FYS2140 Kvantefysikk - Vår 2021 Løsningsforslag for Oblig 6

(Versjon 15. mars 2021)

Her er løsninger på A Diskusjonsoppgaver, B Regneoppgaver og C Tilleggsoppgaver (ikke obligatorisk).

A Diskusjonsoppgaver

Oppgave 1 Ortonormale egentilstander

Ikke-degenererte stasjonære løsninger til energi-egenverdiligningen til-fredsstiller likningen $\hat{H}\psi = E\psi$. Med den tidsavhengig faktoren satt på, kan løsningen skrives som $\Psi_n(x,t) = \psi_n(x) \exp(-iE_n t/\hbar)$.

a) Egentilstandene $\psi_n(x)$ er ortonormale, slik at $\int \psi_m^*(x)\psi_n(x)dx = \delta_{mn}$. Hva er definisjonen på ortonormalitet, og hva betyr dette for egentilstandene til en partikkel?

Svar: At ψ_n er ortonormale betyr at de er ortogonale på hverandre slik at indreproduktet mellom dem (her definert som $\int \psi_m^* \psi_n dx$) er 0 når $m \neq n$, og normalisert slik at indreproduktet er lik 1 når m = n.

Ortogonaliteten forteller oss at en partikkel i en egentilstand ikke kan inneha flere energitilstander samtidig, mens det at egentilstanden er normert forteller oss at sannsynligheten for at partikkelen finnes et sted i rommet må summeres opp til 1.

b) Hvorfor må vi kreve normalitet for at bølgefunksjonene skal kunne representere fysiske tilstander?

Svar: Siden $\int_{-\infty}^{\infty} \Psi(x,t)^* \Psi(x,t) dx$ skal representere sannsynligheten for å finne partikkelen ett eller annet sted, må integralet være lik 1 som betyr at bølgefunksjonen er normalisert.

- c) Er også $\Psi_n(x,t)$ ortonormale slik at $\int \Psi_m^*(x,t)\Psi_n(x,t)dx = \delta_{mn}$? Begrunn svaret.
 - A) Ja
 - B) Nei
 - C) Kommer an på de ulike E_n

Svar: A) er riktig alternativ, Ψ_n er også ortonormale. Dette kan vi se ved å sette opp integralet og betrakte de to tilfellene $m \neq n$ og m = n.

$$\int \Psi_m^*(x,t)\Psi_n(x,t)dx = \int \psi_m^*(x)e^{iE_mt/\hbar}\psi_n(x)e^{-iE_nt/\hbar}dx \quad (1)$$

$$= \int \psi_m^*(x)\psi_n(x)e^{i(E_m-E_n)t/\hbar}dx \qquad (2)$$

$$= e^{i(E_m - E_n)t/\hbar} \int \psi_m^*(x)\psi_n(x)dx \qquad (3)$$
$$= e^{i(E_m - E_n)t/\hbar} \delta_{mn}. \qquad (4)$$

$$= e^{i(E_m - E_n)t/\hbar} \delta_{mn}. \tag{4}$$

Hvis $m \neq n$, er $\delta_{mn} = 0$, og hvis m = n, er $e^{i(E_m - E_n)t/\hbar} = 1$ og $\delta_{mn} = 1$ slik at hele integralet også er 1.

Oppgave 2 Energi-egentilstander

De tidsavhengige bølgefunksjonene $\Psi_1(x,t)$ og $\Psi_2(x,t)$ er begge egentilstander for Hamilton-operatoren, altså er de energi-egentilstander. Tilstandene er ikke degenererte, som betyr at de har forskjellige energiegenverdier E_1 og E_2 . Med andre ord har vi at $H\Psi_1 = E_1\Psi_1$ og $H\Psi_2 = E_2\Psi_2$ og $E_1 \neq E_2$.

- a) Er $\Psi_{\text{sum}} = \frac{1}{\sqrt{2}}(\Psi_1 + \Psi_2)$ også en energi-egentilstand? Begrunn svaret.
 - A) Ja, alltid
 - B) Nei, aldri
 - C) Kanskje ja, det kommer an på

Svar: B) er riktig, Ψ_{sum} er aldri en egentilstand. Tilstanden er en superposisjon av to (ikke-degenererte) egentilstander og en energimåling på Ψ_{sum} kan dermed gi enten E_1 eller E_2 som resultat. Da kan ikke Ψ_{sum} være en egentilstand for energi selv, siden en egentilstand for energi har skarp energi, dvs. at man alltid får egenverdien i en energimåling.

b) Hva kan du si om resultatet av en energimåling på Ψ_{sum} ?

