NOTES FOR ABSTRACT ALGEBRA

Based on lectures provided by Dima Arinkin on MATH 742 2025 SPRING

Author Wells Guan

Contents

1	Rings and Ideals		3
	1.1	Rings	3
	1.2	Prime Ideals	6
	1.3	Radicals	7
	1.4	Modules	9
	1.5	Exact Sequences	12

1 Rings and Ideals

1.1 Rings

Definiton 1.1.1. (Ring)

A ring R is an abelian group with an associative multiplication distributive over the addition. (We always assume a ring has a multiplicative identity and commutative if not marked)

A unit is an element u with a reciprocal 1/u such that $u \cdot 1/u = 1$, which is also denoted u^{-1} and called a numtiplicative inverse and the units form a multiplicative group, denoted R^{\times} .

Definition 1.1.2. (Homomorphism)

A ring homomorphism is a ring map $\phi: R \to R'$ which preserving sums, products and 1. If R' = R we call ϕ an endomorphism and if it is also bijective we call it an automorphism.

Definiton 1.1.3. (Subring)

A subset $R'' \subset R$ is a buting if R'' is a ring and the inclusion $R'' \leftarrow R$ is a ring map. We call R a extension of R'' and the inclusion an extension.

Definition 1.1.4. (Algebra)

An R-algebra is a ring R' that comes equipped with a ring homomorphism $\phi: R \to R'$ called the structure map. An R-algebra homomorphism $R' \to R''$ is a ring homomorphism between R-algebras compatible with structure maps.

Definition 1.1.5. (Group action)

A group G is said to act on R if there is a homomorphism given from G into the group of automorphisms of R. The ring of invariants R^G is the subring defined by

$$R^G := \{x \in R | qx = q \text{ for all } q \in G\}$$

Definition 1.1.6. (Boolean)

A ring B is called Boolean if $f^2 = f$ for all $f \in B$, then 2f = 0 since

$$2f = (f+f)^2 = 4f$$

Definition 1.1.7. (Polynomial rings)

Let R be a ring, $P := R[X_1, \dots, X_n]$ the polynomial ring in n variables. P has the Universal Mapping Property (UMP), i.e. given a ring homomorphism $\phi: R \to R'$ and given an element x_i of R' for each i, there is a unique ring map $\pi: P \to R'$ with $\pi|_R = \phi$ and $\pi(X_i) = x_i$.

Similarly, let $X := \{X_{\lambda}\}_{{\lambda} \in {\Lambda}}$ be any set of variables. Set P' := R[X] the elements of P' are the polynomials in any finitely many of X.

Definition 1.1.8. (Ideals)

Let R be a ring. An ideal I is a subset containing 0 of R such that $xa \in I$ for any $x \in R, a \in I$ and closed under addition.

For a subset $S \subset R$, $\langle S \rangle$ means the smallest ideal containing S.

Given a single element a, we say that the ideal $\langle a \rangle$ is principal. For a number of ideals I_{λ} , the sum $\sum I_{\lambda}$ mean the set of all finite linear combinations $\sum x_{\lambda}a_{\lambda}$ for $x_{\lambda} \in R$, $a_{\lambda} \in I_{\lambda}$. If

 Λ is finite, then the product $\prod I_{\lambda}$ means the ideal generated by all products $\prod a_{\lambda}, a_{\lambda} \in I_{\lambda}$. For two ideals I and J, the transporter of J into I mean the set

$$(I:J) := \{x \in R | xJ \subset I\}$$

If $I \subset J$ a subsring such that $I \neq J$, then we call I proper.

For a ring homomorphism $\phi: R \to R'$, $I \subset R$ a subring, denote by IR' or I^e the ideal of R' generated by $\phi(I)$ can we call it the extension of I.

Given an ideal J of R' and its preimage $\phi^{-1}(J)$ is an ideal of R and we call ti the contraction of J denoted with J^c .

Definiton 1.1.9. (Residue Rings)

Let I be an ideal of R and the cosets of I

$$R/I := \{x + I | x \in R\}$$

have a ring structure and it will be called the residue ring or quotient ring or factor ring of R modulo I and the quotient map:

$$\kappa: R \to R/I, \quad \kappa(x) = x + I$$

and κx is called the residue of x.

Proposition 1.1.1.

