Advanced Machine Learning

MICHAŁ GROMADZKI

Datasets

Remove collinear variables

- Algorithm for removing collinear variables:
- Algorithm is iteration-based, in each iteration 1 variable can be removed
- In each iteration:
 - Calculate variance inflation factor (VIF) for all variables
 - Select all variables with VIF higher than TH = 5
 - Delete variable with the highest VIF
- Algorithm stops when there is no variables with VIF over TH

Implementations

All optimization algorithms for parameter estimation in logistic regression have been implemented as classes in Python

Attributes:

- max_iter (int) Maximum number of iterations of the optimizer
- tol (float) Minimum value of Frobenius norm of difference in parameters between iterations, used to determine convergence
- **coef**_ (array) Array containing parameters
- **intersections** (bool) Whether to also include intersections of provided variables

Methods:

- _add_intersections() Adds intersections to the provided variables
- fit() Trains the model, return history of training and number of iterations
- predict_proba() Predicts probabilities based on the provided data
- **predict()** Rounds the probabilities to class labels

Stopping rule

All algorithms have the same stopping rule to ensure fair comparison. At the end of each iteration of the algorithms the following value is computed.

$$diff = norm(coef - prev_coef)$$

where:

- norm The Frobenius norm
- coef Parameters in the current iteration
- prev_coef Parameters in the previous iteration

If the diff is smaller than the pre-set tol value the training stops.

$$\|A\|_{ ext{F}} = \sqrt{\sum_i^m \sum_j^n |a_{ij}|^2}$$

Convergence analysis

Classification performance

Classification performance - intersections

The End