

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) Offenlegungsschrift

(10) DE 100 63 422 A 1

(51) Int. Cl.⁷:
C 09 D 7/12

C 08 L 91/06

C 08 L 23/00

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

(71) Anmelder:

Clariant GmbH, 65929 Frankfurt, DE

(72) Erfinder:

Krendlinger, Ernst, Dr., 86316 Friedberg, DE;
Heinrichs, Franz-Leo, Dr., 86456 Gablingen, DE;
Nowicki, Dieter, 86368 Gersthofen, DE

DE 100 63 422 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Verwendung von Wachsmischungen für Lacke

(57) Gegenstand der Erfindung ist die Verwendung von Mischungen von Wachsen, welche

- a) ein mittels Metallocenkatalyse hergestelltes Homo- oder Copolymerisat von C₂-C₁₈- α -Olefinen, sowie als Hilfsstoffe ein oder mehrere andere Wachse, ausgewählt aus der Gruppe, bestehend aus
- b) PE-Wachsen,
- c) PTFE-Wachsen,
- d) PP-Wachsen,
- e) Amidwachsen,
- f) FT-Paraffinen,
- g) Montanwachsen,
- h) natürlichen Wachsen,
- i) makro- und mikrokristallinen Paraffinen,
- j) polare Polyolefinwachse, oder
- k) Sorbitanestern

enthalten, zur Verbesserung der Eigenschaften von Lacken.

DE 100 63 422 A 1

BEST AVAILABLE COPY

DE 100 63 422 A 1

Beschreibung

Die vorliegende Erfindung betrifft die Verwendung von Metallocenwachsen, deren Oxidaten und deren Abmischungen mit weiteren Wachsen, sowie der entsprechenden Micronisate für Lacke.

5 Bei der Herstellung von Lacken werden Wachse im allgemeinen in einer Konzentration von 0,01–10% zugegeben. Es handelt sich dabei um PE-Wachse, PTFE-Wachse, PP-Wachse, Amidwachse, FT-Paraffine, Montanwachse, natürliche Wachse, makro- und mikrokristalline Paraffine, Polyethylenopolymeren, Sorbitanester und Metallocenwachse, sowie deren Abmischungen, wie in EP-A-0 890 619 offenbart. Die Abmischungen können in unterschiedlichen Kombinationen, sowohl als Pulver- wie auch als Schmelzmischungen vorliegen.

10 Diese Wachse werden als Schuppen, Granulate, Pulver, Dispersionen, Emulsionen oder als Mikronisate zugegeben, wobei die bevorzugte Einsatzform als fein mikronisiertes Pulver mit Korngrößen bis 4 µm in DV₅₀-Wert angesehen werden kann. (DV₅₀-Wert: 50% der Wachspartikel sind kleiner oder gleich 4 µm). Diese Wachse werden eingesetzt, um folgende Wirkungen bei den Lacken zu erzielen:

- 15 – bessere Kratzfestigkeit
- besser Abriebfestigkeit
- bessere Dispergierung von Pigmenten
- bessere Pigmentstabilität
- Verbesserung des Absetzneigung
- 20 – Verbesserung der Redispersierung von Pigmenten
- Orientierungswirkstoff bei Effektpigmenten
- eine gute Mattierung
- einen guten Griff
- Verbesserung des Gleitverhaltens
- 25 – Verbesserung des Metallmarkings
- gute Einarbeitung von Effektpigmenten zu erreichen
- Beeinflussung der rheologischen Eigenschaften
- bessere Blockfestigkeit
- bessere Schleifbarkeit
- 30 – Entgasungsadditiv bei Pulverlacke
- Additiv zur Durchsatzerhöhung in Pulverlacken.

Diese Wachsadditive können in allen Lacksystemen verwendet werden (z. B. low solids, medium solids, high solids, lösemittelbasierende Lacke, wässrige oder wasserverdünnbare Lacke, Pulverlacke, physikalisch trocknende Beschichtungssysteme, chemisch härtende Beschichtungsstoffe, sowie strahlenhärtende Beschichtungsstoffe, wie z. B. UV-Lacke).

Da reine Polyethylenwachse und Metallocenwachse nicht in allen Lacksystemen, besonders nicht in wässrigen Systemen, verwendet werden können, werden auch Wachsoxidate eingesetzt.

Da die einzelnen Wachsarten unterschiedliche Wirkungen in den Lacken zeigen, werden bevorzugt Wachsmischungen zwischen PE-Wachsen, PTFE-Wachsen, PP-Wachsen, Amidwachsen, FT-Paraffinen, Montanwachsen, natürliche Wachsen, makro- und mikrokristallinen Paraffinen, Polyethylenopolymeren, Sorbitanestern und Metallocenwachsen eingesetzt, um die oben genannten Wirkungen miteinander zu kombinieren und entsprechende Verbesserungen bei Lacken zu erzielen.

Der Erfindung lag die Aufgabe zugrunde, solche Wachsmischungen für die Verwendung in Lacken zu finden, die besonders viele der oben angeführten Wirkungen zeigen. Überraschenderweise zeigten die Mischungen mit Metallocenwachsen die auffälligsten Verbesserungen. Besonders ist bei diesen Mischungen die Mahlbarkeit für die Herstellung von Wachsmikronisaten verbessert, d. h. die Ausbeuten sind erhöht.

Ein weiterer Vorteil der Verwendung von der Wachsen welche nach dem Metallocenverfahren hergestellt wurden, ist deren leichtere Mahlbarkeit, weshalb hier weniger Hilfsstoffe verbraucht werden als bei Wachsmischungen mit Wachsen, welche beispielsweise mit dem Ziegler-Natta-Verfahren hergestellt wurden.

Gegenstand der Erfindung ist die Verwendung von Mischungen von Wachsen, welche

a) ein mittels Metallocenkatalyse hergestelltes Homo- oder Copolymerisat von C₂–C₁₈– α -Olefinen, sowie Abbauwachse hergestellt aus mittels Metallocenkatalyse produzierten Polyolefinen höherer Kettenlänge,

55 sowie als Hilfsstoffe ein oder mehrere andere Wachse ausgewählt aus der Gruppe bestehend aus

- b) PE-Wachsen,
- c) PTFE-Wachsen,
- d) PP-Wachsen,
- e) Amidwachsen,
- f) FT-Paraffinen,
- 60 g) Montanwachsen,
- h) natürliche Wachsen,
- i) makro- und mikrokristallinen Paraffinen,
- j) polare Polyolefinwachse, oder
- k) Sorbitanestern,
- 65 l) Polyamide,

DE 100 63 422 A 1

- m) Polyolefine,
- n) PTFE,
- o) Netzmittel,
- p) Silikate

5

enthalten, zur Verbesserung der Eigenschaften von Lacken.

Ein weiterer Gegenstand der Erfindung sind Lacke, welche die beschriebenen Wachsmischungen enthalten.

Das mittels Metallocenkatalyse hergestellte Homo- oder Copolymerisat von C₂-C₁₈- α -Olefinen (a) hat vorzugsweise folgende Eigenschaften:

10

Tropfpunkt (Tp): 80–165°C

Säurezahl (SZ): 0–50 mg KOH/g

Dichte: 0,87–1,03 g/cm³

Viskosität der Schmelze bei 170°C: 10–100 000 mPas.

15

Als Polyolefinwachse kommen Homopolymerisate des Ethylens oder Propylens oder Copolymerisate des Ethylens oder Propylens untereinander, oder mit einem oder mehreren 1-Olefinen in Frage. Als 1-Olefine werden lineare oder verzweigte Olefine mit 4–18 C-Atomen, vorzugsweise 4–6 C-Atomen, eingesetzt. Diese Olefine können eine mit der olefinischen Doppelbindung in Konjugation stehende aromatische Substitution aufweisen. Beispiele hierfür sind 1-Buten, 1-Hexen, 1-Octen oder 1-Octadecen, sowie Styrol. Bevorzugt sind Copolymeren des Ethylens mit Propen oder 1-Buten. Solche ethylenhaltigen Copolymeren bestehen zu 70–99,9, bevorzugt zu 80–99 Gew.-% aus Ethylen.

20

Besonders gut geeignet sind Polyolefinwachse mit einem Tropfpunkt zwischen 90 und 160°C, bevorzugt zwischen 100 und 155°C, einer Schmelzviskosität bei 140°C zwischen 10 und 10000 mPas, bevorzugt zwischen 50 und 5000 mPas und einer Dichte bei 20°C zwischen 0,89 und 0,96 g/cm³, bevorzugt zwischen 0,91 und 0,94 g/cm³.

25

Geeignet sind weiterhin durch Oxidation modifizierte Metallocenwachse, wie sie beispielsweise durch Behandlung der Wachsschmelze mit Luft gemäß EP-A-0 896 591 erhalten werden können. Die Offenbarung dieses Dokuments bezüglich der oxidativen Behandlung von Wachsschmelzen wird hiermit in vorliegendem Anmiedlung einbezogen.

