Chương 1: Xích Markov rời rạc Phân loại các trạng thái

Hoàng Văn Hà University of Science, VNU - HCM hvha@hcmus.edu.vn

Lớp giao tiếp (Communication classes)

Xét một xích Markov $(X_n)_{n\geq 0}$ được định nghĩa trên không gian trạng thái E với ma trận chuyển P.

Định nghĩa 1

 Cho hai trạng thái x và y. Ta nói rằng x dẫn đến y hay y có thể tiếp cận được từ x, ký hiệu x → y, nếu:

$$\exists n \in \mathbb{N}, \quad p_{xy}^{(n)} = P(X_n = y \mid X_0 = x) > 0.$$

Quan hệ này có nghĩa là bắt đầu từ x, sau một số hữu hạn bước ta có thể đi đến y.

• Ta nói rằng x giao tiếp (communicate) với y, ký hiệu $x \leftrightarrow y$, nếu $x \to y$ và $y \to x$.

Lớp giao tiếp (Communication classes)

Xét một xích Markov $(X_n)_{n\geq 0}$ được định nghĩa trên không gian trạng thái E với ma trận chuyển P.

Định nghĩa 1

• Cho hai trạng thái x và y. Ta nói rằng x dẫn đến y hay y có thể tiếp cận được từ x, $k\acute{y}$ hiệu $x\to y$, nếu:

$$\exists n \in \mathbb{N}, \quad p_{xy}^{(n)} = P(X_n = y \mid X_0 = x) > 0.$$

Quan hệ này có nghĩa là bắt đầu từ x, sau một số hữu hạn bước ta có thể đi đến y.

• Ta nói rằng x giao tiếp (communicate) với y, ký hiệu $x \leftrightarrow y$, nếu $x \to y$ và $y \to x$.

Mệnh đề 1

Quan hệ giao tiếp ↔ là một quan hệ tương đương.

Chứng minh Mệnh đề 1

• Phản xạ: $x \leftrightarrow x$. Hiển nhiên vì

$$P^{(0)}(x,x) = \mathbb{P}[X_0 = x \mid X_0 = x] = 1.$$

- Đối xứng: $x \leftrightarrow y \Rightarrow y \leftrightarrow x$. Rỗ ràng theo định nghĩa.
- **Bắc cầu:** $x \leftrightarrow y$ và $y \leftrightarrow z \Rightarrow x \leftrightarrow z$. Chỉ cần chứng minh tính bắc cầu của quan hệ khả đạt. Giả sử $x \to y$ và $y \to z$. Khi đó tồn tại $m, n \in \mathbb{N}$ sao cho $P^{(n)}(x,y) > 0$ và $P^{(m)}(y,z) > 0$. Theo phương trình Chapman–Kolmogorov,

$$P^{(n+m)}(x,z) = \sum_{y' \in E} P^{(n)}(x,y') P^{(m)}(y',z) \geq P^{(n)}(x,y) P^{(m)}(y,z) > 0.$$

Bất đẳng thức đầu tiên do mọi hạng trong tổng đều không âm. Do đó $x \to z$.

 Các trạng thái E của xích Markov có thể được phân hoạch thành các lớp tương đương gọi là các lớp bất khả quy (irreducible class). Nếu E thu gọn còn một lớp duy nhất, xích Markov được gọi là bất khả quy (irreducible).

- Các trạng thái E của xích Markov có thể được phân hoạch thành các lớp tương đương gọi là các lớp bất khả quy (irreducible class). Nếu E thu gọn còn một lớp duy nhất, xích Markov được gọi là bất khả quy (irreducible).
- ullet Lớp C' có thể *tiếp cận được từ C*, ký hiệu C o C', nếu

$$\forall (x,x') \in C \times C', \quad x \to x'.$$

- Các trạng thái E của xích Markov có thể được phân hoạch thành các lớp tương đương gọi là các lớp bất khả quy (irreducible class). Nếu E thu gọn còn một lớp duy nhất, xích Markov được gọi là bất khả quy (irreducible).
- ullet Lớp C' có thể tiếp *cận được từ* C, ký hiệu C o C', nếu

$$\forall (x,x') \in C \times C', \quad x \to x'.$$

• Một lớp C là lớp đóng (closed class) nếu, với mọi x, y sao cho $(x \in C \text{ và } x \to y \Rightarrow y \in C)$. Nói cách khác, $\forall x \in C, \forall n \in \mathbb{N}$,

$$\sum_{y\in C} p_{xy}^{(n)} = 1,$$

tức C là lớp mà không thể thoát ra ngoài.

