

Modal Logics for Games and Multi-Agent Systems

Thomas Ågotnes and Wojtek Jamroga (Bergen University College / TU Clausthal)

Time and place:

11–15 August 2008, hours 9.15-10.45

Parts 2, 4, 7, 9 & 10: Thomas Ågotnes, Organization: Parts 1, 3, 5, 6 & 8: Wojtek Jamroga

Lecture Overview I

- **Introduction.** Multi-agent systems. Modal logic. Epistemic logic. Axioms and systems of modal logic. Correspondence theory.
- **Coalition logic.** Strategic games and coalition logic (CL). Axiomatisation of CL.
- **ATL.** Multi-step games and alternating-time temporal logic (ATL).
- More about ATL. Axiomatisation; bisimulation; the role of memory; revocability of strategies.

Lecture Overview II

- 5 Strategic reasoning for imperfect information (part I). Strategic reasoning for imperfect information scenarios. Problems with ATEL. Economic solution: ATLir.
- **Strategic reasoning for imperfect information (part** II). General solution: CSL. Properties of constructive knowledge. Semantics for constructive normal form.
- **Characterising solution concepts.** Non-cooperative games: characterising solution concepts in modal logic.

Lecture Overview III

- Reasoning about rational play. Reasoning about rational play in ATLP. Temporalized solution concepts.
- Axiomatisation of coalitional games (part I). Cooperative games. Examples of games. Solution concepts. Axiomatisation in modal logic.
- Axiomatisation of coalitional games (part II). Axiomatisation of coalitional games: completeness proof.

Basic Reading I

[Alur et al. 2002] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic. *Journal of the ACM*, 49:672–713, 2002.

[van der Hoek and Pauly2006] W. van der Hoek and M. Pauly. Modal logic for games and information.

In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages 1077–1148. Elsevier Science Publishers B.V.:

Amsterdam, The Netherlands, 2006.

Basic Reading II

[Jamroga and Ågotnes2007] W. Jamroga and T. Ågotnes.

Constructive knowledge: What agents can achieve under incomplete information.

Journal of Applied Non-Classical Logics, 17(4):423–475, 2007.

[Ågotnes et al.2008] Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge.

Reasoning about coalitional games, 2008.

Manuscript, to appear.

1. Agent Systems and Modal Logic

Agent Systems and Modal Logic

1.1 Agents

- Multi-agent system (MAS): a system that involves several autonomous entities that act in the same environment
- The entities are called agents

- Multi-agent system (MAS): a system that involves several autonomous entities that act in the same environment
- The entities are called agents

1. Agent Systems and Modal Logic

So, what is an agent precisely?

- Multi-agent system (MAS): a system that involves several autonomous entities that act in the same environment
- The entities are called agents
- So, what is an agent precisely?
- No commonly accepted definition

1. Agent Systems and Modal Logic

For some authors, agents are:

A new paradigm for computation

For some authors, agents are:

- A new paradigm for computation
- A new paradigm for design

For some authors, agents are:

- A new paradigm for computation
- A new paradigm for design
- A new paradigm for programming

For some authors, agents are:

- A new paradigm for computation
- A new paradigm for design
- A new paradigm for programming

Our claim:

MAS is a philosophical metaphor that induces a specific way of seeing the world.

1. Agent Systems and Modal Logic

1. Agents

Intuition:

We are agents!

Intuition:

We are agents!

The metaphor:

■ Makes us use specific vocabulary

Intuition:

We are agents!

The metaphor:

- Makes us use specific vocabulary
- Makes us use specific conceptual structures

Intuition:

We are agents!

The metaphor:

- Makes us use specific vocabulary
- Makes us use specific conceptual structures
- So:
- A new paradigm for thinking and talking about the world

An agent can/should possibly be:

Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment
- Pro-active: takes the initiative

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment
- Pro-active: takes the initiative
- Goal-directed: acts to achieve a goal

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment
- Pro-active: takes the initiative
- Goal-directed: acts to achieve a goal
- Social: interacts with others (cooperation, communication, coordination, competition)

Embodied: has sensors and effectors to read from and make changes to the environment

- Embodied: has sensors and effectors to read from and make changes to the environment
- Intelligent:

- Embodied: has sensors and effectors to read from and make changes to the environment
- Intelligent: ...whatever it means

- Embodied: has sensors and effectors to read from and make changes to the environment
- Intelligent: ...whatever it means
- Rational: always does the right thing

1. Agent Systems and Modal Logic

Is there any essential (and commonly accepted) feature of an agent?

An agent acts.

An agent acts.

Agents can be described mathematically by a function act: set of percept sequences \mapsto set of actions

An agent acts.

Agents can be described mathematically by a function

act: set of percept sequences \mapsto set of actions

Note that, in game theory, such a function is called a strategy.

An agent acts.

Agents can be described mathematically by a function

act: set of percept sequences \mapsto set of actions

Note that, in game theory, such a function is called a strategy.

In planning, it is called a conditional plan.

1.2 Modal Logic

Modal logic is an extension of classical logic by new connectives \square and \lozenge : necessity and possibility.

Modal logic

Modal logic is an extension of classical logic by new connectives \square and \lozenge : necessity and possibility.

 $\blacksquare \Box \varphi$ means that φ is necessarily true

Modal logic

Modal logic is an extension of classical logic by new connectives \square and \lozenge : necessity and possibility.

- $\blacksquare \Box \varphi$ means that φ is necessarily true
- $\blacksquare \lozenge \varphi$ means that φ is possibly true

Modal logic

Modal logic is an extension of classical logic by new connectives \square and \lozenge : necessity and possibility.

- $\blacksquare \Box \varphi$ means that φ is necessarily true
- $\blacksquare \lozenge \varphi$ means that φ is possibly true

Independently of the precise definition, the following holds:

$$\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$$

More precisely, necessity/possibility is interpreted as follows:

- $\blacksquare p$ is necessary $\Leftrightarrow p$ is true in all possible scenarios
- $\blacksquare p$ is possible $\Leftrightarrow p$ is true in at least one possible scenario

More precisely, necessity/possibility is interpreted as follows:

- \blacksquare p is necessary \Leftrightarrow p is true in all possible scenarios
- \blacksquare p is possible \Leftrightarrow p is true in at least one possible scenario

→ possible worlds semantics

Definition 1.1 (Kripke structure)

A Kripke structure is a tuple $S = \langle \mathcal{W}, \mathcal{R} \rangle$, where \mathcal{W} is a set of possible worlds, and \mathcal{R} is a binary relation on worlds, called accessibility relation.

For multiple modalities $\Box_1, \Diamond_1, \dots, \Box_k, \Diamond_k$, we use a family of relations $\mathcal{R}_1, \ldots, \mathcal{R}_k$

Definition 1.1 (Kripke structure)

A Kripke structure is a tuple $S = \langle \mathcal{W}, \mathcal{R} \rangle$, where \mathcal{W} is a set of possible worlds, and \mathcal{R} is a binary relation on worlds, called accessibility relation.

For multiple modalities $\Box_1, \Diamond_1, \dots, \Box_k, \Diamond_k$, we use a family of relations $\mathcal{R}_1, \ldots, \mathcal{R}_k$

Definition 1.2 (Kripke model)

Let Π be a set of atomic propositions (p, q, r, \dots) . A possible worlds model $M = \langle S, \pi \rangle$ consists of a Kripke structure S, and a valuation of propositions $\pi: \mathcal{W} \to 2^{\Pi}$.

The truth of formulae is relative to a Kripke model $M = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$, and a world $w \in \mathcal{W}$. It can be defined through the following clauses:

 $\blacksquare M, w \models p \text{ iff } p \in \pi(w);$

- $\blacksquare M, w \models p \text{ iff } p \in \pi(w);$
- $\blacksquare M, w \models \neg \varphi \text{ iff not } M, w \models \varphi;$

- $\blacksquare M, w \models p \text{ iff } p \in \pi(w);$
- $\blacksquare M, w \models \neg \varphi \text{ iff not } M, w \models \varphi;$
- $\blacksquare M, w \models \varphi \land \psi \text{ iff } M, w \models \varphi \text{ and } M, w \models \psi;$

- $\blacksquare M, w \models p \text{ iff } p \in \pi(w);$
- $\blacksquare M, w \models \neg \varphi \text{ iff not } M, w \models \varphi;$
- $\blacksquare M, w \models \varphi \land \psi \text{ iff } M, w \models \varphi \text{ and } M, w \models \psi;$
- $\blacksquare M, w \models \Box \varphi$ iff, for every $w' \in \mathcal{W}$ such that $w\mathcal{R}w'$, we have $M, w' \models \varphi$.

Logic for Agents

Modal logic is a generic framework.

Logic for Agents

Modal logic is a generic framework.

Various modal logics:

- knowledge ~> epistemic logic,
- beliefs ~> doxastic logic,
- obligations \infty deontic logic,
- actions \infty dynamic logic,
- time \rightsquigarrow temporal logic,
- ability \simple strategic logic,
- and combinations of the above

Logic for Agents

Modal logic is a generic framework.

Various modal logics:

- knowledge ~> epistemic logic,
- beliefs \(\to \) doxastic logic.
- obligations ~> deontic logic,
- actions \(\sim \) dynamic logic,
- time ~> temporal logic,
- ability \simple strategic logic,
- and combinations of the above

Modal logic seems very well suited for reasoning about various dimensions of multi-agent systems!

1.3 Epistemic Logic

3. Epistemic Logic

Epistemic logic

- We interpret $\square_i \varphi$ as "agent i knows that φ "
- $\blacksquare \square_i$ is usually written as K_i in epistemic logic

Epistemic logic

- We interpret $\square_i \varphi$ as "agent i knows that φ "
- $\blacksquare \square_i$ is usually written as K_i in epistemic logic
- Possible worlds: states of the system, situations
- Modal relations \mathcal{R}_i : indistinguishability of states for agent i
- We assume that \mathcal{R}_i are equivalence relations

Epistemic logic

■ We interpret $\square_i \varphi$ as "agent i knows that φ "

1. Agent Systems and Modal Logic

- $\blacksquare \square_i$ is usually written as K_i in epistemic logic
- Possible worlds: states of the system, situations
- Modal relations \sim_i : indistinguishability of states for agent i
- We assume that \sim_i are equivalence relations

Epistemic logic

- We interpret $\square_i \varphi$ as "agent i knows that φ "
- $\blacksquare \square_i$ is usually written as K_i in epistemic logic
- Possible worlds: states of the system, situations
- Modal relations \sim_i : indistinguishability of states for agent i
- We assume that \sim_i are equivalence relations
- $\blacksquare M, w \models K_i \varphi$ iff φ holds in all worlds that look the same as w

1. Agent Systems and Modal Logic

1. Agent Systems and Modal Logic

1. Agent Systems and Modal Logic

Example: Robots and Carriage

pos₂

pos₀

pos₁

 $pos_2 \rightarrow \neg K_1 pos_2$ $pos_2 \rightarrow K_1 \neg pos_1$ $pos_2 \rightarrow K_2K_1 \neg pos_1$

Logical omniscience

If φ is valid then $K_i\varphi$ also holds

Logical omniscience

If φ is valid then $K_i\varphi$ also holds Problem!

Logical omniscience

If φ is valid then $K_i\varphi$ also holds Problem!

Example

Do the whites have a winning strategy in chess?

Collective knowledge

A group of agents A can "know" that φ in several different epistemic modes:

Collective knowledge

A group of agents A can "know" that φ in several different epistemic modes:

 $\blacksquare E_A \varphi$: everybody in A knows that φ (A have mutual knowledge that φ)

Collective knowledge

A group of agents A can "know" that φ in several different epistemic modes:

- $\blacksquare E_A \varphi$: everybody in A knows that φ (A have mutual knowledge that φ)
- $\blacksquare C_A \varphi$: it is a common knowledge among A that φ

1. Agent Systems and Modal Logic

Collective knowledge

A group of agents A can "know" that φ in several different epistemic modes:

- $\blacksquare E_A \varphi$: everybody in A knows that φ (A have mutual knowledge that φ)
- $\blacksquare C_A \varphi$: it is a common knowledge among A that φ
- $D_A \varphi$: A have distributed knowledge that φ

Collective knowledge

A group of agents A can "know" that φ in several different epistemic modes:

- $E_A \varphi$: everybody in A knows that φ (A have mutual knowledge that φ)
- lacksquare $C_A \varphi$: it is a common knowledge among A that φ
- $D_A \varphi$: A have distributed knowledge that φ

Multi-agent Epistemic Logic (MAEL_n): K_n plus modalities for mutual, common, and distributed knowledge

Collective knowledge: semantics

 $\blacksquare M, q \models E_A \varphi$ iff $M, q' \models \varphi$ for every q' such that $q \sim^E_A q'$, where $\sim_A^E = \bigcup_{i \in A} \sim_i$

- $\blacksquare M, q \models E_A \varphi \text{ iff } M, q' \models \varphi \text{ for every } q' \text{ such that } q \sim^E_A q'$, where $\sim_A^E = \bigcup_{i \in A} \sim_i$
- $\blacksquare M, q \models C_A \varphi \text{ iff } M, q' \models \varphi \text{ for every } q' \text{ such that } q \sim^C_A q'$, where \sim^C_A is the transitive closure of \sim^E_A

Collective knowledge: semantics

- $\blacksquare M, q \models E_A \varphi \text{ iff } M, q' \models \varphi \text{ for every } q' \text{ such that } q \sim^E_A q'$, where $\sim_A^E = \bigcup_{i \in A} \sim_i$
- $\blacksquare M, q \models C_A \varphi \text{ iff } M, q' \models \varphi \text{ for every } q' \text{ such that } q \sim^C_A q',$ where \sim^C_A is the transitive closure of \sim^E_A
- $\blacksquare M, q \models D_A \varphi \text{ iff } M, q' \models \varphi \text{ for every } q' \text{ such that } q \sim^E_A q'$ where $\sim_A^E = \bigcap_{i \in A} \sim_i$

1.4 Axioms

1. Agent Systems and Modal Logic

As in classical logic, one can ask about a complete axiom system. Is there a calculus that allows to derive all sentences that are true in all Kripke models?

As in classical logic, one can ask about a complete axiom system. Is there a calculus that allows to derive all sentences that are true in all Kripke models?

Definition 1.4 (System K)

System **K** is an extension of the propositional calculus by the axiom

K
$$(\Box \varphi \land \Box (\varphi \rightarrow \psi)) \rightarrow \Box \psi$$

and the inference rule

(Necessitation)
$$\frac{\varphi}{\Box \varphi}$$
.

Theorem 1.5 (Soundness/completeness of system K)

System **K** is sound and complete with respect to the class of all Kripke models.

Theorem 1.5 (Soundness/completeness of system K)

System **K** is sound and complete with respect to the class of all Kripke models.

Note: with n modalities, the calculus is called \mathbf{K}_n , and the theorem extends in a straightforward way.

Definition 1.6 (Extending K with axioms D, T, 4, 5)

System **K** is often extended by the following axioms:

$$\mathbf{K} \quad (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$$

T
$$\square \varphi \rightarrow \varphi$$

4
$$\square \varphi \rightarrow \square \square \varphi$$

$$oldsymbol{arphi}$$
 . $\Box \varphi o \Box \Box \varphi$

$$5 \quad \neg \Box \varphi \rightarrow \Box \neg \Box \varphi$$

1. Agent Systems and Modal Logic

System **K** is often extended by the following axioms:

$$\mathbf{K} \quad (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$$

$$\begin{array}{ccc} \mathbf{D} & \neg \Box (\varphi \wedge \neg \varphi) \\ \mathbf{\overline{}} & \overline{} \end{array}$$

$$\mathbf{T} \quad \Box \varphi \to \varphi$$

4
$$\square \varphi \rightarrow \square \square \varphi$$

$$5 \quad \neg \Box \varphi \to \Box \neg \Box \varphi$$

Best known extensions of system **K**:

- S5 = KDT45: the standard logic of knowledge
- KD45: the standard logic of beliefs

Theorem 1.7 (Sound/complete subsystems of KDT45)

Let X be any subset of $\{D, T, 4, 5\}$ and let \mathcal{X} be any subset of {serial, reflexive, transitive, euclidean} corresponding to Χ.

Then $K \cup X$ is sound and complete with respect to Kripke models the accessibility relation of which satisfies \mathcal{X} .

1. Agent Systems and Modal Logic

Theorem 1.7 (Sound/complete subsystems of KDT45)

Let X be any subset of $\{D, T, 4, 5\}$ and let \mathcal{X} be any subset of {serial, reflexive, transitive, euclidean} corresponding to X.

Then $\mathbf{K} \cup \mathbf{X}$ is sound and complete with respect to Kripke models the accessibility relation of which satisfies \mathcal{X} .

Corollary 1.8

System **\$5** is sound and complete with respect to Kripke models with equivalence accessibility relations.

Let X be any subset of $\{D, T, 4, 5\}$ and let \mathcal{X} be any subset of {serial, reflexive, transitive, euclidean} corresponding to X.

Then $K \cup X$ is sound and complete with respect to Kripke models the accessibility relation of which satisfies \mathcal{X} .

Corollary 1.8

System **\$5** is sound and complete with respect to Kripke models with equivalence accessibility relations.

Theorem 1.9

Deciding if φ is a theorem of **S5** is PSPACE-complete.

1. Agent Systems and Modal Logic

Axioms for collective knowledge

Axioms for $MAEL_n$ extend SS_n with schemes:

Axioms for E_A : $E_A \varphi \leftrightarrow \bigwedge_{i \in A} E_i \varphi$

Axioms for collective knowledge

Axioms for $MAEL_n$ extend SS_n with schemes:

- **Axioms for** E_A : $E_A \varphi \leftrightarrow \bigwedge_{i \in A} E_i \varphi$
- \blacksquare Segerberg's axioms for E_A and C_A :

 $\mathbf{MIX}_A: C_A\varphi \to (\varphi \wedge E_AC_A\varphi)$

 $IND_A: \varphi \wedge C_A(\varphi \to E_A\varphi) \to C_A\varphi$

Axioms for collective knowledge

Axioms for $MAEL_n$ extend $S5_n$ with schemes:

- **Axioms for** E_A : $E_A \varphi \leftrightarrow \bigwedge_{i \in A} E_i \varphi$
- \blacksquare Segerberg's axioms for E_A and C_A :

 $\mathbf{MIX}_A: C_A\varphi \to (\varphi \wedge E_AC_A\varphi)$

 $IND_A: \varphi \wedge C_A(\varphi \to E_A\varphi) \to C_A\varphi$

Axioms for D_A :

 $S5(D_A)$: The S5 axioms for D_A ,

 $\mathbf{D}_{i}: D_{i}\varphi \leftrightarrow E_{i}\varphi,$

INCL(**D**): $D_A \varphi \to D_B \varphi$ whenever $A \subseteq B$.

Axioms for collective knowledge

Axioms for $MAEL_n$ extend SS_n with schemes:

- Axioms for E_A : $E_A \varphi \leftrightarrow \bigwedge_{i \in A} E_i \varphi$
- Segerberg's axioms for E_A and C_A :

$$\mathbf{MIX}_A: C_A\varphi \to (\varphi \land E_AC_A\varphi)$$

$$\mathbf{IND}_A: \varphi \land C_A(\varphi \to E_A\varphi) \to C_A\varphi$$

 \blacksquare Axioms for D_A :

$$S5(D_A)$$
: The $S5$ axioms for D_A , D_i : $D_i\varphi \leftrightarrow E_i\varphi$,

$$\mathbf{INCL}(\mathbf{D}): D_A\varphi \to D_\mathsf{B}\varphi$$
 whenever $A\subseteq \mathsf{B}$.

 \blacksquare ...plus, for each $i \in Agt$, the inference rule

1. Agent Systems and Modal Logic

Theorem 1.10 (Soundness/completeness of MAEL_n)

The axiom system for $MAEL_n$ is sound and complete.

The axiom system for **MAEL**_n is sound and complete.

Theorem 1.11

Deciding if φ is a theorem of **MAEL**_n is EXPTIME-complete. It remains EXPTIME-complete even if only common or distributed knowledge operators are included.

1.5 References

Multi-agent systems:

[Weiss1999] G. Weiss, editor.

Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence.

MIT Press: Cambridge, Mass, 1999.

[Wooldridge2002] M. Wooldridge.

An Introduction to Multi Agent Systems.

John Wiley & Sons, 2002.

[fipa] Foundation for Intelligent Physical Agents. FIPA home page.

http://www.fipa.org/.

Modal logic:

[Blackburn et al. 2001] P. Blackburn, M. de Rijke, and V. Venema. Modal Logic.

Cambridge Univ. Press, 2001.

[kripke63a] Kripke, S. (1963b).

Semantical considerations on modal logic.

Acta Philosophica Fennica 16, 83–94.

[Huth00] Huth, M. & Ryan, M.

Logic in Computer Science: Modeling and reasoning about systems.

Cambridge University Press.

Reasoning about knowledge:

[Fagin et al. 1995] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.

MIT Press: Cambridge, MA, 1995.

[Halpern1995] J. Y. Halpern.

Reasoning about knowledge: a survey.

In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, *The* Handbook of Logic in Artificial Intelligence and Logic Programming, Volume IV, pages 1–34. Oxford University Press, 1995.

[van der Hoek and Verbrugge2002] W. van der Hoek and R. Verbrugge.

Epistemic logic: A survey.

Game Theory and Applications, 8:53–94, 2002.

2. Coalition Logic

Coalition Logic

2.1 Strategic Games

Game Theory

- Game theory is concerned with understanding what happens when rational decision-makers interact
- Non-cooperative game theory: actions of individual players are taken as primitives
 - Strategic games: players simultaneously choose complete strategies at the beginning of the game
 - Extensive games: players can postpone decisions about which actions to choose until they are needed
- Cooperative (or coalitional) game theory: actions of coalitions, i.e. groups of players, are taken as primitives

2. Coalition Logic

Game Theory

- Game theory is concerned with understanding what happens when rational decision-makers interact
- Non-cooperative game theory: actions of individual players are taken as primitives
 - Strategic games: players simultaneously choose complete strategies at the beginning of the game
 - Extensive games: players can postpone decisions about which actions to choose until they are needed
- Cooperative (or coalitional) game theory: actions of coalitions, i.e. groups of players, are taken as primitives

This lecture: (repeated) strategic game forms. (Lecture 3: extensive form games; lectures 7 and 8: solution concepts for non-cooperative games; lectures 9 and 10: solution concepts for coalitional games)

Strategic game form

A game form is a tuple

$$G = (N, \{\Sigma_i : i \in N\}, o, S)$$

where

- \blacksquare N is a nonempty finite set of players
- S is a nonempty set of states (or outcomes or consequences)
- Σ_i is the nonempty set of actions (strategies) for agent
- \bullet $o: \times_{i \in N} \Sigma_i \to S$ associates a state with a strategy profile

Strategic game form

A game form is a tuple

$$G = (N, \{\Sigma_i : i \in N\}, o, S)$$

where

- \blacksquare N is a nonempty finite set of players
- S is a nonempty set of states (or outcomes or consequences)
- Σ_i is the nonempty set of actions (strategies) for agent
- $o: \times_{i \in N} \Sigma_i \to S$ associates a state with a strategy profile

Notation:

- lacksquare σ_G where $G\subseteq N$: a partial strategy profile $\sigma_G\subseteq imes_{i\in G}\Sigma_i$
- σ_{-i} : same as $\sigma_{N\setminus\{i\}}$

Strategic game

When

$$G = (N, \{\Sigma_i : i \in N\}, o, S)$$

and, for each player $i \in N$,

$$\succeq_i \subseteq S \times S$$

is a preference relation (complete, reflexive, transitive), then

$$(G, \{\succeq_i : i \in N\})$$

is a strategic game

Example: Prisoners' Dilemma

	Bill		
		Cooperate	Defect
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3

D 111

Example: Prisoners' Dilemma

	Bill		
		Cooperate	Defect
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3

On game form:

$$PD = (N, \{\Sigma_i : i \in N\}, o, S)$$

where

- $ightharpoonup N = \{Ann, Bill\}$
- $\Sigma_{Ann} = \Sigma_{Bill} = \{C, D\}$
- $S = \{-1/-1, -4/0, 0/-4, -3/-3\}$
- o(C,C) = -1/-1, o(C,D) = -4/0, etc.

2.2 Coalition Logic: Introduction

Modal Logic and Games

- (Extensive form) games look like Kripke structures! (van Benthem)
- Here we use strategic games and Marc Paulys Coalition Logic as a starting point

Coalition Logic (Pauly 2001)

- We can interpret modal logic in transition systems, and reason about how the system possibly or necessarily will evolve
- Game frames: transition systems where the transitions are determined by a strategic game form in each state (and where the outcomes are, again, states)
- Coalition logic: about what coalitions can do (or ensure or make come about) – coalitional power
- Main construct, $C \subseteq N$:

$$\langle\!\langle C \rangle\!\rangle \varphi$$
 C can make φ come about

- Alternative interpretations:
 - A logic of game frames
 - A logic of coalitional effectivity

Example 2.1

Two individuals, A and B, must choose between two outcomes, p and q. We want a mechanism that will allow them to choose which will satisfy the following requirements: We want an outcome to be possible – that is, we want the two agents to choose, collectively, either p or q. We do not want them to be able to bring about both outcomes simultaneously. Finally, we do not want either agent to be able to unilaterally dictate an outcome – we want them both to have "equal power".

Example 2.1

Two individuals, A and B, must choose between two outcomes, p and q. We want a mechanism that will allow them to choose which will satisfy the following requirements: We want an outcome to be possible – that is, we want the two agents to choose, collectively, either p or q. We do not want them to be able to bring about both outcomes simultaneously. Finally, we do not want either agent to be able to unilaterally dictate an outcome – we want them both to have "equal power".

These requirements may be formally and naturally represented using Coalition Logic, as follows:

Example 2.1

Two individuals, A and B, must choose between two outcomes, p and q. We want a mechanism that will allow them to choose which will satisfy the following requirements: We want an outcome to be possible – that is, we want the two agents to choose, collectively, either p or q. We do not want them to be able to bring about both outcomes simultaneously. Finally, we do not want either agent to be able to unilaterally dictate an outcome – we want them both to have "equal power".

These requirements may be formally and naturally represented using Coalition Logic, as follows:

$$\langle\!\langle A, B \rangle\!\rangle p \quad \langle\!\langle A, B \rangle\!\rangle q$$

Example 2.1

Two individuals, A and B, must choose between two outcomes, p and q. We want a mechanism that will allow them to choose which will satisfy the following requirements: We want an outcome to be possible - that is, we want the two agents to choose, collectively, either por q. We do not want them to be able to bring about both outcomes simultaneously. Finally, we do not want either agent to be able to unilaterally dictate an outcome – we want them both to have "equal power".

These requirements may be formally and naturally represented using Coalition Logic, as follows:

$$\langle\!\langle A,B\rangle\!\rangle p \quad \langle\!\langle A,B\rangle\!\rangle q \quad \neg \langle\!\langle A,B\rangle\!\rangle (p \wedge q)$$

Example 2.1

Two individuals, A and B, must choose between two outcomes, p and q. We want a mechanism that will allow them to choose which will satisfy the following requirements: We want an outcome to be possible - that is, we want the two agents to choose, collectively, either por q. We do not want them to be able to bring about both outcomes simultaneously. Finally, we do not want either agent to be able to unilaterally dictate an outcome – we want them both to have "equal power".

These requirements may be formally and naturally represented using Coalition Logic, as follows:

$$\langle\!\langle A, B \rangle\!\rangle p \quad \langle\!\langle A, B \rangle\!\rangle q \quad \neg \langle\!\langle A, B \rangle\!\rangle (p \wedge q)$$

$$\neg \langle\!\langle A \rangle\!\rangle q \quad \neg \langle\!\langle A \rangle\!\rangle p \quad \neg \langle\!\langle B \rangle\!\rangle p$$

$$\neg \langle\!\langle B \rangle\!\rangle q$$

2.3 From Game Forms to **Effectivity Functions**

2. Coalition Logic 3. From Game Forms to Effectivity Functions

- We want to reason about coalitional power: can a coalition C achieve an outcome $X \subseteq S$?
- Coalitional power can be explicitly formalised by effectivity functions

2. Coalition Logic 3. From Game Forms to Effectivity Functions

- We want to reason about coalitional power: can a coalition C achieve an outcome $X \subseteq S$?
- Coalitional power can be explicitly formalised by effectivity functions

An effectivity function *E* is a function:

$$E:\wp(N)\to\wp(\wp(S))$$

 $X \in E(C)$ means that the coalition C is effective for the outcome X

(Note: the litterature differs in conditions imposed on eff. functions. More about this later.)

A game form G induces an effectivity function E_G :

$$X \in E_G(C) \Leftrightarrow \exists \sigma_C \forall \sigma_{N \setminus C} o(\sigma_C, \sigma_{N \setminus C}) \in X$$

(where σ_C is a tuple of strategies for C)

A game form G induces an effectivity function E_G :

$$X \in E_G(C) \Leftrightarrow \exists \sigma_C \forall \sigma_{N \setminus C} o(\sigma_C, \sigma_{N \setminus C}) \in X$$

(where σ_C is a tuple of strategies for C)

- This form of effectivity is called α -effectivity
- \blacksquare C is effective for $X \subseteq S$ iff C has a strategy such that the next state will be in the set X, no matter which strategies the players in $N \setminus C$ use

Example

	Bill		
		Cooperate	Defect
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3

PD induces the effectivity function E_{PD} :

$$E_{PD}(\emptyset) = \{S\}$$

$$E_{PD}(\{Ann\}) = \{\{-1/-1, -4/0\}, \{0/-4, -3/-3\}\}^{+}$$

$$E_{PD}(\{Bill\}) = \{\{-1/-1, 0/-4\}, \{-4/0, -3/-3\}\}^{+}$$

$$E_{PD}(\{Ann, Bill\}) = \wp(S) \setminus \emptyset$$

where X^+ is X closed under outcome-monotonicity (i.e.: $X \subseteq X^+$, and if $Y \in X^+$ and $Y \subseteq Y' \subseteq S$ then $Y' \in X^+$)

Syntax

.
$$\bot$$
 contradiction p atomic prop. $\neg \phi$ negation $\phi \lor \phi$ disjunction $\langle\!\langle C \rangle\!\rangle \phi$ C can enforce ϕ

where $C \subseteq N$

Game Frames

A game frame is a pair

$$(S, \gamma)$$

where S are the states and

$$\gamma: S \to \Gamma_S^N$$

associates a strategic game form to each state

Game Frame Example: Repeated PD

Recall our game form: $PD = (N, \{\Sigma_i : i \in N\}, o, S)$ where

- $\blacksquare N = \{Ann, Bill\}$
- $\Sigma_{Ann} = \Sigma_{Bill} = \{C, D\}$
- $S = \{-1/-1, -4/0, 0/-4, -3/-3\}$
- o(C,C) = -1/-1, o(C,D) = -4/0, etc.

