Disciplina:

SÉRIES TEMPORAIS

Professora: Patrícia de Sousa Ilambwetsi

Bacharel em Estatística pela UFOP

Mestre em Estatística pela UFV

Doutora em Estatística pela UFV

Especialista em Ciências de Dados e Big Data pela PUC Minas

Resumo

Roteiro

Unidade 2 – Métodos e Modelos para Séries temporais

2.1 Método da Decomposição

- Tendência
- Sazonalidade
- Ruído

2.2 Modelos de Tendência

- Determinística
- Estocástica
- 2.3 Método de Médias Móveis
- 2.4 Modelo de Alisamento Exponencial

2.1 Método da Decomposição

A decomposição de séries temporais é um método essencial para entender a estrutura interna dos dados.

- ⇒ Consiste em dividir uma série temporal nos seus componentes principais:
 - Tendência: representa a direção geral da série ao longo do tempo, podendo ser crescente, decrescente ou estável
 - Sazonalidade: refere-se aos padrões repetitivos que ocorrem em intervalos regulares, como estações do ano, meses ou dias da semana
 - Ruído (ou resíduos): componente residual que captura a variação aleatória que não pode ser explicada pela tendência ou sazonalidade
- ⇒ Este processo ajuda a identificar padrões implícitos e a prever valores futuros de forma mais precisa.

2.1 Método da Decomposição

- ⇒ Objetivos da decomposição de séries temporais
 - •Facilita a modelagem: escolha do modelo apropriado conforme a identificação dos componentes
 - •Identificação de padrões: permite observar e analisar padrões de longo prazo (tendência) e padrões repetitivos (sazonalidade)
 - •Detecção de Anomalias: identificar e entender anomalias ou mudanças inesperadas nos dados que podem ser atribuídas a eventos extraordinários
 - •Previsão mais precisa: permite ajustar os modelos conforme as mudanças nas características dos diferentes componentes ao longo do tempo

2.1 Método da Decomposição

⇒ Objetivos da decomposição de séries temporais

•Facilidade na tomada de decisões

Tendência: ajuda a entender o comportamento de longo prazo e a tomar decisões estratégicas com base em previsões de crescimento ou declínio.

Sazonalidade: permite ajustar operações e estratégias de acordo com padrões sazonais, como aumento de demanda em certas épocas do ano.

Ciclo: ajudar a prever e planejar flutuações econômicas ou outros ciclos de longo prazo que afetam a série.

2.1 Método da Decomposição

⇒ Tipos de Decomposição:

Decomposição Aditiva

A série é a soma dos componentes de tendência, sazonalidade e ruído.

$$y_t = m_t + s_t + \varepsilon_t$$

Decomposição Multiplicativa

A série é o produto dos componentes de tendência, sazonalidade e ruído.

$$y_t = m_t \times s_t \times \varepsilon_t$$

em que: y_t é o valor observado da série temporal no tempo t; m_t componente de tendência; s_t componente de sazonalidade; ε_t componente de erro ou ruído

2.1 Método da Decomposição

⇒ Escolha do tipo de decomposição:

A escolha do método depende das características dos seus dados.

- Decomposição aditiva os dados que mostram uma tendência crescente ou decrescente com sazonalidade constante.
- Decomposição multiplicativa os dados que mostram uma tendência crescente ou decrescente com a <u>sazonalidade não constante</u>.

2.1 Método da Decomposição

⇒ Série Aditiva: a tendência é visível como uma linha crescente suave, a sazonalidade aparece como oscilações periódicas, e o ruído adiciona variações aleatórias.

⇒ Série Multiplicativa: a tendência e a sazonalidade multiplicam o ruído, resultando em uma série onde os efeitos de tendência e sazonalidade são amplificados de forma diferente dependendo do valor do ruído.

