

N73-19859

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-586

*A Technique for Computation of Star Magnitudes
Relative to an Optical Sensor*

Jack W. Rhoads

**CASE FILE
COPY**

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

December 30, 1972

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-586

*A Technique for Computation of Star Magnitudes
Relative to an Optical Sensor*

Jack W. Rhoads

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

December 30, 1972

PREFACE

The work described in this report was performed by the Guidance and Control Division of the Jet Propulsion Laboratory, in support of the Mariner Mars 1971 Canopus Star Tracker Calibration and Operational Software (celestial reference) Program.

CONTENTS

I.	Introduction	1
II.	Star Magnitudes and Flux Ratios Relative to a Star Detector	1
A.	Flux Fit	4
B.	Color Index Fit	6
III.	Results and Conclusions	8
	References	10

TABLES

1.	Normalized relative response function for Canopus tracker SN/003 - Tube S11	11
2.	Normalized relative response function for Pioneer F star sensor PN F	12
3.	Johnson-Morgan ultraviolet (U) bandpass relative response function	12
4.	Johnson-Morgan visual (V) bandpass relative response function	13
5.	Johnson-Morgan blue (B) bandpass relative response function	14
6.	Relative spectral energy distribution (SED) of Canopus	15
7.	Mariner 71 CT color index fit: $D-V=A*(B-V)+B*(U-B)$	16
8.	Mariner 71 CT color index fit: $D-V=A*(U-B)$	17
9.	Mariner 71 CT color index fit: $D-V=A*(U-B)$	18
10.	Mariner 71 CT color index fit: $D-V=A*(B-V)$	19
11.	Pioneer F SS color index fit: $D-V=A*(B-V)+B*(U-B)$	20
12.	Pioneer F SS color index fit: $D-V=A*(B-V)$	21
13.	Pioneer F SS color index fit: $D-V=A*(U-B)$	22
14.	Pioneer F SS color index fit: $D-V=A*(U-V)$	23
15.	Ultraviolet (U) color index fit: $D-B=A*(B-V)$	24
16.	Blue (B) color index fit: $D-U=A*(U-V)$	25

CONTENTS (contd)

TABLES (contd)

17.	Visual (V) color index fit: D-U=A*(U-B).	26
18.	Computer abbreviations of Greek alphabet and lower case letters.	27
19.	Constellations	28
20.	Standard Canopus ratios and magnitudes of stars used in conjunction with Tables 7 through 17	29

ABSTRACT

The theory and techniques used to compute star magnitudes relative to any optical detector (such as the Mariner Mars 1971 Canopus star tracker) are described here. Results are given relative to various star detectors.

Page Intentionally Left Blank

I. INTRODUCTION

Optical sensors are used on spacecraft to provide spacecraft attitude reference information. One such sensor, a star tracker, was used by the Mariner 9 spacecraft to acquire a star (usually Canopus) for use as the spacecraft roll attitude reference. In order to determine the orientation of the spacecraft, the information telemetered from the attitude reference sensor was compared to the output of an UNIVAC 1108 computer program. This program, CELREF (celestial reference), was written to simulate the voltage output of any optical sensor relative to celestial objects which appear within its field of view. Simulation of the output of an optical sensor is dependent upon knowledge of the magnitudes of stars relative to the optical sensor.

This report discusses the techniques used to compute for CELREF usage the magnitudes of stars relative to any desired optical sensor.

II. STAR MAGNITUDES AND FLUX RATIOS RELATIVE TO A STAR DETECTOR

A star magnitude relative to some detector, such as the Canopus star tracker, is an indication of the response of the detector to the star intensity. This relationship is given by

$$D = C_D - 2.5 \log_{10} \Phi_D \quad (1)$$

where D is the magnitude of the star relative to the detector, Φ_D is the response of the detector to the star intensity, and C_D is a constant associated with the photometric system of the detector. The response of the detector to a given luminous intensity is given by

$$\Phi_D = \int_0^{\infty} f(\lambda) D(\lambda) d\lambda \quad (2)$$

where $f(\lambda)$ is the monochromatic flux at wavelength λ of the radiating star, and $D(\lambda)$ is the relative response function (sensitivity function) of the detector. The relative response function defines the spectral region over which the detector is sensitive. This function is usually defined in terms of arbitrary units as a function of wavelength ($\text{cm} \times 10^4$). See Tables 1 and 2 for the relative response of two detectors (Mariner 1971 Canopus tracker and Pioneer F star sensor).

Combining Eqs. (1) and (2), we obtain

$$D = C_D - 2.5 \log_{10} \left[\int_0^\infty f(\lambda) D(\lambda) d\lambda \right] \quad (3)$$

Thus the magnitude of a celestial body relative to a given detector is dependent upon that spectral region over which the detector is sensitive. The magnitude of a given star, for instance, will differ depending upon the particular instrument to which it is referenced.

If the function $f(\lambda)$ was known for each object the detector would see during a specific mission, then the detector magnitudes could be determined using Eq. (3). This information is not always available and would not be desirable even if available, owing to the time-consuming process of computing $\int_0^\infty f(\lambda) D(\lambda) d\lambda$ for each star. It is advantageous to determine some relationship between the detector magnitude of a star and its magnitude relative to published photometric systems such as the Johnson-Morgan (JM) UBV system. The UBV system is singled out because of the large number of stars whose magnitudes in this system have been published.

The relationship between the detector system and the Johnson-Morgan system may be expressed in two forms:

$$\Phi_D = C_1 \Phi_U + C_2 \Phi_B + C_3 \Phi_V \quad (4)$$

or

$$D - V = C_4(B - V) + C_5(U - B) \quad (5)$$

where the C's in Eqs. (4) and (5) are coefficients relating parameters in the Johnson-Morgan system to that of the detector system; Φ_D , Φ_U , Φ_B , and Φ_V are responses of the detector, ultraviolet (U), blue (B), and visual (V) systems. The B - V (blue magnitude - visual magnitude) and B - U (ultraviolet magnitude - blue magnitude) are the Johnson-Morgan color indices. D - V is the color index relating detector magnitude and Johnson-Morgan V magnitude (Refs. 1-3).

Eq. 2 gives the general relationship of detector response to the luminous intensity of a star and the spectral response of the detector. Thus, the Johnson-Morgan response may be given as:

$$\Phi_U = \int_0^{\infty} f(\lambda) U(\lambda) d\lambda \quad (6)$$

$$\Phi_B = \int_0^{\infty} f(\lambda) B(\lambda) d\lambda \quad (7)$$

$$\Phi_V = \int_0^{\infty} f(\lambda) V(\lambda) d\lambda \quad (8)$$

where $f(\lambda)$ is the luminous intensity of some star, and $U(\lambda)$, $B(\lambda)$ and $V(\lambda)$ are the relative response functions of the Johnson-Morgan U, B, and V detectors, respectively. Tables 3, 4, and 5 present the tabulated data for the UBV relative response functions (Ref. 1).

Considering Eq. (1), we may write the Johnson-Morgan magnitudes as:

$$U = C_U - 2.5 \log_{10} \Phi_U \quad (9)$$

$$B = C_B - 2.5 \log_{10} \Phi_B \quad (10)$$

$$V = C_V - 2.5 \log_{10} \Phi_V \quad (11)$$

where C_U , C_B , and C_V are constants relating JM detector responses to magnitude. Table 6 presents the spectral characteristics (relative luminous intensity) of the star Canopus (Ref. 1). Knowing the JM magnitude of Canopus, $U = -0.52$, $B = -0.56$ and $V = -0.72$, and performing the integration of Eqs. 6, 7, and 8, we find the values of C_U , C_B , and C_V to be

$$C_U = -30.890600 \quad (12)$$

$$C_B = -29.283269 \quad (13)$$

$$C_V = -29.998474 \quad (14)$$

A. Flux Fit

In order to determine the best set of coefficients of Eq. (4), it is necessary to investigate a large number of stars covering the whole spectrum. This is not feasible, since sufficient spectral knowledge is known only for a limited number of stars. However, if it is assumed that a star may be approximated as a black body radiating at some temperature T , the "stars" covering that portion of the spectrum which includes the region of the detector and the defining JM filters may be used to derive a "best" set of coefficients to Eq. (4). Thus, using the method of weighted least squares, the coefficients C_1 , C_2 , and C_3 may be found using the family of equations generated by a discrete set of black body temperatures (T_i , $i = 1, 2, \dots$). The family of equations is represented by

$$\int_0^\infty BB_{T_i}(\lambda)D(\lambda)d\lambda = w_i \left[C_1 \int_0^\infty BB_{T_i}(\lambda)U(\lambda)d\lambda + C_2 \int_0^\infty BB_{T_i}(\lambda)B(\lambda)d\lambda + C_3 \int_0^\infty BB_{T_i}(\lambda)V(\lambda)d\lambda \right] \quad (15)$$

where

$$BB_{T_i}(\lambda) = \frac{E_1}{(\lambda T_i)^5 (e^{E_2/\lambda T_i} - 1)} \quad (16)$$

is the normalized Planck function at temperature T_i and

$$w_i = \int_0^\infty BB_{T_i}(\lambda)D(\lambda)d\lambda$$

serves as the weighting factor for each equation. This weight, w_i , gives more importance to those "stars" whose radiating spectral region corresponds to that of the detector.

Finally, in order to relate detector flux to detector magnitude, Eq. (1), the constant C_D is evaluated using the definition that a "star" having a black-body temperature T_S will appear to have the same magnitude relative to the detector as it has with a given JM detector. The JM detector (U, B, or V) is selected such that

$$\int_0^{\infty} D(\lambda)JM(\lambda)d\lambda \quad (17)$$

is maximum. The black-body temperature T_S is now found such that

$$\frac{1}{D_{\max}} \int_0^{\infty} BB_{T_S}(\lambda)D(\lambda)d\lambda = \frac{1}{JM_{\max}} \int_0^{\infty} BB_{T_S}(\lambda)JM(\lambda)d\lambda \quad (18)$$

where

$$D_{\max} = \max \left[\int_0^{\infty} BB_T(\lambda)D(\lambda)d\lambda \right]$$

over all T, and

$$JM_{\max} = \max \left[\int_0^{\infty} BB_T(\lambda)JM(\lambda)d\lambda \right]$$

over all T. Thus, assume that the JM magnitude selected is the Blue magnitude, which is the case for the Canopus star tracker; then

$$\begin{aligned} C_D &= D + 2.5 \log_{10} \Phi_D \\ &= (C_B - 2.5 \log_{10} \Phi_B) + 2.5 \log_{10} (C_1 \Phi_U + C_2 \Phi_B + C_3 \Phi_V) \\ &= C_B + 2.5 \log_{10} \left(C_1 \frac{\Phi_U}{\Phi_B} + C_2 + C_3 \frac{\Phi_V}{\Phi_B} \right) \end{aligned} \quad (19)$$

where

$$\Phi_U = \int_0^{\infty} BB_{T_S}(\lambda)U(\lambda)d\lambda \quad (20)$$

$$\Phi_B = \int_0^\infty BB_{T_S}(\lambda)B(\lambda)d\lambda \quad (21)$$

$$\Phi_V = \int_0^\infty BB_{T_S}(\lambda)V(\lambda)d\lambda \quad (22)$$

The magnitude of a star having the Johnson-Morgan magnitudes U, B, and V is

$$D = C_D - 2.5 \log_{10} C_1 10^{0.4(C_U-U)} + C_2 10^{0.4(C_B-U)} + C_3 10^{0.4(C_V-V)} \quad (23)$$

