

Convolutional RNN For RUL Prediction in Mechanical Systems

Miembros de la comisión:

Enrique López Droguett, Viviana Meruane Naranjo, Patricio Loncomilla Zambrana

Nicolas Oyharçabal Astorga

30 de noviembre de 2018

Contenidos

Introducción

Antecedentes

Metodología

Resultados y Discusión

Conclusiones

Anexos

Referencias

Convolutional Recurrent Neural Networks For Remaining Useful Life Prediction in Mechanical Systems

Introducción

Motivación

La predicción del la vida útil remanente de un sistema mecánico disminuye el riesgo a fallas catastróficas y los costos de mantención. Ejemplo:

Figura: Falla catastrófica avión 777, The Seattle Times. [1].

Motivación

Falla catastrófica

Figura: Falla catastrófica avión 777, The Seattle Times. (Imagen modificada [1]).

Objetivo general

Encontrar la mejor opción de red neuronal recurrente convolucional para la estimación de RUL en un sistema mecánico.

Objetivos específicos

- Estudiar modificación de la base de datos.
- Estudiar la aplicación de la Convolución en una serie de tiempo.

Alcances

Programación y puesta en marcha de:

- ConvLSTM
- ConvLSTM Codificadora-Decodificadora
- ConvJANET
- ConvJANET Codificadora-Decodificadora

Alcances

Programación y puesta en marcha de:

- ConvLSTM
- ConvLSTM Codificadora-Decodificadora
- ConvJANET
- ConvJANET Codificadora-Decodificadora

Convolutional Recurrent Neural Networks For Remaining Useful Life Prediction in Mechanical Systems

Antecedentes

Antecedentes, estimación de RUL

RUL ⇒ Serie de tiempo

Figura: Relación entre una serie de tiempo y la RUL dentro del total de datos en la vida de una máquina. La linea punteda indica la serie de tiempo a la cual se le asocia una RUL.

Antecedentes, estimación de RUL

Una red neuronal puede relacionar ambas cosas,

Figura: Flujo de información y estructura típica de un Perceptrón. [5].

Podemos unir muchos perceptrones,

Figura: Perceptrón de múltiples capas para regresión logística.

Estimación

Retropropagación [10],

Figura: Superficie creada por distintas posibilidades de pesos y un error determinado.

Los optimizadores ajustan los pesos

- Cuanto se ajusta, $\triangle w_{ij} = -\eta \frac{\partial E_n}{\partial w_{ij}}$.
- Cómo se ajusta, $w_{ij} = w_{ij} + \triangle w_{ij}$.

Redes Neuronales Convolucionales [6],

Figura: Modelo estándar de aplicación de redes neuronales convolucionales.

Redes neuronales recurrentes ([14] y [15]),

Figura: Célula de red recurrente. Grafo cíclico tipico (a) que puede ser desplagado en (b) como grafo acíclico.

Redes neuronales recurrentes, LSTM [7],

Figura: Flujo de información en célula LSTM.

Redes neuronales recurrentes, JANET [9],

Figura: Flujo de información en JANET.

Antecedentes, redes neuronales recurrentes convolucionales

Aplicable de forma directa similar a una CNN,

Figura: Aplicación directa de una ConvRNN para la predicción.

Antecedentes, redes neuronales recurrentes convolucionales

Como Codificadora-Decodificadora ([8], [12] y [13]),

Figura: Aplicación de ConvRNN como Codificadora-Decodificadora para la predicción.

Turbofan

Figura: Descripción de partes de un turbofan donde se especifica el ducto de bypass. [2].

- Datos como velocidad, presión, temperatura, etc.
- Ruido blanco.
- Operación y fallas.
- Cantidad de datos.

- Datos como velocidad, presión, temperatura, etc.
- Ruido blanco.
- Operación y fallas.
- Cantidad de datos.

- Datos como velocidad, presión, temperatura, etc.
- Ruido blanco.
- Operación y fallas.
- Cantidad de datos.

- Datos como velocidad, presión, temperatura, etc.
- Ruido blanco.
- Operación y fallas.
- Cantidad de datos.

Antecedentes, Medición de exactitud

Figura: Asignación de puntaje y exactitud de un modelo según su error. [11].

Convolutional Recurrent Neural Networks For Remaining Useful Life Prediction in Mechanical Systems

Metodología

Metodología, Uso de bases de datos

Metodología, Preprocesamiento de datos

Figura: RULs de bases de datos sin modificar.

Metodología, Preprocesamiento de datos

Figura: RULs de bases de datos modificadas.

Convolutional Recurrent Neural Networks For Remaining Useful Life Prediction in Mechanical Systems

Resultados y Discusión

Resultados, Histogramas

Figura: Histograma de RULs sobre set FD001.

Resultados, Mejores modelos

Figura: Modelo recurrente convolucional obtenido.

