Game Semantics for Probabilistic μ -Calculi

Matteo Mio CWI – Amsterdam

Game Semantics for Modal μ -Calculus

Modal
$$\mu$$
-Calculus \Leftrightarrow 2-Player Parity Games

Model
$$M$$
 + Formula $\phi \longrightarrow \mathsf{Game} \ \mathsf{G}(M,\phi)$

$$\phi$$
 holds at M iff Player Verifier (\lozenge) wins $G(M, \phi)$

Determinacy: Either Verifier (\lozenge) wins or Refuter (\square) wins.

Game Semantics for Probabilistic Modal μ -Calculus

Prob. Modal μ -Calculus \Leftrightarrow $2\frac{1}{2}$ -Player Parity Games

Determinacy: $Val(\lozenge) = 1 - Val(\square)$

- ▶ $Val(\lozenge)$ = probability of winning that Player \lozenge can ensure,
- Val(□) = probability of winning that Player □ can ensure.

Problem:

Probabilistic Modal μ -Calculus is not sufficiently expressive:

• e.g., cannot encode probabilistic CTL (pCTL).

My PhD thesis work

- **Extensions of Prob.** Modal μ -Calculus
 - ► Capable of encoding pCTL,
- with corresponding Game Semantics

New class of Games

• Generalizing $2\frac{1}{2}$ -player Parity Games.

Ordinary $2\frac{1}{2}$ -player games have three kinds of states:

▶ Verifier (\lozenge) , Refuter (\square) and Nature (\bigcirc)

Ordinary $2\frac{1}{2}$ -player games have three kinds of states:

▶ Verifier (\lozenge) , Refuter (\square) and Nature (\bigcirc)

Ordinary $2\frac{1}{2}$ -player games have three kinds of states:

▶ Verifier (\lozenge) , Refuter (\square) and Nature (\bigcirc)

Tree Games

In Tree Games there are **FIVE** kinds of states:

► Two types of Verifier (◊) states,

► Two types of Refuter (□) states,

► Nature (○)

$$Val(\diamondsuit) = \frac{1}{3} + \frac{2}{3} - (\frac{1}{3} \cdot \frac{2}{3})$$
$$= \frac{7}{9}$$

$$Val(\lozenge) = \frac{1}{3} \sqcup \frac{2}{3}$$

$$\frac{6}{3}$$

With probabilistic behavior: Parellel-OR \neq Choice-OR

How do we make sense of <u>infinite</u> branching plays?

How do we make sense of <u>infinite</u> branching plays?

They can be regarded as infinitary Boolean formulas.

How do we make sense of infinite branching plays?

They can be regarded as infinitary Boolean formulas.

- ▶ Infinite branches are either wining for \Diamond or for \Box .
 - Parity Condition.

How do we make sense of infinite branching plays?

They can be regarded as infinitary Boolean formulas.

- ▶ Infinite branches are either wining for \Diamond or for \Box .
 - Parity Condition.
- "Value" of the branching play is given by a Parity Game.

We call these games

Two-Player Stochastic meta- Parity Games

- ▶ The moves of \Diamond , \Box and \bigcirc determine a play
- ► The play is a tree (Branching play),
- ▶ itself interpreted as a Parity Game to determine winner.

Formalization

Two-Player Stochastic meta-Parity games

- are games of imperfect information.
 - ► Each thread executes **ignoring** other parallel threads.
- Do not seem to be straightforwardly reducible to other known classes of games.

Outcomes are not finite or infinite paths,

- they are finite or infinite trees: branching plays.
- ► As usual, space BP of possible branching plays is **uncountable**
- Naturally a Polish space.

Outcomes are not finite or infinite paths,

- they are finite or infinite trees: branching plays.
- ► As usual, space BP of possible branching plays is **uncountable**
- Naturally a Polish space.

The set $W \subseteq BP$ of branching plays winning for \Diamond is:

 Δ_2^1 in the Projective Hierarchy.

Outcomes are not finite or infinite paths,

- they are finite or infinite trees: branching plays.
- ► As usual, space BP of possible branching plays is **uncountable**
- Naturally a Polish space.

