```
\chi^{T} = 1. Since \chi^{T} = 1. Since \chi^{T} = 1 = \frac{1}{2} y_{j}
 u_1 = \chi^T A y u_2 = \chi^T B y = y^T B^T \chi.
(). X; >0 => (Ay) = u = max{(Ay); | \feline{1}, 2,...m} \.
(2). Non-degenerated condition:
A two player game is called non-degenerated if no mixed
Strategy (of Support Size k) has more than k Pure
best responses. A example of degenerate: A= [0 -1 0]
                  Strategy 3rd column has
                   two best responses.
 Proposition: In any non-degenerated game, every NE
 (x*, y*) have supports of equal size.
Algorithm: Equilibria by Support enumeration.
Input: non-degenerat game
Output: Nash equilibrium.
(1) f k = [1, 2, ..., min\{m,n\}].
   and each pair (I, I) of k-sized subsets
```

$\{1,2,\dots,m\}$ $\{1,2,\dots,n\}$.
of S, and Sr respectively.
Solve equations: $\sum_{i \in I} x_i b_{ij} = V \forall j \in J, \sum_i x_i = 1.$
$ \frac{\sum_{j \in J} a_{ij} y_j = u \forall i \in J, \sum_{j} y_j = 1. $
x > 0, y > 0
find feasible solutions.
Polytope: affine combination: $Z_1, Z_2, \dots Z_k \in \mathbb{R}^d$. Sum of the wefficients equals to I . $Z_1, Z_2, \dots Z_k \in \mathbb{R}^d$. $Z_1, Z_2, \dots Z_k \in \mathbb{R}^d$.
Convex combination: if \(\cappa_i\) also ≥ 0.
Convex Set means all convex combinations are
in the Set.
affinely independent. Z. Zr Zx ERd is
if no Zi is affine combination of others.
Convex set's dimension: d'if and only if
convex set 's dimension: d'if and only if

Polyhedron: PERd is a set {ZERd CZEQ}
Polyhedron: P = R is a set { Z \in R C \in Set} Convex set. for some matrix C and vector q.
full dimension (d. dimensions).
if the Polyhedium is bounded, we call it Polytope.
Face: of $P: \{Z \in P \mid C^{T}Z = q_{o}\}\$ for some $C \in \mathbb{R}^{d}$, $q_{o} \in \mathbb{R}$. hyperplane. remaining is $C^{T}Z \leq q_{o}$.
Vertex: of P is unique element of a zero-dimensional
face of P. Edge: vf P
Facet: of P face of dimension d-1 (i.e. one dimension less)