Title: DECOUPLED STORE ADDRESS AND DATA IN A MULTIPROCESSOR SYSTEM

IN THE SPECIFICATION

Please amend the title as follows:

DECOUPLED STORE ADDRESS AND DATA IN A MULTIPROCESSOR SYSTEM
DECOUPLING OF WRITE ADDRESS FROM ITS ASSOCIATED WRITE DATA IN
A STORE TO A SHARED MEMORY IN A MULTIPROCESSOR SYSTEM

Please amend the paragraph beginning on page 1 at line 5, as follows:

This applicatio	n is related to U.S. Patent Appl	ication No.[[]]
110/643,744, entitled '	Multistream Processing System	n and Method", filed on e	ven date
herewith; to U.S. Pater	nt Application No. [[]] 10/6443,577,	entitled "Systen
and Method for Synchronizing Processing Memory Transfers", Serial No.			
[[]] filed on even date herewith;	to U.S. Patent Application	ı No.
[[]] <u>10/643,586</u> , entitled "Decoup	led Vector Scalar/Vector	Computer
Architecture System and Method (as amended)", filed on even date herewith; to U.S. Patent			
Application No. [[]] 10/643,585,	entitled "Latency Toleran	t Distributed
Shared Memory Multiprocessor Computer", filed on even date herewith; to U.S. Patent			
Application No. [[]] 10/643,754,	entitled "Relaxed Memory	y Consistency
Model", filed on even	date herewith; to U.S. Patent A	pplication No.[[]},
10/643,758 entitled "Remote Translation Mechanism for a Multinode System", filed on even			
date herewith; and to U	J.S. Patent Application No. [[_]] 10/64	43,741, entitled
"Method and Apparatu	s for Local Synchronizations in	n a Vector Processor Syste	em Multistream
Processing Memory-A	nd Barrier-Synchronization Me	ethod and Apparatus", file	d on even date
herewith, each of whic	h is incorporated herein by refe	erence.	

Please amend paragraph [0012] (beginning on page 3 at line 5) as follows:

Not all processors [[16]] 12 have to be the same. A multiprocessor computer system 10 having different types of processors connected to a shared memory 16 is shown in Fig. 1b. Multiprocessor computer system 10 includes a scalar processing unit 12, a vector processing unit 14 and a shared memory 16. Shared memory 16 includes a store address buffer 19.

Please amend paragraph [0043] (beginning on page 9 at line 14) as follows:

In one embodiment, global memory 26 as shown in Fig. 3 is distributed to cach MSP 30 as local memory [[48]] (not shown in Figures). In one embodiment, local memory is packaged as a separate chip (termed the "M" chip as shown in Fig. 4, block 26). Each Ecache 24 has four ports 34 to M chip [[42]] 26 and connected through M chip 26 to local memory (and through M chip 42 to local memory 48 and to network 38). In one embodiment, ports 34 are 16 data bits in each direction. MSP 30 has a total of 25.6 GB/s load bandwidth and 12.8-20.5 GB/s store bandwidth (depending upon stride) to local memory.