Programação Linear e Grafos

Sistemas de Informação - UNISUL

Aran Bey Tcholakian Morales, Dr. Eng. (Programação Linear e Grafos - Apostila 5)

• A **Pesquisa Operacional (PO)** surgiu durante a segunda grande guerra, para resolver problemas militares de ordem estratégica, logística e tática, que necessitavam de **alocar da melhor forma recursos que eram limitados e restritos**, isto é, alocar recursos de forma **ótima**.

Como as equipes de cientistas e pesquisadores que atuavam na solução dos problemas militares, eram geralmente subordinados aos chefes encarregados das **operações**, logo seu trabalho ficou conhecido como **"Pesquisa Operacional"** (**Operational Research**).

- Finalizada a segunda grande guerra, os pesquisadores desligados da área militar foram absorvidos para a indústria:
 - Na reconstrução da Europa foram indispensáveis nos parques fabris, nas siderúrgicas, nos transportes e serviços públicos;
 - Nos EUA, continuarão a trabalhar na área militar, mais a segunda revolução industrial, criou a necessidade do aumento da produção e a melhoria da produtividade, o que fez que muitos pesquisadores fossem para a iniciativa privada e para as universidades;

- A Pesquisa Operacional (ou pesquisa de operações, ciência da decisão, ciência da gestão) é a aplicação de métodos científicos voltada para o processo de tomada de decisão.
- Em outros termos, a PO consiste na resolução de problemas de tomada de decisão, através de modelos matemáticos processados computacionalmente.
- A PO representa o mundo real através de modelos matemáticos,
 resolvidos por métodos quantitativos, onde o modelo pode ser visto
 como uma representação de um sistema real.

Pesquisa Operacional

Business Analytics

(BI e Ciência dos Dados)

A resolução de um **problema pela PO**, costuma envolver várias etapas, as principais são:

- Formulação do problema: consiste na identificação dos elementos do problema:
 - definir os **objetivos** a serem alcançados e colocar quais são possíveis caminhos alternativos para que isso ocorra;
 - identificar as variáveis de decisão (de controle);
 - identificar as variáveis não controláveis;
 - identificar as restrições sobre as variáveis;

A resolução de um problema pela PO, costuma envolver várias etapas, as principais são:

- 2. Construção do modelo que representa o sistema: os modelos de PO são modelos matemáticos, isto é formado por um conjunto de equações e inequações e as relações matemáticas entre estes elementos.
- 3. Cálculo da solução através do modelo: são algoritmos específicos para o tipo de modelo construído. (modelos lineares, não lineares, inteiros, estocásticos, entre outros modelos matemáticos possíveis que podem ser usados na representação de uma sistema).

A resolução de um problema pela PO, costuma envolver várias etapas, as principais são:

4. **Teste do modelo e da solução**: são testes realizados com dados empíricos do sistema. Dependendo dos resultados alcançados, podemos retornar as fases anteriores.

A resolução de um problema pela PO, costuma envolver várias etapas, as principais são:

5. **Estabelecimentos de controles da solução**: o modelo identifica parâmetros fundamentais para a solução do problema.

Qualquer mudança nestes parâmetros deverá ser controlada para garantir a validade da solução adotada (análises de sensibilidade).

6. **Implantação e acompanhamento**: implantar a solução encontrada e acompanhar o desenvolvimento do sistema.

A PO utiliza um modelo matemático na representação da realidade.

Entendemos por modelo, uma representação simplificada da realidade que preservam, para determinadas situações, uma equivalência adequada.

Um modelo não é igual a realidade, mas suficientemente similar para que as conclusões obtidas através de sua análises ou operação, possam ser estendidas à realidade.

A Modelagem Matemática, é direcionada para o apoio ao processo de Tomada de decisão, especialmente no que diz respeito ao tratamento de variáveis quantitativas.

O processo de tomada de decisão, é o ato de selecionar, dentre várias decisões possíveis, a mais adequada para alcançar um certo objetivo.

Na modelagem matemática, a representação de determinado sistema, é geralmente realizada por um conjunto de equações ou expressões matemáticas.

Se existem **n** decisões quantificáveis a serem tomadas, então pode-se associar a **cada decisão uma variável do modelo** (variável de decisão), **cujos valores**, o **próprio modelo deverá determinar**, através dos algoritmos computacionais.

Por este motivo na PO, chamamos a modelagem matemática de Programação Matemática.

A **eficácia da solução**, é calculada pela **função objetivo**, uma equação das variáveis de decisão.

A limitação dos recursos é representada no modelo, pelas restrições aos valores das variáveis.

A **Programação Linear** (PL) é uma técnica de **programação matemática** onde a **função objetivo** e as **restrições** são **expressões lineares**.

2. Problemas de Programação Linear Exemplo:

Uma certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de R\$ 100,00 e do produto P2 é R\$ 180,00. A empresa precisa de 20 horas para fabricar uma unidade de P1 e 30 horas para uma unidade de P2. O tempo disponível de fabricação para o próximo mês, é de 1.200 horas, sendo a demanda máxima esperada para P1 de 40 unidades e para P2 de 30 unidades.

Qual é o plano de produção para maximizar o lucro?

Em outros termos, quantas unidades de P1 e de P2 devemos fabricar para maximizar o lucro? Construir o modelo de PL que represente o problema.

Roteiro de solução:

1. Quais são as variáveis de decisão?

Em um problema de programação da produção, as variáveis de decisão, são as quantidades a produzir. Em um problema de investimento, serão, quanto investir em cada oportunidade de investimento, em um problema de logística, quanto transportar de cada origem para cada destino.

No problema em questão as variáveis de decisão são:

X1: quantidade a ser produzida do produto P1;

X2: quantidade a ser produzida do produto P2;

Roteiro de solução:

2. Qual é o objetivo?

O objetivo da tomada de decisão, geralmente é, maximizar lucro (receita) ou minimizar custos (perdas).

A função objetivo, é a expressão que calcula o valor do objetivo (lucro, receita, custo, perdas) em função das variáveis de decisão.

Neste exemplo, o lucro será a soma do: número de unidades de P1 fabricadas vezes o lucro unitário de P1, e o número de unidades de P2 fabricadas vezes o lucro unitário de P2.

Maximizar Z = 100*X1 + 180*X2

Roteiro de solução:

3. Quais são as restrições?

Cada restrição imposta pelo problema (disponibilidade de mão de obra ou horas máquina para fabricação, de valor monetário para investimento, de capacidade de transporte), deve ser expressa como uma relação linear das variáveis de decisão.

No problema em questão, temos dois restrições:

Disponibilidade de horas para produção: 20 * X1 + 30 * X2 <= 1200;

Demanda de cada produto: X1 <=40; X2 <=30

Modelo matemático de PL para o problema em questão:

Sujeito a:

X1 <= 40; (restrição de demanda)

X2 <= 30; (restrição de demanda)

X1>= 0 e X2 >=0 (restrição de não negatividade)

Determinação do mix de produtos:

Uma empresa pode fabricar uma variedade de produtos.

Cada produto, requer uma quantidade de matéria prima e de mão de obra, tem uma demanda estimada e um lucro diferente.

O gerente deverá decidir quanto fabricar de cada produto, para maximizar o lucro ou atender a demanda com custo mínimo respeitando as restrições de matéria prima e mão de obra.

Roteamento e Logística:

Uma empresa de varejo tem armazéns em todo o pais, os quais são responsáveis por manter as lojas abastecidas com mercadorias. As quantidades de mercadorias disponíveis nos armazéns e a quantidade necessárias em cada loja, tende a flutuar, assim como o custo da remessa e da entrega da mercadoria dos armazéns para as lojas.

