ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

EZOHIKO DEIALDIA

2018/2019 ikasturtea

2019ko uztailak 1

Izen abizenak: Taldea:

1. ARIKETA

(2.5 puntu)

Izan bedi ($\mathbb{P}_3(x), <,>$) espazio bektorial euklidearra honako biderkadura eskalarrarekin:

$$\langle p(x) = ax^3 + bx^2 + cx + d, q(x) = a'x^3 + b'x^2 + c'x + d' \rangle = aa' + bb' + cc' + cd' + dc'$$

eta izan bitez honako azpiespazioak:

$$S = \left\{ p(x) = ax^3 + bx^2 + cx + d \in \mathbb{P}_3(x) / p(x) \perp x^2 \quad \forall a, b, c, d \in \mathbb{R} \right\}$$
$$T = \left\{ p(x) = ax^3 + bx^2 + cx + d \in \mathbb{P}_3(x) / p'(0) = p''(1) \quad \forall a, b, c, d \in \mathbb{R} \right\}$$

(1.) Zehaztu S azpiespazio bektorialaren oinarri bat eta dimentsioa. (0.5 puntu)

$$\langle ax^3 + bx^2 + cx + d, x^2 \rangle = b = 0$$

$$p(x) = ax^{3} + bx^{2} + cx + d = ax^{3} + cx + d \Rightarrow S = \mathcal{L}(\{x^{3}, x, 1\})$$

$$B_{S} = \{x^{3}, x, 1\} \quad \dim(S) = 3$$

(2.) Zehaztu $S \cap T$ azpiespazio bektorialaren oinarri bat eta dimentsioa. (puntu 1)

T-ren oinarri lortuko dugu lehendabizi:

$$p'(x) = 3ax^{2} + 2bx + c \Rightarrow p'(0) = c$$

$$p''(x) = 6ax + 2b \Rightarrow p''(1) = 6a + 2b$$

$$T = \{p(x) = ax^{3} + bx^{2} + cx + d \in \mathbb{P}_{3}(x) / c = 6a + 2b\} = \{p(x) = ax^{3} + bx^{2} + (6a + 2b)x + d \in \mathbb{P}_{3}(x)\} = \{p(x) = a(x^{3} + 6x) + b(x^{2} + 2x) + d \in \mathbb{P}_{3}(x)\} = \{(x^{3} + 6x), (x^{2} + 2x), 1\}$$

$$B_{T} = \{(x^{3} + 6x), (x^{2} + 2x), 1\} \quad \dim(T) = 3$$

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

$$S \cap T = \{ p(x) = ax^{3} + bx^{2} + cx + d \in \mathbb{P}_{3}(x) / b = 0 \land c = 6a + 2b \} =$$

$$= \{ p(x) = ax^{3} + 6ax + d \in \mathbb{P}_{3}(x) \} =$$

$$= \{ p(x) = a(x^{3} + 6x) + d \in \mathbb{P}_{3}(x) \} =$$

$$= \mathfrak{L}(\{ (x^{3} + 6x), 1 \})$$

$$B_{S \cap T} = \{ (x^{3} + 6x), 1 \} \quad \dim(S \cap T) = 2$$

(3.) Lortu S + T .azpiespazio bektorialaren oinarri bat eta dimentsioa. (0.5 puntu)

$$S+T = \mathcal{L}(\{x^3, x, 1, (x^3+6x), (x^2+2x), 1\})$$

$$h \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 6 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = 4$$

$$B_{S+T} = \{x^3, x, (x^2 + 2x), 1\}$$
 dim $(S+T) = 4$

(4.) S eta T betegarriak al dira? Arrazoitu erantzuna. (0.5 puntu)

Ez dira betegarriak ebakidura ez delako polinomio nulua.

