Exercise 3: Sorting Customer Orders

Analysis:

- Compare the performance (time complexity) of Bubble Sort and Quick Sort.
- Discuss why Quick Sort is generally preferred over Bubble Sort.

Time Complexity Comparison

Sorting Algorithm	Best Case	Average Case	Worst Case	Space Complexity
Bubble sort	O(n)	O(n^2)	O(n^2)	O(1)
Quick sort	O(n log n)	O(n log n)	O(n^2)	log(n)
_		` ` ` ` '	, ,	

Explanation:

• Bubble Sort:

- o Simple but inefficient.
- o Compares adjacent elements and "bubbles" the largest to the end in each pass.
- o Even with minor unsorted data, it still performs many unnecessary swaps.

• Quick Sort:

- o Divide-and-conquer algorithm that partitions the array around a pivot.
- o Generally fast for large datasets.
- Worst-case O(n²) occurs when pivot choice is poor (e.g., already sorted list without randomized pivot).

Why Quick Sort is Generally Preferred

Quick Sort Advantages:

Reason	Explanation	
Much faster in practice	Even though worst-case is $O(n^2)$, good pivot strategies (e.g., randomized or median-of-three) keep performance close to $O(n \log n)$	
Efficient for large datasets	Handles thousands/millions of records efficiently.	
Inplace sorting	Doesn't require extra space (unlike Merge Sort)	
Better CPU cache performance	Sequential memory access makes it cache-friendly	

Bubble Sort Limitations:

Reason	Explanation
Inefficient for large datasets	Time complexity of O(n²) makes it impractical
Many unnecessary swaps	Poor performance even on moderately sized data
Mostly educational	Good for teaching sorting concepts, not used in production systems

Conclusion

- Quick Sort is the clear choice for sorting customer orders due to its speed, scalability, and in-place nature.
- Bubble Sort is only suitable for very small lists or for learning purposes.