Public Key Infrastructure

PKI provides Trust services

Confidentiality

- Assurance of the data packet
- Packet cannot be spoofed/sniffed
- Data encryption

Integrity

- Data tampering assurance
- Prevent data compromisation
- Evidence of tampering

Authenticity

- Assurance of connection or evidence of proper connection
- Server side authentication by client

01. Public Key Cryptography

Symmetric Encryption

The secret key is used for both encryption and decryption

Implementations
AES, DES, IDEA, Blowfish

Also known as secret-key, single-key, shared-key, one-key etc

Asymmetric Encryption

2 keys are published

1 public key

1 secret key

The public key does not decrypt the message

RSA is the most common public key asymmetric algorithm

Based on prime number factoring

Implementations:

RSA, DSS/DSA, Diffie-Hellman key exchange

Pros and cons

Symmetric

Faster encryption process Requires less resources

Risk of stealing single key Key has to be shared securely

Asymmetric

Slower encryption process Requires more resources

Published key does not need to be protected

Private key must be protected

02.

Certificate Authority

(CA)

Registration Authority

(RA)

Certificate

Management

System

Central Directory

Certificate Policy

Infrastructure overview

Certificate Authority

Identity Information and Public Key of Mario Rossi

Name: Mario Rossi
Organization: Wikimedia
Address: via
Country: United States

Public Key
of
Mario Rossi

Certificate Authority
verifies the identity of Mario Rossi
and encrypts with its Private Key

Certificate of Mario Rossi

Digitally Signed by Certificate Authority Stores, signs, issues digital certificates

Circumvent man-in the middle attack

Trusted certificates to create secure connections to a server CA certificate to authenticate

Certificates

Commercial CA (GoDaddy, DigiCert, etc..)
Non-profit (Let's Encrypt)
Self-Signed -> not always
trusted

Validation

Certificates for HTTPS

Domain Validation

Extended Validation

X.509 proving legal entity

Registration Authority

Standards organizations

ISO/IEC, IEEE, W3C, IETF, ISOC

Facilitate implementations

Provides standards for the CA

Verification

verifies identity (certs, keys) hosted by the CA

Similar to

Government standards for roads, Shipping containers, etc

Central Directory

Database

Stores information regarding certificates, keys, services offered

Certificate Policy

Outline rules for the use of keys, certificates

Examples

LDAP, AAD

Real world example

Index or table of
contents

Certificate Management System

6 Stages

Discovery, Creation, Storage,

Monitoring, Renewal,

Revocation

Allows automation

Clients, Enterprises, Vendors

Certificate Policy

Document

States the different entities of PKI roles and duties

RFC 3647

Current certificate policy for the framework

Main points

Architecture

Certificate uses

Naming, identification,

authentication

Key generation

Procedures

Operations controls

Technical controls

Revocation lists

Audit and assessments

03. Uses

Typical

Usage

Signing

Document signing Email signing

Encryption

Data security
Local data
Network AD

Authentication/ Validation

Identity cards
Server validation
Visitor validation
Machine authentication
Workstation login

References

https://books.google.ca/books?id=3kS8XDALWWYC&pg=PA8&redir_esc=y#v=on epage&q&f=false

https://web.archive.org/web/20120529211639/http://www.networkworld.com/research/2000/0117feat.html

https://www.fortinet.com/resources/cyberglossary/certificate-management https://www.keyfactor.com/resources/what-is-pki/