РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

Дисциплина: Интеллектуальный анализ данных

Студент: Гебриал Ибрам Есам Зекри

Группа: НПИбд-01-18

Москва 2021

Вариант № 21

Arrhythmia Data Set

Название файла: arrhythmia.data

Ссылка: http://archive.ics.uci.edu/ml/datasets/Arrhythmia (http://archive.ics.uci.edu/ml/datasets/Arrhythmia)

Первый признак: Q wave of channel DI (столбец No 161)

Второй признак: R wave of channel DI (столбец No 162)

Третий признак: S wave of channel DI (столбец No 163)

Класс: Sex (столбец No 2)

- 1. Считайте из заданного набора данных репозитария UCI значения трех признаков и метки класса.
- 2. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените их на средние значения для того класса, к которому относится запись с пропущенным значением.
- 3. Масштабируйте признаки набора данных на интервал от 0 до 1.
- 4. Визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

- Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью наивного байесовского классификатора.
- 6. Постройте и выведите на экран отчет о классификации и матрицу ошибок.
- 7. Найдите точность классификации набора данных при помощи наивного байесовского классификатора методом кросс-валидации по 5 блокам.
- 8. Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью метода К ближайших соседей для различных значений К и определите оптимальное значение параметра К с минимальной долей ошибок.
- 9. Найдите точность классификации набора данных при помощи метода К ближайших соседей для найденного значения К методом кросс-валидации по 5 блокам.
- 10. Определите, какой из методов классификации позволяет получить более высокую точность классификации набора данных при кросс-валидации по 5 блокам.
- 11. Проведите классификацию точек набора данных лучшим методом и визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных прогнозируемых классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

1.Считайте из заданного набора данных репозитария UCI значения трех признаков и метки класса

In [1]:

```
from urllib.request import urlopen
from contextlib import closing
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
```

In [2]:

```
url = \
"http://archive.ics.uci.edu/ml/machine-learning-databases/arrhythmia/arrhythmia.data"
# считываем данные в объект DataFrame
my_data = pd.read_csv( url,sep="," ,header=None,usecols=[160, 161, 162, 1],prefix="V" )

#print( "\n*** Начало данных:\n", my_data.head() ) # начальные данные
#print( "\n*** Конец данных:\n", my_data.tail() ) # конечные данные

#summary = my_data.describe() # сводка данных
#print( "\n*** Сводка данных:\n", summary)
```

In [3]:

my_data

Out[3]:

	V1	V160	V161	V162
0	0	0.0	6.1	-1.0
1	1	0.0	7.2	0.0
2	0	0.0	4.5	-2.8
3	0	0.0	7.8	-0.7
4	0	0.0	5.2	-1.4
5	0	0.0	2.7	-6.4
6	1	0.0	1.8	0.0
7	1	0.0	4.1	-1.1
8	0	0.0	2.3	0.0
9	1	0.0	3.5	-2.0
10	0	-0.5	5.8	-1.9
11	1	0.0	6.1	-1.7
12	1	0.0	6.3	0.0
13	0	0.0	3.2	0.0
14	1	0.0	10.2	0.0
15	1	0.0	5.6	0.0
16	0	0.0	2.2	0.0
17	1	0.0	3.2	0.0
18	0	0.0	2.4	-0.8
19	1	0.0	9.5	-0.6
20	1	-0.4	4.8	-0.9
21	0	0.0	3.0	-1.4
22	1	0.0	5.2	-0.6
23	1	0.0	5.9	0.0
24	1	0.0	4.6	0.0
25	0	-0.6	8.0	0.0
26	0	0.0	1.9	-1.4
27	1	0.0	7.8	-0.8
28	1	0.0	10.4	0.0
29	1	0.0	12.7	0.0
422	1	0.0	3.9	-0.4
423	0	0.0	4.1	0.0
424	0	0.0	3.2	0.0
425	0	0.0	6.8	0.0

