8 - La Topologia Debole, Spazi di Hilbert

∺ Definizione: Topologia forte

Sia $(E, \|\cdot\|)$ uno spazio normato.

La topologia τ indotta dalla metrica d indotta dalla norma $\|\cdot\|$ prende il nome di **topologia forte** su E.

☆ Definizione: Convergenza debole di una successione generalizzata

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}\subseteq E$ una successione generalizzata.

Sia $\tilde{\mathbf{x}} \in E$.

Si dice che $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$ quando

 $\lim_{lpha} T(\mathbf{x}_lpha) = T(ilde{\mathbf{x}})$ per ogni $T \in E^*$.

Q Osservazione 1

La convergenza forte, ossia la convergenza indotta dalla topologia forte, implica la convergenza debole.

Infatti, sia $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ una successione generalizzata convergente fortemente a $\tilde{\mathbf{x}}$; ciò significa che $\lim_{\alpha}\|\mathbf{x}_{\alpha}-\tilde{\mathbf{x}}\|=0$.

Poiché per ogni $T \in E^*$ si ha $(0 \le) |T(\mathbf{x}_{\alpha}) - T(\tilde{\mathbf{x}})| = |T(\mathbf{x}_{\alpha} - \tilde{\mathbf{x}})| \le ||T||_{E^*} ||\mathbf{x}_{\alpha} - \tilde{\mathbf{x}}||$, segue la convergenza debole per confronto.

the Insieme debolmente aperto

Sia $(E,\|\cdot\|_E)$ uno spazio normato. Sia $A\subset E$.

A si dice debolmente aperto quando

per ogni $\tilde{\mathbf{x}} \in A$ e per ogni successione generalizzata $\{\mathbf{x}_{\alpha}\}_{\alpha \in D} \subseteq E$ convergente debolmente a $\tilde{\mathbf{x}}$, esiste $\overline{\alpha} \in D$ tale che, per ogni $\alpha \succeq \overline{\alpha}$, valga $\mathbf{x}_{\alpha} \in A$.

Proposizione 8.1: Insiemi debolmente aperti costituiscono una topologia

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

L'insieme degli insiemi debolmente aperti di E è una topologia su di esso.

Dimostrazione

Chiaramente, E è debolmente aperto.

Infatti, sia $\tilde{\mathbf{x}} \in E$ e sia $\{\mathbf{x}_{\alpha}\}_{\alpha \in D} \subseteq E$ una successione generalizzata convergente a $\tilde{\mathbf{x}}$.

Essendo $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}\subseteq E$ si ha $\mathbf{x}_{\alpha}\in E$ per ogni $\alpha\in D$; pertanto, basta fissare arbitrariamente $\alpha_{0}\in D$, e ottenere così a maggior ragione $\mathbf{x}_{\alpha}\in E$ per ogni $\alpha\succeq\alpha_{0}$.

Ø è debolmente aperto, per vacua verità.

Se A_1 e A_2 sono debolmente aperti, allora $A_1 \cap A_2$ è debolmente aperto.

Infatti, sia $\tilde{\mathbf{x}} \in A_1 \cap A_2$, e sia $\{\mathbf{x}_{\alpha}\}_{\alpha \in D}$ una successione generalizzata convergente a $\tilde{\mathbf{x}}$.

Essendo $\tilde{\mathbf{x}} \in A_1$, esiste $\alpha_1 \in D$ tale che $\mathbf{x}_{\alpha} \in A_1$ per ogni $\alpha \succeq \alpha_1$;

analogamente, essendo $\tilde{\mathbf{x}} \in A_2$, esiste $\alpha_2 \in D$ tale che $\mathbf{x}_{\alpha} \in A_2$ per ogni $\alpha \succeq \alpha_2$;

Per filtranza di \leq esiste $\beta \in D$ tale che $\alpha_1, \alpha_2 \leq \beta$;

per transitività di \leq segue allora che, per ogni $\alpha \succeq \beta$, vale $\mathbf{x}_{\alpha} \in A_1 \cap A_2$.

