WTS. An open ball $B_r(x)$, where $r \geq 0$ is equivalent to a bounded open interval.

$$B_r(x) = \{y, d(x,y) < r\}$$

Proof. A bounded open interval (a, b) where $a, b \in \mathbb{R}$ is defined

$$(a,b) = \{y, a < y < b\}$$

$$= \{y, m - b < y - m < b - m, m = (a+b)/2\}$$

$$= \{y, |y - m| < b - m, m = (a+b)/2\}$$

$$= \{y, d(y,m) < \max(b - m, 0)\}$$

$$= B_{\max(b-m,0)}(m)$$

Fix any ball centered at $m \in \mathbb{R}$ with radius $r \geq 0$, then write b = m + r. The $\max(b - m, 0)$ is to ensure that the equivalent radius of the ball does not go negative, if a > b then the open interval is equivalent to $(a, a) = B_0(m)$. \square

WTS. Every metric space is T_2 .

Proof. Fix two elements $x \neq y$ then by definition of the metric d(x,y) = 2r > 0, then fix two open (balls) sets V(x,r) and V(y,r), for every element $z \in V(x,r)$ we have

$$d(x,y) \le d(z,x) + d(z,y) \implies 2r < r + d(z,y)$$

Clearly this means that $V(x,r) \subseteq V^c(y,r)$, and $V(x,r) \cap V(y,r) = \varnothing$.

WTS. Let x_n be a sequence of real numbers, and

- 1. Prove that (i) is always true.
- 2. Prove that $(iv) \iff (iii)$.
- 3. Prove that $(iii) \Longrightarrow (ii) \Longrightarrow (i)$
- 4. Give examples of sequences that satisfy: (iii), (ii) but not (ii), and do not satisfy (ii)

Where (i) to (iv) are given by

- (i) $\forall n \exists M |x_n| \leq M$
- (ii) $\exists M \exists^{\infty} n |x_n| \leq M$
- (iii) $\exists M \forall^{\infty} n |x_n| \leq M$
- (iv) $\exists \forall n |x_n| \leq M$

We begin by first taking the problem apart in the abstract. This is encompassed in the following lemma.

Lemma 0.1. If P is a proposition on the space of all sequences (onto, into? what is the right word) X, denoted by

$$\Omega = \{x_n : \mathbb{N} \to X\}$$

And if

- $P(\forall n \ge 0) = \{x_n \in \Omega, \ \forall n \ge 0, P(x_n)\}$
- $P(\forall^{\infty} n) = \{x_n \in \Omega, \exists N, \forall n \ge N, P(x_n)\}\$
- $P(\exists^{\infty} n) = \{x_n \in \Omega, \forall N, \exists n \ge N, P(x_n)\}$

Then

$$P(\forall n \ge 0) \subseteq P(\forall^{\infty} n) \subseteq P(\exists^{\infty} n) \subseteq \Omega$$

Proof. Suppose that $x_n \in P(\forall n \geq 0)$, then $P(x_n)$ eventually is trivial, so

$$P(\forall n \ge 0) \subseteq P(\forall^{\infty} n)$$

Now fix $x_n \in P(\forall^{\infty} n)$, this induces some $N \in \mathbb{N}$ such that for every $n \geq N$ means that $P(x_n)$. To show that $P(x_n)$ frequently, notice for every $M \in \mathbb{N}$ we can choose some n = M + N such that $P(x_n)$ holds, so

$$P(\forall^{\infty} n) \subseteq P(\exists^{\infty} n)$$

The last inclusion is obvious as all three are subsets of Ω .

Problem 3a

Proof. For any sequence of reals x_n , and for every $n \in \mathbb{N}$, since the set of natural numbers is unbounded above, there exists some $M_n \in \mathbb{N}$ such that $|x_n| \leq M$.

Problem 3b

Proof. We define the proposition P on the reals

$$P(\alpha) \iff \exists M \in \mathbb{N}, \ |\alpha| \leq M$$

Then by Lemma 0.1,

$$P(\forall n \geq 0) \subseteq P(\forall^{\infty} n)$$
 means that (iv) \Longrightarrow (iii)

To prove the converse, suppose that (iii) holds, then there exists some $M \in \mathbb{N}$ such that $|x_n| \leq M$ for all $n \geq N$, then let

$$\overline{M} \ge M + \sum_{n \le N} |x_n|$$

Where we apply the Archimedean Property on the right member to obtain some $\overline{M} \in \mathbb{N}$. Then it is easy to verify that $|x_n| \leq \overline{M}$ for every $n \geq 0$, and (iii) \Longrightarrow (iv). And therefore (iii) \Longleftrightarrow (iv).

