて十分広い((b)参照)。情報変調装置601にて変調された信号は、スペクトル拡散変調装置603にて、拡散信号を乗積され帯域が拡散され、送信アンテナ604から送信される。

【0007】受信アンテナ605に受信された信号 ((c)参照)は、スペクトル拡散復調装置607に て、広帯域から狭帯域へ変換される。具体的には、この 変換は、拡散符号同期獲得装置606にて発生した符号 を再度乗積し、積分を行うことによって行われる。

【0008】図6に示すように、送信された信号には、受信装置に至る過程で、他のユーザや熱雑音等による干渉信号が重畳する。しかし、拡散符号として、干渉信号に対する相互相関が、十分に小さいものを用いているため、スペクトル拡散復調装置607の出力では干渉成分が低減される((d)参照)。

【0009】直接拡散方式を用いたCDMAシステムでは、パイロットチャネルと呼ばれる信号が常時、あるいは周期的に送信される。例えば、セルラシステムの基地局から移動機への下り回線では、各ユーザに対する信号と共に各ユーザにとって既知であるシンボルが挿入されたパイロットチャネルが送信される。受信装置は、パイロットチャネルを用いて、同期獲得、保持、マルチパス状態の推定、同期検波、周波数同期、ハンドオフ等の処理を行う。このパイロットチャネルを用いた同期検波処理をパイロット同期検波という。

【0010】以下、従来のパイロット同期検波におけるスペクトル拡散復調装置607の動作について、図7を用いて説明する。図7は従来のスペクトル拡散復調装置607の構成を示すブロック図である。

【0011】図7に示すように、スペクトル拡散復調装置607は、パイロットチャネル用拡散符号を用いて、パイロットシンボルを逆拡散するパイロットチャネル逆拡散手段701と、パイロットシンボルを平均化する平均化手段702と、データチャネル用拡散符号を用いて、データシンボルを逆拡散するデータチャネル逆拡散 50

手段703と、平均化後のパイロットシンボル及びデータシンボルを用いて位相の回転を補正し復調信号を生成する同期検波手段704とから主に構成されている。

【0012】受信したスペクトル拡散信号の内、パイロットシンボルは、パイロットチャネル逆拡散手段701にて逆拡散され、平均化手段702にて平均化される。また、データシンボルは、データチャネル逆拡散手段703にて逆拡散される。その後、パイロットシンボル及びデータシンボルは、同期検波手段704に入力されて、位相の回転を補正され、復調信号として出力されて、

【0013】次に、パイロットシンボルの平均化について説明する。ここでは、四相位相変調(QPSK)方式による拡散を仮定する。パイロットチャネル信号として無変調信号が伝送されるとすると、パイロットチャネル逆拡散手段701から出力されるパイロットシンボルは、以下に示す(数1)で表される。

【数1】

20

30

$$I_0(t) = A_0 \cdot \cos \phi(t) + n_0'(t)$$

$$Q_0(t) = A_0 \cdot \sin \phi(t) + n_0'(t)$$

ここで、Aoはパイロットチャネル信号のレベルを示し、(t)はキャリア位相オフセットを示す。また、no!(t)、no!(t)は、他のマルチパス波からの干渉、パイロットチャネル以外のチャネルからの干渉、あるいは、他セルからの干渉等を含めた干渉成分を示す。

【0014】パイロットシンボルは、平均化手段702にて、cos(t)やsin(t)等の値が一定と見なせる時間範囲で平均化される。この平均化により干渉成分が低減され、パイロットチャネル信号のレベルAoやcos(t)、sin(t)の値が求められる。

【0015】また、ユーザkについてのデータチャネル 逆拡散手段703から出力されるデータシンボルは、以 下に示す(数2)で表される。

【数2】

$$I_k(t) = A_k \cdot d_k(t) \cdot \cos \phi(t) + n_k^{\prime}(t)$$

$$Q_k(t) = A_k \cdot d_k(t) \cdot \sin \phi(t) + n_k^{\prime}(t)$$

ここで、Akはユーザkのレベル、dk(t)はユーザkのデ 40 ータ信号を示す。また、nk¹(t)、nk⁰(t)は、他のマルチ パス被からの干渉、ユーザkのチャネル以外のチャネル からの干渉、あるいは、他セルからの干渉等を含めた干 渉成分を示す。

