

Listas em Python

Contextualização #1

Histórico de preços de um produto principal

Histórico de Preços

Passos de uma possível solução:

- 1) Obter a sequência de preços a exibir
- 2) Encontrar o maior e o menor valor para desenhar os eixos X e Y
- B) Desenhar os eixos
- 4) Desenhar as retas a partir dos pontos do histórico de preços

Contextualização #2

Corrigir prova de múltipla escolha:

Questão 1 Os sobrinhos do personagem da Disney chamado de Pato Donald são:

- a) Huguinho, Zézinho e Paulinho.
- b) Joãozinho, Zézinho, Huguinho e Paulinho.
- c) Juninho, Zézinho e Huguinho.
- d) Luizinho, Huguinho e Zézinho.
- e) Patinho, Patola e Patinhozinho.

Questão 2

A metade da metade de 12 é igual a:

- a) 6
- b) 4.
- c) 2. d) 3.
- a) 3. e) 12.

Questão 3

Nome do rio onde fica a Cachoeira de Paulo Afonso.

- a) São Francisco.
- b) Paraná.
- c) Tietê.
- d) Paraíba do Sul.
- e) Amazonas.

Ouestão 4

Uma dessas afirmações está ERRADA.

a) A árvore símbolo que deu nome ao nosso país é o Pau Brasil.

- b) O Jacaré é um réptil.
- c) O Mamute era um anfíbio.
- d) A lua é o satélite natural da terra.
- e) A piranha é um peixe de água doce.

Ouestão 5

Ao entrar numa sala, João contou 4 pessoas, incluindo ele. Todos estavam calçados. Sem contar com ele quantos sapatos havia na sala?

- a) 4.
- b) 6.
- c) 8.
- d) 16
- e) 10.

Questão 6

Complete a frase a seguir: "De Grão em grão..."

- a) A galinha fica mais gorda.
- b) O galo fica maior.
- c) O pintinho vai ficando gordo.
- d) O Depósito fica cheio.
- e) A galinha enche o papo.

Questão 7

O animal já extinto chamado DODÔ, era:

- a) Um réptil.
- b) Um dinossauro.
- c) Um pássaro.
- d) Um peixe que media até 3 metros de comprimento.
- e) Uma serpente marinha que se alimentava exclusivamente de algas.

Questão 8

A palavra MARAJÁ quer dizer:

- a) Pessoa muito rica.
- b) Pessoa que vive sem fazer nada.
- c) Pessoa que ganha dinheiro sem trabalhar.
- d) Título de nobreza indiano.
- e) Espécie de gato silvestre selvagem.

Questão 9

A palavra MARACUTAIA tem quantas vogais:

- a) 4.
- b) 5.
- c) 6. d) 7.
- e) 8.

Ouestão 10

- 0 Carnaval é:
- a) 38 dias antes da Páscoa.
- b) 39 dias antes da Páscoa
- c) 40 dias antes da Páscoa
- d) 42 dias antes da Páscoa.
- e) 45 dias antes da Páscoa.

Correção automática de uma prova

Questão 1) Escreva ao lado o resultado da expressão:

- 1. $3*4 6/(4+2) = \dots$
- $2. 6 + 4/2/2 = \dots$
- 3. $(-5+4)*(7*-3) = \dots$

Questão 2) Escreva os anagramas que podem ser formados a partir das letras da palavra AMO que iniciam com M.

.....

Questão 3: Dadas as funções reais f(x) = 2x - 6 e g(x) = ax + b, se f[g(x)] = 12x + 8, o valor de a + b é......

Questão 4) Considere as funções $f(x) = 2x + 1 e g(x) = x^2 - 1$. As raízes da equação f(g(x)) = 0 são: a) inteiras b)negativas c)racionais d)inversas e)opostas

Questão 6) a função f(x): $2x^2 + 7x$ cruza o eixo dos y?

