AD-A161 563 BORONNITRIDE AND SILICONNITRIDE SYSTEMS(U) MIEN UNIV (AUSTRIA) INST FUER PHYSIKALISCHE CHEMIE PROGLET AL SEP 85 DAJA45-84-C-8038 1/2 UNCLASSIFIED F/G 7/4 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

BORONNITRIDE and SILICONNITRIDE SYSTEMS
First Annual Report

ру

Peter Rogl
Julius C. Schuster

September 1985

United States Army

EUROPEAN RESEARCH OFFICE OF THE US ARMY

London England

CONTRACT NUMBER DAJA45-84-C-0038

Institut für Physikalische Chemie der Universität Wien Währingerstrasse 42, A-1090 Wien, Austria

TIC FILE COPY

Approved for Public Release; distribution unlimited

The research reported in this document has been made possible through the support and sponsorship of the U.S. Government through its European Research Office of the U.S. Army

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TO REPORT NUMBER	2. GOVT ACCESSION NO	HECIPIENT'S CATALOG NUMBER
	AD-A161563	
4 TITLE (and Subdite)		First Annual Report
BORONNITRIDE AND SILICONNITRID	F SYSTEMS	Sept. 1984 to Sept. 1985
January Ozbrania i Nije	<u> </u>	6. PERFORMING ORG. REPORT NUMBER
Peter Rogl		B. CONTRACT OR GRANT NUMBER(s)
1		DAJA45-84-C-0038
Julius Schust	er	
3. PERFORMING ORGANIZATION NAME AND ADDRESS Inst. 1. Physikalische Chemie		10. PROGPAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBER:
A-1090 Wien, Währingerstr. 42		
		•
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
HQ. 47TH AREA SUPPORT GRO	UP,	Sept. 1985
P.O. BOX 160, WARRINGTON,	CHÉSHIRE, GB	13. NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESS(If differen	at tram Controlling Office)	15. SECURITY CLASS, (of this report)
,		
	· ·	
		15a. DECLASSIFICATION/DOWNGRADING
15. DISTRIBUTION STATEMENT (of this Report)		
į.		·
•		•
17. DISTRIBUTION STATEMENT (of the abstract entered	In Block 20, If different from	n Report)
18. SUPPLEMENTARY NOTES		
	markan kanan janagan.	
$C_{L'}(t)$	terential Th	ernal Analysis
	nd identify by block number)	
Ternary Systems Iron-	Boron-Nitrogen	Titanium-Silicon-Nitrogen Zirconium-Silicon-Nitrogen
	t-Boron-Nitrogen	Vanadium-Silicon-Nitrogen
	1-Boron-Nitrogen	Niobium-Silicon-Nitrogen
Thermodynamics Nitriding Binary Borides Liter	ature Review	Tantal um-Silicon-Nitrogen
20. ABSTRACT (Couriesus en reverse side il necessary en		
I. Transition Metal-Boron-Nitrogen	Systems: The exis	sting literature data
regarding the systems Fe-B-N, Co-B-	·N and Ni-B-N were	e critically assessed
including the binary boundary systemat 9007C were reinvestigated for the	ems. The thermodyr	namic phase equilibria
using different methods of preparat	ie billary systems ion and analysis.	. A complete constitutional
diagram Fe-B was established in the	temperature rang	ge 600 ° ≺ T < 1700°C using
X-ray phase analysis, metallography	r ≯ (DTA)and melting	point analysis.
Differential thermal analysis and m	<u>elting point anal</u>	ysis revealed an eutectic

reaction L FeB + ss-B-rh(B,Fe) at 1450 + 3°C. The congruent melting point of the compound FeB was measured to be 1588 + 8°C. The phase diagram Fe-B was calculated thermodynamically with respect to the new experimental data established, and a complete set of parameters were obtained for the liquid phase. The phase equilibria in the ternary systems Fe-B-N, Co-B-N and Ni-B-N were established mainly from X-ray powder diffraction data, and isothermal sections at 900°C and 1 bar Ar have been constructed. In all three systems the binary transition metal borides form two-phase equilibria with hexagonal boronnitride with practically no mutual solubility. Melting in the concentrational sections M-BN, M= Fe,Co, occurs at ca. 1350°C. Up to these temperatures there is complete compatibility between metal, metal borides and BN; alloys M-BN, melted and quenched reveal the formation of metastable compounds (Fe,Co,Ni) $_{23}$ (B,N) $_{6}$ with the τ -Cr $_{23}$ C $_{6}$ -type of structure. Phase relations in the Fe-B-N System were also studied under technical conditions (900°C, technical argon, samples in a Mo-container within a graphite susceptor). Oxygen impurities via a gas phase transport reaction (carbonoxide) led to the formation of a ternary phase Fe₃(B,N,C) with cementite-structure. The kinetic of nitriding was studied in all three systems from binary transition metal boride samples annealed at 900°C and 1200°C under 1 bar of high purity nitrogen.

II. Transition Metal-Silicon-Nitrogen Systems: The compilation and critical assessment of existing literature data as well as the experimental investigation in the ternary systems Ti-Si-N, Zr-Si-N, V-Si-N, Nb-Si-N and Ta-Si-N and the respective TM-N as well as TM-Si binary systems were completed. Silicon nitride reacts with each of these transition metals to form either binary silicides and nitrides or ternary phases of D8 type structure with the general formula TM-Si3N. These phases are commonly known as Nowotny phases and were described in the literature. No new ternary phase was observed.

Part I TRANSITION METAL-BORON-NITROGEN SYSTEMS

			page
EX	PERIME	NTAL PROCEDURES	i
ST	ARTING	MATERIALS	ii
۸۱	DINAD	RY BOUNDARY SYSTEMS	
A)	I)		1
	1)	The Binary System: Iron-Boron	_
		a) Critical Literature Review	. 1
	II)	b) Experimental Results	8 26
	11)	The Binary System: Cobalt-Boron	
		a) Critical Literature Review	26
	T77\	b) Experimental Results	29
	III)	The Binary System: Nickel-Boron	37
		a) Critical Literature Review	37
		b) Experimental Results	41
	IV)	The Binary System: Iron-Nitrogen	54
		a) Literature	54
	V)	The Binary System: Cobalt-Nitrogen	55
		a) Literature	55
	VI)	The Binary System: Nickel-Nitrogen	56
		a) Literature	56
B)	TERNA	ARY SYSTEMS: TRANSITION METAL-BORON-NITROGEN	
	I)	The Ternary System: Iron-Boron-Nitrogen	57
		a) Critical Literature Review	57
		b) Experimental Results	60
		c) Phase Relations under Technical Conditions	66
	II)	The Ternary System: Cobalt-Boron-Nitrogen	73
		a) Critical Literature Review	73
		b) Experimental Results	73
	III)	The Ternary System: Nickel-Boron-Nitrogen	78
		a) Critical Literature Review	78
		b) Experimental Results	78
c)	THERM	ODYNAMIC DATA	83
•,	I)	Fe-B-N	83
	11)	Co-B-N	85
	111)	Ni-B-N	85
۰,	•		
(ע	KEFER	RENCES	90
۲٦	CHMMA	DV	QΛ

Part II TRANSITION METAL-SILICON-NITROGEN SYSTEMS

			page
EXPERIMENTAL PR	OCEDURES		2
BINARY SYSTEM	Ti-Si	Experimental Results	5
TERNARY SYSTEM	Ti-Si-N	Literature Review Experimental Results	7
BINARY SYSTEM	Zr-Si	Experimental Results	15
TERNARY SYSTEM .	Zr-Si-N	Literature Review Experimental Results	19 20
BINARY SYSTEM .	V-Si	Experimental Results	. 25
BINARY SYSTEM	V-N	Experimental Results	27
TERNARY SYSTEM	V-Si-N	Literature Review Experimental Results	29 29
BINARY SYSTEM	Nb-Si	Experimental Results	33
TERNARY SYSTEM	Nb-Si-N	Literature Review Experimental Results	35 35
BINARY SYSTEM	Ta-Si	Experimental Results	. 40
TERNARY SYSTEM	Ta-Si-N	Literature Review Experimental Results	42 42

The existing literature data regarding the systems Fe-B-N, Co-B-N and Ni-B-N were critically assessed including the binary boundary systems. The thermodynamic phase equilibria at 900°C were reinvestigated for the binary systems Fe-B, Co-B and Ni-B using different methods of preparation and analysis. There were no indications for the existence of binary metal diborides "MB $_2$ "; compounds "MB $_{\sim 20}$ ", as earlier reported in literature were successfully characterized with a rhombohedral unit cell and the crystal structure of β -rhombohedral boron with the transition metal atoms in the voids of the covalently bonded boron framework, i.e. $ss-\beta-rh$ (B,M). A complete constitutional diagram Fe-B was established in the temperature range 600°< T<1700°C using X-ray phase analysis, metallography, DTA and melting point analysis (automatic computer controlled three-colour pyrometry). Compounds " Fe_3B " with either the Ti_3P - or the Fe_3P -type as recently postulated, were not confirmed as thermodynamic stable equilibrium phases. Differential thermal analysis and melting point analysis revealed an eutectic reaction L $\leftarrow \rightarrow$ FeB + ss- β -rh(β ,Fe) at 1450 + 3°C. The congruent melting point of the compound FeB was measured to be 1588 + 8°C.

The phase diagram Fe-B was calculated thermodynamically with respect to the new experimental data established, and a complete set of parameters were obtained for the liquid phase.

The phase equilibria in the ternary systems Fe-B-N, Co-B-N and Ni-B-N were established mainly from X-ray powder diffraction data, and isothermal sections at 900°C and 1 bar Ar have been constructed. In all three systems the binary transition metal borides form two-phase equilibria with hexagonal boronnitride. There is practically no solubility of BN in the binary metal borides and no ternary equilibrium phases were observed. Melting in the concentrational sections M-BN, M= Fe,Co,occurs at ca. 1350°C; for the corresponding nickel-alloys the temperatures are somewhat lower. Up to these temperatures there is complete compatibility between metal, metal borides and BN; Alloys M-BN, melted and quenched reveal the formation of metastable compounds (Fe,Co,Ni) $_{23}$ (B,N) $_{6}$ with the τ -Cr $_{23}$ C $_{6}$ -type of structure. Phase relations in the Fe-B-N system were also studied under technical conditions (900°C, technical argon, samples in a Mo-container within a graphite susceptor). Oxygen impurities via a gas phase transport reaction (carbonoxide) led to the formation of a ternary phase Fe₃(B,N,C) with cementite-structure.

The kinetic of nitriding was studied in all three systems from binary transition metal boride samples annealed at 900°C and 1200°C under 1 bar of high purity nitrogen.

II. Transition Metal-Silicon-Nitrogen Systems

The compilation and critical assessment of existing literature data as well as the experimental investigation in the ternary systems Ti-Si-N, Zr-Si-N, V-Si-N, Nb-Si-N and Ta-Si-N and the respective TM-N as well as TM-Si binary systems were completed and are presented in part II of this report. Silicon nitride reacts with each of these transition metals to form either binary silicides and nitrides or ternary phases of D8 $_8$ -type structure with the general formula ${\rm TM}_5{\rm Si}_3{\rm N}_{1-{\rm X}}$. These phases are commonly known as Nowotny phases and were described in the literature (see part II for details). No new ternary phase was observed.

The compilation of literature data for the binary systems (Cr,Mo,W,Mn,Re,Fe,Co,Ni)-Si and (Cr,Mo,W,Mn,Re)-N as well as the ternary systems (Cr,Mo,W,Mn,Re,Fe,Co,Ni)-Si-N are almost complete. Experimental investigations of these systems are in progress. So far no unusual difficulties have been encountered. The assessment of thermodynamic data for these systems has been started.

EXPERIMENTAL PROCEDURES

All samples each of a total amount of several grams were prepared using the starting materials listed below. Binary samples were mainly prepared by arc melting the elements together on a water cooled copper hearth using a nonconsumable 2%-thoriated tungsten electrode in a Zr-gettered high-purity argon atmosphere. To ensure homogeneity the alloy buttons were turned over and remelted several times; weight losses were checked to be within 2%.

Some of the binary alloys were also prepared by direct sintering techniques using a tungsten sheet-metal high vacuum furnace or a 500 kHz-HF furnace (high vacuum). In these cases the samples were placed on a molybdenum substrate (binary borides) or in a boronnitride crucible (ternary boronnitrides) contained in a tungsten crucible (which acted as susceptor material in case of the HF-assembly). Temperatures were monitored by calibrated microoptical pyrometry. After heat treatment the samples were radiation cooled.

Various methods were employed for annealing the samples:

- a) a part of each alloy button was wrapped in molybdenum foil, sealed in evacuated silica tubes and annealed at various temperatures < 1200°C in a wire wound Al₂0₃-tube furnace for various annealing times Temperatures were monitored by Pt-(Pt,Rh) or Ni-NiCr thermocouples. After heat treatment the samples were finally quenched in water.
- b) annealing treatment in a directly heated tungsten sheet-metal furnace or in the high frequency equipment under high vacuum or high purity argon using Mo- or BN-substrates.
- c) nitriding experiments were performed in the high frequency furnace under high purity argon in crucibles machined from hex-BN.

For metallography the samples were mounted in epoxy resin, ground and polished with progressively finer diamond pastes down to 1 μ m and examined under reflected and polarized light; in some cases SEM photographs were taken on a JEOL-equipment.

From each sample (powdered to a grain size $<20~\mu m$ in a WC-Co morfor X-ray photographs have been taken, using CrKa or CuKa-radiation in a Debye-Scherrer or in a Guinier-Huber camera. 99.9999% pure Germanium was used as an internal calibration standard (a $_{0}$ = 5.657906 Å). X-ray powder intensities were recorded by means of a KD-530 microdensitometer. Precise lattice parameters have been evaluated by means of a least squares extrapolation method ($_{2}$). X-ray intensity calculations have been carried out

Differential thermal analytical investigations were performed on binary iron borides and iron boronnitrides only using a Netsch-type analyser for temperatures $< 1500^{\circ}$ C (Pt-Pt,Rh-thermocouples) in BN-crucibles under a stream of high purity argon. Usual rates were 2-5 K min⁻¹.

Melting points were determined by the Pirani technique under direct heating in high vacuum or high purity argon. Temperature measurements were carried out with the an automatic computer controlled three colour pyrometer; For those alloys unsuitable for direct heating, melting was performed in Al_2O_3 -crucibles using the HF-frequency furnace in combination with the automatic pyrometer.

Table: Starting Materials

Boron : crystalline powder, -60 mesh; purity: 99.9%, from

Alpha Div., Ventron Corpor., USA

Boronnitride : hex-BN powder, -325 mesh, 99.9%, from Alpha Div.,

Ventron Corpor., USA

Iron : rod, purity: 99.99%, from Alpha Div., Ventron Corpor.,

USA, powder, -325 mesh, purity: 99.98%, from Alpha

Div., Ventron Corpor., USA

Cobalt : rod, purity: 99.99%, from Alpha Div., Ventron Corpor.,

USA, powder, purity: 99.8%, Fe+Ni 0.1%, from Alpha

Div., Ventron Corpor., USA

Nickel: rod, purity: 99.99%, from Alpha Div., Ventron Corpor.,

USA, powder, 1 μm, purity 99.9%, Alpha Div., Ventron

Corpor., USA, powder, 40 µm, purity: 99.9%, from

PRC, USA

Argon : gas, purity 99.999%, from Air liquide, Vienna, Austria

Nitrogen : gas, purity 99.999%, from Aga, Vienna, Austria

- A) BINARY BOUNDARY SYSTEMS
- I) The Binary System: Iron-Boron
- a) CRITICAL LITERATURE REVIEW

The technical importance of borided steels has stimulated the early interest in the constitution of the iron-boron binary system; a more recent interest arose from the production of iron-boron-base alloy metal-glasses.

Fig.I.1 represents a likely version of the binary iron-boron system according to a recent assessment work by 0.Kubaschewski-von Goldbeck (14). This version furthermore corresponds to a thermodynamic optimization by Chart (34) (see also section thermodynamic data). A compilation of all binary-iron borides reported in the literature, including also metastable phases, is presented in Table I.1.

There is no doubt about the existence of two binary iron-borides i.e. congruently melting Fe_2B with the $CuAl_2$ -type and the congruently melting iron-monoboride, which was earlier described with two "polymorphic" modifications: α, β -FeB. β -FeB is orthorhombic with the FeB-type of structure and exhibits a narrow range of homogeneity.

The socalled low temperature modification α -FeB (in the following denoted as T-FeB, see also section: RESULTS) was obtained from compacted powder mixtures after heat treatment at temperatures below 750°C with a socalled irreversible "transition" into the β -FeB high temperature form on heating (32,58). According to Fruchart (58), a mixture of both forms was observed for temperatures between 750 and 1200°C. X-ray powder data of T-FeB were said to derive from the FeB-type structure with the observed suppression of a series of reflections. It seemed that excess boron favours the formation of T-FeB and simultaneously retards the transition to the β -FeB-type (58), whereas the magnetic ordering (Curie-)temperature at T_c = 309°C(58) or 329°C(17) appeared to be independent of composition. From this observations a structural model containing two

Phase		Preparation and Heat Treatment	Structure type	Space group	Lattice I	Parameters	(X)	Ref.
						ь	c	
a-Fe		etable below 910°C	W-Type	In3m	2.8605 2.8664	-	-	(26) (27)
F•23 ^B 6	(metastable)	amorphous foils rapidly queched	Cr ₂₃ C ₆	Pm3m	10.67 10.69	:	-	(28) (29)
^{Fe} 80 ^B 20	(metastable)	amorphous wires i sec15 min., 780°C	Ti ₃ P	P4 ₂ /n	8.623(5)	-	4.294(5)	(30)
r•~3,5	(metastable)	eutektoidal transform. Fe _{BO} ^B 20 (amorph) \rightarrow Fe + Fe _{-3.5} ^B	(tetrag.)	,	8.62	-	4.28	(28,37)
re ₃ 8	(metastable)	decompositon of "Fe ₄ B" by aging	(tetrag.)	,	8.64	-	4.28	(31)
7480 ³³ 20	(metastable)	2 h, 380°C	Fe ₃ P	14	8.63	-	4.29	(34)
Fe ₈₅ B ₁₅	(metastable)	477°C	Fe ₃ P	14	8.63	-	4.37	(35)
Te - B	hypereut,	splat cooled	tetrag.		8.62	-	4.27	(29)
h-Fe ₃ B	(metastable)	3300 "revolutions"/min	Fe ₁ P	14	0.655	-	4.297	(23)
L-Fe ₃ B	(metastable)	1600 "revolutions"/min	Ti ₃ P	₽4 ₂ /n	8.648	-	4.314	(23)
Fe ₃ B	(metastable)	2000 "revolutions"/min	₽0,3C	Phos	4.439	5.420	6.669	(23)
re ₃ B	(metastable)	"revolutions" quenching rate too slow for glass formation	Po ₃ C	Phra	4.45	5.43	6.66	(28)
Fe ₃ B	(metastable)	splat cooled	Fe ₃ C	Phna	4.454	5.433	6.656	(36)
re ₃ B	(metastable)	splat cooled	Fe ₃ C	Pbng	4.3311	5,468	6.726	(29)
"Fe ₃ B"		extrapolated from	Fe ₃ C	Pbrus	4.43	5.46	6.63	(38,see
•		FejCi-xBx at 1000°C	,					also 39)
"F• ₃ B"		extrapolated from Fe_CoB at 1000°C	Fe ₃ C	Pbns	4.456	5.462	6.635	(40)
Fe ₂ B			CuA12	14/mcm	5.109	-	4.249	(26,28,32, 40,42)
FeB			FeB	Phna	4.061	5,506	2.952	(26,33,40,4
7eB		HF sintering at 1000°C	FeB	Phnm	4.057	5.502	2.948	(41)
(L)-FeB		hot pressed at ~700°C	FeB(*)	(*)	4.0577	5.495	2.9467	(17)
"FeB ₂ "		arc-melting	A18,	P6/mm	3.045	-	3.035	(19)
FeB ~49		solid solution of iron in 8-rh, boron	8-rh Bor	RĴm	a _{hex} =10.9514	c _{hev} =23	.861	(22)
		ALON AN D-IN, BOTON			a _{hex} =10.9716			(35)

^(*) Dimensions of the basic unit cell; Intensity Calculation for a mixed stacking variant

Fig.I.1 Constitutional diagram of the binary system Fe-B, comparison of the different versions known in literature.

boron atoms per triangular metal prism was concluded with an exchange of atomic positions between an iron atom and a pair of boron atoms in adjacent triangular prisms so as not to affect the Fe-Fe distances responsible for the magnetic interactions (58). Fruchart's model however did not correspond to later experimental results on the magnetic properties of T-FeB, especially to recent Mössbauer data (17) which are quite different for both forms of FeB suggesting the existence of crystallographically inequivalent iron sites. According to Kanaizuka (17), a better crystallographic description the "low temperature modification" T-FeB in satisfactory agreement with X-ray-, phase diagram-, magnetic- and Mössbauer-data is found from a random stacking of slabs crystallizing with the FeB and the CrB-type structure respectively. Due to the slow diffusion rate below about 1000°C, the disordered intergrowth structure was said to appear as a nonequilibrium state (17).

Samples annealed by (17) below 650°C revealed an X-ray pattern of the Fe_2B -type suggesting a thermodynamic instability of FeB at T< 650°C according to an eutectoid reaction: T-FeB \longrightarrow Fe₂B + ss-Brh Boron. These samples again converted to the normal FeB-type irreversibly above 740°C (17).

In contradiction to numerous investigations of the boron-rich region of the iron-boron system, which all seem to confirm a two phase equilibrium FeB + ss- β rh-Boron, the existence of an irondiboride "FeB2" with AlB2-structure and with congruent melting behavior was claimed by Russian authors (19). The dashed line in Fig.I.1 represents the liquidus and solidus lines for boron rich concentrations > 50 at%B, as proposed by the authors of (19). The observed melting point $T_M(FeB_2) = 2070^{\circ}C$ however is in close vicinity of the accepted melting point of pure β -rh Boron ($T_M(B) = 2092^{\circ}C$, (64)). The crystallographic data as observed for "FeB2" by (19) regarding both the d-values as well as the experimentally recorded intensities, do in no way

correspond with the AlB_2 -type structure as proposed by (19) (see section RESULTS). Recent bandstructure-calculations of the isotypic transition metal diborides formed by the first row 3d-transition elements, reveal a decreasing stability with increasing atom number of the metal, and thereby suggest thermodynamic instability for the iron diboride, the corresponding "CoB2" and "NiB2" being unstable (20).

There are furthermore considerable doubts about the existence of a boron-rich compound FeB $_{\sim 19}$, (5 a/o Fe) as described by Portnoi (21) with a peritectic type of formation at 1980°C:

It would be more likely to assume a solid solution of 3-5 a/o iron in the voids of β -rhombohedral boron, as earlier discussed by Callmer (22) on the basis of a single crystal study of FeB $_{\sim49}$ (see also section RESULTS).

