1 Grenseverdier

Oppgave 1 (V2017, Oppgave 1) La

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^2}, & \text{når} \quad (x,y) \neq (0,0) \\ 0, & \text{når} \quad (x,y) = (0,0) \end{cases}$$

- a) Vis at
 - i) f er kontinuerlig i (x, y) = (0, 0),
 - ii) $\frac{\partial f}{\partial x}(0,0)$ og $\frac{\partial f}{\partial y}(0,0)$ eksisterer, men f er ikke deriverbar i (0,0).
- b) La g(t) = (at, bt) med konstanter a og b ulik 0 og verifiser at

$$(f \circ g)'(0) = \frac{ab^2}{a^2 + b^2}, \quad \text{men} \quad \nabla f(0,0) \cdot g'(0) = 0.$$

Forklar at dette ikke er i strid med kjerneregelen.

Oppgave 2 (K2016, Oppgave 1)

- a) Vis at $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$.
- b) La $f(w, x, y, z) = w x^2y^3z$. Beregn grenseverdien:

$$\lim_{h \to 0} \frac{f(5, 2, 1+h, -1) - f(5, 2, 1, -1)}{h}.$$

Oppgave 3 (V2016, Oppgave 1) La

$$f(x,y) := \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{når} \quad (x,y) \neq (0,0), \\ 0, & \text{når} \quad (x,y) = (0,0) \end{cases}.$$

Forklar hvorfor f ikke er deriverbar i (0,0), men de partiellderiverte $\frac{\partial f}{\partial x}(0,0)$ og $\frac{\partial f}{\partial y}(0,0)$ eksisterer.

Oppgave 4 (K2015, Oppgave 1) La

$$f(x,y) := \begin{cases} \frac{x^2 y^4}{x^2 + y^2}, & \text{når} \quad (x,y) \neq (0,0), \\ 0, & \text{når} \quad (x,y) = (0,0) \end{cases}.$$

- a) Vis at $\frac{\partial f}{\partial x}(0,0)$ og $\frac{\partial f}{\partial y}(0,0)$ eksisterer
- b) Vis at f ikke er deriverbar i (0,0) ved å vise at f ikke er kontinuerlig i (0,0).

Oppgave 5 (K2014, Oppgave 3) Begrunn at funksjonen

$$f(x,y) := \begin{cases} \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}, & \text{når} \quad (x,y) \neq (0,0), \\ 0, & \text{når} \quad (x,y) = (0,0) \end{cases},$$

er kontinuerlig.

Oppgave 6 (K2013, Oppgave 3) Vis at en av grensene under eksisterer mens den andre ikke eksisterer

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} \qquad \lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}.$$

Oppgave 7 (K2012, Oppgave 5) Funksjonen f er gitt ved

$$f(x,y) := \begin{cases} \frac{2xy}{\sqrt{x^2 + y^2}}, & \text{når} \quad (x,y) \neq (0,0), \\ 0, & \text{når} \quad (x,y) = (0,0) \end{cases},$$

- a) Vis at f er kontinuerlig i origo.
- b) En kan vise at f ikke er kontinuerlig deriverbar i origo. Vis likevel at den retnings-deriverte

$$D_{\mathbf{u}}f(0,0) = \lim_{t \to 0^+} \frac{f(tu_1, tu_2) - f(0,0)}{t}$$

eksisterer for alle enhetsvektorer $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$.

Oppgave 8 (V2010, Oppgave 3) Gitt funksjonen

$$f(x,y) := \begin{cases} \frac{Ax^3 + By^3 - xy}{2x^2 + 2y^2} & \text{når} \quad (x,y) \neq (0,0), \\ 0, & \text{når} \quad (x,y) = (0,0) \end{cases}.$$

- a) Bestem konstanter A og B slik at $\frac{\partial f}{\partial x}(0,0) = 3$ og $\frac{\partial f}{\partial y}(0,0) = 0$.
- b) La nå A = 6 og B = 0. Er f kontinuerlig i origo for dette valget av konstanter?

2 Gradient

Oppgave 1 (V2015, Oppgave 2)

Funksjonen $f: \mathbb{R}^2 \to \mathbb{R}$ er deriverbar. Vi vet også at den retningsderiverte i (1,0) langs positiv x-akse er 5, og at den retningsderiverte i (1,0) langs linja y = x - 1 i retning av positiv y, er -2. Hva er gradienten til f i (1,0)?