Evidentemente, se A è una famiglia di insiemi debolmente aperti di E, allora $\bigcup A$ è debolmente aperto.

Infatti, sia $\tilde{\mathbf{x}} \in \bigcup \mathcal{A}$, e sia $\{\mathbf{x}_{\alpha}\}_{\alpha \in D}$ una successione generalizzata convergente a $\tilde{\mathbf{x}}$.

Essendo $\tilde{\mathbf{x}} \in \bigcup \mathcal{A}$, esiste $A \in \mathcal{A}$ tale che $\tilde{\mathbf{x}} \in A$.

Essendo A debolmente aperto per definizione di \mathcal{A} , esiste $\overline{\alpha} \in D$ tale che $\mathbf{x}_{\alpha} \in A \subseteq \bigcup \mathcal{A}$ per ogni $\alpha \succeq \overline{\alpha}$.

♯ Definizione: Topologia debole

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

L'insieme degli insiemi debolmente aperti di E, che è una topologia per quanto appena mostrato, prende il nome di **topologia debole** su E.

Q Osservazione 2

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}\subseteq E$ una successione generalizzata.

Sia $\tilde{\mathbf{x}} \in E$.

 $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge a $\tilde{\mathbf{x}}$ secondo la topologia debole su E se e solo se $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$.

Dimostrazione

Si supponga che $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge a $\tilde{\mathbf{x}}$ secondo la topologia debole su E.

Ciò significa che, per ogni U intorno debolmente aperto di $\tilde{\mathbf{x}}$, esiste $\alpha_0 \in D$ tale che $\mathbf{x}_\alpha \in U$ per ogni $\alpha \succeq \alpha_0$.

Sia $T \in E^*$; si provi che $\lim_{lpha} T(\mathbf{x}_lpha) = T(\mathbf{ ilde{x}}).$

Si fissi $\varepsilon > 0$.

L'insieme $T^{-1}(|T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon|)$ è un intorno debolmente aperto di $\tilde{\mathbf{x}}$.

Infatti, tale insieme evidentemente possiede $\tilde{\mathbf{x}}$; si provi che esso è debolmente aperto.

Sia dunque $\mathbf{y} \in T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$, e sia $\{\mathbf{y}_{\alpha}\}_{\alpha \in D} \subseteq E$ una successione generalizzata in E convergente debolmente a \mathbf{y} .

Si ha allora $\lim_{\alpha} T(\mathbf{y}_{\alpha}) = T(\mathbf{y}) \in \]T(\mathbf{ ilde{x}}) - arepsilon; T(\mathbf{ ilde{x}}) + arepsilon[;$

per permanenza del segno, ne segue che esiste $\overline{\alpha} \in D$ tale che $T(\mathbf{y}_{\alpha}) \in]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[$ per ogni $\alpha \succeq \overline{\alpha}$.

Dunque, $\mathbf{y}_{\alpha} \in T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$ per ogni $\alpha \succeq \overline{\alpha}$; pertanto, $T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$ è debolmente aperto.

Allora, per ipotesi di convergenza, esiste $\alpha_0 \in D$ tale che $\mathbf{x}_\alpha \in T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$, ossia $|T(\mathbf{x}_\alpha) - T(\tilde{\mathbf{x}})| < \varepsilon$, per ogni $\alpha \succeq \alpha_0$.

Pertanto, ne viene che $\lim_{lpha} T(\mathbf{x}_{lpha}) = T(\tilde{\mathbf{x}})$ per arbitrarietà di arepsilon > 0.

Si supponga ora che $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$.

Sia U un intorno debolmente aperto di $\tilde{\mathbf{x}}$;

poiché $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$, per definizione di insieme debolmente aperto esiste $\alpha_0\in D$ tale che $\mathbf{x}_{\alpha}\in U$ per ogni $\alpha\succeq\alpha_0$.

