Appeno or mg	egneria Informatica del 10.6		DI
Nome:	Cognome:	Matricola:	D2
			E1
Domanda 1	Į.	[2+3 punti]	E2
(i) Scrivere la di integral		bidimensionale regolare in termini	E3 *
(ii) Calcolare l $\frac{x^2}{4} + \frac{y^2}{9} =$	E4 E5		
, ,			E6
Risposta			$\sum_{i} c_{i}$
(i)			
<i></i>			
(ii)			
(ii)			4
(ii)			- 4
(ii)			
Domanda 2	2		[2+3 pun
Domanda 2	2 finizione di derivata direzionale	per una funzione di due variabili rea	[2+3 pun
Domanda 2	? finizione di derivata direzionale l'esistenza delle derivate direzion	per una funzione di due variabili res nali nell'origine per la funzione	[2+3 pun
Domanda 2	? finizione di derivata direzionale l'esistenza delle derivate direzion	per una funzione di due variabili rea	[2+3 pun
Domanda 2	? finizione di derivata direzionale l'esistenza delle derivate direzion	per una funzione di due variabili res nali nell'origine per la funzione	[2+3 pun
Domanda 2 (i) Dare la de (ii) Discutere l	? finizione di derivata direzionale l'esistenza delle derivate direzion	per una funzione di due variabili rea nali nell'origine per la funzione $\left(\frac{x^3y}{x^6+y^3} (x,y) \neq (0,0) \\ 0 (x,y) = (0,0) \right)$	[2+3 pun
Domanda 2 (i) Dare la de (ii) Discutere l	finizione di derivata direzionale l'esistenza delle derivate direzion $f(x,y)=igg\{$	per una funzione di due variabili rea nali nell'origine per la funzione $\left(\frac{x^3y}{x^6+y^3} (x,y) \neq (0,0) \\ 0 (x,y) = (0,0) \right)$	[2+3 pun
Domanda 2 (i) Dare la de (ii) Discutere l	finizione di derivata direzionale l'esistenza delle derivate direzion $f(x,y)=igg\{$	per una funzione di due variabili rea nali nell'origine per la funzione $\left(\frac{x^3y}{x^6+y^3} (x,y) \neq (0,0) \\ 0 (x,y) = (0,0) \right)$	[2+3 pun
Domanda 2 (i) Dare la de (ii) Discutere l	finizione di derivata direzionale l'esistenza delle derivate direzion $f(x,y)=igg\{$	per una funzione di due variabili rea nali nell'origine per la funzione $\left(\frac{x^3y}{x^6+y^3} (x,y) \neq (0,0) \\ 0 (x,y) = (0,0) \right)$	[2+3 pun
Domanda 2 (i) Dare la de (ii) Discutere l	finizione di derivata direzionale l'esistenza delle derivate direzion $f(x,y)=igg\{$	per una funzione di due variabili rea nali nell'origine per la funzione $(\frac{x^3y}{x^6+y^3} (x,y) \neq (0,0)$ (0 (x,y) = (0,0)	[2+3 pun
Domanda 2 (i) Dare la de (ii) Discutere l	finizione di derivata direzionale l'esistenza delle derivate direzion $f(x,y)=igg\{$	per una funzione di due variabili rea nali nell'origine per la funzione $\left(\frac{x^3y}{x^6+y^3} (x,y) \neq (0,0) \\ 0 (x,y) = (0,0) \right)$	[2+3 pun

Esercizio 1	[3 punti]
Sia f una funzione da $\mathbb R$ in $\mathbb R$. Allora f è	
a somma di due funzioni continue, una pari e l'altra dispari; b differenza di due funzioni differenza di due funzioni positive; d nessuna delle precedent	
Risoluzione (giustificare la risposta)	
Esercizio 2	
[3	punti]
Siano (a_n) e (b_n) due successioni di numeri reali positivi tali che $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ è divergente. Allora	
a $\sum_{n=1}^{\infty} \frac{\log(a_n)}{\log(b_n)}$ è divergente; b $\sum_{n=1}^{\infty} a_n$ è convergente; c $\sum_{n=1}^{\infty} b_n$ è divergente; d nessuna delle precedenti.	
n=1 d nessuna delle precedenti.	
Risoluzione (giustificare la risposta)	
•	
Esercizio 3	ounti]
Si consideri la successione di numeri reali (x_n) , ove x_n è la parte reale di $\left(\frac{1+i}{2}\right)^n$, $n \in \mathbb{N}$. Allora	,
a (x_n) è illimitata; b (x_n) assume valori in $\mathbb{R} \setminus \{0\}$;	
c (x_n) è a segni alterni; d $\lim_{n\to\infty} x_n = 0$.	
Risoluzione (giustificare la risposta)	

ceer	cizio	4
4		

Calcolare il limite

[4 punti]

$$\lim_{x\to 0^+}\frac{\cosh\left(\sin(x+\frac{1}{x})\right)}{x+\frac{1}{x}}$$

tisoluzione			
			9
-			

Esercizio 5 [4 punti]

Risolvere al variare di $\alpha \in \mathbb{R}$ il problema di Cauchy

$$\begin{cases} y'(x) = \frac{e^{-y(x)}}{1-x} \\ y(0) = \alpha \end{cases}$$

Risoluzione	

Individuare i punti critici della funzione

$$f(x,y) = x^2 - \log(1+y^2) + e^{-y^2}$$

e studiarne la natura. Determinare inoltre il massimo e il minimo assoluto di f nel dominio del piano

$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \ .$$

Risoluzione		
у	 	
a a		
9		
•		
-		