Oppgave 2 (K2014, Oppgave 5)

Anta at et fjell har form som en elliptisk paraboloide $z = c - ax^2 - by^2$, der a, b og c er positive konstanter, x og y er øst-vest og nord-sør koordinater på kartet, mens z er høyden over havet.

- a) I hvilken retning stiger høyden mest i punktet (1,1)?
- b) Hvis en klinkekule slippes i (1, 1, c-a-b), i hvilken retning vil den begynne å trille?

Oppgave 3 (V2014, Oppgave 2)

La $T(x, y, z) = e^{x+2y+3z}$ være temperaturen i et romlig område om origo.

I hvilke retninger fra (0,0,0) vokser og avtar temperaturen mest?

Hva er den retningsderiverte i disse retningene?

Oppgave 4 (V2012, Oppgave 2) Finn den retningsderiverte av funksjonen $f(x, y, z) = e^{-x^2}y - \log(1 + e^z)$ i punktet (1, 1, 0) i retningen fra (1, 1, 0) til (-1, 2, 1).

3 Epsilon-Delta

Oppgave 1 (V2014, Oppgave 8) La funksjonen $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ oppfylle

$$||f(\mathbf{x}) - f(\mathbf{y})|| \le K ||\mathbf{x} - \mathbf{y}||^{\alpha}$$

for alle \mathbf{x} og \mathbf{y} i A for positive konstanter K og α . Vis at f er en kontinuerlig funksjon.

4 Kjerneregelen

Oppgave 1 (V2016, Oppgave 2) Anta at en flue beveger seg langs en kurve C i \mathbb{R}^3 slik at posisjonen til flue er gitt ved $\mathbf{c}(t) = t\mathbf{i} + \frac{2}{3}\sqrt{2}t^{3/2}\mathbf{j} + \frac{1}{2}t^2\mathbf{k}$ ved tiden $t \subset [0, \infty)$.

b) La $T(x, y, z) = x^2 + xz + y$ være temperaturen i punktet $(x, y, z) \in \mathbb{R}^3$. Finn $\frac{\mathrm{d}T}{\mathrm{d}t}\mathbf{c}(t)$ altså temperaturendringen flua vil oppleve ved tiden t = 1.

Oppgave 2 (V2016, Oppgave 6) Med definisjonen $\nabla^2 := \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, kalles en C^2 -funksjon $f : \mathbb{R}^2 \to \mathbb{R}$ som tilfredstiller ligningen

$$\nabla^2 f = 0$$

for harmonisk. Ved at for et vilkårlig reelt tall k er funksjonen $f(x,y) = e^{kx}(\cos ky)$ harmonisk.

Oppgave 3 (V2015, Oppgave 4) Vis at hvis akselerasjonen $\mathbf{a}(t)$ til en punktmasse alltid er perpendikulær på hastigheten $\mathbf{v}(t)$, så er farten $\|\mathbf{v}\|$ konstant. (Hint: $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$.

Oppgave 4 (K2014, Oppgave 2) Gitt z = f(x, y) der f er en deriverbar funksjon og $x = u^2 - v^2$, $y = v^2 - u^2$. Vis at

$$u\frac{\partial z}{\partial v} + v\frac{\partial z}{\partial u} = 0.$$

Oppgave 5 (V2014, Oppgave 1) Gitt z = f(x, y) der f er en deriverbar funksjon, x = u + v og y = u - v. Finn $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$ og vis at

$$\frac{\partial z}{\partial u} \cdot \frac{\partial z}{\partial v} = \left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2.$$

Oppgave 6 (V2013, Oppgave 1) Fra fysiske lover kan en se at om K er et homogent legeme i \mathbb{R}^3 , så må temperaturen T = T(x, y, z) i K være en løsning til varmelikningen

$$k\left(\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} + \frac{\mathrm{d}^2 T}{\mathrm{d}y^2} + \frac{\mathrm{d}^2 T}{\mathrm{d}z^2}\right) = \frac{\partial T}{\partial t}$$

der (x, y, z) er posisjonen i legemet, t er tiden, og k er en materialkonstant.

Vis at T(x, y, z, t) = 2x - y + z er en løsning til varmelikningen.

Oppgave 7 (V2012, Oppgave 4) Vi sier at f(x,y) er harmonisk hvis f er to ganger kontinuerlig deriverbar og

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2} = 0.$$

Vis at hvis g er harmonisk så er også $f(x,y) = g(x^2 - y^2, 2xy)$ harmonisk.

5 Taylor-approksimasjon

Oppgave 1 (K2016, Oppgave 3) La $f(x,y) = x^4 + x^3 + y^2 + xy$. Finn andreordens Taylor-approximasjon av f i punktet $(x_0, y_0) = (1, 2)$.

6 Tangenter

Oppgave 1 (K2016, Oppgave 2) La C være en kurve som er parametrisert ved

$$\mathbf{c}(t) = (t^2, 2t, 4-t), \qquad -2 \le t \le 2.$$

- a) Vis at punktet (0,0,4) ligger på kurven og finn en tangentvektor til kurven i dette punktet som har lengde 1.
- b) Finn en ligning for tangentplanet som er ortogonalt til kurven i punktet (0,0,4).

Oppgave 2 (K2015, Oppgave 3) Finn ligningen for tangentplanet til flaten $x^2 + y^2 - e^{xz} - \sin y = 0$ i punktet (1,0,0) og bruk denne til å finne en tilnærmet verdi for x i det punktet på flaten som ligger i nærheten av (1,0,0) med y=z=1/10.

Oppgave 3 (V2015, Oppgave 1) Finn en ligning for tangentplanet til ellipsoiden

$$2x^2 + 3y^2 + z^2 = 9$$

i punktet (1, -1, 2).

Oppgave 4 (K2014, Oppgave 1) Finn ligningen for tangentplanet til flaten $x^2 + z^2 - e^{xy} - \sin z = 0$ i punktet (1, 0, 0).

Oppgave 5 (K2013, Oppgave 1) Finn en ligning for tangentplanet til flaten $z^2 = 2x^2 - y^2$ i punktet (1, -1, 1).

Oppgave 6 (V2013, Oppgave 3) En kurve C er parametrisert med

$$\mathbf{c}(t) = t^2 \mathbf{i} + 2t \mathbf{j} + (4-t) \mathbf{k}, \qquad -2 \le t \le 2.$$

- a) Vis at punktet (1,2,3) ligger på kurven C, og finn en tangentvektor til kurven i dette punktet, med lengde 1.
- b) Finn en likning for planet som står normalt på kurven i punktet (1, 2, 3).

Oppgave 7 (V2012, Oppgave 1) Finn en parameterfremstilling for den rette linja gjennom P = (1, 2, 3) parallell med vektoren $2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

7 Kritiske punkter

Oppgave 1 (V2017, Oppgave 3)

- a) Finn og klassifiser alle kritiske punkt til $f(x,y) = x^3 y^2 3x 6y 1$.
- b) Finn den største og minste verdien til $f(x,y) = x^2 xy + y^2$ på kvartsirkelen $x^2 + y^2 = 1, x, y > 0.$

Oppgave 2 (K2016, Oppgave 4) La $f: \mathbb{R}^2 \to \mathbb{R}$ være gitt ved $f(x,y) = e^{xy}$.

- a) Finn og klassifiser alle kritiske punkter til f.
- b) Hvor oppnår f sitt maksimum og minimum når $2x^2 + y^2 = 1$?

Oppgave 3 (V2016, Oppgave 3)

- a) Finn og klassifiser alle kritiske punkter av $f(x,y) = 2x^2 + 4xy + y^4$.
- b) Hvor oppnår $f(x,y)=(x-y)^2$ sitt maksimum og minimum når $x^2+y^2=2$?

Oppgave 4 (K2015, Oppgave 4) Funksjonen f er gitt ved $f(x,y) = 2x^2 - x^4 + y^2$.

- a) Finn alle kritiske punkter til f, og avgjør om disse er lokale maksima, minima eller saddelpunkter.
- b) Finn største og minste verdi for f på kurven $x^4 + y^2 = 4$.

Oppgave 5 (V2015, Oppgave 3) Bestem den største og minste verdien som funksjonen f(x,y) = xy oppnår i området

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy + y^2 \le 3\}.$$

Oppgave 6 (K2014, Oppgave 6) La $f(x,y) = 3x^2y - y^3 + x^4$.