Allora, $\{\mathbf{x}_{\alpha}\}_{{\alpha}\in D}$ converge a $\tilde{\mathbf{x}}$ secondo la topologia debole su E.

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia τ la topologia forte su E.

Sia τ_d la topologia debole su E.

Allora, $\tau_d \subseteq \tau$.

Dimostrazione

Per l'[Osservazione 1], per ogni $\mathbf{x} \in E$ e per ogni successione generalizzata $\{x_{\alpha}\}_{\alpha \in D} \subseteq E$ convergente fortemente a \mathbf{x} , ossia convergente a \mathbf{x} secondo τ , $\{x_{\alpha}\}_{\alpha \in D}$ converge ivi debolmente, ossia secondo τ_d per l'[Osservazione 2].

La tesi segue allora direttamente dalla [Proposizione 1.3].

Si dimostra che le due topologie coincidono se e solo se lo spazio ha dimensione finita.

Si prova in particolare che, se E ha dimensione infinita, l'insieme $\{\mathbf{x} \in E : ||\mathbf{x}|| = 1\}$ non è debolmente chiuso (cioè chiuso rispetto alla topologia debole), sebbene esso sia chiuso.

Proposizione 8.3: Insiemi chiusi e convessi sono debolmente chiusi

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $C \subseteq E$ chiuso e convesso.

Allora, C è debolmente chiuso.

Dimostrazione

Sia $\mathbf{x}_0 \in \mathrm{cl}_d(C)$, dove $\mathrm{cl}_d(C)$ indica la chiusura di C rispetto alla topologia debole.

Si proceda per assurdo, supponendo che $\mathbf{x}_0 \notin C$.

Sia $K = \{\mathbf{x}_0\}$; tale insieme è compatto.

Essendo C chiuso, per il [Teorema 7.9] esiste allora $\psi \in E^*$ tale che $\sup_{\mathbf{x} \in C} \psi(\mathbf{x}) < \psi(\mathbf{x}_0)$.

Essendo $\mathbf{x}_0 \in \mathrm{cl}_d(C)$, esiste una successione generalizzata $\{\mathbf{x}_\alpha\}_{\alpha \in D} \subseteq C$ che converge debolmente a \mathbf{x}_0 ; dalla definizione di convergenza debole segue allora che $\lim_{\alpha} \psi(\mathbf{x}_\alpha) = \psi(\mathbf{x}_0)$.

Tuttavia, ciò risulta essere in contrasto con il fatto che, essendo $\{\mathbf{x}_{\alpha}\}_{\alpha \in D} \subseteq C$, per confronto si ha $\lim_{\alpha} \psi(\mathbf{x}_{\alpha}) \leq \sup_{\mathbf{x} \in C} \psi(\mathbf{x}) < \psi(\mathbf{x}_{0}).$

Spazi di Hilbert

☆ Definizione: Prodotto scalare, Spazio con prodotto scalare

Sia E uno spazio vettoriale.

Una funzione $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ si dice prodotto scalare su E quando:

- 1. $\langle \lambda \mathbf{x} + \mu \mathbf{y}, \mathbf{z} \rangle = \lambda \langle \mathbf{x}, \mathbf{z} \rangle + \mu \langle \mathbf{y}, \mathbf{z} \rangle$ per ogni $\mathbf{x}, \mathbf{y}, \mathbf{z} \in E$ e per ogni $\lambda, \mu \in \mathbb{R}$;
- 2. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ per ogni $\mathbf{x}, \mathbf{y} \in E$;
- 3. $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ per ogni $\mathbf{x} \in E$, e $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ se e solo se $\mathbf{x} = \mathbf{0}$.

