Structural Vector Autoregression

Structural Vector Autoregression

Time Series Econometrics

Impulse Response Functions, Forecasts

- Errors across equations in the system are correlated.
 - − $Cov(\epsilon_{it}\epsilon_{it}) \neq 0$ in general.
 - Therefore a shock to ϵ_{it} contains information about all the other ϵ_{it} 's, and so is not orthogonal to them in reality.
 - When we calculate the simple derivative, we cannot hold the other ϵ_{jt} 's constant without controlling for this.

- If the equations are appropriately ordered, then shock of ϵ_{1t} has information about contemporaneous shocks $\epsilon_{2t}, \ldots \epsilon_{nt}$
- We might want to take account of this extra information if we learn ϵ_{1t} but have not yet learned the value of the other shocks.
- Another way to ask the question:
 - Suppose we have only period t-1 information $(\mathbf{y_{t-1}}, \mathbf{y_{t-2}}, \ldots)$.
 - Then suddenly we learn the value of one variable, say y_{1t} .
 - How does learning only y_{1t} change our forecast of y_{t+s} ?

- Our VAR says:
- $\begin{aligned} \mathbf{y}_{t+\mathbf{s}} &= \mathbf{c}_{\mathbf{s}} + \epsilon_{t+\mathbf{s}} + \Psi_1 \epsilon_{t+\mathbf{s}-1} + \dots + \Psi_{s-1} \epsilon_{t+1} + \\ \Psi_s \mathbf{y}_t + \mathbf{F}_{12}^{(\mathbf{s})} \mathbf{y}_{t-1} + \dots + \mathbf{F}_{1p}^{(\mathbf{s})} \mathbf{y}_{t-p+1} \end{aligned}$
- For forecasting, E(ε_{t+k}) = 0, linear projection of y_{t+s} on period t information is
- $\hat{\mathbf{y}}_{t+s|t} = \mathbf{c_s} + \Psi_s \mathbf{y_t} + \mathbf{F_{12}^{(s)}} \mathbf{y_{t-1}} + \dots + \mathbf{F_{1p}^{(s)}} \mathbf{y_{t-p+1}}$
- Row *i* of this is our forecast of $y_{i,t+s}$ based on period *t* information.

- What happens if we only knew period t-1 information and then learned ϵ_{1t} ,
 - ϵ_{1t} is correlated with $\epsilon_{2t}, \dots, \epsilon_{nt}$ through the first column of Ω .
- Suppose our linear projection of y_{t+s} is based only on knowing ε_{1t} and all the t – 1 information:
- $$\begin{split} & \quad \hat{E}(y_{t+s}|\epsilon_{1t},y_{t-1},y_{t-2},\ldots) = \\ & \quad c_s + \Psi_s \hat{E}(\epsilon_t|\epsilon_{1t},y_{t-1},y_{t-2},\ldots) + F_{12}^{(s)}y_{t-1} + \cdots + F_{1p}^{(s)}y_{t-p+1} \end{split}$$
 - We use ϵ_{1t} to guess the rest of the period t information.

- Let $\mathbf{a}_1 \epsilon_{1t} = \hat{E}(\epsilon_t | \epsilon_{1t})$
- $\hat{E}(y_{t+s}|\epsilon_{1t},y_{t-1},y_{t-2},\ldots) = c_s + \Psi_s a_1 \epsilon_{1t} + F_{12}^{(s)} y_{t-1} + \cdots + F_{1p}^{(s)} y_{t-p+1}$
- So the effect of y_{1t} on our forecast of y_{t+s} if y_{1t} is all we know at period t is

$$\begin{aligned} & - \frac{\partial \hat{E}(\mathbf{y}_{t+s}|\epsilon_{1t},\mathbf{y}_{t-1},\mathbf{y}_{t-2},...)}{\partial \mathbf{y}_{t}} = \Psi_{s} \mathbf{a}_{1} \\ & - \mathbf{a}_{1} = \frac{\partial \hat{E}(\epsilon_{1}|\epsilon_{1t})}{\partial \epsilon_{1t}} \end{aligned}$$

• How do we estimate this?

- Notice that $\mathbf{a_1}$ accounts for how ϵ_{1t} is correlated with $\epsilon_{2t}, \ldots, \epsilon_{nt}$ through the first column of Ω .
- Recall $\hat{\Omega} = \frac{1}{\tau} \sum \hat{\epsilon}_t \hat{\epsilon}_t'$
- We can factor this as $\hat{\Omega} = \hat{A}\hat{D}\hat{A}'$
- \hat{A} is a lower triangular matrix with ones on the principle diagonal, and \hat{D} is diagonal with all elements positive.
- â₁ is the first column of Â

- We could take the Cholesky factorization of $\hat{\Omega}$:
 - $\hat{\Omega} = \hat{P}\hat{P}' = \hat{A}\hat{D}\hat{A}' = \hat{A}\hat{D}^{\frac{1}{2}}\hat{D}^{\frac{1}{2}}\hat{A}'$
 - \hat{P} is lower triangular with positive elements (standard deviations) along principle diagonal.
 - Let $\hat{D}^{\frac{1}{2}}$ be the diagonal matrix whose diagonal is the diagonal of \hat{P} (and all other elements of \hat{D} are zero).
 - Then $\hat{A} = \hat{P}\hat{D}^{-\frac{1}{2}}$

- The orthogonalized impulse response function is $\hat{\Psi}_s \hat{a}_1$.
 - Many statistical packages report $\hat{\Psi}_s\hat{\mathbf{p}}_1$ where $\hat{\mathbf{p}}_1$ is the first column of \hat{P}
 - This only differs by the scale.
 - $\hat{\Psi}_s \hat{\mathbf{a}}_1$ is the effect of a one-unit increase in y_{1t}
 - $\hat{\Psi}_s \hat{\mathbf{p}}_1$ is the effect of a one-standard deviation increase in y_{1t} .

- Now what happens once I've learned y_{1t}, if I then learn y_{2t} but not y_{3t}, etc.?
 - $\hat{\Psi}_s \hat{\mathbf{a}}_2$ where $\hat{\mathbf{a}}_2$ is the second column of $\hat{\mathbf{A}}$.
 - or use $\hat{\Psi}_s \hat{\mathbf{p}}_2$ in terms of standard deviations.
- More generally, these are called "recursively orthogonalized impulse response functions"
 - $-\hat{\Psi}_s\hat{\mathbf{A}}$
- The value of this is different depending on the ordering of the equations.
 - How you order them depends on what question you want to answer.
 - Typically order them in the order in which you think information would be made known or in which you think effects happen.

- VARs we have looked at so far have been "reduced form": each equation in the system is a function of lags only: of its own value, and lags of other variables
- Maybe we can use/test structural information about contemporaneous relationships.
- This increases the number of parameters we need to estimate only okay if the number of parameters is not too large to be recovered from reduced form estimates.
 - If the number of parameters is too large, we may impose some structural parameters in order to estimate others.

- Consider a macroeconomic relationship
 - y_{1t} =real GDP growth
 - $y_{2t} = inflation$
 - y_{3t} =fed funds rate
 - y_{4t} =rate of growth of M2

Current spending (GDP growth) depends only on past shocks

-
$$y_{1t} = k_1 + B_1^{(1,.)} \mathbf{y_{t-1}} + \cdots + u_{1t}$$

Inflation has a Phillips curve relation between spending and inflation:

-
$$y_{2t} = k_2 + b_0^{(2,1)} y_{1t} + B_1^{(2,.)} \mathbf{y_{t-1}} + \cdots + u_{2t}$$

Federal reserve responds to current output growth and inflation:

$$- y_{3t} = k_3 + b_0^{(3,1)} y_{1t} + b_0^{(3,2)} y_{2t} + B_1^{(3,1)} \mathbf{y_{t-1}} + \dots + u_{3t}$$

