Derivation of the branched solution with the QSA method

Part of the accompanying material for the manuscript titled "Quadratic Spline Approximation of the Contact Potential for Real-Time Simulation of Lumped Collisions in Musical Instruments" submitted to the DAFx-24 conference

Abhiram Bhanuprakash, Maarten van Walstijn and Vasileios Chatziioannou March 2024

1 Preliminaries

The derivation assumes that the QSA $\widehat{V}(y)$ is convex (without proof). For convenience, let y^{n+1} and y^{n-1} be replaced by the shorthand symbols y_+ and y_- . From the definition of p (eq. (27) in the paper), the condition p=0 is the same as $y_+ \leq 0$, and its complement $p \neq 0$ is the same as $y_+ > 0$. The nonlinear equation that needs to be solved (eq. (25) in the paper) can be re-written with the new notation as:

$$\underbrace{s + z + q \, \frac{\widehat{V}(y_+) - \widehat{V}(y_-)}{s}}_{G(s)} = 0, \tag{1}$$

where $s = y_+ - y_-$ is the update step, and q > 0. Listed in Table 1 are the forms that G(s) takes in

Table 1: Forms of G(s) for the branches based on the signs of y_- and y_+ .

Branch	G(s)
I: $y_{-} \le 0, y_{+} \le 0$	s+z
II: $y \le 0, \ y_+ > 0$	$s + z + q \frac{\widehat{V}(y_+)}{s}$
III: $y > 0$, $y_+ > 0$	$s + z + q \frac{\widehat{V}(y_+) - \widehat{V}(y)}{s}$
IV: $y > 0, y_+ \le 0$	$s+z-q \frac{\widehat{V}(y_{-})}{s}$

different branches based on the signs of y_- and y_+ . Due to convexity of $\widehat{V}(y)$, G(s) has a unique real root, as described in section 4.2 of the paper. Therefore the quadratic $\lambda(s) := s G(s) = a_{\lambda}s^2 + b_{\lambda}s + c_{\lambda}$ must have real roots, one of which is also the root of G(s), and hence the discriminant $b_{\lambda}^2 - 4a_{\lambda}c_{\lambda}$ must be non-negative in all branches. Recall from the paper that the solution in branches II, III and IV is obtained as one of the roots of $\lambda(s)$:

$$s_{\lambda,\pm} = \frac{-b_{\lambda} \pm \sqrt{b_{\lambda}^2 - 4a_{\lambda}c_{\lambda}}}{2a_{\lambda}}.$$
 (2)

The solution is easier to derive for branches I and IV, and these are described first. The solution in branch k is denoted $s_{(k)}$, k = I, II, III, IV.

2 Branch IV: $y_- > 0, y_+ \le 0$

Multiplying the expression for G(s) in the last row of Table 1 by s, it is not hard to see that the coefficients of $\lambda(s)$ are:

$$a_{\lambda} = 1, \quad b_{\lambda} = z, \quad c_{\lambda} = -q \ \widehat{V}(y_{-}),$$
 (3)

which are the same as in the table in the paper. As mentioned in section 2.2 in the paper, convexity

Figure 1: $\lambda(s)$ with $b_{\lambda} < 0$ (purple) and $b_{\lambda} > 0$ (orange). In both cases, $a_{\lambda} > 0$ and $c_{\lambda} < 0$, as in branch IV. The positive root $s_{\lambda,+}$ and the negative root $s_{\lambda,-}$ are also shown for both cases.

