Assignment 2

Deadline: Year 1 - Sunday, 19^{th} of June, 23:59, Year 2 - Sunday, 12^{th} of June, 23:59

Upload your solutions as a zip archive at: https://tinyurl.com/AML-2022-ASSIGNMENT2

1. (1.5 points) Consider \mathcal{H} the class of 3-piece classifiers (signed intervals):

$$\mathcal{H} = \{h_{a,b,s} : \mathbb{R} \to \{-1,1\} \mid a \le b, s \in \{-1,1\}\}, \text{ where } h_{a,b,s}(x) = \begin{cases} s, & x \in [a,b] \\ -s, & x \notin [a,b] \end{cases}$$

- a. Compute the shattering coefficient $\tau_H(m)$ of the growth function for $m \geq 0$ for hypothesis class \mathcal{H} . (1 point)
- b. Compare your result with the general upper bound for the growth functions and show that $\tau_H(m)$ obtained at previous point a is not equal with the upper bound. (0.25 points)
- c. Does there exist a hypothesis class \mathcal{H} for which is equal to the general upper bound (over or another domain \mathcal{X})? If your answer is yes please provide an example, if your answer is no please provide a justification. (0.25 points)
- 2. (1.5 points) Consider de concept class C_2 formed by the union of two closed intervals $[a,b] \cup [c,d]$, where $a,b,c,d \in \mathbb{R}, a \leq b \leq c \leq d$. Give an efficient ERM algorithm for learning the concept class C_2 and compute its complexity for each of the following cases:
 - a. realizable case. (1 point)
 - b. agnostic case. (0.5 point)
- 3. (1.5 points) Consider a modified version of the AdaBoost algorithm that runs for exactly three rounds as follows:
 - the first two rounds run exactly as in AdaBoost (at round 1 we obtain distribution $\mathbf{D}^{(1)}$, weak classifier h_1 with error ϵ_1 ; at round 2 we obtain distribution $\mathbf{D}^{(2)}$, weak classifier h_2 with error ϵ_2).
 - in the third round we compute for each i = 1, 2, ..., m:

$$\mathbf{D}^{(3)}(i) = \begin{cases} \frac{D^{(1)}(i)}{Z}, & if \ h_1(x_i) \neq h_2(x_i) \\ 0, & otherwise \end{cases}$$

where Z is a normalization factor such that $\mathbf{D}^{(3)}$ is a probability distribution.

- obtain weak classifier h_3 with error ϵ_3 .
- output the final classifier $h_{final}(x) = sign(h_1(x) + h_2(x) + h_3(x))$.

Assume that at each round t = 1, 2, 3 the weak learner returns a weak classifier h_t for which the error ϵ_t satisfies $\epsilon_t \leq \frac{1}{2} - \gamma_t, \gamma_t > 0$.

- a. What is the probability that the classifier h_1 (selected at round 1) will be selected again at round 2? Justify your answer. (0.75 points)
- b. Consider $\gamma = min\{\gamma_1, \gamma_2, \gamma_3\}$. Show that the training error of the final classifier h_{final} is at most $\frac{1}{2} \frac{3}{2}\gamma + 2\gamma^3$ and show that this is strictly smaller than $\frac{1}{2} \gamma$. (0.75 points)
- 4. (1 point) Consider H^d_{2DNF} the class of 2-term disjunctive normal form formulae consisting of hypothesis of the form $h: \{0,1\}^d \to \{0,1\}$,

$$h(x) = A_1(x) \vee A_2(x)$$

where $A_i(x)$ is a Boolean conjunction of literals H_{conj}^d .

It is known that the class H^d_{2DNF} is not efficient properly learnable but can be learned improperly considering the class H^d_{2DNF} . Give a γ -weak-learner algorithm for learning the class H^d_{2DNF} which is not a stronger PAC learning algorithm for H^d_{2DNF} (like the one considering H^d_{2CNF}). Prove that this algorithm is a γ -weak-learner algorithm for H^d_{2DNF} .

Hint: Find an algorithm that returns h(x) = 0 or the disjunction of 2 literals.

Ex-oficio: 0.5 points.