1

Aufgabe 1.1: Fehlerrechnung

Gegeben sei folgende Messschaltung:

Messwerte: $U_M = 800 \text{mV}$, $I_M = 0.6 \text{mA}$

Datenblattangaben:

Strommessgerät:

Messbereich: 1mA

 $R_i = 2\Omega$

 $\Delta I = 1\%$ vom Messbereich + 5 Digit

Anzeigeumfang: 5.000

Spannungsmessgerät:

Messbereich: 1V

 $R_{II} = 200 k\Omega$

ΔU= 2% vom Messbereich + 3 Digit

Anzeigeumfang: 2.000

Berechnen Sie

- a) den Widerstand R_M ohne Berücksichtigung der Messgeräteinnenwiderstände
- b) den Widerstand R mit Berücksichtigung der Messgeräteinnenwiderstände
- c) den systematischen Fehler ΔR_S/R in Prozent
- d) die garantierten Fehlergrenzen $\Delta R_z/R$ in Prozent infolge der Datenblattangaben zum Strom- und Spannungsmessgerät

Aufgabe 1.2: Kennwerte / Leistung

Gegeben sei die abgebildete Messschaltung mit dem dargestellten Signalverlauf an der Spannungsquelle u_g. Die Diode darf als ideales Bauelement betrachtet werden.

- a) Zeichnen Sie den Stromverlauf i(t) und geben Sie den Wert für die Amplitude an.
- b) Ermitteln Sie die Effektivwerte für die Spannung U_a und den Strom I.
- c) Berechnen Sie die Scheinleistung S, die Wirkleistung P und die Blindleistung Q.

2

Aufgabe 1.3: Digitalmultimeter

Spannungsbereich 1: U_e=1V (Pos. 1)

Spannungsbereich 2: U_e=10V (Pos. 2)

Spannungsbereich 3: U_e=100V (Pos. 3)

 $\label{eq:max_max_def} \mbox{Maximale Spannung am Widerstand } R_V \\ \mbox{$U_{V,max}$ = $1V$}$

 $R_V = 1G\Omega$

Der Eingangswiderstand soll für alle Schalterpositionen R_e = 1 $M\Omega$ betragen.

Berechnen Sie die Widerstände R_1 , R_2 und R_3 für die jeweils maximale Eingangsspannung U_e von 1V (Pos. 1), 10V (Pos. 2) bzw. 100V (Pos. 3) bei Vernachlässigung von I_V .

Aufgabe 1.4: Oszilloskop

Ein Oszilloskop habe die Eingangsimpedanz ($R_e = 2 M\Omega \parallel (C_e = 10pF)$ - Parallelschaltung!

- a) Berechnen Sie die Bauelemente (R_T und C_T) eines Tastkopfes mit dem Teilerverhältnis 100:1.
- b) Der Bildschirm habe in y-Richtung (Vertikaleinheit) acht Einheiten. Die Eingangsempfindlichkeit betrage 5V / Einheit. Welches Teilungsverhältnis muss der Tastkopf mindestens aufweisen, damit der Signalverlauf der Netzspannung auf dem Bildschirm dargestellt werden kann?
- c) Sie wollen 5 Perioden eines sinusförmigen Signals mit der Frequenz 50Hz auf dem Bildschirm darstellen ("stehendes Bild"). Welchen zeitlichen Verlauf und welche Periodendauer muss die Spannung an den x-Platten (Horizontaleinheit) des Oszilloskops annehmen?

3

Aufgabe 2.1: Fehlerrechnung

Datenblattangaben:

Strommessgerät: Messbereich: 300mA

 $R_i = 0.5\Omega$

 $\Delta I = 1\%$ vom Messwert + 3 Digit

Anzeigeumfang: 2.000

Spannungsmessgerät:

Messbereich: 30V

 $R_u = 100k\Omega$

ΔU= 0,5% vom Messwert + 2 Digit

Anzeigeumfang: 20.000

Berechnen Sie

- a) den Widerstand R_M ohne Berücksichtigung der Messgeräteinnenwiderstände
- b) den Widerstand R mit Berücksichtigung der Messgeräteinnenwiderstände
- c) den systematischen Fehler ΔRs/R in Prozent
- d) die garantierten Fehlergrenzen $\Delta R_z/R$ in Prozent infolge der Datenblattangaben zum Strom- und Spannungsmessgerät

Aufgabe 2.2: Kennwerte

Gegeben sei folgender Signalverlauf:

Berechnen Sie

- a) den arithmetischen (linearen) Mittelwert,
- b) den Gleichrichtmittelwert,
- c) den Effektivwert.
- d) den Formfaktor.

4

Aufgabe 2.3: Digitalmultimeter

Spannungsbereich 1: U_e=0,3V (Pos. 1) Spannungsbereich 2: U_e=3,0V (Pos. 2)

Maximale Spannung am Widerstand R_V $U_{V,max} = 0.3V$

 $R_V = 100M\Omega$

Der Eingangswiderstand soll für alle Schalterpositionen $R_e = 10M\Omega$ betragen.

Berechnen Sie:

- a) die Widerstände R_1 und R_2 für die jeweils maximale Eingangsspannung U_e von 0,3V (Pos. 1) bzw. 3V (Pos. 2) unter Vernachlässigung von I_V
- b) den Eingangsstrom I_e und den Strom I_v für Schalterstellung Pos. 1 bei U_e = 0,3V sowie für Schalterstellung Pos. 2 bei U_e = 3V

Aufgabe 2.4: Oszilloskop

Ein Oszilloskop habe die Eingangsimpedanz (Re = 1 M Ω || (C_e = 20pF) (Parallelschaltung!)

- a) Berechnen Sie die Bauelemente (R_T und C_T) eines Tastkopfes mit dem Teilerverhältnis 20:1.
- b) Der Bildschirm habe in y-Richtung (Vertikaleinheit) acht Einheiten. Die Eingangsempfindlichkeit sei auf 2V pro Einheit. eingestellt Welche maximalen Spannungswerte können ohne Tastkopf und mit Tastkopf (20:1) dargestellt werden?
- c) Sie wollen 10 Perioden eines Rechtecksignals mit der Frequenz 200Hz auf dem Bildschirm darstellen ("stehendes Bild"). Zeichnen Sie den zeitlichen Verlauf der Spannung an den x-Platten (Horizontaleinheit) des Oszilloskops (Beschriftung mit Einheiten nicht vergessen)!
- d) Berechnen Sie den Phasenwinkel zwischen den beiden Signalen, wenn folgende Abbildung und Einstellungen am Oszilloskop vorliegen:

Einstellungen:

Kanal 1: 2V / Einheit Kanal 2: 5V / Einheit Zeitbasis: 50µs / Einheit