1 Lineare Algebra

1.1 Definitionen

Ein **Kern** (Ker(A)) existiert, wenn det(A) = 0.

Der Kern einer Matrix A ist die Lösungsmenge von $A \cdot \vec{v} = \vec{0}$

 \rightarrow LGS=0 durch elem. Zeilenoperationen lösen.

Das **Bild** (Im(A)) einer Matrix gibt an, welche Menge an Vektoren als Lösungen auftreten können (vgl. Wertebereich bei Funktionen).

Das Bild einer Matrix A ist die Lösungsmenge von $A \cdot \vec{v} = \vec{b}$

Der Rang (rank(A)) einer Matrix A ist die Anzahl der linear unabhängigen Spaltenvektoren <u>Ermittlung</u>: Spalten von links nach rechts \rightarrow ist die Spalte $_i$ linear abhängig von den vorherigen? Rang = Anzahl der linear unabhängigen Spaltenvektoren

Verwendung z.B. zur Komprimierung von A:

$$A = \begin{pmatrix} \mathbf{1} & \mathbf{1} & 2 & 4 & 2 \\ \mathbf{2} & \mathbf{1} & 3 & 5 & 4 \\ \mathbf{1} & \mathbf{1} & 2 & 4 & 2 \\ \mathbf{0} & \mathbf{1} & 1 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} a_1 = 1 \cdot a_1 + 0 \cdot a_2 \\ a_2 = 0 \cdot a_1 + 1 \cdot a_2 \\ a_3 = 1 \cdot a_1 + 1 \cdot a_2 \\ a_4 = 1 \cdot a_1 + 3 \cdot a_2 \\ a_5 = 2 \cdot a_1 + 0 \cdot a_2 \end{pmatrix} \rightarrow A = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 & 0 \end{pmatrix}$$

Die Länge eines Vektors \vec{v} ist die Wurzel aus dem Skalarprodukt mit sich selbst.

$$\rightarrow \|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Das **Skalarprodukt** $\langle x,y \rangle$ zweier Vektoren ist die Summe der Produkte der jeweiligen Komponenten $\to x_1y_1 + \cdots + x_dy_d$; man kann damit den von x und y eingeschlossenen Winkel als Zahl $\theta \in [0,\pi]$ berechnen mit: $\cos \theta = \frac{\langle x,y \rangle}{\|x\| \cdot \|y\|} \to \text{Zwei Vektoren stehen senkrecht zueinander, wenn } \langle x,y \rangle = 0$

1.2 Determinante

Spezielle Funktion, die einer <u>quadratischen</u> Matrix eine Zahl zuordnet. Diese gibt an, wie sich das Volumen bei der durch die Matrix beschriebenen linearen Abbildung ändert.

- $det(A) = 0 \rightarrow Matrix A$ ist nicht invertierbar; ist z.B. der Fall, wenn
 - eine Zeile oder Spalte nur aus Nullen besteht
 - 2 Zeilen/Spalten identisch sind
 - Zeilen/Spalten ein Vielfaches einer anderen Zeile/Spalte sind.
- det(I) = 1
- $det(A) = det(A^T)$
- $det \begin{pmatrix} \lambda \cdot a & \lambda \cdot b \\ c & d \end{pmatrix} = \lambda \cdot det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow$ Eine Zeile mit λ multiplizieren
- $det(\lambda \cdot A) = \lambda^n \cdot det(A) \to \text{Ganze Matrix } (\mathbb{R}^{nxn})$ mit λ multiplizieren
- $det(A^{-1}) = det(A)^{-1} = \frac{1}{det(A)}$
- $det(A \cdot B) = det(A) \cdot det(B)$
- $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = -det \begin{pmatrix} c & d \\ a & b \end{pmatrix} \rightarrow Zeilentausch: Vorzeichenwechsel$

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - gec - hfa - ibd$$

1.3 Eigenwerte, Eigenvektoren und Eigenraum

Eine Zahl λ heißt Eigenwert der Matrix A, wenn es einen Vektor \vec{v} gibt, der nicht der Nullvektor ist, so dass gilt:

$$Av = \lambda v$$
$$Av - \lambda v = 0$$
$$(A - \lambda I)v = 0$$

1.3.1 Charakteristisches Polynom berechnen

Anstatt o.g. Gleichungzu lösen: Bestimmung der Nullstellen des charakteristischen Polynoms $p_A(\lambda)$ der Matrix A.

$$p_A(\lambda) = \det(A - \lambda I)$$

$$= \begin{vmatrix} a_{11} - \lambda & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} - \lambda \end{vmatrix} \stackrel{!}{=} 0$$

1.3.2 Eigenvektoren berechnen

Der zu einem Eigenwert λ_i gehörende Eigenvektor $\vec{v_i}$ ist die Lösung der Gleichung:

$$A\vec{v_i} = \lambda_i \vec{v_i}$$
$$(A - \lambda_i I) \cdot \vec{v_i} = \vec{0}$$

Rechenweg:

- 1. λ_i für λ in die Matrix $(A \lambda I)$ einsetzen (siehe charakterisches Polynom)
- 2. Das folgende LGS durch elementare Zeilenoperationen lösen:

$$\begin{pmatrix}
a_{11} - \lambda & \cdots & a_{1n} & 0 \\
\vdots & \ddots & \vdots & 0 \\
a_{n1} & \cdots & a_{nn} - \lambda & 0
\end{pmatrix}$$

3. Für Nullzeilen ergeben sich beliebige Lösungen, die gleich 1 gesetzt werden können.

1.3.3 Eigenraum berechnen

Der Eigenraum $E_A(\lambda_i)$ einer Matrix A zu einem Eigenwert λ_i ist die Menge aller Eigenvektoren $\vec{v_i}$ zu λ_i .

