assignment02

Executive Summary

Executive Summary This report investigates the drivers of credit card churn at Tifosi Bank using predictive modelling. We identified transaction frequency and account activity as the strongest predictors of churn. By applying SMOTE and XGBoost, we improved the model's recall to 82%. Based on our findings, we recommend that Tifosi Bank implement proactive outreach strategies for low-activity, high-limit customers to reduce attrition risk.

Introduction Credit card attrition represents a critical threat to Tifosi Bank's long-term profitability. With up to 25% of revenue tied to credit card operations, losing high-value customers not only reduces immediate income but undermines future cross-sell opportunities. This report investigates what drives customer churn and how analytics can inform more effective retention strategies.

Introduction

Credit card churn has a direct impact on the profitability and strategic growth of retail banks. Credit card operations can account for up to 25% of a bank's retail revenue, driven by interest earnings, interchange fees, annual fees, and cross-selling potential of other product and service. According to McKinsey's global payments insights, credit card operations can contribute significantly up to 25% to a bank's retail revenue.

For Tifosi Bank, the rise of attrition in credit card segment signals more than a loss of revenue but also reflects a shift of customer's satisfaction or loyalty. Hence, it is crucial to identify at-risk customers and understand the key drivers of churn.

In this report, we will explore the key factors contributing to credit card churn at Tifosi Bank by applying predictive modeling techniques. These insights are then translated into actionable strategies to support customer retention.

Analytical Overview

```
#package
library(tidyverse)
library(tidymodels)
library(janitor)
library(skimr)
library(here)
library(readr)
tidymodels_prefer()
```

```
raw_data<-read_csv(here("Data","bank_churners.csv")) %>%
clean_names()
```

skim(raw_data)

Table 1: Data summary

Name Number of rows Number of columns	raw_data 10127 21
Column type frequency:	6
numeric	15
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
attrition_flag	0	1	17	17	0	2	0
gender	0	1	1	1	0	2	0
$education_level$	0	1	7	13	0	7	0
$marital_status$	0	1	6	8	0	4	0
$income_category$	0	1	7	14	0	6	0
card _category	0	1	4	8	0	4	0

Variable type: numeric

skim_variablen_m	niss ioo mplet	e mætæn	sd	p0	p25	p50	p75	p100	hist
				•					
clientnum	1	7391776	06690378	345082	0 833 0367	70159263	5 87.00 435	33200 430	83.00
customer_age 0	1	46.33	8.02	26.0	41.00	46.00	52.00	73.00	
dependent_count (1	2.35	1.30	0.0	1.00	2.00	3.00	5.00	
months_on_book@	1	35.93	7.99	13.0	31.00	36.00	40.00	56.00	
total_relationship@	count 1	3.81	1.55	1.0	3.00	4.00	5.00	6.00	
months_inactive_0	12_mon 1	2.34	1.01	0.0	2.00	2.00	3.00	6.00	
contacts_count_10	2 _mon 1	2.46	1.11	0.0	2.00	2.00	3.00	6.00	
credit_limit 0	1	8631.95	9088.78	1438.3	2555.00	4549.00	11067.50	034516.00)
total_revolving_b	al 1	1162.81	814.99	0.0	359.00	1276.00	1784.00	2517.00	
avg_open_to_bu	1	7469.14	9090.69	3.0	1324.50	3474.00	9859.00	34516.00)
total_amt_chng_6	q4_q1 1	0.76	0.22	0.0	0.63	0.74	0.86	3.40	
total_trans_amt 0	1	4404.09	3397.13	510.0	2155.50	3899.00	4741.00	18484.00)
total_trans_ct 0	1	64.86	23.47	10.0	45.00	67.00	81.00	139.00	
total_ct_chng_q4	<u>q</u> 1 1	0.71	0.24	0.0	0.58	0.70	0.82	3.71	
avg_utilization_r	tio 1	0.27	0.28	0.0	0.02	0.18	0.50	1.00	

