Dernière mise à jour	Duć cicio u doc ovatè usoc o comuis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Schéma bloc du système

Question 1: Construire le schéma bloc fonctionnel de cet asservissement.

Remarque : j'ai intégré l'intégrateur au moteur !

Etude du moteur

Question 2: Identifier la réponse en justifiant le modèle retenu et la/les technique(s) utilisée(s) pour déterminer les paramètres que vous expliciterez.

Méthode : utiliser à minima la valeur finale pour K, la tangente à l'origine, la valeur à 63% et à 95% puis moyenne des 3 valeurs pour T

Tangente à l'origine non nulle et absence de dépassement. Je propose un modèle du premier ordre :

$$H(p) = \frac{K}{1 + \tau p}$$

$$KU = 250 \to K = \frac{250}{U} = \frac{250}{5} = 50 \text{ rd. s}^{-1}.V^{-1}$$

Tangente à l'origine : $\tau = 0.009$

95% de la valeur finale : $0.95 * 250 = 237.5 \rightarrow 3\tau = 0.03s \rightarrow \tau = 0.01s$

63% de la valeur finale : $0.63 * 250 = 157.5 \rightarrow \tau = 0.01s$

On réalise alors la moyenne...

$$H(p) = \frac{50}{1 + 0.01p}$$

Conseil: dans un sujet, on vous donne souvent un document réponse sans forcément préciser de faire des tracés dessus. Je vous recommande vivement de mettre tous vos traits de mesure. Par ailleurs, sachez utiliser une règle et faire des traits parallèles aux axes des abscisses et ordonnées (Niveau brevet il me semble)

Dernière mise à jour	Précision des systèmes assentis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Question 3: Préciser les 3 choses absentes dans ces équations par rapport au MCC complet vu dans un TD précédent

Il manque:

- Les frottements fluides avec *f*
- Le couple résistant C_r
- L'inductance L

On s'attend à avoir un modèle du 1° ordre.

Question 4: Compléter le schéma bloc proposé

On commence à connaître le MCC. On remarque qu'il n'y a ni L, ni f , ni \mathcal{C}_r

Question 5: Déterminer la fonction de transfert $M(p)=\frac{\theta_m(p)}{U(p)}$ du moteur électrique sous la forme $\frac{k_m}{p(1+\tau_m p)}$

Conseil : Même si mettre les équations dans Laplace puis les manipuler pour obtenir le résultat, ce qui est attendu de vous, c'est schéma bloc + formule re Black!

$$\frac{\Omega_{m}(p)}{U(p)} = \frac{\frac{k_{a}}{RJ_{e}p}}{1 + \frac{k_{a}k_{e}}{RJ_{e}p}} = \frac{k_{a}}{RJ_{e}p + k_{a}k_{e}} = \frac{\frac{1}{k_{e}}}{1 + \frac{RJ_{e}}{k_{a}k_{e}}p}$$

$$\Omega_{m}(p) = p\theta_{m}(p)$$

$$M(p) = \frac{\theta_{m}(p)}{U(p)} = \frac{1}{p} \frac{\frac{1}{k_{e}}}{1 + \frac{RJ_{e}}{k_{-}k_{-}}p} = \frac{k_{m}}{p(1 + \tau_{m}p)}$$

Question 6: Donner les expressions littérales de k_m et au_m

$$k_m = \frac{1}{k_e}$$
 ; $\tau_m = \frac{RJ_e}{k_a k_e}$

Dernière mise à jour	Prácicion dos systèmos asservis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Question 7: Application numérique : calculer k_m et au_m en précisant les unités

$$k_m = \frac{1}{k_e} = \frac{1}{0.02} = 50 \, rad. \, s^{-1}. \, V^{-1}$$
$$[M(p)] = \frac{[k_m]}{[p]} \Rightarrow [k_m] = [p][M(p)] = s^{-1} \frac{rd}{V} = rd. \, s^{-1}. \, V^{-1}$$

