1 General Notations

- \bullet N: Number of users
- n: Number of items, $n = \begin{cases} 2m-1, & \text{if n is odd} \\ 2m, & \text{otherwise} \end{cases}$
- \mathcal{P}_n : the space of permutation of n items
- $\mathbb{R}^1, ..., \mathbb{R}^N$: full rankings given by the users
- $\mathbf{R}^j \in \mathcal{P}_n = \{R_1^j, ..., R_n^j\} \sim \text{Mallows}(\boldsymbol{\rho}^0, \alpha^0), \text{ defined as } P(\mathbf{R}^j | \alpha^0, \boldsymbol{\rho}^0) = \frac{\exp\{-\frac{\alpha^0}{n} d(\mathbf{R}^j, \boldsymbol{\rho}^0)\}}{\sum\limits_{\mathbf{r} \in \mathcal{P}_n} \exp\{-\frac{\alpha^0}{n} d(\mathbf{R}^j, \boldsymbol{\rho}^0)\}}$
- $P(\boldsymbol{\rho}|\boldsymbol{R}^1,...,\boldsymbol{R}^N,\alpha^o)$: Mallows posterior
- $\{i_1, ..., i_n\}$: a ranking of n items that determines the sequence following which the items are to be sampled. i.e. $i_j = k$ indicates that item j is the k-th item is to be sampled
- $\{o_1,...,o_n\}$: an ordering of n items that corresponds to $\{i_1,...,i_n\}$ s.t. $i_{o_k}=k$. $\{o_1,...,o_n\}$ and $\{i_1,...,i_n\}$ have a one-to-one relationship
- $Q(\tilde{\boldsymbol{\rho}}|\cdot) = \sum_{\{i_1,...,i_n\}\in\mathcal{P}_n} q(\tilde{\boldsymbol{\rho}}|i_1,...,i_n,\alpha_0,\boldsymbol{R}^1,...,\boldsymbol{R}^N) \cdot g(i_1,...,i_n|...)$: pseudolikelihood that approximates the Mallows posterior
- $\begin{aligned} \bullet & & q(\tilde{\boldsymbol{\rho}}|i_1,...,i_n,\alpha^0,\boldsymbol{R}^1,...,\boldsymbol{R}^N) = q(\tilde{\boldsymbol{\rho}}|o_1,...,o_n,\alpha^0,\boldsymbol{R}^1,...,\boldsymbol{R}^N) \\ & & = q(\tilde{\rho}_{o_1}|\alpha^0,o_1,R^1_{o_1},...,R^N_{o_1}) \cdot q(\tilde{\rho}_{o_2}|\alpha^0,o_2,\tilde{\rho}_{o_1}R^1_{o_2},...,R^N_{o_2}) \cdot ... \cdot \\ & & q(\tilde{\rho}_{o_{n-1}}|\alpha^0,o_{n-1},\tilde{\rho}_{o_1},...,\tilde{\rho}_{o_{n-2}},R^1_{n-1},...,R^N_{n-1}) \cdot q(\tilde{\rho}_{o_n}|\alpha^0,o_n,\tilde{\rho}_{o_1},...,\tilde{\rho}_{o_{n-1}},R^1_n,...,R^N_n) \end{aligned}$

$$- q(\tilde{\rho}_{o_1} | \alpha^0, o_1, R_{o_1}^1, ..., R_{o_1}^N) = \frac{\exp\{-\frac{\alpha_0}{n} \sum_{j=1}^N d(R_{o_1}^j, \tilde{\rho}_{o_1})\} \mathbb{1}_{\tilde{\rho}_{o_1} \in \{1, ..., n\}}}{\sum\limits_{\tilde{r}_{o_1} \in \{1, ..., n\}} \exp\{-\frac{\alpha_0}{n} \sum\limits_{j=1}^N d(R_{o_1}^j, \tilde{r}_{o_1})\}}$$

$$-\ q(\tilde{\rho}_{o_k}|\alpha^0,o_k,\tilde{\rho}_{o_1},...,\tilde{\rho}_{o_{k-1}},R^1_{o_k},...,R^N_{o_k}) = \frac{\exp\{-\frac{\alpha_0}{n}\sum\limits_{j=1}^N d(R^j_{o_k},\tilde{\rho}_{o_k})\}\mathbb{1}_{\tilde{\rho}_{o_k}\in\{1,...,n\}\backslash\{\tilde{\rho}_{o_1},...,\tilde{\rho}_{o_{k-1}}\}}}{\sum\limits_{\tilde{r}_{o_k}\in\{1,...,n\}\backslash\{\tilde{\rho}_{o_1},...,\tilde{\rho}_{o_{k-1}}\}} \exp\{-\frac{\alpha_0}{n}\sum\limits_{j=1}^N d(R^j_{o_k},\tilde{r}_{o_k})\}}$$
 for $k=2,...,n$