O gestor, deve determinar a forma de transferir as mercadorias dos armazéns para as lojas, com o menor custo possível, considerando as necessidade de cada loja e a disponibilidade de cada armazém₂₁

Planejamento Financeiro:

O gestor de uma empresa, tem o **orçamento disponível para este ano e os próximos dois anos**. Esse excesso de capital é oriundo de

uma boa rentabilidade atual e da esperança da rentabilidade futura.

A empresa possui uma série de oportunidades para investimento, o gestor deve definir onde seus investimentos devem ser realizados para que o VPL (valor presente líquido) dos mesmos seja maximizado.

2. Problemas de Programação Linear Problema da Montadora de Notebooks

Uma empresa resolveu desenvolver 2 modelos de notebooks a preços populares. O modelo M1, de melhor qualidade, requer o dobro do tempo de montagem em relação ao modelo M2. Se todos os notebooks fossem do modelo M2, a empresa teria tempo disponível para montar 1000 unidades por dia. Porém a disponibilidade de material permite fabricar no máximo 800 notebooks de ambos os modelos por dia. Os dois modelos empregam telas diferentes, cuja disponibilidade diária é de 400 para **M1** e 700 para **M2**. Os lucros unitários são de \$ 400,00 para M1 e \$ 300,00 para M2. Qual o programa ótimo de produção que maximiza o lucro total diário da empresa? Construa o modelo de programação linear do sistema.

Variáveis:

X1: Quantidade de notebooks do modelo M1 a ser montada por dia

X2: Quantidade de notebooks do modelo M2 a ser montada por dia

Maximizar
$$L = 400 X1 + 300 X2$$

Sujeito à

 $X1, X2 \ge 0$

$$\begin{array}{lll} \text{X1 + X2} & \leq 800 & \text{(R1)} & \text{(Restrição de material disponível para a montagem)} \\ 2\text{X1 + X2} & \leq 1000 & \text{(R2)} & \text{(Restrição de horas de montagem disponíveis)} \\ \text{X1} & \leq 400 & \text{(R3)} & \text{(Restrição número de telas do modelo 1 disponíveis)} \\ \text{X2} & \leq 700 & \text{(R4)} & \text{(Restrição número de telas do modelo 2 disponíveis)} \end{array}$$

A Só Bicicletas (SB) é uma empresa que atua no ramo de produção de bicicletas, e acaba de lançar 2 modelos de bicicletas, um para meninos e outro para meninas. O departamento de marketing recomenda que ao menos 250 bicicletas de cada modelo sejam produzidos. O lucro unitário na produção e venda da bicicleta feminina é de \$50 e da masculina é de \$30. A empresa conta para a produção destes dois modelos com 200 trabalhadores no setor de fabricação (por turno) e 100 trabalhadores no setor de montagem (por turno). A empresa trabalha em três turnos de 8 horas por dia. O modelo feminino necessita de 4 horas de mão de obra para fabricação e de 2 horas para montagem. O modelo masculino de 4 horas de mão de obra para fabricação e de 1 hora para montagem. Formule um modelo que informe o plano de produção diário que maximiza seu lucro.

Variáveis de decisão:

X1: quantidade de bicicletas femininas produzidas;

X2: quantidade de bicicletas masculinas produzidas;

Maximizar Lucro = $50 \times 1 + 30 \times 2$

Sujeito a:

R1: 4 X1 + 4 X2 <=4800 (tempo máxima para fabricação)

R2: 2 X1 + X2 <=2400 (tempo máximo de montagem)

R3 - produção mínima do modelo feminino: X1 >= 250

R4 - produção mínima do modelo masculino: X2 > = 250

"Problema da dieta"

Um fabricante de ração para aves, utiliza dois produtos na composição da ração.

Cada produto tem um custo e uma quantidade de nutrientes diferentes.

Quanto às aves, sabe-se que uma ave necessita de uma alimentação de nutrientes, cujas quantidades mínimas (em unidade por quilo) obtidas dos produtos A e B, estão descritas abaixo. Quanto deve ser utilizado de cada produto na formulação da ração, minimizar o custo.

	Composição (Unid. de nutriente por kg)		Requisito
Nutrientes	Produto A	Produto B	mínimo diário
Tipo 1	3	2	60
Tipo 2	7	2	84
Tipo 3	3	6	72
Custo (R\$)	R\$ 10,00	R\$ 4,00	

Variáveis de decisão:

X1 : Qde do produto A a ser introduzido na ração (Kg/dia)

X2: Qde do produto B a ser introduzido na ração (Kg/dia)

Minimizar Custo: C = 10 X1 + 4 X2

Sujeito à

 $3 X1 + 2X2 \ge 60$

 $7 X1 + 2X2 \ge 84$

 $3 X1 + 6X2 \ge 72$

 $X1 \ge 0; X2 \ge 0$

Um agricultor pretende cultivar 80 ha de terra com tomate e trigo de forma a maximizar a receita. As receitas resultantes de cada hectare de tomate e trigo são R\$ 300,00 e R\$ 200,00 respectivamente. As necessidades de recursos para cada cultura e a disponibilidade desses recursos estão no quadro a seguir.

Recursos	Necessidades (por há)		Disponibilidade
	Tomate	Trigo	
Agua (em mil litros)	1	0	40
Fertilizantes (em Kg)	2	1	100

Construir o modelo matemático que indique o número de há dedicadas a cada cultura.

X: ha dedicadas ao cultivo do tomate;

Y: ha dedicadas ao cultivo do trigo;

```
Maximizar Receita = 300 X + 200 Y
```

Sujeito a:

```
X + Y <= 80 (restrição da disponibilidade de ha)
```

X <= 40 (restrição da disponibilidade de água)

2 X + Y <= 100 (restrição da disponibilidade de fertilizantes)

Um microempresário vende **Pão de Queijo (P)** a R\$ 3,50 e **Biscoitos** (B) a R\$ 5,20. Para a fabricação dos produtos, temos que usar farinha, ovos, óleo, queijo. O estoque atual é de 1.750 gramas de farinha, 55 unidades de ovos, 30 litros de óleo e 10 kg de queijo. Para cada unidade de pão de queijo fabricada é necessário de 10 gramas de farinha, 0,3 unidades de ovos, 0,2 litros de óleo e 12 gramas de queijo. Para cada unidade de biscoito, utiliza-se 12 gramas de farinha, 0,5 unidades de ovos, 0,2 litros de óleo e 17 gramas de queijo. Contruir o modelo de programação linear que maximize a receita.

Max Receita = 3,50 P + 5,20 B

sujeito às restrições:

Farinha: $10 P + 12 B \le 1.750$

Ovos: $0.3 P + 0.5 B \le 55$

Óleo: $0,2 P + 0,2 B \le 30$

Queijo: $12 P + 17 B \le 10.000$

- A solução gráfica de um problema de programação linear (PPL) pode ser feita em 2 passos:
 - Identificação da região viável;
 - Identificação do ponto ótimo;

• Identificação da região viável:

A solução gráfica é usada para problemas com duas variáveis de decisão.

As variáveis de decisão X1 e X2 representam os eixos do plano cartesiano.

As restrições definem a "região viável", isto é, a região onde a solução ótima deve estar.

A "região viável" é criada utilizando-se todas as restrições do problema.