 $extit{Remarque}$: vous auriez probablement oublié l'unité de p et donné des $rac{rd}{
u}$

$$\begin{split} \tau_m &= \frac{RJ_e}{k_a k_e} = \frac{1*4.10^{-6}}{0.02*0.02} = 0.01 \, s \\ &[1 + \tau_m p] = 1 \quad ; \quad [\tau_m p] = 1 \quad ; \quad [\tau_m] = [p^{-1}] = s \\ &\frac{\Omega radkgAm^2}{VsNm} = \frac{\Omega rads^2 kgAm^2}{Vskgm^2} = s \quad ; \quad A \, ne \, pas \, faire \, comme \, \varsigma a \, ! \end{split}$$

Dernière mise à jour	Précision des systèmes assentis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Fonction de transfert du système

Question 8: Compléter le schéma bloc suivant afin qu'il soit équivalent à l'asservissement étudié et vérifier que votre solution est correcte

Système modifié :

Les fonctions de transfert sont bien identiques.

Astuce : Si vous oubliez comment réaliser la transformation, mettez des lettres, A avant comparateur et B dans la chaine directe, déterminer la FTBF et trouver A et B afin que les BF soient identiques

Dernière mise à jour	Présision des sustèmes assentis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Question 9: Déterminer la fonction de transfert en boucle ouverte $T(p)=\frac{\theta_m(p)}{\varepsilon_2(p)}$, la mettre sous la forme $T(p)=\frac{K_{BO}}{p(1+\tau_m p)}$ et en déduire l'expression du gain de boucle K_{BO} et préciser son unité.

Appelons θ_c l'angle de consigne entrant dans le comparateur.

$$T(p) = \frac{\theta_m(p)}{\varepsilon_2(p)} = K_1 K_2 R_2 M(p) = \frac{K_1 K_2 R_2 k_m}{p(1 + \tau_m p)} = \frac{K_{BO}}{p(1 + \tau_m p)}$$

$$K_{BO} = K_1 K_2 R_2 k_m$$

$$\frac{[K_{BO}]}{[p]} = \frac{[\theta_m(p)]}{[\varepsilon_2(p)]} = 1 \Rightarrow [K_{BO}] = s^{-1}$$

Sinon: $[K_{BO}] = [K_1][K_2][R_2][K_m] = 1 * V.rd^{-1} * 1 * rd.s^{-1}.V^{-1} = s^{-1}.$

A savoir : l'unité d'une BO est toujours de 1 puisqu'elle part et revient au comparateur...

Question 10: Déterminer la fonction de transfert $F(p)=rac{ heta_{P1}(p)}{U_e(p)}$. Montrer qu'elle peut se mettre sous la forme d'un système du second ordre. On notera K_{BF} le gain statique, z le coefficient d'amortissement et ω_0 la pulsation propre.

$$\begin{split} F(p) &= \frac{\theta_{P1}(p)}{U_e(p)} = R_1 \frac{\theta_m(p)}{U_e(p)} = \frac{R_1}{K_2 R_2} \frac{\theta_m(p)}{\theta_c(p)} = \frac{R_1}{K_2 R_2} \frac{T(p)}{1 + T(p)} = \frac{R_1}{K_2 R_2} \frac{K_1 K_2 R_2 M(p)}{1 + K_1 K_2 R_2 M(p)} \\ F(p) &= \frac{R_1 K_1 M(p)}{1 + K_1 K_2 R_2 M(p)} = \frac{R_1 K_1 \frac{k_m}{p(1 + \tau_m p)}}{1 + K_1 K_2 R_2 \frac{k_m}{p(1 + \tau_m p)}} \\ F(p) &= \frac{R_1 K_1 k_m}{K_1 K_2 R_2 k_m + p + \tau_m p^2} = \frac{\frac{R_1}{K_2 R_2}}{1 + \frac{p}{K_{BO}} + \frac{\tau_m}{K_{BO}} p^2} = \frac{K_{BF}}{1 + \frac{2z}{\omega_0} p + \frac{1}{\omega_0^2} p^2} \end{split}$$