• Money demand depends on current output, inflation, and interest rates:

-
$$y_{3t} = k_3 + b_0^{(4,1)} y_{1t} + b_0^{(4,2)} y_{2t} + b_0^{(4,3)} y_{3t} + B_1^{(3,.)} \mathbf{y_{t-1}} + \dots + u_{4t}$$

- We can stack these equations into a vector dynamic structural model:
 - $\ B_0y_t=k+B_1y_{t-1}+\cdots+B_py_{t-p}+u_t$
 - Any dynamic structural model that has a linear approximation can be written in this way.

$$- \mathbf{B_0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ b_0^{(2,1)} & 1 & 0 & 0 \\ b_0^{(3,1)} & b_0^{(3,2)} & 1 & 0 \\ b_0^{(4,1)} & b_0^{(4,2)} & b_0^{(4,3)} & 1 \end{bmatrix}$$

The lower triangular form is a special case for this model

If we premultiply by B₀⁻¹, we get the reduced form:

$$- \mathbf{y_t} = \mathbf{c} + \Phi_1 \mathbf{y_{t-1}} + ... + \Phi_p \mathbf{y_{t-p}} + \epsilon_t$$

$$- c = B_0^{-1} k$$

$$- \Phi_{i} = B_{0}^{-1}B_{i}$$

$$- \epsilon_t = B_0^{-1} u_t$$

- The reduced form VAR is just another representation of a linearized dynamic structural model.
 - If we knew the structural parameters ${\bf B}$ and shocks ${\bf u}$ we could calculate the VAR parameters ${\bf \Phi}$ and ${\bf \epsilon}$ and the associated impulse response functions.

$$- \frac{\partial y_{t+m}}{\partial u_t'} = \frac{\partial y_{t+m}}{\partial \epsilon_t'} \frac{\partial \epsilon_t}{\partial u_t'} = \Psi_m B_0^{-1}$$

- So can we estimate the reduced form and recover the structural parameters?
 - Reduced form VAR parameters: $n + n(n+1)/2 + n^2p$
 - Structural VAR parameters: $n + n(n+1)/2 + n^2p + n^2$
 - Need enough restrictions on B₀ (e.g., zeros for some elements) and E(u_tu'_t) (e.g., diagonal matrix) in order for their to be a one-to-one mapping.
 - The earlier lower triangular form, with diagonal $E(\textbf{u}_t\textbf{u}_t')$, is one such example.

- If there is a one-to-one mapping, then estimate reduced form and figure out the appropriate transformation of Φ and Ω
 - For example in the case above:
 - $-\epsilon_t = B_0^{-1} u_t$
 - $-\Omega = B_0^{-1}D(B_0^{-1})'$
 - Find triangular factorization of $\hat{\Omega}$ as before.
 - When the structural equation is lower triangular, this is the same as the recursively orthogonalized impulse response function.

- For non-recursive structural models:
 - Let $E(\mathbf{u}_t\mathbf{u}_t') = \mathbf{D}$
 - Estimate reduced form by OLS, put enough restrictions on $\mathbf{D}, \mathbf{B_0}, \dots, \mathbf{B_p}$ so that there is a unique mapping from $\Omega, \Phi_1, \dots, \Phi_p$.
 - Typical approach: let $\mathbf{B_1}, \dots, \mathbf{B_p}$ be unrestricted.
 - $E(\epsilon_t \epsilon_t') = \Omega = B_0^{-1} D(B_0^{-1})'$
 - $\hat{\Omega}$ has n(n+1)/2 distinct elements. so we can have just that many unknowns in ${\bf B_0}$ and ${\bf D}$
 - Need to impose as many structural restrictions from theory, long run equilibrium, etc., to reduce parameters to a number that can be recovered from the reduced form (or estimated directly using MLE).