- a) Finn alle kritiske punkt til f og klassifiser disse som lokale maksimum, lokale minimum eller saddelpunkt.
- b) Har f et globalt (absolutt) maksimum? Et globalt (absolutt) minimum?

Oppgave 7 (K2013, Oppgave 3) Finn og klassifiser alle de kritiske punktene til

$$f(x,y) = xe^{-x^2-y^2}$$
.

Oppgave 8 (V2013, Oppgave 4) Vi lar funksjonen $f(x,y) = x^3 - xy^2 - 2x^2 + y^2$ ha hele planet som definisjonsområdet.

- a) Finn alle kritiske punkt til f og klassifiser disse som lokale maksimum, lokale minimum eller saddelpunkt.
- b) Har f globale maksimum eller minimum? Finn i så fall disse.

Oppgave 9 (K2012, Oppgave 2) Finn største og minste verdi til funksjonen f(x, y, z) = z langs skjæringskurven mellom flatene $x^2 + 2y^2 = 1$ og z = x - 4y.

Oppgave 10 (V2012, Oppgave 3) Finn maximumsverdien av funksjonen

$$f(x,y) = 2x + y - x^2 - 2y^2 + 3.$$

Oppgave 11 (V2012, Oppgave 6) Finn minimumsverdien av funksjonen f(x,y) = xy på ellipsen $g(x,y) = x^2 + 2y^2$.

8 Optimering

Oppgave 1 (V2017, Oppgave 2) La t betegne tiden. Banen til romskip A er gitt ved

$$\mathbf{r}_A(t) = (t, t^2, t^2 - t)$$

og banen til romskip B er gitt ved

$$\mathbf{r}_B(t) = (8 - t, t^2 - 4, t^2 - 2t).$$

Ved hvilken tid $t \geq 0$ er det minst avstand mellom skipene?

Oppgave 2 (K2014, Oppgave 7) Finn punktene på kuleflaten $x^2 + y^2 + z^2 = 4$ som er nærmeste og lengst fra punktet (2, 2, 1).

Oppgave 3 (K2013, Oppgave 5) Finn det punktet på planet 3x - 2y + z = 7 som ligger nærmest origo.

Oppgave 4 (V2013, Oppgave 2) I USA definerer postverket "størrelsen" ("size") til en pakke som summen av lengde (length) og "girth", der "girth" er omkretsen normal på lengden. "Størrelsen"/"size" kan ikke være mer enn 130 tommer.

Hva er største volum (i kubikktommer) en rektangulær pakke kan ha?

9 Linjeintegral

Oppgave 1 (K2016, Oppgave 5) La F(x, y) = (0, x).

a) Hva er verdien av integralet $\int_C \mathbf{F} \cdot d\mathbf{r}$, der C er en sirkel med radius a > 0?

Oppgave 2 (V2016, Oppgave 2) Anta at en flue beveger seg langs en kurve C i \mathbb{R}^3 slik at posisjonen til flue er gitt ved $\mathbf{c}(t) = t\mathbf{i} + \frac{2}{3}\sqrt{2}t^{3/2}\mathbf{j} + \frac{1}{2}t^2\mathbf{k}$ ved tiden $t \subset [0, \infty)$.

a) Dersom flue starter med å fly ved t=0 og farten er gitt i meter per sekund, hvor mange meter tilbakelegger flue i løpet av 10 sekunder?

Oppgave 3 (K2015, Oppgave 2) Finn buelengden til kurven med parameterfremstilling

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + t^2\mathbf{k}, \quad \text{for } 0 \le t \le 2\pi.$$

10 Konservative vektorfelt

Oppgave 1 (V2016, Oppgave 5) La $\mathbf{F}(x, y, z) = 2xy\mathbf{i} + x^2\mathbf{j} + z\mathbf{k}$. Beregn linjeintegralet

$$\int_C \mathbf{F} \cdot d\mathbf{r},$$

- a) C er kurven parametrisert ved $\mathbf{r} \colon [0, 2\pi] \to \mathbb{R}^3$, $\mathbf{r} = (\cos t)\mathbf{i} + (\sin 2t)\mathbf{j} + (\sin t)^2\mathbf{k}$.
- b) C er en vilkårlig glatt kurve med startpunkt (0,0,0) og endepunkt $(1,-2,\sqrt{2})$.