- o^0 : a set of ordering that corresponds to ρ^0 s.t. $\rho^{0-1}(m) = o_m^0$
- Define the "v-function" $f_v(\cdot)$ such that $f_v(\rho^0) = \mathcal{V}_{\rho^0}$, where

$$-\ \mathcal{V}_{\boldsymbol{\rho}^o} = \begin{cases} \{ \boldsymbol{r} \in \mathcal{P}_n : r_{o_m^0} = 1, r_{o_{m\pm k}^0} \in \{2k, 2k+1\}, k=1,...,m-1\}, & \text{if n is odd} \\ \{ \boldsymbol{r} \in \mathcal{P}_n : \{r_{o_{m-k}^0}, r_{o_{m+k+1}^0}\} \in \{2k+1, 2k+2\}, k=0,...,m\}, & \text{if n is even} \end{cases}$$

2 Theorems and Lemmas

2.1

Lemma 2.1.1 Given there are odd number of items, i.e. n = 2m - 1. $\forall \alpha^0 \in (0, \infty)$,

1.
$$\mathbb{E}(R_{o_m^0}|\boldsymbol{\rho}_0,\alpha^0) = \rho_{o_m}^0 = m$$

2.
$$\forall j \in [1, m-2], j < \mathbb{E}[R_{o_j^0}|\rho^0, \alpha^0] < \mathbb{E}[R_{o_{j+1}^0}|\rho^0, \alpha^0] < m$$

3.
$$\forall j \in [m+2, 2m-1], \ m < \mathbb{E}[R_{o_{j-1}^0}|\boldsymbol{\rho}^0, \alpha^0] < \mathbb{E}[R_{o_j^0}|\boldsymbol{\rho}^0, \alpha^0] < j$$

Similarly, if n is even, i.e. $n = 2m, \forall \alpha^0 \in (0, \infty),$

1.
$$\forall j \in [1, m-1], j < \mathbb{E}[R_{o_j^0}|\boldsymbol{\rho}^0, \alpha^0] < \mathbb{E}[R_{o_{j+1}^0}|\boldsymbol{\rho}^0, \alpha^0]$$

$$2. \ \forall j \in [m+2,2m], \ \mathbb{E}[R_{o_{j-1}^0}| \pmb{\rho}^0,\alpha^0] < \mathbb{E}[R_{o_{j}^0}| \pmb{\rho}^0,\alpha^0] < j$$

Note that for both cases, it satisfies that $\forall 1 \leq j < k \leq n$ and $\forall \alpha > 0$, $\mathbb{E}[R_{o_j^0}|\boldsymbol{\rho}^0,\alpha^0] < \mathbb{E}[R_{o_i^0}|\boldsymbol{\rho}^0,\alpha^0]$

Lemma 2.1.2 As
$$N \to \infty$$
, $\frac{1}{N} \sum_{i=1}^{N} R_i^j \to \mathbb{E}[R_i | \boldsymbol{\rho}^0, \alpha^0], \forall i = 1, ..., n$

Definition 1 Given a vector of length n, i.e. $\{x_1,...,x_n\}$, the function $rank(x_1,...,x_n)$ is defined as $rank(x_1,...,x_n) = \{r_1,...,r_n\}$ such that $x_{(r_k)} = x_k$, $\forall k = 1,...,n$

Theorem 2.1.3 As
$$N \to \infty$$
, and $\forall \alpha > 0$,

$$rank(\frac{1}{N}\sum_{j=0}^{N}R_{1}^{j},...,\frac{1}{N}\sum_{j=0}^{N}R_{n}^{j}) \rightarrow rank(\mathbb{E}[R_{1}|\boldsymbol{\rho}^{0},\alpha_{0}],...,\mathbb{E}[R_{n}|\boldsymbol{\rho}^{0},\alpha_{0}]) = \boldsymbol{\rho}^{0}$$

To rephrase, as N approaches infinity, the Mallows consensus parameter ρ^0 can be inferred from the data by taking the marginal mean for each item and then apply the rank function

to these marginal means.

