

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-4

NPS55-82-030

NAVAL POSTGRADUATE SCHOOL Monterey, California

VOICE RECOGNITION ACCURACY:

WHAT IS ACCEPTABLE?

by

G. K. Poock E. F. Roland

November 1982

Approved for public release; distribution unlimited.

Prepared for: Naval Electronic Systems Command Washington, D. C. 20360 9th Infantry Division Fort Lewis, WA 98433

83 07 01 035

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral J. J. Ekelund Superintendent D. A. Schrady Provost

This work was performed by the authors at the Naval Postgraduate School. Professor Poock has been investigating the potential for VOICE recognition/input into both Navy and Army systems (Navy Document Number N00039WRDX017 and Army MIPR TB-024). E. F. Roland has also performed work as a contractor to NPS for Professor Poock under "Research and Development Study of the Feasibility of Using Computer Voice Entry" under NPS Contract N00228-82-C-6418.

Individual reports have been prepared for each sponsor on studies pertinent to their work. The enclosed work was not required by either sponsor nor funded by either sponsor specifically. We did this work in our spare time as we felt it was very important. Because we feel the topic is very generic to both Army and Navy, we have prepared the report for both.

G. K. Poock, Professor

Department of Operations Research

Pen. 7. Moland

E. F. Roland

Rolands and Associates

Reviewed by:

K. T. Marshall, Shafrman

Department of Operations Research

Released by:

William M. Tolles

Dean of Research

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
	3. RECIPIENT'S CATALOG NUMBER			
NPS55-82-030 AD- A 12993	D			
4. TITLE (and Sublishe)	S. TYPE OF REPORT & PERIOD COVERED			
VOICE RECOGNITION ACCURACY: WHAT IS ACCEPTABLE?	Technical			
	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(a)			
G. K. Poock	{			
E. F. Roland	ĺ			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Naval Postgraduate School	1			
Monterey, CA 93940	N0003982WRDX017 and			
	Army MIPR TB-024			
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE			
Naval Postgraduate School	November 1982			
Monterey, CA 93940	13. NUMBER OF PAGES 51			
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	18. SECURITY CLASS. (of this report)			
1.Naval Electronic Systems Command	1			
Washington, D.C. 20360	Unclassified			
2.9th Infantry Division	18a, DECLASSIFICATION/DOWNGRADING			
Fort Lewis, WA 98433	30160026			
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for Public Release; Distribution	n Unlimited.			
	1			
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different fro	en Report)			
18. SUPPLEMENTARY NOTES				

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) VTAG Voice Recognition Automatic Word Recognition User Acceptability

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A research experiment was conducted to investigate how accurate a voice recognition system must be for daily production use. Specifically, the purpose of the research was to establish the percentage accuracy level at which a user becomes frustrated and decides not to use a voice recognition device. The experiment consisted of controlling the perceived recognition accuracy of a voice recognition system and then collecting data through the use of a

DD 1 JAN 7, 1473 EDITION OF 1 NOV 45 IS OBSOLETE S/N 0102-014-6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED				
JELIJRITY CLASSIFICATION OF THIS PAGE(When Date Entered)				
questionnaire from the experimental users on the acceptability of the equipment. The experiment was not totally successful for a variety of reasons. This paper will discuss the research methodology, review the data collected, and suggest possible alternatives to the experimental design to overcome the problem areas encountered.				
-				

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ABSTRACT

A research experiment was conducted to investigate how accurate a voice recognition system must be for daily production use. Specifically, the purpose of the research was to establish the percentage accuracy level at which a user becomes frustrated and decides not to use a voice recognition device. The experiment consisted of controlling the perceived recognition accuracy of a voice recognition system and then collecting data through the use of a questionnaire from the experimental users acceptability of the equipment. The experiment was not totally successful for a variety of reasons. This paper will discuss the research methodology, review the data collected, and suggest possible alternatives to the experimental design to overcome the problem enccuntered.

User Accuracy Requirements For Voice Recognition

I. INTRODUCTION

Within the last ten years voice recognition technology has grown from a laboratory research endeavor to a useful and economic, computer human interface tool. The equipment available today is relatively inexpensive, compact, and accurate as evidenced by numerous applications, both industrial and military, which successfully use this input methodology. Improvements in the technology are still being made. Three major areas for continued research in voice input to computers are as follows.

- 1. User independence
- 2. Continuous speech
- 3. Vocabulary capability of 10,000 to 12,000 words

The literature indicates that the solution or at least incremental breakthroughs to these three research areas are just a few years away. Hopefully, the goal of manufacturers and researchers is to develop and produce systems with all or some of the properties listed above which have the best accuracy rate possible. A question arises with this goal in mind. At what accuracy rate should the system be made available to users? If an accuracy rate of 95% is acceptable why not use those systems while new and better algorithms are being developed? Conversly, if 95% accuracy rate is not acceptable and will give voice recognition a bad reputation among management personnel and users it should be held back until an acceptable rate can be achieved. A measure of where this accuracy threshold is could be of

great use to researchers and system manufacturers. Therefore, the question investigated was how poor must a voice recognition system be before the user becomes frustrated with the error rate and will choose not to use the system.

A required accuracy rate will depend on the task for which the system is intended to be used. For example, voice recognition is to be used for the input of quidance parameters and launch sequence commands in a computerized missile delivery system, anything less than 99+% accuracy would be unacceptable even under the high stress situations most likely existing during the input process. On the other hand, there are numerous tasks which can be labeled as noncritical where voice recognition errors can be tolerated and in fact now occur frequently using more conventional input methods such as a keyboard. A typical task in this category would be information retrieval such as a stock broker obtaining stock information for a client, or an airline reservationist retrieving flight information for a customer. Neither of these tasks are particularly critical in nature. If an occasional error is made during the input process it is easily corrected and the process repeated without any damage to the system or loss in revenue, profit or system efficiency.

An experiment was developed to study the user acceptabiltiy question with the objective of determining a user required accuracy rate. A VET/2 voice recognition unit manufactured by Scott Instrument Inc. of Denton, Texas was used in conjunction with a Basic software program created on an Apple II Plus microcomputer. The experiment's subjects were asked to read an ordered list of words into the voice recognition unit and observe whether the word was recognized properly. This same ordered list of words was stored in

computer memory. Each subject was led to believe the system was in a recognition mode, but in fact, the software program waited for a verbal input and then drew a random number to determine if the spoken input should be displayed as correct recognition, misrecognition or nonrecognition. Ιf random number determined it was to be a correct recognition the next word on the ordered list was displayed. misrecognition was to occur an alternate word was displayed, and a question mark was displayed if the random determined a nonrecognition was to appear. In other words. the program can be viewed as a voice actuated system where any verbal response would trigger the recognizer, but a random number would determine the output, not the recognition algorithms. As long as the subjects continued to read the ordered list of words, it appeared as if word recognition was being accomplished. By varying the random number test the subject's perceived accuracy rate could be The errors were recorded, and each subject was controlled. asked to complete a question naire. The questions were designed to indicate when a frustration level was reached due to recognition inaccuracy.

The experiment did not lead to the desired goals This paper will cover the experiment and why the actual results were different than predicted. First, report will describe the computer software program which was created to vary the perceived recognition rate during the the experimental design experiment. Next. will The entire design was not implemented because discussed. preliminary data analysis indicated the desired results were not being obtained. The method used to implement the experimental design will also be discussed. The third section of the report will cover the preliminary data analysis and summary of user responses to the experiment.

Finally, conclusions will be drawn as to why the experiment did not resolve the question at hand, and recommendations will be presented for future research concerning the question of "How good should voice recognition equipment be?".