Metallocenkatalysatoren zur Herstellung der Polyolefinwachse sind chirale oder nichtchirale Übergangsmetallverbindungen der Formel M¹L_x. Die Übergangsmetallverbindung M¹L_x enthält mindestens ein Metallzentralatom M¹, an das mindestens ein π -Ligand, z. B. ein Cyclopentadienylligand gebunden ist. Darüber hinaus können Substituenten, wie z. B. Halogen-, Alkyl-, Alkoxy- oder Arylgruppen an das Metallzentralatom M¹ gebunden sein. M¹ ist bevorzugt ein Element der III., IV., V. oder VI. Hauptgruppe des Periodensystems der Elemente, wie Ti, Zr oder Hf. Unter Cyclopentadienylligand sind unsubstituierte Cyclopentadienylreste und substituierte Cyclopentadienylreste wie Methylcyclopentadienyl-, Indenyl-, 2-Methylindenyl-, 2-Methyl-4-phenyldenyl-, Tetrahydroindenyl- oder Octahydrofluorenylreste zu verstehen. Die π -Liganden können verbrückt oder unverbrückt sein, wobei einfache und mehrfache Verbrückungen – auch über Ringsysteme – möglich sind. Die Bezeichnung Metallocen umfasst auch Verbindungen mit mehr als einem Metallocenfragment, sogenannte mehrkernige Metallocene. Diese können beliebige Substitutionsmuster und Verbrückungsvarianten aufweisen. Die einzelnen Metallocenfragmente solcher mehrkernigen Metallocene können sowohl gleichartig als auch voneinander verschieden sein. Beispiele für solche mehrkernigen Metallocene sind z. B. beschrieben in EP-A-0 632 063. Beispiele für allgemeine Strukturformeln von Metallocenen sowie für deren Aktivierung mit einem Colkatalysator sind u. a. in EP-A-0 571 882 gegeben. Die Offenbarungen dieser Gegenstände in den beiden Dokumenten wird hiermit einbezogen.

30

Bei Zusatzstoff b) handelt es sich in bevorzugten Ausführungsformen um Polyethylen-Homo- und Copolymerwachse, die nicht mittels Metallocenkatalyse hergestellt wurden, und die ein zahlenmittleres Molekulargewicht von 700 bis 10.000 g/mol bei einem Tropfpunkt zwischen 80 und 140°C aufweisen.

35

Bei Zusatzstoff c) handelt es sich in bevorzugten Ausführungsformen um Polytetrafluoroethylen mit einem Molekulargewicht zwischen 30.000 und 2.000.000 g/mol, insbesondere zwischen 100.000 und 1.000.000 g/mol.

40

Bei Zusatzstoff d) handelt es sich in bevorzugten Ausführungsformen um Polypropylen-Homo- und Copolymerwachse, die nicht mittels Metallocenkatalyse hergestellt wurden, und die ein zahlenmittleres Molekulargewicht von 700 bis 10.000 g/mol bei einem Tropfpunkt zwischen 80 und 160°C aufweisen.

Bei Zusatzstoff e) handelt es sich in bevorzugten Ausführungsformen um Amidwachse, herstellbar durch Umsetzung von Ammoniak oder Ethyldiamin mit gesättigten und/oder ungesättigten Fettsäuren. Bei den Fettsäuren handelt es sich zum Beispiel um Stearinsäure, Talgfeftsäure, Palmitinsäure oder Erucasäure.

45

Bei Zusatzstoff f) handelt es sich in bevorzugten Ausführungsformen um FT-Paraffine mit einem zahlenmittleren Molekulargewicht von 400 bis 800 g/mol bei einem Tropfpunkt von 80 bis 125°C.

50

Bei Zusatzstoff g) handelt es sich vorzugsweise um Montanwachse einschließlich Säure- und Esterwachsen mit einer Kohlenstoffkettenlänge der Carbonsäure von C₂₂ bis C₃₆.

Bei den Esterwachsen handelt es sich vorzugsweise um Umsetzungsprodukte der Montansäuren mit ein oder mehrwertigen Alkoholen mit 2 bis 6 C-Atomen, wie zum Beispiel Ethanol, Butan-1,3-diol oder Propan-1,2,3-triol.

55

Bei Zusatzstoff h) handelt es sich in einer bevorzugten Ausführungsform um Carnauhawachs oder Candelillawachs.

