Travaux Pratiques

Thème

Analyse des indicateurs de la pauvreté au Bénin et identification de quelques déterminants de la pauvreté, à partir de l'Enquête Harmonisée sur les Conditions de Vie des Ménages (EHCVM)

Sommaire

Sommaire	i
Introduction	1
I. Analyse de quelques indicateurs de la pauvreté	2
I.I. Calcul et interprétation de quelques indicateurs de la pauvreté	2
I.2. Construction de la courbe de Lorentz et calcul de l'indice de GINI	6
I.3. Calcul des déciles, quartiles et de la médiane de bien-être	9
I.4. Présentation des percentiles de bien-être avec détail	9
II. Estimation de quelques déterminants de la pauvreté	10
2.1. Estimation des effets marginaux	11
2.2. Estimation des élasticités	12
2.3. Estimation des odds ratios	12
2.4. Table de prédiction	12
2.5. Qualité de l'ajustement	12
Conclusion	14
Bibliographie	ii
Annexes	iii
Annexes I : Analyse de quelques indicateurs de la pauvreté	iii
Annexes 2 : Estimation de quelques déterminants de la pauvreté	ix

Introduction

Ce travail pratique examine divers indicateurs de la pauvreté au Bénin et identifie les principaux déterminants de la pauvreté. En analysant les données disponibles, l'objectif est de mieux comprendre les facteurs socio-économiques qui influencent la pauvreté dans ce pays d'Afrique de l'Ouest. C'est dans le but d'analyser la pauvreté sous divers angles, que ce projet est initié.

I. Analyse de quelques indicateurs de la pauvreté

Cette partie présente une analyse des principaux indicateurs de la pauvreté. Il est important de prendre en compte les poids induits par les choix des grappes dans les zones de dénombrement, ainsi que des ménages dans chaque grappe. Cette pondération facilitera l'inférence des résultats d'échantillon, sur l'ensemble de la population. L'échantillonnage étant effectué sur deux degrés, on fera aussi un appariement des bases individus et ménages. Notre échantillon d'étude comporte 8 012 ménages et en passant à la population totale, on a 11 699 067 individus.

1.1. Calcul et interprétation de quelques indicateurs de la pauvreté

Après avoir généré les variables relatives à la profondeur, la sévérité, l'intensité, le gap et le gap au carré de la pauvreté, nous avons procédé au calcul d'indicateurs au niveau global et suivant d'autres critères (milieu, région, religion).

Grandeurs au niveau global :

Grandeur	Taux de pauvreté	Profondeur de la pauvreté	Sévérité de la pauvreté
Valeur (%)	38,5	10,77	4,31

Le taux de pauvreté estimé au niveau national est de 38,5%. Par ailleurs, sur une échelle de 0 à 1, la profondeur de la pauvreté au niveau national est de 0,107 et sa sévérité est 0,0431. En effet, la profondeur de la pauvreté est l'écart moyen entre les individus pauvres et les individus de référence, en termes de revenu ; il permet donc de mesurer l'effort moyen à fournir par les pauvres pour atteindre le niveau de référence. En ce qui concerne la sévérité de la pauvreté, elle tient compte non seulement de la distante entre les pauvres et le niveau de référence, mais aussi des inégalités entre les pauvres et accorde ainsi, plus de poids aux plus pauvres parmi les pauvres.

Taux de pauvreté par milieu, région et religion :

Milieu

Milieu	Urbain	Rural
Valeur (%)	31,39	44,19

En milieu urbain, 31,4% de la population est pauvre contre 44,2% en milieu rural.

• Région

Région	Alibori	Atacora	Atlantique	Borgou	Collines	Couffo	Donga	Littoral	Mono	Ouémé	Plateau	Zon
Valeur (%)	42,14	15'09	29,74	53,31	25,57	52,29	43,30	18,85	43,02	18,29	42,78	18'68

Lorsqu'on analyse le taux de pauvreté par département, on se rend compte que l'Atacora affiche le taux de pauvreté le plus élevé (60,51%), suivi du Borgou (53,3%) et du Couffo (52,29). Le top 3 des départements les moins pauvres est : Ouémé (18,29%), Littoral (18,85%) et Collines (25,57%).