Problem 3c

Proof. Using Lemma 0.1, since

$$P(\forall n \ge 0) \subseteq P(\forall^{\infty} n) \subseteq P(\exists^{\infty} n) \subseteq \Omega$$

Therefore

$$(iv) \implies (iii) \implies (ii) \implies (i)$$

Problem 3d

Proof. Here are the sequences

- 1. $x_n = 0$ for every $n \ge 0$, then $x_n \in P(\forall n \ge 0) \subseteq P(\forall^{\infty} n)$. Since $|x_n| \le 0$.
- 2. $x_n = n \cdot (1 + (-1)^n)/2$, so that $x_n \in P(\exists^{\infty} n) \setminus P(\forall^{\infty} n)$. Since x_n visits 0 frequently at odd n but grows unbounded at even n.
- 3. $x_n = n$ is in $P(\exists^{\infty} n)^c$. Since for every natural M, we can choose some N = M + 1 such that for every $n \ge N$ implies that $x_n > M$.

WTS. Show that

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 0$$

Proof. Assume in good faith that we are indexing the sequence by $n \in \mathbb{N}^+$ so that $n \ge 1$. Then for every fixed $n \ge 1$,

$$0 \le x_n = \frac{1}{n(n+1)} < \frac{1}{n^2}$$

Now fix any $\varepsilon > 0$, and find a large M with $M \ge \varepsilon^{-1/2}$. Then it follows that for every $n \ge M$,

$$\frac{1}{\sqrt{\varepsilon}} \le M \le n \implies \frac{1}{n^2} < \varepsilon$$

It immediately follows that

$$|x_n - 0| = \left| \frac{1}{n} - \frac{1}{n+1} - 0 \right| < \left| \frac{1}{n^2} \right| < \varepsilon$$

And $|x_n - 0| < \varepsilon$ eventually.

WTS. Show that $x_n = \frac{n}{\sqrt{n+5}}$ diverges.

We begin with an important Lemma.

Lemma 0.2. Every convergent sequence in \mathbb{R} is bounded.

Proof. Fix $\{x_n\}_{n\geq 1} \to x$, also fix $\varepsilon = 1 > 0$, then there exists some $N \geq 0$ so large with

$$d(x_n, x) \le 1 \quad \forall n \ge N$$

Then for every $n \geq N$ we have

$$d(x_n, 0) \le d(x_n, x) + d(x, 0) \le 1 + d(x, 0)$$

Now for every $n \geq 1$, obviously $d(x_n, 0) \leq 1 + d(x, 0) + \sum_{k \leq N} d(x_k, 0)$, and this establishes the Lemma.

Main Proof for Q5

Proof. We simply have to show that x_n is not bounded. Indeed, for any $M \ge 0$, take $n > 2M^2 + 5$ and $|x_n| > M$. The reasoning is as follows, if for every $n > 2M^2 + 5$, then

$$(n/2)^{1/2} > |M| = M$$

Also note that $n > 5 \implies 2n > n + 5$ therefore

$$(n+5)^{-1} > (2n)^{-1} \implies n(n+5)^{-1/2} > n(2n)^{-1/2}$$

And

$$x_n = |x_n| > n(2n)^{-1/2} = (n/2)^{1/2} > M$$

WTS. Let $\binom{n}{k}$ denote the number of k-element subsets of an n-element set. Prove that if n < k, then $\binom{n}{k} = 0$, and that

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

Proof. We begin with some abstract notation.

- $J_n = \{1, 2 \cdots, n\} \subseteq \mathbb{N}^+,$
- $|E| := \sum_{x \in E} 1$, the counting measure on E.
- X is any set where $|X| \ge 2$,
- $A \subseteq X$, $|A||A^c| \neq 0$, this implicitly means that neither set is empty,
- $\Omega_n = \{f: J_n \to X\},$
- For every $f \in \Omega_n$, $f_{J_{n-1}}$ denotes the restriction of f onto J_{n-1}

With these definitions, it is clear that $\binom{n}{k}$, for every $n, k \in \mathbb{N}$,

$$\binom{n}{k} = \left| \left\{ f \in \Omega_n, |f^{-1}(E)| = k \right\} \right|$$

Clearly, if $f \in \Omega_{n+1}$ and $|f^{-1}(E)| = k+1$,

- If $f^{-1}(E) \cap J_{n+1} \setminus J_n = \emptyset$, then $|f_{J_n}^{-1}(E)| = |f^{-1}(E)| = k+1$,
- If $f^{-1}(E) \cap J_{n+1} \setminus J_n \neq \emptyset$, then $|f_{J_n}^{-1}(E)| = k$,

Then we can write $E_1=\left\{f\in\Omega_{n+1},\;|f^{-1}(E)|=k+1\right\}$ as the disjoint union of $E_2=\left\{f\in\Omega_{n+1},\;f^{-1}(E)\cap J_{n+1}\setminus J_n=\varnothing,\;f_{J_n}^{-1}(E)|=k+1\right\}$ and $E_3=\left\{f\in\Omega_{n+1},\;f^{-1}(E)\cap J_{n+1}\setminus J_n\neq\varnothing,\;|f_{J_n}^{-1}(E)|=k\right\}.$

Also note that $E_2 \equiv \{f \in \Omega_n, |f^{-1}(E)| = k+1\}$ and $E_3 \equiv \{f \in \Omega_n, |f^{-1}(E)| = k\}$. Since every $f \in E_2$ induces some $g \in \Omega_n$ with $|g^{-1}(E)| = k+1$, and respectively for $f \in E_3$. And for every $g \in \Omega_n$, $|g^{-1}(E)| = k+1$, there is a corresponding $f \in E_2$ with $f_{J_n} = g$.

