Weekly Homework 18

Math Gecs

May 30, 2024

Exercise 1

Let n be an even positive integer. Let p be a monic, real polynomial of degree 2n; that is to say, $p(x) = x^{2n} + a_{2n-1}x^{2n-1} + \cdots + a_1x + a_0$ for some real coefficients a_0, \ldots, a_{2n-1} . Suppose that $p(1/k) = k^2$ for all integers k such that $1 \le |k| \le n$. Find all other real numbers x for which $p(1/x) = x^2$.

Source: The 84th William Lowell Putnam Mathematical Competition Saturday, December 2, 2023 Problem A2

Solution. The only other real numbers with this property are $\pm 1/n!$. (Note that these are indeed other values than $\pm 1, \ldots, \pm n$ because n > 1.)

Define the polynomial $q(x) = x^{2n+2} - x^{2n}p(1/x) = x^{2n+2} - (a_0x^{2n} + \cdots + a_{2n-1}x + 1)$. The

Define the polynomial $q(x) = x^{2n+2} - x^{2n}p(1/x) = x^{2n+2} - (a_0x^{2n} + \cdots + a_{2n-1}x + 1)$. The statement that $p(1/x) = x^2$ is equivalent (for $x \neq 0$) to the statement that x is a root of q(x). Thus we know that $\pm 1, \pm 2, \ldots, \pm n$ are roots of q(x), and we can write

$$q(x) = (x^2 + ax + b)(x^2 - 1)(x^2 - 4) \cdots (x^2 - n^2)$$

for some monic quadratic polynomial $x^2 + ax + b$. Equating the coefficients of x^{2n+1} and x^0 on both sides gives 0 = a and $-1 = (-1)^n (n!)^2 b$, respectively. Since n is even, we have $x^2 + ax + b = x^2 - (n!)^{-2}$. We conclude that there are precisely two other real numbers x such that $p(1/x) = x^2$, and they are $\pm 1/n!$.