

SEQUENCE LISTING

<110> Wei, Zhong-Min
Qiu, Dewen
Remick, Dean

<120> TREATMENT OF FRUITS OR VEGETABLES WITH HYPERSENSITIVE
RESPONSE ELICITOR TO CONTROL POSTHARVEST DISEASE OR
DESICCATION

<130> 21829/71

<140>
<141>

<150> 60/198,359
<151> 2000-04-19

<160> 12

<170> PatentIn Ver. 2.1

<210> 1
<211> 338
<212> PRT
<213> Erwinia chrysanthemi

<400> 1

Met Gln Ile Thr Ile Lys Ala His Ile Gly Gly Asp Leu Gly Val Ser
1 5 10 15

Gly Leu Gly Ala Gln Gly Leu Lys Gly Leu Asn Ser Ala Ala Ser Ser
20 25 30

Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr
35 40 45

Ser Ala Leu Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu
50 55 60

Gly Ala Ser Ser Lys Gly Leu Gly Met Ser Asn Gln Leu Gly Gln Ser
65 70 75 80

Phe Gly Asn Gly Ala Gln Gly Ala Ser Asn Leu Leu Ser Val Pro Lys
85 90 95

Ser Gly Gly Asp Ala Leu Ser Lys Met Phe Asp Lys Ala Leu Asp Asp
100 105 110

Leu Leu Gly His Asp Thr Val Thr Lys Leu Thr Asn Gln Ser Asn Gln
115 120 125

Leu Ala Asn Ser Met Leu Asn Ala Ser Gln Met Thr Gln Gly Asn Met
130 135 140

Asn Ala Phe Gly Ser Gly Val Asn Asn Ala Leu Ser Ser Ile Leu Gly
145 150 155 160

Asn Gly Leu Gly Gln Ser Met Ser Gly Phe Ser Gln Pro Ser Leu Gly
165 170 175

Ala Gly Gly Leu Gln Gly Leu Ser Gly Ala Gly Ala Phe Asn Gln Leu
180 185 190

Gly Asn Ala Ile Gly Met Gly Val Gly Gln Asn Ala Ala Leu Ser Ala
195 200 205

Leu Ser Asn Val Ser Thr His Val Asp Gly Asn Asn Arg His Phe Val
210 215 220

Asp Lys Glu Asp Arg Gly Met Ala Lys Glu Ile Gly Gln Phe Met Asp
225 230 235 240

Gln Tyr Pro Glu Ile Phe Gly Lys Pro Glu Tyr Gln Lys Asp Gly Trp
245 250 255

Ser Ser Pro Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser Lys
260 265 270

Pro Asp Asp Asp Gly Met Thr Gly Ala Ser Met Asp Lys Phe Arg Gln
275 280 285

Ala Met Gly Met Ile Lys Ser Ala Val Ala Gly Asp Thr Gly Asn Thr
290 295 300

Asn Leu Asn Leu Arg Gly Ala Gly Gly Ala Ser Leu Gly Ile Asp Ala
305 310 315 320

Ala Val Val Gly Asp Lys Ile Ala Asn Met Ser Leu Gly Lys Leu Ala
325 330 335

Asn Ala

<211> 2141
<212> DNA
<213> Erwinia chrysanthemi

<400> 2

cgattttacc cgggtgaacg tgctatgacc gacagcatca cggttattcga caccgttacg 60
gcgttatgg ccgcgtatcaa ccggcatcaag gcggcgcgct ggtcgccgca atccggcgtc 120
gatctggat ttcaagtggg ggacaccggg cgtgaactca ttagatgcagat tcagccgggg 180
cagcaatatac ccggcatgtt gcgcacgctg ctcgctcgctc gttatcagca ggcggcagag 240
tgcgatggct gccatctgtg cctgaacggc agcgatgtat ttagatcctctg gtggccgctg 300
ccgtcggatc ccggcagtttta tccgcagggtt atcgaacgtt tggttgaact ggcggaaatg 360
acgttgcgt cgctatccat agcaccgacg gcgcgtccgc agacaggaa cggacgcgcc 420
cgatcataa gataaaggcg gctttttta ttgcaaaaacg gtaacggta ggaaccgttt 480
caccgtcggc gtcaactcagt aacaagtatac catcatgtat cctacatcgg gatcggcgctg 540
ggcatccgtt gcagataactt ttgcgaacac ctgacatgaa tgaggaaacg aaattatgca 600
aattacgatc aaagcgcaca tcggcgttga tttgggcgtc tccggctctgg ggctgggtgc 660
tcagggactg aaaggactga attccgcggc ttcatcgctg gttccagcg tggataaaact 720
gagcagcacc atcgataagt tgacctccgc gctgacttcg atgatgtttg gcggcgctg 780
ggcgcagggg ctggcgcca gctcgaaggg gctggggatg agcaatcaac tgggcccagtc 840
tttcggcaat ggcgcgcagg gtgcgagcaa cctgctatcc gtaccgaaat ccggcggcga 900
tgcgttgtca aaaatgtttg ataaagcgct ggacgatctg ctgggtcatg acaccgtgac 960
caagctgact aaccagagca accaactggc taattcaatg ctgaacgcca gccagatgac 1020
ccagggttaat atgaatgcgt tcggcagcgg tgtgaacaac gcactgtcgt ccattctcg 1080
caacggcttc ggcagtcga tgagtgcctt ctctcagcct tctctggggg caggcggctt 1140
gcagggctg agcggcgccg gtgcattcaa ccagttgggt aatgcacatcg gcatgggcgt 1200
ggggcagaat gctgcgtga gtgcgttgag taacgtcagc acccacgtag acggtaacaa 1260
ccgccactt gttagataaag aagatcgcgg catggcgaaa gagatcggcc agtttatgga 1320
tcagtagatccg gaaatattcg gtaaaaccgg ataccagaaa gatggctgga gttcgccgaa 1380
gacggacgac aaatcctggg ctaaagcgct gagtaaaccg gatgatgacg gtatgaccgg 1440
cgccagcatg gacaaattcc gtcaggcgat ggttatgatc aaaagcgcgg tggcgggtga 1500
taccggcaat accaacctga acctgcgtgg cgcggcggt gcatgcgtgg gtatcgatgc 1560
ggctgcgtc ggcataaaaa tagccaacat gtcgctgggt aagctggcca acgcctgata 1620
atctgtgctg gcctgataaaa gcggaaacga aaaaagagac ggggaagcct gtctctttc 1680
ttattatgctg gtttatgcgg ttacctggac cggtaatca tcgtcatcga tctggtacaa 1740
acgcacattt tcccgttcat tcgcgtcgtt acgcgccaca atcgcgtatgg catcttcctc 1800
gtcgctcaga ttgcgcggct gatgggaac gccgggtgga atatacgagaa actcgccggc 1860
cagatggaga cacgtctgcg ataaatctgt gccgtaacgt gtttctatcc gccccctttag 1920
cagatagatt gcggttcgt aatcaacatg gtaatgcggt tccgcgtgtg cgcggccgg 1980
gatcaccaca atattcatag aaagctgtct tgacacctacc gtatcgcggg agataccgac 2040
aaaatagggc agttttgcg tggtatccgt ggggtgttcc ggcctgacaa tcttgagttg 2100
gttcgtcatc atctttctcc atctggcgaa cctgatcggt t 2141

<210> 3
<211> 403
<212> PRT
<213> Erwinia amylovora

<400> 3

Met Ser Leu Asn Thr Ser Gly Leu Gly Ala Ser Thr Met Gln Ile Ser
1 5 10 15

Ile Gly Gly Ala Gly Gly Asn Asn Gly Leu Leu Gly Thr Ser Arg Gln
20 25 30

Asn Ala Gly Leu Gly Gly Asn Ser Ala Leu Gly Leu Gly Gly Asn
35 40 45

Gln Asn Asp Thr Val Asn Gln Leu Ala Gly Leu Leu Thr Gly Met Met
50 55 60

Met Met Met Ser Met Met Gly Gly Gly Leu Met Gly Gly Gly Leu
65 70 75 80

Gly Gly Leu Gly Asn Gly Leu Gly Gly Ser Gly Gly Leu Gly Glu
85 90 95

Gly Leu Ser Asn Ala Leu Asn Asp Met Leu Gly Gly Ser Leu Asn Thr
100 105 110

Leu Gly Ser Lys Gly Gly Asn Asn Thr Thr Ser Thr Thr Asn Ser Pro
115 120 125

Leu Asp Gln Ala Leu Gly Ile Asn Ser Thr Ser Gln Asn Asp Asp Ser
130 135 140

Thr Ser Gly Thr Asp Ser Thr Ser Asp Ser Ser Asp Pro Met Gln Gln
145 150 155 160

Leu Leu Lys Met Phe Ser Glu Ile Met Gln Ser Leu Phe Gly Asp Gly
165 170 175

Gln Asp Gly Thr Gln Gly Ser Ser Ser Gly Gly Lys Gln Pro Thr Glu
180 185 190

Gly Glu Gln Asn Ala Tyr Lys Lys Gly Val Thr Asp Ala Leu Ser Gly
195 200 205

Leu Met Gly Asn Gly Leu Ser Gln Leu Leu Gly Asn Gly Gly Leu Gly
210 215 220

Gly Gly Gln Gly Gly Asn Ala Gly Thr Gly Leu Asp Gly Ser Ser Leu
225 230 235 240

Gly Gly Lys Gly Leu Gln Asn Leu Ser Gly Pro Val Asp Tyr Gln Gln
245 250 255

Leu Gly Asn Ala Val Gly Thr Gly Ile Gly Met Lys Ala Gly Ile Gln
260 265 270

Ala Leu Asn Asp Ile Gly Thr His Arg His Ser Ser Thr Arg Ser Phe
275 280 285

Val Asn Lys Gly Asp Arg Ala Met Ala Lys Glu Ile Gly Gln Phe Met
290 295 300

Asp Gln Tyr Pro Glu Val Phe Gly Lys Pro Gln Tyr Gln Lys Gly Pro
305 310 315 320

Gly Gln Glu Val Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser
325 330 335

Lys Pro Asp Asp Asp Gly Met Thr Pro Ala Ser Met Glu Gln Phe Asn
340 345 350

Lys Ala Lys Gly Met Ile Lys Arg Pro Met Ala Gly Asp Thr Gly Asn
355 360 365

Gly Asn Leu Gln Ala Arg Gly Ala Gly Ser Ser Leu Gly Ile Asp
370 375 380

Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu
385 390 395 400

Gly Ala Ala

<210> 4

<211> 1288

<212> DNA

<213> Erwinia amylovora

<400> 4

aagcttcggc atggcacgtt tgaccgttgg gtcggcaggg tacgtttgaa ttattcataa 60
gaggaatacg ttatgagtct gaatacaagt ggctgggag cgtcaacgt gcaaatttct 120
atccggcggtg cggcgaaaa taacgggttg ctgggtacca gtcgccagaa tgctgggtt 180
ggtggcaatt ctgcactggg gctggcgcc ggtaatcaaa atgataccgt caatcagctg 240
gctggcttac tcaccggcat gatgatgatg atgagcatga tgggcggtgtt tgggctgtatg 300
ggcggtggct taggcggtgtt ctttaggtta ggcttgggtg gctcagggtgg cctggcgaaa 360
ggactgtcga acgcgctgaa cgatatgtta ggcggttcgc tgaacacgct gggctcgaaa 420
ggcggcaaca ataccacttc aacaacaat tccccctgg accaggcgct gggattaaac 480
tcaacgtccc aaaacgacga ttccacccctcc ggcacagatt ccacccaga ctccagcgcac 540
ccgatgcagc agctgctgaa gatgttcagc gagataatgc aaagcctgtt tggtgatggg 600

caagatggca cccagggcag ttcctctggg ggcaagcagc cgaccgaagg cgagcagaac 660
gcctataaaa aaggagtcac tgatgcgtg tcgggcctga tggtaatgg tctgagccag 720
ctccttgcac acggggact gggaggttgt cagggcggtg atgctggcac gggcttgac 780
ggtcgtcgc tggcgccaa agggctgaa aacctgagcg gcggcggtgaa ctaccagcag 840
ttaggtaacg ccgtgggtac cggtatcggt atgaaagcgg gcattcaggc gctgaatgt 900
atcggtacgc acaggcacag ttcaaccgt tcttcgtca ataaaggcga tcggcgatg 960
gcgaaggaaa tcggtcagtt catggaccag tattctgagg tggttggcaa gccgcagtac 1020
cagaaaggcc cgggtcagga ggtgaaaacc gatgacaaat catggcaaa agcaactgagc 1080
aagccagatg acgacggaat gacaccagcc agtatggagc agttcaacaa agccaagggc 1140
atgatcaaaa ggcacatggc gggtgatacc ggcaacggca acctgcaggc acgcggtgcc 1200
ggtggttctt cgctgggtat tgatgccatg atggccggtg atgccattaa caatatggca 1260
cttggcaagc tggcgccggc ttaagctt 1288

<210> 5

<211> 447

<212> PRT

<213> Erwinia amylovora

<400> 5

Met Ser Ile Leu Thr Leu Asn Asn Asn Thr Ser Ser Ser Pro Gly Leu
1 5 10 15

Phe Gln Ser Gly Gly Asp Asn Gly Leu Gly Gly His Asn Ala Asn Ser
20 25 30

Ala Leu Gly Gln Gln Pro Ile Asp Arg Gln Thr Ile Glu Gln Met Ala
35 40 45

Gln Leu Leu Ala Glu Leu Leu Lys Ser Leu Leu Ser Pro Gln Ser Gly
50 55 60

Asn Ala Ala Thr Gly Ala Gly Gly Asn Asp Gln Thr Thr Gly Val Gly
65 70 75 80

Asn Ala Gly Gly Leu Asn Gly Arg Lys Gly Thr Ala Gly Thr Thr Pro
85 90 95

Gln Ser Asp Ser Gln Asn Met Leu Ser Glu Met Gly Asn Asn Gly Leu
100 105 110

Asp Gln Ala Ile Thr Pro Asp Gly Gln Gly Gly Gln Ile Gly Asp
115 120 125

Asn Pro Leu Leu Lys Ala Met Leu Lys Leu Ile Ala Arg Met Met Asp
130 135 140

Gly Gln Ser Asp Gln Phe Gly Gln Pro Gly Thr Gly Asn Asn Ser Ala

145 150 155 160
 Ser Ser Gly Thr Ser Ser Ser Gly Gly Ser Pro Phe Asn Asp Leu Ser
 165 170 175
 Gly Gly Lys Ala Pro Ser Gly Asn Ser Pro Ser Gly Asn Tyr Ser Pro
 180 185 190
 Val Ser Thr Phe Ser Pro Pro Ser Thr Pro Thr Ser Pro Thr Ser Pro
 195 200 205
 Leu Asp Phe Pro Ser Ser Pro Thr Lys Ala Ala Gly Gly Ser Thr Pro
 210 215 220
 Val Thr Asp His Pro Asp Pro Val Gly Ser Ala Gly Ile Gly Ala Gly
 225 230 235 240
 Asn Ser Val Ala Phe Thr Ser Ala Gly Ala Asn Gln Thr Val Leu His
 245 250 255
 Asp Thr Ile Thr Val Lys Ala Gly Gln Val Phe Asp Gly Lys Gly Gln
 260 265 270
 Thr Phe Thr Ala Gly Ser Glu Leu Gly Asp Gly Gly Gln Ser Glu Asn
 275 280 285
 Gln Lys Pro Leu Phe Ile Leu Glu Asp Gly Ala Ser Leu Lys Asn Val
 290 295 300
 Thr Met Gly Asp Asp Gly Ala Asp Gly Ile His Leu Tyr Gly Asp Ala
 305 310 315 320
 Lys Ile Asp Asn Leu His Val Thr Asn Val Gly Glu Asp Ala Ile Thr
 325 330 335
 Val Lys Pro Asn Ser Ala Gly Lys Lys Ser His Val Glu Ile Thr Asn
 340 345 350
 Ser Ser Phe Glu His Ala Ser Asp Lys Ile Leu Gln Leu Asn Ala Asp
 355 360 365
 Thr Asn Leu Ser Val Asp Asn Val Lys Ala Lys Asp Phe Gly Thr Phe
 370 375 380
 Val Arg Thr Asn Gly Gly Gln Gln Gly Asn Trp Asp Leu Asn Leu Ser
 385 390 395 400
 His Ile Ser Ala Glu Asp Gly Lys Phe Ser Phe Val Lys Ser Asp Ser

405

410

415

Glu Gly Leu Asn Val Asn Thr Ser Asp Ile Ser Leu Gly Asp Val Glu
420 425 430

420

425

430

Asn His Tyr Lys Val Pro Met Ser Ala Asn Leu Lys Val Ala Glu
435 440 445

435

440

445

<210> 6

<211> 1344

<212> DNA

<213> *Erwinia amylovora*

<400> 6

atgtcaattc ttacgcttaa caacaatacc tcgtcctcgc cgggtctgtt ccagtcggg 60
ggggacaacg ggcttggtgg tcataatgca aattctgcgt tggggcaaca acccatcgat 120
cgccaacca ttgagcaaat ggctcaatta ttggcggaac tgttaagtc actgctatcg 180
ccacaatcag gtaatgcggc aaccggagcc ggtggcaatg accagactac aggagtttgt 240
aacgctggcg gcctgaacgg acgaaaaggc acagcagggaa ccactccgca gtctgacagt 300
cagaacatgc ttagtgagat gggcaacaac gggctggatc aggccatcac gcccgtatggc 360
cagggcggcg ggcagatcgg cgataatcct ttactgaaag ccatgctgaa gcttattgca 420
cgcatgatgg acggccaaag cgatcagttt ggccaacctg gtacgggcaa caacagtgcc 480
tcttccggta ctcttcatc tggcggttcc ccttttaacg atctatcagg ggggaaggcc 540
ccttccggca actcccccttc cggcaactac tctcccgta gtaccccttc acccccatcc 600
acgccaacgt cccctacctc accgcttgc tatcccttctt ctcccaccaa agcagccggg 660
ggcagcacgc cgtaaccga tcatcctgac cctgttgta gcgcgggcat cggggccgga 720
aattcggtgg ctttcaccaag cgccggcgct aatcagacgg tgctgcatga caccattacc 780
gtgaaagcgg gtcaggtgtt ttagtgcaaa ggacaaaacct tcaccggccgg ttcaagaatta 840
ggcgtggcg gccagtctga aaaccagaaa ccgctgttta tactggaaga cggtgccagc 900
ctgaaaaacg tcaccatggg cgacgacggg gcggatggta ttcatcttta cggtgatgcc 960
aaaatagaca atctgcacgt caccaacgtg ggtgaggacg cgattaccgt taagccaaac 1020
agcgcgggca aaaaatccca cgttggaaatc actaacagtt ccttcgagca cgcctctgac 1080
aagatcctgc agctgaatgc cgatactaac ctgagcgttg acaacgtgaa ggccaaagac 1140
tttggtactt ttgtacgcac taacggcggt caacagggtt actgggatct gaatctgagc 1200
catatcagcg cagaagacgg taagttctcg ttcgtaaaaa gcgatagcga ggggctaaac 1260
gtcaatacca gtgatatctc actgggtgat gttgaaaacc actacaaaagt gccgatgtcc 1320
gccaacctqa aqgtqqctqa atqa 1344

