

Using MLIR to test ReRAM cells

Maximilian Bartel EuroLLVM 2024

ReRam Cells – What are they?

Wei, Zhiqiang, et al. "Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism." 2008 IEEE international electron devices meeting. IEEE, 2008.

- Resistive Ram Cells (ReRam often called memristors) are a new type of electronic device
- Can switch between different levels of resistance
- Switch is non-volatile
- Read speeds comparable to SRAM
- They are not reliable yet

ReRAM – Why is it exciting?

Circuit

Characteristics

- Typically arranged in crossbars
- You get I with: $I = \sum_i U_i G_i$
- This is a multiply-accumulate (MAC) operation!
- Can apply multiple voltages at the same time: Operation is highly parallel and latency independent of number of voltages

ReRAM – Why is it exciting?

Circuit

We can use ReRam cells for highly efficient machine learning inference

... If they would work

We developed the NeuroBoad to test single devices and crossbars with real ML workloads

Space for the crossbar

Everything can be controlled with a custom python library

Linalg Matmul – The base operation we looked at

Using the transform dialect for custom op insertion and tiling to crossbar sizes

Resource: Transform Dialect Tutorial - Docs

```
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any op):
 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg0
 %1 = transform.get consumers of result %0[0]
 %2 = transform.get_producer_of_operand %1[1]
 %3 = transform.neuro.create.alloc %2
 %tiled_linalg_op, %loops:3 = transform.structured.tile_using_for %1[1, 0, 4, 16]
 %4 = transform.get_producer_of_operand %tiled_linalg_op[1]
 %5 = transform.neuro.create.write_matrix %3, %4
 %tiled_linalg_op_0, %loops_1 = transform.structured.tile_using_for %tiled_linalg_op[0, 1, 0]
 %6 = transform.get_producer_of_operand %tiled_linalg_op_0[0]
 %7 = transform.get_producer_of_operand %tiled_linalg_op_0[2]
 %8 = transform.neuro.create.matvec %3, %6, %7
  transform.neuro.replace cast reshape %tiled linalg op 0, %8
```


Using the transform dialect for custom op insertion and tiling to crossbar sizes

Resource: Transform Dialect Tutorial - Docs

```
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg0
  %1 = transform.get consumers of result %0[0]
  <del>%2 = transform.get_producer_of_operan</del> %1[1]
  %3 = transform.neuro.create.alloc %2
                <del>op, %loops:3 = transfor</del>h.structured.tile_using_for %1[1, 0, 4, 16]
     - transform.get_producer_of_operand %tiled_linalg_op[1]
  %5 = transform.neuro.create.write matrix %3, %4
  %tiled linalg op 0, %loops 1 - transform structured.tile_using_for %tiled_linalg_op[0, 1, 0]
  %6 = transform.get_producer_of_operand %tiled_linalg_op_0[0]
  %8 = transform.neuro.create.matvec %3, %6, %7
  transform.neuro.replace_cast_reshape %tiled_linalg_op_0, %8
```


Using the transform dialect for custom op insertion and tiling to crossbar sizes

Resource: Transform Dialect Tutorial - Docs

```
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg0
  %1 = transform.get consumers of result %0[0]
                                                                             Crossbar size
  <del>%2 = transform.get_producer_of_operan</del> %1[1]
  %3 = transform.neuro.create.alloc %2
                 <del>.op, %loops:3 - transfor</del>h.structured.tile_using_for %1[1, 0
     <u>- transform.get_producer_of_operand %tiled_li</u>nalg_op[1]
  %5 = transform.neuro.create.write matrix %3, %4
  %tiled linalg_op_0, %loops_1 = transform_structured.tile_using_for %tiled_linalg_op[0, 1, 0]
  %6 = transform.get_producer_of_operand %tiled_linalg_op_0[0]
  %8 = transform.neuro.create.matvec %3, %6, %7
  transform.neuro.replace_cast_reshape %tiled_linalg_op_0, %8
```


Convert to function call to match API of the NeuroBoard python package

```
func.func @matvec(%arg0: index, %arg1: memref<12xf32>, %arg2: memref<2x3xf32>) {
   neuro.matvec %arg0, %arg1, %arg2: (index, index, memref<12xf32>, memref<2x3xf32>)
   return
}
```


Casts to dynamic shapes, but can also collapse or expand shapes if necessary

```
func.func @matvec(%arg0: index, %arg1: memref<12xf32>, %arg2: memref<2x3xf32>) {
    %0 = memref.cast %arg1 : memref<12xf32> to memref<?xf32>
    %1 = memref.cast %arg2 : memref<2x3xf32> to memref<?x?xf32>
    call @neuro_matvec(%arg0, %arg0, %0, %1) : (index, index, memref<?xf32>, memref<?x?xf32>)
    return
}
func.func private @neuro_matvec(index, index, memref<?xf32>, memref<?x?xf32>)
```

Resource: LLVM IR Target - Docs

Python Execution Engine to simulate and to run on the NeuroBoard

```
weight_dict = {}
                                             Resource: mlir/test/python/execution engine.py - Tests
@ctypes.CFUNCTYPE(
None, ...,
ctypes POINTER(
make_nd_memref_descriptor(3, np.ctypeslib.as_ctypes_type(np.float32)),
), . . .
def neuro matvec(a, b, c, d):
  input = ranked_memref_to_numpy(c).astype(np.float32, copy=False)
  output = ranked_memref_to_numpy(d).astype(np.float32, copy=False)
  output[:] += np.dot(
    weight_dict[a][b : b + (input.size * output.size)].reshape(
      (-1, input.size),
    input.flatten(),
  return
```


Python Execution Engine to simulate and to run on the NeuroBoard

```
weight_dict = {}
                   "simulation"
                                             Resource: mlir/test/python/execution engine.py - Tests
@ctypes.CFUNCTYPE(
None, ...,
ctypes POINTER(
make_nd_memref_descriptor(3, np.ctypeslib.as_ctypes_type(np.float32)),
), . . . .
def neuro matvec(a, b, c, d):
  input = ranked_memref_to_numpy(c).astype(np.float32, copy=False)
  output = ranked_memref_to_numpy(d).astype(np.float32, copy=False)
  output[:] += np.dot(
    weight_dict[a][b : b + (input.size * output.size)].reshape(
      (-1, input⋅size),
    input.flatten(),
  return
```


Python Execution Engine to simulate and to run on the NeuroBoard

```
weight_dict = {}
                   "simulation"
                                             Resource: mlir/test/python/execution engine.py - Tests
@ctypes.CFUNCTYPE(
None, ...,
ctypes POINTER(
make_nd_memref_descriptor(3, np.ctypeslib.as_ctypes_type(np.float32)),
), . . .
def neuro matvec(a, b, c, d):
  output = ranked_memref_to_numpy(d).astype(np.float32, copy=False)
  output[:] += np.dot(
    weight_dict[a][b : b + (input.size * output.size)].reshape(
      (-1, input⋅size),
    input.flatten(),
```


Thank you for your attention!

