MATH F111- Mathematics I

Saranya G. Nair Department of Mathematics

BITS Pilani

August 12, 2024

Properties of limits

Theorem

Uniqueness of Limits. A sequence in \mathbb{R} can have at most one limit.

Properties of limits

Theorem

Uniqueness of Limits. A sequence in \mathbb{R} can have at most one limit.

Proof. Let (a_n) be a real sequence and suppose that ℓ_1 and ℓ_2 are both limits for (a_n) and let $\ell_1 \neq \ell_2$.

- Let $\epsilon := |\ell_1 \ell_2|/2$. Since $\ell_1 \neq \ell_2, \epsilon > 0$.
- Since ℓ_1 is a limit of the sequence, for the chosen $\epsilon,\exists \ \textit{N}_1 \in \mathbb{N}$ such that

$$|a_n - \ell_1| < \epsilon$$
, for all $n \ge N_1$.

• Since ℓ_2 is a limit of the sequence, for the chosen $\epsilon,\exists \ \textit{N}_2 \in \mathbb{N}$ such that

$$|a_n - \ell_2| < \epsilon$$
, for all $n \ge N_2$.

Let $N = \max\{N_1, N_2\}$. Then:

$$|a_n - \ell_1| < \epsilon$$
 and $|a_n - \ell_2| < \epsilon$ for all $n \ge N$,

and hence,

$$|\ell_1 - \ell_2| = |(a_N - \ell_2) - (a_N - \ell_1)| \le |a_N - \ell_1| + |a_N - \ell_2| < \epsilon + \epsilon = |\ell_1 - \ell_2|$$

which is a contradiction. Hence, $\ell_1 = \ell_2$.

A convergent sequence is bounded.

A convergent sequence is bounded.

Suppose $a_n \to \ell$. Let $\epsilon := 1$. There is $N \in \mathbb{N}$ such that

$$|a_n - \ell| < 1$$
 for all $n \ge N$.

Hence

$$|a_n| \leq |a_n - \ell| + |\ell| < 1 + |\ell|$$
 for all $n \geq N$.

A convergent sequence is bounded.

Suppose $a_n \to \ell$. Let $\epsilon := 1$. There is $N \in \mathbb{N}$ such that

$$|a_n - \ell| < 1$$
 for all $n \ge N$.

Hence

$$|a_n| \le |a_n - \ell| + |\ell| < 1 + |\ell|$$
 for all $n \ge N$.

- Thus it remains to find a bound for $a_1, a_2 \cdots, a_{N-1}$. Choose $\beta = \max\{|a_1|, |a_2|, \cdots, |a_{N-1}|\}$. Then $|a_n| \leq \beta$, for all 1 < n < N-1.
- Define $\alpha := \max \{|a_1|, \dots, |a_{N-1}|, |\ell| + 1\}$. Then $|a_n| \leq \alpha$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded.

If a_n is convergent, then a_n is bounded. Equivalently, if a_n is not bounded, then a_n is not convergent. This result can be used to show if a sequence is not bounded.

- The sequence $\{(-1)^n n : n \in \mathbb{N}\}$ divergent since it is not bounded.
- A bounded sequence need not be convergent. For example, the sequence $\{(-1)^n : n \in \mathbb{N}\}$ is bounded but not convergent.

- $\lim(a_n \pm b_n) = A \pm B$.
- $\lim(a_nb_n) = AB$. In particular, $\lim(ca_n) = cA$ for $c \in \mathbb{R}$.
- $\lim \frac{a_n}{b_n} = \frac{A}{B}$, provided (b_n) is a sequence of non-zero real numbers and $B \neq 0$.

- $\lim(a_n \pm b_n) = A \pm B$.
- $\lim(a_nb_n) = AB$. In particular, $\lim(ca_n) = cA$ for $c \in \mathbb{R}$.
- $\lim \frac{a_n}{b_n} = \frac{A}{B}$, provided (b_n) is a sequence of non-zero real numbers and $B \neq 0$.
- $\lim_{n\to\infty}\frac{-1}{n}=-\lim_{n\to\infty}\frac{1}{n}=0.$

- $\lim(a_n \pm b_n) = A \pm B$.
- $\lim(a_nb_n) = AB$. In particular, $\lim(ca_n) = cA$ for $c \in \mathbb{R}$.
- $\lim \frac{a_n}{b_n} = \frac{A}{B}$, provided (b_n) is a sequence of non-zero real numbers and $B \neq 0$.
- $\lim_{n\to\infty}\frac{-1}{n}=-\lim_{n\to\infty}\frac{1}{n}=0.$
- $\lim_{n\to\infty} \frac{n+1}{n} = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right) = 1.$

- $\lim(a_n \pm b_n) = A \pm B$.
- $\lim(a_nb_n) = AB$. In particular, $\lim(ca_n) = cA$ for $c \in \mathbb{R}$.
- $\lim \frac{a_n}{b_n} = \frac{A}{B}$, provided (b_n) is a sequence of non-zero real numbers and $B \neq 0$.
- $\lim_{n\to\infty}\frac{-1}{n}=-\lim_{n\to\infty}\frac{1}{n}=0.$
- $\lim_{n\to\infty} \frac{n+1}{n} = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right) = 1.$
- $\lim_{n\to\infty} \frac{4-7n^6}{n^6+3} = \lim_{n\to\infty} \frac{\left(\frac{4}{n^6}-7\right)}{1+\frac{3}{n^6}} = \frac{0-7}{1+0} = -7.$

<u>Theorem</u>

Let (x_n) be a convergent sequence of real numbers and there exists a positive integer m such that $x_n \ge 0$ for all $n \ge m$. Then $\lim x_n \ge 0$.

Let (x_n) be a convergent sequence of real numbers and there exists a positive integer m such that $x_n \ge 0$ for all $n \ge m$. Then $\lim x_n \ge 0$.

Corollary

If (x_n) and (y_n) are convergent sequences of real numbers and if there is a positive integer m such that $x_n \leq y_n$ for all $n \geq m$, then $\lim x_n \leq \lim y_n$.

Let (x_n) be a convergent sequence of real numbers and there exists a positive integer m such that $x_n \ge 0$ for all $n \ge m$. Then $\lim x_n \ge 0$.

Corollary

If (x_n) and (y_n) are convergent sequences of real numbers and if there is a positive integer m such that $x_n \leq y_n$ for all $n \geq m$, then $\lim x_n \leq \lim y_n$.

Proof. Let $z_n := y_n - x_n$.

Let (x_n) be a convergent sequence of real numbers and there exists a positive integer m such that $x_n \ge 0$ for all $n \ge m$. Then $\lim x_n \ge 0$.

Corollary

If (x_n) and (y_n) are convergent sequences of real numbers and if there is a positive integer m such that $x_n \leq y_n$ for all $n \geq m$, then $\lim x_n \leq \lim y_n$.

Proof. Let $z_n := y_n - x_n$. Then (z_n) is convergent sequence of real numbers such that $z_n \ge 0$ for all $n \ge m$. It then follows from the preceding theorem that

$$\lim z_n = \lim (y_n - x_n) = \lim y_n - \lim x_n \ge 0.$$

Sandwich Theorem. Let $(a_n), (b_n), (c_n)$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

Sandwich Theorem. Let $(a_n), (b_n), (c_n)$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

(i)
$$\lim_{n\to\infty} \frac{\cos n}{n}$$

Sandwich Theorem. Let $(a_n), (b_n), (c_n)$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

(i)
$$\lim_{n\to\infty} \frac{\cos n}{n}$$

$$-1 \le \cos n \le 1$$
. Therefore $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$ and $\lim_{n \to \infty} \frac{\cos n}{n} = 0$.

Sandwich Theorem. Let $(a_n), (b_n), (c_n)$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

- (i) $\lim_{n \to \infty} \frac{\cos n}{n}$ $-1 \le \cos n \le 1$. Therefore $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$ and $\lim_{n \to \infty} \frac{\cos n}{n} = 0$.
- (ii) $\lim_{n \to \infty} \frac{1}{2^n} = 0$ as $0 \le \frac{1}{2^n} \le \frac{1}{n}$

Sandwich Theorem. Let $(a_n), (b_n), (c_n)$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

- (i) $\lim_{n\to\infty} \frac{\cos n}{n}$ $-1 \le \cos n \le 1$. Therefore $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$ and $\lim_{n\to\infty} \frac{\cos n}{n} = 0$.
- (ii) $\lim_{n \to \infty} \frac{1}{2^n} = 0$ as $0 \le \frac{1}{2^n} \le \frac{1}{n}$
- (iii) $\lim_{n\to\infty} (-1)^n \frac{1}{n} = 0.$

(iv) Let
$$a_n:=rac{n^3+3n^2+1}{n^4+8n^2+2}$$
 for $n\in\mathbb{N}.$ Then $a_n o 0$,

(iii) Let
$$a_n := \frac{1}{n} \sin \left(\frac{1}{n} \right)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$,

(iv) Let
$$a_n := \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2}$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$, since $0 \le a_n \le \frac{n^3 + 3n^2 + 1}{n^4} \le \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^4} \to 0$.

(iii) Let
$$a_n := \frac{1}{n} \sin \left(\frac{1}{n} \right)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$,

(iv) Let
$$a_n := \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2}$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$, since $0 \le a_n \le \frac{n^3 + 3n^2 + 1}{n^4} \le \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^4} \to 0$.

(iii) Let
$$a_n := \frac{1}{n} \sin \left(\frac{1}{n} \right)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$,

(iv) Let
$$a_n := \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2}$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$, since $0 \le a_n \le \frac{n^3 + 3n^2 + 1}{n^4} \le \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^4} \to 0$.

(iii) Let
$$a_n:=rac{1}{n}\sin\left(rac{1}{n}
ight)$$
 for $n\in\mathbb{N}$. Then $a_n o 0$, since $|a_n|\leq rac{1}{n} o 0$.

