-: (Physics):-	
Semester 01:-	
Chapter 06:	
2NO1:-	
What is electric current and co	wes
density and write its unit?	(7)
Answers-	
The rate of flow of charge	03
through a conductor is called	0
electric current"	
I = dv	. Ta
· dt	
The SI unit of electric current i	is
called Ampere.	
"The current established in condu	cto
is equal to one ampere who	
one coulomb charges flows.	
through a conductor in one seco	

Current Density :-	
The current per unit cross	3 5 7 5
sectional area of a conductor is	
called current density.	
It is denoted by J. It is a vector	_
quantity. SI unit is Am?	
J-dI-J.da	
da	
$I = (\vec{J}, \vec{J}_{\alpha})$	
$I = J \Lambda$	
J. I	
A A	1
Q _{NO2:-}	
What is drift velocity > Establish	
a relation between drift velocity as	
current density?	
Ans:-	
The constant average velocity acquired	
during this process by free electron	
against electric field is called	
Drift velocity" (VL)	

The drift velocity is of the order	X
10 ms.	+
Relational between drift velocity	+
and current density-	+
Acres coch	-
(+1-	
One carrier charge = e	
nAL corrier charge = Alne	
The total charge of an conductor is:	
9/= nAle (i)	
Ta	
t t	
∨= I± (;;)	
Ixt = nAle	
f. 1 - v. 7	
Ist = nAVate	
I = nAVde	
I a nVae	
A	

THE R.	J= neVa	
- Committee	V2 = J	
	ne	
eric .	QN03:-	375
	Define electrical resistance, conductor	ve.
	resistivity, conductivity and write	
1	their units?	:3
10.0	Answer:-	
	Electrical Resistance:	100
	The measurement of	
	apposition to flow of charges	
	through a conductor due to collie	ion
V=1	with ionic cares of conductor	
-	is called Electrical resistance."	
-	"The conductor used in a	19
	circuit to provide specified	
	resistance is called Resistor."	4.5
1	R=V	
	I I	
	Unit: ohm (Q)	71.7
V. Herr		

		Mm)I	(un) Wed) Then Ph Sec 1/20
Conductance:	-		Conductivity:-
The reciprocal of resistance is called conductance. It is denoted		1488	The reciprocal of resistivity is called conductivity. It is
by G. G. 1 1			denoted by or.
Unit: $mho(\Omega^{-1})$ or siemen			Unit: mho-meter (Qm)"
Resistivity:-	V		
applied to a conductor and current density I is called resistivity."			
The resistance of one (meter) of			
a moterial is called resistivity." It is denoted by S.	1		
7 - 6		100	
Unit: Ohm-meter (2m)		Party.	

E = V	
	-
E - IR	
L U	
Resistants	
C E as:	
	30
E= 50 0	
Compairing on and a	
J-IR	
J = IR	
	175
Compairing eq (iii) and (iv)	
X = IR -> A = 52	
A SL R	
R= SL -1 /8 - RA]	
ALLI	
	E = IR Resistivity is given as: \[& \int \] \[& \int \] \[\

	This is the relation between
	Resistivity and resistance.
5. 8	
	What is temprature coefficient
	of resistivity-Derive its formula
	and explain effect of temprature
	variation of on resistivity?
	Answer:-
	The fractional change in
	resistivity in
1	resistivity per unit charge in
- 1	empreture is called temperature
	coefficient of resistivity."
-	t is denoted by a. Its SI
	nit is (Kelvin)"
	xplanation-
0	Consider a conductor having resistivity
10.	at temperature T1. The resistivity
(0)	conductor increased by amount
ds	= 74 - 70
H	is experimently found that

0.0		
	increase in residivity ds is	100
	directly proportional to the changes	
	in temperature IT	
	in temperature d.T. and original resistivity s.	
	dodfare	
	dS & S. dT	
	df= a S.dT	
7 (7 (1)	a = dS	
	S. d.T	
	The final resistivity of material	
	is given by:	
	F-Resistance = Original	
	Final S - original & + Increase in 8	
Vicinity of the second	S1 = S. + dS	
	S= S. x S.2T	
	St = S. (1 + adT)	
	Using the relation of resistivity	
	and resistance, we get	
	R. = R. (1+ adI)	