Svar: En energimåling på dette systemet vil gi enten E_1 eller E_2 . Sannsynlighetene for å måle hver av de to energiene er like, da c_1 $c_2 = 1/\sqrt{2}$.

c) Er forventningsverdien $\langle E \rangle$ av energimålinger det samme som svaret i b)?

Svar: Nei. Forventningsverdien $\langle E \rangle$ er gjennomsnittet av uendelig mange energimålinger på Ψ_{sum} , eller sagt på en annen måte; et gjennomsnitt av alle mulige måleutfall vektet etter sannsynlighet for hvert utfall.

d) Nå måler du energien til systemet beskrevet av Ψ_{sum} . Hvordan ser den nye bølgefunksjonen ut? Rett etterpå måler du energien igjen. Hvilken energi måler du nå?

Svar: Ved måling kollapser superposisjonen av bølgefunksjonen, og avhengig av om vi måler E_1 eller E_2 er systemet nå beskrevet av enten Ψ_1 eller Ψ_2 . Hvis vi nå måler energien igjen, vil vi måle den samme som i første måling.

e) Hvis systemet som du studerer beskrives av Ψ_1 alene, hvilke(n) energi(er) vil du da måle?

Svar: Siden Ψ_1 er en egenfunksjon for energi, vil vi alltid få E_1 i en energimåling.

Oppgave 3 Energi-egentilstander i harmonisk oscillator (HO)

Hvis $\hat{H}(\hat{a}_+\psi_n) = (E_n + \hbar\omega)(\hat{a}_+\psi_n)$, hva kan du si om $\hat{a}_+\psi_n$? Velg ett av alternativene under og begrunn svaret.

- A) Ikke så mye.
- B) Det er en energi-egentilstand og den må være proporsjonal med tilstanden ψ_n .
- C) Det er en energi-egentilstand, men den er IKKE proporsjonal med tilstanden ψ_n .

Svar: C) er riktig svar. Bølgefunksjonen $\hat{a}_+\psi_n$ er en energi-egentilstand, siden den er en løsning av TUSL med egenverdi $(E_n + \hbar\omega)$. Den kan derimot ikke være proporsjonal med ψ_n , siden \hat{a}_+ hever systemet fra energitilstand ψ_n til energitilstand ψ_{n+1} , som må være ortogonal (lineært uavhengig) av ψ_n (hvis ikke er de ikke egentilstander).

B Regneoppgaver

Oppgave 4 Egenskaper ved HO bølgefunksjoner

a) Konstruer ψ_2 for den harmoniske oscillator ved å anvende heveoperatoren to ganger på grunntilstanden $\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2\hbar}x^2}$.

Svar: Vi vet at ψ_2 kan konstrueres fra grunntilstanden ved å bruke stigeoperatoren \hat{a}_+ :

$$\psi_2 = \frac{1}{\sqrt{2!}} \hat{a}_+^2 \psi_0. \tag{5}$$

Vi begynner med grunntilstander

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2},\tag{6}$$

og bruker først \hat{a}_+ en gang:

$$\hat{a}_{+}\psi_{0} = \frac{1}{\sqrt{2\hbar m\omega}} \left(-i\hat{p} + m\omega\hat{x}\right) \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\sqrt{2\hbar m\omega}} \left(-\hbar\frac{d}{dx} + m\omega x\right) \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left[-\hbar\left(-\frac{m\omega}{2\hbar} \cdot 2x\right) + m\omega x\right] e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \sqrt{\frac{2m\omega}{\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} x e^{-\frac{m\omega}{2\hbar}x^{2}}, \tag{7}$$

og så \hat{a}_{+} en gang til:

$$\hat{a}_{+}^{2}\psi_{0} = \frac{1}{\sqrt{2\hbar m\omega}} \left(-i\hat{p} + m\omega\hat{x}\right) \sqrt{\frac{2m\omega}{\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} x e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\hbar} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(-\hbar\frac{d}{dx} + m\omega x\right) x e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \frac{1}{\hbar} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left[-\hbar \left(1 - x\frac{m\omega}{2\hbar}2x\right) + m\omega x^{2}\right] e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(\frac{2m\omega}{\hbar}x^{2} - 1\right) e^{-\frac{m\omega}{2\hbar}x^{2}}.$$
(8)

