

Support Vector Machines (SVM)

Computational Intelligence II

Informatik - Software and Information Engineering Fachhochschule Vorarlberg

Dornbirn, am 6. März 2021

Inhaltsverzeichnis

Abkürzungsverzeichnis				
1	Einführung			
	1.1	Intuiti	on	
	1.2	Mathe	matische Herleitung	
		1.2.1	Problemdefinition	
		1.2.2	Optimierungsproblem	
		1.2.3	Lagrange Optimierung	
		1.2.4	Lösung mittels Quadratic Programming Solver	

Abkürzungsverzeichnis

SVM Support Vector Machine

1 Einführung

1.1 Intuition

Ziel: möglichst breites Band zwischen den 2 verschiedenen Klassen aufziehen.

1.2 Mathematische Herleitung

TODO TEXT HERE

1.2.1 Problemdefinition

Gegeben sei ein Gewichtsvektor $w \in \mathbb{R}^D$, ein Bias $b \in \mathbb{R}$, ein beliebiger Punkt $x_n \in \mathbb{R}^D$ und ein zugehöriges Label $y_n \in \{1, +1\}$. Eine Ebene im Raum kann allgemein definiert werden durch:

$$w^T x_n + b = 0 (1.1)$$

Weiters soll für eine richtige Klassifikation gelten:

$$w^T x_n + b \ge +1$$
 für $y_k = +1$ (1.2a)
 $w^T x_n + b \le -1$ für $y_k = -1$ (1.2b)

$$w^T x_n + b \le -1 \qquad \text{für } y_k = -1 \tag{1.2b}$$

Gleichung 1.2 kann weiter verallgemeinert werden durch beidseitige Multiplikation mit y_k :

$$y_k(w^T x_n + b) \ge 1$$
 für $y_k = +1$ (1.3a)
 $y_k(w^T x_n + b) \ge 1$ für $y_k = -1$ (1.3b)

$$y_k(w^T x_n + b) \ge 1 \qquad \text{für } y_k = -1 \tag{1.3b}$$

Für den Grenzfall, dass $x_n = \hat{x}$ genau an der Grenze der Trennebene liegt, gilt somit:

$$y_k(w^T\hat{x} + b) = 1 \tag{1.4}$$

Als nächsten Schritt bestimmen wir den euklidischen Normalabstand D eines beliebigen Punkts $x_n \in \mathbb{R}^D$ zu der Ebene. Hierfür ist zuerst zu bemerken, dass w normal zur definierten Ebene steht.

Lemma 1.2.1. Eine Ebene sei definiert durch $w^Tx + b = 0$. Der Vektor w steht normal zu der definierten Ebene.

Beweis. Man wähle zwei Punkte $x_1,x_2\in\mathbb{R}^D$ die auf der Ebene liegen. Somit muss gelten:

$$w^{T}x_{1} + b = 0$$

$$w^{T}x_{2} + b = 0$$

$$w^{T}(x_{1} - x_{2}) = 0 \leftrightarrow ||w^{T}|| ||x_{1} - x_{2}|| \cos(\alpha) = 0 \leftrightarrow \alpha = 90^{\circ}$$

Um den Normalabstand D eines beliebigen Punkts x_n zu ermitteln wählt man einen Punkt x, der auf der Ebene liegt, und projiziert den Vektor $(x_n - x)$ auf den Einheitsvektor von w. Weil nur der tatsächliche Abstand zur Ebene relevant ist und nicht die Richtung nimmt man den Betrag.

$$D = \left| \frac{w^{T}}{\|w\|} (x_{n} - x) \right| =$$

$$= \frac{1}{\|w\|} |(w^{T} x_{n} - w^{T} x)| =$$

$$= \frac{1}{\|w\|} |(w^{T} x_{n} + b - (w^{T} x + b))|$$
(1.6)

Abbildung 1.1: Durch die Projektion von $(x_n - x)$ auf den Einheitsvektor von w kann der Normalabstand D von x_n zu der Ebene bestimmt werden.

Weil der Punkt x auf der Ebene liegt gilt $w^T x + b = 0$ (Gleichung 1.1):

$$D = \frac{1}{\|w\|} |(w^T x_n + b)| \tag{1.7}$$

Nun trifft man die Annahme, dass $x_n = \hat{x}$ der am nächsten zu der Trenngrenze liegende Punkt ist. Aus Gleichung 1.4 gilt $y_k(w^T\hat{x}+b)=1=|w^T\hat{x}+b|$ unter der Annahme, dass der Punkt richtig klassifiziert wurde. Somit ergibt sich der kleinste Abstand zur Trennebene als:

$$D = \frac{1}{\|w\|} \tag{1.8}$$

1.2.2 Optimierungsproblem

Gleichung 1.8 beschreibt den Normalabstand zu dem am nächsten an der Ebene liegenden Punkt \hat{x} . Ziel einer Support Vector Machine (SVM) ist die Maximierung dieses Abstands für N Eingabevektoren $\{x_1..x_N\}, x_n \in \mathbb{R}^D$. Hierbei handelt es sich um ein Optimierungsproblem mit Nebenbedingungen:

$$\max_{w} \frac{1}{\|w\|} \tag{1.9a}$$
mit
$$\min_{n=1..N} |w^{T}x_{n} + b| = 1 \tag{1.9b}$$

mit
$$\min_{n=1..N} |w^T x_n + b| = 1$$
 (1.9b)

