[010238] 딥러닝시스템

세종대학교 소프트웨어융합대학 지능기전공학부

비전 시스템을 위한 딥러닝

Deep Learning for Vision Systems

■ **교과목명**: 딥러닝시스템 (Deep Learning System)

■ **수강대상**: 지능기전공학부 4학년

■ **선수과목**: 기계학습, 인공지능

■ **담당교수**: 최유경(ykchoi@sejong.ac.kr)

■ **담당조교**: 김태주 (tjkim@rcv.sejong.ac.kr/ 석박통합과정 4학기),

신정민(jmshin@rcv.sejong.ac.kr/ 석박통합과정 2학기)

■ **수업교재:** 비전 시스템을 위한 딥러닝 (Deep Learning for Vision Systems)

- 수업방식: 하이브리드 강의
 - 비대면 이론 강의: (월) 주차별 기간 내 / 블랙보드 영상 시청
 - 대면 실습 강의: (수)12시 1시 30분 / 실습실 센 B108
 - 대면 실습 강의 전 반드시 이론 강의 시청을 완료할 것
- **질의응답**: Slack App 활용
 - 슬랙의 전체공지 채널은 반드시 알람 활성화!!
 - 질문은 개인 DM 이 아닌, 모두에게 공유되는 채널 사용 요망
 - 비슷한 질문에 대한 답변 공유 차원

- 수업자료
 - 블랙보드: 온라인 이론 강의
 - 전자출결과 관련이 있으므로 반드시 정해진 기간 안에 시청할 것
 - 깃허브: 고화질 강의 동영상 (Youtube), 강의노트, 실습 코드 등
 - https://github.com/sejongresearch/2022.DeepLearningSystem
 - 슬랙: #전체공지 채널 참고
 - 블랙보드는 중요공지만을 위해 사용할 예정이므로 반드시 **슬랙 #전체공지** 참고

- 시험방식
 - 이론/실습 시험 구성
 - 시험 일정 및 방식은 깃 허브 참고
- 평가방식
 - 상대평가
 - 중간고사(30%), 기말고사(30%)
 - 이론 시험은 답안을 타이핑하여 제출
 - 실습 시험은 Kaggle 리더보드를 통한 평가시스템 운영
 - 수시 평가(30%)
 - 단원별 실습 문제 / 팀별 프로젝트
 - 출석 (10%): 블랙보드(온라인-월)와 전자출결(오프라인-수)

주 (Week)	교 수 내 용 (Course Contents)	수업형태 및 활용기자재 (Etc.)	비고	주 (Week	교 수 내 용 (Course Contents)
1	수업개요 / 컴퓨터 비전 입문	온라인 강의 (블랙보드)		9	생성적 적대 신경망
2	답러닝과 신경망	온라인 강의 (블랙보드)		10	답드림과 신경 스타일 전이
3	합성곱 신경망	온라인 강의 (블랙보드) / 오프라인 실습 강의	과제: 컬러 이미지 분류 문제	11	시각 임베딩
4	딥러닝 프로젝트 시동 걸기와 하이퍼파라미터 튜닝	온라인 강의 (블랙보드) / 오프라인 실습 강의	과제: 이미지 분류 정확도 개선하기	12	PBL 모듈 : 1주차
5	고급 합성곱 신경망 구조	온라인 강의 (블랙보드) / 오프라인 실습 강의	과제: 백본 모델에 따른 이미지 분류 정확도 비교하기	13	PBL 모듈 : 2주차
6	전이학습	온라인 강의 (블랙보드) / 오프라인 실습 강의	과제 : 사전 학습된 신경망 특징 추출기 사용하기 / 미세 조정	14	PBL 모듈 : 3주차
7	R-CNN, SSD, YOLO 를 이용한 사물 탐지	온라인 강의 (블랙보드) / 오프라인 실습 강의	과제: 자율주행자동 차를 위한 SSD 학습하기	15	PBL 모듈 : 4주차
8	중간고사		이론 및 실습 시험	16	기말고사

수업형태 및

활용기자재 (Etc.) 온라인 강의

(블랙보드) /

온라인 강의

(블랙보드) /

온라인 강의

(블랙보드) /

오프라인 실습

오프라인 실습 강의

오프라인 실습 강의

오프라인 실습 강의

오프라인 실습 강의

오프라인 실습

강의

강의

강의

오프라인 실습

비고

과제: GAN

모델 직접

구현해보기

과제: 스타일

전이 직접

구현해보기

과제: 임베딩

신경망

학습하기

PBL 모듈 : 임베디드 보드를 활용한 자율주행자동차를

위한 SW 구현 (Nvidia Jeston Nano 보드 활용 예정)

이론 및 실습 시험

- PBL 모듈 (12주차-15주차)
 - 임베디드 보드를 활용한 자율주행자동차를 위한 SW 구현
 - Nvidia Jeston Nano 보드 활용 예정

Tesla FSD 를 위한 차량 내 임베디드 보드

https://en.wikichip.org/wiki/tesla_%28car_company%29/fsd_chip