Kapitola III. Modely pro regulární jazyky

Regulární výrazy (RV): Definice

Myšlenka: Jsou to výrazy s operátory ., + a *, které značí v tomto pořadí konkatenaci, sjednocení a iteraci

Definice: Necht' Σ je abeceda. *Regulární výrazy* nad abecedou Σ a *jazyky*, které *značí*, jsou definovány následovně:

- Ø je RV značící prázdnou množinu (prázdný jazyk)
- ε je RV značící jazyk {ε}
- a, kde $a \in \Sigma$, je RV značící jazyk $\{a\}$
- Nechť r a s jsou regulární výrazy značící po řadě jazyky L_r a L_s , potom:
 - (r.s) je RV značící jazyk $L = L_r L_s$
 - (r+s) je RV značící jazyk $L=L_r \cup L_s$
 - (r^*) je RV značící jazyk $L = L_r^*$

Otázka: Je $(\varepsilon + (a.(b^*)))$ regulární výraz nad abecedou $\Sigma = \{a, b\}$?

3

Je RV nad Σ .

Zjednodušení RV

1) Redukce závorek zavedením priorit operátorů:

- 2) RV r.s může být zapsán jako rs
- 3) RV rr^* nebo r^*r může být zapsán jako r^+

Příklad:

 $((a.(a^*)) + ((b^*).b))$ může být zapsán $a.a^* + b^*.b$,

a $a \cdot a^* + b^* \cdot b$ může být zapsán $a^+ + b^+$

Regulární jazyk (RJ)

Myšlenka: Každý RV značí regulární jazyk

Definice: Nechť *L* je jazyk. *L* je *regulární jazyk* (RJ), pokud existuje regulární výraz *r*, který tento jazyk značí.

Konvence: L(r) označuje jazyk, který značí RV r.

Příklady:

 L_1, L_2, L_3, L_4 jsou regulární jazyky nad Σ

Konečné automaty: Definice

Definice: Konečný automat (KA) je pětice:

$$M = (Q, \Sigma, R, s, F)$$
, kde

- Q je konečná množina stavů
- Σ je vstupní abeceda
- R je konečná množina pravidel tvaru: $pa \rightarrow q$, $kde p, q \in Q, a \in \Sigma \cup \{\epsilon\}$
- $s \in Q$ je počáteční stav
- $F \subseteq Q$ je množina koncových stavů

Matematická poznámka k pravidlům:

- Čistě matematicky, R je relace z $Q \times (\Sigma \cup \{\epsilon\})$ do Q
- Místo relačního zápisu $(pa, q) \in R$, zapisujeme: $pa \rightarrow q \in R$
- $\bullet pa \rightarrow q$ znamená, že při přečtení a M udělá přechod z p do q
- pokud $a = \varepsilon$, není ze vstupní pásky přečten symbol

Grafická reprezentace

- q označuje stav $q \in Q$
- \rightarrow označuje počáteční stav $s \in Q$
 - označuje koncový stav $f \in F$
 - p q označuje pravidlo $pa \rightarrow q \in R$

 $M = (Q, \Sigma, R, s, F),$ kde:

 $M = (Q, \Sigma, R, s, F),$ kde:

• $Q = \{s, p, q, f\};$


```
M = (Q, \Sigma, R, s, F),kde:
```

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$

$$M = (Q, \Sigma, R, s, F),$$
kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$
- $R = \{sa \rightarrow s,$


```
M = (Q, \Sigma, R, s, F),kde:
```

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$
- $R = \{ sa \rightarrow s, \\ s \rightarrow p, \}$


```
M = (Q, \Sigma, R, s, F),kde:
```

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$
- $R = \{sa \rightarrow s, \\ s \rightarrow p, \\ pb \rightarrow p,$


```
M = (Q, \Sigma, R, s, F),kde:
```

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$
- $R = \{sa \rightarrow s, \\ s \rightarrow p, \\ pb \rightarrow p, \\ pb \rightarrow f, \}$


```
M = (Q, \Sigma, R, s, F),kde:
• Q = \{s, p, q, f\};
```