of \widehat{V} and condition (8) in the paper together imply $\widehat{V}(y_{-}) > 0$ for $y_{-} > 0$, and therefore $c_{\lambda} < 0$ from (3). Thus, the graph of $\lambda(s)$ is an 'upright' (U-shaped) parabola $(a_{\lambda} > 0)$ with a negative Y-intercept $(c_{\lambda} < 0)$, like the ones in Figure 1. Hence, $\lambda(s)$ has one positive $(s_{\lambda,+})$ and one negative $(s_{\lambda,-})$ root. Because s < 0 from the branch condition, the solution of (1) is

$$s_{(IV)} = s_{\lambda,-}. (4)$$

3 Branch I: $y_{-} \le 0, y_{+} \le 0$

From the first row in Table 1, the solution of (1) trivially is

$$s_{(I)} = -z. (5)$$

Though $\lambda(s)$ degenerates into a line and it is not necessary to solve a quadratic equation in this branch, one can still write the coefficients of $\lambda(s)$ as

$$a_{\lambda} = 1, \quad b_{\lambda} = z, \quad c_{\lambda} = 0,$$
 (6)

as given in the table in the paper. Observe that the expression of G(s) in branch I is the same as in branch IV with the 'history potential' $\widehat{V}(y_{-}) = 0$. Therefore, the solution for branch I can also be viewed as $s_{\lambda,-}$ with $c_{\lambda} = 0$.

4 Branch III: $y_{-} > 0, y_{+} > 0$

4.1 Coefficients $(a_{\lambda}, b_{\lambda}, c_{\lambda})$

In this branch, from Table 1, $\lambda(s)$ can be written as:

$$\lambda(s) = s G(s) = s^2 + z s + q \left\{ \widehat{V}(y_+) - \widehat{V}(y_-) \right\}.$$
 (7)

By definition, $\widehat{V}(y_+) = V_p(y_+)$ for $y_+ > 0$, and $y_+ = s + y_-$. Therefore (7) can be re-written as

$$\Rightarrow \lambda(s) = s^2 + z \, s + q \, \left\{ V_p(s + y_-) - \widehat{V}(y_-) \right\}, \tag{8}$$

$$\Rightarrow \lambda(s) = s^2 + z \, s + q \, \left\{ a_p(s + y_-)^2 + b_p(s + y_-) + c_p - \widehat{V}(y_-) \right\}. \tag{9}$$

Expanding and re-arranging the terms in the RHS, (9) can be written as

$$\lambda(s) = (1 + q a_p) s^2 + \{z + q (2 a_p y_- + b_p)\} s + q \underbrace{(a_p y_-^2 + b_p y_- + c_p)}_{V_p(y_-)} - \widehat{V}(y_-)), \tag{10}$$

$$\Rightarrow a_{\lambda} = (1 + q \, a_p), \quad b_{\lambda} = z + q \, (2 \, a_p \, y_- + b_p), \quad c_{\lambda} = q \, (V_p(y_-) - \widehat{V}(y_-)), \tag{11}$$

which match the ones in the table in the paper. Notice that

$$b_{\lambda} = z + q \,\partial_{y} V_{p}(y_{-}). \tag{12}$$

4.2 Observations

Figure 2 aids in visualising some of the following relations between variables.

4.2.1 Relations directly from convexity

From convexity of $\widehat{V}(y)$, the following inequalities hold:

$$\widehat{V}(y_{+}) \ge \widehat{V}(y_{-}) + s \,\partial_{y}\widehat{V}(y_{-}),\tag{13}$$

$$\widehat{V}(y_{-}) \ge \widehat{V}(y_{+}) - s \,\partial_{y}\widehat{V}(y_{+}). \tag{14}$$

See top-left plot in Figure 2 for a visualisation of (13). Inequality (14) can also be similarly visualised (not shown in figure). Now, (13) can be split as the following two inequalities:

$$\frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s} \ge \partial_{y}\widehat{V}(y_{-}), \quad s > 0,$$
(15)

$$\partial_y \widehat{V}(y_-) \ge \frac{\widehat{V}(y_+) - \widehat{V}(y_-)}{s}, \quad s < 0. \tag{16}$$

Figure 2: $QSA \ \hat{V}(y)$ (top, blue) and its derivative $\partial_y \hat{V}(y)$ (bottom, red). The dashed-dotted line in the top-left plot is the tangent to the QSA curve at y_- , and the dashed-dotted lines in the bottom plots are the extensions of the segment $\partial_y V_p(y)$. In the top plots, the green line connects the points $(y_-, \hat{V}(y_-))$ and $(y_+, \hat{V}(y_+))$ and therefore its slope is the discrete gradient $(\hat{V}(y_+) - \hat{V}(y_-))/s$, which is also shown as the dashed green line in the bottom plots.

