Introducción a los espacios de Hilbert

Pregunta 1 (2 puntos)

Sean \mathcal{H} un espacio de Hilbert real y $x, y \in \mathcal{H}$ tales que ||x|| = ||y|| = 1.

- a) Demuestre que $\|\alpha x + (1 \alpha)y\| \le 1$ para todo $0 \le \alpha \le 1$.
- b) Demuestre que si en la desigualdad de a) se tiene la igualdad, $\|\alpha x + (1 \alpha)y\| = 1$, entonces $\alpha = 0$, $\alpha = 1$ o x = y.

Solución: a) $\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\| = \alpha + 1 - \alpha = 1.$

b) Si $\|\alpha x + (1 - \alpha)y\| = 1$, elevando al cuadrado se obtiene,

$$1 = \alpha^{2} + (1 - \alpha)^{2} + 2\alpha(1 - \alpha)\langle x, y \rangle$$

$$1 = \alpha^{2} + 1 + \alpha^{2} - 2\alpha + 2\alpha(1 - \alpha)\langle x, y \rangle$$

$$0 = 2\alpha(\alpha - 1)(1 - \langle x, y \rangle)$$

Por tanto $\alpha = 0$, $\alpha = 1$ o $\langle x, y \rangle = 1$.

Si $\langle x, y \rangle = 1$, entonces $\langle x, y \rangle = ||x|| ||y||$ y en consecuencia $x = \lambda y$ para cierto $\lambda \in \mathbb{R}$. Sustituyendo en $\langle x, y \rangle = 1$, se obtiene $\langle \lambda y, y \rangle = 1$, de donde resulta $\lambda = 1$. Por tanto, x = y.

Pregunta 2 (2,5 puntos) (1+1,5)

Considere en el espacio de Hilbert $L^2(0,2\pi)$ el conjunto,

$$V = \left\{ f \in L^2(0, 2\pi) : \int_0^{2\pi} f(t)dt = 0 \right\}.$$

- a) Demuestre que V es un subespacio vectorial cerrado de $L^2(0,2\pi)$.
- b) Determine la función f de V que está a distancia mínima de g siendo $g(t) = 3\cos^2(5t)$ si $t \in (0, 2\pi)$.

Solución: a) Sea e la función constante 1 que es una función de $L^2(0,2\pi)$. Observemos que $V=\{e\}^{\perp}$. Por tanto, V es un subespacio vectorial cerrado de $L^2(0,2\pi)$.

b) La función f que piden no es más que la proyección ortogonal de g sobre V. Escribimos la descomposición ortogonal de g, g=f+h siendo $h \in V^{\perp}=\{e\}^{\perp \perp}=\mathrm{span}(e)$. Por tanto, $g=f+\lambda$, esto es, $f=g-\lambda$. De $f\in V$ resulta

$$0 = \int_0^{2\pi} (g(t) - \lambda) dt$$

$$\lambda = \frac{1}{2\pi} \int_0^{2\pi} 3\cos^2(5t) dt = \frac{1}{2\pi} \int_0^{2\pi} 3\frac{(1 + \cos 10t)}{2} dt$$

$$= \frac{1}{2\pi} \left[\frac{3}{2}t + \frac{3\sin 10t}{20} \right]_0^{2\pi} = \frac{3}{2}$$

Por tanto, $f = 3\cos^2(5t) - \frac{3}{2}$.

Pregunta 3 (2,5 puntos)

Sean \mathcal{H} un espacio de Hilbert y $T \colon \mathcal{H} \to \mathcal{H}$ un operador lineal acotado. Demuestre que

- a) $\operatorname{Ker}(T^*) = \operatorname{Im}(T)^{\perp}$.
- b) $\operatorname{Im}(T^*) \subset \operatorname{Ker}(T)^{\perp}$.

Solución: a) Sea $y \in \mathcal{H}$,

$$y \in \operatorname{Ker}(T^*) \iff T^*(y) = 0 \iff \langle x, T^*(y) \rangle = 0 \text{ para todo } x \in \mathcal{H}$$

 $\iff \langle T(x), y \rangle = 0 \text{ para todo } x \in \mathcal{H}$
 $\iff y \in (\operatorname{Im}(T))^{\perp}$

b) Sea $y \in \mathcal{H}$, si $y \in \text{Im}(T^*)$ entonces existe $x \in \mathcal{H}$ tal que $y = T^*(x)$. Para todo $z \in \text{Ker}(T)$ se cumple:

$$\langle z, y \rangle = \langle z, T^*(x) \rangle = \langle T(z), x \rangle = \langle 0, x \rangle = 0$$

En consecuencia, $y \in (\text{Ker}(T))^{\perp}$

Pregunta 4 (3 puntos) (1+0,5+1,5)

Sea la función 2π periódica g tal que $g(x) = \frac{x}{2}$ para todo $-\pi < x \le \pi$.

- a) Determine su serie de Fourier en términos de senos y cosenos.
- b) Justifique la igualdad $\frac{x}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \operatorname{sen} nx$ para todo $-\pi < x < \pi$.
- c) Calcule $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \text{ y } \sum_{n=1}^{\infty} \frac{1}{n^2}$.

Solución: a) La función g es impar luego su serie de Fourier es de la forma:

$$\sum_{n=1}^{\infty} b_n \operatorname{sen} nx$$

siendo

$$b_n = \frac{2}{2\pi} \int_{-\pi}^{\pi} \frac{x}{2} \sin nx dx = \frac{1}{2\pi} \left[-\frac{1}{n} x \cos nx + \frac{1}{n^2} \sin nx \right]_{-\pi}^{\pi} = \frac{(-1)^{n-1}}{n}$$

- b) Utilizando el apartado a), sabemos que la serie $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \operatorname{sen} nx$ es la serie de Fourier de la función $g(x) = \frac{x}{2}$ en $L^2[-\pi,\pi]$. Además g es continua y derivable en $(-\pi,\pi)$ y por tanto aplicando el teorema de Dirichlet, deducimos que su serie de Fourier converge puntualmente a g en $(-\pi,\pi)$ y por tanto se tiene la igualdad en cada punto de $(-\pi,\pi)$.
- c) Particularizamos el apartado b) a $x = \frac{\pi}{2}$ y se obtiene $\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \operatorname{sen}\left(n\frac{\pi}{2}\right)$.

Para n par se tiene sen $n\frac{\pi}{2} = 0$ y en consecuencia,

$$\frac{\pi}{4} = \sum_{j=0}^{\infty} \frac{1}{2j+1} \operatorname{sen}\left((2j+1)\frac{\pi}{2}\right)$$

Ahora bien si j es par sen $\left((2j+1)\frac{\pi}{2}\right)=1$ mientras que si n es impar sen $\left((2j+1)\frac{\pi}{2}\right)=-1$. Por tanto, cambiando el índice j por n se obtiene

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4} \,.$$

Para la segunda serie utilizamos la fórmula de Parseval,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{x^2}{4} dx = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} .$$

Como $\int_{-\pi}^{\pi} \frac{x^2}{4} dx = \frac{\pi^3}{6}$ sustituyendo se obtiene

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{\pi} \cdot \frac{\pi^3}{6} = \frac{\pi^2}{6}$$