$X^{(1)}$	$Y^{(1)}$
10.00	8.04
8.00	6.95
13.00	7.58
9.00	8.81
11.00	8.33
14.00	9.96
6.00	7.24
4.00	4.26
12.00	10.24
7.00	4.82
5.00	5.68

N = 11 samples Mean of X = 9.0Mean of Y = 7.5

Correlation = 0.816

(4)	(d)
$X^{(1)}$	$Y^{(1)}$
10.00	8.04
8.00	6.95
13.00	7.58
9.00	8.81
11.00	8.33
14.00	9.96
6.00	7.24
4.00	4.26
12.00	10.24
7.00	4.82
5.00	5.68
• • • • • • • • • • • • • • • • • • • •	

Slope = 0.5

Res. stdev = 1.237

 $\mathsf{Correlation} = 0.816$

$X^{(1)}$	Y ⁽¹⁾	7
10.00	8.04	
8.00	6.95	Scatter plot
13.00	7.58	
9.00	8.81	2
11.00	8.33	δ -
14.00	9.96	
6.00	7.24	g + */
4.00	4.26	+ + 3
12.00	10.24	+ + + 4
7.00	4.82	· +
5.00	5.68	
N = 11	samples	0 -
Mean of	X = 9	0 5 10 15 20
Mean of	Y = 7	x
Intercept	t = 3	

The data set "behaves like" a linear curve with some scatter;

There is no justification for a more complicated model (e.g., quadratic);

There are no outliers;

The vertical spread of the data appears to be of equal height irrespective of the X-value; this indicates that the data are equally-precise throughout and so a "regular" (that is, equiweighted) fit is appropriate.

Slope = 0.5Res. stdev = 1.237Correlation = 0.816

$Y^{(1)}$
8.04
6.95
7.58
8.81
8.33
9.96
7.24
4.26
10.24
4.82
5.68

X ⁽²⁾	Y ⁽²⁾
10.00	9.14
8.00	8.14
13.00	8.74
9.00	8.77
11.00	9.26
14.00	8.10
6.00	6.13
4.00	3.10
12.00	9.13
7.00	7.26
5.00	4.74

$X^{(3)}$	$Y^{(3)}$
10.00	7.46
8.00	6.77
13.00	12.74
9.00	7.11
11.00	7.81
14.00	8.84
6.00	6.08
4.00	5.39
12.00	8.15
7.00	6.42
5.00	5.73

X ⁽⁴⁾	Y ⁽⁴⁾	
8.00	6.58	
8.00	5.76	
8.00	7.71	
8.00	8.84	
8.00	8.47	
8.00	7.04	
8.00	5.25	
19.00	12.50	
8.00	5.56	
8.00	7.91	
8.00	6.89	
${\it N}=11$ samples		

Mean of X = 9.0Mean of Y = 7.5Intercept = 3 Slope = 0.5 Res. stdev = 1.237 Correlation = 0.816

N = 11 samples

N=11 samples Mean of X=9.0Mean of Y=7.5Intercept = 3 Slope = 0.5 Res. stdev = 1.237 Correlation = 0.816 N = 11 samples Mean of X = 9.0Mean of Y = 7.5Intercept = 3 Slope = 0.5 Res. stdev = 1.237 Correlation = 0.816 N = 11 samples Mean of X = 9.0Mean of Y = 7.5Intercept = 3 Slope = 0.5 Res. stdev = 1.237 Correlation = 0.816

Slope = 0.5Res. stdev = 1.237Correlation = 0.816 Slope = 0.5 Res. stdev = 1.237 Correlation = 0.816 Slope = 0.5Res. stdev = 1.237Correlation = 0.816 Slope = 0.5 Res. stdev = 1.237 Correlation = 0.816

 $\overline{Y^{(4)}}$

 $\chi^{(4)}$

Problem statement

- All analysis we perform rely on (sometimes implicit) assumptions. If these assumptions do not hold, the analysis will be a complete nonsense.
- Checking these assumptions is not always easy and sometimes, it may even be difficult to list all these assumptions and formally state them.

A visualization can help to check these assumptions.

- Visual representation resort to our cognitive faculties to check properties.
 - The visualization is meant to let us detect expected and unexpected behavior with respect to a given model.

Using the "right" representations

- The problem is to represent on a limited space, typically a screen with a fixed resolution, a meaningful information about the behavior of an application or system.
- need to aggregate data and be aware of what information loss this incurs.
- Every visualization emphasizes some characteristics and hides others.
 Being aware of the underlying models helps choosing the right representation.