- Các trạng thái E của xích Markov có thể được phân hoạch thành các lớp tương đương gọi là các lớp bất khả quy (irreducible class). Nếu E thu gọn còn một lớp duy nhất, xích Markov được gọi là bất khả quy (irreducible).
- ullet Lớp C' có thể *tiếp cận được từ C*, ký hiệu C o C', nếu

$$\forall (x,x') \in C \times C', \quad x \to x'.$$

• Một lớp C là lớp đóng (closed class) nếu, với mọi x, y sao cho $(x \in C \text{ và } x \to y \Rightarrow y \in C)$. Nói cách khác, $\forall x \in C, \forall n \in \mathbb{N}$,

$$\sum_{y \in C} p_{xy}^{(n)} = 1,$$

tức C là lớp mà không thể thoát ra ngoài.

• Trạng thái x là hấp thụ (absorbing) nếu $\{x\}$ là một lớp đóng. Hay nói cách khác, trạng thái x là hấp thụ (absorbing) khi và chỉ khi $p_{xx} = 1$.

- Các trạng thái E của xích Markov có thể được phân hoạch thành các lớp tương đương gọi là các lớp bất khả quy (irreducible class). Nếu E thu gọn còn một lớp duy nhất, xích Markov được gọi là bất khả quy (irreducible).
- ullet Lớp C' có thể tiếp *cận được từ* C, ký hiệu C o C', nếu

$$\forall (x, x') \in C \times C', \quad x \to x'.$$

• Một lớp C là lớp đóng (closed class) nếu, với mọi x, y sao cho $(x \in C \text{ và } x \to y \Rightarrow y \in C)$. Nói cách khác, $\forall x \in C, \forall n \in \mathbb{N}$,

$$\sum_{y \in C} p_{xy}^{(n)} = 1,$$

tức C là lớp mà không thể thoát ra ngoài.

- Trạng thái x là hấp thụ (absorbing) nếu $\{x\}$ là một lớp đóng. Hay nói cách khác, trạng thái x là hấp thụ (absorbing) khi và chỉ khi $p_{xx} = 1$.
- Nếu C không đóng thì nó mở, khi đó tồn tại $x \in C$ và $y \notin C$ sao cho $x \to y$.

4□ > 4団 > 4 量 > 4 量 > ■ のQで

Ví du 1

Cho Xích Markov với sơ đồ trạng thái sau:

- Bất kỳ trạng thái 1, 2, 3, 4 đều có thể tiếp cận được từ năm trạng thái, nhưng 5 thì không thể tiếp cận được từ 1, 2, 3, và 4.
- Do vậy ta có 2 lớp: {1, 2, 3, 4} và {5}.

Ví du 2

Xét xích Markov với ma trận chuyển

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4}\\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Xích này có bất khả quy (irreducible) không?

Ví dụ 3

Xét xích Markov với ma trận chuyển

$$P = \begin{pmatrix} 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0 & 0 & 0.2 & 0.8 \\ 0 & 0 & 0.8 & 0.2 \end{pmatrix}.$$

Xích này có bất khả quy không?

Ví dụ 4 (Trạng thái hấp thụ)

Xét 1 Bước ngẫu nhiên (random walk) trên $\{0,1,2,3\}$ có sơ đồ trạng thái:

Từ sơ đồ trạng thái ta thấy có 2 trạng thái hấp thụ: 0 và 3.

Ví dụ 5

Xét xích Markov sau với ma trận chuyển

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

- (a) Vẽ sơ đồ chuyển trạng thái.
- (b) Tìm các lớp giao tiếp và xác định chúng là mở hay đóng.

Tính tái diễn (recurrence) và Tính thoáng qua (Transience)

- Trong phần này, ta sẽ nghiên cứu một cách thứ hai để phân loại các trạng thái, phụ thuộc vào các kiểu hành vi của xích.
- Trong toàn bộ mục này, xét một xích Markov $(X_n)_{n\geq 0}$ nhận giá trị trong không gian trạng thái E với ma trận chuyển P.
- Cho một trạng thái $x \in E$ sao cho $P(X_0 = x) > 0$. Ta ký hiệu gọn $P_x(\cdot)$ là xác suất có điều kiện $P(\cdot \mid X_0 = x)$, tức là xác suất khi biết sự kiện $\{X_0 = x\}$ đã xảy ra.

Định nghĩa 2

Với xích Markov $(X_n)_{n\geq 0}$ trên không gian trạng thái E và $x\in E$, định nghĩa

Thời gian chạm (Hitting time): $H_x := \inf\{n \ge 0 : X_n = x\}.$

Thời gian chạm đầu tiên (First passage time): $T_x := \inf\{n > 0 : X_n = x\}$.

