Bayes-päättely Työterveyslaitos 8.-9.2.2018

Ville Hyvönen

3. Posteriorijakauman kuvailu & ennustaminen

- 1. Posteriorijakauma päättelyn lopputuloksena
- 2. Tunnusluvut
- 3. Uskottavuusvälit
- 4. Hypoteesin testaaminen
- 5. Selittäminen vs. ennustaminen
- 6. Posterioriennustejakauma

Posteriorijakauma sisältää jo itsessään kaiken aineistosta saadun informaation parametrin todennäköisistä arvoista.

- Posteriorijakauma sisältää jo itsessään kaiken aineistosta saadun informaation parametrin todennäköisistä arvoista.
- Kuvat (reuna)-posteriorijakaumasta usein erittäin informatiivisia.

- Posteriorijakauma sisältää jo itsessään kaiken aineistosta saadun informaation parametrin todennäköisistä arvoista.
- Kuvat (reuna)-posteriorijakaumasta usein erittäin informatiivisia.
- Kuitenkin varsinkin korkeaulotteisen parametrin tapauksessa posteriorijakauman informaatiota halutaan usein tiivistää
 - Tunnusluvut

- Posteriorijakauma sisältää jo itsessään kaiken aineistosta saadun informaation parametrin todennäköisistä arvoista.
- Kuvat (reuna)-posteriorijakaumasta usein erittäin informatiivisia.
- Kuitenkin varsinkin korkeaulotteisen parametrin tapauksessa posteriorijakauman informaatiota halutaan usein tiivistää
 - Tunnusluvut
 - Uskottavuusvälit

- Posteriorijakauma sisältää jo itsessään kaiken aineistosta saadun informaation parametrin todennäköisistä arvoista.
- Kuvat (reuna)-posteriorijakaumasta usein erittäin informatiivisia.
- Kuitenkin varsinkin korkeaulotteisen parametrin tapauksessa posteriorijakauman informaatiota halutaan usein tiivistää
 - Tunnusluvut
 - Uskottavuusvälit
 - ► Todennäköisyydet parametrien arvoille

▶ 95% **uskottavuusväliksi** (credible interval) kutsutaan väliä, joka sisältää 95% posteriorijakauman todennäköisyysmassasta.

- ▶ 95% **uskottavuusväliksi** (credible interval) kutsutaan väliä, joka sisältää 95% posteriorijakauman todennäköisyysmassasta.
- Yleisesti uskottavuustason α uskottavuusväliksi kutsutaan väliä joka sisältää osuuden $(1-\alpha)$ posteriorijakauman todennäköisyysmassasta.

- 95% uskottavuusväliksi (credible interval) kutsutaan väliä, joka sisältää 95% posteriorijakauman todennäköisyysmassasta.
- Yleisesti uskottavuustason α uskottavuusväliksi kutsutaan väliä joka sisältää osuuden $(1-\alpha)$ posteriorijakauman todennäköisyysmassasta.
- "Bayesiläinen luottamusväli".

- 95% uskottavuusväliksi (credible interval) kutsutaan väliä, joka sisältää 95% posteriorijakauman todennäköisyysmassasta.
- Yleisesti uskottavuustason α uskottavuusväliksi kutsutaan väliä joka sisältää osuuden $(1-\alpha)$ posteriorijakauman todennäköisyysmassasta.
- ► "Bayesiläinen luottamusväli".
 - Suoraviivainen tulkinta: parametrin arvo sijaitsee 95% todennäköisyydellä tällä välillä.

- 95% uskottavuusväliksi (credible interval) kutsutaan väliä, joka sisältää 95% posteriorijakauman todennäköisyysmassasta.
- Yleisesti uskottavuustason α uskottavuusväliksi kutsutaan väliä joka sisältää osuuden $(1-\alpha)$ posteriorijakauman todennäköisyysmassasta.
- "Bayesiläinen luottamusväli".
 - Suoraviivainen tulkinta: parametrin arvo sijaitsee 95% todennäköisyydellä tällä välillä.
 - ► Ei vastaavaa frekvenssitulkintaa kuin frekventistisillä luottamusväleillä: keskimäärin 95% frekventistisistä 95% luottamusväleistä sisältää parametrin todellisen arvon.

▶ 95% uskottavuusväli voidaan valita äärettömän monella eri tavalla.

