PracticeMidterm

Jim Liu

10/13/2020

R Markdown

```
data = read.csv("/Users/jim/Dropbox (GaTech)/Courses/ISyE6402/Midterm/HouseData.csv", header=TRUE)
data.train = data[1:(nrow(data)-4),]
data.test = data[(nrow(data)-3):nrow(data),]
data.train
```

##		Sno	Timeline	Houses_for_Sale	Employment_Ratio	GDP_Growth	Bank_Prime_Rate
##	1	1	Mar-76	314	56.7	3.1	6.75
##	2	2	Jun-76	336	56.8	2.1	7.20
##	3	3	Sep-76	341	56.9	3.0	7.00
##	4	4	Dec-76	358	57.0	4.7	6.35
##	5	5	Mar-77	353	57.4	8.1	6.25
##	6	6	Jun-77	369	57.9	7.3	6.75
##	7	7	Sep-77	392	58.1	0.0	7.13
##	8	8	Dec-77	408	58.7	1.4	7.75
##	9	9	Mar-78	398	58.8	16.5	8.00
##	10	10	Jun-78	422	59.5	4.0	8.63
##	11	11	Sep-78	419	59.5	5.5	9.41
##	12	12	Dec-78	419	59.8	0.8	11.55
##	13	13	Mar-79	416	60.0	0.5	11.75
##	14	14	Jun-79	420	59.9	2.9	11.65
##	15	15	Sep-79	414	60.0	1.0	12.90
##	16	16	Dec-79	402	60.1	1.3	15.30
##	17	17	Mar-80	369	59.7	-7.9	18.31
##	18	18	Jun-80	341	58.9	-0.6	12.63
##	19	19	Sep-80	339	58.9	7.6	12.23
##	20	20	Dec-80	342	59.0	8.5	20.35
##	21	21	Mar-81	323	59.4	-2.9	18.05
##	22	22	Jun-81	318	59.0	4.7	20.03
##	23	23	Sep-81	306	58.7	-4.6	20.08
##	24	24	Dec-81	278	58.2	-6.5	15.75
##	25	25	Mar-82	264	58.1	2.2	16.50
##	26	26	Jun-82	253	57.8	-1.4	16.50
##	27	27	Sep-82	249	57.6	0.4	13.50
##	28	28	Dec-82	255	57.2	5.3	11.50
##	29	29	Mar-83	259	57.1	9.4	10.50
	30	30	Jun-83	283	57.8	8.1	10.50
##	31	31	Sep-83	302	58.4	8.5	11.00
##	32	32	Dec-83	304	58.8	8.2	11.00

	00	00	W 04	0.4.0	F0 4	7.0	44 04
	33	33	Mar-84	316	59.1	7.2	11.21
	34	34	Jun-84	340	59.9	4.0	12.60
##	35	35	Sep-84	345	59.7	3.2	12.97
##	36	36	Dec-84	358	59.9	4.0	11.06
##	37	37	Mar-85	350	60.2	3.7	10.50
##	38	38	Jun-85	354	59.8	6.4	9.78
##	39	39	Sep-85	352	60.3	3.0	9.50
##	40	40	Dec-85	350	60.4	3.8	9.50
##	41	41	Mar-86	331	60.5	1.9	9.10
	42	42	Jun-86	341	60.7	4.1	8.50
	43	43	Sep-86	357	60.8	2.1	7.50
##	44	44	Dec-86	361	61.0	2.8	7.50
##	45	45	Mar-87	352	61.2	4.6	7.50
##	46	46	Jun-87	360	61.4	3.7	8.25
	47	47	Sep-87	364	61.6	6.8	8.70
	48	48	Dec-87	370	62.0	2.3	8.75
	49	49	Mar-88	366	61.9	5.4	8.50
	50	50	Jun-88	367	62.3	2.3	9.00
##	51	51	Sep-88	363	62.4	5.4	10.00
##	52	52	Dec-88	371	62.6	4.1	10.50
##	53	53	Mar-89	371	62.9	3.2	11.50
##	54	54	Jun-89	378	63.0	3.0	11.07
##	55	55	Sep-89	366	62.8	0.9	10.50
##	56	56	Dec-89	366	63.0	4.5	10.50
##	57	57	Mar-90	358	63.2	1.6	10.00
	58	58	Jun-90	355	62.9	0.1	10.00
	59	59	Sep-90	339	62.5	-3.4	10.00
	60	60	Dec-90	321	62.2	-1.9	10.00
	61	61	Mar-91	304	61.8	3.1	9.00
	62	62		296	61.7		
			Jun-91			1.9	8.50
	63	63	Sep-91	292	61.6	1.8	8.20
	64	64	Dec-91	284	61.2	4.8	7.21
	65	65	Mar-92	275	61.5	4.5	6.50
	66	66	Jun-92	275	61.5	3.9	6.50
##	67	67	Sep-92	268	61.4	4.1	6.00
##	68	68	Dec-92	267	61.4	0.8	6.00
##	69	69	Mar-93	268	61.5	2.4	6.00
##	70	70	Jun-93	276	61.8	2.0	6.00
##	71	71	Sep-93	290	61.7	5.4	6.00
##	72	72	Dec-93	295	62.0	4.0	6.00
##	73	73	Mar-94	296	62.1	5.6	6.06
##	74	74	Jun-94	316	62.3	2.4	7.25
	75	75	Sep-94	332	62.7	4.6	7.75
	76	76	Dec-94	340	63.1	1.4	8.50
	77	77	Mar-95	343	63.1	1.4	9.00
	78	78	Jun-95	349	62.7	3.5	9.00
	79	79	Sep-95	354	62.9	2.9	8.75
	80	80	Dec-95	374	62.7	2.7	8.65
	81	81	Mar-96	362	63.0	7.2	8.25
	82	82	Jun-96	355	63.2	3.7	8.25
	83	83	Sep-96	332	63.4	4.3	8.25
	84	84	Dec-96	326	63.4	3.1	8.25
	85	85	Mar-97	284	63.6	6.2	8.30
##	86	86	Jun-97	288	63.7	5.2	8.50

