PROJECT REPORT AI CAR PARKING USING OPEN CV

Submitted By

R.VISHALI(953520104002)

V.SUBHASHINI(953520104001)

M.JOTHILAKSHMI (953520205001)

M.KAVIYA (953520205002)

In partial fulfilment for the award of the degree of

BACHELOR OF ENGINEERING/TECHNOLOGY

In

COMPUTER SCIENCE ENGINEERING / INFORMATION TECHNOLOGY

VPMM ENGINEERING COLLEGE FOR WOMEN KRISHNANKOVIL – 626190.

(Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai)

ANNA UNIVERSITY::CHENNAI 600 025 MAY 2023

TABLE OF CONTENTS

1 INTRODUCTION

- 1.1 Project overview
- 1.2 Purpose

2 LITERATURE SURVEY

- 2.1 Exisiting problem
- 2.2 References
- 2.3 Problem statement definition

3 IDEATION AND PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation and Brainstorming
- 3.3 Proposed solution
- 3.4 Problem Solution Fit

4 REQUIREMENT ANALYSIS

- 4.1 Functional requirements
- 4.2 Non-Functional requirements

5 PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 User Stories
- 5.3 Solution and technical architecture

6 PROJECT PLANNING AND SCHEDULING

- 6.1 Sprint Planning and Estimation
- 6.2 Sprint Deliver Schedule

7 CODING AND SOLUTIONING(Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2

8 ADVANTAGES AND DISADVANTAGES

9 CONCLUSION

10 FUTURE SCOPE

GITHUB

PROJECTDEMO

1.INTRODUCTION

1.1 PROJECT OVERVIEW

This automated system is used to find the vacancy in parking spaces available and navigate the driver to reach the desired space using visuals and in an effective manner, thus reducing search time. This system is required for malls, multistorey parking structures, IT hubs and parking facilities. This makes sure the requirement of labour is insubstantial.

1.2 PURPOSE

This project deals with an effective way of finding empty spaces and managing the number of vehicles moving in and out in complex multi storeyed parking structures by detecting a vehicle using IR sensors and thus providing a feedback. The fully automated smart car parking system is rudimental and does not require heavy lines of code nor expensive equipment. It is a simple circuit built for the exact need of purpose.

2.LITERATURE SURVEY

2.1 EXISTING PROBLEM

Car parking is a major problem in urban areas in both developed and developing countries. Following the rapid incense of car ownership, many cities are suffering from lacking of car parking areas with imbalance between parking supply and demand which can be considered the initial reason for metropolis parking problems. This imbalance is partially due to ineffective land use planning and miscalculations of space requirements during first stages of planning. Shortage of parking space, high parking tariffs, and traffic congestion due to visitors in search for a parking place are only a few examples of everyday parking problems.

2.2 REFERENCES

Bagula, Antoine, Lorenzo Castelli, and Marco Zennaro. On The Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model. Open Access Sensors 15 (2015): 15443-15467. Print.

2.3 PROBLEM STATEMENT DEFINITION

This imbalance is partially due to ineffective land use planning and miscalculations of space requirements during first stages of planning. Shortage of parking space, high parking tariffs, and traffic congestion due to visitors in search for a parking place are only a few examples of everyday parking problems.

3.IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION AND BRAINSTORMING

3.3 PROPOSED SOLUTION

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The problem of finding an appropriate parking space is a challenging one, particularly in large cities. With the increase in car ownership, parking spaces have become scarce. The growing demand for these spots coupled with limited availability has led to imbalances between supply and demand. A lack of adequate parking management systems has resulted in many streets being littered with illegally parked cars.
2.	Idea / Solution description	IDEA
		The basic idea we used for detecting the parking spots was that all parking spot dividers here are horizontal lines and the parking spots in a column are roughly equally spaced apart, we first used <u>Canny edge</u> <u>detection</u> to get an edge image.
		SOLUTION:
		Smart parking solutions detect parking space availability in real-time, helping to optimize on-street parking in cities and in parking garages or surface parking lots such as those in shopping malls, train stations, corporate campuses, and more.
3.	Novelty / Uniqueness	The uniqueness of car parking systems are image capture, image processing and normalization, character recognition, segmentation.
4.	Social Impact / Customer Satisfaction	Smart parking will reduce search traffic on the streets. This will benefit traffic flow and will reduce congestions in neighbourhood with an under capacity in parking space. Therefore there are fewer traffic jams, and drivers will

		benefit by having less traffic on the streets.
5.	Business Model (Revenue Model)	Drivers take their cars to the entrance of the automatic parking system where all occupants exit the vehicle. From here, the vehicle is moved by mechanical maneuvers to an available space where it is automatically parked or parked by an attendant.
6.	Scalability of the Solution	The Parking Revenue Model developed as a part of the Parking Management programme to determine the estimated annual revenue is specific to the Regional Transportation District (RTD). Users must exercise a great caution in interpreting model inputs and outputs. It should also be noted that generation of revenue is not the purpose of the Parking Management Programme.

