Extra Practice Problems for Exam 2

The problems and solutions below are gratefully borrowed, with minor modifications, from practice problems written by Rob Benedetto and Sema Gunturkun.

The following TRUE/FALSE questions provide you very good practice on understanding of the concepts overall.

1. Determine if each of following is **True** or **False**. If it is true, then give a short proof to justify your answer. If it is false, then either explain why clearly or give a precise counter example.

True / False A linear transformation $T: V \to W$ has a matrix $[T]^{\beta}_{\alpha} \in M_{4\times 5}(\mathbb{R})$ then dim V=4 and dim W=5.

True / False Let V, W be finite dimensional vector spaces such that dim V = 4 and dim W = 3. There is an injective (i.e 1-1) linear transformation $T: V \to W$ such that T is not the zero map.

True / False Let U, V be finite dimensional vector spaces such that dim V = 3 and dim W = 4. There is no surjective (i.e. onto) linear transformation $T: V \to W$ such that T is not the zero map.

True / False Let $\alpha = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ and $\alpha' = \{\vec{v}_3, \vec{v}_2, \vec{v}_1\}$ be (ordered) bases for V. (Notice they are the same sets but vectors ordered differently.) Then the matrix $[I_V]^{\alpha'}_{\alpha}$ of the identity map $I_V: V \to V$ is the identity matrix $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

True / False Let A be a 7×5 matrix then the largest possible rank of A is 7.

- **2.** Let $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ be a map defined by T(f) = (f(-2), f'(3)).
 - (a) Prove that T is a linear transformation.
 - (b) Let $\beta = \{1, x, x^2\}$ be the standard basis for $P_2(\mathbb{R})$, and let $\gamma = \{\vec{e_1}, \vec{e_2}\}$ be the standard basis for \mathbb{R}^2 . Compute the matrix $[T]_{\beta}^{\gamma}$.
- **3.** Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by $T(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}) = \begin{bmatrix} b \\ 2a+d \\ 3b \end{bmatrix}$.
 - (a) Find a basis for Ker(T) "the Kernel of T.
 - (b) Find a basis for Im(T) "the Image of T.
 - (c) What is the nullity of T?
 - (d) What is the rank of T?
- **4.** The following maps are both linear. For each, decide whether or not it is an isomorphism. If you see a fast method, feel free to use it, but don't forget to explain your reasoning.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^4$$
 by $T(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} 5a - b \\ 6b \\ 2a - 7b \\ 3a \end{bmatrix}$.

(b)
$$U: P_2(\mathbb{R}) \to P_2(\mathbb{R})$$
 by $U(f) = f(x) - xf'(x) + 2f(3)$.

- 7. Let $\alpha = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ (i.e. the standard basis) and $\gamma = \left\{ \begin{bmatrix} 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \end{bmatrix} \right\}$ be bases for \mathbb{R}^2 .
 - (a) Find the vector $\vec{x} \in \mathbb{R}^2$ whose coordinate vector with respect to γ is $[\vec{x}]_{\gamma} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$
 - (b) Find the following coordinate vectors with respect to the indicated basis.
 - (i) Find $[\vec{v}]_{\alpha}$ where $\vec{v} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
 - (ii) Find $[\vec{v}]_{\gamma}$ where $\vec{v} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
 - (iii) Find $[\vec{u}]_{\gamma}$ where $\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - (c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$.
 - (i) Compute the matrix $[T]^{\alpha}_{\alpha}$
 - (ii) Compute the matrix $[T]_{\gamma}^{\alpha}$.
- **8.** Let V, W be vector spaces, let $T: V \to W$ be a linear map, let $\beta = \{\vec{v}_1, \dots, \vec{v}_n\} \subseteq V$ be a basis for V. Define γ to be $\gamma = \{T(\vec{v}_1), \dots, T(\vec{v}_n)\}$, and suppose that $\operatorname{Span}(\gamma) = W$. Prove that T is onto.
- **9.** Let $A = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 4 \\ 3 & 3 & 3 & 6 \end{bmatrix}$. Let $T_A : \mathbb{R}^4 \to \mathbb{R}^3$ be given by $T_A(\vec{x}) = A\vec{x}$.
 - (a) Find bases for the kernel $Ker(T_A)$ (a.k.a. Ker(A)) and image $Im(T_A)$ (a.k.a. Im(A)).
 - (b) What are the rank and nullity of A?
- **10.** Let $A \in M_{3\times 3}(\mathbb{R})$ be a 3×3 matrix such that the equation $A\vec{x} = \begin{bmatrix} 5 \\ -7 \\ 0 \end{bmatrix}$ has exactly one solution.

Prove that for any $\vec{b} \in \mathbb{R}^3$, the system $A\vec{x} = \vec{b}$ is consistent and has exactly one solution.

11. Decide whether each of the following statements is True or False. A always denotes an $m \times n$ matrix, \vec{b} a vector in \mathbb{R}^m or \mathbb{R}^n , and \vec{x} a (variable) vector in \mathbb{R}^n . (Hint: For the below statements related to system of equations, you may think about the problems in terms of the linear transformation given as the multiplication by A)

True / False For any $\vec{b} \in \text{Ker}(A)$, the equation $A\vec{x} = \vec{b}$ has AT LEAST ONE solution.

True / False If $Im(A) = {\vec{0}}$, then the equation $A\vec{x} = \vec{0}$ has AT MOST ONE solution.

True / False If $Ker(A) = {\vec{0}}$, then the equation $A\vec{x} = \vec{0}$ has AT MOST ONE solution.

True / False If rank(A) = m, then for ANY $\vec{b} \in \mathbb{R}^m$, the equation $A\vec{x} = \vec{b}$ has AT LEAST ONE solution.

True / False If rank(A) = n, then the equation $A\vec{x} = \vec{0}$ has AT MOST ONE solution.

- **12.** Let $\alpha = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$. be a basis for \mathbb{R}^3 .
 - (a) Let \vec{v} be the vector with α -coordinates $[\vec{v}]_{\alpha} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}$. Find the standard coordinates for \vec{v} (i.e. the coordinate vector of \vec{v} w.r.t. the standard basis.)
 - (b) Let $\vec{w} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$. Compute $[\vec{w}]_{\alpha}$.
- 13. Is it possible for a linear map $T: V \to W$ such that $\dim V = 3 \dim W = 5$ and $\operatorname{rank}(T) = 4$? If so, write down an example of such a linear map and demonstrate that it has rank 4. If not, explain why such a linear map cannot exist.
- **14.** Recall that $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ is a (standard) basis for $M_{2\times 2}(\mathbb{R})$, where

$$E_{11} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \quad E_{12} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \quad E_{21} = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \quad E_{22} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right].$$

Let $C = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. Let $T : M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the linear map defined by T(A) = CA, for any 2×2 matrix A.

- (a) Find the matrix representing T with respect to the basis β . (That is, compute $[T]_{\beta}^{\beta}$.)
- (b) Find a basis for Ker(T).
- (c) Find a basis for Im(T).
- **15.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$T(\begin{bmatrix} 2 \\ 1 \end{bmatrix}) = \begin{bmatrix} 4 \\ 2 \\ -3 \end{bmatrix} \quad \text{and} \quad T(\begin{bmatrix} 2 \\ 2 \end{bmatrix}) = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$

Compute $T(\begin{bmatrix} 6 \\ -1 \end{bmatrix})$.