	87 87	-	285	63.9	3.1	8.50
##	88 88	Dec-97	287	64.0	4.0	8.50
##	89 89	Mar-98	281	64.0	3.9	8.50
##	90 90	Jun-98	287	64.0	5.3	8.50
##	91 91	Sep-98	291	64.2	6.7	8.49
##	92 92	-	300	64.3	3.2	7.75
	93 93		286	64.2	3.3	7.75
	94 94		296	64.2	5.1	7.75
	95 95	-	303	64.2	7.1	8.25
	96 96		315	64.4	1.2	8.50
	97 97		310	64.6	7.8	8.83
##	98 98		308	64.5	0.5	9.50
##	99 99	Sep-00	301	64.2	2.3	9.50
##	100 100	Dec-00	301	64.4	-1.1	9.50
##	101 101	Mar-01	286	64.3	2.1	8.32
##	102 102	Jun-01	302	63.7	-1.3	6.98
##	103 103		310	63.5	1.1	6.28
##	104 104	-	310	62.9	3.7	4.84
	105 105		307	62.8	2.2	4.75
	106 106	Jun-02	328	62.7	2.0	4.75
	107 107		332	63.0	0.3	4.75
		_				
	108 108		344	62.4	2.1	4.25
	109 109		330	62.4	3.8	4.25
	110 110	Jun-03	342	62.3	6.9	4.22
##	111 111	Sep-03	350	62.0	4.8	4.00
##	112 112	Dec-03	377	62.2	2.3	4.00
##	113 113	Mar-04	375	62.2	3.0	4.00
##	114 114	Jun-04	385	62.4	3.7	4.01
##	115 115	Sep-04	413	62.3	3.5	4.58
##	116 116	Dec-04	431	62.4	4.3	5.15
	117 117	Mar-05	441	62.4	2.1	5.58
	118 118	Jun-05	458	62.7	3.4	6.01
	119 119	Sep-05	491	62.8	2.3	6.59
	120 120	Dec-05	515	62.8	4.9	7.15
	121 121	Mar-06	550	63.1	1.2	7.53
	122 122		570	63.1	0.4	8.02
	123 123	-	561	63.1	3.2	8.25
	124 124	Dec-06	537	63.4	0.2	8.25
	125 125		542	63.3	3.1	8.25
##	126 126	Jun-07	543	63.0	2.7	8.25
##	127 127	Sep-07	527	62.9	1.4	8.03
##	128 128	Dec-07	496	62.7	-2.7	7.33
##	129 129	Mar-08	465	62.7	2.0	5.66
##	130 130	Jun-08	435	62.4	-1.9	5.00
##	131 131	Sep-08	398	61.9	-8.2	5.00
	132 132	_	352	61.0	-5.4	3.61
	133 133		311	59.9	-0.5	3.25
	134 134		282	59.4	1.3	3.25
	135 135		254	58.7	3.9	3.25
		-				
	136 136		232	58.3	1.7	3.25
	137 137		227	58.5	3.9	3.25
	138 138		213	58.5	2.7	3.25
	139 139	-	204	58.5	2.5	3.25
##	140 140	Dec-10	188	58.3	-1.5	3.25