II. PROGRAM SOFTWARE DESCRIPTION

Two computer software programs were written for use in this experiment. The first program was used to create three databases consisting of words to be used for the planned experimental design. Since this program was used only as an aid for the database preparation, it will not be discussed. A copy of the program and the databases of words are attached in Appendix A and Appendix B respectively. The second program created was used to alter the perceived recognition accuracy of the Scott Instrument VET/2 recognizer. It was written in Applesoft Basic and is included as Appendix C. The following description explains the program logic using the program line numbers for reference.

Line 10 dimensions a character array called W\$ (200,2). During the experiment, this array held the 200 vocabulary words used for the experiment. W\$ (I,1) held the word which was to be spoken, and W\$ (I,2) held a sound alike word. The use of this sound alike word will be explained later. The array P\$ (3) held the name of the three word databases which were available for use. These databases were named:

- 1. COMPUTER, designed to be used by users of a text editor on the IBM 3033 computer at the Naval Postgraduate School,
- STOCK, designed to be used by stockbrokers, and
 AIRLINE, designed to be used by airline

reservationists or travel agents.

The array P(4) held the four different probabilities associated with the planned recognition rates of 99%, 95%, 90%, and 85%.

Line 20 sets the variable D\$ to a control D which is used for file manipulation on the Apple computer.

Lines 30 and 40 are data assignment statements for the F\$ and P arrays.

Line 45 assigns to the character variable M\$ a series of five blank spaces. M\$ is used for print control or print spacing.

Line 50 is an output statement asking the user what database is to be used.

Line 60 accepts as an input the number of the desired database. This number is placed in the variable A.

Line 70 opens the correct database file.

Line 80 sets the read device to the appropriate database file.

Line 90 reads in the 200 word vocabulary and their sound alikes into the W\$ array.

Line 100 closes the input database file.

Line 105 asks for a random number generator seed and places the integer response into the variable called IS.

Line 110 asks for an algorithm number, which in effect is the array index of the desired accuracy rate. The question in line 110 was stated in such a manner so that experiment participants would assume different word recognition algorithms were being tested.

Line 120 places the algorithm number in the variable B, and if B is less than zero, the program is stopped.

Lines 130 through 160 call the Scott instrument voice recognition subroutines used to load the voice patterns into

memory, and initialize the recognition unit. The voice patterns, although not used for recognition purposes, were neccessary for the proper operation of the recognition unit.

Line 170 prints a header announcing the practice session of 10 words. During this practice session the use of voice recognition equipment was explained to the experiment participant. The explanation given to each participant will be described in detail later.

180 through 200 create a program loop. Lines The variable I is used as an indexing variable. This indexing variable is first set to 1, and the first word of the vocabulary database is printed on the Apple computer This display is used as a prompt to the display. experiment's participants for the word they are to speak. After the word is displayed the program is transferred to the recognizer's subroutine which will accept a After the recognizer accepts the voice input the subroutine returns control to this main program. After the acceptance of the voice response an artificial delay created by the "FOR Z ..." statement. This delay was neccessary to provide a capability of stopping program execution if the participant made an error which could lead them to believe the program was not actually recognizing their voice. The delay provided the time for the experimenter to stop the program before the "recognized" word was displayed. After the delay a subroutine, which will be described later, is called to determine whether a correct response, a sound alike mistake, a random mistake, or a nonrecognition response should be displayed to the participant. After the response is displayed the index variable, I, is checked to determine if the test practice session is over.

line 210 sets a series of counters to zero. These counters keep track of the number of non recognitions presented to the participant (Q), the number of sound alike misrecognitions presented (S), and the number of nonsense disrecognition responses (N). The variable T is calculated at the end of each participant's pass through the 200 word vocabulary list and holds the accuracy rate actually presented to the subject.

Lines 220 through 250 comprise another program loop. The logic is similar to lines 180 through 200 except the entire 200 word vocabulary is sequentially displayed.

Lines 260, 270 and 280 respectively display statements thanking the participants, calculating the actual accuracy rate presented, and displaying the accuracy rate and all counters in a coded form.

Line 290 sends control of the program back to the question asking which algorithm should be used (Line 110), and the program is ready for the next participant.

line 300 is the first line of the subroutine which will calculate whether the response which is to be shown to the participant is a correct recognition response or one of the three possible error responses. A random number is drawn. If the random number is greater than the accuracy rate which is presently being simulated the program will branch to the statements neccessary to calculate the type of error which should be presented.

Line 310 is executed if a correctly recognized response is to be displayed. The print statement will first print the variable containing the blank spaces, and then the correctly recognized word. This was done so the recognized word was displayed further to the right on the Apple screen

than the word which was output as a prompt. Transfer then is passed to statement 400.

Lines 320 trhough 340 are used to determine the type of error that should be displayed given that the present word is to be perceived as an error by the participant. A random number is drawn, and if it is less than .33 the error is considered a sound alike error and control is passed to line 390. If the random number, R, is between .33 and .66, it is considered a random or nonsense error and control is passed Finally, if the random number is greater than to line 360. .66, it is considered a nonrecognition. Therefore, the three types of errors are equally likely. In previous voice recognition studies, Poock (1980), Poock (1981), Jay (1981), error rates of about 1.8% have been consistently experienced with a Threshold Technology Inc., Jersy, model 600 voice recognizer. In these studies nonrecognitions consisted of 31% to 35% of the total recorded were no statistics available errors. There percentage of misrecognitions which could be considered sound alikes or non-intuitive confusing misrecognitions. For this reason it was assumed that misrecognitions should be equally divided between the sound alike possibilities and Therefore, all three error the random error possibilities. types were programmed to occur with equally likely protabilities.

Line 350 is executed if a non recognition is to occur. It again prints the variable, 8\$, which contains blanks and then a question mark, ?, representing the Scott Instrument convention for a non-recognition. The counter for non-recognitions is increased by one and the program is then transferred to line 400.

Line 360 through 380 determine a random word response for

the random misrecognition case. A random number is drawn and converted into a random integer between 1 and 200. Next it is checked to ascertain that the random integer generated is not the word which is to be misrecognized. If this check had not been made, a misrecognition could have been recorded but the participant would have in fact seen the correct response. The randomly selected word is printed on the display in the same manner as a properly recognized word, and the nonsense word counter is incremented. Again control is then passed to statement 400.

Line 390 is executed if the random number, R, indicates that this incorrect recognition should be a sound alike and the second word in the WS array is printed out. These words have been selected in such away that an average user would conclude that it was an understandable or likely recognition error. The sound alike counter is incremented.

Line 400 is the last line of the subroutine. Again a loop is added to produce a delay. The index used in the program loop consisting of statements 220 through 260 is incremented. A blank line is displayed for readablity and the subroutine returns to the main program to print the next word in the 200 word vocabulary list.

The next section will describe how this program was used, and the reaction of the experiment's participants as to the believability that a voice recognizer was being tested.

III. EXPERIMENTAL DESIGN

It has already been mentioned that three databases were formed for the research experiment. The plan was to runthree groups of 100 people each through one of the databases. In other words, 100 stockbrokers or investment counselors would say the 200 words associated with their profession, and then rate the acceptability of the equipment. Likewise, 100 airline reservationists or travel agents were to use the airline reservationist word list, and 100 students would use the 200 words associated with the IBM 3033 text editor program.

A word list of 200 words was used for two reasons. First it was decided that going through a list of 100 words went too fast, and the subjects would not get a good feeling for the accuracy rate. Using 300 words was definitely out of the question because of the time involved in conducting the experiment for the number of planned subjects, and because of a possible boredom factor which could complicate the subjects perception of the system. The median seemed like a The vocabulary size of 200 words also reasonable choice. satisfied a second criteria. That was the desire to get user frustration information at a more accurate level than every 1 percentage point. At least the 200 words would give ratings at every one half percentage point.