A considerable interest in rapidly quenched iron-boron base alloys has lead to the discovery of a series of metastable binary iron-borides such as "Fe $_{23}$ B6" with the Cr $_{23}$ C6-type of structure, bct - "Fe $_4$ B", and "Fe $_3$ B" crystallizing with Ti $_3$ P-, Fe $_3$ P- or the Fe $_3$ C-type of structure depending on duration and temperature of the annealing treatment of the quenched and recrystallizing amorphous foils (for a detailed compilation see Table I.1). While the above mentioned phases were generally considered to be metastable products, Khan et al. (23) interpreted his experimental results with the existence of two crystallographic modifications of a thermodynamically stable Fe $_3$ B-phase (h-Fe $_3$ B with the Fe $_3$ P-type, and ℓ -Fe $_3$ B with the Ti $_3$ P-type). The dotted curves in Fig.I.1 represent the phase relations as suggested by (23). It was the sequence in which the various phases were obtained from quenching the liquid with decreasing cooling rate as well as the identical sequence in which the phases crystallize from the amorphous Fe $_{74}$ B $_{26}$ alloy with increasing temperature, which caused the authors (23) to assume the

existence of ℓ ,h-Fe₃B in thermodynamic equilibrium in the temperature range 1150°C<T< 1250°C. As a consequence a pertitectic formation was considered at \sim 1250°C for h-Fe₃B according to the reaction:

liquid +
$$Fe_2B \rightleftharpoons h-Fe_3B$$
 (1250°C);

and ℓ -Fe₃B was said to decompose eutectoidically at \sim 1150°C according to the reaction:

$$\ell$$
-Fe₃B \Longrightarrow ss- γ - Fe + Fe₂B (1150°C).

Metastable "Fe $_3$ B" with the cementite-type structure was obtained at even slower quenching rates by (28), and a metastable phase diagram (Fig.I.2) was constructued for the iron-rich region (>60 a/o Fe) integrating the two metastable phases "Fe $_{23}$ B $_6$ " and "Fe $_3$ B" both with a peritectic mode of formation at $\sim 950^{\circ}$ C and at $\sim 1250^{\circ}$ C respectively.

According to the results obtained by Bashev et al. (29) on rapidly cooled alloys, orthorhombic (Fe_3C -type) metastable phases were observed to crystallize from hypoeutectic alloys, whereas the tetragonal metastable phases (Ti_3P -type and Fe_3P -type) crystallize from hypereutectic alloys.

The maximal solubility of boron in α -Fe is small (< 0.01 a/o Boron, (62)) and detailed measurements of the electrical resistivity and the activity coefficients of boron in α , β -Fe reveal a solubility of B in β -Fe, which is about 2.7 times larger than that in α -Fe at the same temperature (24). While there seems to be no doubt that borons are solved interstitially in β -Fe, a substitutional model Fe/B was discussed by Hayashi (25) for α -Fe.

Fig.I.2 Iron-rich part of the equilibrium diagram Fe-B, showing metastable equilibria including the metastable phases $^{\rm Fe}_{23}{}^{\rm B}_{\rm 6}$ and $^{\rm Fe}_{3}{}^{\rm B}$ (after Herold and Köster (28)).

b) RESULTS

With respect to the confusing data obtained in the Fe-B binary system and described in literature, a reinvestigation of certain regions of the phase diagram seemed to be necessary with special emphasis on the following problems:

- (i) concerning the existence of "FeB $_2$ " and "FeB $_{19}$ "
- (ii) concerning the stability and polymorphism of the compound FeB
- (iii) concerning the thermodynamic equilibrium around the composition "Fe₃B".

1. Iron-Boron Constitutional Diagram

A total of 20 binary alloys were prepared to investigate and check the thermodynamic phase equilibria. The analysis of the system was accomplished primarily by evaluation of X-ray powder diffraction patterns of the alloy material. Compositions and qualitative X-ray evaluation of the alloys is given in Fig.I.3 and Table I.2. A number of alloys were also arc melted and then equilibrated at 900°C for metallographic studies; in some cases SEM-analysis was employed.

X-ray data and metallography of samples annealed at 900°C confirm the extremely small solid solubility of boron in α -Fe (the unit cell dimensions remain unchanged!) and furthermore confirm the existence of three two-phase equilibria in the solid state such as: ss- α Fe + Fe₂B, Fe₂B + FeB, and FeB + ss- β rh-Boron.

With only a few exceptions, the X-ray powder intensities and d-values of the "FeB $_{19}$ "-phase earlier described by Portnoi (21) were found to correspond to the theoretical values, calculated for a solid solution of 3.5 a/o iron in β -rhombodedral boron, assuming a slightly altered atomic arrangement with respect to the crystal data as reported by Callmer (43) for a single crystal

Fig.I.3 Constitutional equilibrium diagram of the system Fe-B (this work) with experimental data points. The dashed curve represents the thermodynamically calculated least squares fit (see also section

Nominal Composit		r.	X-ray	Structure	Space	Lattice Pa	Lattice Parameters (Å)	(A)	Volume (R^3)
a tt %	5	and neat Treatment	ysis		droup	ત્વ	٩	U	
84 - 1	16 16	cold compacted	α-Fe +	W-Type	Im3m	2.865(1)			23.52(2)
		<pre>HF-heat./C-crucible Mo(Ar), 900°C, 48 h, B-amorph. (1)</pre>	Fe ₂ B	CuA1 ₂	I4/mcm	5.105(2)	1	4.248(4)	110.72(14)
			α-Fe +	W-Type	Im3m	2.866(1)	ı	ı	23.52(1)
		<pre>HF-heat/W-crucible Mo(Ar), 900°C, 72 h, B- amorph.(2)</pre>	Fe ₂ B	CuA1 ₂	I4/mcm	5,106(1)	ı	4.248(1)	110.74(5)
- 1.99	33.3	cold compacted HV-heat./W-crucible Mo(HV), 1100° 6 h, B-amorph. (3)	Fe ₂ B	CuA1 ₂	14/mcm	5.104(1)		4.247(1)	110.62(5)
28	42	(1)	(1) $Fe_2B +$	CuA12	I4/mcm	5.106(2)	1	4.242(1)	
•		(2)		I-FeB CuAl,	I4/mcm	4.054(1) 5.106(1)	5.504(3)	2.946(1) 4.252(1)	65.74(4) 110.84(6)
			T-FeB	T-FeB		4.060(1)	5.497(3)	2.947(1)	65.77(4)
20	20	(3) + 12 h, 1300°C	FeB + traces Fe ₂ B	FeB		4.058(1) n.d.	5.500(2)	2.947(1)	65.78(3)

42 - 58	(1)	FeB (**) T-FeB	FeB T-FeB	Pbnm	4.056(1)	5.496(3)	2.948(1) 2.945(1)	65.73(4)
33.3 - 66.7	.7 (3) + 12 h, 1300°C	FeB + traces B-Boron	FeB	Pbnm	4.056(1) n.d.	5.498(2)	2.943(0)	65.64(3)
20 - 84	cold compacted HF-heat./W-cruible Mo(Ar), 930°C 4 h, B-amorph.	T-FeB + B-Boron	1-FeB		4.060(2) n.d.	5.499(3)	2.949(1)	65.82(5)
16 - 84	(1)	T-FeB + B-Boron	T-FeB		4.061(2) n.d.	4.061(2) 5.498(4) 2.946(1) n.d.	2.946(1)	65.76(6)
5 - 95	arc melted	FeB + FeB (ss)B-rh.B B-Bor	FeB 8 B-Bor	Pbnm R3m	4.060(2)	4.060(2) 5.502(3) 2.947(1) a _{hex} =10.973(2), c _{hex} =23.87(2)	2.947(1) _x =23.87(2)	65.83(5) 2489 (2)

I-Feb-type denotes a transposition type of structure due to shift of unit cells (see text). (**) uncontrolled heating (T>1100°C?) by violent extherm reaction n.d. not determined

	Tab	le I.3	: Powder	Diffr	action D	ata for Fe	5 ^B 95	
(hk	1)	10 ⁴ × obs.	sin ² 0 · calc.	Int	ensity calc.	ር (Å) **	10 ⁴ x sin²0 **	Int. obs. **
(01	2)	106	107	20	25.6	_	-	_
						? 5.80	(176)	w/m
(11		197	197	40	45.1	5.41		m
(10		232	232	100	100.0	5.08		v st
(02		*	273	*	8.5	4.64		m
(20		*	304	*	6.0	4.44		W
(01	5)	*	326	*	3.7	4.27		W
						? 4.15		W
(00	6)	374	375	35	37.7	4.00		m
						? 3.82		VV W
						? 3.68		m/w
(21		470	470	70	63.9	3.54		W
(20	5)	*	523	*	2.8	c 3.36		VV W
						? 3.30		VV W
(30		684	685	10	9.9	2.95		VV W
(12		720	720	10	13.5	2.86	(725)	W
(02		770	773	30	28.3	2.77		w/m
(00		*	844	*	2.7	2.65	(845)	W
(31		*	895	*	6.1	2.57	(898)	,VV W
(20		*	929	*	2.8	2.52	(934)	VV W
(30		965	966	10	11.6	2.47	(973)	m/w
(13		1019	1020	40	32.3	2.41	(1022)	m/st
(04		1090	1092	20	14.9	2.32	(1102)	w/m
(12		*	1126	*	5.0	-	_	-
(22		*	1163	*	1.0	2.25	(1172)	∨∨ ₩ .
(40		1218	1217	15	21.7	2.20	(1226)	m
(021		*	1305	*	6.9	-	. -	-
(011		*	1326	*	7.7	2.11	(1333)	w/m
(32		*	1414	*	6.0	2.04	(1426)	w/m
(03		*	1435	*	8.0	-	-	-
(41		*	1472	*	7.7			-
(23		1508	1508	15	7.9	1.98	(1513)	VV ,W
(31		1520	1520	10	4.3	1.96		m/w
(33		1775	1772	10	12.3	1.83	(1772)	w/m
(33		1867	1866	15	11.6	-	-	-
(131		*	1895	*	4.6	-	-	_
(50		*	1902	*	7.3		-	-
(23	8)	1914	1914	40	32.7	1.76 ? 1.74		w st
(021	(3)	*	2024	*	10.4			w/m
(301		*	2091	*	8.6	_		m
	(0)	*	2092	*	5.4			

Table I.3 continued

(hk 1)	10 4 ×	sin ¹ 0	Inte	ensity	ď	10 4 ×	Int.
		calc.			(Å) **	sin ² 0 **	obs. **
(3111)	*	2114	*	7.2	_	_	
(51 4)	2202	2202	5	7.7	1.64	(2206)	٠ ٧
(2212)	*	2288	*	1.7	1.61	(2289)	w
(3210)	*	2289	*	1.5			
$(06 \ 3)$	2456	2457	15	23.3	1.55	(2470)	st
(2311)	2510	2508	5	5.9	-	-	-
(43 4)	*	2595	*	3.8	1.51	(2602)	v w
(60.6)	*	2738	*	6.7	1.47	(2746)	w
(4013)	2813	2811	10	10.9	1.45	(2822)	w/m
$(16 \ 1)$	*	2833	*	5.2	-		_
(2410)	2879	2880	10	13.9	-	_	_
(3114)	*	2896	*	8.5	1.43	(2902)	m/w
(0216)	*	2930	*	5.7	-	-	-
(0315)	*	2935	*	15.4	1.421	(2938)	m/st
(43 7)	*	2939	*	5.1			
(61.5)	*	3083	*	7.4	-	-	_
(34.8)	3102	3096	10	14.5	1.382	(3107)	st
(4211)	*	3099	*	14.5 5.3			
(44 0)	*	3151	*	6.8	1.368	(3170)	m
$(44 \ 3)$	*	3245	*	10.1	-	-	-
(53 2)	*	3258	*	5.7			-
(3312)	3277	3273	5	6.0	1.347	(3270)	st
(1217)	*	3471	*	5.3	-	_	` -
(07.5)	*	3477	*	4.4	-	_	-
(61.8)	*	3489	*	9.0	-	_	-
(2413)	*	3599	*	6.0	-	_	_
(35 7)	*	3727	*	4.3	-	-	_
$(71 \ 3)$	*	3835	*	6.5	-	-	_

- *: Not observed
- **: Experimental data reported by Portnoi et al (21).
- c: Correction made / old d-value: 3.56 Å.
- ?: Reflections not belonging to β Boron.

Material: FerBes, arc melted.

Method: powder X-ray diffraction in a Guinier camera, CuK₂1 radiation.

The intensity is normalized to the strongest reflection with I= 100.

Reflections with Int.(calc.) < 4.0 % were omitted; exept: some reflections coresponding to those reported by (21).

(Space group: R3m

Lattice parameters: a= 10.171 Å, Alpha= 65.33°.) hexagonal setting: a= 10.978 Å, c= 23.86 Å.

Table	I.4	:	Powder	${\tt Diffraction}$	Data	for	Fe ₂ B
-------	-----	---	--------	---------------------	------	-----	-------------------

(hkl)	• - • -	sin ² 0	Intens	
(IIAC)	obs.	calc.	obs.	calc.
(110)	998	1007	10	7.9
(200)	2011	2015	20	17.9
(002)	2904	2910	20	23.3
(211)	3236	3246	100	100.0
(112)	3911	3918	5	6.3
(220)	4022	40∠9	2.	5 3.0
(202)	4920	4925	15	15.3
(310)	5042	5037	15	14.9
(222)	6940	6940	2	1.5
(312)	7941	7947	20	18.2
(400)	8050	8059	5	4.6
(330) (213)	9055	9066 9067	100	29.8 76.2
(411)	9278	9290	90	87.3

Material: Fe₂B reacted for 6 h at 1100°C Method: powder X-ray diffraction in a Debye-Scherrer camera, $CrK\alpha$ radiation The intensity I is normalized to the strongest reflection with I= 100

Space group: I4/mcm

Lattice parameters: a=5.104 Å, c=4.247 Å

Table I.5: Powder Diffraction Data for FeB

(11.0)	10 ⁴ .s	in ² 0	Inten	sitv	
(hkl)	obs.	calc.	obs.	calc.	
(110)	1224	1230	10	10.0	
(020)	1730	1733	15	14.8	
(101)	2302	2306	30	28.6	
(120)	2528	2530	20	17.8	
(111)	2736 *	2739	50 *	49.8	
(200)		3186		0.2	
(021) (210)	3242 3614	3243 3619	35 30	33.5 33.4	
(121)	4037	4039	15	15.9	
(130)	4693	4697	15	16.8	
(220)	*	4919	*	0.03	
(211)	5129	5129	15	15.2	
(002)	6039	6038	15	13.7	
(131)	6209	6206	2	1.6	
(221)	*	6429	*	0.2	
(040)	*	6934	1	0.4	
(230) (112)	7265	7086	1 2	0.3	
(310)	7599	7268 7602	1	2.6 1.0	
(140)		7002 [7730	-	12.4	
(022)	7768	7771	20	6.0	
(041)	8437	8443	20	21.2	
(122)	8561	8568	15	14.9	
(231)	8594	8596	40	45.6	
(301)	8670	8678	15	14.0	
(320)	8893	8902	10	11.0	
(311)	9105 *	9111	20 *	21.9	
(202) (141)	9230	9224 9240	5	0.2 4.2	
(212)	9650 9650	9657	100	100.0	
\~·-/	3000	500,	100	.00.0	

*: Not observed or inaccurate

Material: FeB, reacted for 12 h at 1300°C

Method: powder X-ray diffraction in a

Debye-Scherrer camera, $CrK\alpha$ radiation

The intensity I is normalized to the strongest

reflections with I= 100

Space group: Pbnm

Lattice parameters: a=4.0587 %, b=5.5024 %

c= 2.9483 A

with composition FeB 49 (see Table I.3).

Samples with an iron to boron composition of 1:2 did not reveal any indications for the existence of a new compound "FeB $_2$ " with the AlB $_2$ -type; all alloys unambiguously revealed a stable two phase equilibrium FeB + ss- β rh Boron at all the different temperatures invesigated (900°C, 980°C, 1200°C, 1300°C, 1450°C). Metallography, SEM, and melting point samples in any case indicated a eutectic reaction isotherm according to

liquid ← FeB(FeB-type) + ss-βrh Boron .

The eutectic point is located at 65 ± 1 a/o boron (see SEM-photograph, Fig.I.4). The precise eutectic temperature T_E = $1450 \pm 3^{\circ}$ C was obtained from DTA-experiments on arc melted as well as sintered alloy-specimens using Al_20_3 -crucibles. There was no attack of the Al_20_3 crucibles visible after repeated heating and cooling.

The formation of a thermodynamically stable compound Fe_3B in the temperature region 1150°C \leq T \leq 1250°C, as proposed by Khan, would be naturally connected with the existence of a two phase equilibrium $Fe_3B + Fe_2B$ in the solid state. In order to reinvestigate this equilibrium condition, samples with compositions 20 at%B< x_{Boron} < 30 a/oB were arc melted and subsequently annealed for 48 hrs. at 1200 \pm 10°C. After heat treatment however we found all alloys to be molten and thus confirm the two-phase equilibrium: liquid + Fe_2B earlier accepted in literature. Consequently " Fe_3B " is unstable or metastable at 1200°C (see also Fig.I.3).

Samples with a nominal composition Fe(50 a/o)B(50), prepared either by arc melting or by powder metallurgical sintering (>1200°C) of elemental powder compacts, confirm the existence of a compound with formula FeB. Lattice parameters and X-ray powder intensities show excellent agreement

Fig.I.4 SEM-photograph of a Fe(35)B(65)-alloy in the as cast condition (arc melting, quenched) revealing a binary eutectic FeB+8-rh boron; photographed as polished,650x.

with what is known as the β-FeB-type of structure in literature. Interestingly there is no single crystal study available yet for this prototype of a crystal structure. It is furthermore noteworthy that in some cases (without any obvious systematics) an additional X-ray reflection was observed at d=2.33 Å, which cannot be attributed to one of the neighbouring phases; indexation however is possible (Miller's indices (111)) on the basis of a doubling of the unit cell, according to a_0 , $b=2b_0$ and $c=c_0$. In order to unambiguously and crystallographically characterize the FeB-type, a single crystal was grown, suitable for an X-ray diffraction study on a computer controlled SIEMENS four-circle diffractometer with an ECLIPSE-computer system attached. The single crystal was obtained by chemical vapour deposition when a prereacted two-phase sample (FeB + ss-rh-Boron) with a nominal composition of Fe(40)B(60) was annealed for two weeks at 900°C in an evacuated silica tube, where small amounts of $FeCl_3$ where added as mineralisator. The temperature gradient along the quartz tube of 15 cm length was 25°C, the sample being at the hot end in an open Mo-container. The single crystal was part of a whisker grown at the sample surface.

The obtained results of the structure determination are summarized in Tables I6,7,8,9; For the first time the crystal structure of FeB has been refined from single crystal data; the reliability factor $R=\sum |\Delta F| \not \!\!\! \triangle F_0=0.06$ confirmes the crystal symmetry and atom order of the socalled β -FeB-type, and due to the metal/boron ratio ≈ 1 —the crystal structure of FeB is correctly classified (65) as a typical boron-chain type monoboride. The crystal specimen investigated did not reveal any deviations from the FeB-type symmetry ("high temperature form") as earlier accepted in literature from X-ray powder data.

Table I.6

Atomic R= 0.06 factors	and therm . isotrop are of t	al parameters ic temperature he form: T = e	Atomic and thermal parameters for FeB (Pbnm, No.62; origin at I); standard deviations are in parentheses; R= 0.06. isotropic temperature factors are expressed as $\Gamma = \exp\left[-2I(2.10^{-2}U(2\sin\theta/\lambda)^2I)\right]$, anisotropic thermal factors are of the form: $\Gamma = \exp\left[-2I(2)(1_1)^2a^2 + U_{22}k^2b^2 + U_{33}k^2c^2 + 2U_{12}hka^3b^2 +)$. 10 ⁻²];	No.62; o pressed *2 + U	nrigin at 3 as T= exp 1 ₂₂ k ² b +	L); standarc 212.10 ⁻² U ₃₃ 2 ² c +	deviations 'U(2sinθ/ 🕕) 2U ₁₂ hka b	s are in pa 1 ²], anisot +).10 ⁻	rentheses; ropic ther	maj
Atom	Site	×	>-	Z	• ၁၁၀	U(A ²)	U ₁₁	U ₂₂	, 33	U ₁₂
ъ В	4c 4c	0.1194(3) 0.6159(28)	0.1770(3)	1/4	1.0	0.0010	0.0005	0.0005	0.0020	0.0002
Ву ѕупш	By symmetry U ₁₃ =U ₂₃ =0								ı	

Table I.7

Crystallographic Data for FeB Space Group Pbnm (D_{2h}^{16} -No.62), \overline{Z} = 4

a = 4.0587(5)
b = 5.5024(5)
c = 2.9483(2)
V = 65.84 (6)
D_x = 6.73 Mgm⁻³ μ (MoK_a) = 20.59 nm⁻¹

Table I.8

Inte	ratomic Distances	in FeB (< 4.0	ኧ)
Fe - 4 Fe	2.948(1)	B - 1 Fe	2.188(12)
4 Fe	2.634(1)	4 Fe	2.165(11)
2 Fe	2.628(2)	1 Fe	2.162(12)
1 B	2.162(12)	B - 2 B	1.790(10)
4 B	2.165(11)		,,,,,,,,,,
1 B	2.188(16)		

Table I.9 Comparison of Fo and Fc-data for FeB

10 Fc	-512	- 248 848	261	65	52	-248	-79	-325	309	8	391	Ģ	-194	-196	-45	5	222	-241	S	144	S	204	52	8	-173	88	æ
10 F ₀	404	152	276	3	53	275	2	297	282	133	350	2	<u>5</u>	198	\$	45	227	253	<u></u>	136	35	212	0	5	176	23	o
~	0	-	0	0	0	0	0	-	-	-	-	-	_	-	~	~	~	~	~	~	~	~	m	~	m	*	~
*		~ ~	, m	~	S	ø	æ	-	~	~	*	•	9	~	0	-	~	~	•	'n	ھ	-	~	m	S	0	~
£	2	o v	·	~	~		_	~	_	_	0	ß	0	_	~	4	m	~	~	m	~	~	~	m	_	~	~
10 Fc	186	5 E	~	303	-165	-65	-232	-419	-488	-140	- 8	-261	ş	152	-58	5	Ξ	-53	-566	-181	-52	239	-186	-256	6-	301	-148
10F ₀	96	252	Ξ	325	175	65	262	355	388	3	2	27	Ŧ	#	4 20	2	2	5	294	8	S	249	196	276	₩	238	145
~	0	-	0	0	0	0	0	-	-	-	-	-	-		~	~	~	~	~	~	~	~	m	m	m	•	•
#		-~	· ~	-	'n	9	æ	-	~	~	~	4	'n	9	0	_	~	~	•	'n	9	_	~	~	•	0	~
æ	-1	۰-	•	~	m	~	0	_	0	s	S	-	~	•	0	~	~	2	-	~	~	-	_	~	c	•	-
10 Fc	-83	-92	285	-	213	28	=	173	225	291	46	=======================================	-125	-208	-104	376	244	=	80	-181	5	211	230	•79	-19	167	-143
10 F ₀	8	38	306	6	244	34	92	181	231	307	*	2	2	216	175	363	263	343	8	194	63	214	297	<u>.</u>	22	168	136
~	0	-	0	0	0	0	0	-	-		-	-		-	-	~	~	~	~	~	~	m	m	m	m	~	•
-	0	- ~	•	~	'n	9	7	0	-	~	~	•	40	ဖ	Φ	-	~	m	*	s	ø	0	~	m	4	9	~
£	91	A (*	m	~	~	~	m	ın	S	4	.	~	~	m	0	~	-	-	0			m	0	_	~	_	0
10 F.	-383	÷ 5	2	324	216	5	-298	-316	Ŧ	256	8	82	-281	-	2	-135	251	-132	-237	-56	-270	232	35	-229	-85	5	-244
10 F.	396	3 2	8	359	250	8	327	316	.	292	2	5	30	0	162	49	260	129	246	23	<u>ខ</u>	232	23	235	8	=	242
~	0	> C	0	0	0	0	0	-	_	-	-	-			-	~	~	~	~	~	~	~	~	~	~	m	•
=	0.	- ~	, m	-	'n	9	^	0	-	~	~	•	40	9	~	-	~	~	~	~	9	0	_	~	•	9	_
£	•	40	~	-	-	-	~	m	4	m	m	~	~	~	~	-	0	5	S	•	0	_	~	-	-	0	~
10 Fc	8	-344	5	-109	-183	303	1	9	263	85-	382	13	228	-215	-52	330	2	-167	7	-564	-25	-10	-18	-187	-251	5 18	2
10 F ₀	69	33.0	=======================================	128	182	359	8	337	273	33	380	Ξ	245	218	~	350	2	99	5	569	Φ	2	185	18 6	275	233	3
~	0	> c	0	0	0	0	0	_	_	-	-	-	-	-	-	~	~	~	~	~	~	~	~	~	~	m	•
-	0	- ~	•	-	•	9	^	0	-	~	m	•	S	9	~	0	_	~	~	4	S	~	_	~	•	S	_
_	~	-	-	0	'n	0	_	-	~	~	~	_	-	-	~	•	s	•	•	~	•	_	~	m	0	~	_

The powdermetallurgical reaction of FeB by use of elemental iron and amorphous boron powder is extremely exothermal, and for compositions

Fe:B = 1 it is hardly possible to avoid short-term superheating of the samplespecimens above 1100°C. This is the likely explanation why in all these cases the socalled high temperature form with the FeB-type was obtained. Control of the exotherm reaction however is easily attained in sinter alloys with a considerable amount of excess boron i.e. for compositions with a boron content of more than 55 a/o B. In these samples (prepared at 900°C) the X-ray powder analysis confirmed the type of powder pattern, which was earlier described (16,17) as due to a socalled "low temperature modification" of FeB (T-FeB).

