		Jax-cosmo + NUTS				Jax-cosmo + EMCEE				CCL + EMCEE	
	Θ	$\hat{R}_{ m emu}$	\hat{R}_{EH}	$N_{ m eff,\ emu}$	$N_{ m eff,EH}$	Âemu	Ŕен	N _{eff, emu}	$N_{ m eff,EH}$	Ŕ	$N_{ m eff}$
	σ_8	1.00	1.00	5983.97	5089.51	1.01	1.01	26643.62	23122.48	1.01	19805.50
	Ω_c	1.00	1.00	8488.08	7251.65	1.00	1.01	27577.44	24662.87	1.01	14532.90
Cosmology	Ω_b	1.00	1.00	17761.10	16921.67	1.00	1.00	25359.79	27730.30	1.00	30962.90
	h	1.00	1.00	16785.48	13851.48	1.01	1.01	28905.07	26988.88	1.00	28334.30
	n_s	1.00	1.00	12301.30	10428.34	1.00	1.00	28725.95	24831.30	1.00	27392.04
	m_1	1.00	1.00	23098.77	28454.33	1.00	1.00	29733.33	27025.16	1.00	30976.37
Multiplicative Shifts (WL)	m_2	1.00	1.00	29111.34	27208.89	1.01	1.00	30498.90	20029.92	1.00	29987.82
Withinfileative	<i>m</i> ₃	1.00	1.00	28184.30	25078.72	1.02	1.00	28544.70	29542.97	1.00	28032.17
	m_4	1.00	1.00	23893.36	23255.40	1.02	1.00	28117.92	29991.51	1.00	30023.22
	$\delta_{\gamma}^{(1)}$	1.00	1.00	29136.44	26754.64	1.01	1.00	30254.03	28360.70	1.00	27762.59
Shifts (WI)	$\delta_{\gamma}^{(2)}$	1.00	1.00	32339.95	27599.23	1.02	1.01	26809.42	20617.51	1.00	28058.48
Silits (WL)	$\delta_{\gamma}^{(3)}$	1.00	1.00	30961.45	31982.40	1.00	1.00	27572.08	27945.59	1.00	30458.54
	$\delta_{\gamma}^{(4)}$	1.00	1.00	26620.39	22938.51	1.00	1.00	31715.25	30385.49	1.00	28910.44
IA	A_{IA}	1.00	1.00	12929.31	13579.69	1.01	1.01	25075.28	24416.51	1.00	24353.05
IA	η	1.00	1.00	22167.30	14657.57	1.00	1.00	31347.98	28231.86	1.00	26321.44
	b_1	1.00	1.00	9233.71	7656.80	1.00	1.00	27075.28	21016.71	1.00	22206.50
	b_2	1.00	1.00	7682.56	6715.03	1.01	1.01	27275.00	18163.87	1.01	18339.23
Bias	<i>b</i> ₃	1.00	1.00	7376.29	6268.85	1.02	1.01	23209.75	24325.27	1.01	19986.38
	b_4	1.00	1.00	7280.46	6294.94	1.01	1.01	27189.63	24430.25	1.01	17597.54
	b_5	1.00	1.00	7834.38	6586.74	1.02	1.01	24167.24	22575.16	1.00	18870.94
	$\delta_g^{(1)}$	1.00	1.00	32485.64	36942.66	1.01	1.00	30043.51	29989.68	1.00	29401.92
	$\delta_{\alpha}^{(2)}$	1.00	1.00	30362.87	33449.80	1.01	1.00	30967.70	29218.06	1.01	27575.15
Shifts (GC)	$\delta_g^{(3)}$	1.00	1.00	32062.53	38055.21	1.00	1.00	29050.33	28852.30	1.00	28726.68
	$\delta_g^{(4)}$	1.00	1.00	31634.00	30844.33	1.00	1.00	31404.21	30403.77	1.00	30375.75
	$\delta_g^{(5)}$	1.00	1.00	28590.77	29383.91	1.01	1.00	31069.95	22340.16	1.00	30034.18

Table 1: Sampler diagnostics - NUTS ($N_{\text{samples}} = 15000$, $\varepsilon = 0.1$, $N_{\text{step}} = 31$, time ~ 20 hours, $N_{\text{steps, emu}} = [372793, 403357]$, $N_{\text{steps, EH}} = [383467, 401015]$), EMCEE ($N_{\text{samples}} = 10000$, $N_{\text{walkers}} = 50$, $\varepsilon = 10^{-4}$, time ~ 7 hours 15 minutes), CCL ($N_{\text{samples}} = 10000$, $N_{\text{walkers}} = 50$, $\varepsilon = 10^{-4}$, time ~ 36 hours)

