INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/010733

	•	PCI/UPZ	004/010733
A. CLASSIFIC Int.Cl ⁷	ATION OF SUBJECT MATTER H01J29/87, H01J9/24, H01J31/1	2	
According to Inte	ernational Patent Classification (IPC) or to both national	classification and IPC	
B. FIELDS SE.			
Minimum docum Int.Cl ⁷	nentation searched (classification system followed by class H01J29/87, H01J9/24, H01J31/1	ssification symbols) 2, C04B35/10, C04B35/04	4
Jitsuyo		tsuyo Shinan Toroku Koho	1996-2004
		roku Jitsuyo Shinan Koho	1994-2004
Electronic data b	ase consulted during the international search (name of d	ata base and, where practicable, search te	rms used)
	VTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app		Relevant to claim No.
E,A	JP 2004-146352 A (Kyocera Co. 20 May, 2004 (20.05.04), Par. Nos. [0048] to [0051]	rp.),	1-5
E,A	JP 2004-18296 A (Nippon Stee 22 January, 2004 (22.01.04), Full text	l Corp.),	1-5
A	JP 2002-515133 A (CANDESCENT SERVICES, INC.), 21 May, 2002 (21.05.02), Column 19, line 3 to column 2		1-5
* Special cate	ocuments are listed in the continuation of Box C.	See patent family annex. "T" later document published after the integral.	ternational filing date or priority
to be of par "E" earlier appl filing date	defining the general state of the art which is not considered ticular relevance ication or patent but published on or after the international which may throw doubts on priority claim(s) or which is	date and not in conflict with the applitude principle or theory underlying the "X" document of particular relevance; the considered novel or cannot be consistent when the document is taken alon	cation but cited to understand invention cannot be idered to involve an inventive
cited to est special reas "O" document r "P" document p	tablish the publication date of another citation or other con (as specified) referring to an oral disclosure, use, exhibition or other means bublished prior to the international filing date but later than date claimed	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the document member of the same patent	claimed invention cannot be a step when the document is a documents, such combination are art
	al completion of the international search ober, 2004 (26.10.04)	Date of mailing of the international sea 22 November, 2004	urch report (22.11.04)
	ng address of the ISA/ se Patent Office	Authorized officer	· · · · · · · · · · · · · · · · · · ·
Facsimile No.	10 (coco d chor) (I	Telephone No.	
rom PC1/ISA/2	10 (second sheet) (January 2004)		

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.

PCT/JP2004/010733

JP 2004-146352 A JP 2004-18296 A	2004.05.20 2004.01.22	(Family: none) (Family: none)
JP 2002-515133 A	2004.01.22	WO 1998/003986 A1
•		US 6064157 A1
	•	FD 968510 A

発明の属する分野の分類 (国際特許分類 (IPC)) Int. Cl. 7 H01J 29/87 H01J 9/24 H01J 31/12 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl. ' H01J 29/87 Int. Cl. 7 C04B35/10 H01J 9/24 C04B35/04: H01J 31/12 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2004年 日本国実用新案登録公報 1996-2004年 日本国登録実用新案公報 1994-2004年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 E. A 2004-146352 A (京セラ株式会社) 2004.05.20,段落【0048】~【0051】 2004-18296 A (新日本製鐵株式会社) E, A 1-5 2004.01.22,全文 JP 2002-515133 A (キャンデセント・インテレク Α 1-5 チュアル・サービシーズ・インコーポレーテッド) 2002.05.21, 第19欄第3行-第20欄5行 C欄の続きにも文献が列挙されている。 区 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 26.10.2004 2004 国際調査機関の名称及びあて先 特許庁審査官 (権限のある職員) 2 G 9419 日本国特許庁(ISA/JP) 古屋野 浩志 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3226

国際調査報告 パテントファミリーに関する情報

国際出願番号 PCT/JP2004/010733

JP 2004-146352 A	2004. 05. 20	ファミリーなし
JP 2004-18296 A	2004. 01. 22	ファミリーなし
JP 2002-515133 A	2002. 05. 21	WO 1998/003986 A1 US 6064157 A1 EP 968510 A

明細書

平面パネルディスプレイ用スペーサ、平面パネルディスプレイ用スペーサ の製造方法、及び、平面パネルディスプレイ

技術分野

[0001] 本発明は、平面パネルディスプレイ用スペーサ、平面パネルディスプレイ用スペーサの製造方法、及び、平面パネルディスプレイに関する。

背景技術

- [0002] 従来の陰極線管(CRT)を応用した自発光型の平面パネルディスプレイとして、いわゆる、電界放出型ディスプレイ(FED)が知られている。このような平面パネルディスプレイの一例は特許文献1に記載されている。この平面パネルディスプレイは多くの陰極(電界放出素子)を二次元状に配列してなる陰極構造体を備えており、減圧環境下において陰極から放出される電子を、各蛍光画素領域に衝突させて発光画像を形成している。蛍光画素領域は燐層を含んでなる。
- [0003] このような平面パネルディスプレイは、陰極構造体を有する背板を備えている。背板はガラス板上に陰極構造体を堆積することによって形成される。
- [0004] また、このような平面パネルディスプレイはガラス板上に燐層が堆積された面板を備えている。この面板のガラス板または燐層の上には電界印加用の導電性層が堆積される。そして、面板は背板から0.1mm~1mm乃至2mm離間されている。面板と背板との間には壁体からなる短冊状のスペーサが垂直に介在している。
- [0005] そして、面板と背板との間には例えば1kV以上の高電圧が印加されるので、スペーサには高電圧に対する耐性と帯電を防ぐための適切な導電性とが要求される。従来のスペーサとしては、アルミナからなる絶縁材料を導電材料でコーティングしてなるものや(例えば、特許文献2〜3参照)、酸化物微粒子等により形成された凹凸膜を有するもの(例えば、特許文献4参照)や、遷移金属酸化物が分散されたセラミックよりなるもの(例えば、特許文献5、6参照)等が知られている。

特許文献1:米国特許第5541473号明細書

特許文献2:特表2002-508110号公報

特許文献3:特表2001-508926号公報

特許文献4:特開2001-68042号公報

特許文献5:特表平11-500856号公報

特許文献6:特表2002-515133号公報

発明の開示

発明が解決しようとする課題

[0006] しかし、従来の平面パネルディスプレイ用スペーサの熱膨張係数は、例えば、アルミナで7.3×10⁻⁶/℃程度であり、平面パネルディスプレイの面板や背板のガラス材料の熱膨張係数8.0~9.3×10⁻⁶/℃との差が大きい。このため、平面パネルディスプレイの許容環境温度とされる-30~50℃の範囲で平面パネルディスプレイの温度が変動した場合に、平面パネルディスプレイ用スペーサと、面板及び背板との膨張度合いが大きく異なるために、平面パネルディスプレイにひずみ等を生じ、スペーサが不整列になったり傾斜したりして、放出された電子の偏向が起こり、ディスプレイ上に目視可能な欠陥が生じてしまう場合がある。

[0007] 本発明は、このような課題に鑑みてなされたものであり、面板や背板等のガラス材料の熱膨張係数とほぼ等しい、熱膨張係数が8.0~9.3×10⁻⁶/℃程度の平面パネルディスプレイ用スペーサ、その製造方法、及び、これを用いた平面パネルディスプレイを提供することを目的とする。

課題を解決するための手段

- [0008] 発明者らが鋭意検討したところ、Al₂O₃(アルミナ)、TiC(炭化チタン)、MgO(酸化マグネシウム)、及びTiO₂(二酸化チタン)を所定の割合で混合させた複合セラミクスの焼結体が、8.0~9.3×10⁻⁶/℃程度の熱膨張係数を有することを見いだし、本発明に想到するに至った。
- [0009] 本発明に係る平面パネルディスプレイ用スペーサは、 Al_{20} 、TiC、MgO、及び、TiO $_{2}$ を含む焼結体を有し、この焼結体は Al_{20} 、TiC、MgO、及び、 TiO_{2} の全重量に対して、MgOを35~55重量%含む。
- [0010] 本発明に係る平面パネルディスプレイ用スペーサの製造方法は、Al₂O₃粉末、TiC 粉末、MgO粉末、及び、TiO₂粉末を、Al₂O₃粉末、TiC粉末、MgO粉末、及び、Ti

- O₂粉末の全重量に対してMgO粉末が35〜55重量%となるように混合して混合物を得る工程と、上記混合物を焼成し焼結体を得る工程と、を含む。
- [0011] 本発明に係る平面パネルディスプレイは、陰極構造体を有する背板と、光画素領域を有する面板と、上記背板及び上記面板間に介在されると共に Al_{20} 、TiC、MgO、及び、TiO $_{2}$ を含み、 Al_{20} 、TiC、MgO、及び、TiO $_{2}$ の全重量に対して、MgOを35~55重量%含む焼結体から形成された平面パネルディスプレイ用スペーサとを備える。
- [0012] これらの本発明によれば、熱膨張係数が8.0~9.3×10⁻⁶/℃程度のセラミック製の平面パネルディスプレイ用スペーサが得られる。このため、平面パネルディスプレイ用スペーサの熱膨張係数を、ガラス製の面板や背板の熱膨張係数(8.0~9.3×10⁻⁶/℃)に十分に近づけることができる。これにより、平面パネルディスプレイにおける面板、背板、平面パネルディスプレイ用スペーサの温度が変動しても、熱膨張の割合が互いに同程度となる。従って、平面パネルディスプレイに不要なひずみが生じにくくなり、スペーサが不整列になったり傾斜したりしにくくなる。この結果、放出された電子の偏向が起こりにくくなり、ディスプレイの画質の劣化が抑制される。
- [0013] ここで、焼結体は、 Al_2O_3 、TiC、MgO、及び、 TiO_2 の全重量に対して、 TiO_2 を2. 0~3. 0重量%含むことが好ましい。
- [0014] このような組成の平面パネルディスプレイ用スペーサは、比抵抗が1. $0 \times 10^6 \Omega \cdot c$ m $\sim 1.0 \times 10^{11} \Omega \cdot c$ m程度となる。したがって、適切な導電性を示し、電界が印加された場合に帯電が起こりにくくなると共に過電流が流れることによる熱暴走も抑制され、平面パネルディスプレイにおける画像の歪み等をより低減することができる。ここで、 TiO_2 の量が2.0重量%を下回ると、比抵抗が大きくなって、電界が印加されると帯電が起こりやすくなる傾向がある。また、 TiO_2 の量が3.0重量%を超えると、比抵抗が低くなって電界が印加されると過電流が流れやすい傾向がある。
- [0015] ここでまた、焼結体は、 Al_2O_3 、TiC、MgO、及び、 TiO_2 の全重量に対して、TiCを 7. 0~8. 0重量%含むことが好ましい。
- [0016] これにより、十分な強度を持ち、かつ、十分に焼結がなされた平面パネルディスプレイ用スペーサが得られる。ここで、TiCの量が7.0重量%を下回ると、剛性が低下し