Oppgave 2 (K2015, Oppgave 6) La $\mathbf{F}(x, y, z) = 3x^2y\mathbf{i} + (x^3 + y^3)\mathbf{j}$. Verifiser at curl $\mathbf{F} = 0$ og finn en funksjon f slik at $\mathbf{F} = \operatorname{grad} f$.

Oppgave 3 (V2015, Oppgave 8) La $\mathbf{F}(x, y, z)$ være et vektorfelt i \mathbb{R}^3 gitt ved $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$. Bestem

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

når C er kurven med parametrisering $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)J + t\mathbf{k}, \ 0 \le t \le \pi/4.$

Oppgave 4 (V2014, Oppgave 6) Gitt vektorfeltet $\mathbf{F}(x, y, z) = x^2 I + xy\mathbf{j} + (2x^2 - z^2)K$.

- a) Finn $\operatorname{curl} \mathbf{F}$ og $\operatorname{div} \mathbf{F}$.
- b) Grunngi at **F** hverken er gradienten til en C^2 -funksjon, eller curl til et C^2 -vektorfelt.

Oppgave 5 (K2013, Oppgave 2) Vektorfeltet $\mathbf{F}(x, y, z) = 2xy\mathbf{i} + x^2\mathbf{j} + \mathbf{k}$ er definert for alle $(x, y, z) \in \mathbb{R}^3$ i rommet.

- a) Vis at **F** er et konservativt vektorfelt.
- b) La C være kurven i rommet med parametrisering $\mathbf{c}(t) = t^3 \mathbf{i} + 2 \mathbf{j} + (1 + t^2) \mathbf{k}$, $0 \le t \le 1$. Finn

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

Oppgave 6 (V2013, Oppgave 4) Vis sier at en funksjonen er C^2 om alle andreordens partiellderiverte er kontinuerlige. Vis at om f er en C^2 funksjon, så er curl $\nabla f = \mathbf{0}$. Si klart fra hvordan du bruker at funksjonen er C^2 . Dette viser med andre ord at et konservativt vektorfelt $\mathbf{F} = \nabla f$ er rotasjonsfritt.

Oppgave 7 (K2012, Oppgave 1) La $\mathbf{F}(x, y, z)$ være definert for alle $(x, y, z) \in \mathbb{R}^3$ ved $\mathbf{F}(x, y, z) = 2xyz\mathbf{i} + z(x^2 - 4yz^2)\mathbf{j} + y(x^2 - 6yz^2)\mathbf{k}.$

- a) Vis at **F** er et konservativt felt.
- b) Regn ut

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

der C er kurven i rommet gitt ved $\mathbf{r}(t) = (1+t^3)\mathbf{i} + t^2\mathbf{j} + \mathbf{k}, \ 0 \le t \le 1.$

Oppgave 8 (V2012, Oppgave 7) Finn arbeidet utført av kraften $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ på en partikkel som beveger seg på kurven $\mathbf{r}(t) = e^t\mathbf{i} + (\sin t)\mathbf{j} + t^3\mathbf{k}$ i tidsintervalet $t \in [0, 1]$.

11 Dobbelintegraler

Oppgave 1 (V2017, Oppgave 4)

a) Beregn dobbelintegralet $\iint_R \frac{x}{x^2+y^2} d(x,y)$, der R er gitt ved $x^2+y^2 \leq 1$, $x \geq 1$ og $y \geq 1$.

Oppgave 2 (V2016, Oppgave 4) La D være området i første kvadrant $(x \ge 0, y \ge 0)$ begrenset av x = 0, y = 0 og $y = \sqrt{1 - x^2}$. Beregn integralet av $f(x, y) = x^2 + y^2$ over D.

Oppgave 3 (V2016, Oppgave 4) Beregn dobbelintegralet

$$\iint_D (2x + y^2) \, \mathrm{d}(x, y)$$

når D er alle punkter i første kvadrant som ligger inni sirkelskiven $x^2 + y^2 \le 4$, men utenfor enhetskvadratet $0 \le x \le 1$, $0 \le y \le 1$.