Bei Zusatzstoff i) handelt es sich um Paraffine und mikrokristalline Wachse, welche bei der Erdölraffination anfallen. Die Tropfpunkte solcher Paraffine liegen vorzugsweise zwischen 45 und 65°C, die solcher mikrokristallinen Wachse vorzugsweise zwischen 73 und 100°C.

60

Bei Zusatzstoff j) handelt es sich in bevorzugten Ausführungsformen um polare Polyolefinwachse, herstellbar durch Oxidation von Ethylen- oder Propylen-, Homopolymer- und -Copolymerwachsen oder deren Propfung mit Maleinsäureanhydrid. Besonders bevorzugt wird hierfür von Polyolefinwachse mit einem Tropfpunkt zwischen 90 und 165°C, insbesondere zwischen 100 und 160°C, einer Schmelzviskosität bei 140°C (Polyethylenwache) bzw. bei 170°C (Polypropylenwache) zwischen 10 und 10000 mPas, insbesondere zwischen 50 und 5000 mPas und einer Dichte bei 20°C zw-

65

DE 100 63 422 A 1

schen 0,8b und 0,96 g/cm³ ausgegangen.

Bei Zusatzstoff k) handelt es sich in bevorzugten Ausführungsformen um Umsetzungsprodukte von Sorbit (Sorbitol) mit gesättigten und/oder ungesättigten Fettsäuren und/oder Montansäuren. Bei den Fettsäuren handelt es sich zum Beispiel um Stearinsäure, Talgfettsäure, Palmitinsäure oder Erucasäure.

5 Bei Zusatzstoff l) handelt es sich um vorzugsweise gemahlene Polyamide, beispielsweise Polyamid-6, Polyamid-6,6 oder Polyamid-12. Die Partikelgröße der Polyamide liegt vorzugsweise im Bereich von 5–200 µm, insbesondere 10–100 µm.

Bei Zusatzstoff m) handelt es sich um Polyolefine, also beispielsweise Polypropylen, Polyethylen oder Copolymeren aus Propylen und Ethylen hoher oder niedriger Dichte mit Molgewichten von vorzugsweise 10.000 bis 1.000.000 D, insbesondere 15.000 bis 500.000 D als Zahlenmittel für das Molekulargewicht, deren Partikelgröße durch Mahlung im Bereich von vorzugsweise 5–200 µm, insbesondere 10–100 µm liegt.

10 Bei Zusatzstoff n) handelt es sich um thermoplastisches PTFE mit einem Molgewicht von vorzugsweise 500.000–10.000.000 D, insbesondere 500.000–2.000.000 D als Zahlenmittel, dessen Partikelgröße durch Mahlung im Bereich von vorzugsweise 5–200 µm, insbesondere 10–100 µm liegt.

15 Bei Zusatzstoff o) handelt es sich um amphiphile Verbindungen, welche im Allgemeinen die Oberflächenspannung von Flüssigkeiten senken. Bei den Netzmitteln handelt es sich zum Beispiel um Alkylethoxylate, Fettalkoholethoxylate, Alkylbenzolsulfonate oder Betaine.

Bei Zusatzstoff p) handelt es sich um Silikate, welche nicht als Füllstoff oder Pigment in den Rezepturen eingesetzt werden. Bevorzugt werden Kieselsäuren oder Talcum eingesetzt.

20 Das Mischungsverhältnis von Bestandteil a) zu den Bestandteilen b) bis p) kann im Bereich von 1 bis 99 Gew.-% a) zu 1 bis 99 Gew.-% b) bis p) variiert werden. Wird eine Mischung aus mehreren der Bestandteile b) bis p) verwendet, so gilt die Mengenangabe für die Summe aus den Mengen dieser Bestandteile.

25 In einer bevorzugten Ausführungsform werden die Wachse in mikronisierter Form für den erfindungsgemäßen Zweck verwendet. Insbesondere bevorzugt ist die Verwendung von Polyolefinwachs und gegebenenfalls zugemischten Hilfs- und Zusatzstoffen als Ultra-Feinstpulver mit einer Partikelgrößenverteilung d₉₀ < 40 µm.

Verbessert wird u. a. die Mattierung der Lacke, die Dispergierbarkeit und Stabilität (Absetz- oder Aufrührneigung) in Lacken und Dispersionen, eine Verbesserung der Gleitreibung (Slip), Härte und Abrichtfestigkeit, Erhöhung des Durchsatzes und Verbesserung der Pigmentdispergierung in Pulverlacken, besseres Antiblocking und Griffempfinden (Softfeeling). Bei den Wachsmischungen handelt es sich im allgemeinen um Pulver- bzw. Schmelzmischungen.

