Graph theory

Introduction and basic algorithms

Lorenzo Ferrari

Campus Bornholm

December 8, 2021

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- BFS

 - DFS
- - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Introduction

Examples

Examples

Why graph theory?

- A huge number of problems can be converted in a graph problem
- Graph theory is fun \(^-^)/

We will study problems in abstract form. Their application can be found in the most diverse areas.

Typical graphs problems

- Given the description of a city, find the shortest path between locations A and B or determine that it is impossible to reach B from A.
- On an electronic board, choose a set of connections whose sum in length is minimal and which allows to pass through all points of interest.
- Given dependency relationships, find a suitable order to install some packages (or attend some classes) or determine that it is impossible.

Definitions

Definition: Graph

Graph
$$G = (V, E)$$

A graph is defined as a pair of sets:

- *V* is a set of vertexes/nodes
- E is a set of edges

Definitions

Definition: Vertexes and Edges

Vertex

- Vertexes are also called nodes
- Vertexes are denoted with labels

Edge

- Each edge is defined by a pair of vertexes
- An edge connects the vertexes that define it
- In some cases, the vertexes can be the same

Definitions

Example

- \bullet G = (V, E)
- $V = \{1, 2, 3, 4\}$
- $E = \{(1,2), (1,3), (1,4), (2,4), (3,4)\}$

Directed and Undirected graphs: definition

Directed graph G = (V, E)

 E is a set of ordered pairs (u, v) of nodes

Undirected graph G = (V, E)

 E is a set of unordered pairs [u, v] of nodes

Cyclic and Acyclic graphs: definition

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Cyclic and Acyclic graphs: definition

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Weighted graphs: definition

Weighted graph

- Each edge is assigned a wheight
- Weigth typically shows cost of traversing

Trees: definition

Tree

• *Connected* graph with m = n - 1

Rooted tree

• Connected graph with m=n-1 in which some special node is designed as root

Graph representation

Representations

Two possible "classic" implementations

- Adjacency matrix
- Adjacency list

Graph representation

Adjacency matrix

$$m_{uv} = \begin{cases} 1, & \text{if } (u, v) \in E \\ 0, & \text{if } (u, v) \notin E \end{cases}$$

	0	1	2	3	4
0	0	1	0	0	0
1	0	0	1	0	0
2	0	0	0	0	1
3	1	0	1	0	1
4	0	0	1	0	0

Graph representation

Adjacency list

$$G.adj(u) = \{v \mid (u, v) \in E\}$$

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Breadth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Breadth-first search (BFS)

Traverse the graph by visiting the nodes by levels: first nodes at distance 1 from the source, then distance 2, etc.

Application: shortest distances

Breadth-first search

```
def bfs(G, r):
Q = deque()
Q.append(r)
 visited = \{r\}
 while len(Q) > 0:
   u = Q.popleft()
   for v in G.adj(u):
     if not v in visited:
       visited.add(v)
       Q. append (v)
```

Depth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Depth-first search (DFS)

Traverse the graph by visiting all the nodes that can be reached by a node, and all the nodes that can be reached by those nodes, etc.

- Application: topological sort
- Application: cycle detection
- Application: connected components
- Application: strongly connected components

Depth-first search: iterative

```
def dfs(G, r):
 stack = [r]
 visited = \{r\}
 while len(st) > 0:
   u = stack.pop()
   for v in G.adj(u):
     if not v in visited:
       visited.add(v)
       stack.append(v)
```

Depth-first search: recursive

```
def dfs(G, u, visited):
 visited.add(r)
 for v in G.adj(u):
   if not v in visited
     dfs(G, v, visited)
```

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- ② Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

Kruskal algorithm for MST

```
def mst(E):
   E.sort() # sort for increasing weight
   ans = []
   for edge in E:
       if not Cycle(ans, edge):
           ans.append(edge)
   return ans
```

Connected Components

Problem definition

Given an undirected graph G = (V, E), find the number of connected components.

Connected Components

```
def connectedComponents(G):
 visited = \{\}
 count = 0
 for u in G.V:
   if not u in visited:
     count += 1
     dfs(G, u, visited)
 return count
```

Single source shortest path

Problem definition

Given a weighted graph G = (V, E) and a source node s, find the distance of every node from s. If there is not a path from s to a node v, dist[v] should be $+\infty$.

Single source shortest path

```
def shortestPath(G, s):
Q = deque()
 dist = [math.inf] * G.n
 dist[s] = 0
Q.append(s)
 while len(Q) > 0:
   u = Q.popleft()
   for (v,w) in G.adj(u):
     if dist[v] > dist[u] + w
       dist[v] = dist[u] + w
       Q.append(v)
```

return dist

More problems

- Given an undirected graph, find the minimum number of edges to add if you want to make it connected.
- Given a weighted graph and three nodes a, b, c, find a minimal length path which goes from a to c passing through b.
- Given a directed graph, find a permutation of V such that $\forall (u, v) \in E$ u comes before v, or tell it is impossible.
- Given a set of words S, find a minimal length string which contains each element of S as a substring.
- Given some dominoes, tell whether you can put them in a line such that the domino condition is satisfied.

Any questions?

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion