Index

1	Cellular membrane excitability
Action potentials, 49–51	action potentials, 49-51
Activating gates, 43, 44	membrane currents, 47-49
Activator-inhibitor system, 109, 110, 118, 147	Nernst potential, 47
Adaptive dynamics model, 172	Cellular Potts model (CPM), 6,
Adaptive significance, 171	131–133
Ad-hoc rules, 149	Cellular spaces, see Cellular automata
Anisotropic growth, 1, 7	Cell wall, 3
Approximate Bayesian computation (ABC),	Cell wall mechanical properties,
204	3, 7
Arabidopsis thaliana inflorescence shoot apical	Channel dynamics, 39-40
meristems (SAMs), 90	Chemical Langevin equation, 96
Auxin, 6, 8, 99, 100, 110–112	Circular tube flow, 23–24
Axiom, 113, 141, 148	Classical (von Neumann) model, 140
	Claude-Louis Navier equation, 19
	Climate change, 182, 186
3	Clonal analysis, 3
Bifurcation theory, 62	Computational models, 140
Boolean models, 71	Computational Morphodynamics,
Bottom-up approach, 72	88, 89
Boundary conditions, 19–20	Conservation of mass, 17-18, 27
3-spline surfaces, 121–123	Context sensitive rules, 113
	Continuous concentration-based approach, 96, 97
	Continuous model, 5-6, 198
Canalization model, 111, 112	Continuum hypothesis, 17
Cavitation bubbles, 25	Convection-diffusion equation, 29
Cell division	Coordinate system, 124–125
growing cell disk, 115, 116	Corner-flow analysis, 28
model of, 114, 115	Cortical array (CA), see Plant cortical
Voronoi regions, 114, 115	microtubule array
Cellerator, 72	Coupling biochemical process, 8
Cell expansion, 15	Coupling biomechanical process, 8
Cell geometry, 64	Creeping flow, 21
Cellular automata, 140, 141	Cyclin-dependent kinase (CDK) activity, 90

213

© Springer Nature Switzerland AG 2018 R. J. Morris (ed.), *Mathematical Modelling in Plant Biology*, https://doi.org/10.1007/978-3-319-99070-5 214 Index

D	monocarpic perennials, 180
Data driven growth, 123–125	polycarpic-intermittent flowering, 18
De novo pattern formation, 111	polycarpic-yearly flowering, 180
Diffusion	forecasting flowering phenology
of ionic species, 38-39	flowering phenology and climate
prospective framework, 200-201, 204, 207	change, 182-183
shear-enhanced diffusion, 32-35	model construction and
Discrete time steps, 58	parameterization, 184-187
Diurnal Reference Cycles, 75	prediction, 185-188
Dormancy, 198	genetic-physiological model
Dynamic self-organization, 54	allelic variations, 178
Dynamics instability, 54–56	bistability of cellular systems, 176
3,	chromatin remodeling, 176
	floral integrator gene, 175-176
E	genetic component, 175
E-Cell, 72	leaf biomass, 177
Ecology, 172, 173, 188, 190, 197	optimal flowering strategy, 178
Effective diffusivity, 34, 35	physiological component, 175
Elastic modulus, 7, 9, 10	repression state, 176
Eulerian approach, 131, 141	stored resource (S) changes, 178
Event-driven simulations, 58	temperature-dependent pathway, 175
Expression dynamics, 88, 185	vernalization-specific genes, 175–176
Expression dynamics, 66, 165	natural variation, vernalization response
	173–175
F	proximate causes, 171–173
Fickian flux rules, 38	ultimate causes, 171–173
Fick's law, 29, 33, 147	Fluid transport
Filamentous blue-green bacterium Anabaena	physical principles and mathematical
catenula, 142	equations
Finite element method (FEM), 6, 129–131	boundary conditions, 19–20
Finite hydraulic permeability, 74	conservation of mass, 17–18
First-generation OnGuard software, 75, 76	continuum hypothesis, 17
FitzHugh-Nagumo model, 38	Navier-Stokes equation, 18–19
Fixed templates	Newtonian fluid, 17
activator-inhibitor system, 109	non-Newtonian fluid, 17
auxin, feedback of, 111, 112	Reynolds number, 20–21
boundary conditions, 108	plant hydraulics
de novo pattern formation, 111	flow in a straight tube, 21–25
Mitchison's polar transport model, 111	flow in a straight tube, 21–23 flow in a tube with varying diameter.
reaction-diffusion patterning, 110	26–28
realistic templates, 112, 113	geometrical complications, 21
rectangular, hex and Voronoi regions, 112	Münch hypothesis, 21
Sachs' canalization mechanism, 110	osmosis, 15
Turing mechanism, 108	pits, 21
FLOWERING LOCUS C (FLC), 174	tracheids and vessels, 21
Flowering phenology	transport routes for fluids, 16
climate change, 182–183	water influx, 15
model construction and parameterization,	solute transport
184–187	
prediction, 185–188	convection, 30–32 diffusion equation, 29–31
Flowering time	shear-enhanced diffusion, 32–35
evolution of, 180–182	
FLC generates diversity	transport equation, 28–29
monocarpic annuals, 179–180	Formal language theory, 145 Forward Euler method, 149
monocarpic annuals, 1/2-100	Forward Edler method, 149

Index 215 216 Index

L-systems (cont.)

Fraction of channels, 45 FRIGIDA (FRI), 174	Homogeneous arrays, 65 Humidity, 75–80 Hybrid algorithms, 96 Hydraulic transport routes, 16
G	Hydromechanical model, 71
Game theory, 172	
Gating, 39	_
Gene expression analysis, 186	I
Genetic-physiological model	Inactivating gates, 43, 44
allelic variations, 178	Incomplete Lineage Sorting (ILS), 205
bistability of cellular systems, 176	Integral projection model, 172
chromatin remodeling, 176	Ion channels
floral integrator gene, 175–176	activating gates, 43, 44
genetic component, 175	averaging, 45–46
leaf biomass, 177	cellular membrane excitability
optimal flowering strategy, 178	action potentials, 49–51
physiological component, 175	membrane currents, 47–49
repression state, 176	Nernst potential, 47
stored resource (S) changes, 178	Gillespie algorithm, 41–42
temperature-dependent pathway, 175	inactivating gates, 43, 44
vernalization-specific genes, 175–176	master equation, 44-45
Genetic regulatory network (GRN)	single ion channel dynamics
activator-inhibitor model, 147	channel dynamics, 39–40
bistable behaviour (hysteresis), 151	ionic species diffusion, 38–39
cell division, 149, 150 data structures, 148	Markov processes, 40–41 transition probabilities, 42–43
external PatS, 151	Ion flux, 73, 77
Fick's law, 147	
flux of PatS, 149	Ionic species diffusion, 38–39 Isotropic solution, 62
heterocyst differentiation, 146	Iterative computational modelling, 74
HetR and PatS interactions, 146, 147	nerative computational moderning, 7-
module types and initial state, 148	
production for walls, 148–149	K
reaction-diffusion model, 147	Kirchoff's second law, 49
refractory behaviour of heterocysts, 151	
simulation parameter values, 147, 150	
Genomic data analysis, 201–202	L
Geometric concept, 140	Lagrangian approach, 131, 141
Geometric template model, 112, 113	Lewontin paradox, 197
George Gabriel Stokes equation, 19	Linkage disequilibrium (LD), 196
Gibb's free energy, 39	Linked selection, 196, 197
Gillespie algorithm, 41-42, 96	Lockhart's model growth, 127
GRN, see Genetic regulatory network	L-systems, 113, 114
Growth anisotropy, 1, 7, 134	cellular automata, 140, 141
Growth rate, 1, 7	genetic regulatory network
Guard cells, 49, 70-75, 81	activator-inhibitor model, 147
	bistable behaviour (hysteresis), 151
н	cell division, 149, 150 data structures, 148
Hamiltonian based methods, 131–134	external PatS, 151
Hejnowicz coordinate system, 118–120	Fick's law, 147
Hill-Robertson effect, 196, 197, 208	flux of PatS, 149
Hodgkin-Huxley formalism, 49	heterocyst differentiation, 146
Hodgkin-Huxley model, 38	HetR and PatS interactions, 146, 147
5,	