The X-ray powder diffractogram of T-FeB obviously derives from the one characteristic for the high temperature alloys: the main difference is found in the existence of a "sharp" and a "diffuse" subset of reflections observed at those d-values characteristic for the B-FeB-type unit cell dimensions. Position (d-values) and intensities of the "sharp" subset of X-ray reflections thus correspond to the "high temperature" FeB-type and in no case were possibly indexed on the base of an orthogonal CrB-type unit cell.

The dissappearance of a subset of reflections out of the general set of X-ray reflections of the B-FeB type shows striking similarity with the existence of a socalled "transposition-type" as observed in case of the tungsten monoboride with a CrB-type high-temperature phase and a MoB-type low-temperature modification (66).

A direct comparison of the X-ray powder data for T-FeB (alloy Fe(20)B(80) sintered at 900°C and FeB (alloy Fe(50)B(50) annealed at 1300°C) is presented in Fig.I.5). Indeed in T-FeB the subset of diffuse reflections (hkl) obeys

Fig.I.5 Comparision of X-ray diffractograms of h,l-FeB.

Fig.I.6 On the crystallographic relation between the two structure types of FeB and CrB. Both structures are simply related by a shift of slabs of FeB by the vector $\frac{1}{2} \circ_{\bullet}$ (FeB) (after Hohnke and Parthé, ref.18.) The unit cells are outlined by heavy lines.

Fig.I.7 X-ray powder diagram of iron monoboride; observed and calculated intensities and comparison with the calculated patterns for the FeB-type and CrB-type structure (for details see text).

the condition h= 2n + 1 and thus follows the proposed shift-mode for the pair of related structure types CrB-FeB as earlier discussed by Hohnke and Parthé (18). Fig.I.6 explains how the structure type of CrB is generated by a simple shift of slabs of the FeB-type by a vector of $\frac{1}{2}$ a $_{\text{FeB}}$ (18). The socalled low temperature modification T-FeB thus merely represents an irregular arrangement of FeB-type slabs in shifted and unshifted position, and without long range order with respect to the shift operation. Applying Scherrer's formula usually employed for the determination of particle sizes: $\beta_{1/2} = \frac{K.\ \lambda.57.3}{D.\cos\theta}$ we arrive at a size of $\sim 80\ \text{Å}$ for the undisturbed FeB-type regions. Based on this transposition type and referring to an average cell size of $80\ \text{Å}$ it is easy to calculate the X-ray powder pattern of T-FeB in fine agreement with the observed data (see Fig.I.7). The calculation furthermore and directly reveals the two subsets of sharp and diffuse reflections according to the shift operation FeB - CrB.

Applying a pressure of \sim 2 bar while sintering a prereacted T-FeB at 700°C for about 20 min in a hotpress with BN-lined graphite dies easily converts the T-FeB condition into a well crystallized sample corresponding to the β -FeB-type.

With respect to the presented results obtained on samples annealed at different temperatures $500^{\circ}\text{C} < T < 1300^{\circ}\text{C}$ and in contradiction to literature there is no defined transition temperature between $\alpha\text{-FeB}$ and $\beta\text{-FeB}$. The socalled "irreversible transition" is thus merely the transition of an irregular shifted arrangement without long-range order into a crystallographically defined arrangement of FeB-type unit cells without shifted slabs.

Characteristic X-ray powder diagrams for easy identification of all binary equilibrium phases are presented in Table I.3,4,5.

II. THE BINARY SYSTEM COBALT-BORON

a) CRITICAL LITERATURE REVIEW

A detailed investigation (temperature versus concentration) of the cobalt-boron binary system is due to a report by Schöbel and Stadelmaier (45) which also contains a review on the older literature data. According to (45) three stable binary cobalt borides exist i.e. Co₃B formed by a peritectic reaction at 1110°C, congruently melting Co₂B, and congruently melting CoB.

The formation of the binary phase Co_3B appears to be kinetically retarded and its formation is thus frequently suppressed. Especially in ternary samples Co_3B is usually obtained after long term heat treatment only (45,46). The suppression of the Co_3B -precipitation or-crystallization in rapidly cooled melts yields a metastable eutectic reaction isotherm at 1095°C: liquid Cooled ss-Cooled + Cooled B.

There are considerable doubts about the existence of a compound "FeB₂" earlier described by Kolomytsev (47) (see also RESULTS).

There are furthermore doubts about the formation of a boron-rich compound "CoB $_{\sim 12}$ " for which X-ray powder data were reported by Avlokhashvili (48) (see also RESULTS). X-ray analysis of these data favor a solid solution of 3-5 a/o cobalt in the voids of the boron framework of β -rh boron, rather than the existence of a new compound (see i.e. also section iron-boron, concerning FeB $_{19}$).

The solubility of boron in cobalt was reported to be 3 a/o B (29) at 1000° or 5.2 a/o boron at 1100°C (63) respectively.

A detailed compilation of the crystal data of all binary cobalt borides is presented in Table II.1, including the metastable phase " Co_{23}B_6 ", which forms during recrystallization of rapidly quenched foils (29).

The complete phase diagram (T-X-diagram according to (45)) is presented in Fig.II.1.

Fig.II.1 Constitutional diagram of the binary system cobalt-boron and experimental data points (this work); phase equilibria based on Schoebel and Stadelmaier (1966), ref.45.

<u> </u>						
Phase	Structure Type	Space Group	Lattice F	Lattice Parameters (Å)	(A)	References
			ಹ	q	ပ	
Co ₂₃ B ₆ (metastable)	Cr ₂₃ C ₆	Fm3m	11.05			(53)
Co ₃ B boron poor boron rich	Fe ₃ C	Pbnm	4.408-	5.255- -5.235	6.629- -6.634	(40,50,51)
6 ₂ B	CuA12	I4/mcm	5.016	1	4.220	(33,40,42,52)
800	FeB	Pbnm	3.956	5.253	3.043	(33,40,42)
$coB_{x}(x > 20)$	ß-rh Boron	R3m	ahex=10.9459		c _{hex} =23.8397	(44)

b) EXPERIMENTS AND RESULTS

X-ray analysis and metallography of about 10 binary alloys prepared by arc melting and annealed at 900°C and 1100°C respectively, undoubtedly confirm the phase relations reported by Schöbel et al. (45). According to their data, thermodynamic equilibrium was rather slowly attained for Co_3B which finally appeared after prolonged heat treatment (2 x 72 hrs at 900°C). The unit cell dimensions of ss-B Cobalt remained practically unchanged with respect to pure cobalt, indicating a rather small solubility of less than 1 atomic percent of boron.

Detailed X-ray analysis did not reveal any indications for the existence of binary boron-rich compounds such as " CoB_2 " or " CoB_{12} " respectively. A comparision of the X-ray-powder data reported by (48) for " CoB_{12} " with an intensity diagram calculated on the basis of the crystal symmetry and atom order as derived for the β -rhombohedral solid solution MnB_{23} by (49) shows satisfactory agreement, which gives proof to the fact, that " CoB_{12} " is rather a solid solution of Co in β -rh B than a new binary compound.

A compilation of all crystallographic and phase diagram data obtained on our samples annealed at 900°C is represented in Table II.2 and confirms the phase relationships in the binary cobalt-boron system as published by (45); Fig.II.1.

Characteristic X-ray powder diagrams for easy identification of all binary equilibrium phases are presented in Tables II, 3-6.

Table II.2 Compo	Table II.2 Composition, Preparation Techniques and Crystal Data of Binary Cobalt Borides	Techniques a	ind Crystal	Data of	Binary Col	balt Borid	sə		
Nominal Composition	Preparation and Heat	X-ray Phase	Structure Type	Space group	Lattice Pa	Lattice Parameters (A)		Volume (A^3)	
in at%	Treatment	Analysis			ю	م ا	U		
00 - B									
87 - 13	cold compacted	Cu(cubic)+ Cu-Type	Cu-Type	Fm3m	3.540(3)	1	•	44.36(7)	
	HF-heat/W-crucible Mo(Ar), 900°C, 72 h. B-amorph.		Fe ₃ C	Pbnm	4.406(2)	5.210(3)	6.628(3)	152.13(13)	
70 - 30		Co,B +	FesC	Pbnm	4.406(5)	5,227(4)	6,621(2)	152,48(21)	
		co, B	CuA1,	I4/mcm	5.014(1)		4.217(2)	106.00(5)	
58 - 42	•	Co ₂ B +	CuA1,	I4/mcm	5.011(2)	1	4.217(3)	105.89(11)	
		209 803	FeB £	Pbnm	3.954(0)	5,245(2)	3.043(1)	63.11(2)	
40 - 60	•	CoB	FeB	Pbnm	3.954(1)	5.248(3)	3.041(1)	63.10(5)	
1	•	CoB +	FeB	Pbnm	3.955(1)	5.261(2)	3.037(0)	63.18(4)	
		traces B			n.d.				
10 - 90	•	CoB +	FeB	Pbnm	3,955(2)	5.256(4)	3.037(1)	63.12(5)	
		B (diffuse	_						
5 - 95	arc melted, 14d	CoB +	FeB	Pbnm	3.951(1)	3(3	3.044(1)	63.15(4)	
	900°C, Mo (Quartz)	(ss)B-rh.B B-Boron	B-Boron	R3m	$a_{hex} = 10.940(4)$		c _{hex} =23.81(6)	2467(6)	
	B-Cristalline								
									1

Table II.3: Powder Diffraction Data for Co_3B

					
	10 ⁴ .s	in ² 0	Inten	sitv	
(hkl)	· obs.	calc.	obs.	calc.	
(011)	*	975	*	0.2	
(101)	*	1159	*	0.1	
(020)	*	1195	*	1.1	
(111)	1460	1458	5	4.7	
(200)	*	1934	*	0.5	
(210)	2230	2232	10	11.1	
(121)	2355	2354	15	15.5	
(201)	2605	2610	10	9.0	
(002)	*	2704	2	2.1	
(211)	2903	2908	15	15.2	
(220)	3125	3129	20	19.9	
(102)	3176	3187	20	20.7	
(031)	3355	3364	25	25.2	
(112)	3485	3486	20	17.8	
(221)	3795	3804	10	11.2	
(131)	3842	3848	10	8.3	
(022)	*	3898	*	8.0	
(122)	4382	4382	10	6.9	
(230)	4612	4622	5	3.2	
(202)	*	4638	*	0.3	
(040)	*	4779	3	2.2	
(212)	*	4936	*	0.2	
(301)	50 25	5027	10	8.9	
(231)	*	529 8	*	0.3	
(311)	*	5326	*	0.6	
(222)	*	5832	*	0.9	
(132)	*	5875	*	0.4	
(141)	*	5938	1	1.6	
(321)	*	6222	*	0.2	
(013)	*	6382	*	0.2	
(240)	*	6713	2	2.1	
					

Table II.3 continued

			*	
(hkl)	10 ⁴ .siı	n ² 0	Inten	sity
·	obs.	calc.	obs.	calc.
(113)	*	6866	1	1.2
(302)	* -	7055	*	0.1
(232)	*	7326	1	1.4
(312)	*	7354	*	0.1
(241)	*	7389	*	0.1
(123)	7754	7762	10	12.1
(142)	*	7966	*	0.5
(203)	*	8017	*	0.3
(051)	*	8143	2	2.1
(322)	*	8250	5	4.6
(213)	*	8316	2	2.4
(401)	Co(220)	8411	С	13.9
(151)	*	8626	5	5.9
(411)	*	8710	4	4.2
(033)	*	8772	3	3.0
(420)	*	8930	4	3.9
(223)	*	9212	1	1.2
(133)	9245	9255	30	29.2
(250)	9390	9401	20	19.8
(242)	*	9416	*	0.1
(421)	*	9606	5 .	6.0
(332)	9734	9743	100	100.0
(341)	*	9806	*	8.1
				*

*: Not observed or inaccurate

c: Coincidence with Co-reflections

Material: Co_3B , reacted for 72 h at 900°C

Mathod: powder X-ray diffraction in a

Debye-Scherrer camera, CrKα radiation

The intensity is normalized to the strongest

reflection with I = 100

Space group: Pbnm

Lattice parameters: a= 5.210 Å, b= 6.628 Å

c= 4.406 Å

Table II.4: Powder Diffraction Data for Co_2B

/ h l. 0 \	10 ⁴ .si	in ² 0	Inten	sity
(hkℓ)	obs.	calc.	obs.	calc.
(110)	1036	1044	10	6.5
(200)	2083	2088	15	14.4
(002)	2953	2951	20	19.2
(211)	3348	3347	80	79.7
(112)	3989	3995	5	5.1
(220)	4164	4175	2	2.4
(202)	5031	5039	15	12.4
(310)	5211	5219	15	12.0
(222)	*	7127	1	1.3
(312)	8158	8170	20	16.4
(400)	8350	8350	5	4.3
(213)	9243	9250	70	72.0
(330)	9385	9394	30	31.6
(411)	9594	9610	100	100.0

*: Inaccurate

Material: Co_2B , reacted for 72 h at 900°C Method: powder X-ray diffraction in a Debye-Scherrer camera, CrK_{α} radiation The intensity is normalized to the strongest reflection with I= 100

Space group: I4/mcm

Lattice parameters: a= 5.014 Å, c= 4.217 Å

Table II.5: Powder Diffraction Data for CoB

(hkl		sin ² θ	Intens	•	
(IIIAC)	obs.	calc.	obs.	calc.	
(110) 1309	1316	10	9.5	
(020		1908	15	15.4	
(101		2259	40	39.2	
(111		2736	60	56.4	
(120)	2728	2747	20	20.6	
(021	3317	3328	40	37.3	
(200		3357	*	0.1	
(210		3834	30	36.1	
(121)		4167	20	18.3	
(130)		5132	20	17.7	
(211)		5254	20	17.3	
(220)		5 265	*	0.01	
(002)		5679	20	16.8	
(131)		6552	1	1.8	
(221)		6684	*	0.02	
(112)		6995	3	2.7	
(022)		7587	10	7.1	
(040)		7631	*	0.4	
(230)		7649	*	0.5	
(310)		8030	2	2.2	
(122)		8426	20	19.0	
(140)		8470	20	17.7	
(301)		8973	15	15.4	
(202)	,	9036	*	0.1	
(041)		9051	30	33.6	
(231)		9069	70	67.5	
(311)		9450	40	42.2	
(320)		9461	20	16.1	
(212)		9513	100	100.0	
(141)	, x	9890	*	14.0	

*: Not observed

Material: CoB, reacted at 1100°C for 24 h Method: powder X-ray diffraction in a Debye-Scherrer camera, $CrK\alpha$ radiation The intensity is normalized to the strongest reflection with I=100

Space group: Pbnm

Lattice parameters: a= 3.954 Å, b= 5.245 Å

c= 3.040 Å

A DESCRIPTION OF THE PROPERTY OF THE PROPERTY

Table II.6 continued

Table I	I.6 Pawa Co _s i	der Diffra 195	action	Data for	(hk 1)	10 ⁴ x obs.	$\sin^2 \theta$ calc.	Inter	nsity calc.
(hk 1)	10 4	∢ sin²θ	Inte	nsity	(4010)	*	2105	*	5.6
	obs.	calc.	obs.	calc.	(42.5)	*	2114	*	3.4
					(3111)	2125	2126	5	7.6
(01-2)	109	108	30	26.0	(51 4)	*	2219	*	8.1
(11 0)	200	198	50	46.4	(43 1)	*	2459	*	3.5
(10 4)	234	234	100	100.0	(06 3)	2478	2476	20	23.1
(02.1)	276	275	10	7.1	(2311)	*	252 3	*	6.4
$(11 \ 3)$	294	293	5	3.2	(51 7)	2558	2564	2	3.1
(20-2)	307	307	5	5.5	(43 4)	*	2615	*	4.0
(01.5)	329	328	5	3.0	(60 6)	*	2759	*	6.6
(00 6)	377	377	40	38.7	(4013)	2826	2827	10	10.5
(21 1)	475	474	70	65.4	(16 1)	2854	2856	5	5.3
(30 0)	596	5 <i>9</i> 5	5	3.1	(2410)	2890	2899	5	13.3
(21 4)	*	631	*	3.4	(3114)	*	2911	*	8.6
(30.3)	688	690	2	12.7	(0216)	2939	2943	5	5.5
(12 5)	*	725	*	13.3	(3015)	*	2949	*	15.8
(02.7)	778	7 77	15	29.5	(43 7)	2957	2961	5 5	5.3
(13 1)	*	871	*	3.1	(61 5)	3102	3107	5	7.0
(31 2)	878	9 02	5	5.9	(0414)	7400	3109	45	3.3
(30.6)	972	972	15	11.0	(34.8)	3120	3118	15	14.4
$(13 \ 4)$	1026	1028	39	32.9	(4211)	u	3118		5.5
(04 2)	1104	1100	10	14.8	(44 0)	*	3176	*	6.8
(12.8)	1138	1133	5	5.1	(60 9)	3227	3229	2	3.2
(40 4)	CoB	1226	C	22.2	(44 3)	3273	327D	5 5	9.6 5.4
(0210)	*	1311	*	7.2	(53.2)	3286	3284 3293	⇒ *	5.9
(0111)	*	1332	*	8.1	(3312)	*	3409	*	6.7
(41 D)	*	1389	*	3.2	(35 4)	*	3486 3486	*	5.1
(32.4)	*	1425	*	5.7	(1217)	*	3400	*	3.1
(30 9)	*	1443	*	8.3					
(41 3)	*	1484	*	8.1	*: Not	observe	vel		į
(23.5)	*	1519	*	8.5	5 L		with Co	R raflr	ctions
(31 8)	*	1530	*	4.6			g, arc		
(40 7)	*	1571	*	3.9	Method:	nnuder	X-ray d	iffract	ion in
(14 6)	*	1766	*	3.3	nechou.	inier c	amera, C	uK.1 rad	diation
(33 0)	*	1786	*	12.7			is norma		
(24 1)	*	1863	*	3.7			eflectio		
(33 3)	1880	1881	10	12.2	1 1)	_	th Int.(
(1310)	*	1906	*	4.7	(()	omitte			
(50.5)	*	1916	*	7.2	1 11	dronb:	_		
(23.8)	1928	1927	20	33.5			meters:	a= 10.1	43 Å.
(24 4)	*	2020	*	3.3		er here	Alnh	a= 65.2	4, , ,
(0213)	*	2033	*	10.5	heya	oonal e	etting:		
(3012)	*	2102	* 	9.0				c= 23.8	

III. THE BINARY SYSTEM NICKEL-BORON

a) CRITICAL LITERATURE REVIEW

The binary system Ni-B is characterized by relatively low melting temperatures in the region of 40 to 50 at% boron and by a much smaller thermodynamic stability of the incongruently melting nickelmonoboride as compared to the corresponding CoB.

Earlier data in literature (53,54) confirm the existence of five binary nickel-borides i.e. Ni_3B , Ni_2B , orthorhombic o- Ni_4B_{3-x} and monoclinic m- Ni_4B_3 (all congruently melting), and incongruently melting NiB (peritectic reaction). A detailed listing of phase diagram and crystal data reported in literature is presented in Table III.1.

According to Schöbel et al. (53) orthorhombic and monoclinic nickelborides were observed without narrow homogeneous regions at 41.4 and 43.6 a/o boron respectively. The variation of unit cell parameters as observed by (54) for orthorhombic o-Ni $_4$ B $_3$ indicates however a small homogeneity range for o-Ni $_4$ B $_3$.

Thermodynamic equilibrium in the range of the Ni_4B_3 -borides is rather slowly attained as reported by (54), and accordingly alloys tend to loose small quantities of boron into the metal container material during the prolonged annealing procedures.

The cooling characteristic of melting-point alloys in the range between o-Ni $_4$ B $_3$ and m-Ni $_4$ B $_3$ was observed to deviate from the normal behavior, and was interpreted by (53) as the inversion of primary and secondary solidification. Due to undercooling o-Ni $_4$ B $_3$ is precipitating first, and thus triggers spontaneous formation of stable m-Ni $_4$ B $_3$.

