Started on	Thursday, 8 July 2021, 10:29 PM
State	Finished
Completed on	Tuesday, 13 July 2021, 9:29 AM
Time taken	4 days 10 hours
Overdue	4 days 9 hours
Marks	0.00/50.00
Grade	0.00 out of 10.00 (0 %)

Not answered

Marked out of 1.00

```
Study the following recursive algorithm:

procedure p ( n: integer)

if (n<=0) result = 2;

else result= p(n -2) * p(n -1);

p(4) = ?

Select one:

a. None of the others.

b. 624

c. 256

d. 352
```

Question 2

Not answered

Marked out of 1.00

How many functions f:A \rightarrow B in which |A|=3 and |B|= 7?

Select one:

- a. 21
- ob. Only one.
- \circ c. 3^7
- od. None of the others.
- \circ e. 7^3

Question 3

Not answered

Marked out of 1.00

Study the sequence given recursively by $a_n = -a_{n-1}$ and $a_1 = 5$. What is a_{2015} ?

Select one:

- o a. −5
- ob. None of the others
- \circ c. $(-5)^{2015}$
- od. 5

Question 4

Not answered

Marked out of 1.00

-- -----

Let m be number of cut vertices and n be number of cut edges (bridges) of the graph above.

What is m + n?

Select one:

- _ a. 5
- ob. 3
- c. 6
- od. 4
- e. 2

Question **5**

Not answered

Marked out of 1.00

Write a proposition equivalent to $\neg p \rightarrow q$ using only p, q, \neg and \land
Select one:
_ a. ¬р^q
○ b. ¬(¬p^¬q)
○ C. ¬(p^¬q)
\bigcirc d. $\neg (q^{\neg p})$

Not answered

Marked out of 1.00

Suppose

c: It is cold

d: It is dry

Write "It is neither cold nor dry" in symbols.

Select one:

- a. cvd
- b. ¬c ^ ¬d
- oc. None of the others
- d. ¬c v ¬d
- e. c ^ d

Question **7**

Not answered

Marked out of 1.00

Which of these codes are prefix codes?

https://lms-hcmuni.fpt.edu.vn/mod/quiz/review.php?attempt=24654&cmid=4793&showall=1

(i) a: 101, e: 00, t: 11, s: 01

(ii) a: 01, e: 11, t: 010, s: 101

Select one:

- a. (i) only
- ob. None
- oc. both
- d. (ii) only

Question 8

Not answered

Marked out of 1.00

Given $f(x) = x^2 + 1$ and g(x) = x + 2, find $(f \circ g)(x) = f(g(x))$.

Select one:

- a. $(x + 2)^2 + 1$
- \bigcirc b. $(x^2 + 1)(x+2)$
- \circ c. $x^2 + 3$
- \bigcirc d. $(x + 2)^2$

Question 9

Not answered

Marked out of 1.00

What is the value of following expression:

32*2 \ 53-84/*-

a.	34	
h	20	

C. 36

od. 32

Ouestion 10

Not answered

Marked out of 1.00

For each of these arguments determine whether the argument is valid or not valid.

- (i) Everyone enrolled in the university has lived in a dormitory. Mia has never lived in a dormitory. Therefore, Mia is not enrolled in the university.
- (ii) A convertible car is fun to drive. Isaac's car is not a convertible. Therefore, Isaac's car is not fun to drive.

Select one:

a (i). not valid (ii). not valid

a. (i): not valid, (ii): valid
 b. (i): not valid, (ii): valid
 c. (i): valid, (ii): not valid
 d. (i): valid, (ii): valid

Question 11

Not answered

Marked out of 1.00

Study the sequence of pseudorandom numbers is generated $x_{n+1} = (4x_n - 5) \mod 7$, with seed $x_0 = 1$. Find x_2 .

- oa. 5
- ob. 7
- oc. None of the others
- od. 4

e. 3

Question 12

Not answered

Marked out of 1.00

Which of the following functions is $O(x^2)$?

- a. $g(x) = (x \log x + 1)x$
- b. h(x) = x(x+1)(x+2)
- o. None of the others
- od. $f(x)=100x^2+3$
- L/... 1Y

e. κ(x) = ∠^

Question 13

Not answered

Marked out of 1.00

Which of the following graphs has an Euler circuit?

Select one:

- a. All of the others.
- b. K₆
- \circ c. K_{10}
- d. K₉

Question 14

Not answered

Marked out of 1.00

How many bit strings of length 10 either begin with three 0s or end with two 1s?

- a. None of the others
- \bigcirc b. 2^{10}
- \circ c. $2^7 + 2^8 2^5$
- od. $2^7 + 2^8$

Question 15	
Not answered	
Marked out of 1.00	

Not answered

Marked out of 1.00

- Study the following statements: (i) 1 + 2 + 3 + ... + n = n(n+1) for n = 1, 2, 3, ...(ii) $1 + 3 + 5 + ... + 2n 1 = n^2$ for n = 1, 2, 3, ...
- (i) is ... and (ii) is ...

