K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 8. Juli 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 13

Stichworte: Homologie, Kompakt-Offen-Topologie, Decktransformationen

Aufgabe 1 Simpliziale Homologie berechnen (4 Punkte)

Skizzieren Sie Triangulierungen des 2-Torus \mathbb{T}^2 und der Klein'schen Flasche K und berechnen Sie die (simpliziale) Homologie in allen Graden. Wie unterscheiden sich die beiden Beispiele? Tipp: Stellen Sie K und \mathbb{T}^2 als Quadrate mit verklebten Seiten dar.

Aufgabe 2 K.O.-Topologie (2+2 Punkte)

Für topologische Räume X und Y betrachten wir die Menge $Y^X:=\{f:X\longrightarrow Y\text{ stetig}\}.$ Zu $K\subset X$ kompakt und $U\subset Y$ offen assoziieren wir

$$M(K,U) := \{ f \in Y^X \mid f(K) \subset U \}$$

Die Kompakt-Offen-Topologie ist die kleinste Topologie auf Y^X , für die alle Mengen der Form M(K, U) offen sind. Beweisen Sie unter der Voraussetzung, dass X lokalkompakt ist:

- (a) Die Evaluationsabbildung $e: Y^X \times X \longrightarrow Y, e(f, x) = f(x)$ ist stetig.
- (b) $f: Z \times X \longrightarrow Y$ stetig $\iff \hat{f}: Z \longrightarrow Y^X, \hat{f}_z(\cdot) = f(z, \cdot)$ stetig

Aufgabe 3 Decktransformationen und Monodromiewirkung (1+1+2+2+2 Punkte)

Im Folgenden seien alle Räume Hausdorff und wegzusammenhängend.

Sei $p: X \longrightarrow Y$ eine Überlagerung und $x_0 \in p^{-1}(y_0) =: F_0$ ein Basispunkt in der Faser. Der Gruppenhomomorphismus $p_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ liefert eine Untergruppe

$$J_{x_0} := p_* (\pi_1(X, x_0)) \subset \pi_1(Y, y_0).$$

Zu einer Untergruppe $H \subset G$ assoziieren wir die Normalisatorgruppe $N(H) = \{g \in G \mid gHg^{-1} = H\}$ und nennen H normal, falls N(H) = G. Außerdem betrachten wir die Links- und Rechtsnebenklassen $G/H = \{gH \mid g \in G\}$ $H \setminus G = \{Hg \mid g \in G\}$. Dies sind Gruppen sofern H normal.

(a) Zeigen Sie: Anheben von Pfaden liefert eine wohldefinierte Rechtswirkung $F_0
ightharpoonup \pi_1(Y, y_0) \ni \alpha, \ x \longmapsto x \cdot \alpha$. Diese führt zu einer Bijektion

$$J_{x_0} \backslash \pi_1(Y, y_0) \xrightarrow{\sim} F_0, \quad J_{x_0} \alpha \longmapsto x_0 \cdot \alpha$$

Wir bezeichnen mit $Deck(p) = \{g: X \longrightarrow X \text{ Homeomorphismus } | p \circ g = p \}$ die Gruppe der Decktransformationen.

- (b) Zeigen Sie: Wenn $g_1, g_2 \in Deck(p)$ mit $g_1(x_0) = g_2(x_0)$ an einem einzelnen Punkt $x_0 \in X$ übereinstimmen, so gilt bereits $g_1 = g_2$.
- (c) Seien $x, x_0 \in p^{-1}(y_0)$. Beweisen Sie die folgende Kette von Äquivalenzen:

$$\exists D \in Deck(p) : D(x_0) = x$$

$$\iff J_{x_0} = J_x$$

$$\iff \exists \alpha \in N(J_{x_0}) : x = x_0 \cdot \alpha$$

Für $\alpha \in N(J_{x_0})$ können wir $D_{\alpha} \in Deck(p)$ als die eindeutige Decktransformation definieren, so dass $D_{\alpha}(x_0) = x_0 \cdot \alpha$. (Diese Relation gilt für den fest gewählten Basispunkt $x_0 \in X$, für andere $x \in p^{-1}(y_0)$ aber nicht unbedingt.)

(d) Zeigen Sie, dass $D: N(J_{x_0}) \longrightarrow Deck(p)$, $\alpha \longmapsto D_{\alpha}$ einen Gruppenisomorphismus $N(J_{x_0})/J_{x_0} \cong Deck(p)$ induziert.

Für X einfachzusammenhängend haben wir $J_{x_0} = \{1\}$ und $N(J_{x_0}) = \pi_1(Y, y_0)$. Somit erhalten wir zwei Gruppenwirkungen von $\pi_1(Y, y_0)$ auf der Faser F_0 :

- die 'Monodromiewirkung' aus Teil (a)
- \bullet die von D induzierte Wirkung durch Decktransformationen
- (e) Beweisen Sie:

Die Wirkungen stimmen überein $\iff \pi_1(Y, y_0)$ ist abelsch (d.h. kommutativ)

<u>Tipp:</u> (allgemein) Überzeugen Sie sich, dass die Wirkungen $D_{\alpha}(x \cdot \beta) = D_{\alpha}(x) \cdot \beta$ kommutieren. (zu c:) Sie dürfen ohne Beweis den Anhebungssatz (Lifting Theorem) benutzen: Seien $A \xrightarrow{f} Y \xleftarrow{p} X$ stetige Abbildungen, p eine Überlagerung und $x \in p^{-1}(f(a))$. Dann haben wir eine Äquivalenz:

$$f$$
 besitzt einen Lift $\bar{f}: A \longrightarrow X \iff f_*(\pi_1(A, a)) \subset p_*(\pi_1(X, x))$
mit $f(a) = x$

Abgabe bis Dienstag, 15. Juli 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.