Ans 4. a.

Ans 4. b.

Ans 4. c.

Ans 4. d. Choosing the delta value:

Lin dataset:

	80 % training data + 20 % test data			90 % training data + 10 % test data		
	Train Error	Test Error	Avg Error	Train Error	Test Error	Avg Error
0.1	0.346640	0.014163	0.180401	0.185215	0.013989	0.099602
0.5	0.050667	0.017297	0.033982	0.149542	0.014900	0.082221
1	0.062826	0.007193	0.035009	0.031174	0.018482	0.024828
10	2.208664	0.008807	1.108736	1.922445	0.009766	0.966106
50	3.498616	0.011004	1.754810	2.168872	0.014136	1.091504

For 90% training example the test error seems to be minimized for delta = 0.1. It performs not so great compared to delta = 1(best avg error) but that is majorly due to poor performance in train error. Therefore, delta = 0.1

Sph dataset:

	80 % training data + 20 % test data			90 % training data + 10 % test data		
	Train Error	Test Error	Avg Error	Train Error	Test Error	Avg Error
0.1	0.030096	0.002553	0.016325	0.031361	0.001729	0.016545
0.5	0.145685	0.005339	0.075512	0.153389	0.001715	0.077552
1	0.268837	0.003753	0.136295	0.293244	0.002082	0.147663
10	2.124107	0.024976	1.074542	2.301376	0.006795	1.154086
50	2.589090	0.020900	1.304995	13.872964	0.406893	7.139928

For 90% training example the test error seems to be minimized for delta = 0.5. It performs not so great compared to delta = 0.1(best avg error) but that is majorly due to poor performance in train error. Therefore, delta = 0.5

Ans 4. e. Error plots: (Fraction of data represents training data from 'fraction of data' to 'fraction of data'+10% data size)

Mean: 0.015237 Std deviation: 0.011118

Mean: 0.110497 Std deviation: 0.059651

Mean: 0.028098 Std deviation: 0.017013

MSE vs fraction of data plots:

