CYL100 2013-14

Minor

Feb. 8, 2014

The 6 π -electrons of benzene can be modeled as independent, free particles on a ring with a radius of 134 pm. The Hamiltonian for a π -electron is $-\frac{\hbar^2}{2mr^2}\frac{\partial^2}{\partial \phi^2}$.

- 1. What are the boundary conditions satisfied by the solutions to the Schrödinger
- What are the solutions to the Schrödinger equation satisfying the boundary
- Write the energies of the three lowest levels and identify the quantum numbers
- 4. According to this model, at what wavelength (in nm) does the lowest energy absorption occur? ($m_e = 9.109 \times 10^{-31} \text{kg}$, $h = 6.626 \times 10^{-34} \text{J s}^{-1}$, c =[10]

An electron in H-atom is in the state $\psi(r,\theta,\phi) = \frac{1}{4\sqrt{2\pi a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \cos \theta$.

B Plot ψ as a function of z.

- 6. Find $\langle x \rangle$. Information you might need: $\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$
- 7. What is the most probable radius?

[OI]

5

- 8. In this state, what is the orbital angular momentum and its z-projection?
- center. Two electrons are confined on a square sheet with a unit positive charge fixed in the
- 9. Write the Hamiltonian for the system.

6. Do you expect the solution to the Schrödinger equation to be of the form $\psi(x_1,y_1,x_2,y_2) = \phi_1(x_1,y_1)\phi_2(x_2,y_2)$? Why or why not? [5]

[10]

with the protons at the corners of an equilateral triangle. Consider the molecule, H_3^{2+} , composed of three protons (A, B, and C) and one electron

- Write down the complete Hamiltonian for this system in atomic units.
- A possible LCAO MO for the system is $\psi = c(1s_A + 1s_B + 1s_C)$, where $1s_A$, $1s_B$, and $1s_C$ denote the normalized H-atom 1s state at A, B, and C respectively. your expression? Normalize ψ . What is the physical significance of the integrals that appear in
- only if the justification is correct. Decide, with a justification, whether ψ is a bonding or antibonding MO. Marks

the integrals. Which of these integrals is responsible for bond formation? [15] Obtain an expression for the approximate energy of ψ . Use standard notation for

IKKE + K2 + 4 + K2 - Kd =

(A. c)