FIREWALL (МЕЖСЕТЕВЫЕ ЭКРАНЫ)

ABTOP:

ШНАЙДЕР А.В.

О ТЕХНОЛОГИИ FIREWALL

Firewall (межсетевой экран) - программный или программно-аппаратный элемент компьютерной сети, осуществляющий контроль и фильтрацию проходящего через него сетевого трафика в соответствии с заданными правилами. Среди задач, которые решают межсетевые экраны, основной является защита сегментов сети или отдельных хостов от несанкционированного доступа с использованием уязвимых мест в протоколах сетевой модели OSI или в программном обеспечении, установленном на компьютерах сети. Межсетевые экраны пропускают или запрещают трафик, сравнивая его характеристики с заданными шаблонами.

ИСТОРИЯ МЕЖСЕТЕВЫХ ЭКРАНОВ

Первые устройства, выполняющие функцию фильтрации сетевого трафика, появились в конце 1980-х, когда Интернет был новшеством и не использовался в глобальных масштабах. Этими устройствами были маршрутизаторы, инспектирующие трафик на основании данных, содержащихся в заголовках протоколов сетевого уровня. Впоследствии, с развитием сетевых технологий, данные устройства получили возможность выполнять фильтрацию трафика, используя данные протоколов более высокого, транспортного уровня. Маршрутизаторы можно считать первой программно-аппаратной реализацией межсетевого экрана.

ИСТОРИЯ МЕЖСЕТЕВЫХ ЭКРАНОВ

Программные межсетевые экраны появились существенно позже и были гораздо моложе, чем антивирусные программы. Например, проект Netfilter/iptables (один из первых программных межсетевых экранов, встраиваемых в ядро Linux с версии 2.4) был основан в 1998 году. Такое позднее появление вполне объяснимо, так как долгое время антивирус решал проблему защиты персональных компьютеров от вредоносных программ. Однако в конце 1990-х вирусы стали активно использовать отсутствие межсетевых экранов на компьютерах, что привело к повышению интереса пользователей к данному классу устройств

КЛАССИФИКАЦИЯ МЕЖСЕТЕВЫХ ЭКРАНОВ

До сих пор не существует единой и общепризнанной классификации межсетевых экранов. Однако в большинстве случаев поддерживаемый уровень сетевой модели OSI является основной характеристикой при их классификации. Учитывая данную модель, различают следующие типы межсетевых экранов:

- 1. Управляемые коммутаторы.
- 2. Пакетные фильтры.
- 3. Шлюзы сеансового уровня.
- 4. Посредники прикладного уровня.
- 5. Инспекторы состояния.

КЛАССИФИКАЦИЯ МЕЖСЕТЕВЫХ ЭКРАНОВ

Схематическое изображение классификации межсетевых экранов на основе сетевой модели OSI

УПРАВЛЯЕМЫЕ КОММУТАТОРЫ

Управляемые коммутаторы иногда причисляют к классу межсетевых экранов, так как они осуществляют фильтрацию трафика между сетями или узлами сети. Однако они работают на канальном уровне и разделяют трафик в рамках локальной сети, а значит не могут быть использованы для обработки трафика из внешних сетей (например, из Интернета)

ПАКЕТНЫЕ ФИЛЬТРЫ

Пакетные фильтры функционируют на сетевом уровне и контролируют прохождение трафика на основе информации, содержащейся в заголовке пакетов. Многие межсетевые экраны данного типа могут оперировать заголовками протоколов и более высокого, транспортного, уровня (например, TCP или UDP). Пакетные фильтры одними из первых появились на рынке межсетевых экранов и по сей день остаются самым распространённым их типом. Данная технология реализована в подавляющем большинстве маршрутизаторов и даже в некоторых коммутаторах.

