ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1 LISTA 1

Zakładamy, że wszystkie rozpatrywane przestrzenie topologiczne są drogowo spójne.

- 1. Uzasadnij, że składanie dróg spełnia następujący warunek skreśleń: jeśli $f_0 \cdot g_0 \simeq f_1 \cdot g_1$ oraz $g_0 \simeq g_1$ to $f_0 \simeq f_1$.
- 2. Pokaż bezpośrednio z definicji, że dla pętli f, g w X zbazowanych w $x_0 \in X$ zachodzi równoważność $f \sim g \Leftrightarrow f \cdot \overline{g} \sim \operatorname{const}_{x_0}$, gdzie $\operatorname{const}_{x_0}$ to pętla stała zbazowana w x_0 , zaś \overline{g} to pętla odwrotna do g zadana wzorem $\overline{g}(t) = g(1-t)$.
- 3. Uzasadnij, że dla dowolnej przestrzeni topologicznej X następujące trzy warunki są równoważne:
 - (a) każde odwzorowanie $S^1 \to X$ jest homotopijne ze stałym;
 - (b) każde odwzorowanie $S^1 \to X$ rozszerza się do odwzorowania $D^2 \to X$, gdzie D^2 to 2-wymiarowy dysk, ktrego brzegiem jest nasze S^1 ;
 - (c) $\pi_1(X, x_0) = 0$ dla dowolnego $x_0 \in X$.
 - Wywnioskuj stąd, że przestrzeń X jest jednospójna wtedy i tylko wtedy gdy wszystkie odwzorowania $S^1 \to X$ są homotopijne.
- 4. Jeśli $\pi_1 X = 0$ (grupa podstawowa jest trywialna) to każde dwie drogi łączące dowolnie wybrane dwa punkty $x_0, x_1 \in X$ są homotopijne.
- 5. Mówimy, że przestrzeń topologiczna X jest ściągalna, jeśli istnieje odwzorowanie F: $X \times I \to X$ takie, że F(x,0) = x oraz $F(x,1) = x_0$ dla dowolnego x oraz pewnego ustalonego x_0 . Uzasadnij, że jeśli X jest przestrzenią ściągalną to jest też drogowo spójna, oraz $\pi_1 X = 0$ (innymi słowy, X jest wtedy jednospójna).
- 6. Uzasadnij, że każdy wypukły podzbiór w \mathbb{R}^n jest ściągalny.
- 7. Niech T będzie skończonym drzewem, tzn. spójnym skończonym grafem nie zawierającym zamkniętych cykli krawędzi. Uzasadnij, że $\pi_1 T = 0$.
- 8. Uzasadnij, że homomorfizm $\varphi_d : \pi_1(X, x_0) \to \pi_1(X, x_1)$ (związany ze zmianą punktu bazowego) zależy tylko od klasy homotopii drogi d od x_0 do x_1 .
- 9. Niech G będzie grupą topologiczną, czyli grupą zaopatrzoną w topologię, dla której odwzorowania $m: G \times G \to G$ oraz $r: G \to G$ określone przez $m(g,h) = g \cdot h$ i $r(g) = g^{-1}$ są ciągłe. Uzasadnij, że $\pi_1(G,e)$ jest grupą przemienną.

Wolną homotopią pomiędzy pętlami f i g w X (zaczepionymi niekoniecznie w tym samym punkcie) nazywamy rodzinę pętli f_t : $t \in I$ w X zależną w sposób ciągły od t (tzn. taką że odwzorowanie $(s,t) \to f_t(s)$ jest ciągłe), taką że $f_0 = f$ i $f_1 = g$, zaś punkt zaczepienia pętli f_t może się zmieniać wraz z t.

- 10. Jeśli każda pętla w X jest wolno homotopijna z pewną pętlą stałą, to $\pi_1 X = 0$. UWAGA: na ogół, wolno homotopijne pętle zaczepione w tym samym punkcie nie muszą być homotopijne (porównaj następne zadanie).
- 11. Niech $[S^1, X]$ będzie zbiorem klas wolnej homotopii pętli w X (o dowolnym punkcie zaczepienia). Niech $\Phi: \pi_1(X, x_0) \to [S^1, X]$ będzie naturalnym odwzorowaniem zadanym przez fakt że każda homotopia pętli jest ich wolną homotopią. Uzasadnij, że (a) Φ jest surjekcją;
 - (b) $\Phi([f]) = \Phi([g])$ wtedy i tylko wtedy, gdy elementy [f] i [g] są sprzężone w grupie $\pi_1(X, x_0)$ (tzn. istnieje $h \in \pi_1(X, x_0)$ taki, że $[g] = h^{-1}[f]h$).

Dla podprzestrzeni $A \subset X$, **retrakcją** X **na** A nazywamy takie ciągłe odwzorowanie $r: X \to A$ dla którego $r|_A = \mathrm{id}_A$ (tzn. r(x) = x dla każdego $x \in A$).

- 12. Niech $A \subset X$ będzie retraktem, tzn. taką podprzestrzenią, dla której istnieje retrakcja $R: X \to A$. Uzasadnij, że dla dowolnego $x_0 \in A$ naturalne odwzorowanie $\pi_1(A, x_0) \to \pi_1(X, x_0)$ indukowane przez włożenie $A \to X$ jest różnowartościowe.
- 13. Wywnioskuj z poprzedniego zadania, że podprzestrzeń o nietrywialnej grupie podstawowej nie może być retraktem przestrzeni jednospójnej.

Retrakcja deformacyjna to taka retrakcja $r: X \to A$, dla której istnieje homotopia $r_t: X \to X, t \in I$ (ciągła jako odwzorowanie $X \times I \to X$) taka, że: (1) $r_0 = id_X$, (2) $r_1 = r$, (3) dla każdego $t \in I$ mamy $r_t | A = id_A$.

- 14. Pokaż, że jeśli $r:X\to A$ jest retrakcją deformacyjną, to $r_*:\pi_1X\to\pi_1A$ jest izomorfizmem.
- 15. Wywnioskuj z poprzedniego zadnia, że gdy $\pi_1(Y, y_0) \neq 0$, to $X \times \{y_0\}$ nie jest retraktem deformacyjnym w produkcie $X \times Y$.
- 16. Z izomorfizmu $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$ wynika, że dwie pętle z podprzestrzeni $X \times \{y_0\}$ oraz $\{x_0\} \times Y$ reprezentują komutujące elementy w grupie podstawowej $\pi_1(X \times Y, (x_0, y_0))$. Opisz jawną homotopię pętli ilustrującą ten fakt.
- 17. Niech A będze drogowo spójnym podzbiorem przestrzeni X zawierającym punkt bazowy x_0 . Uzasadnij, że homomorfizm $i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$ indukowany przez włożenie $i: A \hookrightarrow X$ jest surjekcją wtedy i tylko wtedy gdy każda droga w X o końcach w A jest homotopijna z pewną drogą w A.