##	141	141	Mar-11	179	58.4	2.9	3.25
##	142	142	Jun-11	167	58.2	0.8	3.25
##	143	143	Sep-11	163	58.4	4.6	3.25
##	144	144	Dec-11	150	58.6	2.7	3.25
##	145	145	Mar-12	144	58.5	1.9	3.25
##	146	146	Jun-12	145	58.6	0.5	3.25
##	147	147	Sep-12	146	58.7	0.1	3.25
##	148	148	Dec-12	148	58.7	2.8	3.25
##	149	149	Mar-13	152	2 58.5	0.8	3.25
##	150	150	Jun-13	161	. 58.6	3.1	3.25
##	151	151	Sep-13	185	58.7	4.0	3.25
##	152	152	Dec-13	186	58.7	-0.9	3.25
##	153	153	Mar-14	187	58.9	4.6	3.25
##	154	154	Jun-14	197	59.0	5.2	3.25
##	155	155	Sep-14	213	59.1	2.0	3.25
##	156	156	Dec-14	212	59.3	3.2	3.25
##	157	157	Mar-15	202	59.3	2.7	3.25
##	158	158	Jun-15	216	59.4	1.6	3.25
##	159	159	Sep-15	227	59.2	0.5	3.25
##	160	160	Dec-15	235	59.6	0.6	3.37
##	161	161	Mar-16	240	59.8	2.2	3.50
##	162	162	Jun-16	243	59.7	2.8	3.50
	163		Sep-16	248			3.50
	164		Dec-16	257			3.64
##		SP50	00				
##	1	102.7	77				
##	2	104.2					
##	3	105.2	24				
##	4	107.4	1 6				
##	5	98.4	12				
##	6	100.4	18				
##	7	96.5	53				
##	8	95.1	LO				
##	9	89.2	21				
##	10	95.5	53				
##	11	102.5	54				
##	12	96.1	11				
##	13	101.5					
	14	102.9	91				
##	15	109.3	32				
##	16	107.9					
##	17	102.0)9				
##	18	114.2	24				
##	19	125.4	16				
##	20	135.7	76				
##		136.0					
	22	131.2					
##	23	116.1					
##	24	122.5					
##		111.9					
##		109.6	31				
	27	120.4	12				
	28	140.6					
##	29	152.9	96				

```
## 30
        167.64
## 31
        166.07
## 32
        164.93
## 33
        159.18
## 34
        153.18
## 35
        166.10
## 36
        167.24
## 37
        180.66
## 38
        191.85
## 39
        182.08
## 40
        211.28
        238.90
## 41
## 42
        250.84
## 43
        231.32
## 44
        242.17
## 45
        291.70
## 46
        304.00
        321.83
## 47
        247.08
## 48
        258.89
## 49
## 50
        273.50
## 51
        271.91
        277.72
## 52
## 53
        294.87
## 54
        317.98
## 55
        349.15
## 56
        353.40
## 57
        339.94
## 58
        358.02
## 59
        306.05
## 60
        330.22
## 61
        375.22
## 62
        371.16
        387.86
## 63
        417.09
## 64
## 65
        403.69
## 66
        408.14
## 67
        417.80
## 68
        435.71
## 69
        451.67
## 70
        450.53
## 71
        458.93
## 72
        466.45
## 73
        445.77
## 74
        444.27
## 75
        462.71
## 76
        459.27
## 77
        500.71
## 78
        544.75
## 79
        584.41
## 80
        615.93
## 81
        645.50
        670.63
## 82
## 83
        687.33
```

```
## 87
        947.28
## 88
        970.43
## 89
       1101.75
## 90
      1133.84
## 91
      1017.01
## 92 1229.23
## 93
     1286.37
## 94
      1372.71
## 95
      1282.71
## 96
      1469.25
## 97
      1498.58
## 98 1454.60
## 99 1436.51
## 100 1320.28
## 101 1160.33
## 102 1224.38
## 103 1040.94
## 104 1148.08
## 105 1147.39
## 106 989.82
## 107 815.28
## 108 879.82
## 109 848.18
## 110 974.50
## 111 995.97
## 112 1111.92
## 113 1126.21
## 114 1140.84
## 115 1114.58
## 116 1211.92
## 117 1180.59
## 118 1191.33
## 119 1228.81
## 120 1248.29
## 121 1294.87
## 122 1270.20
## 123 1335.85
## 124 1418.30
## 125 1420.86
## 126 1503.35
## 127 1526.75
## 128 1468.36
## 129 1322.70
## 130 1280.00
## 131 1166.36
## 132 903.25
## 133 797.87
## 134 919.32
## 135 1057.08
## 136 1115.10
## 137 1169.43
```