Oppgave 4 (V2015, Oppgave 5) Gitt $g: D \to \mathbb{R}$ hvor

$$D = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x \le 9 \text{ og} - 3\sqrt{x} \le y \le 3\sqrt{x}\}$$

og $g(x,y) = 1 + y^2/2x$.

a) Finn volumet av området $T = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D \text{ og } 0 \le z \le g(x, y)\}.$

Oppgave 5 (K2014, Oppgave 4) Bruk dobbelintegral til å finne arealet omsluttet av kurven $r = 1 + \sin \theta$ (i polarkoordinater).

Oppgave 6 (K2012, Oppgave 3) La R være området i xy-planet som er avgrenset av de to kurvene

$$3x^2 - y^2 = 3$$
 for $x \ge 1$ og $x + y^2 = 11$.

Skissèr de to kurvene og beregn integralet $\iint_{R} x \, dA$.

Oppgave 7 (V2012, Oppgave 8) Finn integralet $\iint_D (x^2 + y^2)^7 dx dy$ hvor D er sirkelen $x^2 + y^2 \le 4$.

12 Integrasjonsrekkefølge

Oppgave 1 (V2017, Oppgave 3)

c) Skisser integrasjonsområdet for

$$\int_0^1 \int_0^x f(x,y) \, \mathrm{d}y \, \mathrm{d}x,$$

og bytt integrasjonsrekkefølgen til dx dy.

Oppgave 2 (K2016, Oppgave 5) Beregn dobbelintegralet

$$\int_0^1 \int_{3y}^3 e^{x^2} \, \mathrm{d}x \, \mathrm{d}y \ .$$

Oppgave 3 (V2014, Oppgave 4) Regn ut integralet

$$\int_0^2 \int_x^2 e^{y^2} \, \mathrm{d}y \, \mathrm{d}x \,,$$

ved å bytte om integrasjonsrekkefølgen.

13 Greens teorem

Oppgave 1 (V2017, Oppgave 6)

b) Bruk Greens's teorem og et passende vektorfelt \mathbf{F} til å beregne arealet av den elliptiske skiven begrenset av kurven C som er parametrisert ved

$$\mathbf{c}(t) = 3(\cos t + \sin t)\mathbf{i} + 2(\sin t - \cos t)\mathbf{j}, \qquad 0 \le t < 2\pi.$$

Oppgave 2 (V2014, Oppgave 5) Regn ut integralet

$$\int_C \left(5y - e^{\sin x}\right) dx + \left(10x - \sin(y^3 + 8y)\right) dy$$

der C er en sirkel med radius 2 og sentrum i (a, b). Spesifiser om du regner integralet med eller mot klokka.

Oppgave 3 (K2013, Oppgave 6) La C være randen til trekanten i xy-planet med hjørner i (0,0), (0,1) og (1,1). Finn

$$\int_C e^{y^2 - x^2} (\cos 2xy) \, dx + e^{y^2 - x^2} (\sin 2xy) \, dy.$$

Oppgave 4 (V2012, Oppgave 9) Finn integralet

$$\int_C \left(e^{x^2} + y\right) dx + \left(2x - e^{y^2}\right) dy$$

lans sirkelen $x^2 + y^2 = 4$. Spesifiser om du regner ut integralet med eller mot klokken.

14 Trippelintegral

Oppgave 1 (V2017, Oppgave 4)

b) Beregn trippelintegralet
$$\iiint_D e^{(x^2+y^2+z^2)^{3/2}} \,\mathrm{d}(x,y,z), \;\mathrm{der}\; D \;\mathrm{er}\; \mathrm{gitt}\; \mathrm{ved}\\ 1\leq x^2+y^2+z^2\leq 4 \;\mathrm{og}\; z\geq 0.$$

Oppgave 2 (K2013, Oppgave 7) La T være legemet gitt ved $x \geq 0$, $y \geq 0$ og $0 \leq z \leq 1 - \sqrt{x^2 + y^2}$. La S være overflaten til T orientert med enhetsnormal som peker ut av legemet T.

a) Finn
$$\iiint_T z(x^2 + y^2) dV$$
.

