CLAIMS

What is claimed is:

1	1. A method comprising:			
2	forming a resist using a highly absorbing material;			
3	thinning the resist to a pre-determined thickness used as an imaging layer; and			
4	improving efficiency of a photoactive acid generator (PAG) to capture secondary			
5	electrons produced by an ionizing radiation in the resist.			
1	2. The method of claim 1 wherein forming the resist comprises:			
2	forming the resist using a highly absorbing material selected from fluorine (F), tir			
3	(Sn), bismuth (Bi), cesium (Cs), and antimony (Sb).			
1	3. The method of claim 2 wherein forming the resist comprises:			
2	adding at least one of the fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), and			
3	antimony (Sb) into a baseline material.			
1	4. The method of claim 2 wherein forming the resist comprises:			
2	forming the resist using one of a fluoropolymer, a metallocence polymer, an			
3	alkoxide chelate polymer, and a carboxylate chelate polymer.			
1	5. The method of claim 1 wherein thinning comprises:			
2	thinning the resist to a thickness below 100 nm.			
1	6. The method of claim 1 wherein improving comprises:			
2	increasing a PAG concentration in the resist.			
1	7. The method of claim 1 wherein improving comprises:			
2	controlling moieties proximal to a cleavable bond in the PAG.			
1	8 The method of claim 1 further comprising:			

2	exposing the resist with a radiation being one of an extreme ultraviolet (EUV), X-			
3	ray, electron beam, and ion beam.			
1	O A mosth of a commission or			
1	9. A method comprising:			
2	forming an imaging layer from a resist made of a highly absorbing material, the			
3	layer being thinned to a pre-determined thickness, the layer having improved efficiency of			
4	a photoactive acid generator (PAG) to capture secondary electrons produced by an ionizing			
5	radiation; and			
6	forming an etch resistant layer below the imaging layer for pattern transfer from the			
7	imaging layer.			
1	10. The method of claim 9 wherein the highly absorbing material is selected			
2	from fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), and antimony (Sb).			
1	11. The method of claim 10 wherein forming the imaging layer comprises:			
2	adding to a baseline material by at least one of the fluorine (F), tin (Sn), bismuth			
3	(Bi), cesium (Cs), and antimony (Sb).			
1	12. The method of claim 10 wherein the imaging layer is made by one of a			
2	fluoropolymer, a metallocence polymer, an alkoxide chelate polymer, and a carboxylate			
3	chelate polymer.			
1	13. The method of claim 9 wherein the thickness is below 100 nm.			
1	14. The method of claim 9 wherein the imaging layer has an increased PAG			
2	concentration.			
1	15. The method of claim 9 wherein the imaging layer has controlled moieties			
2	proximal to a cleavable bond in the PAG.			
1	16. The method of claim 11 further comprising:			
2	exposing the imaging layer to a radiation being one of an extreme ultraviolet			
3	(EUV), X-ray, electron beam, and ion beam.			
J	(LOV), A-lay, election death, and foll death.			

1	17.	A device comprising:		
2	an imaging layer made of a highly absorbing material, the layer being thinned to a			
3	pre-determined thickness, the layer having improved efficiency of a photoactive acid			
4	generator (PAG) to capture secondary electrons produced by an ionizing radiation; and			
5	an etch resistant layer below the imaging layer for pattern transfer from the imaging			
6	layer.			
1	18.	The device of claim 11 wherein the highly absorbing material is selected		
2	from fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), and antimony (Sb).			
1	19.	The device of claim 12 wherein the imaging layer comprises:		
2	a baseline material added by at least one of the fluorine (F), tin (Sn), bismuth (Bi),			
3	cesium (Cs), and antimony (Sb).			
1	20.	The device of claim 12 wherein the imaging layer is made by one of a		
2	fluoropolymer, a metallocence polymer, an alkoxide chelate polymer, and a carboxylate			
3	chelate polymer.			
1	21.	The device of claim 11 wherein the thickness is below 100 nm.		
1	22.	The device of claim 11 wherein the imaging layer has an increased PAG		
2	concentration.			
1	23.	The device of claim 11 wherein the imaging layer has controlled moieties		
2	proximal to a cleavable bond in the PAG.			
1	24.	The device of claim 18 wherein the imaging layer is exposed with the		
2	radiation being one of an extreme ultraviolet (EUV), X-ray, electron beam, and ion beam.			