Linear Algebra Class on 26 January

Seanie Lee

26 January 2019

2.1 Linear Transformation

Definition. V, W are vector spaces over \mathbb{R} . L: V \longrightarrow W is \mathbb{R} -linear map if $\mathbf{L}(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{L}\mathbf{v}_1 + \mathbf{L}\mathbf{v}_2$ and $\mathbf{L}(c\mathbf{v}) = c\mathbf{L}\mathbf{v}$. In other words L is called vector space homomorphism.

Properties

- 1. L0 = 0
- 2. $\mathbf{L}(-\mathbf{v}) = -\mathbf{L}\mathbf{v}$
- 3. $\mathbf{L}(a\mathbf{v}_1 + b\mathbf{v}_2) = a\mathbf{L}\mathbf{v}_1 + b\mathbf{L}\mathbf{v}_2$

1.
$$Proof.$$
 $L0 = L(0+0) = L0 + L0$

2. Proof.
$$\mathbf{L}(-\mathbf{v}) = \mathbf{L}(-1 \cdot \mathbf{v}) = -\mathbf{L}\mathbf{v}$$

3. Proof.
$$\mathbf{L}(a\mathbf{v}_1 + b\mathbf{v}_2) = \mathbf{L}(a\mathbf{v}_1) + \mathbf{L}(b\mathbf{v}_2) = a\mathbf{L}\mathbf{v}_1 + b\mathbf{L}\mathbf{v}_2$$

Remark. $\mathfrak{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for \mathbf{V} and $\mathbf{L} : \mathbf{V} \longrightarrow \mathbf{W}$ is linear. Then $\mathbf{L}(\sum_{i=1}^n a_i \mathbf{v}_i) = \sum_{i=1}^n a_i \mathbf{L} \mathbf{v}_i$ $\therefore \mathbf{L}$ is completely determined by $\mathbf{L} \mathbf{v}_i$ for $i = 1, \dots, n$

Theorem (Linear Extension Theorem). \mathbf{V}, \mathbf{W} is vector space. Let $\mathfrak{B} := \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis for \mathbf{V} and $f: \mathfrak{B} \longrightarrow \mathbf{W}$ and be a function. Then There is unique $\mathbf{L}: \mathbf{V} \longrightarrow \mathbf{W}$ linear map such that $\mathbf{L}|_{\mathfrak{B}} = f(\iff \mathbf{L}\mathbf{v}_i)$ for $i = 1, \dots, n$)

Proof. 1. existence

Define
$$\mathbf{L}: \mathbf{V} \longrightarrow \mathbf{W}$$
 by $\mathbf{L}(\sum_{i=1}^{n} a_i) \mathbf{v}_i := \sum_{i=1}^{n} a_i f(\mathbf{v}_i)$. For each $i = 1, \dots, n$

$$\mathbf{L}\mathbf{v}_{i} = \mathbf{L}(0\mathbf{v}_{1} + \dots + 1\mathbf{v}_{i} + \dots + 0\mathbf{v}_{n})$$

$$= 0f(\mathbf{v}_{1}) + \dots + f(\mathbf{v}_{i}) + \dots + f(\mathbf{v}_{n})$$

$$= f(\mathbf{v}_{i})$$

$$\therefore \mathbf{L}|_{\mathfrak{B}} = f$$

2. linearity of L

For
$$\sum_{i=1}^{n} a_i \mathbf{v}_i$$
, $\sum_{i=1}^{n} b_i \mathbf{v}_i \in \mathbf{V}$

$$\mathbf{L}(\sum_{i=1}^{n} a_i \mathbf{v}_i + \sum_{i=1}^{n} b_i \mathbf{v}_i) = \mathbf{L}(\sum_{i=1}^{n} (a_i + b_i) \mathbf{v}_i)$$

$$= \sum_{i=1}^{n} (a_i + b_i) \mathbf{L} \mathbf{v}_i$$

$$= \sum_{i=1}^{n} a_i \mathbf{L} \mathbf{v}_i + \sum_{i=1}^{n} b_i \mathbf{L} \mathbf{v}_i$$

$$= \sum_{i=1}^{n} a_i f(\mathbf{v}_i) + \sum_{i=1}^{n} b_i f(\mathbf{v}_i)$$

$$= \mathbf{L}(\sum_{i=1}^{n} a_i \mathbf{v}_i) + \mathbf{L}(\sum_{i=1}^{n} b_i \mathbf{v}_i)$$

3. uniqueness

Let $M: \mathbf{V} \longrightarrow \mathbf{W}$ be linear map such that $\mathbf{M}|_{\mathfrak{B}} = f$. For any $\sum_{i=1}^{n} a_i \mathbf{v}_i \in \mathbf{V}$,

$$\mathbf{L}(\sum_{i=1}^{n} a_i \mathbf{v}_i) = \sum_{i=1}^{n} a_i f(\mathbf{v}_i)$$

$$= \sum_{i=1}^{n} a_i \mathbf{M} \mathbf{v}_i$$

$$= \mathbf{M}(\sum_{i=1}^{n} a_i \mathbf{v}_i)$$

$$\therefore \mathbf{L} = \mathbf{M}$$

Definition.

