# Minimum Spanning Trees

Birgit Vogtenhuber



## Outline

- Introduction and Definitions
- A general idea for algorithms
- A characterization of "good" edges
- Prim's algorithm
- Kruskal's algorithm

# Trees in (un)weighted Graphs

- Given an unweighted connected graph G=(V,E), we can compute a tree T with all shortest paths from a root s to the other vertices using breadth first search.
  - $\Rightarrow$  This does not work if G is a weighted graph.
- Given an unweighted connected graph G=(V,E) with n vertices, every subtree with n vertices has the **same** total edge length n-1.
  - $\Rightarrow$  This is not true if G is a weighted graph.

This topic: Trees in weighted graphs with minimum total edge length (edge weight / edge cost).

#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A Euclidean minimum spanning tree of a set S of points is a tree that connects all points and minimizes the total edge length among all trees on S.

### **Example:**



#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A Euclidean minimum spanning tree of a set S of points is a tree that connects all points and minimizes the total edge length among all trees on S.

### **Example:**

spanning tree



#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A Euclidean minimum spanning tree of a set S of points is a tree that connects all points and minimizes the total edge length among all trees on S.

### **Example:**

minimum spanning tree

#### **Observation:**

every Euclidean minimum spanning tree is crossing-free



#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A Euclidean minimum spanning tree of a set S of points is a tree that connects all points and minimizes the total edge length among all trees on S.

### **Example applications:**

bicycle path network, electrical circuits, telephone network.

### Possible problem:

Direct connection from A to B not always possible or not proportional to the distance (example: mountain road).

⇒ Consider weighted graphs instead.

#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A minimum spanning tree of a weighted graph G = (V, E, w) is a tree T = (V, E') with  $E' \subseteq E$  and with minimal total edge length among all spanning trees in G:

$$w(T) = \sum_{e \in E'} w(e)$$

is minimized over all trees in G with vertex set V.

#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A minimum spanning tree of a weighted graph G = (V, E, w) is a tree T = (V, E') with  $E' \subseteq E$  and with minimal total edge length among all spanning trees in G:

### **Example:**

weighted graph G



#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A minimum spanning tree of a weighted graph G = (V, E, w) is a tree T = (V, E') with  $E' \subseteq E$  and with minimal total edge length among all spanning trees in G:

### **Example:**

 $\begin{array}{c} \text{minimum} \\ \text{spanning tree of } G \end{array}$ 



#### Basic task:

Create connections between n locations with minimal cost.

#### **Definition:**

A minimum spanning tree of a weighted graph G = (V, E, w) is a tree T = (V, E') with  $E' \subseteq E$  and with minimal total edge length among all spanning trees in G:

$$w(T) = \sum_{e \in E'} w(e)$$

is minimized over all trees in G with vertex set V.

#### Connections between n locations with minimal total cost:

Consider the complete weighted graph whose vertices are the locations.

# How Many Different Trees?

### **Questions:**

- How many different spanning trees for a graph G?
- How many different plane spanning trees for n points?

#### **Answers:**

- Complete graph  $K_n$ :  $n^{n-2}$  different spanning trees (!!)
- Plane graphs on n vertices:  $O(5.2852^n)$  spanning trees
- Number of different plane spanning trees on n points: depends on point set; bounds:  $\Omega(6.75^n)$ ,  $O(229.33^n)$
- Point sets known with  $\Omega(12.52^n)$  plane spanning trees
- → Trying them all is infeasible.

# Iterative Algorithm Idea

#### Idea:

Build a minimum spanning tree (MST) for a graph G = (V, E, w) by iteratively inserting edges:

```
\begin{array}{l} E'=0\\ \underline{\text{while}}\;|E'|< n-1\;\underline{\text{do}}\\ \text{select an edge}\;e\in E\setminus E'\;\text{which is 'good'}\;\text{for}\;E'\\ E'=E'\cup e\\ \underline{\text{od}}\\ \text{write}\;E' \end{array}
```

Edge  $e \in E \setminus E'$  is **'good'** for E' if  $E' \cup e$  is a subset of an MST of G (there can be more than one MST of G).

## Cuts in Graphs

A **cut** of a graph G = (V, E) is a partition of V into  $V_1, V_2$ .



An edge e is called **external** for the cut  $(V_1, V_2)$  if it has one endpoint in  $V_1$  and one in  $V_2$ ; otherwise e is called **internal**.

# Characterization of Good Edges

**Theorem:** Let E' be a subset of edges of an MST of G = (V, E, w). Let  $(V_1, V_2)$  be a cut of G for which all edges of E' are internal. Then the external edge of the cut with **minimum weight** is a good edge for E'.



### **Example:**

w = Eucl. distance

set E': green

external edges: black

good edge for E': e

# Characterization of Good Edges

#### **Proof:**

Assume there is an MST T with E' and without e.

 $\Rightarrow e$  closes a cycle C in T.

The cycle C contains at least one edge f of the tree T that

is external for the cut.



By definition of e, the weight  $w(f) \ge w(e)$ .

 $\Rightarrow T \setminus \{f\} \cup \{e\}$  is an MST of G.

If w(f) > w(e) then T is not an MST of G.