Phase	Structure Type	Space Group	Lattice F	Lattice Parameters (A)	(A)		Ref.
			ಶ	P	ပ	ß	
N ₁₃ B	Fe ₃ B	Pbnm	4.390(4)	5.2105(5)	6.6174(6)	•	(55)
			4.389	5.211	6.619		(57)
			4.392	5.223	6.615		(28)
Ni ₂ B	CuA1 ₂	I4/mcm	4.991	ı	4.247		(55)
			4.990	•	4.245		(33)
			4.989		4.246		(54)
o-Ni4B3 Ni-rich	o-Ni4B3	Pnma	11.9540(8)	11.9540(8) 2.9815(3)	6.5684(5)		(52)
B -rich			11.973	2,985	6.584		(54)
m-Ni4B3	m-NiqB3	C2/c	6.430	4.882	7.818	B=103.30°	(54)
			6,4282(5)	4.8795(4)	7.8190(6)	B=103.315(8)°	(22)
NiB	CrB	Cmcm	2.936	7.38	2.968		(61)
			2.925	7.396	2.966		(09)
			2.928	7.391	2.964		(09)
$NiB_{x}(x > 20)$	B-rh Boron	R3m	a =10.9584		c. =23.8546		

In at% Ireatment Analysis Ni - B Sold compacted Ni + Cu-Type Fm3m 3.5228(7) HF-heat/W-crucible Ni ₃ B Fe ₃ C Pbnm 4.3918(16) 5.22 Ni ₂ B CuAl ₂ I4/mcm 4.9917(3) - Ni ₂ B CuAl ₂ I4/mcm 4.9917(3) - Ni ₂ B CuAl ₂ I4/mcm 4.9892(7) -	5.2208(21) 6.618 (4) 5.2236(10) 6.616 (1)	43.720(16)
- B - 13		43.720(16)
- 13 cold compacted Ni + Cu-Type Fm3m 3.5228(7) HF-heat/W-crucible Ni ₃ B Fe ₃ C Pbnm 4.3918(16) Ni ₂ B + Fe ₃ C Pbnm 4.3920(9) Ni ₂ B + CuAl ₂ I4/mcm 4.9917(3) Ni ₂ B + CuAl ₂ I4/mcm 4.9892(7)		43.720(16)
Hr-heat/W-cruclble Ni ₃ B Fe ₃ C Pbnm 4.3918(16) Mo(Ar), 900°C 72 h, B-amorph. - 30 Ni ₂ B + Fe ₃ C Pbnm 4.3920(9) Ni ₂ B CuAl ₂ I4/mcm 4.9917(3) - 38 - 38		151.74 (12)
- 30 Ni_3B + Fe_3C Pbnm 4.3920(9) Ni_2B CuAl ₂ I4/mcm 4.9917(3) - 38 Ni_2B + CuAl ₂ I4/mcm 4.9892(7)		
Ni2B CuAl ₂ I4/mcm 4.9917(-38 Ni2B + CuAl ₂ I4/mcm 4.9892(151.78 (5)
- 38 Ni_8 + CuAl_ 14/mcm 4_9892(- 4.2468(5)	105.82 (2)
1-20-1	- 4.2449(7)	105.67 (3)
B ₃ o-Ni _A B ₃ Pnma 11.959 (5)	2.9825(4) 6.575 (4)	234.52 (17)
$0-N_1/B_2 + 0-N_1/B_3$ Pnma 11.987 (6)	3)	236.77 (15)
(**) HF-heat./W-crucible m-Ni ⁴ B ³ + m-Ni ⁴ B ³ C2/c 6.431 (1) 4.88 Al ₂ O ₃ (Ar), 900°C NiB ⁴ CrB ⁴ Cmcm 2.9288 (5) 7.39 48 ² h, B-crist.	4.8822(9) 7.820 (2) 103.29(1) 7.390 (4) 2.9664(9)	(1) 239.0 (8) 64.208(40)
NiB + CrB Cmcm 2.9318(6)	7.391 (3) 2.9678(9)	64.308(37)
5 - 95 arc melting, 14d NiB + CrB Cmcm 2.9334(5) 7.393 (4) 900°C, Mo (Quartz) (ss)B-rh.B B-Boron R3m a _{hex} =10.954(3) ^C hex	7.393 (4) 2.9697(7) (3) chex= 23.85 (3)	64.401(39) 2479(3)

(loss of boron) thermodynamic equilibrium was not attained

Fig.III.1 Constitutional diagram of the binary system Ni-B and experimental X-ray phase analysis. Phase equilibria are based on Schoebel and Stadelmaier (1965), ref.53.

Rapid quenching of liquids nickel-rich suppresses the formation of Ni₃B due to the existence of a metastable eutectic reaction isotherm at 986°C: liquid William Ni + Ni₂B. This metastable equilibrium is represented by a dotted curve in Fig.III.1.

Severe doubts exist with respect to the existence of binary compounds such as " Ni_3B_2 " and " NiB_2 ". Both were claimed to exist according to data by (56), however were not confirmed by (53). It is likely that " Ni_3B_2 " in fact is identical with one of the Ni_4B_3 -phases.

A solubility of 0.3 a/o boron in nickel at 1085°C was accepted in the literature (53).

b) EXPERIMENTS AND RESULTS

Phase equilibria in the nickel-boron binary system have been reinvestigated on a series of 17 binary samples prepared by arc melting as well as by powdermetallurgical sintering and subsequent annealing at 900°C. The experimental results as summarized in Table III.2 confirm the phase relations reported by (53,54). In excellent agreement to the findings of (54) we also conclude a small homogeneous region for o-Ni₄B₃ observed from a small variation of the unit cell dimensions (see Tables III.1,2).

Alloys with compositions between m-Ni $_4$ B $_3$ and NiB even afer prolonged heat treatment contain o-Ni $_4$ B $_3$ as tertiary phase in a nonequilibrium state. This behavior results from the kinetically retarded formation of m-Ni $_4$ B $_3$ and is likewise found within the ternary system Ni-B-N (see below).

X-ray powder analysis and metallography did not reveal any indications of a binary compound "NiB $_2$ ". Instead a two phase equilibrium is observed: nickelmonoboride plus a solid solution of small amounts of nickel (< 3 a/o Ni) in β -rhombodral boron.

Considering the variation of the unit cell dimensions of the ss- β rh boron for Fe,Co,Ni at the metal-rich boundary at 900°C, the following sequence is observed V(Co)<V(Ni)<V(Fe), which does not correspond to the normal variation of the metal Goldschmidt radii $R_{Fe} > R_{Co} > R_{Ni}$, suggesting a slightly smaller extent of the solid solubility in case of cobalt. The rhombodhedral symmetry however remains unchanged in all three cases, so does the rhombohedral angle $\alpha_R^=$ 65.3°.

Characteristic X-ray powder diagrams for easy identification of all binary equilibrium phases are presented in Tables III.3-7.

Table III.3 Powder Diffraction Data for Ni_3^B

				
	10 ⁴ .s	in ² 0	Intone	·i+.,
(hkl)	obs.	calc.	Intens obs.	calc.
				······
(011)	*	443	*	0.8
(101)	*	525	*	0.2
(020)	539	542	5	4.0
(111)	660	661	15	15.9
(200)	868	870	2	1.7
(210)	1005	1005	40	41.3
(121)	1066	1067	60	59.1
(201)	1175	1177	30	34.7
(002)	1230	1230	10	8.0
(211)	1313	1313	60	59.7
(220)	1412	1412	80	78.9
(102)	1449	1448	80	81.5
(031)	1528	1528	100	100.0
(112)	1584	1583	70	70.3
(221)	1720	1720	45	45.1
(131)	1745	1745	30	33.1
(022)	1772	1773	٥٢	3.0
(122) (230)	1001	1990	25 4.5	27.0
(202)	2089 *	2090	15 *	12.4
(202)	2169	2100 2169		1.2
(212)	2 103 *	2169	10 *	8.3 0.8
(301)	2265	2265	35	33.5
(231)		ſ 2398		[1.1
(311)	*	2400	*	2.3
(222)	*	2642	3	3.1
(132)	2669	2668	3 2	1.4
(141)	2694	2694	5	5.2
(321)	*	2807	*	0.6
(013)	*	2904	*	0.5
(240)	3041	3039	5	5.7
(113)	3121	3121	3	3.1
(302)	*	3187	*	0.2
(232)	3320	3320	3	3.2
(312)	*	3323	*	0.2
(241)	3345	3346	*	0.3
(042)	*	3399	*	0.1
(400)	*	3479	*	0.1
(331)	*	3485	*	0.01
(123)	Ge(331)	3528	С	22.9
(410)	*	3615	*	0.01
(142)	*	3617	*	0.9
(203)	*	3638	*	0.5
(051)	3697	3697	3	3.5
(322)	3730	3730	5	7.2
(213)	3773	3774	3	3.6
		····		

43
Table III.3 continued

(hkl)	10 ⁴ .s	in ² 0	Intens	ity
(nke)	obs.	calc.	obs.	calc.
(410)	3789 [°]	3787	20	20.5
(151) (411)	*	3914 3922	10	{ 7.6
(033)	3988	3988	5	3.6
(420)	4020	4021	5	4.4
(223)	*	4180	*	1.2
(133)	4206	4206	25	25.0
(250)	4259	4259	15	14.8
(242)	*	4269	*	0.1
(421)	*	4329	2	3.5
(332)	4407	4408	40	46.7
(341)	Ge(422)	4434	С	3.2
(251)	4565	4567	20	19.5
(430)	4701	4699	20	20.7
(303)	4723	4725	20	22.9
(152)	*	4837	20	21.5
(412)	*	4845	*	0.2
(233)	*	4858	*	0.3
(313)	*	4861	2	2.4
(060)	4881	4880	10	9.7
(004)	4922	4921	10	10.0

*: Not observed or inaccurate

c: Coincidence with Ge-reflections

Material: Ni₃B, reacted for 72 h at 900°C

Method: powder X-ray diffraction in a

Guinier camera, CrKa_l radiation

The intensity is normalized to the strongest reflection with I= 100.

Space group: Pbnm

Lattice parameters: a = 5.2236 Å, b = 6.6156 Å,

c= 4.3920 Å

Table III.4Powder Diffraction Data for Ni₂B

	10 ⁴ .si	in ² A	Intens	:itv
(hkl)	obs.	calc.	obs.	calc.
(110)	477	476	10 '	6.8
(200)	952	952	20	16.7
(002)	1313	1316	30	24.4
(211)	1520	1520	100	100.0
(112)	1793	1792	10	6.5
(220)	1905	1905	5	2.9
(202)	2269	2268	20	14.6
(310)	2382	2381	20	13.5
(222)	3222	3221	1	1.0
(312)	3697	3697	10	8.3
(400)	3808	3810	3	2.0
(213)	4151	4151	25	19.7
(330)	4288	4286	10	7.4
(411)	4376	4377	20	18.1
(420)	4763	4762	2	1.4
(402)	5124	5126	5	4.0
(004)	5265	5264	5	3.5
(332)	5602	5602	15	12.9

Material: Ni_2B , reacted for 24 h at 900°C Method: powder X-ray diffraction in a Guinier camera, $\text{CuK}\alpha_1$ radiation The intensity is normalized to the strongest reflection with I= 100

Space group: I4/mcm

Lattice parameters: a=4.9917 Å, c=4.2468 Å

Table III.5: Powder Diffraction Data for Ni_4B_3

		•				
ortha.	monoel.	10 4	sin' 0		Intensity	,
(hk1)	(hk 1)	obs.	calc.	obs.		monoel.
******	***************************************	023.		3021	calc.	calc.
					·····	
	(11 0)	401	400	8		8.6
	(00-2)	410	410	5		7.7
	(11-1)	444	446	12		10.9
	(11-1)	Ge(111)	560	c		10.0
(102)		X	587	*	1.1	i
(400)		662	661	5	3.5	
	(11-2)	696	696	40		45.4
(202)		711	711	5	5.3	
	(20-2)	787	787	70		67.1
(011)		*	800	*	1.3	
(111)		*	841	*	1.5	
(302)		917	9 17	5	4.8	
(211)		965	965	15	12.8	
	(02-0)	99 5	996	3		2.5
	(02.1)	1098	1098	40		37.6
	(11-3)	1151	1150	50		51.9
(311)		1173	1172	10	8.0	•
(402)		*	1207	*	1.0	
	(20-2)	1245	1245	95		98.7
(112)		1249	1250	5	5.7	
(103)		1267	1269	6	6.7	
(410)		1325	1325	20	18.2	
(212)		1375	1374	25	25.0	
	(02/2)	1406	1405	100		100.0
(411)		1462	1461	5	4.7	
	(31-1)	1544	1543	50		47.9
(312)		1580	1581	12	11.8	
	(22-1)	1590	1590	10		10.0
(303)		1602	1599	80	√ 10.9	
	(22 0)		L 1602		ł	73.3
	(31 0)	1613	1613	20		19.3
(601)		1624	1624	15	13.8	İ
	(00.4)	1640	1639	40		43.6
	(31-2)	1679	1679	20		22.6
	(22-2)	1782 .	√ 1782	8	1	5.6
	(20-4)		1787		1	4.7
	(11-4)	1810	1810	25	-	24.7

Table III.5 continued

ortho.	monoel.	104	x sin d		Intensity	,
(hk1)	(hk 1)	obs.	calc.	obs.		monocl.
					calc.	calc.
						
	(22-1)	1819	1819	20		17.5
(511)	•	1833	1833	10	8.5	
1	(31-1)		1887		Γ	3.5
(403)		1888	1889	15	4.6	
(013)			1891		[5.2	
	(02-3)	1919	1918	7		6.8
(113)		1933	1932	2	2.1	
l	(31-3)	2019	2019	5		5.2
(602)		Ge(311)		C	2.5	
(701)		2161	2162	2	2.0	
(104)		2224	2223	1	1.3	
Ì	(22-2)	2242	2241	2	_	1.9
(313)		2270	√ 2263	10	₹ 2.4	
	(11-4)		2269		Ĺ	9.7
(611)		*	2288	*	1.0	
(204)		2345	2347	2	2.5	
	(31-2)	2365	2367	5		3.6
	(40-2)	*	2376	2		2.8
	(40 0)	2423	2425	10		9.2
į	(13-1)	2437	2437	10		11.1
(413)		*	2552	*	1.2	
1	(31-4)	2564	√ 2564	20	₹	18.0
(702)			L 2571		2.3	
	(02.4)	2638	2635	5		4.0
(020)		2654	2654	10	9.5	
!	(11-5)	*	2675	*		1.5
	(22-4)	2781	2782	5		5.2
(711)		*	2825	*	1.0	
	(22 3)	2869	2868	5		6.5
	(31-3)	3052	3051	5		4.1
	(13-3)	3140	3142	2		1,2
ł	(11.5)	3246	3248	5		4.4
]	(31-5)	3316	3314	20		21.0
(222)		*	3365	*	1.1	
(811)		*	3445	*	1.4	
1	(13-3)	*	3486	*		2.2
!	(02.5)	*	3557	*		1.6
(322)		*	3572	*	1.2	
{	(00-6)	*	3688	*		1.9
1	$(22 \ 4)$	3699	3700	25		24.6
1						

Table III.5 continued

ortho. (hkl)	monoel. (hk 1)	10 4 obś.	x sin d	obs.	Intensity ortho.	
					calc.	calc.
	(11-6)	3744	3745	5		7.4
	(42-1)	*	3752	*		2.4
(305)		*	3781	*	1.0	
	(51-1)	*	3853	*		3.8
(812)		*	3854	*	2.2	
	(51-2)	3879	₹ 3874	20		7.0
	(33/1)		L 3878		L,	16.0
(902)		*	3894	*	1.1	
(713)		*	3916	*	1.4	
(123)		*	3923	*	2.3	
	(04 0)	*	3982	*		2.6
	(33-3)	4010	4010	30		32.8
	(51-0)	4038	4038	5		5.6
(405)		*	4071	*	1.5	
(015)		*	4073	*	3.2	
	(04-1)	4083	4085	5		8.4
	(51-3)	4098	4100	15		16.0
(115)		*	4114	*	3.2	
	(42-4)	*	4142	*		1.1
(911)		*	4148	*	2.7	
(323)		*	4254	*	4.5	
	(31-6)	*	4269	*		2.3
(621)		*	4279	*	5.8	
	(42/2)	*	4289	*		9.3
(614)		*	4334	*	7.6	
	(04-2)	4394	4392	10		7.9
	(51-1)	4428	4427	15		14.1
	(11-6)	*	4433	*		3.6
	(51-4)	*	4530	*		2.7
(813)		*	4536	*	2.0	
(423)		*	4543	*	2.2	
	(24-1)	*	4576	*		3.2
	(24 0)	4587	4588	5		7.3
	(22-6)	*	4602	*		2.5
	(13-5)	4665	4666	20		19.8
	(02-6)	4684	4684	5		5.8
(622)	ه شمارسريمري	*	4688	*	1.3	. .
	(22.5)	*	4736	*		3.5
	(40-6)	*	4737	*		1.9
	(24-2)	*	4769	*		3.3

Table III.5 continued

```
10^4 \times \sin^2 \theta
                                                 Intensity
         monoel.
ortho.
         (hk 1)
                              calc.
                                                   ortho. monocl.
(hk1)
                     obs.
                                          obs.
                                                    calc.
                                                             calc.
         (24 \ 1)
                               4805
                                             5
                                                              6.3
(721)
                               4816
                                                     1.1
         (42-5)
                               4835
                                                             1.3
                                                              3.0
         (04 \ 3)
                               4904
(1011)
                               4933
                                                     2.6
                                                              9.8
         (40 \ 4)
                              4982
                     4981
                                            20
         (20.6)
                              4983
                                                             10.7
*: Not observed or inaccurate
c: Coincidence with Ge-reflections
Material: Ni45B55, arc melted
Method: powder X-ray diffraction in a Guinier camera,
     CuK_1 radiation.
The intensity I is normalized to the strongest reflection
```

Material: Ni₄₅B₅₅, arc melted

Method: powder X-ray diffraction in a Guinier camera,

CuK₂1 radiation.

The intensity I is normalized to the strongest reflection

with: I= 25.0 for ortho. - Ni₄B₃ and

I= 100.0 for monocl. - Ni₄B₃.

Reflections weaker than 1% were omitted.

Space groups: Pnma for ortho. - Ni₄B₃.

and C2/c for monocl. - Ni₄B₃.

Lattice parameters: ortho. - Ni₄B₃: a= 11.981 A₄,

b= 2.9902 A₄,

c= 6.5962 A;

monocl. - Ni₄B₃: a= 6.4295 A₄,

b= 4.8826 A₄,

c= 7.8199 A₄,

Beta= 103.30°.

Table III.6 Powder Diffraction Data for NiB

	10 ⁴ .sin	2 ₀	Inten	sitv	
(hkl)	obs.	calc.	obs.	calc.	
(020)	*	· 435	*	4.6	
(110)	800	800	40	41.2	
(021)	1108	1109	80	85.3	
(111)	1475	1474	100	100.0	
(130)	1668	1669	50	56.2	
(040)	1736	1738	20	20.6	
(131)	2343	2343	15	15.8	
(041)	2413	2412	10	12.3	
(002)	2698	2697	20	17.0	
(200)	2765	2765	15	16.3	
(022)	*	3131	*	0.7	
(220)	*	3199	*	0.7	
(150)	*	3407	*	0.2	
(112)	3497	3496	10	9.4	
(221)	3874	3874	20	24.4	
(060)	*	3911	*	3.1	
(151)	4080	4081	20	22.3	
(132)	4365	4365	20	24.0	
(042)	Ge(422)	4435	С	9.1	
(240)	4504	4503	10	8.9	
(061)	4586	4585	5	7.3	
(241)	5178	5177	5	7.5	
(202)	5459	5461	10	11.5	

*: Not observed

c: Coincidence with Ge-reflections

Material: NiB, reacted at 900°C for 72 h

Method: powder X-ray diffraction in a

Guinier camera, $CuK\alpha_1$ radiation

The intensity is normalized to the

strongest reflection with I= 100.

Space group: Cmcm

Lattice parameters: a= 2.9298 Å, b= 7.3906 Å

c= 2.9667 Å

Table III.7 Powder Diffraction Data for Ni₅B₉₅

(hk 1)	10 ⁴ x	$\sin^2 \theta$	Inte	nsity calc.	
	005.	carc.	005.	care.	
(10 1)	*	76	*	1.8	
(00 3)	*	94	×	1.7	
(01/2)	106	108	20	26.5	
(11.0)	197	198	50	47.9	
(10.4)	233	233	100	100.0	
(02.1)	274	274	5	6.0	
(11 3)	292	292	1	1.8	
(20-2)	305	306	5	5.0	
(01.5)	*	327	*	2.5	
(00 6)	375	376	40	39.6	
(21 1)	472	472	70	67.3	
(12-2)	*	503	*	1.0	
(20.5)	525	525	2	2.8	
(11 6)	*	573	*	2.6	
(10.7)	577	577	3	2.8	
(30 0)	594	594	2	3.3	
(21-4)	628	629	3	4.1	
(30-3)	687	687	10	13.0	
(12.5)	721	722	15	13.1	
(02.7)	773	775	30	30.8	
(00 9)	*	845	*	2.3	
(13-1)	848	868	2	2.8	
(22 3)	889	887	2	2.1	
(31 2)	878	899	5	5.8	
(20.8)	*	931	*	2.2	
(30.6)	968	969	10	10.8	
(13 4)	1023	1024	30	33.7	
(11 9)	1044	1043	3	2.7	
(40-1)	1066	1066	2	1.3	
(04-2)	1098	1097	15	14.9	
(12.8)	1129	1129	5	5.2	
<u>'</u>					

Table III.7 continued

Table III.7 continued

sity	calc.	1.7	1.2	2.5	3.7	23.2	1.3	6.9	o. 8	ъ.	4.2	1.8	6.5	10.2	5.4	12.8	8.0	 	5,4	16.2	0.	ល ហ	2.1	6. 7	3.4	14.4	ر. و	6.9	n. 0	2. 3	9.2	5.2	8	2.7	1.2	
Intensity	ops.	*	*	*	*	2	*	M	*	*	*	*	*	10	M	10	*	*	ហ	-	*	*	*	*	*	10	*	w	*	*	ហ	*	*	*	*	
sin $^{\mathbf{r}}\theta$	calc.	2294	2317	2358	2451	2468	2514	2515	2545	2556	2607	2736	2750	2818	2846	2890	2902	2911	2934	2941	2948	2951	3088	3097	3100	3108	3109	3166	3219	3242	3260	3273	3283	3307	3347	
10 4 ×	obs.	*	*	*	*	2470	*	2513	*	*	*	*	*	2819	2845	2888	*	*	2934	2940	*	*	*	*	*	3106	*	3165	*	*	3262	*	*	*	*	
Ghk 10		(2212)	(0411)	(24-7)	(43.1)	(80 3)	(42.8)	(2311)	(1115)	(51.7)	(42 4)	(1016)	(9 09)	(4013)	$(16\ 1)$	(2410)	(3114)	(5011)	(0216)	(3015)	(22 6)	(43 7)	(5110)	(61 5)	(0414)	(34 8)	(4211)	(44 0)	(6 09)	(35 1)	(44 3)	(54.2)	(3312)	(1511)	(16 7)	
		-															-																			_
sity	calc.	22.9	2.4	7.7	8.6	3.6	5.0	8.7	9.6	£.4	2.2	9.1	0.2	3.2	4.2	2.4	7.	1.3	3.4	13.2	2.5	1.9	3.8	12.9	6.4	7.2	34.7	3.5	10.6	2.4	9.4	5.7	3.6	7.9	9.8	
Intensity	obs. calc.	20 22.9		5 7.7		* W.6	5.6	10 8.7	9.6	# #	* 2.2	* 9.1	D. W	* 21.5	3 4.2	* 2.4	*	*	2 m.4	10 13.2	» در در	1.9	*		6.4				10 10.6		10 9.4		3.6		5 8.6	
sin 8 Intensity	obs.	20		ហ	10	*	ហ	10	1479 c 9.6	1502 * 1.1	1505 * 2.2	*	*	*	m	*	*	*	64		*	*	*	10	ហ	เจ	30	*	10	*	10	*	*	10	2211 5 8.6	
	calc. obs.	20	1264 1	1307 5	1328 10	1385 *	1420 5	1439 10	1479 C			*	*	*	m	1659 *	*	1724 *	64	1781 10	*	1829 *	1857 *	1875 10	ហ	1910 3	1921 30	2014 *	10	2086 *	10	2098 *	*	2120 10		

Table III.7 continued

	Table			-
(hk 1)	10 ⁴ x	sin ² 0 calc.	Inten	sity calc.
(35 4)	*	3399	*	3.6
(70 4)	*	3377	*	3.4
(25 9)	*	3417	*	2.4
(1217)		3476	5	5.0
(07.5)	*	3492	*	4.6
(61.8)	*	3504	*	9.2
(1316)	*	3528	*	3.5
(1118)	*	3578	*	1.1
(2413)	3608	3610	5	5.7
(5014)	*	3693	*	1.0
(3411)	*	3702	*	2.1
(4016)	*	3726	*	1.7
(35 7)		3743	2	4.8
(1019)		3832	2	2.2
(71 3)	*	3853	*	7.1
(6012)	*	3876	*	2.1
(62.7)	3947	3941	2	1.9
(3018)	*	3973	*	1.9
(4419)	*	4011	*	1.0
c: Coir Materia Method: a Gu	l: Ni _s B powder Linier c	with N 95, arc X-ray amera,	ib reflec melted. diffracti CuK¢1 rad	on in iation.
			alized to	
			on with I	
Reflect	ions wi	th Int.	(calc.) <	1.0 %

were omitted. (Space group: R3m

Lattice parameters: a= 10.158 A,
Alpha= 65.25°.)
hexagonal setting: a= 10.952 Å,
c= 23.85 Å.

IV THE BINARY SYSTEM: IRON - NITROGEN LITERATURE

A partial metastable phase diagram of the system Fe-N was recently critically assessed by 0. Kubaschewski-von Goldbeck (14) and is presented in Fig. IV.1. Three binary nitrides have been characterized: $Fe_{16}N_2$, Fe_4N (19.6 to 19.95 a/o N) and ε , ξ -Fe₂N. As far as the nitrogen solubility in α , ξ , and liquid iron is concerned, the following equations have been assembled (71,72) for the reaction 1/2 N_2 = [N] Fe:

N in
$$\alpha$$
, δ -Fe (25-1536°C): log c(at%N)= -1700 T⁻¹ - 0.30

N in
$$\ell$$
-Fe : log c= -457 T⁻¹ - 0.5

A detailed compilation of the solubility data in combination with thermodynamic data is presented by (71).

Fig.VI.1. Phase relations (metastable) in the binary system: Fe-N (after Kubaschewskii-von Goldbeck, ref.14)

V THE BINARY SYSTEM: COBALT - NITROGEN

LITERATURE

No binary phase diagram Co-N is available in the literature, however the existence of five cobalt-nitrides has been reported (69): Co_4N , hexagonal Co_3N (stable from 7.7 to 8 wt%N; a= 2.663, c= 4.360), orthorhombic Co_2N (stable at 10.71 wt%N), Co_2C -type, a= 2.848, b= 4.636 and c= 4.339), CoN and Co_3Ni_2 (12). All cobalt nitrides easily decompose on heating at 276°C in vacuum (12). At pressures p < 760 Torr and up to 1200°C N was found to be practically insoluble (71) in Co. The solubility of N in liquid cobalt is rather small and within the temperature range of 1550°C to 1700°C obeys the equation (70):

log c = 1/2 log p - 2.0 - 2190/T.

Thermodynamic data for the solubility of N in liquid Co are presented by the same authors (70) as follows: (1550°C-1700°C)

 $1/2 N_2 = N \text{ in } \ell\text{-Co} : \Delta G^\circ = 10.000 + 11.7 T$

VI THE BINARY SYSTEM NICKEL - NITROGEN

LITERATURE

No binary phase diagram Ni-N has been prepared yet.

The early literature on nickel-nitrides mentiones the preparation of nickel-azides such as Ni_3Ni_2 and $Ni(N_3)_2$ (ref.69).

Juza and Sachsze (12) reported about the formation of hexagonal Ni_3N (a= 2.66, c= 4.34 Å); thermodynamic decomposition of this compound to normal Ni was said to start at $480^{\circ}C$ on heating in vacuum.

From electron diffraction data it was concluded that the dilated fcc-ss(Ni,N) with a= 3.72~Å in fact is Ni₄N (69). However Ni₄N formed at $230-240^{\circ}\text{C}$ was later reported to be tetragonal with a= 3.72~A (69).

The solubility of nitrogen in nickel at 445°C amounts to less than 0.3 a/o Ni(12). The solubility of N in liquid Ni is rather small and within the temperature region 1550-1700°C follows the equation:

 $\log c = 1/2 \log p - 2.45 - 2340/T (70).$

Thermodynamic data available for the solubility of N in Ni are given by the same authors (70) as follows $1550^{\circ}\text{C}-1700^{\circ}\text{C}$

 $1/2 N_2 = N \text{ in } \ell\text{-Ni} : \Delta G^\circ = 10700 + 13.7 T$

- B) TERNARY SYSTEMS M-B-N
- I) THE TERNARY SYSTEM IRON-BORON-NITROGEN
- a) CRITICAL LITERATURE REVIEW

Kiessling (59) investigated the thermal stability of binary iron borides in a stream of dry ammonia at temperatures below 768°C.

His results are presented in Table I.1 and show the decomposition of the binary iron-borides Fe₂B, FeB into the various iron-nitrides and boronnitride according to the formation of stable two-phase equilibria between the ironnitrides and boronnitride, as well as between the ironborides and boronnitride. No ternary iron-boronnitrides were encountered, but great differences were observed among the iron-borides in their stability against attach by ammonia, the resistance being higher for the higher boride. The lattice parameters obtained, indicate that no B is in solution in the nitrides nor nitrogen in the borides.

Fountain (67) determined the solubility of nitrogen in iron-rich iron-boron alloys (0.001 to 0.91 % B) by the Sievert's technique in the temperature range from 950°C to 1150°C. Partial phase diagrams of the iron-rich corner of the Fe-B-N system were established at 950°C, 1050°C and at 1150°C under 1 atm N gas and are presented in Fig. B1a,b,c. At all temperatures employed a stable two-phase equilibrium was observed between ss-(Fe) and hexagonal boronnitride.

An electron microscopic study of the ss-hex-BN particles (thin flakes extracted from the alloy in a solution of 5 pct HNO_3 -25 pct $HC\ell$ -70 pct alcohol) revealed a lack of threedimensional perfection due to stacking faults and random displacement of the graphite layers perpendicular to the c-axis, but with unaffected intensities of the (hk0) reflections (see also (68)). The lattice parameters of ss-h-BN (a= 2.504, c= 6.68 Å), at 1050°C indicate a small solubility of Fe in BN as compared to pure BN with a= 2.504, and c= 6.661 Å. Similarly the solubility of nitrogen in Fe₂B was small as can be judged from the unit cell dimensions presented by Fountain (a= 5.103, c= 4.244)

Fig.B.I.1 Phase equilibria in the iron rich corner of the ternary system Fe-B-N at different temperatures: a) 950°C, b) 1050°C and c) at 1150°C; after Fountain et al., ref.67.

Table B.I.1 Phases present after nitriding Fe borides in a dry ammonia stream; 10 h; specimens quenched from reaction temperature (After Kiessling and Liu (59)).

Products	
Fe ₂ B	FeB
	FeB + 5 + BN(?)
E + BN	-
+ge' + BN	-
'+ ε + BN	$\mu' + \varepsilon + BN$
-Fe +μ'+ (ε)+ BN	μ'+ ε + α-Fe + BN
α-Fe + BN	-
α-Fe + BN	α -Fe + BN
	\$ + BN \$ + BN + μ' + BN ' + ε + BN -Fe + μ' + (ε) + BN α-Fe + BN

* Phases stated in order of decreasing amount but BN always last; lattice dimensions indicate that no B is in solution in the nitrides, nor N in the borides; Greek letters under Fe-B-N denote the known iron nitrides.

in comparison to his data for binary iron-rich Fe_2B (a= 5.099, c= 4.240 Å).

b) EXPERIMENTS AND RESULTS

Phase equilibria in the ternary system Fe-B-N at 900°C (see Fig.B.I.2) were determined by X-ray diffraction analysis of about 15 ternary cold-compacted powder mixtures (Fe + B + BN) which subsequently were heat treated in a HF-furnace with a tungsten crucible as susceptor material under 1 atm of high purity 6N-argon on molybdenum or BN-substrates. Annealing for 48 hrs was generally sufficient to obtain thermodynamic equilibrium. The results of the X-ray phase analysis for a series of characteristic samples are presented in Table B.I.2.

According to the phase relations obtained in Fig.B.I.2, iron and all binary iron-borides at 900°C are in stable thermodynamic equilibrium with hexagonal BN. Iron monoborides in all samples revealed the powder pattern of T-FeB (see section: the binary system Fe-B).

The unit cell dimensions of the boundary phases in multiphase alloys obviously correspond to the binary data within the error bars of the least squares extrapolation. It is thus concluded that practically no nitrogen (< 0.5 a/o N) is soluble in the binary iron borides.

The crystallographic data of the hex-ss-BN (see Table B.I.2) as compared to pure BN (a= 2.505, c= 6.680 Å) however indicate a small but significant solubility of iron between the covalently bonded graphite layers; Phase equilibria at 1250° C remain unchanged except for the appearance of an extended liquid region adjacent to the low melting binary iron-boron eutectic (Fe + Fe₂B). Thus from the above mentioned data, compatibility is observed between iron, the iron-borides, and hexagonalboronnitride with only a very limited mutual solid solubility. Alloys along the isopleth Fe - BN from 20 to 50 mol% BN appear to be melted at 1250° C under 1 atm Ar. The reguli show a phase separation

Fig.B.I.2 Phase Equilibria in the ternary system Fe-B-N, isothermal section at 900°C and 1 atm. argon.

Nominal Composition	Preparation and Heat	X-ray Phase	Structure Type	Space group	Lattice P	Lattice Parameters (Ä)	æ æ	Volume (K ³)
n at%	Treatment	Analysis (*)			๙	Ф	U	
Fe - 8 - N								
79 - 16 - 5	cold compacted HF-heat/W-crucible Mo(Ar), 900°C, 72 h, B-amorph.	Fe + Fe ₂ B	W-Type CuA1 ₂	Im3m I4/mcm	2.865(1) 5.107(2)	1 1	4.249(2)	23.52(2) 110.81(9)
63 - 32 - 5	•	Fe ₂ B + traces Fe	CuA1 ₂	I4/mcm	5.107(2) n.d.	•	4.249(2)	110.80(8)
52 - 43 - 5	•	Fe,B +	CuA1,	I4/mcm	5.107(2)	•	4.246(2)	110.75(11)
		T-FeB	T-FeB		4.059(1)	5.500(2)	2.948(1)	65.81(3)
35 - 60 - 5	•	T-FeB	T-FeB		4.059(2)	5.497(3)	2.948(1)	65.78(5)
18 - 77 - 5	•	T-FeB +	T-FeB		4.058(1)	5.498(3)	2.948(1)	65,76(4)
10 - 85 - 5	•	traces B T-FeB +	T-FeB		n.d. 4.060(1)	5.498(4)	2.946(1)	65.75(5)
. 10 - 75 -15	•	B-Boron T-FeB +	T-FeB		n.d. 4.062(1)	5.500(1)	2.948(1)	65.86(3)
		B-Boron	`		n.d.			

of a metal rich liquid and a porous body of ss-hex BN. Due to a rather high surface tension, the metal-rich part is found to adopt almost spherical shape when above the soft and porous substrate of light colour. X-ray analysis of the powdered spherical droplets interestingly revealed the existence of a cubic phase whose lattice parameters, X-ray intensities and extinctions prove isotypism with the structure type of Cr_{23}C_6 (tau phase). An X-ray powder intensity calculation (see Table B.I.3) confirmed the crystal symmetry and atom arrangement suggesting a formula $\text{Fe}_{23}(\text{B,N})_6$, The new compound however is probably metastable as heat treatments at different temperatures do not produce this compound in solid state equilibrium. Due to the metastable character the new phase is never encountered in single-phase condition but accompanied by varying amounts of α -Fe and BN. The unit cell dimensions of m-Fe $_{23}(\text{B,N})_6$ are significantly larger than binary metastable Fe $_{23}\text{B}_6$ (for comparison see Table B.I.4) and suggest a boron/nitrogen ratio of B/N >4 .

Table B.I.3 Powder Diffraction Data for Fe₁₃(B,N)₆

		7.0		
(hk1)		$x \sin^2 \theta$		ensity
	obs.	calc.	obs.	calc.
(111)	*	343	*	2.9
(200)	*	457	*	0.1
(220)	*	915	*	0.4
(311)	1258	1258	3.4	2.6
(222)	1370	1372	9.6	1.3
(400)	1826	1829	12.5	10.6
(331)	2172	2172	4.8	1.8
(420)	2287	2287	36.9	40.1
(422)	2745	2744	44.3	48.3
(333)	3091	4 3087	170.0	√ 100.0
(511)		3087		69.8
(440)	3656	3659	42.3	36.7
(531)	4006	4002	46.3	46.1
(442)	4114	J 4116	27.2	5 6.7
(600)		4116		18.1
(620)	4570	⁻ 4573	6.2	4.9
(533)	4912	4916	5.1	8.0
(622)	5032	5031	16.5	14.7
(444)	*	5488	*	0.2
(551)	*	5831	*	0.2
(711)	*	5831	*	2.5
(640)	5946	5945	1.7	1.2
(642)	*	6403	*	0.0
(553)	*	6745	*	0.7
(731)	*	6745	*	0.0
(800)	7319	7317	11.1	17.5
(733)	*	7660	*	0.0
(644)	7778	5 7774	14.8	√ 19.7
(820)		7774		6.5
(660)	8228	5 8232	57.3	ß0.2
(822)		8232		21.5
(555)	8575	\$ 8575	36.0	£ 16.9
(751)		8575		58.1
(652)	*	8689	*	2.0
(840)	9146	9146	24.4	43.6
(753)	c	9489		33.4
(911)	<u> </u>	9489	_	50.2
(842)	*	9604	*	5.8

*: Not observed or inaccurate
c: Coincidence with Fe and BN reflections
Material: Fe₇₄ BN₂₇, reacted for
15 h at 1300° C

Method: powder X-ray diffraction in a Powder-Diffractometer, CrK_C radiation The intensity is normalized to the strongest reflection with I= 170.0 Space group: Fm3m

Lattice parameter: 10.7070 A.

Table BI4 TERNARY BORONNITRIDES WI	/ BORONNITRIDES W	ITH Cr ₂₃ C ₆ -ТҮРЕ, Fm3m, Z= 4	, Z= 4		
Fe ₂₃ 8 ₆ (extr.)	10.69 A	Co ₂₃ B ₆ (extr.)	10.493	Ni ₂₃ B ₆ (extr.)	10.48
m-Fe ₂₃ 86	10.67-9	m-Co ₂₃ B ₆	11.05		•
Fe ₂₃ (B.5C.5)6	10.617	"Co11B2C"	10.47(1)		٠
$m-Fe_{23}(B,N)_6$	10.707(1)	m-Co ₂₃ (B,N) ₆	10.483(2)	m-Ni ₂₃ (B,N) ₆	10.448(2)

UNDER TECHNICAL CONDITIONS Output Description: UNDER TECHNICAL CONDITIONS

The phase relations in the ternary system Fe-B-N have been also checked under technical conditions i.e. graphite as technical crucible material under 1 atm of technical argon containing 0.01% 0_2 and 0.02% N_2 .

X-ray analysis of samples annealed at 900°C for 48 hrs under the above mentioned conditions gave evidence for the existence of a ternary compound especially in the region Fe - $\operatorname{Fe}_2\operatorname{B}$ - BN , Lattice parameters, X-ray powder intensities and the observed extinctions indicate structural analogy with the structure type of $\operatorname{Fe_3C}$. A second series of samples independently annealed in graphite crucibles however under high purity 6N argon failed to produce a cementite phase. The stabilization of this compound is thus likely to be caused by the small oxygen-content of the technical argon via a gasphase-transport reaction where oxygen reacts first with the hot graphite crucible material to form carbonoxide which in turn is cracked at the hot sample surface and by this traces of carbon are likely to be effective in stabilizing a metastable ternary-compound with a suggested formula of $Fe_3(B,C,N)$. Due to the extremely small differences in the scattering factors of the nonmetal atoms, the X-ray analysis is incapable of determining the relative amounts of B,N and C. A comparison of the unit cell dimensions of the new compound (a = 4.459(1), b = 5.347(3), c = 6.664(3), V = 158.90(11)) with those obtained by Borlera (38) from the solid solution range $\operatorname{Fe_3B_{X}C_{1-X}}$ allows for a rough estimate of a B/C ratio equal to 5:1, not taking into account the amount of lattice expansion due to the larger nitrogen atoms.

The phase equilibria resulting under technical conditions are represented in Fig.B.I.3 and samples in the encircled area denoted as \emptyset were observed to contain the Fe₃(B,C,N)-phase as the bulk material.

The crystallographic data of these binary compounds prepared under

Fig.B.I.3 Phase equilibria in the ternary system Fe-B-N, under technical conditions, isothermal section at 900°C and 1 atm. technical argon, graphite susceptor material.

Table B.I.5 continued

Table (3.I.5 Powd Fe 3 (er Diffr B,C,N)	action D	ata for
Chk1	10 ⁴ x	sin²θ	Inte	nsity
•	obs.	calc.	obs.	calc
(011)) *	955	*	0.3
(101		1119	*	0.3
(020)		1182	Ŝ	1.7
(111)		1414	1	7.7
1		1835	*	0.8
(200)		2131	3	18.4
(121)		2301	30	24.3
(201)		2495	10	14.8
(002)		2639	2	3.2
(211)		2791	20	24.6
(220)		3017	30	32.1
(102)		3098	30	33.0
(031)		3319	30	38.9
(112)		3394	30	28.3
(221)	3672	3677	25	17.8
(131)	3780	3778	15	12.8
(022)) *	3821	*	1.2
(122)	4278	4280	15	10.7
(202)) *	4475	*	0.5
(230)		4495	10	4.9
(040)		4728	5	3.4
(212)		4770	*	0.3
(301)		4790	10	14.3
(311)		5085	*	1.0
(231)		5155	*	0.4
(222)		5657	1	1.4
(132)		5758	1	0.7
(141)		5846	2	2.4
(321)		5972	*	0.3
(013)		6234	*	0.2
(240)		6563	2	3.2
(113)		6693	2 *	1.8
(302)	*	6769 	**	0.1

(312)	*	7065	*	0.1
(232)	7129	7134	1	2.2
(241)	*	7223	*	0.2
(400)	*	7342	×	0.1
(123)	7570	757 <i>9</i>	20	17.6
(203)	*	7774	*	0.4
(142)	*	7826	*	0.7
(322)	7941	7951	5	6.6
(401)		f 8002		[18.9
(051)	8030	8047	25	3.1
(213)		8070		l 3.3
(411)	8286	8297	5	5.6
(151)	8495	√ 8506	10	₹ 8.6
(420)		8524		l 5.0
(633)	8585	8598	3	4.2
(223)	8948	8956	2	1.6
(133)	9048	9057	40	38.9
(421)	9177	9184	5	6.2
(242)	*	9202	*	0.1
(250)	9215	92 22	20	26.2
(332)	9415	9428	100	100.0
(341)	9506	9517	10	7.8
				<u> </u>
	observ	ed 3 ⁸ 18 ^N 5, F		4 400 h

Material: Fe₆₇B₁₈N₅, reacted for 120 h at 900° C in a graphite crucible.

Method: powder X-ray diffraction in a Debye-Scherrer camera, CrKa radiation. The intensity I is normalized to the strongest reflection with I= 100.0 Space group: Pbnm

Lattice parameters: a= 5.347 A, b= 6.664 A, c= 4.459 A.

technical conditions are also presented in Table B.I.5 in comparison

71

Fig.B.I.4 Phase equilibria in the ternary system Fe-B-N, isothermal section at 400°C derived from data by Kiessling and Liu,

Fig.B.I.5 Nitriding of binary iron-borides under pure nitrogen; arrows indicate amount of nitrogen take up.

II THE TERNARY SYSTEM COBALT-BORON-NITROGEN

a) CRITICAL LITERATURE REVIEW

No X-ray or phase diagram studies of the system cobalt-boron-nitrogen are known in the literature.

b) EXPERIMENTS AND RESULTS

Phase equilibria in the ternary system Co-B-N at 900°C (see Fig. $\overline{11}$, 4) were determined by X-ray diffraction analysis of about 15 ternary alloys. For details of preparation see Fe-B-N.

The results of the X-ray phase analysis for a series of characteristic samples are presented in Table B,II,1. Similar to the system Fe-B-N and according to the phase relations obtained in Table B,II.1, Fig.II.1 cobalt and all binary cobalt-borides at 900° C are in stable thermodynamic equilibrium with hexagonal boronnitride. The formation of Co_3B in ternary alloys appears to be kinetically retarded as already the case in the Co-B binary.

The unit cell dimensions of the boundary phases in multiphase allows obviously corresponds to the binary data within the error bars of the least squares extrapolation. It is thus concluded that practically no nitrogen (< 0.5 a/o N) is soluble in the binary cobalt borides. The crystalographic data of the hex-ss-BN (see Table B.II.1) as compared to pure BN (a= 2.505, c= 6.660 Å) however indicate a small but significant solubility of cobalt between the covalently bonded graphite layers.

Phase equilibria at 1250°C remain unchanged except for the appearance of an extended liquid region adjacent to the low melting binary eutectic Co + Co_3B .

Thus from the above mentioned data, compatibility is observed between cobalt, the cobalt borides, and boronnitride with only a very limited mutual solid solubility.

