```
In [1]: # Get dataset from kaggle: https://www.kaggle.com/ananaymital/us-used-cars-dat
        aset?select=used_cars_data.csv
        # Run data cleanning bash script
        ! ./bash_script.sh
In [2]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        !pip install -q wordcloud
        from wordcloud import WordCloud
        sns.set style("whitegrid")
        %matplotlib inline
In [3]: df = pd.read csv('dataset.csv')
        df.dropna(inplace=True) # Drop rows containing N/A value
        df = df[df.body_type.isin(["SUV / Crossover", "Sedan"])] # Only analyze SUV an
        d Sedan
        df['engine_type'] = df['engine_type'].str.extract('(\d+)', expand=False) #Only
        keep number of cylinder in engine
        df['make_name'] = df['make_name'].str.replace(" ","") #Remove space for wordcl
```

df.reset_index(drop=True ,inplace=True)

Out[3]:

df.head()

		body_type	daysonmarket	engine_type	fleet	frame_damaged	franchise_dealer	fuel_type	ha
-	0	Sedan	1233	4	False	False	True	Gasoline	
	1	SUV / Crossover	242	4	False	False	True	Gasoline	
	2	SUV / Crossover	510	4	False	False	True	Gasoline	
	3	Sedan	1233	6	False	False	True	Gasoline	
	4	SUV / Crossover	324	4	False	False	True	Gasoline	

```
In [4]: # Fix dtype of columns
    numeric_columns = ['daysonmarket', 'price', 'year', 'engine_type']
    bool_columns = ['fleet', 'frame_damaged', 'franchise_dealer', 'has_accidents',
    'isCab', 'is_new']
    df[numeric_columns] = df[numeric_columns].astype(int)
    df[bool_columns] = df[bool_columns].astype(bool)
```

```
In [5]: df.dtypes
Out[5]: body_type
                               object
         daysonmarket
                                int32
         engine_type
                                int32
         fleet
                                 bool
         frame_damaged
                                 bool
         franchise_dealer
                                 bool
         fuel_type
                               object
         has_accidents
                                 bool
         horsepower
                              float64
         \verb"isCab"
                                 bool
         is_new
                                 bool
         make_name
                               object
         price
                                int32
         transmission
                               object
         wheel_system
                               object
         year
                                int32
         dtype: object
```

In [6]: df.corr() # Correlation table between numeric columns

Out[6]:

	daysonmarket	engine_type	fleet	frame_damaged	franchise_dealer	has_a
daysonmarket	1.000000	0.020708	0.034059	0.041474	-0.109651	
engine_type	0.020708	1.000000	0.000737	-0.013253	-0.075518	
fleet	0.034059	0.000737	1.000000	0.038128	-0.110658	-
frame_damaged	0.041474	-0.013253	0.038128	1.000000	-0.108073	
franchise_dealer	-0.109651	-0.075518	-0.110658	-0.108073	1.000000	-
has_accidents	0.037924	0.027273	-0.003172	0.106648	-0.157246	
horsepower	0.016392	0.812398	-0.044582	-0.027742	0.024881	-
isCab	0.009830	-0.000269	0.917755	-0.005061	-0.059139	-
is_new	0.097140	-0.068311	-0.082159	-0.015640	0.111825	-
price	0.000805	0.321735	-0.053624	-0.055807	0.243744	-
year	-0.068501	-0.234809	0.154018	-0.040420	0.344749	-
4						•

Manufacturers

```
In [7]: # Manufacturer word cloud
    text = ' '.join(df['make_name'])
    wc = WordCloud(background_color="white", max_font_size=256, random_state=42, w
    idth=500, height=500)
    wc.generate(text)
    plt.imshow(wc, interpolation="bilinear")
    plt.axis('off')
    plt.savefig('Manufacturers.png')
```


Car attributes

```
In [8]: sns.boxplot('body_type', 'price', data=df, palette="pastel")
plt.savefig('attributes/body_type.png')
```



```
In [9]: sns.boxplot('transmission', 'price', data=df, palette="pastel")
plt.savefig('attributes/transmission.png')
```


In [10]: sns.boxplot('wheel_system', 'price', data=df, palette="pastel")
 plt.savefig('attributes/wheel_system.png')

In [11]: sns.jointplot("horsepower", "price", data=df, kind='reg')
plt.savefig('attributes/horsepower.png')


```
In [12]: sns.jointplot("engine_type", "price", data=df, kind='reg')
plt.savefig('attributes/engine.png')
```


Car conditions

```
In [13]: sns.boxplot('isCab', 'price', data=df, palette="pastel")
    plt.savefig('conditions/is_cab.png')
```



```
In [14]: sns.boxplot('fleet', 'price', data=df, palette="pastel")
   plt.savefig('conditions/fleet.png')
```


In [15]: sns.boxplot('frame_damaged', 'price', data=df, palette="pastel")
 plt.savefig('conditions/frame_damaged.png')


```
In [16]: sns.boxplot('has_accidents', 'price', data=df, palette="pastel")
   plt.savefig('conditions/has_accidents.png')
```


In [17]: sns.jointplot("year", "price", data=df, kind='reg')
 plt.savefig('conditions/year.png')


```
In [ ]:
```