Step-1

Let A be a 4 by 4 matrix with $\det A = \frac{1}{2}$

The objective is to find $\det(2A)$, $\det(-A)$, $\det(A^2)$, and $\det(A^{-1})$

Step-2

To find det(2A):

Recall the fact that, $\hat{\mathbf{a}} \in \text{ceif } A$ is $n \times n$ matrix then $\det(kA) = k'' \det(A)$ $\hat{\mathbf{a}} \in$

In this case A is 4×4 matrix and $\det A = \frac{1}{2}$

So, $\det(2A) = 2^4 \det(A)$

 $=2^4\cdot\frac{1}{2}$

Thus $\det (2A) = \boxed{8}$

Step-3

To find $\det(-A)$:

In this case A is 4×4 matrix and $\det A = \frac{1}{2}$

So, $\det(-A) = (-1)^4 \det(A)$

 $= \left(-1\right)^4 \cdot \frac{1}{2}$

 $=\frac{1}{2}$

Thus $\det (-A) = \boxed{\frac{1}{2}}$

Step-4

To find $\det(A^2)$:

Recall the fact that, $\hat{a} \in ceif A$ is a matrix then $det(A^n) = (det(A))^n \hat{a} \in ceif A$

From the above fact $\det(A^2) = [\det(A)]^2$

$$= \left(\frac{1}{2}\right)^2$$
$$= \frac{1}{2}$$

Thus
$$\det \left(A^2\right) = \boxed{\frac{1}{4}}$$

Step-5

To find $\det(A^{-1})$:

Recall the fact that, $\hat{a} \in \text{ceif } A$ is a matrix then $\det(A^n) = (\det(A))^n \hat{a} \in$

From the above fact $\det(A^{-1}) = [\det(A)]^{-1}$

$$= \left(\frac{1}{2}\right)^{-1}$$

$$=\frac{1}{\left(1/2\right)}$$

$$=2$$

Thus $\det \left(A^{-1}\right) = \boxed{2}$