• Religion

Religion	Musulman	Chrétien	Animiste	Autre Religion	Sans Religion
Valeur (%)	44 ,09	31,09	52,47	32,46	47,94

En ce qui concerne les religions, la religion animiste affiche le taux de pauvreté le plus élevé (52,47%).

Profondeur de la pauvreté par milieu, région et religion :

Milieu

Milieu	Urbain	Rural
Valeur (%)	8,61	12,49

Les pauvres en milieu rural sont plus loin du niveau de pauvreté de référence, que les pauvres en milieu urbain.

• Région

Région	Alibori	Atacora	Atlantique	Borgou	Collines	Couffo	Donga	Littoral	Mono	Ouémé	Plateau	Zou
Valeur (%)	12,11	19,46	7,26	18,30	5,80	14,81	11,56	4,12	11,37	3,55	11,51	10,38

Dans les départements de l'Atacora (0,195) et du Borgou (0,183), il y a une grande distance entre les pauvres et le niveau de pauvreté de référence. Cependant, cet écart est moins important dans les départements de l'Ouémé (0,035), du Littoral (0,041) et des Collines (0,058).

• Religion

Religion	Musulman	Chrétien	Animiste	Autre Religion	Sans Religion
Valeur (%)	13,87	7,79	14,98	7,14	12,93

Il faudrait plus d'effort aux animistes pauvres (0,15) pour atteindre le niveau de référence, qu'aux chrétiens pauvres (0,078).

Sévérité de la pauvreté par milieu, région et religion :

Milieu

Milieu	Urbain	Rural
Valeur (%)	3,42	5,02

La sévérité de la pauvreté a de faibles valeurs, aussi bien en milieu urbain (0,0342) qu'en milieu rural (0,0502) ; ce qui est évident puisque généralement, on note de faibles inégalités dans le lot des pauvres.

• Région

Région	Alibori	Atacora	Atlantique	Borgou	Collines	Couffo	Donga	Littoral	Mono	Ouémé	Plateau	Zou
Valeur (%)	4,85	8,56	2,54	8,07	2,14	5,92	4,45	1,52	4,09	1,2	4,51	3,98

Tout comme la sévérité de la pauvreté par milieu, l'analyse de la sévérité selon la région affiche de faibles valeurs pour tous les départements. On note par ailleurs un indice de sévérité de 0,012 pour le département du Littoral (c'est le département le moins inégalitaire entre les pauvres, en termes de revenu). Le département le plus inégalitaire est l'Atacora (0,086).

Religion

Religion	Musulman	Chrétien	Animiste	Autre Religion	Sans Religion
Valeur (%)	5,87	2,94	6,04	2,18	5,11

Il y a une faible inégalité entre les chrétiens pauvres (0,029). Cependant, le revenu est plus inégalitaire chez les animistes (0,06) et les musulmans (0,059) pauvres.

I.2. Construction de la courbe de Lorentz et calcul de l'indice de GINI

Au niveau global :

L'indice de GINI global est de 0,377 ; ce qui signifie qu'il y a une inégalité modérée au sein de la population, du point de vue de l'indicateur de bien-être.

• Par milieu:

Il y a une dispersion modérée de l'indicateur de bien-être, aussi bien en milieu urbain qu'en milieu rural. Toutefois, cette inégalité est beaucoup plus accentuée en milieu urbain. Ce constat pourrait s'expliquer par le fait qu'en milieu urbain, on a généralement toutes les catégories sociales en termes de bien-être et la dispersion des niveaux de consommation est importante.