Game Frame Example: Repeated PD

Recall our game form: $PD = (N, \{\Sigma_i : i \in N\}, o, S)$ where

- $\blacksquare N = \{Ann, Bill\}$
- $\Sigma_{Ann} = \Sigma_{Bill} = \{C, D\}$
- $S = \{-1/-1, -4/0, 0/-4, -3/-3\}$
- o(C,C) = -1/-1, o(C,D) = -4/0, etc.

The game frame

$$\mathcal{F}_{PD} = (S, \gamma)$$

where

$$S = \{-1/-1, -4/0, 0/-4, -3/-3\}$$
$$\gamma(s) = PD \text{ for all } s \in S$$

models repeated play of prisoners' dilemma

Models

A model is a pair

$$\mathcal{M} = (\mathcal{F}, V)$$

where

- \blacksquare \mathcal{F} is a game frame
- \blacksquare V assigns propositional atoms to states

Interpretation

Truth of a formula in a state s of a model \mathcal{M} :

$$\begin{array}{lll} \mathcal{M},s\not\models\bot\\ \mathcal{M},s\models p &\Leftrightarrow s\in V(p) \text{ (p atomic prop.)}\\ \mathcal{M},s\models\neg\phi &\Leftrightarrow \mathcal{M},s\not\models\phi\\ \mathcal{M},s\models\phi\vee\psi &\Leftrightarrow \mathcal{M},s\models\phi\text{ or }\mathcal{M},s\models\psi\\ \mathcal{M},s\models\langle\!\langle C\rangle\!\rangle\phi &\Leftrightarrow \phi^\mathcal{M}\in E_{\gamma(s)}(C) \end{array}$$

where
$$\phi^{\mathcal{M}} = \{ s \in S : \mathcal{M}, s \models \phi \}$$

$$\mathcal{M}_{PD} = ((S, \gamma), V)$$

where

$$S = \{1/1, 4/0, 0/4, 3/3\}$$
 $\gamma(s) = PD$ for each $s \in S$

V assigns truth values to propositions of the type

- $\blacksquare A = 1$ (Ann gets one year)
- $\blacksquare B > 3$ (Bill gets at least three years)

in the natural way (e.g., $A = 1 \in V(1/1)$)

$$\mathcal{M}_{PD} = ((S, \gamma), V)$$

where

$$S = \{1/1, 4/0, 0/4, 3/3\}$$
 $\gamma(s) = PD$ for each $s \in S$

V assigns truth values to propositions of the type

- $\blacksquare A = 1$ (Ann gets one year)
- $B \ge 3$ (Bill gets at least three years)

in the natural way (e.g., $A = 1 \in V(1/1)$)

Let s be any state.

 $\blacksquare \mathcal{M}_{PD}, s \models \langle \langle Ann \rangle \rangle B \geq 3$

$$\mathcal{M}_{PD} = ((S, \gamma), V)$$

where

$$S = \{1/1, 4/0, 0/4, 3/3\}$$
 $\gamma(s) = PD$ for each $s \in S$

V assigns truth values to propositions of the type

- $\blacksquare A = 1$ (Ann gets one year)
- $\blacksquare B > 3$ (Bill gets at least three years)

in the natural way (e.g., $A = 1 \in V(1/1)$)

Let s be any state.

- $\blacksquare \mathcal{M}_{PD}, s \models \langle \langle Ann \rangle \rangle B > 3$
- $\blacksquare \mathcal{M}_{PD}, s \models \langle \langle \{Ann, Bill\} \rangle \rangle A = 1 \land B = 1$

$$\mathcal{M}_{PD} = ((S, \gamma), V)$$

where

$$S = \{1/1, 4/0, 0/4, 3/3\}$$
 $\gamma(s) = PD$ for each $s \in S$

V assigns truth values to propositions of the type

- $\blacksquare A = 1$ (Ann gets one year)
- $B \ge 3$ (Bill gets at least three years)

in the natural way (e.g., $A = 1 \in V(1/1)$)

Let s be any state.

- $\blacksquare \mathcal{M}_{PD}, s \models \langle \langle Ann \rangle \rangle B > 3$
- $\blacksquare \mathcal{M}_{PD}, s \models \langle \langle \{Ann, Bill\} \rangle \rangle A = 1 \land B = 1$
- $\blacksquare \mathcal{M}_{PD}, s \models \neg \langle \langle Ann \rangle \rangle A = 0$

2.5 Effectivity Properties

An effectivity function

$$E:\wp(N)\to\wp(\wp(S))$$

An effectivity function

$$E:\wp(N)\to\wp(\wp(S))$$

is playable iff:

 $\forall C \subseteq N : \emptyset \notin E(C)$

An effectivity function

$$E:\wp(N)\to\wp(\wp(S))$$

- $\forall C \subseteq N : S \in E(C)$

An effectivity function

$$E:\wp(N)\to\wp(\wp(S))$$

- $\forall C \subseteq N : \emptyset \notin E(C)$
- $\forall C \subseteq N : S \in E(C)$
- $\forall X \subseteq S : S \setminus X \notin E(\emptyset) \Rightarrow X \in E(N)$ (N-maximality)

An effectivity function

$$E:\wp(N)\to\wp(\wp(S))$$

- $\forall C \subseteq N : \emptyset \notin E(C)$
- $\forall C \subseteq N : S \in E(C)$
- $\exists \forall X \subseteq S \colon S \setminus X \not\in E(\emptyset) \Rightarrow X \in E(N)$ (N-maximality)
- (outcome-monotonicity)

Playable Effect

Playable Effectivity Functions

An effectivity function

$$E:\wp(N)\to\wp(\wp(S))$$

- $\forall C \subseteq N : S \in E(C)$
- $\exists \forall X \subseteq S \colon S \setminus X \notin E(\emptyset) \Rightarrow X \in E(N)$ (N-maximality)
- 4 $\forall C: \forall X \subseteq X' \subseteq S: X \in E(C) \Rightarrow X' \in E(C)$ (outcome-monotonicity)
- 5 $\forall C_1 \subseteq N \colon \forall C_2 \subseteq N \colon \forall X_1 \subseteq S \colon \forall X_2 \subseteq S \colon (C_1 \cap C_2 = \emptyset)$ and $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$
 - $\Rightarrow X_1 \cap X_2 \in E(C_1 \cup C_2)$ (superadditivity)

Strategic Game Forms vs. Effectivity Functions

Q: which effectivity functions are induced by strategic game forms?

A: exactly the playable effectivity functions

Theorem 2.2 (Pauly)

An effectivity function is playable iff it is induced by some strategic game form

- Since the induced effectivity function is the only information about the fame frame used in the interpretation, this means that coalition logic can be seen as a logic of playable effectivity functions
- Alternative and equivalent models:

$$\mathcal{M} = ((S, E), V)$$

where E(s) associates a playable effectivity function to each state

- This is a neighbourhood semantics: we get a neigbourhood relation for each coalition
- Technically easier to work with

Coalition Logic: Axiomatisation

A sound and complete axiomatisation of all models (ref. playability properties):

$$\begin{array}{lll} \neg \langle \! \langle C \rangle \! \rangle \bot & (\bot) \\ \langle \! \langle C \rangle \! \rangle \neg \bot & (\top) \\ (\neg \langle \! \langle \emptyset \rangle \! \rangle \neg \phi) \rightarrow \langle \! \langle N \rangle \! \rangle \phi & (N) \\ \langle \! \langle C \rangle \! \rangle (\phi \wedge \psi) \rightarrow \langle \! \langle C \rangle \! \rangle \psi & (M) \\ (\langle \! \langle C_1 \rangle \! \rangle \phi_1 \wedge \langle \! \langle C_2 \rangle \! \rangle \phi_2) \rightarrow \langle \! \langle C_1 \cup C_2 \rangle \! \rangle (\phi_1 \wedge \phi_2) & (S) \\ \text{when } C_1 \cap C_2 = \emptyset & (MP) \\ \frac{\phi, \phi \rightarrow \psi}{\psi} & (EQ) \\ \hline \langle \! \langle C \rangle \! \rangle \phi \rightarrow \langle \! \langle C \rangle \! \rangle \psi & (EQ) \\ \end{array}$$

Playability properties again

- $\forall C \subseteq N : \emptyset \notin E(C)$
- $\forall C \subseteq N : S \in E(C)$
- $\forall X \subseteq S : S \setminus X \notin E(\emptyset) \Rightarrow X \in E(N)$ (N-maximality)
- $\forall C: \forall X \subseteq X' \subseteq S: X \in E(C) \Rightarrow X' \in E(C)$ (outcome-monotonicity)
- $\forall C_1 \subseteq N : \forall C_2 \subseteq N : \forall X_1 \subseteq S : \forall X_2 \subseteq S : (C_1 \cap C_2 = \emptyset)$ and $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$) $\Rightarrow X_1 \cap X_2 \in E(C_1 \cup C_2)$ (superadditivity)

Completeness

- Can be shown by an canonical model construction
- Standard Lindenbaum argument: every consistent set of formulae can be extended to a max. cons. set

Canonical Model

$$\mathcal{M}^c = ((S^c, E^c), V^c)$$

 S^c : all MCSs

Canonical Model

$$\mathcal{M}^c = ((S^c, E^c), V^c)$$

 S^c : all MCSs

 V^c : $s \in V^c(p) \Leftrightarrow p \in s$

Canonical Model

$$\mathcal{M}^c = ((S^c, E^c), V^c)$$

 S^c : all MCSs

 V^c : $s \in V^c(p) \Leftrightarrow p \in s$

 E^c : associates with each s the canonical effectivity function $E^c(s)$:

$$X \in E^c(s)(G) \Leftrightarrow$$

$$\left\{ \begin{array}{l} \exists \phi : \tilde{\phi} \subseteq X \text{ and } \langle\!\langle G \rangle\!\rangle \phi \in s & G \neq N \\ \forall \phi : \text{ if } \tilde{\phi} \subseteq S^c \setminus X \text{ then } \langle\!\langle \emptyset \rangle\!\rangle \phi \not \in s & G = N \end{array} \right.$$

where
$$\tilde{\phi} = \{s \in S^c : \phi \in s\}$$

Completeness

Truth Lemma

$$\mathcal{M}^c, s \models \phi \Leftrightarrow \phi \in s$$

for any MCS s and any ϕ

Completeness

Truth Lemma

$$\mathcal{M}^c, s \models \phi \Leftrightarrow \phi \in s$$

for any MCS s and any ϕ

Easy to show by induction over ϕ , using the fact that we can derive the rule

$$\frac{\phi \to \psi}{\langle\!\langle C \rangle\!\rangle \phi \to \langle\!\langle C \rangle\!\rangle \psi}$$

It remains to be shown that $E^c(s)$ is playable.

It remains to be shown that $E^c(s)$ is playable.

Proposition: Alternative playability properties

An effectivity function E is playable iff:

- $\forall C \neq N : S \in E(C)$
- $\exists \forall X \subseteq S \colon S \setminus X \notin E(\emptyset) \Rightarrow X \in E(N)$ (N-maximality)
- $\forall C \neq N \colon \forall X \subseteq X' \subseteq S \colon X \in E(C) \Rightarrow X' \in E(C)$ (outcome-monotonicity)
- $\forall C_1 \subset N \colon \forall C_2 \subset N \text{ s.t. } C_1 \cup C_2 \neq N \colon \forall X_1 \subseteq S \colon \forall X_2 \subseteq S \colon (C_1 \cap C_2 = \emptyset \text{ and } X_1 \in E(C_1) \text{ and } X_2 \in E(C_2)) \Rightarrow X_1 \cap X_2 \in E(C_1 \cup C_2) \text{ (superadditivity)}$
- 6 $\forall C \subseteq N \colon \forall X \subseteq S \colon \text{if } X \in E(C) \text{ then } S \setminus X \not\in E(N \setminus C)$ (regularity)

It remains to be shown that $E^c(s)$ is playable.

Proposition: Alternative playability properties

An effectivity function E is playable iff:

- $\forall C \neq N : \emptyset \notin E(C)$
- $\forall C \neq N : S \in E(C)$
- $\forall X \subseteq S : S \setminus X \notin E(\emptyset) \Rightarrow X \in E(N)$ (N-maximality)
- $\forall C \neq N \colon \forall X \subseteq X' \subseteq S \colon X \in E(C) \Rightarrow X' \in E(C)$ (outcome-monotonicity)
- $\forall C_1 \subset N \colon \forall C_2 \subset N \text{ s.t. } C_1 \cup C_2 \neq N \colon \forall X_1 \subset S \colon$ $\forall X_2 \subseteq S$: $(C_1 \cap C_2 = \emptyset \text{ and } X_1 \in E(C_1) \text{ and }$ $X_2 \in E(C_2)$) $\Rightarrow X_1 \cap X_2 \in E(C_1 \cup C_2)$ (superadditivity)
- $\forall C \subseteq N \colon \forall X \subseteq S \colon \text{if } X \in E(C) \text{ then } S \setminus X \notin E(N \setminus C)$ (regularity)

Relatively easy to show that these must hold in \mathcal{M}^c

5. Effectivity Properties

Superadditivity

Let $C_1 \cap C_2 = \emptyset$, $C_1 \cup C_2 \neq N$, $X_1 \in E^c(s)(C_1)$, $X_2 \in E^c(s)(C_2)$:

Let
$$C_1 \cap C_2 = \emptyset$$
, $C_1 \cup C_2 \neq N$, $X_1 \in E^c(s)(C_1)$, $X_2 \in E^c(s)(C_2)$:

 $\langle \langle C_1 \rangle \rangle \phi_1, \langle \langle C_2 \rangle \rangle \phi_2 \in s \text{ for some } \phi_1, \phi_2 \text{ s.t. } \tilde{\phi_1} \subseteq X_1 \text{ and }$ $\phi_2 \subset X_2$

Let
$$C_1 \cap C_2 = \emptyset$$
, $C_1 \cup C_2 \neq N$, $X_1 \in E^c(s)(C_1)$, $X_2 \in E^c(s)(C_2)$:

- $\langle \langle C_1 \rangle \rangle \phi_1, \langle \langle C_2 \rangle \rangle \phi_2 \in s$ for some ϕ_1, ϕ_2 s.t. $\tilde{\phi_1} \subseteq X_1$ and $\phi_2 \subset X_2$
- By the superadditivity axiom: $\langle \langle C_1 \cup C_2 \rangle \rangle (\phi_1 \wedge \phi_2) \in s$

Let
$$C_1 \cap C_2 = \emptyset$$
, $C_1 \cup C_2 \neq N$, $X_1 \in E^c(s)(C_1)$, $X_2 \in E^c(s)(C_2)$:

- $\langle \langle C_1 \rangle \rangle \phi_1, \langle \langle C_2 \rangle \rangle \phi_2 \in s \text{ for some } \phi_1, \phi_2 \text{ s.t. } \tilde{\phi_1} \subseteq X_1 \text{ and }$ $\phi_2 \subset X_2$
- By the superadditivity axiom: $\langle \langle C_1 \cup C_2 \rangle \rangle (\phi_1 \wedge \phi_2) \in s$
- \bullet $\phi_1 \land \phi_2 \subseteq X_1 \cap X_2$

Let
$$C_1 \cap C_2 = \emptyset$$
, $C_1 \cup C_2 \neq N$, $X_1 \in E^c(s)(C_1)$, $X_2 \in E^c(s)(C_2)$:

- $\langle\!\langle C_1 \rangle\!\rangle \phi_1, \langle\!\langle C_2 \rangle\!\rangle \phi_2 \in s$ for some ϕ_1, ϕ_2 s.t. $\tilde{\phi_1} \subseteq X_1$ and $\tilde{\phi_2} \subseteq X_2$
- By the superadditivity axiom: $\langle (C_1 \cup C_2) \rangle (\phi_1 \land \phi_2) \in s$
- Thus, $X_1 \cap X_2 \in E^c(s)(C_1 \cup C_2)$

Computational Complexity

The problem:

Given coalition logic formula ϕ is there some model that satisfies ϕ ?

■ Complexity: PSPACE-complete

2.6 Quantified Coalition Logic

Lack of Succinctness in CL

Take the property:

agent 1 is necessary to achieve φ

Lack of Succinctness in CL

Take the property:

agent 1 is necessary to achieve φ

Its expression in CL is exponentially long in the number of agents in the system. If $Aq = \{1, 2, 3, 4\}$:

$$\neg \langle \langle \{\} \rangle \rangle \varphi \wedge \neg \langle \langle \{2\} \rangle \rangle \varphi \wedge \neg \langle \langle \{3\} \rangle \rangle \varphi \wedge \neg \langle \langle \{4\} \rangle \rangle \varphi \wedge \neg \langle \langle \{2,3\} \rangle \rangle \varphi \wedge \neg \langle \langle \{3,4\} \rangle \rangle \varphi \wedge \neg \langle \langle \{2,4\} \rangle \varphi \wedge \neg \langle \langle \{2,3,4\} \rangle \varphi$$

Quantified Coalition Logic (QCL)

In QCL $\langle\langle \cdot \rangle\rangle$ is replaced by a collection of unary modal operators indexed by a coalition predicate P, in order to make the logic more succinct:

 $\langle P \rangle \varphi$: there exists some coalition satisfying P which can achieve φ

 $[P]\varphi$: every coalition satisfying P can achieve φ

Quantified Coalition Logic (QCL)

In QCL $\langle\langle \cdot \rangle\rangle$ is replaced by a collection of unary modal operators indexed by a coalition predicate P, in order to make the logic more succinct:

 $\langle P \rangle \varphi$: there exists some coalition satisfying P which can achieve φ

 $[P]\varphi$: every coalition satisfying P can achieve φ

Examples of predicates (C' a coalition, n a number):

- \blacksquare supseteg(C'): satisfied by C iff $C \supset C'$
 - $\blacksquare qeq(n)$: satisfied by C iff |C| > n
 - $\blacksquare qt(n)$: satisfied by C iff |C| > n
 - $maj(n) \equiv qeq(\lceil (n+1)/2 \rceil)$
 - Boolean combinations

QCL: Example

agent 1 is necessary to achieve φ

QCL: Example

agent 1 is necessary to achieve φ

 $\neg \langle \neg supseteq\{1\} \rangle \varphi$

QCL Example: voting

An electorate of n voters wishes to select one of two outcomes ω_1 and ω_2 . They want to use a simple majority voting protocol, so that outcome ω_i will be selected iff a majority of the n voters state a preference for it. No coalition of less than majority size should be able to select an outcome, and any majority should be able to choose the outcome (i.e., the selection procedure is not influenced by the "names" of the agents in a coalition).

QCL Example: voting

An electorate of n voters wishes to select one of two outcomes ω_1 and ω_2 . They want to use a simple majority voting protocol, so that outcome ω_i will be selected iff a majority of the n voters state a preference for it. No coalition of less than majority size should be able to select an outcome, and any majority should be able to choose the outcome (i.e., the selection procedure is not influenced by the "names" of the agents in a coalition).

$$([maj(n)]\omega_1) \wedge ([maj(n)]\omega_2)$$

QCL Example: voting

An electorate of n voters wishes to select one of two outcomes ω_1 and ω_2 . They want to use a simple majority voting protocol, so that outcome ω_i will be selected iff a majority of the n voters state a preference for it. No coalition of less than majority size should be able to select an outcome, and any majority should be able to choose the outcome (i.e., the selection procedure is not influenced by the "names" of the agents in a coalition).

$$([maj(n)]\omega_1) \wedge ([maj(n)]\omega_2)$$

$$(\neg \langle \neg maj(n) \rangle \omega_1) \wedge (\neg \langle \neg maj(n) \rangle \omega_2)$$

QCL

- QCL is no more expressive than Coalition Logic
- But is exponentially more succinct
- The model checking problem can be solved in polynomial time – assuming an explicit representation of models
- The model checking problem assuming an RML representation of models is PSPACE-complete.
- The satisfiability problem is PSCPACE-complete.

2.7 References

2. Coalition Logic

- [1] M. J. Osborne and A. Rubinstein.
 - A Course in Game Theory.
- The MIT Press: Cambridge, MA, 1994.
- M. Pauly. [2] Logic for Social Software. PhD thesis, University of Amsterdam, 2001.
 - ILLC Dissertation Series 2001-10.
- [3] M. Pauly.
 - A modal logic for coalitional power in games. Journal of Logic and Computation, 12(1):149–166, 2002.
- [4] W. van der Hoek and M. Pauly. Modal logic for games and information.
 - In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages 1077–1148. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 2006.
- Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. [5] Quantified coalition logic.

ATL

ATL: What Agents Can Achieve

- ATL: Agent Temporal Logic [Alur et al. 1997]
- Temporal logic meets game theory
- Main idea: cooperation modalities

ATL: What Agents Can Achieve

- ATL: Agent Temporal Logic [Alur et al. 1997]
- Temporal logic meets game theory
- Main idea: cooperation modalities

 $\langle\!\langle A \rangle\!\rangle \Phi$: coalition A has a collective strategy to enforce Φ

3.1 The Logic

Syntax

$$\varphi ::= \mathsf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \gamma,$$

$$\gamma ::= \varphi \mid \neg \gamma \mid \gamma \land \gamma \mid \bigcirc \gamma \mid \Diamond \gamma \mid \Box \gamma \mid \gamma \mathcal{U} \gamma.$$

Syntax

$$\varphi ::= \mathsf{p} \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle\!\langle A \rangle\!\rangle \gamma,$$

$$\gamma ::= \varphi \mid \neg \gamma \mid \gamma \wedge \gamma \mid \bigcirc \gamma \mid \Diamond \gamma \mid \Box \gamma \mid \gamma \mathcal{U} \gamma.$$

In fact, "eventually" and "always" can be derived from "until":

- $\square \gamma \equiv \neg \Diamond \neg \gamma$

Syntax

$$\varphi ::= \mathsf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \gamma,$$

$$\gamma ::= \varphi \mid \neg \gamma \mid \gamma \land \gamma \mid \bigcirc \gamma \mid \Diamond \gamma \mid \Box \gamma \mid \gamma \mathcal{U} \gamma.$$

In fact, "eventually" and "always" can be derived from "until":

- $\square \gamma \equiv \neg \lozenge \neg \gamma$
- "Vanilla" ATL: every temporal operator preceded by exactly one cooperation modality
- ATL*: no syntactic restrictions

 $\langle \langle jamesbond \rangle \rangle \langle (ski \land \neg getBurned) :$ "James Bond can go skiing without getting burned"

3. ATL

■ $\langle\langle jamesbond\rangle\rangle\Diamond(ski \land \neg getBurned)$: "James Bond can go skiing without getting burned"

3. ATL

 $\langle \langle jamesbond \rangle \rangle \langle (ski \land \neg getBurned) :$ "James Bond can go skiing without getting burned"

 $\blacksquare \langle \langle jamesbond, bondsgirl \rangle \rangle$ fun \mathcal{U} shot: "James Bond and his girlfriend are able to have fun until someone shoots at them"

$$A \equiv \langle\langle \emptyset \rangle\rangle$$
 ("for all paths")
 $E \equiv \langle\langle Agt \rangle\rangle$ ("there is a path")

ATL Models: Concurrent Game Structures

- Agents, actions, transitions, atomic propositions
- Atomic propositions + interpretation
- Actions are abstract

A concurrent game structure is a tuple

 $M = \langle Agt, St, \pi, Act, d, o \rangle$, where:

A concurrent game structure is a tuple

 $M = \langle Agt, St, \pi, Act, d, o \rangle$, where:

■ Agt: a finite set of all agents

A concurrent game structure is a tuple

 $M = \langle Agt, St, \pi, Act, d, o \rangle$, where:

- Agt: a finite set of all agents
- \blacksquare St: a set of states

A concurrent game structure is a tuple

 $M = \langle \mathbb{A}\mathrm{gt}, St, \pi, Act, d, o \rangle$, where:

- Agt: a finite set of all agents
- St: a set of states
- $\blacksquare \pi$: a valuation of propositions

3. ATL

Definition 3.1 (Concurrent Game Structure)

A concurrent game structure is a tuple

 $M = \langle \mathbb{A}\mathrm{gt}, St, \pi, Act, d, o \rangle$, where:

- Agt: a finite set of all agents
- \blacksquare St: a set of states
- $\blacksquare \pi$: a valuation of propositions
- *Act*: a finite set of (atomic) actions

3. ATL

Definition 3.1 (Concurrent Game Structure)

A concurrent game structure is a tuple

 $M = \langle Agt, St, \pi, Act, d, o \rangle$, where:

- Agt: a finite set of all agents
- \blacksquare St: a set of states
- $\blacksquare \pi$: a valuation of propositions
- Act: a finite set of (atomic) actions
- $d: Agt \times St \rightarrow 2^{Act}$ defines actions available to an agent in a state
- o: a deterministic transition function that assigns outcome states $q' = o(q, \alpha_1, \dots, \alpha_k)$ to states and tuples of actions

A strategy is a conditional plan.

A strategy is a conditional plan.

We represent strategies by functions $s_a: St \to Act$.

A strategy is a conditional plan.

We represent strategies by functions $s_a: St \to Act$.

→ memoryless agents

A strategy is a conditional plan.

We represent strategies by functions $s_a: St \to Act$.

→ memoryless agents

Alternative: perfect recall strategies $s_a: St^+ \to Act$

A strategy is a conditional plan.

We represent strategies by functions $s_a: St \to Act$.

→ memoryless agents

Alternative: perfect recall strategies $s_a: St^+ \to Act$

Function $out(q, s_A)$ returns the set of all paths that may result from agents A executing strategy s_A from state q onward.

$$\begin{array}{ll} M,q\models p & \text{iff p is in $\pi(q)$;} \\ M,q\models \neg\varphi & \text{iff $M,q\not\models\varphi$;} \\ M,q\models \varphi_1\wedge\varphi_2 & \text{iff $M,q\models\varphi_1$ and $M,q\models\varphi_2$;} \end{array}$$

$$\begin{array}{ll} M,q \models p & \text{iff } p \text{ is in } \pi(q); \\ M,q \models \neg \varphi & \text{iff } M,q \not\models \varphi; \\ M,q \models \varphi_1 \land \varphi_2 & \text{iff } M,q \models \varphi_1 \text{ and } M,q \models \varphi_2; \\ M,\lambda \models \neg \gamma & \text{iff } M,q \not\models \gamma & \text{etc.;} \end{array}$$

$$M,q \models p$$
 iff p is in $\pi(q)$;
 $M,q \models \neg \varphi$ iff $M,q \not\models \varphi$;
 $M,q \models \varphi_1 \land \varphi_2$ iff $M,q \models \varphi_1$ and $M,q \models \varphi_2$;

$$M, \lambda \models \neg \gamma$$
 iff $M, q \not\models \gamma$ etc.;

$$M, \lambda \models \neg \gamma$$
 III $M, q \not\models \gamma$ etc.

$$M, q \models \langle \langle A \rangle \rangle \Phi$$
 iff there is a collective strategy s_A such that, for every path $\lambda \in out(q, s_A)$, we have $M, \lambda \models \Phi$.

$$M, q \models p$$
 iff p is in $\pi(q)$;

$$M, q \models \neg \varphi$$
 iff $M, q \not\models \varphi$:

$$M, q \models \varphi_1 \land \varphi_2$$
 iff $M, q \models \varphi_1$ and $M, q \models \varphi_2$;

$$M, \lambda \models \neg \gamma$$
 iff $M, q \not\models \gamma$ etc.;

$$M, q \models \langle \langle A \rangle \rangle \Phi$$
 iff there is a collective strategy s_A such

that, for every path
$$\lambda \in out(q, s_A)$$
, we have $M, \lambda \models \Phi$.

have
$$M, \lambda \models \Phi$$
.

$$M, \lambda \models \bigcirc \gamma$$
 iff $M, \lambda[1..\infty] \models \gamma$;

$$M, q \models p$$
 iff p is in $\pi(q)$;

$$M, q \models p$$
 iff $M, q \not\models \varphi$:

$$M, q \models \varphi_1 \land \varphi_2$$
 iff $M, q \models \varphi_1$ and $M, q \models \varphi_2$;

$$M, \lambda \models \neg \gamma$$
 iff $M, q \not\models \gamma$ etc.;

$$M, q \models \langle \langle A \rangle \rangle \Phi$$
 iff there is a collective strategy s_A such

that, for every path
$$\lambda \in out(q, s_A)$$
, we have $M, \lambda \models \Phi$.

$$M, \lambda \models \bigcirc \gamma$$
 iff $M, \lambda[1..\infty] \models \gamma$;

$$M, \lambda \models \Box \gamma$$
 iff $M, \lambda[i..\infty] \models \gamma$ for all $i \ge 0$;

$$\begin{array}{ll} M,q\models p & \text{iff p is in $\pi(q)$;}\\ M,q\models \neg\varphi & \text{iff $M,q\not\models\varphi$;}\\ M,q\models \varphi_1\wedge\varphi_2 & \text{iff $M,q\models\varphi_1$ and $M,q\models\varphi_2$;}\\ M,\lambda\models \neg\gamma & \text{iff $M,q\models\varphi_1$ and $M,q\models\varphi_2$;}\\ M,q\models \langle\!\langle A\rangle\!\rangle\Phi & \text{iff there is a collective strategy s_A such that, for every path $\lambda\in out(q,s_A)$, we have $M,\lambda\models\Phi$.}\\ M,\lambda\models \bigcirc\gamma & \text{iff $M,\lambda[1..\infty]\models\gamma$;}\\ M,\lambda\models \Box\gamma & \text{iff $M,\lambda[i..\infty]\models\gamma$ for all $i\geq0$;}\\ M,\lambda\models \gamma_1\mathcal{U}\gamma_2 & \text{iff $M,\lambda[i..\infty]\models\gamma$ for some $i\geq0$, and $M,\lambda[j..\infty]\models\gamma_1$ forall $0\leq j\leq i$.} \end{array}$$

The semantics of "vanilla" ATL can be given entirely in terms of models and states:

```
iff p is in \pi(q);
M, q \models p
M, q \models \neg \varphi
                                       iff M, q \not\models \varphi;
M, q \models \varphi_1 \land \varphi_2
                                       iff M, q \models \varphi_1 and M, q \models \varphi_2;
M, q \models \langle \langle A \rangle \rangle \bigcirc \varphi
                                       iff there is s_A such that, for every \lambda \in
                                        out(q, s_A), we have M, \lambda[1] \models \varphi;
M, q \models \langle \langle A \rangle \rangle \Box \varphi
                                       iff there is s_A such that, for every \lambda \in
                                        out(q, s_A), we have M, \lambda[i] \models \varphi for
                                        all i > 0:
                                       iff there is s_A such that, for every \lambda \in
M, q \models \langle \langle A \rangle \rangle \varphi_1 \mathcal{U} \varphi_2
                                        out(q, s_A), we have M, \lambda[i] \models \varphi_2 for
                                        some i > 0 and M, \lambda[j] \models \varphi_1 for all
                                        0 < i < i.
```


 $\mathsf{pos}_0 \to \langle\langle 1 \rangle\rangle \Box \neg \mathsf{pos}_1$

$$\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$$

$$\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$$

Fixpoint Properties

Theorem 3.4

The following formulae are valid for ATL (but not for ATL*!):

Fixpoint Properties

Theorem 3.4

The following formulae are valid for ATL (but not for ATL*!):

Corollary

Strategy for A can be synthesized incrementally (no backtracking is necessary).

