Lezione: Nozioni Perliminari

Logica: Una proposizione è un'affermazione dichiarativa che è vera o falsa.

Esempio: Un pinguino è un animale.

Domande, opinioni e comandi non sono proposizioni.

Connettivi Logici: Siano P, Q, R proposizioni.

Negazione: $\neg P$ è vera se e solo se P è falsa.

Esempio: P = I pinguini possono volare.

Questa proposizione è falsa. Quindi $\neg P$ è vera.

Tavola di verità: $egin{array}{c|c} P & \neg P \\ \hline V & F \\ \hline F & V \\ \hline \end{array}$

Congiunzione: $P \wedge Q$ è vera se e solo se P è vera e Q è vera.

Esempio: P = I pinguini possono volare. Q = I pinguini sono carnivori. R = I pinguini possono nuotare.

 $P \wedge Q = F$, $P \wedge R = F$, $Q \wedge R = V$ Allora:

Tavola di verità:

 $egin{array}{c|ccc} P & Q & P \wedge Q \\ \hline F & F & F \\ F & V & F \\ V & F & F \\ \hline \end{array}$

Disgiunzione: $P \lor Q$ è vera se e solo se P è vera oppure Q è vera.

Nota bene: $P \lor Q$ è vera se P è vera e Q è vera.

Esempio: P, Q, R come nell'esempio precedente.

Allora: $P \lor Q = V$, $P \lor \neg Q = F$, $Q \lor R = V$

Tavola di verità: $\begin{array}{c|cccc} P & Q & P \lor Q \\ \hline F & F & F \\ F & V & V \\ V & F & V \\ V & V & V \end{array}$

Implicazione: $P \implies Q$ a meno che P sia vera e Q sia falsa

Esempio: P = Se i maiali potessero volare. <math>Q = qualsiasi proposta.

Allora $P \implies Q$ è vera perché P è falsa.

(essere continuato)

Pagina 1.

Nota: $P \Longrightarrow Q$ è anche chiamato "implicazione logica" per distinguerlo dal significato colloquiale di "implicazione".

Tavola di verità: $P \mid Q \mid P \Longrightarrow Q$

1	(2).	$I \longrightarrow \emptyset$
\overline{F}	\ddot{F}	V
F	V	V
V	F	F
V	V	V

Altri modi per dire $P \implies Q$ sono:

- (i) Se P allora Q
- (ii) P è condizione sufficiente per Q.
- (iii) Q è condizione necessaria per P.

Esempio: $P = \text{Oggi \`e Pasqua}$. $Q = \text{Domani \`e luned\'e}$. Allora $P \Longrightarrow Q$.

Coimplicazione (o doppia implicazione): $P \iff Q$ significa "P se e sole se Q"

Esempio: $P = \text{Oggi \`e luned\'e}. \ Q = \text{Domani \`e marted\'e}.$

Allora: $P \iff Q$

Tavola di verità: $P Q P \Leftrightarrow Q$

F	F	V
F	V	F
V	F	F
V	V	V

Altri modi per dire $P \iff Q$ sono:

- (i) P se e sole se Q
- (ii) P è necessaria e sufficiente per Q

Attenzione: P se Q significa $Q \Longrightarrow P$.

Insiemi:

Intuitivamente, un insieme S è un insieme di oggetti distinti, chiamati elementi di S. $s \in S$ è la proposizione che s è un elemento di S. La proposizione $\neg (s \in S)$ è scritto $s \notin S$.

Un insieme con un numero finito di elementi può essere descritto elencando i suoi elementi.

$$A = \{1, 2, 3, 4, 5\}$$

Il insieme vuoto, scritto \emptyset oppure $\{\}$, è l'insieme senza elementi. In particolare, se A è un insieme e $a \in A$ allora $a \notin \emptyset$.

<u>Definizione</u>: Sia A un insieme. Per ogni $a \in A$ sia P(a) una proposizione. Allora $\{a \in A \mid P(a)\}$

è l'insieme costituito da tutti gli elementi $a \in A$ tali che P(a) è vera.