【0016】平均化後のパイロットシンボルおよびデータシンボルにおける干渉がないと考えると、同期検波手段704にて、内積演算によりキャリア位相オフセットが補正され、以下に示す(数3)で表される復調信号が得られる。

【数3】

 $I_0(t)\cdot I_k(t) + \mathcal{Q}_0(t)\cdot \mathcal{Q}_k(t) = A_0\cdot A_k\cdot d_k(t)$

[0017]

【発明が解決しようとする課題】ここで、移動通信のような無線回線では、パイロットチャネル信号のレベル Ao、位相オフセット(t)は、移動機の移動に伴い変化し、受信装置の局部発振器のキャリア周波数オフセット成分に加えてフェージングによる周波数シフトが発生する

【0018】上記従来のスペクトル拡散復調装置では、 平均化の周期は、cos(t)やsin(t)等の値が一定と見なせ る時間範囲でなければならず、したがって、キャリア周 波数オフセットあるいはフェージングによる周波数シフ トの周期に比べ非常に短くなる。その結果、干渉成分を 十分に低減することができず、同期検波後の復調信号が 劣化し、受信品質が低下する。

【0019】本発明はかかる点に鑑みてなされたものであり、受信信号から復調信号を得る際の、受信品質を向上することができるスペクトル拡散復調装置及びスペクトル拡散復調方法を提供することを目的とする。

[0020]

【課題を解決するための手段】本発明は上記課題を解決するために、以下のような手段を講じた。請求項1記載の発明は、受信したパイロットシンボルの逆拡散出力を用いて、干渉成分を除去したパイロットシンボルを生成する構成を採る。

【0021】この構成により、受信信号から復調信号を得る際の、受信品質を向上することができる。

【0022】また、請求項2記載の発明は、受信したパイロットシンボルの逆拡散出力を用いてパイロットチャネル信号の予測を行うパイロットシンボル予測手段と、パイロットシンボルの逆拡散出力とパイロットシンボル予測手段の出力信号との間の誤差が最小となる予測係数を推定する予測係数推定手段とを具備する構成を採る。

【0023】また、請求項9記載の発明は、受信したパイロットシンボルの逆拡散出力を用いてパイロットチャネル信号の予測を行い、パイロットシンボルの逆拡散出力とパイロットシンボル予測手段の出力信号との間の誤差が最小となる予測係数を推定し、干渉成分を除去したパイロットシンボルを生成する方法を採る。

【0024】この構成により、パイロットシンボルの最適予測値、すなわち、干渉成分が低減されたパイロットシンボルを生成することができ、干渉成分が低減されたパイロットシンボルを用いて同期検波することが可能となり、受信品質を向上することができる。

【0025】また、請求項3記載の発明は、受信したパイロットシンボルの逆拡散出力をフィルタリングするフィルタリング手段と、パイロットシンボルの逆拡散出力によりキャリア周波数オフセットの値を推定してフィルタリング手段の時定数を決定する周波数オフセット推定手段とを具備する構成を採る。

【0026】また、請求項10記載の発明は、受信した 50

パイロットシンボルの逆拡散出力をフィルタリングし、 パイロットシンボルの逆拡散出力によりキャリア周波数

オフセットの値を推定してフィルタリング手段の時定数 を決定し、干渉成分を除去したパイロットシンボルを生

成する方法を採る。 【0027】フィルタリングとは、

【0027】フィルタリングとは、受信信号に含まれる 雑音成分をなるべく分離し、意味のある信号成分のみを 取り出すことをいう。

【0028】この構成により、周波数オフセットに応じてパイロットシンボル対干渉比が最大となるようなフィルタの時定数を選択でき、最大限に干渉成分が低減されたパイロットシンボルを生成することができ、干渉成分が低減されたパイロットシンボルを用いて同期検波することが可能となり、受信品質を向上することができる。

【0029】また、請求項4記載の発明は、受信したパイロットシンボルの逆拡散出力を用いてパイロットチャネル信号の振幅と位相の推定を行う振幅・周波数・位相推定手段と、推定した振幅・周波数・位相の正弦波を生成する正弦波生成手段とを具備する構成を採る。

0 【0030】また、請求項11記載の発明は、受信したパイロットシンボルの逆拡散出力を用いてパイロットチャネル信号の振幅と位相の推定を行い、推定した振幅・周波数・位相の正弦波を生成し、干渉成分を除去したパイロットシンボルを生成する方法を採る。

【0031】この構成により、干渉成分を含まないパイロットシンボルを生成することができ、干渉成分を含まないパイロットシンボルを用いて同期検波することが可能となり、受信品質を向上することができる。

【0032】また、請求項5記載の発明は、受信したパイロットシンボルの逆拡散出力により各多重波のドップラーシフト量を推定する多重波ドップラーシフト推定手段と、パイロットシンボルの逆拡散出力に対し推定したドップラーシフトの周波数成分を通過するフィルタから構成されるドップラーシフト成分通過手段とを具備する構成を採る。

【0033】また、請求項12記載の発明は、受信したパイロットシンボルの逆拡散出力により各多重波のドップラーシフト量を推定し、パイロットシンボルの逆拡散出力に対し推定したドップラーシフトの周波数成分を通過し、干渉成分を除去したパイロットシンボルを生成する構成を採る。

【0034】この構成により、受信機の局部の発信機の 周波数オフセットならびにドップラーシフトによる周波 数/位相オフセットに応じてパイロットシンボル対干渉 比が最大となるようなフィルタを構成することができ、 最大限に干渉成分が低減されたパイロットシンボルを生 成することができ、干渉成分が低減されたパイロットシン ンボルを用いて同期検波することが可能となり、受信品 質を向上することができる。

【0035】また、請求項6記載の発明は、受信したパ

7

イロットシンボルの逆拡散出力をフィルタリングするフィルタリング手段と、受信品質を測定する受信品質測定 手段と、フィルタリング手段の時定数を受信品質が最適 となるように選択する最適時定数選択手段とを具備する 構成を採る。

【0036】また、請求項13記載の発明は、受信したパイロットシンボルの逆拡散出力をフィルタリングし、受信品質を測定し、フィルタリング手段の時定数を受信品質が最適となるように選択し、干渉成分を除去したパイロットシンボルを生成する方法を採る。

【0037】この構成により、受信品質が最適な状態となるようにパイロット同期検波を行うことができる。

【0038】また、請求項7記載の発明は、基地局装置に関するものであり、請求項1乃至請求項6のいずれかに記載のスペクトル拡散復調装置を備える構成を採る。

【0039】この構成により、受信信号から復調信号を 得る際の、受信品質を向上する基地局装置を提供するこ とができる。

【0040】また、請求項8記載の発明は、移動局装置に関するものであり、請求項1乃至請求項6のいずれかに記載のスペクトル拡散復調装置を備える構成を採る。

【0041】この構成により、受信信号から復調信号を 得る際の、受信品質を向上する移動局装置を提供するこ とができる。

[0042]

【発明の実施の形態】以下、本発明の実施の形態について図面を用いて説明する。本発明のスペクトル拡散復調装置は、受信したパイロットシンボルの逆拡散出力を用いて、干渉成分を除去したパイロットシンボルを生成するものである。

(実施の形態1) 実施の形態1は、干渉成分を除去したパイロットシンボルを生成する方法として、受信したパイロットシンボルの逆拡散出力を用いてパイロットチャネル信号の予測を行い、パイロットシンボルの逆拡散出力とパイロットシンボル予測手段の出力信号との間の誤差が最小となる予測係数を推定するものである。

【0043】図1は、実施の形態1におけるスペクトル 拡散復調装置の構成を示すプロック図である。

【0044】図1に示すように、本実施の形態におけるスペクトル拡散復調装置は、パイロットチャネル用拡散 40 符号を用いて、パイロットシンボルを逆拡散するパイロットチャネル逆拡散手段101と、パイロットチャネル逆拡散手段101の逆拡散出力を用いてパイロットチャネルがは散手段101の出力信号とパイロットチャネル逆拡散手段101の出力信号とパイロットシンボル予測手段の出力信号102との間の誤差が最小となる予測係数を推定する予測係数推定手段103と、データチャネル用拡散符号を用いて、データシンボルを逆拡散するデータチャネル逆拡散手段104と、このようにして平均化された後のパイロットシン 50

ボル及びデータシンボルを用いて位相の回転を補正し復 調信号を生成する同期検波手段105とから主に構成さ れている。

【0045】受信したスペクトル拡散信号の内、パイロットシンボルは、パイロットチャネル逆拡散手段101にて逆拡散され、予測係数推定手段103で推定された予測係数に基づきパイロットシンボル予測手段102にて干渉成分の含まれないパイロット信号が予測される。また、データシンボルは、データチャネル逆拡散手段104にて逆拡散される。その後、予測されたパイロットシンボル及びデータシンボルは、同期検波手段105に入力されて、位相の回転を補正され、復調信号として出力される。

【0046】次に、パイロットシンボルの予測について 説明する。パイロットチャネル逆拡散手段101にて逆 拡散されたパイロットシンボルには、パイロット信号成 分と干渉成分が含まれるので、以下の(数4)で表わす ことができる。

【数4】

y(t) = x(t) + n(t)

ここで、x(t)はパイロット信号、n(t)は干渉信号の成分である。

【0047】パイロットシンボル予測手段102は、以下の(数5)に示す評価関数」が最小となるようにフィルタを構成することにより、パイロットチャネル信号の予測を行う。評価関数を最小化するフィルタを設計する問題は、ウィナー問題と呼ばれ、各種の解法が知られている。この最小化には、例えば、Wiener-Hopfの方程式の解を用いることも可能であり、また、適応アルゴリズムを適用することもできる。予測係数推定手段103はこれらの解法を実現するものである。

【数5】

30

$$J = E\Big[\big(x(t+m)-x'(t+m)\big)^2\Big]$$

ここで、x'(t)はパイロットシンボル予測手段102にて予測したパイロットシンボル予測値を表わし、E[-]は平均を表わす。また、(t+m)は、時刻tから時間mだけ将来の値を予測していることを示している。

【0048】ここで、パイロットシンボル予測の一例について説明する。パイロットシンボル予測値が現在から過去Nサンプル目までのパイロットシンボルの線形結合で表わすと、以下の(数6)となる。

【数6】

$$x'(n+1) = \sum_{k=0}^{N-1} a_k \cdot y(n-k)$$

ここで、akは重み付けの係数を示し、x'(n)は時刻nT (T:サンプリング間隔、n:整数)におけるサンプル 値、Nは観測期間を示す。

50 【0049】このようにして、パイロットシンボル予測

20

30

40

値は、現在までのサンプル値それぞれに対して重みをか けることによって求められる。この重みの値は、予測係 数推定手段103において、パイロットチャネル逆拡散 手段101の出力信号とパイロットシンボル予測手段の 出力信号102との間の誤差が最小となるように予め選 ばれる。

【0050】この動作によれば、パイロットチャネル逆 拡散手段101の出力信号とパイロットシンボル予測手 段102の出力信号との間の誤差が最小となるように、 予測係数推定手段103にてパイロットシンボルを予測 でき、パイロット同期検波時のパイロットシンボルに含 まれる干渉成分を低減でき、受信品質の向上を図ること ができる。

【0051】 (実施の形態2) 実施の形態2は、干渉成 分を除去したパイロットシンボルを生成する方法とし て、受信したパイロットシンボルの逆拡散出力をフィル タリングし、パイロットシンボルの逆拡散出力によりキ ャリア周波数オフセットの値を推定してフィルタリング 手段の時定数を決定するものである。

