Formally Real Fields

Sebastian Troncoso

Birmingham-Southern College

May 7, 2018

First, let's recall the definition of a field.

First, let's recall the definition of a field.

Definition

A **field** F is a set, along with two operations defined on the set: an addition and a multiplication such that (F, +) and (F^*, \cdot) are abelian groups and distributivity law holds in F.

First, let's recall the definition of a field.

Definition

A **field** F is a set, along with two operations defined on the set: an addition and a multiplication such that (F, +) and (F^*, \cdot) are abelian groups and distributivity law holds in F.

Classical examples are:

- Q
- ullet \mathbb{R}
- C

First, let's recall the definition of a field.

Definition

A **field** F is a set, along with two operations defined on the set: an addition and a multiplication such that (F, +) and (F^*, \cdot) are abelian groups and distributivity law holds in F.

Classical examples are:

- Q
- R
- C
- $\mathbb{Q}(\sqrt{2}) = \{x \in \mathbb{R} \mid x = a + b\sqrt{2} \quad a, b \in \mathbb{Q}\}$

Definition

Informally, a formally real field (also called ordered field) is a field with a linear order such that the operations of the fields are preserved *i.e.*

$$x \le y \Longrightarrow x + z \le y + z$$

 $x \le y \text{ and } 0 \le z \Longrightarrow xz \le yz.$

Definition

Informally, a formally real field (also called ordered field) is a field with a linear order such that the operations of the fields are preserved *i.e.*

$$x \le y \Longrightarrow x + z \le y + z$$

$$x \le y \text{ and } 0 \le z \Longrightarrow xz \le yz.$$

Definition

Let F be a field. An **ordering** \leq of F is a binary relation satisfying

- a ≤ a
- $a \le b, b \le c \Longrightarrow a \le c$
- \bullet $a \leq b$ or $b \leq a$
- $a < b \Longrightarrow a + c < b + c$
- **o** $0 < a, 0 < b \implies 0 < ab$

Example

Example

 $\mathbb Q$ and $\mathbb R$ are ordered fields with their usual orderings.

Example

Example

 $\mathbb Q$ and $\mathbb R$ are ordered fields with their usual orderings.

Example

Any field F such that $\mathbb{Q} \subset F \subset \mathbb{R}$ with the usual ordering is a ordered field.

Example

Example

 $\mathbb Q$ and $\mathbb R$ are ordered fields with their usual orderings.

Example

Any field F such that $\mathbb{Q} \subset F \subset \mathbb{R}$ with the usual ordering is a ordered field.

For instance, $\mathbb{Q}(\sqrt{2})$

Let F be a ordered field and consider the set of positive numbers, $P = \{a \in F \mid 0 \le a\}$ then P satisfies the following axioms

Let F be a ordered field and consider the set of positive numbers, $P = \{a \in F \mid 0 \le a\}$ then P satisfies the following axioms

- $P+P\subset P$
- $P \cdot P \subset P$
- **③** $P \cap -P = \{0\}$
- $P \cup -P = F$

where $-P = \{-a \in F \mid a \in P\} = \{b \in F \mid 0 \ge b\}.$

Let F be a ordered field and consider the set of positive numbers, $P = \{a \in F \mid 0 \le a\}$ then P satisfies the following axioms

- \bullet $P+P\subset P$
- $P \cdot P \subset P$
- **③** $P \cap -P = \{0\}$
- $P \cup -P = F$

where
$$-P = \{-a \in F \mid a \in P\} = \{b \in F \mid 0 \ge b\}.$$

If a > 0 then

Let F be a ordered field and consider the set of positive numbers, $P = \{a \in F \mid 0 \le a\}$ then P satisfies the following axioms

- \bullet $P+P\subset P$
- $P \cdot P \subset P$
- **③** $P \cap -P = \{0\}$
- $P \cup -P = F$

where $-P = \{-a \in F \mid a \in P\} = \{b \in F \mid 0 \ge b\}.$

If a > 0 then

$$a + (-a) \ge 0 + (-a)$$
$$0 \ge -a$$

Definition

Let F be a field and $P \subset F$. We say that P is a **positive cone** if such that P satisfies the following axioms

- \bullet $P+P\subset P$
- $P \cdot P \subset P$
- **③** $P \cap -P = \{0\}$
- $P \cup -P = F$

where $-P = \{-a \in F \mid a \in P\}$.

Definition

Let F be a field and $P \subset F$. We say that P is a **positive cone** if such that P satisfies the following axioms

- $P \cdot P \subset P$
- **③** $P \cap -P = \{0\}$
- $P \cup -P = F$

where $-P = \{-a \in F \mid a \in P\}$.

On the previous slide, we saw that given an order we can naturally construct a positive cone given by the positive numbers.

Definition

Let F be a field and $P \subset F$. We say that P is a **positive cone** if such that P satisfies the following axioms

- $P \cdot P \subset P$
- **③** $P \cap -P = \{0\}$
- $P \cup -P = F$

where $-P = \{-a \in F \mid a \in P\}$.

On the previous slide, we saw that given an order we can naturally construct a positive cone given by the positive numbers.

Conversely, if P is a positive cone then

$$a \leq b \iff b-a \in P_{\text{constant}} \text{ for all } b \in \mathbb{R}$$

Definition

Let F be a field and $P \subset F$. We say that P is a **positive cone** if such that P satisfies the following axioms

- $P \cdot P \subset P$
- **③** $P \cap -P = \{0\}$
- $P \cup -P = F$

where $-P = \{-a \in F \mid a \in P\}$.

On the previous slide, we saw that given an order we can naturally construct a positive cone given by the positive numbers.

Conversely, if P is a positive cone then

$$a \leq b \iff b-a \in P_{\text{constant}} \text{ for all } b \in \mathbb{R}$$

Lemma

Let F be a ordered field. Then

- **2** $0 \le 1$ and $-1 \le 0$.

Lemma

Let F be a ordered field. Then

- **2** $0 \le 1$ and $-1 \le 0$.

Proof

ODNE.

Lemma

Let F be a ordered field. Then

- ② $0 \le 1$ and $-1 \le 0$.
- 3 $0 \le a^2$ for every $a \in F$.

Proof

- DONE.
- ② If $1 \le 0$ then $0 \le -1$. Hence $0 \le (-1)^2 = 1$ which is a contradiction since the only element which is positive and negative at the same time is 0.

Lemma

Let F be a ordered field. Then

- **2** $0 \le 1$ and $-1 \le 0$.
- 3 $0 \le a^2$ for every $a \in F$.

Proof

- DONE.
- ② If $1 \le 0$ then $0 \le -1$. Hence $0 \le (-1)^2 = 1$ which is a contradiction since the only element which is positive and negative at the same time is 0.
- If $0 \le a$ then $0 \le a^2$ by definition of order. If $a \le 0$ then $0 \le -a$. Hence, $0 \le (-a)^2 = a^2$ by definition of order.

Nonexample

Example

 \mathbb{C} is **NOT** an ordered field because $i^2 = -1$.

8 / 9

Nonexample

Example

 \mathbb{C} is **NOT** an ordered field because $i^2 = -1$.

Example

From a previous talk we know that \mathbb{Z}_p is a field when p is a prime number. \mathbb{Z}_p is **NOT** an ordered field because

$$p-1 = 1 + 1 + \ldots + 1 \ge 0$$

= -1 < 0

THANK YOU