END-SEMESTER

- Tarusi MiHal

- 1901CS65

- Paryould

Que 1: NS: New Source Venter

- → Adding a new node NS to graph and adding a weight edges from NS to other edges.
- -> Applying Bellman-Ford Algorithm to find the shoulest paths

 (NS -> ventex) simultaneously storing them. in ventual]
- (i) a: $0 \times : -1$ b: $-2 \times : -6$

Now;

Let us take an away weight [] which represents the weight away of the edges.

Here; weight [u,v] will ereported the weight of edge usv As we know;

New; weight [U,V] = weight [U,V] + verlex[U] - vertex[V]

(ii)
$$a \rightarrow b \Rightarrow (-2) + (0) - (-2) = 0$$

 $c \rightarrow a \Rightarrow (4) + (-3) - (0) = 1$
 $b \rightarrow c \Rightarrow (-1) + (-2) - (-3) = 0$
 $c \rightarrow n \Rightarrow (1) + (-3) - (-1) = 0$
 $c \rightarrow y \Rightarrow (-3) + (-3) - (-6) = 0$
 $z \rightarrow n \Rightarrow (1) + (0) + (-1) = 2$
 $z \rightarrow y \Rightarrow (-4) + (0) - (-6) = 2$

Que 2:- No. of elements in the array = 200 (even) We first initialise two variables max. and min.

- 1. Compare arr[i] and arr [2] and stone them in nun and max accordingly -> 1 tomparison
- 2. Now, we well do comparisons for knowny pair of two conseqution

For each pain:

- a) compare arr[i] and arr[i+1]
- b) find the maximand ninimprof the pain and compare them with mas and min (3 comparisons)

Total companisons made are [298].

Que 3:

Total want of the letters:

$$A - 27$$
 $L - 9$
 $G - 10$
 $O - 35$
 $C - 5$
 $S - 14$
 $A - 10$
 $C - 000$
 $C - 010$

No. of bits used for
$$A = 27 \times 2 = 54$$

$$L = 4 \times 9 = 36$$

$$G = 3 \times 10 = 30$$

$$O = 2 \times 35 = 70$$

$$C = 4 \times 5 = 26$$

$$S = 2 \times 14 = 28$$
Potal bits = 238

Jotal bits used = [238] for encoding

The gwen away:

13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11

									•				
	lo	w	= 0)									
	h	gh	=	12									
	pivot = are [high -1) = 11												
	Initalying i = low - 1 = -1												
		for	1	<i>=</i> 0	, 4	D	< 1	hig	h -	,			
1=0	-13	19	9	5	12	8	17	4	21	ا م		1	
1=1	. 13	19	9	S	12	0	1	· ·	21		6		1 = -1
			-					ч		2	1	11	1=-
1=2		1					7	ч	21	2	6	11	i = 0
1=3	.9	C	13	(9)12	8	7	4	21	2	b	11	ا = ١
1=4	9	5	13	19	12	8	7	ч	21	2	6	11	ì = 1
1=5	9	5	8	19	12	3	7	4	21	2	6	U	i = 2
1=6	1	5	8	Œ	4	13	(9)	4	4	2	6	11	ì = 3
<u>j=1</u>	9	S	8	7	T	13	19	(1)	21	2	L	11	i = Y
J=8		5	8	7	4	13	19	12	21	2	6	11	C =4
3-9		5	8	7	4	2	19	12	21 ((3)	6	١١	i=5
1=10		5	8	7	4	2	(<u>(</u>)	12	21	13	(19)	11	i=6

Aus!

١		-	-	-		_	-	-			-
	9	5	8	7	49	6	11	21	13	19	12
l		1 1									

ie the averag after 1st iteration of quick sof.

One 5:

There edges: The edges that are part of off tree.

A true having k; edges has k+1 nodes.

Now, lets assume number of connected components are n

lets assume first component has k, true edges, second ke and so on:

1. Ki+ Kz+K3+ - + Kn = K

Summation of nodes of true = n

$$(k_1+1) + (k_2+1) + (k_3+1) + - - + (k_2+1) = n$$

 $(k_1+k_2+k_3+-+k_3) + n = n$

So, the number of connected components is [n-k]

Que 6:

Let us say that there is a set! S' with m elements that are of the 812e SI, S2, ___, Sm.

As me know that the subset -sum problem says that much input set (M1, M2, -- Nm) ads if any subset exsist, sum of whose elements in equal to a given no N.

So, the given problem is same as the subset-sum problem.

1:

Subset Sum is NP

Given a proposed set T, we kneed to lest of \$\less{25}_i=B\$.

Adding up at most m numbers, each of size B takes
Ofm log B) time, linear in input size.

#2:

3 SAT W NP Complete

to SAT is an NP complete problem.

SAT & 3 SAT

(corollary of SAT NP complete reduction)

Hence 3 SAT is NI complete.

出2:

Subset Sum & NP Complete

It will be a udliction of 35AT

Defining numbers ni and Wi and a larget B.

Such that one can take only one of Ni, and Ni .

Now, lets say we have vectors unstead of numbers.

Two vectors can be added component wise. Now we have to see whether there is a subset whose sum equals a specified vector.

Now, lets tady input of 35AT be \$ by having a clauses and movemable. The vectors will have length.

n+m: whether first m positions specify the variable taken a the nost n positions newed the clauses each before is

Let $\phi = (x_2 \vee x_3 \vee x_4) \wedge (x_1 \vee x_3 \vee x_4) \wedge (x_1 \vee x_2 \vee x_4)$

the vector ni >

A target B of all 15 would force selection of exactly one of each variable and its nighton.

How, some clauses, might have true, literal.

up to B.

To ereach 1: in a component attent 1 must be supplied by a literal.

Thus:

we have built a set of vectors and a target vector such that there is a subset of vectors; that own to a target vector exactly when the boolean formula has a statisfying anyment.

Now, tunk of vectors just as a number in decimal like.

x, = 1000011

Thus we have reduced 3 SAT problem to subset sum problem ic 2 SAT & Subset sum problem.

Thus subject sum problem is NP complete.