FORMULARIO DE PROPOSICIONES

Axiomas y Reglas Derivadas

Teoremas

A1.
$$otag A \rightarrow (B \rightarrow A)$$
A2. $otag A \rightarrow (B \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$
A3. $otag A \rightarrow (B \rightarrow A \land B)$

A4.
$$\vdash A \land B \rightarrow A_{II}$$
 $\land A \land B \rightarrow B$

A5.
$$\vdash A \rightarrow A \lor B, B \rightarrow A \lor B$$

A6.
$$\vdash$$
 (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C))

A7.
$$\vdash$$
 (A \rightarrow B) \rightarrow ((A \rightarrow \sim B) \rightarrow \sim A)

A8.
$$\vdash \sim \sim A \rightarrow A$$

Introducción del antecedente

Regla del producto Regla de simplificación Regla de la adición Prueba por casos Reducción al absurdo Eliminación de la doble negación

1. Identidad

$$\vdash A \rightarrow A$$

2. Contraposición

3. Permutación

$$\vdash [A \rightarrow (B \rightarrow C)] \rightarrow [B \rightarrow (A \rightarrow C)]$$

4. Importación-exportación

$$\vdash [A \to (B \to C)] \to (A \land B \to C)$$
$$\vdash (A \land B \to C) \to [A \to (B \to C)]$$

5. Producto condicional

$$\vdash (A \rightarrow B) \rightarrow [(A \rightarrow C) \rightarrow (A \rightarrow B \land C)]$$

6. Ex Contradictione Ouodlibet

7. Def. de implicación respecto conjunción

$$\vdash$$
 (A \rightarrow B) \rightarrow \sim (A \land \sim B) directa
 \vdash \sim (A \land \sim B) \rightarrow (A \rightarrow B) recíproca

8. Leyes de De Morgan

$$\vdash$$
 \sim (A \vee B) \rightarrow \sim A \wedge \sim B directa
 \vdash \sim A \wedge \sim B \rightarrow \sim (A \vee B) reciproca
 \vdash \sim (A \wedge B) \rightarrow \sim A \vee \sim B directa
 \vdash \sim A \vee \sim B \rightarrow \sim (A \wedge B) reciproca

Implicación respecto a disyunción

$$\vdash$$
 (A \rightarrow B) \rightarrow \sim A \lor B directa
 \vdash \sim A \lor B \rightarrow (A \rightarrow B) recíproca

10.Teoremas de la conjunción

$$\vdash A \land B \rightarrow B \land A$$

Asociatividad
$$\models (A \land B) \land C \rightarrow A \land (B \land C)$$
 directa $\models A \land (B \land C) \rightarrow (A \land B) \land C$ recíp.

Distributividad respecto de la disyunción $\mid A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C) \mid (A \land B) \lor (A \land C) \rightarrow A \land (B \lor C)$

Absorción
$$\begin{vmatrix}
A \land (A \lor B) \rightarrow A \\
A \rightarrow A \land (A \lor B)
\end{vmatrix}$$

$$\begin{vmatrix}
A \rightarrow A \land (A \lor B)
\end{aligned}$$

$$\begin{vmatrix}
A \land A \rightarrow A \\
A \rightarrow A \land A
\end{vmatrix}$$

11.Teoremas de la conectiva disvunción

12.Silogismo

13.Teoremas de

equivalencia

$$\vdash$$
 (A v B) v C \rightarrow A v (B v C)
 \vdash A v (B v C) \rightarrow (A v B) v C

14.Silogismo disyuntivo

Distributividad respecto de la conjunción

$$\vdash$$
 A v (B \land C) \rightarrow (A v B) \land (A v C) \vdash A \land (A v B) \rightarrow A

$$\vdash A \rightarrow A \land (A \lor B)$$

 $\vdash (A \lor B) \land (A \lor C) \rightarrow A \lor (B \land C)$

$$\vdash A \lor B \rightarrow (\sim A \rightarrow B)$$

15.Tercio excluso

Absorción

$$\vdash A \rightarrow A \lor (A \land B)$$

 $\vdash A \lor (A \land B) \rightarrow A$

16.Modus Tollens
$$\vdash ((A \rightarrow B) \land \sim B \rightarrow \sim A$$

Regla de intercambio 1. Conjunción $1.1 \vdash (A \land A) \leftrightarrow A$

1.1
$$\vdash$$
 (A \land A) \leftrightarrow A
1.2 \vdash A \land (B \land C) \leftrightarrow (A \land B) \land C
1.3 \vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)

2. Disyunción 2.1
$$\vdash$$
 (A \lor A) \leftrightarrow A

2.2
$$\vdash$$
 A V (B V C) \leftrightarrow (A V B) V C
2.3 \vdash A V (B \land C) \leftrightarrow (A V B) \land (A V C)

4. Interdefiniciones 4.1
$$\vdash \sim A \lor B \leftrightarrow (A \rightarrow B)$$

4.2 $\vdash \sim (A \land B) \leftrightarrow \sim A \lor \sim B$

4.2
$$\vdash \sim (A \land B) \leftrightarrow \sim A \lor \sim B$$

4.3 $\vdash \sim (A \lor B) \leftrightarrow \sim A \land \sim B$
4.4 $\vdash \sim (A \land \sim B) \leftrightarrow (A \rightarrow B)$

FORMULARIO DE PREDICADOS

Axiomas

A1. $\vdash A \rightarrow (B \rightarrow A)$

Introd. del antecedente

- $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$
- **A3.** $\vdash A \rightarrow (B \rightarrow A \land B)$

Regla del producto

- **A4.** $\vdash A \land B \rightarrow A_{,,} \qquad A \land B \rightarrow B$
- Reala de simplificación
- **A5.** $\vdash A \rightarrow A \lor B$, $B \rightarrow A \lor B$

Regla de la adición

- **A6.** \vdash (A \rightarrow C) \rightarrow ((B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)) Prueba por casos A7.
 - Reducción al absurdo
- $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow \sim B) \rightarrow \sim A)$ $\vdash \sim \sim A \rightarrow A$ A8.

