Introduction to Numerical Methods

Exercise no. 12

Hand in before the beginning of the exercise class on 19.01.2023

Exercise 12.1 (4 points) Let $Q \in \mathbb{R}^{n \times n}$ be an orthonormal matrix, that is $Q^TQ = I$. Show that $\|Qx\|_2 = \|x\|_2$ for all $x \in \mathbb{R}^n$, $\|Q\|_2 = 1$ and $\kappa_2(Q) = 1$.

Exercise 12.2 (4 points) For every vector $x \in \mathbb{R}^n$ let the Taxicab norm be given by

$$||x||_1 := |x_1| + |x_2| + \dots + |x_n|.$$

(Similarly for \mathbb{R}^m). Show that the Taxicab norm induces the following matrix norm:

$$\|A\|_1 \coloneqq \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}| \quad \forall A \in \mathbb{R}^{m \times n} \quad \text{(Column sum norm)}.$$

Exercise 12.3 (2 points) (Bonus) For every matrix $A \in \mathbb{R}^{m \times n}$ the Frobenius norm is defined by

$$||A||_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}.$$

Now, let m=n and n>1. Show that the Frobenius norm is not induced by any vector norm, i.e. there exist no vector norm $\|\cdot\|\colon\mathbb{R}^n\to\mathbb{R}$, such that for every matrix $A\in\mathbb{R}^{n\times n}$ it holds

$$||A||_F = \max_{0 \neq x \in \mathbb{R}^n} \frac{||Ax||}{||x||}$$

Exercise 12.4 (4 points)(Bonus) Let $A \in \mathbb{R}^{n \times n}$ be a regular matrix.

- a) Show that $x \in \mathbb{R}^n$ is an eigenvector of A for the eigenvalue $\lambda \in \mathbb{R}$ if and only if $x \in \mathbb{R}^n$ is an eigenvector of A^{-1} for the eigenvalue $\lambda^{-1} \in \mathbb{R}$.
- b) Additionally, let A be symmetric. Show that

$$\kappa_2(A) = \frac{|\lambda_n|}{|\lambda_1|}$$

where $\lambda_n \in \mathbb{R}$ denotes the eigenvalue of A with the largest absolute value and λ_1 denotes the eigenvalue of A with the smallest absolute value.