My by

DATA MANAGEMENT COPY # 2

Bot Dum

CR-103157 DMS-DR-101,4

-SPACE SHUTTLE-

M/DAC DELTA WING BOOSTER

DETERMINATION OF LOW SPEED DIRECTIONAL STABILITY CHARACTERISTICS

McDONNELL-DOUGLAS
LONG BEACH LSWT
WIND TUNNEL TEST RESULTS
DATA REPORT

OCTOBER, 1970

CONTRACT NAS8-4016 SCHEDULE II

DRL 184-58

AMENDMENT 130

MARSHALL
SPACE FLIGHT CE

SADSAC SPACE SHUTTLE
AEROTHERMODYNAMIC
DATA MANAGEMENT SYSTEM

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

G(THRU)

(CODE)

(CATEGORY)

x71-10	5 58].	TECHNICAL	n REPORT STANDARD TITLE PAGE
1 REPORT NO.	2. GOVERNMENT ACGES		3 RECIPIENT'S CATALOG NO. ,
·NASA CR-103157	1		2 E
4 TITLE AND SUBTITLE (Space Sh			5 REPORT DATE
M/DAC Delta Wing Booster;		low Speed	October 1970
Directional Stability Cha	racteristics		6 PERFORMING ORGANIZATION CODE CCSD
7 AUTHOR (S) C. M. Finch, MDA	C		8 PERFORMING ORGANIZATION REPORT # DMS-DR-1014
9 PERFORMING ORGANIZATION NAME AN Chrysler Corporation Spac			10 WORK UNIT NO
Michoud Operations	-		11 CONTRACT OR GRANT NO.
P.O. Box 29200			NAS8-4016
New Orleans, Louisiana 70	129	İ	13. TYPE OF REPORT & PERIOD COVERED
12 SPONSORING AGENCY NAME AND ADD	RESS		Contractor
National Aeronautics and	Space Administratio	on	
George C. Marshall Space			
Marshall Space Flight Cen	ter, Alabama 35812		14. sponsoring Agency code S&E-AERO-A
15 SUPPLEMENTARY NOTES			• • • • • • • • • • • • • • • • • • •
Contractor Monitor: C. D Aero	ale Andrews -Astrodynamics Labo	oratory	
April of 1970. A 1% scal are included herein and c field studies. Alpha and obtained with control sur	e model of the boos onsist of plotted of beta was varied be faces deflected.	ster configurat coefficient dat etween <u>+</u> 16 deg Corporation is fo	rees. No data were or data presentation of infor-
17 KEY WORDS		18 DISTRIBUTION STA U. S. Governme only	ATEMENT nt Agencies and contractors

20. SECURITY CLASSIF. (of this page)

Unclassified

21 NO. OF PAGES 41 Front

70 Data Plots

22 PRICE

Unclassified

19 SECURITY CLASSIF (of this report)

SADSAC/SPACE SHUTTLE

WIND TUNNEL TEST DATA REPORT

CONFIGURATION:	M/DAC Delta Wing Booster
TEST PURPOSE:	Determination of Low Speed Directional Stability Characteristics
MODEL SCALE:	1%
MACH NUMBER:	0.18
rest facility: _	McDonnell-Douglas Long Beach ISWT - TFST #132
TESTING AGENCY:	McDonnell-Douglas Corporation - West
TEST NO. & DATE:	Test #132 15-28 April 1970
TEST CONDUCTOR(S): C. M. Finch

DATA MANAGEMENT SERVICES

AN 6- Vaugles, DATA OPERATIONS:

RELEASE APPROVAL:

N. D. Kemp, Supervisor
Aero Thermo Data Group

This report has been prepared by Chrysler Corporation Space Division under a Data Management Contract to the NASA. Chrysler assumes no responsibility for the data presented herein other than its display characteristics.

TABLE OF CONTENTS

	PAGE
LIST OF FIGURES	iii
ABSTRACT	1
TEST CONDITIONS	2
DATA REDUCTION	3
CONFIGURATIONS INVESTIGATED	14
TEST RESULTS	9
FACILITY DESCRIPTION	1:4
DATA SET COLLATIONS	15′
NOMENCLATURE	17 '
FIGURES	25
DATA DISPLAY INDEX	33
DATA	39

LIST OF FIGURES

FIGURE NUMBER	TITLE .	PAGE
1	Axis System, showing Direction and Sense of Force and Moment Coefficients, Angle of Attack and Sideslip Angle.	26
2	Frontal View of $B_1W_0V_1K_1R_1$ Installed in DAC/LSWT	27
3	Three-Quarter Left Rear View of $\mathrm{B_{1}W_{0}V_{1}K_{1}R_{1}}$ Installed in DAC/LSWT.	28
4	McDonnell-Douglas Delta Wing Booster Configuration	29
5	Flowfield Studies, Configuration $B_1W_0V_2K_1R_1Z$ $\alpha = 4.9^{\circ}$ $\beta \neq -6^{\circ}$	30
6	Flowfield Studies, Configuration $B_1W_0V_2K_1R_1Z$ $G = 9.5^{\circ} \qquad \beta = -6^{\circ}$	31
7	Modified Wing Fin for Long Beach Low Speed Wind	32

ABSTRACT

Low speed (M = .18) wind tunnel tests have been conducted on the McDonnell-Douglas Corporation delta-wing booster to determine directional stability characteristics. The investigations were donducted in the Douglas-Long Beach Low Speed Wind Tunnel in April of 1970. A 1% scale model of the booster configuration was used. Test results are included herein and consist of plotted coefficient data and sketches of flow field studies.