2.1 Método da Decomposição

Para aplicar o método da decomposição deve verificar as suposições dos dados e do método

- Decomposição aditiva: verificar se os dados têm a magnitude sazonal constante.
- Decomposição multiplicativa: verificar se os dados têm magnitude sazonal não constante
- ⇒ Ferramentas de verificação:
 - Para a variância constante: inspeção visual, estatística descritiva, testes de Bartlett ou o teste de Levene
 - Para a sazonalidade constante: gráficos de autocorrelação ou testes como o teste de Dickey-Fuller ou teste de Ljung-Box

2.1 Método da Decomposição

2.2 Modelos de Tendência: Determinística e Estocástica

⇒ Modelo de Tendência Determinística

Assume que a tendência de uma série temporal segue uma função determinística e previsível ao longo do tempo, ou seja, independentemente das variações aleatórias, a tendência geral pode ser modelada e prevista com uma fórmula matemática específica.

Características:

- Previsibilidade: A tendência segue um padrão fixo ao longo do tempo.
- Funcionalidade: representada por funções lineares, quadráticas ou polinomiais.

Modelo linear: $y_t = \alpha + \beta t + \varepsilon_t$ em que α uma constante, β coeficiente de inclinação, t é o tempo e ε_t termo de erro.

Modelo quadrático: $y_t = \alpha + \beta t + \gamma t^2 + \varepsilon_t$

2.2 Modelos de Tendência: Determinística e Estocástica

⇒ Aplicação do modelo de tendência determinística

Usado em contextos onde se espera que a tendência continue de forma previsível ao longo do tempo

Exemplo: dados de crescimento populacional ou de vendas com uma clara tendência de aumento ou diminuição.

2.2 Modelos de Tendência: Determinística e Estocástica

⇒ Modelo de Tendência Estocástica

Assume que a tendência é influenciada por choques aleatórios ao longo do tempo. Esses choques não são previsíveis e afetam a trajetória futura da série temporal.

Características:

- Incerteza: A tendência é influenciada por eventos aleatórios e não segue uma fórmula fixa.
- Memória: A série pode apresentar "memória longa", onde os efeitos de choques passados podem durar por muito tempo.

Modelo de Passeio Aleatório: $y_t = y_{t-1} + \varepsilon_t$ em que ε_t é um termo de erro que segue uma distribuição aleatória.

2.2 Modelos de Tendência: Determinística e Estocástica

⇒ Aplicação do modelo de tendência estocástica

Usado em contextos onde as variações são sujeitas a choques aleatórios imprevisíveis, ou seja, variações inesperada e sem um padrão discernível

Exemplo: dados de preços de ações ou econômicas onde eventos externos podem ter um impacto significativo e persistente

2.2 Modelos de Tendência: Determinística e Estocástica

Linha Azul: Representa uma função de tendência determinística linear, onde os valores aumentam de forma previsível ao longo do tempo.

Função determinística previsível é uma função matemática que não há elementos aleatórios envolvidos na sua definição e permite antecipar os valores futuros da série sem surpresas.

2.2 Modelos de Tendência: Determinística e Estocástica

Linha Laranja: Representa uma tendência estocástica (passeio aleatório), onde os valores variam de forma <u>imprevisível</u> devido a **choques aleatórios** (perturbações aleatórias).

Choques aleatórios eventos ou variações que ocorrem em uma série de forma inesperada e sem um padrão discernível (perturbações aleatórias). Introduzem incerteza e podem alterar a trajetória da série de maneira que não pode ser prevista antecipadamente.

2.2 Modelos de Tendência: Determinística e Estocástica

⇒ Características dos Choques Aleatórios:

1. Imprevisibilidade: Não podem ser previstos

2. Magnitude Variável: A intensidade pode variar

3. Persistência: O efeito pode ser transitório ou um efeito duradouro

⇒ Exemplos de Choques Aleatórios:

- Mercado Financeiro: Flutuações imprevisíveis nos preços das ações ou taxas de câmbio.
- **Economia**: Um desastre natural pode provocar choques na economia de um país, afetando a produção, o emprego e o PIB de maneira imprevisível.
- **Tecnologia**: O surgimento de uma nova tecnologia pode causar um choque em indústrias estabelecidas, levando a mudanças inesperadas nas tendências de mercado.

