

Mikroişlemcili Sistemler ve Laboratuvarı 5.HAFTA:BÖLÜM-1

Amaçlar

- Mikrodenetleyici terimini kavramak
- Mikrodenetleyicilerin kullanım alanları hakkında bilgi sahibi olmak
- Bir mikrodenetleyiciyi meydana getiren birimleri tanımak
- Modern mikrodenetleyicilerin mimari yapıları hakkında bilgi sahibi olmak
- Mikrodenetleyici seçiminde dikkat edilmesi gereken ölçütleri öğrenmek

Mikrodenetleyici nedir?

- Tek bir silikon kılıf üzerinde toplanmış entegre devredir.
- Her yıl yüz milyonlarca adet mikrodenetleyici endüstri tarafından tüketilir.
- Alarmlı saatlerde, mikrodalga fırınlarda, bulaşık makinelerinde, buzdolaplarında v.b. bir cihazda kullanılmaktadırlar.
- Tek-çip bilgisayar, mikrobilgisayar veya yerleşik bilgisayar sistemleri isimleri altında da tanıtılmaktadır.

Mikrodenetleyici nedir?

- Tek başlarına çalışabilirler
- Tek-çip devre elemanıdırlar
- Sistem kararları genellikle harici sinyallere bağlıdır
- Elektronik bir cihazın davranışlarını denetlerler ve kontrol ederler

Bir devrenin beyni konumundadırlar

Mikrodenetleyiciyi meydana getiren birimler

- Bir mikroişlemci çekirdeği (CPU)
- Program ve veri belleği (ROM, RAM)
- Giriş/Çıkış (I/O) birimleri
- Saat darbesi üreteçleri
- Zamanlayıcı/Sayıcı birimleri
- Kesme kontrol birimi
- A/D–D/A (Analog/Dijital–Dijital/Analog) çeviriciler
- Darbe genişlik üreteci (PWM)
- Seri Haberleşme Birimi (UART, RS-232, CAN, I2C vb.)
- Diğer çevresel birimler.

Mikrodenetleyicinin Blok Diyagramı

Mikrodenetleyici temel bileşenleri

- Mikrodenetleyici temel olarak dört bileşenden oluşur
 - 1. Mikroişlemci
 - 2. Bellek
 - 3. Giriş/çıkış birimi
 - 4. Saat darbe üretici

2.Bellek

- İkinci önemli blok, ROM veya RAM bellekleri bulunduran hafıza birimidir.
- ROM bellek program kodunun depolandığı
- RAM ise geçici veya program verilerinin depolandığı hafıza tipleridir.
- RAM bellek bir bakıma mikrodenetleyicinin kullandığı bir çeşit müsvedde kağıttır. Bu bellek sürekli yazılır ve silinir.
- ROM bellek bir kere programlandıktan sonra programın çalışması boyunca değiştirilmez (IAP "Uygulama Esnası Programlama" teknolojisi hariç).

3.Giriş/Çıkış Birimi

 Mikrodenetleyicinin üçüncü temel bloğu Giriş/Çıkış birimidir.

 Mikrodenetleyiciden dışarıya giden veya dışarıdan mikrodenetleyiciye gelen sinyallerin alınmasında ve gönderilmesinde kullanılır.

4.Saat Darbe Üretici

 Çip içi (On-Chip) bir çok fonksiyonel birimin senkronize bir şekilde çalışması için gerekli olan saat sinyalini üretir.

μD Seçiminde Dikkat Edilecek Ölçütler

- Maliyet ve bulunma kolaylığı
- Mikrodenetleyicinin çalışma hızı
- Giriş/Çıkış port sayısı
- Bellek büyüklüğü ve tipi
- Zamanlayıcı/Sayıcı adedi
- Analog/Dijital dönüştürücü
- Enerji sarfiyatı
- Geliştirme araçları
- Müşteri desteği

Rakipler

- Mikroişlemciler
- DSP(Digital Signal Processor)
- FPGA-CPLD (Programlanabilir Yapılar)
- ASIC (Application Specific Integrated Circuits)
- PLC (Programmable Logic Controllers)
- SoC (System On-Chip)

$\mu P - \mu C$

μP

- Kelime veya bayt temelli işlemler
- Harici birim gereksinimi
- Daha esnek
- Daha hızlı, daha iyi performans
- Geniş bellek alanı
- Geniş baskı devre alanı
- Büyük enerji ihtiyacı