TEST CONDITIONS
TEST /32/

g			
MACH NUMBER	REYNOLDS NUMBER per unit length	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
0.18	1.2150 .	4.17	78
0.20	1.3450	3,47	76
	1		
-			
أكرنا الكائم كالمتال والفريان والمال في المساور المناف بالمن والمناف بالمناف والمناف والمناف والمناف والمناف والمناف			

BALANCE UTII	LIZED: $MDC(WD)$	AIO BALINO.	5 (0.75 D.)
CAPACI?	ry:	ACCURACY:	COEFFICIENT TOLERANCE:
/2 Gages NF	100 LB / FACH GAGE	0.5 70 FULL	RANGE
(2 Gagrs) NF (2 Gagls) SF	50 L- / EACH GAGE	0.5 70 "	1
AF	50 LB.	0.5 %	řt.
PM	LIMITED BY NEGAGE		
YM	LIMITED BYSF GAGE		
RM	<u> </u>	0.5 % TILL	RANGE

COMMENTS: Due to excessive buffeting of the model at high angles of attack during the first run which was made at q=50 psf and M=0.2, all subsequent runs were made at q=50 psf, M=.18 and $RN/L=1.3 \times 10^5$ per ft. The model was sting mounted and instrumented with a 6-component force and moment internal balance, and with 2 balance cavity pressure taps, 2 model base pressure taps, and 2 model nozzle base pressure taps.

DATA REDUCTION

A six component internal strain gage balance (see test conditions) was utilized to measure aerodynamic forces in the body axis system. Coefficient data have been reduced about a reference c.g. location 1.260 ft. aft of the nose, (70% body length) and 0.067 feet below the vertical reference line using the following reference values:

 β_{RNF} = theoretical wing area = 10,000 ft²f/s = 1.0 ft²

 $l_{REF} = \bar{c} = wing mean aerodynamic chort = 0.8 ft.$

b = wing equivalent span \approx 1.38 ft.

Axial force has been corrected to correspond to a base pressure equal to free-stream static pressure. Stability axis data were calculated utilizing the corrected values of axial force coefficient.

CONFIGURATIONS INVESTIGATED

The wind tunnel model is a 1% scale model which is shown in Figures 2 thru 4. As shown in the figures, the lox lines, orbiter mounts, boat tailed and filleted base design, and rocket nozzles are all simulated on the model. Model components tested were:

 $B_{\eta} = \text{body or fuselage}$

 W_7 = delta wing

V₁ = small vertical tail

 V_2 = large vertical tail

L = parallel wing fences

K = booster rocket nozzles

R = fodnicks (mating attachments, LOX lines, etc.)

Z = transition strips

The immediately following pages describe the components dimensional characteristics.

Combinations of the components tested were:

B₁ W_o R₁ Z

B₁ W_O Z K₁

B₁ W_O R₁ Z K₁

B1 WO R1 Z1 K1 V1

B1 W0 R1 Z1 K1 V2

B1 WO R1 K1 V2

B1 W0 R1 Z K1 V2 L1 L2

Refer to Figures 2 through 7 for configuration definition.

MODEL COMPONENT: BODY - B1		
GENERAL DESCRIPTION:	DOSTER BODY	
DRAWING NUMBER: WT-3	31170	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	190 FT.	1.90FT.
Max. Width	***************************************	
Max. Depth	**************************************	
Fineness Ratio		
Area		
Max. Cross-Sectional	**************************************	—————
Planform		***************************************
Wetted -		**************************************
Base	•	

MODEL COMPONENT: WO		
GENERAL DESCRIPTION: BOOSTER DELTA	WING	
	, , , , , , , , , , , , , , , , , , , 	
DRAWING NUMBER: WT-33070		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA		
Area	_	
Planform	10,000FT2	1.0 Ft2
Wetted		
∠Span (equivalent)	_830 M	8.3 IN.
Aspect Ratio Rate of Taper		1.91
Taper Ratio	0.317	0.317
Diehedral Angle, degrees	13°	130
Incidence Angle, degrees	30	
Aerodynamic Twist, degrees		pr/1000
Toe-In Angle	**************************************	
Cant Angle		
Sweep Back Angles, degrees	۵ سیمس	ون عبوسي
Leading Edge	190	<u> 55°</u>
Trailing Edge 0.25 Element Line		
Chords:		
Root (Wing Sta. 0.0)	1317 IN.	13.17 IN
Tip, (equivalent)	41.8 14,	4.1810
MAC, inches	946 IN	9,46 IN
Fus. Sta. of .25 MAC	1678, N.	16.781H
W.P. of .25 MAC	342,5 IN.	3 42 N.
Airfoil Section Root	NACA 0009	NACA DOOG
Tip	NACA 0005	NACA 0005
EXPOSED DATA		
Area	7 em 13 a mar 2	~ 1 00 00
Area 名Span, (equivalent)	6580 FT2	0,658 FT2
Aspect Ratio	6261N 1.655	1 . 5
Taper Ratio	0.382	2.382
Chords		
Root	10961N	10,9614
Tip	41810	4 18 IN.
MAC CALL OF MAC	8071M 1250,251M.	8.071N.
Fus. Sta. of .25 MAC W.P. of .25 MAC	47075 IN	18.26 (N.

