МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа 3.6.1

Спектральный анализ электрических сигналов

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

1. Цель работы.

Изучить спектральный состав периодических электрических сигналов

2. В работе используются.

Анализатор спектра (аналоговый или цифровой), генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

3. Теоретические сведения.

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью анализатора спектра и сравниваются с рассчитанными теоретически.

Периодическая функция может быть представлена в виде бесконечного ряда гармонических функций — ряда Фурье:

$$f(t)=\sum_{-\infty}^{\infty}c_{n}e^{in\omega_{0}t}$$
 или $f(t)=\sum_{n=0}^{\infty}a_{n}\cos\left(n\,\omega_{0}\,t+arphi_{n}
ight)$

Здесь $\omega 0 = 2\pi/T$, где T — период функции f(t). Коэффициенты $\{cn\}$ могут быть найдены по формуле

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-in\omega_0 t} dt$$

Наборы коэффициентов разложения в комплексной $\{cn\}$ и действительной $\{an,\phi n\}$ формах связаны соотношением:

$$a_n = 2|c_n|$$
 $\varphi_n = \arg c_n$

В качестве простейшего спектрального анализатора можно использовать высокодобротный колебательный контур с подстраиваемой ёмкостью или индуктивностью, рис. 1. Такой контур усиливает те гармоники входного сигнала f(t), частота которых близка к резонансной $\nu_0 = 1/(2\pi\sqrt{(LC)})$ и практически не реагирует на частоты, далёкие от ν_0 .

Рис.1. Колебательный контур как узкополосный фильтр

С точки зрения преобразования гармоник колебательный контур является узкополосным ф с шириной полосы пропускания порядка $\Delta \nu \sim \nu 0/Q$, где $Q=1/R \sqrt{(L/C)}\gg 1$ — его добротность. Амплитуда колебаний в контуре пропорциональна амплитуде $|c(\nu_0)|$ гармоники в спектре функции f(t), частота которой совпадает с ν_0 . Таким образом, меняя резонансную частоту контура, можно «просканировать» весь спектр входного сигнала.

4. Экспериментальная установка.

У описанной выше схемы есть существенный недостаток: при изменении L или C меняется также и добротность, а значит, и ширина полосы пропускания. Кроме того, проще изготовить высокодобротный контур с фиксированными параметрами, нежели с настраиваемой частотой. В связи с этим, как правило, для фильтрации сигнала применяется другая схема

Исследуемый сигнал f(t) и синусоидальный сигнал от вспомогательного генератора, называемого в таких системах гетеродином, подаются на вход смесителя. Смеситель — элемент, преобразующий колебания с частотами v1 и v2 в колебания на комбинированных частотах: v1 + v2 и v1 - v2. «Разностный» сигнал смесителя поступает на фильтр — высокодобротный колебательный контур, настроенный на некоторую фиксированную резонансную частоту v_0 . Таким образом, если f(t) содержит гармонику $v = v_{rer} - v_0$ (v_{rer} — частота гетеродина), она будет усилена, а отклик будет пропорционален её амплитуде.

Отметим, что смешение частот исследуемого сигнала и частоты гетеродина лежит в основе большинства современных радиоприёмных устройств — супергетеродинов.

Рис.2.Структурная схема анализатора спектра

5. Исследование спектра периодической последовательности прямоугольных импульсов.

Экспериментальная установка для исследования спектра периодической последовательности прямоугольных импульсов представлена на рис.3. Сигнал в выхода генератора прямоугольных импульсов Г5-54 подается на вход анализатора спектра и одновременно — на вход Y осциллографа. С генератора импульсов на осциллограф подается также сигнал синхронизации, запускающий ждущую развертку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране ЭЛТ анализатора спектра — распределение амплитуд спектральных составляющих этой последовательности

В наблюдаемом спектре отсутствует информация об амплитуде нулевой гармоники, т.е о величине постоянной составляющей; ее местоположение (начало отсчета шкалы частот) отмечено небольшим вертикальным выбросом

Рис.3. Схема для исследования спектра периодической последовательности прямоугольных импульсов

Установим на анализаторе спектра режим работы с однократной разверткой и получим на экране спектр импульсов с параметрами $f_{\text{повт}}=1~\text{к}\Gamma \text{ц};~\tau=25~\text{мкc};$ частотный масштаб $m_x=5~\text{к}\Gamma \text{ц}/\text{дел}$

Проанализируем, как меняется спектр при изменении τ и $f_{\text{повт}}$:

Рис.4. $f_{\text{повт}} = 1 \text{ к}\Gamma \text{ц; } \tau = 25 \text{ мкс}$

Рис.5. $f_{\text{повт}} = 1 \text{ к}\Gamma \text{ц}; \tau = 50 \text{ мкс}$

Рис.7. $f_{\text{повт}} = 2 \text{ к}\Gamma \text{ц}; \tau = 25 \text{ мкс}$

Проведем измерения зависимости ширины спектра от длительности импульса $\Delta \nu(\tau)$ при увеличении τ от 25 до 200 мкс, данные занесем в Таблицу 1:

Таблица 1

т, мкс	25	50	80	120	150	180	200
$1/\tau$, MKC ⁻¹	0,04	0,02	0,0125	0,0083	0,0067	0,0056	0,005
Х, дел	8	3,5	2,5	1	0,7	0,5	0,25
Δν, ΓΓιι	0,04	0,0175	0,0125	0,005	0,0035	0,0025	0,00125

Построим график $\Delta v(1/\tau)$ по данным Таблицы 1, учитывая что $\sigma(\Delta v) = 0{,}0025$ ГГц.

