20th April quiz

7 out of 7 correct

1. Wha	It does KNN stand for in the context of machine learning?	
\bigcirc	Kernelized Nearest Neighbors	
	K-means Nearest Neighbors	
	K-nearest Neighbors	
	K-weighted Nearest Neighbors	
Explanation: KNN is a machine learning algorithm that works on the principle of finding the k nearest data points in the training set to a given input, and using their labels or values to make predictions.		
2. KNN	I can be used for:	
\bigcirc	Classification	
	Regression	
	Both Classification and Regression	
	Neither Classification nor Regression	
classification class o	cation: KNN can be used for both classification and regression tasks. In cation, KNN predicts the class of a new data point based on the majority f its k nearest neighbors in the training set. In regression, KNN predicts the of a new data point based on the average of the values of its k nearest ors in the training set.	
3. The	value of k in KNN:	

Must always be odd

Must always be even

Can be any positive integer
Must be less than the size of the training set
Explanation: The value of k in KNN is a hyperparameter that can be tuned to optimize the performance of the model. It can be any positive integer, and does not necessarily have to be odd or even. However, choosing an appropriate value of k is important to avoid underfitting or overfitting the model.
4. Which of the following is not a distance metric commonly used in KNN?
Euclidean distance
Manhattan distance
Cosine distance
Pearson correlation
Explanation: Pearson correlation is a similarity metric commonly used in collaborative filtering and other recommendation systems, but not in KNN. The distance metrics commonly used in KNN include Euclidean distance, Manhattan distance, and cosine distance.
5. In KNN, the decision boundary between classes is:
Linear
Non-linear
Always a circle
Always a straight line

Explanation: In KNN, the decision boundary between classes is non-linear, because the algorithm uses the distances between data points to determine their similarity, rather than assuming a linear relationship between the features.

6. The main disadvantage of KNN compared to other machine learning algorithms is:

VI	Zoth April quiz - Data Science masters PW Skills	
	It is computationally expensive at inference time	
\bigcirc	It cannot handle missing values in the data	
\bigcirc	It is prone to overfitting the training set	
\bigcirc	It requires a large amount of training data	
Explanation: The main disadvantage of KNN compared to other machine learning algorithms is that it is computationally expensive at inference time, because it requires calculating the distances between the new data point and all the data points in the training set. This can make it slow and impractical for large datasets.		
7. Which of the following is a possible way to reduce the computational cost of KNN at inference time?		
\bigcirc	Use a larger value of k	
	Use a smaller value of k	
\bigcirc	Use a faster distance metric	
\bigcirc	None of the above	

Explanation: One way to reduce the computational cost of KNN at inference time is to use a smaller value of k, which reduces the number of data points that need to be considered. However,

Submit