Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)»

НАПРАВЛЕНИЕ «МАТЕМАТИКА И ИНФОРМАТИКА»

Курсовая работа по информатике

На тему: «Процедуры и функции в качестве параметров»

Работу выполнил

студент І курса

очного отделения

группы 80-104Б

Железнов И.В.

Преподаватель:

Аспирант каф.806

Потенко М.А.

Содержание:

- 1. Введение
- 2. Основная часть
 - а. Метод половинного деления
 - b. Метод итераций
 - с. Приведение уравнений
 - d. Метод Ньютона
 - е. Таблица функций и переменных
 - f. Код программы
 - g. Тесты программы
- 3. Заключение
- 4. Список литературы

Введение

Цели КП: Изучение процедур и функций, способов их реализации на Си, а также изучение различных численных методов: метод дихотомии (метод половинного деления), метод итераций, метод Ньютона.

Задача КП: составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами. Применить каждый метод к решению двух уравнений, заданных таблицей. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию.

Уравнение	Вариант	Отрезок, содержащий корень	Приближенное значение корня
$\tan\left(\frac{x}{2}\right) - \cot\left(\frac{x}{2}\right) + x = 0$	14	[1;2]	1.0769
$0.4 + \arctan(\sqrt{x}) - x = 0$	15	[1;2]	1.2388

Основная часть

Прежде чем составлять программу на языке Си, необходимо подробно изучить каждый численный метод и проверить, возможно ли решить предложенное уравнение данным методам. Опишу каждый численный метод подробнее:

Метод половинного деления

Пусть корень уравнения f(x)=0 отделен на отрезке [a;b], то есть на этом отрезке имеется единственный корень, а функция на данном отрезке непрерывна.

Метод половинного деления позволяет получить последовательность вложенных друг в друга отрезков $[a_1;b_1], [a_2;b_2], ..., [a_3;b_3], ..., [a_n;b_n],$ таких что $f(a_i).f(b_i) < 0$, где i=1,2,...,n, а длина каждого последующего отрезка вдвое меньше длины предыдущего.

Последовательное сужение отрезка вокруг неизвестного значения корня обеспечивает выполнение на некотором шаге n неравенства $|b_n - a_n| < Eps$.

Вот так выглядит метод, если изобразить его графически:

Как видно b_n и a_n с каждой итерацией становятся все ближе и ближе к искомому значению.

Проверю значения данных уравнений на концах отрезках:

Вариант 14: f(1) = -0.2841; f(2) = 2.9153;

Вариант 15: f(1) = 0.1853; f(2) = -0.6446;

Как видно, метод применим, так как на концах отрезка значения функций принимают разные знаки.

Метод итераций

Данный метод называют также методом последовательных приближений, методом повторных подстановок, методом простых итераций и т.п.

Пусть дано f(x) = 0 (1)

Будем вместо уравнения (1) рассматривать равносильное ему уравнение x = F(x), (2)

где
$$F(x) = f(x) + x$$
.

 Π устьх $_0$ – произвольное число (начальное приближение искомого корня уравнения (1)). Рассмотрим последовательность

$$x_1 = F(x_0), x_2 = F(x_1), ..., x_n = F(x_{n-1}), ...$$

Если эта последовательность имеет предел, то он и есть решение (корень) уравнения (2), а значит, и уравнения (1).

Наглядно процесс показан на рисунке ниже.

Не при всех условиях итерационный процесс сходится к корню уравнения х. Для того чтобы итерационный процесс был сходящимся, необходимо в окрестности корня выполнение следующего неравенства:

Найдем подходящее уравнение F(x) для приведенных выше вариантов:

Приведение уравнений

Вариант 14:

$$\frac{\sin\left(\frac{x}{2}\right) - \cot\left(\frac{x}{2}\right) + x = 0;}{\frac{\sin\left(x\right)}{\cos\left(x\right)} - \frac{\cos\left(x\right)}{\sin\left(x\right)} + x = 0;}$$

$$\frac{\sin^{2}\left(\frac{x}{2}\right) - \cos^{2}\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} + x = 0;$$

$$\frac{\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{-2\operatorname{ctg}(x) + x = 0;}$$

$$x = \operatorname{arcctg}\left(\frac{x}{2}\right);$$

агссtg имеет область значений от 0 до π , этому интервалу принадлежит наш корень.

