MATH 190A: Homework #7

Due on Feb 26, 2025 at 12:00pm

Professor McKernan

Section A02 8:00AM - 8:50AM Section Leader: Zhiyuan Jiang

 $Source\ Consulted:\ Textbook,\ Lecture,\ Discussion$

Ray Tsai

A16848188

Let X be the topological space whose closed sets are the finite sets plus the whole of X. Show that X is compact.

Proof. Let $\{U_{\alpha}\}_{\alpha}$ be an open cover of X. We may assue that X is infinite, otherwise we are done. Pick U_1 from $\{U_{\alpha}\}_{\alpha}$. Since U_1 is open, $X \setminus U_1$ is finite. For $x_i \in X \setminus U_1$, pick U_i from $\{U_{\alpha}\}_{\alpha}$ such that $x_i \in U_i$. Then $\{U_1, U_2, \ldots, U_i\}$ is a finite subcover of $\{U_{\alpha}\}_{\alpha}$. Therefore, X is compact.

Let X be a topological space. Show that X is compact if and only if for every collection of closed sets

$$\mathcal{F} = \{ F_{\alpha} \mid \alpha \in \Lambda \}$$

such that every finite subcollection

$$\mathcal{F}_0 = \{ F_\beta \mid \beta \in M \}$$

has non-empty intersection, then the intersection of every element of \mathcal{F} is non-empty.

Proof. We first show the forward direction. Suppose for contradiction that $\bigcap_{F \in \mathcal{F}} F = \emptyset$. Let \mathcal{G} be the collection of $X \setminus F$ for all $F \in \mathcal{F}$. Then $\bigcup_{G \in \mathcal{G}} G = X \setminus \bigcap_{F \in \mathcal{F}} F = X$. But then \mathcal{G} is an open cover of X, and so there exists a finite subcover $\mathcal{G}_0 = \{X \setminus F_i \mid 1 \leq i \leq n\}$, for some $F_1, \ldots, F_n \in \mathcal{F}$. That is, $\bigcap_{G \in \mathcal{G}_0} G = X \setminus \bigcap_{i=1}^n F_i$. But then $\bigcap_{i=1}^n F_i \neq \emptyset$, so $\bigcap_{G \in \mathcal{G}_0} G \neq X$, a contradiction.

Now we show the converse. Let $\{U_{\alpha}\}$ be an open cover of X. Let \mathcal{F} be the collection of $X \setminus U_{\alpha}$ for all α . Then \mathcal{F} is a collection of closed sets. Since $\bigcap_{F \in \mathcal{F}} F = \bigcap_{\alpha} (X \setminus U_{\alpha}) = X \setminus \bigcup_{\alpha} U_{\alpha} = \emptyset$, there exists a finite subcollection $\mathcal{F}_0 = \{X \setminus U_{\alpha_1}, \dots, X \setminus U_{\alpha_n}\}$ such that $\bigcap_{F \in \mathcal{F}_0} F = X \setminus \bigcap_{i=1}^n U_{\alpha_i} = \emptyset$. But then $\{U_{\alpha_i}\}_{i=1}^n$ is a finite subcover of X.

True or false? If true then give a proof and if false then give a counterexample.

(i) If X is a compact topological space and $f: X \to \mathbb{R}$ is continuous, then f achieves its maximum and minimum value.

Proof. True. Since f is continuous and X is compact, f(X) is compact and so f(X) = [a, b] for some a < b. Therefore, f achieves its maximum and minimum value.

(ii) Let $f: X \to Y$ be continuous and injective. If Y is Hausdorff, then X is Hausdorff.

Proof. True. Let $x_1, x_2 \in X$ and $y_1 = f(x_1)$, $y_2 = f(x_2)$. Since Y is Hausdorff, there exists disjoint open sets U_1 and U_2 such that $y_1 \in U_1$, $y_2 \in U_2$. Since f is continuous, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are open in X. Since f is injective, $f(f^{-1}(U_1)) \subseteq U_1$ and $f(f^{-1}(U_2)) \subseteq U_2$. Therefore, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are disjoint open sets in X that contain x_1 and x_2 respectively.

(iii) If A and B are compact subspaces of a topological space X then $A \cup B$ is compact.

Proof. True. Let $\{U_{\alpha}\}$ be an open cover of $A \cup B$. Then $\{U_{\alpha} \cap A\}_{\alpha}$ and $\{U_{\alpha} \cap B\}_{\alpha}$ are open covers of A and B respectively. Since A and B are compact, there exists finite subcovers $\{U_1, U_2, \ldots, U_n\}$ and $\{V_1, V_2, \ldots, V_m\}$ of A and B respectively. Then $\{U_1, U_2, \ldots, U_n, V_1, V_2, \ldots, V_m\}$ is a finite subcover of $A \cup B$.

(iv) If A and B are compact subspaces of a topological space X then $A \cap B$ is compact.

Proof. False. Consider $X = \mathbb{R} \cup \{a, b\}$ whose open sets are the canonical open sets of \mathbb{R} and $\mathbb{R} \cup U$, for $U \subseteq \{a, b\}$. Let $A = \mathbb{R} \cup \{a\}$ and $B = \mathbb{R} \cup \{b\}$. Let $\{U_{\alpha}\}$ be an open cover of X. Then there exists U_1 such that $a \in U_1$, and so $\mathbb{R} \subseteq U_1$. Hence, A is compact. Similarly, B is compact. However, $A \cap B = \mathbb{R}$ is not compact.

Let X be a compact topological space and let Y be a Hausdorff topological space. If $f: X \to Y$ is continuous and a bijection, then show that f is a homeomorphism.

Proof. It suffices to show that f^{-1} is continuous. Let U be closed in X. Since X is compact, U is compact, and thus f(U) is compact. But then Y is Hausdorff, so f(U) is closed. Therefore, f^{-1} is continuous. \square