EXP 3: Map Reduce program to process a weather dataset.

AIM:

To implement MapReduce program to process a weather dataset.

Procedure:

Step 1: Create Data File:

Create a file named "word_count_data.txt" and populate it with text data that you wish to analyse. Login with your hadoop user.

Download the dataset (weather data) Output: *dataset - Notepad File Edit Format View Help 23907 20150103 2.423 -98.08 30.62 15.9 2.3 9.1 7.5 3.1 11.00 C 16.4 7.3 100.0 23907 20150104 2.423 30.62 -1.3 82.0 23907 20150105 -98.08 30.62 10.9 -3.7 13.37 C 14.7 77.9 23907 20150106 2.423 -98.08 30.62 20.2 2.9 11.6 10.9 0.0 12.90 C 22.0 9.9 67.7 3.8 -2.1 23907 20150107 2.423 -98.08 30.62 10.9 -3.4 4.5 0.0 12.68 C 12.4 5.5 82.7 23907 20150108 2,423 -98.08 30.62 0.6 -7.9 -3.6 -3.3 0.0 4.98 C 3.9 -4.8 -0.5 57.7 23907 20150109 2.423 -98.08 30.62 2.0 0.1 1.0 0.8 0.0 2.52 C 4.1 1.2 2.5 87.8 23907 20150110 2.423 -98.08 30.62 0.5 -2.0 -0.8 -0.6 3.9 2.11 C 2.5 -0.1 1.4 99.9 23907 20150111 2.423 -98.08 30.62 10.9 0.0 2.6 12.7 100.0 5.4 4.4 6.38 C 1.3 5.8 23907 20150112 2.423 -98.08 30.62 1.4 4.0 4.3 1.55 C 6.9 5.1 100.0 6.5 0.0 23907 20150113 -0.7 2.423 -98.08 30.62 3.0 1.1 3.26 C 23907 20150114 2.423 -98.08 1.88 C 4.7 23907 20150115 2.423 -98.08 30.62 13.2 1.2 7.2 6.4 0.0 13.37 C 16.4 6.7 98.9 23907 20150116 2.423 -98.08 30.62 16.7 3.5 10.1 9.9 0.0 13.68 C 19.2 8.7 80.2 23907 20150117 2.423 -98.08 30.62 19.5 5.0 12.2 12.3 0.0 10.96 C 20.9 3.3 10.6 87.7 23907 20150118 2.423 -98.08 30.62 20.9 7.6 14.3 13.7 0.0 15.03 C 23.4 3.5 11.9 45.9 23907 20150119 2.423 -98.08 30.62 23.9 6.7 0.0 14.10 C 3.8 15.3 14.3 25.6 12.6 65.3 23907 20150120 -98.08 30.62 26.0 17.8 15.9 14.57 C 27.9 2.423 9.5 0.0 6.5 14.5 88.4 23907 20150121 2.423 -98.08 30.62 11.0 6.9 8.9 8.9 1.7 2.71 C 13.1 9.7 99.2 6.8 1.28 C 2.423 30.62 23907 20150123 2.423 -98.08 30.62 9.4 2.2 4.2 7.5 6.58 C 11.1 98.4 23907 20150124 2.423 -98.08 30.62 16.0 1.4 8.7 8.0 0.0 14.26 C 18.8 0.4 7.7 92.0 23907 20150125 2.423 -98.08 30.62 20.2 6.4 13.3 12.7 0.0 14.99 C 22.0 4.4 11.0 69.2 23907 20150126 12 01 0 2 423 -98 A8 56.8

Step 2: Mapper Logic - mapper.py:

import sys

Create a file named "mapper.py" to implement the logic for the mapper. The mapper will read input data from STDIN, split lines into words, and output each word with its count.

```
nano mapper.py
# Copy and paste the mapper.py code
#!/usr/bin/env python
```

input comes from STDIN (standard input)

the mapper will get daily max temperature and group it by month. so output will be (month,dailymax_temperature)

```
for line in sys.stdin:
  # remove leading and trailing whitespace
  line = line.strip()
  # split the line into words
  words = line.split()
  #See the README hosted on the weather website which help us understand how each
position represents a column
  month = line[10:12] daily_max
  = line[38:45] daily_max =
  daily max.strip() # increase
  counters
  for word in words:
     # write the results to STDOUT (standard output);
     # what we output here will be go through the shuffle proess and then #
     be the input for the Reduce step, i.e. the input for reducer.py
     # tab-delimited; month and daily max temperature as output print
     ('%s\t%s' % (month,daily max))
```

Step 3: Reducer Logic - reducer.py:

Create a file named "reducer.py" to implement the logic for the reducer. The reducer will aggregate the occurrences of each word and generate the final output.

```
nano reducer.py
# Copy and paste the reducer.py code
```

reducer.py

```
#!/usr/bin/env python
from operator import itemgetter
import sys
#reducer will get the input from stdid which will be a collection of key, value(Key=month,
value= daily max temperature)
#reducer logic: will get all the daily max temperature for a month and find max temperature for
the month
#shuffle will ensure that key are sorted(month)
current month = None
current max = 0 month
= None
# input comes from STDIN
for line in sys.stdin:
```

```
# remove leading and trailing whitespace
  line = line.strip()
  # parse the input we got from mapper.py
  month, daily_max = line.split('\t', 1)
  # convert daily_max (currently a string) to float try:
     daily max = float(daily max) except
  ValueError:
     # daily_max was not a number, so silently #
     ignore/discard this line
     continue
  # this IF-switch only works because Hadoop shuffle process sorts map output #
  by key (here: month) before it is passed to the reducer
  if current_month == month:
     if daily_max > current_max: current_max
       = daily_max
  else:
     if current_month:
       # write result to STDOUT
       print ('%s\t%s' % (current_month, current_max))
     current_max = daily_max
     current_month = month
# output of the last month
if current month == month:
  print ('%s\t%s' % (current_month, current_max))
```

Step 4: Prepare Hadoop Environment:

Start the Hadoop daemons and create a directory in HDFS to store your data.

```
start-all.sh
```

Step 6: Make Python Files Executable:

Give executable permissions to your mapper.py and reducer.py files.

```
chmod 777 mapper.py reducer.py
```

Step 7: Run the program using Hadoop Streaming:

Download the latest hadoop-streaming jar file and place it in a location you can easily access.

Then run the program using Hadoop Streaming. hadoop

fs -mkdir -p /weatherdata

hadoop fs -copyFromLocal /home/sx/Downloads/dataset.txt /weatherdata

hdfs dfs -ls /weatherdata

hadoop jar /home/sx/hadoop-3.2.3/share/hadoop/tools/lib/hadoop-streaming-3.2.3.jar \

- -input /weatherdata/dataset.txt \
- -output /weatherdata/output \
- -file "/home/sx/Downloads/mapper.py" \
- -mapper "python3 mapper.py" \
- -file "/home/sx/Downloads/reducer.py" \
- -reducer "python3 reducer.py"

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/outputfile.txt

Step 8: Check Output:

Check the output of the program in the specified HDFS output directory.

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/output//part-00000

Result:

Thus, the program for weather dataset using Map Reduce has been executed successfully.

EXP 4: Create UDF in PIG

Step-by-step installation of Apache Pig on Hadoop cluster on Ubuntu

Pre-requisite:

- · Ubuntu 16.04 or higher version running (I have installed Ubuntu on Oracle VM (Virtual Machine) VirtualBox),
- · Run Hadoop on ubuntu (I have installed Hadoop 3.2.1 on Ubuntu 16.04). You may refer to my blog "How to install Hadoop installation" click here for Hadoop installation).

Pig installation steps

Step 1: Login into Ubuntu

Step 2: Go to https://pig.apache.org/releases.html and copy the path of the latest version of pig that you want to install. Run the following comment to download Apache Pig in Ubuntu:

\$ wget https://dlcdn.apache.org/pig/pig-0.16.0/pig-0.16.0.tar.gz

Step 3: To untar pig-0.16.0.tar.gz file run the following command:

\$ tar xvzf pig-0.16.0.tar.gz

Step 4: To create a pig folder and move pig-0.16.0 to the pig folder, execute the following command:

\$ sudo mv /home/hdoop/pig-0.16.0 /home/hdoop/pig

Step 5: Now open the .bashrc file to edit the path and variables/settings for pig. Run the following command:

\$ sudo nano .bashrc

Add the below given to .bashrc file at the end and save the file.

#PIG settingsexport PIG_HOME=/home/hdoop/pigexport
PATH=\$PATH:\$PIG_HOME/binexport
PIG_CLASSPATH=\$PIG_HOME/conf:\$HADOOP_INSTALL/etc/hadoop/export
PIG_CONF_DIR=\$PIG_HOME/confexport JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64export PIG_CLASSPATH=\$PIG_CONF_DIR:\$PATH#PIG setting ends

Step 6: Run the following command to make the changes effective in the .bashrc file:

\$ source .bashrc

[Type here]

Step 7: To start all Hadoop daemons, navigate to the hadoop-3.2.1/sbin folder and run the following commands:

\$./start-dfs.sh\$./start-yarn\$ jps

```
hdoop@hdoop-VirtualBox:~\hadoop-3.2.1\sbin\hdoop@hdoop-VirtualBox:~\hadoop-3.2.1\sbin\hdoop.\shin\hdoop.\shin\hdoop.\hdoop.\shin\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop-VirtualBox]\hdoop@hdoop-VirtualBox:~\hadoop-3.2.1\sbin\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\hdoop.\h
```

Step 8: Now you can launch pig by executing the following command:

\$ pig

Step 9: Now you are in pig and can perform your desired tasks on pig. You can come out of the pig by the quit command:

> quit;