• Par région :

Le calcul de l'indice de Gini par département révèle une inégalité modérée dans chaque département. Néanmoins, cette inégalité est moindre dans les départements de l'Alibori, du Couffo, de la Donga, de l'Ouémé. On a l'inégalité la plus élevé dans le département du Littoral (0,422) ; ce qui veut dire qu'une petite partie des ménages se partagent 42,2% du bien-être dans ce département et le reste est pour l'autre partie plus grande.

Par religion :

En procédant à une analyse des inégalités selon la religion pratiquée dans les ménages, on note que : le bien-être est modérément inégalitaire dans toutes les religions mais beaucoup plus dans la religion chrétienne et dans la religion musulmane.

Par genre :

Il y a un degré modéré d'inégalité, aussi bien chez les individus du genre masculin que ceux du genre féminin et cette inégalité est presque la même (0,377 contre 0,38).

1.3. Calcul des déciles, quartiles et de la médiane de bien-être

Les déciles :

	Déciles
10% (DI)	162037,88
20% (D2)	204996,14
30% (D3)	243182,52
40% (D4)	284034,78
50% (D5)	328891,06
60% (D6)	384133,31
70% (D7)	459875,19
80% (D8)	581271,31
90% (D9)	803626,19
D9/D1	4,96

Notons ici que 50% des individus consomment pour moins de 328891,06 FCFA par an ; cependant, 10% des individus consomment pour plus de 803626,19 FCFA par an.

Par ailleurs, l'écart inter décile est : 4,96 ; ce qui signifie que les 10% des ménages les plus riches ont un revenu au moins **4,95** fois plus élevé que celui des 10% des ménages les plus pauvres.

Les quartiles :

	Déciles
25%	225602,72
50%	328891,06
75%	514998,41

25% des individus consomment pour moins de 225602,72 FCFA par an et 25% d'entre eux consomment pour plus de 514998,41 FCFA par an.

La médiane :

La valeur de la médiane est : 328891,06.

1.4. Présentation des percentiles de bien-être avec détail

	Percentiles
1%	91149,76
5%	131229
10%	162037,9
25%	225602,7
50%	328891
75%	514998,4
90%	803626,2
95%	1068195
99%	2035451

Moyenne	439047
Ecart-type	413385.8
Variance	I.7le+II
Skewness	6.272689
Kurtosis	87.1385

La consommation moyenne des individus est de 439 047 FCFA environ par an.

II. Estimation de quelques déterminants de la pauvreté

Nous émettons l'hypothèse que les déterminants de la pauvreté sont : la taille du ménage (hhsize), l'âge du chef du ménage (hage), la consommation annuelle alimentaire du ménage (dali) et la consommation annuelle non alimentaire du ménage (dnal). Ainsi, nous allons réaliser un modèle probit et un modèle logit avec ces potentielles variables explicatives de la pauvreté afin de choisir le meilleur pour la suite de notre étude.

➤ Modèle probit

Le tableau ci-dessous présente les résultats issus de l'estimation du modèle probit.

Probit regress		Number of obs LR chi2(4) Prob > chi2 Pseudo R2	= 8,012 = 7179.34 = 0.0000 = 0.7249			
pov	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
hhsize	1.207098	.0301258	40.07	0.000	1.148052	1.266143
hage	0028837	.0018208	-1.58	0.113	0064524	.000685
dali	-5.21e-06	1.47e-07	-35.33	0.000	-5.50e-06	-4.92e-06
dnal	-4.28e-06	1.38e-07	-31.07	0.000	-4.55e-06	-4.01e-06
_cons	2966893	.0958492	-3.10	0.002	4845502	1088283

Nous constatons que seule la variable âge du chef du ménage (hage) n'est pas significative. De plus le coefficient de la variable hhsize est positif tandis que les coefficients des variables dali et dnal sont négatives.

➤ Modèle logit

Le tableau ci-dessous présente les résultats issus de l'estimation du modèle logit.