Oppgave 3 (V2013, Oppgave 6) I denne oppgaven er

- S sfæren (kuleoverflaten) med sentrum i (0,0,3) og radius 5, orientert slik at normalvektoren peker ut av kula.
- S^+ den delen av S som ligger over xy-planet, med samme orientering som S.
- T området avgrenset av S^+ og xy-planet.
- a) Finn volumet til området T.

Oppgave 4 (K2012, Oppgave 6) Legemet T er avgrenset av paraboloiden $z = 4x^2 + 4y^2$ og planet z = 4.

a) Finn volumet til T.

15 Divergensteoremet

Oppgave 1 (V2017, Oppgave 5)

a) La T være flata gitt ved $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=4\text{ og }0\leq z\leq 1\}$ og $\mathbf F$ være vektorfeltet

$$\mathbf{F} = (x + \sin(z^2 y), x^2 + z, 1 - z)$$

Regn ut $\operatorname{div} \mathbf{F}$ og finn

$$\iint_T \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}S$$

der normalvektoren \mathbf{n} peker ut av T.

Oppgave 2 (K2016, Oppgave 7)

La $\mathbf{F}(x,y,z)=(bxy,bx^2y,(x^2+y^2)z^2)$ og $W\subset\mathbb{R}^3$ være sylinderen

$$W := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le a^2, z \in [0, b]\}$$

der a,b>0. Bruk Gauss' teorem til å finne $\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S}$.

Oppgave 3 (V2016, Oppgave 7)

La $f: \mathbb{R}^3 \to R$ være en skalar C^2 -funksjon og $\mathbf{F}: \mathbb{R}^3 \to R^3$ et C^1 -vektorfelt. La $W \subset \mathbb{R}^3$ være et området der Gauss' (divergensteoremet) gjelder og ∂W overflata til W.

a) Vis at $\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \nabla f \cdot \mathbf{F}$ og derfor

$$\iint_{\partial W} f \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{W} f \operatorname{div} \mathbf{F} \, dV + \iint_{W} \nabla f \cdot \mathbf{F} \, dV$$

b) Anta at

$$\nabla^2 f(x,y,z) = 0 \qquad \text{når} \qquad (x,y,z) \in W$$

$$f(x,y,z) = 0 \qquad \text{når} \qquad (x,y,z) \in \partial W.$$

Vis at f(x, y, z) = 0 for alle $(x, y, z) \in W$.

Oppgave 4 (K2015, Oppgave 7)

La S være delen av flata $z=1+x^2+y^2$ som ligger inne i sylinderen $x^2+y^2=1$, og la T være legemet begrenset av S og planet z=2.

a) Gitt vektorfeltet $\mathbf{F} = f(x, y)\mathbf{i} + xg(x, y)\mathbf{j} + z\mathbf{k}$, der f og g har kontinuerlige partiell-deriverte som oppfyller

$$\frac{\partial f}{\partial x} + x \frac{\partial g}{\partial y} = 0$$

for alle x, y.

Finn flateintegralet $\iint_S \mathbf{F} \cdot d\mathbf{S}$, der enhetsnormalvektoren til S har negativ \mathbf{k} komponent.

Oppgave 5 (V2014, Oppgave 7)

La W være området i \mathbb{R}^3 gitt ved

$$W := \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le y \text{ og } x^2 + y^2 \le z \le 1\}$$

med rand S orientert slik at normalvektorene peker ut av W. La **F** være vektorfeltet gitt ved $\mathbf{F}(x, y, z) = (y, x^2, xz)$. Bestem

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}$$

Oppgave 6 (K2013, Oppgave 7) La T være legemet gitt ved $x \geq 0$, $y \geq 0$ og $0 \leq z \leq 1 - \sqrt{x^2 + y^2}$. La S være overflaten til T orientert med enhetsnormal som peker ut av legemet T.

b) Finn $(x + \cos y, y + \sin z, z + e^x) \cdot d\mathbf{S}$

Oppgave 7 (K2012, Oppgave 6) Legemet T er avgrenset av paraboloiden $z=4x^2+4y^2$ og planet z=4. La S være den delen av overflaten til T som ligger på paraboloiden $z=4x^2+4y^2$, og la $\mathbf n$ være enhetsnormalen til S som peker ut av legemet T. La videre $\mathbf F$ være vektorfeltet definert ved

$$\mathbf{F}(x,y,z) = \frac{yz}{8\pi}\mathbf{i} - \frac{x}{2\pi}\mathbf{j} + \frac{z}{4}\mathbf{k}$$

b) Regn ut $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$.

