Kruskal's MST algorithm

- Prim's algorithm adds the next closest vertex.
- Kruskal's algorithm adds the next lowest weight edge that doesn't form a cycle.

COMP 20003 Algorithms and Data Structures

```
Kruskal's Algorithm for MST

E1: edges in MST so far
E2: remaining edges

E1=EMPTYSET,E2=E
Sort edges in E2 by weight
while |E1| < |V|-1 edges and E2 not EMPTYSET
Pick min cost edge e(i,j) from E2
E2 = E2 \ e(I,j)
if V(i),V(j) are not in same MST-so far, then
E1 = E1 Union e(I,j)
unite MSTs with V(i) and V(j)
```

Kruskal's b 2 c 3 g a 3 e 10 10 3 d COMP 20003 Algorithms and Data Structures

```
if V(i),V(j) are not in same MST-so far, then unite MSTs with V(i) and V(j)

• Prevents cycles (not in same MST-so far)

• Unites MSTs (new edge in MST-so far)
```


Union-find Have disjoint (non-overlapping) subsets Find: Which subset is an element in? Union: Join two subsets into a single subset For Kruskal's algorithm: Find: Is the new edge in an existing subset? If yes, this is a cycle! – don't use! Union: Does the new edge join two subjects? If yes, join the two subsets

Union-find

- Have disjoint (non-overlapping) subsets
 - Find: Which subset is an element in?
 - Union: Join two subsets into a single subset

COMP 20003 Algorithms and Data Structures

Union-find

- Have disjoint (non-overlapping) subsets
 - Find: Which subset is an element in?
 - Union: Join two subsets into a single subset
- Naïve union-find: array

COMP 20003 Algorithms and Data Structures

hms and Data Structures

Union-find: array

- Have disjoint (non-overlapping) subsets
 - Find: Which subset is an element in?
 - Union: Join two subsets into a single subset
- Naïve union-find: array

COMP 20003 Algorithms and Data Structure

Union-find: array

- Start: Singleton Sets
- id[] 0 1 2 3 4 5 6 7

Example: Put (2, 3) in same set, and (4,6):

change entry in id[]: choose representatives
 0 1 2 3 4 5 6 7
 0 1 2 2 4 5 4 7

COMP 20003 Algorithms and Data Structures

Speeding up the Union in Union-Find Speed up union: tree-based approach id[] is a parent array Root is the representative of the subset To union two subsets – make the root of one the parent of the root of the other O(?) 142

Improvements in Union-Find

- Find:
 - Time for trace depends on depth of tree
 - Weighted: merge smaller tree into larger
 - keeps tree broader
 - Path compression
- Analysis: E union-finds on V vertices
 - Naïve: O(EV)
 - Weighted or path compress: O(V + E log V)
 - Weighted AND path compress: O(E+V) α(V)

≈ O(E+V)

Union-Find Analysis

- Analysis: E union-finds on V vertices
 - Naïve: O()
 - Array: O() find; O() union
 - Tree: O() union; O() find
 - Weighted OR path compress: O(V + E log V)
 - Weighted AND path compression:
 - O(E*α(E,V) + V)
 - α(n): inverse Ackermann function, small constant
 - ≈ O(E+V)

1-45

Kruskal's: Analysis with best union-find

- Sort edges:
 - ? log ?
- E finds and E unions:
 - E+V
- $O(E \log E + E + V) = O(E \log E)$
- Time is dominated by sorting the edges!

Igorithms and Data Structures

Kruskal's: Analysis with best union-find

• Time is dominated by sorting the edges!

Any ideas for what we might do?

COMP 20003 Algorithms and Data Structures

Improvement to Kruskals: Partial sort

When sorting dominates performance, partial sorting can help...

... only need the smallest V-1 edges

e.g. quicksort-like partition, but

- Works if graph is connected
- Doesn't work if longest edge needs to be in MST
 - e.g. tight clusters connected by one or more long edges

COMP 20003 Algorithms and Data Structures

Kruskal's algorithm: an overview (Skiena)

A large-scale view of Kruskal's algorithm:

http://www.cs.sunysb.edu/~skiena/combinatorica/animations/mst.html

More advanced MSTs

1-52

- Euclidean MSTs:
 - · Given points on a plane, build MST
 - Could construct complete graph, then use Prim's. – Slow!

Other more clever algorithms exist

COMP 20003 Algorithms and Data Structures

s and Data Structures

More advanced MSTs

- Randomized MST algorithm
- Random partition of the graph
- Expected time linear, but bad worst case
- Karger, David R.; Klein, Philip N.; Tarjan, Robert E. (1995). "A randomized linear-time algorithm to find minimum spanning trees". JACM 42 (2): 321–328.
- Linear MST algorithms exist for restricted types of graphs

The general solution for linear time MST creation is an open research problem

COMP 20003 Algorithms and Data Structures

1-53

MST and the Travelling Salesperson Problem

- Travelling salesperson problem (TSP):
 - Given a list of cities and the distances between each pair of cities, find:
 - shortest possible route that
 - visits each city exactly once
 - and returns to the origin city

MST and the Travelling Salesperson Problem

- Travelling salesperson problem (TSP):
 - Given a list of cities and the distances between each pair of cities, find:
 - shortest possible route that
 - visits each city exactly once
 - and returns to the origin city
- Much harder than MST!
- Greedy (nearest neighbor) doesn't work!

COMP 20003 Algorithms and Data Structures

Minimum Spanning Trees

The University of Melbourne COMP 20003 Algorithms and Data Structures

Graph algorithms

- Graph search:
- Depth-first
- Breadth-first
- Priority-first
- Undirected graphs
- · Directed graphs

COMP 20003 Algorithms and Data Structures

Graph algorithms

1-57

- Graph search
- · Algorithms on undirected graphs
- Algorithms on directed graphs

COMP 20003 Algorithms and Data Structures

Graph algorithms

- Graph search
 - Depth-first search
 - Breadth-first search
 - Priority-first search
 - (Connected components)
- Algorithms on undirected graphs
- Algorithms on directed graphs

Algorithms and Data Structures

Graph algorithms

- Graph search
- Algorithms on undirected graphs
- Algorithms on directed graphs
 - Single source shortest path (Dijkstra's)
 - Transitive closure (Warshall)
 - All pairs shortest path (Floyd-Warshall)

COMP 20003 Algorithms and Data Structures

Graph algorithms

- Graph search
- Algorithms on undirected graphs
 - Minimum spanning tree
 - Prim's
 - Kruskal's
 - Travelling salesperson
- · Algorithms on directed graphs

COMP 20003 Algorithms and Data Structures

Graphs in the real world

- Many real-world problems can be modelled as graphs
- Many specialized types of graphs allow modelling of complex problems
- People have been working on graph algorithms for a long time, so
- Huge library of algorithms available

COMP 20003 Algorithms and Data Structures

4.04

Take away lesson

If you can model a problem as a graph, there is a very good chance that there is already an algorithm to solve the problem...

... or evidence that the problem is intractible

COMP 20003 Algorithms and Data Structure