LQR control of a Nonlinear Quadcopter System

Project Group F

Keith Chester, Bob DeMont, Sean Hart

A paper presented for the class of Robot Motion - RBE 502

Robotics Engineering Worcester Polytechnic Institute United States of America November 9, 2021

Abstract

The purpose of the project is to simulate the control and stable flight of an unmanned four rotor flying vehicle known as a quadcopter. The problem is set into three goals. The first is to have the quadcopter hover in a stable configuration. The second goal is to introduce a drone in flight and to have the quadcopter intercept that flight without knowing it's path. The third goal is to simulate the capture of the drone with a randomized disturbance force and maintain stable flight while returning to base.

Approaching the General Problem

To simulate the quadcopter's flight, we have to simulate its physical flight dynamics.

Quadcopter Hovering

Quadcopter Interception of Target

Quadcopter Return to Base with a Disturbance Force

References

- [1] Faraz Ahmad, Pushpendra Kumar, Anamika Bhandari, Pravin P. Patil. Simulation of the Quadcopter Dynamics with LQR based Control. Materials Today: Proceedings, Volume 24, Part 2, 2020, Pages 326-332, ISSN 2214-7853. https://doi.org/10.1016/j.matpr.2020.04.282.
- [2] Jinho Kim, S. Andrew Gadsden, Stephen A. Wilkerson. "A Comprehensive Survey of Control Strategies for Autonomus Quadrotors". arXiv:2005.09858v1. 20 May 2020.
- [3] Madani, T, and A Benallegue. "Backstepping Control for a Quadrotor Helicopter." 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006. 3255–3260. Web.
- [4] Jing Qiao, Zhixiang Liu, Youmin Zhang. "Payload Dropping Control of an Unmanned Quadrotor Helicopter Based on Backstepping Controller". MATEC Web Conf., 277 (2019) 01004. DOI: https://doi.org/10.1051/matecconf/201927701004.
- [5] Jia, Zhenyue and Yu, Jianqiao and Ai, Xiaolin. "Integral Backstepping Control for Quadrotor Helicopters". Association for Computing Machinery. 2017. DOI:https://doi-org./10.1145/3057039.3057052
- [6] Daewon Lee, H JIN Kim, Shankar Sastry. Feedback Linearization vs Adaptive Sliding Mode Control for a Quadrotor Helicopter. International Journal of Control, Automation, and Systems (2009). DOI 10.1007/s 12555-009-0311-8.