

ADT & Cadence Virtuoso LAB (7) Report

By: Magdy Ahmed Abbas Abdelhamid

Analog Electronics Workshop

GM/ID DESIGN METHODOLOGY

Part 1

GM/ID DESIGN CHART

5T - OTA Required Specifications

DC Current (I _{REF})	10 μΑ.
Supply (V _{DD})	1.8 V.
$\mathbf{V_{DS}} = \frac{\mathbf{V_{DD}}}{3}$	0.6 V.
Length (L)	0. 18 μm, 0. 4μm: 0. 4μm: 2μm.
Load	5 pF.
Open loop DC Voltage gain	≥ 34 dB.
CMRR @ DC	≥ 74 dB.
Phase Margin	≥ 70 °
OTA Current Consumption	≤ 20 μA.
CM Input Range – Low	≤ 0.8 V.
CM Input Range – High	≥ 1.5 V.
GBW	≥ 5 MHZ.

Using ADT Device Xplore, plot the following design charts vs gm/ID for PMOS.

(1) g_m/g_{ds}

(2) I_D/W

(3) g_m/C_{gg} (Use Advanced Y Expression)

(4) V_{GS}

Using ADT Device Xplore, plot the following design charts vs gm/ID for NMOS.

(5) g_m/g_{ds}

(6) I_D/W

(7) g_m/C_{gg} (Use Advanced Y Expression)

- 0

· 0 - 0 - 0 0 . 0

0 : 0 : 0

. 0

V_{GS} **(8)**

OTA DESIGN

Report the following:

- ❖ Detailed design procedure and hand analysis. You need to explain why you chose the architecture that you implemented (Topology Selection).
- The Required gain is not High (only $34 \ dB = 50$) So it Can be Achieved by a Simple Single Stage OTA.
 - o If The Gain is High, We Must use Cascode or Two Stage OTA.
- Since The Required CMIR is Close to V_{DD} , we need to use a NMOS input Stage (CMIR $\rightarrow V_{in}=0.8-1.5$).
- NMOS input Stage has Other Advantages as Well
 - NMOS has Low input bias current, and High input impedance.
 - **O NMOS has Lower input voltage noise, and Faster response time.**
- Single Stage OTA has a Single Dominant Pole, so we Don't need to Worry about Phase Margin.
 - For two Stage you Must use Compensation Network.
- Use Simple Current Mirror for Biasing.
 - \circ The Reference Current is 10 μA.
 - \circ Doubled by Mirror Such That 20 μA goes to Diff. Pair (10 $\mu A)$ for Each Branch.

❖ hand analysis:

❖ Design of Input Pair.

- $\begin{array}{l} \bullet \quad GBW = \frac{g_{m_{1,2}}}{2\pi C_L} \; \text{,} \; g_{m_{1,2}} = 2\pi \times 5p \times 5M \approx 160 \; \mu\text{S}. \\ I_D = \frac{20\mu}{2} = 10 \; \mu\text{A} \; \text{,} \\ \frac{g_m}{I_D} = 16 \; \text{S/A}, \; r_o = \frac{2A_v}{g_m} \text{,} \; g_{ds} = \frac{1}{r_o} \end{array}$
- Next, we need to Find the Channel Length to get the Required Gain.
- We Assume PMOS and NMOS have Same g_{ds}

$$\bigcirc \ \ g_{ds_{1,2}} = g_{ds_{3,4}} = 2 \ \mu\text{S, } A_v = \frac{g_m r_o}{2} \rightarrow \frac{g_m}{g_{ds}} > 80$$

$$\odot \ \frac{g_m}{g_{ds}} = 2A_v = g_m r_o$$
 , $\frac{g_m}{I_D} = 16$, $L = 570nm$ (From Design Chart).

• Going to the
$$\frac{I_D}{W}$$
 Chart $\rightarrow W=3.8~\mu m$, $r_o=\frac{2A_v}{g_m}$, $g_{ds}=\frac{1}{r_o}$

❖ Design of Current Mirror Load. (Using ADT PMOS Charts)

- From the DC gain Spec Select the Length of the Current Mirror Load.
- $\lambda = \frac{g_{ds}}{I_D} = \frac{g_m/I_D}{g_m/g_{ds}}$ Slightly Increase With $\frac{g_m}{I_D}$ (Weak Dependence).
- Assume an Arbitrary but Large $\frac{g_m}{I_D}$, e.g., $\frac{g_m}{I_D}=10 \to get \ g_m=100 \ \mu S$.
- Then then from $\frac{g_m}{g_{ds}}$ Chart \rightarrow get L.
- The Design of the Current Mirror Load is Determined by CMIR, noise, and Output Swing Specs.

$$\circ \ CMIR_{HIGH} = V_{DD} - \left| V_{GS_3} \right| + V_{GS_1} - V_{dsat_1} < 1.5 \ V.$$

• Get V_{GS_1} and V_{dsat_1} (or Use V_1^*)

$$\circ \ \ \mathbf{1.5} = V_{DD} - \left| V_{GS_3} \right| + V_{GS_1} - V_{dsat_1}$$

• Go to $\frac{I_D}{W}$ Chart \rightarrow Get W

❖ Design of Tail Current Source. (Using ADT NMOS Charts)

8

•
$$A_{vCM}=rac{V_{out}}{V_{ICM}}pprox -rac{1}{2g_{m_2}}$$
 , $R_{ss}=r_o>500~k\Omega$, $g_{ds}<2~\mu S$.