Посмотрим на график производной:

$$arcctg'(\frac{x}{2}) = \frac{-2}{x^2 + 4}$$

Как видно из графика (касный цвет), представленного ниже, производная удовлетворяет условию |F'(x)| < 1, значит мы можем воспользоваться данной функцией.

Вариант 15:

$$0.4 + \arctan(\sqrt{x}) - x = 0;$$

$$x = 0.4 + atan(\sqrt{x});$$

arcctg имеет область значений – $\pi/2$ от до $\pi/2$. Области значений F(x) принадлежит наш корень.

Посмотрим на график производной:

$$F'(x) = \frac{1}{(2(x+1)\sqrt{x})}$$

Как видно из графика (красный цвет), представленного ниже, производная удовлетворяет условию |F'(x)| < 1, значит мы можем воспользоваться данной функцией.

Метод Ньютона

Суть метода можно сформулировать так.

Берется какое-либо число a_1 как можно ближе к искомому корню x_0 и принимается за первое приближение корня (см. рис.). Затем через точку A_1 с координатами $(a_1; f(a_1))$ проводится касательная к графику функции y = f(x) до пересечения с осью абсцисс в точке $(a_2; 0)$. Эта точка пересечения дает нам второе приближение корня x_0 . Повторяя этот процесс, получаем все более и более точные значения $a_0; a_1; a_2; \dots$ корня x_0 .

С помощью уравнения касательной можно вывести рекуррентную формулу, выражающую очередное, і-е приближение через предыдущее:

$$x_{k+1} = x_k - \frac{f_k(x)}{f_{k'}(x)}$$

Условие сходимости:

$$|f(x)f''(x)| < (f'(x))^2$$
 Ha [a,b];

Проверим, подходит ли метод Ньютона для решения представленных уравнений:

Вариант 14:

$$\frac{f(x)=tg(\frac{x}{2})-ctg(\frac{x}{2})+x;}{f'(x)=\frac{1}{2}\cos^{-2}(\frac{x}{2})+\frac{1}{2}\sin^{-2}(\frac{x}{2})+1;}$$
$$f''(x)=\frac{1}{2}(\cos^{-3}(\frac{x}{2})\sin(\frac{x}{2})-\sin^{-3}(\frac{x}{2})\cos(\frac{x}{2}));$$

Вариант 15:

$$\frac{f(x)=0.4+arctg(\sqrt{x})-x;}{f'(x)=\frac{1}{2(x+1)\sqrt{x}}-1;}$$
$$\frac{f''(x)=-\frac{3x+1}{4(x^3+2x^2+x)\sqrt{x}};}$$

Построим графики функций $\overline{g(x)} = |f(x)f''(x)|$ (синий цвет) и $\overline{q(x)} = (f'(x))^2$ (красный цвет).

Как видно из графиков функций, условие сходимости выполнено на данных отрезках [a;b], значит мы можем использовать данный метод для решения уравнений.

Зная, что каждый из методов мы можем применить для решения каждого уравнения, составим программу на Си, вычисляющую их корни.

Составим таблицу использованных функций и их переменных:

Функция	Переменные функции	Что делает
_	,	Хранит в себе значение машинного эпсилона

