

Winning Space Race with Data Science

Maroof Chowdhury 30-June-2024

Outline

- Executive Summary
- · Introduction
- Methodology
- · Results
- · Conclusion
- · Appendix

Executive Summary

Summary of methodologies

- API Based Data Collection/ Data Wrangling
- EDA (Data Visualisation) & EDA SQL
- UI Based: Interactive Map with Folium & Dashboard with Plotly Dash
- Classification Based: Predictive Analysis

Summary of all results

- EDA Represented Results
- Interactivity Based Analytics
- Predictive Analysis

Our Mission

How?

- Primarily SpaceX API / Wikipedia SpaceX
- Opportunity To Save Large Cost In Adoption (\$62m vs. \$165m)

Objective

- Usage of Data Machine Learning Models
- Falcon 9 First Stage Learning Predictive Analysis To Determine Future Launch
- Let's Use Data To Make It A Success!

Methodology

How?

- Data Collection: Primarily SpaceX API / Wikipedia SpaceX
- Data Wrangling
- Exploratory Data Analysis(EDA)

With?

- SQL
- Folium
- Plotly Dash
- Classification Models (GridSearch CV/Predictive Analysis)

Data Collection

How?

- Primarily SpaceX API / Wikipedia SpaceX
- Opportunity To Save Large Cost In Adoption (\$62m vs. \$165m)

Objective

- Usage of Data Machine Learning Models
- Falcon 9 First Stage Learning Predictive Analysis To Determine Future Launch
- Let's Use Data To Make It A Success!

SpaceX API

- · Public API:
 - https://api.spacexdata.com/v4
- · Payload J SON Format
- Dictionary Based

https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/Data%2oCollection %2oAPI.ipynb

Scraping Wikipedia

Public URL:

https://en.wikipedia.org/wiki/Li st_of_Falcon_9_and_Falcon_ Heavy_launches

Requests.get() method

BeautifulSoup To Dict Keys

https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/Data %2oCollection%2owith%2oWeb %2oScraping.ipynb

Data Wrangling

- Exploratory Data Analysis (EDA)
- · Ran Against Dataset
- · Data Cleanup
- Value Mapping Against True(1)/False(0)

EDA With SQL

Examples

- Distinct Launch Sites
- Top 5 Launch Sites Starting with "CCA"
- Total Payload Mass per Carried Boosters Launched (NASA/CRS)
- · Avg. Payload Mass Carried (F9 v.1.1)
- · Failed Landing Outcomes with Details

https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/EDA%20With%20SQL %20Analysis.ipynb

EDA With Data Visualisation

Data Inputs:

Flight Number vs. Payload Mass, Flight Number vs. Launch Site, Payload Mass vs. Launch Site, Orbit vs. Success Rate, Flight Number vs. Orbit, Payload vs Orbit, and Success Yearly

Trend

EDA on Combination:

- · Bar Plots
- Scatter Plots
- · Line Plots

https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/EDA%20With%20Data %20Visualisation.ipynb

Interactive Map with Folium

Map Objects Used:

- Circles Points Of Interest Around Areas
- Markers Launch Site Locations
- Lines Distance Measurements Between 2 Coordinates

Correlations:

- Proximity To Key Locations
- Success/Failure Outcomes vs. Distance
- Location of Launch Sites vs. Outcomes

https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/LaunchSitesWithFolium.ipynb

Dashboard with Plotly Dash

Main Graphs/Plots Used:

- Pie Chart
- Scatter Plot

Correlations:

- Landing Site vs. Launch Site Success Rate
- Success vs. Launchsite vs. Payload Mass vs. Booster Version

Predictive Analysis (Classification)

Classification Models:

- Support Vector Machine
- K Nearest Neighbours
- Decision Tree
- Logistic Regression

https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/Predictive%20Analysis.ipynb

Results

- · 83% Accuracy
- · Landing Outcomes Improved Over Time
- · 1st Successful Year: 2015
- · SpaceX Utilized 4 Launch Sites

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

Launch Site Names

Launch Site Names with 'CCA'

sql select * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;											
* sqlite:///my_data1.db Done.											
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome		
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)		
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)		
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt		
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt		
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt		
4											

