Newton's Interpolating Polynomial

Lucas V. Araujo < lucas.vieira.ar@disroot.org>

December 3, 2019

Part I

The Polynomial

Let $y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2)...y_n = f(x_n)$ be the n+1 values of a function y = f(x) where no x appears more than once, the Newton's Interpolating Polynomial for this function described as follows:

$$Pn(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0)(x - x_1)(\dots)(x - x_{n-1})$$

Where $d_i \mid 0 \le i \le n$, is the divided difference operator of i^0 order and x is the (future) value we want to find.

Part II

Divided Differences

The divided differences are defined as:

$$d_0 = f[x_0] = y_0$$

$$d_1 = f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

$$d_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

÷

$$d_n = \frac{f[x_1, x_1, x_2, \dots, x_n] - f[x_0, x_1, x_2, \dots, x_{n-1}]}{x_n - x_0}$$

By doing this with the known points, we can generate a table with all the divided differences.

Table 1: Divided Differences Table

X	f[x]	$f[x_i, x_j]$	$f[x_i, x_j, x_k]$	
x_0	y_0			
x_1	y_1	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
x_2	y_2	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}$	
x_n	y_n	$ f[x_{n-1}, x_n] = f[x_n] - f[x_{n-1}] $		
		$\frac{f[x_n] - f[x_{n-1}]}{x_n - x_{n-1}}$		

And so on...

The element on the first line and column i of the table (without considering the column with x) is the divided difference operator of i^Ω order.