Double epsylone()	Double epsylone – значение эпсилон	Вычисляет значение машинного эпсилон
Double a(double x)	Double x	Нужна для вычисление правильного порядка машинного эпсилон
Double f1(double x)	Double x – значение точки, для которой нужно вычислить f1(x)	Вычисляет значение функции из варианта 14 в данной точке
Double f2(double x)	Double x (аналогично с функцией f1)	Аналогично с функцией f1, но для функции из варианта 15
Double F1(double x)	Double x – значение точки, для которой нужно вычислить F1(x)	Вычисляет значение дополнительной функции из варианта 14 в данной точке
Double F2(double x)	Double х (аналогично с функцией F1)	Аналогично с функцией F1, но для функции из варианта 15
Double derivative_f1(double x)	Double x – значение точки, для которой нужно вычислить derivative_fl(x)	Вычисляет значение производной функции из варианта 14 в данной точке
Double derivative_f2(double x)	Double x (аналогично c derivative_f1)	Аналогично с функцией derivative_f1, но для функции из варианта 15
double dichotomy_method(d ouble a, double b, double (*f) (double))	double a, b — значение правого и левого концов отрезка соответственно; double (*f) (double) — указатель на функцию, для которой вычисляется корень; int i — количество итераций; eps — значение эпсилон;	Вычисляет корень уравнения методом дихотомии
double iterative_meth ode(double x1, double x2, double (*F) (double))	double x1, double x1 — нужны для вычисления первого приближения, а затем последующих; double (*F) (double) — указатель на дополнительную функцию; int i — количество итераций; eps — значение эпсилон;	Вычисляет корень уравнения методом итераций
double Newton_method(doub le x1, double x2, double (*f) (double), double (*derivative_f)(double))	double x1, double x1 — нужны для вычисления первого приближения, а затем последующих; double (*f) (double) — указатель на функцию, для которой вычисляется корень; double (*derivative_f) (double)) — указатель на функцию, которая вычисляет производную; int i — количество итераций; ерѕ — значение эпсилон;	Вычисляет корень уравнения методом Ньютона
void print_table(double a, double b, double (*f) (double), double (*F) (double), (double), double (*erivative_f) (double) (*derivative_f) (double)) (double) (*double) (*double		Для конкретной функции печатает таблицу, которая состоит из корня функции на [a;b], метода, которым он вычислен, и количества итераций, ушедших на вычисление корня данным методом.

Int k –порядок эпсилон; double a, b – значение правого и левого концов отрезка соответственно; ерѕ – глобальная переменная, которой присваивается значение эпсилон

Int k –порядок эпсилон; доиble a, b – Вычисляет нужный порядок эпсилон, вызывает функцию ргint_table для уравнения 14 и 15.

```
Код программы
#include <stdio.h>
#include <math.h>
double eps; // Глобальная переменная
double get_machine_eps()
  double epsylone = 1.0;
  while((1.0 + epsylone / 2) > 1.0) {
    epsylone /= 2;
  }
  return epsylone;
}
double f1(double x)
return tan(x / 2) - (1 / tan(x / 2)) + x;
double F1(double x)
return M_PI / 2 - atan(x / 2);
}
double derivative_f1(double x)
return (1 / pow(cos(x / 2), 2) + 1 / pow(sin(x / 2), 2) + 2) / 2;
```

```
}
double f2(double x)
return 0.4 + atan(sqrt(x)) - x;
}
double F2(double x)
return 0.4 + atan(sqrt(x));
double derivative_f2(double x)
return (1 / (2 * (pow(x, 3 / 2) + pow(x, 1 / 2)))) - 1;
}
void dichotomy_method(double a, double b, double (*f) (double))
double c;
int i = 0;
while(fabs(a - b) >= eps)
{
c = (a + b) / 2;
if ((*f)(a) * (*f)(c) > 0) a = c;
else b = c;
i++;
printf("| Dichotomy method | %4d | %.16lf |\n", i, (a + b) / 2);
}
void iterative_method(double x1, double x2, double (*F) (double))
```

```
{
int i = 0;
x2 = (x1 + x2) / 2;
do {
x1 = x2;
x2 = (*F)(x1);
i++;
} while(fabs(x1 - x2) >= eps);
printf("| Iterative methode | % 4d | %.16lf |\n", i, x2);
void newton_method(double x1, double x2, double (*f) (double), double (*derivative_f) (double))
int i = 0;
x2 = (x1 + x2) / 2;
do {
x1 = x2;
x2 = x1 - (*f)(x1) / (*derivative_f)(x1);
i++;
} while(fabs(x1 - x2) >= eps);
printf("| Newton's method | \%4d | \%.16lf |\n", i, x2);
}
void print_table(double a, double b, double (*f) (double), double (*F) (double), double (*derivative_f)
(double))
printf(" _____
                                                                    \underline{\hspace{1cm}} \langle n'' \rangle;
printf("| Method name | iter |
                                                |n";
                                      root
printf("|---
         -|\n");
dichotomy_method(a, b, f);
```

```
printf("|-
         --|\n");
iterative_method(a, b, F);
printf("|--
         --|\n");
newton_method(a, b, f, derivative_f);
printf(" —
          ----\n");
void main()
double a = 1.0, b = 2.0;
int k;
scanf("%d", &k);
eps = get_machine_eps() * pow(10, k);
printf("epsylone = \%g\n\n", eps);
printf("
                Root for equation N_01\n");
print_table(a, b, f1, F1, derivative_f1);
printf("
                Root for equation N_2 \ln^n;
print_table(a, b, f2, F2, derivative_f2);
```

Тесты программы

<pre>keinpop@DESKTOP-T6SLHUS:/mnt/c/labs\$ gcc kp4.c -lm keinpop@DESKTOP-T6SLHUS:/mnt/c/labs\$./a.out</pre>							
Root for equation №1			Root for equation ½1				
Method name	 iter	root		Method name	ite	r root 	
 Dichotomy method	 36	 1.0768739863051451		Dichotomy method	1	9 1.0768747329711914	
 Iterative methode	 27	 1.0768739863087642		Iterative methode	1	5 1.0768737221456464	
 Newton's method	 5	 1.0768739863118038		 Newton's method		 4 1.0768739863118031	
Root for equation ½2			Root for equation №2				
Method name	iter	root		Method name	ite	r root	
Dichotomy method	 36	 1.2388399775736616		Dichotomy method	1	 9 1.2388391494750977	
 Iterative methode	 16	 1.2388399775757328		 Iterative methode	 -	 9	
 Newton's method	 8	 1.2388399775742611		 Newton's method		 5 1.2388399730130997	
keinpop@DESKTOP-T6SLHUS:/mnt/c/labs\$./a.out 1 epsylone = 2.22045e-15 keinpop@DESKTOP-T6SLHUS:/mnt/c/labs\$./a.out 4 epsylone = 2.22045e-12							
Root for equation №1			Root for equation №1				
Method name	iter	root	<u> </u>	Method name	iter	root	
Dichotomy method	49	1.0768739863118038		Dichotomy method	39	1.0768739863115115	
Iterative methode	37	1.0768739863118033		Iterative methode	29	1.0768739863113470	
Newton's method	5	1.0768739863118038		Newton's method	5	1.0768739863118038	
Root for equation ½2			Root for equation №2				
Method name	iter	root		Method name	iter	root	

Dichotomy method

Iterative methode

Newton's method

39

17

1.2388399775745711

1.2388399775744656

9 | 1.2388399775741445

49

21

Dichotomy method

Iterative methode

Newton's method

1.2388399775741474

1.2388399775741481

11 | 1.2388399775741474 |

keinpop@DESKTOP-T6SLI 8 epsylone = 2.22045e-0		t/c/labs\$./a.out	keinpop@DESKTOP-T6SLI 11 epsylone = 2.22045e-0		t/c/labs\$./a.out
Root for equation №1		Root for equation №1			
Method name	iter	root	Method name	iter	root
Dichotomy method	26	1.0768739804625511	Dichotomy method	 16 	1.0768814086914062
 Iterative methode	 19	1.0768739803481329	 Iterative methode	12	 1.0768785220726500
Newton's method	5	1.0768739863118038	 Newton's method	4	1.0768739863118031
Root for equation №2		Root for equation №2			
Method name	iter	root	Method name	iter	root
Dichotomy method	26	1.2388399764895439	Dichotomy method	16	1.2388381958007812
Iterative methode	11	1.2388399824486194		7	1.2388429848334388
 Newton's method	6	1.2388399777073364	 Newton's method		 1.2388401337669173

Заключение

В ходе выполнения курсового проекта были изучены такие вычислительные методы, как метод дихотомии, метод итераций, метод Ньютона. В ходе проведения тестирования было выявлено, что метод Ньютона наиболее эффективен, он вычисляет корень уравнения за наименьшее количество итераций, а метод половинного деления, наоборот самый медленный, однако он наиболее прост в реализации.

Так же во время выполнения я изучил дополнительные возможности языка Си - использование указателей на функции. Это тема 2-го семестра обучения. Я думаю, эти знания помогут мне в будущем разобраться в этом более ясно и удобно.

Список литературы

- 1. http://www.machinelearning.ru/wiki/index.php?title=Mетоды_дихотомии
- 2. https://ru.wikipedia.org/wiki/
- 3. https://ru.wikipedia.org/wiki
- 4. https://metanit.com/cpp/c/5.11.php
- 5. https://learnc.info/c/function pointers.html
- 6. https://www.desmos.com/calculator?lang=ru