Homework

Samuel Lindskog

September 1, 2024

Problem 1

Let $n \in \mathbb{N}$ be a positive integer. Suppose $x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n \in \mathbb{R}$. Show that

$$\sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}.$$

Proof: We shall prove by induction on n. Suppose n = 1. Then

$$\sqrt{(x_i - y_i)^2} + \sqrt{(y_i - z_i)^2} = (x_i - y_i) + (y_i - z_i)$$
$$= (x_i - z_i)$$
$$= \sqrt{(x_i - z_i)^2}$$

Suppose by inductive hypothesis that

$$\sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}.$$

It follows that $\sum_{i=1}^{n}(x_i-z_i) \leq \sum_{i=1}^{n}(x_i-y_i) + \sum_{i=1}^{n}(x_i-z_i)$. Suppose $x,y,z,w \in \mathbb{R}$. Then

$$\sqrt{x^2 + w^2} + \sqrt{y^2 + z^2} \ge \sqrt{(x+y)^2 + (w+z)^2}$$
$$x^2 + y^2 + w^2 + z^2 + 2\sqrt{x^2 + w^2}\sqrt{y^2 + z^2} \ge x^2 + y^2 + w^2 + z^2 + 2xy + 2wz$$

Problem 2

Proof: For all $(x,y) \in (0,1) \times (0,1), \ 0 < x,y < 1$. So, for any (x,y) if $r = \min(|x-1|,x,|y-1|,y)$ and $(z,w) \in B((x,y),r)$, then $\sqrt{(x-z)^2 + (y-w)^2} < \frac{r}{2}$. Therefore $z = x \pm \frac{r}{2}$ and $w = y \pm \frac{r}{2}$, so $(z,w) \in U$.

Proof: Suppose $(x,y) \in \{(0,1) \times (0,1)\}$. Then $d\big((x,y),(0,0)\big) = \sqrt{x^2 + y^2}$. Because there exists r > 0 such that $B(x,r) \subset U$, if $r > \min \big(|x-1|,x,|y-1|,y\big)$, then $B(x,r) \not\subset U$. But because x,y>0, we see that $d\big((x,y),(0,0)\big) > r$, so $\exists a \in B\Big((0,0),d\big((x,y),(0,0)\big) - r\Big)^1$ such that $a \notin B((x,y),r)$ for any open ball. \square

Problem 3

Proof: Let $X = \mathbb{R}$. If $U_i \in \{(\frac{-1}{i}, \frac{1}{i})\}_{i=1}^{\infty}$ is a sequence of open subsets, then $\bigcap_{i=1}^{\infty} U_i = 0$. Let $x \in U_i$, then $\forall \epsilon > 0, \exists N = \frac{2}{\epsilon} \ (i > N \Rightarrow |x| > \epsilon \Rightarrow x \notin U_N)$. So $\bigcap_{i=1}^{\infty} U_i = \{0\}$, and $\{0\}$ is a closed subset of X.

¹Not the empty set