

三、波函数

- ◆ 不确定关系: 不能同时确定微观粒子的位置、动量;
- 实验测量: 这些力学量的统计平均值;
- 理论计算: 先写出波函数,再通过其统计意义计算 能量、动量、角动量、位置等力学量的统计平均值;

经典波的波函数

 $y(x,t) = A\cos 2\pi \left(vt - \frac{1}{2}\right)^{-1}$ ◆ 机械波

电磁波
$$\begin{cases} E(x,t) = E_0 \cos 2\pi \left(\nu t - \frac{x}{\lambda} \right) \\ H(x,t) = H_0 \cos 2\pi \left(\nu t - \frac{x}{\lambda} \right) \end{cases}$$

经典波为实函数

$$y(x,t) = \text{Re}[Ae^{-i2\pi(\nu - \frac{x}{\lambda})}]$$

三、波函数

- 1. 波函数 $\Psi(\bar{r},t)$ ——描述微观粒子状态的物理量
 - 一个沿x轴正方向运动的,不受外力作用的自由 粒子,对应的物质波是一列单色平面波,波函数为

$$\Psi(x,t) = \Psi_0 e^{-i2\pi(\nu - \frac{x}{\lambda})} = \Psi_0 e^{-i\frac{2\pi}{h}(Et - px)}$$
 复函数

(自由粒子在空间各点等概率)

2. 波函数的物理意义

t时刻粒子在空间某点附近体积元dV 中出现的 概率与该处波函数绝对值的平方成正比。即

$$\frac{\mathrm{d}W = \left|\Psi(\bar{r},t)\right|^2}{\mathbf{K}\mathbf{z}\mathbf{E}\mathbf{E}} \mathrm{d}V = \Psi(\bar{r},t)\Psi^*(\bar{r},t)\mathrm{d}V$$

三、波函数

3. 波函数的标准条件:

a. $\int_{\mathbb{R}} |\psi|^2 dV$ 有限, 可归一化: $\int_{-\infty < x, v, z < \infty} |\psi|^2 dx dy dz = 1$

b.
$$\psi \not$$
 $\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z}$ **连续**.

- \mathbf{c} . $\psi(x,v,z)$ 应为单值函数。
- **有限**: 粒子在任何地方出现的概率不能为无限大, 所以ψ*ψ必须有限, 这要求 $Ψ(\vec{r},t)$ 有限。
- 连续: 概率不会在某处发生突变,所以要求波函数 $\Psi(\vec{r},t)$ 必须是
- $\dot{\mathbf{p}}$ **值**: 在某一时刻,空间某点只能有一个概率,所以波函数 $\Psi(\ddot{\mathbf{r}}, \mathbf{t})$

四、薛定谔方程

薛定谔方程: ● 物质波波函数所遵循的方程

• 量子力学的动力学方程

薛定谔按照如下性质,由理论"构思"而来:

- (1) 遵循<mark>能量守恒定律;</mark> $E = \frac{p^2}{2m}$ 或 $E = \frac{p^2}{2m} + E_p$
- (2) 由该方程得出的自由粒子的解满足德布罗意
- (3) 方程是线性的(波函数可叠加)、单值解 (概率唯一)的:
- (4) 体现因果性要求(由初始态可求解t时刻态)。

正确与否,看其结果是否与实验相符!

四、薛定谔方程

- 一维运动自由粒子的含时薛定谔方程 $E = E_k = \frac{p^2}{2m}$ $\frac{h^2}{8\pi^2 m} \frac{\partial^2 \Psi}{\partial x^2} = i \frac{h}{2\pi} \frac{\partial \Psi}{\partial t}$
- \rightarrow 在<mark>势场 $E_{x}(x,t)$ 中一维运动粒子的含时</mark>薛定谔方程 $-\frac{h^2}{8\pi^2 m}\frac{\partial^2 \Psi}{\partial x^2} + E_{\rm p}(x,t)\Psi = i\frac{h}{2\pi}\frac{\partial \Psi}{\partial t}$
- ◆ 在恒定势场E_a(x)中一维运动粒子的定态薛定谔方程 定态: 势能函数 $E_p(x)$ 、粒子的能量 E, 粒子的 概率密度 ΨΨ*均不随时间变化。

$$\Psi(x,t) = \psi(x)\phi(t)$$
 "分离变量法"

$$\phi(t) = \phi_0 e^{-i2\pi E t/h}$$

$$\frac{d^2 \psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - E_p)\psi(x) = 0$$

四、薛定谔方程

补充说明:

1. 三维势场 $E_{p}(x, y, z)$ 中的定态薛5

$$\nabla^{2}\psi + \frac{8\pi^{2}m}{h^{2}}(E - E_{p})\psi(x, y, z) = 0$$

拉普拉斯算符定义为: $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ (Laplace)

2. 自由粒子:
$$E = \frac{p^2}{2m}$$
 $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi$