【0052】図2は、実施の形態2におけるスペクトル 拡散復調装置の構成を示すブロック図である。

【0053】図2に示すように、本実施の形態における スペクトル拡散復調装置は、パイロットチャネル用拡散 符号を用いて、パイロットシンボルを逆拡散するパイロ ットチャネル逆拡散手段201と、パイロットチャネル 逆拡散手段201の逆拡散出力をフィルタリングするフ ィルタリング手段202と、周波数オフセットの値を推 定してフィルタリング手段202の時定数を決定する周 波数オフセット推定手段203と、データチャネル用拡 散符号を用いて、データシンボルを逆拡散するデータチ ャネル逆拡散手段204と、フィルタリング後のパイロ ットシンボル及びデータシンボルを用いて位相の回転を 補正し復調信号を生成する同期検波手段205とから主 に構成されている。

【0054】受信したスペクトル拡散信号の内、パイロ ットシンボルは、パイロットチャネル逆拡散手段201 にて逆拡散され、周波数オフセット推定手段203で推 定された時定数に基づきフィルタリング手段202にて、 フィルタリングされる。また、データシンボルは、デー タチャネル逆拡散手段204にて逆拡散される。その 後、フィルタリングされたパイロットシンボル及びデー タシンボルは、同期検波手段205に入力されて、位相 の回転を補正され、復調信号として出力される。

【0055】次に、パイロットシンボルのフィルタリン グについて説明する。パイロットシンボルには、パイロ ット信号成分Ao(t) cosø(t)、AO(t) sinø(t)と、干渉 成分no¹(t)、no⁰(t)が含まれている。パイロット信号成 分は、受信装置の局部発振器のキャリア周波数オフセッ トおよびフェージングによる周波数シフトによって変動 10

イロットシンボルは以下の(数7)で表される。

【数7】

 $I_0(t) = A_0(t) \cdot \cos \phi(t) + n_0^I(t)$ $Q_0(t) = A_0(t) \cdot \sin \phi(t) + n_0^Q(t)$

周波数オフセット推定手段203では、このパイロット 信号成分の取りうる周波数帯域を推定し、フィルタリン グ手段202の通過域の幅(あるいは時定数)を決定す る。フィルタリング手段202は、周波数オフセット推 定手段203で推定された時定数に基づき、パイロット シンボルをフィルタリングし、干渉成分を低減できる。 【0056】パイロット信号成分の取りうる周波数帯域 を推定する方法としては、自動周波数制御回路(AFC 回路)からの情報を用いる方法がある。AFC回路で は、キャリア周波数オフセットを指定した周波数範囲ま で引き込むことを目的としており、スペクトル拡散送受 信装置だけではなく、一般的に広く用いられている。A FC回路からのキャリア周波数オフセットが指定した周 波数範囲まで引き込まれたという情報により、フィルタ リング手段202における通過域の幅(あるいは時定 数)を決定できる。

【0057】また、パイロットシンボルの時間変化につ いて、単位時間当たりのゼロ交差回数を数えることによ ってもキャリア周波数オフセットを推定できる。

【0058】この動作によれば、パイロットシンボルに 対するフィルタリングの時定数を推定したキャリア周波 数オフセット成分の周波数に応じて設定するようにした ことで、パイロット同期検波時のパイロットシンボルに 含まれる干渉成分を低減でき、受信品質の向上を図るこ とができる。

【0059】 (実施の形態3) 実施の形態3は、干渉成 分を除去したパイロットシンボルを生成する方法とし て、受信したパイロットシンボルの逆拡散出力を用いて パイロットチャネル信号の振幅と位相の推定を行い、推 定した振幅・周波数・位相の正弦波を生成するものであ る。

【0060】図3は、実施の形態3におけるスペクトル 拡散復調装置の構成を示すプロック図である。

【0061】図3に示すように、本実施の形態における スペクトル拡散復調装置は、パイロットチャネル用拡散 符号を用いて、パイロットシンボルを逆拡散するパイロ ットチャネル逆拡散手段301と、パイロットチャネル 逆拡散手段301の逆拡散出力に含まれるパイロット信 号の振幅と位相を推定する振幅・周波数・位相推定手段 302と、推定された振幅・周波数・位相の正弦波を生 成する正弦波生成手段303と、データチャネル用拡散 符号を用いて、データシンポルを逆拡散するデータチャ ネル逆拡散手段304と、平均化後のパイロットシンボ ル及びデータシンボルを用いて位相の回転を補正し復調 している。その振幅をAo(t)、位相を φ(t)とすると、パ 50 信号を生成する同期検波手段305とから主に構成され

