1、(崇明) 如图所示, AB 两物体叠放在一起, 在粗糙水平面上向左 做匀减速运动,运动过程中 B 受到的摩擦力()

B. 方向向右, 保持不变

C. 方向向左,逐渐减小 D. 方向向右,逐渐减小;

2、(崇明) 如图所示, 小芳在体重计上完成下蹲动作。下列 F-t 图像能反映体重计示数随 时间变化的是()

A

В

C

D

3、(虹口) 在粗糙的水平面上,物体在水平推力 F 作用下由静止开始作匀加速直线运动, 一段时间后,将 F逐渐减小,在 F逐渐减小到零的过程中,速度 v 和加速度 a 的变化情况 是()

A. v减小, a减小

B. v 增大, a 减小

C.v 先减小后增大, a 先增大后减小

D. v 先增大后减小, a 先减小后增大

4、(金山) 如图, 我国第五代战斗机"歼-20"是目前亚洲区域最先 进的战机,当它沿倾斜直线匀速飞行时,气体对它的作用力方向为 ()

5、(闵行) 如图, 滑块以初速度 v0 沿表面粗糙且足够长 的固定斜面, 从顶端下滑, 直至速度为零。对于该运动 过程, 若用 h、s、v、a 分别表示滑块的下降高度、位 移、速度和加速度的大小, t表示时间, 则下列图像最能 正确描述这一运动规律的是

6、(普陀)如图,某同学用力沿拖把柄方向,斜向下推动拖把。若保 持推力的大小不变,柄与地面间的夹角变小,拖把始终保持匀速运 动,则地面对拖把的作用力()

A. 变大 B. 变小 C. 不变

D. 先变大后变小

7、(徐汇) 根据高中所学知识可知,自由下落的小球、将落在正下方位置。但实际上、赤 道上方 200m 处无初速下落的小球将落在正下方位置偏东约 6 cm 处。这一现象可解释为. 除重力外,由于地球自转,下落过程小球还受到一个水平向东的"力",该"力"与竖直方向的 速度大小成正比。现将小球从赤道地面竖直上抛,考虑对称性,上升过程该"力"水平向 西,则小球

- (A) 落回到抛出点
- (B) 落地点在抛出点西侧
- (C) 落地点在抛出点东侧
- (D) 到最高点时小球速度为零

8、(虹口) 在光滑水平面上,一个物块同时受到两个水平力的作用,这两个力随时间的变化 如图所示, 且第 1s 内物块处于静止状态, 则(

- A、第 2s 内的加速度逐渐减小, 速度逐渐增大
- B、第 3s 内的加速度逐渐减小,速度逐渐减小
- C、第 4s 内的加速度逐渐减小, 速度逐渐增大
- D、第 5s 末物块的速度为零,且离开出发点最远

- 9、(浦东) 如图是船夫站在水平甲板上撑杆使船离开岸边, 该过程中(
- A、船夫和船之间存在摩擦力
- B、岸对杆的作用力大于杆对岸的作用力
- C、杆的弯曲是由杆对岸的作用力引起的
- D、船夫对杆的力和岸对杆的力是一对相互作用力

10、(浦东) 如图所示, 小球沿着不同倾角θ的光滑斜面滑下, 小球的加速度 a 及斜面的压力 N 与各自最大值的比值 v 随θ变化的图像分别对应()

A、①和② B、①和④ C、②和④ D、③和④

11、(松江) 下列图像可以反应牛顿第二定律的是(

- 12、(闵行) 在其余条件都相同时, 汽车因为撞击而停下要比刹车停下对乘员的作用力更大, 分析其原因,可依据的相关物理原理是 ;具体理由是
- 13、(长宁) 倾斜索道与水平面夹角为 37°, 质量为 m 的人站在车厢内 沿着钢索匀加速向上运动, 他对箱底的压力为 1.25mg。那么, 车厢沿钢 索匀加速向上运动的加速度为______,车厢对人的摩擦力的大小 为。

- **14、(闵行)** 如图所示,有一柔软链条全长为L=1.0m,质量均匀分布,总质量为M=2.0kg。 链条均匀带下电。总带电量 $O = 1.0 \times 10^{-6} C$ 、将链条放在离地足够高的水平桌面上。空间存 在竖直向下的匀强电场,电场强度的大小 E = 2.0×10⁷V/m。若桌面与链条之间的动摩擦因数 为 μ = 0.5(重力加速度取 g = 10m/s²)。给链条一个向右的初动能,试求:
- (1) 链条受到的最大滑动摩擦力;
- (2) 当桌面下的链条多长时, 桌面下的链条所受到的重力恰好等于链条受到的滑动摩擦力。
- (3) 能使链条从桌面上全部滑下所需的最小初动能。

15、(黄浦) 如图 (a) 所示的"冰爬犁"是北方儿童在冬天的一种游戏用 具:"上坐一人,双手握铁篙,向后下方用力点冰,则冰床前进如飞。"在 空旷的水平冰面上,有一小孩从静止开始,连续三次"点冰"后,爬犁沿直 线继续滑行了 24m 后停下。某同学用 v-t 图像描述了上述运动过程,如 图 (b) 所示。

- (1) 求"冰爬犁"滑行时加速度的大小和运动中的最大速率
- (2) 求小孩"点冰"时"冰爬犁"的加速度大小
- (3) 通过受力分析, 说明"点冰"过程中"冰爬犁"可以加速的原因
- (4) 该同学把小孩每次"点冰"使得"冰爬犁"加速的过程视为匀加速直线运动,他做了哪些 近似的处理? 为什么这么做?

- **16、(奉贤)** 避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图竖直平面内,制动坡床视为水平面夹角为 θ (小角度)的斜面。一辆长L=12m 的载有货物的货车因刹车失灵从干道驶入制动坡床。当车速为 v=23m/s 时,车尾位干制动坡床的底端,货物开始在车厢内向车头滑动。当货物在车厢内滑动了 s=4m 时,车头距制动坡床顶端 d=38m。再过一段时间,货车停止。已知空货车质量 M 是货物质量 m 的 4 倍,货物与车厢间的动摩擦因数 u=0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的 0.44 倍。货物与货车分别视为小滑块和平板,取 $\cos\theta=1$, $\sin\theta=0.1$, g=10m/s²。
- (1) 请画出货物在车厢内滑动时受力示意图,并求货物在车厢内滑动时加速度的大小和方向;
- (2) 请画出当货物在车厢内滑动时货车的受力示意图,并求出货车此时的的加速度的大小和方向;
- (3) 求出制动坡床的长度。

