# Проект ML

#### Главное:

Мы решаем задачу NLP по классификации текста на предмет наличия в нём информации о катастрофе. Впоследствие мы используем её и внедрим в телеграм бота.

## **Аннотация**

Мы работаем с датасетом "Natural Language Processing with Disaster Tweets" с Kaggle. Наша задача состоит в том, чтобы проанализировать размеченный список публикаций с Twitter и обучить модель классифицировать, несёт ли публикация информацию о катастрофе. Датасет полностью на английском языке. Состоит из 4 столбцов, несущих информацию и одного столбца, отведённого под номер публикации:

- id уникальный номер для каждой публикации
- text текст публикации
- location откуда опубликовано (может быть пусто)
- keyword ключевое слово (может быть пусто)
- target только в тренировочном датасете, обозначает, несёт ли публикация сообщения о катастрофе (1) или нет (0)

Данная модель потенциально может помочь экстренным службам собирать данные о катастрофах.

## Введение

Для решения задачи мы использовали Google Collab, где обучили модель трансформер из huggingface с замороженным backbone

Сначала мы анализировали предложенный датасет, потом очистили его с помощью регулярных выражений, так, например, были удалены символы неанглийского алфавита, обращения к другим пользователям и ссылки (они, скорее всего, не несут полезной информации и могут уменьшить качество модели). Колонка "местоположение" и "номер" были удалены, а колонка "ключевое слово" была

объединена с колонкой "текст", ключевые слова добавлялись в конце текста публикации, если были соответственно.

Далее создали копию тренировочного датасета и первую токенизировали с помощью предобученного токенизатора модели *roberta-large-mnli*, а вторую - с *bert-base-uncased*. Теперь, подготовив набор данных, мы обучили модели и сравнинили их.

Для обучения были выбраны модели трансформера, состоящие из нескольких кодировщиков. Они, в отличие от рекуррентных нейронный сетей, обладают механизмом внимания, не забывают контекст с течением времени.

# Обозначения, терминология

Kaggle — онлайн-платформа для соревнований по анализу данных и машинному обучению, а также социальная сеть специалистов в этой области.

**Датасет -** набор данных

Backbone - основная сеть, служащая для извлечения признаков из поступающего на вход изображения. Предобученная модель

Замороженный backbone - Backbone замораживается и не обновялется в процессе обучения

NLP (Natural Language Processing) - Обработка естественного языка

Трансформер (Transformer) - архитектура глубоких нейронных сетей, представленная впервые в 2017 году в статье Attention is all you need

Google Colab - бесплатная облачная платформа для создания и выполнения кода на Python с возможностью использования центральных и графических процессоров

Huggingface -американская компания, разрабатывающая инструменты для создания приложений с использованием машинного обучения

**Токенизация -** это процесс разделения текста на более мелкие части, такие как слова или предложения. Этот процесс позволяет преобразовать непрерывный текст в дискретные элементы, с которыми можно работать отдельно.

ф1 метрика (f1\_score) - в отличии от точности учитывает ещё и дисбаланс классов гармоническое среднее между точностью (Precision) и полнотой (Recall) в машинном обучении

$$F1_{score} = 2*\frac{(Precision*Recall)}{(Precision+Recall)}$$

Precision - метрика, которая показывает долю объектов, классифицированных как "верные" и при этом действительно являющихся положительными

Recall - метрика, которая показывает, какую долю объектов положительного класса из всех объектов положительного класса нашёл алгоритм

**Батч** (Batch) - подмножество тренировочных данных, используемое в одной итерации обновления параметров модели

Эпохи - полная итерация по набору данных в процессе обучения модели

nn.Model - огромный класс, используемый для создания большинства нейросетей

## Обзор литературы

Данные статьи помогут читателю разобраться в архитектуре трансформеров (нажмите на выделенное для ознакомления)

Архитектура BERT - статья для понимания архитектуры Bert

Roberta - статья на английском, в ней рассказывается об отличиях от модели BERT

Я же советую читателю посмотреть курс лекций от DLS, в которых подробно объясняется принцип работы трансформера: Вот их YouTube канал

## Работа

В ходе работы было проведено несколько экспериментов, чтобы добиться максимального качества у модели. Мы сравниваем именно эти две модели, потому что они довольно похожи, но сильно отличаются своими размерами (RoBERTa больше).

На обучение модели выделялось 90% датасета, отведённого на обучение. На валидацию - 10 %.

