AULA 4 – INTRODUÇÃO A COMPUTAÇÃO EVOLUCIONÁRIA

Sistemas Inteligentes

Prof. Msc. Luiz Mário Lustosa Pascoal

Existiriam os aviões se não existissem os pássaros?

William Paul Butusov

Fontes: http://www.aerospaceweb.org/ http://obviousmag.org/

George White, 1930

Alberto Santos-Dumont 1906

Jean-Marie Le Bris, 1856

Processos naturais são modelos para:

Esporte

Indústria

Baseado no jato do besouro

Medicina

material plástico, de duro para macio com água

Moda

Coleção Verão 2010 Biondini

Adesivos

Design

Militar

Armadura

Fonte: http://www.msnbc.msn.com/id/27285982/

Processos naturais são modelos para:

Robótica

Processos naturais são modelos para a Computação:

Algoritmo Colônia de Formigas

Recozimento Simulado

Inteligência de Enxame (Swarm Intelligence)

Inspiração para a Computação Evolucionária

Processos naturais são modelos para a Computação:

Computação Evolucionária

O QUE É A COMPUTAÇÃO EVOLUCIONÁRIA?

- A CE é um conjunto de paradigmas de Classificação e Aprendizado de Máquinas que são baseados em mecanismos evolucionários como a genética e a seleção natural de Darwin.
- Quatro grande áreas: Algoritmos Genéticos,
 Programação Evolucionária, Estratégia Evolutiva
 e Programação Genética.

Introdução

- A computação evolutiva é uma comunidade em desenvolvimento de pessoas idéias e aplicações.
- Dentre as suas diferentes vertentes o interesse comum é o entendimento melhor dos processos evolutivos.
- Na área de computação o entendimento dos processos evolutivos é utilizado como inspiração para o processos computacionais.
- O sistema evolutivo utilizado nesta abordagem é o modelo evolutivo Darwinano

Inspiração biológica

- Evolução via Seleção Natural (Darwin)
 - sobrevivem os mais aptos (survival of the fittest)

- o Operadores Genéticos (Mendel)
 - recombinação (crossover)
 - mutação (*mutation*)

Teoria da Evolução Darwin

• 1859 - Charles Darwin publica o livro "A Origem das Espécies":

"As espécies evoluem pelo principio da seleção natural e sobrevivência o mais apto."

EVOLUÇÃO NATURAL

- A evolução natural pode ser vista como um processo de otimização no qual:
 - Indivíduos e populações competem entre si por recursos
 - Alimento
 - o Água
 - Abrigo

EVOLUÇÃO NATURAL

- o Indivíduos mais bem sucedidos na sobrevivência e atração de um parceiro terão, relativamente, mais descendentes (espalham seus genes)
- Indivíduos mal sucedidos geram poucos ou nenhum descendente

OPERADORES GENÉTICOS

- 1865- Gregor Mendel apresenta experimentos do cruzamento genético de ervilhas.
- A Teoria da Evolução começou a partir da conceituação integrada da seleção natural com a Genética.

CARACTERÍSTICAS DO SISTEMA EVOLUTIVO DE DARWIN

- Um ou mais indivíduos competem por recursos limitados.
- Há uma dinâmica na mudança da população pelos mecanismos de morte e nascimento;
- Há um conceito de variabilidade inerente, pois os filhos são parecidos mas não idênticos aos pais.

Sistema Evolutivo de Darwin

- Essas características tornam o sistema um processo que, dado uma condição inicial segue uma trajetória por um complexo espaço de estado evolucionário através do tempo.
- Por isso, é comum o estudo das propriedades de convergência, da sensibilidade ao estado inicial, do comportamento transitório entre os estados.

O MODELO DARWINIANO INCLUI

- Uma ou mais populações de indivíduos competindo por recursos limitados
- A noção de mudança dinâmica das populações devido ao nascimento e morte de indivíduos
- O conceito de aptidão (fitness) que reflete a habilidade de um indivíduo sobreviver e reproduzir
- O conceito de variabilidade de herança: descendentes próximos parecem-se com seus pais, mas não são idênticos.