Dati uno spazio vettoriale E e un prodotto scalare $\langle \cdot, \cdot \rangle$ su E, la coppia $(E, \langle \cdot, \cdot \rangle)$ prende il nome di **spazio con prodotto scalare** o **spazio pre-Hilbertiano**.

Osservazione

Sia $(E,\langle\cdot,\cdot\rangle)$ uno spazio con prodotto scalare.

La funzione $\|\cdot\|:E\to\mathbb{R}$ definita ponendo

Il prodotto scalare $\langle \cdot, \cdot \rangle$ induce una norma $\| \cdot \|$; essa è definita ponendo $\| \mathbf{x} \| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ per ogni $\mathbf{x} \in E$.

Proposizione: Disuguaglianza di Cauchy-Schwartz

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\|\cdot\|$ la norma indotta da $\langle\cdot,\cdot\rangle$.

Per ogni $\mathbf{x}, \mathbf{y} \in E$, si ha $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$.

♯ Definizione: Spazio di Hilbert

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\|\cdot\|$ la norma indotta da $\langle\cdot,\cdot\rangle$.

Sia d la metrica indotta da $\|\cdot\|$.

 $(E, \langle \cdot, \cdot \rangle)$ si dice **spazio di Hilbert** quando è completo rispetto a d.

Q Osservazione

Gli spazi di Hilbert sono di Banach.

Proposizione 8.4: Legge del parallelogramma

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sono equivalenti le seguenti affermazioni:

- 1. Esiste un prodotto scalare $\langle \cdot, \cdot \rangle$ su E avente $\| \cdot \|$ come norma indotta;
- 2. $\|\cdot\|$ soddisfa la legge del parallelogramma, ossia $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$ per ogni $\mathbf{x}, \mathbf{y} \in E$.

ho Dimostrazione (1. \Rightarrow 2.)

Sia $\langle \cdot, \cdot \rangle$ su E che ha $\| \cdot \|$ come norma indotta.

Dunque, $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ per ogni $\mathbf{x} \in E$.

Siano $\mathbf{x}, \mathbf{y} \in E$. Si ha

$$\|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y},\mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x},\mathbf{x} \rangle + 2\langle \mathbf{x},\mathbf{y} \rangle + \langle \mathbf{y},\mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2\langle \mathbf{x},\mathbf{y} \rangle.$$

Analogamente,

$$\|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle.$$

Sommando i primi e gli ultimi membri delle due catene di uguaglianze, si ottiene

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$$

Proposizione 8.5: Insiemi limitati e debolmente chiusi in uno spazio di Hilbert sono debolmente compatti

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $A \subseteq E$ limitato e debolmente chiuso.

Allora, A è debolmente compatto, cioè compatto rispetto alla topologia debole su E.

Proposizione 8.6: Esistenza di una funzione a valori reali continua e suriettiva sulla sfera unitaria

Sia $(E, \|\cdot\|)$ uno spazio normato.

Si supponga che E abbia dimensione infinita.

Sia
$$S = \{ \mathbf{x} \in E : ||\mathbf{x}|| = 1 \}.$$

Esiste una funzione $f:S \to \mathbb{R}$ continua e suriettiva.

Q Osservazioni preliminari

S è connesso per archi.

Infatti, siano $\mathbf{x}, \mathbf{y} \in S$ con $\mathbf{x} \neq \mathbf{y}$.

Si consideri il vettore $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$, con $\lambda \in [0; 1]$.

Si ha $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = \mathbf{0}$ se e solo se $\mathbf{x} = -\mathbf{y}$ e $\lambda = \frac{1}{2}$.

Infatti, sotto tali condizioni vale l'uguaglianza.

Viceversa, se vale l'uguaglianza si ha $\lambda \mathbf{x} = (\lambda - 1)\mathbf{y}$, dunque \mathbf{x} e \mathbf{y} sono linearmente dipendenti.

Essendo $\mathbf{x}, \mathbf{y} \in S$ distinti, si deve allora avere $\mathbf{y} = -\mathbf{x}$.

Allora, si ha $\lambda \mathbf{x} = (1 - \lambda)\mathbf{x}$, da cui segue $\lambda = 1 - \lambda$, ossia $\lambda = \frac{1}{2}$.

Allora, se $\mathbf{y} \neq -\mathbf{x}$, la funzione $s:[0;1] \to S$ definita ponendo $s(\lambda) = \frac{\lambda \mathbf{x} + (1-\lambda)\mathbf{y}}{\|\lambda \mathbf{x} + (1-\lambda)\mathbf{y}\|}$ è ben definita e continua, dunque è un arco.

Se invece y = -x, sia $u \in S$ tale che $u \notin \{x, -x\}$.

esso esiste; basta infatti considerare un vettore $\mathbf{z} \notin \mathrm{span}(\mathbf{x})$, che esiste essendo $\mathrm{span}(\mathbf{x})$ di dimensione 1 e E di dimensione infinita, e poi porre $\mathbf{u} = \frac{\mathbf{z}}{\|\mathbf{z}\|}$, vettore ben definito in quanto $\mathbf{z} \notin \mathrm{span}(\mathbf{x})$.

Essendo \mathbf{u} distinto da \mathbf{x} e $-\mathbf{x}$, per il caso precedente esistono un arco da \mathbf{x} a \mathbf{u} , e un arco da \mathbf{u} a $-\mathbf{x}$; il loro arco unione è un arco da \mathbf{x} a $-\mathbf{x} = \mathbf{y}$.

La dimostrazione della [Proposizione 6.3] mostra che esiste $D \subseteq S$ numerabile e tale che $\|\mathbf{x} - \mathbf{y}\| > \frac{1}{2}$ per ogni $\mathbf{x}, \mathbf{y} \in D$ con $\mathbf{x} \neq \mathbf{y}$.

Si osserva che, per ogni $\mathbf{x}, \mathbf{y} \in D$, si ha $\overline{B}\left(\mathbf{x}, \frac{1}{4}\right) \cap \overline{B}\left(\mathbf{y}, \frac{1}{4}\right) = \varnothing$. $(\overline{B}(\mathbf{x}_0, r) \text{ denota l'insieme } \{\mathbf{x} \in E : \|\mathbf{x} - \mathbf{x}_0\| \le r\})$

Infatti, se $\mathbf{z} \in \overline{B}\left(\mathbf{x}, \frac{1}{4}\right)$, si ha

 $\|\mathbf{z} - \mathbf{y}\| \ge \|\mathbf{x} - \mathbf{y}\| - \|\mathbf{x} - \mathbf{z}\|$ Disuguaglianza triangolare

$$||\mathbf{x} - \mathbf{y}|| > rac{1}{2} - rac{1}{4} = rac{1}{2}$$
 $||\mathbf{x} - \mathbf{y}|| > rac{1}{2}$ per costruzione di D , essendo $\mathbf{x}, \mathbf{y} \in D$ $||\mathbf{x} - \mathbf{z}|| \leq rac{1}{4}$ in quanto $\mathbf{z} \in \overline{B}\left(\mathbf{x}, rac{1}{4}
ight)$

Pertanto, $\mathbf{z} \notin \overline{B}(\mathbf{y}, \frac{1}{4})$.

Sia $\gamma: \mathbb{Z} \underset{n \mapsto \mathbf{x}_n}{\to} D$ una bijezione tra \mathbb{Z} e D (che esiste in quanto anche \mathbb{Z} è numerabile).

