

SimPowerSystems Hands-on Workshop: Modeling and Simulation of Electrical Power Systems with SimPowerSystems™

Carlos Osorio
Principal Application Engineer
MathWorks - Natick, MA

Outline

- SimElectronics or SimPowerSystems?
- Ideal switching algorithm
- Power quality and harmonic analysis
- Control design and linearization

SimElectronics or SimPowerSystems?

SimElectronics

Simultaneous nonlinear equations solution
SPICE level switching device models
Include switching losses
Include parasitic current effects
Include temperature effects
Higher fidelity simulation

SimPowerSystems

Piecewise linear systems solution

Multiphase bridges and pulse generators

Detailed and average voltage models

Transient and harmonic analysis

Faster simulation

>> se dcdcbuckconverter

>> sps_dcdcbuckconverter

SimElectronics or SimPowerSystems?

SimElectronics or SimPowerSystems?

>> edit compare_powersupply

Ideal switching algorithm

GTO Buck Converter

>> edit compare_idealswitching

Ideal switching algorithm

Effect of using snubber circuits

>> edit compare_snubbers

Power quality and harmonic analysis

Multi-pulse rectification

- >> rectifier 6n12pulse
- >> rectifier_24pulse

Power quality and harmonic analysis

Transformer rectifier units (TRUs)

>> transformer_rectifier_unit

Power quality and harmonic analysis Switching strategies – Pulse-Width Modulation (PWM)

- The aim of PWM is to construct a high frequency carrier wave which contains an underlying, lower frequency modulation wave
- The modulation wave is the waveform that you want the electrical system to 'see'
- Higher order harmonics will depend on the ratio of the carrier wave frequency and the modulation wave frequency

Power quality and harmonic analysis

Switching strategies – Pulse-Width Modulation (PWM)

Power quality and harmonic analysis Switching strategies – Space Vector Modulation (SVM)

 The aim of SVM is to approximate the reference voltage vector instantaneously by combining the switching states corresponding to eight basic vectors

Power quality and harmonic analysis

Comparing switching strategies

PMSM Detailed Drive

>> pmsm detailed drive

Detailed and average transistor bridges

>> igbt_power_inverter_det

Detailed and average transistor bridges

DC-AC Half Bridge Inverter - Average Model

Adjust the simulation mode and sampling rates appropriately
Notice that the controller runs at a 10 kHz rate

>> igbt_power_inverter_avg

Detailed and average transistor bridges

>> igbt_power_inverter_avg

Detailed and average transistor bridges

bandwidth > 200 Hz settling time < 5 milliseconds overshoot < 5%

>> ight power inverter avg

Detailed and average transistor bridges

Click **Update Block** and verify the performance of the controller against the detailed switching inverter model in simulation For simplicity, we will use the same newly computed PI gains for the V_a controller

>> igbt_power_inverter_avg

Detailed and average transistor bridges

Combine both versions of the inverter in a single model using a **Variant Subsystem** Subsystem & Model Reference → Convert Subsystem to...

>> igbt_power_inverter

>> pv_mppt_inverter

Initialization and trimming

Use the **Trim model** option in the Linear Analysis tool
Analysis → Control Design → Linear Analysis...

Check the **Specifications** for the output voltages as **known** and trim the model Change optimization method to **nonlinear least squares**

>> mosfetbuckboost_avg

Initialization and trimming

Verify trimmed operating condition and initialize model

Run simulation with the computed operating condition object as initial states

>> mosfetbuckboost_avg

Plant identification from simulation data

>> sps_powersupply_sid

Plant identification from simulation data

>> sps_powersupply_sid

Plant identification from simulation data

Run the simulation to obtain thent ID & PID Tuning identification data Select the model structure and use the interactive handles to match the model to the data Step Plot: Reference tracking × Plant Identification Output (e) Step Plot: Reference tracking × Plant Identification × Offset Response Identified Plant Structure: Underdamped Pair Input Response Vload 15 Vref T_C + ζ Adjustor Plant Parameters: K = 29.242, $T_{c.} = 0.00014593$, $\zeta = 0.869$

>> sps_powersupply_sid

Frequency response estimation

- Open the **Frequency Response** Estimation tool
 - Analysis → Control Design → Frequency...
- Create a new input **Fixed Sample** Time Sinestream with $T_s = 1e-7$

Use the pre-computed analytic transfer function of the converter **GDBuck** as a reference for selecting the test frequencies and increase the amplitude of the test sine waves to 1e-1

Frequency response estimation

>> mosfetbuck_fre

Multi-input, multi-output control tuning

>> speedcontrol dcmotor

Multi-input, multi-output control tuning

controller blocks to be tuned

>> speedcontrol dcmotor

Multi-input, multi-output control tuning

Tune the system and check that both requirements are being adequately satisfied after the optimization

In the **Control System** tab, select **Update Blocks** and verify the performance of the controller against the nonlinear model in simulation

>> speedcontrol_dcmotor

