Multiple orthogonal polynomials associated with Macdonald functions

Walter Van Assche * Semyon B. Yakubovich † Katholieke Universiteit Leuven

Abstract

We consider multiple orthogonal polynomials corresponding to two Macdonald functions (modified Bessel functions of the second kind), with emphasis on the polynomials on the diagonal of the Hermite-Padé table. We give some properties of these polynomials: differential properties, a Rodrigues type formula and explicit formulas for the third order linear recurrence relation.

1 Macdonald functions

In this paper we will investigate certain polynomials satisfying orthogonality properties with respect to weight functions related to Macdonald functions $K_{\nu}(z)$. These Macdonald functions are modified Bessel functions of the second kind and satisfy the differential equation

$$z^2u'' + zu' - (z^2 + \nu^2)u = 0,$$

for which they are the solution that remains bounded as z tends to infinity on the real line. They can be given by the following integral representations

$$K_{\nu}(z) = \left(\frac{\pi}{2z}\right)^{1/2} \frac{e^{-z}}{\Gamma(\nu+1/2)} \int_0^\infty e^{-t} t^{\nu-1/2} (1+\frac{t}{2z})^{\nu-1/2} dt \tag{1.1}$$

$$= \frac{1}{2} \left(\frac{z}{2}\right)^{\nu} \int_{0}^{\infty} \exp(-t - \frac{z^{2}}{4t}) t^{-\nu - 1} dt \tag{1.2}$$

(see, e.g., The Bateman Manuscript Project [2, Chapter VII], Nikiforov and Uvarov [5, pp. 223–226]). Useful properties are

$$-2K'_{\nu}(z) = K_{\nu-1}(z) + K_{\nu+1}(z), \qquad (1.3)$$

$$-\frac{2\nu}{z}K_{\nu}(z) = K_{\nu-1}(z) - K_{\nu+1}(z). \tag{1.4}$$

^{*}Research Director of the Belgian National Fund for Scientific Research. Part of this work is supported by INTAS 93-219ext and FWO research project G.0278.97

[†]On leave from the Belarusian State University, Minsk. Supported by junior fellowship F/96/13 of the Research Counsel of the Katholieke Universiteit Leuven, BELGIUM

These functions have the asymptotic behavior

$$K_{\nu}(z) = \left(\frac{\pi}{2z}\right)^{1/2} e^{-z} [1 + O(1/z)], \qquad z \to \infty,$$
 (1.5)

and near the origin

$$\begin{cases} z^{\nu} K_{\nu}(z) = 2^{\nu - 1} \Gamma(\nu) + o(1) & \text{if } z \to 0 \\ K_0(z) = -\log z + O(1), & \text{if } z \to 0 \end{cases}$$
 (1.6)

The moments of these functions are given explictly by

$$\int_0^\infty x^{\mu} K_{\nu}(x) \, dx = 2^{\mu - 1} \Gamma(\frac{\mu + \nu + 1}{2}) \Gamma(\frac{\mu - \nu + 1}{2}), \qquad \Re(\mu \pm \nu + 1) > 0. \tag{1.7}$$

We will use as weight functions the scaled Macdonald functions

$$\rho_{\nu}(x) = 2x^{\nu/2} K_{\nu}(2\sqrt{x}), \qquad x > 0. \tag{1.8}$$

which behave like $\exp(-2\sqrt{x})$ as $x \to \infty$. From the properties (1.3) and (1.4) one easily obtains the differential properties

$$(x^{-\nu}\rho_{\nu})' = -x^{-(\nu+1)}\rho_{\nu+1}, \tag{1.9}$$

$$\rho_{\nu+1}' = -\rho_{\nu}, \tag{1.10}$$

so that ρ_{ν} satisfies the second order linear differential equation $[x^{\nu+1}(x^{-\nu}\rho_{\nu})']' = \rho_{\nu}$. By a simple change of variable in (1.7) we can find the moments of ρ_{ν} which are given by

$$\int_{0}^{\infty} x^{\mu} \rho_{\nu}(x) dx = \Gamma(\mu + \nu + 1) \Gamma(\mu + 1), \tag{1.11}$$

in particular we see that the *n*th moment of ρ_0 is given by $(n!)^2$.

In [8] A. P. Prudnikov formulated as an open problem the construction of the orthogonal polynomials associated with the weight function ρ_{ν} (and for more general weights, known as ultra-exponential weight functions). In the present paper we will show that it is more natural to investigate multiple orthogonal polynomials for two Macdonald weights ρ_{ν} and $\rho_{\nu+1}$ since for these multiple orthogonal polynomials one has nice differential properties, a Rodrigues formula, and an explicit recurrence relation.

2 Multiple orthogonal polynomials

We will investigate two types of multiple orthogonal polynomials for the system of weights $(\rho_{\nu}, \rho_{\nu+1})$ $(\nu \geq 0)$ on $[0, \infty)$ with an additional factor x^{α} . Let $n, m \in \mathbb{N}$ and $\alpha > -1$, then the type 1 polynomials $(A_{n,m}^{\alpha}, B_{n,m}^{\alpha})$ are such that $A_{n,m}^{\alpha}$ is of degree n and $B_{n,m}^{\alpha}$ is of degree m, and they satisfy the orthogonality conditions

$$\int_0^\infty [A_{n,m}^{\alpha}(x)\rho_{\nu}(x) + B_{n,m}^{\alpha}(x)\rho_{\nu+1}(x)]x^{k+\alpha} dx = 0, \qquad k = 0, 1, 2, \dots, n+m.$$
 (2.1)

This gives n+m+1 linear homogeneous equations for the n+m+2 unknown coefficients of the polynomials $A_{n,m}^{\alpha}$ and $B_{n,m}^{\alpha}$, so that we can find the type 1 polynomials up to a multiplicative factor, which we will fix later. It will be convenient to use the notation

$$q_{n,m}^{\alpha}(x) = A_{n,m}^{\alpha}(x)\rho_{\nu}(x) + B_{n,m}^{\alpha}(x)\rho_{\nu+1}(x).$$

Type 2 polynomials $p_{n,m}^{\alpha}$ are such that $p_{n,m}^{\alpha}$ is of degree n+m and satisfies the multiple orthogonality conditions

$$\int_0^\infty p_{n,m}^{\alpha}(x)\rho_{\nu}(x)x^{k+\alpha} dx = 0 \qquad k = 0, 1, 2, \dots, n-1,$$
 (2.2)

$$\int_0^\infty p_{n,m}^{\alpha}(x)\rho_{\nu+1}(x)x^{k+\alpha}\,dx = 0 \qquad k = 0, 1, 2, \dots, m-1.$$
 (2.3)

This means that we distribute the n+m orthogonality conditions over the two weights $x^{\alpha}\rho_{\nu}$ and $x^{\alpha}\rho_{\nu+1}$. This gives n+m linear homogeneous equations for the n+m+1 unknown coefficients of $p_{n,m}^{\alpha}$. For type 2 polynomials we will consider monic polynomials, thereby fixing the leading coefficient to be 1 and leaving n+m coefficients to be determined from (2.2)-(2.3).

Multiple orthogonal polynomials are related to Hermite-Padé simultaneous rational approximation of a system of Markov functions near infinity, (see, e.g., Nikishin and Sorokin [6] and Aptekarev [1]). In the present situation the functions to be approximated are

$$f_1(z) = \int_0^\infty \frac{x^{\alpha} \rho_{\nu}(x)}{z - x} dx, \quad f_2(z) = \int_0^\infty \frac{x^{\alpha} \rho_{\nu+1}(x)}{z - x} dx.$$

Type 1 Hermite-Padé approximation (Latin type) consists of finding polynomials $A_{n,m}$, $B_{n,m}$, and $C_{n,m}$ such that

$$A_{n,m}(z)f_1(z) + B_{n,m}(z)f_2(z) - C_{n,m}(z) = O(z^{-n-m-2})$$
 $z \to \infty$,

and type 2 Hermite-Padé approximation (German type) is simultaneous rational approximation of (f_1, f_2) with a common denominator $p_{n,m}$, i.e., one wants polynomials $p_{n,m}$, $R_{n,m}$ and $S_{n,m}$ such that

$$p_{n,m}(z)f_1(z) - R_{n,m}(z) = O(z^{-n-1}), z \to \infty,$$

 $p_{n,m}(z)f_2(z) - S_{n,m}(z) = O(z^{-m-1}), z \to \infty.$

The polynomials $A_{n,m}$, $B_{n,m}$ then are precisely the type 1 polynomials $A_{n,m}^{\alpha}$ and $B_{n,m}^{\alpha}$ and the polynomial $p_{n,m}$ is the type 2 polynomial $p_{n,m}^{\alpha}$. The numerator $C_{n,m}$ is then given by

$$C_{n,m}(z) = \int_0^\infty \left[\frac{A_{n,m}^{\alpha}(z) - A_{n,m}^{\alpha}(x)}{z - x} \rho_{\nu}(x) + \frac{B_{n,m}^{\alpha}(z) - B_{n,m}^{\alpha}(x)}{z - x} \rho_{\nu+1}(x) \right] x^{\alpha} dx,$$

and for type 2 approximation the numerators are

$$R_{n,m}(z) = \int_0^\infty \frac{p_{n,m}^{\alpha}(z) - p_{n,m}^{\alpha}(x)}{z - x} \rho_{\nu}(x) x^{\alpha} dx,$$

$$S_{n,m}(z) = \int_0^\infty \frac{p_{n,m}^{\alpha}(z) - p_{n,m}^{\alpha}(x)}{z - x} \rho_{\nu+1}(x) x^{\alpha} dx.$$

Observe that we can write the system (f_1, f_2) as

$$f_1(z) = \int_0^\infty f(x) \frac{\rho_{\nu+1}(x)x^{\alpha}}{z-x} dx, \quad f_2(z) = \int_0^\infty \frac{\rho_{\nu+1}(x)x^{\alpha}}{z-x} dx,$$

where f is itself a Markov function

$$f(x) = \frac{\rho_{\nu}(x)}{\rho_{\nu+1}(x)} = \frac{1}{\pi^2} \int_0^\infty \frac{s^{-1} ds}{(x+s)[J_{\nu+1}^2(2\sqrt{s}) + Y_{\nu+1}^2(2\sqrt{s})]},$$

which follows from a result by Ismail [3]. Note however that f is a Markov function of a positive measure for which not all the moments exist. Nevertheless we can still say that (f_1, f_2) is a Nikishin system, which guarantees that the polynomials $A_{n,m}^{\alpha}$, $B_{n,m}^{\alpha}$ and $p_{n,m}^{\alpha}$ all can be computed and their degrees are exactly n, m, and n+m respectively. Furthermore the zeros of $q_{n,n}^{\alpha}$, $q_{n+1,n}^{\alpha}$, $p_{n,n}^{\alpha}$ and $p_{n+1,n}^{\alpha}$ will all be on $(0,\infty)$.

