Кодирующие КС-языки

Теория формальных языков $2021 \ z$.

Кодировка путей праволинейной грам-

Рассмотрим путь вывода произвольного слова $a_1 \dots a_n$ в праволинейной грамматике. Он имеет вид $S \to a_1 A_1$; $A_1 \to a_2 A_2$; . . . $A_n \to a_n$. Применим к нему обратный гомоморфизм $h(A_i; A_i \rightarrow) = \varepsilon$ и сотрём префикс $S \rightarrow$, получим искомое слово.

Алфавит: $\Sigma \cup \mathbb{N} \cup \{$; , → $\}$. Описание языка: ${S \rightarrow \alpha_i(A_i; A_i \rightarrow \alpha_i)^*}.$

Кодировка путей праволинейной грам-

Рассмотрим путь вывода произвольного слова $a_1 \dots a_n$ в праволинейной грамматике. Он имеет вид $S \to a_1 A_1$; $A_1 \to a_2 A_2$; . . . $A_n \to a_n$. Применим к нему обратный гомоморфизм $h(A_i; A_i \rightarrow) = \varepsilon$ и сотрём префикс $S \rightarrow$, получим искомое слово.

Алфавит: $\Sigma \cup \mathbb{N} \cup \{;, →\}$. Описание языка: $\{S \rightarrow a_i(A_i; A_i \rightarrow a_i)^*\}.$

Описание языка привязано к множеству нетерминалов в рассматриваемой RLG.

Теорема Хомского-Шутценбергера

Пусть $PAREN_n$ — язык из 4*n элементов $\{[1,]_1, \ldots, [n,]_n, (1,)_1, \ldots, (n,)_n\}.$

Теорема

Любой CF-язык получается гомоморфизмом из языка $L' = PAREN_n \cap R$, где R — регулярный.

Пусть G — грамматика L в нормальной форме Хомского. Пронумеруем правила G и поставим им в соответствие следующие.

Теорема Хомского-Шутценбергера

Пусть $PAREN_n$ — язык из 4*n элементов $\{[1,]_1, \ldots, [n,]_n, (1,)_1, \ldots, (n,)_n\}.$

Теорема

Любой CF-язык получается гомоморфизмом из языка $L' = PAREN_n \cap R$, где R — регулярный.

Пусть G — грамматика L в нормальной форме Хомского. Пронумеруем правила G и поставим им в соответствие следующие.

- **1** Если правило п имеет вид $A \to BC$, тогда порождаем правило $A \to [{}_{n}B]_{n}({}_{n}C)_{n}$.
- **2** Если правило п имеет вид $A \to a$, тогда порождаем правило $A \to [n]_n (n)_n$.

Свойства языка L(G')

• Все $]_n$ строго предшествуют (n).

Свойства языка L(G')

- Все $]_n$ строго предшествуют (n).
- Ни одна)_п не предшествует непосредственно левой скобке.

Свойства языка L(G')

- Все $]_n$ строго предшествуют $(_n$.
- Ни одна)_п не предшествует непосредственно левой скобке.
- Если правило n это A \to BC, тогда [$_n$ непосредственно предшествует некоторой [$_p$, так же как и ($_n$.

Язык Р

 $R = \{x \in \{[j,]_j, (j,)_j\}^* \mid x$ начинается с [n] для некоторого правила $n: A \to \cdots \&$ все [n] предшествуют [n].

Язык Р

 $R = \{x \in \{[j,]_j, (j,)_j\}^* \mid x$ начинается с [n] для некоторого правила $n: A \to \cdots \&$ все [n] предшествуют [n].

Можно убедиться, что $L' = R \cap PAREN_n$.

Язык Р

 $R = \{x \in \{[j,]_j, (j,)_j\}^* \mid x$ начинается с [n] для некоторого правила $n: A \to \cdots \&$ все [n] предшествуют [n].

Можно убедиться, что $L' = R \cap PAREN_n$.

Осталось определить h. Если n — нефинальное правило, то $h([_n)=h(]_n)=h((_n)=h()_n)=\epsilon.$ Иначе $h([_n)=\alpha,$ для остальных скобок так же.

Значение теоремы Х.-Ш.

Возможно разделить парсинг любого КС-языка на две стадии: лексический анализ (проверка условия R) и разбор правильных скобочных структур.