Max
$$f = 3 X1 + 2 X2$$

Sujeito a:
 $2 X1 + X2 \le 100 (R1)$
 $X1 + X2 \le 80 (R2)$
 $X1 \le 40 (R3)$
 $X1 \ge 0$; (R4)
 $X2 \ge 0$; (R5)

• Max f = 3 X1 + 2 X2

Sujeito a:

$$X1 + X2 \le 80 (R2)$$

$$X1 >= 0; (R4)$$

$$X2 >= 0; (R5)$$

• Max f = 3 X1 + 2 X2

Sujeito a:

$$X1 + X2 \le 80 (R2)$$

$$X1 >= 0; (R4)$$

$$X2 >= 0; (R5)$$

Identificação do ponto ótimo:

- A região viável de um PPL, sempre é um polígono para problemas de duas variáveis (poliedro para 3 variáveis ou hiper-poliedro para mais de 3 dimensões).
- Outra caraterística, de um PPL, é que a solução ótima sempre estará em um dos vértices da região viável;
- Se uma solução em um vértice é melhor (ou igual) que todas as soluções nos vértices adjacentes a ela, então é melhor (ou igual) que todas as demais soluções factíveis existentes nos vértices, isto é, é uma solução ótima.

f(D) = f(40;20) = 160; f(E) = f(40;0) = 120

Problema da Montadora de Notebooks

Uma empresa resolveu desenvolver 2 modelos de notebooks a preços populares. O modelo M1, de melhor qualidade, requer o dobro do tempo de montagem em relação ao modelo M2. Se todos os notebooks fossem do modelo M2, a empresa teria tempo disponível para montar 1000 unidades por dia. Porém a disponibilidade de material permite fabricar no máximo 800 notebooks de ambos os modelos por dia. Os dois modelos empregam telas diferentes, cuja disponibilidade diária é de 400 para **M1** e 700 para **M2**. Os lucros unitários são de \$ 400,00 para M1 e \$ 300,00 para M2. Qual o programa ótimo de produção que maximiza o lucro total diário da empresa? Construa o modelo do sistema e encontre a solução pelo método gráfico.

Variáveis:

X1: Quantidade de notebooks do modelo M1 a ser montada por dia

X2: Quantidade de notebooks do modelo M2 a ser montada por dia

Maximizar
$$L = 400 X1 + 300 X2$$

Sujeito à

 $X1, X2 \ge 0$

$$\begin{array}{lll} \text{X1 + X2} & \leq 800 & \text{(R1)} & \text{(Restrição de material disponível para a montagem)} \\ 2\text{X1 + X2} & \leq 1000 & \text{(R2)} & \text{(Restrição de horas de montagem disponíveis)} \\ \text{X1} & \leq 400 & \text{(R3)} & \text{(Restrição número de telas do modelo 1 disponíveis)} \\ \text{X2} & \leq 700 & \text{(R4)} & \text{(Restrição número de telas do modelo 2 disponíveis)} \end{array}$$

A Só Bicicletas (SB) é uma empresa que atua no ramo de produção de bicicletas, e acaba de lançar 2 modelos de bicicletas, um para meninos e outro para meninas. O departamento de marketing recomenda que ao menos 250 bicicletas de cada modelo sejam produzidos. O lucro unitário na produção e venda da bicicleta feminina é de \$50 e da masculina é de \$30. A empresa conta para a produção destes dois modelos com 200 trabalhadores no setor de fabricação (por turno) e 100 trabalhadores no setor de montagem (por turno). A empresa trabalha em três turnos de 8 horas por dia. O modelo feminino necessita de 4 horas de mão de obra para fabricação e de 2 horas para montagem. O modelo masculino de 4 horas de mão de obra para fabricação e de 1 hora para montagem. Formule um modelo que informe o plano de produção diário que maximiza seu lucro e resolva graficamente.

Variáveis de decisão:

X1: quantidade de bicicletas femininas produzidas;

X2: quantidade de bicicletas masculinas produzidas;

Maximizar Lucro = $50 \times 1 + 30 \times 2$

Sujeito a:

R1: 4 X1 + 4 X2 <=4800 (tempo máxima para fabricação)

R2: 2 X1 + X2 <=2400 (tempo máximo de montagem)

R3 - produção mínima do modelo feminino: X1 >= 250

R4 - produção mínima do modelo masculino: X2 > = 250

"Problema da dieta"

Um fabricante de ração para aves, utiliza dois produtos na composição da ração.

Cada produto tem um custo e uma quantidade de nutrientes diferentes.

Quanto às aves, sabe-se que uma ave necessita de uma alimentação de nutrientes, cujas quantidades mínimas (em unidade por quilo) obtidas dos produtos A e B, estão descritas abaixo. Quanto deve ser utilizado de cada produto na formulação da ração, minimizar o custo.

Composição (Unid. de nutriente por kg) Requ				
Nutrientes	Produto A	Produto B	mínimo diário	
Tipo 1	3	2	60	
Tipo 2	7	2	84	
Tipo 3	3	6	72	
Custo (R\$)	R\$ 10,00	R\$ 4,00		

Variáveis de decisão:

X1 : Qde do produto A a ser introduzido na ração (Kg/dia)

X2: Qde do produto B a ser introduzido na ração (Kg/dia)

Minimizar Custo: C = 10 X1 + 4 X2

Sujeito à

$$3 X1 + 2X2 \ge 60$$

$$7 X1 + 2X2 \ge 84$$

$$3 X1 + 6X2 \ge 72$$

$$X1 \ge 0; X2 \ge 0$$

Minimizar C = 10 X1 + 4X2

Sujeito à

$$3 X1 + 2X2 \ge 60$$

$$7 X1 + 2X2 \ge 84$$

$$3 X1 + 6X2 \ge 72$$

$$X1 \ge 0; X2 \ge 0$$

Um agricultor pretende cultivar 80 ha de terra com tomate e trigo de forma a maximizar a receita. As receitas resultantes de cada hectare de tomate e trigo são R\$ 300,00 e R\$ 200,00 respectivamente. As necessidades de recursos para cada cultura e a disponibilidade desses recursos estão no quadro a seguir.

Recursos	Necessidado	es (por há)	Disponibilidade
	Tomate	Trigo	
Agua (em mil litros)	1	0	40
Fertilizantes (em Kg)	2	1	100

Construir o modelo matemático que indique o número de há dedicadas a cada cultura. Resolver graficamente.

X: ha dedicadas ao cultivo do tomate;

Y: ha dedicadas ao cultivo do trigo;

Maximizar Receita = 300 X + 200 Y Sujeito a:

X + Y <= 80 (restrição da disponibilidade de ha)

X <= 40 (restrição da disponibilidade de água)

2 X + Y <= 100 (restrição da disponibilidade de fertilizantes)

A solução ótima é no ponto A=(20,60) e no ponto B=(40,20) (tem o mesmo valor da função objetivo).

Soluções múltiplas (qualquer ponto da reta entre A e B é solução).

Não tem solução ótima, ela é ilimitada (infinito).

Não existe região viável, então não existe solução.

Abra um arquivo Excel e verifique na opção "Dados" se aparece a opção "Análise" - "Solver".

Se a opção não estiver presente, nos próximos slides mostramos a instalação do "Solver"

No menu de "Opções", escolher "Suplementos", depois

"Solver", para dar um clik na opção "Ir . . ."

Aparecerá o menu "Suplementos", onde escolhemos a opção "Solver" e damos um click no "OK".

Aparecerá agora opção "Dados", a opção "Análise" - "Solver".

Devemos disponibilizar em uma aba do Excel, os dados do problema: coeficientes da função objetivo, coeficientes das restrições e limites das restrições. Além disso, temos as células em cor "laranja" que representam um cálculo mostrado nos próximos slides, e as células em "verde" que é o espaço para os cálculos realizados pelo "Solver" para encontrar o valor das variáveis de decisão.

Na figura acima, é apresentada a fórmula incluída para o calculo da função ótima. A formula, é o valor dos coeficientes da Função Objetivo (FO) pelo valor das variáveis de decisão (células em verde).

Na figura acima, é apresentada a fórmula incluída para o calculo da primeira restrição. A formula, é o valor dos coeficientes da restrição R1 pelo valor das variáveis de decisão (células em verde).

Para as outras células das restrições é calcular é semelhante.

Com todos os dados e formulas de cálculos na planilha Excel, podemos ir na opção "Dados" do menu e escolher a opção "Solver".

