Matthew Morgan

Student ID: 010471280 Data Mining II - D212

Task 1: Clustering Techniques Western Governor's University

Mentor: Mandy Rasmuson

Part I: Research Question

A1. Research Question

I will use hierarchical clustering within the WGU Medical Dataset to look at the survey responses, Items 1 - 8, to determine if there are distinct groups of patient satisfaction.

A2. Goal of the Data Analysis

I am using hierarchical clustering to help determine distinct groups of patients within the survey data. The goal of this analysis is to determine if there are patient populations that are disproportionately satisfied or dissatisfied with their experience in the hospital system.

Part II: Explain the reasons for your chosen clustering technique from part A1 by doing the following:

B1. Explain how the clustering technique you chose analyzes the selected dataset. Include expected outcomes.

Hierarchical clustering is a technique that builds hierarchies of clusters. How it works is by taking observations to generate clusters that have hierarchical relationships. Eventually all data will be related to each other at the highest level. At lower levels clusters are built by groups of observations that are close to one another, and so on and so forth, until you have numerous small clusters. A great real world example of this is how animals are classified in cladograms. All living things fall under 3 domains or 'clusters', those are Bacteria, Archaea, and Eukaryota. From there other clusters are built based on similarities within groups. Living things that have similar features will be grouped together and form different heirarchies of organization.

The expected outcome of this analysis is to hopefully find distrinct group of patients within the survey data. This can then hopefully be compared to patient re-admissions and used to find trends in patient experience and re-admission rate. This project is just focused on the first part of the analysis.

B2. Summarize one assumption of the clustering technique.

One of the assumptions that we have to take into account with hierachical clustering techniques is that variables that have a larger range can dominate variables that have a smaller range. To get around this we can use 'scaling' to normalize the data when using this clustering technique. However, because I am using the survey data, all data is already normalized as being 1-8 so this step can be skipped in this analysis.

B3. List the packages or libraries you have chosen for Python or R, and justify how each item on the list

supports the analysis.

Packages Usage

Pandas Importing data and data manipulation Provides array objects for calculations Numpy

Seaborn For visualizations like ... For visualizations like ... Matplotlib.pyplot

For linkage and clusters functions, as well and dendrogram generation scipy.cluster.hierarchy

sklearn.metrics For silhouette score to determine how close the clusters are

In [45]: # Data Analytics imports

import pandas as pd import numpy as np

Visualization imports

import matplotlib.pyplot as plt import seaborn as sns

Clustering imports

from scipy.cluster.hierarchy import linkage, fcluster from scipy.cluster.hierarchy import dendrogram from sklearn.metrics import silhouette score

Part III: Data Preparation

- C. Perform data preparation for the chosen dataset by doing the following
- C1. Describe one data preprocessing goal relevant to the clustering technique from part A1.

After exploring the data and checking for outliers and missing data the only preprocessing that needed to be done was inverting our survey data. According to the data dictionary provided by WGU, the survey data defines 1 as being most important and 8 as being least important. This doesn't make sense from a data standpoint. I want larger numbers to carry more 'weight' so to speak so I will be inverting our data using a map command, as well as recasting our data to float so as to use in the linkage command. When using this. data as an int type the linkage analysis technique does not work.

C2. Identify the initial dataset variables that you will use to perform the analysis for the clustering question from part A1, and label each as continuous or categorical.

In this analysis we are only focusing on the eight survey results column.

Column M	Name	Data Type
Item1		Categorical/Qualitative
Item2		Categorical/Qualitative
Item3		Categorical/Qualitative
Item4		Categorical/Qualitative
Item5		Categorical/Qualitative
Item6		Categorical/Qualitative
Item7		Categorical/Qualitative
Item8		Categorical/Qualitative

Though these columns contain data that are numerical, it still qualifies as categorical or qualitative data as the numbers are essentially placeholders to determine how important the topic of the question is to the patient. Because these numbers have a specific range it is not continuous and has to be categorical.

C3. Explain each of the steps used to prepare the data for the analysis. Identify the code segment for each step.

