TD6 - Réductions, NP-difficulté, NP-complétude

Rappel 1 : Une reduction many-one polynomiale de L_1 à L_2 , est donnée par un algo f en temps poly qui transforme chaque mot sur L_1 en un mot sur L_2 , et préserve l'acceptation :

$$x \in L_1 \iff f(x) \in L_2.$$

On note alors $L_1 \leq_m^p L_2$, car le problème L_2 est au moins aussi difficile que le problème L_1 .

Rappel 2 : L_2 est NP-difficile si et seulement si pour tout $L_1 \in NP$ on a $L_1 \leq_m^p L_2$.

Rappel 3 : L_2 est NP-complet si et seulement si $L_2 \in \mathsf{NP}$ et L_2 est NP-difficile.

Rappel 4 : Si L_1 est NP-difficile et $L_1 \leq_m^p L_2$ alors L_2 est NP-difficile.

Donc, pour répondre à un exercice de la forme

« montrer que le problème Toto est NP-complet »,

on pourra remplir le texte à trou suivant :

(a) Toto ∈ NP, car	
	o dans NP pour décider Toto , soit on utilise la char. exist. de NP\
*	que l'on sait déjà être NP-difficile, on a Tata \leq_m^p Toto , car il existe $\Sigma_{\mathbf{Tata}}^* \to \Sigma_{\mathbf{Toto}}^*$ définie par
(ici on explique commen	t transformer les instances de Tata en des instances de Toto $\rangle \dots$
i. calculable en temps	, qui est : s polynomial, car
, ,	al argumenter simplement : objets de taille poly faciles à générer
ii. et telle que, pour to	out $x \in \Sigma^*_{\mathbf{Tata}}$ on a $x \in \mathbf{Tata} \iff f(x) \in \mathbf{Toto}$. En effet : $f(x) \in \mathbf{Toto}$ on a $f(x) \in \mathbf{Toto}$ car
,	œur de la démonstration – ventricule gauche}
-	$\mathbf{T}^*_{\mathbf{Tata}}$ on a $f(x) \in \mathbf{Toto} \implies x \in \mathbf{Tata}$, car
(ici se trouve le co	œur de la démonstration – ventricule droit〉

Les définitions des problèmes sont données ci-après. On supposera acquis que

3-SAT, **Clique** et **Couverture** par **Sommets** sont NP-complets.

Pour répondre à une question on pourra supposer que l'on a déjà répondu aux précédentes.

- 1. Montrer que Isomorphisme de Sous-Graphes est NP-complet. *Indice : réduire depuis* Clique.
- 2. Montrer que Ensemble Dominant est NP-complet. *Indice : réduire depuis* Couverture par Sommets (Node Cover).
- 3. Montrer que 3-Colorabilité est NP-complet. *Indice : réduire depuis 3-SAT*.
- **4.** Montrer que **Cycle Hamiltonien** est NP-complet. *Indice : réduire depuis* **3-SAT**.

3-SAT

entrée : une formule propositionnelle ϕ en forme normale conjonctive, dont toutes les clauses sont de taille exactement trois.

question: y a-t-il une affectation qui satisfait ϕ ?

Clique

entrée : un graphe non-orienté G = (V, E) et un entier $k \in \mathbb{N}$.

question : G contient-il une clique de taille k?

Couverture par Sommets (Node Cover)

entrée : un graphe non orienté G = (S, A) et un entier naturel k.

question : existe-t-il un sous-ensemble de sommets $C\subseteq S$ de taille au plus k tel que chaque arête de G a au moins une extrémité dans C?

Isomorphisme de Sous-Graphes

entrée : deux graphes orientés G = (S, A) et H = (S', A'). question : G possède-t-il un sous-graphe isomorphe à H?

Ensemble Dominant

entrée : un graphe non orienté G = (S, A) et un entier naturel k.

question : existe-t-il un sous-ensemble de sommets $D \subseteq S$ de taille au plus k tel que chaque sommet de G est soit lui=même dans D, soit il est adjacent à un sommet dans D?

3-Colorabilité

entrée : un graphe non orienté G = (S, A).

question: existe-t-il une coloration des sommets de G avec au plus 3 couleurs telle que deux sommets adjacent soient toujours de deux couleurs différentes?

Cycle Hamiltonien

entrée : un graphe non orienté G = (S, A).

 $\it question:$ existe-t-il un cycle dans $\it G$ qui qui passe par tous les sommets une fois et une seule?