VE281

Data Structures and Algorithms

Backtracking and Branch-and-Bound

Outline

- Hard problems and solution space
- Backtracking
- Branch-and-Bound

Hard Problems

• Many hard problems require you to find either a **subset** or **permutation** that satisfies some constraints and (possibly also) optimizes some objective function

Subset problems

• Solution requires you to find a **subset** of *n* elements that must satisfy some constraints and possibly optimize some objective function

Permutation problems

• Solution requires you to find a **permutation** of *n* elements that must satisfy some constraints and possibly optimize some objective function

Example: Subset Sum Problem

- Given a set of positive integers $S = \{s_1, s_2, ..., s_n\}$ and another integer C, does any subset of S has a sum exactly equal to C?
- Example: S = [9,4,6,3,5,1,8] and c = 18
- Answer: Yes, subset = $\{9,4,5\}$

Example: Boolean Satisfiability Problem

- Called **SAT** for short
- Given a Boolean function represented in the Conjunctive Normal Form (CNF)
 - E.g., $\Phi = (a+c)(b+c)(\bar{a}+\bar{b}+\bar{c})$
- Find an assignment of the variables so that function = 1
 - Could have many satisfying assignment; return **any one** is fine
 - However, if there are no satisfying assignments at all, prove it and return this info.
 - We call this **unSAT**
- It is a subset problem. What is the subset?

The set of variables you set to 1

Travelling Salesmen Problem (TSP)

- Find tour of minimum length starting and ending in same node and visiting every node exactly once
- It is a permutation problem

Aside: Hamiltonian Cycle

- A Hamiltonian Cycle in a connected, weighted, undirected graph G is a simple cycle that begins at a vertex v, passes through every vertex exactly once, and terminates at v
- TSP problem seeks a Hamiltonian Cycle with minimal weight in a given connected, weighted, undirected graph G

Solution Space

- For subset problem
 - Solution space is composed of all subsets
 - How many? 2^n
 - E.g., subset sum problem
 - We encode a subset by a combination $(x_1, x_2, ..., x_n) \in \{0,1\}^n$: $x_i = 1/0$ means the *i*-th item is/is not in the subset
- For permutation problem
 - Solution space is composed of all permutations
 - How many? n!
 - E.g., TSP

Tree Organization Of Solution Space

- For a size n subset problem, the tree structure has 2^n leaves
 - At level i, the members of the solution space are partitioned by their x_i values

Tree Organization Of Solution Space

- For a size n permutation problem, the tree structure has n! leaves
 - At level i, the members of the solution space are partitioned by their x_i values

Outline

- Hard problems and solution space
- Backtracking
- Branch-and-Bound

Algorithm Design Methods

- We have learned three ways to design algorithms:
 - Greedy method.
 - Divide and conquer.
 - Dynamic programming.
- We will briefly talk two more:
 - Backtracking.
 - Branch and bound.

Backtracking

- A strategy for searching a solution and backing up when some constraint is violated.
- Construct the state-space tree
 - nodes: partial solutions
 - edges: choices in extending partial solutions
 - branch on every possibility

$$x_{1} = 1$$
 $x_{1} = 0$
 $x_{2} = 1$ $x_{2} = 0$ $x_{2} = 1$ $x_{2} = 0$
 $x_{3} = 1$ $x_{3} = 0$
 $x_{4} = 1$ $x_{5} = 0$
 $x_{5} = 1$ $x_{7} = 0$

Backtracking

- Explore the state space tree using depth-first search,
 prune unpromising subtrees
 - Check every partial solution against constraints
 - If a partial solution violates some constraint, it makes no sense to extend it further
 - Stop exploring subtrees rooted at nodes that cannot lead to a solution and **backtrack** to such a node's parent to continue the search
 - Recursion and backtracking usually combined together to solve the problem

Backtracking Example

• Subset sum problem: S = [10,5,2] and c = 14

Backtracking Example

• Subset sum problem: S = [10,5,2] and c = 14

Backtracking: General Form

```
void checknode(node v) {
  // v: node in state-space tree
                           promising(v): check whether partial
                           solution v satisfies all constraints
  if (promising(v)){
     if (solution(v)) then
       return soln;
                           solution(v): if v is already a
                           full solution
     else
       for each child u of v
          checknode (u);
```

Backtracking: Summary

- Backtracking allows pruning of unpromising branches in state-space tree
 - Better than brute-force enumeration
- All backtracking algorithms have a similar form (pruned DFS)
- Often, most difficult/costly part is determining promising()

Outline

- Hard problems and solution space
- Backtracking
- Branch-and-Bound

Branch-and-Bound

- Branch: enumerate all possible next steps from current partial solution and construct the state-space tree
- **Bound**: if a partial solution violates some constraint or if the objective function evaluates to a higher cost than that of the best full solution so far, **prune** the branch
 - Typically, we evaluate a **lower bound** of the partial solution. If lower bound >= best full solution so far, can prune
- Branch-and-bound can be used with or without backtracking:
 - If **DFS** is used, once a branch is pruned, backtrack to the previous partial solution and try another branch
 - If BFS is used, branch-and-bound is done without backtracking

Branch-and-Bound

- The efficiency of branch-and-bound is based on **pruning** unpromising partial solutions
 - The sooner (higher up in the state-space tree) you know a solution is unpromising, the less time you spend on its subtree
 - The more accurately you can bound the solution cost, the better
 - Sometimes it is worth spending extra effort to compute better bounds
 - ullet If no such info is available, assume solution cost is ∞ and branch-and-bound degenerates into enumeration

<u>Lower bound</u>: partial cost + minedge(current node)

- + minedge sum of all rest unvisited nodes
- = 21 + minedge(C) + minedge(D) + minedge(E)
- = 21 + 2 + 1 + 1 = 25

Best full solution so far

Promising. Continue branch!

... but, is there a better bound?

Another Lower bound: partial cost +
minedge(current node) + minedge(root)
+ minedge sum of all rest unvisited nodes except the
largest minedge
= 21 + minedge(C) + minedge(A) + [minedge(D) +
minedge(E) - max {minedge(D), minedge(E)}]
= 21 + 2 + 3 + [1+1-1] = 27

If the bound is **not strictly** smaller, can also prune!

Branch-and-Bound

- The efficiency of branch-and-bound is based on **pruning** unpromising partial solutions
 - The sooner (higher up in the state-space tree) you know a solution is unpromising, the less time you spend on its subtree
 - The more accurately you can bound the solution cost, the better
 - Sometimes it is worth spending extra effort to compute better bounds

E F Lower bound: = partial cost + minedge(D) + minedge(A) + [minedge(E) + minedge(C) - max {minedge(C), minedge(E)}] = 20 + 1 + 3 + [1+2-2] = 25

Promising. Continue branch!

Example: TSP

Best full

solution so far

No Hamiltonian cycle possible!

29

Branch-and-Bound: Summary

- Bound is important
 - The sooner (higher up in the state-space tree) you know a solution is unpromising, the less time you spend on its subtree
 - The more accurately you can bound the solution cost, the better
 - Sometimes it is worth spending extra effort to compute better bounds

- Constructing an initial good solution will also help reduce runtime
 - For 0/1 knapsack, can use a greedy algorithm to find an initial good solution