Lecture 3:

Repetition:

We say unv if u=lu, 1/40

P= "All elements that can be represented with vector in R3/203"

 $u = (u_1, u_2, 1)$ interpreted as point in \mathbb{R}^2 will coords. (u_1, u_2)

U=(U1,U2,0) interpreted as point infinisely for away in the direction (u1,U2)

Projective Transformations:

A P.T. is an invertible mapping $P^n \longrightarrow P^n$ defined by: $x \sim Hy$

Where $X \in \mathbb{R}^{n+1}$ and $y \in \mathbb{R}^{n+1}$ are homogen. Coords. representing elems. of \mathbb{R}^n and \mathbb{H} is an invertible $(n+1) \times (n+1)$ matrix.

Also called homography

Ex!: Show that it does not matter What representative we choose, the result Will be the same (Hint: y and ity are two representatives of the same point

HCXX) = XHX ~ XY~Y

Examples

- k matrix, x~ k[R t] X

- Projections of the same plane.
- Projections of a 3D plane => There is a homography between the images

- Cameras with the same camera center.

Remark: Vanishing points can be mapped to regular points

% is a vanishing point iff: $h_{31} \times +h_{32} y +h_{33} = 20 \quad (a line in P^2)$

thert is, iff. x is on the line $l \sim (h_{31}X + h_{32}Y + h_{33}Z)$

Ex2: Assume that x hes on the line I_1 that is, $I^Tx = 0$, and that $y \sim Hx$. Show that y hes on the line $f = (H^{-1})^TI$ $0 = I^Tx = I^T \cdot I^$

O=VX=lintHX~(H)Ty=lTy

Target
(AB)i=ATBi

Affine Iransformation $(P^n \rightarrow P^n)$: $H = \begin{pmatrix} A & t \\ 0 & 1 \end{pmatrix}$, SA - hxn (invertible) and $\{t - hxi\}$

Projective Gransformations: Special cases

- Parallel lines are mapped to parallel lines
- Preserves the line at infinity (points at infinity, and infinity, and regular points are mapped to regular points)
- Can be written y=Ax+t for points in IRn

Similarity Transformations (Ph > Ph): $H = \begin{pmatrix} SR & t \\ O & l \end{pmatrix}$ $\begin{cases} R - hxn & rotation \\ t - hxl \\ S - positive number \end{cases}$

- Special case of affine transformation

- Preserves angles between lines.

$$H = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix}, \quad R - rodation, \quad N \times N$$

$$t - h \times 1$$

- Special case of similarity - Percues distances

EX3: Assume that y les on the conic C, that is, yTCy=0 and that x~Hy.

Show that x hes on the conic C=(H-) CH-

Affine Cameras and Parallel Projection:

tarallel projection Viewing rays do not Motersect a Common point Incomming rays are crothagonal to the im. plane 2=(. (2-coord is replaced by 1).

Carnera Coord.
$$sys:$$
 $X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$
 $e_2 \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$

Projection along z -axis: $x_1 = x_1 \cdot x_2 = x_2 \cdot x_3 = 1$

In matrix form:

 $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} I_{z \times 3} & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$

(Projection)

From world coord -> real image (pixels) $X \sim k \begin{pmatrix} R_{2x_3} & t_{2x_1} \end{pmatrix} X$

If K=I then: $\rho = \begin{pmatrix} R_{2x3} & \delta_{2x_1} \\ 0 & 1 \end{pmatrix}$ & projection

From world coord -> Image plane $X^{l} \begin{pmatrix} J_{2\times3} & O \\ O & l \end{pmatrix} \begin{pmatrix} R & t \\ O & l \end{pmatrix} X = \begin{pmatrix} R_{2\times5} & C_{2\times1} \\ O & l \end{pmatrix}$

if
$$K = \begin{pmatrix} S & O & O \\ O & S & O \\ O & O & I \end{pmatrix}$$
 then $P = \begin{pmatrix} S R_{2K3} & t_{2K1} \\ O & I \end{pmatrix}$

Scaled on the orthographic (weak perspective)

If $K = \begin{pmatrix} O & O & O \\ O & O & I \end{pmatrix}$, $P = \begin{pmatrix} A_{2K3} & t_{2K1} \\ O & I \end{pmatrix}$ eigeneral affine camera

EX4: Compute the camera center (null space)

Of
$$P=\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Of
$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$O = P \begin{pmatrix} X \\ Z \\ W \end{pmatrix} = \begin{cases} X & ZY & = 0 \\ Z & Z \\ Y & = 0 \end{cases} \Rightarrow C \sim \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Can be seen as projection $P^2 \rightarrow P^1$ $AX = K_{2x_2} (R_{2x_2} t_{2x_1}) X$

We typically don't divide by last coord, but compute 0:

$$\lambda \left(\begin{array}{c} Sin \phi \\ cos \phi \end{array} \right) = P_{z \times 3} X$$

EX5: The camera
$$P_1 = \begin{pmatrix} 160 \\ 010 \end{pmatrix}$$
 and $P_2 = \begin{pmatrix} 101 \\ 010 \end{pmatrix}$ are observing the point X at angles $\phi_1 = \frac{17}{4}$ and $\phi_2 = 0$ resp. What is

angles
$$\phi_1 = \sqrt{1/4}$$
 and $\phi_2 = 0$ resp. What is a position of the point X ?

the position of the point
$$X$$
?

 $x_1 = \begin{pmatrix} \sin \frac{\pi}{4} \\ \cos \frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} \sqrt{5z} \\ \sqrt{5z} \end{pmatrix} \sim \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$x_{1} = \begin{pmatrix} \cos \pi v/u \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \end{pmatrix} \sim \begin{pmatrix} 1 \\ 1/\sqrt{2} \end{pmatrix} \sim \begin{pmatrix} 1$$

$$\begin{cases} (\omega S \circ) & \langle 1 \rangle \\ (1) = (100) \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ (0) = (100) \begin{pmatrix} 3 \\ 4 \end{pmatrix} \\ (0) = ($$

$$\begin{cases} \lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ \lambda_2 \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix}$$

$$\begin{cases} x = \lambda_1 \\ x - \lambda_1 \\ y = \lambda_2 \end{cases}$$

$$\begin{cases} x = \lambda_1 \\ x - \lambda_2 \\ y = \lambda_2 \end{cases}$$