Improving online algorithms with ML predictions

Ravi Kumar, Manish Purohit, Zoya Svitkina

NeurlPS'18

Online algorithms

Full input not revealed upfront, but at some later stage, e.g.:

Matching: nodes of a graph arrive over time

Must irrevocably decide whether to match a node when it arrives

Caching: memory access requests arrive over time Must decide what to keep in cache

Scheduling: job lengths not revealed until they terminate Must decide which jobs to schedule when

Competitive ratio (CR)

Standard measure of online algorithm's performance:

$$CR = \frac{ALG}{OPT}$$

Offline optimal solution that knows the entire input

E.g., in matching:

$$CR = \frac{\text{weight of algorithm's matching}}{\text{maximum weight matching}}$$

Online algorithms

Full input not revealed upfront, but at some later stage

What if algorithm receives some predictions about input?

Online advertising

e.g., Mahdian et al. [EC'07]; Devanur, Hayes [EC'09]; Muñoz Medina, Vassilvitskii [NeurIPS'17]

Caching

e.g., Lykouris, Vassilvitskii [ICML'18]

Data structures

e.g., Mitzenmacher [NeurIPS'18]

This paper

•

Outline

1. Ski rental

2. Job scheduling

Problem: Skier will ski for unknown number of days

- Can either rent each day for \$1/day or buy for \$b
- E.g., if ski for 5 days and then buy, total price is 5 + b

If ski x days, optimal clairvoyant strategy pays OPT = min $\{x, b\}$

Breakeven strategy: Rent for b-1 days, then buy

• CR =
$$\frac{\text{ALG}}{\text{OPT}} = \frac{x \mathbf{1}_{\{x < b\}} + (b-1+b)\mathbf{1}_{\{x \ge b\}}}{\min\{x,b\}_e} < 2$$
 (best deterministic)
• Randomized alg. CR = $\frac{e}{e-1}$ [Karlin et al., Algorithmica '94]

Prediction y of number of skiing days, error $\eta = |x - y|$

Baseline: Buy at beginning if y > b, else rent all days

Theorem: ALG \leq OPT + η If y small but $x \gg b$, CR can be unbounded

Outline

- 1. Ski rental
 - i. Deterministic algorithm
 - ii. Randomized algorithm
- 2. Job scheduling

Prediction y of number of skiing days, error $\eta = |x - y|$

Algorithm (with parameter $\lambda \in [0,1]$): If $y \ge b$, buy on start of day $\lceil \lambda b \rceil$; else buy on start of day $\lceil \frac{b}{\lambda} \rceil$

- If **really trust** predictions: set $\lambda = 0$ Equivalent to blindly following predictions
- If don't trust predictions: set $\lambda = 1$ Equivalent to running the worst-case algorithm

Prediction y of number of skiing days, error $\eta = |x - y|$

Algorithm (with parameter $\lambda \in [0,1]$): If $y \ge b$, buy on start of day $\lceil \lambda b \rceil$; else buy on start of day $\lceil \frac{b}{\lambda} \rceil$

Theorem: Algorithm has
$$CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$$

- If predictor is perfect $(\eta = 0)$, CR is small $(\leq 1 + \lambda)$
- No matter how big η is, setting $\lambda = 1$ recovers baseline CR = 2

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$

Proof sketch: If $y \ge b$, buys on start of day $[\lambda b]$

$$\frac{\text{ALG}}{\text{OPT}} = \begin{cases} \frac{x}{x} & \text{if } x < \lceil \lambda b \rceil \\ \frac{\lceil \lambda b \rceil - 1 + b}{x} & \text{if } \lceil \lambda b \rceil \le x \le b \\ \frac{\lceil \lambda b \rceil - 1 + b}{b} & \text{if } x \ge b \end{cases}$$
Worst when $x = \lceil \lambda b \rceil$ and $CR = \frac{b + \lceil \lambda b \rceil - 1}{\lceil \lambda b \rceil} \le \frac{1 + \lambda}{\lambda}$; similarly for $y < b$

Design principals

Consistency:

- Predictions are perfect ⇒ recover offline optimal
- Algorithm is α -consistent if $CR \to \alpha$ as error $\eta \to 0$

Robustness:

- Predictions are terrible ⇒ no worse than worst-case
- Algorithm is β -consistent if $CR \leq \beta$ for all η

E.g., ski rental:
$$CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$$

$$(1 + \lambda)$$
-consistent, $(\frac{1+\lambda}{\lambda})$ -robust

3

Bounds are tight [Gollapudi, Panigrahi, ICML'19; Angelopoulos et al., ITCS'20]

