ÉCOLE CENTRALE DE NANTES

MASTER CORO-IMARO "CONTROL AND ROBOTICS"

2016 / 2017

Master Thesis Report

Presented by

Student Name

On Date

The title of the master thesis

Jury

Evaluators: Name Position (Institution)

Name Position (Institution)
Name Position (Institution)

Supervisor(s): Name Position (Institution)

Name Position (Institution)

Laboratory: Laboratoire des Sciences du Numérique de Nantes LS2N

Abstract

Do not forget to check each reference while importing in your Bibtex file. Especially, IEEExplore export may lead to ill-formatted conference name like $Robotics\ and\ Automation,\ IEEE\ International\ Conference\ on.$

Acknowledgements

Notations

Abbreviations

List of Figures

3.1	A triangle with letters	12
4.1	Triangle drawn by my program. Note the 4th side	13

List of Tables

Contents

Int	troduction	9
1	Big picture	10
2	State of the art 2.1 First topic	
3	Actual work	12
4	Experiments	13
Co	onclusion	14
\mathbf{A}	Proof of theorem 3.1	15
Bi	bliography	15

Introduction

The proposed chapter titles have to be adapted to the content of your report.

Chapter 1

Big picture

State of the art

- 2.1 First topic
- 2.2 Second topic

Actual work

When dealing with rectangled triangles (see Figure 3.1) I sometimes used this theorem from [1]:

$$a^2 + b^2 = c^2 (3.1)$$

The demonstration is in Appendix A.

Figure 3.1: A triangle with letters

Experiments

When trying to draw a rectangled triangle, my program comes up with Figure 4.1 that is neither rectangled nor a triangle.

Figure 4.1: Triangle drawn by my program. Note the 4th side.

Unless there is a bug in my program, which is unlikely, this research indicates that the whole theory on triangles having 3 sides has been wrong for years, maybe decades.

Conclusion

In this thesis we have shown that triangles may have up to four sides $^{1}.$

Also, really do not forget to **check each reference** while importing in your Bibtex file. This is done one for each reference and you know you are good to go afterwards..

 $^{^1\}mathrm{At}$ least on my computer

Appendix A

Proof of theorem 3.1

Proof. (3.1) was already demonstrated in [2].

Bibliography

- [1] O. S. Pythagoras, "Theorem," Some old journal, vol. 1, no. 1, Feb. -580.
- $[2]\,$ O. A. Euclides, "Elements," $\mathit{Self-published},$ vol. 1, no. 1, Feb. -300.