```
library(dplyr)

rladies_global %>%
  filter(city == 'Córdoba')
```


Visualización de datos ggplot2

¿Qué es Ggplot2?

- Es un paquete para visualización de datos
- Creado y desarrollado por Hadley Wickham
- Inspirado en el Grammar of Graphics de Leland Wilkinson

¿Por qué ggplot2?

- Definido en base a un conjunto de principios
- Estructura consistente independientemente del tipo de gráfico
- Puede producir gráficos de calidad publicable en poco tiempo
- Diseñado para trabajar iterativamente agregando capas, agrupa y faceta

Otras maneras de visualizar gráficos:

- R base
- Lattice

actualmente favorece a ggplot2:

- es el paquete de gráficos estáticos mas prominente de R
- Hay mucha ayuda disponible
- Están desarrolladas muchas extensiones (aprox. 40)

Como empezar

install.packages("ggplot2") o install.packages("tidyverse")

ggplot2 actualmente es parte del grupo de paquetes del "Tidyverse"

Elementos básicos en visualización en ggplot2

Datos Mapeos estéticos Objecto geométrico

Transformaciones estadísticas Escalas Sistemas de coordenadas Ajustes de posición Facetas Temas

```
ggplot (data = <DATA>) +

<GEOM_FUNCTION> (mapping = aes(<MAPPINGS>),

stat = <STAT>, position = <POSITION>) +

<COORDINATE_FUNCTION> +

<FACET_FUNCTION> +

<SCALE_FUNCTION> +

<THEME_FUNCTION>
```

Los datos deben estar almacenados en un data.frame Importante: datos ordenados (cada variable en su columna, cada observación en su fila, cada valor en su celda)

Como se construye un gráfico con ggplot2

1. Especificar los datos con los que se van a trabajar

Como se construye un gráfico con ggplot2

2.Especificar el mapeo de las variables a componentes "estéticos" ggplot(data=iris, aes(x=Sepal.Length, y= Sepal.Width))

componentes estéticos:

Χ

Υ

Color

Fill

Alpha

Linetype

Shape

Size

Como se construye un gráfico con ggplot2

3.Añadir capa: especificar el tipo de objeto geométrico ggplot(data=iris, aes(x=Sepal.Length, y= Sepal.Width)) + geom_point()

Si el proceso básico es....

Data Aes() Geom_

Geom_

geom_bar()

d + geom_bar()
x, alpha, color, fill, linetype, size, weight

geom_boxplot()

f + geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

geom_histogram()

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

geom_line():

i + geom_line()
x, y, alpha, color, group, linetype, size

geom_point():

e + geom_point(), x, y, alpha, color, fill, shape, size, stroke

geom_smooth():

e + geom_smooth(method = lm), x, y, alpha, color, fill, group, linetype, size, weight

Capas

ggplot(diamonds) + geom_point(aes(x=carat, y=price, color=cut)) + geom_smooth(aes(x=carat, y=price)) ggplot(diamonds) + geom_point(aes(x=carat, y=price,
color=cut)) + geom_smooth(aes(x=carat, y=price,color=cut))

Elementos de ggplot2

Sistema de coordenadas

 Define los planos en los cuales los objetos van a estar posicionados en el espacio en el gráfico.

- coord_cartesian (por defecto)
- coord_fixed
- coord_flip invierte las coordenadas cartesianas
- coord_polar x (o y) es mapeado a ángulo (theta)

Posición

 Los ajustes de posición determinan como ubicar geoms que de otro modo ocuparían el mismo espacio.

s <- ggplot(mpg, aes(fl, fill = drv))

s + geom_bar(position = "dodge") Arrange elements side by side

s + geom_bar(position = "fill")
Stack elements on top of one another,
normalize height

e + geom_point(position = "jitter")
Add random noise to X and Y position of each
element to avoid overplotting

s + geom_bar(position = "stack")
Stack elements on top of one another

Facetas (facets)

Las Facetas dividen un gráfico en múltiples sub-gráficos basado en una o varias variables discretas

¿Que diferencia facet_grid de facet_wrap?

facet_grid(x_~y) muestra todos los gráficos x*y incluso si hay gráficos vacíos

facet_wrap(x~y) solo muestra gráficos que tengan datos

Transformar datos

R

ggplot(Milk, aes(x=Time, y=protein)) +
stat_summary(fun.data="mean_cl_normal")

- la función stat_ transforma estadísticamente los datos, normalmente como algún tipo de resumen, como frecuencias, media, limite de confianza
- Cada función stat_ esta asociada por defecto a un geom_ por lo que no habría que agregar geom_

Por ejemplo:

- stat_bin → geom_histogram
- stat summary → geom pointrange

Escalas

scale_<aesthetic>_<type>

- Las escalas asignan los valores que hay en los datos a los valores visuales de una estética.
 - Escalas para Color y Relleno (Continuas)

n + scale_fill_distiller(palette = "Blues")

n + scale_fill_gradient(low="red",
high="yellow")

- Escalas para Color y Relleno (Discretas)
- n + scale_fill_brewer
- n + scale_fill_grey

Escalas de localización para X e Y

- scale_x_discrete
- scale_y_sqrt()

Paletas de colores

los colores pueden ser especificados por su nombre (e.g col = "red") o como triplete hexadecimal RGB (col = "#FFCC00")

Rcolorbrewer

ggsci NPG

- AAAS
- NEJM
- Lancet
- JAMA
- JCO
- UCSCGB
- D3
- LocusZoom
- IGV
- UChicago
- Star Trek
- Tron Legacy
- Futurama
- Rick and Morty
- The Simpsons

Ghibli

Wes anderson

sumar paletas de colores a ggplot


```
Scale_color_ brewer:
d + scale_colour_brewer(palette = "Greens")
ggsci:
p1 + scale_color_npg()
p1 + scale_fill_npg()
```

• Ghibli:P3 + scale_color_manual(values = ghibli_palette("MarnieMedium1"))

Escala de grises:p + scale_colour_grey()

Temas (Themes)

Themes controla todos los elementos del grafico que no son datos. Puede usarse un theme completo como theme bw(), o elegir cambiar alguna parte individualmente usando theme() y la funcion element_

theme_grey() (por defecto)

theme_bw()

theme_classic()

theme_dark()

Extensiones

http://www.ggplot2-exts.org/gallery/

Ggrepel, ggfortify, Gganimate, Ggally, ggridges, ggsci, ggTimeSeries, ggmuller

No son extensiones pero pueden ser útiles :Patchwork, gridExtra

Extensiones

GGFORTIFY

GGALLY

Desde Rstudio

Plot: save

Función ggsave

• ggsave("Fig 4.tiff", plot = Fig4, width=5 fig.asp = 0.618, units="in", dpi=300, compression = "lzw")

Ayuda

- http://stackoverflow.com
- https://ggplot2.tidyverse.o rg/reference/
- http://www.rstudio.com/r esources/cheatsheets/.
- www.data-to-viz.com

- Libro R4DS
- Libro Ggplot2
- https://stats.idre.ucla.edu/stat/data/intro ggplot2/ggplot2 intro slidy.html