Infos

Telegram-Gruppe (https://t.me/joinchat/BOnvBRAj4DSmBVteVVR5cA)

1 Komplexitätsanalyse

1.1 Effizienzmaße

- Worst Case: $t(n) = max\{T(i) : i \in I_n\}$
- Average Case:
 - Gleichverteilt: $t(n) = \frac{1}{|I_n|} \sum_{i \in I_n} T(i)$
 - Nicht gleichverteilt: $t(n) = \sum_{i \in I_n} p_i \cdot T(i)$
- Best Case: $t(n) = min\{T(i) : i \in I_n\}$

1.2 Formalisierung asymptotischen Verhaltens

- $\mathcal{O}(f(n)) = \{g(n) : \exists c > 0 : \exists n_0 > 0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$
- $\Omega(f(n)) = \{g(n) : \exists c > 0 : \exists n_0 > 0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$
- $\bullet \ \Theta(f(n)) = \mathcal{O}(f(n)) \cap \Omega(f(n))$
- $o(f(n)) = \{g(n) : \forall c > 0 : \exists n_0 > 0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$
- $\omega(f(n)) = \{g(n) : \forall c > 0 : \exists n_0 > 0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$

1.3 Rechenregeln für \mathcal{O} -Notation

- Polynome k-ten Grades $\in \Theta(n^k)$
- Für Funktionen f(n) bzw. g(n) mit $\exists n_0 \forall n \geq n_0 : f(n) > 0$:
 - $-c \cdot f(n) \in \Theta(f(n))$
 - $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
 - $-\mathcal{O}(f(n))\cdot\mathcal{O}(g(n)) = \mathcal{O}(f(n)\cdot g(n))$
 - $-\mathcal{O}(f(n)+g(n)) = \mathcal{O}(f(n)), \text{ falls } g(n) \in \mathcal{O}(f(n))$

```
-\Omega(f(n)) + \Omega(g(n)) = \Omega(f(n) + g(n))
-\Omega(f(n)) \cdot \Omega(g(n)) = \Omega(f(n) \cdot g(n))
-\Omega(f(n) + g(n)) = \Omega(f(n)), \text{ falls } g(n) \in \mathcal{O}(f(n))
```

• Falls f, g differenzierbar, X eines der fünf Landau-Symbole: $f'(n) \in X(g'(n)) \Rightarrow f(n) \in X(g(n))$

2 Datenstrukturen

2.1 Dynamische Felder

- Parameter:
 - $-\beta = 2$: Wachstumsfaktor
 - $-\alpha = 4$: max. Speicheroverhead
 - -w=1: momentane Feldgröße
 - -n=0: momentane Elementanzahl
 - -b = new X[w]: statisches Feld
- Methoden:
 - $get (int) : X \in \mathcal{O}(1)$
 - set (int, X): void $\in \mathcal{O}(1)$
 - size (): int $\in \mathcal{O}(1)$
 - pushBack (X x): void \in (reallocate ? $\mathcal{O}(reallocate) : \mathcal{O}(1)$)
 - popBack (): void (Laufzeiten wie pushBack)
 - reallocate (int): void $\in \mathcal{O}(n)$, amortalisiert $\in \mathcal{O}(1)$

2.2 Doppelt verkettete Listen

2.3 Stacks und Queues

2.4 Binäre Heaps

- -siftDown(int) : void $\in \mathcal{O}(\log n)$
- -siftUp(int) : void $\in \mathcal{O}(\log n)$
- +deleteMin() : $X \in \mathcal{O}(siftDown)$

- $+\min(): X \in \mathcal{O}(1)$
- +insert(X) : void $\in \mathcal{O}(siftUp)$
- +build $(x_1, ..., x_n)$: void $\in \mathcal{O}(n)$
- $+\text{merge}(B_2)$: $\text{void} \in \Theta(n)$

2.5 Binomiale Heaps

Binomialbäume: gleiche Operationen und Laufzeiten wie Binäre Heaps. Weitere Operationen und Ausnahmen:

- decreaseKey $\in \mathcal{O}(\log n)$
- remove $\in \mathcal{O}(\log n)$
- merge $\in \mathcal{O}(\log n)$

2.6 Fibonacci Heaps

- min, insert, merge: $\mathcal{O}(1)$
- decreaseKey: $\mathcal{O}(1)$ (amortalisiert)
- deleteMin, remove: $\mathcal{O}(\log n)$ (amortalisiert)

3 Hashing

c-universelles Hashing:

Eine Familie H von Hashfunktionen auf $\{0,...,m-1\}$ heißt c-universell, falls für jedes Paar $x \neq y$ von Schlüsseln gilt:

$$|\{h \in H : h(x) = h(y)\}| \le \frac{c}{m}|H|.$$

- \bullet c: Kollisionsmaß
- m: Größe der Hashtabelle
- n: Anzahl Elemente in der HT
- Erwartete Laufzeit remove/find dann in $\mathcal{O}(1+c\cdot\frac{n}{m})$.

Mit m prim und $h_a(x) = \langle a, x \rangle \mod m$ ist $H = \{h_a : a \in \{0, ..., m-1\}^k\}$ 1-universell.

Mit m prim und $h_a(x) = \sum_{i=1}^k a^{i-1}x_i \mod m$ ist $H = \{h_a : a \in \{1, ..., m-1\}\}$ k-universell.