- $\sum_{\mathbf{a}} \sum_{\mathbf{b}} \left(\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{a} \right) = \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{a}$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

$$R = \{ sa \rightarrow s, \\ s \rightarrow p, \\ pb \rightarrow p, \\ pb \rightarrow f, \\ s \rightarrow q,$$


```
M = (Q, \Sigma, R, s, F), kde:

• Q = \{s, p, q, f\};

• \Sigma = \{a, b, c\};

• R = \{sa \rightarrow s,

s \rightarrow p,

pb \rightarrow p,
```

 $pb \rightarrow f$

 $s \rightarrow q$

 $qc \rightarrow q$,

$$\varepsilon$$
 ε
 ε
 ε

```
M = (Q, \Sigma, R, s, F),
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b, c\};
• R = \{ sa \rightarrow s,
           s \rightarrow p
          pb \rightarrow p,
          pb \rightarrow f
           s \rightarrow q,
           qc \rightarrow q,
           qc \rightarrow f,
```



```
M = (Q, \Sigma, R, s, F),
kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b, c\};
• R = \{ sa \rightarrow s,
           s \rightarrow p
          pb \rightarrow p,
          pb \rightarrow f
           s \rightarrow q
           qc \rightarrow q,
           qc \rightarrow f,
           \{fa \rightarrow f\};
```



```
M = (Q, \Sigma, R, s, F),
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b, c\};
• R = \{ sa \rightarrow s,
           s \rightarrow p
          pb \rightarrow p,
          pb \rightarrow f
           s \rightarrow q
           qc \rightarrow q,
           qc \rightarrow f,
           \{fa \rightarrow f\};
```



```
M = (Q, \Sigma, R, s, F),
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b, c\};
• R = \{ sa \rightarrow s,
           s \rightarrow p
          pb \rightarrow p,
          pb \rightarrow f
           s \rightarrow q
           qc \rightarrow q,
           qc \rightarrow f,
          fa \rightarrow f };
 • F = \{f\}
```


Tabulková reprezentace

• Sloupce: Prvky z $\Sigma \cup \{\epsilon\}$

• **Řádky:** Stavy z Q

• První řádek: Počáteční stav

• Podtržené: Koncové stavy

	•••	a	•••	3	
S					
•••					
p		t(p, a)			
<i>f</i>			t(p,	$a) = \{$	$\{q: pa \to q \in R\}$

 $M = (Q, \Sigma, R, s, F),$ kde:

```
M = (Q, \Sigma, R, s, F),kde:
```

• $Q = \{s, p, q, f\};$

s
p
q
f

```
M = (Q, \Sigma, R, s, F),kde:
```

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$

 $M = (Q, \Sigma, R, s, F),$ kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$

	a	b	C	3
S	Ø	Ø	Ø	Ø
p	Ø	Ø	Ø	Ø
\boldsymbol{q}	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

 $M = (Q, \Sigma, R, s, F),$ kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$
- $R = \{sa \rightarrow s,$

	a	b	C	3
S	{S}	Ø	Ø	Ø
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$
kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$
- $R = \{ sa \rightarrow s, \\ s \rightarrow p, \}$

	a	b	C	3
S	{S}	Ø	Ø	{ p }
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$
kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

•
$$R = \{ sa \rightarrow s, \\ s \rightarrow p, \\ pb \rightarrow p,$$

	a	b	C	3
S	{S}	Ø	Ø	{ p }
p	Ø	{ p }	Ø	Ø
\boldsymbol{q}	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$
kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

•
$$R = \{sa \rightarrow s, \\ s \rightarrow p, \\ pb \rightarrow p, \\ pb \rightarrow f, \}$$

	a	b	C	3
S	{S}	Ø	Ø	{ p }
p	Ø	$\{p,f\}$	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$
kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

$$R = \{ sa \rightarrow s, \\ s \rightarrow p, \\ pb \rightarrow p, \\ pb \rightarrow f, \\ s \rightarrow q,$$

	a	b	C	3
S	{S}	Ø	Ø	$\{p,q\}$
p	Ø	$\{p,f\}$	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$
kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