Замечание: поскольку гомоморфизм h не обязан быть инъективным, разбор ПСП не всегда можно определить однозначно. Пример: $\{a^nb^n\}\cup\{a^nb^{2n}\}$ (полностью неоднозначность устранить нельзя, т.к. этот язык не является детерминированным). Однако Т.Х.Ш. даёт подсказку, как строить КС-грамматики: надо найти в языке все скрытые «скобочные структуры».

Построение грамматики по Х.-Ш.

Построить КС-грамматику для языка $\{a^nb^mc^k | n = 2*m-k\}.$

Ищем возможную скобочную структуру. Для этого сначала избавимся от вычитания: n + k = 2 * m. Значит, буквы а должны балансироваться буквами в справа (т.е. буквы в являются «закрывающими скобками» для а), а буквы с — буквами b слева (т.е. буквы b являются «открывающими» для с). Возможны два случая: п и к оба чётны либо оба нечётны. Построим соответствующие им разбиения: $\{a^{2*n'}b^{n'}b^{k'}c^{2*k'}\}$ и $\{aa^{2*n'}b^{n'}bb^{k'}c^{2*k'}c\}$. Дальнейшее построение грамматики уже очевидно. Заметим, что гомоморфизм подразумевает минимум четыре вида скобок: пара (2a, b), пара (b, b), внешняя пара [a, b](для нечётного варианта) и $[b_1]_{\epsilon}$ для него же, чтобы породить внутреннюю букву b.

Построение грамматики по Х.-Ш.

Построить КС-грамматику для языка $\{a^nb^mc^k | n = 2*m-k\}.$

Как итог, получаем язык, гомоморфно порождаемый языком Дика над $\{(2a,)_b, (b,)_{2c}, [b,]_{\epsilon}, [a,]_c\}$ со следующим лексером:

- До (₂а может идти лишь единственная [а.
- После)_b распознаётся одна [_b, если распозналась [_a.
- **3** После $)_b$ или $]_{\varepsilon}$ не может идти ничего другого, кроме $(_b$ или $]_{\mathbf{c}}$ (последняя только после $]_{\varepsilon}$).
- После $)_{2c}$ не может быть ничего, кроме $)_{2c}$ или $]_{c}$. Дополнительное условие на существование $[_{\alpha}$ уже не требуется оно следует из сбалансированности ПСП.

Конструкция выше отличается от используемой в доказательстве теоремы — в целях экономии, в ней почти нет скобок, гомоморфно отображаемых в пустое слово.

Язык Грейбах

Здесь ε-free вариант. D — язык сбалансированных скобочных структур над $\{(,),[,]\}$.

```
L_0 = \{x_1 c y_1 c z_1 d \dots d x_n c y_n c z_n d \mid y_1 \dots y_n \in eD \&
z_{i}, x_{i} не содержат е & y_{1} \in e\{(,),[,]\}^{*} & y_{i+1} \in \{(,),[,]\}^{*}\}
```


Язык Грейбах

Здесь ε -free вариант. D — язык сбалансированных скобочных структур над $\{(,),[,]\}$.

$$L_0 = \{x_1 c y_1 c z_1 d \dots d x_n c y_n c z_n d \mid y_1 \dots y_n \in eD \& z_i, x_i$$
 не содержат е & $y_1 \in e\{(,),[,]\}^* \& y_{i+1} \in \{(,),[,]\}^* \}$

Утверждение

Если L — CFL, тогда существует $h \in Hom$ такой, что $h^{-1}(L_0) = L$.

Гомоморфизм Грейбах

Пусть G — GNF грамматика для L. Пронумеруем нетерминалы G так, чтобы стартовый был первым. Построим вспомогательную функцию ξ:

- ullet для правил $A_{\mathfrak{i}} o \mathfrak{a}$ положим $\xi(\mathfrak{i}) =)]^{\mathfrak{i}})$
- для правил $A_i \to a A_{j1} \dots A_{jn}$ положим $\xi(i)=)]^i)([^{jm}(\dots([^{j1}($
- если $\mathfrak{i}=1$, тогда дополнительно припишем префикс $\mathfrak{e}([(.$

Пусть терминалом α начинаются левые части правил k_1, \ldots, k_m). Тогда $h(\alpha) = c\xi(k_1)c\ldots c\xi(k_m)d$.