

lesson 37 bitwise Operator LEFT SHIFT

LEFT SHIFT, takes two numbers, left shifts the bits of the first operand(number), the second operand decides the number of places to shift.

```
int x=5;
int z = x <<1;
5 in binary equals 1 01</pre>
```

Here we are going to move the binary numbers of 5 to the left and the number of bits we are going to move is 1.

64	32	16	8	4	2	1	
0	0	0	0	1	0	1	- x in binary
0	0	0	1	0	1	0	- x << 1

1010 to decimal is 10

example 2 : int x=6; int z= x<<2;

www.gammal.tech

64	32	16	8	4	2	1	
0	0	0	0	1	1	0	x in binary
0	0	0	1	1	0	0	_ x << 1

We moved the binary bits of 6 to the left, now we have 1100(2) = 24 (basel0)

We can conclude that the result = $x * 2^y$ example 3:

int x= 5;
int z = x << 4;
z = x *
$$2 \wedge 4 = 5*2 \wedge 4 = 80$$