 $L\ddot{o}sung$: Vielfaches der Eigenvektoren in Mengenschreibweise festhalten:

$$E_A(\lambda_i) = \{k \cdot \vec{v_i} | k \in \mathbb{R}\}$$

1.3.4 algebraische vs. geometrische Vielfachheit von λ

- algebraische Vielfachheit: Anzahl gleicher Eigenwerte im charakteristischen Polynom
- geometrische Vielfachheit: Dimension (Anzahl der Vektoren) des Eigenraums $E(\lambda)$; \leq algebraische Vielfachheit

1.4 Orthogonale Matrizen

Zwei Vektoren sind orthogonal, wenn ihr Skalarprodukt

$$\langle a, b \rangle = a_1 b_1 + \ldots + a_i b_i = 0$$

Äquivalente Aussagen:

- \bullet Matrix B ist orthogonal
- $B^TB = I$, d.h. B ist invertierbar mit $B^{-1} = B^T$.
- $\bullet\,$ Die Spaltenvektoren von B
 definieren eine Orthonomalbasis von \mathbb{R}^n

1.4.1 Orthogonalen Vektor mit dem Kreuzprodukt finden

Für $\vec{a} \perp \vec{b}$ ergibt sich \vec{c} mit $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$ aus:

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

1.4.2 Gram-Schmidt-Verfahren

Ziel: Orthonormalbasis (ONB) zu einem Vektorraum $B = \{b_1, b_2, \dots b_n\}$ finden.

- 1. Ersten Basisvektor normieren: $\vec{q_1} = \frac{\vec{q_1}}{||\vec{q_1}||}$
- 2. Fälle das Lot von b_2 auf die von q_1 erzeugte Gerade: $l_2 = b_2 \langle b_2, q_1 \rangle q_1$
- 3. Normiere das Lot: $\vec{q_2} = \frac{\vec{l_2}}{||\vec{l_2}||}$
- 4. Wiederhole Schritte 2 und 3 für alle Basisvektoren: $l_i = b_i \langle b_i, q_1 \rangle q_1 \langle b_i, q_2 \rangle q_2 \ldots \langle b_i, q_{i-1} \rangle q_{i-1}$ und $\vec{q_i} = \frac{\vec{l_i}}{||\vec{l_i}||}$

1.5 Diagonalisierbarkeit

1.5.1 Diagonalisierbarkeit

A ist diagonalisierbar, wenn

- für jeden Eigenwert von A die algebraische Vielfachheit gleich der geometrischen Vielfachheit ist, oder
- wenn alle Eigenwerte (λ_i) von A unterschiedlich sind.

Um die Diagonalmatrix $D = S^{-1}AS$ bzw. $A = SDS^{-1}$ zu bestimmen:

- 1. Eigenwerte λ_i von A bestimmen $\rightarrow Nullstellen char. Polynom$
- 2. Eigenvektoren $\vec{v_i}$ zu λ_i bestimmen \rightarrow Spalten der Matrix S
- 3. Diagonalmatrix $D = diag(\lambda_1, \lambda_2, \dots \lambda_i)$ bestimmen

1.5.2 Orthogonale Diagonalisierbarkeit

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt orthogonal diagonalisierbar, falls es eine orthogonale Matrix $S \in \mathbb{R}^{n \times n}$ gibt, so dass $D = S^T A S = S^{-1} A S$ eine Diagonalmatrix ist $(S^T S = I \Rightarrow \text{Orthogonalität } S^{-1} = S^T)$.

Dies ist genau dann der Fall, wenn A symmetrisch ist:

$$\mathbf{A}^T = (SDS^T)^T = (S^T)^T D^T S^T = SDS^T = \mathbf{A}$$

Vorgehensweise analog zur Diagonalisierbarkeit; zusätzlich müssen die Eigenvektoren $\vec{v_i}$ zu λ_i noch normiert werden $(\tilde{v_i} = \frac{v_i}{||v_i||})$

1.6 Pseudo-Inverse A^+

Approximation einer inversen Matrix Für nicht-quadratische Matrizen mit Hilfe der Singulärwertzerlegung (siehe 1.7).

$$A^+ = V \cdot \Sigma^{-1} \cdot U^T$$

wobei $\Sigma^{-1} = diag(\sigma_1^{-1}, \dots \sigma_r^{-1})$

Eigenschaften:

- $AA^{+}A = A$
- $A^{+}AA^{+} = A^{+}$
- $(AA^+)^T = AA^+ \rightarrow AA^+$ ist symmetrisch
- $(A^+A)^T = A^+A \rightarrow A^+A$ ist symmetrisch
- $A^+ = A^{-1}$, wenn A invertierbar ist
- $A = U\Sigma V^T \Leftrightarrow A^T = V\Sigma U^T$
- $\bullet \ \ V^TV = VV^T = I \ \mathrm{und} \ U^TU = UU^T = I$

1.7 Singulärwertzerlegung

$$\underbrace{A}_{\mathbb{R}^{m \times n}} = \underbrace{U}_{\mathbb{R}^{m \times m}} \underbrace{\Sigma}_{\mathbb{R}^{n \times n}} \underbrace{V^{T}}_{\mathbb{R}^{n \times n}}$$

- \bullet U und V sind orthogonale/unitäre Matrizen
- ullet U enthält die normierten Eigenvektoren von AA^T ; kann als eine Basis für den Spaltenraum von A betrachtet werden
- V enthält die normierten Eigenvektoren von A^TA ; kann als eine Basis für den Zeilenraum von A betrachtet werden
- Σ ist eine Diagonalmatrix mit den Singulärwerten $\sigma_1 \geq \sigma_2 \geq \ldots \geq 0$ (sortiert) auf der Hauptdiagonalen. Die Singulärwerte sind die Wurzeln der Eigenwerte von A^TA und AA^T ($\sigma_i = \sqrt{\lambda_i}$, Rest = 0).
- Die Singulärwerte in Σ geben die Stärke der Korrelation zwischen den Spalten und Zeilen von A an. Die größten Singulärwerte in Σ geben die wichtigsten Merkmale von A an, während die kleinsten Singulärwerte in Σ die Rauschkomponenten von A darstellen.

