Multilevel Full-Chip Routing Framework

- Lin and Chang, "A novel framework for multilevel routing considering routability and performance," ICCAD'02 (TCAD, 2003).
- Multilevel framework: coarsening followed by uncoarsening.
- Coarsening (bottom-up) stage:
 - Constructs the net topology based on the minimum spanning tree.
 - Processes routing tiles one by one at each level, and only local nets (connections) are routed.
 - Applies two-stage routing of global routing followed by detailed routing.
 - Uses the L-shaped & Z-shaped pattern routing.
 - Performs resource estimation after detailed routing to guide the routing at the next level.
- Uncoarsening (top-down) stage
 - Completes the failed nets (connections) from the coarsening stage.
 - Uses a global and a detailed maze routers to refine the solution.

Unit 6

A Multilevel Full-Chip Routing Framework

Perform global routing and A*search (or Dijkstra's) shortest path detailed routing for local connections and then estimate routing resources for the next level Use global maze routing and A*-search (or Dijkstra's) shortest path detailed routing to reroute failed connections and refine the solution.

Coarsening Stage

- Build MSTs for all nets and decompose them into twopin connections.
- Route local nets (connections) from level 0.
 - Two-stage routing (global + detailed routing) for a local net.

Global Routing

- · Apply pattern routing for global routing
 - Use L-shaped and Z-shaped connections to route nets.
 - Has lower time complexity than maze routing.

Detailed Routing

- Via minimization
 - Modify the maze router to minimize the number of bends.
- Local refinement
 - Apply general maze routing to improve the detailed routing results.
- Resource estimation
 - Update the edge weights of the routing graph after detailed routing.

Local Refinement

 Local refinement improves detailed routing results by merging two connections which are decomposed from the same net.

Resource Estimation

- Global routing cost is the summation of congestions of all routed edges.
- Define the congestion, Ce, of an edge e by

$$C_e = \frac{1}{2^{(p_e - d_e)}},$$

where $p_{\rm e}$ and $d_{\rm e}$ are the capacity and density, respectively.

• Update the congestion of routed edges to guide the subsequent global routing.

Uncoarsening Global Routing

- Use maze routing.
- Iterative refinement of a failed net stops when a route is found or several tries have been made.

Routing Comparisons

- 100% routing completion for all (11) benchmark circuits
 - Three-level routing: 0 completion (ISPD'2K)
 - Hierarchical routing: 2 completions (ICCAD' 01)
 - Previous multilevel routing: 2 completions (ICCAD' 01)
- Can complete routings using even fewer routing layers.

Ex.	#Layers	(A) Three-Level Routing		(B) Hierarchical Routing with Ripup and Replan			(C) Results of [9]			(D) Our Results			
		Time(s)	#Rtd.	Cmp.	Time(s)	#Rtd.	Cmp.	Time(s)	#Rtd.	Cmp.	Time(s)	#Rtd.	Cmp.
			Nets	Rates		Nets	Rates		Nets	Rates		Nets	Rates
Mcc1	4	933.2	1499	88%	947.9	1600	94.5%	436.7	1683	99.4%	204.7	1694	100%
Mcc2	4	12333.6	5451	72.3%	10101.4	7161	95.6%	7644.8	7474	99.1%	7203.3	7541	100%
Struct	3	406.2	3530	99.4%	324.5	3551	100%	316.8	3551	100%	151.5	3551	100%
Prim1	3	239.1	2018	99.0%	353.0	2037	100%	350.2	2037	100%	165.4	2037	100%
Prim2	3	1331	8109	98.9%	2423.8	8194	100%	2488.4	8196	100%	788.2	8197	100%
S5378	3	430.2	2607	83.4%	57.9	2964	94.9%	54.0	2963	94.8%	10.9	3124	100%
S9234	3	355.2	2467	88.9%	40.7	2564	92.4%	41.0	2561	92.3%	7.7	2774	100%
S13207	3	1099.5	6118	87.5%	161.9	6540	93.5%	188.8	6574	94.0%	38.2	6995	100%
S15850	3	1469.1	7343	88.2%	426.1	7874	94.6%	403.4	7863	94.5%	57.5	8321	100%
s38417	3	3560.9	19090	90.8%	754.6	19596	93.2%	733.6	19636	93.3%	137.6	21035	100%
S38584	3	7086.5	25642	91.0%	1720	26461	93.9%	1721.6	26504	94.1%	316.7	28177	100%
avg.				89.8%			95.7%			96.5%			100%

Table 3: Comparison among (A) the three-level routing [10], (B) the hierarchical routing [9], (C) the multilevel routing [9], and (D) our multilevel routing. Note: (A),(B),(C) ran on a 440 Mrz Sun Ultra-5 with 384 MB memory, (D) ran on a 450Mrz Sun Sparc Ultra-60 with 2GB MB.

Routing Solution for Prim2

- 0.18um technology, pitch = 1 um, 8109 nets.
- Two layers, 100% routing completion.

Summary: Routing

- Hierarchical and multilevel are keys to handle large-scale routing problems.
- Routing frameworks: go parallel??
 - Λ-shaped routing: ICCAD'02 (TCAD-03); ASP-DAC'05 (TCAD-07)
 - V-shaped routing: ASP-DAC'06
 - Two-pass bottom-up routing: DAC-06 (TCAD-08)
- Routing considerations for nanometer technology
 - Noise (crosstalk) & electro-migration constraints
 - Buffer insertion for timing optimization
 - DFM routing: antenna effect, redundant via, OPC (optical proximity correction)[DAC'08], CMP (chemical mechanical polishing) [ISPD'13], double/multiple patterning [DAC'14], e-beam [DAC'13], EUV (extreme ultraviolet lithography), directed self-assembly (DSA) [ICCAD'16, DAC'23], etc.
- · Machine-learning-based routing
- Package/PCB routing