Instituto Tecnológico De Aeronáutica – ITA Programa de Especialização em Engenharia – PEE AE-705 – Elementos Finitos e Modelamento Estrutural

LISTA DE EXERCÍCIOS

Prof.: Airton Nabarrete

Aluno: João Paulo Monteiro Cruvinel da Costa

São José dos Campos – SP 2016

Funcionamento do Programa

A rotina principal do programa está localizada no arquivo *main.py*, a partir dele é possível realizar todas as análises implementadas.

Para realizar uma análise é necessário primeiro preparar um arquivo de entrada com as informações do problema. O arquivo de entrada é um arquivo .txt, instruções para a construção do arquivo de entrada se encontram no arquivo *input_template.txt*

Ao executar a rotina main entre com o arquivo de entrada e selecione as opções desejadas a medida que elas forem solicitadas.

Ex: Abrir o arquivo viga.txt, localizado dentro da pasta inputs:

Enter the input file name: inputs/viga.txt

Todas as numerações começam a partir do zero.

Parte B.3

Exercício 001

Passos:

- 1. Inicie a análise do arquivo de entrada: Part B.3 Ex001.txt
- 2. Selecione a opção [1] Modal Analysis
- 3. Não calcule a matriz de amortecimento entrando *N*, a matriz de amortecimentos se torna uma matrix de zeros
- 4. Digite o número do modo que deseja visualizar
- 5. Entre com o Scale Factor para a plotagem, 0.1 gera bons resultados

Resultados:

O número de elementos por seção de barra foi variado de 1 a 10, a seguir se encontram as frequências naturais dos cinco primeiros modos de vibração.

	Número de Elementos			
Frequências (rad/s)	1	2	5	10
1ª	1.09E+01	1.09E+01	1.09E+01	1.09E+01
2ª	4.19E+01	4.18E+01	4.18E+01	4.18E+01
3 <u>a</u>	9.60E+01	9.53E+01	9.53E+01	9.53E+01
4ª	1.72E+02	1.68E+02	1.67E+02	1.67E+02
5 <u>a</u>	2.96E+02	2.67E+02	2.66E+02	2.66E+02

Exercício 002

Passos:

- 1. Inicie a análise do arquivo de entrada: Part B.3 Ex002.txt
- 2. Selecione a opção [1] Modal Analysis
- 3. Não calcule a matriz de amortecimento entrando *N*, a matriz de amortecimentos se torna uma matrix de zeros
- 4. Digite o número do modo que deseja visualizar
- 5. Entre com o Scale Factor para a plotagem, 0.1 gera bons resultados

Resultados:

Cada barra do pórtico foi simulada com 2 elementos.

	Frequências	
Modo	(rad/s)	
1ª	8.69E-01	
2ª	1.28E+00	
3 <u>a</u>	2.20E+00	
4 ª	3.39E+00	
5 <u>a</u>	3.84E+00	

Parte B.4a

Exercício 002 – Kwon & Bang 8.9.1

Passos:

- 1. Inicie a análise do arquivo de entrada: Part_B.4a_Ex002_Bang_8.9.1.txt
- 2. Selecione a opção [0] Static Analysis
- 3. Entre com o Scale Factor para a plotagem, 50 gera bons resultados

Resultados:

Os resultados obtidos e aqueles fornecidos pelo livro são basicamente os mesmos.

Deslocamentos e Rotações no Centro da Viga

	Delta X	Delta Y	Rotação
Obtidos	0.00E+00	2.00E-02	-3.27E-18
Kwon & Bang	0.00E+00	0.02	0

Exercício 002 – Kwon & Bang 8.9.5

Passos:

- 1. Inicie a análise do arquivo de entrada: Part_B.4a_Ex002_Bang_8.9.5.txt
- 2. Selecione a opção [0] Static Analysis
- 3. Entre com o Scale Factor para a plotagem, 50 gera bons resultados

Resultados:

Os resultados obtidos e aqueles fornecidos pelo livro são basicamente os mesmos.

