

SWAY

AI - система видеоконтроля использования средств индивидуальной защиты на опасных предприятиях

Выполнил: Галагоза Евгений, 9 класс

Направляющая организация:

ОГАН ОО Центр "Алые паруса",

Структурное подразделение:

Центр "Детский технопарк Кванториум"

Проблема

Высокая вероятность получения травм на предприятиях из-за пренебрежения средствами индивидуальной защиты во время работы.

Актуальность

По данным Социального фонда России, в 2024 году на российских производственных площадках ежегодно фиксируется порядка 35–36 тыс. несчастных случаев, при этом летальных случаев больше тысячи.

Однако, если учитывать только несчастные случаи с серьезными последствиями, цифры будут ниже. Например, в 2024 году было зарегистрировано 4 905 таких случаев, из которых 1 036 закончились летальным исходом.

Актуальность

Исходя из этого можно установить зависимость между фактором ношения средств индивидуальной защиты и числом пострадавших.

Вывод: ношение СИЗ предотвращает большую часть несчастных случаев. В таких условиях помощник для выявления нарушителей может помочь снизить травматизм и смертность.

Проект актуален!

План реализации

Цель и задачи

Цель

Разработать систему видеонаблюдения, которая определяет наличие защитной одежды у рабочих и сигнализирует об её отсутствии.

Задачи

Проанализировать

производственный процесс и определить, что нужно детектировать Реализовать алгоритм детекции (с помощью yolov8), а также алгоритм сигнализации Реализовать web-приложение для визуализации работы системы Протестировать работу системы

Целевая аудитория

- 1. Строительные компании, а конкретнее: Люди, ответственные за безопасность и здоровье сотрудников на конкретном участке (Прораб, Руководитель службы охраны труда и т.д.)
- 2. Производственные и промышленные компании: Специалисты по охране труда, начальники цехов, отвечающие за жизнь рабочих на определенной территории
- 3. Страховые компании

Анализ области

	tochka.ai	VizorLabs H&S	NEURUS	
	Универсальность	Высокая точность детекции	Универсальность	
+	Высокая точность детекции	Возможность одновременной обработки большого числа потоков	Возможность интеграции с другими технологиями	
	Высокие технические требования	Высокие технические требования	Потребность в настройке и обучении	
	Потребность в настройке и обучении	Сложная настройка и возможная потребность в дообучении нейросети	Высокие технические требования	

Используемые ресурсы

Руthon был выбран в качестве основного языка программирования, также при реализации интерфейса использовался язык гипертекстовой разметки HTML, так же использовался JavaScript, CSS.

В качестве основной архитектуры модели компьютерного зрения используется YOLOv8m (от компании Ultralytics), обладающая наилучшими среди конкуретнов характеристиками. Её я обучил на лично собраном датасете и внедрил локально в web-приложение.

Анализ архитектур CV

Критерий	YOLO	SSD	Faster R-CNN	Mask R-CNN
Скорость	~0.022 с/изобр. (~45 FPS)	0.033-0.05 с/изобр. (~20-30 FPS)	0.1-0.2 с/изобр. (~5-10 FPS)	0.2-0.5 с/изобр. (~2-5 FPS)
Точность	~80%	~70%	70-85%	73-85%
Обнаружение	Объекты и их местоположение в одном проходе	Объекты и их местоположение в одном проходе	Обнаружение объектов и их границ	Обнаружение объектов, их границ и сегментация
Использует	CNN	CNN	CNN	CNN

Анализ архитектур CV

				17
Критерий	YOLO	SSD	Faster R-CNN	Mask R-CNN
Скорость	~0.022 с/изобр. (~45 FPS)	0.033–0.05 с/изобр. (~20–30 FPS)	0.1-0.2 с/изобр. (~5-10 FPS)	0.2-0.5 с/изобр. (~2-5 FPS)
Точность	~80%	~70%	70-85%	73-85%
Обнаружение	Объекты и их местоположение в одном проходе	Объекты и их местоположение в одном проходе	Обнаружение объектов и их границ	Обнаружение объектов, их границ и сегментация
Использует	CNN	CNN	CNN	CNN

Анализ архитектур CV

				17
Критерий	YOLO	SSD	Faster R-CNN	Mask R-CNN
Скорость	~0.022 с/изобр. (~45 FPS)	0.033–0.05 с/изобр. (~20–30 FPS)	0.1-0.2 с/изобр. (~5-10 FPS)	0.2-0.5 с/изобр. (~2-5 FPS)
Точность	~80%	~70%	70-85%	73-85%
Обнаружение	Объекты и их местоположение в одном проходе	Объекты и их местоположение в одном проходе	Обнаружение объектов и их границ	Обнаружение объектов, их границ и сегментация
Использует	CNN	CNN	CNN	CNN

Что детектирует модель?

01 Человек

02 Шлем

03

Отстутствие шлема

04 Сигнальный жилет

05

Отсутствие Сигнального Жилета

06 Защитные Очки

07 Защитная Маска

08 Чистое лицо

09

Костюм полной химзащиты

p Классы

10

Отсутствие костюма полной химзащиты

p Классы

11

Маска от костюма полной химзащиты

🔊 Классы

12

Отсутствие маски от костюма химзащиты

🔊 Классы

13Противогаз

p Классы

14 Защитные ботинки

Классы

15

Отсутствие Защитных ботинок

Используемые ресурсы

Основные библиотеки

Telebot

Python-библиотека. В проекте используется для реализации телеграмм-бота для получения уведомлений о нарушении правил ношения СИЗ.

Flask

Легковесный фреймворк на Python, используемый для создания веб-приложений и организации серверной логики проекта, в проекте используется для реализации web-приложения.

Ultralytics

Python-библиотека. В проекте используется для работы с моделью YOLO.

Open CV

Библиотека для компьютерного зрения, предназначенная для обработки изображений и видеопотоков в реальном времени, в проекте используется для захвата, анализа и обработки видеоданных.

Сравнение моего решения с аналогами

	tochka.ai	VizorLabs H&S	NEURUS	Моё решение
+	Универсальность Высокая точность детекции	Высокая точность Детекции Возможность одновременной обработки большого числа потоков	Универсальность Интеграция с другими технологиями	Высокая точность детекции Возможность одновременной обработки большого числа потоков Невысокие технические требования
_	Высокие технические требования Потребность в	Высокие технические требования Сложная настройка	Потребность в настройке и обучении	Нет интеграции с другими технологиями
	настройке и обучении	Возможная потребность в дообучении нейросети	Высокие технические требования	TOATIOTOTINAMI

Архитектура проекта

Архитектура проекта

Перспективы проекта

- Интеграция КПП для определения конкретного сотрудника, нарушающего правила
- Улучшение модели компьютерного зрения
- Модернизация Web-приложения

Список литературы

Flask. Flask Documentation (Stable) URL: https://flask.palletsprojects.com/ en/stable/

OpenCV URL: https://docs.opencv.org/4.x/

Социальный фонд России URL: https://social-fund.ru/

Ultralytics URL: https://ultralytics.com/

YOLOv8 URL: https://docs.ultralytics.com/

Спасибо!

Буду рад выслушать ваши вопросы и предложения!

