CHEMISTRY MARKING SCHEME SET -56/2 Compt. July, 2015

Qu es.	Value points	Marks
1	Emulsions are liquid – liquid colloidal systems. For example – milk, cream (or any other one correct example)	1/2 + 1/2
2	Formation of stable complex by polydentate ligand.	1
3	Propanal	1
4	p-Nitroaniline < Aniline < p-Toluidine	1
5	Frenkel defect	1
6	 i) Due to high bond dissociation enthalpy of N ≡ N ii) Due to low bond dissociation enthalpy of F₂ than Cl₂ and strong bond formation between N and F 	1 1
7	Potassium permanganate is prepared by fusion of MnO_2 with an alkali metal hydroxide and an oxidising agent like KNO_3 . This produces the dark green K_2MnO_4 which disproportionates in a neutral or acidic solution to give permanganate. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
	Oxalate ion or oxalic acid is oxidised at 333 K: $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ OR	1
7	Iodine is liberated from potassium todide : $10I^{-} + 2MnO_{4}^{-} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_{2}O + 5I_{2}$	1
	Hydrogen sulphide is oxidised, sulphur being precipitated: $H_2S \longrightarrow 2H^+ + S^{2-}$ $5S^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5S$	1
8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
		1

9	H H H H H H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1
	9	Number of moles of the co	mponent	
		Total number of moles of all th		
		lality (<i>m</i>) is defined as the number of mole vent.	es of the solute per kilogram (kg) of the	
		Moles of solute		1
	Mo	$\frac{\text{plality (m)}}{\text{Mass of solvent in kg}}$	g	
10	Zero order: Second order	mol L ⁻¹ s ⁻¹ r · I mol ⁻¹ s ⁻¹		1 1
11		It lowers the melting point of alumina / ac	ts as a solvent.	1
	ii)			1
		Roasting Ore is heated in a regular supply of air	Calcination Heating in a limited supply or	1
			absence of air.	
	iii)	(Or with equation) It is a process of separation of different coradsorbed on a suitable adsorbent.		1
11	3Fe.O. +	CO→2Fe ₃ O ₄ +CO ₂	OR	6 x ½
	(Iron ore)			= 3
		O→3FeO +CO₂		
	(Limestor	CaO +CO ₂ ne)		
	CaO + Si	O₂ → CaSiO₃ (Slag)		
		$O \rightarrow Fe + CO_2$		
	C + CO ₂ -	→ 2CO		
	C + Q →	_		
			correct equations)	
12			element undergoes self-oxidation and self-	1 1/2
		imultaneously. For example –		1 ½
		\longrightarrow $Cu^{2+}(aq) + Cu(s)$		
		ner correct equation)		
13	ŕ	Hexaamminecobalt(III) chloride		1
	ii)	Tetrachlorido nickelate(II)		1
	iii)	Potassium hexacyanoferrate(III)		

	1
	1
	1
СН₂ ОН	1
CH ₃	1
	1
	1
CH ₃ + CH ₃	1
l ₃	1
onnected to each other by peptide	1
molecule having amino acids which sical change like change in	1
, protein loses its biological activity. ture of more than one monomeric	1
H_2 – CH = CH – CH_2 – CH – CH_2 \int_{n}^{n} Butadiene - styrene copolymer	1
Butadiene - styrene copolymer	

