Bisimulations and unfolding in \mathcal{P} -accessible categorical models CONCUR'16, Québec City

Jérémy Dubut (LSV, ENS Cachan, France)

Eric GOUBAULT (LIX, Ecole Polytechnique, France)

Jean GOUBAULT-LARRECQ (LSV, ENS Cachan, France)

25th August, 2016

Computing systems in the language of category theory

Mainly, two types:

- (co)algebraic approach [Jacobs, ...]
- lifting approach [Winskel, Joyal, Nielsen, ...]

approach	class type	system type	bisimulations
coalgebraic	category + functor (monad)	coalgebra	span of morphisms
lifting	category + sub-category	object	span of morphisms with lifting property w.r.t. the sub-category

Example: TS I - category of TS

Fix an alphabet Σ .

Transition system:

A **TS** $T = (Q, i, \Delta)$ on Σ is the following data :

- a set Q (of states);
- a initial state $i \in Q$;
- a set of transitions $\Delta \subseteq Q \times \Sigma \times Q$.

Morphism of TS:

A morphism of TS $f: T_1=(Q_1,i_1,\Delta_1) \longrightarrow T_2=(Q_2,i_2,\Delta_2)$ is a function $f: Q_1 \longrightarrow Q_2$ such that $f(i_1)=i_2$ and for every $(p,a,q) \in \Delta_1$, $(f(p),a,f(q)) \in \Delta_2$.

TS(\Sigma) = category of TS on Σ and morphisms of TS

Example: TS II - relational bisimulations

Bisimulations [Park81]:

A **bisimulation** between $T_1=(Q_1,i_1,\Delta_1)$ and $T_2=(Q_2,i_2,\Delta_2)$ is a relation $R\subseteq Q_1\times Q_2$ such that :

- (i) $(i_1, i_2) \in R$;
- (ii) if $(q_1, q_2) \in R$ and $(q_1, a, q_1') \in \Delta_1$ then there is $q_2' \in Q_2$ such that $(q_2, a, q_2') \in \Delta_2$ and $(q_1', q_2') \in R$;
- (iii) if $(q_1, q_2) \in R$ and $(q_2, a, q_2') \in \Delta_2$ then there is $q_1' \in Q_1$ such that $(q_1, a, q_1') \in \Delta_1$ and $(q_1', q_2') \in R$.

Example: TS III - runs

Branch:

A *n*-branch on Σ is a transition system $\langle a_0, \dots, a_{n-1} \rangle = ([n], 0, \Delta)$ where :

- [n] is the set $\{0, ..., n\}$;
- Δ is of the form $\{(i,a_i,i+1)\mid i\in [n-1]\}$ for some $a_0,$..., a_{n-1} in Σ .

$$0 \xrightarrow{a_0} 1 \xrightarrow{a_1} 2 \cdots n-1 \xrightarrow{a_{n-1}} n$$

Branch of a TS:

A *n*-branch of a TS T is a morphism of TS from any $\langle a_0, \ldots, a_{n-1} \rangle$ to T.

 $Br(\Sigma)$ = full sub-category of $TS(\Sigma)$ of branches

Example: TS IV - from states to runs

A bisimulation R between T_1 and T_2 induces a relation R_n between n-branches of T_1 and n-branches of T_2 by :

$$R_n = \{(f_1 : B \longrightarrow T_1, f_2 : B \longrightarrow T_2) \mid \forall i \in [n], (f_1(i), f_2(i)) \in R\}$$

Properties:

- $-(\iota_{T_1}, \iota_{T_2}) \in R_0 \text{ by } (i);$
- by (ii), if $(f_1, f_2) \in R_n$ and if $(f_1(n), a, q_1) \in \Delta_1$ then there is $q_2 \in Q_2$ such that $(f_2(n), a, q_2) \in \Delta_2$ and $(f'_1, f'_2) \in R_{n+1}$ where $f'_i(j) = f_i(j)$ if $j \le n$, q_i otherwise:
- symmetrically with (iii);
- if $(f_1, f_2) \in R_{n+1}$ then $(f_1', f_2') \in R_n$ where f_i' is the restriction of f_i to [n].

Fact : bisimilarity is equivalent to the existence of such a relation between branches

Categorical models

Categorical models:

A categorical model is a category $\mathcal M$ with a small subcategory $\mathcal P$ which have a common initial object I.

- $\mathcal{M} = \text{category of systems } (\mathsf{Ex} : \mathsf{TS}(\Sigma));$
- $\mathcal{P} = \text{sub-category of execution shapes } (Ex : Br(\Sigma));$
- unique morphism $I \longrightarrow X = \text{initial state of } X \text{ (Ex : } I = [0]).$

Other examples : 1-safe Petri nets with event structures [Winskel], HDA with HDA paths [van Glabbeek], ...

