

Machine Learning

Lecture 5: Linear Classification

Prof. Dr. Stephan Günnemann

Data Analytics and Machine Learning Technical University of Munich

Winter term 2020/2021

Notation

Symbol	Meaning
$egin{array}{c} s \\ oldsymbol{s} \\ oldsymbol{S} \\ \hat{y} \\ oldsymbol{y} \\ oldsymbol{\mathbb{I}}(a) \end{array}$	scalar is lowercase and not bold vector is lowercase and bold matrix is uppercase and bold predicted class label actual class label Indicator function; $\mathbb{I}(a)=1$ if a is true, else 0

There is not a special symbol for vectors or matrices augmented by the bias term, w_0 . Assume it is always included as was done with linear regression.

Section 1

Introduction to linear classification

Classification vs. regression

Regression

Output y is <u>continuous</u> (i.e. $y \in \mathbb{R}$).

For example, predict the price of a house given its area.

Classification

Output y belongs to one of C predetermined classes (i.e. $y \in \{1, ..., C\}$).

For example, determine whether the picture shows a cat or a dog.

Classification problem

Given

- ullet observations $egin{aligned} \mathbf{0} & \mathbf{0}$
- set of possible classes. $C = \{1, ..., C\}$
- <u>labels</u> $\mathbf{y} = \{y_1, y_2, \dots, y_N\}, \quad y_i \in \mathcal{C}$

rest

Find

• function $f: \mathbb{R}^D \to \mathcal{C}$ that maps observations x_i to class labels y_i

$$y_i = f(x_i)$$
 for $i \in \{1, ..., N\}$

we aimed to learn such for

¹Like before, we represent samples as a data matrix $X \in \mathbb{R}^{N \times D}$.

Zero-one loss

How do we measure quality of a prediction $\hat{\boldsymbol{y}} := f(\boldsymbol{X})$? ²

Zero-one loss denotes the number of misclassified samples.

$$\ell_{01}(\pmb{y},\hat{\pmb{y}}) = \sum_{i=1}^N \mathbb{I}(\hat{y}_i \neq y_i).$$
 How do we choose a good $f(\cdot)$?

²For brevity, we denote the generated prediction $f(\boldsymbol{x}_i)$ as \hat{y}_i , i.e. \hat{y} is the vector of predictions for entire X

6

Hyperplane as a decision boundary

 $x \in \mathbb{R}^2$

For a 2 class problem ($\mathcal{C} = \{0, 1\}$) we can try to <u>separate points</u> from the two classes by a hyperplane.

In 2D, hyperplane would be aline.

In 3D, hyperplane is aplane.

However for the normal vec, it will always be of same input dim.

Hyperplane as a decision boundary

For a 2 class problem ($\mathcal{C}=\{0,1\}$) we can try to separate points from the two classes by a hyperplane.

Hyperplanes are computationally very convenient: easy to evaluate.

Hyperplane as a decision boundary

For a 2 class problem ($\mathcal{C}=\{0,1\}$) we can try to separate points from the two classes by a hyperplane.

A hyperplane be defined by a normal vector $m{w}$ and an offset w_0 . From origin

$$m{w}^Tm{x} + w_0 egin{cases} = 0 & ext{if } m{x} ext{ on the plane} \ > 0 & ext{if } m{x} ext{ on normal's side} \ < 0 & ext{else} \end{cases}$$

Hyperplanes are computationally very convenient: easy to evaluate.

A data set $\mathcal{D}=\{(\boldsymbol{x}_i,y_i)\}$ is <code>linearly separable</code> if there exists a hyperplane for which all \boldsymbol{x}_i with $y_i=0$ are on one and all \boldsymbol{x}_i with $y_i=1$ on the other side.

One way to find such hyperplanes

The perceptron algorithm is one of the oldest methods for binary classification.