A parameter used primarily with star trackers or sensors to indicate the brightness of a star is a value called the "Canopus ratio" of the star. The Canopus ratio of a star is defined to be the ratio of the flux of the star relative to the detector to that of the star Canopus relative to the same detector. Thus,

$$CR = \frac{\Phi_D(\text{star})}{\Phi_D(\text{Canopus})} \quad (24)$$

Equation (24) written in terms of the solution to Eq. (4) is

$$CR = \frac{C_1 10^{0.4(C_U-U_S)} + C_2 10^{0.4(C_B-B_S)} + C_3 10^{0.4(C_V-V_S)}}{C_1 10^{0.4(C_U-U_C)} + C_2 10^{0.4(C_B-B_C)} + C_3 10^{0.4(C_V-V_C)}} \quad (25)$$

B. Color Index Fit

The solution of the coefficients to Eq. (5) is found in a manner similar to that of Eq. (4). Rewriting Eq. (5), we obtain

$$\begin{aligned} C_D - 2.5 \log_{10}(\Phi_D) - C_V + 2.5 \log_{10}(\Phi_V) &= \\ C_4 C_B - 2.5 \log_{10}(\Phi_B) - C_V + 2.5 \log_{10}(\Phi_V) & \\ + C_5 C_U - 2.5 \log_{10}(\Phi_U) - C_B + 2.5 \log_{10}(\Phi_B) & \end{aligned} \quad (26)$$

Collecting terms, we obtain

$$C_D - C_V - 2.5 \log_{10} \left(\frac{\Phi_D}{\Phi_V} \right) = C_4 C_B - C_V - 2.5 \log_{10} \left(\frac{\Phi_B}{\Phi_V} \right) + C_5 C_U \\ - C_B - 2.5 \log_{10} \left(\frac{\Phi_U}{\Phi_B} \right) \quad (27)$$

If a "star" has a black-body temperature T_S (as previously defined), the magnitude of the "star" relative to the detector is equal to the magnitude of the "star" relative to the appropriate Johnson-Morgan detector. The parameter C_D is found through this definition. Thus, assuming that the appropriate JM detector was the Blue, then

$$D - B = 0 \quad (28)$$

which follows

$$C_D - 2.5 \log_{10} \left(\frac{\Phi_{DT_S}}{\Phi_{BT_S}} \right) = C_B - 2.5 \log_{10} \left(\frac{\Phi_{BT_S}}{\Phi_{DT_S}} \right) \quad (29)$$

and

$$C_D = C_B - 2.5 \log_{10} \left(\frac{\Phi_{BT_S}}{\Phi_{DT_S}} \right) \quad (30)$$

By use of Eq. (15) over a sufficient range of black-body temperatures and the method of weighted least squares (see Section II-A), a "best" set of coefficients may be found for Eq. (27).

Thus

$$D = C_4(B - V) + C_5(U - B) + V$$

and

$$CR = 10^{0.4(C_D - D_S - C_D + D_C)} = 10^{0.4(D_C - D_S)}$$

III. RESULTS AND CONCLUSIONS

In order to evaluate the relative merits of Eqs. (4) and (5) to represent any detector, the following detectors were simulated (in terms of relative response functions) to determine associated sets of coefficients for Eqs. (4) and (5):

- (1) Mariner 1971 Canopus tracker (CT).
- (2) Pioneer F star sensor (SS).
- (3) Johnson-Morgan ultraviolet (U) detector.
- (4) Johnson-Morgan blue (B) detector.
- (5) Johnson-Morgan visual (V) detector.

Using the derived detector relationships to Johnson-Morgan U, B, and V magnitudes, the detector Canopus ratios and detector magnitudes were calculated for 46 brightest stars for which Johnson-Morgan U, B, and V values were available.

The results of the study are present in Tables 7 through 17. The data included in each table is defined as follows:

- Column 1: Running number.
- Column 2: Proper name of star.
- Column 3: Star designation, see Tables 18 and 19 for explanation of terms.
- Columns 4-6: Johnson-Morgan UBV magnitudes.
- Columns 7-9: Canopus ratios relative to the UBV filters, respectively.
- Column 10: Canopus ratio of the star relative to the detector.
- Column 11: Deviation of the determined Canopus ratio (Column 9) from that of the standard value. Table 20 lists the standard Canopus ratio values for each detector studied.
- Column 12: Percentage Canopus ratio deviation.
$$\text{CRPC} = |\text{CR} - \text{CRA}| / \text{CRA}.$$
- Column 13: Magnitude of the star relative to the detector.

Column 14: Deviation of the determined magnitude (Column 12) from that of the standard value. Table 20 lists the standard magnitude values for each detector studied.

Column 15: Percentage magnitude deviation.

$$DMPC = |DM - DMA| / |DMA|.$$

The Mariner 1971 Canopus star tracker and the Pioneer F star sensor represent two spectral response regions which differ radically relative to the Johnson-Morgan U, B, and V filters. The region represented by the Mariner 1971 Canopus star tracker spans that covered by the UBV region, while that of the Pioneer F is outside the UBV region, in the infrared region. Tables 7 through 10 show the results of fitting the Mariner 1971 Canopus tracker in terms of the Johnson-Morgan UBV magnitudes. Tables 11 through 14 give the results of fitting the Pioneer F star sensor. In order to achieve the confidence of the Pioneer sensor fit similar to that obtained for the Mariner 1971 Canopus star tracker, it would be necessary to extend the relationship between the detector and the Johnson-Morgan UBV magnitudes to include measurements taken in the red and infrared regions such as R and I magnitudes. This would be possible by including the relative response functions representing the R and I magnitudes into Eqs. (4) and (5). Tables 15 through 17 present the results of fitting U-B, B-U, and V-U as a function of B-V, U-V, and U-B, respectively.

It should be added that the technique represented by Eq. (4) failed to provide a realistic fit (negative detector fluxes resulted) for those detectors whose spectral response range did not fall within the spectral range of the Johnson-Morgan filters used to represent the detector. Thus, as a general tool, Eq. (5) should be used to represent any detector and Eq. (4) saved only for those detectors whose spectral response regions are totally covered by the response regions of the defining Johnson-Morgan filters.

Finally, it should be noted that, in general, the more Johnson-Morgan or other photometric system magnitudes used to express the detector the better the results in the prediction of star magnitudes relative to the detector. Best results are obtained when the photometric system magnitudes chosen completely span the spectral response of the given detector. Thus for the Mariner 1971 Canopus tracker, the Johnson-Morgan UBV system is

fully adequate as a defining system. The Johnson UBVRI system or at least the VRI system would be needed to define the Pioneer star sensor to the degree that the Canopus tracker is defined by the UBV system.

REFERENCES

1. Norton, R. H., The Absolute Spectral-Energy Distribution of Canopus, Technical Report 32-641, Jet Propulsion Laboratory, Pasadena, Calif., Aug. 15, 1964.
2. Melbourne, W. G., "Basic Astronomical Information Pertaining to the Problem of Stellar Identification," Technical Memo 312-10, Jet Propulsion Laboratory, Pasadena, Calif., Apr. 13, 1960 (a JPL internal report).
3. Elliott, S., "Determination of Star/Canopus Ratios and Positions of Brightest Stars as Seen by Canopus Sensor," Engineering Memo, Jet Propulsion Laboratory, Pasadena, Calif., July 30, 1963 (a JPL internal report).

Table 1. Normalized relative response function for Canopus
tracker SN/003 — Tube S11

WAVELENGTH Cm x 10 ⁴	RELATIVE RESPONSE	WAVELENGTH Cm x 10 ⁴	RELATIVE RESPONSE
.29	0.0	.4480	1.000
.3321	.0916	.4708	.9616
.3242	.1442	.4836	.9136
.3265	.1923	.4927	.8655
.3298	.2404	.5019	.8174
.3320	.2885	.5093	.7693
.3341	.3366	.5166	.7212
.3366	.3847	.5241	.6731
.3403	.4327	.5317	.6251
.3448	.4808	.5378	.5770
.3504	.5289	.5440	.5289
.3568	.5770	.5504	.4808
.3657	.6251	.5580	.4327
.3748	.6731	.5643	.3847
.3819	.7212	.5720	.3366
.3898	.7693	.5792	.2885
.3979	.8174	.5864	.2404
.4063	.8655	.5942	.1923
.4145	.9136	.6002	.1442
.4200	.9464	.6083	.0962
.4251	.9616	.6600	0.0

Table 2. Normalized relative response function for Pioneer F star sensor PN F

WAVELENGTH Cm X 10 ⁻⁴	RELATIVE RESPONSE	WAVELENGTH Cm X 10 ⁻⁴	RELATIVE RESPONSE
.34	0.000	.79	1.0
.40	.130	.90	.76
.46	.265	.95	.49
.50	.370	.975	.32
.60	.620	1.0	.20
.70	.850	1.1	.04

Table 3. Johnson-Morgan ultraviolet (U) bandpass relative response function

WAVELENGTH Cm X 10 ⁻⁴	RELATIVE RESPONSE	WAVELENGTH Cm X 10 ⁻⁴	RELATIVE RESPONSE
.2941	0.0	.3750	2.2351
.3030	.0660	.3800	1.9168
.3125	.3460	.3846	1.4260
.3226	.7770	.3850	1.3735
.3333	1.3000	.3900	1.0245
.3400	1.6191	.3950	.6244
.3448	1.8130	.4000	.1970
.3500	1.9905	.4050	.0967
.3571	2.1780	.4100	.0317
.3600	2.2326	.4150	.0020
.3700	2.3299	.4167	0.0
.3704	2.3300		

Table 4. Johnson-Morgan visual (V) bandpass relative response function

WAVELENGTH Cm X 10 ⁻⁴	RELATIVE RESPONSE	WAVELENGTH Cm X 10 ⁻⁴	RELATIVE RESPONSE
.4762	0.0	.5556	2.4860
.4800	.0344	.5600	2.3401
.4850	.0829	.5700	2.0319
.4878	.1120	.5714	1.9900
.4900	.1361	.5800	1.7584
.4950	.6109	.5882	1.5180
.5000	.9930	.5900	1.4626
.5100	1.8994	.6000	1.1109
.5128	2.1040	.6060	.9300
.5200	2.5502	.6250	.4730
.5263	2.7890	.6452	.1830
.5300	2.7976	.6667	.0990
.5400	2.8080	.6897	.0490
.5405	2.8080	.7143	.0210
.5500	2.6805	.7407	0.0

Table 5. Johnson-Morgan blue (B) bandpass relative response function

WAVELENGTH Cm X 10 ⁴	RELATIVE RESPONSE	WAVELENGTH Cm X 10 ⁴	RELATIVE RESPONSE
.3571	0.0	.4545	2.6830
.3700	.0663	.4550	2.6713
.3704	.0750	.4600	2.5447
.3750	.2032	.4650	2.3652
.3800	.3339	.4700	2.2103
.3846	.6400	.4750	2.0531
.3850	.6722	.4762	2.0150
.3900	1.1497	.4800	1.8935
.3950	2.0717	.4850	1.7271
.4000	2.5230	.4878	1.6400
.4050	2.6345	.4900	1.5731
.4100	2.7509	.4950	1.4316
.4150	2.8725	.5000	1.2860
.4167	2.9150	.5100	.9929
.4200	2.9452	.5128	.9100
.4250	2.9793	.5200	.6800
.4300	2.9996	.5263	.5050
.4348	3.0060	.5300	.4136
.4350	3.0060	.5400	.2088
.4400	2.9835	.5405	.2000
.4450	2.9194	.5500	.0592
.4500	2.8137	.5556	0.0