Question 11: Donner l'expression littérale de K_{BF} en fonction de R_1 , R_2 et K_2 , de z et ω_0 en fonction de K_{BO} et τ_m .

$$K_{BF} = \frac{R_1}{K_2 R_2}$$
; $\omega_0 = \sqrt{\frac{K_{BO}}{\tau_m}}$
 $z = \frac{1}{2}\omega_0 \frac{1}{K_{BO}} = \frac{1}{2\sqrt{K_{BO}\tau_m}}$

Attention: même si ce n'est pas précisé, dès lors que des notations sont proposées, par exemple pour T(p) avec K_{BO} et τ_m , utilisez les pour toute la suite. Le correcteur aura ces notations, et même plus, si vous avez une erreur sur ces coefficients, en utilisant K_{BO} et τ_m , tout le reste est juste!

Dernière mise à jour	Précision des systèmes assentis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Détermination des différents gains du système

Question 12: Déterminer le nombre de tours N_{v} maximal que peut faire la vis

$$N_v = \frac{l}{p_v} = \frac{0.6}{0.01} = 60 \ tours$$

Question 13: Déterminer le nombre de tours N_{P2} que va faire l'arbre d'entrée du train épicycloïdal 52.

$$\frac{\theta_{P2}}{\theta_{P2}} = \frac{1}{5}$$
 ; $\frac{N_{P2}}{N_{P2}} = \frac{1}{5}$; $N_{P2} = \frac{60}{5} = 12 \ tours$

Question 14: L'asservissement ayant pour but d'annuler l'écart entre $|\theta_{P2}|$ et $|\theta_{P1}|$, en déduire le nombre de tour N_{P1} que doit pouvoir faire le second arbre d'entrée du train épicycloïdal 52

$$N_{P1} = N_{P2} = 12 tours$$

Question 15: En déduire le nombre de tours N_m que va faire l'arbre du moteur.

$$R_1 = \frac{N_{P1}}{N_m} = \frac{1}{150}$$

$$N_m = 150 N_{P1} = 150 * 12 = 1800 tours$$

Question 16: En supposant que l'on utilise le capteur sur toute sa plage (10 tours), déterminer le rapport de réduction R_2 du réducteur reliant la sortie du moteur à l'entrée du potentiomètre.

Il faut faire correspondre 1800 tours à 10 tours.

$$R_2 = \frac{10}{1800} = \frac{1}{180}$$

Question 17: Déterminer le gain K_2 du capteur potentiométrique.

A 10 tours il associe 24 V. Le gain vaut :

$$K_2 = \frac{24}{10} = 2.4 \text{ V. } tour^{-1} = \frac{2.4}{2\pi} = 0.382 \text{ V. } rad^{-1}$$

Attention : vous oubliez régulièrement de mettre la bonne unité

Ī	Dernière mise à jour	Drácicion dos sustàmos accomis	Denis DEFAUCHY
	06/10/2021	Précision des systèmes asservis	TD2 - Correction

Performance de rapidité

Question 18: Déterminer la valeur du gain de boucle K_{B0} de telle sorte que la réponse θ_{P1} à une entrée en tension u_e de type échelon soit la plus rapide possible sans toutefois produire de dépassement.

II faut : z=1 $\frac{1}{2\sqrt{K_{BO}\tau_m}}=1 \Leftrightarrow 4K_{BO}\tau_m=1 \Leftrightarrow K_{BO}=\frac{1}{4\tau_m}=\frac{1}{4*0.01}=25~s^{-1}$

Question 19: En déduire l'expression littérale et la valeur numérique du gain K_1 du régulateur permettant de satisfaire l'exigence de rapidité

$$K_{1} = \frac{K_{BO}}{K_{2}R_{2}k_{m}} = \frac{25}{\frac{2.4}{2\pi} \frac{1}{180} 50} = \frac{180}{0.764} = 235.6 \text{ (sans unité)}$$

Question 20: Déterminer le temps de réponse à 5% du système et conclure vis-à-vis du cahier des charges.

$$z = 1 \quad ; \quad t_{r_{5\%}} \omega_0 = 5 \Leftrightarrow \omega_0 = \sqrt{\frac{K_{BO}}{\tau_m}} = \sqrt{\frac{25}{0,01}} = 5 * 10 = 50$$
$$t_{r_{5\%}} = \frac{5}{\omega_0} = \frac{5}{50} = 0,1 \, s < 0,2 \, s$$

Le cahier des charges est respecté.

