Raport z testów bibliotek OpenCV oraz OpenIMAJ

SPIS TREŚCI

	Spi	is treści		2
	1.	Wstęp		3
	2.	Klasyfik	atory Haara	3
	3.	Sposob	y wykrywania uśmiechu	3
	4.	Zdjęcia	zastosowane w trakcie testów	4
	5.	Sposób	przeprowadzenia testów	5
	6.		testów	
	6	6.1. Op	penCV	5
		6.1.1.	Wykrywanie twarzy	5
			Wykrywanie uśmiechu z wykorzystaniem wyłącznie klasyfikatora uśmie 6	
twarzy		6.1.3.	Wykrywanie uśmiechu przy pomocy sposobu wykrywania dolnej cz 6	zęści
	6	6.2. Op	penIMAJ	7
		6.2.1.	Wykrywanie twarzy	7
		6.2.2.	Wykrywanie uśmiechu z wykorzystaniem wyłącznie klasyfikatora uśmie 8	echu
twarzy		6.2.3.	Wykrywanie uśmiechu przy pomocy sposobu wykrywania dolnej cz 8	zęści
	7.	Omówie	enie wyników	9
	8.	Podsum	nowanie	10
	9.	Literatu	ra	11

1. WSTĘP

W trakcie wstępnego rozpoznania do realizacji problemu rozpoznawania uśmiechu udało się znaleźć trzy główne biblioteki realizujące detekcję fragmentów obrazu w języku Java: OpenCV, JavaCV oraz OpenIMAJ. Według uzyskanych informacji JavaCV jest nakładką na OpenCV, dlatego też zdecydowano się odstąpić od testów tej biblioteki – w jej nowszych wersjach istnieje wbudowana możliwość uruchamiania biblioteki z poziomu Javy. Testom sprawdzającym możliwości oraz ogólną wydajność poddano zatem OpenCV oraz OpenIMAJ. Obie wykorzystują tzw. klasyfikatory Haara do wskazania interesujących fragmentów obrazu.

Testy zostały przeprowadzone w prostej aplikacji *Java*, która przyjmuje na wejście listę zdjęć, które mają zostać poddane algorytmom wyszukiwania uśmiechu.

2. KLASYFIKATORY HAARA

Klasyfikator Haara jest plikiem *XML*, który informuje mechanizm wykrywania fragmentów obrazu, czego powinien na nim szukać. Najpopularniejszymi klasyfikatorami są: wykrywanie twarzy z przodu oraz z profilu, detekcja oczu oraz ust. Niestety, chociaż obie testowane biblioteki są dosyć popularne i łatwo można znaleźć sporą liczbę klasyfikatorów wygenerowanych przez społeczność [1] lub nawet twórców biblioteki [2], nie udało się odnaleźć niezawodnego klasyfikatora do wykrywania uśmiechu – są one w dużym stopniu mylne i bardzo często wykrywają oczy lub po prostu usta bez widocznego uśmiechu.

W trakcie poszukiwań udało się odnaleźć informacje na temat sposobu wytrenowania własnego klasyfikatora – proces w skrócie ogranicza się do znalezienia próbek pozytywnych, zdjęć z widocznymi uśmiechami oraz próbek negatywnych, w których nie znajduje się żaden uśmiech. Ponieważ jednak jest on dosyć czasochłonny oraz wymaga zastosowania sporej liczby zdjęć, do testów biblioteki zdecydowano się wykorzystać dwa klasyfikatory: twarzy z przodu oraz uśmiechu/ust, znalezione na wspomnianych wcześniej zasobach internetowych.

