

PROBLEM SET 5 Due back by Tuesday May 2.

Name: CRIVELLINI SOFIA

Id: 201101

Instructions:

- Make sure you are working on your problem set as each problem set is different.
- The answers to the questions of this problem set are to be given exclusively in the answer sheet
- The answers sheet MUST be printed and not photocopied. Photocopies will not be accepted.
- ullet Questions marked with the symbol ullet admit more than one correct answer
- Please fill the boxes in the answer sheet completely using a black pen as follows

Question 1: B C D E

- The answer sheet must not be creased or folded otherwise your problem set won't be graded.
- You can hand back your problem set at the END of class on May 2.

1

With a sample of 706 observations, we estimate the following model:

$$ln(hwage_i) = \beta_0 + \beta_1 age_i + \beta_2 age_i^2 + \beta_3 educ_i + \beta_4 yngkid_i + u_i$$

and obtain these results:

where *lhwage* is the logarithm of the hourly wage in euro, *age* is measured in years, *educ* is years of education and *yngkid* is a variable equal to 1 in case the person has a child younger than three years.

Question 1 What is the interpretation of β_2 ?

- A By itself does not have a proper interpretation.
- B Increasing the square of age by one year, the hourly wage decreases by 0.077% on average, ceteris paribus.
- C Increasing the square of age by one year, the hourly wage decreases by 0.00077 euros on average, ceteris paribus.
- D Increasing age by one year, the hourly wage decreases by 0.077% on average, ceteris paribus.

Question 2 What is the interpretation of β_4 ?

- A If a person has one small kid more, he/she earns about 0.095 more per hour with respect to someone who does not have small kids, ceteris paribus.
- B If a person has small kids (; 3 years old), he/she earns about 0.095 euros more per hour with respect to someone who does not have small kids, ceteris paribus.
- C If a person has one small kid more, he/she earns about 9.5% more per hour with respect to someone who does not have small kids, ceteris paribus.
- D If a person has small kids (; 3 years old), he/she earns about 9.5% more per hour with respect to someone who does not have small kids, ceteris paribus.

Question 3 What are we testing when we check whether β_2 is significant?

- A We check whether the logarithm of hourly wage depends linearly on age.
- B We check whether the logarithm of hourly wage depends negatively on age.
- C We check whether the logarithm of hourly wage depends on age.
- D We check whether the logarithm of hourly wage depends positively on age.

Question 4 \clubsuit Is β_3 statistically higher than 0.05 at 5%?

- A Yes, it is, since the t-value is smaller than 1.64.
- B No, it is not since the t-value is larger than 1.96.
- C No, it is not, since the t-value is smaller than 1.96.
- D Yes, it is, since the t-value is larger than 1.64.
- E None of these answers are correct.

Question 5 Keeping other variables fixed, at what age the logarithm of hourly wage is maximized?

- At about 56.3 years.
- B At about 46.7 years.
- C At about 93.3 years.
- D At about 0, but this makes no sense.

Question 6 Using a subset of the variables in the previous model, we would like to write a new one such that we obtain the elasticity of the hourly wage to education, and that, given in increase of one year in age, it returns a change in hourly wage in percent points. Choose the correct model among these:

- $\boxed{A} ln(hwage_i) = \beta_0 + \beta_1 ln(age_i) + \beta_2 educ_i + u_i$
- $B hwage_i = \beta_0 + \beta_1 age_i + \beta_2 ln(educ_i) + u_i$
- $\boxed{C} ln(hwage_i) = \beta_0 + \beta_1 age + ln(\beta_2 educ_i) + u_i$
- $\boxed{D} ln(hwage_i) = \beta_0 + \beta_1 age_i + \beta_2 ln(educ_i) + u_i$
- $E hwage_i = \beta_0 + \beta_1 ln(age_i) + \beta_2 educ_i + u_i$

Let us define with Y the amount of cholesterol in mlg in the blood and with Med a dummy variable which takes the value of 1 for medication B and 0 for medication A, where A and B are two different medications that lower cholesterol. Female is a dummy variable which takes the value of 1 for females and 0 otherwise.

Consider the following regression:

$$Y = \beta_0 + \beta_1 \times med + \beta_2 \times female + \beta_3 \times med \times female + u.$$

Question 7 Suppose you use this model: $Y = \beta_0 + \beta_1 \times med + \beta_2 \times female + u$ What would be the underlying assumption in this case?

- A Males and females choose to take the same medication (either A or B).
- B None of the others.
- C There are no gender differences in the average cholesterol level.
- D Medication A and B may operate differently between females and males.
- [E] Medication A and B do not operate differently between females and males.

Question 8 What is the average cholesterol value for women using medication B?

- A β_2
- B $\beta_2 + \beta_3$
- C None of the above.
- $D \beta_3$
- $\boxed{\mathbf{E}} \ \beta_0 + \beta_1 + \beta_2 + \beta_3$

These data are taken from the Medical Expenditure Panel Survey survey conducted in 1996. These data were provided by Professor Harvey Rosen of Princeton University and were used in his paper with Craig Perry "The Self-Employed Are Less Likely Than Wage-Earners to Have Health Insurance. So What?" in Douglas Holtz-Eakin and Harvey S. Rosen, eds., Entrepeneurship and Public Po licy, MIT Press 2004.

Among the variables in the dataset, ins is a dummy equal to one if the interviewee has the insurance; selfemp is equal to one if the interviewee is a self-employed workers; gender is equal to one if the in dividual is a male; married is one if the individual is married; health is one if the individual reports to be in good health; educ is 0 if the person has no education, 1 if he/she achieved middle school diploma, 2 for the high school diploma, 3 for the bachelor degree, 4 for the master degree and 5 for the PhD; age is in years and age2 is the square of age.

