TAVOLA DEGLI SVILUPPI DI TAYLOR, DI PUNTO INIZIALE $x_0 = 0$, DI ALCUNE FUNZIONI ELEMENTARI

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cos x = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\tan x = x + \frac{x^{3}}{3} + \frac{2}{15}x^{5} + \frac{17}{315}x^{7} + o(x^{8})$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

$$\arcsin x = x + \frac{x^{3}}{6} + \frac{3}{40}x^{5} + \dots + \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\arccos x = \frac{\pi}{2} - x - \frac{x^{3}}{6} - \frac{3}{40}x^{5} - \dots - \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\arctan x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^{2} + \dots + \binom{\alpha}{n}x^{n} + o(x^{n})$$

$$\cot \binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2) \cdots (\alpha-n+1)}{n!}$$

Per esempio:

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \dots + (-1)^{n+1} \frac{(2n-3)!!}{(2n)!!} x^n + o(x^n) \quad (n \ge 1)$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8}x^2 - \frac{15}{48}x^3 + \dots + (-1)^n \frac{(2n-1)!!}{(2n)!!} x^n + o(x^n)$$