Advanced Manufacturing Technologies Research Group

AMTech

Bessearch Group

Tecniche di Additive Manufacturing per polimeri

Prof. Luca Iuliano

Politecnico di Torino
Department of Management and Production Engineering (DIGEP), Torino, Italy

TECNICHE AM PER POLIMERI

Produttore:

Stratasys (USA)

La scadenza del brevetto ha portato alla diffusione delle stampanti 3D a basso costo

Scott Crump

Fasi del processo:

Deposizione mediante estrusione

Materiale:

Termoplastici definitivi

Pezzo e supporto in *materiali termplastici differenti*, quello di supporto può essere solubile in acqua

- Deposizione mediante estrusione di un filamento di materiale termoplastico su una piattaforma di lavoro
- Necessità di supporti
- La piattaforma si muove lungo l'asse Z e le testine nel piano XY

I supporti possono essere rimossi meccanicamente o sciolti in soluzione acquosa

FDM: LE MACCHINE

Design Series

Dimension Elite

Fortus 250mc

Volume di lavoro: 203x203x305 mm

Materiale: ABS (anche colorato + supporto

solubile)

Spessore dello strato: 0.178 mm, 0.254 mm

Precisione: decimi di mm

Volume di lavoro: 254x254x305 mm

Materiale: ABS (anche colorato + supporto

solubile)

Spessore dello strato: 0.178 mm, 0.254

mm, 0.33 mm

Precisione: decimi di mm

FDM: LE MACCHINE

Production Series

Fortus 900 mc

Volume di lavoro: 910x610x914 mm

Materiale: tutti i termoplastici disponibili + supporto solubile)

Spessore dello strato: 0.178 mm, 0.254 mm, 0.33 mm, 0.508 mm

Precisione: ±0.0015 mm/mm

FDM: MATERIALI

ABSi™

PC-ISO

ABS-M30

PC

ABS-M30i

FDM Nylon 12

ABS-ESD7

ULTEM 9085 resin

PC-ABS

PPSF

ULTEM 1010 resin

ASA

Bobine 'Intelligenti'

Termoplastici disponibili anche colorati

FDM: APPLICAZIONI

- Prototipazione funzionale
- Produzione di parti definitive
- Produzione di stampi di preserie

FDM: APPLICAZIONI

FDM: APPLICAZIONI

Parti realizzate in FDM finite e estetizzate

FDM - Vantaggi

- 1. Tecnica di AM che assicura buone prestazioni in termini di tolleranze dimensionali e rugosità superficiali;
- 2. Supporti solubili in soluzione acquosa;
- 3. Materiali termoplastici definitivi
- 4. Assenza di post-trattamento
- 5. Assenza di vincoli per l'installazione

FDM - Limiti

- 1. Necessità di rimozione dei supporti;
- 2. Impossibilità di sfruttare l'intero il volume di lavoro

TECNICHE AM PER POLIMERI

TECNICHE AM PER POLIMERI

- In analogia ai processi convenzionali per la produzione convenzionale (stampaggo a iniezione, estrusione...) il particolare prodotto non può essere lavorato alle macchine utensili ma può essere finito con tela abrasiva
- I componenti prodotti possono essere estetizzati mediante verniciatura
- Le tolleranze che si ottengono sono analoghe a quelli dei particolari realizzati con tecniche convenzionali
- Le rugosità sono superiori e spesso richiedono la finitura manuale sulle superfici a vista

Produttore:

3D Systems (USA)

Materiale:

Fotopolimero (resina termoindurenti su base epossidica, acrilica, vinilica)

Fasi del processo:

- Trattamento con il laser (green –part);
- 2. Post-trattamento in forno UV (red-part)

SLA 1: il primo sterolitografo prodotto da 3D Systems nel 1987

Trattamento con il laser (green-part)

Tipologia della struttura dei supporti

STEREOLITOGRAFIA: LE MACCHINE

Volume di costruzione netto (xyz)		
Massimo	650 x 750 x 550 mm (25.6 x 29.5 x 21.65 in); 414 I (109.3 U.S. gal)	
Metà	650 x 750 x 275 mm (25.6 x 29.5 x 10.8 in); 272 I (71.9 U.S. gal)	
Minimo	650 x 750 x 50 mm (25.6 x 29.5 x 21.97 in); 95 I (25.09 U.S. gal)	
Peso parte max	75 kg (165 lbs)	

<u>Precisione</u>: 0.025-0,05 mm per 25,4 mm di dimensione della parte

ProX 800

STEREOLITOGRAFIA: LE MACCHINE

Volume di lavoro: 1500x750x550 mm, 935 l

Peso max pezzo: 150kg

<u>Precisione</u>: 0.025-0,05 mm per 25,4 mm di dimensione della parte

ProX 950

STEREOLITOGRAFIA: MATERIALI

Accura® 25

Accura® 48HTR

Accura® 55

Accura® 60

Accura® ABS Black (SL 7820)

