

Aveiro University

Department of Electronics, Telecommunications and Informatics

Compilers

Trand practice exam, part 2	(School Year 2022-2023)	Sample Exam		
Course: Name:		MECNo:		
	predict ALGORITHM:			
$predict(A \rightarrow a) = \begin{cases} first(a) \\ (first(a) \\ first(a) \end{cases}$	(α) $\varepsilon \in \text{first}(\alpha)$ $(\alpha) - \{\epsilon\}) \cup \text{follow}(A)$ $\varepsilon \in \text{first}(\alpha)$			
ALGORITHM of first:	ALGORITHM of f	Follow:		
first(α) { if ($\alpha = \varepsilon$) then return { ε } $h = \text{head }(\alpha) \# \text{ with } \mathbf{h} = \omega = \text{tail }(\alpha) \# \text{ such that } \alpha$ ω if ($h \in T$) then return { \mathbf{h} } else return first(β_i	$= h$ 3. if $(A \to \alpha B\beta \in P) \land (\varepsilon \in fi)$ follow(B) $\supseteq first(\beta)$ 4. if $(A \to \alpha B\beta \in P) \land (\varepsilon \in f)$	• • • • • • • • • • • • • • • • • • • •		

1. About the alphabet $T_1 = \{t \ b \ z \ w \ a \ o \ v \ n\}$ consider the grammar G_1 given below and let L_1 be the language it describes.

$$P \rightarrow o \mid XIt P \mid Xb Pz P$$
 $X \rightarrow o \mid w C$
 $I \rightarrow \epsilon \mid a$
 $C \rightarrow T \mid Co T$
 $T \rightarrow v \mid n T$

- [1,5] (a) Show that a t w n v b $z \in L_{.1}$
- [1,5] (b) Evaluate the truth of the sterret {w, t} ⊂ first(X I t P).

 Present the appropriate intermediate steps and/or reasoning to support your answer.
- [1,5] (c) Evaluate the truth of the **street** t ∈ follow(T).

 Present the appropriate intermediate steps and/or reasoning to support your answer.
- [2,0] (d) Compute the set predict(P → X I t P).

 Present the appropriate intermediate steps and/or reasoning to support your answer.
- [2,0] (e) The productions started by P and C make the grammar G_1 unsuitable for **te**implementation of a top-down re-cognizer with *lookahead* of 1. Change it in order to obtain an equivalent one that allows it.
 - 2. Consider the alphabet $A = \{a, b, c\}$ and let L_2 be the set of all regular expressions definable over the

	and	licit rator. In terms of precedence, from highest to lowest, are the operations closure, concatenation choice. Parentheses can be used to change the default precedence.
3,0]	(.)	Construct a context-independent grammar that represents the language L_2 .

alphabet A. L_2 is a context-independent language defined over the alphabet $T_2 = A \cup \{(,), *, +\}$, where * represents the closure operator and + the choice operator; concatenation operation has the ope-cation.

3. About the alphabet $T_3 = \{NUM, BOX, CIRCLE, THICKNESS, COLOR, '{', '}}, consider the grammar <math>G_3$ given below and let

 L_3 the language she described.

Consider further the set of states (itemsets) used in the construction of a partially ascending recognizer shown below, where $\delta(Z_i, a)$ represents the state transition function.

```
\begin{split} z_0 &= \{ \text{draw} \to -\text{seq} \;,\; \text{seq} \to -\text{,}\; \text{seq} \to -\text{seq} \; \text{item} \} \\ z_1 &= \delta(z_0, \text{seq}) = \{ \text{draw} \to \text{seq} \; -\text{,}\; \text{seq} \to \text{Seq} \; -\text{ item} \;,\; \text{item} \to -\text{COLOR} \; \text{NUM} \;,\; \text{item} \to -\text{CIRCLE} \; \text{point} \; \text{NUM} \;,\; \text{item} \to -\text{BOX} \; \text{point} \; ' \; \{ \; ' \; \text{seq} \; ' \; \} \; ' \} \\ z_2 &= \delta(z_1, \text{ item}) = \{ \text{seq} \to \text{seq} \; \text{item} \to -\text{BOX} \; \text{point} \; ' \; \{ \; ' \; \text{seq} \; ' \; \} \; ' \} \\ z_3 &= \delta(z_1, \text{ COLOR}) = \{ \text{item} \to \text{COLOR} \; -\text{NUM} \} \\ z_4 &= \delta(z_1, \text{ THICKNESS}) = \{ \text{item} \to \text{THICKNESS} \; -\text{NUM} \} \\ z_5 &= \delta(z_1, \text{ CIRCLE}) = \{ - - - \} \\ z_6 &= \delta(z_1, \text{ BOX}) = \{ - - - \} \\ z_7 &= \delta(z_3, \text{ NUM}) = \{ \text{item} \to \text{COLOR} \; \text{NUM} \; - \} \\ z_8 &= \delta(z_4, \text{ NUM}) = \{ \text{item} \to \text{THICKNESS} \; \text{NUM} \; - \} \end{split}
```

[2,0] (a) Fill in the rows of the parsing table for an ascending recognizer for states Z_0 to Z_4 .

	NUM	вох	CIRCLE	THICKNESS	COLOR	{	}	\$ draw	seq	item	point
Z_0											
Z_1											
Z_2											
Z_3											
Z_4											

[2,0] (b) Determine the item sets defining the states Z_5 , Z_6 and three more, in addition to those shown.

- 4. Consider again the grammar G_3 given in the previous exercise. A word in the language given by G_3 describes a drawing defined by a sequence of the following graphic operations (*item*):
 - COLOR NUM, which allows you to change the color of the drawing pen to that given by NUM.
 - THICKNESS NUM, which allows you to change the thickness of the drawing pen to that given by NUM.
 - CIRCLE *point* NUM, which draws a circle centered at the point given by *point* and with radius given by NUM, using the active drawing pen.
 - BOX point '{' seq'}', which creates a subdrawing with an offset given by point relative to the drawing in which it lies. The point (0,0) of the sub-drawing is the point of the drawing in which it is included.

Only the terminal symbol NUM has an associated attribute, called v, which represents a number. The non-terminal symbol point represents the X and Y coordinates of a point. The initial configuration of the system is characterized by color 0, thickness 1, and offset (0,0). Finally, consider that you have the function drawCircle(x, y, r, c, t) which draws a circle centered at the point (x,y), with radius r, using a drawing pen with color c and thickness t.

- [1,5] (a) Trace the derivation tree of the word

 COLOR NUM CIRCLE NUM NUM NUM BOX NUM NUM NUM '{ THICKNESS NUM CIRCLE NUM NUM NUM NUM NUM '}'

 If you like, when tracing the tree, you can abbreviate the name of the symbols, using N, CI, CO, T, B, s, i, and p instead of NUM, CIRCLE, COLOR, THICKNESS, BOX, seq, item, and point, respectively.
- [3,0] (b) Complete the attribute grammar below such that it properly invokes the drawCircle function for each circle included in a description in $L_{.3}$

Production	Semantic rule			
$draw \rightarrow seq$				
$seq \rightarrow \varepsilon$				
seq → seq item				
item → COLOR NUM				
item → THICKNESS NUM				
item → CIRCLE point NUM	drawCircle(point.x, point.y, NUM.V,			
$item \rightarrow BOX \ point \{ seq \}$				
point o NUM NUM				