2 Pollution problem

2.1 General information

This IVP is a stiff system of 20 non-linear Ordinary Differential Equations. It is the chemical reaction part of the air pollution model developed at The Dutch National Institute of Public Health and Environmental Protection (RIVM) and it is described by Verwer in [Ver94]. The parallel-IVP-algorithm group of CWI contributed this problem to the test set.

The software part of the problem is in the file pollu.f available at [MM08].

2.2 Mathematical description of the problem

The problem is of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y), \quad y(0) = y_0, \tag{II.2.1}$$

with

$$y \in \mathbb{R}^{20}, \quad 0 < t < 60.$$

The function f is defined by

ned by
$$\begin{pmatrix} -\sum_{j \in \{1,10,14,23,24\}} r_j + \sum_{j \in \{2,3,9,11,12,22,25\}} r_j \\ -r_2 - r_3 - r_9 - r_{12} + r_1 + r_{21} \\ -r_{15} + r_1 + r_{17} + r_{19} + r_{22} \\ -r_2 - r_{16} - r_{17} - r_{23} + r_{15} \\ -r_3 + 2r_4 + r_6 + r_7 + r_{13} + r_{20} \\ -r_6 - r_8 - r_{14} - r_{20} + r_3 + 2r_{18} \\ -r_4 - r_5 - r_6 + r_{13} \\ r_4 + r_5 + r_6 + r_7 \\ -r_7 - r_8 \\ -r_{12} + r_7 + r_9 \\ -r_9 - r_{10} + r_8 + r_{11} \\ r_9 \\ -r_{11} + r_{10} \\ -r_{13} + r_{12} \\ r_{14} \\ -r_{18} - r_{19} + r_{16} \\ -r_{20} \\ r_{20} \\ -r_{21} - r_{22} - r_{24} + r_{23} + r_{25} \\ -r_{25} + r_{24} \end{pmatrix}$$
 iliary variables, given in Table II.2.1. The values of the sum of t

where the r_i are auxiliary variables, given in Table II.2.1. The values of the parameters k_j are in Table II.2.2. Finally, the initial vector y_0 is given by

$$y_0 = (0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0, 0, 0, 0, 0, 0, 0, 0.007, 0, 0)^{\mathrm{T}}.$$

2.3 Origin of the problem

The problem is a chemical model consisting of 25 reactions and 20 reacting compounds. Figure II.2.1 shows the reaction scheme. Writing down the reaction velocities r_j for every reaction equation and making the identification in Table II.2.3, which also lists the concentrations at t=0, one arrives at the system of differential equations (II.2.1). The time interval [0,60] represents the behavior of the reactants sufficiently.

Table II.2.1: Auxiliary variables.

_		$k_1 \cdot y_1$			$k_{10} \cdot y_{11} \cdot y_1$	r_{19}	=	$k_{19} \cdot y_{16}$
r_2	=	$k_2 \cdot y_2 \cdot y_4$	r_{11}	=	$k_{11} \cdot y_{13}$	r_{20}	=	$k_{20} \cdot y_{17} \cdot y_6$
					$k_{12} \cdot y_{10} \cdot y_2$	r_{21}	=	$k_{21} \cdot y_{19}$
r_4	=	$k_4 \cdot y_7$			$k_{13} \cdot y_{14}$	r_{22}	=	$k_{22} \cdot y_{19}$
r_5	=	$k_5 \cdot y_7$	r_{14}	=	$k_{14} \cdot y_1 \cdot y_6$	r_{23}	=	$k_{23} \cdot y_1 \cdot y_4$
r_6	=	$k_6 \cdot y_7 \cdot y_6$	r_{15}	=	$k_{15} \cdot y_3$	r_{24}	=	$k_{24} \cdot y_{19} \cdot y_1$
r_7	=	$k_7\cdot y_9$	r_{16}	=	$k_{16} \cdot y_4$	r_{25}	=	$k_{25} \cdot y_{20}$
r_8	=	$k_8 \cdot y_9 \cdot y_6$	r_{17}	=	$k_{17} \cdot y_4$			
r_9	=	$k_9 \cdot y_{11} \cdot y_2$	r_{18}	=	$k_{18} \cdot y_{16}$			

