Exercise 10 (Problem 1)

Let F be a formula. Represent in LTL the following property of a path $s_0, s_1 \ldots$ a formula F holds in all states of the form s_{4k} and s_{4k+1} , where $k = 0, 1, \ldots$ and does not hold in all other states.

Solution

$$F \land \bigcirc F \land \square (F \leftrightarrow \bigcirc \bigcirc \neg F).$$

Exercise 10 (Problem 2)

Consider the formula $(p \land \neg q) \sqcup (q \land \neg p)$. Describe the set of all paths that make this formula true.

Solution

Each path making this formula true has the following form

with zero or more states having p = 1.

More precisely, a path $\pi = s_0, s_1, \dots$ satisfies this formula if there exists $k \ge 0$ such that

- 1. for all i < k we have $s_i \models p \land \neg q$;
- 2. for all $i \geq k$ we have $s_i \models q \land \neg p$.

Exercise 10 (Problem 3)

Show that the following formulas are not equivalent: $\Box \Diamond p$ and $\neg (p \sqcup \neg p)$.

Solution

Consider the following path π :

$$p=0$$
 $p=1$ $p=1$ $p=1$ $p=1$

We have $\pi \square \lozenge p$ but $\pi \not\models \neg (p \cup \neg p)$.