

在劲量表象下求解n一p束缚态

晕现象

角劲量基下的傅里叶变换

束缚态波函数是束缚态在坐标表象下的投影

上周求解的是径向波函数

$$\phi(\vec{r}) = \langle \vec{r} \, | \, \phi \rangle$$

$$\phi_l^m(r) = \langle rlm \, | \, \phi \rangle$$

同样的束缚态可以投影到动量表象下

$$\phi(\overrightarrow{k}) = \langle \overrightarrow{k} | \phi \rangle$$

通过傅里叶变化可以实现坐标表象与动量表象之间的变换

$$egin{aligned} \sqrt{|a|} & = \frac{1}{N_1} (2\pi)^{-3/2} e^{i \overrightarrow{k} \overrightarrow{r}} \\ \int d^3k \ e^{i \overrightarrow{k} (\overrightarrow{r} - \overrightarrow{r'})} &= (2\pi)^3 \ \delta(\overrightarrow{r} - \overrightarrow{r'}) \\ \langle \overrightarrow{k'} \mid \overrightarrow{k} \rangle &= N_2 \ \delta(\overrightarrow{k'} - \overrightarrow{k}) \\ \langle \overrightarrow{r'} \mid \overrightarrow{r} \rangle &= N_3 \ \delta(\overrightarrow{r'} - \overrightarrow{r}) \end{aligned}$$

 N_1, N_2, N_3 满足 $N_1^2 N_2 N_3 = 1$ 我们选取 $N_1 = N_2 = N_3 = 1$

角劲量基下的傅里叶变换

分波展开

$$\langle \vec{r} \mid \overrightarrow{k} \rangle = (2\pi)^{-3/2} e^{i \vec{k} \cdot \vec{r}} = \sum_{lm} \sqrt{\frac{2}{\pi}} \frac{1}{kr} i^l F_l(kr) Y_{lm}^*(\hat{k}) Y_{lm}(\hat{r})$$

Coulomb wave function

Spherical Bessel函数与Coulomb wave函数的关系?

角劲量基下的傅里叶变换

$$\langle rlm \, | \, klm \rangle = \sqrt{\frac{2}{\pi}} \frac{1}{kr} i^l F_l(kr)$$

劲量表象下的势

坐标表象下的势
$$V(r) = V_0 \exp(-r^2/a^2)$$
 $a = 1.484$

上周我们解得

$$V_0 = -72.167 \; MeV$$

实际上"势"是算符
$$\langle r'lm|V|rlm\rangle = \frac{\delta(r-r')}{r^2}V(r)$$
 非定域 定域

动量表象下的势

$$\langle k'lm \, | \, V \, | \, klm \rangle = \int_0^\infty r^2 r'^2 \, dr dr' \, \langle k'lm \, | \, r'lm \rangle \langle rlm \, | \, V \, | \, rlm \rangle \langle rlm \, | \, klm \rangle$$

$$= \int_0^\infty r^2 r'^2 \, dr dr' \, \langle k'lm \, | \, r'lm \rangle \frac{\delta(r-r')}{r^2} V(r) \langle rlm \, | \, klm \rangle$$

$$= \frac{2}{\pi} \frac{1}{k'k} \int_0^\infty F_l(k'r) V(r) F_l(kr) dr$$

动量空间下水解np束缚态

束缚态薛定谔方程

$$(E - H) | \phi \rangle = 0$$

变换得

$$(E-T)|\phi\rangle = V|\phi\rangle$$
 \longrightarrow $|\phi\rangle = \frac{1}{E-T}V|\phi\rangle$

投影到劲量空间下

$$\langle klm \, | \, \phi \rangle = \int_0^\infty \frac{1}{E - \frac{(\hbar k)^2}{2\mu}} V_l(k, k') \langle k'lm \, | \, \phi \rangle k^{'2} \, dk'$$

取ħk=k 注意单位的变换

积分运算在数值运算中为求和运算

$$\phi(k_i) = \sum_{j} \left(k_j^2 \omega_j \frac{1}{E - \frac{k_i^2}{2\mu}} V_l(k_i, k_j) \phi(k_j) \right) A_{ij}$$

求解束缚态变成求解牵征值问题

$$\lambda \phi = \mathbf{A} \phi$$

当E值合适时 $\lambda=1$

Secant method

积分变求和

$$\int f(x)dx \approx \sum_{i} f(x_{i})\omega_{i}$$

Simpson Map

Gaussian Map

np1

TRNS Map

np2

(np1)/2

计算用单位

为了方便起见,把MeV统一变换成 fm^{-1}

通过 $\hbar c = 197.3269718 \ MeV \cdot fm$

此ぬ中子的质量为939.5983MeV,那么换算后为 $4.7616~fm^{-1}$

程序说明

makefile正确链接lapack库 LIB = -L .../lapack-3.9.0 -llapack -lrefblas

63 64 65 66 67 68

在pot.f中求势的傅里叶变化

144 145 146 147 148 149

在bound.f中计算A矩阵

87

subroutine eigenvalue(E,lambda,wf) 在bound.f中了解求奉征值

程序说明

!!!!secant method to find E1, iteration method to solve lambda

完善程序寻找到正确的束缚态

已知potential, 求该 potential所支持的束缚态

思考: 此果加深势阱深度使得该势不止支持一个束缚态, 那么该此何求解