Phenological cue use varies with functional traits in North American woody plan communities

Deirdre Loughnan¹, Faith A M Jones¹, and E M Wolkovich¹ November 13, 2023

 $^{-1}$ Department of Forest and Conservation, Faculty of Forestry, University of British Columbia, 2424

6 Main Mall Vancouver, BC Canada V6T 1Z4.

7

Corresponding Author: Deirdre Loughnan deirdre.loughnan@ubc.ca

9

Research questions

- 1. Do phenological cue-trait relationships change across transects? Populations?
- 2. How do budburst cues relate to functional traits in temperate woody species?
 - 3. How do shrub and tree species differ in their cue-trait relationships?

¹⁴ Materials and Methods

These plots and tables are using the model output from the model with a dummy variable for transect (east = 1) and an interaction between transect and latitude. Latitude is included as a continuous variable, but based on the prior predictive checks, I decided to z-scored it. 90% UI given.

$_{18}$ Results

21

22

23

27

29

- 1. Our study = one of the first to combine trait data with data of phenological cue response for the same individuals and across species distributions.
 - (a) Our data includes plant communities in eastern and western deciduous forests of North America
 - (b) Samples collected from multiple populations—modelling approach that accounts for variation across populations and transects
 - (c) Joint modelling approach = use sp-level estimates for traits to understand phenological cue responses and budburst timing
 - (d) Includes woody tree and shrub species = different growth strategies—and presumably suites of traits
 - (a) kjskfj
- 2. Found only two of our five traits were related to budburst phenology

31

32

33

37

40

- (a) Of the 5 commonly measured traits we measured—only height and DBH correlated with budburst cues
 - (b) Height and DBH: short trees had stronger forcing responses (0.1, UI: 0.0, 0.3 for height and 0.1, UI: 0.0, 0.2, Fig. 4 a and g), but weaker responses to photoperiod (-0.8, UI: -0.3, -0.1 for height and -0.1, UI: -0.2, 0.0, Fig. 4 c and i)
 - (c) Other three traits, LMA, SSD, C:N = no relationship to chilling, forcing, or photoperiod (Fig. 4)—posterior centred around zero
 - (d) 3 traits lack of trait effect on cues = exemplified by the nonexistent effect on phenology—estimate of our betaTraitxCue parameter is fully informed by prior not the data (Fig. 3)
- (a) ksdjfkdj

41 Figures

Figure 1: We only found biogeographic differences for four of our functional traits, with the direction of the relationship varying across traits. Both height a. height and b. diamter at base height showed strong interactions between latitude and trait values, while c. leaf mass area has the weakest response, and d. stem specific density, and e. carbin:nitrogen moderate interactive effects.

Figure 2: Estimated trait variation and cue responses to chilling, forcing, and photoperiod on budburst timing for 47 species, modelled for five traits: a. height, b. diameter at breast height, c. leaf mass area, d. stem specific density, and e. carbon:nitrogren. Of our five traits, only two appear to relate to budburst cues, despite these three cues being important drivers of budburst timing. Lines represent 50% uncertainty intervals.

Figure 3: Only some traits were related to budburst phenological cues. For leaf mass area, stem specific density, and the ratio of carbon to nitrogen, traits no effect on bubdurst timing.

Figure 4: Relationship between species traits and cue responses, for height (a-c), leaf mass area (d-f), diameter at breast height (g-i), stem specific density (j-l), and the carbon to nitrogen ratio (m-o). Point colours representing different species groups, tree species are depicted in maroon and shrub species in teal.

Figure 5: We found budburst estimates differed between our full model (intercept plus cues, depicted as triangles for high cues and circles for low cues), versus the intercepts only model (without cues, shown as squares). Species are ordered in increasing budburst dates for both the eastern (a and c) and western (b and d) populations, spanning from early budbursting shrubs, in red, to late budbursting trees, in blue.

Figure 6: Despite differing in thier wood structures and growth strategies, we did not find this trait to correlate with differences in cue responses across speices.

