About TA sections:

TA: Ekaterina Zubova (ez268@cornell.edu)

Section time and location: 8:40am - 9:55am Rockefeller Hall 132

Office hours: Tuesday 4:30-5:30 pm in Uris Hall 451; other times available by appointment (just send me an email).

Remark: This set of notes provides supplementary material that is optional and not required for the exam.

In these notes:

1	Additional notes on the Hamilton-Jacobi-Bellman (HJB)		2
	1.1	Derivation	2
	1.2	Application to the neoclassical growth model and connection to the Hamiltonian $. $	4
${f 2}$	Exa	m Check List*	5

1 Additional notes on the Hamilton-Jacobi-Bellman (HJB)

1.1 Derivation

Recall the problem we discussed in Section 4. We have:

$$\max_{x(\cdot),y(\cdot)} W(x(\cdot),y(\cdot)) \equiv \int_0^\infty e^{-\rho t} f(t,x(t),y(t)) dt,$$
subject to $\dot{x}_i(t) = g_i(t,x(t),y(t)),$ for $i = 1, 2, \dots, n,$

$$x_i(0) = x_{i0} \text{ (given initial conditions)},$$

$$x(t) \in \mathcal{X}, \quad y(t) \in \mathcal{Y}, \text{ for all } t \geq 0.$$

Here:

- $x(t) \in \mathbb{R}^n$ is the state vector (e.g., capital stock, population, etc.) at time t.
- $y(t) \in \mathbb{R}^m$ (or a more general set) is the control or decision variable (e.g., consumption, investment, policy instrument).
- $f(\cdot)$ represents the instantaneous payoff (or utility) function.
- $g_i(\cdot)$ are the components of the dynamic constraints describing how the state evolves over time.

To study this problem via dynamic programming, define the value function:

$$V(x,t) = \max_{x(\cdot), y(\cdot)} \left\{ \int_t^\infty e^{-\rho(\tau-t)} f(\tau, x(\tau), y(\tau)) d\tau \mid x(t) = x \right\}.$$

If the problem is stationary (i.e., f and g do not depend explicitly on time), then we often drop the time argument and write

$$V(x) = \max_{y(\cdot)} \int_0^\infty e^{-\rho t} f(x(t), y(t)) dt,$$

with $\dot{x}(t) = g(x(t), y(t))$ and x(0) = x.

The **dynamic programming principle** states that, if we look at an optimal control policy over $[0, \infty)$, any initial segment of that policy (over $[0, \Delta t]$) combined with an optimal policy starting from the state at Δt will also be optimal. Formally, for small Δt :

$$V\big(x(0)\big) \; = \; \max_{y(\cdot): \; 0 \leq \tau \leq \Delta t} \left\{ \int_0^{\Delta t} e^{-\rho \tau} \, f\big(x(\tau), y(\tau)\big) \, d\tau \; + \; e^{-\rho \Delta t} \, V\big(x(\Delta t)\big) \right\}.$$

Because the same problem structure applies after Δt , the maximum over $[\Delta t, \infty)$ is exactly $V(x(\Delta t))$, multiplied by the discount factor $e^{-\rho \Delta t}$.

Let x denote the current state. Over the short interval $[0, \Delta t]$, assume the control $y(\tau) \approx y$ (constant) and the state evolves approximately as

$$x(\tau) \approx x + g(x, y) \tau$$
 for small τ .

At $\tau = \Delta t$,

$$x(\Delta t) \approx x + g(x, y) \Delta t.$$

Hence, the payoff from 0 to Δt can be approximated by:

$$\int_0^{\Delta t} e^{-\rho \tau} f(x(\tau), y(\tau)) d\tau \approx f(x, y) \int_0^{\Delta t} e^{-\rho \tau} d\tau = f(x, y) \frac{1 - e^{-\rho \Delta t}}{\rho}.$$

For small Δt , we may use $1 - e^{-\rho \Delta t} \approx \rho \Delta t$, so this becomes approximately $f(x, y) \Delta t$.

Next, expand $V(x(\Delta t))$ around x:

$$V(x(\Delta t)) \approx V(x) + \nabla V(x)^{\top} [g(x,y)] \Delta t.$$

Thus,

$$e^{-\rho \Delta t} V(x(\Delta t)) \approx e^{-\rho \Delta t} \left[V(x) + \nabla V(x)^{\top} g(x, y) \Delta t \right].$$

For small Δt , $e^{-\rho \Delta t} \approx 1 - \rho \Delta t$.