3 Differential properties

In this section we will give some differential properties for the type 1 and type 2 multiple orthogonal polynomials. We will only consider the multiple orthogonal polynomials on the diagonal or close to the diagonal, i.e., when n = m or n = m + 1. These are the most natural and they satisfy interesting relations.

Theorem 1 For the type 2 multiple orthogonal polynomials we have for every $\alpha > -1$

$$\frac{d}{dx}p_{n,n}^{\alpha}(x) = 2np_{n,n-1}^{\alpha+1}(x), \quad \frac{d}{dx}p_{n,n-1}^{\alpha}(x) = (2n-1)p_{n-1,n-1}^{\alpha+1}(x). \tag{3.1}$$

This means that the differential operator acting on type 2 multiple orthogonal polynomials lowers the degree by one and raises the α by one. This should be compared with the corresponding differential property

$$\frac{d}{dx}L_n^{\alpha}(x) = -L_{n-1}^{\alpha+1}(x)$$

for Laguerre polynomials (see, e.g., Szegő [7, Eq. (5.1.14) on p. 102]). The normalizing constant is different here since Laguerre polynomials are not monic polynomials.

Proof: We begin by using (2.2)

$$\int_0^\infty p_{n,n}^{\alpha}(x)\rho_{\nu}(x)x^{k+\alpha} dx = 0, \qquad k = 0, 1, \dots, n-1,$$

and then use (1.10) to find

$$-\int_0^\infty p_{n,n}^{\alpha}(x)\rho_{\nu+1}'(x)x^{k+\alpha}\,dx = 0, \qquad k = 0, 1, \dots, n-1.$$

Integration by parts then gives

$$-p_{n,n}^{\alpha}(x)\rho_{nu+1}(x)x^{k+\alpha}\big|_{0}^{\infty} + \int_{0}^{\infty} \left[p_{n,n}^{\alpha}(x)x^{k+\alpha}\right]'\rho_{\nu+1}(x) dx = 0, \qquad k = 0, 1, \dots, n-1.$$

The integrated terms vanish for $k \ge 1$ and $\alpha > -1$ because of the behavior of $\rho_{\nu+1}$ near 0 and ∞ , given in (1.5) and (1.6). Now work out the differentiation of the product, then we have

$$\int_0^\infty [p_{n,n}^\alpha(x)]' x^{k+\alpha} \rho_{\nu+1}(x) dx + (k+\alpha) \int_0^\infty p_{n,n}^\alpha(x) x^{k+\alpha-1} \rho_{\nu+1}(x) dx = 0, \qquad k = 1, 2, \dots, n-1.$$

The second integral is zero for k = 1, 2, ..., n because of the orthogonality condition (2.3), hence we conclude that

$$\int_0^\infty [p_{n,n}^\alpha(x)]' x^{k+\alpha} \rho_{\nu+1}(x) \, dx = 0, \qquad k = 1, 2, \dots, n-1,$$

or equivalently

$$\int_0^\infty [p_{n,n}^\alpha(x)]' x^{\ell+\alpha+1} \rho_{\nu+1}(x) \, dx = 0, \qquad \ell = 0, 1, \dots, n-2.$$
 (3.2)

Next we do a similar analysis with (2.3), in which we use (1.9) to find

$$-\int_0^\infty p_{n,n}^{\alpha}(x)x^{k+\alpha+\nu+1}[x^{-\nu}\rho_{\nu}(x)]'dx = 0, \qquad k = 0, 1, \dots, n-1.$$

Integration by parts gives

$$-p_{n,n}^{\alpha}(x)x^{k+\alpha+1}\rho_{\nu}(x)\Big|_{0}^{\infty} + \int_{0}^{\infty} \left[p_{n,n}^{\alpha}(x)x^{k+\alpha+\nu+1}\right]'x^{-\nu}\rho_{\nu}(x) dx = 0, \qquad k = 0, 1, \dots, n-1.$$

The integrated terms vanish for $k \geq 0$ and $\alpha > -1$. Working out the derivative of the product then gives

$$\int_0^\infty [p_{n,n}^\alpha(x)]' x^{k+\alpha+1} \rho_\nu(x) \, dx$$

$$+ (k+\alpha+\nu+1) \int_0^\infty p_{n,n}^\alpha(x) x^{k+\alpha} \rho_\nu(x) \, dx = 0, \qquad k = 0, 1, \dots, n-1.$$

The second integral is zero for $k = 0, 1, \ldots, n-1$ because of the orthogonality (2.2), hence we have

$$\int_0^\infty [p_{n,n}^\alpha(x)]' x^{k+\alpha+1} \rho_\nu(x) \, dx = 0, \qquad k = 0, 1, \dots, n-1.$$
 (3.3)

Now $[p_{n,n}^{\alpha}]'$ is a polynomial of degree 2n-1 with leading coefficient 2n (since we normalized the type 2 multiple orthogonal polynomials by taking monic polynomials), and by (3.2) and (3.3) it satisfies the orthogonality conditions (2.2)–(2.3) for the type 2 multiple orthogonal polynomial $p_{n,n-1}^{\alpha+1}$. By unicity we therefore have $[p_{n,n}^{\alpha}(x)]' = 2np_{n,n-1}^{\alpha+1}(x)$. A similar reasoning also gives the result $[p_{n,n-1}^{\alpha}(x)]' = (2n-1)p_{n-1,n-1}^{\alpha+1}(x)$. Note however that the analysis does not work when $m \notin \{n, n-1\}$.

