

Applications of Integration

Calculus & Analytical Geometry MATH-101

Instructor: Dr. Naila Amir (SEECS, NUST)

Recap

Area between the curves:

$$A = \int_{a}^{b} [f(x) - g(x)]dx$$

$$A = \int_{c}^{d} [f(y) - g(y)]dy$$

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

$$L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$$

$$L = \int_{a}^{b} \sqrt{\left[\frac{dx}{dt}\right]^{2} + \left[\frac{dy}{dt}\right]^{2}} dt$$

Applications of Integration

Arclength of a curve:

Volume of solids of revolution:

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 6 (Section: 6.1)

 Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Chapter: 6 (Section: 6.2)

Compare	Disk Method	Washer Method	Shell Method
Volume formula	$V = \int_a^b \pi [f(x)]^2 dx$	$V = \int_{a}^{b} \pi [(f(x))^{2} - (g(x))^{2}] dx$	$V = \int_{c}^{d} 2\pi y \ g(y) \ dy$
Solid	No cavity in the center	Cavity in the center	With or without a cavity in the center
Interval to partition	[a, b] on x-axis	[a, b] on x-axis	[c, d] on y-axis
Rectangle	Vertical	Vertical	Horizontal
Typical region	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{d}{c}$
Typical element	f(x) ab	$ \begin{array}{c} y \\ f(x) \\ ab \\ x \end{array} $	g(y)

Volume

- Recall that the underlying principle for finding the area of a plane region is to divide the region into thin strips, approximate the area of each strip by the area of a rectangle, add the approximations to form a Riemann Sum, and take the limit of the Riemann Sums to produce an integral for the area.
- Under appropriate conditions, the same strategy can be used to find the volume of a solid. The idea is to divide the solid into thin slabs, approximate the volume of each slab, add the approximations to form a Riemann Sum, and take the limit of the Riemann Sums to produce an integral for the volume.

General Slicing Method

- Integrals are also used to find the volume of three-dimensional regions (or solids).
- Consider a solid object that extends in the x —direction from x = a to x = b.
- Imagine cutting through the solid, perpendicular to the x —axis at a particular point x and suppose the area of the cross section created by the cut is given by a known integrable function A.
- To find the volume of this solid, we first divide [a,b] into n subintervals of length $\Delta x = (b-a)/n$.
- The endpoints of the subintervals are the grid points $x_0 = a$, $x_1, x_2, ..., x_n = b$.

General Slicing Method

- We now make cuts through the solid perpendicular to the x —axis at each grid point, which produces n slices of thickness Δx . Imagine cutting a loaf of bread to create n slices of equal width.
- On each subinterval, an arbitrary point x_k^* is identified. The k^{th} slice through the solid has a Δx , and we take $A(x_k^*)$ as a representative cross-sectional area of the slice. Therefore, the volume of the k^{th} slice is approximately $A(x_k^*)\Delta x$. Summing the volumes of the slices, the approximate volume of the solid is:

$$V \approx \sum_{k=1}^{n} A(x_k^*) \Delta x.$$

General Slicing Method

As the number of slices increases (i.e., $n \to \infty$) and the thickness of each slice goes to zero ($\Delta x \to 0$), the exact volume V is obtained in terms of a definite integral as:

$$V = \lim_{n \to \infty} \sum_{k=1}^{n} A(x_k^*) \Delta x = \int_a^b A(x) dx.$$

Solids of Revolution

A solid of revolution is a solid whose shape can be generated by revolving a plane region about a line that lies in the same plane as the region. The line is called the axis of revolution.

Volume of Solid of Revolution

■ Suppose f(x) is a continuous function with $f(x) \ge 0$ on an interval [a,b]. Let R be the region bounded by the graph of f(x), the x —axis, and the lines x = a and x = b.

- Now revolve R around the x —axis. As R revolves once around the x —axis, it sweeps out a three-dimensional solid of revolution.
- The goal is to find the volume of the solid, and it may be done using the general slicing method.

Volume of Solid of Revolution

- With a solid of revolution, the cross-sectional area function has a special form since all cross sections perpendicular to the x —axis are *circular disks* with radius f(x).
- Therefore, the cross section at the point x, where $a \le x \le b$, has area:

$$A(x) = \pi(radius)^2 = \pi[f(x)]^2.$$

By the general slicing method, the volume of the solid is:

$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi [f(x)]^{2} dx.$$

Since each slice through the solid is a circular disk, the resulting method is called the disk method.

