Linear Algebra

Phree

December 13, 2019

Chapter 1

Convex Sets

1.1 Cones

Definition 1.1. A set C is a cone if for every $x \in C$ and $\theta \ge 0$, $\theta x \in C$ always holds.

Cone is also named $nonnegative\ homogeneous.$ It is easy to prove that a cone is closed.

1.2 Dual cones

1.2.1 Dual cones

Definition 1.2. Let K be a cone. The set is called dual cone of K if

$$K^* = \{y | y^{\mathrm{T}} x \ge 0 \text{ for all } x \in K\}.$$

1.2.2 Examples

Dual of a norm cone

The dual cone of $K = \{(x,t) \in \mathbb{R}^{n+1} | ||x|| \le t\}$ is

$$K^* = \{(u, v) \in \mathbb{R}^{n+1} | ||u|| \le v\},$$

where the dual norm is given by $\|u\|_* = \sup\{u^Tx | \|x\| \leq 1\}.$

Nonnegative orthant

The cone \mathbb{R}^n_+ is self-dual.

Positive semi-definitive matrix

The set of positive semi-definitive matrix \mathbf{S}^n_+ is also self-dual.

1.2.3 Property of dual cone

- K^* is a cone and convex.
- \bullet K is closed and convex.
- $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$

1.3 Generalized inequalities

1.3.1 Proper cones

Definition 1.3. A cone $K \in \mathbb{R}^n$ is a proper cone if satisfies the following conditions:

- K is convex.
- K is closed.
- ullet K is solid, i.e., it has nonempty interior.
- ullet K is pointed, i.e., it contains no line.

Then we can define generalized inequalities on K, which is a partial ordering on $\operatorname{mathbb} R^n.$ We write y

Chapter 2

Convex functions

2.1 Convex functions and examples

Definition 2.1. A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and for all $x, y \in \operatorname{dom} f$, and $\theta \geq 0$, the following equation holds:

$$\theta f(x) + (1 - \theta)f(y) \le f(\theta x + (1 - \theta)y) \tag{2.1}$$

It can be shown that a function is convex if and only if it is convex when its domain is restricted to a line. A convex function is continuous on the relative interior of its domain.

2.1.1 First-order condition

Theorem 2.1. Assume f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) \tag{2.2}$$

holds for all $x, y \in \mathbf{dom} f$.

2.1.2 Second-order condition

Theorem 2.2. Suppose that f is twice differentiable and $\operatorname{dom} f$ is open, this is, its Hessian Matrix $\nabla^2 f(x)$ exists at each point in its domain. Then f is convex if and only if mathbfdom f is convex its Hessian Matrix is positive semidefinitite.

For strict convexity, we have that if $\nabla^2 f(x) \succ 0$ for all $x \in \mathbf{dom} f$, f is strict convex. However, the converse is not true.

2.1.3 Examples

Here are some convex functions on \mathbb{R}^2 :

- Norms.
- Max function.

• Quadratic-over-linear function, i.e., $f(x,y) = x^2/y$, with

$$\mathbf{dom} f = \mathbb{R} \times \mathbb{R}_{++}.$$

• Log-sum-exp function, i.e., $f(\mathbf{x}) = \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n})$. In fact, this function can be viewed as a differentiable approximation of the max function, since

$$\max(\mathbf{x}) \le f(\mathbf{x}) \le \max(\mathbf{x}) + \log(n) \tag{2.3}$$

holds for any \mathbf{x} .

- Geometric mean, i.e., $f(x) = (\prod_{i=1}^n x_i)^{\frac{1}{n}}$ with $\operatorname{dom} f = \mathbb{R}_{++}$ is concave.
- Log-determinant, i.e., $f(\mathbf{X}) = \log \det \mathbf{X}$ on $\mathbf{dom} f = \mathbb{S}^n_{++}$ is concave. The proof of this part is sophisticated and I don't fully understand so I should turn back later.

2.1.4 Sublevel sets

Definition 2.2. The α -sublevel set of a function $f: \mathbb{R}^n \leftarrow \mathbb{R}$ is

$$C_{\alpha} = \{ \mathbf{x} \in \mathbf{dom} f \mid f(\mathbf{x}) < \alpha \}.$$

Sublevel sets of a convex function are convex, while the converse is not true, and this can be used to tell a set is convex by expressing it as a sublevel of a convex function.

2.1.5 Epigraph

Definition 2.3. The epigraph of a function $f: \mathbb{R}^n \leftarrow \mathbb{R}$ is

$$\mathbf{epi} = \{(\mathbf{x}, t)) \mid \mathbf{x} \in \mathbf{dom} f, f(\mathbf{x}) \le t\}.$$

The relation between convex function and convex set is that a function is convex if and only if its epigraph is a convex set.

Chapter 3

Gradient Methods

3.1 Conjugate Gradient Method

Consider minimizing the quadratic form

$$f(x) = \frac{1}{2}x^T G x + b \tag{3.1}$$

where $G \in \mathbf{S}_{++}^n$ and $x \in \mathbb{R}^n$. First let's restrict the case to n=2. If G is a diagonal matrix, then intuitively we can find the solution of 3.1 in two steps by exact line searching along with two coordinates, since the contour of 3.1 is a ellipse with its major and minor axes parallel to the coordinates.

In general case, we can diagonalize G by introducing a linear transform, denoted by $D=(d_1,\cdots,d_n)$. Substituting $x=D\tilde{x}$ for 3.1 we get

$$\tilde{f}(\tilde{x}) = f(Dx) = \frac{1}{2}x^T D^T G D x. \tag{3.2}$$

The (i, j)th entry of $D^T G D$ is $d_i^T G d_j$ and $d_i^T G d_j = 0$ if $i \neq j$. Here we encounter a very interesting condition, which can be denoted as

$$\langle d_i, d_j \rangle_G = d_i^T G d_j = 0, \tag{3.3}$$

if we introduce a new inner product

$$\langle x, y \rangle_A = x^T A y. \tag{3.4}$$

where $A \in \mathbf{S}^n_{++}$. Then condition 3.3, called conjugate, can be viewed as a generalization of orthogonality.

Definition 3.1. Let $G \in \mathbf{S}_{++}^n$ and $x, y \in \mathbb{R}^n$ are nonzero vectors. x and y is conjugate with respect to G if

$$\langle x, y \rangle_G = x^T G y = 0. (3.5)$$

A sequence of vectors $\{d_i\}$, $i=1,2,\cdots,m$ is conjugate if any two vectors of them are conjugate.

We have the following simple theorem, of which the proof is straightforward.

Theorem 3.1. Conjugate vectors are linear independent.

3.1.1 Connection with linear equations