6 -laboratoriya jumısı

Parallel terbelis konturın izertlew

Jumistiń maqseti - parallel terbelis konturiniń chastotaliq xarakteristikaların, derektiń ishki qarsılığı hám júkleniw qarsılıgınıń chastotaliq xarakteristikalarına tásirin eksperimental tekseriw.

1. Teoriyalıq mağlıwmatlar

Signallardı payda etiw hám olardı qayta islew ushın mólsherlengen kóplegen apparatlar quramında parallel terbelis konturları (PTK) bar. Usılardan birewiniń sxeması 1, a- suwretde keltirilgen.

1-súwret. Parallel terbelis konturları

PTK nıń kompleks ótkezgishligi onıń shaqapshaları kompleks ótkezgishliklerinıń jıyındısına teń

$$\underline{Y} = \underline{Y}_1 + \underline{Y}_2 = \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2} = \frac{1}{R_1 + j\omega L} + \frac{1}{R_2 - j\frac{1}{\omega C}} = g - jb, \text{ bunda}$$

$$g = \frac{R_1}{R_1^2 + (\omega L)^2} + \frac{R_2}{R_2^2 + \frac{1}{(\omega C)^2}} - \text{aktiv \'otkeriwshe\'nlik;}$$

$$b = \frac{\omega L}{R_1^2 + (\omega L)^2} - \frac{1/\omega C}{R_2^2 + (1/\omega C)^2} - \text{reaktiv \'otkeriwshe\'nlik.}$$

Konturda toklar rezonansi (TR) bolganda reaktiv ótkezgishlik nolga teń boladı (b = 0),

$$\frac{\omega_r L}{R_1^2 + (\omega_r L)^2} - \frac{1/\omega_r C}{R_2^2 + (1/\omega_r C)^2} = 0,$$
(6.1)

Bul bolsa TR júz boliwiniń shárti bolip tabiladi. Sol (6. 1) teńliktiń sheshiminen rezonans chastotaniń bahaların anıqlaw ushin ańlatpanı payda etemiz:

$$\omega_r = \frac{1}{\sqrt{LC}} \sqrt{\frac{\rho^2 - R_1^2}{\rho^2 - R_2^2}},$$
 (6.2)

Bunda $ho = \sqrt{L/C}$ -PTK nıń túsindirmeli qarsılığı.

TR (ω=ω_r) bolgandagı PTK nıń qarsılıgı maksimal bahaga iye hám tómendegi ańlatpa arqalı anıqlanadı

$$R_r = \frac{1}{g_r} = \frac{\rho^2 + R_1 R_2}{R_1 + R_2}$$
 (6.3)

PTK niń haqiyqiyligi $Q=\rho(R_1+R_2)$ ga teń.

Kishi quwat ısırapili $(R_1^2 << \rho^2; R_1^2 << \rho^2)$ TR júz bergen degi PTK nıń qarsılıgı tómendegine teń

$$R_{p} = \frac{\rho^{2}}{R_{1} + R_{2}} = Qp = Q^{2} (R_{1} + R_{2})$$
 (6.4)

Bunday jagdaylarda (6. 2) rezonans chastotası tómendegi anlatpaga aylanadı

$$\omega_p \approx \omega_0 = 1/\sqrt{LC}$$

TR bolganda hár eki shaqapshalardagı toklar shama menen birdey boladı ($I_{1p} \approx I_{2p}$) hám olardıń hár biri shınjırdıń kiriwindegi Sabaq tokdan Q ret úlken boladı :

$$I_{1p}/I_p \approx I_{2p}/I_p \approx Q$$
.

PTK (1, a- suwretdegi sxema) toklarınıń I (ω), I₁ (ω), I₂ (ω) chastotalıq xarakteristikaları 1, b- suwretde kórsetilgen.

Kishi quwat ısırapı bolgan PTK (2, a- súwret), barlıq elementleri óz-ara parallel jalgangan almastırıw sxeması menen salıstırıwlanıp, almastırılıwı múmkin.

2. a- súwret.