3. 一般情况下: $E = \frac{p^2}{2m} + U(r)$

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + U(\boldsymbol{r})\Psi$$

四、薛定谔方程

量子力学中最为核心、最为本质, 导致量子 4. 态叠加原理 力学偏离经典力学的原理!

$$\begin{aligned} \Psi &= c_1 \Psi_1 + c_2 \Psi_2 \\ |\Psi|^2 &= \left| c_1 \Psi_1 + c_2 \Psi_2 \right|^2 \\ c_1^2 |\Psi_1|^2 + c_2^2 |\Psi_2|^2 + c_1^* c_2 \Psi_1^* \Psi_2 + c_1 c_2^* \Psi_1 \Psi_2^* \end{aligned}$$

当体系处于波函数所描述的量子状态时,体系部分地处于态 Ψ、、Ψ、、Ψ、、μ……中。此时,如果测量体系的物理量如坐标、动量等,可以得到许多可能值,且各个值以一定的概率出现。

被测量的瞬间,量子态坍缩至某一本征态.

五、薛定谔方程的应用一

(一维无限深方势阱中的粒子)

1. 一维无限深势阱

粒子势能 E_n 满足的边界条件

$$E_{\mathbf{p}} = \begin{cases} 0, & 0 < x < a \\ \infty, & x \le 0, x \ge a \end{cases}$$

意义

- 1)是固体物理金属中自由电子的简化模型;
- 2) 数学运算简单,量子力学的基本概念、原理 在其中以简洁的形式表示出来.

计算 粒子在势阱中的的能量、位置

五、薛定谔方程的应用一 一维方势阱

2. 由边界条件和归一化条件求解

能量 $E_n = n^2 \frac{h^2}{8ma^2}$, n = 1,2,3,... 能量本征值

波函数

五、薛定谔方程的应用一 一维方势阱

2. 由边界条件和归一化条件求解

- 势阱中粒子的动量: $p_n = \sqrt{2mE_n} = \frac{nh}{2a}$
- * 波长: $\lambda_n = \frac{h}{p} = \frac{2a}{n}$

 $(n = 1, 2, 3, \cdots)$

说明:

- (1) 能量、动量、波长量子化;
- (2) 无限深方势阱中粒子的每一个能量本征态 对应于德布罗意波的一个特定波长的驻波;
- (3) 经典力学是量子力学在主量子数n→∞的 极限情况。 ——对应原理

六、薛定谔方程的应用二 -维方势垒

1. 一维方势垒

$$E_{p}(x) = \begin{cases} 0, & x < 0, x > a \\ E_{p0}, & 0 \le x \le a \end{cases}$$

实例: α 衰变

 α 粒子在半径为R 的放射性核 中势能很低,在核边界上有一 因库仑力而产生的较高的势垒。

六、薛定谔方程的应用二

-维方势垒

2. 隧道效应

六、薛定谔方程的应用二

一维方势垒

2. 隧道效应

六、薛定谔方程的应用二

一维方势垒

3. 隧道效应的应用——STM (Scanning Tunneling Microscope)

G. Binnig Rohrer

1981 发明STM,1986 Nobel prize

六、薛定谔方程的应用

·维方势垒

3. 隧道效应的应用 STM

六、薛定谔方程的应用二

维方势垒

3. 隧道效应的应用--STM

STM image of a double stranded DNA molecule.

STM image of a protein.

六、薛定谔方程的应用二

维方势垒

3. 隧道效应的应用----STM

Atomilism

Xenon on Nickel (110)

Carbon Monoxide on Platinum (111)

Iron on Copper (111)

六、薛定谔方程的应用二

一维方势垒

3. 隧道效应的应用——STM

Quantum Corral (Iron on Copper (111))

M.F. Crommie, C.P. Lutz, D.M. Eigler. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218-220 (1993).

七、薛定谔方程的应用三 氢原子的量子理论

$$\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\psi}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\psi}{\partial\theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2} + \frac{8\pi^2m}{h^2}(E + \frac{e^2}{4\pi\varepsilon_0r})\psi = 0$$
利用分离变量法 $\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$

用分离变量法 $\psi(r,\theta,\varphi) = \frac{R(r)\Theta(\theta)\Phi(\varphi)}{R(r)\Theta(\theta)\Phi(\varphi)}$ 经向波函数 角波函数

七、薛定谔方程的应用三 氢原子的量子理论

1. 氢原子的薛定谔方程

$$\Phi_{m_l}(\varphi)$$
 $\left(\frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} + m_l^2\Phi = 0\right)$ 解是 $\Phi = Ae^{im_l\varphi}$, Φ 的单值性要求 $\Phi(\varphi) = \Phi(\varphi + 2\pi)$ \therefore $m_l = 0, \pm 1, \pm 2, \cdots$

$$\frac{\Theta_{lm_l}(\theta)}{\sin^2 \theta} - \frac{1}{\Theta \sin \theta} \frac{d}{d\theta} (\sin \theta \frac{d\Theta}{d\theta}) = \lambda$$

是勒让德方程,其解是勒让德多项式。为了使 $\theta = 0$ 和 $\theta = \pi$ 时 Θ 为有限,必须限定 $\lambda = l(l+1), \ l = 0,1,2,\dots$ $l \ge |m_l|$

根据波函数满足单值、有限和连续的条件,可得

七、薛定谔方程的应用三 氢原子的量子理论

Table 1.1 Some $\Theta_{\ell m_{\ell}}$ wave functions for hydrogen and hydrogen-like atoms

ℓ	m_{ℓ}	$\Theta_{\ell m_\ell}(\theta)$	l	m_ℓ	$\Theta_{\ell m_\ell}(\theta)$
0	0	$\frac{1}{2^{1/2}}$	2	0	$\frac{10^{1/2}}{4}(3\cos^2\theta - 1)$
1	0	$\frac{6^{1/2}}{2}\cos\theta$	2	± 1	$\frac{15^{1/2}}{2}\sin\theta\cos\theta$
1	± 1	$\frac{3^{1/2}}{2}\sin\theta$	2	± 2	$\frac{15^{1/2}}{4}\sin^2\theta$

Table 1.2 Some $R_{n\ell}$ wave functions for hydrogen and hydrogen-like atoms

n	ℓ	$R_{n\ell}(r)$		
1	0	$\left(\frac{Z}{a_0}\right)^{3/2} 2 \exp(-\rho)$		
2	0	$\left(\frac{Z}{a_0}\right)^{3/2} \frac{1}{2^{1/2}} \left(1 - \frac{\rho}{2}\right) \exp\left(-\frac{\rho}{2}\right)$		
2	1	$\left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{1}{2}\right) \frac{1}{6^{1/2}} \rho \exp\left(-\frac{\rho}{2}\right)$		

 $\rho = \frac{r}{a}$ $a_0 \rightarrow x$ $x \neq 2$

$$a_0 = \frac{\varepsilon_0 h^2}{\pi m e^2} = 5.29 \times 10^{-11} \text{m}$$

七、薛定谔方程的应用三 氢原子的量子理论

2. 解方程得到的主要结论

(1) 能量量子化
$$E_n = -\frac{1}{n^2} \frac{me^4}{8\varepsilon_o^2 h^2}$$
 $n = 1, 2, \dots$

(2) 轨道角动量大小量子化

(3) 轨道角动量方向量子化(空间量子化)

$$L_z = m_l \frac{h}{2\pi} \qquad m_l = 0, \pm 1, \pm 2 \cdot \dots \cdot \pm l$$
共有 $(2l+1)$ 个可能取值

七、薛定谔方程的应用三氢

氢原子的量子理论

3. 空间量子化能很好地解释正常塞曼

正常塞曼效应: 一条光谱线在强磁场中分裂成三条的现象。 (钙、水银、镉等元素的原子光谱线)

七、薛定谔方程的应用三

氢原子的量子理论

4. 氢原子的电子分布概率

- (1) 氢原子中电子的稳定状态,可以用一组量子数 (n, l, m_l) 表示其定态波函数为 $\psi_{nlm}(r, \theta, \varphi)$
- (2) 电子出现在原子核周围 $r \sim r + dr$, $\theta \sim \theta + d\theta$, $\theta \sim \theta + d\theta$ 的概率

$$\left|\psi_{nlm_l}\right|^2 dV = \left|R_{nl}\right|^2 \left|\Theta_{lm_l}\right|^2 \left|\Phi_{m_l}\right|^2 r^2 \sin\theta dr d\theta d\varphi$$

(3) 电子出现在原子核周围 $r \sim r + dr$ 的概率

$$P dr = |R_{nl}|^2 r^2 dr \int_0^{\pi} |\Theta|^2 \sin \theta d\theta \int_0^{2\pi} |\Phi|^2 d\phi$$
$$= |R_{nl}|^2 r^2 dr$$

七、薛定谔方程的应用三 氢原子的量子理论

4. 氢原子的电子分布概率

(4) 电子概率密度的径向分布 $P = |R_{nl}|^2 r^2$

(a) 径向波函数; (b) 径向概率分布函数; (c) 径向电荷密度函数。

七、薛定谔方程的应用三

氢原子的量子理论

4. 氢原子的电子分布概率

(5) 电子概率密度的角分布

 $Pd\Omega = \int_0^\infty |R_{nl}|^2 r^2 dr |Y_{lm_l}(\theta, \varphi)|^2 \sin\theta d\theta d\varphi$

用电子云形象地描绘电子出现在核周围的概率分布。

七、薛定谔方程的应用三 氢原子的量子理论

