Integral rules and formulas

Tyreek Alexander

Basic integral rules

- Power rule $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ for $n \neq -1$
- Constant multiple rule $\int a \cdot f(x) dx = a \int f(x) dx$
- Sum rule $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$
- Difference rule $\int [f(x) g(x)] dx = \int f(x) dx \int g(x) dx$

Common integrals

- $\bullet \int e^x dx = e^x + C$
- $\int a^x dx = \frac{a^x}{\ln(a)} + C$ for a > 0 and $a \neq 1$
- $\int e^{u(x)}u'(x) dx = e^{u(x)} + C$ (by substitution)
- $\int a^{u(x)} \ln(a) u'(x) dx = \frac{a^{u(x)}}{\ln(a)} + C$ for a > 0 and $a \neq 1$ (by substitution)
- $\int \ln(x) dx = x \ln(x) x + C$
- $\int \log_a(x) \, dx = \frac{x \log_a(x)}{\ln(a)} \frac{x}{\ln(a)} + C$ for a > 0 and $a \neq 1$
- $\bullet \int \frac{1}{x} \, dx = \ln|x| + C$

Solving methods

Change of variables (substitution)

If u = g(x), then

$$\int f(g(x))g'(x) dx = \int f(u) du$$

Integration by parts

$$\int u \, dv = uv - \int v \, du$$

where u and dv are continuously differentiable functions of x.