

# (CSIS402) - Computer Organization & System Programming Project Report

## Report

## Team 72

Ahmed Sherif Said (52-8068)
Zeyad Mohamed Abdel Ghaffar (52-5130)
Youssef Amr Mohamed Salama (52-7025)
Mahmoud Mohammed Mahmoud Abou Eleneen (52-5514)
Abdelrahman Mohamed Ahmed Abouelkheir (52-5388)

This document serves as a brief report on our team's work on milestone two of the Computer Organization project.

June 2022

## **Instructions used & timing signals**

T5D2: AC  $\leftarrow$  DR, SC  $\leftarrow$  0

The following is a list of all instructions used in the program code and its timing signals.

### • *LDA*

T0: 
$$AR \leftarrow PC$$
  
T1:  $IR \leftarrow M[AR]$ ,  $PC \leftarrow PC + 1$   
T2: D0, ....., D7  $\leftarrow$  Decode  $IR(12\text{-}14)$ ,  $AR \leftarrow IR(0\text{-}11)$ ,  $I \leftarrow IR(15)$   
T3: Do nothing  
T4D2:  $DR \leftarrow M[AR]$ 

### • *ADD*

T0: AR 
$$\leftarrow$$
 PC  
T1: IR  $\leftarrow$  M[AR], PC  $\leftarrow$  PC + 1  
T2: D0, ....., D7  $\leftarrow$  Decode IR(12-14), AR  $\leftarrow$  IR(0-11), I  $\leftarrow$  IR(15)  
T3: Do nothing  
T4D1: DR  $\leftarrow$  M[AR]  
T5D1: AC  $\leftarrow$  DR + AC, SC  $\leftarrow$  0

## • *SUB*

T0: 
$$AR \leftarrow PC$$
  
T1:  $IR \leftarrow M[AR]$ ,  $PC \leftarrow PC + 1$   
T2: D0, ....., D7  $\leftarrow$  Decode  $IR(12\text{-}14)$ ,  $AR \leftarrow IR(0\text{-}11)$ ,  $I \leftarrow IR(15)$   
T3: Do nothing  
T4D5:  $DR \leftarrow M[AR]$   
T5D5:  $AC \leftarrow DR$ ,  $DR \leftarrow AC$   
T6D5:  $AC \leftarrow AC - DR$ ,  $SC \leftarrow 0$ 

## • SZA

T0: AR 
$$\leftarrow$$
 PC  
T1: IR  $\leftarrow$  M[AR], PC  $\leftarrow$  PC + 1  
T2: D0, ....., D7  $\leftarrow$  Decode IR(12-14), AR  $\leftarrow$  IR(0-11), I  $\leftarrow$  IR(15)  
T3I'D7AC'B2: PC  $\leftarrow$  PC + 1, SC  $\leftarrow$  0

## • **BUN**

T0: AR 
$$\leftarrow$$
 PC

T1: IR 
$$\leftarrow$$
 M[AR], PC  $\leftarrow$  PC + 1

T2: D0, ...., D7 
$$\leftarrow$$
 Decode IR(12-14), AR  $\leftarrow$  IR(0-11), I  $\leftarrow$  IR(15)

T3: Do nothing

T4D4: PC 
$$\leftarrow$$
 AR, SC  $\leftarrow$  0

## • *INC*

T0: 
$$AR \leftarrow PC$$

T1: IR 
$$\leftarrow$$
 M[AR], PC  $\leftarrow$  PC + 1

T2: D0, ...., D7 
$$\leftarrow$$
 Decode IR(12-14), AR  $\leftarrow$  IR(0-11), I  $\leftarrow$  IR(15)

T3I'D7B5: DR  $\leftarrow$  AC

T4I'D7B5: AC 
$$\leftarrow$$
 1 + DR, SC  $\leftarrow$  0

## • *AND*

T0: AR 
$$\leftarrow$$
 PC

T1: IR 
$$\leftarrow$$
 M[AR], PC  $\leftarrow$  PC + 1

T2: D0, ...., D7 
$$\leftarrow$$
 Decode IR(12-14), AR  $\leftarrow$  IR(0-11), I  $\leftarrow$  IR(15)

T3: Do nothing

T4D0: DR 
$$\leftarrow$$
 M[AR]

T5D0: AC 
$$\leftarrow$$
 DR  $\land$  AC, SC  $\leftarrow$  0

## • STA

T0: AR 
$$\leftarrow$$
 PC

T1: IR 
$$\leftarrow$$
 M[AR], PC  $\leftarrow$  PC + 1

T2: D0, ...., D7 
$$\leftarrow$$
 Decode IR(12-14), AR  $\leftarrow$  IR(0-11), I  $\leftarrow$  IR(15)

T3: Do nothing

T4D3: M[AR] 
$$\leftarrow$$
 AC, SC  $\leftarrow$  0

## **Control Signals**

The following is a list of all control signals developed for the circuit.

#### • AR

 $Ld \rightarrow T0 + T2$   $Inc \rightarrow 0$   $Clr \rightarrow 0$ 

### • DR

 $Ld \rightarrow T4D2 + T4D1 + T4D5 + T5D5 + T3I'D7B5 + T4D0$   $Inc \rightarrow 0$   $Clr \rightarrow 0$ 

## • AC

 $Ld \rightarrow T5D2 + T5D1 + T5D5 + T6D5 + T4I'D7B5 + T5D0$   $Inc \rightarrow 0$   $Clr \rightarrow 0$ 

## • Sequence Counter

Ld  $\rightarrow$  ----Inc  $\rightarrow$  (T5D2 + T5D1 + T6D5 + T3I'D7AC'B2 + T4D4 + T5D0 + T4D3 + T4I'D7B5)' Clr  $\rightarrow$  T5D2 + T5D1 + T6D5 + T3I'D7AC'B2 + T4D4 + T5D0 + T4D3 + T4I'D7B5

## • **PC**

Inc: T1 + I'T3D7AC'B2 LD: T4D4 CLR: 0

## IR

LD: T1 Inc: 0 CLR: 0

## • Memory Controls

Read: T1 + T4D2 + T4D1 + T4D5 + T4D0

Write: T4D3

#### Bus Controls

The Bus control signals are formed by using an 8 to 3 encoder, with the 8 inputs being X0 to X7, producing an output of 3 bits representing the digit of the corresponding input X in binary.

- $X0: T1 + T4D2 + T4D1 + T4D5 + T4D0 \rightarrow 000 \text{ (Memory)}$
- X1: T4D4  $\rightarrow$  001 (AR)
- $X2: 0 \rightarrow 010 (TR)$
- $X3: 0 \rightarrow 011 (DR)$
- $X4 : T5D5 + T3I'D7B5 + T4D3 \rightarrow 100 (AC)$
- $X5: T0 \rightarrow 101 (PC)$
- X6: T2  $\rightarrow$ 110 (IR)
- X7: 0 (will not be used)

## • ALU Controls

The ALU control signals are formed by using an 8 to 3 encoder, with the 8 inputs being Y0 to Y7, producing an output of 3 bits representing the digit of the corresponding input Y in binary.

- Y0 does nothing.
- When Y1 = 1, we use ADD (Code: 001). Control Signal: T5D1
- When Y2 = 1, we use SUB (Code: 010). Control Signal: T6D5
- When Y3 = 1, we use Transfer. Control Signal: T5D5 + T5D2
- When Y4 = 1, we use AND (Code: 100). Control Signal: T5D0
- When Y5 = 1, we use ORing.
- When Y6 = 1, we use XORing.
- When Y7 = 1, we use INC. Control Signal: T4I'D7B5