Permutations in binary trees and split trees

Michael Albert, Cecilia Holmgren, Tony Johansson, Fiona Skerman

Department of Mathematics, Uppsala University, Sweden

Table of contents

- 1. The definition
- 2. Permutations in fixed trees
- 3. Embeddings of digraphs into trees
- 4. Split trees

The definition

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an *inversion*.
- If i < j < k and $\sigma_j > \sigma_i > \sigma_k$, then the triple $(\sigma_i, \sigma_j, \sigma_k)$ is a 231-subpermutation.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an inversion.
- If i < j < k and $\sigma_j > \sigma_i > \sigma_k$, then the triple $(\sigma_i, \sigma_j, \sigma_k)$ is a 231-subpermutation.

- Let $\sigma_1, \ldots, \sigma_n$ be a permutation of $\{1, \ldots, n\}$.
- If i < j and $\sigma_i > \sigma_j$, then the pair (σ_i, σ_j) is called an inversion.
- If i < j < k and $\sigma_j > \sigma_i > \sigma_k$, then the triple $(\sigma_i, \sigma_j, \sigma_k)$ is a 231-subpermutation.

Permutations in a fixed tree

- Let T be a tree with node set V.
- Let λ be node labeling $\lambda: V \to \{1, \dots, |V|\}.$
- For σ a permutation of $\{1,\ldots,k\}$. Let

$$R_{\sigma}(T,\lambda) = \sum_{u_1 < \cdots < u_k} 1_{[\lambda(u_1,\ldots,u_k) = \sigma]}.$$

Permutations in a fixed tree

- Let T be a tree with node set V.
- Let λ be node labeling $\lambda: V \to \{1, \dots, |V|\}.$
- For σ a permutation of $\{1,\ldots,k\}$. Let

$$R_{\sigma}(T,\lambda) = \sum_{u_1 < \cdots < u_k} 1_{[\lambda(u_1,\ldots,u_k) = \sigma]}.$$

Permutations in a fixed tree

- Let T be a tree with node set V.
- Let λ be node labeling $\lambda: V \to \{1, \dots, |V|\}.$
- For σ a permutation of $\{1,\ldots,k\}$. Let

$$R_{\sigma}(T,\lambda) = \sum_{u_1 < \cdots < u_k} 1_{[\lambda(u_1,\ldots,u_k) = \sigma]}.$$

Permutations in fixed trees

k, *h*-total common ancestors

- For k nodes v_1, \ldots, v_k , let $c(v_1, \ldots, v_k)$ be the number of ancestors that they share.
- We define

$$\Upsilon_k^h(T) \stackrel{\mathrm{def}}{=} \sum_{v_1, \dots, v_k} c(v_1, \dots, v_k) \prod_{i=1}^k \binom{d(v_i)}{h-2}.$$

• Note that $\Upsilon_k(T) = \Upsilon_k^2(T)$ and $\Upsilon_1^2(T)$ is total path length.

k, h-total common ancestors

- For k nodes v_1, \ldots, v_k , let $c(v_1, \ldots, v_k)$ be the number of ancestors that they share.
- We define

$$\Upsilon_k^h(T) \stackrel{\mathrm{def}}{=} \sum_{v_1, \dots, v_k} c(v_1, \dots, v_k) \prod_{i=1}^k \binom{d(v_i)}{h-2}.$$

• Note that $\Upsilon_k(T) = \Upsilon_k^2(T)$ and $\Upsilon_1^2(T)$ is total path length.

Cumulants

ullet The cumulant-generating function of a r.v. X is

$$K_X(t) = \log \mathbb{E}\left[e^{tX}\right].$$

• The cumulants $\varkappa_k(X)$ are defined by

$$K_X(t) = \sum_{k\geq 1} \varkappa_k(X) \frac{t^k}{k!}.$$

• We can compute centralized-moments, μ_k , from cumulants, $\{\kappa_j\}_{j\leq k}$, and vice-versa by Bell polynomials; e.g.