For $I \subset R$ a subring and a ring homomorphism from R to R', then $\ker(\phi) \supset I$ implies that is a ring homomorphism $\psi : R/I \to R'$ with $\psi \kappa = \phi$.

 ψ is surjective iff ϕ is surjective. ψ is injective iff $I = \ker(\phi)$.

Corollary 1.1.2. $R/\ker(\phi) \cong Im(\phi)$

Proposition 1.1.3.

R/I is universal among R-algebras R' such that IR' = 0, i.e. for $\phi : R \to R'$ such that $\phi(I) = 0$, there is a unique ring homomorphism $\psi : R/I \to R'$ such that $\psi \kappa = \phi$.

Definition 1.1.10. The UMP serves to determine R/I up to unique isomorphism, i.e. if R' equipped with $\phi: R \to R'$ has the UMP too, then R' is isomorphic to R/I.

Proof.

If R' has the UMP among the R-algebras R'' such that IR''=0, then $\phi(I)=0$ and hence there is a unique $\psi:R/I\to R'$ such that $\psi\kappa=\phi$ and since $\kappa I=0$, we know there exists unique ψ' such that $\psi'\phi=\kappa$ and then $(\psi'\psi)\kappa=\kappa$ and hence $\psi'\psi=1$ and we are done by the uniqueness.

Proposition 1.1.4. Let R be a ring, P := R[X] the polynomial ring in one variable, $a \in R$ and $\pi : P \to R$ the R-algebra map define by $\pi(X) := a$, then

- $\ker \pi = \{F(X) \in P | F(a) = 0\} = \langle X a \rangle$
- $P/\langle X a \rangle \cong R$

Definition 1.1.11. (Order of a polynomial)

Let R be a ring, P the polynomial ring in variables X_{λ} for $\lambda \in \Lambda$ and $(x_{\lambda}) \in R^{\Lambda}$ a vector. Let $\phi_{(x_{\lambda})}P \to P$ denote the R-algebra homomorphism defined by $\phi_{(x_{\lambda})}X_{\mu} := X_{\mu} + x_{\mu}$. The order of F at the vector (x_{λ}) is defined as the smallest degree of monomials M in $(\phi_{(x_{\lambda})}F)$.

We know $\operatorname{ord}_{(x_{\lambda})} F = 0$ iff $F(x_{\lambda}) \neq 0$.

Definition 1.1.12. Let R be a ring, I an ideal and κ the quotient map. Given an ideal $J \supset I$ then the cosets

$$J/I := \{b + I | b \in J\} = \kappa(J)$$

and then J/I is an ideal of R/I and also J/I = J(R/I).

Proposition 1.1.5. Given $J \supset I$ and we know

$$\phi: R \to R/I \to (R/I)/(J/I)$$

then we have the commutative diagram:

$$\begin{array}{ccc} R & \longrightarrow & R/J \\ \downarrow & & \downarrow \cong \\ R/I & \longrightarrow & (R/I)/(J/I) \end{array}$$

Proof.

Since $\phi(J) = 0$, so there exists unique $\psi : R/J \to (R/I)/(J/I)$ such that $\psi \kappa_J = \phi$ and since $\kappa_J(I) = 0$ and there exists p such that $p\kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = 0$ and it is easy to check $p \kappa_I = 0$ by uniqueness and we are done.

Definition 1.1.13. Let R be a ring. Let $e \in R$ be an idempotent, i.e. $e^2 = e$ then Re is a ring with e as multiplication unit, but Re is not a subring unless e = 1.

Let e' := 1 - e, then e' is idempotent and ee' = 0 and we call them complementary idempotents.

Denote Idem(R) the set of all idempotents, which is close under a ring homomorphism.

Proposition 1.1.6. If $e_1, e_2 \in R$ such that $e_1 + e_2 = 1$ and $e_1e_2 = 0$, then they are complementary idempotents.

Definition 1.1.14. Let $R: R' \times R''$ be a product of two rings with componentwise operations.

Proposition 1.1.7. Let R be a ring and e', e'' complementary idempotents. Set R' := Re' and R'' = Re''. Define $\phi : R \to R' \times R''$ by $\phi(x) = (xe', xe'')$ and then ϕ is a ring isomorphism. R' = R/Re'' and R'' = R/Re'.

Proof.

Check ϕ is surjective and injective.

