UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA

Curso de Informática Biomédica

ANNA CAROLINE BOZZI

IMPACTOS DA BASE DE APRENDIZAGEM

CURITIBA 2020

Introdução

Esse relatório possui análise referente aos classificadores:

- KNN
- Naïve Bayes
- Linear Discriminant Analysis
- Logistic Regression
- Perceptron

Com dados previamente fornecidos para treino e teste, *test.txt* e *train.txt*, os quais possuem para teste 58646 dados com 132 características cada e 2000 dados com 132 características cada para treino. Foram feitas as seguintes considerações, que serão respondidas a diante:

- Comparação do desempenho desses classificadores em função da disponibilidade de base de treinamento.
- Indicação do classificador que tem o melhor desempenho com poucos dados < 1000 exemplos.
- Indicação do classificador com melhor desempenho com todos os dados.
- 4. Classificador mais rápido para classificar os 58k exemplos de teste.
- 5. Análise das matrizes de confusão. E verificação dos erros para todos os classificadores quando todos eles utilizam toda a base de teste.

Resultados e Análise

1. Comparação do desempenho dos classificadores em função da disponibilidade de base de treinamento:

Foi alimentado o classificador com blocos de 1000 exemplos, iniciados em 1000 e terminando em 58000.

Perceptron:

Iniciando com a análise do *Perceptron*, é possível verificar no gráfico a seguir, que a Acurácia máxima verificada foi de 93,5 com uma base de 17000 dados de teste, e à partir desse valor o aumento da base não interferiu mais positivamente na Acurácia.

Linear Discriminant Analysis:

A seguir temos o *Linear Discriminant Analysis*, conforme o gráfico a seguir, a Acurácia máxima verificada foi de 92,7, para 1000 dados da base de teste, à partir daí foi observado novamente para 20000 dados de teste. Ou seja, à partir de 10000 dados não houve significativa mudança de acurácia que justificasse usar os 20000 dados de treinamento.

Naive Bayes:

O classificador *GaussianND*, apresentou Acurácia máxima de 88,9 para as base de 10000 dados de teste, e novamente verifica em 20000 dados, conforme gráfico a seguir. Assim como no caso do *Linear Discriminant Analysis*, não houve desempenho suficiente para justificar o uso da base inteira de testes.

Logistic Regression:

O classificador *Logistic Regression*, apresentou Acurácia máxima de 91,1 para as base de 2000 dados de teste conforme gráfico apresentado a seguir.

KNN:

Por fim a apresentação dos resultados do classificador *KNN*, a Acurácia máxima observada foi de 93,8, para a base de 20000 dados de teste conforme gráfico a seguir. A partir de 10000 dados de teste houve acréscimo pequeno de acurácia até atingir a máxima em 20000 dados.

Classificador com o melhor desempenho para poucos dados:

Para essa análise foi testado todos os classificadores considerando valores de base abaixo de 1000 dados.

É possível verificar no gráfico a seguir a comparação entre todos os classificadores, *KNN*, *Naïve Bayes*, *Linear Discriminant Analysis*, *Logistic Regression*, *Perceptron*, o que apresentou o melhor desempenho geral para poucos dados, <1000, foi o KNN, conforme verifica-se no gráfico a seguir. O Perceptron apresentou bons resultados também, porém houve uma queda significativa a partir da base de 800 dados. A métrica utilizado para análise de desempenho foi a médias das Acurácias de cada classificador, segue:

• KNN: 71

• Perceptron: 70

Logistic Regression: 65

• Linear Discriminant Analysis: 65

Gauss para Naive Bayes: 55

3. Indicação do classificador com o melhor desempenho com todos os dados de aprendizagem:

É possível verificar no gráficos que se segue, a comparação dos 5 classificadores, o KNN foi o classificador que apresentou melhor desempenho para todos os dados de teste, considerando a acurácia como métrica de avaliação.