Table 6. Relative spectral energy distribution (SED) of Canopus

WAVELENGTH Cm X 10 ⁴	RELATIVE SED	WAVELENGTH Cm X 10 ⁴	RELATIVE SED
.28	.250	.470	.839
.30	.263	.475	.818
.32	.275	.480	.787
.34	.289	.485	.713
.35	.296	.490	.722
.36	.307	.495	.763
.37	.393	.500	.761
.375	.539	.510	.735
.380	.690	.520	.709
.385	.897	.530	.682
.390	.960	.540	.660
.395	.935	.550	.638
.400	.914	.560	.617
.405	.993	.570	.597
.410	.945	.580	.577
.415	.959	.590	.558
.420	1.000	.600	.539
.425	.985	.620	.502
.430	.882	.640	.467
.435	.850	.660	.434
.440	.917	.680	.402
.445	.904	.700	.372
.450	.888	.720	.343
.455	.876	.740	.316
.460	.864	.760	.291
.465	.856	.780	.267

Table 7. Mariner 71 CT color index fit: D-V=A*(B-V)+B*(U-B)

WAFFNER 71 CT COLOR INDEX FIT: C-V=A*(B-V)+B*(U-B)									
No.	PROPER NAME	DESIGNATION	6	V	CRJ	CRB	CRV	CR	CR-CRA
1	SIRIUS	6 ALF CRA	-1.459	-1.457	2.464	2.265	1.972	2.247	.000
2	CANDALUS	7 ALF CAR	-0.560	-0.720	1.000	1.000	1.000	0.000	.000
3	ARCTURUS	16 ALF SOC	2.440	1.160	-0.065	.201	.540	.225	.000
4	VEGA	3 ALP LYR	.054	.044	.539	.573	.495	.564	.000
5	CAPELLA	15 ALP AUR	1.252	.642	.662	.275	.487	.293	.000
6	RIGEL	16 BET CRZ	-.537	1.133	1.016	.528	.448	.517	.000
7	PROCYON	11 ALP CR	.767	.777	.357	.300	.292	.371	.000
8	ACHERNAR	ALP ERZ	-.350	.320	.490	.855	.445	.328	.000
9	HACAR	BET CEN	-.616	.376	.610	1.066	.425	.416	.000
10	ALTAIR	5 ALP AGL	2.053	.983	.753	.235	.241	.243	.000
11	BELEGESE	5 ALP ORI	2.660	.660	.052	.247	.000	.000	.000
12	ALDEBARAN	37 ALP TAU	4.278	2.383	.058	.012	.066	.234	.000
13	SPICA	6 ALF VIR	-.216	.726	.568	.763	.305	.211	.000
14	ANTARES	21 ALP SCO	4.020	2.720	.840	.015	.049	.223	.000
15	POLLUX	78 SCL GEN	2.556	2.146	1.146	.039	.083	.179	.000
16	FOMHADJT	24 ALP P34	1.313	1.243	1.153	.185	.190	.178	.000
17	DENED	5C ALP CYG	1.666	1.336	1.246	.225	.174	.165	.000
18	MICSA	37 BET CRU	-.005	1.015	1.265	.617	.34	.161	.000
19	ACRUX	16 ALF CRU	-.450	.516	.790	.938	.373	.249	.000
20	REGULUS	32 ALP LEO	-.871	1.241	1.351	.278	.190	.148	.000
21	ACHABIA	26 EFS CHA	-.360	1.280	1.500	.445	.184	.129	.000
22	CASTOR	60 ALP S3M	1.600	1.310	1.580	.132	.316	.120	.000
23	SHAULA	21 LAM SCL	5.57	1.407	1.617	.368	.163	.116	.000
24	BELLATRIX	24 GEM ORI	.545	1.415	1.635	.375	.162	.114	.000
25	ELNATH	112 BET TAU	1.022	1.522	1.652	.232	.147	.113	.000
26	GACRIUS	GEM CRU	5.040	3.280	1.660	.005	.029	.012	.000
27	MIAPLACIDUS	BET CAR	1.656	1.678	1.678	.130	.127	.110	.000
28	ALNILAM	46 EPS ORI	.474	1.514	1.694	.400	.148	.108	.000
29	AL NAIR	ALP GRU	1.133	1.593	1.743	.216	.138	.103	.000
30	ALNITAK	50 ZET ORI	.479	1.539	1.749	.393	.145	.103	.000
31	ALIOTH	77 EFS UKA	1.700	1.760	1.790	.120	.116	.093	.000
32	DUBHE	50 ALP UMA	2.743	2.853	2.793	.020	.043	.099	.000
33	MIRFAK	32 ALP PEP	2.653	2.283	1.803	.053	.073	.098	.000
34	REGOR	GAM VEL	6.33	1.553	1.333	.346	.143	.095	.000
35	KADS AUSTRALIS	26 EFS SGR	1.715	1.815	1.825	.148	.112	.055	.000
36	WEZNA	25 DEL CMA	2.938	2.508	1.938	.032	.059	.063	.000
37	SIRGAS	THE SCL	2.410	2.260	1.860	.067	.074	.076	.000
38	AVIOR	EPS CAR	3.460	3.190	1.830	.025	.032	.091	.000
39	ALKAIID	65 E14 UNA	1.010	1.690	1.680	.244	.126	.051	.000
40	MENKALINAN	34 BET AUR	2.240	1.930	1.900	.079	.101	.090	.000
41	PEACOCK	ALP PAN	1.050	1.720	1.520	.247	.124	.068	.000
42	ALPHENIA	24 GAM GEM	1.960	1.930	1.930	.102	.101	.097	.000
43	AIRIA	ALP TRA	4.905	3.395	1.935	.007	.026	.087	.000
44	MIRZAM	2 BET CMA	-.750	1.740	1.980	.310	.120	.083	.000
45	ALPHARD	30 ALF HYA	5.151	3.421	1.981	.005	.026	.063	.000
46	HAWAI	15 ALP ART	4.279	3.159	2.009	.012	.033	.081	.000

Table 8. Mariner 71 CT color index fit: D-V=A*(U-B)

NO.		PROPER NAME		DESIGNATION		MARINER 71 CT		COLOR INDEX FIT: C-V=A*(U-B)		C=		D-V=A*(U-B)	
		U	V	CRL	CRB	CRV	CR	CR-CRA	CRPC	CM	DM-DMA	DMPC	
1	SIRIUS	9 ALP CM4	-1.439	-1.457	-1.457	2.464	2.285	1.972	2.277	.02955	.01315	-1.455	.002
2	CANOPUS	10 ALP CAR	-5.20	-5.60	-7.70	1.000	1.000	1.000	1.000	.00000	.00000	-5.62	.016
3	ARCTURUS	16 ALP S00	2.440	1.180	-0.50	0.55	0.201	0.540	0.212	-0.01356	0.06015	1.123	0.83
4	VEGA	3 ALP LYR	0.04	0.44	0.44	0.50	0.573	0.495	0.573	-0.0854	0.04514	0.04	0.006
5	CAELUM	13 ALP AUR	1.222	0.842	0.662	0.188	0.275	0.487	0.280	-0.01350	0.04605	0.822	0.8890
6	RIGEL	15 BET ORI	-5.37	1.133	1.153	1.016	0.528	0.448	0.513	-0.00443	0.0856	1.163	.025
7	PROCYON	10 ALP CM1	.787	.777	.357	.300	.292	.371	.292	-0.00809	0.02701	.777	.046
8	ACHERNAR	10 ALP ERT	-3.30	0.490	0.495	0.445	0.425	0.328	0.432	-0.00782	0.00657	.350	.009
9	HAGAR	10 ALP GEN	-0.610	1.036	0.610	1.036	0.425	0.294	0.407	-0.00778	0.02193	.914	.014
10	ALTIAR	5 ALP AGL	1.033	.983	.753	.235	.241	.258	.242	-0.00144	0.00592	.580	.022
11	BEIJELGE USE	53 ALP QRI	2.660	.800	.052	.247	.247	.247	.247	-0.00000	.00000	.000	.000
12	ALFEDERIAN	97 ALP TAU	4.218	2.388	0.856	0.12	0.66	0.71	0.66	-0.00507	0.06627	2.303	.000
13	SPICA	67 ALP VIR	-2.212	0.723	0.968	0.753	0.305	0.211	0.293	-0.00101	0.03349	.770	.012
14	ANTARES	21 ALP SCO	4.000	2.720	0.880	0.015	0.049	0.229	0.051	-0.00667	0.11496	2.661	.148
15	POLLUX	78 BEI GEM	2.936	1.146	1.146	0.029	0.083	0.179	0.086	-0.00477	0.05283	2.108	.075
16	FOMALHAUT	24 ALP PSA	1.313	1.243	1.153	0.165	0.190	0.176	0.190	-0.00155	0.00823	1.240	.007
17	DENEBA	50 ALP CVG	1.093	1.338	1.248	0.225	0.174	0.163	0.172	-0.00060	0.00348	1.349	.020
18	MIMOSA	57 BET CRU	0.055	1.015	1.265	0.617	0.234	0.161	0.224	-0.00041	0.01181	1.061	.014
19	ACRUX	19 ALP ORU	-0.450	0.510	0.790	0.938	0.373	0.249	0.358	-0.00240	0.00674	.553	.009
20	REGULUS	32 ALP LEO	8.71	1.241	1.351	2.76	1.90	1.48	1.87	-0.00220	0.01167	1.258	.003
21	AZHARA	26 EPS GMA	3.60	1.280	1.500	0.445	0.34	0.129	0.176	-0.00038	0.00217	1.321	.014
22	CACTOR	66 ALP GEN	1.622	1.610	1.560	0.139	0.136	0.120	0.135	-0.00161	0.01207	1.610	.003
23	SHAUL A	31 LPM S09	5.07	1.402	1.517	0.393	0.633	0.163	0.116	-0.00130	0.00192	1.448	.014
24	BELLATRIX	24 GAM ORI	5.45	1.415	1.635	0.375	0.162	0.114	0.156	-0.00063	0.00407	1.454	.012
25	ELNATH	112 3ET IAU	1.032	1.522	1.652	0.233	0.147	0.113	0.144	-0.00133	0.00934	1.544	.006
26	GACRUX	5 ALP CRU	3.280	3.280	1.360	0.016	0.025	0.112	0.131	-0.00269	0.07925	3.201	.106
27	MIAPLACIDUS	8 ET CAR	1.623	1.673	1.673	1.330	1.130	0.127	0.127	-0.00194	0.01552	1.677	.001
28	ANILAH	46 EFS ORI	4.74	1.514	1.694	0.400	0.148	0.108	0.142	-0.00091	0.00637	1.561	.023
29	AL NAI'R	10 ALP GRU	1.133	1.593	1.743	2.19	1.338	1.03	1.335	-0.00167	0.01253	1.614	.002
30	ALNITAK	30 ZET ORI	4.76	1.532	1.743	0.355	0.145	0.103	0.138	-0.00057	0.00411	1.587	.020
31	ALICITH	77 EPS UMA	1.780	1.760	1.790	0.120	0.118	0.098	0.118	-0.00215	0.01860	1.759	.004
32	DUBHE	5 C ALP UMA	3.743	2.353	1.723	0.20	0.043	0.099	0.045	-0.00271	0.05713	2.813	.080
33	MIRFAK	33 ALP PER	2.663	2.282	1.803	0.053	0.073	0.098	0.074	-0.00146	0.01930	2.266	.037
34	REGOR	6 GAM VEL	2.633	1.833	1.833	0.346	0.143	0.095	0.117	-0.00112	0.01826	1.594	.007
35	KAUS AUSTRALIS	20 EPS SCR	1.715	1.815	1.835	0.128	0.112	0.095	0.112	-0.00143	0.01298	1.820	.002
36	WEZEN	25 DEL CMA	2.938	2.508	1.838	0.075	0.059	0.065	0.060	-0.00212	0.03394	2.486	.01300
37	SARGAS	7 THE S00	2.410	2.260	1.860	0.026	0.074	0.093	0.075	-0.00152	0.01988	2.253	.038
38	AVIOR	1 EPS CAR	3.460	3.190	1.680	0.026	0.073	0.091	0.032	-0.00362	0.10187	3.178	.133
39	ALKAI C	85 ETI UMA	1.010	1.690	1.980	0.244	0.126	0.091	0.122	-0.00100	0.00823	1.721	.007
40	MENKALINAN	34 BET AUR	2.200	1.930	1.930	0.078	0.101	0.090	0.102	-0.00235	0.02358	1.916	.009
41	PE ACOCK	41 ALP PAY	4.000	1.720	1.920	0.247	0.122	0.088	0.119	-0.00091	0.00772	1.752	.008
42	ALHEN A	24 GAM CEM	1.936	1.930	1.930	0.102	0.161	0.067	0.101	-0.00158	0.01590	1.926	.001
43	ATRIJA	41 ALP TRA	4.305	3.395	1.935	0.007	0.026	0.087	0.028	-0.00219	0.07303	3.327	.098
44	MIRZAM	2 BET CNA	710	1.740	1.580	0.310	0.120	0.083	0.115	-0.00018	0.01155	1.785	.014
45	ALPHARD	36 ALP HRA	5.151	3.421	1.981	0.005	0.026	0.083	0.027	-0.00146	0.06342	3.343	.087
46	HAMAL	15 ALP ARI	4.275	3.155	2.009	0.012	0.033	0.012	0.031	-0.00208	0.05752	3.108	.080