During the experiment it became apparent that a frustration level was not being achieved or at least measured. Therefore, after the first fourth of the experiment some preliminary data analysis was done, and the results showed that little was being learned about user accuracy needs. It was decided to stop the experiment and report on what had been done to date. A total of 78

subjects participated in the test. The intent of this section of the paper is to explain how the subjects were introduced to the experiment and how they reacted to the recognition system. This section will also discuss the design of the questionnaire.

The subjects were students, staff and faculty members at The Naval Postgraduate School in Monterey, California. They were all volunteers and between the ages of 25 and 49. The entire explanation and experiment took between 10 and 15 minutes per subject.

When a subject arrived at the experiment site, it was explained that some new user independent voice recognition algorithms were being tested. The Scott Instrument voice recognition device was covered to preclude the subjects from getting the wrong impression of its capability. The algorithm number was entered into the system in front of the subject as the idea of different algorithms was being explained.

Some of the subjects had used voice recognition equipment on previous voice experiments. These students needed little practice, but still went through the ten practice words. The practice words were used as the teaching device for those subjects who had not used the equipment before. The need to speak a phrase as a continuous flow of speech was explained, as was the explanation of the meaning of a question mark (?) when it appeared on the display. If the subject showed an interest in the machine's capability during the the practice session, their questions were postponed until after they had answered the questionnaire.

The subjects were asked to ignore all the errors (if any) which occured during their practice session. It was explained that some artificial intelligence algorithms were

being employed and the system was selecting characteristics of their voice for use in the main portion of the experiment.

As the subjects were going through the 200 word list, the experiment was stopped each time an error occured. error was pointed out to the subject and a short explanation was given as to what that error would do if the true text editor was employed. The idea for stopping the program was First it was noticed during preliminary program two fold. testing that some people started to read the words on the display and weren't watching the recognized word displayed. In other words, the experiment bored them and they weren't always aware of the errors. At first this had been solved by placing the recognized word directly under the Unfortunately this solution caused another problem. The subjects who participated in the preliminary testing started to say the recognized word instead of the following prompt word which had a devastating effect on the user's confidence that the system was recognizing their voice. Therefore, the recognized word was placed to the right of the prompt word, and each error was pointed out to the The second reason for stopping the program was to subject. delay the subject in completing the experiment. It was hoped that the idea of an error slowing them down would transfer to their perception of how the system would work in The plan was to slow them down thus a real environment. creating a frustration level which was to be measured.

There were numerous times even with the precautions taken where the subject read the wrong word, or started to make a comment without the microphone being turned off. This led to a recognition which in the majority of cases was correct, when the spoken utterance was obviously incorrect. The experimenter's finger was always kept lightly on the Apple

computer's space bar. By depressing the bar the microphone and voice recognition system were deactivated. The majority of the time, the experimenter depressed the space bar soon enough to avoid a correct recognition of an incorrect voice This was the major reason for the delay loop explained earlier in the program software description. the space bar was not depressed soon enough, and the correct response appeared on the display, the subject was told that the software program had been developed to do its own data collection automatically. Furthermore, it was explained that the experiment was interested in only recognizer errors not the human errors which will always occur with a voice it was explained, that pressing the system. Therefore, space bar was an automatic override, and no matter what was said the automatic data collection routine would count it as a correct recognition. This explanation seemed to satisfy everyone, who encountered the situation.

After the subject had completed the 200 words, he or she was asked to fill out a two page questionnaire. questionnaire is attached as Appendix D. Questions 3,4 and 5 created the data which was of most importance to the experiment and was the measurement of user acceptability. of response alternatives, The sets for these three were taken from an Army Research Institute questions, publication on questionnaire construction (1976). responses have been tested and shown to have mean scaling factors at least one standard deviation away from each other while maintaining the parallel wording. Question concerning the part of the country the subject graw up in, had nothing to do with the experiment that was being conducted, but was included to make the experiment about testing user independent algorithms more believable to the participants. The remaining questions are self explanatory,

and will be reviewed in detail when discussing the analysis of the data collected.

After the questionnaire was completed the subject was free to ask questions about the system. They were led to believe that all algorithms had been created at the School, and that the technology was not commercially ready because of the extremely large amount of core needed to run the system. This was done to insure that the believability in the system would not decrease as students talked about the experiment. On the other hand, it was not the intent of the experiment to lead the subjects to believe that voice recognition capabilities were beyond the present state of the art.

The experiment was a total success as far as the believability of the system was concerned. There were a couple of instances when the random number generator cooperated fully. For example, a subject asked a question which triggered a response and the random number generator created a nonrecognition. In another case a word was misrecognized in the test sequence and the same word was misrecognized during the experiment, both times the misrecognition was the sound alike word. There were subjects who tried to analyze the system and hypothesized why the system did not recognize them correctly. subject was convinced that any word with an "S" sound would not be recognized properly because he tended to slur his "S" There were only two subjects out of the 78 tested who mentioned the fact that they doubted the system was recognizing their voice. This fact was noted on their questionnaire after they left the laboratory area.

IV. DATA ANALYSIS

Appendix E and F present the data collected. Appendix E contains the raw data collected, while Appendix F has the data in the ranked form. All of the data analysis used nonparametric statistics methodologies based on ranks.

The first column of data in Appendix E contains the total number of errors the user observed. This number is the sum of nonrecognitions and both types of misrecognitions. second column contains the total number of misrecognitions which is the sum of the sound alike errors and nonsense errors which were observed by the subject. Columns 3,4, and 5 are the individual error totals for nonrecognitions, sound misrecognnitions, and random misrecognitions, respectively. Column 6 is the age of the subject, and column 7 is the average number of hours the subject spends using a computer terminal each day. The average number of hours spent at a terminal were considered important for the stock brokers and airline reservationists, but had little meaning for the students who became the only participants in the experiment. Therefore, this data will not be used in the analysis, but is presented for completeness.

The next two columns, column 8 and 9, are the answers to the questions on whether the subject had ever seen or used voice recognition equipment. These answers are coded with a 1 representing an answer of "yes", and a 2 representing a "no" response. Columns 10, 11, and 12 are the responses to the questions dealing with user acceptability. These are also coded, from a 1 meaning a poor acceptability response to 5 for a high acceptability response. Column 13 is the sum of the responses to the three questions. Since the questions each had parallel wording the sum of the answers

for the individual questions was used for the data analysis. This method gave a more accurate numeration of the acceptability level for each subject.

Column 14 and 15 are the data collected on the subject's perception of his or her own typing ability in terms of speed and accuracy respectively. These data fields are also numeric codes for the response given on the questionnaire. A value of 1 represents a poor rating, a 2 an average rating while a 3 represents a very good rating in the speed and accuracy capability of each subject. Column 16 is the response to the question of whether the subject ever had a typing course. The same response convention was used for the two previous yes-no questions.

The second to the last column, column 17, tabulates the data collected representing the geographic region where the subject grew up. The codes have the following meaning.

- 1 South
- 2 East
- 3 Midwest
- 4 Foreign
- 5 West
- 6 All over or not specified

Finally the last column, column 18, is the subject's number of years experience with computers and computer terminals.

As it was already mentioned Appendix F contains the ranked data. The data are organized in the same manner as previously described for the raw data except some of the columns are the ranks of the data collected. There were numerous ties and the rank value assigned was the average of the ranks that would have been assigned to them had there been no ties. All of the recognition error counts were

ranked, as were the age data, total acceptability rating data, and the subject experience data.

of analysis used Spearman's first set correlation coefficient (Conover, 1980) as a test statistic to determine if there was any negative correlation between the number of errors presented to a subject and that subject's acceptability rating. It had been hypothesized as the number of errors increased the acceptability would decrease. Therefore. the null hypothesis was that the number of errors and user acceptability are mutually independent or had correlation. The alternative hypothesis was that these two variables are negatively correlated. The tabulates Spearman's correlation coefficient calculated on the ranked data between these two variables.

all errors	250
total misrecognitions	249
non recognitions	250
sound alikes	215
random misrecognitions	201

At a significance level of .025 the null hypothesis can be rejected for the first three values. It appears as if the desired negative correlation is present, but the correlation is very slight as indicated by the value of the correlation coefficient. The hypothesis of mutual independence can not be rejected between the sound alike errors and user acceptability, and the random errors and the acceptability variable.