ている。

【0062】受信したスペクトル拡散信号の内、パイロ ットシンボルは、パイロットチャネル逆拡散手段301 にて逆拡散され、振幅・周波数・位相推定手段302に て干渉成分の含まれないパイロット信号の振幅・周波数 ・位相が推定される。この推定に基づき、正弦波生成手 段303にて正弦波が生成される。また、データシンボ ルは、データチャネル逆拡散手段304にて逆拡散され る。その後、生成された正弦波及びデータシンボルは、 同期検波手段305に入力されて、位相の回転を補正さ れ、復調信号として出力される。

【0063】次に、正弦波の生成について説明する。簡 単のため、パイロットシンボルにおけるパイロット信号 成分が正弦波的に変化すると仮定すると、パイロットシャ 12

*ンボルは以下の(数8)で表される。

【数8】

$$I_0(t) = A_0 \cdot \cos(2\pi f_0 t + \phi) + n_0'(t)$$

$$Q_0(t) = A_0 \cdot \sin(2\pi f_0 t + \phi) + n_0'(t).$$

振幅・周波数・位相推定手段302の目的は、上記にお ける振幅Ao、周波数fo、位相φを推定することである。 振幅・周波数・位相の推定方法としては、例えば、振 幅、位相が変化しない時間範囲でパイロットシンボルを 10 平均化して求める方法がある。平均化によって干渉成分 が除去されたとすると、振幅は、以下に示す(数9)の 時間微分値、瞬時値で求めることができる。

【数9】

$$\sqrt{I_0^{\,2}(t) + Q_0^{\,2}(t)} = \sqrt{A_0^{\,2} \cdot \cos^2(2\pi f_0 t + \phi) + A_0^{\,2} \cdot \sin^2(2\pi f_0 t + \phi)} = A_0$$

また、周波数及び位相は、以下に示す(数10)の時間 微分値、瞬時値で求めることができる。

【数10】

$$\tan^{-1}\left(\frac{Q_0(t)}{I_0(t)}\right) = 2\pi f_0 t + \phi$$

また、一般に用いられているシステム推定、同定アルゴ リズムを用いて推定することもできる。さらに、時々刻 々変化する周波数オフセットの量に対応するために適応 アルゴリズムを用いて逐次的に推定を行っていくことも できる。

【0064】正弦波生成手段303は、このように推定 した振幅・周波数・位相を有する正弦波を生成する。な お、ここでは、一つの組み合わせの振幅・周波数・位相 で正弦波を生成する場合を説明したが、複数の組み合わ 30 せの振幅・周波数・位相を推定し、複数の正弦波を生成 することもできる。

【0065】この動作により、干渉成分のないパイロッ トシンボルを用いてパイロット同期検波することがで き、受信品質の向上を図ることができる。

【0066】 (実施の形態4) 実施の形態4は、干渉成 分を除去したパイロットシンボルを生成する方法とし て、受信したパイロットシンボルの逆拡散出力により各 多重波のドップラーシフト量を推定し、パイロットシン ボルの逆拡散出力に対し推定したドップラーシフトの周 40 波数成分を通過するものである。

【0067】図4は、実施の形態4におけるスペクトル 拡散復調装置の構成を示すプロック図である。

【0068】図4に示すように、本実施の形態における スペクトル拡散復調装置は、パイロットチャネル用拡散 符号を用いて、パイロットシンボルを逆拡散するパイロ ットチャネル逆拡散手段401と、パイロットチャネル 逆拡散手段401の出力信号から各多重波のドップラー シフト量を推定する多重波ドップラーシフト推定手段4

