Exercise 2.1. Montrer que la fonction d'autocorrélation d'un processus linéaire est sommable, en particulier un processus linéaire est décorrélé à l'infini.

Exercise 2.2 (Filtrage faible). Soit (Z_t) un bruit blanc centré réduit et soit $(a_n) \in \ell^2(\mathbb{Z})$. On aimerait définir le processus X donné par

$$X_t = \sum_{k \in \mathbb{Z}} a_k Z_{t-k} \quad \forall t \in \mathbb{Z}.$$

- 1. Expliquer pourquoi le théorème de filtrage ne s'applique pas ici.
- 2. Montrer néanmoins que, pour tout $t \in \mathbb{Z}$, la série $\sum_{k \in \mathbb{Z}} a_k Z_{t-k}$ converge dans L^2 . On appelle X_t sa limite.
- 3. Montrer de plus que le processus (X_t) est stationnaire.

Exercise 2.3 (Équation auto-régressive). Soit $\phi \in \mathbb{R}^*$ et $Z = (Z_t)$ un bruit blanc centré réduit. On s'intéresse aux processus stochastiques $X = (X_t)$ solutions de l'équation auto-régressive suivante :

$$X_t = \phi X_{t-1} + Z_t, \quad t \in \mathbb{Z}.$$

- 1. Montrer que, si $|\phi| < 1$, l'équation admet une unique solution stationnaire. Estelle causale ? (i.e., vérifie-t-elle $X_t \in \text{Vect}(Z_t, Z_{t-1}, Z_{t-2}, \ldots)$ pour tout $t \in \mathbb{Z}$, l'adhérence ayant lieu dans L^2).
- 2. Mêmes questions si $|\phi| > 1$.
- 3. En revanche, montrer que, si $\phi=\pm 1$, l'équation n'admet pas de solution stationnaire.
- 4. Plus généralement, montrer que, si a_1, \ldots, a_n est une suite de réels vérifiant

$$\sum_{i=1}^{n} a_i = 1 \quad \text{ou} \quad \sum_{i=1}^{n} (-1)^i a_i = 1,$$

alors l'équation auto-régressive

$$X_t = \sum_{i=1}^n a_i X_{t-i} + Z_t, \quad t \in \mathbb{Z}$$

n'admet pas de solution stationnaire.

Exercise 2.4 (Inversibilité). Dans chaque cas, calculer l'inverse du filtre $\alpha \in \ell^1(\mathbb{Z})$ s'il existe.

- 1. $\alpha_0 = 2$, $\alpha_1 = -1$, et $\alpha_k = 0$ si $k \notin \{0, 1\}$.
- 2. $\alpha_0 = 1$, $\alpha_1 = 2$, et $\alpha_k = 0$ si $k \notin \{0, 1\}$.
- 3. $\alpha_0 = 1$, $\alpha_1 = -1$, et $\alpha_k = 0$ si $k \notin \{0, 1\}$.

Exercise 2.5 (Version abstraite du théorème de filtrage). On note $\ell^1(\mathbb{Z})$ l'espace des suites réelles et (absolument) sommables, muni de la norme $\|\alpha\|_1 := \sum_{k \in \mathbb{Z}} |\alpha_n|$. On note E l'espace des processus (X_t) bornés dans L^2 muni de la norme $\|X\|_E = \sup_{t \in \mathbb{Z}} \|X_t\|_2$. On note L(E) l'espace des applications linéaires continues de E dans E. On admettra que E et L(E) munis de leurs normes respectives sont tous les deux des espaces de Banach. On définit l'opérateur retard E0 par E1 par E2.

- 1. Montrer que B est une isométrie sur E, c'est-à-dire que B est linéaire inversible et vérifie $||BX||_E = ||X||_E$ pour tout X de E.
- 2. En déduire que si $\alpha \in \ell^1(\mathbb{Z})$, alors la série $\sum_{n \in \mathbb{Z}} \alpha_n B^n$ converge dans L(E). On note $\phi(\alpha)$ cette somme.
- 3. Montrer que $\phi(\alpha \star \beta) = \phi(\alpha) \circ \phi(\beta)$ pour tout $\alpha, \beta \in \ell^1(\mathbb{Z})$ (on dit que ϕ est un morphisme d'algèbre). En déduire que, si α est inversible, alors $\phi(\alpha)$ l'est aussi.
- 4. Montrer enfin que ϕ est injective. On pourra commencer par montrer le fait suivant : étant donné un bruit blanc $(Z_t)_{t\in\mathbb{Z}}$, l'application

$$\alpha \longrightarrow \sum_{n \in \mathbb{Z}} \alpha_n B^n Z \in E$$

est injective.