3.2 Agents, Systems, Games

Connection to Temporal Analysis of Systems

Temporal operators allow a number of useful concepts to be formally specified:

Connection to Temporal Analysis of Systems

Temporal operators allow a number of useful concepts to be formally specified:

- safety properties
- liveness properties
- fairness properties

Safety (maintenance goals):

"something bad will not happen" "something good will always hold"

Safety (maintenance goals):

"something bad will not happen" "something good will always hold"

Typical example:

□¬bankrupt

Safety (maintenance goals):

"something bad will not happen" "something good will always hold"

Typical example:

□¬bankrupt

Usually: □¬....

Safety (maintenance goals):

"something bad will not happen" "something good will always hold"

Typical example:

□¬bankrupt

Usually: □¬....

In ATL:

 $\langle\langle os \rangle\rangle \Box \neg crash$

Liveness (achievement goals):

"something good will happen"

Liveness (achievement goals):

"something good will happen"

Typical example:

⊘rich

Usually: ♦....

Liveness (achievement goals):

"something good will happen"

Typical example:

♦rich

Usually: ◊....

In ATL:

 $\langle\langle alice, bob \rangle\rangle \Diamond$ paperAccepted

Fairness (service goals):

"if something is attempted/requested, then it will be successful/allocated"

Fairness (service goals):

"if something is attempted/requested, then it will be successful/allocated"

Typical examples:

 \Box (attempt $\rightarrow \Diamond$ success)

 $\Box \Diamond attempt \rightarrow \Box \Diamond success$

Fairness (service goals):

"if something is attempted/requested, then it will be successful/allocated"

Typical examples:

 $\Box(\mathsf{attempt} \ \to \ \Diamond \mathsf{success})$

 $\Box \Diamond \mathsf{attempt} \ \to \ \Box \Diamond \mathsf{success}$

In ATL* (!):

 $\langle\langle prod, dlr \rangle\rangle \square (carRequested \rightarrow \Diamond carDelivered)$

- Satisfiability

 System synthesis

- Validity

 General properties of systems
- Satisfiability = System synthesis
- Model checking ⇒ Verification

- Model checking

 Verification

ATL is just another specification language in this context...

Concurrent game structure = generalized extensive game

- Concurrent game structure = generalized extensive game
- $\langle \langle A \rangle \rangle \gamma : \langle \langle A \rangle \rangle$ splits the agents into proponents and opponents
- \blacksquare γ defines the winning condition

- Concurrent game structure = generalized extensive game
- $\langle \langle A \rangle \rangle \gamma : \langle \langle A \rangle \rangle$ splits the agents into proponents and opponents
- \blacksquare γ defines the winning condition → infinite 2-player, binary, zero-sum game

- Concurrent game structure = generalized extensive game
- $\langle\!\langle A \rangle\!\rangle \gamma$: $\langle\!\langle A \rangle\!\rangle$ splits the agents into proponents and opponents
- $ightharpoonup \gamma$ defines the winning condition ightharpoonupinfinite 2-player, binary, zero-sum game
- Flexible and compact specification of winning conditions

- Concurrent game structure = generalized extensive game
- $\langle\!\langle A \rangle\!\rangle \gamma$: $\langle\!\langle A \rangle\!\rangle$ splits the agents into proponents and opponents
- $ightharpoonup \gamma$ defines the winning condition ightharpoonupinfinite 2-player, binary, zero-sum game
- Flexible and compact specification of winning conditions
- Solving a game \approx checking if $M, q \models \langle \langle A \rangle \rangle \gamma$
- Model checking ATL corresponds to game solving in game theory!

What about other problems?

What about other problems?

■ Validity

General properties of games

What about other problems?

What about other problems?

- Satisfiability \rightleftharpoons Mechanism design
- E.g., building a model for $\langle\!\langle \emptyset \rangle\!\rangle \gamma_1 \wedge \langle\!\langle A \rangle\!\rangle \gamma_1 \rightleftharpoons Designing$ a game in which γ_1 is quaranteed and A can achieve γ_2

3.3 A Short Look at Satisfiability

Satisfiability of Temporal and Strategic Logics: Complexity Results

	l
CTL	EXPTIME-complete
LTL	PSPACE-complete
CTL*	2EXPTIME-complete
ATL	
ATL*	

Satisfiability of Temporal and Strategic Logics: Complexity Results

	l
CTL	EXPTIME-complete
LTL	PSPACE-complete
CTL*	2EXPTIME-complete
ATL	EXPTIME-complete
ATL*	?

Satisfiability of Temporal and Strategic Logics: Complexity Results

	l
CTL	EXPTIME-complete
LTL	PSPACE-complete
CTL*	2EXPTIME-complete
ATL	EXPTIME-complete
ATL*	?

For strategies with perfect recall:

	m, l
ATL	EXPTIME-complete
ATL*	2EXPTIME-complete

For the Interested Ones...

- Valentin Goranko and Govert van Drimmelen: Decidability and Complete Axiomatization of the Alternating-time Temporal Logic, Theoretical Computer Science, Vol. 353, 1-3, (2006), pp. 93-117.
- D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL Satisfiability is Indeed ExpTime-Complete. In Journal of Logic and Computation, 16:765-787, 2006.
- S. Schewe: ATL* Satisfiability is 2EXPTIME-Complete. Proceedings of ICALP, 2008.

3.4 References

[Alur et al. 2002] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic. Journal of the ACM, 49:672–713, 2002.

[Kupferman et al. 2000] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model checking.

Journal of the ACM, 47(2):312–360, 2000.

More about ATL

4.1 Axiomatisation

- $(\bot) \neg \langle \langle C \rangle \rangle \bigcirc \bot$
- (\top) $\langle\langle C \rangle\rangle$ \bigcirc \top
- (Σ) $\neg \langle \langle \emptyset \rangle \rangle \bigcirc \neg \varphi \rightarrow \langle \langle \Sigma \rangle \rangle \bigcirc \varphi$
- (S) $\langle C_1 \rangle \bigcirc \varphi_1 \wedge \langle C_2 \rangle \bigcirc \varphi_2 \rightarrow \langle C_1 \cup C_2 \rangle \bigcirc (\varphi_1 \wedge \varphi_2)$, where C_1 and C_2 are disjoint

$$\frac{\varphi_1,\varphi_1\to\varphi_2}{\varphi_2}(MP)\quad \frac{\varphi_1\to\varphi_2}{\langle\!\langle C\rangle\!\rangle\bigcirc\varphi_1\to\langle\!\langle C\rangle\!\rangle\bigcirc\varphi_2}(Mon)$$

(
$$\perp$$
) $\neg \langle \langle C \rangle \rangle \bigcirc \bot$

$$(\bot) \neg \langle \langle C \rangle \rangle \cup \bot$$

(
$$\top$$
) $\langle\!\langle C \rangle\!\rangle$ \bigcirc \top

(
$$\Sigma$$
) $\neg \langle \langle \emptyset \rangle \rangle \bigcirc \neg \varphi \rightarrow \langle \langle \Sigma \rangle \rangle \bigcirc \varphi$

(S)
$$\langle\!\langle C_1 \rangle\!\rangle \bigcirc \varphi_1 \wedge \langle\!\langle C_2 \rangle\!\rangle \bigcirc \varphi_2 \rightarrow \langle\!\langle C_1 \cup C_2 \rangle\!\rangle \bigcirc (\varphi_1 \wedge \varphi_2)$$
, where C_1 and C_2 are disjoint

$$(FP_{\square}) \ \langle\!\langle C \rangle\!\rangle \square \varphi \leftrightarrow \varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \langle\!\langle C \rangle\!\rangle \square \varphi$$

$$\frac{\varphi_1,\varphi_1\to\varphi_2}{\varphi_2}(MP) \quad \frac{\varphi_1\to\varphi_2}{\langle\!\langle C\rangle\!\rangle\bigcirc\varphi_1\to\langle\!\langle C\rangle\!\rangle\bigcirc\varphi_2}(Mon) \quad \frac{\varphi}{\langle\!\langle\emptyset\rangle\!\rangle\Box\varphi}(Nec)$$

$$(\bot) \neg \langle \langle C \rangle \rangle \bigcirc \bot$$

(
$$\top$$
) $\langle\!\langle C \rangle\!\rangle$ \bigcirc \top

(
$$\Sigma$$
) $\neg \langle \langle \emptyset \rangle \rangle \bigcirc \neg \varphi \rightarrow \langle \langle \Sigma \rangle \rangle \bigcirc \varphi$

(S)
$$\langle\!\langle C_1 \rangle\!\rangle \bigcirc \varphi_1 \wedge \langle\!\langle C_2 \rangle\!\rangle \bigcirc \varphi_2 \rightarrow \langle\!\langle C_1 \cup C_2 \rangle\!\rangle \bigcirc (\varphi_1 \wedge \varphi_2)$$
, where C_1 and C_2 are disjoint

$$(FP_{\square}) \ \langle\!\langle C \rangle\!\rangle \square \varphi \leftrightarrow \varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \langle\!\langle C \rangle\!\rangle \square \varphi$$
$$(GFP_{\square}) \ \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to (\varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \theta)) \to \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to (\varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \theta)) \to \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to (\varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \theta))$$

$$\langle\!\langle C \rangle\!\rangle \Box \varphi)$$

$$\frac{\varphi_1,\varphi_1\to\varphi_2}{\varphi_2}(MP) \quad \frac{\varphi_1\to\varphi_2}{\langle\!\langle C\rangle\!\rangle\bigcirc\varphi_1\to\langle\!\langle C\rangle\!\rangle\bigcirc\varphi_2}(Mon) \quad \frac{\varphi}{\langle\!\langle\emptyset\rangle\!\rangle\Box\varphi}(Nec)$$

(
$$\perp$$
) $\neg \langle \langle C \rangle \rangle \bigcirc \bot$

(
$$\top$$
) $\langle\!\langle C \rangle\!\rangle \bigcirc \top$

$$(\Sigma) \neg \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \neg \varphi \rightarrow \langle\!\langle \Sigma \rangle\!\rangle \bigcirc \varphi$$

(S)
$$\langle\!\langle C_1 \rangle\!\rangle \bigcirc \varphi_1 \wedge \langle\!\langle C_2 \rangle\!\rangle \bigcirc \varphi_2 \to \langle\!\langle C_1 \cup C_2 \rangle\!\rangle \bigcirc (\varphi_1 \wedge \varphi_2)$$
, where C_1 and C_2 are disjoint

$$(FP_{\square}) \ \langle\!\langle C \rangle\!\rangle \square \varphi \leftrightarrow \varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \langle\!\langle C \rangle\!\rangle \square \varphi$$
$$(GFP_{\square}) \ \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to (\varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \theta)) \to \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to (\varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \theta)) \to \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to (\varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \theta))$$

$$\langle\!\langle C \rangle\!\rangle\Box arphi \rangle$$

 $(FP_{\mathcal{U}}) \langle \langle C \rangle \rangle (\varphi_1 \mathcal{U} \varphi_2) \leftrightarrow \varphi_2 \vee (\varphi_1 \wedge \langle \langle C \rangle \rangle) \langle \langle C \rangle \rangle (\varphi_1 \mathcal{U} \varphi_2))$

$$\frac{\varphi_1, \varphi_1 \to \varphi_2}{\varphi_2}(MP) \quad \frac{\varphi_1 \to \varphi_2}{\langle\!\langle C \rangle\!\rangle \bigcirc \varphi_1 \to \langle\!\langle C \rangle\!\rangle \bigcirc \varphi_2}(Mon) \quad \frac{\varphi}{\langle\!\langle \emptyset \rangle\!\rangle \Box \varphi}(Nec)$$

- $(\bot) \neg \langle \langle C \rangle \rangle \bigcirc \bot$
- (\top) $\langle\langle C \rangle\rangle$ \bigcirc \top
- (Σ) $\neg \langle \langle \emptyset \rangle \rangle \bigcirc \neg \varphi \rightarrow \langle \langle \Sigma \rangle \rangle \bigcirc \varphi$
- (S) $\langle \langle C_1 \rangle \rangle \bigcirc \varphi_1 \wedge \langle \langle C_2 \rangle \rangle \bigcirc \varphi_2 \rightarrow \langle \langle C_1 \cup C_2 \rangle \rangle \bigcirc (\varphi_1 \wedge \varphi_2)$, where C_1 and C_2 are disjoint

$$(FP_{\square}) \ \langle\!\langle C \rangle\!\rangle \square \varphi \leftrightarrow \varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \langle\!\langle C \rangle\!\rangle \square \varphi$$

$$(GFP_{\square}) \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to (\varphi \land \langle\!\langle C \rangle\!\rangle \bigcirc \theta)) \to \langle\!\langle \emptyset \rangle\!\rangle \square (\theta \to \langle\!\langle C \rangle\!\rangle \square \varphi)$$

$$(FP_{\mathcal{U}}) \ \langle\!\langle C \rangle\!\rangle (\varphi_1 \mathcal{U} \varphi_2) \leftrightarrow \varphi_2 \lor (\varphi_1 \land \langle\!\langle C \rangle\!\rangle \bigcirc \langle\!\langle C \rangle\!\rangle (\varphi_1 \mathcal{U} \varphi_2))$$

$$(LFP_{\mathcal{U}}) \langle\!\langle \emptyset \rangle\!\rangle \Box ((\varphi_2 \vee (\varphi_1 \wedge \langle\!\langle C \rangle\!\rangle \bigcirc \theta)) \rightarrow \theta) \rightarrow$$

$$\frac{\langle\!\langle \emptyset \rangle\!\rangle \Box (\langle\!\langle C \rangle\!\rangle (\varphi_1 \mathcal{U} \varphi_2) \to \theta)}{\varphi_1, \varphi_1 \to \varphi_2} (MP) \quad \frac{\varphi_1 \to \varphi_2}{\langle\!\langle C \rangle\!\rangle \bigcirc \varphi_1 \to \langle\!\langle C \rangle\!\rangle \bigcirc \varphi_2} (Mon) \quad \frac{\varphi}{\langle\!\langle \emptyset \rangle\!\rangle \Box \varphi} (Nec)$$

4.2 Bisimulation and The Role of Memory

Definitions

When $\vec{a}_C \in D(q,C)$ let

4. More about ATL

$$next_{\mathcal{M}}(q, \vec{a}_C) = \{\delta(q, \vec{b}) : \vec{b} \in D(q), a_i = b_i \text{ for all } i \in C\}$$

denote the set of possible next states in CGS \mathcal{M} when coalition C choose actions \vec{a}_C .

Definition 4.1 (Bisimulation)

4. More about ATL

Given CGS $\mathcal{M}_1 = (Q_1, \pi_1, \mathsf{act}_1, d_1, \delta_1)$; CGS $\mathcal{M}_2 = (Q_2, \pi_2, \mathsf{act}_2, d_2, \delta_2); \beta \subseteq Q_1 \times Q_2.$

 $\mathcal{M}_1 \rightleftharpoons_{\beta}^C \mathcal{M}_2$ (for some $C \subseteq \Sigma$): for all $q_1, q_2, q_1\beta q_2$ implies that

Local harmony $\pi_1(q_1) = \pi_2(q_2)$;

Forth For all joint actions $\vec{a}_C^1 \in D_1(q_1, C)$ for C, there exists a joint action $\vec{a}_C^2 \in D_2(q_2, C)$ for C such that for all states $s_2 \in next_{\mathcal{M}_2}(q_2, \vec{a}_C^2)$, there exists a state $s_1 \in next_{\mathcal{M}_1}(q_1, \vec{a}_C^1)$ such that $s_1\beta s_2$;

Back Likewise, for 1 and 2 swapped.

 $\mathcal{M}_1 \rightleftarrows_{\beta} \mathcal{M}_2 : \mathcal{M}_1 \rightleftarrows_{\beta}^C \mathcal{M}_2$ for every $C \subseteq \Sigma$

Bisimulation: Example

Strategies and Memory

Let us discern between two definitions of the satisfaction relation:

 \models_F : perfect recall is assumed, all strategies

$$f:Q^+\to\operatorname{act}$$

are allowed

 \models_L : only memoryless strategies are allowed, i.e., strategies

$$f:Q \to \mathsf{act}$$

4. More about ATL 2. Bisimulation and The Role of Memory

Invariance under Bisimulation: the Memoryless Case

Theorem 4.2 (Bisimulation Characterisation)

If $\mathcal{M}_1 \rightleftarrows_{\beta} \mathcal{M}_2$ and $s_1\beta s_2$, then for every ATL formula φ :

$$\mathcal{M}_1, s_1 \models_L \varphi$$
 iff $\mathcal{M}_2, s_2 \models_L \varphi$

Tree-unfolding

Let $fincomp_M(q)$ denote the set of finite prefixes of computations starting in q. Let $\ell(q_0 \cdots q_k) = q_k$.

Definition 4.3 (Tree-unfolding of CGS)

Given a CGS

$$M = (Q, \pi, \mathsf{act}, d, \delta)$$

and $q \in Q$, the tree-unfolding T(M,q) of M from q is defined as follows:

$$T(M,q) = (Q^*, \pi^*, \mathsf{act}, d^*, \delta^*),$$

where $Q^* = fincomp_M(q)$; $\pi^*(\sigma) = \pi(\ell(\sigma))$; $d_i^*(\sigma) = d_i(\ell(\sigma))$; and $\delta^*(\sigma, \mathbf{a}) = \sigma \delta(\ell(\sigma), \mathbf{a})$.

Lemma 4.4

For any M, q,

$$T(\mathcal{M},q) \rightleftharpoons_{\beta} \mathcal{M}$$

where
$$\beta = \{(\sigma, \ell(\sigma)) \mid \sigma \in fincomp_{\mathcal{M}}(q)\}$$

Lemma 4.5

For any \mathcal{M} , q and φ ,

$$T(M,q), q \models_L \varphi \Leftrightarrow M, q \models_F \varphi$$

Memory Does not Influence Ability

Corollary 4.6

For any M, q and φ ,

$$\mathcal{M}, q \models_L \varphi \Leftrightarrow \mathcal{M}, q \models_F \varphi$$

Memory Does not Influence Ability

Corollary 4.6

For any \mathcal{M} , q and φ ,

$$\mathcal{M}, q \models_L \varphi \Leftrightarrow \mathcal{M}, q \models_F \varphi$$

Also: the axiomatisation is sound and complete wrt. both semantics.

Invariance under Bisimulation: the Perfect Recall Case

Corollary 4.7

If $\mathcal{M}_1 \rightleftarrows_{\beta} \mathcal{M}_2$ and $s_1\beta s_2$, then

$$\mathcal{M}_1, s_1 \models_F \varphi \text{ iff } \mathcal{M}_2, s_2 \models_F \varphi$$

for every ATL formula φ .

ATL* and memory

For ATL* – contrary to ATL — memory matters:

ATL* and memory

For ATL* – contrary to ATL — memory matters:

Proposition

There is a model M with a state q, and a formula φ , such that

$$M, q \models_L \varphi \not\Leftrightarrow M, q \models_F \varphi$$

ATL* and memory

For ATL* – contrary to ATL — memory matters:

Proposition

There is a model M with a state q, and a formula φ , such that

$$M, q \models_L \varphi \not\Leftrightarrow M, q \models_F \varphi$$

$$\mathsf{M} \colon \overset{\alpha}{ \bigcirc_{p}^{q}} \overset{\alpha}{ \longrightarrow_{\bullet}^{q'}} q'$$

$$\varphi = \langle\!\langle a \rangle\!\rangle (\bigcirc p \land \bigcirc \bigcirc \neg p)$$

4.3 Revocability of Strategies

- p: agent a controls the resource
- $\langle \langle a \rangle \rangle \bigcirc p$: a has the ability to control the resource next
- $\langle \langle a \rangle \rangle \Box \langle \langle a \rangle \rangle \bigcirc p$: a has the ability to ensure that $\langle \langle a \rangle \rangle \bigcirc p$ is always true

- p: agent a controls the resource
- $\langle \langle a \rangle \rangle$ p: a has the ability to control the resource next
- \blacksquare $\langle\!\langle a \rangle\!\rangle \Box \langle\!\langle a \rangle\!\rangle \bigcirc p$: a has the ability to ensure that $\langle\!\langle a \rangle\!\rangle \bigcirc p$ is always true

- p: agent a controls the resource
- $\langle \langle a \rangle \rangle$ p: a has the ability to control the resource next
- \blacksquare $\langle\!\langle a \rangle\!\rangle \Box \langle\!\langle a \rangle\!\rangle \bigcirc p$: a has the ability to ensure that $\langle\!\langle a \rangle\!\rangle \bigcirc p$ is always true

$$\mathcal{M}, q_1 \models \langle \langle a \rangle \rangle \bigcirc p$$

- \blacksquare p: agent a controls the resource
- $\langle \langle a \rangle \rangle \bigcirc p$: a has the ability to control the resource next
- $\langle\!\langle a \rangle\!\rangle \square \langle\!\langle a \rangle\!\rangle \bigcirc p$: a has the ability to ensure that $\langle\!\langle a \rangle\!\rangle \bigcirc p$ is always true

$$\mathcal{M}, q_1 \models \langle \langle a \rangle \rangle \bigcirc p$$
$$\mathcal{M}, q_1 \models \langle \langle a \rangle \rangle \square \langle \langle a \rangle \rangle \bigcirc p$$

- \blacksquare p: agent a controls the resource
- $\langle \langle a \rangle \rangle \bigcirc p$: a has the ability to control the resource next
- $\langle \langle a \rangle \rangle \square \langle \langle a \rangle \rangle \bigcirc p$: a has the ability to ensure that $\langle \langle a \rangle \rangle \bigcirc p$ is always true

$$\mathcal{M}, q_1 \models \langle \langle a \rangle \rangle \bigcirc p$$
$$\mathcal{M}, q_1 \models \langle \langle a \rangle \rangle \square \langle \langle a \rangle \rangle \bigcirc p$$

Counterintuitive? a can ensure that she is forever able to access the resource – but only without never actually accessing it.

- In the evaluation of a formula such as $\langle\langle a \rangle\rangle \Box \varphi$, when the goal φ is evaluated the agent (a) is no longer restricted by the strategy she chose in order to get to the state where the goal is evaluated (as the example illustrates)
- In this sense, strategies in ATL are revocable
- In some contexts, it would be more natural to reason about strategies which are not revocable and completely specify the future behaviour of the agent

Alternative: Irrevocable Strategies

Irrevocable strategies can be modelled by using model updates in the semantics.

Alternative: Irrevocable Strategies

Irrevocable strategies can be modelled by using model updates in the semantics.

Assume memoryless strategies (for now).

Definition 4.8 (Model Update)

Let \mathcal{M} be a CGS, C a coalition, and f_C a memoryless strategy for C. The update of \mathcal{M} by f_C , denoted $\mathcal{M} \dagger f_C$, is the same as \mathcal{M} , except that the choices of each agent $i \in C$ are fixed by the strategy f_i :

$$d_i(q) = \{f_i(q)\}\$$

for each state q.

Model Update: Example

Model Update: Example

$$f_1 = \{q_1 \mapsto \alpha_1, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

Model Update: Example

$$f_1 = \{q_1 \mapsto \alpha_1, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

Satisfiability under Irrevocable Strategies

We can now define a new variant of the satisfiability relation:

$$\mathcal{M}, q \models_{i} \langle\!\langle C \rangle\!\rangle \bigcirc \phi \qquad \Leftrightarrow \exists f_{C} \forall \lambda \in comp(\mathcal{M} \dagger f_{C}, q, f_{C}) \\ (\mathcal{M} \dagger f_{C}, \lambda[1] \models_{i} \phi) \\ \mathcal{M}, q \models_{i} \langle\!\langle C \rangle\!\rangle \Box \phi \qquad \Leftrightarrow \exists f_{C} \forall \lambda \in comp(\mathcal{M} \dagger f_{C}, q, f_{C}) \\ \forall j \geq 0(\mathcal{M} \dagger f_{C}, \lambda[j] \models_{i} \phi) \\ \mathcal{M}, q \models_{i} \langle\!\langle C \rangle\!\rangle (\phi_{1} \mathcal{U} \phi_{2}) \qquad \Leftrightarrow \exists f_{C} \forall \lambda \in comp(\mathcal{M} \dagger f_{C}, q, f_{C}) \\ \exists j \geq 0(\mathcal{M} \dagger f_{C}, \lambda[j] \models_{i} \phi_{2} \text{ and} \\ \forall 0 \leq k \leq j(\mathcal{M} \dagger f_{C}, \lambda[k] \models_{i} \phi_{1})) \end{aligned}$$

Example (contd.)

$$f_1 = \{q_1 \mapsto \alpha_1, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

$$f_2 = \{q_1 \mapsto \alpha_2, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

Example (contd.)

$$f_1 = \{q_1 \mapsto \alpha_1, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

$$f_2 = \{q_1 \mapsto \alpha_2, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

Example (contd.)

$$f_1 = \{q_1 \mapsto \alpha_1, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

$$f_2 = \{q_1 \mapsto \alpha_2, q_2 \mapsto \alpha_1, q_3 \mapsto \alpha_1\}$$

 $\mathcal{M}, q_1 \models \langle \langle a \rangle \rangle \square \langle \langle a \rangle \rangle \bigcirc p$ (standard definition) $\mathcal{M}, q_1 \not\models_i \langle\langle a \rangle\rangle \square \langle\langle a \rangle\rangle \bigcirc p$ (with irrevocable strategies)

With irrevocable strategies, truth of formulae is not invariant under bisimulations:

$$\mathcal{M}, q_1 \models_i \langle \langle 1 \rangle \rangle \bigcirc ((\langle \langle 2 \rangle \rangle) \bigcirc \langle \langle \emptyset \rangle \rangle) \bigcirc \neg p) \land \langle \langle \langle 2 \rangle \rangle \bigcirc \langle \langle \emptyset \rangle \rangle \bigcirc p)$$

(strategies: $\{q_3 \mapsto \alpha_1, q_5 \mapsto \alpha_2\}$; $\{q_2 \mapsto \beta_1\}$; $\{q_2 \mapsto \beta_2\}$)

With irrevocable strategies, truth of formulae is not invariant under bisimulations:

$$\mathcal{M}, q_1 \models_i \langle\!\langle 1 \rangle\!\rangle \bigcirc ((\langle\!\langle 2 \rangle\!\rangle \bigcirc \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \neg p) \land \langle\!\langle 2 \rangle\!\rangle \bigcirc \langle\!\langle \emptyset \rangle\!\rangle \bigcirc p)$$

(strategies:
$$\{q_3 \mapsto \alpha_1, q_5 \mapsto \alpha_2\}$$
; $\{q_2 \mapsto \beta_1\}$; $\{q_2 \mapsto \beta_2\}$)

$$\mathcal{M}', q_1 \not\models_i \langle\!\langle 1 \rangle\!\rangle \bigcirc ((\langle\!\langle 2 \rangle\!\rangle \bigcirc \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \neg p) \land \langle\!\langle 2 \rangle\!\rangle \bigcirc \langle\!\langle \emptyset \rangle\!\rangle \bigcirc p)$$

On Valid Reasoning about Irrevocable Strategies

Formulae valid under the standard definition is not necessarily valid under irrevocable strategies. For example, the principle of uniform substitution does not hold. The ATL axiom

$$\neg \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \neg p \to \langle\!\langle \Sigma \rangle\!\rangle \bigcirc p$$

is still valid with irrevocable strategies, but the result of substituting

$$\langle\!\langle \Sigma \rangle\!\rangle \bigcirc p \land \langle\!\langle \Sigma \rangle\!\rangle \bigcirc \neg p$$

for p in it is not valid.

On Valid Reasoning about Irrevocable Strategies

Formulae valid under the standard definition is not necessarily valid under irrevocable strategies. For example, the principle of uniform substitution does not hold. The ATL axiom

$$\neg \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \neg p \to \langle\!\langle \Sigma \rangle\!\rangle \bigcirc p$$

is still valid with irrevocable strategies, but the result of substituting

$$\langle\!\langle \Sigma \rangle\!\rangle \bigcirc p \land \langle\!\langle \Sigma \rangle\!\rangle \bigcirc \neg p$$

for p in it is not valid.