30

Beispiele

Tabelle 1

35

Charakterisierung der Bestandteile der verwendeten Wachsmischungen

Wachsart	Säurezahl	Tropfpunkt	Viskosität
Metallocen-PE-Wachs	0 mg KOH/g	124°C	250 mPas (140°C)
Metallocen-PP-Wachs	0 mg KOH/g	135°C	40 mPas (170°C)
oxidiertes Metallocen-PE-Wachs	20 mg KOH/g	114°C	200 mPas (120°C)
45 PE-Wachs	0 mg KOH/g	125°C	300 mPas (140°C)
PP-Wachs	0 mg KOH/g	160°C*	1500 mPas (170°C)
oxidiertes PE-Wachs	20 mg KOH/g	114°C	200 mPas (120°C)
50 Amidwachs	6 mg KOH/g	140°C	10 mPas (150°C)
Montanwachs 1	17 mg KOH/g	82°C	30 mPas (100°C)
55 Montanwachs 2	14 mg KOH/g	100°C	300 mPas (120°C)
Carnaubawachs	9 mg KOH/g	82°C	30 mPas (90°C)
FT-Paraffin	0 mg KOH/g	110°C	20 mPas (120°C)

60 * Erweichungspunkt

65

DE 100 63 422 A 1

Tabelle 2

Wachsmischungen (alle Mischungen auf DV₅₀ = 8 µm mikronisiert)

Kurzbezeichnung	Bestandteil 1	Bestandteil 2	Bestandteil 3	Mischungsverhältnis
M1	oxidiertes Metallocen-PE-Wachs	Carnaubawachs	—	1:1
M2	Metallocen-PE-Wachs	oxidiertes Metallocen-PE-Wachs	—	7:3
M3	Metallocen-PE-Wachs	Amidwachs	—	1:1
M4	Metallocen-PE-Wachs	PTFE-Wachs	—	9:1
M5	Metallocen-PE-Wachs	oxidiertes Metallocen-PE-Wachs	PTFE-Wachs	12:7:1
M6	Metallocen-PP-Wachs	Amidwachs	—	1:1
M7	Metallocen-PP-Wachs	Amidwachs	—	5:1
M8	Metallocen-PP-Wachs	Metallocen-PE-Wachs	—	1:1
M9	Metallocen-PP-Wachs	oxidiertes Metallocen-PE-Wachs	—	1:1
M10	oxidiertes Metallocen-PE-Wachs	Montanwachs 1	Montanwachs 2	2:1:1
M11	Metallocen-PE-Wachs	oxidiertes Metallocen-PE-Wachs	Sorbitantristearat	1:1:1
M12	Metallocen-PE-Wachs	FT-Paraffin	—	5:1
V1	oxidiertes PE-Wachs	Carnaubawachs	—	1:1
V2	PE-Wachs	oxidiertes PE-Wachs	—	7:3
V3	PE-Wachs	Amidwachs	—	1:1
V4	PE-Wachs	PTFE-Wachs	—	9:1
V5	PE-Wachs	oxidiertes PE-Wachs	PTFE-Wachs	12:7:1
V6	PP-Wachs	Amidwachs	—	1:1
V7	PP-Wachs	Amidwachs	—	5:1
V8	PP-Wachs	PE-Wachs	—	1:1
V9	PP-Wachs	oxidiertes PE-Wachs	—	1:1

5

10

15

20

25

30

35

40

45

50

55

60

65

DE 100 63 422 A 1

Kurzbezeichnung	Bestandteil 1	Bestandteil 2	Bestandteil 3	Mischungsverhältnis
V10	oxidiertes PE-Wachs	Montanwachs 1	Montanwachs 2	2:1:1
V11	PE-Wachs	oxidiertes PE-Wachs	Sorbitantristearat	1:1:1
V12	PE-Wachs	FT-Paraffin	—	5:1

Herstellung einer wässrigen Wachsdispersion aus einem Mikropulver

15 1 Gew.-% Tylose® wird in 60 Gew.-% Wasser eingerührt und kurz quellen gelassen, danach wird 39 Gew.-% mikronisiert, oxidiertes Wachs in die Tyloselösung eindispersiert.