2.2 Modelos de Tendência: Determinística e Estocástica

2.3 Método de Médias Móveis

Técnica estatística utilizada para suavizar séries temporais, facilitando a identificação de tendências ao reduzir o "ruído" de dados flutuantes. É amplamente utilizado em diversas áreas: economia, finanças, meteorologia e controle de qualidade.

⇒ Suavizar: processo de reduzir flutuações ou "ruído" nos dados para revelar padrões como tendências e sazonalidades. A suavização ajuda a identificar a estrutura fundamental da série para facilitar a análise e a previsão.

Consiste em calcular a <u>média de um conjunto de valores próximos</u> para suavizar a série reduzindo o impacto das flutuações de curto prazo.

⇒ Exemplo: Média móvel simples; média móvel ponderada; média móvel exponencial; média móvel centrada

2.3 Método de Médias Móveis

⇒ Média Móvel Simples (SMA - Simple Moving Average):

É média dos valores de uma série temporal ao longo de um período específico.

Exemplo: média móvel simples de 5 dias é a soma dos valores dos últimos 5 dias dividida por 5.

$$SMA_t = \frac{1}{n} \sum_{i=0}^{n-1} y_{t-i}$$

em que: SMA_t é a media móvel simples no tempo t, n número de períodos; y_{t-i} valores da série temporal nos últimos n períodos.

2.3 Método de Médias Móveis

- ⇒ Objetivos da média móvel simples
 - Identificar tendências a longo prazo: suaviza as flutuações de curto prazo para exibir a tendência geral dos dados.
 - Analisar ciclos e padrões sazonais: identifica padrões sazonais e ciclos ao suavizar as variações diárias, semanais ou mensais, facilitando a visualização dos padrões subjacentes.
 - Previsão de curto prazo: usada como um componente em modelos de previsão para fornecer uma estimativa da tendência futura baseada em dados passados.
 - **Detectar anomalias:** ajuda a detectar valores que se desviam significativamente da tendência suavizada tais como outliers ou anomalias na série

2.3 Método de Médias Móveis

- ⇒ Como calcular a média móvel simples:
 - Escolha do período de janela: determinar o número de períodos tais como dias, semanas, meses, etc, para a média móvel em que a janela é o intervalo de tempo escolhido.

Exemplo: uma janela de 7 dias calcula a média dos últimos 7 dias

- Cálculo da média para casa período: a média é recalculada à medida que você move a janela ao longo da série temporal, produzindo uma nova média para cada ponto.
- Visualização dos resultados: plote a série temporal original e a média móvel para comparar as flutuações de curto prazo com a tendência suavizada

2.3 Método de Médias Móveis

⇒ Representação gráfica de uma série suavizada pela média móvel simples

Suavizou as flutuações diárias em uma janela de 3 dias e exibiu a tendência oculta das vendas

2.3 Método de Médias Móveis

⇒ Média Móvel Ponderada (WMA - Weighted Moving Average):

Similar à média móvel simples, mas atribui diferentes pesos aos dados, geralmente dando mais importância aos dados mais recentes

$$WMA_{t} = \frac{\sum_{i=0}^{n-1} w_{i} y_{t-i}}{\sum_{i=0}^{n-1} w_{i}}$$

em que: $\mathrm{W}MA_t$ é a media móvel ponderada no tempo t,n número de períodos; y_{t-i} valores da série temporal nos últimos n períodos; w_i são os pesos atribuídos a cada valor de y_{t-i} ; $\sum_{i=0}^{n-1} w_i$ é a soma dos pesos que serve para normalizer a media ponderada

2.3 Método de Médias Móveis

- ⇒ Objetivos de uma média móvel ponderada
 - **Previsão de tendências**: prever valores futuros com base em dados passados considerando os dados recentes mais relevantes.
 - Suavizar variações bem significativas: suavizar grandes variações ao longo do tempo extraindo as mudanças mais relevância nos dados mais recentes
 - Eliminação de Ruído: suavizar a série que apresenta muito ruído (variações aleatórias ou flutuações) realçando a tendência principal.

