# Crittografia Asimmetrica

Riccardo Longo

## Crittografia Asimmetrica

- Mittente e destinatario operano in maniera diversa (asimmetria)
- La chiave si divide in Pubblica e Privata
- Non è necessario un canale privato per lo scambio di chiavi
- È comunque necessaria una infrastruttura per attribuire correttamente le chiavi agli utenti
- Usata sia per cifratura che per firma digitale

### Schema generale

- Uno schema a chiave pubblica è composto da tre algoritmi:
- Generazione Chiavi dati un parametro P (dipendente dal livello di sicurezza) viene generata una coppia di chiavi (PK, SK)
  - Cifratura dato un messaggio m e la chiave pubblica PK viene generato il cifrato c
  - Decifratura Dato un cifrato c e la chiave privata SK viene ricostruito il messaggio in chiaro m

### Generazione Chiavi

- Il parametro in input determina la la lunghezza delle chiavi e va a definire gli ambienti matematici che verranno usati nelle operazioni di cifratura e decifratura
- PK è la chiave pubblica, e viene distribuita pubblicamente
- SK è la chiave privata, va tenuta segreta
- È importante che questo algoritmo abbia a disposizione un'adeguata sorgente random affinché le chiavi siano generate in modo sicuro

#### Cifratura

- Chiunque in possesso della chiave pubblica può cifrare
  - È importante **autenticare** separatamente il mittente in molte applicazioni
  - Serve una infrastruttura di distribuzione delle chiavi pubbliche adeguata per assicurare una corretta identificazione chiave-utente
- La cifratura può essere deterministica o probabilistica
  - deterministica se un messaggio viene sempre cifrato nello stesso ciphertext
  - probabilistica se a un messaggio possono corrispondere più cifrati, viene usato un input random nella cifratura

#### Decifratura

- Solo chi è in possesso della chiave privata può decifrare
- La decifratura è sempre deterministica
- Alcuni schemi includono un controllo di integrità del cifrato in questa fase

### **Schema**



## **Trapdoor function**

- facili da calcolare
- difficili da invertire
- a meno di avere la chiave

$$x \longmapsto y$$
 :  $f(x) = y$   
 $y \longmapsto x$  :  $f^{-1}(y) = x$ 

$$k, y \longmapsto x : g(k, y) = x$$

- la sicurezza degli schemi a chiave pubblica è basata sull'intrattabilità di problemi matematici conosciuti e studiati:
  - fattorizzazione
  - residui quadratici
  - logaritmo discreto

- problemi sui reticoli
- decodifica
- isogenie
- sistemi multivariati

## Schemi Ibridi e Key Encapsulation

- Gli schemi a chiave pubblica sono molto più lenti di quelli simmetrici
- Spesso vengono usati per cifrare solo una chiave simmetrica che poi viene effettivamente usata per cifrare i messaggi (payload)
- Similmente il Key Encapsulation prevede la generazione e cifratura di un messaggio random, che poi viene usato per generare la chiave simmetrica tramite una KDF

#### **RSA**

- Il nome deriva dalle iniziali degli autori: Ron Rivest, Adi Shamir, Leonard Adleman
- Basa la sua sicurezza sulla difficoltà della fattorizzazione di interi e problemi derivati
- Fa uso di aritmetica modulare:
  - dati  $n, x, y \in \mathbb{Z}$ ,  $x \equiv y \mod n \iff \exists k \in \mathbb{Z} : x = y + kn$
  - si considera solo il resto della divisione per *n*
  - in RSA n = pq con  $p \in q$  primi molto grandi

### Generazione Chiavi

- Genera due numeri primi p e q
  - random
  - di grandezza simile ma non troppo
  - la primalità si può testare velocemente
- Calcola n = pq, e esponente **pubblico**, spesso  $e = 2^{16} + 1 = 65537$  per questioni di efficienza
- Calcola  $d \equiv e^{-1} \mod mcm(p-1, q-1)$ :
  - ullet questo assicura che  $(m^e)^d \equiv m \mod n \quad orall m \in \mathbb{Z}$
  - facile da calcolare se si conoscono p e q, praticamente impossibile sapendo solo n ed e
- PK = (n, e), SK = d

### Cifratura e Decifratura

- Il messaggio M viene convertito in un intero  $0 \le m < n$  tramite una apposita funzione di padding reversibile
- Il cifrato è calcolato come  $c \equiv m^e \mod n$
- Per decifrare si usa la chiave privata:

$$c^d \equiv (m^e)^d \equiv m \mod n$$

e si inverte il padding

## Perché serve il padding

- Se m ed e sono abbastanza piccoli affinché  $m^e < n$  l'esponenziazione è facilmente invertibile
- Se e è condiviso tra più chiavi (cosa diffusa in pratica) e vengono cifrati messaggi uguali ma per n diversi, può diventare facile ricavare m
- Senza padding lo schema è deterministico e quindi soggetto ad attacchi di tipo chosen plaintext
- Senza padding lo schema è **malleabile**:  $(m_1^e)(m_2^e) = (m_1m_2)^e$ , quindi soggetto ad attacchi **chosen ciphertext**: si decifra c tramite la decifratura di  $cr^e \mod n$ , con r scelto dall'attaccante

