# HW3: Social Network Sampling

#### Scenario

- Given a social network as a graph, sample subgraphs to estimate the properties (degree distribution, centrality, etc.) of the original graph
- Note that you don't have the full view of the network
  - Imagine that Facebook or Twitter that does not release their whole social network
  - We develop a crawler to browse the network starting from our own accounts

Initially there are seeds in the graph

٧

Select a node, ask for its neighbors





Select another node









### Graphs for HW3

- The given graphs is
  - undirected
  - connected
- It is a heterogeneous network
  - There are  $k_V$  attributes for nodes
    - $1 \le k_V \le 5$
    - Each attribute is represented by categorical or numerical integers
  - There are  $k_E$  attributes for edges
    - $0 \le k_E \le 1$
    - Each attribute is represented by categorical or numerical integers

### **Query System**

- HTTP GET request
  - http://140.112.31.186/SNA2014/hw3/query.php? team=XXXX&node=YYYY
  - XXXX: Password of your team
    - We have different node id assignment for each team
  - YYYY (optional): Node id whose neighbors you would like to know
    - If not assigned, you will be provided the seed subgraph

### Query System Usage

#### Example

- http://140.112.31.186/SNA2014/hw3/query.php? team=XXXX&node=2014
- $\text{ Let } k_V = 2, k_E = 1$

```
# Team id

# The ith query (query count +1)

2014 11 2 5 # Queried node id , degree d, k_V node attributes

67 45 3 78 6 # Neighbor id, degree, k_V node attributes,

# k_E edge attributes between node 2014 and 67

28 5 1 32 2

...

999 1 0 45 9
```

d lines represents d neighbors

### Seed Subgraph

#### Example

- http://140.112.31.186/SNA2014/hw3/query.php?team=XXXXX

```
26
                         # Team id
                         # The ith query (count not changed)
          10
                         \# k_V, k_E
                         # Number n_s of seed nodes
n_s nodes
                         # Node id , degree d , k_V node attributes
          12 13 0
                         # Edge (12, 13), k_E edge attribute
```

#### The following are edges

- The seed subgraph will be updated at 0:00 everyday
- The query count will be reset 0 at 0:00 everyday

### **Special Responses**

- If you can no longer query nodes
  - For private graph only; allowed number of queries is limited
  - Only one line "-1"

```
-1
```

- Nodes with degree 0
  - The node you queried does not exist (our graphs are connected; every node has at least degree 1)

```
# Team id

# The ith query (query count +1)

# Degree 0; node 244 does not exist
```

### Query System Schedule

- Starting from Nov 21st
  - You will be given the a fully observed public graph
  - The query system for the public graph is released for you to use
  - The number of queries is not limited
- 36 hours before the deadline (i.e. on Dec 9<sup>th</sup> 10:00am)
  - A private graph will be released, with a seed subgraph of  $n_s$  observed nodes
  - **Quota**: Each team is allowed to send at most  $n_q$  queries  $(n_q \& n_s \text{ will be announced later})$
  - Your score will be graded using the private data

#### **Evaluation**

- Your want to use the sampled graph H to estimate the following properties of the original graph G
  - Degree distribution
  - Top 100 nodes with the highest closeness centrality values
  - Distributions of each node attribute and each edge attribute

## Degree Distribution (1 / 2)

- Probability distribution
  - X-axis: Degree d
  - Y-axis: Probability  $\Pr(d)$ , fraction of nodes of degree d
- Bin combination before evaluation
  - Proper bin widths will be announced later Pr(d)



## Degree Distribution (2 / 2)

Evaluation metric: KL divergence

$$-D_{KL}(P,Q) = \frac{1}{2}(D_{KL}(P \parallel Q) + D_{KL}(Q \parallel P))$$

$$-D_{KL}(P \parallel Q) = \sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$$

- -P: True probability distribution over degrees in G
- -Q: The probability distribution over degrees in H
- The smaller, the better

## Closeness Centrality

• Formula

$$-CC(v) = \frac{n-1}{\sum_{u \in V, u \neq v} d(v,u)}$$

- -d(v,u): Shortest path length from v to u
- Evaluation metric: Average true rank

$$-R = \frac{1}{k} \sum_{i=1}^{k} rel_i$$

- We evaluate top-k (k = 100) nodes in H
- -i: The rank of a node v in the sampled graph H
- $-rel_i$ : The true rank of v in the original graph G
- The smaller, the better