There is a natrual isomorphism between $I = \{(0, xe'')\} \subset R' \times R''$ and R'', and consider the diagram

$$\begin{matrix} R \longleftrightarrow R' \times R'' \\ \downarrow & \downarrow \\ R/R'' & R' \times R''/I \end{matrix}$$

and use the UMP.

1.2 Prime Ideals

Definition 1.2.1. (Zerodivisors)

Let R be a ring. An element x is called a zerodivisor if there is a nonzero y such that xy = 0; otherwise, x is called a nonzerodivisor. Denote the set of zerodivisors by z.div(R)and the nonzerodivisors by S_0 .

Definition 1.2.2. (Multiplicative subsets, prime ideals)

Let R be a ring. A subset S is called multiplicative if $1 \in S$ and $x, y \in S$ implies $xy \in S$. An ideal P is called prime if its complement R - p is multiplicative, or equivalentely, if $1 \neq P$ and $xy \in P$ implies $x \in P$ or $y \in P$.

Definition 1.2.3. (Fields, domains)

A ring is called a field if $1 \neq 0$ and if every nonzero element is a unit.

A ring is called an integral domain, or a domain if $\langle 0 \rangle$ or equivalently, if R is nonzero and has no nonzero zerodivisors.

Every domain R is a subring of its fraction field $Frac(R) := \{x/y, x, y \in R \text{ and } y \neq 0\}.$

Proposition 1.2.1. Any subring R of a field K is a domain, and for a domain R, Frac(R) has the UMP: the inclusion of R into any field L extends uniquely to an inclusion of Frac(R) into L.

Proof.

For any subring R of a field, $a, b \in R$, if ab = 0, and a nonzero, then b = 0 and we are done

If $\phi: R \hookrightarrow L$, then $\phi(x/y) = \phi(x)\phi(y)^{-1}$ is well-defined and obviously a ring homomorphism and we are done.

Definiton 1.2.4. (Polynomials over a domain)

Let R be a domain, X a set of variable. P := R[X] and then P is a domain, and Frac(P) is called the rational functions.

Definition 1.2.5. (Unique factorization)

Let R be a domain, p a nonzero nonunit. We call p prime if p|xy implies p|x or p|y, which is equivalent with $\langle p \rangle$ is prime.

For $x, y \in R$, we call $d \in R$ their gcd if d|x and d|y and if c|x, c|y then c|d.

p is irreducible if p = yz implies y or z is a unit. We call R is a UFG if every nonzero nonunit factors into a product of irreducibles and the factorization is unique to order and units.

Proposition 1.2.2. If every nonzero nonunit factors have a factorization of a product of irreducible elements, then the factorization is unique up to order and units iff every irreducible element is prime.

Proof.

Lemma 1.2.3. Let $\phi: R \to R'$ be a ring homomorphism, and $T \subset R'$ a subset. If T is multiplicative, then $\phi^{-1}T$ is multiplicative; the converse holds if ϕ is surjective.

Proof.

Proposition 1.2.4. Let $\phi: R \to R'$ be a ring map, and $J \subset R'$ an ideal. Set $I := \phi^{-1}J$. If J is prime, then I is prime; the converse holds if ϕ is surjective.

Corollary 1.2.5. Let R be a ring, I an ideal. Then I is prime iff R/I is a domain.

Proof.

Consider

$$\kappa: R \to R/I$$

the quotient map and I prime implies $\langle 0 \rangle$ is prime in R/I and hence R/I is a domain.

Definition 1.2.6. (Maximal ideal)

Let R be a ring. An ideal I is sai to be maximal if I is proper and there is no proper ideal J such that $I \subset J, I \neq J$.

Proposition 1.2.6. A ring R is a field iff $\langle 0 \rangle$ is a maximal ideal.

Corollary 1.2.7. Let R be a ring, I an ideal. Then I is maximal iff R/I is a field.

Proof.

Only need to check $\langle 0 \rangle$ is maximal in R/I.

Corollary 1.2.8. In a ring, every maximal ideal is prime.

Definition 1.2.7. (Coprime)

Let R be a ring, and $x, y \in R$. We say x and y are coprime if their ideals $\langle x \rangle$ and $\langle y \rangle$ are comaximal.

x and y are coprime if and only if there are $a, b \in R$ such that ax + by = 1.

Definition 1.2.8. A domain R is called a Principal Ideal Domain if every ideal is principal. A PID is a UFD.