1.7.1 Einfaches Berechnungsverfahren (über Eigenvektoren)

- 1. AA^T und A^TA bestimmen
- 2. Für "kleinere" Matrix aus 1) Eigenwerte λ_i bestimmen (char. Polynom)
- 3. Σ mit $diag(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n)$ aufstellen; Singulärwerte $\sigma_i = \sqrt{\lambda_i}$ auf Hauptdiagonalen; Rest = 0
- 4. U aufstellen: normierte Eigenvektoren für AA^T für alle λ_i bestimmen
- 5. V aufstellen: normierte Eigenvektoren für A^TA für alle λ_i bestimmen; V^T bilden

Singulärwertzerlegung

Alternatives Berechnungsverfahren 1.7.2

1. Form prüfen: ist A "hochkant"? \rightarrow sonst aufwendiger zu lösen

Umstellen zu A^T ist möglich, da $(A^T)^T = A$; d.h. $A^T = V \Sigma^T U^T$

2. Eigenwerte von A^TA bestimmen

Eigenwerte (≥ 0) über Nullstellen char. Polynom bestimmen, absteigend sortieren!

3. Σ aufstellen

Diagonal matrix mit $\sigma_i = \sqrt{\lambda_i},$ Rest = 0

4. Spaltenvektoren für V ermitteln

Eigenvektoren zu λ aus 2. bestimmen, normieren und in Matrix V eintragen Für SVD: V^T bilden

5. U aufstellen

- a) für vorhandene Singulärwerte:
- b) sonst: u_i so finden, dass u_i ONB sind
 - \to Kreuzprodukt (\mathbb{R}^3)
 - \rightarrow Gram-Schmidt

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \\ 0 & 1 \end{pmatrix}$$

$$A^T A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$$
$$p_A(\lambda) = \det(A^T A - \lambda I) \stackrel{!}{=} 0$$
$$(5 - \lambda)^2 - 16 = 0$$
$$\lambda_1 = 9, \lambda_2 = 1$$

$$\Sigma = \begin{pmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\frac{\text{für } \lambda_1 = 9:}{\begin{pmatrix} 5 - 9 & 4 & 0 \\ 4 & 5 - 9 & 0 \end{pmatrix}} \Leftrightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow v_1^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v_1 = \frac{v_1^*}{||v_1^*||} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\underline{\text{für }\lambda_2=1:}$$

$$v_2 = \frac{v_2^*}{||v_2^*||} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$u_{1} = \frac{1}{3\sqrt{2}} \begin{pmatrix} 1\\4\\1 \end{pmatrix}, u_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

b) $u_{3} = u_{1} \times u_{2} = \frac{1}{6} \begin{pmatrix} 4\\-2\\4 \end{pmatrix}$

b)
$$u_3 = u_1 \times u_2 = \frac{1}{6} \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}$$

2 Mehrdimensionale Wahrscheinlichkeitsrechnung

2.1 Formeln

2.1.1 Kovarianz, Korrelation

$$Cov[X,Y] = E[(X-E[X])(Y-E[Y])]$$

$$Cov[X,Y] = E[XY] - E[X]E[Y]$$

$$Cov[X,Y] = Cov[Y,X] \text{ und } Cov[X,X] = Var[X]$$

$$r_{XY} = Cor[X,Y] = \frac{Cov[X,Y]}{\sqrt{Var(X)Var(Y)}} \rightarrow [-1;+1]$$

Merke:

- \bullet statistische Unabhängigkeit \Rightarrow Unkorreliertheit
- Unkorreliertheit \Rightarrow statistische Unabhängigkeit, <u>nur</u> wenn X und Y normalverteilt sind

2.1.2 Linearkombinationen

$$E[aX+bY]=aE[X]+bE[Y] \\$$

$$Var[aX + bY] = a^{2}Var[X] + b^{2}Var[Y] + 2abCov[X, Y]$$

$$Var[X_1 + \ldots + X_n] = \sum_{i=1}^n Var[X_i] + 2\sum_{1 \le i < j \le n} Cov[X_i, X_j] \rightarrow Satz \ von \ Bienaym\'e$$

2.1.3 Mengen

Schnittmenge $A \cap B$

Vereinigung $A \cup B$

$$A \cup B = A + B - A \cap B$$

2.1.4 Konvergenz

- in Wahrscheinlichkeit: $X_n \xrightarrow{P} X$ wenn $\forall \epsilon > 0$: $\lim_{n \to \infty} P(|X_n EW(X)| \ge \epsilon) = P(X_n \ge \epsilon) = P(X_1 \ge \epsilon) \times \ldots \times P(X_n \ge \epsilon) = (1 \epsilon)^n = 0$ für X_n unab. und gleichverteilt in [0,1]
- im p-ten Mittel/in \mathcal{L}^p : $X_n \xrightarrow{\mathcal{L}^p} X$ wenn $\lim_{n \to \infty} E(|X_n X|^p)$
- fast sicher: $X_n \xrightarrow{fs} X$ wenn $P(\lim_{n\to\infty} X_n = X) = 1$

Konvergenz bei einer Summe von Zufallsvariablen: $X_n \to a$ und $Y_n \to b \Longrightarrow X_n + Y_n \to a + b$

2.2 Bedingte Wahrscheinlichkeit

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

2.3 Bayes-Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

6

3 Optimierung

3.1 Polarkoordinaten

Umrechnung von Polarkoordinaten in kartesische Koordinaten:

$$\cos(\varphi) = \frac{y}{r} \Leftrightarrow x = r \cdot \cos(\varphi)$$
$$\sin(\varphi) = \frac{x}{r} \Leftrightarrow y = r \cdot \sin(\varphi)$$
$$x^2 + y^2 = r^2 \Leftrightarrow r = \sqrt{x^2 + y^2}$$
$$\varphi = \arctan\left(\frac{y}{x}\right)$$

3.2 Konvexe Funktionen/Mengen

Eine Menge $G \subseteq \mathbb{R}^n$ heißt konvex, wenn für alle $x, y \in G$ und $t \in [0, 1]$ gilt:

$$tx + (1 - t)y \in G$$

D.h. die Verbindungsstrecke zwischen zwei Punkten der Menge liegt komplett in der Menge.

Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ heißt konvex (\leq) bzw. strikt konvex (<), wenn für alle $x, y \in \mathbb{R}^n$ und $t \in [0, 1]$ gilt:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

Eine Funktion f(x) ist (strikt) konvex, wenn f''(x) überall ≥ 0 (bzw. > 0) ist.