Phase equilibria in the ternary system Co-B-N, isothermal section at 900°C and 1 atm. argon. Fig.B.II.1

Table B.II.1	f Composition, Prepartion Techniques and Crystal Data of Ternary Allys: Cobalt-Boron-Nitrogen	Techniques	and Crystal	Data of	rernary Al	lys: Cobal	t-Boron-Nit	rogen
Nominal Composition	Preparation and Heat	X-ray Phase	Structure	Space Group	Lattice	Lattice Parameters	s (Å)	Volume (A ³)
in ats	Treatment	And 17515 (*)			ro	q	U	
Co - B - N								
79 - 16 - 5	cold compacted	Co(cub.)	Cu-Type	Fm3m	3.541(2)	•		44.41(6)
	heat/W-crucible Mo(Ar), 900°C, 72 h, B-amorph.	+ Co ₃ B	Fe ₃ C	Pbnm	4.409(2)	5.221(3)	6.633(2)	152,71(11)
63 - 32 - 5		Co ₂ B +	Feac	Pbnm	4.408(1)	5.226(2)	6.624(1)	152,58(7)
		Co ₂ B	CuA1,	I4/mcm	5.013(1)	1	4.219(1)	106.02(3)
52 - 43 - 5	•	Co ₂ B +	CuA12	I4/mcm	5.013(1)	ı	4.217(1)	105,95(5)
		CoB	FeB	Pbnm	3,957(0)	5.243(3)	3.041(1)	63.09(4)
32 - 60 - 5		CoB	FeB	Pbnm	3.954(1)	5.247(5)	3.040(1)	63.07(6)
18 - 77 - 5		CoB	FeB	Pbnm	3.954(1)	5.248(3)	3.041(1)	63.10(5)
10 - 85 - 5	•	CoB+	FeB	Pbnm	3,954(2)	5,250(2)	3.038(1)	63.06(4)
		traces B			n.d.			
10 - 75 -15	•	C0B+	FeB	Pbnm	3.954(1)	5,245(2)	3.044(1)	63.13(3)
		traces B			n.d.			
(*) All sa	All samples contained smal	.11 amounts of hex.	of hex. BN i	n thermo	dynamic eq	uilibrium	BN in thermodynamic equilibrium (a= 2.505, c= 6.680)	c= 6.680)
n.d. not de	not determined							

Alloys along the isopleth Co-BN with compositions from 20 to 50 mol% BN appear in molten condition after heat treatment at 1250°C under 1 atom of argon. Similar to the behavior in the Fe-B-N system, the reguli reveal a phase separation of a metal rich liquid and a porous body of hex ss-BN. Due to the rather high surface tension the metal-rich part is found to adopt almost spherical shape when above or within the soft and porous substrate. X-ray analysis of the powdered spherical droplets indicates the existence of a cubic phase isotypic with the $Cr_{23}C_6$ -type τ -boride in the Fe-B-N ternary suggesting a formula $\text{Co}_{23}(\text{B,N})_6$. Heat treatments at different temperatures however do not produce this new compound in stable solid state equilibrium. Thus the new compound is likely to be metastable and due to this metastable character it is never encountered in single phase condition but always observed in combination with various amounts of Co and BN. The unit cell dimensions of $m-Co_{23}(B,N)_6$ are smaller than those of binary metastable " $Co_{23}B_6$ " and suggest a rather small amount of N only if some at all is present (see also Table BI3). Identical quenching (cooling) conditions for binary Co-B alloys however were not sufficient to reveal binary $m-Co_{23}B_6$, as a proof for the stabilizing influence of nitrogen in the ternary alloys.

Fig.B.II.2 Nitriding of binary cobalt-borides, under pure nitrogen, arrows indicate amount of nitrogen take up.

III THE TERNARY SYSTEM NICKEL-BORON-NITROGEN

a) CRITICAL LITERATURE REVIEW

No X-ray or phase diagram studies of the system nickel-boron-nitrogen are known in the literature.

b) EXPERIMENTS AND RESULTS

Phase equilibria in the ternary system Ni-B-N at 900°C (see Fig.B.III.1 were determined by X-ray diffraction analysis of about 15 ternary alloys. For details of preparation and heat treatment see Fe-B-N. The results of the X-ray phase analysis for a series of characteristic samples are presented in Table B.III.1.

As already mentioned for the binary Ni-B system it appeared to be impossible to obtain the m-Ni $_4$ B $_3$ + NiB + BN three phase equilibria free of o-Ni $_4$ B $_3$. The unit cell dimensions of the boundary phases as analyzed from multiphase alloys correspond to the binary data within the error limits of the least squares extrapolation. This indicates that practically no nitrogen (< 0.5 a/o N) is soluble in the binary nickel borides. Lattice parameters of the hex-ss-BN however reveal a small but significant solubility of nickel (see Table BIII.1 and also Fe-B-N).

Fig.B.III.1 Phase equilibria in the ternary system Ni-B-N, isothermal section at 900°C and 1 atm. argon.

Due to the low melting temperatures of the Ni-B binary, no isothermal section was studied at 1250°C (wide areas of a ternary liquid phase). Ternary alloys Ni-BN with an approximate composition of 20 mol% BN which were shortly exposed to 1250°C and cooled by power shut off show a similar phase separation (liquid droplets plus a porous ss-BN substrate) as already encountered among similar Fe-B-N and Co-B-N alloys. X-ray analysis of the droplets is consistent with a multiphase composition of BN, Ni and a new tau phase τ -Ni $_{23}$ (B,N) $_{6}$ which is likely to be metastable (see also Fe-B-N). The unit cell dimensions however are even smaller than those of binary m-Ni $_{23}$ B $_{6}$ (see Table B,I.3) and nitrogen stabilization seems likely, as identical cooling conditions for binary Ni-B alloys were not sufficient to reveal m-Ni $_{23}$ B $_{6}$.

Fig.B.III.2 Nitriding of binary nickel borides under pure nitrogen, arrows indicate amount of nitrogen take up.

Nominal Composition	Preparation and Heat	X-ray Phase	Structure Type	Space Group	Lattice Parameters	ameters (A)			Volume(A ³)
in at%	Treatment	Analysis (*)	;		ત્વ	þ	U	8	
Ni - B - N									
79 - 16 - 5	cold compacted	N; +	Cu-Type	Fm3m	3.5208(6)				43.645(14)
	HF-treat/W-crucible Mo(Ar), 900°C 72 h, B-amorph.	e Ni ₃ B	Fe ₃ C	Pbnm	4.3897(22)	5.2155(33)	6.618 (2)		151.52 (13)
63 - 32 - 5	•		Fe ₂ C	Pbnm	4.3915(17)	5.2222(19)	6.615 (2)		151.71 (10)
		Ni ₂ B	CuÅ1,	I4/mcm	4.9893(6)	•	4.2462(4)		105.70 (3)
56 - 39 - 5	•	Ni ₂ B +	CuA1,	I4/mcm	4.9912(7)	1	4.2478(5)		105.82 (3)
		o-NiaB3	o-Ni ₄ B3	Pnma	11.959 (3)	2.9824(6)	6.570 (5)		234.31 (18)
33 - 60 - 5	•	0-Ni _A B ₃ +	o-Ni _A B ₃	Рпта	11.963 (7)	2.9831(8)	6.577 (3)		234.71 (18)
(**)		m-Ni4B3 +	m-N-	C2/c	6.433 (1)	4.8830(11)	7.824 (2)	103.30(2)	239.2 (1.1
		NiB .	CrB	Сшсш	2.9281(3)	7,393 (3)	2,9668(7)		64.225(30)
10 - 85 - 5	(2x 900°C, 72 h)	NiB	CrB	Cmcm	2.9316(2)	7.390 (1)	2.9664(3)		64.269(11)
10 - 75 -15	+ 10 d 900°C	NiB	CrB	Cmcm	2.9281(7)	7.400 (2)	2.9674(3)		64.296(21)
	in Ta (Quartz)								
(*) All sa	All samples contained small amounts of hex	l amounts o		thermod	lynamic equil	BN in thermodynamic equilibrium (a= 2.506, c= 6.664)	.506, c= 6.0	564)	
(**) After	After heat treatment the composition appears to be shifted towards the nickel-rich side thermodynamic	omposition a	appears to b	oe shifte	d towards th	ne nickel-ric	ch side ther	modynamic	
equili	equilibrium was not attained.	ed.							

C) Thermodynamic Data

I) The Iron-Boron -Nitrogen System

A thermodynamic description of the binary iron-boron system was earlier attempted by Kaufman (72) and by Hack (73). The latter reference also includes a detailed critical discussion of the thermodynamic data available at that time. In the meantime however, a new determination of the free enthalpy of formation by electromotive force measurements has been published (76) for the iron borides and for the temperature range of 1000 K to 1350 K. The new data are slightly more negative than those derived by (72-75).

With respect to the new thermodynamic data, and with respect to the new experimental phase diagram data assembled in this work ($T_m(FeB) = 1588^{\circ}C$, $T_E(FeB + \beta - rhB) = 1450^{\circ}C$), a recalculation of the binary system seemed to be necessary. The experimental liquidus – and solidus– data were fitted using the least squares optimization program by Lukas (78) employing a polynomial expression for the Δ_fH - and S_F -values of the liquid phase:

$$X = x_A x_B [a_0 + a_1 (x_A - x_B) + a_2 (x_A - x_B)^2 + a_3 (x_A - x_B)^3 + ...]$$

The fusion data used for pure boron were 50.21 kJ mol⁻¹ for the enthalpy and a melting temperature of $T_m(B) = 2365$ K, which then corresponds to an entropy of fusion of 21.33 J mol⁻¹K⁻¹; these data are in good agreement to experimental values (drop calorimetry) by Stout (77).

From a listing of the known heat and entropy of formation data for the binary iron borides in Table C.1., a large discrepancy is obvious for the ΔH_f -value of Fe₂B which therefore was used as a variable in the least squares optimization procedure. The final data according to our refinement are included in Table C.1. Calculated and observed data are in fine agreement; experimental and calculated curves are shown in Fig.I.3. on page 9.

In order to obtain information about the stability or "instability" of metastable "Fe $_3$ B" and "Fe $_{23}$ B $_6$ ", ternary phase equilibria data have been evaluated using phase diagram information (79). A listing of the (rather small) disproportionation energies of "Fe $_3$ B" and "Fe $_{23}$ B $_6$ " is available from Table C.3. The low values of instability explain very well the formation of extended phase solutions (Fe,M) $_3$ (B,X) and (Fe,M) $_23$ (B,X) $_6$ as well as the easy stabilization of the binary phases under nonequilibrium conditions.

Thermodynamic data for dilute solutions of boron in solid iron are scarce; data for $ss-\alpha$ Fe and $ss-\psi$ Fe have been estimated by Chart (73):

$$\frac{G(B \text{ in } Y-Fe)}{J \text{ mol}^{-1}} = -26340 + 24.5 \text{ T} + 8.31 \text{ T} \ln x_B$$
 (1150-1400 K)

$$\frac{G(B \text{ in } \alpha - Fe)}{J \text{ mol}^{-1}} = -37660 - 33.5 \text{ T} + 8.314 \text{ T} \ln x_B$$
 (1000-1200 K)

Fountain and Chipman (67) studied the conditions under which BN forms from dissolved N in Fe-B alloys; the solubility of N in Fe-B alloys (0.001 to 0.91 wt% B) was determined by the Sievert's-technique (950° to 1150°C) and the equilibrium constant, the free energy and heat of formation of BN from dissolved boron and gaseous nitrogen, and from dissolved boron and dissolved nitrogen, as well as for the formation of BN from Fe₂B and gaseous nitrogen, and from Fe₂B and dissolved nitrogen, was calculated. From these data, isothermal sections of the iron-corner of the Fe-B-N diagram were constructed (see Fig.B.I.1., p.58) revealing a small solubility of BN in iron and confirming the two phase equilibrium: Fe + BN.

An estimation of the free energy of the reaction M + x BN \longrightarrow MB_x + $\frac{x}{2}$ N₂, using the optimized data for the iron borides and the thermodynamic values for hex-BN $\Delta H_f = -251.1$ kJ mol⁻¹, $\Delta S_f = 14.62$ J mol⁻¹K⁻¹ (80), revealed stable two-phase sections FeB_x-BN up to the melting range in excellent agreement

to the experimental data, which prove complete compatibility of (ss-Fe) and BN.

II) The Cobalt-Boron-System

Thermodynamic data for cobalt borides are listed in Table C.4. including data for the Co-B liquid according to a recent description by Kaufman (72). Agreement between calculated and observed phase diagram data (liquidus and solidus lines) is satisfactory: there is however a lack in precise thermodynamic data especially as far as Co₂B is concerned (see Table C.4.).

Similar to the Fe-B-N system, an estimation of the free energy of the reaction M + x BN \longrightarrow MB_X + $\frac{x}{2}$ N₂ and using Kaufman's data (72) for the binary compounds, confirms the experimentally observed two-phase equilibria: Co-BN, CoB_x up to the melting range.

III) The Nickel-Boron System

Thermodynamic calculations of the constitutional diagram Ni-B have been presented by Kaufman (72) and Hack (73, includes also a critical assessment). Kaufman's data still include the compound "NiB₂" which has not been corroborated in this work and earlier. The agreement between calculated and observed phase diagram data (liquidus and solidus lines) according to (73) is fine (Table C.5.), despite discrepancies in the basic thermodynamic data of the compounds are unsatisfactory (see Table C.5.).

A thermodynamic estimation of the compatibility of Ni and nickelborides with hex. BN revealed stable two-phase equilibria Ni + BN, NiB $_{\rm X}$ + BN up to the melting range in excellent agreement to the experimental observations.

A precise calculation of these compatibilities M-BN, MB_X -BN will be presented for all metal boronnitride systems in our final report.

Table C.		-	or Iron-Boride bcc-Iron and (
Boride	× _B	∆ _f H kJmol ⁻¹	Δ _f S Jmo1 ⁻¹ K ⁻¹	Ref.
Fe ₂ B	0.3333	-30.00	Bad	(75)
		-33.78 <u>+</u> 3.2	-6.68	(76)
		-26.05	-3.81	(72)
-		-34.15	-2.94	(73)
		-32.16(V)	-4.25(V)	this work
FeB	0.5000	-38.00	-	(75)
		-46.51 <u>+</u> 4.2	-12.02	(76)
		-35.04	-5.69	(72)
		-36.25	-1.05	(73)
		-46.51	-8.87(V)	this work
			<u>.</u>	

V means variable in the refinement

Table C.2. Polynomial coefficients of Excess Enthalpies and Entropies of Formation of Liquid Fe-B Alloys. Values are in kJmol⁻¹ and JK⁻¹mol⁻¹ respectively. (The reference states are the pure liquid elements).

COEFF	a _o	a ₁	a ₂	:
Δ _f H	-104.77	-67.34	56.04	
s ^E	-10.24	-36.47	17.45	

Table C.3. Disproportionation Energies (J/gatom metal) for metastable iron-borides, derived from phase diagram data

Reaction	Free Enthalpy Change	Reference Diagram
Fe ₃ B(Fe ₃ C-type)→ Fe+Fe ₂ B	$\Delta G_{Z,Fe_3B}^{1273K} = -1463$	Fe-Co-B
	$\Delta G_{Z,Fe_3B}^{1073K} = -962$	Fe-Ni-B
$Fe_{23}B_6(\tau) \longrightarrow Fe_3B(Ti_3^P - type) + Fe$	$\Delta G_{Z,Fe}^{1373K} = -2430$	Re-Fe-B

Table C.4. Thermodynamic Data for Cobalt Borides Reference States are bcc Iron and β -rh Boron

Boride	× _B	$\frac{\Delta_{\mathbf{f}}^{H}}{kJmol^{-1}}$	$\frac{{}^{\Delta}f^{S}}{\text{Jmol}^{-1}K^{-1}}$	Ref	
				()	
Co ₃ B	0.2500	-21.00	-	(75)	
		-18.00	-4.239	(72)	
		-26.39 <u>+</u> 4.1	-4.995	(76)	
Co ₂ B	0.3333	-28.00	-	(75)	
		-19.40 <u>+</u> 2.3		(74)	
		-23.39	-3.741	(72)	
		-57.63 <u>+</u> 1.6	-26.74	(76)	
СоВ	0.5000	-34.00	**	(75)	
		-34.80 <u>+</u> 3.0		(74)	
		-33.47	-0.669	(72)	

Excess Terms for the Liquid Phase (after (72)):

Excess Enthalpy: $-x_{Co} \times_B (x_{Co} \cdot 166.36 + x_B \cdot 128.70)$ in kJ gatom⁻¹

Excess Entropy : $-x_{Co} x_B = 21.255 \text{ in J gatom}^{-1} \text{K}^{-1}$

Table C.5. Thermodynamic Data for Nickel-Borides
Reference States are bcc-Iron and β-rh Boron

Boride	× _B	∆ _f H .kJmo1 ⁻¹	∆ _f S Jmo1 ⁻¹ K ⁻¹	Ref.	
Ni ₃ B	0.2500	-18.89	-2.78	(72)	
		-22.24	-1.908	(73)	
		-33.18 <u>+</u> 1.8	-11.05	(76)	
Ni ₂ B	0.3333	-22.60 <u>+</u> 1.4		(74)	
		-22.99	-4.281	(72)	
		-21.24	+0.234	(73)	
		-35.71 <u>+</u> 4.0	-10.10	(76)	
o-Ni ₄ P ₃	0.414	-25.60	-3.850	(73)	
"Ni ₄ B ₃ "	0.429	-23.46	-4.58	(72)	
m-Ni ₄ B ₃	0.436	-25.65	-4.179	(73)	
NiB	0.500	-23.47	-4.874	(72) .	
		-23.220	-3.665	(73)	
		-20.10 <u>+</u> 2.8		(74)	

Polynomial coefficients of Excess Enthalpies and Entropies of Formation of Liquid Ni-B alloys; The reference states are the pure liquid elements. After Hack and Chart (73).

COEFF	a o	^a 1	a 2	a ₃	^a 4	
Δ _f H	-150.72	-51.08	54.61	41.03	-36.28	
s ^E	-41.46	-8.50	38.10	4.34	-25.68	

$$X = x_{Ni}x_B (a_0 + a_1(x_{Ni}-x_B) + a_2(x_{Ni}-x_B)^2 + a_3(x_{Ni}-x_B)^3 + a_4(x_{Ni}-x_B)^4$$

AD-A161 563
BORONNITRIDE AND SILICONNITRIDE SYSTEMS(U) MIEN UNIV
(AUSTRIA) INST FUER PHYSIKALISCHE CHEMIE P ROGL ET AL
SEP 85 DAJA45-84-C-0038

F/G 7/4

NL

ENU

ENU

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

REFERENCES

- 1) H.Holleck; Chemiker-Zeitung 106 (1982) 213-224
- 2) Holocher-Ertl, H.Boller; Programm GITTER, version Ch.Horvath
 Institut für Physikalische Chemie, Universität Wien, 1983
- H.Boller; Programm PULVER, Institut für Physikalische Chemie,
 Universität Wien, 1976
- 4) A.Cotton, G.Wilkinson; Anorganische Chemie, Verlag Chemie 1974
- 5) Holleman-Wiberg; Lehrbuch der Anorganischen Chemie, de Gruyter, 1976
- 6) Gmelin B, Boron Compounds-1st Suppl., Vol.2, Springer-Verlag 1980
- 7) H.J.Goldschmidt; Interstitital Alloys, Butterworths & Co. Publishers Ltd., 1967
- 8) G.Hägg; Nature 121 (1927) 826-827; 122 (1928) 314, 962
 Nova Acta Regiae Soc.Sci.Upsaliensis (4) 7, 1929, 6-22
 Z.physik.Chem. B8 (1930) 455-474
- 9) K.H.Jack; Proc.Roy.Soc. (London) <u>A208</u> (1951) 200-215
- 10) V.G.Paranjpe, M.Cohen, M.B.Bever, C.Floe; Trans.AIME 188 (1950) 261-267
- 11) R.Juza und W.Sachsze; Z.anorg.Chemie <u>253</u> (1945) 95-108
- 12) R.Juza und W.Sachsze; Z.anorg.Chemie <u>251</u> (1943) 201-212
- 13) F.P.Bundy and R.H.Wentorf, Jr.; J.Chem.Phys. 38 (1963) 618, 631, 1144
- 14) O.Kubaschewski-von Goldbeck; Iron-Binary Phase Diagrams, Springer-Verlag
 1982
- 15) L.Kaufman, B.Uhrenius, D.Birnie, K.Taylor; Calphad 8(1) (1984), 25-66
- 16) R.Fruchart; Compt.Rend., <u>247</u> (1958) 1464 see also p.2367
- 17) T.Kanaizuka; J.Solid State Chem. <u>41</u> (1982) 195
- 18) D.Hohnke and E.Parthé, Acta Crystallogr. 20 (1966) 572
- 19) L.G. Voroshnin, L.S. Lyakhovich, G.G. Panich, and G.F. Protasevich; Metallov. i. Term. Obrab. Met. 9 (1970) 14

- 20) D.Armstrong; 7th Int.Symposium on Boron Uppsala, Sweden, June 9-12, 1981
- 21) K.I.Portnoi, M.Kh.Levinskaya, V.M.Romashov; Sov.Powder Metall.

