00000

#### Claus Aranha

caranha@cs.tsukuba.ac.jp

College of Information Science

2019-06-14,17

Last updated June 12, 2019

00000

Computational Geometry problems involve answering questions about lines, points and angles. Some example questions:

Given N points  $(s_1, s_2, s_3, \dots, s_N)$ , what is the area of the poligon that covers all the points?



00000

# What is it?

Computational Geometry problems involve answering questions about lines, points and angles. Some example questions:

Given N rectangles,  $x_1, y_1, w_1, h_1; \dots; x_N, y_N, w_N, h_N$ , what is the length of lines needed to connect them?



#### Computational Geometry What is it?

Introduction

000000

Computational Geometry problems involve answering questions about lines, points and angles. Some example questions:

Given a polygon, and N points, what is the line that divides the polygon in equal areas, so that the same number of points are in each area?



# The good and the bad

Introduction

000000

- Good: Geometry problems are fun
- Good: You have to draw pretty pictures
- Good: Mostly algorithms from high school
- Good: Code is highly re-usable
- Bad: You have to write a lot of code (in the beginning!)
- Bad: Very easy to get WE...

#### Problem 1 - Special Cases

- Multiple points in the same place;
- Collinear points;
- Vertical lines;
- Parallel Lines;
- Intersection at end of segment;
- etc;

Introduction

#### Problem 2 - Precision Errors

- · Functions require many multiplications and divisions;
- Easy to propagate floating point errors;

# Easy Mistakes in Geometry Problems

#### **Dealing Special Cases**

Make sure to add special cases to your library functions;

#### Solving Precision Errors

- If possible, convert all values to integers
- Use an EPSILON constant for comparisons:

## Class Outline

- Example Problems;
- Basic Geometric Functions;
- Circles;
- Triangles;
- Polygons;

# Problem Example: UVA 191 – Intersection

#### Summary

- Input
   A rectangle and a line:
   xstart ystart xend yend xleft ytop xright ybottom
- Output
  - T if the line intersects the rectangle
  - F if the line does not intersect the rectangle



# Problem Example: UVA 191 – Intersection



Introduction

#### Steps to calculate the solution:

- Test if p<sub>1</sub> or p<sub>2</sub> are inside the rectangle;
- Test if the segment intersects a side of the rectangle;
- (optional) make a bullet hell game;

#### Summary

- Input
   List of line segments in the waterfall
   List of water sources
- Output
   X position where each water source falls



# Problem Example: UVA 833 – Waterfalls



#### For each water source:

- Identify all segments that it intersects with;
- · Select the highest segment;
- Move the source to the bottom of the segment;
- · Repeat;

Introduction

Many opportunities for pruning and pre-computing! (if necessary)



#### Point Representation

```
struct point_i { int x, y; // Using int coordinates.
  point_i() { x = y = 0; }
  point_i(int _x, int _y) : x(_x), y(_y) {}};

struct point { double x, y; // Using floats
  point() { x = y = 0.0;}
  point(double _x, double _y) : x(_x), y(_y) {}};
```

#### Point Comparison

```
struct point { double x, y;
  point() { x = y = 0.0;
  point (double _x, double _y) : x(_x), y(_y) {}
   // Sorting by coordinate
   bool operator < (point other) const {
      if (fabs(x - other.x) > EPS)
         return x < other.x:
      return y < other.y; }
   // Equality testing -- Note the use of EPS
   bool operator == (point other) const {
      return (fabs(x - other.x) < EPS &&
             (fabs(y - other.y) < EPS)); }
```

# Basic Library – Points 3

Most common distance measure: Euclidean distance. Sometimes Manhattan distance (Taxicab distance) is also used.

```
#define hypot(dx,dy) sqrt(dx*dx + dy*dy)

double dist(point p1, point p2) {
  return hypot(p1.x - p2.x, p1.y - p2.y); }

double taxicab(point p1, point p2) {
  return fabs(p1.x - p2.x) + fabs(p1.y - p2.y); }
```



#### Rotating a point around the origin



**Quiz:** What do you do if you want to rotate a point around  $x_0, y_0$ ?

# Basic Library – Lines 1

There are many ways to specify a line:

- ax + by + c = 0 useful for most cases.
- y = mx + c useful for angle manipulation, but special cases
- $x_0, y_0, x_1, y_1$  two points, not very useful for programming.

