

Let's hack TensorFlow

Meetup

Karlsruhe, 8.6.2017

Zoran Cupic

Data Science Student

Alexandra Wörner Big Data Scientist

Marcel Kurovski Master's Degree Candidate

About inovex

- > Enabling Your Digital Future
- > about 250 inovexperts
- Offices: Karlsruhe, Pforzheim, Stuttgart, Munich,
 Cologne, Hamburg
- › Data Science Projects
- › Data Science Research at our inovex Lab

inovex Lab

Feedback

https://sayat.me/tfinovexmeetup

Contents

- Introduction to TensorFlow
- › Neural Networks & Deep Learning
- Convolutional Neural Networks
- > Recurrent Neural Networks
- > Recommendations

Useful Links

- > Homepage: https://www.tensorflow.org/
- > Documentation: https://www.tensorflow.org/api_docs/
- › GitHub: <a href="https://github.com/tensorflow/ten
- Model Zoo: https://github.com/tensorflow/models
- › Awesome-Repo:

https://github.com/jtoy/awesome-tensorflow/

Code Snippets

- > provided as Jupyter notebooks
- > Repository Link: https://github.com/inovex/tensorflow-meetup
- > clone the repository
- > run jupyter notebook from the repository root to start
 Jupyter

Literature

> lots of great stuff on the web!

Introduction to TensorFlow Overview

- > open-source software library for Machine Intelligence
- > developed by Google and open-sourced in Nov. 2015
- > numerical computation using data flow graphs
- most used and most popular software library for Deep Learning

Overview

Aggr	egate	popularity (30•contrib + 10•issues + 5•forks)•1e-3
#1:	97.53	tensorflow/tensorflow
#2:	71.11	BVLC/caffe
#3:	43.70	fchollet/keras
#4:	32.07	Theano/Theano
#5:	31.96	dmlc/mxnet
#6:	19.51	deeplearning4j/deeplearning4j
#7:	15.63	Microsoft/CNTK
#8:	13.90	torch/torch7
#9:	9.03	pfnet/chainer
#10:	8.75	Lasagne/Lasagne
#11:	7.84	NVIDIA/DIGITS
#12:	7.83	mila-udem/blocks
#13:	5.95	karpathy/convnetjs
#14:	5.84	NervanaSystems/neon
#15:	4.91	tflearn/tflearn
#16:	3.28	amznlabs/amazon-dsstne
#17:	1.81	IDSIA/brainstorm
#18:	1.38	torchnet/torchnet

Overview

Architecture

Programming Model & Basic Concepts

- › Data Flow Graph
- Tensor
- Operations
- > Variables
- > Placeholder
- Session

Programming Model & Basic Concepts - Data Flow Graph

- > computations represented as directed graph
 - Nodes: operations performed on data
 - › Edges: flow of data / data → tensors
- > 2 phases:
 - → construction → assembling of graph
 - → execution → run the graph with data

Programming Model & Basic Concepts - Tensor

- > multidimensional array/matrix
 - scalar
 - > vector
 - > matrix
- > tensors flow between nodes of the data flow graph

Programming Model & Basic Concepts - Operations

> computations performed in the data flow graph

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,
Stateful operations	Variable, Assign, AssignAdd,
Neural-net building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,
Control flow operations	Merge, Switch, Enter, Leave, NextIteration

Programming Model & Basic Concepts - Variables

- > persistent mutable tensors
- > a variable survives across multiple executions of a graph
- > e.g. parameters of a machine learning model are variables
- > alongside the variables there are also constants
 - persistent non-mutable tensors with a fixed value

Programming Model & Basic Concepts - Placeholder

- > persistent mutable tensors
- > fed with data at the execution of a graph
- > e.g. data of a machine learning model

Programming Model & Basic Concepts - Session

- > session allows the execution of a graph or parts of a graph
 - → execution of defined computations → "run the graph"
- > allocation of resources for execution
- data "lives" in the session

Programming Model & Basic Concepts

how it is done in practice:

- › define everything you need and the logic
- > create a session
- initialize all variables
- > run the graph for **n** times

Programming Model & Basic Concepts - Example

```
import tensorflow as tf
import numpy as np
# define a variable, placeholder and a constant
z = tf.Variable(tf.random_normal([10,10], stddev=0.4, dtype=tf.float32), name="y") # 10x10 tensor matrix
x = tf.placeholder(tf.float32, shape=(10, 10), name="x") # Placeholder for input
b = tf.constant(2.5, dtype=tf.float32)
# perform y = x*z+b
y = tf.matmul(x, z)
y = tf.add(y,b)
```

Programming Model & Basic Concepts - Example

```
# define session & initialize variables
sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op)
# run the graph 8 times in a loop and feed it each time with new data
for i in range(8):
  print("step: "+str(i+1))
  random_array = np.random.rand(10,10)
  evaled_z = sess.run(z,feed_dict={x: random_array})
  print(evaled z)
```

to put it all together...

01_1_run_tensorflow.ipynb

enough with the basics, let's start with some simple machine learning

- → one of the simplest models → find a linear function
- correlation between a numeric variable /numeric
 variables and a numeric label
- find a function that fits best to the data points


```
y = x * w + b
```

- \rightarrow x \rightarrow vector with the input variable / variables
- → w → vector with coefficient / coefficients
- \rightarrow b \rightarrow constant
- > function that fits best
 - → find best parameters

- › how to find the function with the best parameters?
 - optimize the parameters iteratively

- optimization step:
 - y quantify the error with a error function
 - optimize the parameters by reference to the given error

Linear Regression

- > do so many optimization steps till the error is minimal
 - → best parameters → function that fits best

Gradient Descent

https://en.wikipedia.org/wiki/Gradient_descent

https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/

Linear Regression in TensorFlow

01_2_linear_regression.ipynb