Lưu ý.

- Nếu khởi đầu tại x (dưới P_x) thì $H_x=0$ a.s., còn $T_x\geq 1$. Khi đó, T_x còn được gọi là thời gian quay lại (return time).
- Nếu khởi đầu không ở x (dưới P_y , $y \neq x$) thì $H_x = T_x$ a.s.
- Theo quy ước, thời gian quay lại là vô hạn nếu ta không bao giờ đạt tới x, tức là $T_x = +\infty$.

Trạng thái tái diễn và thoáng qua

Định nghĩa 3

Một trạng thái $x \in E$ được gọi là tái diễn (recurrent) nếu

$$P_x(T_x < +\infty) = 1.$$

Trạng thái $x \in E$ được gọi là thoáng qua (transient) nếu không thoả điều kiện trên, tức là khi

$$P_{\scriptscriptstyle X}(T_{\scriptscriptstyle X}<+\infty)< 1 \quad \mbox{(tương đương)} \quad P_{\scriptscriptstyle X}(T_{\scriptscriptstyle X}=+\infty)> 0.$$

Trạng thái tái diễn và thoáng qua

Định nghĩa 3

Một trạng thái $x \in E$ được gọi là tái diễn (recurrent) nếu

$$P_{x}(T_{x}<+\infty)=1.$$

Trạng thái $x \in E$ được gọi là thoáng qua (transient) nếu không thoả điều kiện trên, tức là khi

$$P_x(T_x < +\infty) < 1$$
 (tương đương) $P_x(T_x = +\infty) > 0$.

Ghi chú:

- x là tái diễn nếu chắc chắn sẽ quay lại;
- ullet x là thoáng qua nếu có xác suất dương không bao giờ quay lại, tức là rời khỏi x vĩnh viễn.

Số lần ghé và hàm Green

Một cách để mô tả tính *tái diễn/thoáng qua* của một trạng thái là dùng <mark>số lần ghé thăm (number of visits)</mark> được định nghĩa như sau:

Định nghĩa 4

Số lần ghé thăm $trạng thái \times là biến ngẫu nhiên <math>N_{\times}$ được định nghĩa bởi

$$N_{x}=\sum_{n=0}^{\infty}\mathbb{1}_{\{X_{n}=x\}}.$$

Đại lượng $G(x,y) := \mathbb{E}_x[N_y] = \mathbb{E}[N_y \mid X_0 = x]$ là kỳ vọng số lần ghé thăm trạng thái y khi xuất phát từ trạng thái x. G được gọi là hàm Green.

Số lần ghé và hàm Green

Một cách để mô tả tính *tái diễn/thoáng qua* của một trạng thái là dùng <mark>số lần ghé thăm (number of visits)</mark> được định nghĩa như sau:

Định nghĩa 4

Số lần ghé thăm trạng thái x là biến ngẫu nhiên N_x được định nghĩa bởi

$$N_{\mathsf{x}} = \sum_{n=0}^{\infty} \mathbb{1}_{\{X_n = \mathsf{x}\}}.$$

Đại lượng $G(x,y) := \mathbb{E}_x[N_y] = \mathbb{E}[N_y \mid X_0 = x]$ là kỳ vọng số lần ghé thăm trạng thái y khi xuất phát từ trạng thái x. G được gọi là hàm Green.

Bổ đề 2 (Biểu diễn hàm Green qua xác suất chuyển)

Với mọi $(x, y) \in E^2$,

$$G(x,y)=\sum_{n=0}^{\infty}p_{xy}^{(n)}.$$

Định lý đặc trưng hóa các điều kiện tái diễn/thoáng qua sử dụng số lần ghé thăm.

Định lý 1

Các điều kiện sau là tương đương cho trạng thái $x \in E$ (bắt đầu từ x với P_x):

- x là tái diễn (recurrent), tức là $P_x(T_x < \infty) = 1$.
- $P_{\scriptscriptstyle X}(N_{\scriptscriptstyle X}=\infty)=1.$
- $G(x,x)=\infty.$

Tương tự, các điều kiện sau là tương đương cho trạng thái $x \in E$:

- **1** x là thoáng qua (transient), tức là $P_x(T_x < \infty) < 1$.
- $P_x(N_x = \infty) = 0.$
- $G(x,x) < \infty \ v \grave{a}$

$$G(x,x)=\frac{1}{P_x(T_x=\infty)}.$$

Trong trường hợp này, phân phối có điều kiện của N_x khi xuất phát từ x là hình học với tham số $P_x(T_x = \infty)$.