Then, the expression for small Δt becomes:

$$V(x) \approx \max_{y \in \mathcal{V}} \left\{ f(x, y) \, \Delta t + \left(1 - \rho \, \Delta t \right) \left[V(x) + \nabla V(x)^{\top} g(x, y) \, \Delta t \right] \right\}.$$

Rearrange and divide both sides by Δt . We obtain the **Hamilton-Jacobi-Bellman equation**:

$$\rho V(x) = \max_{y \in \mathcal{Y}} \Big\{ f(x, y) + \nabla V(x)^{\mathsf{T}} g(x, y) \Big\}.$$

Intuition:

- $\rho V(x)$ is the "opportunity cost" or the discount-weighted value of being in state x,
- f(x,y) is the instantaneous reward,
- $\nabla V(x)^{\top} g(x,y)$ represents how much the future value changes if you shift the state in the direction of g(x,y),

• the maximum operator reflects that we choose the policy y that yields the best immediate payoff plus the best improvement in future value.

1.2 Application to the neoclassical growth model and connection to the Hamiltonian

$$\max_{c(\cdot)} \int_0^\infty e^{-\rho t} \frac{c(t)^{1-\theta}}{1-\theta} dt$$

subject to

$$\dot{k}(t) = F(k(t)) - \delta k(t) - c(t),$$

and $k(0) = k_0$ given.

The HJB equation:

$$\rho V(k) = \max_{c>0} \left\{ U(c) + V'(k) \left[F(k) - \delta k - c \right] \right\}.$$

Denote an optimal choice by c^* . Then:

$$\frac{\partial}{\partial c} \left[U(c) + V'(k)(F(k) - \delta k - c) \right] = U'(c) - V'(k) = 0 \implies U'(c^*(k)) = V'(k).$$

Hence, at optimum, the marginal utility of consumption equals the shadow value of capital, i.e., the co-state λ in the Hamiltonian.

Substituting $c^*(k)$ back into the HJB equation gives

$$\rho \, V(k) \; = \; U \big(c^*(k) \big) \; + \; V'(k) \, \Big[F(k) - \delta \, k - c^*(k) \Big].$$

Envelope theorem:

$$\rho V'(k) = V''(k) \left[F(k) - \delta k - c^*(k) \right] + V'(k) \left[F'(k) - \delta \right].$$

Note that $F(k) - \delta k - c^*(k) = \dot{k}(t)$ and $\lambda(t) = V'(k) \implies \dot{\lambda} = V'(k)\dot{k}$. Thus,

$$\rho \lambda - \dot{\lambda} = \lambda \left[F'(k) - \delta \right],$$

which is the same optimality condition as we would obtain by taking FOC of the **current-value** Hamiltonian with respect to the state variable k.

2 Exam Check List*

* Prepared by the previous TA, Zhuoheng Xu, and slightly updated by me.

Consider this the minimum you should be familiar with before taking the exam. It provides a foundation to build upon.

Classes 1-4: Discrete Time One Sector Growth Model

- Apply Kuhn-Tucker Theorem to find optimality conditions
- Know additional assumptions needed for the interior solution
- Understand First and Second Welfare Theorem
- "Derive" the Transversality Condition
- Know assumptions required for the existence and the uniqueness of the steady state
- Find the steady state of the model
- Know how to use the shooting method to find the saddle path numerically
- Find the recursive representation of the social planner's problem + Envelope Theorem
- Know how to use value function iteration to numerically solve the model
- Define the competitive equilibrium
- Ricardian Equivalence: If taxes are non-distortionary, households consumption decisions do not depend on the timing of tax collection

Classes 4-5: OLG model

- Know how to define competitive equilibrium and characterize its allocation
- Understand the special case of this model with CRRA utility and a Cobb-Douglas production function
- Understand the source of dynamic inefficiency
- Know how to distinguish between fully funded and unfunded social security systems and their implications for generational welfare

Class 6-8: Heterogeneity, Aggregation, Incomplete Markets

- Understand the result that if the model exhibits aggregation, the average quantities corresponding to a competitive equilibrium also solve the planner's problem
- Know conditions required for aggregation
- Understand how incomplete markets arise by restricting the borrowing behavior of the household
- Know the definition of stationary equilibrium
- Know how to numerically find the stationary equilibrium
- Understand the main mechanism of the model (e.g., how policy functions respond to a tighter/slacker borrowing constraint)

Class 9-11: Continuous Time Long Run Growth Model

- Write down the Hamiltonian and apply the Maximum Principle of Pontryagin to find optimality conditions
- Understand the difference between present-value and current-value Hamiltonian
- Know the definition of Balanced Growth Path (BGP)
- Know how to derive the optimal consumption growth rate by solving the optimization problem
- Understand how to identify the relationship between the growth rates of different variables by using feasibility constraint/capital dynamics/...
- Know how to do log-linearization around the steady state and describe the dynamics
- Understand the source of long run growth in AK model
- Understand the connection between Hamiltonian and HJB
- Understand the differences and similarities between Romer's model and Lucas's model
- Know how to detrend the economy and analyze transition dynamics

- Know how to derive equilibrium conditions and determine the growth rates of key variables in the social planner's problem (SPP) and the decentralized economy in
 - Romer (1986)
 - Lucas (1988)
 - Romer (1990)