MATH 259: Homework #1

Jesse Farmer

04 April 2005

1. Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

p is irreducible by Eisenstein's theorem. Note that $1 + \theta$ is a root of

$$p(1-x) = (1-x)^3 + 9(1-x) + 6 = x^3 - 3x^2 + 12x - 4$$

Therefore, by Example 5 on pp. 516, it follows that

$$(1+\theta)^{-1} = \frac{(\theta+1)^2 - 3(\theta+1) + 12}{4} = \frac{\theta^2 + \theta - 10}{4}$$

2. Show that $x^3 - 2x - 2$ is irreducible over \mathbb{Q} and let θ be a root. Compute $(1 + \theta)(1 + \theta + \theta^2)$ and $\frac{1 + \theta}{1 + \theta + \theta^2}$ in $\mathbb{Q}(\theta)$.

Let $p(x) = x^3 - 2x - 2$. Since deg p = 3, it is reducible if and only if it has a rational root, but neither $\pm 2, \pm 1$ are roots. So, by the rational roots theorem p has no roots and is therefore irreducible. Any root θ of p satisfies $\theta^3 = 2\theta + 2$, so

$$(1+\theta)(1+\theta+\theta^2) = 1 + 2\theta + 2\theta^2 + \theta^3 = 3 + 4\theta + 2\theta^2$$

3. Prove directly that the map $a + b\sqrt{2} \mapsto a - b\sqrt{2}$ is an isomorphism of $\mathbb{Q}(\sqrt{2})$.

This map is a bijection since it is its own left and right inverse. Denote this map by φ , then

$$\varphi(a+b+(c+d)\sqrt{2}) = a+b-(c+d)\sqrt{2} = a-c\sqrt{2}+b-d\sqrt{2} = \varphi(a+b\sqrt{2}) + \varphi(c+d\sqrt{2})$$

and

$$\varphi(ac + 2bd + (ad + bc)\sqrt{2}) = ac + 2bc - (ad + bc)\sqrt{2} = (a - b\sqrt{2})(c - d\sqrt{2}) = \varphi(a + b\sqrt{2})\varphi(c + d\sqrt{2})$$

Therefore φ is, indeed, an isomorphism.

4. Show that if α is a root of $a_n x^n + \cdots + a_1 x + a_0$ then $a_n \alpha$ is a root of the monic polynomial $x^n + a_{n-1} x^{n-1} + a_n a_{n-2} x^{n-2} + \cdots + a_n^{n-2} a_1 x + a_n^{n-1} a_0$.

Let the latter polynomial be denoted by f(x) and the former by g(x) then

$$f(a_n\alpha) = (a_n\alpha)^n + \sum_{i=0}^{n-1} a_n^{n-1-i} a_i (a_n\alpha)^i = a_n^n \alpha^n + \sum_{i=0}^{n-1} a_n^{n-1} a_i \alpha^i = a_n^{n-1} g(\alpha) = 0$$

5. Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K containing F is either K or F.

1

In this case, $F \subset E \subset K$. Let [K : F] = p be prime, and [K : E] = n, [E : F] = m. Then we know that p = mn, which implies that either m = 1 or n = 1, i.e., either K = E or F = E.

