STA 371G Outline Fall 2018

Instructor: Mingyuan Zhou, Ph.D., Assistant Professor of Statistics

Office: CBA 6.458 Phone: 512-232-6763

Email: mingyuan.zhou@mccombs.utexas.edu Website: http://mingyuanzhou.github.io/

Office Hours: Monday & Wednesday 5:00-6:00 PM. You are welcome to come by my

office at other times.

Wednesday, August 29

Topics:

• Introduction

- Probability
- Random variables

Reading Assignments:

You are recommended to read:

Chapter 1 of OpenIntro Statistics, 3rd edition

Wednesday, September 5

Topics:

- Probability distributions
- Mean, variance and standard deviation of a random variable

Reading Assignments:

If you are not familiar with the topics discussed in class, you are recommended to read: pp. 140-142, 740-741 Business Analytics: Business Analytics: Data analysis and decision making, 6th edition

or

pp. 156-168, 189-195, of Data analysis and decision making, 4th edition

or

pp. 196-206, 225-231 of Data analysis and decision making, 3rd edition

You are also recommended to read:

pp. 1-14 of "1 $TopicSummary_ProbabilityConceptsAndNormalDistributions.pdf"$ (available in Canvas/files)

To learn more about these topics, you may further read: Chapters 2.1, 2.2, 2.4, and 2.5 of OpenIntro Statistics, 3rd edition

Monday, September 10

- Add a constant to a random variable
- Multiply a random variable by a constant
- Independent random variables, sum of independent random variables
- Continuous random variables
- Probability density function: area under the curve represents probability
- Standard normal distribution $Z \sim \mathcal{N}(0,1)$
- Normal distribution $X \sim \mathcal{N}(\mu, \sigma^2)$

Reading Assignments:

To get familiar with the normal distribution, you are recommended to read:

pp. 167-171, 174-182 of Business Analytics: Data analysis and decision making, 6th edition

or

pp. 211-215, 217-225 of Data analysis and decision making, 4th edition

or

pp. 247-250, 253-260 of Data analysis and decision making, 3rd edition

You are also recommended to read:

pp. 15-30 of "1 $TopicSummary_ProbabilityConceptsAndNormalDistributions.pdf"$ (available in Canvas/files)

You may further read:

Chapters 3.1.1, 3.1.2, 3.1.4 and 3.1.5 of OpenIntro Statistics, 3rd edition

Wednesday, September 12

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $P(X < x) = P(\frac{X-u}{\sigma} < \frac{x-u}{\sigma}) = P(Z < \frac{x-u}{\sigma})$.
- Standard normal calculations in Excel: NORMSDIST, or in R: pnorm (type "?pnorm" in R for help).
- Understand the meaning of the standard deviation σ in a normal distribution: $P(\mu \sigma < X < \mu + \sigma) = ?$ and $P(\mu 2\sigma < X < \mu + 2\sigma) = ?$
- Normal calculations in Excel:

NORMSDIST, NORMDIST

NORMSINV, NORMINV

or in R:

pnorm, qnorm (type "?pnorm" and "?qnorm" in R for help).

- Standardizing a normal random variable $Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$ Interpretation: the value of Z is the number of standard deviations that X deviates towards the left (if Z < 0) or the right (if Z > 0) of the mean.
- Plot a normal distribution in Excel and R

Monday, September 17

- Example: Testing at ZTel, we will make an Excel spreadsheet for calculations
- Case study, Texas BBA Salary Statistics
- Expectation of a continuous random variable
- Population mean, variance, standard deviation
- Sample mean, sample variance, standard error of the sample mean
- Sampling distribution of the sample mean

Reading Assignments:

To learn more about estimation and sampling distribution, please read:

pp. 280-281, 292-297, 299, 312-318 of Business Analytics: Data analysis and decision making, 6th edition

or

pp. 352-353, 366-371, 374, 388-395 of Data analysis and decision making, 4th edition or

pp. 378-379, 393-398, 400-401, 422-430 of Data analysis and decision making, 3rd edition

You are also recommended to read:

"2TopicSummary_EstimationAndSamplingDistributions.pdf" (available in Canvas/files)

For this topic, you may further read:

Chapters 4.1, 4.2, 4.4 and 5.3 of OpenIntro Statistics, 3rd edition

Wednesday, September 19

- Sampling distribution of the sample mean
- Confidence interval
- Simple linear regression
- Linear prediction: $Y = b_0 + b_1 X$

Reading Assignments:

Chapters 7.1 and 7.2 of OpenIntro Statistics, 3rd edition

pp. 418-441 of Business Analytics: Data analysis and decision making, 6th edition or

pp. 531-551 of Data analysis and decision making, 4th edition

pp. 562-584 of Data analysis and decision making, 3rd edition

Monday, September 24

- Least squares estimation of b_0 and b_1
- Examples: predict house price, baseball runs per game
- Using Excel and R to do the calculation
- Excel add-in: Palisade Decision Tools (including StatTools) for Windows, StatPlus:mac LE for Mac.
- Sample mean, variance, and standard deviation
- Sample covariance, sample correlation

Reading Assignments:

PDF "Simple Linear Regression" posted in Canvas/files

Wednesday, September 26

- \bullet Linear relationship between X and Y
- $b_0 = \bar{y} b_1 \bar{x}, b_1 = r_{xy} \times \frac{s_y}{s_x}$
- $\operatorname{mean}(e) = 0$, $\operatorname{Corr}(e, X) = 0$, $\operatorname{Corr}(e, \hat{Y}) = 0$, $\operatorname{Corr}(\hat{Y}, X) = 1$
- SST, SSR, SSE
- Coefficient of determination: $R^2 = \frac{SSR}{SST} = 1 \frac{SSE}{SST}$
- $R^2 = r_{xy}^2$ measures the proportion of variation in Y explained by X.
- Statistical model for simple linear regression
- Statistical model for simple linear regression:

$$Y = \beta_0 + \beta_1 X + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$
$$Y \sim \mathcal{N}(\beta_0 + \beta_1 X, \sigma^2)$$

 \bullet Conditional distribution of Y given X

• 95% prediction interval of Y given X: $\beta_0 + \beta_1 X \pm 2\sigma$

Reading Assignments:

 $"3 Topic Summary_Regression Model And Estimation.pdf" \ (available \ in \ Canvas/files)$

"5TopicSummary_CorrelationAndCovariance.pdf" (available in Canvas/files)

 $"6Topic Summary_Computing And Interpreting R Square.pdf" \ (available in \ Canvas/files)$

 $\label{thm:convariance} \mbox{``17TopicSummary_InterpretingAndEstimatingVarianceOfEpsilon.pdf'' (available in Canvas/files)}$