		Jax-cosmo + NUTS				Jax-cosmo + EMCEE				CCL + EMCEE	
	Θ	$\mu_{ m emu}$	$\sigma_{ m emu}$	$\mu_{ m EH}$	$\sigma_{ m EH}$	$\mu_{ m emu}$	$\sigma_{ m emu}$	$\mu_{ m EH}$	$\sigma_{ m EH}$	μ	σ
	σ_8	0.840	0.064	0.828	0.063	0.845	0.063	0.830	0.063	0.816	0.062
	Ω_c	0.229	0.024	0.229	0.026	0.228	0.023	0.228	0.025	0.236	0.026
Cosmology	Ω_b	0.043	0.007	0.045	0.007	0.043	0.007	0.045	0.007	0.046	0.007
	h	0.719	0.051	0.711	0.050	0.720	0.050	0.712	0.050	0.708	0.049
	$n_{\scriptscriptstyle S}$	0.957	0.056	0.958	0.056	0.959	0.057	0.961	0.056	0.952	0.055
	m_1	0.012	0.023	0.0112	0.022	0.013	0.023	0.013	0.025	0.011	0.022
Multiplicative	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.022	0.010	0.022							
Withitiplicative	m_3	0.019	0.022	0.019	0.022	0.018	0.021	0.019	0.022	0.018	0.022
		0.009	0.022	0.008	0.022	0.008	0.022	0.007	0.022	0.007	0.022
		-0.002	0.015	-0.002	0.015	-0.002	0.015	-0.002	0.015	-0.003	0.015
Shifts (WI)	$\delta_{\gamma}^{(2)}$	-0.029	0.012	-0.029	0.012	-0.029	0.012	-0.030	0.012	-0.029	0.012
Silitis (WL)	$\delta_{\gamma}^{(3)}$	0.007	0.010	0.007	0.010	0.007	0.010	0.008	0.010	0.008	0.010
	$\delta_{\gamma}^{(4)}$	-0.020	0.020	-0.020	0.020	-0.020	0.019	-0.020	0.020	-0.020	0.020
IA	A_{IA}	0.358	0.186	0.353	0.184	0.372	0.187	0.371	0.175	0.367	0.174
IA	η	0.031	2.541	0.001	2.552	0.126	2.193	0.055	2.227	-0.041	2.367
	b_1	1.382	0.123	1.379	0.132	1.377	0.122	1.376	0.129	1.416	0.133
	b_2	1.693	0.131	1.690	0.141	1.685	0.129	1.685	0.136	1.726	0.143
Bias	b_3	1.652	0.123	1.651	0.132	1.641	0.119	1.646	0.127	1.685	0.135
	b_4	2.042	0.152	2.038	0.164	2.032	0.149	2.034	0.158	2.080	0.166
		2.079	0.161	2.078	0.173	2.065	0.158	2.075	0.167	2.118	0.172
	$\delta_g^{(1)}$	0.001	0.007	0.001	0.007	0.001	0.007	0.001	0.007	0.001	0.007
		0.002	0.007	0.002	0.007	0.002	0.007	0.002	0.007	0.002	0.007
Shifts (GC)		0.002	0.006	0.002	0.006	0.002	0.006	0.002	0.006	0.002	0.006
Smits (GC)	$\delta_g^{(4)}$	0.002	0.009	0.003	0.009	0.003	0.010	0.003	0.010	0.003	0.010
	$\delta_g^{(5)}$	0.000	0.010	-0.001	0.010	0.000	0.010	-0.001	0.010	0.000	0.010

Table 2: Summary statistics of all the parameters

NUTS with EH

• Number of steps: [201026, 242731]

		NU	TS		EMCEE					
Θ	$\mu_{ m emu}$	$\sigma_{ m emu}$	$\mu_{ m EH}$	$\sigma_{ m EH}$	$\mu_{ m emu}$	$\sigma_{ m emu}$	$\mu_{ m EH}$	$\sigma_{ m EH}$		
σ_8	0.840	0.064	0.828	0.063	0.845	0.063	0.830	0.063		
Ω_c	0.229	0.024	0.229	0.026	0.228	0.023	0.228	0.025		
Ω_b	0.043	0.007	0.045	0.007	0.043	0.007	0.045	0.007		
h	0.719	0.051	0.711	0.050	0.720	0.050	0.712	0.050		
n_{s}	0.957	0.056	0.958	0.056	0.959	0.057	0.961	0.056		

Table 3: Cosmological Parameters only

• Step size: 0.01

• Number of tree depth: 8

• Time taken: 13 hours 27 minutes

Thinning is always decreasing the effective sample size. However, the number of effective samples per sample, $\frac{N_{\text{eff}}}{n}$, increases until the thinning is large enough that the thinned samples are uncorrelated.