Questão 7) Os pontos (0, -60), (2, -42) e (7, 108) pertencem à parábola y = ax2 + bx + c para quais valores de a, b e c? a= b=......... c=...........

Questão 8) Escreva o produto cartesiano dos conjuntos $A = \{1,2\}$ e $B=\{4,8,9\}$

Questão 9) Uma bola será retirada de uma sacola contendo 5 bolas verdes e 7 bolas amarelas. Qual a probabilidade desta bola ser verde?

Questão 10) Na fila do caixa de uma padaria estão três pessoas. De quantas maneiras elas podem estar posicionadas nesta fila?

Corrigir provas - Principal

Ós sobrinhos do personagem da Disney chamado de Pato Donald são:

- a) Huguinho, Zézinho e Paulinho.
 b) Joãozinho, Zézinho, Huguinho e Paulinho.
- c) Juninho, Zézinho e Huguinho, d) Luizinho, Huguinho e Zézinho.

Questão 2

A metade da metade de 12 é igual a

- e) 12.
- Nome do rio onde fica a Cachoeira de Paulo Afonso. a) São Francisco.
- Ouestão 3
- c) Tietê.d) Paraíba do Sul.
- e) Amazonas.

Uma dessas afirmações está ERRADA.

- a) A árvore símbolo que deu nome ao nosso país é o Pau
- c) O Mamute era um anfíbio.
 d) A lua é o satélite natural da terra.
- e) A piranha é um peixe de água doce.

Ao entrar numa sala, João contou 4 pessoas, incluindo ele. Todos estavam calçados. Sem contar com ele quantos sapatos havia na sala?

Questão 6

- Complete a frase a seguir: "De Grão em grão..."
- a) A galinha fica mais gorda.
- b) O galo fica maior. c) O pintinho vai ficando gordo.
- d) O Denósito fica cheio.

O animal iá extinto chamado DODÔ, era:

- b) Um dinossauro.
- c) Um pássaro.
- d) Um peixe que media até 3 metros de comprimento.
- e) Uma serpente marinha que se alimentava exclusivamente de algas.

A palavra MARAJÁ guer dizer:

- a) Pessoa muito rica.
- b) Pessoa que vive sem fazer nada.
- c) Pessoa que ganha dinheiro sem trabalhar.
- d) Título de nobreza indiano.
- e) Espécie de gato silvestre selvagem

Ouestão 9

A palavra MARACUTAIA tem quantas vogais:

0 Carnaval é:

- a) 38 dias antes da Páscoa
- b) 39 dias antes da Páscoa
- 40 dias antes da Páscoa d) 42 dias antes da Páscoa
- e) 45 dias antes da Páscoa

Passos de uma possível solução:

- Obter o gabarito (sequência de respostas corretas)
- Corrigir provas:
- Obter respostas, contando acertos de acordo com o gabarito

Contextualização #3

O objetivo do <u>Mastermind</u> é descobrir a sequência correta de cores.

O tabuleiro do jogo: 10 linhas

Cada linha: uma chance

Para jogar: clicar sobre a cor e posição

Respostas em cada linha:

- Pino preto: acertou a cor e a posição de uma das cores da combinação.
- Pino branco: acertou a cor, mas não a posição de uma das cores da combinação.

Jogo do MasterMind (ou Senha)

Contextualização 3: MasterMind - Principal

Passos de uma possível solução:

- 1) Criar um sequência de cores a adivinhar (não visível)
- venceu= Jogo(sequência de cores a adivinhar, chances)
- 3) Mostrar sequência a adivinhar
- 4) Se venceu == TRUE

Exibir mensagem de Parabéns!!!

senão

Exibir mensagem de Consolação!!!

Contextualização #4

Sequências numéricas:

Complete os espaços com os números que faltam. Preste bastante atenção para descobrir a lógica de cada fase!

