§ 15 Integralsatz von Stokes

In diesem Paragraphen sei $\emptyset \neq B \subseteq \mathbb{R}^2$, B kompakt, $D \subseteq \mathbb{R}^2$ offen, $B \subseteq D$ und $\varphi = (\varphi_1, \varphi_2, \varphi_3) \in C^1(D, \mathbb{R}^3)$. Das heißt: $\varphi_{|B}$ ist eine Fläche mit Parameterbereich $B, S := \varphi(B)$

Definition

Definiere die folgenden **Oberflächenintegrale**:

(1) Sei $f: S \to \mathbb{R}$ stetig. Dann:

$$\int_{\mathcal{Q}} f d\sigma := \int_{B} f(\varphi(u, v)) ||N(u, v)|| d(u, v)$$

(2) Sei $F: S \to \mathbb{R}^3$ stetig. Dann:

$$\int_{\varphi} F \cdot n d\sigma := \int_{B} F(\varphi(u, v)) \cdot N(u, v) d(u, v)$$

Beispiel

Seien D, B, f, φ wie im letzten Beispiel in Kapitel 14.

Sei F(x, y, z) := (x, y, z); bekannt: N(u, v) = (-2u, -2v, 1). Dann:

$$\begin{split} F(\varphi(u,v)) \cdot N(u,v) &= F(u,v,u^2+v^2) \cdot (-2u,-2v,1) \\ &= (u,v,u^2+v^2) \cdot (-2u,-2v,1) \\ &= -(u^2+v^2) \end{split}$$

Also:

$$\int_{\varphi} F \cdot n d\sigma = -\int_{B} (u^{2} + v^{2}) d(u, v) = -\frac{\pi}{2}$$

Satz 15.1 (Integralsatz von Stokes)

Es sei B zulässig, $\partial B = \Gamma_{\gamma}$, wobei $\gamma = (\gamma_1, \gamma_2)$ wie zu Beginn des Paragraphen 13 ist. Es sei $\varphi \in C^2(D, \mathbb{R}^3)$. Weiter sei $G \subseteq \mathbb{R}^3$ offen, $S \subseteq G$ und $F = (F_1, F_2, F_3) \in C^1(G, \mathbb{R}^3)$. Dann:

$$\underbrace{\int_{\varphi} \operatorname{rot} F \cdot n \mathrm{d}\sigma}_{\text{Oberflächenint.}} = \underbrace{\int_{\varphi \circ \gamma} F(x,y,z) \cdot \mathrm{d}(x,y,z)}_{\text{Wegint.}}$$

Beispiel

D, B, f, F und φ seien wie in obigem Beispiel. Hier: $\gamma(t) = (\cos t, \sin t)$ $(t \in [0, 2\pi])$. Dann: $(\varphi \circ \gamma)(t) = \varphi(\cos t, \sin t) = (\cos t, \sin t, 1)$ $(t \in [0, 2\pi])$.

Es ist rot F = 0, also: $\int_{\varphi} \operatorname{rot} F \cdot n d\sigma = 0$

$$\int_{\varphi \circ \gamma} F(x, y, z) d(x, y, z) = \int_{0}^{2\pi} F((\varphi \circ \gamma)(t)) \cdot (\varphi \circ \gamma)'(t) dt$$

$$= \int_{0}^{2\pi} F(\cos t, \sin t, 1) \cdot (-\sin t, \cos t, 0) dt$$

$$= \int_{0}^{2\pi} \underbrace{(\cos t, \sin t, 1) \cdot (-\sin t, \cos t, 0)}_{=0} dt$$

$$= 0$$

Beweis

Sei $\varphi := \varphi \circ \gamma$, $\varphi = (\varphi_1, \varphi_2, \varphi_3)$, also $\varphi_j = \varphi_j \circ \gamma \quad (j = 1, 2, 3)$.

Zu zeigen:

$$\int_{\varphi} \operatorname{rot} F \cdot n d\sigma = \int_{\varphi} F(x, y, z) d(x, y, z)$$

$$= \int_{0}^{2\pi} F(\varphi(t)) \cdot \varphi'(t) dt$$

$$= \int_{0}^{2\pi} \left(\sum_{j=1}^{3} F_{j}(\varphi(t)) \varphi'_{j}(t) \right) dt$$

$$= \sum_{j=1}^{3} \int_{0}^{2\pi} F_{j}(\varphi(t)) \varphi'_{j}(t) dt$$

Es ist $\int_{\varphi} \operatorname{rot} F \cdot n d\sigma = \int_{B} \underbrace{(\operatorname{rot} F)(\varphi(x,y)) \cdot (\varphi_{x}(x,y) \times \varphi_{y}(x,y))}_{=:g(x,y)} d(x,y)$. Für j = 1, 2, 3:

$$h_{j}(x,y) := \left(\underbrace{F_{j}(\varphi(x,y)) \frac{\partial \varphi_{j}}{\partial y}(x,y)}_{=:u_{j}(x,y)}, \underbrace{-F_{j}(\varphi(x,y)) \frac{\partial \varphi_{j}}{\partial x}(x,y)}_{=:v_{j}(x,y)}\right) \quad ((x,y) \in D)$$

 $h_j=(u_j,v_j); \quad F\in C^1,\, \varphi\in C^2,\, {\rm damit\ folgt:}\ h_j\in C^1$

Nachrechnen: $g = \operatorname{div} h_1 + \operatorname{div} h_2 + \operatorname{div} h_3$

Damit:

$$\int_{B} \operatorname{rot} F \cdot n d\sigma = \sum_{j=1}^{3} \int_{B} \operatorname{div} h_{j}(x, y) d(x, y)$$
$$= \sum_{j=1}^{3} \int_{\gamma} (u_{j} dy - v_{j} dx)$$
$$= \int_{0}^{2\pi} F_{j}(\varphi(t)) \varphi'_{j}(t) dt$$