Sonday terbelis konturı kompleks ótkezgishligi tómendegine teń:

$$\begin{split} Y(j\omega) &= \frac{1}{R_r} + j \left(\omega C - \frac{1}{\omega L} \right) = \frac{1}{R_r} + j \omega_0 C \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = \frac{1}{R_r} \left[1 + j \frac{R_r}{p} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \right] = \\ &= \frac{1}{R_r} \left[1 + j Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \right] = \frac{1}{R_r} (1 + j \xi), \end{split}$$

Bunda $\xi=Q\left(\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega}\right)$ - uliwmalastırılgan rezonans buzılganlığı dep ataladı.

PTK nıń kompleks qarsılıgı

$$Z(j\omega) = \frac{1}{Y(j\omega)} = \frac{R_r}{1 + j\xi} = Z(\omega)e^{j\varphi(\omega)},$$
bunda
$$Z(\omega) = \frac{R_r}{\sqrt{1 + \xi^2}}; \ \varphi(\omega) = -arctg\xi.$$
(6.5)

2, b- suwretde R_r =10 k Ω hám Q = 2 hám 5 bolgan PTK niń ACHX hám FCHX keltirilgen. FCHX ϕ (ω) den usıdan ayqın boladı, rezonans chastotası ($\omega_r \approx \omega_0$) den kishi bolgan ($\omega < \omega_0$)chastotalarda, konturdıń qarsılıgı aktiv-induktiv (rezistiv-induktiv) xarakterde, rezonansdan úlken bolgan ($\omega < \omega_0$)-aktiv-sıyımlılıq (rezistiv-sıyımlılıq) xarakterde boladı.

2. b- súwret

Tájiriybede, PTK lardıń jaqsı tańlawshańlıq ayrıqshalığın payda etiw ushın ishki qarsılıgı R_i kútá úlken bolgan derek hám maksimal qarsılıqlı $R_{j\acute{u}k}$ júkleniw saylanadı. E kernewli hám R_i ishki qarsılıqlı EJK deregin $J=E/R_i$ tokli hám R_i qarsılıqlı tok deregi menen almastırıp, 3, b- suwretdegi sxema payda etemiz.

Parallel jalgangan qarsılıqlar R_i, R_r hám R_{júk} ni ekvivalent qarsılıq menen almastırıp,

$$R_{re} = \left(\frac{1}{R_r} + \frac{1}{R_i} + \frac{1}{R_{yul}}\right)^{-1},\tag{6.7}$$

5. 3, v- suwretdegi sxemanı payda etemiz.

3- súwret.

PTK nıń 3, v- suwretdegi sxemasında chastotalıq xarakteristikalardıń kernewleriniń bahaların ishki qarsılıgı R_{ν} bolgan voltmetr menen ólshegende, voltmetr qarsılıgı da shınjırga parallel jalganadı. Ólshewlerdiń anıqlığın támiyinlew ushın R_{ν} ni da itibarga alıw zárúr boladı ; nátiyjede shınjırdıń ulıwma qarsılıgı tómendegine teń boladı :

$$R_{re} = \left(\frac{1}{R_r} + \frac{1}{R_i} + \frac{1}{R_{yuk}} + \frac{1}{R_v}\right)^{-1}$$

PTK nıń ekvivalent haqıyqıylığı tómendegi ańlatpa járdeminde esaplanadı:

$$Q_{\mathfrak{I}}=R_{\mathfrak{P}\mathfrak{I}}/\rho. \tag{6.8}$$

Ekvivalent ulıwmalastırılgan rezonans buzılganlığı

$$\xi_e = Q_e \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right). \tag{6.9}$$

PTK dagi kernew tómendegi ańlatpa járdeminde esaplanadı

$$U_{\hat{E}} = J \cdot Z_e(\omega) = \frac{JR_{re}}{\sqrt{1+\xi^2}} = \frac{U_{kre}}{\sqrt{1+\xi^2}},$$
 (6.10)

Bunda U_{kre} = JR_{re} re rezonans processindegi PTK nıń kernewi.

