機器學習用於股票策略分析 第十一組

賴冠霖 M132040012 吳弘曆 M134111058

2024/12/17

目錄

摘.	要	_ 1	١ -
壹	`	研究動機	-
貮	`	資料介紹	-
		變數介紹2	
肆	`	資料處理	2 -
伍	`	模型選擇與比較	5 -
陸	`	解釋模型結果) -
柒	`	結論) -
捌	`	未來展望 10) -
玖	`	参考資料 11	-

摘要

本研究目標使用月度指標來預測股票每月報酬率的正負方向。我們僅關注只依賴當月的特徵,以避免時間序列的問題。透過資料視覺化、相關性檢查與共線性分析、合併變數、···,篩選出能有效代表當月價格波動和交易活動的變數作為模型輸入,進行多模型比較,最終選擇準確率(accuracy)作為策略評估指標。

壹、研究動機

本研究在於探索能有效預測台積電、鴻海、聯發科股價變動的指標,從而為 投資者提供短期決策的依據,並增強投資回報的穩定性。透過機器學習模型,結 合股價波動率、交易量、市值等多種特徵,以預測下一期的股價走勢(即預測其 價格是否會上漲或下跌)。本研究希望達到風險調整後的超額報酬增長,進一步 提升投資者的決策效益。

貳、資料介紹

資料介紹:

本研究聚焦於台灣三家市值最大的上市公司:台積電(2330)、鴻海(2317)、聯發科(2454),利用其月度股票市場指標進行分析。這些數據來源於 TEJPro 台灣經濟新報,反映出個股的市場交易狀況和基本面財務數據,為短期投資決策提供支持。

股票公司簡介:

- 台積電(2330):
 全球最大的晶圓代工公司,半導體行業的龍頭企業。
- 鴻海(2317):
 世界領先的電子製造服務供應商,廣泛參與全球電子產品生產鏈。
- 3. 聯發科(2454): 全球領先的 IC 設計公司,專注於消費電子芯片的開發。

數據期間:

數據以月為單位,涵蓋三家公司在不同月份的股價表現及交易情況。

台積電:1994/09~2024/12 鴻 海:1991/06~2024/12 聯發科:2001/07~2024/12

數據來源 : TEJPro 官方網站

參、變數介紹

以下變數用於描述每月的股票市場表現及基本財務數據:

表一 變數介紹

變數	變數介紹
開盤價(元)_月	每月第一個交易日的開市價格
最高價(元)_月	該月份內的最高交易價格
最低價(元)_月	該月份內的最低交易價格
收盤價(元)_月	每月最後一個交易日的收市價格
成交量(百萬股)_月	該月份內的股票總成交量(百萬股),
	反映市場交易活躍度
成交值(百萬元)_月	該月份內股票總交易金額(百萬元)
流通在外股數(千股)	市場上該股的流通股數(千股),衡量
	股票的市場供給
市值(百萬元)	市場價值(百萬元),等於流通在外股
	數乘以當月平均股價
本益比-TSE	台灣證券交易所計算的本益比,用於
	衡量股價相對於每股盈餘的倍數
本益比-TEJ	TEJ 提供的本益比,與 TSE 方法類似,
	為另一數據來源的參考
股價淨值比-TEJ	股票價格相對於每股帳面價值的比
	率,反映財務穩定性
股價營收比-TEJ	股票價格相對於每股營收的比率,用
	於比較企業的營收能力
報酬率%_月	每月股票報酬率,衡量該月投資回報
	的百分比

肆、資料處理

下方圖一的相關係數矩陣為表一中提到的變數,開盤價、最高價、最低價、 收盤價、市值互相的相關數為 1, 說明有完全正相關的問題,且很多變數都有高 度線性關係的問題。

