- Andrik Iván Ortega Márquez
- Diego Alonso Fernández Delgadillo
- Brayan Martinez Hernández
- Jair Cano Rojas

EL PODER DEL MÉTODO DE BISECCIÓN

- Brandon García Ordaz
- Oscar Aaron Delgadillo Fernandez
- Ernesto Uriel García Torres
- Sergio López Beltrán

Contenido

- Introducción
- Encontrar raíz
- Método
- Paso a paso del método
- Ejemplo práctico
- Comprobación con Software
- Reto

- Conexión con la vida
- Tabla comparativa
- Conclusión
- Reflexión final
- Bibliografía
- Anexos

Introducción

Imagina que estás perdido en un bosque. Sabes que la salida está en algún punto, pero no tienes un mapa. ¿Qué harías para encontrarla rápidamente?

Encontrar la raíz

Tenemos una función y queremos encontrar dónde cruza el eje X. Es decir, queremos encontrar su raíz.

Método

El método de bisección funciona dividiendo el intervalo a la mitad, una y otra vez.

Supongamos que tenemos un intervalo donde sabemos que está la raíz. Si la función cambia de signo en ese intervalo, ¡tenemos una pista clave! Podemos partirlo en dos y elegir el subintervalo donde ocurre el cambio de signo. Y así sucesivamente, hasta encontrar la solución exacta.

Paso a Paso del Método

Paso 1: Elejir valores iniciales inferior, Xl, y superior, Xu, que encierren la raíz, de forma tal que la función cambie de signo en el intervalo. Esto se verifica comprobando que f(Xl) f(Xu) < 0.

Paso 2: Una aproximación de la raíz xr se determina mediante:

$$x_r = \frac{x_l + x_u}{2}$$

Paso a Paso del Método

Paso 3: Realice las siguientes evaluaciones para determinar en qué subintervalo está la raíz:

a) Si f(Xl)f(Xr) < 0, entonces la raíz se encuentra dentro del subintervalo inferior o izquierdo. Por lo tanto, haga Xu = Xr y vuelva al paso 2.

Paso a Paso del Método

b) Si f(Xl)f(Xr) > 0, entonces la raíz se encuentra dentro del subintervalo superior o derecho. Por lo tanto, haga Xl = Xr y vuelva al paso 2.

c) Si f(Xl)f(Xr) = 0, la raíz es igual a Xr; termina el cálculo.

$$f(x) = x^3 - 4x - 9$$

Queremos encontrar una raíz en el intervalo [2,3]

Paso 2: Calcular el punto medio xr

$$x_r = rac{x_l + x_u}{2} = rac{2+3}{2} = 2.5$$

Evaluamos $f(x_r)$:

$$f(2.5) = (2.5)^3 - 4(2.5) - 9$$

= $15.625 - 10 - 9 = -3.375$

Paso 3: Determinar el nuevo subintervalo

a) Evaluamos $f(x_l) \cdot f(x_r)$:

$$(-9) \cdot (-3.375) = 30.375 > 0$$

Como el resultado es positivo, la raíz NO está en el subintervalo [2,2.5].

Por lo tanto, actualizamos $x_l=x_r=2.5$ y repetimos desde el paso 2.

Iteración 2

Nuevo intervalo: [2.5,3]

1. Punto medio:

$$x_r = rac{2.5 + 3}{2} = 2.75$$

2. Evaluamos f(2.75):

$$f(2.75) = (2.75)^3 - 4(2.75) - 9$$
$$= 20.796875 - 11 - 9 = 0.796875$$

3. Determinar el nuevo subintervalo:

$$f(2.5) \cdot f(2.75) = (-3.375) \cdot (0.796875) = -2.687$$

Como el resultado es negativo, la raíz está en el subintervalo

[2.5, 2.75], por lo que actualizamos $x_u = x_r = 2.75$.

Iteración 3

Nuevo intervalo: [2.5,2.75]

1. Punto medio:

$$x_r = rac{2.5 + 2.75}{2} = 2.625$$

2. Evaluamos f(2.625):

$$f(2.625) = (2.625)^3 - 4(2.625) - 9$$
$$= 18.08789 - 10.5 - 9 = -1.41211$$

3. Determinar el nuevo subintervalo:

$$f(2.5) \cdot f(2.625) = (-3.375) \cdot (-1.41211) = 4.766$$

Como el resultado es positivo, la raíz está en [2.625, 2.75], por lo que actualizamos $x_l = x_r = 2.625$.

Continuamos iterando:

Si seguimos con más iteraciones, el valor de x_r se acercará cada vez más a la raíz real. Podemos seguir hasta alcanzar la precisión deseada (por ejemplo, cuando la diferencia entre x_l y x_u sea menor que un pequeño umbral, como 10^{-6}).

La raíz aproximada con unas cuantas iteraciones más sería ≈ 2.684.

Comprobación con Software

Suite Calculadora GeoGebra

RETO

RESOLVER ECUACIÓN POR METODO DE BISECCIÓN:

$$f(x) = x^2 - 5$$

Queremos encontrar una raíz en el intervalo [2,3].

Paso 1: Elección del intervalo inicial

Elegimos los valores xl=2 y xu=3, y verificamos que la función cambia de signo en ese intervalo.

$$f(2) = 2^2 - 5 = 4 - 5 = -1$$

$$f(3) = 3^2 - 5 = 9 - 5 = 4$$

Como f(2) es negativo y f(3) es positivo, se cumple que:

$$f(x_l) \cdot f(x_u) < 0$$

Esto confirma que existe al menos una raíz en el intervalo [2,3].