The Disk Method

Disk Method About the x-axis:

Let f(x) be continuous with $f(x) \ge 0$ on the interval [a,b]. If the region R bounded by the graph of f(x), the x —axis, and the lines x=a and x=b is revolved about the x —axis, the volume of the resulting solid of revolution is:

$$V = \int_{a}^{b} \pi [f(x)]^2 dx.$$

Let R be the region bounded by the curve $f(x) = (x + 1)^2$, the x —axis, and the lines x = 0 and x = 2. Find the volume of the solid of revolution obtained by revolving R about the x —axis.

Solution:

When the region R is revolved about the x —axis, it generates a solid of revolution. A cross section perpendicular to the x —axis at the point $0 \le x \le 2$ is a circular disk of radius f(x). Therefore, a typical cross section has area:

$$A(x) = \pi[f(x)]^2 = \pi[(x + 1)^2]^2 = \pi(x + 1)^4.$$

Integrating this cross-sectional area between x=0 and x=2 gives the volume of the solid as:

$$V = \int_{a}^{b} A(x) dx = \int_{0}^{2} \pi(x + 1)^{4} dx$$
$$= \frac{\pi(x + 1)^{5}}{5} \Big|_{0}^{2}$$
$$= \frac{242}{5} \pi.$$

Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [0, 4] is revolved about the x —axis.

Solution:

For the present case, the cross-sectional area is given as:

$$A(x) = \pi [f(x)]^2 = \pi [\sqrt{x}]^2 = \pi x.$$

Thus, the required volume can be obtained as:

$$V = \int_{a}^{b} A(x) dx = \int_{0}^{4} \pi x dx = \frac{\pi x^{2}}{2} \Big|_{0}^{4} = 8\pi.$$

Derive the formula for the volume of a sphere of radius r.

Solution:

Equation of circle of radius r is:

$$x^2 + y^2 = r^2 \Longrightarrow y^2 = r^2 - x^2$$
.

Thus, the cross-sectional area is given as:

$$A(x) = \pi[f(x)]^2 = \pi y^2 = \pi[r^2 - x^2].$$

Hence, the required volume is:

$$V = \int_{a}^{b} A(x) dx = \int_{-r}^{r} \pi[r^{2} - x^{2}] dx = \pi \left(r^{2}x - \frac{x^{3}}{3}\right) \Big|_{-r}^{r} = \frac{4}{3}\pi r^{3}.$$

Solid of Revolution: The Washer Method

Problem: Let f(x) and g(x) be continuous and nonnegative on [a,b] and suppose that $f(x) \ge g(x)$ for all x in the interval [a,b]. Let R be the region that is bounded above by y = f(x), below by y = g(x), and on the sides by the lines x = a and x = b. Find the volume of the solid of revolution that is generated by revolving the region R about the x —axis.

Solution: We can solve this problem by slicing. For this purpose, observe that the cross section of the solid taken perpendicular to the x —axis at the point x is the annular or "washer-shaped" region with inner radius g(x) and outer radius f(x). The cross-sectional area is given as:

Thus, the volume is:

Find the volume of the solid generated when the region between the graphs of the equation $f(x) = \frac{1}{2} + x^2$ and g(x) = x over the interval [0,2] is revolved about the x —axis.

Solution:

For the present case the outer radius is: $f(x) = \frac{1}{2} + x^2$ and inner radius is: g(x) = x. Thus, the required volume is given as:

$$V = \pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx = \pi \int_{0}^{2} \left(\left[\frac{1}{2} + x^{2} \right]^{2} - x^{2} \right) dx = \frac{69}{10} \pi.$$

Disk and Washer Methods About the y —axis

The methods or disks and washers have analogs for regions that are revolved about the y —axis. Using the method of slicing, we can easily deduce the following formulas for the volumes of the solids.

Disk Method:

$$V = \int_{c}^{d} \pi [u(y)]^{2} dy$$

$$V = \pi \int_{c}^{d} ([w(y)]^{2} - [v(y)]^{2}) dy.$$

Find the volume of the solid generated when the region enclosed by $y = \sqrt{x}$, y = 2, and x = 0 is revolved about the y —axis.

Solution:

The required volume is given as:

$$V = \pi \int_{0}^{2} (y^{2})^{2} dy = \frac{\pi y^{5}}{5} \Big]_{0}^{2} = \frac{32}{5} \pi.$$

Let R be the region in the first quadrant bounded by the graphs of $x = y^3$ and x = 4y. Find the volume of the solid generated when R is revolved about the y —axis?