 Met.Ceram. 8 (1969) 657
- 22) B.Callmer, J.Lundström, J.Solid State Chem. 17 (1976) 165
- 23) Y.Khan, E.Kneller, M.Sostarich, Z.Metallkunde 73 (1982) 624-626
- 24) H.Brodowksy and H.J.Wernicke: Paper presented at Calphad XII 29.8.-2.9.83, 1983, Universite de Liège, Belgium
- 25) Y.Hayashi and T.Sugeno, J.Phys.Soc.Japan 19 (1964) 1251
- 26) W.B.Pearson; Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, 1967, and references therein.
- 27) T.Swanson et al.; NBS Circular 539, vol.IV (1955) p.3
- 28) U.Herold und U.Köster; Z.Metailkunde 69 (1978) , 326-332
- 29) V.F.Bashev, I.S.Miroshnichenko, G.A.Sergeev; Russ.Metall, 17(7) (1981) 1206
- 30) O.T.Inal, L.Keller and F.G.Yost, J.Mat.Science 15 (1980) 1947-1961
- 31) P.Duhaj, F.Hanic, Phys.Stat.Sol. <u>62</u> (1980) 719
- 32) T.Bjurström and H.Arnfelt; Z.Physik.Chemie (B)4 (1929) 469-474
- 33) T.Bjurström, Arkiv.Kemi, Min. and Geol., K.Sv.Vetensk, Akad. <u>11A</u> (1973) No.5, 1-12
- 34) J.L.Walter, J.F.Bertram and R.R.Russel, Met.Trans. 9A (1978) 803
- 35) J.L.Walter, J.F.Bertram and I.Mellas, Mater.Sci.Eng. <u>36</u> (1978) 193
- 36) R.C.Ruhl, M.I.T. Thesis, 1967
- 37) M.Takahashi, M.Koshimura and T.Abuzuka, Jap.J.Appl.Phys. 20(10) (1981) 1821
- 38) M.L.Borlera and G.Pradelli, La Met.Italiana 11 (1967) 907
- 39) M.E.Nicholson, Trans.AIME 1, 209 (1957)
- 40) P.Rogl and H.Nowotny, Monatsh.Chemie 104 (1973) 943, see also P.Rogl, J.C.Schuster and H.Nowotny, in: "Boron in Steel", Proc. of the Intern. Symp. on Boron Steels, Eds. S.K.Banerji and J.E.Morral, AIME Milwaukee, Wi, Sept. 18 (1979) p.33

The state of the same of the state of the st

- 41) S.Rundqvist, Acta Chem.Scand. 16 (1962) 1
- 42) G.Hägg and R.Kiessling, J.Inst.Met. 81 (1952) 57
- 43) G.T.Chart; Com.Communautes Europ.CECA No.7210-CA/3/303, Nov. 1981
- 44) J.O.Carlsson, T.Lundström; J.Less-Common Metals 22 (1970) 317-320
- 45) J.D.Schöbel, H.H.Stadelmaier; Z.Metallkunde 57 (1966) , 323-325
- 46) H.H.Stadelmaier, H.J.Lee; Z.Metallkunde 69 (1978) , 685-689
- 47) P.T.Kolomytsev; Dokl.Akad.Nauk.SSSR, <u>124</u> (1959) 1247-1250 Proc.Acad.Sci. USSR, Chem.Section 124-126 (1959) 151
- 48) J.A.Avlokhashvili, F.N.Tavadze, G.F.Tavadze, D.N.Tsikaridze, D.L.Gabunia, K.P.Tsomaya; J.Less-Common Metals 67 (1979) 367-373
- 49) S.Andersson, B.Callmer; J.Solid State Chem. <u>10</u> (1974) 210-231
- 50) S.Rundqvist; Acta Chem.Scand., 12 (1958) 658-662
- 51) S.Rundqvist; Nature, 181 (1958) 259-260
- 52) Havinga et al.; J.Less-Common Metals, <u>27</u> (1972) 169
- 53) J.D.Schöbel, H.H.Stadelmaier, Z.Metallkunde <u>56</u> (1965) , 856-859
- 54) S.Rundqvist, Acta Chem.Scand. <u>13</u> (1959) 1193-1209
- 55) S.Rundqvist and S.Pramatus, Acta Chem.Scand. 21 (1967) 191
- 56) P.T.Kolomytsev; Isv.Akad.Nauk.SSSR, Otd.Techn.Nauk.Met. i. Topl. 3 (1960) 83-85; engl.Transl.: Russ.Met.Fuels 3 (1960) 80-83
- 57) L.Shapiro and M.Ford, Trans.AIME 236 (1966) 536
- 58) R.Fruchart, A.Michel; Compt.Rend. <u>245</u> (1957) 171-172, and Bull.Soc. Chim.France 1959, 422-423
- 59) R.Kiessling, Y.H.Liu, Journal of Metals, N.Y. <u>3</u> (1951) 639-642
- 60) P.Blum; J.Phys.Radium <u>13</u> (1952) 430-431
- 61) ASTM-FILE, American Electro Metal Co., Yonkers, N.Y.
- 62) A.Brown, J.D.Garnish, R.W.K.Honeycombe; Met.Sci.J. <u>8</u> (1974) 317
- 63) W.Köster, W.Mulfinger; Z.Metallkunde, <u>30</u> (1938) 348-350

- 64) K.E.Spear, J.Less Common Metals 82 (1981) 237
- 65) P.Rogl, J.Less Common Metals, 1985, in press
- 66) H.Boller, W.Rieger and H.Nowotny, Mh.Chem. 95(6), 1497 (1964)
- 67) R.W.Fountain and J.Chipman, Trans. AIME 224 (1962) 599
- 68) R.S.Pease, Acta Crystallogr. 5 (1952) 356
- 69) R.P.Elliott; Constitution of Binary Alloys, 1st Suppl., New York, McGraw Hill, 1965
- 70) R.G.Blossey and R.D.Pehlke, Trans. AIME 236 (1966) 566
- 71) E.Fromm and E.Gebhardt, Gase und Kohlenstoff in Metallen, Springer, Heidelberg, N.Y., 1976
- 72) L.Kaufman, B.Uhrenius, D.Birnie and K.Taylor, Calphad 8(1) (1984) 25
- 73) K.Hack and T.G.Chart "Estimation and Critical Assessment of Thermodynamic Data for the Cr-B, Mn-B, Fe-B and Ni-B-Systems, NPL, Teddington, England (private commun), 1981
- 74) S.Sato and O.J.Kleppa, Met.Trans. 13B, (1982) 251
- 75) A.K.Niessen, F.R.de Boer; R.Boom, P.F.de Chatel, W.C.M. Mattens and A.R.Miedema, Calphad 7 (1983) 51
- 76) S.Ohmori, Y.Hashimoto and K.Koyama, 高温学会誌, Vol. 8. No. 6 (1982) 別刷
- 77) N.D.Stout, R.W.Mar and W.O.J.Boo, High Temp.Sci., $\underline{5}$ (1973) 241
- 78) H.L.Lukas, E.Th.Henig and B.Zimmermann, Calphad 1 (1977) 225
- 79) P.Rogl, J.C.Schuster and H.Nowotny in: Boron in Steel, Proc.Internat.Symp. on Boron Steels, TAIME, Milwaukee, Wisconsin, Sept. 18, 1979, p.33
- 80) A.Matuschka, Chemikerzeitung <u>98</u> (1974) 504
- 81) E.K.Storms and B.A.Mueller, NBS-Special Publ. 561, 1979, 143

SUMMARY

The existing literature data regarding the systems Fe-B-N, Co-B-N and Ni-B-N were critically assessed including the binary boundary systems. The thermodynamic phase equilibria at 900°C were reinvestigated for the binary systems Fe-B, Co-B and Ni-B using different methods of preparation and analysis. There were no indications for the existence of binary metal diborides "MB2"; compounds "MB $_{\sim 20}$ ", as earlier reported in literature were successfully characterized with a rhombohedral unit cell and the crystal structure of β-rhombohedral boron with the transition metal atoms in the voids of the covalently bonded boron framework, i.e. ss-B-rh (B,M). A complete constitutional diagram Fe-B was established in the temperature range 600° T < 1700°C using X-ray phase analysis, metallography, DTA and melting point analysis (automatic computer controlled three-colour pyrometry). Compounds " Fe_3B " with either the Ti_3P - or the Fe_3P -type as recently postulated, were not confirmed as thermodynamic stable equilibrium phases. Differential thermal analysis and melting point analysis revealed on eutectic reaction L FeB + ss-β-rh(B,Fe) at 1450 + 3°C. The congruent melting point of the compound FeB was measured to be 1588 + 8°C.

The phase diagram Fe-B was calculated thermodynamically with respect to the new experimental data established, and a complete set of parameters were obtained for the liquid phase.

The phase equilibria in the ternary systems Fe-B-N, Co-B-N and Ni-B-N were established mainly from X-ray powder diffraction data and isothermal sections at 900°C and 1 bar Ar have been constructed. In all three systems the binary transition metal borides form two-phase equilibria with hexagonal boronnitride. There is practically no solubility of BN in the binary metal borides and no ternary equilibrium phases were observed. Melting in the concentrational sections M-BN, M= Fe,Co,occurs at ca. 1350°C; for the corresponding nickel-alloys the temperatures are somewhat lower. Up to these temperatures there is complete compatibility between metal, metal borides and BN; Alloys M-BN, melted and quenched reveal the formation of metastable compounds (Fe,Co,Ni)₂₃(B,N)₆ with the τ -Cr₂₃C₆-type of structure. Phase relations in the Fe-B-N system were also studied under technical conditions (900°C, technical argon, samples in a Mo-container within a graphite susceptor). Oxygen impurities via a gas phase transport reaction (carbonoxide) led to the formation of a ternary phase $Fe_3(B,N,C)$ with cementite-structure.

The kinetic of nitriding was studied in all three systems from binary transition metal boride samples annealed at 900°C and 1200°C under 1 bar of high purity nitrogen.

Part II TRANSITION METAL-SILICON-NITROGEN SYSTEMS

			page
EXPERIMENTAL PR	OCEDURES		2
BINARY SYSTEM	Ti-Si	Experimental Results	. 5
TERNARY SYSTEM	Ti-Si-N	Literature Review Experimental Results	. 7 7
BINARY SYSTEM	Zr-Si	Experimental Results	. 15
TERNARY SYSTEM	Zr-Si-N	Literature Review Experimental Results	19 20
BINARY SYSTEM	V-Si	Experimental Results	25
BINARY SYSTEM	V-N	Experimental Results	27
TERNARY SYSTEM	V-Si-N	Literature Review Experimental Results	29 29
BINARY SYSTEM	Nb-Si	Experimental Results	33
TERNARY SYSTEM	Nb-Si-N	Literature Review Experimental Results	35 35
BINARY SYSTEM	Ta-Si	Experimental Results	. 40
TERNARY SYSTEM	Ta-Si-N	Literature Review Experimental Results	42 42

EXPERIMENTAL PROCEDURES

In order to identify all binary silicide phases and to obtain master alloys for further preparation binary metal-silicon alloys were prepared by arc melting under argon (99.999% pure) from powders or pieces of the constituting elements using the starting material listed in tab.1. Ternary compositions were prepared by mixing powders of these master alloys and binary nitride powders listed in tab.2. These ternary mixtures were cold pressed and sintered under pure argon in an RF-furnace at 1300°C (Ti-Si-N, Zr-Si-N) or at 1500°C (V-Si-N, Nb-Si-N, Ta-Si-N) for 48 h. Heat treatment at temperatures up to 1000°C was performed in evacuated quartz tubes lined with Mo or Ta foil.

X-ray diffraction (CuK $_{\alpha}$ -radiation) was performed on all alloys using Guinier or 114mm Debye-Scherrer cameras.

Tab.1: Metallic Starting Materials

Silicon powder, purity: m 99,9%, from Alpha Div., Ventron Corp.,

USA

Silicon lump, purity: m 99,9999%, from Alpha Div., Ventron Corp.,

USA

Titanium powder, purity: m 99%, impurities (in ppm): Ca 4000, Al 3500,

Fe 1000, C 150, Si 30, other 30; from Alpha Div., Ventron

Corp., USA.

Titanium rod, purity: + t 99,9%, impurities (in ppm): 0 100, Fe 70;

kindly supplied by Dr.Bauer, INSA, Rennes, France

Zirconium powder, purity 99.9%, from Alpha Div., Ventron Corp., USA

Zirconium bar, purity: t99,9%, impurities (in ppm): 0 450, H 260,

Hf < 200, C < 200, N 45, Si 45, Al 52, Cr 60, other < 30;

from Cezus Puk Ugine, France; kindly supplied by Dr. Bauer,

INSA, Rennes, France

Vanadium powder, purity: 99,5%, impurities (in ppm): C 9 1, 1800,

Cr 600, Fe 500, Al 200, others < 100; from Alpha Div.,

Ventron Corp., USA

Niobium powder, purity: 99,8%, impurities (in ppm): Ta 800, Ti 100,

Fe 80, 0 80, C 50, W 50 others \leq 10; from Alpha Div.,

Ventron Corp. USA.

Tantalum powder, purity: 99,6%, impurities (in ppm): 0 1700, Fe 150,

Nb 100, other <10; from Alpha Div., Ventron Corp. USA.

Tab.2: Ceramic Starting Materials

- Silicon nitride (mixture of $\propto -\text{Si}_3\text{N}_4$ and $\beta -\text{Si}_3\text{N}_4$), powder 58% Si; from Alpha Div., Ventron Corp. USA
- Titanium nitride (TiN) powder, purity 99%, from Alpha Div., Ventron Corp. USA
- Zirconium nitride (ZrN), powder, purity: 99%, from Materials Research Corp., USA
- Vanadium nitride (VN), powder, purity 99%, from Materials Research Corp., USA
- Niobium nitride (&-NbN), powder, purity 99.9%, from Alpha Div., Ventron Corp., USA
- Tantalum nitride (ε -TaN), powder, purity 99,9%, from Alpha Div., Ventron Corp., USA

BINARY SYSTEM TITANIUM-SILICON

Experimental Results

All phases and crystal structures reported 1) could be corroborated and are confirmed with the exception of L.T.- ${\rm Ti}_5{\rm Si}_4$ which might form at lower temperatures than the annealing temperature chosen (tab.3). All lattice parameters found are close or identical to literature values. Only for ${\rm Ti}_5{\rm Si}_3$ a homogeneity range is observed. The lattice parameters at the Ti-rich phase boundary (in equilibrium with $\not\sim$ -Ti) a= 0.74506 nm, c= 0.51407 nm decrease to a= 0.74220 nm, c= 0.51293 nm at the Si-rich phase boundary. The ratio c/a remains remarkably constant over the entire homogeneity range. $\not\sim$ -Ti coexisting with ${\rm Ti}_5{\rm Si}_3$ has lattice parameters decreased to a= 0.29403 nm, c= 0.46746 nm from a= 0.295 nm, c= 0.4682 nm for pure $\not\sim$ -Ti 2 due to formation of solid solution with silicon.

- 1) P.Rogl and J.C.Schuster, 1st Semiannual Report under Contract DAJA45-84-C-0038 (March, 1985)
- 2) J.P.Bars, D.David, E.Etchessahar and J.Debuigne, Met.Trans. A14 (1983) 1537

Tab.3. Results of X-ray analysis of binary Ti-Si alloys

at% Ti	as cast	annealed, 1000°C, 550h
33,3	TiSi ₂ + trace TiSi	TiSi ₂
50.0	TiSi + H.TTi ₅ Si ₄	TiSi
55.5	TiSi + H.TTi ₅ Si ₄	H.TTi ₅ Si ₄ + trace TiSi
62.5	Ti ₅ Si ₃	Ti ₅ Si ₃
75.0	Ti ₅ Si ₃ +≪-Ti(S.S.)	Ti ₅ S _{i3} + Ti ₃ Si

TERNARY SYSTEM TITANIUM-SILICON-NITROGEN

Literature Review

For the temperature range $700-1000^{\circ}\text{C}$ isothermal sections for the system Ti-Si-N were calculated from thermochemical data by Krilov and Bronnikov¹⁾ as well as Beyers et al.²⁾ (fig.1). Their results are supported by experimental results with respect to the compatibility of Si_3N_4 with TiN (between 1050°C and 1650°C $^{3-5}$), of Ti_5Si_3 with TiN (at 1100°C 6) and of TiSi_2 with TiN (at 600°C 7). The tieline TiN-Si is not supported by experimental data: TiN is reported to react with liquid S 8). This is in agreement with the appearent compatibility of Si_3N_4 with TiSi_2 at 1500°C 9).

At temperatures as low as $500^{\circ}\text{C Si}_3\text{N}_4$ reacts with Ti to form TiN and Ji-silicides¹⁰). At 2200°C the reaction products of Si_3N_4 + 5.5Ti, 7Ti and 9Ti resp. were reported to be TiN + TiSi₂, TiSi and Ti₅Si₃ resp. ¹¹) Nitriding Ti₅Si₃ at 2109 K led to the formation of TiN ¹²). Based on these experimental data an isothermal section for 1300°C was compiled ¹³).

Experimental results

At 1000° C Si $_3$ N $_4$ coexists with TiN $_{1-x}$ but reacts with up to 47 at% Ti to form TiN $_{1-x}$ (a= 0.4237 nm) and TiSi $_2$. The lattice parameters for Si $_3$ N $_4$ and TiSi $_2$ are identical with binary values Si $_3$ N $_4$ + 52 to 65 at% Ti react to TiN $_{1-x}$ (a= 0.4234 nm) and D8 $_8$ -type phase with slightly but significantly higher c/a lattice parameter ratio than for binary Ti $_5$ Si $_3$ alloys. This indicates that Ti $_5$ Si $_3$ dissolves some nitrogen. In addition specimens initially consisting of TiN and TiSi or Ti $_5$ Si $_4$ resp. reacted to form this D8 $_8$ -type phase with increased c/a-ratio.It is therefore concluded

that contrary to preliminary results $^{13)}$ TiN_{1-x} does not coexist with TiSi or Ti₅Si₄ but rather a three phase field TiN_{1-x} + TiSi₂ + D8₈-Ti₅Si₃N_{1-x} exist. The alloy Si₃N₄ + 80 at% Ti reacted to D8₈-type Ti₅Si₃N_{1-x} and α -Ti (solid solution), with a= 0.29713 nm, c= 0.47796 nm) which corresponds to 15 at% nitrogen. Lattice parameters, c/a-ratios and unit cell volumes of the D8₈-type phase field homogenity limits are shown in fig.2.

In stoichiometric TiN no solubility for Si was found at 1000°C. Assuming this evidence to hold for the entire binary homogeneity range of TiN_{1-x} comparison of the measured lattice parameters for TiN_{1-x} with literature values ¹⁴⁾ permit to estimate the composition of TiN_{1-x} : coexisting with $Si_3N_4 + TiSi_2$ to be 46 at% nitrogen; coexisting with $TiSi_2 + D8_8$ -type $Ti_5Si_3N_{1-x}$ to be 45 at% nitrogen; and coexisting with $D8_8$ -type $Ti_5Si_3N_{1-x}$ and α -Ti (solid solution) to be 38 at% N.

Since ε -Ti₂N is not observed in ternary alloys it is concluded that phase fields containing ε -Ti₂N are confined to compositions close to the Ti-N binary by a tie line TiN_{1-x} + α -Ti (S.S.) analogous to the system Ti-Al-N ¹⁵⁾.

No detailed investigation of the α -Ti phase field was made. However from the observed lattice parameters, which do not deviate substantially from binary α -Ti (solid solution with N) no considerable solubility for Si is to be expected in that phase.

A complete isothermal section at 1000°C is proposed (fig.3).

- 1) Yu.I.Krilov, and V.A.Bronnikov, Porosh.Met. (1) 52 (1976).
- 2) R.Beyers, R.Sinclair and M.E.Thomas, J.Vac.Sci. Technol. <u>B2</u>, (1984) 781.
- 3) S.Somiya, M.Yoshimura and N.Shinohara, Rep.Res.Lab.Eng.Mater., Tokyo Inst.Technol. (6) (1981) 107.
- 4) T.Hirai and S.Hayashi, J.Mater.Sci. 17, (1982) 1320
- 5) S.Hayashi, T.Hirai, K.Hiraga and M.Hirabayashi, J.Mater.Sci. 17, (1982) 3336.
- 6) M.Kabbaj, A.Galerie and M.Caillet, Proc. 10th Int.Symp.Reactivity of Solids, Dijon, France, 1984.
- 7) H.Norström, T.Donchev, M.Östling and C.S.Peterson, Physica Scripta 28, (1983) 633
- 8) G.A. Yashinskaya, Porosh. Met. (7) (1966) 53.
- 9) J.A.Champion, B.J.Keene and S.Allen, J.Mater.Sci. 8, (1973) 423
- 10) T.W.Orent and R.A.Wagner, J.Vac.Sci.Technol. B1, (1983) 844
- 11) Yu.S.Borisov, A.L.Borisova, Yu.A.Kocherzhinski and E.A.Shishkin, Porosh.Met. (3) (1978) 63
- 12) L.Brewer and O.Krikorian, J.Electrochem.Soc. 103 (1956) 38
- 13) J.C.Schuster and H.Nowotny, Proc.11th Int.Plansee Seminar, Reutte, Austria,1985

- 14) A.N.Christensen and S.Fregerslev, Acta Chem.Scand. A31 (1977) 861
- 15) J.C.Schuster and J.Bauer, J.Solid State Chem. <u>53</u> (1984) 260

Fig. 1 Phase equilibria in the system Ti-Si-N calculated from binary thermochemical data (R.Beyers, R.Sinclair and M.E.Thomas, J.Vac.Sci.Technol., B2 (1984) 781

Fig. 2 Lattice parameters, c/a ratios and unit cell volumes of the D8 $_8$ -type Ti $_5$ Si $_3$ N $_{1-x}$ phase field homogeneity limits at 1000°C

Fig. 3a Isothermal section of the ternary system Ti-Si-N at 1000°C (in the absence of external nitrogen pressure)

Fig. 3b Detail of the isothermal phase partition at 1000°C: The phase equilibria at compositions close to the binary Ti-N (schematic)

BINARY SYSTEM ZIRCONIUM-SILICON

Experimental Results

The phases $ZrSi_2$, H.T.-ZrSi (CrB-type structure), L.T.-ZrSi (FeB-type structure), Zr_5Si_4 , Zr_3Si_2 and Zr_2Si are corroborated and their crystal structures are confirmed. Lattice parameters observed are close to reference data $^{1)}$.

In addition a D8 $_8$ -type phase forms in an arc melted alloy $Zr_{62.5}Si_{37.5}$ even when ultrapure materials and processing conditions are applied. This Zr_5Si_3 phase decomposes upon annealing at 1000°C for 550 h to a considerable extent into Zr_3Si_2 and Zr_2Si . Zr_5Si_3 is therefore an equilibrium phase in the binary system Zr-Si at high temperatures. This is in agreement with the phase diagram (fig.4) by Kochershinskii et al 2 (reproduced by Moffatt 3) but not with the one by Rudy 4) (reproduced in ref.1). Lattice parameters are given in tab.4.

 ${\rm Zr_5Si_4}$ melts congruently. This is again in agreement with the phase diagram by Kochershinskii et al. but not the one by Rudy. However no phase transformation of ${\rm Zr_5Si_4}$ was observed in our specimen.

The transformation of ZrSi from the CrB-type structure (H.T.-ZrSi) to the FeB-type structure (L.T.-ZrSi) has been found to be not only temperature dependent but also to be sensitive to small changes in composition: ZrSi with CrB-type structure in an alloy with a composition at the Zr-rich phase limit (traces of ${\rm Zr}_5{\rm Si}_4$ present) does not transform into the FeB-type structure after anneal at 1000°C for 550 h. However at the Si-rich phase limit (traces of ${\rm ZrSi}_2$ present) the FeB-type modification of ZrSi is

observed in the as cast and the heat treated specimen. The amount of the FeB-type modification increases during annealing. The volumes of the unit cells of the two modifications of ZrSi were found to be identical (CrB-type: a=0.37629 nm, b=0.99191 nm, c=0.37451 nm, V=0.1398 nm³; FeB-type: a=0.69821 nm, b=0.37856, c=0.52901 nm, V=0.1398 nm³).

The phase $Zr_3Si^{5/6}$ was not observed in the present investigation. This might be due to a possibly very slow rate of formation of that phase at the annealing temperature chosen (1000°C).

- 1) P.Rogl and J.C.Schuster, 1St Semiannual Report under Contract DAJA 45-84-C-0038, March 1985.
- 2) Yu.A.Kochershinskii, O.G.Kulik and G.A.Shishkin, Metallofizika 64 (1976) 48
- 3) W.G.Moffatt, "Handbook of Binary Phase Diagrams" (General Electric Comp., Schenectady N.Y., 1976)
- 4) E.Rudy, "Compendium of Phase Diagram Data", Report under Contract AFML-TR-65-2, Part V (Wright-Patterson AFB, OH., 1969)
- 5) K.Schubert, A.Raman and W.Rossteutscher, Naturwiss. $\underline{51}$ (1964) 506
- 6) W.Rossteutscher and K.Schubert, Z.Metallk. 56 (1965) 813
- 7) H.Schachner, H.Nowotny and R.Machenschalk, Mh.Chem. 84 (1953) 677
- 8) F.A.Shunk, "Constitution of Binary Alloys, Second Supplement", (McCraw-Hill, 1.Y., 1967)

Tab.4 Lattice parameters for Zr_5Si_3 (hexagonal, $P6_{3/mmm}$, $D8_8$ -type, Mn_5Si_3 -type structure)

THE STATE OF THE PROPERTY OF T

			comment	reference
a= 0.7886 nm	c= 0.5558 nm	c/a= 0.705	impure	7
a= 0.7945 nm	c= 0.5559 nm	c/a = 0.700		80
a= 0.79488 nm	c= 0.55588 nm	c/a= 0.699	Si-rich	this work
a= 0.79551 nm	c= 0.55617 nm	c/a= 0.699	Zr-rich	this work

B-Zr Fig. 4 The binary system Zr-Si (according to Kochershinskii et al., Metallofizika 64 (1976) 48 L.I.-ZrSi Zr₃Siz Zr₂Si Zr₃Si Zr₅Si₄ Zr₅Si₃ at % zirconium H.T-ZrSi→ 1860 $ZrSi_2$ S T[°C]

TERNARY SYSTEM ZIRCONIUM-SILICON-NITROGEN

Literature Review

Nowotny et al. $^{1)}$ investigated the section Zr_5Si_3 -N of the system Zr-Si-N at $1600^{\circ}C$ under argon by adding ZrN to a mixture $Zr_{62.5}Si_37.5^{\circ}$. At very low nitrogen contents $D8_8$ -type $Z'_5Si_3N_{1-x}$ was observed to coexist with Zr_3Si_2 (" U_1 "). At nominally 5 at% nitrogen they observed single phase $D8_8$ - $Zr_5Si_3N_{1-x}$. At nominally $i_1^{\circ} \ge i_5^{\circ}$ nitrogen they found $D8_8$ - $Zr_5Si_3N_{1-x}$ in equilibrium with ZrSi and ZrN. Nitriding Zr_5Si_3 at $1400^{\circ}C$ or $1800^{\circ}C$ with NH $_3$ yields ZrN. A phase field partition of the $D8_8$ -phase is given for the system Zr-Si-C (fig.5) and it is claimed that the analogous equilibria exist in the system Zr-Si-N.