- ▶ 95% uskottavuusväli voidaan valita äärettömän monella eri tavalla.
- Yleensä käytetään toista kahdesta eri periaateesta:
 - Symmetrinen uskottavuusväli

- ▶ 95% uskottavuusväli voidaan valita äärettömän monella eri tavalla.
- Yleensä käytetään toista kahdesta eri periaateesta:
 - Symmetrinen uskottavuusväli
 - ► HPD (highest posterior density)- uskottavuusväli

Symmetrinen uskottavuusväli

▶ 95% **symmetrisellä uskottavuusvälillä** (equal-tailed credible interval) tarkoitetaan väliä

$$[q_{0.025}, q_{0.975}],$$

missä q_z on posteriorijakauman z-kvantiili.

Symmetrinen uskottavuusväli

▶ 95% **symmetrisellä uskottavuusvälillä** (equal-tailed credible interval) tarkoitetaan väliä

$$[q_{0.025}, q_{0.975}],$$

missä q_z on posteriorijakauman z-kvantiili.

▶ Jos posteriorijakauman moodi on määrittelyjoukon reunalla, tai posteriori on monihuippuinen, ei välttämättä paras valinta, kts. esimerkit

HPD-uskottavuusväli

▶ 95% HPD-uskottavuusvälillä (HPD interval, eli highest posterior density interval) tarkoitetaan lyhintä mahdollista väliä (tai itse asiassa mahdollisesti välien yhdistettä), joka sisältää 95% posteriorijakauman todennäköisyysmassasta.

HPD-uskottavuusväli

- ▶ 95% HPD-uskottavuusvälillä (HPD interval, eli highest posterior density interval) tarkoitetaan lyhintä mahdollista väliä (tai itse asiassa mahdollisesti välien yhdistettä), joka sisältää 95% posteriorijakauman todennäköisyysmassasta.
- ► Jokaisessa HPD-uskottavuusvälin pisteessä posteriorijakauman tiheys on suurempi kuin missään pisteessä sen ulkopuolella.

HPD-uskottavuusväli

- ▶ 95% HPD-uskottavuusvälillä (HPD interval, eli highest posterior density interval) tarkoitetaan lyhintä mahdollista väliä (tai itse asiassa mahdollisesti välien yhdistettä), joka sisältää 95% posteriorijakauman todennäköisyysmassasta.
- ► Jokaisessa HPD-uskottavuusvälin pisteessä posteriorijakauman tiheys on suurempi kuin missään pisteessä sen ulkopuolella.
- Monihuippuisille jakaumille kuvaa paremmin parametrin todennäköisimpiä arvoja, kts. esimerkki.

Hypoteesintestaus

Ei varsinaista vastinetta merkitsevyystesteille.

Hypoteesintestaus

- Ei varsinaista vastinetta merkitsevyystesteille.
- Ei-pisteittäisten hypoteesien, esim. $\theta > 0.5$, tarkastelu helppoa: lasketaan vain posteriorijakaumasta todennäköisyys $p(\theta > 0.5 | \mathbf{y})!$

Hypoteesintestaus

- Ei varsinaista vastinetta merkitsevyystesteille.
- Ei-pisteittäisten hypoteesien, esim. $\theta > 0.5$, tarkastelu helppoa: lasketaan vain posteriorijakaumasta todennäköisyys $p(\theta > 0.5 | \mathbf{y})!$
- kts. esimerkki

Pistehypoteesit, kuten H_0 : $\theta = 0.5$ hankalampia.

- Pistehypoteesit, kuten $H_0: \theta = 0.5$ hankalampia.
 - ▶ Jatkuvalle parametrille $p(\theta = 0.5|\mathbf{y}) = 0.$

- Pistehypoteesit, kuten $H_0: \theta = 0.5$ hankalampia.
 - ▶ Jatkuvalle parametrille $p(\theta = 0.5|\mathbf{y}) = 0$.
- Yksi tapa: Bayes-faktori (Bayes factor).

- Pistehypoteesit, kuten $H_0: \theta = 0.5$ hankalampia.
 - ▶ Jatkuvalle parametrille $p(\theta = 0.5|\mathbf{y}) = 0$.
- Yksi tapa: Bayes-faktori (Bayes factor).
 - Voivat olla erittäin sensitiivisiä priorin valinnalle jopa kaikkein yksinkertaisemmissakin malleissa.

