1 Lecture Review

1.1 Fundamental Vector Spaces

Let A be an $m \times n$ matrix.

- 1. The column space of A, denoted col(A), is the set $\{Ax : x \in \mathbb{R}^n\}$. The column space is the set of linear combinations of the column vectors of A.
- 2. The null space of A, denoted null(A) is the set $\{x \in \mathbb{R}^n : Ax = 0\}$.
- 3. The row space of A, denoted row(A), is the set $\{A^Tx : x \in \mathbb{R}^m\}$. The row space is the set of linear combinations of the row vectors of A.

1.2 Singular Value Decomposition (SVD) in Rank r Format (Compact Form)

1. Let A be an $m \times n$ matrix. The SVD of A in rank r format (or compact form) is a factorization of A as

$$A = U\Sigma V^T$$

where $0 \le r \le m, n$ so that

- U is $m \times r$ with $U^T U = I$,
- $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ where $\sigma_1 \ge \dots \ge \sigma_r > 0$,
- V is $n \times r$ with $V^T V = I$.
- 2. We have col(A) = col(U).
- 3. Ax = b is solvable if and only if $UU^Tb = b$.
- 4. If $\mathbf{u}_1, \dots, \mathbf{u}_r$ and $\mathbf{v}_1, \dots, \mathbf{v}_r$ are the respective column vectors of U and V, then the rank k (for $k \leq r$) approximation of A is the $m \times n$ matrix

$$A_k = (\mathbf{u}_1 \quad \cdots \quad \mathbf{u}_k) \operatorname{diag}(\sigma_1, \dots, \sigma_k) (\mathbf{v}_1 \quad \cdots \quad \mathbf{v}_k)^T.$$

1.2.1 Singular Value Decomposition (SVD) in Full Form

1. Let A be an $m \times n$ matrix. The SVD of A in full form is a factorization of A as

$$A = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$$

where

- **U** is $m \times m$ with $\mathbf{U}^T \mathbf{U} = I$,
- Σ is $m \times n$ diagonal with $\sigma_1 \ge \cdots \ge \sigma_r > 0$ along the diagonal,
- **V** is $n \times n$ with $\mathbf{V}^T \mathbf{V} = I$.
- 2. The matrices $\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}$ from the full form SVD are related to the matrices $U, \mathbf{\Sigma}, V$ from the compact form in the following way
 - If $\mathbf{U} = (U_1 \mid U_2)$ as a block matrix with $m \times r$ matrix U_1 then $U_1 = U$.
 - $\bullet \ \Sigma = \left(\begin{array}{c|c} \Sigma & 0 \\ \hline 0 & 0 \end{array}\right).$
 - If $\mathbf{V} = (V_1 \mid V_2)$ as a block matrix with $n \times r$ matrix V_1 then $V_1 = V$.
- 3. We have $\text{null}(A) = \text{col}(V_2)$ if V_2 is not an empty block, or equivalently if r < n.

2 Computation

2.1 2 Column QR Decomposition

- 1. Consider a $m \times 2$ matrix A with column vectors \mathbf{a}_1 and \mathbf{a}_2 . If \mathbf{a}_1 is not a multiple of \mathbf{a}_2 , then the QR decomposition can be computed by the following steps:
 - (a) Compute $\mathbf{q}_1 = \frac{\mathbf{a}_1}{\|\mathbf{a}_1\|}$.
 - (b) Compute $\mathbf{b} = \mathbf{a}_2 \frac{\mathbf{a}_1 \cdot \mathbf{a}_2}{\mathbf{a}_1 \cdot \mathbf{a}_1} \mathbf{a}_1$.
 - (c) Compute $\mathbf{q}_2 = \frac{\mathbf{b}}{\|\mathbf{b}\|}$.
 - (d) Then

$$Q = \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{pmatrix}, \quad R = \begin{pmatrix} \mathbf{a}_1 \cdot \mathbf{q}_1 & \mathbf{a}_2 \cdot \mathbf{q}_1 \\ 0 & \mathbf{a}_2 \cdot \mathbf{q}_2 \end{pmatrix}$$

2.2 Rank 1 SVD in Compact Form

- 1. To check a matrix is rank 1, check that the column vectors are all multiples of one another.
- 2. Suppose A is an $m \times n$ matrix with rank 1. You can write $A = \mathbf{x}\mathbf{y}^T$ where $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$ as follows:
 - (a) Choose a nonzero column of A, set it equal to \mathbf{x} .
 - (b) Find $\mathbf{y} = (y_1, \dots, y_n)$ so that $y_i \mathbf{x}$ is the *i*th column of A.
- 3. Given $A = \mathbf{x}\mathbf{y}^T$ nonzero, we can obtain the SVD for A in compact form:

$$A = U\Sigma V^T$$

where

$$U = \frac{\mathbf{x}}{\|\mathbf{x}\|}, \quad \Sigma = \left(\|\mathbf{x}\|\|\mathbf{y}\|\right), \quad V = \frac{\mathbf{y}}{\|\mathbf{y}\|}.$$

Above, U is $m \times 1$, Σ is a 1×1 matrix, and V is $n \times 1$.

3 Problems

1. Compute the column spaces of the following matrices

(a)
$$\begin{pmatrix} 2 & 1 \\ 2 & 1 \\ 1 & 0 \end{pmatrix}$$
,

(b)
$$\begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{cccc}
(c) & \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}
\end{array}$$

2. Compute the null spaces of the following matrices

(a)
$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$$
.

3. Find the singular values for the following rank 1 matrices

(a)
$$\begin{pmatrix} 1 & -3 \\ 3 & -9 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 \\
0 & 1 \\
0 & -4
\end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & 1 & 3 \\ 4 & -2 & -6 \end{pmatrix}$$

4. Find the singular values of the matrices

(a)
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

(b)
$$\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \end{pmatrix}$$

5. Suppose you are given an $m \times n$ matrix A and its SVD (U, Σ, V) . Find the SVD of the following matrices in terms of U, Σ, V and describe the column spaces in terms of the column or row space of A

- (a) A^T
- (b) A^{-1} assuming m = n and A is invertible,

6. Suppose A is 3×2 with SVD in full form

$$A = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \\ -1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Check that this is an SVD in full form for A. How would you find the SVD in compact form for A from the full form?

7. Find the QR decomposition of the following matrices

(a)
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 0 & 3 \\ 2 & 4 \\ 0 & 4 \end{pmatrix}$$

4 Answers

1. (a) the plane x - y = 0, (b) z = 0 plane, (c) \mathbb{R}^3

2. (a) $\{0\}$, (b) $\{t\begin{pmatrix} 1\\-1 \end{pmatrix}: t \in \mathbb{R}\}$, (c) $\{t\begin{pmatrix} 0\\1 \end{pmatrix}: t \in \mathbb{R}\}$

3. (a) 10, (b) $\sqrt{21}$, (c) $\sqrt{70}$

4. (a) 1,1, (b) 1,1

5. See solutions

6. -

7. See solutions