Для адресации S ячеек памяти адресная часть одного операнда должна иметь число разрядов $n_A \geq \log_2 S$.

Это требование находится в противоречии с желанием иметь малую разрядность команды и возможностью использовать большое адресное пространство. Можно:

- Использовать регистры общего назначения. Это существенно повышает быстродействие, но только в том случае, если операнд используется многократно. Существует ограничение на количество регистров общего назначения.
- определять один или несколько операндов неявным образом. Это означает использование не трехадресной команды, а двух- одно- и безадресных команд.

Адресный код – это информация об адресе команды, содержащаяся в команде. **Исполнительный адрес** – это номер ячейки памяти, к которой производится обращение.

Способы адресации

Подразумеваемый	В команде не содержится в явном виде указаний об адресе операнда. Операнд
операнд	подразумевается и фактически задается кодом операции команды. INC, DEC.
Подразумеваемый	В команде нет явных указаний об адресе участвующих операндов или адреса, по
адрес.	которому помещается результат операции, но этот адрес подразумевается. Например, $A1 = A1 + A2$
Непосредственная	В команде содержится не адрес операнда, а непосредственно операнд. Удобно при
адресация.	использовании различного рода констант. Но число значений ограничено размером
1 11 1	поля.
Прямая адресация.	Исполнительный адрес = адресный код(доступ к глобальным переменным, команда
	имеет доступ только к одному и тому же адресу памяти).
Регистровая	В качестве операнда используется содержимое регистров процессора.
адресация.	
Косвенная	«Адресация адреса» - адресный код команды указывает адрес ячейки памяти, в
адресация.	которой находится адрес операнда или команды. Регистровая косвенная адресация -
	если в качестве адресного кода используется регистр (<u>указатель)</u> .
Индексная	Модификация команд (адресных частей) - автоматическое изменение в
адресация	соответствующих командах их адресных частей согласно расположению в ОП
	обрабатываемых операндов после каждого выполнения цикла. В современных ЭВМ
	используется механизм <i>индексации.</i>
	Вводятся дополнительные <i>индексные регистры</i> . В формате команды вводится поле X
	для указания индексного регистра.
	Аи = Ак + (Реги) * [ОП] + Аб
	Аи - исполнительный адрес, Ак - адресный код команды, Реги - содержимое
	индексного регистра, ОП - размер операнда, Аб - базовый адрес.
Стековая адресация	Стековая память реализует безадресное задание операндов. <u>Стек</u> -группа
	последовательно пронумерованных регистров <u>(аппаратный стек)</u> или ячеек памяти,
	снабженных указателем стека (регистром SP), в котором автоматически при записи и
	считывании указывается номер (адрес) последней занятой ячейки стека <i>(вершины</i>
	<u>стека)</u> . При выполнении операции записи в стек слово помещается в следующую
	ячейку стека, а при считывании из стека последнее поступившее в него слово. Таким
	образом, в стеке реализуется дисциплина обслуживания «последний пришел – первый ушел» (LIFO).
	Указанное правило при обращении к стеку реализуется автоматически, и поэтому при
	операциях со стеком возможно безадресное задание операндов. Однако при такой
	структуре команд возникают сложности с построением команд передачи управления и
	работы с периферийными устройствами.

Относительная адресация или базирование.

Аи - исполнительный адрес, Ак - адресный кода команды, Аб - базовый адрес: Аи = Аб + Ак.

Для хранения базовых адресов в машине могут быть использованы специальные регистры или ячейки памяти (базовые регистры). В команде выделяется поле В для указания номера базового регистра. Это позволяет при меньшей длине адресного кода обеспечить доступ к любой ячейке памяти. Число разрядов в базовом регистре

выбирается так, чтобы можно было адресовать любую ячейку ОП, а Ак используют для представления короткого «смещения» (D). Смещение D определяет положение операнда относительно начала массива, задаваемого базовым адресом Аб.

$$Au = (B) + D,$$

где (В) – содержимое регистра с номером В.

Относительная адресация обеспечивает так называемую <u>перемещаемость</u> программ, т.е. возможность перемещения программ в памяти без изменений внутри самой программы.

Способы адресации команд перехода

- 1. Прямая адресация, когда целевой адрес просто полностью включается в команду.
- 2. Косвенная и регистровая адресация позволяют программа вычислить целевой адрес, помещать его в регистр, а затем переходить по этому адресу. Такой способ дает максимальную гибкость, поскольку целевой адрес вычисляется во время выполнения программы, но предоставляет огромные возможности для появления ошибок, которые практически невозможно найти.
- 3. Индексная адресация, при которой известно смещение от регистра.
- 4. Относительная адресация по счетчику команд. В этом случае для получения целевого адреса смещение (со знаком), находящееся в самой команде прибавляется к программному счетчику.