Assignment 9 MAT 347

Q2: It has been proven that an ideal I is maximal if and only if R/I is a field. Thus we will show that $\mathbb{R}[x]/(x^2+1)$ is a field. Note that any polynomial of degree greater than 2 will be equivalent to a linear polynomial, since we can subtract off a sufficiently large multiple of x^2+1 . Elements of the ring $\mathbb{R}[x]/(x^2+1)$ will therefore take the form of a+bx. We claim that $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$. If we take a+bx, c+dx in this ring, we have that their sum will be

$$(a + bx) + (c + dx) = (a + c) + x(b + d).$$

We evaluate their product as

$$(a + bx)(c + dx) = ac + adx + cbx + dbx^{2} = (ac - bd) + x(ad + cb).$$

We have an isomorphism between $\mathbb{R}[x]/(x^2+1)$ to \mathbb{C} given by $\varphi(a+bx)=a+bi$. The structures of addition and multiplication will be preserved by our computations above.