3. SPOSOBY WYKRYWANIA UŚMIECHU

Istnieje kilka sposobów wykrywania uśmiechu na obrazie – różnią się one poziomem skomplikowania algorytmu. Najprostszym z nich jest zastosowanie klasyfikatora uśmiechu na całym obrazie – wymaga on jednak wysokiej skuteczności działania, a więc też odpowiedniego przygotowania próbek do zadanego problemu. Sposób ten ma duże ryzyko wystąpienia tzw. *false alarmów*, czyli wykrywania uśmiechu w miejscach, które nie powinny być możliwe do wystąpienia. Typowymi przykładami takiej sytuacji są: uśmiech na ścianie, ramieniu czy szafie.

Ulepszeniem takiego podejścia jest zauważenie faktu, że uśmiech powinien występować wyłącznie na ludzkiej twarzy. W tym sposobie należy wstępnie odnaleźć twarze na obrazie, wyciąć te fragmenty zdjęcia, a następnie wewnątrz nich wyszukać uśmiechu. Dzięki temu eliminuje się sporo problemów z nieprawidłowym wykryciem uśmiechu – eliminuje się

ryzyko wystąpienia uśmiechu np. na ścianie. Wciąż jednak występuje ryzyko wskazania oczu jako uśmiechniętych ust.

Inny sposób opisuje Amine Sehili na swoim blogu [3], na którym wymienia problemy z poprzednim podejściem: wykrywane były jego okulary, czasem nawet zawodziła detekcja twarzy. Według niego, należy na początku odszukać twarze, a następnie wewnątrz nich odnaleźć nos i odrzucić fragmenty, które go nie zawierają. Kluczowym momentem tego algorytmu jest zauważenie faktu, że usta występują tuż pod nosem – można zatem odrzucić wyniki, które znajdują się nad nim.

W trakcie testów zdecydowano się porównać zwykłe zastosowanie klasyfikatora wyszukującego uśmiech z uproszczonym ostatnim sposobem, czyli wyszukiwaniem ust jedynie w dolnej połowie twarzy.

4. ZDJĘCIA ZASTOSOWANE W TRAKCIE TESTÓW

W ramach testów przygotowano 12 zdjęć z kamerki internetowej 4World Webcam Z200 (2Mpix) oraz wbudowanej, o rozdzielczości 640x480, ponieważ taka forma obrazów będzie docelowo wykorzystywana w projekcie. Zdjęcia przeprowadzono w różnych warunkach (słabe i dobre oświetlenie, okulary i bez okularów) oraz na osobnikach obu płci. Dodatkowo, zdjęcia zawierają różne poziomy uśmiechu. Tabela 1. Zdjęcia wykorzystane w trakcie testów pokazuje spis zdjęć wykorzystanych w trakcie testów.

Tabela 1. Zdjęcia wykorzystane w trakcie testów

Z7. Dobre oświetlenie, mężczyzna, brak uśmiechu	Z8. Dobre oświetlenie, mężczyzna, uśmiech	Z9. Kobieta, brak uśmiechu
Z10. Mężczyzna w okularach, dobre oświetlenie, brak uśmiechu	Z11. Mężczyzna w okularach, dobre oświetlenie, widoczny uśmiech	Z12. Uśmiechnięta kobieta

5. SPOSÓB PRZEPROWADZENIA TESTÓW

Testy przeprowadzono przy użyciu programu napisanego w języku *Java*. Aplikacja na wejście otrzymuje listę zdjęć, które mają zostać zweryfikowane pod kątem wystąpienia twarzy i uśmiechu. Dla każdego zdjęcia aplikacja robi pomiar czasu wykrywania twarzy, uśmiechu przy użyciu tylko klasyfikatora uśmiechu oraz uśmiechu przy użyciu sposobu wykrywania dolnej części twarzy. Każde wykrycie zapisywane jest na dysku w formie obrazka – fioletowa ramka oznacza wykrytą twarz, zielona natomiast – wykryty uśmiech. Testy przeprowadzono przy użyciu bibliotek *OpenCV* oraz *OpenIMAJ*. Parametryzację detekcji w obu bibliotekach pozostawiono domyślną.