4 Sortieren

4.1 Master-Theorem

Seien a,b,c,d positive Konstanten und $n=b^k$ mit $k\in\mathbb{N}.$ Sei r(n)=

- a, falls n = 1,
- $cn + d \cdot r(\frac{n}{b})$, falls n > 1.

Dann gilt: $r(n) \in$

- $\Theta(n)$, falls d < b,
- $\Theta(n \log n)$, falls d = b,
- $\Theta(n^{log_b d})$, falls d > b.

4.2 Verfahren

Algorithmus	Laufzeit			Eigenschaften
	Best Case	Average Case	Worst Case	
Selection Sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	Einfach zu implementieren
Bubble Sort	$O(n^2)$	$O(n^2)$	$\mathcal{O}(n^2)$	Einfach zu implementieren
Heap Sort	$\mathcal{O}(n)$	O(n log n)	O(n log n)	Var. d. Selection Sort, bessere Minimumstrategie
Insertion Sort	$\mathcal{O}(n)$	$O(n^2)$	$O(n^2)$	Einfach zu implementieren
Bogo Sort	$\mathcal{O}(n)$	$\mathcal{O}(n \cdot n!)$	$\mathcal{O}(\infty)$	Einfach zu implementieren
Shell Sort	$\mathcal{O}(n)$	$O(n log^2 n)$	$O(n log^2 n)$	Variante d. Insertion Sort, bessere Einfügestrategie
Merge Sort	O(n log n)	O(n log n)	O(n log n)	Sehr gut für Multi-Threading geeignet
Quick Sort	O(n log n)	O(n log n)	$O(n^2)$	Schnellstes Verfahren in der Praxis
Radix Sort	$\mathcal{O}(d \cdot (n+k))$	$\mathcal{O}(d \cdot (n+k))$	$\mathcal{O}(d \cdot (n+k))$	d Stellen, k mögl. 'Ziffern' pro Stelle

Stabil

In-Place

Stabil und In-Place

- 5 Priority Queues
- 6 Suchstrukturen
- 7 Graphen
- 8 Pattern Matching
- 9 Datenkompression
- 10 Algorithmen
- 10.1 SSSP-Algorithmen
- 10.1.1 Topologische Sortierung

Löst SSSP auf DAGs mit beliebigen Kantengewichten. Angenommen, unser Graph hat n Knoten und m Kanten. Laufzeit: $\mathcal{O}(m+n)$

- 1. Wiederhole, bis alle Knoten abgearbeitet:
 - Wähle beliebigen Knoten, der keine oder nur bereits abgearbeitete Vorgänger hat.
 - Überprüfe, ob er eingetragene Distanzen "verbessern"kann und aktualisiere ggf. Distanz und Vorgänger des jeweiligen Nachfolgers.
 - Dieser Knoten ist nun abgearbeitet.

10.1.2 Dijkstra

Löst SSSP mit positiven Kantengewichten (Graph muss kein DAG sein). Ziel: Kürzeste Distanzen zu allen Knoten (von einem Startknoten aus gesehen). Angenommen, unser Graph hat n Knoten und m Kanten.

Laufzeit: $\mathcal{O}(m+n \log n)$, mit Radix Heaps über C-adische Darstellung bis zu $\mathcal{O}(m+n \log C)$ zu verbessern

- 1. Setze alle Distanzen auf ∞ und füge (s,0) in die Queue ein
- 2. Wiederhole, solange die Queue nicht leer ist:

- (a) Wähle den Knoten mit geringster Distanz (x) aus der Queue, der kürzeste Weg zu x ist nun gefunden und x ist jetzt abgearbeitet
- (b) Berechne Distanzen zu allen noch nicht abgearbeiteten Nachfolgern von x und füge sie in die Queue ein bzw. aktualisiere ggf. den neuen kürzeren Weg

10.1.3 Bellman-Ford

Löst SSSP mit beliebigen Kantengewichten (Graph muss kein DAG sein). Ziel: Kürzeste Distanzen zu allen Knoten (von einem Startknoten aus gesehen), Erkennung von negativen Kreisen.

Angenommen, unser Graph hat n Knoten und m Kanten.

Laufzeit: $\mathcal{O}(m \cdot n)$.

Parameter: Startknoten s.

- 1. Setze alle Distanzen auf ∞ .
- 2. Setze Distanz des Knotens s auf 0.
- 3. Wiederhole n-1 mal:
 - (a) Gehe alle Kanten e=(v, w) aus der Kantenmenge durch, dabei:
 - i. Ist die Distanz des Knotens v plus die Kantenkosten weniger als die **aktuelle** Distanz des Knotens w? Falls ja, aktualisiere Distanz des Knotens w sowie seinen Vorgänger.
- 4. Gehe nun noch ein letztes Mal alle Kanten e = (v, w) durch, dabei:
 - (a) Ist die Distanz des Knotens v plus die Kantenkosten weniger als die **aktuelle** Distanz des Knotens w? Falls ja, infiziere w und setze seinen Vorgänger auf v.

Infizieren eines Knotens x: Setze Distanz des Knotens x auf $-\infty$, alle Nachfolger des Knotens werden sukzessive ebenfalls infiziert.

Anmerkung: Bis auf den Wert der Distanz sind Schritte 3.(a) und 4 identisch.