結果に基づき、パイロットチャネル逆拡散手段401の 出力信号の特定の周波数領域のみ通過させるフィルタで あるドップラーシフト成分通過手段403と、データチ ャネル用拡散符号を用いて、データシンボルを逆拡散す るデータチャネル逆拡散手段404と、フィルタ403 通過後のパイロットシンボル及びデータシンボルを用い て位相の回転を補正し復調信号を生成する同期検波手段 405とから主に構成されている。

【0069】受信したスペクトル拡散信号の内、パイロ ットシンボルは、パイロットチャネル逆拡散手段401 にて逆拡散される。逆拡散されたパイロットシンボル は、多重波ドップラーシフト推定手段402にてドップ ラーシフト量が推定され、パイロット信号の周波数領域 のみがドップラーシフト成分通過手段403を通過す る。また、データシンボルは、データチャネル逆拡散手 段404にて逆拡散される。その後、フィルタを通過し たパイロットシンボル及びデータシンボルは、同期検波 手段405に入力されて、位相の回転を補正され、復調 信号として出力される。

【0070】次に、パイロットシンボルの予測について 説明する。パイロットシンボルには、以下の(数11) に示すようにパイロット信号成分と干渉成分が含まれて いる。

【数11】

$$I_0(t) = A_0(t) \cdot \cos \phi(t) + n_0'(t)$$

$$Q_0(t) = A_0(t) \cdot \sin \phi(t) + n_0'(t)$$

受信装置の局部発振器のキャリア周波数オフセットおよ びフェージングによる周波数シフトによって、振幅A o(t)および位相 o(t)が変動する。多重波ドップラーシ フト推定手段402は、これらパイロット信号成分のス ペクトルを推定することで各多重波に対応するドップラ ーシフト量を求める。スペクトルの推定の方法として、 02と、多重波ドップラーシフト推定手段402の推定 50 例えば、ある特定の周波数帯域のみを通過するような帯

域通過フィルタ(BPF)を複数配し、これらの出力信号のレベルを観測することによってそれぞれの周波数帯域のスペクトルを求めることができる。また、パイロットシンボルをフーリエ変換し、スペクトルを求めることもできる。

【0071】求められたパイロット信号のスペクトルに基づきドップラーシフト成分通過手段403の通過域を決定する。決定された通過域は、パイロット信号が存在する周波数領域をすべて網羅するものである。

【0072】ドップラーシフト成分通過手段403の構成法としては、ある特定の周波数帯域のみを通過するような帯域通過フィルタ(BPF)を複数組み合わせて用いる方法もある。この方法では、多重波ドップラーシフト推定手段402で求められたスペクトルの中で、パイロット信号が存在すると判断される周波数帯域に対応するBPFを組み合わせてドップラーシフト成分通過手段403を構成する。

【0073】この動作により、パイロットシンボルに含まれるパイロット信号の周波数領域のみを通過するようなフィルタを構成することにより、パイロット同期検波 20時のパイロットシンボルに含まれる干渉成分を低減でき、受信品質の向上を図ることができる。

【0074】 (実施の形態5) 実施の形態5は、干渉成分を除去したパイロットシンボルを生成する方法として、受信したパイロットシンボルの逆拡散出力をフィルタリングし、受信品質を測定し、フィルタリング手段の時定数を受信品質が最適となるように選択するものである。

【0075】図5は、実施の形態5におけるスペクトル 拡散復調装置の構成を示すブロック図である。

【0076】図5に示すように、本実施の形態におけるスペクトル拡散復調装置は、パイロットチャネル用拡散符号を用いて、パイロットシンボルを逆拡散するパイロットチャネル逆拡散手段501と、受信品質を測定する受信品質測定手段503と、パイロットチャネル逆拡散手段501の逆拡散出力をフィルタリングするフィルタリング手段502と、フィルタリング手段502の時定数を受信品質測定手段503の出力である受信品質が最適となるように選択する最適時定数選択手段504と、データチャネル用拡散符号を用いて、データシンボルを逆拡散するデータチャネル逆拡散手段505と、平均化後のパイロットシンボル及びデータシンボルを用いて位相の回転を補正し復調信号を生成する同期検波手段506とから主に構成されている。