Sequências numéricas

Passos de uma possível solução:

- 1) Criar um sequência de números com uma lei de formação
- 2) Esconder um (ou mais) número(s) da sequência, incluindo-os em outra sequência.
- 3) venceu= Jogo(sequência de números, sequência escondidos)
- 4) Se venceu

Exibir mensagem de Parabéns!!!

senão

Exibir mensagem de Consolação!!!

Contextualização #5

Verificar se um dado está viciado: campeão por modalidade esportiva na InterEng

Dados viciados?

Passos de uma possível solução:

- 1) Zerar contadores de ocorrência (coleção de contadores)
- 2) Para cada lançamento registrado:

Somar 1 ao contador do número ocorrido no lançamento

- 3) Calcular percentuais
- 4) Verificar se há discrepância

Contextualização #6

Traçar gráfico de uma função:

O gráfico cartesiano de uma função f é o conjunto de todos os pontos (x, f(x)) do plano com x variando no domínio de f

Traçar gráfico de uma função

Passos de uma possível solução:

- 1) Selecionar uma sequência de valores para x
- 2) Desenhar os eixos cartesianos x e y:
 - 1) Desenhar duas linhas ortogonais para os eixos cartesianos (x e y)
 - 2) Marcar estas linhas com pontos igualmente espaçados entre si
- 3) Para cada valor x desta sequência:
 - 1) Calcular f(x)
 - 2) Marcar o ponto x no eixo X e o ponto f(x) no eixo Y
 - 3) Desenhar o ponto no plano onde ocorre a interseção das retas paralelas aos eixos que passa nos pontos marcados

Como resolver?

Todos estes exemplos manipulam (pelo menos) uma sequência de valores, não necessariamente do mesmo tipo.

Em alguns problemas é preciso acessar os elementos na ordem que aparecem na sequência, em outros, não .

- ✓ Como criar uma variável capaz de guardar uma sequência de valores e com este comportamento?
- ✓ Como saber quantos valores têm na sequência?
- √ Como exibir os valores da sequência?
- ✓ Como acessar/alterar um ou mais elementos da sequência?
- ✓ Como adicionar /eliminar um ou mais elementos à sequência?

Tipo Lista em Python

LISTA: uma sequência ou coleção ordenada de valores de qualquer tipo.

<u>Valores de uma lista</u> (*elementos* ou *ítens*):

- podem ser de tipos diferentes e até mesmo outras listas
- são delimitados por colchetes ([]) e separados por vírgulas

Exemplo: Lista com o gabarito da 2º prova:

```
GabProva2 = [ [11.0,7.0,21] , ['MAO','MOA'] , 13 , 'c' , [1,1,0.25] , 'Não' , [3,3,-60] , [[1,4] , [1,8] , [1,9] , [2,4] , [2,8] , [2,9]] , 5/12 , 6 ]
```


Lista em Python: representação

$$listaX = [-3, -1, 0, 1, 2, 3]$$

Tipo Lista em Python - Índices

Os itens de uma lista são identificados por **índices**, que variam de:

- 0 até o comprimento da lista-1 (posição a partir do início)
- -1 até -comprimento da lista (posição a partir do final)

Exemplo: listaX = [-3,-1,0,1,2,3]

Tipo Lista em Python - Dinâmica

As listas têm tamanho variável. Crescem ou diminuem quando elementos são inseridos ou retirados

São mutáveis, ao contrário de strings. A qualquer momento, um item:

- ✓ pode ser incluído na lista
- ✓ pode ser removido
- ✓ pode ser alterado
- ✓ pode ser consultado

Criando uma lista por enumeração

Lista Vazia:

```
nomeVariável Lista = []
ou
nomeVariável Lista = list()
```

Lista com elementos enumerados:

```
nomeVariável Lista = [el_1,el_2,...,el_n]
ou
nomeVariável Lista = list(el_1,el_2,...,el_n)
```


Criando uma lista por enumeração

Lista

```
aninhada
amigos = [ 'João', 'Pedro', 'Ana' ] ou sublista
megaSena = [ 1,17,22,24,25,36 ]
vazia = []
mista= ['Pedro',9.0,15*2, [1,2,'carlos'] ]
listas = [ amigos,megaSena ]
```


Comprimento de uma lista

len(varLista)

Retorna o número de elementos de uma lista.