GENERAL DESCRIPTION: WING TIP VE	ERTICAL FIN (BOOSTER
DRAWING NUMBER: W7-330	70	
DIMENSIONS:	FULL-SCALE	MODEL
TOTAL DATA		
Area		
Planform	1039 FT2	0.10
Wetted Span (equivalent)	530 IN.	
Aspect Ratio	1875	
Rate of Taper Taper Ratio	0215	
Diehedral Angle, degrees	0.215	0.
Incidence Angle, degrees		
Aerodynamic Twist, degrees Toe-In Angle	<u> </u>	
Cant Angle	150	/
Sweep Back Angles, degrees		4
Leading Edge Trailing Edge	<u>48° 8'</u> 23° 12'	
0.25 Element Line		
Chords: Root (Wing Sta. 0.0)	465 IN.	4
Tip, (equivalent)	100 14.	
MAC, inches	322 IN	3
Fus. Sta. of .25 MAC W.P. of .25 MAC	247/ IN 208 IN	24
Airfoil Section		
Root Tip	NACA 0009 NACA 0005	NACA
EXPOSED DATA	Charles and the second second	ZXII.
· · · · · · · · · · · · · · · · · · ·		
Area	-	
Span, (equivalent) Aspect Ratio		
Taper Ratio		**************************************
Chords Root		
Tip		
MAC	and the state of t	***************************************
Fus. Sta. of .25 MAC W.P. of .25 MAC		مرحد <u>مراحد کاریسی</u> ه معادد

MODEL COMPONENT: V2		
GENERAL DESCRIPTION: WING TIP	VERTICAL FIN ((BOOSTER)

DRAWING NUMBER: W7-330	<u>70</u>	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA		
Area	_	_
Planform	1245 FT2	0.1245 FT2
, Wetted		
Span (equivalent)	530 IN.	5301N
ASPECT RATIO	1.565	1.565
Rate of Taper		
Taper Ratio	0.456	0.456
Diehedral Angle, degrees Incidence Angle, degrees		
Aerodynamic Twist, degrees		
Toe-In Angle	60	60
Cant Angle	150	150
Sweep Back Angles, degrees		
Leading Edge	4808'	48.8,
Trailing Edge	32° 34'	320361
0.25 Element Line		
Chords:		
Root (Wing Sta. 0.0)	4451N.	4.6514.
Tip, (equivalent)	2/2/4.	2,12 14,
MAC, inches	355IN	3,5514,
Fus. Sta. of .25 MAC	2460 IN.	24.60 IN.
W.P. of .25 MAC Airfoil Section	23 2 IN	2,32,1H.
Root	NACA 0009	WA 64 64 6
Tip	NACA 0005	NACA 0009 NACA 0005
1.46	WACH OUN	MACH OVOS
EXPOSED DATA		
Area		
Span, (equivalent)		
Aspect Ratio		
Taper Ratio	_ -	
Chords		
Root		
Tip		
MAC		
Fus. Sta. of .25 MAC		-
W P. of 25 MAC		

TEST RESULT

Configuration
$$B_1W_0V_1K_1R_1Z$$
 Basic Aerodynamics

 $C_{D_0} = 0.037$
 $C_{D_8} = 0.0084$ at $C_L = 0$
 $CL_0 = 0.0471$
 $C_L = 0^{-3.5^{\circ}}$
 $N_0 = 0.76L$ for $-6^{\circ} \le \alpha < 5^{\circ}$
 $N_0 = 0.70L$ for $\alpha > 5^{\circ}$
 $C_{\eta\beta} = 0.00035$ for $-4^{\circ} \le \alpha \le 5^{\circ}$
 $C_{\eta\beta} = 0.002$ for $\alpha > 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00161 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00161 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00162 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00163 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00164 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00165 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00166 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00167 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00168 for $\alpha \ge 9^{\circ}$
 $\Delta C_{\eta\beta}$ fins = 0.00168 for $\alpha \ge 9^{\circ}$

$$N_0$$
 = 0.68L 9°< α <17°

 $C_{\eta\beta}$ = 0.00075 -4° < α <7°

 $C_{\eta\beta}$ = -0.00185 $\alpha \ge 11$ °

 $\Delta C_{\eta\beta}$ | fins = 0.00403 - 4° < $\alpha \le 7$ °

 $\Delta C_{\eta\beta}$ | fins = 0.00194 $\alpha \ge 11$ °

 $\Delta C_{\eta\beta}$ | fins = 0.00194 $\alpha \ge 11$ °

 $\Delta C_{\eta\beta}$ | fins = 0.00194 $\alpha \ge 11$ °

Configuration B₁W K₁R₁Z Basic Aerodynamics *

$$C_{D_0} = 0.032$$
 $C_{D_8} = 0.0076 \text{ at } C_L = 0$
 $C_{L_{\alpha}} = 0.0392$
 $\alpha_{C_L} = 0 = -3.3^{\circ}$
 $N_0 = 0.72L -6^{\circ} \le \alpha < 0^{\circ}$
 $N_0 = 0.75L = 2^{\circ} \le \alpha < 10^{\circ}$
 $N_0 = 0.71L = 10^{\circ} < \alpha < 17^{\circ}$

* This configuration not tested during this test series.

