

SALES FORECASTING

Yen-lin Lin Mar/19/2015

Business Understanding:

Forecast monthly sales of a dietary weight control product

Data Description: 36 consecutive **monthly sales** of a dietary weight control product

Goal: Apply different methods to forecast monthly sales of a dietary weight control product

https://datamarket.com/data/set/22kw/advertising-and-sales-data-36-consecutive-monthly-sales-and-advertising-expenditures-of-a-dietary-weight-control-product#!ds=22kw!2ekl&display=line

Business Understanding:

Sales Forecasting. Why is it necessary?

To increase the profitability.

To increase the revenue.

To retain more and more customer.

To establish capacity and output levels

To raise the necessary cash for operations

To acquire and stock the right amount of supplies

To hire the required number of people

Business Data Modeling Model Evaluation Forecast

Data Understanding: **Description of Data**

Advertising and Sales data:

monthly sales and advertising expenditures of a dietary weight control product

https://datamarket.com/data/set/22kw/advertising-and-sales-data-36-consecutive-monthly-sales-and-advertising-expenditures-of-a-dietary-weight-control-product#!ds=22kw!2ekl&display=line

Exploratory Data Analysis:

Sales and Advertising are positively correlated (r = 0.63)

Exploratory Data Analysis: **Sales shows seasonality and trend**

Seasonal Decomposition of Sales:

Business Understanding Data Understanding Modeling Forecast

Steps for generating models for forecasting Sales

Select Modeling **Techniques Build Model Parameter Settings** Model Selection Criteria Model **Evaluation**

Steps for generating models for forecasting Sales

Select Modeling Techniques

Build Model Parameter Settings

> Model Selection Criteria

Model Evaluation

Modeling Assumption

- Linear relationship between Sales and Advertising
- Seasonal pattern in Sales

Modeling Technique

- Linear regression (Sales ~ Advertising) with random forest method
- Linear regression (Sales ~ Advertising + Month) with random forest approach
- Regression with ARIMA errors
- Seasonal ARIMA
- SVM (machine learning)
- Ensemble models

Steps for generating models for forecasting Sales

Select Modeling Techniques

Build Model Parameter Settings

> Model Selection Criteria

Model Evaluation

Modeling Assumption

- Linear relationship between Sales and Advertising
- Seasonal pattern in Sales

Modeling Technique

- Linear regression (Sales ~ Advertising) with random forest method
- Linear regression (Sales ~ Advertising + Month) with random forest approach
- Regression with ARIMA errors
- Seasonal ARIMA
- SVM (machine learning)
- Ensemble models

Steps for generating models for forecasting Sales

Select Modeling Techniques

Build Model Parameter Settings

> Model Selection Criteria

Model Evaluation For sARIMA models or regression w/ ARIMA error:

Step a: run auto.arima() in R

Step b: sequentially change the p and q parameters of the auto.arima result

Step c: compute and compare AICc and BIC values of models as well as the RMSE of the fitted values

Step d: select the model with the lowest AICc, BIC, and RMSE values

Steps for generating models for forecasting Sales

Select Modeling Techniques

Build Model Parameter Settings

> Model Selection Criteria

Model Evaluation Residual Diagnosis

ACF and PACF
Ljung-Box test
Durbin-Watson test

Time series cross-validation (TS-CV)
 Forecast evaluation with a rolling origin:

Step a: define and select training window of flexible length (start from size=18 and then add 1 datapoint afterward)

Step b: build model using the data in the training window

Step c: forecast the next 12 monthly data

Step d: compare 1-step, 2-step, ..., 12-step forecasts using RMSE

Model 1: Linear Regression (Sales ~ Advertising) R Output of linear regression model

```
##
## Call:
## lm(formula = Sales ~ Advertising, data = data)
##
## Residuals:
## Min 10 Median 30
                                   Max
## -31.593 -8.186 -0.783 9.727 32.039
##
## Coefficients:
##
       Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.992 10.102 -1.781 0.0839 .
## Advertising 1.918 0.404 4.748 3.64e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
##
## Residual standard error: 14.77 on 34 degrees of freedom
## Multiple R-squared: 0.3987, Adjusted R-squared: 0.381
## F-statistic: 22.54 on 1 and 34 DF, p-value: 3.635e-05
```


Model 1: Linear Regression (Sales ~ Advertising) Residual diagnosis of the linear regression model

Model 1: Linear Regression (Sales ~ Advertising) Residual diagnosis of the linear regression model

Ljung-Box test:

```
>Box.test(residuals(linear.model),fitdf=2,l
ag=20,type="Ljung") Box-Ljung test data:
residuals(linear.model) X-squared = 18.557,
df = 18, p-value = 0.4196
```