We estimate two models:

$$Pr(ins = 1|X) = \beta_0 + \beta_1 \times selfemp + \beta_2 \times married + \beta_3 \times gender + \beta_4 \times health + \beta_5 \times gender * health + \beta_6 \times educ + \beta_7 \times age + \beta_8 \times age^2$$

Coefficients:

	Estimate S	td. Error t	value	Pr(> t)
(Intercept)	0.2974634	0.0580248	5.13	0.0000003
selfemp	-0.1742361	0.0141740	-12.29	< 2e-16
married	0.1181062	0.0094187	12.54	< 2e-16
gender	-0.0232270	0.0343575	-0.68	0.49903
health	0.0744310	0.0247243	3.01	0.00262
${\tt genderxhealth}$	-0.0206248	0.0353131	-0.58	0.55920
educ	0.0529807	0.0029210	18.14	< 2e-16
age	0.0105315	0.0027482	3.83	0.00013
age2	-0.0000788	0.0000333	-2.37	0.01796

Heteroskadasticity robust standard errors used

$$Pr(ins = 1|X) = \Phi(\beta_0 + \beta_1 \times selfemp + \beta_2 \times married + \beta_3 \times gender + \beta_4 \times health + \beta_5 \times gender * health + \beta_6 \times educ + \beta_7 \times age + \beta_8 \times age^2)$$
 (II)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.844932	0.195991	-4.31	0.000016
selfemp	-0.651923	0.046842	-13.92	< 2e-16
married	0.455241	0.034845	13.06	< 2e-16
gender	-0.040238	0.111653	-0.36	0.71856
health	0.300503	0.082988	3.62	0.00029
genderxhealth	-0.124880	0.116613	-1.07	0.28422
education	0.226139	0.012852	17.60	< 2e-16
age	0.029150	0.009899	2.94	0.00323
age2	-0.000162	0.000126	-1.29	0.19821

Question 9 How do you interpret the intercept under model (I)?

- A It does not have a real meaning in this case.
- B It is the probability to have an insurance for a male, not self employed, non-married, with a bad health status, no education and with age equal to 0.
- C It is the average probability of having an insurance in our sample.
- D It is the probability to have an insurance for a female, not self employed, non-married, with a bad health status, no education and with age equal to 0.

Question 10 What is the interpretation of β_1 in model (II)?

- A On average, self employed individuals are 65.1% less likely than other workers to have an insurance, controlling for all other factors.
- B On average, increasing selfemp by one decreases the probability to have an insurance of 65.1%, ceteris paribus.
- C It does not have a proper interpretation in terms of magnitude.
- D On average, a self employed worker has a probability of 65.1% to have an insurance, ceteris paribus.

Question 11 Does increasing level of education have a significant impact on the probability to buy an insurance at 5% level under model (II)?

- $\boxed{\mathbf{A}}$ Yes, since the coefficient β_6 is significant.
- B It depends on the values of all other covariates.
- C Yes, since the model includes the variable "educ".
- $\boxed{\mathrm{D}}$ No, since the coefficient β_6 is not significant.

Question 12 Does increasing level of education have a significant impact on the probability to buy an insurance at 5% level under model (I)?

- $\boxed{\mathbf{A}}$ Yes, since the coefficient β_6 is significant.
- B No, since the coefficient β_6 is not significant.
- C It depends on the values of all other covariates.
- D Yes, since the model includes the variable "educ".

Question 13 \(\bigcup \) Under model (I), which of the following statements are true?

- A The older an individual grows, the higher the probability of having an insurance.
- B Statistically speaking, having a good health has the same impact on the probability of having an insurance for men and women.
- C The probability of having an insurance is linked to age in a linear fashion.
- D On average, self employed people are less likely to have an insurance, controlling for all other factors.
- E None of these answers are correct.

Question 14 \$\ \ \ Under model (I), which of the following statements are true?

- A Statistically speaking, having a good health has the same impact on the probability of having an insurance for male and female, holding other factors constant.
- B A higher education is associated, on average, with an higher probability of having an insurance, ceteris paribus.
- C If the person is a female, the effect of good health on the probability to have an insurance is $\beta_4 + \beta_5$.
- D We cannot interpret the estimated coefficients in terms of magnitude.
- | E | None of these answers are correct.

Question 15 In model (I) we used heteroskedastic-robust standard errors. Could have we used homoskedastic standard errors instead?

- A No, because homoskedasticity is not possible when the dependent variable is a dummy.
- B No, because the errors are very likely to autocorrelated.
- C Only if we knew that the errors were in facts homoskedastic.
- D No, because homoskedasticity rarely occurs in nature.

Question 16 What is the estimated probability that a 24 years old non-educated non-self-employed single female who is not in good health and with middle school diploma will buy insurance coverage?

- A Approximately 0.5.
- B More than 95%.
- C I cannot say because the model is nonlinear.
- D Less than 5%.

+38/8/20+

Name: CRIVELLINI SOFIA Id: 201101

- Answers must be given exclusively on this sheet: answers given on the other sheets will be ignored.
- This sheet MUST be printed out and not photocopied. Photocopies will not be accepted.
- Please fill the boxes below completely using a black pen.
- Do not crease or fold.
- Due back: Tuesday, May 2 (right after class)

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D E

Question 5: A B C D

Question 6: A B C D E

Question 7: A B C D E

Question 8: A B C D E

Question 9: A B C D

Question 10: A B C D

Question 11: A B C D

Question 12: A B C D

Question 13: A B C D E

Question 14: A B C D E

Question 15: A B C D

Question 16: A B C D