### Artificial Intelligence

Lecture04 - Metaheuristic Search: Genetic Algorithms for Planning and Scheduling



#### Contenido



- 1. Introducción a la Búsqueda Metaheurística
- 2. Fundamentos de Algoritmos Genéticos
- 3. Aplicación a planificación
- 4. Aplicación a programación



## Introducción a la Búsqueda EAFIT Metaheurística

¿Qué es una metaheurística?

Se obtiene de anteponer al término heurística el sufijo "meta" que significa más allá o a un nivel superior.

 Son estrategias inteligentes para diseñar o mejorar procedimientos heurísticos muy generales con un alto rendimiento.





## Introducción a la Búsqueda EAFIT Metaheurística

| Característica          | Heurística                                                    | Metaheurística                                                                          |
|-------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Definición              | Regla práctica específica para encontrar una solución rápida. | Estrategia de alto nivel que combina y guía heurísticas para buscar mejores soluciones. |
| Objetivo                | Obtener una solución aceptable de forma rápida.               | Explorar el espacio de soluciones para encontrar soluciones cercanas al óptimo.         |
| Alcance                 | Enfoque local (solución puntual).                             | Enfoque global (múltiples soluciones, iteración y mejora).                              |
| Tiempo de cómputo       | Bajo (rápido).                                                | Medio/alto (depende del problema y técnica).                                            |
| Garantía de optimalidad | No garantiza la mejor solución.                               | Tampoco garantiza óptimo, pero mejora la calidad significativamente.                    |



- Metaheurísticas de relajación.
- Metaheurísticas constructivas.
- Metaheurísticas de búsqueda.
- Metaheurísticas evolutivas.





# Metaheurísticas de relajación.

Una relajación de un problema es un modelo simplificado obtenido al eliminar, debilitar, o modificar restricciones del problema real.

Los modelos muy ajustados a la realidad suelen ser muy difíciles de resolver, y sus soluciones difíciles de implementar exactamente, por lo que se acude a modelos relajados.





### Metaheurísticas Constructivas.



Son estrategias de optimización que construyen soluciones paso a paso, añadiendo iterativamente componentes a una solución inicialmente vacía. Estas estrategias guían el proceso de construcción mediante reglas o criterios que balancean la calidad inmediata de cada decisión con el potencial a largo plazo de la solución parcial.







Escuela de Ciencias Aplicadas e Ingeniería

Son estrategias de optimización que exploran el espacio de soluciones de un problema mediante transformaciones iterativas sobre soluciones iniciales, guiadas por principios de mejora local y mecanismos para evitar estancamientos en óptimos locales.

Su objetivo es encontrar soluciones de alta calidad sin necesidad de explorar todo el espacio de manera exhaustiva.







- Simple
- Precisa
- Coherente
- Efectiva
- Eficaz
- Eficiente



- General
- Adaptable
- Robusta
- Iterativa
- Múltiple
- Autónoma



## Algoritmos Genéticos (GA): EAFIT una metaheurística evolutiva

#### ¿Qué son los GA?

- Inspirados en los principios de la evolución natural
- Operan sobre una población de soluciones (individuos)
- Utilizan operadores como selección, cruce y mutación



- Evolucionan soluciones a través de generaciones
- Búsqueda estocástica, guiada por una función de aptitud (fitness)



# Algoritmos Genéticos (GA): EAFIT una metaheurística evolutiva

#### ¿Por qué son metaheurísticas?

- Realizan una búsqueda iterativa en el espacio de soluciones
- Combinan y modifican soluciones para explorar nuevas regiones
- No garantizan el óptimo, pero aproximan soluciones de alta calidad
- Se adaptan a diversos tipos de problemas: planificación, programación, diseño, optimización combinatoria





Escuela de Ciencias Aplicadas e Ingeniería

#### ¿Cómo funcionan los GA?

- 1. Población inicial
  - Conjunto de soluciones candidatas (individuos)
  - Generadas aleatoriamente o con heurísticas
- 2. Evaluación de aptitud (fitness)
  - Se mide la calidad de cada solución según un objetivo (e.g. tiempo, costo, distancia)
- 3. Selección
  - Se eligen los mejores individuos para reproducirse
  - Métodos: ruleta, torneo, ranking…