Comments on each code segment below are meant to identify the code segment for each step of my data preparation.

```
In [3]: #Loading the CSV of the default dataset
df = pd.read_csv(r'C:\Users\mmorg\WGU\D212\medical_clean.csv')
```

In [4]: #Viewing Data to evaluate structure and types
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

#	Columns (total 50 c	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	 int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	Marital	10000 non-null	object
18	Gender	10000 non-null	object
19	ReAdmis	10000 non-null	object
20	VitD_levels	10000 non-null	float64
21	Doc_visits	10000 non-null	int64
22	Full_meals_eaten	10000 non-null	int64
23	vitD_supp	10000 non-null	int64
24	Soft_drink	10000 non-null	object
25	<pre>Initial_admin</pre>	10000 non-null	object
26	HighBlood	10000 non-null	object
27	Stroke	10000 non-null	object
28	Complication_risk	10000 non-null	object
29	Overweight	10000 non-null	object
30	Arthritis	10000 non-null	object
31	Diabetes	10000 non-null	object
32	Hyperlipidemia	10000 non-null	object
33	BackPain	10000 non-null	object
34	Anxiety	10000 non-null	object
35	Allergic_rhinitis	10000 non-null	object
36	Reflux_esophagitis	10000 non-null	object
37	Asthma	10000 non-null	object

38	Services	10000	non-null	object
39	<pre>Initial_days</pre>	10000	non-null	float6
40	TotalCharge	10000	non-null	float64
41	Additional_charges	10000	non-null	float64
42	Item1	10000	non-null	int64
43	Item2	10000	non-null	int64
44	Item3	10000	non-null	int64
45	Item4	10000	non-null	int64
46	Item5	10000	non-null	int64
47	Item6	10000	non-null	int64
48	Item7	10000	non-null	int64
49	Item8	10000	non-null	int64

dtypes: float64(7), int64(16), object(27)

memory usage: 3.8+ MB

In [5]: #Detect null values
 print(df.isnull().sum())

CaseOrder	0
Customer_id	0
Interaction	0
UID	0
City	0
State	0
County	0
Zip	0
Lat	0
Lng	0
Population	0
Area	0
TimeZone	0
Job	0
Children	0
Age	0
Income	0
Marital	0
Gender	0
ReAdmis	0
VitD_levels	0
Doc_visits	0
Full_meals_eaten	0
vitD_supp	0
Soft_drink	0
<pre>Initial_admin</pre>	0
HighBlood	0
Stroke	0
Complication_risk	0
Overweight	0
Arthritis	0
Diabetes	0
Hyperlipidemia	0
BackPain	0
Anxiety	0
Allergic_rhinitis	0
Reflux_esophagitis	0
Asthma	0
Services	0
Initial_days	0
TotalCharge	0
Additional_charges	0
Item1	0

Item2	0
Item3	0
Item4	0
Item5	0
Item6	0
Item7	0
Item8	0

dtype: int64

Out[6]:

	CaseOrder	Customer_id	Interaction	UID	City	State	County	Zip	Lat	Lng
0	1	C412403	8cd49b13- f45a-4b47- a2bd- 173ffa932c2f	3a83ddb66e2ae73798bdf1d705dc0932	Eva	AL	Morgan	35621	34.34960	-86.72508
1	2	Z919181	d2450b70- 0337-4406- bdbb- bc1037f1734c	176354c5eef714957d486009feabf195	Marianna	FL	Jackson	32446	30.84513	-85.22907
2	3	F995323	a2057123- abf5-4a2c- abad- 8ffe33512562	e19a0fa00aeda885b8a436757e889bc9	Sioux Falls	SD	Minnehaha	57110	43.54321	-96.63772
3	4	A879973	1dec528d- eb34-4079- adce- 0d7a40e82205	cd17d7b6d152cb6f23957346d11c3f07	New Richland	MN	Waseca	56072	43.89744	-93.51479
4	5	C544523	5885f56b- d6da-43a3- 8760- 83583af94266	d2f0425877b10ed6bb381f3e2579424a	West Point	VA	King William	23181	37.59894	-76.88958

5 rows × 50 columns

```
In [7]: # See how many rows and columns are present
df.shape
Out[7]: (10000, 50)
In [8]: # Change dataframe to only include variables used for analysis
df=df[['Item1', 'Item2', 'Item3', 'Item5', 'Item6', 'Item7', 'Item8']]
In [9]: # Pull .head again to make sure the new dataframe is correct
df.head()
```

Out[9]:

	Item1	Item2	Item3	Item4	Item5	Item6	Item7	Item8
0	3	3	2	2	4	3	3	4
1	3	4	3	4	4	4	3	3
2	2	4	4	4	3	4	3	3
3	3	5	5	3	4	5	5	5
4	2	1	3	3	5	3	4	3

```
In [10]: #Detection of outliers for quantitative values
         boxplot=sns.boxplot(x='Item1',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item2',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item3',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item4',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item5',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item6',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item7',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item8',data=df)
         plt.show()
```



```
In [11]: # Counting occurences of each unique value to make sure my inversion works correctly
    print('Item1 Unique Value Counts:\n', df['Item1'].value_counts())
    print('Item2 Unique Value Counts:\n', df['Item2'].value_counts())
    print('Item3 Unique Value Counts:\n', df['Item3'].value_counts())
    print('Item4 Unique Value Counts:\n', df['Item4'].value_counts())
    print('Item5 Unique Value Counts:\n', df['Item5'].value_counts())
    print('Item6 Unique Value Counts:\n', df['Item6'].value_counts())
    print('Item7 Unique Value Counts:\n', df['Item7'].value_counts())
    print('Item8 Unique Value Counts:\n', df['Item8'].value_counts())
```

localhost:8888/notebooks/WGU/D212/D212Task1.ipynb

```
In [12]: # Invert survey data using map() function
         inversion table = {8: 1, 7: 2, 6: 3, 5: 4, 4: 5, 3: 6, 2: 7, 1: 8}
         # Invert columns and change data type to float, as kmeans failed when running as int64
         df["Item1"] = df["Item1"].map(inversion table)
         df["Item1"] = df["Item1"].astype('float64')
         df["Item2"] = df["Item2"].map(inversion table)
         df["Item2"] = df["Item2"].astype('float64')
         df["Item3"] = df["Item3"].map(inversion table)
         df["Item3"] = df["Item3"].astype('float64')
         df["Item4"] = df["Item4"].map(inversion_table)
         df["Item4"] = df["Item4"].astype('float64')
         df["Item5"] = df["Item5"].map(inversion table)
         df["Item5"] = df["Item5"].astype('float64')
         df["Item6"] = df["Item6"].map(inversion table)
         df["Item6"] = df["Item6"].astype('float64')
         df["Item7"] = df["Item7"].map(inversion table)
         df["Item7"] = df["Item7"].astype('float64')
         df["Item8"] = df["Item8"].map(inversion table)
         df["Item8"] = df["Item8"].astype('float64')
```

```
In [13]: # Comparing this to previous use of .value_counts to make sure inversion worked correctly
    print('Item1 Unique Value Counts:\n', df['Item1'].value_counts())
    print('Item2 Unique Value Counts:\n', df['Item2'].value_counts())
    print('Item3 Unique Value Counts:\n', df['Item3'].value_counts())
    print('Item4 Unique Value Counts:\n', df['Item4'].value_counts())
    print('Item5 Unique Value Counts:\n', df['Item5'].value_counts())
    print('Item6 Unique Value Counts:\n', df['Item6'].value_counts())
    print('Item7 Unique Value Counts:\n', df['Item7'].value_counts())
    print('Item8 Unique Value Counts:\n', df['Item8'].value_counts())
```

Item1 5.0	Unique 3455	Value	Counts:
6.0	3404		
4.0	1377		
7.0	1315		
3.0	225		
8.0	213		
2.0	10		
1.0	1		
		dtvpe	: int64
			Counts:
6.0	3439		
5.0	3351		
4.0	1421		
7.0	1360		
8.0	213		
3.0	204		
2.0	12		
Name:	Item2,	dtype	: int64
Item3	Unique	Value	Counts:
5.0	3464		
6.0	3379		
4.0	1358		
7.0	1356		
3.0	220		
8.0	211		
2.0	11		
1.0	1		
			: int64
Item4	Unique	Value	Counts:
6.0	3422		
5.0	3394		
4.0	1388		
7.0	1346		
3.0	231		
8.0	207		
2.0	12		
			: int64
Item5	-	Value	Counts:
5.0	3446		
6.0	3423		
7.0	1380		
4.0	1308		