740.74

757.12 885.14

84 ## 85

86

```
## 138 1030.71
## 139 1141.20
## 140 1257.64
## 141 1325.83
## 142 1320.64
## 143 1131.42
## 144 1257.60
## 145 1408.47
## 146 1362.16
## 147 1440.67
## 148 1426.19
## 149 1569.19
## 150 1606.28
## 151 1681.55
## 152 1848.36
## 153 1872.34
## 154 1960.23
## 155 1972.29
## 156 2058.90
## 157 2067.89
## 158 2063.11
## 159 1920.03
## 160 2043.94
## 161 2059.74
## 162 2098.86
## 163 2168.27
## 164 2238.83
```

Question 1. Provide the time series plot of the 'Houses for Sale' data. Which assumptions of stationarity, if any, seem to be violated. Provide the time series plot of the 1st order difference of the Houses for Sale data.

```
HFS = data.train$Houses_for_Sale
HFS.ts = ts(data=HFS, start=1976, frequency = 4)
ts.plot(HFS.ts, col='blue')
```


Constant mean/constant variance

```
HFS.dif = diff(HFS.ts)
ts.plot(HFS.dif,main='House of Sale - Differenced',ylab='Sale Difference',col='blue')
```

House of Sale - Differenced

Question 2. Identify the best ARIMA model to fit the Houses for Sale data according to the AIC criterion. Use regular 1st order differencing and consider up to order 5 for AR and MA terms. Report the AIC and estimated

coefficients of your selected model. Which coefficients are significant at the 5% significance level?