#### Point to Line

```
struct line { double a,b,c; };

void pointsToLine(point p1, point p2, line &l) {
  if (fabs(p1.x - p2.x) < EPS {
    l.a = 1.0; l.b = 0.0; l.c = -p1.x; }
  else {
    l.a = -(double) (p1.y - p2.y)/(p1.x - p2.x);
    l.b = 1.0; l.c = -(double) (l.a*p1.x) - p1.y; }
}</pre>
```

(a, b) are the same;

Introduction

# Two lines are parallel if their coefficients

- Two lines are identical if all coefficients (a, b, c) are the same;
- Remember that we force b to be 0 or 1;



#### Parallel and identical lines

# The **intersection** point $x_i$ , $y_i$ is where two lines meet. We can find this point by solving the following system of linear equations:

$$a_1x + b_1y + c_1 = 0$$
  
 $a_2x + b_2y + c_2 = 0$ 

#### Computing the intersection

```
bool areIntersect(line 11, line 12, point &p) {
   if (areParallel(l1,l2)) return False;

p.x = (l2.b * l1.c - l1.b * l2.c) /
        (l2.a * l1.b - l1.a * l2.b);

if (fabs(l1.b) > EPS) // Testing for vertical case
   p.y = -(l1.a * p.x + l1.c);

else
   p.y = -(l2.a * p.x + l2.c);

return true; }}
```

# Basic Library – Vectors

- A Vector indicates direction and length;
- Represented as a x, y point in relation to the origin;
- Operations: Scale, Translation, Addition, Product;



```
struct vec { double x, y;
    vec(double _x, double _y) : x(_x), y(_y) {} };

vec toVec(point a, point b) {
    return vec(b.x - a.x, b.y - a.y); }

vec scale(vec v, double s) {
    return vec(v.x * s, v.y * s); }

point translate(point p, vec v) {
    return point(p.x + v.x , p.y + v.y); }
```

# Distance between point and line

Given a point p and a line I, the distance between the point and the line is the distance between p and the c, the closest point in *I* to *p*.

We can calculate the position of c by taking the projection of  $\bar{ac}$ into *I* (a, b are points in *I*).



# Distance between point and line

```
double dot (vec a, vec b) {
   return (a.x * b.x + a.y * b.y); }
double norm_sq(vec v) {
   return v.x * v.x + v.y * v.y; }
// Calculates distance of p from line, given
// a,b different points in the line.
double distToLine(point p, point a, point b, point &c) {
  // formula: c = a + u * ab
  vec ap = toVec(a, p), ab = toVec(a, b);
  double u = dot(ap, ab) / norm_sq(ab);
  c = translate(a, scale(ab, u));
  // translate a to c
  return dist(p, c); }
```

# Distance between point and segment

Introduction

If we have a segment ab instead of a line, the procedure to calculate the distance is similar, but we need to test if the intersection point falls in the seament.

```
double distToLineSegment (point p, point a,
                         point b, point &c) {
 vec ap = toVec(a, p), ab = toVec(a, b);
 double u = dot(ap, ab) / norm_sq(ab);
 if (u < 0.0) { c = point(a.x, a.y); // closer to a
                return dist(p, a); }
 if (u > 1.0) { c = point(b.x, b.y); // closer to b
                 return dist(p, b); }
 return distToLine(p, a, b, c); }
```

# Angles between segments

#### angle between two segments ao and ob

```
#import <cmath>
double angle(point a, point o, point b) { // in radians
vec oa = toVector(o, a), ob = toVector(o, b);
return acos(dot(oa, ob)/sqrt(norm_sq(oa)*norm_sq(ob)));}
```

Left/Right test: We can calculate the position of point p in relation to a line l using the cross product.

Take q, r points in I. Magnitude of the cross product  $pq \times pr$  being positive/zero/negative means that  $p \to q \to r$  is a left turn/collinear/right turn.

```
double cross(vec a, vec b) {
  return a.x * b.y - a.y * b.x; }
bool ccw(point p, point q, point r) {
  return cross(toVec(p, q), toVec(p, r)) > 0; }
collinear(point p, point q, point r) {
  return fabs(cross(toVec(p, q), toVec(p, r))) < EPS;</pre>
```

# Problem Example: UVA 10589 Area



- What is the area of the shaded part of the rectangle?
- You are given the radius of 4 circles, each centered in the corners of the rectangle.

## Circles

- A circle is defined by its center (a, b) an its radius r
- The circle contains all points such (x, y) such as  $(x a)^2 + (y b)^2 \le r^2$

```
int insideCircle(point_i p, point_i c, int r) {
  int dx = p.x-c.x, dy = p.y-c.y;
  int Euc = dx*dx + dy*dy, rSq = r*r;
  return Euc < rSq ? 0 : Euc == rSq ? 1 : 2;
  // 0 - inside, 1 - border, 2- outside
}</pre>
```

# central angle central angle center sector

- If you are not given  $\pi$ , use pi = 2\*acos(0.0);
- Diameter: D = 2r; Perimeter/Circumference:  $C = 2\pi r$ ; Area:  $A = \pi r^2$ ;
- To calculat the Arc of an angle  $\alpha$  (in Degrees),  $\frac{\alpha}{360} * C$ ;



- A chord of a circle is a segment composed of two points in the circle's border. A circle with radius r and angle  $\alpha$  degrees has a chord of length  $\operatorname{sgrt}(2r^2(1-\cos\alpha))$
- A Sector is the area of the circle that is enclosed by two radius and and arc between them. Area is:  $\frac{\alpha}{360}A$
- A Segment is the region enclosed by a chord and an arc.