Рис. 8. Зависимость $\Delta v(1/\tau)$

По МНК найдем коэффициент наклона прямой и оценим его погрешность:

$$k = 1,09 \pm 0,04$$

Следовательно, получили соотношение:

$$\Delta v \tau \sim 1$$

6. Исследование спектра периодической последовательности цугов гармонических колебаний.

Исследование спектра периодически чередующихся цугов гармонических колебаний проводится по схеме, изображенной на рис.9. Генератор Г6-34 вырабатывает синусоидальные колебания высокой частоты. На вход АМ (амплитудная модуляция) генератора Г6-34 подаются прямоугольные импульсы с генератора Г5-54 и синусоида модулируется - «нарезается» на отдельные куски — *цуги*. Эти цуги с выхода генератора Г6-34 поступают на вход спектроанализатора и одновременно на вход Y осциллографа. Сигнал синхронизации подается на осциллограф с генератора импульсов.

Рис.10. Схема исследования спектра периодической последовательности цугов высокочастотных колебаний

Установим несущую частоту $v_0 = 25$ к Γ ц и проанализируем как меняется спектр при изменении v_0 и τ :

Рис.11. $\tau = 50$ мке; $\nu_0 = 25$ к Γ ц

Рис.13. $\tau = 100$ мкс; $\nu_0 = 10$ к Γ ц

Рис.12. $\tau = 100$ мкс; $\nu_0 = 25$ к Γ ц

Рис.14. $\tau = 100$ мкс; $\nu_0 = 40$ к Γ ц

При фиксированной длительности импульсов $\tau = 50$ мкс исследуем зависимость расстояния $\delta \nu$ между соседними спектральными компонентами от частоты повторения импульсов $f_{\text{повт}}$, данные занесем в Таблицу 2:

Таблица 2

δν, дел	1	1,7	2	1	3	4	4,2
m _x , кГц/дел	2	2	2	5	2	2	2
δν, кГц	2	3,4	4	5	6	8	8,4
f _{повт} , кГц	2	3	4	5	6	7	8

По данным Таблицы 2 построим график зависимости $\delta \nu(f_{\text{повт}})$, учитывая что $\sigma(\delta \nu) = 0.5$ дел:

Рис.15.3ависимость $\delta \nu(f_{\text{повт}})$

По МНК найдем коэффициент наклона прямой и оценим его погрешность:

$$k = 1,09 \pm 0,07$$

7. Исследование спектра гармонических сигналов, модулированных по амплитуде.

Схема для исследования амплитудно-модулированного сигнала представлена на рис. 16. В генератор сигналов встроен модуляционный генератор, который расположен в левой части Γ 6-34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}} = 1$ к Γ ц подается с модуляционного генератора на вход AM (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0 = 25$ к Γ ц). Амплитудномодулированный сигнал с основного выхода поступает на осциллограф и на анализатор спектра.

Рис.16.Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом

Изменяя глубину модуляции, исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии ($a_{\rm for}/a_{\rm och}$) от глубины модуляции m, для расчета глубины модуляции будем измерять максимальную и минимальную амплитуды на экране осциллографа, данные занесем в Таблицу 3:

Таблица З

абок, дел	11	7	0	8	8	10
аосн, дел	18	18	19	19	18	18
А _{тах} , дел	17	12,5	4	5	14	15
A _{min} , дел	0	4	4	1,5	2	1
m	1	0,515	0	0,538	0,75	0,875
абок / аосн	0,611	0,389	0	0,421	0,444	0,556
σ(m)	0,05	0,03	0	0,079	0,043	0,048
$\sigma(a_{\text{бок}} / a_{\text{осн}})$	0,098	0,089	0	0,086	0,091	0,095

, где
$$\sigma(a_{\text{бок}}) = \sigma(a_{\text{осн}}) = 0,5$$
 дел = $\sigma(A_{\text{max}}) = \sigma(A_{\text{min}}).$

$$\begin{split} \sigma(\textit{m}) &= \textit{m} \sqrt{\frac{\sigma(\textit{A}_{\textit{max}})^2}{\textit{A}_{\textit{max}}^2}} + \frac{2\,\sigma(\textit{A}_{\textit{max}})^2}{\textit{A}_{\textit{min}} + \textit{A}_{\textit{max}}^2} \\ \sigma(\textit{a}_{\textit{бок}} \textit{I}\, \textit{a}_{\textit{осн}}) &= \frac{\textit{a}_{\textit{бок}}}{\textit{a}_{\textit{осн}}} \sqrt{\frac{\sigma(\textit{a}_{\textit{бок}})^2}{\textit{a}_{\textit{бок}}^2}} + \frac{\sigma(\textit{a}_{\textit{осн}})^2}{\textit{a}_{\textit{осh}}^2} \end{split}$$

По данным Таблицы 3 построим график зависимости $a_{\text{бок}}/a_{\text{осн}}(m)$:

Рис.17. График зависимости $a_{\text{бок}}/a_{\text{осн}}(m)$

По МНК найдем коэффициент наклона прямой и оценим его погрешность:

$$k = 0.59 \pm 0.06$$

, что на 6% отличается от рассчитанного теоретически значения

8. Выводы.

- 1.Изучили возможности синтезирования периодических электрических сигналов при ограниченном наборе спектральных компонент.
 - 2. Убедились в справедливости соотношения неопределенности
- 3.Вычислили коэффициент линейной зависимости $a_{60\text{к}}/a_{0\text{cH}}(m)$, который отличается от теоретического на 6%