



### Features

240-pin JEDEC-compliant Single Rank DIMM

Operating Voltage: 1.8 V ±0.1

I/O Type: SSTL\_18

Data Transfer Rate: 5.3 Gigabytes/sec

Data Bursts: 4 or 8 bits, Sequential or Interleaved ordering

Error Checking and Correction (ECC) data bits

Programmable I/O driver strength (OCD)

Support Address and Control signal parity checking

Programmable CAS Latency: 4 and 5

Relative Humidity: 20% - 80% non-condensing

SDRAM Addressing (Row/Col/Bank): 14/10/3

Fully ROHS Compliant

### Identification

DTM63392F 128Mx72  
1Rx8 PC2-5300P-555-12-F0

### Performance range

|                                                             |
|-------------------------------------------------------------|
| Clock / Module Speed / CL-t <sub>RCD</sub> -t <sub>RP</sub> |
| 333 MHz / PC2-5300 / 5-5-5                                  |
| 266 MHz / PC2-4200 / 4-4-4                                  |

### Description

DTM63392F is a Registered 128Mx72 memory module which conforms to JEDEC's DDR2, PC2-5300 standard. The assembly is comprised of one Rank of nine 128Mx8 DDR2 Samsung DRAMs, one Register with command/address parity, one Phase-Locked Loop (PLL), and one 2K-bit EEPROM used for Serial Presence Detect.

Both output driver strength and input termination impedance are programmable to maintain signal integrity on the I/O signals. Error Checking and Correction bits are provided to ensure data integrity. In addition, parity is checked for all address and control lines, even those address lines not used by this module.

The eighteen Data Strobe signals may be used either as nine differential pairs, or as eighteen single-ended strobes for use in systems with a mix of x4 and x8 DRAMs.