Definizione: Siano A e B insiemi. Il complemento di B in A è l'insieme

$$A \setminus B = \{ a \in A \mid a \notin B \}$$

Si dice che A è un sottoinsieme di B, scritto $A \subseteq B$, se (e sole se) $A \setminus B = \emptyset$. Si dice che A = B se (e sole se) $A \subseteq B$ e $B \subseteq A$.

Esempio: Sia S un insieme. Allora $\emptyset \subseteq S$ perché $s \in \emptyset$ è sempre falsa.

<u>Definizione</u>: Siano A e B insiemi. L'intersezione di A e B è l'insieme $A \cap B = \{ a \in A \mid a \in B \}$

Esempio: Siano $A=\{m\in\mathbb{Z}\mid 2 \text{ divide } m\}, \quad B=\{n\in\mathbb{Z}\mid 3 \text{ divide } n\}.$ Allora, $A\cap B=\{\,q\in\mathbb{Z}\mid 6 \text{ divide } q\,\}$

Esercizio: $A \cap B = \{ b \in B \mid b \in A \}$

Di solito nelle nostre discussioni, c'è un insieme ambiente $\ U$ che contiene tutti gli oggetti in considerazione.

Definizione: Siano A e B sottoinsieme di U. L'unione di A e B è l'insieme

$$A \cup B = \{\, u \in U \mid (u \in A) \lor (u \in B) \,\}$$

Esercizio: $A = (A \setminus B) \cup (A \cap B)$

Siano A e B insiemi. Il prossimo concetto primitivo della teoria degli insiemi è il prodotto cartesiano $A \times B$ costituito da coppie ordinate

$$(a,b) \in A \times B$$

Per definizione,

$$(a,b) = (a',b') \iff (a=a') \land (b=b')$$

Esempio: $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ è il piano cartesiano. –

Pagina 3

Relazioni e Funzioni

Siano A e B insiemi. Una relazione da A a B è un sottoinsieme $R \subseteq A \times B$.

Esempio: $A = B = \mathbb{R}$

$$R_1 = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid b^2 = a\}$$

$$R_2 = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a^2 = b\}$$

 $\underline{\text{Definizione}} \colon \text{Una relazione } R \quad \text{da } A \quad \text{a} \quad B \quad \text{definisce una funzione} \quad f \colon A \to B \quad \text{se (e sole se)}$

(i) Per ogni $a \in A$ esiste un elemento

$$(a,b) \in R$$

(ii) Se $(a,b) \in R$ e $(a,c) \in R$ allora b=c. In questo caso, scriviamo f(a)=b.

Esempio: R_1 non soddisfa la condizione (i) perché non c'è nessun elemento della forma $(-1,b) \in R_1$.

 R_1 non soddisfa la condizione (ii) perché $(1,1) \in R_1$ e $(1,-1) \in R_1$.

 R_2 soddisfa sia condizione (i) che (ii). La funzione associatae è $f(a)=a^2$.

<u>Definizione</u>: Una funzione $f: X \to Y$ si dice:

- (i) iniettiva se $f(x) = f(x') \iff x = x'$
- (ii) suriettiva se per ogni $y \in Y$ existe $x \in X$ tale che f(x) = y.
- (iii) biunivoca se f sia iniettiva e suriettiva.

Esempio:

- (i) $f(x) = e^x$ è una funzione iniettiva $\mathbb{R} \to \mathbb{R}$. Questa funzione non suriettiva perché e^x è sempre positivia.
- (ii) $g(x) = \sin(x)$ è una funzione suriettiva $\mathbb{R} \to [-1, 1]$. Questa funzione non iniettiva perché $\sin(x + 2\pi) = \sin(x)$.
- (iii) $h(x) = x^3$ è una funzione biunivoca $\mathbb{R} \to \mathbb{R}$.

<u>Lemma</u>: Una funzione $f: X \to Y$ ha una funzione inversa $g: Y \to X$ se e solo se f è biunivoca.

<u>Lemma:</u> Siano X e Y insiemi finiti con lo stesso numero di elementi. Allora, le seguenti sono equivalenti:

- (i) $f: X \to Y$ è iniettiva.
- (ii) $f: X \to Y$ è suriettiva.
- (iii) $f: X \to Y$ è biunivoca.