$$\mu_6 = \kappa_6 + 15\kappa_4\kappa_2 + 10\kappa_3^2 + 15\kappa_2^3.$$

$$\kappa_6 = \mu_6 - 15\mu_4\mu_2 - 10\mu_3^2 + 30\mu_2^3.$$

Cumulants for permutation σ $R_{\sigma}(T)$

Theorem 2 (Cai et al. '19)

$$\mathbb{E}[R_{21}(T)] = \varkappa_1(R_{12}(T)) = \frac{1}{2}(\Upsilon_1^2(T) - |V|),$$

More generally, for $k \ge 1$,

$$\varkappa_{2k+1}(R_{21}(T)) = 0, \qquad \varkappa_{2k}(R_{21}(T)) = \frac{B_{2k}}{2k}(\Upsilon_{2k}^2(T) - |V|),$$

where B_k denotes the k-th Bernoulli number.

Cumulants for permutation σ $R_{\sigma}(T)$

 $\sigma = \sigma_1 \dots \sigma_k$ is a fixed permutation T_n be the complete binary tree of depth n.

 $\varkappa_r = \varkappa_r(R(\sigma, T_n))$ is r-th cumulant of $R(\sigma, T_n)$.

Theorem 1

$$\mathbb{E}\left[R_{\sigma}(T)\right] = \varkappa_1(R_{\sigma}(T)) = \frac{1}{k!}\Upsilon_1^k(T)(1+o(1)),$$

and for $r \geq 2$,

$$\varkappa_r = D_{\sigma,r} \Upsilon_r^k(T_n) + o(\Upsilon_r^k(T_n))$$

⁰Lackner Panholzer '15: runs in randomly labelled random trees.

Cumulants for permutation σ $R_{\sigma}(T)$

 $\sigma = \sigma_1 \dots \sigma_k$ is a fixed permutation T_n be the complete binary tree of depth n.

Corollary For permutations σ of length 3,

$$\mathbb{V}(R(\sigma, T_n)) = \begin{cases} \frac{1}{45} \Upsilon_2^3(T_n)(1 + o(1)) & \text{for } \sigma = 123, 132, 312, 321\\ \frac{1}{180} \Upsilon_2^3(T_n)(1 + o(1)) & \text{for } \sigma = 213, 231 \end{cases}$$

⁰Lackner Panholzer '15: runs in randomly labelled random trees.

A key observation for inversions

- Let Z_o be the number of inversions involving the root.
- Then Z_o and the numbers of inversions in the left subtree and right subtree are independent.
- Proof by conditioning on the labels that go the left and the right.

Inversions key lemma

- Let z_v be the size of the subtree at v.
- Let Z_v be the number of inversions involving v and one of its descendants.

Lemma 1

Let T be a fixed tree. Then

$$R_{21}(T) \stackrel{\mathrm{d}}{=} \sum_{v \in V} Z_v,$$

where $\{Z_v\}_{v \in V}$ are independent random variables, and $Z_v \sim \mathrm{Unif}\{0,1,\ldots,z_v-1\}.$

Inversions key observation

- Let Z_o be the number of 213 involving the root as top vertex.
- Let Z_u be the number of 213 involving the left child of the root as top vertex.
- Then Z_o and Z_u not independent.

$$\begin{split} & \mathbb{V}(R_{321}(T,\lambda)) \\ &= \Big(\sum_{u_1 < u_2 < u_3} \mathbf{1}_{[\lambda(u_1,u_2,u_3) = 321]} - \frac{1}{6} \Big) \Big(\sum_{v_1 < v_2 < v_3} \mathbf{1}_{[\lambda(v_1,v_2,v_3) = 321]} - \frac{1}{6} \Big) \end{split}$$

$$\begin{split} & \mathbb{V}(R_{321}(T,\lambda)) \\ &= \Big(\sum_{u_1 < u_2 < u_3} \mathbf{1}_{[\lambda(u_1,u_2,u_3) = 321]} - \frac{1}{6} \Big) \Big(\sum_{v_1 < v_2 < v_3} \mathbf{1}_{[\lambda(v_1,v_2,v_3) = 321]} - \frac{1}{6} \Big) \end{split}$$

