

Notes of

REAL AND FUNCTIONAL ANALYSIS

for the Master in Mathematical Engineering held by Prof. G. Verzini a.a. 2023/2024

Edited by Teo Bonfa

© Gli autori, alcuni diritti riservati.

Disclaimer In questo testo sono raccolti gli appunti tratti dalle lezioni e dalle esercitazioni del corso di AAnalisi Reale e Funzionale, tenuto dal Professor Ginamaria Verzini e dall'esercitatrice Giulia Cavagnari per la LM in Mathematical Engineering, al Politecnico di Milano, nell'Anno Accademico 2023/24.

La proprietà intellettuale rimane ai docenti sopracitati, i quali non hanno revisionato la seguente opera, che si presenta unicamente come un supporto ulteriore alle lezioni, fatta da studenti per studenti, senza pretese di sostituire libri di testo ufficiali o la frequenza delle lezioni.

Quest'opera è rilasciata sotto licenza CC BY-NC-SA 4.0. http://creativecommons.org/licenses/by-nc-sa/4.0/

In sintesi: potete condividere i contenuti del libro, in tutto o in parte, e apportare le vostre modifiche, a patto di citare la fonte, di condividere le modifiche con la stessa licenza, e di non usare il materiale per scopi commerciali (non è permesso stampare il libro per rivenderlo).

Questo riassunto della licenza è parziale e non la sostituisce, ma serve a darvi l'idea.

Il codice sorgente LATEX è disponibile su https://github.com/BonfaTex/My-RFA-23

Developed by:

TEO BONFA - math11235813piday@gmail.com

Per segnalare eventuali errori o suggerimenti potete contattare gli autori o fare una Pull Request.

Contents

Ι	Introduction	1
0	Course structure	3
1	Set Theory 1.1 Equipotent, finite/infinite, countable/uncountable sets, cardinality of continuoum 1.2 Families of subsets 1.3 Sequences of sets 1.4 Charateristic functions 1.5 Relations, Equivalence relations	5 5 6 7 8
ΙΙ	Real Analysis	9
2	Measure Theory2.1 Measure spaces2.2 Borel sets2.3 Measures	11 11 12 12
3		13
4		15
5		17
6		19
7		21
8		23
9		2 5
10		27
II	I Functional Analysis	29
11		31
12		33
13		35
14	Į.	37
15		39
16		41

17	43
18	45
IV Esercitazioni	47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 53 54 54
20	55
21	57
22	59
23	61
24	63
25	65
26	67
27	69
28	71

Part I Introduction

Course structure

This course is splitted in two parts:

- 1. Real Analysis \rightarrow measure and integration theory, in particular:
 - Collections and sequences of sets
 - Measurable space, measure, outer measure
 - Generation of an outer measure
 - Carathéodory's condition, measure induced by an outer measure
 - Lebesgue's measure on \mathbb{R}^n
 - Measurable functions
 - The Lebesgue integral
 - Abstract integration
 - Monotone convergence theorem, Fatou's Lemma, Lebesgue's dominated convergence theorem
 - Comparison between the Lebesgue and Riemann integrals
 - Different types of convergence
 - Derivative of a measure and the Radon-Nikodym theorem
 - Product measures and the Fubini-Tonelli theorem
 - Functions of bounded variation and absolutely continuous functions
- 2. Functional Analysis \sim infinte dimensional linear algebra, in particular:
 - Metric spaces, completeness, separability, compactness
 - Normed spaces and Banach spaces
 - Spaces of integrable functions
 - Linear operators
 - Uniform boundedness theorem, open mapping theorem, closed graph theorem
 - Dual spaces and the Hahn-Banach theorem
 - Reflexivity
 - Weak and weak* convergences
 - Banach-Alaoglu theorem
 - Compact operators
 - \bullet Hilbert spaces
 - Projection theorem, Riesz representation theorem
 - Orthonormal basis, abstract Fourier series
 - Spectral theorem for compact symmetric operators

• Fredholm alternativ

The foundation of this theory is the $Set\ Theory$, that is going to be explained in the next chapter. Enjoy!

 ${f NB}$: this page will be updated with more details and maybe the list of proofs.

Set Theory

1.1 Equipotent, finite/infinite, countable/uncountable sets, cardinality of continuoum

Let X, Y be sets.

Def — Equipotent sets.