PTK nıń ornıqlı xarakteristikalarınan biri onıń ótkeriw aralığı (ÓA) bolıp tabıladı ; ÓA dep rezonans chastotası átirapındağı sonday chastotalar diapazonına aytıladı, ol jağdayda PTK dagi kernew óziniń maksimal (rezonansdağı) ma'nisiniń $1/\sqrt{2}\approx 0.7$ muğdarınan kishi bolmasin (4- súwret).

ÓA dıń shegaralıq chastotaların tómendegi teńlikten anıqlaymız:

$$U_{ke}(f) = \frac{1}{\sqrt{2}} U_{kre}; \frac{U_{kre}}{\sqrt{1+\xi^2}} = \frac{U_{kre}}{\sqrt{2}};$$

Sonday eken, ÓA dıń shegaralıq chastotalarında ulıwmalastırılğan rezonans buzılğanlığı $\xi_{1,2}=\pm 1$ bo'ar eken.

Eger, $\xi_e = Q_e \left(\frac{f}{f_0} - \frac{f_0}{f} \right)$ ekenligin itibarga alsaq, ol qolda tómendegi teńlemediń sheshiminen

$$Q_{9}\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)=\pm 1$$

ÓA dıń shegaralıq chastotaların esaplawdıń ańlatpaların anıqlaw múmkin:

$$f_{1,2} = f_0 \left(\sqrt{1 + \frac{1}{4Q^2}} \pm \frac{1}{2Q} \right). \tag{6.11}$$

PTK nıń ÓA absolyut keńligi:

$$\Pi_{9} = f_{2} - f_{1} = \frac{f_{0}}{O} = df_{0}.$$
(6. 12)

PTK nıń ÓA salıstırmalı keńligi:

$$S_{0e} = \frac{\ddot{I}_{e}}{f_{0}} = \frac{f_{2} - f_{1}}{f_{0}} = \frac{1}{Q_{e}} = d_{y}, \tag{6.13}$$

bunda $d_e = \frac{1}{Q_e}$ - PTK nıń tómenlewi.

Bul (5. 12) - (5. 13) ańlatpalardan haqıyqıylıq ma`nisin eksperiment járdeminde anıqlanıwda paydalanıladı

$$Q_e = f_0 / (f_2 - f_1). (6.14)$$

2. Dáslepki esaplawlar

2. 1. Terbelis konturınıń berilgen parametrleri ushın (1- kestege qarań) f_0 rezonans chastotasın, xarakteristik (xarakteristikalıq) r qarsılıqtı, haqıyqıy Q ni, rezonans processindegi konturdıń R_r di esaplań. Esaplawlar nátiyjelerin 2- kestege kiritiń. PTK nıń jeke haqıyqıylığın Q = q/R_k ańlatpa járdeminde esaplań, bunda R_1 – induktivlik katushkası quwat ısırapı qarsılıgı (1- kesteden alınadı).

1-keste

Stend nomeri	L, mHn	C, nF	R_1, Ω	R_{ish} , Ω	$R_{ m juk},\Omega$
1	45	100	45	10	10
2	50	80	50	10	10
3	55	70	55	10	10
4	60	60	60	10	15
5	65	50	65	15	15
6	70	40	70	15	15
7	75	30	75	15	20
8	80	25	80	15	20
9	85	20	85	20	20
10	90	15	90	20	25
11	95	10	95	20	25
12	100	5	100	20	25

2. 2. 1- kestedegi berilgen bahalar ushın ishki qarsılıgı R_i bolgan kernew deregi hám júkleniw qarsılıgı $R_{j\acute{u}k}$ ga jalgangan PTK nıń ekvivalent haqıyqıylığın, ekvivalent qarsılıq R_r ni esaplan. esaplaw nátiyjelerin 2-kestege kiritiń.