• CMRR =
$$\frac{A_v}{A_{vCM}} \approx g_{m_{1,2}} (r_{o_1} / / r_{o_2}).2g_{m_{3,4}} R_{SS}$$

- $\lambda = \frac{g_{ds}}{I_D}$ Slightly Increase With $\frac{g_m}{I_D}$ (Weak Dependence).
- $\bullet \quad \text{Assume an Arbitrary but Large} \, \tfrac{g_m}{I_D} \to get \, L$
- $CMIR_{LOW} = V_{GS_b} + V_{dsat_0} = 0.8 V.$
- The Tail Current Source Has Double the Current.
- Going to the $\frac{I_D}{W}$ Chart \rightarrow get W.

$$\begin{aligned} \text{Table Showing W, L, } g_m, I_D, &\frac{g_m}{I_D}, V_{dsat}, V_{ov} = V_{GS} - V_{th}, V^* = \frac{2I_D}{g_m} \\ \text{For All Transistors} \left(\text{As Calculated From } \frac{g_m}{I_D} \text{Curves} \right) \end{aligned}$$

• From the Design Charts:

	la de la Dada	Current	Tail Current Source	
Transistors	stors Input Pair Mirror M1 & M2 Loads M3 & M4		MO	Mb
W	3.8 μm.	4. 2 μm.	6.3 μm.	3. 14 μm.
L	570 nm.	535 nm.	1.4 μm.	1.4 μm.
$\mathbf{g}_{\mathbf{m}}$	160 μS.	100 μS.	200 μS.	100 μS.
I _D	10 μΑ.	10 μΑ.	20 μΑ.	10 μΑ.
$\frac{g_m}{I_D}$	16	10	10	10
V _{dsat}	98 mV.	167 mV.	158 mV.	158 mV.
$V_{\rm ov} = V_{\rm GS} - V_{\rm th}$	114 mV.	195 mV.	165 mV.	165 mV.
$V^* = \frac{2I_D}{g_m}$	125 mV.	200 mV.	200 mV.	200 mV.

OPEN LOOP OTA SIMULATION

Schematic

(1) Schematic of the OTA with DC node voltages clearly annotated.

4 DC Analysis

- \blacksquare Is the current (and g_m) in the input pair exactly equal? (YES).
- Yes, Currents and g_m are the Same.

IEEE_Workshop:LAB_7_PART_3_tb:1	gm_M1	163.6u
IEEE_Workshop:LAB_7_PART_3_tb:1	gm_M2	163.6u
IEEE_Workshop:LAB_7_PART_3_tb:1	ID_M1	9.956u
IEEE_Workshop:LAB_7_PART_3_tb:1	ID_M2	9.956u

$$g_{m_1} = g_{m_2} = 163.6 \mu S.$$

 $I_{D_1} = I_{D_2} = 9.956 \mu A.$

♣ What is DC voltage at VOUT? Why?

♠ VOUT ×	
_ VIDAC	VOUT (V)
1 0.000	1.171

- Simulation: VOUT = 1.171 V its Constant Value for VOUT as We Run DC Analysis With VICM = 1.15 V Approximatly Equals VOUT As it's following the diode connected node.
- Hand Analysis: $VOUT_{DC} = V_{DD} V_{GS_{3,4}} = 1.8 0.629 = 1.171 \text{ V}.$

(2) Diff. Small Signal CCS: -

AC Analyis

Test	Name	Туре	Details	EvalType	Plot	Save
IEEE	Ao	expr	ymax(mag(v("/VOUT" ?result "ac")))	point	✓	
IEEE	Ao_dB	expr	dB20(ymax(mag(v("/VOUT" ?result "	point	✓	
IEEE	BW	expr	bandwidth(mag(v("/VOUT" ?result "a	point	✓	
IEEE	fu	expr	unityGainFreq(mag(v("/VOUT" ?resu	point	✓	
IEEE	GBW	expr	(Ao * BW)	point	✓	

Test	Output	Nominal
IEEE_Workshop:LAB_7_PART_3_tb:1	Ao	56.35
IEEE_Workshop:LAB_7_PART_3_tb:1	Ao_dB	35.02
IEEE_Workshop:LAB_7_PART_3_tb:1	BW	90.92k
IEEE_Workshop:LAB_7_PART_3_tb:1	fu	5.143M
IEEE_Workshop:LAB_7_PART_3_tb:1	GBW	5.123M

♣ Plot diff gain (in dB) vs frequency.

