1.降维的基本介绍

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f:x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。

关于维度灾难的一个理解角度:

假设存在下面这样一个球,D维,其半径为r=1,里面圆环的长度为 ϵ

则我们可以计算得知

$$egin{array}{ll} V_{\!\scriptscriptstyle{arsigma}} &= K \cdot 1^D = K \ V_{\!\scriptscriptstyle{arsigma}} &= V_{\!\scriptscriptstyle{arsigma}} - V_{\!\scriptscriptstyle{arsigma}} \ &= k - k \cdot (1 - arepsilon)^D \ &rac{V_{\!\scriptscriptstyle{arsigma}}}{V_{\!\scriptscriptstyle{arsigma}\!\!\!/}} = rac{k - k(1 - arepsilon)^D}{k} = 1 - (1 - arepsilon)^D \end{array}$$

K为一个常数,由于0< ε <1,因此 $\lim_{D\to\infty}(1-\varepsilon)^D=0$,则 $\lim_{D\to\infty}\frac{V_*}{V_*}=1$ 。这就是所谓的维度灾难,在高维数据中,主要样本都分布在立方体的边缘,所以数据集更加稀疏。

那从另外一个角度来看:为什么dimension reduction可能是有用的,如上图所示,假设你的data分布是这样的(在3D里面像螺旋的样子),但是用3D空间来描述这些data其实是很浪费的,其实你从资源就可以说:你把这个类似地毯卷起来的东西把它摊开就变成这样(右边的图)。所以你只需要在2D的空间就可以描述这个3D的information,你根本不需要把这个问题放到这个3D来解,这是把问题复杂化,其实你可以在2D就可以做这个task

1.1常见降维复法比较

降维的算法分为:

- 1. 直接降维,特征选择
- 2. 线性降维, PCA, MDS等
- 3. 分线性,流形包括 Isomap, LLE 等

算法名称	线性/非 线性	有监督/ 无监督	(超)参数	是否去中 心化	目标	假设	涉及矩阵	解的形式
PCA	线性	无监督	W,d	是	降维后的低维样本之间每一维方差尽可能 大	低维空间相互正交	C,W	取C前d个最大特征值对应特征向量排列成线性变换w的列
MDS	非线性	无监督	d	是	降维的同时保证数据之间的相对关系不变	已知高维空间的N个样本之间的距离 矩阵	E,A	取E前d个最大特征值对应特征向量排列成低维矩阵Z的列
LDA	线性	有监督	W,d	否	降维后同一类样本之间协方差尽可能小, 不同类中心距离尽可能大	数据能够被分成d+1类	S_w, S_b, W	取 $S_w^{-1}S_b$ 特征分解的前 d 个最大特征值对应特征向量排列成 W
Isomap	非线性	无监督	d,k	是	降维的同时保证高维数据的流形不变	高维空间的局部区域上某两点距离可 以由欧式距离算出	E,A	与MDS一致
LLE	非线性	无监督	d,k	是	降维的同时保证高维数据的流形不变	高维空间的局部区域上某一点是相邻 K个点的线性组合,低维空间各维正 交	F,M	取M前d个非0最小特征值对应特征向量构成
t-SNE	非线性	无监督	K=2/3	-	降维到二维或者三维可视化	在高维空间中,一个点的取值服从以 另外一个点为中心的高斯分布。在低 维空间中,两个点之间的欧式距离服 从自由度为1的t分布	ВQ	梯度下降的方式来更新低维空间的Z
Auto encoder	非线性	无监督	W_l, l, D_l	-	这个网络能够重构输入数据	网络能够学习到数据内部的一些性质 或者结构	W_{l}	网络最后一层的输出

1.2sklearn中的降维算法

类	说明		
主成分分析			
decomposition.PCA	主成分分析 (PCA)		
decomposition.IncrementalPCA	增量主成分分析 (IPCA)		
decomposition.KernelPCA	核主成分分析(KPCA)		
decomposition. MiniBatch Sparse PCA	小批量稀疏主成分分析		
decomposition.SparsePCA	稀疏主成分分析(SparsePCA)		
decomposition.TruncatedSVD	截断的SVD (aka LSA)		
因子分析			
decomposition.FactorAnalysis	因子分析(FA)		
独立成分分析			
decomposition. FastICA	独立成分分析的快速算法		
字典学习			
decomposition. Dictionary Learning	字典学习		
decomposition. MiniBatch Dictionary Learning	小批量字典学习		
decomposition.dict_learning	字典学习用于矩阵分解		
decomposition.dict_learning_online	在线字典学习用于矩阵分解		
高级矩阵分解			
decomposition. Latent Dirichlet Allocation	具有在线变分贝叶斯算法的隐含狄利克雷分布		
decomposition.NMF	非负矩阵分解(NMF)		
其他矩阵分解			
decomposition.SparseCoder	稀疏编码		