Notice that the dashed-dotted extended lines in the bottom plots in Figure 2 are always below the derivative curve. Therefore, irrespective of the sign of s, the following inequality is satisfied:

$$\partial_y \widehat{V}(y_-) \ge \partial_y V_p(y_-). \tag{17}$$

4.2.2 Relation between $\partial_y V_p(y_-)$ and the discrete gradient

From (15) and (17), the following holds for s > 0:

$$\frac{\widehat{V}(y_+) - \widehat{V}(y_-)}{s} \ge \partial_y V_p(y_-), \quad s > 0.$$
(18)

For s < 0, eqs. (16) and (17) do not readily result in the corresponding complementary inequality. However, observations from testing over multiple cases suggest that the following is true:

$$\frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s} \le \partial_{y} V_{p}(y_{-}), \quad s < 0.$$

$$(19)$$

See the bottom plots in Figure 2 for an instance of these relations being satisfied. The green dashed line is above the value $\partial_y V_p(y_-)$ (18) in the bottom-left plot, and below $\partial_y V_p(y_-)$ (19) in the bottom-right plot.

4.2.3 Relation between $\partial_y V_p(y_+)$ and the discrete gradient

By definition, for $y \in [y_{p-1}, y_p)$, $\partial_y V_p(y) = \partial_y \widehat{V}(y)$. Because $y_+ \in [y_{p-1}, y_p)$, $\partial_y V_p(y_+) = \partial_y \widehat{V}(y_+)$. Using this relation, (14) can be re-written (in split-form) as

$$\partial_y V_p(y_+) \ge \frac{\widehat{V}(y_+) - \widehat{V}(y_-)}{s}, \quad s > 0, \tag{20}$$

$$\partial_y V_p(y_+) \le \frac{\widehat{V}(y_+) - \widehat{V}(y_-)}{s}, \quad s < 0, \tag{21}$$

and these can be seen to hold in the bottom plots in Figure 2 as well.

4.3 Lemma: $b_{\lambda} < 0 \iff s > 0$

Case $b_{\lambda} < 0$

Suppose s < 0 in this case. Then,

$$b_{\lambda} < 0 \Rightarrow z + q \,\partial_{y} V_{p}(y_{-}) < 0, \tag{22}$$

$$\Rightarrow z + q \frac{\widehat{V}(y_+) - \widehat{V}(y_-)}{s} < 0, \quad \text{(from (19))}$$

$$\Rightarrow \underbrace{s + z + q \frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s}}_{G(s)} < s. \tag{24}$$

For s to be a root of (1), G(s) = 0, and therefore (24) $\Rightarrow s > 0$, which is a contradiction. Thus,

$$b_{\lambda} < 0 \Rightarrow s > 0. \tag{25}$$

Case $b_{\lambda} > 0$

Taking a proof by contradiction approach as in the previous case, suppose s > 0. Then we have

$$b_{\lambda} > 0 \Rightarrow z + q \,\partial_y V_p(y_-) > 0, \tag{26}$$

$$\Rightarrow z + q \frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s} > 0, \quad \text{(from (18))}$$

$$\Rightarrow \underbrace{s + z + q \frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s}} > s. \tag{28}$$

For s to be a root of (1), G(s) = 0, and therefore (28) $\Rightarrow s < 0$, which is a contradiction. Thus,

$$b_{\lambda} > 0 \Rightarrow s < 0. \tag{29}$$

From (25) and (29), it follows that

$$b_{\lambda} < 0 \iff s > 0, \tag{30}$$

and hence the lemma is proven.