DSP- μC

DSP

- Daha hızlı ve performanslı
- Son derece esnek
- Pahalı çip ve yazılım araçları
- Geniş ölçekli projeler ve bütçeler
- Karmaşık ve pahalı baskı devre

FPGA,CPLD - μC

- FPGA,CPLD
 - Hız ve performans amaçlı
 - Son derece esnek
 - Pahalı çip ve yazılım araçları
 - Zor öğrenilen diller (VHDL, VERILOG, SystemC)
 - Geniş ölçekli projeler ve bütçeler
 - Karmaşık ve pahalı baskı devre

PLC - μC

• PLC

- Sayısal ve Analog I/O portları
- Dahili güç ünitesi ve ekran
- Kutulu
- Pahalı, yüksek yatırım
- Endüstriyel üretim sistemleri

ASIC - μC

ASIC

- Hız ve performansta rakipsiz
- Düşük Esneklik
- Pahalı çip ve yazılım araçları
- Zor öğrenilen diller (VHDL, VERILOG, SystemC)
- Geniş ölçekli projeler ve bütçeler
- Karmaşık ve pahalı baskı devre

SoC-μC

SoC

- Daha hızlı ve performanslı
- Son derece esnek
- Sayısal/Analog sistem tasarım imkanı
- Az sayıda üretici, yetersiz rekabet
- Yaygılaşmayan tasarım ürünleri
- Sınırlı uygulama alanları

Mikroişlemcili Sistemler ve Laboratuvarı 5.HAFTA:BÖLÜM-2

Amaçlar

- 8051 mikrodenetleyicisinin tarihi gelişimini açıklamak
- 8051 mikrodenetleyicisinin mimari yapısını kavramak
- 8051 mikrodenetleyicisinin fiziksel özelliklerini tanımlamak

• 8051 mikrodenetleyicisinin içyapısını kavramak

MCS-51 Ailesi

- 8048 dünyada üretilen ilk mikrodenetleyicidir.
- 1976 yılında INTEL şirketi tarafından üretilmiştir.
- Üretiminde yaklaşık 17,000 transistör kullanılmıştır.
- 8048 kısa sürede kontrol uygulamalarının değişmez elemanı olmuştur.
- 1980 yılında MCS-51 mikrodenetleyici ailesinin ilk ürünü 8051 mikrodenetleyicisi piyasaya sürmüştür.
- Üretiminde yaklaşık 60,000 transistör kullanılmıştır.
- Günümüzde bir Standard haline gelmiştir.
- INTEL firmasından izin alan bir çok firma 8051 ve türevlerini üretmektedir.

8051 tabanlı µdenetleyiciler ve özellikleri

		Veri Belleği		Kod Belleği			Haberleşme Protokolü							
	Model	RAM	XRAM	ROM	EEPROM	FLASH	UART	I2C	CAN	SPI	Z/S	WD	ADC	Port
A T M E L	T80C51	128	-	4K	-	-	Var	-	-	-	2	-	-	32
	T83C51RB2	256	256	16K	-	-	Var	-	-	-	3	Var	-	32
	T89C51RC2	256	1K	-	-	32K	Var	-	-	Var	3	Var	-	48
	AT89S4D12	256	-	-	-	132K	Var	-	-	Var	3	-	-	40
	T89C51CC01	256	1K	-	2K	32K	Var	-	Var	Var	3	Var	10-bit	53
I N T E L	80C31	128	-	-	-	-	Var	-	-	-	3	-	-	32
	80/87C51	128	-	4K	-	-	Var	-	-	-	3	-	-	32
	80C52	128	-	8K	-	-	Var	-	-	-	3	-	-	32
P H I L I P S	80C528	256	256	-	-	-	Var	-	-	-	3	Var	-	48
	80C557	256	1792	-	-	-	Var	-	-	-	3	-	10-bit	40
	87C591	256	256	-	16K	-	Var	Var	Var	-	3	Var	10-bit	32
	89C668	256	8K	-	-	64K	Var	Var	-	Var	3	-	-	40
	8xC51RD2	256	768	-	-	64K	Var	-	-	Var	3	Var	-	32
D	DS5000(T)	128	32K	-	-	-	Var	-	-	-	2	-	-	32
A	DS5002(FP)	128	128K	-	ı	1	Var	-	-	-	2	-	-	32
L A S C y g n A	DS83C520	256	1K	16K	ı	1	Var	-	-	-	3	Var	-	32
	DS80C390	256	4K	-	ı	-	Var	-	-	-	3	Var	-	32
	DS89C420	256	1K	-	-	16K	Var	-	-	-	3	Var	-	32
	C8051F005	256	2K	-	-	32k	Var	Var	-	Var	4	-	12-bit	64
	C8051F020	256	4K	-	-	64K	Var	Var	-	Var	5	-	12-bit	64
	C8051F300	256	-	-	-	8K	Var	-	-	Var	3	-	8-bit	32

