Ondelettes et analyse multirésolution

Images et filtres ELEC3

Lionel Fillatre 2018-2019

Introduction

 Question : pourquoi une transformée des signaux, des images, etc. ?

 Réponse : optimiser la description des signaux pour extraire les informations désirées

Sommaire

- Transformée en ondelettes
- Analyse pyramidale
- Analyse multirésolution
- Conclusion

TRANSFORMÉE EN ONDELETTES

Au royaume de Fourier

Toute fonction peut être représentée par une somme de sinusoïdes

La transformée de Fourier

Analyse
$$F(v) = \int_{-\infty}^{+\infty} f(t) \cdot e^{-i2\pi vt} dt$$

Synthèse
$$f(t) = \int_{-\infty}^{\infty} F(v) \cdot e^{i2\pi vt} dv$$

Des classes de représentations

Transformée de Fourier locale (tranformée de Gabor)

•
$$SFT(\nu, b) = \int_{-\infty}^{+\infty} f(t)g(t-b)e^{-i2\pi\nu t}dt$$

$$= \int_{-\infty}^{+\infty} f(t)\phi_{\nu,b}^*(t)dt$$
avec $g(t) = e^{-\pi t^2}$

• $f(t) = \int_{-\infty}^{+\infty} SFT(\nu, b) \phi_{\nu, b}(t) d\nu db$

Transformée en ondelettes continue

- Notée généralement CWT (Continuous Wavelet Transform)
- Atome de base ψ (ondelette mère)

- Paramètre d'échelle : a > 0
- Paramètre de translation : $b \in \mathbb{R}$
- Transformée en ondelettes:

$$W(a,b) = \int_{-\infty}^{+\infty} f(t)\psi_{a,b}^*(t)dt = \int_{-\infty}^{+\infty} f(t)\frac{1}{\sqrt{a}}\psi^*\left(\frac{t-b}{a}\right)dt$$

Inversion et conditions d'admissibilité

 On peut montrer que si l'ondelette est convenablement choisie, la transformation en ondelettes est inversible

$$f(t) = \frac{1}{C_{\psi}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{a^2} W(a, b) \psi_{a, b}(t) da db$$
$$C_{\psi} = \int_{-\infty}^{+\infty} \frac{|\hat{\psi}(\omega)|^2}{\omega} d\omega$$

où $\widehat{\psi}(\omega)$ est la transformée de Fourier de ψ

- La condition d'existence est $C_{\psi} < \infty$
- Cette condition implique que $\hat{\psi}(0) = 0$, donc $\int_{-\infty}^{+\infty} \psi(t) dt = 0$, ce qui signifie que la fonction ψ possède des oscillations.

Ondelettes discrètes

Une trame d'ondelettes discrètes est

$$\psi_{m,n}(t) = a_0^{-\frac{m}{2}} \psi(a_0^{-m}t - nb_0)$$

- -m, n sont des entiers relatifs de \mathbb{Z}
- $-a_0>0$ et $b_0\in\mathbb{R}$ (souvent $a_0=2$ et $b_0=1$)
- La transformée en ondelettes discrètes d'une fonction de $L^2(\mathbb{R})$ est l'ensemble des coefficients

$$c_{m,n} = \int_{-\infty}^{+\infty} f(t)\psi_{m,n}(t)dt$$

• Il existe une famille de fonctions duales $ar{\psi}_{m,n}(t)$ telle que

$$f(t) = \sum_{m,n} c_{m,n} \, \overline{\psi}_{m,n}(t)$$

ANALYSE PYRAMIDALE

Repliement de spectre

Repliement de spectre

Réduction de 512 à 128 pixels

sans filtre

avec filtre

Les rayures ont disparu, mais elles ne pouvaient pas être représentées correctement à cette fréquence d'échantillonnage...

Effet de Moiré

Pyramide d'images

Pyramide Gaussienne

$$\begin{cases}
G_{k+1} = (G_k * h) \downarrow 2 \\
G_0 = I
\end{cases}$$

Réduction

Réduction = Sous-échantillonnage avec filtre anti-repliement

Image initiale

Note: le filtre h n'est pas forcément un filtre gaussien. On prend classiquement $h = [1\ 2\ 1]/4$ ou $h = [1\ 1]/2$, mais tout filtre passe-bas « raisonnablement » demi-bande conviendrait.

Motivation: recherche d'un motif

Motif

Image

Fonction d'inter-corrélation

Coûteux à calculer

Motivation: recherche d'un motif

Pyramide du motif

Pyramide de l'image

Pyramide d'expansion

$$E_k = G_{k+1}^{\uparrow_2} * g$$

Expansion = Sur-échantillonnage avec filtre d'interpolation

Parfois appelée pyramide de reconstruction :

 E_k correspond à la reconstruction de G_k à partir de G_{k+1} uniquement.