4.4 Root Selection Based on the Sign Of b_{λ}

From (2), it follows that

$$s = \begin{cases} s_{\lambda,+} : & 2a_{\lambda}s + b_{\lambda} > 0, \\ s_{\lambda,-} : & \text{otherwise.} \end{cases}$$
 (31)

Expanding the term $(2a_{\lambda}s + b_{\lambda})$, we have

$$2a_{\lambda}s + b_{\lambda} = 2(1 + qa_p)s + z + q(2a_py_- + b_p),$$
 (from the first two equations in (11)) (32)

$$\Rightarrow 2a_{\lambda}s + b_{\lambda} = 2s + z + 2q a_p(s + y_-) + q b_p, \tag{33}$$

$$\Rightarrow 2a_{\lambda}s + b_{\lambda} = 2s + z + q \underbrace{\left(2a_{p}y_{+} + b_{p}\right)}_{\partial_{y}V_{p}(y_{+})}, \quad (\because s + y_{-} = y_{+}). \tag{34}$$

Case $b_{\lambda} < 0$

From the lemma (30), s > 0 if $b_{\lambda} < 0$. Therefore, from (34) the following can be derived:

$$\Rightarrow 2a_{\lambda}s + b_{\lambda} \ge 2s + z + q\frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s}, \quad \text{(from (20))}$$

$$\Rightarrow 2a_{\lambda}s + b_{\lambda} \ge 2s + z + q \frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s}, \quad \text{(from (20))}$$

$$\Rightarrow 2a_{\lambda}s + b_{\lambda} \ge s + \underbrace{s + z + q \frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s}}_{G(s)}.$$
(35)

For s to be a root of (1), G(s) = 0, and hence from (36), we have

$$2a_{\lambda}s + b_{\lambda} \ge s > 0. \tag{37}$$

Therefore, for this case, we have

$$b_{\lambda} < 0 \Rightarrow 2a_{\lambda}s + b_{\lambda} > 0.$$
 (38)

Case $b_{\lambda} > 0$

Again from lemma (30), s < 0 if $b_{\lambda} > 0$. Thus, from (34) the following can be derived:

$$\Rightarrow 2a_{\lambda}s + b_{\lambda} \le 2s + z + q \frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s}, \quad \text{(from (21))}$$

$$\Rightarrow 2a_{\lambda}s + b_{\lambda} \leq s + \underbrace{s + z + q \frac{\widehat{V}(y_{+}) - \widehat{V}(y_{-})}{s}}_{G(s)}. \tag{40}$$

For s to be a root of (1), G(s) = 0, and hence from (40), we have

$$2a_{\lambda}s + b_{\lambda} \le s < 0. \tag{41}$$

Thus, for this case, we have

$$b_{\lambda} > 0 \Rightarrow 2a_{\lambda}s + b_{\lambda} < 0. \tag{42}$$

The statements (38) and (42) together result in the logical equivalence

$$b_{\lambda} < 0 \iff 2a_{\lambda}s + b_{\lambda} > 0. \tag{43}$$

Finally, using (43) in (31), the roots can be selected as

$$s_{\text{(III)}} = \begin{cases} s_{\lambda,+} : & b_{\lambda} < 0, \\ s_{\lambda,-} : & \text{otherwise.} \end{cases}$$

$$\tag{44}$$

5 Branch II: $y_{-} \le 0, y_{+} > 0$

From Table 1, observe that G(s) in branch II is the same as in branch III with $\widehat{V}(y_{-}) = 0$. Therefore, the coefficients $(a_{\lambda}, b_{\lambda}, c_{\lambda})$ in this case are:

$$a_{\lambda} = (1 + q \, a_p), \quad b_{\lambda} = z + q \, (2 \, a_p \, y_- + b_p), \quad c_{\lambda} = q \, V_p(y_-),$$
 (45)

which are the same as in the table in the paper. From the branch condition, s > 0, and thus from (30), (38) and (31), as in the case of branch III it follows that

$$s_{\text{(II)}} = s_{\lambda,+}.\tag{46}$$