AVERAGE RMS SIGMA

CR-CRA	-.00027	.00595
(CR-CRA)/CRA	.02499	.03764
CM-CMA	.03307	.05125
(CM-CMA)/CMA	.02400	.03915
		.03147

Table 9. Mariner 71 CT color index fit: D-V=A*(U-B)

		MARINER 71 CT COLOR INDEX FIT: D-V=A*(U-B)	
NC.	PROPER NAME	DESIGNATION	V
1	SIRIUS	3 ALP CHA	-1.457
2	CANCERUS	-510 ALP CAR	-0.720
3	ARCIURUS	16 ALP COO	1.000
4	VEGA	3 ALP LYR	0.050
5	CAPILLA	12 ALP AUR	0.444
6	RIGEL	19 EET ORI	-0.537
7	PROcyON	16 ALP ORI	0.717
8	ACHERNAR	ALD ERT	0.356
9	HADAR	BEJ CEN	0.610
10	ALTAIR	53 ALP AGL	1.053
11	SEJELGEUSE	52 ALP BET	2.368
12	ALDEBARAN	4 ALP TAU	0.212
13	SPICA	57 ALP VEP	0.723
14	ANTARES	21 ALP SCO	0.200
15	POLLUX	73 BET GEM	2.996
16	FOMALHAUT	24 ALP PSA	1.313
17	DENEB	50 ALP CNG	1.068
18	MIMCASA	BET CRU	0.055
19	ACRUX	ALP CRU	0.514
20	REGULUS	32 ALP LEO	0.671
21	ADHARA	26 EPS CHA	0.356
22	CASTOR	66 ALP SEM	1.026
23	SHAULA	21 LAM SOR	0.507
24	BELLATRIX	24 LAM ORI	0.545
25	ELNATH	112 BET TAU	1.032
26	GACRUX	CAM CRU	0.466
27	MICPLACIDUS	BET CAR	1.893
28	ALNILAM	42 EFS ORI	0.474
29	ALNAHIR	ALP GRU	1.133
30	ALNITAK	51 ZET ORI	0.749
31	ALTIK	77 EPS UMA	1.780
32	DUBHC	50 ALP UMA	2.743
33	MIRFAK	33 ALP PEG	2.663
34	REGOR	24M VEL	0.633
35	KAUS AUSTRALIS	25 EPS SOR	1.715
36	WEZEN	25 CEL CMA	2.598
37	SARGAS	THE SCO	2.410
38	AVIOR	EFS CAP	3.450
39	ALKAIIC	35 ETIA UMA	1.050
40	MENKIBINAN	34 BET AUR	2.240
41	PEACOCK	ALP PAV	1.000
42	ALHENI	24 SGT GEN	1.936
43	AIRIA	ALP TRA	4.965
44	MIRZAK	2 EET CHA	0.750
45	ALPHARD	30 ALP HYA	3.151
46	HAMAL	17 ALP ARI	4.275

Table 10. Mariner 71 CT color index fit: D-V=A*(B-V)

NO.	PROPER NAME	DESIGNATION	U	B	V	CRV	CR6	CR	CR-CRA	CRPC	CM	DM-CMA	DMPC	
1	SIRIUS	3 ALP QMA	-1.499	-1.457	2.464	2.285	1.972	2.248	.00029	.00013	-1.457	-.000	.00012	
2	CANGPU	ALP CAR	-3.520	-5.60	-7.020	1.000	1.000	1.000	.00007	.00007	-5.78	-.000	.00355	
3	ARCIURUS	16 ALP 500	2.490	1.180	-.065	2.01	.540	.225	-.00077	.00342	1.044	-.000	.0095	
4	VEGA	3 ALF LYR	.044	.044	.044	.044	.044	.044	.00004	.00007	.044	-.000	.00117	
5	CAPELLA	12 ALP AUR	1.292	.892	.062	.168	.275	.487	-.00025	.00035	.756	-.001	.00004	
6	RIGEL	12 BET GCR	-.537	1.33	.153	1.016	.525	.448	.519	.00130	.00252	.135	-.003	.00067
7	PROCYON	10 ALP QME	.737	.777	.357	.300	.292	.371	.300	.00013	.00042	.730	-.000	.00754
8	ACHEBAR	ALP ERI	-.330	.320	.490	.855	.445	.328	.420	.00100	.00234	.332	-.003	.00943
9	HACAR	BET CEN	-.610	.370	.610	1.085	.425	.294	.408	.00140	.00345	.397	-.004	.00003
10	ALTAIR	5 ALP AGL	1.053	.983	.753	.225	.241	.258	.242	-.00001	.00003	.957	-.000	.00000
11	BETELGEUSE	5 ALP ORI	2.650	.800	.052	.297	.052	.297	.052	.00001	.00003	.957	-.000	.00000
12	ALDEBARAN	37 ALP TAU	4.276	2.366	.953	.012	.066	.234	.076	-.00642	.00548	.216	-.006	.00268
13	SPICA	37 ALP VIR	-.212	.723	.266	.753	.305	.211	.293	.00096	.00330	.755	-.004	.00476
14	ANTARES	21 ALP SCC	4.010	2.720	.680	.015	.045	.223	.058	-.00017	.00267	.251	-.003	.00123
15	POLLUX	78 BEI GEM	2.938	2.446	1.196	.039	.043	.179	.090	-.00019	.00212	.2035	-.002	.00112
16	FOMALHAUT	24 ALP SIA	1.313	1.242	1.153	.185	.190	.176	.169	-.00004	.00020	.1233	-.000	.00014
17	DENEB	50 ALP CYG	1.093	1.038	1.248	.225	.174	.163	.173	.00017	.00099	.1328	-.001	.00084
18	MIMOSA	6 ETI CRU	1.015	.790	.615	.734	.615	.225	.255	.00080	.00355	.1043	-.004	.00372
19	ACRUX	45 ALP LEO	-.450	.450	.790	.933	.373	.293	.357	.00118	.00333	.541	-.004	.00669
20	REGULUS	32 ALP LEO	.671	1.241	1.151	.278	.190	.148	.185	.00023	.00126	.1253	-.001	.00112
21	CASTOR	25 EP.S. QMA	.350	1.200	1.500	.184	.184	.129	.129	.00057	.00324	.1304	-.004	.00272
22	ACHARAA	35 ALP CEW	1.620	1.610	1.580	.179	.176	.120	.134	-.00000	.00010	.1607	-.000	.00000
23	SHAULDA	31 LAN SCO	.507	1.497	.610	.393	.610	.116	.157	.00050	.00318	.1430	-.003	.0243
24	SELLATRIX	24 GAM GRI	.545	1.415	1.625	.275	.232	.165	.156	.00047	.00305	.1438	-.003	.0232
25	ELNATH	112 BET TAU	1.032	1.552	1.652	.232	.232	.147	.143	.00024	.00170	.1536	-.002	.00122
26	GACRUX	CPU 5.040	3.260	1.660	.016	.025	.012	.112	.034	-.00017	.00468	.3100	-.005	.00170
27	MIAPLACIDUS	3C7 CAR	1.693	1.678	1.673	.130	.127	.110	.125	-.00001	.00011	.1673	-.000	.00005
28	ALNILAM	46 EFS QRI	1.678	1.678	1.673	.130	.127	.108	.143	.00053	.00375	.1534	-.004	.00267
29	AL NAIIR	ALP GRU	2.133	1.593	1.743	.213	.198	.103	.133	.00021	.00156	.1610	-.002	.00107
30	ALNITAK	5C ZET ORI	.472	1.335	1.749	.358	.145	.103	.139	.00053	.00379	.1562	-.004	.00265
31	ALICIAH	77 EP.S. UNA	1.710	1.760	1.790	.120	.119	.099	.116	-.00002	.00015	.1763	-.000	.00007
32	DUBHE	50 ALP UMA	2.742	2.633	2.793	.620	.643	.699	.647	-.0010	.00221	.2735	-.002	.00086
33	MIRPEAK	33 ALP PER	2.663	2.293	1.893	.063	.073	.098	.075	-.00007	.00093	.2230	-.001	.00044
34	REGER	GAM VEL	.672	1.583	1.694	.456	.346	.142	.055	.00007	.00043	.1584	-.003	.00219
35	KAUS AUSTRALIS	20 EP.S. SGR	1.715	1.915	1.835	.128	.112	.095	.110	.00004	.00033	.1817	-.000	.00022
36	WEZEN	25 DEL CMA	2.500	1.630	.032	.055	.055	.062	.062	-.00007	.00113	.2434	-.001	.00043
37	SARGASS	THE SCO	2.410	2.260	1.860	.067	.074	.033	.076	-.00001	.00014	.2216	-.000	.00005
38	AVTOR	EFS CAR	2.460	2.150	1.680	.026	.032	.091	.036	-.00002	.00046	.3045	-.001	.00018
39	ALKAIIC	35 ETI UMA	1.010	1.680	1.880	.244	.244	.126	.091	.00029	.00236	.1711	-.003	.00151
40	MEWKINAN	34 BET AUR	2.240	1.936	1.500	.075	.161	.050	.112	-.00012	.00113	.1927	-.001	.00165
41	PEACOCK	ALP PAY	1.000	1.700	1.920	.247	.122	.088	.118	.00029	.00250	.1742	-.003	.00157
42	ALHENIA	24 GAM GEM	1.930	1.930	1.530	.102	.101	.037	.069	-.00001	.00115	.1930	-.000	.00066
43	AIRIA	4 ALP TRA	4.905	3.335	3.335	.007	.026	.087	.030	-.00012	.00411	.3233	-.034	.00137
44	MIRZAM	2 BET CHA	.756	1.746	1.980	.340	.340	.083	.115	.00040	.00349	.1767	-.004	.00216
45	ALPHARD	3 ALP HYA	5.231	3.124	1.931	.005	.026	.083	.029	-.00015	.00498	.3261	-.005	.00165
46	HAMAL	23 ALP AR2	4.278	3.169	2.609	.012	.033	.081	.036	-.00011	.00216	.0331	-.003	.00106
AVERAGE														
RMS														
1 SIGMA														
CR-CRA														
(CR-CRA)/CRA														
CM-CMA														
(CM-CMA)/CMA														
(CM-CMA)/CMA														

Table 11. Pioneer F SS color index fit: D-V=A*(B-V)+B*(U-B)