4. Indicação do classificador mais rápido para classificar os 58000 dados de teste:

Para a análise de parâmetro foi utilizada a função *time* na compilação dos arquivos e dados. O classificador mais rápido para 58000 dados de teste foi o *Perceptron*, com 11 segundos de execução, seguido dos *Linear Discriminant*, *Analysis*, 12 segundos ,*Logistic Regression*, 15 segundos , *GaussianND* , 17 segundos, e por fim o que levou mais tempo, *knn*, 193 segundos. No gráfico a seguir é possível visualizar o comparativo de tempo:

5. Análise das matrizes de confusão, e verificação dos erros para todos os classificadores quando todos eles utilizam toda a base de teste:

Perceptron:

11	5532	1	Θ	6	0	1	18	1	1	0]
1	14	6114	46	217	14	176	27	43	2	2]
I	88	32	5548	137	2	Θ	16	62	3	0]
1	5	3	12	5698	0	60	1	28	2	10]
1	116	13	46	17	5172	7	108	39	5	199]
1	21	5	4	129	3	5318	40	1	6	12]
I	129	8	5	4	5	57	5648	Θ	2	0]
t	2	42	51	157	31	4	Θ	5796	1	13]
1	329	39	45	457	35	225	185	20	4211	149]
1	89	36	26	115	106	25	3	83	3	5327]]

Esse classificador possui erros mais frequentes nas classificações do 1, 9 e do 10. Com mais erros de 9.

Linear Discriminant Analysis:

[[5	358	10	11	15	19	Θ	47	17	80	3]
1	0	6027	222	85	9	22	38	199	31	22]
1	22	41	5605	12	1	Θ	4	175	27	1]
1	1	12	29	5470	1	19	1	247	23	16]
[20	71	42	Θ	5208	Θ	86	5	29	261]
I	9	11	6	314	4	5015	50	24	67	39]
1	77	49	37	15	56	36	5460	0	125	3]
1	0	58	47	6	58	1	0	5882	22	23]
1	80	59	38	5	51	29	54	57	4961	361]
1	34	31	9	91	69	7	16	98	29	5429]]

Assim como o perceptron, os erros mais frequentes são na classificação do 1,9 e 10. Com mais erros no 1.

Naive Bayes:

11	5220	1	11	32	2	1	41	0	251	1]
1	1	5184	583	238	86	22	85	340	80	36]
1	9	24	5289	447	4	1	8	52	53	1]
I	2	1	212	5390	1	33	Θ	127	31	22]
t	14	2	44	12	5273	0	32	44	90	211]
1	9	6	29	103	31	4958	46	2	169	186]
1	78	7	89	8	15	90	5286	Θ	285	0]
1	1	47	175	426	21	1	1	5323	60	42]
1	175	5	53	182	23	7	38	13	5112	87]
1	25	5	62	151	221	4	е	55	184	5106]]

Assim como o perceptron, e o LDA os erros mais frequentes são na classificação do 1,9 e 10. Com mais erros no 1. Porém ainda erros consideráveis no 2.

Logistic Regression:

11:	5380	5	17	12	15	4	69	6	51	1]
1	1	5595	116	269	197	74	179	74	80	70]
1	22	18	5585	89	12	1	33	82	45	1]
1	4	3	37	5598	16	39	1	73	20	28]
1	35	8	30	1	5315	2	104	41	9	177]
1	6	11	24	498	78	4728	49	22	73	50]
1	88	26	0	1	20	94	5517	0	112	0]
1	θ	41	40	121	167	2	Θ	5598	17	111]
1	83	43	47	59	84	46	54	58	4998	223]
1	55	22	8	143	251	0	4	151	18	5161]]

Assim como nos anteriores os erros mais frequentes são na classificação do 1, 9 e 10. Com mais erros no 1.

KNN:

[[5	472	3	1	15	6	2	26	2	32	1]
1	0	6105	175	119	56	6	35	66	34	59]
1	12	11	5607	165	3	1	16	51	20	2]
ι	4	1	25	5646	2	51	1	53	20	16]
1	12	11	13	3	5305	9	132	24	11	202]
1	9	3	9	489	4	4842	41	16	83	43]
I	31	10	4	2	3	44	5724	0	40	0]
1	1	25	41	119	54	1	0	5773	7	76]
1	36	24	42	114	32	38	50	27	5165	167]
1	16	9	17	107	78	9	9	131	34	5403]]

Essa classificador ja possui erros mais balanceados em quase todas as classes, com assertividades mais bem definidas que erros.

Conclusão

Apresentado todos os testes e resultado é possível verificar que os classificadores apresentam um comportamento parecido no decorrer da avaliação em relação a variação da base, o Naive Bayes apresenta um comportamento um pouco fora dos observados com bases menores, porém no decorrer do acréscimo da base ele segue o padrão. As acurácias observadas foram relativamente próximas, o KNN destacou-se em alguns testes, porém foi o que demorou mais tempo em todos os casos ao longo dos testes. O Perceptron apresentou um desempenho positivo maior ao longo dos testes, por ser o mais rápido e equilibrando com um bom desempenho.