- a. true, false
- b. false, false
- c. false, true
- d. true, true

Not answered

Marked out of 1.00

 $f(x) = x^3$ is:

- a. O(x)
- o. O(x²)
- \bigcirc d. O($x^2 log x$)

	Question 18
	Not answered
	Marked out of 1.00
	Let G be an undirected graph with 7 vertices, in which 3 vertices are of degree 4 and 4 vertices are of degree 3. How many edges does G have?
	Select one: ○ a. 14
	○ b. None of these
	oc. 7
	od. 24
	_ e. 12
ı	

Question 19
Not answered
Marked out of 1.00
How many leaves does a full 3-ary tree with 100 vertices have?
Select one:
○ a. 67
○ b. 76
○ c. 68
od. 78
Question 20
Not answered
Marked out of 1.00
Set up a binary tree for the following list, in the given order, using alphabetical ordering: SHE, SELLS, SEA, SHELLS, BY, THE, SEASHORE.

How many comparisons with words in the tree are needed to determine if the word SHARK is in the tree?

a. 5

o b. 3

oc. 2

od. 4

Question 21

Not answered

Marked out of 1.00

What is the value of following expression:

Select one:

a. 56

b. 9

oc. 37

od. 32

Question 22

Not answered

Marked out of 1.00

Find the base 5 expansion of 173.

Select one:

a. None of these

○ b. 413
○ c. 643
od. 1143
○ e. 143
Question 23
Not answered Marked are 54.00
Marked out of 1.00
Let p, q, and r be the propositions
p : You get an A on the final exam.
q : You do every exercise in this book.
Write these propositions using p, q, and r and logical connectives (including negations).
"Doing every exercise in this book is sufficient for getting an A on the final exam."
Select one:
a. None of these
○ b. pvq
○ c. p^q
\bigcirc d. $p \rightarrow q$
\bigcirc e. $q \rightarrow p$

	Question 24		
	Not answered		
	Marked out of 1.00		
_			
	Suppose that a "word" is any string of seven letters of the alphabet (with 26 letters), with repeated letters allowed. How many words have exactly one vowel?		
	Select one:		
	a. 5.7.21 ⁶		
	○ b. 7.21⁶		
	\odot c. 5.21 ⁶		
	\bigcirc d. 26 ⁷		
	e. None of the others		

Question 25

Not answered

Marked out of 1.00

Study the following recursive algorithm:

Procedure T (n: integer)

If n<3 then T(n) := 2

Else If n mod 2=0 then T(n) := n

Else T(n) := T(n-1) + 2

Find T(9).

Select one:

a. 6

b. 10

c. None of these

d. 9

e. 5

 \sim 7

Question 26
Not answered
Marked out of 1.00
How many comparisons required for searching the word " make " in the BINARY SEARCH TREE for the words: A , swallow , can't , make , a, summer.
Select one:
○ a. None of these
○ b. 4
○ c. 2

Question **Z**/

Not answered

Marked out of 1.00

Given the function

$$f(n) = \begin{cases} 1 & \text{if } n \le 3 \\ f(n-1)+2 & \text{if } n \ge 3 \end{cases}$$

for the integer n.

Find f(4).

Select one:

- a. 2
- ob. 3
- oc. 1
- od. 4
- e. None of the others

Question 28

Not answered

7/13/2021

Marked out of 1.00

$K_{m,n}$ has edges andvertices.	
Select one:	
○ a. mn, m + n	
b. min(m, n), max(m,n)	
c. max(m, n), min(m,n)	
d. m + n, mn	
Question 29	
Not answered	
Marked out of 1.00	
With domain is the set {1,2,3,4,5,6,7,8,9}, the bit string represents the <i>union</i> of two sets {1,5,8} and {2,3,4,5} is	
Select one:	
a. None of the others	

Question 30

Not answered

Marked out of 1.00

b. 000001101c. 111110000d. 111111111e. 111100111

Consider a set of integers recursively defined by : 1 and 2 are S; and if x in S then x+3 in S. Which statement below is true?	
(i) 6 is in S	
(ii) 7 is in S	
Select one:	
o a. None	
ob. (ii) only	
oc. Both	
d. (i) only	

Not answered

Marked out of 1.00

Suppose that a graph G and the graph W_7 are isomorphic.	
How many edges does G have?	
Select one:	
a. 7	
○ b. not enough data to know.	
○ c. 14	
_ d. 6	
○ e. 8	

Not answered

Marked out of 1.00

In a technician's box there are 200 VLSI chips, 8 of which are faulty. How many ways are there to pick two chips, so that one is a working chip and the other is faulty?

Select one:
○ a. 208
○ b. 200×8
○ c. 192×8
○ d. None of the others
Question 33
Not answered
Marked out of 1.00
There are $\underline{\hspace{0.5cm}}$ nonzero entries in an adjacent matrix representing the graph K ₅ .
Select one:
a. 20
○ b. 12
○ c. 10
○ d. 15
Question 34
Not answered
Marked out of 1.00
Which of the following statements is true?
(i) Ø∈ {x}
(ii) x ⊂ {x}

Select one:

a. both

b. none

c. (ii) only

d. (i) only

Question 35

Not answered

Marked out of 1.00

Consider the algorithm
result(a,b: integer)
x:=a
y:=b
while y<>0
begin

r:=x mod y
x:=y
y:=r
end.