Durbin-Watson test:

```
> durbinWatsonTest(linear.model,
alternative=c("two.sided")) lag
Autocorrelation D-W Statistic p-value 1
0.009233116 1.947187 0.77 Alternative
hypothesis: rho != 0
```

Model 1: Linear Regression (Sales ~ Advertising) with random forest **Performance of model 1**

Model 1: Linear Regression (Sales ~ Advertising) with random forest RMSE for Forecast of Sales

Model 2: Linear Regression (Sales ~ Advertising + Month) R Output of Model 2

```
##
## Call:
## glm(formula = Sales ~ Advertising + factor(Month), data = data)
## Deviance Residuals:
      Min
               10 Median
                           30
                                       Max
## -29.279 -6.969 1.008 7.571 22.085
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.9493 11.2429 -0.796 0.43417
## Advertising
                1.4977 0.5219 2.870 0.00866 **
## factor(Month)2 -4.5841 11.9243 -0.384 0.70419
## factor (Month) 3 11.4204 12.2874 0.929 0.36231
## factor(Month)4 11.7114 13.0651 0.896 0.37933
## factor (Month) 5 5.6292 13.1966 0.427 0.67367
## factor (Month) 6 1.0447 13.0651 0.080 0.93696
## factor (Month) 7 2.6952 13.1260 0.205 0.83912
## factor (Month) 8 18.3765 12.8958 1.425 0.16759
## factor (Month) 9 -9.5060 12.9880 -0.732 0.47162
## factor(Month)10 -11.2770 12.5271 -0.900 0.37734
## factor (Month) 11 2.4497 11.9570 0.205 0.83947
## factor (Month) 12 -14.1291
                          11.3814 -1.241 0.22696
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 192.8808)
      Null deviance: 12341.0 on 35 degrees of freedom
## Residual deviance: 4436.3 on 23 degrees of freedom
## AIC: 303.47
## Number of Fisher Scoring iterations: 2
```


Model 2: Linear Regression (Sales ~ Advertising + Month) Residual diagnosis of Model 2

Model 2: Linear Regression (Sales ~ Advertising + Month) Residual diagnosis of Model 2

Model 2: (Sales ~ Advertising + **Month**)

Ljung-Box test:

>Box.test(residuals(linear.model.glm),fitdf= 13,lag=20,type="Ljung") Box-Ljung test data: residuals(linear.model.glm) X-squared = 21.6473, df = 7, p-value = 0.002921

Durbin-Watson test:

> durbinWatsonTest(linear.model.glm,
alternative=c("two.sided")) lag
Autocorrelation D-W Statistic p-value 1
0.0325731 1.92675 0.832 Alternative
hypothesis: rho != 0

Model 2: Linear Regression (Sales ~ Advertising + Month) with random forest **Performance of Model 2**

Model 2: Linear Regression (Sales ~ Advertising + Month) with random forest **Performance of Model 2**

Model 2: Linear Regression (Sales ~ Advertising + Month) RMSE for Forecast of Sales

Model 3: Model 1 w/ ARIMA errors Model Selection

Model 1: (Sales ~ Advertising)

Model 1 w/ ARIMA error	AICc	BIC	RMSE
ARIMA(0,1,1)	287.134	291.111	252.542
ARIMA(1,1,1)	289.388	294.389	265.444
ARIMA(1,1,2)	290.434	296.282	296.024
ARIMA(0,1,2)	288.908	293.908	298.393
ARIMA(2,1,1)	289.949	295.798	308.353
ARIMA(1,1,0)	300.650	304.626	357.606
ARIMA(1,1,3)	290.186	296.687	362.963
ARIMA(0,1,3)	286.846	292.694	378.282
ARIMA(2,1,2)	289.057	295.558	381.550
ARIMA(2,1,3)	289.909	296.845	402.262
ARIMA(2,1,0)	296.478	301.479	419.117
ARIMA(0,1,0)	305.150	307.942	490.398

Model 3: Model 1 w/ ARIMA(0,1,1) errors Residual diagnosis of Model 3

Ljung-Box test:

```
>
Box.test(residuals(model3),fitdf=4,lag=20,ty
pe="Ljung") Box-Ljung test data:
residuals(model3) X-squared = 21.8558, df =
16, p-value = 0.1479
```

Durbin-Watson test:

```
>durbinWatsonTest(as.vector(model3$residuals
), alternative=c("two.sided"))
[1] 2.187782
```


Model 3: Model 1 w/ ARIMA(0,1,1) errors Performance of Model 3

Model 3: Model 1 w/ ARIMA(0,1,1) errors Performance of Model 3

Model 3: Model 1 w/ ARIMA(0,1,1) errors Performance of Model 3

Model 3: Linear Regression w/ ARIMA(0,1,1) errors RMSE for Forecast of Sales

Model 4: Model 2 w/ ARIMA errors Model Selection

Regression Model 2 Fit residuals of Model 2 using auto.arima() Sequentially change the p and q parameters from the previous step Evaluate models based in AICc, BIC, and RMSE of fitted values Check the performance of the

selected model

Model 2: (Sales ~ Advertising + Month)

