MATH6222 week 6 lecture 17

Rui Qiu

2017-03-31

Definition: An integer n > 2 is **prime** if $d|n \implies d = 1$ or d = n. We say an integer is **composite** if not prime. Equivalently, n is composite if \exists divisor d|n with 1 < d < n.

Lemma: Any integer n > 1 is a product of primes, i.e.

$$n = p_1 p_2 \cdots p_k$$

for some prime p_1, p_2, \ldots, p_k .

Proof: Prove this by strong induction on n.

Base Case n = 2. (2 is a product of 2, which is prime itself.)

Inductive Step: Given integer n, either n is prime or n is composite.

If n is prime, nothing to prove.

If n is composite, can write $n = n_1 n_2$ where $1 < n_1 < n, 1 < n_2 < n$. By the induction hypothesis,

- $n_1 = p_1 p_2 \cdots p_k$, p_i prime.
- $n_2 = q_1 q_2 \cdots q_l$, q_i prime.

So
$$n = n_1 n_2 = p_1 \cdots p_k q_1 \cdots q_l$$
.

Fundamental Theorem of Arithmetic: Any integer n > 2 can be written uniquely as a product of primes.

Suppose $n = p_1 p_2 \cdots p_k$, and $n = q_1 q_2 \cdots q_l$. Then must have k = l, after reordering we have $p_1 = q_1, p_2 = q_2, \dots$

Imagine a world with only even numbers. Define the "new prime" as numbers non-divisible by smaller even numbers, in this case 6 and 10 are primes, etc.

- Determine which numbers ≤ 40 are prime. 2, 6, 10, 14, 18, 22, 26, 30, 34, 38.
- Determine prime factorizations for all integers ≤ 40 . $2=2, 4=2\times 2, 6=6, 8=2\times 2\times 2, 10=10, 12=2\times 6, 14=14, 16=2\times 2\times 2\times 2, 18=18, 20=2\times 10, 22=22, 24=2\times 2\times 6, 26=26, 28=2\times 14, 30=30, 32=2\times 2\times 2\times 2\times 2, 34=34, 36=2\times 18=6\times 6, 40=2\times 2\times 10.$

Then a problem emerges, 36 has two "prime" factorizations!

$$36 = 6 \times 6 = 2 \times 18$$

Two integers a and b are relatively prime if $\gcd(a,b)=1$. (Example: $a=6,b=25,\gcd(a,b)=1$.) Equivalently, $\exists \ m,n\in\mathbb{Z}$ such that ma+nb=1. (What is the relationship between this and prime factorization?)

Lemma: Let p be prime, let a be any integer, either p|a or p and a are relatively prime.

Proof: Consider gcd(a, p). Must have

- $gcd(a, p) = 1 \implies a$ and p are relatively prime.
- $gcd(a, p) = p \implies p|a$.

Proposition (Key Property of Primes): p prime, a, b integers. If p|ab then p|a or p|b.

Proof: If p|a, nothing to prove. So assume $p \nmid a$. So p and a are relatively prime.

By the Euclidean algorithm, $\exists m, n \in \mathbb{Z}$ such that ma + np = 1. Let's multiple this by b:

$$mab + npb = b$$

p divides mab, and p divides npb automatically, so p divides b.

Corollary: If $p|(a_1 \cdots a_k)$, then $p|a_i$ for some i. Proof by induction on k. k = 2 done. (skipped) **Proof of Fundamental Theorem of Arithmetic:** By strong induction on n = 2. Suppose we have two prime factorizations of n:

- $n = p_1 p_2 \cdots p_k$, p_i prime.
- $n = q_1 q_2 \cdots q_l, \ q_j$ prime.

So

$$p_1p_2\cdots p_k=q_1q_2\cdots q_l$$

 $p_1|(q_1\cdots q_l) \implies p_1|q_i$ for some $i=1,\ldots,l$. Since q_i is prime, $p_1=q_i$. After reordering, assume $p_1=q_1$. Now we have

$$p_2 \cdots p_k = q_2 \cdots q_l$$

Now by the induction hypothesis, after reordering, we have $p_2 = q_2, p_3 = q_3, \dots p_k = q_l$

Corollary:

- 1. An integer $d|n \iff$ every prime factor d is a prime factor of n.
- 2. gcd(a, b) is just product of all primes occurring in both a and in b.

Proof: Suppose d|n, then n=dk, then $d=p_1p_2\cdots p_i, k=q_1q_2\cdots q_j$