Aparece a tela com os "Parâmetros do Solver", na primeiro parâmetro "Definir Objetivo", indica a célula do Excel, onde aparecerá o "Valor ótimo" (célula F7 em nosso exemplo)

72

O segundo parâmetro, refere-se ao objetivo do problema, em nosso exemplo "Max", e na terceira opção "Alterando Células Variáveis", é onde incluímos as células dos valores das variáveis de decisão (no exemplo D3:E3). Damos um click na opção "Adicionar".

Na janela "Adicionar Restrição", temos 3 caixinhas: na primeira fazemos referencia a célula de cálculo da restrição R1 (célula F12 em nosso exemplo), na segunda caixinha, escolhemos a "sinal da inequação" (<= em nosso exemplo), e na terceira caixinha ("Restrição") escolhemos a célula do "limite das restrições" de R1 (célula G12 em nosso exemplo), e escolhemos a opção "OK".

74

Fazemos o mesmo procedimento para as outras restrições (R2 e R3 em nosso exemplo)

Antes de executar o algoritmo que fará os cálculos, na opção "Selecionar um Método de Solução", escolher a opção LP Simplex e fazer click em "Resolver".

Na tela de "Resultados" fazer click em "OK".

Temos agora na planilha Excel o resultado: valor das variáveis de decisão (X1=20 e X2=60), da função objetivo (180) e das restrições (R1 = 100; R2=80 e R3 = 20).

Zeramos os valores das variáveis de decisão e executamos outra vez o Solver "Resolver".

79

Na tela de "Resultados do Solver", escolher a opção de Relatórios "Respostas" e dar o click no "OK".

Depois da execução, uma nova aba é criada "Relatório de Respostas". Nela temos o valor da função objetivo, o valor das variáveis de decisão e o valor das restrições, onde a coluna "Margem de atraso", indica se disponibilidade de recursos, isto é, 81 indica se restrição tem "folga" (sobra) ou não.

Salvamento Automático 💽

% × cg N <> 4) · -

Exemplo_1_Solver.xls

Problema da Montadora de Notebooks

Uma empresa resolveu desenvolver 2 modelos de notebooks a preços populares. O modelo M1, de melhor qualidade, requer o dobro do tempo de montagem em relação ao modelo M2. Se todos os notebooks fossem do modelo M2, a empresa teria tempo disponível para montar 1000 unidades por dia. Porém a disponibilidade de material permite fabricar no máximo 800 notebooks de ambos os modelos por dia. Os dois modelos empregam telas diferentes, cuja disponibilidade diária é de 400 para **M1** e 700 para **M2**. Os lucros unitários são de \$ 400,00 para M1 e \$ 300,00 para M2. Qual o programa ótimo de produção que maximiza o lucro total diário da empresa? Construa o modelo do sistema e **resolva pelo método simplex usando o** solver do Excel.

Variáveis:

X1: Quantidade de notebooks do modelo M1 a ser montada por dia

X2: Quantidade de notebooks do modelo M2 a ser montada por dia

Maximizar L = 400 X1 + 300 X2

Sujeito à

$$X1 + X2 \le 800$$

(R1) (Restrição de material disponível para a montagem)

$$2X1 + X2 \le 1000$$

(R2) (Restrição de horas de montagem disponíveis)

(R3) (Restrição número de telas do modelo 1 disponíveis)

$$X2 \le 700$$

(R4) (Restrição número de telas do modelo 2 disponíveis)

$$X1, X2 \ge 0$$

	А	В	С	D	Е
1		Variáveis	de Decisão		
2		X1	X2		
3		0	0		
4					
5		Coeficier	ntes da FO		
6	Função objetivo:	C1	C2	Valor ótimo	
7	Maximizar	400	300	0	
8					
9			ições		
10	Restrições	Coeficientes	das Restrições		Limites das
11		A1	A2		restrições
12	R1 (Restrição de material disponível para a montagem)	1	1	0	800
13	R2 (Restrição de horas de montagem disponíveis)	2	1	0	1000
14	R3 (Restrição número de telas do modelo 1 disponíveis)	1	0	0	400
15	R4 (Restrição número de telas do modelo 1 disponíveis)	0	1	0	700

14	ceiuia do	Objetivo (iviax.)				
15	Célula	Nome	Valor Original	Valor Final	_	
16	\$D\$7	Valor ótimo	0	260000	_	
17						
18						
19	Células V	ariáveis				
20	Célula	Nome	Valor Original	Valor Final	Número Inteiro	
21	\$B\$3	X1	0	200	Conting.	_
22	\$C\$3	X2	0	600	Conting.	
23						
24						
25	Restriçõe	5				
26	Célula	Nome	Valor da Célula	Fórmula	Status	Margem de Atraso
27	\$D\$12	R1 (Restrição de material disponível para a montagem) Valor ótimo	800	\$D\$12<=\$E\$12	Associação	0
28	\$D\$13	R2 (Restrição de horas de montagem disponíveis) Valor ótimo	1000	\$D\$13<=\$E\$13	Associação	0
29	\$D\$14	R3 (Restrição número de telas do modelo 1 disponíveis) Valor ótimo	200	\$D\$14<=\$E\$14	Não-associação	200
30	\$D\$15	R4 (Restrição número de telas do modelo 1 disponíveis) Valor ótimo	0	\$D\$15<=\$E\$15	Não-associação	700

Zeramos os valores das variáveis de decisão, e chamamos o Solver, antes de

"Resolver" verificamos a opção "Opções".

Na aba "Todos os Métodos" da opção "Opções" marcamos "Mostrar Resultados de Iterações", damos "OK" e mandamos "Resolver".

A Só Bicicletas (SB) é uma empresa que atua no ramo de produção de bicicletas, e acaba de lançar 2 modelos de bicicletas, um para meninos e outro para meninas. O departamento de marketing recomenda que ao menos 250 bicicletas de cada modelo sejam produzidos. O lucro unitário na produção e venda da bicicleta feminina é de \$50 e da masculina é de \$30. A empresa conta para a produção destes dois modelos com 200 trabalhadores no setor de fabricação (por turno) e 100 trabalhadores no setor de montagem (por turno). A empresa trabalha em três turnos de 8 horas por dia. O modelo feminino necessita de 4 horas de mão de obra para fabricação e de 2 horas para montagem. O modelo masculino de 4 horas de mão de obra para fabricação e de 1 hora para montagem. Formule um modelo que informe o plano de produção diário que maximiza seu lucro e resolva pelo método simplex usando o solver do Excel.

В		С	D	E	F	G	Н	1	J	K
			Variáveis	de Decisão						
			X1	X2				Max L =	50X1 + 30X2	
			950	250				sujeito a		
								4X1 + 4	X2 <= 4800	
			Coeficier	ntes da FO				2X1 +	X2 <= 2400	
Fun	ıção objeti	ivo:	C1	C2	Valor ótimo			X1	>= 250	
	Maximizar		50	30	55000			X2	>= 250	
				Restr	ições					
	Res	strições	Coeficientes	das Restrições		Limites das				
			A1	A2		restrições				
	R1		4	4	4800	4800				
	R2		2	1	2150	2400				
	R3		1	0	950	250				
	R4		0	1	250	250				

12									
13									
14	Célula do	Obj	etivo (Máx	.)					
15	Célula		Nome	Valor 0	Original	Valor Final	<u> </u>		
16	\$F\$7	Valc	or ótimo		0	550	000		
17									
8									
19	Células V	ariáv	eis						
20	Célula		Nome	Valor 0	Original	Valor Fina	I	Número Inteiro	
21	\$D\$3	X1			0	9	50	Conting.	
22	\$E\$3	X2			0	2	50	Conting.	
23									
24									
25	Restriçõe	S							
26	Célula		Nome	Valor d	a Célula	Fórmula		Status	Margem de Atraso
27	\$F\$12	R1 \	/alor ótimo)	4800	\$F\$12<=\$G\$	12	Associação	0
28	\$F\$13	R2 V	/alor ótimo)	2150	\$F\$13<=\$G\$	13	Não-associação	250
29	\$F\$14	R3 V	/alor ótimo)	950	\$F\$14>=\$G\$	14	Não-associação	700
30	\$F\$15	R4 \	/alor ótimo)	250	\$F\$15>=\$G\$	15	Associação	0