Sia $\varphi:\mathbb{R}\to\mathbb{R}$ una funzione continua tale che $\varphi(0)=1$ e $\varphi(t)=0$ per ogni $t\in\mathbb{R}$ con $|t|\geq \frac{1}{8}$; essa esiste, basta considerare ad esempio

$$arphi: t \mapsto egin{cases} 1-8|t|, & |t| < rac{1}{8} \ 0, & |t| \geq rac{1}{8}. \end{cases}$$

 $\mathsf{Sia}\; f:S\to\mathbb{R}\; \mathsf{definita}\; \mathsf{ponendo}\; f(\mathbf{x}) = \begin{cases} n\; \varphi(\|\mathbf{x}-\mathbf{x}_n\|), & \exists n\in\mathbb{Z}: \|\mathbf{x}-\mathbf{x}_n\|<\frac{1}{4}\\ 0, & \forall n\in\mathbb{Z}, \; \|\mathbf{x}-\mathbf{x}_n\|\geq \frac{1}{4} \end{cases} \mathsf{per}\; \mathsf{ogni}\; \mathbf{x}\in X.$

Essa è ben definita per l'osservazione iniziale.

f è continua su S.

Sia infatti $\mathbf{y} \in S$, e sia $\{\mathbf{y}_p\}_{p \in \mathbb{N}} \subseteq S$ una successione in S convergente a \mathbf{y} .

Se $\|\mathbf{y} - \mathbf{x}_n\| < \frac{1}{4}$, ossia $\mathbf{y} \in B\left(\mathbf{x}_n, \frac{1}{4}\right)$ per qualche $n \in \mathbb{Z}$, essendo tale insieme aperto si ha $\mathbf{y}_p \in B\left(\mathbf{x}_n, \frac{1}{4}\right)$ definitivamente; la continuità segue allora in questo caso dalla continuità di φ e della norma $\|\cdot\|$.

Se $\|\mathbf{y} - \mathbf{x}_n\| \ge \frac{1}{4}$ per ogni $n \in \mathbb{Z}$, si consideri l'intorno $B\left(\mathbf{y}, \frac{1}{8}\right)$; per definizione di φ si ha $\varphi\left(B(\mathbf{y}, \frac{1}{8})\right) = \{0\}$. Poiché $\mathbf{y}_n \in B\left(\mathbf{y}, \frac{1}{8}\right)$ definitivamente essendo tale insieme aperto, segue anche in questo caso la continuità di f.

```
Inoltre, f è suriettiva.

Infatti, S è connesso per archi per l'osservazione preliminare, dunque è connesso; essendo f continua, f(S) è allora un intervallo in \mathbb{R}.

Essendo f(\mathbf{x}_n) = n \ \varphi(0) = n per ogni n \in \mathbb{Z}, segue che \mathbb{Z} \subseteq f(S); allora, f(S) = \mathbb{R}, essendo l'unico intervallo che contiene \mathbb{Z}.
```

Funzioni convesse e quasi-convesse

♯ Definizione: Funzione convessa, Funzione quasi-convessa

Sia E uno spazio vettoriale.

Sia $A \subseteq E$ convesso.

Sia $f:A \to \mathbb{R}$.

f si dice **convessa** quando $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$ per ogni $\mathbf{x}, \mathbf{y} \in A$ e per ogni $\lambda \in [0, 1]$. (Si noti che f è definita su $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ per convessità di A)

f si dice **quasi-convessa** quando, per ogni $k \in \mathbb{R}$, l'insieme $f^{-1}\big(\,]-\infty;k]\big) = \{\mathbf{x} \in A: f(\mathbf{x}) \leq k\}$ è convesso.

Osservazione: Quasi-convessità di una funzione implica automaticamente la convessità del dominio

Sia E uno spazio vettoriale.

Sia $A \subseteq E$.

Sia $f:A o \mathbb{R}$ quasi-convessa.

Allora, A è convesso.

```
Infatti, siano \mathbf{x}, \mathbf{y} \in A; sia M = \max\{f(\mathbf{x}), f(\mathbf{y})\}. Si ha \mathbf{x}, \mathbf{y} \in f^{-1}(]-\infty; M]), convesso per ipotesi di quasi-convessità di f. Allora, \lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in f^{-1}(]-\infty; M]) per ogni \lambda \in [0;1], da cui segue \lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in A per ogni \lambda \in [0;1].
```

Osservazione: Convessità di una funzione ne implica la quasi-convessità

Sia E uno spazio vettoriale.