219 3.0 8.0 211 2.0 13 Name: Item5, dtype: int64 Item6 Unique Value Counts: 5.0 3464 6.0 3371 4.0 1403 7.0 1319 3.0 220 8.0 213 2.0 10 Name: Item6, dtype: int64 Item7 Unique Value Counts: 5.0 3487 6.0 3456 7.0 1345 4.0 1274 8.0 215 3.0 212 2.0 11 Name: Item7, dtype: int64 Item8 Unique Value Counts: 6.0 3401 5.0 3337 4.0 1429 7.0 1391 3.0 221 8.0 209 2.0 12 Name: Item8, dtype: int64

```
In [14]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 8 columns):
              Column Non-Null Count Dtype
          0
              Item1
                      10000 non-null float64
                      10000 non-null float64
          1
              Item2
          2
              Item3
                      10000 non-null float64
          3
                      10000 non-null float64
              Item4
          4
                      10000 non-null float64
              Item5
          5
                      10000 non-null float64
              Item6
                      10000 non-null float64
              Item7
          7
              Item8
                      10000 non-null float64
         dtypes: float64(8)
         memory usage: 625.1 KB
In [15]: # Calculate means of each item response to see how data varies
         df means = df.agg(['mean']).round(2)
         print(df means)
               Item1 Item2 Item3
                                    Item4 Item5
                                                  Item6
                                                         Item7 Item8
                                                                 5.49
                5.48
                       5.49
                              5.49
                                     5.48
                                             5.5
                                                   5.48
                                                          5.51
         mean
In [16]: # Calculate standard deviation of each item response to see how data varies
         df std = df.agg(['std']).round(2)
         print(df std)
              Item1 Item2 Item3
                                   Item4 Item5
                                                Item6
                                                        Item7
                                                               Item8
         std
              1.03
                      1.03
                             1.03
                                    1.04
                                           1.03
                                                  1.03
                                                         1.02
                                                                1.04
         # Calculate max of each item response to confirm lack of outliers and full use of survey responses
In [17]:
         df max = df.agg(['max']).round(2)
         print(df max)
              Item1 Item2 Item3
                                   Item4 Item5
                                                 Item6 Item7 Item8
                8.0
                       8.0
                              8.0
                                     8.0
                                            8.0
                                                   8.0
                                                          8.0
                                                                 8.0
         max
```

```
In [18]: # Calculate min of each item response to confirms lack of outliers and full use of survey responses
         df min = df.agg(['min']).round(2)
         print(df_min)
              Item1 Item2 Item3
                                   Item4 Item5
                                                 Item6
                                                                Item8
                        2.0
                                             2.0
                                                    2.0
                                                           2.0
                                                                  2.0
         min
                1.0
                               1.0
                                      2.0
In [19]: #C4. Cleaned Dataset:
         # Provide a copy of the cleaned Data Set
         df.to csv(r'C:\Users\mmorg\WGU\D212\d212 task1 clean.csv')
```

Part IV: Analysis

- D. Perform the data analysis and report on the results by doing the following:
- D1. Describe the analysis technique you used to appropriately analyze the data. Include screenshots of the intermediate calculations you performed.

As stated previously I decided to use hierarchical clustering for this analysis. Through the course materials I learned about the three methods that can be used for hierarchical clustering and those are; single, complete, and ward. When trying to use the single method my kernel crashed, and the complete method produced clusters that were not distinct enough to do any further analysis on.

Using the ward method however I was able to define 2 distinct groups among the patient survey observations. These groups can be seen as orange and green in the dendrogram below.

In this dendrogram the x axis shows the results of all 10,000 patient responses to the survey, and the y axis shows the distance between the clusters. There are many clusters within this dataset but it's obvious that after using the ward method we have 2 distinct groups with a clear difference between each other based on the dendrogram.

From these two groups we will now use fcluster to label our 2 clusters and create a new column in the dataframe titled cluster labels.

Now that we have divided our observations into two clusters we can look at the survey results of each question and compare the clusters to each other.

```
In [23]: # Size adjustment to make visualization more clear
    plt.figure(figsize = [14,10])

# Item 1 Visulizations
    plt.title('Bar Plot of Item 1 Scores by Cluster')
    sns.countplot(data = df, x="Item1", hue="cluster_labels")
    plt.legend(["Cluster1", "Cluster2"])
    plt.xlabel("Hierarchy of Item 1")
    plt.ylabel("Number of Patients")
Out[23]: Text(0, 0.5, 'Number of Patients')
```

Bar Plot of Item 1 Scores by Cluster


```
In [24]: # Size adjustment to make visualization more clear
plt.figure(figsize = [14,10])

# Item 2 Visualization
plt.title("Bar Plot of Item 2 Scores by Cluster")
sns.countplot(data = df, x="Item2", hue="cluster_labels")
plt.legend(["Cluster1", "Cluster2"])
plt.xlabel("Hierarchy of Item 2")
plt.ylabel("Number of Patients");
```

Bar Plot of Item 2 Scores by Cluster


```
In [25]: # Size adjustment to make visualization more clear
plt.figure(figsize = [14,10])

# Item 3 Visualization
plt.title('Bar Plot of Item 3 Scores by Cluster')
sns.countplot(data = df, x="Item3", hue="cluster_labels")
plt.legend(["Cluster1", "Cluster2"])
plt.xlabel("Hierarchy of Item 3")
plt.ylabel("Number of Patients");
```