Decision rule

$$\hat{\boldsymbol{y}} = f(\boldsymbol{w}^T \boldsymbol{x} + w_0)$$

where f is the step function defined as:

$$f(t) = \begin{cases} 1 & \text{if } t > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Learning rule for the perceptron

Initialize parameters to any value, e.g., a zero vector: $w, w_0 \leftarrow 0$.

$$\begin{array}{c} \bigvee \text{ we need to learn model } \longrightarrow \underset{\omega_{i} \omega_{o}}{\text{min}} \;\; \mathbb{L}\left(y_{i} \notin \widehat{y}_{i}\right) \\ & \underset{\omega_{i} \omega_{o}}{\text{min}} \;\; \sum_{i}^{n} \;\; \mathbb{I}\left(y_{i} \notin \widehat{y}_{i}\right) \;\;, \;\; \widehat{y} = f\left(\omega^{T}x + \omega_{o}\right) \\ & \underset{\omega_{i} \omega_{o}}{\text{min}} \;\; \sum_{i}^{n} \;\; \mathbb{I}\left(y_{i} \notin \widehat{y}_{i}\right) \;\;, \;\; \widehat{y} = f\left(\omega^{T}x + \omega_{o}\right) \end{array}$$

Learning rule for the perceptron

Initialize parameters to any value, e.g., a zero vector: ${m w}, w_0 \leftarrow {m 0}.$

For each misclassified sample x_i in the training set update

$$\mathbf{w} \leftarrow \begin{cases} \mathbf{w} + \mathbf{x}_i & \text{if } y_i = 1, \\ \mathbf{w} - \mathbf{x}_i & \text{if } y_i = 0. \end{cases}$$

$$w_0 \leftarrow \begin{cases} w_0 + 1 & \text{if } y_i = 1, \\ w_0 - 1 & \text{if } y_i = 0. \end{cases}$$

until all samples are classified correctly.

from there we can get H;

This method takes a finite number of steps to converge to a (w, w_0) discriminating between two classes if it exists.³ i.e if data is linearly separable

³However, there is <u>no way to determine the number of required iter</u>ations in advance.

Does this scale up to multiple classes?

One-versus-rest classifier

Each hyperplane \mathcal{H}_i makes a decision

 $\underline{\mathsf{class}} \; \mathcal{C}_i \leftrightarrow \underline{\mathsf{not}} \; \mathsf{class} \; \mathcal{C}_i$

Does this scale up to multiple classes?

One-versus-one classifier

Hyperplane \mathcal{H}_{ij} makes a decision for each pair of classes

 $\underline{\mathsf{class}}\ \mathcal{C}_i \leftrightarrow \underline{\mathsf{class}}\ \mathcal{C}_j$

Use majority vote to classify.

Again, good but not very efficient

Does this scale up to multiple classes?

Multiclass discriminant

we train Such for

Define C linear functions of the form

$$f_c(\boldsymbol{x}) = \boldsymbol{w}_c^T \boldsymbol{x} + w_{0c}$$

with the decision rule

$$\hat{y} = \argmax_{c \in \mathcal{C}} f_c(\boldsymbol{x})$$

That is, assign x to the class c which produces the highest $f_c(x)$, dividing the domain into convex decision regions \mathcal{R}_i .

What if the classes are not linearly separable?

Basis functions

Like in the Linear Regression lecture last week, we <u>can apply</u> a <u>nonlinear</u> transformation $\phi : \mathbb{R}^D \to \mathbb{R}^M$. We need to choose a ϕ that <u>maps</u> <u>samples to a space</u> where they are linearly separable.

Here,
$$\phi(\boldsymbol{x}) = (\theta, r) = (\text{angle}(\boldsymbol{x}), \|\boldsymbol{x}\|_2).$$

Here we talk about <u>fixed basis func</u>tions. A deeper discussion of this method will take place in *Kernels*. <u>Adaptive basis func</u>tions will be covered in *Deep Learning*.

Limitations of hard-decision based classifiers

- No measure of uncertainty
- Can't handle noisy data
 eg data overlap
- Poor generalization
- Difficult to optimize

What are the alternatives?

Probabilistic models for classification

Solution: model the distribution of the class label y given the data x.

$$p(y=c\mid oldsymbol{x}) = rac{p(oldsymbol{x}\mid y=c)\cdot p(y=c)}{p(oldsymbol{x})}$$
 Using Bayes

Two types of models:

Generative

• Model the joint distribution $p(x, y = c) = p(x \mid y = c) \cdot p(y = c)$

Discriminative

• Directly model the distribution $p(y = c \mid x)$

Given $p(y \mid \boldsymbol{x})$ we can make the prediction \hat{y} based on our problem. Popular choice is the mode: $\hat{y} = \arg\max_{c \in \mathcal{C}} p(y = c \mid \boldsymbol{x})$.