$$\begin{split} & \mathbb{V}(R_{321}(T,\lambda)) \\ &= \ \big(\sum_{u_1 < u_2 < u_3} \mathbf{1}_{[\lambda(u_1,u_2,u_3) = 321]} - \frac{1}{6}\big) \big(\sum_{v_1 < v_2 < v_3} \mathbf{1}_{[\lambda(v_1,v_2,v_3) = 321]} - \frac{1}{6}\big) \end{split}$$

$$\begin{split} & \mathbb{V}(R_{321}(T,\lambda)) \\ &= \Big(\sum_{u_1 < u_2 < u_3} \mathbf{1}_{[\lambda(u_1,u_2,u_3) = 321]} - \frac{1}{6} \Big) \Big(\sum_{v_1 < v_2 < v_3} \mathbf{1}_{[\lambda(v_1,v_2,v_3) = 321]} - \frac{1}{6} \Big) \end{aligned}$$

$\mathbb{V}(R_{321}(T,\lambda)) = \left(\sum_{u_1 < u_2 < u_3} 1_{[\lambda(u_1,u_2,u_3)=321]} - \frac{1}{6}\right) \left(\sum_{v_1 < v_2 < v_3} 1_{[\lambda(v_1,v_2,v_3)=321]} - \frac{1}{6}\right)$

$$\begin{split} & \mathbb{V}(R_{321}(T,\lambda)) \\ &= \Big(\sum_{u_1 < u_2 < u_3} \mathbf{1}_{[\lambda(u_1,u_2,u_3) = 321]} - \frac{1}{6} \Big) \Big(\sum_{v_1 < v_2 < v_3} \mathbf{1}_{[\lambda(v_1,v_2,v_3) = 321]} - \frac{1}{6} \Big) \end{split}$$

$$\begin{split} & \mathbb{V}(R_{321}(T,\lambda)) \\ &= \Big(\sum_{u_1 < u_2 < u_3} \mathbf{1}_{[\lambda(u_1,u_2,u_3) = 321]} - \frac{1}{6}\Big) \Big(\sum_{v_1 < v_2 < v_3} \mathbf{1}_{[\lambda(v_1,v_2,v_3) = 321]} - \frac{1}{6}\Big) \\ &= \sum_{\vec{u}} c_{\vec{u}} \cdot \# \text{times } \vec{H} \text{ embeds into tree} \end{split}$$

$$=\sum_{ec{H}}c_{ec{H}}\cdot$$
 #times $ec{H}$ embeds into tree

Method of moments

$$\mathbb{E}\Big[\Big(R_{2431}(T,\lambda)\Big)^7\Big]$$

Embeddings of digraphs into trees

Embeddings of digraphs into trees

 \vec{H} constant size digraph

 T_n sequence of trees on growing number of vertices.

$$[\vec{H}]_{\mathcal{T}_n} \stackrel{\mathrm{def}}{=} |\{\iota : V(\vec{H}) \to V(\mathcal{T}_n) \text{ s.t. if } u < v \text{ in } \vec{H} \text{ then } \iota(u) < \iota(v) \text{ in } \mathcal{T}_n\}|$$

Let P_ℓ be the rooted path on ℓ nodes.

Then
$$[\nwarrow]_{P_4}=2$$
 and in general $[\nwarrow]_{P_\ell}=2\binom{\ell}{4}$.

Key lemma for permutations on binary trees

 a_0, a_1 parameters of digraph \vec{H} .

Lemma Let T_n be the complete binary tree with n vertices and \vec{H} be a fixed directed acyclic graph. Then

$$[\vec{H}]_{T_n} = \Theta(n^{a_0}(\ln n)^{a_1}).$$

Key lemma for permutations on binary trees

 a_0, a_1 parameters of digraph \vec{H} .