PIONEER F SS COLOR INDEX FIT: D-V=A*(B-V)+B*(U-B)									
	NG.	PROPER NAME	DESIGNATION	U	V	B-V	CRV	CR	CR-CRA
1	SIRIUS	9	ALP CMA	-1.492	-1.457	2.464	2.385	1.912	1.128
2	CANCERUS	10	ALP CAR	-0.520	-0.560	0.726	1.000	1.000	0.000
3	ARCIURUS	16	ALP BCQ	2.440	1.180	-0.050	.065	.540	1.366
4	VEGA	3	ALC LYR	.054	.044	.509	.573	.455	.474
5	CAPELLA	13	ALP AUR	1.292	.342	.062	.199	.275	.487
6	RTSEL	15	BET ORI	.527	.133	.153	1.016	.528	.448
7	PROcyON	10	ALP CMJ	.767	.777	.257	.300	.292	.378
8	ACHEMAR	ALP ERI	-3.350	.320	.490	.655	.445	.326	
9	HADAR	BET CEN	-2.610	.370	.610	.036	.425	.254	
10	ANTIA	63	ALP AGL	1.063	.982	.753	.235	.451	.145
11	BEDEGEUSE	53	ALP CRA	2.660	.300	.052	.247	.265	.668
12	ALDEBARAN	67	ALP TAU	4.278	2.368	.053	.012	.066	.234
13	SPICA	67	ALP VIR	-2.212	.723	.963	.753	.305	.211
14	ANTARES	24	ALP SCQ	4.620	2.720	.060	.015	.045	.229
15	POLLUX	73	DET SCN	5.996	2.146	1.146	.039	.083	.179
16	FOMALHAUT	24	ALP PSA	1.313	1.243	1.153	.165	.160	.178
17	DENEb	50	ALP CTG	1.023	1.338	1.293	.225	.174	.163
18	MIMOSA	BET CRU	-0.056	.016	.015	.265	.617	.334	
19	ACROX	ALP CRU	-0.450	.510	.790	.938	.373	.249	
20	REGULUS	32	ALP LEC	6.71	1.241	1.351	.276	.190	.148
21	ACHABRA	26	EPS CHM	.360	1.280	1.500	.495	.94	.129
22	CASTOR	66	ALP GEM	1.620	1.616	1.530	.176	.136	.120
23	SHAULAH	31	LAM SCO	.507	1.407	1.617	.388	.163	.116
24	BELLATRIX	24	GAM OET	.545	1.415	1.635	.375	.162	.114
25	ELNATH	142	3ET TAU	1.032	1.522	1.652	.239	.147	.103
26	GACRUX	GAM CRU	5.040	3.280	1.660	.066	.029	.112	
27	MICALLACIUS	BET CAR	1.698	1.878	1.673	.130	.127	.110	
28	ALNILAM	46	EFS ORI	4.674	1.514	1.694	.400	.146	.106
29	AL NAI TR	ALP CRU	1.133	1.593	1.743	.218	.138	.103	
30	ALNITAK	SC ZET ORI	.475	1.535	1.749	.358	.145	.103	
31	ALIOKH	77	EPS UMA	1.730	1.760	1.790	.126	.118	.099
32	GUBHE	SC ALP UMA	3.743	2.853	1.793	.020	.043	.093	
33	MIRAK	33	ALP PER	2.663	2.283	1.303	.053	.073	.098
34	REGOR	GAM VEL	.633	1.553	1.833	.346	.143	.095	
35	KAUS AUSTRALIS	20	EPS SGR	1.715	1.315	1.835	.129	.112	.095
36	WEZEN	25	DEL CHA	2.916	2.506	1.836	.029	.052	.085
37	SAIGAS	THE SCO	2.410	2.260	1.860	.067	.052	.136	
38	AVIOR	EPS CAR	2.466	3.196	1.880	.026	.032	.093	
39	ALKALIC	85	ETA UMA	1.010	1.690	1.880	.244	.226	.091
40	MENKALINAN	34	BET AUR	2.240	1.520	1.920	.079	.101	.055
41	PEACOCK	ALP PAY	1.000	1.720	1.920	.247	.122	.088	
42	ALHEN A	24 GAM GEM	1.960	1.930	1.930	.101	.087	.065	
43	ATRA	ALP TRA	4.905	3.395	1.935	.007	.026	.087	
44	MIRZAM	2 BET CHA	.750	1.740	1.960	.310	.120	.083	
45	ALPHARC	30 ALP HYA	5.151	3.421	1.961	.005	.026	.292	
46	HAWAL	13 ALF API	4.275	3.159	2.005	.012	.033	.081	

Table 12. Pioneer F SS color index fit: D-V=A*(B-V)

NO.	PROPER NAME	DESIGNATION	U	E	V	CRU	CRB	CRV	CR	CR-CRA	CRPC	CM	DM-CMA	DMPC	COLOR INDEX FIT: C-V=A*(B-V)		
															A=-1.59663080	B= .00000000	C= .00000000
1	SIRIUS	9 ALP CMA	-1.499	-1.457	-1.457	2.464	2.295	1.972	1.806	-0.02250	.01231	-1.457	-0.029	.02016			
2	CANGURUS	10 ALP CAR	-1.520	-1.560	-1.720	1.000	1.000	1.000	1.000	.00000	.00000	-0.815	-0.042	.0463			
3	ARCIURUS	15 ALP BOO	2.490	1.180	-1.050	.065	.201	.540	.971	-1.39517	.28919	-7.784	.328	.29524			
4	VEGA	3 ALP YR	.054	.044	.044	.532	.575	.495	.453	-0.12096	.044	.044	.007	.18460			
5	CAPIELLA	13 ALP AUR	1.292	.842	.062	.198	.275	.497	.684	-0.00707	.01022	-0.403	.031	.08343			
6	RIGEL	19 BET ORI	.537	.133	.153	1.016	.528	.448	.415	-0.12703	.05674	.165	.451	.73209			
7	PROCYON	10 ALP CMJ	.787	.777	.357	.300	.292	.371	.429	.04960	.13113	.106	.176	.62323			
8	ACHEMNA	10 ALP ERI	-.330	.320	.490	.955	.445	.328	.274	.07416	.37169	.591	.385	.34543			
9	HADAR	10 BET CEN	-.610	.370	.610	1.036	.425	.294	.236	.02044	.622214	.753	.567	.92968			
10	ALTAIR	63 ALP AOL	1.053	.982	.753	.235	.241	.258	.268	.00243	.00243	.616	.052	.07808			
11	BETELGEUSE	53 ALP ORI	2.660	.800	.652	.527	.524	.527	.524	.00243	.00243	.616	.052	.07808			
12	ALDEBARAN	87 ALP TAU	4.270	2.388	.858	.612	.666	.234	.466	-0.42528	.46146	.055	.630	.91988			
13	SFTCA	67 ALP VIR	-.212	.723	.363	.753	.211	.170	.170	.05236	.58167	1.111	-.540	.32705			
14	ANTARES	21 ALP SCO	4.020	2.720	.680	.015	.049	.229	.577	-0.07481	.11482	.218	.090	.29281			
15	POLLUX	78 BET SSM	2.996	2.146	1.146	.039	.093	.179	.294	-0.54229	.16026	.549	.147	.36667			
16	FCMALHAUT	24 ALP PSA	1.333	1.241	1.153	.165	.190	.178	.171	-0.00825	.04593	1.099	.009	.00808			
17	DENEB	50 ALP CYG	1.098	1.333	1.243	.225	.163	.174	.157	.02171	.16039	1.194	.204	.14574			
18	MIMCIS	50 RET CRU	.005	1.017	1.015	.617	.234	.161	.128	.05037	.64655	1.194	.204	.19215			
19	ACRUX	10 ALP CRU	-.450	.510	.790	.933	.373	.249	.195	.07145	.57629	.957	.536	.35914			
20	REGULUS	32 ALP LEO	.871	1.241	1.351	.278	.190	.148	.126	.01792	.01625	1.631	.206	.12685			
21	ADHARA	26 EPS CMA	360	1.280	1.500	.445	.184	.129	.105	.03932	.57440	1.631	.535	.46998			
22	CASTOR	66 ALP GEM	1.620	1.610	1.580	.139	.136	.120	.112	-.00378	.03265	1.562	-.006	.0396			
23	SHAULA	31 LAM SCO	.507	1.407	1.617	.383	.163	.095	.03407	.56088	1.742	.526	.23178				
24	BELLATRIX	24 GAM ORI	.545	1.012	1.415	.635	.375	.162	.114	.03195	.52546	1.766	-.501	.20283			
25	ELNATH	12 BET TAU	1.032	1.522	1.652	.233	.147	.113	.096	.01882	.24439	1.730	.279	.13907			
26	GACRUX	50 GAM CRU	5.040	3.230	1.660	.006	.025	.112	.249	-.16191	.39390	.693	.501	.261047			
27	MIAPLACIDUS	BET CAR	1.688	1.678	1.678	.130	.121	.110	.101	-.00532	.25023	1.678	.014	.00824			
28	ALNILAH	46 EPS PER	2.663	2.283	1.903	.053	.073	.098	.117	-.01053	.08276	1.517	.052	.03519			
29	AL NAI'R	47 ALP GRJ	1.333	1.593	1.743	.218	.138	.103	.087	.03777	.7581	1.801	.635	.26055			
30	ALNITAK	50 ZET ORT	.479	1.535	1.743	.398	.145	.103	.084	.03534	.72685	1.874	.635	.25317			
31	ALIOOTH	77 EPS UMA	1.780	1.760	1.790	.120	.043	.099	.089	-.00536	.06159	1.308	.027	.01503			
32	DUBHE	50 ALP UMA	3.743	2.353	1.793	.020	.043	.099	.162	-.03115	.16126	1.161	.149	.14695			
33	MIRFAK	33 ALP PER	2.663	2.283	1.903	.053	.073	.098	.117	-.01053	.08276	1.517	.052	.03519			
34	REGOR	67 GAM VEL	.633	1.633	1.633	.346	.143	.095	.075	.02613	.53697	2.000	-.509	.20283			
35	KAUS AUSTRALIS	20 EPS SGR	1.715	1.915	1.935	.128	.112	.095	.086	.01520	.21099	1.832	.250	.12009			
36	WEZEN	25 DEL CMA	2.986	2.505	1.838	.039	.055	.125	-.001040	-.00139	.01636	1.847	-.060	.03139			
37	SARGAS	THE SCO	2.410	2.260	1.860	.057	.074	.093	.106	-.00280	.07656	1.433	.044	.03174			
38	AVICOR	26 EPS CAR	3.460	3.190	1.880	.026	.032	.091	.172	.04648	.37157	1.098	-.385	.25968			
39	ALKAIIC	85 ETIA UMA	1.000	1.650	1.880	.244	.091	.075	.02613	.53697	2.000	-.509	.20283				
40	MENKALINAN	34 BET AUR	2.240	1.900	1.900	.079	.101	.090	.083	-.02679	.19961	1.882	.199	.11856			
41	PEACOCK	10 ALP PAY	1.000	1.720	1.920	.247	.122	.088	.072	.02056	.39976	2.039	-.407	.16624			
42	ALHEN'A	24 GAM SEM	1.580	1.930	1.930	.102	.087	.087	.080	-.00475	.05621	1.930	.021	.01077			
43	AIRIA	10 ALP IRA	4.905	3.355	1.935	.007	.026	.087	.177	-.08896	.33435	1.064	.400	.00161			
44	MIRZAH	2 BET CMA	7.90	1.740	1.980	.310	.120	.083	.067	.02586	.63241	2.123	-.574	.21291			
45	ALPHARD	30 ALP HYA	5.151	3.421	1.981	.005	.026	.093	.168	-.12427	.92532	1.122	.559	.93385			
46	HAMAL	13 ALF ARI	4.279	3.159	2.009	.012	.033	.081	.140	-.04601	.24800	1.323	.267	.025312			
															AVERAGE	RMS	1 SIGMA
															CR-CRA	-.01332	.009977
															(CR-CRA)/CRA	.28667	.00614
															D*-CMA	-.13653	.36305
															(CM-DMA)/CMA	.29139	.50645
															(CM-DMA)	.41657	

