ANOVA approach to hypothesis testing The F Test

• In this section, we will talk about a different strategy to testing $H_0:\beta_1=0$

In simple linear regression, this results in the *exact same-value* as the test that uses the t-statistic.

However, this strategy is more applicable to general linear hypotheses that we'll discuss in multiple linear regression.

• Testing $H_0:\beta_1=0$

is really a comparison between the two models:

H0:
$$Y_i = \beta_0 + \epsilon_i$$

HA: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

- We will call the first model the **reduced** model and the second model the **full** model. This is because the reduced model is a subset of the full model (you get the reduced from the full by setting $\beta 1=0$).
- Our strategy will be to compare the residuals under H0 and HA. If HA were true, we would expect the those residuals to be much smaller than the residuals under H0 (because the line fits a lot better).

If H0 were true, then we would expect the residuals under HA to only be a little bit smaller than those under H0

- We fit *HA* by the method of least squares, obtaining the OLS estimates and the corresponding residuals.
- We fit H0 also by least squares. It turns out that under H0, the OLS estimate is just Y We measure how small the residuals are by the sum of squared residuals.

Example:

X	Υ	Y _i (hat) Predicted Value	Yı - Yı(hat) Residual	(Yı - Y(bar)) ²	(Y _I - Y(hat)) ²	(Y _i (hat) - Y(bar)) ²
34	5	4.1505	.8496	25	.72165	34.21665
108	17	14.9693	2.0307	49	4.12374	24.69394
64	11	8.5365	2.4635	1	6.06883	2.14183
88	8	12.0453	-4.0453	4	16.3644	4.18325
99	14	13.6535	.3465	16	.12006	13.34906
51	5	6.6359	-1.6359	25	2.6762	11.31717
TOTALS				120	30.07488	89.9019

Y(bar) = 10

The following Regression Model for the data is found by using R coding: $lm(y \sim x)$

Y(hat) = -0.8203 + 0.1462X

The following ANOVA table is generated by using R coding: $\frac{\text{anova}(\text{Im}(y \sim x))}{\text{anova}(\text{Im}(y \sim x))}$

Analysis of Variance Table

Response: y

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now let us conduct the F test to determine if H_0 : $Yi=\beta_0+\epsilon_i$ should be rejected.

If the F_{value} , is greater than the $F_{critical}$, we reject H_o and conclude H_a If the F_{value} , is less than or equal to $F_{critical}$, we fail to reject H_a The F_{value} , is found in the ANOVA table.

The $F_{critical}$ value if found in the F distribution table, using the construction $F(1-alpha;\,1,\,n$ -2) or by using

For our case, F_{value}, is 11.96 (found in the ANOVA output table).

The F_{critical} value can be found as follows;

Let alpha = .05, and our designated degrees of freedom are 1 and 6.

We therefore require F(.95,1,4), now going to the F table in the back of the we get 7.71

We can also use R code as follows to get the F_{critical} value.

qf(p=.05, df1=1, df2=4, lower.tail=FALSE)

7.708647

Since $F_{value,}(11.96)$ is greater than $F_{critical,}(7.71)$, we will reject the null Hypothesis that B_1 = 0 and conclude that B_1 does not = 0. Moreover, a linear relationship does exist between Y and X.

Graphical Interpretation: F Distribution Curve

If F_{value} is greater than (to the right of $F_{critical}$ you are to reject H_o If F_{value} is less than (to the left)of $F_{critical}$ or equalt to $F_{critical}$, you fail to reject H_o

F Distribution Table (Percentiles)

		1	2	3	- 4	- 5	6	7	8	9	10
0.95	1	161.5	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9
0.975		647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.7
0.99		4052.2	4999.5	5403.4	5624.6	5763.7	5859.0	5928.4	5981.07	6022.4	6055.5
0.95	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
0.975		38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40
0.99		98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
0.95	3	10.13.	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.75
0.975		17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42
0.99		34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
0.95	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
0.975		12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84
0.99		21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
0.95	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
0.975		10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.65
0.99		16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.03
0.95	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
0.975		8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	-5.52	5.46
0.99		13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
0.95	- 7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
0.975		8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76
0.99		12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62
0.95	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.33
0.975		7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30
0.99		11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.83
0.95	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
0.975		7.21	5.71	5:08	4.72	4.48	4.32	4.20	4.10	4.03	3.96
0.99		10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26
0.95	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
0.975		6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.73
0.99		10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85
0.95	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
0.975		6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53
0.99		9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54
0.95	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.73
0.975		6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37
0.99		9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
0.95	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
0.975		6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25
0.99		9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10
0.95	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
0.975	1	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15
0.99		8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94
0.95	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
0.975		6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06
0.99		8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80