Uma lista aninhada (*sublista* ou *lista dentro da lista*) é contada <u>como MAIS UM elemento</u> da lista que a contém.

```
amigos = [ 'João', 'Pedro', 'Ana' ]
listas = [ amigos,megaSena ]
vazia = []
megaSena = [ 1,17,22,24,25,36 ]
mista = [ 'Pedro', 9.0, 15*2,[1,2,'carlos'] ]
```

len(amigos)	→ 3
len(listas)	→ 2
len(vazia)	→ 0
len(megaSena)	→ 6
len(mista)	→ 4

Exibindo uma variável do tipo lista

print(varLista)

```
amigos = ['João', 'Pedro', 'Ana']

megaSena = [1,17,22,24,25,36]

vazia = []

mista = ['Pedro', 9.0, 15*2, [1,2,'carlos']]

listas = [amigos,megaSena]
```

```
print('Amigos: ',amigos)
print('MegaSena: ',megaSena)
print('Com sublista:', mista)
print('Com listas:', listas)
print('Vazia:', vazia)
```

```
Amigos: ['João', 'Pedro', 'Ana']
MegaSena: [1, 17, 22, 24, 25, 36]
Com sublista: ['Pedro', 9.0, 30, [1, 2, 'carlos']]
Com listas: [['João', 'Pedro', 'Ana'], [1, 17, 22, 24, 25, 36]]
Vazia: []
```


Acesso aos elementos: indexação

Pelo operador de indexação [].

varLista[expressão inteira]

Expressão: resultando em um valor inteiro e determina o índice.

- ✓ Índices positivos (0 até comprimento da lista-1) indicam a posição do elemento na lista da esquerda para a direita.
- √ Índices negativos (-1 até -comprimento da lista) indicam a posição do elemento da direita para a esquerda

Índices fora do intervalo provocam um erro

Indexando elementos da lista (1/7)

listaX = [-3,-1,0,1,2,3]

Qual o índice do primeiro elemento? 0 Qual o índice do último elemento? -1 ou len(listaX)-1

Indexando elementos da lista (3/7)

Exemplo 1: listaX = [-3,-1,0,1,2,3]

```
listaX

0 1 2 3 4 5

-6 -5 -4 -3 -2 -1

-3 -1 0 1 2 3
```


Indexando elementos da lista (4/7)

Exemplo 2: vencConc = [['Jo',9],['Ana',8.9],['Zé',8.4]]

Indexando elementos da lista (4/7)

Exemplo 2: vencConc = [['Jo',9],['Ana',8.9],['Zé',8.4]]

Indexando elementos da lista (6/7)

vencConc = [['Jo',9],['Ana',8.9],['Zé',8.4]]

Como acessar para exibir o nome do terceiro colocado?

Indexando elementos da lista (6/7)

vencConc = [['Jo',9],['Ana',8.9],['Zé',8.4]]

Como acessar para exibir o nome do terceiro colocado?

print(vencConc[-1][0])

Alteração de um elemento (1/5)

varLista[expressão inteira] = valor

Substitui o valor do elemento indexado pelo resultado da expressão

$$listaX = [-3, -1, 0, 1, 2, 3]$$

$$listaX[5] = [4,7]$$

Alteração de um elemento (3/5)

Exemplo 1:

[-5,-1, 0, 1, 2, 3]

Alteração de um elemento (4/5)

Exemplo 2:

[-5,-1, 0, 1, 2, [4,7]]

Desenvolvendo o contexto #6

Traçar o gráfico de uma função:

Idéia da solução:

Selecionar os valores de x

Desenhar o eixo cartesiano

Para cada valor de x:

 $traçar\ ponto\ (x,\ y=f(x))$

Como plotar todos os pontos da lista?

