Single Machine Problems: Due Date Scheduling

Previous lecture:

- $1 || \sum w_j C_j$
- $1 \mid Pmtn \mid \Sigma C_i$
- $1 \mid r_j$, $Pmtn \mid \Sigma C_j$

This lectures:

- 1 || *L*_{max}
- $1 \parallel \Sigma U_j$

1. Maximum Lateness

Consider 1 | L_{max},

where
$$L_{\text{max}} = \max\{L_j = C_j - d_j \mid j=1,..., n\}$$
.

Theorem 1. For $1 \parallel L_{\text{max}}$ the EDD rule is optimal.

Proof. Adjacent pairwise interchange.

Suppose a schedule S, which violates EDD, is optimal. In this schedule there must be at least two adjacent jobs i and k such that $d_i > d_k$.

Swapping jobs **j** and **k** leads to a schedule **S**'such that

$$\max\{C_{j}' - d_{j}, C_{k}' - d_{k}\} = \max\{C_{k} - d_{j}, C_{k} - p_{j} - d_{k}\} < \max\{C_{k} - d_{k}, C_{k} - p_{j} - d_{k}\} = C_{k} - d_{k}$$
$$= \max\{C_{j} - d_{j}, C_{k} - d_{k}\}.$$

Consider 1 | $\sum U_j$,

where
$$U_j = \begin{cases} 0, & \text{if } C_j \leq d_j \\ 1, & \text{otherwise} \end{cases}$$

Job	p_{j}	d_{j}
1	7	9
2	8	17
3	4	18
4	6	19
5	6	20

Consider 1 | $\sum U_j$,

where
$$U_j = \begin{cases} 0, & \text{if } C_j \leq d_j \\ 1, & \text{otherwise} \end{cases}$$

Job	p_{j}	d_{j}
1	7	9
2	8	17
3	4	18
4	6	19
5	6	20

By removing the job with the largest processing time, we guarantee that the total processing time of on-time jobs is as small as possible!

Consider 1 | $\sum U_j$,

where
$$U_j = \begin{cases} 0, & \text{if } C_j \leq d_j \\ 1, & \text{otherwise} \end{cases}$$

Job	p_{j}	d _j
1	7	9
2	8	17
3	4	18
4	6	19
5	6	20

By removing the job with the largest processing time, we guarantee that the total processing time of on-time jobs is as small as possible!

Consider 1 | $\sum U_j$,

where
$$U_j = \begin{cases} 0, & \text{if } C_j \leq d_j \\ 1, & \text{otherwise} \end{cases}$$

Job	p_{j}	d _j
1	7	9
2	8	17
3	4	18
4	6	19
5	6	20

By removing the job with the largest processing time, we guarantee that the total processing time of on-time jobs is as small as possible!

Moore's algorithm:

- The algorithm repeatedly adds jobs in the EDD order to the end of a partial schedule of on-time jobs.
- If the addition of job j results in this job being completed after time d_j , then a job in the partial schedule with the largest processing time is removed and declared late.
- All late jobs are scheduled in an arbitrary order after on-time jobs.

