

EIAIKOL	ΚΑΝΟΝΕΣ ΓΙΑ ΚΤΙΡΙΑ ΑΠΟ ΣΚΥΡΟΛΕΜΑ	86
	ζΑ	
	:δίο εφαρμογής	
	οοι και ορισμοί	86
	ΙΣ ΣΧΕΔΙΑΣΜΟΥ	
5.2.1 Ix	ανότητα απόδοσης ενέργειας και κατηγορίες πλαστιμότητας	88
5.2.2 To	ποι στατικών συστημάτων και συντελεστές συμπεριφοράς	89
5.2.2.1	Τύποι στατικών συστημάτων	89
5.2.2.2	Συντελεστές συμπεριφοράς για οριζόντιες σεισμικές δράσεις	
5.2.3 K	οιτήρια σχεδιασμού	93
5.2.3.1	Γενικά	
5.2.3.2	Συνθήκη τοπικής αντοχής	
5.2.3.3	Κανόνας ικανοτικού σχεδιασμού	
5.2.3.4	Συνθήκη τοπικής πλαστιμότητας	93
5.2.3.5	Υπερστατικότητα	95
5.2.3.6	Δευτερεύοντα σεισμικά στοιχεία και αντοχές	
5.2.3.7	Ειδικά πρόσθετα μέτρα	95
5.2.4 Έλε	γχοι ασφαλείας	96
5.3 Meae:	ΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΟ EN 1992-1-1	97
5.3.1 Γεν	ικά	97
5.3.2 Yλι	κά	97
	τελεστής συμπεριφοράς	
	н гіа КПМ	
	μετρικοί περιορισμοί και υλικά	
5.4.1.1	Αποιτήσεις υλικών	97
5412	Γεομετρικοί περιορισμοί	
5.4.2 Evt	ατικά μεγέθη σχεδιασμού	
5.4.2.1	Γενικά	
5.4.2.2	Δοκοί	
5.4.2.3	Υποστυλόματα	
5.4.2.4	Ειδικές διατάζεις για πλάστιμα τοιχόματα	
5.4.2.5	Ειδικές διατάζεις για μεγάλα ελαφρά οπλισμένα τοιγώματα	

5.4.3 E	λεγχοι ΟΚΑ και διαμόρφωση λεπτομερειών	104
5.4.3.1	Δοκοί	104
5.4.3.2	Υποστυλώματα	107
5.4.3.3	Κόμβοι δοκών-υποστυλωμάτων	110
5.4.3.4	Πλάστιμα τοιχώματα	110
5.4.3.5	Μεγάλα ελαφρά οπλισμένα τοιχώματα	114
5.5 Mea	ЕТН ГІА КПҮ	116
5.5.1 Γε	εωμετρικοί περιορισμοί και υλικά	116
5.5.1.1	Απαιτήσεις υλικών	
5.5.1.2	Γεσμετρικοί περιορισμοί	116
5.5.2 Ev	ντατικά μεγέθη σχεδιασμού	117
5.5.2.1	Δοκοί	117
5.5.2.2	Υποστυλώματα	
5.5.2.3	Κόμβοι δοκών-υποστυλωμάτων	118
5.5.2.4	Πλάστιμα τοιχώματα	118
5.5.3 E	λεγχοι ΟΚΑ και διαμόρφωση λεπτομερειών	120
5.5.3.1	Δοκοί	120
5.5.3.2	Υποστυλώματα	121
5.5.3.3	Κόμβοι δοκού-υποστυλώματος	123
5.5.3.4	Πλάστιμα Τοιχώματα	
5.5.3.5	Στοιχεία σύζευξης συζευγμένων τοιχωμάτων	130
5.6 ΔIAT	ΑΞΕΙΣ ΓΙΑ ΑΓΚΥΡΩΣΕΙΣ ΚΑΙ ΕΝΩΣΕΙΣ ΡΑΒΔΩΝ	131
5.6.1 Γε	ενικά	131
5.6.2 A	γκύρωση ράβδων	131
5.6.2.1	Υποστυλώματα	131
5.6.2.2	Δοκοί	131
5.6.3 Ev	νώσεις ράβδων	133
5.7 MEA	ΕΤΗ ΚΑΙ ΔΙΑΜΟΡΦΩΣΗ ΛΕΠΤΟΜΕΡΕΙΩΝ ΔΕΥΤΕΡΕΥΟΝΤΩΝ ΣΕΙΣΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ	134