## 1 эксперимент

Самым удачным оказалось обучение модели *bert-base-uncased* с замороженным backbone

Она обучалась 15 эпох 49 минут и показала хороший результат в 82 % точности и 81 % ф1 метрики. Именно результаты работы этой модели я использовал на Kaggle, где получил  $F1_{score}=0.8112$  (81 %) и занял в таблице лидеров 339 место.

|       |               | [375/375 49:31, Epoch 15/15] |          |           |          |          |  |  |
|-------|---------------|------------------------------|----------|-----------|----------|----------|--|--|
| Epoch | Training Loss | Validation Loss              | Accuracy | Precision | Recall   | F1       |  |  |
| 1     | 0.545600      | 0.808743                     | 0.784370 | 0.800995  | 0.784370 | 0.771676 |  |  |
| 2     | 1.119500      | 1.223617                     | 0.730825 | 0.790264  | 0.730825 | 0.693374 |  |  |
| 3     | 0.617000      | 0.772295                     | 0.696093 | 0.758237  | 0.696093 | 0.695451 |  |  |
| 4     | 0.949600      | 1.159930                     | 0.703329 | 0.774946  | 0.703329 | 0.652064 |  |  |
| 5     | 0.528400      | 0.499053                     | 0.817656 | 0.816602  | 0.817656 | 0.816095 |  |  |
| 6     | 0.564600      | 0.504178                     | 0.811867 | 0.810901  | 0.811867 | 0.809770 |  |  |
| 7     | 0.969100      | 1.426244                     | 0.568741 | 0.751769  | 0.568741 | 0.530959 |  |  |
| 8     | 1.232100      | 0.608037                     | 0.768452 | 0.783738  | 0.768452 | 0.770703 |  |  |
| 9     | 0.706100      | 0.508716                     | 0.807525 | 0.809095  | 0.807525 | 0.808103 |  |  |
| 10    | 0.726400      | 0.452463                     | 0.810420 | 0.811646  | 0.810420 | 0.810893 |  |  |
| 11    | 0.504000      | 0.516380                     | 0.765557 | 0.783283  | 0.765557 | 0.767877 |  |  |
| 12    | 0.500700      | 0.457056                     | 0.811867 | 0.812102  | 0.811867 | 0.811977 |  |  |
| 13    | 0.449800      | 0.450179                     | 0.810420 | 0.812323  | 0.810420 | 0.811081 |  |  |
| 14    | 0.533700      | 0.428337                     | 0.819103 | 0.818540  | 0.819103 | 0.816840 |  |  |
| 15    | 0.463500      | 0.431114                     | 0.820550 | 0.823601  | 0.820550 | 0.816144 |  |  |

### 2 эксперимент

Далее я разморозил backbone и попытался обучить модель с теми же параметрами.

Но модель стала занимать слишком много памяти графического процессора. Для её обучения пришлось уменьшать размер батча с 256 до 8. Качество модели значительно упало, а время её обучения сильно увеличилось. В итоге данная модель не вошла в итоговую работу, но заслуживает упоминания.

## 3 эксперимент

Но почему я выбрал именно bert-base-uncased? Потому что это относительно простая модель, время обучения которой должно быть небольшим. Первоначально планировалось обучить только модель roberta-large-mnli с замороженным и размороженным backbone. Roberta превосходит стандартный bert как минимум по тому, что была обучена на количестве данных в 10 раз больших, чем bert. С неё и начались эксперименты. Обучение Roberta с размороженным backbone приведено в первоначальной версии прикреплённого ноутбука. Эта модель обучалась очень долго. Я пробовал её обучить успешно два раза. На 10 эпох и на 20 эпох.

10 эпох:

|       | [250/250 1:47:40, Epoch 10/10] |                 |          |           |          |          |
|-------|--------------------------------|-----------------|----------|-----------|----------|----------|
| Epoch | Training Loss                  | Validation Loss | Accuracy | Precision | Recall   | F1       |
| 1     | 9.932000                       | 11.460972       | 0.599132 | 0.358959  | 0.599132 | 0.448942 |
| 2     | 13.091500                      | 10.624026       | 0.599132 | 0.358959  | 0.599132 | 0.448942 |
| 3     | 1.567700                       | 5.492534        | 0.400868 | 0.460146  | 0.400868 | 0.231948 |
| 4     | 1.406600                       | 2.125702        | 0.622287 | 0.768336  | 0.622287 | 0.499319 |
| 5     | 5.466400                       | 1.190585        | 0.573082 | 0.671804  | 0.573082 | 0.557895 |
| 6     | 0.778000                       | 1.030077        | 0.662808 | 0.674330  | 0.662808 | 0.665784 |
| 7     | 1.846500                       | 1.357109        | 0.494935 | 0.620542  | 0.494935 | 0.450190 |
| 8     | 4.180400                       | 3.959067        | 0.597685 | 0.358611  | 0.597685 | 0.448263 |
| 9     | 0.740800                       | 0.653962        | 0.712012 | 0.757586  | 0.712012 | 0.672369 |
| 10    | 0.782100                       | 0.516926        | 0.768452 | 0.766931  | 0.768452 | 0.764061 |

