Capítulo 6 - Estimação por intervalo de confiança

RESOLUÇÃO DE ALGUNS EXERCÍCIOS

6.1 a) Uma vez que a população segue uma distribuição Normal de valor médio μ desconhecido e variância σ^2 conhecida, vamos considerar variável pivot:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

Para a amostra observada e com base nas seguintes informações:

- informação populacional: $\sigma=20~{\rm g}$
- informação amostral: n=20, $\overline{x}=320$ g
- nível de confiança $1-\alpha=0.90\Leftrightarrow\alpha=0.10$, pelo que $z_{\alpha/2}=z_{0.05}=\Phi^{-1}(0.95)\simeq1.64$

obtemos

$$IC_{90\%}(\mu) \simeq \left[320 - 1.64 \frac{20}{\sqrt{20}}, 320 + 1.64 \frac{20}{\sqrt{20}} \right]$$

 $\simeq \left[312.67, 327.33 \right].$

Caso tivéssemos usado a aproximação $z_{0.05} \simeq 1.645$ viria

$$IC_{90\%}(\mu) \simeq [312.64, 327.36]$$
.

6.1 b) A amplitude do intervalo de confiança, Δ , é dada por

$$\Delta = 2 \times z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}.$$

Pretendemos garantir que a amplitude do intervalo é no máximo 1, assim

$$2 \times 1.64 \frac{20}{\sqrt{n}} \le 1 \Leftrightarrow n \ge (2 \times 1.64 \times 20)^2 \quad (\simeq 4303.36)$$

pelo que, sendo $n\in\mathbb{N}$, se tem finalmente que $n\geq 4304$. Para uma amplitude no máximo de 5 teremos que ter $n\geq 173$.

Caso tivéssemos usado a aproximação $z_{0.05}\simeq 1.645$ viria $n\geq 4330$ no primeiro caso e $n\geq 174$ no segundo caso.

6.2 a) Uma vez que a população segue uma distribuição Normal de valor médio μ desconhecido e variância σ^2 desconhecida vamos considerar a variável pivot:

$$T = \frac{X - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

Assim, com base nas seguintes informações:

- informação amostral: $n=8, s=10, \overline{x}=36$
- nível de confiança: $1-\alpha=0.90\Leftrightarrow \alpha=0.1\Leftrightarrow \alpha/2=0.05$, pelo que $t_{n-1,\alpha/2}=t_{7,0.05}\simeq 1.895$

obtemos

$$IC_{90\%}(\mu) \simeq \left[36 - 1.895 \frac{10}{\sqrt{8}}, 36 + 1.895 \frac{10}{\sqrt{8}} \right] \simeq \left[29.300, 42.700 \right].$$
(usando a aproximação $t_{7,0.05} \simeq 1.89$ viria $IC_{90\%}(\mu) \simeq \left[29.318, 42.682 \right]$)

De forma análoga, para um nível de confiança $1-\alpha=0.95$ temos $\alpha=0.05$ e $t_{n-1,\alpha/2}=t_{7,0.025}\approx 2.365$, pelo que

$$IC_{95\%}(\mu) \simeq \left[36 - 2.365 \frac{10}{\sqrt{8}}, 36 + 2.365 \frac{10}{\sqrt{8}} \right] \simeq \left[27.638, 44.362 \right].$$

(usando a aproximação $t_{7,0.05} \simeq 1.89$ viria $IC_{95\%}(\mu) \simeq]27.656, 44.344[)$

Observamos que $IC_{90\%}(\mu)\subseteq IC_{95\%}(\mu)$, o que resulta directamente da própria construção dos ICs.

6.2 b) Nesta alínea a única alteração é a dimensão da amostra que passa a ser 50 mas continuamos a ter uma população segue uma distribuição Normal de valor médio μ desconhecido e variância σ^2 desconhecida, pelo que a variável pivot e a respetiva distribuição são

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

Assim, a resolução pode ser feita de forma semelhante à da alínea a)

• para um nível de confiança $1-\alpha=0.90$ temos $\alpha=0.1$ e $t_{n-1,\alpha/2}=t_{49,0.05}\simeq 1.677$, pelo que

$$IC_{90\%}(\mu) \simeq \left[36 - 1.677 \frac{10}{\sqrt{50}}, 36 + 1.677 \frac{10}{\sqrt{50}} \right]$$