3.2.1 Vorgehensweise bei mehrdimensionalen Funktionen:

- 1. Hesse-Matrix $(H_f(x), = \text{symmetrisch})$ bestimmen: $H_f(x) = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$
- 2. Definitheit bestimmen:
 - (a) über Eigenwerte
 - Nullstellen charakteristisches Polynom bestimmen ($\rightarrow 1.3.1$)
 - Interpretation:
 - alle $\lambda > 0 \to H_f(x) = \text{pos. definit}$
 - alle $\lambda \geq 0 \rightarrow H_f(x) = \text{pos. semidefinit}$
 - alle $\lambda < 0 \rightarrow H_f(x) = \text{neg. definit}$
 - alle $\lambda \leq 0 \rightarrow H_f(x) = \text{neg. semidefinit}$
 - $-\lambda$ positiv und negativ $\to H_f(x) = \text{indefinit}$
 - (b) über *Diagonaldominanz*: Ist $H_f(x)$ Diagonaldominant und alle Diagonalelemente > 0, so ist $H_f(x)$ positiv definit.
 - \rightarrow für alle Zeilen: ||Diagonalelement|| > \sum ||übrige Zeilenelemente||
 - (c) Choleskyzerlegung ist möglich = $H_f(x)$ ist positiv definit
- 3. Konvexität bestimmen:
 - $H_f(x)$ positiv definit $\Leftrightarrow f$ strikt konvex
 - $H_f(x)$ positiv semidefinit $\Leftrightarrow f$ konvex
 - $H_f(x)$ negativ definit $\Leftrightarrow f$ strikt konvex
 - $H_f(x)$ negativ semidefinit $\Leftrightarrow f$ konvex

3.2.2 L-glatt und Lipschitz-stetig

Eine Funktion f(x) heißt Lipschitz-stetig, wenn $||f(x) - f(y)|| \le L||x - y||$ für alle x, y gilt.

Eine Lipschitz-stetige Funktion ist eine stetige Funktion, deren Steigung beschränkt ist:

$$\left\|\frac{f(x)-f(y)}{x-y}\right\| \leq L \to \text{Jede Sekantensteigung} \leq L$$

Implikation: Wenn zwei eingesetzte Punkte (x, y) näher zusammenrücken, dann nähern sich auch die Funktionswerte f(x) und f(y) an.

Eine Funktion f(x) heißt L-glatt, wenn f differenzierbar ist und $||\nabla f(x)|| \leq L$ für alle x gilt bzw. falls der Gradient L-Lipschitz-stetig ist, d.h. wenn

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||$$

3.3 Optimierung ohne NB - Gradientenverfahren

Beginnend an einer Stelle x_0 :

- 1. Berechne Gradienten $\nabla f(x_n)$ (im ersten Schritt mit x_0)
- 2. Setze $x_{n+1} = x_n \alpha \nabla f(x_n)$, $n \ge 0$ mit Schrittweite α
- 3. Wiederhole Schritt 1 und 2 bis Abbruchkriterium erfüllt; $x^* = x_k$

Approximation von $\nabla f(x_0)$ durch $\frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}}$ möglich.

3.4 Optimierung unter Nebenbedingungen (KKT)

Erweiterung des Lagrange-Verfahrens um Nebenbedingungen. Es gelten folgende KKT-Bedingungen:

- (I) $g_i(x^*) \leq 0 \rightarrow Ungleichungs-NB \ nach \ 0 \ umformen$
- (II) $h_i(x^*) = 0 \rightarrow Gleichungs-NB \ nach \ 0 \ umformen$
- (III) $\lambda_i^* \geq 0$
- (IV) $\lambda_i^* g_i(x^*) = 0$

(V)
$$\mathcal{L}'(x, \lambda, v) = \nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^{p} v_j^* \nabla h_j(x^*) = 0$$

mit den Lagrangemultiplikatoren (λ, v) als duale Variablen und x als primale Variable.

Vorgehensweise:

- \bullet Gleichungs-NB vorhanden \rightarrow (II) nach einer Variablen auflösen und in (I) und (V) einsetzen
- 1. Ableitungen (Gradient ∇) von (I), (II) und Zielfunktion $f(x^*)$ bilden und (V) aufstellen
- (IV) aufstellen und Fallgruppen bilden: Was muss für λ_i und $g_i(x^*)$ gelten, damit Produkt = 0 wird? Fallgruppen über Kreuz bilden!
- Fallgruppen in (V) einsetzen und prüfen: Ist Lösung möglich? Sind alle Bedingungen erfüllt?
 - $-\,$ Wenn ja: KKT-Punkt = Lösung gefunden
 - Wenn nein: Kombination nicht zulässig \rightarrow verwerfen!
- Lösung aufschreiben: KKT-Punkt (x, y), Zielfunktionswert (p^*) , duale Variablen (Lagrange-Multiplikatoren λ_i, v_j)

Beispiel:

$$p^* = \min 3x^2 + y^2$$
 unter $x - y \le -8$
$$-y < 0$$

1.
$$g_1(x^*) = x - y + 8 \le 0 \to \nabla g_1(x^*) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$g_2(x^*) = -y \le 0 \to \nabla g_2(x^*) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$\nabla f(x^*) = \begin{pmatrix} 6x \\ 2y \end{pmatrix}$$

2. (V):
$$\begin{pmatrix} 6x \\ 2y \end{pmatrix} + \lambda_1^* \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda_2^* \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

3.
$$\lambda_1^* g_1(x^*) = \lambda_1^* (x - y + 8) = 0 \to \underline{\lambda_1^* = 0} \text{ und } x - y + 8 = 0 \Leftrightarrow \underline{x = y - 8} \\ \lambda_2^* g_2(x^*) = -\lambda_2^* y = 0 \to \lambda_2^* = 0 \text{ und } \underline{y} = 0$$

4. Fallkombinationen prüfen:

• Fall 1:
$$\lambda_1^* = \lambda_2^* = 0 \to \begin{pmatrix} 6x \\ 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow x = y = 0$$
 we we will write $x - y \le -8$

• Fall 2:
$$\lambda_1^* = y = 0 \to \begin{pmatrix} 6x \\ 0 \end{pmatrix} + \lambda_2^* \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow x = \lambda_2^* = 0$$
 we gen $x - y \le -8$

