Algebră liniară, Tema 9

- 1. Fie $\mathcal{R} = (O; e_1, e_2)$ reperul canonic (al lumii reale) 2D, de axe asociate xOy şi E(-2, 1, 1) un punct raportat la acest reper. Construiți un reper ortonormat drept cu originea în E şi axele având versorii (u_1, u_2) , ştiind că masura unghiului dintre u_1 şi e_1 este $\theta = \pi/3$. Să se determine relația dintre coordonatele (x, y) ale unui punct M şi coordonatele (x', y') relativ la reperul $\mathcal{R}' = (E; u_1, u_2)$. Desenați cele două sisteme de axe.
- 2. În spațiul punctual euclidian \mathbb{E}^2 se consideră sistemul de axe ortogonale xOy asociat reperului canonic $\mathcal{R} = (O; e_1, e_2)$ și sistemul de axe x'O'y' asociat reperului

$$\mathcal{R}' = (O'; u_1 = (0.6, 0.8)^T, u_2 = (0.8, -0.6)^T)$$

a cărui origine O' are coordonatele (2, -3) relativ la reperul \mathcal{R} .

Ce orientare are noul reper \mathcal{R}' ? Desenați sistemul de axe x'O'y' și determinați coordonatele (x', y') ale punctului A(1, -5). Care este proiecția ortogonală a vectorului \overrightarrow{OA} pe u_2 ?

- 3. În \mathbb{E}^2 se consideră sistemul de axe xOy având respectiv versorii e_1, e_2 şi sistemul strâmb x'O'y', unde O' are coordonatele (-2,-3) relativ la xOy, iar axele au versorii (u_1, u_2) , unde u_1 formează unghiul $\theta = \pi/4$ cu e_1 . Să se determine coordonatele în baza canonică ale versorilor u_1, u_2 şi relația dintre coordonatele (x, y) ale unui punct $M \in \mathbb{E}^2$ şi coordonatele (x', y') ale aceluiași punct relativ la x'O'y'.
- 4. În spațiul \mathbb{E}^3 raportat la sistemul de axe ortogonale xOyz se dau punctele A(-2,4,1), B(3,0,-1), C(1,1,2) și vectorul $v(2,-3,5)^T \in \mathbb{R}^3$;
 - a) Să se determine punctul M astfel încât vectorul $\overrightarrow{OM} = 2v$;
 - b) Să se calculeze unghiul \widehat{BMC} , unde M este mijlocul segmentului [A,C];
 - c) Să se determine punctul $D \in [A, C]$ astfel încât $\overrightarrow{BD} \perp \overrightarrow{AC}$.

Indicație pt c). Un punct arbitrar $P \in [A, C]$ se exprimă astfel: $P = A + t\overrightarrow{AC}$ Trebuie determinat acel punct $P \in [A, C]$ cu proprietatea că $\overrightarrow{BP} \perp \overrightarrow{AC}$. Condiția de ortogonalitate conduce la o ecuație în necunoscuta t.

- 5. Să se determine scalarea ce se aplică celui mai mic dreptunghi ce conține triunghiul de vârfuri A(1,2), B(3,5), C(5,-1) pe viewportul de coordonate pixel $p_{\ell} = 50, p_r = 250, p_b = 300, p_t = 60.$
- 6. Să se parcurgă toate etapele de calcul (cu explicații) ce trebuie efectuate pentru a mapa dreptunghiul $[-1,2] \times [3,7]$, raportat la sistemul lumii reale, pe un viewport care

are punctele diagonal opuse, de coordonate pixel $(p_l, p_b) = (5, 200), (p_r, p_t) = (250, 50)$ (desenați sistemele de axe ale etapelor intermediare!).

Să se determine coordonatele pixel, a mapatului punctului A(0,5) din fereastra lumii reale.

- 7. Să se determine un vector simultan perpendicular pe vectorii $v = (0, -2, 1)^T$, $w = (1, 1, -3)^T$ și apoi să se deducă sinusul unghiului dintre vectorii v și w.
- 8. Pornind de la vectorii $v = (-1, 2, 1)^T$, $w = (1, 0, 3)^T$ și calculând produse vectoriale succesive, să se construiască în \mathbb{R}^3 o bază ortonormată pozitiv orientată.

Rezolvare: Exploatăm faptul că produsul vectorial a doi vectori este ortogonal pe ambii vectori factor. Construim mai întâi o bază ortogonală $\mathcal{B}' = (f_1, f_2, f_3)$:

$$\begin{array}{rcl}
f_1 & = & v \\
f_2 & = & v \times w \\
f_3 & = & f_1 \times f_2
\end{array}$$

Evident că $f_2 \perp v$ deoarece $v \times w \perp v$, iar $f_3 \perp f_1$ şi $f_3 \perp f_2$. Mai mult din faptul că $f_3 = f_1 \times f_2$, rezultă că baza ortogonală (f_1, f_2, f_3) este o bază dreaptă pentru că se comportă fața de produsul vectorial ca și baza canonică $(e_3 = e_1 \times e_2)$.

Baza formată din versorii lui f_1, f_2, f_3 va fi o bază ortonormată și pozitiv orientată.

- 9. Pornind de la aceeași vectori v și w ca în problema precedentă, să se contruiască în \mathbb{R}^3 o bază ortonormată negativ orientată, $\mathcal{B}' = (u_1, u_2, u_3)$, astfel încât u_3 să fie versorul lui $v \times w$.
- 10. Folosind produsul vectorial să se determine coloana a treia a matricii:

$$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{3}{\sqrt{26}} & ?\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{26}} & ?\\ \frac{1}{\sqrt{3}} & -\frac{4}{\sqrt{26}} & ? \end{bmatrix}$$

astfel încât matricea A să fie ortogonală și de determinant egal cu -1. Explicați modul în care construiți coloana a treia.

11. În \mathbb{R}^3 se dă baza ortonormată

$$\mathcal{B}' = \left(u_1 = \left(\frac{2}{\sqrt{5}}, 0, -\frac{1}{\sqrt{5}}\right)^T, u_2 = \left(\frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{2}{\sqrt{30}}\right)^T, u_3 = \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)\right)^T$$

- a) Verificaţi prin două metode dacă baza \mathcal{B}' este sau nu dreaptă (calculând $det(T_{\mathcal{BB}'})$ şi respectiv $u_1 \times u_2$).
- b) Dacă baza nu este pozitiv orientată ce modificare i-ați aduce pentru a obține o bază dreaptă?