

Trees

Nature Lover's View Of A Tree

Computer Scientist's View

Linear Lists And Trees

- Linear lists are useful for serially ordered data.
 - \bullet (e₀, e₁, e₂, ..., e_{n-1})
 - Days of week.
 - Months in a year.
 - Students in this class.
- Trees are useful for hierarchically ordered data.
 - Employees of a corporation.
 - President, vice presidents, managers, and so on.
 - Java's classes.
 - Object is at the top of the hierarchy.
 - Subclasses of Object are next, and so on.

Hierarchical Data And Trees

- The element at the top of the hierarchy is the root.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the root, and so on.
- Elements that have no children are leaves.

Java's Classes

Definition

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

Subtrees

Leaves

Parent, Grandparent, Siblings, Ancestors, Descendants

Levels

Caution

- Some texts start level numbers at 0 rather than at 1.
- Root is at level 0.
- Its children are at level 1.
- The grand children of the root are at level 2.
- And so on.
- We consider root at level 1.

height = depth = number of levels

Node degree = number of children

Tree degree = max node degree

Degree of tree = 3.

Binary tree

- Finite (possibly empty) collection of elements.
- A nonempty binary tree has a root element.
- The remaining elements (if any) are partitioned into two binary subtrees.
- These are called the left and right subtrees of the binary tree.

Differences between a tree & a binary tree

• No node in a binary tree may have a degree more than 2, whereas there is no limit on the degree of a node in a tree.

• A binary tree may be empty; a tree cannot be empty.

Differences between a tree & a binary tree

• The subtrees of a binary tree are ordered; those of a tree are not ordered.

- Are different when viewed as binary trees.
- Are the same when viewed as trees.

Arithmetic expressions

- (a + b) * (c + d) + e f/g*h + 3.25
- Expressions comprise three kinds of entities.
 - Operators (+, -, /, *).
 - Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.).
 - Delimiters ((,)).

Operator degree

- Number of operands that the operator requires.
- Binary operator requires two operands.
 - a + b
 - c / d
 - e f
- Unary operator requires one operand.
 - -+g
 - h

Infix form

- Normal way to write an expression.
- Binary operators come in between their left and right operands.
 - a * b
 - a + b * c
 - a * b / c
 - (a + b) * (c + d) + e f/g*h + 3.25

Operator priorities

- How do you figure out the operands of an operator?
 - a + b * c
 - a * b + c / d
- This is done by assigning operator priorities.
 - priority(*) = priority(/) > priority(+) = priority(-)
- When an operand lies between two operators, the operand associates with the operator that has higher priority.

Tie breaker

• When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.

- a + b c
- **a** * b / c / d

Delimiters

 Subexpression within delimiters is treated as a single operand

$$(a + b) * (c - d) / (e - f)$$

Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

Postfix Form

- The postfix form of a variable or constant is the same as its infix form.
 - **a**, b, 3.25
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.
 - Infix = a + b
 - Postfix = ab+

Postfix Examples

- Infix = a + b * c
 - Postfix = abc* +
- Infix = a * b + c
 - Postfix = ab * c +

- Infix = (a + b) * (c d) / (e + f)
 - Postfix = a b + c d * e f + /

Unary Operators

- Replace with new symbols.
 - + a => a @
 - + a + b => a @ b +
 - -a => a?
 - -a-b => a?b

- Scan postfix expression from left to right pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in postfix, operators come immediately after their operands.

•
$$(a + b) * (c - d) / (e + f)$$

•
$$ab + cd - *ef + /$$

b

a

```
• (a + b) * (c - d) / (e + f)
• a b + c d - * e f + /
• ab + cd - *ef + /
```

d c (a + b)

- (a + b) * (c d) / (e + f)
- ab + cd *ef + /
- ab + cd *ef + /

$$(c-d)$$

$$(a+b)$$

- (a + b) * (c d) / (e + f)
- ab + cd *ef + /

$$f$$
e
 $(a + b)*(c - d)$

• (a + b) * (c - d) / (e + f)• ab + cd - *ef + /• ab + cd - *ef + /

$$(e + f)$$

 $(a + b)*(c - d)$

Prefix Form

- The prefix form of a variable or constant is the same as its infix form.
 - **a**, b, 3.25
- The relative order of operands is the same in infix and prefix forms.
- Operators come immediately before the prefix form of their operands.
 - Infix = a + b
 - Postfix = ab+
 - Prefix = +ab

Binary Tree Form

• a + b

• - 2

Binary Tree Form

• (a + b) * (c - d) / (e + f)

Merits Of Binary Tree Form

- Left and right operands are easy to visualize.
- Code optimization algorithms work with the binary tree form of an expression.
- Simple recursive evaluation of expression.