X,Y are equipotent if there exists a bijection $f:X\to Y$ (1-1 injective + onto surjective).

If X, Y are equipotent, then they have the same cardinality. On the other hand, X has cardinality \geq than Y if there exists $f: X \to Y$ onto. For example, for

$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad Y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

exists $f: X \to Y$ s.t. $\forall y \in Y \exists x \in X$ s.t. f(x) = y (f takes all the elements of the codomain), but doesn't exist $g: Y \to X$ s.t. $\forall x \in X \exists y \in Y$ s.t. g(y) = x (g doesn't take all the elements of the codomain).

Def — Finite/infinite sets.

X is finite if it is equipotent to $Y = \{1, 2, ..., k\}$ for some $k \in \mathbb{N}$. X is infinite otherwise.

Prop. X is infinite iff it is equipotent to a proper subset, i.e. if exists a bijection between X and one of his subsets.

For example, between the integers set $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ and the even integers set $\{0, \pm 2, \pm 4, ...\}$ there exists f s.t. f(z) = 2z which is a bijection.

Def — Countable/uncountable (infinite) sets.

X inifinite is countable if it is equipotent to \mathbb{N} . It is uncountable otherwise, in which case is more than countable (countable sets are the "smallest" among infinite sets).

Def — Cardinality of continuoum.

X has the cardinality of continuoum if it is equipotent to \mathbb{R} . Any such set is uncountable.

For example:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable
- $\mathbb{R}, \mathbb{R}^N, (0,1), (0,1)^N$ have the cardinality of continuoum
- countable unions of countable sets are countable

1.2 Families of subsets

Let X be a set.

Def — Power set.

The power set of X, i.e. the set of all subsets of X, is

$$\mathcal{P}(X) = \{Y : Y \subset X\}$$

It is sometimes denoted as 2^X .

The power set has cardinality strictly bigger than X. For example, $\mathcal{P}(\mathbb{N})$ has the cardinality of continuoum.

Def — Family of subsets.

A family, or collection, of subsets of X is just $\mathcal{C} \subset \mathcal{P}(X)$. Tipically, a family of subsets (induced by $I \subset \mathbb{R}$ set of indexes) is $\mathcal{C} = \{E_i\}_{i \in I}$ where $E_i \subset X \ \forall i \in I$.

For example, $\{E_1, E_2, E_3\}$ is a family of subsets.

Def — Union and intersection.

Given a family of sets $\{E_i\}_{i\in I}\subset \mathcal{P}(X)$, will often be considered

$$\bigcup_{i \in I} E_i = \{x \in X : \exists i \in I \text{ s.t. } x \in E_i\}$$
$$\bigcap_{i \in I} E_i = \{x \in X : x \in E_i \ \forall i \in I\}$$

 ${E_i}$ is said to be (pairwise) disjoint if $E_i \cap E_j = \emptyset \ \forall i \neq j$.

Ex — Standard topology of \mathbb{R} .

Given $X = \mathbb{R}$ (or \mathbb{R}^N), the standard/euclidian topology of \mathbb{R} (or \mathbb{R}^N) is $\mathcal{T} = \{E \subset X : E \text{ is open}\}$, i.e. it is the family of all open subsets of X.

More generally, this can be defined in metric spaces (X, d) where X is a set and d a distance between $x, y \in X$. Some properties of \mathcal{T} :

- $\varnothing, X \in \mathcal{T}$
- finite intersection of open sets is open [*]
- any (finite/infinite, countable/uncountable, ...) union of open sets is open [⊚]

Def — Covering and subcovering.

 $\{E_i\}_{i\in I}$ is a covering of X if $X=\bigcup_{i\in I}E_i$. Any subfamily $\{E_i\}_{i\in J,J\subset I}$ is a subcovering if it is a covering.

1.3 Sequences of sets

A sequence is just a family of subsets where $I \equiv \mathbb{N}$, e.g. $\{E_n\}_{n \in \mathbb{N}}$.

Def — Monotone sequences.

 $\{E_n\}$ is increasing (not decreasing), $\{E_n\} \nearrow$, if $E_n \subset E_{n+1} \ \forall n \in \mathbb{N}$. On the other hand, $\{E_n\}$ is decreasing (not increasing), $\{E_n\} \searrow$, if $E_{n+1} \subset E_n \ \forall n \in \mathbb{N}$. If $\{E_n\}$ is increasing/decreasing then it is monotone.

