2018 CCAMB TB3

Tristan Shin

20 Jan 2019

Given that 5^{2018} has 1411 digits and starts with 3 (the leftmost non-zero digit is 3), for how many integers $1 \le n \le 2017$ does 5^n start with 1?

Suppose that for a positive integer n, 5^{n+1} has the same number of digits as 5^n . Let 5^n have d digits and start with s. If $s \ge 2$, then

$$5^{n+1} \ge 5 \cdot s \cdot 10^{d-1} \ge 10^d,$$

so 5^{n+1} has more digits than 5^n , contradiction. Thus 5^n starts with 1. Conversely, if 5^n starts with 1, then 5^{n+1} starts with 5 and has the same number of digits as 5^n . Thus 5^n starts with 1 if and only if 5^n and 5^{n+1} have the same number of digits.

Let d(n) be the number of digits in 5^n . Then d(1) = 1, d(2018) = 1411, and $d(n+1) - d(n) \in \{0,1\}$ for all positive integers n. We want to find the number of n between 1 and 2017 inclusive such that d(n+1) - d(n) = 0. Let this number be N. Then

$$d(2018) - d(1) = \sum_{n=1}^{2017} d(n+1) - d(n) = N \cdot 0 + (2017 - N) \cdot 1 = 2017 - N.$$

Thus N = 607 as desired.