

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 April 2001 (12.04.2001)

PCT

(10) International Publication Number
WO 01/25466 A1

(51) International Patent Classification⁷: C12N 15/867,
15/90, 5/10, 7/01, A61K 48/00

(UK) Limited, Medawar Centre, Robert Robinson Avenue,
The Oxford Science Park, Oxford OX4 4GA (GB).

(21) International Application Number: PCT/GB00/03837

(74) Agents: HARDING, Charles, Thomas et al.; D Young &
Co., 21 New Fetter Lane, London EC4A 1DA (GB).

(22) International Filing Date: 5 October 2000 (05.10.2000)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:
9923558.2 5 October 1999 (05.10.1999) GB

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/25466 A1

(54) Title: PRODUCER CELL FOR THE PRODUCTION OF RETROVIRAL VECTORS

(57) **Abstract:** A method is provided for modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising: introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.

PRODUCER CELL FOR THE PRODUCTION OF RETROVIRAL VECTORS

FIELD OF THE INVENTION

5

The present invention relates to retroviral vectors, in particular to high titre regulatable retroviral vectors.

BACKGROUND TO THE INVENTION

10

Retroviruses have been proposed as a delivery system (otherwise expressed as a delivery vehicle or delivery vector) for *inter alia* the transfer of a nucleotide sequence of interest (NOI), or a plurality of NOIs, to one or more sites of interest. The transfer can occur *in vitro*, *ex vivo*, *in vivo*, or combinations thereof. When used in this fashion, the retroviruses 15 are typically called retroviral vectors or recombinant retroviral vectors. Retroviral vectors have been exploited to study various aspects of the retrovirus life cycle, including receptor usage, reverse transcription and RNA packaging (reviewed by Miller, 1992 Curr Top Microbiol Immunol 158:1-24).

20 In a typical recombinant retroviral vector for use in gene therapy, at least part of one or more of the *gag*, *pol* and *env* protein coding regions may be removed from the virus. This makes the retroviral vector replication-defective. The removed portions may even be replaced by a NOI in order to generate a virus capable of integrating its genome into a host genome but wherein the modified viral genome is unable to propagate itself due to a 25 lack of structural proteins. When integrated in the host genome, expression of the NOI occurs - resulting in, for example, a therapeutic effect. Thus, the transfer of a NOI into a site of interest is typically achieved by: integrating the NOI into the recombinant viral vector; packaging the modified viral vector into a virion coat; and allowing transduction of a site of interest - such as a targetted cell or a targetted cell population.

30

It is possible to propagate and isolate quantities of retroviral vectors (e.g. to prepare suitable titres of the retroviral vector) for subsequent transduction of, for example, a site of interest by using a combination of a packaging or helper cell line and a recombinant vector.

-2-

- In some instances, propagation and isolation may entail isolation of the retroviral *gag*, *pol* and *env* genes and their separate introduction into a host cell to produce a "packaging cell line". The packaging cell line produces the proteins required for packaging retroviral RNA but it does not produce RNA-containing retroviral vectors. However, when a recombinant vector carrying a NOI and a *psi* region is introduced into the packaging cell line, the helper proteins can package the *psi*-positive recombinant vector to produce the recombinant virus stock. This can be used to infect cells to introduce the NOI into the genome of the cells. The recombinant virus whose genome lacks all genes required to make viral proteins can infect only once and cannot propagate. Hence, the NOI is introduced into the host cell genome without the generation of potentially harmful retrovirus. A summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).
- Retroviral packaging cell lines have been developed to produce retroviral vectors. These cell lines are designed to express three components, which may be located on three separate expression constructs. The *gag/pol* expression construct encodes structural and enzymatic components required in particle formation, maturation, reverse transcription and integration. The envelope (*env*) construct expresses a retroviral or non-retroviral envelope protein, which mediates viral entry into cells by binding to its cognate receptor. The third expression construct produces the retroviral RNA genome containing a *psi* region, which is packaged into mature, enveloped retroviral particles.
- It has been observed that different methods, such as electroporation, transfection and retroviral transduction, which have been used to introduce the retroviral expression construct for the RNA genome, termed "the genome", into packaging cells produce different results. These different results can include different end points or "yield" of retroviral producer lines resulting from the derived cell lines. Moreover, electroporation and transfection methods can be problematic in the sense that the titre levels are not always at a satisfactory level.

By way of example, the transfection of a plasmid DNA construct into packaging cells from a MLV packaging cell line of human origin, called FLYA13, yielded low retroviral

-3-

vector titres even when different transfection reagents such as calcium phosphate precipitation and fugene transfection reagent were used. The average titres from selected stably transfected cell lines clones ranged from about 10^3 to about 10^4 per ml. In addition, clones generated by electroporation of constructs gave similar titres of from 5 about 10^3 to about 10^4 per ml with no clones identified producing at $>10^5$ per ml. However, when MLV vector particles are prepared in a transient transfection system with 10 a different envelope pseudotype to the packaging cell, and used to transduce a retroviral packaging cell, stably transduced cell lines made by this transduction method produce retrovirus at 10^6 to 10^7 per ml. Therefore, these results suggest that retroviral transduction 15 is a preferred method for genome introduction into packaging cell lines in order to generate high titre producer cell lines. However, when retroviral transduction is used to introduce a regulated/inactivated retroviral vector genome into packaging cell lines, the regulated retroviral vectors may not be produced in sufficient quantities from these cell lines.

15

By way of example, some retroviral vectors may comprise (i) internal expression constructs which are themselves regulated or (ii) regulated elements which are present in retroviral 3' LTR sequences, either by design or by their nature. Examples of these regulated vectors include but are not limited to hypoxic regulated vectors and self 20 inactivating (SIN) vectors. If transduced producer cell lines are generated with these regulated vectors, the regulated or inactivated 3' U3 sequence of the LTR is copied to the 5' LTR by the process of retroviral reverse transcription and integration. Therefore, in the producer cell line, the 5' U3 promoter sequence directing expression of retroviral RNA 25 genomes is identical to the regulated or inactivated 3' U3 promoter. This will result in very low levels of retroviral genome production and consequently low titres of functional retrovirus vectors being produced.

One example of such a regulated retroviral system includes MLV and lentivirus vector constructs where the 3' retroviral U3 enhancer element is replaced with a hypoxia 30 responsive element (HRE) or other physiologically regulated, tumour specific or tissue-specific promoters. When these vectors are used to make a transduced producer cell line, the 3' U3 sequence containing the HRE element is copied to the 5' LTR position and retroviral genomes will only be produced under hypoxic conditions or chemical mimics

-4-

of hypoxia, such as heavy metal ions and desferrioxamine. Such a requirement for "induction for retroviral production" is not preferable as the different hypoxia induction protocols negatively affect retroviral producer cell viability.

- 5 By way of further example, lentivector U3 enhancers are dependent on the transactivator TAT for transcriptional activation. Therefore, a lentivector producer cell line generated by transduction requires the presence of TAT for high level expression of the lentivector genome construct. The expression of TAT is not preferable in such a packaging cell line and therefore, in the absence of TAT, only very low titres will be produced from
10 transduced producer cells generated in this way.

Another example of a regulated retroviral systems includes MLV or lentivirus self-inactivating (SIN) vectors. These vectors contain deletions of the elements in their 3' U3 sequences responsible for transcriptional activity. Therefore, on transduction of target
15 cells, the transcriptionally inactive 3' U3 sequence is copied to the 5' LTR position. In standard configurations, an internal expression cassette directs therapeutic or marker gene expression. However, if SIN vectors are used to make a transduced retroviral producer line, there will be no transcriptional elements present to direct high levels of retroviral RNA genome expression.
20

Although it is possible to carry out retroviral transduction with much lower-titre vector stocks, for practical reasons, high-titre retrovirus is desirable, especially when a large number of cells must be infected. In addition, high titres are a requirement for transduction of a large percentage of certain cell types. For example, the frequency of
25 human hematopoietic progenitor cell infection is strongly dependent on vector titre, and useful frequencies of infection occur only with very high-titre stocks (Hock and Miller 1986 Nature 320: 275-277; Hogge and Humphries 1987 Blood 69: 611-617). In these cases, it is not sufficient simply to expose the cells to a larger volume of virus to compensate for a low virus titre. On the contrary, in some cases, the concentration of
30 infectious vector virions may be critical to promote efficient transduction.

SUMMARY OF THE INVENTION

We have now shown that it is possible to obtain transduced producer cells capable of producing high titre regulated retroviral vectors by replacing at least the 3'LTR of the integrated provirus using a recombinase based system. Thus whereas with the prior art, the U3 region of the 3'LTR is the same as that of the U3 region of the 5' LTR (and vice versa for the U5 region) in the provirus due to the way in which the viral vector integrates, the introduction of, for example, a replacement 3'LTR results in a provirus that has a 5'LTR and a 3'LTR that differ. The packaged viral vectors produced by transcription of the proviral genome within the producer cells may then ultimately be used to transduce target cells where the regulatable sequences present in the 3'LTR of the provirus in the producer cells are then present in the 5'LTR of the provirus in the target cells and consequently regulate transcription from the provirus as required.

This allows the introduction of a 3'LTR, for example a regulatable 3'LTR, into the provirus that was not desirable in the original viral vector used to transduce the producer cells since the consequential appearance of the regulatable 3'LTR U3 sequences in the 5'LTR in the provirus may lead to a reduced viral titre.

Consequently, the present invention allows transduced producer cells to be constructed that are capable of producing high titre regulated retroviral vectors by virtue of comprising a 5'LTR that directs high level expression of the viral genome in the producer cell and a different 3'LTR which as a result of the process of integration into a target cell will then result in a provirus in the target cell genome that exhibits regulatable expression.

In particular, the present invention allows the modification of a provirus integrated into the genome of the producer cells that have been selected for their high titre virus production such that the resulting packaged viral particles produced from the provirus may be used to transduce target cells resulting in a provirus integrated into the genome of the target cells that has a different, and preferably regulatable 5'LTR to that of the producer cell provirus.

-6-

The present invention is not limited to replacement of the 3'LTR of the provirus in the high titre producer cells, but may also include replacement of the 5'LTR and other viral sequences and/or the introduction of NOIs by the use of suitable constructs, as shown in the Figures.

5

Accordingly, the present invention provides a method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising: introducing into the cell a construct comprising a 5' recombinase 10 recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.

15 Preferably the LTR is a heterologous regulatable LTR.

The present invention further provides a nucleic acid vector comprising a 5' recombinase recognition sequence, a regulatable LTR and a 3' recombinase recognition sequence in that order.

20

In any of the above aspects and embodiments of the invention, preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises at least one NOI between the 5' recombinase recognition sequence and the regulatable LTR.

25 Preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises a 5'LTR and/or a packaging signal

In one embodiment of the invention, the LTR is inactive/transcriptionally quiescent.

30 The construct, nucleic acid molecule and/or nucleic acid vector of the invention may be used in a recombinase assisted method to introduce a regulated LTR into a proviral genome integrated into a producer cell genome.

-7-

The present invention also provides a producer cell obtainable by the method of the invention, preferably a high titre producer cells. Also provided is an infectious retroviral particle obtained by the above method.

- 5 The present invention further provides a high titre producer cell comprising integrated into its genome a provirus, which provirus comprises a recombinase recognition site, a 5' LTR and a 3'LTR which 3'LTR differs from the 5'LTR. Such a producer cell will typically have been produced by the method of the invention.
- 10 Preferably the 5'LTR and the 3'LTR referred to for the purposes of comparison are both "active". The term "active" within the present context means transcriptionally active, that is to say, the 5'LTR comprises a promoter that directs transcription of the viral genome and the 3'LTR comprises a transcriptional stop sequence to terminate transcription. This distinction is relevant since if a provirus produced by the method of the invention 15 comprises more than one 5' LTR or 3'LTR, at least one but not all must be active to allow viral production. Further, if the provirus comprises more than one 3'LTR then it is generally the upstream one that will be active since transcription will tend not to read through to the downstream 3' LTR.
- 20 In addition, where the method of the invention results in an insertion of a 3'LTR upstream of the original 3'LTR, the comparison should be performed between the additional 3'LTR and the original 5'LTR and not the two original LTRs. Thus it is permitted to have a 5'LTR and 3'LTR within the same provirus that are the same provided that there is also a 5'LTR and 3'LTR that differ.
- 25
- In another aspect, the present invention provides a derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the 30 producer cell.

-8-

Preferably the first 5' LTR comprising 5'R and 5' US sequences is derivable from a first vector; the second NOI operably linked to a second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is derivable from the first vector.

- 5 In a preferred embodiment, the first vector further comprises an internal LTR located upstream of the first NOI and downstream of the packaging signal wherein the internal LTR comprises a heterologous U3 sequence linked to heterologous R and US sequences.

Preferably the heterologous R and US sequences are lentiviral derivable R and US sequences, such as EIAV R and US sequences.

In a further preferred embodiment, the third 3'LTR is transcriptionally active but expression is directed away from the second regulatable 3'LTR.

- 15 In another embodiment, the second vector comprises a second NOI operably linked to a second regulatable 3'LTR comprising at least one recombinase recognition sequence. Preferably the second regulatable 3'LTR comprises a deletion in the U3 sequences in the 3'LTR.

- 20 Preferably, the second NOI comprises a discistronic construct, more preferably a discistronic construct comprising a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.

The present invention further provides in another embodiment, a method for producing a high titre regulatable retroviral vector, the method comprising the steps of:

- (i) providing a derived producer cell comprising integrated into its genome a first vector;
(ii) introducing a second vector into the derived producer cell using a recombinase assisted method; wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the derived producer cell.

-9-

The present invention also provides the use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre regulated retroviral vector.

- 5 Aspects of the present invention are also presented in the accompanying claims and in the following description and discussion.

These aspects are presented under separate section headings. However, it is to be understood that the teachings under each section heading are not necessarily limited to
10 that particular section heading.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is advantageous because:

15

(i) it enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

20 (ii) it removes the uncertainty associated with the process of producer cell line derivation and the necessity to screen large numbers of producer cell lines each time a new retroviral expression construct is introduced into a producer cell line.

25 (iii) it greatly facilitates the generation of high titre retroviral stocks without the use of marker genes (such as but not limited to β -galactosidase, green fluorescent protein) and antibiotic resistance genes.

(iv) it avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production from traditionally derived transduced producer lines.

30

(v) it enables the production of SIN vectors by stable cell line producer technology. Previously, SIN vectors have not been amenable to production by stable cell line producer technology because the deletion of the 3'U3 sequence resulted in at least a tenfold lower

-10-

titre of self-inactivating (SIN) vectors in comparison with vectors having intact LTRs. Consequently, SIN vectors have had to be prepared using transfection-based transient expression systems.

5 PRODUCER CELL

The high titre regulated retroviral vector particles of the present invention are typically generated in a suitable producer cell. Producer cells are generally mammalian cells but can be, for example, insect cells. A producer cell may be a packaging cell containing the 10 virus structural genes, normally integrated into its genome into which the regulated retroviral vectors of the present invention are introduced. Alternatively the producer cell may be transfected with nucleic acid sequences encoding structural components, such as *gag/pol/env* on one or more vectors such as plasmids, adenovirus vectors, herpes viral vectors or any method known to deliver functional DNA into target cells. The vectors 15 according to the present invention are then introduced into the packaging cell by the methods of the present invention.

As used herein, the term "producer cell" or "vector producing cell" refers to a cell which contains all the elements necessary for production of regulated retroviral vector particles 20 and regulated retroviral delivery systems.

Preferably, the producer cell is obtainable from a stable producer cell line.

Preferably, the producer cell is obtainable from a derived stable producer cell line.

25

Preferably, the producer cell is obtainable from a derived producer cell line

As used herein, the term "derived producer cell line" is a transduced producer cell line which has been screened and selected for high expression of a marker gene. Such cell 30 lines contain retroviral insertions in integration sites that support high level expression from the retroviral genome. The term "derived producer cell line" is used interchangeably with the term "derived stable producer cell line" and the term "stable producer cell line"

-11-

Preferably the derived producer cell line includes but is not limited to a retroviral and/or a lentiviral producer cell.

5 Preferably the derived producer cell line is an HIV or EIAV producer cell line, more preferably an EIAV producer cell line.

10 Preferably the envelope protein sequences, and nucleocapsid sequences are all stably integrated in the producer and/or packaging cell. However, one or more of these sequences could also exist in episomal form and gene expression could occur from the episome.

PACKAGING CELL

15 As used herein, the term "packaging cell" refers to a cell which contains those elements necessary for production of infectious recombinant virus which are lacking in a recombinant viral vector. Typically, such packaging cells contain one or more expression cassettes which are capable of expressing viral structural proteins (such as *gag*, *pol* and *env*) but they do not contain a packaging signal.

20 The term "packaging signal" which is referred to interchangeably as "packaging sequence" or "*psi*" is used in reference to the non-coding sequence required for encapsidation of retroviral RNA strands during viral particle formation.

25 Packaging cell lines suitable for use with the above-described vector constructs may be readily prepared (see also WO 92/05266), and utilised to create producer cell lines for the production of retroviral vector particles. As already mentioned, a summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).

30 The packaging cell lines are useful for providing the gene products necessary to encapsidate and provide a membrane protein for a high titre regulated retrovirus vector and regulated nucleic gene delivery vehicle production. When regulated retrovirus sequences are introduced into the packaging cell lines, such sequences are encapsidated

-12-

with the nucleocapsid (*gag/pol*) proteins and these units then bud through the cell membrane to become surrounded in cell membrane and to contain the envelope protein produced in the packaging cell line. These infectious regulated retroviruses are useful as infectious units *per se* or as gene delivery vectors.

5

The packaging cell may be a cell cultured *in vitro* such as a tissue culture cell line. Suitable cell lines include but are not limited to mammalian cells such as murine fibroblast derived cell lines or human cell lines. Preferably the packaging cell line is a human cell line, such as for example: HEK293, 293-T, TE671, HT1080.

10

Alternatively, the packaging cell may be a cell derived from the individual to be treated such as a monocyte, macrophage, blood cell or fibroblast. The cell may be isolated from an individual and the packaging and vector components administered *ex vivo* followed by re-administration of the autologous packaging cells.

15

Methods for introducing retroviral packaging and vector components into packaging/producer cells are described in the present invention.

Preferably the method of the present invention utilises a recombinase assisted mechanism.

20

Preferably the method of the present invention utilises a recombinase assisted mechanism which facilitates the production of high titre regulated retroviral vectors from the producer cells of the present invention.

25 RECOMBINASE ASSISTED MECHANISM

As used herein, the term "recombinase assisted system" includes but is not limited to a system using the Cre recombinase / loxP recognition sites of bacteriophage P1 or the site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 30 34 bp FLP recognition targets (FRTs).

The site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 34 bp FLP recognition targets (FRTs) has been configured into DNA constructs

-13-

in order to generate high level producer cell lines using recombinase-assisted recombination events (Karreman *et al.* (1996) NAR 24, 1616-1624). A similar system has been developed using the Cre recombinase / loxP recognition sites of bacteriophage P1. This was configured into a retroviral genome such that high titre retroviral producer 5 cell lines were generated (Vanin *et al.* (1997) J Virol 71, 7820-7826). However, the use of the second method (Vanin *et al ibid*) has centered around the exchange of the central portions of a retroviral cassette using a recombinase-assisted system. Moreover, these methods have used genes encoding selectable markers such as neo^R and puro^R (Vanin *et al ibid*) and luciferase and puro^R linked by an IRES sequence (Karreman *et al ibid*). 10 Karreman and Vanin do not demonstrate or *suggest* that: (i) a regulated or inactive 3'U3 sequence of the 3'LTR can be introduced into a producer cell via a recombinase-assisted mechanism or (ii) that therapeutic genes under the control of a regulated LTR may be introduced into a producer cell line via a recombinase assisted step. Vanin *et al ibid* suggests that his Cre-mediated recombination approach to retroviral producer cell line 15 production may be used in combination with other modifications which should result in improved vector performance. Vanin *et al ibid* also suggests that his approach provides a means to generate high titre SIN vectors. However, there is no worked example and in fact no enabling disclosure because the skilled person would not have been aware, on the basis of the Vanin *et al* paper, of the necessary modifications to make the suggested 20 approach work. Vanin *et al* makes no reference to hypoxic regulated vectors and/or regulated/inactivated lentiviral vectors.

LTRs

25 As already indicated, each retroviral genome comprises genes called *gag*, *pol* and *env* which code for virion proteins and enzymes. In the provirus, these genes are flanked at both ends by regions called long terminal repeats (LTRs). The LTRs are responsible for proviral integration, and transcription. They also serve as enhancer-promoter sequences. In other words, the LTRs can control the expression of the viral gene. Encapsidation of 30 the retroviral RNAs occurs by virtue of a *psi* sequence located at the 5' end of the viral genome.

-14-

As used herein, the term "long terminal repeat (LTR)" is used in reference to domains of base pairs located at the end of retroviral DNAs.

- The LTRs themselves are identical sequences that can be divided into three elements,
5 which are called U3, R and U5. U3 is derived from the sequence unique to the 3' end of the RNA. R is derived from a sequence repeated at both ends of the RNA and U5 is derived from the sequence unique to the 5' end of the RNA. The sizes of the three elements can vary considerably among different retroviruses.
- 10 For ease of understanding, a simple, generic structures (not to scale) of the RNA and the DNA forms of the MLV retroviral genome is presented in Figure 7 in which the elementary features of the LTRs and the relative positioning of *gag/pol* and *env* are indicated. Please note that (i) *gag/pol* and *env* are normally not spaced apart; and (ii) the overlap normally present between the *pol* and *env* genes and the poly A tail normally
15 present at the 3' end of the RNA transcript are not illustrated in Figure 7.

As shown in Figure 7, the basic molecular organisation of an infectious retroviral RNA genome is (5') R - U5 - *gag/pol*, *env* - U3-R (3'). In a defective retroviral vector genome
20 *gag*, *pol* and *env* may be absent or not functional. The R regions at both ends of the RNA are repeated sequences. U5 and U3 represent unique sequences at the 5' and 3' ends of the RNA genome respectively.

Upon cellular transduction, reverse transcription of the virion RNA into double stranded DNA takes place in the cytoplasm and involves two jumps of the reverse transcriptase
25 from the 5' terminus to the 3' terminus of the template molecule. The result of these jumps is a duplication of sequences located at the 5' and 3' ends of the virion RNA. These sequences then occur fused in tandem on both ends of the viral DNA, forming the long terminal repeats (LTRs) which comprise R U5 and U3 regions. On completion of the reverse transcription, the viral DNA is translocated into the nucleus where the linear
30 copy of the retroviral genome, called a preintegration complex (PIC), is randomly inserted into chromosomal DNA with the aid of the virion integrase to form a stable provirus. The number of possible sites of integration into the host cellular genome is very large and very widely distributed.

-15-

Preferably the retroviral genome is introduced into packaging cell lines using retroviral transduction.

Preferably retroviral vector particles (such as MLV vector particles) are prepared in a
5 transient expression system with a different envelope pseudotype to the packaging cell, and used to transduce a retroviral packaging cell.

Preferably the retroviral transduction step identifies retroviral insertions in integration sites that support high level expression of the resulting regulated retroviral genome.

10

Preferably stable transduced producer cell lines made by this initial retroviral transduction step produce retrovirus at titres of at least 10^6 per ml, such as from about 10^6 to about 10^7 per ml, more preferably at least about 10^7 per ml.

15 HIGH TITRE

As used herein, the term "high titre" means an effective amount of a retroviral vector or particle which is capable of transducing a target site such as a cell.

20 As used herein, the term "effective amount" means an amount of a regulated retroviral or lentiviral vector or vector particle which is sufficient to induce expression of an NOI at a target site.

25 Preferably the titre is from at least 10^6 retrovirus particles per ml, such as from about 10^6 to about 10^7 per ml, more preferably at least about 10^7 retrovirus particles per ml.

TRANSCRIPTIONAL CONTROL

30 The control of proviral transcription remains largely with the noncoding sequences of the viral LTR. The site of transcription initiation is at the boundary between U3 and R in the left hand side LTR (as shown in Figure 7) and the site of poly (A) addition (termination) is at the boundary between R and U5 in the right hand side LTR (as shown in Figure 7). The 3'U3 sequence contains most of the transcriptional control elements of the provirus,

-16-

which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

REGULTABLE LTRs

5

AN LTR present, for example, in the construct of the invention and as a 3'LTR in the provirus of the producer cell of the invention may be a native LTR or a heterologous regulatable LTR. It may also be a transcriptionally quiescent LTR for use in SIN vector technology.

10

As used herein, the terms "regulatable LTR" and "regulatable 3'LTR" include vectors which contain responsive elements which are present in retroviral 3' LTR sequences, either by design or by their nature. As used herein, vectors comprising a "regulatable 3'LTR" are referred to as "regulated retroviral vectors". Within the regulatable 3'LTR 15 region, the 3'U3 sequence contains most of the transcriptional control elements of the provirus, which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

Responsive elements include but are not limited to elements which comprise, for 20 example, promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins and/or elements which have been modified to render them inactive. As used herein, the term "modified" includes but is not limited to silencing, disabling, mutating, deleting or removing all of the U3 sequence or a part thereof.

25

The term "regulated LTR" also includes an inactive LTR such that the resulting provirus in the target cell can not produce a packagable viral genome (self-inactivating (SIN) vector technology) - see the Examples and Figure 6 for a particular embodiment.

30

-17-

ENHANCER

As used herein, the term "enhancer" includes a DNA sequence which binds other protein components of the transcription initiation complex and thus facilitates the initiation of
5 transcription directed by its associated promoter.

In one preferred embodiment of the present invention, the enhancer is an ischaemic like response element (ILRE).

10 ILRE

The term "ischaemia like response element" - otherwise written as ILRE - includes an element that is responsive to or is active under conditions of ischaemia or conditions that are like ischaemia or are caused by ischaemia. By way of example, conditions that are
15 like ischaemia or are caused by ischaemia include hypoxia and/or low glucose concentration(s).

The term "hypoxia" means a condition under which a particular organ or tissue receives an inadequate supply of oxygen.

20

Ischaemia can be an insufficient supply of blood to a specific organ or tissue. A consequence of decreased blood supply is an inadequate supply of oxygen to the organ or tissue (hypoxia). Prolonged hypoxia may result in injury to the affected organ or tissue.

25 A preferred ILRE is an hypoxia response element (HRE).

HRE

In one preferred aspect of the present invention, there is hypoxia or ischaemia regulatable expression of the retroviral vector components. In this regard, hypoxia is a powerful regulator of gene expression in a wide range of different cell types and acts by the induction of the activity of hypoxia-inducible transcription factors such as hypoxia inducible factor-1 (HIF-1; Wang & Semenza 1993 Proc Natl Acad Sci 90:430), which

-18-

bind to cognate DNA recognition sites, the hypoxia-responsive elements (HREs) on various gene promoters. Dachs *et al* (1997 Nature Med 5: 515) have used a multimeric form of the HRE from the mouse phosphoglycerate kinase-1 (PGK-1) gene (Firth *et al* 1994 Proc Natl Acad Sci 91:6496-6500) to control expression of both marker and therapeutic genes by human fibrosarcoma cells in response to hypoxia *in vitro* and within solid tumours *in vivo* (Dachs *et al ibid*).

Hypoxia response enhancer elements (HREEs) have also been found in association with a number of genes including the erythropoietin (EPO) gene (Madan *et al* 1993 Proc Natl Acad Sci 90: 3928; Semenza and Wang 1992 Mol Cell Biol 1992 12: 5447-5454). Other HREEs have been isolated from regulatory regions of both the muscle glycolytic enzyme pyruvate kinase (PKM) gene (Takenaka *et al* 1989 J Biol Chem 264: 2363-2367), the human muscle-specific β-enolase gene (ENO3; Peshavaria and Day 1991 Biochem J 275: 427-433) and the endothelin-1 (ET-1) gene (Inoue *et al* 1989 J Biol Chem 264: 14954-14959).

Preferably the HRE of the present invention is selected from, for example, the erythropoietin HRE element (HREE1), muscle pyruvate kinase (PKM), HRE element, phosphoglycerate kinase (PGK) HRE, B-enolase (enolase 3; ENO3) HRE element, endothelin-1 (ET-1)HRE element and metallothionein II (MTII) HRE element.

RESPONSIVE ELEMENT

Preferably the ILRE is used in combination with a transcriptional regulatory element , such as a promoter, which transcriptional regulatory element is preferably active in one or more selected cell type(s), preferably being only active in one cell type.

As outlined above, this combination aspect of the present invention is called a responsive element.

30 Preferably the responsive element comprises at least the ILRE as herein defined.

-19-

Non-limiting examples of such a responsive element are presented as OBHRE1 and XiaMac. Another non-limiting example includes the ILRE in use in conjunction with an MLV promoter and/or a tissue restricted ischaemic responsive promoter. These responsive elements are disclosed in WO99/15684.

5

Other examples of suitable tissue restricted promoters/enhancers are those which are highly active in tumour cells such as a promoter/enhancer from a *MUC1* gene, a *CEA* gene or a *5T4* antigen gene. The alpha fetoprotein (AFP) promoter is also a tumour-specific promoter. One preferred promoter-enhancer combination is a human 10 cytomegalovirus (hCMV) major immediate early (MIE) promoter/enhancer combination.

PROMOTER

The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase 15 binding site.

The promoter may be located in the retroviral 5' LTR to control the expression of a cDNA encoding an NOI.

20 Preferably the NOI is capable of being expressed from the retrovirus genome such as from endogenous retroviral promoters in the long terminal repeat (LTR)

Preferably the NOI is expressed from a heterologous promoter to which the heterologous gene or sequence is operably linked.

25

Alternatively, the promoter may be an internal promoter.

Preferably the NOI is expressed from an internal promoter.

30 Vectors containing internal promoters have also been widely used to express multiple genes. An internal promoter makes it possible to exploit promoter/enhancer combinations other than those found in the viral LTR for driving gene expression. Multiple internal promoters can be included in a retroviral vector and it has proved

-20-

possible to express at least three different cDNAs each from its own promoter (Overell *et al* 1988 Mol Cell Biol 8: 1803-1808). Internal ribosomal entry site (IRES) elements have also been used to allow translation of multiple coding regions from either a single mRNA or from fusion proteins that can then be expressed from an open reading frame.

5

TISSUE SPECIFIC PROMOTERS

The promoter of the present invention may be constitutively efficient, or may be tissue or temporally restricted in their activity.

10

Preferably the promoter is a constitutive promoter such as CMV.

Preferably the promoters of the present invention are tissue specific.

15

That is, they are capable of driving transcription of a NOI or NOI(s) in one tissue while remaining largely "silent" in other tissue types.

20

The term "tissue specific" means a promoter which is not restricted in activity to a single tissue type but which nevertheless shows selectivity in that they may be active in one group of tissues and less active or silent in another group.

25

The level of expression of an NOI or NOIs under the control of a particular promoter may be modulated by manipulating the promoter region. For example, different domains within a promoter region may possess different gene regulatory activities. The roles of these different regions are typically assessed using vector constructs having different variants of the promoter with specific regions deleted (that is, deletion analysis). This approach may be used to identify, for example, the smallest region capable of conferring tissue specificity or the smallest region conferring hypoxia sensitivity.

30

A number of tissue specific promoters, described above, may be particularly advantageous in practising the present invention. In most instances, these promoters may be isolated as convenient restriction digestion fragments suitable for cloning in a selected vector. Alternatively, promoter fragments may be isolated using the polymerase chain

.21.

reaction. Cloning of the amplified fragments may be facilitated by incorporating restriction sites at the 5' end of the primers.

5 The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and enhancer.

Preferably the ischaemic responsive promoter is a tissue restricted ischaemic responsive promoter.

10 Preferably the tissue restricted ischaemic responsive promoter is a macrophage specific promoter restricted by repression.

Preferably the tissue restricted ischaemic responsive promoter is an endothelium specific promoter.

15 Preferably the regulated retroviral vector of the present invention is an ILRE regulated retroviral vector.

20 Preferably the regulated retroviral vector of the present invention is an ILRE regulated lentiviral vector.

Preferably the regulated retroviral vector of the present invention is an autoregulated hypoxia responsive lentiviral vector.

25 Preferably the regulated retroviral vector of the present invention is regulated by glucose concentration.

For example, the glucose-regulated proteins (grp's) such as grp78 and grp94 are highly conserved proteins known to be induced by glucose deprivation (Attenello and Lee 1984 30 Science 226 187-190). The grp 78 gene is expressed at low levels in most normal healthy tissues under the influence of basal level promoter elements but has at least two critical "stress inducible regulatory elements" upstream of the TATA element (Attenello 1984 ibid; Gazit *et al* 1995 Cancer Res 55: 1660-1663). Attachment to a truncated 632 base

-22-

pair sequence of the 5' end of the grp78 promoter confers high inducibility to glucose deprivation on reporter genes *in vitro* (Gazit *et al* 1995 *ibid*). Furthermore, this promoter sequence in retroviral vectors was capable of driving a high level expression of a reporter gene in tumour cells in murine fibrosarcomas, particularly in central relatively 5 ischaemic/fibrotic sites (Gazit *et al* 1995 *ibid*).

Preferably the regulated retroviral vector of the present invention is a self-inactivating (SIN) vector.

10 By way of example, self-inactivating retroviral vectors have been constructed by deleting the transcriptional enhancers or the enhancers and promoter in the U3 region of the 3' LTR. After a round of vector reverse transcription and integration, these changes are copied into both the 5' and the 3' LTRs producing a transcriptionally inactive provirus (Yu *et al* 1986 Proc Natl Acad Sci 83: 3194-3198; Dougherty and Temin 1987 Proc Natl
15 Acad Sci 84: 1197-1201; Hawley *et al* 1987 Proc Natl Acad Sci 84: 2406-2410; Yee *et al* 1987 Proc Natl Acad Sci 91: 9564-9568). However, any promoter(s) internal to the LTRs in such vectors will still be transcriptionally active. This strategy has been employed to eliminate effects of the enhancers and promoters in the viral LTRs on transcription from internally placed genes. Such effects include increased transcription (Jolly *et al* 1983
20 Nucleic Acids Res 11: 1855-1872) or suppression of transcription (Emerman and Temin 1984 Cell 39: 449-467). This strategy can also be used to eliminate downstream transcription from the 3' LTR into genomic DNA (Herman and Coffin 1987 Science 236: 845-848). This is of particular concern in human gene therapy where it is of critical importance to prevent the adventitious activation of an endogenous oncogene.
25

RETROVIRAL VECTORS

The regulated retroviral vector of the present invention includes but is not limited to:
murine leukemia virus (MLV), human immunodeficiency virus (HIV), equine infectious
30 anaemia virus (EIAV), feline immunodeficiency virus (FIV), caprine encephalitis-arthritis
virus (CAEV), mouse mammary tumour virus (MMTV), Rous sarcoma virus (RSV),
Fujinami sarcoma virus (FuSV), Moloney murine leukemia virus (Mo-MLV), FBR
murine osteosarcoma virus (FBR MSV), Moloney murine sarcoma virus (Mo-MSV),

-23-

Abelson murine leukemia virus (A-MLV), Avian myelocytomatosis virus-29 (MC29), and Avian erythroblastosis virus (AEV).

- A detailed list of retroviruses may be found in Coffin *et al* ("Retroviruses" 1997 Cold
5 Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 758-763).

Preferred vectors for use in accordance with the present invention are retroviral vectors, such as MLV vectors.

- 10 Preferably the recombinant retroviral vectors of the present invention are lentiviral vectors, more preferably HIV or EIAV vectors.

LENTIVIRAL VECTORS

- 15 The lentiviruses can be divided into primate and non-primate groups. Examples of primate lentiviruses include but are not limited to: the human immunodeficiency virus (HIV), the causative agent of human auto-immunodeficiency syndrome (AIDS), and the simian immunodeficiency virus (SIV). The non-primate lentiviral group includes the prototype "slow virus" visna/maedi virus (VMV), as well as the related caprine arthritis-
20 encephalitis virus (CAEV), equine infectious anaemia virus (EIAV) and the more recently described feline immunodeficiency virus (FIV) and bovine immunodeficiency virus (BIV).

- A distinction between the lentivirus family and other types of retroviruses is that
25 lentiviruses have the capability to infect both dividing and non-dividing cells (Lewis *et al* 1992 EMBO. J 11: 3053-3058; Lewis and Emerman 1994 J. Virol. 68: 510-516). In contrast, other retroviruses - such as MLV - are unable to infect non-dividing cells such as those that make up, for example, muscle, brain, lung and liver tissue.

- 30 Preferred vectors for use in accordance with the present invention are recombinant retroviral vectors, in particular recombinant lentiviral vectors, in particular minimal lentiviral vectors which are disclosed in WO 99/32646 and in WO98/17815.

-24-

VECTOR

As used herein, a "vector" denotes a tool that allows or facilitates the transfer of an entity from one environment to another. In accordance with the present invention, and by way of example, some vectors used in recombinant DNA techniques allow entities, such as a segment of DNA (such as a heterologous DNA segment, such as a heterologous cDNA segment), to be transferred into a target cell. Optionally, once within the target cell, the vector may then serve to maintain the heterologous DNA within the cell or may act as a unit of DNA replication. Examples of vectors used in recombinant DNA techniques include plasmids, chromosomes, artificial chromosomes or viruses.

OPERABLY LINKED

The term "operably linked" denotes a relationship between a regulatory region (typically a promoter element, but may include an enhancer element) and the coding region of a gene, whereby the transcription of the coding region is under the control of the regulatory region.

DERIVABLE

20

The term "derivable" is used in its normal sense as meaning a nucleotide sequence such as an LTR or a part thereof which need not necessarily be obtained from a vector such as a retroviral vector but instead could be derived therefrom. By way of example, the sequence may be prepared synthetically or by use of recombinant DNA techniques.

25

VECTOR PARTICLES

In the present invention, several terms are used interchangeably. Thus, "virion", "virus", "viral particle", "retroviral particle", "retrovirus", and "vector particle" mean virus and virus-like particles that are capable of introducing a nucleic acid into a cell through a viral-like entry mechanism. Such vector particles can, under certain circumstances, mediate the transfer of NOIs into the cells they infect. A retrovirus is capable of reverse

-25-

transcribing its genetic material into DNA and incorporating this genetic material into a target cell's DNA upon transduction. Such cells are designated herein as "target cells".

A vector particle includes the following components: a retrovirus nucleic acid, which may
5 contain one or more NOIs, a nucleocapsid encapsidating the nucleic acid, the nucleocapsid comprising nucleocapsid protein of a retrovirus, and a membrane surrounding the nucleocapsid.

NUCLEOCAPSID

10

The term "nucleocapsid" refers to at least the group specific viral core proteins (*gag*) and the viral polymerase (*pol*) of a retrovirus genome. These proteins encapsidate the retrovirus-packagable sequences and themselves are further surrounded by a membrane containing an envelope glycoprotein.

15

Preferably a high titre retroviral vector is produced using a codon optimised gag and a codon optimised pol or a codon optimised env.

CODON OPTIMISATION

20

As used herein, the terms "codon optimised" and "codon optimisation" refer to an improvement in codon usage. By way of example, alterations to the coding sequences for viral components may improve the sequences for codon usage in the mammalian cells or
25 other cells which are to act as the producer cells for retroviral vector particle production. This is referred to as "codon optimisation". Many retroviruses, including HIV and other lentiviruses, use a large number of rare codons and by changing these to correspond to commonly used mammalian codons, increased expression of the packaging components in mammalian producer cells can be achieved. Codon usage tables are known in the art
30 for mammalian cells, as well as for a variety of other organisms.

Preferably a high titre lentiviral vector is produced using a codon optimised gag and a codon optimised pol or a codon optimised env.

-26-

Preferably a high titre retroviral vector is produced using a modified and/or extended packaging signal.

PACKAGING SIGNAL

5

As used herein, the term "packaging signal" or "packaging sequence" refers to sequences located within the retroviral genome which are required for insertion of the viral RNA into the viral capsid or particle. Several retroviral vectors use the minimal packaging signal (also referred to as the psi sequence) needed for encapsidation of the viral genome.

- 10 By way of example, this minimal packaging signal encompasses bases 212 to 563 of the Mo-MLV genome (Mann et al 1983: Cell 33: 153).

As used herein, the term "extended packaging signal" or "extended packaging sequence" refers to the use of sequences around the psi sequence with further extension into the gag 15 gene. The inclusion of these additional packaging sequences may increase the efficiency of insertion of vector RNA into viral particles.

Preferably a high titre lentiviral vector is produced using a modified packaging signal.

- 20 Preferably the lentiviral construct is a based on an EIAV vector genome where all the accessory genes are removed except Rev.

ACCESSORY GENES

- 25 As used herein, the term "accessory genes" refer to a variety of virally encoded accessory proteins capable of modulating various aspects of retroviral replication and infectivity. These proteins are discussed in Coffin et al (ibid) (Chapters 6 and 7). Examples of accessory proteins in lentiviral vectors include but are not limited to tat, rev, nef, vpr, vpu, vif, vpx. An example of a lentiviral vector useful in the present invention is one which 30 has all of the accessory genes removed except rev.

Preferably the production of lentiviral vector particles is increased by about 10 fold in the presence of EIAV Rev.

-27-

ENV

If the retroviral component includes an *env* nucleotide sequence, then all or part of that sequence can be optionally replaced with all or part of another *env* nucleotide sequence
5 such as, by way of example, the amphotropic Env protein designated 4070A or the influenza haemagglutinin (HA) or the vesicular stomatitis virus G (VSV-G) protein. Replacement of the *env* gene with a heterologous *env* gene is an example of a technique or strategy called pseudotyping. Pseudotyping is not a new phenomenon and examples may be found in WO-A-98/05759, WO-A-98/05754, WO-A-97/17457, WO-A-96/09400,
10 WO-A-91/00047 and Mebatsion *et al* 1997 Cell 90, 841-847.

In one preferred aspect, the retroviral vector of the present invention has been pseudotyped. In this regard, pseudotyping can confer one or more advantages. For example, with the lentiviral vectors, the *env* gene product of the HIV based vectors would
15 restrict these vectors to infecting only cells that express a protein called CD4. But if the *env* gene in these vectors has been substituted with *env* sequences from other RNA viruses, then they may have a broader infectious spectrum (Verma and Somia 1997 Nature 389:239-242). By way of example, workers have pseudotyped an HIV based vector with the glycoprotein from VSV (Verma and Somia 1997 *ibid*).
20

In another alternative, the Env protein may be a modified Env protein such as a mutant or engineered Env protein. Modifications may be made or selected to introduce targeting ability or to reduce toxicity or for another purpose (Valsesia-Wittman *et al* 1996 J Virol 70: 2056-64; Nilson *et al* 1996 Gene Therapy 3: 280-6; Fielding *et al* 1998 Blood 9: 1802
25 and references cited therein).

TARGET CELL

As used herein the term "target cell" simply refers to a cell which the regulated retroviral
30 vector of the present invention, whether native or targeted, is capable of infecting or transducing.

-28-

The lentiviral vector particle according to the invention will be capable of transducing cells which are slowly-dividing, and which non-lentiviruses such as MLV would not be able to efficiently transduce. Slowly-dividing cells divide once in about every three to four days including certain tumour cells. Although tumours contain rapidly dividing 5 cells, some tumour cells especially those in the centre of the tumour, divide infrequently.

Alternatively the target cell may be a growth-arrested cell capable of undergoing cell division such as a cell in a central portion of a tumour mass or a stem cell such as a haematopoietic stem cell or a CD34-positive cell.

10

As a further alternative, the target cell may be a precursor of a differentiated cell such as a monocyte precursor, a CD33-positive cell, or a myeloid precursor.

15

As a further alternative, the target cell may be a differentiated cell such as a neuron, astrocyte, glial cell, microglial cell, macrophage, monocyte, epithelial cell, endothelial cell, hepatocyte, spermatocyte, spermatid or spermatozoa.

Target cells may be transduced either *in vitro* after isolation from a human individual or may be transduced directly *in vivo*.

20 NOI

In accordance with the present invention, it is possible to manipulate the viral genome or the regulated retroviral vector nucleotide sequence, so that viral genes are replaced or supplemented with one or more NOIs which may be heterologous NOIs.

25

The term "heterologous" refers to a nucleic acid sequence or protein sequence linked to a nucleic acid or protein sequence which it is not naturally linked.

30

With the present invention, the term NOI (i.e. nucleotide sequence of interest) includes any suitable nucleotide sequence, which need not necessarily be a complete naturally occurring DNA sequence. Thus, the DNA sequence can be, for example, a synthetic DNA sequence, a recombinant DNA sequence (i.e. prepared by use of recombinant DNA techniques), a cDNA sequence or a partial genomic DNA sequence, including

-29-

combinations thereof. The DNA sequence need not be a coding region. If it is a coding region, it need not be an entire coding region. In addition, the DNA sequence can be in a sense orientation or in an anti-sense orientation. Preferably, it is in a sense orientation. Preferably, the DNA is or comprises cDNA.

5

The NOI(s) may be any one or more of selection gene(s), marker gene(s) and therapeutic gene(s). As used herein, the term "selection gene" refers to the use of a NOI which encodes a selectable marker which may have an enzymatic activity that confers resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed.

10

SELECTABLE MARKERS

Many different selectable markers have been used successfully in retroviral vectors. These are reviewed in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: 15 JM Coffin, SM Hughes, HE Varmus pp 444) and include, but are not limited to, the bacterial neomycin (*neo*) and hygromycin phosphotransferase genes which confer resistance to G418 and hygromycin respectively; a mutant mouse dihydrofolate reductase gene which confers resistance to methotrexate; the bacterial *gpt* gene which allows cells to grow in medium containing mycophenolic acid, xanthine and aminopterin; the bacterial 20 *hisD* gene which allows cells to grow in medium without histidine but containing histidinol; the multidrug resistance gene (*mdr*) which confers resistance to a variety of drugs; and the bacterial genes which confer resistance to puromycin or phleomycin. All of these markers are dominant selectable and allow chemical selection of most cells expressing these genes. Other selectable markers are not dominant in that their use must 25 be in conjunction with a cell line that lacks the relevant enzyme activity. Examples of non-dominant selectable markers include the thymidine kinase (*tk*) gene which is used in conjunction with *tk* cell lines.

Particularly preferred markers are blasticidin and neomycin, optionally operably linked to 30 a thymidine kinase coding sequence typically under the transcriptional control of a strong viral promoter such as the SV40 promoter.

-30-

NOIs WITH THERAPEUTIC AND/OR DIAGNOSTIC APPLICATIONS

In accordance with the present invention, suitable NOI sequences include those that are of therapeutic and/or diagnostic application such as, but are not limited to: sequences
5 encoding cytokines, chemokines, hormones, antibodies, engineered immunoglobulin-like molecules, a single chain antibody, fusion proteins, enzymes, immune co-stimulatory molecules, immunomodulatory molecules, anti-sense RNA, a transdominant negative mutant of a target protein, a toxin, a conditional toxin, an antigen, a tumour suppressor protein and growth factors, membrane proteins, vasoactive proteins and peptides, anti-
10 viral proteins and ribozymes, and derivatives therof (such as with an associated reporter group). When included, such coding sequences may be typically operatively linked to a suitable promoter, which may be a promoter driving expression of a ribozyme(s), or a different promoter or promoters, such as in one or more specific cell types.

15 NOIs FOR TREATING CANCER

Suitable NOIs for use in the invention in the treatment or prophylaxis of cancer include NOIs encoding proteins which: destroy the target cell (for example a ribosomal toxin), act as: tumour suppressors (such as wild-type p53); activators of anti-tumour immune mechanisms (such as cytokines, co-stimulatory molecules and immunoglobulins); inhibitors of angiogenesis; or which provide enhanced drug sensitivity (such as pro-drug activation enzymes); indirectly stimulate destruction of target cell by natural effector cells (for example, strong antigen to stimulate the immune system or convert a precursor substance to a toxic substance which destroys the target cell (for example a prodrug activating enzyme)).
20
25

PRO-DRUG ACTIVATING ENZYMES

Examples of prodrugs include but are not limited to etoposide phosphate (used with
30 alkaline phosphatase; 5-fluorocytosine (with cytosine deaminase); Doxorubicin-N-p-hydroxyphenoxyacetamide (with Penicillin-V-Amidase); Para-N-bis (2-chloroethyl)aminobenzoyl glutamate (with Carboxypeptidase G2); Cephalosporin nitrogen mustard carbamates (with B-lactamase); SR4233 (with p450 reductase);

-31-

Ganciclovir (with HSV thymidine kinase); mustard pro-drugs with nitroreductase and cyclophosphamide or ifosfamide (with cytochrome p450).

NOIs FOR TREATING HEART DISEASE

5

Suitable NOIs for use in the treatment or prevention of ischaemic heart disease include NOIs encoding plasminogen activators. Suitable NOIs for the treatment or prevention of rheumatoid arthritis or cerebral malaria include genes encoding anti-inflammatory proteins, antibodies directed against tumour necrosis factor (TNF) alpha, and anti-10 adhesion molecules (such as antibody molecules or receptors specific for adhesion molecules).

BYSTANDER EFFECT

15 The expression products encoded by the NOIs may be proteins which are secreted from the cell. Alternatively the NOI expression products are not secreted and are active within the cell. In either event, it is preferred for the NOI expression product to demonstrate a bystander effector or a distant bystander effect; that is the production of the expression product in one cell leading to the killing of additional, related cells, either neighbouring or 20 distant (e.g. metastatic), which possess a common phenotype. Encoded proteins could also destroy bystander tumour cells (for example with secreted antitumour antibody-ribosomal toxin fusion protein), indirectly stimulated destruction of bystander tumour cells (for example cytokines to stimulate the immune system or procoagulant proteins causing local vascular occlusion) or convert a precursor substance to a toxic substance 25 which destroys bystander tumour cells (eg an enzyme which activates a prodrug to a diffusible drug). Also, the delivery of NOI(s) encoding antisense transcripts or ribozymes which interfere with expression of cellular genes for tumour persistence (for example against aberrant *myc* transcripts in Burkitts lymphoma or against *bcr-abl* transcripts in chronic myeloid leukemia. The use of combinations of such NOIs is also envisaged.

30

-32-

CYTOKINES

The NOI or NOIs of the present invention may also comprise one or more cytokine-encoding NOIs. Suitable cytokines and growth factors include but are not limited to:

- 5 ApoE, Apo-SAA, BDNF, Cardiotrophin-1, EGF, ENA-78, Eotaxin, Eotaxin-2, Exodus-2, FGF-acidic, FGF-basic, fibroblast growth factor-10 (Marshall 1998 *Nature Biotechnology* 16: 129).FLT3 ligand (Kimura *et al* (1997), Fractalkine (CX3C), GDNF, G-CSF, GM-CSF, GF- β 1, insulin, IFN- γ , IGF-I, IGF-II, IL-1 α , IL-1 β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (72 a.a.), IL-8 (77 a.a.), IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18 (IGIF), Inhibin α , Inhibin β , IP-10, keratinocyte growth factor-2 (KGF-2), KGF, Leptin, LIF, Lymphotactin, Mullerian inhibitory substance, monocyte colony inhibitory factor, monocyte attractant protein (Marshall 1998 *ibid*), M-CSF, MDC (67 a.a.), MDC (69 a.a.), MCP-1 (MCAF), MCP-2, MCP-3, MCP-4, MDC (67 a.a.), MDC (69 a.a.), MIG, MIP-1 α , MIP-1 β , MIP-3 α , MIP-3 β , MIP-4, myeloid progenitor inhibitor factor-1 (MPIF-1), NAP-2, Neurturin, Nerve growth factor, β -NGF, NT-3, NT-4, Oncostatin M, PDGF-AA, PDGF-AB, PDGF-BB, PF-4, RANTES, SDF1 α , SDF1 β , SCF, SCGF, stem cell factor (SCF), TARC, TGF- α , TGF- β , TGF- β 2, TGF- β 3, tumour necrosis factor (TNF), TNF- α , TNF- β , TNIL-1, TPO, VEGF, GCP-2, GRO/MGSA, GRO- β , GRO- γ , HCC1, 1-309.

20

The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and/or a promoter enhancer as known as "responsive elements" in the present invention.

25 VIRAL DELIVERY SYSTEMS

When the regulated retroviral vector particles are used to transfer NOIs into cells which they transduce, such vector particles also designated "viral delivery systems" or "retroviral delivery systems". Viral vectors, including retroviral vectors, have been used 30 to transfer NOIs efficiently by exploiting the viral transduction process. NOIs cloned into the retroviral genome can be delivered efficiently to cells susceptible to transduction by a retrovirus. Through other genetic manipulations, the replicative capacity of the retroviral

-33-

genome can be destroyed. The vectors introduce new genetic material into a cell but are unable to replicate.

The regulated retroviral vector of the present invention can be delivered by viral or non-viral techniques. Non-viral delivery systems include but are not limited to DNA transfection methods. Here, transfection includes a process using a non-viral vector to deliver a gene to a target mammalian cell.

Typical transfection methods include electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection, liposomes, immunoliposomes, lipofectin, cationic agent-mediated, cationic facial amphiphiles (CFAs) (Nature Biotechnology 1996 14; 556), multivalent cations such as spermine, cationic lipids or polylysine, 1, 2,-bis (oleoyloxy)-3-(trimethylammonio) propane (DOTAP)-cholesterol complexes (Wolff and Trubetskoy 1998 Nature Biotechnology 16: 421) and combinations thereof.

Viral delivery systems include but are not limited to adenovirus vector, an adeno-associated viral (AAV) vector, a herpes viral vector, a retroviral vector, a lentiviral vector, or a baculoviral vector. These viral delivery systems may be configured as a split-intron vector. A split intron vector is described in WO 99/15683.

Other examples of vectors include *ex vivo* delivery systems, which include but are not limited to DNA transfection methods such as electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection.

The vector may be a plasmid DNA vector. Alternatively, the vector may be a recombinant viral vector. Suitable recombinant viral vectors include adenovirus vectors, adeno-associated viral (AAV) vectors, Herpes-virus vectors, or retroviral vectors, lentiviral vectors or a combination of adenoviral and lentiviral vectors. In the case of viral vectors, gene delivery is mediated by viral infection of a target cell.

-34-

If the features of adenoviruses are combined with the genetic stability of retro/lentiviruses then essentially the adenovirus can be used to transduce target cells to become transient retroviral producer cells that could stably infect neighbouring cells.

5 PHARMACEUTICAL COMPOSITION

The present invention also provides a pharmaceutical composition for treating an individual by gene therapy, wherein the composition comprises a therapeutically effective amount of a regulated retroviral vector according to the present invention. The 10 pharmaceutical composition may be for human or animal usage. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient.

The composition may optionally comprise a pharmaceutically acceptable carrier, diluent, 15 excipient or adjuvant. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), and other carrier agents that may aid or increase 20 the viral entry into the target site (such as for example a lipid delivery system).

Where appropriate, the pharmaceutical compositions can be administered by any one or more of: minipumps, inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, 25 orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the 30 form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

-35-

DISORDERS

The present invention is believed to have a wide therapeutic applicability - depending on *inter alia* the selection of the one or more NOIs.

5

For example, the present invention may be useful in the treatment of the disorders listed in WO-A-98/05635. For ease of reference, part of that list is now provided: cancer, inflammation or inflammatory disease, dermatological disorders, fever, cardiovascular effects, haemorrhage, coagulation and acute phase response, cachexia, anorexia, acute 10 infection, HIV infection, shock states, graft-versus-host reactions, autoimmune disease, reperfusion injury, meningitis, migraine and aspirin-dependent anti-thrombosis; tumour growth, invasion and spread, angiogenesis, metastases, malignant, ascites and malignant pleural effusion; cerebral ischaemia, ischaemic heart disease, osteoarthritis, rheumatoid arthritis, osteoporosis, asthma, multiple sclerosis, neurodegeneration, Alzheimer's disease, 15 atherosclerosis, stroke, vasculitis, Crohn's disease and ulcerative colitis; periodontitis, gingivitis; psoriasis, atopic dermatitis, chronic ulcers, epidermolysis bullosa; corneal ulceration, retinopathy and surgical wound healing; rhinitis, allergic conjunctivitis, eczema, anaphylaxis; restenosis, congestive heart failure, endometriosis, atherosclerosis or endosclerosis.

20

In addition, or in the alternative, the present invention may be useful in the treatment of disorders listed in WO-A-98/07859. For ease of reference, part of that list is now provided: cytokine and cell proliferation/differentiation activity; immunosuppressant or immunostimulant activity (e.g. for treating immune deficiency, including infection with 25 human immune deficiency virus; regulation of lymphocyte growth; treating cancer and many autoimmune diseases, and to prevent transplant rejection or induce tumour immunity); regulation of haematopoiesis, e.g. treatment of myeloid or lymphoid diseases; promoting growth of bone, cartilage, tendon, ligament and nerve tissue, e.g. for healing wounds, treatment of burns, ulcers and periodontal disease and neurodegeneration; 30 inhibition or activation of follicle-stimulating hormone (modulation of fertility); chemotactic/chemokinetic activity (e.g. for mobilising specific cell types to sites of injury or infection); haemostatic and thrombolytic activity (e.g. for treating haemophilia and stroke); antiinflammatory activity (for treating e.g. septic shock or Crohn's disease); as

-36-

antimicrobials; modulators of e.g. metabolism or behaviour; as analgesics; treating specific deficiency disorders; in treatment of e.g. psoriasis, in human or veterinary medicine.

- 5 In addition, or in the alternative, the present invention may be useful in the treatment of disorders listed in WO-A-98/09985. For ease of reference, part of that list is now provided: macrophage inhibitory and/or T cell inhibitory activity and thus, anti-inflammatory activity; anti-immune activity, i.e. inhibitory effects against a cellular and/or humoral immune response, including a response not associated with inflammation;
- 10 inhibit the ability of macrophages and T cells to adhere to extracellular matrix components and fibronectin, as well as up-regulated fas receptor expression in T cells; inhibit unwanted immune reaction and inflammation including arthritis, including rheumatoid arthritis, inflammation associated with hypersensitivity, allergic reactions, asthma, systemic lupus erythematosus, collagen diseases and other autoimmune diseases,
- 15 inflammation associated with atherosclerosis, arteriosclerosis, atherosclerotic heart disease, reperfusion injury, cardiac arrest, myocardial infarction, vascular inflammatory disorders, respiratory distress syndrome or other cardiopulmonary diseases, inflammation associated with peptic ulcer, ulcerative colitis and other diseases of the gastrointestinal tract, hepatic fibrosis, liver cirrhosis or other hepatic diseases, thyroiditis or other
- 20 glandular diseases, glomerulonephritis or other renal and urologic diseases, otitis or other oto-rhino-laryngological diseases, dermatitis or other dermal diseases, periodontal diseases or other dental diseases, orchitis or epididymo-orchitis, infertility, orchidal trauma or other immune-related testicular diseases, placental dysfunction, placental insufficiency, habitual abortion, eclampsia, pre-eclampsia and other immune and/or
- 25 inflammatory-related gynaecological diseases, posterior uveitis, intermediate uveitis, anterior uveitis, conjunctivitis, chorioretinitis, uveoretinitis, optic neuritis, intraocular inflammation, e.g. retinitis or cystoid macular oedema, sympathetic ophthalmia, scleritis, retinitis pigmentosa, immune and inflammatory components of degenerative fundus disease, inflammatory components of ocular trauma, ocular inflammation caused by
- 30 infection, proliferative vitreo-retinopathies, acute ischaemic optic neuropathy, excessive scarring, e.g. following glaucoma filtration operation, immune and/or inflammation reaction against ocular implants and other immune and inflammatory-related ophthalmic diseases, inflammation associated with autoimmune diseases or conditions or disorders

-37-

where, both in the central nervous system (CNS) or in any other organ, immune and/or inflammation suppression would be beneficial, Parkinson's disease, complication and/or side effects from treatment of Parkinson's disease, AIDS-related dementia complex HIV-related encephalopathy, Devic's disease, Sydenham chorea, Alzheimer's disease and other
5 degenerative diseases, conditions or disorders of the CNS, inflammatory components of strokes, post-polio syndrome, immune and inflammatory components of psychiatric disorders, myelitis, encephalitis, subacute sclerosing pan-encephalitis, encephalomyelitis, acute neuropathy, subacute neuropathy, chronic neuropathy, Guillain-Barre syndrome, Sydenham chora, myasthenia gravis, pseudo-tumour cerebri, Down's Syndrome,
10 Huntington's disease, amyotrophic lateral sclerosis, inflammatory components of CNS compression or CNS trauma or infections of the CNS, inflammatory components of muscular atrophies and dystrophies, and immune and inflammatory related diseases, conditions or disorders of the central and peripheral nervous systems, post-traumatic inflammation, septic shock, infectious diseases, inflammatory complications or side
15 effects of surgery, bone marrow transplantation or other transplantation complications and/or side effects, inflammatory and/or immune complications and side effects of gene therapy, e.g. due to infection with a viral carrier, or inflammation associated with AIDS, to suppress or inhibit a humoral and/or cellular immune response, to treat or ameliorate monocyte or leukocyte proliferative diseases, e.g. leukaemia, by reducing the amount of
20 monocytes or lymphocytes, for the prevention and/or treatment of graft rejection in cases of transplantation of natural or artificial cells, tissue and organs such as cornea, bone marrow, organs, lenses, pacemakers, natural or artificial skin tissue.

INTRODUCTION TO THE EXAMPLES SECTION AND THE FIGURES

25

The present invention will now be described only by way of example in which reference is made to the following Figures:

Figure 1 shows an MLV-based transduction method using a Cre/LoxP system as
30 described by Vanin *et al ibid* (1997);

Figure 2 shows an EIAV-based transduction method using a Cre/Lox system;

-38-

Figure 3 shows an MLV SIN vector construct transduction method with an EIAV/HIV genome insertion using a Cre/Lox system;

5 Figure 4 shows an MLV-based transduction method with HRE 3'LTR using a Cre/Lox P system;

Figure 5 shows an MLV-based transduction method for MLV SIN vector production using a Cre/Lox P system;

10 Figure 6 shows an MLV-based transduction method with integration of a complete second genome construct using a Cre/LoxP system;

Figure 7 shows the basis molecular organisation of an RNA genome and a proviral DNA genome;

15 Figure 8 shows a schematic diagram of pTrap2 and pONY8z-loxP plasmids;

Figure 9 shows an overall summary of the recombinase method;

20 Figure 10a shows a FACS analysis of EV1 packaging cells prior to transduction with Trap2 vector;

Figure 10b shows FACS analysis of EV1 packaging cell line transduced with Trap2 at an MOI of 0.3. A 5% top slice of the highest expressers was carried out;

25 Figure 11 shows a validation of the method for quantitation of GFP mRNA, relative to β -actin. A titration of the total RNA from EV1 clone A was used. The difference in Ct values between the two assays is shown on the y axis. The magnitude of the gradient must be <0.1 for the method to be valid. The gradient is 0.077, so the method is suitable;

30 Figure 12 shows the quantitation of GFP mRNA relative to control β -actin mRNA. EV2 TD cells are transduced with Trap2 at an MOI of 0.3 and are the calibrator sample with the ratio designated 1.0;

-39-

Figure 13 shows FACS analysis of EV1 clone A:

Figure 13A shows original GFP expression of the clone;

- 5 Figure 13B shows GFP expression 7 days after transfection with Cre recombinase (pBS185). Excision frequency is 64%;

Figure 13C shows recombined clone 4 identified as being negative for GFP:

- 10 Figure 14 shows lacZ expression of transfected cells with and without the addition of the Cre recombinase (pBS185). Figure 14 shows EV1A4 and EV2D4 clones with and without the addition of Cre recombinase (pBS185). The efficiency of the insertion event was estimated to be about 12% by computer image analysis;
- 15 Figure 15 shows the structure of pONY8.1Z MLVHyb;

Figure 16 shows the alignment of leader and gag regions present in vectors pONY4Z, 8Z and ATG mutated 8Z vector. The latter is referred to as pONY8ZA. The sequences aligned are from the NarI site in the leader to the XbaI site between the EIAV gag sequence and the CMV promoter. Sequences in the leader are shown in italic and a space is present upstream of the position of the gag ATG; and

25 Figure 17 shows a schematic representation of the structure of pONY 8.3G +/- vector genome plasmids.

25

EXAMPLES

EXAMPLE 1

- 30 Vanin *et al* (*ibid*) describe a recombinase system whereby an initial retroviral transduction event introduces retroviral LTRs and expressed gene/s flanked by two recombinase target sites (exemplified by loxP) into a cell line. Stable transduced cell lines are selected by resistance to the antibiotic neomycin and screened for high expression of

-40-

the expressed gene(s) (see Figure 1). Such cell lines (Cell Line 1) contain retroviral insertions in integration sites that support high level expression from the retroviral genome.

- 5 The next step involves the transfection of the relevant recombinase expression construct (exemplified here by Cre recombinase) into the identified high expressing cell line. The expressed gene(s) is/are excised and a single loxP site is retained in the construct (Cell Line 2). In this instance, thymidine kinase gene (tk) is used as a negative selectable marker in combination with the drug, gancyclovir. The final step involves the re-
10 insertion of a therapeutic or marker gene of choice into the single loxP site via a Cre-assisted mechanism. Cell lines are identified that have been successfully recombined (Cell Line 3) and they will produce retroviruses at the same titre as the parental Cell Line 1.

15 **EXAMPLE 2**

Figure 2 and Figure 3 describe the production of EIAV or HIV high titre transduced producer cell lines.

- 20 Figure 2 shows a minimal EIAV genome construct with the 3' U3 sequences replaced by a strong constitutive promoter, CMV. A reporter gene such as blasticidin resistance gene (*bsr*) is flanked by loxP sites. Virus is made in a transient system and is transduced into an EIAV producer cell line and clones identified that maximally express the blast marker gene. A line is chosen (termed Cell Line 1) and the marker gene is excised by a Cre
25 recombinase-assisted excision event, generating Cell Line 2.

Construct B comprises two loxP sites which flank an internal expression cassette and also the native EIAV 3' LTR. Therefore, this construct is recombined into the cell line such that the 5' R and U5 sequences are inherited from the packaging cell line, whereas the 3'
30 LTR sequences are wholly derived from the recombined construct. The 3' LTR from Cell Line 2 is present downstream of the functional EIAV genome expression construct. This CMV-R-U5 module is still transcriptionally active but expression is directed away from the EIAV genome.

-41-

Figure 3 shows a further aspect of the invention. Construct C is based on an MLV SIN vector, with a deletion in the 3' U3 sequences. The cassette includes an internal CMV promoter linked to EIAV R and U5 sequences. This is followed by a blasticidin resistance gene (*bsr*) flanked by two loxP sites. Virus is made in a transient transfection system and the genome is transduced into a packaging line. Blast-resistant clones are identified and the highest expressing line is chosen for further analysis. This line is transfected with Cre recombinase and the blast gene is excised. The last step involves the insertion of construct B into the single loxP site. Once again, a complete EIAV 3' LTR is introduced into the producer cell line. This leads to a CMV-driven EIAV genome expression cassette with the EIAV 3' LTR still located at the 3' end of the genome. Transcriptionally quiescent MLV SIN LTRs flanks these EIAV sequences.

EXAMPLE 3

Figure 4 shows an additional aspect of the invention. Construct D is an MLV-based vector with a CMV promoter in the 3' LTR in place of the U3 sequences. Virus is made in a transient system and is transduced into a packaging cell line as described previously. The neo and TK genes are excised by the action of Cre recombinase and construct E is recombined into the single loxP target sequence. The modified MLV 3' LTR including the HRE or similarly regulated system is transferred into the packaging cell line by the recombinase mechanism. Therefore, the 5' R and U5 sequences are inherited from the producer cell line whereas the therapeutic and marker gene/s and regulated 3' LTR is inherited from construct E. The final producer cell line is constitutively driven by the 5' CMV promoter and will produce high titre retroviral vectors which are regulated in the transduced target cells. This approach avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production from traditionally derived transduced producer lines.

EXAMPLE 4

Figure 5 shows yet another aspect of the invention. Construct D is an MLV-based vector with a CMV promoter in the 3' LTR as previously described. The same process is carried

-42-

out as shown in Figure 4 until the final recombination is performed. Construct F contains a deletion in U3 sequences in the 3' LTR and an internal expression cassette comprising a promoter and gene sequences. The final cell line containing the Cre-mediated recombination will be CMV-driven and will constitutively produce high titre MLV SIN vectors. Previously, SIN vectors have not been amenable to production by stable cell line producer technology. Instead they have been prepared using transfection-based transient expression systems.

EXAMPLE 5

10

Figure 6 shows an MLV-based transduction method with integration of complete second genome construct by Cre/LoxP system. In this approach, construct 1 is called TRAP1) is an MLV vector construct containing an internal CMV promoter operably linked to a marker gene (a truncated form of the human low affinity nerve growth factor receptor, called LNGFR). The enhancer elements in the 3' U3 sequence have been excised and replaced by a 34bp loxP site. Virus stocks are prepared in a transient system and the TRAP1 genome is stably transduced into packaging cell lines.

20 The modified 3'U3 sequences, including the lox P sequence, is copied from the 3'LTR position to the 5'LTR, such that there is little 5' promoter activity. Cell lines are screened for high levels of expression of LNGFR protein by fluorescent activated cell sorter (FACS) analysis and clonal lines are derived by standard techniques. A Cre recombinase expression plasmid is transfected into the derived cell line to excise all sequences between the two loxP sites. Next, cells are negatively selected by FACS for absence of
25 LNGFR expression and clonal lines are derived by standard techniques. Construct 2 in this example comprises a complete HIV or EIAV or also MLV retroviral genome, which is flanked by two minimal 34bp loxP recombinase sites. A strong constitutive promoter such as CMV directs transcription of the genome. On transfection of plasmid 2 and Cre expression plasmid, the complete lentivirus vector or MLV vector genome is inserted in
30 the producer cell line. These sequences are flanked to the 5' by a small portion of MLV U3 sequence and a loxP site and to the 3' by the second loxP site, enhancerless-U3 sequences, R and U5 derived from the MLV construct 1.

Derivation of Plasmid TRAP1 (Figure 6 - Construct 1)

Oligonucleotides VSAT129 and VSAT130 were synthesised which correspond to the
5 minimal 34bp loxP sites and contain a 5' overhang for NheI and a 3' overhang for XbaI.
The sequences 5' to 3' are as follows: VSAT129 (CTAGCATAACTTCGTATA
ATGTATGCTATACGAAGTTATT) (SEQ ID No 49) and VSAT130
(CTAGAATAACTTCGTATAGC ATACATTATACGAAGTTATG) (SEQ ID No 50).
The two oligonucleotides were treated with T4 polynucleotide kinase and were heated to
10 95°C for 5 minutes, before gradual cooling to room temperature. The annealed and
kinased oligos were ligated to a 2,830 bp NheI/XbaI fragment from LTR plasmid (SEQ
ID No 59). Fragments were ligated and correct clones of LTRloxP were identified by
sequence analysis. Plasmid LTRloxP was then digested with NheI and ScaI and a
2.185bp fragment was prepared for following cloning steps.

15 Plasmids TRAP1 and TRAP1G were derived from LTRloxP and the MLV genome
CGCLNGFR (encodes GFP and LNGFR from an internal CMV promoter – see SEQ ID
No 57). However, the GFP gene was excised by EcoRI/BsmI digestion and the 6,796bp
fragment was filled in by T4 DNA polymerase and re-ligated, in order to generate
20 plasmid CXCLNGFR. Plasmid TRAP1 was generated by ligation of a 2,185bp NheI/ScaI
fragment from LTRloxP (see SEQ ID No 58) to a 4,426bp NheI/ScaI fragment from
CXCLNGFR. Plasmid TRAP1G was generated by ligation of a 2,185bp NheI/ScaI
fragment from LTRloxP to a 5,179bp NheI/ScaI fragment from CGCLNGFR.

25 Derivation of Plasmid pONY8z-lox (Figure 6 - Construct 2)

In this example, the retroviral genome inserted into the loxP site in Figure 6 was based on
the EIAV vector genome, pONY8z (for preparation see pONY8.0Z construction below).
pONY8z was cut with SnaBI and NruI, and the 4358bp fragment purified and self-ligated
30 to form pONY8z-shuttle. This plasmid has unique 5' sites (DraIII and BglII) and unique
3' sites (PvuII and BspLUII). Oligonucleotides encoding the 34bp loxP sites were
inserted with suitable base pair overhangs at the unique 5' DraIII site and then the unique
3' BspLUII, to generate plasmid pONY-8z-shuttleloxP.

Plasmid pONY8z-loxP was made as follows. Plasmid pONY-8z-shuttleloxP was digested with BsrG I and NspV, and the 3670bp fragment was purified as the vector fragment. The insert for ligation to this fragment was derived from pONY8z by partial digestion with BsrGI (two sites) followed by digestion with NspV. A 7,328bp fragment was purified and ligated to the 3670bp fragment described above.

The Cre recombinase plasmid as used in this system is pBS185 (Gibco).

10 EXAMPLE 6

We constructed an MLV self-inactivating (SIN) vector called pTrap2 (see SEQ ID No 56) by replacing the 3' U3 NheI-XbaI fragment with a 34-bp loxP sequence. The vector transcribes the marker gene GFP from an internal CMV promoter. Trap2 vector was used 15 to transduce EIAV packaging cell lines EV1 and EV2. The EV cell lines are based on human TE671 cells and express EIAV gag/pol proteins and VSV-G envelope, regulated by a temperature-sensitive switch. High expressing clones of transduced EV1 and EV2 cells were identified by FACS analysis for GFP. Individual clones expressing high levels of GFP were then selected. The GFP expression cassette was excised following transient 20 transfection with a Cre recombinase expression plasmid. The derived cell line, EV-loxP, contains a single loxP site and minimal sequences derived from the MLV construct pTrap2. An EIAV genome was engineered to contain loxP sites flanking the entire vector genome.

25 This genome construct and Cre recombinase were co-transfected into EV-loxP. Stable cell lines expressing lacZ were selected by FACS and cell lines were cloned by limiting dilution. Therefore, we have introduced an entire EIAV genome expression cassette into a single loxP site. This site was previously identified by MLV transduction as highly permissive for transgene expression. A 5' CMV promoter transcribes the lentiviral 30 genome in the producer cell line but the expression site was originally identified by MLV transduction. This method is adaptable to the generation of transduced producer cell lines for other lentiviral vector systems.

-45-

Materials and Methods

Vector construction: Plasmid pTrap2 was made as follows: A plasmid containing a single MLV LTR plasmid (LTRplasmid – SEQ ID No 59) was digested with *Nhe*I and 5 *Xba*I and a 34 bp minimal loxP site was introduced with relevant sticky ends. This insertion step removes the MLV U3 enhancer elements which lie within the excised *Nhe*I-*Xba*I fragment. The LTR-loxP plasmid was linearised by digestion with *Nhe*I and was ligated to a 6.8kb *Nhe*I fragment from the MLV construct CZCG (See SEQ ID No 55). This construct expresses lacZ from the 5' U3 promoter and GFP from an internal CMV 10 promoter. The resulting pTrap2 construct is shown in Figure 8.

The EIAV genome construct pONY8.0Z and pONY8.1Z were prepared as follows:

pONY8.0Z construction

15

pONY8.0Z was derived from pONY4.0Z (see WO 99/32646) by introducing mutations which 1) prevented expression of TAT by an 83nt deletion in the exon 2 of tat) prevented S2 ORF expression by a 51nt deletion 3) prevented REV expression by deletion of a single base within exon 1 of rev and 4) prevented expression of the N-terminal portion of 20 gag by insertion of T in ATG start codons, thereby changing the sequence to ATTG from ATG. With respect to the wild type EIAV sequence Acc. No. U01866 these correspond to deletion of nt 5234-5316 inclusive, nt 5346-5396 inclusive and nt 5538. The insertion of T residues was after nt 526 and 543.

25 pONY8.1Z construction

pONY8.1Z was obtained directly from pONY8.0Z by digestion with *Sal*I and partial digestion with *Sap*I. Following restriction the overhanging termini of the DNA were made blunt ended by treatment with T4 DNA polymerase. The resulting DNA was then 30 religated. This manipulation results in a deletion of sequence between the LacZ reporter gene and just upstream of the 3'PPT. The 3' border of the deletion is nt 7895 with respect to wild type EIAV, Acc. No. U01866. Thus pONY8.1Z does not contain sequences corresponding to the EIAV RREs.

-46-

Plasmid pONY8z was linearised by *Bgl*II, and a single loxP site was cloned into *Bgl*II, immediately upstream of the 5' CMV promoter, to produce pONY8z-loxP. Plasmids pONY3.2iresHYG and pHCMV-VSVG were used in the derivation of cell lines EV1 and 5 EV2. The plasmid pONY3.2iresHYG was constructed as follows:

pONY3.2IRES hyg

pONY3.IRESHyg was derived from pONY3.2. pONY3.2 is a derivative of pONY3.1 in 10 which expression of TAT and S2 are ablated by an 83nt deletion in the exon 2 of tat a 51nt deletion in S2 ORF. With respect to the wild type EIAV sequence Acc. No. U01866 these correspond to deletion of nt 5234-5316 inclusive and nt 5346-5396 inclusive. This fragment was introduced into the expression vector pHORSE IRES hyg which was made 15 as follows. pHORSE (see WO 99/32646) was cut with SnaBI and NotI which excises a fragment running from the CMV promoter through EIAV gag/pol and introduced into pIRES1hyg (Clontech) digested with the same enzymes. This plasmid was then cut with Sse8387I and BstEII and then ligated with the Sse8387I to BstEII fragment from pONY3.2. The sequence of the plasmid is set out in SEQ ID No 51.

20 **Virus Production**

Transient MLV vector preparations pseudotyped with RD114 cat endogenous envelope were made as described previously (Soneoka et al., 1995). EIAV vector was harvested 25 from confluent monolayers following 3 days induction of VSV-G expression at 32°C. MLV vector preparations were titred in triplicate on HT1080 fibrosarcoma cells. EIAV vector preparations were titred by GFP and lacZ on D17 dog osteosarcoma cells.

Flow cytometry of b-galactosidase and GFP activity:

30 1.5x10⁵ cells from a 12-well plate were analysed for lacZ expression using the FluoReporter lacZ Flow Cytometry kit (Molecular Probes). GFP expression was also directly assessed using the FACSCalibur flow cytometer (Beckton Dickinson).

Transfection methods

Calcium phosphate transfections were carried out using the Profection kit (Promega) according to manufacturer's instructions.

5 **Results**

Figure 8 shows a schematic diagram of pTrap2 and pONY8z-loxP, plasmids used in this study.

10 **Introduction of Trap2 genome into EV1 and EV2**

An overall summary of the process described here is given in Figure 9. Trap2 MLV vector was made in a transient system with the amphotropic 4070A envelope. It gave a GFP titre of 1.7×10^6 T.U. per ml. Trap2 vector however also gave a lacZ titre of 9.4×10^5 T.U. per ml. This shows that replacement of the *NheI-XbaI* fragment from the MLV U3 region with loxP does not completely inactivate the MLV U3 promoter. Therefore Trap2, as constructed, is a partial SIN vector.

EV1 and EV2 cells were transduced with Trap2 vector at a multiplicity of infection (MOI) of 0.3. This was done to insert single copies of the MLV genome into the packaging lines.

Derivation of high expressers of GFP marker gene

25 Transduced EV1 and EV2 cells were analysed by FACS (see Figure 10) and the top 5% of GFP expressing cells were sorted and expanded. Clonal lines were derived by limiting dilution and four clones of EV1 and EV2 were chosen by visual inspection.

A quantitative TaqMan RT-PCR reaction was established in order to identify which of the 30 four clones of EV1 and EV2 were the highest expressors of GFP mRNA. Total RNA was analysed by RT-PCR for GFP and β -actin. Quantitation was calculated by direct comparison of the Ct values (Cycle threshold). This was possible as it was proved that the two individual RT-PCR reactions are of similar efficiency (see Figure 11). By identifying an

-48-

optimal chromosomal location for GFP transgene expression. we can ensure that the inserted loxP site will be highly permissive for expression of an inserted lentiviral genome construct.

5 Figure 5 shows the n-fold difference in GFP : β-actin ratio for clones EV1 A to D and EV2 A to D. All ratios are defined relative to a calibrator sample, defined as a ratio of 1.0. The calibrator sample used was RNA from EV2 cells transduced with Trap2 at an MOI of 0.3.

10 This identified the best expressing lines as:

- EV1 clone A - GFP : β-actin ratio is 22.8
- EV2 clone D - GFP : β-actin ratio is 18.6

These two lines were carried forward for further study.

15

Excision of internal expression cassette by Cre recombinase

20 The process of retroviral integration copies the loxP-containing modified 3' U3 to the 5' position. Therefore, one can excise the majority of the MLV Trap2 integration by the action of Cre recombinase. This will leave a single modified LTR, suitable for lentiviral genome integration.

EV1 clone A and EV2 clone D were transfected by the Cre expression plasmid pBS185 (Life Technologies). After one week, the cells were analysed for GFP by FACS (see 25 Figure 13) to determine the excision frequency. This was measured at 20-70% in all lines.

Recombined clones were identified by limit dilute cloning cells and checking by microscope and FACS for loss of GFP expression.

30

Insertion of EIAV genome into loxP site

-49-

Plasmid pONY8x-loxP and pBS185 were co-transfected using Fugene into EV1 clone A (excised) and EV2 clone D (excised). A control transfection of pONY8z-loxP in the absence of pBS185 was also carried out.

- 5 Figure 14 shows lacZ expression of transfected cells with and without the addition of Cre recombinase (pBS185). The efficiency of the insertion event was estimated to be ~12% by computer image analysis.

10 We analysed cells for lacZ expression by FACS using the FluoReporter lacZ Flow Cytometry kit. The top 5% of lacZ positive cells were sorted by FACS and clones were derived by limiting dilution. In total, 12 clones of EV1/A/pONY8z-loxP were derived and 13 clones of EV2/D/pONY8z-loxP.

EXAMPLE 7

15

Construction of EIAV vectors with LTR driven open reading frames

The EIAV vector configurations described previously utilise a single promoter -
20 transgene cassette located internally in the vector. For example in pONY8Z the promoter-transgene cassette is CMV-LacZ. However for some uses it would be advantageous to have the option of expressing a gene from the 5'LTR promoter as well. For example a marker gene such as green fluorescent protein (GFP), a resistance marker such as neomycin phosphotransferase (neo) or another protein or a biologically active
25 entity such as a ribozyme. Previous experiments have shown that the EIAV LTR is weakly active in human cells in the absence of EIAV tat. However the transcriptional activity of the LTR can be increased by replacement of the EIAV U3 region with the MLV U3 region or the CMV promoter. This is achieved by introducing these alterations in the 3'LTRs of the vector plasmids. As a result of the replicative strategy of
30 retroviruses the modified 3'LTR becomes positioned at the 5'end of the integrated vector and can thus drive expression of a gene placed downstream of the gag region. To ensure optimal levels of expression there should preferably be no ATG start codons prior to the start codon of the gene to be expressed. In pONY8Z the ATG start codon of gag and the next ATG downstream were mutated to ATTG in order to ablate expression of the

-50-

aminoterminal portion of gag present in the vectors, however there are 7 other ATG codons further downstream of these, within gag, from which translation might be initiated.

- 5 Described below are the replacement of the U3 region of EIAV with MLV or CMV promoters and the mutation of ATG codons in the gag region

Replacement of the EIAV U3 region with MLV U3 or CMV promoters

- 10 The MLV U3 region was introduced into pONY8Z vector by replacement of the 3'LTR with a synthetic MLV/EIAV LTR made by the overlapping PCR technique, using the following primers and templates.

The EIAV PPT/U3 sequence was amplified from pONY8.1Z using primers:

- 15 KM001: CAAAGCATGCCTGCAGGAATTG (SEQ ID No 1)

and

KM003:

- 20 GCCAACCTACAGGTGGGTCTTCATTATAAAACCCCTCATAAAAACCCAC
AG (SEQ ID No 2)

to give the following product:

- 25 CAAAGCATGCCTGCAGGAATTGATCAAGCTTATCGATACCGTCGAATTG
GAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCTCAGTATGTTAG
AAAAACAAGGGGGAACTGTGGGTTTATGAGGGTTTATAATGAAAGA
CCCCACCTGTAGGTTGGC (SEQ ID No 3)

- 30 The MLV U3 region was amplified from pHIT111 (Soneoka et al., (1995) Nucleic Acids Res. 23, 628-633) using KM004:

-51-

CTGTGGGGTTTTATGAGGGGTTTATAATGAAAGACCCACCTGTAGGTTG
GC (SEQ ID No 4)
and

5 KM005:

GAAGGGACTCAGACCGCAGAATCTGAGTGCCCCCGAGTGAGGGTTGTGGG
CTCT (SEQ ID No 5) to give the following product:

- 10 CTGTGGGGTTTTATGAGGGGTTTATAATGAAAGACCCACCTGTAGGTTGGCAAGCTAGCT
TAAGTAACGCCATTGCAAGGCATGGAAAAATACTGAGAATAGAGAAGTCAGATC
AAGTCAGGAACAGATGGAACAGCTGAATATGGCCAACAGGATATCTGTGGAAGCAGTT
CCTGCCCCGGCTCAGGCCAAGAACAGATGGAACAGCTGAATATGGCCAACAGGATATCT
GTGGTAAGCAGTTCTGCCCCGGCTCAGGCCAAGAACAGATGGTCCCCAGATGCGGTCCAGC
15 CCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGCCCCAAGGACCTGAAATGACCC
TGTGCCTTATTGAACTAACCAATCAGTCGCTTCTCGCTTCTGTCGCGCGCTCTGCTCCCCG
AGCTCAATAAAAGAGCCCACAACCCCTCACTCGGGGGCACTCAGATTCTGCGGTCTGAGTCC
CTTC (SEQ ID No 6)
- 20 The MLV U3/EIAV R/U5 was amplified from pONY8.1Z using primers

KM002: GAGCGCAGCGAGTCAGTGAGCGAG (SEQ ID No 7) and

KM006:

- 25 AGAGCCCACAACCCCTCACTCGGGGGGCACTCAGATTCTGCGGTCTGAGTCC
CTTC (SEQ ID No 8)

to give the following product:

- 30 AGAGCCCACAACCCCTCACTCGGGGGGCACTCAGATTCTGCGGTCTGAGTCC
GGCTGAAAAGGCCTTGTAAATAATAATTCTACTCAGTCCCTGTCTAGTTGTCTGTT
CGAGATCCTACAGAGCTCATGCCTTGGCGTAATCATGGTCATAGCTGTTCTGTGAAATTG
TTATCCGCTACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGTGC
35 CTAATGAGTGAACACTCACATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTCGGGAAAC

-52-

CTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGAGAGGCGGTTGCGTATTGGG
CGCTCTTCCGCTTCCCTCGCTCACTGACTCGCTGCGCTC (SEQ ID No 9)

The PCR products described above were purified and then used as templates in new PCR reactions to link them together to obtain a 992bp product. The final product contains two SapI sites which flank the hybrid LTR. These allow introduction of the PCR product into the corresponding SapI sites present in the pONY8Z or pONY8.1Z vector plasmid, thereby creating pONY8Z MLVHyb and pONY8.1 MLVHyb. The sequence of the hybrid LTR in these plasmids was confirmed by sequencing. The titres obtained from the vectors in transient transfection assays are shown in Table 1. The titres were very similar to the titres from the parental construct pONY8Z and pONY8.1Z indicating that replacement of the EIAV U3 region with that of MLV had little or no detrimental effect on the infectious cycle of the vectors.

15 **Table 1. Titres obtained from MLV hybrid LTR vector plasmids**

vector plasmid	#titre (l.f.u./ml)
pONY8Z	3×10^3
pONY8Z MLVHyb	1×10^3
pONY8.1Z	6×10^3
pONY8.1Z MLVHyb	2×10^4

Titre was measured on D17 cells and is expressed as LacZ forming units/ml (l.f.u./ml). Transfections were carried out in 293T cells using the vector plasmid shown and pRV67 (20 VSV-G expression plasmid), and pONY3.1 (EIAV gag/pol expression plasmid).

The structure of pONY8.1Z MLVHyb is shown in Figure 15 and the sequence of this plasmid is shown as SEQ ID No 10.

25 The EIAV promoter was also replaced by the human cytomegalovirus (CMV) promoter using a similar strategy. The primers and templates were the same except that KM003 was replaced by KM008:

-53-

GGCCATCGTCCTCCCCACTCCTGCAGTTATAAAACCCCTCATAAAAACCCA
CAG (SEQ ID No 11)

KM004 was replaced by KM009:

5

CTGTGGGTTTTATGAGGGTTTATAAAGCTGCAGGAGTGGGAGGCACGA
TGGCC (SEQ ID No 12)

KM005 was replaced by KM010:

10

GAAGGGACTCAGACCGCAGAACATCTGAGTGCCCGTTCACTAACGAGCTCTG
CTTATATAGACC (SEQ ID No 13) and

KM006 was replaced by KM011:

15

GGTCTATATAAGCAGAGCTCGTTAGTGAACCGGGCACTCAGATTCTGCG
GTCTGAGTCCCTTC (SEQ ID No 14)

The template for the PCR reaction with primers KM009 and KM010 was pONY2.1LacZ.

20 This plasmid contains a single CMV promoter. The combined PCR product of 1319 bp was digested with Sapi and introduced into the pONY8Z or pONY8.1Z backbone as described above for pONY8Z MLVHyb.

Mutation of remaining ATG codons in the gag of pONY8Z to ATTG

25

The alignment of the sequence of the leader and gag region present in vectors pONY4Z (an earlier generation EIAV vector), pONY8Z and a derivative of pONY8Z in which the 7 remaining ATG codons are mutated to ATTG is shown in Figure 16. These mutations were created by PCR mutagenesis as follows. The template for the PCR reactions was 30 pONY8Z and the primers were:

F1: CGAGATCCTACAGTTGGCGCCCGAACAG (SEQ ID No 15);

-54-

R1:GAGTTACAATCTTCCAGCAATGGAATGACAATCCCTCAGCTGCCAGTCCTT
TTCTTTACAAAGTTGGTATCAATGAAATAAGTCTACTAGACTTAGC (SEQ ID
No 16);

5 F2:TTCCATTGCTGGAAGATTGTAACTCAGACGCTGTCAAGACAAGAAAAGAGA
GGCCTTGAAAGAACATTGGTGGCAATTCTGCTGTAAAGATTG (SEQ ID No
17);

10 R2:CAATATTCGCTCTTAGGAGCTGGAATGATGCCTTCCAATCTACTACAAT
TATTAATCTGGAGGCCAATCTTACAGCAGAAATTGCCACCAATG (SEQ ID
No 18);

15 R3:CCACTAGTTCTAGAGATATTCTCAGAGGGCTCAGACTGCTTTTATTAGC
AGTCTTCTTCAATATTCGCTCTAGGAGC (SEQ ID No 19)

In the first stage of construction two PCR reactions were set up with primer pairs F1/R1 and F2/R2, respectively. These were purified and then used in a second 'overlapping' reaction in which primers F1 and R3 were added after 10 cycles. This procedure results in a 552bp PCR product (SEQ ID No 20):

20 CGAGATCCTACAGTTGGCGCCGACAGGGACCTGAGAGGGGCGCAGACCCCTACCTGTTGAA
CCTGGCTGATCGTAGGATCCCCGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGT
TCCTGGCCAGAACACAGGAGGACAGGTAAGATTGGAGACCCTTGACATTGGAGCAAGGCG
CTCAAGAAGTTAGAGAACGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGGTAACTGTAAT
25 TGGGCGCTAAGTCTAGTAGACTTATTCATTGATACCAACTTGTAAAAGAAAAGGACTGGCA
GCTGAGGGATTGTCAATTCCATTGCTGGAAGATTGTAACTCAGACGCTGTCAAGACAAGAAAGA
GAGGCCTTGAAGAACATTGGTGGCAATTCTGCTGTAAAGATTGGCCTCCAGATTAATA
ATTGTAGTAGATTGGAAAGGCATCATTCCAGCTCTAAGAGCGAAATATTGAAAAGAAGACTG
CTAATAAAAAGCACTGAGCCCTCTGAAGAATATCTCTAGAACTAGTGG

30 This was digested with *NarI* and *XbaI* and ligated into pONY8Z, pONY8Z MLVHyb and
pONY8Z CMVHyb, which had been prepared for ligation by digestion with the same
enzymes. These plasmids were designated pONY8ZA or pONY8ZA MLVHyb and
pONY8ZA CMVHyb. The sequence for pONY8ZA CMVHyb is provided in SEQ ID No
52. These plasmids have a unique *XbaI* site into which can be inserted genes such as

-55-

GFP or neomycin phosphotransferase or other biologically active entity. This use of the site is demonstrated for GFP. The GFP ORF was obtained from pEGFP-1 (Clontech) by digestion with SmaI and XbaI, and then the ends filled in by treatment with T4 DNA polymerase. This fragment was then ligated into pONY8ZA or pONY8ZA MLVHyb and 5 pONY8ZA CMVHyb prepared for ligation by digestion with XbaI and subsequent filling in with T4DNA polymerase. The resulting vector plasmids were called pONY8GZA or pONY8GZA MLVHyb and pONY8GZA CMVHyb. Other genes can be inserted at this site by manipulations apparent to those skilled in the art.