A3-830-BSS0-303 Date: 5/13/70

 $c_{\eta\beta}$ =-0.00310 to -0.00400 decreasing (more negative) with increasing angle of attack

L/_{D|MAX} = 5.6

α|_{L/DMAX} = 4.7°

Flow field studies with tuft wand:

Due to the directional instability discovered during the initial series of runs, an extensive amount of time was devoted to isolating the cause.

As can be seen from Figures 5 and 6, the apparent cause of the loss in fin effectiveness results from the strong wing leading edge vortex washing out the leeward (low pressure) side of the windward fin. At low angles of attack the vortex has not experienced the bursting phenomena which results in significant increases in the local pressure, while at high angles of attack this phenomenon has occurred resulting in the almost total loss of the windward fin effectiveness. In addition to the tuft wand studies, the following data support these conclusions:

 The consistent reduction at high angles of attack in fin effectiveness to one half the low angle of attack values indicate the loss of one fin.

A3-830-BSS0-303 Date: 5/18/70

2. The forward motion of the aerodynamic center indicated above for both finned configurations indicates a redistribution of lift forward of the trailing edge and can be explained by a loss of lift on the wing tips near the wing fin intersection which is consistent with a local increase in pressure due to vortex bursting.

Fences

Configuration $B_1W_0V_2K_1R_1ZL_1L_2$ The addition of two fences (0.05c) at Y/b/2 =0.381 and Y/b/2 =0.692 had little effect at the low angles of attack on the directional stability. For the range 7 < α < 10 the fins improved the directional stability to an acceptable level. For α = 11.5° and α = 13.0°, the addition of fences produced neutral directional stability. For α = 15.8 the fences lost their effectiveness as they were jumped by the strong leading edge vortex. The addition of the fences produced a decrease in L/D max of approximately 0.2, and an increase in zero lift drag of 0.0038.

Protuberances |

The 3 orbiter mounts produced a destablizing moment of $\Delta C_{n\beta}$ =-0.00026. The protuberances produced no change in zero lift drag or L/D. The protuberances decreased base drag at

A3-830-8550-303 Date: 5/13/70

zero lift by 0.0006. This change can be traced to the effects of the orbiter mount vortices on the ability of the flow to turn the corner on the top of the base region. Thus, the increase in profile drag caused by these protuberances is offset by the decrease in base drag.

Rocket Nozzles

The effect of the rocket nozzles on directional stability is negligible. The effect of the rocket nozzles is as follows: base drag is reduced by $\Delta C_{D_B} = -0.0024$, zero-lift drag is reduced by $\Delta C_{D_0} = -0.0016$ and L/D max is increased by $\Delta L/D/max = 0.3$.

High Wing Configuration

Runs at high negative angles of attack of Configuration $B_1W_0V_2K_1R_1Z_1$ indicate that the booster maintains excellent directional stability to the maximum C_L tested ($C_L = -0.65$, $\alpha = -16.4^\circ$). In addition, the directional stability increases with angle of attack which can be attributed to the reduced sweep of the tip fins relative to the free stream.

FACILITY DESCRIPTION

The Douglas Long Beach Low Speed Wind Tunnel has a test section with dimensions of 54 inches wide x 38" high x 10 feet long.

TEST DAC LSWT 1321 DATA SET COLLATION SHEET

□ PRETEST

☑ POSTTEST

DATA SET	CONTRACTOR	SC	HD	CONT	ROL I	EFLE	CTION NO	•			MACH NU	MBERS			
IDENTIFIER	CONFIGURATION	α	β	Se	SVE	SR	RU	NS 0.18	0.20						
RCZ072	BIWORIZ	Α	0	0	0	Ø		19							
071			-6				<u> </u>	18							
032	BIWORIZKI		0		Ц_			15							
031		Ш	-6			Щ		3						_	
062	BIWO ZKI		٥		\coprod_{-}			16							
061	•		-6		Ц_			17							
012	BIWORIZ KIVI		٥					14	<u> </u>						
011	•		6	<u> </u>		Щ	ļ		1						
022	BIWORIZKI V2		0		<u> </u>			5							
021		L	-6		Ц.	_ _		2							7
027	<u> </u>	В	0			Ц_		10							
023		В	6			\sqcup									
024		.3	C		igsqcup			11							
025		6.9	C		Ц.			12							
026	<u> </u>	6.3			Щ-										
041	BIWORI KI VZ	Α	-6		\bot			4	<u> </u>					4	
051	BIWORIZKI VZLILZ	Α	-6	1	<u> </u>	*		7							
		<u> </u>	<u> </u>		<u> </u>		 		<u> </u>						
		<u> </u>	<u> </u>		<u> </u>										
					<u> </u>										
1	7 13	19		2			31	37	43		49	55	61	67	75 76 T
C N	CLM ICY		Y.N.		CB.L		,CA.	CAF		L	COF	<u>L/0</u>			
COEFFIC	IENTS: A= -6 42°	>]	6								·	····································	->-IDPVA	R(1) IDPVAI	3(2) NDV
α or β SCHEDUL	R= _ IF - IL	<u>V</u> 2	<u> </u>	6		,									
OCUMUL.	<u>C = -6 - E = </u>	>							·						
	D= -14 A2	>	6												