Given a=27,b=4. What is the value of x after the pseudocode has been executed?

Select one:
a. 1
b. None of the others.
c. 3
d. 4
e. 27

Question 36

Not answered

Marked out of 1.00

Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ...What is A_3 ?

- \bigcirc a. $A_3 = \{3\}$
- \bigcirc b. $A_3 = \{1, 2, 3\}$
- a Niama aftha athawa

- c. None of the others
- od. $A_3 = \{...-1, 0, 1, 2, 3\}$

Not answered

Marked out of 1.00

The following expression will be evaluated to 54 + 26 - 37

- a. None of the others.
- b. -17
- C. −12
- od. 20

○ e. 16

Question $\bf 38$

Not answered

Marked out of 1.00

Given the following prefix codes:

M: 00, N: 010, T: 011, I: 100, U: 101, A: 11.

Find the word represented by 0010001001111

- a. MINUA
- ob. MIUNA
- o. MINTA
- d. MITNA

e. None of the others.

Question 39

Not answered

Marked out of 1.00

G

Are G and G' isomorphic? Explain.

Select one:

a. No, G has a rectangle, and G' does not have.

b. No, G has two triangles, and the graph G' does not have that property.

c. Yes, they have the same number of vertices and edges

Question 40

Not answered

Marked out of 1.00

(i) If the graph K_6 has a Hamilton circuit, then the graph W_5 has an Euler circuit.

(ii) If the graph $\rm K_6$ has an Euler circuit, then the graph $\rm W_5$ has a Hamilton circuit.

Which statements are FALSE?

- a. (ii) and (iii)
- b. (i) only
- c. (iii) only
- d. (i) and (iii)
- e. (ii) only

Not answered

Marked out of 1.00

Encrypt the message CR by using the encryption function $f(p) = (p + 11) \mod 26$.

- oa. KV
- ob. NC
- o. NA
- od. None of the others.

Question 42

Not answered

Marked out of 1.00

Consider the statements about the function $f(x) = (x - 3)^2 + 5$ from R to R.

- (i) f is one-to-one
- (ii) f is onto

Which statement is true?

- a. Both
- ob. None
- o. (i)
- d. (ii)

Question 43	
Not answered	
Marked out of 1.00	
If A x B has 72 elements and A has 8 elements, how many elements does B have?	
Select one:	
○ a. 64	
○ b. 72.8	
○ c. 9	
○ d. None of these	

Question 44
Not answered
Marked out of 1.00
Which of the following graphs has an Euler circuit?
(i) K ₁₁
(ii) K _{2,8}
Select one:
a. (i) only
o b. none
o c. both
od. (ii) only

Question 45

Not answered

Marked out of 1.00

-23 div 5 = ___ and -23 mod 5 = ___

- a. -4, 2
- b. -4, 3
- c. -5, 2
- od. -4, -3

Question 46
Not answered
Marked out of 1.00
Study the statements:
(1) W_n has Hamilton circuit for all $n \ge 3$.
(2) K _{2,3} has Hamilton circuit.
(1) is and (2) is
Select one:
○ a. false, false
○ b. false, true
oc. true, true
od. true, false

	4 7	3
Question	4/	

Not answered

Marked out of 1.00

Study the recursive function: F(n+1) = -F(n) / F(n-1), F(0) = -1, F(1) = 2

- \circ a. F(6)=3
- \circ b. F(6)=1/2
- \circ c. F(6)=-1
- od. F(6)=-1/2
- \circ e. F(6)=2

Not answered

Marked out of 1.00

Find the negation of the proposition

 $\forall x \exists y \ (P(x, y) \rightarrow Q(x, y))$

- (i) $\forall x \exists y \ (\neg P(x, y) \rightarrow \neg Q(x, y)$
- (ii) $\forall x \exists y \; (P(x, y) \land \neg Q(x, y)$
- (iii) $\exists x \forall y \ (P(x, y) \land \neg Q(x, y)$
- (iv) $\exists x \forall y \ (\neg P(x, y) \rightarrow \neg Q(x, y))$

- _ a. (ii)
- b. (i)
- o. (iv)
- d. None of these
- e. (iii)

Question 49			
Not answered			
Marked out of 1.00			

Let S(x): x is a student in this class,

C(x): x visited Canada

M(x): x visited Mexico.

Translate the statement "All students in this class visited Canada or Mexico".

Which translation is true?

(I) $\forall x(C(x) \land M(x))$

(II) $\forall x (\neg C(x) \rightarrow M(x))$

Select one:

- a. (l)
- b. Both
- c. (II)
- od. None

Question 50

Not answered

Marked out of 1.00

Give a recursive definition for the sequence $a_n = 3n + 5$, n=1,2,...

Select one:

- \bigcirc a. $a_n = a_{n-1} + 3$ for $n \ge 2$ and $a_1 = 5$
- b. None of these
- oc. $a_n = a_{n-1} 3$ for n > 2 and $a_1 = 8$
- od. $a_n = a_{n-1} + 3$ for $n \ge 2$ and $a_1 = 8$

«