Theorem 1.2.9. Let R be a PID. Let P := R[X] be the polynomial ring in one variable X, and I a nonzero prime ideal of P. Then $P = \langle F \rangle$ with F prime, or P is maximal. Assume P is maximal. Then either $P = \langle F \rangle$ with F prime, or $P = \langle p, G \rangle$ with $p \in R$ prime, $pR = P \cap R$ and $G \in P$ prime with iamge $G' \in (R/pR)[X]$ prime.

Theorem 1.2.10. Every proper ideal I is contained in some maximal ideal.

Corollary 1.2.11. Let R be a ring, $x \in R$. Then x is a unit iff x belongs to non maximal ideal.

1.3 Radicals

Definiton 1.3.1. (Radical)

Let R be a ring. Its radical rad(R) is defined to be the intersection of all its maximal ideals.

Proposition 1.3.1. Let R be a ring, I an ideal, $x \in R$ and $u \in R^{\times}$. Then $x \in \operatorname{rad}(R)$ iff $u - xy \in R^{\times}$ for all $y \in R$. In particular, the sum of an element of $\operatorname{rad}(R)$ and a unit is a unit, and $I \subset \operatorname{rad}(R)$ if $1 - I \subset R^{\times}$.

Proof.

For a maximal ideal J, if $u - xy \in J$, then $u \in J$ which is a contradiction and hence u - xy is a unit. Conversely, if there exists J maximal such that $x \in J$, then $\langle x \rangle + J = R$ and hence there exists $m \in J$ such that u - xy = m for some unit u, which is a contradiction.

Corollary 1.3.2. Let R be a ring, I an ideal, $\kappa: R \to R/I$ the quotient map. Assume $I \subset \operatorname{rad}(R)$, then κ is injective on $\operatorname{Idem}(R)$.

Proof.

For $e, e' \in \text{Idem}(R)$ and x = e - e', if $\kappa(x) = 0$, then $x^3 = x$ and hence $x(1 - x^2) = 0$, so $1 - x^2$ is a unit and hence x is 0 and we are done.

Definition 1.3.2. (Local ring)

A ring is called local if it has exactly one maximal ideal, and semilocal if it has at least one and at most finitely many.

By the residue field of a local ring A, we mean the field A/M where M is the maximal ideal of A.

Lemma 1.3.3. Let A be a ring, N the set of nonunits. Then A is local iff N is an ideal, if so, then N is the maximal idal.

Proof.

Only need to check the sufficiency, if A is local, then we know M is contained in N, and if there is $y \in M - N$, then $\langle y \rangle$ is a proper ideal and hence $y \in N$, which is a contradiction and hence M = N and we are done.

Proposition 1.3.4. Let R be a ring, S a multiplicative subset, and I an ideal with $I \cap S = \emptyset$. Set $S := \{J, J \supset I, J \cap S = \emptyset\}$, then S has a maximal element P and every such P is prime.

Proof.

By Zorn's lemma, their is a maximal element P in S, for $x, y \in R - P$, there exists $p, q \in P, a, b \in R$ such that $p + ax \in S, q + by \in S$ and hence $pq + pby + qax + abxy \in S$, and hence $xy \notin P$ and we are done.

Definition 1.3.3. (Saturated multiplicative subsets)

Let R be a ring, and S a multiplicative subset. We say S is saturated if for $x, y \in R, xy \in S$, then $x, y \in S$.

Lemma 1.3.5. Let R be a ring, I a subset of R that is stable under addition and multiplication, and P_1, \dots, P_n ideals such that P_3, \dots, P_n are prime. If I is not contained in P_j for all j, then there is an $x \in I$ such that $x \in P_j$ for j or equivalently, if $I \subset \bigcup_{i=1}^n P_i$, then $I \subset I_i$ for some i.

Proof.

If n=1 then we are done. We may use the induction, assume that $n \geq 2$, then by induction, for each i, there is $x_i \in I$ such that x_i is not in $P_j, i \neq j$ and $x_i \in P_i$, so then $x_1 + x_2 \notin P_2$ if n=2. For other n, we will know $(x_1 \cdots , x_{n-1}) \notin P_j$ for all j.

Definition 1.3.4. Let R be a ring, S a subset, its radical \sqrt{S} is the set

$$\sqrt{S} := \{ x \in R | x^n \in S \text{ for some } n \}$$

If I is an ideal and $I = \sqrt{I}$, then call I to be radical.