-: (Applied Physics):-
Chapter 06:-
QNOS:-
Define current density. State and
explain Ohm's law and write its
macroscopic and microscopic form
in terms of correct density and
electric field intensity?
Answer:
"The current flowing through a
conductor per unit area is called
current density."
It is a vector quantity.
J= I Am = Unit
L AJ
OHM's Law:-
The Ohm's law can be
stated in two ways called
macroscopic form and microscopic
orm:

Macroscopic Form: (i) The macroscopic form of ohms low states that current flows through a conductor when Pd is applied at the ends of this conductors The amount of the current is directly proportional to the applied Id provided that physical state of conductor such as temperature remains constant. Va I where R is proportionality constant called resistance of conductor. Ohmic and Non-Ohmic Circuits: The material or circuit elements which obeys ohm's law is called obmic- The graph b/w current and voltage is a straight

The material or circuits eleme	at
such as diade, bulb which	
does not obey ohm's law i	
called non-ohmic. The graph the	
current and voltage is non li	
(ii) Microscopic form:	
The microscopic form of	
Ohm's law states that current	
density established in conductor	
is directly proportional to the	
electric field which is applie	1
at the end of a conductor.	
Explanation:-	
Consider a conductor having	
length L and cylindrical cross	
sectional area A. The current I	1
flows through conductor whe gd	ν ,
is applied at its end.	A
V= IR	
As R = PL	
A	

Mon Tue Wed Thu Fri Sat Date:_/_/20 Son V- I PL V= SJL Potential difference per unit length is equal to electric field. This is called microscopic form of Ohm's law.

	-(Applied Physics) :-	
	Chapter 06:-	
	QN07:-	
	Describe the relation blw	-
	of Ohm's law?	eter
	Answer:	
_çi	I The macroscopic parameter	L AND S
	current I and microscopic paran	neter
	current density of ohm's law	
	are related as:	L y II
	$I = S \overrightarrow{J} \cdot \overrightarrow{da}$	
(ii)	The macroscopic parameter potential	
	difference "V" and microscopic	
	parameter electric field E is	
	related as:	
	V=SE-dr	V-
(11)	The macroscopic parameter resistan	ce
	R and microscopie parameter	
	resistivity & of ohm's law ;	

related as. R. SL QN081-Show that metals obey Ohm's law taken idinto account microscopic form of Ohmis laws Prove P- m/ne'z. Metals Obey Ohm's law:-The ohm's law is not a fundamental law of electromagnetism. It depends upon the properties of conducting material Almost all the metalo are conductors and having conduction electrons and ionie cores. The assembly of conduction electrons called electron gas.

	The electric force Fe experienced	
	by electron having charge e due	
	to applied electric field E is:	
	Fo = e E	
¥	This electric force Fe produces	
	acceleration 'a' in electron having	
	mays 'm'.	
	E= ma	
	Compairing both eq.	
((() () () () ()	ma = e E	
	a = eE	- 4
85.8	m	W.J
	The acceleration in term of drift	7
	velocity Va and mean free time	
	T b/w collision is:	
	a = Va (Put in (i))	
	7	
	Vi = eE	
	T m	
i i i i i i i i i i i i i i i i i i i	Va_eEz_@	
	~	

	The drift velocity in term of	
	current density is.	
	Va = J (Put in en 3)	
	(Tul in en (1))	
	ne ne	
	J- e E 2	
orelichte.	ne m	
	$J = ne^* E_{\tau}$ (iii)	
brezh-	m	
	The microscopic form of obm's law	
	E= SJ	,
1	J= E (Pet in (iii))	5/29
	8	
	E = ne For	T V
	S m	
	1 - ne 7	3
	Sm	
	IP = m Hence proved	
	ne"z	
	where m,n, e and T is	12
	constant of proportionality. So,	

	All
S= constant	
Therefore, It is concluded the	
parameter I is constant for	t_
metals. The microscopic form of	
Ohm's law is:	
E = SJ	
$\mathcal{S} \longrightarrow constant$	
EαJ	
Hence, it is concluded that	
all metals obey ohn's law.	
	110