 ${\tt TABLE~II.2.2:~Parameter~values.}$

k_1	= 0.350	k_{10}	$=0.900 \cdot 10^4$	k_{19}	$=0.444 \cdot 10^{12}$
k_2	$=0.266 \cdot 10^2$	k_{11}	$=0.220 \cdot 10^{-1}$	k_{20}	$=0.124 \cdot 10^4$
k_3^{\dagger}	$=0.123 \cdot 10^5$	k_{12}	$=0.120 \cdot 10^5$	k_{21}	$= 0.210 \cdot 10$
k_4	$=0.860 \cdot 10^{-3}$	k_{13}	$= 0.188 \cdot 10$	k_{22}	$= 0.578 \cdot 10$
k_5	$=0.820 \cdot 10^{-3}$	k_{14}	$=0.163 \cdot 10^5$	k_{23}	$=0.474 \cdot 10^{-1}$
k_6	$=0.150 \cdot 10^5$	k_{15}	$=0.480 \cdot 10^7$	k_{24}	$=0.178 \cdot 10^4$
k_7	$=0.130 \cdot 10^{-3}$	k_{16}	$=0.350 \cdot 10^{-3}$	k_{25}	$= 0.312 \cdot 10$
k_8	$=0.240 \cdot 10^5$	k_{17}	$=0.175 \cdot 10^{-1}$		
k_9	$=0.165 \cdot 10^5$	k_{18}	$=0.100 \cdot 10^9$		

 $^{^{\}dagger}$ Notice that this constant has a typing error in [Ver94].

```
NO2
                        NO+O3P
                                              14.
                                                   NO2 + OH
                                                                     HNO3
 1.
     NO+O3
 2.
                        NO2
                                              15.
                                                   O3P
                                                                     O3
 3.
     HO2+NO
                        NO2+OH
                                              16.
                                                   O3
                                                                     O1D
 4.
     HCHO
                        2 \text{ HO2+CO}
                                              17.
                                                   O_3
                                                                     O3P
     HCHO
                        CO
                                              18.
                                                   O1D
                                                                     2 \text{ OH}
 5.
 6.
     HCHO+OH
                   \rightarrow
                        HO2+CO
                                              19.
                                                   O1D
                                                                     O3P
                        _{\rm MEO2+HO2+CO}
                                              20.
                                                   SO2+OH
                                                                     SO4+HO2
 7.
     ALD
 8.
     ALD+OH
                       C2O3
                                              21.
                                                   NO3
                                                                     NO
                                              22.
 9.
     C2O3+NO
                        NO2+MEO2+CO2
                                                   NO3
                                                                     NO2+O3P
                   \rightarrow
10.
     C2O3+NO2
                       PAN
                                              23.
                                                   NO2+O3
                                                                     NO3
11.
     PAN
                        C2O3+NO2
                                              24.
                                                   NO3+NO2
                                                                     N2O5
                                                                     NO3+NO2
12.
                        \mathrm{CH3O}\!+\!\mathrm{NO2}
                                                   N2O5
     MEO2+NO
                   \rightarrow
                                              25.
13.
     CH<sub>3</sub>O
                        {
m HCHO}{+}{
m HO2}
```

FIGURE II.2.1: Reaction scheme.

variable	species	initial value	variable	species	initial value
y_1	[NO2]	0	y_{11}	[C2O3]	0
y_2	[NO]	0.2	y_{12}	[CO2]	0
y_3	[O3P]	0	y_{13}	[PAN]	0
y_4	[O3]	0.04	y_{14}	[CH3O]	0
y_5	[HO2]	0	y_{15}	[HNO3]	0
y_6	[OH]	0	y_{16}	[O1D]	0
y_7	[HCHO]	0.1	y_{17}	[SO2]	0.007
y_8	[CO]	0.3	y_{18}	[SO4]	0
y_9	[ALD]	0.01	y_{19}	[NO3]	0
y_{10}	[MEO2]	0	y_{20}	[N2O5]	0

Table II.2.3: Identification of variables with species. The square brackets '[]' denote concentrations.

