Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_st-nat*

Simulare pentru elevii clasei a XII-a

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	\ <u>1</u>	,
1.	z = 1 + i - 1 - i + 1 + i - 1 =	3p
	$=i \Rightarrow \overline{z} = -i$	2p
2.	$\Delta = -4$	2p
	Valoarea maximă a funcției f este $-\frac{\Delta}{4a} = -1$	3p
3.	$3-x = \sqrt{x^2+3} \Rightarrow 9-6x+x^2 = x^2+3$	3 p
	x=1, care verifică ecuația	2 p
4.	Sunt 81 de numere naturale de două cifre care au cifrele distincte, deci sunt 81 de cazuri favorabile	2p
	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{81}{90} = \frac{9}{10}$	2p
5.	$AC = 3$, $BC = 2$ și $m(< C) = 90^\circ$	3p
	$\mathcal{A}_{\Delta ABC} = \frac{AC \cdot BC}{2} = 3$	2p
6.	$\left(\sin x + \cos x\right)^2 = 1 + 2\sin x \cos x$	2p
	$\left(\sin x - \cos x\right)^2 = 1 - 2\sin x \cos x \Rightarrow \left(\sin x + \cos x\right)^2 + \left(\sin x - \cos x\right)^2 = 2$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	1 1 1	
	$D(1,0) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{vmatrix} =$	2 p
	=0	3 p
b)		
	$D(a,b) = \begin{vmatrix} 1 & a-1 & b-1 \end{vmatrix} =$	2 p
	$D(a,b) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & a-1 & b-1 \\ 1 & a^2-1 & b^2-1 \end{vmatrix} =$	
	$\begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & a+1 & b+1 \end{vmatrix} = (a-1)(b-1)(b-a), \text{ pentru orice numere reale } a \text{ și } b$	3 p
c)	D(m,n) = (m-1)(n-1)(n-m)	1p
	m și n au aceeași paritate $\Rightarrow n-m$ este număr par, deci $D(m,n)$ este par	2 p
	m și n au parități diferite \Rightarrow $m-1$ și $n-1$ au parități diferite \Rightarrow $(m-1)(n-1)$ este număr par,	
	deci $D(a,b)$ este par	2p
2.a)	$\hat{3}x = \hat{3}$	2p
	$x_1 = \hat{1}, x_2 = \hat{3}, x_3 = \hat{5}$	3 p

b)	$\hat{0}^3 = \hat{0}, \hat{1}^3 = \hat{1}, \hat{2}^3 = \hat{2}, \hat{3}^3 = \hat{3}, \hat{4}^3 = \hat{4}, \hat{5}^3 = \hat{5}$	3p
	$Deci Im f = \{\hat{0}\}$	2p
c)	$x^3 = x \Rightarrow x^{10} = x^2$, pentru orice $x \in \mathbb{Z}_6$	2p
	$H = \left\{x^2 \mid x \in \mathbb{Z}_6\right\} = \left\{\hat{0}, \hat{1}, \hat{3}, \hat{4}\right\}, \text{ deci mulțimea } H \text{ are 4 elemente}$	3 p

SUBIECTUL al III-lea (30		ouncte)
1.a)	$f'(x) = -\frac{1}{x^2} + \frac{1}{x}, \ x \in (0, +\infty)$	2p
	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) = \frac{1}{4}$	3p
b)	f(1)=1, f'(1)=0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = 1$	3 p
c)	$x \in (0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$	2p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	2 p
	$f(x) \ge f(1) \Rightarrow f(x) \ge 1$ pentru orice $x \in (0, +\infty)$	1p
2.a)	$\int_{0}^{1} (x+1)f(x)dx = \int_{0}^{1} x^{2}dx =$	2p
	$=\frac{x^3}{3}\Big _0^1=\frac{1}{3}$	3р
b)	$\int_{1}^{e} (x+1) f(x) \ln x dx = \int_{1}^{e} x^{2} \ln x dx =$	2p
	$= \left(\frac{x^3}{3} \cdot \ln x\right) \Big _{1}^{e} - \int_{1}^{e} \frac{x^2}{3} dx = \frac{2e^3 + 1}{9}$	3p
c)	$\int \frac{x^2}{x+1} dx = \int \left(x - 1 + \frac{1}{x+1}\right) dx = \frac{x^2}{2} - x + \ln(x+1) + C \Rightarrow F(x) = \frac{x^2}{2} - x + \ln(x+1) + C$	3p
	$F(0) = 1 \Rightarrow c = 1$	1p
	$F(e-1) = \frac{e^2 - 4e + 7}{2}$	1p