Oppgave 8 (V2012, Oppgave 5) Finn fluksen av vektorfeltet $\mathbf{F}(x, y, z) = (\sin y)^2 \mathbf{i} + y \mathbf{j} + xz \mathbf{k}$ inn i enhetskula med sentrum i origo.

16 Stokes' teorem

Oppgave 1 (V2017, Oppgave 5)

b) La S være ei kuleflate i \mathbb{R}^3 og $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ ett glatt vektorfelt. Vis at

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = 0.$$

Oppgave 2 (V2015, Oppgave 9)

La S være sylinderflata $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=1\text{ og }0\leq z\leq 1\}$. Finn

$$\iint_{S} \operatorname{curl} \mathbf{v} \cdot \mathrm{d} \mathbf{S}$$

når $\mathbf{v} = (v_1, v_2, v_3)$ er et C^2 -vektofelt i \mathbb{R}^3 der v_1 og v_2 ikke avhenger av z.

Oppgave 3 (K2014)

I denne oppgaven studerer vi de to flatene

$$S_1 := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, \ z \ge 1\}$$

$$S_2 := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + \frac{z^2}{4} = 1, \ z \ge 1\}$$

som berre er orientert slik at normalvektoren til S_1 i (0,0,1) og S_2 i (0,0,2) er **k**.

a) Begrun at hvis \mathbf{F} er et C^1 vektorfelt i \mathbb{R}^3 , så er

$$\iint_{S_1} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} .$$

b) Finn verdien av integralene når $\mathbf{F}(x, y, z) = -2y\mathbf{i} + x\mathbf{j} + e^{x^2+z}\mathbf{k}$.

Oppgave 4 (V2013, Oppgave 6) I denne oppgaven er

- S sfæren (kuleoverflaten) med sentrum i (0,0,3) og radius 5, orientert slik at normalvektoren peker ut av kula.
- S^+ den delen av S som ligger over xy-planet, med samme orientering som S.
- C er randen til S^+ , med positiv orientering i samsvar med orienteringen til S^+ .
- $\mathbf{F}(x, y, z) = (16 x^2 y^2)\mathbf{i} + z\mathbf{j} + (x + y + z)\mathbf{k}$.
- a) Finn en parametrisering for kurven C (husk orienteringen). Lag en skisse som viser S^+ , C og T. Merk på orienteringene til S^+ og C.
- c) Finn fluksen til curl ${\bf F}$ gjennom flaten S^+ . Altså beregn $\int_{S^+} {\rm curl}\, {\bf F} \cdot {\rm d}{\bf S}$.

Oppgave 5 (K2012, Oppgave 6) Legemet T er avgrenset av paraboloiden $z = 4x^2 + 4y^2$ og planet z = 4. La S være den delen av overflaten til T som ligger på paraboloiden $z = 4x^2 + 4y^2$, og la \mathbf{n} være enhetsnormalen til S som peker ut av legemet T. La videre $\mathbf{F}(x,y,z)$ være vektorfeltet definert ved

$$\mathbf{F}(x, y, z) = \frac{yz}{8\pi}\mathbf{i} - \frac{x}{2\pi}\mathbf{j} + \frac{z}{4}\mathbf{k}.$$

c) Regn ut $\iint_S \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, dS$.

Oppgave 6 (V2012, Oppgave 5) La S være halvkula $x^2 + y^2 + z^2 = 4 \mod z \le 0$ orientert nedover. La $\mathbf{F}(x, y, z) = x \tan(z/4)\mathbf{i} + xe^{e^{z^4}}\mathbf{j} + xyz\mathbf{k}$. Finn integralet $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.

Grenseverdier: 8 Gradient: 4 Epsilon-Delta: 1 Kjerneregelen: 7 Taylor-approksimasjon: 1Tangenter: 7 Kritiske punkter: 11 Optimering: 4 Linjeintegral: 3 Konservative vektorfelt: 8 Dobbelintegraler: 7 Integrasjonsrekkefølge: 3 Greens teorem: 4 Trippelintegral: 4 Divergensteoremet: 8

Stokes' teorem: 6

