Obsah

21	Stří	lavý elektrický proud	1
	21.1	Součástky v obvodu se střídavým napětím	1
		21.1.1 Rezistor	1
		21.1.2 Cívka	1
		21.1.3 Kondenzátor	2
	21.2	RLC Obvod	2
		21.2.1 Sériový RLC obvod	2
		21.2.2 Impedance	3
		21.2.3 Fázový posun	3
		21.2.4 Resonance sériového RLC obvodu	3
	21.3	Hodnoty střídavého proudu	3
		21.3.1 Efektivní hodnota proudu	3
		21.3.2 Efektivní hodnota napětí	3
		21.3.3 Výkon	4
	21.4	Zařízení střídavého proudu	4
		21.4.1 Alternátor	4
		21.4.2 Třífázový generátor (třífázový alternátor)	4
		21.4.3 Transformátor	4
		21.4.4 Třífázová soustava střídavého napětí	6

21 Střídavý elektrický proud

- směr elektrického proudu v čase se mění
- průběhy
 - periodický okamžité hodnoty proudu se v čase periodicky mění a opakují, lze popsat jednoduchou funkcí
 - neperiodický okamžité hodnoty jsou náhodné, nelze určit následující hodnotu (např. šum)
- rovnice střídavého el. proudu

$$i(t) = I_{\rm m} \sin(\omega t + \varphi_0)$$
$$u(t) = U_{\rm m} \sin(\omega t + \varphi_0 + \varphi)$$

- -i, u okamžitá hodnota proudu a napětí
- $-\ I_{\rm m}, U_{\rm m}$ maximální amplituda proudu a napětí
- $-\ \omega = 2\pi f = 2\pi/T$ úhlová rychlost
- φ_0 počáteční fáze napětí
- $-\varphi$ fázový posun mezi proudem a napětím

21.1 Součástky v obvodu se střídavým napětím

21.1.1 Rezistor

- odpor rezistoru v obvodu střídavého napětí rezistance
- značka X_R , jednotky Ω (ohm)
- stejné chování jako při stejnosměrném proudu
- výpočet

$$i = X_R u \rightarrow X_R = R = \frac{u}{i} = \frac{U_{\rm m}}{I_{\rm m}}$$

- nevytváří fázový posun
- změna energie na teplo

21.1.2 Cívka

• induktance, značka X_L , jednotky Ω (ohm)

$$X_L = \omega L = 2\pi f L$$

- -L-indukčnost cívky
- platí Ohmův zákon

$$I_{\rm m} = \frac{U_{\rm m}}{X_L}$$

• při připojení na zdroj cívka vytváří elektromagnetické pole \rightarrow vlastní indukce napětí $u_i = -L\Delta i/\Delta t$ s opačnou polaritou než $u \rightarrow u$ v maximu dříve než $i \rightarrow$ fázový posun

$$\varphi = \frac{\pi}{2}$$

- proud zpožděn za napětím
- změna energie v magnetické pole

Obr. 21.1: Fázový diagram posunu z důvodu induktance

21.1.3 Kondenzátor

• kapacitance, značka X_C , jednotky Ω (ohm)

$$X_C = \frac{1}{\omega C}$$

• platí Ohmův zákon

$$I_{\rm m} = \frac{U_{\rm m}}{X_C}$$

• záporný fázový posun – napětí zpožděné za proudem

$$u = U_{\rm m} \sin \omega t$$

$$i = I_{\rm m} \sin \left(\omega t + \frac{\pi}{2}\right)$$

$$\varphi = -\frac{\pi}{2}$$

- v obvodu střídavého proudu se chová jako prvek s odporem
 - lepší propustnost pro velké frekvence; špatná propustnost malých frekvencí
- přeměna energie na elektrické pole

21.2 RLC Obvod

- RLC obvod obvod složen z resizoru R, cívky L a kondenzátoru C
 - zapojeny za sebou sériový RLC obvod

21.2.1 Sériový RLC obvod

- $\overline{U_R}, \overline{U_L}, \overline{U_C}$ fázory otáčející se v čase
 - $\overline{U_R}$ fázor rezistoru, stejná fáze jako $\overline{I_{\rm m}}$
 - $-\overline{U_L}$ fázor cívky, vektor posunut o 90°
 - $-\overline{U_C}$ fázor kondenzátoru, vektor posunut o -90°
- U_{Rm}, U_{Lm}, U_{Cm} amplitudy napětí
- výsledný fázor napětí roven součtu všech fázorů

$$\begin{split} U_{\rm m}^2 &= U_{R{\rm m}}^2 + (U_{R{\rm m}} - U_{R{\rm m}})^2 ({\rm Pythagorova~věta}) \\ U_{\rm m}^2 &= (X_R I_{\rm m})^2 + (X_L I_{\rm m} - X_C I_{\rm m})^2 \\ U_{\rm m}^2 &= I_{\rm m}^2 \left(X_R^2 + (X_L - X_C)^2 \right) \\ U_{\rm m}^2 &= I_{\rm m} \sqrt{X_R^2 + (X_L - X_C)^2} \end{split}$$

