〈Debugging Simulation 결과 정리〉

- 1월 28일 Version

(What TO DO)

: Moodie el al paper Simulation 결과가 재현 가능한지 확인

⟨Result⟩

- : 재현 가능함을 확인
- : N=500, REPL=1000일 때

[Moodie et al Paper Result]

Method	n	Both models correct				Only propensity score correct				Only outcome model correct			
		Bias	rMSE	SE/MCSE	Cover	Bias	rMSE	SE/MCSE	Cover	Bias	rMSE	SE/MCSE	Cover
SR weighting	500	0.00	0.34	0.97	94.30	0.01	0.15	1.00	94.70	2.31	2.32	1.00	0.00
DR weighting	500	0.00	0.15	1.01	95.10	0.01	0.15	1.00	94.50	0.00	0.14	1.03	95.20

[My Result]

```
print(ATT_1_performance)
                           → ATT_1_performance: "Both models correct" Scenario일
          Bias rMSE
                           때 각 추정량들의 Performance
# IPW 0.008257323 0.3293894
# DR 0.001075854 0.1501247
print(ATT_2_performance)
                           → ATT_2_performance: "Only PS model correct" Scenario
        Bias rMSE
                           일 때 각 추정량들의 Performance
# IPW 0.0005018005 0.1525637
# DR 0.0006872415 0.1538860
print(ATT_3_performance)
                           → ATT_3_performance : "Only Outcome model correct"
          Bias rMSE
                           Scenario일 때 각 추정량들의 Performance
# IPW 2.2997388986 2.3120628
# DR 0.0007197717 0.1503544
```

* 추가로 진행해본 부분

- (1) Moodie et al Paper와 다르게 weight를 변경해본 결과
- : Moodie et al Paper에서는 부여되는 weight가 원인변수의 값에 상관없이 "ps / (1-ps)"이었다. weight 를 SMWR로 변경

- (2) Moodie et al Paper에 제시된 SR weighting 추정량 대신 <u>기존에 사용했던 IPW ATT 추정량 사용 (+ Weight 변경 유지)</u>
- : Paper에 제시된 SR Weighting ATT 추정량은 $(\sum_{i=1}^n \left(A_i-(1-A_i)w_i\right)Y_i) / \sum_{i=1}^n A_i$ 기존에 사용한 추정량은 $(\sum_i \hat{w_i}A_iY_i / \sum_i \hat{w_i}A_i) (\sum_i \hat{w_i}(1-A_i)Y_i / \sum_i \hat{w_i}(1-A_i))$

```
### weight and estimator changed -----
print(ATT_1_performance)
                                      → 결과가 위 Paper에 제시된 결과와 크게 다르지 않음을
          Bias rMSE
# IPW 0.004404665 0.2920569
                                      확인
# DR 0.001075854 0.1501247
print(ATT_2_performance)
           Bias
                    rMSE
# IPW 0.0007040728 0.1665368
# DR 0.0006872415 0.1538860
print(ATT_3_performance)
           Bias
                  rMSE
# IPW 2.2997388990 2.3120628
# DR 0.0007197717 0.1503544
```

(3) (2)에서는 추정량을 Hardcoding 하였음. 이를 "Im" 이용한 원래 code로 변경 (+weight 변경은 유지)

```
### Estimator using lm ------
print(ATT_1_performance)
# Bias rMSE
# IPW 0.004404665 0.2920569
# DR 0.001075854 0.1501247

print(ATT_2_performance)
# Bias rMSE
# IPW 0.0007040728 0.1665368
# DR 0.0006872415 0.1538860

print(ATT_3_performance)
# Bias rMSE
# IPW 2.2997388990 2.3120628
# DR 0.0007197717 0.1503544
```

- (4) Moodie et al Paper에서 Exposure ratio는 0.43 정도였다. <u>Exposure ratio를 줄여봄</u>(+ 기존 변경은 유지)
- : Exposure ratio를 0.16 정도로 줄여봄.

```
### Exposure ratio change -----
                                       → Exposure ratio가 낮아짐으로써 전체적으로 Bias와
### al<-c(-2,0.1) / Exposure ratio = 0.16
print(ATT_1_performance)
                                       rMSE가 커졌다.
          Bias
# IPW 0.008185125 0.2778447
# DR 0.001340435 0.2123651
                                       → PS model이 correctly specified 되지 않은 Scenario
print(ATT_2_performance)
                                       3에서의 Bias와 rMSE가 줄어든 점이 눈에 띈다.
          Bias rMSE
# IPW 0.005427357 0.2311409
# DR 0.001663708 0.2155823
print(ATT_3_performance)
          Bias rMSE
# IPW 0.846153008 0.8943000
# DR 0.001378037 0.2124545
```