- $a_0 = \# \bullet \text{sink vertices}$
- $a_1 = \# \bullet$ ancestor of exactly one sink vertex
- $a_2 = \# \bullet$ ancestor of more than one sink vertex

Lemma Let T_n be the complete binary tree with n vertices and \vec{H} be a fixed directed acyclic graph. Then

$$[\vec{H}]_{T_n} = \Theta(n^{a_0}(\ln n)^{a_1}).$$

Embeddings of digraphs into trees

- sink vertices
- ancestor of exactly one sink vertex
- - ancestor of more than one sink vertex

Key lemma applied

$$\mathbb{V}(R_{231}(T,\lambda)) = \left(\sum_{u_1 < u_2 < u_3} 1_{[\lambda(u_1,u_2,u_3)=231]} - \frac{1}{6}\right) \left(\sum_{v_1 < v_2 < v_3} 1_{[\lambda(v_1,...,v_3)=231]} - \frac{1}{6}\right) \\
= \sum_{\vec{H}} c_{\vec{H}} \cdot [\vec{H}]_{T_n} = c' \cdot [\mathbf{v}^{\bullet}\mathbf{v}]_{T_n} + o([\mathbf{v}^{\bullet}\mathbf{v}]_{T_n})$$

Key lemma applied

$$\mathbb{E}((R_{231} - \mathbb{E}[R_{231}])^6) = (1 + o(1)) \sum_{\vec{H}} c_{\vec{H}} \cdot [\vec{H}]_{T_n}$$

Key lemma applied

$$\mathbb{E}((R_{231} - \mathbb{E}[R_{231}])^6) = (1 + o(1)) \sum_{\vec{H}} c_{\vec{H}} \cdot [\vec{H}]_{T_n}$$

$$\mu_{6} = \varkappa_{6} + 15\kappa_{4}\kappa_{2} + 10\kappa_{3}^{2} + 15\kappa_{2}^{3}$$

$$\kappa_{2} = c[S_{2}]_{T_{n}}$$

$$\kappa_{3} = c'[S_{3}]_{T_{n}}$$

$$\kappa_{4} = c''[S_{4}]_{T_{n}}$$

Split trees

- Begin with infinite binary tree.
- Each node is a "bucket" of capacity one.
- Each node given split vector V = (U, 1 U) chosen independently.
- n balls start at root one by one.
- When a bucket overflows, the extra goes to child nodes chosen at random according to \mathcal{V} .
- All empty buckets are removed in the end.
- Parameters: "bucket capacity", "# kept", "# guaranted booty", split vector distribution.

⁰Devroye '99

Cumulants for permutation σ $R_{\sigma}(T_n)$

 $\sigma = \sigma_1 \dots \sigma_k$ is a fixed permutation

 T_n be the split tree with n balls and $s_0 > 0$.

 $\varkappa_r = \varkappa_r(R(\sigma, T_n))$ is r-th cumulant of $R(\sigma, T_n)$.

Theorem 2

Whp the following holds

$$\mathbb{E}\left[R_{\sigma}(T_n)\right] = \varkappa_1(R_{\sigma}(T)) = \frac{1}{k!} \Upsilon_1^k(T_n)(1 + o(1)),$$

and for $r \geq 2$,

$$\varkappa_r = D_{\sigma,r} \Upsilon_r^k(T_n) + o(\Upsilon_r^k(T_n))$$

Key lemma for permutations on split trees

- $a_0 = \# \bullet$ sink vertices
- $a_1 = \# \bullet$ ancestor of exactly one sink vertex
- $a_2 = \# \bullet$ ancestor of more than one sink vertex

Lemma Let T_n be a split tree with n balls and \vec{H} be a fixed directed acyclic graph. Then whp

$$[\vec{H}]_{T_n} = \Omega(n^{a_0}(\ln n)^{a_1}).$$

$$\mathbb{E}[\vec{H}]_{T_n} = \Theta(n^{a_0}(\ln n)^{a_1}).$$

- $a_0 = \# \bullet \sin k \text{ vertices}$
- $a_1 = \# \bullet$ ancestor of exactly one sink vertex
- $a_2 = \# \bullet$ ancestor of more than one sink vertex

$$\mathbb{E}[\vec{H}]_{T_n} = O(n^{a_0}(\ln n)^{a_1}).$$

 $\sum_{b,b'} \mathbb{E}$ #nodes above both balls $b,b' \leq C' n^2$.