Dette gir

$$\psi_2 = \frac{1}{\sqrt{2!}} \hat{a}_+^2 \psi_0 = \frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi\hbar} \right)^{\frac{1}{4}} \left(\frac{2m\omega}{\hbar} x^2 - 1 \right) e^{-\frac{m\omega}{2\hbar} x^2}. \tag{9}$$

b) Tegn ψ_0 , ψ_1 og ψ_2 sammen med V(x). Velg konstanter som gir $m\omega/\hbar = 1 \text{ nm}^{-2}$. Vær nøye med å bruke enheter på aksene. Dette er nødvendig for å få full poengpott på (hjemme)eksamen!

Svar: Se figur 1. Her er $k = m\omega/\hbar = 1 \text{ nm}^{-2}$, som gir at potensialet kan skrives $V(x) = \frac{1}{2}k^2\frac{(\hbar c)^2}{mc^2}x^2$, der $\hbar c = 197.3 \text{ nmeV}$ og $mc^2 = 0.511$

MeV. Det er egentlig en tilsnikelse å tegne bølgefunksjonene og potensialet i samme koordinatsystem, de har jo ikke samme enhet! Det vi egentlig ser for oss, er to y-akser, en i nm $^{-0.5}$ og en i eV.

En annen mulighet er å lage et slags modifisert potensial V^* som får samme enhet som bølgefunksjonene, men likevel beholder formen til det opprinnelige potensialet. Det er mange måter å gjøre dette på, men dette er metoden vi brukte. Først gjør vi potensialet dimensjonsløst gjennom å introdusere $\tilde{V}=V/m\omega^2x_0^2$, der $x_0=1$ nm. Da blir potensialet på formen

$$\tilde{V} = \frac{1}{2}\tilde{x}^2, \quad \tilde{x} = x/x_0.$$

Dette har fortsatt ikke riktig enhet, så vi gjør enda en substitusjon, altså $V^* = \tilde{V}/x^*$, der $x^* = 0.1 \mathrm{nm}^{0.5}$ (kunne valgt $x^* = 1 \mathrm{nm}^{0.5}$, men $0.1 \mathrm{nm}^{0.5}$ ga penere plot). Dermed har vi et modifisert potensial $V^* = 0.05 \tilde{x}^2 \mathrm{nm}^{-0.5}$ med riktig enhet og som vi kan plotte sammen med bølgefunksjonene. Se figur 2.

Figur 1: ψ_0 (blå), ψ_1 (oransje) og ψ_2 (grønn) for $m\omega/\hbar=1\,\mathrm{nm}^{-2}$, og V(x) (rød).

c) Sjekk ortogonaliteten til ψ_0 , ψ_1 og ψ_2 , ved eksplisitt integrasjon. Hint:

Figur 2: ψ_0 (blå), ψ_1 (oransje) og ψ_2 (grønn) for $m\omega/\hbar = 1 \,\mathrm{nm}^{-2}$, og $V^*(x)$ (rød).

hvis du utnytter symmetrien til integrandene rundt x=0 så slipper du unna med å gjøre ett integral.

Svar: Kravet til ortogonaliteten for to bølgefunksjoner ψ_m og ψ_n kan skrive som

$$\int_{-\infty}^{\infty} \psi_m^* \psi_n \, dx = \delta_{mn},\tag{10}$$

hvor $\delta_{mn} = 1$ dersom m = n og null ellers.

Dette kravet er automatisk oppfylt for m=n fordi alle de tre bølgefunksjonene er normerte (se Griffiths). Siden ψ_0 og ψ_2 er symmetriske ("like") rundt x=0 og ψ_1 er anti-symmetrisk ("odde"), så er integrandene $\psi_0^*\psi_1$ og $\psi_2^*\psi_1$ anti-symmetriske og integralene dermed automatisk null, noe som oppfyller ortogonalitetskravet i (10). Det gjenstår derfor bare å teste $\psi_0^*\psi_2$ som er symmetrisk om null:

$$\int_{-\infty}^{\infty} \psi_0^* \psi_2 \, dx$$

$$= \int_{-\infty}^{\infty} \left(\frac{m\omega}{\pi\hbar} \right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2} \frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi\hbar} \right)^{\frac{1}{4}} \left(\frac{2m\omega}{\hbar} x^2 - 1 \right) e^{-\frac{m\omega}{2\hbar}x^2} \, dx$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \int_{-\infty}^{\infty} \left(\frac{2m\omega}{\hbar} x^2 - 1\right) e^{-\frac{m\omega}{\hbar} x^2} dx$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \left[\int_{-\infty}^{\infty} \frac{2m\omega}{\hbar} x^2 e^{-\frac{m\omega}{\hbar} x^2} dx - \int_{-\infty}^{\infty} e^{-\frac{m\omega}{\hbar} x^2} dx \right]$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \left[2 \int_{-\infty}^{\infty} y^2 e^{-y^2} \sqrt{\frac{\hbar}{m\omega}} dy - \int_{-\infty}^{\infty} e^{-y^2} \sqrt{\frac{\hbar}{m\omega}} dy \right]$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \sqrt{\frac{\hbar}{m\omega}} \left[4 \int_{0}^{\infty} y^2 e^{-y^2} dy - \int_{-\infty}^{\infty} e^{-y^2} dy \right]$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar}} \sqrt{\frac{\hbar}{m\omega}} \left[4 \cdot \frac{\sqrt{\pi}}{4} - \sqrt{\pi} \right] = 0, \tag{11}$$

hvor vi har brukt variabelbyttet $y=\sqrt{\frac{m\omega}{\hbar}}x$, og fra Rottmann tatt integralene:

$$\int_{-\infty}^{\infty} e^{-\lambda y^2} \, dy = \sqrt{\frac{\pi}{\lambda}},\tag{12}$$

$$\int_0^\infty e^{-\lambda y^2} y^k \, dy = \frac{1}{2} \lambda^{-\frac{k+1}{2}} \Gamma\left(\frac{k+1}{2}\right),\tag{13}$$

med $\lambda=1$, som sammen med de følgende egenskapene til Gammafunksjonen: $\Gamma(x+1)=x\Gamma(x)$ og $\Gamma(1/2)=\sqrt{\pi}$, gir

$$\int_{0}^{\infty} e^{-y^{2}} y^{2} dy = \frac{1}{2} \Gamma\left(\frac{3}{2}\right) = \frac{1}{4} \Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{4}.$$
 (14)

Oppgave 5 Middelverdier av størrelser i HO

a) Beregn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ og $\langle p^2 \rangle$ for tilstanden ψ_0 . Kommentar: I denne og andre oppgaver om den harmoniske oscillator så vil det forenkle regningen dersom du introduserer variablen $\xi = \sqrt{m\omega/\hbar} \, x$ og konstanten $\alpha = (m\omega/\pi\hbar)^{1/4}$. Dermed kan vi skrive $\psi_0 = \alpha e^{-\xi^2/2}$. Vi legger også merke til at

$$\xi = \sqrt{\pi}\alpha^2 x,\tag{15}$$

slik at

$$dx = \frac{1}{\sqrt{\pi}\alpha^2}d\xi. \tag{16}$$

Det kan lønne seg å tenke på symmetriene til bølgefunksjonen før du starter å regne, må du virkelig regne ut $\langle x \rangle$ og $\langle p \rangle$?

Svar: Vi har sett at ψ_0 er en symmetrisk ("like") funksjon om x=0, som betyr at $|\psi_0|^2$ også er en symmetrisk funksjon, og $x|\psi_0|^2$ antisymmetrisk. Som et resultat er $\langle x \rangle = \int x|\psi_0|^2\,dx = 0$ og $\langle p \rangle = m\,d\langle x \rangle/dt = 0$. Vi behøver derfor bare finne $\langle x^2 \rangle$ og $\langle p^2 \rangle$.