強度が低くなる傾向がある。また、TiCの量が8.0重量%を超えると、焼結しにくくなり、脆くなって再び強度が悪くなる傾向がある。

発明の効果

[0017] 本発明によれば、平面パネルディスプレイにおける画像の劣化が低減され、画質の 向上が可能となる。

図面の簡単な説明

[0018] [図1]図1は、本実施形態に係る平面パネルディスプレイの一部破断模式図である。 [図2]図2は、図1の平面パネルディスプレイのII-II矢視断面図である。

[図3]図3は、図1の平面パネルディスプレイ用スペーサの斜視図である。

[図4]図4は、図1の平面パネルディスプレイのIV-IV矢視図である。

[図5]図5は、平面パネルディスプレイ用スペーサの製造方法を示す図である。

[図6]図6は、平面パネルディスプレイ用スペーサの製造方法を示す図5に続く斜視図である。

[図7]図7は本実施形態に係る製造方法を説明するための図6に続く斜視図である。 [図8]図8は平面パネルディスプレイ用スペーサの製造方法を説明するための図7に 続く斜視図である。

[図9]図9は平面パネルディスプレイ用スペーサの製造方法を説明するための図8に続く斜視図である。

[図10]図10は平面パネルディスプレイ用スペーサの製造方法を説明するための図9に続く斜視図である。

[図11]図11は平面パネルディスプレイ用スペーサの製造方法を説明するための図1 0に続く斜視図である。

[図12]図12は平面パネルディスプレイ用スペーサの製造方法を説明するための図1 1に続く斜視図である。

[図13]図13は平面パネルディスプレイ用スペーサの製造方法を説明するための図1 2に続く斜視図である。

[図14]図14は、実施例1~12及び比較例1,2について、組成、熱膨張係数、比抵抗、3点曲げ強度を示す表である。

[図15]図15は、実施例1~12及び比較例1,2について、MgOの添加量と、熱膨張係数との関係を示すグラフである。

[図16]図16は、実施例1~12及び比較例1,2について、TiO2の添加量と、比抵抗との関係を示すグラフである。

[図17]図17は、実施例1~12及び比較例1,2について、TiCの添加量と、3点曲げ強度との関係を示すグラフである。

符号の説明

[0019] 10…板、50…ベース(焼結体)、100…平面パネルディスプレイ、101…面板、10 2…ブラックマトリクス構造体、103…平面パネルディスプレイ用スペーサ、105…蛍 光画素領域、201…背板、202…陰極構造体。

発明を実施するための最良の形態

- [0020] 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。
- [0021] まず、本実施形態に係る平面パネルディスプレイの概要について説明する。
- [0022] 図1は平面パネルディスプレイの平面図、図2は平面パネルディスプレイのII-II矢 印断面図である。
- [0023] 本実施形態に係る平面パネルディスプレイは、いわゆる、FED(電界放出型ディスプレイ)であり、主として、面板101、背板201、及び、多数の平面パネルディスプレイ用スペーサ103を有している。
- [0024] 面板101はガラス製であり、この面板101上には、格子状のブラックマトリクス構造体102、及び、ブラックマトリクス構造体102の格子内に設けられ燐層を含む複数の蛍光画素領域105を有している。蛍光画素領域105の燐層は図2における図示下方から高エネルギー電子が衝突すると、光を放出して可視ディスプレイを形成する。蛍光画素領域105から発した光は、ブラックマトリクス構造体102を介して外部(図示上方)に出力される。ブラックマトリクス構造体102は、互いに隣接する蛍光画素領域105からの光の混合を抑制するための格子状黒色構造体として機能する。
- [0025] 背板201はガラス板であり、背板201上には陰極構造体202が形成されている。こ

