

Introduction about sensors

SENSOR SYSTEMS

Federica Villa federica.villa@polimi.it

TRANSDUCER = device which transforms energy from one type to another, even if both energy types are in the same domain.

termal -sopbical

Typical energy domains are mechanical, electrical, chemical, magnetic, optical and thermal.

Transducer can be further divided into **Sensors** and **Actuators**

SENSOR 1

hopefully without disturbing that parameter.

from physical to electrical

The specific input could be light, heat, motion, moisture, pressure, or any one of a great number of other environmental phenomena. The output is generally a signal that is converted to human-readable display at the sensor location or transmitted electronically over a network for reading or further processing.

from electrical to control moving parts

ACTUATOR

= component of machines which is responsible for moving or controlling a mechanism or system.

WeBeep: 02 – Sensor, electronics, actuator chain

Classification based on physical phenomena goothe Price ensors

- Optical: visible/IR light (photodiode, CCD, CMOS APS, infrared sensor)
- Thermal: temperature (RTD, thermistor, thermocouple...)
- Magnetic: magnetic field (Hall effect sensor, magneto-resistive sensor)
- <u>Mechanical</u>: strain (strain gauge), force (piezo-electric sensor), displacement and distance (capacitive, inductive, acoustic, optical), acceleration and orientation (MEMS), viscosity, pressure, etc.
- Chemical: pH (pH-meter) (not treated)

Classification based on measuring mechanism

- Resistive sensing
- Capacitive sensing mic, accelerance
- Inductive sensing Proximitive mix
- Piezoelectricity force sensors
- · Hall Effect magnetic field
- MEMS mycra dettro mechanical sensors

Which sensors will we study?

Physical phenomena	Sensor
Sound	- Microphone
Light and images	PhotodiodeCCDCMOS sensor
Temperature	 Resistance Temperature Detectors (RTD) Thermistors (NTC and PTC) Thermocouple Infrared thermometer
Magnetic Field	Hall effect sensorsMagneto-resistances
Strain, force, pressure	Strain gaugesPiezoelectric sensors
Displacement, proximity, distance and rotation	 Capacitive sensors Inductive sensors Acoustic sensors Optical sensors
Acceleration and Orientation	Accelerometers (MEMS)Gyroscopes (MEMS)

Sensitivity: the ratio between the change in the output signal to a small change in input physical signal.

Slope of the input-output fit line.

 $S = \frac{\partial \text{ out}}{\partial \text{ in}}$

Resolution (LSB): the smallest increment of measure that a device can make (Least Significant Bit).

Resolution of ADC in the sensor (mV) expressed in terms of the measure you want to take

Full Scale Range (FSR): the maximum interval of measure that a device can cover

Number of bits (n): in sensors with digital output 2ⁿ is the number of levels in which the FSR is divided.

$$2^n = \frac{FSR}{LSB}$$

Accuracy: error between the result of a measurement and the true value being measured.

Repeatability/Precision: the ability of the sensor to output the same value for the same input over a number of trials.

Linearity: the deviation of the output from a best-fit straight line for a given range of the sensor.

Differential Non-Linearity (DNL) and Integral Non-Linearity (INL)

distance between real and ideal output voltage

* Transfer Function (Frequency Response): The relationship between physical input signal and electrical output signal, which may constitute a complete description of the sensor characteristics as a function of frequency.

Bandwidth: the frequency range between the lower and upper cutoff frequencies, within which the sensor

transfer function is constant gain or linear.

Marope & and RMS (root men square)

Noise random fluctuation in the measured value. It is quantified with its rms (root mean square) value.

Dynamic Range) the ratio of maximum recordable input amplitude to minimum input amplitude:

$$DR = 20 \cdot Log\left(\frac{Max\ Input\ Amplitute}{Min\ Input\ Amplitude}\right)$$
 (expressed in dB)

Analog sensor readout

- ADC + microcontroller
 many microcontrollers have a built-in ADC
 (typically 8-bit to 12-bit or even 16-bit)
- Data Acquisition Cards (DAQ)
 - ✓ PC card or external devices with analog and digital I/O
 - ✓ interface through LabVIEW or user-generated code

Smart sensor

= sensor with built-in signal processing & communication (e.g., combining a "dumb sensor" and ADC / processing)

Digital output:

- parallel bus
- serial I/O

```
synchronous (with clock): SPI, I<sup>2</sup>C (must match byte format, stop/start bits, parity check, etc.)
```

Serial Peripheral Interface (SPJ)

1 clock + 1 bidirectional data + 1 chip select/enable

- Inter Integrated Circuit (12C)

1 clock + 1 data

(Slower) asynchronous (no clock): one wire (must match baud rate and bit width, transmission protocol, etc.)

frequency encoded
 use timing port, measure pulse width or pulse frequency

Sensors can exhibit non-ideal effects

- offset: nominal output ≠ nominal parameter value, with a fixed difference
- nonlinearity: output not linear with parameter changes
- cross parameter sensitivity: secondary output variation with other parameters (e.g., temperature drifts)

Calibration = adjusting output to match parameter

- analog signal conditioning
- look-up table
- digital calibration

$$T = a + bV + cV^2$$
,

- T= temperature; V=sensor voltage;
- a,b,c = calibration coefficients