5.8 Στος	ΧΕΙΑ ΘΕΜΕΛΙΩΣΗΣ ΑΠΟ ΣΚΥΡΟΔΕΜΑ	134	
5.8.1 Па	εδίο εφαρμογής	134	
5.8.2 Σι	νδετήριες δοκοί και δοκοί θεμελίωσης	135	
5.8.3 Σι	νδέσεις κατακόρυφων στοιχείων με δοκούς θεμελίωσης ή τοιχώματα	136	
5.8.4 Er	τί τόπου σκυροδετούμενοι πάσσαλοι και πασσαλόδεσμοι	137	
5.9 Tom	ΚΕΣ ΕΠΙΔΡΑΣΕΙΣ ΛΟΓΩ ΤΟΙΧΟΠΛΗΡΩΣΕΩΝ ΑΠΟ ΤΟΙΧΟΠΟΙΙΑ Η ΣΚΥΡΟΔΕΜΑ	137	
5.10 ΔΙΑΤ.	ΑΞΕΙΣ ΓΙΑ ΔΙΑΦΡΑΓΜΑΤΑ ΑΠΟ ΣΚΥΡΟΔΕΜΑ	138	
5.11 Пров	ΚΛΤΑΣΚΕΥΑΣΜΕΝΟΙ ΦΟΡΕΙΣ ΑΠΟ ΣΚΥΡΟΔΕΜΑ	139	
5.11.1	Γενικά	139	
5.11.1.1	Πεδίο εφαρμογής και στατικά συστήματα		
5.11.1.2	Αξιολόγηση προκατασκευασμένων φορέων		
5.11.1.3	Κριτήρια σχεδιασμού		
5.11.1.4 5.11.1.5	Συντελεστές συμπεριφοράς		
5.11.1.5	Ανάλυση παροδικής κατάστασης		
5.11.2.1	Συνδέσεις προκατασκευασμένων στοιχείων Γενικές διατάζεις		
5.11.2.2	Αποτίμηση της αντοχής των συνδέσεων		
5.11.3	Στοιχεία		
5.11.3.1	Δοκοί	144	
5.11.3.2	Υποστυλώματα		
5.11.3.3	Συνδέσεις δοκών-υποστυλωμάτων		
5.11.3.4	Μεγάλα προκατασκευασμένα τοιχόματα		
5.11.3.5	Διαφράγματα		
	EUROPEAN STANDARD EN	N 1998-1	
	NORME EUROPÉENNE		
	NORIVIE EUROPEENINE		
	EUROPÄISCHE NORM Dec	ember 2004	

Κατηγορίες πλαστιμότητας

- Νέες κατηγορίες πλαστιμότητας (DC/ΚΠ)
 - (οι αλλαγές προήλθαν από εθνικά σχόλια υποστηριζόμενα από σχετικές μελέτες βαθμονόμησης)
 - ΚΠ 'Y' (≈παλιά DC 'M', αυξημένος q, ικανοτικός (CD) για V_{Sd} σε δοκούς, ...)
 - ΚΠ 'M' (≈παλιά 'L', αυξημένος q, CD για V_{sd} σε δοκούς, ...)
 - ΚΠ 'X' (εφαρμογή ΕC2, όχι ψαθυρός χάλυβας Α, q≤1.5)
- Βασική τιμή του δείκτη συμπεριφοράς (q₀):

ΤΥΠΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ	КПМ	КПҮ
Πλαισιωτό σύστημα, διπλό σύστημα, σύστημα συζευγμένων τοιχωμάτων	$3,0lpha_{\scriptscriptstyle U}/lpha_1$	$4,5\alpha_{\mathrm{ll}}/\alpha_{\mathrm{l}}$
Σύστημα ασύζευκτων τοιχωμάτων	3,0	$4.0lpha_{ m u}/lpha_{ m l}$
Στρεπτικά εύκαμπτο σύστημα	2,0	3,0
Σύστημα ανεστραμμένου εκκρεμούς	1,5	2,0

αύξηση τέμνουσας βάσης μετά την πρώτη διαρροή

 α_1 : σεισμική δράση στην 1^{n} διαρροή (οπουδήποτε)

