

B24 May 26 Lec 1 Notes

Ex 1:

- (i) $M_{2x2}^{\text{ff}} \rightarrow \mathbb{F}^4$ is an isomorphism $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto (a,b,c,d)$
- (ii) Let V. W be v.s. with bases v,,...,vn and w,,...,wn respectively. Recall L(v,w):= { T: v→ w | T is a L.T.}

Then,

$$L(V_1 W) \rightarrow M_{m \times n}^F$$

$$T \mapsto [T]_{w_1, \dots, w_n}^{v_1, \dots, v_n}$$

is an isomorphism. In particular, there is a 1-1 correspondence between L(v,w) and Mmxn.

The mapping / isomorphism L(V, w) depends on V, , ..., vn and w, , ..., wn.

What is the inverse of L(v, w)?

If BE Max and VEV, then Ja, ..., and f st. V= x, v, + ... + x n v n.

Then
$$B\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 is an mx1 matrix, call it $\begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix}$.

We define 4(B): V→W by 4(B)(V)= B, W, + ... + Bm Wm

We can check that $\Psi: M_{man}^{F} \to L(v, w)$ is a L.T. and is inverse to

[.1: L(v,w) - M #

Theorem:

Let $T: V \rightarrow W$ be a L.T. Then T is invertible iff for any weW the equation Tx = W has an unique solution $x \in V$.

Proof (=)

 $T^{-1}w$ is a solution to Tx = w since $T(T^{-1}w) = (TT^{-1})w = Iw = w$ And if x^{**} is also a solution to Tx = w, then

$$T_x^* = \omega = T(T^*\omega) = \omega$$

$$\Rightarrow T^*T_x^* = T^*\omega$$

$$\Rightarrow x^* = T^*\omega$$

Proof ():

Define S: W -V by Sw is defined as the unique solution x to Tx = w, for any weW.

Then TSw = T(Sw) = w, i.e. TS=Iw

and STV by def is the unique solution to Tx=Tv, which is x=v i.e. STv=v, so ST=Iv

Definition:

Let v be a v.s. A subset voeV is called a subspace of V if:

(i) veVo ⇒ ave Vo, Vae F, and

(ii) ~,veV, > ~+veVo

Remark: if Vot V is a subspace, Vo is also a v.s.

Ex 2:

Let $V = \mathbb{R}^2$, $\mathbb{F} = \mathbb{R}$. What are the subspaces? Let $V \circ C \mathbb{R}^2$ be a subspace, and $V \in V \circ$.

So if $v \in V_0$, then the line passing through v is also a subset of V_0 . Moreover, we can check $\{x v \in \mathbb{R}^2 \mid \alpha \in \mathbb{R}^3 \text{ is a subspace of } \mathbb{R}^2 \text{ .}$ The only subspaces of \mathbb{R}^2 are $\{(0,0)\}$, lines through the origin, and \mathbb{R}^2 .

 $V=\mathbb{R}^3$, $\mathbb{R}=\mathbb{R}$. Here subspaces are $\{0\}$, lines through 0 vector, \mathbb{R}^3

Definition:

If v., ... vn & V , the linear span of v1, ... vn is defined as:

Definition:

Given a L.T. T: V - W. The nul space or Kernel of T is defined by:

Definition:

Given a L.T. T: V+W. The range or image of T is defined by:

Remark: Kernel, image, and linear span are all subspaces.

Ex 4:

Consider
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x,y) \mapsto (x,o)$

Ex 5:

What are the Kennel, ranges of projection onto the line $y=\frac{-2\pi}{3}$.