We call $\sqrt{0}$ is the nilradical and denoted as $\operatorname{nil}(R)$. We call $x \in R$ nilpotent if $x \in \operatorname{nil}(0)$, we call an ideal I nilpotent if $a^n = 0$ for some $n \ge 1$.

Theorem 1.3.6. Let R be a ring, I an ideal, then

$$\sqrt{I} = \bigcap_{P \supset I, P \text{ prime}} P$$

Proof.

For $x \notin \sqrt{I}$, let S contains all the expotents of x and S is multiplicative, then $I \cap S = \emptyset$ and then there is an P prime containing I with not containing x and hence \sqrt{a} contains the union.

Converse direction is easy.

Proposition 1.3.7. Let R be a ring, I an ideal. Then \sqrt{I} is an ideal.

Definiton 1.3.5. (Minimal primes)

Let R be a ring, I an ideal and P prime. We call P a minimal prime of I if P is minimal in the set of primes containing I, we all P a minimal prime of R if P is a minimal prime of $\langle 0 \rangle$.

Proposition 1.3.8. A ring R is reduced, i.e. 0 is the only nilpotent, and has only one minial prime iff R is a domain.

Proof.

Converse direction is obvious. If 0 is the only nilpotent elements, Q is a minimal prime ideal, then Q = 0 since 0 is the intersection of all the minimal primes, and we are done.

1.4 Modules

Definition 1.4.1. (Modules)

Let R be a ring. An R-module M is an abelian group with a scalar multiplication $R \times M \to M$ which is

- x(m+n) = xm + xn and (x+y)m = xm + ym
- x(ym) = (xy)m
- 1m = m

A submodule N of M closed under scalar multiplication.

Given $m \in M$, its annihilator

$$Ann(m) := \{x \in R | xm = 0\}$$

and the annilhilator of M is

$$Ann(M) := \{x \in R | xm = 0 \text{ for all } m \in M\}$$

We call the intersection of all maximal ideals containing Ann(M) the radical of M, denoted as rad(M).

Proposition 1.4.1. There is a bijection between the maximal ideals containing Ann(M) and the maximal ideals of R/Ann(M), and hence

$$rad(R/Ann(M)) = rad(M)/Ann(M)$$

Proposition 1.4.2. Given a submodule N of M, and then $Ann(M) \subset Ann(N)$ and we also have $Ann(M) \subset Ann(M/N)$.

Definition 1.4.2. (Semilocal)

We call M semilocal if there are only finitely many maximal ideals containing Ann(M). If R is semilocal, so is M and we will know M is semilocal iff R/Ann(M) is a semilocal ring.

Definition 1.4.3. (Polynomials)

The sets of polynomials

$$M[X] := \{ \sum_{i=0}^{n} m_i M_i, M_i \text{ monomials} \}$$

and then M[X] is an R[X] - module.

Definiton 1.4.4. (Homomorphisms)

Let R be aring, M and N modules. A R-linear map is a map $\alpha: M \to N$ such that

$$\alpha(xm + yn) = x\alpha m + y\alpha n$$

Let $\iota : \ker \alpha \to M$ be the inclusion and then $\ker \alpha$ has the UMP: $\alpha \iota = 0$ and for a homomorphism $\beta : K \to M$ with $\alpha \beta = 0$, there is a unique homomorphism $\gamma : K \to \ker \alpha$ with $\iota \gamma = \gamma$ as shown below

Definition 1.4.5. (Endomorphism)

An endomorphism of M a self-homomorphism denoted as $\operatorname{End}_R(M) \subset \operatorname{End}_{\mathbb{Z}}(M)$. For $x \in R$, let μ_x the self map of multiplication by x and then $x \mapsto \mu_x$ denoted as

$$\mu_R: R \to \operatorname{End}_R(M)$$

and note that $\ker \mu_R = \operatorname{Ann}(M)$. We call M faithful if μ_R is injective.

Definition 1.4.6. For two rings R and R', suppose R' is an R-algebra and M' an R'-module, then M' is also an R-module by $xm := \phi(x)m$.

A subalgebra R'' of R' is a subring such that the structure map owning image in R''. The subalgebra generated by $x_{\lambda} \in R'$ for $\lambda \in \Lambda$ is the smallest R-subalgebra containing x_{λ} and we denote it by $R[\{x_{\lambda}\}]$ and we call x_{λ} the generators.

