Use mesh current analysis to solve for i(t) in the circuit below.

COLLEGE OF ENGINEERING

AC Power

This Lecture...

 Determine the complex power, average real power, and reactive power for any complex load with known input voltage or current.

© 2023 I. Fernandez

AC Circuit:

- On DC: p=Vi
- Instantaneous power: p(t) = v(t) i(t)

- Average Power: Power delivery (utilities).
 - Electronics (laptops, mobile phones, etc.).
 - Logic circuits.

Average Power

The average amount of work done or energy transferred per

unit time.

$$P = \frac{1}{T_0} \int_0^{T_0} \frac{\rho(t)}{v(t)i(t)} dt = \frac{V_m I_m}{2} \cos(\emptyset_V - \emptyset_I) = \frac{V_m I_m}{2} \cos(\Theta_Z)$$

$$V(t) = V_m \cos(\omega t + \emptyset V)$$

$$V(t) = I_m \cos(\omega t + \emptyset I)$$

$$Z_R = Re^{S_U}$$

$$Z_R = Re^{S_U}$$

$$Z_L = \omega Le^{S_U}$$

$$P_L = 0$$

Complex Power

Define S as complex power

$$S = \frac{VI^*}{2}$$

$$Average \checkmark$$

$$X = a + bj$$

$$X^{+} = a - bj$$

$$Y = m \cdot 0$$

$$Y^{+} = m \cdot -0$$

$$X = a + bj$$

$$Y = a - bj$$

$$Y = m \cdot 0$$

S = ``Complex Power'' = Real Power + Reactive PowerS = P + jQ

- * indicates the complex conjugate
- Real part is the real power
- Imaginary part is the reactive power
 - The dissipated power resulting from inductive and capacitive loads measured in volt-amperes reactive (VAR).
 - A purely reactive load can store power and then release it,
 but the net average power it absorbs is zero

Complex Power

$$\frac{VI^*}{2}$$

S = "Complex Power" = Real Power + Reactive Power

From polar to rectangular:

$$S = \frac{(V_m \angle \Theta_V)(I_m \angle -\Theta_I)}{2} = \frac{V_m I_m}{2} \angle \Theta_V - \Theta_I$$

$$S = \frac{V_m I_m}{2} \cos(\Theta_V - \Theta_I) + \frac{V_m I_m}{2} \sin(\Theta_V - \Theta_I).$$
And Reaching Paver
$$+ \text{Reaching Paver}$$

THE OHIO STATE UNIVERSITY

Complex Power

$$\mathbf{S} = \frac{1}{2} \mathbf{V} \mathbf{I}^* = P_{\text{av}} + j Q$$

Real Average Power

$$P_{\text{av}} = \Re \left[\mathbf{S} \right] \\ = \underbrace{V_{\text{m}} I_{\text{m}}}_{\mathbf{2}} \quad \cos(\phi_v - \phi_i)$$

Apparent Power

$$S = |\mathbf{S}| = \sqrt{P_{\text{av}}^2 + Q^2}$$
$$= V_{\text{m}} I_{\text{m}}$$

$$S = Se^{j\phi_{S}}$$

$$\phi_{S} = \phi_{V} - \phi_{i} = \phi_{Z}$$

Reactive Power

$$Q = \mathfrak{Im} [S]$$

$$= V_{\text{m}} I_{\text{m}} \quad \sin(\phi_v - \phi_i)$$

Power Factor

$$pf = \frac{P_{av}}{S} = \frac{\rho_{av}}{|S|}$$
$$= \cos(\phi_v - \phi_i)$$
$$= \cos\phi_z$$

Power Factor Significance

From the perspective of an energy supplier:

- The amount of power the company has to supply is S, but it can charge for only Pav, because Pav is the only real power consumed by the load.
- The company appears to supply S—hence, the name apparent power—but it gets paid for a fraction of that, and the power factor is that fraction.