Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 19/20

Problemas. Hoja 5

Problema 1. Demuestre que una función continua en [a, b] que toma valores en [a, b] tiene al menos un punto fijo.

Problema 2. Sea g una función definida en un intervalo y monótona creciente en sentido estricto, g(x) < g(y) para x < y. Supongamos que los iterantes x_n estn definidos desde n = 0 hasta n = N > 1 y que ninguno es punto fijo de g. Pruebe que la sucesión x_0, x_1, \dots, x_N es ó monótona creciente en sentido estricto ó monótona decreciente en sentido estricto.

Problema 3. Sea g una función definida en un entorno de su punto fijo α y monónota decreciente en sentido estricto. Pruebe que α es el único punto fijo de g. Pruebe que si los iterantes están definidos desde n=0 hasta n=N>1 y no coinciden con α entonces dos iterantes consecutivos están a distinto lado de α .

Problema 4. Las funciones $g(x) = \sin(x)$ y $g(x) = \tan(x)$ tienen ambas el punto fijo $\alpha = 0$ y para ambas g'(0) = 1. Pruebe que para $|x_0|$ suficientente pequeño con el seno la iteración de punto fijo converge mientras que con la tangenet diverge. En el caso $|g'(\alpha)| = 1$ la convergencia o divergencia depende de los valores de las derivadas superiores de g. Pruebe que si con $|g'(\alpha)| = 1$ hay convergencia cada error es asintóticamente de la misma magnitud del anterior con lo que la convergencia es lentísima y el método carece de utilidad en ese caso.

Problema 5. Demuestre que para $\lambda \in [0,4]$ la función $g(x) = \lambda x(1-x)$ aplica el intervalo [0,1] en sí mismo. Consideremos $x \in [0,1]$ y $\lambda \in [0,4]$. ¿Cuántos puntos fijos tiene g? Demuestre que el punto fijo $\alpha = 0$ es atractor si $\lambda < 1$ y repulsor para $\lambda > 1$. Demuestre que para $\lambda = 1$ cualquier $x_0 \in [0,1]$ conduce a una sucesión de iterantes que converge a $\alpha = 0$ y que cada error e_n es asintóticamente igual al precedente. Estudie para qué valores de λ el punto fijo distinto de cero es atractivo.

Problema 6. Demuestre que si en el punto fijo α de g es $g'(\alpha) = g''(\alpha) = 0$ entonces los errores de la iteración de punto fijo verifican e_{n+1}/e_n^3 se acerca a un límite. Esta convergencia de llama cúbica. ¿Qué hipótesis sobre la derivabilidad de g se necesitan?

Problema 7. ¿Cuántos puntos fijos tiene $g(x) = (1/2)x - x^3$? Halle un punto $\beta > 0$ con la propiedad $g(\beta) = -\beta$ ¿Qué le ocurre a la iteración de

punto fijo para $x_0 \in (0, \beta)$? ¿Y para $x_0 = \beta$? ¿Y para $x_0 > \beta$? Los casos en que x_0 es negativo no necesitan ser discutidos: cambiar el signo de x_0 cambia el signo de todos los iterantes.

Problema 8. Encuentre los puntos fijos de $(\pi/2)\sin(x)$. Para cada x_0 real la sucesión de iterantes converge a un punto fijo. Determine, en función de x_0 cuál es ese límite.

Problema 9. Sea f una función definida en un intervalo abierto que contenga a un punto α con $f(\alpha) = 0$. Por sencillez supongamos que f tiene derivadas de cualquier orden en todo punto y que α es el único cero de f. Demuestre que si p es un entero mayor o igual que 1 las dos condiciones siguientes son equivalentes:

- i) f y sus derivadas hasta la p-1 se anulan en α pero $f^{(p)}(\alpha) \neq 0$.
- ii) f es de la forma $f(x) = (x \alpha)^p F(x)$ donde F es una función con $F(\alpha) \neq 0$.

Cuando se verifican estas dos condiciones se dice que α es un cero de multiplicidad p de f. En las condiciones anteriores use ii) para probar que la función de iteración del método de Newton tiene una derivada que en α vale 1-1/p. Por ello, a menos que la raíz sea simple, el método de Newton converge pero la convergencia no es cuadrática. Aplique el método de Newton para resolver $x^2 = 0$ a partir de x_0 dado. Halle la expresión de los x_n y compruebe la convergencia lineal.

Problema 10. Para la ecuación $f(x) = x^3 - x = 0$ vamos a determinar para que valores de x_0 la iteración de Newton coverge a cada una de las tres raíces +1,0,-1. Realice una figura con la gráfica de f hallando el máximo y el mínimo de f. Compruebe, usando la interpretación gráfica del método de Newton, que para $x_0 \in I_1 = (b_1, \infty), b_1 = \sqrt{3}/3$, hay convergencia hacia +1. Por simetría para $x_0 \in J_1 = (-\infty, -b_1)$ hay convergencia hacia -1. Dibuje en la figuja $I_2 = (-b_1, -b_2)$ donde $-b_2 < 0$ es el punto que el método de Newton lleva en b_1 . Pruebe que I_2 está en el dominio de atracción de +1. Por simetría $J_2 = (b_2, b_1)$ está en el dominio de atracción de -1. Dibuje ahora $I_3 = (b_3, b_2)$ donde b_3 es llevado por el método de Newton en $-b_2$ y pruebe que está en el dominio de +1, etc. El dominio de atracción de +1 es la reunión de los intervalos abiertos disjuntos I_1, I_2, I_3, \cdots . Los extremos de estos intervalos se acumulan a los puntos $\pm \gamma$ tales que el método de Newton lleva γ en $-\gamma$ y viceversa. El dominio de -1 es simétrico del de +1. El dominio de 0 es $(-\gamma, \gamma)$. Empezando en los puntos $\pm b_n$ sólo se puede efectuar un número finito de iteraciones. En cualquier pequeño intervalo

que contenga a γ hay puntos del dominio de +1, puntos del dominio de -1, puntos del dominio de 0 y puntos en los que la iteración acaba tras un número finito de pasos.

Problema 11. En el método de Newton x_{n+1} es el cero del polinomio de Taylor de primer grado en x_n . En el método de Euler aproximamos f por el polinomio de Taylor de segundo grado en x_n y tomamos para x_{n+1} uno de los ceros de esa parábola cuadrática. Demuestre que esos ceros son

$$x_n + \frac{-f'(x_n) \pm \sqrt{(f'(x_n))^2 - 2f(x_n)f''(x_n)}}{f''(x_n)}.$$

¿Se quedaría usted con la raíz de signo + ó con la de signo -? La fórmula que hemos encontrado tiene el inconveniente de que, para x_n cerca de α exige sustraer cantidades muy parecidas. Pruebe que x_{n+1} puede escribirse, para evitar errores de redondeo, en la forma

$$x_n - \frac{2}{1 + \sqrt{1 - 2\frac{f(x_n)f''(x_n)}{(f'(x_n))^2}}} \frac{f(x_n)}{f'(x_n)};$$

expresión que se toma como definición en el método de Euler. Pruebe que, para raíces simples y funciones f suficientemenre regulares, el método de Euler converge cúbicamente, es decir $g'(\alpha) = g''(\alpha) = 0$.