Percorrer a lista, elemento a elemento, desenhando o ponto (x,y)

Para cada x ∈ lista y=f(x) desenhar ponto(x,y)

Estrutura de Repetição!!!

Iterando sobre os elementos da lista

for elemento in lista: CORPO

NOVO COMANDO FOR:

Acessa sequencialmente os elementos da lista, do 1º ao último, aplicando as instruções do corpo do bloco de comandos para cada elemento.

Exemplo:

```
lista= [1, 2, 3, 4]

for el in lista:
    print(el)
```


Comando FOR e Função range

Gera os índices da lista sequencialmente, de 0 a nº de elementos-1

Exemplo:

```
lista= [1,2,3,4]

for i in range(len(lista)):
    print(lista[i])
```


Comando FOR e Função enumerate

for (indice,valor) in enumerate(lista): CORPO

Acessa sequencialmente os elementos da lista, do 1º ao último, gerando os pares: índice da posição, valor da posição

Exemplo:

```
lista= [1,2,3,4]
for (i,val) in enumerate(lista):
    print("indice: %d - valor: %d",i,val)
```

Exemplo

1) Considere as seguintes listas com as questões de uma prova e respectivo gabarito:

```
IQuestoes=['3+5=....', '9*3=....', '2+3*4=....', '7-5+9=....', '4*6/3+2=....']
IGabarito=[8,27,14,11,10]
```

- a) Exibir o texto das questões
- b) Exibir o número da questão e o gabarito da questão
- c) Exibir cada questão seguida do gabarito

Exemplo

```
lQuestoes=['3+5=....', '9*3=....','2+3*4=....','7-5+9=....','4*6/3+2=....']
lGabarito=[8,27,14,11,10]
#Exibir o texto das questões
for quest in lQuestoes:
   print("%s"%quest)
#Exibir o número da questão e o gabarito da questão
for (ind, gab) in enumerate(lGabarito):
   print("Questão %d - Gabarito:%d"%(ind+1, qab))
#Exibir cada questão seguida do gabarito:
for i in range(0,len(lGabarito)):
   print("Questão %s - Gabarito:%d"%(lQuestoes[i], lGabarito[i]))
```


Funções úteis

Criando uma lista de um intervalo

Relembrando:

nomeVar Lista = list(range(inicio, fim, passo))

A função list(*sequência*) transforma a *sequência* em lista

A função range(): gera uma sequência de números, de passo em passo, no intervalo [inicio,fim) início (opcional): 1º valor da sequência (default: 0) fim: sucessor do último valor da sequência passo (opcional): intervalo entre os valores (default:1)

Listas e intervalos

Exemplos:

print(lista)

k elementos aleatórios em um intervalo

A função sample (população, k), do módulo *random*, escolhe randomicamente k elementos (sem repetição) de uma sequência (população).

→ Retorna uma nova lista com os elementos escolhidos

Listas aleatória com *k* elementos

Exemplos:

print(lista)

```
lista=random.sample(range(0, 100), 4) [3,61,0,46]
lista=random.sample(range(-100,100), 4) [22,-100,91,74]
lista=random.sample(range(0,100,2),4) [40,12,8,82]
```


k elementos aleatórios de uma string

```
nomeVar Lista = random.sample(texto, k)
```

Convertendo um texto para lista:

```
nomeVar Lista = list(texto)
```

Unindo uma lista de strings em uma única string:

'símbolo cola'.join(lista)

```
texto='Oi,pessoal'
lsimb=list(texto)
print(lsimb) #===> ['O', 'i', ',', 'p', 'e', 's', 's', 'o', 'a', 'l']
textoRec=''.join(lsimb)
print(textoRec) # ===> Oi,pessoal
textoMod='-'.join(lsimb)
print(textoMod) # ===> O-i-,-p-e-s-s-o-a-l
```

