Discrete Optimization

Mixed Integer Programming: Part III

Goals of the Lecture

- Mixed Integer Programming
 - Cutting planes
 - Gomory cuts

Cutting Planes: Key Idea

- Adding a linear constraint that
 - is valid: i.e., it does not remove any feasible solution
 - helps: i.e., it cuts the optimal solution to the linear relaxation

Cutting Planes: Key Idea

```
max x_2 subject to 3x_1 + 2x_2 \le 6 -3x_1 + 2x_2 \le 0 x_i \ge 0 x_i \quad integer
```


How do we find these cuts?

- ► Today's lecture: look inside the tableau
- Assumptions
 - all variables take integer values

Basic Feasible Solutions

$$x_1 = b_1 + \sum_{j=m+1} a_{1j}x_j$$

$$\dots$$

$$x_m = b_m + \sum_{j=m+1} a_{mj}x_j$$

Basic feasible solution

$$x_1 = b_1$$

$$x_m = b_m$$

$$x_j = 0 \quad (m < j \le n)$$

The Tableau

$$x_1 + \sum_{j=m+1} a_{1j}x_j = b_1$$

$$\dots$$

$$x_m + \sum_{j=m+1} a_{mj}x_j = b_m$$

► Assume that b₁ is fractional

$$x_1 + \sum_{j=m+1} a_{1j} x_j = b_1$$

$$x_1 + \sum_{j=m+1} a_{1j}x_j = b_1$$

$$\operatorname{since} \ \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \le \sum_{j=m+1} a_{1j}x_j$$

$$x_1 + \sum_{j=m+1} a_{1j}x_j = b_1$$

$$\lim_{j=m+1} \sum_{j=m+1} a_{1j}x_j \leq \sum_{j=m+1} a_{1j}x_j$$

$$\lim_{j=m+1} \sum_{j=m+1} a_{1j}x_j \leq b_1$$

$$x_1 + \sum_{j=m+1} a_{1j}x_j = b_1$$

$$since \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \leq \sum_{j=m+1} a_{1j}x_j$$

$$x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \leq b_1$$

$$since x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \quad \text{is an integer}$$

$$x_1 + \sum_{j=m+1} a_{1j}x_j = b_1$$

$$\sin ce \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \leq \sum_{j=m+1} a_{1j}x_j$$

$$x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \leq b_1$$

$$\sin ce x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \quad \text{is an integer}$$

$$x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \leq \lfloor b_1 \rfloor$$

$$x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \leq \lfloor b_1 \rfloor$$

- ► This cut is valid
 - this constraint does not remove any feasible solution

$$x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \leq \lfloor b_1 \rfloor$$

- This cut is valid
 - this constraint does not remove any feasible solution
- ► This cut prunes the basic feasible solution
 - the current basic feasible solution violates it

We can rescale the coefficients of this cut

$$x_{1} + \sum_{j=m+1} a_{1j}x_{j} = b_{1}$$

$$x_{1} + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_{j} \leq \lfloor b_{1} \rfloor$$

$$=$$

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor)x_{j} \geq b_{1} - \lfloor b_{1} \rfloor$$

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j \geq b_1 - \lfloor b_1 \rfloor$$

What do we do with this cut?

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j \geq b_1 - \lfloor b_1 \rfloor$$

What do we do with this cut?

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j - s = b_1 - \lfloor b_1 \rfloor$$

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j \geq b_1 - \lfloor b_1 \rfloor$$

What do we do with this cut?

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j - s = b_1 - \lfloor b_1 \rfloor$$

$$s = -(b_1 - \lfloor b_1 \rfloor) + \sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j$$

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j \geq b_1 - \lfloor b_1 \rfloor$$

What do we do with this cut?

$$\sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j - s = b_1 - \lfloor b_1 \rfloor$$

$$s = -(b_1 - \lfloor b_1 \rfloor) + \sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j$$

Obviously primal infeasible but dual feasible

Adding Gomory cuts

- Solve the linear relaxation
- Choose a row i whose constant is fractional and add the Gomory cut
- Apply the dual simplex to obtain feasibility
- Iterate until
 - the solution is integral; or
 - there is no feasible solution