<210> 7

<211> 341

<212> PRT

<213> *Pseudomonas syringae*

<400> 7

Met Gln Ser Leu Ser Leu Asp Ser Ser Ser Leu Gln Thr Pro Ala Met

1

5

10

15

Ala Leu Val Leu Val Arg Pro Glu Ala Glu Thr Thr Gly Ser Thr Ser
 20 25 30

Ser Lys Ala Leu Gln Glu Val Val Val Lys Leu Ala Glu Glu Leu Met
 35 40 45

Arg Asn Gly Gln Leu Asp Asp Ser Ser Pro Leu Gly Lys Leu Leu Ala
 50 55 60

Lys Ser Met Ala Ala Asp Gly Lys Ala Gly Gly Ile Glu Asp Val
 65 70 75 80

Ile Ala Ala Leu Asp Lys Leu Ile His Glu Lys Leu Gly Asp Asn Phe
 85 90 95

Gly Ala Ser Ala Asp Ser Ala Ser Gly Thr Gly Gln Gln Asp Leu Met
 100 105 110

Thr Gln Val Leu Asn Gly Leu Ala Lys Ser Met Leu Asp Asp Leu Leu
 115 120 125

Thr Lys Gln Asp Gly Gly Thr Ser Phe Ser Glu Asp Asp Met Pro Met
 130 135 140

Leu Asn Lys Ile Ala Gln Phe Met Asp Asp Asn Pro Ala Gln Phe Pro
 145 150 155 160

Lys Pro Asp Ser Gly Ser Trp Val Asn Glu Leu Lys Glu Asp Asn Phe
 165 170 175

Leu Asp Gly Asp Glu Thr Ala Ala Phe Arg Ser Ala Leu Asp Ile Ile
 180 185 190

Gly Gln Gln Leu Gly Asn Gln Gln Ser Asp Ala Gly Ser Leu Ala Gly
 195 200 205

Thr Gly Gly Leu Gly Thr Pro Ser Ser Phe Ser Asn Asn Ser Ser
 210 215 220

Val Met Gly Asp Pro Leu Ile Asp Ala Asn Thr Gly Pro Gly Asp Ser
 225 230 235 240

Gly Asn Thr Arg Gly Glu Ala Gly Gln Leu Ile Gly Glu Leu Ile Asp
 245 250 255

Arg Gly Leu Gln Ser Val Leu Ala Gly Gly Leu Gly Thr Pro Val
 260 265 270

Asn Thr Pro Gln Thr Gly Thr Ser Ala Asn Gly Gly Gln Ser Ala Gln
275 280 285

Asp Leu Asp Gln Leu Leu Gly Gly Leu Leu Leu Lys Gly Leu Glu Ala
290 295 300

Thr Leu Lys Asp Ala Gly Gln Thr Gly Thr Asp Val Gln Ser Ser Ala
305 310 315 320

Ala Gln Ile Ala Thr Leu Leu Val Ser Thr Leu Leu Gln Gly Thr Arg
325 330 335

Asn Gln Ala Ala Ala
340

<210> 8

<211> 1026

<212> DNA

<213> Pseudomonas syringae

<400> 8

atgcagagtc tcagtcttaa cagcagctcg ctgcaaacc cggcaatggc cttgtcctg 60
gtacgtcctg aagccgagac gactggcagt acgtcgagca aggcgcttca gaaagttgtc 120
gtgaagctgg ccgaggaact gatgcgcaat ggtcaactcg acgacagctc gccattggga 180
aaactgttgg ccaagtcgat ggccgcagat ggcaggcgg gcggcggtat tgaggatgtc 240
atcgctgcgc tggacaagct gatccatgaa aagctcggt acaacttcgg cgcgtctgcg 300
gacagcgctt cgggtaccgg acagcaggac ctgatgactc aggtgctcaa tggcctggcc 360
aagtgcgtgc tcgatgatct tctgaccaag caggatggcg ggacaagctt ctccgaagac 420
gatatgccga tgctgaacaa gatcgccgag ttcatggatg acaatcccgc acagtttccc 480
aagccggact cgggctcctg ggtgaacgaa ctcaaggaag acaacttcct tgatggcgac 540
gaaacggctg cggtccgttc ggcactcgac atcattggcc agcaactggg taatcagcag 600
agtgacgctg gcagtcgtgc agggacgggt ggaggtctgg gcactccgag cagttttcc 660
aacaactcgt ccgtgatggg tgatccgctg atcgacgcca ataccggtcc cggtgacagc 720
ggcaataccc gtggtaagc gggcaactg atcggcgagc ttatcgaccg tggcctgcaa 780
tcggatttgg cgggtgtgg actgggcaca cccgtaaaca ccccgagac cggtagtcg 840
gcgaatggcg gacagtccgc tcaggatctt gatcagttgc tggcggctt gctgctcaag 900
ggcctggagg caacgctcaa ggatgcccccaaaacaggca ccgacgtgca gtcgagcgt 960
gcfgcaaatcg ccaccttgct ggtcagtagc ctgctgcaag gcacccgcaa tcaggctgca 1020
gcctga 1026