For example, given $X = \mathbb{R}$ and $E_n = \left(-\frac{1}{n}, 1 + \frac{1}{n}\right)$ for $n \ge 1$, we can say that E_n is a monotone decreasing sequence:

$$\begin{array}{c|cccc}
 & & & & \\
\hline
-\frac{1}{n} & & & & \\
\hline
0 & & & & \\
\end{array}$$
1 + $\frac{1}{n}$

But what is $\bigcap_{n=1}^{\infty} E_n$? We know that

$$\bigcap_{n=1}^{\infty} E_n = [0,1]$$

and this is an infinite intersection of open sets (this does not disagree with the prop \circledast). This type of intersection is called "G δ -set": a countable intersection of open sets.

Similarly, $E_n = \left[a + \frac{1}{n}, b - \frac{1}{n} \right]$, a<b, is increasing and

$$\bigcup_{n=1}^{\infty} E_n = (a, b)$$

is called "F σ -set": a countable union of closed sets (doesn't disagree with \odot).

Def — lim sup and lim infa

Let $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{P}$. We define

$$\limsup_n E_n := \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k \right) \qquad \liminf_n E_n := \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right)$$

If these two sets are equal

$$\limsup_{n} E_n = \liminf_{n} E_n = \lim_{n} E_n = F$$

then F is the limit of the succession.

Take note that $\{E_n\} \nearrow (\text{resp. } \searrow) \Longrightarrow \exists \lim_n E_n = \bigcup_n E_n (\text{resp. } \bigcap_n E_n).$

EXER. Looking at the previous definition of lim sup, we can easily proof that

$$x \in \limsup_{n} E_n \iff x \in \bigcup_{n=k}^{\infty} E_n \ \forall k \iff x \in E_n \text{ for } \infty\text{-ly many } n$$

A property that is true for infinitely many n is said to be true *frequently*. Similarly:

$$x \in \liminf_{n} E_n \iff x \in \bigcap_{n=k}^{\infty} E_n \text{ for at least one } \overline{k} \iff x \in E_n \ \forall n \geq \overline{k}$$

A property that is only true after n large enough is said to be true eventually.

1.4 Charateristic functions

Let X be a set.

Def — Charateristic function.

Given $E \subset X$, we define the characteristic (or indicator) function

$$\chi_E: X \to \mathbb{R} \quad \text{s.t.} \quad \chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases} \text{ (or } x \in E^c = X \setminus E)$$

(another notation: $\mathbb{1}_E(x)$)

Prop.

- $\bullet \ \chi_{E_1 \cap E_2} = \chi_{E_1} \cdot \chi_{E_2}$
- $\bullet \ \chi_{E_1 \bigcup E_2} = \chi_{E_1} + \chi_{E_2} \chi_{E_1} \cdot \chi_{E_2}$
- $\chi_{\limsup_n E_n} = \limsup_n \chi_{E_n}$ and likewise $\chi_{\liminf_n E_n} = \liminf_n \chi_{E_n}$

Take note that the first lim sup/inf refers to sets, the second one to (real) numbers.

1.5 Relations, Equivalence relations

Def — Cartesian product and Relations.

If X and Y are sets, their Cartesian product $X \times Y$ is the set of all ordered pairs (x, y) such that $x \in X$ and $y \in Y$. A relation from X to Y is a subset of $X \times Y$. If R is a relation from X to Y, we shall sometimes write xRy to mean that $(x, y) \in R$.

If Y = X, we speak of a relation on X. For example, $xRy \iff y = x^2$.

The most important types of relations are the following:

Def — Equivalence relations.

An equivalence relation is a relation R s.t.

- i) $xRx \ \forall x \in X$ (reflexive)
- ii) $xRy \iff yRx \ \forall x,y$ (symmetric)
- iii) xRy, $yRz \Longrightarrow xRz \ \forall x, y, z$ (transitive)

Equivalence relations allow us to introduce the following constructs which will be useful later on:

- Equivalence class of an element x: $E_x = \{y \in X : yRx\}$
- Quotient set: $X/R = \{E_x : x \in X\}$

For example, to define $\mathbb Q$ in a precise way we take the following relation R

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \dots$$

i.e. the pairs $(1,2),(2,4),(3,6),... \in \mathbb{Z} \times \mathbb{Z}_0$ (without zero), therefore $\mathbb{Q} = \mathbb{Z} \times \mathbb{Z}_0/R$.

Part II Real Analysis

Measure Theory

2.1 Measure spaces

Let X be a set.

Def — σ -algebras.

A family $\mathcal{M} \subset \mathcal{P}(x)$ is called a σ -algebra if

- i) $\varnothing \in \mathcal{M}$
- ii) $E \subset \mathcal{M} \implies E^c = X \setminus E \in \mathcal{M}$
- iii) $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{M}\Longrightarrow\bigcup_{n=1}^\infty E_n\in\mathcal{M}$ (infinite countable union)

If (iii) is replaced by " $E_1, E_2 \in \mathcal{M} \Longrightarrow E_1 \bigcup E_2 \in \mathcal{M}$ " then \mathcal{M} is just an algebra (finite union).

Trivial examples: $\mathcal{M} = \mathcal{P}(X)$ is the biggest σ -algebra, $\mathcal{M} = \{\emptyset, X\}$ is the smallest σ -algebra.

We say that

- \mathcal{M} σ -algebra $\rightsquigarrow (X, \mathcal{M})$ is a measurable space
- $E \in \mathcal{M}$ are measurable sets

Basic properties of \mathcal{M} :

- 1. $X = \varnothing^c \in \mathcal{M} \text{ (by (i)+(ii))}$
- 2. \mathcal{M} is an algebra (σ -alg. \Longrightarrow alg. but not the viceversa)

To prove this you can take a finite union (e.g. $E_1 \cup E_2$) and then make infinite unions with \emptyset to have an infinite union that still belongs to \mathcal{M} :

$$E_1 \cup E_2 = E_1 \cup E_2 \underbrace{\cup \varnothing \cup \ldots \cup \varnothing \cup \ldots}_{\in \mathcal{M} \text{ by (ii)}}$$

- 3. ${E_n}_n \subset \mathcal{M} \Longrightarrow \bigcap_{n \in \mathbb{N}} E_n \in \mathcal{M}$
- 4. $E, F \in \mathcal{M} \Longrightarrow E \setminus F \in \mathcal{M}$

Now, we want to understand how to generate a σ -algebra.

TH 2.1. Take $S \subset \mathcal{P}(X)$ any family. Then it is well defined $\sigma_0(S)$, the σ -algebra generated by S (the smallest σ -algebra containing S):

- i) $\sigma_0(\mathcal{S})$ is a σ -algebra
- ii) $\mathcal{S} \subset \sigma_0(\mathcal{S})$
- iii) if \mathcal{M} is a σ -alg. and $\mathcal{S} \subset \mathcal{M}$ then $\sigma_0(\mathcal{S}) \subset \mathcal{M}$

PROOF (Sketch).

We introduce a collection of collection of sets (we should be more strict)

$$\mathcal{V} = \{ \mathcal{M} \subset \mathcal{P}(X) : \mathcal{M} \text{ is a } \sigma\text{-alg. and } \mathcal{S} \subset \mathcal{M} \}$$

(notice that $\mathcal V$ is not empty since $\mathcal P(X) \in \mathcal V$)

Then $\sigma_0(\mathcal{S}) = \bigcap \{ \mathcal{M} : \mathcal{M} \in \mathcal{V} \}$ (to generate the smallest take the intersection of all).

2.2 Borel sets

2.3 Measures

Part III Functional Analysis

Part IV Esercitazioni

Exercise session 18/09

Today's aim: we want to get the essence of the notion of "being closed" in order to deal with continuity (so this lesson will be a little more theoretical than the following ones).

19.1 Recall on \mathbb{R}^n

Given $x, y \in \mathbb{R}$ a possible distance between x and y is

$$d(x,y) := |x - y|$$

(we will analyze its properties in a moment)

Given $x, y \in \mathbb{R}^2$ a possible distance between $x = (x_1, x_2)$ and $y = (y_1, y_2)$ is

$$d_E(x,y) := \sqrt{\sum_{i=1}^{2} |x_i - y_i|^2}$$

the Euclidian/canonical distance. For \mathbb{R}^n is just the same.

