Question Number	Scheme	Marks	
10	$\frac{\mathrm{d}V}{\mathrm{d}t} = 40 (\mathrm{cm}^3/\mathrm{s})$	B1	
	$A = 4\pi r^2 \frac{\mathrm{d}A}{\mathrm{d}r} = 8\pi r$	M1A1	
	$V = \frac{4}{3}\pi r^3 \frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	M1A1	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}, = 8\pi r \times \frac{1}{4\pi r^2} \times 40 (=\frac{80}{r})$	M1,A1ft	
	$r = 4$ so $\frac{80}{4} = 20 \text{ (cm}^2/\text{s)}$	dM1A1cao [9]	
B1	Any letters can be used for volume and area, inc <i>SA</i> for area, but their choice must be used consistently. State or use $\frac{dV}{dt} = 40$ (cm ³ /s) (units not needed)		
M1	Attempt to differentiate $4\pi r^2$ with respect to r (Formula for area of sphere is given on formula page)		
A1 M1	Correct derivative = dA/dt		
M1 A1 M1	Attempt to differentiate $\frac{4}{3}\pi r^3$ with respect to r (Formula for volume of sphere is given on formula page) Correct derivative = dA/dt Show (or use) a useful chain rule. Terms can be in any order as long as it is possible to obtain dA/dt from it. OR Use chain rule twice to obtain an expression from which dA/dt		
A1ft	could be obtained. Substitute their expressions for the 3 derivatives in their chain rule. Need not be		
dM1	simplified. Use the resulting expression(s) with $r = 4$ to obtain a value for dA/dt All previous M marks needed.		
A1cao +cso	Correct value, units may be missing. Solution must be correct.		

Question Number	Scheme	Marks
11(a)	$(3\sin A\cos B - 3\cos A\sin B) = (\sin A\cos B + \cos A\sin B)$	M1
	$2\sin A\cos B = 4\cos A\sin B$	M1
	$ \frac{\sin A}{\cos A} = 2 \frac{\sin B}{\cos B} \tan A = 2 \tan B k = 2 $	M1
	$ \tan A = 2 \tan B k = 2 $	A1 (4)
(b)	$\frac{(\cos^4\theta - \sin^4\theta)}{\cos^2\theta} = \frac{(\cos^2\theta + \sin^2\theta)(\cos^2\theta - \sin^2\theta)}{\cos^2\theta}$	M1
	$=\frac{(\cos^2\theta - \sin^2\theta)}{\cos^2\theta}$	M1
AT T 1	$=1-\tan^2\theta$ *	A1 cso (3)
ALT 1	$\sin^2\theta + \sin^2\theta + \sin^2\theta$	2.61
	$1 - \tan^2 \theta = 1 - \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta}$	M1
	$= \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} \times (\cos^2 \theta + \sin^2 \theta)$	M1
	$=\frac{\cos^4\theta - \sin^4\theta}{\cos^2\theta}$	A1
ALT 2	$\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} = \cos^2 \theta - \frac{\sin^4 \theta}{\cos^2 \theta} = \cos^2 \theta - \tan^2 \theta \sin^2 \theta$	M1 Eliminate 4 th powers
	$=\cos^2\theta-\tan^2\theta\left(1-\cos^2\theta\right)$	M1 Eliminate sin ²
	$= \cos^2 \theta - \tan^2 \theta + \sin^2 \theta = 1 - \tan^2 \theta$	A1
(c)(i)	$\cos(45 - 30) \operatorname{or} \cos(60 - 45) = \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}$	M1
	$= \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}$	A1cso (2)
ALT	By using double angle formula:	
	$\cos^2 15^\circ = \frac{1}{2} \left(1 + \cos 30^\circ \right) = \frac{1}{2} \left(1 + \frac{\sqrt{3}}{2} \right)$	M1
	Leading to the <i>given</i> answer. $\cos 15^\circ = \sqrt{\left(\frac{2+\sqrt{3}}{4}\right)}$ or $\frac{\sqrt{2+\sqrt{3}}}{2}$ must	A1
	be seen.	

Question Number	Scheme	Marks	
(ii)	tan 255 = tan 75	B1	
	$= \tan(30 + 45) = \frac{\tan 30 + \tan 45}{1 - \tan 30 \tan 45}$	M1	
	$= \frac{\frac{\sqrt{3}}{3} + 1}{1 - \frac{\sqrt{3}}{3}}$ $= \frac{\frac{3 + \sqrt{3}}{3}}{\frac{3 - \sqrt{3}}{3}} = \frac{3 + \sqrt{3}}{3 - \sqrt{3}}$	dM1	
	$\frac{\frac{3+\sqrt{3}}{3}}{\frac{3-\sqrt{3}}{3}} = \frac{3+\sqrt{3}}{3-\sqrt{3}} $	A1cso (4)	
(a) M1 M1 M1 A1	Expand both sides of the equation using correct formulae Collect like terms from their expansions. (Not dependent) Divide through by $\cos A \cos B$ Replace each fraction with the appropriate tangent and show $k=2$ (value need not be shown explicitly)		
(b) M1 M1 A1cso	Factorise the numerator using the difference of 2 squares. Replace $\sin^2 \theta + \cos^2 \theta$ with 1		
ALT 1	Divide both terms by $\cos^2 \theta$ and obtain the <i>given</i> answer with no errors seen.		
M1	Use $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and obtain a single fraction with no tan		
M1 A1cso	Indicate multiplication by $\sin^2 \theta + \cos^2 \theta$ Multiply and obtain the <i>given</i> answer with no errors seen.		
(c)(i) M1 A1cso (ii)	Express 15 as the difference of 2 suitable numbers, expand using a correct formula and substitute the correct exact values for the trig functions (substitution must be shown). Simplify and combine the fractions to obtain the <i>given</i> answer with no errors seen.		
B1	$\tan 255 = \tan 75$ seen explicitly or used. OR eg $\tan(210 + 45)$ – give B1 for $\tan 210 = \tan 30$ used		
M1	Express 75 as $30 + 45$ and expand $\tan(30+45)$ using the correct formula (given on the		
	formula page) OR expand $\tan (210 + 45)$ If $75 = 15 + 60$ is used $\tan 15$ can be obtained from a calculator but must 15 form	be in exact	
dM1 A1cso	Substitute the correct exact values for the trig functions Simplify the fractions to obtain the <i>given</i> answer with full working and no	errors seen.	