Therefore $|E_2| = \binom{n}{k+1}$ and $|E_3| = \binom{n}{k}$. Since $|\cdot|$ is just the counting measure on finite sets, and E_1 is the disjoint union, it follows that

$$|E_1| = \binom{n+1}{k+1} = |E_2| + |E_3| = \binom{n}{k+1} + \binom{n}{k}$$

WTS. Prove three things

(a) The Binomial formula, for every $n \in \mathbb{N}$, $a, b \in \mathbb{R}$

$$(a+b)^n = \sum_{k\geq 0}^n \binom{n}{k} a^k b^{n-k}$$

(b) The Generalized Bernoulli inequality, for every $n \in \mathbb{N}^+$, $k \leq n$

$$(1+b)^n \ge 1 + \binom{n}{k} b^k$$

(c) A special case of the Generalized Bernoulli inequality, for any $b \geq 0$, $n \in \mathbb{N}^+$

$$(1+b)^n \ge 1 + \frac{n(n-1)}{2}b^2$$

Proof. We begin by showing that (a) \Longrightarrow (b). For every $n \ge 1$, we have

$$(1+b)^n = \sum_{j\geq 0}^n \binom{n}{j} b^j = 1 + \binom{n}{k} b^k + \sum_{j\geq 1, j\neq k}^n \binom{n}{j} b^j$$

Since $\binom{n}{k}b^j \geq 0$, (b) holds.

Now to show that (b) \Longrightarrow (c), simply substitute k=2 if $2 \ge n$, if n=1 then the inequality is trivial.

The proof for (a) also quite straight forward, if n = 0 then

$$(a+b)^0 = 1 = \sum_{k=0}^{0} {n \choose k} a^k n^{n-k} = {0 \choose 0} a^0 b^{0-0} = 1$$

Assume that (a) holds for some $n \in \mathbb{N}$, then

$$(a+b)^{n+1} = \sum_{k\geq 0}^{n} \binom{n}{k} \left(a^{k+1}b^{n-k} + a^{k}b^{(n+1)-k} \right)$$

$$= \binom{n}{0} a^{0}b^{(n+1)-0} + \sum_{k\geq 1}^{n} \binom{n}{k-1} \left(a^{k}b^{(n+1)-k} \right) + \sum_{k\geq 1}^{n} \binom{n}{k} \left(a^{k}b^{(n+1)-k} \right)$$

$$= \binom{n+1}{0} a^{0}b^{(n+1)-0} + \sum_{k\geq 1}^{n} \binom{n}{k} + \binom{n}{k-1} \left(a^{k}b^{(n+1)-k} \right)$$

$$= \binom{n+1}{0} a^{0}b^{(n+1)-0} + \sum_{k\geq 1}^{n} \binom{n+1}{k} \left(a^{k}b^{(n+1)-k} \right)$$

$$= \sum_{k\geq 0}^{n} \binom{n+1}{k} a^{k}b^{(n+1)-k}$$

For the third equality we used the fact that $\binom{\alpha}{0} = \binom{\beta}{0}$ for every $\alpha, \beta \in \mathbb{N}^+$.

WTS. Prove two things.

- (a) Prove that for every $a \in \mathbb{R}$, a > 1 we have $\lim na^{-n} = 0$
- (b) Prove that $\lim n^{1/n} = 1$

Proof. Let us start with (a). Assume that there exists some a > 1 with $\lim na^{-n} \neq 0$. So that there exists some $\varepsilon > 0$ and for every $N \in \mathbb{N}$, some $n \geq N$ with

$$\varepsilon \le |na^{-n}| \implies (1 + n(n-1)(a-1)^2/2)\varepsilon \le a^n \varepsilon \le n$$

Dividing by n across both sides and noting that $1/n \ge 0$,

$$\varepsilon(n-1)(a-1)^2/2 \le 1 \implies n \le \left(\varepsilon(a-1)^2/2\right)^{-1} + 1$$

Which is obviously false, because \mathbb{R} is Archemedian. This establishes (a).

For (b), we write $x_n = n^{1/n}$, where $x_n \ge 1$ for every $n \ge 1$. Indeed, if $x_n < 1$ for some $n \in \mathbb{N}^+$ then $x_n^n < 1$ by induction on n.

By applying Bernoulli's Inequality again,

$$x_n^n = n \ge 1 + n(n-1)(1-x_n)^2/2 \implies 2/n \ge (1-x_n)^2$$

So that $(1-x_n)^2 = |1-x_n|^2 \to 0$. We claim that if any sequence $|a_n|^2 \to 0$ then $a_n \to 0$. Fix an arbitrary $\varepsilon > 0$ then

$$|a_n - 0|^2 < \varepsilon^2 \implies |a_n - 0| < \varepsilon, \exists N \forall n \ge N$$

Therefore $|1 - x_n| \to 0$, and $x_n = n^{1/n} \to 1$.