

Image processing

- Fourier transforms

Objectives

- What is Fourier transform?
- Fourier transform of two- dimentional
- Properties of Discrete Fourier transform
- How using the Fast Fourier Transform
- Learn how linear filters work and their implementation
- Applications

Fourier Transform

- The Fourier Transform is a tool that breaks a waveform into an alternate representation, characterized by sine and cosines.
- The Fourier Transform shows that any waveform can be re-written as the sum of sinusoidal functions.
- The Fourier Transform gives us a unique and powerful way of viewing these waveforms.

All waveforms, no matter what you scribble or observe in the universe, are actually just the sum of simple <u>sinusoids</u> of different frequencies.

Fourier Transform

 The Fourier transform is simply a tabulation of the magnitude and phase response at each frequency

$$o(x) = h(x) * s(x) = Ae^{j\omega x + \phi}$$

Fourier Transform

The Fourier transform pair

$$h(x) \stackrel{\mathcal{F}}{\leftrightarrow} H(\omega)$$

In the continuous domain

$$H(\omega) = \int_{-\infty}^{\infty} h(x)e^{-j\omega x}dx$$

In the discrete domain

$$H(k) = \frac{1}{N} \sum_{x=0}^{N-1} h(x)e^{-j\frac{2\pi kx}{N}}$$

Fourier Transform's Properties

Property	Signal	al Transform		
superposition	$f_1(x) + f_2(x)$		$F_1(\omega) + F_2(\omega)$	
shift	$f(x-x_0)$	$F(\omega)e^{-j\omega x_0}$		
reversal	f(-x)	$F^*(\omega)$		
convolution	f(x) * h(x)	$F(\omega)H(\omega)$		
correlation	$f(x)\otimes h(x)$		$F(\omega)H^*(\omega)$	
multiplication	f(x)h(x)		$F(\omega)*H(\omega)$	
differentiation	f'(x)		$j\omega F(\omega)$	
domain scaling	f(ax)	$1/aF(\omega/a)$		
real images	$f(x) = f^*(x)$	\Leftrightarrow	$F(\omega) = F(-\omega)$	
Parseval's Theorem	$\sum_{x} [f(x)]^2$	=	$\sum_{\omega} [F(\omega)]^2$	

Fourier Transform pairs

- Impulse: The impulse response has a constant (all frequency) transform.
- Shifted impulse: The shifted impulse has unit magnitude and linear phase.
- Box filter: The box (moving average) filter

Name	Signal			Transform		
impulse		$\delta(x)$	\Leftrightarrow	1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
shifted impulse	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\delta(x-u)$	\Leftrightarrow	$e^{-j\omega u}$	200	
box filter		box(x/a)	\Leftrightarrow	$a { m sinc}(a\omega)$		

Fourier Transform pairs

- Tent: The piecewise linear tent function
- Gaussian: The (unit area) Gaussian of width σ
- Laplacian of Gaussian: The second derivative of a Gaussian of width σ

Name	Signal			Transform		
tent	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tent(x/a)	\Leftrightarrow	$a { m sinc}^2(a\omega)$	4:000	
Gaussian	100 tom tom tom	$G(x;\sigma)$	\Leftrightarrow	$rac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$	d 5000 0.000	
Laplacian of Gaussian	1000 1000 1000 1000	$(rac{x^2}{\sigma^4} - rac{1}{\sigma^2})G(x;\sigma)$	\Leftrightarrow	$-rac{\sqrt{2\pi}}{\sigma}\omega^2G(\omega;\sigma^{-1})$	4:000	

Fourier Transform pairs

- Gabor: The even Gabor function
- Unsharp mask: The unsharp mask
- Windowed sinc: The windowed (masked) sinc function

Name	Signal			Transform		
Gabor		$\cos(\omega_0 x)G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega\pm\omega_0;\sigma^{-1})$	4500	
unsharp mask	13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	$(1+\gamma)\delta(x) \ -\gamma G(x;\sigma)$	\Leftrightarrow	$\frac{(1+\gamma)-}{\frac{\sqrt{2\pi}\gamma}{\sigma}G(\omega;\sigma^{-1})}$	4500 600 0300	
windowed sinc		rcos(x/(aW)) sinc(x/a)	\Leftrightarrow	(see Figure 3.29)		

The small discrete kernels

Name	Kernel	Transform	Plot
box-3	$\frac{1}{3}$ 1 1 1	$rac{1}{3}(1+2\cos\omega)$	1.0 0.8 0.6 0.4 0.1 0.2 0.3 0.4 0.5
box-5	$\frac{1}{5} \ \boxed{ 1 \ 1 \ 1 \ 1 \ 1}$	$rac{1}{5}(1+2\cos\omega+2\cos2\omega)$	1.0 0.8 0.4 0.4 0.2 0.0 0.1 0.2 0.3 0.4 0.5
linear	$rac{1}{4}egin{bmatrix}1&2&1\end{bmatrix}$	$\frac{1}{2}(1+\cos\omega)$	1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2 0.3 0.4 0.5
binomial	$rac{1}{16}oxed{1}oxed{4}oxed{6}oxed{4}oxed{1}$	$rac{1}{4}(1+\cos\omega)^2$	1.0 0.8 0.6 0.4 0.4 0.2 0.0 0.1 0.2 0.3 0.4 0.5
Sobel	$rac{1}{2}ledownder -1 ledownder 0 ledownder 1$	$\sin \omega$	1.0 0.8 0.8 0.4 0.4 0.2 0.3 0.4 0.5
corner	$rac{1}{2}ledsymbol{igg } -1 ledsymbol{ig } 2 ledsymbol{ig } -1$	$rac{1}{2}(1-\cos\omega)$	10 08 06 04 02 00 01 02 0.1 0.2 0.3 0.4 0.5

2D Fourier Transform

Oriented sinusoid :

$$s(x,y) = \sin(\omega_x x + \omega_y y)$$

• Two-dimensional Fourier transforms continuous domain $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$

$$H(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{-j(\omega_x x + \omega_y y)} dx dy$$

In the discrete domain

$$H(k_x, k_y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x, y) e^{-j2\pi \frac{k_x x + k_y y}{MN}}$$

-where M and N are the width and height of the image

Application: image filtering

Filtering

Application: image analysis

Application: Edge detection

Input Image

FFT + Mask

After FFT

After FFT Inverse

Application: image reconstruction

Application: image compression

 Image compression based on 2D Discrete Fourier Transform and matrix minimization algorithm

260 KB 138.2 KB 88.1 KB

Quantization value=10 Quantization value=25 Quantization value=45

(a) Decompressed Lena image, dimension = 1024 x 1024

201 KB 108.4 KB 71.4 KB

Quantization value=25 Quantization value=60 Quantization value=100

(b) Decompressed Lion image, dimension = 1200 x 1200

Summary

- Learn about Fourier transform
- Learn how Fourier transform is applied in image
- Understand and implement applications of Fourier transform such as: image filtering, image analysis, edge detection, image reconstruction, image compression