Graphs Lecture 15

Introduction

- Over the past 200 years, graph theory has been applied to a variety of problems, including:
 - Model electrical circuits, chemical compounds, highway maps, etc.
 - Analysis of electrical circuits, finding the shortest route, project planning, linguistics, genetics, social science, etc.

Graph Definitions

- <u>Graph</u> *G: G* = (*V*, *E*)
 - V is a finite nonempty set of vertices of G
 - $E \subseteq V \times V$
 - Elements in E are the pairs of elements of V
 - *E* is called set of <u>edges</u>

- Directed graph or digraph: elements of E(G) are ordered pairs
- <u>Undirected graph</u>: elements not ordered pairs
- If (u, v) is an edge in a directed graph
 - Origin: *u*
 - Destination: v
- Subgraph H of G: if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$
 - Every vertex and edge of V is in G

FIGURE 20-3 Various undirected graphs

FIGURE 20-4 Various directed graphs

- Adjacent: there is an edge from one vertex to the other; i.e., $(u, v) \in E(G)$
- Incident: if edge e = (u, v) then e is incident on u and v
 - <u>Loop</u>: edge incident on a single vertex
- <u>Parallel edges</u>: associated with the same pair of vertices
- <u>Simple graph</u>: has no loops or parallel edges

- Path: sequence of vertices u_1 , u_2 , ..., u_n such that $u = u_1$, $u_n = v$, and (u_i, u_{i+1}) is an edge for all i = 1, 2, ..., n-1
- Connected vertices: there is a path from u to v
- Simple path: path in which all vertices, except possibly the first and last, are distinct
- Cycle: simple path in which the first and last vertices are the same

- <u>Connected</u>: path exists from any vertex to any other vertex
 - <u>Component</u>: maximal subset of connected vertices
- In a connected graph G, if there is an edge from u to v, i.e., $(u, v) \in E(G)$, then u is adjacent to v and v is adjacent from u
- <u>Strongly connected</u>: any two vertices in *G* are connected

Graph Representation

- To write programs that process and manipulate graphs
 - Must store graphs in computer memory
- A graph can be represented in several ways:
 - Adjacency matrices
 - Adjacency lists

Adjacency Matrix

- G: graph with n vertices (n > 0)
 - $V(G) = \{v_1, v_2, ..., v_n\}$
- Adjacency matrix (A_G of G): two-dimensional $n \times n$ matrix such that:

•
$$A_G(i,j) = \begin{cases} 1 & \text{if } (\nu_i, \nu_j) \in E(G) \text{ ymmetric} \\ 0 & \text{otherwise} \end{cases}$$

Adjacency Lists

- G: graph with n vertices (n > 0)
 - $V(G) = \{v_1, v_2, ..., v_n\}$
- Linked list corresponding to each vertex, v,
 - Each node of linked list contains the vertex, u, such that $(u,v) \in E(G)$
 - Each node has two components, such as vertex and link

Adjacency Lists (cont'd.)

Adjacency list of graph G₂ of Figure 20-4

FIGURE 20-5 Adjacency list of graphs of Figure 20-4

Operations on Graphs

- Operations commonly performed on a graph:
 - Create the graph
 - Clear the graph
 - Makes the graph empty
 - Determine whether the graph is empty
 - Traverse the graph
 - Print the graph

Graphs as ADTs

- We implement graphs as an abstract data type (ADT), including functions to:
 - Create/clear the graph
 - Print the graph
 - Traverse the graph
 - Determine the graph's size

Graph Traversals

- Traversing a graph is similar to traversing a binary tree, except that:
 - A graph might have cycles
 - Might not be able to traverse the entire graph from a single vertex
- Most common graph traversal algorithms:
 - Depth first traversal
 - Breadth first traversal

Depth First Traversal

- <u>Depth first traversal</u> at a given node, *v*:

 - Visit the node
 - for each vertex u adjacent to v if u is not visited start the depth first traversal at u
- This is a recursive algorithm

Depth First Traversal (cont'd.)

FIGURE 20-6 Directed graph G

- 0, 1, 4, 3, 2, 5, 7, 8, 6, 9
- Breadth-first ordering of vertices:
 - 0, 1, 3, 4, 2, 5, 7, 8, 6, 9

Breadth First Traversal

- Breadth first traversal of a graph
 - Similar to traversing a binary tree level by level
 - Nodes at each level are visited from left to right
- Starting at the first vertex, the graph is traversed as much as possible
 - Then go to next vertex not yet visited
- Use a queue to implement the breadth first search algorithm

Shortest Path Algorithm

- <u>Weight of the edge</u>: nonnegative real number assigned to the edges connecting two vertices
- Weighted graph: every edge has a nonnegative weight
- Weight of the path P
 - Sum of the weights of all edges on the path P
 - Also called the <u>weight</u> of v from u via P
- Source: starting vertex in the path

- Shortest path: path with the smallest weight
- Shortest path algorithm
 - Called the greedy algorithm, developed by Dijkstra
 - G: graph with n vertices, where $n \ge 0$
 - $V(G) = \{v_1, v_2, ..., v_n\}$
 - W: two-dimensional $n \times n$ matrix

$$W(i,j) = \begin{cases} w_{ij} & \text{if } (\nu_i, \nu_j) \text{ is an edge in } G \text{ and } w_{ij} \text{ is the weight of the edge } (\nu_i, \nu_j) \\ \infty & \text{if there is no edge from } \nu_i \text{ to } \nu_j \end{cases}$$

• Shortest path algorithm:

1. Initialize the array smallestWeight so that:

smallestWeight[u] = weights[vertex, u]

- Set smallestWeight[vertex] = 0.
- 3. Find the vertex, v, that is closest to the vertex for which the shortest path has not been determined.
- 4. Mark v as the (next) vertex for which the smallest weight is found.
- 5. For each vertex w in G, such that the shortest path from vertex to w has not been determined and an edge (v, w) exists, if the weight of the path to w via v is smaller than its current weight, update the weight of w to the weight of v + the weight of the edge (v, w).

FIGURE 20-7 Weighted graph G

• Graph after first iteration of Steps 3, 4, and 5

FIGURE 20-9 Graph after the first iteration of Steps 3, 4, and 5

• Graph after third iteration of Steps 3, 4, and 5

FIGURE 20-11 Graph after the third iteration of Steps 3, 4, and 5

• Graph after fourth iteration of Steps 3, 4, and 5

FIGURE 20-12 Graph after the fourth iteration of Steps 3, 4, and 5

Minimal Spanning Tree

• Company needs to shut down a maximum number of connections and still be able to fly from one city to another

FIGURE 20-13 Airline connections between cities and the cost factor of maintaining the connections

Minimal Spanning Tree (cont'd.)

FIGURE 20-14 Possible solutions to the graph of Figure 20-13

Minimal Spanning Tree (cont'd.)

- Spanning tree of graph G: if T is a subgraph of G such that V(T) = V(G)
 - All the vertices of G are in T
 - Figure 20-14 shows three spanning trees of the graph shown in Figure 20-13
- Theorem: a graph G has a spanning tree if and only if G is connected
- Minimal spanning tree: spanning tree in a weighted graph with the minimum weight