Computational Physics Lab 10

Anita Bahmanyar

Student Number: 998909098

November 14, 2014

$\mathbf{Q}\mathbf{1}$

The green box shows the boundary of the box so its easier to see that its not passing the boundary.

Figure 1:

Figure 2:

Figure 3: This figure shows the position of particles attached to each other.

$\mathbf{Q4}$

The integral value is 2.6112 ± 0.0001 . The way I calculated is using equation in textbook:

$$\sigma = (b - a) \frac{\sqrt{varf}}{\sqrt{N}} \tag{1}$$

where var f is defined as:

$$varf = \langle f^2 \rangle - \langle f \rangle^2 \tag{2}$$

where

$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} (f(x_i)) \tag{3}$$

$$\langle f^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} (f(x_i))^2 \tag{4}$$

Q6

Figure 4:

Figure 5:

As the histogram shows the method done in this question is much better than the method done in question 5 and 6, since the histogram has less spread in question 7, which means the value obtained is better.

In this question, I used the value of 2 for the $\int w$ by calculating it by hand. I also put the part in my code that calculates the integral of w using gaussian quadrature method and the value I got is 1.999 which is pretty close to the actual value, but using this value will introduce some error to the calculation of the integral.