■ Formulae valid under irrevocable strategies are not necessarily valid under the standard definition. Example:

Perfect Recall

With perfect recall strategies, we cannot update the model directly. Instead, unwind it first, and recall that a perfect recall strategy in \mathcal{M} is equivalent to a memoryless strategy in $T(\mathcal{M}, q)$:

$$\mathcal{M}, q \models_{mi} \varphi \Leftrightarrow^{def} T(M, q), q \models_{i} \varphi$$

Perfect Recall

$$\mathcal{M}, q \models_{mi} \varphi \Leftrightarrow^{def} T(M, q), q \models_{i} \varphi$$

Perfect Recall

$$\mathcal{M}, q \models_{mi} \varphi \Leftrightarrow^{def} T(M, q), q \models_{i} \varphi$$

We get that:

Still non-invariant under bisimulation

Perfect Recall

$$\mathcal{M}, q \models_{mi} \varphi \Leftrightarrow^{def} T(M, q), q \models_{i} \varphi$$

We get that:

- Still non-invariant under bisimulation
- With irrevocable strategies (unlike under the standard definition), memory matters:

$$\mathcal{M}, q_1 \models_{mi} \langle \langle a \rangle \rangle \bigcirc \langle \langle a \rangle \rangle \bigcirc p$$

 $\mathcal{M}, q_1 \not\models_i \langle \langle a \rangle \rangle \bigcirc \langle \langle a \rangle \rangle \bigcirc p$

4. More about ATL

- - [1] Goranko, V. and G. van Drimmelen: 2006, 'Complete axiomatization and decidability of Alternating-time Temporal Logic'. Theoretical Computer Science **353**(1-3), 93–117.
 - Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. [2] Alternating-time temporal logics with irrevocable strategies. In Dov Samet, editor, Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge (TARK XI), pages 15–24, Brussels, Belgium, June 2007. Presses Universitaires de Louvain/ACM DL.
 - [3] Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey. ATL with strategy contexts. In preparation, 2008.

Imperfect Information

How can we reason about extensive games with imperfect information?

How can we reason about extensive games with imperfect information?

Let's put ATL and epistemic logic in one box.

- We extend CGS with indistinguishability relations \sim_a , one per agent
- We add epistemic operators to ATL

How can we reason about extensive games with imperfect information?

Let's put ATL and epistemic logic in one box.

- We extend CGS with indistinguishability relations \sim_a , one per agent
- We add epistemic operators to ATL

→ Problems!

5.1 Combining Dimensions

5. Imperfect Information 1. Combining Dimensions

1. Combining Dimensions

5. Imperfect Information 1. Combining Dimensions

$$start \rightarrow \langle\langle a \rangle\rangle \Diamond win$$

1. Combining Dimensions

$$start \to \langle \langle a \rangle \rangle \Diamond win$$

 $start \to K_a \langle \langle a \rangle \rangle \Diamond win$

1. Combining Dimensions

$$start \rightarrow \langle \langle a \rangle \rangle \Diamond win$$

 $start \rightarrow K_a \langle \langle a \rangle \rangle \Diamond win$

Does it make sense?

Strategic and epistemic abilities are not independent!

Strategic and epistemic abilities are not independent!

$$\langle\!\langle A \rangle\!\rangle \Phi = A$$
 can enforce Φ

Strategic and epistemic abilities are not independent!

$$\langle\!\langle A \rangle\!\rangle \Phi = A$$
 can enforce Φ

It should at least mean that A are able to identify and execute the right strategy!

Strategic and epistemic abilities are not independent!

$$\langle\!\langle A \rangle\!\rangle \Phi = A$$
 can enforce Φ

It should at least mean that A are able to identify and execute the right strategy!

Executable strategies = uniform strategies

Strategy s_a is uniform iff it specifies the same choices for indistinguishable situations:

- \blacksquare (no recall:) if $q \sim_a q'$ then $s_a(q) = s_a(q')$
- (perfect recall:) if $\lambda \approx_a \lambda'$ then $\Rightarrow s_a(\lambda) = s_a(\lambda)$, where $\lambda \approx_a \lambda'$ iff $\lambda[i] \sim_a \lambda'[i]$ for every i.

Definition 5.1 (Uniform strategy)

Strategy s_a is uniform iff it specifies the same choices for indistinguishable situations:

- (no recall:) if $q \sim_a q'$ then $s_a(q) = s_a(q')$
- (perfect recall:) if $\lambda \approx_a \lambda'$ then $\Rightarrow s_a(\lambda) = s_a(\lambda)$, where $\lambda \approx_a \lambda'$ iff $\lambda[i] \sim_a \lambda'[i]$ for every i.

A collective strategy is uniform iff it consists only of uniform individual strategies.

Note:

Having a successful strategy does not imply knowing that we have it!

Note:

Having a successful strategy does not imply knowing that we have it!

Knowing that a successful strategy exists does not imply knowing the strategy itself!

Our cases for $\langle\!\langle A \rangle\!\rangle \Phi$ under imperfect information:

There is σ (not necessarily executable!) such that, for every execution of σ , Φ holds

Our cases for $\langle\!\langle A \rangle\!\rangle \Phi$ under imperfect information:

- There is σ (not necessarily executable!) such that, for every execution of σ , Φ holds
- **2** There is a uniform σ such that, for every execution of σ , Φ holds

Our cases for $\langle\!\langle A \rangle\!\rangle \Phi$ under imperfect information:

- There is σ (not necessarily executable!) such that, for every execution of σ , Φ holds
- **2** There is a uniform σ such that, for every execution of σ , Φ holds
- **3** A know that there is a uniform σ such that, for every execution of σ , Φ holds

Our cases for $\langle\!\langle A \rangle\!\rangle \Phi$ under imperfect information:

- There is σ (not necessarily executable!) such that, for every execution of σ , Φ holds
- **2** There is a uniform σ such that, for every execution of σ , Φ holds
- **3** A know that there is a uniform σ such that, for every execution of σ , Φ holds
- **There is a uniform** σ such that A know that, for every execution of σ , Φ holds

Our cases for $\langle\!\langle A \rangle\!\rangle \Phi$ under imperfect information:

- There is σ (not necessarily executable!) such that, for every execution of σ , Φ holds
- **2** There is a uniform σ such that, for every execution of σ , Φ holds
- **3** A know that there is a uniform σ such that, for every execution of σ , Φ holds
- **There is a uniform** σ such that A know that, for every execution of σ , Φ holds

From now on, we restrict our discussion to uniform memoryless strategies (unless explicitly stated otherwise).

Our cases for $\langle\!\langle A \rangle\!\rangle \Phi$ under imperfect information:

- There is σ (not necessarily executable!) such that, for every execution of σ , Φ holds
- **2** There is a uniform σ such that, for every execution of σ , Φ holds
- **3** A know that there is a uniform σ such that, for every execution of σ , Φ holds
- **There is a uniform** σ such that A know that, for every execution of σ , Φ holds

From now on, we restrict our discussion to uniform memoryless strategies (unless explicitly stated otherwise).

Case [4]: knowing how to play

Case [4]: knowing how to play

Single agent case: we take into account the paths starting from indistinguishable states (i.e., $\bigcup_{q' \in \operatorname{img}(q, \sim_a)} \operatorname{out}(q, s_A)$)

Case [4]: knowing how to play

- Single agent case: we take into account the paths starting from indistinguishable states (i.e., $\bigcup_{q' \in \operatorname{img}(q, \sim_a)} \operatorname{out}(q, s_A)$)
- What about coalitions?
- Question: in what sense should they know the strategy? Common knowledge (C_A), mutual knowledge (E_A), distributed knowledge (D_A)?

5.2 Economic Solution: ATLir

Schobbens' ATL_{ir}

 $\langle\!\langle A \rangle\!\rangle_{ir} \gamma$: agents A know how to play in the sense of mutual knowledge (E_A)

Schobbens' ATL_{ir}

 $\langle\!\langle A \rangle\!\rangle_{ir} \gamma$: agents A know how to play in the sense of mutual knowledge (E_A)

 $M,q \models \langle\!\langle A \rangle\!\rangle_{ir} \gamma$ iff there is a collective uniform strategy s_A such that, for every path $\lambda \in \bigcup_{q' \sim_A q} out(q',s_A)$, we have $M,\Lambda \models \gamma$.

Example: Robots and Carriage

Example: Robots and Carriage

Example: Robots and Carriage

Interesting: $\langle\!\langle A \rangle\!\rangle_{ir}$ are not fixpoint operators any more!

Theorem 5.2

The following formulae are **not** valid for ATL_{ir}:

Interesting: $\langle\!\langle A \rangle\!\rangle_{ir}$ are not fixpoint operators any more!

Theorem 5.2

The following formulae are **not** valid for ATL_{ir}:

What is it about?

Interesting: $\langle\!\langle A \rangle\!\rangle_{ir}$ are not fixpoint operators any more!

Theorem 5.2

The following formulae are **not** valid for ATL_{ir}:

What is it about? Forgetting!

2. Economic Solution: ATL_{ir}

Agents Can Forget...

Agents Can Forget... And Still Enforce Things

Conjecture

Strategy for A cannot be synthesized incrementally.

Conjecture

Strategy for A cannot be synthesized incrementally.

Indeed...

Conjecture

Strategy for \boldsymbol{A} cannot be synthesized incrementally.

Indeed...

Theorem (Schobbens 2004; Jamroga & Dix 2006)

Model checking ATL_{ir} is Δ_2 -complete in the number of transitions in the model and the length of the formula.

5.3 Constructive Strategic Logic

Knowing how to Play

- Single agent case: we take into account the paths starting from indistinguishable states → ATL_{ir}
- What about coalitions? In what sense should they know the strategy? Common knowledge (C_A), mutual knowledge (E_A), distributed knowledge (D_A)...?
- ATL_{ir}: mutual knowledge
- But: other cases also make sense!

Given strategy σ , agents A can have:

■ Common knowledge that σ is a winning strategy. This requires the least amount of additional communication (agents from A may agree upon a total order over their collective strategies at the beginning of the game and that they will always choose the maximal winning strategy with respect to this order)

Given strategy σ , agents A can have:

- Common knowledge that σ is a winning strategy. This requires the least amount of additional communication (agents from A may agree upon a total order over their collective strategies at the beginning of the game and that they will always choose the maximal winning strategy with respect to this order)
- Mutual knowledge that σ is a winning strategy: everybody in A knows that σ is winning

3. Constructive Strategic Logic

■ Distributed knowledge that σ is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning

- Distributed knowledge that σ is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning
- "The leader": the strategy can be identified by agent $a \in A$

- Distributed knowledge that σ is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning
- "The leader": the strategy can be identified by agent $a \in A$
- "Headquarters' committee": the strategy can be identified by subgroup $A' \subseteq A$

- Distributed knowledge that σ is a winning strategy: if the agents share their knowledge at the current state, they can identify the strategy as winning
- "The leader": the strategy can be identified by agent $a \in A$
- "Headquarters' committee": the strategy can be identified by subgroup $A' \subseteq A$
- "Consulting company": the strategy can be identified by some other group B

Many subtle cases...

Many subtle cases...

→ Solution: constructive knowledge operators

Constructive Strategic Logic (CSL)

■ $\langle\!\langle A \rangle\!\rangle \Phi$: A have a uniform memoryless strategy to enforce Φ

Constructive Strategic Logic (CSL)

- $\langle\!\langle A \rangle\!\rangle \Phi$: A have a uniform memoryless strategy to enforce Φ
- $K_a\langle\langle a \rangle\rangle\Phi$: a has a strategy to enforce Φ , and knows that he has one
- For groups of agents: $C_A, E_A, D_A, ...$

Constructive Strategic Logic (CSL)

- $\langle\!\langle A \rangle\!\rangle \Phi$: A have a uniform memoryless strategy to enforce Φ
- $K_a\langle\langle a \rangle\rangle\Phi$: a has a strategy to enforce Φ , and knows that he has one
- For groups of agents: $C_A, E_A, D_A, ...$
- $\mathbb{K}_a\langle\!\langle a \rangle\!\rangle \Phi$: a has a strategy to enforce Φ , and knows that this is a winning strategy
- For groups of agents: \mathbb{C}_A , \mathbb{E}_A , \mathbb{D}_A , ...

Non-standard semantics:

- Formulae are evaluated in sets of states
- $M, Q \models \langle \langle A \rangle \rangle \gamma$: A have a single strategy to enforce γ from all states in Q

Non-standard semantics:

- Formulae are evaluated in sets of states
- $M, Q \models \langle \langle A \rangle \rangle \gamma$: A have a single strategy to enforce γ from all states in Q

Additionally:

- \bullet $out(Q, s_A) = \bigcup_{q \in Q} out(q, s_A)$
- $\blacksquare \operatorname{img}(Q, \mathcal{R}) = \bigcup_{q \in Q} \operatorname{img}(q, \mathcal{R})$

Non-standard semantics:

- Formulae are evaluated in sets of states
- $M, Q \models \langle \langle A \rangle \rangle \gamma$: A have a single strategy to enforce γ from all states in Q

Additionally:

- \bullet $out(Q, s_A) = \bigcup_{q \in Q} out(q, s_A)$
- $\blacksquare \operatorname{img}(Q, \mathcal{R}) = \bigcup_{q \in Q} \operatorname{img}(q, \mathcal{R})$
- $\blacksquare M, q \models \varphi \text{ iff } M, \{q\} \models \varphi$

 $M,Q \models p \quad \text{iff } p \in \pi(q) \text{ for every } q \in Q;$

 $M,Q \models p$ iff $p \in \pi(q)$ for every $q \in Q$;

 $M,Q \models \neg \varphi \text{ iff not } M,Q \models \varphi \text{;}$

$$M,Q \models p \quad \text{iff } p \in \pi(q) \text{ for every } q \in Q;$$

$$M,Q \models \neg \varphi \text{ iff not } M,Q \models \varphi;$$

$$M,Q\models\varphi\wedge\psi \text{ iff }M,Q\models\varphi \text{ and }M,Q\models\psi;$$

$$M,Q \models p$$
 iff $p \in \pi(q)$ for every $q \in Q$;

$$M,Q \models \neg \varphi \text{ iff not } M,Q \models \varphi;$$

$$M,Q \models \varphi \wedge \psi \text{ iff } M,Q \models \varphi \text{ and } M,Q \models \psi;$$

$$M, Q \models \langle \langle A \rangle \rangle \gamma$$
 iff there exists s_A such that, for every $\lambda \in out(Q, s_A)$, we have that $M, \lambda \models \gamma$;

$$M,Q \models p \quad \text{iff } p \in \pi(q) \text{ for every } q \in Q;$$

$$M,Q \models \neg \varphi \text{ iff not } M,Q \models \varphi;$$

$$M,Q \models \varphi \land \psi \text{ iff } M,Q \models \varphi \text{ and } M,Q \models \psi;$$

$$M,Q \models \langle \langle A \rangle \rangle \gamma$$
 iff there exists s_A such that, for every $\lambda \in out(Q,s_A)$, we have that $M,\lambda \models \gamma$;

$$M,Q \models \mathcal{K}_A \varphi \text{ iff } M,q \models \varphi \text{ for every } q \in \operatorname{img}(Q,\sim_A^{\mathcal{K}}) \text{ (where } \mathcal{K}=C,E,D);$$

$$M,Q \models p$$
 iff $p \in \pi(q)$ for every $q \in Q$;

$$M,Q \models \neg \varphi \text{ iff not } M,Q \models \varphi;$$

$$M,Q \models \varphi \wedge \psi \text{ iff } M,Q \models \varphi \text{ and } M,Q \models \psi;$$

$$M,Q \models \langle \langle A \rangle \rangle \gamma$$
 iff there exists s_A such that, for every $\lambda \in out(Q,s_A)$, we have that $M,\lambda \models \gamma$;

$$M,Q \models \mathcal{K}_A \varphi \text{ iff } M,q \models \varphi \text{ for every } q \in \operatorname{img}(Q,\sim_A^{\mathcal{K}}) \text{ (where } \mathcal{K}=C,E,D);$$

$$M,Q \models \hat{\mathcal{K}}_A \varphi \text{ iff } M, \operatorname{img}(Q, \sim^{\mathcal{K}}_A) \models \varphi \text{ (where } \hat{\mathcal{K}} = \mathbb{C}, \mathbb{E}, \mathbb{D} \text{ and } \mathcal{K} = C, E, D, \text{ respectively).}$$

- Formula φ is valid iff $M, q \models \varphi$ for all models M and states q
- Formula φ is strongly valid iff for each M and every non-empty set of states Q it is the case that $M, Q \models \varphi$

- Formula φ is valid iff $M, q \models \varphi$ for all models M and states q
- \blacksquare Formula φ is strongly valid iff for each M and every non-empty set of states Q it is the case that $M, Q \models \varphi$

Theorem 5.4

- Strong validity implies validity.
- Validity does not imply strong validity.

■ We are ultimately interested in simple validity

- We are ultimately interested in simple validity
- The importance of strong validity, on the other hand, lies in the fact that strong validity of $\varphi \leftrightarrow \psi$ makes φ and ψ completely interchangeable

Validity in CSL

- We are ultimately interested in simple validity
- The importance of strong validity, on the other hand, lies in the fact that strong validity of $\varphi \leftrightarrow \psi$ makes φ and ψ completely interchangeable

Theorem 5.5

If $\varphi_1 \leftrightarrow \varphi_2$ is strongly valid, and ψ' is obtained from ψ through replacing an occurrence of φ_1 by φ_2 , then $M,Q \models \psi$ iff $M,Q \models \psi'$.

Example: Simple Market

 $\neg \mathbb{K}_c \langle \langle c \rangle \rangle \Diamond$ success

Example: Simple Market

Example: Simple Market

@ q_1 :

 $\neg \mathbb{K}_c \langle \langle c \rangle \rangle \Diamond$ success

 $\neg \mathbb{E}_{\{1,2\}} \langle \langle c \rangle \rangle \Diamond$ success

 $\neg \mathbb{K}_1 \langle \langle c \rangle \rangle \Diamond$ success

 $\neg \mathbb{K}_2 \langle \langle c \rangle \rangle \Diamond \text{success}$

 $\mathbb{D}_{\{1,2\}}\langle\!\langle c \rangle\!\rangle \Diamond success$

Onion Soup Robbery

A virtual safe contains the recipe for the best onion soup in the world. The safe can only be opened by a k-digit binary code, where each digit c_i is sent from a prescribed location i (1 < i < k). To open the safe and download the recipe it is enough that at least $n \le k$ correct digits are sent at the same moment. However, if a wrong value is sent from one of the locations, or if an insufficient number (i.e., between 1 and n-1) of digits is submitted, then the safe locks up and activates an alarm. k agents are connected at the right locations; each of them can send 0, send 1, or do nothing (nop). Moreover, individual agents have only partial information about the code: agent i (connected to location i) knows the values of c_{i-1} XOR c_i and c_i XOR c_{i+1} (we take $c_0 = c_{k+1} = 0$). This implies that only agents 1 and k know the values of "their" digits. Still, every agent knows whether his neighbors' digits are the same as his.

Onion Soup Robbery: Some Properties

For OSR_k^n and the initial state, we have:

■ $\neg \mathbb{E}_{\mathbb{A}gt} \langle \langle \mathbb{A}gt \rangle \rangle$ open: the team cannot identify a winning strategy;

Onion Soup Robbery: Some Properties

For OSR_k^n and the initial state, we have:

- $\neg \mathbb{E}_{\mathbb{A}gt} \langle \langle \mathbb{A}gt \rangle \rangle$ open: the team cannot identify a winning strategy;
- $\mathbb{D}_{Agt}\langle\!\langle Agt \rangle\!\rangle$ open: if the agents share information they can recognize who should send what;

Onion Soup Robbery: Some Properties

For OSR_k^n and the initial state, we have:

- $\neg \mathbb{E}_{\mathbb{A}\mathrm{gt}} \langle \langle \mathbb{A}\mathrm{gt} \rangle \rangle$ open: the team cannot identify a winning strategy;
- $\mathbb{D}_{Agt}\langle\langle Agt \rangle\rangle\langle$ open: if the agents share information they can recognize who should send what;
- $\mathbb{D}_{\{1,\dots,n-1\}}\langle\langle \mathbb{A}\mathrm{gt}\rangle\rangle\langle$ open: it is enough that the first n-1 agents devise the strategy. Note that the same holds for the last n-1 agents, i.e., the subteam $\{k-n+2,\dots,k\}$.

3. Constructive Strategic Logic

Theorem 5.6 (Expressivity)

CSL is strictly more expressive than ATL_{ir}.

Theorem 5.6 (Expressivity)

CSL is strictly more expressive than ATLir.

Theorem 5.7 (Verification complexity)

The complexity of model checking CSL is the same as for ATL_{ir}.

5. Imperfect Information

4. Constructive Knowledge

5.4 Constructive Knowledge

Non-standard semantics raises some natural questions:

■ Is constructive knowledge... em, well, knowledge?

Non-standard semantics raises some natural questions:

■ Is constructive knowledge... em, well, knowledge? → semantic vs. syntactic analysis

Non-standard semantics raises some natural questions:

- Is constructive knowledge... em, well, knowledge? → semantic vs. syntactic analysis
- Is constructive knowledge a special kind of standard knowledge? Or the other way around?

Non-standard semantics raises some natural questions:

- Is constructive knowledge... em, well, knowledge? → semantic vs. syntactic analysis
- Is constructive knowledge a special kind of standard knowledge? Or the other way around?
- Is there a relevant subset of the language for whom a more standard semantics can be given?

Is \mathbb{K}_a an Epistemic Operator?

Theorem 5.8

Below, we list the constructive knowledge versions of some of the S5 properties for individual agents. "Yes" means that the schema is strongly valid; "No" means that it is not even weakly valid (incidentally, none of the properties turns out to be weakly but not strongly valid).

\mathbf{K}	$\mathbb{K}_a(\varphi \to \psi) \to (\mathbb{K}_a \varphi \to \mathbb{K}_a \psi)$	Yes
D	$ eg \mathbb{K}_a ot$	Yes
${f T}$	$\mathbb{K}_aarphi oarphi$	No
4	$\mathbb{K}_a \varphi \to \mathbb{K}_a \mathbb{K}_a \varphi$	Yes
4^{+}	$\mathbb{K}_a \varphi \leftrightarrow \mathbb{K}_a \mathbb{K}_a \varphi$	Yes
5	$\neg \mathbb{K}_a \varphi o \mathbb{K}_a \neg \mathbb{K}_a \varphi$	Yes
5^{+}	$\neg \mathbb{K}_a \varphi \leftrightarrow \mathbb{K}_a \neg \mathbb{K}_a \varphi$	Yes
В	$\varphi \to \mathbb{K}_a \neg \mathbb{K}_a \neg \varphi$	No

Is \mathbb{K}_a an Epistemic Operator?

Theorem 5.8

Below, we list the constructive knowledge versions of some of the S5 properties for individual agents. "Yes" means that the schema is strongly valid; "No" means that it is not even weakly valid (incidentally, none of the properties turns out to be weakly but not strongly valid).

\mathbf{K}	$\mathbb{K}_a(\varphi \to \psi) \to (\mathbb{K}_a \varphi \to \mathbb{K}_a \psi)$	Yes
\mathbf{D}	$ eg \mathbb{K}_a ot$	Yes
${f T}$	$\mathbb{K}_aarphi oarphi$	No
4	$\mathbb{K}_a \varphi \to \mathbb{K}_a \mathbb{K}_a \varphi$	Yes
4^{+}	$\mathbb{K}_a \varphi \leftrightarrow \mathbb{K}_a \mathbb{K}_a \varphi$	Yes
5	$\neg \mathbb{K}_a \varphi \to \mathbb{K}_a \neg \mathbb{K}_a \varphi$	Yes
5^{+}	$\neg \mathbb{K}_a \varphi \leftrightarrow \mathbb{K}_a \neg \mathbb{K}_a \varphi$	Yes
В	$\varphi \to \mathbb{K}_a \neg \mathbb{K}_a \neg \varphi$	No

Invalidity of Axiom T

Let M be as above Now, $M, q \models \mathbb{K}_a \neg p$, but $M, q \not\models \neg p$

- $\blacksquare \mathbb{K}_a$ is not S5: axioms K, D, 4, 5 hold, but T does not
- However, if we slightly restrict the language, then the corresponding T axiom becomes strongly valid

- \blacksquare \mathbb{K}_a is not S5: axioms $\mathbf{K}, \mathbf{D}, \mathbf{4}, \mathbf{5}$ hold, but \mathbf{T} does not
- However, if we slightly restrict the language, then the corresponding T axiom becomes strongly valid
- Let CSL⁻ be the subset of CSL in which, between every occurrence of constructive knowledge (\mathbb{C}_A , \mathbb{E}_A , \mathbb{D}_A) and negation, there is always at least one operator other than conjunction
- In particular, the requirement is met when \mathbb{C}_A , \mathbb{E}_A , \mathbb{D}_A are never immediately followed by \neg or \land

- \blacksquare \mathbb{K}_a is not S5: axioms $\mathbf{K}, \mathbf{D}, \mathbf{4}, \mathbf{5}$ hold, but \mathbf{T} does not
- However, if we slightly restrict the language, then the corresponding T axiom becomes strongly valid
- Let CSL⁻ be the subset of CSL in which, between every occurrence of constructive knowledge (\mathbb{C}_A , \mathbb{E}_A , \mathbb{D}_A) and negation, there is always at least one operator other than conjunction
- In particular, the requirement is met when \mathbb{C}_A , \mathbb{E}_A , \mathbb{D}_A are never immediately followed by \neg or \land

Theorem 5.9

Every CSL⁻ instance of \mathbf{T} (i.e., $\mathbb{K}_a \psi \to \psi$) is strongly valid.

Is then the constructive knowledge in CSL⁻ S5?

Is then the constructive knowledge in CSL⁻ S5? Not really

Is then the constructive knowledge in CSL⁻ S5? Not really

- The extension of schema T is different in CSL and CSL⁻
- More importantly, in CSL⁻ schemata **K** and 5 are not valid, but they are not invalid either they are simply not formulae at all
- Finally, CSL⁻ lacks the S5 principle of uniform substitution

Properties of Collective Constructive Knowledge

Theorem 5.10

Below, we list some of the S5 properties for collective constructive knowledge operators. "Yes" means that the schema is strongly valid; "No" means that it is not even weakly valid.

	\mathbb{C}_A	\mathbb{E}_A	\mathbb{D}_A
\mathbf{K}	Yes	Yes	Yes
D	Yes	Yes	Yes
${f T}$	No	No	No
4	Yes	No	Yes
4^{+}	Yes	No	Yes
5	Yes	No	Yes
5^{+}	Yes	No	Yes
В	No	No	No

Properties of Collective Constructive Knowledge

Theorem 5.11

Every CSL⁻ instance of schema \mathbf{T} for collective constructive knowledge operators \mathbb{C}_A , \mathbb{E}_A , \mathbb{D}_A is strongly valid.

Normal Form and State-Based Semantics

Constructive Normal Form

A CSL formula is in constructive normal form (CSNF) if every subformula starting with a $\hat{\mathcal{K}}_A$ operator is of the form $\hat{\mathcal{K}}_{A_1} \dots \hat{\mathcal{K}}_{A_n} \psi$ where ψ starts with a cooperation modality.

Normal Form and State-Based Semantics

Constructive Normal Form

A CSL formula is in constructive normal form (CSNF) if every subformula starting with a $\hat{\mathcal{K}}_A$ operator is of the form $\hat{\mathcal{K}}_{A_1} \dots \hat{\mathcal{K}}_{A_m} \psi$ where ψ starts with a cooperation modality.

Proposition

Every CSL formula is strongly equivalent to a formula in constructive normal form.

Note: equivalent does not mean the same!

Normal Form CSL

Observation

The "normal form CSL" can be given semantics entirely in terms of models and states.

Normal Form CSL

Observation

The "normal form CSL" can be given semantics entirely in terms of models and states.

$$M,q \models \hat{\mathcal{K}}^1_{A_1} \dots \hat{\mathcal{K}}^n_{A_n} \langle\!\langle A \rangle\!\rangle \gamma$$
 iff there exists S_A such that, for every $\lambda \in out(\operatorname{img}(q,rel(\hat{\mathcal{K}}^1_{A_1} \dots \hat{\mathcal{K}}^n_{A_n}),S_A)$, we have that $M,\lambda \models \gamma$,

where $rel(\hat{\mathcal{K}}_{A_1}^1 \dots \hat{\mathcal{K}}_{A_n}^n) = \sim_{A_1}^{\mathcal{K}^1} \circ \dots \circ \sim_{A_n}^{\mathcal{K}^n}$.

Normal Form CSL vs. Onion Soup

- $\blacksquare \neg \mathbb{E}_{\mathbb{A}\mathrm{gt}} \langle\!\langle \mathbb{A}\mathrm{gt} \rangle\!\rangle \Diamond \mathsf{open}$
- $\blacksquare \mathbb{D}_{\mathbb{A}\mathrm{gt}}\langle\!\langle \mathbb{A}\mathrm{gt} \rangle\!\rangle \Diamond \mathsf{open}$
- $\blacksquare \mathbb{D}_{\{1,\ldots,n-1\}}\langle\!\langle \mathbb{A}\mathrm{gt} \rangle\!\rangle \Diamond \mathsf{open}$

These are normal form formulae!

5.5 Between Perception and Recall

- I/i: perfect/imperfect information
- R/r: perfect/imperfect recall

- I/i: perfect/imperfect information
- R/r: perfect/imperfect recall
- $ightharpoonup r: s_a: St \to Act$ (memoryless strategies)
- R: $s_a: St^+ \to Act$ (perfect recall strategies)

- I/i: perfect/imperfect information
- R/r: perfect/imperfect recall
- r: $s_a: St \to Act$ (memoryless strategies)
- R: $s_a: St^+ \to Act$ (perfect recall strategies)
- i: only uniform strategies,
- I: no restrictions

- I/i: perfect/imperfect information
- R/r: perfect/imperfect recall
- $ightharpoonup r: s_a: St \to Act$ (memoryless strategies)
- R: $s_a: St^+ \to Act$ (perfect recall strategies)
- i: only uniform strategies,
- I: no restrictions
- ightharpoonup r: s_a is uniform iff $q \sim_a q' \Rightarrow s_a(q) = s_a(q')$
- **R**: s_a is uniform iff $\lambda \approx_a \lambda' \Rightarrow s_a(\lambda) = s_a(\lambda')$
- $\blacksquare \lambda \approx_a \lambda' \text{ iff } \forall_i \lambda[i] \sim_a \lambda'[i]$

Model Checking Complexity

logic	ir	iR	Ir	IR
$\langle\!\langle \Gamma \rangle\!\rangle - ATL$	NP	U [11]	n I [2]	nI[2]
ATL	$\Delta_2 P$	U [11]	nJ[2]	nJ [2]
ATL^+	$\Delta_3 P$	U [11]	$\Delta_3 P$	$\Delta_3 P$
ATL^*	PSPACE	U [11]	PSPACE	DEXP [9]

NPcomplete for nondeterministic polynomial time

 $\Delta_2 P = P^{NP}$ complete for polynomial calls to an NP oracle

 $\Delta_3 P = P^{NP^{NP}}$ complete for polynomial calls to a $\Sigma_2 P$ oracle

EXP complete for deterministic exponential time

DEXP complete for deterministic doubly exponential time

U undecidable

size of the formula

size of the model \mathbf{n}

Perfect vs. Imperfect Recall

Perfect vs. Imperfect Recall

Advice: the restrictions on strategies and the semantics of

5.6 References

[Schobbens 2004] P. Y. Schobbens.