α_u : σεισμική δράση στην εμφάνιση πλευρικής αστάθειας του φορέα (μηχανισμός κατάρρευσης)

- Εκτίμηση 'υπεραντοχής'
 - Οι συντελεστές α_1 (1^n διαρροή) και α_u (μηχανισμός κατάρρευσης) εκτιμώνται από ανελαστική στατική ανάλυση (αλλά $\alpha_{\rm J}/\alpha_1{\le}1.5$), ή 'ερήμην':
 - Για πλαίσια (ἡ διπλά συστήματα ισοδύναμα με πλαίσια):
 α₁/α₁=1.3 (1.1 για μονώροφα, 1.2 πλαίσια ενός ανοίγματος)
 - Για τοιχώματα (ή διπλά συστήματα ισοδύναμα με τοιχώματα):
 - > συστήματα τοιχωμάτων με μόνο δύο (ασύζευκτα) τοιχώματα σε κάθε οριζόντια διεύθυνση: $\alpha_{\rm v}/\alpha_{\rm l}=1.0$
 - \gt άλλα συστήματα ασύζευκτων τοιχωμάτων: $\alpha / \alpha_1 = 1,1$
 - > συστήματα συζευγμένων τοιχωμάτων, διπλά συστήματα ισοδύναμα με τοιχώματα: $\alpha_1/\alpha_1=1.2$
- Τελικός δείκτης συμπεριφοράς: $q = q_0 k_w \ge 1.5$

 $k_{\rm w} = \begin{cases} 1,00, \rm gra \ πλαισιωτά \ και \ ισοδύναμα \ προς \ πλαισιωτά \ συστήματα \ τοιχωμάτων \\ (1+\alpha_{\rm o})/3 \le 1, \ αλλά \ όχι \ μικρότερη \ από \ 0.5, \ για \ συστήματα \ τοιχωμάτων, \\ ισοδύναμα \ προς \ τοιχώματα \ διπλά \ συστήματα \ και \ στρεπτικά \ εύστρεπτα \\ συστήματα \end{cases}$

Νέα δομικά συστήματα

- Μεγάλα, ελαφρά οπλισμένα, τοιχώματα:
 - Περιλαμβάνει δύο τουλάχιστο τοιχώματα με οριζόντιο μήκος ≥4m ή 2h_w/3, τα οποία συνολικώς φέρουν ≥20% του υπερκείμενου φορτίου βαρύτητας (του σεισμικού συνδυασμού)
 - Έχει θεμελιώδη ιδιοπερίοδο T_1 ≤0.5sec, υποθέτοντας πλήρη πάκτωση στη βάση
 - Αν ένα δομικό σύστημα δεν μπορεί να καταταγεί στην κατηγορία αυτή, τότε όλα τα τοιχώματά του πρέπει να διαστασιολογούνται και να οπλίζονται ως πλάστιμα
- Πλαισιακά, διπλά, ή τοιχωματικά συστήματα χωρίς την ελάχιστη δυστρεψία (e_o<0.3r) πρέπει να εντάσσονται στην κατηγορία των στρεπτικώς εύκαμπτων συστημάτων (core systems)

Νέα δομικά συστήματα

- Διπλά (δυαδικά) συστήματα (διαφέρουν σε EC8 EAK!)
 - Διπλό σύστημα ισοδύναμο προς σύστημα τοιχωμάτων:
 διπλό σύστημα (πλαίσια+τοιχώματα) όπου τα τοιχώματα αναλαμβάνουν ≥50% της τέμνουσας στη βάση (αλλιώς θεωρείται ισοδύναμο προς πλαισιακό)
 - Σὐστημα τοιχωμάτων: ≥2 κατακόρυφα φέροντα τοιχώματα, με ή χωρίς σύζευξη, που αναλαμβάνουν ≥65% της τέμνουσας στη βάση
 - Συζευγμένα τοιχώματα: δύο ή περισσότερα απλά τοιχώματα, συνδεδεμένα με δοκούς επαρκούς πλαστιμότητας («δοκούς σύζευξης») σε κανονική διάταξη, επαρκείς για να μειώσουν κατά τουλάχιστον 25% το άθροισμα των ροπών βάσης των επιμέρους τοιχωμάτων εάν αυτά δρούσαν ανεξάρτητα

