Enemble Max-Pooling Is Only the Maximum Activation Useful When Pooling?

Hao Zhang and Jianxin Wu

{zhangh, wujx}@lamda.nju.edu.cn

LAMDA Group
National Key Laboratory for Novel Software Technology
Department of Computer Science and Technology
Nanjing University

November 24, 2017

Introduction

Related Works

Proposed Method

Experiments

Enemble Max-Pooling **Hao Zhang** and

Jianxin Wu {zhangh, wuix}@lamda.nju

Introduction

Related Works

roposed Method

Introduction

Related Works
Proposed Method
Experiments

Enemble Max-Pooling

Hao Zhang and
 Jianxin Wu
 {zhangh,
wujx}@lamda.nju

3 Introduction

Related Works

Image Classification

Figure: ImageNet error rate.

Enemble
Max-Pooling
Hao Zhang and
Jianxin Wu
{zhangh,
wujx}@lamda.nju

Introduction

Related Works

Models are Getting Larger

Figure: Models are getting larger.

Table: Model error and its training time.

Model	Error	Time
ResNet-18	10.76%	2.5 d
ResNet-50	7.02%	5 d
ResNet-101	6.21%	1 w
ResNet-152	6.16%	1.5 w

[S Han. Benchmark with fb.resnet.torch using four M40 GPUs.]

Max-Pooling

Hao Zhang and
Jianxin Wu
{zhangh,
wujx}@lamda.nju

Enemble

5 Introduction

Related Works

. -----

[W Dally. Efficient methods for deep neural networks. NIPS'16 Workshop.]

Other Challenges with Large CNN Model

Figure: Mobile solution.

[Jane. How to Download Over 150MB Apps on iPhone via Cellular.]

Figure: AlphaGo costs \$3000 electric bill per game.

[S Shead. Here's how much computing power Google DeepMind needed to beat Lee Sedol at Go.]

Enemble Max-Pooling

Hao Zhang and Jianxin Wu {zhangh, wujx}@lamda.nju

Introduction

Related Works

Proposed Method

Motivation

Enemble Max-Pooling Hao Zhang and

Large model

Pros.: The deeper, the better.

Cons.: Higher resource costs, such as computing

time, storage space, money, etc.

Motivation

Similar model complexity, better performance.

Idea

Revealing treasures from convolutional activations.

Jianxin Wu {zhangh, wujx}@lamda.nju

Introduction

Related Works

Proposed Method

Related Works
Proposed Method
Experiments

Enemble Max-Pooling **Hao Zhang** and

Jianxin Wu {zhangh, wujx}@lamda.nju

Introductio

8 Related Works

Max-pooling

Figure: Max-pooling.

[D Scherer et al. Evaluation of pooling operations in convolutional architectures for object recognition. ICANN'10.]

Open problem:

Is only the maximum activation useful when max-pooling?

Enemble Max-Pooling Hao Zhang and Jianxin Wu

{zhangh, wujx}@lamda.nju

Introduction

Related Works

Proposed Method

Related Works

Figure: Stochastic pooling.

Figure: Max-pooling dropout/Stochastic max-pooling.

[M Zeiler & R Fergus. Stochastic pooling for regularization of deep convolutional neural networks. ICLR'13.]

[H Wu & X Gu. Max-pooling dropout for regularization of convolutional neural networks. NIPS'15.]

IY Huang et al. Channel-max. channel-drop and stochastic max-pooling. CVPR'15 Workshop.]

Enemble Max-Pooling

Hao Zhang and Jianxin Wu {zhangh, wujx}@lamda.nju

Introduction

10 Related Works

Proposed Method

Learning And Mining, from Data.

Introduction
Related Works
Proposed Method
Experiments

Enemble Max-Pooling

Hao Zhang and
 Jianxin Wu
 {zhangh,
wujx}@lamda.nju

Introduction

Related Works

17

Ensemble Max-pooling (EMP)

Figure: Training phase of EMP.

Figure: Testing phase of EMP.

