Robust Algebraic Parameter Estimation via Gaussian Process Regression

Oren Bassik 1 Alexander Demin 2 Alexey Ovchinnikov 1,3 IFAC/COSY/SSSC Joint Conference July 1, 2025

¹CUNY Graduate Center

²HSE University

³CUNY Queens College

Robust Differentiation: The Cornerstone of Algebraic Parameter Estimation

Challenge: Differentiating Noisy Data

- Algebraic estimators require derivatives $y(t), \dot{y}(t), \ddot{y}(t), \dots$ from noisy measurements $y_k = y(t_k) + \varepsilon_k$
- Naive differentiation acts as a high-pass filter
- Fundamental issue: $Var[\Delta^n y/\Delta t^n] \propto \sigma^2 \Delta t^{-2n}$
- Result: Significant noise amplification, degrading derivative quality

TODO: Plot showing AAA
interpolant
oscillating wildly through noisy data
with corresponding unstable
derivative

GPR Approach: Probabilistic Differentiation

- Reframe as Bayesian inference: $y(\cdot) \sim \mathcal{GP}(\textit{m}(\cdot), \textit{k}(\cdot, \cdot))$
- Smoothness prior via kernel (RBF, Matérn) encodes physical assumptions
- Derivatives computed analytically: $\partial^{\ell} y | \mathcal{D} \sim \mathcal{GP}(\partial^{\ell} \mu(t), \partial^{\ell} \partial^{\ell'} \Sigma(t, t'))$
- Result: Stable derivatives with uncertainty quantification

TODO: Plot showing smooth GPR mean

with confidence bands and corresponding stable derivative

Evaluating Differentiator Performance

Noise Sensitivity

RMSE vs. Noise Level

TODO: Log-log plot showing:

- GPR_Julia: stable slope lpha pprox 1.1
- AAA: catastrophic slope $lpha \approx$ 9.7 at $\sigma > 10^{-8}$
 - 95% confidence intervals
 - Vertical line at failure threshold

Noise Cliff Analysis

- GPR_Julia: Stable performance across all noise levels
- AAA methods: High error sensitivity above $\sigma \approx 10^{-8}$
- Error growth: GPR error grows linearly; AAA error grows exponentially
- Statistical sig: $p < 10^{-12}$ for difference at $\sigma = 10^{-6}$

Higher-Order Derivatives

RMSE vs. Derivative Order

TODO: Semi-log plot showing:

- GPR_Julia: graceful degradation
- TVDiff: complete failure at order ≥ 4
- Finite differences: exponential growth
 - Failure markers for non-convergent

Derivative Order Analysis

- GPR_Julia: Graceful degradation with increasing order
- TVDiff: Fails to converge for orders ≥ 4
- Finite differences: Rapid error growth

Why Gaussian Process Regression Excels at Numerical Differentiation

Bayesian Framework

1. Prior over signal: $f(t) \sim \mathcal{GP}(0, k(t, t'))$

RBF kernel:
$$k(t,\,t';\, heta) = \sigma_f^2 \exp\left(-rac{(t-t')^2}{2\ell^2}
ight)$$

2. Posterior inference: $y = f + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma_n^2 I)$

$$\mathbb{E}[f(t^*)|y] = k_*^T (K + \sigma_n^2 I)^{-1} y$$

3. Analytical derivatives: $\frac{\partial f}{\partial t} \sim \mathcal{GP}(\cdot,\cdot)$

$$\mathbb{E}[\dot{f}(t^*)|y] = {k_*'}^T (K + \sigma_n^2 I)^{-1} y$$

4. Hyperparameter optimization:

$$\log p(y|\theta) = -\frac{1}{2}y^{T}\Sigma^{-1}y - \frac{1}{2}\log |\Sigma| - \frac{n}{2}\log 2\pi$$

TODO: GPR illustration showing:

- Noisy data points
- GP posterior mean (smooth)

Key Technical Advantages

1. Probabilistic Function Inference

- Models underlying function f(t), not just data
- Treats differentiation as statistical inference

2. Data-Driven Hyperparameters

- Marginal likelihood automatically finds $\{\sigma_f, \ell, \sigma_n\}$
- No ad-hoc filter tuning required

3. Numerical Stability

- Avoids $\Delta y/\Delta t$ noise amplification
- Regularized kernel matrix: $(K + \sigma_n^2 I)^{-1}$

4. Global Smoothing + Local Accuracy

- All data points inform each estimate
- Kernel decay: exponential locality, matrix coupling: global

Application: Making the Algebraic Method Viable

Benchmarking Against Standard Methods

Test Suite: Nonlinear dynamic systems with realistic noise (1.0% rel. noise)

System	GPR-Algebraic	Original (AAA)	SciML (LM)
Fitzhugh-Nagumo	1.8%	¿100%	0.5%
Lotka-Volterra	2.1%	¿100%	0.3%
SEIR Model	1.2%	FAIL	0.4%
HIV Dynamics	3.4%	2100%	0.5%

Errors are Mean Relative Error (MRE) in parameter estimates. SciML is a standard Levenberg-Marquardt optimization solver.

TODO: Trajectory comparison plot

- Ground truth vs. estimates
- GPR-Algebraic (green, accurate)
 - Original AAA (red, diverging)

Noisy maggiromants (gray, dats)
Supported by NSF grants CCF-2212460 and DMS-1853650

Key Contributions

Enables Robustness

 GPR component overcomes the brittleness of the original algebraic method.

• Preserves Automation

 Retains the key algebraic advantage: no initial parameter guesses required.

Achieves Viability

- Performance is now competitive with established optimization-based methods.
- Offers Alternate Approach

Conclusions & Outlook

Technical Contributions

- Solved key bottleneck for algebraic method via a principled GPR approach
- Demonstrated noise tolerance
 - GPR-based method is effective up to $\sigma^2 \approx 10^{-2}$
 - Interpolation-based methods fail above $\sigma^2 \approx 10^{-8}$
- Preserved algebraic advantages
 - No initial parameter guesses
 - Fully automated operation
 - Analytic solution guarantees
- Minimal computational overhead
 - < 20% extra CPU (100ms \rightarrow 118ms)
 - Polynomial solving remains bottleneck
- · Identified common failure modes
 - "Noise cliff": high sensitivity

Scientific Contributions

- Systematic evaluation framework
 - 21 numerical differentiation methods
 - Unified Automatic
 Differentiation harness
 - Fair, reproducible comparisons
- Identified universal failure modes
 - "Noise cliff": catastrophic failure at critical σ
 - "Derivative wall": breakdown at high orders $(k \ge 4)$
- Mathematical foundation
 - Proved GP kernel smoothness
 ⇒ well-posed algebraic
 estimator
 - Explains unique robustness of GP solution
- Bridges algebraic & Bayesian methods

Future Research Directions

- From Estimates to Confidence
 - Uncertainty quantification via GP posterior variance
 - Credible intervals on parameter estimates
 - Risk-aware parameter estimation
- Data-Driven Experiment Design
 - Optimal experimental design using variance field
 - A- and D-optimality for parameter estimation
 - Active learning for minimal data collection
- Scaling the Framework
 - Sparse/inducing-point GPs ⇒
 O(N log N)
 - Extension to 10²-10³ parameters
 - · Real-time implementation

A1: Computational Performance Analysis

Timing Benchmarks Runtime Comparison (10k samples):

GPR Julia: 2.15s.

SavitzkyGolav: 0.0015s

TVDiff: 0.19s

FiniteDiff: 0.0006s

Runtime Breakdown (GPR):

Polynomial solving: 70%

GPR computation: 20%

Miscellaneous: 10%

Scaling Analysis Computational Complexity:

Naive GP: O(N³)

Sparse GP: O(NM²), M ≪ N

TODO: Bar chart showing runtime breakdown and method comparison

Key Insight

GPR is **not** the computational bottleneck.

Accuracy-first approach justified by minimal overhead vs. dramatic robustness gains.

A2: Extended Benchmark Results

Complete Performance Matrix: 21 Methods \times 3 Noise Levels \times 6 Derivative Orders

TODO: Comprehensive heatmap showing $\log_{10}(RMSE)$ across all conditions Red = failure, Green = success $Generated by method_comparison_heatmap.pdf$

Statistical Analysis

- $\bullet \quad \textbf{Failure Rate Analysis:} \ \mathsf{GPR_Julia:} \ 0\% \ (0/63), \ \mathsf{AAA_Julia:} \ 37\% \ (23/63), \ \mathsf{TVDiff:} \ 52\% \ (33/63) \\$
- ullet Edge Cases: Very low noise ($\sigma < 10^{-10}$) requires numerical conditioning
- Confidence Intervals: 95% CI on geometric mean RMSE across 30 MC runs per condition
- Method Categories: Finite differences, spectral, variational, kernel-based

A3: GPR Implementation & Methodology Details

Hyperparameter Optimization

Marginal Likelihood Maximization:

$$\log p(y|\theta) = -\frac{1}{2}y^{T} \Sigma^{-1} y - \frac{1}{2} \log |\Sigma| - \frac{n}{2} \log 2\pi$$

Optimization Strategy:

- L-BFGS-B with multiple random initializations
- \bullet Parameter bounds: $\ell \in [10^{-3}, 10^3], \, \sigma_f^2 \in [10^{-6}, 10^6]$
- Automatic noise floor: $\sigma_n^2 \geq 10^{-12}$

Kernel Selection

RBF vs. Matérn Comparison:

- RBF: C^{∞} smooth, best for high-order derivatives
- Matérn-3/2: C¹ smooth, computational efficiency
- Matérn-5/2: C² smooth, good compromise

Integration Framework

Automatic Differentiation:

- Julia: ForwardDiff.jl for exact derivatives
- Python: JAX for vectorized operations
- Enables fair, consistent method comparison

Software Integration:

- Modular design: derivative estimator + algebraic solver
- Compatible with existing parameter estimation pipelines
- Export to MATLAB, Python, Julia formats

TODO: Workflow diagram

Data \rightarrow GPR \rightarrow Derivatives \rightarrow Algebraic Solver \rightarrow Parameters