Nome: Luan Ícaro Pinto Arcanjo N°USP: 10799230

Relatório Trabalho 1 SME0250 - Métodos Numéricos para Geração de Malhas

1. Corner Table

O script para gerar a corner table de um shared vertex é o arquivo *corner_table.m*, nele esta implementado uma função para poder gerar os exemplos mais facilmente.

Exemplo Quadrado

Neste exemplo eu criei um quadrado como junção de 2 triangulos como a imagem a seguir:

E a corner table criada foi:

⊞ 6	6x5 double							
	1	2	3	4	5	6		
1	1	1	2	3	4			
2	2	1	3	1	0			
3	3	1	1	2	0			
4	4	2	5	6	1			
5	3	2	6	4	0			
6	2	2	4	5	0			
7								

Onde a primeira coluna é o vértice do corner, a segunda é a fase, a terceira é o próximo corner, a quarta é o corner anterior, e a quinta coluna é o corner oposto, note que só os corners 1 e 4 tem corner oposto (0 na quinta coluna significa não ter corner oposto.).

Eu usei as informações da corner table para fazer os exercícios 2 e 3, então se houve algum erro não era pra funcionar esses exercícios.

2. Marching Tetrahedra com suavização de vértices

O script com a implementação do marching tetrahedra é o arquivo *marching_tetrahedra.m*, e o script com a implementação da suavização de vértices é o arquivo suavização vertices.m.

Exemplo 1. Coração

Arquivo coracao_march.m, o gráfico de barras foi feito com a variável Rs, o que gera automaticamente é o próprio coração.

Este gráfico representa a média da razão de aspecto dos triângulos da nossa superfície, onde o eixo x é o (x-1) vezes que houve o algoritmo da suavização de vértices. usei como constante alfa = 0.01 na suavização.

Exemplo 2. Elipse

Arquivo elipse_march.m, o gráfico de barras foi feito com a variável Rs, o que gera automaticamente é o próprio coração.

Equação da elipse => $10x^2 + 10y^2 + z^2 = 3$

Este gráfico representa a média da razão de aspecto dos triângulos da nossa superfície, onde o eixo x é o (x-1) vezes que houve o algoritmo da suavização de

vértices. usei como constante alfa = 0.01 na suavização, nota-se que na elipse teve menos acrescimo na razão comparado ao coração.

3. Normais de Vértices

O script calculando as normais de vértice é o script *normal_vertices.m*, e para se conseguir as normais de fase e as normais de vertice usa-se o script *normal_fases_vertices.m*.

Exemplo 1. Bunny

Script para o exemplo em bunny_normais.m, vai sair só as normais por vértice, para sair as de face tem que trocar os comentários nos quiver3's.

Normais de Face do Bunny:

Normais de Vértices do bunny:

O bunny tem bem menos normais de vértices do que de faces, pois o bunny tem 2502 vértices enquanto tem 5000 faces.

Exemplo 2. Vaca

Script para o exemplo em cow_normais.m, vai sair só as normais por vértice, para sair as de face tem que trocar os comentários nos quiver3's.

Normais de vértices:

Normais de vértice:

Normal de fase:

Normal de vértice de outro ângulo:

