ESC201: Lecture 9

Dr. Imon Mondal

ASSISTANT PROFESSOR, ELECTRICAL ENGINEERING, IIT KANPUR

2024-25 SEM-I | ESC201 INTRODUCTION TO ELECTRONICS

Complement of a binary number

1's complement of n-bit number x is $2^n - 1 - x$

2's complement of n-bit number x is 2^n -x

$$2^4 - 1 - 1011$$

$$1111 - 1011 = 0100$$

1's complement is simply obtained by flipping a bit (changing 1 to 0 and 0 to 1)

1's complement of
$$1001101 = ?$$

2's complement of 1010 = 1's complement of 1010+1=0110

2's complement of 110010 =

Leave all least significant 0's as they are, leave first 1 unchanged and then flip all subsequent bits

Advantages of using 2's complement

Can we carry out $Y = X_1 - X_2$ using such an adder?

Note that carry will be there only if $x_1 - x_2$ is positive as 2^N is N+1 bits (1 followed by N zeros)

Advantages of using 2's complement

Note that carry will be there only if $x_1 - x_2$ is positive as 2^N is N+1 bits (1 followed by N zeros)

A zero carry implies a negative number whose magnitude $(x_2 - x_1)$ can be found as follows:

$$S = x_1 + 2^N - x_2$$
2's complement of $S = 2^N - (x_1 + 2^N - x_2) = x_2 - x_1$

Example

Example

It makes sense to use adder as a subtractor as well provided additional circuit required for carrying out 2's complement is simple

Subtraction using 10's complement

This way of subtraction would make sense only if subtracting a number x_2 from 10^N is much simpler than directly subtracting it directly from x_1

Representing positive and negative binary numbers

One extra bit is required to carry sign information. Sign bit = 0 represents positive number and Sign bit = 1 represents negative number

decimal	Signed Magnitude
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

decimal	Signed 1's complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000

decimal	Signed 2's complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001

 x_1,x_2 : N bit numbers in 2's complement

Example

 x_1,x_2 : N bit numbers in 2's complement

2's complement is 0011 = 3

2's complement is 0111 = 7

Boolean Algebra

Algebra on Binary numbers

A variable x can take two values {0,1}

Basic operations:

AND:
$$y = x_1 . x_2$$

Y is 1 if and only if both x_1 and x_2 are 1, otherwise zero

Basic operations:

OR:
$$y = x_1 + x_2$$

Y is 1 if either x_1 and x_2 is 1. Or y= 0 if and only if both variables are zero

NOT:
$$y = \bar{x}$$
 $0 \ 1$
 $1 \ 0$