Bar Plot of Item 3 Scores by Cluster


```
In [26]: # Size adjustment to make visualization more clear
plt.figure(figsize = [14,10])

# Item 4 Visualization
plt.title("Bar Plot of Item 4 Scores by Cluster")
sns.countplot(data = df, x="Item4", hue="cluster_labels")
plt.legend(["Cluster1", "Cluster2"])
plt.xlabel("Hierarchy of Item 4")
plt.ylabel("Number of Patients");
```

Bar Plot of Item 4 Scores by Cluster


```
In [27]: # Size adjustment to make visualization more clear
plt.figure(figsize = [14,10])

# Item 5 Visualization
plt.title('Bar Plot of Item 5 Scores by Cluster')
sns.countplot(data = df, x="Item5", hue="cluster_labels")
plt.legend(["Cluster1", "Cluster2"])
plt.xlabel("Hierarchy of Item 5")
plt.ylabel("Number of Patients");
```

Bar Plot of Item 5 Scores by Cluster


```
In [28]: # Size adjustment to make visualization more clear
plt.figure(figsize = [14,10])

# Item 6 Visualization
plt.title("Bar Plot of Item 6 Scores by Cluster")
sns.countplot(data = df, x="Item6", hue="cluster_labels")
plt.legend(["Cluster1", "Cluster2"])
plt.xlabel("Hierarchy of Item 6")
plt.ylabel("Number of Patients");
```

Bar Plot of Item 6 Scores by Cluster


```
In [29]: # Size adjustment to make visualization more clear
plt.figure(figsize = [14,10])

# Item 7 Visualization
plt.title('Bar Plot of Item 7 Scores by Cluster')
sns.countplot(data = df, x="Item7", hue="cluster_labels")
plt.legend(["Cluster1", "Cluster2"])
plt.xlabel("Hierarchy of Item 7")
plt.ylabel("Number of Patients");
```

Bar Plot of Item 7 Scores by Cluster


```
In [30]: # Size adjustment to make visualization more clear
plt.figure(figsize = [14,10])

# Item 8 Visualization
plt.title("Bar Plot of Item 8 Scores by Cluster")
sns.countplot(data = df, x="Item8", hue="cluster_labels")
plt.legend(["Cluster1", "Cluster2"])
plt.xlabel("Hierarchy of Item 8")
plt.ylabel("Number of Patients");
```

Bar Plot of Item 8 Scores by Cluster


```
In [31]: # Looking at mean scores of each survey response for each cluster
         df grouped = df.groupby('cluster labels')
         df grouped means = df grouped.agg(['mean']).round(2)
         print(df grouped means)
                        Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8
                        mean mean mean mean mean mean mean
         cluster labels
         1
                        4.87 4.90 4.89 5.34 5.90 4.85 4.99 4.99
         2
                        5.91 5.91 5.91 5.59 5.22 5.91 5.86 5.84
In [40]: # Creat new array to more easily create a visualization
         df plot dict = {'cluster1' : [4.87, 4.90, 4.89, 5.34, 5.90, 4.85, 4.99, 4.99],
                    'cluster2' : [5.91, 5.91, 5.91, 5.59, 5.22, 5.91, 5.86, 5.84]}
         df plot = pd.DataFrame(data = df plot dict, index=['Item1', 'Item2',
                                                           'Item3', 'Item4',
                                                           'Item5', 'Item6',
                                                           'Item7', 'Item8'])
         df plot
```

Out[40]:

	cluster1	cluster2
Item1	4.87	5.91
Item2	4.90	5.91
Item3	4.89	5.91
Item4	5.34	5.59
Item5	5.90	5.22
Item6	4.85	5.91
Item7	4.99	5.86
Item8	4.99	5.84

```
In [41]: # Visualization of mean scores for each survey item from each cluster
    plt.figure(figsize = [18,12])
    sns.lineplot(data=df_plot, markers=True)
    plt.title("Average Survey Scores by Question, grouped by Cluster")
    plt.xlabel("Survey Question")
    plt.ylabel("Average Score")
Out[41]: Text(0, 0.5, 'Average Score')
```


D2. Provide the code used to perform the clustering analysis technique from part 2.

Code included above

Part V: Data Summary and Implications

E. Summarize your data analysis by doing the following:

E1. Explain the accuracy of your clustering technique.