•
$$R = \{sa \rightarrow s,$$

$$s \rightarrow p$$

$$pb \rightarrow p$$
,

$$pb \rightarrow f$$

$$s \rightarrow q$$

$$qc \rightarrow q$$
,

	a	b	C	3
S	{S}	Ø	Ø	{ p , q }
p	Ø	$\{p,f\}$	Ø	Ø
q	Ø	Ø	{ q }	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$
kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

•
$$R = \{sa \rightarrow s,$$

$$s \rightarrow p$$
,

$$pb \rightarrow p$$
,

$$pb \rightarrow f$$

$$s \rightarrow q$$

$$qc \rightarrow q$$
,

$$qc \rightarrow f$$
,

	a	b	C	3
S	{S}	Ø	Ø	$\{p,q\}$
p	Ø	$\{p,f\}$	Ø	Ø
q	Ø	Ø	$\{q,f\}$	Ø
f	Ø	Ø	Ø	Ø

 $M = (Q, \Sigma, R, s, F),$ kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

•
$$R = \{sa \rightarrow s,$$

C	 n
N)	P,

$$pb \rightarrow p$$
,

$$pb \rightarrow f$$

$$s \rightarrow q$$

$$qc \rightarrow q$$
,

$$qc \rightarrow f$$

$$fa \rightarrow f$$
 };

	a	b	C	3
S	{S}	Ø	Ø	$\{p,q\}$
p	Ø	$\{p,f\}$	Ø	Ø
\boldsymbol{q}	Ø	Ø	$\{q,f\}$	Ø
f	{ f }	Ø	Ø	Ø

 $M = (Q, \Sigma, R, s, F),$ kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

•
$$R = \{sa \rightarrow s,$$

$$s \rightarrow p$$

$$pb \rightarrow p$$
,

$$pb \rightarrow f$$

$$s \rightarrow q$$

$$qc \rightarrow q$$
,

$$qc \rightarrow f$$

$$fa \rightarrow f$$
 };

	a	b	C	3
S	{S}	Ø	Ø	$\{p,q\}$
p	Ø	$\{p,f\}$	Ø	Ø
q	Ø	Ø	$\{q,f\}$	Ø
f	{ f }	Ø	Ø	Ø

 $M = (Q, \Sigma, R, s, F),$ kde:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{a, b, c\};$$

•
$$R = \{sa \rightarrow s,$$

$$s \rightarrow p$$

$$pb \rightarrow p$$
,

$$pb \rightarrow f$$

$$s \rightarrow q$$

$$qc \rightarrow q$$
,

$$qc \rightarrow f$$

$$fa \rightarrow f$$
 };

•
$$F = \{f \mid f \}$$

	a	b	C	3
S	{S}	Ø	Ø	$\{p,q\}$
p	Ø	$\{p,f\}$	Ø	Ø
\boldsymbol{q}	Ø	Ø	$\{q,f\}$	Ø
f	{ f }	Ø	Ø	Ø

Konfigurace

Myšlenka: Instance popisu KA

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je KA.

Konfigurace KA M je řetězec $\chi \in Q\Sigma^*$

Konfigurace

Myšlenka: Instance popisu KA

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je KA.

Konfigurace KA M je řetězec $\chi \in Q\Sigma^*$

Přechod

Myšlenka: Jeden výpočetní krok KA

Definice: Necht' pax a qx jsou dvě konfigurace KA M, kde p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $x \in \Sigma^*$. Necht' $r = pa \rightarrow q \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z pax do qx za použití r, zapsáno $pax \not - qx$ [r] nebo zjednodušeně $pax \not - qx$

Pozn.: pokud $\alpha = \epsilon$, není ze vstupní pásky přečten symbol

Konfigurace:

Přechod

Myšlenka: Jeden výpočetní krok KA

Definice: Necht' pax a qx jsou dvě konfigurace KA M, kde p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $x \in \Sigma^*$. Necht' $r = pa \rightarrow q \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z pax do qx za použití r, zapsáno $pax \not - qx$ [r] nebo zjednodušeně $pax \not - qx$

Pozn.: pokud $\alpha = \epsilon$, není ze vstupní pásky přečten symbol

Konfigurace:

Pravidlo: $pa \rightarrow q$

Přechod

Myšlenka: Jeden výpočetní krok KA

Definice: Necht' pax a qx jsou dvě konfigurace KA M, kde p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $x \in \Sigma^*$. Necht' $r = pa \rightarrow q \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z pax do qx za použití r, zapsáno $pax \not - qx$ [r] nebo zjednodušeně $pax \not - qx$

Pozn.: pokud $\alpha = \varepsilon$, není ze vstupní pásky přečten symbol

Konfigurace:

Pravidlo: $pa \rightarrow q$

Nová konfigurace:

Sekvence přechodů 1/2

Myšlenka: několik výpočetních kroků po sobě

Definice: Nechť χ je konfigurace. M provede nula přechodů z χ do χ ; zapisujeme: $\chi \mid -0 \chi$ [ϵ] nebo zjednodušeně $\chi \mid -0 \chi$

Definice: Necht' χ_0 , χ_1 , ..., χ_n je sekvence přechodů konfigurací pro $n \ge 1$ a $\chi_{i-1} \mid -\chi_i \mid r_i \mid$, $r_i \in R$ pro všechna i = 1, ..., n, což znamená: $\chi_0 \mid -\chi_1 \mid r_1 \mid -\chi_2 \mid r_2 \mid ... \mid -\chi_n \mid r_n \mid$ Pak M provede n-přechodů z χ_0 do χ_n ; zapisujeme: $\chi_0 \mid -^n \chi_n \mid r_1 ... \mid r_n \mid$ nebo zjednodušeně $\chi_0 \mid -^n \chi_n \mid$

Sekvence přechodů 2/2

```
Pokud \chi_0 \mid -^n \chi_n [\rho] pro nějaké n \ge 1, pak \chi_0 \mid -^+ \chi_n [\rho].
```

Pokud $\chi_0 \mid -^n \chi_n [\rho]$ pro nějaké $n \ge 0$, pak $\chi_0 \mid -^* \chi_n [\rho]$.

Příklad: Uvažujme

```
pabc |-qbc| [1: pa \rightarrow q] a qbc |-rc| [2: qb \rightarrow r].

Potom: pabc |-^2rc| [1 2],

pabc |-^+rc| [1 2],

pabc |-^*rc| [1 2]
```

Přijímaný jazyk

Myšlenka: *M* přijímá řetězec *w*, pokud je celý přečten pomocí sekvencí přechodů a skončí v nějakém koncovém stavu

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je KA.

Jazyk přijímaný konečným automatem M, L(M), je definován:

$$L(M) = \{w: w \in \Sigma^*, sw \mid -^*f, f \in F\}$$

$$M = (Q, \Sigma, R, s, F)$$
:

Přijímaný jazyk

Myšlenka: *M* přijímá řetězec *w*, pokud je celý přečten pomocí sekvencí přechodů a skončí v nějakém koncovém stavu

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je KA.

Jazyk přijímaný konečným automatem *M*, *L*(*M*), je definován:

$$L(M) = \{w: w \in \Sigma^*, sw \mid -^*f, f \in F\}$$

$$M = (Q, \Sigma, R, s, F)$$
: pokud $q_n \in F$, pak $w \in L(M)$; jinak $w \notin L(M)$

$$sa_1a_2...a_n | -q_1a_2...a_n | -... | -q_{n-1}a_n | -q_n$$

Konečný automat: Příklad 1/3

Konečný automat: Příklad 2/3

Konečný automat: Příklad 3/3

Konečný automat: Příklad 3/3

Ekvivalentní modely

Definice: Dva modely pro popis formálních jazyků (např. konečné automaty) jsou ekvivalentní, pokud specifikují tentýž jazyk.

Příklad:

Otázka: Je M_1 ekvivalentní s M_2 ?

Ekvivalentní modely

Definice: Dva modely pro popis formálních jazyků (např. konečné automaty) jsou ekvivalentní, pokud specifikují tentýž jazyk.

Příklad:

Otázka: Je M_1 ekvivalentní s M_2 ?

Odpověď: M_1 a M_2 jsou ekvivalentní, protože $L(M_1) = L(M_2) = \{a^n : n \ge 0\}$

Převod z RV na KA: Základy 1/5

Myšlenka: Algoritmus, který převede libovolný RV na ekvivalentní KA

• Pro RV $r = \emptyset$ existuje ekvivalentní KA M_{\emptyset} .