2. ARIKETA

(2.5 puntu)

Izan bedi $A \in \mathbb{M}_{4\times4}$ (\mathbb{R}) matrizea:

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

(1.) Kalkulatu $a \in \mathbb{R}$ parametroaren zein baliotarako den A matrizea diagonalizagarria. (puntu 1)

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 0 & 0 & 0 \\ 1 & 1 - \lambda & 0 & 0 \\ 0 & 1 & a - \lambda & 0 \\ 0 & 0 & 1 & -1 - \lambda \end{vmatrix} = (2 - \lambda) \cdot (1 - \lambda) \cdot (a - \lambda) \cdot (-1 - \lambda)$$

Balio propioak hauek dira: $\sigma = \{\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = a, \lambda_4 = -1\}$

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

$$\begin{cases} \lambda_1 = 2 & k_1 = 1 \\ \lambda_2 = 1 & k_2 = 1 \\ \lambda_3 = a & k_3 = 1 \\ \lambda_4 = -1 & k_4 = 1 \end{cases} \Rightarrow \begin{cases} d_1 = 1 \\ d_2 = 1 \\ d_2 = 1 \\ d_4 = 1 \end{cases}$$

A matrizea diagonalizagarria da

2.
$$a = 2$$

$$\begin{cases} \lambda_1 = 2 & k_1 = 2 \\ \lambda_2 = 1 & k_2 = 1 \\ \lambda_3 = -1 & k_3 = 1 \end{cases}$$

$$\bullet \quad \lambda_1 = 2$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad h(M) = 3 \Rightarrow \dim(S(\lambda = 2)) = 1$$

A matrizea ez da diagonalizagarria

3. a = 1

$$\begin{cases} \lambda_1 = 2 & k_1 = 1 \\ \lambda_2 = 1 & k_2 = 2 \\ \lambda_3 = -1 & k_3 = 1 \end{cases}$$

•
$$\lambda_2 = 1$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad h(M) = 3 \Rightarrow \dim(S(\lambda = 1)) = 1$$

A matrizea ez da diagonalizagarria

ESCUELA DE INGENIERÍA DE BILBAO ÁLGEBRA ALJEBRA Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

4. a = -1

$$\begin{cases} \lambda_1 = 2 & k_1 = 1 \\ \lambda_2 = 1 & k_2 = 1 \\ \lambda_3 = -1 & k_3 = 2 \end{cases}$$

 $\bullet \quad \lambda_2 = 1$

$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad h(M) = 3 \Rightarrow \dim(S(\lambda = -1)) = 1$$

A matrizea ez da diagonalizagarria

(2.) Ba al dago A matrizearen bektore propiorik $A \cdot \overline{x} = \overline{0}$ betetzen duenik? Erantzuna baiezkoa bada, lortu A matrizeari elkartutako bektore propioen multzoa $A \cdot \overline{x} = \overline{0}$ betetzen dutenak. Erantzuna ezezkoa bada arrazoitu erantzuna. (0.5 puntu)

 $A \cdot \overline{x} = \overline{0}$ betetzen duten bektore propioak $\lambda = 0$ balio propioari elkartutako bektore propioak dira. Balio propio bat nulua izateko a = 0 izan behar da. Beraz, $A \cdot \overline{x} = \overline{0}$ betetzen duten bektore propioak $\lambda = a = 0$ balio propioari elkartutakoak dira:

$$A|_{a=0} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \Rightarrow \sigma = \{\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = 0, \lambda_4 = -1\}$$

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} x = y = 0 \\ z = t \end{cases} \forall t \in \mathbb{R} \Rightarrow S(0) = \mathfrak{L}(\{\overline{v}_1 = (0, 0, 1, 1)\})$$

(3.) Izan bedi A matrizearen zutabeetan dauden bektoreek sortzen duten S azpiespazio bektoriala. Kalkulatu S azpiespazioaren dimentsioa $a \in \mathbb{R}$ parametroaren balioen arabera. Lortutako kasu ezberdinetarako lortu S-ren S be oinarri bat eta bere dimentsioa. (0.5 puntu)

$$M = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \Rightarrow |M| = -2a = 0 \Leftrightarrow a = 0$$

1. $a \neq 0$

$$h(M) = 4 \Rightarrow S = \mathcal{L}(\{(2,1,0,0), (0,1,1,0), (0,0,a,1), (0,0,0,-1)\})$$

