Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica - agrupamento 4

Justifique detalhadamente todas as respostas e indique os cálculos efetuados.

- 1. Considere a matriz $A=\left[\begin{array}{cccc}2&a-1&0\\-3&2&1\\0&a+1&-2\end{array}\right]$, onde $a\in\mathbb{R}.$
- (4.0) a) Calcule o determinante de *A*, <u>recorrendo ao teorema de Laplace</u>. Indique a linha ou coluna do desenvolvimento. Determine todos os valores de *a* para os quais a matriz *A* é invertível.
- (3.0) b) Considere a = -2. Calcule o elemento (1,2) da inversa de A, sem calcular A^{-1} .
- 2. Considere o plano \mathcal{P} com equação geral x y + 2z = 4 e a reta r que passa no ponto A(0, 1, 0) e tem a direção do vetor v = (3, -1, -2).
- (3.0) a) Verifique que r é paralela a \mathcal{P} e determine equações cartesianas para r.
- (4.0) b) Determine a distância da reta r ao plano \mathcal{P} .
- (3.0) 3. Sejam A e B matrizes de ordem 3. Sabendo que $\det(A) = -3$ e $\det((2A)^{-1}B(A^{\top})^2) = 6$, calcule $\det(B)$.
- (3.0) 4. Determine todos os valores de $m \in \mathbb{R}$ para os quais o ângulo entre os vetores u = (1,0,0) e v = (1,0,m) é $\frac{\pi}{3}$ (recorde-se que $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$ e $\cos(\frac{\pi}{3}) = \frac{1}{2}$).