4 Compare simulation results with hand calculations in a table.

Specs.	Simulation	Hand Analysis
A _o	56.35	$g_{m_{1.2}} * \frac{r_o}{2} = 55.64$
A_{odB}	35.02 dB	34.01 dB.
BW	90.92 KHZ	$\frac{1}{2\pi RC_L} = 95.5 \text{ KHZ}$
fu	5. 143 MHZ	$\frac{g_m}{2\pi C_L} = 5.21 \text{ MHZ}$
GBW	5. 123 MHZ	$\mathbf{A_{v}} * \mathbf{BW} = 5.31 \mathbf{MHZ}$

CM Small CCS: -

4 AC Analysis

- 🗹 🖪 VICM 1.15 · ☑ ඕ VICMAC

- 🗾 🖽 VID

0 · 🗾 🔠 VIDAC 0

4 Plot CM gain in dB vs frequency.

1

Compare simulation results with hand calculations in a table.

Test	Output	Nominal
IEEE_Workshop:LAB_7_PART_3_tb:1	Ao	6.382m
IEEE_Workshop:LAB_7_PART_3_tb:1	Ao_dB	-43.9
IEEE_Workshop:LAB_7_PART_3_tb:1	BW	90.93k
IEEE_Workshop:LAB_7_PART_3_tb:1	GBW	580.3
IEEE_Workshop:LAB_7_PART_3_tb:1	CM Gain	<u></u>

Specs.	Simulation	Hand Analysis
A _o	6.382m	$\frac{1}{2g_{m_{3,4}}R_{ss}} = 6.11m$
A_{odB}	-43.9 dB	-44.1 dB

(4) CMRR

4 Compare simulation results with hand calculations in a table.

Specs.	Simulation	Hand Analysis
CMRR	78.919 dB	$2g_{m_{3,4}}R_{ss}g_{m_{1,2}}*\frac{r_o}{2}=78.172 \text{ dB}$

(5) Diff large signal ccs: -

♣ Plot VOUT vs VID.

- \blacksquare From the plot, what is the value of Vout at VID = 0? Why?
 - This Value is the Same like that we Get Before (DC Value). And its Following the Diode Connection. $VOUT_{DC}=V_{DD}-V_{GS_{3.4}}=1.8-0.629=1.171\,V.$

Compare the peak with Avd .

The Peak = 56.5318 Approximately equals to Avd = 56.35

(6) CM large signal ccs (region vs VICM): -

♣ Plot "region" OP parameter vs VICM for the input pair and the tail current source (0 cut-off, 1 triode, 2 sat, 3 subth, and 4 breakdown).

• As We See input pair and the tail current source Transistors All in Saturation Region in VICM Range from 0.8 V to V_{DD} .

CLOSED LOOP OTA SIMULATION

(1) Closed Loop

4 Is the current (and gm) in the input pair exactly equal? Why?

Test	Output	Nominal
IEEE_Workshop:LAB_7_PART_4_tb:1	ID_M1	9.498u
IEEE_Workshop:LAB_7_PART_4_tb:1	gm_M1	156.8u
IEEE_Workshop:LAB_7_PART_4_tb:1	ID_M2	9.877u
IEEE_Workshop:LAB_7_PART_4_tb:1	gm_M2	160.9u

Not Equal, As the Feedback Loop Connected to Output Node Return to one of the Inputs, so $V_{\rm in}$ in two Inputs Not Equal.

therefore $I_1 \neq I_2$, $g_{m_1} \neq g_{m_2}$

- **4** Calculate the Mismatch in *ID* and gm.
 - Mismatch $(I_D) = 0.379 \, \mu A = 379 \, nA$.
 - Mismatch $(g_m) = 4.1 \mu S$.

♣ Plot loop gain phase vs frequency.

Compare DC gain and GBW with those obtained from open-loop simulation. Comment.

GBW	5.117M
Phase Margin	90.55
DC Gain	56.5

Gain is the same of the open loop gain because the feedback is unity gain (Beta = 1).

4 Compare simulation results with hand calculations in a table.

P.O.C	Simulation	Hand	
DC Gain	56.5	$A_{v}*\beta=56.35$	
GBW	5. 117 MHZ	$\frac{g_m}{2\pi C_L} = 5.1216 \text{ MHZ}$	

Specs. Achieved

Specs	Required	Achieved
DC Current (I _{REF})	10 μΑ.	
Supply (V _{DD})	1.8 V.	
Load	5 pF.	
Open loop DC Voltage gain	≥ 34 dB.	35.02 dB.
CMRR @ DC	≥ 74 dB.	78. 92 dB.
Phase Margin	≥ 70 °	90.55°
OTA Current Consumption	$\leq 20 \; \mu A$.	20 μΑ.
CM Input Range – Low	$\leq 0.8 \text{ V}.$	0.75 V.
CM Input Range – High	≥ 1.5 V.	1.8 V.
GBW	≥ 5 MHZ.	5. 117 MHZ.