### Pin Configuration

| Front Side |             | Back Side |           |               |               |               |               | Name                  |  | Function                      |  |
|------------|-------------|-----------|-----------|---------------|---------------|---------------|---------------|-----------------------|--|-------------------------------|--|
| 1 VREF     | 31 DQ19     | 61 A4     | 91 GND    | 121 GND       | 151 GND       | 181 VDD       | 211 DM5/DQS14 | /CAS                  |  | Column Address Strobe         |  |
| 2 GND      | 32 GND      | 62 VDD    | 92 /DQS5  | 122 DQ4       | 152 DQ28      | 182 A3        | 212 /DQS14    | /Err_Out              |  | Parity Error Found            |  |
| 3 DQ0      | 33 DQ24     | 63 A2     | 93 DQS5   | 123 DQ5       | 153 DQ29      | 183 A1        | 213 GND       | /RAS                  |  | Row Address Strobe            |  |
| 4 DQ1      | 34 DQ25     | 64 VDD    | 94 GND    | 124 GND       | 154 GND       | 184 VDD       | 214 DQ46      | /RESET                |  | Register and PLL Reset        |  |
| 5 GND      | 35 GND      | 65 GND    | 95 DQ42   | 125 DM0/DQS9  | 155 DM3/DQS12 | 185 CK0       | 215 DQ47      | /S[1:0]               |  | Chip Selects                  |  |
| 6 /DQS0    | 36 /DQS3    | 66 GND    | 96 DQ43   | 126 /DQS9     | 156 /DQS12    | 186 /CK0      | 216 GND       | /WE                   |  | Write Enable                  |  |
| 7 DQS0     | 37 DQS3     | 67 VDD    | 97 GND    | 127 GND       | 157 GND       | 187 VDD       | 217 DQ52      | A[15:0]               |  | Address Inputs                |  |
| 8 GND      | 38 GND      | 68 Par_In | 98 DQ48   | 128 DQ6       | 158 DQ30      | 188 A0        | 218 DQ53      | BA[2:0]               |  | Bank Addresses                |  |
| 9 DQ2      | 39 DQ26     | 69 VDD    | 99 DQ49   | 129 DQ7       | 159 DQ31      | 189 VDD       | 219 GND       | CB[7:0]               |  | Data Check Bits               |  |
| 10 DQ3     | 40 DQ27     | 70 A10    | 100 GND   | 130 GND       | 160 GND       | 190 BA1       | 220 NC        | CK0, /CK0             |  | Differential Clock Inputs     |  |
| 11 GND     | 41 GND      | 71 BA0    | 101 SA2   | 131 DQ12      | 161 CB4       | 191 VDD       | 221 NC        | CKE[1:0]              |  | Clock Enables                 |  |
| 12 DQ8     | 42 CB0      | 72 VDD    | 102 NC    | 132 DQ13      | 162 CB5       | 192 /RAS      | 222 GND       | DQ[63:0]              |  | Data Bits                     |  |
| 13 DQ9     | 43 CB1      | 73 /WE    | 103 GND   | 133 GND       | 163 GND       | 193 /SO       | 223 DM6/DQS15 | DQS[17:0], /DQS[17:0] |  | Differential Data Strobes     |  |
| 14 GND     | 44 GND      | 74 /CAS   | 104 /DQS6 | 134 DM1/DQS10 | 164 DM8/DQS17 | 194 VDD       | 224 /DQS15    | DM[8:0]               |  | Data Mask                     |  |
| 15 /DQS1   | 45 /DQS8    | 75 VDD    | 105 DQS6  | 135 /DQS10    | 165 /DQS17    | 195 ODT0      | 225 GND       | GND                   |  | Ground                        |  |
| 16 DQS1    | 46 DQS8     | 76 S1*    | 106 GND   | 136 GND       | 166 GND       | 196 A13       | 226 DQ54      | NC                    |  | No Connection                 |  |
| 17 GND     | 47 GND      | 77 ODT1*  | 107 DQ50  | 137 NC        | 167 CB6       | 197 VDD       | 227 DQ55      | ODT[1:0]              |  | On Die Termination Inputs     |  |
| 18 /RESET  | 48 CB2      | 78 VDD    | 108 DQ51  | 138 NC        | 168 CB7       | 198 GND       | 228 GND       | Par_In                |  | Parity Bit, Address & Control |  |
| 19 NC      | 49 CB3      | 79 GND    | 109 GND   | 139 GND       | 169 GND       | 199 DQ36      | 229 DQ60      | SA[2:0]               |  | SPD Address                   |  |
| 20 GND     | 50 GND      | 80 DQ32   | 110 DQ56  | 140 DQ14      | 170 VDD       | 200 DQ37      | 230 DQ61      | SCL                   |  | SPD Clock Input               |  |
| 21 DQ10    | 51 VDD      | 81 DQ33   | 111 DQ57  | 141 DQ15      | 171 CKE1*     | 201 GND       | 231 GND       | SDA                   |  | SPD Data Input/Output         |  |
| 22 DQ11    | 52 CKE0     | 82 GND    | 112 GND   | 142 GND       | 172 VDD       | 202 DM4/DQS13 | 232 DM7/DQS16 | VDD                   |  | Power                         |  |
| 23 GND     | 53 VDD      | 83 /DQS4  | 113 /DQS7 | 143 DQ20      | 173 A15       | 203 /DQS13    | 233 /DQS16    | VDDSPD                |  | SPD EEPROM Power              |  |
| 24 DQ16    | 54 BA2      | 84 DQS4   | 114 DQS7  | 144 DQ21      | 174 A14       | 204 GND       | 234 GND       | VREF                  |  | Reference Voltage             |  |
| 25 DQ17    | 55 /Err_Out | 85 GND    | 115 GND   | 145 GND       | 175 VDD       | 205 DQ38      | 235 DQ62      |                       |  |                               |  |
| 26 GND     | 56 VDD      | 86 DQ34   | 116 DQ58  | 146 DM2/DQS11 | 176 A12       | 206 DQ39      | 236 DQ63      |                       |  |                               |  |
| 27 /DQS2   | 57 A11      | 87 DQ35   | 117 DQ59  | 147 /DQS11    | 177 A9        | 207 GND       | 237 GND       |                       |  |                               |  |
| 28 DQS2    | 58 A7       | 88 GND    | 118 GND   | 148 GND       | 178 VDD       | 208 DQ44      | 238 VDDSPD    |                       |  |                               |  |
| 29 GND     | 59 VDD      | 89 DQ40   | 119 SDA   | 149 DQ22      | 179 A8        | 209 DQ45      | 239 SA0       |                       |  |                               |  |
| 30 DQ18    | 60 A5       | 90 DQ41   | 120 SCL   | 150 DQ23      | 180 A6        | 210 GND       | 240 SA1       |                       |  |                               |  |

\* = Not Used.

**Front view**



**Back view**



**Side view**



**Notes**

Tolerances on all dimensions except where otherwise indicated are  $\pm .13$  (.005).