Data overview

The dataset from Tifosi Bank consists of 10127 credit card customers ,characterised by three main feature groups: demographic information (e.g., age, income, education), behavioural indicators (e.g., transaction counts, credit usage), and account relationship metrics (e.g., months on book, product count). The target variable for this report is attrition_flag which is a binary indicator that represents whether the customer remained or left

Attrition_Flag

Churn is Rare, But Crucial: Only 16% Leave

Based on 10,127 credit card customers


```
library(ggplot2)
library(dplyr)
pie_data <- raw_data %>%
  count(attrition_flag) %>%
  mutate(percentage = n / sum(n),
         label = paste0(attrition_flag, ": ", scales::percent(percentage, accuracy = 0.1)))
   pie chart
ggplot(pie_data, aes(x = "", y = percentage, fill = attrition_flag)) +
  geom_col(width = 1, color = "white") +
  coord_polar(theta = "y") +
  geom_text(aes(label = label), position = position_stack(vjust = 0.5), size = 4.5) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Customer Attrition Distribution",
    fill = "Customer Status"
  ) +
  theme_void() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    legend.title = element_text(size = 12),
```

```
legend.text = element_text(size = 11)
)
```

Customer Attrition Distribution

Warning: There was 1 warning in `mutate()`.
i In argument: `income_category = fct_relevel(...)`.
Caused by warning:
! 2 unknown levels in `f`: < \$40K and > \$120K

Lower-income Customers Show Higher Churn Rates

card category

[1] "Blue" "Gold" "Silver" "Platinum"

Customer Churn by Credit Card Category

education_level

Customer Churn by Education Level

marital_status

Customer Churn by Marital Status Based on 10,127 credit card customers 84.9% 4000 83.1% Number of Customers 3000 Attrited Customer 2000 **Existing Customer** 1000 83.8%<mark>15.1%</mark> 16.9% 82.8% 16.2% 17.2% 0 Married Divorced Single Unknown **Marital Status**

dependent

Total Transactions (12 months)

```
ggplot(raw_data, aes(x = attrition_flag, y = total_trans_ct, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Distribution of Total Transactions by Customer Status",
    subtitle = "Customers who churned tend to have fewer transactions",
    x = "Customer Status",
    y = "Total Transactions (12 months)"
  ) +
  theme_minimal() +
  theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Distribution of Total Transactions by Customer Status

Customers who churned tend to have fewer transactions

avg_utilization_ratio

```
ggplot(raw_data, aes(x = attrition_flag, y = avg_utilization_ratio, fill = attrition_flag))
geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
labs(
```

```
title = "Distribution of Credit Utilization Ratio by Customer Status",
    subtitle = "Higher utilization may indicate risk of churn",
    x = "Customer Status",
    y = "Average Credit Utilization Ratio"
) +
    theme_minimal() +
    theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5))
```

Distribution of Credit Utilization Ratio by Customer Status

credit_limit

```
ggplot(raw_data, aes(x = attrition_flag, y = credit_limit, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Distribution of Credit Limit by Customer Status",
    subtitle = "Customers with lower limits may churn more",
    x = "Customer Status",
    y = "Credit Limit ($)"
) +
```

```
theme_minimal() +
theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Distribution of Credit Limit by Customer Status

Customers with lower limits may churn more

contacts_count_12_mon

```
ggplot(raw_data, aes(x = attrition_flag, y = contacts_count_12_mon, fill = attrition_flag))
geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
labs(
    title = "Customer Service Contacts in Past Year",
    subtitle = "Frequent contact may reflect dissatisfaction and risk of churn",
    x = "Customer Status",
    y = "Number of Contacts (12 months)"
) +
theme_minimal() +
theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Customer Service Contacts in Past Year

Frequent contact may reflect dissatisfaction and risk of churn

months_inactive_12_mon