Accura® ABS White (SL 7810)

Accura® Bluestone

Accura® CastPro

Accura® CastPro Free (SL7800)

Accura® CeraMAX™ Composite

Accura® ClearVue

Accura® ClearVue Free (SL 7870)

Accura® e-Stone

Accura® Peak

Accura® SL 7840

Accura® Xtreme

Accura® Xtreme™ White 200

Materiale liquido

Misurazione	Condizione	Valore:
Aspetto		Trasparente
Densità allo stato liquido	@ 25 °C	1,13 g/cm3
Densità allo stato solido	@ 25 °C	1,21 g/cm3
Viscosità	@ 30 °C	150 - 180 cps
Profondità di penetrazione (Dp) *		6,3 mils
Esposizione critica (Ec) *		7,6 mJ/cm2
Stili di costruzione collaudati		EXACT™, FAST™, QuickCast™

Materiale Post-Trattato

Misurazione	Condizione	Valore:
Resistenza alla trazione	ASTM D 638	58-68 MPa
Modulo di trazione	ASTM D 638	2690-3100 MPa
Allungamento alla rottura (%)	ASTM D 638	5 -13 %
Resistenza alla flessione	ASTM D 790	87-101 MPa
Modulo di flessione	ASTM D 790	2700-3000 MPa
Resistenza all'impatto (Notched Izod)	ASTM D 256	15-25 J/m
Temperatura di deviazione del calore	ASTM D 648 @ 0,5 PSI @ 0,8 PSI	53-55 °C 48-50 °C
Durezza, Shore D		86
Coefficiente di espansione termica	ASTM E 831-93 TMA (T <tg, 0-40="" °c)<br="">TMA (T<tg, 75-140="" td="" °c)<=""><td>71-131 μm/m-°C 153 μm/m-°C</td></tg,></tg,>	71-131 μm/m-°C 153 μm/m-°C
Transizione vetrosa (Tg)	DMA, E"	58 °C

<u>Fotopolimeri commercializzati</u> da 3D System

Accura 60

- Modelli per la replicazione siliconica
- Test Aerodinamici
- Analisi di Flusso
- Produzione di parti complesse con dettagli di piccola dimensione
- Modelli di stile
- Test di assemblaggio
- Modelli a perdere per la fusione a cera persa (gioielleria)

Stereolitografia - Vantaggi

- 1. Tecnica di AM che assicura le migliori prestazioni in termini di tolleranze dimensionali e rugosità superficiali;
- 2. Spessore di strato compreso tra (0.025-0.05) mm;
- 3. Possibilità di realizzare elementi trasparenti/traslucidi

Stereolitografia - Limiti

- 1. Materiali termoindurenti;
- 2. Supporti nello stesso materiale del pezzo da rimuovere meccanicamente
- 3. Impossibilità di sfruttare l'intero volume di lavoro;
- 4. Impianto che lavora a 'Vasca Piena'
- 5. Vincoli sull'installazione per la presenza del fotopolimero liquido

TECNICHE AM PER POLIMERI

SELECTIVE LASER SINTERING (SLS)

Processo:

Basato sul letto di polvere, sviluppato in parallelo dall'Università di Austin (Prof. Beaman) in collaborazione con la società DTM e dalla società tedesca EOS (Dott. Largen)

Prof. Beauman

Dott. Langer

SELECTIVE LASER SINTERING (SLS)

SELECTIVE LASER SINTERING (SLS)

Descrizione	Materiale	Produttore
Radiazione laser porta a fusione le particelle di materiale Metalli		EOS (Germania) Concept Laser (Germania) Renishaw (UK) Realizer (Germania) 3D Systems (USA) SLM Solutions (Germany) SISMA (Italia)
	Polimeri termoplastici	EOS (Germania) 3D Systems (USA)
	Ceramici	EOS (Germany)

SLS - Processo

SLS - Processo

- Nel caso dei polimeri termoplastici la sorgente laser porta a fusione la polvere e realizza l'intera sezione facendola aderire allo strato precedente
- La camera di lavoro è mantenuta ad una temperatura prossima a quella di fusione della polvere per minimizzare i ritiri di solidificazione
- Il sistema opera in copertura di azoto per evitare l'ossidazione della polvere
- Non sono necessari i supporti
- Al termine i pezzi sono immersi nel letto di polvere

SLS - Processo

- Il blocco di polvere contenente i pezzi deve essere fatto raffreddare in aria prima di estrarre i pezzi per evitare deformazioni degli stessi
- La polvere non trattata può essere riutilizzata in combinazione con quella vergine
- Non è necessario eseguire post-trattamenti a parte la pulizia della polvere
- Notevole interesse per i materiali termoplatici disponibili che assicurano elevate prestazioni