Gleichung 1.9b beschreibt hier den am nächsten zur Ebene gelegenen Punkt \hat{x} aus der gebenenen Menge von Eingabevektoren in allgemeiner Form. Der Betrag lässt sich vermeiden durch die Anwendung von Gleichung 1.3:

$$|w^{T}x_{n} + b| = y_{n}(w^{T}x_{n} + b) \tag{1.10}$$

Durch Anwendung von Gleichung 1.10 in Gleichung 1.9b, Umformulierung der Maximierung in eine Minimierung und der Verallgemeinerung von \hat{x} auf beliebige Punkte x_n erhält man:

$$\min_{w} \frac{1}{2} w^{T} w \qquad (1.11a)$$

$$\min_{w} y_{n}(w^{T} x_{n} + b) \ge 1 \text{ für } n = 1..N$$

$$(1.11b)$$

mit
$$y_n(w^T x_n + b) \ge 1 \text{ für } n = 1..N$$
 (1.11b)

Die Verallgemeinerung von Gleichung 1.9b auf Gleichung 1.11b auf beliebige Punkte ist so möglich, weil durch Gleichung 1.4 sichergestellt ist, dass für beliebige Punkte $y_n(w^Tx_n+b) \ge 1$ gilt.

1.2.3 Lagrange Optimierung

Das beschriebene Optimierungsproblem beinhaltet eine Ungleichung in Gleichung 1.11b. Um die Lagrangegleichung aufstellen zu können wird zuerst die Nebenbedingung umgeformt:

$$\min_{w} \qquad \frac{1}{2}w^{T}w \tag{1.12a}$$

mit
$$y_n(w^T x_n + b) - 1 \ge 0$$
 für $n = 1..N$ (1.12b)

Das Problem kann nun als Lagrangegleichung dargestellt werden:

$$\min_{w,b} \qquad \mathcal{L}(w,b,\alpha) = \frac{1}{2}w^T w - \sum_{n=1}^{N} \alpha_n (y_n(w^T x_n + b) - 1)$$
 (1.13a)

$$\max_{\alpha_n} \quad \alpha_n \ge 0 \text{ für } n = 1..N \tag{1.13b}$$

Weil Gleichung 1.12b eine Ungleichung der Form ≥ 0 beinhaltet werden diese Terme von der zu maximierenden Funktion subtrahiert. Nun kann die uneingeschränkte Optimierung von Gleichung 1.13a nach w und b durchgeführt werden indem die Ableitungen bestimmt und 0 gesetzt werden:

$$\nabla_{w} \mathcal{L} = w - \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n} \stackrel{!}{=} \vec{0}$$

$$w = \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}$$

$$(1.14)$$

$$\frac{\partial}{\partial b} \mathcal{L} = -\sum_{n=1}^{N} \alpha_n y_n \stackrel{!}{=} 0$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
(1.15)

Die Ergebnisse von Gleichung 1.14 und Gleichung 1.15 können in Gleichung 1.13a eingesetzt werden. Hierfür wird zuerst die Summe in Gleichung 1.13a in Teilsummen aufgeteilt:

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2}w^{T}w - \sum_{n=1}^{N} \alpha_{n}(y_{n}(w^{T}x_{n}+b)-1) =$$

$$= \frac{1}{2}w^{T}w - [\sum_{n=1}^{N} \alpha_{n}y_{n}b - \sum_{n=1}^{N} \alpha_{n} + \sum_{n=1}^{N} \alpha_{n}y_{n}w^{T}x_{n}]$$
(1.16)

Weil $\sum_{n=1}^{N} \alpha_n y_n = 0$ (Gleichung 1.15) gilt fällt der Term $\sum_{n=1}^{N} \alpha_n y_n b$ weg:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}w^{T}w - \left[-\sum_{n=1}^{N} \alpha_{n} + \sum_{n=1}^{N} \alpha_{n}y_{n}w^{T}x_{n}\right]$$
(1.17)

Vergleicht man den Term $\sum_{n=1}^{N} \alpha_n y_n w^T x_n$ mit dem Ergebnis von Gleichung 1.14 erkennt man, dass $\sum_{n=1}^{N} \alpha_n y_n w^T x_n = w^T w$ gilt. Dies kann ausgeschrieben werden als:

$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$

$$\tag{1.18}$$

Gleichung 1.18 beschreibt das Optimierungsproblem ohne Abhängigkeit von w und b, wir haben jetzt also eine Maximierung für α mit Nebenbedingungen:

$$\max_{\alpha} \qquad \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$
 (1.19a)

$$mit \alpha_n \ge 0 für n = 1..N (1.19b)$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N$$
 (1.19c)

Das in Gleichung 1.19 beschriebene Problem kann beispielsweise mittels eines Quadratic Programming Solvers gelöst werden. Als Ergebnis erhält man einen Vektor α mit allen α_n . Durch Einsetzen in $w = \sum_{n=1}^{N} \alpha_n y_n x_n$ kann w bestimmt werden.