2.3 Método de Médias Móveis

- ⇒ Como calcular a média móvel ponderada:
 - **Escolha dos pesos**: definir os pesos que serão atribuídos a cada ponto de dados. Os pesos devem refletir a importância de cada dado no cálculo da média. Um exemplo comum é atribuir pesos que decrescem linearmente com o tempo.

Exemplo: uma série de 4 períodos, os pesos atribuídos podem ser 4, 3, 2, 1 (do mais recente ao mais antigo).

- Cálculo da média: multiplique cada valor da série pelo seu peso correspondente, some os resultados e divide pela soma dos pesos
- Visualização dos resultados: plote a série temporal original e a média móvel para comparar as flutuações de curto prazo com a tendência suavizada

2.3 Método de Médias Móveis

⇒ Representação gráfica de uma série suavizada pela média móvel ponderada

Suavizou as flutuações dando maior relevância aos dados mais recentes e exibiu de uma forma mais clara a tendência geral da série

2.3 Método de Médias Móveis

⇒ Média Móvel Exponencial (EMA - Exponential Moving Average):

É um tipo de média móvel ponderada onde os pesos decrescem exponencialmente. Atribui maior importância aos valores mais recentes, mas inclui os dados anteriores da série

$$EMA_t = \alpha y_t + (1 - \alpha)EMA_{t-1}$$

em que: $\mathrm{E}MA_t$ é a media móvel exponencial no tempo t, $\alpha = \frac{2}{n+1}$ fator de suavização; y_t valores da série temporal no tempo recente; $\mathrm{E}MA_{t-1}$ é a media móvel exponencial anterior.

2.3 Método de Médias Móveis

⇒ Objetivos de uma média móvel exponencial

- **Previsão de tendências**: identifica as tendências de curto e médio prazo em dados financeiros ou séries em que as variações mais recentes são mais relevantes.
- **Dados Voláteis**: suaviza as variações rápidas e significativas de forma mais eficaz do que a média móvel simples ao longo do tempo extraindo as mudanças mais relevantes em dados mais recentes.
- Reatividade: reage mais rápido a novos dados, ajustando-se mais rapidamente a mudanças bruscas.

2.3 Método de Médias Móveis

- ⇒ Como calcular a média móvel exponencial:
 - Escolha do período: determinar o número de períodos (períodos mais longos suavizam mais os dados).
 - Calcular o coeficiente de suavização com base no dados (α)
 - Visualização dos resultados: plote a série temporal original e a média móvel para comparar as flutuações de curto prazo com a tendência suavizada

2.3 Método de Médias Móveis

⇒ Representação gráfica de uma série suavizada pela média móvel exponencial

Suavizou as variações mais bruscas da série retirando os picos mais acentuados

2.3 Método de Médias Móveis

⇒ Média Móvel Centrada (CMA - Centered Moving Average):

É útil quando você tem uma sazonalidade mensal ou trimestral que é fixa e conhecida Suaviza a série ao calcular a média de um número ímpar de períodos ao redor de um ponto central o que ajuda a remover o efeito da sazonalidade ao longo do tempo.

$$CMA_t = \frac{1}{n} \sum_{i=-k}^{k} y_{t+i}$$

em que: $k = \frac{n-1}{2}$ é o número de períodos em cada lado do ponto central t

2.3 Método de Médias Móveis

⇒ Objetivos de uma média móvel centrada

- Análise de séries temporais sazonais: suaviza os dados ao longo do tempo, equilibrando as influências dos períodos anteriores e posteriores.
- Identificação de Tendências a Longo Prazo: elimina a influência das flutuações curtas (ruído) para focar nas tendências de longo prazo
- Minimização de Atrasos: reduz o tempo que a média suavizada leva para reagir às mudanças nos dados fornecendo uma visão mais precisa do ponto médio

⇒ Limitações

• **Perda de Dados nas Extremidades**: não fornece resultados para os primeiros e últimos períodos da série, pois não há dados suficientes para calcular a média centrada.

