The LNM Institute of Information Technology Jaipur, Rajasthan MATH-III

Practice Problems Set #3

- 1. Evaluate $\int_{(0,1)}^{(2,5)} (3x+y)dx + (2y-x)dy$ along:
 - (a) the curve $y = x^2 + 1$;
 - (b) the straight line joining (0, 1) to (2, 5);
 - (c) the straight line from (0, 1) to (0, 5), and then from (0, 5) to (2, 5).

Ans. (a) $\frac{88}{3}$ (b) 32 (c) 40

- 2. Evaluate $\int_C (x^2 iy^2) dz$ along
 - (a) the parabola $y = 2x^2$; from (1, 1) to (2, 8);
 - (b) the straight line from (1, 1) to (2, 8);
 - (c) the straight line from (1, 1) to (1, 8), and then from (1, 8) to (2, 8).

Ans. (a)
$$\frac{511}{3} - \frac{49}{5}i$$
 (b) $\frac{518}{3} - 8i$ (c) $\frac{518}{3} - 57i$

- 3. Evaluate $\oint_C \frac{2z+3}{z} dz$ where C is
 - (a) upper half of the circle |z| = 2 in clockwise direction,
 - (b) upper half of the circle |z|=2 in anti-clockwise direction,
 - (c) lower half of the circle |z|=2 in clockwise direction,
 - (d) lower half of the circle |z|=2 in anti-clockwise direction,
 - (e) The circle |z|=2 in anti-clockwise direction,
 - (f) The circle |z|=2 in clockwise direction.

Ans.
$$z = 2e^{i\theta}$$
 and $dz = 2ie^{i\theta}d\theta$. Hence, $I = i\int_C (4e^{i\theta} + 3)d\theta = 4e^{i\theta} + 3i\theta$

(a)
$$[4e^{i\theta} + 3i\theta]_{\pi}^{0} = 8 - 3i\pi$$

(b)
$$[4e^{i\theta} + 3i\theta]_0^{\pi} = -8 + 3i\pi$$

(c)
$$[4e^{i\theta} + 3i\theta]_{-\pi}^{0} = -8 - 3i\pi$$

(a)
$$[4e^{i\theta} + 3i\theta]_{0}^{\pi} = -8 + 3i\pi$$

(b) $[4e^{i\theta} + 3i\theta]_{0}^{0} = -8 + 3i\pi$
(c) $[4e^{i\theta} + 3i\theta]_{-\pi}^{0} = -8 - 3i\pi$
(d) $[4e^{i\theta} + 3i\theta]_{-\pi}^{0} = 8 + 3i\pi$
(e) $[4e^{i\theta} + 3i\theta]_{0}^{2\pi} = 6i\pi$
(f) $[4e^{i\theta} + 3i\theta]_{2\pi}^{0} = -6i\pi$

(e)
$$[4e^{i\theta} + 3i\theta]_0^{2\pi} = 6i\pi$$

$$(f) \left[4e^{i\theta} + 3i\theta \right]_{2\pi}^{0} = -6i\pi$$

- 4. Evaluate $\int_C (z^2 z + 1) dz$ along
 - (a) the parabola $y = 2x^2$; from (1, 2) to (2, 8);
 - (b) the straight line from (1, 2) to (2, 8);
 - (c) the straight line from (1, 2) to (1, 8), and then from (1, 8) to (2, 8).

Ans. In all cases ans will be same $-\frac{-553}{6} - 246i$ as $(z^2 - z + 1)$ is analytic function.

5. Evaluate $\oint_C \bar{z}^2 dz$ around the circle (a) |z| = 1 and (b) |z - 1| = 1.

Ans. (a) 0; (b) $4i\pi$

- 6. Evaluate $\oint_C (z^4 + 3)dz$
 - (a) around the circle |z|=1,
 - (b) around the square with vertices at (0, 0), (2, 0), (2, 1), (0, 2).

Ans. 0 in all cases as we are integrating analytic function in closed curve (Using Cauchy's Theorem).

7. Evaluate $\oint_C \frac{(z+5)}{(z-5)(z-4)^3} dz$

(a) where C is the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$; (b) where C is the circle |z + 4| = 3.

Ans. 0 in all cases as f(z) is analytic inside the given closed curve (Using Cauchy's Theorem).

8. Find the length of the curve $C: z = (1-i)t^2, -1 \le t \le 1$.

Ans $2\sqrt{2}$ using the formula for length of curve $L = \int_a^b |z'(t)| dt$

9. Use the ML-inequality to prove

(a)
$$\left| \int_{\gamma} \frac{1}{1+z^2} dz \right| \leq \frac{\pi}{3}$$
, γ is the arc of $|z| = 2$ from 2 to $2i$.