Định lý đặc trưng hóa các điều kiện tái diễn/thoáng qua sử dụng số lần ghé thăm.

Định lý 1

Các điều kiện sau là tương đương cho trạng thái $x \in E$ (bắt đầu từ x với P_x):

- x là tái diễn (recurrent), tức là $P_x(T_x < \infty) = 1$.
- $P_{\scriptscriptstyle X}(N_{\scriptscriptstyle X}=\infty)=1.$
- $G(x,x)=\infty.$

Tương tự, các điều kiện sau là tương đương cho trạng thái $x \in E$:

- **1** \times là thoáng qua (transient), tức là $P_x(T_x < \infty) < 1$.
- $P_{\scriptscriptstyle X}(N_{\scriptscriptstyle X}=\infty)=0.$
- $G(x,x) < \infty \ v \grave{a}$

$$G(x,x)=\frac{1}{P_x(T_x=\infty)}.$$

Trong trường hợp này, phân phối có điều kiện của N_x khi xuất phát từ x là hình học với tham số $P_x(T_x = \infty)$.

Ghi chú: $P_x(T_x < \infty)$ được gọi là *xác suất trở lại (return probability) x*; G(x,x) chính là trung bình thời gian trở lại trạng thái x.

14 / 18

Bổ đề sau hữu ích cho chứng minh Định lý 1:

Bổ đề 3

Với mọi $(x, y) \in E^2$:

• Với mọi $n \in \mathbb{N}^*$,

$$P_x(N_y \ge n+1) = P_x(T_y < \infty) P_y(N_y \ge n).$$

Đẳng thức này cũng đúng cho n = 0 nếu $x \neq y$.

• Đối với hàm Green,

$$G(x,y) = \delta_{\{x=y\}} + P_x(T_y < \infty) G(y,y),$$

trong đó $G(x,y) = \mathbb{E}_x[N_y]$ và $\delta_{\{x=y\}} = 1$ nếu x = y (ngược lại bằng 0).

Xích Markov bất khả quy hữu hạn

Mệnh đề 4

Cho $(X_n)_{n\geq 0}$ là một xích Markov bất khả quy trên không gian trạng thái hữu hạn S. Khi đó, với mọi $x,y\in S$,

$$\mathbb{E}_{x}(T^{y}) < \infty,$$

trong đó $T^y := \inf\{n \ge 0 : X_n = y\}$ là thời gian chạm trạng thái y khi xuất phát từ x.

Lớp tái diễn/thoáng qua

Trong phần này, ta sẽ thiết lập tính tái diễn/thoáng qua là một tính chất theo lớp.

Mênh đề 5

Xét hai trạng thái x và y. Giả sử chúng giao tiếp với nhau, tức là $x \leftrightarrow y$. Khi đó x và y hoặc đều tái diễn, hoặc đều thoáng qua.

Lớp tái diễn/thoáng qua

Trong phần này, ta sẽ thiết lập tính tái diễn/thoáng qua là một tính chất theo lớp.

Mênh đề 5

Xét hai trạng thái x và y. Giả sử chúng giao tiếp với nhau, tức là $x \leftrightarrow y$. Khi đó x và y hoặc đều tái diễn, hoặc đều thoáng qua.

Định nghĩa 5 (Lớp tái diễn/Lớp thoáng qua)

Một lớp tương đương (lớp giao tiếp) được gọi là

- tái diễn nếu một (và khi đó mọi) trạng thái trong lớp là tái diễn;
- thoáng qua nếu một (và khi đó mọi) trạng thái trong lớp là thoáng qua.

Mối liên hệ với các lớp đóng

Mệnh đề 6

Một lớp tái diễn là đóng; nói cách khác, xác suất rời khỏi một lớp tái diễn bằng 0.

Mối liên hệ với các lớp đóng

Mệnh đề 6

Một lớp tái diễn là <mark>đóng</mark>; nói cách khác, xác suất rời khỏi một lớp tái diễn bằng 0.

Mệnh đề 7

Mọi lớp đóng có số phần tử hữu hạn đều tái diễn.

Mối liên hệ với các lớp đóng

Mệnh đề 6

Một lớp tái diễn là đóng; nói cách khác, xác suất rời khỏi một lớp tái diễn bằng 0.

Mệnh đề 7

Mọi lớp đóng có số phần tử hữu hạn đều tái diễn.

Hệ quả 8

Một xích Markov định nghĩa trên một không gian trạng thái hữu hạn có ít nhất một trạng thái tái diễn.