2. (15 pts) You are given the following data (n=450) shown in the plot below.

		1
X	У	
1	-0.3	
2	-0.1	
3	0.8	
4	0.1	
5	0.9	
6	0.3	weight = ?
8	-0.5	
9	-0.2	
<mark>10</mark>	-0.1	weight= ?
11	0.8	
12	0.4	
13	-0.1	
16	1.1	
17	0.5	
18	-0.7	
19	0.6	
20	0.1	

- a) Suppose that you decide to perform a lowess smooth using a span \sim 0.013 which results in 6 data points. Suppose you are interested in performing the smooth at x=10. Use the tri-cube weight function found in the document **Loess_Chapter.pdf from Lecture 18** to list the two requested weights in the table above. Just write the formula filled in with the appropriate values, no need to carry through the calculation.
- b) On the plot above, draw as best as you can a straight line smooth of the data and label it with a 'b'. (smoothed y=mx+b)
- c) On the plot above, draw as best as you can what a lowess smooth with a span equating to 10 data points might look like and label it with a 'c'. No calculations are needed.
- d) On the plot above, draw as best as you can what a lowess smooth with a span equating to all n=450 data points might look like and label it with a 'd'. No calculations are needed.
- e) In a lowess smooth with n data points, what is the number of regressions that need to be performed?

3. (10 pts) Suppose a simple test is developed to detect whether a person has COVID-19 disease.

- a) Using the figure to the left, plot the ideal ROC curve you would want for this simple test.
- b) Suppose the following 2x2 table resulted from the simple test and a "gold standard" test applied to a sample of 120 individuals with high risk for COVID-19 disease.

		Gold Standard Test Result		
		Positive	Negative	
Simple Test Result	Positive	35	10	45
	Negative	5	70	75
		40	80	

Compute the accuracy, sensitivity, specificity, positive predictive power, and negative predictive power for the simple test.