Enemble

Introduction

Learning And Mining from Data

Introduction
Related Works
Proposed Method

Experiments

Enemble Max-Pooling

Hao Zhang and
 Jianxin Wu
 {zhangh,
wujx}@lamda.nju

Introduction

Related Works

Comparisons with Related Works

Model	Error Rate	Relative Improve Compared to Max-pooling
Max-pooling	15.25%	0.00%
Average Pooling	16.20%	-6.23%
Ensemble Max-pooling (p=0.05)	15.51%	-1.70%
Ensemble Max-pooling (p=0.1)	15.14%	0.72%
Ensemble Max-pooling (p=0.2)	15.07%	1.18%
Ensemble Max-pooling (p=0.3)	14.28%	6.36%
Ensemble Max-pooling (p=0.4)	14.27%	6.43%
Ensemble Max-pooling (p=0.5)	14.62%	4.13%
Ensemble Max-pooling (p=0.7)	14.89%	2.36%
Stochastic Pooling	15.81%	-3.67%
Max-pooling Dropout/Stochastic Max-pooling (p=0.05)	15.22%	0.20%
Max-pooling Dropout/Stochastic Max-pooing (p=0.1)	15.17%	0.52%
Max-pooling Dropout/Stochastic Max-pooing (p=0.2)	14.97%	1.84%
Max-pooling Dropout/Stochastic Max-pooing (p=0.3)	16.59%	-6.96%
Max-pooling Dropout/Stochastic Max-pooling (p=0.4)	25.93%	-67.18%
Max-pooling Dropout/Stochastic Max-pooing (p=0.5)	Not Converge	-
Max-pooling Dropout/Stochastic Max-pooing (p=0.7)	Not Converge	-

Enemble Max-Pooling

Hao Zhang and Jianxin Wu {zhangh, wujx}@lamda.nju

Introduction

Duamagad Mathag

Deeply Fused Networks-Merge and Run (DFN-MR)

Enemble Max-Pooling **Hao Zhang** and

Jianxin Wu {zhangh, wuix}@lamda.nju

Introduction

Droposod Mathed

15 Experiments

Figure: ResNet, DFN-MR, and DFN-MR (Ensemble Max-Pooling).

[K He et al. Deep residual learning for image recognition. CVPR'16.] [L Zhao et al. On the connection of deep fusion to ensembling. arXiv'16.]

Towards State-of-the-art

Model	Layers	Error Rate	Relative Improve Compared to DFN-MR
DFN-MR	56	5.50%	0.00%
DFN-MR (Classical Max-pooling)	56	5.44%	1.14%
DFN-MR (Ensemble Max-pooling, p=0.05)	56	5.13%	6.82%
DFN-MR (Ensemble Max-pooling, p=0.1)	56	4.62%	16.00%
DFN-MR (Ensemble Max-pooling, p=0.2)	56	5.06%	7.95%
DFN-MR (Ensemble Max-pooling, p=0.5)	56	4.69%	14.77%
ResNet ^[4]	110	6.61%	-20.19%
ResNet ^[16]	110	6.41%	-16.54%
ResNet (Pre-activation)[9]	164	5.46%	0.72%
ResNet (Pre-activation)[9]	1001	4.62%	16.00%
ResNet (Stochastic Depth)[16]	110	5.23%	4.91%
ResNet (Stochastic Depth)[16]	1202	4.91%	10.73%

Enemble Max-Pooling

Hao Zhang and Jianxin Wu {zhangh, wujx}@lamda.nju

Introduction

Related Works

16 Experiments

Figure: Comparisons with state-of-the-art.

Experiments on CIFAR-100 and ImageNet can be referred in:

[H Zhang & J Wu. Ensemble Max-Pooling: Is Only the Maximum Activation Useful When Pooling? CCFAl'17.]

[H Zhang & J Wu. Ensemble Max-Pooling: Is Only the Maximum Activation Useful When Pooling? JUST'17.]

Thanks

Questions Please!

Hao Zhang and Jianxin Wu

{zhangh, wujx}@lamda.nju.edu.cn

Enemble Max-Pooling Hao Zhang and

Jianxin Wu {zhangh, wuix}@lamda.nju

Introduction

Related Works

