

Universidade Presbiteriana Mackenzie

Faculdade de Computação e Informática

Objetivos

- Compreender conceitos relacionados à circuitos digitais sequenciais síncronos.
- Conhecer aplicações de uma máquina de estado.
- Entender como utilizar uma máquina de estado no controle de operações e processos digitais.

Referência Bibliográfia

- Referência para esta aula:
- Capítulo 10 de PIMENTA, T.C. Circuitos Digitais. São Paulo: Elsevier, 2017.

Máquina de Estado

- Circuitos digitais sequenciais síncronos possui uma linha de sincronização (Clock).
- N entradas e pelo menos uma saída.

PIMENTA, T.C. Circuitos Digitais. São Paulo: Elsevier, 2017

- Aplicação
 - Controle de operações e processos digitais
 - Contadores
 - Execução de operações de microprocessadores
 - Comunicação.

Circuitos Sequenciais Síncronos

- Circuitos sequencias síncronos são formados por portas lógicas e Flip-Flops.
- O conjunto de portas lógicas pode ser agrupado e montado em um circuito combinacional separado dos Flip-Flops.

Máquina de Mealy

- Saídas Z_i dependem das entradas X_i e do estado dos Flip-Flops.
- Quando as entradas X_i mudarem, as saídas Z_i podem mudar.
- As saídas Z_i podem mudar também com a ocorrência do pulso de Clock que provoque mudança de estado.

PIMENTA, T.C. Circuitos Digitais. São Paulo: Elsevier, 2017

Máquina de Moore

• Saídas Z_i dependem somente do estado dos Flip-flops.

PIMENTA, T.C. Circuitos Digitais. São Paulo: Elsevier, 2017

Projeto de máquina de estado

- 1. Obtenção do diagrama de estados
- 2. Obtenção da tabela de estados
- 3. Eliminação de estados equivalentes
- 4. Designação de estados auxiliares
- 5. Mapas de transição
- 6. Mapas de excitação de Flip-flops
- 7. Mapas de saída

Diagrama de estados

- Descrição gráfica do comportamento desejado da máquina de estados.
- Elementos:
 - Estado: representam as condições de repouso do circuito.
 - Transições: representam as mudanças entre os estados, na ocorrência de um sinal de clock, dependente dos valores de entrada.
 - Saídas: indicadas nos estados (Moore) e nas transições (Mealy).

Diagrama de estados

PIMENTA, T.C. Circuitos Digitais. São Paulo: Elsevier, 2017

Aplicação 1 – Detecção de paridade

 Construir o diagrama de estados de uma máquina de estados de Moore capaz de detectar a paridade impar de um sinal serial.

- Sinal serial

 há somente uma entrada.
- Indicação de paridade requer apenas uma saída.
- Devemos ter um sinal de Clock.
- Devemos contar o número de 1's recebidos, caso este número seja impar, a saída que indica paridade deve ser 1, e 0 caso o número seja par.

Х 0 1 0 0 1 0 1 Z 0 0 1 0 0 Instante b d f h k а е g 1 recebidos 0 0 1 2 2 3 3 5 1 6 ĺmpar Par ĺmpar ĺmpar ĺmpar ĺmpar ĺmpar Obs Par Par Par Par Par

Condição inicial S₀, paridade par, pois nenhum 1 foi recebido.

 Se no estado inicial o circuito receber entradas O's, a contagem de 1's permanece inalterada e a paridade continua par.

 Se no estado inicial S₀ o circuito receber a entrada de um 1 a contagem de 1's passará a ser impar e a saída deve ser 1.

 Neste novo estado S₁, se o circuito receber 0's, o número de 1's recebidos continua impar e a saída permanece em 1.

 Neste novo estado S₁, se o circuito receber um 1, o número de 1's recebidos passa a ser par e a saída deve ser 0.

Aplicação 2 – Detecção de sequencia

 Construir o diagrama de estados de uma máquina de estados de Moore capaz de detectar todas as ocorrências da sequência 101 em um sinal serial.

Aplicação 2 – Detecção de sequencia

 Construir o diagrama de estados de uma máquina de estados de Moore capaz de detectar todas as ocorrências da sequência 101 em um sinal serial.

- Estado inicial S_{0:}
 - Se receber um 0, permanece com saída 0, não há alteração.
 - Se receber um 1, possível início de uma sequência,
 vai para estado S₁, mas saída ainda é 0.

- No estado S_{1:}
 - Se receber um 1, a sequência é quebrada, mas pode indicar o início de outra sequencia, isto é, permanecemos no estado S1, com saída 0.
 - Se receber um 0, a sequencia progride para o próximo estado S₁₀, mas saída ainda é 0.

- No estado S₁₀:
 - Se receber um 0, a
 sequência é quebrada, e
 retornamos ao estado
 inicial S₀, com saída 0.
 - Se receber um 1, a sequencia progride para o próximo estado S₁₀₁, com saída 1.

- No estado S₁₀₁:
 - Se receber um 0, a
 sequência que já tem
 inicio no 1 atual progride
 para o estado S₁₀ com
 saída 0.
 - Se receber um 1, a
 sequencia progride para o
 estado S₁, com saída 0.

 Construir o diagrama de estados de uma máquina de estados de Mealy capaz de detectar se o número de 1s é maior do que zero e se é divisível por 3 em um sinal serial.

х		0	1	0	0	1	0	1	0	1	1	1
z	0	0	0	0	0	0	0	1	1	0	0	1
Instante	a	b	c	d	e	f	g	h	i	j	k	I
1 recebidos	0	0	1	1	1	2	2	3	3	4	5	6

- Estado inicial S₀:
 - Recebendo 0, saída 0, mesmo estado.
 - Recebendo 1, vai para estado S₁, com saída 0.

- Estado inicial S₁:
 - Recebendo 0, saída 0, sem mudança de estado.
 - Recebendo 1, vai para
 estado S₂, com saída 0.

- Estado inicial S₂:
 - Recebendo 0, saída 0,
 sem mudança de estado.
 - Recebendo 1, vai para
 estado S₃, com saída 1.

- Estado inicial S₃:
 - Recebendo 0, saída 1, sem mudança de estado.
 - Recebendo 1, vai para estado S₁, com saída
 0.

 Construir o diagrama de estados de uma máquina de estados de Mealy capaz de detectar se o número de 0's recebidos é par e maior que zero. Se ocorrer mais do que dois 1's consecutivos, a máquina deve ir para um estado de travamento com saída em 0 em um sinal serial.

 Construir o diagrama de estados de uma máquina de estados de Moore capaz de detectar todas as ocorrências da sequência 0010. Quando ocorrer mais do que dois 0's consecutivos, a máquina deve ser reiniciada após o próximo 1. Considere um sinal serial.

X		0	1	0	0	1	0	0	1	0	0	0
Z	0	0	0	0	0	0	1	0	0	1	0	0
Instante	a	b	c	d	e	f	g	h	i	j	k	I

 Construir o diagrama de estados de uma máquina de estados de Moore capaz de gerar a sequência 0101 110 110 110 110...

 Esta máquina não depende de entradas, apenas do clock.

• É um contador.

 Construir o diagrama de estados de uma máquina de estados de Moore com duas entradas (A e B) e uma saída que apresenta a seguinte operação:

AB = 01,11 \rightarrow saída 0 AB = 10,11 \rightarrow saída 1. AB = 10,01 \rightarrow saída troca de estado.

