Preparing Input Data for Machine Learning Models

Ravikiran Srinivasulu SOFTWARE CONSULTANT ravikirans.com | ravikirans.com/YouTube

Garbage In, Garbage Out

Garbage In, Garbage Out

Agenda

Exploratory Data Analysis (EDA)

Uncover data issues

- Erroneous data
- Outliers
- Duplicate records

- ...

Clean dataset ready for ML

Data Preprocessing Methods

Data Preprocessing Methods

Data Cleaning

Missing values,
Noisy data,
Outliers

Data Transformation

Normalization

Data Discretization

Binning Methods

Data
Reduction
Sampling

Run Exploratory Data Analysis (EDA)

Cleaning erroneous data

Handling Outliers in dataset

Remove duplicate records

Data Transformation - Normalization

Comparison of Features

Min-Max Normalization

Min-Max Normalization

Z-Score Normalization

Min-Max vs. Z-Score Normalization

Let's Sample records

How ML Algorithms Perform with Data?

Let's select relevant columns in dataset

Data Discretization - Binning

Entropy

A measure of randomness in the data

	Facebook hours	> 80%
	3	1
5	4	1
	5	0
	7	0
	10	0
	11	0
	14	1
	15	0
	19	0

	Facebook hours	> 80%
	3	1
0	4	1
	5	0
	7	0
	10	0
	11	0
	14	1
	15	0
	19	0

Entropy is inversely proportional to Information gain

	Facebook hours	> 80%
	3	1
9/	4	1
0	5	0
	7	0
	10	0
	11	0
	14	1
	15	0
	19	0

	Facebook hours	> 80%
	3	1
	4	1
	5	0
} <	7	0
	10	0
	11	0
	14	1
	15	0
	19	0

	Facebook hours	> 80%
	3	1
	4	1
	5	0
	7	0
	10	0
	11	0
	14	1
	15	0
	19	0

	Facebook hours	> 80%
	3	1
	4	1
	5	0
	7	0
	10	0
	11	0
	14	1
	15	0
	19	0

	Facebook hours	> 80%
	3	1
	4	1
*	5	0
	7	0
	10	0
	11	0
	14	1
	15	0
	19	0

	Facebook hours	> 80%
	3	1
	4	1
	5	0
	7	0
	10	0
	11	0
0/	14	1
8	15	0
	19	0

	Facebook hours	> 80%
	3	1
	4	1
	5	0
	7	0
	10	0
	11	0
	14	1
0/	15	0
<i>></i>	19	0

Entropy MDL

Summary

EDA helps us to understand data better

Data Preprocessing transforms the data suitable for ML

Algorithms "somehow" cannot find patterns. We help it to do so!

Not all tasks are required for every problem

