简介 基好玩的东西 空间复杂度 时间复杂度

Skip List

Kvrmnks tayyx2000@163.com

2020.11.11

Skip List 是什么

是链表,高度不一样,指针多了不少,是有序的,指针有的是跳着指的。

Skip List 的功能

- 查找 期望 O(log n), 最坏 O(n)
- ② 插入 期望 O(log n), 最坏 O(n)
- 删除 期望 O(log n), 最坏 O(n)
- 前驱 期望 O(log n), 最坏 O(n)
- ⑤ 后继 期望 $O(\log n)$, 最坏 O(n)
- ⑤ 第 k 大 期望 O(log n), 最坏 O(n)
- **◎** rank 期望 O(log n), 最坏 O(n)
- ③ 空间复杂度 期望 O(n), 最坏 $O(n \log n)$

Skip List 有哪些优势

- 实现简单
- ② 期望下有和一般的平衡树一样的复杂度
- ◎ 更好地支持并行
- finger search

Skip List 是怎么实现的

每个元素都有一个高度 每个高度都有一个指针 每个指针向右指向第一阻挡到它的地方

插入

从起点的最高点出发,能往右走就往右走,不行就降低高度。 维护查找过程中每层最后一个,为了维护每个指针。 找到要插入元素的位置之后,直接放进去,更新指针。 不需要别的操作保持平衡!

每个元素的高度如何确定

一个元素的高度是随机确定的,具体随机方式如下 有一个常数 p, $0 \le p \le 1$, 这个元素高度为 1 的概率是 p, 为 2 的概率是 $p^2 \cdots$ 为 m 的概率为 p^m 其中特别规定最大高度为 $\log n$

查找

从起点的最高点出发,能往右走就往右走,不行就降低高度。

删除

依旧要维护查找时每层最后一个元素,来维护指针。 不需要别的操作保持平衡!

求第 k 大

此处应有一张 rank tree 的图。

求第 k 大

给每条边加权

边权代表走了这条边之后排名增加了多少

求 rank

我可以二分呀 (X) 此处又应有一张 rank tree 的图。

求 rank

同上面的方法一样维护边权,查找过程中累加每条边的长度

简介 基操 好玩的东西 空间复杂度 时间复杂度

插入 查找 删除 rank

求前驱和后继

这...

高级操作

怎样让链表快一点

分块!

● 怎么分最好?

- 怎么分最好?
- ② 支持删除插入吗?

- **●** 怎么分最好 $?\sqrt{n}$ 分块
- ② 支持删除插入吗?

- 怎么分最好 $?\sqrt{n}$ 分块
- ② 支持删除插入吗?同样是 $O(\sqrt{n})$ 的复杂度

块状链表

假设一共有 n 个数,假设将链表分成 $\frac{n}{a}$ 块,块的大小是 a 于是每次查找的复杂度是 $O(\frac{n}{a}+a)$,由均值不等式 $a=\sqrt{n}$ 时,复杂度达到最小,这时复杂度是 $O(\sqrt{n})$

块状链表

考虑怎样维护插入和删除。

先规定每块的大小限制再考虑块数 如果插入的块比 \sqrt{n} , 把块分裂成两个删除直接在所在块中删除 将新相接的块尝试合并

块状链表

假设第 i 块的大小为 si, 根据上面的规则有

$$s_i + s_{i-1} \ge \sqrt{n}$$

累加这个不等式, 可以得到

$$s_1 + 2 * \sum_{i=2}^{m-1} s_i + s_m \ge m\sqrt{n}$$

放缩一下得到

$$2n \ge m\sqrt{n}$$
$$m \le 2\sqrt{n}$$

于是总复杂度为

$$O(\sqrt{n})$$

再快一点?

● 查询是 O(log n) 了!

再快一点?

● 查询是 O(log n) 了! 可以证明每层横着走最多一次

再快一点?

- 查询是 O(log n) 了! 可以证明每层横着走最多一次
- 删除和加入都很困难

各种复杂度

- 什么是期望复杂度
- ② 什么是最好复杂度
- 什么是最坏复杂度
- 什么是均摊复杂度

最好和最坏复杂度

- 什么是最好复杂度
- ② 什么是最坏复杂度

冒泡排序

期望复杂度和均摊复杂度

- 什么是期望复杂度
- ❷ 什么是均摊复杂度

期望复杂度和均摊复杂度

为什么要关心最坏复杂度和最好复杂度? 参数化算法 缝合怪

$\Omega \cap \Theta$ 的区别...