(b)
$$\left| \int_{|z|=R} \frac{\text{Log}z}{z^2} dz \right| \le 2\pi \left(\frac{\pi + \ln R}{R} \right), \quad R > 1.$$

10. Find the upper bound for the absolute value of the integral $I = \int_C e^z dz$, where C is the line segment joining the points (0, 0) and $(1, 2\sqrt{2})$.

Ans $I \leq ML = 3e$.

11. Find the upper bound for the absolute value of the integral $I = \int_C e^{\overline{z}^2} dz$, C: |Z| = 1, where C is traversed in the anti-clockwise direction.

Ans $I \leq ML = 2\pi e$.

12. Determine the nature of all singularities of the following functions f(z).

- (a) $\frac{z}{\sin z}$
- (b) $\cos \frac{1}{z}$
- (c) $\frac{1}{\sin 1/z}$
- (d) $\frac{5}{z^3 \sin z}$
- (e) $\frac{z}{e^z-1}$

Ans (a) Removable singularity at z = 0 as the limit exist.

- (b) z = 0 is the only singularity. It is an essential singularity.
- (c) Has singularities at all the points where $\sin 1/z = 0$, i.e., $z = \frac{1}{n\pi}$, $n = \pm 1, \pm 2, \ldots$ are isolated singularities and z = 0 is an non-isolated singularity.
- (d) The singularities are z=0 and $z=n\pi, n=\pm 1, \pm 2, \ldots$ The singularity at z=0 is a pole of order 4.
- (e) Removable singularity at z = 0 as the limit exist.
- 13. Apply the Cauchy-Goursat theorem to evaluate $\oint_C f(z)dz$, where the contour C is the unit circle |z|=1 in either direction and

(a)
$$f(z) = \frac{z^2}{(z-3)(z-5)}$$

(b)
$$f(z) = \tan z$$

(c)
$$f(z) = Log(z+2)$$

(d)
$$f(z) = z^3 + 2z + 1 + 2i$$

(e)
$$f(z) = \sin(2z + 1)$$

(f)
$$f(z) = 2z + e^{(z+i)}$$

Ans 0 for all (By Cauchy's Theorem)

14. Let γ denote the positively oriented boundary of the square whose sides lie on the lines $x = \pm 2$ and $y = \pm 2$. Evaluate the following integrals:

$$(a)\int_{\gamma}\frac{e^{-z}}{z-i\frac{\pi}{2}}dz \qquad (b)\int_{\gamma}\frac{\cos z}{z(z^2+8)}dz \qquad (c)\int_{\gamma}\frac{z}{2z+1}dz \qquad (d)\int_{\gamma}\frac{\cosh z}{z^4}dz$$

Ans: (a) $2\pi i e^{\frac{-\pi i}{2}} = 2\pi$ (b) $2\pi i \frac{\cos 0}{(0+8)} = \frac{\pi i}{4}$ (c) $2\pi i \frac{-\frac{1}{2}}{2} = -\frac{\pi i}{2}$ (d) $\frac{2\pi i}{3!} f'''(0) = 0$, where $f(z) = \cosh z$

15. Evaluate the integral $\int_C (z-z_0)^n dz$, $n=0,\pm 1,\pm 2,...$, where C denote the positively oriented circle $|z-z_0|=R$.

Ans:
$$I = \begin{cases} 2\pi i, & \text{if } z - 1 \\ 0, & \text{if } z \neq -1. \end{cases}$$

16. Evaluate $\frac{1}{2\pi i} \int_C \frac{ze^z}{(z+1)^3} dz$, where C is a positively oriented simple closed curve enclosing z=-1.

Ans:
$$\frac{1}{2!}f''(-1) = \frac{1}{2e}$$
, $f(z) = ze^z$

17. Evaluate $\int_C \frac{tan\pi z}{z-i} dz$, where C is a positively oriented triangle with vertices $0, \pm 1 + 2i$.

Ans: $2\pi i \tan \pi i = -2\pi \tanh \pi$ as the othr singular points $\pi z = n\pi + \frac{\pi}{2}$ i.e. $z = n + \frac{1}{2}$, $n \in \mathbb{Z}$ of $\frac{\tan \pi z}{z-i}$ are outside of C

18. Evaluate $\frac{1}{2\pi i} \oint_C \frac{3z-1}{(z^3+2z)} dz$, where C is a positively oriented unit circle enclosing z=-2.