W czas detekcji nie jest wliczany czas naniesienia prostokątów na obraz i zapisanie go na dysku.

6. WYNIKI TESTÓW

Wyniki wykrywania twarzy przedstawiono w tabelce jedynie w postaci czasów wykrywania, ponieważ są one pokazane w pozostałych dwóch testach, jako fioletowe prostokąty.

W teście wykrywania uśmiechu przedstawiono wyniki (zielone prostokąty) wykrywania uśmiechu oraz czas, jaki zajął ten proces.

6.1. OpenCV

6.1.1. Wykrywanie twarzy

Tabela 2. Detekcja twarzy w OpenCV

Z1	Z2	Z 3	Z4
86 ms	87 ms	83 ms	95 ms
Z 5	Z6	Z 7	Z8
106 ms	96 ms	92 ms	90 ms

Z 9	Z10	Z 11	Z12
90 ms	91 ms	96 ms	88 ms

6.1.2. Wykrywanie uśmiechu z wykorzystaniem wyłącznie klasyfikatora uśmiechu

Tabela 3. Wykrywanie uśmiechu z wykorzystaniem klasyfikatora w OpenCV

Z1	Z2	Z 3
228 ms	250 ms	248 ms
Z4	Z 5	Z 6
248 ms	471 ms	286 ms
Z7	Z8	Z 9
27	Z8	Z9
27 199 ms	225 ms	29 216 ms
199 ms	225 ms	216 ms

6.1.3. Wykrywanie uśmiechu przy pomocy sposobu wykrywania dolnej części twarzy

Tabela 4. Wykrywanie uśmiechu z użyciem wykrywania twarzy w OpenCV

Z 1	Z2	Z3

6.2. OpenIMAJ

6.2.1. Wykrywanie twarzy

Tabela 5. Detekcja twarzy w OpenIMAJ

Z1	Z2	Z3	Z4
445 ms	451 ms	446 ms	581 ms
Z 5	Z 6	Z 7	Z8
585 ms	573 ms	484 ms	482 ms
Z 9	Z10	Z11	Z12

448 ms	482 ms	500 ms	502 ms

6.2.2. Wykrywanie uśmiechu z wykorzystaniem wyłącznie klasyfikatora uśmiechu

Tabela 6. Wykrywanie uśmiechu z wykorzystaniem klasyfikatora w OpenIMAJ

Z1	Z2	Z3
215 ms	216 ms	218 ms
Z4	Z 5	Z6
258 ms	286 ms	260 ms
Z 7	Z8	Z 9
230 ms	232 ms	239 ms
Z10	Z11	Z12
237 ms	239 ms	231 ms

6.2.3. Wykrywanie uśmiechu przy pomocy sposobu wykrywania dolnej części twarzy

Tabela 7. Wykrywanie uśmiechu z użyciem wykrywania twarzy w OpenIMAJ

Z 1	Z2	Z 3

7. OMÓWIENIE WYNIKÓW

Zaprezentowane wyniki pokazują, że w obu przypadkach klasyfikatory uśmiechu okazały się być zbyt proste, by rozróżnić uśmiech od ust.

Jak można zauważyć z tabeli *Tabela 2. Detekcja twarzy w OpenCV*, czas średni, jaki potrzebuje biblioteka *OpenCV* na proste wykrycie twarzy wynosi *91 m*s. Do tego samego zadania *OpenIMAJ (Tabela 5. Detekcja twarzy w OpenIMAJ)* potrzebuje średnio aż *498 m*s, przy czym wyniki na zdjęciach wydają się być porównywalne – obie biblioteki nie popełniały błędów przy znajdowaniu twarzy.