# Example: UVA 11909 - Soya milk

- Input:
  - The dimensions of a Milk box, and its inclination:  $I, w, h, \theta$
- Output:

The amount of milk left in the box.



# Example: UVA 10577 - Bounding Box

Given three vertices of a regular polygon, calculate the minimal square necessary to cover the polygon.

Hint: You don't actually need to calculate any polygons

Any 2 dimensional polygon can be expressed as a combination of triangles. So triangles are important constructs in computational geometry.

#### Common Characteristics

- Triangle Inequality: Sides a, b, c obey a + b > c
- Triangle Area: Be b one side of the triangle and h its height, A = 0.5bh
- Perimeter: p = a + b + c
- Semiperimeter: s = 0.5p

#### Heron's Formula

We can calculate the area of a triangle based on its sides:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$



#### Radius of the Incircle: $r = \text{area}(\Delta)/s$

```
def radiusInCircle(p1,p2,p3):
   ab, bc, cd = dist(p1, p2), dist(p2, p3),
                      dist(p3,p1)
  A = area(ab,bc,ca) % Heron's formula
   P = ab+bc+ca
   return A/(0.5*P)
```

#### Finding the center point of the Incircle

- Check that the three points are not colinear;
- Find the bisection AP of the AB-AC angle:
  - Calculate the point P in BC that bisects A
  - The proportion of BP is (AB/AC)/(1 + AB/AC)
- Find the bisection BP' of the BA-BC angle;
- Fint the intersection of AP-BP'

# 9.0

#### Calculating the Center (Code)

```
int inCircle(point p1, point p2, point p3,
             point &ctr, double &r) {
 r = rInCircle(p1, p2, p3);
 if (fabs(r) < EPS) return 0; // colinear points;
 line 11, 12; // compute these two angle bisectors
 double ratio = dist(p1, p2) / dist(p1, p3);
 point p = translate(p2, scale(toVec(p2, p3),
                      ratio / (1 + ratio)));
 pointsToLine(p1, p, 11);
 ratio = dist(p2, p1) / dist(p2, p3);
 p = translate(p1, scale(toVec(p1, p3),
                ratio / (1 + ratio)));
 pointsToLine(p2, p, 12);
 areIntersect(11, 12, ctr);
 return 1; }
```



#### Radius of the excircle

A triangle with sides a, b, c and area A has an excircle with radius: R = abc/4A.

The center of the excircle is the intersection of the *perpendicular bisectors*.

#### Trigonometry

Law of Cosines:

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$
  
 $\gamma = a\cos((a^2 + b^2 - c^2/2ab))$ 

Law of Sines: (R is the radius of the excircle):
 a/sin(α) = b/sin(β) = c/sin(γ) = R

Polygons

•000000000

Introduction

#### Definition

A polygon is a plane figure bounded by a finite sequence of line segments.

#### Polygon Representation

- In general we want to sort the points in CW or CCW order
- Adding the first point at the end of the array helps avoid special cases:

```
// 6 points, entered in counter clockwise order;
vector<point> P;
P.push_back(point(1, 1)); // P0
P.push_back(point(3, 3)); // P1
P.push_back(point(9, 1)); // P2
P.push_back(point(12, 4)); // P3
P.push_back(point(9, 7)); // P4
P.push_back(point(1, 7)); // P5
P.push_back(P[0]); // important: loop back
```

# Polygon Algorithms

#### Perimeter of a Poligon – sum of distances

```
double perimeter(const vector<point> &P) {
  double result = 0.0;
  for (int i = 0; i < (int)P.size()-1; i++)
    // remember: P[0] = P[P.size()-1]
    result += dist(P[i], P[i+1]);
  return result; }</pre>
```

#### Area of a Poligon – half the determinant of the XY matrix

```
double area(const vector<point> &P) {
  double result = 0.0, x1, y1, x2, y2;
  for (int i = 0; i < (int)P.size()-1; i++) {
    x1 = P[i].x; x2 = P[i+1].x;
    y1 = P[i].y; y2 = P[i+1].y;
    result += (x1 * y2 - x2 * y1); }
  return fabs(result) / 2.0; }</pre>
```

## Polygon – Concave and Convex check

#### Convex Polygons

Introduction

Has NO line segment with ends inside itself that intersects its edges.

Another definition is that all inside angles "turn" the same way.

#### Testing for a convex polygon

```
bool isConvex(const vector<point> &P) {
  int sz = (int)P.size();
  if (sz <= 3) return false; // Not a polygon
  bool isLeft = ccw(P[0], P[1], P[2]); //described earlier
  for (int i = 1; i < sz-1; i++)
    if (ccw(P[i], P[i+1], P[(i+2) == sz? 1 : i+2])! = isLeft)
      return false; // works for both left and right
      // different sign -> this polygon is concave
  return true:
```

# Polygon – Testing Inside or outside

#### There are many ways to test if a point P is in a polygon.

- Winding Algorithm: Sum the angles of all angles APB (A, B) are points in the polygon. If the sum is  $2\pi$ . Point is in polygon.
- Ray Casting Algorithm: Draw an segment from P to infinity, and count the number of polygon edges crossed. Odds: Inside. Even: Outside.

#### Winding Algorithm Code

```
bool inPolygon(point pt, const vector<point> &P) {
  if ((int)P.size() == 0) return false;
  double sum = 0;
  for (int i = 0; i < (int)P.size()-1; i++) {
    if (ccw(pt, P[i], P[i+1]))
      sum += angle(P[i], pt, P[i+1]); //left turn/ccw
      else sum -= angle(P[i], pt, P[i+1]); } //right turn/cw
  return fabs(fabs(sum) - 2*PI) < EPS; }</pre>
```

To cut P along a line AB, we separate the points in P to the left and right of the line.

```
point lineIntersectSeg(point p, point q, point A, point B) {
  double a=B.y-A.y; double b=A.x-B.x; double c=B.x*A.y-A.x*B.y;
  double u=fabs(a*p.x+b*p.y+c); double v=fabs(a*q.x+b*q.y+c);
  return point ((p.x*v + q.x*u) / (u+v),
               (p.v*v + q.v*u)/(u+v)); }
vector<point> cutPolygon(point a, point b, const vector<point> &Q) {
 vector<point> P:
  for (int i = 0; i < (int)0.size(); i++) {
    double left1 = cross(toVec(a, b), toVec(a, Q[i])), left2 = 0;
   if (i != (int) 0.size() -1)
     left2 = cross(toVec(a, b), toVec(a, O[i+1]));
   if (left1 > -EPS)
      P.push_back(Q[i]); //Q[i] is on the left of ab
    if (left1*left2 < -EPS) //edge (Q[i], Q[i+1]) crosses line ab
     P.push_back(lineIntersectSeg(Q[i], Q[i+1], a, b)); }
  if (!P.empty() && !(P.back() == P.front()))
    P.push back(P.front()); // make P's first point = P's last point
  return P; }
```

Polygons

# Polygon – Convex Hull

Given a set of points S, the convex hull is the polygon P composed of a subset of S so that every point of S is either part of P, or inside it.



The main algorithm for calculating the convex hull is *Graham's Scan*.

It's idea is to test each point angle order, to see if the point belongs to the hull.

```
point pivot(0, 0);
bool angleCmp(point a, point b) { // angle-sorting
  if (collinear(pivot, a, b)) // special case
    return dist(pivot, a) < dist(pivot, b);
  // check which one is closer to X axis
  double d1x = a.x - pivot.x, d1y = a.y - pivot.y;
  double d2x = b.x - pivot.x, d2y = b.y - pivot.y;
  return (atan2(d1y, d1x) - atan2(d2y, d2x)) < 0;}
```

```
vector<point> CH(vector<point> P) {
  int i, j, n = (int)P.size();
  // Special Case: Polygon with 3 points
  if (n \le 3) {
    if (!(P[0] == P[n-1])) P.push_back(P[0]);
   return P; }
  // Find Initial Point: Low Y or Right X
  int P0 = 0;
  for (i = 1; i < n; i++)
    if (P[i].y < P[P0].y | |
        (P[i].y == P[P0].y \&\& P[i].x > P[P0].x))
      P0 = i:
  point temp = P[0]; P[0] = P[P0]; P[P0] = temp;
```

```
// second, sort points by angle with pivot PO
pivot = P[0];
sort(++P.begin(), P.end(), angleCmp);
// S holds the Convex Hull
// We initialize it with first three points
vector<point> S;
S.push back (P[n-1]);
S.push back (P[0]);
S.push back (P[1]);
// We start on the third point
i = 2;
```

```
while (i < n) {
  j = (int) S.size() -1;
  // If the next point is left of CH, keep it.
  // Else, pop the last CH point and try again.
  if (ccw(S[j-1], S[j], P[i]))
    S.push back (P[i++]);
  else
    S.pop back();
return S; }
```

### This Week's Problems

- Sunny Mountains Line and Points
- Waterfall Line and Points
- Elevator Circles and Rectangles
- Colorful Flowers Circles and Triangles
- Bounding Box Circles, Triangles and Polygons
- Soya Milk Rectangle and Triangle
- Trash Removal Polygon Manipulation
- Board Wrapping Convex Hull