Alternating-time logic with imperfect recall.

Electronic Notes in Theoretical Computer Science, 85(2), 2004.

[Jamroga and Ågotnes 2007] W. Jamroga and T. Ågotnes.

Constructive knowledge: What agents can achieve under incomplete information.

Journal of Applied Non-Classical Logics, 17(4):423–475, 2007.

[van der Hoek and Wooldridge 2003] W. van der Hoek and M. Wooldridge.

Cooperation, knowledge and time: Alternating-time Temporal Epistemic Logic and its applications.

Studia Logica, 75(1):125–157, 2003.

Strat. Solution Concepts

Introduction

 Let us look at how we can logically characterise solution concepts for strategic games

Introduction

- Let us look at how we can logically characterise solution concepts for strategic games
- Modal logic characterisations of solution concepts have been studied by many authors, e.g.
 - Bonanno: both strategic and extensive games
 - Harrenstein et al.: extensive form games; modalities for preferences (see our Friday lectures)
- Here: we will take Coalition Logic/ATL as a starting point

- Strategic game: $G = (N, \{\Sigma_i : i \in N\}, o, S, \{\succeq_i : i \in N\})$
- Solution concepts describe outcomes of games

Nash Equilibrium

Informally: given a game, a strategy profile is a Nash equilibrium iff every strategy is a best response (for that agent) to the other strategies.

Nash Equilibrium

Informally: given a game, a strategy profile is a Nash equilibrium iff every strategy is a best response (for that agent) to the other strategies.

Formally:

$$G = (N, \{\Sigma_i : i \in N\}, o, S, \{\succeq_i : i \in N\})$$

Definition 6.1 (Nash Equilibrium)

A strategy profile σ_N is a (pure strategy) Nash equilibrium of G iff for every $i \in N$ and σ_i'

$$o(\sigma_i, \sigma_{-i}) \succeq_i o(\sigma'_i, \sigma_{-i})$$

Nash Equilibrium: example: Prisoner's dilemma

	Bill		
		Cooperate	Defect
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3

Nash Equilibrium: example: Prisoner's dilemma

	BIII		
		Cooperate	Defect
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3

One Nash equilibrium: (Defect, Defect)

Nash Equilibrium: example: Bach or Stravinsky

		Bill		
		В	S	
Ann	В	Ann:2, Bill:1	Ann:0, Bill: 0	
	S	Ann:0, Bill:0	Ann:1, Bill: 2	

Nash Equilibrium: example: Bach or Stravinsky

		Bill		
		B S		
Ann	В	Ann:2, Bill:1	Ann:0, Bill: 0	
	S	Ann:0, Bill:0	Ann:1, Bill: 2	

Two Nash equilibria: (B,B) and (S,S)

Weakly Dominant Strategies

Informally: a strategy is weakly dominant if it is as least as good as any other strategy no matters what the other agents do.

Weakly Dominant Strategies

Informally: a strategy is weakly dominant if it is as least as good as any other strategy no matters what the other agents do.

Formally:

Definition 6.2 (Weak Dominance)

A strategy σ_i weakly dominates strategy σ'_i iff for all σ_{-i}

$$o(\sigma_i, \sigma_{-i}) \succeq_i o(\sigma'_i, \sigma_{-i})$$

A strategy is weakly dominant for i iff it weakly dominates all other strategies for i.

Dominance: example: Prisoner's dilemma

	Bill		
		Cooperate	Defect
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3

Dominance: example: Prisoner's dilemma

		BIII		
Cooperate D			Defect	
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0	
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3	

Defect is dominant for Ann

Dominance: example: Prisoner's dilemma

		BIII		
	Cooperate Defec			
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0	
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3	

Defect is dominant for Ann Defect is dominant for Bill

6.1 Logical Characterisations

Adding preferences

- ATL/CL can express properties about (sequences of) game forms
- In order to reason about solution concepts, we need to add preferences to the picture
- Can be done in several ways
- In lectures 9 and 10, we use preference modalities
- Here we choose a simple solution: "primitive" utility propositions

Utility propositions

Let U be a finite set of utilities. We assume that the primitive propositions Π includes a proposition

$$u_i \ge v$$

for each agent i and $v \in U$.

Utility propositions

Let U be a finite set of utilities. We assume that the primitive propositions Π includes a proposition

$$u_i \ge v$$

for each agent i and $v \in U$.

It is now straightforward to identify a strategic game in each state (where the outcomes are new states). We use $\Gamma(\mathcal{M},s)$ to denote the game played in state s of structure \mathcal{M} .

Example (BoS)

 $\Gamma(\mathcal{M},q_0)$:

		BIII		
		В	S	
Ann	В	Ann:2, Bill:1	Ann:0, Bill: 0	
	S	Ann:0, Bill:0	Ann:1, Bill: 2	

D:11

 \mathcal{M} :

■ We can now express properties of games: $\mathcal{M}, s \models \phi$ means that the game $\Gamma(\mathcal{M}, s)$ has the property decribed by ϕ

- We can now express properties of games: $\mathcal{M}, s \models \phi$ means that the game $\Gamma(\mathcal{M}, s)$ has the property decribed by ϕ
- Game properties of special interest: solution concepts
 - lacksquare From now on: simplifying assumption: N=2

- We can now express properties of games: $\mathcal{M}, s \models \phi$ means that the game $\Gamma(\mathcal{M}, s)$ has the property decribed by ϕ
- Game properties of special interest: solution concepts From now on: simplifying assumption: N=2
- Can we express, e.g., Nash equilibrium using the key construct $\langle\!\langle C \rangle\!\rangle$?

- We can now express properties of games: $\mathcal{M}, s \models \phi$ means that the game $\Gamma(\mathcal{M}, s)$ has the property decribed by ϕ
- Game properties of special interest: solution concepts From now on: simplifying assumption: N=2
- Can we express, e.g., Nash equilibrium using the key construct $\langle\!\langle C \rangle\!\rangle$?
- Turns out to be difficult. Main reasons:

- We can now express properties of games: $\mathcal{M}, s \models \phi$ means that the game $\Gamma(\mathcal{M}, s)$ has the property decribed by ϕ
- Game properties of special interest: solution concepts From now on: simplifying assumption: N=2
- Can we express, e.g., Nash equilibrium using the key construct $\langle\!\langle C \rangle\!\rangle$?
- Turns out to be difficult. Main reasons:
 - Solution concepts such as Nash equilibrium are properties of strategies, but we cannot refer directly to strategies in the language

- We can now express properties of games: $\mathcal{M}, s \models \phi$ means that the game $\Gamma(\mathcal{M}, s)$ has the property decribed by ϕ
- Game properties of special interest: solution concepts ■ From now on: simplifying assumption: N = 2
- Can we express, e.g., Nash equilibrium using the key construct $\langle\!\langle C \rangle\!\rangle$?
- Turns out to be difficult. Main reasons:
 - Solution concepts such as Nash equilibrium are properties of strategies, but we cannot refer directly to strategies in the language
 - We often need to reason in the context of a fixed strategy for one or more agents: "If my opponent cooperates, then..". This requires an "irrevocable" interpretation of strategies.

- We can now express properties of games: $\mathcal{M}, s \models \phi$ means that the game $\Gamma(\mathcal{M}, s)$ has the property decribed by ϕ
- Game properties of special interest: solution concepts From now on: simplifying assumption: N=2
- Can we express, e.g., Nash equilibrium using the key construct $\langle\!\langle C \rangle\!\rangle$?
- Turns out to be difficult. Main reasons:
 - Solution concepts such as Nash equilibrium are properties of strategies, but we cannot refer directly to strategies in the language
 - We often need to reason in the context of a fixed strategy for one or more agents: "If my opponent cooperates, then..". This requires an "irrevocable" interpretation of strategies.
 - Reasoning about solution concepts involve counterfactual arguments such as "Suppose my opponent cooperates. Then I better defect. If he defects, however, I should defect as well."
- We will thus make another addition to the language, in addition to utility propositions

Counterfactuals

- Example: "Suppose my opponent cooperates. Then I better defect. If he defects, however, I should defect as well."
- Counterfactuals are not logical implications (otherwise one of the claims above would be trivially true)
- Counterfactuals have been analysed by philosophers (Stalnaker, Lewis):
 - "if counterfactually ϕ then ψ ": if we adjust the world minimally so that ϕ , then ψ

A Counterfactual Operator

Extend the language of ATL (or Coalition Logic) with a counterfactual operator

$$C_i(\sigma_i,\varphi)$$

where

- \blacksquare *i* is an agent
- σ_i is a strategy term. We assume a set of strategy terms Υ_i for each agent i.
- $\blacksquare \varphi$ is a formula

with the intended meaning that if i played strategy σ_i , then φ would be true

A Counterfactual Operator

Extend the language of ATL (or Coalition Logic) with a counterfactual operator

$$C_i(\sigma_i,\varphi)$$

where

- \blacksquare *i* is an agent
- σ_i is a strategy term. We assume a set of strategy terms Υ_i for each agent i.
- $\blacksquare \varphi$ is a formula

with the intended meaning that if i played strategy σ_i , then φ would be true

Restriction: no occurrence of a term in Υ_i inside φ

Interpretation

Extend the semantic structures (CGSs) with an interpretation function $\llbracket \cdot \rrbracket_{\mathcal{M}}$ mapping a strategy term $\sigma_i \in \Upsilon_i$ to a strategy

 $\llbracket \sigma_i \rrbracket_{\mathcal{M}}$

for agent i.

Interpretation

Extend the semantic structures (CGSs) with an interpretation function $\llbracket \cdot \rrbracket_{\mathcal{M}}$ mapping a strategy term $\sigma_i \in \Upsilon_i$ to a strategy

$$\llbracket \sigma_i \rrbracket_{\mathcal{M}}$$

for agent i.

Interpretation:

$$\mathcal{M}, q \models C_i(\sigma_i, \varphi) \Leftrightarrow (\mathcal{M} \dagger \llbracket \sigma_i \rrbracket, q \models \varphi)$$

Interpretation

Extend the semantic structures (CGSs) with an interpretation function $[\cdot]_{\mathcal{M}}$ mapping a strategy term $\sigma_i \in \Upsilon_i$ to a strategy

$$\llbracket \sigma_i \rrbracket_{\mathcal{M}}$$

for agent i.

Interpretation:

$$\mathcal{M}, q \models C_i(\sigma_i, \varphi) \Leftrightarrow (\mathcal{M} \dagger \llbracket \sigma_i \rrbracket, q \models \varphi)$$

Assumption: there is a term for every possible strategy.

Note that

$$\not\models \langle\!\langle i \rangle\!\rangle \varphi \leftrightarrow \bigvee_{\sigma_i \in \Upsilon_i} C_i(\sigma_i, \varphi)$$

Note that

$$\not\models \langle \langle i \rangle \rangle \varphi \leftrightarrow \bigvee_{\sigma_i \in \Upsilon_i} C_i(\sigma_i, \varphi)$$

... similarly to the fact that $\langle\langle i\rangle\rangle$ is different with the standard and the irrevocable semantics: the update semantics rules out any possible future choices

Characterising Weak Dominance

Find a formula $WD_i(\alpha)$ such that

 $\mathcal{M}, q \models WD_i(\alpha) \Leftrightarrow \alpha \text{ is weakly dominant in } \Gamma(\mathcal{M}, q)$

Characterising Weak Dominance

Find a formula $WD_i(\alpha)$ such that

$$\mathcal{M}, q \models WD_i(\alpha) \Leftrightarrow \alpha \text{ is weakly dominant in } \Gamma(\mathcal{M}, q)$$

Consider this:

$$wd_i(\alpha) \equiv \bigwedge_{i \in U} (\langle \langle i \rangle \rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle \langle \rangle \rangle \bigcirc (u_i \ge v)))$$

$$wd_i(\alpha) \equiv \bigwedge_{i=1}^{n} (\langle\langle i \rangle\rangle \bigcirc (u_i \geq v) \to C_i(\alpha, \langle\langle \rangle\rangle) \bigcirc (u_i \geq v)))$$

$$wd_i(\alpha) \equiv \bigwedge_{v \in U} (\langle\langle i \rangle\rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle\langle \rangle\rangle \bigcirc (u_i \ge v)))$$

D 111

 $\Gamma(\mathcal{M},q_0)$:

		BIII	
		В	S
Ann	В	Ann:2, Bill:1	Ann:0, Bill: 0
	S	Ann:0, Bill:0	Ann:1, Bill: 2

$$wd_i(\alpha) \equiv \bigwedge_{v \in U} (\langle\langle i \rangle\rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle\langle \rangle\rangle \bigcirc (u_i \ge v)))$$

■ If $\mathcal{M}, q_0 \models \langle \langle A \rangle \rangle \bigcirc u_A \geq v$, then v = 0

$$wd_i(\alpha) \equiv \bigwedge_{v \in U} (\langle \langle i \rangle \rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle \langle \rangle \rangle \bigcirc (u_i \ge v)))$$

 $\mathcal{M} \dagger B_A$:

- If $\mathcal{M}, q_0 \models \langle \langle A \rangle \rangle \bigcirc u_A \geq v$, then v = 0
- But $\mathcal{M} \dagger B_A, q_0 \models \langle \langle \rangle \rangle \bigcirc u_A \geq 0$ (if Ann plays B, she will get at least 0)

$$wd_i(\alpha) \equiv \bigwedge_{v \in U} (\langle\langle i \rangle\rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle\langle \rangle\rangle \bigcirc (u_i \ge v)))$$

- If $\mathcal{M}, q_0 \models \langle \langle A \rangle \rangle \bigcirc u_A \geq v$, then v = 0
- But $\mathcal{M} \dagger B_A, q_0 \models \langle \langle \rangle \rangle \bigcirc u_A \geq 0$ (if Ann plays B, she will get at least 0)
- \blacksquare So $\mathcal{M}, q_0 \models C_A(B, \langle \langle \rangle) \bigcirc u_A \geq 0)$ as well

$$wd_i(\alpha) \equiv \bigwedge_{v \in U} (\langle\langle i \rangle\rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle\langle \rangle\rangle \bigcirc (u_i \ge v)))$$

- If $\mathcal{M}, q_0 \models \langle \langle A \rangle \rangle \bigcirc u_A \geq v$, then v = 0
- But $\mathcal{M} \dagger B_A, q_0 \models \langle \langle \rangle \rangle \bigcirc u_A \ge 0$ (if Ann plays B, she will get at least 0)
- \blacksquare So $\mathcal{M}, q_0 \models C_A(B, \langle \langle \rangle) \bigcirc u_A \geq 0)$ as well
- Thus, $\mathcal{M}, q_0 \models wd_i(B)$

$$wd_i(\alpha) \equiv \bigwedge_{v \in U} (\langle\langle i \rangle\rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle\langle \rangle\rangle) \bigcirc (u_i \ge v)))$$

- If $\mathcal{M}, q_0 \models \langle \langle A \rangle \rangle \bigcirc u_A \geq v$, then v = 0
- But $\mathcal{M} \dagger B_A$, $q_0 \models \langle \langle \rangle \bigcirc u_A \geq 0$ (if Ann plays B, she will get at least 0)
- \blacksquare So $\mathcal{M}, q_0 \models C_A(B, \langle \langle \rangle) \bigcirc u_A \geq 0)$ as well
- Thus, $\mathcal{M}, q_0 \models wd_i(B)$
- But B is not a dominant strategy for Ann! (BoS has no dominant strategies)

Characterising Weak Dominance

Find a formula $WD_i(\alpha)$ such that

 $\mathcal{M}, q \models WD_i(\alpha) \Leftrightarrow \alpha \text{ is weakly dominant in } \Gamma(\mathcal{M}, q)$

$$wd_i(\alpha) \equiv \bigwedge_{i \in I} (\langle\langle i \rangle\rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle\langle \rangle\rangle) \bigcirc (u_i \ge v)))$$

Characterising Weak Dominance

Find a formula $WD_i(\alpha)$ such that

$$\mathcal{M}, q \models WD_i(\alpha) \Leftrightarrow \alpha \text{ is weakly dominant in } \Gamma(\mathcal{M}, q)$$

$$wd_i(\alpha) \equiv \bigwedge_{v \in U} (\langle\langle i \rangle\rangle \bigcirc (u_i \ge v) \to C_i(\alpha, \langle\langle \rangle\rangle) \bigcirc (u_i \ge v)))$$

Solution – for games with finitely many strategies:

$$WD_i(\alpha) \equiv \bigwedge_{\beta \in \Upsilon} C_j(\beta, wd_i(\alpha))$$

Characterising Nash Equilibrium

Find a formula $NE_i(\alpha_1, \alpha_2)$ such that

$$\mathcal{M}, q \models NE(\alpha_1, \alpha_2) \Leftrightarrow (\alpha_1, \alpha_2)$$
 is a Nash equilibrium of $\Gamma(\mathcal{M}, q)$

Characterising Nash Equilibrium

Find a formula $NE_i(\alpha_1, \alpha_2)$ such that

$$\mathcal{M}, q \models NE(\alpha_1, \alpha_2) \Leftrightarrow (\alpha_1, \alpha_2)$$
 is a Nash equilibrium of $\Gamma(\mathcal{M}, q)$

Best response:

$$BR_i(\alpha_k, \alpha_i) \equiv C_k(\alpha_k, \bigwedge_{i=1}^{n} ((\langle\langle i \rangle\rangle \bigcirc (u_i \geq v)) \rightarrow C_i(\alpha_i, \langle\langle \rangle\rangle \bigcirc (u_i \geq v)))$$

Characterising Nash Equilibrium

Find a formula $NE_i(\alpha_1, \alpha_2)$ such that

$$\mathcal{M}, q \models NE(\alpha_1, \alpha_2) \Leftrightarrow (\alpha_1, \alpha_2)$$
 is a Nash equilibrium of $\Gamma(\mathcal{M}, q)$

Best response:

$$BR_i(\alpha_k, \alpha_i) \equiv C_k(\alpha_k, \bigwedge_{i=1}^{n} ((\langle i \rangle \rangle \bigcirc (u_i \geq v)) \to C_i(\alpha_i, \langle i \rangle \rangle \bigcirc (u_i \geq v)))$$

$$NE(\alpha_1, \alpha_2) \equiv BR_1(\alpha_2, \alpha_1) \wedge BR_2(\alpha_1, \alpha_2)$$

6.2 References

- [1] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press: Cambridge, MA, 1994.
- W. van der Hoek, W. Jamroga, and M. Wooldridge. [2] A logic for strategic reasoning. In Proceedings of AAMAS'05, pages 157–164, 2005.
- [3] G. Bonanno. Modal logic and game theory: Two alternative approaches. Risk Decision and Policy, 7(3):309-324, 2002.
- [4] B.P. Harrenstein, W. van der Hoek, J.-J. Meyer, and C. Witteveen. A modal characterization of Nash equilibrium. Fundamenta Informaticae, 57(2-4):281-321, 2003.

Reasoning about Rational Play

Game-Theoretical Analysis of Games

Solution concepts define rationality of players

Game-Theoretical Analysis of Games

- Solution concepts define rationality of players
 - maxmin
 - Nash equilibrium
 - subgame-perfect Nash
 - undominated strategies
 - Pareto optimality

Game-Theoretical Analysis of Games

- Solution concepts define rationality of players
 - maxmin
 - Nash equilibrium
 - subgame-perfect Nash
 - undominated strategies
 - Pareto optimality
- Then: we assume that players play rationally
- ...and we ask about the outcome of the game under this assumption

Game-Theoretical Analysis of Games

- Solution concepts define rationality of players
 - maxmin
 - Nash equilibrium
 - subgame-perfect Nash
 - undominated strategies
 - Pareto optimality
- Then: we assume that players play rationally
- ...and we ask about the outcome of the game under this assumption
- Role of rationality criteria: constrain the possible game moves to "sensible" ones

Example: Pennies Game

Example: Pennies Game

 $\mathsf{start} \to \neg \langle \langle 1 \rangle \rangle \Diamond \mathsf{money}_1$

Example: Pennies Game

$$\begin{split} \text{start} &\to \neg \langle \! \langle 1 \rangle \! \rangle \Diamond \text{money}_1 \\ \text{start} &\to \neg \langle \! \langle 2 \rangle \! \rangle \Diamond \text{money}_2 \end{split}$$

Example: Pennies Game

 $\begin{aligned} \mathsf{start} &\to \neg \langle \! \langle 1 \rangle \! \rangle \Diamond \mathsf{money_1} \\ &\mathsf{start} &\to \neg \langle \! \langle 2 \rangle \! \rangle \Diamond \mathsf{money_2} \end{aligned}$

Game-Theoretical Analysis of Games

Two points of focus:

■ characterization of rationality ~ research in game theory

Game-Theoretical Analysis of Games

Two points of focus:

- characterization of rationality
 - → research in game theory
- using solution concepts to predict outcomes in a given game
 - → applications of game theory

Motivation

We would like to ...

... reason about the outcome of rational play

Motivation

We would like to ...

- ... reason about the outcome of rational play
- ... have a logic that embed any solution concept
- ... compare different game theoretical solution concepts wrt their outcomes

Motivation

We would like to ...

- ... reason about the outcome of rational play
- ... have a logic that embed any solution concept
- ... compare different game theoretical solution concepts wrt their outcomes

So ...

- ... we extend ATL with a notion of rationality/plausibility
- ... reason about what rational agents can achieve

7. Reasoning about Rational Play

Inspiration:

- Game Logics with Preferences (van Otterloo, van der Hoek & Wooldridge): Nash equilibria, subgame perfect strategies
- Epistemic Temporal Strategic Logic (van Otterloo & Jonker): undominated strategies

7.1 ATL + Plausibility

ATL: reasoning about *all* possible behaviors.

 $\langle\langle A \rangle\rangle \varphi$: agents A have some collective strategy to enforce φ against any response of their opponents.

ATL: reasoning about all possible behaviors.

 $\langle\!\langle A \rangle\!\rangle \varphi$: agents A have some collective strategy to enforce φ against any response of their opponents.

ATLP: reasoning about *plausible* behaviors.

 $\mathbf{Pl} \langle \! \langle A \rangle \! \rangle \varphi$: agents A have a plausible collective strategy to enforce φ against any plausible response of their opponents.

ATL: reasoning about all possible behaviors.

 $\langle\langle A \rangle\rangle \varphi$: agents A have some collective strategy to enforce φ against any response of their opponents.

ATLP: reasoning about *plausible* behaviors.

 $Pl \langle A \rangle \varphi$: agents A have a plausible collective strategy to enforce φ against any plausible response of their opponents.

Important

The possible strategies of both A and $Agt \setminus A$ are restricted.

Syntax of ATLP

$$\varphi \, ::= \, p \, | \, \neg \varphi \, | \, \varphi \wedge \varphi \, | \, \langle \! \langle A \rangle \! \rangle \bigcirc \varphi \, | \, \langle \! \langle A \rangle \! \rangle \square \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, \mathcal{U} \varphi \, | \, \langle \! \langle A \rangle \! \rangle \varphi \, | \, \langle \! \langle A \rangle \!$$

Syntax of ATLP

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \bigcirc \varphi \mid \langle\!\langle A \rangle\!\rangle \Box \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathcal{U} \varphi \mid (\mathbf{set-pl}\ \omega) \varphi$$

New in ATLP:

(set-pl ω) : the set of plausible profiles is set/reset to the strategies described by ω .

Only plausible strategy profiles are considered!

Syntax of ATLP

$$\varphi \, ::= \, p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle\!\langle A \rangle\!\rangle \bigcirc \varphi \mid \langle\!\langle A \rangle\!\rangle \Box \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \, \mathcal{U} \varphi \mid \\ (\mathsf{set-pl} \ \omega) \varphi$$

New in ATLP:

(set-pl ω): the set of plausible profiles is set/reset to the strategies described by ω . Only plausible strategy profiles are considered!

Example: (set-pl $greedy_1$) $\langle\langle 2 \rangle\rangle$ \Diamond money₂

$$M = (\mathbb{A}\mathrm{gt}, St, \Pi, \pi, Act, d, \delta, \Upsilon, \Omega, \|\cdot\|)$$

$$M = (Agt, St, \Pi, \pi, Act, d, \delta, \Upsilon, \Omega, \|\cdot\|)$$

 $ightharpoonup \Upsilon \subseteq \Sigma$: set of plausible strategy profiles

$$M = (\mathbb{A}\mathrm{gt}, St, \Pi, \pi, Act, d, \delta, \Upsilon, \Omega, \|\cdot\|)$$

 $ightharpoonup \Upsilon \subseteq \Sigma$: set of plausible strategy profiles

Example: ω_{NE} may stand for all Nash equilibria

$$M = (Agt, St, \Pi, \pi, Act, d, \delta, \Upsilon, \Omega, \|\cdot\|)$$

 $ightharpoonup \Upsilon \subseteq \Sigma$: set of plausible strategy profiles

- $\Omega = \{\omega_1, \omega_2, \dots\}$: set of plausibility terms
 - Example: ω_{NE} may stand for all Nash equilibria
- $\|\cdot\|: St \to (\Omega \to 2^{\Sigma})$: plausibility mapping, assigns set of strategy profiles to each state and plausibility term

Example: $\|\omega_{NE}\|_{q} = \{(\text{confess}, \text{confess})\}$

Semantics of ATLP

 $\Sigma_A(\Upsilon)$: collective strategies of A that are consistent with Υ

Restricting A's strategies

$$\Sigma_A(\Upsilon) = \{ s_A \in \Sigma_A \mid \exists t \in \Upsilon \quad (t[A] = s_A) \}$$

Semantics of ATLP

 $\Sigma_A(\Upsilon)$: collective strategies of A that are consistent with Υ

Restricting A's strategies

$$\Sigma_A(\Upsilon) = \{ s_A \in \Sigma_A \mid \exists t \in \Upsilon \quad (t[A] = s_A) \}$$

We also restrict the opponents' responses to s_A $\Upsilon(s_A)$: plausible strategy profiles of Agt that agree on s_A

Restricting A's opponents strategies

$$\Upsilon(s_A) = \{ t \in \Upsilon \mid t[A] = s_A \}$$

Restricting Strategies

$$\Upsilon = \{(confess_1, confess_2), (deny_1, deny_2)\}$$

Restricting Strategies

$$\Upsilon = \{(confess_1, confess_2), (deny_1, deny_2)\}$$

$$\Sigma_1(\Upsilon) = \{confess_1, deny_1\}$$

Restricting Strategies

$$\Upsilon = \{(confess_1, confess_2), (deny_1, deny_2)\}\$$

 $\Sigma_1(\Upsilon) = \{confess_1, deny_1\}\$
 $P(confess_1) = \{(confess_1, confess_2)\}.$

Outcome = Paths that may occur when agents A perform s_A

Outcome = Paths that may occur when agents A perform s_A and only plausible strategy profiles are played

Outcome = Paths that may occur when agents A perform s_A and only plausible strategy profiles are played

$$out_{\Upsilon}(q, s_A) =$$

$$\{\lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \ \forall i \in \mathbb{N} \ (\lambda[i+1] = \delta(\lambda[i], t(\lambda[i])))\}$$

Outcome = Paths that may occur when agents A perform s_A and only plausible strategy profiles are played

$$out_{\Upsilon}(q, s_A) = \{ \lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \ \forall i \in \mathbb{N} \ (\lambda[i+1] = \delta(\lambda[i], t(\lambda[i])) \} \}$$

Outcome = Paths that may occur when agents A perform s_A and only plausible strategy profiles are played

$$out_{\Upsilon}(q, s_A) = \{ \lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \ \forall i \in \mathbb{N} \ (\lambda[i+1] = \delta(\lambda[i], t(\lambda[i])) \} \}$$

P: the players always show same sides of their coins

Outcome = Paths that may occur when agents A perform s_A and only plausible strategy profiles are played

$$out_{\Upsilon}(q, s_A) =$$

$$\{\lambda \in St^+ \mid \exists t \in \Upsilon(s_A) \ \forall i \in \mathbb{N} \ (\lambda[i+1] = \delta(\lambda[i], t(\lambda[i])))\}$$

P: the players always show same sides of their coins

 s_1 : always show "heads"

Semantics of ATLP

 $M,q \models \langle\!\langle A \rangle\!\rangle \gamma$ iff there is a strategy s_A consistent with Υ such that $M,\lambda \models \gamma$ for all $\lambda \in out_{\Upsilon}(q,s_A)$ $M,q \models (\mathbf{set}\text{-pl }\omega)\varphi$ iff $M^\omega,q \models \varphi$ where the new model M^ω is equal to M but the new set Υ^ω of plausible strategy profiles is set to $\|\omega\|_q$.

 $M, q_0 \models (\mathsf{set}\text{-}\mathsf{pl} \; \mathsf{sameside}) \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \mathsf{money_1}$

 $M, q_0 \models (\mathsf{set}\text{-}\mathsf{pl} \; \mathsf{sameside}) \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \mathsf{money_1}$

$$M, q_0 \models (\mathbf{set}\text{-}\mathbf{pl} \ \mathsf{sameside}) \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \mathsf{money_1}$$

 $M, q_0 \models (\mathbf{set}\text{-}\mathbf{pl} \ \omega_{NE}) \langle\!\langle 2 \rangle\!\rangle \Diamond \mathsf{money_2}$

 $M, q_0 \models (\mathbf{set}\text{-}\mathbf{pl} \ \mathsf{sameside}) \langle\!\langle \emptyset \rangle\!\rangle \bigcirc \mathsf{money_1}$ $M, q_0 \models (\mathbf{set}\text{-}\mathbf{pl} \ \omega_{NE}) \langle\!\langle 2 \rangle\!\rangle \Diamond \mathsf{money_2}$ What is a Nash equilibrium in this game? We need some kind of winning criteria!

