Module : Analyse 1

11/11/2023

TD N°3 - BIS

Fxetcice 11: En utilisant le théorème des gendarmes, étudier la nature des suites suivantes :

$$x_n = \sum_{k=1}^{2n+1} \frac{1}{n^2 + k}$$
 , $y_n = \sum_{k=1}^n \frac{n}{\sqrt{n^4 + k}}$ (L. E) , $t_n = \frac{\ln n}{\sqrt{n^3 + 1}}$

Fxetcice 12: Etudier la convergence de la suite complexe $(\mathfrak{z}_n)_{n\in\mathbb{N}}$ définie par :

$$\mathfrak{z}_0 \in \mathbb{C}$$
 , $\mathfrak{z}_n = \frac{2\mathfrak{z}_n - \overline{\mathfrak{z}_n}}{3}$ pour $n \in \mathbb{N}$

Exercice 13:

1) Montrer que les suites suivantes sont adjacentes:

$$u_n = \sum_{k=0}^{n-1} \frac{2}{(4k+1)(4k+3)}$$
 , $v_n = u_n + \frac{1}{4n-1}$

2) Même question pour les suites :

$$u_n = \prod_{k=0}^{n-1} \left(1 + \frac{1}{k \ k!} \right)$$
 , $v_n = \left(1 + \frac{1}{n . n!} \right) u_n$

Exercice 14:

Pour $a,b\in]0,1[$ tel que $a\leq b$, soient les deux suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ définies par :

$$u_0=a$$
 , $v_0=b$, $\forall n\in\mathbb{N}$ $u_{n+1}=(u_n)^{v_n}$, $v_{n+1}=(v_n)^{u_n}$

- 2) Montrerque $(u_n)_{n\in\mathbb{N}}$ est croissante, et $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- 3) Montrer pour tout $n \in \mathbb{N} : u_n \leq v_n$.
- **4)** Etablir la convergence de $(u_n)_{n\in\mathbb{N}}$ vers $0<\lambda\leq 1$, et la convergence de $(v_n)_{n\in\mathbb{N}}$ vers $\mu=1$.

Fxercice 75: Soient la fonction $f: \mathbb{R} \to \mathbb{R}$ et la suite $(x_n)_{n \in \mathbb{N}}$ définies par :

$$f(x) = \frac{1}{9}(x^3 + 6x + 1)$$
 , $x_0 = 0$, $\forall n \in \mathbb{N}$ $u_{n+1} = f(u_n)$

- 1) Montrer que l'équation $x^3-3x+1=0$ possède une solution unique $\alpha\in\left]0,\frac{1}{2}\right[$.
- 2) Montrer que l'équation f(x) = x est équivalente à l'équation de la question (1), et en déduire que $\alpha \in \left]0, \frac{1}{2}\right[$ est l'unique solution de l'équation f(x) = x dans $\left]0, \frac{1}{2}\right[$.

- 3) Montrer que la fonction f est croissante sur \mathbb{R}^+ et que $f(\mathbb{R}^+) = \mathbb{R}^+$. En déduire que la suite $(x_n)_{n \in \mathbb{N}}$ est croissante.
- **4)** Montrer que $f\left(\frac{1}{2}\right) < \frac{1}{2}$, en déduire que $0 \le x_n < \frac{1}{2}$, $\forall n \in \mathbb{N}$.
- **5)** Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers .

<u>fxetcice 76:</u>(Devoir 2022/2023)(*L. E*)

Le prix d'un ordinateur portable acheté est $430 \in$. On estime qu'une fois sorti du magasin sa valeur u_n (en euro) après n mois est donnée par la formule :

$$u_n = 40 + 300 \times (0.95)^n$$

- 1) Que vaut l'ordinateur à la sortie du magasin?
- 2) Que vaut l'ordinateur une année après l'achat ?
- 3) A long terme, à quel prix peut-on espérer revendre cet ordinateur ?
- 4) Déterminer le mois à partir duquel l'ordinateur aura une valeur inférieure à 100 €.

Fxetcice 17: Pour $p \in \mathbb{N}^*$, soit la suite définie par :

$$u_0 = p$$
 , $\forall n \in \mathbb{N}$ $u_{n+1} = p + \frac{1}{u_n}$

- **1)** Montrer pour tout $n \in \mathbb{N}$ que :
 - a) $(u_n)_{n\in\mathbb{N}}$ est bien définie.
 - **b)** $u_n \in \mathbb{Q}$.
 - c) Calculer u_1 , u_2 , u_3 .
- 2) Soient $v_n = u_{2n}$ et $w_n = u_{2n+1}$, tout $\in \mathbb{N}$.
 - a) Vérifier que :

$$v_{n+1} = \frac{(p^2+1)v_n + p}{pv_n + 1}$$
 , $w_{n+1} = \frac{(p^2+1)w_n + p}{pw_n + 1}$

- **b)** Ecrire les deux suites $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ à l'aide d'une fonction .
- c) Etudier la monotonie de la fonction f, en déduire la monotonie des deux suites.
- **d)** Montrer que les deux suites $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ sont convergentes.
- 3) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente, et calculer sa limite ℓ .
- 4) Que peut-on remarquer, quant à la nature des termes u_n et de la limite ℓ ?