

Objetivo

Classificar corretamente se uma amostra de leitura mamográfica contém indícios de câncer de mama ou não.

Base de Dados

São fornecidos 2 conjuntos de imagens e 2 arquivos csv's:

- Treino: 43.744

- Teste: 10.962

Divididos em 2 classes:

- Com Câncer
- Sem Câncer

Análise da Base de Dados (conjunto de treino)

- Marcação de câncer é mais comum em faixa etária superior
- Resultados positivos começam próximos aos 40 anos.

Análise da Base de Dados (conjunto de treino)

- Imagens: 2.2% com resultado positivo;
- Pacientes: 4.4% com alguma imagem indicando resultado positivo.

Análise da Base de Dados (conjunto de treino)

Volume muito próximo entre as principais classes

Imagens com resultado positivo (próximo ao total de imagens)

Imagens por lateralidade

Implementação das soluções

Arquiteturas e algoritmos

Rede pré-treinada (congelada)

Pooling + Dense

Treino atualiza camada de classificação

Rede pré-treinada (descongelada)

Pooling + Dense

Treino atualiza rede pré-treinada e camada de classificação

Rede pré-treinada (congelada)

Random Forest

Treino atualiza camada de classificação

camada de transfer learning

Arquiteturas e algoritmos

Camada de transfer learning (redes pré-treinadas com Imagenet):

Modelos	Camada de transfer learning	Camada de classificação
EfficienteNetB0	> 4 milhões	1.280
DenseNet121	> 7 milhões	1.024
ResNet50	> 23 milhões	2.048
ConvNeXtLarge	> 196 milhões	1.536

Arquiteturas e algoritmos

• Camada de classificação:

Balanceamento de classes

Camada de transfer learning

Camada de classificação

Parâmetros de treino (Redes Neurais)

- Tamanho de entrada da imagem
 - o 128 x 64
 - o 256 x 128
 - o 128 x 256
- batch_size: 32
- otimizador Adam com learning_rate 0.0001
- loss_function: binary_crossentropy

Parâmetros de treino (Random Forest)

- max_depth: 5;
- max_features: 50;
- min_samples_split: 2;
- min_samples_leaf: 1;
- bootstrap: False;
- criterion: entropy;
- n_estimators: 50.

SIMPLES

Improved ROI Extraction [YOLOv5]

Resultados imagem 128 x 64 e pré-processamento simples

Acurácia Balanceada	Validação	Teste
EfficienteNetB0 Congelada	57,5%	53,5%
EfficienteNetB0 Descongelada	54,5%	53,5%
DenseNet121 Congelada	52%	53%
DenseNet121 Descongelada	54,5%	54,5%
ResNet50 Congelada	54,5%	53%
ResNet50 Descongelada	58,5%	-

Resultados

imagem 128 x 256 e pré-processamento com OpenCV + limiarização

Acurácia Balanceada	Validação	Teste
EfficienteNetB0 Congelada	51,5%	51,5%
EfficienteNetB0 Descongelada	-	-
DenseNet121 Congelada	52,5%	52,5%
DenseNet121 Descongelada	52,15%	52,95%
ResNet50 Congelada	53%	49,15%
ResNet50 Descongelada	55%	55%
DenseNet121 Descongelado com Dropout (evitar overfitting)	53,5%	53,5%
ConvNeXtLarge + Random Forest	49%	49,5%

Resultados

imagem 256 x 128 e pré-processamento com yolov5

Acurácia Balanceada	Validação	Teste
EfficienteNetB0 Congelada	54,5%	54%
EfficienteNetB0 Descongelada	51,3%	50,5%
DenseNet121 Congelada	55,5%	54%
DenseNet121 Descongelada	58,5%	55,5%
ResNet50 Congelada	-	-
ResNet50 Descongelada	-	-
DenseNet121 Descongelado com Dropout (evitar overfitting)	62,34%	59,86%

Melhor modelo de cada pré-processamento

Pré-Processamento	Melhor arquitetura	Tamanho Imagem	Acurácia balanceada (conjunto de teste)
Simples	DenseNet121 Descongelada	128 x 64	54,5%
OpenCV + Iimiarização	ResNet50 Descongelada	128 x 256	55%
yolov5	DenseNet121 Descongelado com Dropout (evitar overfitting)	256 x 128	59,86%

Resultado por paciente (conjunto de teste)

Pré-Processamento	Melhor arquitetura	Tamanho Imagem	Acurácia balanceada (por paciente)
OpenCV + Iimiarização	ResNet50 Descongelada	128 x 256	54%
yolov5	DenseNet121 Descongelado com Dropout (evitar overfitting)	256 x 128	62%

Resultado f score probabilístico (kaggle)

Pré-Processamento	Melhor arquitetura	Tamanho Imagem	f score prob.
OpenCV + limiarização	ResNet50 Descongelada	128 x 256	0.04
yolov5	DenseNet121 Descongelado com Dropout (evitar overfitting)	256 x 128	0.05

Melhor resultado imagem 256 x 128 e pré-processamento com yolov5

Conclusões

- Resultado ainda é bem inferior aos vencedores da competição;
- Ambiente gratuito do colab limitou os cenários de teste;
- Maior conhecimento da área é fundamental para o pré-processamento adequado.

O que deu certo?

- Camada de dropout (overfitting);
- Pré-processamento mais robusto;
- Aumentar tamanho de imagem.

Pontos de melhoria

- Aplicar pré-processamento ao maior tamanho de imagem;
- Outros métodos de balanceamento (ex.: oversampling);
- Enriquecer com imagens de outros datasets;
- Avaliar outros pré-processamentos.

Referências

- Modelo com Pré-Processamento das Imagens
- DataSet de Imagens Pré-Processadas (ROI)
- Código para realizar Pré-Processamento de Imagem usando OpenCV
- Competição Kaggle

OBRIGADO!!!!

OpenCV + limiarização Otsu:

100 200

150

Imagens Geradas

Modelos de redes utilizadas

Parâmetros dos modelos pré treinados

Modelos	Total de Parâmetros	Parâmetros de treináveis com rede congelada	Parâmetros de treináveis com rede descongelada
EfficienteNetB0	4.050.852	1.281	4.008.829
ResNet50	23.589.641	2.049	2.353.641
DenseNet121	7.037.504	1.025	6.954.881
ConvNeXtLarge	196.230.336	-	

1° Modelo de Pré-Processamento

- Modelo com pré processamento básico:
 - Shear_Range=0,2
 - Zoom_Range= 0,2
 - Horizontal_Flip=True
- Tamanho da Imagem: 128 x 64
- Quantidade de imagens:
 - Conjunto de Validação: 8.748 imagens
 - Conjunto de Teste: 10.962 imagens

2º Modelo de Pré-Processamento

- Modelo com pré processamento baseado [RSNA]
 Improved ROI Extraction [YOLOv5] retirado do Kaggle, usando o dataset já pré-processado
- Tamanho da Imagem: 256 x 128
- Quantidade de imagens:
 - Conjunto de Validação: 8.748 imagens
 - Conjunto de Teste: 10.962 imagens

3° Modelo de Pré-Processamento

- Modelo com pré processamento baseado em <u>ROI</u>
 <u>Extraction using OpenCV</u> do dataset do kaggle
 - Aplicando desfoque gaussiano e utilizando limiarização de Otsu para obter a máscara da mama
- Tamanho da Imagem: 128 x 256
- Quantidade de imagens:
 - Conjunto de Validação: 8.748 imagens
 - Conjunto de Teste: 10.962 imagens