Given $f,g\in\mathcal{C}^0\left([a,b]\right),$ i.e. $f,g:[a,b]\to\mathbb{R}$ continuous, the distance

$$d(f,g) := \min_{x \in [a,b]} |f(x) - g(x)|$$

cannot be a proper distance because $d=0 \implies f=g$ (see the definition of distance below).

19.2 Recall on metric spaces

Let X be a nonempty set (no need of any algebraic structure such as vector spaces).

Def. A function $d: X \times X \to [0, +\infty)$ is said to be a **metric/distance** on X if all the followings are satisfied:

- (a) $d(x,y) \ge 0$ and d(x,y) = 0 iff x = y
- (b) d(x,y) = d(y,x) (symmetry)
- (c) $d(x,y) \le d(x,z) + d(z,y)$ (triangular inequality)

 $\forall x, y, z \in X$. If d is a distance on X, then (X, d) is called **metric space**.

Examples:

1. (\mathbb{R}^n, d_E) is a metric space

Homework. Prove it.

<u>Hint</u>: in order to prove the tr. inequality use the Cauchy-Schwarz inequality

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le \sqrt{\sum_{i=1}^{n} |a_i|^2} \cdot \sqrt{\sum_{i=1}^{n} |b_i|^2}$$

2. in \mathbb{R}^n $(n \geq 2)$ we can also define

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i|$$
 Manhattan distance $d_{\infty}(x,y) = \max_{i=1,\dots,n} |x_i - y_i|$ uniform/maximum distance

Homework. Prove that both d_1 and d_{∞} are distances on \mathbb{R}^n .

<u>Hint</u>: use that for $a,b \in \mathbb{R}$, d(a,b) := |a-b| is a distance on \mathbb{R} and so $|a-b| \le |a-c| + |c-b|$ $\forall a,b,c \in \mathbb{R}$

3. for p > 1 (but also for 0)

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}$$

is a metric on \mathbb{R}^n $(p=2 \rightsquigarrow d_E)$

4. let X be a nonempty set. Can we also define a distance on X? Yes, with the **discrete distance**

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ 1 & \text{if } x \neq y \end{cases}$$

Homework. Prove that is a metric on X.

Def. Given (X, d) metric space, $x_0 \in X$, r > 0,

$$B_r(x_0) = B_d(x_0, r) := \{x \in X : d(x, x_0) < r\}$$

is a **open ball** of center x_0 and radius r, or a open spherical neighborhood of x_0 .

Balls can have different shapes. For examples, let be $X = \mathbb{R}^n$ (n = 2 for drawing purposes):

- (a) with d_E we have that $B_{d_E}(x_0,r)$ is the open disk of center x_0 and radius r
- (b) with d_1 we have

$$B_{d_1}(0,r) = \{(x,y) \in \mathbb{R}^2 : d_1((x,y),(0,0)) < r\}$$
$$= \{(x,y) \in \mathbb{R}^2 : |x| + |y| < r\}$$

(c) with d_{∞} we have

$$B_{d_{\infty}}(0,r) = \{(x,y) \in \mathbb{R}^2 : d_{\infty}((x,y),(0,0)) < r\}$$
$$= \{(x,y) \in \mathbb{R}^2 : \max\{|x| + |y|\} < r\}$$

It is remarkable that these balls are equivalent (we will explain it better in due time).

If you generalize to every p, you could say that

Furthermore, with (X, d) where d is the discrete metric, we have

$$B_d(x_0, r) = \begin{cases} \{x_0\}, & \text{if } r \le 1\\ X, & \text{if } r > 1 \end{cases}$$

Therefore, many possible distances can be introduced on a set. In some cases they lead to the same *structure* but not in general. For example, on $X = \mathcal{C}^0([a,b]), f,g \in X$, we have:

- discrete distance (we've got it folks)
- $d_1(f,g) := \int_a^b |f(x) g(x)| dx$
- $d_{\infty}(f,g) := \max_{x \in [a,b]} |f(x) g(x)|$

They are both distances on $C^0([a,b])$ but they lead to different structures:

19.3 Topology in metric spaces

Def. Let (X,d) be a metric space and let $A \subset X$. For $x_0 \in X$, we say that x_0 is:

(i) an **interior point** of A if

$$\exists r > 0$$
 s.t. $B(x_0, r) \subset A$

(ii) an **exterior point** of A if

$$\exists r > 0$$
 s.t. $B(x_0, r) \subset A^c := X \setminus A$

(iii) a **boundary point** of A if it is neither interior nor exterior, i.e.

