Lecture Notes: Line (Curve) Integral by Length

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Length of a Curve

Recall that we can represent a curve in \mathbb{R}^d using a vector function $\mathbf{r}(t) = [x_1(t), x_2(t), ..., x_d(t)]$, where $x_1(t), x_2(t), ..., x_d(t)$ give the coordinates of the point on the curve corresponding to a value of t. Henceforth, we will always take the view that the curve has a *starting point* corresponding to $\mathbf{r}(t_0)$ where t_0 is a fixed constant. Given any $t_1 \geq t_0$, when we say the curve from t_0 to t_1 , we refer to the locus of the point corresponding to $\mathbf{r}(t)$ as t goes from t_0 to t_1 . In the example below, the curve from t_0 to t_1 is the part of the curve between p and q.

Intuitively, since a curve is a 1d object, it should have a length. Next, we will formalize define this notion as a limit:

Definition 1. Let C be a curve given by $\mathbf{r}(t)$ with t from t_0 to t_1 . Evenly divide the interval $[t_0, t_1]$ by inserting n+1 break points $\tau_0, \tau_1, \tau_2, ..., \tau_n$ where $\tau_0 = t_0, \tau_1 = t_1$, and $\tau_i - \tau_{i-1} = (t_1 - t_0)/n$ for each $i \in [1, n]$. Define σ_i to be the (straight) line segment connecting the points corresponding to $\mathbf{r}(\tau_{i-1})$ and $\mathbf{r}(\tau_i)$, and denote by $|\sigma_i|$ the length of σ_i . Then, if the following limit exists:

$$\lim_{n \to \infty} \sum_{i=1}^{n} |\sigma_i| \tag{1}$$

we say that the limit is the **length** of C.

The figure above shows an example with n = 5. Note how we approximate the length of the curve by the total length of a sequence of segments.

In this course, we will restrict our attention to *smooth curves*. Intuitively, these are curves that (i) do not degenerate into a point, and (ii) do not have "corners" (e.g., the boundary of a triangle is not smooth). Mathematically, we formalize the notion as follows:

Definition 2. Let C be a curve given by $\mathbf{r}(t)$ with t from t_0 to t_1 . C is smooth if (i) $\mathbf{r}'(t)$ is continuous in $[t_0, t_1]$, and (ii) $\mathbf{r}'(t) \neq \mathbf{0}$ at any $t \in [t_0, t_1]$.

We will state without proof the following lemma:

Lemma 1. Let C be as described in Definition 1. If C is smooth, then the limit (1) always exists.

Now imagine that t increases from t_0 . Let C be the curve from t_0 to t. Note that C extends as t grows, which means that the length s of C is a function of t. Sometimes, we will emphasize this by writing the length explicitly as s(t).

The following is an important lemma:

Lemma 2. If C is smooth, then it holds that:

$$\frac{d(s(t))}{dt} = \sqrt{\sum_{i=1}^{d} \left(\frac{d(x_i(t))}{dt}\right)^2}.$$

We will not present a rigorous proof of the lemma (which is rather involved), but the lemma is very intuitive, as we illustrate using the figure below in 2d space. Imagine that we increase t by a tiny amount Δt . By doing so, we have traveled on the curve a little from point p to point q. Δx_1 and Δx_2 give the coordinate differences of p and q on the two dimensions, respectively. When Δt is extremely small, the length of the curve from p to q should be very close to the length of the segment connecting p and q, which equals $\sqrt{(\Delta x_1)^2 + (\Delta x_2)^2}$.

2 Line Integral by Length

An important message from the previous section is that we can use the length parameter s to uniquely refer to a point on a smooth curve. Specifically, let $\mathbf{r}(t) = [x_1(t), ..., x_d(t)]$ be a curve with starting point p(0) corresponding to $\mathbf{r}(t_0)$. Then, given a value of s, let us define p(s) as the point such that the point from p(0) to p(s) has length exactly s. More specifically, let $x_1, ..., x_d$ be the coordinates of p(s); then each coordinate is a function of s. Sometimes, we may emphasize this by writing the i-th $(1 \le i \le d)$ coordinate of p(s) explicitly as $x_i(s)$.

Let C be the curve from point p to q. Without loss of generality, let s_p and s_q be the lengths that define p and q, respectively. Let f(s) be a scalar function of s. We now introduce a notation:

$$\int_C f(s)ds \tag{2}$$

as a shortform for $\int_{s_p}^{s_q} f(s)ds$. We refer to this shortform as a line integral.¹ For example, $\int_C (x_1^2 + \sqrt{x_2x_3}) ds$ is merely just a notation for $\int_{s_p}^{s_q} (x_1(s)^2 + \sqrt{x_2(s)x_3(s)}) ds$.

As an important special case, when f(s) = 1, we have:

$$\int_C ds = \int_{s_p}^{s_q} ds$$
$$= s_q - s_p$$

which is exactly the length of C.

A line integral is almost always evaluated by changing the integral variable s to t, using Lemma 2. Next, we illustrate this using two examples.

Example 1. Consider the circle $x^2 + y^2 = 1$. Let p be the point (1,0) and q the point (-1,0). Let C be the curve on the circle from p to q. Calculate $\int_C ds$.

Solution. First of all, we need to represent the circle using a single parameter. One way of doing so is to define:

$$x(t) = \cos(t)$$
$$y(t) = \sin(t).$$

Then C is essentially the curve from t = 0 (point p) to $t = \pi$ (point q).

Next, we need to choose an arbitrary point p^* on the circle as the starting point. Where p^* is does not matter, but just to be specific, let it be the point given by $t = -\pi/2$. Let s_p be the length of the curve from p^* to p, and s_q be the length the curve from p^* to q. Then, we have:

$$\int_{C} ds = \int_{s_{p}}^{s_{q}} ds$$

$$= \int_{0}^{\pi} \frac{ds}{dt} dt$$
(by Lemma 2)
$$= \int_{0}^{\pi} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$= \int_{0}^{\pi} \sqrt{(-\sin(t))^{2} + (\cos(t))^{2}} dt$$

$$= \int_{0}^{\pi} 1 dt = \pi.$$

Note that, as a nice trick, we never had to be bothered with the values of s_p and s_q in the above derivation. It suffices to obtain the t values corresponding to p and q, respectively.

 $^{^{1}}$ The name "line integral" may be a bit confusing because, after all, C is a curve, instead of a line. "Curve integral" would probably have been a better fit. However, for some reason, people have got used to the somewhat inaccurate name of "line" integral.

In general, let C be a smooth curve given by $\mathbf{r}(t) = [x_1(t), ..., x_d(t)]$ with t from t_0 to t_1 . By applying the idea illustrated in the above example, we have that

length of
$$C = \int_C ds$$

$$= \int_{t_0}^{t_1} \sqrt{\sum_{i=1}^d \left(\frac{dx_i(t)}{dt}\right)^2} dt.$$

Example 2. Consider the helix r(t) = [x(t), y(t), z(t)] where

$$x(t) = \cos(t)$$

$$y(t) = \sin(t)$$

$$z(t) = t.$$

Let p be the point corresponding to t = 0, and q be the point corresponding to $t = \pi$. Let C be the curve from p to q. Calculate:

$$\int_C x + y + z^3 \, ds.$$

Solution. As before, find an arbitrary point p^* on the curve of r(t). Let s_p be the length the curve from p^* to p, and s_q be the length the curve from p^* to p. Then, we have:

$$\int_{C} x^{2} + y + z^{3} ds = \int_{s_{p}}^{s_{q}} x(s) + y(s) + z(s)^{3} ds$$

$$= \int_{0}^{\pi} \left(x(t) + y(t) + z(t)^{3} \right) \frac{ds}{dt} dt$$
(by Lemma 2)
$$= \int_{0}^{\pi} \left(x(t) + y(t) + z(t)^{3} \right) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

$$= \int_{0}^{\pi} \left(\cos(t) + \sin(t) + t^{3} \right) \sqrt{(-\sin(t))^{2} + (\cos(t))^{2} + 1^{2}} dt$$

$$= \sqrt{2} \int_{0}^{\pi} \cos(t) + \sin(t) + t^{3} dt$$

$$= \sqrt{2} (2 + \pi^{4}/4).$$