All dimensions are expressed: millimeters [inches]



1. Unless otherwise noted, resistor values are 22 ohms +/- 5%.

### Absolute Maximum Ratings

(Note: Operation at or above Absolute Maximum Ratings can adversely affect module reliability.)

| PARAMETER                                              | Symbol               | Minimum | Maximum | Unit |
|--------------------------------------------------------|----------------------|---------|---------|------|
| Temperature, non-Operating                             | T <sub>STORAGE</sub> | -55     | 100     | C    |
| DRAM Case Temperature, Operating                       | T <sub>CASE</sub>    | 0       | 95      | C    |
| Voltage on V <sub>DD</sub> relative to V <sub>SS</sub> | V <sub>DD</sub>      | -1.0    | 2.3     | V    |
| Voltage on Any Pin relative to V <sub>SS</sub>         | V <sub>IN,VOUT</sub> | -0.5    | 2.3     | V    |

### Recommended DC Operating Conditions (Voltages referenced to V<sub>SS</sub> = 0 V)

| PARAMETER               | Symbol           | Minimum                 | Typical              | Maximum                 | Unit | Note |
|-------------------------|------------------|-------------------------|----------------------|-------------------------|------|------|
| Power Supply Voltage    | V <sub>DD</sub>  | 1.7                     | 1.8                  | 1.9                     | V    |      |
| I/O Reference Voltage   | V <sub>REF</sub> | 0.49 V <sub>DD</sub>    | 0.50 V <sub>DD</sub> | 0.51 V <sub>DD</sub>    | V    | 1    |
| Bus Termination Voltage | V <sub>TT</sub>  | V <sub>REF</sub> - 0.04 | V <sub>REF</sub>     | V <sub>REF</sub> + 0.04 | V    |      |

Notes:

1. The value of V<sub>REF</sub> is expected to equal one-half V<sub>DD</sub> and to track variations in the V<sub>DD</sub> DC level. Peak-to-peak noise on V<sub>REF</sub> may not exceed ±1% of its DC value.

### DC Input Logic Levels, Single-Ended (Voltages referenced to V<sub>SS</sub> = 0 V)

| PARAMETER              | Symbol              | Minimum                  | Maximum                  | Unit |
|------------------------|---------------------|--------------------------|--------------------------|------|
| Logical High (Logic 1) | V <sub>IH(DC)</sub> | V <sub>REF</sub> + 0.125 | V <sub>DD</sub> + 0.300  | V    |
| Logical Low (Logic 0)  | V <sub>IL(DC)</sub> | -0.300                   | V <sub>REF</sub> - 0.125 | V    |

### AC Input Logic Levels, Single-Ended (Voltages referenced to V<sub>SS</sub> = 0 V)

| PARAMETER              | Symbol              | Minimum                  | Maximum                  | Unit |
|------------------------|---------------------|--------------------------|--------------------------|------|
| Logical High (Logic 1) | V <sub>IH(AC)</sub> | V <sub>REF</sub> + 0.250 | -                        | V    |
| Logical Low (Logic 0)  | V <sub>IL(AC)</sub> | -                        | V <sub>REF</sub> - 0.250 | V    |

### Differential Input Logic Levels (Voltages referenced to $V_{ss} = 0$ V)

| PARAMETER                           | Symbol       | Minimum               | Maximum               | Unit | Note |
|-------------------------------------|--------------|-----------------------|-----------------------|------|------|
| DC Input Signal Voltage             | $V_{IN(DC)}$ | -0.300                | $V_{DD} + 0.300$      | V    | 1    |
| DC Differential Input Voltage       | $V_{ID(DC)}$ | -0.250                | $V_{DD} + 0.600$      | V    | 2    |
| AC Differential Input Voltage       | $V_{ID(AC)}$ | -0.500                | $V_{DD} + 0.600$      | V    | 3    |
| AC Differential Cross-Point Voltage | $V_{IX(AC)}$ | 0.50 $V_{DD}$ - 0.175 | 0.50 $V_{DD}$ + 0.175 | V    | 4    |

Notes:

1.  $V_{IN(DC)}$  specifies the allowable DC excursion of each input of a differential pair.
2.  $V_{ID(DC)}$  specifies the input differential voltage, i.e. the absolute value of the difference between the two voltages of a differential pair.
3.  $V_{ID(AC)}$  specifies the input differential voltage required for switching.
4. The typical value of  $V_{IX(AC)}$  is expected to be 0.5  $V_{DD}$  and is expected to track variations in  $V_{DD}$ .