SLS – 3D Systems – estrazione pezzi

Estrazione dal letto di polvere e pulizia

SLS – Applicazioni

- Produzione di modelli sacrificali per la fusione a cera persa;
- Prototipazione funzionale;
- Produzione diretta di parti definitive
- Produzione di forme e anime per la fusione in sabbia (solo EOS)

SLS - Vantaggi

- 1. Buone prestazioni in termini di tolleranze dimensionali e rugosità superficiali;
- 2. Materiali termoplastici definitivi
- 3. Elevata produttività nella produzione delle parti;
- 4. Possibilità di saturare completamente il volume di lavoro
- 5. Possibilità di inserire nuovi pezzi anche a job avviato;
- 6. Assenza di supporti
- 7. Assenza di post-trattamento
- 8. Vincoli limitati per l'installazione

SLS – Nesting 3D

3DP – 3D Systems - Limiti

- 1. Limitata disponibilità di materiali
- 2. Sistemi sviluppati per la costruzione di prototipi con difficoltà di adattamento alla produzione definitiva
- 3. Tempi lunghi per il cambio materiale in macchina

SLS - 3D Systems

Inizialmente il processo sviluppato presso l'Università di Austin è stato industrializzato dalla società texana DTM passata nel 2001 sotto il controllo di 3D Systems

La Sinterstation 2000 di DTM

SLS - 3D Systems - Le Macchine

sPro 60

Volume di lavoro: 381x330x460 mm

Sorgente Laser: C02 30W

Spessore dello strato: (0.08-0.15) mm

Velocità di costruzione: 1.8 l/h

SLS - 3D Systems - Le Macchine

sPro 230 HS

Volume di lavoro: 550x550x750 mm

Sorgente Laser: C02 200 W

Spessore dello strato: (0.08-0.15) mm

Velocità di costruzione: 1.8 l/h

SLS – 3D Systems – Materiali

CastForm™ PS
DuraForm® EX Black
DuraForm® EX Natural
DuraForm® Flex
DuraForm® FR 100
DuraForm® GF
DuraForm® HST Composite
DuraForm® PA

- Castform è il nome commerciale di 3D Systems per del polistirene per la produzione di modelli per la fusione a cera persa
- Duraform è il nome commerciale di 3D Systems per il nylon che può essere puro o caricato

SLS – 3D Systems – Materiali

Misurazione	Condizione	Valore:
Peso specifico	ASTM D792	1.01 g/cm3
Assorbimento dell'umidità - 24 ore	ASTM D570	0.48%
Saturazione dell'umidità	ASTM D570	1.15%
Caratteristiche meccaniche		
Misurazione	Condizione	Valore:
Resistenza alla trazione, torsione	ASTM D638	37 MPa
Resistenza alla trazione, rottura	ASTM D638	48 MPa
Modulo di trazione	ASTM D638	1 517 MPa
Allungamento alla torsione	ASTM D638	5.00%
Allungamento alla rottura	ASTM D638	47%
Resistenza alla flessione (torsione)	ASTM D790	42 MPa
Resistenza alla flessione (rottura)	ASTM D790	46 MPa
Modulo di flessione	ASTM D790	1 310 MPa
Durezza Shore D	ASTM D2240	74
Durezza Rockwell L	ASTM D785	69
Durezza Rockwell M	ASTM D785	34
Resistenza all'impatto (trod con intaglio, 23°C)	ASTM D256	74 J/m
Resistenza all'impatto (Izod serua intaglio, 23°C)	ASTM D256	1 486 J/m
Impatto Gardner	ASTM D5420	11.8 J

Caratteristiche termiche

Misurazione	Condizione	Valore:
Temperatura di Deformazione termica (HDT)	ASTM D648 @ 0.45 MPa @ 1.82 MPa	188 °C 48 °C
Coeff.di dilatazione termica	ASTM E831 @ 0 - 50 °C @ 85 - 145 °C	120 μm/m-°C 342 μm/m-°C
Capacità termica specifica	ASTM E1269	1.75 J/g-°C
Conducibilità termica	ASTM E1225	0.51 W/m-K
Infiammabilità	UL 94	НВ

Caratteristiche elettriche

Misurazione	Condizione	Valore:
Resistività volumetrica	ASTM D257	1.3 X 1013 ohm-cm
Resistività superficiale	ASTM D257	4.9 X 1012 ohm
Fattore di dispersione, 1 KHz	ASTM D150	0.050
Costante dielettrica, 1 KHz	ASTM D150	4.5
Rigidità dielettrica	ASTM D149	18,5 kV/mm

Duraform EX natural, nylon PA 12

SLS – 3D Systems – applicazioni

Modello in Cast-Form e relativo getto microfuso

SLS – 3D Systems – applicazioni

Componenti realizzati in Duraform

SLS - EOS

EOS inizialmente produceva impianti di stereolitografia e di sinterizzazione selettiva laser. Nella metà degli anni '90 a seguito di un accordo commerciale con 3D Systems ha concentrato l'attività sul processo SLS.