$$B(x_0,r) \cap A \neq \emptyset$$
 and $B(x_0,r) \cap A^c \neq \emptyset$ $\forall r > 0$

(iv) an **adherence point** of A if it is either interior or boundary, i.e.

$$B(x_0, r) \cap A \neq \emptyset \quad \forall r > 0$$

(v) an **accumulation point** of A if

$$(B(x_0,r)\cap A)\setminus \{x_0\}\neq 0$$

(vi) an **isolated point** of A if

$$x_0 \in A$$
 and $\exists r > 0$ s.t. $B(x_0, r) \cap A = \{x_0\}$

By definition, an isolated point cannot be an accumulation point.

We also define:

$$\stackrel{o}{A} := \{x_o \in X : x_0 \text{ is an interior point of } A\}$$
 interior of A $ext(A) := \{x_o \in X : x_0 \text{ is an exterior point of } A\}$ exterior of A $\partial A := \{x_o \in X : x_0 \text{ is a boundary point of } A\}$ boundary of A $\overline{A} := \{x_o \in X : x_0 \text{ is an adherence point of } A\}$ closure of A

The definitions (i)-(ii)-(iii) are mutual disjoint, thus $\overset{o}{A}$, ext(A), ∂A are pairwise disjoint sets (see the property below).

Def. A set $A \subset X$ is **open** if $A = \overset{o}{A}$. Similarly, A is **closed** if A^c is open.

Let's take a look at some basic properties:

- $\overset{o}{A}, ext(A), \partial A$ form a partition of X
- A open iff $A \cap \partial A = \emptyset$
- $\overline{A} = \overset{o}{A} \cup \partial A = A \cup \partial A$
- A closed iff $A \equiv \overline{A}$
- A is the largest (w.r.t. the inclusion order) open subset of A
- \overline{A} is the smallest closed subset of X containing A
- Let I be a family of indexes (may be uncountable) and A_i be an open set $\forall i \in I$. Then $\bigcup_{i \in I} A_i$ is open.
- Let $A_1,...,A_m$ for $m \in \mathbb{N}$ be a finite number of open sets. Then $\bigcap_{i=1}^m A_i$ is open.

Homework. Prove these last two properties.

- Let I be a family of indexes (may be uncountable) and C_i be closed $\forall i \in I$. Then $\bigcap_{i \in I} C_i$ is closed.
- Let $C_1, ..., C_m$ for $m \in \mathbb{N}$ be closed. Then $\bigcup_{i=1}^m A_i$ is closed.

Subtleties. These last two properties are deduced from the Morgan's laws.

19.4 Limits for sequences

Let (X,d) metric space, $\{x_n\}_{n\in\mathbb{N}}\subset X$ sequence, $x^*\in X$ point.

Def. We say that $x_n \stackrel{d}{\longrightarrow} x^*$ as $n \to +\infty$ if

$$\underbrace{d(x_n, x^*) \to 0}_{\text{limit in real numbers}} \text{ as } n \to +\infty$$

i.e.

$$\forall \mathcal{E} > 0 \quad \exists \ \overline{n} = \overline{n}(\mathcal{E}) \in \mathbb{N} \quad \text{s.t.} \quad \underbrace{d(x_n, x^*) < \mathcal{E}}_{\text{or } x_n \in B_d(x^*, \mathcal{E})} \quad \forall n > \overline{n}$$

Prop. The limit (it it exists) is unique in metric space.

Homework. Prove it.

<u>Hint</u>: assuming by contraddiction that exist x^*, y^*, x^{**} and then verify the triangular inequality.

Prop. If $\{x_n\}_n$ converges to x^* , then any subsequence of $\{x_n\}_n$ converges and it converges to x^* .

Def. A set $A \subset X$ is **sequentially closed** if for any converging sequence $\{x_n\}_n \subset A$ its limit x^* belongs to A.

Prop. $A \subset X$ closed iff A is sequentially closed.

Homework. Prove it.

<u>Hint</u>: for (\Rightarrow) use the def. of closed, for (\Leftarrow) prove that $A = \overline{A}$ (i.e. $A \subset \overline{A}$ and $\overline{A} \subset A$).

- $19.5\quad Closure,\,Boundedness,\,Compactness$
- 19.6 Continuous functions in metric spaces