1) What is an algorithm?

Answer:

A <u>step-by-step</u> solution to a problem is called an algorithm.

2) Explain need of an algorithm?

Answer:

On a number of occasions, we humans need to do repetitive tasks. Manually performing these tasks will require a lot of man power and resources which is inefficient. To perform such tasks we take help from computers by writing <u>computer programs</u> which utilize <u>algorithms</u> to solve and provide a <u>step</u>-by-step solution to such problems.

3) Write an algorithm to find average age of a group of 10 players?

Answer:

- 1. Start
- 2. Initialize "Sum of ages"
- 3. Initialize "count=0"
- 4. Input "age"
- 5. Count = count + 1
- 6. Sum of ages = sum of ages + age
- 7. If "count ≤ 9 "

[Go to line no.04]

Else

[(sum of ages)/10=average age of players]

- 8. Print "Average age of players"
- 9. End

4) Write algorithm to this problem:

Explain steps involve in drawing of a flowchart.

"Ramshewak goes to market for buying some fruits and vegetables. He is having a currency of Rs 500 with him for marketing. From a shop he purchases 2.0 kg Apple priced Rs. 50.0 per kg, 1.5 kg Mango priced Rs.35.0 per kg, 2.5 kg Potato priced Rs.10.0 per kg, and 1.0 kg Tomato priced Rs.15 per kg. He gives the currency of Rs. 500 to the shopkeeper. Find out the amount shopkeeper will return to Ramshewak. And also tell the total item purchased."

Explain	steps	involve	in dr	awing	of a	flowch	ıart.
Explain	uses o	of Flowc	hart.				

A	n	C	×χ	70	r	•
$\overline{}$			·			•

Algorithm:

- 1. Start
- 2. Go to Market
- 3. Input Total amount available (Total amount available = Rs.500/-)
- 4. Total Cost = 0
- 5. Count = 0
- 6. Input price of article
- 7. Total Cost = Total Cost + price of article
- 8. Count = count + 1
- 9. While count \leq Total no. of article (Goto step 7)
- 10. Print Amount left = Total amount Total cost
- 11. Print "No. of articles purchased = count"

Steps and thought process involved in drawing the following flowchart:

The given problem requires the calculation of the amount left after shopping and the number of items bought by the customer.

- (1) The first step will be to take in the input of the total amount from the user.
- (2) After that a counter has been put into place so that the amount of all the articles can be summed together for the calculation of the total cost. The counter will also determine the number of items bought which will be equal to the number of times the loop ran.
- (3) The loop will continue to add the price of each item into the total cost of all the previous items entered.
- (4) When the prices of all the articles has been entered the user will instruct the program to calculate the total cost, the amount left as well as the number of articles bought (which will be equal to the number of times the counter ran).
- (5) Finally, the total cost, amount left and number of items bought will be printed on the screen.

Uses of a Flowchart:

A flowchart plays a key role in determining the functionality of any program. It is basically a blueprint of the program which states the functionality of a program in a precise step-by-step manner. There are specific shapes which we use while drawing the flowchart diagram of any program.

- A rectangle is used to show a processing step.
- A diamond is used when a decision-making step is involved in the flowchart.
- A rhombus is used to show the input or output function.
- Arrows are used to show the direction in which the program will proceed after the completion of a particular step

5) Draw the PAC, HIPO, IPO, and flowchart and write the pseudo code for the following problems

• Find factorial of N?

PAC:

Data	Process	Output
1. Input "n"	1. Input n	
	2. i=1, x=1	
	3. x=x*i	
	4. i=i+1	Output = Factorial of n
	5. If $i \le n$ (Goto step 3)	
	6. Else (print "x")	
	7. End	

HIPO:

IPO:

Data	Process	Module	Output
1. Input n	1. Input n	1100	
2. Declare x=1, i =1	2. Declare i=1	1200	
	3. Declare x=1	1300	Output: n factorial
	4. x=x*i	2100	
	5. i=i+1	2200	
	6. If i≤n Goto	2300	
	2100		
	7. Else, Goto		
	3100		
	8. Output:	3100	
	factorial n		
	9. Display	0000	
	Output		

• Find the sum of first 100 natural numbers.