There is a similar differential property for type 1 multiple orthogonal polynomials which complements the differential property of the type 2 multiple orthogonal polynomials given in the previous theorem.

Theorem 2 For the type 1 multiple orthogonal polynomials we have for every $\alpha > 0$

$$\frac{d}{dx}[x^{\alpha}q_{n,n}^{\alpha}(x)] = x^{\alpha-1}q_{n+1,n}^{\alpha-1}(x), \quad \frac{d}{dx}[x^{\alpha}q_{n,n-1}^{\alpha}(x)] = x^{\alpha-1}q_{n,n}^{\alpha-1}(x). \tag{3.4}$$

This means that the differential operator acting on x^{α} times the type 1 polynomials raises the degree by one and lowers the α by one. This should be compared with the corresponding differential property

$$\frac{d}{dx}[e^{-x}x^{\alpha}L_n^{\alpha}(x)] = (n+1)e^{-x}x^{\alpha-1}L_{n+1}^{\alpha-1}(x)$$

for Laguerre polynomials. What we will really prove is that the derivative of $x^{\alpha}q_{n,n}^{\alpha}(x)$ is proportional to $x^{\alpha-1}q_{n+1,n}^{\alpha-1}(x)$ (and similarly for the derivative of $x^{\alpha}q_{n,n-1}^{\alpha}(x)$ which is proportional to $x^{\alpha-1}q_{n,n}^{\alpha-1}(x)$). The choice of the proportionality factor one in (3.4) will fix the normalization which was left unspecified by the homogeneous system of equations (2.1).

Proof: We begin by using (2.1), which we can write as

$$\int_0^\infty x^{\alpha} q_{n,n}^{\alpha}(x^{k+1})' dx = 0, \qquad k = 0, 1, \dots, 2n.$$

Integration by parts then gives

$$q_{n,n}^{\alpha}(x)x^{k+\alpha+1}\Big|_{0}^{\infty} - \int_{0}^{\infty} [x^{\alpha}q_{n,n}^{\alpha}(x)]'x^{k+1} dx = 0, \qquad k = 0, 1, \dots, 2n.$$

The integrated terms will vanish for every $\alpha > -1$ and $k \ge 0$. For the integrand of the integral we have

$$[x^{\alpha}q_{n,n}^{\alpha}(x)]' = [x^{\alpha}A_{n,n}^{\alpha}(x)\rho_{\nu}(x)]' + [x^{\alpha}B_{n,n}^{\alpha}(x)\rho_{\nu+1}(x)]'$$

$$= \alpha x^{\alpha-1}[A_{n,n}^{\alpha}\rho_{\nu}(x) + B_{n,n}^{\alpha}(x)\rho_{\nu+1}(x)]$$

$$+ x^{\alpha}[(A_{n,n}^{\alpha}(x))'\rho_{\nu}(x) + A_{n,n}^{\alpha}(x)\rho_{\nu}'(x)$$

$$+ (B_{n,n}^{\alpha}(x))'\rho_{\nu+1}(x) + B_{n,n}(x)\rho_{\nu+1}'(x)].$$

Now use (1.9)-(1.10) to find

$$[x^{\alpha}q_{n,n}^{\alpha}(x)]' = x^{\alpha-1}[((\alpha+\nu)A_{n,n}^{\alpha}(x) + x(A_{n,n}^{\alpha}(x))' - xB_{n,n}^{\alpha}(x))\rho_{\nu}(x) + (\alpha B_{n,n}^{\alpha}(x) - A_{n,n}^{\alpha}(x) + x(B_{n,n}^{\alpha}(x))')\rho_{\nu+1}(x)].$$

Observe that $(\alpha + \nu)A_{n,n}^{\alpha}(x) + x(A_{n,n}^{\alpha}(x))' - xB_{n,n}^{\alpha}(x)$ is a polynomial of degree at most n+1 and $\alpha B_{n,n}^{\alpha}(x) - A_{n,n}^{\alpha}(x) + x(B_{n,n}^{\alpha}(x))'$ is a polynomial of degree at most n, so that we can write

$$[x^{\alpha}q_{n,n}^{\alpha}(x)]' = x^{\alpha-1}[P_{n+1}(x)\rho_{\nu}(x) + Q_n(x)\rho_{\nu+1}(x)]$$
(3.5)

with polynomials P_{n+1} and Q_n of degree at most n+1 and n respectively. We therefore have

$$\int_0^\infty x^{\alpha-1} [P_{n+1}(x)\rho_{\nu}(x) + Q_n(x)\rho_{\nu+1}(x)] x^{k+1} dx = 0, \qquad k = 0, 1, \dots, 2n.$$

In addition to this, we also have

$$\int_0^\infty [x^\alpha q_{n,n}^\alpha(x)]' dx = x^\alpha q_{n,n}^\alpha(x) \Big|_0^\infty = 0,$$

so that

$$\int_0^\infty [x^\alpha q_{n,n}^\alpha(x)]' x^\ell \, dx = 0, \qquad \ell = 0, 1, \dots, 2n + 1.$$

In view of (2.1) and (3.5) this means that

$$[x^{\alpha}q_{n,n}^{\alpha}(x)]' = \text{constant } x^{\alpha-1}q_{n+1,1}^{\alpha-1}(x).$$

Since $q_{n,n}^{\alpha}$ and $q_{n+1,n}^{\alpha-1}$ are only determined up to a normalizing factor, we can choose the constant equal to one, thereby fixing the normalization.