Logistic regre	ession		Number of obs LR chi2(4)	= 8,012 = 7348.83		
Log likelihood	d = -1277.2076	Prob > chi2 Pseudo R2	= 0.0000 = 0.7421			
pov	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
hhsize	2.48235	.0752631	32.98	0.000	2.334838	2.629863
hage	0049904	.0033492	-1.49	0.136	0115547	.0015739
dali	000011	3.67e-07	-30.02	0.000	0000117	0000103
dnal	-9.11e-06	3.34e-07	-27.25	0.000	-9.77e-06	-8.46e-06
_cons	3591263	.1787198	-2.01	0.044	7094107	0088419

Comme dans le cas du modèle probit, seule la variable âge du chef du ménage (hage) n'est pas significative. De même, le coefficient de la variable hhsize est positif tandis que les coefficients des variables dali et dnal sont négatives.

Retenons que le modèle probit est meilleur car il fournit la plus petite valeur de la statistique « **log likelihood** ». Ainsi pour la suite nous allons utiliser le modèle probit.

2.1. Estimation des effets marginaux

Le tableau ci-dessous présente les résultats issus de l'estimation des effets marginaux.

Marginal effects after probit y = Pr(pov) (predict) = .00038539							
variable	dy/dx	Std. err.	z	P> z	[95%	c.I.]	x
hhsize	.0016852	.00045	3.79	0.000	.000813	.002557	5.27609
hage	-4.03e-06	.00000	-1.46	0.145	-9.4e-06	1.4e-06	43.3855
dali	-7.27e-09	.00000	-3.79	0.000	-1.1e-08	-3.5e-09	1.0e+06
dnal	-5.97e-09	.00000	-3.84	0.000	-9.0e-09	-2.9e-09	907001

Les variables significatives au seuil de 5% d'après le modèle probit estimé sont : hhsize, dali, dnal. Nous constatons que les coefficients des variables dali, dnal sont tous négatifs tandis que le coefficient de la variable hhsize est positif. On interprète que les signe des effets marginaux. On peut donc dire que l'accroissement des consommations annuelles alimentaire et non alimentaire d'un ménage, défavorise le fait qu'un individu de ce ménage soit pauvre. Aussi, plus la taille d'un manage est élevé, plus les individus de ce ménage risquent d'être pauvres.

2.2. Estimation des élasticités

Le tableau ci-dessous présente les résultats issus de l'estimation des élasticités.

	1	Delta-method				
	ey/ex	std. err.	Z	P> z	[95% conf.	. interval]
hhsize	13.08753	.3988062	32.82	0.000	12.30588	13.86917
hage	2163531	.145201	-1.49	0.136	5009418	.0682356
dali	-11.46784	.3837073	-29.89	0.000	-12.2199	-10.71579
dnal	-8.260066	.3043709	-27.14	0.000	-8.856622	-7.66351

On conclut que l'accroissement des consommations annuelles alimentaires d'un ménage, d'1%, entraîne une diminution de 11,47% de la probabilité qu'un membre de ce ménage soit pauvre. De même, l'accroissement des consommations annuelles non alimentaires d'un ménage, d'1%, entraîne une diminution de 8,26% de la probabilité qu'un membre de ce ménage soit pauvre. On note également que l'accroissement d'1% de la taille d'un ménage entraîne une augmentation de 13,08% de la probabilité qu'un membre de ce ménage soit pauvre.

2.3. Estimation des odds ratios

Les résultats issus de ces estimations sont présentés dans l'annexe. En tenant compte de la significativité des coefficients, on note par exemple que les individus du genre féminin ont 1,55 fois plus de chance d'être pauvres, par rapport aux individus du genre masculin.

2.4. Table de prédiction

Le tableau est présenté dans l'annexe. D'après ce tableau, le modèle estimé nous permet d'avoir 95,04% de bonnes prédictions.

2.5. Qualité de l'ajustement

La courbe ROC ci-dessous nous informe sur la qualité de l'ajustement. L'aire en dessous de cette courbe vaut 0,9827 ; ce qui témoigne de la bonne qualité de l'ajustement. Ceci est

confirmé par la p-valeur associée à la statistique de Pearson (0,0000) et témoignant que l'ajustement effectué est bon.

