Amendments to Claims

1-40. (Canceled)

1	41. (New): A method of mounting a gas distribution plate, comprising the steps of:
2	providing a gas distribution plate perforated by a number of gas outlet orifices;
3	providing a suspension comprising a plurality of side wall segments including a first side wall
4	segment and a second side wall segment, wherein each side wall segment includes a first end, a second
5	end, and an edge extending between the first end and the second end of that side wall segment;
6	attaching the first end of each side wall segment to the gas distribution plate so that the edge of
7	the first side wall segment and the edge of the second side wall segment are adjacent and are separated
8	by a gap;
9	providing a cover having an inner member and an outer member joined together along an
10	elongated junction that bisects both the inner member and the outer member; and
11	positioning the cover so that the junction of the cover is within said gap and so that portions of
12	the first and second segments of the suspension are between the inner and outer members of the cover.
1	42. (New): A method according to claim 41, wherein the positioning step comprises:
2	positioning the inner and outer members of the cover sufficiently close to each other and to the
3	first and second side wall segments so as to impede gas from flowing through said gap.
1	43. (New): A method of mounting a gas distribution plate, comprising the steps of:
2	providing a gas distribution plate perforated by a number of gas outlet orifices;
3	providing a suspension comprising a plurality of side wall segments including a first side wall
4	segment and a second side wall segment, wherein each side wall segment includes a first end, a second
5	end, and an edge extending between the first end and the second end of that side wall segment;

6	attaching the first end of each side wall segment to the gas distribution plate so that the edge of
7	the first side wall segment and the edge of the second side wall segment are adjacent and are separated
8	by a gap;
9	providing a cover having first and second parallel members joined by a transverse member; and
10	positioning the cover so that said gap is between the first and second parallel members of the
11 ·	cover, so that each of the two parallel members straddles the gap, and so that a portion of the first side
12	wall segment and a portion of the second side wall segment are between the two parallel members.
1	44. (New): A method according to claim 43, wherein the positioning step comprises:
2	positioning the two parallel members of the cover sufficiently close to each other and to the first
3	and second side wall segments so as to impede gas from flowing through said gap.
	\sim
1	45. (New): A method of suspending a gas distribution plate within a plasma chamber, comprising the
2	steps of:
3	providing a chamber wall enclosing a chamber interior, wherein the chamber wall includes a
4	back wall perforated by a gas inlet orifice;
5	mounting within the chamber interior a susceptor for supporting a workpiece;
6	positioning a gas distribution plate between the back wall and the susceptor, wherein the gas
7	distribution plate is perforated by a number of gas outlet orifices;
8	providing a suspension comprising a plurality of side wall segments including a first side wall
9	segment and a second side wall segment, wherein each side wall segment includes a first end, a second
10	end, and an edge extending between the first end and the second end of that side wall segment;
11	attaching the first end of each side wall segment to the gas distribution plate so that the edge of
12	the first side wall segment and the edge of the second side wall segment are adjacent and are separated
13	by a gap;

14

attaching the second end of each side wall segment is attached to the back wall;

15	providing a cover having an inner member and an outer member joined together along an
16	elongated junction that bisects both the inner member and the outer member; and
17	positioning the cover so that the junction of the cover is within said gap and so that portions of
18	the first and second segments of the suspension are between the inner and outer members of the cover.
1	46. (New): A method according to claim 45, wherein the positioning step comprises:
2	positioning the inner and outer members of the cover sufficiently close to each other and to the
3	first and second side wall segments so as to impede gas from flowing through said gap.
1	47. (New): A method of suspending a gas distribution plate within a plasma chamber, comprising the
2	steps of:
3	providing a chamber wall enclosing a chamber interior, wherein the chamber wall includes a
4	back wall perforated by a gas inlet orifice;
5	mounting within the chamber interior a susceptor for supporting a workpiece;
6	positioning a gas distribution plate between the back wall and the susceptor, wherein the gas
7	distribution plate is perforated by a number of gas outlet orifices;
8	providing a suspension comprising a plurality of side wall segments including a first side wall
9	segment and a second side wall segment, wherein each side wall segment includes a first end, a second
10	end, and an edge extending between the first end and the second end of that side wall segment;
11	attaching the first end of each side wall segment to the gas distribution plate so that the edge of
12	the first side wall segment and the edge of the second side wall segment are adjacent and are separated
13	by a gap;
14	attaching the second end of each side wall segment is attached to the back wall;
15	providing a cover having first and second parallel members joined by a transverse member; and
16	positioning the cover so that said gap is between the first and second parallel members of the

