BOTTOM BARYONS

$$(B=-1)$$

$$\Lambda_b^0=u\,d\,b,\; \Xi_b^0=u\,s\,b,\; \Xi_b^-=d\,s\,b,\; \Omega_b^-=s\,s\,b$$

 Λ_b^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$I(J^P) \ \, \text{not yet measured}; \ \, 0(\frac{1}{2}^+) \ \, \text{is the quark model prediction}.$$

$$\, \text{Mass} \ \, m = 5619.58 \pm 0.17 \ \, \text{MeV}$$

$$\, m_{\Lambda_b^0} - m_{B^0} = 339.2 \pm 1.4 \ \, \text{MeV}$$

$$\, m_{\Lambda_b^0} - m_{B^+} = 339.72 \pm 0.28 \ \, \text{MeV}$$

$$\, \text{Mean life} \ \, \tau = (1.470 \pm 0.010) \times 10^{-12} \ \, \text{s}$$

$$\, c\tau = 440.7 \ \, \mu\text{m}$$

$$\, A_{CP}(\Lambda_b \to p\pi^-) = 0.06 \pm 0.08$$

$$\, A_{CP}(\Lambda_b \to pK^-) = -0.10 \pm 0.09$$

$$\, A_{CP}(\Lambda_b \to pK^0\pi^-) = 0.22 \pm 0.13$$

$$\, \Delta A_{CP}(J/\psi p\pi^-/K^-) \equiv A_{CP}(J/\psi p\pi^-) - A_{CP}(J/\psi pK^-)$$

$$= (5.7 \pm 2.7) \times 10^{-2}$$

$$\, A_{CP}(\Lambda_b \to \Lambda K^+\pi^-) = -0.53 \pm 0.25$$

$$\, A_{CP}(\Lambda_b \to \Lambda K^+K^-) = -0.28 \pm 0.12$$

$$\, \alpha \ \, \text{decay parameter for} \ \, \Lambda_b \to J/\psi \Lambda = 0.18 \pm 0.13$$

$$\, A_{FB}^{\ell}(\mu\mu) \ \, \text{in} \ \, \Lambda_b \to \Lambda \mu^+\mu^- = -0.05 \pm 0.09$$

$$\, A_{FB}^{\hbar}(p\pi) \ \, \text{in} \ \, \Lambda_b \to \Lambda (p\pi) \mu^+\mu^- = -0.29 \pm 0.08$$

$$\, f_L(\mu\mu) \ \, \text{longitudinal polarization fraction in} \ \, \Lambda_b \to \Lambda \mu^+\mu^-$$

$$= 0.61^{+0.11}_{-0.14}$$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Λ_b^0 DECAY MODES	F	Fraction (Γ_i/Γ_i)		cale factor/ fidence level	•
$J/\psi(1S)$ $\Lambda imes$ B $(b o \Lambda_b^0)$		(5.8 ±0.8) × 10 ⁻⁵		1740
$ hoD^0\pi^-$		(6.5 ± 0.7	$) \times 10^{-4}$		2370
р D ⁰ K [—]		(4.7 ± 0.8	$) \times 10^{-5}$		2269
HTTD //DDC LDL COV	D	4	.	E /20 /001	7 17 10