ZrN is reported to react with Si^2). $\mathrm{Si}_3\mathrm{N}_4$ is decomposed by Zr^3). The reaction products were not identified. Krilov and Bronnikov⁴) calculated from binary thermochemical data the reaction products to be ZrN, $\mathrm{Zr}_2\mathrm{Si}$, $\mathrm{Zr}_5\mathrm{Si}_3$, ZrSi_2 , ZrSi_3 (!), Si and N_2 for temperature up to 1000°C.

- 1) H.Nowotny, B.Lux and H.Kudielka, Mh.Chem. <u>87</u> (1956) 447
- 2) G.A. Yashinskaya, Porosh. Met. (7) (1966) 53
- 3) L.Brewer and O.Krikorian, J.Electrochem.Soc. 103 (1956) 43
- 4) Yu.I.Krilov and V.A.Bronnikov, Porosh.Met. (1) (1976) 52

Experimental Results

At 1000°C all solid state reactions in the system Zr-Si-N proceed very slowly. In order to reach equilibrium multiple annealing with intermediate powderisation of the pellets was necessary.

Neither at 1000° C nor at 1300° C the D8₈-type phase Zr_5Si_3 is stable in the binary system Zr-Si but exists stabilized by nitrogen as a ternary phase $Zr_5Si_3N_{1-x}$. It coexists at both temperatures with ZrN, Zr_2Si , Zr_3Si_2 , Zr_5Si_4 and ZrSi (CrB-type). The lattice parameters found are a= 0.78922 nm, c= 0.56251 nm (coexisting at 1000° C with ZrSi + ZrN) and a= 0.78922 nm, c= 0.56477 nm (coexisting at 1000° C with ZrN). The solution of nitrogen increases the ratio c/a from 0.699 for the binary Zr-Si alloy up to 0.716 for the composition most rich in nitrogen. No other ternary phase is observed (tab.5).

 ${\rm Si_3N_4~coexist~at~1000}^{\rm O}{\rm C}$ with ZrN and ZrSi (FeB-type) and at $1300^{\rm O}{\rm C}$ with ZrN and ZrSi₂ (fig.6a and b).

Tab.5: Solid state reaction products observed in the system Zr-Si-N upon annealing at 1000°C (evacuated quartz tube)

Fig. 5 Phase field partition in the system Zr-Si-C at 1400°C (H.Nowotny, B.Lux and H.Kudielka, Mh.Chem. <u>87</u> (1956) 447

Fig. 6a Isothermal section of the ternary system Zr-Si-N at $1000^{\circ}C$ (in the absence of external nitrogen pressure)

Fig. 6b Isothermal section of the ternary system Zr-Si-N at 1300°C (in the absence of external nitrogen pressure)

BINARY SYSTEM VANADIUM-SILICON

Experimental Results

All intermediate phases reported in the literature ¹⁾ are corroborated and confirmed with respect to crystal structure. The lattice parameters found are in close agreement with literature values. No discrepancy to the established phase diagram is detected (tab.6).

References

1) P.Rogl and J.C.Schuster, 1St Semiannual Report under Contract DAJA45-84-C-0038 (March 1985)

Tab.6. Results of X-ray analysis of binary V-Si alloys

at% V	ās cast	annealed, 1500°C, 48h
33	VSi ₂	VSi ₂
50	VSi ₂ + V ₆ Si ₅	V ₆ Si ₅ + trace VSi ₂
55	V ₆ Si ₅ + trace VSi ₂	^V 6 ^{Si} 5
57	V ₆ Si ₅ + V ₅ Si ₃	V ₆ Si ₅ + V ₅ Si ₃
60	V ₅ Si ₃ + V ₆ Si ₅	۷ ₅ Si ₃
62,5	V ₅ Si ₃	۷ ₅ Si ₃
75	V ₃ Si	V ₃ Si

BINARY SYSTEM VANDIUM-NITROGEN

Experimental Results

Specimen with compositions ranging from 5 to 45 at% nitrogen were annealed at temperatures between 1000°C and 1750°C under pure argon. The results of X-ray analysis (tab.7) agree with the data compiled in ref.1. Attempts to confirm the peritectic nature of the decomposition mode of V_2N by optical or electron microscopy led to inconclusive results, since the cast specimen were too porous due to nitrogen gas evolution during melting.

Reference

1) P.Rogl, J.C.Schuster, 1st Semiannual Report under Contract DAJA45-84-C-0038 (March 1985)

 $\underline{\text{Tab.7}}$. Results of X-ray analysis of binary V-N alloys (sintered under 10^5Pa of argon)

	composition	annealed at	annealed at	annealed at
at%V	at%N	1000°C, 300h	1200°C, 30h	1750°C, 2h
95	5	V + V ₉ N ₄	v + v ₉ n ₄	
90	10	$v + v_9 N_4$	V + V ₉ N ₄	V ₉ N ₄
85	15	$v + v_9 N_4$	V + V ₉ N ₄	V₉N₄
80	20	$v + v_9 n_4$	V + V ₉ N ₄	$v_9^{}$
75	25	V ₉ N ₄ + VN	$v_9^{N_4}$	$v_9^{}$
70	30	4 ₉ N ₄ + VN	V ₉ N ₄	۷ ₉ N ₄
65	35	V ₉ N ₄ + VN	^V 9 ^N 4	V ₉ N ₄
60	40	V ₉ N ₄ + VN	^V 9 ^N 4	۷ ₉ N ₄
55	55	$v_9 N_4 + vN$	V ₉ N ₄	$v_9^{N_4}$

TERNARY SYSTEM VANADIUM-SILICON-NITROGEN

Literature Review

Nowothy et al. $^{1)}$ prepared specimen along the section $V_{.625}Si_{.375}-N$. Compacted powder mixtures of silicon and vanadium were heated under NH₃ gas. This led to the formation of a D8₈-type ternary phase $V_5Si_3N_{1-x}$ and VN.

H.Feld et al. $^{2)}$ reported that $Si_{3}N_{4}$ reacts at 1730°C under vacuum or inert gas within 5 minutes.

Experimental Results

Isothermal sections at 1000°C and 1500°C are investigated. Si_3N_4 reacts with vanadium to form binary and ternary phases (tab.8). The only ternary phase observed is $V_5Si_3N_{1-x}$ with $D8_8$ -type structure. This phase coexists at 1000°C with Si_3N_4 , all binary vanadium silicides and V_9N_4 (fig.7a). Since Si_3N_4 decomposes under 10^5Pa argon at temperatures below 1500°C a tieline exists between the $D8_8$ -type $V_5Si_3N_{1-x}$ phase and nitrogen gas at 1500°C (fig.7b). The lattice parameters of $V_5Si_3N_{1-x}$ coexisting at 1000°C with V_3Si and V_9N_4 as well as coexisting with Si_3N_4 were found to be a= 0.7121 nm and c= 0.48473 nm, c/a= 0.681. At 1500°C the lattice parameters are increased to a= 0.71554 and c= 0.48521, c/a= 0.678 for $V_5Si_3N_{1-x}$ coexisting with either VSi_2 or V_9N_4 . Chemical analysis of the alloy $\left\{Si_3N_4 + 40$ at% V_1 which was single phase according to X-ray data after anneal at 1500°C for 30h under argon yielded 15,1 at% nitrogen indicating complete filling of the octahedral voids in the $D8_8$ structure by nitrogen at this temperature.

Annealing $V_{.625} {\rm Si}_{.375} {\rm under} ~10^6 {\rm Pa}$ nitrogen at 1400°C led to the formation of VN.

- 1) H.Nowotny, B.Lux and H.Kudielka, Mh.Chem. <u>87</u> (1956) 447
- 2) H.Feld, E.Gugel and H.G.Nitzsche, Werkstoffe u. Korrosion, 20 (1969) 571

Tab.8 Solid state reaction products observed in the system V-Si-N

a) upon annealing at 1000°C for 600h (evacuated quartz tube)

b) upon annealing at 1500°C for 30h (RF-furnace, 10^{5}Pa argon)

Fig. 7a Isothermal section of the ternary system V-Si-N at 1000°C (in the absence of external nitrogen pressure)

Fig. 7b Isothermal section of the ternary system V-Si-N at 1500°C (in the absence of external nitrogen pressure)

THE BINARY SYSTEM NIOBIUM-SILICON

Experimental Results

All intermediate phases reported in the literature ¹⁾ are corroborated and confirmed with respect to crystal structure. The lattice parameters found are close to literature values. The results of X-ray analysis (tab.9) and optical micrographs agree with the established phase diagram.

Reference

1) P.Rogl and J.C.Schuster, 1st Semiannual Report under Contract DAJA45-84-C-0038 (March 1985)

Tab.9 Results of X-ray analysis of binary Nb-Si alloys

at% Nb	as cast	annealed, 1500°, 30h
33	NbSi ₂	
50	NbSi ₂ + Nb ₅ Si ₃ (W ₅ Si ₃ -type)	
55	NbSi ₂ + Nb ₅ Si ₃ (W ₅ Si ₃ -type)	
57	NbSi ₂ + Nb ₅ Si ₃ (W ₅ Si ₃ -type)	NbSi ₂ + Nb ₅ Si ₃ (Cr ₅ B ₃ type)
62.5	Nb ₅ Si ₃ (W ₅ Si ₃ -type)	NbSi ₃ (Cr ₅ B ₃ -type)
67	$Nb_5Si_3(W_5Si_3-type) + Nb_5Si_3$	$Nb + Nb_5Si_3$ (Cr_5B_3 -type)
	(Cr ₅ B ₃ -type)	
75	Nb ₅ Si ₃ (Cr ₅ B ₃ -type) + Nb ₃ Si	$Nb + Nb_5Si_3(Cr_5B_3-type)$
80	Nb ₃ Si + trace Nb	
81.8	Nb ₃ Si + Nb	•

TERNARY SYSTEM NIOBIUM-SILICON-NITROGEN

Literature Review

For temperature up to 1000°C Krylov and Bronnikov¹⁾ calculated from thermochemical data that $\mathrm{Si_3N_4}$ reacts with niobium to form $\mathrm{Nb_5Si_3}$ and $\mathrm{Nb_2N}$. This was confirmed by the same authors by experimental results. They found $\mathrm{Nb_5Si_3}$, $\mathrm{NbSi_2}$, $\mathrm{Nb_2N}$ and NbN to be the solid state reaction products.

For temperatures of 1400°C and higher H.Nowotny et al. 2) as well as Brewer and Krikorian 3) reported the formation of a ternary phase Nb₅Si₃N_{1-x} with D8₈-type structure upon nitriding an alloy Nb_{.625}Si_{.375}. Using ammonia for nitridization instead of nitrogen gas cubic δ -NbN with lattice parameters of a= 0.441-0.444 nm was formed in addition to Nb₅Si₃N_{1-x}. δ -NbN was the main reaction product at 1800° C².

Experimental Results

The phase equilibria at 1000°C (fig.8a) found by X-ray analysis of a limited number of alloys (tab.10a) confirm the results of Krilov and Bronnikov¹⁾. Si_3N_4 is found to coexist with ε -NbN, γ -Nb $_4N_3$, β -Nb $_2N$, Nb $_5Si_3$ (Cr $_5B_3$ -type) and NbSi $_2$ but not with Nb. No change of lattice parameters for binary phases in ternary alloys is observed. Thus one can assume negligible solubility of the respective third component in these phases.

In alloys annealed at 1500°C the D8 $_8$ -type phase Nb $_5$ Si $_3$ N $_{1-x}$ occurs (tab.10b). The solid phases found to coexist with Nb $_5$ Si $_3$ N $_{1-x}$ at this temperature are NbSi $_2$, Nb $_5$ Si $_3$ (Cr $_5$ B $_3$ -type), $_6$ -Nb $_2$ N and $_8$ -NbN (fig.8b). In perfect agreement with earlier results 2) we find the lattice parameter c of Nb $_5$ Si $_3$ N $_{1-x}$ to increase with nitrogen content from c= 0.52487 nm to 0.53103 nm while the value for a remains constant at a= 0.75169 nm. The nitrogen content in the alloy [Si $_3$ N $_4$ + 20 at% Nb] after annealing at 1500°C under argon for 30h was found to be 0.19 wt%. Considering the fact that besides Nb $_5$ Si $_3$ N $_{1-x}$ minor amounts of NbSi $_2$ were present in the sample this nitrogen content indicates complete or almost complete filling of the octahedral voids in the D8 $_8$ -type structure by

nitrogen atoms.

Nitriding Nb $_{.625}$ Si $_{.375}$ at 1400°C under 10^6 Pa nitrogen results in the formation of \S -NbN.

- 1) Yu.I.Krilov and V.A.Bronnikov, Porosh.Met. (1) (1976) 52
- 2) H.Nowotny, B.Lux and H.Kudielka, Mh.Chem. <u>87</u> (1956) 447
- 3) L.Brewer and O.Krikorian, J.Electrochem.Soc. 103 (1956) 38

Tab.10. Solid state reaction products observed in the system Nb-Si-N

a) upon annealing at 1000°C for 600h (evacuated quartz tube)

b) upon annealing at 1500°C for 30h (RF-furnace, 10⁵Pa, argon)

$$Si_3N_4 + 20 \text{ at% Nb}$$
 \longrightarrow $Nb_5Si_3N_{1-x} + NbSi_2$
 $Nb_.50^{Si}.50 + S \cdot NbN(5 \text{ at% N})$ \longrightarrow $Nb_5Si_3N_{1-x} + NbSi_2$
 $Si_3N_4 + 55 \text{ at% Nb}$ \longrightarrow $Nb_5Si_3N_{1-x} + S \cdot NbN$
 $Nb_.625^{Si}.375 + S \cdot NbN(5 \text{ at% N})$ \longrightarrow $Nb_5Si_3N_{1-x} + \beta \cdot Nb_2N$
 $Nb_.75^{Si}.25 + S \cdot NbN(5 \text{ at% N})$ \longrightarrow $Nb_5Si_3N_{1-x} + \beta \cdot Nb_2N$

Fig. 8a Isothermal section of the ternary system Nb-Si-N at 1000°C (in the absence of external nitrogen pressure)

Fig. 8b Isothermal section of the ternary system Nb-Si-N at 1500°C (in the absence of external nitrogen pressure)

BINARY SYSTEM TANTALUM-SILICON

Experimental Results

All intermediate phases reported in the literature ¹⁾ are corroborated and confirmed with respect to crystal structure. The lattice parameters found are in close agreement with literature values. No discrepancy to the established phase diagram is detected (tab.11).

Reference

1) P.Rogl and J.C.Schuster, 1St Semiannual Report under Contract DAJA45-84-C-0038 (March 1985)

Tab.11. Results of X-ray analysis of binary Ta-Si alloys

at% la	as cast	annealed, 1500°C, 30h
33,3	TaSi ₂	
50	TaSi ₂ + Ta ₅ Si ₃	
62,5	Ta ₅ Si ₃ + trace TaSi ₂	Ta ₅ Si ₃ + trace TaSi ₂
67	Ta ₂ Si	Ta ₂ Si
75	Ta ₃ Si	
80	Ta ₃ Si + trace Ta	Ta ₃ Si + trace Ta
81.8	Ta ₃ Si + Ta	Ta ₃ Si + Ta
83.3	Ta ₃ Si + Ta	Ta ₃ Si + Ta
95	Ta + trace Ta ₃ Si	

TERNARY SYSTEM TANTALUM-SILICON-NITROGEN

Literature Review

Due to considerable interest in technological applications such as metal-ceramic joints¹⁾, Si_3N_4 enforced Ta-wire²⁾ or the use of Si_3N_4 layers as dielectrics³⁾ this ternary system was studied in more detail. Brewer and Krikorian⁴⁾ reported an isothermal section for 1600K under an atmosphere of 7.5 x 10^4 Pa nitrogen (fig.9). It shows a ternary phase, $Ta_5Si_3N_{1-x}$ with $\mathrm{D8}_{\mathrm{A}}$ -type structure in equilibrium with $\mathrm{Ta}_{2}\mathrm{N}$, $\mathrm{Ta}\mathrm{N}$, nitrogen gas, $\mathrm{Si}_{3}\mathrm{N}_{4}$, ${\rm TaSi}_2$ and ${\rm Ta}_5{\rm Si}_3$. No information on the Ta-rich region of the system is given. Nowotny et al. $^{5)}$ observed at 1400°C the formation of D8 $_{8}$ -Ta $_{5}$ Si $_{3}$ N $_{1-x}$ upon nitriding $Ta_{.625}Si_{.375}$ using ammonia or nitrogen gas as nitriding agent. Recently Tamari and Toibana⁶⁾ reported the results of the reaction between $\mathrm{Si_3N_4}$ and tantalum (60 mol%) at temperatures between 1000°C and 1700°C. Although equilibrium was not reached the data demonstrate the sequence of reactions taking place at 1400°C under argon (fig.10). First Si_3N_4 is decomposed under formation of β -Ta₂N. Then silicides form with increasing amount of silicon (freed from Si_3N_4) according to the sequence $Ta_2Si \rightarrow Ta_5Si_3 \rightarrow TaSi_2$. Finally the disilicide reacts with the initially formed β -Ta₂N yielding the D8₈-type phase Ta₅Si₃N_{1-x}. Under nitrogen atmosphere of 10^5Pa the formation of TaN is observed additionally.

Experimental Results

To complement these data isothermal sections at 1000°C and 1500°C (fig.11) were prepared. At the lower temperature no ternary phase exists. Si_3N_4 reacts to form Ta_5Si_3 and β - Ta_2N (tab.12a). The reaction proceeds very slowly; extremly long annealing times are necessary to reach equilibrium. At 1500°C the ternary

phase $Ta_5Si_3N_{1-x}$ with $D8_8$ -type structure forms (tab.12b). $Ta_5Si_3N_{1-x}$ coexists with $TaSi_2$, nitrogen gas, $B-Ta_2N$ and Ta_5Si_3 . Si_3N_4 is not stable under argon at this temperature. The lattice parameters of the $D8_8$ -phase in equilibrium with $TaSi_2$ and Ta_5Si_3 are found to be a= 0.75008 nm and c= 0.52288 nm. The c parameter increases to c= 0.52457 nm at the nitrogen rich stability limit of the phase field. All lattice parameters of the binary phases remain unaltered in ternary alloys indicating negligible solubility for the respective third component.

Nitriding Ta $.625^{Si}$.375 at 1400°C under 10^6 Pa nitrogen results in the formation of δ -TaN and ϵ -TaN.

- 1) United Kingdom Patent No. 993443 (1965)
- 2) United Kingdom Patent No. 947271 (1964)
- 3) J.J.Brennan, Spec.Ceramics 6 (1975) 123
- 4) L.Brewer and O.Krikorian, J.Electrochem.Soc. 103 (1956) 38
- 5) H.Nowotny, B.Lux and H.Kudielka, Mh.Chem. <u>87</u> (1956) 447
- 6) N.Tamari and Y.Toibana, Osaka Kogyo Gijutsu Shikensho Kiho 32 (1981) 126

Tab.12. Solid state reaction products observed in the ternary system Ta-Si-N

a) upon annealing at 1000°C for 600h (evacuated quartz tubes)

 $Si_3N_4 + \varepsilon - TaN$ \longrightarrow $Si_3N_4 + \varepsilon - TaN + \beta - Ta_2N$

 $Si_3N_4 + 20 at% Ta$ $Si_3N_4 + Ta_5Si_3 + \beta - Ta_2N$

 $Si_3N_4 + 75 at% Ta$ Ta₂Si + Ta₃Si + B-Ta₂N

 $Si_3N_4 + 85 at\% Ta$ Ta₃Si + Ta + β -Ta₂N

b) upon annealing at 1500°C for 30h (RF-furnace, 10⁵Pa, argon)

 $Si_3N_4 + 20$ at% Ta \rightarrow $Ta_5Si_3N_{1-x}$

 $Si_3N_4 + 64 \text{ at% Ta}$ \longrightarrow $Ta_5Si_3N_{1-x} + \beta - Ta_2N$

 $Si_3N_4 + 85 at\% Ta$ \longrightarrow $Ta_3Si + \beta - Ta_2N + Ta$

Ta_{.33}Si_{.67} + ε -TaN(5 at% N) \longrightarrow Ta₅Si₃N_{1-x} + TaSi₂

 $Ta_{.50}Si_{.50} + \varepsilon - TaN(5 at% N) \longrightarrow Ta_{.5}Si_{3}N_{1-x} + TaSi_{2} + Ta_{.5}Si_{3}$

Ta_{.67}Si_{.33} + ε -TaN(5 at% N) \longrightarrow Ta₅Si₃ + trace β -Ta₂N

Fig. 9 Isothermal section of the ternary system Ta-Si-N at 1600 K (under 7.5 x 10⁴Pa nitrogen)

Fig. 10 Sequence of reactions taking place between ${\rm Si_3N_4}$ and Ta upon heating to 1400°C (according to Tamari and Toibana, Osaka Kogyo Gijutsu Shikensho 32 (1981) 126)

Fig. 11a Isothermal section of the ternary system Ta-Si-N at 1000°C (in the absence of external nitrogen pressure)

Fig. 11b Isothermal section of the ternary system Ta-Si-N at 1500°C (in the absence of external nitrogen pressure)

Part III Automatic Pyrometry - Pirani Furnace

The new automatic three-colour pyrometer has been tested against a series of high precision DTA-runs in the binary system Fe-B. The pyrometer was first calibrated to the melting point of NBS-standard copper (T_{M} = 1083.3°C) which was melted in a newly assembled Thermolyne heater with a graphite holder for the copper bar, ensuring a black body condition. Heating and cooling cycles were precise as to ± 0.2 °C. Precise mercing point data in the Fe-B system \cdot were collected from the $\mathrm{Fe_{50}^{B}_{50}^{-}}$ and $\mathrm{Fe_{35}^{B}_{65}^{-}}$ -compositions. 10g-samples were first remelted a few times to ensure homogeneity. At this stage of the project a HF-furnace was used and power was controlled manually. There was excellent agreement between DTA and 3-colour pyrometry $T_F(FeB, \overline{B}) = 1450 \pm 2^{\circ}C$ (Pyr.) against 1452 ± 3 °C (DTA). Both values are lower than the values assessed in literature (1497°C, ref.(14)). The melting point of congruent melting FeB was observed at $T_m(FeB) = 1588 \pm 5$ °C; again this value is quite different from those experimentally observed earlier but is close to their average of 1590°C as estimated by (14). These two values were used as fixed points in our thermodynamic modelling of the Fe-B phase diagram; see also Part I.C.1.

END

FILMED

1-86

DTIC