PRINCIPAIS CONCEITOS

Biologia	Algoritmos Genéticos
Gene	Representação mínima utilizada e corresponde a algum parâmetro
	ou característica de interesse ou importância que afeta a solução do
	problema de otimização.
Alelo	Valor do gene (característica).
Cromossomo	São cadeias de genes, que compõem uma estrutura de dados e
	representa a solução.
Locus	Posição do gene no cromossomo.
Indivíduos	Conjuntos de um ou mais cromossomos.
Genótipo	Cromossomo devidamente codificado.
Fenótipo	Cromossomo decodificado.
População	Conjunto de possíveis soluções.
Geração	Uma população em um determinado período de tempo (iteração).

OS ALGORITMOS EVOLUCIONÁRIOS

- o Os AEs têm geralmente, cinco componentes:
 - 1. Uma representação genética de potenciais soluções para o problema.
 - 2. Uma forma de criar populações inicialmente (geração da população inicial)
 - 3. Uma **função de avaliação** para medir a adaptação da solução do problema (ambiente) e diferenciá-las.
 - 4. Operadores genéticos que auxiliam a gerar descendentes a partir dos progenitores (seleção, cruzamento, mutação, etc).
 - 5. Valores de Parâmetros que os algoritmos usam (tamanho da população, probabilidade de aplicação dos operadores, critério de parada, etc)

OS MECANISMOS DE BUSCA DO AES

- o A Busca não é randômica.
- A busca é direcionada pela função que mapeia o ambiente (problema).
- A busca é direcionada para regiões com valores de aptidão maiores.
- o Diferentes paradigmas da CE têm diferentes formas de uso do processo estocástico.

VISÃO GERAL DO ALGORITMOS EVOLUCIONÁRIOS

A Base de um AE

1. Geração da População Inicial P(0) aleatoriamente, e i <- 0;

2. REPITA

- Utilize a função de avaliação para cada indivíduo em *P(i)*;
- b) Selecione os pais de P(i) baseados em seus fitness.
- c) Gere descendentes a partir dos pais selecionados usando operações de **cruzamento** e/ou **mutação**, para criação de **P(i+1)**.
- d) i < -i +1;
- 3. Até que o critério de parada seja satisfeito.

FLUXO DE UM AE

RESUMINDO EV(M,N)

- o População de número fixo de indivíduos
- Cada indivíduo tem comprimento fixo de valores de ponto flutuante (real)
- A função de aptidão é definida por uma função de avaliação.
- Gera a população inicial aleatoriamente e avalia, após isso produz novos indivíduos copiando um pai aleatório e introduzindo alguma modificação por mutação.
- Sobrevive o novo indivíduo ou um indivíduo aleatório por meio da competição de aptidão
- O modelo onde um novo indivíduo é produzido por vez é chamado *steady-state*. Outro modelo alternativo é produzir vários indivíduos de um conjunto de pais.
- O modelo alternativo aplica a competição somente depois que todos os novos indivíduos são produzidos. Para isso utiliza-se dois conjuntos de indivíduos um para os M pais e um para os N descendentes.

DIFERENTES ALGORITMOS EVOLUCIONÁRIOS

- Existem differentes AEs:
 - Bases Históricas Diferentes.
 - Representação de soluções distintas;
 - Operadores diferenciados;
 - Esquemas de seleções alternados;
- Como a estrutura é modular e com várias variáveis, existem inúmeras combinações que podem gerar diferentes algoritmos.
- Ou seja, AEs refere-se a uma família de algoritmos, e não somente a um único algoritmo.

DIFERENTES ALGORITMOS EVOLUCIONÁRIOS

- Algoritmos Genéticos;
- Estratégia Evolutiva;
- Programação Evolucionária;
- o Programação Genética;