EP1 DE MAC0328 ALGORITMOS EM GRAFOS FLORESTA DE BLOCOS E VÉRTICES DE CORTE

Data de entrega: 12 de abril

Neste exercício-programa, sua tarefa é construir um programa que, dado um grafo G = (V, E), calcula a floresta de blocos e vértices de corte de G. Ou seja, seu programa deve construir o grafo G' = (V', E') sobre $V' := \mathcal{B} \cup V_c$, onde \mathcal{B} é o conjunto de blocos de G e V_c é o conjunto de vértices de corte de G, e $E' := \{Bv : B \in \mathcal{B}, v \in V_c \cap B\}$. Para manter este texto autocontido, listamos as definições apropriadas na seção 3.

Seu código deve ser escrito na linguagem \mathbb{C} e deve consumir tempo O(n+m) quando alimentado com um grafo G com n vértices e m arestas. Seu programa passará por um corretor automático, sendo portanto essencial que ele obedeça rigidamente o formato de entrada e saída descritos na seção 1.

Além disso, seu código deve ser bem legível, organizado e modular. Leia atentamente a seção 2 acerca de detalhes de implementação antes de planejar a organização de seu programa.

1. FORMATOS DA ENTRADA E SAÍDA

1.1. **Entrada.** Seu programa deve ler da entrada padrão. A entrada terá o formato descrito a seguir; veja um exemplo mais adiante. A primeira linha conterá um único número inteiro n, indicando que o grafo G tem conjunto de vértices $V := \{0, \ldots, n-1\}$. Seguem-se n linhas correspondentes aos vértices $0, \ldots, n-1$, nesta ordem, cada uma descrevendo os vizinhos do vértice.

A linha correspondente ao vértice $u \in V$ é formada por inteiros separados por espaços. Ela começa com um inteiro $\deg(u)$, o grau de u em G. Seguem-se $\deg(u)$ inteiros nesta mesma linha, $v_{u,1} < \cdots < v_{u,\deg(u)} \in V \setminus \{u\}$, indicando que as arestas incidentes em u são $\{uv_{u,1}, \ldots, uv_{u,\deg(u)}\}$.

O exemplo abaixo representa o grafo descrito na figura 1.

	Exemplo de entrada
6	1
2 1 2	
2 0 2	
3 0 1 3	
3 2 4 5	
2 3 5	
2 3 4	

Data: 11 de março de 2015.

FIGURA 1. Exemplo de grafo G para entrada.

1.2. **Saída.** O conjunto de vértices V' de G' deverá ser representado da seguinte forma. Tome n' := |V'|. Teremos $V' = \{0, \ldots, n' - 1\}$, onde os primeiros $|\mathcal{B}|$ vértices (de 0 a $|\mathcal{B}| - 1$) correspondem a blocos, e os demais correspondem a elementos de V_c , possivelmente renomeados.

A saída deve começar com uma única linha contendo o número n, seguida por n linhas, correspondentes aos vértices $0, \ldots, n-1$, nesta ordem. A linha correspondente ao vértice $u \in V$ é formada por inteiros separados por espaços. Ela deve começar com o inteiro $\deg(u)$, seguido por $\deg(u)$ inteiros, $b_{u,1}, \ldots, b_{u,\deg(u)} \in \{0, \ldots, |\mathcal{B}|-1\}$, onde $b_{u,i}$ é o número do bloco que induz a aresta $uv_{u,i}$; veja descrição da entrada.

Após estas 1+n linhas, deve ser impressa uma linha contendo o número $|V_c|$. A essa deverão se seguir $|V_c|$ linhas, cada uma contendo dois inteiros separados por espaços, correspondendo a cada elemento de V_c , em qualquer ordem. Cada linha terá como primeiro inteiro um elemento v de V_c , seguido pelo vértice de V' que corresponde a v; lembre-se que tal vértice é um inteiro em $\{|\mathcal{B}|, \ldots, n'-1\}$.

Finalmente, você deverá imprimir o grafo G' no mesmo formato da entrada. Veja um exemplo a seguir, acompanhado do grafo G' correspondente na figura 2.

	Exemplo de saída
6	•
2 0 0	
2 0 0	
3 0 0 1	
3 1 2 2	
2 2 2	
2 2 2	
2	
2 3	
3 4	
5	
1 3	
2 3 4	
1 4	
2 1 0	
2 1 2	

FIGURA 2. Exemplo de grafo G para entrada.

2. Detalhes de implementação e entrega

Sua implementação deve organizar as estruturas de dados e sua manipulação de forma modular e encapsulada. Apesar de a correção ser automática, a organização de seu código também será avaliada. Faz parte da sua tarefa encontrar um ponto de equilíbrio entre um programa totalmente desorganizado, que só tem variáveis globais, e um programa totalmente encapsulado, só com variáveis locais, mas incrivelmente difícil de ler e/ou muito ineficiente.

Seu programa também deve ser cuidadoso com o uso da memória. Você deve alocá-la usando a família malloc de funções e deve liberar todo espaço alocado no *heap* antes de terminar a execução. Seu programa será testado usando o Valgrind.

Você deverá fornecer um Makefile para gerar seu executável, com o nome blocks, obrigatoriamente pelo GCC (a versão usada será $\geq 4.8.2$), a partir da invocação 'make'. Dentre as opções de compilação, inclua os argumentos

Note que, no padrão C99, variáveis não precisam ser declaradas no início de um bloco de escopo; faça bom uso desse *feature*.

Para a entrega, comprima um diretório contendo todos os seus arquivos em um único arquivo no formato tar.gz. Os nomes tanto do diretório como do arquivo de entrega (quando a extensão é removida) devem ser seu número USP.

Programas que não seguirem rigorosamente os formatos de entrada e saída terão suas notas punidas severamente. O mesmo se aplica para programas que não seguirem as instruções desta seção.

3. Definições

Seja G=(V,E) um grafo. Se $uv\in E$ é uma aresta de G, dizemos que v é um vizinho de u, e que a aresta uv incide em u. O grau de $u\in V$ é o número de arestas de G incidentes em u.

Dizemos que G é conexo se, para quaisquer $u,v\in V$, vale que $u\underset{G}{\leadsto}v$. Dizemos que $C\subseteq V$ é um componente (conexo) de G se $C\subseteq V$ é maximal tal que G[C] é conexo.

Se $U \subseteq V$, o subgrafo de G induzido por U é G[U] := (U, E[U]), onde $E[U] := \{uv \in E : u, v \in U\}$. Para cada vértice $v \in V$, definimos $G - v := G[V \setminus \{v\}]$. Dizemos que $v \in V$ é um vértice de corte de G se G - v possui mais componentes que G.

Um subconjunto $B\subseteq V$ é um bloco de G se $B\subseteq V$ é maximal tal que G[B] é conexo e não tem vértice de corte.