# Direct Optimization through Argmax

Guy Lorberbom, Andreea Gane, Tommi Jaakkola, Tamir Hazan

# Generative learning



• Kingma and Welling, 2014; Reznde et al. 2014.



$$\log \frac{1}{p_{\theta}(x)} \le \mathbb{E}_{z \sim q_{\phi}} \log \frac{1}{p_{\theta}(x|z)} + KL(q_{\phi}(z|x)||p_{\theta}(z))$$

generated image  $\hat{x} \sim p_{\theta}(x|z)$ 

decoder  $\theta$ 

representation  $z \sim q_{\phi}(z|x)$ 

encoder  $\phi$ 

input image x

$$\log \frac{1}{p_{\theta}(x)} \le \mathbb{E}_{z \sim q_{\phi}} \log \frac{1}{p_{\theta}(x|z)} + KL(q_{\phi}(z|x)||p_{\theta}(z))$$

$$\log \frac{1}{p_{\theta}(x)} \le \mathbb{E}_{z \sim q_{\phi}} \log \frac{1}{p_{\theta}(x|z)} + KL(q_{\phi}(z|x)||p_{\theta}(z))$$

$$p_{\theta}(x|z) = e^{\theta(x,z)}$$

$$p_{\theta}(x|z) = e^{\theta(x,z)}$$
$$q_{\phi}(z|x) = e^{\phi(x,z)}$$

$$\log \frac{1}{p_{\theta}(x)} \le \mathbb{E}_{z \sim q_{\phi}} \log \frac{1}{p_{\theta}(x|z)} + KL(q_{\phi}(z|x)||p_{\theta}(z))$$

$$p_{\theta}(x|z) = e^{\theta(x,z)}$$

$$p_{\theta}(x|z) = e^{\theta(x,z)}$$
$$q_{\phi}(z|x) = e^{\phi(x,z)}$$

 $\mathbb{E}_{z \sim q_{\phi}} \log p_{\theta}(x|z) = \sum e^{\phi(x,z)} \theta(x,z)$ discrete latent space

$$\log \frac{1}{p_{\theta}(x)} \le \mathbb{E}_{z \sim q_{\phi}} \log \frac{1}{p_{\theta}(x|z)} + KL(q_{\phi}(z|x)||p_{\theta}(z))$$

$$p_{\theta}(x|z) = e^{\theta(x,z)}$$

$$q_{\phi}(z|x) = e^{\phi(x,z)}$$

discrete latent space

$$\mathbb{E}_{z \sim q_{\phi}} \log p_{\theta}(x|z) = \sum_{z} e^{\phi(x,z)} \theta(x,z)$$



continuous setting (with reparameterization)



Discrete setting (without reparameterization)



$$q_{\phi}(z|x) = e^{\phi(x,z)}$$

Theorem: (Fisher 1928, Gumbel 1953, McFadden 1973)

Let  $\gamma(z)$  be i.i.d. with Gumbel distribution with zero mean

$$G(t) \stackrel{def}{=} \mathbb{P}[\gamma(z) \le t] = e^{-e^{-t+c}}$$

$$q_{\phi}(z|x) = e^{\phi(x,z)}$$

• Theorem: (Fisher 1928, Gumbel 1953, McFadden 1973) Let  $\gamma(z)$  be i.i.d. with Gumbel distribution with zero mean

$$G(t) \stackrel{def}{=} \mathbb{P}[\gamma(z) \le t] = e^{-e^{-t+c}}$$
$$g(t) = G'(t)$$



$$q_{\phi}(z|x) = e^{\phi(x,z)}$$

Theorem: (Fisher 1928, Gumbel 1953, McFadden 1973)

