Esercizio 2.1 (1/2)

Si realizzi un programma concorrente che analizza le consegne effettuate da una piccola azienda di logistica che ha fattorini. Il programma dovrà prevedere la seguente interfaccia:

./analisi consegne N F

- N è un intero positivo che rappresenta il numero totale di consegne effettuate in un certo giorno;
- F è un intero positivo che rappresenta il numero di fattorini

Il processo padre PO deve inizializzare in modo casuale un array di \mathbb{N} interi con valori compresi nell'intervallo $[0, \mathbb{F}-1]$ (estremi inclusi). Ogni elemento dell'array rappresenta una consegna e il suo valore indica il fattorino che l'ha eseguita.

Ogni valore rappresenta una consegna effettuata da un fattorino. Esempio: 1 1 2 1 2 0 1

- In questa giornata, il fattorino 1 ha fatto quattro consegne, il 2 - ne ha fatte due, il fattorino 0 ne ha fatta una.

Esercizio 2.1 (2/2)

Come prima cosa il processo P_0 stamperà a video l'array generato.

Successivamente creerà **F** processi figli (uno per ogni fattorino): $P_1, P_2, ..., P_F$.

Ogni figlio $\mathbf{P_i}$ avrà il compito di contare il numero di consegne effettuate dal fattorino \mathbf{i} -esimo.

Il valore ottenuto dovrà essere comunicato al padre contestualmente alla terminazione.

Il padre P_0 , per ogni figlio P_i terminato, ne stamperà a video il **pid**, l'**indice i** del fattorino e il numero di consegne che ha fatto (valore calcolato dal processo P_i)