HTTP://PDG.LBL.GOV

Page 1

$ ho J/\psi \pi^-$	($2.6 \ ^{+0.5}_{-0.4}$) $ imes 10^{-5}$		1755
$ ho J/\psi K^-$	$(3.2 \begin{array}{c} +0.6 \\ -0.5 \end{array}) \times 10^{-4}$		1589
$P_c(4380)^+ K^-, P_c \rightarrow$	[a] $(2.7 \pm 1.4) \times 10^{-5}$		_
$P_c(4450)^+$ K $^-$, $P_c ightarrow$ $ ho$ J $/\psi$	[a] (1.3 ± 0.4) $\times 10^{-5}$		-
$pJ/\psi(1S)\pi^+\pi^-K^-$	(6.6 $^{+1.3}_{-1.1}$) \times 10 ⁻⁵		1410
$ ho\psi(2S)K^-$	$(6.6 \ ^{+1.2}_{-1.0}) \times 10^{-5}$		1063
$ ho \overline{K}{}^0 \pi^-$	$(1.3 \pm 0.4) \times 10^{-5}$		2693
pK^0K^-	$< 3.5 \times 10^{-6}$	CL=90%	2639
$\Lambda_c^+ \pi^-$	$(4.9 \pm 0.4) \times 10^{-3}$	S=1.2	2342
Λ ⁺ _c K ⁻	$(3.59\pm0.30)\times10^{-4}$	S=1.2	2314
$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen		2153
$\Lambda^{+}D^{-}$	$(4.6 \pm 0.6) \times 10^{-4}$		1886
$\Lambda_c^{c}D_s^{-}$	(1.10±0.10) %		1833
$\Lambda_{c}^{c}\pi^{+}\pi^{-}\pi^{-}$	$(7.7 \pm 1.1) \times 10^{-3}$	S=1.1	2323
$\Lambda_{\rm c}(2595)^{+}\pi^{-}$	$(3.4 \pm 1.5) \times 10^{-4}$		2210
$\Lambda_c(2595)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$	(*** ==**) ** =*		
$\Lambda_c(2625)^+\pi^-,$ $\Lambda_c(2625)^+ \to \Lambda_c^+\pi^+\pi^-$	(3.3 ± 1.3) $\times 10^{-4}$		2193
$\Sigma_c(2455)^0\pi^+\pi^-$, Σ_c^0 \to	(5.7 ± 2.2) \times 10 ⁻⁴		2265
$\Lambda_c^+\pi^- \ \Sigma_c(2455)^{++}\pi^-\pi^-, \ \Sigma_c^{++} ightarrow \ \Lambda_c^+\pi^+$	(3.2 ± 1.6) $\times 10^{-4}$		2265
$\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything	[b] (10.4 ±2.2)%		_
$\Lambda_c^+ \ell^- \overline{\nu}_\ell$	$(6.2 \begin{array}{c} +1.4 \\ -1.3 \end{array}) \%$		2345
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6 ±3.1) %		2335
$\Lambda_c(2595)^+\ell^-\overline{\nu}_\ell$	$(7.9 \ ^{+4.0}_{-3.5}) \times 10^{-3}$		2212
$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	$(\begin{array}{cc} 1.3 & ^{+0.6}_{-0.5} \end{array}) \%$		2195
p h ⁻	$[c] < 2.3 \times 10^{-5}$	CL=90%	2730
$p\pi^-$	$(4.3 \pm 0.8) \times 10^{-6}$		2730
, рК ⁻	$(5.1 \pm 0.9) \times 10^{-6}$		2709
pD_s^-	$< 4.8 \times 10^{-4}$	CL=90%	2364
$p\mu^-\overline{ u}_\mu$	$(4.1 \pm 1.0) \times 10^{-4}$		2730
$\Lambda \mu^+ \dot{\mu^-}$	$(1.08\pm0.28)\times10^{-6}$		2695
$\Lambda\gamma$	$< 1.3 \times 10^{-3}$	CL=90%	2699
$\Lambda^0 \eta$	$(9 ^{+7}_{-5}) \times 10^{-6}$		_

$\Lambda^0 \eta'(958)$	< 3.1	\times 10 ⁻⁶	CL=90%	_
$\Lambda\pi^+\pi^-$	($4.7 \pm 1.$	9) \times 10 ⁻⁶		2692
$\Lambda K^+ \pi^-$	($5.7 \pm 1.$	$3) \times 10^{-6}$		2660
$\Lambda K^+ K^-$	(1.61 ± 0 .	$23) \times 10^{-5}$		2605
$\Lambda^0 \phi$	($2.0 \pm 0.$	$5) \times 10^{-6}$		_

$\Lambda_b(5912)^0$

$$J^P = \frac{1}{2}^-$$

Mass $m=5912.18\pm0.21~{\rm MeV}$ Full width $\Gamma~<~0.66~{\rm MeV},~{\rm CL}=90\%$

Λ _b (5912) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\Lambda_b^0\pi^+\pi^-$	seen	86	