8051'in Genel Yapısı

- Kontrol uygulamalarına yönelik 8 bit CPU
- Mantıksal işlemci (tek-bit lojik işlemler)
- 64 KB program hafıza ve veri hafıza adres alanı
- 4K ROM, (0-64K arasında)
- 128 Bayt RAM, (256 bayt'a çıkabilir)
- 4 tane 8-bit Giriş/Çıkış portu (32 uç)
- 2 tane 16-bit zamanlayıcı/sayıcı
- Full duplex UART (Universal Asynchronous Receiver Transmitter)
- İki öncelik seviyesine sahip 6-kaynak/5 vektörlü kesme donanım yapısı

8051 Blok Diyagramı

8051 udenetleyicisinin Uç Fonksiyonları

- 8051 mikrodenetleyicisinin standartta 8-bitlik dört adet giriş/çıkış portu bulunmaktadır.
- Aynı şekilde 8051'in harici uçları birkaç fonksiyon gerçekleştirebilecek şekilde tasarlanmıştır.

8051 µdenetleyicisinin Uç fonksiyonları

- 8051'in ayak bağlantıları
 - Besleme uçları
 - Kontrol uçları
 - Programlanabilir Giriş/Çıkış uçları

Besleme Uçları

• 8051'in **40** nolu pini **VCC**

• 20 nolu pini GND ucudur

 8051 mikrodenetleyicisi tek bir 5v'luk kaynaktan beslenir (yeni düşük güçlü çipler 3.3v veya 2.7v)

 Teknolojinin ilerlemesi ile daha düşük güç tüketimi olan mikrodenetleyiciler üretilmeye başlanmıştır.

- Kontrol hatları, mikrodenetleyicinin dışarıdaki bir durumu ya da devreyi kontrol etmesini sağlar.
- 8051 mikrodenetleyicisinin 5 adet kontrol ucu bulunmaktadır.
 - PSEN
 - ALE
 - EA
 - RESET
 - Osilatör girişleri

PSEN(Program Store Enable)

- Harici program (kod) belleğini yetkilendirmek için kullanılan kontrol sinyalidir.
- Düşük seviyede (lojik '0') aktif olan bu uç 8051'in 29 nolu pinidir.
- Genellikle EPROM'un okunmasına izin veren OE (Output Enable) ucuna bağlanır.
- Harici bellek okumalarında aktif yapılırken, dahili ROM'dan bir program çalıştırıldığında ise pasiftir.

ALE(Adress Latch Enable)

- 8051'in 30 nolu pinidir
- P0 portundaki bilginin veri ya da adres olup olmadığı seçimini yapmak için kullanılır.
- Adres bilgisi Port O'a aktarıldığında ALE ucu aktif (lojik '1') olur.
- Port O'da veri bilgisi bulunduğunda ise pasif (lojik 'O') olur.
- ALE, adres ve veriyi birbirinden ayırmak için bir latch (tutucu) entegresinin gate (yetkilendirme) ucuna bağlanır.
- Genelde 74573 veya 74373 entegreleri bu fonksiyonu gerçekleştirmek üzere kullanılır.
- Bu pin aynı zamanda dahili EPROM bulunduran 8051'lerde programlama giriş sinyali olarak da kullanılır.

EA(External Access)

- 8051'in **31** nolu bacağıdır ve düşük seviyede aktiftir.
- +5v'luk besleme gerilimine ya da şaseye bağlanır.
- Eğer +5v'a bağlanırsa programlar dahili ROM'dan, şaseye bağlanırsa sadece harici bellekten çalıştırılır.

RESET

- 8051'i yeniden başlatmak için kullanılan en yüksek öncelikli kesme sinyalidir.
- yüksek seviye (lojik '1') yapıldığında reset işleminin gerçekleştirilmesi için en az 2 makine saykılının geçmesi gerekmektedir.
- Dahili kaydedicilerin içerikleri başlangıç durumundaki değerler ile yenilenir.

RESET

• **El ile** (manual) ve **otomatik** (power on) olmak üzere iki şekilde gerçekleştirilir.