 $\mathrm{Let}\;\mathbf{L}:\mathbf{V}\longrightarrow\mathbf{W}\;\mathrm{be\;linear\;map.}\;\ker\mathbf{L}\coloneqq\{\mathbf{v}\in\mathbf{V}\mid\mathbf{L}\mathbf{v}=\mathbf{0}\}\;\mathrm{im}\mathbf{L}\coloneqq\{\mathbf{L}\mathbf{v}\in\mathbf{W}\mid\mathbf{v}\in\mathbf{V}\}$

Theorem. Let $\varphi : \mathbf{V} \longrightarrow \mathbf{W}$ be linear map. Then $\ker \varphi = \mathbf{O} \iff \varphi$ is one to one.

Proof. \Longrightarrow Suppose that $\varphi \mathbf{v}_1 = \varphi \mathbf{v}_2 \mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V}$. By linearity $\varphi(\mathbf{v}_1 - \mathbf{v}_2) = \mathbf{0}$, which implies that $\mathbf{v}_1 - \mathbf{v}_2 \in \ker \varphi$. Since $\ker \varphi = \mathbf{0}$, $\mathbf{v}_1 = \mathbf{v}_2$

 \Leftarrow Let $\mathbf{v} \in \ker \varphi$ be given. Since φ is linear map, $\varphi \mathbf{0} = \mathbf{0}$. Also $\varphi \mathbf{v} = \mathbf{0}$ for $\mathbf{v} \in \ker \varphi$. Since φ is one to one, $\varphi \mathbf{v} = \varphi \mathbf{0} \implies \mathbf{v} = \mathbf{0}$ ∴ φ is one to one.

Theorem. Let $\varphi : \mathbf{V} \longrightarrow \mathbf{W}$ be linear map. φ is one-to-one $\iff [\{\mathbf{v}_1, \dots, \mathbf{v}_k\} \text{ is linearly independent subset of } \mathbf{W}]$

Proof. \Longrightarrow Suppose that $\sum_{i=1}^k a_i \varphi(\mathbf{v}_i) = \mathbf{0}$. Then left-hand-side is $\varphi(\sum_{i=1}^k a_i \mathbf{v}_i) = \mathbf{0}$. Since φ is one-to-one

 $\sum_{i=1}^k a_i \mathbf{v}_i = \mathbf{0}.$ Since $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly independent, all a_i is zero. $(\varphi \mathbf{v}_1, \dots, \varphi \mathbf{v}_k)$ is linearly

independent.

 \Leftarrow Suppose $\varphi \mathbf{v} = \varphi \mathbf{v}'$

$$\varphi \mathbf{v} - \varphi \mathbf{v}' = \mathbf{0}$$
$$\varphi (\mathbf{v} - \mathbf{v}') = \mathbf{0}$$
$$\mathbf{v} - \mathbf{v} = \mathbf{0}$$

Suppose $\mathbf{v} - \mathbf{v}' \neq \mathbf{0}$. Then $\{\mathbf{v} - \mathbf{v}'\}$ is linearly independent subset of \mathbf{V} , but $\{\varphi(\mathbf{v} - \mathbf{v}')\} = \{\mathbf{0}\}$ is linearly dependent subset of \mathbf{W} . But it contradicts to the assumption. $\mathbf{v} = \mathbf{v}'$ φ is one-to-one.

Theorem. Let $\varphi : \mathbf{V} \longrightarrow \mathbf{W}$ be linear map. φ is onto $\iff [spanS = \mathbf{V}\varphi span = \mathbf{W}S]$

Proof. \Longrightarrow Put $S := \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ then $\varphi S := \{\varphi \mathbf{v}_i, \dots, \varphi \mathbf{v}_k\}$

Suppose $\mathbf{w} \in \mathbf{W}$ be given. Since φ is onto, there are some $\mathbf{v} \in \mathbf{V}$ such that $\mathbf{w} = \varphi \mathbf{v}$. Since S is spanning set, so $\mathbf{v} = \sum_{i=1}^k a_i \mathbf{v}_i$ and $\mathbf{w} = \varphi(\sum_{i=1}^k a_i \mathbf{v}_i)$. Since φ is linear map, $\mathbf{w} = \sum_{i=1}^k a_i \varphi \mathbf{v}_i$

 $\mathbf{v} \in \operatorname{span}\varphi S$

 \Leftarrow Suppose $S := \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ and $\operatorname{span} S = \mathbf{V}$. Then $\operatorname{span} \varphi S = \mathbf{W}$ by the assumption. Since φS is spanning set of \mathbf{W} , $\mathbf{w} = \sum_{i=1}^k a_{\varphi} \mathbf{v}_i = \varphi(\sum_{i=1}^k a_i \mathbf{v}_i)$