• Fall 3:
$$x = y - 8$$
; $\lambda_2^* = 0 \to \begin{pmatrix} 6(y - 8) \\ 2y \end{pmatrix} + \lambda_1^* \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$6y - 48 + \lambda_1^* = 0$$
$$2y - \lambda_1^* = 0$$

$$8y = 48 \Leftrightarrow y = 6\checkmark$$
$$x = y - 8 \Leftrightarrow x = -2\checkmark$$
$$\lambda_1^* = 2y = 12\checkmark$$

Es handelt sich um einen KKT-Punkt

• Fall 4:
$$x = y - 8$$
; $y = 0 \rightarrow \begin{pmatrix} 6(-8) \\ 0 \end{pmatrix} + \lambda_1^* \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda_2^* \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \lambda_1^* = 48 \text{ und } -\lambda_1^* - \lambda_2^* = 0 \Leftrightarrow \lambda_2^* = -48 \text{ f wegen (III)}$

5. <u>Lösung</u>: Der Punkt $(x^*, y^*, \lambda_1^*, \lambda_2^2) = (-2, 6, 12, 0)$ erfüllt die KKT-Bedingungen (KKT-Punkt). (x, y) = (-2, 6) löst das *primale Problem* und $(\lambda_1, \lambda_2) = (12, 0)$ löst das *duale Problem*. Damit ist $p^* = 3 \cdot (-2)^2 + 6^2 = 48$

3.5 Support Vector Machines (SVM)

- <u>Ziel</u>: Finde die *Hyperebene (Hyperplane)* mit der größten *Geometric Margin* (Abstand zu den *Support Vectors*). Da die *margin-Breite* = $\frac{2}{||w||}$ maximiert werden soll, wird ||w|| minimiert
- Support Vectors sind die Punkte, die den Geometric Margin bestimmen und selbst darauf liegen; alle anderen Punkte sind irrelevant
- Geometric Margin ist der Abstand von der Hyperplane zu den Support Vectors
- \bullet Hyperplaneist die Trennebene, die die Klassen voneinander trennt

4 Statistik

4.1 Verteilungen

4.1.1 Binomialverteilung $(X \sim Bin(n, \pi))$

Diskrete Wahrscheinlichkeitsverteilung; beschreibt die Anzahl an Erfolgen in einer Serie von unabhängigen Versuchen, die jeweils genau zwei Ergebnisse haben (Erfolg/Misserfolg); z.B. beim Münzwurf, Ziehen mit Zurücklegen.

- n=Anzahl der Versuche/Ziehungen, π =Erfolgswahrscheinlichkeit (z.B. 0.3)
- Wahrscheinlichkeit: $P(X = k) = \binom{n}{k} \pi^k (1 \pi)^{n-k}$; k = Anzahl der gewünschten Erfolge
- Erwartungswert: $E(X) = n\pi$
- Varianz: $Var(X) = n\pi(1-\pi)$
- Normalapproximation: $X \sim N(n\pi, n\pi(1-\pi))$
- Binomialkoeffizient: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Bernoulli-Verteilung: Spezialfall der Binomialverteilung mit n=1

4.1.2 Poisson-Verteilung $(X \sim Poi(\mu))$

Diskrete Wahrscheinlichkeitsverteilung; beschreibt die Anzahl an Ereignissen in einem festgelegten Zeitintervall, wenn die Ereignisse mit einer konstanten Rate und unabhängig von der Zeit auftreten; z.B. Anzahl der Anrufe in einer Stunde, Anzahl der Kunden in einer Schlange, Anzahl der Fehler in einem Text. Für kleine μ zeigt die Poisson-Verteilung eine starke Asysmmetrie (Rechtsschiefe).

- Θ =Erwartungswert (z.B. 0.3)
- Wahrscheinlichkeit: $P(X = n) = \frac{\Theta^n}{n!} e^{-\Theta}$; n = Anzahl der gewünschten Ereignisse
- Erwartungswert: $E(X) = \Theta$
- Varianz: $Var(X) = \Theta$
- Normalapproximation: $X \sim N(\Theta, \Theta)$

4.1.3 Hypergeometrische Verteilung $(X \sim H(n, N, m))$

Ähnlich wie Binomialverteilung, aber ohne Zurücklegen; z.B. beim Ziehen ohne Zurücklegen aus einer Urne mit N Kugeln, davon m mit Erfolgsmarkierung.

- \bullet $n{=}$ Anzahl der Versuche/Ziehungen, $N{=}$ Anzahl der Kugeln in der Urne, $m{=}$ Anzahl der Kugeln mit Erfolgsmarkierung
- Wahrscheinlichkeit: $P(X = k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$; k = Anzahl der gewünschten Erfolge
- Erwartungswert: $E(X) = n \frac{m}{N}$
- Varianz: $Var(X) = n \frac{m}{N} \left(1 \frac{m}{N}\right) \left(\frac{N-n}{N-1}\right)$
- Normalapproximation: $X \sim N\left(n\frac{m}{N}, n\frac{m}{N}\left(1 \frac{m}{N}\right)\left(\frac{N-n}{N-1}\right)\right)$

4.1.4 Normalverteilung $(X \sim N(\mu, \sigma^2))$

Stetige Wahrscheinlichkeitsverteilung; beschreibt viele natürliche Vorgänge (z.B. Körpergröße, IQ, Fehler in Messungen); zentrales Grenzwerttheorem: Summe von unabhängigen Zufallsvariablen strebt gegen Normalverteilung; symmetrisch um μ , σ^2 -bestimmte Breite; μ =Erwartungswert, σ^2 =Varianz, σ =Standardabweichung.

• Erwartungswert: $E(X) = \mu$

<u>Dichtefunktion</u>:

• Varianz: $Var(X) = \sigma^2$

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

• Standardnormalverteilung: $Z \sim N(0,1)$

Parameterschätzung 4.2

Zentrale Größen:

- Kovarianz: cov(X, Y) = E[(X E[X])(Y E[Y])] = E(XY) E(X)E(Y)
- Korrelation: $corr(X,Y) = \frac{cov(X,Y)}{\sigma_X\sigma_Y}$ (liegt zwischen -1 und +1)

Kriterien für gute Schätzer:

- Konsistenz: Schätzungen werden genauer, je größer die Stichprobe ist
- Erwartungstreue/Unverzerrtheit/unbiased: Schätzer liegt im Mittel richtig.