Provide plots of the ACF and PACF of the residuals from your ARIMA model and perform the Ljung-Box test. Do the residuals appear uncorrelated?

```
n = length(HFS.ts)
test modelA <- function(p,d,q){
mod = arima(HFS.ts, order=c(p,d,q), method="ML")
current.aic = AIC(mod)
df = data.frame(p,d,q,current.aic)
names(df) <- c("p","d","q","AIC")</pre>
print(paste(p,d,q,current.aic,sep=" "))
return(df)
}
orders = data.frame(Inf,Inf,Inf,Inf)
names(orders) <- c("p","d","q","AIC")</pre>
for (p in 0:5){
  for (d in 0:1){
    for (q in 0:5) {
      possibleError <- tryCatch(</pre>
        orders<-rbind(orders,test_modelA(p,d,q)),
        error=function(e) e
      )
      if(inherits(possibleError, "error")) next
    }
  }
}
```

```
## [1] "0 0 0 1936.28822900367"
## [1] "0 0 1 1750.12086560537"
## [1] "0 0 2 1564.52151886075"
## [1] "0 0 3 1502.77987432438"
## [1] "0 0 4 1414.04420380128"
## [1] "0 0 5 1398.82179493849"
## [1] "0 1 0 1345.99676335138"
## [1] "0 1 1 1313.44753993353"
## [1] "0 1 2 1289.66768637719"
## [1] "0 1 3 1291.61382559805"
## [1] "0 1 4 1264.51999484175"
## [1] "0 1 5 1265.6773305181"
## [1] "1 0 0 1359.72019871953"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "1 0 2 1301.89757172154"
## [1] "1 0 3 1309.08454336027"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
```

```
## [1] "1 0 4 1306.04260365583"
## [1] "1 0 5 1291.06419082058"
## [1] "1 1 0 1285.35526692511"
## [1] "1 1 1 1272.37486246077"
## Warning in log(s2): NaNs produced
## Warning in log(s2): NaNs produced
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "1 1 2 1274.01272070035"
## [1] "1 1 3 1275.69626249276"
## [1] "1 1 4 1262.83351521415"
## [1] "1 1 5 1261.72500934647"
## [1] "2 0 0 1295.91390695195"
## [1] "2 0 1 1361.05370748814"
## [1] "2 0 2 1299.25825693534"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "2 0 3 1287.4978176598"
## [1] "2 0 4 1287.07562048983"
## [1] "2 0 5 1270.60099115942"
## [1] "2 1 0 1273.99529402935"
## [1] "2 1 1 1261.35419760246"
## [1] "2 1 2 1260.45811666923"
## [1] "2 1 3 1257.18925731033"
## [1] "2 1 4 1251.43150579343"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "2 1 5 1250.73144451251"
## [1] "3 0 0 1280.75552380391"
## [1] "3 0 1 1270.4341180022"
## [1] "3 0 2 1262.11058887685"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "3 0 3 1293.92063721938"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "3 0 4 1260.25426290657"
```

```
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "3 0 5 1253.6789671528"
## [1] "3 1 0 1275.71385853575"
## [1] "3 1 1 1262.70117520159"
## [1] "3 1 2 1260.82130041566"
## [1] "3 1 3 1256.90242292559"
## [1] "3 1 4 1250.14731447623"
## [1] "3 1 5 1245.12277920984"
## [1] "4 0 0 1281.25151121983"
## [1] "4 0 1 1270.71855442803"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "4 0 2 1274.26947922504"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "4 0 3 1261.8485532801"
## [1] "4 0 4 1260.28567658561"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "4 0 5 1254.59416640471"
## [1] "4 1 0 1262.01701610238"
## [1] "4 1 1 1249.71107590406"
## [1] "4 1 2 1251.64857530809"
## [1] "4 1 3 1251.71045923905"
## [1] "4 1 4 1252.98899063494"
## [1] "4 1 5 1254.95126964376"
## [1] "5 0 0 1257.51023698568"
## [1] "5 0 1 1249.99803340576"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "5 0 2 1252.3924480544"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "5 0 3 1253.5880376859"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "5 0 4 1255.22816394422"
```

```
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "5 0 5 1257.05512819809"
## [1] "5 1 0 1252.86213433597"
## [1] "5 1 1 1251.60669459247"
## [1] "5 1 2 1242.08470194206"
## [1] "5 1 3 1243.51282706088"
## [1] "5 1 4 1245.22727489838"
## Warning in arima(HFS.ts, order = c(p, d, q), method = "ML"): possible
## convergence problem: optim gave code = 1
## [1] "5 1 5 1247.15459748106"
orders <- orders[order(-orders$AIC),]</pre>
tail(orders)
##
     рdq
                 AIC
## 56 4 1 1 1249.711
## 72 5 1 5 1247.155
## 71 5 1 4 1245.227
## 48 3 1 5 1245.123
## 70 5 1 3 1243.513
## 69 5 1 2 1242.085
final_HFS = arima(HFS.ts, order = c(5,1,2), method = "ML")
resids.HFS = resid(final HFS)
## Residual Analysis
par(mfrow=c(2,2))
plot(resids.HFS, ylab='Standardized Residuals', main="Residual Plot")
abline(h=0)
acf(resids.HFS, main= 'ACF of the Model Residuals', lag.max = 52*4)
pacf(resids.HFS,main='PACF of the Model Residuals', lag.max = 52*4)
qqnorm(resids.HFS)
qqline(resids.HFS)
```


ACF of the Model Residuals

PACF of the Model Residuals

Normal Q-Q Plot


```
## Test for Independence for final model
Box.test(resids.HFS, lag = (5+1+2), type = "Box-Pierce", fitdf = (5+2))
```

```
##
## Box-Pierce test
##
## data: resids.HFS
## X-squared = 1.2875, df = 1, p-value = 0.2565

Box.test(resids.HFS, lag = (5+1+2), type = "Ljung-Box", fitdf = (5+2))
```

```
##
## Box-Ljung test
##
## data: resids.HFS
## X-squared = 1.3504, df = 1, p-value = 0.2452
```

library(lmtest)

```
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
```

coeftest(final_HFS)

```
##
## z test of coefficients:
##
##
        Estimate Std. Error z value Pr(>|z|)
## ar1
        0.781603
                   0.117265
                             6.6653 2.642e-11 ***
##
        0.547297
                   0.163586
                             3.3456
                                     0.000821 ***
  ar2
  ar3 -0.277578
                   0.098355 -2.8222
                                     0.004769 **
        0.292068
                   0.112128
                             2.6048
                                     0.009194 **
## ar4
                   0.075578 -5.3379 9.403e-08 ***
  ar5 -0.403426
## ma1 -0.348029
                   0.124228 -2.8015 0.005086 **
                   0.122592 -5.3182 1.048e-07 ***
## ma2 -0.651964
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Question 3.

Plot the forecasts for the 2017 data using the ARIMA model fit in Question 2 alongside the actual observations. Using the precision measure, assess the prediction accuracy of the model.

EU Forecasting