#### **Attribute Distributions**

- For each attribute, there is a probability distribution
  - Probability , fraction of nodes or edges of some attribute value
- The attribute values are discrete (e.g. male/female)
- Evaluation metric: KL divergence

#### Homework Files

- HW3/
  - query.py # Connection to the query system
  - report.docx # Report format description
- Public graph inside the query system
  - Download links
    - http://140.112.31.186/SNA2014/hw3/public\_nodes.zip
    - http://140.112.31.186/SNA2014/hw3/public\_edges.zip
    - http://140.112.31.186/SNA2014/hw3/public\_readme.t
       xt

#### Submission Files

- hw3\_team\_{id}/
  - report.pdf
  - sample.txt
  - degree.txt
  - closeness.txt
  - node\_attr\_1
  - **—** ...
  - node\_attr\_ $k_V$
  - edge\_attr\_1
  - Makefile
  - Your code

```
# e.g. "hw3_team_1"

# Report

# Your sampled graph for the private graph

# Degree distribution

# Top 100 nodes

# Distribution of node attribute 1

# Distribution of node attribute k_V
```

# Distribution of edge attribute 1

#### query.py

- An example of connection to the query system
- Inputs, outputs are the same as the system
- Python 3 code
- You can write your own connection program

python3 query.py team [node]

# sample.txt

```
2014 505 # A line records an edge

2014 2222

2222 9908

5032450 45345

45043 432580

...

67 3245

67 11654
```

m edges

### degree.txt

```
1 1 0.64 # 64 % of nodes with degree 1
2 3 0.3 # 30 % of nodes with degree 2 \sim 3
4 10 0.04
11 20 0.015
21 40 0.003
41 0 0.002 # 0.2 % of nodes with degree \geq 41
# (the 2<sup>nd</sup> integer is filled 0)
```

#### closeness.txt

```
3466 # Top 1 node with the highest closeness centrality values
715 # Top 2
61
65767
...
465 # Top 100
```

## node/edge\_attr\_k.txt

Values are integers that should be in ascending order

```
2 0.33 # 33 % of nodes/edges with attribute value = 2
3 0.02 # 2 % of nodes/edges with attribute value = 3
5 0.3
7 0.01
11 0.34
```

### Report

#### Content

- Performance of your experiments
- Description of your models

#### Format

- Both English and Chinese are welcomed
- No more than 8 pages
- Please follow report.docx, filling in the table
- Convert your report to the PDF file

### Running Your Program

- Environment: NTU CSIE workstation
- TA will type the following command to test your code
   make # run code in Makefile
- Your program should automatically output sample.txt in the same directory
- If you need to use special packages / libraries (except Networkx), please include them in your submissions
- If there is difficulty in running your code (e.g. cannot run with Makefile, packages cannot be included), please remind us how to correctly run your program in the report

### Tips and Hints

- Your sampling models should be general
  - The private network might not be similar to the public network
  - Take other heterogeneous graphs as your training data
- You can use any means to estimate the distributions. They don't need to be identical to the distribution of your sampled graph.
- You are encouraged to implement sampling models from papers or slides in this homework

#### Be Careful

- NEVER take time to seek or guess the private graph
  - The information (e.g. number of nodes / edges)
     will be modified if necessary
- NEVER try to attack the query system (e.g. denial of service)
  - The system records every query in the database
  - Your might fail this course such behavior is identified

## Grading

- Evaluation 70%
  - In terms of relative performance of all teams
- Report 30%
  - Format
  - Experiments
  - Models

#### Submission

- Deadline: 2014/12/10 22:00
- Compress the directory hw3\_team\_{id}/ to a
   ZIP file
- Please contact TA by email, CEIBA board or TA hour if you have any questions about the homework

#### To Be Announced

- The parameters for private data will be announced next week
  - Number of seed nodes  $n_s$  for the private data
  - Maximum number of queries  $n_q$  for the private data
  - Proper bin widths of the degree distribution