10 **Creation of EIAV vector genomes containing loxP sites in their LTR's**

The time taken to construct producer cell lines for EIAV vectors would be greatly reduced if it was possible to 1) locate and 2) reutilise a site in the host cell chromosome which was particularly favourable for high levels of transcription of the vector genome. 15 In outline, this can be achieved by engineering loxP sites in the 3'LTR of EIAV vectors, transduction of the packaging cell line with vectors which carry loxP and hybrid LTRs, selection of cells which express the highest levels of vector genome and exchange of the test EIAV vector genome for the vector genome of choice using the cre/loxP recombination system.

20

The proposed scheme was evaluated using a derivative of pONY8GZA CMVHyb in which a loxP site was introduced into the PstI site between the EIAV sequences (required for efficient integration) and the CMV promoter in the 3'LTR. After transduction the integrated vector will thus have a loxP-CMV cassette located in the 5'LTR and 3'LTR's 25 and therefore full length transcripts of the vector genome will be driven by the CMV promoter, which is a powerful promoter. pONY8GZA CMVHyb contains many PstI sites hence it was modified to allow insertion of the loxP site by digestion with XbaI and NheI and religation to create the subclone, pONY CMVHyb. This plasmid has a unique PstI site in the hybrid LTR. The loxP site was inserted into this site using two complimentary 30 oligonucleotides which when annealed formed PstI-compatible termini. These were termed loxP POS

-56-

PSTI [GATAAAC TTCTGTATAATGTATGCTATACGAAGTTATCTGCA] (SEQ ID No 21)] and

loxA loxP NEG PstI [GATAACTTCGTATAGCATACATTATACGAAGTTATCTGCA]
5 (SEQ ID No 22)

The sequence and orientation of the loxP site was confirmed by DNA sequencing and the plasmid called pONY CMVHyb loxP. The central part of the vector genome was then reintroduced into this subclone by transfer of the NotI-BstEII fragment from pONY8GZA
10 CMVHyb into pONY CMVHyb cut the same way. The resulting vector was termed pONY8GZA CMVHyb loxP.

Two routes for construction of a producer cell line are available using pONY8GZA CMVHyb loxP. The plasmid can be introduced into a packaging cell line by transfection or vector particles can be made using the 293T and these used to transduce the packaging cell line. Since the vector is derived from EIAV, rather than MLV, it is able to transduce non-dividing cells or slowly dividing cells. In this situation it has been hypothesised that integrations occur at chromosomal sites that are constitutively open; that is, are likely to be sites at which high levels of transcription will be maintained for extended periods.
15 This may be important for the long term usefulness of the producer cell line and thus represents an advantage of strategy using transduction.

Producer cell lines were made by transfection or transduction of a TE671-derived cell line (EV11E) which has stably integrated copies of VSV-G and the synthetic EIAV gag/pol
25 under the control of CMV promoters. Prior to transfection with pONY8GZA CMVHyb loxP it was linearised by digestion with AhdI. Seven days following transfection or transduction cells expressing the highest levels of GFP were selected by FACS and then cloned by limiting dilution. A number of clones were analysed for levels of full length vector RNA using Taqman technology based assays in order to confirm the hypothesis
30 that the highest level of GFP expression correlates with the highest levels of vector RNA.

The cell line which expressed the highest level of RNA was then tested for production of transducing vector particles 5 days after changing the temperature of incubation from 37C

-57-

to 32°C. At 32°C, VSV-G expression is induced however maximal levels of VSV-G are only obtained after 5 days at the permissive temperature (see WO 00/52188). The cell line producing the highest titre, EV11E CMV loxP was selected for further work.

- 5 In order to exchange the vector genome with for another EIAV vector genome with a more suitable configuration for use in the clinical setting EV11EloxP cells were transfected with cre recombinase expression plasmid, pBS185 (Gibco), which results in excision of the EIAV vector between the loxP sites. This leaves a loxP-CMV promoter R-U5 sequence in the cells. Cells from which the EIAV vector genome had been excised
- 10 were selected on the basis of low levels of GFP expression by FACS and assumed to be clonal on the basis of the clonality of EV11E CMV loxP. These were termed EV11EloxPA and used as targets for new EIAV vector genomes.

**Construction of EIAV vector genomes with downstream REV expression cassettes
15 and flanking loxP sites**

The production of vector particles from minimal EIAV vectors (those which do not express EIAV REV or any other EIAV proteins) is increased by about 10-fold in the presence of EIAV REV in our 293T transient production system when the codon-
20 optimised EIAV gag/pol expression construct is used to drive production of vector particles as set out in Table 2. This may be improved nuclear to cytoplasmic transport of the vector genome in the presence of REV protein. Packaging/producer cell lines for EIAV vectors may be engineered to express Rev protein. One approach would be to engineer cells to express EIAV REV from an independently transfected expression
25 cassette. However, the cassette and the vector genome may be subject to differential regulation, for example by methylation or chromosome remodelling. Such an effect may limit the useful life of such cell lines.

Table 2. Effect of REV expression on titres obtained from REV-expressing [REV+] and
30 non-expressing [REV-] vectors

vector plasmid	gag/pol	expression	#titre
----------------	---------	------------	--------

-58-

	plasmids	(l.f.u./ml)
pONY4Z [REV+]	pONY3.1	2.0±0.4 x 10 ⁶
pONY4Z [REV+]	pE SYN GP	0.9±0.2 x 10 ⁶
pONY8Z [REV-]	pONY3.1	1.5±0.2 x 10 ⁶
pONY8Z [REV-]	pE SYN GP	1.9±0.6 x 10 ⁵

* Titre was measured on D17 cells and is expressed as LacZ forming units/ml (l.f.u./ml). Transfections were carried out in 293T cells using the vector plasmid and gag/pol expression plasmid shown and pRV67 (VSV-G expression plasmid) (See WO 00/52188).

5

REV+ and REV- reflect the rev expression status of the vectors. REV+ reflects vectors which express the REV protein. REV- reflects expression vectors which do not express the REV protein.

10 pESYNGP

The gag/pol expression plasmid shown in Figure called called pESYNGP was constructed as follows: The codon-optimised EIAV gag/pol ORF was synthesised by Operon Technologies Inc., Alameda and supplied in a proprietary plasmid backbone, GeneOp. 15 The complete fragment synthesised included sequences flanking the EIAV gag/pol ORF: tctagaGAATTGCCACCATG- EIAV gag/pol- UGAACCCGGGgcggccgc (SEQ ID No 44). The ATG start and UGA stop codons are shown in bold. XbaI and NotI sites are in lower case. These were used to transfer the gag/pol ORF from GeneOp into pCIneo (Promega) using the NheI and NotI sites in the latter.

20

pESDSYNGP

An alternative expression plasmid for expression of the synthetic EIAV gag/pol could 25 also be used. It is called pESDSYNGP and its construction is described as follows: ESDSYNGP was made from pESYNGP by exchange of the 306bp EcoRI-NheI fragment, from just upstream of the start codon for gag/pol to approximately 300 base pairs inside

-59-

the gag/pol ORF with a 308bp EcoRI-NheI fragment derived by digestion of a PCR made using pESYNNGP as template and using the following primers: SD FOR [GGCTAGAGAATTCCAGGTAAGATGGCGATCCCCTCACCTGG] (SEQ ID No 60) and SD REV [TTGGGTACTCCTCGCTAGGTTC] (SEQ ID No 61). This 5 manipulation replaces the Kozak concensus sequence upstream of the ATG in pESYNNGP with the splice donor found in EIAV. The sequence between the EcoRI site and the ATG of gag/pol is thus CAGGTAAG (SEQ ID No 62).

The sequences for pESYNNGP (SEQ ID No 53) and pESDSYNGP (SEQ ID No 54) are 10 provided.

Packaging/Producer cells may be engineered by physically linking the genome and EIAV REV expression cassettes. In this way stable transfectants may be generated which contain the vector genome and the EIAV REV expression cassette in the same chromatin 15 environment. This manipulation may ensure that the relative levels of transcription of the vector genome and the REV expression cassette are maintained leading to an increased duration of vector production from the producer cells.

Previous work has suggested that optimisation of the level of REV may be required with 20 respect to the level of vector genome (see WO 98/17815). We have examined the levels of vector production in a transient system in which several different promoters are used to drive REV expression in order to determine which vector genome-rev expression cassette is optimal for use in constructing producer cell lines. The highest titres were obtained with FB29 and PGK promoters driving REV expression.

25

The following describes the construction of EIAV vector genomes plasmids in which there is a downstream expression cassette for synthetic EIAV REV protein. The promoters tested were FB29, PGK, TK, CMV, SV40 and RSV. In addition the loxP sites 30 were engineered into the vector plasmid backbone in such a way that the genome and introduced promoter-REV expression plasmid was flanked. In this way, the complete vector-REV cassette can be recombined into loxP sites in the target cell.

-60-

The complete construction of the FB29 and PGK containing plasmids is described here. The REV expression construct was inserted in the both orientations with respect to the EIAV vector genome. Plasmids in which the FB29 or PGK promoters drive REV expression are being utilised for construction of stable producer cell lines.

5

Construction of plasmids

In the first step of construction an SfiI site was inserted downstream of the EIAV vector sequence. This site is the insertion site for the promoter REV cassettes. The construction 10 was made as follows. pONY8Z was digested with EcoRI and NruI, the ends were blunted by treatment with T4 DNA polymerase and religated. The resulting plasmid, pONY8Z delta, is thus deleted with respect to the leader, gag, reporter cassette and most of the Rev/RRE regions.

15 pONY8Z delta was mutated to contain loxP sites inserted in the DraII site immediately to the 5' of the CMV promoter and in the BspLU1II site to the 3' of the vector genome. The loxP sites were inserted using complementary nucleotide pairs which when annealed had overhanging termini suitable for cloning into these sites and were inserted in two steps of cloning. The oligonucleotides for insertion into the DraIII site were

20

VSAT 158: [GTGATAACTTCGTATAATGTATGCTATACGAAGTTACACTAC]
(SEQ ID No 23)

and

25

VSAT 155 [GTGATAACTTCGTATAGCATACATTATACGAAGTTACCGTA]
(SEQ ID No 24)

For the BspLU1II they were:

30 VSAT 156 [CATGTATAACTTCGTATAATGTATGCTATACGAAGTTATA] (SEQ ID
No 25) and

-61-

VSAT 157 [CATGTATAACTCGTATAGCATAACATTATACGAAGTTATA] (SEQ ID No 26)

Plasmids were selected in which the orientation of the loxP at both sites were the same
5 and the same as the EIAV vector genome. The modified plasmid was called pONY8Z
delta 2xloxP.

pONY8Z delta 2xloxP has a unique Pvull site downstream of the deleted EIAV vector
genome into which annealed complementary oligonucleotides encoding SfiI sites were
10 inserted. The oligonucleotides were:

SFI SRFPOS [AGTAGGCCGCCTCGGCCGCCGGCATCA] (SEQ ID No 27) and

SFI SRF NEG [TGATGCCCGGGCGGCCGAGGCCGCCTACT] (SEQ ID No 28)

15 Clones which had the SfiI – SrfI sites in either orientation were selected for further work.
These were called pONY8Z delta SfiI FOR and REV.

Amplification and cloning of FB29 and PGK promoters

20 The FB29 promoter was amplified from pRDF (Cosset FL, et al. *J Virol* 1995
Dec;69(12):7430-6) using primers:

FB29 POS [TAGCCGAGATCTCAAATTGCTTAGCCTGATAGCC] (SEQ ID No 29) and

25 FB29 NEG [TGCCTAGCTAGCCTCCGGTGGTGGTCGGTG] (SEQ ID No 30)
which introduce

5'BglII and 3'NheI sites.

The PGK promoter was amplified from pPE327 using primers

PGK POS [AGCAGTAGATCTGGGTTGGGTTGCGCCTT] (SEQ ID No 31) and

30 PGK NEG [CGTCATGCTAGCCTGGGAGAGAGGTCGGTG] (SEQ ID No 32)

-62-

The PGK promoter sequence obtained from this plasmid was the same as the sequence of GenBank Acc. No. M11958 except that it has a single mutation: nucleotide 347 of M11958 is changed from G to A. The TK promoter and intron was amplified from pRL-TK (Promega) with:

- 5 TK POS [TACGGAAAGATCTAAATGAGTCTTCGGACCT] (SEQ ID No 33) and
TK NEG [CTCAACGCTAGCGTACTCTAGCCTTAAGAGCTG] (SEQ ID No 34)

The RSV promoter was amplified from pREP7 (Invitrogen) with

- 10 RSV POS [TACCAGAGATCTCTAGAGTCGACCAATTCTCATG] (SEQ ID No 35)
and

RSV NEG [CATCGAGCTAGCAGCTTGGAGGTGCACACCAATG] (SEQ ID No 36)
and

- 15 The SV40 promoter was amplified from pCIneo (Promega) with:

- SV40 POS [GATGGTAGATCTGCGCAGCACCATGGCCTGAA] (SEQ ID No 37) and
20 SV40 NEG [CTCGAAGCTAGCAGCTTTGCAAAAGCCTAGGC] (SEQ ID No 38)

The PCR fragments were digested with BglII and NheI and ligated into pSL1180 (Pharmacia) which had been prepared by digestion using the same enzymes. Following transformation into E.coli DNA was prepared and the sequence of the promoters checked
25 by DNA sequencing. Clones in which the correct promoter sequence was present were used for further work and were called pSL1180-FB29, pSL1180-PGK, pSL1180-RSV, pSL1180-SV40, pSL1180-TK.

In the next step the promoter fragments were positioned to drive transcription of synthetic
30 EIAV REV in pE syn REV. pE syn REV is a pCIneo based plasmid (Promega) which was made by introducing the EcoRI to SalI fragment from the synthetic EIAV REV plasmid into the polylinker region of the plasmid using the same sites. The synthetic

-63-

EIAV REV plasmid made by Operon contains a codon-optimised EIAV REV open reading frame flanked by EcoRI and SalI. The sequence of this fragment is shown as SEQ ID No 39.

- 5 Prior to replacement of the CMV promoter in pE syn REV it was modified as follows. The SV40 neo region was deleted by digestion with KpnI and BamHI, the ends blunted by treatment with T4 DNA polymerase and then religated. The plasmid was termed pE syn REV delta. Next SfiI sites were introduced into both the BglII site which is just 5' of the CMV promoter and DraIII site downstream of the polyA signal.

10

The oligonucleotides used for this were as follows:

SFI FOR BglII POS [GATCGGCCGCCTCGGCCA] (SEQ ID No 40) and

15 SFI FOR BglII NEG [GATCTGGCCGAGGC GGCC] (SEQ ID No 41)and

SFI FOR DRA POS [GGCCGCCTCGGCCGTA] (SEQ ID No 42) and

SFI FOR DRA NEG [GGCCGAGGC GGCCCTAC] (SEQ ID No 43)

20

Clones in which the SfiI was located 5' of the BglII site were selected were used for further work. The plasmid obtained after this two step manipulation was termed pE syn REV delta 2xSfiI. It has the following features: 5'SfiI sites - BglII site - CMV promoter and intron - NheI site - E syn REV - polyA site - 3'SfiI site. Hence the CMV promoter 25 can be excised by digestion with BglII and NheI and replaced with the promoter of choice obtained from the pSL1180 series of clones by digestion with the same enzymes. Construction details are included from this point for only the constructs which contained FB29 and PGK promoters, however a similar scheme was used for the other promoters, except that a partial SfiI digestion was required for transfer of the SV40-REV cassette.

30

Promoter fragment were obtained from pSL1180 - FB29 and pSL1180 - PGK by digestion with BglII and NheI and ligated into pE syn REV delta 2xSfiI digested with the

-64-

same enzymes. The resulting plasmids were called FB29 E SYN REV and PGK E SYN REV.

In the next stage the internal regions of pONY8G, pONY8.1G SIN MIN and pONY4G
5 were obtained by digestion with Sgfl (which has unique site in the CMV promoter driving
the EIAV vector genome) and MunI (which cuts in the 3'LTR) and ligated in to pONY8Z
delta SfI FOR and REV prepared for ligation by digestion with the same enzymes. The
resulting plasmids were called pONY8G SfI FOR and REV, pONY8.1G SIN MIN SfI
FOR and REV and pONY4G SfI FOR and REV.

10

In the final stage the promoter-REV cassettes were moved from FB29 E SYN REV and
PGK E SYN REV into pONY8G SfI FOR and REV, pONY8.1G SIN MIN SfI FOR and
REV and pONY4G SfI FOR. This manipulation was achieved as follows. FB29 E syn
REV, PGK E syn REV, and the vector plasmids described immediately above were
15 digested with SfI and ligations set up with appropriate fragments. The promoter-REV
cassettes were orientated in the same or opposite orientations with respect to the EIAV
vector genome in the 'FOR' and 'REV' plasmids. The resulting plasmids were called
pONY8.3G FB29 + or - and pONY8.3G PGK+ and -. A schematic structure of the
pONY 8.3 +/- plasmids is shown in Figure 17.

20

The performance of these constructs was tested in relation to pONY8G in 293T transient
production assays and the results are shown in Table 3.

25

The sequence of the *EcoRI* to *SaII* fragment representing the codon-optimised EIAV
REV open reading frame obtained from the plasmid synthesised by Operon (SEQ
ID No 39)

30

EcoRI and *SaII* sites are in bold. The ATG start and UGA termination codons are underlined

GAATTGCCACC**A**TGGCTGAGAGCAAGGAGGCCAGGGATCAAGAGATG

-63-

ACCTCAAGGAA
 GAGAGCAAAGAGGAGAAGCGCCGCAACGACTGGTGGAAAGATCGACCCA
 AAGGCCCCCTG
 GAGGGGGACCAGTGGTGCCCGTGCTGAGACAGTCCCTGCCGAGGAGAAGATTCT
 5 AGC
 CAGACCTGCATGCCAGAACACCTCGGCCCCGGTCCCACCCAGCACACACCCCTCC
 AGA
 AGGGATAAGGTGGATTAGGGGCCAGATTGCAAGCCGAGGTCTCCAAGAAAGGCTG
 GAA
 10 TGGAGAATTAGGGCGTGCAACAAGCCGCTAAAGAGCTGGAGAGGTGAATCGCGG
 CATC
 TGGAGGGAGCTCTACTTCCCGAGGACCAGAGGGCGATTCTCCGCATGGGAGGC
 TAC
 CAGAGGGCACAAGAAAGGCTGTGGGCGAGCAGAGCAGCCCCGCGTCTGAGGCC
 15 CGGA
 GACTCCAAAAGACGCCGAAACACCTGTGAAGTCGAC

Table 3

- 20 Titres obtained from a representative experiment in which the vector-REV constructs were tested by transient 293T production assay. The vector constructs were cotransfected with pE synGP, the synthetic EIAV gag/pol expression plasmid, and pRV67, VSV-G expression plasmid. Titres were measured in D17 cells.

<u>Plasmid</u>	Titre (g.f.u./ml)
pONY8G SfiI FOR	1.6×10^4
#pONY8G SfiI FOR PLUS pE syn REV	5.2×10^3
pONY8.3G FB29 +	8.8×10^3
pONY8.3G FB29 -	7.8×10^3
pONY8.3G PGK +	1.2×10^6
pONY8.3G PGK -	1.2×10^6
pONY8G	9.4×10^3

-66-

Titre was assessed on D17 cells and is expressed as green fluorescent protein cell units/ml (g.f.u./ml). Transfections were carried out with pE syn GP KOZAK and pRV67 as described previously.

5 * pONY8G SfiI FOR is identical to the pONY8.3 derivatives except that there is no promoter-REV expression cassette is inserted in the SfiI site

pE syn REV plasmid was also included in this transfection

10 pONY8G is a standard EIAV vector genome used for comparative purposes

pONY8.3G FB29 – is shown as SEQ ID No 45

pONY8.3G FB29 + is shown as SEQ ID No 46

15 pONY8.3GPGK – is shown as SEQ ID No 47

pONY8.3G PGK + is shown as SEQ ID No 48.

SUMMARY

20

Thus, in summation, the present invention provides high titer regulated retroviral vectors. These regulated retroviral vectors include lentivectors, HRE-regulated vectors and functional SIN vectors which can be produced at high titres from derived producer cell lines.

25

The present invention also provides a method other than retroviral transduction for the transfer of a regulated retroviral vector into a derived producer cell line. This method comprises a recombinase assisted method which allows for the production of high titer regulated retroviral vectors.

30

In one broad aspect, the present invention relates to the selection of cells which express high levels of a retroviral vector genome and exchange of this retroviral genome for the

-67-

vector genome of choice, preferably a regulated retroviral vector genome or a lentiviral vector genome using a cre/loxP recombination system. Thus, the present invention enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

5

In another broad aspect, the present invention relates to the selection of cells which express high levels of a retroviral vector genome and exchange of this retroviral genome for the vector genome of choice, preferably a regulated retroviral vector genome or a lentiviral vector genome using a cre/loxP recombination system and a retroviral vector production system which incorporates a REV protein production system. Thus, the present invention enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

-68-

CLAIMS

1. A method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising:
 - 5 introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the
 - 10 construct is introduced into the provirus.
2. A method according to claim 1 wherein the construct further comprises at least one nucleotide sequence of interest (NOI) between the 5' recombinase recognition sequence and the LTR, which NOI is operably linked to a transcriptional regulatory sequence.
 - 15
3. A method according to claim 1 or claim 2 wherein the construct further comprises a 5'LTR and/or a packaging signal.
- 20 4. A method according to any one of claims 1 to 3 wherein the LTR is a heterologous regulatable LTR.
5. A method according to claim 4 wherein the regulatable LTR comprises an ischaemic like response element (ILRE).
 - 25
6. A method according to any one of claims 1 to 3 wherein the LTR is inactive.
7. A method according to any one of the preceding claims wherein the provirus comprises an NOI encoding a selectable marker, which NOI is flanked by recombinase recognition sites
 - 30
8. A method according to any one of the preceding claims wherein the provirus comprises an internal 5' LTR upstream of the recombinase site or the 5' recombinase site

-69-

where there is more than one site.

9. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR is inactive.

5

10. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR and/or the U3 region of the second internal 5'LTR comprises a heterologous promoter.

10 11. A method according to any one of the preceding claims wherein the provirus comprises two recombinase recognition sites and as a preliminary step, the recombinase is expressed in a host cell such that the nucleotide sequence present between the two sites is excised.

15 12. A method according to any one of the preceding claims wherein the producer cell is a high titre producer cell.

13. A method according to any one of the preceding claims wherein the provirus is a lentivirus.

20

14. A method according to claim 13 wherein the lentivirus is HIV or EIAV.

15. A method according to any one of claims 2-14 wherein the provirus further comprises a second NOI.

25

16. A producer cell obtainable by the method of any one of claims 1 to 15.

17. An infectious retroviral particle obtainable from the producer cell of claim 16.

30 18. A derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR;

-70-

wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the producer cell.

19. A producer cell according to claim 18 wherein the first 5' LTR comprising 5'R and 5' U5 sequences is derivable from a first vector; the second NOI operably linked to a second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is derivable from the first vector.

20. A producer cell according to claim 18 or claim 19 wherein the first vector comprises a retroviral vector wherein the retroviral vector comprises a first NOI flanked by recombinase recognition sequences.

21. A producer cell according to claim 19 or claim 20 wherein the retroviral vector further comprises an internal LTR located upstream of the first NOI and downstream of a packaging signal wherein the internal LTR comprises a heterologous U3 sequence linked to heterologous R and U5 sequences.

22. A producer cell according to any one of claims 18 to 21 wherein the third 3'LTR is transcriptionally quiescent.

20

23. A producer cell according to claim 22 wherein the third 3' LTR comprises a deletion in the U3 sequence.

25

24. A producer cell according to any one of claims 18 to 23 wherein the first NOI is a selectable marker.

25. A producer cell according to claim 19 wherein the second vector comprises a second NOI operably linked to a second regulatable 3'LTR comprising at least one recombinase recognition sequence.

30

26. A producer cell according to 25 wherein the second regulatable 3'LTR comprises a deletion in the U3 sequences in the 3'LTR.

-71-

27. A producer cell according to claim 25 or claim 26 wherein the second NOI comprises a coding sequence operably linked to a promoter.
28. A producer cell according to claim 27 wherein the second NOI comprises a discistronic construct.
 - 5
29. A producer cell according to claim 28 wherein the discistronic construct comprises a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.
- 10 30. A method for producing a high titre regulatable retroviral vector, the method comprising the steps of:
 - (i) providing a derived producer cell comprising integrated into its genome a first vector;
 - 15 (ii) introducing a second vector into the derived producer cell using a recombinase assisted method;
 - wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR;
 - 20 and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the derived producer cell.
31. A method according to claim 30 wherein the third 3' LTR is transcriptionally active but expression is directed away from the second regulatable 3'LTR.
 - 25
32. A method for introducing a second regulatable 3'LTR into a derived producer cell wherein the method comprises a recombinase assisted method.
33. A method according to claim 32 wherein the recombinase assisted method is a
 - 30Cre/lox recombinase method.

-72-

34. A process for preparing a regulated retroviral vector as defined in claim 17 comprising performing the method according to any one of claims 30 to 33 and preparing a quantity of the regulated retroviral vector.
- 5 35. A regulated retroviral vector produced by the process according to claim 34.
36. A regulated retroviral vector according to claim 35 wherein the retroviral vector is capable of transducing a target site.
- 10 37. A regulated retroviral vector according to claim 36 wherein the retroviral vector is produced in sufficient amounts to effectively transduce a target site.
38. A regulated retroviral vector according to claim 36 or claim 37 wherein the target site is a cell.
- 15 39. A cell transduced with a regulated retroviral vector according to claim 38.
40. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a pharmaceutical composition to deliver an NOI to a target site.
- 20 41. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a medicament for diagnostic and/or therapeutic and/or medical applications.
- 25 42. Use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre regulated retroviral vector.
43. A derived stable producer cell capable of expressing regulated retroviral vectors according to claims 35 to 38.
- 30 44. A derived stable producer cell according to claim 43 wherein the regulated retroviral vector is a high titre regulated retroviral vector.

-73-

49. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR
is a heterologous regulatable LTR.

50. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR
5 is transcriptionally quiescent.

51. A method and/or a producer cell substantially as described herein and with
reference to the accompanying Figures.

10

15

20

25

30

35

40

45

50

1 / 16

FIG. 1

MLV-based transduction using Cre/loxP system as previously described

FIG. 2

EIAV-based transduction Cre/loxP system

3 / 16

FIG. 3

MLV SIN vector approach, with EIAV components in blue

FIG. 4

MLV-based transduction with HRE 3' LTR using Cre/loxP system

FIG. 5

MLV-based transduction for SIN vector production using Cre/loxP system

6 / 16

FIG. 6

MLV SIN-vector based transduction system. This general approach can be used with EIAV, HIV or MLV genomes

7 / 16

8 / 16

FIG. 8

FIG. 9

Overall summary of recombinase method

9 / 16

FIG. 10a

FACS analysis of EV1 packaging cells prior to transduction with Trap2 vector

FIG. 10b

FACS analysis of EV1 packaging cell line transduced with Trap2 at an MOI of 0.3. A 5% top-slice of the highest expressers was carried out

10 / 16

FIG. 11

Validation of the $\Delta\Delta Ct$ method for quantitation of GFP mRNA, relative to β -actin.

A titration of total RNA from EV1 clone A was used. The difference in Ct values between the two assays is shown on the y-axis. The magnitude of the gradient must be <0.1 for the method to be valid. The gradient is 0.077, so the method is suitable.

FIG. 12

Quantitation of GFP mRNA relative to control β -actin mRNA. EV2 TD cells are transduced with Trap2 at an MOI of 0.3 and are the calibrator sample with the ratio designated 1.0.

11 / 16

FIG. 13

12 / 16

EV1 A4 cre/pONY8Z

EV2 D4 cre/pONY8Z

EV1 A4 pONY8Z

EV2 D4 pONY8Z

FIG. 14

13 / 16

FIG. 15

FIG. 16

Alignment of leader and gag regions present in vectors pONY4Z, 8Z and ATG mutated 8Z vector. The later is referred to as pONY8ZA. The sequence aligned are from the NarI site in the leader to the XbaI site between the ELAV gag sequence and the CMV promoter. Sequences in the leader are shown in italic and a space is present upstream of the position of the gag ATG.

4Z	1 <i>cgc</i> ccgaacagggacc <i>t</i> gagagggcgcagacc <i>t</i> acc <i>t</i> gttgaacctgg
8Z	1 <i>cgc</i> ccgaacagggacc <i>t</i> gagagggcgcagacc <i>t</i> acc <i>t</i> gttgaacctgg
mutated 8Z	1 <i>cgc</i> ccgaacagggacc <i>t</i> gagagggcgcagacc <i>t</i> acc <i>t</i> gttgaacctgg
4Z	51 <i>ctgatcgtaggatcccgggacagcugaggagaacttacagaagtcttct</i>
8Z	51 <i>ctgatcgtaggatcccgggacagcugaggagaacttacagaagtcttct</i>
mutated 8Z	51 <i>ctgatcgtaggatcccgggacagcugaggagaacttacagaagtcttct</i>
4Z	101 <i>ggagggtgttccgtggccagaacacaggaggacaggtaag.at-gggagaccc</i>
8Z	101 <i>ggagggtgttccgtggccagaacacaggaggacaggtaag.attgggagaccc</i>
mutated 8Z	101 <i>ggagggtgttccgtggccagaacacaggaggacaggtaag.attgggagaccc</i>
4Z	150 <i>tttgacat-ggagcaaggcgtcaagaagttagagaaggtaacgttacaa</i>
8Z	151 <i>tttgacattggagcaaggcgtcaagaagttagagaaggtaacgttacaa</i>
mutated 8Z	151 <i>tttgacattggagcaaggcgtcaagaagttagagaaggtaacgttacaa</i>
4Z	199 <i>gggtctcagaaattaactactgttaactgttaattggcgctaagtctagt</i>
8Z	201 <i>gggtctcagaaattaactactgttaactgttaattggcgctaagtctagt</i>
mutated 8Z	201 <i>gggtctcagaaattaactactgttaactgttaattggcgctaagtctagt</i>
4Z	249 <i>agacttatttcat-gataccaactttgtaaaagaaaaggactggcagctg</i>
8Z	251 <i>agacttatttcat-gataccaactttgtaaaagaaaaggactggcagctg</i>
mutated 8Z	251 <i>agacttatttcatgataccaactttgtaaaagaaaaggactggcagctg</i>

4Z	298	agggat-gtcattccattgcttggaaagat-gtaactcagacgcgtcagga
8Z	300	agggat-gtcattccattgcttggaaagat-gtaactcagacgcgtcagga
mutated 8Z	301	agggattgtcatccattgcttggaaagattgttaactcagacgcgtcagga
4Z	346	caagaaagagaggccttgaaagaacat-ggtggcaatttctgtgtaa
8Z	348	caagaaagagaggccttgaaagaacat-ggtggcaatttctgtgtaa
mutated 8Z	351	caagaaagagaggccttgaaagaacattggtggcaatttctgtgtaa
4Z	395	agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcatc
8Z	397	agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcatc
mutated 8Z	401	agattgggcctccagattaataattgttagatggaaaggcatcatc
4Z	442	cagtcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
8Z	444	cagtcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
mutated 8Z	451	cagtcctaagagcgaaatatgtaaaagaagactgctaataaaaagcagt
4Z	491	ctgagccctcttgaagaatatct
8Z	493	ctgagccctcttgaagaatatct
mutated 8Z	501	ctgagccctcttgaagaatatct

FIG. 16 CONT'D

16 / 16

FIG. 17
Schematic representation of the structure of pONY 8.3G +/- vector genome plasmids

SEQUENCE LISTING PART OF THE DESCRIPTION

pONY8.1Z MLVHyb (SEQ ID NO 10)

5 AGATCTTGAATAATAAAATGTCGTTTGTCCGAAATACGCCTTGGAGATTCTGTCGCCACTAAATTICATGTCGCCG
 ATAGTGGTGTTCATCGCCGATAGAGATGGCAGATTGAAAAATTGATATTGAAAATATGGCATATTGAAAATGTCGC
 CGATGTGAGTTCTGTGTACTGATATCGCCATTTCACAAAGTGAATTGGCAGACGGATATCTGGCAGAGCGC
 TTATATCGTTACGGGGATGGCAGAGACACTTGGTACTTGGCATTCTGTGTCGCCAAATATCGCAGTTCGA
 TATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGGCGACATCAAGCTGGCACATGGCCAATGCAATCGATC
 10 TATACATTGAATCAATATGCCATTAGCCATATTTCATTGGTTATAGCATATAATCAATATGGCTATTGCCATT
 GCATACGTTGTATCCATATCGTAATATGTACATTATATTGGCTCATGTCACATTACGCCATGTTGACATTGATT
 GACTAGTTAAATAGTAATCAATTACGGGTCTTACGGCCATATGGAGTTCCGCTACATAACTACGG
 TAAATGGCCCGCTGGCTGACCGCCAAAGACCCCCGGCCATTGACGTCATAATGACGTATGTCCTAGTAACGCC
 AATAGGGACTTCCATTGACGTCATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCAT
 15 ATGCCAAGTCGCCCTATTGACGTCATGACGGTAATGGCCGCCCTGGCATTATGCCAGTACATGACCTTACGG
 ACTTCTACTGGCAGTACATCTACGTATTAGTCATCGTATTACCGTGTGGCAGTACACCAATGGG
 CGTGGATAGGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCATGGAGTTGGCAGCAAA
 ATCAACGGGACTTCCAAAATGCTAACAACTGCGATGCCGCCCTGGCAGCCTAGGGTAGGCGTGTACGG
 TGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGGGACTCAGATTCTGGCTCTGACTCCCTCTGCTGGCT
 20 GAAAAGGCCTTGTAAATAATATAATTCTACTCAGTCCCTGTCTAGTTGTCGAGATCCTACAGTGGCGC
 CCGAACAGGGACCTGAGAGGGCGCAGACCCCTACCTGTAACCTGGCTGATCGTAGGATCCCCGGGACAGCAGAGGA
 GAACCTACAGAAGTCTCTGGAGGTGTTCTGGCCAGAACACAGGAGGACAGGTAAGATTGGAGACCCCTTGACATT
 GGAGCAAGGGCTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGCTCAGAAATTAAACTACTGGTAACTGTAATTGGG
 CGCTAAGTCTAGTAGACTTATTTCATGATACCAACTTGTAAAGAAAAGACTGGCAGTGGAGGTGTCATTCCATT
 25 GCTGGAAGATGTAACTCAGCGTGTCAAGAACAGGCTTGGCAGGAAAGAGAGGGCTTGGCAGAACATGGGGCAATTCTGCTGT
 AAAGATGGGCTCCAGATTAAATGTAAGTGAAGTGGAAAGGCATCATTCCAGCTCTAACAGGGAAATATGAAAAGAA
 GACTGCTAAATAAAAGCAGTCTGAGCCCTCTGAGAAATATCTCTAGAAACTGTTGAGTGGATCCCCGGGCTGAGGGAGTGGG
 GAGGCACGATGGCCGCTTGGTCAGGGGGATCCGGCATTAGCCATATTTCATGGTATATAGCATAATCAATA
 TTGGCTATTGCCATTGCACTGGTATCCATATCATAATATGTACATTATGGCTCATGTCACATTACGCCAT
 30 GTTGACATTGATTATTGACTAGTTAAATGTAATCAATTACGGGGTCTAGTGTACATGCCCATATATGGAGTTCCGC
 GTTACATAACTTACGGTAATGGCCGCCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCATAATGACGTATG
 TTCCCATAGTAACGCCAATAGGGACTTCCATTGACGTCATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTACCCCCCTATTGACGTCATGACGGTAATTGGCCCTGGCATTATGCCAG
 TACATGACCTTATGGACTTCTACTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTGTGGTT
 35 GCAGTACATCAATGGCGTGGATAGCGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCATGGAGT
 TTGGTGGCACCCTAACACGGGACTTCAAATGCTGAAACACTCCGCCATTGACGCAATGGCGGTAGGC
 ATGTACGGTGGAGGTCTATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGGAGACGCCATCCACGCTGTT
 TGACCTCCATAGAAGACACGGGACCGATCCAGCCTCCGGCCCAAGCTTACGTCGAGGATCTGGGATCCGG
 GGAATTCCCACTCTCAGGATCCACCATGGGGATCCCCTGTTTACAACGTCGACTGGGAAACCCCTGGCGTTAC
 40 CCAACTTAATGCCCTGGCAGCACATCCCCCTTCGCCAGCTGGCTAATACCGAACAGGGCCGACCGATGCCCTCC
 CAACAGTGGCAGCCTGAATGGCAATGGCGCTTGCCTGGTCCGGCACAGAACGGTGGGAAAGCTGGCTG
 GAGTGCAGTCTCTGAGGCCGATACTGTCGTCGCTCCCTCAAACGGCAGATGACGGTACGATGCCCTACATCACA
 CCAACGTAACCTATCCCATTACGGTCATCCGCCATTGTTTACCGGAGAACGGGTTTACTCGTCACATT
 AAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGCGCAATTATTTGATGGCTTAACTCGGCTTACATGTCGTT
 45 GCAACGGGCCGCTGGTCGTTACGGCAGGACAGTCGTTGGCCTGTAATTGACCTGAGGCCATTACGCCGG
 AGAAAACGGCCCTCGGGTGTGGCTGGAGGTGACGGCAGTTATCTGAAGATCAGGATATGTGGCGGATGAG
 CGGCATTTCCTGACGTCGTTGCTGATAAACCGACTACACAAATCAGCATTCCATGTCCTACCGCTTAAATG
 ATGATTTCAAGCCGCGCTGACTGGAGGTGAAGTTCAAGATGTCGCGGAGTTGCGTACTACCTACGGTAACAGTT
 TTATGGCAGGGTAAACCGCAGGTCGCCAGCGGACCGGCCATTGCGGTTGAAATTATCGATGAGCGTGGTTAT

GCGGATCGCGTCACACTACCGTCTGAACGTGAAACCCGAAACTGTGGAGCGCCGAATCCCCAATCTLTATCGTGC
 GGTTGAACCTCACACCGCCGACGGCACCGTGTATTGAAGCAGAACGCTGCCATCTCGTTCCCGAGCGATTGA
 AAATGGTCTGCTGCTGAACGGCAAGCGTTGCTGATTGAGGCGTAACCGTCACGAGCATCTCTCGATGGT
 CAGGTCAATGGATGAGCAGACGATGGCAGGATATCTGCTGATGAAGCAGAACAACTTTAACCCGTCGCTGTTCG
 5 ATTATCCGAACCATCCGCTGTGGTACACCGTGTGCGACCGCTACGGCTGTATGTGGATGAAGCCAATATTGAAAC
 CCACGGCATGGTCCAATGAATCGTCTGACCGATGATCCCGCTGGTACCGCGATGAGCGAACCGTAAACCGAAT
 GGTGCGAGCGCATCGTAATCACCGAGTGATCATCTGGCTGGGAATGAATCAGGCCACGGCGTAATCACGA
 CGCGCTGTATCGCTGGATCAAATCTGCTGATCCTTCCCCTGGTACAGTATGAAGGCGCGAGCCGACACCACGCC
 ACCGATATTATTGCCGATGTACGCCGCGTGGATGAAGACCGCTTCCCCTGGTCCGAAATGUTCCATCAA
 10 AATGGCTTCGCTACCTGGAGAGACGCCGCGCTGATCCTTGCATAACGCCAACCGATGGTAACAGTCTGGCG
 TTTCGCTAAATACTGGCAGCGTTCTGTCAGTATCCCCTTACAGGGCGCTCGTCTGGACTGGGTGGATCAGTC
 TGATTAAATATGTGAAAACGGCAACCGTGGCTGGCTACCGCGTGGATTTGGCGATACGCCAACGATGCCAGT
 CTGTATGAACGGTCTGGTCTTGCACCGCAGCCGATCCAGCGTACCGAAGCAAACACAGCAGCAGTTTC
 CAGTCCGTTATCCGGCAAAACATCGAAGTGACCGAGCGAATACCTGTTCCGTCATACGCGATAACGAGCTCTGC
 15 GGATGGTGGCGCTGGATGGTAAGCGCTGGCAAGCGTGAAGTGCCTGGATGTCGCTCCACAAGGTAACAGTGA
 TTGAACCTGCTGAACCTACCGCAGCCGAGAGCGCGGGCAACTCTGCTCACAGTACCGTAGTGCACCGAACCG
 CCGCATGGTCAGAAGCCGGGACATCAGCCCTGGCAGCAGTGGCTCTGGCGAAACCTCAGTGTGACGCC
 CCGCGTCCCACGCCATCCCGCATGACCAACAGCGAAATGGATTITTCATCGAGCTGGTAATAAGCGTTGGCA
 ATTAAACCGCCAGTCAGGCTTCTTCACAGATGTGGATTGGCGATAAAAACAACACTGTCGACGCCCTGCG
 20 AACCCGTCACCGCTGGATAACGACATTGGTAAGTGAAGCGACCCGATTGACCTAACGCCCTGGTGAACGCTGG
 AAGGCAGGGCATTACCAAGCCGAAAGCAGCTGGCAGTGCACGCCAGATAACACTGCTGATGCCGTGCTGATT
 ACGACCGTCACCGTGGCAGCATCAGGGAAACCTTATTATCAGCCGAAACCTACCGGATTGATGGTAGTGGC
 AAATGGCGATTACCGTGTGTTGAAGTGGCAGCGATAACCCGATCCGGCGGGATTGGCTGAACTGCCAGCTGG
 GCAGGTAGCAGAGCGGGTAAACTGGCTGGATTAGGGCCGAAAGAAAACCTATCCGACCCCTACTGCCCTGTT
 25 GACCGCTGGATCTGCCATTGTCAGACATGTATAACCCGTCAGTCTCCCGAGCGAAAACGGTCTGCC
 GCGAATTGAATTATGCCACACCAAGTGGCGGGGACTCCAGTTCAACATCAGCCCTACAGTCAACAGCAACTG
 ATGGAAACCCAGCATGCCATCTGTCACGCCAGAAGAAGGCACATGGCTGAATATCAGCCGTTCCATATGGGATTGG
 TGGCGACGACTCCTGGAGGCCGTCAGTATGGCGGAATTCCAGCTGAGCGCCGGCTGCTACCATTACAGTTGGCTG
 TGTCAAAAATAATAACCGGGCAGGGGGGATCCGAGATCCGGCTGTTGAATGTGTCAGTTAGGGTGGAAAG
 30 TCCCCAGGCTCCCAGCAGGAGAAGTATGCAAGCATGCTGCAGGAATTGATATCAAGCTTATCGATAACCGTC
 TTGGAGAGCTTAAATCTGGCACATCTCATGTTCAATGCCCTAGTATGTTAGAAAACAGGGGGAACTGTGG
 GTTTTATGAGGGTTTATAATGAAAGACCCACCTGAGGTTGGCAAGCTAGCTTAAGTAACGCCATTGCAAGG
 CATGGAAAATAACTGAGAATAGAGAAGTTCAGATCAAGGTCAGGAACAGATGGAACAGCTGAATATGGCCA
 AACAGGATATCTGGTAAGCAGTCCCTGCCCCGGCTCAGGGCCAAGAACAGATGGTCCCGAGTGGCTCAGGCC
 35 AGGATATCTGGTAAGCAGTCCCTGCCCCGGCTCAGGGCCAAGAACAGATGGTCCCGAGTGGCTCAGGCC
 AGTTCTAGAGAACCATCAGATGTTCCAGGGTCCCCAAGGACCTGAATGACCTGTCCTTGAACCA
 TCAGTTGCCCTCTGCCCTCTGTCGCGCCTCTGCTCCCGAGCTCAATAAAAGAGCCCACAAACCCCTCA
 CACTCAGATTCTGGCTGAGTCCCTCTGCTGGCTGAAAGCCTTGTATAAAATAATTCTACTCAGTCC
 CTGTCCTAGTTGTCGAGATCCACAGAGCTCATGCCCTGGCTAATCATGGTCAGTGTGTTCTG
 40 ATTGTTATCCGCTACAATTCCACACACATACGAGCCGGAAAGCATAAAAGTGAAGCCTGGGTGCTAATGAGTGA
 GCTAACCTACATTAATTGCCCTGCGCTCACTGCCGTTTCAGTGGGAAACCTGTCGCTGCCAGCTGC
 GCCAACGCCGGGGAGAGCGGTTGCTATTGGCGCTCTCCGCTCTGCTCACTGACTCGCTGCC
 CGGCTGCCGGAGCGGTATCAGCTCAACAGCGTAATACGGTATCCACAGAACAGGGATAACGCC
 AACATGTGAGCAAAGGCCAGCAAAAGGCCAGGAACCGTAAAGGCGCTTGTGCTGGCTTCCATAGGCTCC
 45 CCCCTGAGCAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGGAAACCCGACAGGACTATAAG
 ATACCGCGTTCTGAGCTCCCTCGTGCCTCTCTGACCGCTGACCGTAACTCGTCCGCTTCTCC
 GGAAGCGTGGCGCTTCTCATAGCTCACGCTGAGGTATCTCAGTTCGGTGTAGGTGCTCAAGCTGGCTG
 GCACGAACCCCCCGTTAGCCGACCGCTGCCCTATCCGTAACATCGTCTGAGTCCAACCCGTAAGACAC
 TTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGGCGTCTACAGAGTTCTG
 AAGT

