

KONKURS FIZYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY 12 grudnia 2019 r.

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- **3.** Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- **4.** Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	20	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

Konkurs fizyczny – szkoła podstawowa. 2019/2020. Etap rejonowy

UWAGA: W zadaniach o numerach od 1 do 6 spośród podanych propozycji odpowiedzi wybierz i podkreśl tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

..../1

Zadanie 1. (0 - 1 pkt.)

W niezbyt dużej odległości od siebie znajdują się w próżni 2 nienaładowane kulki. Jedna jest wykonana z izolatora, a druga – z przewodnika (metalu). W pewnym momencie kulkę wykonaną z izolatora naładowano ładunkiem elektrycznym. Po tym momencie na pewno kulki:

- A. będą się odpychać
- B. nie będą oddziaływać ze sobą
- C. będą się przyciągać
- D. będą się przyciągać albo odpychać zależnie od znaku ładunku jakim naładowano kulkę wykonaną z izolatora.

..../1

Zadanie 2. (0 -1 pkt.)

Zmianą wielkości wektorowej nazywamy wektor będący różnicą wektora opisującego tę wielkość w chwili końcowej i wektora opisującego tę samą wielkość w chwili początkowej. Wektor pewnej siły był w chwili początkowej skierowany w prawo i miał wartość 15 N. W chwili końcowej wektor tej samej siły był skierowany w lewo i miał wartość 10 N. Wektor zmiany tej siły ma odpowiednio wartość i jest skierowany:

- A. 5 N i w prawo
- B. 5 N i w lewo
- C. 25 N i w prawo
- D. 25 N i w lewo.

..../1

Zadanie 3. (0 - 1 pkt.)

Kosmonauta podniósł z powierzchni Księżyca kamień i rzucił. Przyjmij, że na Księżycu praktycznie nie ma atmosfery oraz zaniedbaj oddziaływania grawitacyjne Ziemi i innych obiektów z Układu Słonecznego jak również ruch obrotowy Księżyca. Na rzucony przez kosmonautę kamień podczas jego lotu:

Konkurs fizyczny – szkoła podstawowa. 2019/2020. Etap rejonowy

- A. nie działa żadna siła
- B. działa siła, która nadała kamieniowi prędkość początkową
- C. działa tylko księżycowa siła ciężkości
- D. działa wypadkowa dwóch sił siły z jaką kamień został rzucony i księżycowej siły ciężkości.

Zadanie 4. (0-1 pkt.)

..../1

Pewien baśniowy kraj ma szczególny układ podstawowych jednostek w mechanice - podstawowymi jednostkami są jednostki mocy, siły i czasu. W tym kraju jednostka mocy nosi nazwę słoń ([P] = Sl), jednostka siły – boa ([F] = Bo), a jednostka czasu – butelka (wody mineralnej) – ([t] = But). W tym kraju długość ma wymiar (jednostkę):

A. (Sł · Bo)/But

B. Sł/(But · Bo)

C. (Sł · But)/Bo

D. (Bo · But)/Sł.

Zadanie 5. (0 – 1 pkt.)

..../1

Zjawisko fizyczne, dzięki któremu można **samemu** rozhuśtać się na huśtawce nazywa się:

A. interferencja

B. sprzężenie

C. rezonans

D. dyfrakcja.

Zadanie 6. (0 - 1 pkt.)

W ramach eksperymentu fizycznego każdemu z 25 uczniów w klasie nadano ładunek około 6 μC. Następnie uczniowie ci w ciągu 50 s wyszli z klasy. Przez jej jedyne drzwi przepłynął wtedy prąd o (średnim) natężeniu około:

- Α. 3 μ Α
- B. 0,12 μ A
- C. $0,24 \mu A$
- D. $0.5 \mu A$.

Zadanie 7. (0 - 4 pkt.)		/4
Kuter płynie po morzu w pobliżu brzegu. Oddala się on przy tym od brzegu,	płynąc	
prostopadle do linii brzegowej. Fale biegną w kierunku brzegu. Kuter płynie	z prędkoś	cią
4 m/s, a grzbiety fal – z prędkością 2 m/s . Sąsiednie grzbiety fal są oddalone	e od siebie	o 6 m.
Ile czasu upływa pomiędzy kolejnymi uderzeniami fal o brzeg, a ile – o kute	r?	
Uwaga: podane w zadaniu prędkości zostały zmierzone względem obser	watora st	ojącego
na brzegu.		

Zadanie 8. (0 - 5 pkt.)	/5						
W 1 cm³ miedzianego przewodnika znajduje się około 9 · 10 ²² swobodnych elektronów.							
Wartość ładunku elektronu wynosi 1,6 · 10 ⁻¹⁹ C. Pole przekroju przewodnika wynosi 1 mm ² .							
Elektrony poruszają się wzdłuż przewodnika z prędkością średnią 0,7 mm/s. Znajdź nat	tężenie						
prądu, jakie wskaże amperomierz połączony szeregowo z tym przewodnikiem.							
	• •						
	• •						
	• •						
	• •						
	• •						

Konkurs fizyczny – szkoła podstawowa. 2019/2020. Etap rejonowy

Zadanie 9. (0 - 5 pkt.)	/	5	
Silnik elektryczny zasila samochód o napędzie elektrycznym. Sprawność całego urząc	dzen	ia	
wynosi 80%. W obwodzie silnika płynie prąd o natężeniu 30 A, a napięcie na nim wy	nosi		
36 V. Samochód przejechał po poziomej drodze w ciągu minuty 600 m ze stałą prędko			
Znajdź wartość wypadkowej sił oporu ruchu działającej w tym czasie na samochód.	0001	٠,٠	
Znajdž wartose wypadkowej sił oporu ruchu działającej w tym czasie na samochod.			
			•
			•
			•
		•	•
			. .
			•
			•
			. .
			•
			•

Brudnopis