2.3 Método de Médias Móveis

- ⇒ Como calcular a média móvel centrada:
 - **Escolha do período**: selecione o número de períodos sobre os quais a média será calculada. Se quiser suavizar com uma média móvel centrada de 3 períodos, a média de cada ponto será baseada nos valores anterior, atual e posterior
 - Calcular a média centrada: a média para cada ponto é calculada utilizando uma quantidade igual de valores anteriores e posteriores ao ponto atual
 - Visualização dos resultados

2.3 Método de Médias Móveis

⇒ Representação gráfica de uma série suavizada pela média móvel centrada

Suavizou as flutuações curtas e exibiu a tendência oculta

2.3 Método de Médias Móveis

⇒ Quadro comparativo entre as médias móveis

	Média Móvel Simples (MMS)	Média Móvel Ponderada (MMP)	Média Móvel Exponencial (MME)	Média Móvel Centrada (MMC)
Definição	Média dos últimos <i>n</i> períodos.	Média dos últimos <i>n</i> períodos com pesos diferentes.	Média ponderada que dá mais peso aos dados mais recentes.	Média calculada centralizando os valores ao longo da série.
Peso dos Períodos	Todos os períodos têm o mesmo peso.	Pesos diferentes, maiores para os períodos mais recentes.	1	Pesos simétricos para períodos antes e depois do ponto central.
Reatividade às Mudanças	Reage de forma lenta a novas mudanças.	Pode ser ajustada para reagir mais rapidamente.	Reage rapidamente devido ao maior peso nos dados recentes.	Reage mais suavemente, minimizando atrasos.
Aplicação	Identificação de tendências gerais.	Análise financeira, onde certos dados são mais importantes.	Previsões de curto prazo, como análise de ações.	Análise de séries com sazonalidade ou ruído, onde se deseja minimizar atrasos.
Lag (atraso): comparar o período anterior com o atual	Pode introduzir atraso na identificação de tendências.	Menor atraso, dependendo dos pesos atribuídos.	Menor atraso devido à ênfase em dados recentes.	Minimiza o atraso ao centralizar os dados.
Adequação para Séries Sazonais	Moderada, mas pode distorcer ciclos curtos.	Boa, pode ser ajustada para ciclos específicos.	Boa para captar mudanças sazonais rápidas.	Excelente para capturar ciclos sazonais e tendência sem distorções significativas.
Quando Evitar	Quando a reatividade às mudanças recentes é crucial.	Quando os pesos não são claros ou os dados são homogêneos.	Quando os dados são altamente voláteis e podem causar excesso de reatividade.	Quando há pouca informação ou os dados iniciais e finais são críticos.

2.4 Modelo de Alisamento Exponencial

Alisamento exponencial é uma técnica usada em análise de séries temporais para suavizar os dados e identificar tendências e padrões com mais clareza.

Diferentemente das médias móveis (média dos valores passados) o alisamento exponencial atribui **pesos decrescentes exponencialmente** para observações passadas, dando mais importância aos valores mais recentes.

Existem três tipos alisamento exponencial:

- Alisamento Exponencial Simples (SES Simple Exponential Smoothing)
- Alisamento Exponencial Duplo (DES Double Exponential Smoothing)
- Alisamento Exponencial Triplo (TES Triple Exponential Smoothing) ou Método de Holt-Winters

2.4 Modelo de Alisamento Exponencial

⇒ Alisamento Exponencial Simples (SES - Simple Exponential Smoothing)

Para séries que **não** apresenta **tendência e sazonalidade**

$$F_{t+1} = \alpha y_t + (1 - \alpha)F_t$$

em que: F_{t+1} previsão para o próximo período; y_t valor observado no período atual; F_t previsão no período atual; α fator de suavização

Interpretação do fator de suavização α

- α próximo a 1 atribui mais peso aos dados recentes ⇒ previsão reativa a mudanças.
- α próximo a 0 atribui mais peso aos dados passados \Rightarrow previsão mais suave.