```
ggplot(raw_data, aes(x = attrition_flag, y = months_inactive_12_mon, fill = attrition_flag))
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Inactive Months in Past Year by Customer Status",
    subtitle = "Inactivity is a potential early signal of churn",
    x = "Customer Status",
    y = "Inactive Months (12 months)"
  ) +
  theme_minimal() +
  theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Inactive Months in Past Year by Customer Status

Inactivity is a potential early signal of churn

months_on_book

```
ggplot(raw_data, aes(x = attrition_flag, y = months_on_book, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Tenure with Bank (Months) by Customer Status",
    subtitle = "Shorter relationships may correlate with higher attrition",
    x = "Customer Status",
    y = "Months on Book"
) +
  theme_minimal() +
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5))
```

Tenure with Bank (Months) by Customer Status Shorter relationships may correlate with higher attrition

total_ct_chng_q4_q1 Q4 vs Q1

```
ggplot(raw_data, aes(x = attrition_flag, y = total_ct_chng_q4_q1, fill = attrition_flag)) +
    geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
    scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
    labs(
        title = "Change in Transaction Count (Q4 vs Q1)",
        subtitle = "Customers with declining activity may be at risk of churn",
        x = "Customer Status",
        y = "Transaction Count Change (Q4 - Q1)"
    ) +
    theme_minimal() +
    theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5))
```

Change in Transaction Count (Q4 vs Q1)

Customers with declining activity may be at risk of churn

avg_open_to_buy = limit - balance

```
ggplot(raw_data, aes(x = attrition_flag, y = avg_open_to_buy, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Open-to-Buy Amount by Customer Status",
    subtitle = "Large available credit may reflect low usage and churn risk",
    x = "Customer Status",
    y = "Open-to-Buy Amount ($)"
  ) +
  theme_minimal() +
  theme(legend.position = "none",
       plot.title = element_text(hjust = 0.5),
       plot.subtitle = element_text(hjust = 0.5))
```

Open-to-Buy Amount by Customer Status

Large available credit may reflect low usage and churn risk

months_on_book

```
ggplot(raw_data, aes(x = attrition_flag, y = months_on_book, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Length of Customer Relationship",
    subtitle = "Customers with longer relationships may be less likely to churn",
    x = "Customer Status",
    y = "Months on Book"
  ) +
  theme_minimal() +
  theme(legend.position = "none",
       plot.title = element_text(hjust = 0.5),
       plot.subtitle = element_text(hjust = 0.5))
```

Length of Customer Relationship

Customers with longer relationships may be less likely to churn

months_inactive_12_mon

```
ggplot(raw_data, aes(x = attrition_flag, y = months_inactive_12_mon, fill = attrition_flag))
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Inactive Months in the Past Year",
    subtitle = "Higher inactivity is associated with churn",
    x = "Customer Status",
    y = "Inactive Months (Last 12 Months)"
  ) +
  theme_minimal() +
  theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Inactive Months in the Past Year

Higher inactivity is associated with churn

avg_open_to_buy

```
ggplot(raw_data, aes(x = attrition_flag, y = avg_open_to_buy, fill = attrition_flag)) +
geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
labs(
    title = "Available Credit (Open to Buy)",
    subtitle = "Low usage of available credit may indicate disengagement",
    x = "Customer Status",
    y = "Average Open to Buy ($)"
) +
theme_minimal() +
theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Available Credit (Open to Buy)

Low usage of available credit may indicate disengagement

customer_age

Customer Age by Attrition Status

Older customers may show different churn patterns

total_relationship_count

```
ggplot(raw_data, aes(x = attrition_flag, y = total_relationship_count, fill = attrition_flag
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Number of Products Held by Customer",
    subtitle = "More product relationships may indicate higher loyalty",
    x = "Customer Status",
    y = "Total Relationship Count"
  ) +
  theme_minimal() +
  theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Number of Products Held by Customer

More product relationships may indicate higher loyalty

dis