Κριτήρια σχεδιασμού

- Συνθήκη τοπικής αντοχής: $E_d \le R_d$
- Κανόνας ικανοτικού σχεδιασμού: Ε_d από συνθήκες ισορροπίας, θεωρώντας πλαστικές αρθρώσεις στις γειτονικές περιοχές, που αναπτύσσουν την υπεραντοχή τους
 - → για αποφυγή ψαθυρών ή μη-ευνοϊκών μηχανισμών!
- Συνθήκη τοπικής πλαστιμότητας: υψηλές διαθέσιμες πλαστικές στροφές στις πιθανές θέσεις πλαστικών αρθρώσεων
 - Επαρκής πλαστιμότητα καμπυλοτήτων (μ_φ↔πτώση καμπτικής αντοχής στο 85% της μεγιστης) σε όλες τις κρίσιμες περιοχές των κυρίων στοιχείων

$$\begin{array}{ll} \mu_{\varphi} \! = \! 2q_o \! - \! 1 & \text{av } T_1 \! \geq \! T_C \\ \mu_{\varphi} \! = \! 1 \! + \! 2(q_o \! - \! 1)T_C \! / T_1 & \text{av } T_1 \! < \! T_C \end{array}$$

(προκύπτει από $μ_{\phi}$ ≈2 $μ_{\delta}$ -1, και $μ_{\delta}$ =q αν T_{1} ≥ T_{C} , $μ_{\delta}$ =1+(q-1) T_{C} / T_{1} αν T_{1} < T_{C}) Προσοχή: Χρήση q_{0} και όχι q διότι: q< q_{o} στα μη-κανονικά κτήρια \rightarrow θα μειωνόταν το $μ_{\phi,req}$!)

- Υπερστατικότητα: υψηλός βαθμός υπερστατικότητας με ταυτόχρονη δυνατότητα ανακατανομής
 - αν δεν ισχύει → μείωση του α
- Δευτερεύοντα σεισμικά στοιχεία και αντοχές:
 - ՝Μη-φέροντα′ στοιχεία (π.χ. τοιχοπληρώσεις→βλ. και §5.9)
 - Αντοχές ή σταθεροποιητικές επιδράσεις που δεν λαμβάνονται υπόψη στους υπολογισμούς (π.χ. μεμβρανικές αντιδράσεις πλακών λόγω κατακόρυφων μετακινήσεων τοιχωμάτων Ο/Σ)
 - Κάποια φέροντα στοιχεία μπορεί να οριστούν ως δευτερεύοντα
- Ειδικά πρόσθετα μέτρα (για να μειωθούν οι αβεβαιότητες):
 - Ελαχιστοποίηση γεωμετρικών σφαλμάτων (min διαστάσεις, max b/h, περιορισμός Δx/h, κλπ.)
 - Ελαχιστοποίηση αβεβαιοτήτων στην πλαστιμότητα (min μ_{ϕ} , min ρ_{ℓ} , v_{max})

Έλεγχοι ασφαλείας

- Για τους ελέγχους ΟΚΑ, οι μερικοί συντελεστές ασφαλείας για τα υλικά γ_c and γ_s θα συνεκτιμούν την απομείωση αντοχής λόγω ανακυκλιζόμενης έντασης
- > Μπορεί να ληφθεί γ_c =1.5 και γ_s =1.15 (όπως στον ΕC2, πολύ βολικό για την πράξη!), θεωρώντας ότι:
 - λόγω των προβλέψεων τοπικής πλαστιμότητας ο λόγος της απομένουσας (μετά την απομείωση) αντοχής προς την αρχική είναι περίπου ίσος με τον λόγο μεταξύ των τιμών γ_M για τυχηματικούς και θεμελιώδεις συνδυασμούς φορτίσεων
- Εάν η απομείωση αντοχής έχει ληφθεί κατάλληλα υπόψη στην αποτίμηση των ιδιοτήτων υλικών, μπορούν να χρησιμοποιηθούν οι τιμές που υιοθετούνται για την τυχηματική κατάσταση σχεδιασμού.
- \triangleright Ελλάδα: $\gamma_c = 1.5$ και $\gamma_s = 1.15$

Σχεδιασμός (Μελέτη) σύμφωνα με τον Ευρωκώδικα 2 (ΕΝ1992-1)