TEST /32/ DATA SET DESCRIPTOR SHEET

DATA SET	DAT.	A SET DESCRIPTOR			- T	CURVE SI	OPE RANGE]
IDENTIFIER		21	31	41		51 LOWER LIMIT	61UPPER LIMIT	
RC2011	1,3,7,1-,DAC-,45,WT-,DE	LB0.0157-B1.1/0.7	(1,K1,C,C)	, , <u>, , , , , , , , , , , , , , , , , </u>	CL) [,]	., -25	25	
RC2021	1,3,2,1,-1P,4,C,-,LIS,W,T,-,DIE	1.8.0.315.T-BIWOV	2K/.R/.Z.	(D1.91.0Si	<u> </u>	- 215	2,5	1
RC2031	1		(1817	<u> </u>		 	<u> </u>	
RC2041			/2,K ₁ /,R./	<u> </u>	/_	<u> </u>	 	
20222	; 	-B./W.OV	12415131	<u>, , (,) , , , , , , , , , , , , , , , ,</u>	بالمنت	<u> </u>		
RC205/	<u> </u>		12. K. I. R. I. L. J. L.	2.7.1		4	 	
RC20 23			1241212	<u></u>		<u>/</u>	1	
RC2027	1		Z,K11,R,1,Z, 1	<u> (,</u>	سلاست	4	<u> </u>	ļ
RC2024	1,11,11,11,1	B.1 W.O.Y	<u> </u>	(Z	4	<u> </u>]
RC 20 25	1	B.1 V.O.V	241.613 1	<u>()</u>	2	<u> </u>		9
RC2026	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-8/1/02	/ <u>2.KI/.K./.č. </u> .		2.	4		-
RC20 12	1,11,11,11,11	-B1W0V	/24/尺/三	<u> </u>	/	4	- 	1
RC20 32			J.SI/ Z		/.	/		j
KC2062		- B.I.W.OK	<u> </u>	حبليبين	/_	4		
RC2061	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B.I WOL	.1.2	<u>(</u>	/	4	<u> </u>	1
RC2071	1, , , , , , , , , , , , , , , , , , ,		3451			4	 	
RC2072	1321-12AC-LISHY-DE	L. B. O, OF T - B. I WO F	<u> </u>	, (,0),0,1,0,5	بحجالا	/ 25	215	Į
			<u> </u>				 	-
		<u> </u>		<u> </u>			<u> </u>	1
						<u> </u>	<u> </u>	_
1	11 21	31	41	51		61		
<u></u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u>/.38.0</u>	1 262	0.000	<u>, , , ,o,</u>	.067MDC(N2	SPACIS! VT-	<u> </u>
REFERENCE	A		TUDINAL MRP	LATERAL. YMRP	VERTIC ZMRI	•	DURCE DOCUMENT	

MOMENT REFERENCE POINT

 $s_{
m R}$

REFFRENCE LENGIH

NOMENCLATURE

SYMBOL Ab a	SADSAC SYMBOL ASPECT	DEFINITION base area; m ² , ft ² , in ² speed of sound; m/sec, ft/sec aspect ratio, b ² /S
AR		wing span or reference span; m, ft, in
þ	REFB	
e		wing chord; m, ft, in
c		wing mean aerodynamic chord or reference chord; m, ft, in (see ℓ_{ref} or refl)
c.g.		center of gravity
C. P.		center of pressure
	CA	axial force coefficient, FA/qSref
$^{\mathrm{C}}_{\mathrm{A}}$		71 101
$\mathtt{c}_{\mathtt{A}}^{}$	CAB	base axial force coefficient, $[(p_{\infty} - p_b)/q]$ (A_b/S_{ref})
-		base axial force coefficient, $[(p_{\infty}-p_b)/q]$

SYMBOL	SADSAC SYMBOL	DEFINITION
C,D	CD	drag force coefficient in the stability axis system, $F_D^{/q}$ $_{ref}^S$
$\mathbf{c}_{\mathbf{L}}$	CL	lift force coefficient (stability or wind axis) $F_L/q S_{ref}$
$^{\mathrm{c}}_{\ell}$	CBL	rolling moment coefficient in body axis system, M_{χ}/q S b
C _{l,s}	CSL	rolling moment coefficient in the stability axis system, $M_{x,s}/q S_{ref}$ b
$^{\mathrm{c}}_{\ell,\mathrm{w}}$	CWL	rolling moment coefficient in the wind axis system, $M_{x,w}/q S_{ref}$ b
C _m	CLM	pitching moment coefficient in the body axis system, $M_y/q s_{ref} l_{ref}$
C _{m,s}	CLM	pitching moment coefficient in the stability axis system, $C_{m,s} = C_{m}$
c _{m,w}	CPM	pitching moment coefficient in the wind axis system, $M_{y,w}/q S_{ref} L_{ref}$
$\mathbf{c}_{_{\mathbf{N}}}$	CN	normal force coefficient in the body axis system, F_N/q S _{ref}

SYMBOL	SADSAC SYMBOL	DEFINITION
C _n	CYN	yawing moment coefficient in the body axis system, $M_z/q S_{ref}^{} b$
c _{n,s}	CLN	yawing moment coefficient in the stability axis system, $C_{n,s} = C_n$
C _{n,w}	CLN	yawing moment coefficient in the wind axis system, $M_{z,w}/q_{ref}$ b
C _p	CP	pressure coefficient, $(p-p_{\infty})/q$
C _y	CY	side force coefficient (body or stability axis system), F_y/q S_{ref}
C _c	CC	side force coefficient (wind axıs system), F_y/q S_{ref}
$\mathbf{F}_{\mathbf{A}}$		axial force; N, lb
$\mathbf{F}_{\mathbf{D}}$		drag force in wind axis system; N, lb
$\mathbf{F_D}$		drag force in the stability axis system; N, lb
$^{ extbf{F}}_{ extbf{L}}$		lift force (stability or wind axis system); N, 1b
F _N		normal force; N, 1b

SYMBOL	SADSAC SYMBOL	DEFINITION
F _Y		side force; N, 1b
	N/A	normal to axial force ratio
$\ell_{ ext{ref}}$	REFL	reference length; m, ft, in (see c)
L/D	L/D	lift-to-drag ratio, $C_{\overline{L}}/C_{\overline{D}}$ (stability axis system)
L/D	CL/CD	lift-to-drag ratio, $\mathbf{C_L}/\mathbf{C_D}$ (wind axis system)
M	MACH	Mach number
MRP	MRP	abbreviation for moment reference point
	XMRP	abbreviation for moment reference point on x-axis
	YMRP	abbreviation for moment reference point on y-axis
	ZMRP	abbreviation for moment reference point on z-axis
M _x		rolling moment in the body axis system; N-m, ft-lb
$^{ m M}_{ m x,s}$		rolling moment in the stability axis system; N-m, ft-lb
N _o		stick fixed neutral point
L		body length

SYMBOL	SADSAC SYMBOL	DEFINITION
M x, w		rolling moment in the wind axis system; N-m, ft-lb
Му		pitching moment in the body (or stability) axis system; N-m, ft-lb
M _{y,w}		pitching moment in the wind axis system; N-m, ft-lb
$\mathbf{M}_{\mathbf{z}}$		yawing moment in the body axis system; N-m, ft-lb
M _{z,w}		yawing moment in the wind axis system; N-m, ft-lb
p		static pressure; N/m ² ; psi
P		total pressure; N/m ² ; psi
đ	Q(PSI) Q(PSF)	dynamic pressure; N/m ² , psi, psf
RN/L	RN/L	Reynold's number per unit length; million/ft.
S		wing area; m^2 , tt^2
$\mathbf{s}_{\mathbf{ref}}$	REFS	reference area; m ² , ft ²
T		temperature; °K, °C, °R, °F
v		speed of vehicle relative to surrounding atmosphere; m/sec, ft/sec

SYMBOL	SADSAC SYMBOL	DEFINITION
$\mathbf{r^i}$		tail incidence positive when trailing edge down, deg
v		velocity of vehicle relative to surrounding atmosphere; m/sec, ft/sec
α	ALPHA	angle of attack, angle between the projection of the wind X_W -axis on the body X , Z -plane and the body X -axis; deg
β	BETA	sideslip angle, angle between the wind X_W -axis and the projection of this axis on the body X - Z -plane; deg
γ		ratio of specific heats
Г	DIHDRL	wing dihedral angle; deg
8	AILRON ELVATR RUDDER FLAP TAB	control surface deflection angle; deg positive deflections are: aileron - left aileron trailing edge down elevator - trailing edge down rudder - trailing edge to the left flap - trailing edge down tab - trailing edge down with respect to control surface
ρ		air density; K_g/m^3 , slugs/ft ³

SYMBOL	Sadsac Symbol	DEFINITION
8		pitch angle, angle of rotation about the body Y-axis. positive when the positive Z-axis is rotated toward the positive X-axis; deg
త	PHI	roll angle, angle of rotation about the body X-axis, positive when the positive Y-axis is rotated toward the positive Z-axis; deg
∜	PSI	yaw angle, angle of rotation about the body Z-axis, positive when the positive X-axis is rotated toward the positive Y-axis; deg

SUBSCRIPTS	DEFINITION
a	aileron
b	base
c	canard
е	elevator or elevon
f	fląp
r	rudder or ruddervator
8	stability axis system
t	tail, or total conditions
w	wind axis system
ref	reference conditions
&	freestream condition

FIGURES

Notes:

- 1. Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- 2. For clarity, origins of wind and stability axes have been displaced from the center of gravity.

