## Вариант 7

#### Задание 1

Универсальное множество состоит из 26 строчных букв латинского алфавита. Заданы множества  $A,\ B,\ C\ u\ D.$  Вычислить мощность множеств  $X\ u\ Y.$ 

Даны множества  $A=\{b,f,g,m,o\}, B=\{b,g,h,l,u\}, C=\{e,f,m\}, D=\{e,g,l,p,q,u,v\}$ 

Вычислить мощность множеств

$$X = (A \setminus C) \cup (B \cap C), Y = (A \cap \bar{B}) \cup (D \setminus C)$$

#### Решение:

1. Определим элементы множества  $X = (A \setminus C) \cup (B \cap C)$ .

Для этого найдём сначала разность множеств  $A \setminus C$ . Для этого вычеркнем из множества  $A = \{b, f, g, m, o\}$  элементы  $\{f, m\}$ , принадлежащие  $C = \{e, f, m\}$ . Следовательно,  $A \setminus C = \{b, g, o\}$ . Затем найдём пересечение множеств  $B \cap C$ . Множества B и C не имеют общих элементов. Следовательно,  $B \cap C = \emptyset$ . Таким образом, объединение  $(A \setminus C) \cup (B \cap C)$  состоит из трёх элементов  $\{b, g, o\}$ .

Мощность множества  $X = (A \setminus C) \cup (B \cap C)$  равна 3.

2. Определим элементы множества  $Y = (A \cap \bar{B}) \cup (D \setminus C)$ 

Найдем дополнение В . Универсальное множество по условию задания состоит их 26 букв  $\{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\}$ . Если отсюда исключить 5 элементов множества B, то получим множество B из 21 элемента  $\{a,c,d,e,f,i,j,k,m,n,o,p,q,r,s,t,v,w,x,y,z\}$ .

Пересечение множеств  $A \cap \bar{B}$  состоит из элементов  $\{f, m, o\}$ , т.е. всех элементов множества A, которые не принадлежат  $\bar{B}$ .

Для нахождения разности множеств  $D\setminus C$  вычеркнем из множества  $D=\{e,g,l,p,q,u,v\}$  элемент  $\{e\}$ , принадлежащий  $C=\{e,f,m\}$ . Получим  $D\setminus C=\{g,l,p,q,u,v\}$ . В итоге

$$Y = (A \cap \bar{B}) \cup (D \setminus C) = \{f,g,l,m,o,p,q,u,v\}$$

Мощность множества Y равна 9. В данном случае множества  $D\setminus C$  и  $A\cap \bar{B}$  не пересекаются и мощность объединения равна сумме мощностей слагаемых

Card Y=3+6

# Задание 2

Задайте множество, указанное на рисунке с использованием характеристического свойства множества:

### Решение:

Предлагаем вначале выразить это множество через системы и совокупности:

ПНОСТИ: 
$$\begin{cases} x^2 + y^2 \le 1, \\ y \ge x \\ \begin{cases} x^2 + y^2 \ge 1, \\ y \ge 0, \\ y \le 1, \\ x \le 0, \\ x \ge -1, \end{cases}$$

Теперь запишем с использованием характеристического свойства множества, используя для систем операцию пересечения множеств, а для совокупности - объединения:

$$X = \{(x;y)|x^2 + y^2 \le 1, y \ge x\} \cup \{(x;y)|x^2 + y^2 \ge 1, y \ge 0, y \le 1, x \le 0, x \ge -1\}$$

# Задание 3

Проиллюстрировать равенство при помощи диаграмм Эйлера-Венна:

$$(A \setminus B) \cup (A \cap C) = A \setminus (B \setminus C)$$

# Решение:

Построим последовательно левую часть равенства:



Теперь построим правую часть:



Диаграммы для левой и правой части оказались одинаковы!

## Задание 4.

Отношение задано матрицей. Исследовать отношение на симметрию, антисимметрию, асимметрию, рефлексивность, антирефлексивность. Найти транзитивное замыкание отношения.

$$M = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

### Решение:

- 1. Данное отношение не является симметричным, так как матрица несимметрична. Например, пара (2,3) принадлежит данному отношению, а пара (3,2) ему не принадлежит.
- 2. Отношение антисимметрично, так как нет ни одной пары  $m_{ij} = m_{ji} = 1, i \neq j.$
- 3. Отношение антисимметрично, но не асимметрично, так как на диагонали матрицы имеются элементы равные 1.
- 4. Не все диагональные элементы метрицы равняются 1. Данное отношение не является рефлексивным
- 5. Отношение не обладает свойством антирефлексивности, так как не все диагональные элементы являются нулевыми

Найдем транзитивное замыкание данного отношения по алгоритму Уоршолла:

Рассматриваем все внедиагональные  $(i \neq j)$  элементы матрицы. Если  $m_{ij} = 1$ , то i-ю строку заменяем дизъюнкцией i-й и j-й строк.

1. Элемент  $m_{14}=1$ . Первую строку заменяем поэлементной дизъюнкцией первой и четвертой строки:

$$M_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Данное отношение не является транзитивным, так как, например, пары (1,2) и (2,4) не принадлежат данному отношению, а пара (1,4) ему принадлежит.

2. Элемент  $m_{23}=1$ . Вторую строку заменяем поэлементной дизъюнкцией второй и третьей строки:

$$M_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3. Элемент  $m_{34}=1..., M_2$  является матрицей транзитивного замыкания нашего отношения

### Задание 5.

На множестве упорядоченных пар  $x_0 = (0,0), x_1 = (1,0), x_2 = (0,1),$   $x_3 = (1,1)$  задана бинарная мультипликативная операция. Произведение задано по правилу  $A*B = (a_2b_2, a_1b_2)$ . Является ли полугруппой структура (X,\*), где  $X = \{x_0, x_1, x_2, x_3\}$ ? Составить таблицу Кэли структуры.

## Решение:

Проверим ассоциативность введенного произведения — необходимое свойство для того, чтобы алгебраическая структура была полугруппой. Рассмотрим произведение A\*(B\*C) трёх произвольных пар из X:

$$A = (a_1, a_2), B = (b_1, b_2), C = (c_1, c_2).$$

Найдём сначала произведение  $B*C=(b_2c_2,b_1c_2)$ , затем получим  $A*(B*C)=(a_2b_1c_2,a_1b_1c_2)$ .

Аналогично:

$$(A * B) * C = (a_2b_2, a_1b_2) * (c_1, c_2) = (a_1b_2c_2, a_2b_2c_2)$$

Очевидно,  $A*(B*C) \neq (A*B)*C$ , т.е. операция умножения не ассоциативна и алгебраическая структура (X,\*) не является полугруппой. Составим таблицу Кэли.

| *     | $x_0$ | $x_1$ | $x_2$ | $x_3$ |
|-------|-------|-------|-------|-------|
| $x_0$ | $x_0$ | $x_0$ | $x_0$ | $x_0$ |
| $x_1$ | $x_0$ | $x_0$ | $x_2$ | $x_2$ |
| $x_2$ | $x_0$ | $x_0$ | $x_1$ | $x_1$ |
| $x_3$ | $x_0$ | $x_0$ | $x_3$ | $x_3$ |