Nieco inaczej prezentuje się sytuacja w przypadku detekcji uśmiechu przy pomocy prostego klasyfikatora (*Tabela 3. Wykrywanie uśmiechu z wykorzystaniem klasyfikatora w OpenCV* oraz *Tabela 6. Wykrywanie uśmiechu z wykorzystaniem klasyfikatora w OpenIMAJ*). Na pierwszy rzut oka można zauważyć, że klasyfikator w *OpenCV* przy użyciu domyślnych parametrów prezentuje kompletnie bezużyteczne wyniki w czasie średnim *253 ms. OpenIMAJ* okazało się w tym przypadku znacznie lepsze – myli jedynie się w przypadku podbródków i oczu, a do zaprezentowania wyników potrzebuje średnio *238 ms*.

W przypadku wykrywania uśmiechu z użyciem algorytmu wykrywania twarzy (*Tabela 4. Wykrywanie uśmiechu z użyciem wykrywania twarzy w OpenCV* oraz *Tabela 7. Wykrywanie uśmiechu z użyciem wykrywania twarzy w OpenIMAJ*) znacznie lepsze okazało się być *OpenCV*. Usta zostały wykryte poprawnie w większości przypadków, w czasie średnim *41 ms*. Biblioteka *OpenIMAJ* również z bardzo wysoką dokładnością wskazała w tym przypadku usta, jednak czas, w jakim zwróciła wyniki, jest dużo większy – aż *559* ms.

Z przedstawionych wyników można wywnioskować, że biblioteka *OpenCV* jest znacznie wydajniejsza od *OpenIMAJ* – dzieje się tak przez bezpośrednie wykonywanie obliczeń detekcji w języku *C++*, podczas gdy *OpenIMAJ* jest w całości napisane w *Javie*. Można jednak łatwo zauważyć, że przy zastosowaniu prostych metod, *OpenIMAJ* sprawdza się lepiej – dzieje się tak prawdopodobnie przez niską jakość klasyfikatora uśmiechu udostępnionego przez twórców biblioteki.

Zaskakujący może okazać się fakt, że biblioteka *OpenCV* w przypadku bardziej złożonego algorytmu sprawdziła się lepiej. Problem prawdopodobnie znajduje się po stronie klasyfikatora uśmiechu – dużo lepiej sprawdza się on dla mniejszych obrazów, po wycięciu samej twarzy.

8. PODSUMOWANIE

Ponieważ żadna z wykorzystanych bibliotek nie była w stanie wykryć uśmiechu, należy wykorzystać bardziej zaawansowany klasyfikator wykrywania uśmiechu lub wygenerować własny, na podstawie próbek negatywnych i pozytywnych. Jednocześnie wydaje się, że taki klasyfikator będzie wystarczający do detekcji uśmiechu – w przypadku oczu i nosa sprawdzają się one na wystarczająco wysokim poziomie.

Do zwiększenia dokładności prezentowanych wyników można wykorzystać wspomniany wcześniej algorytm wykrywania dolnej części twarzy. Jeżeli będzie on niewystarczający, można go rozbudować o kolejne warunki (np. "usta muszą znajdować się tuż pod nosem").

Biblioteka *OpenIMAJ*, chociaż posiada dużo wygodniejsze API i wsparcie do programowania w języku *Java*, pokazuje znacznie mniejszą wydajność w stosunku do biblioteki *OpenCV*. W związku z tym spostrzeżeniem, jako główną bibliotekę do realizacji zadania zdecydowano się wykorzystać *OpenCV*, które wymaga dołączenia zewnętrznych bibliotek napisanych w *C++*, jednak dzięki temu oferuje dużo lepsze czasy detekcji.

9. LITERATURA

- 1. Haar Cascades, http://alereimondo.no-ip.org/OpenCV/34 (data dostępu: 06.02.2017)
- OpenCV Haarcascades, https://github.com/opencv/opencv/tree/master/data/haarcascades (data dostępu: 06.02.2017)
- 3. Smile detection with OpenCV, the "nose" trick,

 https://aminesehili.wordpress.com/2015/09/20/smile-detection-with-opencv-the-nose-trick/ (data dostępu: 06.02.2017)