1.Introduction

If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon and explode once a year

outline

- 1. Course Introduction
- 2. a brief history of IC
- 3. DIC characteristics/Design partitioning
- 4. Semiconductor processing
- 5. Layout and Testing

Digital IC 2/76

How it be created?

Digital IC

Semiconductor processing

- Fabrication/assembling
- Layout fundamental/testing

Digital IC 4/76

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- photolithography process similar to printing press
- On each step, different materials are deposited or etched

Easiest to understand by viewing both top and crosssection of wafer in a simplified process

Digital IC 5/76

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Digital IC 6/76

Well and Substrate Taps

- Substrate must be tied to GND and n-well to VDD
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Digital IC 7/76

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Digital IC 8/76

Detailed Mask Views(Six masks)

- n-well
- Polysilicon
- n+ diffusion
- p+ diffusion
- Contact

Metal

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- Grow SiO₂ on top of Si wafer
 - 900 1200 °C with Si and O₂ in oxidation furnace

p substrate

Digital IC 11/76

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

	Photoresist
	SiO ₂
p substrate	

Digital IC 12/76

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Digital IC

Etch

- Etch oxide with hydrofluoric acid (HF)
- Only attacks oxide where resist has been exposed

Digital IC 14/76

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

Digital IC 15/76

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Digital IC

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

Digital IC 17/76

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Digital IC 18/76

Polysilicon Patterning

Use same lithography process to pattern polysilicon

Digital IC 19/76

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

Digital IC 20/76

N-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

Digital IC 21/76

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

Digital IC 22/76

N-diffusion cont.

Strip off oxide to complete patterning step

Digital IC 23/76

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Digital IC 24/76

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Digital IC

Metalization

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Digital IC 26/76

Latchup

External voltages can ring below GND or above VDD

Something more...

- photolithography from Greek
- photo(light),lithos(stone),a graphe(picture) means "carving pictures in stone using light"

Digital IC 28/76

Devices and Layers from a Silicon Chip

Relative Size of Human Hair to Feature Size

The relative size of the human hair is approximately **9,000** times the size of the smallest feature size on an integrated circuit.

Digital IC 30/76

What is it meaning?

 $5000 \text{ acres} = 3*10^7 \text{ m}^2$

1*10⁻³ m²

上海交通大学闵行校区二期建设规划总平面图

Same constrain as hair and CD

Digital IC 31/61

Stages of IC Fabrication

- Wafer preparation
- Wafer fabrication
- Wafer test/sort
- Assembly/packaging
- Final test

For a great tour through the IC manufacturing process and its different steps, check http://www.fullman.com/

Slides reference Semiconductor manufacturing technology Michael Quirk, Julian Serda

Stages of IC Fabrication

Digital IC 33/76

Preparation of Silicon Wafers

CMOS Process Flow

Photolithography

Diffusion/Ion Implant oxidation

Polish

- Etch
- Thin Films

Optical mask

35/76

a typical Photo-Lithographic Process cycle

Digital IC

Major Fabrication Steps in MOS Process Flow

Digital IC 36/76

Negative/Positive Lithography

Relationship Between Mask and Resist

Mask pattern required when using *negative* photoresist (opposite of intended structure)

Mask pattern required when using **positive** photoresist (same as intended structure)

Digital IC 38/76

Important Wavelengths for Photolithography Exposure

CMOS Process Flow

- Photolithography
- Diffusion/Ion Implant
- Polish
- Etch
- Thin Films

Digital IC 40/76

Doped Region in a Silicon Wafer

- □ Diffusion Principles
 - Three Steps
 - Predeposition
 - Drive-in
 - Activation
 - Dopant Movement
 - Solid Solubility
 - Lateral Diffusion
- □ Diffusion Process
 - Wafer Cleaning
 - Dopant Sources

Controlling Dopant Concentration and Depth

a) Low dopant concentration (n⁻, p⁻) and shallow junction (x_i)

b) High dopant concentration (n⁺, p⁺) and deep junction (x_i)

CMOS Process Flow

- Photolithography
- Diffusion/Ion Implant
- Polish/Etch
- Thin Films

Digital IC 43/76

CMP Polishing Pad/Etchback Planarization

Non-planarized IC product

Planarized IC product

Digital IC 44/76

Contamination Control in Wafer Fabs

Digital IC

Definition of Airborne Particulate Cleanliness Classes Per Federal Standard 209E

	Particles/ft ³				
Class	0.1 μm	0.2 μm	0.3 μm	0.5 μm	5 μm
1	3.50 x 10	7.70	3.00	1.00	
10	3.50×10^2	7.50 x 10	3.00 x 10	1.00×10^{1}	
100		7.50×10^2	3.00×10^2	1.00×10^2	
1,000				1.00×10^3	7.00
10,000				1.00 x 10 ⁴	7.00 x 10
100,000				1.00 x 10 ⁵	7.00×10^2

CMOS is not the unique solution!

- Vacuum tube
- Bipolar
- nMOS
- CMOS
- GeSi
- Graphene
-

Digital IC 47/76

Reduced Time to Product Maturity for DRAM Production

Digital IC 48/76

Semiconductor processing

- Semiconductor fabrication
- Layout fundamental
- Semiconductor testing
- Semiconductor assembling

Digital IC 49/76

Traditional Assembly

- Wafer preparation (backgrind)
- Die separation
- Die attach
- Wire bonding

Digital IC 50/76

Schematic of the Backgrind Process

Table rotates only during indexing of wafers

Digital IC 51/76

Wafer Saw and Sliced Wafer

Digital IC 52/76

Typical Leadframe for Die Attach

Digital IC 53/76

Epoxy Die Attach

Digital IC 54/76

Wires Bonded from Chip Bonding Pads to Leadframe

Digital IC 55/76

Wirebonding Chip to Leadframe

Digital IC 56/76

Packaging Requirements

- Electrical: Low parasitics
- Mechanical: Reliable and robust
- Thermal: Efficient heat removal
- Economical: Cheap

Digital IC 57/76

Important Functions of IC Packaging

- Protection from the environment and handling damage.
- Interconnections for signals into and out of the chip.
- Physical support of the chip.
- Heat dissipation.

Digital IC 58/76

Traditional Assembly and Packaging

Digital IC 59/76

Typical IC Packages

Digital IC

Traditional Packaging

- Plastic Packaging
- Ceramic Packaging
- TO-Style Metal Package(old)

Digital IC 61/76

General package mode

Plastic Dual In-Line Package (DIP) for Pin-In-Hole (PIH)1970s-1980s

Thin Small Outline Package (TSOP)
Memory and smartcard Single InLine Memory Module (SIMM)

Single In-Line Package (SIP), decreasing capacity and cost Memory application

General package mode

Quad Flatpack (QFP) with Gull Wing Surface Mount Leads

Leadless Chip Carrier (LCC)

Plastic Leaded Chip Carrier (PLCC) with J-Leads for Surface Mount

Laminated Refractory Ceramic Process Sequence

Ceramic interconnect layers

Advanced Packaging

- Flip chip
- Ball grid array (BGA)
- Chip on board (COB)
- Tape automated bonding (TAB)
- Multichip modules (MCM)
- Chip scale packaging (CSP)
- Wafer-level packaging

Advanced Packaging

Flip Chip Area Array Solder Bumps Versus Wirebond

N+, P+ means: Substrate tap are used for substrate connect.

Digital IC 66/76