Relational bisimilarity in categorical models

Strong path bisimulation [Joyal, Nielsen, Winskel]

A **strong path-bisimulation** R between X and Y, objects of \mathcal{M} is a set of elements of the form $X \xleftarrow{f} P \xrightarrow{g} Y$ with P object of \mathcal{P} such that :

- (a) $X \leftarrow^{\iota_X} I \xrightarrow{\iota_Y} Y$ belongs to R;
- (b) if $X \xleftarrow{f} P \xrightarrow{g} Y$ belongs to R then for every morphism $p: P \longrightarrow Q$ in \mathcal{P} and every $f': Q \longrightarrow X$ such that $f' \circ p = f$ then there exists $g': Q \longrightarrow Y$ such that $g' \circ p = g$ and $X \xleftarrow{f'} Q \xrightarrow{g'} Y$ belongs to R;

$$X \xleftarrow{f} P \xrightarrow{g} Y$$

$$\downarrow f' Q \xrightarrow{g'} Q$$

- (c) symmetrically;
- (d) if $X \xleftarrow{f} P \xrightarrow{g} Y$ belongs to R and if we have a morphism $p: Q \longrightarrow P \in \mathcal{P}$ then $X \xleftarrow{f \circ p} Q \xrightarrow{g \circ p} Y$ belongs to R.

Few remarks

- strong path bisimilarity coincides with classical bisimilarity in some cases (TS, Petri nets, ...)
- a Hennessy-Milner-like theorem holds for strong path bisimulation

Bisimilarity as span

\mathcal{P} -bisimilarity

We say that a morphism $f:X\longrightarrow Y$ of $\mathcal M$ is **(** $\mathcal P$ -**)open** iff for all commutative diagrams :

$$P \xrightarrow{x} X$$

$$p \downarrow \qquad \downarrow f$$

$$Q \xrightarrow{y} Y$$

with $p:P\longrightarrow Q\in\mathcal{P}$, there exists a morphism $\theta:Q\longrightarrow X$ such that the following diagram commutes :

$$P \xrightarrow{x} X$$

$$p \downarrow \qquad \qquad \downarrow f$$

$$Q \xrightarrow{y} Y$$

We then say that two objects X and Y of \mathcal{M} are \mathcal{P} -bisimilar iff there exists a span $f:Z\longrightarrow X$ and $g:Z\longrightarrow Y$ where f and g are \mathcal{P} -open.

Link between those two bisimilarities

- ullet \mathcal{P} -bisimilarity always implies strong path bisimilarity
- ullet in many concrete cases, \mathcal{P} -bisimilarity is equivalent to classical bisimilarity, and so to strong path bisimilarity
- there is no general theorem of equivalence between those two bisimilarities

How to prove strong path bisimilarity $\Rightarrow \mathcal{P}$ -bisimilarity?

Given a relation $R \subseteq \{X \xleftarrow{f} P \xrightarrow{g} Y\}$, how can we construct a span :

$$W_R$$
 Ψ_R
 X
 Y

where Φ_R and Ψ_R are open?

Accessibility

Idea : R = set of formal paths; $W_R = \text{glueing of those paths}$

Trees

We call **tree** any colimit in \mathcal{M} of a small diagram with values in \mathcal{P} . We say that a categorical model **has trees** if those colimits exists. We note $\mathbf{Tree}(\mathcal{M}, \mathcal{P})$ the full sub-category of \mathcal{M} of trees.

 $Ex : Tree(TS(\Sigma), Br(\Sigma)) = synchronization trees$

By universal property, W_R , Φ_R and Ψ_R exist but Φ_R and Ψ_R not open True if the trees does not have more branches than the ones used to construct it :

Accessibility

We say that a categorical model is accessible if it has trees and every path in a tree $p:P\in\mathcal{P}\longrightarrow colim\ F$ where F is non-empty can be factorized as $\kappa_c\circ q$ where :

- c is an object of the domain of F;
- κ_c is the universal morphism from F(c) to *colim F*;
- q is a morphism of \mathcal{P} .

Summary and remarks

Theorem [Dubut, Goubault*2] :

If $(\mathcal{M}, \mathcal{P})$ is an accessible categorical model then \mathcal{P} -bisimilarity is equivalent to strong path bisimilarity.

Few remarks:

- ullet this implies that ${\cal P} ext{-bisimilarity}$ is an equivalence relation;
- TS, word automata, timed transition systems, pre-sheaf models are accessible;
- accessibility is preserved by coreflection.

Example: TS VI - unfolding

Unfolding of a $\mathsf{TS} = \mathsf{synchronization}$ tree obtained by delooping

Given a TS $T = (Q, i, \Delta)$, its unfolding is the TS whose :

- its states are branches of T;
- its initial states is the 0-branch ι_T ;
- its transition are $(f: \langle a_0, \dots, a_{n-1} \rangle \longrightarrow T, a_n, g: \langle a_0, \dots, a_n \rangle \longrightarrow T)$, where the restriction of g to $\langle a_0, \dots, a_{n-1} \rangle$ is f.

Its a synchronization tree.

Unfolding in a accessible categorical model

 $\mathsf{Idea} : \mathrm{Unfold}(X) = \mathsf{glueing} \mathsf{\ of\ all\ paths\ of\ } X$

Form the following diagram $F_X : \mathcal{P} \downarrow X \longrightarrow \mathcal{P}$:

- objects of $\mathcal{P} \downarrow X = \text{paths of } X = \text{morphisms from any } P \in \mathcal{P} \text{ to } X$
- ullet morphisms are morphisms p of ${\mathcal P}$ such that :

$$X \xleftarrow{f} P$$
 $\downarrow p \downarrow$
 Q

• $F_R(p:P\longrightarrow X)=P$

 $\mathrm{Unfold}(X) = colim \ F_X$

Properties of the unfolding

Theorem [Dubut, Goubault*2]:

- When $(\mathcal{M}, \mathcal{P})$ has trees, $\mathrm{Unfold}(X)$ always exists and Unfold is a functor from \mathcal{M} to $\mathsf{Tree}(\mathcal{M}, \mathcal{P})$.
- ullet When $(\mathcal{M},\mathcal{P})$ is accessible, the canonical map from $\mathrm{Unfold}(X)$ to X is open.
- When $(\mathcal{M}, \mathcal{P})$ is accessible, Unfold is the right adjoint of the injection of $\mathbf{Tree}(\mathcal{M}, \mathcal{P})$ in \mathcal{M} .

Universal covering of a topological space = unfolding?

Universal covering = complete unlooping

the definition is too technical and it does not always exist

Example: SPCG I - the accessible categorical model

SPCG:

A small pointed connected groupoid is :

- ullet a small category ${\mathcal C}$ such that :
 - every morphism is invertible;
 - between two objects, there is always at least one morphism.
- an object c of C.

A **morphism of SPCG** is a functor that preserves the points. We note **SPCG** this category.

Let I be the full sub-category of **SPCG** whose objects are :

- ullet o = the SPCG with one object an one morphism;
- 1 =

Proposition:

(SPCG, I) is accessible.

Example: SPCG II - (universal) covering

Covering:

A **covering of a SPCG** (C, c) is *I*-open map $F : (D, d) \longrightarrow (C, c)$ whose lifts are unique i.e.

$$0 \longrightarrow (\mathcal{D}, d)$$

$$\downarrow \exists ! \exists f$$

$$1 \longrightarrow (\mathcal{C}, c)$$

We say that it is **universal** if $\mathcal{D}(d,d)$ is a singleton.

We can prove that the universal covering always exists and is unique up-to isomorphism.

Proposition:

Let $F:\mathcal{D}\longrightarrow\mathcal{C}$ be a universal covering and $G:\mathcal{E}\longrightarrow\mathcal{C}$ be a covering. Then, there exists a unique morphism $H:\mathcal{D}\longrightarrow\mathcal{E}$ (which is a covering) such that $F=G\circ H$. In particular, the universal covering is initial among coverings.

Universality of the unfolding

Fix an accessible categorical model $(\mathcal{M}, \mathcal{P})$.

\mathcal{P} -covering :

A morphism $f: X \longrightarrow Y$ is a \mathcal{P} -covering if it is a \mathcal{P} -open map whose lifts are unique.

Note $unf_X : \mathrm{Unfold}(X) \longrightarrow X$ the canonical morphism.

Theorem [Dubut, Goubault*2] :

- i) unf_X is a \mathcal{P} -covering.
- ii) For every \mathcal{P} -covering $f:Y\longrightarrow X$, there exists a unique morphism $g:\operatorname{Unfold}(X)\longrightarrow Y$ (which is a \mathcal{P} -covering) such that $unf_X=f\circ g$.

In particular, the unfolding is initial among $\mathcal{P}\text{-coverings}.$

Corollary:

The universal covering and the I-unfolding coincide.

Conclusion and future works

Summary : we have designed a general framework accessible categorical models in which :

- ullet strong path bisimilarity and ${\cal P}$ -bisimilarity coincide;
- a nice notion of unfolding exists;
- classical phenomena are captured (TS, timed TS, automata, sheaf models, ...);
- the classical notion of universal covering coincides with the unfolding.

And now?

- truly concurrent systems (Petri nets, HDA, ...);
- natural accessible structure on the category of topological spaces for which the unfolding extends the universal covering.