#### 20 эпох:

| Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall   | F1       |
|-------|---------------|-----------------|----------|-----------|----------|----------|
| 1     | 10.305300     | 11.951322       | 0.599132 | 0.358959  | 0.599132 | 0.448942 |
| 2     | 12.592400     | 9.992604        | 0.597685 | 0.358611  | 0.597685 | 0.448263 |
| 3     | 1.116600      | 4.659231        | 0.599132 | 0.358959  | 0.599132 | 0.448942 |
| 4     | 3.453400      | 4.669896        | 0.599132 | 0.358959  | 0.599132 | 0.448942 |
| 5     | 4.580100      | 2.594554        | 0.567294 | 0.534905  | 0.567294 | 0.532632 |
| 6     | 1.395000      | 1.193070        | 0.638205 | 0.774423  | 0.638205 | 0.531393 |
| 7     | 1.090600      | 1.218599        | 0.622287 | 0.683664  | 0.622287 | 0.511768 |
| 8     | 0.947700      | 0.778547        | 0.645441 | 0.687812  | 0.645441 | 0.647033 |
| 9     | 5.324200      | 2.181677        | 0.461650 | 0.634588  | 0.461650 | 0.377971 |
| 10    | 4.149100      | 1.446784        | 0.617945 | 0.691145  | 0.617945 | 0.498954 |
| 11    | 3.923300      | 4.556591        | 0.599132 | 0.358959  | 0.599132 | 0.448942 |
| 12    | 2.251700      | 1.343438        | 0.636758 | 0.747581  | 0.636758 | 0.532364 |
| 13    | 0.718900      | 0.570683        | 0.764110 | 0.762805  | 0.764110 | 0.758995 |
| 14    | 3.109300      | 1.528565        | 0.664255 | 0.725856  | 0.664255 | 0.594413 |
| 15    | 0.873000      | 0.760654        | 0.623734 | 0.696693  | 0.623734 | 0.619303 |
| 16    | 0.930400      | 0.663370        | 0.735166 | 0.770106  | 0.735166 | 0.706645 |
| 17    | 0.885000      | 0.565336        | 0.690304 | 0.728593  | 0.690304 | 0.692339 |
| 18    | 0.784900      | 0.619988        | 0.707670 | 0.764794  | 0.707670 | 0.662498 |
| 19    | 0.734900      | 0.498731        | 0.756874 | 0.754939  | 0.756874 | 0.755378 |
| 20    | 0.848300      | 0.528310        | 0.752533 | 0.754402  | 0.752533 | 0.753276 |

Сложности также были вызваны с нестабильным интернет подключением, из-за которого Google Collab постоянно обновлял локальную среду, стирая все наработки

# Финальный вариант

Спустя 3 месяца после первой работающей версии были сделаны ключевые изменения. Нужно было подготовить модель к экспорту, чтобы вставить её в телеграм бота. Я немного изменил код, а именно класс трансформера стал наследоваться от другого. Первоначально он наследовался от огромного класса nn.Model, но сохранить его было тяжело, потому-что в классе nn.Model нет метода сохранения (мне удалось сохранить в файл zip, но файл .json не нёс необходимых конфигураций модели). Поэтому класс трансформера стал наследоваться от PreTrainedModel, с помощью которого я смог всё удачно сохранить. Также я поменял размер батча, уменьшив его с 256 до 32 и понизил learning rate, чтобы модель лучше сходилась. Она стала требовать меньше памяти и хорошо обучилась. Результат повысился. Так, на платформе kaggle решение смогло набрать такой результат:



Вот, какие метрики получались на валидационном датасете:

| Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall   | F1       |
|-------|---------------|-----------------|----------|-----------|----------|----------|
| 1     | 0.490300      | 0.405906        | 0.832370 | 0.832557  | 0.832370 | 0.832457 |
| 2     | 0.535700      | 0.374934        | 0.842486 | 0.843239  | 0.842486 | 0.840580 |
| 3     | 0.135300      | 0.464807        | 0.832370 | 0.833824  | 0.832370 | 0.832844 |
| 4     | 0.029700      | 0.528716        | 0.838150 | 0.837900  | 0.838150 | 0.836787 |
| 5     | 0.038400      | 0.678318        | 0.786127 | 0.791591  | 0.786127 | 0.787382 |
| 6     | 0.065100      | 0.812002        | 0.822254 | 0.823143  | 0.822254 | 0.819628 |
| 7     | 0.026300      | 0.889621        | 0.813584 | 0.812735  | 0.813584 | 0.812226 |
| 8     | 0.000800      | 0.999794        | 0.815029 | 0.814139  | 0.815029 | 0.814014 |
| 9     | 0.000700      | 1.076225        | 0.813584 | 0.812706  | 0.813584 | 0.812751 |
| 10    | 0.000500      | 1.200043        | 0.812139 | 0.811269  | 0.812139 | 0.811362 |
| 11    | 0.000900      | 1.194839        | 0.823699 | 0.822943  | 0.823699 | 0.822608 |
| 12    | 0.000200      | 1.279109        | 0.823699 | 0.824234  | 0.823699 | 0.821335 |
| 13    | 0.000200      | 1.285382        | 0.822254 | 0.821738  | 0.822254 | 0.820688 |
| 14    | 0.000500      | 1.307117        | 0.822254 | 0.821634  | 0.822254 | 0.820826 |
| 15    | 0.000200      | 1.317642        | 0.822254 | 0.821738  | 0.822254 | 0.820688 |

Лучшего результата она смогла достичь на первых эпохах, а потом начала переобучаться (это видно по столбцу "Training loss", который стал уже с 8 эпохи стремиться к нулю очень быстро)

## Telegram bot

Сохраним модель со всеми конфигурациями:

| model.safetensors    | 27.03.2025 21:55 | Файл "SAFETENS  | 427 694 KB |
|----------------------|------------------|-----------------|------------|
| vocab                | 27.03.2025 21:47 | Текстовый докум | 227 КБ     |
| training_args.bin    | 27.03.2025 21:47 | Файл "BIN"      | 6 KB       |
| ■ tokenizer_config   | 27.03.2025 21:47 | JSON File       | 2 KБ       |
| ■ special_tokens_map | 27.03.2025 21:47 | JSON File       | 1 KБ       |
| ■ config             | 27.03.2025 21:47 | JSON File       | 1 KБ       |

В файле model.safetensors содержатся веса модели, в config архитектура:

```
architectures": [
 "BertForSequenceClassification"
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
'layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
'pad_token_id": 0,
position_embedding_type": "absolute",
'problem_type": "single_label_classification",
"torch_dtype": "float32",
"transformers_version": "4.50.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522
```

Телеграм бот нужен для демонстрации возможностей модели. Через тг бота @BotFather мы получаем уникальный токен.

Представленный бот написан без каких-либо крутых фишек. Запускается он локально. Чтобы он работал, нужно в терминале установить библиотеки, которые были в Google colab и библиотеку telegram для работы с API телеграма. Обязательно используем функцию, использованную в модели для очистки твитов.

Добавлена функция логгирования. Можно собирать данные о запросах, переданных боту и о пользователях, которые их отправляли.

Бот написан асинхронно для обработки несколько запросов параллельно, но у него всего одна команда, которая расскажет пользователю о том, что нужно делать.

#### Возможные усовершенствования

Можно модифицировать телеграм бота и добавить ему несколько команд, которые облегчат пользователю работу с большими объемами данных:

- 1. Добавить возможность разделить текст на предложения, проверить каждое из них и вывести, какие предложения могут нести информацию о катастрофе
- 2. Добавить возможность проверять много предложений за один запрос к боту (например файл подать внутрь)

### Выводы

Мы провели серию экспериментов, в ходе которых обучали разные модели и сравнивали их точность. Самой точной моделью оказалась bert-base-uncased с замороженным backbone, которая в сравнении с другими рассмотренным показала наименьшее время работы и лучшее качество с первых эпох. Roberta-large-mnli по нашим предположениям должна была показать большее качество в связи с тем, что обучена она лучше, но на практике она не смогла превзойти bert-base-uncased. Изменив класс наследования, мы смогли сохранить модель и внедрить её в тг бота, что служит отличной демонстрацией возможностей модели, потому что теперь любой пользователь может с ними ознакомиться.

Мы сделали важный вывод, что заморозка backbone эффективна для малых датасетов

### Заключение

С помощью модели bert-base-uncased мы смогли добиться хорошего качества в 83 % Мы убедились в том, что не всегда модели, обученные лучше показывают качество лучше, а также смогли продемонстрировать, как работает модель с помощью тг бота. Данная модель может помочь экстренным службам для защиты, к примеру, детей от разрушительного контента.