3

GGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
 AGTTGGTAGCTCTGATCCCGCAACAAACACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCACCAAGATTACGGCG
 AGAAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGCTGACGCTCAGTGGAACGAAAACTCACGTTAAG
 GGATTTGGCTATGAGATTATCAAAGGATCTCACCTAGATCCTTAAATTAAAAGTGAAGTTTAAATCAATCTAA
 5 AGTATATATGAGTAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCG
 TTATCCCATAGTGCCTGACTCCCCGTCGTAGATAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGTGCA
 ATGATACCGCGAGACCCACGCTCACCGGCTCCAGTTTACGACAATAACCGACGCCAGGGAGGCCAGCGAGCGAGA
 AGTGGTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAA
 TAGTTTGCAGCAACGTTGTCATTGCTACAGGCATCTGTGTCAGCTCGTGTGGTATGGCTTCAATTAGCTCCG
 10 GTTCCCACGATCAAGCGAGTTACATGATCCCCATGTTGCAAAAAAGCGGTTAGCTCTTCCGGTCTCCGATCGTT
 GTCAGAAGTAAGTGGCCGAGTGTATCACTCATGGTATGGCAGACTGCATAATTCTCTTACTGTGATGCCATCCGT
 AAGATGCTTTCTGTGACTGGTGAAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCCGGGAGCGAGTTGCTTGGC
 CGCGCTCAATACGGATAATACCGCGCCACATAGCAGAACTTAAAGTGTCTCATATTGGAAACGTTCTGGGGCG
 AAAACTCTCAAGGATCTACCGCTGGAGATCCAGTTCATGTAACCCACTCGTGCACCCAACCTGATCTTCAAGCATCTT
 15 TTACTTCAACAGCGTTCTGGTGTGAGCAAAAAACAGGAAGGCAAAATGCCCAAAAAAGGGATAAAGGGCAGACCGGA
 AATGTGAATACTCATACTCTCTTTCAATTATTTGAAAGCATTTACAGGTTATTGTCTCATGACGGGATACATAT
 TTGAAATGATTAGAAAATAACAAATAGGGGTTCCCGCACATTCCCCGAAAGTGCACCTAAATTGTAAGCGTT
 AATATTGTTAAAATTCGCGTTAAATTGGTAAATCAGCTCATTTTAACCAATGCCGAAATCGCAAAATCCC
 TTATAAAATCAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTGGAAACAAGAGTCCACTATTAAAGAACGTG
 20 GACTCCAACGTCAAAGGGGAAAAACCGTATCAGGGCATGGCCACTACGTGAAACCATCACCTAATCAAGTTT
 TGGGGTGTGAGGTGCCGTAAGCACTAAATCGAACCTAAAGGGAGCCCCGATTAGAGCTTGACGGGAAAGCCAA
 CCTGGCTTATCGAAATTAAACGACTCACTATAGGGAGACCGC

pONY8.3G FB29 – (SEQ ID No 45)

25

AGATCTGAATAATAAAATGTGTGTTGTCGAAATACCGTTTGAGATTCTGTGCGC
 GACTAAATTATGTCGCGCGATAGTGGTGTATCGCCGATAGAGATGGCGATATTGGAA
 AAATTGATATTGAAAATGGCATATTGAAAATGTGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCCATTTCCAAGTGTATTGGCATACCGATATCTGGATAGCGCT
 TATATCGTTACGGGGATGGCGATAGACGACTTGGTACTGGCGATTCTGTGTC
 GCAAATATCCAGTTGATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCAATCGATCTACATTGAATCAATTGGCC
 ATTGGCATATTATTGTTATAGCATAAATCAATTGGCTATTGGCATTTGCA
 TACGTTGATCCATATCGTAATATGATATTGCTATGTCACATTACCGCC
 ATGTTGACATTGATTGACTAGTTATTAGTAATCAATTACGGGTCATTAGTCA
 TAGCCCATATGGAGTCCCGTACATAACTTACGGTAAATGCCGCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTCACATTGGCA
 AGGGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCCGCCCTATTGACGTCAATGACGGTAATGGCC
 CGCCTGGATTATGCCAGTACATGACCTTACGGGACTTCCACTTGGCAGTACATCTA
 CGTATTAGTCATCGTATTACCATGGTATGCCGTTGGCAGTACACCAATGGGCGTGG
 ATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTT
 GTTTGGCACAAAATCAAGGGACTTCCAATGTCGTAACAACGCGATGCCGCC
 CCGTTGACGAAATGGGGCTAGGGTGTACGGTGGAGGTCTATATAAGCAGAGCTCGT
 TTAGTGAACCGGGCACTCAGATTCTGCGGTCTGAGTCCCTCTGCTGGCTGAAAAGG
 CCTTTGTAATAAAATATAATTCTACTCAGTCCCTGTCTAGTTGCTGAGATC
 CTACAGTGGCCCGAAGAGGGACCTGAGAGGGGGCAGACCCACCTGTTGACCTGG
 CTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACTACAGAAGTCTCTGGAGGTGTT

CTGGCCAGAACACAGGAGGACAGGTAAGATTGGGAGACCCTTGACATTGGAGCAAGGCC
CTCAAGAAGTTAGAGAAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGGTAACTGT
ATTGGGCGCTAAGTCTAGTAGACTTATTTCATGATACCAACCTTGTAAAAGAALAAGGAC
TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACCTAGACCGCTCTCAGGACAA
GAAAGAGAGGCCCTTGAAAGAACATGGTGGCAATTCTGCTGTAAGATGGGCCAG
ATTAATAATGTTAGATGAAAGGCATCATTCCAGCTCTAAGAGCGAAATATGAAAAG
AAGACTGCTAATAAAGCAGTCTGAGCCCTCTGAAAGAATATCTCTAGAACTAGTGGATC
CCCCGGGCTGCAGGAGTGGGAGGCACGATGGCCGTTGGTCGAGGCCGATCCGGCAT
TAGGCATATTTCATTGGTTATAGCATAAATCAATTGGCTATTGGCATTGCATA
CGTTGTATCCATATCATAATATGTACATTATATTGGCTCATGTCACATTACCGCCAT
GTTGACATTGATTATTGACTAGTTATTAAAGTAATCAATTACGGGTCATTAGTCATA
GCCCATATATGGAGTCCGGTACATAACTACGGTAATGGCCGCTGGCTGACCGC
CCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAATAG
GGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAACTGCCACTTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAATGGCCG
CCTGGCATTATGCCAGTACATGACCTTATGGACTTCTACTTGGCAGTACATCTACG
TATTAGTCATCGCTATTACCATGGTGATCGGGTTTGGCAGTACATCAATGGCGTGGAT
AGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGT
TTTGGCACAAAATCAACGGGACTTCAAATGTCCTAACAACTCCGCCATTGACGC
AAATGGCGTAGGCATGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACC
GTCAGATGCCCTGGAGACCCATCCACCGCTTTGACCTCCATAGAAGACACGGGACC
GATCCAGCCTCCGGCCCAAGCTTGGGATCCACCGGTGCCACCATGGTGGAGCAA
GGCGAGGAGCTGTTACCCGGTGGTGCCATCCTGGTCGAGCTGGACGGCAGCTAAC
CGGCCACAGTCAGCGTCCGGCAGGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTCATCTGCACCACCGCAAGCTGCCGTCCCTGGCCACCCCTGTGACCAC
CCTGACCTACGGCGTGCAGTCTCAGCCGCTACCCGACCACATGAAGCAGCACGACTT
CTICAAGTCCGCCATGCCGAAGGCTACGTCCAGGAGCGCACCATTCTCAAGGACGA
CGGCAACTACAAGACCCGGCGAGGTGAAGTTCAGGGCGACACCCCTGGTAACCGCAT
CGAGCTGAAGGGCATCGACTTCAGGAGGACGGCAACATCCTGGGACAAGCTGGAGTA
CAACTACAACAGCCACAAGCTATATCATGGCGACAAGCAGAACGGCATCAAGGT
GAACCTCAAGATCCGCCACACATCGAGGACGGCAGCGTGCAGCTGCCGACCAACTACCA
GCAGAACACCCCATCGGGCAGGGCCCGTGTGCTGCCGACAACCAACTACCTGAGCAC
CCAGTCGCCCTGAGCAAAGACCCAAACGAGAACGGGATCACATGGTCCTGGAGTT
CGTGACCGCCCGGGATCACTCTCGGATGGACGAGCTGTACAAGTAAGCGGCCGCGA
CTCTAGAGTCGACCTGCAGGCATGCAAGCTCAGCTGCTCGAGGGGGGGCCGGTACCCA
GCTTTGTCCTTACTAGTGAAGGTTAATTGCGGGAGTATTACTAATCAAGCAC
AACTAATACATGAGAAACTTTACTACAGCAAGCACAATCTCaaaaaTTTGT
ACAAAATCCCTGGTAACATGATTGAAGGGACCTACTAGGGTGTGGAAGGGTATG
GTGCACTAGTGTAAATGAGGAAAGGAATAATTGCTGTACCTAACAGGACTA
AGTTACTAATAAAACCAAATTGAGTATTGTCAGGAAGCAAGACCAACTACCAATTGTC
AGCTGTGTTCTGACCTCAATATTGTTATAAGGTTGATATGAATCCCAGGGGAATC
TCAACCCATTACCAACAGTCAGAAAAATCTAAGTGTGAGGAGAACACAATGTTCAA
CCTTATTGTTATAATGACAGTAAGAACAGCATGGCAGAACATGAAGGAAGCAAGAGAC
CAAGAATGAACCTGAAGAAGAATCTAAAGAAGAAAAAGAAGAAATGACTGGGAAAAA
TAGGTATGTTCTGTTAGCAGGAACACTACTGGAGGAATACTTGGTGGTATGAAG
GACTCCCACAGAACATTATAGGGTTGGTGGCGATAGGGGAAGATTAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGTTCTCCGGGTGTAGACCAATTCAAATT
ACTTCAGTTATGAGACCAATAGAACATGCTATGGATAATAACTGCTACATTAG
AAGCTTAAACCAATATAACTGCTCTATAAAACAAAAGAATTAGAAACATGGAGTT

AGTAAAGACTTCTGGATACTCCTTTACCTATTCTTCTGAAGCTAACACTGGACTAAT
TAGACATAAGAGAGATTTGGTATAAGTGCATAGTGGCAGCTATTGTAGCCGCTACTGC
TATTGCTCTAGCGCTACTATGTCTTATGTTGCTCTAACTGAGGTTAACAAAATAATGGA
AGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTTAATAGA
ACGACAAATAAAGATATTATATGCTATGATCTCAAACACATGCAGATGTTCAACTGTT
AAAGGAAGACAACAGGTAGAGGAGACATTTAATTAAATTGGATGTATAGAAAGAACACA
TGATTTGTCATACTGGCATCCCTGGAATATGTCATGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGTAAGCAAATGGAAGATTAAATCAAGAGATACTAACACT
TCATGGAGGCCAGGAACAATTGGCACATCCATGATAACATTCAATACACCGATAGTAT
AGCTCAATTGGAAAAGACCTTGGAGTCATATTGGAAATTGGATTCTGGATTGGGAGC
TTCCATTATAAAAATATATAGTGTATTTGCTTATTATTGGTACTAACCTCTCGCC
TAAGATCCTCAGGGCCTCTGGAGGTGACCAGTGGTCAGGGCCTCCGGCAGTCGTTA
CCTGAAGAAAAAATTCCATCACAAACATGCATCGCGAGAAGACACCTGGGACCAGGCCA
ACACAACATACACCTAGCAGCGTGACCGGTGGATCAGGGACAAATACTACAAGCAGAA
GTACTCCAGGAACGACTGGATGGAGAATCAGAGGAGTACAACAGGGCCAAAGAGCTG
GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAAGACCAAGGGGAGAT
TTCTCAGCCTGGGCGCTATCACGAGCACAAGAACGGCTCTGGGGGGAACAACTCTCA
CCAAGGGCCTTAGACCTGGAGATTGAGCGAAGGAGGAAACATTATGACTGTTGCA
TAAAGGCCAAGAAGGAACTCTCGTATCCTTGCTGGATTCCCTATGGCTATTGG
GGGACTAGTAATTATAGTAGGAGCCATAGCAGGCTATGGATTACGTGGACTCGCTTTAT
ATAAGGATTGTATTAGAGGCTTAAATTGATATTGAAATAATCAGAAAATGCTTGA
TTATATTGGAGAGCTTAAATCTGGCACATCTCATGATCAATGCCCTAGTATGTTA
GAAAAACAGGGGGAACTGTGGGTTTTATGAGGGTTTATAATGATTATAAGAGT
AAAAAGAAAAGTGTGATGCTCTCATACCTGTATAACCCAAAGGACTAGCTATGTTG
CTAGGCAACTAAACCGCAATAACCGCATTGTGACCGAGTCCCCTGGTACCGCCTT
AACTTCTGTTTACAGTATATAAGTGTGTTGATTCTGACAATTGGCACTCAGATTCT
GGGGTGTGAGTCCTCTCTGCTGGCTGAAAAGGCCCTTGTATAAAATATAATTCTCTA
CTCAGTCCCTGTCTCTAGTTGTCTGTCAGATCCTACAGAGCTATGCCCTGGCTAA
TCATGGTCATAGCTGTTCTGTGAAATTGTTATGCCCTCACAATTCCACACACATA
CGAGCCGGAACATAAGTGTAAAGCTGGGTCCTAATGAGTGTGAGCTAACTCACATTA
ATTGCGTTGCGCTCACTGCCGCTTCCAGTCGGGAAACCTGCGTGCCAGTGATGCCG
GGCGCCGAGGGCGCCTACGTGAACCATCACCCAAATCAAGTTTGGTACGGTCAAGGTC
CGTAAAGCTAAATCGGAACCCCTAAAGGGAGCCCCGATTAGAGCTGACGGGAAAG
CCGGCGAACCTGGCGAGAAAGGAAGGGAGAAAGCGAAAGGAGCGGGCCTAGGGCGCT
GCAAGTGTAGCGCTCACGCTGCGCTAACACCACACCCCGCGCTTAATGCCCGCTA
CAGGGCGCGTCCATTGCCATTCTGCGCAACTGTTGGGAAGGGCGATGGTGC
CCTCTCGCTATTAGCCAGCCCGATCGATCCTTATCGGATTITACACATTGTAGAG
GTTTACTTGTGTTAAAAAACCTCCCACATCTCCCCCTGAAACCTGAAACATAAAATGAAT
GCAATTGTTGTTAACTTGTGTTACAGCTTATGAGCTTATAATGGTTACAAATAAGCAATAGC
ATCACAAATTTCACAAATAAGCATTCTGACTGCTAGTTGTGTTGTTGTC
CTCATCAATGTATCTTATCATGTCGTCGAAGCATTAAACCTCACTAAAGGGAAAGCGC
CGCCCCGGGTGCACTTCACAGGTGTTGCCGCTCTTGGAGTCCTGGGCTCAAGACG
CGGGGGCTGCTCTGCCCTGGCTCGCGAACAGCTTCTGCGCTGGTAGCCTCCCCATGCG
GAGAAATGCCCTCTGGCTCGCGAACAGTAGAGCTCCCTCAGATGCCCGATTCA
TCTCCAGCTTTAGCGGCTGTCAGCAGCCCTAATCTCATTCCAGCCTTCTGG
AGGACCTCGGCTTGCAAAATCTGGCCCTAATCCACCTATCCCTCTGGAGGGTGTG
TGGGTGGGACCGGGGGCGAGGTGCTCTGGCGATGCAGGTCTGGTAGGAATCTCTCC
TCGGGCAGGGACTGTCTCAGCACGCCAACACTGGTCCCCCTCCAGGGGGCTTGTGG
TCGATCTCCACCACTGCTGCGCGCTCTCCCTTTGCTCTTCCCTGAGGTTCATC

TCTTGATCCCTGGCTCCTGCTCTCAGCCATGGTGGGAATTCTCGAGGCTAGCCTCCC
GGTGGTGGCTGGTGGCTCTGGGAGGGGCTCCAGATCCCGAGAGCCCCAAATGA
AAGACCCCCGAGACGGTAGTCATCACTCTGAGGAGACCCCTCCAAGGAACAGCAGAC
CACGAGTCGGATGCAACAGCAAGAGGATTATTGGATACACGGTACCCGGCGACTCAG
TCTATCGGAGGACTGGCCGCCGAGTGAGGGTTGTAGCTTTATAGAGCTCGGAA
GCAGAAGCCGCCAACAGAACAGCAGAACAGCAGCTGATTGGTTAATTCAAATAAGGCACAG
GGTCATTCAGGTCTTGGGGAGCCGAAACATCTGATGGGTCTTAAGAAACTGCTGA
GGGTTGGGCCATATCTGGGACCATCTTCTTGGCCCGGGCCGGGCGAACCCGGT
GACCATCTTCTTGGCCCCGGCCGGCGAACCTGTCACCGAGATACTGTGTT
GCCCAACGTTAGCTGTTCTGTACCCGCCCTGATCTGAACCTCTATTCTGGTT
GGTATTTTCCATGCTTGCAAAATGGCCTACTGCGGCTATCAGGCTAACGAAATTGAG
ATCTGGCCGAGGGCCCTACTGCTTAAATGAATCGCCAACGCCGGGAGAGGCGGT
TTGCGTATTGGCGCTTCCGCTTCCGCTCACTGACTCGTGCCTCGGTGTT
CTGCGCGAGCGGTATCAGCTACTCAAAGCCGTAATCGTTATCCACAGAACAGGG
GATAACGCAAGGAAAGAACATGTATAACTCGTATAATGTATGCTATACGAAGTTACAT
GTGAGCAAAAGGCCACCAAAAGGCCAGAACCGTAAAGGCCCGTTGGCTGGCGTT
CCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCG
AAACCGACAGGACTATAAGATACCAGGCGTTCCCTGGAAAGCTCCCTCGTGCCTC
TCCTGTTGACCCCTGCCCTTACCGGATACCTGTCGCCCTTCTCCCTCGGGAAAGCGT
GGCGCTTCTCATAGCTACGCTGTAGGTATCTCAGTCGGTGTAGGTGCTCGCTCAA
GCTGGGCTGTGTCACGAAACCCCGTTAGCCGCTGCGCCTTATCCGTAAC
TCGTCTTGAAGTCCAACCCGTAAGACACGACTTACGCCACTGGCAGCAGCCACTGGTAA
CAGGATTAGCAGACGGAGGTATGAGCCGTGCTACAGAGTTGAAGTGGTGGCTAA
CTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTT
CGGAAAAAGAGTTGAGCTTGTGACCGGAAACAAACCCACCGCTGGTAGCGTGGTT
TTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTAAGAAGATCCTTGT
CTTTCTACGGGTCTGACGCTCAGTGGAAAGAAAACCTACGTTAAGGGATTGGTCA
GAGATTATCAAAAGGATCTTACCTAGATCCTTTAAATTAAAATGAAGTTAAATC
AACTAAAGTATATGAGTAAACTGCTGACAGTTACCAATGTTAATCAGTGAGGC
ACCTATCTCAGCGATCTGCTATTGCTCATCCATAGTTGCTGACTCCCGTGTGTA
GATAACTACGATACGGAGGGCTTACCATCTGGCCCGAGTGTGCAATGATACCGCAGA
CCACGCTCACCGCTCCAGATTATCAGCAATAACCAAGCCAGCCGGAAAGGGCGAGCG
CAGAAGTGGCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTCGGGAAGC
TAGAGTAAGTAGTTCGCACTGTTACGTTGCAACGTTGCTGCAATTGCTACAGCGAT
CGTGGTGTCACTGCTGTTGGTATGGCTTACAGCTCCGTTCCCAACGATCAAG
GCGAGTTACATGATCCCCCATGTTGCAAAAAGCGGTTAGCTCTTCCGTCCTCCGAT
CGTTGTCAGAAGTAAGTGGCCGAGTGTATCACTCATGGTATGGCAGCACTGCATAA
TTCTCTTACTGTCATGCCATCCGTAAGATGCTTCTGTACTGGTAGTACTCAACCAA
GTCATTCTGAGAATAGTGTATGCGCGACCGAGTTGCTCTGCCCCGCTCAATACGGGA
TAATACCGGCCACATAGCAGAACCTTAAAGTGTCTCATGGAAAACGTTCTCGGG
GCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCAGTGTGATGTAACCCACTCGC
ACCCAACGTCTCAGCATCTTACCTTACCCAGCGTTGCGGAGCAGGAAATGTTGAATACTC
AAGGCAAATGCCGAAAAAGGAAATAAGGGCGACCGAAATGTTGAATACTC
CTTCTTCAATATTGAAAGCATTATCAGGTTATTGCTCATGAGCGGATACAT
ATTTGAATGTTAGAAAATAACAAATAGGGTCCGCGCACATTCCCCAAAAGT
GCCACCTAAATTGTAACCGTTAATATTGTTAAAATTGCGTTAAATTGTTAAATC
AGCTCATTTCACCAATAGGCCGAAATCGGAAACATCCCTATAAAATCAAAGAATAG
ACCGAGATAGGCTGAGTGTGTCAGTTGGAAACAAGAGTCCACTATTAAAGAACGTG
GACTCCAACGTCAAAGGGCGAAAACCGTCTATCAGGGCGATGGCCACTACGTGATAAC

TTCGTATAATGTATGCTATACGAAGTTACTACGTGAACCATTACCCCTAATCAAGTTT
 TTTGGGGTCAAGTGCCGTAAAGCACTAAATCGAACCCCTAAAGGGAGCCCCCGATTAG
 AGCTTGACGGGAAAGCCAACCTGGCTTATCGAATTAAACGACTCACTATAGGGAGAC
 CGGC

PONY8.3G FB29 + (SEQ ID No 46)

AGATCTTGAATAATAAAATGTGTGGTGTCCGAATAACCGGTTTGAGATTCTGTCGCC
 GACTAAATTATGTCGCGCGATACTGGTGTGTTATCGCCGATAGAGATGGCGATATTGGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGTGCCGATGTGAGTTCTGTGTAAAC
 TGATATGCCATTTCACAAAGTGTGTTGGCATAACGCGATATCTGGCGATAGCGCT
 TATATCGTTACGGGGGATGGCGATAGACGACTTGGTGAATTGGCGATTCTGTGTGTC
 GCAAATATCGCAGTTGATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGCACATGCCAATGCATATGATCTACATTGAATCAATATTGCC
 ATTAGCCATATTTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCATTGCA
 TACGTTGATCCATATCGTAATATGTACATTATATTGGCTATGTCAAACATTACCGCC
 ATGTTGACATTGATTATTGACTAGTTATTAGTAATCAATTACGGGTCATTAGTTCA
 TAGCCCATATATGGAGTTCCGCGTTACATAACTACGGTAAATGGCCGCTGGCTGACC
 GCCCAACGACCCCGCCATTGACGTCAATAATGACGTATGTCCCAGTAGAACCGCAAT
 AGGGACTTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCGCCCCATTGACGTCAATGACGGTAAATGGCC
 CGCCTGCATTATGCCAGTACATGACCTTACGGGACTTCTACTTGGCAGTACATCTA
 CGTATTAGTCATCGTATTACCATGGTGATGCCGTTGGCAGTACACCAATGGCGTGG
 ATAGCGTTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTTT
 GTTTGGCACCAAAATCAACGGGACTTCCAAATGTCGTAACAACGCGATGCCGCC
 CCGTTGACGCAAATGGCGTAGGCGTGTACGGTGGAGGTCTATAAAGCAGAGCTCGT
 TTAGTGAACGGGCACTCAGATTCTGCGCTGTAGTCCTCTGTGGCTGAAAAGG
 CCTTGTAAATAATATAATTCTACTCAGTCCTGTCTAGTTGTCTGAGATC
 CTACAGTTGGCCCGAACAGGGACCTGAGAGGGCGCAGACCTACCTGTAACCTGG
 CTGATCGTAGGATCCCCGGACAGCAGAGGAGAACCTACAGAAGTCTGGAGGTGTC
 CTGGCCAGAACACAGGAGGACAGGTAAAGATTGGAGACCCCTTGACATTGGAGCAAGGCG
 CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAAACTACTGGTAACGT
 AATTGGCGCTAAGTCTAGTAGACTTATTCTACATGATACCAACTTGTAAAAGAAAAGGAC
 TGGCAGCTAGGGATGTCAATTGCTGGAAAGATGAACTCAGACGCTGTCAAGGCAA
 GAAAGAGAGGCCATTGAAAGAACATGGGGCAATTCTGTTGAAAGATGGCCTCCAG
 ATTAATAATGTAGTAGATGAAAGGCATCATTCCAGCTCTAAGACGAAATATGAAAAG
 AAGACTGCTATAAAAGCAGTCTGAGCCCTCTGAAGAATATCTCTAGAAACTAGTGGATC
 CCCCGGGCTGCAGGAGTGGGGAGGCACGATGGCCCTTGGTCAGGGCGATCCGCCAT
 TAGCCATATTATTCTGGTTATAGCATAAATCAATATTGGCTATTGGCATTGCGATA
 CGTTGTATCCATATCATAATATGTACATTATATTGGCTATGTCAAACATTACCCCAT
 GTTGACATTGATTATGACTAGTTATTAGTAATCAATTACGGGTCATTAGTTCTA
 GCCCATATATGGAGTTCCGCTTACATAACTACGGTAAATGGCCCTGGCTGACCGC
 CCAACGACCCCGCCATTGACGTCAATAATGACGTATGTCCCATAGTAACGCCAATAG
 GGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTAC
 ATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGCCCG
 CCTGGCATTATGCCCAAGTACATGACCTTATGGACTTCCACTTGGCAGTACATCTACG
 TATTAGTCATCGTATTACCATGGTGATGCCGTTGGCAGTACATCAATGGCGTGGAT
 AGCGGTTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGT
 TTGGCACCAAAATCAACGGGACTTCCAAAATGTCGTAACAACCTGCCATTGACGC

AAATGGGCGGTAGGCATGTACGGTGGGAGGTCTATAAAGCAGAGCTGTTAGTGAACC
GTCAGATGCCCTGGAGACGCCATCCACGGCTTTGACCTCATAGAACACCGGGACC
GATCCAGCCTCCGGGGCCCAAGCTTGTGGATCCACGGCTGCCACCATGGTGAGCAA
GGGGCAGGGAGCTGTTACCGGGGTGGTGCCTACCTGGTCAGCTGGACGGCACGTA
CGGCCACAAGTTACGGCTGTCGGCAGGGCAGGGCAGGGCACCTACGGCAAGCTGAC
CCTGAAGTTACATCTGCACCACCGCAAGCTGCCCTGGCCCACCCCTCGTACCC
CCTGACCTACGGCTGCAAGTCTCAGCCCTACCCCCGACACATGAAGCAGCACGACTT
CTTCAGTCCGGCATGCCGAAGGCTACGTCCAGGAGCCACCATCTTCAAGGAGCA
CGGCAACTACAAGACCCGGCCGAGGTGAAGTTCAGGGGACACCTGGTAACCGCAT
CGAGCTGAAGGGCATGACTTAAGGGAGCCAAACATCCTGGGCACAAGCTGGAGTA
CAACTACAACAGCCACAACGCTATATCATGGCCGACAAGCAGAACGGCATCAAGGT
GAACCTCAAGATGCCACACATCGAGGACGGCAGGGCAGCTGGCAGCTGCCGACCACTACCA
GCAGAACACCCCCATGGCAGGGCCCCGTGCTGCTGCCGACAACCAACTACCTGAGCAC
CCAGTCCGGCCCTGAGCAAAGACCCAACGAGAAGCGCGATCACATGGCTCTGCTGGAGTT
CGTAGCCGGCCGGGATCCTCGGCATGGACAGCTGTACAAGTAAAGCGGCGCGA
CTCTAGAGTCACCTGCAGGCATGAAAGCTTCACTGCTCGAGGGGGGGCCCGTACCCA
GCTTTGTTCCCTTAAGTGAGGGTTAATTGGCGGGAAAGTATTTATCAACTAACGAC
AAGTAATAACATGAGAAACTTTACTACAGCAAGCACAATCCTCAAAAAATTGTTTIT
ACAAAATCCCTGGTGAACATGATTGGAGGGACCTACTAGGGTGCTGTGGAGGGTGATG
GTGCACTAGTAGTTAATGATGAAGGAAAGGGATAATTGCTGTACCTAACCGAGACTA
AGTTACTAATAAAACCAAATTGAGTTGCTGAGGAAAGCAAGACCCAACTACCATGTC
AGCTGTGTTCTGACCTCAATTTGTTAAGGTTGATATGAATCCCAGGGGAATC
TCAACCCCTATTACCAACAGTCAGAAATCTAACTGTGAGGAGAACACAATGTTCAA
CCTTATTGTTATAATGACAGTAAGAACAGCATGGCAGAACATGAAGGAAGCAAGAGAC
CAAGAATGAACCTGAAAGAAGAACATCTAAAGAAGAAAAAGAACAAATGACTGGGGAA
TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAATACTTGGGTGATGAAG
GACTCCCACAGCAACATTATAGGGTGGCGATAGGGGAAGATTAAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGGTCCITCCGGGGTGTAGACCATTCAAATT
ACCTCAGTTATGAGACCAATAGAACGATCATGGATAATAACTGCTACATTATTAG
AACTTTAACCAATATACTGCTCTAAATAACAAAACAGAATTAGAACATGGAGTT
AGTAAAGACTCTGGCATAACTCCTTACCTATTCTCTGAAAGCTAACACTGGACTAAT
TAGACATAAGAGAGATTTGGTATAAGTCAATAGTGGCAGCTATTGAGCCCTACTGC
TATTGCTGCTAGCGCTACTATGCTTATGTTGCTCTAACTGAGGTTAACAAAATAATGGA
AGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTAAAGA
ACGACAAATAAGATATTATGCTATGATTCTCAAACACATGCAGATGTTCAACTGTT
AAAGGAAAGACAACAGGTAGAGGAGACATTAAATTGAGTGTAGAACAAACACA
TGATTTGTCATACTGGTCATCCCTGGAAATATGTCATGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGTAAGCAAATGGAAGATTAAATCAAGAGATACTAACACT
TCATGGAGGCCAGGAACAATTGGCACAATCCATGATAACATTCAATACACCAGATAGTAT
AGCTCAATTGGAAAAGACCTTGGAGTCATATTGGAAATTGGATTCTGGATTGGAGC
TTCCATTATAAAATATAGTGTGTTCTTATTTGTTACTAACCTCTTCGCC
TAAGATCCTCAGGGCCCTCTGGAAAGGTGACAGTGGTGCAAGGGCTCCGGCAGTCGTT
CCTGAAGAAAAAATTCCATACAAACATGCATGCCAGAACACCTGGGACCAGGCCA
ACACAACATACACCTAGCAGGGCTGACCCGGTGGATCAGGGGACAAACTACAAACGAGAA
GTAACCTCAGGAACGACTGGAAATGGAGAACATCAGAGGAGTACAACAGGGCCAAAGAGCTG
GGTGAAGTCATCGAGGCATTGGAGAGAGCTATTTCCGAGAACAGGACAAAGGGAGAT
TTCTCAGGCCCTGGGGCTATCAACGAGCACAGAACGGCTCTGGGGGAACAATCCTCA
CCAAGGGTCTTAGACCTGGAGATTCAAGCAGCACAGAACGGCTGTGGATTCCCTATGGCTATT
TAAAGCCCAAGAAGGAACCTCGCTATCCCTGCTGTGGATTCCCTATGGCTATT

GGGACTAGTAATTATAGTAGGACGCATAGCAGGCTATGGATTACGTGGACTCGCTGTTAT
AATAAGGATTGTATTAGAGGCTTAAATTGATATTGAATAATCAGAAAAATGCTTGA
TTATATTGGAAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCCTAGTATGTTA
GAAAAACAAGGGGGAACTGTGGGTTTTATGAGGGGTTTATAATGATTATAAGAGT
AAAAAGAAAGTTGCTGTGCTCTATAACCTTGATAACCCAAAGGACTAGCTATGTTG
CTAGGCAACTAAACCCAAATAACCCATTGTGACCGAGTCCCCATTGGTACCGCGTT
AACTTCTGTTTACAGTATATAAGTGTGTATTCTGACAATTGGGACTCAGATTCT
GCGGTCAGTCCCTCTGCTGGGCTGAAAAGCCTTGTATAAAATATAATTCTCTA
CTAGTCCCCTGCTCTAGTTGCTGTTGAGATCTACAGAGCTATGCCCTGGCGTAA
TCATGGTCATAGTGTTCCTGTGAAATTGTTATCCGCTACAATTCCACACAACATA
CGAGCCGAAGCATAAAGTGTAAAGCCTGGGTCATAATGAGTGAAGCTAACATTA
ATTGCGTGGCGTCACTGCCGTTCCAGTCGGAAACCTGTCGTGCCAGAGTAGGCCG
CCTCGCCAGATCTCAAATTGCTTAGCCGTAGCCGAGTAACGCCATTGCAAGGCA
TGAAAAAAATACCAAACCAAGAAATAGAGAAGTTAGATCAAGGGGGTACAGAAAACAG
CTAACGTGGGCCAACAGGATATCTGGGTGAGCAGTTGGCCGGCCGGCCCAA
GAACAGATGGTCACCGCGTTCGGCCCGGGGGCAAGAACAGATGGTCCCAGAT
ATGGCCAACCCCTCAGCAGTTCTTAAGACCCATCAGATGTTCCAGGCTCCCCAAGGA
CCTGAAATGACCCCTGTCCTTATTGAAATTACCAATCAGCTGCTTCGCTTGTTC
GCGCGCTCTGCTTCCGAGCTATAAAAGAGCTCACACCCCTCACTCGGCGGCCAG
TCCCTCGATAGACTGAGTCGCCGGTACCCGTATCCAATAATCCTTGTGTGC
ATCCGACTCGTGGTCTCGTGTCTGGAGGGTCTCTCAGAGTGTATTGACTACCCGT
CTCGGGGTCTTCATTGGGGCTCGTCCGGGATCTGGAGACCCCTGCCAGGGACCAC
CGACCCACACCGGAGGCTAGCCTCGAGAATTGCCACCATGGCTGAGAGCAAGGAGGC
CAGGGATCAAGAGATGAACCTCAAGGAAGAGAGCAAAGAGGAGAACGCCAACGACTG
GTGGAAGATCGACCCACAAGGCCCCCTGGAGGGGACCAAGTGGTGCCTGCTGAGACA
GTCCTGCCGAGGAGAAGATTCTCAGGCCAGACCTGCATGCCAGAACACCTCGGCC
CGGTCCCACCCAGCACACACCTCCAGAAGGGATAGGTGGATTAGGGCCAGATTGCA
ACCCGAGGTCTCCAAGAAAGGCTGGAATGGAGAATTAGGGCGTCAACAAGCCGCTAA
AGAGCTGGGAGAGGTGAATCGCGGCATCTGGAGGGAGCTACTCCCGAGGACCAAG
GGCGATTTCGCATGGGAGGCTACAGAGGGACAAGAAAGGCTGTGGGGGAGCA
GAGCAGCCCCCGCTTGGAGGCGACTCCAAAAGACGCCAACACCTGTGAAG
TCGACCCGGCGCCGCTTCCCTTAGTGAGGGTTAATGCTCGAGCAGACATGATAAGA
TACATTGATGAGTTGGACAAACCACAATAGAATGCACTGAAAAAAATGCTTTATTGT
GAAATTGATGCTATTGCTTATTGTAACCAATTATAAGCTGCAATAAACAAAGTTAAC
AACAAACAATTGCTTATTGTTAGGTTAGGGGAGATGTGGAGGTTTTAA
AGCAAGTAAACCTCTACAAATGTGGAAAATCGATAAGGATCGATCCGGCTGGCGTA
ATAGCGAAGAGGCCGCACCGATGCCCTCCAAACAGTGGCAGCCTGAATGGCAAT
GGACGCCCTGAGGCCCTAGGCCCGCTTCCCTCGCTTCCCTGCCGCTCG
CGCTACACTGCCAGGCCCTAGGCCCGCTTCCCTCGCTTCCCTGCCGCTCG
CACGTTGCCGGCTTCCCGTCAAGCTCTAAATGGGGCTCCCTTGGGTTCCGATT
TAGAGCTTACGGCACCTGACCGAAAAACTGATTCGGTGTGGTACGGCAGCGTGAC
GCCCTGCCGCCGGCATACTGCATTAATGAATGCCAACGCCGGGAGAGCGGT
TTGCGTATTGGCGCTTCCGCTTCCGCTACTGACTCGCTGCCGCTGGTGTGG
CTCGGGCGAGCGGTACAGCTACTCAAAGCGGTAAACGGTTATCCACAGAACAGGG
GATAACGCAGGAAAGAACATGTATAACTCGTATAATGATGCTATACGAAGTTACAT
GTGAGCAAAAGGCCAGCAAGGCCAGAACCGTAAAAGGCCGTTGCTGGCGTTTT
CCATAGGCTCCGCCCCCTGACGAGCATACAAAAATGACGCTCAAGTCAGAGGGCG
AAACCCGACAGGACTATAAGATACCAGCGTTCCCCCTGGAGCTCCCTGCGCTC
TCCCTGTCGACCCCTGCCGTTACCGGATACCTGTCGCCCTTCTCCCTGGGAAGCGT

GGCCTTCTCATAGCTCACCGCTAGGTATCTCAGTCGGTAGGTCGTCGCTCCAA
 CCTGGCTGTGCCACGAACCCCCCTCAGCCGACCGCTGCCCTATCCGTAACCA
 TCGCTTGAGTCCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAA
 CAGGATTAGCAGAGCGAGGTATGTAGGCGGTCTACAGAGTTCTGAAGTGGTGGCTAA
 CTACGGCTACACTAGAAGGACAGTATTGGTATCGCCTCTGAAGCCAGTTACCTT
 CGGAAAAAGAGTTGTAGCTTIGATCCGCAAACAAACCACCGCTGGTAGCGGTGTTT
 TTTGTTGCAACGAGCAGATTACCGCAGAAAAAAAGGATCTCAAGAAAGATCCTTGAT
 CTTTCTACGGGCTGACGCTCAGTGGAACGAAAACCTACGTTAAGGGATTTGGTCAT
 GAGATTATCAAAAAGGATCTTACCTAGATCCTTAAATTAAAATGAAGTTTAAATC
 AATCTAAAGTATATGAGTAAACTGGTCTGACAGTACCAATGCTTAACTAGTGAGGC
 ACCTATCAGCGATCTGCTTATTCGTCATCCATGCTGACTCCCCGCTGTA
 GATAACTACGATACGGGAGGGTACCATCTGGCCCACTGCTGCAATGATAACCGCGA
 CCCACGCTCACCGGCTCCAGTTTACGAAATAAACAGCCAGCGGAAGGGCCAGCG
 CAGAAGTGGCTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTCGGGAAGC
 TAGAGTAAGTAGTCGCCAGTTAATAGTTGCGAACCTGTTGCTACAGGCAT
 CGTGGTGTACGCTCGTCTGGTATGGCTTATTAGCTCCGGTCCAAACGATCAAG
 CGCAGTTACATGATCCCCATGTTGCAAAAAAGCGTAGCTCCTCGGTCTCCGAT
 CGTGTCAAGTAAGTTGCCAGTGTATCACTCATGGTTATGGCAGCACTGATAAA
 TTCTTACTGTCATGCCATCGTAAGATGCTTCTGTACTGGTAGTACTCAACCA
 GTCATCTGAGAATAGTGTATGCCGACCGAGTTGCTTGGCCCGTCAATACGGGA
 TAATACCGGCCACATAGCAGAACTTAAAGTGTCTCATTTGGAAAAACGTTTCGG
 GCGAAAACCTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGC
 ACCCAACTGATCTCAGCATTTACTTACCCAGCTTCTGGGTGAGCAAAACAGG
 AAGGCAAAATGCCAAGGGATAAGGGGACACGGAAATGTTGAATACTCATACT
 CTTCTTTCAATATTGAGCATTTACAGGGTATTGTCATGAGCGGATACAT
 ATTGAAATGTTAGAAAAATAACAAATAGGGTCCCGCACATTCCCGAAAAGT
 GCCACCTAAATTGTAAGCTTAAATTGTTAAATTCGCTTAAATTGTTAAATC
 AGCTCATTTTAAACCATAGGCCAAATCGCAAATCCCTATAAAATCAAAGAATAG
 ACCGAGATAGGGTAGTTGACTGTTGCTCAGTTGGAAACAAGAGTCCACTTAAAGAACGTG
 GACTCAACGCTCAAGGGCGAAAACCGCTATCAGGGCAGTGGCCCACTACGTGATAAC
 TTGCTATAATGCTATCGAAGTTACTACGTGAACCATCACCTAATCAAGTT
 TTGGGTGAGGTGCCGTAAGCACTAAATCGAACCTAAAGGGAGCCCCCGATTAG
 AGCTGACGGGAAAGCCAACCTGGTTATCGAAATTAACTGACTCACTATAGGGAGAC
 CGGC

PONY8.3GPGK – (SEQ ID No 47)

AGATCTGAATAATAAAATGTGTGTTGTCGAAATACGCTTGTAGATTCTGCGCC
 GACTAAATTCACTGCGCGATAGTGGTGTATCGCCGATAGAGATGGCGATATTGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGTCGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCGAAAGTGTGTTGGCATAACGCGATATCGCGATAGCGCT
 TATATGTTACGGGGATGGCGATAGACGACTTGGTACTGGCGATTCTGTGTC
 GCAAATATCGCAGTTGATAGGTGACAGACGATATGAGGCTATATCGCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCAATCGATCTACATTGAAATCAATTGGCC
 ATTAGCCATTATTCATTGGTTATAGCATAAATCAATTGGCTATTGCCATTGCA
 TACGTTGATCCATATCGTAATATGTACATTATATTGGCTATGTCACATTACCGCC
 ATGTTGACATTGATTATTGACTAGTTATAATAGTAATCAATTACGGGTATTAGTCA
 TAGCCCATATATGGAGTCCCGGTTACATAACTACGGTAATGGCCCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACCGCAAT

AGGGACTTICATTGACGTCATGGGTGGAGTATTAACGGTAAGCTGCCACTTGGCACT
ACATCAAGTGTATCATATGCCAAGTCCGCCCTATTGACGTCATGGTAAATGGCC
CGCCTGGCATTATGCCAGTACATGACCTTACGGGACTTCTACTTGGCAGTACATCTA
CGTATTAGTCATCGCTATTACCATGGTGATGCCGTTTGGCAGTACACCAATGGCGTGG
ATAGCGTTTACTCACGGGATTTCAGTCTCCACCCATTGACGTCATGGAGTTT
GTTTGGCACCAAAATCAACGGGACTTCAAAGTCTGAACAACGCGATGCCGCC
CCGTTGACGCAAATGGCGTAGGCCTGACGGTGGAGGCTATAAAGCAGAGCTCGT
TTAGTGAACCGGGACTCAGATTCTGCGCTGAGTCCCTCTGCTGGGCTGAAAAGG
CTTTGTAAATAATATAATTCTACTCAGTCCCTGCTCTAGTTGCTGTTGAGATC
CTACAGTTGGCGCCGAACAGGGACCTGAGAGGGCGCAGACCTACCTGTTGAACTGG
CTGATCGTAGGATCCCCGGACAGCAGAGGAGAACCTACAGAAGTCTCTGGAGGTTC
CTGGCCAGAACACAGGAGGACAGGTAAGATTGGGAGACCCCTTGACATTGGAGCAAGGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGGTAACGT
AATTGGGCGCTAAGTCTAGTAGACTTATTCTGATACCAACTTGTAAAAGAAAAGGAC
TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACCTACAGCGCTGTCAGGACAA
GAAAGAGAGGCCCTTGAAAGAACATGGTGGCAATTCTGCTGTAAGATGGCCCTCAG
ATTAATAATGTAGTAGATGAAAGGCATATTCCAGCTCTGAGGAACTATCTAGAAACTAGTGGATC
AAGACTGCTAATAAAAGCAGTCTGAGGCTCTGAGAAATATCTCTAGAAACTAGTGGATC
CCCCGGGCTGAGGAGTGGGAGGCACGATGGCCCTTGGCGAGGCGGATCCGGCAT
TAGCCATATTATTCTGTTATAGCATAATCAATATTGGCTATTGGCATTGCTA
CGTTGTATCCATATCATAATATGTACATTATATTGGCTATGTCACACATTACGGCAT
GTTGACATTGATTATTGACTAGTTATTAAATGTAACATTACGGGCTTGTGACCG
CCCCATATGGAGTCCCGCTACATAACTACGGTAATGGCCCTGGCTGACCG
CCAACGACCCCGCCATTGACGTCAATAATGACGTATGTCACCTAGTAACGCCAATAG
GGACTTCCATTGACGTCAATGGGAGTATTACGGTAAACTGCCACTTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCAATGCGTAATGCCCG
CCTGGCATTGCCCAGTACATGACCTTATGGACTTCTACTGGCACTACATCTACG
TATTAGTCATCGCTATTACCATGGTGATGCCGTTTGGCAGTACATCAATGGCGTGGAT
AGCGGTTTGACTIONGGGATTTCAAGTCTCCACCCATTGACGTCAATGGAGTTGT
TTTGGCACCAAAATCAACGGACTTCAAATGTCGTAACAACTCCGCCATTGACGC
AAATGGGCGGTAGGCATGTACGGTGGAGGCTATATAAGCAGAGCTGTTAGTGAACC
GTCAGATGCCCTGGAGACGCCATTCCACCGCTGTTTGACCTCCATAGAACAGACCCGGACC
GATCCAGCCTCCGGCCAGCTTGTGGATCCACCGCTGCCACCATGGTGAGCAA
GGCGAGGGCTGTTACCGGGGTTGGTGCCTCCTGGCGAGCTGGACGGCAGTAA
CGGCCACAAGTTAGCGTGTCCGGCAGGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTATCTGCACCCGGCAAGCTGCCGTGCCCTGGCCACCCCTCGTACCC
CTTGACCTACGGCGTGCAGTCCTCAGGGCTACGTCAGGAGCGCACCATTCTCAAGGACGA
CTTCAGTCCGCCATTGCCAGGGCTACGTCAGGAGCGCACCATTCTCAAGGACGA
CGGCAACTACAAGACCCGGCGAGGTGAAGTTCAGGGGAGACCCCTGGTAACCGCAT
CGAGCTGAAGGGCATGACTCAAGGAGACGGCAACATCCTGGGACAAGCTGGAGTA
CAACTACAACAGCCACAACGTCTATATCATGGCGACAAGCAGAAAGAACGGCATCAAGGT
GAACCTCAAGATGCCACAACATCGAGGGACGGCAGCGTGCAGCTGCCGACCAACTACCA
GCAGAACACCCCATCGGGACGGCCCGTGTGCTGCTGCCGACAACCAACTACCTGAGCAC
CCAGTCCGCCCTGAGCAAAGACCCAAACGAGAAGCGCAGTCACATGGCTGCTGGAGTT
CGTGACCGCCGGGATCACTCTGGCATGGACGAGCTGTACAAGTAAAGCGGCCGGA
CTCTAGAGTCGACCTGCAGGCATGCAAGCTTACGCTGCTGAGGGGGGGCCGGTACCCA
GCTTTGTTCCCTTACTGAGGGTAATTGCGCGGGAAAGTATTCTACTAATCAAGCAC
AAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCCTCAAAAAAATTGTTTT
ACAAAATCCCTGGTGAACATGATTGGAGGGACCTACTAGGGTGCTGTGGAAGGGTATG

