

Bu-Ali Sina University Department of Computer Engineering Synthesis of Digital Systems (SDS2022)

Homework Solution #2

Neda Motamediraad (40113224005)

Homework and Project Solutions

https://github.com/nedaraad/MSc-Synthesis.git

Q.1 States Reduction of FSM

Given is Machine M

- a) Find the minimal machine (in the number of states) that is equivalent to machine M
- b) Draw the triangular table of machine M
- c) Solve the triangular table
- d) Find the maximal compatible groups of states.
- e) Solve graphically the covering/closure problem.
- f) Formulate algebraically the binate covering problem.
- g) Realize the machine using JK flipflops and combinational gates.

a	d/-	f/0						
b	c/1	h/0						
c	d/0	h/0						
d	c/0	a/0						
e	-/-	f/0						
f	e/0	a/0						
g	c/1	-/-						
h	b/1	a/1						
Machine M								

Q1. Solution

Implication Table (Triangular Table)

Compatibility Classes

Incompatibility Classes

Maximal Compatibility

Maximal Incompatibility

Closure Table and Equations

		0	1
A ←	aef	de/0	af/0
$\mathbf{B} \leftarrow$	bg	c/1	h/0
$C \leftarrow$	de	c/0	af/0
	eg	c/1	f/0
$D \leftarrow$	c	d/0	h/0
E←	h	b/1	a/1

$$U = \min \{NSMC, NSOC\}$$

$$U = \min\{6, 8\} = 6$$

$$L = \max\{NSMI_1, NSMI_2, ..., NSMI_i\}$$

$$L = \max\{5, 5, 5, 4, 5\} = 5$$

$$L \le K \le U \to 5 \le K \le 6 \to K = 5 \checkmark$$

$$K = 5$$

Reduced State Table			Most Transferred Rules						
A B C	0 C/0 D/1 D/0	1 A/0 E/0 A/0	Rule 1: $A \ adj \ D, B \ adj \ C, E \rightarrow (AD, BC, E)$ Rule 2: $C \ adj \ A, D \ adj \ E, D \ adj \ A, C \ adj \ E, B \ adj \ A$ Rule 3: (AE, BCD) Rule 4 $most \ transferred \ to: A \rightarrow A \equiv 000$						
D E	C/0 B/1	E/0 A/1	$A \equiv 000$						

States Code Assignment

The combination of rules 1 and 3 is initially selected for state code assessment. Then rule 2 is considered.

Q_1	Q_2	Q_3	Q_1^+	Q_2^+	Q_3^+	X	J_1	K_1	J_2	K_2	J_3	<i>K</i> ₃	D_1	D_2	D_3	Z
0	0	0	1	1	0	0	1		1		0		1	1	30	0
0	0	1	_	_	_	0					_					_
0	1	0	_	_	_	0					_					_
0	1	1	1	1	1	_	1		_	0	1		1	1	1	1
1	0	0	1	0	1	0		0		1	1		1		1	0
1	0	1	1	0	1	0		0		1	_	0	1	0	1	1
1	1	0	1	1	0	0		0	1		_	1	1	1	0	0
1	1	1	_	_	_	0			_		_				_	_
0	0	0	0	0	0	1	0		0		0		0	0	0	0
0	0	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-
0	1	0	-	-	-	1	-	-	-	-	-	-	-	-	-	-
0	1	1	0	0	0	1	0	-	0	-	0	-	0	0	0	1
1	0	0	0	0	0	1	-	1	_	1	0	-	0	0	0	0
1	0	1	0	1	0	1	_	1	-	1	-	1	0	1	0	0
1	1	0	0	1	0	1	_	1	-	1	-	1	0	1	0	0
1	1	1	-	-	-	1	_	-	-	-	-	-	-	-	-	-

Realize the machine using JKFF and Logic Gates

Realize the machine using DFF and Logic Gates

