Matching models II: Empirics¹

Alexander Wintzéus²

Department of Economics University of Leuven

June 2, 2025

¹Slides provided by Thimo De Schouwer – Based on slides by Aloysius Siow

²Email: alexander.wintzeus@kuleuven.be

Table of contents

Introduction

The discrete types model of Choo and Siow (2006)

The continuous types model of Dupuy and Galichon (2014)

Table of contents

Introduction

The discrete types model of Choo and Siow (2006)

The continuous types model of Dupuy and Galichon (2014)

Introduction – Empirical models of matching

- The matching model we studied last class makes extremely strong predictions
 - supermodularity of the surplus predicts **perfect** Positive Assortative Matching
 - which will obviously never hold in real world data
 - so we need to introduce uncertainty into the model
- We do so by allowing for the joint surplus to contain an unobserved component
- This yields a highly tractable model under some limiting assumptions
 - this was the insight of a highly influential paper by Choo and Siow (2006)
 - subsequent work has relaxed these assumptions but we'll stick to their model
- In the tutorial, we'll take this model to the data

Introduction – Choo and Siow model

- The Choo and Siow (2006) model is a frictionless transferable utility model
- The random surplus component is an additively separable random preference shock
 - as in McFadden (1974)'s Random Utility Model (RUM) you studied earlier
- The model is identified from observing matching patterns in a single (large) market
- We cannot recover male and female spousal preferences only the joint surplus
 - in some extensions these can be recovered (not discussed today)
 - they are also recoverable if we observe marital transfers (which we typically never do)

Table of contents

Introduction

The discrete types model of Choo and Siow (2006)

The continuous types model of Dupuy and Galichon (2014)

Preferences

• Let the utility of man i of type I who is married to a woman of type J be

$$U_{IJ}^{i} = \tilde{\alpha}_{IJ} - \tau_{IJ} + \epsilon_{IJ}^{i} \tag{1}$$

- with $\tilde{\alpha}_{IJ}$ the systematic value of type J women for type I men
- with τ_{IJ} the equilibrium transfer made by type I men to type J women
- ullet and ϵ^i_{IJ} an idiosyncratic preference shock specific to man i
- This is the standard additive RUM you studied in previous classes:
 - ullet there is a systematic component common to all men in (I,J) marriages
 - neither the systematic return nor the transfer depend on the specific woman chosen
 - and an idiosyncratic component specific to man i
 - ullet ϵ^i_{IJ} is also independent of any particular woman j of type J

Preferences (cont.)

• The payoff to man i from remaining unmarried (J = 0) is:

$$U_{I0}^{i} = \tilde{\alpha}_{I0} + \epsilon_{I0}^{i} \tag{2}$$

• Man i will choose his partner according to:

$$U_{I}^{i} = \max_{K} \{ U_{I0}^{i}, \dots, U_{IK}^{i}, \dots, U_{IJ}^{i} \}$$
 (3)

Optimal choices

• The probability that man i will choose a type J woman is:

$$\Pr\left(U_{IJ}^{i}-U_{IK}^{i}\geq0\text{ for all }K=0,\cdots,J\right)\tag{4}$$

$$\Pr\left(\tilde{\alpha}_{IJ} - \tau_{IJ} - (\tilde{\alpha}_{IK} - \tau_{IK}) \ge \epsilon_{IK}^{i} - \epsilon_{IJ}^{i} \text{ for all } K = 0, \cdots, J\right)$$
(5)

• Assuming McFadden (1974)'s EV Type I errors, this is known in closed form:

$$\frac{\mu_{IJ}^d}{m_I} = \frac{\exp(\tilde{\alpha}_{IJ} - \tau_{IJ})}{\sum_K \exp(\tilde{\alpha}_{IK} - \tau_{IK})}$$
(6)

- ullet μ_{IJ}^d the demanded number of matches between type I men and type J women by type I men
- m_I the number of type I men

Optimal choices (cont.)

• We obtain the quasi-demand for type J women as:

$$\ln \mu_{IJ}^d - \ln \mu_{I0}^d = \alpha_{IJ} - \tau_{IJ},\tag{7}$$

- where $\alpha_{IJ} = \tilde{\alpha}_{IJ} \tilde{\alpha}_{I0}$
- ullet i.e., the systematic payoff to type I man married to a type J women relative to singlehood
- Similar reasoning and calculations leads to a quasi demand for type / men:

$$\ln \mu_{IJ}^{s} - \ln \mu_{0K}^{s} = \gamma_{IJ} + \tau_{IJ}, \tag{8}$$

- where $\gamma_{IJ} = \tilde{\gamma}_{IJ} \tilde{\gamma}_{0J}$
- ullet i.e., systematic payoff to type J woman married to a type I men relative singlehood