GTGCACTAGTAGTTAATGATGAAGGAAAGGGATAATTGCTGTACCATTAACCAGGACTA
 AGTTACTAATAAAACCAATTGAGTATTGTCAGGAAGCAAGACCCAACTACCAATTGTC
 AGCTGTGTTCTGACCTCAATTGTTATAAGGTTGATATGAATCCAGGGGGAAATC
 TCAACCCCTATTACCCAACAGTCAGAAAAATCTAAGTGTGAGGAGAACAATGTTCAA
 CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAACTGAAGGAAGCAAGAGAC
 CAAGAATGAACCTGAAAGAAGAATCTAAGAAGAAAAAGAAGAAATGACTGGGGAAAA
 TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAATACTTGGTGTATGAAG
 GACTCCCACAGCAACATTATAGGGTTGGCGATAGGGGGAAAGGATTAACGGATCTG
 GCCAATCAAATGCTATAGAATGCTGGGTTCTCCGGGTGTAGACCATTCAAATT
 ACTTCAGTTATGAGACCAATAGAACATGCATATGGATAATAACTGCTACATTATTAG
 AAGCTTAACCAATATAACTGCTCTATAAATAACAAAACAGAATTAGAAACATGGAAGTT
 AGTAAAGACTCTGGCATAACTCCTTACCTATTCTGAAAGCTAACACTGGACTAAT
 TAGACATAAGAGAGATTTGGTATAAGTCAATAGTGGCAGTATTGAGCCGCTACTGC
 TATTGCTCTAGCGCTACTATGTCCTATGTTGCTCTAACTGAGGTTAACAAAATAATGGA
 ACTACAAAATCATACTTTGAGGTAGAAATAGTACTCTAAATGGTATGGATTAAAGA
 ACCGACAAATAAAGATATTATGCTATGATTCTCAAAACACATGCAGATGTTCACTGTT
 AAAGGAAAGACAACAGGTAGAGGAGACATTAAATTGATGTTAGAAAGAACACA
 TGATTTGTCATACTGGTCATCCCTGGAATATGTCATGGGACATTAAATGAGTCAC
 ACAATGGGATGACTGGGTAAGCAAATGGAAGATTAAATCAAGAGACTAACTACACT
 TCATGGAGGCCAGAACATTGGCACAATCCATGATAACATTCAATAACACCAGATAGTAT
 AGCTCAATTGGAAAAGACCTTGGAGTCATATTGAAATTGGATTCTGGATTGGGAGC
 TTCCATTATAAAATATAGTGTATGTTTGCTTATTTGTTACTAACCTTCTGCC
 TAAGATCCTCAGGGCCCTTGGAGGTGACCACTGGTGAGGGCTCCGGCAGTCGTTA
 CCTGAAGAAAAATTCCATACAAACATGCATCGCGAGAACACTGGGACAGGGCCA
 ACACAACATACACCTAGCAGGCGTACGGGTGGATCAGGGGACAAACTACAAGCAGAA
 GTACTCCAGGAACGACTGGAATGGAGAACATCAGAGGAGTACAACAGGGGCCAAAGAGCTG
 GGTGAAGTCATCGAGGATTGGAGAGAGCTATTCCGAGAACGACCAAGGGGAG
 TTCTCAGCCGGGGCTATCAACGAGCACAGAACGGCTCTGGGGAAACAATCTCA
 CCAAGGGTCTTAGACCTGGAGATTCAAGCGAAGCGAAGGGAGAACATTATGACTGTCAT
 TAAAGCCCAGGAAGGAACTCTGCTATCCCTGCTGGATTCCCTTATGGCTATTGG
 GGGACTAGTAATTATAGTAGGACGCATAGCAGGCTATGGATTACGGACTCGCTTAT
 AATAAGGATTGTATTAGAGGCTAAATTGATATTGAAATAATCAGAAAAATGCTGA
 TTATATTGGAAGGCTTAAATCCTGGCACATCTCATGTATCAATGCCCTAGTATGTTA
 GAAAAACAAGGGGGAACTGTGGGTTTATGAGGGTTTATAATGATTAAAGAGT
 AAAAGAAAAGTTGCTGATGCTCTATAACCTGTATAACCCAAAGGACTAGCTCATGTTG
 CTAGGCAACTAAACCGCAATAACCGCATTGTCAGCGAGTTCCCATTGGTGACCGCGTT
 AACCTCCTGTTTACAGTATATAAGTGTGTTGATCTGACAAATTGGCACTCAGATTCT
 CGGGTCTGAGCCCTCTGCTGGGCTGAAAAGGCTTGTAAATAATATAATTCTCA
 CTCAGTCCCTGCTCTAGTTGCTGTTGAGATCCTACAGAGCTATGCCCTGGCGTAA
 TCATGGTCATAGCTGTTCTGTTGAAATTGTTATCCGCTACAATTCCACACAAACATA
 CGAGCCGAAGCATAAAGTAAAGCCTGGGCTTAATGAGTGAAGCTAACACATTAA
 ATTGCGTTGCGCTACTGCCGTTTCACTGGGAAACCTGTGCGCCAGTGTGATGCCG
 GGCGGCCGAGGGGGCTACGTGAACCATACCCAAATCAAGTTTGGCGGTGAGGTGC
 CGTAAAGCTCTAAATCGAACCCCTAAAGGGAGCCCCGATTAGAGCTGACGGGGAAAG
 CGGGCGAACGTTGGCGAGAAAGGAAGGGAAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTG
 GCAAGTGTAGCGGTACGCTGCGCTAACCCACACCCGCGCTTAATGCCGCTA
 CAGGGCGCGTCCATTGCCATTAGGCTGCGCAACTGTTGGGAAGGGCGATGGTGGGG
 CCTTTCGCTATTAGGCCAGCCGGATGATCCTTATGGATTACACACATTGAGAG
 GTTTACTTGCTTAAAAACCTCCCACATCTCCCCCTGAACCTGAAACATAAAATGAAT

GCAATTGTTGGTAACTTGTATTGCAGCTATAATGGTACAAATAAAGCAATAGC
 ATCACAAATTCACAATAAAGCATTTTTCACTGCATTCTAGTTGTTGTCAA
 CTCATCAATGTATCTTATCATGTCGCTCGAACGCTTAAACCCACTAAAGGGAAAGCGC
 CGCCCGGGTCGACTTCACAGGTGTTGCCGCTTTGGAGTCTCCGGCCTCAAGACG
 CGGGGGCTGCTCTGTCGCCCCACAGCCTTCTTGCCCTCTGGTAGCCTCCCCATGCG
 GAGAAAATGCCCTCTGGTCTCGCGGAAGTAGAGCTCCCTCAGATGCCGCGATTCACC
 TCTCCCAGCTTTAGCGGTTGTCAGCCCCTAATTCTCATTCCAGCCTTCTGG
 AGGACCTCGGTTGCAAATCTGGCCCTAATCCACCTATCCCTCTGGAGGGTGTGCG
 TGGGTGGACGGGGCCGAGGTGTTCTGGCGATGCCAGGTCTGGCTAGGAATCTCTCC
 TCAGGCAGGGACTGTCTCAGCACGCCAACACTGGTCCCCCTCCAGGGGGCCTTGTGG
 TCGATCTTCACCACTCGTGGCGCTTCTCTTGTCTCTCCAGGTTGAGGTCATC
 TCTTGATCCCTGGCCTCTGGCTCTAGCCATGGTGGCGAATTCTCGAGGCTAGCCTGG
 GAGAGAGGTCGGTGATTGGTCAACGAGGGAGCCGACTGCCGACGTGCGCTCCGGAGGCT
 TGCAGAATGCCAACACCGCGGGCAGGAACAGGGCCACACTACCGCCCCAACCCCC
 CCTCCCGCACCGCCCTTCCCGGCCGCTGCTCTGGCGCCGGCTGAGCAGCCGCTAT
 TGGCCACAGCCATCGCGCTGGCGCTGCCATTGCTCCCTGGCGCTGCGATCGA
 GGGTACTACTGAGACGTGGCTTCCGTTGTCACGTCGGCACGCCGGAACCGAACGG
 AACCTCCGACTTAGGGGGAGCAGGAACGTCGCCGGGGGGCCACAGGGTAGCGG
 CGAAGATCCGGTGACGCTGCAACGGACGTGAAGAATGTCGAGACCCAGGGTGGCG
 CGCTGCGTTCGGGAACACGCCAGAGCAGCCGCTCCCTGCCAACCCAGGGCTGC
 CTTGGAAAAGGCCAACCCCAACCCAGATCTGGCCAGGGGGCTACTCTGCAATTATG
 AATCGCCAACCGCGGGGAGAGGGGTTGCGTATGGCGCTTCCGCTTCGCT
 CACTGACTCGCTGCGCTCGTCTGGCTGCCAGGGTATCAGCTACTCAAGGC
 GGTAAATACGGTTATCCACAGAATCAGGGATAACGCAGGAAAGAACATGTATAACTCGT
 ATAATGTATGCTATCGAAGTTACATGTGAGCAAAGGCCAGCAAAGGCCAGGAACC
 GTAAAAAGGCCGTTGCTGGCTTCCATAGGCTCCGGGGCTGACGAGCATCACA
 AAAATGACGCTCAAGTCAGGGGAAACCCGACAGGACTATAAGATAACCAAGGGT
 TTCCCCCTGGAAGCTCCCTCGTGCCTCTCTGTTCCGACCCCTGCCCTACGGGATACC
 TGTCGCCCTTCTCCCTGGGAAGCTGGCGCTTCTCATAGCTCACGCTGTAGGTATC
 TCAGTTGGTGTAGGTCGCTCCAGCTGGCTGTGCAAGAACCCCCGGTCAAGACGACT
 CCGACCGCTGCCCTTACCGTAACTATCGTCTGGTACGAGCAGGGTATGAGGGT
 TATCGCACTGGCAGCAGGCCACTGGTAACAGGATTAGCAGAGCAGGGTATGAGGGT
 CTACAGAGTTCTGAAGGGCTTAACTACGGCTACACTAGAAGGACAGTATTGGTA
 TCTGCGCTCTGCTGAAGCCAGTTACCTGGAAAAAGAGTTGTAGCTTGTATCCGCA
 AACAAACCCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGCCAGAA
 AAAAAGGATCTAAGAAGATCTTGTAGATTATCAAAGGATCTCACCTAGATCC
 TTTAAATTAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTGGTCT
 ACAGTTACCAATGCTTAATCACTGGGACCTATCTCAGCGATCTGTCTATTGCT
 CCATAGTTGCCGACTCCCGCTGTAGATAACTACGATAACGGAGGGCTTACCATG
 GCCCAGTGTGCAATGATAACCGCGAGACCCACGCTACCGGCTCAGATTTATCC
 TAAACCAAGCCAGCCGGAGGGCCGAGCGCAGAAGTGGTCTGCAACTTATCC
 TCCAGTCTATTAAATTGTTCCGGGAAGCTAGAGTAAGTAGTCTGCCAGTTAATAG
 GCAGCTGGTGTGCAAGGCTACAGGATCTGGTGTGCAAGCTGGTGTGCA
 CATTCACTCCGGTCTCCAAAGATCAAGGCAGTTACGATCCCCCATGTTGCA
 AAGCGGTTAGCTCCTCGTCTCCGATCGTGTGCAAGTAAGTGGCCAGTGT
 CACTCATGGTTAGGCAGCACTGCATAATTCTTACTGTCTGCACTGCCATCG
 TTTCTGTGACTGGTGAAGTACTCAACCAAGTCATTCTGAGAAATAGTGT
 GTGCCGACCGAATACGGGATAATACCGGCCACATAGCAGAACTTAAAG
 GTTGCCTTGCCTGGCTCAATACGGGATAATACCGGCCACATAGCAGAACTTAAAG

TGCTCATCATTGGAAAACGTTCTCGGGCGAAAACTCTAAGGATTTACCGCTGTTGA
GATCCAGTCGATGTAACCACTCGTGCACCCAACTGATCTTCAGCATCTTTACTTCA
CCAGCGTTCTGGGTGAGCAAAAACAGGAAGGCAAATGCCAAAAAGGGATAAGGG
CGACACGGAAATGTTGAATACTCATACTCTTCTTTCAATATTATTGAAGCATTATC
AGGGTTATTGTCATGAGCGGATACATATTGAATGTATTAGAAAAATAACAAATAG
GGGTTCCGGCACATTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTGTT
AAAATTCCGGTTAAATTTTGTTAAATCAGCTATTAAACCAATAGGCCAAATCGG
CAAAATCCCTTATAAAATCAAAAGAATAGACCGAGATAGGGTGAGTGTGTTCCAGTTG
GAACAAGAGTCCACTATTAAAGAACGTTGACTCCAACGTCAAAGGGCGAAAACCGTCA
TCAGGGCGATGGCCCCTACGTGATAACTTCGTATAATGTATGCTACGAAGTTATCAC
TACGTGAACCCTACCCCTAATCAAGTTTTGGGTCGAGGTGCCGTAAAGCACTAAATC
GGAACCCCTAAAGGGAGCCCCGATTTAGAGCTTGACGGGGAAAGCCAACCTGGCTTATCG
AAATTAATACGACTCACTATAGGGAGACCGGC

pONY8.3G PGK + (SEQ ID No 48)

AGATCTTGAATAATAAAATGTGTGTTGTCGGAAATACCGCTTTGAGATTCTGTGCC
GACTAAATTCACTGCGCGCATAGGGTGTATGCCGATAGAGATGGCATATTGGAA
AAATTGATATTGAAAATATGGCATATTGAAAATGTGCCGATGTGAGTTCTGTAAAC
TGATATGCCATTTCAAAAGTGTATTTGGGCATACCGCATATCTGGCGATACCGCT
TATATCGTTACGGGGATGGCGATAGACGACTTGGTACTTGGCGATTCTGTGTGC
GCAAATATCGCAGTTGATAGGTGACAGACGATATGAGGCTATACGCCGATAGAGG
CGACATCAAGCTGGCACATGCCAATGCAATCGATCTATACATTGAATCAATTGGCC
ATTAGCCATATTTCATTGGTTATATAGCATAAAATCAATTGGCTATTGGCATTGCA
TACGTTGATCCATATCGTAATATGTACATTATATTGGCTATGTCAAACATTACCGCC
ATGTTGACATTGATTGACTAGTTATTAGTAATCAATTACGGTAAATGCCCGCTGGCTGACC
TAGCCCATAATGGAGTCCCGTACATAACTACGGTAAATGCCCGCTGGCTGACC
GCCCAACGACCCCCGCCATTGACGTCATAATGACGTATGGCCATAGTAACGCCAAT
AGGGACTTTCAATTGACGTCATGGTGGAGTATTACGGTAAACTGCCACTGGCAGT
ACATCAAGTGTATCATATGCAAGTCCGCCCCCTATTGACGTCATGACGGTAAATGCC
CGCCTGGCATTATGCCAGTACATGACCTACGGGACTTCTACTGGCAGTACATCTA
CGTATTAGTCATCGTATTACCATGGTATGGTACGGGTTGGCAGTACACCAATGGCAGT
ATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCATGGAGTT
GTTTGGCACAAAATCAACGGGACTTCCAAAATGCTGAACAATGCGATGCCCGCC
CCGTTGACGCAAATGGCGGTAGGGTGTACGGTGGAGGTATATAAGCAGAGCTCGT
TTAGTGAACCGGGCACTCAGATTCTGCGGTCTGAGTCCTCTGCTGGCTGAAAAGG
CCTTGATAATAATAATTCTACTCAGTCCTGTCTAGTTGTTGAGATC
CTACAGTTGGCCCGAACAGGGACCTGAGAGGGCGCAGACCCCTACCTGTAACCTGG
CTGATCGTAGGATCCCCGGACAGCAGAGGAGAACTACAGAACTTCTGGAGGTGTT
CTGGCCAGAACACAGGAGGACAGTAAGATTGGAGACCTTGTACATTGGAGCAAGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAAACTCTGTAACTGT
AATTGGCGCTAAGTCTAGTAGACTTATTGATGACCAACTTGTAAAAGAAAAGGAC
TGGCAGCTGAGGGATGTCATTGCTGGAGATGTAACCTGAGCAGCTGTCAGGACAA
GAAAGAGAGGCCATTGAAAGAACATGGGGCAATTCTGCTGAAAGATGCCCTCCAG
ATTAATAATGTTAGATGAAAGGCATCATTCCAGCTCTGAAGAATATCTAGAAACTAGGGATC
AAGACTGCTAATAAAAAGCAGTCTGAGCCCTCTGAAGAATATCTAGAAACTAGGGATC
CCCCGGGCTGAGGAGTGGGGAGGCAGATGCCCTTGGCGAGGGGATGCCCAT
TAGCCATTATTGTTATATGCAATAATCAATTGGCTATTGGCTATGTCAAACATTACCGCC
CGTTGTATCCATATCATAATATGTACATTATATTGGCTATGTCAAACATTACCGCC
GTTGACATTGATTGACTAGTTATTAGTAATCAATTACGGGTCTAGTTGCTATA
GCCCATATATGGACTTCCCGTACATAACTACGGTAAATGCCCTGGCTGACCGC
CCAAGCCCCGCCATTGACGTCATAATGACGTATGTCCTAGTAACGCCAATAG
GGACTTCCATTGACGTCATGGTGGAGTATTACGGTAAACTGCCACTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCATGACGGTAAATGCC
CCTGGCATTATGCCAGTACATGACCTATTGGACTTCTACTGGCAGTACATCTAG
TATTAGTCATGCTATTACCATGGTGTACGGGTTGGCAGTACATCAATTGGCTGG
AGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCATGGAGTTGT
TTGGCACCAAAATCAACGGGACTTCCAAAATGCTGTAACAACCTCCGCCATTGACG
AAATGGCGGTAGGCATGTCAGGTGGAGGTCTATATAAGCAGAGCTGTTAGTGAACC
GTCAGATCGCCTGGAGACGCCATCCACGCTGTTTGACCTCCATAGAAGACACCGGGACC
GATCCAGCCTCCCGGCCCCAAGCTTGGGATCCACCGGTGCCACCATGGTGG
GGCGAGGAGCTGTTACCGGGGTGGTGCCTGAGCTGGACGGCGACGTAAA
CGGCCACAAGTTCAAGCTGTCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGAC

CCTGAAGTTCATCTGCACCACCGGCAAGCTGCCGTGCCCTGGCCACCCCTGTGACCA
 CCTGACCTACGGCGTGCAGTCTTCAGCCCTACCCCCGACCATGAAGCAGCACGACTT
 CTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTCTCAAGGACGA
 CGGCACACTACAAGACCCGGCCGAGGTGAAGTTCGAGGGGACACCCCTGGTGAACCGAT
 CGAGCTGAAGGGCATGACTTCAGGAGGACGGCAACATCTGGGCACAAGCTGGAGTA
 CAACTACAACAGCCACAACGTCTATATCATGGCGACAAGCAGAAGAACGGCATCAAGGT
 GAACCTCAAGATCCGCCAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACATCCA
 GCAGAACACCCCCATCGGGACGGCCCCGTGCTGCTGCCGACAACCACTACCTGAGCAC
 CCAGTCCGCCCTGAGCAAAGACCCCACCGAGAACGGCGATCACATGGTCTGCTGGAGTT
 CGTGACCGCCGCCGGGATCACTCTCGGCATGGACGACGTACAAGTAAAGCGGGCGGA
 CTCTAGAGTCGACCTGCAGGCATGCAAGCTTCAGCTGCTCGAGGGGGGGCCCGTACCCA
 GCTTTGTTCCCTTAGTGGGTTAATTGCGCGGGAAAGTATTATCAACTAATCAAGCAC
 AAGTAATACATGAGAAAACTTTACTACAGCAAGCACAATCCTAAAAAAATTGTTTTT
 ACAAAAATCCCTGGTGAACATGATTGGAAAGGGACCTACTAGGGTCTGTGGAAGGGTATG
 GTGCACTAGTAGTTAATGATGAAGGAAAGGAATAATTGCTGTACCTTAACCAACAGGACTA
 AGTTACTAATAAAACCAAAATTGAGTATTGTCAGGAAGCAAGACCCAACTACCAATTGTC
 AGCTGTGTTCCCTGACCTCAATATTGTTATAAGGTTGATATGAATCCCAGGGGAATC
 TCAACCCCTATTACCCAACAGTCAGAAAAAACTAAGTGTGAGGAGAACACAATGTTCAA
 CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAACATGAAGGAAGCAAGAGAC
 CAAGAATGAACTGAAAGAAGAATCTAAAGAAGAAAAAGAAGAAATGACTGGTGGAAAAA
 TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAACACTTTGGTGTATGAAG
 GACTCCCACAGCAACATTATAGGGTTGGCGATAGGGGAAGATTAAACGGATCTG
 GCCAATCAAATGCTATAGAATGCTGGGTTCCCTCCGGGTGTAGACCATTCAAATT
 ACTTCAGTTATGAGACCAATAGAAGCATGCATATGGATAATAACTGCTACATTATTAG
 AAGCTTAAACCAATATACTGCTATAAAACAAAACAGAATTAGAAACATGAAAGTT
 AGTAAAGACTCTGGCATAACTCCTTACCTATTCTCTGAAGCTAACACTGGACTAAT
 TAGACATAAGAGAGATTGGTATAAGTCAATAGTGGCAGCTATTGTAGCCGCTACTGC
 TATTGCTGCTAGCGCTACTATGCTTATGCTCAACTGAGGTTAACAAAATAATGGA
 AGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTAAAGA
 ACGACAAATAAAAGATATTATGCTATGATTCTCAAACACATGCAGATGTTCAACTGTT
 AAAGGAAAGACAACAGGTAGAGGAGACATTTAATTGATGTTAGAAAGAACACA
 TGTTTTGTCATACTGGTCATCCCTGGAAATATGTCATGGGACATTAAATGAGTCAC
 ACAATGGGATGACTGGGTAAGCAAATGGAAGATTAAATCAAGAGACTAAACTACACT
 TCATGGGAGCCAGGAACAATTGGCACAATCCATGATAACATTCAATACACCGAGATAGT
 AGCTCAATTGGAAAAGACCTTGGAGTCATATTGGAAATTGGATTCTGGATTGGAGC
 TTCCATTATAAAATATAGTGTGTTGCTTATTATTGTTACTAACCTCTCGCC
 TAAGATCCTCAGGGCCCTGGAGGTGACAGTGGCAGGGCTCTCCGGCAGTCGTTA
 CCTGAAGAAAAAATCCATCACAAACATGCATCGCGAGAACACCTGGGACAGGCCCCA
 ACACAAACATACACCTAGCAGCGTGCACGGGGATCAGGGACAAATACTACAAGCAGAA
 GTACTCCAGGAACGACTGGAATGGAGAACATGAGGAGTACAACAGGGGGCAAAGAGCTG
 GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAACAGGAAAGGGAGAT
 TTCTCAGCCTGGGCGGCTATCAACGAGCACAAAGAACGGCTCTGGGGGAAACATCCTCA
 CCAAGGGCTTAGACCTGGAGATTCGAAGCGAAGGAGAACATTATGACTGTTGCA
 TAAAGCCCAAGAAGGAACTCTCGCTATCCCTGCTGTTGATTCCCTTATGGCTATT
 GGGACTAGTAATTATAGTAGGAGGCATAGCAGGCTATGGATTACGTGGACTCGCTGTT
 AATAAGGATTGTTAGAGGCTTAAATTGATATTGAAATAATCAGAAAATGCTGA
 TTATATTGGAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCTCAGTATGTTA
 GAAAAACAAAGGGGGAACTGTGGGTTTTATGAGGGTTTATAATGATTAAAGAGT
 AAAAGAAAGTTGCTGATGCTCTCATACCTTGATAACCCAAAGGACTAGCTCATGTT

CTAGGCAACTAACCGCAATAACCGCATTGTGACGCCAGTCCCCATTGGTGACCGTT
 AACCTCCCTGTTTACAGTATATAAGTGTCTGTATTCTGACAATTGGCACTCAGATTCT
 GCGGTCTGAGTCCCTTCTGCTGGGCTGAAAAGGCCTTGTAAATAATATAATTCTCTA
 CTCAGTCCCTGCTCTAGTTGTCTGAGATCCTACAGAGCTATGCCCTGGCTAA
 TCATGGTCATAGCTGTTCTGTGTGAAATTGTATCCGCTACAATTCCACACAAACATA
 CGAGCCGGAAGCATAAAAGTGTAAAGCCTGGGTGCTTAATGAGTGAGCTAATCACATTA
 ATTGCGTTCGCGCTCACTGCCGCTTCCAGTCGGAAACCTGTCGTGCCAGAGTAGGCCG
 CCTCGGCCAGACTGGGGTTGGGTTGCCCTTCCAAGGCAGCCCTGGGTTGCCAG
 GGACGCGGCTGCTCTGGCGTGGTCCGGGAAACGCAGCGGCCGACCCCTGGTCTCGC
 ACATTCTCACGTCGTTGCCAGCGTCACCCGGATTCGCCGCTACCCCTGTGGGCCCC
 CGCGCGACGCTTCTGCTCCGCCCTAAGTCGGGAAGGTTCTTGCGGTTGCCGGTGC
 CGGACGTGACAACCGAACGCCACGTCACACTAGTACCCCTGCCAGACGGACAGGCCAG
 GGAGCAATGGCAGCGCGCCGACCGCAGGGCTGTGGCAATAGGGCTGCTAGCGGGG
 CGCGCCGAGAGCAGCGGCCGGAAAGGGCGGTGCGGGAGGCGGGGTGTGGGCGGTAGTG
 TGGGCCCTGTTCTGCCGCCGCGTGTCCGATTCTGCAAGCCTCCGAGCGCACGTC
 GCAGTCGGCTCCCTGTTGACCGAATCACCGACCTCTCCCCAGGCTAGCCTCGAGAAT
 TCGCCACCATGGCTGAGAGCAAGGAGGCCAGGGATCAAGAGATGAACCTCAAGGAAGAGA
 GCAAAGAGGAGAAGCGCCGCAACGACTGGTGAAGATCGACCCACAAGGCCCCCTGGAGG
 GGGACCAGTGGTGCCTGGTGTGAGACAGTCCTGCCGAGGAGAAGATTCTAGCCAGA
 CCTGCATCGCCAGAAGACACCTCGGCCCCGGTCCCACCCAGCACACACCCCTCCAGAAGGG
 ATAGGTGGATTAGGGGCCAGTTTGCAAGCGAGGCTCTCAAGAAAGGCTGGAATGGAA
 GAATTAGGGCGTGCAACAAGCCCTAAAGAGCTGGAGAGGTGAATCGCCGATCTGGA
 GGGACGCTACTTCCGCGAGGACCAGAGGGCGATTCTCCGATGGGAGGCTACCGA
 GGGCACAAGAAAGGCTGGGGCGAGCAGAGCAGCCCCCGCTTGGAGGCCCCGGAGACT
 CCAAAAGACGCCGCAAACACCTGTGAAGTCGACCCGGCGGCCCTCCCTTAGTGAGG
 GTTAATGCTTCGAGCAGACATGATAAGATACTTGATGAGTTGGACAAACCAACTAG
 AATGCACTGAAAAAAATGTTATTGTGAAATTGTGATGCTATTGCTTATTGTAAC
 CATTATAAGCTGCAATAACAAGTTAACACAACAAATTGCAATTCTGATTGTTTACGGT
 TCAGGGGGAGATGTGGAGGTTTTAAAGCAAGTAAACCTCTACAAATGTGGAAAT
 CCGATAAGGATCGATCCGGCTGGCTAATAGCGAAGAGGCCGACCGATGCCCTCC
 CAACAGTTGCCAGCCTGAATGGCGAATGGACGCCCTGTAGCGGCCATTAGCGCG
 CGGGTGTGGTGGTTACGCCAGCGTACCTGCCAGGCCCTAGGCCGCT
 CTTICGCTTCTCCCTTCTGCCACGTTGCCGGCTTCCCGTCAAGCTCTAA
 ATCGGGGGCTCCCTTAGGGTCCGATTAGACGTTACGGCACCTCGACCGAAAAAAC
 TTGATTGGGTGATGTTCACGTAGGCCCTCGGCCGGGGCATCACTGCAATTAG
 ATACGGCCAACCGCGGGAGAGCGGGTTTGCATGGCGCTTCCGCTTCCGCT
 CACTGACTCGCTGCCCTGGCTTCCGCTGCCAGCGGTATCAGCTACTCAAAGGC
 GTTAATACGGTTACAGAATCAGGGATAACCGAGGAAAGAACATGTATAACTCGT
 ATAATGTATGCTACAGAAGTTACATGTGAGCAAAGGCCAGCAAAGGCCAGGAACC
 GTAAAAAGGCCGCGTTGCTGGCTTTCCATAGGCTCCGCCCTGACGAGCATCACA
 AAAATCGACGCTCAAGTCAGAGGTGGCAAACCCGACAGGACTATAAAGATACCGCGT
 TTCCCCCTGGAAGCTCCCTCGTGCCTCTCTGTTCCGACCCCTGCCGTTACCGGATACC
 TGTCGCCCTTCTCCCTCGGAAGCGTGGCTTCTCATAGCTCACGCTGTAGGTATC
 TCAGTTCGGTGAGTCGTTCCGCTCAAGCTGGCTGTGTCACGAAACCCCGTTCAGC
 CCGACCGCTGCCCTATCCGTAACTATCGTCTTGAGTCCAACCCCGTAAGACACGACT
 TATCGCCACTGGCAGCAGCCACTGGTAACAGGATTACAGAGCGAGGTATGTAGGCCG
 CTACAGAGTTCTGAAAGTGGTGGCTAACACTCGCTACACTAGAAGGACAGTATTGGTA
 TCTCGCTCTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTTGTATCCGGCA
 AACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGCCAGAA

AAAAAGGATCTAAGAAGATCCTTGATCTTCTACGGGTCTGACGCTCAGTGGAAACG
AAAACTCACGTTAAGGGATTGGTCAAGGATTATCAAAGGATCTCACCTAGATCC
TTTAAATTAAAAATGAAGTTAAATCAGTAAAGTATATGAGTAAACTGGTCTG
ACAGTTACCAATGCTAAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTGTTCAT
CCATAGTTGCTGACTCCCCGTCGTAGATAACTACGATAACGGGAGGGCTTACCATCTG
GCCCGAGTGTGCAATGATAACCGGAGACCCACGCTCACCGCTCCAGATTATCAGCAA
TAAACCAGCCAGCCGGAAAGGGCCGAGCCAGAAGTGTGCTGTCAACTTATCCGCTCCA
TCCAGTCTATTAAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGC
GCAACGTTGTCATTGCTACAGGCATCGTGTCAAGCTCGTCTGGTATGGCTT
CATTCAAGCTCCGGTCCCACGATCAAGGCAGTTACATGATCCCCATGTTGTGCAAAA
AAGCGGTTAGCTCCTCGGTCTCCGATCGTGTAGAAGTAAGTGGCCGAGTGTAT
CACTCATGGTTATGGCAGCACTGCATAATTCTCTACTGTATGCCATCCGTAAGATGCT
TTCTGTGACTGGTGAAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCCGACCGA
GTTGCTCTGCCGGCGTCATAACGGGATAATACCGGCCACATAGCAGAACCTTAAAG
TGCTCATCATGGAAAACGTTCTCGGGGAAACTCTCAAGGATCTTACCGCTGTTGA
GATCCAGTTGATGTAACCCACTCGTGCACCCACTGATCTCAGCATTTTACTTCA
CCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAATGCCGCAAAAAGGGATAAGGG
CGACACGGAAATGTTGAATACTCATACTCTCTTTCAATATTGAAAGCATTTATC
AGGGTTATTGTCATGAGCGGATACATATTGAAATGTATTTAGAAAAATAACAAATAG
GGGTTCCGCGCACATTCCCCGAAAAGTGCACCTAAATTGTAAGCGTTAATATTGTT
AAAATTCCGTTAAATTGTTAAATCAGTCATTCTAACCAATAGGCCGAAATCGG
CAAAATCCCTATAAAATCAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTG
GAACAAGAGTCACATTAAAGAACGTTGACTCCACGTCACGGGAAACCGTCA
TCAGGGCGATGCCCACTACGTGATAACTCGTATAATGTATGCTATACGAAGTTATCAC
TACGTGAACCATCACCTAATCAAGTTGGGTGAGGTGCCGTAAAGCACTAAATC
GGAACCCCTAAAGGGAGCCCCGATTTAGAGCTTGACGGGAAAGCCAACCTGGCTTATCG
AAATTAAATACGACTCACTATAGGGAGACCGGC

SEQ ID No 51

pONY3.2IREShyg

AGATCTCCGATCCCCATGGTCGACTCTCACTACAACTCTGCTCTGATGCCGCATAGTTA
 5 AGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGTCGCTGACTAGTGCAGCGAGCAAATT
 TAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCAAGAATCTGCTTAGGGTAGG
 CTTTGGCTGCTTCGCGATGTACGGGCCAGATAACCGCTTGACATTGATTATTGACT
 AGTTATTAAAGTAATCAATTACGGGGTCAATTAGTTCATAGCCCATATAAGGAGTCCGC
 GTTACACATAACTACGGTAAATGGCCCGCTGGCTGACCGCCCAACGACCCCCCGCCATTG
 10 ACGTCAATAATGACGTATGTTCCCAGTAACGCAATAGGGACTTCCATTGACGTCAA
 TGGTGGACTATTAACCGTAAACTGCCACTGGCAGTACATCAAGTGTATCATATGCCA
 ACTACGCCCTATTGACGTCATAACGCTTAAATGGCCCGCTGGCATTATGCCAGTAC
 ATGACCTTATGGGACTTCCACTTGGCAGTACATCTACGTATTAGTCATGCTTATTACC
 ATGGTGTGATGGGTTTGGCAGTACACCAATGGCGTGGATAGCGGTTTACTCACGGGA
 TTCCAAGTCTCCACCCATTGACGTCATAAGGAGTTGGCACC AAAATCAACGG
 15 GACTTCCAAAATGTCGTAACAACGTCATGCCGCCCCGGTGAACCAAAATGGGGGTA
 GCGCTGTCAGGGGGAGGTATATAAGCAGAGCTCGTTAGTGAACCGTCAGATCACTA
 GAAGCTTATGGGTTAGTTTACACTAAATGCTAACGCACTGGCAGTGTGCTTGTACA
 CAACAGTCTCAACTAACGTCAGTACTCTAACGTTAGGCTTGAGAAGTTGTCG
 TGAGGCACTGGCAGGTAAGTACAAAGGTTAACAGCAGGTTAAGGGAGACCAAATGAAA
 20 CTGGGCTTGTGAGAGAGAACAGACTCTTGCGTTCTGATAGGCACCTATTGGCTTACT
 GACATCCACTTGGCTTCTCCACAGGTGTCACCTCCAGTCATAAGCTAGCTTAA
 GGCTAGAGTACTTAAACGACTCACTATAGGCTAGCCTGAGGTCGACGGTATGCCGA
 ACAGGGACCTGAGAGGGGGCAGACCCCTACCTGTTGACCTGGCTGATCGTAGGATCCCC
 GGGCAGCAGGAGGAACCTACAGAAGCTTGGAGGTTCTGGCTGGCCAGAACACAGGA
 25 GGACAGGTAAGATGGGAGCCCTTGGACATGGGAGCAGGGCTCAAGAAGTTAGAGAAGG
 TGACGGTACAAGGGTCTCAGAAAATTAACTACTGTAACGTAAATTGGGCTAAGTCA
 TAGACTTATTTCATGATAACCAACTTGTAAAAGAAAAGGACTGGCAGCTGAGGGATGTCA
 TTCCATTGCTGGAAGATGTAACCTGAGACGGTCTCAGGACAAGAAAAGAGGGCTTGA
 30 GAACATGGTGGCAATTCTGCTGTAAGAGATGGGCTTCCAGATTAAATAATGTTAGATG
 GAAAGGCATCTTGGCAGTCTCAAGAGCGAAATATGAAAAGAAGACTGTAATAAAAAGC
 AGTCTGAGCCCTGTAAGAATATCCAATCATGATAGATGGGCTGGAAACAGAAAATTAA
 GACCTCTAACACAGGAGGATACTACTTGGGATATTACAGGACATACAGACAAATGGCTT
 TAAATGAGCTAGTCAAAACTTATTGGGATATTACAGTACTGTTCTGA
 35 TGAATGCAATTGGGATGTTGACCTGGGAGGACAAAAGCAGATATTACTGATG
 CAATTGATAAGATAGCAGATGATTGGGATAATAGACATCCATTACCGAATGCTTCACTGG
 TGGCACCCACACAAGGGCTTCCCATGACAGCAAGGTTTATTAGAGGTTAGGAGTAC
 CTAGAGAAGACAGATGGGCTGCTTGTGATGTTAGGAGACATATAGACATGG
 TAATAGAAGCAGTGTGAGAAGGCATCAAAGTGTGATGGAAAACCTAAAGCTCAAATA
 TTAGGAAGGAGCTAAGGAACCTTACCCAGAAATTGTAGACAGACTATTATCCAAATAA
 40 AAAGTGAGGGACATCCACAAAGAGATTCTAAATTCTGACTGATACACTGACTATTCA
 ACGCAAATGGGAAATGTAAGAATGCTATGAGACATTAAAGCAGAGGAGATATTAGAAG
 AGAAAATGATGCTTGGCAGAGACATTGGAACTACAAAACAAAAGATGATGTTATTGGCA
 AAGCACTTCAGACTGGCTTGGGGCCATTAAAGGTGGAGGCTTGAAGGGAGGCCAC
 TAAAGGAGCACAACATGTTAAACTGTGGGAAGCAGGACATTATCTAGTCATGTA
 45 GAGCACCTAAAGTCTTTAAATGTAACAGCCTGGACATTCTCAAAGCAATGCGAAA
 GTGTTCCAAAAAAACGGGAAAGCAAGGGGCTCAAGGGAGGCCCCAGAAACAAACTTCCCGA
 TACAACAGAAGAGTCAGCACAACAAATCTGTTGACAAGAGACTCCTCAGACTCAAATC
 TGACGGTACGATCTGAGCAGGAAATAAAAAGGAATACAATGTCAGGAGAAGGATCAAGTAG
 AGGATCTCAACCTGGACAGTTGGGGAGTAACATATACTAGAGAAAAGGCTTACTAC
 50 AATAGTATTAAATGATGACTCCCTAAATGTTACTGTTAGACACAGGAGCAGATACTC
 AGTGTGACTACTGCACATTAAATAGGTTAAATATAGAGGGAGAAAATATCAAGGGAC
 GGGAAATAATAGGAGTGGGAGGAAATGTGGAACATTCTACGCCCTGACTATAAGGAA
 AAAGGGTAGACACATTAAGACAAGAATGCTAGTGGCAGATATTCCAGTGACTATTGGG
 ACGAGATATTCTCAGGACTTAGGTGCAAATTGGGTTGGCACAGCTCCAAGGAAAT
 55 AAAATTAGAAAATAGGTTAAAGAGGGCACAATGGGCCAAAATTCTCAATGGCC
 ACTCACTAAGGAGAAACTAGAAGGGCACAAGAGATAGTCCAAAGACTATTGTCAGAGGG
 AAAAATATCAGAAGCTAGTGCACAAATACTCTTAAATTCAGGCTTAAATTTGTAATAAAAAA
 GAGGTCTGGCAAATGGGAGGTTTACAAGATCTGAGGAGAATAAACAAAACAGTACAAGT
 AGGAACGGAAATATCCAGGAGTTGCCCTACCCGGAGGATTAATTAAATGTAACACAT
 60 GACTGTATTAGATATTGGAGATGCATATTICACTATACCCCTAGATCCAGAGTTAGACC
 ATATACAGCTTCACTATTCCCTCCATTAAATCATCAAGAACAGATAAAAAGATATGTG
 GAAATGTTACCAAGGATCGTGTGAGGCCCATATATATCAGAAAACATTACAGGA
 AATTTCACACCTTTAGGAAAGATATCTGAAGTACAATTGATCAATATGGATGA

TTGTTCATGGGAAGTAATGTTCTAAAAAACACACAAGAGTTAATCATAGAATTAAAG
 GCGATCTACTGAAAAGGTTTGAGACACCAAGATGATAATTACAAGAAGTGCACC
 TTATAGCTGGTAGGTATCACTTGTCTGAAAATTGAAAGTACA AAAAATGCAATT
 AGACATGGTAAAGAATCCAACCCCTTAATGTGTCAGGAAAGGAAATATAACATG
 5 GATGAGCTCAGGGATCCCAGGGTGCAGTAAAACACATTGCACTACTAAGGGATG
 TTAGAGTTGAAATCAAAAGTAATTGGACGGAAGAGGCACAAAAGAGTTAGAGAAA
 TAATGAGAAAGTAAATGCTCAAGGGTACAATATTATAATCCAGAAGAAGAATGTT
 ATGTGAGGTTGAAATTACAAAAATTATGAGGCAACTTATGTTAAAACAATCACAGG
 AATCCTATGGCAGGTAAGGCTAAAGGCTAATAGGGATGTCACAGTAAAAAAA
 10 TTAATGTTATTGTCACATGTGCAACAGAGGCTAAAGGCTATTACTAGAGTTAGGAAAATGTC
 AACGTTTAAGGTACCACTTACCAAGAGCAAGTAATGCGGAAATGCAAAAAGGATGGTA
 TTATTCTGGTCCCAGAAATAGTATATACACATCAAGTAGTTCATGATGATTGAGAAT
 GAAATTGGTAGAAGAACCTACATCAGGAAACAATATAACTGTGAGGGAAACACAAAA
 TGGAGAAGGAGTAGCAGCTTATGACCAGTAATGGGAGACTAAACAGAAAAGGTTAGG
 15 ACCTGTCACTCATCAAGTTGCTGAAAGATGGCAACATAAAATGGCATTAGAGGATACAG
 AGATAACAAAGTAAATATAGTAACTGTAGTTATTATGTTGAAAATATTACAGAAGG
 ATTAGGTTAGAAGGACCAAAGTCCTGGTGGCTATAACAAAATATACGAGAAAA
 AGAGATAGTTTATTGCTGGTACCTGGTACAAAGGGATATATGTTAATCAATTGGC
 AGATGAGGCCAAAATAAAAGAAGAATCATGCTAGCATACCAAGGCACACAAATTAA
 20 AGAGAAAAGAGATGAGATGCAAGGTTGACTTATGTTCTTATGACATCATGATACC
 TGATCTGACACAAAATCATACCCACAGATGTAAAAATTCAAGTCTCTCTAATAGCTT
 TGGATGGTCACTGGGAAATCATCAATGGCAAAACAGGGGTTATTAAATTATGGAGGAAAT
 ATTGATGAGGATACAGGAGAAATACAAGTGATATGTAATATTGAAAAGGTA
 TATTAATTAAATAGGGACAAAATTGCAAAATTAAATTATACTACAGCATCACTCAAA
 25 TTCCAGACAGCCTGGGATGAAAATAAAATCTCAAGAGAGGGGATAAAGGATTGGAG
 TACAGGATTTCTGGTAGAAAATAAACTTACAGGAGCACAAGATGAGAACATGAGAAAATGGCA
 TACATCACAAAGATATTGGCAAGAAATTATAAGATACATTGACTGTAGCAAACAGAT
 AACTCAAGAATGCTCTATTGCACTAACAGGATCAGGACCTGCAAGGTTGTCATGAG
 ATCTCTAATCATGGCAGGCAATTGCAACACATTGACAATAAGATAATTGACTTT
 30 TGAGACTGCAATTCAAGGATACATACATGCTACATTATGTCAAAAGAAAATGCAATTG
 TACTTCATTGGCTATTAGAATGGGCAAGATGTTTACCAAAAGTCTTACACAGA
 TAACGGCACTAATTGTCAGAACAGTGTAAATTGTTGAAGTCTCTAAAGATAGC
 ACATACACAGGAATACCATATCATCCAGAAAGTCAGGGTATTGAGAAGGGCAAAATAG
 GACCTGAAAGAGAAGATTCAAGGACAAACACTAACACTGGGGGAGCTT
 35 ACAACTTGCTCTTCAACTTGTAAACAAGGGGAAAGTGGGAAAGTGGGAGGACAGACCATG
 CGAAGTATTATCACTAATCAAGCACAAGTAATACATGAGAAAACCTTACTACAGCAAGC
 ACAATCCTCAAAATAATTGTTTACAAATCCTGGTAACATGATGGGAGGGACC
 TACTAGGGTCTGGAGGGTGTGCACTAGTAGTTAATGATGAGAAGGGAAAGGGAAT
 ATTGCTGACCAATTACCCAGGACTAAGTTACTAATAAAACCAATTGAGTATTGCA
 40 CGAAGCAAGACCAACTACCAATTGTCAGCTGTTCTGACCTCATATTGTTATAAG
 GTTGATATGAATCCCAGGGGAATCTAACCCCTTATACCAACAGTCAGAAAATCTA
 AGTGTGAGGAGAACACAATGTCACCTTATTGTTATAATGACAGTAAGAACAGCA
 TGGCAGAATCGAAGGAGAACAGAACAAAGATGAACTGAGAAGAACATCTAAAGAAG
 AAAAAGAAGAACATGACTGGGAAATAGGTATGTTCTGTTATGCTTAGCAGGA
 45 CTGGAGGAATACTTGGTGTATGAGGACTCCCACGACACATTATAGGGTTGG
 CGATAGGGGAGATTAAACGGATCTGGCAATCAAATGCTATGAGTCTGGGTTCT
 TCCCGGGGTAGACCAATTCAACTTCACTGTTAGAGCAATAGAAGCATGATA
 TGGATAATAACTGCTACATTATTAGAAGCTTAAACCAATAACTGCTTATAAATAA
 CAAAACAGAATTAGAACATGAAAGTTAGTAAAGACTTCTGCATAACTCTTACCTAT
 50 TTCTCTGAGCTAACACTGGACTTAATTAGACATAAGAGGATTTGGTATAAGTGC
 AGTGGCAGCTATTGCTGGCTACTGCTATTGCTGCTAGCGCTACTATGCTTATGTTG
 TCTAACTGAGGTAAACAAAATAATGGAAGTACAAATCATACTTTGAGGTAGAAAATAG
 TACTCTAAATGGTATGGATTAATAGAACGACAATAAAAGATATTATGCTATGTTCT
 TCAAACACATGAGCTGCAACTGTTAAAGGAAAGACACAGGTAGAGGGAGACATTAA
 55 TTAATTGGATGTTAGAAAAGAACACATGTTATTGTCATACTGGTCACTGGTCA
 GTCATGGGACATTAAATGAGTCACACAAATGGGATGACTGGTAAAGCAAAATGGAAGA
 TTAATCAAGAGATACTAACTACACTTCATGGAGGCCAGAACATTGGCACAATCCAT
 GATAACATTCAACACCAAGGAGATAGCTCAATTGGAAAAGACCTTGGAGTC
 TGGAAATTGGATTCCCTGGGAGCTCCATTATAAAATATAGTGTGTTTGT
 60 TATTATTGTTACTAACCTTCCGCTAAAGATCCTCAAGGCCCTCTGGAGGGTAC
 TGGTGCAGGGCTCTCCCGCACTGTTACCTGAAAGAAAAATTCCATCACAAACATGC
 CCGAGAAGACCTGGGACCCACACAAACATACACCTACAGCAGGGCTGACCGGTTG
 ATCAGGGGACAATACTACAAGCAGAAGTACTCCAGGAAACGACTGGAGAACATCAGA
 GGAGTACACACGGGCCAACAGGAGCTGGAGTCACATCGAGGCCATTGGAGAGGCTA
 65 TATTTCGAGAAGACCAAAAGGGAGATTCTCAGCCTGGGGGGCTATCACGAGC
 GAACGGCTCTGGGGGAACAAATCCTACCAAGGGCTTACGCTGGAGATTGAAAGC
 AGGAGGAAACATTATGACTGTTGCAATTAGGCCAAGAAGGAACCTCGCTATCC
 CTGTTGGATTCCCTTATGGCTATTGGGCTGGAGCCGGCCGGCACTAGAGGAATT
 CGCCCCCTCCCTCCCCCCCCCTAACGTTACTGGCGAAGCCGCTGGATAAGGCC
 70 TGTGTGTTGCTATATGTTGTTCCACCATATTGCGCTTTGGCAATGTGAGGGC
 CGGAAACCTGGGCTCTTCTGACGAGGATCTCTAGGGGCTTTCCCTCTGCCAAA
 GGAATGCAAGGCTGTTGAATGTCGTGAAGGAAGCAGTCTCTGGAGCTTCTGAAGA
 CAAACACGCTGTAGCGACCTTGCAGGAGCGGAACCCCCCAGCTGGCAGAGTGC
 CTCTGCGGCCAAAGCCACGTGTATAAGATAACCTGCAAAAGCGGCACAACCCAGTGC