We can repeat the analysis for $q_{n,n-1}^{\alpha}$ with minor changes. In this case we have

$$[x^{\alpha}q_{n,n-1}^{\alpha}(x)]' = x^{\alpha-1}[((\alpha+\nu)A_{n,n-1}^{\alpha}(x) + x(A_{n,n-1}^{\alpha}(x))' - xB_{n,n-1}^{\alpha}(x))\rho_{\nu}(x) + (\alpha B_{n,n-1}^{\alpha}(x) - A_{n,n-1}^{\alpha}(x) + x(B_{n,n-1}^{\alpha}(x))')\rho_{\nu+1}(x)].$$

and since $(\alpha + \nu)A_{n,n-1}^{\alpha}(x) + x(A_{n,n-1}^{\alpha}(x))' - xB_{n,n-1}^{\alpha}(x)$ is a polynomial of degree at most n and $\alpha B_{n,n-1}^{\alpha}(x) - A_{n,n-1}^{\alpha}(x) + x(B_{n,n-1}^{\alpha}(x))'$ a polynomial of degree at most n also, the orthogonality

$$\int_0^\infty [x^{\alpha} q_{n,n-1}^{\alpha}(x)]' x^{\ell} dx = 0, \qquad \ell = 0, 1, \dots, 2n$$

gives the required result.

Observe that the reasoning does not work for $[x^{\alpha}q_{n,m}^{\alpha}(x)]'$ when $m \notin \{n, n-1\}$.

The proof also shows that

$$A_{n+1,n}^{\alpha-1}(x) = (\alpha + \nu)A_{n,n}^{\alpha}(x) + x[A_{n,n}^{\alpha}(x)]' - xB_{n,n}^{\alpha}(x),$$

$$B_{n+1,n}^{\alpha-1}(x) = \alpha B_{n,n}^{\alpha}(x) - A_{n,n}^{\alpha}(x) + x[B_{n,n}^{\alpha}(x)]',$$

and similarly

$$A_{n,n}^{\alpha-1}(x) = (\alpha + \nu)A_{n,n-1}^{\alpha}(x) + x[A_{n,n-1}^{\alpha}(x)]' - xB_{n,n-1}^{\alpha}(x),$$

$$B_{n,n}^{\alpha-1}(x) = \alpha B_{n,n-1}^{\alpha}(x) - A_{n,n-1}^{\alpha}(x) + x[B_{n,n-1}^{\alpha}(x)]'.$$

4 Rodrigues formula

As a consequence of Theorem 2 we have the following Rodrigues formula for the type 1 multiple orthogonal polynomials.

Theorem 3 The type 1 multiple orthogonal polynomials can be obtained from

$$\frac{d^{2n}}{dx^{2n}} \left(x^{2n+\alpha} \rho_{\nu}(x) \right) = x^{\alpha} q_{n,n-1}^{\alpha}(x), \quad \frac{d^{2n+1}}{dx^{2n+1}} \left(x^{2n+1+\alpha} \rho_{\nu}(x) \right) = x^{\alpha} q_{n,n}^{\alpha}(x). \tag{4.1}$$

Proof: By combining the two formulas in (3.4) we get

$$\frac{d^2}{dx^2} \left(x^{\alpha} q_{n,n-1}^{\alpha}(x) \right) = x^{\alpha - 2} q_{n+1,n}^{\alpha - 2}.$$

Iterate this k times to get

$$\frac{d^{2k}}{dx^{2k}} \left(x^{\alpha} q_{n,n-1}^{\alpha}(x) \right) = x^{\alpha - 2k} q_{n+k,n+k-1}^{\alpha - 2k}.$$

Choose n = 0 and $\alpha = 2k + \beta$ to find

$$\frac{d^{2k}}{dx^{2k}} \left(x^{2k+\beta} q_{0,-1}^{2k+\beta}(x) \right) = x^{\beta} q_{k,k-1}^{\beta}.$$

Now $q_{0,-1}^{\alpha}(x) = A_{0,-1}^{\alpha}\rho_{\nu}(x)$, where $A_{0,-1}^{\alpha}$ is a constant, which we will take equal to one to fix normalization. Thus, if we replace β by α and k by n, then we find the first formula in (4.1).

Similarly, we can use

$$\frac{d}{dx}\left(x^{\alpha}q_{n,n-1}^{\alpha}(x)\right) = x^{\alpha-1}q_{n,n}^{\alpha-1}(x),$$

and differentiate it 2k times, to find

$$\frac{d^{2k+1}}{dx^{2k+1}} \left(x^{\alpha} q_{n,n-1}^{\alpha}(x) \right) = x^{\alpha - 2k - 1} q_{n+k,n+k}^{\alpha - 2k - 1}(x).$$

Choose n = 0 and $\alpha = 2k + 1 + \beta$ to find

$$\frac{d^{2k+1}}{dx^{2k+1}} \left(x^{2k+1+\beta} \rho_{\nu}(x) \right) = x^{\beta} q_{k,k}^{\beta}(x).$$

Replacing β by α and k by n then gives the required formula.

The Rodrigues formula allows us to compute the type 1 multiple orthogonal polynomials explicitly. There is a relationship between type 1 and type 2 polynomials (which is not typical for the Macdonald weights but holds in general) and this allows us to compute the type 2 multiple polynomials as well. Indeed, we can write

$$\begin{pmatrix} q_{n,n}^{\alpha} \\ q_{n,n-1}^{\alpha} \end{pmatrix} = \begin{pmatrix} A_{n,n}^{\alpha} & B_{n,n}^{\alpha} \\ A_{n,n-1}^{\alpha} & B_{n,n-1}^{\alpha} \end{pmatrix} \begin{pmatrix} \rho_{\nu} \\ \rho_{\nu+1} \end{pmatrix},$$

so that we have

$$\begin{pmatrix} A_{n,n}^{\alpha} & B_{n,n}^{\alpha} \\ A_{n,n-1}^{\alpha} & B_{n,n-1}^{\alpha} \end{pmatrix}^{-1} \begin{pmatrix} q_{n,n}^{\alpha} \\ q_{n,n-1}^{\alpha} \end{pmatrix} = \begin{pmatrix} \rho_{\nu} \\ \rho_{\nu+1} \end{pmatrix}.$$

Writing the inverse of a matrix as the adjoint matrix divided by the determinant gives

$$\begin{pmatrix} B_{n,n-1}^{\alpha} & -B_{n,n}^{\alpha} \\ -A_{n,n-1}^{\alpha} & A_{n,n}^{\alpha} \end{pmatrix} \begin{pmatrix} q_{n,n}^{\alpha} \\ q_{n,n-1}^{\alpha} \end{pmatrix} = \left[A_{n,n}^{\alpha} B_{n,n-1}^{\alpha} - A_{n,n-1}^{\alpha} B_{n,n}^{\alpha} \right] \begin{pmatrix} \rho_{\nu} \\ \rho_{\nu+1} \end{pmatrix}. \tag{4.2}$$

The polynomial $A_{n,n}^{\alpha}B_{n,n-1}^{\alpha}-A_{n,n-1}^{\alpha}B_{n,n}^{\alpha}$ is of degree at most 2n and satisfies

$$\int_0^\infty [A_{n,n}^{\alpha}(x)B_{n,n-1}^{\alpha}(x) - A_{n,n-1}^{\alpha}(x)B_{n,n}^{\alpha}(x)]\rho_{\nu}(x)x^{k+\alpha} dx$$

$$= \int_0^\infty [B_{n,n-1}^{\alpha}(x)q_{n,n}^{\alpha}(x) - B_{n,n}^{\alpha}(x)q_{n,n-1}^{\alpha}(x)]x^{k+\alpha} dx = 0, \qquad k = 0, 1, \dots, n-1,$$

where we have used (4.2) and (2.1). Furthermore we also have

$$\int_0^\infty [A_{n,n}^{\alpha}(x)B_{n,n-1}^{\alpha}(x) - A_{n,n-1}^{\alpha}(x)B_{n,n}^{\alpha}(x)]\rho_{\nu+1}(x)x^{k+\alpha} dx$$

$$= \int_0^\infty [-A_{n,n-1}^{\alpha}(x)q_{n,n}^{\alpha}(x) + A_{n,n}^{\alpha}(x)q_{n,n-1}^{\alpha}(x)]x^{k+\alpha} dx = 0, \qquad k = 0, 1, \dots, n-1.$$

Hence we can conclude that

$$A_{n,n}^{\alpha}(x)B_{n,n-1}^{\alpha}(x) - A_{n,n-1}^{\alpha}(x)B_{n,n}^{\alpha}(x) = \text{constant } p_{n,n}^{\alpha}(x),$$

where the constant is the leading coefficient of the polynomial. A similar reasoning using

$$\begin{pmatrix} q_{n+1,n}^{\alpha} \\ q_{n,n}^{\alpha} \end{pmatrix} = \begin{pmatrix} A_{n+1,n}^{\alpha} & B_{n+1,n}^{\alpha} \\ A_{n,n}^{\alpha} & B_{n,n}^{\alpha} \end{pmatrix} \begin{pmatrix} \rho_{\nu} \\ \rho_{\nu+1} \end{pmatrix},$$

gives

$$A_{n+1,n}^{\alpha}(x)B_{n,n}^{\alpha}(x) - A_{n,n}^{\alpha}(x)B_{n+1,n}^{\alpha}(x) = \text{constant } p_{n+1,n}^{\alpha}(x).$$

5 Recurrence relation

To simplify the notation we put

$$P_{2n}(x) = p_{n,n}^{\alpha}(x), \quad P_{2n+1}(x) = p_{n+1,n}^{\alpha}(x).$$

It is known that the sequence $P_n(x)$, n = 0, 1, 2, ... satisfies a third order recurrence relation of the form

$$xP_n(x) = P_{n+1}(x) + b_n P_n(x) + c_n P_{n-1}(x) + d_n P_{n-2}(x),$$

$$(5.1)$$

(see, e.g., [4] or [6]). Explicit formulas for the recurrence coefficients are given in the following theorem.