下方表二為各變數的 VIF,通常 VIF>10 說明各變數間存在共線性的問題,由表二可以觀察出 VIF>>10 有共線性的問題,且少許變數亦有輕微共線性的問題。

報酬率%_月	1.00	0.06	0.08	0.08	0.09	0.04	0.07	0.08	0.09	-0.02	-0.03	0.03	0.03
開盤價(元)_月	0.06	1.00	1.00	1.00	1.00	-0.09	0.87	0.39	1.00	-0.04	-0.03	0.19	0.14
最高價(元)_月	0.08	1.00	1.00	1.00	1.00	-0.08	0.89	0.39	1.00	-0.04	-0.03	0.19	0.14
最低價(元)_月	0.08	1.00	1.00	1.00	1.00	-0.10	0.87	0.39	1.00	-0.04	-0.04	0.19	0.14
收盤價(元)_月	0.09	1.00	1.00	1.00	1.00	-0.09	0.88	0.39	1.00	-0.04	-0.03	0.19	0.14
成交量(百萬股)_月	0.04	-0.09	-0.08	-0.10	-0.09	1.00	0.18	0.35	-0.07	0.05	0.07		-0.03
成交值(百萬元)_月	0.07	0.87	0.89	0.87	0.88	0.18	1.00	0.30	0.88	0.06	0.08	0.29	0.26
流通在外股數(千股)	0.08	0.39	0.39	0.39	0.39	0.35	0.30	1.00	0.43	-0.29	-0.29	-0.51	-0.41
市值(百萬元)	0.09	1.00	1.00	1.00	1.00	-0.07	0.88	0.43	1.00	-0.04	-0.03	0.18	0.13
本益比-TSE	-0.02	-0.04	-0.04	-0.04	-0.04	0.05	0.06	-0.29	-0.04	1.00	0.90	0.59	0.72
本益比-TEJ	-0.03	-0.03	-0.03	-0.04	-0.03	0.07	0.08	-0.29	-0.03	0.90	1.00		0.80
股價淨值比-TEJ	0.03	0.19	0.19	0.19	0.19		0.29	-0.51	0.18	0.59		1.00	0.94
股價營收比-TEJ	0.03	0.14	0.14	0.14	0.14	-0.03	0.26	-0.41	0.13	0.72	0.80	0.94	1.00
	報酬率%_月	開盤價(元)_月	最高價(元)_月	最低價(元)_月	收盤價(元)_月	成交量(百萬股)_月	成交值(百萬元)_月	简直在外股數(千股)	市值(百萬元)	本益比-TSE	本益比-TEJ	股價淨值比-TEJ	股價營收比-TEJ

0.0

-0.2

圖一 相關係數矩陣 表二 各變數 VIF

	Feature	VIF				
0	const	39.301235				
1	報酬率%_月	1.231874				
2	開盤價(元)_月	393.660600				
3	最高價(元)_月	1071.752271				
4	最低價(元)_月	769.945683				
5	收盤價(元)_月	2072.612323				
6	成交量(百萬股)_月	2.742273				
7	成交值(百萬元)_月	16.559406				
8	流通在外股數(千股)	9.605910				
9	市值(百萬元)	1528.606917				
10	本益比-TSE	5.550093				
11	本益比-TEJ	8.967182				
12	股價淨值比-TEJ	17.791227				
13	股價營收比-TEJ	22.540411				

針對圖一、表二說明變數間有高度的線性關係,在下面接續說明變數的處理方式。 表三 變數處理

變數名稱	合併方法	備註
當月價格波動	最高價 - 最低價	元/月
盤價走勢	收盤價 - 開盤價	百萬股/月
成交價量比	成交值 / 成交量	千股、百萬元
流通在外股數	市值=流通在外股數×股 價	
正負報酬	報酬率>0:1 報酬率<=0:0	目標變數

表三為變數合併的方法,我們將最高價-最低價合併成當月價格波動、收盤價-開盤價合併成盤價走勢、成交值/成交量合併成成交價量比、市值/股價=流通在外股數、將報酬率>O設為1、報酬率<=O設為0,作為此次研究的目標變數。

最後選擇´正負報酬´, ´當月價格波動´, ´盤價走勢´, ´成交價量比´, ´流通在外股數(千股)´, ´本益比-TEJ´, ´股價淨值比-TEJ` 作為分析的變數,其中´正負報酬´為目標變數,接著查看變數處理後的相關係數矩陣及 VIF。

圖二 變數處理後的相關係數矩陣 表四 變數處理後的 VIF

	70 30370.00 = 00	
	Feature	VIF
0	const	26.780355

-		
1	正負報酬	1.227404
2	當月價格波動	4.946139
3	盤價走勢	1.456559
4	成交價量比	5.561242
5	流通在外股數(千股)	2.022286
6	本益比-TEJ	1.972179
7	股價淨值比-TEJ	3.606143