Remarque : parfois, certains lisent mal d'échelle logarithmique, ou ne font pas attention au fait qu'en ordonnées, c'est le temps adimensionné, c'est-à-dire le produit $t_{r_{5\%}}\omega_0$

Dernière mise à jour	Précision des systèmes assentis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Performance de précision

Question 21: Donner l'expression de A

$$\theta_m^c - \theta_m = 0$$

$$\theta_{P1} - \theta_{P1}^c = 0$$

$$\theta_m^c - \theta_m = 0$$

$$\Leftrightarrow \frac{A}{K_2 R_2} \theta_{P1}^c - \frac{1}{R_1} \theta_{P1}^c = 0$$

$$\theta_{P1} - \theta_{P1}^c = 0 \Rightarrow \frac{A}{K_2 R_2} - \frac{1}{R_1} = 0$$

$$A = \frac{K_2 R_2}{R_1}$$

Question 22: Compléter ce schéma bloc

Le produit des blocs extérieurs vaut 1 (c'était attendu, évidemment) :

Question 23: Déterminer l'erreur statique en suivi de consigne et conclure vis-à-vis du cahier des charges

$$FTBO = T(p) = \frac{K_{BO}}{p(1 + \tau_m p)}$$

La FTBO possède un intégrateur (classe 1), l'écart statique est donc nul.

Le système est précis et répond aux exigences du cahier des charges qui impose un écart statique nul.

Dernière mise à jour	Présision des sustèmes assentis	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Question 24: Déterminer l'erreur de traınage et conclure vis-à-vis du cahier des charges.

$$T(p) = \frac{K_{BO}}{p(1 + \tau_m p)}$$

La classe de la FTBO vaut 1, on a donc à l'aide du tableau sur la précision :

$$\varepsilon_v = \frac{a}{K_{BO}} = \frac{a}{25} = 0.04a$$

On ne respecte donc pas le cahier des charges en termes d'écart de traînage, il devrait être nul.

Dernière mise à jour		Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Prise en compte d'un couple résistant

Question 25: Compléter le schéma proposé

Question 26: Compléter ce nouveau schéma bloc

Ī	Dernière mise à jour	Drácicion dos sustàmos accomis	Denis DEFAUCHY
	06/10/2021	Précision des systèmes asservis	TD2 - Correction

Question 27: Déterminer les fonctions H_1 et H_2 en fonction de k_m , au_m , R et k_a

On applique le théorème de superposition sur le schéma suivant :

On rappelle que:

$$k_m = \frac{1}{k_e}$$
$$\tau_m = \frac{RJ_e}{k_a k_e}$$

On peut remarquer que $H_1(p)$ est la fonction du moteur sans l'intégrateur :