 $\simeq \left[33.628, 38.372 \right].$

• para um nível de confiança $1-\alpha=0.95$ temos $\alpha=0.05$ e $t_{n-1,\alpha/2}=t_{49,0.025}\simeq 2.010$, pelo

$$IC_{95\%}(\mu) \simeq \left[36 - 2.010 \frac{10}{\sqrt{50}}, 36 + 2.010 \frac{10}{\sqrt{50}} \right]$$

 $\simeq \left[33.157, 38.843 \right].$

6.2 b) (continuação)

Observamos que

- aumentando o tamanho amostral é então possível aumentar também a precisão dos intervalos de confiança;
- a dimensão da amostra é maior que 30 pelo que se não soubéssemos o valor dos quantis da distribuição t poderíamos ter aproximado a distribuição exata pela distribuição Normal considerando assim, na resolução do exercício, a variável pivot

$$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{a}{\sim} N(0, 1).$$

6.5 População com distribuição desconhecida com valor médio μ e variância σ^2 desconhecidos. Dado que $n=35\geq 30$ podemos considerar a variável pivot:

$$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{a}{\sim} N(0, 1).$$

Assim, para a amostra observada e com base nas seguintes informações:

- informação amostral: $n=35, \overline{x}=22.1^{\circ}C$ e $s=3.2^{\circ}C$
- nível de confiança $1-\alpha=0.95\Leftrightarrow \alpha=0.05$, pelo que $z_{\alpha/2}=z_{0.025}=\Phi^{-1}(0.975)\simeq 1.96$

obtemos

$$IC_{95\%}(\mu) \simeq \left[22.1 - 1.96 \frac{3.2}{\sqrt{35}}, 22.1 + 1.96 \frac{3.2}{\sqrt{35}} \right]$$

 $\simeq \left[21.04, 23.16 \right].$

- 6.7 a) A estimativa pontual é $\overline{x} = \frac{1}{40} \sum_{i=1}^{10} x_i = 1.73 \ m$.
 - b) Uma vez que a população segue uma distribuição Normal de valor médio μ desconhecido e variância σ^2 desconhecida vamos considerar a variável pivot:

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}.$$

Assim, para a amostra observada e com base nas seguintes informações:

• informação amostral: n=40,

$$\overline{x} = \frac{1}{40} \sum_{i=1}^{40} x_i = 1.73 \text{ e } s = \sqrt{\frac{1}{39} \sum_{i=1}^{40} (x_i - \overline{x})^2} = 0.08$$

• nível de confiança $1-\alpha=0.92\Leftrightarrow \alpha=0.08$, pelo que $t_{n-1,\alpha/2}=t_{39,0.04}\simeq 1.797$ (Nota: este valor não está na tabela da distribuição t mas pode ser obtido facilmente com o software R)

obtemos

$$IC_{92\%}(\mu) \simeq \left[1.73 - 1.797 \frac{0.08}{\sqrt{40}}, 1.73 + 1.797 \frac{0.08}{\sqrt{40}} \right]$$

 $\simeq \left[1.707, 1.753 \right].$

6.9 Pretende-se construir um IC a 98% para verdadeira proporção de pacotes inadequados na produção total, p.

Usando a variável pivot

$$Z = \frac{\dot{P} - p}{\sqrt{\dot{P}(1 - \dot{P})/n}} \stackrel{a}{\sim} N(0, 1)$$

deduzimos então

$$IAC_{(1-\alpha)\times 100\%}(p) \simeq \frac{1}{a} \hat{P} - z_{\alpha/2} \sqrt{\hat{P}(1-\hat{P})/n} ; \hat{P} + z_{\alpha/2} \sqrt{\hat{P}(1-\hat{P})/n}$$