の陰極構造体202は電子を放出するための突起を含む陰極(電界(電子)放出素子)206を複数有している。

- [0026] 背板201における陰極構造体202の形成領域は背板201の面積よりも小さい。また、面板101におけるブラックマトリクス構造体102の形成領域は面板101の面積よりも小さい。面板101の外周領域と背板201の外周領域との間にはガラスシール203が介在しており、中央部に密閉室250を提供している。この密閉室250内は電子が飛行可能な程度に減圧されている。ガラスシール203は融解ガラスフリットによって形成される。
- [0027] 面板101のブラックマトリクス構造体102と、背板201の陰極構造体202との間には、これらの表面に対して垂直に立設された壁体である平面パネルディスプレイ用スペーサ103が所定間隔で多数取り付けられている。この平面パネルディスプレイ用スペーサ103の詳細については後述する。
- [0028] これらの平面パネルディスプレイ用スペーサ103は、面板101と背板201との間の間隔を均等に保持している。また、この密閉室250内には、陰極構造体202、ブラックマトリクス構造体102及び平面パネルディスプレイ用スペーサ103が配置されることとなる。ここで、面板101及び背板201の厚みは、例えば、各々300μm、1000μm程度である。
- [0029] ここで面板101及び背板201のガラス材料としては、例えば、強化ガラス、化学強化ガラスが挙げられる。これらのガラスの熱膨張係数は、概ね、8.0~9.3×10⁻⁶/ ℃である。
- 具体的には、例えば、ガラス材料として、PD200 (旭硝子 (株) 社製) が挙げられる。 このPD200の組成は、SiO₂、Al₂O₃、ZrO₂、Na₂O、CaO、SrO、BaO、ZrO₂、Na₂O、及び、K₂Oの重量比が、58:7:2:5:7:8:3:4:6であり、熱膨張係数は8. 3×1 O⁻⁶/℃である。また、例えば、HDD用ガラスディスクとして、SiO₂、Al₂O₃、MgO、CaO、SrO、Na₂O、K₂O、及び、TiO₂の重量比が、54:10:4:7:3:6:9:7となるガラス材料も好適に用いられており、このガラスの熱膨張係数は、概ね9. 3×10^{-6} /℃である。さらに、例えば、HDD用ガラスディスクとして、SiO₂、Al₂O₃、MgO、CaO、SrO、Na₂O、K₂O、及び、TiO₂の重量比が、55:13:5:5:2:6:9:6となるガラス材料

も好適に用いられており、このガラスの熱膨張係数は、概ね8.7×10⁻⁶/℃である。

- [0031] 続いて、本実施形態に係る平面パネルディスプレイ100の平面パネルディスプレイ 用スペーサ103について詳細に説明する。
- [0032] 図3は、本発明に係る平面パネルディスプレイ用スペーサ103を示す斜視図である。この平面パネルディスプレイ用スペーサ103は、概ね板状の直方体であり、主面50 A、50Bと、長手方向に延びる側面50C、50Dと、長手方向の両端の端面50E,50 Fを有している。
- [0033] この平面パネルディスプレイ用スペーサ103は、焼結セラミックス製の矩形平板状のベース(焼結体)50と、ベース50の側面50C上に形成された金属膜42aと、ベース50の側面50D上に形成された金属膜40aとを有している。また、ベース50の主面50A上にはパターニングされた金属膜65が形成されている。この金属膜65は平面パネルディスプレイ用スペーサ103の長手方向にそって延在し、また、金属膜65は、金属膜42aや金属膜40aとは離間されて互いに絶縁されている。また、金属膜65は、長手方向に複数に分割されている。この平面パネルディスプレイ用スペーサ103のベース50の外形形状は、具体的には、例えば、0.08mm×1.2mm×120mm程度である。
- [0034] ここで、金属膜40a及び42aは、背板201の陰極構造体202や、面板101のブラックマトリクス構造体102との接触抵抗の面内不均一性を低減させる。また、金属膜65は、平面パネルディスプレイ用スペーサ103の内部電界分布を好適にするためのものである。
- [0035] この平面パネルディスプレイ用スペーサ103は、図4に示すように、その長手方向の両端に設けられた接着剤301,302によって面板101、背板201に固定されている。本例の接着剤301,302の材料はUV硬化性ポリイミド接着剤であるが、熱硬化性接着剤または無機接着剤を使用することができる。なお、接着剤301,302はブラックマトリクス構造体102、陰極構造体202の外側に配置される。このとき、平面パネルディスプレイ用スペーサ103の金属膜40a,42aが、背板201の陰極構造体202、面板101のブラックマトリクス構造体102に各々接触するように配置される。
- [0036] そして、本実施形態における平面パネルディスプレイ用スペーサ103のベース50

は、 Al_{2O_3} (アルミナ)、TiC(炭化チタン)、MgO(酸化マグネシウム)、及び、 TiO_2 (チタニア)を含有し、 Al_{2O_3} 、TiC、MgO、及び、 TiO_2 の全重量に対してMgOを35 ~55重量%含む複合セラミクス焼結体から形成されている。

- [0037] このような平面パネルディスプレイ用スペーサ103は、熱膨張係数が8.0~9.3×10⁻⁶/℃程度となる。このため、平面パネルディスプレイ用スペーサ103の熱膨張係数を、ガラス製の面板101や背板201の熱膨張係数(概ね8.0~9.3×10⁻⁶/℃)に十分に近づけることができる。
- [0038] これにより、平面パネルディスプレイの面板101や背板201と平面パネルディスプレイ用スペーサ103の温度が変動しても、各々の熱膨張の割合が同程度となる。従って、平面パネルディスプレイ100における面板101、背板201、平面パネルディスプレイ用スペーサ103の温度が変動しても、熱膨張の割合が互いに同程度となる。従って、平面パネルディスプレイに不要なひずみ等が生じにくくなり、平面パネルディスプレイ用スペーサ103が面板101と背板201との間で不整列になったり傾斜したりしにくくなる。この結果、陰極構造体202の陰極206から放出された電子は偏向等の不具合を生じることなくブラックマトリクス構造体102の蛍光画素領域105に到達することができ、平面パネルディスプレイ100の画質の劣化が抑制されている。
- [0039] また、このような平面パネルディスプレイ用スペーサ103のベース50は、TiCとAl₂O₃とを含む複合セラミクス焼結体であるので高硬度の導電性セラミクスであるアルティック(AlTiC)の性質をも示し、高い強度を有している。
- [0040] そして、通常、平面パネルディスプレイ100内は減圧されており、大気圧によって平面パネルディスプレイ用スペーサ103に大きな荷重が加えられているが、本実施形態の平面パネルディスプレイ用スペーサ103はそのような圧縮力による変形に耐えることができ、面板101と背板201との間隔を所定の間隔に維持することができる。
- [0041] ここで、平面パネルディスプレイ用スペーサ103のベース50のMgOの含有量が35 重量%を下回ると、熱膨張係数が低くなりすぎる傾向がある。一方、MgOの含有量 が55重量%を超えると、熱膨張係数が高くなりすぎる傾向がある。
- [0042] そして、例えば、平面パネルディスプレイ用スペーサ103のベース50の熱膨張係数が9. $3\times10^{-6}/\mathbb{C}$ を大きく超えたり、8. $0\times10^{-6}/\mathbb{C}$ を大きく下回ると、ガラス製