PAC:

Data	Process	Output
1. Input "n"	1. Input n	
	2. Sum = 0	
	3. Count = 1	
	4. $Sum = sum + count$	Output = Sum of first 100
	5. Count = count +1	natural numbers
	6. While count ≤ 100	
	Goto step 4	
	7. Print sum	
	8. End	

HIPO:

IPO:

Data	Process	Module	Output
1. Input n	1. Input n	1100	
2. Declare	2. Declare	1200	
sum =0	sum=0		Sum of first 100
3. Declare	3. Declare count	1300	natural numbers
count =1	=1		
	4. $Sum = sum +$	2100	
	count		
	5. Count = count	2200	
	+1		
	6. While count ≤	2300	
	100		
	7. Output: Sum	3100	
	of first 100		
	natural		
	numbers		
	8. Display	0000	
	Output		

• Find the largest of three numbers x, y and z.

PAC:

Data	Process	Output
1. Input A, B, C	1. Input A, B, C	
	2. If $A > B$	
	[Then, if A>C	
	(A is the largest	Output = Largest nubmer
	number)	
	Else, (C is the largest	
	number)]	
	Else if B>C	
	(B is the largest	
	number)	
	Else	
	(C is the largest	
	number)	
	3. End if	
	4. End	

HIPO:

IPO:
Table is on next page

Data	Process	Module	Output
1. Input A	1. Input A	1100	
2. Input B	2. Input B	1200	
3. Input C	3. Input C	1300	
	4. If A>B	2100	
	Then, [If A>C	2110	
	(A is the	2111	
	largest	2112	
	number)	2120	
	Else (C is the	2121	
	largest	2122	
	number)]		
	Elseif, B>C		Print "The largest
	(B is the		number"
	largest		
	number)		
	Else, C is the		
	largest		
	number.		
	5. Print "The	3000	
	largest	3100	
	number''		
	6. Display	0000	
	Output		

Flowchart is on next page

• Determining prime number?

PAC:

Data	Process	Output
Input n	Input n	
	Declare i=2	
	If $i = 2$	
	(Print "The number	
	you entered is not a	
	prime number).	
	Else if,	
	[If, n % $i = 0$	Output "The number you
	(Print "The number	entered is /is not a prime
	you entered is not a	number"
	prime number").	
	Else if,	
	(i = i+1)	
	If, $(i < n)$	
	Goto Step 03	
	Else,	
	Print ("The	
	number you	
	entered is a prime	
	number.").	
	End if	
	Display Output	

HIPO:

IPO:

Data	Process	Module	Output
Input n	Input n	1100	
i = 2	Declare i=2	1200	
	If (n==i)	2100	
	Print ("Not a prime	2110	
	number'')		
	Else if, $(n\%i = 0)$	2200	
	Print (Not a prime	2210	
	number)		
	i=i+1	2300	
	Else if, (i>n)	2400	
	Goto Module 2200		
	Else,	2500	
	Print ("The number		
	you entered is a prime		
	number")		
	Output		

Flowchart:

Flowchart on next page

• A program which generates first 50 items of the Fibonacci series: 1, 1, 2, 3, 5, 8,

PAC:

Data	Process	Output
1. Input n	1. Input n	Print (Fibonacci list)
	2. Declare a=0, b=1, c=0,	
	i=3	
	3. Print a, b;	
	4. While $i \le n$	
	5. $(c=a+b,$	
	6. Print c,	
	7. a=b,	
	8. b=c,	
	9. i=i+1)	
	10. End	

HIPO:

IPO:

Data	Process	Module	Output
Input n	Input n	1100	
	Declare	2100	
	a=0, b=1,		
	c=0, i=3		
	Print a, b	2200	Output:
	While $i \le n$	2300	Fibonacci Series
	(c=a+b,		
	Print c,		
	a=b, b=c,		
	i=i+1)		
	Display Fibonacci	3100	
	Series		

Flowchart:

Flowchart is on next page

6. Draw Flowchart of 5 problems of your own choice. But people should come up with unique problems.

Problem 01) Calculate the sum of two numbers input by the user

Problem 02) Calculate the difference of two numbers input by the user

Problem 03) Calculate the mean of two numbers input by the user

Problem 04) Calculate the average of 5 numbers input by the user

Problem 05) Print all the even numbers upto 100