# Characterization of Good Edges

**Theorem:** Let E' be a subset of edges of an MST of G = (V, E, w). Let  $(V_1, V_2)$  be a cut of G for which all edges of E' are internal. Then the external edge of the cut with **minimum weight** is a good edge for E'.



#### **Next:**

Two different greedy algorithms that use this theorem to efficiently compute an MST

Difference:

Choice of the cuts

- Start with an arbitrary vertex s of G and iteratively 'grow' an MST T from s.
- Iterative step:
  - Choose the 'cheapest' edge with exactly one node in T.
- Cut:  $V_1 =$  vertices of T,  $V_2 =$  vertices not yet in T.
- For each vertex  $v \notin T$  we maintain:
  - Priority p(v): weight of the shortest edge from v to a vertex in T (initially:  $\infty$ ).
  - Nearest n(v): vertex in T realizing p(v): w(v, n(v)) is min. among neighbors of v in T (initially no vertex).
- A queue Q contains all vertices not yet in T, organized by priorities (e.g., in a min-heap; initially all vertices).

```
PRIM-MST (G,s)
for all v \in V do p(v) = \infty od
p(s) = 0, \ n(s) = \text{nil}
Q = V // build up Q
while Q \neq 0 do
  u = MIN(Q)
                                                   u
  remove u from Q // reorganize Q
                                                              MST is
  write u, n(u)
                                                              finished
  for all v \in A(u) do // A: adj. list of G
                                                              here
    if v \in Q and p(v) > w(u, v) then
      p(v) = w(u, v) // reorganize Q
      n(v) = u
```

### Run-time-analysis:

```
n ... number of vertices of G m ... number of edges of G d(v) ... Degree of vertex v in G
```

- Initialization, construction of the heap  $Q: \Theta(n)$
- n times removing the minimum from Q:  $O(n \log n)$
- report MST edges:  $\Theta(n)$
- Update priorities for all neighbors of v:  $O(d(v) \cdot \log n)$
- ⇒ Alltogether:

$$O(n + n \log n + \sum_{v \in V} d(v) \log n) = O(m \log n)$$

Memory requirements:  $\Theta(m+n) = \Theta(m)$ 

Graph + queue + priorities + nearests + constant additional

#### **Remarks:**

- MST always begins at the start vertex s and grows from there as a connected tree.
- Shrinking p(v) causes v to move up in the heap.  $\Rightarrow O(\log n)$  time.
- Test for  $v \in Q$  in O(1) time when bit vector is used to store which vertices are already in T.
- Runtime can be changed to  $O(n^2)$ . This is useful for dense graphs (see notes on Dijkstra's algorithm in the next chapter).

- Start with empty edge set E'.
- Sort edge set E of G = (V, E, w) in increasing order of their weights (edges will be considered in this order):  $e_1, e_2, ... e_m$  with  $w(e_1) < w(e_2) < ... < w(e_m)$ .

### • Iterative step:

- E' forms a forest F (= set of disjoint subtrees, acyclic) in G and in the MST to be constructed.
- Edge e that is added to E' is the shortest edge in  $E \setminus E'$  that does not form a cycle with edges from E'.

Use a **UNION-FIND** data structure on V for the components (subtrees)  $M_1, M_2, ...M_t$  of F:

- Label the vertex set of G as  $v_1, v_2, ... v_n$  (arbitrary)
- Initially there are n disjoint sets  $M_1, M_2, ... M_n$  (each with one vertex)
- FIND(v): returns index i if vertex v is in  $M_i$
- UNION(i,j): join sets  $M_i$  and  $M_j$ :  $M_i = M_i \cup M_j$  (index of resulting set: minimum of i and j)
- End of the algorithm: one component  $M_1$  with all vertices of G.

There are many different **UNION-FIND** data structures, with different runtime- and memory requirements.

Here we use one with the following properties:

- Creating a 1-element set needs  $\Theta(1)$  time.
- f FIND and u UNION operations need  $O(f + u \log u)$  time in total.
- The total memory requirement of the data structure is linear in the number of initial 1-element sets.

```
KRUSKAL-MST(G)
sort edges by weight: \{e_1, e_2, \dots e_m\}
for i=1 to n do M_i=\{v_i\} od
for k=1 to m do
  (u,v)=e_k
  i = \mathsf{FIND}(u)
  j = \mathsf{FIND}(v)
  if i \neq j then
     write e_k
     \mathsf{UNION}(i,j)
od
```

### **Runtime analysis:**

- Sorting of the edges:  $O(m \log m)$
- Initialize UNION-FIND data structure for vertices:  $\Theta(n)$
- In total 2m FIND operations and n-1 UNION operations:  $O(m+n\log n)$
- Extract edges + write MST edges:  $\Theta(m)$
- $\Rightarrow$  Altogether  $O(m \log m)$  time.
- $\Rightarrow$  Sorting of the edges dominates the runtime.

### Memory requirements:

$$\Theta(n+m) = \Theta(m)$$
 in total.

# Concluding Remarks

- Both algorithms also work if edge weights can be negative.
- If the calculation of the MST for a point set in a plane with Euclidean distance function is to be carried out (geometric version), this is possible in  $O(n \log n)$  time. The main observation is that the MST is a subgraph of the Delaunay triangulation of the point set, which can be computed in  $O(n \log n)$  time.
- For both algorithms, animated versions are available (see course webpage).

## Thank you for your attention.