- Συνιστάται μόνο για περιοχές χαμηλής σεισμικότητας
- Στην Ελλάδα: Ενγένει δεν επιτρέπεται
 - > Εξαιρέσεις: θεμελιώσεις, υπόγεια τμήματα κτηρίων, ανωδομές κτηρίων με σεισμική μόνωση
- Σε κύρια στοιχεία, θα χρησιμοποιείται χάλυβας κατηγορίας Β (δεν υπάρχει στην Ελλάδα) ή C (B500C) (πίνακας C.1 EN1992-1)
- Χρήση δείκτη συμπεριφοράς q≤1.5 για τον καθορισμό των σεισμικών δράσεων σχεδιασμού, ανεξαρτήτως δομικού συστήματος και κανονικότητας καθύψος

Παράρτημα C: Ιδιότητες οπλισμού							
Μορφή προϊόντος Εν ψυχρώ	Ράβδοι και ράβδοι που προέρχονται από κουλούρες		Πλέγματα Εν ψυχρώ			Απαίτηση ή πιθανότητα μη συμμόρφωσης (%)	
Κατηγορία	А	В	С	А	В	С	-
Χαρακτηριστική αντοχή $\overline{\textbf{δ}}$ ιαρροής f_{yk} ή $f_{0,2k}$ (MPa)	ν θερμώ	σεισμο		ως 600 E v	θερμώ	σει	<mark>σμός</mark> 5,0
Ελάχιστη τιμή του $k = (f_b/f_y)_k$	≥1,05	≥1,08	≥1,15 <1,35	≥1,05	≥1,08	≥1,15 <1,35	10,0
Χαρακτηριστική ανηγμένη παραμόρφωση στην μέγιστη δύναμη, ε _{υκ} (%)	≥2,5	≥5,0	≥7,5	≥2,5	≥5,0	≥7,5	10,0
Καμψιμότητα	Δοκιμή Κάμψης/Ανάκαμψης			-			
Διατμητική αντοχή		-		0,3 <i>Α f_{yk} (Α</i> είναι η επιφάνεια της ράβδου)			Ελάχιστη
Μέγιστη Ονομαστική απόκλιση από διάμετρος την ονομαστική ράβδου (mm) μάζα ≤ 8 (μεμονωμένη > 8	± 6,0 ± 4,5				5,0		

Σχεδιασμός για ΚΠ Μ: Γεωμετρικοί περιορισμοί και υλικά

- Δεν επιτρέπεται η επιλογή ΚΠ Μ σε κτίρια σπουδαιότητας ΙΙΙ ή ΙV σε σεισμική ζώνη Ζ2 ή Ζ3, με εξαίρεση φορείς από προκατασκευασμένα τοιχώματα ή κυψελωτούς φορείς
- Απαιτήσεις υλικών
 - χρήση σκυροδέματος <C16 δεν επιτρέπεται σε κύρια (πρωτεύοντα) στοιχεία
 - χρήση σκυροδέματος >C50 (HSC) για ΚΠ Μ <mark>δεν</mark> καλύπτεται

κειμένου

- μόνο ράβδοι με νευρώσεις στις κρίσιμες περιοχές κυρίων στοιχείων (εξαίρεση: κλειστοί-μονοσκελείς συνδετήρες)
- μόνο χάλυβες Β ή C (πίν. C.1 EN1992-1) στις κρίσιμες περιοχές κυρίων στοιχείων
- συγκολλημένα πλέγματα επιτρέπεται να χρησιμοποιούνται εφόσον πληρούν τις δύο προηγούμενες προϋποθέσεις

• Γεωμετρικοί περιορισμοί

Δοκοί

- εκκεντρότητα άξονα δοκού<b_c/4
- πλάτος b_w ≤{ b_c + h_w , $2b_c$ }

- εκτός εάν θ≤0.1, στα κύρια υποστυλώματα b≥0.1 ℓ_{0} $(\ell_0$: απόσταση από το άκρο ως το σημείο M=0)

- πάχος κορμού b_{wo} ≥ max{150mm, h_s/20} (h_s: καθαρό ύψος ορόφου)
- πρόσθετες απαιτήσεις για τις ακραίες περισφιγμένες ζώνες

