Matemática Discreta

Ano Lectivo 2014/2015

Folha de exercícios nº4 (Estratégias de demonstração)

1. Mostre que

- (a) $\left(1+\frac{1}{3}\right)^n \ge 1+\frac{n}{3}$, para todo $n \in \mathbb{N}$;
- (a) $(1+3) \ge 1+3$, para todo $n \in \mathbb{N}$, (b) $x^n - y^n = (x-y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$, para todo o inteiro $n \ge 2$;
- (c) $n^3 + 2n$ é divisível por 3 para todo $n \in \mathbb{N}$;
- (d) $3^n + 7^n 2$ é divisível por 8, para todo $n \in \mathbb{N}$.
- (e) $\sum_{i=1}^n r^i = \frac{(r^n-1)r}{r-1}$, para todos os inteiros $n \ge 1$ e para todos os números reais $r \ne 1$.
- (f) $H_{2^n} \geq 1 + \frac{n}{2}$, para $n \geq 0$, onde $H_j = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{i}$, para $j \in \mathbb{N}$.
- 2. A sucessão $(a_n)_{n\in\mathbb{N}}$ é definida por

$$\begin{cases} a_1 = 1 \\ a_{n+1} = a_n + 8n \end{cases}$$

Descubra uma fórmula fechada para a_n e prove a sua validade por indução.

- 3. Descubra e mostre por indução uma fórmula para $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n$, para $n \in \mathbb{N}$.
- 4. Mostre que os termos de uma sucessão que satisfaça $a_1=a_2=1$ e $a_n=4a_{n-1}+5a_{n-2}$ para $n\geq 3$, são dados por $a_n=\frac{5^{n-1}+2(-1)^{n-1}}{3}$.
- 5. Considere a seguinte sucessão definida recursivamente por

$$\begin{cases} a_0 = 1, a_1 = 1 \text{ e } a_2 = 1 \\ a_n = a_{n-1} + a_{n-3}, \ n \ge 3 \end{cases}$$

Prove que se tem $a_{n+2} \ge (\sqrt{2})^n$, para todo $n \in \mathbb{N}$.

6. Considere a seguinte função definida para os números naturais

$$f(n) = \begin{cases} 0 & \text{se } n = 0\\ 4f(\frac{n}{2}) & \text{se } n \text{ for par e } n > 0\\ f(n-1) + 2n - 1 & \text{se } n \text{ for impar} \end{cases}$$

Mostre que $f(n) = n^2$ para todo $n \ge 0$.

7. Prove que qualquer inteiro maior do que 1 é divisível por um número primo.

1

- 8. Resolva, aplicando o princípio das gaiolas de pombos (princípio de Dirichelet):
 - (a) Num grupo de 100 pessoas quantas, pelo menos, nasceram no mesmo mês?
 - (b) Numa reunião magna de estudantes universitários quantos devem estar presentes para garantir que pelo menos 3 fazem anos no mesmo dia?
 - (c) Qual o número mínimo de estudantes de uma disciplina para garantir que pelo menos 6 terão a mesma nota numa escala inteira de 1 a 5?
- 9. Mostre que num grupo de 20 pessoas escolhidas ao acaso existem pelo menos 2 pessoas que têm o mesmo número de amigos dentro do grupo. Note que duas pessoas são consideradas amigas se houver uma relação de amizade recíproca estabelecida entre elas.
- 10. Mostre que dados 11 números no intervalo]0,1[, haverá pelo menos dois deles cuja diferença é menor que 0.1.
- 11. Aplicando o princípio das gaiolas de pombos (princípio de Dirichelet), mostre que escolhendo n+1 inteiros entre os inteiros $1,2,\ldots,2n$ há dois (entre os escolhidos) tais que um é divisor do outro.
- 12. Admita que num grupo de 6 pessoas, cada par de indivíduos consiste em dois amigos ou dois inimigos. Mostre que então existem três amigos mútuos ou três inimigos mútuos no grupo.
- 13. (a) Sejam p_1, p_2, \ldots, p_n inteiros positivos. Mostre que se $p_1 + p_2 + \cdots + p_n n + 1$ objectos são colocados em n caixas, então existe um inteiro i entre 1 e n tal que a i-ésima caixa contém pelo menos p_i objectos.
 - (b) Fazendo $p_1 = p_2 = \cdots = p_n = r \in \mathbb{N}$ o que se pode afirmar?
- 14. Sejam q_1, q_2, \ldots, q_n inteiros positivos. Mostre que se a sua média aritmética é superior a r-1 $(r \in \mathbb{N})$, então pelo menos um desses inteiros é maior ou igual a r.
- 15. Durante um mês com 30 dias uma equipa de "baseball" joga pelo menos um jogo por dia, mas não mais do que 45 jogos no total dos 30 dias. Usando o princípio da gaiola dos pombos, prove que tem que existir um certo período de dias consecutivos durante os quais a equipa joga exactamente 14 jogos.