Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 28

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 3 & -1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

	Ma	rk:			
Standard M2.					
Determine if the matrix	$\begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$	$ \begin{array}{r} -1 \\ 1 \\ 1 \\ -2 \end{array} $	0 1 1 0	$\begin{bmatrix} 4 \\ -1 \\ 3 \\ 0 \end{bmatrix}$	is invertible

Standard M3.

Mark:

Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}$.

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -11 & 4 & -2 \end{bmatrix}$.

Standard G3.

Mark:

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Additional Notes/Marks