- の面板101や背板201との熱膨張係数の差が大きくなり、温度変化に伴って平面パネルディスプレイ100にひずみ等が発生して、画質の劣化が起こりやすくなる。
- [0043] ここで、ベース50のMgOの含有量はAl₂O₃、TiC、MgO、及び、TiO₂の全重量に対して40~50重量%であることがより好ましく、これにより、熱膨張係数を面板101 や背板201により近づけることができるので、平面パネルディスプレイ100のひずみをさらに抑えることができる。具体的には、熱膨張係数が、8.5~9.0×10⁻⁶/℃程度となるので、同様の熱膨張係数のガラスを用いる場合に特に好ましい。
- [0044] また、ベース50のTiO2の量は、AlO3、TiC、MgO、及び、TiO2の全重量に対して、2.0~3.0重量%であることが好ましい。これにより、ベース50の比抵抗が1.0×10⁶Ω・cm~1.0×10¹¹Ω・cm程度となる。したがって、適切な導電性を示し、電界が印加された場合に帯電が起こりにくくなると共に過電流が流れることによる熱暴走も抑制され、平面パネルディスプレイ100における画像の歪み等をより低減することができる。ここで、TiO2の量が2.0重量%を下回ると、比抵抗が大きくなって、電界が印加されると帯電が起こりやすくなる傾向がある。また、TiO2の量が3.0重量%を超えると、比抵抗が低くなって電界が印加されると過電流が流れやすい傾向がある。
- [0045] また、TiCの量は、Al₂O₃、TiC、MgO、及び、TiO₂の全重量に対して、7.0~8.0重量%であることが好ましい。これにより、十分な強度を持ち、かつ、十分に焼結がなされた平面パネルディスプレイ用スペーサ103が得られる。ここで、TiCの量が7.0重量%を下回ると、剛性が低下して強度が十分でなくなる傾向がある。また、TiCの量が8.0重量%を超えると、焼結しにくくなり、脆くなって再び強度が低下する傾向がある。
- [0046] 次に、このような平面パネルディスプレイ用スペーサ103の製造方法について説明 する。
- [0047] まず、図5の(a)に示すように、平面パネルディスプレイ用スペーサの材料となる、A ${}^1_2\mathrm{O}_3$ (アルミナ)、TiC(炭化チタン)、MgO(酸化マグネシウム)、及び、TiO $_2$ (チタニア)を含有し、 $\mathrm{Al}_2\mathrm{O}_3$ 、TiC、MgO、及び、TiO $_2$ の全重量に対してMgOを35~55重量%含む複合セラミクス焼結体の板10を作製する。
- [0048] このような板10は、Al₂O₃粉末、TiC粉末、MgO粉末、及び、TiO₂の粉末を混合し

- 、成形し、成形体を所定の温度で焼成し、放冷することにより得られる。
- [0049] まず、原料となる、 Al_2O_3 粉末、 $TiC粉末、MgO粉末、及び、<math>TiO_2$ 粉末を用意する。ここで、原料の Al_2O_3 粉末は、微粉であることが好ましく、平均粒子径が $0.1 1\mu$ m、特に $0.4 0.6\mu$ mであることが好ましい。また $TiC粉末は、微粉であることが好ましい。また Yz といっまた MgO粉末は、微粉であることが好ましく、平均粒子径が<math>0.1 3\mu$ m、特に $0.5 1.5\mu$ mであることが好ましい。また 0.5μ mであることが好ましい。また、 0.5μ mであることが好ましい。また、 0.5μ mであることが好ましく、平均粒子径が $0.1 3\mu$ m、特に $0.5 1\mu$ mであることが好ましい。
- [0050] そして、これらの粉末を混合し、混合粉末を得る。ここで、 Al_2O_3 粉末、 $TiC粉末、MgO粉末、及び、<math>TiO_2$ 粉末の全重量に対してMgO粉末が35~55重量%含まれるようにこれらの粉末を混合する。なお、<math>MgO粉末が40~50%程度含まれるようにすることが好ましい。
- [0051] また、 TiO_2 の量は特に限定されないが、上述のように比抵抗を好適範囲とすべく、 TiO_2 が2. 0~3. 0重量%含まれるようにこれらの粉末を混合することが好ましい。
- [0052] また、TiCの量は特に限定されないが、上述のように十分な強度のスペーサを得る べく、TiCが7.0~8.0重量%含まれるようにこれらの粉末を混合することが好ましい。
- [0053] ここで、粉末の混合は、ボールミルやアトライター中で行うことが好ましい。また、好適に混合すべく、水以外の、例えば、エタノール、IPA、95%変性エタノール等を溶剤として用いることが好ましい。また、10~100時間程度混合することが好ましい。なお、ボールミルやアトライター中の混合メディアとしては、例えば、直径1~20mm程度の、アルミナボールや、ジルコニアボールを使用することが好ましい。
- [0054] 次に、混合された混合粉末を、スプレー造粒する。ここでは、例えば、酸素をほとんど含まない窒素やアルゴン等の不活性ガスの、60~200℃程度の温風中で噴霧乾燥すればよく、これによって、上記の組成の混合粉末の造粒物が得られる。ここで、例えば、造粒物の粒径は、50 μ m~200 μ m程度が好ましい。
- [0055] 次に、必要に応じて溶剤等を添加して造粒物の液体含有量の調節を行い、0.1~10重量%程度、造粒物中に溶剤が含まれるようにする。