Figure 1 is a graph of the numeric user acceptability totals versus total user perceived errors. It shows that although there is evidence of a negative correlation there is little information existing as to where or at what error

level the acceptability values start to decrease. In fact the real problem is exemplified by observing the average response values for various groups of subjects. contains, for various groups of subjects, the averages of the total values for the three acceptability questions along standard deviation. with the There is very little difference between the groups. Even the group that observed more than a 15% error rate still rated the system in the "like it" and "would use it" category. A Kruskal-Wallis test was done to determine if these groups of subjects had the identical mean response values. This hypothesis could not be rejected at the .05 or .1 significance level. The test statistic value, T, was calculated at 6.78 and the chisquare distribution quantile for the four degrees of freedom at the .05 level is 9.488 and at the .1 level is 7.779. even though a small negative correlation Therefore, detected in the data, very little information can be gained as to where a distinct drop occurs in user acceptability values.

Two other Spearman's Rho correlation coefficient tests were done. First a correlation possibility was investigated between the ranked values of age and the ranked values of acceptability. The hypothesis that age and acceptability values were not correlated could not be rejected. Spearman's correlation coefficient was calculated at .03. The same test was done to check the data for mutual independence among the ranked values for years of experience and the ranked values of the acceptability totals. Again the independence hypothesis could not be rejected with a correlation coefficient of -.02.

In addition to the Kruskal-Wallis test previously mentioned, a series of similar tests were completed in order to determine if there were any differences in the mean

acceptability responses among different groups of individuals. Table 2 summarizes these tests. None of the hypotheses that all the mean acceptability responses were identical could be rejected. In other words no statistical differences could be found among the various groups tested.

The only test which suggested a possible difference was the test between the groups divided by geography. This was interesting because numerous peorle approached the experiment asking for example, if this machine understood "Louisianian". They knew they had a distinct southern accent, and if it recognized them they were very surprised. This could account for the relatively high Kruskal-Wallis statistic even though the groups could not statistically be shown to have different means.

In conclusion, there is really very little information present in the data collected. For this reason the experiment was cut short before the time was spent at business establishments. It is hypothesized that there are at least two basic flaws in the experimental design. the experiment was working with an advanced technology. Some of the people who were tested were not aware that voice recognition existed. In fact, numerous people answered on the questionnaire that they had seen voice recognition to computers on "Star-Trek". With an attitude like that any recognition capability was impressive. If this is true it would be expected that there might have been a difference between the group acceptability averages between those who had seen voice recognition equipment before and Since this did not occur we can only those who had not. assume that the group which had seen voice recognition before knew about its user dependence limitations and were equally impressed with the user independence capabilities being demonstrated.

The second problem area involves the lack of a task which needed to be accomplished within the experimental framework. Reading a list of words and pointing out the errors did not create the frustrating situations which are going to exist when you encounter a recognition error while trying to accomplish a task. Although it was hoped that stopping the experiment each time an error occurred would provide this it did not totally simulate the frustration associated with task completion. Furthermore, subjects who had never seen or used voice recognition equipment had a difficult time visualizing how the equipment would actually Although an explanation was given to each subject at the beginning of the experiment, it appears as if the concept was not totally understood by everyone. evidenced by some of the questions asked by the subjects after the experiment was finished. If there had realistic job or goal, this problem could be alleviated.

Figure 1 Graph of Maw Data

% Error Rate Groups	# of subjects in group	Average	Standard Deviation
0.0 - 1.5	19	4.40	4.46
2.0 - 5.0	13	4.41	4.49
5.5 - 10.0	23	3.96	4.08
10.5 - 14.5	16	3.71	3.93
15.0 - 21.0	7	3.90	4.02

TABLE 1.

Acceptability Response Summary

GROUP	TEST STATISTIC	CHI-SQUARE = .05
Seen Voice equipment- not seen voice equipment	1.18	3.84
Used Voice equipment- not used voice equipment	3.65	3.84
Slow, intermediate, fast speed typist	2.14	5.99
Poor, fair, very good typing accuracy	4.38	5.99
Typing course- no typing course	0.12	3.84
Part of country raised in	10.15	11.07

TABLE 2.
Results of Kruskal-Wallis Tests

V. RECOMMENDATIONS AND CONCLUSIONS

The data collected in this experiment do not help answer the question of how good a voice recognition system must be to maintain user acceptability. The following recommendations are provided for future research efforts and experiments.

- 1. Introduce the subjects to voice recognition equipment before the start of the experiment.
- 2. Demonstrate the equipment within an appropriate work environment. In other words, demonstrate the use of the equipment to accomplish a suitable job within their individual areas of expertise.
- 3. Have the subjects train the equipment. Don't present a system which is obviously years ahead of currently available technology.
- 4. Set up a series of tasks which are suitable for voice recognition input which can be accomplished within the test environment. It appears that it is important that the job is very realistic in nature.
- 5. Consider the following method to vary the recognition accuracy for the experiment. Use a recognition system which has the capability to easily access not only the word which was recognized, but the runner up word. Then by the use of a random process determine whether the recognition unit should output the first or runner up word. If the recognition system used has a fairly good accuracy rate, the the first choice word should be the correct word. Therefore, by

randomly selecting the second word you are randomly selecting errors from the recognition unit. It is possible that the recognition unit will make a mistake and the recognized word will be incorrect. If the random draw determines a correct response is to be given, the first word will be output to the system but in this case it is an error. This error was not expected; therefore, although the actual accuracy rate of the system will not be under the experimenters control the overall error rate should be very close to the percentage of times the runner word is chosen. If a 100% accurate system was used this percentage of runner up choices would be equal to the error rate observed. Since a 100% accurate system does not exist it appears as if close will have to do.

The Interstate Electronics Corporation machine is suitable for this type of task. The only problem involved with this recommendation is that it will be impossible to observe error rates much less than the underlying error rate associated with the equipment chosen for use in the experiment.

Since there was evidence of the hypothesized negative correlation, it is possible that the frustration measurement will fulfill the needs of follow on experiments. This question of frustration measurement should be investigated further before undertaking the next phase of experimentation to answer the question about acceptable accuracy rates for voice recognition equipment.

BIBLIOGRAPHY

Conover, W. J., <u>Practical Nonparametric Statistics</u>, John Wiley & Sons, 1980.

Jay, G. T., An Experiment in Voice Data Entry for Imagery Intelligence Reporting, Master's Thesis, Naval Postgraduate School, Monterey, 1981.

Nystrom, C. O., Questionnaire Construction Manual, U.S. Army Research Institute for the Behavioral and Social Sciences, 1976.

Poock, G. K., Experiments With Voice Input for Command and Control: Using Voice Input to Operate a Distributed Computer Network, Naval Postgraduate School Report NPSSS-80-016, April 1980.

Poock, G. K., A Longitudinal Study of Computer Voice Recognition Performance and Vocabulary Size, Naval Postgraduate School Report NPS55-81-013, June 1981.

Scott Instrument Inc., VET/2 Voice Entry Terminal Operator's Manual, Scott Instrument, Denton, Texas, 1981.