17

cover, so that each of the two parallel members straddles the gap, and so that a portion of the first side

18	wall segment and a portion of the second side wall segment are between the two parallel members.
1	48. (New): A method according to claim 47, wherein the positioning step comprises:
2	positioning the two parallel members of the cover sufficiently close to each other and to the first
3	and second side wall segments so as to impede gas from flowing through said gap.
	<u> </u>
1	49. (New): A method of mounting a gas distribution plate, comprising the steps of:
2	providing a gas distribution plate perforated by a number of gas outlet orifices;
3	providing a first side wall segment comprising a first sheet having a first end, a second end,
4	and an edge extending from the first end of the first sheet to the second end of the first sheet;
5	providing a second side wall segment comprising a second sheet having a first end, a second
6	end, and an edge extending from the first end of the second sheet to the second end of the second
7	sheet;
8	attaching the first and of each side wall segment to the gas distribution plate;
9	bending the first sheet at a first angle along a first crease that extends between the first end of
10	the first sheet and the second end of the first sheet, so that a side portion of the first sheet extends
11	between the first crease and the edge of the first sheet;
12	bending the second sheet at a second angle along a second crease that extends between the first
13	end of the second sheet and the second end of the second sheet, so that a side portion of the second
14	sheet extends between the second crease and the edge of the second sheet; and
15	wherein the attaching step further comprises positioning the first and second side wall
16	segments so that the edge of the first sheet is adjacent to the edge of the second sheet and so that said
17	side portion of the first sheet is coplanar with said side portion of the second sheet.
1	50. (New): A method according to claim 49, wherein both the first angle and the second angle are 45
2.	degrees.

1	51. (New): A method of suspending a gas distribution plate within a plasma chamber, comprising the
2 .	steps of:
3	providing a chamber wall enclosing a chamber interior, wherein the chamber wall includes a
4	back wall perforated by a gas inlet orifice;
5	mounting within the chamber interior a susceptor for supporting a workpiece;
6	positioning a gas distribution plate between the back wall and the susceptor, wherein the gas
7	distribution plate is perforated by a number of gas outlet orifices;
8	providing a first side wall segment comprising a first sheet having a first end, a second end,
9	and an edge extending from the first end of the first sheet to the second end of the first sheet;
10	providing a second side wall segment comprising a second sheet having a first end, a second
11	end, and an edge extending from the first end of the second sheet to the second end of the second
12	sheet;
13	attaching the first and of each side wall segment to the gas distribution plate;
14	bending the first sheet at a first angle along a first crease that extends between the first end of
15	the first sheet and the second end of the first sheet, so that a side portion of the first sheet extends
16	between the first crease and the edge of the first sheet; and
17	bending the second sheet at a second angle along a second crease that extends between the first
18	end of the second sheet and the second end of the second sheet, so that a side portion of the second
19	sheet extends between the second crease and the edge of the second sheet;
20	wherein the attaching step comprises positioning the first and second side wall segments so that
21	the edge of the first sheet is adjacent to the edge of the second sheet and so that said side portion of the
22	first sheet is coplanar with said side portion of the second sheet.
1	52. (New): A method according to claim 51, wherein both the first angle and the second angle are 45
2	degrees.
~	andreas.