- [0056] 次に、この造粒物を所定の型内に充填し、冷間プレスにより一次成形を行って成形体を得る。ここでは、例えば、内径150mmの円板形成用の金属製あるいはカーボン製の型内に造粒物を充填し、例えば、5~15MPa(50~150kgf/cm²)程度の圧力で冷間プレスすればよい。
- [0057] 続いて、一次成形された成形体をホットプレスし焼結体を得る。ここで、例えば、焼成温度を1200~1700℃、圧力を10~50MPa(100~500kgf/cm²)、雰囲気を真空、窒素、アルゴン中とすることが好ましい。なお、非酸化性雰囲気とするのは、Ti Cの酸化を防ぐためである。また、カーボン製の型を用いることが好ましい。焼結時間は1~3時間程度が好ましい。
- [0058] そして、外観等を検査した後に、ダイヤモンド砥石等によって機械仕上げ加工を行い、平面パネルディスプレイ用スペーサの材料となる板10が完成する。最終的な板1 0の具体的形状は、図5に示すように、縦134mm、横67mm、厚み2.5mmの矩形 平板状である。なお、例えば、直径6インチ、厚み2mm程度の円板状の基板であってもよい。
- [0059] 次に、このような板10から平面パネルディスプレイ用スペーサ103用のベース50を 切り出す工程について説明する。まず、この板10は、矩形平板であり主面10A, 10 B、長手方向に平行な側面10C, 10D、及び、長手方向に直交する端面10E, 10F を有しているものとする。
- [0060] まず、図6の(a)に示すように、板10の主面10Aに対して垂直、かつ、板10の側面10C,10Dに平行な複数の第一切断面91に沿って、複合セラミクス焼結体の板10を所定間隔で切断する。これによって、図6の(b)に示すように、第一の切片530が形成される。この第一の切片530は、板10の主面10A,10Bに各々対応する主面530A,530B、各第二切断面92に対応する側面530C,530D、及び、複合セラミクス焼結体の板10の端面10E,10Fに対応する端面530E、530Fを有している。続いて、第一の切片530の側面530C、530Dを研磨する。
- [0061] 次に、図7の(a)に示すように、第一の切片530を、第一の切片530の主面530A に平行な複数の第二切断面92に沿って所定間隔で切断して、図7の(b)に示すよう に第二の切片560を得る。

- [0062] ここで、第二の切片560は、第二切断面92に対応する主面560A、560Bと、長手方向に延びる側面560C、560Dと、長手方向の両端の端面560E、560Fを有する。また、第二の切片560の主面560Aと主面560Bとの間隔560Wを、第一の切片530の幅530Wよりも狭くなるように第一の切片530を切断する。
- [0063] 次に、図8に示すように、第二の切片560の主面560A上に、端面560Eから端面560Fまで側面560C,560Dの延在方向に平行に延びる溝570を所定間隔で複数形成する。ここで、溝570間の距離W2、側面560Dに最も近い溝570と側面560Dとの間の距離W3、及び、側面560Cに最も近い溝570と側面560Cとの間の距離W1は、何れも同じ距離とされている。また、各溝570は、側面560Dと平行な側壁570A及び側壁570Bと、側壁570Aと側壁570Bとの下端同士を接続する底面570Cとによって形成され、断面矩形状を呈している。この溝570は、所定の幅WS、所定の深さ Dを有する。例えば、幅WSは10~200μm程度、深さDは、100~200μm程度と することができる。
- [0064] 次に、図9に示すように、Ti, Au, Cr, Pt等の金属原子や金属微小粒子等を、第二の切片560で溝570が形成された主面560A側から吹き付ける。これにより、第二の切片560の側面560C、560D、主面560A、溝570内の各表面にわたって膜厚が数nm~1.0μmの金属膜580が形成される。
- [0065] 次に、図10に示すように、金属膜580の内、第二の切片560の主面560A上に対応する面上にフィルムレジスト590を加熱圧着する。そして、所定のマスクでフィルムレジスト590を露光、現像することにより、フィルムレジスト590を図11に示すようにパターニングしてレジストパターン591を形成し、金属膜580の一部を露出させる。
- [0066] そして、イオンミリング等によって、パターニングされたレジストパターン591をマスクとして、図12に示すように、金属膜580を所定の厚み除去する。ここで、この所定の厚みは、金属膜580のうちで主面560A上に形成された部分を完全に除去できるように設定する。これによって、同時に、金属膜580で溝570の底面570C上に設けられた部分も除去される。そして、これによって、第二の切片560の側面560C上に金属膜580Cが、側面560D上に金属膜580Dが、溝570の側壁570Aには金属膜40aが、溝570の側壁570Bには金属膜42aが各々形成される。また、第二の切片560