Escuela de Ciencias Aplicadas e Ingeniería

- 4. Cruce (crossover)
  - Se combinan partes de dos padres para crear nuevos hijos
  - Objetivo: heredar buenas características
- 5. Mutación
  - Se altera aleatoriamente una parte del individuo
  - Introduce diversidad en la población
- 6. Reemplazo
  - Se forma una nueva generación, que reemplaza total o parcialmente a la anterior
- 7. Criterios de parada
  - Número de generaciones, tiempo límite, mejora mínima…



### Fundamentos de Algoritmos Genéticos







### Pseudocódigo de GA



Podemos dar una primera formalización del proceso anterior por medio del siguiente pseudocódigo

- 1. Crea población inicial
- 2. Evalúa los cromosomas de la población inicial
- 3. Repite hasta que se cumpla la condición de parada:
  - Selección de los cromosomas más aptos en la nueva población
  - Cruzamiento de los cromosomas de la población
  - Mutación de los cromosomas de la poblaciónE
  - Evaluación de los cromosomas de la población
- 4. Devuelve la mejor solución (la más apta) en la población



### Código general de GA

```
EAFIT
```

```
function GENETIC-ALGORITHM(population, fitness) returns an individual
  repeat
      weights ← WEIGHTED-BY(population, fitness)
      population2←empty list
      for i = 1 to Size(population) do
         parent1, parent2 ← WEIGHTED-RANDOM-CHOICES(population, weights, 2)
         child \leftarrow Reproduce(parent1, parent2)
         if (small random probability) then child \leftarrow MUTATE(child)
         add child to population2
      population \leftarrow population 2
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to fitness
```

**return** APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c + 1, n))

function REPRODUCE(parent1, parent2) returns an individual  $n \leftarrow \text{LENGTH}(parent1)$   $c \leftarrow \text{random number from 1 to } n$ 



## Aplicación: GA para planificación y GA para programación

| Concepto     | Planificación                                              | Programación                                                           |
|--------------|------------------------------------------------------------|------------------------------------------------------------------------|
| Qué responde | ¿Qué se debe hacer? ¿En qué orden?                         | ¿Cuándo se debe hacer?<br>¿Dónde y cómo se ejecuta?                    |
| Enfoque      | Definir las tareas a realizar<br>y su secuencia lógica     | Asignar recursos y tiempos<br>específicos a cada tarea                 |
| Nivel        | Más estratégico / abstracto                                | Más operativo / detallado                                              |
| Ejemplo      | Crear un plan de proyecto con<br>dependencias entre tareas | Asignar fechas y turnos<br>concretos a esas tareas en<br>un cronograma |
| Analogía     | Como el "qué y en qué orden"<br>del viaje                  | Como el "cuándo, cómo y con<br>qué recursos" del viaje                 |



#### Problema:

Una empresa debe planificar la ejecución de 10 tareas distintas: A, B, C, D, E, F, G, H, I, J.

Estas tareas tienen restricciones de precedencia, es decir, ciertas tareas no pueden comenzar hasta que otras hayan finalizado.





## Las restricciones son las siguientes:

C depende de A

D depende de A

E depende de B

F depende de C y D

G depende de E y F

H depende de G

I depende de F

J depende de H e I

#### **Objetivo**

Encontrar un orden de ejecución válido de las tareas que:

- Respete todas las restricciones de precedencia
- Minimice el desfase entre cada tarea y sus predecesoras, es decir, que las tareas que dependen de otras no se programen excesivamente tarde





CODE AND CLASS EXERCISE 1





#### **Preguntas**

```
¿Por qué muchas soluciones válidas tienen el mismo fitness?
¿Qué parte del fitness penaliza más: violar precedencias o la separación entre tareas?
¿La convergencia fue rápida o lenta? ¿Por qué?
¿El algoritmo se estancó en un óptimo local o siguió explorando?
```







En planificación, se busca un orden válido de tareas respetando restricciones. En programación (scheduling), además de eso, se asignan tiempos y recursos. Es decir, ahora se resuelve cuándo y con qué recursos ejecutar cada tarea, buscando optimizar criterios como:

- Minimizar el tiempo total
- Reducir el número de retrasos
- Balancear carga entre recursos



### Job-Shop Scheduling



Una empresa tiene 3 máquinas (M1, M2, M3) y debe ejecutar 5 trabajos (J1 a J5).