```
library(ggplot2)
library(dplyr)

ggplot(raw_data, aes(x = months_on_book, fill = attrition_flag)) +
    geom_histogram(position = "identity", alpha = 0.6, bins = 30, color = "white") +
    scale_fill_manual(values = c("#004c6d", "#a7c6ed"), labels = c("Attrited", "Existing")) +
    labs(
        title = "Distribution of Customer Tenure by Attrition",
        x = "Months on Book",
        y = "Count",
        fill = "Customer Status"
) +
    theme_minimal() +
    theme(
    plot.title = element_text(hjust = 0.5),
    legend.title = element_text(size = 11)
)
```

Distribution of Customer Tenure by Attrition


```
library(ggplot2)
library(dplyr)

ggplot(raw_data, aes(x = total_trans_ct , fill = attrition_flag)) +
    geom_histogram(position = "identity", alpha = 0.6, bins = 30, color = "white") +
    scale_fill_manual(values = c("#004c6d", "#a7c6ed"), labels = c("Attrited", "Existing")) +
    labs(
        title = "Distribution of total_trans_ct by Attrition",
        x = "total_trans_ct",
        y = "Count",
        fill = "Customer Status"
) +
    theme_minimal() +
    theme(
        plot.title = element_text(hjust = 0.5),
        legend.title = element_text(size = 11)
)
```



```
library(ggplot2)
library(dplyr)

ggplot(raw_data, aes(x = customer_age , fill = attrition_flag)) +
    geom_histogram(position = "identity", alpha = 0.6, bins = 30, color = "white") +
    scale_fill_manual(values = c("#004c6d", "#a7c6ed"), labels = c("Attrited", "Existing")) +
    labs(
        title = "Distribution of customer_age by Attrition",
        x = "customer_age",
        y = "Count",
        fill = "Customer Status"
) +
    theme_minimal() +
    theme(
        plot.title = element_text(hjust = 0.5),
        legend.title = element_text(size = 11)
)
```



```
library(ggplot2)
library(dplyr)

#
binned_data <- raw_data %>%
    mutate(
        tenure_bin = cut(months_on_book, breaks = c(0, 12, 24, 36, 48, 60), include.lowest = TRU
        util_bin = cut(avg_utilization_ratio, breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1), include.lowest
) %>%
    group_by(tenure_bin, util_bin) %>%
    summarise(
        churn_rate = mean(attrition_flag == "Attrited Customer"),
        n = n()
) %>%
    ungroup()
```

`summarise()` has grouped output by 'tenure_bin'. You can override using the `.groups` argument.

```
#
ggplot(binned_data, aes(x = tenure_bin, y = util_bin, fill = churn_rate)) +
geom_tile(color = "white") +
```

```
geom_text(aes(label = scales::percent(churn_rate, accuracy = 1)), size = 3.5) +
scale_fill_gradient(low = "#a7c6ed", high = "#004c6d", name = "Churn Rate") +
labs(
   title = "Churn Rate by Tenure and Credit Utilization",
   x = "Months on Book (Binned)",
   y = "Utilization Ratio (Binned)"
) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))
```

Churn Rate by Tenure and Credit Utilization

Customer Activity Level

total_trans_ct (?)

```
ggplot(raw_data, aes(x = attrition_flag, y = total_trans_ct, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Distribution of Total Transactions by Customer Status",
    subtitle = "Customers who churned tend to have fewer transactions",
    x = "Customer Status",
```

```
y = "Total Transactions (12 months)"
) +
theme_minimal() +
theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Distribution of Total Transactions by Customer Status

Customers who churned tend to have fewer transactions


```
library(ggplot2)
library(dplyr)

ggplot(raw_data, aes(x = total_trans_ct , fill = attrition_flag)) +
    geom_histogram(position = "identity", alpha = 0.6, bins = 30, color = "white") +
    scale_fill_manual(values = c("#004c6d", "#a7c6ed"), labels = c("Attrited", "Existing")) +
    labs(
        title = "Distribution of total_trans_ct by Attrition",
        x = "total_trans_ct",
        y = "Count",
        fill = "Customer Status"
    ) +
    theme_minimal() +
    theme(
        plot.title = element_text(hjust = 0.5),
```

```
legend.title = element_text(size = 11)
```


40 75 30–60

12 40

 $total_trans_ct$

total_ct_chng_q4_q1 (4 1)

```
ggplot(raw_data, aes(x = attrition_flag, y = total_ct_chng_q4_q1, fill = attrition_flag)) +
    geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
    scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
    labs(
        title = "Change in Transaction Count (Q4 vs Q1)",
        subtitle = "Customers with declining activity may be at risk of churn",
        x = "Customer Status",
        y = "Transaction Count Change (Q4 - Q1)"
    ) +
    theme_minimal() +
    theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5))
```

Change in Transaction Count (Q4 vs Q1)

Customers with declining activity may be at risk of churn


```
ggplot(raw_data, aes(x = total_ct_chng_q4_q1, fill = attrition_flag)) +
  geom_histogram(position = "identity", alpha = 0.6, bins = 30, color = "white") +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed"), labels = c("Attrited", "Existing")) +
  labs(
    title = "Distribution of total_ct_chng_q4_q1 by Attrition",
    x = "total_ct_chng_q4_q1k",
```

```
y = "Count",
fill = "Customer Status"
) +
theme_minimal() +
theme(
  plot.title = element_text(hjust = 0.5),
  legend.title = element_text(size = 11)
)
```

Distribution of total_ct_chng_q4_q1 by Attrition

total_ct_chng_q4_q1 attrited existing

total_amt_chng_q4_q1

```
ggplot(raw_data, aes(x = attrition_flag, y = total_amt_chng_q4_q1, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "Change in Transaction Amount (Q4 vs Q1) by Customer Status",
    subtitle = "Churned customers may reduce their spending before leaving",
    x = "Customer Status",
    y = "Q4 vs Q1 Amount Change Ratio"
) +
```

```
theme_minimal() +
theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```

Change in Transaction Amount (Q4 vs Q1) by Customer Status Churned customers may reduce their spending before leaving


```
ggplot(raw_data, aes(x = total_amt_chng_q4_q1, fill = attrition_flag)) +
  geom_histogram(position = "identity", alpha = 0.6, bins = 30, color = "white") +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed"), labels = c("Attrited", "Existing")) +
  labs(
    title = "Distribution of total_amt_chng_q4_q1 by Attrition",
    x = "total_amt_chng_q4_q1",
    y = "Count",
    fill = "Customer Status"
) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5),
    legend.title = element_text(size = 11)
)
```

Distribution of total_amt_chng_q4_q1 by Attrition

total_amt_chng_q4_q1 attrited existing

total_trans_amt

```
ggplot(raw_data, aes(x = attrition_flag, y = total_trans_amt, fill = attrition_flag)) +
  geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = 16, outlier.size = 2) +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed")) +
  labs(
    title = "total_trans_amt",
    subtitle = "total_trans_amt",
    x = "Customer Status",
    y = "Q4 vs Q1 Amount Change Ratio"
  ) +
  theme_minimal() +
  theme(legend.position = "none",
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5))
```



```
ggplot(raw_data, aes(x = total_trans_amt, fill = attrition_flag)) +
  geom_histogram(position = "identity", alpha = 0.6, bins = 30, color = "white") +
  scale_fill_manual(values = c("#004c6d", "#a7c6ed"), labels = c("Attrited", "Existing")) +
  labs(
    title = "total_trans_amt",
    x = "total_trans_amt",
    y = "Count",
    fill = "Customer Status"
) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5),
    legend.title = element_text(size = 11)
)
```


 $total_trans_amt$

Customer Activity Level

 $total_trans_amt \\ \quad total_trans_ct$