Probabilités conditionnelles

DÉFINITION Probabilités conditionnelles

Soient A et B deux événements, avec A de probabilité non nulle.

On définit la probabilité de B sachant A par :

$$P_{A}\left(B
ight) =rac{P\left(A\cap B
ight) }{P\left(A
ight) }$$

THÉORÊME Formule des probabilités totales

Soit $E_1, E_2, E_3, ..., E_k$ un système complet d'événements de l'univers $\,\Omega\,$ ayant chacun une

probabilité non nulle.

Pour tout événement A de E:

$$P\left(A
ight) = P\left(A\cap E_1
ight) + P\left(A\cap E_2
ight) + P\left(A\cap E_3
ight) + ... + P\left(A\cap E_k
ight)$$

Loi binomiale

Loi binomiale DÉFINITION

Soit un réel p compris entre 0 et 1 et n un entier naturel non nul.

Le nombre de succès dans la répétition de n épreuves de Bernoulli identiques et indépendantes suit la loi binomiale de paramètres n et p.

Une variable aléatoire suit ainsi la loi binomiale de paramètres n et p, notée $B\left(n;p\right)$, si :

- $X(\Omega) = \{0; 1; ...; n\}$
- ullet Pour tout entier $\,k\in\{0;1;...;n\}\,\,,\,P\left(X=k
 ight)=inom{n}{k}p^k\left(1-p
 ight)^{n-k}$

Le coefficient $\binom{n}{k}$ est égal au nombre de possibilités de placer les k succès parmi les n répétitions.

THÉORÊME Espérance et variance d'une loi binomiale

Si X suit la loi binomiale de paramètres n et p, on a :

$$E\left(X\right) =np$$

$$V\left(X
ight) =np\left(1-p
ight)$$

Lois à densité

Loi uniforme

DÉFINITION Loi uniforme sur [a;b]

Fonction de densité sur $\left[a;b\right]$	$f\left(x\right) = \frac{1}{b-a}$
Probabilité	Pour tous réels c et d tels que $a \leq c \leq d \leq b$: $P\left(c \leq X \leq d\right) = \frac{d-c}{b-a}$
Espérance	$E\left(X ight) =rac{a+b}{2}$

B Loi normale

Loi normale centrée réduite $\mathcal{N}\left(0;1 ight)$

Fonction de densité sur \mathbb{R}	$f\left(x ight)=rac{1}{\sqrt{2\pi}}e^{-rac{x^{2}}{2}}$
Probabilité	$P\left(X \leq a ight) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-rac{t^2}{2}} \; \mathrm{d}t$
Espérance	$E\left(X ight) =0$
Variance	$V\left(X ight) =1$

Valeurs remarquables d'une loi normale centrée réduite THÉORÊME

Si X suit la loi normale $\mathcal{N}\left(0;1\right)$, on a les valeurs remarquables suivantes :

$$P\left(-1 \le X \le 1\right) \approx 0,683$$

$$P\left(-2 \leq X \leq 2
ight) pprox 0,954$$

$$P\left(-3 \leq X \leq 3
ight) pprox 0,997$$

$$P\left(-a \leq X \leq a
ight) = 0.99$$
 pour $a pprox 2.58$

 $P\left(-a \leq X \leq a\right) = 0.95$ pour $a \approx 1.96$

DÉFINITION Loi normale $\mathcal{N}\left(\mu;\sigma^2 ight)$

Définition	Une variable aléatoire X suit la loi normale $\mathcal{N}\left(\mu;\sigma^2 ight)$ si la variable aléatoire
	$\dfrac{X-\mu}{\sigma}$ suit la loi normale centrée réduite.
Espérance	$E\left(X ight) =\mu$
Variance	$V\left(X ight) =\sigma ^{2}$

THÉORÊME Valeurs remarquables d'une loi normale

Si X suit la loi normale $\mathcal{N}\left(\mu;\sigma^2\right)$, on a les valeurs remarquables suivantes :

$$P\left(\mu-\sigma\leq X\leq\mu+\sigma
ight)pprox0,683$$

$$P\left(\mu-2\sigma\leq X\leq\mu+2\sigma
ight)pprox0,\!954$$

$P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.997$

Intervalle de fluctuation et estimation **DÉFINITION** Intervalle de fluctuation au seuil de 95%

L'intervalle de fluctuation au seuil 95% de la fréquence d'apparition d'un caractère, de proportion connue

p, dans un échantillon aléatoire de taille n (à condition d'avoir $\,n \geq 30\;,\, np \geq 5\;,\, n\,(1-p) \geq 5\;$) est :

$$\left[p-1,96rac{\sqrt{p\left(1-p
ight)}}{\sqrt{n}};p+1,96rac{\sqrt{p\left(1-p
ight)}}{\sqrt{n}}
ight].$$

DÉFINITION Intervalle de confiance

95%.

On considère une épreuve de Bernoulli dont on veut estimer la probabilité de succès \emph{p} . On appelle f_n la

 $nf_n \geq 5$ et $n\left(1-f_n
ight) \geq 5$, alors p appartient à l'intervalle suivant avec un niveau de confiance de 95%:

fréquence d'apparition du succès après n répétitions indépendantes de cette épreuve. Si $\,n \geq 30$,

 $\left[f_n-rac{1}{\sqrt{n}};f_n+rac{1}{\sqrt{n}}
ight]$ Il s'agit de l'intervalle de confiance à 95% de la proportion p du caractère étudié dans la population. C'est

donc l'intervalle centré sur f_n dans lequel on s'attend à trouver la proportion ho avec une probabilité de

Sommaire

- Probabilités conditionnelles
- II Loi binomiale

I

- **III** Lois à densité
- (A) Loi uniforme (B) Loi normale
- Intervalle de fluctuation et estimation

Tout le contenu en illimité avec nos offres Premium

S'ABONNER