I don't think it's possible to generate a true accuracy score for this type of analysis, however the webinar provided by Dr. Kamara did mention running a silhouette score. After researching silhouette scores I found that it allows us to determine if we have distinct or overlappiong clusters. Score closer to 1 show clusters that are far away, scores closer to 0 show clusters that are overlapping, and scores in the negatives indicate that an incorrect cluster has been assigned. (sklearn.metrics.silhouette score, 2023)

Silhouette score is: 0.148

My silhouette score is 0.148. This is very close to zero showing that my two clusters have some degree of overlap. This makes sense when looking at the calculated means and standard deviation from each item and each cluster. The means were very close together and the standard deviations were all close to 1 showing that there isn't a distinct difference between the two clusters.

E2. Discuss the results and implications of your clustering analysis.

When looking at these numbers and the silhouette score together we can see that the data provided by the survey results is all very middle of the road so to speak.

Let's look at the numbers and visualization again.

In [43]: df_plot

Out[43]:

	cluster1	cluster2
Item1	4.87	5.91
Item2	4.90	5.91
Item3	4.89	5.91
Item4	5.34	5.59
Item5	5.90	5.22
Item6	4.85	5.91
Item7	4.99	5.86
Item8	4.99	5.84

```
In [44]: # Visualization of mean scores for each survey item from each cluster
    plt.figure(figsize = [18,12])
    sns.lineplot(data=df_plot, markers=True)
    plt.title("Average Survey Scores by Question, grouped by Cluster")
    plt.xlabel("Survey Question")
    plt.ylabel("Average Score")
Out[44]: Text(0, 0.5, 'Average Score')
```


When looking at this again, with the knowlege of the silhouette score, we can clearly see that patients don't really think anything is not important, but also largely don't think anything is very important. The means of responses for all questions in both clusters range anywhere from about 4.90 to 5.90. Showing that largely the patients, regardless of cluster, believe all of these qualities are somewhat important.

E3. Discuss one limitation of your data analysis.

One limitation in my data analysis is cluster determination. I chose to divide the data into two clusters based on the dendrogram and was shown through my silhouette score that there is definite overlap in the clusters. This shows that I probably could have drilled down deeper and chosen 3 or more clusters to hopefully differentiate my groups more.

E4. Recommend a course of action for the real-world organizational situation from part A1 based on your results and implications discussed in part E2.

Going back to E2, the two clusters aren't very distinct. I am not sure this is a problem necessarily with the analysis but more so the survey itself. Patients are presented with a number of options, 1-8, to determine how important they are. In their survey 1 means most important whereas 8 means least important. I inverted those numbers for this analysis so that bigger numbers related to more importance as that's a more intuitive way to look at it.

My recommendation based on this deals with how we handle patient surveys in the future. I think a ranked survey would help to better determine patient priorities. What I mean is that the patients should be offered all 8 items and have to rank them in order of importance. This would require the patients to determine what is most and least important to them in order and hopefully provide us data on what patients find most important so that resources can be focused on those areas.

In this current survey data we can't draw any meaningful conclusions in regards to what patients find most important. With the current analysis patients feel everything is kind of important, but not really. In this case we fall into the trap of if everything is important then nothing is important. Forcing survey participants to actually rank all 8 items in order could help us glean meaningful survey results and more effectively determine what requires more resources.

F. Panopto Recording

https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=4719bf00-0f05-4359-9b06-b01f014a95a7 (https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=4719bf00-0f05-4359-9b06-b01f014a95a7)

G. Record the web sources used to acquire data or segments of third-party code to support the analysis. Ensure the web sources are reliable.

https://realpython.com/python-map-function/ (https://realpython.com/python-map-function/) and https://www.geeksforgeeks.org/python-map-function/) was used for the map functions to perform survey data inversion

https://stackoverflow.com/questions/60006995/round-while-groupping-by-in-pandas-with-agg-function#:~:text=Round(2)%20will%20round%20it,(3)%20and%20so%20on (https://stackoverflow.com/questions/60006995/round-while-groupping-by-in-pandas-with-agg-function#:~:text=Round(2)%20will%20round%20it,(3)%20and%20so%20on) was used for performing the aggregate mean, std, max, and min calculations

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html) was used for silhouette score

H. Acknowledge sources, using in-text citations and references, for content that is quoted, paraphrased, or summarized.

"Sklearn.Metrics.Silhouette_score." Scikit-learn.Org, 1 Mar. 2023, scikit-