

Student Number	
Surname & Initials	

Ma ammauran naanta

YEAR: 2021 **SEMESTER:** 1

ASSESSMENT: SUMMATIVE ASSESSMENT

We empower people	•				
SUBJECT NAME:	DATA STRUCTU	RES AND ALGORI ⁻	THMS V		
SUBJECT CODE:	DTD117V				
QUALIFICATION(S):	ADRS20 ADVAN	CED DIPLOMA IN	COMPUTER SCI	ENCE	
PAPER DESCRIPTION:	COMPUTER BASED	DURATION:	4 HOURS	PAPER: ONLY	
	•				
SPECIAL REQUIREMENTS	S				
□ NONE		· • • • • • • • • • • • • • • • • • •	_		
⊠ NON-PROGRA □ SCIENTIFIC CA		CET CALCULATO	K		
_	NSWER SHEET				
☐ GRAPH PAPE	R				
☐ DRAWING IN	STRUMENTS				
OTHER: COMPUTER					
INSTRUCTIONS TO CANDI	DATES. ANG	WED ALL OLIECTIC	NIC		
INSTRUCTIONS TO CANDII		WER ALL QUESTIC			
				CAND ON ANSWER BOOK. NSWER SCRIPT BACK TO TH	E
		GILATOR AND SUI	•		L
TOTAL NUMBER OF PAGES	S INCLUDING COV	/FR PAGF·	4		
TOTAL NUMBER OF ANNE	XURES:		0		
EXAMINER: Dr N Ba	loyi, Prof S Mokw	ena & Mr N Dlam	ini	FULL MARKS:	100
MODERATOR: Ms Mph	no Nkosi			TOTAL MARKS:	100
				STUDENT TOTAL:	
				STUDENT %:	

Preparation

Theory

- a. Use the Word to answer questions.
- b. Show all steps where applicable.
- c. Write legibly
- d. SAVE THE ANSWER SHEET AS PDF
- e. YOU ARE THEN REQUIRED TO UPLOAD THE PDF OUTPUT FILE INT TO SECTION A OF THE SUMMATIVE ASSESSMENT IN BRITESPACE.

Practical

- a. Use Java/C++ to create the programs required in section B
- b. Write your code legibly and provide comments
- c. TO EVIDENCE YOUR OUTPUT, CAPTURE THE OUTPUT OF ALL THE VARIOUS FUNCTIONALITY REQUIREMENTS INTO A WORD DOCUMENT (CORRECTLY NUMBERED) AND SAVE IT AS PDF AT THE END.
- d. YOU ARE THEN REQUIRED TO UPLOAD THE PDF OUTPUT FILE AND THE ASSOCIATED CODE INTO A ZIP FILE AND UPLOAD IT TO SECTION B OF THE SUMMATIVE ASSESSMENT IN BRITESPACE.
- e. If you are not able to zip the files (PDF output file for all questions and sources files), upload each individual file int section B before submitting.

Section A – Theory [50]

Question 1 [20]

1.1 Given the following adjacency matrix, draw a weighted graph depicted the adjacency matrix.

	CT	PMZ	DBN	JHB	PE	EL	PTA	PLK
CT	0	10	0	8	0	0	0	0
PMZ	10	0	5	0	27	0	0	0
DBN	0	5	0	9	6	4	0	0
JHB	8	0	9	0	0	15	0	0
PE	0	27	6	0	0	0	0	20
EL	0	0	4	15	0	0	13	0
PTA	0	0	0	0	0	13	0	12
PLK	0	0	0	0	20	0	12	0

- 1.2 Explain how collisions arise in Hash-tables data structures. (3)
- 1.3 Distinguish between tree and graph data structures. (6)

Question 2	[15]
2.1 Define the concept of a directed graph.	(3)
2.2 Define a full binary tree.	(3)
2.3 What is the formula for determining the position of the left child node?	(3)
2.4 What is the formula for determining the position of the left child node?	(3)
2.5 What is the formula for determining the position of the parent node?	(3)

Ouestion 3	[15]
i Question s	1431

3.1 Insert the values 5, 9, 7, 3, 8, 12, 6, 4, and 20 into a binary search tree drawing a different tree for each stage of the insertion. (15)

Section B – Practical/Programming [50]

Question 4 [30]

Develop a simple java or C++ program that uses integer stack and list data structures. The stack should be called **NumberStack** and list **NumberList**. Perform the following operations:

4.1 Create and initialise **NumbersStack** with the following values: 55, 46, 90, 39, 20, 13, 56, 100 and 77 using the appropriate function. Each initialisation operation should display a message such as "value XX added into stack Numbers". (7)

(11)

4.2 [Display the values in the NumberStack data structure.	(2)
4.3	Display the size of the NumberStack data structure.	(2)
4.4	Create the NumberList list data structure and initialise it by moving the top four numbers of the NumberStack data structure into the NumberList data structure.	(12)
4.5	Display the values in the NumberList data structure.	(2)
4.6	Display the size of the NumberList data structure.	(2)
4.7	Increment the value of the last element in the NumberStack data structure by 10 and display all the NumberStack data structure.	e values of (3)
Que	estion 5	[20]
Dev	relop a simple java or C++ program to demonstrate the use of the AVL tree data structure. Perform the owing operations on the AVL:	
Dev follo	relop a simple java or C++ program to demonstrate the use of the AVL tree data structure. Perform the	he 20.
Dev follo 5.1 (relop a simple java or C++ program to demonstrate the use of the AVL tree data structure. Perform the bwing operations on the AVL:	he
Dev follo 5.1 (5.2 [relop a simple java or C++ program to demonstrate the use of the AVL tree data structure. Perform the owing operations on the AVL: Create and initialise an AVL tree called NumAVL with the following values: 5, 9, 7, 3, 8, 12, 6, 4, and 2	he 20. (5)
Dev follo 5.1 (5.2 [relop a simple java or C++ program to demonstrate the use of the AVL tree data structure. Perform the owing operations on the AVL: Create and initialise an AVL tree called NumAVL with the following values: 5, 9, 7, 3, 8, 12, 6, 4, and 2 Display the values in the NumAVL tree using inorder transversal. Delete the value 12 from the NumAVL tree.	he 20. (5) (3)

The End

5.6 Display the values in the **NumAVL** tree.

(2)