2nd Order, Linear, Homogeneous Differential Equations

Logan Grosz

February 17, 2018

Abstract

Abstract goes here...

1 Declarations

 Δ ; Discriminant of the quadratic formula; variable domain and range, if applicable

2 Rule

$$ay'' + by' + cy = 0$$

$$\implies am^2 + bm + c = 0$$

$$\Delta > 0 \implies y = c_2 e^{m_1 x} + c_2 e^{m_2 x} \tag{1}$$

$$\Delta = 0 \implies y = c_2 e^{m x} + c_2 x e^{m x} \tag{2}$$

$$\Delta < 0 \implies y = c_1 e^{\alpha x} cos(\beta x) + c_2 e^{\alpha x} sin(\beta x)$$
 (3)

Note: This method works for homogeneous linear equations of any order. Just need to find roots and substitute for m.

3 Pre-Derivation

Graphs of sine and cosine (for the $\sin x = \sin x$ and $\cos -x = -\cos x$)

4 Derivation

4.1 Solving the Differential Equation

$$ay'' + by' + cy = 0$$

Where $a, b, y \in k$

Let
$$y = e^{mx}$$

 $\implies y' = m e^{mx}$
 $\implies y'' = m^2 e^{mx}$

$$a m^2 e^{m x} + b m e^{m x} + c e^{m x} = 0$$
 Substitution
$$e^{m x} (a m^2 + b m + c) = 0$$
 Distribution

$$\forall x (e^{m x}) \neq 0$$

$$\implies a m^2 + b m + c = 0$$

$$m = \frac{-b \pm \sqrt{b^2 - 4\,a\,c}}{2\,a}$$
 Quadratic Formula
 Let $\Delta = b^2 - 4\,a\,c$ Discriminant

Case 1:
$$\Delta > 0 \implies m_1, m_2 \in \mathbb{R}$$

Case 2: $\Delta = 0 \implies m_1 = m_2 = \frac{-b}{2a}$
Case 3: $\Delta < 0 \implies m_1, m_2 \in \mathbb{C}$

4.2 Cases 1 & 2

General solution for cases 1 & 2:

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

Note: Case 2
$$\implies y_2 = y_1 \int \frac{e^{\int P(x)dx}}{{y_1}^2} dx$$

4.3 Case 3

$$m_1, m_2 \in \mathbb{C}$$

 $m_1 = \alpha + i \beta$
 $m_2 = \alpha - i \beta$

$$\begin{split} y(x) = & c_1 \, e^{(\alpha + i \, \beta)x} + c_2 \, e^{(\alpha - \, \beta)x} & \text{Complex-valued solutions} \\ = & c_1 \, e^{\alpha x + i \, \beta x} + c_2 \, e^{\alpha x - \, \beta x} \\ = & c_1 \, e^{\alpha x} \, e^{i \, \beta x} + c_2 \, e^{\alpha x} \, e^{-\beta x} \\ e^{i\Theta} = & \cos \Theta + i \sin \Theta, \, \Theta \in \mathbb{R} \end{split}$$
 Euler's Formula

Let
$$c_1 = c_2 = 1$$

 $\Rightarrow e^{\alpha x} e^{\beta x} + e^{\alpha x} e^{-\beta x}$
 $= e^{\alpha x} (\cos(\beta x) + i \sin(\beta x) + \cos(\beta x) - i \sin(\beta x))$
 $= e^{\alpha x} (2 \cos(\beta x))$
 $\Rightarrow y_1 = e^{\alpha x} \cos(\beta x)$
Let $c_1 = 1 c_2 = -1$
 $\Rightarrow e^{\alpha x} e^{\beta x} - e^{\alpha x} e^{-\beta x}$
 $= e^{\alpha x} (\cos(\beta x) + i \sin(\beta x) - \cos(\beta x) - i \sin(-\beta x))$
 $= e^{\alpha x} (\cos(\beta x) + i \sin(\beta x) - \cos(\beta x) + i \sin(\beta x))$
 $= 2 i e^{\alpha x} \sin(\beta x)$
 $\Rightarrow y_2 = c_2 \sin(\beta x)$

General solution for case 3:

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

5 Exempli Gratia

Examples of important instances