42 Tables

 $[1] \ "/Users/deirdreloughnan/Documents/github/Treetraits/docs"$

Table 1: Summary of a joint model for height

Vot							
	mean	X2.5.	X25.	X50.	X75.	X97.5.	
mu_grand	5.35	4.02	4.87	5.33	5.80	6.93	
b_{tranE}	-2.26	-3.39	-2.64	-2.25	-1.88	-1.12	
$b_{tranlat}$	-0.61	-1.45	-0.90	-0.61	-0.31	0.26	
$\operatorname{muForceSp}$	-5.52	-6.88	-5.98	-5.52	-5.06	-4.17	
muChillSp	-7.01	-9.50	-7.90	-6.99	-6.11	-4.40	
muPhotoSp	-0.84	-1.56	-1.07	-0.83	-0.61	-0.15	
muPhenoSp	27.09	24.22	26.03	27.08	28.12	29.92	
betaTraitxForce	0.14	-0.07	0.07	0.14	0.21	0.34	
betaTraitxChill	0.11	-0.31	-0.02	0.11	0.25	0.51	
${\bf beta Traitx Photo}$	-0.17	-0.28	-0.20	-0.17	-0.13	-0.06	
$sigma_traity$	2.87	2.76	2.83	2.87	2.91	2.99	
$sigma_sp$	4.30	3.48	3.98	4.25	4.59	5.37	
$\operatorname{sigmaForceSp}$	2.58	1.98	2.34	2.56	2.81	3.33	
sigmaChillSp	4.96	3.76	4.45	4.90	5.38	6.58	
sigmaPhotoSp	1.02	0.56	0.87	1.01	1.17	1.54	
sigmaPhenoSp	9.79	7.91	9.00	9.73	10.49	12.12	
$sigmapheno_y$	9.50	9.30	9.43	9.50	9.57	9.70	

43

Table 2: Summary of a joint model for leaf mass area

	U	J				
	mean	X2.5.	X25.	X50.	X75.	X97.5.
mu_grand	0.05	0.05	0.05	0.05	0.05	0.05
b_{tranE}	0.01	0.01	0.01	0.01	0.02	0.02
$b_{tranlat}$	0.01	0.01	0.01	0.01	0.02	0.02
muForceSp	-4.78	-5.64	-5.07	-4.77	-4.50	-3.93
muChillSp	-6.47	-8.10	-7.03	-6.46	-5.92	-4.84
muPhotoSp	-1.73	-2.22	-1.89	-1.72	-1.57	-1.26
muPhenoSp	27.03	24.19	26.07	27.03	27.98	29.86
betaTraitxForce	0.01	-1.88	-0.60	0.02	0.63	1.89
betaTraitxChill	0.02	-1.98	-0.68	0.03	0.72	1.99
betaTraitxPhoto	0.02	-2.01	-0.68	0.01	0.71	2.00
$sigma_traity$	0.02	0.02	0.02	0.02	0.02	0.02
$sigma_sp$	0.01	0.01	0.01	0.01	0.01	0.01
sigmaForceSp	2.64	2.02	2.39	2.62	2.86	3.40
sigmaChillSp	4.91	3.74	4.43	4.87	5.32	6.37
sigmaPhotoSp	1.20	0.75	1.03	1.18	1.35	1.72
sigmaPhenoSp	9.74	7.97	9.02	9.66	10.36	12.04
$sigmapheno_y$	9.50	9.30	9.43	9.50	9.57	9.70

