Домашнее задание №10-11 (задание пополняется)

Дедлайн: 30 апреля 2019 г., 23:00

Основные задачи

1. (2 + 1балла)

(i) Докажите или опровергните, что следующее условие дает критерий, когда остовное дерево $F \subseteq G$ является деревом некоторого поиска в ширину связного неориентированного графа G.

Остовное дерево $T\subseteq G$ является деревом некоторого поиска в ширину связного неориентированного графа G, если и только если в нем можно выбрать одну из вершин s за корень так, чтобы T было деревом кратчайших путей из s в графе G. Иными словами, путь по дереву из s в произвольную вершину t содержит не больше ребер, чем кратчайший путь между s и t в G.

Если в настоящем виде критерий неверен, то модифицируйте его до корректного.

(ii) В соответствии с полученным в предыдущем пункте критерием установите, какие из нарисованных деревьев являются деревьями поиска в ширину.

Формат ответа. Пусть, скажем, критерий верен, тогда при положительном ответе нужно указать корень дерева кратчайших путей, а при отрицательном — для каждого возможного выбора корня нужно указать вершину, расстояние которой до корня в графе меньше, чем соответствующее расстояние по дереву.

2. (2 балла) Проведите поиск в глубину в графе на рисунке.

Используйте алфавитный порядок вершин. Укажите типы всех дуг графа и вычислите для каждой вершины значение функций $d(\cdot)$ и $f(\cdot)$.

3. Связностью или вершинной связностью $\kappa(G)$ неориентированного графа G называется наименьшеее число вершин, удаление которых превращает граф в несвязный или тривиальный. Реберной связностью $\lambda(G)$ графаG называется наименьшеее число ребер удаление которых превращает граф в несвязный или тривиальный.

Максимальный по включению k-(реберно) связный подграф графа G называется его k- компонентой (соответственно, k-реберной компонентой). Обычно предполагается, что k-компонента имеет не менее k+1 вершин.

- (1 балл) Покажите, что для любого $G \kappa(G) \le \lambda(G) \le \delta(G)$ ($\delta(G)$ это минимальная степень вершин G).
- 4. (2+2 балла) Постройте полиномиальный алгоритм или покажите NP-полноту проверки (i) k-связности и проверки (ii) k-реберной связности графа (k- двоичное число).
- 5. Точка раздела связного неориентированного графа G это вершина, удаление которой делает граф несвязным. Мост это ребро с аналогичным свойством. Двусвязная компонента связного графа содержит ≥ 3 вершин (или ≥ 2 ребер) и состоит из максимального набора ребер, в котором каждая пара ребер принадлежит общему простому (несамопересекающемуся) циклу.
 - (1 балл) Для графа, изображенного на рисунке, укажите точки раздела, мосты и двусвязные компоненты.

Дополнительные задачи

k-связность графов

Ниже сформулированы утверждения, которые в принципе можно доказать, используя потоки в сетях, и речь идет только о неориентированных графах.

Вершинной (соответственно, реберной) связностью $\kappa(G)$ (соответственно, реберной $\lambda(G)$) называется наименьшее число вершин (ребер), удаление которых приводит к несвязному или тривиальному графу.

В предыдущем задании мы установили неравенство $\kappa(G) \leq \lambda(G) \leq \delta(G)$ ($\delta(G)$ — максимальная степень вершин графа G).

Граф G называется вершинно n-связным или просто n-связным (соответственно, реберноно n-связным), если $\kappa(G) \geq n$ ($\lambda(G) \geq n$). Нетривиальный граф 1-связен, тогда и только тогда, когда он связен, и 2-связен, если и только если в нем более одного ребра и он не имеет точек сочленения. Например, полный граф K_2 не является 2-связным.

Попробуйте в качестве упражнения доказать, что граф двусвязен, тогда и только тогда, когда в нем любые две вершины принадлежят простому циклу.

Теоремы типа Менгера

Пусть u и v — две различные вершины связного графа G. Две простые цепи, соединяющие u и v, называются вершиннонепересекающимися, если у них нет общих вершин, отличных от u и v и реберно-непересекающимися, если у них нет общих ребер. Множество S вершин, ребер или вершин и ребер разделяет u и v, если u и v принадлежят различным различным компонентам графа $G \setminus S$.

Теорема 1 (Карл Менгер (1927)). Наименьшее число вершин, разделяющих вершины u и v, равно наибольшеиу числу непересекающихся простых u—v цепей.

Теорема 2 (Форд-Фалкерсон, Элайес-Файнштейн-Шеннон). Для любых двух вершин графа наибольшее число ребернонепересекающихся цепей, соединяющтх их, равно наименьшему числу ребер, разделяющих эти вершины.

Теорема 3 (Хасслер Уитни). Граф n-связен тогда и только тогда, когда любая пара его вершин соединена не менее, чем n вершинно-непесекающимися путями.

Теорема 4. Граф реберно n-связен тогда и только тогда, когда любая пара его вершин соединена не менее, чем n реберно-непесекающимися путями.

Теорема 5. Наибольшее число непересекающихся цепей, соединяющих два непустых непересекающихся вершин V_1 и V_2 , равно наименьшему числу вершин, разделяющих V_1 и V_2 .

Назовем линией матрицы любую ее строку или столбец. Пусть $M-\{0,1\}$ -матрица. Набор единичных элементов матрицы называется независимым, если никакая пара не лежит в общей линии.

Теорема 6. В любой бинарной матрице наибольшее число независимых единичных элементов равно наименьшему числу линий, покрывающих все единицы.

- 1. (2+2 балла) Дана выполнимая 2-КН Φ φ , каждый дизъюнкт которой содержит ровно два различных литерала (литерал и его отрицание считаются различными). Будем говорить, что φ 1-*минимальна*, если к ней можно добавить один дизъюнт, содержащий два различных литерала так, чтобы она стала невыполнимой.
 - (i) Докажите или опровергните, что следующеее условие является критерием 1-минимальности.
 - Рассмотрим ориентированный граф G_{arphi} , в котором литералы и их отрицания являются вершинами, а каждый дизъюнкт порождает пару ребер вида: $x \vee y \Rightarrow [e_1 = (\neg x, y), e_2 = (\neg y, x)].$
 - arphi является 1-минимальной тогда и только тогда, когда в G_{arphi} есть путь P, соединяющий противоположные литеральные вершины, $x \leadsto y$, $x = \neg y$ и имеется ребро, ведущее из вершины y в вершину $z \notin P$.
 - Если в указанном виде критерий не верен, то дополните его до корректного.
 - (іі) Постройте для задачи проверки 1-минимальности как можно более быстрый полиномиальный алгоритм.
 - Подсказка. Полезно вспомнить, полиномиальные алгоритмы проверки выпоолнимости 2-КНФ.
- $2.~(3~балла)~\Pi$ остройте линейный по входу алгоритм, который, имея на входе граф G и некоторое его остовное дерево T, определяют, является ли T деревом поиска-в-ширину при старте с некоторой вершины G.
- $3. \ (2 \times 1 + 2 + 1 + 2 \times 2)$ Линейный алгоритм разбиения графа на двухсвязные компоненты
 - (i) Покажите, что множества вершин, принадлежащие двум разным двусвязным компонентам, либо не пересекаются, либо имеют единственную общую вершину — точку раздела. Построим по G новый граф G_b , в котором имеются вершины двух типов: v_a , отвечающие точкам раздела G, и v_b , отвечающие двусвязным компонентам G. Ребра G_b соединяют каждую вершину v_b со всеми вершинами v_a , попадающими в двусвязную компоненту, отвечающую v_b .
 - (ii) Покажите, что G_b дерево, и постройте соответствующее дерево для G из задачи № 62. Оказывается, что точки раздела можно находить по дереву поиска в глубину. Затем, опять используя поиск в глубину, можно определить все двусвязные компоненты, т. е. двусвязные компоненты можно находить за линейное время. Мы ограничимся только алгоритмом выделения точек раздела графа.
 - (ііі) Докажите, что корень дерева поиска в глубину является точкой раздела тогда и только тогда, когда у него больше одного потомка.
 - (iv) Постройте контрпример к следующему утверждению из книги [Кормен 1, задача № 23-2 (б)]: отличная от корня вершина v дерева поиска в глубину является точкой раздела, если и только если в дереве поиска в глубину не существует обратного ребра от потомка у (включая саму у) до собственного предка v (т. е. отличного от самой v).
 - (v) [Кормен 1, упр. 23-2(в)].
 - Определим функцию $low(v) = \min[d(v), d(w), ecnu для некоторого потомка и вершины <math>v$ в G есть обратное ребро (u, w)].
 - Покажите, как вычислить $low(\cdot)$ за время O(|E|) [например, модифицируя поиск в глубину].
 - (vi) Покажите, как в линейное время вычислить все двусвязные компоненты графа¹

 $^{^{1}}$ **Подсказка.** Сначала, используя решение предыдущих задач, покажите, как с помощью поиска в глубину найти все точки раздела за линейное время. Это и свойства функции $low(\cdot)$ позволяют находить двусвязные компоненты при поиске в глубину, используя дополнительный стек. Можно также находить двусвязные компоненты другим способом (см. [Кормен I, упр. 23-2(д)-(3)]).