Betrachtet man den Ergebnisvektor α wird man feststellen, dass sehr viele Werte 0 ergeben. In Gleichung 1.13a befindet sich der Term $\alpha_n(y_n(w^Tx_n+b)-1)$. Der Term $(y_n(w^Tx_n+b)-1)$ kann als Schlupf bezeichnet werden. Das Produkt von Schlupf und α_n kann nur 0 werden wenn entweder der Schlupf 0 ist oder α_n . Umgekehrt bedeutet dies, dass alle Vektoren, die einen minimalen Abstand zu der Trennebene haben, ein $\alpha_n \neq 0$ aufweisen. Vektoren, die diese Bedingung erfüllen, werden Stützvektoren genannt.

Mit dieser Erkenntnis kann Gleichung 1.14 erneut analysiert werden:

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n \tag{1.20}$$

Weil nur Stützvektoren ein $\alpha_n \neq 0$ aufweisen und somit auch nur Stützvektoren einen Beitrag zu w leisten, kann Gleichung 1.20 stark vereinfacht werden:

$$w = \sum_{n \text{ ist Stützvektor}} \alpha_n y_n x_n \tag{1.21}$$

Der Gewichtsvektor w hängt also lediglich von den Stützvektoren ab, deren Anzahl in der Regel gering ist.

Noch offen ist die Bestimmung des Bias b. Weil für Stützvektoren $y_n(w^Tx_n + b) = 1$ gilt (Gleichung 1.4) kann der Bias b aus jedem beliebigen Stützvektor bestimmt

werden:

$$b = \frac{1}{y_n} - w^T x_n \tag{1.22}$$

1.2.4 Lösung mittels Quadratic Programming Solver

Das in Gleichung 1.19 beschriebene Optimierungsproblem kann mittels eines Quadratic Programming Solvers gelöst werden. Hierfür muss das Problem aber umformuliert werden, da die Standardform von QP-Problemen wie folgt ist:

$$\min_{x} = \frac{1}{2}x^{T}Qx + cx + d \tag{1.23}$$

 $Q \in \mathbb{R}^{n \times n}$ ist eine symmetrische reelle Matrix mit Koeffizienten, die einen quadratischen Beitrag leisten. $c \in \mathbb{R}$ ist ein Faktor für den linearen Beitrag und $d \in \mathbb{R}$ ist ein fixer Anteil.

Unter der Voraussetzung, dass $\max_x f(x) = \min_x (-f(x))$ gilt können wir unser Maximierungsproblem aus Gleichung 1.19 in ein Minimierungsproblem umformen:

$$\min_{\alpha} \mathcal{L}(\alpha) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m - \sum_{n=1}^{N} \alpha_n$$
 (1.24)

Als nächsten Schritt müssen wir die Koeffizienten aus den Summen extrahieren, α und y als Vektor darstellen, das Problem in die Standard-QP-Form bringen und die Nebenbedingungen als Matrizenmultiplikation darstellen:

$$\min_{\alpha} \qquad \mathcal{L}(\alpha) = \frac{1}{2}\alpha^{T}Q\alpha + (-1^{T})\alpha \tag{1.25a}$$

mit
$$Q = \begin{bmatrix} y_1 y_1 x_1^T x_1 & y_1 y_2 x_1^T x_2 & \dots & y_1 y_N x_1^T x_N \\ y_2 y_1 x_2^T x_1 & y_2 y_2 x_2^T x_2 & \dots & y_2 y_N x_2^T x_N \\ \vdots & \vdots & \vdots & \vdots \\ y_N y_1 x_N^T x_1 & y_N y_2 x_N^T x_2 & \dots & y_N y_N x_N^T x_N \end{bmatrix}$$
(1.25b)

$$f \ddot{u} r \qquad y^T \alpha = 0 \tag{1.25c}$$

$$0 \le \alpha \le \infty \tag{1.25d}$$

Das Problem in dieser Darstellung können wir direkt an ein Quadratic-Programming Solver Framework übergeben und erhalten einen Vektor $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ als Ergebnis.

Daraus können wir, wie bereits zuvor erwähnt, w und b bestimmen:

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n \tag{1.26}$$

Für die Biasberechnung benötigen wir einen beliebigen Stützvektor x_k . Wir finden einen Stützvektor, indem wir den Ergebnisvektor α betrachten. Ein Stützvektor x_k muss $\alpha_k \neq 0$ aufweisen.

$$b = \frac{1}{y_k} - w^T x_k \tag{1.27}$$

Die SVM ist nun vollständig definiert, neue Eingabevektoren \boldsymbol{x} können wie folgt klassifiziert werden:

$$y = sign(w^T x + b) (1.28)$$