Model 2 w/ ARIMA error	AICc	BIC	RMSE
ARIMA(2,0,2)	305.8	312.9	174.8
ARIMA(0,0,1)	301.6	306.7	196.9
ARIMA(1,0,0)	301.6	306.7	196.9
ARIMA(0,0,0)	299.1	303.1	196.9
ARIMA(1,0,1)	301.1	307.1	197.1
ARIMA(2,0,1)	305.2	311.8	198.8
ARIMA(2,0,0)	302.3	308.3	198.8
ARIMA(1,0,2)	303.1	309.8	198.9
ARIMA(0,0,2)	302.6	308.5	199.4

Model 4: Model 2 w/ ARIMA(2,0,2) or ARIMA(0,0,0) errors **Residual diagnosis of Model 4**

	<i>p</i> -value for BL test	DW	AICc	BIC
Model4.202	0.0406	2.21	305.8	312.9
Model4.000	0.1817	1.98	299.1	303.1

Model 4: Model 2 w/ ARIMA(0,0,0) errors Performance of Model 4

Model 4: Model 2 w/ ARIMA(0,0,0) errors RMSE for Forecast of Sales

Model 5: Seasonal ARIMA (sARIMA) Model Selection

Use auto.arima() to fit data Sequentially change the p and q parameters from the previous step Evaluate models based in AICc, BIC, and RMSE of fitted values Check the performance of the selected model

Model 5: Seasonal ARIMA (sARIMA) **Model Selection**

			Forecast				Forecast				Forecast
sARIMA model	AICc	BIC	RMSE	sARIMA model	AICc	BIC	RMSE	sARIMA model	AICc	BIC	RMSE
(3,0,1)[4]	217.599	207.250	405.8	(3,0,2)(0,1,0)[5]	176.428	164.019	883.6	(0,0,1)(1,0,0)[6]	206.377	200.666	279.3
(3,0,0)[4]	213.993	206.153	405.8	(0,0,1)(0,1,0)[5]	169.241	166.689	951.0	(1,0,0)(1,0,0)[6]	207.825	202.114	341.4
(1,0,0)[4]	208.173	204.269	407.6	(3,0,1)(0,1,0)[5]	173.940	164.818	960.8	(0,0,0)(1,0,0)[6]	209.461	205.557	418.0
(2,0,1)[4]	214.204	206.364	408.3	(3,0,0)(0,1,0)[5]	171.960	165.497	975.3	(2,0,0)(1,0,0)[6]	209.712	201.872	279.6
(1,0,1)[4]	211.046	205.335	408.3	(0,0,2)(0,1,0)[5]	170.820	166.515	988.7	(0,0,2)(1,0,0)[6]	210.211	202.371	306.0
(2,0,0)[4]	211.028	205.317	408.8	(2,0,2)(0,1,0)[5]	172.234	163.112	1037.6	(1,0,1)(1,0,0)[6]	210.325	202.485	301.6
(0,0,2)[4]	210.338	204.627	409.0	(2,0,0)(0,1,0)[5]	169.743	165.439	1067.5	(3,0,0)(1,0,0)[6]	213.318	202.968	281.2
(1,0,2)[4]	213.412	205.572	413.1	(2,0,1)(0,1,0)[5]	171.636	165.174	1075.4	(2,0,1)(1,0,0)[6]	213.319	202.970	280.2
(0,0,1)[4]	208.880	204.975	420.1	(1,0,1)(0,1,0)[5]	169.774	165.470	1091.1	(1,0,2)(1,0,0)[6]	213.815	203.465	306.8
(3,0,2)[4]	218.961	205.651	432.3	(1,0,0)(0,1,0)[5]	166.972	164.419	1124.6	(2,0,2)(1,0,0)[6]	214.118	200.808	424.0
(2,0,2)[4]	214.992	204.642	445.4	(1,0,2)(0,1,0)[5]	172.401	165.939	1126.8	(3,0,1)(1,0,0)[6]	217.339	204.029	284.5
(0,0,0)[4]	208.892	206.517	451.3	(0,0,0)(0,1,0)[5]	174.881	173.745	1292.8	(3,0,2)(1,0,0)[6]	218.157	201.346	384.4

	(3,0,0)[4]	(3,0,2)(0,1,0)[5]	(0,0,1)(1,0,0)[6]
<i>p</i> -value for BJ test	0.3358	0.02853	0.5239
DW	1.916259	1.947457	1.906277