Let  $\gamma(z)$  be i.i.d. with Gumbel distribution with zero mean

$$G(t) \stackrel{def}{=} \mathbb{P}[\gamma(z) \le t] = e^{-e^{-t+c}}$$

then

$$e^{\phi(x,z)} = \mathbb{P}_{\gamma \sim g}[z^{\phi+\gamma} = z]$$

$$z^{\phi+\gamma} = \arg\max_{\hat{z}} \{\phi(x,\hat{z}) + \gamma(\hat{z})\}\]$$

Gumbel-Argmax reparameterization

$$z^{\phi+\gamma} = \arg\max_{\hat{z}} \{\phi(x, \hat{z}) + \gamma(\hat{z})\}]$$

$$\mathbb{E}_{z \sim q_{\phi}} \log p_{\theta}(x|z) = \mathbb{E}_{\gamma \sim g} [\theta(x, z^{\phi + \gamma})]$$

Gumbel-Argmax reparameterization

$$z^{\phi+\gamma} = \arg\max_{\hat{z}} \{\phi(x, \hat{z}) + \gamma(\hat{z})\}\]$$

$$\mathbb{E}_{z \sim q_{\phi}} \log p_{\theta}(x|z) = \mathbb{E}_{\gamma \sim g} [\theta(x, z^{\phi + \gamma})]$$



discrete VAEs (without reperameterization)



discrete VAEs (with reperameterization)



• Propagating gradients?



• Propagating gradients?



 The argmax derivative is not informative



• Propagating gradients?



Gumbel-Softmax
Maddison et al., 2016
Jang et al., 2016

 The argmax derivative is not informative



# Propagating Gradients through Argmax

Theorem

$$\nabla_w \mathbb{E}_{\gamma}[\theta(x, z^{\phi + \gamma})] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left( \mathbb{E}_{\gamma}[\nabla_w \phi(x, z^{\epsilon \theta + \phi + \gamma}; w) - \nabla_w \phi(x, z^{\phi + \gamma}; w)] \right)$$

# Propagating Gradients through Argmax

#### Theorem

$$\nabla_w \mathbb{E}_{\gamma} [\theta(x, z^{\phi + \gamma})] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big( \mathbb{E}_{\gamma} [\nabla_w \phi(x, z^{\epsilon \theta + \phi + \gamma}; w) - \nabla_w \phi(x, z^{\phi + \gamma}; w)] \Big)$$

#### Proof sketch

$$G(w,\epsilon) = \mathbb{E}_{\gamma}[\max_{\hat{z}}\{\epsilon\theta(x,\hat{z}) + \phi(x,\hat{z};w) + \gamma(\hat{z})\}] \text{ is smooth }$$

$$\partial_w \partial_\epsilon G(w,0) = \nabla_w \mathbb{E}_\gamma [\theta(x, z^{\phi+\gamma})]$$

$$\partial_{\epsilon} \partial_w G(w, 0) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left( E_{\gamma} \left[ \nabla_w \phi(x, z^{\epsilon \theta + \phi + \gamma}; w) - \nabla_w \phi(x, z^{\phi + \gamma}; w) \right] \right)$$

$$\partial_w \partial_\epsilon G(w, \epsilon) = \partial_\epsilon \partial_w G(w, \epsilon)$$

### Built-in control variates

$$\nabla_w \mathbb{E}_{\gamma}[\theta(x, z^{\phi + \gamma})] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big( \mathbb{E}_{\gamma}[\nabla_w \phi(x, z^{\epsilon \theta + \phi + \gamma}; w) - \nabla_w \phi(x, z^{\phi + \gamma}; w)] \Big)$$

• if 
$$e^{\phi(x,z)} = \mathbb{P}_{\gamma \sim g}[z^{\phi+\gamma} = z]$$
 then  $\mathbb{E}_{\gamma}[\nabla_w \phi(x,z^{\phi+\gamma};w)] = 0$ 



# Comparing to

Unbiased gradient



Gumbel-Argmax / Gumbel-Softmax



# Evaluating discrete VAEs

10 discrete latent assignments



- Surprisingly the unbiased gradient descent is slower to converge
- Surprisingly Gumbel-Argmax wall-clock time is comparable

# Evaluating discrete VAEs

50 discrete latent assignments



- The unbiased gradient descent is <u>much</u> slower to converge
- Surprisingly Gumbel-Argmax wall-clock time is comparable