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

$$\dim(S) = 4 \Rightarrow B_S = \{(2,1,0,0), (0,1,1,0), (0,0,a,1), (0,0,0,-1)\}$$

2.
$$a = 0$$

 $h(M) = 3 \Rightarrow S = \mathcal{L}(\{(2,1,0,0), (0,1,1,0), (0,0,0,1), (0,0,0,-1)\})$
 $\dim(S) = 3 \Rightarrow B_S = \{(2,1,0,0), (0,1,1,0), (0,0,0,1)\}$

(4.) a=1 kasurako lortu \mathbb{R}^4 -ko oinarri kanonikotik Bs oinarrirako koordenatu-aldaketaren iragaite matrizea.

(0.5 puntu)

$$B_{S} = \left\{ (2,1,0,0), (0,1,1,0), (0,0,1,1), (0,0,0,-1) \right\}$$

$$B_{R^{4}} = \left\{ (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) \right\}$$

$$\begin{split} C_{B_S}\left(\vec{x}\right) &= P_{B_{R^4} \to B_S} \cdot C_{B_{R^4}}\left(\vec{x}\right) \\ &(1,0,0,0) = \alpha_1 \cdot (2,1,0,0) + \alpha_2 \cdot (0,1,1,0) + \alpha_3 \cdot (0,0,1,1) + \alpha_4 \cdot (0,0,0,-1) \\ &(0,1,0,0) = \beta_1 \cdot (2,1,0,0) + \beta_2 \cdot (0,1,1,0) + \beta_3 \cdot (0,0,1,1) + \beta_4 \cdot (0,0,0,-1) \\ &(0,0,1,0) = \gamma_1 \cdot (2,1,0,0) + \gamma_2 \cdot (0,1,1,0) + \gamma_3 \cdot (0,0,1,1) + \gamma_4 \cdot (0,0,0,-1) \\ &(0,0,0,1) = \delta_1 \cdot (2,1,0,0) + \delta_2 \cdot (0,1,1,0) + \delta_3 \cdot (0,0,1,1) + \delta_4 \cdot (0,0,0,-1) \end{split}$$

$$P_{B_{R^4} \to B_S} = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 & \delta_1 \\ \alpha_2 & \beta_2 & \gamma_2 & \delta_2 \\ \alpha_3 & \beta_3 & \gamma_3 & \delta_3 \\ \alpha_4 & \beta_4 & \gamma_4 & \delta_4 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & -1 & 1 & 0 \\ \frac{1}{2} & -1 & 1 & -1 \end{pmatrix}$$

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

Izan bedi $(M_{2x2}(\mathbb{R}), <,>)$ espazio bektorial euklidearra ohiko biderkadura eskalarrarekin, eta izan bedi honako azpiespazio bektoriala:

$$U = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2x2}(R) / A \text{ matrize a antisimetriko a da} \right\}$$

(1.) Zehaztu U azpiespazio bektorialaren oinarri eta dimentsioa. (0.75 puntu)

$$A = -A^{T} \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -a & -c \\ -b & -d \end{pmatrix} \Rightarrow \begin{cases} a = -a \\ b = -c \\ c = -b \end{cases} \Rightarrow \begin{cases} a = d = 0 \\ c = -b \end{cases}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} = b \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow U = \mathfrak{L} \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\} \quad \dim(U) = 1$$

$$B_{U} = \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\} \quad \dim(U) = 1$$

(2.) Kalkulatu U^{\perp} , U azpiespazioarekiko ortogonala den azpiespazio bektorialaren oinarri bat eta dimentsioa (0.75 puntu)

$$\begin{split} & \left\langle \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle = 0 \Rightarrow b - c = 0 \Rightarrow b = c \\ & \left(\begin{matrix} a & b \\ c & d \end{matrix} \right) = \begin{pmatrix} a & b \\ b & d \end{pmatrix} = a \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + d \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad U^{\perp} = \mathfrak{L} \left(\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \right) \\ & B_{U^{\perp}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \quad \dim \left(U^{\perp} \right) = 3 \end{split}$$