Conclusion

L'analyse des indicateurs et déterminants de la pauvreté au Bénin révèle des facteurs critiques influençant les conditions de vie des ménages. Ces résultats soulignent l'importance de politiques ciblées, notamment les politiques pro-pauvres et de stratégies efficaces pour atténuer la pauvreté et promouvoir le développement durable. Les autorités compétentes devraient en tenir compte pour mieux orienter les politiques sociales, démographiques et économiques à venir.

Bibliographie

- Rapport de la première édition de l'enquête harmonisée sur les conditions de vie des ménages (EHCVM, Bénin 2018-2019)
- Résumé du cours de statistique descriptive, Yves Tillé

Annexes

Les différentes sorties (tableaux et résultats) de calculs sont présentés dans cette partie.

Annexes I : Analyse de quelques indicateurs de la pauvreté

Taux de pauvreté global

. svy: mean pov
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 8,012 Number of PSUs = 8,012 Population size = 11,699,067 Design df = 8,011

	Mean	Linearized std. err.	[95% conf.	interval]
pov	.384978	.0069957	.3712646	.3986915

Profondeur globale de la pauvreté

. svy: mean v_profond
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 8,012 Number of PSUs = 8,012 Population size = 11,699,067 Design df = 8,011

	Mean	Linearized std. err.	[95% conf.	interval]
v_profond	.1076713	.0026572	.1024625	.11288

• Sévérité globale de la pauvreté

. svy: mean v_severe
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 8,012 Number of PSUs = 8,012 Population size = 11,699,067 Design df = 8,011

Linearized

Mean std. err. [95% conf. interval]

v_severe .0430878 .0014086 .0403266 .045849

■ Taux de pauvreté par milieu

. svy: mean pov, over(milieu)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 8,012Number of PSUs = 8,012 Population size = 11,699,067Design df = 8,011

	Mean	Linearized std. err.	[95% conf.	interval]
c.pov@milieu Urbain Rural	.3139539 .4419362	.0094768 .0098996	.295377 .4225303	.3325309

Taux de pauvreté par région

. svy: mean pov, over(region)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 8,012 Number of PSUs = 8,012 Population size = 11,699,067 Design df = 8,011

		Linearized		
	Mean	std. err.	[95% conf.	interval]
c.pov@region				
alibori	.4214212	.0272768	.3679515	.4748909
atacora	.6050617	.0231108	.5597585	.6503648
atlantique	.2974358	.0179903	.2621702	.3327014
borgou	.533167	.0232191	.4876516	.5786825
collines	.2557071	.0209914	.2145584	.2968557
couffo	.5228831	.0244143	.4750247	.5707415
donga	.4330447	.0231371	.38769	.4783994
littoral	.1885159	.0185802	.1520938	.224938
mono	.4302501	.0218136	.3874898	.4730103
oueme	.1829066	.0159533	.1516339	.2141792
plateau	.4277951	.0258306	.3771604	.4784298
zou	.3980888	.0280427	.3431178	.4530598

Taux de pauvreté par religion

. svy: mean pov, over(hreligion)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 8,012Number of PSUs = 8,012 Population size = 11,699,067Design df = 8,011

Linearized std. err. [95% conf. interval] Mean c.pov@hreligion Musulman .4409395 .0137548 .4139765 .4679024 Chr⊡tien .3109991 .0090044 .2933482 .3286501 .0177007 .5594185 Animiste .5247205 .4900225 Autre RDligion .3246989 .0871744 .1538143 .4955835 Sans R2ligion .4793761 .0409073 .3991871 .559565

Profondeur de la pauvreté par milieu

. svy: mean v_profond, over(milieu)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of PSUs = 8,012 Number of obs = 8,012 Population size = 11,699,067 Design df = 8,011

	Mean	Linearized std. err.	[95% conf.	interval]
c.v_profond@milieu Urbain Rural	.0861161 .1249575	.0035102 .0038363	.0792352 .1174375	.092997 .1324776