本章节主要介绍一下PCA

2. 主成分分析PCA

视频讲解参考:

• <u>李宏毅老师视频</u>: <u>https://www.bilibili.com/video/BV1Ht411g7Ef?p=24</u>

• <u>白板机器学习</u>: <u>https://www.bilibili.com/video/BV1aE411o7qd?p=22</u>

2.1损失函数

我们假设数据集为

$$X_{N imes p} = (x_1, x_2, \cdots, x_N)^T, x_i = (x_{i1}, x_{i2}, \cdots, x_{ip})^T$$

这个记号表示有 N 个样本,每个样本都是 p 维向量。其中每个观测都是由 $p(x|\theta)$ 生成的。

为了方便,我们首先将协方差矩阵(数据集)写成中心化的形式:

$$\begin{split} S &= \frac{1}{N} \sum_{i=1}^{N} \left(x_{i} - \bar{x} \right) \left(x_{i} - \bar{x} \right)^{T} \\ &= \frac{1}{N} \left(x_{1} - \bar{x}, x_{2} - \bar{x}, \cdots, x_{N} - \bar{x} \right) \left(x_{1} - \bar{x}, x_{2} - \bar{x}, \cdots, x_{N} - \bar{x} \right)^{T} \\ &= \frac{1}{N} \left(X^{T} - \frac{1}{N} X^{T} \mathbb{I}_{N1} \mathbb{I}_{N1}^{T} \right) \left(X^{T} - \frac{1}{N} X^{T} \mathbb{I}_{N1} \mathbb{I}_{N1}^{T} \right)^{T} \\ &= \frac{1}{N} X^{T} \left(E_{N} - \frac{1}{N} \mathbb{I}_{N1} \mathbb{I}_{1N} \right) \left(E_{N} - \frac{1}{N} \mathbb{I}_{N1} \mathbb{I}_{1N} \right)^{T} X \\ &= \frac{1}{N} X^{T} H_{N} H_{N}^{T} X \\ &= \frac{1}{N} X^{T} H_{N} H_{N} X = \frac{1}{N} X^{T} H_{N} H_{N} X \end{split}$$

这个式子利用了中心矩阵 H的对称性,这也是一个投影矩阵。

主成分分析中,我们的基本想法是将所有数据投影到一个字空间中,从而达到降维的目标,为了寻找这个子空间,我们基本想法是:

- 1. 所有数据在子空间中更为分散
- 2. 损失的信息最小,即:在补空间的分量少

原来的数据很有可能各个维度之间是相关的,于是我们希望找到一组 p 个新的线性无关的单位基 u_i ,降维就是取其中的 q 个基。于是对于一个样本 x_i ,经过这个坐标变换后:

$$\hat{x_i} = \sum_{i=1}^p (u_i^T x_i) u_i = \sum_{i=1}^q (u_i^T x_i) u_i + \sum_{i=q+1}^p (u_i^T x_i) u_i$$

对于数据集来说,我们首先将其中心化然后再去上面的式子的第一项,并使用其系数的平方平均作为损 失函数并最大化:

$$egin{aligned} J &= rac{1}{N} \sum_{i=1}^N \sum_{j=1}^q \left((x_i - ar{x})^T u_j
ight)^2 \ &= \sum_{j=1}^q u_j^T S u_j, ext{ s.t. } u_j^T u_j = 1 \end{aligned}$$

由于每个基都是线性无关的,于是每一个 u_i 的求解可以分别进行,使用拉格朗日乘子法:

$$\mathop{argmax}\limits_{u_i} L(u_j, \lambda) = \mathop{argmax}\limits_{u_i} u_j^T S u_j + \lambda (1 - u_j^T u_j)$$

于是:

$$Su_i = \lambda u_i$$

可见,我们需要的基就是协方差矩阵的本征矢。损失函数最大取在本征值前 q 个最大值。

下面看其损失的信息最少这个条件,同样适用系数的平方平均作为损失函数,并最小化:

$$egin{aligned} J &= rac{1}{N} \sum_{i=1}^N \sum_{j=q+1}^p \left((x_i - ar{x})^T u_j
ight)^2 \ &= \sum_{j=q+1}^p u_j^T S u_j, ext{ s.t. } u_j^T u_j = 1 \end{aligned}$$

