Step	Algorithm: $C := AB + C$
la	$\{C = \widehat{C}$
4	$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}$ where B_R has 0 columns, C_R has 0 columns
2	$\left\{ \left(\begin{array}{c c} C_L & C_R \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_L & AB_R + \widehat{C}_R \end{array} \right) $
3	while $n(B_R) < n(B)$ do
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land n(B_R) < n(B) \right\}$
5a	Determine block size b $\begin{pmatrix} B_L \mid B_R \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, \begin{pmatrix} C_L \mid C_R \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}$ where B_1 has b columns, C_1 has b columns
6	$\left\{ \left(\begin{array}{ccc} C_0 & C_1 & C_2 \end{array} \right) = \left(\begin{array}{ccc} \widehat{C}_0 & \widehat{C}_1 & AB_2 + \widehat{C}_2 \end{array} \right) \right.$
8	$C_1 := AB_1 + C_1$
7	$\left\{ \left(\begin{array}{cc} C_0 & C_1 & C_2 \end{array} \right) = \left(\begin{array}{cc} \widehat{C}_0 & AB_1 + \widehat{C}_1 & AB_2 + \widehat{C}_2 \end{array} \right) $
5b	$B \to \left(B_L \middle B_R \right) \leftarrow \left(B_0 \middle B_1 \middle B_2 \right), C \to \left(C_L \middle C_R \right) \leftarrow \left(C_0 \middle C_1 \middle C_2 \right)$
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land \neg (n(B_R) < n(B)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right) $

Step	Algorithm: $C := AB + C$
1a	{
4	where
2	
3	while do
2,3	$ \left\{ \right. $
5a	Determine block size b where
6	{ }
8	
7	
5b	
2	
	endwhile
2,3	$\left \left. \left\{ \right. \right. \right. \wedge \neg (\right. \right. \right. \right. $
1b	· · · · · · · · · · · · · · · · · · ·

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}\}$
4	where
2	{
3	while do
2,3	$\left \left\{ \right. \right. $
F -	Determine block size b
5a	where
6	{
8	
7	
5b	
2	
	endwhile
2,3	$\left \left. \left\{ \right. \right. \right. \wedge \neg (\right. \right. \right. \right. $
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\begin{array}{c} C_L \middle C_R \end{array} \right) = \left(\begin{array}{c} \widehat{C}_L \middle AB_R + \widehat{C}_R \end{array} \right) \right\}$
3	while do
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land \right.$
	Determine block size b
5a	
	where
6	\ \ \ \
8	
7	
5b	
2	$\left\{ \left(\left. C_L \right C_R \right) = \left(\left. \widehat{C}_L \right A B_R + \widehat{C}_R \right) \right. $
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_L & C_R \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_L & AB_R + \widehat{C}_R \end{array} \right) \land \neg ($
1b	$\left\{ C = AB + \widehat{C} \right\}$
2,3	endwhile $\left\{ \left(\begin{array}{c c} C_L & AB_R + \widehat{C}_R \end{array} \right) \land \neg (\right. \right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C=\widehat{C}$
4	where
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right\}$
3	while $n(B_R) < n(B)$ do
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \wedge n(B_R) < n(B) \right\}$
	Determine block size b
5a	
	where
6	ig
8	
7	
5b	
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right. $
	endwhile
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land \neg (n(B_R) < n(B)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	${C = \widehat{C}}$
4	$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}$ where B_R has 0 columns, C_R has 0 columns
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right\}$
3	while $n(B_R) < n(B)$ do
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land n(B_R) < n(B) \right\}$
	Determine block size b
5a	
	where
6	$ig ig\{$
8	
7	
5b	
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right. $
	endwhile
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land \neg (n(B_R) < n(B)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right\}$

```
Algorithm: C := AB + C
Step
                 \{C=\widehat{C}
  1a
                B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}, C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}
where B_R has 0 columns, C_R has 0 columns
    4
    2
                while n(B_R) < n(B) do
    3
                                C_L C_R = (\widehat{C}_L AB_R + \widehat{C}_R) \wedge n(B_R) < n(B)
 2,3
                         Determine block size b
\begin{pmatrix} B_L \mid B_R \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, \begin{pmatrix} C_L \mid C_R \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}
where B_1 has b columns, C_1 has b columns
  5a
   6
    8
   7
                          B \to \left( B_L \middle| B_R \right) \leftarrow \left( B_0 \middle| B_1 \middle| B_2 \right), C \to \left( C_L \middle| C_R \right) \leftarrow \left( C_0 \middle| C_1 \middle| C_2 \right)
  5b
    2
                endwhile
                 \left\{ \left( \begin{array}{c|c} C_L & C_R \end{array} \right) = \left( \begin{array}{c|c} \widehat{C}_L & AB_R + \widehat{C}_R \end{array} \right) \land \neg (n(B_R) < n(B)) \right\}
 2,3
                 \left\{C = AB + \widehat{C}\right)
  1b
```

Step	Algorithm: $C := AB + C$
1a	${C = \widehat{C}}$
4	$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}$ where B_R has 0 columns, C_R has 0 columns
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right\}$
3	while $n(B_R) < n(B)$ do
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land n(B_R) < n(B) \right\}$
5a	Determine block size b $\begin{pmatrix} B_L \mid B_R \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, \begin{pmatrix} C_L \mid C_R \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}$ where B_1 has b columns, C_1 has b columns
6	$\left\{ \left(\begin{array}{ccc} C_0 & C_1 & C_2 \end{array} \right) = \left(\begin{array}{ccc} \widehat{C}_0 & \widehat{C}_1 & AB_2 + \widehat{C}_2 \end{array} \right) \right.$
8	
7	
5b	$B \to \begin{pmatrix} B_L \middle B_R \end{pmatrix} \leftarrow \begin{pmatrix} B_0 \middle B_1 \middle B_2 \end{pmatrix}, C \to \begin{pmatrix} C_L \middle C_R \end{pmatrix} \leftarrow \begin{pmatrix} C_0 \middle C_1 \middle C_2 \end{pmatrix}$ $\left\{ \begin{pmatrix} C_L \middle C_R \end{pmatrix} = \begin{pmatrix} \widehat{C}_L \middle AB_R + \widehat{C}_R \end{pmatrix} \right\}$
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right. $
	endwhile
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land \neg (n(B_R) < n(B)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	${C = \widehat{C}}$
4	$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}$ where B_R has 0 columns, C_R has 0 columns
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right\}$
3	while $n(B_R) < n(B)$ do
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land n(B_R) < n(B) \right\}$
5a	Determine block size b $\begin{pmatrix} B_L \mid B_R \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, \begin{pmatrix} C_L \mid C_R \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}$ where B_1 has b columns, C_1 has b columns
6	$\left\{ \left(\begin{array}{ccc} C_0 & C_1 & C_2 \end{array} \right) = \left(\begin{array}{ccc} \widehat{C}_0 & \widehat{C}_1 & AB_2 + \widehat{C}_2 \end{array} \right) \right.$
8	
7	$\left\{ \left(\begin{array}{cc} C_0 & C_1 & C_2 \end{array} \right) = \left(\begin{array}{cc} \widehat{C}_0 & AB_1 + \widehat{C}_1 & AB_2 + \widehat{C}_2 \end{array} \right) $
5b	$B \to \begin{pmatrix} B_L \middle B_R \end{pmatrix} \leftarrow \begin{pmatrix} B_0 \middle B_1 \middle B_2 \end{pmatrix}, C \to \begin{pmatrix} C_L \middle C_R \end{pmatrix} \leftarrow \begin{pmatrix} C_0 \middle C_1 \middle C_2 \end{pmatrix}$ $\left\{ \begin{pmatrix} C_L \middle C_R \end{pmatrix} = \begin{pmatrix} \widehat{C}_L \middle AB_R + \widehat{C}_R \end{pmatrix} \right\}$
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land \neg (n(B_R) < n(B)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}$ where B_R has 0 columns, C_R has 0 columns
2	$\left\{ \left(\begin{array}{c c} C_L & C_R \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_L & AB_R + \widehat{C}_R \end{array} \right) $
3	while $n(B_R) < n(B)$ do
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\left. \widehat{C}_L \middle AB_R + \widehat{C}_R \right) \wedge n(B_R) < n(B) \right\} \right\}$
5a	Determine block size b $\begin{pmatrix} B_L \mid B_R \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, \begin{pmatrix} C_L \mid C_R \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}$ where B_1 has b columns, C_1 has b columns
6	$\left\{ \left(\begin{array}{ccc} C_0 & C_1 & C_2 \end{array} \right) = \left(\begin{array}{ccc} \widehat{C}_0 & \widehat{C}_1 & AB_2 + \widehat{C}_2 \end{array} \right) \right\}$
8	$C_1 := AB_1 + C_1$
7	$\left\{ \left(\begin{array}{cc} C_0 & C_1 & C_2 \end{array} \right) = \left(\begin{array}{cc} \widehat{C}_0 & AB_1 + \widehat{C}_1 & AB_2 + \widehat{C}_2 \end{array} \right) $
5b	$B \to \left(B_L \middle B_R \right) \leftarrow \left(B_0 \middle B_1 \middle B_2 \right), C \to \left(C_L \middle C_R \right) \leftarrow \left(C_0 \middle C_1 \middle C_2 \right)$
2	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \right. $
	endwhile
2,3	$\left\{ \left(C_L \middle C_R \right) = \left(\widehat{C}_L \middle AB_R + \widehat{C}_R \right) \land \neg (n(B_R) < n(B)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right\}$

Algorithm: $C := AB + C$
$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}$ where B_R has 0 columns, C_R has 0 columns
while $n(B_R) < n(B)$ do
Determine block size b $\begin{pmatrix} B_L \mid B_R \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, \begin{pmatrix} C_L \mid C_R \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}$ where B_1 has b columns, C_1 has b columns
$C_1 := AB_1 + C_1$
$B \to \left(\begin{array}{c c} B_L & B_R \end{array} \right) \leftarrow \left(\begin{array}{c c} B_0 & B_1 & B_2 \end{array} \right), C \to \left(\begin{array}{c c} C_L & C_R \end{array} \right) \leftarrow \left(\begin{array}{c c} C_0 & C_1 & C_2 \end{array} \right)$
endwhile

Algorithm:
$$C := AB + C$$

$$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix}, C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix}$$
where B_R has 0 columns, C_R has 0 columns
while $n(B_R) < n(B)$ do
$$Determine block size b$$

$$\begin{pmatrix} B_L \mid B_R \end{pmatrix} \to \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, \begin{pmatrix} C_L \mid C_R \end{pmatrix} \to \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}$$
where B_1 has b columns, C_1 has b columns
$$C_1 := AB_1 + C_1$$

$$B \to \begin{pmatrix} B_L \mid B_R \end{pmatrix} \leftarrow \begin{pmatrix} B_0 \mid B_1 \mid B_2 \end{pmatrix}, C \to \begin{pmatrix} C_L \mid C_R \end{pmatrix} \leftarrow \begin{pmatrix} C_0 \mid C_1 \mid C_2 \end{pmatrix}$$
endwhile