 $z_1, ..., z_n \in \{0, 1\}^n$ 



 $z = (z_1,...,z_n) \in \{0,1\}^n$   $encoder \ \phi$   $input \ x$ 

decoder 
$$\theta$$

$$z = (z_1, ..., z_n) \in \{0, 1\}^n$$

$$\phi(x,z) = \sum_{i} \phi_i(x,z_i)$$
 encoder  $\phi$ 

input x

decoder  $\theta$ 

$$z = (z_1, ..., z_n) \in \{0, 1\}^n$$

$$\phi(x,z) = \sum_{i} \phi_i(x,z_i)$$
 encoder  $\phi$ 

Gumbel perturbation

+ low dimensional

input 
$$x$$

$$z_i^{\phi+\gamma} = \arg\max_{z_i} \phi_i(x, z_i) + \gamma_i(z_i)$$

decoder  $\theta$ 

$$z = (z_1, ..., z_n) \in \{0, 1\}^n$$

$$\phi(x,z) = \sum_{i} \phi_i(x,z_i)$$
 encoder  $\phi$ 

+ low dimensional Gumbel perturbation

input x

$$z_i^{\phi+\gamma} = \arg\max_{z_i} \phi_i(x, z_i) + \gamma_i(z_i)$$

$$z^{\epsilon\theta+\phi+\gamma} = \arg\max_{z_1,...,z_n} \theta(z_1,...,z_n) + \sum_{i=1}^n \phi_i(x,z_i) + \sum_{i=1}^n \gamma_i(z_i)$$



decoder  $\theta$ 

$$z = (z_1, ..., z_n) \in \{0, 1\}^n$$

$$\phi(x,z) = \sum_{i} \phi_i(x,z_i)$$
 encoder  $\phi$ 

+ low dimensional Gumbel perturbation

input x

$$z_i^{\phi+\gamma} = \arg\max_{z_i} \phi_i(x, z_i) + \gamma_i(z_i)$$

$$z^{\epsilon\theta+\phi+\gamma} = \arg\max_{z_1,...,z_n} \theta(z_1,...,z_n) + \sum_{i=1}^n \phi_i(x,z_i) + \sum_{i=1}^n \gamma_i(z_i)$$

$$z_i^{\epsilon\theta+\phi+\gamma} \approx \arg\max_{z_i} \theta(z_1^{\phi+\gamma}, ..., z_i, ..., z_n^{\phi+\gamma}) + \phi_i(x, z_i) + \gamma_i(z_i)$$





• Unstructured encoders 
$$\phi(x,z) = \sum_i \phi_i(x,z_i)$$

Structured encoders

$$\phi(x,z) = \sum_{i} \phi_i(x,z_i) + \sum_{i,j} \phi(x,z_i,z_j)$$





## Semi-supervised VAEs

$$\sum_{x \in S} \mathbb{E}_{\gamma} [\theta(x, z^{\phi + \gamma})] + \sum_{(x,z) \in S_1} \mathbb{E}_{\gamma} [\ell(z, z^{\phi + \gamma})] + \sum_{x \in S} KL(q_{\phi}(z|x)||p_{\theta}(z))$$





unsupervised

semisupervised

|         | MNIST    |       |        |       | Fashion-MNIST |       |         |         |
|---------|----------|-------|--------|-------|---------------|-------|---------|---------|
|         | accuracy |       | bound  |       | accuracy      |       | bound   |         |
| #labels | direct   | GSM   | direct | GSM   | direct        | GSM   | direct  | GSM     |
| 50      | 92.6%    | 84.7% | 90.24  | 91.23 | 63.3%         | 61.2% | 129.66  | 129.813 |
| 100     | 95.4%    | 88.4% | 90.93  | 90.64 | 67.2%         | 64.2% | 130.822 | 129.054 |
| 300     | 96.4%    | 91.7% | 90.39  | 90.01 | 70.0%         | 69.3% | 130.653 | 130.371 |
| 600     | 96.7%    | 92.3% | 90.78  | 89.77 | 72.1%         | 71.6% | 130.81  | 129.973 |
| 1200    | 96.8%    | 92.7% | 90.45  | 90.37 | 73.7%         | 73.2% | 130.921 | 130.063 |