Section 2

Probabilistic generative models for linear classification

Generative model

The idea is to obtain the class posterior using Bayes' theorem

$$p(y = c \mid \boldsymbol{x}) \propto \underbrace{p(\boldsymbol{x} \mid y = c)}_{\text{class conditional}} \cdot \underbrace{p(y = c)}_{\text{class prior}} \tag{1}$$

The model consists of

- ullet class prior a p<u>riori prob</u>ability of a point belonging to a class c
- ullet class conditional probability of generating a point $oldsymbol{x}$, given that it belongs to class c

Applying a generative model

Applying a generative model typically works as following

- Choose a <u>parametric model</u> for the c<u>lass conditional</u> $p(x \mid y = c, \psi)$ and the <u>class prior</u> $p(y = c \mid \theta)$.
- Estimate the parameters of our model $\{\psi,\theta\}$ from the data \mathcal{D} (e.g., using maximum likelihood obtain estimates $\{\hat{\psi},\hat{\theta}\}$). This step is called learning.

Once fitted, we can perform $\overline{\mathsf{inference}}$ - classify a new x using Bayes rule

$$(p(y = c \mid \boldsymbol{x}, \hat{\boldsymbol{\psi}}, \hat{\boldsymbol{\theta}}) \propto p(\boldsymbol{x} \mid y = c, \hat{\boldsymbol{\psi}}) p(y = c \mid \hat{\boldsymbol{\theta}})$$
(2)

Additionally, we can generate new data - hence the name.

- sample a class label $y_{new} \sim p(y \mid \hat{\boldsymbol{\theta}})$
- sample a feature vector $oldsymbol{x}_{new} \sim \mathrm{p}(oldsymbol{x} \mid y = y_{new}, \hat{oldsymbol{\psi}})$

both X & Y are observed

How do we choose the class prior p(y=c)? Sefing P

the model

The label y can take one of C discrete values.

⇒ Use categorical distribution!

e.g histogram

In case of 2 classed we used Remodi

The parameter $\theta \in \mathbb{R}^C$ specifies the probability of each class

$$\mathbf{p}(y=c)=\theta_c$$
 or equivalently $\mathbf{p}(y)=\prod_{c=1}^C \theta_c^{\mathbb{I}(y=c)}$ more compactly

 $y \sim \text{Categorical}(\boldsymbol{\theta})$

and is subject to the constraints $0 \le \theta_c \le 1$ and $\sum_{c=1}^{C} \theta_c = 1$.

The maximum likelihood estimate for θ given the data $\mathcal{D} = \{(x_i, y_i)\}$ is

$$\theta_c^{MLE} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i = c)$$

How do we choose the class conditionals $p(x \mid y = c)$?

The feature vector $oldsymbol{x} \in \mathbb{R}^D$ is continuous. ⇒ Use a multivariate normal for each class!

$$p(\boldsymbol{x} \mid y = c) = \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_c, \boldsymbol{\Sigma})$$

$$= \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_c)\right\}$$
(4)

We use the same Σ for each class, as estimating all Σ_c 's behaves badly numerically, unless we have lots of data.

The MLE estimates for $\{ oldsymbol{\mu}_1,...,oldsymbol{\mu}_C, oldsymbol{\Sigma} \}$ will be derived in the tutorial (or see Bishop 4.2.2).

Posterior distribution

Now that we have chosen p(x | y) and p(y), and have estimated their parameters from the training data, how do we perform classification?

Let's assume for simplicity that we have two classes $C = \{0, 1\}$.

$$p(y = 1 \mid x) = \frac{p(x \mid y = 1) \ p(y = 1)}{p(x \mid y = 1) \ p(y = 1) + p(x \mid y = 0) \ p(y = 0)}$$
(5)
=
$$\frac{1}{1 + \exp(-a)} =: \sigma(a)$$
(6)

where we defined

at
$$a=0 \Rightarrow$$
 decision boundary
$$a^{\dagger} - a \Rightarrow y=0$$

$$a + a \Rightarrow y=1$$

$$a = \log \frac{p(x \mid y=1) p(y=1)}{p(x \mid y=0) p(y=0)}$$
(7)

and σ is the sigmoid function. \longrightarrow being prob, since it's cont. but 0 gc 1

To avoid clutter, we implicitly condition the distributions on their respective parameters (θ,μ_c,Σ)

Linear discriminant analysis (LDA)

