Série d'exercices IX

Mathématiques générales (MAT0339)

3 novembre 2018

Cette feuille d'exercices devrait vous permettre de comprendre la matière du cours de cette semaine. À moins d'indication contraire, vous pouvez utiliser la calculatrice pour faire ces exercices.

Fonctions trigonométriques

- 1. Pour chacune des fonctions tangente (tan(x)), cotangente (cot(x)), cosécante $(\csc(x))$ et sécante $(\sec(x))$, donner
 - Sa période et sa fréquence Rappel : La fréquence est l'inverse de la période ;
 - Son domaine et son image;
 - Ses zéros et ses asymptotes;
 - Une restriction de son domaine où la fonction est injective et l'image de la fonction restreinte est celle de la fonction initiale.
- 2. Donner le domaine de la fonction $\log(\sin(x))$.

Rapports trigonométriques

- 3. Sans la calculatrice, donner la valeur de
 - (a) $\arcsin(\cos(\frac{\pi}{6}))$ (d) $\sin(\frac{17\pi}{3})$ (b) $\arccos(-1)$ (e) $\cos(\frac{-26\pi}{3})$
- (g) $\sin^2(12) + \cos^2(12)$

- (h) $\arccos(1) \arccos(-1)$

- (c) $\operatorname{arccot}(\sqrt{3})$
- (f) $\tan(\frac{9\pi}{4})$
- (i) $\tan(\frac{\pi}{3})\cot(\frac{\pi}{3})$
- (j) Toutes les valeurs de x telles que sec(x) = 2.

- 4. Montrer que $\sin(\arccos(x)) = \sqrt{1 x^2}$.
- 5. Parmi ces points, lesquels appartiennent au cercle trigonométrique?
 - (a) $(\frac{1}{2}, \frac{\sqrt{3}}{2})$

(c) $(\frac{3}{5}, \frac{4}{5})$

(b) $(\frac{1}{4}, \frac{3}{4})$

(d) $(\frac{-1}{2}, \frac{\sqrt{5}}{2})$.

Fonctions trigonométriques.

- 6. L'intensité du son produit par un diapason est donnée par $I(t) = 40\sin(\frac{\pi}{50}t)$, où t représente le temps en secondes et I, l'intensité du son en décibels (si I est négative, -I représente l'intensité).
 - Quelle est l'intensité du son après 2 secondes?
 - Combien de temps l'intensité du son met-elle à atteindre 20 dB pour la première fois?
 - Quelle est l'intensité maximale du son?
 - La fréquence du son (en cycles par secondes) indique s'il est plus ou moins aigu. Quelle est la fréquence du son produit par ce diapason?
- 7. Le courant qui sort de nos prises électriques oscille de façon à former du courant alternatif. Avec un oscilloscope, on peut mesurer la tension à la sortie de la prise.

- (a) Quelle est la période de la fonction présentée ci-dessus?
- (b) Quelle est sa fréquence (avec l'unité)?
- (c) Quelle est son amplitude?
- (d) Donner l'équation associée à cette fonction.