の主面560A上には、パターニングされた金属膜65が形成される。

- [0067] 次に、第二の切片560の裏面、すなわち、主面560B側から、第二の切片560を、 溝570に達するまで研磨し、図13に示すように、この第二の切片560を複数に分割 して、平面パネルディスプレイ用スペーサ103を得る。ここでは、この研磨の過程で、 金属膜580Cが金属膜42aとなり、金属膜580Dが金属膜40aとなり、また、第二の切 片560は分割されてベース50となる。
- [0068] そして、このような平面パネルディスプレイ用スペーサ103を、面板101のブラックマトリクス構造体102と、背板201の陰極構造体202との間に、これらの表面に対して垂直に立設させて接着等することにより上述の平面パネルディスプレイ100を作製できる。ここで、ブラックマトリクス構造体102を有する面板101や、陰極構造体202を有する背板201は、公知の方法で作成することができる。

実施例

[0069] 次に、本実施形態に係る実施例について説明する。

[0070] (実施例1)

まず、 Al_2O_3 粉末(平均粒径 0.5μ m、純度99.9%)、 $TiC粉末(平均粒径<math>0.5\mu$ m、純度99%、炭素含有量19%以上でその1%以下は遊離黒鉛である)、 $MgO粉末(平均粒径<math>0.1\mu$ m)、及び、 TiO_2 粉末(平均粒径 0.1μ m)を各々所定量秤量し、ボールミル中でエタノールと共に30分粉砕混合し、窒素中で150%でスプレー造粒し造粒物を得た。ここで、 Al_2O_3 粉末、TiC粉末、<math>MgO粉末、及び、 TiO_2 粉末を合わせた全重量に対して、 Al_2O_3 粉末の含有量が55.5重量%、TiC粉末の含有量が<math>7.0重量%、MgO粉末の含有量が<math>35.0重量%、 TiO_2 粉末の含有量が35.0重量%、 TiO_2 粉末の含有量が35.00重量%、 TiO_2 粉末の含有量が35.00重量%

[0071] 続いて、これらの混合物を各々約0.5MPa(50kgf/cm²)で一次成形し、ホットプレス法によって真空雰囲気で1時間、焼結温度1600℃、プレス圧力約30MPa(約3 00kgf/cm²)で焼成し各々の実施例1についてスペーサ用の板を得た。

[0072] (実施例2~5)

 Al_2O_3 粉末の含有量を50.5重量%、 $MgO粉末の含有量を40.0重量%とする以外は、実施例1と同様にして、実施例2のスペーサ用の板を得た。また、<math>Al_2O_3$ 粉末の

含有量を45.5重量%、 $MgO粉末の含有量を45.0重量%とする以外は、実施例1と同様にして、実施例3のスペーサ用の板を得た。<math>Al_2O_3$ 粉末の含有量を40.5重量%、 $MgO粉末の含有量を50.0重量%とする以外は、実施例1と同様にして、実施例4のスペーサ用の板を得た。また、<math>Al_2O_3$ 粉末の含有量を35.5重量%、MgO粉末の含有量を55.0重量%とする以外は、実施例1と同様にして、実施例5のスペーサ用の板を得た。

[0073] (比較例1、比較例2)

 Al_2O_3 粉末の含有量を60.5重量%、 $MgO粉末の含有量を30.0重量%とする以外は、実施例1と同様にして、比較例1のスペーサ用の板を得た。また、<math>Al_2O_3$ 粉末の含有量を30.5重量%、MgO粉末の含有量を60.0重量%とする以外は、実施例1と同様にして、比較例2のスペーサ用の板を得た。

[0074] (実施例6~9)

 Al_2O_3 粉末の含有量を51.5重量%、 TiO_2 粉末の含有量を1.5重量%とする以外は、実施例2と同様にして、実施例6のスペーサ用の板を得た。また、 Al_2O_3 粉末の含有量を51.0重量%、 TiO_2 粉末の含有量を2.0重量%とする以外は、実施例2と同様にして、実施例7のスペーサ用の板を得た。 Al_2O_3 粉末の含有量を50.0重量%、 TiO_2 粉末の含有量を3.0重量%とする以外は、実施例2と同様にして、実施例8のスペーサ用の板を得た。また、 Al_2O_3 粉末の含有量を49.5重量%、 TiO_2 粉末の含有量を3.5重量%とする以外は、実施例2と同様にして、実施例9のスペーサ用の板を得た。

[0075] (実施例10~12)

 Al_2O_3 粉末の含有量を51. 5重量%、 $TiC粉末の含有量を6.0重量%とする以外は、実施例2と同様にして、実施例10のスペーサ用の板を得た。また、<math>Al_2O_3$ 粉末の含有量を49. 5重量%、 $TiC粉末の含有量を8.0重量%とする以外は、実施例2と同様にして、実施例11のスペーサ用の板を得た。また、<math>Al_2O_3$ 粉末の含有量を48. 5重量%、TiC粉末の含有量を9.0重量%とする以外は、実施例2と同様にして、実施例12のスペーサ用の板を得た。

[0076] 実施例1~12と、比較例1~2における各成分の添加量と、熱膨張係数、比抵抗、

3点曲げ強度の値を図1の表に示す。また、MgOの添加量と、熱膨張係数との関係を図14に、 TiO_2 の添加量と、比抵抗との関係を図15に、TiCの含有量と3点曲げ強度との関係を図16に示す。

- [0077] なお、比抵抗は、アドバンテスト製デジタルマルチメータを使用し、10000V/mm の電界をスペーサ用の板に印加することにより測定した。また、3点曲げ強度は、スパン間距離30mm、クロスヘッドスピード0.1mm/minとし、島津製作所製オートグラフ材料試験機で測定した。
- [0078] 図15より明らかなように、実施例1~12のようにMgOの含有量が35~55重量%であると、熱膨張係数が8.0~9.3×10⁻⁶/℃程度となる。また、図15より明らかなように、実施例1~5,7,8,10~12のようにTiO2の含有量が2.0~3.0重量%であると、比抵抗が1.0×10⁶~1.0×10¹⁰Ω・cm程度となる。また、図16より明らかなように、また、通常好ましいとされる400MPa以上の強度のスペーサを得るためには、Ti Cの含有量を7~8%とすることが好ましい。なお、TiCの濃度が高くなりすぎると、焼結性が低下して強度が低下するものと考えられる。

請求の範囲

- [1] Al_{2O₃}、TiC、MgO、及び、TiO₂を含む焼結体を有し、前記焼結体はAl_{2O₃}、TiC、MgO、及び、TiO₂の全重量に対して、MgOを35~55重量%含む、平面パネルディスプレイ用スペーサ。
- [2] 前記焼結体は、 Al_{20} 、TiC、MgO、及び、 TiO_{2} の全重量に対して、 TiO_{2} を2. 0〜3. 0重量%含む請求項1に記載の平面パネルディスプレイ用スペーサ。
- [3] 前記焼結体は、 Al_2O_3 、TiC、MgO、及び、 TiO_2 の全重量に対して、TiCを7.0~8.0重量%含む請求項1又は2に記載の平面パネルディスプレイ用スペーサ。
- [4] Al₂O₃粉末、TiC粉末、MgO粉末、及び、TiO₂粉末を、Al₂O₃粉末、TiC粉末、MgO粉末、及び、TiO₂粉末の全重量に対して、MgO粉末が35~55重量%となるように混合して混合物を得る工程と、

前記混合物を焼成し焼結体を得る工程と、を含む平面パネルディスプレイ用スペーサの製造方法。

[5] 陰極構造体を有する背板と、

蛍光画素領域を有する面板と、

前記背板及び前記面板間に介在されると共に、 Al_2O_3 、TiC、MgO、及び、 TiO_2 を含み、 Al_2O_3 、TiC、MgO、及び、 TiO_2 の全重量に対して、MgOを35~55重量%含む焼結体から形成された平面パネルディスプレイ用スペーサと、

を備える平面パネルディスプレイ。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

(a)

[図7]

[図8]

[図9]

[図10]

[図11]

[図12]

[図13]

[図14]

/		組成[組成[重量%]		100/ 14/2011 14 14 14 14 14 14 14 14 14 14 14 14 1	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	っち曲げ涂甲[MD。]
/	MgO	TiO2	TIC	Al ₂ O ₃	紫彫伝体数に/ 0]		この に に に に に に に に に に に に に
実施例1	35.0	2.5	7.0	55.5	8.1× 10 ⁻⁶	1.0x 10 ⁹	450
実施例2	40.0	2.5	7.0	50.5	8.5x 10 ⁻⁶	1.0x 10 ⁹	450
実施例3	45.0	2.5	7.0	45.5	8.8× 10 ⁻⁶	1.0x 10 ⁹	450
実施例4	50.0	2.5	7.0	40.5	9.0x 10 ⁻⁶	1.0x 10 ⁹	450
実施例5	55.0	2.5	7.0	35.5	9.3× 10 ⁻⁶	1.0x 10 ⁹	450
実施例6	40.0	1.5	7.0	51.5	8.5× 10 ⁻⁶	1.0x 10 ¹²	450
実施例7	40.0	2.0	7.0	51.0	8.5× 10 ⁻⁶	5.0x 10 ¹⁰	450
実施例8	40.0	3.0	7.0	50.0	8.5× 10 ⁻⁶	5.0× 10 ⁷	450
実施例9	40.0	3.5	7.0	49.5	8.5× 10 ⁻⁶	1.0× 10 ⁶	450
実施例10	40.0	2.5	6.0	51.5	8.5× 10 ⁻⁶	1.0x 10 ⁹	420
実施例11	40.0	2.5	8.0	49.5	8.5x 10 ⁻⁶	1.0× 10 ⁹	450
実施例12	40.0	2.5	9.0	48.5	8.5x 10 ⁻⁶	1.0× 10 ⁹	420
比較例1	30.0	2.5	7.0	60.5	7.7× 10 ⁻⁶	1.0x 10 ⁹	450
比較例2	0.09	2.5	7.0	30.5	9.5x 10 ⁻⁶	1.0× 10 ⁹	450

[図15]

[図17]

