Data Science Course Understading swarm behaviour

Felicia Burtscher, Frederik Eistrup, José Senart

Freie Universität Berlin August 1, 2017

Presentation Overview

- All models: sim300.py
- Paper 1: Effective leadership and decision-making in animal groups on the move (Couzin et al)
- Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al)
- Quantification

All models: sim300.py

Models	available:	
'Simple	speed couplingsmpl	′
'Couzin	$\verb model$	
'Viscek	modelvsck	′
'Couzin-	-2 modelczn2	,
'Mill mo	odelmill	,

Paper 1: Effective leadership and decision-making in animal groups on the move (Couzin et al): czn2

same as Couzin 1 model but without orientation phase

Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al): mill

A kinetic theory based approach for swarming systems of self-propelled discrete particles.

Individuals driven by self-propelling forces and pairwise attractive and repulsive interactions lead to various morphologies, e.f. flocks, rotating mills, rings and clumps.

We can

- average in direction or velocity
- consider different zones of interaction and averaging (see Couzin et al)

Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al): mill

But: As N= particles grows, it becomes increasingly difficult to follows the dynamics of each individual agent. Therefore, we choose a continuous approach where particles are represented by a density field.

Consider N interacting, self-propelled particles governed by the following equations of motion

$$\dot{x}_i = v_i$$

$$\dot{v}_i = (\alpha - \beta |v_i|^2) v_i - \nabla_{x_i} \sum_{j \neq i} U(|x_i - x_j|)$$
(1)

where U is a pairwise interaction potential and $\alpha, \beta > 0$ are values for propulsion and friction forces.

Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al): mill

For U we choose the Morse potential which is a common choice for interacting swarming systems

$$U(r) = \underbrace{-C_a e^{-r/l_a}}_{\text{attraction}} + \underbrace{C_r e^{-r/l_r}}_{\text{repulsion}}$$
(2)

where C_a , C_r denote attractive and repulsive strengths and I_a , I_r their respective length scales.

Quantification