

School of Computing

TUTN & UTN & UTN

TU & MTU-

SUM SUT

BUTM BUT

SUTM SUT

SUTM SUT

- UTM & UTM

UNIVERSITI TEKNOLOGI MALAYSIA

FINAL EXAMINATION SEMESTER II 2020/2021

: SCSI/SECI 1113 SUBJECT CODE

MTU & MTU & MTU & SUBJECT NAME : COMPUTATIONAL MATHEMATICS

SECTION

MTU M TIME : 4 Hours and 15 Minutes

DATE/DAY

VENUES

GENERAL INSTRUCTIONS:

SUTN SUTN SUTM SUTS Exam Execution - The exam is conducted in is 4 sessions. Question(s) are posted according to following SULM SULM SULM session 5 UTM

- a) Session 1 (10.00 am -10.50 am) Question 1
- b) Session 2 (11.05 am 12.05 pm) Question 2 Break (15 min)

- Detail instruction is given in the separated note in e learning
 Answer all questions using A4 size paper.
 Upload the answer file in the 1:-1

- TITM & UTM

bload the answer file in th	TIM BUILD	learning		S WIN S
Name		- 1	-16	20.
Student Id:	- 11 E	A.m.	2 Ola	
Section	2 Oly	20 20 17		
Lecturer Name	2 Alm	2 A. Lan		2 also
SULM SOLIN SOLIN	SUTM SUTM S	UTM & WIU &	O UTM	70
TO THE WAY	A PULDI	TO BUTT	il.	S UTM T
2 aller	2 O.Lor	2 0.1 m		2 O. De
1.00		A. Carrier	1200	

MYU & MYN -

SESSION 1 (50 MINUTES)

SUTM SUTM SUTM OUTH SUTH SUTH QUESTION 1 20 MARKS

a) Find a root of the equation below with accuracy of 1 decimal points in the interval [1, 2] using bisection method. Do calculation in 3 decimal points.

(10 Marks)

$$e^x - 3x - 1$$

b) Find a solution with accuracy to 2 decimal points for the equation below using Secant method, where $p_0 = 0$ and $p_1 = 1$. Do calculation in 4 decimal points. (10 Marks) SUTM SUTM SUTM

$$\tilde{x}^{3} + 2x^{2} + x - 1$$

QUESTION 2 20 MARKS

 a) Given MTU & MTU &

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

- i) Use characteristic polynomial to find the eigen values and eigen vectors for A.

 (4 marks) (4 marks)
- ii) Show that the trace of A is $\lambda_1 \lambda_2 = 4$ and the determinant of A is $\lambda_1 \lambda_2 = 3$ $A = \begin{bmatrix} 7 & 6 & -3 \\ -12 & -20 & 24 \\ -6 & -12 & 16 \end{bmatrix}$ mine the second SUTM SUTM SUTM (2 marks)
- b) Let

$$A = \begin{bmatrix} 7 & 6 & -3 \\ -12 & -20 & 24 \\ -6 & -12 & 16 \end{bmatrix}$$

Determine the smallest magnitude or largest magnitude eigen value of opposite sign of A and its associated eigenvector by the shifted power method with shifting factor p = λ_1 =4. Start your iteration with $v^{(0)} = [\ 1\ 1\ 0]^T$ and stop the iteration when $|\ m_{k+1} - m_k|$ | < 0.5.

(10 marks)

- ii) Prove that your answer in (i) is correct. (2 marks)
- iii) Find the third eigen value of A (2 marks) MTU & MTU &

SESSION 3 (45 MINUTES)

QUESTION 3 20 MARKS

An object moving with a changing speed. Table 1 shows the position of the object at a specific MTU & MTU & MTU & time.

Table 1

		UTM			
TM	UTM	Table 1	TIME		TITM
Time (seconds)	0	1	2	3	4
Position (m)	1.6	4.2	8.8	16.1	21.9

Estimate the position of the object at 3.25 seconds using below methods. Do calculations in 2 S TIM S TIM decimal points.

- (7 marks) a) Appropriate Newton method.
- b) Langrage interpolating polynomials. Given $L_0(x) = -0.02$, $L_1(x) = 0.13$ and $L_2(x) = 0.13$ -0.34.(5 marks)
- c) Least Square approximation by determining the linear polynomial expression p(x) = $a_0 + a_1 x$ (8 marks) 8 MTU 8 S UTM S

SESSION 4 (1 HOUR 20 MINUTES)

QUESTION 4 18 MARKS

Use five-points central difference formula o estimate y'(3) for the following function.

$$y = x^2 + 2\sin(x)$$
. Let $x = \{1,2,3,4,5\}$

Find the true value of y'(3) and calculate the absolute error obtain in this estimation

(12 marks)

b) Given data in Table 2 below,

Table 2

	Wm			War			War		
- TT	IM X UI	1.0	1.2	M 1.4	1.5	1.6	M 1070 1	1.8	2.0
90	y	0	0.128	0.544	0.700	1.296	1.989	2.432	4.00

- i) Estimate y''(1.6) u ing five-point central difference formula ith h = 0.2 (3 marks)
- ii) Estimate y''(1.6) using three-point central difference formula with h = 0.1 (3)

M & UT **QUESTION 5** 22 MARKS

a) Given the following data in Table 3

Table 3

SUTM SUTM SUTM

	TTW			Tr	M	MTT		
	XTM	2	2.5	3 3 T	3.5	4 _{CM}	4.5	5
	201			O France		5 U.		
Ē,	f(x)	1.5839	1.6989	2.0100	2.5635	3.3464	4.2892	5.2837

TIVE MIVE MIVE

MTU & MTII -

Approximate $\int_{2.0}^{5.0} f(x) dx$ using:

Trapezoidal rule

(4 marks)

ii) Simpson's 1/3 rule

rks)

iii) Simpson's 3/8 rule

(4 marks)

b) Use Romberg integration to approximate:

$$\int_{2.0}^{4.0} (x-5)^2 dx$$

Compute the Romberg table until R_{32} .

(10 marks)

SUTM SUT