Tabelle 3

20 Dispergierung/Stabilität von Wachsmischungen

	Wachs	Dispergierung / Stabilität
Beispiel 1	M1	gut / sehr gut
Beispiel 2	M2	gut / sehr gut
Beispiel 3	M9	gut / sehr gut
Beispiel 4	M10	sehr gut / sehr gut
Beispiel 5	V1	gut / sehr gut
Beispiel 6	V2	gut / sehr gut
Beispiel 7	V9	mäßig / mäßig
Beispiel 8	V10	gut / sehr gut

40 Einarbeiten einer wässrigen Wachsdispersion in einen wässrigen Acryllack: 4 Gew.-% der unter Beispiel 2 genannten Wachsdispersion wird in 96 Gew.-% wässrigen Acryllack (Basis Mowilith® LDM 7460) eingerührt und anschließend mit einem Rahmenrakel (60 µm Nassfilmstärke) auf eine Glasplatte aufgezogen. Nach dem Trocknen wird der Glanz bestimmt.

45 Tabelle 4

Glanz der Wachsmischungen

	Dispersion aus	Basiswachs	Glanz (60° Winkel)
Acryllack	ohne Wachs	—	120
Beispiel 9	Beispiel 1	M1	22
Beispiel 10	Beispiel 2	M2	25

60

65

DE 100 63 422 A 1

Beispiel 11	Beispiel 3	M9	25
Beispiel 12	Beispiel 4	M10	20
Beispiel 13	Beispiel 5	V1	30
Beispiel 14	Beispiel 6	V2	30
Beispiel 15	Beispiel 7	V9	28
Beispiel 16	Beispiel 8	V10	25

Einarbeiten von mikronisierten Wachsen in einen Nitrocellulose-Standard-Lack zwecks Mattierung und Gleitreibung

2 Gew.-% mikronisiertes Wachs werden in 98 Gew.-% NC-Lack mit Hilfe eines Dissolvers eindispersiert und anschließend mit einem Rahmenrakel (60 µm Nassfilmstärke) auf eine Glasplatte aufgezogen. Nach dem Trocknen wird der Glanz bestimmt.

Tabelle 5
Glanz und Gleitreibung der Wachsmischungen

	Wachs	Glanz (60° Winkel)	Gleitreibung
Nitrocelluloselack	ohne Wachs	138	0,42
Beispiel 17	M3	-	0,17
Beispiel 18	M4	45	0,12
Beispiel 19	M5	-	0,09
Beispiel 20	M6	25	0,10
Beispiel 21	M7	25	-
Beispiel 22	M8	30	0,25
Beispiel 23	M9	41	0,25
Beispiel 24	M10	30	0,15
Beispiel 25	V3	27	0,22
Beispiel 26	V4	50	0,15
Beispiel 27	V5	45	0,15
Beispiel 28	V6	30	0,17
Beispiel 29	V7	30	0,30
Beispiel 30	V8	40	0,30
Beispiel 31	V9	50	0,28
Beispiel 32	V10	35	0,22

Einarbeiten in einen weißen Hybrid-Pulverlack zwecks Verbesserung der Bleistifthärte und Abriebfestigkeit

Die Wachse werden mit den einzelnen Rohstoffen in einem Schnellmischer mit einander gemischt, anschließend wird die Rohstoffe auf einen Labor-Doppelschneckenextruder (PC19-25 von APV) bei 110°C extrudiert; gemahlen auf < 125 µm und auf Alu bzw. Stahlblech aufgetragen. nach dem Einbrennen (15 min. bei 180°C) werden die beschichteten

DE 100 63 422 A 1

Bleche 24 Stunden im Klimaraum gelagert, danach die Bleistifthärte (nach Wolff-Wilborn) bestimmt und der Abriebtest am Taber Abraser bestimmt.

Tabelle 6

Bleistifthärte und Abriebtest

	Wachs, je 1% auf Gesamtrezeptur	Bleistifthärte nach Wolff-Wilborn	Abriebtest nach 250 Umdrehungen
Hybrid-Pulverlack	ohne Wachs	2B	52 mg
Beispiel 33	M2	HB	48 mg
Beispiel 34	M3	F	35 mg
Beispiel 35	M4	F	25 mg
Beispiel 36	M6	F	20 mg
Beispiel 37	M7	H	15 mg
Beispiel 38	M10	HB	25 mg
Beispiel 39	V2	B	50 mg
Beispiel 40	V3	HB	41 mg
Beispiel 41	V4	HB	42 mg
Beispiel 42	V6	B	46 mg
Beispiel 43	V7	B	38 mg
Beispiel 44	V10	HB	40 mg

