Final Exam Problem Bank

exaclior

November 27, 2023

Contents

1 Purely Linear Algebra

1.1 MAT 310 II

1.1.1 P2: How to take determinant

(15pts) Let

$$A = \left(\begin{array}{cccc} 4 & 3 & 1 & 2 \\ 1 & 9 & 0 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{array}\right)$$

- 1. Calculate the determinant of A using any method that you know.
- 2. What is the determinant of -2A?

1.1.2 P3: Determinant and Invertibility

(13pts) Let A and B be $n \times n$ matrices such that AB = -BA. Prove that if n is odd, then A or B is not invertible.

1.1.3 P4: Diagonalizing a matrix

(13pts) Determine if the following matrix is diagonalizable and justify your answer. If so, find an invertible matrix Q and a diagonal matrix D such that $A = QDQ^{-1}$.

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

1.2 MAT 310 I

1.2.1 P3: Basis

(15 pts) Determine whether or not $\{(1,1,0),(2,0,-1),(-3,1,1)\}$ is a basis for \mathbb{R}^3 .

P4: Rank Nullity Theorem 1.2.2

(15pts) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ denote a linear transformation such that T((1,0,0,0)) =(3,-1,0), T((1,1,1,1)) = (-2,1,3), and T((0,0,1,1)) = (0,1,1). Compute the dimension of the null space $\dim(N(T))$. Hint: $\dim(R^4) = \operatorname{rank}(T) +$ null(T)

NYU Final 1.3

1.3.1 P5: Rank Nullity Theorem

- 1. Suppose A is an 8×7 matrix in which $\dim(\text{Nul } A) = 6$. Then rank A =
- (a) 1 (b) 2 (c) 6 (d) 7 (e) 8

1.3.2 P7: Invertibility

Consider the 3×3 matrix $A=\begin{bmatrix}0&1&k\\2&k&-6\\2&7&4\end{bmatrix}$. For what values of k is matrix

A invertible?

(a) $k \in \mathbb{R}$ (b) all real k except 2 and 5 (c) $k \ge 0$ (d) k = 0 (e) no value of k makes A invertible

P8: Definition of Eigenvector

 $\begin{bmatrix}1\\2\\2\end{bmatrix} \text{ is an eigenvector of } \begin{bmatrix}4&-2&1\\2&0&1\\2&-2&3\end{bmatrix}. \text{ What is the corresponding eigenvalue? (a) 0 (b) 2 (c) 3 (d) 7 (e) need more information to determine eigenvalue?}$

value associated with eigenvector $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$

1.3.4 P13: Exponentiating a matrix

(10 points) Compute A^{2017} where $A=\left[\begin{array}{cc} 1 & 0 \\ 2 & -1 \end{array}\right]$. (Hint: Diagonalize A.)

2 General

2.1 Sakurai

2.2 Likharev

- 2.1
- 4.4
- 4.9
- 4.19

3 Quantum Information

3.1 Bacon Final

- P1
- P2
- P3
- P4

3.2 MIT P3

- P1
- P4
- P5

3.3 ETH P3

• Shor's code

- 4 Atomic Physics
- 4.1 The Quantum Mechanics Solver
- 5 Condensed Matter Physics
 - Provided by Prof. Liu