2.2

Theorem 2.2.1 For a function g defined on \mathcal{P}_n which can depend on ρ^0 , for any n,

$$\underset{g \in \mathcal{D}_{\boldsymbol{\rho}^0}}{\arg\min} \lim_{N \to \infty} KL(P(\boldsymbol{\rho}|\alpha^0, \boldsymbol{R}^1, ..., \boldsymbol{R}^N) || \sum_{\{i_1, ..., i_n\} \in \mathcal{P}_n} q(\tilde{\boldsymbol{\rho}}|\alpha^0, \boldsymbol{R}^1, ..., \boldsymbol{R}^N, i_1, ..., i_n) g(i_1, ..., i_n|\boldsymbol{\rho}^0)$$

$$= g^*(i_1, ..., i_n|\mathcal{V}_{\boldsymbol{\rho}^0}),$$
where

- \mathcal{D}_{ρ^0} is the set of all distributions on \mathcal{P}_n , which can depend on ρ^0
- $g^*(i_1,...,i_n|\mathcal{V}_{\boldsymbol{\rho}^0})$ is a distribution whose density is concentrated on $\boldsymbol{\rho}^0$, defined as $\begin{cases} g^*(i_1,...,i_n|\mathcal{V}_{\boldsymbol{\rho}^0}) = |\mathcal{V}_{\boldsymbol{\rho}^0}|^{-1} > 0, & \text{if } \{i_1,...,i_n\} \in \mathcal{V}_{\boldsymbol{\rho}^0}, \text{ where } |\mathcal{V}_{\boldsymbol{\rho}^0}| = \begin{cases} 2^{m-1}, & \text{if } n \text{ is odd } \\ 2^m, & \text{otherwise} \end{cases}$

That is to say, for a set of distributions g, which are defined on the space of permutation of n items \mathcal{P}_n , as the number of users $N \to \infty$, the distribution g^* that minimizes the KL-divergence between the Mallows posterior and the pseudolikelihood defined above, is a uniform distribution with its density concentrated on \mathcal{V}_{ρ^o}

2.3

For a given $N < \infty$, define $\hat{\boldsymbol{\rho}}^0$ as $rank(\frac{1}{N}\sum_{i=0}^N R_1^j,...,\frac{1}{N}\sum_{i=0}^N R_n^j)$ and $\mathcal{V}_{\hat{\boldsymbol{\rho}}^0} = f_v(\hat{\boldsymbol{\rho}}^0)$.

Theorem 2.3.1 $\exists \sigma \geq 0 \text{ and } g'(i_1,...,i_n|\mathcal{V}_{\hat{\rho}^0},\sigma) \text{ such that}$

$$KL \left(P(\boldsymbol{\rho}|\alpha^{0}, \boldsymbol{R}^{1}, ..., \boldsymbol{R}^{N}) || \sum_{\{i_{1}, ..., i_{n}\} \in \mathcal{P}_{n}} q(\tilde{\boldsymbol{\rho}}|\alpha^{0}, \boldsymbol{R}^{1}, ..., \boldsymbol{R}^{N}, i_{1}, ..., i_{n}) g^{*}(i_{1}, ..., i_{n}|\mathcal{V}_{\hat{\boldsymbol{\rho}}^{0}}) \geq KL \left(P(\boldsymbol{\rho}|\alpha^{0}, \boldsymbol{R}^{1}, ..., \boldsymbol{R}^{N}) || \sum_{\{i_{1}, ..., i_{n}\} \in \mathcal{P}_{n}} q(\tilde{\boldsymbol{\rho}}|\alpha^{0}, \boldsymbol{R}^{1}, ..., \boldsymbol{R}^{N}, i_{1}, ..., i_{n}) g'(i_{1}, ..., i_{n}|\mathcal{V}_{\hat{\boldsymbol{\rho}}^{0}}, \sigma) \right)$$

where
$$g'(i_1,...,i_n|\mathcal{V}_{\hat{\rho}^0},\sigma) = \sum_{\hat{v}\in\mathcal{V}_{\hat{\rho}^0}} \{g^*(\hat{v}|\mathcal{V}_{\hat{\rho}^0}) \int_{\mathbf{x}} \mathcal{F}_r(i_1,...,i_n|x_1,...,x_n) \prod_{i=1}^n \mathcal{N}(x_i|\hat{v}_i,\sigma) d\mathbf{x} \}, \text{ and } \mathbf{v} \in \mathcal{V}_{\hat{\rho}^0}$$

