Identical Particles:

Suppose we have, where χ_1 and χ_2 are two identical particles. $H = \frac{P_1^2}{2m} + \frac{P_2^2}{2m} + V_{pair}(|\chi_1 - \chi_2|) + V_{ext}(\chi_1) + V_{ext}(\chi_2)$

with permutation symmetry:

let particle 1 to be represented by IK'> particle 2 to be represented by IK'>

then under permutation: $V \otimes V \iff V \otimes V$

We define permutation operator Piz to exchange particle 1 and particle 2.

P2 (K'> & (K"> = (K"> & (K')

clearly we observe $P_{12} = P_{21}$ and $P_{12}^2 = 1$

hence $P_{12} = \pm | \Leftarrow eigenvalue$.

Now suppose we have observable operators that act on specific particle.

Now apply P12 on (1) and insert 1=P5 P12

P₁₂ A₁ P₁₂ P₁₂
$$|a'| \ge |a'| \ge |a'| \ge |a'| \ge |a'| \ge |a''| \ge |a$$

above equality is true when $P_{12} A_1 P_{12}^{-1} = A_2$

$$P_{12} A_1 P_{12}^{-1} = A_2$$

Now it we consider a permutation invariout Hamiltonian:

$$P_{12}HP_{12}^{-1}=H$$

(Suggests $P_{12},HJ=0 \Rightarrow P_{12}$ is constant of motion.

Now we introduce the eigenkets of P_{12} : $|k' k''\rangle$ $P_{12} |k' k''\rangle_{\pm} = \frac{1}{2} \left(|k'\rangle \otimes |k'\rangle \pm |k''\rangle \otimes |k'\rangle$ $P_{12} |k' k''\rangle_{\pm} = \pm |k' k''\rangle_{\pm}$ Now we can introduce P_{ij} , which exchanges farticle i and j

such: $P_{ij} |k'\rangle |k''\rangle \cdots |k'\rangle |k^{i+1}\rangle \cdots |k^{ij}\rangle \cdots = |k'\rangle |k''\rangle \cdots |k^{ij}\rangle |k^{i+1}\rangle \cdots |k^{ij}\rangle \cdots |k^$

	(Symmetrization Postulate:
5	⇒	Pij N identical bosons > = + N identical bosons>
	⇒	Bosons have integer spins.
Olary =	⇒	Pij N identical Fermione> = - N identical Fermione> Fermions have half-integer spins
	=>	Fermions have half-integer spins
	(Composite Systems: (Many bosons or termions make up one particles
		Boson + Fermion = Fermion
		Fermion + Fermion = Bason.
	-	Two particle / Two level systems
	k a	Distinguishable Particles
		la>la> la>lb> lb>la> lb>lb>) (Maxwell-Bultamox
	ь а	Indirtinguishable
		$ a\rangle(a)$ $\frac{1}{12}(a\rangle b\rangle + b\rangle a\rangle)$ $ b\rangle b\rangle$ Bason
		$\frac{1}{\sqrt{5}}(a\rangle b\rangle - b\rangle a\rangle)$ Termion
		(2 (10) (b) - 10/(w)

Two electron system

=) Since electrons are Fermions, the total wave function has eigenvalue -1 under Piz permutation.

PIL
$$\P(X_1, S_1; X_2, S_2) = -\P(X_2, S_2; X_1, S_1)$$

Position spin
(orbital) (±1)

Two electron total wave - function:

$$4(x_{1}, \delta_{1}; x_{2}, \delta_{2}) = 4_{\uparrow\uparrow}(x_{1}, x_{2}) | \uparrow\uparrow\rangle + 4_{\downarrow\downarrow}(x_{1}, x_{2}) | \downarrow\downarrow\rangle$$

$$+ 4_{\downarrow\uparrow}(x_{1}, x_{2}) | \downarrow\uparrow\rangle + 4_{\uparrow\downarrow}(x_{1}, x_{2}) | \uparrow\downarrow\rangle$$

Know
$$S_{1+2} = \hat{S}_1 + \hat{S}_2 = \hat{S}_1 \otimes 1 + 1 \otimes \hat{S}_2$$

$$S^2 = \int_{S^2=0}^{S^2=0} \rightarrow 0 \qquad Singlet \longrightarrow \frac{1}{2}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$S^2 = \int_{S^2=1}^{S^2=0} \rightarrow 2h^2 \qquad triplet \longrightarrow |\uparrow\uparrow\rangle$$

$$(Symmetric) \longrightarrow \frac{1}{2}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$

$$\downarrow |\downarrow\downarrow\rangle$$

then
$$P_{12}$$
 torb (x_1, x_2) $\chi(s_1, s_2) = t_{orb}(x_2, x_1) \chi(s_2, s_1)$

$$= -t_{orb}(x_1, x_2) \chi(s_1, s_2)$$

$$= -t_{orb}(x_1, x_2) \chi(s_1, s_2)$$

$$P_{12}$$
 orb P_{12} orb

Yorb (X1, X2): Itarb (X1,X2) |2 provides the probability of finding electron 1 in a whine element d^3x , and electron 2 in a whome element d^8x_2 . Consider 2 orbital states A. B: For I electron: $W_{A}(x) \begin{vmatrix} 1 \\ 1 \end{vmatrix} >$ or $W_{B}(x) \begin{vmatrix} 1 \\ 1 \end{vmatrix} >$ For 2 electrons Yorb $(x_1, x_2) = \overline{I_2} \left[w_B(x_1) w_B(x_2) \pm w_B(x_2) w_B(x_1) \right]$ Symmetric and anti-symmetric ambihation. then $|\gamma_{\text{orb}}(x_1, x_2)|^2 = \frac{1}{2} \left(d^3x_1 d^3x_2 + |W_{\text{g}}(x_1)|^2 |W_{\text{g}}(x_2)|^2 + |W_{\text{g}}(x_2)|^2 |W_{\text{g}}(x_1)|^2 \right)$ $\pm 2 \left[\frac{1}{W_{B}(x_{1})W_{B}(x_{2})W_{B}^{*}(x_{2})W_{B}^{*}(x_{1})} \right]$ exchange density What about finding the electron at the same position, i.e. $x_1 = x_2 = x$? $|\gamma_{orb}(x_1 = x, \chi_2 = \chi)|^2 = \int d^3x_1 d^3x_2 \left\{ |\omega_B(x)|^2 |\omega_B(x)|^2 + |\omega_B(x)|^2 |\omega_B(x)|^2 \right\}$ $|\gamma_{orb}(x,x)|^2 = \begin{cases} 0 & \text{if } \gamma_{orb}: \text{ ontisymmetric} \rightarrow \chi_{spin}: \text{ symmetric} \\ \text{Doubled if } \gamma_{orb}: \text{ symmetric} \rightarrow \chi_{spin}: \text{ onti-symmetric} \end{cases}$