Interesting quantum states (Lecture of the Quantum Information class of the Master in Quantum Science and Technology)

Géza Tóth

Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain Donostia International Physics Center (DIPC), San Sebastián, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Wigner Research Centre for Physics, Budapest, Hungary

UPV/EHU, Leioa 22 January, 2024

Outline

- Interesting quantum states
 - Motivation
 - A. Single particle states
 - B. Bipartite singlet state

Which quantum states are interesting?

 We have infinite possibilities to pick a quantum state in a multi-qubit system.

 We would like to find useful ones or states that have interesting symmetries.

Outline

- Interesting quantum states
 - Motivation
 - A. Single particle states
 - B. Bipartite singlet state

Single particle states

- Pure states. The von Neumann entropy S = 0.
- Completely mixed state

$$\varrho_{\rm cm} = \frac{1}{d} \sum_{k=1}^{d} |k\rangle\langle k|.$$

The von Neumann entropy $S = \log d$, maximal.

Outline

- Interesting quantum states
 - Motivation
 - A. Single particle states
 - B. Bipartite singlet state

Bipartite singlet state

The two-qubit singlet state looks like

$$|\Psi_{\text{singlet}}\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle).$$

 We get the same form after any basis transformation (if we transform the bases of the two qubits in the same way). This can be seen as follows. Let us choose two vectors as

$$|\mathbf{v}\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle,$$

 $|\mathbf{v}_{\perp}\rangle = \beta^* |\mathbf{0}\rangle - \alpha^* |\mathbf{1}\rangle.$

Clearly,

$$\langle v|v_{\perp}\rangle=0,$$

Then, simple algebra yields

$$\frac{1}{\sqrt{2}}(|v\rangle\otimes|v_{\perp}\rangle-|v_{\perp}\rangle\otimes|v\rangle)=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle).$$

This is true for any $|v\rangle$ and $|v_{\perp}\rangle$.

Bipartite singlet state II

• Due to the independence from the choice of the local basis, it is invariant under a transformation of the type $U \otimes U$, apart from a global phase ϕ .

$$U \otimes U |\Psi_{\text{singlet}}\rangle = |\Psi_{\text{singlet}}\rangle \exp(-i\phi).$$

We can also say that

$$U \otimes U |\Psi_{\text{singlet}}\rangle\langle\Psi_{\text{singlet}}|(U \otimes U)^{\dagger} = |\Psi_{\text{singlet}}\rangle\langle\Psi_{\text{singlet}}|.$$

Hence,

$$U \otimes U |\Psi_{\text{singlet}}\rangle\langle\Psi_{\text{singlet}}| = |\Psi_{\text{singlet}}\rangle\langle\Psi_{\text{singlet}}|U \otimes U.$$

Thus, the density matrices of such states will commute with all $U \otimes U$:

$$[U \otimes U, |\Psi_{\text{singlet}}\rangle\langle\Psi_{\text{singlet}}|] = 0 \tag{1}$$

for any *U*.