CACGGTTGAGTGGATAGTTGTGAAAGAGTCAAATGGCTCTCTCAAGCGTAGTCAC
 AAGGGGCTGAAGGATGCCAGAAGGTACCCATTGATGGAAATCTGATCTGGGCTCG
 GTGCACATGTTTACATGTTAGTCGAGGTTAAAAGCTAAGGCCCGAACAC
 GGGGACGTGGTTTCTTGAACACAGATGATAAGCTGCCACACCCGTACCAAAG
 5 ATGGATAGATCCGAAAGCCTGAECTACCAGCAGCTCTGCGAGAAGTTCTGATCGAA
 AAGTTCGACAGCGTCCGACCTGATGCACTCTCGAGGGCGAAAGATCTGCTTTC
 AGCTTGATGAGTAGGAGGGCGTGGATATGCTCTCGGGTAAATAGCTGCCGATGGTTT
 TACAAAGATCGTTATGTTATCGGCACTTGATGCCGCTCCGATTCCGAAAGTG
 CTTGACATTGGGAATTACGGAGAGCCTGACCTATTGATCTCCCGCCGTGACACGGG
 10 GTCACGTTGAAAGCTGCCGAAACCGAACTGCCGCTGACCTATTGATCTCCCGCCGTGACACGGG
 GCCATGGATGCGATCGCTGGCGCATCTAGCCAGACGGCGGGTCCGGCATTGGA
 CCCAAGGAATCGGTAATACACTACATGGCTGATTCAATATGCCGATTGCTGATCCC
 CATGTGATACTGGCAAACCTGTGATGGACGACACCGTCACTGCGTCCGCGCAGGG
 CTCGAGCTGATGCTTGGGAGGACTGCCGAGCTGCCGACCTCGTGCACCG
 15 GATTCGGCTTCAACATGCTCTGACGGAACTGGCCGATACAGCGGTGATTCAATGCGCATTGACTGG
 AGCGAGGCATGTTGGGGATTCCAATACGAGGTCGCAACATCTCTGGAGGCCG
 TGTTGGCTTGTATGGAGCAGCAGCAGCTACTCGAGCGGAGGCATCCGAGCTTGCA
 GGATGCCGCGCTCCGGCTATGCTCCGATTGGTACCTGAGGAACTCTATCAGAGC
 TTGGTTGACGGGATTCTGATGTCAGCTGGCGCAGGGTCACTGCAAGGCAATCGT
 20 CGATCCGGAGCCGGACTGTCGGCGTACACAAATCCCCGCAAGAGCGGGCGCTCG
 ACCGATGGCTGTAGAAGTACTGCCGATAGTGGAAACCGACGCCAGACTCGTCCG
 AGGGCAAAGGAATAGAGTAGATGCCGACCCAAACAAGAGCTGATTTCGAGAACCGCTCAGC
 CAGCAACTCCGCGACCTGCAAGGAAATGCGAGAGAACGGCTTACGCTTGGGCA
 CAGTTCTGTCACAGTCCCTAAGCTCGCTCGGCTGGCTCGCGGGAGGGCGCTCG
 25 TGATTCAAGGCCCTCTGGATTGTTGGTCCCCAGGGCACGATTGTCATGCCAACGG
 CGGGTGTACTGATCTGCTGCTGAGTGGAGATGCCGCGCTGCTGCCGATTGGGTC
 AGATCTAGAGCTCGTCACTGCGTCACTGCTCTAGTTGCCAGGATCTGTT
 GCCCCCTCCCGTGCCTTCTGACCTTGAAGGTCGACTCCACTGCTCTTCTAAT
 AAAATGAGGAATTGATCGCATTGTCAGTAGGTGTCATTCTATTCTGGGGGGTGGGG
 30 TGGGGCAGGACAGCAAGGGGGAGGATGGGAAGACAACTAGCAGGGCATGCTGGGGATGCC
 TGGGCTCTATGGCTTGTGGCGGAAAAGAACCGCTGGGGCTCGAGTGCATTCTAGTTG
 GGTTGTCAAACCTCATCAATGTTATCATGTCGTTACCGCTGACCTCTAGCTAG
 AGCTTGGCTAATCATGGTCAGCTGTTCTGTGTTAAATTGTTATCCGCTACAATT
 CCACACAAACATCAGCGCGAAGCATAAAAGCTAAAGCTGGGCTAATGAGTGGC
 35 TAACTCACATTATGGCTCTGCTACTGCCGCTTCCAGTCGGGAAACCTGCTG
 CAGCTGATTAATGAATCGGCCAACCGCGGGGAGAGCGCTTGGCTATGGCGCT
 TCCGCTTCCGCTACTGACTCGCTGCCGCTGGCTCGGCTGCCGAGCGTATCA
 GCTCACTCAAAGCGGTATACTGGTTATCCACAGAAATCAGGGGATAACCGAGGAAAGAAC
 ATGTCAGGAAAGGCCAGGAAAGGCCAGGAACCGTAAAAGGCCGTTGGCT
 40 TTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAATGACGCTCAAGTCAGAGGTGG
 CGAAACCCGACAGGACTATAAGATACCAGGGCTTCCCCCTGAAAGCTCCCTGCGC
 TCTCTGTTGACCGCTTACCTGCTACGGCTGAGTATCTCAGTCGGTGTAGGTG
 GTGGCGCTTCTCAATGTCACGGCTGAGTATCTCAGTCGGTGTAGGTG
 AAGCTGGCTGTGCAAGCAGCAGATTACCGCAGAAAAAAAGGATCTAAGAAGATCTT
 45 TATCGTCTGAGTCCAACCGGTAAGACACGACTTACGCCACTGCGCAGCAGCACTGGT
 AACAGGATTAGCAGAGCGAGGTATGAGCGCTACAGAGTTGAGTGGTGGCCT
 AACTACGGCTACACTAGAAGGAGCTATTGGTATCTGCGCTCTGCTGAAGCCAGTAC
 TTGGGAAAAGAGTTGGTAGCTCTGATCCGGCAACAAACCCAGCTGGTAGGGTGG
 50 TTTTGTGTTGCAAGCAGCAGATTACCGCAGAAAAAAAGGATCTAAGAAGATCTT
 ATCTTCTACGGGTCTGACGCTCAGTGGACGAAAACCTACGTTAAGGGATTGGTC
 ATGAGATTACATTTAAAGGATCTTACCTAGATCTTAAATTAAAAAGTAAAGTTAAA
 TCAATCTAAAGTATATGAGTAACTTGGTCTGACAGTTACCAATGCTTAACTAGTAG
 GCACCTATCTCAGCGATCTGCTATTGCTCATCCATAGTTGCCGACTCCCGCTG
 TAGATAACTACGATACGGGGGGCTTACCATCTGCCCAAGTGTGCAATGATACCGC
 55 GACCCACGGCTACCGGCTCCAGTTACAGCAATAACCGAGCCAGGGGAAAGGGCGAG
 CGCAGAAGTGGTCTCGCACTTATGCCCTCATCGTCTATTAAATTGGCGGGAA
 GCTAGAGTAAGTAGTCCCGAGTTAATAGTTGCCAACGTTGGCCATTGCTACAGC
 ATCGTGTGTCACGCTGCTGGTATGGCTTACCTGAGCTCCGGTCCCAACGATCA
 AGGGCAGTTACATGATCCCCCATGTTGCAAAAAAGCGGTTAGCTCTGGTCC
 ATCGTGTGCAAGTAAGTGGCGCAGTTACCTACTCATGTTATGGCAGCACTG
 60 AATTCTCTACTGTCATGCCATCCGTAAGTGTTCTGTGACTGGTAGTACTAAC
 AAGTCATTCTGAGAATAGTGTATGCCGACCGAGTGGCTTGGCCGCTCAATACGG
 GATAATACCGCAGCATAGCAGAACTTTAAAAGTGTCTCATATTGGAAAACGGTCTCG
 GGGCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGAGTAAACCACTCG
 65 GCACCCACCGTACGCTACCTTACCTTACCGGTTCTGGGTGAGGAAAAACA
 GGAAGGAAAAAGCCGCAAAAAGGAAATAAGGGGACACGGAAATGTGAATACTCATA
 CTCTCCCTTTCAATTATTAGAAGCTTATCAGGGTTATGTCATGAGCGGATAC
 ATATTGAATGTTAGAAAAAAACAAATAGGGGTTCCGCGCACATTCCCCGAAAA
 GTGCCACCTGACGTCGACCGATCGG
 70 pONY8ZA CMVHyb (SEQ ID No 52)

AGATCTGAATAATAAAATGTGTGTTGTCGAAATACCGCTTTGAGATTCTGCGCC

CCGAACGATGCCAGTCTGTATGAACGGTCTGTCTTCCGACGGCACGCCATCCA
 GCGCTGACGAAAGCAAAACACCAGCAGCAGTTTCCAGTTCGTTTACCGGGCAAACC
 ATCGAAGTACCGAATACCTGTTCCGTATAGCGATAACGAGCTCCGACTGGATG
 GTGGCGCTGGATGTTAAGCCGCTGCAAGCGGTGAAGTGCCTCTGATGTCGCTCCACAA
 5 GTAAACAGTTGATTGAACTGCTGAACTACCGCAGCCGGAGAGGCCGGGCAACTCTGG
 CTACAGTAGCGTAGTCAACCGAACCGACGCCAGTGGTCAGAACCGGGGACATCAGC
 GCCTGGCAGCAGTGGCGTCTGGCGAAAACCTCAGTGTGACGCTCCCCGCCGCTCCCAC
 GCCATCCCGCATCTGACCACAGCAGAAATGGATTTCAGATGTCAGGCTGGTAATAAGCGT
 10 TGGCAATTAAACCGCAGTCAGGCTTCTTCACAGATGTCAGGCTGGGATAAAAAAACAA
 CTGCTGACGCCGCTGCGCATGAGTCAACCGCTGGGTGCAACGCTGAAAGGCCGGGCGAT
 AGTGAAGCAGCCGCACTGACCCCTAACGCGTGGGTGCAACGCTGAAAGGCCGGGCGAT
 TACCAAGGCCGAAAGCAGCGTGTGCACTGCAACGAGACACTTGCTGATGGTGTGCG
 ATTACGACCCGCTCAGCGTGGCAGCATCAGGGAAAACCTTATTATCAGCCGAAAACC
 15 TACCGGATTGATGTTAGTGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGAT
 ACACCGCATCCGGCGGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGA
 AACTGGCTCGGATTAGGGCCGCAAGAAAACATATCCCGACCGCCTTACTGCCGCTGTTT
 GACCGCTGGGATTCGCTTACGACATGTATACCCCGTACGCTTCCCGAGCGAAAAC
 GGTCTGCGCTGGGGAGCGCGAATTGAAATTGGCCCAACACAGTGGCGGGGACTTC
 20 CAGTCAACATCAGCGCTACAGTCAACAGCACTGATGAAACAGCCATGCCATCTG
 CTGCAACGGGAAAGAAGGACATGGCTGAATATCGACGGTTCCATATGGGATTGGTGGC
 GACGACTCTGGCTGGCAGTATCGCCAGTACGGCTGAGCAGCCGGTGCCTACCAT
 TACCAAGTGGTGTGGTCAAAAAATAATAACCGGGCAGGGGATCCGCAAGATCCGG
 CTGGAATGTGTCAGTTAGGGTGTGAAAGTCCCAGGCTCCAGGAGGAGAAGT
 25 ATGCAAAGCATGCCCTGAGAATTGATATCAAGTTATCGATACCGTCGACCTCGAGGG
 GGGGCCGGTACCCAGCTTGGCTTACTAGTGGGTTAATTGGCGGGGAAGTATTAA
 TCACTAATCAAGCACAAGTAAATACAGAAAACCTTACTACAGCAAGCACATCTCCA
 AAAAATTGTTTACAAATCCCTGGTAAACATGATGTTGAAGGACCTACTAGGGTGC
 TGTTGAAGGGTGTGGTCAAGTAGTTAATGATGAAGGAAGGAAATAATTGCTGTAC
 30 CATTAAACAGGACTAAAGTTACTAAACCAAAATTGAGTATTGTCAGGAAGGAAAGAC
 CCAACTACCATTGTCAGCTGTTCTGACCTCAATATTGTTATAAGGTTGATATGA
 ATCCCAGGGGAATCTCAACCCCTATTACCCAACTGAGAAAATCTAAGTGTGAGGAG
 AACACAATGTTCAACCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAATCG
 AAGGAAGCAAGAGACCAAGAATGAAACCTGAAAGGAAGTCAAAGAAAAGAAAAGAAAGAA
 35 ATGACTGGTGGAAAATAGGTATGTTCTGTTATGCTTACAGGAAACTCTGGAGGAATAC
 TTGGTGGTATGAGGACTCCACAGCAACATTATAGGGTTGGCATAGGGGAA
 GATTAACGGGATCTGGCAATCAAATGCTATAGAATGCTGGGTTCTCCGGGGGTGA
 GACCAATTCAAATTACTCAGTTAGGAGACCAATAGGAGCATGCTATGGATAATAATA
 CTGCTACATTAGAAGCTTAAACCAATATACTGCTCTATAATAACAAAACAGAAATT
 AGAAAACATGGAAAGTTAGTAAGACTCTGGCATACTCTTACCTATTCTGAAAGC
 40 TAACACTGGACTAATTAGACATAAGAGAGATTGGTATAAGTCATAAGTGGCAGCTAT
 TGAGCCGCTACTGCTATTGCTGCTAGCGCTACTATGCTTATGCTCTAAGTGGAGGT
 TAACAAAATAATGGAAGTACAAAATCATCTTGGAGGTAGAAAATAGTACTCTAAATGG
 TATGATTAAATAGAACGACAATAAAGATTATATGCTATGTTCTCAACACATGC
 AGATGTTCAACTGTTAAAGGAAAGACAAACAGGTAGAGGGAGACATTAAATTGATG
 45 TATAGAAAGAACACATGTATTGTCATACTGCTACCTCTGGAAATACTGCTGGGACA
 TTAAATGAGTCACACAAATGGGATGACTGGGTAAGCAAAATGGAAGATTAAATCAAGA
 GATACTAATACACTCTGGAGGAGGAAACAATTGGCACAATCCATGATAACATTCAA
 TACACCAGATAGTATAGCTCAATTGGAAAAGACCTTGGAGTCATATTGAAATTGGAT
 TCCGGATTGGGAGCTTCATTAAAAATAATAGTGTGTTTGTCTTATTGTT
 50 ACTAACCTCTGCCCTAACGCTCAGGCCCTCTGGAAAGGTGACCAAGTGGTCCAGGGTC
 CTCCGGCAGTCGTTACCTGAAAGAAAATTCCATCACAAACATGCTCGCAGAACAC
 CTGGGACCAGGCCAACACAACATACACCTAGCAGGGCTGACCGGTGGATCAGGGACAA
 ATACTACAAGCAGAAGTACCCAGGAACGACTGGAATGGAGAACATGAGGAGTACAACAG
 CGGGCCAAGAGCTGGGTAAGTCATGGAGGAGGCTATATTCCGAGAG
 55 GACCAAGGGGAGATTCTCAGCTGGGGCTATCACAGGACACAAGGGCTCTGG
 GGGGAACAATTCTACCAAGGGCTTACGCTGGAGATTGCAAGGAGAGGAAACAT
 TTATGACTGTTGCTTAAAGCCCAAGAAGGAACCTCTGCTATCCCTGCTGTT
 CTTATGGCTATTGGGGAGCTAGTAAATTAGTGTAGGAGCCTAGCAGGCTATGGGATTACG
 TGGACTCGCTGTTATAATAAGGATTGTTAGAGGCTTAAATTGATATTGAAATAAT
 60 CAGAAAATGCTGATTATATTGAAAGAGCTTAAATCTGGCACATCTCATGTATCAAT
 GCCTCAGTATGTTAGAAAACAAGGGGAACTGTGGGTTTATGAGGGTTTATA
 AACTGAGGAGTCCCGCTTACATAACTACGGTAATGGCCGGCTGGCTGACCGCCCAAC
 ATATTATTCTGGTTATATGCTATGGCTATTGGCATTGCTACAGTGTG
 TATCCATATCATATAATGTCATTTTATGGCTCATGTCAAACATTACCCCATGTTGA
 65 CATTGATTATGACTAGTTAAATAGTAATCAATTACGGGTCTTACGCTGTT
 TATATGGAGTCCCGCTTACATAACTACGGTAATGGCCGGCTGGCTGACCGCCCAAC
 GACCCCGCCCATGCTCAATAATGACGCTATGTCGTTCCCATAGTAACGCAATAGGGACT
 TTCCATTGACGCTTACGGGTGGAGTATTACCGTAAACTGCCACTTGGCAGTACATCAA
 GTGTATCATATGCCAGTACGCCCTATTGACGCTCAATGACGGTAATGGCCGGCTGG
 70 CATTATGCCAGTACATGACCTTATGGGACTTCTACTTGGCAGTACATCTACGTTA
 GTCATCGCTTACCATGGTATGCGTTTGGCAGTACATCAATGGGGTGGATAGCGG
 TTGACTCACGGGATTTCACGCTTACGGTAAACTTCGTAACAACCTCCGCCATTGACGCAATG
 GCGGTAGGCATGACGGTGGAGGTCTATATAAGCAGGCTGTTAGTGAACCGGGCA

CTCAGATTCTGGCTCTGAGTCCCTCTGCTGGCTGAAAAGGCCCTTGTAAATAATA
 TAATTCTACTCAGTCCCTCTCTAGTTGCTGAGATCTACAGAGCTCATGC
 5 CTTGGCGTAATCATGGTCAAGCTTCTGTGTAAATTGTATCCGTCACAATTCC
 ACACAAACATACGAGCCGAAGCATAAAAGTAAAGCTGGGTGCTAATGAGTGAGCTA
 ACTCACATTAATTGGCTTGGCTCACTGGCCGTTCCAGTCGGGAAACCTGTCTGCCA
 GCTGCGATTAATGAATGGCCAACGGCGGGGAGAGGGGTTGCGTATTGGCGCTCTTC
 CGCTTCTCGCTCACTGACTCGCTCGGTGCGCTGGCTGGCGAGCGGTATCAGC
 TCACCAAAGCGGTAAACGGTTATCCACAGAACAGGGATAACGCAGGAAAGAACAT
 GTGAGCAAAGGCCAGAAAAGGCCAGGAACCGTAAAGGCCGGCTTGTGGCTTGT
 10 CCATAGGCTCCGCCCTCTGACGAGCATCACAAAATCAGCCTCAAGTCAGGGTGGCG
 AAACCCGACAGGACTATAAAAGATACCAAGGGTTTCCCCTGGAAGCTCCCTGCGCTC
 TCCCTGTCGACCCCTGCCGTTACCGGATACCTGTCGCCCTTCTCCCTGGGAAGCGT
 GGGCCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGCTGTCCTCCAA
 GCTGGCTGTGACGAAAGCCGGTAAAGCACAGCTTATGCCACTGCAAGCAGCACTGGTAA
 15 TCGCTTGTAGTCAACCGGTTAAAGCACAGCTTACAGGTTCTGAAAGTGGTGGCTAA
 CAGGATTAGCAGAGCGAGGTATGTAGGGGTGCTACAGAGTCTGAAAGCAGCTTACCTT
 CTACGGCTACACTAGAACAGACTATTGGTATCTGGCTCTGCTGAAGGCCAGTACCTT
 CGGAGAAAGATTGGTAGCTCTTGATCCCCAAACAAACCACCGCTGGTAGCGGTGGTT
 20 TTTTGTGGTCAAGCAGCAGGATACCGCAGAAAAAAAGGATCTCAAGAAGATCTTGTGAT
 CTTTCTACGGGCTGACGCTCAGTGGAAAGCAGAAACTCACGTTAAGGGATTTGTCT
 GAGATTATCAAAGGATCTTACCTAGATCCTTTAAATTAAAATGAAGTTAAATC
 AATCTAAACTATATGAGTAAACTTGGTCTGACAGTACCTAAATGCTTAATCAGTGAGGC
 ACCTATCTACGGCTCTGCTATTCTGCTCATCCATAGTTGCGTACTCCCCGTGCTGTA
 25 GATAACTACGATACGGGAGGGCTTACCATCTGGCCCCACTGCTGCAATGATAACCCGAGA
 CCCACGCTACCGGCTCAGATTATCAGCAATAACCCAGGCCAGGGGAAGGGCCGAGCG
 CAGAAGTGGCTGCAACTTATCCGCCCTCCATCCAGTCTTAAATTGTTGCCGGGAAGC
 TAGAGTAAGTAGTTCGCCAGTTAATGTTGCGCAACGGTTGCGCATTGCTACAGGCAT
 CGTGGTGTACGCTCGTGTGTTGCTATTCACTGCTCCGGTCCCACGATCAAG
 GCGAGTTACATGATCCCCATGTTGCAAAAAAGCGGTTAGCTCTTGGTCTCCGAT
 30 CGTTGTCAGAAGTAAGTGGCCGAGTGTATCACTCATGTTATGGCAGCAGTCATAA
 TTCTTCTACTGTCATGCCATCGTAAGATGTTCTGACTGGTAGTACTCAACCAA
 GTCATCTGAGAATAGTGTATGCCGAGCGAGTTGCTCTGCCGGCTCAATACGGGA
 TAATACCGCCACATAGCAGAACTTAAAGTGTCTCATTTGAAACAGTTTCGGG
 GCGAAAACCTCAAGGATCTACCGCTGTTGAGATCCAGTTGAGTAAACCAACTCGTGC
 35 ACCCAACTGATCTCAGCATTTACTTTCACCAAGCGTTCTGGGTGAGCAAAACAGG
 AAGGCAAAATGCCCAAAAAAGGAATAAGGGCAGACGGAAATGTTGAATACTCATACT
 CTTCCTTTCAATATTATGAAGCATTATCAGGGTTATTGTCATGAGCGGATACAT
 ATTGAGATGTTAGAAAATAACAAATAGGGGTTCCGGCAGCATTCCGGAAAAGT
 GCCACCTAAATTGTAAGCGTTAATTTGTTAAATTGCGTAAATTGTTAATTC
 40 AGCTCATTTTAACCAATAGGCCAAATCGGAAAATCCTTATAATCAAAAGAATAG
 ACCGAGATAGGGTTGAGTGTGTTCCAGTTGGAAACAAGAGTCCACTTTAAAGAACGTG
 GACTCCAAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCA
 TCACCCCTAATCAAGTTTGGGGTGGAGGTGCCGTAAGCACTAAATCGGAACCTAAA
 GGAGCCCCCGATTAGAGCTTGACGGGAAAGCCAACCTGGTTATCGAAATTACG
 45 ACTCACTATAAG

5

PEsynGP (SEQ ID No 53)

TCAATATTGCCATTAGCCATTATTTCATTGGTTATAGCATAAATCAATATTGGCTA
 TTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTATATTGGCTCATGTC
 10 AATATGACGCCATTGGCATTGATTATTGACTAGTTATTAGTAATCAATTACGGG
 GTCATTAGTCATAGCCCATATATGGAGTCCCGCTTACATAACTACGGTAAATGGCCC
 GCCTGGCTGACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCAT
 AGTAACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTAACGGTAAACTGC
 CCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGA
 15 CGGTAAATGCCCGCTTGCATTAGTCATGCCATTACCATGCGTATGGGACTTTCTACTTG
 CGAGTACATCTACGTTAGTCATGCCATTACCATGCGTATGGGACTTTGGCAGTACAC
 CAATGGCGTGGTAGCGGTTGACTCACGGGATTTCAGTCTCCACCCCCATTGACGT
 CAATGGGAGTTTGGTACCAAAATCAACGGGACTTCCAAAATGCGTAACAACCTG
 CGATGCCGCCCGTGTGACGAAATGGCGTAGGCGTGTACGGTGGGAGGTCTATATA
 20 AGCAGAGCTCGTTAGTGAACCGTCAGACTACTAGAACGCTTATTGCGGTAGTTATCAC
 AGTTAAATTGCTAACCGCAGTCAGTGTCTGACACAACAGTCTGCAACTAACGCTGCACT
 GACTCTCTAAAGGTAGCCTTGAGAACAGTTGGCTGTAGGGCACTGGGAGGTAAAGTATCAA
 GTTACAAGACAGGTTAACGGAGAACATAAGAAACTGGGCTTGTGAGACAGAGAAAGACT
 CTTGCGTTCTGTAGTGGCACCTATTGGCTTACTGACATCCACTTGCCTTCTCCAC
 25 AGGTGTCCACTCCAGTCAATTACAGCTCTAAGGCTAGAGTACTTAATACGACTCACT
 ATAGGCTAGAGAATTGCCACCATGGCGATCCCTCACCTGGTCCAAGGCCCTGAAGAA
 ACTGGAAAAAGTCACCGTTAGGGTACGCCAAAGCTTACACAGGCAATTGCAACTGGGC
 ATTGTCCCTGGTGGATCTTCCACGGACACTAATTGCTTAAGGAGAAAAGATTGGCAACT
 CAGAGACGTATCCCCCTCTGGAGGACGCTGACCCAAACATGTCTGGCAGGAGCGCGA
 30 AGCTTCAGCGCACCTGGTGGGACCTAGCTTCAACTGCTCGCCTAAGTACGAGAAAGAAAACC
 CGTGGTTGACGTTAAAGCTAGCTTCAACTGCTCGCCTAAGTACGAGAAAGAAAACC
 CAACAAGAAAACAATCGAACCTAGCGAGGGAGTACCAATTATGATCGACGGCGCCGCAA
 TAGGAACTTCCGCCACTGACTCCCAGGGCTATACCACCTGGTCAACACCATCCAGAC
 AAACGGACTTTGAACGAAGCCTCCAGAACCTGTCGGCATCCTGTGTGGACTGCAC
 35 CTCCGAAGAAATGAATGCTTCTGACGTGGTGCAGGACAGGCTGGACAGAAACAGAT
 CTCGCTCGATGCCATTGACAAGATCGCCGACGACTGGGATAATGCCACCCCCCTGCCAA
 CGCCCCCTCTGGTGGCCCTACAGGGGCTTACCTGACCGCTAGGTTATTAGGG
 ACTGGGGTGGCCCGCAACGCCAGATGGAGGCCAGCATTGACCAATTAGGCAGACCTA
 CAGACAGTGGATCATCGAACGCCATGAGCGAGGGGATTAAGTCATGATGGAAAGGCCAA
 40 GGCACAGAACATCAGGGAGGGGCCAAGGAACCATACCCCTGAGTTGTGACAGGCCCT
 GTCCCAGATTAATCGAACGCCACCTCAGGAGATCTCCAAAGTCTTGTGACAGACACACT
 GACTATCCAAAATGCAATGAAGAGTGCAGAACGCCATGAGGCCACCTCAGACCTGAAAGA
 TACCTCTGGAGGAGAAAATGTCGCATGTCGCACATTGGCACTACCAAGCAAAGATGAT
 GCTGCTGCCAACGGCTGTCGAAACCCCTGGTGGCTTACAAAGGAGGAGCACTGAA
 45 GGGAGGTCCATTGAAAGCTGCACAAACATGTTATAATTGTTGGAGGCCAGGACATTTC
 TAGTCATGAGCACCTAAAGTCATTAAATGTAACACGCCATGGACATTCTCAA
 GCAATGCAAGTGTCCAAAAACGGGAAGCAAGGGCTCAAGGGAGGCCAGAAACA
 AACTTTCCGATACAACAGAACAGAGTCAGCACACAAATCTGTTGACAGAGACTCCTCA
 GACTCAAAATCTGACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAGGAGAA
 50 GGATCAAGTAGAGGATCTAACCTGGATCAACGCCACTGGAGCTAAACTCGTGTGGACACCGGA
 AGGCCACTACATCTGCTGACACCCCTTAAATGTCGTGTGGACATGCC
 GCCGACACCGCTTCTCAACTACTGCTCACTATAACAGACTGAAACAGAGGAAGGAAA
 TACCAAGGGCACAGGCATCATGGCGTGGAGGCAACGTCGAAACCTTCCACTCTGTC
 ACCATCAAAAAGAAGGGGAGACACATTAAAACAGAACATGTCAGGAGGAGCA
 55 ACCATCTTGGCAGAGACATTCTCAGGACCTGGCGCTAAACTCGTGTGGACACCGTA
 TCTAAGGAAATCAAGTCCGCAAGATCGAGCTAAAGAGGGCACAATGGGTCAA
 CCCAGTGGCCCTGACCAAAAGAGAAGCTGAGGGCGTAAGGAAATCGTCAGGCC
 TTTCTGAGGGCAAGATTAGCGAGGCCAGCGACAATAACCTTACAACAGCCCCATCTT

GTGATTAAGAA-AGGAGCGGCAAATGGAGACTCCTGCAGGACCTGAGGGAACCTAACAG
 ACCGTCCAGGTGGAACTGAGATCTCGCGACTGCCCTACCCCGGGCGCTGATTAAA
 5 TGCAAGCACATGACAGTCTTGCACATTGGAGACGCTTATTTACCATCCCCCTGATCCT
 GAATTTCGCCCTATACTGCTTACCATCCCCAGCATCAATCACCAGGAGCCCATAAA
 CGCTATGTGGAAAGTGCCTCCCCAAGGATTGTGCTTAGCCCTACATTACAGAAG
 ACACCTCAAGAGATCCTCAACCTTCCCGAAGAGATACCCAGAGGTTCAACTTACCAAA
 TATATGGACGACCTGTCATGGGCTCAACGGGCTAAGAACCGACACAAGGAACCTATC
 ATCGAAGTGGGCAACTCTCTGGAGAACGGCTTCAGAGACACCCGACGACAAGCTGAA
 10 GAAGTTCCTCATATAGCTGGCTGGCTTACAGCTTGCCTGAAAAGTGGAAAGTCCAG
 AAGATGCAGTTGGATATGGTAAGAACCAACACTGAACGACGTCCAGAAGGCTATGGC
 ATATTACCTGGATGAGCTCCGGATCCTGGCTTACCGTTAAGCACATTGCCGCAACT
 ACAAAAGGATGCGAGGTTAACCCAGAAGGTCATTGGACAGAGGAAGGCTCAGAAGGAA
 CTGGAGGAGAAATAATGAAAAGATTAAGAATGCTCAAGGGCTCCAATACATCCCGAA
 15 GAAGAAATGTTGTGCGAGGTCGAAATCAACTAACAGAACGAGGCCACCTATGTCATCAA
 CAGTCCCAAGGCATCTGTGGCCGAA-GAAAATCATGAAGGCCAACAAAGGCTGGTCC
 ACCGTTAAAAATCTGATGCTCCTCCAGCACGCTCGCCACCGAGTCTATCACCCGCGTC
 GGCAAGTGGCCACCTTAAAGTCCCTTCACTAAGGAGCAGGTGATGTGGAGATGCAA
 AAAGGCTGGTACTACTCTTGGCTCCGAGATCGTCTACACCCACCAAGTGGTGCACGAC
 GACTGGAGAATGAAGCTTGTGAGGAGGCCACTAGCGGAATTACAATCTACCGACGGC
 20 GGAAAGCAAAACGGAGAGGAATCGTCATACGTACATCTAACGGCCGACCAAGCAA
 AAGAGGCTGGCCCTGTCACTCACCAAGCTGGCTGAGGAGATGGTATCCAGATGGCCCTT
 GAGGACACTAGAGACAAGCAGGTGAAACATTGTGACTGACAGCTACTGTGAAAGAAAAC
 ATCACAGAGGGCTTGGCTGGAGGACCCAGTCTCCCTGGCTATCATCCAGAAAT
 ATCCCGCAAAAGGAAATTGTTCTATTGGCTGGCTGGACACAAAGGAATTACGGC
 25 AACCAACTCCCGATGAAGCCCAAAATTAAAGAGGAATCATGCTTGCCTACAGGGC
 ACACAGATTAAGGAGAAGAGAGACGAGGACGCTGGTTGACCTGTGTCATACGAC
 ATCATGATTCCCGTTAGCGACACAAAGATCATTCAACCCAGTGTCAAGATCCAGGTGCCA
 CCCAATTCTTGGTTGGTACCGGAAAGTCCAGCATGGCTAAGCAGGGTCTTGTGATT
 AACGGGGGAATCATTGATGAAGGATACACCCGGAAATCCAGGTGATCTGCACAAATATC
 30 GCACAAAGGAAATTAAGCTTATCGAAGGGCAGAAGTTGCTCAACTCATCATCCTCCAG
 CACCAAGCAATTCAAGACAACCTGGGACGAAAACAAGATTAGCCAGAGAGGTGACAAG
 GGCTTCCGGCAGCACAGGTGTTCTGGGTGAGAACATCCAGGAAGCACAGGACGAGCAC
 GAGAATTGGCACACCTCCCTAAGATTGGCCGCAATTACAAGATCCACTGACTGTG
 GCTAAGCAGATCACACAGGAATGCCCAACTGCACCAAAACAGGTTGGGCCCCGGC
 35 TGCCTGATGAGGTCCCCAATCACTGGCAGGAGATTGCACCCACCTCGACAACAAATT
 ATCCTGACCTTCGTGGAGAGCAATTCCGGTACATCCACGCAACACTCCTCTCAAGGAA
 AATGCATTGACCTCCCTCGCAATTCTGGATGGCCAGGCTTCTCTCCAAATCC
 CTGACACCCGACAACGGCACCACCTTGTGGCTGAAACCTGTGGTGAATCTGCTGAAGTT
 CTGAAAATGCCACACCAACTGGCATTCCCTATCACCCCTGAAAGCCAGGGCATTGCGAG
 40 AGGGCAACAGAACTCTGAAAGAAAAGATCCAATCTCACAGAGACAATACACAGACATTG
 GAGGCGCACTTCAGCTGCCCTTACCTGCAACAAAGGAAGAGAGAAAGCATGGCGC
 CAGACCCCTGGAGGTTCTCATCAACTAACCGGCCAGGTGATCCATGAAAAGTGTCTC
 TTGCAAGGGCCCACTCTCCAAAAGTTCTGTTTAAAGATCCCCGTGAGCACGAC
 TGGAAAGGTCTCAAGAGTTTGTTGAGAAGGAGACGGCCAGTTGTGGTGAACGATGAG
 45 GGCAAGGGGATCATGCTGTGCCCTGACACGCCAACGTTCTCATCAAGCCAAACTGA
 ACCGGGGGGGGCGCTCCCTTACTGAGGGTTAATGCTTGAGCAGACATGATAAGATA
 CATTGATGAGTTGGACAACCAACTAGAAATGCACTGAAAGAAAAATGTTTATTGTGA
 AATTGTGATGCTATTGTTATTGTAACCATATAAGCTGCAATAAAACAAGTTAACAA
 CAACAATTGCTTATTGTTCAAGGTTCAAGGGGAGATGTGGAGGTTTTAAAG
 50 CAAGTAAAACCTTACAAATGTTAAAATCCGATAAGGATGATCCGGCTGGCTAAT
 AGCGAAGAGGCCGACCGTCCCTCCACAGTTCGCAAGCTGAAATGGCGAATGG
 ACGGCCCTGTAGCGGGCATTAGCGCGGGGGTGTGGTGGTACGGCAGCGTGACCG
 CTACACTTGCCAGGCCCTAGGCCGCTCTTCGCTTCTCCCTTCTCGCCA
 CGTTGCCGGCTTCCCGTCAAGCTTAAATCGGGGCTCCCTTAAAGGTTCCGATTAA
 55 GAGCTTACGGCACCTGACCGCAAAAACCTGATTTGGTGTGGTACGGTTCACGTAGTGGC
 CATGCCCTGATAGACGGTTTTCGCCCCCTTGACGTTGGAGCTCACGTTTAAATAGTG
 GACTCTTGTCCAACACTGAAACACACTCAACCCATCTCGGTCTATTCTTGTGTT
 AAGGGATTITGCCGATTGCCATTGGTTAAAATGAGCTGATTTAACAAATTTAAG
 60 ACGCGAATTAAACAAATATTAACGTTACAATTGCTGATGCGGTATTTCTCTT
 TAACCTCTGAAAGAGGAACCTGGTTAGGTACCTCTGAGGGGGAAAGAACCCAGCTGTGGA
 ATGTGTGTCAGTTAGGGTGTGAAAGTCCCAGGCTCCCGAGGCAAGGAGTATGCAA
 GCATGCACTCAATTAGTCAGCAACCCAGGTGTTGGAAAGTCCCAGGCTCCAGGCA
 GAAGTATGCAAAAGCATGATCTCAATTAGTCAGCAACCCATAGTCCCAGGCTCCAGGCA
 65 CCATCCCAGGCCCTAATCCGCCAGTTCCGCCATTCTCCGCCATGGCTGACTAATT
 TTTTATTTATGCAGAGGCCAGGGCGCTGGCTGAGCTATTCCAGAAGTAGTGAG

GAGGCTTTTGGAGGCCCTAGGCCTTGCACAAAGCTGATTCTCTGACACAACAGTCT
 CGAACCTTAAGGCTAGACCACCATGATTGAACAGATGGATTGCACGCAGGTTCTCCGGC
 CGCTGGGTGGAGAGGCTATTGGCTATGACTGGGCACAAACAGACAATCGGCTGCTGA
 TCCCGCCGCTTCCGGCTGTCAGGCCAGGGGCCGGCTTCTTGTCAAGACCGACCT
 5 GTCCGGTGCCTGAATGAACCTGCAGGACGAGGAGCGCCGGCTATCGTGGCTGCCACGAC
 GGGCGTCTTGCGAGCTGTGCTGACGGTGTACTGAAGCGGGAGGGACTGGCTGCT
 ATGGCGAAGTGCCTGGCAGGATCTCTGTATCTCACCTGCTTGTACCTGGCTACCTGCCA
 ATTGGCGAAGTGCCTGGCAGGATCTCTGTATCTCACCTGCTTGTACCTGGCTACCTGCCA
 ATCCATCATCGCTGATGCAATCGGGGGCTGTCAGCGTACGGTGTACTGGATGGAAAG
 10 CGACCAACCGAAGCAGAACATCGCATCGGAGGACAGTACCGATGGAAAGCCGGTCTTGT
 CGTCAAGGCCGCATGCCGACGGGAGGATCTGTCGTGACCCATGGGATGCCCTGCTT
 GCCGAAATATCATGGTGGAAATGGCCGTTTCTGGATTATCGACTGTGGCGCTGGG
 TGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTGG
 CGCGAATGGGCTGACCGCTTCTGCTGCTTACGGTATCCGGCTCCCGATTCCGACCG
 15 CATCGCTTCTATCGCCTTCTGACGAGTCTCTGTAGCGGGACTCTGGGTTGAAATG
 ACCGACCAAGCGACGCCAACCGCCATACGATGGCCGATAAAATATCTTATTTC
 ATTACATCTGTCGTGTTGGTTTGTGATGCAATGAGCATAAGGATCCGCTATGGT
 CACTCTAGTACAATCTGCTCTGATGCCGATAGTAAAGCCAGCCCCGACACCCGCCAAC
 ACCCGCTACGCGCCCTGACGGGTTGTCGCTCCGGCATCGCTTACAGACAAGCTGT
 20 GACCGTCTCCGGAGCTGTCATGTCAGAGGTTTACCGTCATACCGAAACGCCGAG
 ACGAAAGGGCTCGTGTACCGCTATTGTTATAGGTTAATGTCATGATAATAATGGTTT
 TTAGACGTCAAGTGGCATTTCGGGAAATGTGGCGGAACCCCTATTGTTATT
 CTAAATACATTCAAATATGATCCGCTCATGAGACAATAACCTGATAAAATGCTTCATA
 ATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTTGCGCCCTTATTCCCTTTT
 25 TCGGGCATTTGCTTCTGTTTGTCAACCGAGAAACGCTGGTAAAGTAAAGATGC
 TGAAGATCAGTGGGTGACGAGTGGTTACATGAACTGGATCTCAACACCGGTAAGAT
 CCTTGAGAGTTTCCGGCCAGAACGTTTCAATGATGAGCAGTAAAGTTCTCCT
 ATGTGGCGGGTATTACCGTATTGACGCCGGAAAGAGCAACTCGGTCGCCGATACA
 CTATTCTCAGAATGACTTGGTAGACTCACCAGTCAGAGAAAAGCATCTACGGATGG
 30 CATGACAGTAAGAGAATTAGCAGTGTGCCATAACCATGAGTGTATAACACTGCC
 CTTACTCTGACAACGATCGGAGGACCGAAGGGAGCTAACCCCTTTGACAACATGGG
 GGATCATGTAACTCGCTTGTCTGGGAAACGGAGCTGAATGAAGCCATACAAACGA
 CGAGCGTGCACACCACGATGCGCTGTAGCAATGGCAACACGTTGCGAAACTATTAACTGG
 CGAACTACTACTGAGCTTCCGGCAACATTAATAGACTGGATGGAGGGCGGATAAAGT
 35 TGCAGGACCACTTCTGCTTCCGGCTGGCTGGTTATTGCTGATAAAATCTGG
 AGCGGTGAGCGTGGCTCGGCTTCTGGCTTCTGCTGAGTATTGCTGAGCTGGCCTC
 CCGTATCGTAGTTATCACGACGGGAGTCAGGCAACTATGGATGAAAGAAATAGACA
 GATCGCTGAGATAGGTGCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTACTC
 ATATATACTTAAAGGATCTAGGTGAAGAT
 40 CCTTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCTGCTTACGTGAGC
 AGACCCCGTAGAAAGATCAAAGGATCTTCTGAGATCTTCTGAGATCTTCTG
 CTGCTTGTGCAACAAAAAAACCCGCTTACCGAGCGTGGTTTGTGCTGAGAGCT
 ACCAACTTTTCCGAAGGTAACTGGCTTACAGAGCGCAGATACCAAAACTGTCT
 TCTAGTGTAGCCGTAGTTAGGCCACCACTCAAGAACTCTGTAGCACCCCTACACCT
 45 CGCTCTGCTAATCTGTTACCGTGGCTGCCAGTGGGATAAGTCGTTCTACCGG
 GTTGGACTCAAGACGATAGTTACCGGATAAGGGCAGCGGTGGCTGAACGGGGGTTTC
 GTGCACACAGCCCAGCTGGAGCGAACGACCTAACCGGAACTGAGATAACCTACCGTGA
 GCTATGAGAAAGGCCACGCTTCCGAAGGGAGAAAGGCCAGGGTATCCGGTAAGCGG
 CAGGGTGGAAACAGGAGAGCGCAGGCCAGGGAGCTTCCAGGGGAAACGCCGGTATCTT
 50 TAGTCCCTGCGGTTTCCGCACCTCTGACTTGAGCTGCTGATTTGTGATGCTCGT
 GGGCGGAGCCTATGGAAAACGCCAGCAACGCCGGCTTTACGGTCTGGCCTTTTG
 CTGGCTTGTCACTGGCTGACAGATCT