Listas: exibe e soma elementos

EXERCÍCIO: Crie as listas l1 e l2

Em seguida, crie as funções abaixo e teste-as para as duas listas:

- a) Exiba os elementos da lista, um por linha
- b) Retorne a soma de todos os valores de uma lista

Ex soma (I1) =
$$103$$
 soma(I2) = 114

Uma solução: exibe elementos

```
def exibe(1):
    for el in l:
         print(el)
    return
11 = [3, 7, 1, 90, 2]
12 = [3, [98, 2, 1], 10]
exibe(11)
exibe(12)
```


Soma valores de uma lista

```
def somaEl(l):
    tot=0
    for el in l:
        tot+=el #tot=tot+el
    return tot
```


Soma valores de l1 (1/11)

```
def somaEl(l):
    tot=0
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (2/11)

```
def somaEl(1):
    tot=0
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (3/11)

```
def somaEl(1):
    tot=0
                                                  tot
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (4/11)

```
def somaEl(1):
    tot=0
                                                  tot
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (5/11)

```
def somaEl(1):
    tot=0
                                                  tot
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (6/11)

```
def somaEl(1):
    tot=0
                                                   tot
    for el in l:
        tot+=el
    return tot
                                                    el
```


Soma valores de l1 (7/11)

```
def somaEl(1):
    tot=0
                                                   tot
    for el in l:
        tot+=el
    return tot
                                                   el
```


Soma valores de l1 (8/11)

```
def somaEl(1):
    tot=0
                                                  tot
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (9/11)

```
def somaEl(1):
    tot=0
                                                  tot
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (10/11)

```
def somaEl(1):
    tot=0
                                                  tot
    for el in l:
        tot+=el
    return tot
```


Soma valores de l1 (11/11)

```
def somaEl(1):
    tot=0
                                                  tot
    for el in l:
        tot+=el
    return tot
```


Soma valores de 12 (1/6)

```
def somaEl(1):
    tot=0
    for el in l:
        tot+=el
    return tot
```


Soma valores de 12 (2/6)

```
def somaEl(l):
   tot=0
   for el in l:
      tot+=el
   return tot
```


Soma valores de 12 (3/6)

```
def somaEl(l):
    tot=0
    for el in l:
        tot+=el
    return tot
```


Soma valores de 12 (4/6)

```
def somaEl(1):
    tot=0
    for el in l:
        tot+=el
    return tot
                                       el
```


Soma valores de 12 (5/6)

```
def somaEl(1):
    tot=0
    for el in l:
        tot+=el
    return tot
```

Como o 2º elemento de l2 é <u>uma lista</u>, não pode ser somado à variável tot:

TypeError: unsupported operand type(s) for +=: 'int' and 'list'

Soma valores de 12 (6/6)

Somar lista:

Caso 1) o elemento é um inteiro:

somar ao total

RECURSÃO!!!

Caso2) o elemento é uma lista:

somar lista e resultado somar ao total

Soma elementos com strings

```
def somaEls(1):
    tot=0
    for el in l:
         if type(el) == int:
             tot+=el
        else:
             tot+= somaEls(el)
    return tot
11 = [3, 7, 1, 90, 2]
12 = [3, [98, 2, 1], 10]
print(somaEl(11))
print(somaEls(12))
```


Resolvendo strings em listas

```
def somaEls(1):
    tot=0
    for el in l:
        if type(el) == int:
             tot+=el
        else:
             tot+= somaEls(el)
    return tot
11 = [3, 7, 1, 90, 2]
12=[3,[98,2,1],10]
print(somaEl(l1))
print(somaEls(12))
```


Mãos na massa!!! Corrigindo a provinha de matemática

Faça um programa que apresente as questões da prova ao aluno, uma a uma, pergunte sua resposta, envie uma mensagem de acerto ou erro. No final o programa deve exibir a nota do aluno (cada acerto vale 2 pontos)

Modificação: Cada vez que o aluno errar, mostrar a resposta correta

IGabarito=[8,27,14,11,10]

<u>Desafio</u>: Considere uma prova onde algumas questões contém várias subquestões (que podem também ser divididas em subquestões). Construa uma função que receba o gabarito e a resposta do aluno, retornando o número de acertos

```
Q1: a) - ...
Q2: a) 0 - ...
b) - ...
b) - ...
03: - ...
y; : -
```

Exemplo: Gabarito: $[[1,2,3],[[4,[5,6]],7],8,9,10] \rightarrow Uma prova com 5 questões.$

Q1: 3 subitens com respostas únicas

Q2: 2 subitens,

Q2 a) tem duas perguntas (a 1a(1) com uma resposta e a 2a (2) com 2 respostas (i,ii))

Q2 b) tem uma resposta.

Q3, Q4, Q5: resposta simples (única)

Mãos na massa!!!

Crie a lista abaixo:

```
lgrande = random.sample(range(-20, 20),14)
```

lgrande[0]=random.sample(range(-10,10),3)

lgrande[4]=random.sample(range(100),2)

Igrande[12]=random.sample(range(-40,16),4)

Faça as funções abaixo e teste-a para a lista Igrande:

- a) retorne o produto dos números de uma lista
- b) retorne a média dos números de uma lista
- c) retorne o maior valor da lista
- d) substitua todos os múltiplos de 4 pelo número 0 na lista recebida
- e) receba também um número informado pelo usuário e retorne True, se o número está na lista e False, caso contrário

Mãos na massa!!!

Crie a lista abaixo e utilize-a para testar as funções.

Lstrings=['Oi',['estamos','aprendendo',' a trabalhar'], 'com', 'listas', ['de',' strings']]

- 1. Faça uma função que concatene todas as palavras de uma lista de strings, retornando a string concatenada
- 2. Faça uma função que retorne a quantidade de caracteres da maior palavra de uma lista de strings
- 3. Faça uma função que retorne a palavra com a maior quantidade de caracteres de uma lista de strings
- 4. Faça uma função que retorne a quantidade de palavras contidas em uma lista de strings
- 5. Faça uma função que coloque todas as palavras de uma lista de strings em maiúsculo

Exercício: campeonato de xadrez

Faça uma função que receba uma lista com 5 nomes de jogadores que participam de um campeonato de xadrez e exibe a tabela de jogos considerando que o 1º jogador joga com as peças brancas e há sempre dois jogos (com as brancas e com as pretas)

Teste para a lista: ['Jo','Ana','Zé','Pedro','Vivi']

Jo:	X	Ana:	
Jo:	X	Zé :	
Jo:	X	Pedro:	
Jo:	X	Vivi :	
Vivi:	X	Jo:	
Vivi:	X	Ana:	
Vivi:	X	Zé:	
Vivi:	X	Pedro:	

Xadrez: uma solução

