الاختبار المشترك الأول العام الدراسى: 2020-2019

باسمه تعالى امتحانات الشهادة الثانوية العامة الفرع: علوم العامة

الاسم: الرقم:

مسابقة في مادة الرياضيات (فرنسي) المدة: أربع ساعات

عدد المسائل: ستة

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I-(2 points)

Dans le tableau suivant, une seule réponse est correcte pour chaque question.

Ecrire le numéro de la question et choisir la réponse correcte correspondante en la **justifiant**.

		Réponses		
Nº	Questions	A	В	C
1	n est un entier naturel, multiple de 8. Alors $\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^n =$	1	-1	i
2	Si $f(x) = \arcsin x$ et $g(x) = x$ alors $\lim_{x \to 0} \frac{(g' \circ f)(x) - 1}{x} =$	$\frac{1}{2e}$	0	+ ∞
3	Si $\arctan 2x + \arccos x = \frac{\pi}{2}$ alors	$x \in \left\{ \frac{-\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, 0 \right\}$	$x = \frac{\pi}{2}$	x = 1
4	La dérivée n ^{ième} de la fonction f définie par $f(x) = \ln(1+x)$ est	$f^{(n)}(x) = \frac{(-1)^n \cdot (n-1)!}{(1+x)^n}$	$f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$	$f^{(n)}(x) = \frac{n!}{(1+x)^n}$

II-(2,5 points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, On considère :

Les deux droites (d) et (d') définies par :

- (C) est un cercle de centre O et passant par E.
- 1) Montrer que les deux droites (d) et (d') sont non coplanaires.
- 2) Montrer que x y + z = 0 est une équation du plan (P) déterminé par le point O et la droite (d).
- 3) Montrer que le point E est le point d'intersection de (P) et de (d').
- 4) a- Montrer que le point B est le symétrique du point A par rapport au plan (P).
 - **b-** Calculer le volume du tétraèdre AEBO.
- 5) Montrer que la droite (d) est tangente au cercle (C).
- 6) Soit (Γ) l'ensemble des points M(x, y, 0) équidistant du point L(1; 2; 0) et du plan (P). Montrer que (Γ) est une ellipse dont le foyer et sa directrice associée à déterminer.

III- (2,5 points)

Dans le plan complexe rapporté au repère orthonormé direct (0; u, v). On considère les points A,B,C, M et M' d'affixes respectives : 2, 1 – i, 1+i, z et z' tel que z'= -i(z-2)+2.

Partie A

- 1) Placer les points A, B et C.
- 2) Calculer $\frac{z_C z_A}{z_B z_A}$. Déduire que ABC est un triangle rectangle isoscèle.
- 3) Déterminer l'ensemble des points M' si M varie sur un cercle (C) de centre A et de rayon 2.

Partie B

Dans cette partie, on suppose que $z = 1 + e^{i\theta}$ tel que $\theta \in [0, \pi]$.

- 1) Montrer que $z'=e^{i\left(\theta-\frac{\pi}{2}\right)}+2+i$.
- 2) Soit $Z = \frac{z' z_C}{z z_C}$.
 - a- Montrer que Z est un nombre réel.
 - **b-** Exprimer \overrightarrow{CM}' en fonction de \overrightarrow{CM} . Que peut on dire des points C, M et M'?

Partie C

Dans cette partie, on suppose que $z = (1-i)(2-4\sqrt{2})$.

- 1) Montrer que z'= $4\sqrt{2}(1+i)$.
- 2) Résoudre l'équation $u^3 = z'$.

IV- (3 points)

Soit (U_n) une suite définie par : U₀ = 2e et U_{n+1} = $\frac{e^2 + U_n^2}{2U_n}$ pour tout $n \in N$.