21.2.2 Impedance

- $Z, [Z] = \Omega$
- veličina jednotně popisující RLC obvod

$$Z = \frac{U_{\rm m}}{I_{\rm m}} = \sqrt{X_R^2 + (X_L - X_C)^2} = \sqrt{X_R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

• komplexní veličina

21.2.3 Fázový posun

- značka φ , úhel
- posun napětí vůči proudu

$$tg \varphi = \frac{X_L - X_C}{X_R}$$
$$\cos \varphi = \frac{X_R}{Z}$$

21.2.4 Resonance sériového RLC obvodu

- nastává při $X_C = X_L$
- impedance je na minimální hodnotě $Z = X_R$
- fázový posun nulový
- proud nabývá maximální hodnoty
- rezonanční frekvence f_0

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \Rightarrow \omega = \frac{1}{\sqrt{LC}}$$

21.3 Hodnoty střídavého proudu

21.3.1 Efektivní hodnota proudu

- hodnota střídavého proudu odpovídající stejnosměrnému proudu
- proud, který má v obvodu s rezistorem stejný výkon jako střídavý proud $i=I_{\rm m}\sin\omega t$

$$I = \frac{I_{\rm m}}{\sqrt{2}} = 0.707 I_{\rm m}$$

21.3.2 Efektivní hodnota napětí

- hodnota střídavého napětí odpovídající stejnosměrnému napětí
- napětí, které má v obvodu s rezistorem stejný výkon jako střídavé napětí $u=U_{\rm m}\sin\omega t$

$$U = \frac{U_{\rm m}}{\sqrt{2}} = 0.707 U_{\rm m}$$

21.3.3 Výkon

Efektivní hodnota výkonu

• výpočet z efektivních hodnot proudu a napětí

$$P = UI = RI^2 = \frac{U^2}{R}$$

• bez posunu fáze napětí

Střední hodnota

• průměrná hodnota výkonu při průběhu střídavého proudu

$$P = \frac{1}{2}U_{\rm m}I_{\rm m} = \frac{1}{2}RI_{\rm m}^2$$

Činný výkon

• elektrická energie dodaná zdrojem změněna v užitečnou práci či teplo

$$P = UI\cos\varphi$$

 $-\cos\varphi$ – účiník

• speciální případ pro RLC obvod s posunem fáze napětí

21.4 Zařízení střídavého proudu

21.4.1 Alternátor

- výroba střídavého napětí
- přeměna mechanické energie na elektrickou
- rotor stálý magnet, otáčí se
- stator vodič navinut v cívce s jádrem
- měnící se magnetické pole indukuje na statoru el. proud

Obr. 21.2: Nákres jednoduchého alternátoru

21.4.2 Třífázový generátor (třífázový alternátor)

- výroba střídavého napětí
- stator statická vnější část 3 cívky
- rotor otáčivá část elektromagnet
- indukce střídavého napětí na každé cívce, napětí o třetinu fáze navzájem posunuty

$$u_1 = U_{\rm m} \sin \omega t u_2 = U_{\rm m} \sin \left(\omega t + \frac{2}{3}\pi\right) u_3 = U_{\rm m} \sin \left(\omega t + \frac{4}{3}\pi\right)$$

21.4.3 Transformátor

- změna napětí střídavého proudu
- energie zachována při zvýšení napětí snížení proudu a naopak
- dvě cívky na společném jádře
 - primární cívka přijímá vstupní napětí, vytváří elektromagnetické pole
 - sekundární cívka indukování proudu na základě elektromagnetického pole
- · napětí na cívkách

$$u = N \frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

- Φ magnetický tok
- transformační poměr

$$k = \frac{N_2}{N_1} = \frac{u_2}{u_1} = \frac{i_1}{i_2}$$

- -k > 1 zvýšení napětí
- -k=1 napětí se nemění
- -k < 1 snížení napětí

Obr. 21.3: Průběh tří fází generátoru

Obr. 21.4: Nákres transformátoru

21.4.4 Třífázová soustava střídavého napětí

- součet okamžitých hodnot napětí fází $u_1 + u_2 + u_3 = 0$
- vodič z každé cívky spojen do uzlu nulový potenciál nulovací vodič
- druhé konce vyvedeny separátně fázové vodiče
- napětí
 - $-\,$ fázové napětí mezi fází a nulou 230V
 - sdružená napětí mezi fázemi, efektivní hodnota napětí $\sqrt{3}$ krát větší než efektivní hodnota napětí fáze 398 V (400 V)
- zapojení
 - trojúhelník na spotřebičích sdružená (vyšší) napětí, absence nulovacího vodiče
 - hvězda na spotřebičích fázová napětí, nulovací vodič

Obr. 21.5: Zapojení trojúhelník-hvězda