Equilibrium

- Note that we will not directly observe these demanded quantities
 - what type of partner is man *i* looking for?
- But we can assume that our data resembles an equilibrium snapshot of a cleared market:

$$\mu_{IJ}^{d} = \mu_{IJ} = \mu_{IJ}^{s} \tag{9}$$

- this is a market clearing condition
- remaining singles are so voluntarily

Matching function

- The market clearing condition allows us to recover a matching function
- Some algebra after summing the two demand functions yields:

$$\ln \mu_{IJ} - \frac{\ln \mu_{I0} + \ln \mu_{0J}}{2} = \frac{\alpha_{IJ} + \gamma_{IJ}}{2} \qquad (10)$$

$$\frac{\mu_{IJ}}{\sqrt{\mu_{I0}\mu_{0J}}} = \Pi_{IJ} \qquad (11)$$

where
$$\Pi_{IJ} = \exp(\frac{\alpha_{IJ} + \gamma_{IJ}}{2})$$

- This matching function relates the number of singles and matches to the surplus
 - Recall that $\alpha_{IJ} + \gamma_{IJ}$ is the surplus
 - Choo and Siow (2006) label Π_{IJ} the match surplus

Matching function (cont.)

- The marriage matching function has constant returns to scale
 - doubling the number of singles and matches leaves surplus estimate unchanged
- The function can fit any observed matching distribution
- The surplus can be estimated within a single marriage market
 - note that there are $I \times J$ endogenous data points
 - and there are $I \times J$ parameters in the model
 - estimation inherently non-parametric

Estimates

Figure: Surplus Estimates from Choo and Siow (2006)

Fig. 4.—Smoothed π_{ij} for 1971/72

Sorting

- Suppose that I and J denote whether a man or a woman has a college degree, resp.
- λ_C and ω_C : denote the share of college educated men and women
- $\pi_{C,C}$ and $\pi_{N,N}$: share of couples where both have (resp. don't have) a college degree
- The stable matching is (positively) assortative, in the sense that

$$\pi_{C,C} + \pi_{N,N} \ge \lambda_C \omega_C + (1 - \lambda_C)(1 - \omega_C) \tag{12}$$

if and only if

$$\Pi_{C,C} + \Pi_{N,N} \ge \Pi_{C,N} + \Pi_{N,C} \tag{13}$$

Sorting (cont.)

- In others words, assortativeness is defined relative to random matching
 - logical arrow works in both directions
 - sorting only a function of the surplus
- More generally, we can show how matching patterns relate to the surplus:

$$\ln \frac{\mu_{I+1,J+1} \times \mu_{IJ}}{\mu_{I+1,J} \times \mu_{I,J+1}} = (\Pi_{I+1,J+1} + \Pi_{IJ}) - (\Pi_{I+1,J} + \Pi_{I,J+1})$$
(14)

under the implicit assumption that

- the surplus Π_{IJ} is increasing in both I and J
- there are complementarities (assortativeness)

Table of contents

Introduction

The discrete types model of Choo and Siow (2006)

The continuous types model of Dupuy and Galichon (2014)

Extending the model

- The model of Choo and Siow (2006) is appealing but simple
- We look at an important extension by Dupuy and Galichon (2014)
- Their model allows for continuous types
 - discretizing continuous attributes is not always appealing
 - assume that we want to look at assortative matching on height
 - do we round height to the nearest 20cm or 1cm?
 - important because of the iid assumption on the preference shocks
- They introduce a new technique to determine the most relevant dimensions of sorting
 - which they call saliency analysis

Preferences

• We still have preferences of the form:

$$U_{IJ}^{i} = \tilde{\alpha}_{IJ} - \tau_{IJ} + \epsilon_{IJ}^{i} \tag{15}$$

$$V_{IJ}^{j} = \tilde{\gamma}_{IJ} + \tau_{IJ} + \eta_{IJ}^{j} \tag{16}$$

- Compared to the discrete types model, two aspects change:
 - we now assume that types (I, J) are measured continuously
 - we now assume that idiosyncratic shocks follow *continuous* logit processes

Shocks

- The continuous logit shocks have an intuitive interpretation
- Choices can be represented as a two-stage process:
 - first, each man i draws a set of acquaintances \mathcal{J}_i , elements of which are indexed by k
 - each acquaintance is associated with a sympathy shock ϵ_k^i , distributed iid Gumbel
 - then each man chooses his preferred partner from these acquaintances by solving:

$$\max_{k \in \mathcal{J}_{lk}} \{ \tilde{\alpha}_{IJ_k} - \tau_{IJ_k} + \epsilon_k^i \} \tag{17}$$

Continuous demands

• The probability that a type I man chooses a type J woman (= demand) is:

$$\mu_{J|I} = \frac{\exp\left(\tilde{\alpha}_{IJ} - \tau_{IJ}\right)}{\int_{I} \exp(\tilde{\alpha}_{IJ} - \tau_{IJ})} \tag{18}$$

• Similarly, we have the probability that a type J women chooses a type I man:

$$\mu_{I|J} = \frac{\exp\left(\tilde{\gamma}_{IJ} + \tau_{ij}\right)}{\int_{I} \exp(\tilde{\gamma}_{IJ} + \tau_{IJ})} \tag{19}$$