Seasonal ARIMA Models:

Residual Diagonsis

residuals from sARIMA(3,0,2)(0,1,0)[5]

residuals from sARIMA(0,0,1)(1,0,0)[6]

ACF

4.0

0.0

٥. 4

6

2

8 10

Box.test(residuals(model5.5), fitdf=6, lag=20, type="Ljung")

Box-Ljung test data: residuals(model5.5) X-squared = 25.666, df = 14, p-value = 0.02853

Box.test(residuals(model5.6), fitdf=2, lag=20, type="Ljung")

Box-Ljung test data: residuals(model5.6) X-squared = 16.9885, df = 18, p-value = 0.5239

Models 5: sARIMA (3,0,2)(0,1,0)[5] Performance of Model 5

Models 6: sARIMA (0,0,1)(1,0,0)[6] Performance of Model 6

Models 5 & 6: Seasonal ARIMA (sARIMA) **RMSE for Forecast of Sales**

Models 5 & 6: Seasonal ARIMA (sARIMA) **RMSE for Forecast of Sales**

Select Modeling **Techniques Build Model Parameter** Settings Residual **Diagnosis** Model **Evaluation**

Support vector machine (SVM)

Select Modeling Techniques

Build Model Parameter Settings

Residual Diagnosis

Model Evaluation Support vector machine (SVM):
 model7.svm.1: Sales ~ Advertising

Select Modeling Techniques

Build Model Parameter Settings

Residual Diagnosis

Model Evaluation Support vector machine (SVM):
 model7.svm.1: Sales ~ Advertising

residuals(model7.svm.1)

Select Modeling Techniques

Build Model Parameter Settings

Residual Diagnosis

Model Evaluation • Support vector machine (SVM):

model7.svm.2: Sales ~ Advertising + Month

Select Modeling Techniques

Build Model Parameter Settings

Residual Diagnosis

Model Evaluation Support vector machine (SVM):model7.svm.2: Sales ~ Advertising + Month

residuals(model7.svm.2)

Summary of models: model evaluation & forecast performance

horizon

	p-values for Box- Ljung test	DW	AIC	віс
Model 1: (Sales ~ Advertising)	0.4196	1.95	299.99	304.74
Model 2: (Sales ~ Advertising + Month)	0.0029	1.93	303.50	325.64
Model 3: Model 1 with ARIMA(0,1,1) errors	0.1479	2.19	286.36	291.03
Model4.202: Model2 with ARIMA(2,0,2) error	0.0406	2.21	301.78	312.86
Model4.000: Model2 with ARIMA(2,0,2) error	0.1817	1.98	298.35	303.10
Model 5 : sARIMA(3,0,2)(0,1,0)[5]	0.0285	1.95	296.70	305.30
Model 6 : sARIMA(0,0,1)(1,0,0)[6]	0.5239	1.91	313.86	320.19

Ensemble Modeling

- Ensemble methods train multiple predictive models and then combine the predictions to achieve a higher overall performance and stability.
- **Weighted Linear Stacking:**

Seek a blended prediction function to compute the estimated prediction, $\hat{y}(x)$, for datapoint x:

$$\hat{y}(x) = \sum_{i} w_{i} \, g_{i}(x)$$

 w_i : model weight, $\sum_i w_i = 1$

 g_i : the learned prediction functions of L learning models

One way to determine w_i is to satisfy the optimization problem as follows:

$$\min \sum_{i} [w_i g_i(x) - y(x)]^2 \qquad y(x) \text{ is the target prediction for datapoint } x$$

$$\min Var[\hat{y}(x)] = \sum_{i} w_i^2 Var[g_i(x)] \qquad \text{w}$$

Ensembled Model:

Performance of Ensembled Model

Model 1: Sales ~ Advertising

Model 2: Sales ~ Advertising + Month

Model 6: sARIMA(0,0,1)(1,0,0)[6]

Ensembled Model:

RMSE for Forecast of Sales

Summary

- Linear regression with random forest algorism, regression with ARIMA error, seasonal ARIMA, SVM, and ensemble models were constructed to forecast monthly sales of a dietary weight control product.
- Monthly advertising expenditures were applied as an independent variable for constructing models to fit the sales data.
- Including seasonality information is important while constructing models for forecasting the monthly sales.
- Time series cross validation was performed for prediction horizon.
- Ensembles model enhanced the overall performance and stability of forecasting.

Future Work

- Improve ensembling algorism.
- Bass and Clarke [1] proposed distributed lag models to describe simultaneously non-linear and delayed effects between predictors and an outcome. Gasparrini[2] has implemented the distributed lag non-linear methodology in R (dlnm package).

^[2] Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. Journal of Statistical Software, 43(8):1{20, 2011. URL http://www.jstatsoft.org/v43/i08/.