2.4 Modelo de Alisamento Exponencial

⇒ Alisamento Exponencial Duplo (DES - Double Exponential Smoothing)

Para séries que apresenta tendência

$$F_{t+h} = L_t + hT_t$$

$$L_t = \alpha y_t + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_t = h[\beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}]$$

em que: L_t o nível estimado (valor médio ou ponto central da série); T_t tendência estimada; β fator de suavização da tendência; F_{t+h} previsão para h períodos a frente

Interpretando β

- •Valor alto de $\beta \Rightarrow$ tendência se ajuste rapidamente às mudanças.
- •Valor baixo de $\beta \Rightarrow$ tendência mais suave.

2.4 Modelo de Alisamento Exponencial

⇒ Alisamento Exponencial Triplo (TES - Triple Exponential Smoothing) ou Método de Holt-Winters

Para séries que apresenta tendência e sazonalidade

$$F_{t+h} = (L_t + hT_t)S_{t+h-p}$$

$$L_t = \alpha \frac{y_t}{S_{t-p}} + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_t = \gamma \frac{y_t}{L_t} + (1 - \gamma)S_{t-p}$$

em que: S_t componente sazonal estimado; γ fator de suavização sazonal; p é o período sazonal; L_t o nível estimado; T_t tendência estimada; β fator de suavização da tendência; F_{t+h} previsão para h períodos a frente

2.4 Modelo de Alisamento Exponencial

- ⇒ Vantagens do Alisamento Exponencial
 - Simplicidade: Relativamente fácil de implementar e calcular.
 - **Flexibilidade**: Pode ser ajustado para lidar com diferentes tipos de séries temporais com ou sem tendência e sazonalidade.
 - Reatividade: Ajusta-se rapidamente às mudanças nos dados, especialmente com altos valores da componente de suavização α .
 - Minimização do Atraso: O uso de pesos exponenciais permite que o modelo seja mais responsivo às mudanças recentes.

2.4 Modelo de Alisamento Exponencial

- ⇒ Limitações do Alisamento Exponencial
 - •Séries muito voláteis: em séries com muita volatilidade o alisamento exponencial pode responder excessivamente às flutuações, capturando "ruído" em vez de tendência real.
 - •Escolha de Parâmetros: A determinação dos coeficientes α , β e γ é crucial e pode exigir experimentação ou otimização para obter previsões precisas.
 - •Componentes não lineares: se a série temporal tem componentes não lineares ou padrões complexos, o alisamento exponencial pode não ser suficiente para capturar toas as variações

2.3 Modelo de Alisamento Exponencial

⇒ Quadro comparativo dos modelos de alisamento

	Alisamento Exponencial Simples (SES)	Alisamento Exponencial Duplo (DES)	Alisamento Exponencial Triplo (TES - Holt-Winters)
Definição	Suaviza dados passados para prever o próximo ponto, sem capturar tendência ou sazonalidade.	Extensão do SES que captura tanto a suavização quanto a tendência.	Extensão do DES que captura suavização, tendência e sazonalidade.
Componentes Modelados	Nível (apenas suavização dos dados).	Nível e tendência (suavização + captura da tendência).	Nível, tendência e sazonalidade (suavização + tendência + sazonalidade).
Reatividade às Mudanças	Responde rapidamente a mudanças nos dados mais recentes, dependendo de α .	Captura mudanças na tendência, ajustando a previsão com base em β.	Captura mudanças na tendência e sazonalidade, reagindo a variações com base em γ.
Quando Usar	Quando a série não possui tendência ou sazonalidade.	Quando a série tem uma tendência clara, mas sem sazonalidade.	Quando a série tem tanto tendência quanto sazonalidade.
Complexidade de Implementação	Simples de implementar e calcular.	Moderadamente complexo, pois requer modelagem da tendência.	Mais complexo, pois envolve a modelagem de tendência e sazonalidade.
Atraso (Lag)	Pode apresentar atraso, mas é minimizado por α.	Menor atraso, pois a tendência é modelada separadamente.	Menor atraso, especialmente na presença de sazonalidade.
Exemplo de Aplicação	Suavização de séries temporais simples, como temperaturas diárias.	Previsão de vendas com tendência crescente ou decrescente.	Previsão de demanda de produtos que variam sazonalmente, como vendas anuais.

