ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (государственный технический университет)

Кафедра 304

(вычислительные машины, системы и сети)

Лабораторная работа по курсу «Автоматизация проектирования»

	Отчёт по работе <u>№2</u> .	
Канальна	ая трассировка соединений в (наименование работы)	з БИС
	(
	Вариант задания <u>№2</u> .	
Лабораторную работ		
<u>студент гр. 13-501, Р</u> (должность)	Резвяков Денис Михайлович (Ф. И. О.)	(подпись)
Лабораторную работ	у принял:	
доцент каф. 304, Сило (должность)	аева Татьяна Александровна (Ф. И. О.)	(подпись)
	(<u>)</u>	<u>па приёма)</u> 2010 г.

Цель работы: Изучить и практически овладеть алгоритмами канальной трассировки соединений в БИС.

Задание

Протрассировать соединения в следующей БИС:

Порядок выполнения работы

- **1.** Построить расположение горизонтальных отрезков цепей без привязки их к магистралям и на основе этого граф горизонтальных ограничений.
- **2.** Получить граф вертикальных ограничений, найти в нём ориентированный цикл.
- **3.** Устранить этот цикл в соответствии с первым способом (представляя одну цепь двумя горизонтальными отрезками) и построить граф вертикальных ограничений без циклов.
- 4. Получить обобщённых граф ограничений.
- **5.** Согласно алгоритму провести трассировку соединений в горизонтальном канале БИС при первом способе устранения цикла.
- **6.** Устранить найденный в п. 2 ориентированный цикл в соответствии со вторым способом (меняя местами два контакта).
- **7.** Для полученного в п. 6 расположения контактов построить горизонтальные отрезки цепей без привязки их к магистралям,

графы горизонтальных и вертикальных ограничений, обобщённый граф ограничений, согласно алгоритму провести трассировку соединений в горизонтальном канале БИС при втором способе устранения цикла.

8. Проанализировать результаты и сформулировать выводы.

1-2. Отрезки цепей и графы

В соответствии с расположением контактов горизонтальные отрезки должны быть расположены следующим образом:

По расположению горизонтальных отрезков можно постро- ить граф горизонтальных и вертикальных ограничений:

3-5. Трассировка с устранением цикла первым способом

Разобьём горизонтальный отрезок цепи первой магистрали на два отрезка:

Получим новые графы ограничений:

И по ним получим обобщённый граф ограничений (стр. 5).

На обобщённом графе ограничений найдём такие вершины, у которых нет входящих дуг. Это вершины 1', 2 и 5. Отрезок цепи 1' проходит по абсциссам 2–5, отрезок 2 — по 7–9, и 5 — по 4–8. Левее всех располагается отрезок цепи 1', поэтому помещаем его на схеме и «забираем» вершину из графа со всеми

принадлежащими ей дугами. Далее по порядку располагается отрезок цепи 5, но он перекрывается отрезком цепи 1', поэтому пока оставляем его. Отрезок цепи 2 не пересекается с отрезком 1', поэтому также помещаем его на схеме и «забираем» из графа.

Теперь на графе есть следующие вершины без входящих дуг: 3, 5 и 6. Из них по аналогии мы можем поместить на схеме отрезки цепей 3 и 6 — во второй горизонтальной магистрали.

Далее забираем вершины 4 и 5, потом 1' и 8; и в конце — 7.

В результате получается следующая схема канала:

6-7. Трассировка с устранением цикла вторым способом

Для устранения ориентированного цикла поменяем местами нижние контакты 1 и 7. Тогда получим следующую схему:

Для этой схемы построим графы горизонтальных и вертикальных ограничений:

По ним построим граф обобщённых ограничений.

Аналогично первому способу: у вершин 1, 2 и 5 — нет входящих дуг. Из них мы можем забрать вершины 1 и 2, а 5 — оставляем, т.к. отрезок цепи 5 перекрывает отрезки цепей 1 и 2.

Теперь на графе есть следующие вершины без входящих дуг: 3, 5 и 6. Из них по аналогии мы можем поместить на схеме отрезки цепей 3 и 6 — во второй горизонтальной магистрали.

В третьей горизонтальной магистрали аналогично добавляем отрезки цепей 4 и 5. И в четвёртой — 7 и 8.

В результате получаем следующую схему:

8. Вывод

В данной простой задаче решение напрашивается интуитивно, либо его можно быстро подобрать. Однако в Больших Интегральных Схемах такая трассировка является очень полезным механизмом разводки больших схем. К тому же алгоритм легко запрограммировать, а вычисления практически полностью автоматизировать.