- 6. Prove that if $[F(\alpha):F]$ is odd then $F(\alpha)=F(\alpha^2)$. $\alpha^2 \in F(\alpha)$, so $F(\alpha^2)$ is a field extension of $F(\alpha)$. Hence we have $F \subset F(\alpha^2) \subset F(\alpha)$. Then if $[F:F(\alpha)]$ is odd both $[F(\alpha):F(\alpha^2)]$ and $[F(\alpha^2):F]$ must be odd. Assume for contradiction that $\alpha \notin F(\alpha^2)$. Then the polynomial $x^2 - \alpha^2$ is irreducible over $F(\alpha^2)$, and is therefore the minimal polynomial for α over $F(\alpha)^2$. However, this implies that $[F(\alpha):F(\alpha^2)]=2$, contradicting the fact that $[F(\alpha):F]$ is odd. Hence $\alpha \in F(\alpha^2)$, and $F(\alpha^2) = F(\alpha)$.
- 7. Determine the degree of $\mathbb{Q}(\sqrt{3+2\sqrt{2}})$ over \mathbb{Q} . Note that $(1+\sqrt{2})^2=3+2\sqrt{2}$, so that $\sqrt{3+2\sqrt{2}}=1+\sqrt{2}$. This has a minimal polynomial of degree two, viz., x^2-2x-1 , so $\mathbb{Q}(\sqrt{3+2\sqrt{2}})$ has degree 2 over \mathbb{Q} .
- 8. Suppose $F = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $1 \leq i \leq n$. Prove that $\sqrt[3]{2} \notin F$. If $\sqrt[3]{2} \in F$ then $\mathbb{Q}(\sqrt[3]{2})$ would be a subfield of F. However $[F : \mathbb{Q}]$ is a power of 2, since, if any minimal polynomial over \mathbb{Q} becomes reduced in once of the larger field extensions, its degree would simply become 1. This is a contradiction since $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$ and certainly cannot divide any power of 2.
- 9. Let f be an irreducible polynomial of degree n over a field F and $g \in F[x]$. Prove that every irreducible factor of the composite polynomial $f \circ g$ has degree divisible by n.

Let α be any root of $f \circ g$ (in its splitting field, say). It is sufficient to prove that $[F(\alpha):F]$ is divisible by n for all such α . Since f is irreducible and $g(\alpha)$ is a root of f, it follows that $[F((g(\alpha)):F]=n]$. But $F(g(\alpha))$ is a subfield of $F(\alpha)$, and hence $n \mid [F(\alpha):F]$ since

$$[F(\alpha):F] = [F(\alpha):F(g(\alpha))] \cdot [F(g(\alpha)):F]$$

10. Let E/F be a field extension and $\alpha_i \in E$ algebraic over F for $1 \le i \le n$. Show that

$$[F(\alpha_1,\ldots,\alpha_n):F] \leq \prod_{i=1}^n m_i$$

where m_i is the degree of the minimal polynomial of α_i over F.

We can write

$$[F(\alpha_1,\ldots,\alpha_n):F]=\prod_{i=1}^n[F(\alpha_1,\ldots,\alpha_i):F(\alpha_1,\ldots,\alpha_{i-1})]$$

where $F(\alpha_0)$ is defined as F. Each $[F(\alpha_1, \ldots, \alpha_i) : F(\alpha_1, \ldots, \alpha_{i-1})]$ is bounded by m_i , since α_i has a minimal polynomial of degree m_i over F, and so that same polynomial has α_i as a root when its coefficients are in $F(\alpha_1, \ldots, \alpha_{i-1})$. It could, of course, be the case that what was the minimal polynomial is now reducible over $F(\alpha_1, \ldots, \alpha_{i-1})$, which is why strict equality might not hold. The inequality follows immediately.

11. Suppose [E:F]=p, where p is a prime. Show that for every $\alpha \in E \setminus F$, $E=F(\alpha)$. Let $\alpha \in E \setminus F$, then $F \subset F(\alpha) \subset E$. Note that it is sufficient to show that $[E:F(\alpha)]=1$, since

any finite extension is algebraic and hence is an extension by an element with degree 1. If [E:F] is prime, then $[E:F(\alpha)][F(\alpha):F]$ is also prime. Since $\alpha \notin F$, F is strictly contained in F, and hence $[E:F(\alpha)]=1$, so that $E=F(\alpha)$.