### Capacitance ( $0$ C $<$ $T_{CASE}$ $<$ $55$ C, $f = 100$ MHz, $V_{OUT}(DC) = V_{DD}/2$ , $V_{OUT}(ac) = 0.1V(p-p)$ )

| PARAMETER                              | Pin                                                | Symbol | Minimum | Maximum | Unit |
|----------------------------------------|----------------------------------------------------|--------|---------|---------|------|
| Input Capacitance, Clock               | CK0, /CK0                                          | CIN1   | 1       | 2       | pF   |
| Input Capacitance, Address and Control | BA[2:0], A[15:0], /S0, /RAS, /CAS, /WE, CKE0, ODT0 | CIN2   | 2.5     | 3.5     | pF   |
| Input/Output Capacitance               | DQ[63:0], CB[7:0], DQS[17:0], /DQS[17:0]           | CIO    | 2.5     | 4       | pF   |

### DC Characteristics (Voltages referenced to $V_{ss} = 0$ V)

| PARAMETER                        | Symbol   | Minimum | Maximum | Unit    | Note |
|----------------------------------|----------|---------|---------|---------|------|
| Input Leakage Current            | $I_{LI}$ | -5      | 5       | $\mu$ A | 1    |
| Output Leakage Current           | $I_{OZ}$ | -5      | 5       | $\mu$ A | 2    |
| Output Minimum Source DC Current | $I_{OH}$ | -13.4   | -       | mA      | 3    |
| Output Minimum Sink DC Current   | $I_{OL}$ | +13.4   | -       | mA      | 4    |

Notes:

1. These values are guaranteed by design and are tested on a sample basis only
2. DQx and ODT are disabled, and  $0$  V  $\leq$   $V_{OUT} \leq V_{DD}$ .
3.  $V_{DD} = 1.7$  V,  $V_{OUT} = 1420$  mV.  $(V_{OUT} - V_{DD})/I_{OH}$  must be less than 21 Ohms for values of  $V_{OUT}$  between  $V_{DD}$  and  $(V_{DD} - 280$  mV).
4.  $V_{DD} = 1.7$  V,  $V_{OUT} = 280$  mV.  $V_{OUT}/I_{OL}$  must be less than 21 Ohms for values of  $V_{OUT}$  between  $0$  V and  $280$  mV.

### **I<sub>DD</sub> Specifications and Conditions** (Voltages referenced to V<sub>ss</sub> = 0 V)

| PARAMETER                                               | Symbol            | Test Condition                                                                                                                                                                                                                                                                | Max Value | Unit |
|---------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| <b>Operating One Bank Active-Precharge Current</b>      | I <sub>DD0</sub>  | CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching.                                                                                                                                                             | 770       | mA   |
| <b>Operating One Bank Active-Read-Precharge Current</b> | I <sub>DD1</sub>  | I <sub>OUT</sub> = 0 mA; BL = 4, CL = 5 ns, AL = 0; CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are switching.                                                                                                                                        | 880       | mA   |
| <b>Precharge Power-Down Current</b>                     | I <sub>DD2P</sub> | All banks idle; CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating.                                                                                                                                                                    | 250       | mA   |
| <b>Precharge Standby Current</b>                        | I <sub>DD2N</sub> | All banks idle; CKE is HIGH, /CS is HIGH; Other control and address bus inputs are switching; Data bus inputs are switching.                                                                                                                                                  | 630       | mA   |
| <b>Active Power-Down Current</b>                        | I <sub>DD3P</sub> | All banks open; CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating. Fast Power-down exit (Mode Register bit 12 = 0)                                                                                                                    | 330       | mA   |
| <b>Active Standby Current</b>                           | I <sub>DD3N</sub> | All banks open; t <sub>RAS</sub> = 70 ms; CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching.                                                                                                 | 650       | mA   |
| <b>Operating Burst Write Current</b>                    | I <sub>DD4W</sub> | Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching;                        | 1431      | mA   |
| <b>Operating Burst Read Current</b>                     | I <sub>DD4R</sub> | Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; I <sub>OUT</sub> = 0 mA. | 1324      | mA   |
| <b>Burst Refresh Current</b>                            | I <sub>DD5</sub>  | Refresh command at every 7.8 us; CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching.                                                                                                          | 2160      | mA   |
| <b>Self Refresh Current</b>                             | I <sub>DD6</sub>  | CK and /CK at 0 V; CKE ≤ 0.2 V; Other control and address bus inputs are floating; Data bus inputs are floating.                                                                                                                                                              | 270       | mA   |
| <b>Operating Bank Interleave Read Current</b>           | I <sub>DD7</sub>  | All bank interleaving reads, I <sub>OUT</sub> = 0 mA; BL = 4, CL = 5 t <sub>CK</sub> ; AL = 70 ns; t <sub>RRD</sub> = 7.5 ns; CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are stable during deselects; Data bus inputs are switching.                 | 2360      | mA   |