Permutazione

Sia X un insieme. Una permutazione di X è una funzione biunivoca $f: X \to X$

Esempio:
$$X = \{1, 2, 3\}, f(1) = 2, f(2) = 3, f(3) = 1$$

<u>Esempio</u>: Sia X l'insieme dei vertici di un poligono P. Sia $f: P \to P$ una simmetria. Allora, $f: X \to X$ è biunivoca. Quindi $f: X \to X$ è una permutazione di X.

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$

Esempio: Siano $f, g: X \to X$ permutazioni. Allora, la funzione composta $h = f \circ g$ è una permutazione.

<u>Lemma</u>: Siano $f: X \to Y$ e $g: Y \to Z$ funzioni e $h = f \circ g$. Allora,

- (i) f, g iniettiva $\implies h$ iniettiva.
- (ii) f, g surjettiva $\implies h$ surjettiva.
- (iii) f, g biunivoca $\implies h$ biunivoca.

Esercizio: Dimostrare il lemma

Dimostrazione per assurdo

Un modo per dimostrare che una proposizione P è vera è mostrare che assumere che $\neg P$ sia vero porta a una contraddizione. Più precisamente, esiste una proposizione Q tale che $\neg P \implies Q \land (\neg Q)$ è vero

Poiché $Q \wedge (\neg Q)$ è sempre falsa, ne segue che P è vera.

Teorema (Euclide): Esistono infiniti numeri primi.

<u>Dimonstrazione</u>: Sia S l'insieme di tutti i numeri primi. Supponiamo che S sia finito e che sia m il prodotto degli elementi di S. Chiaramente nessun elemento di S può dividere m+1. Quindi, m+1 è primo o ha un fattore primo che non è contenuto in S. Ma questo contraddice l'ipotesi che S sia l'insieme di tutti i numeri primi.

<u>Teorema Fondamentale dell'aritmetica</u>: Ogni numero naturale maggiore di 1 o è un numero primo o si può esprimere come prodotto di numeri primi. Tale rappresentazione è unica, se si prescinde dall'ordine in cui compaiono i fattori.

<u>Corollario</u>: Se p è un numero primo e n è numero naturale tale che p divide n^2 allora p divide p.

Teorema (La scuola pitagorica): $\sqrt{2}$ non è un numero razionale.

Dimonstrazione: Supponiamo che

$$\sqrt{2} = \frac{a}{b}$$

dove a e b sono numeri naturali senza fattore comune. Allora

$$2 = \frac{a^2}{b^2} \implies 2b^2 = a^2$$

e quindi 2 divide a^2 . Per il collorario, 2 divide a. Scrive a=2c. Allora,

$$2b^2 = a^2 = (2c)^2 = 4c^2 \implies b^2 = 2c^2$$

Per il collorario, 2 divide b. Così, 2 è un fattore comune di a e b. Ciò contraddice l'ipotesi che a e b non abbiano un fattore comune.

Come volevasi dimostrare

Principio d'induzione

Sia m un numero naturale. Per ogni numero naturale $n \ge m$, sia P(n) una proposizione. Per mostrare che P(n) è vera per ogni numero naturale $n \ge m$, è sufficiente mostrare:

(a) P(m) è vera.

(b) Se P(n) è vera allora P(n+1) è vera.

Varianti: La parte (b) può essere sostituita da

(b') Se $P(m), \ldots, P(n)$ sono vere allora P(n+1) è vera.

Nota: Il Teorema Fondamentale dell'Aritmetica è un esempio di teorema dove si usa (b') invece di (b). In questo corso, si usa spesso (b') per dimostrare con induzione sulla dimensione.

Esempio: La somma dei primi n numeri naturali è $\frac{n(n+1)}{2}$.

$$m = 1,$$
 $P(n):$ $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

(a) $P(1) = 1 = \frac{(1)(1+1)}{2}$ è vera.

(b)
$$P(n) = \frac{n(n+1)}{2} \implies P(n+1) = \sum_{k=1}^{n+1} k = (n+1) + \sum_{k=1}^{n} k$$

 $= (n+1) + \frac{n(n+1)}{2} = \frac{2(n+1) + n^2 + n}{2}$
 $= \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}$

Quindi, P(n+1) è vero. Questo completa la dimostrazione per induzione.