For ψ_0 :

$$\langle x^{2} \rangle = \int_{-\infty}^{\infty} x^{2} |\psi_{0}|^{2} dx$$

$$= \int_{-\infty}^{\infty} x^{2} \alpha^{2} e^{-\xi^{2}} dx$$

$$= \alpha^{2} \int_{-\infty}^{\infty} \frac{1}{\pi \alpha^{4}} \xi^{2} \cdot e^{-\xi^{2}} \cdot \frac{1}{\sqrt{\pi \alpha^{2}}} d\xi$$

$$= \frac{1}{\pi^{3/2} \alpha^{4}} \int_{-\infty}^{\infty} \xi^{2} e^{-\xi^{2}} d\xi$$

$$= \frac{1}{\pi^{3/2} \alpha^{4}} \cdot 2 \int_{0}^{\infty} \xi^{2} e^{-\xi^{2}} d\xi$$

$$= \frac{1}{\pi^{3/2} \alpha^{4}} \cdot 2 \cdot \frac{\sqrt{\pi}}{4}$$

$$= \frac{1}{2\pi \alpha^{4}}$$

$$= \frac{1}{2\pi \alpha^{4}}, \qquad (17)$$

hvor vi har brukt integralet i ligning (14).

$$\langle p^2 \rangle = \int_{-\infty}^{\infty} \psi_0^* \left(-i\hbar \frac{d}{dx} \right)^2 \psi_0 \, dx$$

$$= -\hbar^2 \pi \alpha^4 \int_{-\infty}^{\infty} \alpha e^{-\xi^2/2} \frac{d^2}{d\xi^2} \alpha e^{-\xi^2/2} \cdot \frac{1}{\sqrt{\pi}\alpha^2} \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} e^{-\xi^2/2} \frac{d}{d\xi} \left(-\xi e^{-\xi^2/2} \right) \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} e^{-\xi^2/2} \left(-e^{-\xi^2/2} + \xi^2 e^{-\xi^2/2} \right) \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \int_{-\infty}^{\infty} \left(\xi^2 - 1 \right) e^{-\xi^2} \, d\xi$$

$$= -\hbar^2 \sqrt{\pi} \alpha^4 \left(\frac{\sqrt{\pi}}{2} - \sqrt{\pi} \right)$$

$$= \frac{\hbar^2 \pi \alpha^4}{2}$$

$$= \frac{1}{2} m\hbar \omega, \tag{18}$$

hvor vi har brukt

$$-i\hbar \frac{d}{dx} = -i\hbar \frac{d\xi}{dx} \frac{d}{d\xi} = -i\hbar \sqrt{\pi} \alpha^2 \frac{d}{d\xi},$$
 (19)

og

$$\left(-i\hbar\sqrt{\pi}\alpha^2\frac{d}{d\xi}\right)^2 = -\hbar^2\pi\alpha^4\frac{d^2}{d\xi^2},\tag{20}$$

samt (12) og (14).

Det finnes også en enda enklere måte å løse integralene på. For profesjonelle. Det første vi må innse er at vi kan skrive om relasjonene for heve- og senkeoperatorene. Vi hadde

$$\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}} (-i\hat{p} + m\omega\hat{x}), \tag{21}$$

$$\hat{a}_{-} = \frac{1}{\sqrt{2\hbar m\omega}} (+i\hat{p} + m\omega\hat{x}). \tag{22}$$

Summen og differansen av disse vil gi

$$\hat{a}_{+} + \hat{a}_{-} = \sqrt{\frac{2m\omega}{\hbar}} \hat{x}, \tag{23}$$

$$\hat{a}_{+} - \hat{a}_{-} = -i\sqrt{\frac{2}{\hbar m\omega}}\hat{p}, \qquad (24)$$

eller

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_+ + \hat{a}_-), \tag{25}$$

$$\hat{p} = i\sqrt{\frac{\hbar m\omega}{2}}(\hat{a}_{+} - \hat{a}_{-}). \tag{26}$$