Pyramide Laplacienne

La pyramide laplacienne (ou pyramide d'erreur) capture l'erreur commise si l'on reconstruit G_k à partir de G_{k+1} uniquement.

$$L_k = G_k - E_k$$

 G_{k+1} et L_k permettent de retrouver G_k exactement.

$$G_k = E_k + L_k$$

Analyse multirésolution

Synthèse

Approche pyramidale : Interprétation fréquentielle

ANALYSE MULTIRÉSOLUTION

Analyse multirésolution (cas 1D)

• On construit une analyse multirésolution à l'aide de sous-espaces V_j emboîtés les uns dans les autres,

$$\cdots \subset V_2 \subset V_1 \subset V_0 \subset V_{-1} \subset V_{-2} \subset \cdots$$

tels que le passage de l'un à l'autre soit le résultat d'un changement d'échelle (zoom).

Par exemple, dans le cas dyadique, on aura :

$$f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$$
 ou $f(t) \in V_{j+1} \Leftrightarrow f(2t) \in V_j$

• L'espace V_{j+1} contient des signaux plus "grossiers" que l'espace V_j donc $V_{j+1} \subset V_j$

Fonction d'échelle (cas 1D)

- On peut construire une fonction dite fonction d'échelle $\varphi(t) \in L^2(\mathbb{R})$ qui par dilatation et translation engendre une base orthonormée de V_m .
- Comme pour les ondelettes discrètes, on définit

$$\varphi_{m,n}(t) = 2^{-\frac{m}{2}} \varphi(2^{-m}t - n)$$

- Il s'agit d'une base orthonormée de V_m
- L'approximation de f(t) à la résolution 2^{-m} s'écrit

$$\operatorname{Proj}_{V_m}(f) = \sum_{n \in \mathbb{Z}} \langle f, \varphi_{m,n} \rangle \varphi_{m,n}(t)$$

Fonction d'ondelette (cas 1D)

- Pour chaque résolution 2^{-m} , on définit le sous-espace W_m tel que $V_{m-1} = V_m \oplus W_m$
- W_m est le complément orthogonale de V_m ; il contient les détails perdues entre la résolution initiale V_{m-1} et la résolution plus grossière V_m
- On peut associer à l'espace W_m une famille d'ondelette $\psi_{m,n}(t)$ qui forme une base orthonormée de W_m

Fonction d'ondelette (cas 1D)

Les coefficients

$$c_{m,n} = \int_{-\infty}^{+\infty} f(t)\psi_{m,n}(t)dt = \langle f, \psi_{m,n} \rangle$$

vérifient l'égalité

$$\operatorname{Proj}_{V_{m-1}}(f) = \operatorname{Proj}_{V_m}(f) + \sum_{n \in \mathbb{Z}} c_{m,n} \psi_{m,n}(t)$$

Cas 2D: Analyse d'une image

L est un filtre passe-bas associées aux $\varphi_{m,n}$

H est un filtre passe-haut associées aux $\psi_{m,n}$

Cas 2D : Synthèse d'une image

 G_0 et G_1 sont des filtres déduits des $\varphi_{m,n}$ et des $\psi_{m,n}$

Exemple : la base de Haar

Plusieurs niveaux de résolution

Intérêt de l'analyse multirésolution

- est bien adaptée au signaux non-stationnaires
- permet une décomposition spatio-fréquentielle de l'image

Image basse

fréquence

- permet une décomposition multirésolution
- pas d'effets de bloc
- permet la transmission progressive

<u>coefficients d'ondelettes</u> (détails perdus entre 2 résolutions)

Image originale

Image transformée

Compression d'images (Haar)

Image originale et images comprimées :

Figure du milieu : en gardant les 1024 plus grands coefficients (soit une compression de 98,4%).

Figure de droite : en gardant les 3467 plus grands coefficients (soit une compression de 94,7%).

Débruitage d'images (symlet)

Conclusion

- Un outil très largement répandu
- De très nombreuses applications
- Une grande efficacité numérique
- Des approches concurentes/complémentaires ne cessent d'apparaître :
 - Acquisition comprimée
 - Apprentissage d'un dictionnaire
 - Etc.

Bases mathématiques pour les TDs

- Produit scalaire entre fonctions : $\langle f, g \rangle = \int_{-\infty}^{+\infty} f(t)g(t)dt$
- Orthogonalité de fonctions : $\langle f, g \rangle = 0$
- Norme d'une function : $||f|| = \sqrt{\langle f, f \rangle}$
- Famille libre de fonctions : $\{f_n(t)\}_{n\in\mathbb{Z}}$ est libre si $\sum_{n\in\mathbb{Z}}a_nf_n(t)=0$ implique $a_n=0$, $\forall n$
- Une famille de fonctions orthogonales est libre
- Famille $\{f_n(t)\}_{n\in\mathbb{Z}}$ génératrice : toute fonction g(t) s'écrit $g(t)=\sum_{n\in\mathbb{Z}}g_nf_n(t)$
- Base de fonctions : $\{f_n(t)\}_{n\in\mathbb{Z}}$ est libre et génératrice, ce qui implique que toute fonction g(t) s'écrit sous la forme unique $g(t) = \sum_{n\in\mathbb{Z}} g_n f_n(t)$
- Complémentaire d'un espace vectoriel :

$$H = F \oplus G \Leftrightarrow \forall h(t) \in H, \exists! (f(t), g(t)) \in F \times G, h(t) = f(t) + g(t)$$