- $\hat{\boldsymbol{v}} \sim g^*(\hat{\boldsymbol{v}}|\mathcal{V}_{\hat{\boldsymbol{c}^0}})$
- $x_i \sim \mathcal{N}(x_i|\hat{v}_i, \sigma) \text{ for } i = 1, ..., n$
- $i_1, ..., i_n \sim \mathcal{F}_r(i_1, ..., i_n | x_1, ..., x_n)$, where $\mathcal{F}_r = \begin{cases} 1, & \text{if } \{i_1, ..., i_n\} = rank(x_1, ..., x_n) \\ 0, & \text{otherwise} \end{cases}$

As N is limited, ρ^0 and therefore, \mathcal{V}_{ρ^0} usually cannot be accurately inferred from the data. We can however, sample for $i_1, ..., i_n$ by sampling for each item i from a univariate Gaussian distribution centeredd on \hat{v}_i with a fixed variance σ for all items, and then obtain a ranking using the rank function. By introducing the variance, a smaller KL divergence from the Mallows posterior can be achieved.

2.4

Theorem 2.4.1 With the usage of $g'(i_1,...,i_n|\mathcal{V}_{\hat{\rho}^0},\sigma)$, the value of σ that minimizes the KL-divergence between the Mallows posterior and the resulted pseudolikelihood is

$$\sigma = \begin{cases} 0, & \text{if } \delta(\alpha^0, n, N) \leq \delta^* \\ f(\alpha^0, n, N), & \text{otherwise} \end{cases}$$

In other words, σ should be 0 when $\delta(\alpha^0, n, N) \geq \delta^*$. Beyond this point, the optimal choice of σ should be greater than 0, and it follows a function $f(\alpha^0, n, N)$.

2.5

Theorem 2.5.1 As $N \to \infty$, $\sigma = 0 \ \forall \alpha > 0$ and $n \ge 1$

3 Evidence and proofs

3.1 Evidence for Theorem 2.3.1

In **Figure** 3.2.1, for each subfigure, we calculate and plot the KL-divergences between the Mallows posterior and the pseudo-likelihood, computed with different choices of σ . The left-most point on each sub-figure corresponds to the KL-divergence when no Gausian variation is introduced, i.e. $\sigma = 0$. It can be observed that for most situations shown in the figure, the lowest KL-divergence is achieved when some level of Gaussian variation is introduced, especially as N and α^0 are relatively small. However, as N and α^0 increase, the optimal σ appears to decrease towards 0.

3.2 Evidence for Theorem 2.4.1

3.2.1 Optimal σ is determined by N, n, α^0

As shown in **Figure** 3.2.1, in each subfigure, the σ value that corresponds to the lowest KL-divergence is the optimal σ for its specific (N, n, α^0) set up. Each row of 3 figures shows a comparison of the optimal σ when one of the variables (N, n, α) changes. It can be observed that all three variables have an impact on the optimal value of σ . More specifically, the optimal choice of σ appear to decrease as N and α^0 increase, and as n decreases.

For each N, n and α^0 , we simulate 10 datasets, and for each dataset, a grid of σ values are tried out. In **Figure** 3.2.1, we plot α^0 on the x-axis, and its corresponded optimal

Figure 1: x-axis: σ , y-axis: KL-divergence

 σ on the y-axis. It can be observed that when α^0 and N are large, and n is small, all

 σ values result in small KL-divergence. To simplify, in these situations, we can safely set $\sigma=0$ to achieve small KL-divergence. As N and α^0 decreases and as n increases, optimal σ increases.

Figure 2: x-axis: α^0 , y-axis: optimal σ

3.3 using data standard deviation / n as a proxy for α^0

Under most situations, the value of α^0 is unknown, however, we can compute the marginal standard deviation of each item from the data, and normalize it by deviding it by n. The trend demonstrated in **Figure** 3.2.1 is well-preserved, as shown in **Figure** 3.3.

Figure 3: x-axis: $\alpha^0,$ y-axis: optimal σ