Illustration

```
max x_2 subject to 3x_1 + 2x_2 \le 6 -3x_1 + 2x_2 \le 0 x_i \ge 0 x_i \quad integer
```

min
$$-x_2$$
 subject to
$$3x_1 + 2x_2 + x_3 = 6$$

$$-3x_1 + 2x_2 + x_4 = 0$$

$$x_1 + x_2 + x_3 + x_4 = 0$$
 integer

Illustration

```
max
           x_2
subject to
           x_i \geq 0
                                integer
                       x_i
min
            -x_2
subject to
            3x_1 + 2x_2 + x_3
                 , \quad x_2 \quad , \quad x_3 \quad , \quad x_4 \geq 0 \quad integer
```

Illustration

	X ₁	X 2	Хз	X 4	b
	0	-1	0	0	0
Хз	3	2	1	0	6
X 4	-3	2	0	1	0

First Gomory Cut

	X ₁	X 2	Хз	X 4	b
	0	0	1/4	1/4	3/2
X ₁	1	0	1/6	-1/6	1
X 2	0	1	1/4	1/4	3/2

First Gomory Cut

	X ₁	X 2	Хз	X 4	b
	0	0	1/4	1/4	3/2
X ₁	1	0	1/6	-1/6	1
X 2	0	1	1/4	1/4	3/2

First Gomory Cut

	X ₁	X 2	Х3	X 4	b
	0	0	1/4	1/4	3/2
X ₁	1	0	1/6	-1/6	1
X 2	0	1	1/4	1/4	3/2

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

What Does this Cut Correspond To?

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

► Re-express in terms of x₁ and x₂

What Does this Cut Correspond To?

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

► Re-express in terms of x₁ and x₂

Cutting Planes at Work (geometrically)

	X ₁	X 2	X 3	X 4	S ₁	b
	0	0	1/4	1/4	0	3/2
X ₁	1	0	1/6	-1/6	0	1
X 2	0	1	1/4	1/4	0	3/2
S ₁	0	0	-1/4	-1/4	1	-1/2

	X ₁	X 2	X 3	X 4	S ₁	b
	0	0	1/4	1/4	0	3/2
X ₁	1	0	1/6	-1/6	0	1
X 2	0	1	1/4	1/4	0	3/2
S ₁	0	0	-1/4	-1/4	1	-1/2

Cutting Planes at Work (geometrically)

	X ₁	X 2	X 3	X 4	S ₁	b
	0	0	0	0	0	1
X ₁	1	0	0	-1/3	2/3	2/3
X 2	0	1	0	0	1	1
S ₁	0	0	1	1	-4	2

	X ₁	X 2	X 3	X 4	S ₁	b
	0	0	0	0	0	1
X ₁	1	0	0	-1/3	2/3	2/3
X 2	0	1	0	0	1	1
S ₁	0	0	1	1	-4	2

	X 1	X 2	X 3	X 4	S ₁	b
	0	0	0	0	0	1
X ₁	1	0	0	-1/3	2/3	2/3
X 2	0	1	0	0	1	1
S ₁	0	0	1	1	-4	2

$$\frac{2}{3}x_4 + \frac{2}{3}s_1 \ge \frac{2}{3}$$

What Does this Cut Correspond To?

$$\frac{2}{3}x_4 + \frac{2}{3}s_1 \ge \frac{2}{3}$$

► Re-express in terms of x₁ and x₂

$$x_1 - x_2 \ge 0$$

Cutting Planes at Work (geometrically)

Gomory Cuts (1958)

Ralph Gomory

Mixed Integer Versus Linear Programs?

- Solve the linear relaxation
- Choose a row i whose constant is fractional and add the Gomory cut
- Apply the dual simplex to obtain feasibility
- ▶ iterate until
- the solution is integral; or
- there is no feasible solution

Mixed Integer Versus Linear Programs?

- Integrality constraints
 - -the gap between P and NP

- Solve the linear relaxation
- Choose a row i whose constant is fractional and add the Gomory cut
- Apply the dual simplex to obtain feasibility
- ▶ iterate until
- the solution is integral; or
- there is no feasible solution

The Revival of Gomory Cuts

The Revival of Gomory Cuts

- Balas, Ceria, Cornuejols, Natraj (1994-1996)
 - demonstrated how to integrate Gomory cuts in branch and bound
 - generated multiple cuts at once
 - -generate them as long as they are "useful"
 - "significant" improvement in the objective value

The Revival of Gomory Cuts

- Balas, Ceria, Cornuejols, Natraj (1994-1996)
 - demonstrated how to integrate Gomory cuts in branch and bound
 - -generated multiple cuts at once
 - -generate them as long as they are "useful"
 - "significant" improvement in the objective value
- Gomory cuts are now used in state-of-the-art MIP systems

Until Next Time