Table 13. Pioneer F SS color index fit: D-V=A*(U-B)

PIONEER F SS COLOR INDEX FIT: D-V=A*(U-B)											
NC.	PROPER NAME	DESIGNATION	U	B	V	CRL	CRB	CR	CR-CRA	CRPC	CM
1	SIRIUS	9 ALP CMA	-1.499	-1.457	-1.464	2.464	2.285	1.972	1.977	1.4849	.03123 -1.376 .052
2	CANOPUS	10 ALP CAR	-0.520	-0.560	-0.720	1	1.000	1.500	1	0.0000	-6.377
3	ARCTURUS	16 ALP BOO	-2.440	-1.180	-0.950	-0.965	.201	.540	1.737	.37005	.27930 -1.236 -1.124
4	VEGA	3 ALP LYR	-0.074	-0.044	-0.062	-0.193	.573	.495	.544	0.6966	.14653 -.025 -1.012
5	CAPELLA	13 ALP AUR	1.292	-0.342	-0.062	-0.275	-0.275	.497	.567	.12415	.17961 -.021 .351
6	RIGEL	19 BET ORI	-0.537	-0.133	-0.153	1.016	.528	.448	.151	-0.12751	.45825 1.416 .802
7	PROcyON	10 ALP CMN	.737	.777	.357	.300	.292	.371	.277	.10140	.25903 .758 .475
8	ACERNAR	6 ALP ERG	-0.350	-0.320	-0.490	-0.855	-0.445	.328	.328	-0.07262	.36397 1.605 .628
9	HACAR	BET CEN	-0.610	-0.610	-0.610	-1.035	-0.425	.299	.070	.05125	.51297 2.243 .928
10	ALTAIR	53 ALP AGL	1.033	.983	.753	.235	.201	.258	.255	.01661	.04001 .845 .181
11	BETELGEUSE	53 ALP ORI	-2.560	-3.000	-0.052	-0.247	-0.247	-0.247	-0.247	-0.247	.27077
12	ALDEBARAN	87 ALP TAU	4.278	2.388	.858	.012	.066	.234	1.736	-0.8849	-1.236 -.551
13	SPICA	67 ALP VIR	-0.212	.728	.968	.753	.305	.211	.054	-0.05311	.49513 2.530 .879
14	ANTARES	21 ALP SCO	4.020	2.720	.680	.015	.045	.229	.451	-0.20030	.30194 .227 .535
15	POLLUX	78 BEI GEM	2.996	2.146	1.146	.059	.083	.179	.346	.00702	.02073 .516 .114
16	Fomalhaut	24 ALP CYG	1.313	1.243	1.153	-0.205	.196	.176	.206	-0.02067	.11677 1.108 .C18
17	DENEb	50 ALP CRU	1.093	1.338	1.248	-0.225	.174	.163	.106	-0.02918	.21555 1.798 .400
18	MIMOSA	BET CRU	*0.056	1.015	1.265	-0.617	.234	.161	.037	-0.04120	.52889 2.952 .954
19	ACRUX	ALP CRU	-0.450	.510	.790	.933	.373	.249	.064	-0.06015	.43514 2.351 .857
20	REGULUS	32 ALP LEO	-0.71	-1.241	1.351	-0.278	.192	.148	.052	-0.01780	.16168 1.950 .328
21	ADHARA	26 EPS CMA	3.60	1.280	1.500	-0.495	.186	.129	.034	-0.03300	.49472 3.044 .878
22	CASTOR	66 ALP GEM	1.620	1.610	1.580	-0.139	.136	.120	.129	-0.01281	.11071 1.591 .023
23	SHAULA	31 LAM SCO	.507	1.407	1.617	-0.383	.163	.116	.031	-0.02968	.43863 3.133 .865
24	BELLATRIX	24 ALM ORI	-0.517	1.407	1.617	-0.218	.146	.114	.033	-0.02629	.46524 3.083 .816
25	ELNATH	1112 BEI GEM	1.032	1.522	1.652	-0.375	.162	.114	.033	-0.01948	.25254 2.462 .453
26	Gacrux	GAM CRU	5.040	3.260	1.660	-0.016	.025	.113	.058	-0.02116	.20216 .28422
27	MIAPlACICUS	BET CAR	1.696	1.578	1.678	-1.130	.127	.110	.123	-0.01695	.16001 1.640 -.025
28	AL NINIA	46 EFS ORI	1.514	1.514	1.654	-0.096	.194	.106	.022	-0.03005	.57750 3.508 1.072
29	AL NITA IR	ALP GRU	1.133	1.593	1.743	-0.218	.136	.103	.057	-0.01513	.20936 2.475 .392
30	ALNITAK	5C ZET ORI	4.79	1.532	1.635	-0.375	.162	.103	.021	-0.02789	.57551 3.571 1.062
31	ALTIJAH	77 EPS UMA	1.780	1.760	1.790	-0.120	.118	.099	.114	-0.01892	.19748 1.722 -.059
32	DOUBHE	5C ALP PER	3.853	2.853	1.803	-0.020	.093	.093	.154	-0.00333	.47663 -.095 -.287
33	MIREAK	33 ALP VEL	2.663	2.283	1.808	-0.053	.073	.098	.133	-0.00565	.04443 1.554 .089
34	REGOR	GAM VEL	6.33	1.553	1.833	-0.446	.443	.055	.026	-0.02244	.46124 3.317 .808
35	KAUS AUSTRALIS	20 EPS SGR	1.715	1.815	1.635	-0.128	.112	.095	.088	-0.00290	.03426 2.007 .100
36	WEZEN	25 DEL CMA	2.956	2.503	1.838	-0.139	.055	.095	.121	-0.00467	.23434 1.568 -.174
37	SARGAS	THE SCO	2.410	2.260	1.960	-0.067	.074	.093	.090	-0.01275	.12356 1.972 .280
38	AVIOK	EFS CAR	3.460	3.190	1.880	-0.026	.032	.091	.047	-0.07763	.62034 2.672 1.189
39	ALNAIL	85 ETA UMA	1.010	1.690	1.880	-0.244	.126	.091	.035	-0.01965	.35755 2.994 .617
40	PENNARIAN	34 BET AUR	2.240	1.630	1.900	-0.079	.104	.050	.162	-0.05843	.56101 1.336 -.347
41	PEACUCK	ALP PAY	1.000	1.720	1.920	-0.247	.122	.088	.032	-0.01957	.37945 3.101 .655
42	ALTAIR	24 GAM GEM	1.960	1.930	1.930	-0.102	.101	.087	.099	.01464	.17325 1.872 -.C37
43	AIRIA	4 ALP TRA	4.905	3.395	1.935	-0.007	.026	.026	.0351	.03502	.31953 -.165 -.24767
44	MIRZAM	2 BET C'A	7.50	1.740	1.960	-0.310	.120	.083	.020	-0.02140	.52321 3.638 .941
45	ALPHARD	30 ALP HYA	5.151	3.421	1.931	-0.005	.026	.083	.21335	.73021 1.104 -.459	
46	HAWAI	13 M ⁺ ARI	4.279	3.159	2.069	-0.012	.033	.061	.216	.03359	.16103 1.012 -.C44
											.04180
	CR-CRA										.C1935
	(CR-CRA)/CRA										.15205
	CM-CMA										.31319
	(CM-CMA)/DMA										.375728
											.44808
											.42141
											.60079
											.42821
	AVERAGE										RMS 1 SIGMA

Table 14. Pioneer F SS color index fit: D-V=A*(U-V)

No.	Proper Name	Designation	U	B	V	COLOR INDEX FIT: C-V=A*(U-V)		COLOR INDEX FIT: C-V=A*(U-V)		COLOR INDEX FIT: C-V=A*(U-V)	
						CRL	CRB	CRV	CE	CR-TRA	CRPC
1	SIRIUS	9 ALP GHA	-1.499	-1.457	2.464	2.285	1.972	1.809	-0.01939	0.01061	-1.441
2	CANOPUS	ALP CAR	-5.720	-5.560	-7.720	1.000	1.000	1.000	0.00000	-7.797	-0.024
3	ARCIURUS	15 ALP S00	2.440	1.180	-0.050	-0.0565	-0.0201	1.220	-0.10674	-1.013	0.999
4	VEGA	3 ALP LYA	0.054	0.044	0.044	0.589	0.573	0.495	0.462	-0.0170	0.040
5	CAPELLA	12 ALP AUC	1.292	0.842	0.62	1.89	2.275	4.97	-0.0109	-0.0605	-0.041
6	FITTEL	16 BET ORI	5.537	4.133	1.016	52.8	448	326	0.04666	-17.126	-0.196
7	PROCYON	10 ALP CHA	.787	.777	.357	.300	.292	.371	.403	.02430	.06425
8	ACHEIRON	ALP ERI	-3.500	-3.20	4.90	0.955	0.445	0.228	0.02700	-1.35333	-0.191
9	HADAR	9 ETI OII	-6.0	-6.0	3.70	.610	1.086	.425	.227	-1.35333	-0.092
10	ALTAIR	53 ALP AGL	1.0533	.963	.753	2.35	.241	.258	.03178	-2.18633	-1.082
11	BETELGEUSE	53 ALP OII	2.680	.800	.800	.052	.247	.267	.00167	.00630	.637
12	ALDEBARAN	67 ALP TAU	4.278	2.380	0.858	0.012	0.06	.234	.736	-18.49	.20127
13	SPICA	67 ALP VIR	-.212	.723	.958	.753	.305	.211	.129	.00201	.20529
14	ANTARES	2 ALP SCG	4.020	2.720	0.880	0.045	0.229	.653	.00137	-3.34	-0.026
15	RUUX	78 SEC GEM	2.996	2.146	1.146	0.039	0.083	.179	.01604	.047135	.431
16	FOMALHAUT	24 ALP PTA	1.313	1.243	1.185	.190	.190	.178	.00105	.02254	.1.091
17	DENEB	30 ALP CNG	1.098	1.339	1.243	.225	.174	.163	.00814	.06455	1.306
18	MIMCOSA	BET CRV	0.005	1.015	1.265	.617	.234	.161	.01762	.22619	1.424
19	ACRUX	ALP CRV	-.450	.510	.790	.938	.373	.249	.0149	.02503	.20191
20	REGULUS	32 ALP LEO	-.871	1.241	1.351	.278	.190	.148	.117	.00663	.05843
21	ACHARA	26 EPS CHA	36.0	1.280	1.500	.445	.184	.129	.080	.01559	.4.0366
22	CASTOR	66 ALP GEM	1.620	1.610	1.580	1.39	1.36	.120	.114	.00215	.1.585
23	SHAULA	31 LAM SCO	50.7	1.407	1.617	.388	.165	.116	.073	.01212	.1.9954
24	BELLATRIX	24 GAM ORI	5.45	1.415	1.635	.375	.162	.114	.072	.01138	.0152
25	ELNATH	112 BET TAU	1.032	1.522	1.652	.239	.147	.113	.084	.00690	.08945
26	GACRUX	GAM GEM	5.040	3.280	1.660	.006	.029	.112	.06134	.1.5654	.353
27	MIAPLACICUS	BET CAR	1.693	1.678	1.678	.130	.127	.110	.103	-.00290	.1.941
28	ALN-LAM	46 EPS ORI	4.74	1.514	1.694	.400	.148	.106	.065	.01215	.1.585
29	ALNAIR	ALP GRU	1.133	1.593	1.743	.218	.133	.103	.078	.00568	.01601
30	ALNITAK	5C ZET ORI	4.75	1.539	1.749	.398	.145	.103	.061	.01233	.2.40
31	ALIOTH	77 EPS UMA	1.780	1.760	1.790	.120	.118	.099	.092	-.00318	.01339
32	DUBHE	5C ALP UMA	3.743	2.853	1.793	.020	.043	.099	.184	-.00388	.04596
33	MIRFAK	33 ALP PER	2.663	2.283	1.803	.053	.073	.098	.124	-.00341	.02677
34	REGOR	GAM VEL	6.33	1.553	1.633	.346	.143	.095	.058	.01324	.2.297
35	KAUS AUSTRALIS	20 EPS SCR	1.715	1.815	1.835	.128	.112	.095	.085	-.00010	.00115
36	WEZEN	25 DEL CHA	2.998	2.506	1.638	.039	.055	.095	.133	-.00242	.01778
37	SARGAS	THE SCO	2.910	2.260	1.860	.067	.074	.093	.105	.00204	.01977
38	AVIIR	ALP IRA	4.905	3.395	1.935	.007	.026	.032	.091	.02401	.1.919
39	ALKAIKIC	65 ETA UMA	3.466	3.190	1.680	.026	.032	.052	.149	.02401	.1.265
40	HENALINAN	34 6ET AUR	1.010	1.590	1.880	.249	.126	.091	.062	.00735	.1.3374
41	PEACOCK	ALP PAY	1.000	1.720	1.920	.247	.122	.088	.059	.00742	.1.881
42	ALHENNA	24 GAM GEM	1.960	1.930	1.930	.102	.082	.087	.032	.00254	.1.4391
43	ARIA	ALP IRA	4.905	3.395	1.935	.007	.026	.032	.091	.02401	.1.265
44	MIRZAN	2 BET CHA	.750	1.740	1.980	.310	.120	.083	.050	.00908	.22199
45	ALPHAK	30 ALP HYA	5.151	3.421	1.981	.005	.026	.083	.239	-.05231	.2.456
46	HAMAL	13 ALP ARI	4.279	3.159	2.009	.012	.033	.081	.169	-.01625	.1.92
										AVERAGE	RMS 1 SIGMA
										CR-CRA	-.00504
										(CR-CRA)/CRA	.0403
										DM-CMA	.10659
										(DM-CMA)/CMA	.08192
										(DM-CMA)/CHM	.11150
											.17891
											.13591

Table 15. Ultraviolet (U) color index fit: $D - B = A * (B - V)$

Table 16. Blue (B) color index fit: D-U=A*(U-V)

BLUE (B)			COLOR INDEX FIT: D-U=A*(U-V)										
No.	PROPER NAME	DESIGNATION	U	V	CRL	CRB	CRV	CR	CR-CRA	CRPC	CM	CM-CHA	CMPC
1	SIRIUS	9 ALP CMA -1.499 -1.457	-1.457	2.464	2.295	1.972	2.219	-0.06581	.02881	-1.479	-0.022	.01528	
2	CANOPUS	10 ALP CAR -0.520	-0.560	-0.720	1.000	1.000	1.000	.00000	.00000	-0.514	-0.054	.19692	
3	ICARUS	16 ALP B00 2.440	1.180	-0.050	.201	.540	.176	-0.04947	.12400	1.270	.090	.07605	
4	VEGA	3 ALP LYR .044	.044	.583	.573	.495	.543	-0.03047	.05315	.049	.005	.10246	
5	CAPELLA	13 ALP AUR 1.292	.342	.062	.189	.275	.487	.294	.01941	.07062	.714	.128	.15212
6	RIGEL	15 BET ORI -.527	.133	.153	1.016	.526	.448	.621	.1681	.00823	-2.213	-0.346	.25933
7	PROcyON	10 ALP CMI .787	.777	.357	.300	.292	.371	.331	.03939	.13563	.585	.192	.24122
8	ACHEMAR	10 ALP ERI -.350	.320	.490	.855	.445	.328	.545	.10448	.22599	.045	.275	.86004
9	HADAR	9 BET CEN -.610	.370	.610	1.086	.425	.294	.588	.16234	.38372	.037	.907	.103897
10	ALTAIR	5 ALP AGL 1.053	.963	.753	.235	.241	.258	.245	.00381	.01578	.912	.071	.07122
11	BETELGEUSE	53 ALP ORI 2.660	.800	.052	.247	.247	.247	.247	.00000	.00000	.00000	.00000	.00000
12	ALCEBARAN	87 ALP TAU 4.276	2.388	.858	.012	.066	.234	.049	.01765	.26660	2.671	.283	.11836
13	SPICA	67 ALP VIR -.212	.728	.968	.753	.305	.211	.414	.10900	.35696	.343	.385	.52492
14	ANTARES	21 ALP SCO 4.020	2.720	.680	.015	.045	.229	.055	.00579	.11867	.2.54	.176	.04462
15	POLLUX	78 BET GEM 2.936	2.446	1.146	.032	.083	.179	.080	.00205	.03130	2.127	.019	.00907
16	FOMHALAUT	24 ALP PSA 1.313	1.243	1.153	.195	.190	.178	.182	.00335	.04395	1.238	.005	.04118
17	DENIB	50 ALP CYG 1.098	1.338	1.248	.225	.174	.163	.194	.01954	.11225	.1.168	.170	.12668
18	HIMOE'A	10 BET CRU .015	1.265	.617	.234	.161	.328	.0322	.03907	.03907	.997	.418	.4164
19	ACRUX	32 ALP LEO .671	1.241	1.351	.276	.373	.249	.503	.12843	.34676	.133	.377	.73564
20	REGULUS	26 ALP EPS 1.360	1.280	1.500	.445	.194	.207	.01653	.08684	1.097	.144	.11636	
21	ADHARA	26 ALP CMA 1.620	.360	.495	.136	.136	.120	.220	.06528	.35595	.896	.384	.30017
22	CASTOR	66 ALP GEM 1.620	1.616	1.560	.175	.135	.135	.120	.00553	.04077	1.601	.660	.05547
23	SHALALA	31 LAM SCO .507	1.407	1.617	.388	.163	.116	.220	.05688	.34812	1.029	.378	.26288
24	BELLATRIX	24 GAM ORI .545	1.415	1.635	.375	.162	.114	.215	.05235	.32278	1.057	.358	.25280
25	EINAIKH	112 BET JAU 1.032	1.522	.652	.239	.174	.113	.163	.02039	.45764	1.323	.193	.1349
26	GACRUX	50 ALP CRU 5.040	3.26C	1.660	.006	.029	.029	.024	.00346	.18747	3.451	.171	.0227
27	KAPLACIDUS	BET CAR 1.698	1.678	1.670	.130	.127	.110	.120	.00035	.04077	1.601	.660	.00632
28	AINILAK	46 EFS ORI 1.474	1.514	1.694	.400	.196	.108	.216	.06845	.46234	1.047	.667	.30820
29	AL NAI'R	AL GRU 1.433	1.593	1.743	.213	.138	.103	.154	.15139	.11616	1.120	.173	.10379
30	ALNITAK	5C ZET ORI 1.758	1.535	1.749	.356	.145	.103	.211	.06621	.45764	1.076	.163	.20092
31	ALTIOTH	77 EPS UMA 1.730	1.760	1.790	.120	.113	.099	.110	.00835	.05992	1.085	.025	.0403
32	DUBHE	5C ALP UMA 3.742	2.853	1.793	.020	.043	.099	.042	.00018	.02503	2.827	.026	.0928
33	MIRFAK	32 ALP PER 2.662	2.283	1.803	.052	.052	.052	.071	.00097	.0709	2.59	.024	.00593
34	REGOR	50 GAM VEL 1.625	1.553	1.623	.346	.143	.095	.189	.00481	.32071	1.197	.356	.29225
35	KAUS AUSTRALIS	20 EPS SGR 1.715	1.815	1.835	.123	.112	.095	.111	.00007	.00953	1.771	.004	.02002
36	WEZEN	25 DEL CMA 2.958	2.503	1.838	.029	.059	.093	.055	.00006	.00109	2.153	.055	.0200
37	SARGAS	THE SCO 2.410	2.260	1.960	.067	.074	.093	.078	.00383	.05147	2.152	.108	.04901
38	AVIOR	EPS CAR 3.400	3.19C	1.680	.026	.032	.091	.046	.01687	.47039	2.717	.073	.19814
39	ALKAIC	86 ETA UMA 1.010	1.690	1.880	.244	.126	.091	.154	.02287	.22137	1.419	.271	.18042
40	MENKALINAN	24 BET AUR 2.240	1.930	1.900	.079	.101	.098	.084	.01730	.17145	2.080	.150	.07783
41	PEACOCK	ALP PAV 1.000	1.720	1.920	.247	.122	.088	.152	.02900	.24007	1.432	.288	.16722
42	ALHENA	24 GAM GEK 1.966	1.930	1.930	.102	.101	.087	.095	.00629	.06235	1.946	.016	.00824
43	ATRIIA	ALP IRA 4.905	3.395	1.935	.007	.026	.087	.022	.00376	.14347	3.509	.114	.03362
44	MIRZAH	2 BET CMA 750	1.740	1.960	.310	.126	.083	.167	.01635	.25049	1.328	.412	.23673
45	ALPHARC	30 ALP HYA 5.151	3.421	1.981	.005	.026	.083	.019	.00607	.23732	3.661	.240	.0020
46	HAMAL	13 ALP ARI 4.276	3.159	2.003	.012	.033	.081	.025	.00306	.03396	3.212	.053	.01682

 AVERAGE RMS 1 SIGMA
 CR-CRA .02579 .05501 .04859
 (CR-CRA)/CRA .18076 .21344 .14454
 CM-CMA -.14498 .24933 .20292
 (CM-CMA)/CMA .23264 .46332 .42365

Table 17. Visual (V) color index fit: D-U=A*(U-B)