PESDSYNGP (SEQ ID No 54)

55 TCAATATTGCCATTAGCCATATTATTGTTATAGCATAAAATCAATATTGGCTA
 TTGGCCATTGCATACGTTGATCTATATCATAATATGACATTATATTGGCTCATGTC
 AATATGACGCCATGTTGCATTGACTAGTTATTGAGTTACGGTAAATGAACTTACCGG
 GTCATTAGTCATAGCCCATATATGGAGTTCCGGTTACATAACTAACGTTAAATGGCCC
 60 GCCTGGCTACCGCCCAACGACCCGCCATTGACGTCATGGGTGGAGTATTACGGTAAACTGC
 AGTAACGCCATAGGGACTTCCATTGACGTCATGGGTGGAGTATTACGGTAAACTGC
 CCACCTGGCAGTACATCAAGTGTATCATATGCCAACGTCGGCCCTATTGACGTCATGA
 CGTAAATGCCGCCCTGGCATTATGCCAGTACATGACCTACGGGACTTCCACTTG
 GCAGTACATCTACGTTAGTCATGCTATTACCATGGTATGCGGTTTGGCAGTACAC
 65 CAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGT

CAAATGGGAGTTGTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGTAAACAATG
 CGATCGCCCCCCCCGTGACGCCAAATGGGCGTAGGGCGTGTACGGTGGGAGGTCTATA
 AGCAGAGCTCGTTAGTGAACCGTCAGATCACTAGAAGCTTATTGCGGTAGTTATCAC
 AUUUAATTGCTAACGCAGTCAGTGCTTGTACACAAACAGTCTCGAACCTAAAGCTG
 5 GACTCTTAAGGTAGCCTGAGAAGTGGTGTAGGGACTGGGAGGTAAAGTATCAA
 GTTACAAGACAGGTTAAGGAGACAAATAGAAACTGGGCTGTGAGACAGAGAAAGACT
 CTTGGTTCTGATAGGCACCTAATGGTCTTACTGACATCCACTTGCCCTCTCCAC
 AGGTGTCCACTCCAGTCATTACAGTCTTAAGGCTAGAGTACTTAATACGACTC.ACT
 ATAGGCTAGAGAATTCAGGTAAAGATGGGCGATCCCCTCACCTGGTCCAAGGCC
 10 AA-ACGGAAAAGTCACCGTCAGGGTAGCCAAAAGCTTACACAGGCAATTGCAACTGG
 GCATTGCTCTGGATCTTTCACGACACTAATTGCTTAAGGAGAAAGATTGGCAA
 CTCAGAGACGTATCCCCCTCTGGAGGACGTGACCCAAACATTGCTGGCAGGAGGC
 GAAGCTTCAGCGCACCTGGTGGGCCATAGCGCAGTCAAAATGGGCTGCAAATCAC
 AACGTGGTTACGGTAAGCTAGTCTTCAACTGCTCCGCGCTAAGTACGAGAAGAAAACC
 15 GCCAACAAAGAACAAATCCGACCTAGCGAGGAGTACCCAAATTGATCGACGGCGCC
 AATAGGAACCTCCGCCACTGACTCCCAGGGCTATACCACCTGGCTAACACCATCCAG
 ACAAAACGGACTTGTGACCGAACGCCAGAACCTGGTGGCATCCTGCTGTGGACTGC
 ACCTCCGAAGAAATGAATGCTTCTGACGTGGTGCAGGACAGGCTGGACAGAAACAG
 ATCCCTGCTCGATGCCATTGACAAGATCGCCGACGACTGGGATAATGCCACCCCTGCCA
 20 AACGCCCTCTGGTGGCTCCCCACAGGGGCTATCCCTATGACCGCTAGGTTATTAGG
 GGACTGGGGTGGCCCGCAACGCCAGATGGAGCCAGCATTGACCAATTAGGCAAGACC
 TACAGACAGTGGATCATCGAAGCCATGAGCGAGGGGATTAAGTCATGATCGGAAGGCC
 AAGGCACAGAACATCGCGACGGGCCAGGAACCATACCTGGTGGACAGAAACAG
 CTGCTCCAGATAATCCGAGGCCACCTCAGGAGATCTCAAGTCTTGACAGACACA
 25 CTGACTATCAAATGCAAATGAAGAGTGCAGAAAAGCCATGAGGCACCTCAGACCTGAA
 GATACCCCTGGAGGAGAAATGTACCGATGTCGCACATTGGCACTACCAAGCAAAAGATG
 ATGCTGCTGCCAAGGCTCTGAAACCGGCCCTGGCTGGTCAATTCAAAGGAGGAGCACTG
 AAGGGAGGTCATTGAAAGCTGCACAAACATTTAATGTGGGAAGGCCAGGACATTAA
 TCTAGTCATGTAGAGCACCTAAAGTCTGTTAAATGTAACAGCCTGGACATTCTCA
 30 AAGCAATCGAGAACAGTGTCCAACAAACGGGAAGCAAGGGGCTCAAGGGAGGCCAGAAA
 CAAACTTCCGATACAACAGAACAGTCAAGCACAACAAATGTTGCTACAGAGACTCCT
 CAGACTCAAATCTGTACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAGGAG
 AAGGATCAAGTAGAGGATCTAACCTGGACAGTTGTGGAGTAACATAATCTCGAGA
 AGAGGCCACACTACCATCGCCTGATCAATGACACCCCTCTTAATGTGCTGGACACCG
 35 GAGCGACACCAGCGTCTCACTACTGTCACTATAACAGACTGAAATACAGAGGAAGGA
 ATAACCAAGGGCACAGGCATTCGGCTGGAGGCACCTGCAAAACCTTCCACTCTG
 TCACCATAAAAAGAAGGGGAGACACATTTAAACCCAGAATGCTGGTGGCAGATCCCCG
 TCACCATCTTGGAGACATTCTCAGGACCTGGCGCTAAACTCGTGTGGCACAAC
 TGTCTAAGGAAATCAAGTCCGCAAGATCGAGCTGAAAGAGGGCACAATGGGTC
 40 TCCCCCAGTGGCCCTGACCAAAGAGAAGCTGAGGGCGCTAAGGAAATCGTGCAGGCC
 TGCTTCTGAGGGCAAGATTAGCGAGGCCAGCGACAATAACCCCTAACACAGCCCCATCT
 TTGTGATTAAGAAAAGGAGCGCAATGGAGACTCCTGCGAGGACCTGAGGGAACTCAACA
 AGACCGTCCAGGTGGAACTGAGATCTCGCCGACTGCTCACCCTGGCGGGCTGATTAA
 ATGCAAGGACATGACAGTCTGACATTGGAGACGCTTATTACCATCCCCCTGATC
 45 CTGAATTGCGCCCTATACTGTTTACCATCCCCAGCATCAATCACCAGGAGCCGATA
 AACGCTATGTGTTGAACTGCGCTCCCCCAGGGATTGTGCTTAGCCCTACATTACAGA
 AGACACTCAAGAGATCCTCAACCTTCCCGAAAGATAACCCAGAGGTTCACTTAC
 AATATATGGAGCACCTGTTCATGGGGTCAACGGGCTAAGAAGCAGCACAAGGAAC
 TCATCGAACTGAGGGCAATCTCTGGAGAAAGGCTTGCAGACAGGCCAGGACAAGCTGC
 50 AAGAAGTCTCCATATAGCTGGTGGCTACCAAGCTTGGCTGAAAACCTGAAAGTCC
 AGAAGATGCAAGTGGATATGGTCAAGAACCCAAACTGACAGCAGTCATGG
 GCAATATTACCTGGATGAGCTCCGGAACTCCTGGCTTACCGTTAACGACATTGGC
 CAACAAAAGGATGCCCTGGAGTTGAAACAGAAGGTATTGACAGAGGAAGCTCAGAAG
 AACTGGAGGAGAATAATGAAAAGATTAAGAATGCTCAAGGGCTCAATACTACAATCCC
 55 AAGAAGAAATGTTGCGAGGTCGAATCAACTAAGAACCTGACAGGCCACCTATGT
 AACAGTCCCAGGCATTTGTGGGCCGGAAAGAAAATCATGAAAGGCCAACAAAGGCTGG
 CCACCGTTAAAATCTGATGCTCTGTCAGCAGCTGCCACCGAGTCTATCACCCCG
 TCGGCAAGTCCCCACCTCAAGTCTTCAACTAAGGACAGGTGATGTGGAGATGC
 AAAAGGCTGGTACTACTCTGGCTCCCGAGATGCTTACACCCACCAAGTGGCAG
 60 ACGACTGGAGAATGAAAGCTTGTGAGGGAGGCCACTAGCGGAATTACAATCTATACCG
 CGGGAAAGAAAACGGAGAGGGATCGCTGCATACGTACATCTAACGGCCGACCAAGC
 AAAAGAGGCTGGCCCTGTCACTACCAAGGTGGCTGAGAGGATGGCTATCCAGATGG
 TTGAGGACACTAGAGACAAAGCAGGTGAACATTGTGACTGACAGCTACTACTGCTGG
 AAAACATCACAGAGGGCCTGGCCTGGAGGGACCCAGTCTCCCTGGCTATCATCCAGA
 65 ATATCCGGAAAAGGAAATTGCTATTTCGCTGGTGGCTGGACACAAAGGAATTACG
 GCAACCAACTGCCGATGAAAGGCCAAAATTAAAGAGGAAATCATGCTTGCCTACCG

GCACACAGATTAAGGAGAAGAGAGACGAGGACGCTGGCTTGCACCTGTGTGCCATACG
 ACATCATGATTCCCCTAGCGACAAAAGATCATTCAACCAGATGTCAAGATCCAGGTGC
 CACCCAAATTCTTGGTGGGTGACCGGAAAGTCCAGCATGGCTAAGCAGGGTCTTCTGA
 TTAACGGGGAAATCATTGATGAAGGATAACCCCGGAAATCCAGGTATTCGACAATA
 5 TCGGCAAAGCAATTAAGCTTATCGAAGGGCAGAAGTTCGCAACTCATCCTCC
 AGCACCAAGCAATTCAAGACAACTTGGGAGGAAAAGATTAGCCAGAGAGGTGACA
 AGGGCTTCGGCAGCACAGGTGTCTGGTGGAGAACATCCAGGAAGCACAGGACGAGC
 ACGAGAATTGGCACACCTCCCCTAAGATTTGGCCCGAATTACAAGATCCCCTACTGACTG
 10 TGGCTAAGCAGATCACACAGGAAATCCCCCACTGCACCAAACAAGGTTCTGGCCCCCG
 GCTCGTGTATGAGGTCCCCAATCACTGGCAGGGAGATTCGACCCACCTCGACAACAAA
 TTATCTGACCTTCGGAGAGAACATCCGCTACATCACCGAACACTCTCTCCAAGG
 AAAATGATTTGTCACCTCCCTCGCAATTCTGGAAATGGGCCAGGCTGTTCTCTCAAAT
 CCCTGCACACCGACAACGGCACCAACTTGTGGCTAACCTGTGGTGAATCTGCTGAAGT
 15 TCCTGAAAATCGCCCACACCACTGGCATTCCATACACCTGAAAGCCAGGGCATTGTCG
 AGAGGGCCAAACAGAACTCTGAAAGAAAAGATCCAATCTCACAGAGACATAACAGACAT
 TGGAGGCCGACTTCAGCTGCCCTTACACCTGCAACAAAGGAAGAGAAAGCATGGCG
 GCCAGACCCCTGGGAGGTCTCATCACTAACCAACAGGCCAGGTCTCCATGAAAAGCTGC
 TCTTGAGCAGGCCAGCTCCAAAAGTTCTGCTTTATAAGATCCCCGGTGAACGACG
 ACTGGAAAGGGTCTACAGAGTTGTGAAAGGAGACGGCGCAGTTGTGGTGAACGATG
 20 AGGGCAAGGGGATCATCGTGTGCCCTGACACCGACCAAGCTCTCATCAAGCCAAC
 GAACCCGGGGCGGCCCTCCCTTAGTGAGGGTAATGCTTCAGCAGACATGATAAGA
 TACATTGATGAGTTGGACAACCACAACCTAGAATGCACTGAAAAAAATGCTTTATTGT
 GAAATTGATGCTATTGCTTATTGTAACCAATTAAAGCTGCAATAACAAAGTTAAC
 ACAACAATTGCAATTCTACATTGTTAGTTTCAAGGTTAGGGGGAGATGTGGGAGGTTTAA
 25 AGCAAGTAAACCTCTACAAATGTTGAAAATCGATAAGGATGATCCGGCTGGCGTA
 ATAGCGAAAGAGGCCGACCGATGCCCTCCCAACAGTTCGCGCAGCTGAATGGCGAAT
 GGACCGCCCTGTAGCCCGCATTAAAGCGCGGGGTGTGGTGGTACCGCGCAGCGTGAC
 CGCTACACTGCCAGGCCCTAGCGCCGCTCCCTTCGCTTCTCCCTTCCTCTCGC
 CACGTTGCCGGCTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTAGGGTCCGATT
 30 TAGAGCTTACGGCACCTCGACCGCAAAACTTGATTTGGCTAGGTTACGGTACAGTAG
 GCCATGCCCTGATAGACGGTTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAG
 TGGACTTGTCCAAACTGGAACAAACACTCAACCTATCTGGCTTATTCTTTGATT
 ATAAGGGATTGCGATTCCGCTATTGGTAAAAAAATGAGCTGATTTAACAAATATT
 TAACCGCAATTAAACAAATATTACGTTACAATTTCGCTGATGCGGTATTCTCC
 35 TTACGCATCTGTGCCGTATTACACCGCATAACGGGATCTGCAGCACCATGGCTGA
 AATAACCTCTGAAAGAGGAACTTGTTAGGTACCTCTGAGGCCAGGCGAAAGAACCGCTGTG
 GAATGTTGTCAGTTGGGTGTGAAAGTCCCAGGCTCCCGAGCAGGCGAGATATGCA
 AAGCATGCACTCAATTACTGCAACCCAGGTGAAAGTCCCAGGCTCCCGAGCAGG
 CAGAAGTATGCAAGCATGCACTCAATTAGTCAGCAACCATAGTCCCCCCCCTAACCTC
 40 GCCCATCCCCCTAACTCGCCCACTTCCGCCATTCTCCGCCATGGCTACTAAT
 TTTTTTATTATGCAAGAGGCCGAGGCCCTCGGCCCTCTGAGCTATTCCAGAAGTAGTG
 AGGAGGTTTTGGAGGCCCTAGGTTTGCAAAAAGTTGATTCTCTGACACAACAGT
 CTCGAACCTAAGGCTAGAGGCCACCATGATTGAAACAGATGGATTGACCGAGGTTCTCG
 GCGCTTGGTGGAGAGGCTATTCCGCTATGACTGGGACAAACAGACATCGCTGCT
 45 GATGCCGCGCTGTCCCGCTGAATGAACTGCACTGCCAGGACGGCAGCGCGCTATGTTGCTGGCAG
 CTGTCGGTGCCTGCATGAACTGCACTGCCAGGACGGCAGCGCGCTATGTTGCTGGCAG
 ACAGGGCTTCCCTGCCAGCTGTGCTGACGTTGCTACTGAAGCGGGAAAGGACTGGCTG
 CTATTGGCGAAGTGGCCAGGATCTCCGTATCTCACCTGCTCTGCCAGAAA
 GTATCCATCATGGCTGATGCAATGCCGGCTGCATACGCTGATCCGGCTACCTGCCA
 50 TTGACCAACCAAGCGAACATCGCATGAGCAGCACGACTCGGATGGAAGGCCGCTT
 GTCGATCGGATGATCTGGACGAAGAGCATCGGGCTCGCCAGCGAACACTGTTGCG
 AGGCTCAAGGCCGCGATGCCCGACGGCGAGGATCTGCTGACCCATGGCGATGCC
 TTGCGAATATCATGGTGGAAAATGGCGCTTTCTGGATTATCGACTGTGGGGCTG
 GGTGTGGGGACCGCTATCAGGACATAGCGTTGGCTACCGCTGATATTGCTGAAGAGCTT
 55 GGCAGCGAATGGGCTGACCGCTTCTCGTGCAGGAGTTCTGAGCGGGACTCTGGGGTCCGAAA
 CGCATGCCCTCTATGCCCTTCTGACGAGTTCTGAGCGGGACTCTGGGGTCCGAAA
 TGACCGACCAAGCGACGCCAACCTGCCATCACGATGGCCGAAATAAAATATCTTATT
 TCATTACACTGTGTGGTTTTTGCTGAAATGATGACTGAGCGATAAGGATCCCGTATGG
 60 TGCACTCTCAGTACAATCTGCTGATGCCCATAGTTAACCCAGCCCCACACCCGCCA
 GTGACCGCTCCGGGAGCTGCATGTCAGAGGTTTCAACCGTATCACCGAAACCGCG
 AGACGAAAGGGCTCGTGAACGCCCTATTGTTAGGTTAATGTCATGATAATAATGGTT
 TCTTAGACCTCAGGTGGCACTTTCCGGGAAATGTGCGCGAACCCCTATTGTTATT
 TTCTAAATACATTCAAATATGATCCGCTCATGAGACAAATAACCCGTATAATGCTCAA
 65 TAATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTGTGCCCTTATTCCCTT
 TTTGCCGCAATTGCCCTCTGTTTGTCTACCCAGAAACGCTGGTGAAGTAAAGAT

GCTGAAGATCAGTGGGTGACGAGTGGGTTACATCGAACCTGGATCTCAACAGCGGTAAG
 ATCCTTGAGAGTTTCGCCCGAAGAACGTTTCAATGATGAGCACTTTAAAGTTCTG
 CTATGTGGCGGGTATTATCCCGTATTGACGCCGGCAAGACCAACTCGGTCGCCGCATA
 CACTATTCTCAGAATGACTTGGTTGAGTACTCACCAAGTCACAGAAAAGCATCTTACGGAT
 5 GGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCC
 AACCTACTTCTGACAACGATCGGAGGACGAAGGAGCTAACCGTTTTGCACAAACATG
 GGGGATCATGAACTCGCCTGATCGTGGGAACCGGAGCTGAATGAAAGCCATACCAAAC
 GACGAGCGTACACCACCGATCGCTGTAGCAATGGCAACAAACCTGGCAGAACACTATTAACT
 10 GCGGAACACTACTACTTAGCTTCCCAGCAACAAATTAAATAGACTGGATGGAGGCGATAAA
 GTTGAGGACCACTCTCGCGCTCGGCCCTCCGGCTGGTTATGCTGATAAATCT
 GGAGCCGGTAGCGTGGTCTCGCGTATTCAGCAGCACTGGGCCAGATGGTAAGCCC
 TCCCGTATCGTAGTTATCACAGCAGGGGAGTCAGGCAACTATGGATGAACGAAATAGA
 CAGATCGCTGAGATAGGTGCTACTGATTAAGCATTGTAACGACGACAAAGTTAC
 TCATATATACCTTAAAGGATGATTTAAACCTCATTTAAATTTAAAGGATCTAGGTGAAG
 15 ATCCTTATGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCTGCTTCACTGAGCG
 TCAGACCCCGTAGAAAAGATCAAAGATCTTCTGAGATCTTCTGCGCGTAATC
 TGCTGCTTCAAACAAAAAACCCCGTACAGCGGTGGTTGTTGCCGATCAAGAG
 CTACCAACTCTTCTCGAAGGTAACTGGCTCAGCAGAGCGCAGATAACAAACTGTC
 CTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAAACTCTGAGCACCCCTACATAC
 20 CTCGCTCTGCTAATCCTGTTACAGTGGCTGCGAGTGGCGATAAGTCGTGCTTAC
 GGTTGCACTCAAGACGATAGTTACCGGATAAGGGCAGCGGTCGGGCTGAACGGGGGT
 TCGTGCACACAGCCCAGCTGGAGCGAACCTAACCGAACTGAGATAACCTACAGCGT
 GAGCTATGAGAAAGCGCACGCTTCCGAAGGGAGAAAGCGGAGCGAGGTATCCGTAAGC
 GCCAGGGTCCGAACAGGAGAGCGCAGCGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTT
 25 TATAGTCCTGCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTGTGATGCTCGTA
 GGGGGCGGAGCCTATGAAAAACGCCAGCAACGCGCTTTACGGTTCCTGGCCTT
 TCTGGCCTTTGCTCACATGGCTGACAGATCT

MLV construct CZCG (SEQ ID No 55)

30 GTTACCTTCTGCTCTGCAAGAATGGCAACCTTTAACGTGGATGGCCGAGACGGCACC
 TTAACCGAGACCTCATACCCAGGTTAACGATCAAGGTCTTCACTGGCCGATGG
 CACCCAGACCAAGTCCCCATACGTGACCTGGGAAGCCTGGCTTTGACCCCCCTCCC
 TGGGTCAAGCCCTTGTACACCTAACGCTCCGCTCTTCCCTCATCCGCCCCGCT
 CTCCCCCTGAAACCTCTCGTCGACCCGCGCTCGATCCTCCCTTATCCAGCCCTCACT
 35 CCTTCTCTAGGCCCGAATTGTTAACGAGAGGCTGCCACCATGGGACTGCTCCA
 AAGAAGAAGCGTAAGGTAGTCGTTTACAACGTCGTGACTGGAAAACCCCTGGCGTAC
 CAACTTAATGCCCTTGCAAGCACATCCCCCTTCGCCAGCTGGTAATAGCGAAGAGGCC
 CGACCGATGCCCTTCCAACAGTTGCGCAGCTGAATGGCAATGGCGCTTGCCTGG
 TTCCGGCACAGAAGCGGTGCCGAAAGCTGGCTGGAGTGCATCTCCTGAGGCCGAT
 40 ACTGTCGTCGCCCCCTAACACTGGCAGATGCCACGGTTACGATGCCCATCTACACCAAC
 GTAACCTATCCATTACGGTACATCCCGTTGGCTCCACGGAGAATCCGACGGGTTGT
 TACTCGTCACATTAAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGCGAATTATT
 TTGATGGCGTTAACCTGGCGTTCTGTTGACGAGTGGCTGGGCTGGTACGGC
 CAGGACAGTCGTTGCCGCTGAAATTGACCTGAGCGCATTTCACGCCGGAGAAAAC
 45 CGCTCGCGGTGATGGTGTGCGTTGGAGTGACGGCAGTTATGGAAGATCAGGATATG
 TGGCGGATGAGCGGATTTCGCGTACGCTCGTGTGCTGCATAAACCGACTACACAAATC
 AGCGATTCCATGTTGCCACTCGCTTAATGATGATTTCAGCCCGCTGACTGGAGGCT
 GAAGTTCAAGATGTCGGCGAGTTGCGTGAACCTACGGTAACAGTTCTTATGGCAG
 GGTAAACGCAAGTCGCCAGCGCACCGCGCTTCGGCGTGAATTATCGATGAGCGT
 50 GGTGGTTATGCCATGCCGTCACACTACGTCGTAACGTCGAAACCGGAAACTGTGGAGC
 GCCGAAATCCGAATCTCTATCGTGGTGGTTGAACGTCACACCGCGACGGCACGCTG
 ATTGAAGCAGAACGCTGCCATGTCGGTTCCCGAGGGTGCAGGATTGAAAATGGCTGCTG
 CTGCTGAACGCAAGCCGTTGCTGATTGAGGGCTAACGTCACGAGCATCTCTCTG
 CATGGTCAGGTCACTGGATGAGCAGACGATGGTGCAGGATATCTGCTGATGAAAGCAGAAC
 55 AACTTTAACGCCGTGCGCTGTTGCAATTACCGAACCATCCGCTGGTACACGCTGTG
 GACCGCTACGGCTGTATGTTGGAGTGAAGCCAAATATTGAAACCCACGGCATGGTGC
 ATGAATCGTCGACCGATGATCCGCCCTGGCTACCGCGATGAGCGAACCGTAACGCCA
 ATGGTGCAGGCCGATCGTAATCACCCGAGTGTGATCATCTGGTCGCTGGGAATGAATCA
 GCCACGCCGTAATCACGACGCGTGTATCGTGGATCAAATCTGTCGATCCTCCCGC

CCGGTGCAGTATGAAGGCGCGGAGCCACCCACGGCCACCGATATTATTCGCCGATG
 TACCGCGCGCTGGATGAAGACCAGCCCTCCCGCTGTGCCGAAATGGTCATCAA
 TGGCTTCGCTACCTGGAGAGACGCCACCGCTGATCCTTGCGAATACGCCACCGATG
 GTAACAGTCTTGGCGTTCTGCTAAATACTGGCAGGCCTTCGTCACTATCCCCTTA
 5 CAGGGCGGCTTCGCTGGGACTGGTGGATCAGTCGCTGATTAATATGATGAAAACGGC
 AACCCGTGCGCTTACGGCGTGTGGCGATAACGGGAAACGATGCCAGTTCTG
 ATGAACGGCTGGCTTGGCGACCCGACCCGATGCCAGCGTGCAGGAAGCAAAACAC
 CAGCAGCAGTTTCCAGTTCCGTTATCCGGGAAACCATCGAAGTGACCAGCGAATAC
 CTGTTCCGTCATAGCGATAACGAGCTCTGCACTGGATGGTGGCGCTGGATGGTAAGCG
 10 CTGGCAAGCGGTGAAGTGCTCTGGATGTCCTCACAAAGTAAACAGTTGATTGAACTG
 CCTGAACCTACCGCAGCGGAAGGCCAGCTGGCTCACAGTACCGTAGTGCAA
 CCGAACCGCAGCGCATGGTCAAAGGCCAGCATCAGCGCTGGCAGCAGTGGCGTCTG
 GCGGAAAACCTCAGTGTACGCTCCCGCCGCTCCACGCCATCCGCATCTGACCACC
 AGCGAAAATGGATTTGATCGAGCTGGTAATAAGCGTGGCAATTAAACGCCAGTC
 15 GGCTTCTTCACAGATGGATTGGCATAAAACACTGTCGACGCCGCTGCCGAT
 CAGTTACCCCGTGCACCGCTGGATAACGACATTGGCTAAGTGAAGCGACCCGCATTGAC
 CCTAACGCCTGGGTCGAACGCTGGAAGGCCGCGGATTACAGGCCGAAGCAGCGTGT
 TTGCAGTGCACGGCAGATACTTGCTGATGCGGTGCTGATTACGACCGCTCACCGTGG
 CAGCATCAGGGAAAACCTTATTTATCAGCGGAAAACCTACCGGATTGATGGTAGTGGT
 20 CAAATGGCAGATTACCGTTGATGTTGAAGTGGCGAGCGATAACCCGATCCGGCGGATT
 GCCCTGAACCTGCCAGTGGCGAGGTAGCAGACGGGTAACCTGGCTCGGATTAGGGCCG
 CAAGAAAACATACCCGACGCCATTCTGCGCCTGTTGACCGCTGGGATCTGCCATTG
 TCAGAATGATATAACCCCCTAGCTTCCGAGCCAAACGGCTTGCCTGCCGACGCC
 GAATTGAATTATGGCCCACACCAGTGGCGGGACTTCCAGTTCAACATCAGCCGTCAC
 25 AGTCAACAGCAACTGATGGAAACCGCCATGCCATCTGTCACGCCAGAGAAGGCAGA
 TGGCTGAATATGACGGTTCCATATGGGATTGGTGGCGACACTCTGGAGGCCGTC
 GTATCGGCGAATTCCAGCTGAGGCCGCTGCTACCATACCAGTTGGCTGGTGTCAA
 AAATAATAATAACCGGGCAGGGGGGATCCGAGATCCGGCTGTTGAATGTTGTCAGTTA
 GGGTGGAAAAGTCCCCAGGCTCCCAAGCAGGCCAGAGTATGCAAAGCATGCCGAGGA
 30 GTGGGGAGGGACGATGGCGCTTGGTCGAGGGGATCCGGCATTAGCCATATTATCA
 TTGGTTATATAGCATAAAATCAATATTGGCTATTGGCATTGACATGTTGATCCATATC
 ATAATATGTAATTATATTGGCTCATGTCACATTACGCCATGTTGACATTGATTAT
 TGACTAGTTAAATAGTAATCAATTACGGGCTTACGTTCATAGCCATATATGGAGT
 TCCGCTTACATAACTACGGTAAATGGCCGCTGGTGACCGCCCAAGCAGCCCCGCC
 35 CATTGACGTCATAATGACGTATGTCCTCATGTAACGCCAATAGGGACTTCCATTGAC
 GTCAATGGGGAGGTTACCGTAAACTGCCACTGGCAGTACATCAAGTGTATCATA
 TGCCAAGTACGCCCTATTGACGTCATGACGTTAAATGGCCGCTGGCATTGCCC
 AGTACATGACCTTATGGGACTTCCACTTGGCAGTACATCTACGTTAGTCAGCTA
 TTACCATGGTATGCCGTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCAC
 40 GGGGATTCGAAAGTCTCACCCATTGACGTCATGGAGTTGTTGGCACCAGAAC
 AACGGGACTTCCAAATGCGTAACAACCTGCCCTATTGACGCAAATGGGGGGTAGGC
 ATGTAACGGGGAGGCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGG
 GACGCCATCCACGCTGTTGACCTCATAGAAGACACCGGACCGATCCAGCTCCGG
 GCCCCAAGCTTGGGATCCACCGCTGCCACCATGGTGAGCAAGGGCGAGGAGCTTT
 45 CACCGGGGTTGGTCCCATTCTGGTCGAGCTGGACGGCAGTAAACGCCACAAGTTCAG
 CGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCTGAGTTCATCTG
 CACCAACGGCAAGCTGCCGTGCCCTGGCCACCCCTCGTGCACCCCTGACCTACGGCGT
 GCAGTGCCTACGCCCTACCCGACACATGAAGCAGCACGACTTCTCAAGTCCGCCAT
 GCCCCAAGGCTACGTCCAGGAGCGCACCATTCTCTCAAGGAGCAGGCCAACTACAAGAC
 50 CCGCGCCGAGGGTGAAGTTCGAGGGCGACACCCCTGGTAACCCGATCAGCTGAAGGGCAT
 CGACTTCAAGGGAGGACGCCAACATCTGGGGCACAAGCTGGGATACAACAGGCCA
 CAACGTCATATCATGGGGCACAAGCAGAAGAACGGCATCAAGGTGAACCTCAAGATCCG
 CCACAAACATCGAGGAGCCGAGCGTGCAGCTGCCGACCAACTACAGCAGAACACCCCAT
 CGGGCGAGGGCCCTGCTGCTGCCGACAACCAACTACCTGAGCACCCAGTCCGGCTGAG
 55 CAAAGACCCCAACGAGAAGCGCAGTACATGGTCTGCTGGAGTTGCTGACCGCCCG
 GATCACTCTGGCATGGACGAGCTGACAAGTAAAGCGGCCGACTCTAGATCATAATC
 AGCCATACCACATTGAGGGTTTACTTGCTTAAAAAACCTCCACACCTCCCCCTG
 AACCTGAAACATAAAATGAATGCAATTGTTGTTAACATCGATAAAAATAAAAGATTT
 ATTAGTCTCCAGAAAAAGGGGGGATGAAAGACCCCACCTGAGGTTGGCAAGCTAGC
 60 TTAAGTAACGCCATTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAAGTTGAG

ATCAAGGTCAAGAACAGATGAAACAGCTGAATATGGGCCAACAGGATATCTGTGGTAAG
 CAGTTCTGCCCGGCTCAGGGCCAAGAACAGATGAAACAGCTGAATATGGGCCAACAG
 GATATCTGTGGTAAGCAGTCTCTGCCCGGCTCAGGGCCAAGAACAGATGTCAGGAT
 GCGGTCCAGCCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGCCCCAAGGA
 5 CCTGAAATGACCTGTGCCATTGAACTAACCAATCAGTTCGTTCTCGCTTCTGTC
 GCGCGCTTCTGCTCCCCAGCTCAATAAGAGCCCCACAACCCCTCACTCGGGGCGCCAG
 TCCTCCGATTGACTGAGTCGCCGGTACCCGTATCCAATAAACCCCTTGCAGTTGC
 ATCCGACTTGTGGTCTCGCTGTTCTGGGAGGGTCTCTGAGTGAATTGACTACCCGT
 CAGCGGGGCTTTCATTTGGGGCTCGTCCGGATCGGGAGACCCCTGCCAGGGACCA
 10 CCGACCCACCACCGGGAGGTAAAGCTGGCAGCACTTATCTGTGTCGATTGTCTA
 GTGTCTATGACTGATTTATGCGCCTGCGTCGGTACTAGTTAGCTAACTAGCTCTGTATC
 TGGCGGACCCGTTGGTGGAACTGACGAGTTCGGAACACCCGGCGAACCCCTGGGAGAGGA
 ATTCTCATGTTGACAGCTTATCATCGATAAGCTTTGCAAAGCCTAGGCCTCCAAA
 AAGCCTCCCACTACTCTGGAATAGCTCAGAGGCCAGGGCGCTGGCCTCGCATAAA
 15 ATAAAAAAAATTAGTCAGCCATGGGCCGAGAATGGGCCAACGGGGAGTTAGGGGC
 GGGATGGGCCGAGTTAGGGCGGGACTATGGTCTGACTAATTGAGATGATGCTTGC
 ATACTCTGCGCTGCTGGGAGCCCTGGGACTTTCCACACTGGTCTGACTAATTGAGA
 TGATGCTTGCATACTCTGCGCTGGGAGCCCTGGGACTTTCCACACCCTAACTGA
 CACACATTCCACAGCCGATCCTCACGCCGACGCACTGCCGGCATCACCGGCC
 20 ACAGGTGCGGTTGCTGGCCTATATGCCGACATACCGATGGGAAGATCGGGCTCGC
 CACTTCGGGCTCATGAGCGTTGTTGGCAGGGTATGGTGGCAGGGCCGGTGGCGGG
 GGACTGTTGGCGCCATCTCTGCGATGCCATTCTGGCAGGGCGGGTGTCAACGGC
 CTCAACCTACTACTGGGCTGTTCTAATGCAGGAGTCGCAATAAGGGAGAGCGTCGACCG
 ATGCCCTGAGAGCCTCAACCCAGTCAGCTCCTCCGGTGGCGCGGGGATGACTATC
 25 GTGCCGCACTTATGACTGTCTCTTATCATGCACTCGTAGGACAGGTGCGGGCAGCG
 CTCTGGGTCACTTCGGCGAGGACCGCTTCGCTGGAGCGCAGATGATGCCCTGTCG
 CTTGCGGTATTGCGAATCTGCAACGCCCTCGCTAAGCCTCGTCACTGGCCGCCACC
 AAACGTTGGCGAGAACGAGGCCATTATGCCGGCATGGCCGGACGCCGTGGCTAC
 GTCTTGCTGGCGTTGCGACGCCGGCTGGATGCCATTCCCTATTGATTCTCTCGCT
 30 TCCGGCGCATGGGATGCCCGTGCAGGCCATGCTGCCCTTACAGCCTAACTTCGATCACTGG
 CATCAGGGACAGCTCAAGGATCGCTGCCCTGCGAGCACATTGAAACGGGTTGGCATGG
 CGCGCTGATCGTCAGGCCGATTATGCCGCTCGCGAGCACATTGAAACGGGTTGGCATGG
 ATTGTAGGCCGCCATTACCTGCTGCCCTCCCGCGTTCGCTCGGCGATGGGACT
 CGGGCCACCTGACCTGAATGGAAGCCGGCGCACCTCGTAACGGATTACCAACTCCAA
 35 GAATTGGAGCCAATCAATTCTGCGGAGAACTGTGAATGCGAACCAACCCCTGGCAGA
 ACATATCCATCGCGTCCGCCATCTCAGCAGCCGACGCCGATCTGGGAGCGTTG
 GGTCTGGCACGGGTGCGATGATGCTGCCCTGCGTGTGAGGACCCGGCTAGGCTGG
 GGGGTTGCCCTACTGGTAGCAGAATGAATCACCGATACGCCAGCGAACGTGAAGCGACT
 GCTGCTGCAAACGCTGCGACCTGAGCAACACATGAATGGTCTCGGTTCCGTGTT
 40 CGTAAAGTCTGGAAACGCCGAAGTCAGGCCCTGCACTTATGTTCCGGATCTGCATCG
 CAGGATGCTGGCTACCCCTGGAACACCTACATCTGATTAACGAAGCGCTGGCATT
 GACCCCTGAGTGATTTCTCTGGTCCGCCGATCCATACGCCAGTTGTTACCCCTCAC
 AACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGGACCATCCTCTC
 GTTTCATCGGTATCATTACCCCATGAACAGAAATTCCCCCTACACGGAGGCATCAAGT
 45 GACCAAACAGGAAAAACGCCCTAACATGCCGCTTATCAGAAGCCAGACATTAAC
 GCTTCTGGAGAAACTCAACGAGCTGGACGCCGGATGAAACAGGCCAGACATCTGTAATCGCT
 TCACGACCGCAGCTGATGAGCTTACCGCAGCTGCCCTCGCGGTTTGGTGTGACGGTGA
 AAACCTCTGACACATGCACTCCCGAGACGGTCACAGCTTGCTGTAAGCGGATGCCG
 GAGCAGACAGCCGTCAGGGCGCTCAGCGGGTGTGGCGGGTGTGGCGCAGCCAT
 50 GACCCAGTCACTAGCGATAGCGGAGTGTATACTGGCTTAACATGCCGATCAGACCG
 ATTGTAAGAGTGACCCATATGCCGTTGAAATACCGCACAGATGCGTAAGGAGAAAA
 TACCGCATCAGCGCTCTCCGCTTCTCGCTCACTGACTCGCTGCCCTGGTGTGTC
 CTGCCGGCAGCGGTATCAGCTCACTAACAGCGGTAATACGTTATCCACAGAACATCAGGG
 GATAACCGCAGGAAAGAACATGTGAGCAAAGGCCAGCAAAGGCCAGGAACCGTAAAAAG
 55 GCCGCGTTGCTGGCTTTCCATAGGCTCCGCCCTGACGAGCATCACAAAATCGA
 CGCTCAAGTCAGAGGTGGCAGAACCCGACAGGACTATAAGAACGATACCGGTTCCCG
 GGAAGCTCCCTCGGGAGCGTGGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGITCG
 GTGTAGGTGCTCGCTCCAAGCTGGCTGTGCAACGAACCCCCCGTTAGCCCAGCC
 60 TGCGCCTTATCCGTTACTATCGTCTTGAGTCAACCCGGTAAGACACGACTTATCGCCA

CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGGGGTGCTACAGAG
 TTCTGAAGTGGTGGCCTAACACTACGGCTACACTAGAAGGCAGTATTTGGTATCTGCGCT
 CTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTTGTATCCGGCAAACAAACC
 ACCGCTGGTAGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGA
 5 TCTCAAGAAGATCCTTGATCTTCTACGGGTCTGACGCTCAGTGGAACGAAAACCTCA
 CGTTAAGGGATTTGGCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTTAAAT
 TAAAATGAAGTTAAATCAATCTAAAGTATATAAGTGAATAACTTGGTCTGACAGTTAC
 CAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTCGTTCATCCATAGTT
 GCCTGACTCCCCGTCGTAGATAACTACGATACGGAGGGCTTACCATCTGGCCCCAGT
 10 GCTGCAATGATAACCCGGAGGGACCCCTCACCGCTCCAGATTATCAGCAATAACCGAG
 CCAGCCGGAAGGGCGAGCGCAGAAGTGGCTCTGCAACTTATCCGCCATCCAGTCT
 ATTAATTGTTGCCGGAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGCGAACGTT
 GTTGCATTTGCTGCAGGCATCGTGGTGTACGCTCGTGTGGTATGGCTTCAATTAC
 TCCGGTTCCAACGATCAAGGCGAGTTACATGATCCCCATGTTGTGCAAAAAAGGGTT
 15 AGCTCCTTCGGTCTCCGATCGTGTGTCAGAAGTAAGTGGCCGAGTGTATCACTC
 ATGGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCATCCGTAAGATGCTTTCT
 GTGACTGGTGAAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCACCGAGTTGC
 TCTTGCCTGGCGTCAATACGGATAATACCGGCCACATAGCAGAACTTTAAAGTGCTC
 ATCATTGGAAAACGTTCTCGGGGCAAACCTCTCAAGGATCTTACCGCTGTTGAGATCC
 20 AGTTCGATGTAACCCACTCGTCACCCAACTGATCTTCAGCATCTTACTTTACCTTACCCAGC
 GTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAGGGAAATAAGGGCGACA
 CGGAATATTGTAATACTCATCTTCTCTTCAATATTATTGAAAGCATTATTCAGGGT
 TATTGTCATGAGGGATAACATATTGAAATGTTAGAAAATAACAAATAGGGTT
 CCGCGCACATTCCCCAAAAGTGGCCTACGAGCCTGACGCTAAGAAAACCATTATTATCATGACA
 25 TTAACCTATAAAAATAGGCATACGAGGCCACCTGACGCTAAGGAAACCTTACGGTGTGATGAC
 GGTAAAACCTCTGACACATGAGCTCCGGAGACGGTCACAGCTTGTCTGTAAGGGAT
 GCCGGGAGCAGACAAGCCGTCAAGGGCGCGTCAAGCGGTGTTGGCGGGTGTGGGGCTGG
 CTTAACTATCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGACGCTCTCC
 TATGCGACTCTGCATTAGGAAGCAGCCCAGTAGTGGTGTAGGGCGTGTGAGCACCGCC
 30 CCGCAAGGAATGGTGATGCAAGGAGATGGGCCCAACAGTCCCCGGCACGGCGATCTCC
 CCACCATACCCACGCCAACAGCGCTCATGAGGCCAACGTCGGCGAGCCGATCTCC
 CATCGGTATGTCGGGATATAGGCAGCAACCGCACCTGTGGCGCGGTGATGCCGG
 CCACGATGCGTCCGGGTAGAGGATCTGGTAGCGATGACCTGCTGATTGGTTCGCTGA
 CCATTTCGGGGTGGCAACGGCTTACCAAGAAACTCAGAAGGTTGCTCAACCAAACCG
 35 ACTCTGACGGCAGTTACGAGAGATGATAGGGTCTGCTCAGTAAGCCAGATGCTACA
 CAATTAGGCTGTACATATTGCTTAGAACCGGGCTACATTAAACATAACCTTATGTT
 ATCATACACATACGATTAGGTGACACTATAGAAATACAAGCTGGAAGATCTTCAGCTTG
 GGCTGCAAGTGCAGCTAGTCCGTTACATACCTACGGTAAATGGCCCTGGCTGA
 CCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCA
 40 ATAGGGACTTCCATTGACGTCAATGGGGTGGTATTACGGTAAACTGCCACTGGCA
 GTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGG
 CCCGCCCTGGCATTATGCCAAGTACATGACCTTATGGGACTTCTACTTGGCAGTACATC
 TACGTATTAGTCATCGCTATTACCATGGTGTGCGGTTGGCAGTACATCAATGGCGT
 GGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGT
 45 TTGTTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGTAACAACCTCCGCCATTG
 ACGAAATGGCGGTAGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGTTAGTG
 AACCGCCAGTCTCCGATAGACTGCGTCGCCGGTACCGTATTCCAATAAGCCT
 CTTGCTGTTGATCCGAACTCGTGTCTCGCTGTTGGAGGGTCTCCTCTGAGTGA
 TTGACTACCCACGACGGGGTCTTCATTGGGGCTCGTCCGGGATTGGAGACCCCTG
 50 CCCAGGGACCAACGCCACCCACCGGGAGGTAAAGCTGGCAGCAACTTATCTGTCTGT
 CCGATTGCTAGTGTCTATGTTGATGCTGCGCTGCGTGTACTAGTTAGCTAACT
 AGCTCTGTATCTGGCGGACCCCGTGGTGAACCTGACGAGTTCTGAACACCCGGCCGCAACC
 CTGGGAGACGTCCCAGGGACTTGGGGCGTCTTGTGGGGACCTGAGGAAGGGAGT
 CGATGTGAATCCGACCCCGTCAGGATATGTTGTTCTGGTAGGAGACGAGAACCTAAAAC
 55 AGTTCCGCCCTCGCTGAATTGGCTTGGTGGAAACCGAAGCCGCGCGTCTGTC
 TGCTGCAAGCAGTCAGCATCGTCTGTTGCTGACTGTGTTCTGATTTG
 CTGAAAATTAGGGCAGACTGTACCACTCCCTAAAGTTGACCTTAGGTACTGGAAAG
 ATGTCAGCGGATCGCTACAACCAAGTCGGTAGATGTCAGAAGAGACGTTGG

