Machine Learning Notation

Shan-Hung Wu

1 Numbers & Arrays

A scalar (integer or real)

A scalar constant

A vector

A matrix \boldsymbol{A}

A tensor

 \boldsymbol{I}_n The $n \times n$ identity matrix

A diagonal matrix

diag(a)A square, diagonal matrix with diagonal entries given by a

A scalar random variable

A vector-valued random variable \mathbf{a}

A matrix-valued random variable

Sets & Graphs 2

A A set

The set of real numbers

 $\{0, 1\}$ The set containing 0 and 1

 $\{0, 1, \cdots, n\}$ The set of all integers between 0 and n

> [a,b]The real interval including a and b

(a,b]The real interval excluding a but including

 $\mathbb{A} \setminus \mathbb{B}$ Set subtraction, i.e., the set containing the elements of \mathbb{A} that are not in \mathbb{B}

A graph whose each vertex $\mathbf{x}^{(i)}$ denotes a random variable and edge denotes conditional dependency (directed) or correlation (undirected)

 $Pa(\mathbf{x}^{(i)})$ The parents of a vertex $\mathbf{x}^{(i)}$ in \mathcal{G}

Indexing 3

Element i of vector \boldsymbol{a} , with indexing starting at 1

All elements of vector \boldsymbol{a} except for element

Element (i, j) of matrix \boldsymbol{A} $A_{i,j}$

 $A_{i.:}$ Row i of matrix \boldsymbol{A}

 $oldsymbol{A}_{:,i}$ Column i of matrix \boldsymbol{A}

Element (i, j, k) of a 3-D tensor **A** $A_{i,j,k}$

 $2\text{-}\mathrm{D}$ slice of a 3-D tensor $\mathbf{A}_{:,:,i}$

Element i of the random vector \mathbf{a}

4 **Functions**

 $f: \mathbb{A} \to \mathbb{B}$ A function f with domain \mathbb{A} and range \mathbb{B}

Composition of functions f and g

 $f(\boldsymbol{x};\boldsymbol{\theta})$ A function of x parametrized by θ (with θ omitted sometimes)

 $\ln x$ Natural logarithm of x

Logistic sigmoid, i..e, $(1 + \exp(-x))^{-1}$ $\sigma(x)$

Softplus, ln(1 + exp(x)) $\zeta(x)$

 L^p norm of \boldsymbol{x} $\|\boldsymbol{x}\|_p$

 L^2 norm of \boldsymbol{x} $\|\boldsymbol{x}\|$

 x^+ Positive part of x, i.e., $\max(0, x)$

1(x; cond)The indicator function of x: 1 if the condition is true, 0 otherwise

g[f;x]A functional that maps f to f(x)

Sometimes we use a function f whose argument is a scalar, but apply it to a vector, matrix, or tensor: f(x), f(X), or f(X). This means to apply f to the array element-wise. For example, if $C = \sigma(X)$, then $C_{i,j,k} = \sigma(X_{i,j,k})$ for all i, j and k.

Calculus 5

f'(a) or $\frac{df}{dx}(a)$ Derivative of $f: \mathbb{R} \to \mathbb{R}$ at input

> $\frac{\partial f}{\partial x_i}(\boldsymbol{a})$ Partial derivative of $f: \mathbb{R}^n \to \mathbb{R}$ with respect to x_i at input a

 $\nabla f(\boldsymbol{a}) \in \mathbb{R}^n$

Gradient of $f: \mathbb{R}^n \to \mathbb{R}$ at input \boldsymbol{a} $\nabla f(\mathbf{A}) \in \mathbb{R}^{m \times n}$ Matrix derivatives of $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ at input \boldsymbol{A}

 $\nabla f(\mathbf{A})$ Tensor derivatives of f at input **A** $oldsymbol{J}(oldsymbol{f})(oldsymbol{a}) \in \mathbb{R}^{m imes n}$ The Jacobian matrix of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$

at input a

 $\nabla^2 f(\boldsymbol{a})$ or The Hessian matrix of $f: \mathbb{R}^n \to \mathbb{R}$ at

 $\boldsymbol{H}(f)(\boldsymbol{a}) \in \mathbb{R}^{n \times n}$ input point a

> $\int f(\boldsymbol{x})d\boldsymbol{x}$ Definite integral over the entire

> > domain of \boldsymbol{x}

 $\int_{\mathbb{S}} f(\boldsymbol{x}) d\boldsymbol{x}$ Definite integral with respect to \boldsymbol{x}

over the set $\mathbb S$

6 Linear Algebra

 A^{\top} Transpose of matrix A

 A^{\dagger} Moore-Penrose pseudo-inverse of A

 $m{A}\odot m{B}$ Element-wise (Hadamard) product of $m{A}$ and $m{B}$

 $det(\mathbf{A})$ Determinant of \mathbf{A}

tr(A) Trace of A

 $e^{(i)}$ The *i*-th standard basis vector (a one-hot vector)

9 Typesetting

Section* Section that can be skipped for the first

time reading

Section** Section for reference only (will not be

taught)

[Proof] Prove it yourself

[Homework] You have homework

7 Probability & Info. Theory

 $a \perp b$ Random variables a and b are independent

a⊥b|c They are conditionally independent given c

 $Pr(a \mid b)$ or Shorthand for the probability

 $Pr(a | b) \quad Pr(a = a | b = b)$

 $P_{\rm a}(a)$ A probability mass function of the discrete random variable a

 $p_{\rm a}(a)$ A probability density function of the continuous random variable a

P(a = a) Either $P_a(a)$ or $p_a(a)$

 $\begin{array}{ll} \mathbf{P}(\theta) & \mathbf{A} \text{ probability distribution parametrized by} \\ \theta & \end{array}$

 $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ The Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$

 $x \sim P(\theta)$ Random variable x has distribution P

 $E_{x\sim P}[f(x)]$ Expectation of f(x) with respect to P

Var[f(x)] Variance of f(x)

Cov[f(x), g(x)] Covariance of f(x) and g(x)

H(x) Shannon entropy of the random variable x

 $\begin{array}{ccc} D_{KL}(P\|Q) & \text{Kullback-Leibler (KL) divergence from} \\ & \text{distribution } Q \text{ to } P \end{array}$

8 Machine Learning

X The set of training examples

N Size of \mathbb{X}

 $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})$ The *i*-th example pair in \mathbb{X} (supervised learning)

 $x^{(i)}$ The *i*-th example in \mathbb{X} (unsupervised learning)

D Dimension of a data point $x^{(i)}$

K Dimension of a label $\mathbf{y}^{(i)}$

 $oldsymbol{X} \in \mathbb{R}^{N \times D}$ Design matrix, where $oldsymbol{X}_{i,:}$ denotes $oldsymbol{x}^{(i)}$

 $P(\mathbf{x}, \mathbf{y})$ A data generating distribution

F Hypothesis space of functions to be learnt, i.e., a model

C[f] A cost functional of $f \in \mathbb{F}$

 $C(\theta)$ A cost function of θ parametrizing $f \in \mathbb{F}$

(x', y') A testing pair

 \hat{y} Label predicted by a function f, i.e., $\hat{y} = f(x')$ (supervised learning)