Theorem 4 The recurrence coefficients in (5.1) are given by

$$b_n = (n + \alpha + 1)(3n + \alpha + 2\nu) - (\alpha + 1)(\nu - 1)$$

$$c_n = n(n + \alpha)(n + \alpha + \nu)(3n + 2\alpha + \nu)$$

$$d_n = n(n - 1)(n + \alpha - 1)(n + \alpha)(n + \alpha + \nu - 1)(n + \alpha + \nu).$$

Proof: We begin with the recurrence coefficients of even index, which are used in the recurrence relation

$$xp_{n,n}^{\alpha}(x) = p_{n+1,n}^{\alpha}(x) + b_{2n}p_{n,n}^{\alpha}(x) + c_{2n}p_{n,n-1}^{\alpha}(a) + d_{2n}p_{n-1,n-1}^{\alpha}(x).$$
 (5.2)

We will write the polynomials $p_{n,m}^{\alpha}$ explicitly as

$$p_{n,m}^{\alpha}(x) = \sum_{k=0}^{n+m} a_{n,m}^{\alpha}(k) x^{n+m-k},$$

and since we are dealing with monic polynomials, we have

$$a_{n,m}^{\alpha}(0) = 1.$$

Comparing the coefficient of x^{2n} in (5.2) gives

$$b_{2n} = a_{n,n}^{\alpha}(1) - a_{n+1,n}^{\alpha}(1), \tag{5.3}$$

hence we need to know the coefficients $a_{n,m}^{\alpha}(1)$. Comparing the coefficient of x^{2n-2} and x^{2n-3} respectively in (3.1) gives the recurrence

$$(2n-1)a_{n,n}^{\alpha}(1) = 2na_{n,n-1}^{\alpha+1}(1), \quad (2n-2)a_{n,n-1}^{\alpha}(1) = (2n-1)a_{n-1,n-1}^{\alpha+1}(1).$$

Combining these relations gives

$$a_{n,n}^{\alpha}(1) = \frac{n}{n-1} a_{n-1,n-1}^{\alpha+2}(1),$$

which leads to

$$a_{n,n}^{\alpha}(1) = na_{1,1}^{\alpha+2n-2}(1).$$

In order to obtain an explicit formula, we compute $p_{1,1}^{\alpha}$ explicitly by solving the system of equations

$$\int_0^\infty (x^2 + a_{1,1}^\alpha(1)x + a_{1,1}^\alpha(2))x^\alpha \rho_\nu(x) dx = 0$$
$$\int_0^\infty (x^2 + a_{1,1}^\alpha(1)x + a_{1,1}^\alpha(2))x^\alpha \rho_{\nu+1}(x) dx = 0.$$

Using the moments (1.11) this gives

$$a_{1,1}^{\alpha}(1) = -2(2+\alpha)(2+\alpha+\nu),$$
 (5.4)

$$a_{1,1}^{\alpha}(2) = (1+\alpha)(2+\alpha)(1+\alpha+\nu)(2+\alpha+\nu).$$
 (5.5)

This gives

$$a_{n,n}^{\alpha}(1) = -2n(\alpha + 2n)(\alpha + 2n + \nu),$$
 (5.6)

and since $2na_{n+1,n}^{\alpha}(1)=(2n+1)a_{n,n}^{\alpha+1}(1)$ this also gives

$$a_{n+1,n}^{\alpha}(1) = -(2n+1)(\alpha+2n+1)(\alpha+2n+\nu+1). \tag{5.7}$$

Inserting this in (5.3) gives the requested formula for the recurrence coefficient b_{2n} . Next we compare the coefficient of x^{2n-1} in (5.2) to find

$$c_{2n} = a_{n,n}^{\alpha}(2) - a_{n+1,n}^{\alpha}(2) - b_{2n}a_{n,n}^{\alpha}(1). \tag{5.8}$$

This means that we also need to know $a_{n,n}^{\alpha}(2)$ and $a_{n+1,n}^{\alpha}(2)$. Compare the coefficient of x^{2n-3} and x^{2n-4} respectively in (3.1), then

$$(2n-2)a_{n,n}^{\alpha}(2)=2na_{n,n-1}^{\alpha+1}(2),\quad (2n-3)a_{n,n-1}^{\alpha}(2)=(2n-1)a_{n-1,n-1}^{\alpha+1}(2),$$

which combined gives

$$a_{n,n}^{\alpha}(2) = \frac{(2n)(2n-1)}{(2n-2)(2n-3)} a_{n-1,n-1}^{\alpha+2}(2) = \frac{(2n)(2n-1)}{2} a_{1,1}^{\alpha+2n-2}(2).$$

Using (5.5) this gives

$$a_{n,n}^{\alpha}(2) = n(2n-1)(\alpha+2n-1)(\alpha+2n)(\alpha+2n+\nu-1)(\alpha+2n+\nu), \tag{5.9}$$

and since $(2n-1)a_{n+1,n}^{\alpha}(2) = (2n+1)a_{n,n}^{\alpha+1}(2)$ this also gives

$$a_{n+1,n}^{\alpha}(2) = n(2n+1)(\alpha+2n)(\alpha+2n+1)(\alpha+2n+\nu)(\alpha+2n+\nu+1). \tag{5.10}$$

Inserting (5.9), (5.10), (5.6) and the expression for b_{2n} into (5.8) gives, after some straightforward calculus (or by using Maple) the requested expression for c_{2n} .

