SIMULACRO Segundo Parcial de Física (03)

1.– En el sistema de la figura se considera rozamiento únicamente entre el bloque A ($m_A = 3$ kg) y el carrito B ($m_B = 2$ kg). Los coeficientes de rozamiento entre A y B son $\mu_e = 0.8$ y $\mu_d = 0.6$. Sobre A se aplica una fuerza F paralela a la superficie inclinada sobre la que se apoya B.

1.b.— ¿Cuál es el máximo valor que puede tomar F para que ambos cuerpos asciendan solidariamente, sin que A deslice respecto de B?

2.– Una bolita de 6 kg gira apoyada sobre una pista circular vertical de 75 cm de radio. Está unida al centro **c** de la pista por medio de un resorte ideal de 300 N/m de constante elástica y 50 cm de longitud natural. Se desprecian todos los rozamientos.

2.b.— Calcule el mínimo valor que debe tener la rapidez de la bolita en el punto más alto para que pueda describir el giro completo sin despegarse de la pista.

3.– Un cuerpo de 6 kg descansa en reposo en el punto A de la pista de la figura. Se ata al cuerpo a un cable que lo eleva hacia el punto B ($h_B = 8 \text{ m}$) durante 40 segundos, y desde ahí es soltado desde el reposo. La pista presenta rozamiento únicamente en la región horizontal PQ, de 4 m de longitud ($\mu_e = 0.4$ y $\mu_d = 0.2$). Al finalizar la pista hay un resorte ideal y horizontal de constante elástica k = 2700 N/m.

- **3.a.** Calcule la potencia media desarrollada por la fuerza que ejerce el cable durante el ascenso de A hacia B.
- **3.b.** Halle la máxima compresión que experimenta el resorte cuando el cuerpo lo choca por primera vez.
- **3.c.** Indique dónde se detiene el bloque definitivamente.
- **4.–** Un recipiente abierto al aire (donde la presión es 100 kPa) contiene dos líquidos inmiscibles A y B en equilibrio, cuyas densidades valen, respectivamente, $\delta_A = 650 \text{ kg/m}^3 \text{ y } \delta_B = 1000 \text{ kg/m}^3$. Un cubo macizo y homogéneo se encuentra dentro del recipiente, flotando en equilibrio, con el 20% de su volumen sumergido en el líquido B, y el resto en el líquido A. En esas condiciones, cada capa de líquido tiene un espesor de 1,2 m.
- **4.a.** Calcule la densidad del cubo.
- **4.b.** Sabiendo que la presión absoluta en la cara inferior del cubo es 108 kPa, determine su volumen.

ENTREGUE LOS PROBLEMAS EN HOJAS SEPARADAS – JUSTIFIQUE CLARAMENTE EL PROCEDIMIENTO