Notes: 1. For all I<sub>DDX</sub> measurements, t<sub>CK</sub> = 3 ns, t<sub>RC</sub> = 60 ns, t<sub>RCD</sub> = 15 ns, t<sub>RAS</sub> = 45 ns, and t<sub>RP</sub> = 15 ns unless otherwise specified.

2. All I<sub>DDX</sub> values shown are worst-case maximums, considering all DRAMs, Register, and the PLL.

## AC Operating Conditions

| PARAMETER                                   | Symbol     | Min                             | Max  | Unit     |
|---------------------------------------------|------------|---------------------------------|------|----------|
| DQ Output Access Time from Clock            | $t_{AC}$   | -450                            | +450 | ps       |
| CAS-to-CAS Command Delay                    | $t_{CCD}$  | 2                               | -    | $t_{CK}$ |
| Clock High Level Width                      | $t_{CH}$   | 0.45                            | 0.55 | $t_{CK}$ |
| Clock Cycle Time                            | $t_{CK}$   | 3,000                           | 8000 | ps       |
| Clock Low Level Width                       | $t_{CL}$   | 0.45                            | 0.55 | $t_{CK}$ |
| Data Input Hold Time after DQS Strobe       | $t_{DH}$   | 175                             | -    | ps       |
| DQ Input Pulse Width                        | $t_{DIPW}$ | 0.35                            | -    | $t_{CK}$ |
| DQS Output Access Time from Clock           | $t_{DQCK}$ | -400                            | +400 | ps       |
| Write DQS High Level Width                  | $t_{DQSH}$ | 0.35                            | -    | $t_{CK}$ |
| Write DQS Low Level Width                   | $t_{DQLS}$ | 0.35                            | -    | $t_{CK}$ |
| DQS-Out Edge to Data-Out Edge Skew          | $t_{DQSQ}$ | 240                             | -    | ps       |
| Data Input Setup Time Before DQS Strobe     | $t_{DS}$   | 100                             | -    | ps       |
| DQS Falling Edge from Clock, Hold Time      | $t_{DSH}$  | 0.2                             | -    | $t_{CK}$ |
| DQS Falling Edge to Clock, Setup Time       | $t_{DSS}$  | 0.2                             | -    | $t_{CK}$ |
| Clock Half Period                           | $t_{HP}$   | minimum of $t_{CH}$ or $t_{CL}$ |      | ns       |
| Address and Command Hold Time after Clock   | $t_{IH}$   | 275                             | -    | ps       |
| Address and Command Setup Time before Clock | $t_{IS}$   | 200                             | -    | ps       |
| Load Mode Command Cycle Time                | $t_{MRD}$  | 2                               | -    | $t_{CK}$ |
| DQ-to-DQS Hold                              | $t_{QH}$   | $t_{HP} - t_{QHS}$              | -    | -        |
| Data Hold Skew Factor                       | $t_{QHS}$  | 340                             | -    | ps       |
| Active-to-Precharge Time                    | $t_{RAS}$  | 45                              | 70K  | ns       |
| Active-to-Active / Auto Refresh Time        | $t_{RC}$   | 60                              | -    | ns       |
| RAS-to-CAS Delay                            | $t_{RCD}$  | 15                              | -    | ns       |
| Average Periodic Refresh Interval           | $t_{REFI}$ | -                               | 7.8  | $\mu$ s  |
| Auto Refresh Row Cycle Time                 | $t_{RFC}$  | 127.5                           | -    | ns       |
| Row Precharge Time                          | $t_{RP}$   | 15                              | -    | ns       |
| Read DQS Preamble Time                      | $t_{RPRE}$ | 0.9                             | 1.1  | $t_{CK}$ |
| Read DQS Postamble Time                     | $t_{RPST}$ | 0.4                             | 0.6  | $t_{CK}$ |
| Row Active to Row Active Delay              | $t_{RRD}$  | 7.5                             | -    | ns       |
| Internal Read to Precharge Command Delay    | $t_{RTP}$  | 7.5                             | -    | ns       |
| Write DQS Preamble Time                     | $t_{WPRE}$ | 0.35                            | -    | ps       |
| Write DQS Postamble Time                    | $t_{WPST}$ | 0.4                             | 0.6  | $t_{CK}$ |
| Write Recovery Time                         | $t_{WR}$   | 15                              | -    | ns       |
| Internal Write to Read Command Delay        | $t_{WTR}$  | 7.5                             | -    | ns       |
| Exit Self Refresh to Non-Read Command       | $t_{XSNR}$ | $t_{RFC}(\min) + 10$            | -    | ns       |
| Exit Self Refresh to Read Command           | $t_{XSRD}$ | 200                             | -    | $t_{CK}$ |