 $\Lambda_b(5920)^0$

$$J^P = \frac{3}{2}^-$$

Mass
$$m=5919.90\pm0.19$$
 MeV (S = 1.1)
Full width Γ < 0.63 MeV, CL = 90%

Λ _b (5920) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	108

 Σ_b

$$I(J^P) = 1(\frac{1}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m(\Sigma_b^+) = 5811.3 \pm 1.9$$
 MeV Mass $m(\Sigma_b^-) = 5815.5 \pm 1.8$ MeV $m_{\Sigma_b^+} - m_{\Sigma_b^-} = -4.2 \pm 1.1$ MeV $\Gamma(\Sigma_b^+) = 9.7^{+4.0}_{-3.0}$ MeV $\Gamma(\Sigma_b^-) = 4.9^{+3.3}_{-2.4}$ MeV

Σ_b DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi$	dominant	134

$$\Sigma_b^*$$

$$I(J^P) = 1(\frac{3}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5832.1 \pm 1.9 \text{ MeV}$$

Mass $m(\Sigma_b^{*-}) = 5835.1 \pm 1.9 \text{ MeV}$
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{*-}} = -3.0^{+1.0}_{-0.9} \text{ MeV}$
 $\Gamma(\Sigma_b^{*+}) = 11.5 \pm 2.8 \text{ MeV}$
 $\Gamma(\Sigma_b^{*-}) = 7.5 \pm 2.3 \text{ MeV}$
 $m_{\Sigma_b^*} - m_{\Sigma_b} = 21.2 \pm 2.0 \text{ MeV}$

Σ_b^* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

161

$$\Xi_b^0$$
, Ξ_b^-

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$\begin{split} & m(\Xi_b^-) = 5794.5 \pm 1.4 \text{ MeV} \quad (\text{S} = 4.0) \\ & m(\Xi_b^0) = 5791.9 \pm 0.5 \text{ MeV} \\ & m_{\Xi_b^-} - m_{\Lambda_b^0} = 177.9 \pm 0.9 \text{ MeV} \quad (\text{S} = 2.1) \\ & m_{\Xi_b^0} - m_{\Lambda_b^0} = 172.5 \pm 0.4 \text{ MeV} \\ & m_{\Xi_b^-} - m_{\Xi_b^0} = 5.9 \pm 0.6 \text{ MeV} \\ & \text{Mean life } \tau_{\Xi_b^-} = (1.571 \pm 0.040) \times 10^{-12} \text{ s} \\ & \text{Mean life } \tau_{\Xi_b^0} = (1.479 \pm 0.031) \times 10^{-12} \text{ s} \end{split}$$

Ξ _b DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ fidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi^-\ell^-\overline{ u}_\ell X} imes B(\overline{b} o \ \overline{\Xi}_b)$	(3.9 ± 1.2) \times	10-4	S=1.4	_
$J/\psi \Xi^- imes B(b o \Xi_b^-)$	$(1.02^{+0.26}_{-0.21}) imes$	10^{-5}		1782
$p D^0 K^- imes B(\overline{b} o \ \overline{\varXi}_b)$	(1.8 \pm 0.6) \times	10^{-6}		2374
$ ho \overline{K}{}^0 \pi^- imes B(\overline{b} o \overline{\varXi}_b) / B(\overline{b} o $	< 1.6 ×	10^{-6}	CL=90%	2783
$p \overset{B^0}{K^0} \overset{K^-}{K^-} imes B(\overline{b} o \ \overline{\varXi}_b)/B(\overline{b} o \ B^0)$	< 1.1 ×	10-6	CL=90%	2730
$pK^-K^- imes B(\overline{b} o \overline{\Xi}_b)$	(3.6 \pm 0.8) \times	10^{-8}		2731
$\Lambda\pi^+\pi^- imes B(b o \ ec{arphi}_b^0)/B(b o$	< 1.7 ×	10^{-6}	CL=90%	2781
Λ_b^0)				

