Examen du 14 février 2017 Durée : 2 heures

Seuls documents autorisés : Notes personnelles manuscrites.

Les exercices sont indépendants.

A. Protocole d'identification de Schnorr

Soient p, q deux grands (donc impairs) nombres premiers tels que $q \mid p-1$.

1. – Montrer qu'il existe un entier g d'ordre q modulo p.

Soit $a \in [0, q-1]$ un entier connu d'Alice seulement. Soit $A = g^a \mod p$. Les données p, q, g et A sont publiques. Alice s'identifie auprès de Bob à l'aide du protocole suivant :

- Alice choisit un engagement aléatoire k dans l'intervalle $\{0,\ldots,q-1\}$ et calcule $K=g^k \bmod p$. Elle transmet K à Bob.
- \bullet Bob choisit un défir au hasard dans l'intervalle $\{0,\dots,q-1\}$ et le transmet à Alice.
- ullet Alice calcule la réponse $y=k+ar \bmod q$ et la transmet à Bob. Bob accepte Alice si et seulement si $g^y \equiv KA^r \text{ modulo } p.$

Protocole 1. Identification par Schnorr

- 2. Montrer que ce protocole est consistant.
- **3.** Montrer que ce protocole est significatif.
- 4. Montrer que, si un attaquant peut à l'avance (avant d'envoyer K) deviner le défi r que Bob va lui proposer, alors il peut être accepté.
- **5.** Montrer qu'un attaquant peut simuler les T triplets (K_i, r_i, y_i) (pour $1 \le i \le T$) obtenus lors de T identifications d'Alice auprès de Bob? Avec quel coût?
- 6. Ce protocole d'identification vérifie-t-il la propriété de Zero-Knowledge? (Remarque : je tiendrai plus compte ici de l'argumentation que de l'exactitude de la réponse).

Courbe elliptique

On rappelle que, pour $P_1=(x_1,y_1)$ et $P_2=(x_2,y_2)$ deux points sur une courbe elliptique d'équation $y^2 = x^3 + ax + b$, les coordonnées (x_3, y_3) du troisième point P_3 de E aligné avec P_1 et P_2 s'expriment avec

$$\begin{cases} x_3 = m^2 - x_1 - x_2, \\ y_3 = y_1 + m(x_3 - x_1) \end{cases} \quad \text{où} \quad m = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{si } x_1 \neq x_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{si } P_1 = P_2 \end{cases}$$
 (1)

On considère la courbe E définie sur le corps \mathbb{F}_{11} par l'équation $y^2=x^3+2x+6$.

F. Arnault — 13 février 2017

- 7. Montrer que E est une courbe elliptique.
- 8. Quel est l'ordre du groupe correspondant?
- 9. Quel est l'ordre du point de coordonnées affines (1,3) sur E?

C. Cryptosystème de Paillier

Soit N = pq un entier RSA (donc p, q deux nombres premiers impairs distincts). On supposera de plus que

$$pgcd(pq, (p-1)(q-1)) = 1.$$

- **10.** Quel est l'ordre du groupe $(\mathbb{Z}/N^2\mathbb{Z})^*$?
- 11. Montrer que $(\mathbb{Z}/N^2\mathbb{Z})^*$ contient un élément g d'ordre N.
- 12. Montrer qu'on définit bien une application E de $\mathbb{Z}/N\mathbb{Z} \times (\mathbb{Z}/N\mathbb{Z})^*$ dans $(\mathbb{Z}/N^2\mathbb{Z})^*$ en posant

$$E(m,r) = g^m r^N$$
.

- **13.** Montrer que, si $E(m_1, r_1) = E(m_2, r_2)$ alors $g^{(p-1)(q-1)(m_1-m_2)} = 1$ (dans le groupe $(\mathbb{Z}/N^2\mathbb{Z})^*$).
- 14. En déduire que E est une bijection.

D. Signature

Soit \mathcal{K}_{rsa} l'algorithme de génération des clés RSA associé au paramètre de sécurité λ (λ est la longueur du module RSA N) et $H:\{0,1\}^* \to \{0,1\}^{\lambda-1}$ est une fonction de hachage. Considérons l'algorithme de signature suivant :

[Algorithme K:]

$$\mathcal{K}_{rsa}(1^{\lambda}) \to (N, p, q, e, d).$$

— Retourner (N, e) comme clé publique et (N, d) comme clé secrète.

[Algorithme Sign((N, d), M):]

— Réécrire M (M est supposé à longueur paire) en deux parties de la même longueur :

$$M = M_0 || M_1$$

— Calculer

$$y = H(0||M_0) \times H(1||M_1) \bmod N$$

- Retourner la signature $s = y^d \mod N$.
- **15.** Décrire l'algorithme de vérification.
- **16.** Déterminer si ce schéma de signature est UF-CMA sûr (c-à-d. infalsifiable face aux attaques à messages choisis). Prouvez la sécurité ou donnez une attaque.