Forecasting Models with R

Section 2: Simple Forecasting Methods

Simple Forecasting Methods Overview

 Simple forecasting methods are used as initial benchmarks for comparison purposes against other complex ones.

Arithmetic Mean

 Arithmetic mean consists of forecasted values equal to simple average of historical data.

$$\widehat{y}_t = \mu = \frac{1}{n} * \sum_{t=1}^n y_t$$

Naïve or Random Walk Method

 Naïve or random walk method consists of forecasted values equal to previous period historical data.

$$\widehat{y}_t = y_{t-1}$$

Seasonal Random Walk Method

 Seasonal random walk method consists of forecasted values equal to previous season historical data.

$$\widehat{y}_t = y_{t-m}$$

Random Walk with Drift Method

 Random walk with drift method consists of forecasted values equal to previous period's data plus the arithmetic mean of historical data period differences.

$$\widehat{y}_t = y_{t-1} + \mu \Delta y_t$$
$$\Delta y_t = y_t - y_{t-1}$$

Forecasting Accuracy

- Forecasting accuracy is evaluated on which one minimizes the residuals or forecasting errors based on scale-dependent and scale-independent measures.
- Scale-dependent:
 - Mean absolute error (MAE)

$$MAE = \frac{1}{n} * \sum_{t=1}^{n} |\varepsilon_t|$$

Root Mean squared error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} * \sum_{t=1}^{n} \varepsilon_t^2}$$

Forecasting Accuracy

- Scale-independent:
 - Mean absolute percentage error (MAPE)

$$MAPE = \sum_{t=1}^{n} \frac{|\varepsilon_t|}{y_t} * 100$$