Total Payload Mass

sql SELECT SUM(PAYLOAD_MASS__KG_) AS TOTAL_PAYLOAD FROM SPACEXTBL WHERE PAYLOAD LIKE '%CRS%';

Out[10]: total_payload

111268

Average Payload Mass for Booster Version

sql SELECT AVG(PAYLOAD_MASS__KG_) AS AVG_PAYLOAD FROM SPACEXTBL WHERE BOOSTER_VERSION = 'F9 v1.1';

Out[11]: avg_payload

2928

First Successful Grounding Date

sql SELECT MIN(DATE) AS FIRST_SUCCESS_GP FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Success (ground pad)';

Out[13]: first_success_gp

2015-12-22

Successful Drone Ship Landing Stats

sql SELECT DISTINCT BOOSTER_VERSION FROM SPACEXTBL WHERE PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000 AND LANDING__OUTCOME = 'Success (drone ship)';

Total No. Success vs. Failure Outcomes

sql SELECT MISSION_OUTCOME, COUNT(*) AS QTY FROM SPACEXTBL GROUP BY MISSION_OUTCOME ORDER BY MISSION_OUTCOME;

Out[15]:	mission_outcome	qty
	Failure (in flight)	1
	Success	99
	Success (payload status unclear)	1

Boosters Carried vs. Max Load

sql SELECT DISTINCT BOOSTER_VERSION FROM SPACEXTBL WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTBL) ORDER BY BOOSTER_VERSION;

booster_version

F9 B5 B1048.4

F9 B5 B1048.5

F9 B5 B1049.4

F9 B5 B1049.5

F9 B5 B1049.7

F9 B5 B1051.3

F9 B5 B1051.4

F9 B5 B1051.6

F9 B5 B1056.4

F9 B5 B1058.3

F9 B5 B1060.2

F9 B5 B1060.3

2015 Launch Records

sql SELECT BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Failure (drone ship)' AND DATE_PART('YEAR', DATE) = 2015;

Out[24]: **booster_version launch_site**F9 v1.1 B1012 CCAFS LC-40

F9 v1.1 B1015 CCAFS LC-40

2010-2017 Landing Outcomes

sql SELECT LANDING__OUTCOME, COUNT(*) AS QTY FROM SPACEXTBL WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY LANDING__OUTCOME ORDER BY QTY DESC;

booster_version
F9 FT B1022
F9 FT B1026
F9 FT B1021.2
F9 FT B1031.2

Launch Sites

Launch Markers

Proximity Based Line Marker

Visual Success vs. Launch Site

Visual Success(0) vs. Failure(1) Rate

Classification Accuracy

```
[12]: parameters ={'C':[0.01,0.1,1],
                    'penalty':['12'],
                    'solver':['lbfgs']}
[13]: parameters ={"C":[0.01,0.1,1],'penalty':['12'], 'solver':['lbfgs']}# L1 Lasso L2 ridge
      lr=LogisticRegression()
       logreg_cv = GridSearchCV(estimator=lr, cv=10, param_grid=parameters)
      logreg_cv.fit(X_train, Y_train)
                  GridSearchCV
[13]: 🕨
       ▶ estimator: LogisticRegression
              ▶ LogisticRegression
      We output the GridSearchCV object for logistic regression. We display the best_parameters using the data attribute best_params_ and the accuracy on the validation data using the data attribute best_score_.
[14]: print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
      print("accuracy :",logreg_cv.best_score_)
      tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'}
      accuracy : 0.8464285714285713
```


Confusion Matrix

Mission Go/No Go?

- SpaceY Has Potential
- Future Landing Success Determination
 Bases On Further Analysis
- Data CAN be used
- More Data Needed For Greater Accuracy
- More Launches = Greater Success(and Data!)
- Machine Learning Models CAN be used

Appendix

- https://github.com/maroofc/Applied-Data-Science-Capstone-Project
- https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/spacex_dash_app.py
- https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/Data%20Collection%20API.ipynb
- https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/Data%20Wrangling.ipynb
- https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/EDA%20With%20Data%20Visualisation.ipynb
- https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/EDA%20With%20SQL%20Analysis.ipynb
- https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/LaunchSitesWithFolium.ipynb
- https://github.com/maroofc/Applied-Data-Science-Capstone-Project/blob/main/Predictive%20Analysis.ipynb
- https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches
- https://api.spacexdata.com/v4