## SERIAL PRESENCE DETECT MATRIX

| Byte# | Function.                                                        | Value      | Hex  |
|-------|------------------------------------------------------------------|------------|------|
| 0     | Number of Bytes Utilized by Module Manufacturer                  | 128 bytes  | 0x80 |
| 1     | Total number of Bytes in Serial PD device                        | 256 bytes  | 0x08 |
| 2     | Memory Type                                                      | DDR2 SDRAM | 0x08 |
| 3     | Number of Row Addresses                                          | 14         | 0x0E |
| 4     | Number of Column Addresses                                       | 10         | 0x0A |
| 5     | Module Attributes - Number of Ranks, Package and Height          |            | 0x60 |
|       | # of Ranks -                                                     | 1          |      |
|       | Card on Card -                                                   | No         |      |
|       | DRAM Package -                                                   | Planar     |      |
|       | Module Height -                                                  | 30mm       |      |
| 6     | Module Data Width.                                               | 72         | 0x48 |
| 7     | Reserved                                                         | UNUSED     | 0x00 |
| 8     | Voltage Interface Level of this assembly                         | SSTL/1.8V  | 0x05 |
| 9     | SDRAM Cycle time. (Max. Supported CAS Latency). CL=X<br>(tCK) ns | 3          | 0x30 |
| 10    | SDRAM Access from Clock. (Highest CAS latency). (tAC) ns         | 0.45       | 0x45 |
| 11    | DIMM configuration type (Non-parity, Parity or ECC)              |            | 0x06 |
|       | Data Parity -                                                    |            |      |
|       | Data ECC -                                                       | X          |      |
|       | Address/Command Parity -                                         | X          |      |
|       | TBD -                                                            |            |      |
| 12    | Refresh Rate/Type (us)                                           | 7.8 (SR)   | 0x82 |
| 13    | Primary SDRAM Width                                              | 8          | 0x08 |
| 14    | Error Checking SDRAM Width                                       | 8          | 0x08 |
| 15    | Reserved                                                         | UNUSED     | 0x00 |
| 16    | SDRAM Device Attributes: Burst Lengths Supported                 |            | 0x0C |
|       | TBD -                                                            |            |      |
|       | TBD -                                                            |            |      |
|       | Burst Length = 4 -                                               | X          |      |
|       | Burst Length = 8 -                                               | X          |      |
|       | TBD -                                                            |            |      |
| 17    | SDRAM Device Attributes - Number of Banks on SDRAM Device        | 8          | 0x08 |
| 18    | SDRAM Device Attributes: CAS Latency                             |            | 0x30 |
|       | TBD -                                                            |            |      |
|       | TBD -                                                            |            |      |
|       | Latency = 2 -                                                    |            |      |