- Pistehypoteesit, kuten $H_0: \theta = 0.5$ hankalampia.
 - ▶ Jatkuvalle parametrille $p(\theta = 0.5|\mathbf{y}) = 0$.
- Yksi tapa: Bayes-faktori (Bayes factor).
 - Voivat olla erittäin sensitiivisiä priorin valinnalle jopa kaikkein yksinkertaisemmissakin malleissa.
 - ▶ Asetetaan positiivinen todennäköisyys pistehypoteesille → yäk!

- Pistehypoteesit, kuten H_0 : $\theta = 0.5$ hankalampia.
 - ▶ Jatkuvalle parametrille $p(\theta = 0.5|\mathbf{y}) = 0$.
- Yksi tapa: Bayes-faktori (Bayes factor).
 - Voivat olla erittäin sensitiivisiä priorin valinnalle jopa kaikkein yksinkertaisemmissakin malleissa.
 - lacktriangle Asetetaan positiivinen todennäköisyys pistehypoteesille ightarrow yäk!
 - ▶ Jos parametrin arvo todella voi olla tasan 0.5 tai 0, voi olla Bayes-faktoreita voi olla perusteltua käyttää, mutta muuten kannattaa suhtautua varauksella (huom. kirjoittajan subjektiivinen mielipide, mutta myöskään Bayesian data analysis tai Doing Bayesian data analysis eivät suosittele Bayes-faktorien käyttöä yleisessä tapauksessa).

Jos haluaa "testata" pistehypoteesiä, esimerkiksi $p(\theta=0.5)$ voi yksinkertaisesti katsoa, kuuluuko arvo $\theta=0.5$ parametrin 95% uskottavuusvälille.

- Jos haluaa "testata" pistehypoteesiä, esimerkiksi $p(\theta=0.5)$ voi yksinkertaisesti katsoa, kuuluuko arvo $\theta=0.5$ parametrin 95% uskottavuusvälille.
- Tällöin priorin on syytä olla suhteellisen epäinformatiivinen.

- Jos haluaa "testata" pistehypoteesiä, esimerkiksi $p(\theta=0.5)$ voi yksinkertaisesti katsoa, kuuluuko arvo $\theta=0.5$ parametrin 95% uskottavuusvälille.
- Tällöin priorin on syytä olla suhteellisen epäinformatiivinen.
- Kts. esimerkki.

Posterioriennustejakauma uudelle havainnolle \tilde{y} samasta jakaumasta kuin alkuperäiset havainnot y_1, \ldots, y_n saadaan integroimalla parametriavaruuden yli:

$$p(\widetilde{y}|\mathbf{y}) = \int_{\Omega} p(\widetilde{y}|\mathbf{\theta}) p(\mathbf{\theta}|\mathbf{y}) \,\mathrm{d}\mathbf{\theta}.$$

Posterioriennustejakauma uudelle havainnolle \tilde{y} samasta jakaumasta kuin alkuperäiset havainnot y_1, \ldots, y_n saadaan integroimalla parametriavaruuden yli:

$$p(\widetilde{y}|\mathbf{y}) = \int_{\Omega} p(\widetilde{y}|\boldsymbol{ heta}) p(\boldsymbol{ heta}|\mathbf{y}) \, \mathrm{d} \boldsymbol{ heta}.$$

Ottaa huomioon koko posteriorijakauman.

Posterioriennustejakauma uudelle havainnolle \tilde{y} samasta jakaumasta kuin alkuperäiset havainnot y_1, \ldots, y_n saadaan integroimalla parametriavaruuden yli:

$$p(\widetilde{y}|\mathbf{y}) = \int_{\Omega} p(\widetilde{y}|\boldsymbol{ heta}) p(\boldsymbol{ heta}|\mathbf{y}) \, \mathrm{d} \boldsymbol{ heta}.$$

- Ottaa huomioon koko posteriorijakauman.
- ightharpoonup Vrt. "plug-in-estimaatti": $p(\tilde{y}|\hat{ heta}_{\mathsf{MLE}})$

Posterioriennustejakauma uudelle havainnolle \tilde{y} samasta jakaumasta kuin alkuperäiset havainnot y_1, \ldots, y_n saadaan integroimalla parametriavaruuden yli:

$$p(\tilde{y}|\mathbf{y}) = \int_{\Omega} p(\tilde{y}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}) \, \mathrm{d}\boldsymbol{\theta}.$$

- Ottaa huomioon koko posteriorijakauman.
- ightharpoonup Vrt. "plug-in-estimaatti": $p(\tilde{y}|\hat{\theta}_{\mathsf{MLE}})$
- Kts. esimerkki.