Let's look at how this function looks for Gaussian class-conditionals with the same covariance Σ

because we $a = \log \frac{p(x \mid y = 1) p(y = 1)}{p(x \mid y = 0) p(y = 0)}$ have (inear

decision boundary
$$= -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_1) + \log p(y = 1)$$
(9)
$$+ \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_0) - \log p(y = 0)$$
(10)

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$$

$$\mathbf{w}_0 = -\frac{1}{2}\boldsymbol{\mu}_1 \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_0 \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_0 + \log \frac{\mathbf{p}(y=1)}{\mathbf{p}(y=0)}$$
(13)

 \star Both ω & ω , are constants independent from x

ive not randomly chosen

 $= \boldsymbol{w}^T \boldsymbol{x} + w_0$ let a = 0 -> decision boundary (11)Since wTX + w is the hyperplane where we define

(12)

LDA for C = 2 classes

This means, that the posterior distribution is a sigmoid of a linear function of x

$$p(y = 1 \mid x) = \frac{1}{1 + \exp(-(w^T x + w_0))}$$
(14)

$$= \sigma(\boldsymbol{w}^T \boldsymbol{x} + w_0) \tag{15}$$

or equivalently

$$y \mid x \sim \text{Bernoulli}(\sigma(\boldsymbol{w}^T \boldsymbol{x} + w_0))$$
 (16)

This is how this function looks for D=2

O: Bernoulli pard.

probabilistic model

- Left:
 - $p(\boldsymbol{x} \mid y = 1)$ red $p(\boldsymbol{x} \mid y = 0)$ - blue
 - Right:

$$p(y = 1 \mid \boldsymbol{x})$$

S which class to expect ix to belong to

LDA for C > 2 classes

Check notes

Using Bayes' theorem, the posterior for the C>2 case is

$$p(y = c \mid x) = \frac{p(x \mid y = c) p(y = c)}{\sum_{c'=1}^{C} p(x \mid y = c') p(y = c')}.$$
 (17)

Working out the math, we get

$$= \frac{\exp(\boldsymbol{w}_{c}^{T}\boldsymbol{x} + w_{c0})}{\sum_{c'=1}^{C} \exp(\boldsymbol{w}_{c'}^{T}\boldsymbol{x} + w_{c'0})}$$
(18)

where

$$\mathbf{w}_c = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_c \tag{19}$$

$$\underline{\boldsymbol{w}_{c0}} = -\frac{1}{2}\boldsymbol{\mu}_{c}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{c} + \log p(y=c)$$
 (20)

25

Softmax function

On the previous slide we made use of the softmax function.

Softmax σ is a generalization of sigmoid to multiple dimensions

$$\sigma: \mathbb{R}^K \to \triangle^{K-1} \tag{21}$$

where

$$\Delta^{K-1} = \left\{ \boldsymbol{x} \in \mathbb{R}^K | \sum_{k=1}^K x_k = 1 \text{ and } x_k \ge 0, k = 1, ..., K \right\}$$
 (22)

is the standard probability simplex.

Softmax is defined as

$$\sigma(\boldsymbol{x})_i = \frac{\exp(x_i)}{\sum_{k=1}^K \exp(x_k)}$$
 (23)

Class conditionals: Variant II (Naive Bayes)

Naive Bayes: Assume that the d features of a sample $x=(x_1,x_2,\ldots,x_d)$ are conditionally independent given the class, i.e.

discrete data

$$p(x_1, x_2, \dots, x_d | y = c) = \prod_{i=1}^d p(x_i | y = c)$$

In the case of continuous data where the likelihood is assumed to be a normal distribution, this corresponds to diagonal covariance matrices, i.e.

$$p(\boldsymbol{x}|y=c) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

 $\stackrel{\textstyle \star}{\mathcal{N}}$ (Important): We use a different covariance matrix $oldsymbol{\Sigma}_c$ for each class c!

<u>LDA</u>: All class conditionals share the same covariance matrix Σ .