同样的:

$$argmin_{u_j} L(u_j, \lambda) = argmin_{u_j} u_j^T Su_j + \lambda (1 - u_j^T u_j)$$

损失函数最小取在本征值剩下的个最小的几个值。数据集的协方差矩阵可以写成 $S=U\Lambda U^T$,直接对这个表达式当然可以得到本征矢。

2.2SVD 与 PCoA

下面使用实际训练时常常使用的 SVD 直接求得这个 q 个本征矢。

对中心化后的数据集进行奇异值分解:

$$HX = U\Sigma V^T, U^TU = E_N, V^TV = E_p, \Sigma: N imes p$$

于是:

$$S = rac{1}{N} X^T H X = rac{1}{N} X^T H^T H X = rac{1}{N} V \Sigma^T \Sigma V^T$$

因此,我们直接对中心化后的数据集进行 SVD,就可以得到特征值和特征向量 V,在新坐标系中的坐标就是:

$$HX \cdot V$$

由上面的推导,我们也可以得到另一种方法 PCoA 主坐标分析,定义并进行特征值分解:

$$T = HXX^TH = U\Sigma\Sigma^TU^T$$

由于:

$$TU\Sigma = U\Sigma(\Sigma^T\Sigma)$$

于是可以直接得到坐标。这两种方法都可以得到主成分,但是由于方差矩阵是 $p \times p$ 的,而 T 是 $N \times N$ 的,所以对样本量较少的时候可以采用 PCoA的方法。

总结来说就是

输入: 样本集 $D = \{x_1, x_2, \dots, x_m\}$; 低维空间维数 d'.

过程:

- 1. 对所有样本进行中心化: $oldsymbol{x}_i \leftarrow oldsymbol{x}_i rac{1}{m} \sum_{i=1}^m oldsymbol{x}_i$;
- 2. 计算样本的协方差矩阵 XXX^{T} ;
- 3. 对协方差矩阵 XXX
- 4. 取最大的 d' 个特征值所对应的特征向量 $\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_{d'}$.
- 5. 输出: 投影矩阵 $\mathbf{W} = (w_1, w_2, \dots, w_{d'})$.

2.3p-PCA

下面从概率的角度对 PCA 进行分析,概率方法也叫 p-PCA。我们使用线性模型,类似之前 LDA,我们选定一个方向,对原数据 $x\in\mathbb{R}^p$,降维后的数据为 $z\in\mathbb{R}^q$,降维通过一个矩阵变换(投影)进行:

$$egin{aligned} z &\sim \mathcal{N}\left(\mathbb{O}_{q1}, \mathbb{I}_{qq}
ight) \ x &= Wz + \mu + arepsilon \ arepsilon &\sim \mathcal{N}\left(0, \sigma^2 \mathbb{I}_{pp}
ight) \end{aligned}$$

对于这个模型,我么可以使用期望-最大(EM)的算法进行学习,在进行推断的时候需要求得 p(z|x),推断的求解过程和线性高斯模型类似。

$$egin{aligned} p(z\mid x) &= rac{p(x\mid z)p(z)}{p(x)} \ \mathbb{E}[x] &= \mathbb{E}[Wz + \mu + arepsilon] &= \mu \ \mathrm{Var}[x] &= WW^T + \sigma^2\mathbb{I}_{pp} \ \implies p(z\mid x) &= \mathcal{N}\left(W^T ig(WW^T + \sigma^2\mathbb{I}ig)^{-1}(x-\mu), \mathbb{I} - W^T ig(WW^T + \sigma^2\mathbb{I}ig)^{-1}Wig) \end{aligned}$$

3.代码实践

- sklearn: PCA.ipynb
- numpy: PCA.py

4.常见面试题

参考文献

- 西瓜书
- 统计学习方法
- 维基百科
- 李宏毅老师机器学习
- https://chenrudan.github.io/blog/2016/04/01/dimensionalityreduction.html#1
- 白板机器学习
- https://wang520yan.github.io/2020/05/12/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86
 6%E6%9E%90PCA/
- https://www.zybuluo.com/JeemyJohn/note/990690
- https://www.yuque.com/books/share/f4031f65-70c1-4909-ba01-c47c31398466/kg2npf