<210> 9

<211> 424

<212> PRT

<213> Pseudomonas syringae

<400> 9

Met Ser Ile Gly Ile Thr Pro Arg Pro Gln Gln Thr Thr Thr Pro Leu
1 5 10 15

Asp Phe Ser Ala Leu Ser Gly Lys Ser Pro Gln Pro Asn Thr Phe Gly
20 25 30

Glu Gln Asn Thr Gln Gln Ala Ile Asp Pro Ser Ala Leu Leu Phe Gly
35 40 45

Ser Asp Thr Gln Lys Asp Val Asn Phe Gly Thr Pro Asp Ser Thr Val
50 55 60

Gln Asn Pro Gln Asp Ala Ser Lys Pro Asn Asp Ser Gln Ser Asn Ile
65 70 75 80

Ala Lys Leu Ile Ser Ala Leu Ile Met Ser Leu Leu Gln Met Leu Thr
85 90 95

Asn Ser Asn Lys Lys Gln Asp Thr Asn Gln Glu Gln Pro Asp Ser Gln
100 105 110

Ala Pro Phe Gln Asn Asn Gly Gly Leu Gly Thr Pro Ser Ala Asp Ser
115 120 125

Gly Gly Gly Thr Pro Asp Ala Thr Gly Gly Gly Gly Asp Thr
130 135 140

Pro Ser Ala Thr Gly Gly Gly Asp Thr Pro Thr Ala Thr Gly
145 150 155 160

Gly Gly Gly Ser Gly Gly Gly Thr Pro Thr Ala Thr Gly Gly
165 170 175

Ser Gly Gly Thr Pro Thr Ala Thr Gly Gly Glu Gly Gly Val Thr
180 185 190

Pro Gln Ile Thr Pro Gln Leu Ala Asn Pro Asn Arg Thr Ser Gly Thr
195 200 205

Gly Ser Val Ser Asp Thr Ala Gly Ser Thr Glu Gln Ala Gly Lys Ile
210 215 220

Asn Val Val Lys Asp Thr Ile Lys Val Gly Ala Gly Glu Val Phe Asp
225 230 235 240

Gly His Gly Ala Thr Phe Thr Ala Asp Lys Ser Met Gly Asn Gly Asp
245 250 255

Gln Gly Glu Asn Gln Lys Pro Met Phe Glu Leu Ala Glu Gly Ala Thr
260 265 270

Leu Lys Asn Val Asn Leu Gly Glu Asn Glu Val Asp Gly Ile His Val
275 280 285

Lys Ala Lys Asn Ala Gln Glu Val Thr Ile Asp Asn Val His Ala Gln
290 295 300

Asn Val Gly Glu Asp Leu Ile Thr Val Lys Gly Glu Gly Gly Ala Ala
305 310 315 320

Val Thr Asn Leu Asn Ile Lys Asn Ser Ser Ala Lys Gly Ala Asp Asp
325 330 335

Lys Val Val Gln Leu Asn Ala Asn Thr His Leu Lys Ile Asp Asn Phe
340 345 350

Lys Ala Asp Asp Phe Gly Thr Met Val Arg Thr Asn Gly Gly Lys Gln
355 360 365

Phe Asp Asp Met Ser Ile Glu Leu Asn Gly Ile Glu Ala Asn His Gly
370 375 380

Lys Phe Ala Leu Val Lys Ser Asp Ser Asp Asp Leu Lys Leu Ala Thr
385 390 395 400

Gly Asn Ile Ala Met Thr Asp Val Lys His Ala Tyr Asp Lys Thr Gln
405 410 415

Ala Ser Thr Gln His Thr Glu Leu
420

<210> 10

<211> 1729

<212> DNA

<213> *Pseudomonas syringae*

<400> 10

tccacttcgc tgattttgaa attggcagat tcataaaaaac gttcagggtgt ggaaatcagg 60
ctgagtgcgc agatttcgtt gataagggtg tggtaactggc cattttgggt catttcaagg 120
cctctgagtg cggtcgagg caataccagt ctccctgctg gcgtgtgcac actgagtcgc 180
aggcataggc atttcagttc cttgcgttgg ttgggcataat aaaaaaaagga acttttaaaa 240
acagtgcata gagatgccgg caaaacggga accggtcgct gcgccttgcc actcacttcg 300
agcaagctca accccaaaca tccacatccc tatcgaacgg acagcgatac gccacttgc 360
tctggtaaac cctggagctg gcgtcggtcc aattgccccac ttagcgaggt aacgcagcat 420

gagcatcgcc atcacacccc ggccgcaaca gaccaccacg ccactcgatt tttcggcgct 480
aaggcgcaag agtcttcAAC caaacacgtt cgccgagcag aacactcAGC aagcgatcga 540
cccgagtgcA ctgttgttcg gcagcgacac acagaaAGAC gtcaacttcg gcacgcccga 600
cagcaccgtc cagaatccgc aggacGCCAG caagCCAAc gacagCCAGT ccaacatcgc 660
taaattgatc agtgcattga tcatgtcgTT gctgcagatg ctcaccaact ccaataaaaa 720
gcaggacacc aatcaggaac agcctgatag ccaggctcCT ttccagaaca acggcgggct 780
cggtacaccg tcggccgata gcggggcgg cggtacaccg gatgcgacag gtggcggcgg 840
cggtgatacg ccaagcgcaa caggcgttgg cggcgtgtat actccgaccg caacaggcgg 900
tggcggcagc ggtggcggcg gcacacccac tgcaacaggt ggcggcagcg gtggcacacc 960
caetgcaaca ggccgtggcg agggtggcgt aacaccgcaa atcactccgc agttggccaa 1020
ccctaaccgt acctcaggtA ctggctcggt gtcggacacc gcaggTTcta ccgagcaagc 1080
cgccaagatc aatgtgtga aagacaccat caaggtcgcc gctggcgaag tctttgacgg 1140
ccacggcgca accttcaactg ccgacaaatc tatgggtaaac ggagaccagg gcgaaaatca 1200
gaagccccatg ttcgagctgg ctgaaggcgc tacgttgaag aatgtgaacc tgggtgagaa 1260
cgaggtcgat ggcatccacg tgaaagccaa aaacgctcaq gaagtcacca ttgacaacgt 1320
gcatgcccag aacgtcggtg aagacctgtat tacggtaaaa ggcgagggag ggcgcgg 1380
caactaatctg aacatcaaga acagcagtgc caaagggtgca gacgacaagg ttgtccagct 1440
caacgccaac actcaacttga aaatcgacaa cttaaggcc gacgatttcg gcacgatggt 1500
tcgcaccaac ggtggcaagc agtttgatga catgagcatc gagctgaacg gcatcgaagc 1560
taaccacggc aagttcgccc tggtaaaaag cgacagtgac gatctgaagc tggcaacggg 1620
caacatcgcc atgaccgacg tcaaacadgc ctacgataaa acccaggcat cgacccaaca 1680
caccgagctt tgaatccaga caagtagctt gaaaaaaggg ggtggactc 1729

<210> 11

<211> 344

<212> PRT

<213> Pseudomonas solanacearum

<400> 11

Met	Ser	Val	Gly	Asn	Ile	Gln	Ser	Pro	Ser	Asn	Leu	Pro	Gly	Leu	Gln
1															15

Asn	Leu	Asn	Leu	Asn	Thr	Asn	Thr	Asn	Ser	Gln	Gln	Ser	Gly	Gln	Ser
															30