Profondeur de la pauvreté par région

. svy: mean v_profond, over(region)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of PSUs = 8,012 Number of obs = 8,012 Population size = 11,699,067 Design df = 8,011

	Mean	Linearized std. err.	[95% conf.	interval]
c.v_profond@region				
alibori	.1211446	.0105741	.1004165	.1418727
atacora	.1946227	.0106405	.1737645	.2154809
atlantique	.0725792	.0053963	.062001	.0831574
borgou	.183043	.0103326	.1627885	.2032976
collines	.0580588	.0063705	.045571	.0705466
couffo	.1481501	.0101081	.1283356	.1679645
donga	.1155982	.0084558	.0990228	.1321737
littoral	.0412034	.0057897	.0298541	.0525527
mono	.1136753	.0075665	.0988429	.1285076
oueme	.0354905	.0043487	.0269659	.0440152
plateau	.1151572	.0099303	.0956912	.1346232
zou	.1038167	.0100676	.0840817	.1235518

- Profondeur de la pauvreté par religion
- . svy: mean v_profond, over(hreligion)
 (running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1
Number of PSUs = 8,012

Number of obs = 8,012 Population size = 11,699,067 Design df = 8,011

		Mean	Linearized std. err.	[95% conf.	interval]
c.v_profond@	hreligion				
	Musulman	.1387097	.0057704	.1273983	.1500211
	Chr⊡tien	.0779397	.0030251	.0720098	.0838696
	Animiste	.1498507	.0072169	.1357037	.1639976
Autre	R 2 ligion	.0714799	.0233417	.0257242	.1172357
Sans	R⊡ligion	.1293073	.0151024	.0997027	.1589119

- Sévérité de la pauvreté par milieu
- . svy: mean v_severe, over(milieu)
 (running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of PSUs = 8,012 Number of obs = 8,012 Population size = 11,699,067 Design df = 8,011

	Mean	Linearized std. err.	[95% conf.	interval]
c.v_severe@milieu Urbain Rural	.0342397 .0501836	.0018298 .0020598	.0306529 .0461459	.0378266 .0542212

Sévérité de la pauvreté par région

. svy: mean v_severe, over(region)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of PSUs = 8,012 Number of obs = 8,012 Population size = 11,699,067 Design df = 8,011

		Linearized		
	Mean	std. err.	[95% conf.	interval]
c.v_severe@region				
alibori	.0484669	.0056164	.0374573	.0594765
atacora	.0856583	.0063006	.0733075	.098009
atlantique	.0254312	.0024884	.0205533	.0303091
borgou	.0806753	.0059183	.0690738	.0922768
collines	.0214577	.0032244	.0151371	.0277784
couffo	.0592211	.0057086	.0480307	.0704116
donga	.0444978	.0045517	.0355752	.0534203
littoral	.0151899	.0029222	.0094616	.0209182
mono	.0409134	.0035082	.0340363	.0477904
oueme	.0119722	.0020431	.0079672	.0159772
plateau	.0451443	.0051676	.0350144	.0552742
zou	.0398176	.0051234	.0297744	.0498609

- Sévérité de la pauvreté par religion
- . svy: mean v_severe, over(hreligion)
 (running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of PSUs = 8,012 Number of obs = 8,012 Population size = 11,699,067 Design df = 8,011

	Mean	Linearized std. err.	[95% conf.	interval]
c.v_severe@hreligion				
Musulman	.0586632	.0031805	.0524286	.0648979
Chr⊡tien	.0294036	.001511	.0264416	.0323655
Animiste	.0603718	.0040389	.0524546	.0682891
Autre R🛮 ligion	.0217764	.0092623	.0036197	.039933
Sans RDligion	.051114	.0081251	.0351866	.0670413