Relatório de Respostas 1 Planilha1

14									
13									
14	Célula do	Ob	jetivo (Máx.))					
15	Célula		Nome	Valor Orig	inal	Valo	r Final		
16	\$F\$7	Va	lor ótimo		0		55000		
17									
18									
19	Células V	ariá	iveis						
20	Célula		Nome	Valor Orig	inal	Valo	r Final	Número Inteiro	_
21	\$D\$3	X1			0		950	Conting.	•
22	\$E\$3	X2			0		250	Conting.	_
23									-
24									
25	Restriçõe	S							
26	Célula		Nome	Valor da Cé	élula	Fór	mula	Status	Margem de Atraso
27	\$F\$12	R1	Valor ótimo	4	4800	\$F\$12	<=\$G\$12	Associação	0
28	\$F\$13	R2	Valor ótimo	2	2150	\$F\$13<	<=\$G\$13	Não-associação	250
29	\$F\$14	R3	Valor ótimo		950	\$F\$14	>=\$G\$14	Não-associação	700
30	\$F\$15	R4	Valor ótimo		250	\$F\$15	>=\$G\$15	Associação	0
		-	latório de Re		DI.	nilha1	(+)		

"Problema da dieta"

Um fabricante de ração para aves, utiliza dois produtos na composição da ração.

Cada produto tem um custo e uma quantidade de nutrientes diferentes.

Quanto às aves, sabe-se que uma ave necessita de uma alimentação de nutrientes, cujas quantidades mínimas (em unidade por quilo) obtidas dos produtos A e B, estão descritas abaixo. Quanto deve ser utilizado de cada produto na formulação da ração, minimizar o custo. **Resolva pelo método simplex usando o solver do Excel.**

	Composição (Unid. de nutriente por kg)						
Nutrientes	Produto A Produto		Requisito mínimo diário				
Tipo 1	3	2	60				
Tipo 2	7	2	84				
Tipo 3	3	6	72				
Custo (R\$)	R\$ 10,00	R\$ 4,00					

Problema da Montadora de Notebooks

Uma empresa resolveu desenvolver 2 modelos de notebooks a preços populares. O modelo M1, de melhor qualidade, requer o dobro do tempo de montagem em relação ao modelo M2. Se todos os notebooks fossem do modelo M2, a empresa teria tempo disponível para montar 1000 unidades por dia. Porém a disponibilidade de material permite fabricar no máximo 800 notebooks de ambos os modelos por dia. Os dois modelos empregam telas diferentes, cuja disponibilidade diária é de 400 para **M1** e 700 para **M2**. Os lucros unitários são de \$ 400,00 para M1 e \$ 300,00 para M2. Qual o programa ótimo de produção que maximiza o lucro total diário da empresa? Construa o modelo do sistema e **resolva pelo método simplex usando o** solver do Excel.

Variáveis:

X1: Quantidade de notebooks do modelo M1 a ser montada por dia

X2: Quantidade de notebooks do modelo M2 a ser montada por dia

Maximizar
$$L = 400 X1 + 300 X2$$

Sujeito à

$$X1 + X2 \le 800$$
 (R1) (Restrição de material disponível para a montagem)

$$2X1 + X2 \le 1000$$
 (R2) (Restrição de horas de montagem disponíveis)

$$X1 \leq 400$$
 (R3) (Restrição número de telas do modelo 1 disponíveis)

$$(R4)$$
 (Restrição número de telas do modelo 2 disponíveis)

$$X1, X2 \ge 0$$

 $X2 \le 700$

	А	В	C	D	Е
1		Variáveis	de Decisão		
2		X1	X2		
3		0	0		
4					
5		Coeficient			
6	Função objetivo:	C1	C2	Valor ótimo	
7	Maximizar	400	300	0	
8					
9			ições		
10	Restrições	Coeficientes	das Restrições		Limites das
11		A1	A2		restrições
12	R1 (Restrição de material disponível para a montagem)	1	1	0	800
13	R2 (Restrição de horas de montagem disponíveis)	2	1	0	1000
14	R3 (Restrição número de telas do modelo 1 disponíveis)	1	0	0	400
15	R4 (Restrição número de telas do modelo 1 disponíveis)	0	1	0	700
4.0					

14	ceiuia ac	Ο σμετινο (ινιαχ.)				
15	Célula	Nome	Valor Original	Valor Final		
16	\$D\$7	Valor ótimo	0	260000		
17						
18						
19	Células V	riáveis				
20	Célula	Nome	Valor Original	Valor Final	Número Inteiro	
21	\$B\$3	X1	0	200	Conting.	-
22	\$C\$3	X2	0	600	Conting.	
23						
24						
25	Restriçõe	5				
26	Célula	Nome	Valor da Célula	Fórmula	Status	Margem de Atraso
27	\$D\$12	R1 (Restrição de material disponível para a montagem) Valor ótimo	800 \$	D\$12<=\$E\$12	Associação	0
28	\$D\$13	R2 (Restrição de horas de montagem disponíveis) Valor ótimo	1000 \$	D\$13<=\$E\$13	Associação	0
29	\$D\$14	R3 (Restrição número de telas do modelo 1 disponíveis) Valor ótimo	200 \$	D\$14<=\$E\$14	Não-associação	200
30	\$D\$15	R4 (Restrição número de telas do modelo 1 disponíveis) Valor ótimo	0 \$	D\$15<=\$E\$15	Não-associação	700

Zeramos os valores das variáveis de decisão, e chamamos o Solver, antes de

"Resolver" verificamos a opção "Opções".

Na aba "Todos os Métodos" da opção "Opções" marcamos "Mostrar Resultados de Iterações", damos "OK" e mandamos "Resolver".

Um agricultor pretende cultivar 80 ha de terra com tomate e trigo de forma a maximizar a receita. As receitas resultantes de cada hectare de tomate e trigo são R\$ 300,00 e R\$ 200,00 respectivamente. As necessidades de recursos para cada cultura e a disponibilidade desses recursos estão no quadro a seguir.

Recursos	Necessidade	es (por há)	Disponibilidade
	Tomate	Trigo	
Agua (em mil litros)	1	0	40
Fertilizantes (em Kg)	2	1	100

Construir o modelo matemático que indique o número de há dedicadas a cada cultura. Resolva pelo método simplex usando o solver do Excel.

5. Analises de Sensibilidade

Em **todos** os *modelos de programação linear*, os **coeficientes** da *função objetivo* e das *restrições* são considerados como entrada de dados ou parâmetros para os modelos.

As soluções ótimas que obtemos são baseadas nos valores destes coeficientes que, na prática, são raramente conhecidos com absoluta certeza.

Cada variação nos valores destes coeficientes **muda** o problema de programação linear que pode afetar a solução ótima encontrada anteriormente. A análise de sensibilidade nos ajuda a entender como esta solução ótima.

Um microempresário vende **Pão de Queijo (P)** a R\$ 3,50 e **Biscoitos** (B) a R\$ 5,20. Para a fabricação dos produtos, temos que usar farinha, ovos, óleo, queijo. O estoque atual é de 1.750 gramas de farinha, 55 unidades de ovos, 30 litros de óleo e 10 kg de queijo. Para cada unidade de pão de queijo fabricada é necessário de 10 gramas de farinha, 0,3 unidades de ovos, 0,2 litros de óleo e 12 gramas de queijo. Para cada unidade de biscoito, utiliza-se 12 gramas de farinha, 0,5 unidades de ovos, 0,2 litros de óleo e 17 gramas de queijo.

Max Receita = 3,50 P + 5,20 B

sujeito às restrições:

Farinha: $10 P + 12 B \le 1.750$

Ovos: $0.3 P + 0.5 B \le 55$

Óleo: $0,2 P + 0,2 B \le 30$

Queijo: $12 P + 17 B \le 10.000$

1 / B ≤ 10.000	Variáveis	de Decisão		
	Р	В		
	0	0		
	Coeficier	ntes da FO		
Função objetivo:	Ср	Cb	Valor ótimo	
Maximizar	3,5	5,2	0	
	Rest	rições		
Restrições	Coeficientes	das Restrições		Limitas das rostricãos
	Ар	Ab		Limites das restrições
R1 (Disponibilidade de farinha)	10	12	0	1750
R2 (Disponibilidade de ovos)	0,3	0,5	0	55
	,			
R3 (Disponibilidade de óleo)	0,2	0,2	0	30
R3 (Disponibilidade de óleo) R4 (Disponibilidade de queijo)		0,2 17	0	30 10000

15								
14	Ce	élula do	Objetivo (Máx.)					
15		Célula		Nome	Valor Original	Valor Final	_	
16		\$D\$7	Valor ótimo		0	610		
17							-	
18								
19	Ce	élulas V	ariáveis					
20		Célula		Nome	Valor Original	Valor Final	Número Inteiro	
21		\$B\$3	P		0	100	Conting.	
22		\$C\$3	В		0	50	Conting.	
23								
24								
25	Re	estriçõe	S					
26		Célula		Nome	Valor da Célula	Fórmula	Status	Margem de Atraso
27		\$D\$12	R1 (Disponibilidae	de de farinha) Valor ótimo	1600	\$D\$12<=\$E\$12	Não-associação	150
28		\$D\$13	R2 (Disponibilidae	de de ovos) Valor ótimo	55	\$D\$13<=\$E\$13	Associação	0
29		\$D\$14	R3 (Disponibilidae	de de óleo) Valor ótimo	30	\$D\$14<=\$E\$14	Associação	0
30		\$D\$15	R4 (Disponibilidae	de de queijo) Valor ótimo	2050	\$D\$15<=\$E\$15	Não-associação	7950

Células Variáveis

		Final	Reduzido	Objetivo	Permitido	Permitido	
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$B\$3	Р		100	0	3,5	1,7	0,38
\$C\$3	В		50	0	5,2	0,633333333	1,7

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$D\$12	R1 (Disponibilidade de farinha) Valor ótimo	1600	0	1750	1E+30	150
\$D\$13	R2 (Disponibilidade de ovos) Valor ótimo	55	8,5	55	15	10
\$D\$14	R3 (Disponibilidade de óleo) Valor ótimo	30	4,75	30	4,285714286	8
\$D\$15	R4 (Disponibilidade de queijo) Valor ótimo	2050	0	10000	1E+30	7950

As colunas **Permitido Aumentar** e **Permitido Reduzir** mostram quanto se pode aumentar ou reduzir nos coeficientes, sem que a solução ótima se altere. Se aumentamos o coeficiente de P em 1,50 (para 5,00) a solução continua a mesma, se aumentamos em 1,75 (para 5,25) a solução ótima muda.

113

Alteração do coeficiente do Pão de Queijo para 5,0.

Continua a mesma solução.

		Ι,	2030	10	000			
دا								
14	Célula do	o Objetivo (Máx.)					
15	Célula	1	Nome		Valor Original	Valor Final		
16	\$D\$7	Valor ótimo			0	760	_	
17								
18								
19	Células V	/ariáveis						
20	Célula	1	Nome		Valor Original	Valor Final	Número Inteiro	
21	\$B\$3	Р			0	100	Conting.	
22	\$C\$3	В			0	50	Conting.	
23								
24								
25	Restriçõe	es						
26	Célula	1	Nome		Valor da Célula	Fórmula	Status	Margem de Atraso
27	\$D\$12	R1 (Disponibili	dade de farinha)	Valor ótimo	1600	\$D\$12<=\$E\$12	Não-associação	150
28	\$D\$13	R2 (Disponibili	dade de ovos) Va	lor ótimo	55	\$D\$13<=\$E\$13	Associação	0
29	\$D\$14	R3 (Disponibili	dade de óleo) Va	lor ótimo	30	\$D\$14<=\$E\$14	Associação	0
30	\$D\$15	R4 (Disponibili	dade de queijo) \	/alor ótimo	2050	\$D\$15<=\$E\$15	Não-associação	7950
				· · · -		1 5 5 "		

	Variáveis	de Decisão		
	Р	В		
	150	0		
	Coencier	s da FO		
Função objetivo:	Ср	Cb	Valor ótimo	
Maximizar	5,25	5,2	787,5	
	Rest	rições		
Restrições	Coeficientes	das Restrições		Limitas das restricãos
	Ар	Ab		Limites das restrições
R1 (Disponibilidade de farinha)	10	12	1500	1750
R2 (Disponibilidade de ovos)	0,3	0,5	45	55
R3 (Disponibilidade de óleo)	0,2	0,2	30	30
R4 (Disponibilidade de queijo)	12	17	1800	10000
		P 150 Coencier Função objetivo: Cp Maximizar S,25 Restrições Coeficientes of Ap R1 (Disponibilidade de farinha) R2 (Disponibilidade de ovos) R3 (Disponibilidade de óleo) 0,2	Tenção objetivo: Função objetivo: Maximizar Restrições Restrições Coeficientes das Restrições Coeficientes das Restrições Ap Ab R1 (Disponibilidade de farinha) R2 (Disponibilidade de ovos) R3 (Disponibilidade de óleo) 0,2 0,2	P B 150 0

Alteração do coeficiente do Pão de Queijo para 5,25.
A solução muda.

Célula	Nome	Valor Original	Valor Final		
\$D\$7 Valor ótir	no	0	787,5		
Células Variáveis					
Célula	Nome	Valor Original	Valor Final	Número Inteiro	•
\$B\$3 P		0	150	Conting.	
\$C\$3 B		0	0	Conting.	-
Restrições					
	Nome	Valor da Célula	Fórmula	Status	Margem de Atraso
Célula	: : : - - - - - - -	1500	\$D\$12<=\$E\$12	Não-associação	250
	nibilidade de farinha) Valor ótimo				
\$D\$12 R1 (Dispo	nibilidade de rarinha) valor otimo		\$D\$13<=\$E\$13	Não-associação	10
\$D\$12 R1 (Dispo \$D\$13 R2 (Dispo		45 :	\$D\$13<=\$E\$13 \$D\$14<=\$E\$14		10

Voltando ao problema original:

Células Variáveis

			Final R		Objetivo	Permitido	Permitido	
Célula	1	Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir	
\$B\$3	Р		100	0	3,5	1,7	0,38	
\$C\$3	В		50	0	5,2	0,633333333	1,7	

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$D\$12 I	R1 (Disponibilidade de farinha) Valor ótimo	1600	0	1750	1E+30	150
\$D\$13	R2 (Disponibilidade de ovos) Valor ótimo	55	8,5	55	15	10
\$D\$14 I	R3 (Disponibilidade de óleo) Valor ótimo	30	4,75	30	4,285714286	8
\$D\$15 I	R4 (Disponibilidade de queijo) Valor ótimo	2050	0	10000	1E+30	7950

O **Preço Sombra** mostra quanto a função objetivo varia se aumentarmos 1 unidade no lado direito da inequação. É natural que os insumos que estão sendo consumidos totalmente possam variar a solução ao incrementarmos sua disponibilidade. No nosso exemplo, se tivermos 1 ovo a mais (56) nossa receita aumenta em \$8,5. Caso incrementemos 1 unidade de óleo, aumentaríamos em \$4,75 nossa receita.