Med Diracs brakketnotasjon blir for eksempel foreventningsverdiene til x^2 for tilstanden ψ_0 da

$$\langle x^{2} \rangle = \langle \psi_{0} | \hat{x}^{2} \psi_{0} \rangle = \frac{\hbar}{2m\omega} \langle \psi_{0} | (\hat{a}_{+} + \hat{a}_{-})^{2} \psi_{0} \rangle$$

$$= \frac{\hbar}{2m\omega} \langle \psi_{0} | (\hat{a}_{+}^{2} + \hat{a}_{-} \hat{a}_{+} + \hat{a}_{+} \hat{a}_{-} + \hat{a}_{-}^{2}) \psi_{0} \rangle$$

$$= \frac{\hbar}{2m\omega} \left(\langle \psi_{0} | \hat{a}_{+}^{2} \psi_{0} \rangle + \langle \psi_{0} | \hat{a}_{-} \hat{a}_{+} \psi_{0} \rangle \right)$$

$$= \frac{\hbar}{2m\omega} \left(\langle \hat{a}_{-} \psi_{0} | \hat{a}_{+} \psi_{0} \rangle + \langle \hat{a}_{+} \psi_{0} | \hat{a}_{+} \psi_{0} \rangle \right)$$

$$= \frac{\hbar}{2m\omega} \left(\langle 0 | \hat{a}_{+} \psi_{0} \rangle + \langle \psi_{1} | \psi_{1} \rangle \right) = \frac{\hbar}{2m\omega}, \tag{27}$$

hvor vi har brukt at $\hat{a}_-\psi_0=0$.

b) Sjekk uskarphetsprinsippet for denne tilstanden.

Svar: For ψ_0 har vi

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{1}{2} \frac{\hbar}{m\omega}},$$
 (28)

og

$$\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{\frac{1}{2} m \hbar \omega},$$
 (29)

slik at

$$\sigma_x \sigma_p = \sqrt{\frac{1}{2} \frac{\hbar}{m\omega}} \sqrt{\frac{1}{2} m\hbar\omega} = \frac{1}{2} \hbar, \tag{30}$$

som er akkurat på uskarphetsgrensen, ψ_0 (med gaussisk form) er altså en tilstand med minimal uskarphet.

Oppgave 6 Kinetisk og potensiell energi i HO

Beregn $\langle K \rangle$ (forventningsverdien for kinetisk energi) og $\langle V \rangle$ (forventningsverdien for potensiell energi) for ψ_0 og ψ_1 i harmonisk oscillator (se forrige oppgave). (Du har ikke lov til å gjøre noen nye integral, men du får oppgitt forventningsverdiene $\langle x^2 \rangle_0 = \frac{\hbar}{2m\omega}, \ \langle x^2 \rangle_1 = \frac{3\hbar}{2m\omega}, \ \langle p^2 \rangle_0 = \frac{m\hbar\omega}{2}$ og $\langle p^2 \rangle_1 = \frac{3m\hbar\omega}{2}$.) Er summen hva du ville forvente?

 ${\bf Svar:}$ Forventningsverdien til kinetisk energiK finnes fra relasjonen $K=p^2/2m,$ som gir

$$\langle K \rangle = \frac{1}{2m} \langle p^2 \rangle. \tag{31}$$

For ψ_0 er da

$$\langle K \rangle = \frac{1}{2m} \cdot \frac{1}{2} m \hbar \omega = \frac{1}{4} \hbar \omega,$$
 (32)

og for ψ_1 er

$$\langle K \rangle = \frac{1}{2m} \cdot \frac{3}{2} m \hbar \omega = \frac{3}{4} \hbar \omega.$$
 (33)

Forventningsverdien til potensiell energi $\langle V \rangle$ finnes fra HO potensialet $V(x) = \frac{1}{2}m\omega^2 x^2$, som gir

$$\langle V \rangle = \frac{1}{2} m \omega^2 \langle x^2 \rangle. \tag{34}$$

For ψ_0 er da

$$\langle V \rangle = \frac{1}{2} m \omega^2 \cdot \frac{1}{2} \frac{\hbar}{m\omega} = \frac{1}{4} \hbar \omega,$$
 (35)

og for ψ_1 er

$$\langle V \rangle = \frac{1}{2} m \omega^2 \cdot \frac{3}{2} \frac{\hbar}{m\omega} = \frac{3}{4} \hbar \omega. \tag{36}$$

For både ψ_0 og ψ_1 er summen av forventningsverdiene til kinetisk og potensiell energi lik forventningsverdien til Hamiltonoperatoren (operatoren for totalenergien) for tilstanden, $E_0 = \frac{1}{2}\hbar\omega$ og $E_1 = \frac{3}{2}\hbar\omega$.