|    |                                                                                                                                                                                                                                                                           |                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|    | Latency = 3 -<br>Latency = 4 - X<br>Latency = 5 - X<br>Latency = 6 -<br>TBD -                                                                                                                                                                                             |                    |
| 19 | DIMM Mechanical Characteristics. Max. module thickness.<br>(mm)                                                                                                                                                                                                           | x </= 4.10<br>0x01 |
| 20 | DIMM type information<br>Regular RDIMM (133.35mm) - X<br>Regular UDIMM (133.35mm) -<br>SODIMM (67.6mm) -<br>Micro-DIMM (45.5mm) -<br>Mini RDIMM (82.0mm) -<br>Mini UDIMM (82.0mm) -<br>TBD -<br>TBD -                                                                     | 0x01               |
| 21 | SDRAM Module Attributes (Refer to Byte20 for DIMM type information).<br>Number of active registers on the DIMM (N/A for UDIMM) - 1<br>Number of PLL on the DIMM (N/A for UDIMM) - 1<br>FET Switch External Enable - No<br>TBD -<br>Analysis probe installed - No<br>TBD - | 0x04               |
| 22 | SDRAM Device Attributes: General<br>Includes Weak Driver - X<br>Supports 50 ohm ODT - X<br>Supports PASR (Partial Array Self Refresh) -<br>TBD -<br>TBD -<br>TBD -<br>TBD -<br>TBD -                                                                                      | 0x03               |
| 23 | Minimum Clock Cycle Time at Reduced CAS Latency, CL = X-1 (ns)                                                                                                                                                                                                            | 3.75<br>0x3D       |
| 24 | Maximum Data Access Time (tAC ) from Clock at CL = X- 1 (ns)                                                                                                                                                                                                              | 0.45<br>0x45       |
| 25 | Minimum Clock Cycle Time at CL = X-2 (ns)                                                                                                                                                                                                                                 | UNUSED<br>0x00     |
| 26 | Maximum Data Access Time (tAC ) from Clock at CL = X-2 (ns)                                                                                                                                                                                                               | UNUSED<br>0x00     |
| 27 | Minimum Row Precharge Time (tRP ) (ns)                                                                                                                                                                                                                                    | 15<br>0x3C         |
| 28 | Minimum Row Active to Row Active Delay (tRRD ) (ns)                                                                                                                                                                                                                       | 7.5<br>0x1E        |
| 29 | Minimum RAS to CAS Delay (tRCD ) (ns)                                                                                                                                                                                                                                     | 15<br>0x3C         |
| 30 | Minimum Active to Precharge Time (tRAS ) (ns)                                                                                                                                                                                                                             | 45<br>0x2D         |
| 31 | Module Rank Density                                                                                                                                                                                                                                                       | 1GB<br>0x01        |
| 32 | Address and Command Setup Time Before Clock (tIS) (ns)                                                                                                                                                                                                                    | 0.2<br>0x20        |
| 33 | Address and Command Hold Time After Clock (tIH) (ns)                                                                                                                                                                                                                      | 0.27<br>0x27       |
| 34 | Data Input Setup Time Before Strobe (tDS) (ns)                                                                                                                                                                                                                            | 0.1<br>0x10        |
| 35 | Data Input Hold Time After Strobe (tDH) (ns)                                                                                                                                                                                                                              | 0.17<br>0x17       |
| 36 | Write Recovery Time (tWR ) (ns)                                                                                                                                                                                                                                           | 15<br>0x3C         |

|    |                                                                                                                         |        |      |
|----|-------------------------------------------------------------------------------------------------------------------------|--------|------|
| 37 | Internal write to read command delay (tWTR ) (ns)                                                                       | 7.5    | 0x1E |
| 38 | Internal read to precharge command delay (tRTP ) (ns)                                                                   | 7.5    | 0x1E |
| 39 | Memory Analysis Probe Characteristics.                                                                                  | UNUSED | 0x00 |
| 40 | Extension of Byte 41(tRC) and Byte 42 (tRFC) (ns)                                                                       |        | 0x06 |
|    | Add this value to byte 41 -                                                                                             | 0      |      |
|    | Add this value to byte 42 -                                                                                             | 0.5    |      |
| 41 | SDRAM Device Minimum Active to Active/Auto Refresh Time (tRC) (ns)                                                      | 60     | 0x3C |
| 42 | SDRAM Device Minimum Auto-Refresh to Active/Auto-Refresh Command Period (tRFC). (ns)                                    | 127.5  | 0x7F |
| 43 | SDRAM Device Maximum Cycle Time (tCK max). (ns)                                                                         | 8      | 0x80 |
| 44 | SDRAM Dev DQS-DQ Skew for DQS & DQ signals (tDQSQ) (ns)                                                                 | 0.24   | 0x18 |
| 45 | DDR SDRAM Device Read Data Hold Skew Factor (tQHS) (ns)                                                                 | 0.34   | 0x22 |
| 46 | PLL Relock Time (us)                                                                                                    | 6      | 0x06 |
| 47 | DRAM maximun Case Temperature Delta. (Degree C).                                                                        |        | 0x51 |
|    | DT4R4W Delta (Bits 0:3) -                                                                                               | 0.4    |      |
|    | Tcasemax delta (Bits 7:4) -                                                                                             | 10     |      |
| 48 | Thermal Resistance of DRAM Package from Top (Case) to Ambient ( Psi T-A DRAM ). (C/Watt)                                | 58     | 0x74 |
| 49 | DRAM Case Temperature Rise from Ambient due to Activate-Precharge/Mode Bits (DT0/Mode Bits). (Degree C).                |        | 0x57 |
|    | Bit 0. If "0" DRAM does not support high temperature self-refresh entry -                                               | 1      |      |
|    | Bit 1. If "0" Do not need double refresh rate for the proper operation -                                                | 1      |      |
|    | DT0, (Bits 2:7) -                                                                                                       | 6.3    |      |
| 50 | DRAM Case Temperature Rise from Ambient due to Precharge/Quiet Standby (DT2N/DT2Q). (Degree C).                         | 6      | 0x3C |
| 51 | DRAM Case Temperature Rise from Ambient due to Precharge Power-Down (DT2P). (Degree C).                                 | 1.44   | 0x60 |
| 52 | DRAM Case Temperature Rise from Ambient due to Active Standby (DT3N). (Degree C).                                       | 6.9    | 0x2E |
| 53 | DRAM Case temperature Rise from Ambient due to Active Power-Down with Fast PDN Exit (DT3Pfast). (Degree C).             | 4.4    | 0x58 |
| 54 | DRAM Case temperature Rise from Ambient due to Active Power-Down with Slow PDN Exit (DT3Pslow). (Degree C).             | 2.2    | 0x58 |
| 55 | DRAM Case Temperature Rise from Ambient due to Page Open Burst Read/DT4R4W Mode Bit (DT4R/DT4R4W Mode Bit). (Degree C). |        | 0x4A |
|    | Bit 0. "0" if DT4W is greater than DT4R -                                                                               | 0      |      |
|    | DT4R, ( Bits 1:7 ) -                                                                                                    | 14.8   |      |
| 56 | DRAM Case Temperature Rise from Ambient due to Burst Refresh (DT5B). (Degree C).                                        | 24.5   | 0x31 |