4.REQUIREMENT ANALYSIS

Functional Requirements:

Following are the functional requirements of the proposed solution.

R No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
R-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
R-2	User Confirmation	Confirmation via Email Confirmation via OTP
R-3	User Authorization	Verification of the User Verification by Multiple OTP
R-4	User Interfaces	Progression for the Payment Progressed through Application
R-5	User Transactions	Completion of the Payment
R-6	User Reporting	Reporting issue of the Product
		100000000000000000000000000000000000000

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User Authorization	Verification of the User Verification by Multiple OTP
FR-4	User Interfaces	Progression for the Payment Progressed through Application
FR-5	User Transactions	Completion of the Payment
FR-6	User Reporting	Reporting issue of the Product

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

5.2 USER STORIES

User Type	Functional Requirement (Epic)	User Story Numbe r	User Story / Task	Acceptance criteria	Priority	Team Membe
Customer (offline user)	Registration	USN-1	As a user, I can register for the car parking test by directly applying through offline mode	I can get registered in the process	High	Sani
		USN-2	As a user, I will receive confirmation email one I have registered the car parking test	I can receive confirmation email & click confirm	High	Boomika
Customer (online user)	Registration	USN-1	As a user, I can register for the test through car parking test	I can register & access the car parking dashboard	high:	bhuvana
		USN-2	As a user, I can register for the car parking test through Gmail	I can register & access the dashboard with Gmail Login	Medium	Abina
	Login	USN-3	As a user, I can login to the car parking website by entering email id & password	I can access car parking dashboard	High	Sasi
Customer	Slot Booking	USN-1	As a user, I can login to car parking official website and book a slot for car parking test	I receive my confirmatio n mail for slot booking	High	abina
Customer Care Executive	Support	USN-1	As a user I can clarify the doubts and	I receive answers for my queries	Medium	Boomika

5.3 SOLUTION ARCHITECTURE

Solution Architecture:

Solution architecture is a complex process – with sub many process - that bridges the gap between car parking traffic problems in urban areas and technological solutions. Its goals are to:

- Find the best tech solution to solve existing traffic problems.
- Use Open CV to check if the pixel colour of a spot aligns with the colour of an empty parking spot. This is a simple approach but prone to errors.
- Use object detection to identify all cars and then check if the location of the car overlaps with a parking spot.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, car driver to park their car with minimum wastage of time with accurate information of the availability of the space to work.

6.RESULT OF THE EXPERIMENT

The smart car parking system is built for real-life applications. Thus, quality and consistency are mandatory. Thus, we carriedout some testing experiments using the prototype system to evaluate its dependability. The test area consisted of twoparking areas of ten lots each divided into section A and B. However; equipment were only installed in parking lot A1 where the physical testing was carried. It was not possible totest the result physically for both lots: A1 & B1, hence for this project we took the help of the simulation tool (XCTU) todemonstrate the occupancy of the car park A1 and B1.

Event tested	Web server	LED board
	reading on A1	reading
Car not in the		Green
parking lot	Green	Green
Car in the parking	Red	Red
Iot		

7.CODING AND SOLUTIONING

8.ADVANTAGES AND DISADVANTAGES

ADVANTAGES

- Improved parking efficiency
- Enhanced user experience
- **♣** Optimal space utilization
- Cost savings
- ♣ Increased safety and security
- ♣ Real-time monitoring and reporting

DISADVANTAGES

- ♣ Dependency on camera installation
- ♣ Limited accessibility for non-camera equpied vechicles

9.CONCLUSION

The AI enabled car parking system holds significant potential in addressing the parking challenges face in urban areas. With further development and integration into existing parking management systems. It can contribute to creating smarter and more efficient cities.

10.FUTURE SCOPE

- **♣** Scalability and integration
- ♣ Advanced parking analytic
- ♣ Mobile application and real-time updates

GITHUB

https://github.com/Vishalirv31/Vishalirv31.git

PROJECT DEMO

https://drive.google.com/file/d/1eJbOhwHBb9jVGljnS6b94DWToTM2w2uv/view?usp=s haring