

THE 3rd VIETNAM SCHOOL OF BIOLOGY (VSOB-3)

Bioinformatic Analysis For Bulk RNAseq Data

December 06th-08th, 2024, ICISE, Quy Nhon, Vietnam

A Guide for Designing and Analyzing RNAseq Data

NGUYEN Thuy Vy

General steps of an RNAseq experiment

https://mbernste.github.io/posts/rna_seq_basics/

RNAseq Experimental Design and Data Analysis

RNAseq Data Analysis

Replicates

- Compared to arrays, RNA-Seq is a very clean technical measure of expression
 - Generally, don't run technical replicates
 - Must run biological replicates
- For clean systems (eg cell lines) 3x3 or 4x4 is common
- Higher numbers required as the system gets more variable
- Always plan for at least one sample to fail
- Randomise across sample groups

How many reads

- Typically aim for 20 million reads for human/mouse sized genome
- More reads:
 - De-novo discovery
 - Low expressed transcripts
- More replicates more useful than more reads

What type of library?

- Directional libraries if possible
 - Easier to spot contamination
 - No mixed signals from antisense transcription
 - May be difficult for low input samples
- mRNA vs total vs depletion etc.
 - Down to experimental questions
 - Remember LINC RNA may not have polyA tail
 - Active transcription vs standing mRNA pool

RNAseq Libraries

What type of sequencing

- Depends on your interest
 - Expression quantitation of known genes
 - 50 bp single end is fine
 - Expression plus splice junction usage
 - 100 bp (or longer if possible) single end
 - Novel transcript discovery or per transcript expression
 - > 100 bp paired end

Available platforms for RNAseq

The basic principle behind RNAseq is the construction of a library, from there, we can choose different platforms to sequence our library

Lowe. 2017. doi: 10.1371/journal.pcbi.1005457

Available platforms for RNAseq, an overview

1st Generation

- · Up to 1000 bp/fragment
- · Up to 96 frags/run

2nd Generation

- · Up to 600 bp/frag (2 x 300)
- · Billions of frags/run

3rd Generation

- · Up to 4.4 Mbp/frag
- · Millions of frags/run

Available platforms for RNAseq: common themes

Which platform should I use?

Major RNA sequencing methodologies

Iso-Seq by PacBio

DETERMINATION OF TRANSCRIPT ISOFORMS

Direct Nanopore sequencing of RNA and its modifications

- "3-prime down" reading
- RNA-specific motor protein
- RNA directly read in nanopore
- Modified bases distinguishable
- Long read lengths
- cDNA is not sequenced
- Reverse transcription bias (?)
- PCR-free
- More quantitative (?)

We are happy to help you!

