Form / Recipe Master Method

(simplified version)

Given recurrence: T(n) =

1 Look and interpret

2	Perform pattern matching:	$T(n) = a \cdot T(n/b) + f(n)$

a = _____, b = _____, f(n) = _____

Pattern matching successful? ☐ yes ☐ no → abort / try different method

3 Check parameters

Parameter	Criterion	Evaluation	
а	constant, a ≥ 1	□ ok	☐ not ok
b	constant, b > 1	□ ok	☐ not ok
f(n)	asymptotically positive	□ ok	□ not ok

Master method applicable? \square yes \square no \longrightarrow abort / try different method

4 Determine case

Calculate $x = log_b(a) =$ (leaves in recursion tree: n^x)

Compare asymptotically f(n) = _____ with n^x = _____:

Comparison	Description	Case	Result	Work
f(n) grows polynomially	f(n) "≼" Θ(n ^x)	()	T(n) ∈	mainly in the
slower than n ^x .	$\exists \varepsilon > 0$: $f(n) \in O(n^{x-\varepsilon})$		Θ(n ^x)	leaves
f(n) grows (about)	f(n) "≅" Θ(n ^x)	2	T(n) ∈	distributed evenly
as fast as n ^x .	$\exists \epsilon > 0$: $f(n) \in \Theta(n^{x-\epsilon} \cdot \log(n))$		Θ(n ^x · log(n))	
f(n) grows	$f(n) " \ge " \Theta(n^x)$	3	T(n) ∈	mainly in the
polynomially faster than n ^x .	$\exists \epsilon > 0$: $f(n) \in \Omega(n^{x-\epsilon})$		Θ(f(n))	root node

4a Check regularity for case 3

Find constants c < 1 and $n > n_0$ such that it holds for any n big enough that:

$$a \cdot f(n/b) \leq c \cdot f(n)$$

____·

Regularity check successful? ☐ yes ☐ no → abort / try different method

5 Write down solution

$$T(n)\in\Theta(\underline{\hspace{1cm}})$$

Form / Recipe Master Method

(simplified version)

Given recurrence: $T(n) = 7 \cdot T(n/2) + n^2$

1 Look and interpret

The problem is split up in 7 subproblems each having half the size oft he original problem. The work which needs to be done outside of the recursive call depends quadratically on the size n of the problem.

2 Perform pattern matching: $T(n) = a \cdot T(n/b) + f(n)$

Pattern matching successful? ■ yes □ no → abort / try different method

3 Check parameters

Parameter	Criterion	Evaluation	
а	constant, a ≥ 1	⊠ ok	☐ not ok
b	constant, b > 1	⊠ ok	☐ not ok
f(n)	asymptotically positive	⊠ ok	☐ not ok

Master method applicable?

✓ yes ☐ no → abort / try different method

4 Determine case

Calculate $x = log_b(a) = log_2(7) \approx 2.807$ (leaves in recursion tree: n^x)

Compare asymptotically $f(n) = n^2$ with $n^x = n^{\log_2(7)} \approx n^{2.807}$:

Comparison	Description	Case	Result	Work
f(n) grows polynomially slower than n ^x .	$f(n) " \leq " \Theta(n^{x})$ $\exists \varepsilon > 0:$ $f(n) \in O(n^{x-\varepsilon})$	①	T(n) ∈ Θ(n ^x)	mainly in the leaves
f(n) grows (about) as fast as n ^x .	$f(n) \cong \Theta(n^{x})$ $\exists \varepsilon > 0:$ $f(n) \in \Theta(n^{x-\varepsilon} \cdot \log(n))$	2	$T(n) \in \Theta(n^x \cdot \log(n))$	distributed evenly
f(n) grows polynomially faster than n ^x .	$f(n) " \geq " \Theta(n^x)$ $\exists \varepsilon > 0:$ $f(n) \in \Omega(n^{x-\varepsilon})$	3	T(n) ∈ Θ(f(n))	mainly in the root node

4a Check regularity for case ③

Find constants c < 1 and $n > n_0$ such that it holds for any n big enough that:

$$a \cdot f(n/b) \leq c \cdot f(n)$$

Regularity check successful? □ yes □ no → abort / try different method

5 Write down solution

$$T(n) \in \Theta(\underline{n^{\log_2(7)}})$$

Form / Recipe Master Method

(simplified version)

Given recurrence: $T(n) = 32 \cdot T(n/4) + n^3$

1 Look and interpret

The problem is split up in 32 subproblems each having a quarter the size oft he original problem. The work which needs to be done outside of the recursive call depends cubically on the size n of the problem.

Perform pattern matching: $T(n) = a \cdot T(n/b) + f(n)$ 2

Pattern matching successful?

✓ yes □ no → abort / try different method

3 **Check parameters**

Parameter	Criterion	Evaluation	
а	constant, a ≥ 1	⊠ ok	☐ not ok
b	constant, b > 1	⊠ ok	☐ not ok
f(n)	asymptotically positive	🛛 ok	☐ not ok

 yes □ no → abort / try different method Master method applicable?

Determine case

Calculate $x = log_b(a) = log_4(32) = 2.5$ (leaves in recursion tree: n^x)

Compare asymptotically $f(n) = \underline{n^3}$ with $n^x = \underline{n^{\log_4(32)}} = n^{2.5}$

Comparison	Description	Case	Result	Work
f(n) grows	f(n) "≼" Θ(n ^x)	①	T(n) ∈	mainly in the
polynomially slower than n ^x .	$\exists \epsilon > 0$: $f(n) \in O(n^{x-\epsilon})$		Θ̀(ń ^x)	leaves
f(n) grows (about)	f(n) "≅" Θ(n ^x)	2	T(n) ∈	distributed
as fast as n ^x .	$\exists \epsilon > 0$: $f(n) \in \Theta(n^{x-\epsilon} \cdot \log(n))$		Θ(n ^x ·log(n))	evenly
f(n) grows	f(n) "≽" Θ(n ^x)	3	T(n) ∈	mainly in the
polynomially faster than n ^x .	$\exists \epsilon > 0$: $f(n) \in \Omega(n^{x-\epsilon})$	×	Θ(f(n))	root node

Check regularity for case ③ 4a

Find constants c < 1 and $n > n_0$ such that it holds for any n big enough that: → The equation is

$$a \cdot f(n/b) \leq c \cdot f(n)$$

$$32 \cdot (n/4)^3 = 0.5 \cdot n^3$$
 \leq 0.5 \cdot n^3 fulfilled for c = 0.5 and any arbitrary n.

Regularity check successful?

✓ yes ☐ no → abort / try different method

5 Write down solution

$$T(n) \in \Theta(\underline{n^3})$$