Agent 1 "wins", if $\gamma_1 \equiv \Box(\neg \text{start} \rightarrow \text{money}_1)$ is satisfied. Agent 2 "wins", if $\gamma_2 \equiv \langle money_2 \rangle$ is satisfied.

Agent 1 "wins", if $\gamma_1 \equiv \Box(\neg \text{start} \to \text{money}_1)$ is satisfied. Agent 2 "wins", if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.

Agent 1 "wins", if $\gamma_1 \equiv \Box(\neg \text{start} \to \text{money}_1)$ is satisfied. Agent 2 "wins", if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.

$\gamma_1 \backslash \gamma_2$	hh	ht	th	tt
HH	1,1	0,0	0, 1	0, 1
HT	0,0	0, 1	0, 1	0, 1
TH	0, 1	0, 1	1, 1	0,0
TT	0, 1	0, 1	0,0	0, 1

Agent 1 "wins", if $\gamma_1 \equiv \Box(\neg \text{start} \to \text{money}_1)$ is satisfied. Agent 2 "wins", if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.

$\gamma_1 \backslash \gamma_2$	hh	ht	th	tt
HH	1,1	0,0	0, 1	0, 1
HT	0,0	0, 1	0, 1	0, 1
TH	0, 1	0, 1	1,1	0,0
TT	0, 1	0, 1	0,0	0, 1

Now we have a qualitative notion of success.

Agent 1 "wins", if $\gamma_1 \equiv \Box(\neg \text{start} \rightarrow \text{money}_1)$ is satisfied. Agent 2 "wins", if $\gamma_2 \equiv \Diamond \text{money}_2$ is satisfied.

$\gamma_1 \backslash \gamma_2$	hh	ht	th	tt
HH	1,1	0,0	0, 1	0, 1
HT	0,0	0, 1	0, 1	0, 1
TH	0, 1	0, 1	1,1	0,0
TT	0, 1	0, 1	0,0	0, 1

Now we have a qualitative notion of success.

 $M,q_0 \models (\mathsf{set} ext{-pl}\ \omega_{NE})\langle\!\langle 2 \rangle\!\rangle \Box (\neg \mathsf{start} \to \mathsf{money}_1)$ where $\|\omega_{NE}\|_{q_0} = \text{``all profiles belonging to grey cells''}.$

What about games with non-binary payoffs?

What about games with non-binary payoffs?

Option 1: instead of a single winning condition, we use a list of conditions to encode preferences over outcomes

What about games with non-binary payoffs?

- Option 1: instead of a single winning condition, we use a list of conditions to encode preferences over outcomes
- Option 2: we use the construction by Baltag to embed utilities in CGS, and then refer to temporal patterns of utilities

What about games with non-binary payoffs?

- Option 1: instead of a single winning condition, we use a list of conditions to encode preferences over outcomes
- Option 2: we use the construction by Baltag to embed utilities in CGS, and then refer to temporal patterns of utilities
- Simplest characteristic of such patterns: the utility obtained eventually at the end of the game

Extensive Games as Concurrent Game Structures

The Construction

- Model terminal nodes as "sink" states
- Emulate utilities with propositions
- $M, q \models u_a \ge v$: "a gets at least v in state q"

The Construction

- Model terminal nodes as "sink" states
- Emulate utilities with propositions
- $M, q \models u_a \ge v$: "a gets at least v in state q"

Now: CGS are a generalization of extensive games

Extensive Games as Concurrent Game Structures

- Outcome of a game:
- in an extensive game: single utility value
- in CGS: infinite temporal path

- Outcome of a game:
- in an extensive game: single utility value
- in CGS: infinite temporal path
 - → temporal pattern of utilities

- Outcome of a game:
- in an extensive game: single utility value
- in CGS: infinite temporal path → temporal pattern of utilities
- (In extensive games, paths are identical to states in CGS not!)

- Outcome of a game:
- in an extensive game: single utility value
- (In extensive games, paths are identical to states in CGS not!)
- We need to define the payoff for agent a of path λ
- Qualitative approach: see previous slides
- Quantitative approach: guaranteed utility (\rightsquigarrow a gets always at least u), achievable utility (\rightsquigarrow a gets eventually at least u)...?
- $\blacksquare \Box u_a > 1$, $\Diamond u_a > 1$, $\bigcirc u_a > 1$, ...

- Outcome of a game:
- in an extensive game: single utility value
- in CGS: infinite temporal path → temporal pattern of utilities
- (In extensive games, paths are identical to states in CGS not!)
- We need to define the payoff for agent a of path λ
- Qualitative approach: see previous slides
- Quantitative approach: guaranteed utility (\rightsquigarrow a gets always at least u), achievable utility (\rightsquigarrow a gets eventually at least u)...?
- $\blacksquare \Box u_a \geq 1$, $\Diamond u_a \geq 1$, $\bigcirc u_a \geq 1$, ...
- ...Temporalized solution concepts (parameterized with temporal operators)

7.2 Plausibility Specifications

How to Obtain Plausibility Terms?

Plausibility terms: abstract labels, no structure!

How to Obtain Plausibility Terms?

Plausibility terms: abstract labels, no structure!

Idea

Formulae that describe plausible strategies!

(**set-pl** $\sigma.\theta$) φ : "suppose that θ characterizes rational strategy profiles, then φ holds".

7. Reasoning about Rational Play

How to Obtain Plausibility Terms?

Plausibility terms: abstract labels, no structure!

Idea

Formulae that describe plausible strategies!

(set-pl $\sigma.\theta$) φ : "suppose that θ characterizes rational strategy profiles, then φ holds".

We need to "plug in" logical characterizations of rationality assumptions \rightsquigarrow CATL

7. Reasoning about Rational Play

How to Obtain Plausibility Terms?

Plausibility terms: abstract labels, no structure!

Idea

Formulae that describe plausible strategies!

(set-pl $\sigma.\theta$) φ : "suppose that θ characterizes rational strategy profiles, then φ holds".

We need to "plug in" logical characterizations of rationality assumptions \rightsquigarrow CATL

But: in fact, we can use ATLP instead!

How to Obtain Plausibility Terms?

Plausibility terms: abstract labels, no structure!

Idea

Formulae that describe plausible strategies!

(set-pl $\sigma.\theta$) φ : "suppose that θ characterizes rational strategy profiles, then φ holds".

We need to "plug in" logical characterizations of rationality assumptions \rightsquigarrow CATL

But: in fact, we can use ATLP instead!

→ The same language for characterizing rationality and reasoning about the outcome of rational play

Sometimes quantifiers are needed...

(**set-pl** σ . $\forall \sigma' \ dominates(\sigma, \sigma')$)

ATLP: Extending the Syntax

Definition 7.1 (Logics \mathcal{L}_{ATLP}^{k})

Let Ω be a set of primitive plausibility terms, and Var be a set of strategic variables (with typical element ω).

 $\mathcal{L}^k_{\mathit{ATLP}}(\mathbb{A}\mathrm{gt},\Pi,Var,\Omega)$ are defined recursively:

- $\begin{array}{c} \blacksquare \ \mathcal{L}^{0}_{\mathit{ATLP}}(\mathbb{A}\mathrm{gt},\Pi,Var,\Omega) = \mathcal{L}^{\mathsf{base}}_{\mathit{ATLP}}(\mathbb{A}\mathrm{gt},\Pi,\Omega_{0}) \\ \text{where } \Omega_{0} = \mathcal{T}(\Omega); \end{array}$
- lacksquare $\mathcal{L}^k_{ATLP}(\mathbb{A}\mathrm{gt},\Pi,Var,\Omega)=\mathcal{L}^{\mathsf{base}}_{ATLP}(\mathbb{A}\mathrm{gt},\Pi,\Omega_k)$, where:

ATLP: Extending the Syntax

Definition 7.1 (Logics \mathcal{L}_{ATLP}^{k})

Let Ω be a set of primitive plausibility terms, and Var be a set of strategic variables (with typical element ω).

 $\mathcal{L}^k_{\mathit{ATLP}}(\mathbb{A}\mathrm{gt},\Pi,Var,\Omega)$ are defined recursively:

- $\begin{array}{c} \blacksquare \ \mathcal{L}_{\textit{ATLP}}^{0}(\mathbb{A}\mathrm{gt},\Pi,Var,\Omega) = \mathcal{L}_{\textit{ATLP}}^{\mathsf{base}}(\mathbb{A}\mathrm{gt},\Pi,\Omega_{0}) \\ \text{where } \Omega_{0} = \mathcal{T}(\Omega); \end{array}$
- lacksquare $\mathcal{L}^k_{\mathit{ATLP}}(\mathbb{A}\mathrm{gt},\Pi,Var,\Omega)=\mathcal{L}^{\mathsf{base}}_{\mathit{ATLP}}(\mathbb{A}\mathrm{gt},\Pi,\Omega_k)$, where:
 - - $\begin{array}{l} \blacksquare \ \Omega^k := \{\sigma_1.(Q_2\sigma_2)\dots(Q_n\sigma_n)\varphi \mid n\in\mathbb{N}, \forall i \ (1\leq i\leq n \Rightarrow \sigma_i \in Var, \ Q_i \in \{\forall,\exists\}, \varphi \in \mathcal{L}^{\mathrm{base}}_{\mathit{ATLP}}(\mathbb{A}\mathrm{gt}, \Pi, \mathcal{T}(\Omega_{k-1} \cup \{\sigma_1,\dots,\sigma_n\}))) \ \}. \end{array}$

The set of ATLP formulae with arbitrary finite nesting of plausibility terms is defined by $\mathcal{L}_{ATLP}^{\infty}$

Formal Semantics...

Formal Semantics...

7. Reasoning about Rational Play 2. Plausibility Specifications

Formal Semantics... let's jump over it

7.3 Characterizations

Qualitative Characterization of Nash Equilibrium

 σ_a is a's best response to σ (wrt $\overrightarrow{\gamma}$):

$$BR_a^{\overrightarrow{\gamma}}(\sigma) \equiv (\text{set-pl } \sigma[\text{Agt}\setminus\{a\}]) (\langle\!\langle a \rangle\!\rangle \gamma_a \to (\text{set-pl } \sigma) \langle\!\langle \emptyset \rangle\!\rangle \gamma_a)$$

Qualitative Characterization of Nash Equilibrium

 σ_a is a's best response to σ (wrt $\overrightarrow{\gamma}$):

$$BR_a^{\overrightarrow{\gamma}}(\sigma) \ \equiv \ (\mathsf{set}\text{-pl} \ \sigma[\mathbb{A}\mathsf{gt}\backslash\{a\}]) \big(\langle\!\langle a\rangle\!\rangle \gamma_a \to (\mathsf{set}\text{-pl} \ \sigma) \langle\!\langle \emptyset\rangle\!\rangle \gamma_a\big)$$

 σ is a Nash equilibrium:

$$NE^{\overrightarrow{\gamma}}(\sigma) \equiv \bigwedge_{a \in \mathbb{A} \text{ ort}} BR_a^{\overrightarrow{\gamma}}(\sigma)$$

Example: Pennies Game revisited

$$\gamma_1 \equiv \Box(\neg \mathsf{start} \to \mathsf{money}_1); \quad \gamma_2 \equiv \Diamond \mathsf{money}_2$$

$\gamma_1 \backslash \gamma_2$	hh	ht	th	tt
HH	1,1	0,0	0, 1	0, 1
HT	0,0	0, 1	0, 1	0, 1
TH	0, 1	0, 1	1, 1	0,0
TT	0, 1	0, 1	0,0	0, 1

$$M_1, q_0 \models (\mathbf{set}\text{-}\mathbf{pl}\ \sigma.NE^{\gamma_1,\gamma_2}(\sigma))\langle\!\langle 2 \rangle\!\rangle \Box (\neg \mathsf{start} \to \mathsf{money_1})$$

...where $NE^{\gamma_1,\gamma_2}(\sigma)$ is defined as on the last slide

Characterizations of Other Solution Concepts

 σ is a subgame perfect Nash equilibrium:

$$SPN^{\overrightarrow{\gamma}}(\sigma) \; \equiv \; \langle\!\langle \emptyset \rangle\!\rangle \Box NE^{\overrightarrow{\gamma}}(\sigma)$$

 σ is Pareto optimal:

$$PO^{\overrightarrow{\gamma}}(\sigma) \equiv \forall \sigma' \Big(\bigwedge_{a \in \mathbb{A}\mathrm{gt}} ((\mathbf{set}\text{-}\mathbf{pl}\ \sigma') \langle\!\langle \emptyset \rangle\!\rangle \gamma_a \to (\mathbf{set}\text{-}\mathbf{pl}\ \sigma) \langle\!\langle \emptyset \rangle\!\rangle \gamma_a) \vee \\ \bigvee_{a \in \mathbb{A}\mathrm{gt}} ((\mathbf{set}\text{-}\mathbf{pl}\ \sigma) \langle\!\langle \emptyset \rangle\!\rangle \gamma_a \wedge \neg (\mathbf{set}\text{-}\mathbf{pl}\ \sigma') \langle\!\langle \emptyset \rangle\!\rangle \gamma_a \Big).$$

Characterizations of Other Solution Concepts

 σ is undominated:

$$\begin{array}{ll} \mathit{UNDOM}^{\overrightarrow{\gamma}}(\sigma) & \equiv & \forall \sigma_1 \forall \sigma_2 \exists \sigma_3 \\ & & \Big(\big((\mathsf{set-pl} \ \langle \sigma_1^{\{a\}}, \sigma_2^{\mathbb{A}\mathsf{gt} \setminus \{a\}} \rangle) \langle\!\langle \emptyset \rangle\!\rangle \gamma_a \to \\ & & & (\mathsf{set-pl} \ \langle \sigma^{\{a\}}, \sigma_2^{\mathbb{A}\mathsf{gt} \setminus \{a\}} \rangle) \langle\!\langle \emptyset \rangle\!\rangle \gamma_a \big) \\ & & \vee \big((\mathsf{set-pl} \ \langle \sigma^{\{a\}}, \sigma_3^{\mathbb{A}\mathsf{gt} \setminus \{a\}} \rangle) \langle\!\langle \emptyset \rangle\!\rangle \gamma_a \wedge \\ & & \neg (\mathsf{set-pl} \ \langle \sigma_1^{\{a\}}, \sigma_3^{\mathbb{A}\mathsf{gt} \setminus \{a\}} \rangle) \langle\!\langle \emptyset \rangle\!\rangle \gamma_a \big) \Big). \end{array}$$

Example: Pennies Game again

$$\gamma_1 \equiv \Box(\neg \mathsf{start} \to \mathsf{money}_1); \ \gamma_2 \equiv \Diamond \mathsf{money}_2.$$

$\gamma_1 \backslash \gamma_2$	hh	ht	th	tt
HH	1, 1	0,0	0, 1	0, 1
HT	0,0	0, 1	0, 1	0, 1
TH	0, 1	0, 1	1, 1	0,0
TT	0, 1	0, 1	0,0	0, 1

$$M, q_0 \models (\mathbf{set}\text{-pl } \sigma.PO^{\gamma_1,\gamma_2}(\sigma))\langle\!\langle\emptyset\rangle\!\rangle \Diamond (\mathsf{money_1} \land \mathsf{money_2})$$

Theorem 7.2

Let M be a CGSP, q a state in M, and $\overrightarrow{\eta} = \langle \eta_1, \dots, \eta_k \rangle$ a vector of path formulae (winning conditions). Moreover, let $\Gamma(M,q,\overrightarrow{\eta})$ be the strategic game obtained from M,q by assigning strategy profiles with binary payoffs according to $\overrightarrow{\eta}$. Then the following holds:

- $\| \sigma.NE^{\eta}(\sigma) \|_{M,a}$ denotes the set of Nash equilibria in $\Gamma(M,q,\overrightarrow{\eta})$;
- $\|\sigma.PO^{\eta}(\sigma)\|_{M,q}$ denotes the set of Pareto optimal strategy profiles in $\Gamma(M, q, \overrightarrow{\eta})$;
- $\parallel \sigma.UNDOM^{\eta}(\sigma) \parallel_{M,q}$ denotes the set of undominated strategies in $\Gamma(M,q,\overrightarrow{\eta})$.
- $\blacksquare \|\sigma.SPN^{\eta}(\sigma)\|_{M,q}$ denotes the set of strategy profiles that are in Nash equilibrium for every $\Gamma(M, q', \overrightarrow{\eta})$ (for all reachable q')

Nash Equilibrium:

$$BR_a^T(\sigma) \equiv (\mathbf{str}_{\mathsf{Agt}\setminus A} \, \sigma[\mathsf{Agt} \setminus \{a\}])$$
$$(\bigwedge_{u \in U} (\langle \langle a \rangle \rangle T(u_a \ge v)) \to (\mathbf{str}_a \, \sigma[a]) \langle \langle \emptyset \rangle \rangle T(u_a \ge v))$$

Nash Equilibrium:

$$BR_a^T(\sigma) \equiv (\mathbf{str}_{\mathbb{A}\mathsf{gt}\setminus A} \, \sigma[\mathbb{A}\mathsf{gt}\setminus \{a\}])$$
$$(\bigwedge_{v\in U} (\langle\!\langle a\rangle\!\rangle T(u_a \geq v)) \to (\mathbf{str}_a \, \sigma[a]) \langle\!\langle \emptyset\rangle\!\rangle T(u_a \geq v))$$

$$NE^{T}(\sigma) \equiv \bigwedge_{\sigma \in \Lambda} BR_{a}^{T}(\sigma)$$

Nash Equilibrium:

$$BR_a^T(\sigma) \equiv (\mathbf{str}_{\mathsf{Agt} \setminus A} \sigma[\mathsf{Agt} \setminus \{a\}])$$
$$(\bigwedge_{v \in U} (\langle \langle a \rangle \rangle T(u_a \ge v)) \to (\mathbf{str}_a \sigma[a]) \langle \langle \emptyset \rangle \rangle T(u_a \ge v))$$

$$NE^{T}(\sigma) \equiv \bigwedge_{a \in \mathbb{A}gt} BR_{a}^{T}(\sigma)$$

$$SPN^{T}(\sigma) \equiv \langle \langle \emptyset \rangle \rangle \square NE^{T}(\sigma)$$

$$PO^{T}(\sigma) \equiv \forall \sigma' \Big(\bigwedge_{a \in \mathbb{A}gt} \bigwedge_{v \in U} ((\mathbf{set-pl} \ \sigma') \mathbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \ge v) \rightarrow \\ (\mathbf{set-pl} \ \sigma) \mathbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \ge v)) \lor \\ \bigvee_{a \in \mathbb{A}gt} \bigvee_{v \in U} ((\mathbf{set-pl} \ \sigma) \mathbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \ge v) \land \\ \neg (\mathbf{set-pl} \ \sigma') \mathbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \ge v)) \Big).$$

$$\begin{split} &UNDOM^T(\sigma) \equiv \quad \forall \sigma_1 \forall \sigma_2 \exists \sigma_3 \\ &\Big(\bigwedge_{v \in U} \big((\textbf{set-pl} \ \langle \sigma_1^{\{a\}}, \sigma_2^{\mathbb{A}\text{gt} \backslash \{a\}} \rangle) \textbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \geq v) \rightarrow \\ & (\textbf{set-pl} \ \langle \sigma^{\{a\}}, \sigma_2^{\mathbb{A}\text{gt} \backslash \{a\}} \rangle) \textbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \geq v) \Big) \\ & \vee \bigvee_{v \in U} \Big((\textbf{set-pl} \ \langle \sigma^{\{a\}}, \sigma_3^{\mathbb{A}\text{gt} \backslash \{a\}} \rangle) \textbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \geq v) \wedge \\ & \neg (\textbf{set-pl} \ \langle \sigma_1^{\{a\}}, \sigma_3^{\mathbb{A}\text{gt} \backslash \{a\}} \rangle) \textbf{Pl} \ \langle\!\langle \emptyset \rangle\!\rangle T(u_a \geq v) \Big) \Big). \end{split}$$

Temporalized Solution Concepts

Theorem 7.3

Let Γ be an extensive game with a finite set of utilities. Then the following holds:

- **1** $s \in \|\sigma.NE^{\Diamond}(\sigma)\|_{M(\Gamma),\emptyset}$ iff s is a Nash equilibrium in Γ ;
- $2\ s \in \|\,\sigma.SPN^{\Diamond}(\sigma)\,\|_{M(\Gamma),\emptyset} \ \text{iff s is a subgame perfect Nash equilibrium in Γ;}$
- $s \in \|\sigma.PO^{\Diamond}(\sigma)\|_{M(\Gamma),\emptyset}$ iff s is Pareto optimal in Γ ;
- **4** $s \in \|\sigma.UNDOM^{\Diamond}(\sigma)\|_{M(\Gamma),\emptyset}$ iff s is undominated in Γ .

7.4 Model Checking

- Concurrent game structure = generalized extensive game
- Plausibility specification ~> solution concept

- Concurrent game structure = generalized extensive game
- Plausibility specification \(\simes \) solution concept
- $\langle \langle A \rangle \rangle \gamma$ defines a game where A want to achieve γ

- Concurrent game structure = generalized extensive game
- Plausibility specification ~→ solution concept
- $\langle\!\langle A \rangle\!\rangle \gamma$ defines a game where A want to achieve γ 2-player, binary, zero-sum game

- Concurrent game structure = generalized extensive game
- Plausibility specification ~→ solution concept
- $\langle\!\langle A \rangle\!\rangle \gamma$ defines a game where A want to achieve γ 2-player, binary, zero-sum game \leadsto players, payoffs

- Concurrent game structure = generalized extensive game
- Plausibility specification ~> solution concept
- $\langle\!\langle A \rangle\!\rangle \gamma$ defines a game where A want to achieve γ 2-player, binary, zero-sum game \leadsto players, payoffs
- Model checking formulae of ATLP ~> solving games

Model checking complexity of ATLP

	0	1	 i	 ∞
$\mathcal{L}_{ATLP}^{basic}$	P	-	 -	 -
$\mathcal{L}_{ extit{ATLP}}^0$	P	-	 -	 -
$\mathcal{L}^1_{ extit{ATLP}}$	$oldsymbol{\Delta_3^{ ext{P}}}$	$oldsymbol{\Delta_4^P}$	 $oldsymbol{\Delta^{ ext{P}}_{ ext{i+3}}}$	 PSPACE
$\mathcal{L}^2_{ extit{ATLP}}$	$oldsymbol{\Delta_4^{ ext{P}}}$	$oldsymbol{\Delta}_6^{ ext{P}}$	 $\Delta^{ ext{P}}_{5+ ext{i}- ext{max}\{0,1- ext{i}\}}$	 PSPACE
$\mathcal{L}^k_{ extit{ATLP}}$ $_{i > k+1}$	$oldsymbol{\Delta^{P}_{k+2}}$	$oldsymbol{\Delta^{P}_{k+4}}$	 $oldsymbol{\Delta^{P}_{i+2k+1-\max\{0,k-i-1\}}}$	 PSPACE

Model checking complexity of ATLP

	0	1		i		∞
$\mathcal{L}_{ATLP}^{basic}$	P	-		-		-
$\mathcal{L}_{ extit{ATLP}}^0$	P	-		-		-
$\mathcal{L}^1_{ extit{ATLP}}$	$oldsymbol{\Delta_3^{ ext{P}}}$	$oldsymbol{\Delta_4^{ ext{P}}}$	• • •	$oldsymbol{\Delta^{P}_{i+3}}$		PSPACE
$\mathcal{L}^2_{ extit{ATLP}}$	$\Delta_4^{ m P}$	$oldsymbol{\Delta_6^P}$		$oldsymbol{\Delta^{P}_{5+i-\max\{0,1-i\}}}$		PSPACE
$\mathcal{L}^k_{ extit{ATLP}}$ $_i > k+1$	$oldsymbol{\Delta^{ ext{P}}_{ ext{k+2}}}$	$oldsymbol{\Delta^{P}_{k+4}}$		$oldsymbol{\Delta^{P}_{i+2k+1-\max\{0,k-i-1\}}}$	•••	PSPACE

SAT/mechanism design complexity: open!

7.5 References

[Bulling et al. 2008] N. Bulling, W.Jamroga, and J. Dix.

Reasoning about rational agents in ATLP.

Technical Report Ifl-08-03, Clausthal University of Technology, 2008.

[van der Hoek et al. 2004] W. van der Hoek, S. van Otterloo, and M. Wooldridge.

Preferences in Game Logics.

Proceedings of AAMAS-04, 152–159, 2004.

8.1 Model Checking Time and **Strategies**

Model Checking

Model checking: Does φ hold in model \mathcal{M} and state q?

8. Model checking

Model Checking

Model checking: Does φ hold in model \mathcal{M} and state q?

Two perspectives to model checking MAS:

Model Checking

Model checking: Does φ hold in model \mathcal{M} and state q?

Two perspectives to model checking MAS:

- Model represents the view of an objective observer
- Formula: specification to be met

8. Model checking

Model Checking

Model checking: Does φ hold in model \mathcal{M} and state q?

Two perspectives to model checking MAS:

Verification

- Model represents the view of an objective observer
- Formula: specification to be met

Model Checking

Model checking: Does φ hold in model \mathcal{M} and state q?

Two perspectives to model checking MAS:

Verification

- Model represents the view of an objective observer
- Formula: specification to be met

- Model represents the subjective view of an agent
- Formula: goal to be achieved

Model Checking

Model checking: Does φ hold in model \mathcal{M} and state q?

Two perspectives to model checking MAS:

Verification

- Model represents the view of an objective observer
- Formula: specification to be met

Planning

- Model represents the subjective view of an agent
- Formula: goal to be achieved

function $mcheck(\mathcal{M}, \varphi)$.


```
4
```

```
while Q_1 \not\subseteq Q_2 do Q_1 := Q_1 \cap Q_2; Q_2 := pre(A,Q_1) \cap Q_3 od; return Q_1 case \varphi \equiv \langle\!\langle A \rangle\!\rangle \psi_1 \mathcal{U} \psi_2: Q_1 := \emptyset; Q_2 := mcheck(\mathcal{M}, \psi_2); Q_3 := mcheck(\mathcal{M}, \psi_1); while Q_2 \not\subseteq Q_1 do Q_1 := Q_1 \cup Q_2; Q_2 := pre(A,Q_1) \cap Q_3 od; return Q_1 end case
```

8. Model checking

- Verification example: we want to make sure that agents 1 and 3 can move the cargo to the other location.
- \blacksquare caL $\rightarrow \langle \langle 1, 3 \rangle \rangle \Diamond$ caP

- Verification example: we want to make sure that agents 1 and 3 can move the cargo to the other location.
- \blacksquare caL $\rightarrow \langle\langle 1, 3 \rangle\rangle \Diamond$ caP \land caP $\rightarrow \langle\langle 1, 3 \rangle\rangle \Diamond$ caL

- Verification example: we want to make sure that agents 1 and 3 can move the cargo to the other location.
- caL $\rightarrow \langle\langle 1, 3 \rangle\rangle \Diamond$ caP \land caP $\rightarrow \langle\langle 1, 3 \rangle\rangle \Diamond$ caL \land caR $\rightarrow (\langle\langle 1, 3 \rangle\rangle \Diamond$ caL $\land \langle\langle 1, 3 \rangle\rangle \Diamond$ caP)

Nice results: model checking CTL and ATL is tractable!

Nice results: model checking CTL and ATL is tractable!

Theorem (Clarke, Emerson & Sistla 1986)

CTL model checking is *P*-complete, and can be done in time linear in the size of the model and the length of the formula.

Nice results: model checking CTL and ATL is tractable!

Theorem (Clarke, Emerson & Sistla 1986)

CTL model checking is *P*-complete, and can be done in time linear in the size of the model and the length of the formula.

Theorem (Alur, Kupferman & Henzinger 1998)

ATL model checking is *P*-complete, and can be done in time linear in the size of the model and the length of the formula.

So... Let's model-check!

So... Let's model-check!

Not as easy as it seems...

P: problems solvable in polynomial time by a deterministic Turing machine

- P: problems solvable in polynomial time by a deterministic Turing machine
- NP: problems solvable in polynomial time by a non-deterministic Turing machine

- P: problems solvable in polynomial time by a deterministic Turing machine
- NP: problems solvable in polynomial time by a non-deterministic Turing machine
- $\Sigma_{\rm n}^{\rm P}/\Pi_{\rm n}^{\rm P}/\Delta_{\rm n}^{\rm P}$: problems solvable in polynomial time with use of adaptive queries to an n-level oracle

- P: problems solvable in polynomial time by a deterministic Turing machine
- NP: problems solvable in polynomial time by a non-deterministic Turing machine
- $\Sigma_{\rm n}^{\rm P}/\Pi_{\rm n}^{\rm P}/\Delta_{\rm n}^{\rm P}$: problems solvable in polynomial time with use of adaptive queries to an n-level oracle
- PSPACE: problems solvable by queries to a multilevel oracle with unbounded "height"

- P: problems solvable in polynomial time by a deterministic Turing machine
- NP: problems solvable in polynomial time by a non-deterministic Turing machine
- $\Sigma_{\rm n}^{\rm P}/\Pi_{\rm n}^{\rm P}/\Delta_{\rm n}^{\rm P}$: problems solvable in polynomial time with use of adaptive queries to an n-level oracle
- PSPACE: problems solvable by queries to a multilevel oracle with unbounded "height"
- EXPTIME: problems solvable in exponential time

- P: problems solvable in polynomial time by a deterministic Turing machine
- NP: problems solvable in polynomial time by a non-deterministic Turing machine
- $\Sigma_{\rm n}^{\rm P}/\Pi_{\rm n}^{\rm P}/\Delta_{\rm n}^{\rm P}$: problems solvable in polynomial time with use of adaptive queries to an n-level oracle
- PSPACE: problems solvable by queries to a multilevel oracle with unbounded "height"
- EXPTIME: problems solvable in exponential time

What is this about?

Some Complexity Classes

- P: problems solvable in polynomial time by a deterministic Turing machine
- NP: problems solvable in polynomial time by a non-deterministic Turing machine
- $\Sigma_{\rm n}^{\rm P}/\Pi_{\rm n}^{\rm P}/\Delta_{\rm n}^{\rm P}$: problems solvable in polynomial time with use of adaptive queries to an n-level oracle
- PSPACE: problems solvable by queries to a multilevel oracle with unbounded "height"
- EXPTIME: problems solvable in exponential time

What is this about?

Scalability!