Percentiles de bien-être avec quelques détails

. sum pcexp, detail

Indicateur de bien-⊡tre

	Percentiles	Smallest		
1%	91149.76	24928.16		
5%	131229	47806.87		
10%	162037.9	54819.04	Obs	8,012
25%	225602.7	54828.77	Sum of wgt.	8,012
50%	328891		Mean	439047
		Largest	Std. dev.	413385.8
75%	514998.4	5850073		
90%	803626.2	6827345	Variance	1.71e+11
95%	1068195	7013409	Skewness	6.272689
99%	2035451	1.06e+07	Kurtosis	87.1385

Annexes 2 : Estimation de quelques déterminants de la pauvreté

Modèle probit

. probit pov hhsize hage dali dnal

Iteration 0: log likelihood = -4951.6237
Iteration 1: log likelihood = -2786.2116
Iteration 2: log likelihood = -1652.8029
Iteration 3: log likelihood = -1363.9063
Iteration 4: log likelihood = -1361.9548
Iteration 5: log likelihood = -1361.9538
Iteration 6: log likelihood = -1361.9538

Probit regression

Number of obs = 8,012 LR chi2(4) = 7179.34 Prob > chi2 = 0.0000 Pseudo R2 = 0.7249

Log likelihood = -1361.9538

pov	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
hhsize	1.207098	.0301258	40.07	0.000	1.148052	1.266143
hage	0028837	.0018208	-1.58	0.113	0064524	.000685
dali	-5.21e-06	1.47e-07	-35.33	0.000	-5.50e-06	-4.92e-06
dnal	-4.28e-06	1.38e-07	-31.07	0.000	-4.55e-06	-4.01e-06
_cons	2966893	.0958492	-3.10	0.002	4845502	1088283

Note: 1761 failures and 162 successes completely determined.

Modèle logit

. logit pov hhsize hage dali dnal

```
Iteration 0: log likelihood = -4951.6237
Iteration 1: log likelihood = -3014.8101
Iteration 2: log likelihood = -1701.144
Iteration 3: log likelihood = -1303.7712
Iteration 4: log likelihood = -1277.3695
Iteration 5: log likelihood = -1277.2077
Iteration 6: log likelihood = -1277.2076
```

Logistic regression

Number of obs = 8,012 LR chi2(4) = 7348.83 Prob > chi2 = 0.0000 Pseudo R2 = 0.7421

Log likelihood = -1277.2076

pov	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
nsize hage dali dnal _cons	2.48235 0049904 000011 -9.11e-06 3591263	.0752631 .0033492 3.67e-07 3.34e-07 .1787198	32.98 -1.49 -30.02 -27.25 -2.01	0.000 0.136 0.000 0.000 0.044	2.334838 0115547 0000117 -9.77e-06 7094107	2.629863 .0015739 0000103 -8.46e-06 0088419
 -					21772 00	

Note: 1123 failures and 52 successes completely determined.

Estimation des effets marginaux

. mfx

Marginal effects after probit
 y = Pr(pov) (predict)
 = .00038539

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	Х
hhsize	.0016852	.00045	3.79	0.000	.000813	-3.5e-09	5.27609
hage	-4.03e-06	.00000	-1.46	0.145	-9.4e-06		43.3855
dali	-7.27e-09	.00000	-3.79	0.000	-1.1e-08		1.0e+06
dnal	-5.97e-09	.00000	-3.84	0.000	-9.0e-09		907001

Estimation des élasticités

. margins, eyex(hhsize hage dali dnal) atmeans

Conditional marginal effects

Number of obs = 8,012

Model VCE: OIM

Expression: Pr(pov), predict()
ey/ex wrt: hhsize hage dali dnal

At: hhsize = 5.276086 (mean) hage = 43.38555 (mean) dali = 1042722 (mean) dnal = 907001.1 (mean)

		Delta-method				
	ey/ex	std. err.	Z	P> z	[95% conf	. interval]
hhsize	13.08753	.3988062	32.82	0.000	12.30588	13.86917
hage	2163531	.145201	-1.49	0.136	5009418	.0682356
dali	-11.46784	.3837073	-29.89	0.000	-12.2199	-10.71579
dnal	-8.260066	.3043709	-27.14	0.000	-8.856622	-7.66351