No.	PROPER NAME	DESIGNATION	VISUAL (V)		COLOR INDEX FIT: D-U=A*(U-B)		CM-CMA
			U	V	CRB	CRV	
1. SIRIUS	3 ALP CMA	-1.499 -1.457	2.464	2.285	1.972	2.150	.39043 -1.423
2. CANOPUS	ALP CAR	-5.520 -5.560	.720	1.010	1.000	1.000	.00000 -30.745226
3. ARCIUS	16 ALP B00	1.180	-0.050	.065	.201	.540	.04202 -.128
4. VEGA	3 ALP LYR	.044	.044	.569	.573	.495	.06555 -.216
5. CAELIA	13 ALP AUR	1.232	.842	.062	.199	.275	.373 -.036
6. RIGEL	19 BET ORI	.537	.133	.153	1.016	.528	.448 -.008
7. PROCYON	10 ALP CM	.787	.777	.357	.300	.292	.312 -.008
8. ACHERNAR	BET ERI	-3.350	.320	.490	.655	.445	.328 -.008
9. HADAR	BET CEN	-6.100	.370	.610	1.086	.425	.294 -.008
10. ALTAIR	53 ALP AGL	1.053	.983	.753	.235	.241	.256 -.008
11. BETELGEUSE	53 ALP ORI	-	2.660	.800	.052	.247	.247 -.008
12. ALDEBARAN	67 ALP TAU	4.276	2.388	.656	.012	.234	.261 -.008
13. SPICA	67 ALP VIR	-2.212	.728	.963	.053	.305	.214 -.008
14. ANTARES	21 ALP SCO	4.020	2.720	.860	.015	.046	.229 -.008
15. POLLUX	78 BET GEM	-2.936	2.146	1.146	.039	.083	.179 -.008
16. Fomalhaut	24 ALP PSA	1.313	1.243	1.153	.036	.196	.164 -.008
17. DENEB	50 ALP CYG	1.028	1.333	1.248	.225	.174	.163 -.008
18. MINOSA	BET CRU	.055	1.015	1.265	.617	.334	.161 -.008
19. ACRUX	ALP LEO	-4.50	.510	.790	.333	.373	.249 -.008
20. REGULUS	32 ALP LEO	.871	1.241	1.351	.276	.190	.146 -.008
21. ADHARA	26 EPS CMA	3.60	1.280	1.500	.495	.184	.129 -.008
22. CASTOR	66 ALP GEM	1.620	1.610	1.560	.119	.136	.120 -.008
23. SHAULAA	31 LAM SCD	.507	1.407	1.617	.388	.163	.116 -.008
24. BELATRIX	24 GAM ORI	.545	1.415	1.635	.375	.162	.114 -.008
25. ELNATH	112 BET TAU	1.032	1.522	1.652	.233	.147	.113 -.008
26. GACCIUX	GAM CRU	5.040	3.280	1.660	.005	.025	.112 -.008
27. MIRALACIDUS	BET ORI	1.693	1.673	1.630	.130	.100	.125 -.008
28. ANILAM	4C EPS CRI	1.474	1.514	1.694	.400	.146	.108 -.008
29. ALNAIR	ALP GRU	1.153	1.593	1.743	.213	.130	.095 -.008
30. ALNITAK	5C ZET ORI	.479	1.535	1.749	.358	.145	.103 -.008
31. ALIOITH	77 EPS UMA	1.780	1.760	1.790	.120	.115	.085 -.008
32. DUBHE	5C ALP UMA	3.743	2.653	1.793	.020	.043	.099 -.008
33. MIKEAK	33 ALP PER	2.663	2.283	1.803	.053	.073	.098 -.008
34. REGOR	GAM VEL	.633	.553	.653	.346	.143	.095 -.008
35. KAOS AUSTRALIS	20 EPS SGR	1.715	1.815	1.835	.129	.112	.096 -.008
36. WEZEN	25 DEL CMA	.588	2.503	1.338	.016	.056	.035 -.008
37. SARGAS	THE SCO	2.410	2.260	1.860	.067	.074	.093 -.008
38. AYGOR	EPS CAR	3.450	2.190	1.880	.026	.032	.091 -.008
39. ALKIC	85 ETA UMA	1.010	1.690	1.880	.244	.126	.091 -.008
40. MENKALINAN	34 BET AUR	2.240	1.930	1.900	.076	.101	.056 -.008
41. PEACOCK	ALP PAV	1.000	1.720	1.920	.247	.122	.088 -.008
42. ALHENA	24 GAM GEN	1.960	1.930	1.930	.102	.101	.067 -.008
43. ATRIA	ALP TRA	4.905	3.395	1.935	.007	.026	.087 -.008
44. MITZAM	2 BET CMA	7.00	1.740	1.960	.310	.120	.083 -.008
45. ALPHARD	30 ALP HYA	5.151	3.421	1.991	.095	.066	.083 -.008
46. HANAL	13 ALP ARI	4.278	3.159	2.009	.012	.033	.081 -.008
							AVERAGE RMS
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
							-.02060
							1 SIGMA
							CR-CRA .05379
							(CR-CRA)/CRA .09869
							CM-CMA .12550
							(CM-CMA)/CMA .25213
							AVERAGE RMS
		</td					

Table 18. Computer abbreviations of Greek alphabet and lower case letters

Greek		Lower case	
Abbreviation	Symbol	Abbreviation	Letter
ALP	α	-A	a
BET	β	-B	b
GAM	γ	-C	c
DEL	δ	-D	d
EPS	ϵ	-E	e
ZET	ζ	-F	f
ETA	η	-G	g
THE	θ	-H	h
IOT	ι	-I	i
KAP	κ	-J	j
LAM	λ	-K	k
MU	μ	-L	l
NU	ν	-M	m
XI	ξ	-N	n
OMI	\circ	-O	o
PI	π	-P	p
RHO	ρ	-Q	q
SIG	σ	-R	r
TAU	τ	-S	s
UPS	υ	-T	t
PHI	ϕ	-U	u
CHI	χ	-V	v
PSI	ψ	-W	w
OME	ω	-X	x
		-Y	y
		-Z	z

^aSuperscripts are denoted as follows: ALP-1 implies α^1

-H-2 implies h^2

Table 19. Constellations

1. AND	-	ANDROMEDA	46. LEO	-	LEO
2. ANT	-	ANTLIA	47. LMI	-	LEO MINOR
3. APS	-	APUS	48. LEP	-	LEPUS
4. AQR	-	AQUARIUS	49. LIB	-	LIBRA
5. AQL	-	AQUILA	50. LUP	-	LUPUS
6. ARA	-	ARA	51. LYN	-	LYNX
7. ARI	-	ARIES	52. LYR	-	LYRA
8. AUR	-	AURIGA	53. MEN	-	MENSA
9. BOO	-	BOOTES	54. MIC	-	MICROSCOPIUM
10. CAE	-	CAELUM	55. MON	-	MONOCEROS
11. CAM	-	CAMELOPARDALIS	56. MUS	-	MUSCA
12. CNC	-	CANCER	57. NOR	-	NORMA
13. CVN	-	CANES VENATICI	58. OCT	-	OCTANS
14. CMA	-	CANIS MAJOR	59. OPH	-	OPHIUCHUS
15. CMI	-	CANIS MINOR	60. ORI	-	ORION
16. CAP	-	CAPRICORNUS	61. PAV	-	PAVO
17. CAR	-	CARINA	62. PEG	-	PEGASUS
18. CAS	-	CASSIOPEIA	63. PER	-	PERSEUS
19. CEN	-	CENTAURUS	64. PHE	-	PHOENIX
20. CEP	-	CEPHEUS	65. PIC	-	PICTOR
21. CET	-	CETUS	66. PSC	-	PISCES
22. CHA	-	CHAMAELEON	67. PSA	-	PISCIS AUSTRINUS
23. CIR	-	CIRCINUS	68. PUP	-	PUPPIS
24. COL	-	COLUMBA	69. PYX	-	PYXIS
25. COM	-	COMA BERENICES	70. RET	-	RETICULUM
26. CRA	-	CORONA AUSTRALIS	71. SGE	-	SAGITTA
27. CRB	-	CORONA BOREALIS	72. SGR	-	SAGITTARIUS
28. CRV	-	CORVUS	73. SCO	-	SCORPIUS
29. CRT	-	CRATER	74. SCL	-	SCULPTOR
30. CRU	-	CRUX	75. SCT	-	SCUTUM
31. CYG	-	CYGNUS	76. SCP	-	SERPENS CAPUT
32. DEL	-	DELPHINUS	77. SCA	-	SERPENS CAUDA
33. DOR	-	DORADO	78. SEX	-	SEXTANS
34. DRA	-	DRACO	79. TAU	-	TAURUS
35. EQU	-	EQUULEUS	80. TEL	-	TELESCOPIUM
36. ERI	-	ERIDANUS	81. TRI	-	TRIANGULUM
37. FOR	-	FORNAX	82. TRA	-	TRIANGULUM AUSTRALE
38. GEM	-	GEMINI	83. TUC	-	TUCANA
39. GRU	-	GRUS	84. UMA	-	URSA MAJOR
40. HER	-	HERCULES	85. UMI	-	URSA MINOR
41. HOR	-	HOROLOGIUM	86. VEL	-	VELA
42. HYA	-	HYDRA	87. VIR	-	VIRGO
43. HYI	-	HYDRUS	88. VOL	-	VOLANS
44. IND	-	INDUS	89. VUL	-	VULPECULA
45. LAC	-	LACERTA			

Table 20. Standard Canopus ratios and magnitudes of stars used in conjunction with Tables 7 through 17

STAR NO.	MARINER '71 CT		PIONEER F SS		ULTRAVIOLET		BLUE		VISUAL	
	CR	MAGNITUDE	CR	MAGNITUDE	CR	MAGNITUDE	CR	MAGNITUDE	CR	MAGNITUDE
1	2.247	-1.457	1.828	-1.428	2.464	-1.499	2.285	-1.457	1.972	-1.457
2	1.000	- .578	1.000	- .773	1.000	- .520	1.000	- .560	1.000	- .720
3	.225	1.040	1.366	-1.112	.065	2.440	.201	1.180	.540	- .050
4	.564	.044	.474	.037	.589	.054	.573	.044	.495	.044
5	.293	.755	.691	- .372	.188	1.292	.275	.842	.487	.062
6	.517	.138	.278	.616	1.016	.537	.528	.133	.448	.153
7	.300	.731	.378	.282	.300	.787	.292	.777	.371	.357
8	.429	.341	.200	.977	.855	- .350	.445	.320	.328	.490
9	.406	.400	.145	1.321	1.086	- .610	.425	.370	.294	.610
10	.243	.957	.265	.668	.235	1.053	.241	.983	.258	.753
11	-	-	-	-	-	-	.052	2.660	.247	.800
12	.077	2.212	.922	- .685	.012	4.278	.066	2.388	.234	.858
13	.292	.758	.107	1.651	.753	- .212	.305	.728	.211	.968
14	.058	2.513	.651	- .308	.015	4.020	.049	2.720	.229	.880
15	.090	2.033	.339	.402	.039	2.996	.083	2.146	.179	1.146
16	.189	1.233	.180	1.090	.185	1.313	.190	1.243	.178	1.153
17	.173	1.329	.135	1.398	.225	1.098	.174	1.338	.163	1.248
18	.224	1.047	.078	1.998	.617	.005	.234	1.015	.161	1.265
19	.356	.545	.124	1.493	.938	- .450	.373	.510	.249	.790
20	.185	1.255	.110	1.622	.278	.871	.190	1.241	.148	1.351
21	.176	1.308	.067	2.166	.445	.360	.184	1.280	.129	1.500
22	.134	1.607	.116	1.568	.139	1.620	.136	1.610	.120	1.580
23	.157	1.434	.061	2.268	.388	.507	.163	1.407	.116	1.617
24	.156	1.443	.061	2.267	.375	.545	.162	1.415	.114	1.635
25	.142	1.538	.077	2.009	.239	1.032	.147	1.522	.113	1.652
26	.034	3.095	.411	.192	.006	5.040	.029	3.280	.112	1.660
27	.125	1.678	.106	1.664	.130	1.698	.127	1.678	.110	1.678
28	.142	1.538	.052	2.436	.400	.474	.148	1.514	.108	1.694
29	.133	1.611	.072	2.083	.218	1.133	.138	1.593	.103	1.743
30	.139	1.566	.049	2.510	.398	.479	.145	1.539	.103	1.749
31	.116	1.763	.095	1.781	.120	1.780	.118	1.760	.099	1.790
32	.047	2.733	.193	1.012	.020	3.743	.043	2.853	.099	1.793
33	.075	2.229	.127	1.465	.053	2.663	.073	2.283	.098	1.803
34	.136	1.588	.049	2.509	.346	.633	.143	1.553	.095	1.833
35	.110	1.818	.085	1.907	.128	1.715	.112	1.815	.095	1.835
36	.063	2.433	.136	1.394	.039	2.998	.059	2.508	.095	1.838
37	.076	2.216	.103	1.693	.067	2.410	.074	2.260	.093	1.860
38	.036	3.045	.125	1.484	.026	3.460	.032	3.190	.091	1.880
39	.121	1.714	.055	2.377	.244	1.010	.126	1.690	.091	1.880
40	.100	1.925	.104	1.683	.079	2.240	.101	1.930	.090	1.909
41	.118	1.745	.052	2.446	.247	1.000	.122	1.720	.088	1.920
42	.099	1.930	.085	1.909	.102	1.960	.101	1.930	.087	1.930
43	.030	3.229	.266	.664	.007	4.905	.026	3.395	.087	1.935
44	.115	1.770	.041	2.698	.310	.750	.120	1.740	.083	1.980
45	.029	3.256	.292	.563	.005	5.151	.026	3.421	.083	1.981
46	.036	3.028	.186	1.056	.012	4.279	.033	3.159	.081	2.009