Feasibiliy of Networking Technology for Smart Farm: LoRa vs APRS

Hyuk Lee

Handong Univ.

Woojin Jang

Chungang Univ.

Hye Won Yoon

Kyunghee Univ.

Dong Jun Kim

Kyunghee Univ.

Heejae Jung

Kyunghee Univ.

Gowoon Choi

Dongguk Univ.

Miran Lee

Dongguk Univ.

Chaehee Weon

Seoul Women's Univ.

Anthony Smith

Purdue Univ.

CONTENTS

Introduction

Related Works

Approach

Result

Conclusion

Q&A

Scalability

Extended Range

Low Cost

Energy Efficiency

VS

LoRa and APRS

Low Power Wide Area Network (LPWAN)

Long-range transmissions with low power consumption (more than 10km in open area)

Amateur radio based system for real time digital communications of immediate value in the local area

Automatic Packet Reporting System 144.39 MHz

LoRa

TX power to 13

Signal bandwidth to 125E3

Coding rate to 5

APRS

Antenna's ground condition

Antenna's height

Polarized antennas

EIRP

$$EIRP = P_T - L_C + G_a$$

Pt: Output power of the Transmitter (dBm)

Lc: Cable Loss (dB)

Ga: Antenna Gain (dBi)

Results

Test Environment

4 Results
Test

TABLE I
RANGE RESULTS FROM MULTIPLE TRIALS

# Test	LoRa	APRS
1st Test	0.16 km	1.30 km
2nd Test	4.2 km	0.70 km
Final Test	4.2 km	0.86 km

TABLE II LORA ANTENNA SPECIFICATIONS

Specifications	1st Test	2nd Test	Final Test
Transmitter Antenna Gain	2.14 dBi	9 dBi	9 dBi
Transmitted Power	16 dBm	16 dBm	16 dBm
Receiver Antenna Gain	2.14 dBi	6 dBi	6 dBi

TABLE III
APRS ANTENNA SPECIFICATIONS

Specifications	1st Test	2nd Test	Final Test
Transmitter Antenna Gain	2.14 dBi	2.14 dBi	1.17 dBi
Transmitted Power	15 dBm	20 dBm	24 dBm
Receiver Antenna Gain	6 dBi	6 dBi	6 dBi

LoRa

- Arduino Uno
- Arduino LoRa/GPS Shield v1.4
- wlaniot 900MHz Antenna
- 824-960 Mhz 6 dBi 900MHz Omni Antenna

Transmitter / Receiver

APRS

- Arduino Uno
- Radiometrix HX1-144.390-3
- USRP b200 USB Software Defined Radio
- X2200A Dualband Base/Repeater Genuine Nagoya UT-72

Transmitter

Receiver

Test Evaluation (1)

Friis transmission equation

$$P_{rx} = P_{tx}G_{tx}G_{rx}(\frac{c}{4\pi D_r f_0})^2$$

$$D_r = \frac{c\sqrt{P_{tx}G_{tx}G_{rx}}}{4\pi f_0\sqrt{P_{rx}}}$$

Test Evaluation (2)

Fresnel Zone

$$r_n = \sqrt{n \frac{d_1 d_2}{d_1 + d_2}} \lambda$$

$$(d_1, d_2 \gg n\lambda)$$

Results

Test Evaluation

LoRa

Transmitter Power	16 dBm
Transmitter Gain	9 dBi
Receiver Gain	6 dBi
Theoretical Distance	9.3 km (5.78 miles)
Height Needed	27.79 m (91.17 ft)
60% of Fresnel Zone Radius	16.67 m (54.69 ft)

Transmitter Antenna Height	2.35 m (7.71 ft)
Receiver Antenna Height	4.0 m (13.12 ft)
Tested Distance	4.2 km (2.61 miles)
Efficiency Constrained by Height	45.16%

APRS

Transmitter Power	24 dBm
Transmitter Gain	1.17 dBi
Receiver Gain	6 dBi
Theoretical Distance	59.7 km (37.10 miles)
Height Needed	176.02 m (577.49 ft)
60% of Fresnel Zone Radius	105.61 m (346.49 ft)

Transmitter Antenna Height	2.35 m (7.71 ft)
Receiver Antenna Height	6.4 m (21.00 ft)
Tested Distance	0.86km (0.53 miles)
Efficiency Constrained by Height	1.44%

Transmitter and Receiver place 106 m height for 60 km coverage distance by Fresnel Zone

Limitation and Future Work

Different antenna gain and Transmitted power

Crop canopies

Limitation and Future Work

Same antenna gain and transmitted power

Antennas at higher elevations

Q & A