Literature Review

High Frequency Portfolio Optimization using Deep Reinforcement Learning

Group 10: Xiaoyu Chen, Zhiyuan Yao, Yuqi Liu, Zhixian Hu

Advisor: Dr. Ionut Florescu, Dr. Steve Yang

February 7th, 2019

Overview

- Deep Neural Network
- Reinforcement Learning
- Modeling on High Frequency Trading
- Inverse Reinforcement Learning

Deep Neural Network

- Title: Deep Learning for Spatio-Temporal Modeling- Dynamic Traffic Flows and High Frequency Trading
- Author: Matthew F. Dixon, Nicholas G. Polson, Vadim O. Sokolov
- Source: arXiv preprint arXiv:1705.09851
- Year: May 7, 2018

Deep Neural Network

Main contribution

- Algorithmic approach to predict short-term price movement
- Classify book orders into directional mid-price movement {-1, 0, 1}
- Demonstrate the ability of RNN to capture non-linear relationship

Main methods

- Recurrent Neural Network using SGD
- Drop-out methods: RNN design

n_steps	$\hat{Y} = -1$	$\hat{Y} = 0$	$\hat{Y} = 1$
1	0.089	0.528	0.091
2	0.097	0.837	0.103
5	0.131	0.848	0.120
10	0.165	0.881	0.161
20	0.163	0.878	0.162
50	0.151	0.836	0.144
100	0.118	0.807	0.115

How help

- Feature construction: order-flow, liquidity imbalance...
- Feature selection

Reinforcement Learning in Trading

Title: Performance Functions and Reinforcement Learning for Trading Systems and Portfolios

Author: John Moody, Lizhong Wu, Yuansong Liao, Matthew Saffell

• Source: Journal of Forecasting, Volume 17, Pages 441-470

• **Year**: 1998

Key points:

- Recurrent Reinforcement Learning (RRL) trading system is better than trading system based on supervised learning and labelled data.
- Optimization via RRL
- The Sharpe Ratio, EMA Sharpe Ratio and Differential Sharpe Ratio
 - Advantages
 - Other performance ratios: Information ratios and Sterling Ratio
- Empirical results

Reinforcement Learning in Trading

Methods:

- Deriving the gradient of policy function by chain rule.
- Using Exponential Moving estimates to estimate the first two moments of rate of return, then compute the Sharpe ratio.
- Using Taylor Expansion on EMA Sharpe ratio to obtain a increment expression which can be cheaply computed during online learning

Going Forward

- Action is only discretized into 3 statues (Buy, Sell and Hold). The situation becomes more complex when doing High Frequency Trading (HFT).
- Based on the latest research on reinforcement learning, we can try policy optimization instead of policy gradient.
- How to parametrize policy function is not specified.

Modeling on High Frequency Trading

- Title: Machine Learning for Market Microstructure and High Frequency Trading
- Author: Michael Kearns, Yuriy Nevmyvaka
- **Source:** High Frequency Trading: New Realities for Traders, Markets, and Regulators
- **Year:** 2013

Modeling on High Frequency Trading

- Optimal Trade Execution & Price Movement
 - Reinforcement Learning
 - State: (v, t); additional features
 - Reward function: trading cost
 - Value Functions
 - Holding period: momentum/reversion
 - Longer horizon: less informative
- Give ideas about feature modeling and study further on strategy of time scale

Feature(s) Added	Reduction in Trading Cost	
Bid-Ask Spread	7.97%	
Bid-Ask Volume Imbalance	0.13%	
Signed Transaction Volume	2.81%	
Immediate Market Order Revenue	4.26%	
Spread + signed Volume + Immediate Cost	12.85%	

Inverse Reinforcement Learning

- Title: Behavior Based Learning in Identifying High Frequency Trading Strategies
- Author: Steve Yang, Mark Paddrik, Roy Hayes, Andrew Todd, Andrei Kirilenko, Peter Beling, and William Scherer
- Source: Computational Intelligence for Financial Engineering & Economics (CIFEr),
 2012 IEEE Conference on (pp. 1-8). IEEE.
- **Year:** March, 2012

Inverse Reinforcement Learning

- Obtain Reward Function & Optimal Policy
 - MDP Model for limit order book
 - Inverse Reinforcement Learning
- Going Forward
 - Dealing with limit order book with MDP
 - Policy Optimization by IRL Model

Thank You

Zhiyuan Yao | <u>zyao9@stevens.edu</u>

Xiaoyu Chen | xchen79@stevens.edu

Zhixian Hu | zhu17@stevens.edu

Yuqi Liu | yliu176@stevens.edu