Table 3: Summary of a joint model for diameter at base height

	mean	X2.5.	X25.	X50.	X75.	X97.5.
mu_grand	6.33	4.42	5.67	6.33	6.99	8.26
b_{tranE}	0.21	-1.96	-0.55	0.20	0.96	2.42
$b_{tranlat}$	2.77	1.04	2.14	2.77	3.39	4.60
$\operatorname{muForceSp}$	-5.45	-6.67	-5.89	-5.46	-5.02	-4.14
muChillSp	-7.09	-9.49	-7.91	-7.10	-6.30	-4.68
muPhotoSp	-1.08	-1.80	-1.31	-1.08	-0.83	-0.36
muPhenoSp	27.08	24.26	26.13	27.10	28.01	29.91
betaTraitxForce	0.10	-0.05	0.06	0.11	0.16	0.25
beta Traitx Chill	0.10	-0.21	0.01	0.10	0.19	0.39
beta Traitx Photo	-0.10	-0.18	-0.13	-0.10	-0.07	-0.02
$sigma_traity$	5.63	5.41	5.55	5.62	5.71	5.86
$sigma_sp$	5.81	4.68	5.32	5.75	6.23	7.35
sigmaForceSp	2.60	2.00	2.35	2.58	2.82	3.35
sigmaChillSp	4.96	3.74	4.46	4.90	5.38	6.57
sigmaPhotoSp	1.09	0.64	0.93	1.08	1.24	1.59
sigmaPhenoSp	9.77	7.90	9.02	9.68	10.45	12.04
$sigmapheno_y$	9.50	9.29	9.43	9.50	9.57	9.71

Table 4: Summary of a joint model for stem specific density

	v	J				v
	mean	X2.5.	X25.	X50.	X75.	X97.5.
mu_grand	0.48	0.45	0.47	0.48	0.49	0.52
b_{tranE}	0.04	-0.04	0.01	0.04	0.06	0.11
$b_{tranlat}$	-0.03	-0.09	-0.05	-0.03	-0.01	0.03
muForceSp	-4.95	-6.20	-5.37	-4.95	-4.53	-3.73
muChillSp	-6.59	-8.51	-7.25	-6.59	-5.94	-4.68
muPhotoSp	-1.67	-2.70	-2.04	-1.68	-1.32	-0.65
muPhenoSp	27.04	24.10	26.05	27.04	28.01	30.02
betaTraitxForce	0.31	-1.52	-0.35	0.30	0.96	2.21
betaTraitxChill	0.19	-1.79	-0.45	0.19	0.84	2.10
betaTraitxPhoto	-0.11	-1.96	-0.76	-0.13	0.52	1.81
$sigma_traity$	0.22	0.21	0.22	0.22	0.22	0.23
$sigma_sp$	0.07	0.06	0.07	0.07	0.08	0.10
sigmaForceSp	2.62	2.05	2.39	2.59	2.83	3.34
sigmaChillSp	4.92	3.73	4.43	4.87	5.32	6.49
sigmaPhotoSp	1.21	0.77	1.05	1.20	1.35	1.71
sigmaPhenoSp	9.74	7.99	8.99	9.67	10.38	11.94
$sigmapheno_y$	9.50	9.30	9.42	9.50	9.57	9.71

Table 5: Summary of a joint model for carbon to nitrogen ratio

	mean	X2.5.	X25.	X50.	X75.	X97.5.
mu_grand	0.19	0.17	0.18	0.18	0.19	0.20
b_{tranE}	0.06	0.04	0.05	0.06	0.06	0.07
$b_{tranlat}$	0.03	0.02	0.03	0.03	0.04	0.04
$\operatorname{muForceSp}$	-4.78	-5.71	-5.09	-4.78	-4.47	-3.85
$\operatorname{muChillSp}$	-6.41	-8.06	-6.99	-6.41	-5.87	-4.71
$\operatorname{muPhotoSp}$	-1.74	-2.32	-1.94	-1.73	-1.53	-1.15
muPhenoSp	27.04	24.09	26.03	27.05	28.02	29.94
betaTraitxForce	0.07	-1.88	-0.60	0.10	0.74	2.02
betaTraitxChill	0.07	-1.83	-0.61	0.08	0.75	2.06
betaTraitxPhoto	0.06	-1.96	-0.62	0.06	0.73	2.04
$sigma_traity$	0.04	0.04	0.04	0.04	0.04	0.04
$sigma_sp$	0.04	0.03	0.03	0.04	0.04	0.04
sigmaForceSp	2.64	2.04	2.40	2.61	2.85	3.38
sigmaChillSp	4.96	3.76	4.45	4.90	5.37	6.60
sigmaPhotoSp	1.19	0.77	1.02	1.18	1.35	1.71
sigmaPhenoSp	9.72	7.97	8.99	9.63	10.36	11.94
$sigmapheno_y$	9.51	9.31	9.43	9.51	9.58	9.71