Einarbeiten in einen blauen Hybrid-Pulverlack zwecks Verbesserung der Dispergierung und Durchsatzverbesserung:
 40 Die Wachse werden mit den einzelnen Rohstoffen in einem Schnellmischer miteinander gemischt, anschließend wird die Rohstoffe auf einen Labor-Doppelschneckenextruder (PC19-25 von APV) bei 110°C extrudiert, dabei muss die Dosiermenge auf eine Leistungsaufnahme von 70% am Extruder eingestellt werden, hierbei wird der Durchsatz erfasst, gemahlen auf < 125 µm und auf Alu bzw. Stahlblech aufgetragen. Nach dem Einbrennen (15 min. bei 180°C) werden die beschichteten Bleche 24 Stunden im Klimaraum gelagert, danach die Farbtiefe gemessen.

45

50

55

60

65

DE 100 63 422 A 1

Tabelle 7

Farbtiefe

	Wachs je 1% auf Gesamtrezeptur	Durchsatzver- besserung in %	Farbtiefe
Hybrid-Pulverlack	ohne Wachs	-	100%
Beispiel 45	M1	18%	110%
Beispiel 46	M2	20%	105%
Beispiel 47	M3	15%	107%
Beispiel 48	M6	30%	105%
Beispiel 49	M8	25%	107%
Beispiel 50	M10	50%	120%
Beispiel 51	V1	13%	107%
Beispiel 52	V2	15%	100%
Beispiel 53	V3	10%	102%
Beispiel 54	V6	10%	100%
Beispiel 55	V8	15%	105%
Beispiel 56	V10	45%	112%

Einarbeitung in einen Alkydharzlack zwecks Beurteilung der Blockeigenschaften und des Griffindrucks

2 Gew.-% mikronisiertes Wachs wird in den Alkydharzlack mit Hilfe eines Dissolvers eingearbeitet, danach wird mit Hilfe eines Rahnrenrakels (60 µm Nassfilmstärke) der Lack auf Glas (mind. jeweils 2 Platten) aufgetragen. Nach dem 24 Std. Lagerung im Klimaraum wird der Griff beurteilt (subjektiv), anschließend werden die Platten im Wärmeschrank bei 50°C 24 Stunden gelagert. Dabei werden die Platten mit der Beschichtung aufeinander gelegt und mit einem 500 g Gewicht belastet.

Anschließend wird das Blockverhalten beurteilt.

45

50

55

60

65

DE 100 63 422 A 1

Tabelle 8

Beurteilung des Blockverhaltens

5	Beurteilungs-schema	Blockfestigkeit
10	nichts	kein Blocken
15	Spur	ganz leichtes Blocken bemerkbar
20	wenig	beim Anheben des oberen Brettchen geht das untere mit, trennt sich aber selbst nach wenigen Sekunden
25	etwas	beim Anheben des oberen Brettchens geht das untere mit, muss aber von Hand ohne spürbaren Kraftaufwand getrennt werden.
30	merklich	beim Anheben des oberen Brettchens geht das untere mit, muss aber mit etwas Kraftaufwand getrennt werden.
35	wesentlich	die Platten müssen mit erheblichen Kraftaufwand getrennt werden.

Tabelle 9

Griffverhalten der Wachsmischungen

	Wachs	Griff (subjektiv)	Blockverhalten	
35	Alkydharzlack	ohne Wachs	Plastikartig, leicht klebrig	wesentlich
40	Beispiel 57	M3	guter Griff, kein kleben	Spur
45	Beispiel 58	M4	guter Griff, sehr glatt	nichts
50	Beispiel 59	M6	guter Griff, glatt	Spur
55	Beispiel 60	M10	weich, angenehm, etwas glatt	wenig
60	Beispiel 61	V3	guter Griff, ganz leichtes kleben	wenig
65	Beispiel 62	V4	guter Griff, glatt	wenig
70	Beispiel 63	V6	leicht klebrig	etwas
75	Beispiel 64	V10	angenehm	wenig

Einarbeiten in einen 2K-PUR-Lack, auftragen auf Holzbrettchen und Beurteilung der Schleifbarkeit:

2 bzw. 4 Gew.-% mikronisiertes Wachs in die 1 Komponente eines 2K-Polyurethanlacksystem eindispersieren, danach mit der 2. Komponente versetzen und mittels eines Pinsels auf ein Holzbrettchen im Kreuzgang auftragen. Danach 24 Stunden im Klimaraum trocknen lassen. Anschließend Schleiftest durchführen, dabei wird ein Bogen Schleifpapier (240 Körnung) auf einen Holzklotz gespannt, ohne Druck 20x über das Holzbrettchen geführte und danach der Abrieb beurteilt. Je weniger das Schleifpapier belegt ist, desto besser ist die Schleifbarkeit.