#### **OAEP**

### Optimal Asymmetric Encryption Padding



### Chiavi deboli

- Se  $p-q<2n^{\frac{1}{4}}$ , si può usare la fattorizzazione di Fermat
- Se p-1 o q-1 ha solo fattori piccoli, n si può fattorizzare con l'algoritmo di **Pollard p-1**
- Se  $q , <math>d < n^{\frac{1}{4}}/3$ , d si può calcolare da n ed e
- Se le chiavi non sono generate con sufficiente random, e si trova una coppia di chiavi che hanno un fattore in comune è facilissimo romperle entrambe

### Altre considerazioni di sicurezza

- Gli algoritmi di fattorizzazione permettono attacchi pratici a chiavi di 768 bit, usare chiavi di minimo 1024 bit, meglio 2048 bit
- molte implementazioni sono suscettibili a **timing attacks**; usare implementazioni a decifratura costante o **blinding**: per ogni messaggio scegliere r random, calcolare  $(r^ec)^d \mod n$  e poi moltiplicare per  $r^{-1} \mod n$
- Un difetto nel padding PKCS#1 v1 permetteva un attacco pratico di tipo chosen ciphertext contro SSL
- Con attacchi di tipo side channel è possibile estrarre la chiave privata da molti dispositivi

## Gruppi e logaritmo discreto

- Un gruppo è una struttura matematica definita da un insieme
   G ed una operazione binaria associativa, che ammetta elemento neutro ed inverso:
  - Gli interi (ℤ)
  - Gli interi modulo un primo  $p(\mathbb{Z}_p)$
  - I punti di una curva ellittica
- In un gruppo finito il logaritmo discreto (DLOG) consiste in:

$$g, y \rightarrow x : g^x = y$$

• I gruppi in cui DLOG è un problema difficile permettono di costruire schemi a chiave pubblica

#### Curve Ellittiche

 Curve piane su campi finiti di ordine q, definite da equazioni della forma

$$y^2 = x^3 + ax + b$$

- I punti che soddisfano l'equazione, più un punto all'infinito O formano un gruppo additivo di ordine n
- Alcune curve con parametri accuratamente selezionati hanno DLOG difficile con **chiavi molto più piccole** rispetto ai gruppi  $\mathbb{Z}_p$  (256 bit vs 3072 bit)
- Alcune curve sono particolarmente suscettibili a side channel, le curve di Edwards invece resistono meglio
- Vari sistemi di coordinate (proiettive, jacobiane, ...)
   consentono di rappresentare i punti con varie ottimizzazioni,
   spesso viene usata solo la X, derivando poi le altre

### Addizione sulle curve ellittiche



### **ElGamal**

- Generazione chiavi: G gruppo ciclico di ordine q, g generatore (parametri pubblici, condivisibili da altri utenti)
  - Genera 1 < x < q 1 random
  - $PK = h = g^{x}$
  - SK = *x*
- Cifratura: 1 < y < q-1 random, messaggio m mappato in  $m' \in \mathbb{G}$ 
  - $s = h^y = (g^x)^y = g^{xy}$
  - $c = (c_1, c_2) = (g^y, m's)$
- **Decifratura**: per il *teorema di Lagrange*  $g^{q-1} = 1$  quindi:
  - $s' = c_1^{q-1-x} = g^{(q-1-x)y}$
  - $m' = c_2 s' = m' s s' = m' g^{xy} g^{(q-1-x)y} = m' g^{(x+q-1-x)y} = m' (g^{q-1})^y = m' 1^y$

### Cramer-Shoup

- Generazione chiavi:  $\mathbb{G}$  gruppo ciclico di ordine q,  $g_1$  e  $g_2$  generatori distinti
  - Genera SK =  $(x_1, x_2, y_1, y_2, z)$  random,  $1 < \cdot < q 1$
  - $PK = (c, d, h) = (g_1^{x_1} g_2^{x_2}, g_1^{y_1} g_2^{y_2}, g_1^{z})$
- Cifratura: 1 < k < q 1 random, messaggio m mappato in  $m' \in G$ , H one-way hash
  - $u_1 = g_1^k, u_2 = g_2^k, e = h^k m'$
  - $\alpha = H(u_1, u_2, e), v = c^k d^{k\alpha}$
  - il ciphertext è  $(u_1, u_2, e, v)$
- Decifratura:
  - calcola  $\alpha = H(u_1, u_2, e)$  e verifica che  $v = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^{\alpha}$
  - $m' = e/(u_1^z)$