	V1	V160	V161	V162
426	1	0.0	4.4	0.0
427	0	0.0	2.5	-3.3
428	0	0.0	4.4	0.0
429	1	0.0	6.2	-5.2
430	0	0.0	3.8	-3.2
431	0	0.0	4.8	-1.2
432	0	0.0	5.0	-0.8
433	0	0.0	4.0	0.0
434	0	-0.5	6.6	0.0
435	1	0.0	6.1	-0.6
436	1	-0.7	7.8	0.0
437	1	0.0	4.7	-1.7
438	0	-0.6	8.4	0.0
439	1	0.0	3.0	-2.6
440	0	0.0	5.0	-0.6
441	1	0.0	3.9	-0.8
442	1	-0.6	7.9	-1.1
443	1	0.0	3.1	-1.7
444	0	0.0	5.6	-0.8
445	0	0.0	2.3	-1.4
446	1	0.0	6.1	0.0
447	1	0.0	6.2	-0.5
448	0	0.0	3.3	-1.6
449	0	-0.4	8.4	-5.8
450	1	0.0	5.2	0.0
451	1	0.0	10.3	-1.7

452 rows × 4 columns

Тут я просто показал по другому

In [4]:

```
print( "Признаки Q wave of channel DI: ", my_data['V160'] )
print("-----
print( "Признаки R wave of channel DI: ", my_data['V161'] )
print("-----")
print( "Признаки S wave of channel DI: ", my_data['V162'] )
print("-----")
print( "Метки: ", my_data.V1)
Признаки Q wave of channel DI: 0
                           0.0
1
    0.0
2
    0.0
3
    0.0
4
    0.0
5
    0.0
6
    0.0
7
    0.0
8
    0.0
9
    0.0
10
    -0.5
    0.0
11
    0.0
12
    0.0
13
14
    0.0
15
    0.0
16
    0.0
17
    0.0
    0.0
18
```

2.Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените их на средние значения для того класса, к которому относится запись с пропущенным значением.

```
In [5]:
my_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 452 entries, 0 to 451
Data columns (total 4 columns):
        452 non-null int64
V1
V160
        452 non-null float64
        452 non-null float64
V161
        452 non-null float64
V162
dtypes: float64(3), int64(1)
memory usage: 14.2 KB
```

In [6]:

```
my_data = my_data.replace('?',np.NaN) # заменить '?' на np.NaN
print('Число отсутствующих значений:')
for col in my_data.columns:
    print('\t%s: %d' % (col,my_data[col].isna().sum()))
```

Число отсутствующих значений:

V1: 0 V160: 0 V161: 0 V162: 0

У меня нет пропущенных значений

3. Масштабируйте признаки набора данных на интервал от 0 до 1

In [7]:

```
import numpy as np
XX = my_data[['V160', 'V161', 'V162']]
Scaler= MinMaxScaler()
XX = Scaler.fit_transform(XX)
#X = np.array(my_data)
XX[:,0] = (XX[:,0] - np.min(XX[:,0])) / (np.max(XX[:,0]) - np.min(XX[:,0]))
XX[:,1] = (XX[:,1] - np.min(XX[:,1])) / (np.max(XX[:,1]) - np.min(XX[:,1]))
XX[:,2] = (XX[:,2] - np.min(XX[:,2])) / (np.max(XX[:,2]) - np.min(XX[:,2]))
XX
```

Out[7]:

In [17]:

```
from sklearn.preprocessing import MinMaxScaler

XX = my_data[['V160', 'V161', 'V162']]

np.set_printoptions(precision=3)

scaler = MinMaxScaler(feature_range=(0, 1))

rescaledX = scaler.fit_transform(XX)

my_data2 = pd.DataFrame(rescaledX, columns = ['V160', 'V161', 'V162'])

my_data2['V1'] = my_data['V1']

my_data2
```

Out[17]:

	V160	V161	V162	V1
0	1.000000	0.306533	0.927536	0
1	1.000000	0.361809	1.000000	1
2	1.000000	0.226131	0.797101	0
3	1.000000	0.391960	0.949275	0
4	1.000000	0.261307	0.898551	0
5	1.000000	0.135678	0.536232	0
6	1.000000	0.090452	1.000000	1
7	1.000000	0.206030	0.920290	1
8	1.000000	0.115578	1.000000	0
9	1.000000	0.175879	0.855072	1
10	0 814815	0 291457	0 862319	n

4.Визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных

In [13]:

```
from mpl toolkits import mplot3d
%matplotlib inline
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')
xx = rescaledX[:,0]
yy = rescaledX[:,1]
zz = rescaledX[:,2]
scatter = ax.scatter( xx, yy, zz, c=my_data["V1"].astype(int),s=100 )
ax.set_title('Визуализация набора данных',fontsize=15)
ax.set_xlabel('Q wave of channel DI')
ax.set_ylabel('R wave of channel DI')
ax.set_zlabel('S wave of channel DI')
ax.view_init( azim=-120, elev=25 )
legen = ax.legend(*scatter.legend_elements(), title = "Классы")
ax.add_artist(legen)
plt.show()
```


5.Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью наивного байесовского классификатора.

```
In [18]:
X = my_data2.drop('V1',axis=1)
y = my_data2['V1']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
In [92]:
X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[92]:
((339, 3), (113, 3), (339,), (113,))
In [19]:
from sklearn.naive_bayes import GaussianNB
nbc = GaussianNB()
nbc.fit(X_train,y_train);
In [20]:
y_pred = nbc.predict(X_test)
mislabel = np.sum((y_test!=y_pred))
print("Количество неправильно классифицированных точек из {} точек тестового множества равн
```

6.Постройте и выведите на экран отчет о классификации и матрицу ошибок.

Количество неправильно классифицированных точек из 113 точек тестового множе

ства равно 54

In [21]:

```
from sklearn.metrics import classification_report
print("Отчет о классификации:\n")
print(classification_report(y_test,y_pred))
```

Отчет о классификации:

	precision	recall	f1-score	support
0	0.33	0.10	0.16	49
1	0.55	0.84	0.67	64
accuracy			0.52	113
macro avg	0.44	0.47	0.41	113
weighted avg	0.46	0.52	0.45	113

In [22]:

```
from sklearn.metrics import confusion_matrix
cm = (confusion_matrix(y_test,y_pred))
cmdf = pd.DataFrame(cm,index=['Класс 1','Класс 2'], columns=['Класс 1','Класс 2'])
print("Матрица ошибок:\n")
cmdf
```

Матрица ошибок:

Out[22]:

	Класс 1	Класс 2	
Класс 1	5	44	
Кпасс 2	10	54	

7. Найдите точность классификации набора данных при помощи наивного байесовского классификатора методом кросс-валидации по 5 блокам.

In [23]:

```
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
num_folds = 5
kfold = KFold(n_splits=num_folds)
```

```
In [24]:
```

```
# разбиение на выборки
splits = kfold.split(X)
# Кол-во точек в выборках
for train_index, val_index in splits:
    print("Кол-во точек в обучающей выборке: %s, тестовой выборке: %s" % (len(train index),
Кол-во точек в обучающей выборке: 361, тестовой выборке: 91
Кол-во точек в обучающей выборке: 361, тестовой выборке: 91
Кол-во точек в обучающей выборке: 362, тестовой выборке: 90
Кол-во точек в обучающей выборке: 362, тестовой выборке: 90
Кол-во точек в обучающей выборке: 362, тестовой выборке: 90
In [31]:
results = cross_val_score(nbc, X, y, cv=kfold)
results
Out[31]:
array([0.659, 0.593, 0.633, 0.478, 0.533])
In [32]:
print("Точность: {:.3f} ({:.3f})".format(results.mean()*100.0, results.std()*100.0))
Точность: 57.944 (6.625)
```

8.Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью метода К ближайших соседей для различных значений К и определите оптимальное значение параметра К с минимальной долей ошибок.

```
In [33]:
```

```
from sklearn.neighbors import KNeighborsClassifier
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
best score = 0.0
best k = -1
for k in range(1, 11):
   knn_clf = KNeighborsClassifier(n_neighbors=k)
   knn_clf.fit(X_train, y_train)
    score = knn_clf.score(X_test, y_test)
   if score > best score:
        best k = k
        best_score = score
print("Лучшее k =", best_k)
print("Лучшая оценка =", best_score)
```

Лучшее k = 1Лучшая оценка = 0.584070796460177

9.Найдите точность классификации набора данных при помощи метода К ближайших соседей для найденного значения К методом кросс-валидации по 5 блокам.

```
In [34]:
```

```
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
num_folds = 5
kfold = KFold(n_splits=num_folds)
```

```
In [35]:
```

```
kNN_clf = KNeighborsClassifier(n_neighbors=5)
```

```
In [36]:
```

```
# разбиение на выборки
splits = kfold.split(X)

# Кол-во точек в выборках
for train_index, val_index in splits:
    print("Кол-во точек в обучающей выборке: %s, тестовой выборке: %s" % (len(train_index),

Кол-во точек в обучающей выборке: 361, тестовой выборке: 91
Кол-во точек в обучающей выборке: 362, тестовой выборке: 91
Кол-во точек в обучающей выборке: 362, тестовой выборке: 90
Кол-во точек в обучающей выборке: 362, тестовой выборке: 90
Кол-во точек в обучающей выборке: 362, тестовой выборке: 90

In [37]:

results = cross_val_score(kNN_clf, X, y, cv=kfold)
results
```

Out[37]:

```
array([0.582, 0.604, 0.544, 0.511, 0.567])
```

In [38]:

```
print("Точность: {:.3f} ({:.3f})".format(results.mean()*100.0, results.std()*100.0))
```

Точность: 56.181 (3.204)

10.Определите, какой из методов классификации позволяет получить более высокую точность классификации набора данных при кросс-валидации по 5 блокам.

При помощи наивного байесовского классификатора получил более высокую точность классификации Точность: 57.944 (6.625)

11.Проведите классификацию точек набора данных лучшим методом и визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных прогнозируемых классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных

In [39]:

```
nbc = GaussianNB()
nbc.fit(X_train,y_train);
y_pred = nbc.predict(X)

y_pred
```

Out[39]:

```
1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
                                             1,
     1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
     1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
     1, 0, 1, 1, 1, 1, 1, 1,
                      1, 0, 1, 1, 0, 1,
                                    0, 1, 1,
                                          1,
                                             1,
     1, 1, 1, 1, 1, 1, 1,
                    1, 1, 1, 1, 1, 0, 1, 1, 1,
                                          1,
                                             1,
     1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,
     0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                         1, 1, 0, 1, 1, 1, 1, 1,
           1, 1, 0,
                  1,
                    1,
                       1,
                                          1,
     0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1,
     1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1,
     1, 1, 1, 1, 1, 1,
                    1, 0, 1, 1, 0, 1, 0, 1, 0, 1,
                  1,
                                          1, 1,
     0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,
     0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,
     1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
     0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1], dtype=int64)
```

In [40]:

```
fig = plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')
xx = X["V160"]
yy = X["V161"]
zz = X["V162"]
ax.scatter( xx, yy, zz, c=y_pred,s=100)
ax.set_title('Визуализация набора данных',fontsize=15)
ax.set_xlabel('Q wave of channel DI')
ax.set_ylabel('R wave of channel DI')
ax.set_zlabel('S wave of channel DI')
ax.view_init( azim=-120, elev=25)
legen = ax.legend(*scatter.legend_elements(), title = "Классы")
ax.add_artist(legen)
plt.show()
```


In []: