ESS 411/511 Geophysical Continuum Mechanics Class #16

Highlights from Class #15 — Andrew Gregovich

Today's highlights on Friday — Madie Mamer

Our text doesn't cover our next topics very thoroughly, so we will use a few other sources, which are posted on the class web site under READING & NOTES. https://courses.washington.edu/ess511/NOTES/notes.shtml

- Stein and Wysession 5.7.2
- Stein and Wysession 5.7.3/4
- Raymond notes on failure

Also see slides about upcoming topics

Failure and Mohr's circles – slides

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canyas at the start of class.
- I will send another message when it is posted in Canvas.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Homework #3 – Question #1

The coordinate axes look like a tripod, and the rotation axis was vertical Some of you drew a left-handed coordinate system, so the unprimed axes mapped onto the wrong primed axes.

That screwed up your transformation matrix a_{ij} matrix because $a_{ij} = \hat{e}_i' \cdot \hat{e}_j$

After transforming the axes

 $T' = A T A^T$ should still have 9 entries which are just a re-arrangement of the original t_{ij} . Because T is isotropic, you now have 9 relations equating 2 different elements t_{ij} . The second rotation gives another 9 relations.

Then the only way to satisfy all those relations is by $T = \lambda I$

Good news

even with a left-handed rotation, you should still get the same result ©

Homework #3 – Question #2

Show that δ_{ij} and ϵ_{ijk} are unchanged in new coordinate systems

There was a lot of abuse of index notation. For example -

- More than 2 "i" or "j" indices in a term e.g. a_{ij} a_{ij} a_{ij} ε_{ijk}
 det(A) = a_{ij} a_{kl} a_{mn} LHS is a scalar, but RHS is a 6th order tensor
- A correct expression is $\varepsilon_{qmn} \det(A) = \varepsilon_{ijk} a_{iq} a_{jm} a_{kn}$

Homework #3 – Question #3

Determine the principal values of the matrix

$$\begin{bmatrix} K_{ij} \end{bmatrix} = \begin{vmatrix} 4 & 0 & 0 \\ 0 & 11 & -\sqrt{3} \\ 0 & -\sqrt{3} & 9 \end{vmatrix}$$

and show that the principal axes $Ox_1^*x_2^*x_3^*$ are obtained from $Ox_1x_2x_3$ by a rotation of 60° about the x_1 axis.

• Most people got the 3 eigenvalues (4,8,12).

There were two approaches to showing that a 60° rotation around x_1 put K_{ij} into its principal coordinates.

- 1. Find the eigenvectors and show that thei x^*_2 and x^*_3 unit vectors have been rotated 60° from the initial coordinate axes.
- 2. Find the transformation matrix a_{ij} and then express K'_{ij} in the rotated coordinates: $K'_{ij} = a_{im}a_{in}K_{mn}$
 - I saw a lot of incorrect transformation matrices, where the off-diagonal elements had the wrong signs, so the rotation went in the wrong direction
 - Remember that $a_{ij} = \hat{e}_i' \cdot \hat{e}_j$
 - If K'_{ij} is going to be in principal coordinates, it had better be in diagonal form, with diagonal elements 4,8,12 (!)

4 Conventions in Stress Polarity

```
Engineering/Mathematical convention:
Criterion 1: Positive \sigma_{ii} * signifies extension
Criterion 2: Order \sigma_{l} > \sigma_{ll} > \sigma_{ll} (Mase & Mase)
         or
             \sigma_{l} < \sigma_{ll} < \sigma_{lll} (Stein & Wysession)
Geologic/Tectonic/Rock Mechanics convention:
Criterion 1: Positive \sigma_{ii} * signifies compression
                      (not a tensor!! Why not?)
Criterion 2: Order \sigma_{l} > \sigma_{ll} > \sigma_{ll} (Twiss & Moores)
         or
             \sigma_{l} < \sigma_{ll} < \sigma_{lll} (?)
```

^{*} No sum implied

Class-prep questions for today (break-out rooms)

Greatest shear stress is on planes with normal vectors n_i at 45° to σ_{iii} . But failure actually happens on planes --- at an angle θ >45° between n_i and σ_{iii}

- Why is failure **not** on the plane with maximum shear stress? Think of the role of σ_N in preventing slip. Can you relate this to the tangent to the top of the Mohr's circle?
- All surfaces are roughs at some scale. Relate this failure angle to how one rough surface slides over another rough surface.

Failure planes -- are defined by their normal vectors n_i .

Why are there 2 conjugate failure planes?

Relate this to the Mohr's circle.

Only

Only

Stress space

Cartesian space

Types of faults

The Earth's surface is traction-free, so one of the principal directions is generally vertical

What are the orientations of the principal axes of stress \hat{e}_1^* , \hat{e}_2^* , \hat{e}_3^* in each case?

Sliding friction

 σ_S = - $\mu \sigma_N$ μ is *coefficient of friction* for sliding on a pre-existing break

Frictional sliding

 σ_S = - $\mu \sigma_N$ μ is *coefficient of friction* for sliding on a pre-existing break

Differential stress

$$\sigma_{|} - \sigma_{|||}$$

But, if $\sigma_{III} = \sigma_{I}$, all 3 principal stresses are equal

- What do the 3 Mohr's circle look like?
- Describe this state of stress inside the body.
- Is frictional failure possible, if differential stress is zero?

How could we change the stress state in order to cause failure?

- Hold σ_1 make σ_{111} more negative (squeeze harder in x_3)
- Hold σ_{III} , make σ_{I} less negative (don't squeeze as hard in x_1)

Figure 5.7-10: Relation between shear stress and normal stress for frictional sliding.

Lab experiments show a linear relation between the maximum shear stress that rocks can support at any given normal stress. This is called Byerlee's Law.

$$\tau \approx -.85\bar{\sigma}$$
 $\bar{\sigma} < 200 \text{ MPa}$

$$\tau \approx 50 - .6\bar{\sigma}$$
 $\bar{\sigma} > 200$ MPa.

Figure 5.7-10: Relation between shear stress and normal stress for frictional sliding.

Coulomb stress

- Notion of friction:
 - More shear stress τ needed to overcome increase in normal stress σ and cause fault to slip Byerlee's law is an example
- Coulomb stress
 - $\sigma_{S} = \tau \mu (\sigma_{N} p)$
 - where μ is intrinsic coefficient of friction, p is pore pressure (*not* the mean stress p=- $\sigma_{ii}/3$, need to be careful of context)
- Basis is that real area of contact (much smaller than apparent area) is controlled by normal stress
 - deformation of asperities in response to normal stress

Figure 5.7-6: Definition of the Coulomb-Mohr failure criterion.

Mohr-Coulomb Fracture

 σ_{S} = τ_{0} - n σ_{N} n is *coefficient of internal friction* for fracture on a new fault surface τ_{0} is cohesion of the material in absence of any confining stress σ_{N}

Mohr-Coulomb Fracture

Now we are actually breaking rock ...

 σ_s = τ_0 - n σ_N σ_N

Figure 5.7-9: Mohr's circle for sliding on preexisting faults.