C Tilleggsoppgaver (ikke obligatorisk)

Oppgave 7 Middelverdier av størrelser i HO, fortsettelse

a) Beregn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ og $\langle p^2 \rangle$ for tilstanden $\psi_1 = \sqrt{2}\alpha \xi e^{-\xi^2/2}$.

Svar:

a) Beregn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ og $\langle p^2 \rangle$ for tilstanden ψ_0 og ψ_1 . Kommentar: I denne og andre oppgaver om den harmoniske oscillator så vil det forenkle regningen dersom du introduserer variablen $\xi = \sqrt{m\omega/\hbar} x$ og konstanten $\alpha = (m\omega/\pi\hbar)^{1/4}$. Dermed kan vi skrive $\psi_0 = \alpha e^{-\xi^2/2}$ og $\psi_1 = \sqrt{2}\alpha\xi e^{-\xi^2/2}$. Vi legger også merke til at

$$\xi = \sqrt{\pi}\alpha^2 x,\tag{37}$$

slik at

$$dx = \frac{1}{\sqrt{\pi}\alpha^2}d\xi. {38}$$

Det kan lønne seg å tenke på symmetriene til bølgefunksjonene før du starter å regne, må du virkelig regne ut $\langle x \rangle$ og $\langle p \rangle$?

Svar: Vi har sett at ψ_1 er en anti-symmetrisk ("odde") funksjon om x=0, som betyr at $|\psi_1|^2$ en symmetrisk funksjon, og $x|\psi_1|^2$ anti-symmetrisk. Som et resultat er $\langle x \rangle = \int x|\psi_1|^2\,dx = 0$ og $\langle p \rangle = m\,d\langle x \rangle/dt = 0$. Vi behøver derfor bare finne $\langle x^2 \rangle$ og $\langle p^2 \rangle$.

For ψ_1 :

$$\langle x^{2} \rangle = \int_{-\infty}^{\infty} x^{2} |\psi_{1}|^{2} dx$$

$$= \int_{-\infty}^{\infty} x^{2} \cdot 2\alpha^{2} \xi^{2} e^{-\xi^{2}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\pi \alpha^{4}} \xi^{2} \cdot 2\alpha^{2} \xi^{2} e^{-\xi^{2}} \cdot \frac{1}{\sqrt{\pi \alpha^{2}}} d\xi$$

$$= \frac{2}{\pi^{3/2} \alpha^{4}} \int_{-\infty}^{\infty} \xi^{4} e^{-\xi^{2}} d\xi$$

$$= \frac{4}{\pi^{3/2} \alpha^{4}} \int_{0}^{\infty} \xi^{4} e^{-\xi^{2}} d\xi$$

$$= \frac{4}{\pi^{3/2} \alpha^{4}} \cdot \frac{3}{8} \sqrt{\pi}$$

$$= \frac{3}{2\pi \alpha^{4}}$$

$$= \frac{3}{2\pi \alpha^{4}}, \qquad (39)$$

hvor vi har brukt at fra (13) er

$$\int_0^\infty \xi^4 e^{-\xi^2} d\xi = \frac{1}{2} \cdot 1^{-\frac{4+1}{2}} \cdot \Gamma\left(\frac{4+1}{2}\right) = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma\left(\frac{1}{2}\right) = \frac{3}{8}\sqrt{\pi}. \tag{40}$$

Tilslutt er

$$\langle p^{2} \rangle = \int_{-\infty}^{\infty} \psi_{1}^{*} \left(-i\hbar \frac{d}{dx} \right)^{2} \psi_{1} dx$$

$$= \int_{-\infty}^{\infty} \sqrt{2} \alpha \xi e^{-\xi^{2}/2} \left(-\hbar^{2} \pi \alpha^{4} \frac{d^{2}}{d\xi^{2}} \right) \sqrt{2} \alpha \xi e^{-\xi^{2}/2} \cdot \frac{1}{\sqrt{\pi} \alpha^{2}} d\xi$$

$$= -2\hbar^{2} \sqrt{\pi} \alpha^{4} \int_{-\infty}^{\infty} \xi e^{-\xi^{2}/2} \frac{d^{2}}{d\xi^{2}} \xi e^{-\xi^{2}/2} d\xi$$

$$= -2\hbar^{2} \sqrt{\pi} \alpha^{4} \int_{-\infty}^{\infty} \xi e^{-\xi^{2}/2} \frac{d}{d\xi} \left(e^{-\xi^{2}/2} - \xi^{2} e^{-\xi^{2}/2} \right) d\xi$$