60

65

DE 100 63 422 A 1

Tabelle 10

Schleifbarkeit additivierten Lacks

	Wachs	Schleifbarkeit
2K-PUR-Lack	ohne Wachs	sehr schlecht, bereits nach 10 Hub ist das Schleifpapier zugesetzt
Beispiel 65	M1	mäßig, Schleifpapier fast zugesetzt
Beispiel 66	M3	sehr gut, nach 20 Hub kein Zusetzen zu beobachten
Beispiel 67	M6	sehr gut, nach 20 Hub kein Zusetzen zu beobachten
Beispiel 68	M7	gut, leichtes zusetzen des Schleifpapiers
Beispiel 69	M10	gut, leichtes zusetzen des Schleifpapiers
Beispiel 70	V1	schlecht, nach 20 Hub ist das Schleifpapier zugesetzt
Beispiel 71	V3	gut, leichtes zusetzen des Schleifpapiers
Beispiel 72	V6	gut, leichtes zusetzen des Schleifpapiers
Beispiel 73	V7	schlecht, nach 20 Hub ist das Schleifpapier zugesetzt
Beispiel 74	V10	schlecht, nach 20 Hub ist das Schleifpapier zugesetzt

Patentansprüche

1. Verwendung von Mischungen von Wachsen, welche
 - a) ein mittels Metallocenkatalyse hergestelltes Homo- oder Copolymerisat von C₂-C₁₈- α -Olefinen, sowie Abbauwachse hergestellt aus mittels Metallocenkatalyse produzierten Polyolefinen höherer Kettenlänge, sowie als Hilfsstoffe ein oder mehrere andere Wachse ausgewählt aus der Gruppe bestehend aus
 - b) PE-Wachsen,
 - c) PTFE-Wachsen,
 - d) PP-Wachsen,
 - e) Amidwachsen,
 - f) FT-Paraffinen,
 - g) Montanwachsen,
 - h) natürliche Wachsen,
 - i) makro- und mikrokristallinen Paraffinen,
 - j) polare Polyolefinwachse, oder
 - k) Sorbitanestern,
 - l) Polyamide,
 - m) Polyolefine,
 - n) PTFE,
 - o) Netzmittel,
 - p) Silikate

enthalten, zur Verbesserung der Eigenschaften von Lacken.

2. Verwendung gemäß Anspruch 1, worin Bestandteil a) ein Oxidat eines Metallocen-Wachsen ist.
3. Verwendung gemäß Anspruch 1 und/oder 2, worin es sich bei Bestandteil a) um ein Homo- oder Copolymerisat des Ethylens oder des Propylens handelt.
4. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 3, worin das als Bestandteil a) genannte Wachs eine Schmelzviskosität bei 140°C von 10 bis 10.000 mPas aufweist.
5. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 4, worin das als Bestandteil a) genannte Wachs eine Dichte von 0,87 bis 1,03 g/cm³ aufweist.
6. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 5, worin das als Bestandteil b) genannte Wachs ein nicht mittels Metallocenkatalyse hergestelltes Polyethylenwachs mit zahlenmäßigerem Molekulargewicht von 700 bis 10.000 g/mol ist.
7. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 6, worin das als Bestandteil d) genannte Wachs

5
10
15
20
25
30
35

40
45
50
55

60

65

DE 100 63 422 A 1

ein nicht mittels Metallocenkatalyse hergestelltes Polypropylenwachs mit zahlenmittlerem Molekulargewicht zwischen 700 und 10.000 g/mol ist.

8. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 7, worin das als Bestandteil j) genannte Wachs ein durch Oxidation oder Propfung mit Maleinsäureanhydrid modifiziertes Polyethylen oder Polypropylenwachs ist.

9. Verwendung von micronisierten Wachsen wie in einem oder mehreren der Ansprüche 1 bis 8 definiert.

10. Lacke, umfassend Wachsmischungen gemäß einem oder mehreren der Ansprüche 1 bis 9.

10

15

20

25

30

35

40

45

50

55

60

65

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.