【0077】受信したスペクトル拡散信号の内、パイロットシンボルは、パイロットチャネル逆拡散手段501 にて逆拡散され、フィルタリング手段502にてフィルタリングされる。また、データシンボルは、データチャネル逆拡散手段504にて逆拡散される。その後、予測されたパイロットシンボル及びデータシンボルは、同期 50 14

検波手段505に入力されて、位相の回転を補正され、 復調信号として出力される。

【0078】最適時定数選択手段504は、フィルタリング手段502における時定数を何通りか指定し、それぞれの時定数に設定した時の受信品質を受信品質測定手段503にて測定する。受信品質は、同期検波後のシンボルの誤り率や、誤り訂正後のビット誤り率、またはフレーム誤り率等を用いる。最適時定数選択手段504は、このように測定したいくつかの受信品質の中から受信品質が一番優れているものを選び出し、その受信品質に対応する時定数を最適な時定数と判定する。求められた時定数はフィルタリング手段502に入力される。フィルタリング手段502は、最適時定数選択手段504で求められた時定数に基づき、パイロットシンボルをフィルタリングし、干渉成分を低減できる。

【0079】この動作により、同期検波後の受信品質が 最適となるようにパイロットシンボルに対するフィルタ リングの時定数を設定するようにしたことで、フィルタ リングの時定数を固定にした場合に比べて受信品質の向 上を図ることができる。

【0080】上記実施の形態1~5に示したスペクトル 拡散復調装置は、移動通信システムにおける基地局装置 や移動局装置に搭載することができる。これにより、移 動通信システムのデータ伝送において、データを破損さ せること無く受信することができる。

[0081]

【発明の効果】以上のように本発明は、パイロット同期 検波において、パイロットシンボルに残留する干渉成分 を低減し、受信信号から復調信号を得る際の、受信品質 30 を向上することができるスペクトル拡散復調装置及びス ペクトル拡散復調方法を提供できる。

【図面の簡単な説明】

【図1】本発明の実施の形態1におけるスペクトル拡散 復調装置の構成を示すプロック図。

【図2】実施の形態2におけるスペクトル拡散復調装置 の構成を示すブロック図。

【図3】実施の形態3におけるスペクトル拡散復調装置 の構成を示すブロック図。

【図4】実施の形態4におけるスペクトル拡散復調装置 40 の構成を示すプロック図。

【図5】実施の形態5におけるスペクトル拡散復調装置の構成を示すブロック図。

【図6】直接拡散方式を用いたCDMAシステムの構成を示すプロック図。

【図7】従来のスペクトル拡散復調装置の構成を示すプロック図。

【符号の説明】

- 101 パイロットチャネル逆拡散手段
- 102 パイロットシンボル予測手段
- iO 103 予測係数推定手段

- 104 データチャネル逆拡散手段
- 105 同期検波手段
- 202 フィルタリング手段
- 203 周波数オフセット推定手段
- 302 振幅・周波数・位相推定手段
- 303 正弦波生成手段

16

- 402 多重波ドップラーシフト推定手段
- 403 ドップラーシフト成分通過手段
- 502 フィルタリング手段
- 503 受信品質測定手段
- 504 最適時定数選択手段

【図1】

【図2】

【図3】

【図4】 摄幅・ 周波数·位相 多重波ドップ 推定手段 ररनवर्ग 正弦波生成 手段 受信信号 303 逆拡散手段 受信信号 在調信号 手段 局期検波 <u>復期信号</u> 手段 チャネル 逆拡散手段 305

【図5】 【図6】 (a) (b) (c) (d) 軍力レベ 最適時定数 翼択手段 バイロット フィルタ リング手段 受信品賞 測定手段 周波数 周波敦 围波数 周波数 受信信号 502 母期検波 チャネル 使顾信号 逆拡散手段 ズオマブ スペダトル 505 情報变逐 ゲ情報復題 拡散復調 装置 装置 [図7] 同期獲得 <u> त्रद्यक्री</u> 平均化 手段 受信信号 同期检查 夜陌信号 逆拡散手段

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	BLACK BORDERS
/	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
l	FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
/	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.