Células Variáveis

		Final Reduzido		Objetivo	Permitido	Permitido	
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$B\$3	Р		100	0	3,5	1,7	0,38
\$C\$3	В		50	0	5,2	0,633333333	1,7

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$D\$12 R	1 (Disponibilidade de farinha) Valor ótimo	1600	0	1750	1E+30	150
\$D\$13 R	2 (Disponibilidade de ovos) Valor ótimo	55	8,5	55	15	10
\$D\$14 R	3 (Disponibilidade de óleo) Valor ótimo	30	4,75	30	4,285714286	8
\$D\$15 R	4 (Disponibilidade de queijo) Valor ótimo	2050	0	10000	1E+30	7950

O **Preço Sombra** da farinha e do queijo é zero, porque esses recursos não são "limitantes" da produção (estamos utilizando em quantidade inferior ao que temos disponível), então não ainda ter (ou comprar) mais desse recurso.

1		Variáveis	de Decisão		
2		Р	В		
3		95	55		
4					
5		Coeficier	Coeficientes da FO		
6	Função objetivo:	Ср	Cb	Valor ótimo	
7	Maximizar	3,5	5,2	618,5	
8					
9		Rest	rições		
10	Restrições	Coeficientes	das Restrições		Limites das restrições
11		Ар	Ab		Limites das restrições
12	R1 (Disponibilidade de farinha)	10	12	1610	1750
13	R2 (Disponibilidade de ovos)	0,3	0,5	56	56
14	R3 (Disponibilidade de óleo)	0,2	0,2	30	30
15	R4 (Disponibilidade de queijo)	12	17	2075	10000

Alteração da disponibilidade Na quantidade de ovos de 55 para 56, a função objetivo aumento em 8,50.

13							
14	Célula de	o Objetivo (Máx.)				_	
15	Célula	1	Nome	Valor Original	Valor Final		
16	\$D\$7	Valor ótimo		0	618,5	_	
17							
18							
19	Células \	/ariáveis					
20	Célula	1	Nome	Valor Original	Valor Final	Número Inteiro	
21	\$B\$3	Р		0	95	Conting.	
22	\$C\$3	В		0	55	Conting.	
23							
24							
25	Restriçõe	es					
26	Célula	1	Nome	Valor da Célula	Fórmula	Status	Margem de Atraso
27	\$D\$12	R1 (Disponibilidad	de de farinha) Valor ótimo	1610	\$D\$12<=\$E\$12	Não-associação	140
28	\$D\$13	R2 (Disponibilidae	de de ovos) Valor ótimo	56	\$D\$13<=\$E\$13	Associação	0
29	\$D\$14	R3 (Disponibilidae	de de óleo) Valor ótimo	30	\$D\$14<=\$E\$14	Associação	0
30	\$D\$15	R4 (Disponibilidae	de de queijo) Valor ótimo	2075	\$D\$15<=\$E\$15	Não-associação	7925

O **Preço Sombra** para o recurso i mede o valor marginal deste recurso em relação o lucro total, isto é, a quantidade que o Lucro Total (Z) **poderia ser melhorado**, caso a quantidade do recurso i (bi) puder ser aumentado em uma unidade.

A interpretação económica, seria: até quanto estaríamos dispostas a pagar por uma unidade desse recurso?

Em nosso exemplo aumentando a disponibilidade em mais 1 ovo, a receita aumenta R\$ 8,5, neste sentido, o custo da compra de um ovo, deveria ser inferior ao preço sombra.

Células Variáveis

			Final Reduzido O		Objetivo	Permitido	Permitido
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$B\$3	Р		100	0	3,5	1,7	0,38
\$C\$3	В		50	0	5,2	0,633333333	1,7

Restrições

O **Custo Reduzido** de uma variável significa o quanto **"piora"** o valor da função objetivo para cada unidade (dessa variável) que o tomador de decisão impor "a mais" no valor da variável.

1		Variáveis	de Decisão		
2		Р	В		
3		150	0		
4					
5		Coencier	es da FO		
6	Função objetivo:	Ср	Cb	Valor ótimo	
7	Maximizar	5,25	5,2	787,5	
8					
9		Rest	rições		
10	Restrições	Coeficientes	das Restrições		Limitas das rostricãos
11		Ар	Ab		Limites das restrições
12	R1 (Disponibilidade de farinha)	10	12	1500	1750
13	R2 (Disponibilidade de ovos)	0,3	0,5	45	55
14	R3 (Disponibilidade de óleo)	0,2	0,2	30	30
15	R4 (Disponibilidade de queijo)	12	17	1800	10000

Alteração do coeficiente do

Pão de Queijo para 5,25.

A solução muda (150,0), e o custo reduzido do biscoito é -0,05.

Microsoft Excel 16.0 Relatório de Sensibilidade

Planilha: [Exemplos_PO_Solver.xlsx]Exemplo_Pao_Queijo

Relatório Criado: 28/08/2019 10:25:49

Células Variáveis

			Final	Reduzido	Objetivo	Permitido	Permitido
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$B\$3	Р		150	0	5,25	1E+30	0,05
\$C\$3	В		0	-0,05	5,2	0,05	1E+30

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$D\$12	R1 (Disponibilidade de farinha) Valor ótimo	1500	0	1750	1E+30	250
\$D\$13	R2 (Disponibilidade de ovos) Valor ótimo	45	0	55	1E+30	10
\$D\$14	R3 (Disponibilidade de óleo) Valor ótimo	30	26,25	30	5	30
\$D\$15	R4 (Disponibilidade de queijo) Valor ótimo	1800	0	10000	1E+30	8200

			<u> </u>		
1		Variáveis d	e Decisão		
2		Р	В		
3		100	50		
4					
5		Coeficient	es da FO		
6	Função objetivo:	Ср	Cb	Valor ótimo	
7	Maximizar	5,25	5,3	790	
8					
9		Restri	ções		
10	Restrições	Coeficientes d	as Restrições		Limites das restrições
11		Ар	Ab		Liffiles das restrições
12	R1 (Disponibilidade de farinha)	10	12	1600	1750
13	R2 (Disponibilidade de ovos)	0,3	0,5	55	55
14	R3 (Disponibilidade de óleo)	0,2	0,2	30	30
15	R4 (Disponibilidade de queijo)	12	17	2050	10000

Alteração do coeficiente do Biscoito para 5,30, este produto volta a ser produzido (entra na solução).

Como a variável B passou de 0 para 50 e o custo reduzido era -0,05, temos que 50*-0,05=-2,5 é a "piora" na FO, isto é a Microsoft Excel 16.0 Relatório de Sensibilidade Planilha: [Exemplos_PO_Solver.xlsx]Exemplo_Pao_Queijo

Relatório Criado: 28/08/2019 10:31:02

Células Variáveis

Célula		Nome	Final Valor		Objetivo Coeficiente	Permitido Aumentar	Permitido Reduzir
\$B\$3		Nome	100		5,25	0,05	2,07
\$C\$3	В		50	0	5,3	3,45	0,05

Restrições

		Final	Sombra	Kestriçao	Permitido	Permitido
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$D\$12	R1 (Disponibilidade de farinha) Valor ótimo	1600	0	1750	1E+30	150
\$D\$13	R2 (Disponibilidade de ovos) Valor ótimo	55	0,25	55	15	10
\$D\$14	R3 (Disponibilidade de óleo) Valor ótimo	30	25,875	30	4,285714286	8
\$D\$15	R4 (Disponibilidade de queijo) Valor ótimo	2050	0	10000	1E+30	7950

122

FO aumentou em 2,5.