ШЛЮЗЫ СЕАНСОВОГО УРОВНЯ

Шлюз сеансового уровня гарантирует, что ни один сетевой пакет не будет пропущен, если он не принадлежит ранее установленному соединению. Как только приходит запрос на установление соединения, в специальную таблицу помещается соответствующая информация. В случае, если соединение установлено, пакеты, передаваемые в рамках данной сессии, будут просто копироваться в локальную сеть без дополнительной фильтрации. Когда сеанс связи завершается, сведения о нём удаляются из данной таблицы. Поэтому все последующие пакеты, «притворяющиеся» пакетами уже завершённого соединения, отбрасываются.

ПОСРЕДНИКИ ПРИКЛАДНОГО УРОВНЯ

Межсетевые экраны прикладного уровня, к которым, в частности, относится файрвол веб-приложений, как и шлюзы сеансового уровня, исключают прямое взаимодействие двух узлов. Однако, функционируя на прикладном уровне, они способны «понимать» контекст передаваемого трафика. Межсетевые экраны, реализующие эту технологию, содержат несколько приложений-посредников, каждое из которых обслуживает свой прикладной протокол. Такой межсетевой экран способен выявлять в передаваемых сообщениях и блокировать несуществующие или нежелательные последовательности команд, что зачастую означает DoS-атаку, либо запрещать использование некоторых команд.

инспекторы состояния

Каждый из вышеперечисленных типов межсетевых экранов используется для защиты корпоративных сетей и обладает рядом преимуществ. Однако, куда эффективней было бы собрать все эти преимущества в одном устройстве и получить межсетевой экран, осуществляющий фильтрацию трафика с сетевого по прикладной уровень. Данная идея была реализована в инспекторах состояний, совмещающих в себе высокую производительность и защищённость. Данный класс межсетевых экранов позволяет контролировать:

- каждый передаваемый пакет на основе таблицы правил;
- каждую сессию на основе таблицы состояний;
- каждое приложение на основе разработанных посредников.

РЕАЛИЗАЦИЯ

Существует два варианта исполнения межсетевых экранов — программный и программно-аппаратный. В свою очередь программно-аппаратный вариант имеет две разновидности — в виде отдельного модуля в коммутаторе или маршрутизаторе и в виде специализированного устройства.

Логотип брандмауэра Windows

Маршрутизатор со встроенным межсетевым экраном

Специализированное устройство с межсетевым экраном (security appliance)

ПРОГРАММНЫЕ МЕЖСЕТЕВЫЕ ЭКРАНЫ

В настоящее время чаще используется программное решение, которое на первый взгляд выглядит более привлекательным. Это вызвано тем, что для его применения достаточно, казалось бы, всего лишь приобрести программное обеспечение межсетевого экрана и установить на любой имеющийся в организации компьютер. Однако, как показывает практика, в организации далеко не всегда находится свободный компьютер, да ещё и удовлетворяющий достаточно высоким требованиям по системным ресурсам. После того, как компьютер всё-таки найден (чаще всего — куплен), следует процесс установки и настройки операционной системы, а также, непосредственно, программного обеспечения межсетевого экрана.

ПРОГРАММНО-АППАРАТНЫЕ МЕЖСЕТЕВЫЕ ЭКРАНЫ

всё большее распространение стали получать специализированные программно-аппаратные комплексы, называемые security appliance, на основе, как правило, FreeBSD или Linux, «урезанные» для выполнения только необходимых функций. Достоинствами данных решений являются:

- Простота внедрения: данные устройства имеют предустановленную и настроенную операционную систему и требуют минимум настроек после внедрения в сеть.
- Простота управления: данными устройствами можно управлять откуда угодно по стандартным протоколам, таким как SNMP или Telnet, либо посредством защищённых протоколов, таких как SSH или SSL.
- Производительность: данные устройства работают более эффективно, так как из их операционной системы исключены все неиспользуемые сервисы.
- Отказоустойчивость и высокая доступность: данные устройства созданы выполнять конкретные задачи с высокой доступностью.