- $a_0 = \# \bullet \sin k \text{ vertices}$
- $a_1 = \# \bullet$ ancestor of exactly one sink vertex
- $a_2 = \# \bullet$ ancestor of more than one sink vertex

$$\mathbb{E}[\vec{H}]_{T_n} = O(n^{a_0}(\ln n)^{a_1}).$$

 $\sum_{b,b'} \mathbb{E}$ #nodes above both balls $b,b' \leq C' n^2$.

- $a_0 = \# \bullet \sin k \text{ vertices}$
- $a_1 = \# \bullet$ ancestor of exactly one sink vertex
- $a_2 = \# \bullet$ ancestor of more than one sink vertex

whp
$$[\vec{H}]_{T_n} = \Omega(n^{a_0}(\ln n)^{a_1}).$$

Open: The constants $D_{\alpha,r}$

$ \alpha $	$\alpha_1 \in ?$	1	2	3	4	5
2	{1,2}	$\frac{1}{2}$	$\frac{1}{2^2 \cdot 3}$	0	$\frac{-1}{2^3 \cdot 3 \cdot 5}$	0
3	{1,3} {2}	$\frac{\frac{1}{2\cdot 3}}{\frac{1}{2\cdot 3}}$	$\frac{\frac{1}{3^2 \cdot 5}}{\frac{1}{2^2 \cdot 3^2 \cdot 5}}$	$ \frac{\frac{2}{3^3 \cdot 5 \cdot 7}}{\frac{-1}{2^2 \cdot 3^3 \cdot 5 \cdot 7}} $	$ \frac{\frac{-2}{3^3 \cdot 5^2 \cdot 7}}{\frac{-1}{2^3 \cdot 3^3 \cdot 5^2 \cdot 7}} $	$ \frac{-2^{3}}{3^{4} \cdot 5 \cdot 7 \cdot 11} $ $ \frac{1}{2^{2} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11} $
4	{1,4} {2,3}	$\begin{array}{c} \frac{1}{2^3 \cdot 3} \\ \frac{1}{2^3 \cdot 3} \end{array}$	$\frac{\frac{1}{2^6 \cdot 7}}{\frac{13}{2^6 \cdot 3^2 \cdot 5 \cdot 7}}$	$ \frac{\frac{1}{2^8 \cdot 5 \cdot 7}}{\frac{-1}{2^8 \cdot 3^3 \cdot 5 \cdot 7}} $	$\begin{array}{c} -3 \\ \hline 2^{11} \cdot 5 \cdot 7^2 \cdot 13 \\ \hline -5591 \\ \hline 2^{11} \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \end{array}$	$ \frac{-3}{2^{12} \cdot 7^2 \cdot 13} \\ \frac{199}{2^{12} \cdot 3^4 \cdot 5 \cdot 7^2 \cdot 11 \cdot 13} $
5	{1,5}	$\frac{1}{2^3 \cdot 3 \cdot 5}$	$\frac{1}{2^2 \cdot 3^4 \cdot 5^2}$	$\frac{1}{2^2 \cdot 3^4 \cdot 5^3 \cdot 13}$	$\frac{29}{2^3 \cdot 3^7 \cdot 5^4 \cdot 13 \cdot 17}$	$\frac{-107}{2^2 \cdot 3^8 \cdot 5^5 \cdot 7 \cdot 13 \cdot 17}$
5	{2,4}	$\frac{1}{2^3 \cdot 3 \cdot 5}$	$\frac{37}{2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7}$	$\frac{53}{2^8 \cdot 3^4 \cdot 5^3 \cdot 7 \cdot 11 \cdot 13}$	$\frac{-849839}{2^{11} \cdot 3^{7} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17}$	$\frac{-1041109}{2^{12} \cdot 3^8 \cdot 5^5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19}$
5	{3}	$\frac{1}{2^3 \cdot 3 \cdot 5}$	$\tfrac{1}{2^6 \cdot 3 \cdot 5^2 \cdot 7}$	$\frac{-19}{2^8 \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 11 \cdot 13}$	$\frac{-73^2}{2^{11} \cdot 3^3 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17}$	$\frac{10061}{2^{12} \cdot 3^4 \cdot 5^5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19}$
6	{1,6}	$\frac{1}{2^4 \cdot 3^2 \cdot 5}$	$\frac{1}{2^8 \cdot 3^4 \cdot 11}$	$\frac{1}{2^{13} \cdot 3^{6} \cdot 11}$	$\frac{1}{2^{14} \cdot 3^7 \cdot 7 \cdot 11^2}$	$\frac{-19}{2^{19} \cdot 3^9 \cdot 7 \cdot 11^2 \cdot 13}$
6	{2,5}	$\frac{1}{2^4 \cdot 3^2 \cdot 5}$	$\frac{1}{2^8 \cdot 3^2 \cdot 5^2 \cdot 11}$	$\frac{509}{2^{13} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 13}$	$\frac{-233.619}{2^{13} \cdot 3^{7} \cdot 5^{4} \cdot 7 \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19}$	$\frac{-18928549}{2^{19} \cdot 3^9 \cdot 5^5 \cdot 7 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23}$
6	{3,5}	$\frac{1}{2^4 \cdot 3^2 \cdot 5}$	$\frac{43}{2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11}$	$\frac{1}{2^{11} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 13}$	$\frac{-211 \cdot 9341}{2^{15} \cdot 3^7 \cdot 5^4 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19}$	$\frac{-47.3701}{2^{17} \cdot 3^9 \cdot 5^5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23}$