```
def tabela(lJog):
   for jog1 in lJog:
       for jog2 in lJog:
           if jog1 != jog2:
               print( "%6s x %6s " % (jog1,jog2))
   return
lJog = ['Jo', 'Ana', 'Zé', 'Pedro', 'Vivi']
tabela(lJog)
```


Exercício: agenda escolar

Construa uma função para exibir uma agenda para anotar as disciplinas por dia da semana, conforme modelo:

Segunda	
7:00:	
J.00	
13:00:	
15:00:	
17:00:	
Terça	
7:00:	_
9:00:	_
9:00: 11:00: 13:00:	
10.00.	
17:00:	
Quarta	
7:00:	_
7:00: 9:00:	_
13.00.	
15:00:	
17:00:	
Quinta	
7:00:	_
9:00:	_
11:00:	
13.00.	_
15:00:	_
17:00:	_
Sexta	
7:00:	_
9:00:	_
11:00:	_
13:00:	_
13.00.	_
17:00:	_

Uma solução para agenda

Exercício: dias entre duas datas

Faça um programa que leia o dia e mês de dois eventos <u>no mesmo ano</u>, mostrando quantos dias há entre eles. Não se preocupe com anos bissextos e considere que o evento 1 é sempre anterior ao evento 2.

A leitura da data de um evento é no seguinte formato: dd/mm.

Exemplos:

- a) Evento é no mês corrente: <u>evento 1</u>:19 04 <u>evento 2</u>: 25 04 Meses incompletos: 04 (30 - 19 dias) = 11 dias
- b) Evento não é no mês corrente: <u>evento1</u>:19 04 <u>evento 2</u>: 25 08

Meses incompletos: 04 (30 - 19 dias) = 11 dias

Meses completos: 05, 06, 07

Meses incompletos: 08 = 25 dias

DICA p/Solução: Crie uma lista com os dias em cada mês:

meses = [31,28,31,30,31,30,31,30,31,30,31]

Modifique o programa para que os valores digitados sejam validados.

Solução para ler datas do ano

```
def leData(num, meses):
    data=input('Dia/mes do %d evento? dd/mm: '%num)
    #separa dia e mes
    pos=data.find('/')
    dia=int(data[:pos])
    mes = int(data[pos+1:])
    return [dia, mes]
```


Solução para diferença de datas

```
meses=[31,28,31,30,31,30,31,30,31,30,31]
evento1 = leData(1,meses)
evento2 = leData(2,meses)
#meses incompletos
dias = (meses[evento1[1]-1]-evento1[0] ) + (evento2[0])
#meses completos
for mes in range(evento1[1],evento2[1]-1):
    dias+=meses[mes]
print('Entre os eventos há %d dias'%dias)
```


Solução modificada com validação

```
def leData(num, meses):
    while (True):
        data=input('Dia/mes do %d evento? dd/mm: '%num)
         #separa dia e mes
        pos=data.find('/')
        dia=int(data[:pos])
        mes = int(data[pos+1:])
         #data válida?
         if ( mes \geq=1 and mes\leq=12):
             if (dia \ge 1 \text{ and } dia \le meses[mes-1]):
                 return [dia, mes]
             else:
                 print ( 'mes %d tem no máximo %d dias'
             % (mes, meses [mes-1]))
        else:
             print('mes inválido-valor entre 1 a 12')
```


Exercício: temperatura média

Crie uma função em Python que receba uma lista com a temperatura média de cada mês do ano.

Dadas as temperaturas, esta função deve calcular a média anual das temperaturas e mostrar todas as temperaturas acima da média anual, e em que mês elas ocorreram

Atenção: mostrar o mês por extenso:

1 – Janeiro, 2 – Fevereiro, . . .

Solução das Temperaturas Médias

```
def calcMedia(lista):
   tot=0
   cont = 0
   for el in lista:
       tot = tot + el # tot += el
        cont=cont+1
   media = tot/cont
   return media
def acimaMedia(lista): lmeses=['janeiro','fevereiro','março','abril','maio','junho',
           'julho', 'agosto', 'setembro', 'outubro', 'novembro', 'dezembro']
   media=calcMedia(lista)
    for i in range(len(lista)):
        if lista[i] > media:
            print(lmeses[i], 'acima da média, temp =', lista[i])
   return
import random
ltemp = random.sample(range(-100, 100), 12)
acimaMedia(ltemp)
```


Exercícios: números e múltiplos

Crie uma função que receba uma lista / e substitua todos os seus elementos que são múltiplos de seu índice pelo valor do elemento sucessor.

CUIDADO: o 1º elemento tem índice 0 e não pode "entrar".

Lembre também que o último elemento não tem sucessor!

Exemplo:

$$I = [1,2,3,6,8] \rightarrow I = [1,3,3,8,8]$$

Solução para números e múltiplos