Complexity of Model Checking Temporal and Strategic Logics

	m, l	
CTL	P-complete	
LTL	PSPACE-complete	
CTL*	PSPACE-complete	
ATL	P-complete	
ATL*	PSPACE-complete	

Complexity of Model Checking Temporal and **Strategic Logics**

	m, l	
CTL	P-complete	
LTL	PSPACE-complete	
CTL*	PSPACE-complete	
ATL	P-complete	
ATL*	PSPACE-complete	

For strategies with perfect recall:

	m, l	
ATL	P-complete	
ATL*	2EXPTIME-complete	

■ Nice results: model checking CTL and ATL is tractable.

- Nice results: model checking CTL and ATL is tractable.
- But: the result is relative to the size of the model and the formula

- Nice results: model checking CTL and ATL is tractable.
- But: the result is relative to the size of the model and the formula
- Well known catch (CTL): size of models is exponential wrt a higher-level description

3 agents ... 12 states

8. Model checking

	m, l	n_{local}, l
CTL	P-complete	
LTL	PSPACE-complete	
CTL*	PSPACE-complete	
ATL	P-complete	
ATL*	PSPACE-complete	

	m, l	n_{local}, l
CTL	P-complete	PSPACE-complete
LTL	PSPACE-complete	PSPACE-complete
CTL*	PSPACE-complete	PSPACE-complete
ATL	P-complete	
ATL*	PSPACE-complete	

	m, l	n_{local}, l
CTL	P-complete	PSPACE-complete
LTL	PSPACE-complete	PSPACE-complete
CTL*	PSPACE-complete	PSPACE-complete
ATL	P-complete	EXPTIME-complete
ATL*	PSPACE-complete	EXPTIME-complete

■ How is the size of a model defined?

- How is the size of a model defined? Size of M = number of transitions in M
- What if we define it as the number of states?

- How is the size of a model defined? Size of M = number of transitions in M
- What if we define it as the number of states?
- For CTL: $m = O(n^2) \leadsto \mathsf{no} \mathsf{problem}$

- How is the size of a model defined? Size of M = number of transitions in M
- What if we define it as the number of states?
- For CTL: $m = O(n^2) \leadsto \mathsf{no} \mathsf{problem}$
- For ATL: transitions are labeled
- \blacksquare m is not bound by n^2 !

3 agents ... 12 states, 216 transitions

- Observation: the number of transitions can be exponential in the number of agents
- $\blacksquare m = O(nd^k)$
- m: transitions, n: states, d: actions (decisions), k: agents

- Observation: the number of transitions can be exponential in the number of agents
- $\blacksquare m = O(nd^k)$
- m: transitions, n: states, d: actions (decisions), k: agents
- What about model checking?

- Observation: the number of transitions can be exponential in the number of agents
- $\blacksquare m = O(nd^k)$
- m: transitions, n: states, d: actions (decisions), k: agents
- What about model checking?

Theorem (Jamroga & Dix 2005; Laroussinie, Markey & Oreiby 2006)

ATL model checking is Δ_2^P -complete with respect to the number of states and agents.

	m, l	n, k, l	n_{local}, l
CTL			
LTL			
CTL*			
ATL			
ATL*			

	m, l	n, k, l	n_{local}, l
CTL	Р		
LTL	PSPACE		
CTL*	PSPACE		
ATL	Р		
ATL*	PSPACE		

	m, l	n, k, l	n_{local}, l
CTL	Р		PSPACE
LTL	PSPACE		PSPACE
CTL*	PSPACE		PSPACE
ATL	Р		EXPTIME
ATL*	PSPACE		EXPTIME

	m, l	n, k, l	n_{local}, l
CTL	Р	Р	PSPACE
LTL	PSPACE	PSPACE	PSPACE
CTL*	PSPACE	PSPACE	PSPACE
ATL	Р	Δ_2^P	EXPTIME
ATL*	PSPACE	EXPTIME	EXPTIME

Looking for Moral

Main message:

■ Complexity is very sensitive to the context!

Looking for Moral

Main message:

- Complexity is very sensitive to the context!
- In particular, the way we define the parameters, and measure their size, is crucial.

Still, people do automatic model checking!

Still, people do automatic model checking!

LTL: SPIN

Still, people do automatic model checking!

- LTL: SPIN
- CTL/ATL: MOCHA, MCMAS, VeriCS

Still, people do automatic model checking!

LTL: SPIN

■ CTL/ATL: MOCHA, MCMAS, VeriCS

Even if model checking is theoretically hard, it can be feasible in practice.

8.2 Imperfect Information

Model Checking Imperfect Information Games

Recall: $\langle\!\langle A \rangle\!\rangle_{ir}$ are not fixpoint operators any more

Conjecture

Strategy for A cannot be synthesized incrementally.

Model Checking Imperfect Information Games

Recall: $\langle\!\langle A \rangle\!\rangle_{ir}$ are not fixpoint operators any more

Conjecture

Strategy for A cannot be synthesized incrementally.

Indeed...

Model Checking Imperfect Information Games

Recall: $\langle\!\langle A \rangle\!\rangle_{ir}$ are not fixpoint operators any more

Conjecture

Strategy for *A* cannot be synthesized incrementally.

Indeed...

Theorem (Schobbens 2004; Jamroga & Dix 2006)

Model checking ATL_{ir} is Δ_2 -complete in the number of transitions in the model and the length of the formula.

Proof Idea: Inclusion in Δ_2

Let $mctl(\varphi,M)$ be a CTL model checker that returns the set of all states that satisfy φ in M

$mcheck(M, q, \langle \langle A \rangle \rangle \Box \psi)$:

- Run $mcheck(\psi, M, q)$ for every $q \in St$, and label the states in which the answer was "yes" with an additional proposition yes (not used elsewhere).
- **2** Guess the best strategy of A, and "trim" model M by removing all the transitions inconsistent with the strategy (yielding a sparser model M').
- **3** Return "yes" if $img(q, \sim_A^E) \subseteq mctl(A \bigcirc yes, M')$, and "no" otherwise.

Other cases: analogous

Proof Idea: Hardness (by reduction of SNSAT)

Definition (SNSAT)

Input:
$$z_1 \equiv \exists X_1 \ \varphi_1(z_1, X_1)$$
 $z_2 \equiv \exists X_2 \ \varphi_2(z_1, z_2, X_2)$
.....
 $z_p \equiv \exists X_p \ \varphi_p(z_1, ..., z_{p-1}, X_p).$

Output: The truth value of z_p .

Proof Idea: Hardness (by reduction of SNSAT)

Definition (SNSAT)

Input:
$$z_1 \equiv \exists X_1 \varphi_1(z_1, X_1)$$

 $z_2 \equiv \exists X_2 \varphi_2(z_1, z_2, X_2)$
.....
 $z_p \equiv \exists X_p \varphi_p(z_1, ..., z_{p-1}, X_p).$

Output: The truth value of z_n .

Lemma 8.1

Let
$$\Phi_1 \equiv \langle \langle \mathbf{v} \rangle \rangle_{ir} (\neg \text{neg}) \mathcal{U} \text{yes},$$

 $\Phi_i \equiv \langle \langle \mathbf{v} \rangle \rangle_{ir} (\neg \text{neg}) \mathcal{U} (\text{yes} \vee (\text{neg} \wedge \mathsf{A} \bigcirc \neg \Phi_{i-1})).$

Now, for all $r: z_r$ is true iff $M_r, q_0^r \models \Phi_r$.

Proof Idea: Hardness

Model Checking Imperfect Information Games

Corollary

Imperfect information strategies cannot be synthesized incrementally: we cannot do better than guess the whole strategy and check if it succeeds.

Model Checking Imperfect Information Games

Corollary

Imperfect information strategies cannot be synthesized incrementally: we cannot do better than guess the whole strategy and check if it succeeds.

Imperfect information makes model checking harder!

Model Checking Imperfect Information Games

Corollary

Imperfect information strategies cannot be synthesized incrementally: we cannot do better than guess the whole strategy and check if it succeeds.

Imperfect information makes model checking harder! Or...?

	m, l	n, k, l	n_{local} , k , l
CTL			
ATL			
ATL _{ir} /CSL			

	m, l	n, k, l	n_{local}, k, l
CTL	Р		
ATL	Р		
ATL _{ir} /CSL	Δ_2^P		

	m, l	n, k, l	n_{local} , k , l
CTL	Р	Р	
ATL	Р	Δ_3^P	
ATL _{ir} /CSL	Δ_2^P	Δ_3^P	

	m, l	n, k, l	n_{local} , k , l
CTL	Р	Р	PSPACE
ATL	Р	Δ_3^P	EXPTIME
ATL _{ir} /CSL	Δ_2^P	Δ_3^P	PSPACE

	m, l	n, k, l	n_{local} , k , l
CTL	P [1]	P [1]	PSPACE [2]
ATL	P [3]	Δ_3^P [5,8]	EXPTIME [6,7]
ATL _{ir} /CSL	Δ_2^P [4,9]	Δ_3^P [9]	PSPACE [7]

- [1] Clarke, Emerson & Sistla (1986).
- [2] Kupferman, Vardi & Wolper (2000).
- [3] Alur, Henzinger & Kupferman (2002).
- [4] Schobbens (2004).
- [5] Jamroga & Dix (2005).
- [6] Hoek, Lomuscio & Wooldridge (2006).
- [7] Jamroga & Ågotnes (2007).
- [8] Laroussinie, Markey & Oreiby (2007).
- [9] Jamroga & Dix (2008).

The Message Again...

- Complexity is **very** sensitive to the context!
- In particular, the way we define the input, and measure its size, is crucial.

8.3 The Phantom Result

Between Perception and Recall

logic	ir	iR	Ir	IR
$\langle\!\langle \Gamma \rangle\!\rangle - ATL$	NP	U [11]	n I [2]	n I [2]
ATL	$\Delta_2 P$	U [11]	nJ[2]	nJ [2]
ATL^+	$\Delta_3 P$	U [11]	$\Delta_3 P$	$\Delta_3 P$
ATL^*	PSPACE	U [11]	PSPACE	DEXP [9]

NPcomplete for nondeterministic polynomial time

 $\Delta_2 P = P^{NP}$ complete for polynomial calls to an NP oracle

 $\Delta_3 P = P^{NP^{NP}}$ complete for polynomial calls to a $\Sigma_2 P$ oracle

EXP complete for deterministic exponential time

DEXP complete for deterministic doubly exponential time

 \mathbf{U} undecidable

size of the formula

size of the model \mathbf{n}

The Undecidability "Result"

- Most cite it from (Alur et al., 1997–2002)
- Alur et al. cite Yannakakis ("Synchronous multi-player games with incomplete information are undecidable", 1997)
- Personal communication!
- No proof has been published (nor has the result been formally stated)

■ (Peterson & Reif, 1979):

- (Peterson & Reif, 1979):
- Solving games with imperfect information and perfect recall is decidable in the case of a single proponent
- Solving games with imperfect information and perfect recall is undecidable in the case of a team of proponents

- (Peterson & Reif, 1979):
- Solving games with imperfect information and perfect recall is decidable in the case of a single proponent
- Solving games with imperfect information and perfect recall is undecidable in the case of a team of proponents
- But: their games are defined via Turing machines, while in "our" games are close to finite automata

■ (Pnueli & Rosner, 1990):

- (Pnueli & Rosner, 1990):
- Realizability problem for distributed systems is undecidable
- The setting very close to ours. Difference: "winning conditions" are defined via LTL specifications, so we have winning paths rather than states. In particular, the reduction of the halting problem for deterministic Turing Machines to the realizability problem (that proves undecidability of the problem) employs LTL formulae that are not expressible in CTL

■ (Van der Meyden and Shilov, 1999):

8. Model checking

- (Van der Meyden and Shilov, 1999):
- Model checking LTL+K with perfect recall is decidable (with a nonelementary lower bound)
- Model checking LTL+K+C with perfect recall is undecidable

- (Van der Meyden and Shilov, 1999):
- Model checking LTL+K with perfect recall is decidable (with a nonelementary lower bound)
- Model checking LTL+K+C with perfect recall is undecidable
- (Garanina, Kalinina and Shilov, 2004):

8. Model checkina

Relevant Existing Results

- (Van der Meyden and Shilov, 1999):
- Model checking LTL+K with perfect recall is decidable (with a nonelementary lower bound)
- Model checking LTL+K+C with perfect recall is undecidable
- (Garanina, Kalinina and Shilov, 2004):
- Model checking **CTL+K** with perfect recall is decidable (with a nonelementary lower bound)
- Model checking CTL+K+C with perfect recall is undecidable

8.4 References

[Jamroga and Dix 2008] W. Jamroga and J. Dix. Model checking abilities of agents: A closer look. *Theory of Computing Systems*, 42(3):366–410, 2008.

[Schobbens 2004] P. Y. Schobbens.

Alternating-time logic with imperfect recall.

Electronic Notes in Theoretical Computer Science, 85(2), 2004.

Axiom. of Coal. Games

9.1 Coalitional Games

Coalitional Games

The difference between non-cooperative games and coalitional games is that the former takes possible actions of individual players as primary, while the latter takes possible actions of coalitions as primary.

Non-coop. Game: Individual Actions Primary

		Bill		
		Cooperate Defect		
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0	
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3	

Non-coop. Game: Individual Actions Primary

	Bill				
		Cooperate Defect			
Ann	Cooperate	Ann:-1, Bill:-1	Ann:-4, Bill: 0		
	Defect	Ann:0, Bill:-4	Ann:-3, Bill: -3		

ATL/CL:

$$\langle\!\langle \{Ann\} \rangle\!\rangle B \ge 3$$

We can derive possible actions of coalitions, and thus coalitional power, from the individual actions:

$$\langle \langle \{Ann, Bill\} \rangle \rangle (A = 1 \land B = 1)$$

Coalitional Game: Coalitional Actions Primary

Example: Three-player majority game:

- Three persons
- One cake
- Any majority group (two or three) controls the division of the cake to the members of the group
- Each person cares (only) about how much cake he gets

Definition 9.1 (Coalitional Game (with Transferable Payoff))

A coalitional game (with transferable payoff) is a tuple $(N, \Omega, V, \{ \supseteq_i \}_{i \in N})$:

- \blacksquare N is the set of players
- \blacksquare Ω is the set of outcomes
- V assigns a set of choices $V(C) \subseteq \Omega$ to each non-empty coalition $C \subseteq N$
- For each i, \supseteq_i is a preference relation over the outcomes
 - Usually assumed to be reflexive, transitive and complete
 - We write \sqsubseteq_i for the strict variant
 - Is often described by a utility function u_i for each player i over the outcomes: $\omega \supseteq_i \omega'$ iff $u_i(\omega) \ge u_i(\omega')$

Coalitional Game: Example

The cake game:

- $\blacksquare N = \{Ann, Bill, Cath\}$
- $\ \Omega$: the collection of possible ways to divide a cake between Ann and Bill, between Ann and Cath, between Bill and Cath, and between Ann and Bill and Cath
 - $\Omega = \{(A = 10\%, B = 90\%), (B = 50\%, C = 50\%), (A = 20\%, B = 30\%, C = 50\%), \ldots\}$
- \bullet $\omega_1 \supseteq_{Ann} \omega_2$ iff Ann gets at least as much cake in ω_1 as in ω_2 , etc.

Coalitional Games with Transferable Payoff

Definition 9.2

Coalitional Game with Transferable Payoff A coalitional game with transferable payoff is a pair (N, v):

- \blacksquare N is the set of players
- v assigns a real number v(C) to each non-empty coalition $C \subseteq N$; the worth of C

Coalitional Games with Transferable Payoff

Definition 9.2

Coalitional Game with Transferable Payoff A coalitional game with transferable payoff is a pair (N, v):

- \blacksquare N is the set of players
- v assigns a real number v(C) to each non-empty coalition $C \subseteq N$; the worth of C
- Games WTP can be seen as a special class of games WOTP

Coalitional Games with Transferable Payoff

Definition 9.2

Coalitional Game with Transferable Payoff A coalitional game with transferable payoff is a pair (N, v):

- \blacksquare N is the set of players
- v assigns a real number v(C) to each non-empty coalition $C \subseteq N$; the worth of C
- Games WTP can be seen as a special class of games WOTP
- But games WOTP are more general

Coalitional Games with Transferable Payoff

Definition 9.2

Coalitional Game with Transferable Payoff A coalitional game with transferable payoff is a pair (N, v):

- \blacksquare N is the set of players
- v assigns a real number v(C) to each non-empty coalition $C \subseteq N$; the worth of C
- Games WTP can be seen as a special class of games WOTP
- But games WOTP are more general
- We will use games WOTP

Coalitional Games with Transferable Payoff

Definition 9.2

Coalitional Game with Transferable Payoff A coalitional game with transferable payoff is a pair (N, v):

- \blacksquare N is the set of players
- v assigns a real number v(C) to each non-empty coalition $C \subseteq N$; the worth of C
- Games WTP can be seen as a special class of games WOTP
- But games WOTP are more general
- We will use games WOTP
- Henceforth: by "coalitional game" we mean "coalitional game WOTP".

Solution Concepts for Coalitional Games

- A solution concept assigns a set of outcomes to each game
- General idea: like in non-cooperative games: what are the stable outcomes?
- Stability: no coalition can profit from deviating

Solution Concepts for Coalitional Games

- A solution concept assigns a set of outcomes to each game
- General idea: like in non-cooperative games: what are the stable outcomes?
- Stability: no coalition can profit from deviating
- Some important concepts:
 - The core
 - Stable sets
 - The bargaining set

Definition 9.3 (The Core)

The core of a coalitional game is the set of outcomes $\omega \in V(N)$ for which there is no coalition C with an outcome $\omega' \in V(C)$ such that $\omega' \succ_i \omega$ for all $i \in C$.

Definition 9.3 (The Core)

The core of a coalitional game is the set of outcomes $\omega \in V(N)$ for which there is no coalition C with an outcome $\omega' \in V(C)$ such that $\omega' \succ_i \omega$ for all $i \in C$.

What is the core of the cake game?

Definition 9.3 (The Core)

The core of a coalitional game is the set of outcomes $\omega \in V(N)$ for which there is no coalition C with an outcome $\omega' \in V(C)$ such that $\omega' \succ_i \omega$ for all $i \in C$.

What is the core of the cake game?

Key property of a coalitional game: is the core empty?

Stable Sets

- Idea: an outcome is stable if no (sub)coalition has an incentive to deviate and form a stable coalition (recursive!)
- From von Neumann and Morgenstern, 1944
- A stable set is a set of outcomes
- A game may have more than one stable set
- .. but must not have any
- Characterised by imputations and objections

Imputation

Definition 9.4 (Imputation)

An imputation is an outcome $\omega \in V(N)$ that for each agent i is as least as good as any outcome the singleton coalition $\{i\}$ can choose on his own.

Objection

Definition 9.5 (Objection)

An imputation ω is a C-objection to an imputation ω' if every agent in C prefers ω over ω' and the coalition C can choose an outcome which for every agent in C is as least as good as ω . ω is an objection to ω' if ω is a C-objection to ω' for some coalition C.

Stable Set

Definition 9.6 (Stable Set)

A set of imputations *Y* is a stable set if it satisfies:

Internal stability If $\omega \in Y$, there is no objection to ω in Y.

External stability If $\omega \notin Y$, there is an objection to ω in Y.

The Bargaining Set

- A set of imputations
- Unique
- Always exists
- Defined in terms of objections and counterobjections
 - but the concept of objection is different from the stable sets case
- Will introduce it formally later

9.2 Coalitional Game Logic

Goal

- We want to be able to reason about coalitional games in a formal logic
- In particular: characterise solution concepts

Coalitional Game Logic

- We have already used the modality $\langle\!\langle C \rangle\!\rangle$ to reason about coalitional ability in non-cooperative games
- It is natural and straightforward to interpret this modality by the *V* function in coalitional games
- Additional assumptions on propositions in the language:
 - $m{\omega}$, where ω is (the name of) an outcome in Ω : meaning that the current outcome is ω
 - \bullet $\omega \succeq_i \omega'$: meaning that agent i weakly prefers outcome ω over ω'

Coalitional Game Logic

- We have already used the modality $\langle\!\langle C \rangle\!\rangle$ to reason about coalitional ability in non-cooperative games
- \blacksquare It is natural and straightforward to interpret this modality by the V function in coalitional games
- Additional assumptions on propositions in the language:
 - \blacksquare ω , where ω is (the name of) an outcome in Ω : meaning that the current outcome is ω
 - lacksquare $\omega \succeq_i \omega'$: meaning that agent i weakly prefers outcome ω over ω'

Let Γ be a coalitional game.

$$\Gamma \models \omega \succeq_i \omega' \iff \omega \sqsupseteq_i \omega'
\Gamma \models \langle C \rangle \phi \iff \exists \omega \in V(C), \omega \models \phi
\omega \models \omega' \iff \omega = \omega'$$

The core of a coalitional game is the set of outcomes $\omega \in V(N)$ for which there is no coalition C with an outcome $\omega' \in V(C)$ such that $\omega' \succ_i \omega$ for all $i \in C$.

 ω is a member of the core (assuming finite Ω):

$$CM(\omega) \equiv \langle N \rangle \omega \wedge \neg \left[\bigvee_{C \subseteq N} \bigvee_{\omega' \in \Omega} (\langle C \rangle \omega') \wedge \bigwedge_{i \in C} (\omega' \succ_i \omega) \right]$$

The core of a coalitional game is the set of outcomes $\omega \in V(N)$ for which there is no coalition C with an outcome $\omega' \in V(C)$ such that $\omega' \succ_i \omega$ for all $i \in C$.

 ω is a member of the core (assuming finite Ω):

$$CM(\omega) \equiv \langle N \rangle \omega \wedge \neg \left[\bigvee_{C \subseteq N} \bigvee_{\omega' \in \Omega} (\langle C \rangle \omega') \wedge \bigwedge_{i \in C} (\omega' \succ_i \omega) \right]$$

The core is non-empty:

$$CNE \equiv \bigvee_{\omega \in \Omega} CM(\omega)$$

Imputation

An imputation is an outcome $\omega \in V(N)$ that for each agent i is as least as good as any outcome the singleton coalition $\{i\}$ can choose on his own.

$$IMP(\omega) \equiv \langle N \rangle \omega \wedge \bigwedge_{\omega' \in \Omega} \bigwedge_{i \in N} (\langle \{i\} \rangle \omega' \to \omega \succeq_i \omega')$$

Objection

An imputation ω is a C-objection to an imputation ω' if every agent in C prefers ω over ω' and the coalition C can choose an outcome which for every agent in C is as least as good as ω . ω is an objection to ω' if ω is a C-objection to ω' for some coalition C.

$$OBJ(\omega, \omega', C) \equiv (\bigwedge_{i \in C} \omega \succ_i \omega') \land \bigvee_{\omega'' \in \Omega} (\langle C \rangle \omega'' \land \bigwedge_{i \in C} \omega'' \succeq_i \omega)$$

Stable Set

A set of imputations Y is a stable set if it satisfies: Internal stability If $\omega \in Y$, there is no objection to ω in Y. External stability If $\omega \notin Y$, there is an objection to ω in Y.

$$STABLE(Y) \equiv \bigwedge_{\omega \in Y} IMP(\omega) \\ \wedge \left(\bigwedge_{\omega \in Y} \bigwedge_{C \subseteq N} \bigwedge_{\omega' \in Y} \neg OBJ(\omega', \omega, C) \right) \\ \wedge \left(\bigwedge_{\omega \in \Omega \setminus Y} IMP(\omega) \rightarrow \left(\bigvee_{C \subseteq N} \bigvee_{\omega' \in Y} OBJ(\omega', \omega, C) \right) \right)$$

The Bargaining Set

 ω' is an objection of C to ω :

$$OBJB(\omega', C, \omega) \equiv \langle C \rangle \omega' \wedge \bigwedge_{k \in C} \omega' \succ_k \omega$$

There exists a counterobjection to the objection ω' of C to ω , where $i \in C$ and $j \notin C$:

$$\begin{split} COUNTER(\omega',C,i,j,\omega) &\equiv \bigvee_{v \in \Omega} \bigvee_{D' \subseteq N \setminus \{i\}} (\langle D' \cup \{j\} \rangle v \\ &\wedge (\left(\bigwedge_{k \in (D' \cup \{j\}) \setminus C} v \succeq_k \omega \right) \wedge \left(\bigwedge_{k \in (D' \cup \{j\}) \cap C} v \succeq_k \omega' \right))) \end{split}$$

The Bargaining Set

Outcome ω is in the bargaining set:

$$INBARG(\omega) \equiv IMP(\omega) \land \bigwedge_{C \subseteq N} \bigwedge_{i \in C} \bigwedge_{j \in N \setminus C} \bigwedge_{\omega' \in \Omega} [OBJB(\omega', C, \omega) \to COUNTER(\omega', C, i, j, \omega)]$$

$$BS(Y) = \bigwedge_{\omega \in Y} INBARG(\omega) \land \bigwedge_{\omega \in \Omega \backslash Y} \neg INBARG(\omega)$$

This Coalitional Game Logic:

- is very expressive (for finite games)
- can characterise solution concepts

This Coalitional Game Logic:

- is very expressive (for finite games)
- can characterise solution concepts

However, the characterisations:

- do not work for infinite games (games with infinitely many outcomes)
- are not very succinct
- lacktriangle depend on Ω and are thus different for games with different sets of outcomes

9.3 Modal Coalitional Game Logic

Recall the def. of a coalitional game:

$$(N, \Omega, V, \{ \supseteq_i \}_{i \in N})$$

■ Recall the def. of a coalitional game:

$$(N, \Omega, V, \{ \supseteq_i \}_{i \in N})$$

In Coalitional Game Logic we used V to interpret $\langle C \rangle$, and atomic propositions for \square_i

■ Recall the def. of a coalitional game:

$$(N, \Omega, V, \{ \supseteq_i \}_{i \in N})$$

- In Coalitional Game Logic we used V to interpret $\langle C \rangle$, and atomic propositions for \square_i
- Observation: there is "more structure" in $\supseteq_i!$

■ Recall the def. of a coalitional game:

$$(N, \Omega, V, \{ \supseteq_i \}_{i \in N})$$

- In Coalitional Game Logic we used V to interpret $\langle C \rangle$, and atomic propositions for \sqsubseteq_i
- Observation: there is "more structure" in $\supseteq_i!$
- Modal Coalitional Game Logic: we will use \supseteq_i to interpret $\langle C \rangle$, and atomic propositions for V.

Modal Coalitional Game Logic (MCGL)

Main constructs ($C \subseteq N$):

meaning: (all agents in) C prefers φ

Modal Coalitional Game Logic (MCGL)

Main constructs ($C \subseteq N$):

 $\langle C \rangle \varphi$

meaning: (all agents in) C prefers φ

and

 p_C

meaning: C can choose the current outcome

Modal Coalitional Game Logic (MCGL)

Main constructs ($C \subseteq N$):

$$\langle C \rangle \varphi$$

meaning: (all agents in) C prefers φ and

 p_C

meaning: C can choose the current outcome

Henceforth: use

$$\mathcal{C} = 2^N \setminus \emptyset$$

to denote the set of coalitions

Formal Language

Let

$$\Theta = \Theta' \cup \{p_C : C \subseteq N\}$$

where Θ' is a countably infinite set of atomic propositions

Formal Language

Let

$$\Theta = \Theta' \cup \{p_C : C \subseteq N\}$$

where Θ' is a countably infinite set of atomic propositions

The MCGL language (will add more later):

$$\phi ::= p \mid \langle C \rangle \phi \mid \langle C^s \rangle \phi \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid \cdots$$

where $p \in \Theta$, $C \subseteq N$, $i \in N$. Derived: $[\cdot], [\cdot^s]$ are the duals of $\langle \cdot \rangle, \langle \cdot^s \rangle$, respectively.

Interpretation

Let $\Gamma = (N, \Omega, V, \beth_1, \dots, \beth_m)$ be a coalitional game, let π be a valuation of Θ' in Ω , and let $w \in \Omega$.

- $\Gamma, \pi, w \models p_C \text{ iff } w \in V(C)$
- $\Gamma, \pi, w \models p \text{ iff } w \in \pi(p), \text{ when } p \in \Theta'$
- $\Gamma, \pi, w \models \langle C \rangle \phi$ iff there is a v such that for every $i \in C$, $v \supseteq_i w$, and $\Gamma, \pi, v \models \phi$

Interpretation

Let $\Gamma = (N, \Omega, V, \supseteq_1, \dots, \supseteq_m)$ be a coalitional game, let π be a valuation of Θ' in Ω , and let $w \in \Omega$.

- $\blacksquare \Gamma, \pi, w \models p_C \text{ iff } w \in V(C)$
- $\blacksquare \Gamma, \pi, w \models p \text{ iff } w \in \pi(p), \text{ when } p \in \Theta'$
- $\blacksquare \Gamma, \pi, w \models \langle C \rangle \phi$ iff there is a v such that for every $i \in C$. $v \supset_i w$, and $\Gamma, \pi, v \models \phi$
- $\blacksquare \Gamma, \pi, w \models \langle C^s \rangle \phi$ iff there is a v such that for every $i \in C$, $v \supset_i w$ and not $w \supset_i v$, and $\Gamma, \pi, v \models \phi$

Interpretation

Let $\Gamma = (N, \Omega, V, \supseteq_1, \dots, \supseteq_m)$ be a coalitional game, let π be a valuation of Θ' in Ω , and let $w \in \Omega$.

- $\blacksquare \Gamma, \pi, w \models p_C \text{ iff } w \in V(C)$
- Γ , π , $w \models p$ iff $w \in \pi(p)$, when $p \in \Theta'$
- $\blacksquare \Gamma, \pi, w \models \langle C \rangle \phi$ iff there is a v such that for every $i \in C$, $v \supset_i w$, and $\Gamma, \pi, v \models \phi$
- $\blacksquare \Gamma, \pi, w \models \langle C^s \rangle \phi$ iff there is a v such that for every $i \in C$, $v \supset_i w$ and not $w \supset_i v$, and $\Gamma, \pi, v \models \phi$

Let us write:

$$\begin{array}{ll} \Gamma, w \models \phi & \text{iff } \Gamma, \pi, w \models \phi \text{ for all } \pi \\ \Gamma \models \phi & \text{iff } \Gamma, w \models \phi \text{ for all } w \end{array}$$

Characterising the Core

The core of a coalitional game is the set of outcomes $\omega \in V(N)$ for which there is no coalition C with an outcome $\omega' \in V(C)$ such that $\omega' \succ_i \omega$ for all $i \in C$.