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

$$\Lambda K^{-}\pi^{+} \times B(b \to \Xi_{b}^{0})/B(b \to < 8 \times 10^{-7} \text{ CL}=90\% 2751$$
 $\Lambda_{b}^{0})$
 $\Lambda K^{+}K^{-} \times B(b \to \Xi_{b}^{0})/B(b \to < 3 \times 10^{-7} \text{ CL}=90\% 2698$
 $\Lambda_{b}^{0})$
 $\Lambda_{c}^{+}K^{-} \times B(\overline{b} \to \Xi_{b}) \qquad (6 \pm 4 \times 10^{-7} \times 10$

$$\equiv_b'$$
(5935)⁻

$$J^{P} = \frac{1}{2}^{+}$$

Mass $m=5935.02\pm0.05$ MeV $m_{\Xi_b'(5935)^-}-m_{\Xi_b^0}-m_{\pi^-}=3.653\pm0.019$ MeV Full width $\Gamma<0.08$ MeV, CL =95%

$\underline{\underline{z_b'}(5935)^- \text{ DECAY MODES}} \qquad \text{Fraction } (\Gamma_i/\Gamma) \qquad p \text{ (MeV/c)}$ $\underline{\overline{z_b^0}} \pi^- \times B(\overline{b} \to (11.8 \pm 1.8) \% \qquad 31$ $\underline{\overline{z_b'}(5935)^-}/B(\overline{b} \to \overline{\underline{z_b^0}})$

$$\Xi_b(5945)^0$$

$$J^P = \frac{3}{2}^+$$

Mass $m=5949.8\pm1.4~{\rm MeV}$ Full width $\Gamma=0.90\pm0.18~{\rm MeV}$

$egin{aligned} & egin{aligned} & egi$

$$\Xi_b^*(5955)^-$$

$$J^P = \frac{3}{2}^+$$

Mass $m=5955.33\pm0.13~{
m MeV}$ $m_{\Xi_b^*(5955)^-}-m_{\Xi_b^0}-m_{\pi^-}=23.96\pm0.13~{
m MeV}$ Full width $\Gamma=1.65\pm0.33~{
m MeV}$

≡ _b *(5955) [−] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(20.7±3.5) %	84
$\Xi_b^*(5955)^-)/B(\overline{b} o \Xi_b^0)$		

$$\Omega_b^-$$

$$I(J^P) = O(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m=6046.1\pm 1.7~{
m MeV}$$
 $m_{\Omega_b^-}-m_{\Lambda_b^0}=426.4\pm 2.2~{
m MeV}$ $m_{\Omega_b^-}-m_{\Xi_b^-}=247.3\pm 3.2~{
m MeV}$ Mean life $\tau=(1.64^{+0.18}_{-0.17})\times 10^{-12}~{
m s}$ Mean life $\tau=1.11\pm 0.16$

Ω_b^- DECAY MODES	Fraction (Γ_i)	·/ r)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi \Omega^- imes B(b o \Omega_b)$	$(2.9^{+1.1}_{-0.8}$) × 10 ⁻⁶	ō	1806
$pK^-K^- imes B(\overline{b} o \Omega_b)$	< 2.5	\times 10 ⁻⁹	90%	2866
$p\pi^-\pi^- imes B(\overline{b} o~\Omega_b)$	< 1.5	$\times 10^{-8}$	90%	2943
$pK^-\pi^- \times B(\overline{b} \to \Omega_b)$	< 7	\times 10 ⁻⁹	90%	2915

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b)

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

b-baryon ADMIXTURE DECAY MODES

$(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$	Fraction (Γ_i/Γ)	p (MeV/c)
$p\mu^-\overline{ u}$ anything	(5.6 + 2.2) %	_
$ ho \ell \overline{ u}_\ell$ anything	(5.4± 1.2) %	_
<i>p</i> anything	(67 ± 21)%	_
$arLambda \ell^- \overline{ u}_\ell$ anything	$(3.6\pm\ 0.6)\%$	_
$arLambda\ell^+ u_\ell$ anything	$(3.0\pm~0.8)\%$	_
arLambda anything	$(38 \pm 7)\%$	_
$oldsymbol{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(6.3\pm\ 1.6)\times10^{-3}$	_

NOTES

- $[a] P_c^+$ is a pentaquark-charmonium state.
- [b] Not a pure measurement. See note at head of \varLambda_b^0 Decay Modes.
- [c] Here h^- means π^- or K^- .