- 12. Let [E:F] = n and $\alpha \in E$. Show that $\deg f \mid n$ where f is the minimal polynomial of α over F. Note that $F(\alpha) \subset E$ since $\alpha \in E$. Then $[F(\alpha):F] = \deg f$, and therefore $n = m \cdot \deg f$, where $m = [E:F(\alpha)]$.
- 13. Let $E = F(\alpha)$ where α is algebraic over F. Let F' be a subfield of E contained in F, and let g be the minimal polynomial of α over F', and f the minimal polynomial of α over F. Let [E:F] = n and $m = \deg g$. Show that f = gh for some $h \in F'[x]$ and n is a multiple of m.

We can treat f as a polynomial in F'[x] since $F \subset F'$. It follows then that there exists some h such that f = gh + r where $\deg r < \deg g$. Since $f(\alpha) = g(\alpha) = 0$, it follows that $r(\alpha) = 0$. But as g is the minimal polynomial of α over F', r must be identically 0, and hence f = gh. That n is a multiple of m follows from the equality n = [E : F] = [E : F'][F' : E] = m[F' : E].

- 14. Let E/F be a field extension and $\alpha \in E$ be algebraic over F. Let F' be a subfield of E contained in F. Let $f \in F[x]$ be an irreducible polynomial such that $f(\alpha) = 0$ and $\deg f = n$. Show that f is irreducible in F'[x] if and only if $[F'(\alpha) : F'] = n$.
 - Let g be the minimal polynomial of α over F'. Then $[F'(\alpha):F']=\deg g$. If f is irreducible over F', then $f=c\cdot g$ for some constant $c\in F'^*$, so that $\deg f=\deg g=n$. Conversely, if $[F'(\alpha):F']=n$, then $\deg g=n$. If f were reducible over F' then there would exist an irreducible polynomial of degree less than n with α as a root, contradicting the minimality of g.
- 15. Let F, F', E be subfields of a field L. Suppose [E : F] = n and $F \subset F'$ with [F' : F] = m. Suppose m, n are relatively prime. Let EF' = F'E denote the subfield of L generated by $F' \cup E$. Show that [F'E : F] = mn. Compute [F'E : F'].

Write $F' = F(\beta_1, \dots, \beta_s)$ and $E = F(\alpha_1, \dots, \alpha_r)$. Then

$$EF' = F(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s)$$

. In particular one sees that,

$$[F(\alpha_1,\ldots,\alpha_r,\beta_1,\ldots,\beta_{s-i}):F(\alpha_1,\ldots,\alpha_r,\beta_1,\ldots,\beta_{s-i-1})] \leq [F(\beta_1,\ldots,\beta_{s-i}):F(\beta_1,\ldots,\beta_{s-i-1})]$$

This is because any polynomial irreducible over $F(\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_{s-i-1})$] is certainly irreducible over $F(\beta_1, \ldots, \beta_{s-i-1})$. However, as previously, the product of all the elements on the left-hand side of the inequality is equal to [EF': E], while the product of those on the right-hand side is equal to [F': F] = m. Hence $[EF': F] = [EF': E][E: F] \leq mn$. Writing

$$[EF':F] = [EF':E][E:F] = [EF':F'][F':F] \\$$

shows that both m and n divide [EF':F]. Since m and n are relatively prime it follows that $mn \mid [EF':F]$, and therefore that [EF:F] = mn. It follows that [EF':F'] = n and [EF':E] = m.

- 16. In the above, let $E = F(\alpha)$ and [E : F] = n. Let $f \in F[x]$ be the minimal polynomial of α over F. Show that f is irreducible over F'.
 - In this case, $EF' = F'(\alpha)$, and from a previous problem we know f is irreducible over F' if and only if $[F'(\alpha):F] = n$. But as [F':F] is relatively prime to n by hypothesis, exactly that follows from the previous problem. Hence f is irreducible over F'.
- 17. Let $E = F(\alpha)$ be a subfield of L and F' a subfield of L such that $F \subset F'$ with [F' : F] = 2. Let $f \in F[x]$ be an irreducible sextic with $f(\alpha) = 0$. Show that f is irreducible over F' or f is a product of irreducible cubics in F'[x].