module types and initial state, 148 Microtubule (MT) cytoskeleton, see Plant production for walls, 148-149 cortical microtubule array reaction-diffusion model, 147 Mitchison's polar transport model, 111 refractory behaviour of heterocysts, 151 Morphogens, 130 simulation, 150 MorphoGraphX, 2 simulation parameter values, 147 Münch hypothesis, 21 geometric interpretation, 151-153 modeling cell division patterns developmental sequence, 144 L-system-based simulator CELIA, 143 Natural variation, vernalization responses, 173-175 numerical parameter, 143 vegetative segments of Anabaena, 142, Navier-Stokes equation, 18-19 Nernst potential, 47 143 modeling phenotypic plasticity, 159-161 Neutral and selective genetic diversity, 196 operation of, 141, 142 Neutral evolutionary processes plant architecture models constant population size, 203 past demographic events, 203-204 age of internodes, 155 br_angle(t),156 recombination rate, 205, 206 speciation, 204-205 decomposition rule, 155 descriptive and mechanistic models, Newtonian fluid, 17 153–154, 158 Newton's law of viscosity, 17 Non-circular tube flow, 24-25 interpretation rule, 155, 156, 158 leaf length(t), 156 Non-isotropic solutions, 51 Lychnis coronaria shoot, 159 Non-Newtonian fluids, 17 Lychnis model, 156, 157 Non-persistent seed bank, 198 mature Lychnis coronaria plant, 154 Non-SB Wright-Fisher model, 204 modules, 155 nproduce statement, 158 produce statement, 158 simple branching structure model, 154 OnGuard2 Arabidopsis model, 82 OnGuard platform turtle command Surface(LEAF_SURFACE, elements, 72-74 macro-and microscopic processes, 81 leaf_length(t)), 156 programming, 145 modelling stomata trees modeling biophysical and kinetic features, 72 components, 161 Boolean models, 71 E1 and GetHead, 162 effective modelling efforts, 70 guard cell outward-rectifying K+ elements, 163-165 plant and environment, 165 channel, 72 guard cell physiology, 70 recursive branching pattern, 161 macroscopic approaches, 71 Lychnis model, 156, 157 microscopic level, 71 reverse-engineering, 71 robust models of gas exchange, 71 stomatal function, 70, 71 Mapping function, 116 Markov processes, 40-41 true mechanistic models, 71 Mass-spring model, 125-129 OnGuard2 Arabidopsis model, 82 Master equation, 44-45 outputs, 80 Maximal growth direction, 1, 7 simulating stomatal physiology and Mechanical signals, 9-10 response, 75-80 Meinhardt activator-inhibitor system, 127 whole-plant water relations Membrane currents, 47-49 diurnal Reference Cycles, 75 Metropolis algorithm, 131 finite hydraulic permeability, 74

Microtubule associated proteins (MAPs), 53

iterative computational modelling, 74	circular tube flow, 23-24
Reference State, 75	non-circular tube flow, 24–25
Reference State Wizard, 74	Poiseuille velocity profile, 22
Open and closed states, 39	pressure gradient drives flow, 22
Optimal control theory, 172	tube collapse and cavitation, 25
Order parameters, 60–63	flow in a tube with varying diameter, 26–28
Organ-centric coordinate system, 116, 117,	geometrical complications, 21
	Münch hypothesis, 21
Organ growth, 3, 10, 156	osmosis, 15
Osmosis, 15	pits, 21 tracheids and vessels, 21
	transport routes for fluids, 16
P	water influx, 15
Passage/escape times, 40	Plant life history
PatS external to it ([PatS]ext), 151	evolution of, 180–182
Péclet number, 33, 35	FLC generates diversity
Phenotypic diversity, 195	monocarpic annuals, 179–180
Photosynthesis process, 16	monocarpic perennials, 180
Phyllotaxis, 118	polycarpic-intermittent flowering, 180
Phytohormone auxin, 98	polycarpic-yearly flowering, 180
Pits, 21	genetic-physiological model
Plant architecture	allelic variations, 178
age of internodes, 155	bistability of cellular systems, 176
br_angle(t),156	chromatin remodeling, 176
decomposition rule, 155	floral integrator gene, 175-176
descriptive and mechanistic models,	genetic component, 175
153–154, 158	leaf biomass, 177
interpretation rule, 155, 156, 158	optimal flowering strategy, 178
leaf_length(t),156	physiological component, 175
Lychnis coronaria shoot, 159	repression state, 176
Lychnis model, 156, 157	stored resource (S) changes, 178
mature Lychnis coronaria plant, 154	temperature-dependent pathway, 175
modules, 155	vernalization-specific genes, 175–176
nproduce statement, 158	natural variation, vernalization responses,
produce statement, 158	173–175
simple branching structure model, 154 turtle command Surface(LEAF_SURFACE,	Plant morphogenesis, 108
leaf length(t)), 156	cellular Potts model, 6
Plant cortical microtubule array	continuous model, 5–6 elementary transformations, 1
behaviour levels	forces
in A. thaliana hypocotyl cell, 56	simple rheological behaviors and plant
coarse graining, 56–57	growth, 4–5
dynamic instability, 54-55	tissues and cells, 3–4
interactions, 55-56	growth implementation, 7
consensus model of dynamics, 57	parameters, 1
dynamic self-organization, 54	physical model
order parameters, 60-63	isolated plant cell, 7-8
orientation, 63-64	mechanical feedback, 9-10
plant cell growth and development, 53-54	organ elongation, 8
severing enzyme katanin, 65	sheet-like organs, 8-9
time steps vs. event driven simulations,	variability, 10-11
57–59	quantifying cell growth, 2
Plant hydraulics, 15–16	quantifying organ growth, 3
flow in a straight tube	vertex-based model, 6

Plant's flowering behaviors, 172, 173 Arabidopsis thaliana inflorescence SAMs,

Plant shoot apex, 116, 117 Poiseuille velocity profile, 22 Polarizer gradient, 130 Pressure gradient drives flow, 22 Protofilaments, 55

Quantifying cell growth, 2 Quantifying morphogenesis, 1, 2 Quantitative image analysis cellular size and morphology parameters, 93 deconvolution, 92 gene expression, 92, 93 live imaging mCitrine-ATML1 expression data, 93, 94 microscopy parameters, 92 SAM, block matching algorithm, 92, 94 spatiotemporal single cell data, 94 3D nuclear segmentation, 92, 93 time sampling, 92 topological features, quantification of, 93,

R

218

Rate constants, 41 Reaction-diffusion system, 118, 122, 128, 147 Reference State Wizard, 74 Refractory behaviour of heterocysts, 151 Relative elemental rate of growth (RERG), 117 Residual stress, 9 Reynolds number, 20-21

watershed algorithm, 92, 93

Quantitative measure, 60

Rheological model, 4-5 Root apex, 118-120

Sachs' canalization mechanism, 110 Selective processes

linked sites, 207-208 unlinked sites, 206, 207 Sensing mechanisms, 10 Shear-enhanced diffusion, 32-35 Shedding, 163 Shoot apex surface, 117

Shoot meristem, 116 Shortest wall rule, 114, 115 Single-cell approaches

cell division rules, 89-90 Computational Morphodynamics workflow, 88, 89 dynamic pattern formation, 88 experimental and computational tools, 88 functional tissue formation, 87 growth and division properties, 90 modelling tissue morphogenesis

Index

bridging simulated data with experimental data, 98-100 cell fate decisions, 95-97

cell-to-cell interactions, 95-96, 98 cellular growth and division patterns, 96-98

chemical Langevin equation, 96 deterministic and stochastic processes,

hybrid algorithms, 96 regulatory networks, 95 quantitative image analysis

cellular size and morphology parameters, 93

deconvolution, 92 gene expression, 92, 93 live imaging mCitrine-ATML1 expression data, 93, 94 microscopy parameters, 92

SAM, block matching algorithm, 92, 94 spatiotemporal single cell data, 94

time sampling, 92 topological features, quantification of, 93, 95 watershed algorithm, 92, 93

signalling and gene regulatory mechanisms,

spatiotemporal description, 89 time-lapse microscopy methods, 88, 89

Single ion channel dynamics channel dynamics, 39-40 ionic species diffusion, 38-39

Markov processes, 40-41 Soft sweeps, 207 Soil seed banks

3D nuclear segmentation, 92, 93

effective population size, 196, 197 genetic diversity, 196 linked selection, 196, 197 mutation rate, 196, 197

neutral evolutionary processes constant population size, 203

past demographic events, 203-204

Index 219

recombination rate, 205, 206	Tissue deformation, 7
speciation, 204-205	Tissue morphogenesis
prospective diffusion framework, 200–201	bridging simulated data with experimental
retrospective coalescent view, 199-200	data, 98-100
selective processes	cell fate decisions, 95-97
linked sites, 207–208	cell-to-cell interactions, 95-96, 98
unlinked sites, 206, 207	cellular growth and division patterns, 96–98
statistical measure, 201-202	chemical Langevin equation, 96
Solute transport	deterministic and stochastic processes, 96
convection, 30-32	hybrid algorithms, 96
diffusion equation, 29-31	regulatory networks, 95
shear-enhanced diffusion, 32-35	Tissue polarity, 130
transport equation, 28-29	Transition probabilities, 42–43
Spatial models, 108	Transport equation, 28–29
Stochasticity, 95, 96	Transport-feedback patterning mechanism, 118
Stokes flow, 21	True mechanistic models, 71
Stomata	Tube collapse and cavitation, 25
biophysical and kinetic features, 72	Turgor pressure, 3
Boolean models, 71	Turing mechanism, 108
effective modelling efforts, 70	Turing patterns, 108
guard cell outward-rectifying K+ channel,	Turtle commands, 152
72	
guard cell physiology, 70	
macroscopic approaches, 71	V
microscopic level, 71	Vein-based model, 11
reverse-engineering, 71	Vernalization, 174
robust models of gas exchange, 71	Vertex-based model, 6
stomatal function, 70, 71	Virtual Cell, 72
true mechanistic models, 71	Volvox, 8
Strain, 10, 17, 97, 100, 127	
Stress, 3-5, 9-11, 16-18, 51	
	W
	Water influx, 15
T	Wright–Fisher model, 198
Taylor-Aris dispersion, 28	
Temperature-dependent pathway, 175	
Theoretical and empirical evolutionary	Z
genetics, 196	Zero Reynolds number flow, 21