

Simple Linear Regression — Theory + Intuition

1. What is Linear Regression?

- Linear Regression is a supervised learning algorithm used to predict numerical
- It finds a relationship between two variables one independent (input) and one dependent (output).
- Example: Predicting salary (output) based on years of experience (input).

2. Types of Linear Regression

- Simple Linear Regression:
 - One input variable (X) and one output variable (Y).
 - We draw a straight line to best fit the data points.
- Multiple Linear Regression:
 - More than one input variable (e.g., experience, age, education).
- **Polynomial Regression** (extension):
 - Fits curved lines (non-linear relationships) using powers of X.

3. Simple Linear Regression

➢ Goal:

 Find the best straight line (y = mx + c) that minimizes the difference between actual and predicted values.

> Components:

- X: Independent variable (e.g., experience)
- Y: Dependent variable (e.g., salary)
- m: Slope tells how much Y changes for each unit of X.
- **c**: Intercept the value of Y when X = 0.

> Example:

If the line is salary = $5000 \times \text{experience} + 30000$,

it means every extra year of experience adds Rs. 5000 to the salary.

4. Applying with Code

(Even though we're not using code here, here's what usually happens conceptually):

- We feed the data to the regression model.
- The model calculates the best-fit line using a method called least squares (minimizes the squared error between predicted and real values).

• Once trained, it can **predict Y** for any new X.

5. Visual & Intuitive Understanding

🎇 Intuition:

- Imagine plotting points on a graph for example, years of experience vs salary.
- You draw a line that comes as close as possible to all the points.
- Some points are above the line, some below but the line represents the overall trend.

The goal of the model:

- Minimize the error (difference between actual and predicted values).
- This error is called residual.
- Model tries to adjust slope and intercept so that the total squared error is as small as possible.

> Summary

Concept	Meaning
y = mx + c	Equation of a straight line
m (slope)	How much Y increases for 1 unit of X
c (intercept)	Value of Y when X is 0
Goal	Find best-fit line that minimizes error
Use Case	Predicting outcomes based on historical trends