Naive Bayes

Let's assume for simplicity that we have two classes $\mathcal{C}=\{0,1\}$. Like in LDA we need to compute

The need to compute
$$\mathbf{a} = \log \frac{\mathbf{p}(\boldsymbol{x} \mid y=1) \, \mathbf{p}(y=1)}{\mathbf{p}(\boldsymbol{x} \mid y=0) \, \mathbf{p}(y=0)}$$
 As before , $\mathbf{a} = 0 \Rightarrow$ boundary
$$= \frac{1}{2} \boldsymbol{x}^T [\boldsymbol{\Sigma}_0^{-1} - \boldsymbol{\Sigma}_1^{-1}] \boldsymbol{x} + \boldsymbol{x}^T [\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\mu}_1 - \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0]$$

$$- \frac{1}{2} \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}_1^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_0^T \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 + \log \frac{\pi_1}{\pi_0} + \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_0|}{|\boldsymbol{\Sigma}_1|}$$

$$= \boldsymbol{x}^T \boldsymbol{W}_2 \boldsymbol{x} + \boldsymbol{w}_1^T \boldsymbol{x} + \boldsymbol{w}_0$$
 class proportional

where we define

$$\begin{split} & \boldsymbol{W_2} = \frac{1}{2} [\boldsymbol{\Sigma}_0^{-1} - \boldsymbol{\Sigma}_1^{-1}] \\ & \boldsymbol{w_1} = \boldsymbol{\Sigma}_1^{-1} \boldsymbol{\mu}_1 - \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 \\ & \boldsymbol{w_0} = -\frac{1}{2} \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}_1^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_0^T \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 + \log \frac{\pi_1}{\pi_0} + \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_0|}{|\boldsymbol{\Sigma}_1|} \end{split}$$

28

Naive Bayes: Decision Boundary

Naive Bayes results in a quadratic decision boundary.

Recap: LDA leads to a linear decision boundary

Naive Bayes: Advantage

Class conditional for Naive Bayes:

$$p(x_1, x_2, \dots, x_d | y = c) = \prod_{i=1}^d p(x_i | y = c)$$

X

Advantage: Independence of the features allows to easily handle different data types/mixed data types.

Simply choose a suitable (univariate) distribution for each feature:

Section 3

Probabilistic discriminative models for linear (classification)

Probabilistic discriminative model

Generative how well a new fit the model

i.e how likely a specific label occur

An alternative approach to generative modeling is to model the posterior <u>distribution</u> $p(y \mid x)$ <u>directly</u>. Such models are called <u>discriminative</u>.

We saw in the previous section that a generative approach with Gaussian class-conditionals with a shared covariance matrix Σ (LDA) leads to the posterior distribution

$$p(y = 1 \mid \boldsymbol{x}) = \sigma(\boldsymbol{x}^T \boldsymbol{w} + w_0), \tag{24}$$

$$p(y = 0 \mid \boldsymbol{x}) = 1 - \sigma(\boldsymbol{x}^T \boldsymbol{w} + w_0)$$
(25)

where w, w_0 depend on the parameters of class-conditionals μ_0, μ_1, Σ .

Why not just let \underline{w} and $\underline{w_0}$ be <u>free parameters</u> and choose them directly?

likelihood

Logistic regression

We model the posterior distribution as

$$y \mid \boldsymbol{x} \sim \text{Bernoulli}(\sigma(\boldsymbol{w}^T \boldsymbol{x} + w_0))$$
 (26)

where

$$\sigma(a) = \frac{1}{1 + \exp\left(-a\right)} \tag{27}$$

and w, w_0 are the free model parameters.

This model is called logistic regression.

Absorbing the bias term

Like in the previous lecture, we again absorb the bias term by overloading the notation and defining

$$\mathbf{w}^T \mathbf{x} := w_0 + w_1 x_1 + \dots + w_D x_D \tag{28}$$

Which is equivalent to defining $x_0 = 1$.

Likelihood of logistic regression

Learning logistic regression comes down to finding a "good" setting of parameters \underline{w} that "explain" the training set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$.