經過變數合併後,由圖二發現各變數間線性相關性降低,當中與目標變數最有相關性的是盤價走勢,且在表四中 VIF 值皆<10,說明變數合併後解決了共線性的問題。最終我們挑選這些變數進行建模。

伍、模型選擇與比較

模型的策略實施:

定期定存(RSP)策略:

每月固定投入 1000 元。

制定投資策略:

- 每月固定投入 1000 元。
- 根據 test_label_pred 的最後一個值(○或 1)決定買入訊號。
- 若當期的預測值為 1,則將累積的現金(包含當期定投的 1000 元)
 全部用於購買股票,買入價格為當期的「開盤價」。
- 若當期預測值為 0,則不進行購買操作,當期的 1000 元 將累積 至後續期數,直至某一期預測值為 1 再進行投資。

*test_label_pred:根據各個機器學習預測下個月漲或跌的訊號使用模型:

本研究應用機器學習的方法預測正負報酬,使用 5 種分類器,分別是 "Random_Forest""Gradient_Boosting""Support_Vector_Machine""K-

Nearest_Neighbors""Logistic_Regression",並使用滯後期數 (lag=1~5)進行建模,將數據 60/20/20 分割成訓練集、驗證集、測試集,並使用上述 5 模型建立 5 個滯後期數,共 25 個模型進行模型比較。

準備了3股票(台積電、鴻海、聯發科)分別建立25個模型列在下面: 台積電2330:

Random Forest

lag_k = 1, valid 準確率: 0.4583, test 準確率: 0.3944

lag_k = 2, valid 準確率: 0.5000, test 準確率: 0.4143

lag k = 3, valid 準確率: 0.5833, test 準確率: 0.4348

lag_k = 4, valid 準確率: 0.5000, test 準確率: 0.3971 lag k = 5, valid 準確率: 0.5694, test 準確率: 0.5522

Gradient Boosting

lag_k = 1, valid 準確率: 0.4167, test 準確率: 0.3803

lag_k = 2, valid 準確率: 0.4028, test 準確率: 0.4000

lag k = 3, valid 準確率: 0.4028, test 準確率: 0.3768

lag_k = 4, valid 準確率: 0.4167, test 準確率: 0.3824

lag k = 5, valid 準確率: 0.4722, test 準確率: 0.4179

Support Vector Machine

lag_k = 1, valid 準確率: 0.6111, test 準確率: 0.6338

lag_k = 2, valid 準確率: 0.6111, test 準確率: 0.6286

lag_k = 3, valid 準確率: 0.6250, test 準確率: 0.6232

lag_k = 4, valid 準確率: 0.6250, test 準確率: 0.6176

lag_k = 5, valid 準確率: 0.6111, test 準確率: 0.6269

K-Nearest Neighbors

lag k = 1, valid 準確率: 0.6111, test 準確率: 0.6338

lag k = 2, valid 準確率: 0.6111, test 準確率: 0.6286

lag_k = 3, valid 準確率: 0.6250, test 準確率: 0.6232

lag k = 4, valid 準確率: 0.6250, test 準確率: 0.6176

lag_k = 5, valid 準確率: 0.6111, test 準確率: 0.6269

Logistic Regression

lag k = 1, valid 準確率: 0.6111, test 準確率: 0.6338

lag_k = 2, valid 準確率: 0.6111, test 準確率: 0.6286

lag_k = 3, valid 準確率: 0.6250, test 準確率: 0.6232

lag_k = 4, valid 準確率: 0.6250, test 準確率: 0.6176

lag_k = 5, valid 準確率: 0.6111, test 準確率: 0.6269

結果摘要:

Random Forest 在 lag_k = 3 時達到最大驗證準確率: 0.5833

Gradient Boosting 在 lag k = 5 時達到最大驗證準確率: 0.4722

Support Vector Machine 在 lag_k = 3 時達到最大驗證準確率: 0.6250

K-Nearest Neighbors 在 lag_k = 3 時達到最大驗證準確率: 0.6250

Logistic Regression 在 lag_k = 3 時達到最大驗證準確率: 0.6250

鴻海 2317:

Random Forest

lag_k = 1, valid 準確率: 0.4125, test 準確率: 0.5443

lag_k = 2, valid 準確率: 0.5250, test 準確率: 0.4615

lag_k = 3, valid 準確率: 0.5875, test 準確率: 0.5584

lag_k = 4, valid 準確率: 0.5500, test 準確率: 0.5395

lag_k = 5, valid 準確率: 0.6250, test 準確率: 0.5333 Gradient Boosting

lag_k = 1, valid 準確率: 0.5000, test 準確率: 0.5063

lag_k = 2, valid 準確率: 0.6250, test 準確率: 0.5128

lag_k = 3, valid 準確率: 0.5500, test 準確率: 0.5195

lag_k = 4, valid 準確率: 0.5125, test 準確率: 0.5000

lag k = 5, valid 準確率: 0.5375, test 準確率: 0.5200

Support Vector Machine

lag_k = 1, valid 準確率: 0.3875, test 準確率: 0.4557

lag_k = 2, valid 準確率: 0.4375, test 準確率: 0.4231

lag_k = 3, valid 準確率: 0.3875, test 準確率: 0.4545

lag_k = 4, valid 準確率: 0.4375, test 準確率: 0.4211

lag_k = 5, valid 準確率: 0.4875, test 準確率: 0.4000

K-Nearest Neighbors

lag_k = 1, valid 準確率: 0.3875, test 準確率: 0.4557

lag_k = 2, valid 準確率: 0.4000, test 準確率: 0.4359

lag_k = 3, valid 準確率: 0.3875, test 準確率: 0.4545

lag k = 4, valid 準確率: 0.4000, test 準確率: 0.4474

lag k = 5, valid 準確率: 0.5875, test 準確率: 0.5600

Logistic Regression

lag_k = 1, valid 準確率: 0.4000, test 準確率: 0.4557

lag_k = 2, valid 準確率: 0.3875, test 準確率: 0.4359

lag_k = 3, valid 準確率: 0.4500, test 準確率: 0.4416

lag_k = 4, valid 準確率: 0.4250, test 準確率: 0.4342

lag_k = 5, valid 準確率: 0.4125, test 準確率: 0.4267

結果摘要:

Random Forest 在 lag k = 5 時達到最大驗證準確率: 0.6250

Gradient Boosting 在 lag_k = 2 時達到最大驗證準確率: 0.6250

Support Vector Machine 在 lag k = 5 時達到最大驗證準確率: 0.4875

K-Nearest Neighbors 在 lag_k = 5 時達到最大驗證準確率: 0.5875

Logistic Regression 在 lag_k = 3 時達到最大驗證準確率: 0.4500

聯發科 2454:

Random Forest

lag k = 1, valid 準確率: 0.5536, test 準確率: 0.4727

lag_k = 2, valid 準確率: 0.4821, test 準確率: 0.4630

lag_k = 3, valid 準確率: 0.6071, test 準確率: 0.3585

lag_k = 4, valid 準確率: 0.5357, test 準確率: 0.3269

lag_k = 5, valid 準確率: 0.5357, test 準確率: 0.3725

Gradient Boosting

lag k = 1, valid 準確率: 0.4821, test 準確率: 0.4909

lag_k = 2, valid 準確率: 0.5000, test 準確率: 0.4074

lag_k = 3, valid 準確率: 0.5536, test 準確率: 0.4151

lag_k = 4, valid 準確率: 0.4464, test 準確率: 0.4038

lag_k = 5, valid 準確率: 0.3214, test 準確率: 0.3529

Support Vector Machine

lag_k = 1, valid 準確率: 0.6071, test 準確率: 0.6727

lag_k = 2, valid 準確率: 0.6071, test 準確率: 0.6667

lag_k = 3, valid 準確率: 0.6071, test 準確率: 0.6604

lag k = 4, valid 準確率: 0.6071, test 準確率: 0.6731

lag_k = 5, valid 準確率: 0.6250, test 準確率: 0.6667

K-Nearest Neighbors

lag_k = 1, valid 準確率: 0.3929, test 準確率: 0.3273

lag k = 2, valid 準確率: 0.3929, test 準確率: 0.3333

lag_k = 3, valid 準確率: 0.3929, test 準確率: 0.3396

lag_k = 4, valid 準確率: 0.3929, test 準確率: 0.3269

lag k = 5, valid 準確率: 0.3750, test 準確率: 0.3333

Logistic Regression

lag_k = 1, valid 準確率: 0.6071, test 準確率: 0.6727

lag_k = 2, valid 準確率: 0.6071, test 準確率: 0.6667

lag_k = 3, valid 準確率: 0.6071, test 準確率: 0.6604

lag k = 4, valid 準確率: 0.6071, test 準確率: 0.6731

lag_k = 5, valid 準確率: 0.6250, test 準確率: 0.6667

結果摘要:

Random Forest 在 lag k = 3 時達到最大驗證準確率: 0.6071

Gradient Boosting 在 lag k = 3 時達到最大驗證準確率: 0.5536

Support Vector Machine 在 lag_k = 5 時達到最大驗證準確率: 0.6250

K-Nearest Neighbors 在 lag k = 1 時達到最大驗證準確率: 0.3929

Logistic Regression 在 lag_k = 5 時達到最大驗證準確率: 0.6250

圖三 模型比較_台積電

圖四 模型比較_鴻海

圖五 模型比較_聯發科

上方列出 3 大股票中 5 個模型下最優的 lag 期數之驗證準確率,在台積電中,LR、KNN、SVM 在 lag 期數 3 時有驗證準確率最高為 0.625;在鴻海中,RF 在期數 5 時有驗證準確率最高為 0.625;在聯發科中,LR、SVM 在期數 5 時有驗證準確率最高為 0.625。

陸、解釋模型結果

將先前在5個模型中最好的模型進行迴測,並與RSP進行比較,呈現在下方。

圖六 投報率表現

	+ 策略/股票 	 2330台積電 	+ 2317鴻海 2 	 2454聯發科
0 1	=======+ RSP 		133.82%	92.47%
1 0	GB	0%	30.71%	79.60%
 2 H	KNN	148.28%	0% 	0%
3 1	Logistic	148.28%	22.08%	92.47%
4 1	RF	118.40%	131.15%	61.19%
5 9	 SVM +	148.28%	0% 	92.47%

中觀察報酬率都沒有超過 RSP 的報酬率,且在台積電的 KNN、LR、SVM 模型接說明 RSP 是最好的策略,其他的股票皆說明 RSP 是最好的測略。

柒、結論

定期定存(RSP):在台灣前三大檔股票中總投報率最高的投資策略。

RF: 各個股票當中接稍遜色於定額定存

LR:雖然在 2330 跟 2454 中表現跟定額定存一樣,但在 2317 中的表現卻拖垮

了整體表現

SVM: 跟羅吉斯回歸是一樣的問題,只是在2317中的表現更為誇張

GB、KNN:表現得差強人意了

捌、未來展望

數據優化

1. 模型優化

強化隨機森林和梯度提升機的特徵工程與參數調整,進一步優化預測準確率、對不同股票特性進行個別建模,避免單一模型拖累整體表現。

2. 引入時間序列模型

嘗試引入 ARIMA、LSTM 等時間序列模型,以更有效捕捉股價隨時間變動的趨勢。

3. 特徵選取

可進一步引入其他因子(特徵),如市場情緒指數、宏觀經濟數據等,以 提升模型的預測能力。

策略優化

4. 個股選取

選取波動度大的非成長股,使模型回測的結論不單一

5. 動態資金管理

探討動態資金分配策略,根據各股票預測的報酬率,靈活調整投資比例, 以提升整體報率。

6. 風險管理機制

加入止損與停利機制,避免市場極端波動對投資組合造成過大損失。

玖、參考資料

- 1. https://tejpro.tej.com.tw/tejpro/NTU/?lang=zh-TW
- 2. https://rich01.com/what-is-quantitative-trading/
- 3. https://www.oanda.com/bvi-ft/lab-education/
- 4. https://www.tejwin.com/insight/【資料科學】xgboost-演算法預測報酬上/
- 5. https://www.tejwin.com/insight/xgboost-演算法預測報酬下/