Μενάλα ελαφρώς οπλισμένα τοιχώματα

– πάχος κορμού b_{wo} ≥ max{150mm, h_e/20}

- Ειδικές διατάξεις για μεγάλα ελαφρά οπλισμένα τοιχώματα:
 - για να διασφαλισθεί ότι η καμπτική διαρροή θα προηγηθεί της ΟΚΑ από τέμνουσα, οι δυνάμεις V'_{Ed} από την ανάλυση επαυξάνονται:

 $V_{Ed} = V_{Ed}^{'} \frac{q+1}{2}$

- πρόσθετες δυναμικές αξονικές δυνάμεις που αναπτύσσονται λόγω ανύψωσης θα λαμβάνονται υπόψη στον έλεγχο ΟΚΑ (Μ, Ν)
 - \rightarrow επιτρέπεται να λαμβάνονται ως το 50% του N στο τοίχωμα λόγω κατακορύφων φορτίων $(g+\psi_2q)$
- αν q≤2, αυτές οι αξονικές δυνάμεις μπορεί να αγνοούνται

Σχεδιασμός για ΚΠ Y (DC H)

- Γενικώς παρόμοιος με ΚΠΜ, αλλά αυστηρότερο detailing
- Λεπτομερής έλεγχος κόμβων δοκών-υποστυλωμάτων
- Αν $|V_{Ed}\rangle |V_{E}|_{max} \le (2+\zeta) \cdot f_{ctd} \cdot b_w \cdot d$, απαιτείται δισδιαγώνιος οπλισμός για την ανάληψη τέμνουσας στις δοκούς
- υπολογιστικός έλεγχος αντίστασης κόμβου:

$$V_{jhd} \le \eta f_{cd} \sqrt{1 - \frac{v_d}{\eta}} b_j h_{jc}$$

$$\frac{A_{sh} \cdot f_{ywd}}{b_j \cdot h_{jw}} \ge \frac{\left(\frac{V_{jhd}}{b_j \cdot h_{jc}}\right)^2}{f_{ctd} + V_d f_{cd}} - f_{ctd}$$

Λεπτομερής έλεγχος διατμητικής ολίσθησης στα τοιχώματα

$$V_{Rd,S} = V_{dd} + V_{id} + V_{fd}$$

συνολική αντίσταση

$$V_{dd} = min \begin{cases} 1.3 \cdot \Sigma A_{sj} \cdot \sqrt{f_{cd} \cdot f_{yd}} \\ 0.25 \cdot f_{yd} \cdot \Sigma A_{sj} \end{cases}$$

$$V_{id} = \Sigma A_{si} \cdot f_{yd} \cdot \cos \delta$$
δισδιαγώνιος

$$V_{fd} = min \begin{cases} \mu_f \cdot \left[\left(\sum A_{sj} \cdot f_{yd} + N_{Ed} \right) \cdot \xi + M_{Ed} / z \right] \\ 0.5 \eta \cdot f_{cd} \cdot \xi \cdot \ell_w \cdot b_{wo} \end{cases}$$

βλήτρα

τριβές

Σχεδιασμός για ΚΠ Υ: Εντατικά μεγέθη σχεδιασμού
• Δοκοί: Όπως στην ΚΠΜ, αλλά
$$\gamma_{Rd}$$
=1.2 στις $M_{i,d}$
• Υποστυλώματα: Όπως στην ΚΠΜ, αλλά γ_{Rd} =1.3 στις $M_{i,d}$
• Τοιχώματα: Όπως στην ΚΠΜ, αλλά:
$$\varepsilon = q \cdot \sqrt{\left(\frac{\gamma_{Rd}}{q} \cdot \frac{M_{Rd}}{M_{Ed}}\right)^2 + 0.1 \left(\frac{S_e(T_c)}{S_e(T_1)}\right)^2} \le q$$
επιρροή υπεραντοχής επιρροή ανώτ. ιδιομορφών
- κοντά τοιχώματα $(h_w/\ell_w \le 2)$: $M_{Ed} = M'_{Ed}$

$$V_{Ed} = \gamma_{Rd} \cdot (\frac{M_{Rd}}{M_{Ed}}) \cdot V'_{Ed} \le q \cdot V'_{Ed}$$

Μελέτη και διαμόρφωση λεπτομερειών δευτερευόντων σεισμικών στοιχείων (§5.7)