Assuming that all samples (x_i, y_i) are drawn i.i.d., we can write the likelihood as

refined as
$$p(\boldsymbol{y} \mid \boldsymbol{w}, \boldsymbol{X}) = \prod_{i=1}^{N} p(y_i \mid \boldsymbol{x}_i, \boldsymbol{w})$$

$$= \prod_{i=1}^{N} \underbrace{p(y = 1 \mid \boldsymbol{x}_i, \boldsymbol{w})^{y_i}}_{=1 \text{ if } y_i = 0} \underbrace{\left(1 - p(y = 1 \mid \boldsymbol{x}_i, \boldsymbol{w})\right)^{1 - y_i}}_{=1 \text{ if } y_i = 1}$$

$$= \prod_{i=1}^{N} \sigma(\boldsymbol{w}^T \boldsymbol{x}_i)^{y_i} (1 - \sigma(\boldsymbol{w}^T \boldsymbol{x}_i))^{1 - y_i}$$

$$(30)$$

Negative log-likelihood

Similarly to the linear regression case, we can define an error function, the negative log-likelihood:

$$E(\mathbf{w}) = -\log p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) \tag{32}$$

$$= -\sum_{i=1}^{N} \left(y_i \log \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) + (1 - y_i) \log(1 - \sigma(\boldsymbol{w}^T \boldsymbol{x}_i)) \right)$$
(33)

This loss function is called binary cross entropy.

Finding the maximum likelihood estimate for w is equivalent to solving

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg\,min}} E(\mathbf{w}) \tag{34}$$

Solving the minimization problem

X

There doesn't exist a closed form solution for logistic regression. This means, we cannot represent the optimal w^* directly using standard mathematical operations, such as multiplication, matrix inversion, etc.

However, there is still hope! We <u>can use</u> optimization to <u>numerically</u> solve our problem. We will cover this in the next lecture.

For now, just assume that we can find w^* .

Logistic regression + weights regularization)

As we already well know, maximum likelihood estimation may often lead to overfitting. Just like in case of linear regression, we can control this by penalizing large weights.

$$E(\boldsymbol{w}) = -\log p(\boldsymbol{y} \mid \boldsymbol{w}, \boldsymbol{X}) + \lambda ||\boldsymbol{w}||_q^q$$
(35)

Like before, for $\underline{q=2}$ this corresponds to MAP estimation with a Gaussian prior on \underline{w} .

Again, there is no closed form solution available.

Multiclass logistic regression

For the <u>binary classification</u> we used the <u>sigmoid fun</u>ction to "squeeze" the <u>unnormalized probability</u> $\boldsymbol{w}^T\boldsymbol{x}$ into the range (0,1).

The same can be done for multiple classes using the softmax function.

$$p(y = c \mid \boldsymbol{x}) = \frac{\exp(\boldsymbol{w}_c^T \boldsymbol{x})}{\sum_{c'} \exp(\boldsymbol{w}_{c'}^T \boldsymbol{x})}$$

How does this relate to multiclass LDA?

Loss for multiclass logistic regression

The negative log-likelihood for multiclass LR can be written as

$$E(\mathbf{w}) = -\log p(\mathbf{Y} \mid \mathbf{w}, \mathbf{X}) \tag{36}$$

$$= -\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log p(y_i = c \mid \boldsymbol{x}_i, \boldsymbol{w})$$
 (37)

$$= +\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log \frac{\exp(\boldsymbol{w}_{c}^{T} \boldsymbol{x})}{\sum_{c'} \exp(\boldsymbol{w}_{c'}^{T} \boldsymbol{x})}$$
(38)

and is called cross entropy.

Here we use one-hot encoding: vector of categorical variables $\boldsymbol{y} \in \mathcal{C}^N$ is encoded as a binary matrix $\boldsymbol{Y} \in \{0,1\}^{N \times C}$, where

$$y_{ic} = \begin{cases} 1 & \text{if sample } i \text{ belongs to class } c \\ 0 & \text{else} \end{cases}$$
 (39)

Generative vs. discriminative models

y wip are free var

- In general, discriminative models achieve better performance when it comes to pure classification tasks.
- While generative models work reasonably well when their by $\sum k M$ assumptions hold, they are quite fragile when these assumptions are violated.
- Generative modeling for <u>high-dimensional</u> / <u>strongly correlated data</u> like images or graphs is still an open research challenge.
- Nevertheless, generative models provide the added benefits of <u>better</u> <u>handling missing data</u>, detecting outliers, generating new data and being more appropriate in the semi-supervised setting.

Reading material

Learning -> boriving parameters

eig vin max likelihood

Intorunce -> having xnew & predicting Ynew

Main reading

 "Pattern Recognition and Machine Learning" by Bishop [ch. 4.1.1, 4.1.2, 4.1.7, 4.2, 4.3.0–4.3.4]

Slides are based on an older version by G. Jensen and C. Osendorfer. Some figures are from Bishop's "Pattern Recognition and Machine Learning".