I, LISTING OF THE CLAIMS

- 1. (currently amended) A transmission comprising:

 an aluminum housing member having a bore formed therein;

 a rotatable member supported on a bearing within the bore; and

 wherein said bore includes a layer of thermal spray coating for improved wear resistance so that the bore supports the bearing without a steel sleeve therebetween; and

 wherein said thermal spray coating comprises a steel alloy having 0.1 to 1%

 weight C, 0 to 14% weight Cr, 0 to 2% weight Mn, 0 to 2% weight Ni, 0 to 1% weight Si, and the balance Fc.
- (currently amended) The transmission of claim 1, wherein said thermal spray
 eoating comprises a steel alloy [[, with]] has a coating thickness between approximately 0.1 and
 0.5 mm
 - (cancelled)
- (currently amended) The transmission of claim [[1]] 5, wherein said thermal spray coating comprises a nickel alloy [[, with]] has a coating thickness between approximately 0.02 and 0.08 mm
- 5. (currently amended) The transmission of claim 4, A transmission comprising:

 an aluminum housing member having a bore formed therein; and
 a rotatable member supported on a bearing within the bore;
 wherein said bore includes a layer of thermal spray coating for improved wear resistance so that the bore supports the bearing without a steel sleeve therebetween; and wherein said thermal spray coating comprises a nickel alloy eemprises having 15 to 25% weight Cr. 0 to 20% weight Al. 0 to 5% Y, and the balance Ni.
 - (currently amended) The transmission of claim 1, A transmission comprising: an aluminum housing member having a bore formed therein; and a rotatable member supported on a bearing within the bore:

wherein said bore includes a layer of thermal spray coating for improved wear resistance so that the bore supports the bearing without a steel sleeve therebetween; and wherein said thermal spray coating comprises a copper alloy, having 7 to 13% weight Al, 0 to 5% weight Fe, 0 to 6% Ni, and the balance Cu.

- (original) The transmission of claim 1, wherein said thermal spray coating is applied by a two wire arc spray process.
- (original) The transmission of claim 1, wherein said thermal spray coating is applied by a plasma thermal spray coating process.
- (original) The transmission of claim 1, wherein said transmission is a
 continuously variable transmission (CVT), said rotatable member is a rotatable pulley member,
 and said aluminum housing member comprises a transmission case.
- (original) The transmission of claim 1, wherein said transmission is a
 continuously variable transmission (CVT), said rotatable member is a rotatable pulley member,
 and said aluminum housing member comprises a transmission cover.
- 11. (currently amended) A continuously variable transmission (CVT) comprising:
 an aluminum housing member having a bore formed therein;
 a rotatable pulley member supported on a bearing within the bore;
 wherein said bore includes a layer of thermal spray coating for improved wear
 resistance so that the bore supports the bearing without a steel sleeve therebetween; and
 wherein said thermal spray coating comprises a steel alloy, having 0.1 to 1%
 weight C, 0 to 14% weight Cr, 0 to 2% weight Mn, 0 to 2% weight Ni, 0 to 1% weight Si, and
 the balance Fe.

12. (cancelled)

- (original) The CVT of claim 11, wherein said thermal spray coating is applied by a two wire arc spray process.
- (original) The CVT of claim 11, wherein said thermal spray coating is applied by a plasma thermal spray coating process.
- (original) The CVT of claim 11, wherein said aluminum housing member comprises a transmission case.
- (original) The CVT of claim 11, wherein said aluminum housing member comprises a transmission cover.
- (withdrawn) A method of manufacturing a continuously variable transmission
 (CVT) comprising:

casting an aluminum housing member with a bore formed therein;

- providing a thermal spray coating on the I.D. surface of the bore for improved wear resistance; and
- positioning a bearing directly against the I.D. surface of the bore for supporting a rotatable pulley member without a sleeve positioned between the bearing and the I.D. surface.
- (withdrawn) The method of claim 17, wherein said thermal spray coating is applied by a two wire arc spray process.
- (withdrawn) The method of claim 17, wherein said thermal spray coating is applied by a plasma thermal spray coating process.
- (withdrawn) The method of claim 17, further comprising, prior to said step of
 providing a thermal spray coating, cleaning, degreasing and grit blasting the I.D. surface of the
 bore: and

after said step of providing a thermal spray coating, finish machining the I.D. surface of the bore.

- (withdrawn) The method of claim 20, wherein said thermal spray coating is applied by wire are spray, and said finish machining comprises grinding.
- (withdrawn) The method of claim 20, wherein said thermal spray coating is applied by a plasma spray process, and said finish machining comprises buffering.