GTTACCTCTGCTTGAGAATGGCAACCTTAACGTCGGATGGCCGCCAGACGGCACC
 TTTAACCGAGACCTCATCACCCAGGTTAAGATCAAGGTCTTTCACCTGGCCGCATGGA
 CACCCAGACCAGGTCCCCCTACATCGTGCACCTGGGAAGGCCCTGGCTTTGACCCCCCTCCC
 5 TGGGTCAAGCCCTTGTACACCCTAACGCTCCGCCCTCTCCTCCATCCGCCCCGTCT
 CTCCTCTGAACCTCTCGTGCACCCGCTCGATCCTCCCTTATCAGCCCTACT
 CCTCTCTAGGGCGCCGAAATCGTTAACTCGAGAGGCCCTGCCACCATGGGACTGCTCCA
 AAGAAGAAGCGTAAGGTAGTCGTTTACAACGTCGTGACTGGAAAACCTGGCGTAC
 CAACCTAATGCCCTTGAGCACATCCCCCTTCGCCAGCTGGCTAATAGCGAAGAGGCC
 10 CGCACCGATGCCCTTCCAACAGTGCAGCCTGAATGGGAATGGCCTTGCGCTGG
 TTTCCGGCACCGAGCGGTGCCGAAAGCTGGCTGGAGTGCAGCTTCTGAGGCCGAT
 ACTGTCGTCGTCCTCAAACCTGGCAGATGCACGGTACGATGCGCCCATCTACACCAAC
 GTAACCTATCCATTACGGTAATCCGCCGTTGTTCCACGGAGAATCCGACGGTTGT
 TACTCGTCACATTAAATGTTGATGAAAGCTGGTACAGGAAGGCCAGACCGAATTATT
 15 TTTGATGGCGTTAACCTGGCGTTCATCTGTTGCAACGGCGCTGGGTCGGTACGGC
 CAGGACAGTCGTTGCCGCTGAATTGACCTGAGCGCATTTCACGCCGGAGAAC
 CGCCTCGGGTGTGGCTGCCTGGAGTGACGGCAGTTATCTGGAAAGATCAGGATATG
 TGGCGGATGAGCGCATTTCCGTGACGTCTCGTTGCTGCATAAAACCGACTACACAAATC
 AGCGATTCCATGTTGCCACTCGCTTAATGATGATTTCAGGCCGCTGTAACGGAGGCT
 20 GAAGTTCAGATGTCGGCGAGTTGCGTGAACCTACGGTAACAGTTCTTATGGCAG
 GGTGAAACCCAGGTGCCAGCGGCACCGCCCTTCGGGGTGAATTATCGATGAGCGT
 GGTGGTTATGCCATGCCGTCACACTACGCTGAACGTCGAAAACCGAAACTGTGGAGC
 GCCGAAATCCGAATCTATCGCCGGTGGTGAACTGCACACGCCGACGGCACGCTG
 ATTGAAGCAGAAGCCTGCCATGTCGTTCCGGAGGTGCGGATTGAAAATGGTCTGCTG
 25 CTGCTGAACGGCAAGCCGGTGTGATTCAGGGCTTAACCGTCACGAGCATCATCCTG
 CATGGTCAGGTATGGATGAGCAGACGATGGTGCAGGATATCTGCTGATGAAGCAGAAC
 AACTTTAACGCCGTGCCGTTCGCAATTCCGAACCATCCGCTGTGGTACACGCTGTG
 GACCGCTACGGCTGTATGTTGGGATGAAGCCAATTGAAAACCCACGCCATGGTCCA
 ATGAATCGTCTGACCGATGATCCGGCTGGCTACCGCGATGAGCGAACCGTAACCGA
 30 ATGGTGCAGCGCAGCTGAATCACCCGAGTGTGATCATCTGTCGCTGGGAAATGAATCA
 GGCCACGGCGTAATCACGACGCCGTATCGCTGGATCAAATCTGTCGATCCTCCGC
 CCGGTGCACTGAAAGCCGGAGCCGACACCGACGGCACCGATATTATGGCCGATG
 TACGCGCGCTGGATGAAGACCAGCCCTCCCGCTGTGCGGAAATGGTCCATAAAAAA
 TGGCTTCCGCTACCTGGAGAGACGCCGCGCTGATCCTTGGAAATGCCACGCCGATG
 35 GGTAACAGTCTGGCGTTCTGCTAAATACTGGCAGGGCTTCGCTGATGTTGGGTTA
 CAGGGCGGCTTCGCTGGGACTGGGATCAGTCGCTGATTAATATGATGAAAACGGC
 AACCCGTGGCTGGCTTACGGCGTGGATGGCGATACGCCAACGATGCCAGTTCTGT
 ATGAACGGTCTGGTCTTGGCAACGCCACGCCATCCAGCGCTGACGGAAAGCAAAACAC
 CAGCAGCAGTTTCCAGTCCGTTATCCGGGAAACCATCGAAGTGACCGAGCGAAC
 40 CTGTTCCGTCATAGCGATAACGAGCTCCTGCACTGGATGGGGCTGGATGTTAAGCCG
 CTGGCAAGGGTGAAGTCCTCTGGATGTCGCTCCACAAGGTAACAGTGATTGAACTG
 CCTGAACTACCGCAGCCGGAGAGGCCGGCAACTCTGGCTCACAGTACCGTAGTGAA
 CCGAACGCCACCGCATGGTCAGAACGCCGGCACATCAGGCCCTGGCAGCAGTGGCTG
 GCAGGAAAACCTCAGTGTGACGCTCCCCGCCGTCCCACGCCATCCGATCTGACCA
 45 AGCGAAATGGATTTGCACTGAGCTGGTAATAAGCGTTGCAATTAAACCGCCAGTCA
 GGCTTCTTCACAGATGTTGATGGGATAAAAAACAAACTGCTGACGCCGCTGGCGAT
 CAGTTCACCGGTGACCGCTGGATAACGACATGGCGTAAGTGAAGCGACCCGATGAC
 CCTAACGCCCTGGCGAACGCTGGAAAGGCCGGGCAATTACAGGCCGAAGCAGCGTTG
 TTGCACTGCAAGGAGATGGCTGATGGGCTGATACGACCCGCTCACCGCTGG
 50 CAGCATCAGGGAAAACCTTATTATCAGCGGAAAACCTAACCGGATTGATGGTAGTGGT
 CAAATGGCGATTACCGGTGATGTTGAGTGGCAGGCGATACACCGCATCCGGCGGGATT
 GGCGCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAACCTGGCTGGATTAGGGCG
 CAAGAAAACATATCCGACCGCTTACTGCCGCTGTTTGACCGCTGGGATCTGCCATTG
 TCAGACATGATACCCGTCAGTCTCCCGAGCGAAAACGGTCTGCCGCTGGGAGCGCG
 55 GAATTGAATTATGCCAACACCGAGGGCGGAGCTCCAGTTCAACATCAGCCGCTAC
 AGTCAACAGCAACTGATGGAAACCGACCATGCCATCTGCTGCACGCCGAAGAAGGCACA
 TGGCTGAATATCGACGGTTCCATGGGGATTGGTGGCGACGACTCCTGGAGGCCGTCA
 GTATCGGCGGAATTCCAGCTGAGGCCGGTGCCTACCAATTACCAAGTTGGCTGGTCAA
 AAATAATAATAACCGGGCAGGGGGATCCGAGATCCGGCTGGAATGTTGTCAGTTA
 60 GGGTGTGAAAGTCCCCAGGCTCCAGCAGGCCAGAAGTATGCAAAGCATGCCGAGGA

GTGGGGAGGCACGATGGCCGTTGGTCAGGGCGGATCCGCCATTAGCCATTATTCA
 TTGGTTATATAGCATAAAATCAATTGGCTATTGGCATACGTGTATCCATATC
 ATAATATGTACATTATGGCTCATGTCAAACATTACGCCATGTTGACATTGATTAT
 TGACTAGTTATAATAGTAATCAATTACGGGCTGGCTGACCCCAACGACCCCCGCC
 5 TCCCGTACATAACTTACGGTAATGGCCCGCTGGCTGACCCCAACGACCCCCGCC
 CATGACGTCAATAATGACGTATGTTCCCATAGTAAGCCAATAGGACTTTCCATTGAC
 GTCAATGGGTGGAGTATTACGGTAAACTGCCCCTTGGCAGTACATCAAGTGTATCATA
 TGCCAAGTACGCCCTTATGACGTCAATGACGGTAAATGGCCGCTGGCATTATGCC
 AGTACATGACCTTATGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA
 10 TTACCATGGTATGCGGTTTGGCAGTACATCAATGGCGTGATAGCGGTTGACTCAC
 GGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTTTGGCACCAAAATC
 AACGGGACTTCCAAAATGCGTAACAACCTCCGCCATTGACGCAATGGCGTAGGC
 ATGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACCGTCAGATCGCTGG
 GACGCCATCCACGCTTTGACCTCATAGAACACCGGGACCGATCCAGCCTCCGCG
 15 GCCCAAGCTTGTGGATCCACCGTCGCCACCAGGGTAGCAAGGGCGAGGAGCTGTT
 CACCGGGGTGGTGGCCCATCTGGTCAGCTGGACGCGACGTAACGGCCACAAGTTCA
 CGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGCGAAGCTGACCCCTGAAGCTCATCTG
 CACCAACGGCAAGCTGCCGTGCCCTGCCACCCCTCGTGAACCCCTGACCTACGGCGT
 GCAGTGCCTCAGCCGCTACCCGACCATGAAAGCAGCACGACTCTTCAAGTCCCGCAT
 20 GCGCGAAGGCTACGTCAGGGAGCGACCATCTCTCAAGGAGCACGGCAACTACAAGAC
 CGCGCGCAGGGTGAAGTTCAGGGCGACACCCCTGGTGAACCGCATCGAGCTGAAGGGCAT
 CGACTTCAGGGAGGCGCAACATCCTGGGCAACAGCTGGAGTACAACACTACAAGCCA
 CAACGCTCATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACCTCAAGATCCG
 CCACAAACATCGAGGACGGCAGCGTGCAGCTGCCGACCACTACCAGCAGAACACCCCAT
 25 CGCGCGACGGCCCGTGTGTCGCCGACAACCACTACCTGAGCACCCAGTCCGCCCCGAG
 CAAAGACCCCAACGAGAAGCGCGATCACATGGTCTGCTGGAGTTCGTGACCGCCGCCGG
 GATCACTCTGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCACTAGATCATATACT
 AGCCATACCACATTGTAGAGGTTTACTTGCTTAAAAAACCTCCCACACCTCCCCCTG
 AACCTGAAACATAAAAATGAATGCAATTGTTGTTAACATCGATAAAATAAGATTTT
 30 ATTGACTCTCCAGAAAAAGGGGGATGAAAGACCCACCTGTAGGTTGGCAAGCTAGC
 ATAACCTCGTATAATGTATGCTATACGAAGTTACTCTAGAGAACCATCAGATGTTCCAG
 GGTGCCCAAGGACCTGAAATGACCTGTGCTTATTGAACTAACCAATCAGITCGCTT
 CTGCTTCTGTCGCGCCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCTCA
 CTGGGGCGCAGTCTCCGATTGACTGAGTCGCCCCGGTACCGTGTATCCAATAAACCC
 35 CTCTTGAGTGTGACTCGACTGTGGTCTCGTGTCTGGAGGGTCTCTGTGAGTGG
 ATTGACTACCGTCAGCGGGGTTCTCATTTGGGCTCGTCGGGATCGGGAGACCC
 TGCCCAAGGGACCCACCGACCCACCGGGAGGTAAGCTGGCTGCCCTCGCGTTGGT
 ATGACGGTAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTGTGTGAAAG
 CGGATGCCGGGACAGACAAGCCGTCAGGGCGCGTCAGGGGGTGTGGCGGGTGTGCGG
 40 GCGCAGCCATACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACATATGCC
 ATCAGAGCAGATTGACTCGAGAGTGCACCATATGGGTGTGAAATACCGCACAGATGCGT
 AAGGAGAAAATACCGCATCAGCGCTTCCGCTTCCGCTACTGACTCGCTGCGCTC
 GGTGTTCGGCTCGCGAGCGGTATCAGCTACTCAAAGGCGTAATACGTTATCCAC
 AGAATCAGGGATAACGCGAGAACATGTGAGCAAAGGCAGCAAAGGCCAGGAA
 45 CCGTAAAAAGGCCGCTGGCTGGCTTTCCATAGGCTCGCCCCCTGACGAGCATCA
 CAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAGATAACCG
 GTTCCCCCTGGAAGCTCCCTCGTGCCTCTCCTGTTCCGACCCCTGCCCTTACCGGATA
 CCTGTGCGCTTCTCCCTCGGGAAAGCGTGGCGCTTCTCATAGCTCACGCTGTAGGTA
 TCTCAGTTCGGTGTAGTCGCTCAAGCTGGCTGTGTCAGCAACCCCGTTCA
 50 GCCCGACCGCTGCGCTTACCGGTTACTATGCTTGTAGTCAACCCGTAAGACACGA
 CTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCG
 TGCTACAGAGTTCTGAAAGTGGCTTAACCTACGGCTACACTAGAAGGACAGTATTGG
 TATCTGCGCTGCTGTAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTTGTGATCCGG
 CAAACAAACCAACCGCTGGTAGCGGTGTTTTGTTGCAAGCAGCAGATTACGCCAG
 55 AAAAGGAGATCTCAAGAAGATCCTTGATCTTTCTACGGGCTGACGCTCAGTGGAA
 CGAAAACCTACGTTAAGGGATTGGTGTAGGATATCAAAAGGATCTCACCTAGAT
 CCTTTAAATAAAAATGAAGTTTAAATCAATCTAAAGTATATGAGTAAACTTGGTC
 TGACAGTTACCAATGCTTAATCAGTGAGGCCCTATCTCAGCGATCTGTATTCGTT
 ATCCATAGTGCCTGACTCCCGTCGTGTAGATAACTACGATAACGGGAGGGTACCATC
 60 TGCCCCAGTGCATGCAATGATACCGCGAGACCCACGCTCACCGCTCCAGATTATCAGC

AATAAACAGCCAGCGGAAGGGCGAGCGCAGAAGTGGTCTGCAACTTATCCGC
 5 CATCCAGTCTATTAAATTGTTGCCGGGAAGCTAGAGTAAGTAGTCGCCAGTTAAATAGTT
 GCGCAACGTTGTGCCATTGCTGCAGGCATCGTGGTGTACGCTCGTCGTTGGTATGGC
 TTCATTCAAGCTCCGGTCTCCAACGATCAAGGCAGTTACATGATCCCCCATGTTGTGCAA
 AAAAGCGTTAGCTCCTCGGTCTCCGATCGTGTAGAAGTAAGTTGGCCGCAGTGT
 10 ATCACTCACTGTTATGGCAGCACTGCATAATTCTTACTGTCTCATGCCCATCCGTAAGATG
 CTTTCTGTGACTGGTAGACTCAACCAAGTCATTGAGAATAGTGATGCGGCCACC
 GAGTTGCTCTGCCGGTCAACACGGGATAATACCGGCCACATAGCAGAACTTTAAA
 AGTGTCTCATCATTGGAAAAGCTTCTCGGGCGAAAAGTCTCAAGGATCTTACCGCTGTT
 GAGATCCAGTTCGATGTAACCCACTCGTCACCCAACTGATCTTCAGCATTTTACTTT
 15 CACCAAGCGTTCTGGTAGCAGCAAAACAGGAAGGCAAATGCCGAAAAAGGAAATAAG
 GGCGACACGAAATGTGAATACTCATACTCTCCTTTCAATATTATTGAAGCATTTA
 TCAGGGTTATTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAATAACAAAT
 AGGGGTTCCGCGCACATTCCCCGAAAAGTGCACCTGACGTCTAAGAAACCATTATTAT
 20 CATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTCGTCTCAAGAATTCA
 ACCAGATACCGAAAATGTCTCCAAATGTGCCCCCTCACACTCCCAAATTGCGGGC
 TTCTGCCTCTTAGACCACTCTACCCATTCCCCACACTCACCGGAGCCAAGCCGCC
 CTTCCGTTCTTGCTTTGAAAGACCCCACCCGTAGGTGCAAGCTAGCGATGACCTG
 CTGATTGGTCTGACCATTTCCGGGTGCGGAACGGCGTTACCGAGAAACTCAGAAGGT
 25 TCGTCCAACCAAACCGACTCTGACGGCAGTTACGAGAGAGATGATAGGGTCTGCTTCAG
 TAAGCCAGATGTCACAAATTAGGCTTGTACATATTGTCGTTAGAACCGGGCTACAATT
 ATACATAACCTTATGTATCATACACATACGTTAGGTGACACTATAGAATACAAGCTGG
 AAGATCTCCAGCTGGCTGACGGCCAAAGCCCCCGCCATTGACGTCAATAATGACGTATGT
 TGGCCCGCCTGGCTGACGGCCAAAGCCCCCGCCATTGACGTCAATAATGACGTATGT
 30 TCCCATAGTAACGCAATAGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTA
 AACTGCCACTTGGCACTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGT
 CAATGACGGTAATGGCCCGCTGGCATTATGCCAAGTACATGACCTTATGGACTTCC
 TACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTGTGCGGTTGGCA
 GTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAAGTCTCCACCCAT
 35 TGACGTCAATGGGAGTTGTTGGCACCAAATCAACGGACTTCCAAAATGTCTGAA
 CAACTCCGCCCCATTGACGCAATGGCGGTAGCGTGTACGGTGGAGGTCTATATAAG
 CAGAGCTCGTTAGTGAACCGCGCCAGTCTCCGATAGACTGCGTCGCCGGTACCGT
 ATTCCCAATAAGCCTTGTCTGTTGACATCCGAATCGTGGTCTCGCTGTTCTGGAG
 GGTCTCCTCTGAGTGAACCTACCCACGACGGGGGTCTTCATTGGGGGCTCGTCCGG
 40 GATTGGAGACCCCTGCCAACGGACCACCGAACCAACCCCCGGAGGTAAAGCTGGCAGCA
 ACTTATCTGTCTGCTGCGATTGCTAGTGTCTATGTTGATGTTATGCGCCTGCGTCTG
 TACTAGTTAGCTAACTAGCTCTGATCTGGGAGACGTCGGAGGACTTGGGGCCGTTTGTGGCC
 ACCTGAGGAAGGGAGTCGATGTGAATCCGACCCCGTCAGGATATGTGGTTCTGGTAGGA
 45 GACGAGAACCTAAACAGTCCGCCCTCCGTCGAATTTCGTTTGGAAACCGA
 AGCCGCGCGTCTTGTCTGCTGCAGCGCTGCAGCATCGTTCTGTGTTCTGACT
 GTGTTCTGTATTGTCTGAAAATTAGGGCCAGACTGTTACCACTCCCTAAGTTGACC
 TAGGTCACTGGAAAGATGTCGAGCGGATCGCTACAACCAGTCGGTAGATGTCAAGAAG
 AGACGTTGG

PCGCLNGFR (SEQ ID No 57)

GTTACCTCTGCTCTGAGAACCTTAACGTCGGATGCCCGAGACGGCACC
 50 TTTAACCGAGACCTCATACCCAGTTAACGATCAAGGTCTTCACCTGGCCCGATGGA
 CACCCAGACCCAGGTCTTACATCGTACCTGGAAAGCCTGGCTTTGACCCCCCTCCC
 TGGGTCAAGCCCTTGACACCTTAAGCCTCCGCCTCTCCATCCGCCCCGCT
 CTCCCCCTTGAAACCTCTCGTTGACCCGGCTCGATCCCTCCCTTATCCAGCCCTCACT
 CCTCTCTAGGCGCCGAATTGCTTAACCTGAGGATCCACCGTCGCCACCATGGTGAGC
 AAGGGCGAGGAGCTGTTACCGGGGGTGGTGCACCTGGTGTGAGCTGGACGGCGACGTA
 55 AACGGCCACAAGTTCAAGCGTGTCCGGCAGGGCGAGGGCGATGCCACCTACGGCAAGCTG
 ACCCTGAAGTTCATCTGCACCAACCGCAAGCTGCCGTGCCCTGGCCACCCCTCGTGC
 ACCCTGACCTACGGCGTGCAGTGTCTCAGGCCCTACCCGACCACATGAAGCAGCACGAC
 TTCTTCAGTCCGCCATGCCGAAGGCTACGTCAGGCCACCATCTCTTCAAGGAC
 GACGGCAACTACAAGACCCCGCAGGTGAAGTTGAGGGCGACACCTGGTGAACCGC
 60 ATCGAGCTGAAGGGCATGACTCAAGGAGGACGGCAACATCCTGGGGACAAGCTGGAG

TACAAC TACA ACAG CCACA ACGT TATAT CATGGCCGACAAGCAGAAGAACGGCATCAAG
 GTGAAC TTCAAG ATCCGCCACAACATCGAGGACGGCAGCGTG CAGCTGCCGACC ACTAC
 CAGCAGAACACCCCCATCGGCAGGGCCCCGTGCTGCCGACAACCAACTACCTGAGC
 ACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAACGCGCATCACATGGTCCCTGCTGGAG
 5 TTCGTGACCGCCGCCGGATCACTCTCGGCATGGACGAGCTG TACAAGTAAGCGGCCCT
 AGGGGTCTTCCCCTCTGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCA
 GTTCCCTTGGAAAGCTTCTGAAGACAACACGCTCTGAGCAGCCAAAGCCACCGAGTTGGTTAGCTGC
 AACCCCCCCTGGCGACAGCTGGCAGCTTCTACCGCAGT GCAAATCCGTGGCATCCAG
 10 TGCC TGAGGCTGGACGACCTCGCGAGTTCTACCGCAGT GCAAATCCGTGGCATCCAG
 GAAA CACAGCGCTATCCGCATCCATGCCCGAACTG CAGGAGTGGGAGGCACG
 ATGGCCGCTTGGTCGAGGCGGATCCGCCATTAGCCATATTATTCAATTGGTTATATAGC
 ATAATCAATATTGGCTATTGGCATTGCATAGTGTATCCATATCATAATATGTACAT
 TTATATTGGCTCATG TCAAACATTACGCCATGTTGACATTGATTATGACTAGTTATTA
 ATAGTAATCAATTACGGGT CATTAGTTCATAGCCATATATGGAGTTCCCGTTACATA
 15 ACTTACGGTAAATGGCCCGCTGGTGACCGCCAAACGACCCCCGCCATTGACGTCAAT
 AATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGA
 GTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC
 CCCTATTGACGTCAATGACGGTAAATGGCCGCTGGCATTATGCCAGTACATGACCTT
 ATGGGACTTTCTACTTGGCAGTACATCTAGTATTAGTCATCGCTATTACCATGGTGT
 20 GCGGTTTGGCAGTACATCAATGGCTGGTAGCGGTTGACTCACGGGATTTCAG
 TCTCCACCCATTGACGTCAATGGGAGTTGGTTTGGCACC AAAATCAACGGGACTTCC
 AAAATGTCGTAACAACCTCCGCCATTGACCAATGGGCGTAGGCATGTACGGTGGGA
 GGTCTATATAAGCAGAGCTGTTAGTGAACCCGCTAGATCCCTGGAGACGCCATCCACG
 CTGTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGCCCCAAGCTTAC
 25 CATGGGGCAGGTGCCACCGCCGCGCATGGACGGCGCCCTGCTGTTGCTGCT
 TCTGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCATGCCAACAGGCCCTGTACACACACAG
 CGGTGAGTGCTGCAAAGCCTGCAACCTGGCGAGGGTGTGGCCAGCCTGTGGAGCCAA
 CCAGACCGTGTGTGAGCCCTGCTGGACAGCTGAGCTGGTGGGGCTCCAGAGCATGTCGGCGCCGTGCGT
 CGAGCCGTGCAAGCCGTGACCGAGTGCCTGGAGACCCGAGCTCCGGAGTGGATTACACGGTCCAC
 30 GGAGGCCAGACGCCGTGCGCGCTGCGCTACGGCTACTACCAGGATGAGACGACTGG
 GCGCTGCGAGGCCGTGCCCGTGTGCGAGGCCGCTGGGCTCTGTTCTCTGCCAGGA
 CAAGCAGAACACCGTGTGCGAGGAGTGCCCGACGGCACGTATCCGACGAGGCCAACCA
 CGTGGACCGTGTGCTGCCCTGCAACCGTGTGCGAGGAGACCCGAGCTCCGGAGTGG
 CACACGCTGGGCCGACGCCGAGTGCCTGGAGATCCCTGGCCGGTGGATTACACGGTCCAC
 35 ACCCCCAGAGGGCTGGACAGCACAGCAGCCCCCAGCACCCAGAGGCCACTCCAGA
 ACAAGACCTCATGGCAGCGGTGGCAGGTGGTGGTGGACCATGATGGCAGCTCC
 GCCCGTGGTGACCGGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCATCTGGC
 TGCTGTGGTTGGCCCTGTGGCTACATAGCCTTCAAGAGGTGGAACAGCTGCTGAGT
 CGACTCTAGAGGATCCCCAACATCGATAAAATAAAAGATTTTATTTAGCTCCAGAAAAA
 40 GGGGGAAATGAAAGACCCACCTGTAGGTTGGCAAGCTAGCTTAAGTAACGCCATT
 CAAGGCATGGAAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGGTCAAGAACAGA
 TGGAACAGCTGAATATGGCCAAACAGGATATCTGTTGTAAGCAGTCTGCCGGCTC
 AGGGCAAGAACAGATGGAACAGCTGAATATGGCCAAACAGGATATCTGTTGTAAGCAG
 TTCTGCCCGGCTAGGGCCAAGAACAGATGGTCCCAGATGCGGTCCAGCCCTCAGCA
 45 GTTCTAGAGAACCATCAGATGTTCCAGGGTCCCCAAGGACCTGAAATGACCTGTG
 CTTATTTGAACTAACCAATCAGTTGCTCTCGCTTCTGTTGCGCGCTCTGCTCCCG
 AGCTCAATAAAAGAGCCCACAACCCCTCACTCGGGCGCCAGTCTCCGATTGACTGAGT
 CGCCCGGGTACCCGTGTATCCAATAACCCCTCTGCAAGTGCATCGACTTGTGGTCTCG
 CTGTTCTGGAGGGTCTCTGTAGTGAATTGACTACCCCTGAGCGGGGCTTTCT
 50 TGGGGCTCGTCCGGGATCGGAGACCCCTGCCAGGGACCCGCCACCCGGAG
 GTAAGCTGGCTGCCCTCGCGCTTGGTGTAGCAGGGTGAACGGGATGCCGGAGCAG
 CCCGGAGACGGTCACAGCTGTGTAAGCGGATGCCGGAGCAGACAAGCCGTAGGG
 CGCGTCAGGGGTGTTGGGGGCGTCCGGGCGCAGCCATGACCCAGTCAGTACG
 CGGAGTGTACTGGCTTAACATAGCGGCATCAGAGCAGATTGACTGAGAGTCAC
 55 ATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGCGCT
 GCTTCTCGCTCACTGACTCGCTCGCCTGGTGGCTGCGGCGAGCGGTATCAGCT
 CACTCAAAGGCCGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATG
 TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCTGTTGCGT
 CATAGGCTCCGCCCTGACGAGCATCACAAAATCAGCCTCAAGTCAGAGGTGGCGA
 60 AACCCGACAGGACTATAAGATACCAGCGTTCCCCCTGGAAGCTCCCTGTGCGCT

CCTGTTCCGACCCCTGCCGTTACCGGATACCTGTCGGCTTCTCCCTCGGAAGCGTG
 GCGCTTCTCATAGCTACGCTGTAGGTATCTAGTCGGTGTAGGTCGTCGCTCCAAG
 CTGGGCTGTGTGCA.CGAACCCCCCGTTCAAGCCGACTGCCCTTATCCGTAAC
 CGTCTTGAGTCCAACCCGGTAAGACACGACTTATCCCACTGGCAGCAGCCACTGGTAAC
 5 AGGATTAGCAGAGCGAGGTATGTAGGCGGTACAGAGTCTTGAAGTGGTGGCCTAAC
 TACGGCTACACTAGAAGGACAGTTGGTATCTGGCTCTGCTGAAGCCAGTTACCTTC
 GGAAAAAGAGTTGGTAGCTCTGTGTTGAAACAAACACCCTGGTAGCGGTGGTTTT
 TTTGTTGCAAGCAGCAGATTACGGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATC
 TTTCTACGGGCTGACGCTCAGTGGAACGAAAACACTCAGCTAACGGATTTGGTCATG
 10 AGATTATCAAAAGGATCTTCACCTAGATCCTTAAATTAAAAATGAAGTTTAAATCA
 ATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA
 CCTATCTCAGCGATCTGCTATTGTTCATCCATAGTGCCTGACTCCCCTGCTGTAG
 ATAACCTACGATACGGGAGGGTACCATCTGGCCCACTGCTGCAATGATACCGCAGAC
 CCACGCTCACCGGCTCCAGATTTACAGCAATAAACAGCAGCCGAAGGGCCGAGCGC
 15 AGAAGTGGCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTCGGGAAGCT
 AGAGTAAGTAGTCGCCAGTTAATAGTTGCGCAAGCTGTGCCATTGCTGCAGGCATC
 GTGGTGTCACTGCTCGTGTGGTATGGCTTCACTCAGTCCGGTCCCAACGATCAAGG
 CGAGTTACATGATCCCCATGGTGTGCAAAAAGCGGTTAGCTCTTCGGTCTCCGATC
 GTTGTCAAGTAAGTGGCCGAGTGTATCACTCATGGTATGGCAGCACTGCATAAT
 20 TCTCTTACTGTCATGCCATCCGTAAGATGCTTCTGTGACTGGTAGTACTCAACCAAG
 TCATTCTGAGAATAGTGTATGCGGGGACCGAGGCTCTGCCCCGGCTCAATACGGGAT
 AATACCGGCCACATAGCAGAACTTAAAGTGCATCATTCAGTGGAAAACGTTCTCGGG
 CGGAAACTCTCAAGGATCTTACCGCTGGTAGATCCAGTTCATGTAACCCACTCGTGCA
 CCCAATGATCTCAGCATCTTACTTACCTTACCGCTGGTAGACGAACTGGTACAGGA
 25 AGGCAAAATGCCGAAAAAGGGATAAGGGCAGACGGAAATGTTGAATACTCATACTC
 TTCTTTCAATATTAGCATTATCAGGGTATTGCTCATGAGCGGATAACATA
 TTGAGATGATTTAGAAAATAACAAATAGGGGTCGCCACATTCCCCGAAAAGTG
 CCACCTGACGCTCAAGAAACATTATTATCATGACATTAACTATAAAAGGCGTATC
 ACGAGGCCCTTCGTCGCCGTTGGTAGACGGTAAAACCTGACACATGCG
 30 CTCCGGAGACGGTCACAGCTGTCGTAAAGGGATGCCGGAGCAGACAAGCCGTCAG
 GGCAGCTCAGGGGTGTTGGCGGGTGTGCGGGCTGGCTTAACATGCGCATCAGAG
 ATTGTACTGAGAGTGACCATATGACATATTGCTGTTAGAACCGGCTACAATTAC
 ATAACCTTATGTATCATACACATACGATTAGGTGACACTATAGAACCTGACTCTAGAGT
 CGCTTACATAACTTACGGTAAATGCCCGCCTGGTAGACGGCCAACGACCCCCGCCC
 35 TGACGTCAATAATGACGTATGTTCCATAGTAACGCCATAGGGACTTCCATTGACGTC
 ATGGGTGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGC
 CAAGTACGCCCTTATGACGCTCAATGACGGTAAATGCCCGCTGGCATTATGCCAGT
 ACATGACCTTATGGACTTCCCTACTGGCAGTACATCTACGTATTAGTCATCGCTATTA
 CCATGGTAGCGGTTTGGCAGTACATCAATGGCGTGGTAGCGGTTGACTCACGGG
 40 GATTCCCAAGTCTCCACCCATTGACGTCAATGGAGTTTGGCACCACAAATCAAC
 GGGACTTCCAAATGCGTAACAACCTCCGCCATTGACCAAATGGCGGTAGCGTG
 TACGGTGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGCGCCAGTCTCCGATAG
 ACTGCGTCGCCGGTACCGTATCCAAATAAGCCTTGTGTTGATCCGAATCG
 TGGTCTCGTGTCTGGAGGGTCTCTGAGTAGTACTACCCACGACGGGGTC
 45 TTTCATTTGGGGCTCGTCCGGGATTGGAGACCCCTGCCAGGGACCACCGACCCACCA
 CCGGGAGGTAAAGCTGGCAGCAACTTATCTGTGTCGTGCGATTGCTAGTGTCTATGTT
 TGATGTTATGCGCCTCGTGTACTAGTTAGCTAACTAGCTCTGATCTGGCGGACCCG
 TGGTGGAACTGACGAGTTCTGAACACCCGGCCGAACCTGGAGACCTCCAGGGACTT
 TGGGGCCGTTTGTGGCCGACTGAGGAAGGGAGTCGATGTTGAATCCGACCCCCGTC
 50 AGGATATGTTCTGGTAGGAGACGAGAACCTAAACAGTTCCCGCTCCGTCTGAATT
 TTGCTTCTGGTTGGAGACGAGAACCTGGCGCTTGTCTGCTGAGCAGCATCGT
 TCTGTGTTGCTCTGACTGTGTTCTGATTTGTCTGAAATAGGGCCAGACTGT
 TACCAACTCCCTAACGTTGACCTAGGTCACTGGAAAGATGTCGAGCGGATCGCTACAA
 CCAGTCGGTAGATGTCAGAACAGACGTTGG
 55

PLTRloxP (SEQ ID No 58)

GCTAGGATAACTCGTATAATGTATGCTATACGAAGTTATTCTAGAGAACCATCAGATGT
 60 TTCCAGGGTGGCCCAAGGACCTGAAATGACCTGTGCTTATTGAACTAACCAATCAGT

TCGCTTCTCGCTCTGTCGCGCCTCTGCTCCCGAGCTCAATAAAAGAGCCCACAAC
 CCCTCACTCGGGCGCCAGTCCCTCGATTGACTGACTCGCCCGGTACCCGTATCCAA
 TAAACCCCTTGCAGTTGCATCCGACTTGCTGGCTCGTGTCTGGAGGGTCTCCTC
 TGAGTGATTGACTACCCGTCAAGCGGGGTCTTCATTGGGGCTCGTCGGGATCGGA
 5 GACCCCTGCCAGGGACCACCGACCCACCAACGGGAGGTAAAGCTGGCTGCCCGCGTT
 TCGGTGATGACGGTAAAAACCTGACACATGCACTCCCGAGACGGTCACAGCTTGT
 TGTAAGCGGATGCCGGAGCAGACAAGCCGTCAAGGGCGCTCAGCGGGTGTGGCGGGT
 GTCGGGCGCAGCCATGACCACTACGTAGCGTAGCGGAGTGTACTGGCTTAACTA
 TGCGGCATCAGAGCAGATTGACTGAGAGTGACCATATGGGTGTGAAATACCGCACAG
 10 ATGCGTAAGGAGAAAATACCGCATCAGGCCTTCCGCTCCTCGCTCACTGACTCGCT
 GCGCTCGGTGTTCGGCTCGCGAGCGGTATAGCTCACTAAAGGCAGTAATACGTT
 ATCCACAGAATCAGGGATAACGCAAGGAAAGAACATGTGAGCAAAGGCAGCAAAGGC
 CAGGAACCGTAAAAGGCCGCTTGTGGCTTTCCATAGGCTCCGCCCCCTGACGA
 GCATCACAAAATCGACGCTCAAGTCAGAGGGCGAACCCGACAGGACTATAAGATA
 15 CCAGGCCTTCCCCCTGGAAGCTCCCTCGTGCCTCTCTGGTCCGACCTGCCGCTTAC
 CGGATACCTGTCCGCTTCTCCCTCGGAAGCGTGGCTTCTCATAGCTCACGCTG
 TAGGTATCTCAGTTCGGTGTAGGTGTTGCCTCCAAGCTGGCTGTGTGACGAACCCCC
 CGTTCAAGCCGACCGCTGCCCTTACCGTAACTATGCTTGTAGTCCAACCCGGTAAG
 ACACGACTATCGCCACTGGCAGCAGCCACTGGTAACAGGTTACAGAGGAGGTATGT
 20 AGGCCTGCTCAGAGTTCTGGAAGTGGCTTAACAGGCTACACTAGAAAGGACAGT
 ATTGGTATCTCGCCTCTGTAAGCCAGTTACCTTCGGAAAAGAGTTGGTAGCTTGT
 ATCCGGCAACAAACCACCGCTGGTAGCGGTGTTTTGTTGCAAGCAGCAGATTAC
 GCGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATTTTACGGGCTGACGCTCA
 GTGGAACGAAAACTCACGTTAGGGATTGGCATGAGATTATCAAAGGATCTTCAC
 25 CTAGATCCTTTAAATTAAAAATGAAGTTTAAATCAATCTAAAGTATATGAGTAAC
 TTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCAGCGATCTGCTATT
 TCGTTCATCCATAGTTCGCTGACTCCCGTCGTGTAGATAACTACGATACGGGAGGGCTT
 ACCATCTGGCCCCAGTGTGCAATGATACCGCAGACCCACGCTCACCGCTCCAGATT
 ATCAGCAATAAAACCAGCCAGCCGAAGGGCCGAGCGCAGAAGTGGCTGCAACTTATC
 30 CGCCTCCATCCAGTCTATTAAATTGGTGCCTGGCATGCTGCAGGCATCGTGTGTCACGCTCGTGTG
 TAGTTTGCACAGTTGGCTTGCCATGCTGCAGGCATCGTGTGTCACGCTCGTGTG
 TATGGCTTCATTAGCTCCGGTCTCCAAACGATCAAGGGAGTTACATGATCCCCCATGTT
 GTGCAAAAAGCGGTAGCTCTCGGCTCCGATCGTGTGAGAAGTGGTGGCC
 AGTGTATCACTCATGGTTAGCGCAGACTGCAATAATTCTTACTGTCATGCCATCGT
 35 AAGATGCTTCTGTGACTGGTGTGACTCAACCAAGTCATTCTGAGAATAGTGTATGG
 GCCACCGAGTTGCTCTGCCGGCTCAACACGGATAATAACCGCCACATAGCAGAAC
 TTAAAAGGCTCATCATTGGAAAACGTTCTCGGGGCAAACACTCTCAAGGATCTTACC
 GCTGTTGAGATCCAGTTGCTGATGTAACCCACTCGTGCACCCAACGATCTCAGCATCTT
 TACTTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAATGCCGAAAAAGGG
 40 AATAAGGGGACACGAAATGTTGAATACTCATACTCTTCTTTCAATTATTGAAAG
 CATTTATCAGGGTTATGTCATGAGCGGATACATATTGAAATGTTAGAAAAATAA
 ACAAAATAGGGTTCCCGCAGATTCCCCGAAAGTGCACCTGACGTCAAGAACCAT
 TATTATCATGACATTAAACCTATAAAAATAGGCGTATCAGGAGGCCCTCGTCTTCAAGA
 ATTACATACCGAGATCACGAAACTGTCCTCCAAATGTTGTCCTCCACTCTCCAAATT
 45 GCGGGCTCTGCCTCTAGACCACTCTACCCATTCCCCACACTCACCGGAGCCAAAGCC
 CGGCCCTTCCGTTTGAAAGACCCACCGTAGGTGGCAA

LTR plasmid (SEQ ID No 59)

GCTAGCTTAAGTAACGCCATTTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAA
 50 GTTCAGATCAAGGTCAAGGAAACAGATGGAACAGCTGAATATGGCCAACAGGATATCTGT
 GGTAAGCAGTTCTGCCCCGGCTCAGGGCAAGAACAGATGGAACAGCTGAATATGGGCC
 AAACAGGATATCTGTGTAAGCAGTTCTGCCCGGCTCAGGGCAAGAACAGATGGTCC
 CCAGATGCCGTCCAGCCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGGCC
 CAAGGACCTGAAATGACCTGTGCTTATTGAACTAACCAATCAGTTGCTTCTCGCTT
 55 CTGTTCGCGCTTCTGCTCCCGAGCTCAATAAAAGAGCCCACAACCCCTCACTCGGGG
 CGCCAGTCTCGATTGACTGAGTCGCCGGTACCCGTGTATCCAATAACCCCTCTTGC
 AGTTGCATCCGACTTGTGGTCTCGTGTCTGGAGGGTCTCTGAGTGATTGACT
 ACCCGTCAGCGGGGCTTTCATTGGGGCTCGTCCGGGATCGGAGACCCCTGCCAG
 GGACCACCGACCCACCCACCGGAGGTAAGCTGGCTGCCCTCGCGTTCGGTGATGACGG

TGAAAACCTCTGACACATGCAGCTCCCGAGACGGTCACAGCTTGTCTGAAGGGATGC
 CGGGAGCAGACAAGCCCGTCAGGGCGCTCAGCGGTGTTGGGGGTGCGGGGCCAGC
 CATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACATGCGGCATCAGAG
 CAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGA
 5 AAATACCGCATCAGGGCCTCTTCGCTTCCTCGCTCACTGACTCGCTCGCTCGTCGT
 CGGCTGGGGAGCGGTATCAGCTACTCAAAGGGGTAATACGGTTATCCACAGAACATCA
 GGGGATAACCGAGGAAAGAACATGTGAGCAAAGGCCAGCAAAAGGCCAGGAACCGTAAA
 AAGGCCGCTTGCTGGCTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAAT
 CGACGCTCAAGTCAGAGGTGGCAGAACCCGACAGGACTATAAAGATACCAGGCCTTCCC
 10 CCTGGAAGCTCCCTCGTCGCTCTCTGTTCCGACCCCTGCCGTTACCGGATACCTGTCC
 GCCTTCTCCCTCGGGAGCGTGGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGT
 TCGGTGTAGGTGTTCGCTCCAAGCTGGGCTGTGTGACGAAACCCCCGTTCAGCCGAC
 CGCTGCGCTTATCCGTAACATATCGTCTTGAGTCCAACCCGTAAGACACGACTTATCG
 CCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGGGGTGCTACA
 15 GAGTTCTTGAAGTGGTGGCTTAACACTACGGCTACACTAGAAGGACAGTATTGGTATCTGC
 GCCTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTTGTATCCGGAAACAA
 ACCACCGCTGGTAGCGGTTGGTTGGTTGTTGCAAGCAGCAGGATTACGCGCAGAAAAAA
 GGATCTCAAGAAGATCCTTGATCTTCTACGGGTCTGACGCTCAGTGAACGAAAC
 TCACGTTAAGGGATTGGTCATGAGATTACAAAAGGATCTCACCTAGATCCTTTA
 20 AATTAAAAATGAAGTTAAATCAACTAAAGTATATATGAGTAAACTTGGTCTGACAGT
 TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTTATTCGTTCATCCATA
 GTTGCCTGACTCCCCGTGTTGAGATAACTACGATACGGGAGGGCTTACCATCTGGCCC
 AGTGTCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAAC
 CAGCCAGCGGAAGGGCGAGCGCAGAAGTGGTCTGCAACTTATCCGCTCCATCCAG
 25 TCTATTAAATTGGCCGGGAAGCTAGAGTAAGTAGTTGCCCAGTTAATAGTTGCGCAAC
 GTTGGTGCATTGTCAGGCATCGTGGTGTACGCTCGTCTGGTATGGCTTCATT
 AGCTCCGGTCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGTGCAAAAAGCG
 GTTAGCTCCTCGGTCTCGATCGTGTGAGAAGTAAGTTGCCGAGTGTATCACTC
 ATGGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCATCCGTAAGATGCTTTCT
 30 GTGACTGGTAGACTCAACCAAGTCATTCTGAGAAATAGTGTATGCCGACCGAGTTGC
 TCTTGCCGGCGTCACACCGGATAATACCGGCCACATAGCAGAACCTTAAAGTGCTC
 ATCATGGAAAACGTTCTCGGGGCGAAACTCTCAAGGATCTTACCGCTGTGAGATCC
 AGTTGATGTAACCCACTCGTGCACCCAAGTGTCTCAGCATCTTACTTCAACCAGC
 GTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGCAAAAAGGGAATAAGGGCGACA
 35 CGGAAATGTTGAATACTCTCTTTCAATATTGAAAGCATTATCAGGGT
 TATTGTCATGAGCGGATACATATTGATGTTAGAAAATAAACAAATAGGGGT
 CCGCGCACATTCCCCGAAAGTCCACCTGACGTCTAAGAAACCATTATTATCATGACA
 TTAACCTATAAAAATAGGGCTATCACGGGCCCTTGTCTTCAAGAATTCAACCAGAT
 CACCGAAAATGTCTCCAAATGTGTCCCCCTCACACTCCAAATTGCCGTTCTGCC
 40 TCTTAGACCACTTACCCATTCCCCACACTCACCGGAGCCAAAGCCGCGCCCTTCCGT
 TTCTTGCTTGTAAAGACCCACCCGTAGGTGGCAA

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 00/03837

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/867 C12N15/90 C12N5/10 C12N7/01 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	VANIN E. F. ET AL.: "Development of high-titer retroviral producer cell lines by using Cre-mediated recombination." JOURNAL OF VIROLOGY, vol. 71, no. 10, 1997, pages 7820-7826, XP002161355 ISSN: 0022-538X cited in the application the whole document --- -/-	1-51

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search

26 February 2001

Date of mailing of the international search report

13/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Mandl, B

INTERNATIONAL SEARCH REPORT

Patent Application No
PCT/GB 00/03837

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KARREMAN S. ET AL.: "ON THE USE OF DOUBLE FLP RECOGNITION TARGETS (FRTS) IN THE LTR OF RETROVIRUSES FOR THE CONSTRUCTION OF HIGH PRODUCER CELL LINES" NUCLEIC ACIDS RESEARCH, vol. 24, no. 9, 1 May 1996 (1996-05-01), pages 1616-1624, XP000616161 ISSN: 0305-1048 cited in the application the whole document ---	1-51
A	IWAKUMA T. ET AL.: "SELF-INACTIVATING LENITVIRAL VECTORS WITH U3 AND U5 MODIFICATIONS" VIROLOGY, vol. 261, no. 1, 15 August 1999 (1999-08-15), pages 120-132, XP000882897 ISSN: 0042-6822 the whole document ---	1-51
A	BOAST K. ET AL.: "CHARACTERIZATION OF PHYSIOLOGICALLY REGULATED VECTORS OF THE TREATMENT OF ISCHEMIC DISEASE" HUMAN GENE THERAPY, vol. 10, no. 13, 1 September 1999 (1999-09-01), pages 2197-2208, XP000876772 ISSN: 1043-0342 the whole document ---	1-51

FURTHER INFORMATION CONTINUED FROM PCT/SA/ 210

Continuation of Box I.2

Claims Nos.: 45-48

Said claims 45-48 could not be searched because they were not present in the application.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.