Solution:

Solving $y^3 = 4y$ or, equivalently, $y(y^2 - 4) = 0$ we find that the bounding curves of R intersect at the points (0,0) and (8,2). When the region R is revolved about the y —axis, it generates a funnel with a curved inner surface. The outer radius of the cross section at the point y is determined by the line p(y) = 4y. The inner radius of the cross section at the point y is determined by the curve $q(y) = y^3$. Applying the washer method, the volume of this solid is:

$$V = \pi \int_{0}^{d} ([p(y)]^{2} - [q(y)]^{2}) dy = \pi \int_{0}^{2} (16y^{2} - y^{6}) dy = \frac{512}{21} \pi$$

Rotation around a line other than x or y —axis

- Now, we will try to rotate a figure around a line other than the x or y —axis.
- We will use the idea of the outer and inner radius to find the correct formula.

How to determine correct radius???

Find the volume of the solid generated by revolving the region between the parabola $x=y^2+1$ and the line x=3 about the line x=3.

Solution:

Note that the cross-sections are perpendicular to the line x=3. Thus, the volume of the generated solid is given as:

Find the volume V of the solid obtained by rotating the region between the graphs of $f(x) = x^2 + 2$ and $g(x) = 4 - x^2$ about the horizontal line y = -3.

Solution:

T = f(n) - (-3)

Let us determine the points of intersections of the given curves first.

$$f(x) = g(x) \Longrightarrow x^2 + 2 = 4 - x^2 \Longrightarrow 2x^2 - 2 = 0 \Longrightarrow x = \pm 1.$$

Thus, the points of intersection are: (-1,3) and (1,3).

Moreover, $g(x) \ge f(x)$ for $-1 \le x \le 1$. Note that when we rotate about y = -3, the line segment AB generates a washer whose outer and inner radii are both 3 units larger:

Outer radius =
$$R(x) = g(x) - (-3) = (4 - x^2) + 3 = 7 - x^2 \checkmark$$

Inner radius = $r(x) = f(x) - (-3) = (x^2 + 2) + 3 = x^2 + 5 \checkmark$

Solution:

The volume of revolution is equal to the integral of the area of this washer and is given as:

$$V = \pi \int_{a}^{b} (R^{2} - r^{2}) dx = \pi \int_{-1}^{1} [(7 - x^{2})^{2} - (x^{2} + 5)^{2}] dx$$

$$= \pi \int_{-1}^{1} [(49 - 14x^{2} + x^{4}) - (x^{4} + 10x^{2} + 25)] dx$$

$$= \pi \int_{-1}^{1} (24 - 24x^{2}) dx = \pi (24x - 8x^{3}) \Big|_{-1}^{1} = 32\pi.$$

Setup the integrals to determine the volume of the solid obtained by rotating the graphs of $f(x) = 9 - x^2$ and y = 12 for $0 \le x \le 3$ about the line y = 12 and then, y = 15.

Solution:

Figure B shows that the line segment AB rotated about y=12 generates a disk of radius:

$$R = \text{length of line segment } AB = 12 - f(x) = 12 - (9 - x^2) = 3 + x^2.$$

Note that the length of line segment AB is 12 - f(x) rather than f(x) - 12 since the line y = 12 lies above the graph of f(x). The volume when we rotate about the line y = 12 is:

$$V = \pi \int_{a}^{b} R^{2} dx = \pi \int_{0}^{3} (3 + x^{2})^{2} dx.$$

Solution:

Figure C shows that the line segment AB rotated about y=15 generates a washer. The outer radius of this washer is the distance from B to the line y=15:

Outer radius =
$$R(x) = 15 - f(x) = 15 - (9 - x^2) = 6 + x^2$$

The inner radius is r(x) = 3, so the volume of revolution about y = 15 is:

$$V = \pi \int_{a}^{b} (R^2 - r^2) dx = \pi \int_{0}^{3} [(6 + x^2)^2 - (3)^2] dx.$$

(C) Rotation about the line y = 15

Setup the integral to determine the volume of the solid obtained by rotating the graph of $f(x) = 9 - x^2$ for $0 \le x \le 3$ about the vertical line x = -2. Solution:

The figure shows that the line segment AB sweeps out a horizontal washer when rotated about the vertical line x=-2. We are going to integrate with respect to y, so we need the inner and outer radii of this washer as functions of y. Solving

for x in $y = 9 - x^2$, we obtain: $x^2 = 9 - y \Rightarrow x = \sqrt{9 - y} : x \ge 0$.

Therefore:

$$R(y) = \sqrt{9 - y} + 2$$
 and $r(y) = 2$.

The region extends from y = 0 to y = 9 along the y —axis, so

$$V = \pi \int_{c}^{d} (R^{2} - r^{2}) dy = \pi \int_{0}^{9} \left[\left(\sqrt{9 - y} + 2 \right)^{2} - (2)^{2} \right] dy.$$

Rinner

Practice Questions

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Exercise: 6.1Q # 1 to Q # 48

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Exercise: 6.2Q # 1 to Q # 34