1. Mettre chacun des nombres complexes suivants sous la forme a + ib, avec a et b réels :

$$z = -\frac{2}{1 - \mathrm{i}\sqrt{3}}, \quad u = \frac{3 - \mathrm{i}}{(1 + \mathrm{i})(1 - 2\mathrm{i})}, \quad v = \frac{5 + \mathrm{i}\sqrt{2}}{1 + \mathrm{i}}, \quad w = \left(\frac{1 - \mathrm{i}}{1 + \mathrm{i}}\right)^2.$$

- 2. Soit un repère orthonormé (O, \vec{i}, \vec{j}) du plan. Dans chacun des deux cas suivants,
 - (a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{OA}$ et $\overrightarrow{AB} \cdot \overrightarrow{AC}$
 - (b) Calculer $||\overrightarrow{AB}||$, $||\overrightarrow{AC}||$ et $||\overrightarrow{OA}||$.
 - (c) En déduire si les points O, A et B sont alignés. Même question pour A, B et C.

- 3. Soient \vec{i} et \vec{j} deux vecteurs du plan tels que $\vec{i}^2=2, \, ||\vec{j}||=3$ et $\vec{i}\cdot\vec{j}=-4$. Calculer $(3\vec{i}-\vec{j})\cdot(-\vec{i}+2\vec{j}), \, (\vec{i}-3\vec{j})^2$ et $||2\vec{i}+3\vec{j}||$.
- 4. Écrire sous les trois formes (algébrique, trigonométrique et exponentielle) les nombres complexes suivants :
 - (a) Nombre de module 2 et d'argument $\frac{\pi}{3}$
 - (b) Nombre de module 3 et d'argument $-\frac{\pi}{8}$
- 5. Effectuer les calculs suivants :
 - (a) (3+2i)(1-3i)
 - (b) Produit du nombre complexe de module 2 et d'argument $\frac{\pi}{3}$ par le nombre complexe de module 3 et d'argument $-\frac{5\pi}{6}$.
 - (c) Quotient du nombre complexe de module 2 et d'argument $\frac{\pi}{3}$ par le nombre complexe de module 3 et d'argument $-\frac{5\pi}{6}$.
- 6. Calculer le module et un argument de

$$u = \frac{\sqrt{6} - i\sqrt{2}}{2}$$
 et $v = 1 - i$

En déduire le module et un argument de $\frac{u}{v}$.

7. Simplifier les nombres complexes suivants :

$$z = \left(\frac{1 + i\sqrt{3}}{1 - i}\right)^{20}$$
 et $u = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{100}$

- 8. Du calcul de $(\sqrt{3} i)(1 + i)$, déduire $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- 9. Montrer que pour tout $(u, v) \in \mathbb{C}^2$ on a :

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2)$$

Donner une interprétation géométrique.

- 10. (a) Développer $(\cos(\theta) + \mathrm{i}\sin(\theta))^5$ avec la formule du binôme de Newton.
 - (b) En déduire une expression de $\cos(5\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$.
 - (c) Exprimer alors $\cos(5\theta)$ en fonction de $\cos(\theta)$.
 - (d) Exprimer aussi $\sin(5\theta)$ en fonction de $\sin(\theta)$.
- 11. Linéariser $\cos^5(\theta)$ et $\sin^3(\theta)$.
- 12. Pour $n \in \mathbb{N}$ et $(a,b) \in \mathbb{R}^2$, calculer $C = \sum_{k=0}^n \cos(a+kb)$ et $S = \sum_{k=0}^n \sin(a+kb)$.
- 13. Déterminer les racines
 - (a) 5ème de 1 + i

(c) 4ème de $8(1+\sqrt{3})$

(b) 5ème de 32i

- (d) 4ème de 81 et -81
- 14. Résoudre les équations suivantes :
 - (a) $z^2 + 2z + 5 = 0$

- (c) $z^2 (5 14i)z 2(5i + 12) = 0$
- (b) $2z^2 (1+5i)z 2(1-i) = 0$
- (d) $z^2 3z + 3 + i = 0$
- 15. (a) Donner les solutions sous forme algébrique et trigonométrique de :

$$u^4 = -4$$

(b) Donner les solutions sous forme algébrique de :

$$(z+1)^4 + 4(z-1)^4 = 0$$

16. Posons $E = \mathbb{C} \setminus \{-i\}$. Soit $f : E \to \mathbb{C} \setminus \{1\}$ l'application définie pour tout $z \in E$ par :

$$f(z) = \frac{z - i}{z + i}$$

- (a) Montrer que l'application est injective.
- (b) Montrer que pour tout $z \in E$ on a $f(z) \neq 1$
- (c) Démontrer l'égalité

$$f(E) = \mathbb{C} \setminus \{1\}$$

Que peut-on déduire sur f?

17. (DS 2019-2020)

On appelle $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

- (a) Résolvez dans \mathbb{C} l'équation $\mathbb{Z}^3 = 1$. Donnez les solutions sous forme algébrique et trigonométrique.
- (b) Montrez que $\overline{j} = j^2$ et que $j^{-1} = j^2$.
- (c) Combien vaut $1+j+j^2$? Quelle propriété exprime ce résultat? Suggestion : qui sont 1, j et j^2 ?
- (d) Résolvez l'équation $z^2 + z + 1 = 0$
- (e) Déterminez la nature et les éléments caractéristiques de la transformation géométrique : $z \mapsto jz$
- (f) (BONUS) Si A et B sont les deux points d'affixe les racines du polynôme calculées en d), calculer c l'affixe du point C tel que ABC soit un triangle équilatéral et Re(c) > 0.