	$ \begin{array}{c c} CN & CN \\ n CH_2=CH-CH=CH_2+nCH_2=CH & \xrightarrow{Copolymerisation} & -CH_2-CH=CH-CH_2-CH_2-CH \end{array} $	1
	1,3-Butadiene Acrylonitrile Buna-N (or any other correct example)	
19	$r = \frac{\sqrt{2}a}{4}$	1
	$r = \frac{1.414 \times 4.077 \times 10^{-8} cm}{4}$ $r = 1.44 \times 10^{-8} cm$	1
20	$ \pi_{\text{cane sugar}} = \pi_{X} $ Therefore, $c_{\text{cane sugar}} = c_{X}$ (where c is molar concentration)	
	$\frac{W_{cane\ sugar}}{M_{cane\ sugar}} = \frac{W_X}{M_X}$	1
	$\frac{5 g}{342 g mol^{-1}} = \frac{0.877}{M_X}$	1
	$M_{X=} = \frac{0.877 \times 342}{5} \text{gmol}^{-1}$ $M_{X=} = 59.9 \text{ or } 60 \text{ gmol}^{-1}$	1
21	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
	$60 \text{ s}^{-1} = \frac{2.303}{t} \log \frac{[R]_0}{\frac{[R]_0}{10}}$	
	$t = \frac{2.303}{60 s^{-1}} \log 10$ 2.303	1
	$t = \frac{2.303}{60} \text{ s}$ $t = 0.0384 \text{ s}$	1
22	i) It is a process of removing the dissolved substance from a colloidal solution by means	1
	of diffusion through a semi - permeable membrane. The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis.	1
	Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion.	1
23	i) Aspartame, Saccharin (any one)	1
	ii) Noiii) Social concern, empathy, concern, social awareness (any 2)	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
24	a) Due to relatively stable half – filled p-orbitals of group 15 elements	2
	b) i) $CaF_2 + H2SO_4 \rightarrow CaSO_4 + 2HF$ $SO_2(\sigma) + Cl_2(\sigma) \rightarrow SO_2Cl_2(f)$	1
	$SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(l)$ $SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(l)$ $SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(l)$	1
	OR	

	OR (or any other correct test)	1
25	a) i)	
	CH₃、	1
	C=N-OH	
	CH ₃	
	ii)	
	CH₃ O	
	C=N-NH -C-NH ₂	
	H C-N-NII - C - NII ₂	1
	11	
	b) i)	
	Zn-Hg	
	CH₃CHO → CH₃-CH₃	1
	conc HCl	
	ii)	
	2 CH ₃ -CHO ← CH ₃ -CH-CH ₂ -CHO	1
	OH	1
	iii)	
	·	
	LiAlH₄ CH₃CHO ————→ CH₃CH₃OH	1
	CH₃CHO ————————————————————————————————————	
26	E^{0} cell = $E^{0}_{Sn2+/Sn}$ - $E^{0}_{Zn2+/Zn}$	1
	= -0.14V - (-0.76V)	
	=0.62V	1
	$\Delta_{\rm r}G^0 = -n \ {\rm F} \ {\rm E}_{\rm cell}^0$ = - 2 x 96500 C mol ⁻¹ x 0.62 V	1
	$= -119660 \text{ J mol}^{-1}$	1
		_
	242	
	$E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	
	$E_{\text{cell}} = 0.62 - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	1
	- [*]	1
26	a) The conductivity of a solution at any given concentration is the conductance of one unit	
	volume of solution kept between two platinum electrodes with unit area of cross section	1/2
	and at a distance of unit length.	
	Molar conductivity of a solution at a given concentration is the conductance of the volume	1/2
	V of solution containing one mole of electrolyte kept between two electrodes with area of	
	cross section <i>A</i> and distance of unit length. Molar conductivity increases with decrease in concentration.	1
	inotal conductivity increases with decrease in concentration.	1

$b)E^{0}cell = E^{0}_{C} - E^{0}_{A}$	
=0.80V-0.77V	1/2
= 0.03 V	1/2
$\Delta_{\rm r} { m G}^0 = -{ m n} \ { m F} \ { m E}^0_{\ { m cell}}$	
$= -1 \times 96500 \text{ C mol}^{-1} \times 0.03 \text{ V}$	1
$= -2895 \text{ J mol}^{-1}$	
$\text{Log K}_{c} = \frac{n E_{cell}^{o}}{0.059}$	1/2
1 20 0 0 2	
$Log K_{c} = \frac{1 \times 0.03}{0.059}$	1/2
$Log K_c = 0.508$	

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

Ms. Garima Bhutani