4.2.1 Maximum-Likelihood Schätzer (ML-Schätzer)

Wichtige ML-Schätzer:

- Binomialverteilung ($X \sim Bin(n, \pi)$, n=Länge der Versuchsreihe, π =Wahrscheinlichkeit für Erfolg):
 - Erwartungswert $\hat{\pi} = T(x) = \frac{x}{n} \rightarrow \text{Anzahl Erfolge} / \text{Anzahl Versuche}$
 - Varianz $\hat{\sigma}^2 = \frac{\pi(1-\pi)}{n} \to \mathrm{ggf.}$ mit $\hat{\pi}$ rechnen
- Normal verteilung ($X \sim N(\mu, \sigma^2)$, μ =Erwartungswert, σ^2 =Varianz):
 - Erwartungswert $\hat{\mu} = T(x) = \frac{1}{n} \sum_{i=1}^{n} x_i \rightarrow \text{arithmetisches Mittel}$
 - Varianz $S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \hat{\mu})^2 \to \text{empirische Varianz}$
 - korrigierte Stichprobenvarian
z $S^{*2} = \frac{1}{n-1} \sum_{i=1}^n (x_i \hat{\mu})^2$

Mathematische Bestimmung eines ML-Schätzers:

- 1. Aufstellen der ML-Funktion: $L(\theta) = \prod_{i=1}^{n} f(x_i)$
- 2. Logarithmierung: $\ln(L(\theta)) = \sum_{i=1}^{n} \ln(f(x_i))$; Umformen/Vereinfachen mit **Logarithmengesetzen**:
 - $\ln(a \cdot b) = \ln(a) + \ln(b)$
 - $\ln(a^b) = b \cdot \ln(a)$
 - $\ln(e^a) = a$
 - $\ln(\frac{a}{b}) = \ln(a) \ln(b)$
 - 1. Ableitung: $\frac{\partial \ln(x)}{\partial x} = \frac{1}{x}$
- 3. Ableiten nach θ und Nullsetzen: $\frac{\partial \ln(L(\theta))}{\partial \theta} = 0$
- 4. Lösen der Gleichung nach θ
- 5. Überprüfen, ob es sich um ein Maximum handelt

Beispiel 1 für Herleitung einer Dichtefunktion:

Bestimme θ mit der ML-Methode für die Dichtefunktion

$$f(x) = \begin{cases} 4x^3\theta e^{-\theta x^4} & \text{für } x > 0, \theta > 0 \\ 0 & \text{sonst} \end{cases}$$

- 1. Aufstellen der ML-Funktion: $L(\theta) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} 4x_i^3 \theta e^{-\theta x_i^4} = \overbrace{4^n(x_1^3 x_2^3 \dots x_n^3) \theta^n e^{-\theta(x_1^4 + x_2^4 + \dots + x_n^4)}}$
- 2. Logarithmierung: $\ln(L(\theta)) = \ln(4^n(x_1^3 x_2^3 \dots x_n^3)) + n \ln(\theta) \theta(x_1^4 + x_2^4 + \dots + x_n^4) \underbrace{\ln(e)}_{}$
- 3. Ableiten nach θ : $\frac{\partial \ln(L(\theta))}{\partial \theta} = n \frac{1}{\theta} \sum_{i=1}^{n} x_i^4 \stackrel{!}{=} 0 \Leftrightarrow \theta = \frac{n}{\sum_{i=1}^{n} x_i^4}$

Beispiel 2 für Herleitung ($X \sim N(\mu, \sigma)$):

1. Aufstellen der ML-Funktion: $L(\mu, \sigma^2) = \prod_{i=1}^n f(x_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$

2. Logarithmierung:

$$\ln(L(\mu, \sigma^2)) = \sum_{i=1}^n \ln(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}})$$

$$= \sum_{i=1}^n \left[\ln(\frac{1}{\sqrt{2\pi\sigma^2}}) - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

3. Ableiten nach μ und σ^2 und Nullsetzen:

$$\frac{\partial \ln(L(\mu, \sigma^2))}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$

$$\Rightarrow \sum_{i=1}^n x_i - \sum_{i=1}^n \mu = 0$$

$$\Rightarrow \sum_{i=1}^n x_i = n\mu$$

$$\Rightarrow \mu = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\frac{\partial \ln(L(\mu, \sigma^2))}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\Rightarrow \frac{n}{2\sigma^2} = \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2$$

$$\Rightarrow \frac{n}{2} = \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

$$\Rightarrow \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

$$\Rightarrow \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2}$$

4.3 Konfidenzintervalle

Schätzung eines Intervalls, in dem sich der wahre Wert (z.B. der Erwartungswert μ) mit einer gewissen Wahrscheinlichkeit befindet.

4.3.1 Vorgehensweise bei Normalverteilung und bekanntem σ

1. Punktschätzung des Erwartungswerts aus n Stichproben (x_i)

$$M(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 \rightarrow dieser entspricht i.d.R. nicht dem wahren Wert μ der Grundgesamtheit.

2. Konfidenzniveau (1 – α ; α = Irrtumsniveau) festlegen und $z_{1-\frac{\alpha}{2}}$ aus Tabelle zur Normalverteilung ablesen

•
$$90\% = 1 - \alpha \rightarrow \alpha = 0.1 \rightarrow z_{0.95} = 1.65$$

•
$$95\% \rightarrow \alpha = 0.05 \rightarrow z_{0.975} = 1.96$$

•
$$96\% \rightarrow \alpha = 0.04 \rightarrow z_{0.980} = 2.06$$

•
$$97\% \rightarrow \alpha = 0.03 \rightarrow z_{0.985} = 2.17$$

•
$$98\% \rightarrow \alpha = 0.02 \rightarrow z_{0.99} = 2.33$$

•
$$99\% \rightarrow \alpha = 0.01 \rightarrow z_{0.995} = 2.58$$

3. Berechnung des Konfidenzintervalls

$$\mathcal{I}(x) = \left[M(x) - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} ; M(x) + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \right]$$

ist ein Konfidenzintervall zum Sicherheitsniveau $1-\alpha$.