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$D\$12	R1 (Disponibilidade de farinha) Valor ótimo	1600	0	1750	1E+30	150
\$D\$13	R2 (Disponibilidade de ovos) Valor ótimo	55	8,5	55	15	10
\$D\$14	R3 (Disponibilidade de óleo) Valor ótimo	30	4,75	30	4,285714286	8
\$D\$15	R4 (Disponibilidade de queijo) Valor ótimo	2050	O	10000	1E+30	7950

- Suponha agora, que o microempresário, está pensando em produzir mais um produto, que consome 4 unidades de farinha, 0,2 de ovo, 0,4 de óleo e 2 de queijo.
- Qual deveria ser o valor mínimo do novo produto para ser viável a sua produção?

Solução: pelos preços sombra podemos ver que temos disponibilidade de farinha e queijo. O custo de uma unidade de ovo é 8,5 e 1 unidade de óleo 4,75, então o custo do novo produto é: 0.2 * 8.5 + 4.75 * 0.4 = 3.6. Este é o valor mínimo que deve ser vendido o novo produto para entrar no plano de produção.

Exemplos da Só Bicicletas.

IJ	ı						
14	Célula do	Ob	jetivo (Máx.))			
15	Célula		Nome	Valor Original	Valor Final		
16	\$F\$7	Val	lor ótimo	0	55000	•	
17							
18							
19	Células V	ariá	veis				
20	Célula		Nome	Valor Original	Valor Final	Número Inteiro	
21	\$D\$3	X1		0	950	Conting.	
22	\$E\$3	X2		0	250	Conting.	
23							
24							
25	Restriçõe	S					
26	Célula		Nome	Valor da Célula	Fórmula	Status	Margem de Atraso
27	\$F\$12	R1	Valor ótimo	4800	\$F\$12<=\$G\$12	Associação	0
28	\$F\$13	R2	Valor ótimo	2150	\$F\$13<=\$G\$13	Não-associação	250
29	\$F\$14	R3	Valor ótimo	950	\$F\$14>=\$G\$14	Não-associação	700
30	\$F\$15	R4	Valor ótimo	250	\$F\$15>=\$G\$15	Associação	0

Células Variáveis

		Final	Reduzido	Objetivo	Permitido	Permitido
Célula	Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$D\$3 X1		950	0	50	1E+30	20
\$E\$3 X2		250	0	30	20	1E+30

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$F\$12	R1 Valor ótimo	4800	12,5	4800	500	2800
\$F\$13	R2 Valor ótimo	2150	0	2400	1E+30	250
\$F\$14	R3 Valor ótimo	950	0	250	700	1E+30
\$F\$15	R4 Valor ótimo	250	-20	250	700	250

Re	Restrições										
		Permitido									
	Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir				
	\$F\$12	R1 Valor ótimo	4800	12,5	4800	500	2800				
	\$F\$13	R2 Valor ótimo	2150	0	2400	1E+30	250				
	\$F\$14	R3 Valor ótimo	950	0	250	700	1E+30				
	\$F\$15	R4 Valor ótimo	250	-20	250	700	250				

- Para a 1ª. restrição (consumo de mão de obra na fabricação) tem preço sombra de \$12,5. Este recurso foi todo consumido na solução ótima, sendo assim, o valor de \$12,5 para este recurso significa que para cada hora a mais de mão obra que a empresa puder obter, o valor da função objetivo (\$55000) será acrescido em \$12,5. Isto é, se a empresa puder dispor de mais 100 horas de mão de obra para fabricação o valor de seu lucro passará para \$55.000 + 100* 12,5 = \$56.250,00.
- Para a 2ª. restrição um preço sombra informado de zero, a folga deste recurso é de 250 horas, isto é já existem 250 horas sobrando deste recurso. Em nada irá acrescentar o valor da Função Objetivo se o administrador puder contratar 1 hora a mais neste departamento.

estrições										
		Final	Sombra	Restrição	Permitido	Permitido				
Célula	Nome	Valor	Preço	Lateral R.H.	Aumentar	Reduzir				
\$F\$12	R1 Valor ótimo	4800	12,5	4800	500	2800				
\$F\$13	R2 Valor ótimo	2150	0	2400	1E+30	250				
\$F\$14	R3 Valor ótimo	950	0	250	700	1E+30				
\$F\$15	R4 Valor ótimo	250	-20	250	700	250				

- Para a 3ª. restrição tem-se um preço sombra de zero, não é uma restrição de recurso e sim de demanda (X1 >=250). Este preço significa que 1 unidade de acréscimo na disponibilidade desta restrição não irá aumentar e nem diminuir o valor da função objetivo.
- Para 4ª. restrição tem-se um preço sombra de \$-20, isto é: 1 unidade de acréscimo na 4ª. restrição (X2 >=250) irá ocasionar um aumento de \$-20 no valor do lucro da empresa, ou seja, irá diminuir o lucro. Por exemplo, se o empresário exigir que o mínimo de bicicletas masculinas produzidas pela empresa seja aumentado para 300 unidades O que irá acontecer?

O lucro irá passar de \$55.000,00 para \$55.000 + (-20*50) = \$54.000,00₁₂₇

Imagine agora que o dono da Só Bicicletas (SB) recebe um relatório indicando que o lucro do modelo de bicicletas femininas caiu de R\$ 50,00 para R\$ 42,00 pois a mesma utiliza algumas peças importadas que tiveram seu preço elevado com a subida do dólar ocasionando assim um acréscimo no custo unitário da bicicleta.

Este empresário pergunta a você o que fazer?

~ /				,		
Ce	ш	las '	V	ar	เลง	veis

		Final	Reduzido	Objetivo	Permitido	Permitido	
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$D\$3	X1		950	0	50	1E+30	20
\$E\$3	X2		250	0	30	20	1E+30

Células Variáveis

		Final	Reduzido	Objetivo	Permitido	Permitido	
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$D\$3	X1		950	0	50	1E+30	20
\$E\$3	X2		250	0	30	20	1E+30

Os coeficientes da função objetivo podem variar sem alterar a solução ótima:

As alterações no coeficiente de X1 dentro do intervalo abaixo **não** conduzem à uma nova solução ótima ou novo plano de produção para a Só Bicicletas.

Intervalo de variação do coef. de X1 = [(50-20; 50+ infinito)] = [30; + infinito]

Este intervalo mostra, portanto, que se o lucro unitário do modelo de bicicletas femininas cair até \$30 nenhuma alteração no plano de produção ótimo (produzir 950 bicicletas modelo feminino e 250 do modelo masculino) irá ocorrer.

Células Variáveis

			Final	Reduzido	Objetivo	Permitido	Permitido
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$D\$3	X1		950	0	50	1E+30	20
\$E\$3	X2		250	0	30	20	1E+30

Para o modelo masculino o intervalo será:

Intervalo de variação do coef. de X2 = [(30- infinito); (30+20)] = (-infinito;50]

Tem-se então que o lucro unitário pode cair quanto quiser que esta mudança não ocasionará um novo plano de produção ótimo. Observa-se também que se o lucro unitário deste modelo subir para além de \$50 um novo plano de produção será estabelecido.

Objetivamente falando esta parte do relatório indicará a sensibilidade da solução ótima a mudanças ocasionadas nos valores dos coeficientes da função objetivo.

O Relatório de limites, informa os limites que as variáveis de decisão podem assumir e qual seria o valor da F.O. nesse caso, X1 tem um limite inferior de 250 bicicletas femininas, o que levaria a F.O. a R\$ 20.000,00 (sendo que X2 continua em 250 unidades fabricadas).

Programação Linear e Grafos

Sistemas de Informação - UNISUL

Aran Bey Tcholakian Morales, Dr. Eng. (Programação Linear e Grafos - Apostila 5)