(3.) Lortu $X = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ matrizearen hurbilketa onena U^{\perp} azpiespazioaren gainean. Kalkulatu hurbilketan egindako errorea. (puntu 1)

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

Aurreko atalean lortutako oinarria ortogonala da:

$$\left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle = 0$$

$$\left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle = 0$$

$$\left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle = 0$$

$$\begin{split} X' &= P_{U_1}\left(X\right) + P_{U_2}\left(X\right) + P_{U_3}\left(X\right) = \frac{\left\langle X, U_1 \right\rangle}{\left\|U_1\right\|^2} \cdot U_1 + \frac{\left\langle X, U_2 \right\rangle}{\left\|U_2\right\|^2} \cdot U_2 + \frac{\left\langle X, U_3 \right\rangle}{\left\|U_3\right\|^2} \cdot U_3 \\ \left\langle X, U_1 \right\rangle &= \left\langle \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\rangle = 2 \quad \left\|U_1\right\|^2 = \left\langle U_1, U_1 \right\rangle = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\rangle = 1 \\ \left\langle X, U_2 \right\rangle &= \left\langle \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle = 3 \quad \left\|U_2\right\|^2 = \left\langle U_2, U_2 \right\rangle = \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle = 2 \\ \left\langle X, U_3 \right\rangle &= \left\langle \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle = 1 \quad \left\|U_1\right\|^2 = \left\langle U_1, U_1 \right\rangle = \left\langle \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle = 1 \end{split}$$

$$X' = \frac{2}{1} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{3}{2} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \frac{1}{1} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & \frac{3}{2} \\ \frac{3}{2} & 1 \end{pmatrix}$$

$$\varepsilon = \|X - X'\| = \|\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & \frac{3}{2} \\ \frac{3}{2} & 1 \end{pmatrix}\| = \|\begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{-1}{2}\right)^2} = \sqrt{\frac{1}{2}}$$

4. ARIKETA

(2.5 puntu)

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

- (1.) Izan bedi $A = \begin{pmatrix} 1 & m & 0 \\ 0 & 1 & m \\ 1 & 0 & n \end{pmatrix}$ matrizea (0.9 puntu)
 - a) Lortu m eta n-ren balioak A idenpotentea izateko

A idenpotentea: $A = A^2$

$$A^{2} = \begin{pmatrix} 1 & m & 0 \\ 0 & 1 & m \\ 1 & 0 & n \end{pmatrix} \cdot \begin{pmatrix} 1 & m & 0 \\ 0 & 1 & m \\ 1 & 0 & n \end{pmatrix} = \begin{pmatrix} 1 & 2m & m^{2} \\ m & 1 & m+m \cdot n \\ n+1 & m & n^{2} \end{pmatrix} \Rightarrow \begin{cases} m = 2m \\ 0 = m^{2} \\ m = m \cdot (1+n) \Rightarrow \begin{cases} m = 0 \\ n = 0 \end{cases}$$

$$1 = n+1$$

$$0 = m$$

$$n = n^{2}$$

b) Lortu m eta n-ren balioak A inbolutiboa izateko

A inbolutiboa: $A^2 = I$

$$A^{2} = \begin{pmatrix} 1 & 2m & m^{2} \\ m & 1 & m+m \cdot n \\ n+1 & m & n^{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \Rightarrow \begin{cases} m=0 \\ n=-1 \end{cases}$$

c) Lortu m eta n-ren balioak A periodikoa izateko, periodoa 2 izanik

A periodikoa, periodoa bi izanik: $A^3 = A$

$$A^{3} = \begin{pmatrix} 1 & 2m & m^{2} \\ m & 1 & m+m \cdot n \\ n+1 & m & n^{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & m & 0 \\ 0 & 1 & m \\ 1 & 0 & n \end{pmatrix} = \begin{pmatrix} m^{2}+1 & 3m & 2m^{2}+m^{2}n \\ m(2+n) & m^{2}+1 & m+m \cdot n(1+n) \\ n^{2}+n+1 & m(1+n) & m^{2}+n^{3} \end{pmatrix} \Rightarrow \begin{cases} m=0 & m=0 \\ n=0 & n=-1 \end{cases}$$

(2.) Izan bedi ekuazio linealetako honako sistema: $\begin{cases} x - y = 2 \\ a \cdot x + y + 2z = 0 \\ x - y + a \cdot z = 1 \end{cases}$ (0.4 puntu)

Klasifikatu sistema *a* parametroaren balioen arabera.

