Using D-III, Lemma 1.1. we conclude T(ux) = uT(x) and $T(xu^*) = T(x)u^*$ for all $x \in \hat{M}$. Hence

T(x) = T(uu*xuu*) = uT(u*xu)u* = uT(pu*xup)u* =

= upu*xupu* = uu*xuu* = x

for all $x \in \hat{M}$. From this we obtain that for every bounded sequence (x_k) in M $\lim_m \|T_m x_m - x_m\| = 0$ for some subsequence of the T_n 's and of the x_k 's. This conflicts with our assumption at the beginning, hence the theorem is proved.