EOSINT P350 il primo sinterizzatore per polimeri realizzato da EOS

SLS - EOS - Le Macchine

Formiga P110

Volume di lavoro: 200x250x330 mm

Sorgente Laser: C02 30W

Spessore dello strato: (0.06, 0.1, 0.12) mm

Velocità di costruzione: fino a 20 mm/h

Potenza installata: 2kW

SLS - EOS - Le Macchine

EOSINT P800

Volume di lavoro: 700x380x560 mm

Sorgente Laser: CO2 2 laser da 50W

Spessore dello strato: 0.12 mm

Velocità di costruzione: 7 mm/h

Potenza installata: 12kW

Unico sistema di grado di trasformare il PEEK (tecno polimero ad alta temperatura)

SLS – EOS – Materiali

Product class	Product name	Colour of laser- sintered parts	Main properties	Typical applications
	PA 2200	white	Multipurpose materialBalanced property profile	Functional parts
Polyamide 12	PrimePart® PLUS (PA 2221)	natural	Economical multipurpose material Balanced property profile Variety of certificates available (Biocompatibility, Food contact)	Functional parts
	PA 2202 black	anthracite black	Balanced property profile Pigmented throughout	Functional parts in anthracite black colour
Polyamide 12, glass bead filled	PA 3200 GF	whitish	High stiffness Wear resistance Improved temperature performance	 Stiff housings Parts with requirements on wear and abrasion Parts used under elevated thermal conditions
Polyamide 12, aluminium filled	Alumide®	metallic grey	 Easy post-processing, good machinability High temperature performance Thermal conductivity (limited) High stiffness 	 Applications with metallic finish Parts requiring machining Parts with thermal loads
Polyamide 12, carbon fibre reinforced	CarbonMide®	anthracite black	Extreme strength and stiffness Thermal and limited electrical conductivity Best strength / weight ratio	Light and stiff functional parts Metal replacement
Polyamide 11	PA 1101	natural	High ductility and impact resistance Otherwise balanced property profile (similar to PA 2200) From renewable sources	Functional parts requiring impact resistance Parts with functional elements like film hinges
roiyamide 11	PA 1102 black	black	Similar to typical applications for PA 1101 Additionally: black, mass-coloured applications, which remain black even under abrasive wear / scratching	Similar to typical applications for PA 1101 Additionally: black, integrated colour Through mass-colourisation suitable for scratch resistant parts

SLS - EOS - Materiali

For special applic	ations			
Polyomido 12	PA 2201 nat		Multipurpose material Material primarily for use in North America	Functional parts
Polyamide 12	PA 2105	light beige	Highest dimensional accuracy High surface quality and detail resolution	Dental
Polyamide 12,	PA 2210 FR	white	Flame retardancy Halogen-free material	Aerospace Electric and electronics
flame retardant	PrimePart® FR (PA 2241 FR)	white	Economic flame-retardant material Material certificates available (flammability)	Aerospace
TPE-A Polye- theramide- Block-Copolymer	PrimePart® ST (PEBA 2301)	white	 Rubber-like flexibility (Shore D ≈ 35) No infiltration necessary 	Damping devices, bumpers / cushions, gaskets / gasket seals, shoe sole elements
Polystyrene	PrimeCast® 101	grey	High dimensional accuracy Low residual ash content (when burned)	 Master patterns for investment casting Master patterns for vacuum casting Economical visual prototypes
Polyaryletherketone	EOS PEEK HP3	beige-brown	High-performance material Excellent temperature performance, strength, stiffness and chemical resistance Excellent wear resistance Inherently flame retardant Potentially biocompatible (component testing required) and sterilisable	Metal replacement Aerospace Automotive and motorsports Electric and electronics Medical Industrial

SLS – EOS – Materiali

EOS PEEK HP3 PEEK			
Mechanical properties	Value	Unit	Test Standard
Tensile Modulus	4250	MPa	ISO 527-1/-2
Tensile Strength	90	MPa	ISO 527-1/-2
Strain at break	2.8	%	ISO 527-1/-2

Thermal properties	Value	Unit	Test Standard
Melting temperature (20°C/min)	372	°C	ISO 11357-1/-3
Temp. of deflection under load (1.80 MPa)	165	°C	ISO 75-1/-2

Other properties	Value	Unit	Test Standard
Density (lasersintered)	1310	kg/m³	EOS Method

PEEK HP3

SLS – EOS – applicazioni

Modello in PrimeCast e relativo getto microfuso

SLS – 3D Systems – applicazioni

Componenti realizzati in PA 2200