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

ESCUELA DE INGENIERÍA DE BILBAO

$$\begin{pmatrix} 1 & -1 & 0 & | 2 \\ a & 1 & 2 & | 0 \\ 1 & -1 & a & | 1 \end{pmatrix}_{E_3 - E_1}^{-a} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 0 & 1 + a & 2 & | & -2a \\ 0 & 0 & a & | & -1 \end{pmatrix}$$

$$|A| = a(a+1) = 0 \Rightarrow \begin{cases} a = 0 \\ \lor \\ a = -1 \end{cases}$$

 \bullet a=0

$$AM = \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & -1 \end{pmatrix} \quad h(A) = 2 \neq 3 = h(AM) \Rightarrow Bateraezina$$

 \bullet a=-1

$$AM = \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 0 & 0 & 2 & | & 2 \\ 0 & 0 & -1 & | & -1 \end{pmatrix} \quad h(A) = 2 = h(AM) \Rightarrow S.B.I.$$

- $a \neq -1 \land a \neq 0$ $h(A) = h(AM) = 3 \Rightarrow S.B.D.$
- (3.) Izan bedi $B = \begin{pmatrix} 2 & 0 & m \\ -1 & 0 & -1 \\ 5 & m+4 & -4 \end{pmatrix}$ matrizea. (0.4 puntu)

m-ren zein baliotarako existitzen da B^{-1} ?

$$B = \begin{pmatrix} 2 & 0 & m \\ -1 & 0 & -1 \\ 5 & m+4 & -4 \end{pmatrix}$$

$$|B| = \begin{vmatrix} 2 & 0 & m \\ -1 & 0 & -1 \\ 5 & m+4 & -4 \end{vmatrix} = (m+4) \cdot \begin{vmatrix} 2 & m \\ -1 & -1 \end{vmatrix} = -(m+4) \cdot (m-2) = 0 \Rightarrow \begin{cases} m = -4 \\ \lor \\ m = 2 \end{cases}$$

$$\exists B^{-1} \ \forall m \neq \{-4, 2\}$$

(4.) Izan bedi S azpiespazioko \bar{x} bektorea eta \bar{x} ' bektorea \bar{x} -ren hurbilketa onena S^{\perp} azpiespazioan. \bar{x} ' lortzerakoan zer nolako berezitasunaz ohartzen gara? (0.4 puntu)

S azpiespazioko bektoreak S^{\perp} azpiespazioko bektoreekiko ortogonalak direnez, beraien arteko ebakidura bakarra bektore nulua izango da, beraz, hurbilketarik onena lortzerakoan lortuko dugun bektorea, bektore nulua izango da.

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

(5.) 3 ezezagun eta 4 ekuazio dituen sistema bat, sistema bateragarri indeterminatua al da? (0.4 puntu)

$$M = \begin{pmatrix} a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ a_{31} & a_{32} & a_{33} & b_{3} \\ a_{41} & a_{42} & a_{43} & b_{4} \end{pmatrix} \quad 1 \le h(A) \le 3$$

$$h(A) = 1 \wedge h(AM) = 1 \Rightarrow S.B.I.$$

$$h(A) = 1 \land h(AM) = 2 \Rightarrow S.Bateraezina$$

$$h(A) = 2 \wedge h(AM) = 2 \Rightarrow S.B.I.$$

$$h(A) = 2 \land h(AM) = 3 \Rightarrow S.Bateraezina$$

$$h(A) = 3 \land h(AM) = 3 \Rightarrow S.B.D.$$

$$h(A) = 3 \land h(AM) = 4 \Rightarrow S.Bateraezina$$