

Chapter 2 LAN & WAN Technologies

- LANs
- Gigabit and 10-Gigabit Ethernet
- WANs
- WAN Design

OSI Model

Cisco.com

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Benefits of the OSI Model:

- · Reduces complexity
- · Standardizes interfaces
- · Facilitates modular engineering
- · Ensures interoperable technology
- · Accelerates evolution
- · Simplifies teaching and learning

Local-area Networks (LANs)

Cable Specifications

Unshielded Twisted Pair (UTP)

Cisco.com Repeater Hub/Concentrator 100m 100m Workstation File Server

6/37

Optical Media

Gigabit Ethernet Media Comparison

10-Gigabit Ethernet Implementations

Cisco.com

Implementation	Wavelength	Medium	Minimum Modal Bandwidth	Operating Distance
10GBASE-LX4	1310 nm	62.5µm MMF	500 MHz/km	2 - 300 m
10GBASE-LX4	1310 nm	50μm MMF	400 MHz/km	2 - 240 m
10GBASE-LX4	1310 nm	50μm MMF	500 MHz/km	2 - 300 m
10GBASE-LX4	1310 nm	10μm MMF	N/A	2 - 10 km
10GBASE-S	850 nm	62.5µm MMF	160 MHz/km	2 - 26 m
10GBASE-S	850 nm	62.5µm MMF	200 MHz/km	2 - 33 m
10GBASE-S	850 nm	50μm MMF	400 MHz/km	2 - 66 m
10GBASE-S	850 nm	50μm MMF	500 MHz/km	2 - 82 m
10GBASE-S	850 nm	50μm MMF	2000 MHz/km	2 - 300 m
10GBASE-L	1310 nm	10μm SMF	N/A	2 - 10 km
10GBASE-E	1550 nm	10μm SMF	N/A	2 - 30 km*

100 Gigabit Ethernet (100 GbE)

WAN Technology

WAN Service Providers

Physical Layer: WANs

Cisco.com

Data Terminal Equipment User device with interface connecting to the WAN link Data Circuit-Terminating Equipment End of the WAN provider's side of the communication facility

WAN Line Types and Bandwidth

Line Type	Signal Standard	Bit Rate Capacity
56	DS0	56 Kbps
64	DS0	64 Kbps
T1	DS1	51.84 Mbps
E1	ZM	2.048 Mbps
E3	M3	34.064 Mbps
J1	Y1	2.048 Mbps
T3	DS3	44.736 Mbps
OC-1	SONET	51.84 Mbps
OC-3	SONET	155.54 Mbps
OC-9	SONET	466.56 Mbps
OC-12	SONET	622.08 Mbps
OC-18	SONET	933.12 Mbps
OC-24	SONET	1244.16 Mbps
OC-36	SONET	1866.24 Mbps
OC-48	SONET	2488.32 Mbps
OC-192	SONET	10G
OC-768 © 2003, Cisco Systems, Inc. All rights	SONET	40G

WAN Devices

Cisco.com

Router

Switch

Modem (CSU/DSU)

Communication Server

WANs are designed to:

- Operate over large geographic area.
- Allow access over serial interfaces operating at lower speeds.
- Provide full-time and part-time connectivity.

CSU/DSU

15/37

Modem Transmission

WAN Encapsulation

Cisco.com

Network data is encapsulated in an HDLC frame.

WAN Data-Link Protocols

Protocol	Usage	
Link Access Protocol Balanced (LAPB)	X.25	
Link Access Protocol D Channel (LAPD)	ISDN D channel	
Link Access Protocol Frame (LAPF)	Frame Relay	
High-Level Data Link Control (HDLC)	Cisco's implementation has an extra header field	
Point-to-Point Protocol (PPP)	Dialup connections	

Circuit Switching

Cisco.com

Dialing sets up a physical circuit through the system.

Packet Switching

Cisco.com

Labeled data is passed from switch to switch. It may have to wait its turn on a link.

ISDN

Leased Line

 Leased lines are not only used to provide direct point-to-point connections between Enterprise LANS, they can also be used to connect individual branches to a packet switched network.

ATM

Cisco.com

 Asynchronous Transfer Mode (ATM) is a technology capable of transferring voice, video, and data through private and public networks. It is built on a cell based architecture rather than on a frame-based architecture.

23/37

DSL (Digital subscriber line)

Service	Download	Upload
ADSL	1.5 M - 8.192 M	16 K - 640 K
SDSL	1.544 M - 2.048 M	1.544 M - 2.048 M
HDSL	1.544 M - 2.048 M	1.544 M - 2.048 M
IDSL	144 K	144 K
RADSL	64 K - 8.192 M	16 M - 768 M
CDSL	1 M	16 K -160 K

ADSL Technology

Cisco.com

Local loop connects splitter in house to DSLAM in central office.

Voice and data use separate frequency ranges.

Cable Modem

Enhanced Cable Modems enable twoway. High speed data transmissions using the same coaxial lines that transmit cable television.

Cable Data Network Architecture

Comparing WAN Traffic Types

Cisco.com

Traffic	Latency	Jitter	Bandwidth
Voice	Low	Low	Medium
Transaction data (for example, SNA)	Medium	Medium	Medium
Messaging (e-mail)	High	High	High
File transfer	High	High	High
Batch data	High	High	High
Network management	High	High	Low
Videoconferencing	Low	Low	High

Some WAN traffic types with tolerance to latency and jitter, along with bandwidth requirements.

Steps In WAN Design

Locate LANs Analyze Traffic Plan Topology Review Plan Bandwidth Iterate Choose Technology Cost and Evaluate

Star Topology

Cisco.com Berlin Brussels Paris Vienna Rome

30/37

Full-Mesh Topology

Partial-Mesh Topology

Cisco.com

32/37

- The links connecting the various sites in an area that provide access to the enterprise network are called the access links or access layer of the WAN.
- Traffic between areas is distributed by the distribution links, and is moved onto the core links for transfer to other regions, when necessary.

Internet for WAN Connectivity

Microsoft IoT in Action

Cisco.com Intelligent Edge的下一階段即將到來。 0:02 / 1:49

https://www.youtube.com/watch?v=n0LqqadplIA&t=1s

35/37

Microsoft Empowers Telecommunications

Cisco.com

https://www.youtube.com/watch?v=sOkhROQESag

APPLE: Working From Home

Cisco.com

https://www.youtube.com/watch?v=6_pru8U2RmM&t=40s