Resultados

Modelo	FD004			
Modelo	RMSE	Puntaje	Tiempo entre. (s)	
ConvJANET	$19{,}55\pm0{,}3$	2.259,53 +- 185,71	255,40 +- 0,51	
ConvJANET C-D	$19,15 \pm 0,28$	$2282,23 \pm 226,58$	$490,95 \pm 0,63$	
ConvLSTM	20,75 + 0,81	2.513,57 + 287,81	$266,11 \pm 1,51$	
ConvLSTM C-D	$19{,}53\pm0{,}23$	$2316,\!28\pm180,\!84$	615,03 + 0,65	

Cuadro: ConvLSTM, ConvJANET y sus variedades Codificadora-Decodificadora evaluadas en FD004.

Red convolucional profunda (estado del arte [4])

RMSE: media de 23,31 \pm 0,39 Puntaje: media de 12.466 \pm 853

Resultados

Modelo	FD004			
	RMSE	Puntaje	Tiempo entre. (s)	
ConvJANET	$19{,}55\pm0{,}3$	2.259,53 +- 185,71	255,40 +- 0,51	
ConvJANET C-D	$19,15 \pm 0,28$	$2282,23 \pm 226,58$	$490,95 \pm 0,63$	
ConvLSTM	20,75 + 0,81	2.513,57 + 287,81	$266,11 \pm 1,51$	
ConvLSTM C-D	$19{,}53\pm0{,}23$	$2316,\!28\pm180,\!84$	615,03 + 0,65	

Cuadro: ConvLSTM, ConvJANET y sus variedades Codificadora-Decodificadora evaluadas en FD004.

Red convolucional profunda (estado del arte [4])

RMSE: media de 23,31 \pm 0,39 Puntaje: media de 12.466 \pm 853

Resultados, Ajuste de ConvJANET Codificadora-Decodificadora en FD003

Figura: Exactitud en sets de validación y entrenamiento en cada paso de entrenamiento para ConvJANET Codificadora-Decodificadora en FD003.

Resultados, Predicciones de ConvJANET Codificadora-Decodificadora en FD003

Figura: RULs predichas por ConvJANET Codificadora-Decodificadora en FD003.

Convolutional Recurrent Neural Networks For Remaining Useful Life Prediction in Mechanical Systems

- Se logran entrenar con éxito todas las redes.
- Modificar las RULs mejora los resultados.
- Capas ConvRNN a veces reemplazables por CNN.
- Mejores resultados en redes tipo JANET Convolucional.
- JANET Convolucional Codificadora-Decodificadora es la mejor red.

- Se logran entrenar con éxito todas las redes.
- Modificar las RULs mejora los resultados.
- Capas ConvRNN a veces reemplazables por CNN.
- Mejores resultados en redes tipo JANET Convolucional.
- JANET Convolucional Codificadora-Decodificadora es la mejor red.

- Se logran entrenar con éxito todas las redes.
- Modificar las RULs mejora los resultados.
- Capas ConvRNN a veces reemplazables por CNN.
- Mejores resultados en redes tipo JANET Convolucional.
- JANET Convolucional Codificadora-Decodificadora es la mejor red.

- Se logran entrenar con éxito todas las redes.
- Modificar las RULs mejora los resultados.
- Capas ConvRNN a veces reemplazables por CNN.
- Mejores resultados en redes tipo JANET Convolucional.
- JANET Convolucional Codificadora-Decodificadora es la mejor red.

- Se logran entrenar con éxito todas las redes.
- Modificar las RULs mejora los resultados.
- Capas ConvRNN a veces reemplazables por CNN.
- Mejores resultados en redes tipo JANET Convolucional.
- JANET Convolucional Codificadora-Decodificadora es la mejor red.

- Se logran entrenar con éxito todas las redes.
- Modificar las RULs mejora los resultados.
- Capas ConvRNN a veces reemplazables por CNN.
- Mejores resultados en redes tipo JANET Convolucional.
- JANET Convolucional Codificadora-Decodificadora es la mejor red.

Convolutional Recurrent Neural Networks For Remaining Useful Life Prediction in Mechanical Systems

Anexos

Anexos A

Index	Description	Variable name	Units
1	Physical fan speed	Nf	RPM
2	Physical core speed	Nc	RPM
3	Engine pressure ratio (P50/P2)	EPR	
2 3 4	Total pressure at fan outlet	P21	psia
5	Total temperature at fan outlet	T21	R
6	Total pressure at LPC outlet	P24	psia
7	Total temperature at LPC outlet	T24	R
8	Total pressure at HPC outlet	P30	psia
9	Total temperature at HPC outlet	T30	R
10	Total pressure at burner outlet	P40	psia
11	Total temperature at burner outlet	T40	R
12	Total pressure at HPT outlet	P45	psia
13	Total temperature at HPT outlet	T48	R
14	Total pressure at LPT outlet	P50	psia
15	Total temperature at LPT outlet	T50	R
16	Fan flow	W21	pps
17	Net thrust	Fn	lbf
18	Gross thrust	Fg	lbf
19	Fan stall margin	SmFan	%
20	LPC stall margin	SmLPC	%
21	HPC stall margin	SmHPC	%
22	Corrected fan speed	NfR	RPM
23	Corrected core speed	NcR	RPM
24	Total pressure in bypass-duct	P15	Psia
25	Percent corrected fan speed	PCNfR	%
26	Static pressure at HPC outlet	Ps30	psia
27	Ratio of fuel flow to Ps30	Phi	pph/psia

Figura: Sensores o variables de salida de software C-MAPSS. [3].