Osilatör Girişleri

- 8051'in XTAL1 ve XTAL2 olmak üzere 2 adet osilatör girişi vardır.
- Bu girişlere içerisindeki osilatörlere kaynak teşkil edecek şekilde bir rezonans devresi bağlanır.
- Genellikle bir kristal bu görevi yerine getirir.
- MCS-51 ailesindeki çoğu mikrodenetleyicinin nominal kristal frekansları 12 MHz'dir.

Osilatör Girişleri

 Kondansatörlerin değeri kritik değildir. 27-47 pF arasında seçilebilir, ancak genellikle 30 pF kullanılır.

Giriş/Çıkış Uçları

Port 0 (P0)

- Port 0, iki amaç için kullanılabilen 8 ayaktan oluşan bir porttur.
- En az sayıda eleman içeren bir sistemin tasarımında genel amaçlı G/Ç portu olarak kullanılır.
- büyük çaplı tasarımlarda hem **veri** hem de **adres** yolu olarak kullanılır.
- Genel amaçlı G/Ç portu olarak kullanıldığında, açık drain olduğundan çekme dirençleri (pull-up resistor) kullanılmalıdır.

Giriş/Çıkış Uçları

Port 1 (P1)

- Sadece G/Ç hattı olarak kullanılır
- Port 1'in uçları (pin) P1.0, P1.1 vb. şekilde adlandırılır.
- P1 pinlerinin ikinci bir görevi olmadığından harici elemanlar için arayüz olarak kullanılabilirler.

Port 2 (P2)

- İki amaçlı kullanıma sahip olan P2, harici belleğe ihtiyaç duyulduğunda adresin yüksek değerlikli 8 hattını (A8-A15) oluşturur
- Harici belleğe gerek duyulmadığında genel amaçlı G/Ç hattı gibi kullanılabilir.

Port 3 (P3)

- 8051'in iki amaçlı portlarından birisidir.
- Genel amaçlı olarak kullanılabildiği gibi çeşitli alternatif özelliklere sahip olan her bir bacağı sayesinde farklı amaçlar içinde kullanılabilir.

Giriş/Çıkış Uçları

Port 3 (P3)

• Port 3'ün alternatif fonksiyonları

Uç	İsim	Bit Adresi	İşlevi
P3.0	RxD	ВОН	Seri kanal veri girişi
P3.1	TxD	B1H	Seri kanal veri çıkışı
P3.2	INT0	В2Н	Harici kesme 0 girişi
P3.3	INT1	ВЗН	Harici kesme 1 girişi
P3.4	Т0	В4Н	Zamanlayıcı/sayıcı 0 harici girişi
P3.5	T1	В5Н	Zamanlayıcı/sayıcı 1 harici girişi
P3.6	WR	В6Н	Harici belleğe yazma işareti çıkışı
P3.7	RD	В7Н	Harici bellekten okuma işareti çıkışı

Detaylı Port Yapısı

- 80C51 mikrodenetleyicisinde bulunan portlar
 - bir adet latch (SFR'deki P0, P1, P2 ve P3)
 - bir giriş tamponu
 - bir adet de çıkış sürücüsünden meydana gelmektedir.
- Bütün portlar iki yönlüdür yani hem çıkış hem de giriş olarak kullanılabilmektedir.
- Port 0 ve Port 2'nin çıkış sürücüsü ile P0'ın giriş tamponu harici hafızaya erişimde kullanılmaktadır.

Detaylı Port Yapısı

P0 portunun herhangi bir pini

P1 portunun herhangi bir pini

8051 Ayrıntılı Mimarisi

Bölüm Soruları

- Mikrodenetleyici nedir?
- Mikroişlemci ile Mikrodenetleyici arasındaki farklar nelerdir?
- Bir mikroişlemci için minimum donanım birimleri nelerdir?
- Bir Mikrodenetleyici için minimum donanım birimleri nelerdir?
- Mikrodenetleyicilerin satış miktarlarını adet, yıl ve aile (8051, PIC veya ARM gibi) bazında araştırınız ve grafikler ile gösteriniz.
- Mikroişlemcilerin hızlarının frekans boyutunda geçmişteki kadar hızlı artmayıp, buna karşın çekirdek sayılarının artmasını nasıl açıklarsınız.
- Gömülü sistem ne demektir ve hangi donanımları içerebilir?
- Gerçek-zamanlı sistemlerin ayırt edici özellikleri nelerdir?