Figure 1. Axis systems, showing direction and sense of force and moment coefficients, angle of attack, and sideslip angle

FIGURE 2. FRONTAL VIEW OF $\texttt{B}_1 \texttt{W}_0 \texttt{V}_1 \texttt{K}_1 \texttt{R}_1$ INSTALLED IN DAC-LSWT

FIGURE 3. THREE-QUARTER LEFT REAR VIEW OF $B_1W_oV_1K_1R_1$ INSTALLED IN DAC-LSWT

FIGURE 4. McDONNELL-DOUGLAS DELTA WING BOOSTER CONFIGURATION

FIGURE 5. FLOWFIELD STUDIES CONFIGURATION $_{B_{1}w_{0}v_{2}\kappa_{1}R_{1}Z}$ $_{\alpha}$ = 4.9°, $_{\beta}$ = -6°

FIGURE 6. FLOWFIELD STUDIES CONFIGURATION ${\rm B_1W_oV_2K_1R_1Z} \quad \alpha = 9 \ 5^{\circ}, \quad \beta = -6^{\circ}$

DATA DISPLAY INDEX

LCONFIGURATION COMPONENT EFFECTS AT BETA . O DEGREES

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, MULTIPLE DATASETS

DATASETS PLOT RC2072	RC2062	RC2032	RC 2/0-11/2	₹G2022
DEPENDEN.	r <u>i</u> ni	DEPENDENT ARIABLE	<u> </u>	T [®] P'ÁGÉ NG / ENDING
V'AR I ABL'E'	٧'n	YR I'A'BLE	BEGINNI	NG- / ENDING
CL CL		ALPHA		I ^F I ^F
cnf		ALPHA:		2 [*] 2 [*]
CN		ALPHA		3 ⁻⁷ 3 ⁻⁸
CAE		ALPHA		42 4-
CLM		AL'PHA'		5 ⁴ 5
L/D		ALPHA	•	6 ⁵ 6 ⁵

2. CONFIGURATION COMPONENT ÉFFECTS AT BETA = -6 DEGREES

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, MULTIPLE DATASET'S

DATASETS PLOTT	ED:			-	-	
RC2071	RC 206 1	RC2031	RÍC 2 ĐẦN	R'C	2021	R∙€ 2 () S÷1
DÉPENDÊNT	I≈NC	ÉRÉNDENT	PLO BFGINNII	Î PĂ	GE	1
VARTABLE		(RI'ABLE	BFGINNI	VĞ /	ENDING	
CL		A'L PHA'			7	
CDF		ALPHA!		<u>B</u>	8′	
CN		ALPHA	,	? ,	9	
CAF		AL PHA	1.	3	1,0	
ĈĽM		ALPHA	1	1	11	
L/0		ALPHA'	13	2	1,2	
ĈΥ		AEPHA	1	3	i 3º	
C'Y N		ALPHA	1:4	ψ;	14	
CBL		ÅĽ P H'A	1-5	3	1,2	

3 CONFIGURATION COMPONENT EFFECTS AT BETA . O DEGRÉÉS

DEPENDENT VARIABLE VS DEPENDENT VARBABLE, MULTIPLE DATASETS

, <u>.</u>	DAT	ASETS PLOT RC2'0'72		RC2032	RC 2'0'1' 2	RC.	2 11'2'2"
	N SS. Yarme	D <u>ÉPENDEN</u> VÀRIABLE	T DE	<u>PENDENT</u> RIABLE	PĽO BEĠIÑNI	Ť ΡΑ̈́(NG /	ENDING GE
		CL CL	Ξ.	DF LM	1	ź	16 17

4.CONFIGURATION COMPONENT EFFECTS AT BETA & -6 DEGREES

DEPENDENT VARIABLE VS DEPENDENT VARIABLE, HULTIPLE DATASETS

DATA	SETS PLOTT	ED:			-
	RC2071	RC2061 RC2031	RC2011 F	C2021	RC2051
	DEPENDENT	DEPENDENT	PLOT F	AGE	
	VARIABLE	VARIABLE	BEGINNING	\ ENDING	1
* ** * **		COF	18	18	tum •
	CL	- CLM	19	19	

5.EFFECTS OF SIDESLIP ANGLE ON BASIC AERODYNAMIC CHARACTERISTICS

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, PARAMETRIC STUDY

DATASETS PLOTTED		V # 28	-
RC2021 AB:	2022 RC2023		
DEPENDENT	INDEPENDENT	PLOT PA	GE .
VARIABLE	VARIABLE	BEGINNING /	ENDING
CL	ALPHA	20	
CDF	ALPHA	21	21
CN	ALPHA	22	22
CAF	ALPHA	23	23
CLM	ALPHA	24	24
L/D	ALPHA	25	<u>2</u> 5
CY	ALPHA	26	26
CYN	ALPHA	2.7	27
CBL	ALPHA	28	28

GEFFECTS OF ANGLE OF ATTACK ON BASIC AERODYNAMIC CHARACTERISTICS

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, PARAMETRIC STUDY

DATASETS PLOT	TED:			-
RC2026	RC2024	RC2U25		
n C n C N D C N	r 1811	DEPENDENT	PLOT PA	a F
DEPENDEN!		ARIABLE	BEGINNING /	
VARIABLE	¥ -	MAINDEE	OF GIMMING >	6.14.5.1.14.0
CL		BETA	29	29
CDF		RETA	30	30
CN		BETA	31	31
CAF		BETA	32	32
CLM		BETA	3 3	33
L/0		BETA	34	34
CY		BETA	35	35
CYN		BETA	36	36
CBL		BĘTA	31	37