Decomposição de uma série temporal

```
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose

# Carregar os dados
# Supondo que df é um DataFrame com uma série temporal com índice de data e coluna 'value'
# df = pd.read_csv('data.csv', parse_dates=True, index_col='date')

# Decomposição aditiva
decomposition = seasonal_decompose(df['value'], model='additive', period=12)

# Plotar os componentes
fig = decomposition.plot()
plt.show()
```


Ajustar modelo de tendência determinística: Regressão Linear

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
# Supondo que df é um DataFrame com uma série temporal com índice de data e coluna 'value'
# df = pd.read_csv('data.csv', parse_dates=True, index_col='date')
# Preparar os dados
df['time'] = np.arange(len(df))
X = df[['time']]
y = df['value']
# Ajustar o modelo de regressão linear
model = LinearRegression().fit(X, y)
df['trend'] = model.predict(X)
# Plotar os dados
plt.plot(df.index, df['value'], label='Original')
plt.plot(df.index, df['trend'], label='Trend', color='red')
plt.legend()
plt.show()
```


Ajustar modelo de tendência estocástica: Passeio Aleatório

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Simular uma série temporal com passeio aleatório
np.random.seed(42)
n = 100
epsilon = np.random.normal(0, 1, n)
Y = np.cumsum(epsilon)

# Criar um DataFrame
df = pd.DataFrame({'value': Y})

# Plotar a série temporal
plt.plot(df['value'], label='Random Walk')
plt.legend()
plt.show()
```


Ajustar modelo de media móvel

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Simular uma série temporal com tendência
np.random.seed(0)
dates = pd.date_range(start='2023-01-01', periods=100)
data = np.random.randn(100).cumsum() # Dados simulados com tendência

df = pd.DataFrame(data, index=dates, columns=['value'])

# Calcular a Média Móvel Simples (SMA)
window_size = 10
df['SMA'] = df['value'].rolling(window=window_size).mean()

# Calcular a Média Móvel Exponencial (EMA)
df['EMA'] = df['value'].ewm(span=window_size, adjust=False).mean()
```

```
# Plotar os resultados
plt.figure(figsize=(12, 6))
plt.plot(df['value'], label='Original Data', color='blue')
plt.plot(df['SMA'], label=f'SMA {window_size} Periods', color='red')
plt.plot(df['EMA'], label=f'EMA {window_size} Periods', color='green')
plt.title('Médias Móveis em Série Temporal')
plt.legend()
plt.show()
```


Ajustar modelo de alisamento exponencial

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
# Simulação de dados
np.random.seed(42)
data = 10 + np.random.randn(100)
# Ajustar o modelo
model = SimpleExpSmoothing(data).fit(smoothing level=0.2, optimized=False)
fitted_values = model.fittedvalues
# Plotar resultados
plt.figure(figsize=(10, 6))
plt.plot(data, label='Dados Observados')
plt.plot(fitted_values, label='Nível Estimado (SES)', color='red')
plt.xlabel('Tempo')
plt.ylabel('Valor')
plt.title('Nível Estimado usando Alisamento Exponencial Simples')
plt.legend()
plt.show()
```

from statsmodels.tsa.holtwinters import ExponentialSmoothing

Ajustar o modelo alisamento exponencial de Holt model = ExponentialSmoothing(data, trend='add').fit() fitted_values = model.fittedvalues

Ajustar o modelo Alisamento Exponencial de Holt-Winters model = ExponentialSmoothing(data, trend='add', seasonal='add', seasonal_periods=12).fit() fitted_values = model.fittedvalues