We say R' is a finitely generated R-algebra if there exists $x_i, 1 \leq i \leq n$ such that $R' = R[x_1, \dots, x_n]$.

Definition 1.4.7. (Residue modules)

Let R be a ring, Ma module and $M' \subset M$ a submodule. Then

$$M/M' := \{m + M' | m \in M\}$$

which is the residue module or M modulo M', form the quotien map

$$\kappa: M \to M/M', \quad m \mapsto m + M'$$

Definiton 1.4.8. (Cyclic Modules)

Let R be a ring. A module M is said to be cyclic if there exists $m \in M$ such that m = Rm, then $\alpha : x \mapsto xm$ induces an isomorphism $R/\mathrm{Ann}(m) \cong M$.

Definition 1.4.9. (Noether Isomorphisms)

Let R be a ring, N a module, and L and M submodules.

Assume $L \subset M$, and

$$\alpha: N \to N/L \to (N/L)/(M/L)$$

and we may know $\ker \alpha = M$. then α factors through the isomorphism β in $N \to N/M \to (N/L)/(M/L)$ since α is surjective and $\ker \alpha = M$, so

$$\begin{matrix} N & \longrightarrow & N/M \\ \downarrow & & \downarrow^{\beta} \\ N/L & \longrightarrow & (N/L)/(M/L) \end{matrix}$$

Assume L not in M and

$$L+M:=\{l+m,l\in L,m\in M\}$$

and it will be a submodule, then similarly

$$\begin{array}{ccc} L & \longrightarrow & L/(L \cap M) \\ \downarrow & & \downarrow^{\beta} \\ L+M & \longrightarrow & (L+M)/M \end{array}$$

Definition 1.4.10. (Cokernels, coimages)

Let R be a ring, $\alpha:M\to N$ linear. Associated to α there are its cokernel and its coimage

$$\operatorname{Coker}(\alpha) := N/\operatorname{Im}(\alpha) \quad \operatorname{Coim}(\alpha) := M/\ker \alpha$$

Definition 1.4.11. (Generators, free modules)

Let R be a ring, M a module. Given some submodules N_{λ} , by the sum $\sum N_{\lambda}$, we mean the set of all finite linear combinations $\sum x_{\lambda}m_{\lambda}, m_{\lambda} \in N_{\lambda}$.

Elements m_{λ} are said to be free of linearly independent if the linear combination equals to zero implies zero coefficients. If m_{λ} are said to be form a (free) basis of M, then they are free and generate M and we say M is free on m_{λ} .

We say M is finitely generated if it has a finite set of generators and M is free if it has a free basis.

Theorem 1.4.3. Let R be a PID, E a free module with e_{λ} a basis, and F a submodule, then F is free and has a basis indexed by a subset of λ .

Definition 1.4.12. Let R be a ring, Λ a set, M_{λ} a module for $\lambda \in \Lambda$. The direct product of M_{λ} is the set of any vectors

$$\prod M_{\lambda} := \{ (m_{m_{\lambda}}) \}$$

which is a module under componentwise addition and scalar multiplication.

The direct sum of M_{λ} is the subset of restricted vectors:

$$\bigoplus M_{\lambda} := \{(m_{m_{\lambda}}), m_{\lambda} \text{ nonzero for only finite elements}\}$$

Proposition 1.4.4. $\prod M_{\lambda}$ has the UMP, for *R*-homomorphism $\alpha_{\kappa}: L \to M_{kappa}$, there is a unique *R*-homomorphism $L \to \prod M_{\lambda}$ such that $\pi_{\kappa}\alpha = \alpha_{\kappa}$, in other words, π_{λ} induce a bijection of

$$\operatorname{Hom}(L, \prod M_{\lambda}) \cong \prod \operatorname{Hom}(L, M_{\lambda})$$

Similarly, the direct sum comes equipped with injections

$$\iota_{\kappa} \to \bigoplus M_{\lambda}$$

and it has the UMP: given $\beta_{\kappa}: M_{\kappa} \to N$, there is a unique R-homomorphism $\beta: \bigoplus M_{\lambda} \to N$ such that $\beta \iota_{\kappa} = \beta_{\kappa}$ and ι_{κ} iduce the bijection:

$$\operatorname{Hom}(\bigoplus, N) \to \prod \operatorname{Hom}(M_{\lambda,N})$$

1.5 Exact Sequences

Definiton 1.5.1. (Exact)

A sequence of module homomorphisms

$$\cdots \to M_{k-1} \stackrel{\alpha_{k-1}}{\to} M_k \stackrel{\alpha_k}{\to} M_{k+1} \to \cdots$$

is said to be exact at M_k if ker $\alpha_k = \text{Im}(\alpha_k)$. The sequence is said to be exact if it is exact at every M_k , except an initial source of final target.