REFFECTS OF STOLSLIP ANGLE ON BASIC AERODYNAMIC CHARACTERISTICS

DEPENDENT VARIABLE VS DEPENDENT VARIABLE, PARAMETRIC STUDY

DAT	ASETS PLOTT	ED:			
	RC2071	AB20:22	RC202'3		
	DEPENDENT		ENDEHT	PLOT PA	
	VARIABLE	V ATR	IABLE	HEGINNING /	ENDITE
~	CL	C1	ρF	38	38
	<u> </u>		M	39	39

8.EFFECTS OF ANGLE OF ATTACK ON BASIC AERODYNAMIC CHARACTERISTICS

DEPENDENT VARIABLE VS DEPENDENT VARIABLE, PARAMETRIC STUDY

DATASETS PLOTTED:

. —	PC2026	RC2024	Rc2025		
	DEPENDENT	DE	PENDENT	AG TOJG	GE
	VARIABLE		IABLE	BEGINNING	FNDING
•					
	CY	C	YN	40	40
	<u> </u>	C	D.F	41	41

9/EFFECTS OF TRANSITION STRIPS (RETA = +6 DEGREES)

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, MULTIPLE DATASETS

DATASETS PLOTTED:

 Rc2051 Rc	2041		
DEPENDENT	INDEPENDENT	PLOT PA	GE
VARIABLE	VARIABLE	BEGINNING /	ENDING
CL	ALBHA	42	42
 _ CDF	ALPHA	4.3	43
 CN	ALPHA	44	44
CAF	ALPHA	45	45
CLM	ALPHA	46	46
L/D	ALPHA	47	47
ĊΥ	ALPHA	-48	48
CYN	ALPHA	49	49
 CHL	ALPHA	รือ	50

10 LFFECTS OF TRAISITION STRIPS (BETA = -6 DEGREES)

DEPENDENT VARIABLE VS DEPENDENT VARIABLE, MULTIPLE DATASETS

			-	~ ~
UAT	ASETS	PLO	TT	ED:

<u> </u>	RC2041		
DEPENDE	NT DEPENDENT	PLOT PA	
VARIABL	F VARIABLE	BEGINNING /	FNDING
۲L	CDF	51	51
CL	<u>CL</u> M	5,2	5 2

11CROSS DERIVATIVES IN SIDESLIP - CONFIGURATION BIWORIZ

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE

DATASETS	DEPENDENT	INDEPENDENT	PLOT PAG	E
PLOTIED	VARIABLE	VARIABLE	BEGINNING /	END THE
RC2BT1	CYBEJA	ALPHA	53	53
RC2BT1	DC3LDB	ALPHA	54	54
PC2BT1	DCAMDR	ALPH4_	55	55

12 CROSS DERIVATIVES IN SIDESLIP - CONFIGURATION BIWOZKI

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE

	OEPENDENT	INDEPENDENT	PLOT PAGE BEGINNING \ ENDING	
PLOTTED.	CABELV	ALPHA	56	56
RC28T2	D C B L D B D C Y N D B	ALPHA Alpha	57 58	57 58
RC2BT2	DCYNDB	ALPHA	58	58

13CROSS DERIVATIVES IN SIDESLIP - CONFIGURATION BIWORIZKI

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE

DATASETS	PEPENDENT	INDEPENDENT	PLOT PAGE	
PLOTIED	VARIAHLE	VARIABI _L E	REGINNING	/_FND ING
RC2PT3	CYBETA	ALPHA	59	. 59
RC2813	DCHLDB	ALPHA	60	60
RC2BT3	DCYNDB	ALPHA	61	61

14 CROSS DERIVATIVES IN SIDESLIP - CONFIGURATION BIWORIZKIVI

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE

DATASETS	DEPENDENT	INDEPENDENT	PLOT PAGE	
PLOTTED	VARIABLE	VARIABLE	BEGINNING /	EN) IN(
RC2814	CYBETA	ALPHA	62	62
KC2BT4	pcblbb	ALPHA	63	63
PC2BT4	EGNY) U	ALPHA	64	64

15 CROSS DERIVATIVES IN SIDESLIP - CONFIGURATION BIWORIZKIV2 (ALPHA SCHEDULE A)

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE

DATASETS	DEPENDENT	INDEPENDENT	PLOT PAGE	
_PLOTTFD	VARIABLE	VARIABLE	BEGINNING /	ENDINE
RC2815	CYBETA	_ALPHA_	65	65
RC28T5	DCBLDB	ALPHA	86	66
RC2BT5	DCYNDB	ALPHA	67	67

6.CROSS DERIVATIVES IN SIDESLIP - CONFIGURATION BIWORIZKIV2 (ALPHA SCHEDULE B)

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE

DATASLIS	DEPENDENT	INDEPENDENT	PLOT PAGE	
LT OI LED	VARIABLE	VARIABLE	BEGINNING	\" ENDING
RCZBT6	CYBETA	ALPHA	6.8	68
RC2BT6	DCBLDB	ALPHA	6 9	69
RC2816	DCYNDB	АĻРНА	70	70

DATA

PAGE

PAGE

PAGE 14

PAGE 17

PAGE 47

ě