Terbelis konturı parametrleri

5.2-keste

$R=R_1+R_2=$	L=	C=	
$f_0=1/2\pi\sqrt{LC}=\dots$	$\rho = \sqrt{L/C} = \dots$	$Q = \rho/R_I = \dots$	$Q_{\scriptscriptstyle 9} = Q \rho = \dots$
$R_n=50 \ kOm$	R _{júk} =	$R_{P\Im} = (R_P^{-1} + R_H^{-1} + R_{yuk}^{-1})^{-1}$	$R_{p9}=R_{p9}/ ho=$

2. 3. PTK nıń E=5 V bolgandağı kernew U_k(f) boyınsha chastotalıq

(3-súwret) hám kernew menen tok arasındağı fazalar jılısıwı $\varphi(f)$ xarakteristikaların esaplań.

Esaplawlardı tómendegi chastotalarda $f = f_0 \pm 4\Delta f_{gr}$, $f_0 \pm 2\Delta f_{gr}$, $f_0 \pm \Delta f_{gr}$, f_0 atqarıń, bunda $\Delta f_{gr} = f_0/20$. esaplawlar nátiyjelerin 5. 2- kestege kiritiń. $U_k(f)$ hám $\varphi(f)$ esaplawların kompyuterde EXCEL, Math CAD 2001 hám basqa programmalar járdeminde orınlaw múmkin. Zárúr bolganda bul programmalardı oqıtıwshıdan yamasa kafedra programmalar fondidan alıw múmkin.

Dáslepki esaplawlar hám ólshewler nátiyjeleri

3-keste

№		Esaplaw n	Ólshew nátiyjeleri			
	f	f, kHz	U_k, V	φ, grad	U_k, V	φ, grad
1	<i>f</i> ₀ -4∆ <i>f</i> _{gr}					
2	f_0 -2 $\Delta f_{ m gr}$					
3	f_0 - $\Delta f_{ m gr}$					
4	f_0					
5	$f_0+\Delta f_{ m gr}$					
6	$f_0+2\Delta f_{ m gr}$					
7	$f_0+4\Delta f_{ m gr}$					
	<u> </u>			<u>. </u>		•
$f_0 = \dots kHz$;	$f_1=\dots kHz$;	$f_2=kHz;$	Q_e = kH	$Iz; \qquad \Delta f = ?;$		

3. Jumisti orinlaw

- 3. 1. PTK nıń jeke rezonans qarsılıgı R_r hám rezonans chastotası ω_r ni esaplaw.
- 5- suwretde keltirilgen sxemanı jıynań.

Generator kernewi chastotasın tuwri özgertirip, V2 voltmetriniń maksimal kórsetkishi boyınsha PTK nıń rezonans chastotasın ólsheń. Rezonans chastota f₀ hám voltmetrler V1 hám V2 kórsetkishlerin jazıp alın. PTK nıń nátiyjelik rezonans qarsılıgı tómendegi ańlatpa járdeminde anıqlanadı:

$$R_r = R_i \frac{U_2}{U_1 - U_2}$$

Terbelis konturınıń xarakteristikalıq qarsılıgı tómendegishe esaplanadı

$$\rho = \sqrt{L/C}$$

Induktivlik katushkasının ısıraplarına proportsional bolgan aktiv qarsılıgı (kondensatordağı ısıraplardı itibarga almaymız). Onıń ushın, aldın terbelis konturınıń haqıyqıylığı anıqlanadı

$$Q = R_r/\rho$$
,

Keyininen induktivlik katushaksı aktiv qarsılıgı esaplanadı

$$R_k = \rho / Q$$
.

R_k dıń ólshengen hám esaplangan bahaları (1- kestege qarań) salıstırılanadı.

3. 2. Parallel terbelis konturınıń AChX hám FChX in ólshew. Oniń ushın 6 - suwretde keltirilgen sxemanı jıynań. Sxemanıń parametrlerin 2. 1 hám 2. 2 bántlerdegi sıyaqlı ornatıladı. G2 generatordıń shığıwında kernew ma`nisi garmonik kernew dereginiń maksimal múmkinshilikli kernewi ornatıladı (E=5 V).

Parallel terbelis konturının AChX hám FChX kernewleri $U_k(f)$ ti, hám de kernew menen tok arasındağı fazalar jılısıwın ólshew, dáslepki esaplawlar orınlanğan chastotalarda ámelge asıriladı. Ólshewler nátiyjelerin 2- kestege kiritin.

