第十章

跨时期选择

人们经常会收到的收入是一次性的,*例如*. 每月薪水。 这种一次性收入如何在余下时期进行分配? (现在储蓄以后消费)

或者如何通过借贷来进行即期消费并以月末收入来进行偿还?

仅考虑两期;第1、2期 令r表示每期的利率。

终值

例如, 假如r = 0.1 那么当期储蓄 \$100 在第2期末就会 变成\$110。

现在储蓄1美元所获得的下期价值称为1美元的终值。

给定利率r,\$m将来一期的终值为

$$FV = m(1+r).$$

现值

Q:那么为了下期得到\$1,那么现在要储蓄多少钱?

A: 现期储蓄\$m下期将会变成 \$m(1+r), 因此我们想得到

满足如下方程的m值

$$m(1+r)=1$$

也即, m = 1/(1+r), 在下期得到\$1的现值。

下期得到\$m的现值为:

$$PV = \frac{m}{1+r}.$$

跨时期选择问题

m₁和 m₂分别表示消费者在第1、2期得到的收入 c₁ 和 c₂ 分别表示消费者在第1、2期的消费 p₁ 和 p₂ 分别表示消费品在第1、2期的价格

跨时期选择问题

跨时期选择问题:

给定收入水平 m_1 和 m_2 ,和消费品价格 p_1 和 p_2 ,什么是最优的跨期消费束 (c_1 , c_2)?

为了得到答案我们需要知道:

- 跨期预算约束
- 跨期消费偏好

起初,我们不考虑价格因素的影响,假定 $p_1 = p_2 = 1 .

假设消费者既不储蓄也不借贷。

Q: 消费者在第1期将消费多少?

A: $c_1 = m_1$.

Q:消费者在第2期将消费多少?

A: $c_2 = m_2$.

现在假设消费者第1期不消费;即, $c_1 = 0$ 消费者的储蓄额为:

 $s_1 = m_1$

利率水平为r。

消费者第2的消费水平为多少?

第2期的收入为 m₂. 第1期的储蓄所得本息和为: (1+r)m₁. 因此第2期可供消费者支配的收入为:

 $m_2 + (1 + r)m_1$

因此第2期的消费额为:

$$c_2 = m_2 + (1+r)m_1$$

现在假设消费者在第1期消费掉所有可能获得的收入,因此 $c_2 = 0$ 。

如果消费者以第2期的收入\$m₂偿还,他在第一期最多可以借到多少资金?

令b₁表示消费者在第1期所借到的资金金额。

在第2期的收入仅有 $$m_2$ 来偿还在第1期所借负债 $$b_1$

因此
$$b_1(1+r)=m_2$$
.

$$b_1 = m_2 / (1 + r)$$
.

所以第1期的最高消费水平为:

$$c_1 = m_1 + \frac{m_2}{1+r}$$

假定第1期消费掉 c_1 单位商品,其成本为 s_1 ,因此储蓄额为 m_1 - c_1 。第2期的消费将是

也即
$$\mathbf{c}_2 = \mathbf{m}_2 + (1+r)(\mathbf{m}_1 - \mathbf{c}_1)$$
 也即 $\mathbf{c}_2 = -(1+r)\mathbf{c}_1 + \mathbf{m}_2 + (1+r)\mathbf{m}_1$. 斜率 截距

$$(1+r)c_1 + c_2 = (1+r)m_1 + m_2$$

为预算约束的终值形式,因其所有项都是在第**2**期的值。 它等价于

 $c_1 + \frac{c_2}{1+r} = m_1 + \frac{m_2}{1+r}$

为预算约束的现值形式,因其所有项都是在第1期的值。

现在把第1、2期的价格因素 p_1 和 p_2 加进来分析。这会对预算约束有什么影响?

给定消费者禀赋(m₁,m₂)和价格水平p₁, p2 消费者将会选择怎样的跨期消费束 (c_1^*, c_2^*) ? 第2期的最大可能消费额为 $m_2 + (1+r)m_1$ 第2期的最大可能消费量为 $m_2 + (1+r)m_1$

类似地,第1期的最大可能消费额为

$$m_1 + \frac{m_2}{1+r}$$

1期最大可能消费量为

$$c_1 = \frac{m_1 + m_2 / (1+r)}{p_1}.$$

最终, 消费者在第1期消费 c_1 单位的商品,其在第1期的消费额为 p_1c_1 , 第1期储蓄额为 $m_1 - p_1c_1$. 第2期的可支配收入为 $m_2 + (1+r)(m_1 - p_1c_1)$ 因此

 $p_2c_2 = m_2 + (1+r)(m_1 - p_1c_1).$

$$p_2c_2 = m_2 + (1+r)(m_1 - p_1c_1)$$

也即

$$(1+r)p_1c_1+p_2c_2=(1+r)m_1+m_2.$$

这是预算约束的终值形式,因其所有项都是第2期价值来表示。等价的现值形式为

$$p_1c_1 + \frac{p_2}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

所有项都以第1期价值来表示

通货膨胀

假定通货膨胀率为π 所以

$$p_1(1+\pi) = p_2.$$

例如,

 $\pi = 0.2$ 表示 20%的通胀率,

 $\pi = 1.0$ 表示 100%的通胀率。

通货膨胀

假定 p_1 =1,因此 p_2 =1+ π . 重新编写预算约束,即

$$\begin{aligned} p_1 c_1 + \frac{p_2}{1+r} c_2 &= m_1 + \frac{m_2}{1+r} \\ c_1 + \frac{1+\pi}{1+r} c_2 &= m_1 + \frac{m_2}{1+r} \end{aligned}$$

因此跨期预算约束线的斜率为

$$-\frac{1+r}{1+\pi}$$

通货膨胀

假设没有通货膨胀 $(p_1=p_2=1)$ 预算约束线的斜率为-(1+r).

在有通货膨胀的情况下, 预算约束线的斜率为- $(1+r)/(1+\pi)$. 可用如下形式来表示

$$-(1+\rho) = -\frac{1+r}{1+\pi}$$

ρ为实际利率。得

$$\rho = \frac{\mathbf{r} - \pi}{1 + \pi}.$$

对于低的通胀率 $(\pi \approx 0), \rho \approx r - \pi$.

预算约束的斜率为

$$-(1+\rho)=-\frac{1+r}{1+\pi}.$$

如果r下降或者通胀率 π上升,预算约束线变得更加平缓 (二者都降低实际利率)

证券评估

金融证券是指承诺给予现金收入流的金融工具。

例如:一种证券支付如下 第一年末支付\$m₁, 第二年末支付\$m₂, 第三年末支付\$m₃。

购买此证券现在最多需要支付多少?

证券评估

第一年末支付
$$\mathbf{m}_1$$
 的现值为 $\mathbf{m}_1/(1+r)$ 第二年末支付 \mathbf{m}_2 的现值为 $\mathbf{m}_2/(1+r)^2$ 第三年末支付 \mathbf{m}_3 的现值为 $\mathbf{m}_3/(1+r)^3$ 证券的现值为 $\mathbf{m}_1/(1+r)+\mathbf{m}_2/(1+r)^2+\mathbf{m}_3/(1+r)^3$.

债券评估

债券是指一种在T年(它的到期日)内支付固定数额\$x并在到期日支付面值\$F的特殊证券。

现在购买此债券最多需要支付多少?

债券评估

End of Year	1	2	3		T-1	T
Income Paid	\$x	\$x	\$x	\$x	\$x	\$F
Present -Value	$\frac{\$x}{1+r}$	$\frac{\$x}{(1+r)^2}$	$\frac{\$x}{(1+r)^3}$	•••	$\frac{\$x}{(1+r)^{T-1}}$	$\frac{\$F}{(1+r)^{T}}$

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + \dots + \frac{x}{(1+r)^{T-1}} + \frac{F}{(1+r)^T}.$$

水久债券是指该债券没有到期日,且每年支付收益\$x。

那么永久债券的现值为多少?

End of Year	1	2	3		t	
Income Paid	\$x	\$x	\$x	\$x	\$x	\$x
Present -Value	\$x 1+r	$\frac{\$x}{(1+r)^2}$	$\frac{\$x}{(1+r)^3}$	•••	$\frac{\$x}{(1+r)^{t}}$	•••

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + ... + \frac{x}{(1+r)^t} +$$

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + \frac{x}{(1+r)^3} + \dots$$

$$= \frac{1}{1+r} \left[x + \frac{x}{1+r} + \frac{x}{(1+r)^2} + \dots \right]$$

$$=\frac{1}{1+r}[x+PV].$$

现值公式为
$$PV = \frac{X}{r}$$
.

例如,假设利率固定且 r = 0.1,购买一个每年支付\$1000的永久债券最多需要支付多少?

$$PV = \frac{x}{r} = \frac{\$1000}{0 \cdot 1} = \$10,000.$$