APPENDIX A

```
+LIST 1,9000
10 Ds = "": REM Ds CONTAINS A CNTRL D
20 IS = ": REM IS CONTAINS A CHTRL I
   DIM F$(3):F$(1) = "COMPUTER":F$(2) = "STOCK":F$(3) = "AIRLINE"
    DIM W$(200,2)
    PRINT "DO YOU WANT TO: ": PRINT "1. CREATE A NEW FILE": PRINT "2. UPDAT
     E A FILE": PRINT "3. PRINTOUT A FILE": PRINT "4. STOP"
    INPUT A
60
   DN A GOTO 1000, 2000, 3000, 4000
70
1000 B$ = "CREATE"
1010 GOSUB 6000
     PRINT D$; "OPEN "; F$(A); ", VOOI": PRINT D$; "CLOSE"
1020
1030 I = 1:J = 1
     G0SUB 5000
1040
     GOTO 50
1050
2000 B$ = "UPDATE"
     GDSUB EØØØ
2010
             GOTO 20E0
     ONERR
2020
      PRINT D$; "DPEN "; F$(A); ", V001"
2030
      PRINT D$; "READ "; F$(A)
2040
     FOR I = 1 TO 200: FOR J = 1 TO 2: INPUT W$(I, J): NEXT J: NEXT I
2050
      PRINT D$; "CLOSE"
2050
     PRINT "DO YOU WANT TO: ": PRINT "1. CHANGE INDIVIDUAL WORDS": PRINT "
2070
     2. ADD TO THE LIST OF WORDS": PRINT "3. STOP"
     INPUT AA
2080
     ON AA GOTO 2100,2200,2300
2090
     PRINT "WHAT WORD NUMBER DO YOU WANT TO CHANGE": PRINT "IF YOU WANT T
2100
     O STOP INPUT A -1"
2110 INPUT I: IF I ( 0 THEN GOTO 2170
     PRINT "DO YOU WANT TO CHANGE": PRINT "1. THE WORD": PRINT "2. THE SO
2120
     UND ALIKE"
     INPUT J
PRINT I.J
2130
2140
      INPUT W$(I, J)
2150
      GOTO 2100
2160
2170 I = 201: GOSUB 5070
      GOTO 2070
2180
      PRINT "WHAT WORD NUMBER DO YOU WANT TO START AT?"
2200
           I:J=1
      INPUT
2210
     GOSUB 5000
2220
     GOTO 2070
2230
     GOTO 50
2300
3000 B$ = "PRINTOUT"
3010
     G0SU8 6000
     ONERR GOTO 3060
3020
     PRINT D$; "OPEN "; F$(A); ", V001"
3030
     PRINT D$; "READ ";F$(A)
3040
     FOR I = 1 TO 200: FOR J = 1 TO 2: INPUT W$(I,J): NEXT I
3050
     PRINT D$; "CLOSE"
3060
     PRINT "DO YOU WANT": PRINT "1. JUST THE WORD LIST": PRINT "2. WORD L
     IST AND SOUND ALIKES": PRINT "3. STOP"
3080
     INPUT J
     ON J GOTO 3090,3090,3400
3085
```

```
3090
      "PRINT "DO YOU HAVE OKI-IMAGE LOADED AND WANT A HARDCOPY? (Y DR N)"
      INPUT YS
3100
      IF Y$ = "N" THEN GOTO 3170
3110
      PRINT Ds: "PR# 2"
3120
3130
      PRINT I$, "SØN"
3170
      ON J GQTO 3200,3300,3400
3200
      FOR I = 1 TO 200: PRINT I, W$(I, J): NEXT I
      PRINT D$; "PR# 0": GOTO 3070
3210
3300
      FOR I = 1 TO 200: PRINT I, W$(I, J - 1), W$(I, J): NEXT I
3310
      PRINT D$:"PR# 0": GOTO 3070
      GOTO 50
3400
      STOP : END
4000
      IF I ) 200 THEN GOTO 5065
5000
      PRINT I, J
5010
5020 INPUT W$(I,J)
5030 IF W$(I,J) = "END" THEN GOTO 5065
5040 J = J + 1
5050 IF J = 2 THEN GOTO 5010
5060 I = I + 1:J = 1: GOTO 5000
      GOSUB 5070: RETURN
5065
      PRINT D$; "OPEN ";F$(A); ", V001"
5070
      PRINT D$; "WRITE ";F$(A)
5080
      FOR K = 1 TO I - 1: FOR J = 1 TO 2: PRINT W$(K, J): NEXT J: NEXT K
5090
      PRINT D$; "CLOSE": RETURN
5100
      PRINT "WHAT FILE DO YOU WANT TO ": B$: PRINT "1. COMPUTER": PRINT "2
6000
      STOCK": PRINT "3. AIRLINE"
      INPUT A: RETURN
6010
                                 29
```

A CHARLES

Airline Vocabulary

1.	Allentown	Morgantown
2.	Abilene	Aberdeen
3.	Albuquerque	Kodiak
4.	East Hampton	Birmingham
5.	Washington Dulles	Washington National
6.	Columbus Ohio	Columbus, Georgia
7.	Akron	Charleston
8.	Ohara Field	Omaha
9.	Cleveland	Lakeland
	Cedar Rapids	Grand Rapids
11.	Corpus Christi	Cincinnati
12.	San Juan	South Bend
	Boston	Boise
	Rapid City	Sioux City
	Daytona Beach	Long Beach
16.		Pine Coy
17.	.	Galveston
18.	Dayton Utica	Sitka
19.	_	Beaver
	Denver Lewiston	Allentown
	Detroit	Duluth
	Montpelier	Eau Claire
		Kinston
	Charleston	San Jose
	Monterey	Richland
25.	Franklin	Boston
26.		Elko
	Fargo	
	Manitowoc	Roanoke
	New York	Norfolk
	San Jose	San Diego
	Fort Collins	Ft Smith
32.	Laramie	Miami
33.	Kona	Helo
34.	San Diego	San Francisco
35.	Freeport	Bridgeport
36.	Missoula	Honolulu
	Oklahoma City	Jefferson City
38.	Colorado Springs	Hot Springs
39.	Pittsburgh	Plattsburgh
40.	Duluth	Detroit
41.	Lousville	Knoxville
42.	St Petersburg	Rochford
43.	Honolulu	Missoula
44.	Kirksville	Louisville
45.	Columbia	Atlanta
46.	Columbus Georgia	Columbus, Ohio
47.	Roanoke	Manitowoc
48.	Rockford	Medford
49.	Washington National	Washington Dulles
50.	Jacksonville	Jackson

Oklahmoa City Atlantic City 51. Toledo Chico 52. OHara Field Amaha 53. Pittsburgh 54. Plattsburgh Montpelier Eau Claire 55. New York Norfolk 56. San Juan Cheyenne 57. Monterey San Jose 58. St. Petersburg Phellipsburgh 59. Kona Helo 60. New Bedford Medford 61. Denver Beaver 62. Lewiston Lewistown 63. Utica Sitka 64. Dayton Galveston 65. Cedar Rapids Grand Rapids 66. Albuquerque Dubuque 67. Goose Bay Pine Coy 68. Cleveland 69. Richland Davtona Beach 70. Long Beach Chevenne 71. South Bend East Hampton Birmingham 72. Rapid City Sioux City 73. Corpus Christi Cincinnati 74. Akron Kenston 75. Chico Acapulco 76. Rome Nome 77. Kokoma Orlando 78. West Palm Beach Pompano Beach 79. Paris 80. Harrisburg Colorado Springs Hot Springs 81. Springfield Pittsfield, 82. Dubuque 83. Kodiak Menominee Milwaukee 84. Kirksville Knoxvill 85. Fort Collins Ft. Smith 86. Harrisburg 87. Paris Lewistown 88. Morgantown Pittsfield Springfield 89. Fargo 90. Elko Phillipsburg New Bedford 91. Pompana Beach West Palm Beach 92. Freeport Bridgeport 93. Orlando 94. Kokomo Abilene Aberdeen 95. Jacksonville Jackson 96. Milwaukee Menomimee 97. Fort Lauderdale 98, Fort Wayne Nome 99. Rome Acopulco. Toledo 100. Worchester Rochester 101. Waterloo Kalamozoo 102.

Providence

103.

Provincetown

THE PROPERTY.

Morristown 104. Clarksburg 105. Tallahassee 106. San Angelo 107. Martha Vineyard 108. Gainesville 109. Sacremento 110. Lake Charles 111. Osage Beach 112. Brookings 113. Pueblo 114. 115. Antiquo Knoxville 116. Larado 117. 118. Oadensburg Sumter 119. Show Low 120. Wichita Falls 121. Worthington 122. Provincetown 123. Waterloo 124. Apple Valley 125. 126. Appleton Modesto 127. Worchester 128. **Huntsville** 129. Waterville 130. Baton Rouge 131. Marquette 132. New Orleans 133. Walla Walla 134. Tupelo 135. Astoria 136. Catskills 137. **Atlanta** 138. Janesville 139. Durango 140. 141. Newburg Trenton 142. Billings 143. Fayetteville 144. Greenvill 145. Buffalo 146. Evansville 147. Phoenix 148. Greensboro 149. Grand Junction 150. Anchorage 151. Wichita Falls 152. San Francisco 153. Waterville 154.

San Juan

156. Princeton

155.

Worthington Marthas Vineyard Apple Valley Show Low Oadensburg **Knoxville** Larado Lake Tahoe Anchorage New Orleans San Angelo Al toona Waterville El Dorado Lynchburg Rochester Tampico Wichita Riverton Providence Kalamazoo Tallahassee Trenton Durango Sumter Catskills Janesville Osage Beach Phoenix Billings Antinqua Modes to Augus ta Greinville Bermuda Huntsville Buffalo Clarksburg Grand Junction Brookings **Gainsesville** Evansville Greensboro Jacksonville Marquette Ontario Morristown Baton Rouge Twin Falls San Juan Greenville San Jose Pendleton

Churchill Falls 157. 158. Hastings Wichita 159. Fort Lauderdale 160. Pueblo. 161. Saint Louis 162. El Dorado 163. Grand Cayman 164. Jefferson City 165. Idaho Falls 166. 167. Pendleton Greenville 168. Miami 169. Grand Canyon 170. St Croix 171. Lakeland 172. 173. Harrison 174. Boise Twin Falls 175. 176. Riverton Ontario 177. Lynchburg 178. 179. Altoona 180. Agusta 181. Victoria 182. Sarosota Bermuda 183. Poplar Bluff 184. 185. Tulsa Jacksonville 186. Poza Rica 187. Guadalahara 188. 189. Pensacola 190. Orlando Topeka 191. Wausau 192. Galesburg 193. Penta Gorda 194. Lake Tahoe 195. Danville 196. Mankato 197. 198. Hattiesburg

199. Lampico

200. Clinton

Idaho Falls Harrison Wichita Falls Fort Wayne Sacramento St. Croix Pueblo Grand Canyon Atlantic City Churchill Falls Princeton Waterville Laramie Grand Cayman Saint Louis Franklin Hastings Bangor Wichita Falls Clinton Orlando Galesburg Astoria Wausau Topeka Pensacola Columbia Council Bluffs Guadalahara Danville Walla Walla Sarasota Poza Rica Mankato Tillsa Victoria Newburg Tupelo Lake Charles Favetteville Pueblo. Clarksburg Punta Gorda Appleton

Computer vocabulary

		l ago f f
1	Login	Logoff Add
2	Alter	Bottom
3	Backward	Compress
4	Command	Cursor File
5	Cursor Column	Forward
6	Findup	Load
7	Left	Nfind-up
8	Nfind	Parse
9	Put-D	Quit
10	Query	Restore
11	Reset	Set Case
12	Set Autosave	Set File Name
13	Set File Mode	Set Logical Record Length
14	Set Line Character Off	Set Pack
15	Set Number	Set Scale
16	Set Reserved	Set Tableine
17	Set Synonym	Set Wrap
18	Set Verify	Status
19	Stack	Duplicate Line
20	Delete Line	Access
21	Assign	Four
22	Five	Sixty
23	Six	Seventy
24	Seven	
25	Eight	Eighty Ninoty
26	Nine	Ninety Send
27	Ten	
28	A1 pha	Pa pa
29	Bravo	Romeo
30	Charlie	Whiskey
31	Logoff	Login
32	Bottom	Backward
33	Cms g	Command
34	C-Repalce	Cursor Column
35	Find	Findup
36	Join Cursor	Join Magaza
37	Msg	Macro
38	Next	Nfind
39	Purge	Put-D
40	Replace	Reset
41	Set Arbitrary Character	Set Autosave Set File Mode
42	Set Filler	Set File mode Set Line Character Off
43	Set Line Charac er On	
44	Set Nulls	Set Number Set Reserved
45	Set Record Format	
46	Set Stream	Set Synonym
47	Set Variable Blank	Set Verify
48	Split	Stack
49	Uppercase	Up Dellaha kina
50	Duplicate Line	Delete Line
51	Access	Assign
52	Filedef	Fetch
53	Global	Cobol
54	Listfile	Filedef
55	Start	State
5.5		

```
Kilo.
       Zero
56
                                              Echo
       One
57
                                              Echo
58
       Two
                                              Thirty
       Three
59
                                               Five
60
       Four
                                               No Profile
61
       Profile
                                               C-Append
       Cancel
62
                                               Cms q
       Cms
63
                                               C-Replace
       Сp
64
                                               Emsg
       Expand
65
                                               Find
        File
66
                                               Join Cursor
        Join Column
67
                                               Move
        Modify
68
                                               Preserve
        Power-Input
69
                                               Repeat
        Renumber
70
                                               Set APL
        Selective Change
71
                                               Set Escape
        Set Current Line
72
                                               Set Implicityly to CMS
        Set Image
                                                Set Nondisplayable Characters
73
        Set Message Mode
 74
                                                Set Range
        Set Prefix
 75
                                                Set Stay
        Set Span
 76
                                                Set Truncate Column
        Set Text
 77
        Sort
 78
                                                Цp
         Type
 79
                                                Disk
         Debug
 80
                                                Alpha
         Papa
 81
                                                Stack
         Ouebec
 82
                                                Tango
         Romeo
 83
                                                A1 pha
 84
         Sierra
                                                Romeo
 85
         Tango
                                                Nine
         Uniform.
 86
                                                Preserve
         Victor
 87
                                                X-ray
         Whiskey
 88
                                                Charlie
         Yankee
 89
                                                Move
         Zulu
  90
                                                Profile
         No Profile
  91
                                                 Cancel
         C-Append
  92
                                                 Cms
  93
         C-Locate
                                                 Сp
         C-overlay
  94
                                                 Down
          Duplicate
  95
                                                 Expand
          Ems g
  96
                                                 Input
          Put
  97
                                                 Join Column
  98
          Join
                                                 Msq
          Move
  99
                                                 Purge
          Preserve
 100
                                                 Replace
          Repeat
 101
                                                 Set Arbitrary Character
          Set APL
 102
                                                 Seet Filler
          Set Escape
                                                 Set Line Character On
 103
          Set Implicitly Cms
 104
                                                  Set Nulls
          Set Nondisplayable Characters
 105
                                                  Set Record Format
          Set Range
 106
                                                  Set Stream
          Set Stay
                                                  Set Variable Blank
  107
          Set Truncate Column
  108
                                                  Split
          Sos
  109
                                                  Uppercase
           Uр
  110
```

111	Disk	Debug
112	X-Ray	Yankee
113	Twenty	Ninety
114	Thirty	Eighty
115	Forty	Seventy
116	Fifty	Five
117	Sixty	Fifty
118	Seventy	Seven
119	Eighty	Thirty
120	Ninety	Twenty
121	Xedit	Update
122	C-Delete	C-First
123	C-Last	C-Locate
124	Compress	Copy
125	Cursor File	Cursor Screen
126	Forward	Find-up
127	Get	Set
128	Load	Locate
129	Nfind-up	Next
130	Overlay	0 n
131	Quit	Q-Quit
1 32	Restore	Right
133	Set Case	Set Command Line
134	Set File Name	Set File Type
135	Set Logical Word Length	Set Macro
136	Set Pack	Set Program Function Key
137	Set Scale	Set Screen
138	Set Tabline	Set Tabls
139	Set Wrap	Set Zone
140	Status	Stack
141	Top	Transfer
142	Compare	Ср
143	Erase	Disk
144	Fetch	Filedef
145	State	Start
146	Delta	India
147	Echo	0ne
148	Foxtrot	Findup
149	Gulf	Off
150	Hote1	Help
151	Update	Xedit
152	C-First	Change
153	C-Insert	C-Last
154	Copy	Count
155	Cursor Screen	Cursor File
156	Delete	Down
157	Set	Get
158	Help	Hextype
159	Locate	Lowercase
160	0n	0ff
161	Q-Quit	Query
162	Read	Recover
163	Right	Read
164	Set Command Line	Set Column Pointer
165	Set File Type	Set Hexidecimal
	▼ •	

166 167 168 169 170 171 172 173 174 175 176 177 178 180 181 182 183 184 185 186 187 188 189 190 191 192 193	Set Macro Set Program Function Key Set Screen Set Tabls Set Zone Transfer CP Cobol India Juliett Kilo Lima Mike November Oscar Add Change Count Down Hextype Input Lowercase Macro Off Parse Recover Save Set Column Pointer Set Hexidecimal	Set Mask Set Point Set Serial Set Terminal Set Equals Type Compare Global Lima Delete Zero India Quit Oscar Alter Alter C-Insert C-Overlay Duplicate Help Put Left Modify Overlay Power-Input Renumber Selective Change Set Current Line Set Image
190	Parse	Power-Input
	Set Hexidecimal	Set Image
195	Set Mask	Set Message Mode
196	Set Point	Set Prefix
197	Set Serial	Set Span
198	Set Terminal	Set Text
199	Set Equals	Set Prefix
200	Shift	Sort

Stock vocabulary

1	Houston Natural Gas	Oklahama Cas
	IBM	Oklahoma Gas MGM
2 3	ITT	
		IBM
4	Iowa Electric	Iowa Gas
5	K-Mart	Gillette
6	Kaiser Aluminum	Kaiser Steel
7	Lenox	Purex
8	Leer-Siegler	Singer
9	Lionel	Mattel
10	Iowa Gas	Iowa Electric
11	Litton	Haliburton
12	Kaiser Steel	Kaiser Aluminum
13	Lockheed	Square D
14	MGM	IBM
15	Magic Chef	Zenith
16	Marriott	Mattel
17	Marathan Oil	Ashland Oil
18	Mattel	Marriott
19	Maytag	Rubber Maid
20	Memorex	Tampox
21	McDonalds	McDonald-Douglas
22	AMF	ATT
23	McDonald-Douglas	McDonalds
24	3M	BDM
25	NCR	CBS
26	Nabisco	Sambos
27	Natomas	Ameroda Hess
28	Oklahoma Gas	Houston Natural Gas
29	Penney's	Macy's
30	Combustion Engineering	Cummins Engine
31	Can Edeson	Western Union
32	Dennys	Dorsey
	-	· · · · · · · · · · · · · · · · · · ·
33	Macys	Penneys
34	Dow Chemical	Dow Jones
35	Elgin	Haliburton
36	Dorsey	Dennys
37	Florida Power & Light	Wisconsin Power & Light
38	Greyhound	Grumman
39	Haliburton	Elgin
40	Kroehler	Burroughs
41	Wisconsin Power & Light	Florida Power & Light
42	Grumman	Greyhound
43	U.S. Air	U.S. Gypsum
44	U.S. Steel	U.S. Air
45	U.S. Life	U.S. Steel
46	Western Union	Con Edison
47	Zapata	Aenith
49	Air Florida	Air Wisconsin
50	Wennebago	Whirlpool
51	Air Wisconsin	Air Florida
52	Atlantic Richfield	Atlantic research
53	BDM	MGM
54	Tampox	Zerox
55	Alabama Power	Florida Power & Light
	THE WORLD I WITH I	·

56	Bank of Virginia	Bank of America
50 57	Burroughs	Kroehler
57 58	CBS	NCR
59	Atlantic Research	Atlantic Richfield
60	Zenith	Zapato
61	Xerox	Lenox
62	Bank of America	Bank of Virginia
63	John Deer	Chrysler
64	Delta Airlines	Eastern Airlines
65	Dow Jones	Dow Chemical
66	Eastern Airlines	Delta Airlines
67	General Motors	General Radio
68	General Steel	Data General
69	General Radio	General Motors
70	Georgia Pacific	Canadian Pacific
71	Goodyear	Goodrich
72	Gillette	K-Mart
73	Gulf Oil	Gulf Western
74	Hicla Mining	Dome Mining
7 5	Goodrich	Goodyear
76 76	Heinz	Honda
70 77	Peirex	Clorox
7 <i>7</i> 78	Sambos	Collins Radio
78 79	Singer	Leer Siegler
80	Square D	Tandy
81	Collins Radio	Texaco
82	Tandy	Square D
83	Texaco	Nabisco
84	United Airlines	Eastern Airlines
85	U.S. Gypsum	U.S. Life
86	Ala Moana	Coca Cola
87	Albertsons	Alles Chalmers
88	Gulf Western	Gulf Oil
89	Dome Mining	Hiclo Mining
90	Ameroda Hess	Natomas
91	American Broadcasting	American Hospital
92	Honda	Heinz
93	Allis Chalmers	Albertsons
94	American Hospital	American Broadcasting
9 5	Ashland Oil	Marathan Oil
96	Bank of America	Bank of California
97	Bendix	Ben Gay
98	Boise Cascade	Ben Gay
99	Canadian Pacific	Georgia Pacific
100	Ben Gay	Bendex
101	Champion	Chose Manhatten
102	Chrysler	John Deer
102	Coca Cola	Ala Moana
103	Clorex	Memorex
105	Chase Manhattan	Champion
	Data General	General Steel
106	Cities Services	Citicorp
107	Canoca	Coca Cola
108	Southern Pacific	Georgia Pacific
109	Boeing	Boise Cascade
110	Ford	Fotomat
111	inia	

