MATH 425b ASSIGNMENT 2 SOLUTIONS SPRING 2016 Prof. Alexander

Chapter 7

(18) We claim that $\{F_n\}$ is equicontinuous. Proof: By assumption there exists $M < \infty$ such that $|f_n(x)| \leq M$ for all x and n. Then for x < y in [a, b],

$$|F_n(y) - F_n(x)| = \left| \int_x^y f_n(t) \ dt \right| \le \int_x^y |f_n(t)| \ dt \le \int_x^y M \ dt = M|y - x|.$$

Thus given $\epsilon > 0$, we have $|y - x| < \epsilon/M$ implies $|F_n(y) - F_n(x)| < \epsilon$, which proves the claim. Then by Theorem 7.25, $\{F_n\}$ has a uniformly converging subsequence.

(I) Suppose \mathcal{F} is equicontinuous and $f \in \overline{\mathcal{F}}$. Then there exists a sequence $\{f_n\} \subset \mathcal{F}$ with $f_n \to f$ uniformly. Let $\epsilon > 0$. By equicontinuity, there exists $\delta > 0$ such that

$$d(x,y) < \delta \implies |f_n(y) - f_n(x)| < \epsilon \text{ for all } n \ge 1.$$

Then

$$d(x,y) < \delta \implies |f(y) - f(x)| = \lim_{n} |f_n(y) - f_n(x)| \le \epsilon,$$

so the same δ "works" for f. Thus this δ "works" for all $f \in \overline{\mathcal{F}}$, so $\overline{\mathcal{F}}$ is equicontinuous.

(II)(a) Given $\epsilon > 0$ let $\delta = \epsilon^{1/\alpha}$. Then

$$f \in E, |y - x| < \delta \implies |f(y) - f(x)| \le |y - x|^{\alpha} < \delta^{\alpha} = \epsilon,$$

i.e. this δ "works" uniformly over E. This shows E is equicontinuous.

(b) Suppose $f_n \in E$ for all n and $f_n \to f$ uniformly. Then $f(0) = \lim_n f_n(0) = 0$ and for all $x, y \in [0, 1]$,

$$|f(x) - f(y)| = \lim_{n} |f_n(x) - f_n(y)| \le |y - x|^{\alpha},$$

so $f \in E$.

(III)(a) Suppose $P(x) = \sum_{n=0}^{N} a_n x^n$, and let $\epsilon > 0$. For each $n \leq N$ there exists a rational q_n with $|a_n - q_n| < \epsilon/NA^n$. Let $Q(x) = \sum_{n=0}^{N} q_n x^n$. Then

$$|P(x) - Q(x)| \le \sum_{n=0}^{N} |a_n - q_n| |x|^n \le \sum_{n=0}^{N} \frac{\epsilon}{NA^n} A^n = \epsilon$$

for all $x \in [0, A]$, so $||P - Q||_{\infty} < \epsilon$.

- (b) Let D be the set of all polynomial functions on [0,A] with rational coefficients. Let $\epsilon>0$. By the Weierstrass theorem, given $f\in C[0,A]$ there is a polynomial P with $||f-P||_{\infty}<\epsilon/2$. By (a) there is a polynomial $Q\in E$ with $||P-Q||_{\infty}<\epsilon/2$. Then $||f-Q||_{\infty}<\epsilon$, which shows D is dense in C[0,A]. There is a one-to-one correspondence between D and the countable set \mathbb{Q}^{N+1} (where $\mathbb{Q}=$ rationals), by pairing $\sum_{n=0}^N q_n x^n$ with $(q_0,..,q_N)$, so D is countable.
- (IV) Let $\epsilon > 0$. We want to show that no δ "works" for this ϵ , so let $\delta > 0$. Since E has a limit point p, there exist infinitely points of E within distance $\delta/2$ of p; taking any 2 of these points we get $x,y \in E$ with $d(x,y) < \delta$. Since \mathcal{A} separates points, there exists $f \in \mathcal{A}$ with $f(x) f(y) = c \neq 0$. Let $b > \epsilon/|c|$. Then $bf \in \mathcal{A}$, and we have $d(x,y) < \delta$ but $|bf(x) bf(y)| = b|f(x) f(y)| = b|c| > \epsilon$. Thus δ does not "work" for all functions in \mathcal{A} . Since δ is arbitrary, \mathcal{A} is not equicontinuous.
- (V)(a) Let $k \ge 1$ be the degree of $P: P(x) = a_k x^k + a_{k-1} x^{k-1} + \dots$ with $a_k \ne 0$. Then

$$\frac{P(x)}{x^k} = a_k + a_{k-1}x^{-1} + \dots \to a_k \quad \text{as } x \to \infty,$$

so for large x, $\left|\frac{P(x)}{x^k}\right| \geq \frac{1}{2}|a_k|$ and therefore $|P(x)| \geq \frac{1}{2}|a_k|x^k \to \infty$ as $x \to \infty$. Thus $||P||_{\infty} = \infty$.

(b) For all $n \neq m$ we have

$$||P_n - P_m||_{\infty} \le ||P_n - f||_{\infty} + ||f - P_m||_{\infty},$$

which is finite if n, m are large (since $||P_n - f||_{\infty} \to 0$), so by (a), $P_n - P_m$ must be a constant, call it c_{mn} . But then for fixed m and x we get

$$\lim_{n} c_{mn} = \lim_{n} (P_n(x) - P_m(x)) = f(x) - P_m(x),$$

so $\lim_{n} c_{mn}$ is some finite c and $f(x) = P_m(x) + c$, meaning f is a poynomial.

(VI) Suppose f is continuous, that is, $f \in C[-1, 1]$. By the Weierstrass Theorem 7.26, f is a uniform limit of a sequence of polynomials. Conversely, suppose f is a uniform limit of polynomials. Since polynomials are continuous, by 7.12 f is continuous.