Eliminación de la doble neg.

- **A9.** $\forall xB(x) \rightarrow B(t)$
- **A10.** \vdash B(t) \rightarrow 3xB(x)
- Reglas de Inferencia
- ├A, ├A→ B Modus ŀВ Ponens

 $\vdash A \rightarrow B(y)$ Gen. Univ $\vdash A(y) \rightarrow B$ Gen. Exist $\vdash A \rightarrow \forall x B(x)$ Condicional $\exists x A(x) \rightarrow B$ Condicional

Reglas Derivadas

- (x)AxE-
- +A(y) $\forall x A(x)$

Gen. Universal

- $\exists x A(x), A(y) \rightarrow B$ Esp. Existencial ŀВ
- -∀xA(x) Esp. Universal +A(y)

Teoremas

- 1. Modificación de la variable cuantificada
 - $\vdash \forall x P(x) \leftrightarrow \forall B P(y)$
 - |V| = |V| + |V| = |V| + |V| = |V|
- 2. Descenso cuantificacional
 - $\vdash \forall x P(x) \rightarrow \exists y P(y)$
- 3. Cuantificación múltiple. Propiedades conmutativas
 - a. Cuantificador universal

$$\vdash \forall x \forall y P(x,y) \leftrightarrow \forall y \forall x P(x,y)$$

- b. Cuantificador existencial
 - $\vdash \exists x \exists y P(x,y) \leftrightarrow \exists y \exists x P(x,y)$
- c. Conmutatividad de distintos tipos

$$\vdash \exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$$

4. Negación de fórmulas cuantificadas

$$\vdash \forall x P(x) \land \forall x Q(x) \leftrightarrow \forall x (P(x) \land Q(x))$$

$$\vdash A \land \forall x P(x) \leftrightarrow \forall x (A \land P(x))$$

x no es libre en A (A es independiente de x)

$$+\exists x(A \land P(x)) \leftrightarrow A \land \exists xP(x)$$

x no es libre en A (A es independiente de x)

5. Cuantificación de las fórmulas con la conectiva conjunción

6. Cuantificación de las fórmulas con la disyunción

$$\vdash \forall x P(x) \lor \forall x Q(x) \to \forall x (P(x) \lor Q(x))$$

$$\vdash \forall x (A \lor P(x)) \leftrightarrow A \lor \forall x P(x)$$

$$\vdash \exists x (P(x) \lor Q(x)) \leftrightarrow \exists x P(x) \lor \exists x Q(x)$$

$$\vdash \exists x (A \lor P(x)) \leftrightarrow A \lor \exists x P(x)$$

7. Cuantificación de las fórmulas con la conectiva implicación

$$\vdash \forall x (P(x) \rightarrow Q(x)) \rightarrow (\forall x P(x) \rightarrow \forall x Q(x))$$

$$\forall x(A \rightarrow P(x)) \leftrightarrow (A \rightarrow \forall xP(x))$$

$$\vdash (\exists x P(x) \rightarrow \exists x Q(x)) \rightarrow \exists x (P(x) \rightarrow Q(x))$$

$$\vdash (\exists x P(x) \to A) \to \exists x (P(x) \to A)$$

$$\vdash \forall x (P(x) \to A) \leftrightarrow \exists x P(x) \to A$$

$$\vdash A \rightarrow \exists x P(x) \leftrightarrow \exists x (A \rightarrow P(x))$$

$$\vdash \exists x (A(x) \rightarrow B) \leftrightarrow (\forall x A(x) \rightarrow B)$$

8. Cuantificación de fórmulas con equivalencia material

$$\vdash \forall x (P(x) \leftrightarrow P(Q)) \rightarrow (\forall x P(x) \leftrightarrow \forall x Q(x))$$

$$\vdash \forall x(P(x) \leftrightarrow A) \rightarrow (\forall xP(x) \leftrightarrow A)$$

9. Otros teoremas

$$\vdash (\forall x P(x) \land \forall x Q(x)) \rightarrow \exists x (P(x) \land Q(x))$$

$$\vdash (A \land \forall x P(x)) \rightarrow \exists x (A \land P(x))$$

$$\vdash \forall x (P(x) \land Q(x)) \rightarrow (\exists x P(x) \land \exists x Q(x))$$

$$\vdash \forall x(P(x) \land A) \rightarrow \exists x(P(x) \land A)$$

$$\vdash (A \lor \forall x P(x)) \rightarrow \exists x (A \lor P(x))$$

$$\vdash (\forall x P(x) \lor \forall x Q(x)) \rightarrow \exists x (P(x) \lor Q(x))$$

$$\vdash \forall x(P(x) \lor Q(x)) \rightarrow (\exists xP(x) \lor \exists xQ(x))$$

$$\vdash \forall x (P(x) \lor A) \to (\exists x P(x) \lor A)$$

$$\vdash \forall x (P(x) \rightarrow Q(x)) \rightarrow (\exists x P(x) \rightarrow \exists x Q(x))$$

$$\vdash \forall x(P(x) \rightarrow A) \rightarrow (\forall xP(x) \rightarrow A)$$

$$\vdash (\forall x P(x) \rightarrow A) \rightarrow \exists x (P(x) \rightarrow A)$$