W3&4 – Combinations of Functions and Inverse Functions

MHF4U

1) Let
$$f(x) = 3x - 5$$
 and $g(x) = 2x + 3$.

a) Write the equation for h(x) = f(x) + g(x) and determine the value of h(2).

$$h(2) = 5(2) - 2$$

$$h(2) = 8$$

b) Write the equation for k(x) = f(x) - g(x) and determine the value of k(2).

$$K(x) = (3x-5) - (2x+3)$$

$$k(2)=2-8$$

$$k(2) = -6$$

2) Use the functions f(x) and g(x) as shown. Apply the superposition principle to graph

a)
$$y = f(x) + g(x)$$

X	f(a)	9(21)	f(x)+g(x)	F(x)-g(x)
-5	6	-3	3	9
-4	5.5	-/	4.5	6.5
- 3	5	1	6	14
-2	4.5	3	7.5	1.5
-1	4	11	5	3
0	3.5	-1	2.5	4.5
1	13	-3	0	6
2	2.5	-5	-2.5	7.5
3	2	-7	-5	9
4	2.5	-9	-6.5	1105
5	3	- ()	-8	14

b)
$$y = f(x) - g(x)$$
.

3) Let f(x) = x - 2 and $g(x) = x^2 + 3x - 3$. Determine an algebraic and graphical model for h(x) = f(x) + g(x).

$$h(x) = (x-2) + (x^2+3x-3)$$

$$h(x) = x - 2 + x^2 + 3x - 3$$

$$h(x) = x^2 + 4x - 5$$

4) Let f(x) = x - 2 and $g(x) = x^2 - 4$. Develop an algebraic and graphical model for each of the following:

a)
$$y = f(x)g(x) = (x-2)(x^2-4)$$

= $(x-2)(x-2)(x+2)$
= $(x-2)^2(x+2)$

$$\chi$$
-int: (2,0) order 2 y -int: $y=(0-2)^2(0+2)$
(-2,0) order 1 $y=8$
(0,8)

b)
$$y = \frac{f(x)}{g(x)} = \frac{x-2}{v^2-4}$$

$$= \frac{x-3}{(x-3)(x+3)}$$

$$= \frac{1}{x+3}; \quad x \neq -2, 2$$

Hove bit
$$x=2$$
 $VA: x=-2$
 $VA: y=0$
 $VA:$

c)
$$y = \frac{g(x)}{f(x)}$$

$$= \frac{\chi^{2} - 4}{\chi - 2}$$

$$= (\frac{\chi^{2} \times \chi + 2}{\chi - 2})$$

$$= \chi^{2} + 4$$

5) Let
$$f(x) = x^2 + 2x - 4$$
 and $g(x) = \frac{1}{x+1}$.

a) Evaluate g(f(0))

$$f(0) = (0)^{2} + 2(0) - 4$$

$$g(f(0)) = g(-4)$$

$$= \frac{1}{-4+1}$$

$$= -\frac{1}{3}$$

b) Evaluate f(g(-2))

$$g(-2) = \frac{1}{-2+1} \left(f(g(-2)) = f(-1) \right)$$

$$= (-1)^{2} + 2(-1) - 4$$

$$= -5$$

6) Let $f(x) = x^2 + 3x$ and g(x) = 2x - 5. Determine an equation for each composite function and graph it.

a)
$$y = f(g(x))$$

$$f(g(x)) = (2x-5)^{2} + 3(2x-5)$$

$$= 4x^{2} - 20x + 25 + 6x - 15$$

$$= 4x^{2} - 14x + 10$$

$$= 2(2x^{2} - 7x + 5)$$

$$= 2[2x^{2} - 5x - 2x + 5]$$

$$\mathbf{b})\,y=g\big(f(x)\big)$$

$$g(f(x)) = 2(x^2+3x) - 5$$

= $2x^2+6x-5$
 x -vertex at $-\frac{b}{2a} = -\frac{6}{2(2)} = -1.5$
 y -vertex = -9.5

c)
$$y = g(g(x))$$

$$y = g^{-1}\big(g(x)\big)$$