Ostsillograf ekranınan rezonans chastotasınan kishi $(f=f_0$ - $\Delta f_{\rm gr})$, rezonans chastotası $(f=f_0)$ de hám rezonans chastotasınan úlken $(f=f_0+\Delta f_{\rm gr})$ bolgan chastotalarda terbelis konturı kiriwindegi kernew $U_k(f)$ hám $i_k(f)$ toklar máwrit bahalarınıń grafigi sızıp alınsın.

4. Ólshew nátiyjelerine qayta islew

Dáslepki esaplawlar hám ólshewler nátiyjeleri boyınsha (2- kestege qarań) chastotalıq xarakteristikalar grafikları $U_k(f)$ hám $\varphi(f)$ sızılsin.

5. Esabattı tayarlaw

Laboratoriya jumisi boyinsha tayarlangan esabatda tomendegi magliwmatlar boliwi shart:

- 5. 1. Jumistiń ati hám magsetleri.
- 5. 2. Dáslepki esaplawlar hám eksperiment nátiyjeleri.
- 5. 3. Ólshewlerdiń sxemaları.
- 5. 4. Chastotalıq xarakteristikalar $U_k(f)$ hám $\varphi(f)$.
- 5. 5. Kernew $U_k(f)$ hám tok $i_k(f)$ máwrit bahalarınıń (shamalıq) $f < f_0$; $f = f_0$ hám $f > f_0$ chastotalardağı grafikları.
 - 5. 6. esaplawlar hám eksperiment nátiyjelerin analiz qılıw boyınsha sheshimler.

6. Qadagalaw sorawları hám mısallar

- 6. 1. Parallel terbelis konturı sxeması qanday kóriniste boladı?
- 6. 2. Parallel terbelis konturınıń kompleks ótkezgishligi qanday anıqlanadı?
- 6. 3. Parallel terbelis konturındağı rezonanstıń shárti qanday?
- 6. 4. Parallel terbelis konturi rezonans chastotasi qanday anıqlanadı?
- 6. 5. Parallel terbelis konturınıń rezonans rejimindegi qarsılıgı qanday anıqlanadı?
- 6. 6. Kishi quwat ısırapına iye bolgan parallel terbelis konturının tariypini keltirin. Sonday konturdin rezonans chastotası hám rezonans qarsılığı qanday esaplanadı?
 - 6. 7 Parallel terbelis konturı Z(ω) tolıq qarsılıgınıń chastotalıq xarakteristikası qanday formaga iye?
 - 6. 8. Parallel terbelis konturı chastotaları $f < f_0$; $f = f_0$ hám $f > f_0$ bolganda qarsılıqtın xarakteri qanday boladı?
 - 6. 9. Ulıwmalastırılgan rezonans buzılganlığı ne hám ol qanday anıqlanadi
- 6. 10. Derektiń ishki qarsılıgı hám júkleniwdiń qarsılıgı parallel terbelis konturınıń tańlığına qanday tásir etedi?
- 6. 11. Kishi quwat ısırapına iye bolgan parallel terbelis konturının parametrleri L = 100 mkHn hám C = 400 pF bolsa, onın rezonans chastotası f_0 in esaplan.
- 6. 12. Parametrleri L=100 mkHn C=400 pF hám R=5 Ω bolgan parallel terbelis konturınıń xarakteristikalıq qarsılığı ρ_1 , haqıyqıylığı Q hám rezonans qarsılıgı R_r ın anıqlań.
- 6. 13. Rezonans chastotası f_0 hám ekvivalent haqıyqıylığı $Q_E = 100$ bolgan parallel terbelis konturının ótkeriw aralıqı keńligin anıqlan.
- 6. 14. Rezonans chastotası $f_0 = 500$ kHz, haqıyqıylığı Q = 100 hám xarakteristikaiy qarsılıgı ξ =500. bolgan parallel terbelis konturı ishki qarsılıgı R_{Vjuk} =50 k Ω . bolgan derekke jalgangan. Ótkeriw aralıqı 20 kHz bolıwı ushın jükleniw qarsılıgı qanday bolıwı kerek?