$\Omega \cap \Theta$ 的区别...

其实这个跟最好最坏情况没什么关系...

时间复杂度

可以证明查找的复杂度在期望情况下是 $\Theta(\log n)$ 但这并没有什么卵用,大家其实并不在乎 Θ 和 O

区间求和

求 rank 实际上就是一种弱的区间求和,只需要再额外维护一个 边权表示走了这条边,走过的元素的权值和增加了多少

它是个链表

区间移动,文本编辑器。

可以用来实现 ETT

- 欧拉序
- ② 动态树
- link-cut
- 维护子树信息
- 维护到根信息

确定性 skip list

似乎能和 2-3 树对应...?

空间复杂度

$$E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \sum_{j=1}^{\infty} jp^j = \sum_{i=1}^{n} \frac{p}{(p-1)^2} = \frac{np}{(p-1)^2}$$

取 $p = \frac{1}{2}$, E[X] = 2n, 期望空间复杂度 O(n) 显然最坏情况下空间复杂度为 $O(n \log n)$

先感性理解一下

查找的复杂度

考虑反着思考复杂度

- 跳到最高处的步数
- ② 跳到起点的步数

考虑一个无限长的 Skip List

考虑一个无限长的 Skip List

$$E[Y] = pE[Y] + (1-p)E[Y-1] + 1$$

$$E[Y] = (1 - p)E[Y] + pE[Y - 1] + 1$$

$$E[Y] = (1 - p)E[Y] + pE[Y - 1] + 1$$

$$E[Y] - E[Y-1] = \frac{1}{p}$$

$$E[Y] = (1 - p)E[Y] + pE[Y - 1] + 1$$

$$E[Y] - E[Y - 1] = \frac{1}{p}$$
$$E[0] = 0$$

$$E[Y] = (1 - p)E[Y] + pE[Y - 1] + 1$$

$$E[Y] - E[Y-1] = \frac{1}{p}$$

$$E[0] = 0$$

于是
$$E[Y] = \frac{Y}{p}$$

$$E[Y] = (1 - p)E[Y] + pE[Y - 1] + 1$$

$$E[Y] - E[Y-1] = \frac{1}{p}$$

$$E[0] = 0$$

于是
$$E[Y] = \frac{Y}{p}$$
 当 $Y = [\log n] - 1, p = \frac{1}{2}, \text{ 有 } E[Y] = 2[\log n] - 2$

跳到起点的步数

分析最高层有多少个数。

$$E[Z] = \sum_{i=1}^{n} \sum_{j=\lceil \log n \rceil}^{\infty} j p^{j} = \frac{n p^{\lceil \log n \rceil} (p + \lceil \log n \rceil - p \lceil \log n \rceil)}{(p-1)^{2}}$$

跳到起点的步数

分析最高层有多少个数。

$$E[Z] = \sum_{i=1}^{n} \sum_{j=\lceil \log n \rceil}^{\infty} j p^{j} = \frac{n p^{\lceil \log n \rceil} (p + \lceil \log n \rceil - p \lceil \log n \rceil)}{(p-1)^{2}}$$

取
$$p=\frac{1}{2}$$

$$\textit{E}[\textit{Z}] \leq 2[\log \textit{n}] + 2$$

时间复杂度

③ 跳到最高处的步数 $E[Y] = 2[\log n] - 2$

② 跳到起点的步数 $E[Z] \le 2[\log n] + 2$

期望复杂度为 $O(\log n)$

时间复杂度

- 查找 期望 O(log n), 最坏 O(n)
- ② 插入 期望 O(log n), 最坏 O(n)
- ③ 删除 期望 $O(\log n)$, 最坏 O(n)
- 4 前驱 期望 $O(\log n)$, 最坏 O(n)
- ⑤ 后继 期望 O(log n), 最坏 O(n)
- **⑤** 第 k 大 期望 $O(\log n)$, 最坏 O(n)
- o rank 期望 $O(\log n)$, 最坏 O(n)

- 插入 查找时维护每个高度最后的一个结点
- ② 删除 查找时维护每个高度最后的一个结点
- ③ 前驱 本质就是查找
- 后继 查找之后跳到最底层再往前跳
- ⑤ 第 k 大 本质就是搜索
- rank 本质就是搜索

简介 基操 好玩的东西 空间复杂度 时间复杂度

感谢倾听!