<u>Vorgehensweise</u>: $1 - \frac{\alpha}{2}$ berechnen und innerhalb der Tabelle zur Normalverteilung diesen Wert suchen. Der gesuchte z-Wert ergibt sich dann aus den Zeilen- und Spaltenberschriften.

4.3.2 Vorgehensweise bei Normalverteilung und unbekanntem σ

Grds. analog zu oben, wobei Werte für $t_{n-1,1-\frac{\alpha}{2}}$ aus der t-Verteilung verwendet werden (Studentsche (t-1) Verteilung mit n-1 Freiheitsgraden). Nur bei $n \geq 30$.

1. Punktschätzung des Erwartungswerts aus n Stichproben (x_i)

$$M(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 \rightarrow dieser entspricht i.d.R. nicht dem wahren Wert μ der Grundgesamtheit.

2. Berechnung des Standardfehlers der Stichprobenmittelwerte

korrigierte Stichprobenvarianz:
$$V^*(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - M(x))^2$$

Standardfehler:
$$s^* = \sqrt{\frac{V^*(x)}{n}}$$

 \rightarrow dieser entspricht i.d.R. nicht dem wahren Wert σ der Grundgesamtheit.

3. Berechnung des Konfidenzintervalls

$$\mathcal{I}(x) = \left[M(x) - t_{n-1;1-\frac{\alpha}{2}} \cdot s^* \; ; \; M(x) + t_{n-1;1-\frac{\alpha}{2}} \cdot s^* \right]$$

ist ein Konfidenzintervall zum Sicherheitsniveau $1-\alpha$ mit n-1 Freiheitsgraden

<u>Vorgehensweise</u>: Richtige Zeile für Freiheitsgrade n-1 suchen. In Spalte $1-\frac{\alpha}{2}$ suchen. Der gewünschte t-Wert ergibt sich aus der Tabelle.

4.3.3 Vorgehensweise im Binominalmodell

Wenn X binominalverteilt ist $(X \sim B(n, p), n=$ Anzahl gezogene Versuche, p=Erfolgswahrscheinlichkeit), n groß und die Varianz nicht zu klein ist (Faustregel: np(1-p) > 9), gilt die Approximation durch die Normalverteilung mit:

- Erwartungswert: $\mu = np$
- Standardabweichung: $\sigma = \sqrt{np(1-p)}$
- Standardfehler: $s = \sqrt{\frac{p(1-p)}{n}}$
- Punktschätzung: $\hat{p} = \frac{x}{n}$
- Konfidenzintervall für $p: \mathcal{I}(p) \approx \left[\hat{p} z_{1-\frac{\alpha}{2}} \cdot s; \hat{p} + z_{1-\frac{\alpha}{2}} \cdot s\right]$
- Konfidenzintervall für μ : $\mathcal{I}(\mu) \approx \left[\hat{\mu} z_{1-\frac{\alpha}{2}} \cdot s; \hat{\mu} + z_{1-\frac{\alpha}{2}} \cdot s\right]$

<u>Vorgehensweise</u>: $1 - \frac{\alpha}{2}$ berechnen und innerhalb der Tabelle zur Normalverteilung diesen Wert suchen. Der gesuchte z-Wert ergibt sich dann aus den Zeilen- und Spaltenberschriften.

14

4.4 Tests

- Nullhypothese (H_0) : Annahme, die geprüft werden soll (z.B. $H_0: p_0 = 0.3$ als EW für Münzwurf)
- Gegenhypothese (H_1) : Gegenteil der Nullhypothese
 - Alternativtest: Prüfe, ob anstatt $H_0: p_0 = 0.3$ nicht $H_1: p_1 = 0.2$ gilt
 - Linksseitiger Test: Prüfe, ob anstatt $H_0: p_0 = 0.3$ nicht $H_1: p_1 < 0.3$ gilt
 - Rechtsseitiger Test: Prüfe, ob anstatt $H_0: p_0 = 0.3$ nicht $H_1: p_1 > 0.3$ gilt
 - Zweiseitiger Test: Prüfe, ob anstatt $H_0: p_0 = 0.3$ nicht $H_1: p_1 \neq 0.3$ gilt
- Signifikanzniveau (α): (Irrtums-)Wahrscheinlichkeit, mit der die Nullhypothese fälschlicherweise abgelehnt wird
- Teststatistik: Funktion der Stichprobenwerte, die zur Entscheidung über die Annahme oder Ablehnung der Nullhypothese herangezogen wird
- Ablehnungsbereich: Bereich der Teststatistik, in dem die Nullhypothese abgelehnt wird
- p-Wert: Wahrscheinlichkeit, mit der die Nullhypothese verworfen werden kann
- Fehler 1. Art: H_0 wird fälschlicherweise abgelehnt
- Fehler 2. Art: H_0 wird fälschlicherweise nicht abgelehnt

4.4.1 χ^2 -Anpassungstest

Vergleicht die beobachtete Verteilung einer Stichprobe mit einer theoretischen (erwarteten) Verteilung. Es wird geprüft, ob die beobachtete Häufigkeitsverteilung von Kategorien mit der erwarteten Häufigkeitsverteilung übereinstimmt.

- 1. Voraussetzung: Zufallsvariable X (z.B. Ergebnis eines Würfelwurfs) mit s Ausprägungen (Kategorien; z.B. 1-6 Würfelaugen) und N Beobachtungen (Stichprobenumfang).
- 2. Nullhypothese (H_0) : Die tatsächliche Verteilung entspr. der erwarteten Verteilung $(P(X \in A_i) = \rho_i = \frac{1}{6})$
- 3. Gegenhypothese (H_1) : Nicht H_0
- 4. χ^2 -Teststatistik:

$$D_{\rho} = \sum_{i=1}^{s} \frac{(h(i) - N\rho(i))^{2}}{N\rho(i)} = \left(\sum_{i=1}^{s} \frac{h(i)^{2}}{N\rho(i)}\right) - N = N\left(\sum_{i=1}^{s} \frac{L(i)^{2}}{\rho(i)}\right) - N$$

wobei

- N = Stichprobengröße (z.B. 50 Würfe mit Würfel)
- s = Anzahl der Kategorien (z.B. 6 Würfelaugen)
- $A_i = \text{Kategorie } i \ (z.B. \ W\"{urfelaugen} \ 1-6)$
- h(i) = Anzahl der Beobacht. in Kategorie A_i (z.B. 8 Würfe 1er Würfe)
- $L(i) = \frac{h(i)}{N}$ = relative Häufigkeit der Beobachtungen in Kategorie A_i (z.B. 8/50 Würfe mit Würfelaugen 1 usw.)
- $\rho(i)$ = Wahrscheinlichkeit der Kategorie A_i (z.B. $\frac{1}{6}$ für Würfelauge 1 usw.)
- $\alpha = \text{Irrtumswahrscheinlichkeit/Signifikanzniveau} (z.B. 5\%)$
- **5. Ablehnungsbereich:** H_0 ablehnen, wenn: $D_{\rho} > \chi^2_{s-1:1-\alpha}$

4.4.2 χ^2 -Unabhängigkeitstest

Prüft die Unabhängigkeit zweiter Merkmale, d.h. ob das Vorkommen einer Variable von der anderen ahängt oder nicht.

- 1. Voraussetzung: Zufallsvariable X und Y nehmen jeweils zwei Werte an (z.B. X=männlich/weiblich, Y=raucht/nicht raucht).
- 2. Nullhypothese (H_0) : X und Y sind stochastisch unabhängig
- 3. Gegenhypothese (H_1) : Nicht H_0

4. χ^2 -Teststatistik:

Aufstellen einer Vierfeldertafel:

	Y	\overline{Y}	\sum
\overline{X}	N_{11}	N_{12}	N_1 .
\overline{X}	N_{21}	N_{22}	N_2 .
Σ	$N_{\cdot 1}$	$N_{\cdot 2}$	n

	Nichtraucher	Raucher	Σ
männlich	170	30	200
weiblich	250	150	400
Σ	420	180	600

Daraus Berechnung der Teststatistik:

$$D_{\rho} = n \frac{(N_{11}N_{22} - N_{12}N_{21})^2}{N_{1.}N_{2.}N_{.1}N_{.2}}$$

Gedankenstütze: Determinante hoch 2 geteilt durch Produkt aus allen Spalten- und Zeilensummen

5. Ablehnungsbereich: H_0 ablehnen, wenn: $T > \chi^2_{1;1-\alpha}$

5 Markov-Ketten

Eine homogene, irreduzible, aperiodische Markov-Kette mit endlichem Zustandsraum ist immer stationär, d.h. sie konvergiert gegen ihr statistisches Gleichgewicht.

5.1 Übergangsmatrix

5.2 Stationäre Verteilung

Ein Zustandsvektor π heißt $station \ddot{a}re$ Verteilung einer Markov-Kette, wenn gilt:

$$\pi \cdot P = \pi$$

Gleichungen lösen, ggf. mit Hilfe von Parametern t, wenn es keine eindeutige Lösung gibt. Wert für t bestimmen, indem die Summe der Komponenten des Vektors π gleich 1 gesetzt wird.

Beispiel:

$$P = \begin{pmatrix} 0.5 & 0.5 \\ 0.3 & 0.7 \end{pmatrix}$$
$$(\pi_1 \quad \pi_2) \cdot \begin{pmatrix} 0.5 & 0.5 \\ 0.3 & 0.7 \end{pmatrix} = \begin{pmatrix} \pi_1 & \pi_2 \end{pmatrix}$$

Da $\sum \pi_i = 1$ gilt

$$\pi_1 + \pi_2 = 1 \Leftrightarrow \underline{\pi_1 = 1 - \pi_2} \Leftrightarrow \underline{\pi_2 = 1 - \pi_1}$$

 π_1 und π_2 in die folgenden Gleichungen einsetzen:

$$\pi_1 \cdot 0.5 + \pi_2 \cdot 0.3 = \pi_1 \Longrightarrow \pi_2 = \frac{5}{8}$$
 $\pi_1 \cdot 0.5 + \pi_2 \cdot 0.7 = \pi_2 \Longrightarrow \pi_1 = \frac{3}{8}$

Daraus folgt der stationäre Zustandsvektor: $\pi = \begin{pmatrix} \frac{3}{8} & \frac{5}{8} \end{pmatrix}$

5.3 Irreduzibilität

Es ist von jedem Zustand aus möglich, jeden anderen Zustand zu erreichen. Die Prüfung kann manuell erfolgen.

Beispiel: $P = \begin{pmatrix} 1-p & p/2 & p/2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ ist irreduzibel für $p \in (0,1]$, da für p = 0 Zustände 2 und 3 nicht mehr erreichbar sind.

5.4 Aperiodizität

Die Periode eines Zustands ist die größte gemeinsame Teiler aller Pfade, die zu diesem Zustand zurück führen.

Starte in einem Zustand i und gehe in einen Zustand j. Die Periode von i ist die größte gemeinsame Teiler aller Pfade, die von j nach i führen. Wenn die Periode von jedem Zustand i gleich 1 ist, ist die Markov-Kette aperiodisch. Das heißt:

$$d(z) = ggT\{n \in \mathbb{N} | P_{ii}^{(n)} > 0\} = 1$$

Beispiel: $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ist *nicht* aperiodisch, da d(z) = 2; man springt immer zwischen den beiden Zuständen mit einer geraden Anzahl hin und her.

Beispiel: $P = \begin{pmatrix} 1-p & p/2 & p/2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ ist aperiodisch für $p \in [0,1)$, da bei p=1 immer von Zustand 1 in 2 oder 3

gesprungen wird und wieder zurück. Für alle anderen Werte wird in zwei Fällen auch hin- und zurückgesprungen. Allerdings gibt es auch die Möglichkeit, dass vom Zustand A nicht geswechelt wird und man dort bleibt.

5.5 Stoppzeiten

Eine Stoppzeit ist eine Zufallsvariable, die das Eintreten eines Ereignisses beschreibt, das von der bisherigen Entwicklung eines stochastischen Prozesses abhängt.