Table II.2.4: Reference solution at the end of the integration interval.

y_1	$0.5646255480022769 \cdot 10^{-1}$	y_{11}	$0.1135863833257075 \cdot 10^{-7}$
y_2	0.1342484130422339	y_{12}	$\left \begin{array}{c} 0.2230505975721359 \cdot 10^{-2} \end{array}\right $
y_3	$0.4139734331099427 \cdot 10^{-8}$	y_{13}	$0.2087162882798630 \cdot 10^{-3}$
y_4	$\left \ 0.5523140207484359 \cdot 10^{-2} \ \right $	y_{14}	$0.1396921016840158 \cdot 10^{-4}$
y_5	$\left 0.2018977262302196 \cdot 10^{-6} \right $	y_{15}	$0.8964884856898295 \cdot 10^{-2}$
y_6	$\left \ 0.1464541863493966 \cdot 10^{-6} \ \right $	y_{16}	$\left \begin{array}{c} 0.4352846369330103 \cdot 10^{-17} \end{array} \right $
y_7	$\left 0.7784249118997964 \cdot 10^{-1} \right $	y_{17}	$0.6899219696263405 \cdot 10^{-2}$
y_8	0.3245075353396018	y_{18}	$0.1007803037365946 \cdot 10^{-3}$
y_9	$0.7494013383880406 \cdot 10^{-2}$	y_{19}	$0.1772146513969984 \cdot 10^{-5}$
y_{10}	$0.1622293157301561 \cdot 10^{-7}$	y_{20}	$0.5682943292316392 \cdot 10^{-4}$

2.4 Numerical solution of the problem

Tables II.2.4–II.2.5 and Figures II.2.2–II.2.6 present the reference solution at the end of the integration interval, the run characteristics, the behavior of the solution over the interval [0,12] and the work-precision diagrams, respectively. The reference solution was computed by RADAU5 on a Cray C90, using double precision, work(1) = uround = $1.01 \cdot 10^{-19}$, rtol = atol = h0 = $1.1 \cdot 10^{-18}$. For the work-precision diagrams, we used: rtol = $10^{-(5+m/4)}$, $m = 0, 1, \ldots, 32$; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5.

References

- [MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4. Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008. Available at http://www.dm.uniba.it/~testset.
- [Ver94] J.G. Verwer. Gauss-Seidel iteration for stiff ODEs from chemical kinetics. SIAM J. Sci. Comput., 15(5):1243–1259, 1994.

Table II.2.5: $Run\ characteristics.$

solver	rtol	atol	h0	mescd	scd	steps	accept	#f	#Jac	#LU	CPU
BIMD	10^{-7}	10^{-7}	10^{-7}	9.25	5.63	25	25	572	22	25	0.0039
	10^{-10}	10^{-10}	10^{-10}	11.73	8.73	41	41	1257	27	41	0.0107
DDASSL	10^{-7}	10^{-7}		5.94	4.13	135	135	188	23		0.0039
	10^{-10}	10^{-10}		9.04	5.91	536	532	669	38		0.0107
GAMD	10^{-7}	10^{-7}	10^{-7}	8.16	6.31	23	23	625	23	23	0.0049
	10^{-10}	10^{-10}	10^{-10}	11.35	5.36	36	36	1401	36	36	0.0098
MEBDFI	10^{-7}	10^{-7}	10^{-7}	8.46	6.46	120	118	391	20	20	0.0039
	10^{-10}	10^{-10}	10^{-10}	11.45	9.32	235	235	763	33	33	0.0078
PSIDE-1	10^{-7}	10^{-7}		7.51	4.84	31	29	465	9	124	0.0049
	10^{-10}	10^{-10}		10.64	8.04	63	62	970	12	188	0.0098
RADAU	10^{-7}	10^{-7}	10^{-7}	5.59	3.78	32	29	227	21	32	0.0029
	10^{-10}	10^{-10}	10^{-10}	10.00	7.75	35	35	449	21	35	0.0049
VODE	10^{-7}	10^{-7}		6.61	3.32	149	149	208	$_4$	27	0.0029
	10^{-10}	10^{-10}		8.79	4.78	393	375	528	7	61	0.0059

Figure II.2.2: Behavior of the solution over the interval [0.12].

 ${\tt FIGURE~II.2.3:~Work-precision~diagram~(scd~versus~CPU-time).}$

 ${\tt Figure~II.2.4:~Work-precision~diagram~(scd~versus~CPU-time).}$

 ${\tt Figure~II.2.5:~Work-precision~diagram~(mescd~versus~CPU-time)}.$

 ${\tt Figure~II.2.6:~Work-precision~diagram~(mescd~versus~CPU-time).}$