

Schedule

State of the course

Lesson 4 Review

Challenge

Notebook + resources

State of the course

- Lesson 1 Cleaning & Exploratory Data Pandas
- Lesson 2 Linear Regression & Decision Trees
- Lesson 3 FI, Random Forest Deep Dive
- Lesson 4 Unsupervised Learning
- Split
 - o PCA
 - Clustering
 - Future...

Today!

Agenda:

9:30 Machine Learning Lesson 4 + Work

11:30 Coffee break

11:45 Work

13:30 ;;??

¿Cómo aprendemos?

Revisar y entender la documentación

X Cómo preparar la 3ª Sesión

Atentos a las indicaciones para preparar este sábado:

Para ML, #3 - FI, Random Forest Deep Dive.

En este tercera semana vamos repasar conceptos de ML, y meternos de lleno en Random Forest (RF). Ya habéis experimentado, cada vez entenderéis más lo que estás practicando y, en concreto, RF es la mejor opción para continuar porque vamos a seguir trabajando sobre los mismos conceptos.

Para trabajar esta sesión vamos a ver las dos primeras lecciones de fast.ai. La idea es seguir el notebook que os dejamos mientras seguimos también ambos videos.

- Notebook para seguir junto con estos videos
- Video 1
- Video 2
- Tutorial Feature Importance

Tendremos preparados 3 ejercicios para este sábado y un Kahoot 🥮

Jugar con los datos

Aprendizaje cooperativo

Slack

- Dudas Técnicas
- Seguimiento semanal
- Recursos
- Proyectos
- Contacto con la Comunidad

(0)

Futuro

Unsupervised Learning

The future of machine learning is unsupervised learning.

supervised learning is the icing on the cake

Unsupervised learning is the cake itself Humans learn mostly through unsupervised learning: we absorb vast amounts of data from our surroundings without needing a label.

To reach true machine intelligence (i.e., a machine that thinks and learns for itself), ML needs to get better at **unsupervised** learning - it should learn without us having to feed it labels or explicit instructions.

We will have only scratched the surface in this class.

¿Y ahora?

K-Means

Clustering Task Clustering is a powerful unsupervised algorithm that detects naturally occurring patterns in the data.

Clustering splits data in order to find out how observations are similar on a number of different features.

We are not predicting a true Y.

The clusters are the model. We decide the number of clusters, represented as K.

PCA

What is Principal Component Analysis?

PCA finds which features are most correlated in a dataset, and removes them, leaving you with **the most** "**important**" **features** - i.e., the "principal components."

PCA is helpful for feature selection and engineering

Work!

• Review the notebooks from the lecture.

- <u>Challenge</u> -> Apply your model
- Sigue los conceptos paso a paso

Other datasets

Google Collab: instalar el paquete kaggle-cli

```
!pip install kaggle-cli
# always use ! to run bash commands from Notebook
```

Obtener los datos escribiendo:

```
!kg download -u <<Kaggle UserName>> -p <<Kaggle Password>> -c
bluebook-for-bulldozers -f Train.zip
```

• Extraerlos y organizarlos

```
!mkdir -p data/bulldozers/
!mv Train.zip data/bulldozers/
!unzip data/bulldozers/Train.zip -d data/bulldozers/
```

• Google Collab: Utilizamos !wget para descargar el archivo de un repositorio, y !tar para descomprimirlo

```
!wget
https://raw.githubusercontent.com/Giffy/Personal_dataset_repository/
master/train.tar.gz
!tar xvf train.tar.gz
```

• Jupyter notebook: Descargas los archivos de Kaggle, decomprimes el archivo en data/bulldozers (Debes crearla)

Your Projects

Hemos abierto ese canal para:

- Ideas
- Sugerencias
- Datasets
- etc.

<u>Únete Ahora</u>

BE SOCIAL!

@AISaturdaysES

@aisaturdays_madrid

@AISaturdaysES

Saturdays.Al

#AISaturdaysMadrid

madrid@saturdays.ai

WI-FI

LOOM_Guest -> Bienvenidos! LOOM Princesa -> LoomPr1nc3sa