Důkaz:

 M_{\varnothing} :

• Pro RV $r = \varepsilon$ existuje ekvivalentní KA M_{ε} .

Důkaz:

 M_{ε} :

• Pro RV $r = \alpha$, $\alpha \in \Sigma$ existuje ekvivalentní KA M_{α} .

Důkaz:

 M_a :

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r.t existuje ekvivalentní KA $M_{r.t}$

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$.

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r.t existuje ekvivalentní KA $M_{r.t}$

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t)$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r.t existuje ekvivalentní KA $M_{r.t}$

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t)$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r.t existuje ekvivalentní KA $M_{r.t}$

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \rightarrow s_t\},$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r.t existuje ekvivalentní KA $M_{r.t}$

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \rightarrow s_t\}, s_r,$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r.t existuje ekvivalentní KA $M_{r.t}$

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \to s_t\}, s_r, \{f_t\})$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$. **Popis konstrukce:**

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t} = (Q_r \cup Q_t \cup \{s,f\}, \Sigma, R_r \cup R_t)$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t}^- = (Q_r \cup Q_t \cup \{s,f\}, \Sigma, R_r \cup R_t)$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t} = (Q_r \cup Q_t \cup \{s,f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, T\})$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t}^{-} = (Q_r \cup Q_t \cup \{s,f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, s \rightarrow s_t, s \rightarrow s_t)$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f,\})$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\},$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, s,$$

- Necht' r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Necht' t je RV nad Σ a $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ je KA pro který platí $L(M_t) = L(t)$.
- Potom pro RV r + t existuje ekvivalentní KA M_{r+t}

Důkaz: Nechť $Q_r \cap Q_t = \emptyset$; $s, f \notin Q_r \cup Q_t$.

$$M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, s, \{f\})$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r)$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r)$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \rightarrow s_r,$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \rightarrow s_r, f_r \rightarrow f,$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \rightarrow s_r, f_r \rightarrow f, f_r \rightarrow s_r)$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \rightarrow s_r, f_r \rightarrow f, f_r \rightarrow s_r, s \rightarrow f\},$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \rightarrow s_r, f_r \rightarrow f, f_r \rightarrow s_r, s \rightarrow f\}, s,$$

- Nechť r je RV nad Σ a $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ je KA pro který platí $L(M_r) = L(r)$.
- Potom pro RV r^* existuje ekvivalentní KA M_{r^*}

Důkaz: Nechť $s, f \notin Q_r$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \rightarrow s_r, f_r \rightarrow f, f_r \rightarrow s_r, s \rightarrow f\}, s, \{f\})$$

Převod z RV na KA: Souhrn 5/5

- Vstup: RV r nad Σ
- Výstup: KA M, pro který platí: L(r) = L(M)
- Metoda:
- "Zevnitř" RV r opakovaně použij následující pravidla ke konstrukci konečného automatu M:
 - ullet pro RV $oldsymbol{arnothing}$ vytvoř KA $oldsymbol{M}_{oldsymbol{arnothing}}$
 - pro RV ϵ vytvoř KA M_{ϵ}
 - pro RV $a \in \Sigma$ vytvoř KA M_a
 - Necht' pro RV r a t již existují po řadě KA M_r a M_t Potom:
 - pro RV r.t vytvoř KA $M_{r.t}$ (viz 2/5)

→ (viz 1/5)

- pro RV r + t vytvoř KA M_{r+t} (viz 3/5)
- pro RV r^* vytvoř KA M_{r^*} (viz 4/5)

pro RV *ab*:

pro RV ab:

pro RV cd:

pro RV ab:

pro RV cd:

Modely pro regulární jazyky

Tvrzení: Pro každý RV r existuje KA M, pro který platí: L(r) = L(M).

Důkaz je založen na předchozím algoritmu.

Tvrzení: Pro každý KA M existuje RV r, pro který platí L(M) = L(r).

Důkaz: viz str. 210 v knize [Meduna: Automata a Languages]

Závěr: Fundamentální modely pro regulární jazyky jsou:

1) Regulární výrazy 2) Konečné automaty