$$= -2\hbar^{2} \sqrt{\pi} \alpha^{4} \int_{-\infty}^{\infty} \xi e^{-\xi^{2}/2} \left(-\xi e^{-\xi^{2}/2} - 2\xi e^{-\xi^{2}/2} + \xi^{3} e^{-\xi^{2}/2} \right) d\xi$$

$$= -2\hbar^{2} \sqrt{\pi} \alpha^{4} \int_{-\infty}^{\infty} \left(\xi^{4} - 3\xi^{2} \right) e^{-\xi^{2}} d\xi$$

$$= -2\hbar^{2} \sqrt{\pi} \alpha^{4} \cdot 2 \int_{0}^{\infty} \left(\xi^{4} - 3\xi^{2} \right) e^{-\xi^{2}} d\xi$$

$$= -4\hbar^{2} \sqrt{\pi} \alpha^{4} \left(\frac{3}{8} \sqrt{\pi} - 3 \cdot \frac{1}{4} \sqrt{\pi} \right)$$

$$= \frac{3}{2} \hbar^{2} \pi \alpha^{4}$$

$$= \frac{3}{2} m \hbar \omega, \tag{41}$$

hvor vi har benyttet oss av (14) og (40).

b) Sjekk uskarphetsrelasjonen for denne tilstanden.

Svar: For ψ_1 har vi

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{3}{2} \frac{\hbar}{m\omega}},$$
 (42)

og

$$\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{\frac{3}{2} m \hbar \omega},$$
 (43)

slik at

$$\sigma_x \sigma_p = \sqrt{\frac{3}{2} \frac{\hbar}{m\omega}} \sqrt{\frac{3}{2} m \hbar \omega} = \frac{3}{2} \hbar, \tag{44}$$

som større enn uskarphetsgrensen.

Oppgave 8 Sannsynlighet i harmonisk oscillator (fra Griffiths Kap.2)

For grunntilstanden til en harmonisk oscillator, hva er sannsynligheten (med tre desimalers presisjon) for å finne partikkelen utenfor det klassisk tillatte området? *Hint:* klassisk sett så er energien til en oscillator $E = \frac{1}{2}ka^2 = \frac{1}{2}m\omega^2a^2$, hvor a er amplituden (maksimumsutslaget). Derfor går det klassisk tillatte området for en oscillator med energi E fra $-\sqrt{2E/m\omega^2}$ til $\sqrt{2E/m\omega^2}$. Slå opp den numeriske verdien for det intregralet du behøver.

Svar: Sannsynligheten for å finne en partikkel i grunntilstanden i et forbudt område (utenfor det klassiske maksutslaget) er gitt ved

$$P_{\text{forbudt}} = \int_{a}^{\infty} |\psi_0|^2 dx + \int_{-\infty}^{-a} |\psi_0|^2 dx = 2 \int_{a}^{\infty} |\psi_0|^2 dx, \tag{45}$$

hvor vi har utnyttet at ψ_0 er symmetrisk om x=0 (en "lik" funksjon), slik at integralet fra $-\infty$ til -a er identisk med integralet fra a til ∞ . Energien til grunntilstanden er $E_0 = \frac{1}{2}\hbar\omega$, slik at

$$a = \sqrt{\frac{2E_0}{m\omega^2}} = \sqrt{\frac{\hbar}{m\omega}}. (46)$$

Med variabelbyttet $\xi(x) = \sqrt{m\omega/\hbar} x$ i integralet gir dette en integrasjonsgrense på $\xi(a) = 1$. Integralet blir:

$$P_{\text{forbudt}} = 2 \int_{a}^{\infty} |\psi_{0}|^{2} dx$$

$$= 2 \int_{1}^{\infty} \alpha^{2} e^{-\xi^{2}} \cdot \frac{1}{\sqrt{\pi} \alpha^{2}} d\xi$$

$$= \frac{2}{\sqrt{\pi}} \int_{1}^{\infty} e^{-\xi^{2}} d\xi$$

$$\simeq \frac{2}{\sqrt{\pi}} \cdot 0.1394 \simeq 0.157. \tag{47}$$

Sannsynligheten er altså nesten 16%.