$$H_1(p) = p * M(p) = \frac{k_m}{1 + \tau_m p}$$

$$H_{1}(p) = \frac{\frac{k_{e}}{RJ_{e}p}}{1 + \frac{k_{a}k_{e}}{RJ_{e}p}}$$

$$= \frac{K_{c}}{RJ_{e}p + k_{a}k_{e}}$$

$$= \frac{\frac{1}{k_{e}}}{1 + \frac{RJ_{e}}{k_{a}k_{e}}p}$$

$$= \frac{1}{1 + \frac{RJ_{e}}{k_{a}k_{e}}p}$$

$$H_{1}(p) = \frac{k_{m}}{1 + \tau_{m}p}$$

$$H_{2}(p) = \frac{\frac{1}{J_{e}p}}{1 + \frac{k_{a}k_{e}}{RJ_{e}p}}$$

$$= \frac{R}{RJ_{e}p + k_{a}k_{e}}$$

$$= \frac{R}{k_{a}k_{e}} \frac{1}{1 + \frac{RJ_{e}}{k_{a}k_{a}}p}$$

$$= \frac{Rk_{m}}{k_{a}}$$

$$H_{2}(p) = \frac{Rk_{m}}{1 + \tau_{m}p}$$

Question 28: Préciser si la perturbation a une influence sur l'écart statique

Il n'y a pas d'intégration avant la perturbation en échelon, on sait donc qu'il va y avoir une influence. S'il y avait une intégration, on saurait que l'écart statique serait inchangé.

Question 29: La présence de H_2 après l'échelon de perturbation change-t-elle votre réponse à la question précédente ?

 $H_2(p)$ étant de classe 0, et comme on s'intéresse à un temps infini, si un échelon entre dans $H_2(p)$, on finira bien par avoir une valeur constante en sortie de $H_2(p)$ après le régime transitoire, soit une perturbation en échelon quand on a attendu assez longtemps \odot

Si la classe de \mathcal{H}_2 était de 1, on aurait une rampe en sortie de \mathcal{H}_2 après un régime transitoire.

Dernière mise à jour	Duácisio a dos quetà acos acos acid	Denis DEFAUCHY
06/10/2021	Précision des systèmes asservis	TD2 - Correction

Question 30: Déterminer l'écart généré par le couple résistant sur la position de sortie en degrés $C_{\infty}(n)$

Rappelons que la formule de l'écart au premier comparateur ne fonctionne que pour une entrée à ce comparateur.

Quoi qu'il arrive, il va nous falloir calculer la fonction H_3 telle que :

$$H_{3}(p) = \frac{\theta_{P1}(p)}{C_{r}(p)} = H_{2}(p) * \frac{\frac{1}{p}}{1 + \frac{K_{1}K_{2}R_{2}H_{1}(p)}{p}} * R_{1} = H_{1}(p) * \frac{1}{p + K_{1}K_{2}R_{2}H_{1}(p)} * R_{1}$$

$$\frac{Rk_{m}}{l}$$

$$PP. k$$
1

$$H_3(p) = \frac{\frac{Rk_m}{k_a}}{1 + \tau_m p} * \frac{1}{p + K_1 K_2 R_2 \frac{k_m}{1 + \tau_m p}} * R_1 = \frac{RR_1 k_m}{k_a} * \frac{1}{p(1 + \tau_m p) + K_1 K_2 R_2 k_m}$$

$$H_3(p) = \frac{RR_1k_m}{k_aK_1K_2R_2k_m} * \frac{1}{1+p+\tau_mp^2} = \frac{RR_1}{k_aK_1K_2R_2} * \frac{1}{1+p+\tau_mp^2} = \frac{K_3}{1+p+\tau_mp^2}$$

$$K_3 = \frac{RR_1}{k_a K_1 K_2 R_2} = \frac{1 * \frac{1}{150}}{0.02 * 235.6 * 0.382 * \frac{1}{180}} \approx 0.66$$

Méthode 1 : Application de la formule du cours issue du TVF, qui donne l'écart « entrée – sortie » :

$$\varepsilon_2 = \lim_{p \to 0} \left(-pS(p) \right) \bigg|_{E_2 = 0} = -\lim_{p \to 0} \left(pH_3(p)C_r(p) \right) = -\lim_{p \to 0} \left(p\frac{K_3}{1 + p + \tau_m p^2} \frac{C_{r_0}}{p} \right) = -K_3C_{r_0}$$

On sait alors que c'est l'opposé de l'effet de la perturbation sur la position de sortie.

$$\Delta\theta_{p1}^{cr} = -\varepsilon_2 = K_3 C_{r_0} \approx -0.66 * 0.1 \approx -0.066 \, rd \approx -3.8^{\circ}$$

Méthode 2 : comme c'est un échelon, on peut estimer son impact directement avec le gain statique

$$\Delta\theta_{p1}^{cr} = {+}K_3C_{r_0}$$