Finally, compare the coefficient of x^{2n-2} in (5.2), then

$$d_{2n} = a_{n,n}^{\alpha}(3) - a_{n+1,n}^{\alpha}(3) - b_{2n}a_{n,n}^{\alpha}(2) - c_{2n}a_{n,n-1}^{\alpha}(1), \tag{5.11}$$

so that we need $a_{n,n}^{\alpha}(3)$ and $a_{n+1,n}^{\alpha}(3)$. To this end we compare the coefficient of x^{2n-4} and x^{2n-5} respectively in (3.1) to find

$$(2n-3)a_{n,n}^{\alpha}(3) = 2na_{n,n-1}^{\alpha}(3), \quad (2n-4)a_{n,n-1}^{\alpha}(3) = (2n-1)a_{n-1,n-1}^{\alpha}(3),$$

which combined gives

$$a_{n+1,n}^{\alpha}(3) = \frac{2n(2n+1)}{(2n-2)(2n-3)} a_{n,n-1}^{\alpha+2}(3) = \frac{(2n+1)(2n)(2n-1)}{6} a_{2,1}^{\alpha+2n-2}(3).$$

In order to find $a_{2,1}^{\alpha}(3)$ we will compute $p_{2,1}^{\alpha}$ explicitly by solving the system of equations

$$\int_{0}^{\infty} (x^{3} + a_{2,1}^{\alpha}(1)x^{2} + a_{2,1}^{\alpha}(2)x + a_{2,1}^{\alpha}(3))x^{\alpha}\rho_{\nu}(x) dx = 0$$

$$\int_{0}^{\infty} (x^{3} + a_{2,1}^{\alpha}(1)x^{2} + a_{2,1}^{\alpha}(2)x + a_{2,1}^{\alpha}(3))x^{\alpha+1}\rho_{\nu}(x) dx = 0$$

$$\int_{0}^{\infty} (x^{3} + a_{2,1}^{\alpha}(1)x^{2} + a_{2,1}^{\alpha}(2)x + a_{2,1}^{\alpha}(3))x^{\alpha}\rho_{\nu+1}(x) dx = 0$$

which by using (1.11) and some calculus gives

$$a_{2,1}^{\alpha}(3) = -(3+\alpha+\nu)(2+\alpha+\nu)(1+\alpha+\nu)(3+\alpha)(2+\alpha)(1+\alpha). \tag{5.12}$$

Using this gives

$$a_{n+1,n}^{\alpha}(3) = -\frac{(2n+1)(2n)(2n-1)}{6}$$
$$(\alpha + 2n + \nu + 1)(\alpha + 2n + \nu)(\alpha + 2n + \nu - 1)(\alpha + 2n + 1)(\alpha + 2n)(\alpha + 2n - 1), \quad (5.13)$$

and since $(2n-3)a_{n,n}^{\alpha}(3) = 2na_{n,n-1}^{\alpha+1}(3)$ we also have

$$a_{n,n}^{\alpha}(3) = -\frac{2n(2n-1)(2n-2)}{6}$$

$$(\alpha + 2n + \nu)(\alpha + 2n + \nu - 1)(\alpha + 2n + \nu - 2)(\alpha + 2n)(\alpha + 2n - 1)(\alpha + 2n - 2). \quad (5.14)$$

Using (5.14), (5.13), (5.9), (5.7) and the formulas for b_{2n} and c_{2n} in (5.11) then gives the requested expression for d_{2n} .

In a similar way we proceed with the odd indices which appear in the recurrence relation

$$xp_{n+1,n}^{\alpha}(x) = p_{n+1,n+1}^{\alpha}(x) + b_{2n+1}p_{n+1,n}^{\alpha}(x) + c_{2n+1}p_{n,n}^{\alpha}(x) + d_{2n+1}p_{n,n-1}^{\alpha}(x).$$
 (5.15)

By comparing the coefficients of x^{2n+1} , x^{2n} and x^{2n-1} we get expressions for b_{2n+1} , c_{2n+1} and d_{2n+1} respectively in terms of the coefficients $a_{n,m}^{\alpha}$ and after working out these expressions we get the required formulas.

Observe that the recurrence coefficients have the asymptotic behavior

$$b_n \sim 3n^2, \quad c_n \sim 3n^4, \quad c_n \sim n^6.$$
 (5.16)

References

- [1] A. I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998), 423–447.
- [2] A. Erdélyi, *Higher Transcendental Functions*, Volume II, McGraw-Hill, New York, 1953
- [3] M. E. H. Ismail, Bessel functions and the infinite divisibility of the student t-distribution, Ann. Prob. 5 (1977), 582–585
- [4] V. Kaliaguine, A. Ronveaux, On a system of "classical" polynomials of simultaneous orthogonality, J. Comput. Appl. Math. 67 (1996), 207–217
- [5] A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988
- [6] E. M. Nikishin, V. N. Sorokin, *Rational Approximations and Orthogonality*, Translations of Mathematical Monographs **92**, Amer. Math. Soc., Providence, RI, 1991
- [7] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23 (4th edition), 1975

[8] W. Van Assche (editor), Open Problems, problem 9 by A. P. Prudnikov: orthogonal polynomials with ultra-exponential weight function, J. Comput. Appl. Math. 48 (1993), 239–241.

Department of Mathematics Katholieke Universiteit Leuven Celestijnenlaan 200 B B-3001 Heverlee (Leuven) Belgium