|        |                                                                                                             |              |      |
|--------|-------------------------------------------------------------------------------------------------------------|--------------|------|
| 57     | DRAM Case Temperature Rise from Ambient due to Bank Interleave Reads with Auto-Precharge (DT7). (Degree C). | 26.5         | 0x35 |
| 58     | Thermal Resistance of PLL Package from Top to Ambient (Psi T-A PLL). (C/Watt).                              | 87           | 0xAE |
| 59     | Thermal Resistance of Register Package from Top to Ambient ( Psi T-A Register). (C/Watt).                   | 70           | 0x8C |
| 60     | PLL Case Temperature Rise from Ambient due to PLL Active (DT PLL Active). (Degree C).                       | 33.5         | 0x86 |
| 61     | Register Case Temperature Rise from Ambient due to Register Active/Mode Bit (DT Register Active/Mode Bit).  | 0x7C         |      |
|        | Bit 0.If "0"Unit for Bits 2:7 is 0.75C - 0.75                                                               |              |      |
|        | Bit 1. RFU. Default: 0 - 0                                                                                  |              |      |
|        | Register Active,( Bits 2:7 ) - 23.25                                                                        |              |      |
| 62     | SPD Revision                                                                                                | Revision 1.2 | 0x12 |
| 63     | Checksum for Bytes 0-62                                                                                     |              | 0xF0 |
| 64     | Module Manufacturer's JEDEC ID Code                                                                         | Dataram ID   | 0x7F |
| 65     | Module Manufacturer's JEDEC ID Code                                                                         | Dataram ID   | 0x91 |
| 66-71  | Module Manufacturer's JEDEC ID Code                                                                         | UNUSED       | 0x00 |
| 72     | Module Manufacturing Location                                                                               | UNUSED       | 0x00 |
| 73-90  | Module Part Number                                                                                          |              | 0x20 |
| 91,92  | Module Revision Code                                                                                        | UNUSED       | 0x00 |
| 93,94  | Module Manufacturing Date                                                                                   | UNUSED       | 0x00 |
| 95-98  | Module Serial Number                                                                                        | #            | 0x23 |
| 99-127 | Manufacturer's Specific Data                                                                                | UNUSED       | 0x00 |



# DTM63392F

1GB - 240-Pin Registered ECC DDR2 DIMM w/CMD/ADD Parity



DATARAM CORPORATION, USA Corporate Headquarters, P.O.Box 7528, Princeton, NJ 08543-7528;  
Voice: 609-799-0071, Fax: 609-799-6734; [www.dataram.com](http://www.dataram.com)

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.