Definition 1.5.2. (Short exact sequences)

A sequence $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ is exact if and only if α is injective and $N \cong \operatorname{Coker} \alpha$ or dually if and only if β is surjective and $L = \ker \beta$. Then the sequence is called short exact and we often regard L as a submodule of M and N the quotient M/L.

Proof.

Proposition 1.5.1. For $\lambda \in \Lambda$, let $M'_{\lambda} \to M_{\lambda} \to M''_{\lambda}$ be sequence of module homomorphisms. If every sequence is exact, then so are the two induced sequences

$$\bigoplus M_{\lambda}' \to \bigoplus M_{\lambda} \to \bigoplus M_{\lambda}'', \quad \prod M_{\lambda}' \to \prod M_{\lambda} \to \prod M_{\lambda}''$$

Conversely, if either induced sequence is exact then so is every original one.

Proof.

Proposition 1.5.2. Let $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ be a short exact sequence, and $N \subset M$ a submodule. Set $N' := \alpha^{-1}(N)$ and $N'' := \beta(N)$. Then the induced sequence $0 \to N' \to N \to N'' \to 0$ is short exact.

Definition 1.5.3. (Retraction, section, splits)

A linear map $\rho: M \to M'$ is a retraction of another $\alpha: M' \to M$ if $\rho \alpha = 1_{M'}$, then α is injective and ρ is surjective.

Dually, we call $\sigma: M'' \to M$ a section of another $\beta: M \to M''$ if $\beta \sigma = 1_{M''}$, then β is surjective and σ is injective.

We call a 3-term exact sequence $M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$ splits if there is an isomorphism $\phi: M \cong M' \oplus M''$ with $\phi \alpha = \iota_{M'}$ and $\beta = \pi_{M''} \phi$.

Proposition 1.5.3. Let $M' \stackrel{\alpha}{\to} M \stackrel{\beta}{\to} M''$ be a 3-term exact sequence. Then the following conditions are equivalent

- The sequence splits
- There exists a retraction $\rho: M \to M'$ of α and β is surjective.
- There exists a section $\sigma: M'' \to M$ of β and α is injective

Proof.

Assume the sequence is splits, then we have the commuting diagram

$$M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$$

$$\downarrow^{\iota_{M'}} \downarrow^{\phi(\cong)^{M''}} M''$$

$$M' \oplus M''$$

then let $\rho = \pi_{M'}\phi$, then $\rho\alpha = \pi_{M'}\phi\phi^{-1}\iota_{M'} = 1_{M'}$. Let $\sigma = \phi^{-1}\iota_{M''}$ and then $\beta\sigma = \pi_{M''}\phi\phi^{-1}\iota_{M''} = 1_{M''}$ and then β is surjective and α is injective.

Now assume there is such a retraction ρ and β is surjective, then define $\sigma = 1_M - \alpha \rho$ and $\phi: M \to M' \oplus M''$ by $m \mapsto (\rho(m), \beta \sigma(m))$., if $\phi(m) = 0$, then $\rho(m) = 0$ and $\sigma(m) = m$, which means $\beta(m) = 0$. There exists $a \in M'$ such that $m = \alpha(a)$ and hence a = 0 which means m = 0, so $\ker \phi = 0$. For $(a,b) \in M' \oplus M''$, assume $\beta(m) = b$, then $\phi(\alpha(a) + \sigma(m)) = (a + \rho(m - \alpha \rho(m)), \beta(\alpha(a)) + \beta(\sigma(m))) = (a,b)$ and hence ϕ is surjective. And $\phi\alpha(a) = (a, \beta\sigma\alpha(a)) = (a,0)$ and $\pi_{M''}\phi(m) = \beta(\sigma(m)) = \beta(m)$ and we are done.