Estimation des odds ratios

Logistic regression

Number of obs = 7,479 LR chi2(26) = 7005.12 Prob > chi2 = 0.0000 Pseudo R2 = 0.7486

Log likelihood = -1176.4915

pov	Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
hhsize	12.98215	1.045961	31.82	0.000	11.08577	15.20292
hgender	1.554529	.21078	3.25	0.001	1.191745	2.027748
hreligion						
Chr⊡tien	1.01284	.1418261	0.09	0.927	.7697482	1.332702
Animiste	.7673334	.125653	-1.62	0.106	.5566695	1.05772
Autre R⊡ligion	1.222751	.8462571	0.29	0.771	.3149397	4.74732
Sans R⊡ligion	1.149086	.3690506	0.43	0.665	.6123129	2.156413
halfab						
Oui	1.010508	.1826905	0.06	0.954	.709007	1.440221
heduc						
Maternelle	1	(empty)				
Primaire	1.440517	.2632865	2.00	0.046	1.006798	2.061077
Second. gl 1	1.536752	.3640715	1.81	0.070	.9659303	2.444903
Second. tech. 1	1.627898	2.024093	0.39	0.695	.1423185	18.62057
Second. gl 2	1.586104	.5210657	1.40	0.160	.833097	3.019727
Second. tech. 2	8.050325	9.724037	1.73	0.084	.7544697	85.89839
Postsecondaire	.4391356	1.219216	-0.30	0.767	.0019025	101.362
Superieur	.9352477	.6146416	-0.10	0.919	.2579407	3.391043
hage	.9958862	.0041465	-0.99	0.322	.9877922	1.004047
hcsp						
Cadre moyen/a	1.968648	4.432357	0.30	0.764	.0238623	162.4144
Ouvrier ou em	7.40081	16.31134	0.91	0.364	.0984546	556.317
Ouvrier ou em	15.68702	34.58957	1.25	0.212	.2082851	1181.471
Man⊡uvre, aid	8.29611	18.9222	0.93	0.354	.0949312	725.0031
Stagiaire ou	10.92931	25.16201	1.04	0.299	.1199264	996.0271
Stagiaire ou	2.840517	6.613891	0.45	0.654	.0296108	272.4863
Travailleur f	3.072487	6.932488	0.50	0.619	.0368905	255.8974
Travailleur p	5.57166	12.22779	0.78	0.434	.0754925	411.2119
Patron	33.04651	74.88685	1.54	0.123	.3892369	2805.675
dali	.9999888	3.84e-07	-29.27	0.000	.999988	.9999895
dnal	.9999907	3.61e-07	-25.84	0.000	.99999	.9999914
_cons	.0508657	.1129288	-1.34	0.180	.0006556	3.946477

■ Table de prédiction

. lstat

Probit model for pov

		True	
Classified	D	~D	Total
+	2181 200	171 4927	2352 5127
Total	2381	5098	7479

Classified + if predicted Pr(D) >= .5True D defined as pov != 0

Sensitivity	Pr(+ D)	91.60%
Specificity	Pr(- ~D)	96.65%
Positive predictive value	Pr(D +)	92.73%
Negative predictive value	Pr(~D -)	96.10%
False + rate for true ~D	Pr(+ ~D)	3.35%
False - rate for true D	Pr(- D)	8.40%
False + rate for classified +	Pr(~D +)	7.27%
False - rate for classified -	Pr(D -)	3.90%
Correctly classified		95.04%

•

Qualité de l'ajustement

Goodness-of-fit test after probit model Variable: pov

Number of observations = 7,479 Number of covariate patterns = 7,479 Pearson chi2(7452) = 6.56e+06 Prob > chi2 = 0.0000

. lroc

Probit model for pov

Number of observations = 7479 Area under ROC curve = 0.9824