Ecuaciones LSTM [7],

$$i_{t}^{j} = \sigma(W_{i} \cdot x_{t} + U_{i} \cdot h_{t-1} + V_{i} \cdot c_{t-1} + b_{i})^{j}$$

$$f_{t}^{j} = \sigma(W_{f} \cdot x_{t} + U_{f} \cdot h_{t-1} + V_{f} \cdot c_{t-1} + b_{f})^{j}$$

$$\bar{c}_{t}^{j} = \tanh(W_{c} \cdot x_{t} + U_{c} \cdot h_{t-1} + b_{c})^{j}$$

$$c_{t}^{j} = f_{t}^{j} \cdot c_{t}^{j} + i_{t}^{j} \cdot \bar{c}_{t}^{j}$$

$$c_{t}^{j} = \sigma(W_{o} \cdot x_{t} + U_{o} \cdot h_{t-1} + V_{o} \cdot c_{t-1} + b_{o})^{j}$$

$$h_{t}^{j} = o_{t}^{j} \cdot \tanh(c_{t}^{j})$$

$$(5)$$

Ecuaciones ConvLSTM [8],

$$i_{t}^{j} = \sigma(W_{i} * X_{t} + U_{i} * H_{t-1} + V_{i} \circ C_{t-1} + b_{i})^{j}$$

$$f_{t}^{j} = \sigma(W_{f} * X_{t} + U_{f} * H_{t-1} + V_{f} \circ C_{t-1} + b_{f})^{j}$$

$$\bar{C}_{t}^{j} = \tanh(W_{c} * x_{t} + U_{c} * h_{t-1} + b_{c})^{j}$$

$$C_{t}^{j} = f_{t}^{j} \circ C_{t}^{j} + i_{t}^{j} \circ \bar{C}_{t}^{j}$$

$$(10)$$

$$o_{t}^{j} = \sigma(W_{o} * X_{t} + U_{o} * H_{t-1} + V_{o} \circ C_{t-1} + b_{o})^{j}$$

$$H_{t}^{j} = o_{t}^{j} \cdot \tanh(C_{t}^{j})$$

$$(12)$$

Ecuaciones JANET [9],

$$f_t^j = \sigma(W_f * x_t + U_f * h_{t-1} + b_f)^j$$

$$c_t^j = f_t^j \odot c_t^j + (1 - f_t^j) \odot \tanh(W_c \cdot x_t + U_c \cdot h_{t-1} + b_c)^j$$

$$h_t^j = c_t^j$$
(13)
$$(14)$$

Ecuaciones ConvJANET

$$f_t^j = \sigma(W_f * X_t + U_f * H_{t-1} + b_f)^j)$$

$$C_t^j = f_t^j \odot C_t^j + (1 - f_t^j) \odot \tanh(W_c * X_t + U_c * H_{t-1} + b_c)^j$$

$$H_t^j = C_t^j$$
(18)

Convolutional Recurrent Neural Networks For Remaining Useful Life Prediction in Mechanical Systems

- [1] The Seattle Times
 - Probe of 777 engine's explosive failure pinpoints its origin, 2015
- [2] Turbofan, relación de Bypass Imagen tomada de :https://www.grc.nasa.gov/www/k-12/Missions/Jim/Project2_act.htm, consultada 06-09-2018)
- [3] NASA STI Program
 - User's Guide for the Commercial Modular Aero-Propulsion System Simulation, Version 2, 2012
 - [4] Li, Xiang and Ding, Qian and Sun, Jian-Qiao Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks, 2017

- [5] F. Rosenblatt The Perceptron, 1958
- [6] LeCun, Yann and Bernhard E. Boser and John S. Denker and Donnie Henderson and R. E. Howard and Wayne E. Hubbard and Lawrence D. Jackel Handwritten Digit Recognition with a Back-Propagation Network, 1990
- [7] Hochreiter, Sepp and Schmidhuber, Jürgen

 Backpropagation through time: what it does and how to do it, 1997
- [8] Xingjian Shi and Zhourong Chen and Hao Wang and Dit-Yan Yeung and Wai-Kin Wong and Wang-chun Woo
 - Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015

- [9] Jos van der Westhuizen and Joan Lasenby

 The unreasonable effectiveness of the forget gate , 2018
- [10] Werbos, Paul Backpropagation through time: what it does and how to do it, 1990
- [11] A. Saxena damage propagation modeling for aircraft engine run-to-failure simulation, 2008
- [12] Srivastava, Nitish and Mansimov, Elman and Salakhutdinov, Ruslan Unsupervised Learning of Video Representations Using LSTMs, 2015
- [13] Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V Sequence to Sequence Learning with Neural Networks, 2014

[14] Mikolov, Tomas and Karafiát, Martin and Burget, Lukás and Cernocký, Jan and Khudanpur, Sanieev

Recurrent neural network based language model, 2010

🔋 [15] Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V

Generating Sequences With Recurrent Neural Networks, 2013