Problem Statement:-

Consider the following stream cipher (which takes some ideas from the Enigma system used by Germans in World War II). Let π be a fixed permutation of Z26 and K a fixed element of Z_{26} . For all integers $i \ge 1$, the key stream element $Z_i \notin Z_{26}$ is defined by $Z_i = (K + i - 1) \mod 26$.

Encryption and decryption using π are done as follows:

 $ez(x) = (\pi(x) + z) \mod 26;$

 $dz(y)=\pi^{-1}((y-z) \mod 26);$

Assuming

 π (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25) = 23 13 24 0 7 15 14 6 25 16 22 1 19 18 5 11 17 2 21 12 20 4 10 9 3 8

Write a program to implement the cipher.

Input Specification:-

Plaintext or Cipher text, Key

Output Specification:-

Cipher text when Plain text is given as input and vice versa

Algorithm:-

Each letter from a to z refers to a corresponding index from 0 to 25 (letters are case insensitive). For our convenience we call them the corresponding letter indices in our algorithm. Also Z_i is calculated for a given key K.

Encryption:-

For a given string(plain text) every letter is encrypted as: $ez(x) = (\pi(x) + z) \mod 26$ where x is the corresponding letter index for every letter in the given string. This encryption returns a letter index and this is converted to corresponding letter.

Decryption:-

For a given string(cipher text) every letter is decrypted as: $dz(y)=\pi^{-1}((y-z) \mod 26)$ where y is the corresponding letter index for every letter in the given string. This decryption returns a letter index and this is converted to corresponding letter.

Sample Input:-**Encryption**:-1) Key: 12 Plain text: hello 2) Key: 25 Plain text: WORLD **Decryption**:-1) Key:13 Cipher text: Wupnvkz 2) Key: 1 Cipher text: nEj Output of Sample Input: Encryption:-1)rtopu 2)IECCC **Decryption**:-1) Welcome 2) bYe