Matching function

• We can again equate supply and demand to obtain a matching function:

$$\frac{\mu_{IJ}}{\mu_{I0}\mu_{0J}} = \exp\left(\frac{\alpha_{IJ} + \gamma_{IJ}}{2}\right) = \Pi_{IJ} \tag{20}$$

- Before, we would estimate the surplus non-parametrically
 - simply using data on matches within each combination of discrete types
- Clearly we need a different approach when types are continuous
 - cannot estimate Π as a matrix

Parameterizing the surplus

• Following Dupuy and Galichon (2014) we first parameterize the surplus quadratically as:

$$\Pi_{IJ} = I'AJ = \sum_{I_k, J_l} A_{kl} \times I_k \times J_l \tag{21}$$

- ullet Entry A_{kl} of affinity matrix captures complementarities between characteristics I_k and J_l
- It can be estimated using MLE based on the following log-likelihood function:

$$\mathcal{L}(A) = \frac{1}{N} \sum_{n=1}^{N} \mu_n^A \tag{22}$$

• where μ_n^A is given by the market clearing conditions for a given value of A

Saliency analysis

- Suppose that we have the estimate for the affinity matrix A in hand
- We now want to determine how important these different dimensions are for sorting
- We can perform a saliency analysis as introduced in Dupuy and Galichon (2014)
- This consists of a singular value decomposition of the affinity matrix and testing its rank

Saliency analysis (cont.)

- Think of Singular Value Decomposition (SVD) as a data-reduction tool
- Formally an SVD of a matrix A is:

$$A = U' \Lambda V \tag{23}$$

- with Λ a diagonal matrix that captures the importance of each dimension
- \bullet with U and V matrices of loadings that describe the *nature* of each dimension
- Technicalities are not the main point focus is on interpretation

Example – Affinity matrix

Figure: Affinity Matrix - from Dupuy and Galichon (2014)

TABLE 8 Estimates of the Affinity Matrix: Quadratic Specification $\left(N=1,158\right)$

Husbands	Wives										
	Education	Height	BMI	Health	Conscientiousness	Extraversion	Agreeableness	Emotional Stability	Autonomy	Risk Aversion	
Education	.56*	.02	08	.02	04	01	03	04	.05	02	
Height	.01	.18*	.04	01	04	.05	.02	.02	.02	.02	
BMI	05	.05	.21*	.01	.06	.00	04	.04	01	01	
Health	07	.00	06	.14*	04	.05	04	.04	.02	.00	
Conscientiousness	06	03	.07	.00	.14*	.07	.04	.06	02	01	
Extraversion	.01	02	.05	.02	06	.02	02	01	03	05	
Agreeableness	.00	.01	08	.02	.13*	14*	.02	.11	09	04	
Emotional stability	.03	.00	.12*	.04	.21*	.05	03	04	.08	.01	
Autonomy	.02	.00	.00	.01	11*	.11*	04	.03	09	.01	
Risk aversion	.00	.02	03	.02	.01	01	01	05	.05	.11*	

^{*} Significant at the 5 percent level.

Example – Saliency analysis

Figure: Saliency Analysis - from Chiappori et al. (2024)

Table 4: Saliency analysis (Sample 1)

	M	en	Women		
	Index 1	Index 2	Index 1	Index 2	
Education	0.21	0.93	0.12	0.92	
	(0.02)	(0.02)	(0.02)	(0.02)	
Age	0.97	-0.23	0.99	-0.12	
	(0.01)	(0.02)	(0.00)	(0.02)	
Height	0.12	0.28	0.08	0.14	
	(0.03)	(0.06)	(0.03)	(0.07)	
BMI	0.06	-0.04	0.01	-0.36	
	(0.02)	(0.05)	(0.02)	(0.05)	
Index share	0.74	0.17	0.74	0.17	
	(0.07)	(0.02)	(0.07)	(0.02)	

Notes. The table reports men's and women's singular vectors, V and U respectively, and singular values, $diag(\Lambda)$, from the singular value decomposition of $\hat{A} = U'\Lambda V$. We report standard errors in parentheses; they are obtained with 1,000 bootstrap replications (Milan and Whittaker, 1995). Boldfaced estimates are significant at the 5% level. In the last line, each value of $diag(\Lambda)$ can be interpreted as the relative importance of each sorting dimension.

Bibliography I

- CHIAPPORI, P.-A., CISCATO, E. and GUERRIERO, C. (2024). Analyzing matching patterns in marriage: Theory and application to Italian data. *Quantitative Economics*, **15** (3), 737–781.
- CHOO, E. and SIOW, A. (2006). Who marries whom and why. *Journal of Political Economy*, **114** (1), 175–201.
- DUPUY, A. and GALICHON, A. (2014). Personality traits and the marriage market. *Journal of Political Economy*, **122** (6), 1271–1319.
- McFadden, D. (1974). The measurement of urban travel demand. *Journal of Public Economics*, **3** (4), 303–328.