Cada trabajo consiste en una **secuencia de operaciones**, que deben ejecutarse en **orden fijo** y cada una requiere una máquina específica y un tiempo.

| Trabajo | Secuencia de operaciones                          |
|---------|---------------------------------------------------|
| J1      | $(M1, 3) \rightarrow (M2, 2) \rightarrow (M3, 2)$ |
| J2      | $(M2, 2) \rightarrow (M1, 4) \rightarrow (M3, 3)$ |
| J3      | $(M3, 3) \rightarrow (M2, 3) \rightarrow (M1, 2)$ |
| J4      | $(M1, 2) \rightarrow (M3, 1) \rightarrow (M2, 4)$ |
| J5      | $(M2, 4) \rightarrow (M3, 3) \rightarrow (M1, 3)$ |



### Job-Shop Scheduling



#### Objetivo:

Encontrar una programación válida de todas las operaciones que:

- Respete el orden de operaciones dentro de cada trabajo.
- No solape el uso de máquinas (una operación por máquina a la vez).
- Minimice el tiempo total de ejecución.



## Job-Shop Scheduling



CODE AND CLASS EXERCISE 2



# Aplicación: GA para programación



#### **Preguntas**

```
¿Por qué se utiliza el makespan como función de aptitud?
¿Qué tipo de representación se usó para el cromosoma?
¿Qué ventajas y limitaciones tiene este tipo de representación?
Agrega un J6 con 4 operaciones. ¿Cómo afecta la dificultad del problema?
```

Modifica el tamaño de la población o las generaciones. ¿Cuándo el algoritmo encuentra mejores soluciones?



### Ejercicio: Problema de IA



Escuela de Ciencias Aplicadas e Ingeniería

Establecer una situación de tu vida diaria o entorno cercano que implique tomar decisiones bajo restricciones. Por ejemplo:

- Organizar horarios semanales
- Elegir qué materias cursar y cuándo
- Optimizar tu entrenamiento o tiempo libre
- Armar equipos o turnos en un grupo de trabajo
- Planificar un viaje con múltiples destinos

#### La tarea consiste en:

- Describir el problema en lenguaje claro (1 párrafo).
- Indicar si se trata de un problema de planificación (qué hacer y cuándo) o de programación (ordenar tareas u operaciones con recursos).
- Explicar por qué sería adecuado usar un algoritmo genético para resolverlo.
- Describir cómo representar una posible solución (cromosoma) y cómo evaluar su calidad (fitness).
- Describir los elementos del GA en tu problema: selección, cruce, mutación y criterio de parada.

### References



Sancho-Caparrini, F. (s.f.). Metaheurísticas. Recuperado julio de 2025, de <a href="https://www.cs.us.es/~fsancho/Blog/posts/Metaheuristicas.md">https://www.cs.us.es/~fsancho/Blog/posts/Metaheuristicas.md</a>

Sancho-Caparrini, F. (s.f.). Algoritmos Genéticos. Recuperado julio de 2025, de

https://www.cs.us.es/~fsancho/Blog/posts/Algoritmos Geneticos.md.html

Berkeley University (CS188). (2022). Completeness and Optimality – A Search\*. En CS188 Lecture Notes. Recuperado de <a href="https://inst.eecs.berkeley.edu/~cs188/fa22/assets/notes/cs188-fa22-note02.pdf">https://inst.eecs.berkeley.edu/~cs188/fa22/assets/notes/cs188-fa22-note02.pdf</a>

Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.