		_
		San Diego Gas
	El Paso Gas	Bank of California
112	Union Oil of California	NCR
113	TRW	Cities Services
114	Citicorp	Avon
115	Revlon	Whirlpool
116	Woolworth	Hamainuell
117	n-almall	Threshold Technology
118	United Technologies	Ford
119	Fotomat	El Paso Gas
120	San Diego Gas	San Diego Gas
121	Southwestern Gas	Rockwell
122	Bell & Howell	Rockwell
123	Honeywell	paylon
124	aan	United Technology
125	Avon Threshold Technology	Alles Chalmers
126	Allied Corp.	AME
127	ACF Industries	Becton, Dickinson
128	Beckman Instruments	Square D
129	Big Three	Con Edison
130	Boston Edison	San Diego Gas
131	Brooklyn Union Gas	Burroughs
132	Brooklyn onton an	
133	Bulova	Wisconsin Power & Light
134	Campbell Soup Carolina Power & Light	United Technology
135	Carolina Power a 23	ACF Industries
136	Carpenter Technology	n alman Instruments
137	AMF	Carolina Power & Light
138	Becton Dickinson Carolina Freight Carriers	Central & South West
139	Carolina Preigne dans	Central & South
140	Central Maine Power	Clark Equipment
141	Clark Oil & Refining	Rockwell
	Coldwell Banker	Colt Industries
142	Calemial Store	Con Edison
143	o o nuo alth E015011	Central Soya
144	cantual & South Meac	Consolidated Freightway
145	consolidated roous	Continental Air Lines
146	continental Can	Colonial Stores
147	colt Industries	Clark Oil & Refining
148	Clark Equipment	C+mal & South Meac
149	Contral Soya	continental lelephone
150	Continental Dil	Conner laboraturies
151	- Dange	consolidated roous
152	TARAMA FIREIGNOUS	Continental Can
153	Continental Air Lines	oakon
154	Corning	Combustion Engineering
155	commine Fnoine	Cooper Range
156	Cooper Laboratories	Rucvrus-Erie
157	Cyprus Mines	nalta Air Lines
158	a-1 Manta LOFD	continental Ull
159	Continental Telephone	Commonwealth Edison
160	Detroit Edison	Di Giorgio
161	Detroit Fata	Dwayfess
162	Diebold Dresser Industries	Eastern Airlines
163	Dresser Indes	Corning
164	Eastman Kodak	COLUMA
165	Crocker	
103		

166	Bucyrus-Erie	Cyprus Mines
167	Emuson Electric	Emery Air Freight
168	Empire Gas	Emery Air Freight
169	Di Georgia	Georgia Pacific
170	Dreyfus	Dresser Industries
171	Faberge	Fairchild
172	Federal Mogul	Federal Paper Board
173	Fieldcrest	First Chicago
174	Fairchild	Faberge
175	Emery Air Freight	Emerson Electric
176	Ford Motor	Foremost
177	General Dynamics	General Food
178	Gerber	Gillette
179	Grand Union	Estern Union
180	Hushey	Hewlett-Packard
181	Hilton	Holiday Inn
182	Host	Houston Natural Gas
183	Inland Steel	Kaiser Steel
184	Internation Harvester	International Paper
185	Johnson & Johnson	Jonathan Logan
186	Kennecaft Copper	Kimberly Clark
187	Lone Star Gas	Lone Star Industries
188	Lukens Steel	Kaiser Steel
189	First Chicago	Fieldcrest
190	General Food	General Dynamics
191	Holiday Inn	Hilton .
192	Foremost	Ford Motor
193	Hewlett Packard	'ershey
194	Houston Natural Gas	Host
195	International Paper	International Harverster
196	Johnathan Logan	Johnson & Johnson
197	Magnavox	Lenox
198	Lone Star Industries	Lone Star Gas
199	Federal Paper Board	Federal Mogul
200	Kimberly Clark	Kennecott Copper
	•	

```
+LILIST 1,9000
10 DIM W$(200,2),F$(3),P(4)
20 D$ = "": REM CONTAINS A CONTROL-D
30 F$(1) = "COMPUTER":F$(2) = "STOCK":F$(3) = "AIRLINE"
40 P(1) = .99 P(2) = .95 P(3) = .90 P(4) = .85
45 M$ = "
    PRINT "WHAT WORD DATABASE DO YOU WANT TO USE?": PRINT "I. COMPUTER":
50
     "2. STOCK": PRINT "3. AIRLINE"
60
    INPUT A
    PRINT D$; "OPEN "; F$(A); ", V001"
    PRINT D$;"READ ";F$(A)
    FOR I = 1 TO 200: FOR J = 1 TO 2: INPUT W$(I, J): NEXT J: NEXT I
     PRINT D$; "CLOSE "
100
     PRINT "INPUT A SEED": INPUT IS
1 Ø5
     PRINT "WHAT ALGORITHM DO YOU WANT TO USE?"
110
     INPUT B: IF B ( Ø THEN STOP
120
130
     GOSUB 40000
140
     CALL JTABLE + 15
150 VOC$ = "CLASSIC. VOC"
160
     GOSUB 40100
     PRINT "FIRST SOME PRACTICE WORDS"
170
180 I = 1
190
    PRINT I, W$(I,1): GOSUB 40400: FOR Z = 1 TO 150: NEXT Z: GOSUB 300
     IF I ( 11 THEN GOTO 190
210 Q = 0:5 = 0:N = 0:T = 0
220
    PRINT "WE WILL NOW START THE EXPERIMENT"
230 I = 1
    PRINT I, W*(I,1): GDSUB 40400: FOR Z = 1 TO 150: NEXT Z: GOSUB 300
240
     IF I < 201 THEN GOTO 240
250
     PRINT "THANK YOU FOR PARTICIPATING IN THE EXPERIMENT"
260
270 T = (200 - 0 - 5 - N) / .2
280
     PRINT B;T;"-";Q;"-";S;"-";N
290
     GOTO 110
300
    IF
        RND (IS) > P(B) THEN GOTO 320
310
     PRINT M$; W$(I,1): GDTD 400
320 R = RND (IS)
    IF R ( .33 THEN GOTO 390
330
     IF R < .66 THEN GOTO 360
340
     PRINT M$;"?":Q = Q + 1: GOTO 400
350
360 U =
        INT ( RND (IS) * 200) + 1
    IF U = I THEN GOTO 360
370
     PRINT M$; W$(U,1): N = N + 1: GOTO 400
380
390
    PRINT M$; W$(1,2); S = S + 1
400
    FOP Z = 1 TO 150: NEXT Z:I = I + 1: PRINT : RETURN
```

Appendix D

							Code #		
CATE	ORY	[]	AIRLINE						
		[]	STOCK BROKE	R	A	ge	-		
		[]	COMPUTER						
TIME	SPENT	AT A	COMPUTER TE	RMINAL A	DAY		hrs.		
1.	Have yo	ou use	ed voice rec	ognition	equipme	nt before			YES
									NO
2.	Have y	ou see	en voice rec	ognition	equipme	nt used bef	ore		YES
									NO
3.	conside	ering	that you know the number of the voice s	of errors	any typi s you sa	ng errors y w the voice	ou normal system m	lly make, nake, how	and well
	Really Dislik			Neutral: If I hav If I don	ve it, f	ine it, fine	Like It		eally ike It
4.			racy of the it in your			n system ad	equate er	nough to I	make you
	Very Inadeq	uate	Slightly Inadequa		eutral	Slightl Adequat		lery Adeq	uate
		I							
5.	Compar	ing vo	oice input t	o manual	typing	input, is v	oice inpu	ıt:	
	Undoub Worse	tedly	Moderate Worse	ly	The Same	Moderate Better		loubtedly tter	
		1					į		

ь.	Do you consider yourself a slow, intermediate, or fast typist?					
	Slow	Intermediate	Fast			
7.	How accurately do y	ou think you type?				
	Poor	Fair	Quite Well			
8.	Did you ever take a	typing course?				
	Yes	No				
9.	What part of the co	untry, (USA) did you grow up in?				
10.	How many years exper	ience have you had in typing info	rmation into computers?			
	years.					
11.	Please tell the exp you have.	erimenter how much and what type o	of educational background			

APPENDIX E Raw Data

MMMNN-100000000000

2578 0 2 2 2 8 6 0 8 7 6 4 8 0 5 6 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 5 6 1 5 6 4 1 5 2 5 6 1 717335 34155433654

THE STREET

DISTRIBUTION LIST

	No. of	Copies
Library, Code 0142 Naval Postgraduate School Monterey, CA 93940	4	
Dean of Research Code 012A Naval Postgraduate School Monterey, CA 93940	1	
Library, Code 55 Naval Postgraduate School Monterey, CA 93940	1	
Professor G. K. Poock Code 55Pk Naval Postgraduate School Monterey, CA 93940	125	