Deslocamentos e Rotações na Extremidade do pórtico

	Delta X	Delta Y	Rotação
Obtidos	1.079946e-01	-8.005600e-02	-4.199790e-03
Kwon & Bang	0.1080	-0.0801	-0.0042

Exercício 002 – Kwon & Bang 8.10.1

Passos:

- 1. Inicie a análise do arquivo de entrada: Part_B.4a_Ex002_Bang_8.10.1.txt
- 2. Selecione a opção [1] Modal Analysis
- 3. Não calcule a matriz de amortecimento entrando *N*, a matriz de amortecimentos se torna uma matrix de zeros
- 4. Digite o número do modo que deseja visualizar
- 5. Entre com o Scale Factor para a plotagem, 0.1 gera bons resultados

Resultados:

Os resultados obtidos e aqueles fornecidos pelo livro são bem próximos.

	Frequências (rad/s)		
			Kwon &
Modo	Obtidos		Bang
1º		7.82E-07	0
2º		1.17E-06	0
3º		2.24E+01	22.4
49		6.21E+01	62.06
5º		1.22E+02	121.86

Terceiro modo de vibração

Exercício 002 – Kwon & Bang 8.10.3

Passos:

1. Inicie a análise do arquivo de entrada: Part_B.4a_Ex002_Bang_8.10.3.txt

- 2. Selecione a opção [1] Modal Analysis
- 3. Não calcule a matriz de amortecimento entrando *N*, a matriz de amortecimentos se torna uma matrix de zeros
- 4. Digite o número do modo que deseja visualizar
- 5. Entre com o Scale Factor para a plotagem, 0.1 gera bons resultados

Resultados:

Os resultados obtidos e aqueles fornecidos pelo livro são bem próximos.

		Frequências (rad/s)		
			Kwon &	
Modo	Obtidos		Bang	
1º		3.38E+01	34	
2º		9.21E+01	92	
3º		4.55E+02	455	
4º		6.67E+02	667	

Primeiro Modo de Vibração

Exercício 002 – Kwon & Bang 8.11.1

Passos:

- 1. Inicie a análise do arquivo de entrada: Part B.4a Ex002 Bang 8.11.1.txt
- 2. Selecione a opção [2] Transient Analysis Direct Integration
- 3. Não calcule a matriz de amortecimento entrando *N*, a matriz de amortecimentos se torna uma matrix de zeros
- 4. Entre com o time step de 1e-4
- 5. Entre com o tempo zero de 0
- 6. Entre com o tempo final de 0.2
- 7. Escolha o grau de liberdade 2 para o deslocamento vertical na ponta da barra

Resultados:

Os resultados obtidos e aqueles fornecidos pelo livro são bem próximos, o que era esperado uma vez que o código do livro foi apenas adaptado para a linguagem python

Deslocamento vertical na ponta da barra

Exercício 002 – Bathe (ADINA)

Passos:

- Inicie a análise do arquivo de entrada: inputs/Part B.4a Ex002 ADINA Bathe.txt
- 2. Selecione a opção [2] Transient Analysis Direct Integration
- 3. Não calcule a matriz de amortecimento entrando *N*, a matriz de amortecimentos se torna uma matrix de zeros
- 4. Entre com o time step de 1e-6
- 5. Entre com o tempo zero de 0
- 6. Entre com o tempo final de 0.1
- 7. Escolha o grau de liberdade 10 para o deslocamento vertical na ponta da barra

Resultados:

Os resultados obtidos se assemelham muito aos fornecidos por Bathe.

Deslocamentos Verticais na Ponta da Barra

Parte B.4b

A viga foi modelada com 10 elementos finitos e tinha as seguintes características:

$$E = 12 \text{ Pa}, I = 1/12 \text{ m}^4, L = 1 \text{ m}$$

Foram análisadas 4 situações:

- 1. Viga pinada nas duas extremidades
- 2. Viga engastada nas duas extremidades
- 3. Viga engastada em uma extremidade e pinada na outra
- 4. Viga engastada em uma extremidade e livre na outra

Passos:

1. Inicie a análise do arquivo de entrada:

```
inputs/Part_B.4b_Ex001_Flambagem_1.txt ou inputs/Part_B.4b_Ex001_Flambagem_2.txt ou inputs/Part_B.4b_Ex001_Flambagem_3.txt ou inputs/Part B.4b Ex001 Flambagem 4.txt
```

- 2. Selecione a opção [4] Buckling Analysis
- 3. Entre com o Scale Factor para a plotagem, 0.5 gera bons resultados

Resultados:

Os resultados se aproximam bastante dos previstos analiticamente

Situação	Obtido	Analítico
1	9.87E+00	9.869604401
2	3.95E+01	39.4784176
3	2.02E+01	19.74517184
4	2.47E+00	2.4674011