The set $W \subseteq BP$ of branching plays winning for \Diamond is:

 Δ_2^1 in the Projective Hierarchy.

DANGER: It is consistent with ZFC that some Δ_2^1 set is not measurable!!!

▶ those branching play T which are winnable by \Diamond .

▶ those branching play T which are winnable by \Diamond .

▶ But hard to work with with this definition.

▶ those branching play T which are winnable by \Diamond .

But hard to work with with this definition.

Inductive Characterization: $\mathcal{W} = \bigcup_{\alpha < \omega_1} \mathcal{W}^{\alpha}$

- $ightharpoonup \mathcal{W}$ is the limit of a transfinite increasing chain.
- ω_1 is the smallest uncountable ordinal. $|\omega_1| = \aleph_1$.

Measure theory works well with **countable** chains:

$$X_0 \subseteq X_1 \subseteq \dots X_n \dots$$
 if $X = \bigcup_{\alpha \le \omega} X^{\alpha}$ then $\mu(X) = \bigsqcup_{\alpha \le \omega} \mu(X^{\alpha})$

But not much can be said about transfinite chains:

$$\text{if } X = \bigcup_{\alpha < \omega_1} X^{\alpha} \qquad \text{then} \quad \mu(X) \geq \bigsqcup_{\alpha < \omega_1} \mu(X^{\alpha})$$

- ▶ ZFC + MA_{\aleph_1} is relatively consistent with ZFC.
- ▶ $\mathsf{ZFC} + \mathsf{MA}_{\aleph_1} \vdash \mathsf{Every} \ \mathbf{\Delta}_2^1 \ \mathsf{set} \ \mathsf{is} \ \mathsf{measurable}.$

$$ightharpoonup$$
 ZFC $+$ MA $_{\aleph_1}$ \vdash if $X = \bigcup_{\alpha < \omega_1} X^{\alpha}$ then $\mu(X) = \bigsqcup_{\alpha < \omega_1} \mu(X^{\alpha})$,

- ▶ ZFC + MA_{\aleph_1} is relatively consistent with ZFC.
- ▶ $\mathsf{ZFC} + \mathsf{MA}_{\aleph_1} \vdash \mathsf{Every} \ \mathbf{\Delta}_2^1 \ \mathsf{set} \ \mathsf{is} \ \mathsf{measurable}.$

▶ ZFC + MA
$$_{\aleph_1}$$
 ⊢ if $X = \bigcup_{\alpha < \omega_1} X^{\alpha}$ then $\mu(X) = \bigsqcup_{\alpha < \omega_1} \mu(X^{\alpha})$,

Good consequences for us:

- $ightharpoonup \mathcal{W} \subseteq \mathtt{BP}$ is measurable, and
- Inductive characterization can be exploited in proofs.

- ▶ ZFC + MA_{\aleph_1} is relatively consistent with ZFC.
- ▶ $\mathsf{ZFC} + \mathsf{MA}_{\aleph_1} \vdash \mathsf{Every} \ \mathbf{\Delta}_2^1 \ \mathsf{set} \ \mathsf{is} \ \mathsf{measurable}.$

▶ ZFC + MA
$$_{\aleph_1}$$
 ⊢ if $X = \bigcup_{\alpha < \omega_1} X^{\alpha}$ then $\mu(X) = \bigsqcup_{\alpha < \omega_1} \mu(X^{\alpha})$,

Good consequences for us:

- $ightharpoonup \mathcal{W} \subseteq \mathtt{BP}$ is measurable, and
- Inductive characterization can be exploited in proofs.

Remark:
$$ZFC + MA_{\aleph_1} \vdash \aleph_1 < 2^{\aleph_0}$$
,

Theorem (ZFC + MA_{\aleph_1}) [Thesis]: Determinacy.

$$\mathtt{Val}(\lozenge) = 1 - \mathtt{Val}(\square)$$

Theorem (ZFC + MA_{$$\aleph_1$$}) [Thesis]: Determinacy.
$$Val(\lozenge) = 1 - Val(\square)$$

Problem left open: is ZFC sufficient?

▶ Our theorems can not be refuted in ZFC, if ZFC is consistent.

THANK YOU