Sia $A \subseteq E$ convesso.

Sia $f:A \to \mathbb{R}$ convessa.

Allora, f è quasi-convessa.

Dimostrazione

Sia $k\in\mathbb{R}$, e si consideri $f^{-1}\big(]-\infty;k]\big)$. Siano $\mathbf{x},\mathbf{y}\in f^{-1}\big(]-\infty;k]\big)$, e sia $\lambda\in[0;1]$; per acquisire la tesi, si provi che $\lambda\mathbf{x}+(1-\lambda)\mathbf{y}\in f^{-1}\big(]-\infty;k]\big)$.

Si ha

$$egin{aligned} f(\lambda\mathbf{x}+(1-\lambda)\mathbf{y}) &\leq \lambda f(\mathbf{x})+(1-\lambda)f(\mathbf{y}) \end{aligned} & ext{ Per convessità di } f \ &\leq \lambda k+(1-\lambda)k=k \end{aligned} & ext{ In quanto } \mathbf{x},\mathbf{y}\in f^{-1}ig(\left]-\infty;k
brace, k
ight]$$

Dunque, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in f^{-1}(]-\infty;k]$), per cui f è quasi-convessa.

Q Osservazione

Sia $A \subseteq \mathbb{R}$ convesso.

Sia $f:A o\mathbb{R}$ monotona.

Allora, f è quasi-convessa.

Dimostrazione

Si supponga f non decrescente.

Sia $k \in \mathbb{R}$.

Siano $x,y\in f^{-1}(]-\infty;k])$, e sia $\lambda\in[0;1];$

per acquisire la tesi, si provi che $\lambda x + (1 - \lambda)y \in f^{-1}(]-\infty;k]).$

Si supponga x < y, senza perdere di generalità.

Allora, $x \leq \lambda x + (1-\lambda)y \leq y$; per non crescenza di f ed essendo $y \in f^{-1}(]-\infty;k]$), segue che

 $f(x) \le f(\lambda x + (1 - \lambda)y) \le f(y) \le k.$

Dunque, $f(\lambda x + (1 - \lambda)y) \le k$, ossia $\lambda x + (1 - \lambda)y \in f^{-1}(]-\infty;k]$.

Pertanto, f è quasi-convessa.

Proposizione 8.7: Minimizzazione/Massimizzazione

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $C \subseteq E$ limitato, chiuso e convesso.

Sia $f:C\to\mathbb{R}$ semicontinua inferiormente (risp. superiormente) e quasi-convessa.

Allora, f ammette minimo (risp. massimo) assoluto in C.

Dimostrazione

Si supponga f semicontinua inferiormente; si provi che f ammette minimo assoluto in C.

Essendo chiuso e convesso, C è debolmente chiuso per la [Proposizione 8.3]. Essendo anche limitato, C è allora debolmente compatto per la [Proposizione 8.5].

Essendo f semicontinua inferiormente, per la [Proposizione 2.1] si ha $f^{-1}\big(]-\infty;k]\big)$ chiuso per ogni $k\in\mathbb{R}$. D'altra parte, essendo f quasi-convessa, $f^{-1}\big(]-\infty;k]\big)$ è anche convesso per ogni $k\in\mathbb{R}$. Dunque, per la [Proposizione 8.3] si ha $f^{-1}\big(]-\infty;k]\big)$ debolmente chiuso per ogni $k\in\mathbb{R}$; cioè, f è semicontinua inferiormente rispetto alla topologia debole per la [Proposizione 2.1].

Pertanto, rispetto alla topologia debole su E, C è compatto e f è semicontinua inferiormente. Segue dal [Teorema 2.2] che f ammette minimo assoluto.