First principles calculations

hand-on experiments

Ling-Ti Kong

EMail: konglt@sjtu.edu.cn

School of Materials Science and Engineering, Shanghai Jiao Tong University

Nov 23, 2022

Outline

- Single point energy calculation and convergence tests
- Equilibrium lattice constant determination
 - FCC Cu
 - Lattice constant of Fe
- Band structure calculation
 - FCC Cu
 - Band structure of bcc Fe
 - Band structure of Graphene
 - Band structure of Polyethylene
- Equilibrium bond length determination
 - Ground state of H atom
 - Equilibrium bond length and bond energy of H
- Surface energy
- 6 Vacancy formation energy
- Momework

Murnaghan's Equation of states (EOS)

$$E(V) = \frac{B_0 V}{B_0'} \left[\frac{(V_0/V)^{B_0'}}{B_0'} + 1 \right] - \frac{B_0 V_0}{B_0' - 1} + E_0$$

E: Total energy

 E_0 : Minimum total energy

V : Volume

 V_0 : Equilibrium volume

 $B_0~:~$ Bulk modulus under equilibrium, $V\left.\frac{\partial^2 E}{\partial V^2}\right|_{V_0}$

 $B_0' : \frac{\partial B}{\partial P}\Big|_{P_0}$

Experimental data for fcc Cu

Lattice constant: 3.615 Å Bulk Modulus: 140 GPa

Experimental data for bcc Fe

Lattice constant: 2.8665 Å
Bulk Modulus: 170 GPa

http://www.periodictable.com/Elements/026/data.html

First Brillouin zone of fcc lattice

FCC path: Γ-X-W-K-Γ-L-U-W-L-K|U-X

[Setyawan & Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010]

Band structure of fcc Cu

First Brillouin zone of bcc lattice

BCC path: Γ -H-N- Γ -P-H|P-N

[Setyawan & Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010]

Band structure of bcc Fe

Graphene

Source:

http://news.discovery.com/tech/cooling-down-electronics-with-graphene.html

 $http://thep\text{-center.org/src/article_edu_e.php?article_edu_id}{=}17$

Band structure of graphene

 $Source: \\ \texttt{http://www.sciencedirect.com/science/article/pii/S1369702106717886}$

Polyethylene

Hydrogen atom

An energy level diagram for hydrogen.

$$E_n = -\frac{2\pi^2 m e^4}{n^2 h^2} = -\frac{13.6 \text{ eV}}{n^2}$$

Hydrogen molecule

Bond length
$$b_0=0.74$$
 Å Band energy $E_b^0=-4.48~{\rm eV}=-0.33~{\rm Ry}$

Surface energy calculation

- Bulk energy calculation (reference, *E*_{bulk});
- Static calculation for clean surface $(E_{unrelaxed})$;

$$\gamma_{unrelaxed} = \frac{E_{unrelaxed} - N \cdot E_{bulk}}{2A}$$

- Relaxing one side of the surface while keeping the other side fixed;
- Static calculation for the relaxed structure ($E_{relaxed}$);

$$\gamma = \gamma_{\textit{unrelaxed}} + \frac{E_{\textit{relaxed}} - E_{\textit{unrelaxed}}}{A}.$$

N: number of atoms in surface model. E_{bulk} in unit of eV/atom.

Vacancy formation energy calculation

- Bulk energy calculation (reference, *E*_{bulk});
- Relaxation of supercell with a vacancy, and static calculation of the relaxed structure (*E_{relaxed}*);

$$E_{v}^{f} = E_{relaxed} - \frac{N-1}{N} E_{bulk}.$$

N: number of atoms in perfect crystal.

Homework

- Go over all the examples and finish all the remaining calculations by yourself.
- Perform DFT calculations for Al with its FCC primitive cell:
 - **①** Carry out convergence tests with respect to k-mesh size and $E_{\rm cut}$.
 - ② Determine the a_0 and B_0 of FCC Al by scanning a range of lattice parameters with Gaussian, Fermi-Dirac, and Methfessel-Paxton smearings, respectively.
 - Calculate the surface energy for Al(001), Al(110), Al(111), and vacancy formation energy for Al.
 - Compare your results to experimental data, the MD results, and DFT results in literatures.
 - Finish an experimental report.

Due: Dec 7th, 2022.

http://www.periodictable.com/Elements/029/data.html