

SELF-DRIVING INFRASTRUCTURE

ENGINEER 2PX3 | TEAM 11

Project Scope

- Redesign traditional intersection design [1]
- PERSEID Method
- Traffic delays solutions
- Ethical considerations
- Safety and regulatory considerations

PERSEID: Performance

- Vehicle to X communication[2]
- 3D Mapping and visualization [3]
- Private Sector Collaboration

- Challenges:
 - Software exploitations
 - Latency
 - Signal interference

PERSEID: Socio-cultural

- Reaction time considerations
- Algorithmic bias
- Ethical dilemmas and human life priority
- Challenges:
 - Human driver reaction times
 - Ensuring there is no bias between vehicle passage
 - Self-driving vehicle decision-making

PERSEID: Regulatory

- Speed limits
- Safety structures
- Government policies
- Challenges:
 - Careful speed limit selection
 - Ethical guidelines (Trolley Problem)
 - Collaborating with self-driving developers7

PERSEID: Environmental

- Sustainable sources
- Vehicle emissions
- Urban sprawl and expansion

- Challenges:
 - Land development
 - Effects on natural environment

Client Requests

- Client request #1:
 - Performance difference of self- driving and human driven vehicles
- Client request #2:
 - Average travel time as a function of load on the system

Grand Control of the Control of the

er > ENG 2PX3 > trafficSimulator-main > code > 🍨 emission.py > 😭 average_calculate

Client Requests

- Client request #3:
 - Measure estimated emissions with our code
 - Constraint: energy consumption dependent on the type of driving


```
3,0.4,0.5,0.6,0.7,0.8,0.9,1],average, label = "Freq:5")
[L/100Km]')
```

Decision Making

Determined the stakeholders and their concerns

- Self-driving vehicles, human-driven vehicles, pedestrians, manufacturers, governing body
- PERSEID method to determine concerns

Progressively research about each PERSEID layer

Discuss about our findings and narrow them

Devised pseudocode then modified code to increase realism of model

- Client requests
- Assumptions

Analyze challenges and conclude design decisions

PERSEID Analysis

Final Recommendations (Performance)

Vehicle-to-everything (V2X)

- Broadcast critical information (i.e., speed, direction, hazards)
- Using unmanned aerial vehicles (UAVs)
- 5G-FR expected to have <1ms latency

Directional antennas

Redirects signals away from areas of interference [4]

3D-Mapping and Visualization

- Using LiDAR
- Feasible in an urban setting

Final Recommendations (Performance Continued)

Traffic Volume

- Wider roads
- Higher speed limits

Traffic Signal Timing

- Implementing SCATS/SCOOT
- Adjusts timing based on conditions

Private Sector Collaboration

- Using data from Lyft, Uber, etc.
- Adjusting intersection timing accordingly.

Final Recommendations (Socio-cultural)

Urban Sprawl

Minimize expansion into greenery

Preference

 Minimize bias of different vehicles in algorithm

Final Recommendations (Regulatory)

• Speed limit must conform to local legislation.

• Safety structures to mitigate dangerous collisions.

Final Recommendations (Environmental Impact and Resources)

- Piezoelectric generators in the asphalt.
- Idle time and emissions minimized.
- Sustainable, long-lasting materials.

Final Recommendations

Client Next Steps

- Explore effective locations for intersection.
- Specific materials and components should be selected.
- Construction and maintenance teams should be created.
- Hold referendum on private sector collaboration.
- 1/6/12/24 month plan should be created:
 - Environmental monitoring.
 - Polling for local satisfaction.
 - Research on effectiveness for future intersections.

References

[1] "2022-2023 Self Driving Infrastructure Project Summary," class notes for ENGINEER 2PX3, Faculty of Engineering, McMaster University, Winter, 2023.

[2] NXP Semiconductors. (n.d.). V2X Communications. [Online]. Available: https://www.nxp.com/applications/automotive/connectivity/v2x-communications [Accessed March 30, 2023]

[3] J. Gwak, J. Jung, R. D. Oh, M. Park, M. A. K. Rakhimov, and J. Ahn, "A review of intelligent self-driving vehicle software research," KSII Transactions on Internet and Information Systems, 30-Nov-2019. [Online]. Available: http://itiis.org/digitallibrary/22283. [Accessed: 26-Jan-2023]

[4] K. K. Nagalapur, E. G. Ström, F. Brännström, J. Carlsson, and K. Karlsson, "Robust connectivity with multiple directional antennas for vehicular ...," IEEE, 09-Dec-2019. [Online]. Available: https://ieeexplore.ieee.org/document/8928957. [Accessed: 03-Mar-2023].