Characterising the Core

The core of a coalitional game is the set of outcomes $\omega \in V(N)$ for which there is no coalition C with an outcome $\omega' \in V(C)$ such that $\omega' \succ_i \omega$ for all $i \in C$.

$$MCM \equiv p_N \wedge \bigwedge_{C \subseteq N} [C^s] \neg p_C$$

Theorem 9.7

 $\Gamma, \omega \models MCM \text{ iff } \omega \text{ is in the core of } \Gamma$

Characterising Imputations

An imputation is an outcome $\omega \in V(N)$ that for each agent i is as least as good as any outcome the singleton coalition $\{i\}$ can choose on his own.

Characterising Imputations

An imputation is an outcome $\omega \in V(N)$ that for each agent i is as least as good as any outcome the singleton coalition $\{i\}$ can choose on his own.

$$MIMP \equiv p_N \wedge \bigwedge_{i \in N} [C^s] \neg p_i$$

Theorem <u>9.8</u>

 $\Gamma, \omega \models MIMP \text{ iff } \omega \text{ is an imputation in } \Gamma$

Stable Sets

- Difficult to characterise stable sets and the bargaining set in MCGL
- How to refer to sets of outcomes? Formulae are interpreted in single outcomes, and we can't refer directly to outcomes in the formula (unlike in CGL).
- Here is a way: the extension

$$\phi^{\Gamma} = \{\omega : \Gamma, \omega \models \phi\}$$

is a set.

Example: $MCM\Gamma$ is the core of Γ

Stable Sets

Let

$$MOBJ(C, \alpha) \equiv MIMP \wedge \langle C^s \rangle (MIMP \wedge \alpha \wedge \langle C \rangle p_C)$$

meaning: $\Gamma, \omega \models MOBJ(C, \alpha)$ iff ω is an imputation and there exists a C-objection ω' to ω such that $\Gamma, \omega' \models \alpha$

Stable Sets

Let

$$MOBJ(C, \alpha) \equiv MIMP \wedge \langle C^s \rangle (MIMP \wedge \alpha \wedge \langle C \rangle p_C)$$

meaning: $\Gamma, \omega \models MOBJ(C, \alpha)$ iff ω is an imputation and there exists a C-objection ω' to ω such that $\Gamma, \omega' \models \alpha$

Theorem 9.9

Let γ be a formula.

$$\Gamma \models (\gamma \to MIMP) \land (\gamma \to \neg \bigvee_{C \subseteq N} MOBJ(C, \gamma)) \land (\neg \gamma \to \bigvee_{C \subseteq N} MOBJ(C, \gamma))$$

iff γ^{Γ} is a stable set in Γ .

MCGL: advantages and disadvantages

- Note that we can characterise, e.g., the core also for infinite games
- The characterisation is the same for all games over the same set of agents
- But: not as expressive as CGL (for finite games)

9.4 Axiomatisation

Let us try to view this as a normal modal logic – and be very explicit. Hencforth assume a fixed set of agents N.

$$\phi ::= p \mid \langle C \rangle \phi \mid \langle C^s \rangle \phi \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid \cdots$$

A model would be a tuple :

$$M = (W, \{R_C : C \in \mathcal{C}\}, \{R_C^s : C \in \mathcal{C}\}, \pi)$$

where π is a valuation of $\Theta = \Theta' \cup \{p_C : C \in \mathcal{C}\}$

Let us try to view this as a normal modal logic – and be very explicit. Hencforth assume a fixed set of agents N.

$$\phi ::= p \mid \langle C \rangle \phi \mid \langle C^s \rangle \phi \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid \cdots$$

A model would be a tuple:

$$M = (W, \{R_C : C \in \mathcal{C}\}, \{R_C^s : C \in \mathcal{C}\}, \pi)$$

where π is a valuation of $\Theta = \Theta' \cup \{p_C : C \in \mathcal{C}\}$

And to get correspondence with coalitional games:

REFL $\forall_{i \in N} R_i$ is reflexive TRANS $\forall_{i \in N} R_i$ is transitive

COMPL $\forall_{i \in N} R_i$ is complete

STRICT $\forall_{i \in N} R_i^s wu$ iff both $R_i wu$ and not $R_i uw$

INTERSECTION $\forall_{C \in \mathcal{C}} R_C = \bigcap_{i \in C} R_i$ INTERSECTION-STRICT $\forall_{C \in \mathcal{C}} \vec{R}_C^s = \bigcap_{i \in C} R_i^s$

where we write R_i for $R_{\{i\}}$. Thomas Ågotnes and Wojtek Jamroga · Modal Logics for Games and MAS

Axioms

REFL, TRANS:

$$\begin{array}{c|c}
T & [i]p \to p \\
4 & [i]p \to [i][i]p
\end{array}$$

Axioms

REFL, TRANS:

$$\begin{array}{c|c} T & [i]p \to p \\ 4 & [i]p \to [i][i]p \end{array}$$

.. but several of the other properties do not have canonical formulae

Common approach when we have a property P, such as INTERSECTION, which are neither modally definable nor has a canonical formula:

Construct the canonical model

Common approach when we have a property P, such as INTERSECTION, which are neither modally definable nor has a canonical formula:

- Construct the canonical model
- Transform it into a model which satisfies the same formulae, but which has the property P

Common approach when we have a property P, such as INTERSECTION, which are neither modally definable nor has a canonical formula:

- Construct the canonical model
- Transform it into a model which satisfies the same formulae, but which has the property P
- However: transformation may be difficult when there are several properties that must be achieved/maintained at the same time – as in our case

- Construct the canonical model
- Transform it into a model which satisfies the same formulae, but which has the property P
- However: transformation may be difficult when there are several properties that must be achieved/maintained at the same time as in our case
- Many alternative approaches have been used and studied in detail

- Construct the canonical model
- Transform it into a model which satisfies the same formulae, but which has the property P
- However: transformation may be difficult when there are several properties that must be achieved/maintained at the same time as in our case
- Many alternative approaches have been used and studied in detail
- Here: we will use standard techniques combining the difference modality with a step-by-step method using converse modalities
 - See Modal Logic by Blackburn et al.; more references at the end

The Difference Modality

9. Axiom. of Coal. Games

The difference modality is a diamond $\langle D \rangle$, where $\langle D \rangle \phi$ means that ϕ is true somewhere else.

The Difference Modality

The difference modality is a diamond $\langle D \rangle$, where $\langle D \rangle \phi$ means that ϕ is true somewhere else.

It has a fixed interpretation in a model M:

$$M, w \models \langle D \rangle \phi \Leftrightarrow \exists v \neq w \ M, v \models \phi$$

The Difference Modality

The difference modality is a diamond $\langle D \rangle$, where $\langle D \rangle \phi$ means that ϕ is true somewhere else.

It has a fixed interpretation in a model M:

$$M, w \models \langle D \rangle \phi \Leftrightarrow \exists v \neq w \ M, v \models \phi$$

- We add the difference modality to the language
- Not only to be able to axiomatise the logic
- .. but also because it is useful for reasoning about games. E.g. the core is not empty:

$$MCNE \equiv MCM \lor \langle D \rangle MCM$$

Converse Modalities

Let $\langle i^c \rangle$ denote the converse of the diamond $\langle i \rangle$:

- $\langle i \rangle \phi$: there is an outcome which is preferred by i over the current one, in which ϕ is true
- $\langle i^c \rangle \phi$: there is an outcome over which the current outcome is preferred by i, in which ϕ is true

Converse Modalities

Let $\langle i^c \rangle$ denote the converse of the diamond $\langle i \rangle$:

- $\langle i \rangle \phi$: there is an outcome which is preferred by i over the current one, in which ϕ is true
- $\langle i^c \rangle \phi$: there is an outcome over which the current outcome is preferred by i, in which ϕ is true
- We include converses for all the diamonds
- Converses make the step-by-step model construction technique we are going to use possible
- Also useful for reasoning about games

MCGL: Full language and explicit models

$$\phi ::= p \mid \langle C \rangle \phi \mid \langle C^s \rangle \phi \mid \langle D \rangle \phi \mid \langle C^c \rangle \phi \mid \langle C^{sc} \rangle \phi \mid \neg \phi \mid \phi_1 \wedge \phi_2$$

MCGL: Full language and explicit models

```
\phi ::= p \mid \langle C \rangle \phi \mid \langle C^s \rangle \phi \mid \langle D \rangle \phi \mid \langle C^c \rangle \phi \mid \langle C^{sc} \rangle \phi \mid \neg \phi \mid \phi_1 \wedge \phi_2
                M = (W, \{R_C : C \in \mathcal{C}\}, \{R_C^s : C \in \mathcal{C}\}, D,
                                    \{R_C^c : C \in \mathcal{C}\}, \{R_C^{sc} : C \in \mathcal{C}\}, \pi\}
           REFL \forall_{i \in N} R_i is reflexive
       TRANS \forall_{i \in N} R_i is transitive
     COMPL \forall_{i \in N} R_i is complete
      STRICT \forall_{i \in N} R_i^s wu iff both R_i wu and not R_i uw
           DIFF D = \{(w, u) : w \neq u\}
INTERSECTION \forall_{C \in \mathcal{C}} R_C = \bigcap_{i \in C} R_i
INTERSECTION-STRICT \forall_{C \in \mathcal{C}} R_C^s = \bigcap_{i \in C} R_i^s
CONVERSE Rwv iff R^cvw, for R \in \{R_i, R_i^s, R_C, R_C^s, D\}
```

Explicit models vs. games

Recall the interpretation in coalitional games:

$$\Gamma, \pi, \omega \models \phi$$

- Explicit models are just another representation of (Γ, π) pairs
- An axiomatisation of models will be an axiomatisation of games as well

Axioms: overview

- Normality: ModusPonens, Usub, Prop, as well as K and Nec for all the boxes
- \blacksquare T,4 for individual preference relations
- Axioms and rules for the difference modality
- Axioms for completeness of individual preferences
- Converse axioms
- Strictness axioms
- Intersection axioms

(see the paper p. 34 for a summary)

D_1	$p \to [D]\langle D \rangle p$	symmetry
D_2	$\Diamond_1 \cdots \Diamond_k p \to (p \vee \langle D \rangle p)$	$\Diamond_i \in Diamonds$
D-rule	$\vdash (p \land \neg \langle D \rangle p) \to \theta \Rightarrow \vdash \theta$	p not in θ

Relatively standard, see Blackburn et al., Modal Logic.

Axioms: completeness/totality

Axioms: converses

$Converse_1(\xi)$		
$Converse_2(\xi)$	$p \to [\xi^c] \langle \xi \rangle p$	$\xi \in \Xi$

where:

$$\Xi = \{C, C^s, C^c, C^{sc}\}$$

Axioms: strictness

$$\begin{array}{|c|c|c|c|}\hline Strict_1 & p \wedge \langle i \rangle (q \wedge [i] \neg p) \rightarrow \langle i^s \rangle q \\ Strict_2 & (p \wedge [D] \neg p \wedge \langle i^s \rangle q) \rightarrow \langle i \rangle (q \wedge \neg \langle i \rangle p) \\ Strict_3 & \langle i^s \rangle p \rightarrow \langle D \rangle p \\ \hline \end{array}$$

$Intersect_1$	$((p \land [D] \neg p) \lor \langle D \rangle (p \land [D] \neg p)) \to$	
	$ ((p \land [D] \neg p) \lor \langle D \rangle (p \land [D] \neg p)) \to \\ (\bigwedge_{i \in C} \langle i \rangle p \to \langle C \rangle p) $	
$Intersect_2$	$ \begin{array}{c} ((p \wedge [D] \neg p) \vee \langle D \rangle (p \wedge [D] \neg p)) \rightarrow \\ (\bigwedge_{i \in C} \langle i^s \rangle p \rightarrow \langle C^s \rangle p) \\ \langle C \rangle p \rightarrow \langle i \rangle p \end{array} $	
	$\left \left(\bigwedge_{i \in C} \langle i^s \rangle p \to \langle C^s \rangle p \right) \right $	
$Intersect_3$	$\langle C \rangle p \to \langle i \rangle p$	$i \in C$
$Intersect_4$	$\langle C^s \rangle p \to \langle i^s \rangle p$	$i \in C$

9.5 Completeness

We will use a step-by-step method:

■ The result will be a submodel of the canonical model

- The result will be a submodel of the canonical model
- We will build a network, which has much of the information needed for a proper model

- The result will be a submodel of the canonical model
- We will build a network, which has much of the information needed for a proper model
- We build it step-by-step, by starting with a small network and repairing its defects by extending it

- The result will be a submodel of the canonical model
- We will build a network, which has much of the information needed for a proper model
- We build it step-by-step, by starting with a small network and repairing its defects by extending it
- The converse operators make it possible to go back and forth, and to describe a finite network using formulae

- The result will be a submodel of the canonical model
- We will build a network, which has much of the information needed for a proper model
- We build it step-by-step, by starting with a small network and repairing its defects by extending it
- The converse operators make it possible to go back and forth, and to describe a finite network using formulae
- The *D* operator lets us
 - Define the needed model properties
 - Construct a named model by requiring that a formula of the form $p \land \neg \langle D \rangle p$ holds in a state

- The result will be a submodel of the canonical model
- We will build a network, which has much of the information needed for a proper model
- We build it step-by-step, by starting with a small network and repairing its defects by extending it
- The converse operators make it possible to go back and forth, and to describe a finite network using formulae
- The *D* operator lets us
 - Define the needed model properties
 - Construct a named model by requiring that a formula of the form $p \land \neg \langle D \rangle p$ holds in a state

Definition 9.10 (Network)

A network is a tuple

$$\mathcal{N} = (N, E, d, r, \Lambda)$$

- $lackbox{ } (N,E)$ is a finite, undirected, connected and acyclic graph
- d maps each edge $\{s,t\} \in E$ to a relation in the set $\{R_C,R_C^s,D:C\in\mathcal{C}\}$
- r maps each edge $\{s,t\} \in E$ to either s or t
- \blacksquare Λ labels each node in N with a finite set of formulae

We can describe a network with formulae:

Let E(s) denote the set of nodes adjacent to s, and let

$$\langle st \rangle = \begin{cases} \langle i \rangle & d(\{s,t\}) = R_i \text{ and } r(\{s,t\}) = s \\ \langle i^c \rangle & d(\{s,t\}) = R_i \text{ and } r(\{s,t\}) = t \\ \langle i^s \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = s \\ \langle i^{sc} \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = t \\ \langle C \rangle & d(\{s,t\}) = R_C \text{ and } r(\{s,t\}) = s \\ \langle C^c \rangle & d(\{s,t\}) = R_C \text{ and } r(\{s,t\}) = t \\ \langle C^s \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = s \\ \langle C^{sc} \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = t \\ \langle D \rangle & d(\{s,t\}) = D \text{ and } r(\{s,t\}) = t \\ \langle D \rangle & d(\{s,t\}) = D \text{ and } r(\{s,t\}) = t \end{cases}$$

$$\Delta(\mathcal{N},s) = \bigwedge \Lambda(s) \wedge \bigwedge_{v \in E(s)} \langle sv \rangle \Phi(\mathcal{N},v,s)$$

$$\Phi(\mathcal{N},t,s) = \bigwedge \Lambda(t) \wedge \bigwedge_{s \neq v \in E(t)} \langle tv \rangle \Phi(\mathcal{N},v,t)$$

We can describe a network with formulae:

Let E(s) denote the set of nodes adjacent to s, and let

$$\langle st \rangle = \begin{cases} \langle i \rangle & d(\{s,t\}) = R_i \text{ and } r(\{s,t\}) = s \\ \langle i^c \rangle & d(\{s,t\}) = R_i \text{ and } r(\{s,t\}) = t \\ \langle i^s \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = s \\ \langle i^{sc} \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = t \\ \langle C \rangle & d(\{s,t\}) = R_C \text{ and } r(\{s,t\}) = s \\ \langle C^c \rangle & d(\{s,t\}) = R_C \text{ and } r(\{s,t\}) = t \\ \langle C^s \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = s \\ \langle C^{sc} \rangle & d(\{s,t\}) = R_i^s \text{ and } r(\{s,t\}) = t \\ \langle D \rangle & d(\{s,t\}) = D \text{ and } r(\{s,t\}) = s \\ \langle D \rangle & d(\{s,t\}) = D \text{ and } r(\{s,t\}) = t \end{cases}$$

$$\Delta(\mathcal{N},s) = \bigwedge \Lambda(s) \wedge \bigwedge_{v \in E(s)} \langle sv \rangle \Phi(\mathcal{N},v,s)$$

$$\Phi(\mathcal{N},t,s) = \bigwedge \Lambda(t) \wedge \bigwedge_{s \neq v \in E(t)} \langle tv \rangle \Phi(\mathcal{N},v,t)$$

Note the role of converses for all the diamonds here!

We can show the following:

Proposition

 $\Delta(\mathcal{N},s)$ is consistent iff $\Delta(\mathcal{N},t)$ is consistent, for any two nodes in any network \mathcal{N}

by using the $Converse_1$ and $Converse_2$ axioms (when an edge is marked with anything else than a D) and the D_2 axiom (when an edge is marked with D).

We can show the following:

Proposition

 $\Delta(\mathcal{N},s)$ is consistent iff $\Delta(\mathcal{N},t)$ is consistent, for any two nodes in any network \mathcal{N}

by using the $Converse_1$ and $Converse_2$ axioms (when an edge is marked with anything else than a D) and the D_2 axiom (when an edge is marked with D).

Definition 9.11 (Coherence)

A network is coherent if $\Delta(\mathcal{N}, s)$ is consistent for any s.

Possible defects in a network:

- $D1(s,\phi)$ where s is a node and ϕ a formula, and $\phi \not\in \Lambda(s)$ and $\neg \phi \not\in \Lambda(s)$
 - D2(s) there is no formula ϕ such that $\phi \land \neg \langle D \rangle \phi \in \Lambda(s)$
- $D3(s,\langle \xi \rangle \phi)$ ($\xi \in \{i,C,i^s,C^s,D\}$) where s is a node and $\langle \xi \rangle \phi \in \Lambda(s)$ and for all $(s,t) \in E$ such that $d(\{s,t\}) = \text{Rel}(\xi)$ and $r(\{s,t\}) = s$ it is the case that $\phi \notin \Lambda(t)$
- $D4(s,\langle \xi^c \rangle \phi)$ ($\xi \in \{i,C,i^s,C^s\}$) where s is a node and $\langle \xi^c \rangle \phi \in \Lambda(s)$ and for all $(s,t) \in E$ such that $d(\{s,t\}) = \text{Rel}(\xi)$ and $r(\{s,t\}) = t$ it is the case that $\phi \notin \Lambda(t)$

Proposition

For any defect in a coherent network \mathcal{N} , there is a coherent network \mathcal{N}' extending \mathcal{N} lacking that effect.

Repairing defects: standard approach

Repairing D2-defects with the *D*-rule

$$D2(s)$$
 there is no formula ϕ such that $\phi \land \neg \langle D \rangle \phi \in \Lambda(s)$

- Let p be an atom not occurring in $\Delta(\mathcal{N}, s)$ (recall that we assumed there are infinitely many)
- Alternative statement of the *D*-rule:

If
$$\Phi$$
 is consistent and does not contain p

$$(p \wedge \neg \langle D \rangle p) \wedge \Phi$$
 is consistent

- lacktriangle $\Delta(\mathcal{N},s)$ consistent so $\Delta(\mathcal{N},s) \wedge p \wedge \neg \langle D \rangle p$ is consistent
- Define the new network by adding $p \land \neg \langle D \rangle p$ to $\Lambda(s)$
- Clearly, it is coherent

Repairing D3- and D4-defects

 $D3(s,\langle \xi \rangle \phi)$ ($\xi \in \{i,C,i^s,C^s,D\}$) where s is a node and $\langle \xi \rangle \phi \in \Lambda(s)$ and for all $(s,t) \in E$ such that $d(\{s,t\}) = \text{Rel}(\xi)$ and $r(\{s,t\}) = s$ it is the case that $\phi \notin \Lambda(t)$

Repairing D3- and D4-defects

$$D3(s,\langle \xi \rangle \phi)$$
 ($\xi \in \{i,C,i^s,C^s,D\}$) where s is a node and $\langle \xi \rangle \phi \in \Lambda(s)$ and for all $(s,t) \in E$ such that $d(\{s,t\}) = \operatorname{Rel}(\xi)$ and $r(\{s,t\}) = s$ it is the case that $\phi \notin \Lambda(t)$

We define \mathcal{N}' as follows:

- $ightharpoonup N' = N \cup \{t\} \text{ for some } t \in Y \setminus N$
- $\blacksquare E' = E \cup \{\{s, t\}\}\$
- $\blacksquare d' = d \cup \{\{s, t\} \mapsto \mathsf{Rel}(\xi)\}$
- $r' = r \cup \{\{s, t\} \mapsto s\}$

where Y is a countably infinite set of "fresh" states.

Repairing D3- and D4-defects

$$D3(s,\langle \xi \rangle \phi)$$
 ($\xi \in \{i,C,i^s,C^s,D\}$) where s is a node and $\langle \xi \rangle \phi \in \Lambda(s)$ and for all $(s,t) \in E$ such that $d(\{s,t\}) = \operatorname{Rel}(\xi)$ and $r(\{s,t\}) = s$ it is the case that $\phi \notin \Lambda(t)$

We define \mathcal{N}' as follows:

- $ightharpoonup N' = N \cup \{t\} \text{ for some } t \in Y \setminus N$
- $\blacksquare E' = E \cup \{\{s,t\}\}\$
- $\blacksquare d' = d \cup \{\{s, t\} \mapsto \mathsf{Rel}(\xi)\}\$
- $r' = r \cup \{\{s, t\} \mapsto s\}$

where Y is a countably infinite set of "fresh" states.

We have that $\Delta(\mathcal{N}',s) = \Delta(\mathcal{N},s) \wedge \langle \xi \rangle \phi$. Since $\langle \xi \rangle \phi \in \Lambda(s)$, it already is a conjunct of $\Delta(\mathcal{N}, s)$. Thus, \mathcal{N}' is coherent.

Fix a consistent formula

We now will construct a model for it.

\mathcal{N}_i

For every number i define a network

$$\mathcal{N}_i = (N_i, E_i, d_i, r_i, \Lambda_i)$$
:

- \mathcal{N}_0 has a single node y labelled with $\{\hat{\phi}\}$. Clearly, \mathcal{N}_0 is coherent.
- When n > 0, \mathcal{N}_{n+1} is the (coherent) network obtained by repairing the next (according to some enumeration) defect, by the rules given above.

For every number i define a network

$$\mathcal{N}_i = (N_i, E_i, d_i, r_i, \Lambda_i)$$
:

- \mathcal{N}_0 has a single node y labelled with $\{\hat{\phi}\}$. Clearly, \mathcal{N}_0 is coherent.
- When n > 0, \mathcal{N}_{n+1} is the (coherent) network obtained by repairing the next (according to some enumeration) defect, by the rules given above.

Note that:

- lacksquare \mathcal{N}_j extends \mathcal{N}_i when i < j
- a repaired defect will never can never be reintroduced
- for any defect of \mathcal{N}_i there is a j>i such that \mathcal{N}_j lacks that defect

Collect repairs: \mathcal{N}

Collect all repairs by defining $\mathcal{N} = (N, E, d, r, \Lambda)$:

- $N = \bigcup_{i \in \mathbb{N}} Ni$
- $\blacksquare E = \bigcup_{i \in \mathbb{N}} E_i$
- $d = \bigcup_{i \in \mathbb{N}} d_i$
- $r = \bigcup_{i \in \mathbb{N}} r_i$

Collect repairs: \mathcal{N}

Collect all repairs by defining $\mathcal{N} = (N, E, d, r, \Lambda)$:

- $N = \bigcup_{i \in \mathbb{N}} Ni$
- $\blacksquare E = \bigcup_{i \in \mathbb{N}} E_i$
- $\blacksquare d = \bigcup_{i \in \mathbb{N}} d_i$
- $r = \bigcup_{i \in \mathbb{N}} r_i$

Proposition

For every s, $\Lambda(s)$ is a maximal consistent set of formulae.

- Maximality: repair of D1 effects
- \blacksquare Consistency: from consistency of each \mathcal{N}_i

The Model

Define the model M (for $\hat{\phi}$) by restricting the canonical model for MCGL to the MCSs that appear in \mathcal{N} , i.e. to

$$W = \{\Lambda(s) : s \in N\}$$

The Model

Define the model M (for $\hat{\phi}$) by restricting the canonical model for MCGL to the MCSs that appear in \mathcal{N} , i.e. to

$$W = \{\Lambda(s) : s \in N\}$$

(remove the other states, restrict the relations and valuation function accordingly)

Truth Lemma

Proposition

$$M, \Gamma \models \psi \Leftrightarrow \psi \in \Gamma$$

for any $\Gamma \in W$ and any ψ

Truth Lemma

Proposition

$$M, \Gamma \models \psi \Leftrightarrow \psi \in \Gamma$$

for any $\Gamma \in W$ and any ψ

- First: show that we don't throw away too much, that for any diamond \diamond we have that $\Gamma \in W$ whenever $\diamond \psi \in \Gamma$, there is a $\Delta \in W$ such that $\psi \in Delta$ and Γ, Δ are related by the canonical relation. Easily shown by construction.
- Then: induction on ϕ

It remains to be shown that M has all the properties we required.

It remains to be shown that M has all the properties we required.

REFL $\forall_{i \in N} R_i$ is reflexive TRANS $\forall_{i \in N} R_i$ is transitive COMPL $\forall_{i \in N} R_i$ is complete STRICT $\forall_{i \in N} R_i^s wu$ iff both $R_i wu$ and not $R_i uw$ DIFF $D = \{(w, u) : w \neq u\}$ INTERSECTION $\forall_{C \in \mathcal{C}} R_C = \bigcap_{i \in C} R_i$ INTERSECTION-STRICT $\forall_{C \in \mathcal{C}} R_C^s = \bigcap_{i \in C} R_i^s$ CONVERSE Rwv iff $R^c vw$, for $R \in \{R_i, R_i^s, R_C, R_C^s, D\}$

M is named

Because we removed D2-defects, for every state w there exists a formula ϕ_w such that

$$M, w \models \phi_w \land \neg \langle D \rangle \phi_w$$

M is named

Because we removed D2-defects, for every state w there exists a formula ϕ_w such that

$$M, w \models \phi_w \land \neg \langle D \rangle \phi_w$$

But from DIFF it follows that ϕ_w is uniquely true at w, that

$$M, w \models \phi_w$$

and for any $u \neq w$

$$M, u \not\models \phi_w$$

■ Assume that $w \neq u$, $\neg R_i uw$ and $\neg R_i wu$

- Assume that $w \neq u$, $\neg R_i uw$ and $\neg R_i wu$
- We have that $M, u \not\models \langle i^c \rangle \phi_w$: otherwise
 - there is a v s.t. $R_i^c uv$ and $M, v \models \phi_w$
 - thus v = w, and $R_i^c uw$
 - by CONVERSE: R_iwu a contradiction

- Assume that $w \neq u$, $\neg R_i uw$ and $\neg R_i wu$
- We have that $M, u \not\models \langle i^c \rangle \phi_w$: otherwise
 - there is a v s.t. $R_i^c uv$ and $M, v \models \phi_w$
 - \blacksquare thus v=w, and R_i^cuw
 - by CONVERSE: R_iwu a contradiction
- Thus $M, u \not\models (\phi_w \lor \langle i^c \rangle \phi_w \lor \langle i \rangle \phi_w)$

- Assume that $w \neq u$, $\neg R_i uw$ and $\neg R_i wu$
- We have that $M, u \not\models \langle i^c \rangle \phi_w$: otherwise
 - there is a v s.t. $R_i^c uv$ and $M, v \models \phi_w$
 - \blacksquare thus v=w, and R_i^cuw
 - by CONVERSE: R_iwu a contradiction
- Thus $M, u \not\models (\phi_w \lor \langle i^c \rangle \phi_w \lor \langle i \rangle \phi_w)$
- And since $w \neq u$, $M, w \not\models [D]((\phi_w \lor \langle i^c \rangle \phi_w \lor \langle i \rangle \phi_w)$

- Assume that $w \neq u$, $\neg R_i uw$ and $\neg R_i wu$
- We have that $M, u \not\models \langle i^c \rangle \phi_w$: otherwise
 - there is a v s.t. $R_i^c uv$ and $M, v \models \phi_w$
 - \blacksquare thus v=w, and R_i^cuw
 - by CONVERSE: R_iwu a contradiction
- Thus $M, u \not\models (\phi_w \lor \langle i^c \rangle \phi_w \lor \langle i \rangle \phi_w)$
- And since $w \neq u$, $M, w \not\models [D]((\phi_w \lor \langle i^c \rangle \phi_w \lor \langle i \rangle \phi_w)$
- Also: $M, w \models (\phi_w \land [i]\langle i^c \rangle \phi_w)$

- Assume that $w \neq u$, $\neg R_i uw$ and $\neg R_i wu$
- We have that $M, u \not\models \langle i^c \rangle \phi_w$: otherwise
 - there is a v s.t. $R_i^c uv$ and $M, v \models \phi_w$
 - \blacksquare thus v=w, and R_i^cuw
 - by CONVERSE: R_iwu a contradiction
- Thus $M, u \not\models (\phi_w \lor \langle i^c \rangle \phi_w \lor \langle i \rangle \phi_w)$
- And since $w \neq u$, $M, w \not\models [D]((\phi_w \lor \langle i^c \rangle \phi_w \lor \langle i \rangle \phi_w)$
- Also: $M, w \models (\phi_w \wedge [i]\langle i^c \rangle \phi_w)$
- Contradicts the Trichotomy axiom

9.6 References

- [1] M. J. Osborne and A. Rubinstein.A Course in Game Theory.The MIT Press: Cambridge, MA, 1994.
- [2] Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. Reasoning about coalitional games.

 To appear in *Artificial Intelligence*, 2008.
- [3] M. de Rijke.Extended Modal Logic.PhD thesis, University of Amsterdam, 1993.
- [4] P. Blackburn, M. de Rijke, and V. Venema. Modal Logic.Cambridge Univ. Press, 2001.