- Διαμορφώνονται και ελέγχονται ώστε να διατηρούν την ικανότητά τους να φέρουν τα φορτία βαρύτητας (g+ψ₂q) όταν υποβάλλονται στις μέγιστες παραμορφώσεις (Δ_{max}) υπό την σεισμική δράση σχεδιασμού
- Οι Δ_{max} υπολογίζονται από ανάλυση όπου αγνοείται η συμβολή των δευτερευόντων στοιχείων στην πλευρική δυσκαμψία και τα κύρια σεισμικά στοιχεία προσομοιώνονται με EI_{cr}, GA_{cr}
- Έλεγχος: $M_d \le M_{Rd}$ and $V_d \le V_{Rd}$ όπου οι M_d , V_d υπολογίζονται από τις Δ_{max} θεωρώντας EI_{cr} , GA_{cr} για τα δευτερεύοντα στοιχεία και M_{Rd} , V_{Rd} από Ευρωκώδικα 2.

Τοπικές επιδράσεις λόγω τοιχοπληρώσεων από τοιχοποιία ή σκυρόδεμα (§5.9)

- Ιδιαίτερη ευπάθεια τοιχοπληρώσεων ισογείου
 - $\rightarrow \ell_{cr} = \ell_{col}$ στα υποστυλώματα (όλο το ύψος κρίσιμο)
- Av $h_{inf} < \ell_{cl,col}$, $\ell_{cr} = \ell_{cl,col}$ και πρόσθετα μέτρα:
 - η τέμνουσα από CD βάσει ℓ_{cl} (καθαρό ύψος πάνω από την τοιχοπλήρωση) και γ_{Rd}M_{Rc}
 - $(\gamma_{Rd}=1.1 \text{ yia KTM kai } 1.3 \text{ yia KTY})$
 - οι απαιτούμενοι συνδετήρες τοποθετούνται εντός $\ell_{\rm cl}$ + $h_{\rm c}$
 - αν το 'ελεύθερο' ὑψος<1.5h_c → δισδιαγώνιος οπλισμός
- Τοιχοπλήρωση (με h≈h₀₀) στην μία μόνον πλευρά του υποστυλώματος (πχ. σε γωνιακά) $\rightarrow \ell_{cr} = \ell_{col}$
- Το ύψος ℓ_c υποστυλώματος όπου ασκείται η δύναμη του διαγώνιου θλιπτήρα της τοιχοπλήρωσης ελέγχεται σε τέμνουσα βάσει του min της οριζόντιας συνιστώσας του θλιπτήρα και της ικανοτικής τέμνουσας

Σεισμική συμπεριφορά κτιρίων σχεδιασμένων κατά το prEN-1998-1:

- Δοκιμαστική εφαρμογή των νέων διατάξεων σε τέσσερα τυπικά πολυώροφα κτήρια, 6-ώροφα και 10-ώροφα
 - φέρων οργανισμός από πλαίσια (Ο/Σ)
 - φέρων οργανισμός από διπλό σύστημα
- Τα κτήρια είχαν σχεδιασθεί παλιότερα (Kappos / Athanassiadou, EEE, 1997) για τις παλιές ΚΠ Υ και Μ
 - συγκρίσεις μεταξύ παλιών και νέων διατάξεων
 - σε όρους κόστους υλικών και σεισμικής συμπεριφοράς

Δείκτες συμπεριφοράς q > q=1.5, για DC "L" > q= k_w·q_o, για DC "M" και "H" - πλαισιακό / DC "M": q=3.90 - διπλό / DC "M": q=3.60 - πλαισιακό / DC "H": q=5.85 - διπλό / DC "H": q=5.40 → Πολύ παρόμοιοι q και για τα δυο συστήματα!

Ο σχεδιασμός με βάση τη νέα ΚΠ Υ οδηγεί σε:

- 16% λιγότερο (συνολικό) οπλισμό στον πλαισιακό φορέα (FR)
- 14% λιγότερο οπλισμό στο διπλό σύστημα (FW)
- Διαμήκης οπλισμός: 11 ως 20% λιγότερος
- Εγκάρσιος οπλισμός: 7 ως 29% λιγότερος
- 9% λιγότερος <mark>όγκος</mark> σκυροδέματος στο πλαίσιο (FR)
- 2% λιγότερος όγκος σκυροδέματος στο διπλό (FW)
- Κύρια αιτία των μειωμένων απαιτήσεων οπλισμού: υψηλότεροι δείκτες q στο EN1998-1