Figure 8: A table showing values of $D_{\alpha,r}$ for α of lengths 2 to 6 and moments $r = 1, \dots, 5$.

Open: The constants $D_{\alpha,r}$

- P(r) partiions of [r] e.g. $\{1\}\{2,3\} \in P(3)$.
- $D_{\alpha,r} = \sum_{\tau \in P(r)} (-1)^{|\tau|-1} (|\tau|-1)! \prod_{s \in \tau} \beta(|s|, r, \alpha)$
- $\beta(|s|, r, \alpha) = \frac{((\alpha_1 1)|s|)!((k \alpha_1)|s|)!}{((\alpha_1 1)!(k \alpha_1)!)^{|s|}((k 1)|s| + 1)!}$

Open: show directly?

$$\sum_{\tau \in P(r)} (-1)^{|\tau|-1} (|\tau|-1)! \prod_{s \in \tau} \frac{1}{|s|+1} = (-1)^r \frac{B_r}{r}$$

Open: Galton Watson trees

Let e(t) Brownian excursion and $\eta \stackrel{\text{def}}{=} 4 \int_{0 < s < t < 1} \min_{s \le u \le t} e(u) ds dt$.

Theorem 3 (Cai et al. '19)

Assume that $\mathbb{E}\left[\xi\right]=1$, $\mathrm{Var}\left(\xi\right)=\sigma^{2}\in(0,\infty)$, and $\mathbb{E}\left[e^{\alpha\xi}\right]<\infty$ for some $\alpha>0$. Then

$$\frac{I(T_n) - \frac{1}{2}\Upsilon(T_n)}{\frac{1}{n^{5/4}}} \stackrel{\mathrm{d}}{\longrightarrow} \frac{1}{\sqrt{12\sigma}}\sqrt{\eta} \ N(0,1).$$

Let
$$X_n = (I(T_n) - \mathbb{E}[I(T_n)])/n^{3/2}$$
, then
$$X_n = \frac{I(T_n) - \frac{1}{2}\Upsilon(T_n)}{n^{3/2}} + \frac{\Upsilon(T_n) - \mathbb{E}[\Upsilon(T_n)]}{2n^{3/2}}.$$

⁰Aldous '91, Panholzer-Seitz '12

Open: Galton Watson trees

```
a_0 = \# \bullet - \text{sink vertices}
```

- $a_1 = \# \bullet$ ancestor of exactly one sink vertex
- $a_2 = \# \bullet$ ancestor of more than one sink vertex

Split trees: $[\vec{H}]_{T_n} = \Omega(n^{a_0}(\ln n)^{a_1}).$

Galton-Watson: $[\vec{H}]_{T_n} = \tilde{\Omega}(n^{a_0}(\sqrt{n})^{a_1})?$ or $\tilde{\Omega}(n^{a_0}(\sqrt{n})^{a_1+a_2})?$.