Dado que se tem

- informação amostral: n=100, $\hat{p}=18/100$
- <u>nível de confiança</u>: $1-\alpha=0.98\Leftrightarrow \alpha=0.02$, vem $z_{\alpha/2}=z_{0.01}\simeq 2.33$

vem finalmente

$$IC_{98\%}(p) \approx \frac{18}{100} - 2.33 \sqrt{\frac{18}{100} \left(1 - \frac{18}{100}\right)/100}, \frac{18}{100} + 2.33 \sqrt{\frac{18}{100} \left(1 - \frac{18}{100}\right)/100} \right[$$

$$\approx [0.09, 0.27]$$

- 6.10 a) A estimativa pontual para p é dada por $\hat{p}=12/200=0.06$
 - b) Pretende-se determinar que dimensão de amostra deve ser considerado para que a amplitude seja inferior a 0.01. Sabe-se que, para uma dada amostra, a estimativa por intervalo de confiança para p é dada por

$$IC_{90\%}(p) \underset{a}{\simeq} \Big] \hat{p} - z_{0.05} \ \sqrt{\hat{p}(1-\hat{p})/n} \ , \ \hat{p} + z_{0.05} \ \sqrt{\hat{p}(1-\hat{p})/n} \Big[$$

sendo a amplitude deste IC dada por

$$\Delta = 2 \times z_{0.05} \sqrt{\hat{p}(1-\hat{p})/n}$$

e onde notamos que a estimativa pontual \hat{p} também depende de n. Neste caso deve considerar-se que a estimativa determinada na alínea anterior $\hat{p}=0.06$ é uma estimativa fiável do verdadeiro valor de p resolvendo portanto a inequação

$$\begin{array}{lll} 2\times 1.64\times \sqrt{0.06(1-0.06)/n} < 0.01 & \Rightarrow \\ & \Rightarrow & n > (2\times 1.64\times \sqrt{0.06(1-0.06)}/0.01)^2 \Leftrightarrow & n > 6067.7376 \\ & \Rightarrow & n \geq 6068 \\ & & n \in \mathbb{N} \end{array}$$

6.11 Pretende-se construir um IC a 99% para a variância do tempo de espera. Sendo a população em causa uma **população Normal** com variância σ^2 **desconhecida** a variável pivot que nos permite construir esse IC é

$$X^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

vindo o intervalo aleatório de confiança a $(1-\alpha) \times 100\%$ para σ^2 dado por

$$IAC_{(1-\alpha)100\%}(\sigma^2) = \left[\frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}} \right[.$$

Dado que se tem:

- informação amostral: n = 15, $s^2 = 0.167$
- <u>n</u>ível de confiança: $1-\alpha=0.99\Leftrightarrow \alpha=0.01\Leftrightarrow \frac{\alpha}{2}=0.005$ vindo

•
$$\chi^2_{n-1,1-\alpha/2} = \chi^2_{14,0.995} \simeq 4.075$$

•
$$\chi^2_{n-1,\alpha/2} = \chi^2_{14,0.005} \underset{tabela}{\sim} 31.319$$

obtemos finalmente

$$IC_{99\%}(\sigma^2) = \left[\frac{(n-1)s^2}{\chi_{p-1,0/2}^2}, \frac{(n-1)s^2}{\chi_{p-1,1,0/2}^2} \right] \simeq \left[0.075, 0.574 \right].$$

6.12 Pretende-se construir um intervalo de confiança a 95% para a variância e para o desvio padrão populacionais. Sendo a população em causa uma **população Normal** com variância σ^2 **desconhecida** a variável pivot que nos permite construir esse IC é

$$X^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

vindo o intervalo aleatório de confiança a $(1-\alpha)\times 100\%$ para σ^2 dado por

$$IAC_{(1-\alpha)100\%} = \left[\frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}} \right].$$

Dado que se tem:

- informação amostral: $n=8, s^2=2265.566$
- nível de confiança: $1 \alpha = 0.95 \Leftrightarrow \alpha = 0.05 \Leftrightarrow \frac{\alpha}{2} = 0.025$ vindo

•
$$\chi^2_{n-1,1-\alpha/2} = \chi^2_{7,0.975} \cong_{tabela} 1.690$$

•
$$\chi^2_{n-1,\alpha/2} = \chi^2_{7,0.025} \underset{tabela}{\simeq} 16.013$$

(cont.) obtemos finalmente

$$IC_{95\%}(\sigma^2) = \left[\frac{(n-1)s^2}{\gamma^2}, \frac{(n-1)s^2}{\gamma^2} \right] \simeq]990.380, 9384.001[$$

e

$$IC_{95\%}(\sigma) = \sqrt{\frac{(n-1)s^2}{\chi^2_{n-1}}}, \sqrt{\frac{(n-1)s^2}{\chi^2_{n-1}}} \simeq 31.470, 96.871[.$$