Outline

- 1. Ski rental
 - i. Deterministic algorithm
 - ii. Randomized algorithm
- 2. Job scheduling

Randomized algorithm

if $y \ge b$:

Let $k \leftarrow \lfloor \lambda b \rfloor$

For
$$i \in [k]$$
, define $q_i \leftarrow \left(\frac{b-1}{b}\right)^{k-i} \frac{1}{b\left(1-\left(1-\frac{1}{b}\right)^k\right)}$

Buy on day $j \in [k]$ sampled from distribution defined by q_1, \dots, q_k

else

Let
$$\ell \leftarrow \left\lfloor \frac{b}{\lambda} \right\rfloor$$

For
$$i \in [k]$$
, define $q_i \leftarrow \left(\frac{b-1}{b}\right)^{\ell-l} \frac{1}{b\left(1-\left(1-\frac{1}{b}\right)^{\ell}\right)}$

Buy on day $j \in [\ell]$ sampled from distribution defined by q_1, \dots, q_ℓ

Randomized algorithm

Theorem:
$$CR \le \min\left\{\frac{1}{1-\exp\left(-(\lambda^{-1}/b)\right)}, \frac{\lambda}{1-\exp(-\lambda)}\left(1+\frac{\eta}{OPT}\right)\right\}$$

• $\left(\frac{\lambda}{1-\exp(-\lambda)}\right)$ -consistent, $\left(\frac{1}{1-\exp\left(-(\lambda-1/b)\right)}\right)$ -robust

• Bounds are tight [Wei, Zhang, NeurlPS'20]

Randomized algorithm

Theorem:
$$CR \le \min\left\{\frac{1}{1-\exp\left(-(\lambda^{-1}/b)\right)}, \frac{\lambda}{1-\exp(-\lambda)}\left(1+\frac{\eta}{OPT}\right)\right\}$$

Proof sketch:

- Split into cases depending on if $y \ge b$, $x \ge \lfloor \lambda b \rfloor$, and $x \ge \left\lfloor \frac{b}{\lambda} \right\rfloor$
- Show thm holds in each case using careful algebraic manipulations

Outline

- 1. Ski rental
- 2. Job scheduling

Job scheduling

Task: schedule n jobs on a single machine

Job j has **unknown** processing time x_j

Goal: minimize **sum of completion times** of the jobs i.e., if job j completes at time c_j , goal is to minimize $\sum c_j$

Can switch between jobs

Job scheduling

Optimal solution if processing times x_j 's are known: schedule jobs in non-decreasing order of x_i

• If $x_1 \leq \cdots \leq x_n$,

$$OPT = \sum_{i=1}^{n} \sum_{j=1}^{i} x_j$$

Algorithm with a competitive ratio of 2: round robin

• Schedule 1 unit of time per remaining job, round-robin

Round-robin over k jobs \equiv run jobs simultaneously at rate of $\frac{1}{k}$

Algorithms-with-predictions approach

- Predictions y_1, \dots, y_n of x_1, \dots, x_n with $\eta = \sum_{i=1}^n |y_i x_i|$
- If really trust predictions: schedule in decreasing order of y_i
 - "Shortest predicted job first (SPJF)"
- If don't trust predictions: round-robin (RR)

Algorithm: Preferential round-robin (with parameter $\lambda \in (0,1)$) Run SPJF and RR **simultaneously**

- SPJF at a rate λ
- RR at a rate 1λ

Preferential round-robin

Algorithm: Preferential round-robin (with parameter $\lambda \in (0,1)$) Run SPJF and RR **simultaneously**

- SPJF at a rate λ
- RR at a rate 1λ

Theorem:

$$\operatorname{CR} \leq \min \left\{ \frac{1}{\lambda} \left(1 + \frac{2\eta}{n} \right), \frac{1}{1 - \lambda} \cdot 2 \right\}$$

$$\operatorname{CR} \text{ of SPJF} \qquad \operatorname{CR} \text{ of RR}$$

Overview

Studies how to incorporate predictions into online algorithms

- Ski rental problem
- Job scheduling

Provable guarantees on algorithm's **competitive ratio** $\frac{ALG}{OPT}$

Design principals [this paper; Lykouris, Vassilvitskii, ICML'18]:

- Consistency: Predictions are perfect ⇒ recover offline optimal
- Robustness: Predictions are terrible ⇒ no worse than worst-case