Paso 2: Cálculo del punto medio xr

Calculamos el punto medio:

$$x_r = \frac{x_l + x_u}{2} = \frac{2+3}{2} = 2.5$$

Evaluamos la función en xr=2.5:

$$f(2.5) = (2.5)^2 - 5 = 6.25 - 5 = 1.25$$

Paso 3: Determinar el nuevo subintervalo

Como f(2.5)>0 y f(2)<0, la raíz está en el intervalo[2,2.5], por lo que actualizamos xu=xr=2.5.

Iteración 2

Nuevo intervalo: [2,2.5]

1. Punto medio:

$$x_r = \frac{2+2.5}{2} = 2.25$$

2.Evaluamos f(2.25):

$$f(2.25) = (2.25)^2 - 5 = 5.0625 - 5 = 0.0625$$

Nuevo subintervalo:

f(2.25)>0, así que la raíz está en [2,2.25], y actualizamos $x_u=2.25$.

Iteración 3

Nuevo intervalo: [2,2.25]

1. Punto medio:

$$x_r = \frac{2+2.25}{2} = 2.125$$

2.Evaluamos f(2.125):

$$f(2.125) = (2.125)^2 - 5 = 4.5156 - 5 = -0.4844$$

3. Nuevo subintervalo:

f(2.125) < 0, así que la raíz está en [2.125, 2.25], y actualizamos $x_l = 2.125$.

Iteración 4

Nuevo intervalo: [2.125,2.25]

1.Punto medio:

$$x_r = \frac{2.125 + 2.25}{2} = 2.1875$$

2.Evaluamos f(2.1875):

$$f(2.1875) = (2.1875)^2 - 5 = 4.7852 - 5 = -0.2148$$

3. Nuevo subintervalo:

f(2.1875) < 0, así que la raíz está en [2.1875, 2.25], y actualizamos $x_l = 2.1875$.

Iteración 5

Nuevo intervalo:[2.1875,2.25]

1.Punto medio:

$$x_r = \frac{2.1875 + 2.25}{2} = 2.21875$$

2.Evaluamos f(2.21875):

$$f(2.21875) = (2.21875)^2 - 5 = 4.9243 - 5 = -0.0757$$

3. Nuevo subintervalo:

f(2.21875) < 0, así que la raíz está en [2.21875, 2.25], y actualizamos $x_l = 2.21875$.

Iteración 6

Nuevo intervalo: [2.21875,2.25]

1.Punto medio:

$$x_r = \frac{2.21875 + 2.25}{2} = 2.234375$$

2.Evaluamos f(2.234375):

$$f(2.234375) = (2.234375)^2 - 5 = 4.9954 - 5 = -0.0046$$

3. Nuevo subintervalo:

f(2.234375) < 0, así que la raíz está en [2.234375, 2.25], y actualizamos $x_l = 2.234375$.

Iteración 7

Nuevo intervalo:[2.234375,2.25]

1.Punto medio:

$$x_r = \frac{2.234375 + 2.25}{2} = 2.2421875$$

2.Evaluamos f(2.2421875):

$$f(2.2421875) = (2.2421875)^2 - 5 = 5.0299 - 5 = 0.0299$$

3. Nuevo subintervalo:

f(2.2421875)>0, así que la raíz está en [2.234375,2.2421875], y actualizamos $x_u=2.2421875$.

RESULTADO:

Siguiendo este procedimiento por más iteraciones, obtenemos que la raíz se aproxima a:

$$\sqrt{5} \approx 2.236$$

$$\sqrt{5} = 2.236067977...$$

Pero con siete iteraciones ya tenemos una aproximación con tres decimales correctos.

Conexión con la vida

El método de bisección no solo se usa en matemáticas, sino también en problemas de optimización, navegación y simulaciones.

Tabla Comparativa

Característica	Bisección	Regla Falsa	Punto Fijo	Newton- Raphson	Secante
Requiere intervalo inicial	>	$\overline{\mathbf{v}}$	×	×	×
Garantiza convergencia si hay cambio de signo	\(\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	✓	×	×	×
Convergencia rápida	×	×	×	<u>~</u>	>
Requiere derivada de la función	×	×	×	>	×
Método iterativo	✓	$\overline{\mathbf{Z}}$	$\overline{\mathbf{v}}$	\checkmark	~
Puede fallar si la función no cumple ciertas condiciones	×	×	<u>></u>	<u><</u>	>
Usa dos puntos para aproximar la raíz	>	<u>~</u>	×	×	>
Eficiencia en comparación con otros métodos	×	×	×	<u>~</u>	<u>~</u>

Conclusión

El método de bisección encuentra raíces de ecuaciones numéricas.

Se divide el intervalo y se elige uno.

Se repite hasta lograr la precisión requerida.

Aunque es lento, siempre converge correctamente.

Es fácil de implementar y entender bien.

Se usa en ecuaciones no lineales difíciles.

Es un método estable y muy utilizado.

Reflexión Final

Cuando nos enfrentamos a un problema complejo, no siempre necesitamos verlo todo. A veces, solo necesitamos una buena estrategia para reducir el camino y encontrar la respuesta correcta.

Bibliografia

• Chapra, S. C. (2005). Numerical methods for engineers (5a ed.). McGraw-Hill Science/Engineering/Math.

Anexos

