Master Mathématiques, Algèbre et Calcul Formel

Examen du 15 Avril 2011, durée 3 heures

Documents interdits.

Exercice 1: Soit K un corps de caractéristique différente de 2 et contenant une racine primitive n-ième de l'unité ω pour $n=2^k$. Soit f(x) et g(x)deux polynômes à coefficients dans K de degrés inférieurs à n. On note f * gl'unique polynôme de degré inférieur à n et tel que f(x)g(x) = (f * g)(x) $\operatorname{mod} x^n - 1$ (autrement dit, f * g est le reste du produit f(x)g(x) dans la division par $x^n - 1$). On considère l'algorithme suivant:

Algorithm 1 Convolution rapide

Entrées: $n = 2^k$; $\{\omega, \omega^2, ..., \omega^{n/2-1}\}$; $f, g \in K[x], \deg(f) < n, \deg(g) < n$. Sorties: f * q.

- 1: Si k = 0, sortir fg.
- 2: Calculer f_0 , g_0 les restes respectifs de f et g modulo $x^{n/2} 1$ ainsi que f_1 , g_1 les restes respectifs de f et g modulo $x^{n/2} + 1$.
- 3: Appeler récursivement l'algorithme pour calculer $h_0(x) = f_0(x) * g_0(x)$ et $h_1(\omega x) = f_1(\omega x) * g_1(\omega x)$ à l'ordre $n/2 = 2^{k-1}$. 4: Sortir $1/2((h_0 + h_1) + x^{n/2}(h_0 - h_1))$.
- - 1. Exécutez cet algorithme pour n = 4, $f = 1 + x^3$ et $g = 1 + x + x^2$ et vérifiez votre résultat.
 - 2. Montrez que $f = f_0 + (x^{n/2} 1)q = f_1 + (x^{n/2} + 1)q$ pour $q = (f_0 f_1)/2$.
 - 3. En déduire que $2fg = f_0g_0(x^{n/2} + 1) f_1g_1(x^{n/2} 1) \mod x^n 1$.
 - 4. Montrez que $h_1(x) = f_1(x)g_1(x) \mod x^{n/2} + 1$.
 - 5. Déduire des questions précédentes que la sortie de l'algorithme est correcte.
 - 6. Montrez que sa complexité est en $O(n \log n)$ opérations dans K.

Exercice 2: Le but de cet exercice est de donner une version dans le cas de la caractéristique 2 de l'algorithme de Cantor-Zassenhaus, que l'on rappelle ci-après:

Algorithm 2 Cantor-Zassenhaus

Entrées: $q = p^k$ impair, $Q \in \mathbb{F}_q[X]$ de degré n un produit de polynômes irréductibles sur \mathbb{F}_q , deux à deux distincts, et tous de degré d.

Sorties: Un diviseur de Q non trivial ou bien "échec".

- 1: Tirer au hasard $A \in \mathbb{F}_q[X]$ de degré inférieur à n.
- 2: Calculer $D = \gcd(A, Q)$. Si $D \neq 1$, sortir D. 3: Calculer $B = A^{(q^d-1)/2} 1 \mod Q$.
- 4: Calculer $D = \gcd(B, Q)$.
- 5: Sortir $D ext{ si } D \neq 1$, sinon "échec".
- 1. Soit $m \ge 1$ et soit $T_m = X^{2^{m-1}} + X^{2^{m-2}} + \dots + X^4 + X^2 + X \in \mathbb{F}_2[X]$.
 - (a) Montrez que $T_m(T_m + 1) = X^{2^m} + X$.
 - (b) En déduire que, si $\alpha \in \mathbb{F}_{2^m}$, alors $T_m(\alpha) \in \mathbb{F}_2$.
 - (c) Montrez que l'application $\alpha \mapsto T_m(\alpha)$ de \mathbb{F}_{2^m} dans \mathbb{F}_2 est une application linéaire de \mathbb{F}_2 -espaces vectoriels. En déduire que $\{\alpha \in$ $\mathbb{F}_{2^m}: T_m(\alpha) = 0$ et $\{\alpha \in \mathbb{F}_{2^m}: T_m(\alpha) = 1\}$ ont même cardinal,

Soit maintenant $q=2^k$, et $Q(X)\in \mathbb{F}_q[X]$ de degré n. On suppose que Q est le produit de r polynômes irréductibles sur \mathbb{F}_q notés $P_1, \ldots P_r$, deux à deux distincts et tous de même degré d. On note $R = \mathbb{F}_q[X]/(Q)$, $R_i = \mathbb{F}_q[X]/(P_i)$ et $\phi_i: R \to R_i$ l'application canonique définie par: $\phi_i(P \mod Q) = P \mod P_i.$

- 2. Soit $A \in R$. Montrez que $\phi_i(T_{kd}(A)) = T_{kd}(\phi_i(A))$. En utilisant les résultats de la question 1. en déduire que $\phi_i(T_{kd}(A)) \in \mathbb{F}_2$, et que, si A est choisi au hasard et uniformément dans R, $T_{kd}(A)$ appartient à \mathbb{F}_2 avec probabilité 2^{1-r} .
- 3. En déduire un analogue de l'algorithme de Cantor-Zassenhaus pour factoriser Q et montrez que sa probabilité d'échec est inférieure à 1/2. On écrira cet algorithme sous la forme conventionnelle.
- 4. Étudier la complexité de l'algorithme décrit à la question précédente.

Exercice 3: Dans cet exercice, on veut démontrer le résultat de géométrie bien connu suivant: les médianes d'un triangle sont concourantes et leur point d'intersection est le centre de gravité du triangle, à l'aide des bases de Gröbner. Soit donc dans le plan un triangle ABC dont les sommets ont pour coordonnées: $A=(0,0),\ B=(1,0)$ et C=(x,y). Soit $P,\ Q,\ R$ les milieux respectifs des côtés $[BC],\ [AC],\ [AB].$ Soit S=(u,v) l'intersection des médianes AP et BQ.

- 1. Soit $f_1 = uy v(x+1)$ et $f_2 = (u-1)y v(x-2)$. Montrez que S = (u,v) est l'intersection des droites AP et BQ si et seulement si $f_1 = f_2 = 0$.
- 2. Soit $g_1 = -2uy (v y) + 2vx$. Montrez que $g_1 = -f_1 f_2$. En déduire que les trois médianes sont bien concourantes en S.
- 3. Soit $g_2 = 3u x 1$ et $g_3 = 3v y$. Montrez que les conditions: $\overrightarrow{AS} = 2\overrightarrow{SP}$, $\overrightarrow{BS} = 2\overrightarrow{SQ}$, $\overrightarrow{CS} = 2\overrightarrow{SR}$ sont équivalentes à $g_2 = g_3 = 0$.
- 4. On considère désormais x, y, u, v comme des variables de polynômes à coefficients réels. Soit $I = \langle f_1, f_2 \rangle$ l'idéal de $\mathbb{R}[x, y, u, v]$ engendré par f_1 et f_2 . Calculez une base de Gröbner de I, relativement à l'ordre lexicographique noté \prec , pour lequel $u \succ v \succ x \succ y$.
- 5. En déduire que yg_2 et g_3 appartiennent à I et conclure.