- 1) Montrer que $U_n > e$ pour tout $n \in N$.
- 2) Montrer que la suite (Un) est décroissante.
- 3) Déduire que (U_n) est convergente et calculer sa limite.
- 4) **a-** Montrer que $|\mathbf{U}_{n+1} e| \le \frac{1}{2} |\mathbf{U}_n e|$ pour tout $n \in \mathbb{N}$.
 - **b-** Déduire que $U_n e \le e \left(\frac{1}{2}\right)^n$ pour tout n.
 - c- Déduire du nouveau la valeur de $\underset{n\rightarrow +\infty}{Lim}\,U_{_{n}}$.
- 5) Soit (V_n) une suite définie par : $V_n = \frac{U_n + e}{U_n e}$ pour tout $n \in N$.
 - **a-** Montrer que $V_{n+1} = V_n^2$ pour tout $n \in N$
 - **b-** Montrer que $V_n = 3^{2^n}$ pour tout $n \in N$.

V- (4 points)

On donne les trois points alignés A, F et O tels que AF = 1 et FO = 8.

Soit (ω) un cercle variable tangent à (OA) en A.

Les tangentes à (ω), autre que (OA), menées de O et F se coupent en L.

Partie A

- 1) Montrer que , lorsque (ω) varie, L décrit une ellipse (E) des foyers O et F et de longueur de l'axe focal égale à 10.
- 2) Déterminer l'axe focal, le centre et les sommets principaux de (E).
- 3) Tracer (E).

Partie B

Le plan est rapporté à un repère orthonormé direct $(O; \vec{i}; \vec{j})$ tel que $\overrightarrow{OF} = -8\vec{i}$.

- 1) Montrer que $\frac{(x+4)^2}{25} + \frac{y^2}{9} = 1$ est une équation de (E).
- 2) Déterminer une équation de la droite (d) directrice associée au foyer O.
- 3) Déterminer les points d'intersection P et Q de (E) et des axes des ordonnées. (P est un point d'ordonnée positive).
- **4**) La tangente (Δ) à (E) en P coupe l'axe non-focal de (E) en T. Montrer que T appartient auxiliaire de (E).
- 5) Soit $S(x_0, y_0)$ un point de (E) tel que $y_0 \neq 0$.
 - **a-** Montrer que la tangente (δ) à (E) en S coupe la directrice (d) en un point D d'ordinnée $-\frac{9x_0}{4y_0}$.
 - **b-** La droite (OS) recoupe (E) en un point S'. Montrer que la tangente (δ') à (E) en S' coupe la directrice (d) en le même point D.

VI- (6 points)

Partie A

Soit g une fonction définie sur $]0, +\infty[$ par $g(x) = \ln x + x - 3$.

- 1) Etudier la variation de g.
- 2) Montrer que g (x) = 0 admet une solution unique α et vérifier que $2,20 < \alpha < 2,21$.
- 3) Etudier le signe de g (x) sur $]0, +\infty[$.

Partie B

On considère la fonction f , define sur $]0, +\infty[$, par $f(x) = \ln x - 2 + \frac{2 - \ln x}{x}$ et on désigne par (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et que $\lim_{x \to 0^+} f(x) = +\infty$. Déduire une asymptote à (C).
- 2) a- Montrer que $f'(x) = \frac{g(x)}{x}$ et dresser le tableau de variations de f.
 - **b-** Montrer que $f(\alpha) = -\frac{(\alpha 1)^2}{\alpha}$.
- 3) a- Calculer f (1) et f (e^2) et tracer (C). (prendre $\alpha = 2,2$)
 - **b-** Etudier le signe de f(x) sur $]0, +\infty[$.
- 4) a- Montrer que f admet sur $]\alpha$, $+\infty[$, une function réciproque h, et déterminee son domaine de définition.
 - b- Tacer (H) la courbe représentative de h dans le même repère que (C).
 - c- Calculer h'(0).
- 5) On considère la fonction F définie sur $]0, +\infty[$ par $F(x) = \int_{1}^{x} f(t)dt$. On désigne par (Γ) la courbe représentative de F.
 - **a-** Sans calculer F(x), étudier les variations de F sur $]0, +\infty[$.
 - **b-** Montrer que $F(x) = x \ln x 3x \frac{1}{2} (\ln x)^2 + 2 \ln x + 3$.
- 6) Calculer l'aire S du domaine limité par (H), l'axe des ordonnées et les deux droites d'équations $y = \alpha$ et $y = e^2$.