 $\therefore \varphi \text{ is onto.}$

Corollary. Let $\varphi : \mathbf{V} \longrightarrow \mathbf{W}$ be linear map. φ is bijective $\iff [\mathfrak{B} \text{ is a basis for } \mathbf{V} \Longrightarrow \varphi \mathfrak{B} \text{ is a basis for } \mathbf{W}]$

Proof. By previous two theorems, it's trivial to show that φ is bijective \iff [\mathfrak{B} is a basis for $\mathbf{V} \Longrightarrow \varphi \mathfrak{B}$ is a basis for \mathbf{W}]

Theorem (Dimension Theorem). Let $\varphi : \mathbf{V} \longrightarrow \mathbf{W}$ be linear map. Then $\dim \mathbf{V} = \dim(\ker \varphi) = \dim(im\varphi)$

Proof. Take a basis $\mathfrak{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of $\ker \varphi$. Extend $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ to a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots \mathbf{v}_n\}$ for \mathbf{V} by the basis extension theorem. We want to show $\mathfrak{C} = \{\varphi \mathbf{v}_{k+1}, \dots, \varphi \mathbf{v}_n\}$ is a basis for $\operatorname{im} \varphi$. First we show that \mathfrak{C} is linearly independent subset of \mathbf{W} . Suppose that $\sum_{i=k+1}^n a_i \varphi \mathbf{v}_i = \mathbf{0}$. Since φ is

linear map, $\sum_{i=k+1}^{n} a_i \varphi \mathbf{v}_i = \varphi(\sum_{i=k}^{n} a_i \mathbf{v}_i) = \mathbf{0}. \sum_{i=k+1}^{n} a_i \mathbf{v}_i \ker \varphi$,

$$a_{k+1}\mathbf{v}_{k+1} + \dots + a_n\mathbf{v}_n = b_1\mathbf{v}_1 + \dots + b_k\mathbf{v}_k$$
$$b_1\mathbf{v}_1 + \dots + b_k\mathbf{v}_k - a_{k+1}\mathbf{v}_{k+1} - \dots - a_n\mathbf{v}_n = \mathbf{0}$$

Since $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for \mathbf{V} , all $a_i, b_j = 0$ for $i = k + 1, \dots, n$ and for $j = 1, \dots, n$. $\therefore \{\varphi \mathbf{v}_{k+1}, \dots, \varphi \mathbf{v}_n\}$ is linearly independent. Next, we want to show that $\operatorname{im} \varphi = \operatorname{span}\{bv_{k+1}, \mathbf{v}_n\}$. Let $\varphi \mathbf{v} \in \operatorname{im} \varphi$ be given. Put $\mathbf{v} = a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n$

$$\varphi \mathbf{v} = \varphi(\sum_{i=1}^{n} a_i \mathbf{v}_i)$$

$$= a_1 \varphi \mathbf{v}_1 + \dots + a_k \varphi \mathbf{v}_k + a_{k+1} \varphi \mathbf{v}_{k+1} + \dots + a_n \varphi \mathbf{v}_n$$

$$(\because a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k \in \ker \varphi)$$

$$= a_{k+1} \varphi \mathbf{v}_{k+1} + \dots + a_n \varphi \mathbf{v}_n \in \operatorname{span}{\{\mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}}$$

$$\therefore \dim(\ker \varphi) + \dim(\operatorname{im} \varphi) = k + (n - k) = n = \dim \mathbf{V}$$

Theorem (Pigeon hole principle for finite dimensional vector space). Let $\varphi : \mathbf{V} \longrightarrow \mathbf{W}$ be linear map with dim $\mathbf{V} = \dim \mathbf{W}$. Then the followings are equivalent.

- (1). φ is one-to-one (\iff dim $\mathbf{V} = \dim(im\varphi)$)
- (2). φ is onto \iff im $\varphi = \mathbf{W}$)
- (3). φ is bijection

Proof. (1) \Longrightarrow (2) Since φ is linear map, if S is spanning set for \mathbf{V} , φS is spanning set for $\mathrm{im}\varphi(\because S := \{\mathbf{v}_1, \dots, \mathbf{v}_k\}, \ \forall \mathbf{v} \in \mathbf{V}, \mathbf{v} = a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k, \ \varphi \mathbf{v} = a_1\varphi\mathbf{v}_1 + \dots + a_k\varphi\mathbf{v}_k)$. Let \mathfrak{B} be a basis for \mathbf{V} . Since φ is one-to-one, $\varphi \mathfrak{B}$ is spanning set and linearly independent subset for $\mathrm{im}\varphi$. i.e., \therefore dim $\mathbf{W} = \dim \mathbf{V} = \dim \mathrm{im}\varphi$. \therefore φ is onto.

 $(2) \Longrightarrow (2) \dim \mathbf{W} = \dim \mathbf{V} = \dim(\ker \varphi) + \dim(\operatorname{im} \varphi) = \dim \ker \varphi + \dim \mathbf{W}$. Since φ is onto, $\dim \operatorname{im} \varphi = \dim \mathbf{W}$, $\dim(\ker \varphi) = 0$. i.e., $\ker \varphi = \mathbf{O}$

$$\therefore \varphi$$
 is one-to-one.