Val	Gln	Asp	Leu	Ile	Lys	Gln	Val	Glu	Lys	Asp	Ile	Leu	Asn	Ile	Ile
															45

Ala	Ala	Leu	Val	Gln	Lys	Ala	Ala	Gln	Ser	Ala	Gly	Gly	Asn	Thr	Gly
															60

Asn	Thr	Gly	Asn	Ala	Pro	Ala	Lys	Asp	Gly	Asn	Ala	Asn	Ala	Gly	Ala
															80

Asn	Asp	Pro	Ser	Lys	Asn	Asp	Pro	Ser	Lys	Ser	Gln	Ala	Pro	Gln	Ser
															95

Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met
100 105 110

Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala
115 120 125

Ala Leu His Met Gln Gln Pro Gly Gly Asn Asp Lys Gly Asn Gly Val
130 135 140

Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala
145 150 155 160

Glu Ala Leu Gln Glu Ile Glu Gln Ile Leu Ala Gln Leu Gly Gly
165 170 175

Gly Ala Gly Ala Gly Gly Ala Gly Gly Val Gly Gly Ala Gly Gly
180 185 190

Ala Asp Gly Gly Ser Gly Ala Gly Gly Ala Gly Gly Ala Asn Gly Ala
195 200 205

Asp Gly Gly Asn Gly Val Asn Gly Asn Gln Ala Asn Gly Pro Gln Asn
210 215 220

Ala Gly Asp Val Asn Gly Ala Asn Gly Ala Asp Asp Gly Ser Glu Asp
225 230 235 240

Gln Gly Gly Leu Thr Gly Val Leu Gln Lys Leu Met Lys Ile Leu Asn
245 250 255

Ala Leu Val Gln Met Met Gln Gln Gly Gly Leu Gly Gly Asn Gln
260 265 270

Ala Gln Gly Gly Ser Lys Gly Ala Gly Asn Ala Ser Pro Ala Ser Gly
275 280 285

Ala Asn Pro Gly Ala Asn Gln Pro Gly Ser Ala Asp Asp Gln Ser Ser
290 295 300

Gly Gln Asn Asn Leu Gln Ser Gln Ile Met Asp Val Val Lys Glu Val
305 310 315 320

Val Gln Ile Leu Gln Gln Met Leu Ala Ala Gln Asn Gly Gly Ser Gln
325 330 335

Gln Ser Thr Ser Thr Gln Pro Met
340

<210> 12
<211> 1035
<212> DNA
<213> *Pseudomonas solanacearum*

<400> 12
atgtcagtgcg gaaacatcca gagccgtcg aacctcccgg gtctgcagaa cctgaacctc 60
aacaccaaca ccaacagcca gcaatcgggc cagtcgtgc aagacctgat caagcaggc 120
gagaaggaca tcctcaacat catcgagcc ctcgtgcaga aggccgcaca gtcggcggc 180
ggcaacaccg gtaacaccgg caacgcgccc gcgaaggacg gcaatgccaa cgccggcgcc 240
aacgaccgg acaagaacga cccgagcaag agccaggctc cgcaatcgcc caacaagacc 300
ggcaacgtcg acgacgccaa caaccaggat ccgtatgcaag cgctgtatgca gctgctggaa 360
gacctggta agctgttgyaa ggccggccctg cacatgcagc agcccgccgg caatgacaag 420
ggcaacggcg tggcggtgc caacgcgcgc aagggtgcgg gcggccaggg cggcctggcc 480
gaagcgctgc aggagatcga gcagatcctc gcccgactcg gcggcgccgg tgctggcgcc 540
ggccggcgccg gtggcggtgt cggcggtgt ggtggcgccgg atggcggtct cggtgccgg 600
ggcgcaggcg gtgcgaacgg cgccgacggc ggcaatggcg tgaacggcaa ccaggcgaac 660
ggcccgccaga acgcaggcga tgtcaacggt gccaacggcg cgatgacgg cagcgaagac 720
cagggcgcc tcacccggcgt gctgcggaa ctgtatgaaga tcctgaacgc gctggtcag 780
atgatgcagc aaggcgccct cggcgccggc aaccaggcgc agggcggtct gaagggtgcc 840
ggcaacgcct cggcggttc cggcgcaac ccggcgccga accagccgg ttcggcggt 900
gatcaatcgt ccggccagaa caatctgcaa tcccgatca tggatgtggt gaaggaggtc 960
gtcccgatcc tgcatcgat gctggcgccg cagaacggcg gcagccagca gtccacctcg 1020
acgcaggcga tgtaa 1035