[PRINT]

EE2T11 Telecommunicatie A (2015-2016 Q3):

Question 1: Score 6/6

Your response

Een satelliet in een geostationaire baan zendt op 5.7 GHz een signaal uit naar een grondstation. De afstand tussen satelliet en grondstation bedraagt 36000 km. Het communicatie-systeem is in figuur 1 weergegeven. Het EIRP vermogen van de satelliet is $P_{EIRP} = 39$ dBW.

Figuur 1: Satellietcommunicatiesysteem.

De opzet van het ontvangersysteem in het grondstation is gedetailleerd weergegeven in figuur 2 .

Figuur 2: Blokschema van het ontvangstation.

Hierin gelden de volgende parameters :

- De paraboolantenne van het grondstation : effectief oppervlak $A_e = 10 \ m^2$ antenneruistemperatuur (antenna noise temperature) $T_a = 120 \ K$.
- Kabel: lengte = 6.6 m, demping 1.5 dB/m,
- Versterker: versterkingsfactor (gain) $G_a = 160$, ruisgetal (noise factor) $F_a = 3.5$,
- De ontvanger heeft een versterking van $G_{rx} = 20 \ dB$, ruisgetal $F_{rx} = 10 \ dB$ en de equivalente ruisbandbreedte is $BW_{rx} = 1.5 \ MHz$.
- a. Bereken het beschikbare signaalvermogen op de ingang van de ontvanger (na de versterker).

 Bereken de totale effectieve spectrale ruisvermogensdichtheid (enkelzijdig spectrum) N₀ van het systeem aan de uitgang van de ontvangantenne.

De totale effectieve spectrale ruisvermogensdichtheid is N_0 = -158.641 (20%) dBm/Hz .

c. Bereken het beschikbare ruisvermogen aan de uitgang van het systeem.

Het beschikbare ruisvermogen bedraagt -64.739 (20%) dBm

d. Bereken de signaal-ruisverhouding (SNR) aan de uitgang van het systeem.

De signaal-ruisverhouding SNR = 13.739 (20%) dB.

e. Bereken de SNR indien de versterker direct na de antenne, dus tussen de antenne en de kabel, wordt geplaatst.

De nieuwe SNR = 23.612 (20%) dB.

Comment:

Question 2: Score 4/4

Your response

De karakteristiek van een DC-gekoppelde breedbandige versterker is gegeven door :

$$v_{uit} = 11 \, v_{
m in} \, + \, 5 \, v_{
m in}^2 \, + \, 3.5 \, v_{
m in}^3$$

Aan deze versterker worden twee sinusvormige signalen aangeboden. Signaal A met frequentie f_1 en signaal B met frequentie f_2 .

a. Hoeveel signaalcomponenten met verschillende frequentie bevat het uitgangssignaal ?

Het aantal signaalcomponenten is 13 (33%).

b. Bereken het 3e orde interceptpunt **IP3** indien de ingangsimpedantie van de versterker 50Ω bedraagt.

IP3 = 16.223 (33%) dBm.

c. Bereken voor $v_{\text{in}} = A_0 \sin \left(2 \cdot \pi \cdot f_1 \cdot t \right)$ de waarde van A_0 waarbij de totale harmonische vervorming **THD=2** % bedraagt, indien $K_2 = 0$.

$$A_0 = 517.182 (33\%) \text{ mV}.$$

Comment: