习题 1.1

习题 1.1.1 设 a 是有理数, b 是无理数. 求证: a + b 和 a - b 都是无理数; 当 $a \neq 0$ 时, ab 和 $\frac{b}{a}$ 也都是无理数.

 \mathbf{m} 设 a 是有理数,b 是无理数.

- (1) 若a+b是有理数,则b=(a+b)-a是有理数,矛盾.同理可证a-b是无理数.
- (2) 若 ab 是有理数,则 $b = \frac{ab}{a}$ 是有理数,矛盾.同理可证 $\frac{b}{a}$ 是无理数.

习题 1.1.2 求证: 两个不同的有理数之间有无理数.

解设a,b是两个不同的有理数,不妨设a < b.则存在正整数k,N使得

$$\left(\sqrt{2}\right)^{2k-1}a < N < \left(\sqrt{2}\right)^{2k-1}b.$$

具体而言, 取 $k > \lceil \log_2(b-a) \rceil$, 则 $k > \log_2 \frac{2\sqrt{2}}{b-a} \Rightarrow 2^k(b-a) > 2\sqrt{2} \Rightarrow \left(\sqrt{2}\right)^{2k-1}b - \left(\sqrt{2}\right)^{2k-1}a > 2$. 因此, 存在整数 $N = \left\lfloor \left(\sqrt{2}\right)^{2k-1}b \right\rfloor$, 使得 $\left(\sqrt{2}\right)^{2k-1}a < N < \left(\sqrt{2}\right)^{2k-1}b$. 于是

$$a < \frac{N}{\left(\sqrt{2}\right)^{2k-1}} < b.$$

而
$$\frac{N}{\left(\sqrt{2}\right)^{2k-1}} = \frac{N\sqrt{2}}{2^k}$$
是无理数.

习题 1.1.3 求证: $\sqrt{2}$, $\sqrt{3}$ 以及 $\sqrt{2} + \sqrt{3}$ 都是无理数.

解

- (1) 设 $\sqrt{2}$ 是有理数, 则 $\sqrt{2} = \frac{p}{q}$, 其中 p, q 互素. 因此 $2q^2 = p^2$, 由素数分解的唯一性可知 p 是 偶数, 设 p = 2k, 则 $2q^2 = 4k^2 \Rightarrow q^2 = 2k^2$, 同理可知 q 也是偶数, 与 p, q 互素矛盾. 因此 $\sqrt{2}$ 是无理数.
- (2) 设 $\sqrt{3}$ 是有理数, 则 $\sqrt{3} = \frac{p}{q}$, 其中 p, q 互素. 因此 $3q^2 = p^2$, 由素数分解的唯一性可知 p 是 3 的倍数, 设 p = 3k, 则 $3q^2 = 9k^2 \Rightarrow q^2 = 3k^2$, 同理可知 q 也是 3 的倍数, 与 p, q 互素矛盾. 因此 $\sqrt{3}$ 是无理数.
- (3) 设 $\sqrt{2} + \sqrt{3}$ 是有理数, 则 $\sqrt{2} + \sqrt{3} = \frac{p}{q}$, 其中 p, q 互素. 因此 $2 + 3 + 2\sqrt{6} = \frac{p^2}{q^2} \Rightarrow \sqrt{6} = \frac{p^2 5q^2}{2q^2}$, 与 $\sqrt{6}$ 是无理数矛盾. 因此 $\sqrt{2} + \sqrt{3}$ 是无理数.

习题 1.1.4 把下列循环小数表示为分数:

(1) 0.24999... (2) $0.\dot{3}7\dot{5}$ (3) $4.\dot{5}1\dot{8}$

(1) 设
$$x = 0.24999...$$
,则 $10x = 2.4999...$,因此 $9x = 2.25 \Rightarrow x = \frac{9}{40}.$

(2) 设
$$x = 0.375$$
, 则 $1000x = 375.375375...$,因此 $999x = 375 \Rightarrow x = \frac{375}{999} = \frac{125}{333}$.

(2) 读
$$x = 0.\dot{3}7\dot{5}$$
,则 $1000x = 375.375375...$,因此 $999x = 375 \Rightarrow x = \frac{40}{999} = \frac{375}{999} = \frac{125}{333}$.
(3) 读 $x = 4.\dot{5}1\dot{8}$,则 $1000x = 4518.518518...$,因此 $999x = 4514 \Rightarrow x = \frac{4514}{999} = \frac{122}{27}$.

习题 1.1.5 设 r, s, t 都是有理数. 求证:

1. 若
$$r + s\sqrt{2} = 0$$
, 则 $r = s = 0$;

(1) 假设
$$s \neq 0$$
, 则 $\sqrt{2} = -\frac{r}{s}$ 是有理数,与 $\sqrt{2}$ 是无理数矛盾. 因此 $s = 0$, 从而 $r = 0$.

(2)
$$r + s\sqrt{2} + t\sqrt{3} = 0 \Rightarrow r^2 = 2s^2 + 3t^2 + 2st\sqrt{6} \Rightarrow (r^2 - 2s^2 - 3t^2) + (-2st)\sqrt{6} = 0.$$
:
与 (1) 类似, 若 $st \neq 0$, 则 $\sqrt{6} = \frac{r^2 - 2s^2 - 3t^2}{2st}$ 是有理数, 与 $\sqrt{6}$ 是无理数矛盾. 故 $st = 0$,

(a). 若
$$t = 0$$
, 则 $r + s\sqrt{2} = 0$, 由 (1) 可知 $r = s = 0$;

(b). 若
$$s = 0$$
, 则 $r + t\sqrt{3} = 0$, 同理可知 $r = t = 0$.

习题 1.1.6 设 a_1, a_2, \ldots, a_n 有相同的符号, 且都大于 -1. 证明:

$$(1+a_1)(1+a_2)\cdots(1+a_n) \geqslant 1+a_1+a_2+\cdots+a_n.$$

解 利用数学归纳法:

当n=1时、等式为

$$1 + a_1 \geqslant 1 + a_1$$

显然成立.

假设当n = k时,等式成立、即

$$(1+a_1)(1+a_2)\cdots(1+a_k) \geqslant 1+a_1+a_2+\cdots+a_k$$

以此作为条件, 当 n = k+1 时, 由 $a_{k+1} > -1$, 可知 $1 + a_{k+1} > 0$, 因此

$$(1+a_1)(1+a_2)\cdots(1+a_k)(1+a_{k+1}) \geqslant (1+a_1+a_2+\cdots+a_k)(1+a_{k+1})$$

$$= 1+a_1+a_2+\cdots+a_k+a_{k+1}+a_{k+1}(a_1+a_2+\cdots+a_k)$$

$$\geqslant 1+a_1+a_2+\cdots+a_k+a_{k+1}.$$

其中 $a_{k+1}(a_1+a_2+\cdots+a_k)=a_1a_{k+1}+a_2a_{k+1}+\cdots+a_ka_{k+1}\geqslant 0$, 因为 a_i 与 a_{k+1} 符号相同.

习题 1.1.7 设 a, b 是实数, 且 |a| < 1, |b| < 1. 证明:

$$\left| \frac{a+b}{1+ab} \right| < 1.$$

解由 |a| < 1, |b| < 1, 可知 $ab \neq -1$. 因此

$$\left| \frac{a+b}{1+ab} \right| < 1 \Leftrightarrow |a+b| < |1+ab| \Leftrightarrow (a+b)^2 < (1+ab)^2.$$

即

$$a^{2} + b^{2} + 2ab < 1 + a^{2}b^{2} + 2ab \Leftrightarrow a^{2} + b^{2} < 1 + a^{2}b^{2} \Leftrightarrow (1 - a^{2})(1 - b^{2}) > 0.$$

显然成立.

习题 1.2

习题 1.2.1 用定义证明下面的结论:

(1)
$$\lim_{n \to \infty} \frac{n}{5+3n} = \frac{1}{3};$$
 (2) $\lim_{n \to \infty} \frac{\sin n}{n} = 0;$ (3) $\lim_{n \to \infty} (-1)^n \frac{1}{\sqrt{n+1}} = 0;$ (4) $\lim_{n \to \infty} \frac{n!}{n^n} = 0.$

解

(1)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{5}{9\varepsilon} \right\rceil$, 则当 $n > N$ 时,有
$$\left| \frac{n}{5+3n} - \frac{1}{3} \right| = \left| \frac{3n - (5+3n)}{3(5+3n)} \right| = \frac{5}{3(5+3n)} < \frac{5}{9n} < \varepsilon.$$
(2) $\forall \varepsilon > 0$, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时,有

(3)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon^2} - 1 \right\rceil$, 则当 $n > N$ 时,有
$$\left| (-1)^n \frac{1}{\sqrt{n+1}} - 0 \right| = \frac{1}{\sqrt{n+1}} < \varepsilon.$$

(4)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时,有
$$\left| \frac{n!}{n^n} - 0 \right| = \frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n-1}{n} \cdot \frac{n}{n} < \frac{1}{n} < \varepsilon.$$

习题 1.2.2 若数列 $\{a_n\}$ $(n \ge 1)$ 满足条件: 任给正数 ε , 存在正整数 N, 使得当 n > N 时, 有 $|a_n - a| < M\varepsilon$ (其中 M 为常数), 则 $\{a_n\}$ 必以 a 为极限.

 $\left| \frac{\sin n}{n} - 0 \right| = \frac{|\sin n|}{n} \leqslant \frac{1}{n} < \varepsilon.$

M 为常数指的是 M 不依赖于 ε 和 n. 例如 M=2, M=1000 等都是常数. 也就是说, 上述 (2) 其实等价于 $\forall M>0, \forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|< M\varepsilon$ 成立.

习题 1.2.3 证明: 当且仅当 $\lim_{n\to\infty} (a_n - a) = 0$ 时, 有 $\lim_{n\to\infty} a_n = a$. (数列极限的许多证明问题, 都可用同样的方法处理.)

证明 充分性: 由 $\lim_{n\to\infty}(a_n-a)=0$, 则 $\forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立. 因此 $\lim_{n\to\infty}a_n=a$.

必要性: 由 $\lim_{n\to\infty}a_n=a$,则 $\forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立. 因此 $\lim_{n \to \infty} (a_n - a) = 0.$

习题 1.2.4 证明: 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$; 反之不一定成立 (试举例说明). 但若 $\lim_{n\to\infty} |a_n| = 0, \, \text{Mf} \lim_{n\to\infty} a_n = 0.$

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \exists n > N$ 时, 有 $|a_n - a| < \varepsilon$. 则

$$||a_n| - |a|| \leqslant |a_n - a| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}|a_n|=|a|.$

反之不一定成立, 如数列 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |a_n| = 1$, 但 $\{a_n\}$ 发散.

若 $\lim_{n\to\infty} |a_n| = 0$, 则 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 当 n > N 时, 有 $||a_n| - 0| < \varepsilon$. 则

$$|a_n - 0| = |a_n| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_n=0.$

习题 1.2.5 证明: 若 $\lim_{n\to\infty} a_n = 0$, 又 $|b_n| \leq M$, $(n=1,2,\cdots)$, 则 $\lim_{n\to\infty} a_n b_n = 0$.

$$|a_n b_n - 0| = |a_n||b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_nb_n=0.$

习题 1.2.6 证明: 若数列 $\{a_n\}$ 满足 $\lim_{k\to\infty} a_{2k+1}=a$,及 $\lim_{k\to\infty} a_{2k}=a$,则 $\lim_{n\to\infty} a_n=a$.

证明 按已知条件 $\forall \varepsilon > 0, \exists N_1 > 0,$ 当 $n > N_1$ 时 $|x_{2n} - a| < \varepsilon$. 又 $\exists N_2 > 0,$ 当 $n > N_2$ 时 $|x_{2n+1} - a| < \varepsilon$. 于是令 $N = \max\{2N_1, 2N_2 + 1\}$, 则 n > N 时恒有 $|x_n - a| < \varepsilon$. 故 $\lim_{n \to \infty} x_n = a$.

习题 1.2.7 证明下列数列不收敛:

(1)
$$a_n = (-1)^n \frac{n}{n+1}$$
; (2) $a_n = 5\left(1 - \frac{2}{n}\right) + (-1)^n$.

解

(1) 取
$$a_{2n} = \frac{2n}{2n+1}$$
, $a_{2n+1} = -\frac{2n+1}{2n+2}$, 则 $\lim_{n\to\infty} a_{2n} = 1$, $\lim_{n\to\infty} a_{2n+1} = -1$, 而如果 $\{a_n\}$ 收敛, 则 $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1}$, 矛盾.

(2) 取
$$a_{2n} = 5\left(1 - \frac{1}{n}\right) + 1$$
, $a_{2n+1} = 5\left(1 - \frac{2}{2n+1}\right) - 1$, 则 $\lim_{n \to \infty} a_{2n} = 6$, $\lim_{n \to \infty} a_{2n+1} = 4$, 而 如果 $\{a_n\}$ 收敛,则 $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1}$, 矛盾.

习题 1.2.8 求下列极限:

(1)
$$a_n = \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1}$$
;

(1)
$$a_n = \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1};$$

(2) $a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n};$

(3)
$$a_n = \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{6}\right) \cdots \left(1 - \frac{1}{n(n+1)/2}\right), n = 2, 3, \ldots;$$

(4)
$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right);$$

(5) $a_n = (1+q)(1+q^2)(1+q^4) \cdots (1+q^{2^m}), (|q| < 1).$

(1)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4 + \frac{5}{n} + \frac{2}{n^2}}{3 + \frac{2}{n} + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} 4 + \lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{\lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{2}{n^2}} = \frac{4 + 0 + 0}{3 + 0 + 0} = \frac{4}{3}.$$

(2)
$$a_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

(3)
$$a_n = \frac{2}{3} \cdot \frac{5}{6} \cdot \dots \cdot \frac{(n^2 + n - 2)/2}{n(n+1)/2} = \frac{2}{3} \cdot \frac{5}{6} \cdot \dots \cdot \frac{(n-1)(n+2)}{n(n+1)} = \frac{1 \cdot 4}{2 \cdot 3} \cdot \frac{2 \cdot 5}{3 \cdot 4} \cdot \dots \cdot \frac{(n-1)(n+2)}{n(n+1)}$$

$$= \frac{(1 \cdot 2 \cdot \dots \cdot (n-1)) \cdot (4 \cdot 5 \cdot \dots \cdot (n+2))}{(2 \cdot 3 \cdot \dots \cdot (n)) \cdot (3 \cdot 4 \cdot \dots \cdot (n+1))} = \frac{1 \cdot (n+2)}{n \cdot 3} = \frac{n+2}{3n}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+2}{3n} = \lim_{n \to \infty} \frac{1}{3} + \frac{2}{3} \frac{1}{n} = \frac{1}{3} + \frac{2}{3} \cdot 0 = \frac{1}{3}.$$

(4)
$$a_n = \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \dots \cdot \frac{(n-1)(n+1)}{n \cdot n} = \frac{1}{2} \cdot \frac{n+1}{n} = \frac{n+1}{2n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} = \frac{1+0}{2} = \frac{1}{2}.$$

(5)
$$a_n = \frac{(1-q)(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^n})}{1-q} = \frac{1-q^{2^{n+1}}}{1-q},$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1-q^{2^{n+1}}}{1-q} = \frac{1-\lim_{m\to\infty} q^{2^{n+1}}}{1-q} = \frac{1-0}{1-q} = \frac{1}{1-q}.$$

习题 1.2.9 若 $a_n \neq 0 (n = 1, 2, ...)$ 且 $\lim_{n \to \infty} a_n = a$, 能否断定 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1$? 解 不能. 例如 $a_n = \frac{1}{2^n}$, 则 $\lim_{n \to \infty} a_n = 0$, 但 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{2^{n+1}}{2^n} = 2$. 一个可能的错误做法是

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} a_{n+1}} = \frac{a}{a} = 1,$$

但这是不允许的, 因为 $\lim_{n\to\infty} a_n$ 可能为 0.

习题 1.2.10 若数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty} a_n \cdot b_n = 0$, 是否必有 $\lim_{n\to\infty} a_n = 0$ 或 $\lim_{n\to\infty} b_n = 0$? 若还假设 $\lim_{n\to\infty} a_n = a$, 回答同样的问题.

解 不一定. 例如
$$a_n = \begin{cases} 1, & n$$
为奇数 $b_n = \begin{cases} 0, & n$ 为奇数 $b_n = \begin{cases} 0, & n$ 为奇数 $b_n = \lim_{n \to \infty} a_n \cdot b_n = \lim_{n \to \infty} 0 = 0, \\ 1, & n$ 为偶数

 $\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n$ 均不存在.

当 $\lim_{n\to\infty} a_n = a$ 时成立. 假设 $a\neq 0$ 时, 则 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{a_n b_n}{a_n} = \frac{0}{a} = 0$.

习题 1.2.11 若数列 $\{a_n\}$ 收敛, 数列 $\{b_n\}$ 发散, 则数列 $\{a_n \pm b_n\}$, $\{a_n \cdot b_n\}$ 的收敛性如何? 举例说明. 若数列 $\{a_n\}$ 与 $\{b_n\}$ 皆发散, 回答同样的问题.

解

- 1. $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散,则
 - (a). $\{a_n+b_n\}$, $\{a_n-b_n\}$ 都发散可以采用反证法: 若 $\{a_n+b_n\}$ 收敛, 由于 $\{a_n\}$ 收敛, 容易知道 $\{a_n+b_n-a_n\}=\{b_n\}$ 收敛, 这与 $\{b_n\}$ 发散矛盾, 因此 $\{a_n+b_n\}$ 发散, $\{a_n-b_n\}$ 同理可得.
 - (b). $\{a_n \cdot b_n\}$ 的收敛性不确定.

I.
$$a_n = \frac{1}{n}, b_n = n$$
, 则 $a_n \cdot b_n = 1$ 收敛;

II.
$$a_n = 1, b_n = n$$
, 则 $a_n \cdot b_n = n$ 发散.

- 2. $\{a_n\}, \{b_n\}$ 都发散,则
 - (a). $\{a_n + b_n\}$ 的收敛性不确定

I.
$$a_n = n, b_n = -n$$
, 则 $a_n + b_n = 0$ 收敛.

II.
$$a_n = n, b_n = n, 则 a_n + b_n = 2n 发散.$$

(b). $\{a_n - b_n\}$ 的收敛性不确定

I.
$$a_n = n + \frac{1}{n}, b_n = n$$
, 则 $a_n - b_n = \frac{1}{n}$, 收敛.

II.
$$a_n = (-1)^n, b_n = (-1)^{n-1}, \, \mathbb{M} \, a_n - b_n = 2 \cdot (-1)^n \, \mathbb{Z} \, \mathbb{B}$$
.

(c). $\{a_n \cdot b_n\}$ 的收敛性不确定

I.
$$a_n = \begin{cases} 1, & n$$
 奇数 $b_n = \begin{cases} 0, & n$ 奇数 $a_n \cdot b_n = 0$ 收敛. $b_n = 0$ 收敛. $b_n = 0$ 收敛.

II.
$$a_n = n, b_n = (-1)^n, \, \mathbb{M} \, a_n \cdot b_n = (-1)^n n \, \mathbb{Z} \, \mathbb{B};$$

习题 1.2.12 下面的推理是否正确?

1. 设数列
$$\{a_n\}$$
: $a_1 = 1, a_{n+1} = 2a_n - 1$ $(n = 1, 2, 3, ...)$, 求 $\lim_{n \to \infty} a_n$. 解: 设 $\lim_{n \to \infty} a_n = a$, 在 $a_{n+1} = 2a_n - 1$ 两边取极限, 得 $a = 2a - 1$, 即 $a = 1$.

2.

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2}} + \dots + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n}}$$

$$= \underbrace{0 + 0 + \dots + 0}_{n \uparrow} = 0.$$

3. $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \right]^n = 1^n = 1.$

- 1. 错误. 不能在未知数列是否收敛时, 就假设极限存在并对递推公式两边取极限. 实际上, 该数列的通项公式为 $a_n = 1$, 所以 $\lim_{n \to \infty} a_n = 1$.
- 2. 错误. 不能将一个数列的极限拆成无穷多个数列极限的和. 实际上

$$\frac{n}{\sqrt{n^2 + n}} \leqslant \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \leqslant \frac{n}{\sqrt{n^2 + 1}}.$$

并有

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = 1, \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = 1.$$

由夹逼准则

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

3. 错误. 不能将一个数列的极限拆成无穷多个数列极限的积. 实际上

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

习题 1.2.13 设数列 $\{a_n\}$ 与 $\{b_n\}$ 分别收敛于 a,b. 若 a>b, 则从某一项开始, 有 $a_n>b_n$; 反之, 若从某项开始恒有 $a_n \ge b_n$, 则 $a \ge b$.

解 这是保序性的直接推论.

习题 1.2.14 设数列 $\{a_n\}$, $\{b_n\}$ 分别收敛于 a 及 b. 记 $c_n = \max(a_n, b_n)$, $d_n = \min(a_n, b_n)$ $(n = a_n, b_n)$ $1, 2, \ldots$). 证明

$$\lim_{n \to \infty} c_n = \max(a, b), \quad \lim_{n \to \infty} d_n = \min(a, b).$$

解由 $\max(x,y) = \frac{x+y+|x-y|}{2}$, $\min(x,y) = \frac{x+y-|x-y|}{2}$, 以及数列极限的四则运算和绝 对值运算可得.

习题 1.2.15 求下列极限

(1)
$$\lim_{n \to \infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right];$$
(2)
$$\lim_{n \to \infty} ((n+1)^k - n^k), \, \sharp \ \ 0 < k < 1;$$

(2)
$$\lim_{n \to \infty} ((n+1)^k - n^k)$$
, $\sharp + 0 < k < 1$

(3)
$$\lim_{n\to\infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdots \sqrt[2^n]{2});$$

(4)
$$\lim_{n\to\infty} \left(\sqrt{n^2 - n + 2} - n\right);$$

(4)
$$\lim_{n \to \infty} \left(\sqrt{n^2 - n + 2} - n \right);$$

(5) $\lim_{n \to \infty} \left(\sqrt{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \right).$

(1) 由于

$$0 \leqslant \sum_{k=1}^{n} \frac{1}{(n+k)^2} \leqslant \sum_{k=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = \frac{1}{n}.$$

并且

$$\lim_{n \to \infty} 0 = 0, \lim_{n \to \infty} \frac{1}{n} = 0.$$

由夹逼准则

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(n+k)^2} = 0.$$

(2) 由于

$$0 \leqslant ((n+1)^k - n^k) = n^k \left(\left(1 + \frac{1}{n} \right)^k - 1 \right) \leqslant n^k \left(\left(1 + \frac{1}{n} \right)^1 - 1 \right) = n^{k-1}.$$

并且

$$\lim_{n\to\infty}0=0, \lim_{n\to\infty}n^{k-1}=0.$$

由夹逼准则

$$\lim_{n \to \infty} ((n+1)^k - n^k) = 0.$$

(3)

$$\lim_{n \to \infty} \prod_{k=1}^n \sqrt[2^k]{2} = \lim_{n \to \infty} 2^{\sum_{k=1}^n \frac{1}{2^k}} = 2^{\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{2^k}} = 2^1 = 2.$$

(4) 由
$$\frac{1}{n}\ln(n^2 - n + 2) = O\left(\frac{\ln n}{n}\right) = o(1)$$
, 故

$$\lim_{n \to \infty} \sqrt[n]{n^2 - n + 2} = \lim_{n \to \infty} e^{\frac{1}{n} \ln(n^2 - n + 2)} = e^{\lim_{n \to \infty} \frac{1}{n} \ln(n^2 - n + 2)} = e^0 = 1.$$

(5) 由于

$$\sqrt[n]{\cos^2 1} \leqslant \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \leqslant \sqrt[n]{n}.$$

并且

$$\lim_{n \to \infty} \sqrt[n]{\cos^2 1} = 1, \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

由夹逼准则

$$\lim_{n \to \infty} \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} = 1.$$

习题 1.2.16 设 a_1, a_2, \ldots, a_m 为 m 个正数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max(a_1, a_2, \dots, a_m).$$

解 设 $a_k = \max(a_1, a_2, \ldots, a_m)$, 则

$$a_k = \sqrt[n]{a_k^n} \leqslant \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \leqslant \sqrt[n]{ma_k^n} = m^{\frac{1}{n}} a_k.$$

由夹逼定理可得

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = a_k = \max(a_1, a_2, \dots, a_m).$$

习题 1.2.17 证明下列数列收敛:

(1)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right);$$

(2)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1};$$

(3)
$$a_n = \alpha_0 + \alpha_1 q + \dots + \alpha_n q^n$$
, $\sharp + |\alpha_k| \leq M, (k = 1, 2, \dots)$, $\bar{m} |q| < 1$;

(4)
$$a_n = \frac{\cos 1}{1 \cdot 2} + \frac{\cos 2}{2 \cdot 3} + \frac{\cos 3}{3 \cdot 4} + \dots + \frac{\cos n}{n(n+1)}$$
.

证明

(1) 由
$$1 - \frac{1}{2^n} < 1$$
, 可知 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛.

(2) 由
$$a_n < \sum_{k=1}^n \frac{1}{3^k} < \frac{1}{2}$$
, 可知 $\{a_n\}$ 有上界, 且 a_n 单调递增, 因此 $\{a_n\}$ 收敛.

(3) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left| \log_{|q|} \frac{\varepsilon(1-|q|)}{2M} \right| + 1$, 则当 $m > n > N$ 时,

$$|a_m - a_n| = |\alpha_{n+1}q^{n+1} + \dots + \alpha_m q^m| \le M(|q|^{n+1} + |q|^{n+2} + \dots) = M \frac{|q|^{n+1}}{1 - |q|} < \varepsilon.$$

(4) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$, 则当 $m > n > N$ 时,

$$|a_m - a_n| = \left| \frac{\cos(n+1)}{(n+1)(n+2)} + \dots + \frac{\cos m}{m(m+1)} \right| \le \sum_{k=n+1}^m \frac{1}{k(k+1)} = \frac{1}{n+1} - \frac{1}{m+1} < \frac{1}{n+1} < \varepsilon.$$

习题 1.2.18 证明下列数列收敛,并求出其极限:

(1)
$$a_n = \frac{n}{c^n}, (c > 1);$$

(2)
$$a_1 = \frac{c}{2}$$
, $a_{n+1} = \frac{c}{2} + \frac{a_n^2}{2}$ $(0 \le c \le 1)$;

(3)
$$a > 0, a_0 > 0, a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$
 (提示: 先证明 $a_n^2 \ge a$);

(4)
$$a_0 = 1$$
, $a_n = 1 + \frac{a_{n-1}}{a_{n-1} + 1}$;

(5)
$$a_n = \sin \sin \cdots \sin 1$$
 $(n \uparrow \sin)$.

(1) 由 Stolz 定理, 有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{c^n} = \lim_{n \to \infty} \frac{(n+1) - n}{c^{n+1} - c^n} = \lim_{n \to \infty} \frac{1}{c^n(c-1)} = 0.$$

(2)

$$a_{n+1} - a_n = \frac{1}{2}(a_n - a_{n-1})(a_n + a_{n-1})$$

由 $a_2 - a_1 = \left(\frac{c}{2}\right)^2 > 0$,可递归的得知 $a_{n+1} - a_n > 0$,因此 $\{a_n\}$ 单调增,且 $a_1 < c$,归纳的可得 $a_{n+1} < \frac{c}{2} + \frac{c^2}{2} < \frac{c}{2} + \frac{c}{2} = c$,因此 $\{a_n\}$ 有上界,故 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$,则 $a = \frac{c}{2} + \frac{a^2}{2} \Rightarrow a^2 - 2a + c = 0 \Rightarrow a = 1 \pm \sqrt{1-c}$,又由 $a_n > 0$,可知 $a = 1 - \sqrt{1-c}$.

(3) 由均值不等式,

$$a_{n+1} = \left(\frac{1}{2}\left(a_n + \frac{a}{a_n}\right)\right)^2 \geqslant a$$

于是

$$a_{n+1} - a_n = \frac{a - a_n^2}{2a_n} \le 0$$

因此 $\{a_n\}$ 在 $n\geqslant 1$ 时单调减,且有下界 \sqrt{a} ,因此 $\{a_n\}$ 收敛. 设 $\lim_{n\to\infty}a_n=l$,则 $l=\frac{1}{2}\left(l+\frac{a}{l}\right)$,解得 $l=\sqrt{a}$.

(4)

$$a_n - a_{n-1} = \frac{1 + a_{n-1} - a_{n-1}^2}{a_{n-1} + 1}$$

$$1 + a_n - a_n^2 = 1 + 1 + \frac{a_{n-1}}{a_{n-1} + 1} - \left(1 + \frac{a_{n-1}}{a_{n-1} + 1}\right)^2 = \frac{1 + a_{n-1} - a_{n-1}^2}{(a_{n-1} + 1)^2}$$

由 $1+a_0-a_0^2=1>0$ 归纳的可得 $1+a_n-a_n^2>0$,因此 $a_n-a_{n-1}>0$,即 $\{a_n\}$ 单调递增,且 $1+a_n-a_n^2>0$ ⇒ $a_n<\frac{1+\sqrt{5}}{2}$ 有上界,因此 $\{a_n\}$ 收敛,设 $\lim_{n\to\infty}a_n=a$. 递推式两侧取极限,得 $a=1+\frac{a}{a+1}$ ⇒ $a^2-a-1=0$ ⇒ $a=\frac{1\pm\sqrt{5}}{2}$;由于 $a_n>0$ 始终成立,故 $a\geqslant 0$ 而 $\frac{1-\sqrt{5}}{2}<0$,故舍去这一值,进而得到 $a=\frac{1+\sqrt{5}}{2}$.

(5) $a_n = \sin a_{n-1} < a_{n-1}$, 因此 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \sin a \Rightarrow a = 0$.

习题 1.2.19 设 $a_n \leqslant a \leqslant b_n \ (n=1,2,\ldots)$, 且 $\lim_{n\to\infty} (a_n-b_n)=0$. 求证: $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$. 解 由 $\lim_{n\to\infty} (a_n-b_n)=0$, 对 $\forall \varepsilon>0$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $|a_n-b_n|<\varepsilon$. 又由 $a_n\leqslant a\leqslant b_n$, 可知 $|a_n-a|=a-a_n\leqslant b_n-a_n<\varepsilon$, 同理 $|b_n-a|<\varepsilon$. 因此 $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$.

习题 1.2.20 证明: 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = l > 1$, 则 $\lim_{n \to \infty} a_n = 0$.

解 先证明一个引理: 设 $a_n > 0, n = 1, 2, ...$,且 $\lim_{n \to \infty} a_n = a$,则 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$. 证明如下

(1) a=0 时,

$$0 \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \cdots + a_n}{n}$$

同时,由 Stolz 定理,

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} \frac{a_n}{1} = 0$$

由夹逼定理,得证.

(2) a > 0 时,

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}.$$

由 Stolz 定理,有

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{a_n}} = a,$$

且

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} a_n = a.$$

由夹逼定理, 得证.

回到太颢

可知 $\lim_{n \to \infty} \sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} = \lim_{n \to \infty} \frac{a_n}{a_{n-1}} = \frac{1}{l} < 1$. 因此 $\exists r = \frac{1+\frac{1}{l}}{2} \in (0,1)$,使得当 n 充分大时, $\sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} < r$. 由此可知,

$$\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \cdot \frac{a_2}{a_1} < r^n,$$

即 $a_n < a_1 r^n$. 因此 $\lim_{n \to \infty} a_n = 0$.

习题 1.2.21 设数列 $\{a_n\}$, $\{b_n\}$ 是正数列, 满足 $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$, $n=1,2,\ldots$ 求证: 若 $\{b_n\}$ 收敛,则 $\{a_n\}$ 收敛.

解 若 $\lim_{n\to\infty} b_n = 0$,则由 $a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}} \leqslant a_1 \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdots \frac{b_n}{b_{n-1}} = a_1 \cdot \frac{b_n}{b_1}$ 可知 $\lim_{n\to\infty} a_n = 0$. 若 $\lim_{n\to\infty} b_n = b > 0$,由原式有 $\frac{a_{n+1}}{b_{n+1}} \leqslant \frac{a_n}{b_n}$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 单调减,且 $\frac{a_n}{b_n} > 0$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 收敛,设

 $\lim_{n \to \infty} \frac{a_n}{b_n} = c, \; \mathbb{N} \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \cdot \lim_{n \to \infty} \frac{\ddot{a}_n}{b_n} = bc.$

习题 1.2.22 利用极限 $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=\mathrm{e},$ 求下列数列的极限:

(1)
$$a_n = \left(1 + \frac{1}{2n+1}\right)^{2n+1};$$
 (2) $a_n = \left(1 - \frac{1}{n-2}\right)^{n+1};$

(3)
$$a_n = \left(\frac{1+n}{2+n}\right)^n$$
; (4) $a_n = \left(1+\frac{1}{n^3}\right)^{2n^3}$.

简要说明: 由 $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=$ e, 故 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 的任意子列 $\left\{\left(1+\frac{1}{n}\right)^{n_k}\right\}$ 也收敛于 e. 因此, 我们可以通过适当的变形, 将题目中的数列变形为 $\left(1+\frac{1}{n_k}\right)^{n_k}$ 的形式, 从而求出极限.

对于类似于 $\left(1-\frac{1}{n}\right)^{-n}$ 的形式, 可以考虑先通分再变形去掉指数的负号即可处理.

命题 设数列 $\{a_n\}$ 收敛于 $a, a_n > 0, a > 0.$ $\{b_n\}$ 收敛于 b. 则 $\lim_{n \to \infty} a_n^{b_n} = a^b$. 也相同有用.

解

(1)
$$\lim_{n \to \infty} \left(1 + \frac{1}{2n+1} \right)^{2n+1} = \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \Big|_{m=2n+1} = e;$$

$$(2) \lim_{n \to \infty} \left(1 - \frac{1}{n-2} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n-3} \right)^{-n-1} = \lim_{n \to \infty} \left(1 + \frac{1}{n-3} \right)^{(n-3) \cdot \left(-\frac{n+1}{n-3} \right)} = e^{-1}$$

(3)
$$\lim_{n \to \infty} \left(\frac{1+n}{2+n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{-n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{(n+1) \cdot \left(-\frac{n}{n+1} \right)} = e^{-1};$$

(4)
$$\lim_{n\to\infty} \left(1 + \frac{1}{n^3}\right)^{2n^3} = \lim_{n\to\infty} \left(1 + \frac{1}{n^3}\right)^{n^3 \cdot 2} = e^2.$$
 习题 **1.2.23** 设 $\lim_{n\to\infty} a_n = \infty$, 且 $|b_n| \ge b > 0$ $(n = 1, 2, ...)$, 则 $\lim_{n\to\infty} a_n b_n = \infty$.

 \mathbf{K} 解 对 $\forall M > 0$, 由 $\lim_{n \to \infty} a_n = \infty$, 存在 $N \in \mathbb{N}^*$, 使得当 n > N 时, $|a_n| > \frac{M}{b}$. 又由 $|b_n| \geqslant b > 0$, 可 知 $|a_n b_n| \geqslant |a_n||b| > M$. 因此 $\lim_{\substack{n \to \infty \\ n\pi}} a_n b_n = \infty$.

习题 1.2.24 确定 $n \to \infty$ 时, $\sqrt[n]{n!}$ 与 $n \sin \frac{n\pi}{2}$ $(n \ge 1)$ 是否有界, 是否趋于无穷大.

解 $\sqrt[n]$ 无界, 且趋于无穷大. 由均值不等式.

$$\sqrt[n]{n!} \geqslant \frac{n}{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}} \stackrel{\text{Stolz } \not \subseteq \mathbb{Z}}{=} \frac{1}{\frac{1}{n}} = n \to \infty.$$

无界, 但是不趋于无穷大. 当 n = 4k + 1 时, $n \sin \frac{n\pi}{2} = 4k + 1$, 趋于无穷大; 当 n = 4k + 3时, $n\sin\frac{n\pi}{2} = -(4k+3)$, 趋于负无穷大; 当 n 为偶数时, $n\sin\frac{n\pi}{2} = 0$.

习题 1.2.25 设数列 $\{a_n\}$ 由 $a_1=1, a_{n+1}=a_n+\frac{1}{a_n} \ (n\geqslant 1)$ 定义, 证明: $a_n\to +\infty \ (n\to \infty)$.

解 由 $a_{n+1}^2 - a_n^2 = (a_{n+1} - a_n)(a_{n+1} + a_n) = \frac{1}{a_n}(a_n + a_n + \frac{1}{a_n}) = 2 + \frac{1}{a^2} > 2$, 可知 $a_n^2 > 2(n-1)$, 因此 $\lim_{n\to\infty} a_n = \infty$.

习题 1.2.26 给出 $\frac{0}{0}$ 型 Stolz 定理的证明.

习题 1.3

习题 1.3.1 按定义证明:

(1)
$$\lim_{x \to -\infty} a^x = 0, (a > 1);$$

(2)
$$\lim_{x \to \infty} \frac{x-1}{x+1} = 1;$$

(3)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + x} = 2;$$

(4) $\lim_{x\to 0^+} x^{1/q} = 0$ (q 为正整数).

(1) 对
$$\forall \varepsilon > 0$$
, 取 $M = \log_a \varepsilon$, 则当 $x < M$ 时, $|a^x - 0| = a^x < a^M = \varepsilon$.

$$\begin{array}{l} (1) \ \, \forall \forall \varepsilon > 0, \, \mathbbmspace{1mu} \ \, M = \log_a \varepsilon, \, \mathbbmspace{1mu} \ \, \mathbbmspace{1mu} \ \, x < M \ \, \mathbbmspace{1mu} \ \, \mathbbmspace{1mu}$$

(3) 对
$$\forall \varepsilon > 0$$
, 取 $\delta = \min\left\{\frac{1}{2}, \frac{\varepsilon}{2}\right\}$, 则当 $0 < |x+1| < \delta$ 时, $\left|\frac{x^2 - 1}{x^2 + x} - 2\right| = \left|\frac{-x^2 - 2x - 1}{x^2 + x}\right| = \left|\frac{x+1}{x}\right| < \frac{\delta}{1/2} \leqslant \varepsilon$.

(4) 对
$$\forall \varepsilon > 0$$
, 取 $\delta = \varepsilon^q$, 则当 $0 < x < \delta$ 时, $|x^{1/q} - 0| = x^{1/q} < \delta^{1/q} = \varepsilon$.

习题 1.3.2 求下列极限:

(1)
$$\lim_{x \to 1} \left(x^5 - 5x + 2 + \frac{1}{x} \right);$$

(2)
$$\lim_{x\to 1} \frac{x^n-1}{x-1}$$
 (n 为正整数);

(3)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$
;

(4)
$$\lim_{x \to -\infty} \frac{(3x+6)^{70}(8x-5)^{20}}{(5x-1)^{90}}.$$

(1) 由四则运算的极限可知,

$$\lim_{x \to 1} \left(x^5 - 5x + 2 + \frac{1}{x} \right) = 1 - 5 + 2 + 1 = -1.$$

(2) $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$, 因此

$$\lim_{x \to 1} \frac{x^n - 1}{x - 1} = \lim_{x \to 1} (x^{n-1} + x^{n-2} + \dots + x + 1) = \sum_{k=0}^{n-1} 1 = n.$$

请注意,这里n是常数,因此可以交换这n个极限与求和的顺序.

(3)

$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(2x + 1)} = \lim_{x \to 1} \frac{x + 1}{2x + 1} = \frac{2}{3}.$$

(4)

$$\lim_{x \to -\infty} \frac{\left(3 + \frac{6}{x}\right)^{70} (8 - \frac{5}{x})^{20}}{\left(5 - \frac{1}{x}\right)^{90}} = \frac{\left(3 + \lim_{x \to -\infty} \frac{6}{x}\right)^{70} \left(8 - \lim_{x \to -\infty} \frac{5}{x}\right)^{20}}{\left(5 - \lim_{x \to -\infty} \frac{1}{x}\right)^{90}} = \frac{3^{70} \cdot 8^{20}}{5^{90}}$$

事实上, $\frac{3^{70} \cdot 8^{20}}{5^{90}} = \left(\frac{3^7 \cdot 2^6}{5^9}\right)^{10} = 0.0000000000035726229189858259136514568727612$

习题 1.3.3 证明下列极限不存在:

- (1) 用 Cauchy 收敛原理. 对 $\varepsilon=\frac{1}{2}$, 任取 M>0, 总总存在 $k=\lceil M/\pi \rceil$, 使得 $x_1=\left(k+\frac{1}{2}\right)\pi>$ $M, x_2 = (k+1)\pi > M(k \in \mathbb{N}^*),$ 使得 $|\sin x_1 - \sin x_2| = 1 > \varepsilon$. 因此极限不存
- (2) 考虑两个单边极限,

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} 1 = 1, \quad \lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} -1 = -1.$$

而极限存在的充要条件是两个单边极限存在且相等, 因此极限不存在.

习题 1.3.4 设函数 f(x) 在正无穷大处的极限为 l,则对于任意趋于正无穷大的数列 $\{a_n\}$,有 $\lim_{n \to \infty} f(a_n) = l. 特别地 \lim_{n \to \infty} f(n) = l.$

无穷版本的 Heine 定理 解 对 $\forall \varepsilon>0$, 由 $\lim_{x\to\infty}f(x)=l$, 存在 M>0, 使得当 x>M 时,|f(x)-y||l|<arepsilon. 又由 $\lim_{n o\infty}a_n=+\infty$,存在 $N\in\mathbb{N}^*$,使得当 n>N 时, $a_n>M$. 因此当 n>N 时, $|f(a_n)-f(a_n)|$ $|l| < \varepsilon$. 由此可知 $\lim_{n \to \infty} f(a_n) = l$. 特别地, 取 $a_n = n$, 则 $\lim_{n \to \infty} f(n) = l$.

习题 1.3.5 讨论下列函数在 x=0 处的极限.

(1)
$$f(x) = [x];$$
 (2) $f(x) = \operatorname{sgn} x;$

(3)
$$f(x) = \begin{cases} 2^x, & x > 0; \\ 0, & x = 0; \\ 1 + x^2, & x < 0. \end{cases}$$
 (4) $f(x) = \begin{cases} \cos \frac{1}{x}, & x > 0; \\ x, & x \leqslant 0. \end{cases}$

解注 教材中的符号 [x] 表示 x 的整数部分, 即不大于 x 的最大整数. 本题中, 我们沿用此符号. 其他地方, 我们使用 |x| 表示对 x 向下取整, 使用 [x] 表示对 x 向上取整.

- (1) $\lim_{x\to 0^+} [x] = 0$, $\lim_{x\to 0^-} [x] = -1$. 因此极限不存在.

- (2) $\lim_{x\to 0^+} \operatorname{sgn} x = 1$, $\lim_{x\to 0^-} \operatorname{sgn} x = -1$. 左右极限均存在, 但不相等, 因此极限不存在.
 (3) $\lim_{x\to 0^+} 2^x = 1$, $\lim_{x\to 0^-} (1+x^2) = 1$. 因此极限存在, 且 $\lim_{x\to 0} f(x) = 1$.
 (4) $\lim_{x\to 0^+} \cos\frac{1}{x}$ 不存在, 因此右极限不存在. 左极限 $\lim_{x\to 0^-} x = 0$. 函数在 x = 0 处的极限不存在. 注 $\lim_{x\to 0^+} \cos\frac{1}{x}$ 的极限过程等同于考虑 $\lim_{x\to +\infty} \cos x$, 而该极限不存在 (与习题 1.3.3(1)同理). 习题 1.3.6 求 $\lim_{n\to\infty} \cos\frac{x}{2}\cos\frac{x}{2^2}\cdots\cos\frac{x}{2^n}$.

(1) 当
$$\forall$$
, \in \mathbb{N}^* , $\sin \frac{x}{2^m} \neq 0$ 时, 二倍角公式变形可得 $\cos y = \frac{\sin 2y}{2 \sin y}$, $y \neq 0$, 反复利用可知
$$\cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \frac{\sin x}{2 \sin \frac{x}{2}} \cdot \frac{\sin \frac{x}{2}}{2 \sin \frac{x}{2^2}} \cdots \frac{\sin \frac{x}{2^{n-1}}}{2 \sin \frac{x}{2^n}} = \frac{\sin x}{2^n \sin \frac{x}{2^n}}.$$

因此

$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \lim_{n \to \infty} \frac{\sin x}{2^n \sin \frac{x}{2^n}} = \frac{\sin x}{x} \cdot \lim_{n \to \infty} \frac{\frac{x}{2^n}}{\sin \frac{x}{2^n}} = \frac{\sin x}{x}.$$

(2) 若存在 $m_0 \geqslant 1$, $\sin \frac{x}{2^m} = 0$, 有 $\frac{x}{2^{m_0}} = k\pi, x = 2^{m_0}k\pi, k \in \mathbb{Z}$. 自然的推论是 $\forall m \leqslant m \leqslant 1$

$$m_0, \sin\frac{x}{2^m} = \sin(2^{m_0-m}k\pi) = 0$$
,即 $m \le m_0$ 时, $\sin\frac{x}{2^m} = 0$.
(a). $x = 0$,则 $\cos\frac{x}{2}\cos\frac{x}{2^2}\cdots\cos\frac{x}{2^n} = 1$,因此 $\lim_{n\to\infty}\cos\frac{x}{2}\cos\frac{x}{2^2}\cdots\cos\frac{x}{2^n} = 1$;

(b). 委么
$$x \neq 0 \Rightarrow x = k2^{n_0}\pi, k \in \mathbb{Z}\backslash\{0\} \Rightarrow \exists N, \cos\frac{x}{2^N} = \cos\frac{k2^{n_0}\pi}{2^N} = 0$$
, 因此 $\cos\frac{x}{2}\cos\frac{x}{2^2}\cdots\cos\frac{x}{2^n} = 0, \forall n \geqslant N,$ 从而 $\lim_{n\to\infty}\cos\frac{x}{2}\cos\frac{x}{2^2}\cdots\cos\frac{x}{2^n} = 0$. 此时 $x = k2^{n_0}\pi \Rightarrow \frac{\sin x}{x} = \frac{\sin(k2^{n_0}\pi)}{k2^{n_0}\pi} = 0$.

综上所述,

$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 1, & x = 0. \end{cases}$$

习题 1.3.7 求证: $\lim_{n\to\infty} \left(\sin\frac{\alpha}{n^2} + \sin\frac{2\alpha}{n^2} + \dots + \sin\frac{n\alpha}{n^2}\right) = \frac{\alpha}{2}$.

解

$$\sum_{k=1}^{n} \sin k \frac{\alpha}{n^2} = \frac{\cos \frac{\alpha}{2n^2} - \cos \left((n + \frac{1}{2}) \frac{\alpha}{n^2} \right)}{2 \sin \frac{\alpha}{2n^2}} = \frac{\cos \frac{\alpha}{2n^2} - \cos \left(\frac{\alpha}{n} + \frac{\alpha}{2n^2} \right)}{2 \sin \frac{\alpha}{2n^2}}$$

考虑 $\sin x \sim x$, $\cos x = 1 - \frac{x^2}{2} + o(x^3)$, $(x \to 0)$, 有因此

$$\cos\frac{\alpha}{2n^2} = 1 - \frac{\alpha^2}{8n^4} + o\left(\frac{1}{n^6}\right),$$

$$\cos\left(\frac{\alpha}{n} + \frac{\alpha}{2n^2}\right) = 1 - \frac{\alpha^2}{2n^2} - \frac{\alpha^2}{8n^3} - \frac{\alpha^2}{8n^4} + o\left(\frac{1}{n^3}\right)$$

于是

$$\cos\frac{\alpha}{2n^2} - \cos\left(\frac{\alpha}{n} + \frac{\alpha}{2n^2}\right) = \frac{\alpha^2}{2n^2} + \frac{\alpha^2}{8n^3} + o\left(\frac{1}{n^3}\right),$$

因此原极限为

$$\lim_{n \to \infty} \frac{\cos \frac{\alpha}{2n^2} - \cos \left(\frac{\alpha}{n} + \frac{\alpha}{2n^2}\right)}{2\sin \frac{\alpha}{2n^2}} = \lim_{n \to \infty} \frac{\frac{\alpha^2}{2n^2} + \frac{\alpha^2}{8n^3} + o\left(\frac{1}{n^3}\right)}{2 \cdot \frac{\alpha}{2n^2}} = \lim_{n \to \infty} \frac{\alpha}{2} + \frac{\alpha}{4n} + o\left(\frac{1}{n}\right) = \frac{\alpha}{2}.$$

习题 1.3.8 证明: 若 $\lim_{x\to\infty} f(x) = l$, 则 $\lim_{x\to 0} f\left(\frac{1}{x}\right) = l$, 反之亦正确. 叙述并证明, 当 $x\to +\infty$ 及 $x \to -\infty$ 时类似的结论. (应用本题结论, 可将极限过程为 $x \to \infty$ 的问题化为 $x \to 0$ 处理, 或 者反过来. 例如, 我们有 $\lim_{x\to 0} (1+x)^{1/x} = e$.)

解 我们先给出这条命题的完整表述:

命题 (1) 若
$$\lim_{x\to\infty} f(x) = l$$
, 则 $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = l$, 反之亦正确;

(2) 若 $\lim_{x \to +\infty} f(x) = l$, 则 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$, 反之亦正确;

(3) 若 $\lim_{x \to -\infty} f(x) = l$, 则 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$, 反之亦正确;

证明:

- (1) 由 Heine 定理, $\lim_{x \to \infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = \infty$ 则 $\lim_{n \to \infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n \to \infty} y_n = 0^+$, 则 $\lim_{n \to \infty} \frac{1}{y_n} = \infty$, 则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. 由 Heine 定理可知 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$. 反之, 若 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$, 由 Heine 定理, $\forall \{y_n\}$, 若 $\lim_{n \to \infty} y_n = 0^+$, 则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. $\Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = \infty$, 则 $\lim_{n \to \infty} \frac{1}{x_n} = 0^+$, 则 $\lim_{n \to \infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{x \to \infty} f(x) = l$.
- (2) 由 Heine 定理, $\lim_{x \to +\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = +\infty$ 则 $\lim_{n \to \infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n \to \infty} y_n = 0^+$,则 $\lim_{n \to \infty} \frac{1}{y_n} = +\infty$,则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. 由 Heine 定理可知 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$. 反之,若 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$,由 Heine 定理, $\forall \{y_n\}$,若 $\lim_{n \to \infty} y_n = 0^+$,则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. $\Rightarrow \forall \{x_n\}$,若 $\lim_{n \to \infty} x_n = +\infty$,则 $\lim_{n \to \infty} \frac{1}{x_n} = 0^+$,则 $\lim_{n \to \infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{x \to +\infty} f(x) = l$.
- (3) 由 Heine 定理, $\lim_{x \to -\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = -\infty$ 则 $\lim_{n \to \infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n \to \infty} y_n = 0^-$, 则 $\lim_{n \to \infty} \frac{1}{y_n} = -\infty$, 则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. 由 Heine 定理可知 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$. 反之, 若 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$, 由 Heine 定理, $\forall \{y_n\}$, 若 $\lim_{n \to \infty} y_n = 0^-$, 则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. $\Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = -\infty$, 则 $\lim_{n \to \infty} \frac{1}{x_n} = 0^-$, 则 $\lim_{n \to \infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{x \to -\infty} f(x) = l$.

习题 1.3.9 求下列极限:

(1)
$$\lim_{x \to 0} \frac{\tan 2x}{\sin 5x};$$

(2)
$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2}$$
;

(3)
$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-1} \right)^x;$$

(4)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 1} \right)^{x^2}$$
.

解

(1)

$$\lim_{x \to 0} \frac{\tan 2x}{\sin 5x} = \lim_{x \to 0} \frac{\tan 2x}{2x} \cdot \frac{5x}{\sin 5x} \cdot \frac{2}{5} = 1 \cdot 1 \cdot \frac{2}{5} = \frac{2}{5}.$$

(2) 由和差化积,

$$\cos x - \cos 3x = 2\sin 2x\sin x,$$

因此

$$\lim_{x\to 0}\frac{\cos x-\cos 3x}{x^2}=\lim_{x\to 0}\frac{2\sin 2x\sin x}{x^2}=\lim_{x\to 0}\frac{\sin 2x}{2x}\cdot\frac{\sin x}{x}\cdot 4=1\cdot 1\cdot 4=4.$$

(3)

$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-1} \right)^x = \lim_{x \to +\infty} \left(1 + \frac{2-x}{2x-1} \right)^{\frac{2x-1}{2-x} \cdot \frac{2-x}{2x-1} x} = e^{\lim_{x \to +\infty} \frac{-x+2}{2x-1} x} = e^{\lim_{x \to +\infty} \frac{-x+2}{2x-1}$$

(4)

$$\lim_{x \to \infty} \left(1 + \frac{2}{x^2 - 1} \right)^{\frac{x^2 - 1}{2} \cdot \frac{2}{x^2 - 1} x^2} = e^{\lim_{x \to \infty} \frac{2}{x^2 - 1} x^2} = e^2$$

习题 1.3.10 求下列极限.

(1)
$$\lim_{x \to +\infty} \frac{\arctan x}{x}$$
;

(2)
$$\lim_{x \to 0} x^2 \sin \frac{1}{x}$$
;

(3)
$$\lim_{x\to 2} \frac{x^3 - 2x^2}{x - 2}$$
;

(4)
$$\lim_{x \to \infty} (2x^2 - x + 1)$$
.

解

(1) $\arctan x$ 在 $x \to +\infty$ 时有界, 而 $x \to +\infty$ 时无界, 因此

$$\lim_{x \to +\infty} \frac{\arctan x}{x} = 0.$$

具体而言.

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}, \ \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}.$$

(2) 由夹逼定理,

$$-x^2 \leqslant x^2 \sin \frac{1}{x} \leqslant x^2,$$

且 $\lim_{x\to 0} -x^2 = \lim_{x\to 0} x^2 = 0$,因此

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0.$$

(3)

$$\lim_{x \to 2} \frac{x^3 - 2x^2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)x^2}{x - 2} = \lim_{x \to 2} x^2 = 4.$$

(4) 证明:

$$\lim_{x \to \infty} (2x^2 - x + 1) = +\infty.$$

由 $2x^2 - x + 1 = x^2 + (x - 1/2)^2 + 3/4 \geqslant x^2$, 因此对 $\forall M > 0$, 取 $N = \sqrt{M}$, 则当 x > N 时, $2x^2 - x + 1 \geqslant x^2 > N^2 = M$. 由此可知

$$\lim_{x \to \infty} (2x^2 - x + 1) = +\infty.$$

习题 1.3.11 按定义证明.

(1)
$$\lim_{x \to +\infty} \log_a x = +\infty, (a > 1);$$

(2)
$$\lim_{x\to 0^+} \log_a x = -\infty, (a > 1);$$

(3)
$$\lim_{x \to (\pi/2)^{-}} \tan x = +\infty;$$

(4)
$$\lim_{x \to 0^+} e^{1/x} = +\infty$$
.

解

(1) 对 $\forall M > 0$, 取 $N = a^M$, 则当 x > N 时, $\log_a x > \log_a N = M$.

(2) 对 $\forall M < 0$, 取 $\delta = a^M$, 则当 $0 < x < \delta$ 时, $\log_a x < \log_a \delta = M$.

(3) 对 $\forall M>0$, 取 $\delta=\frac{\pi}{2}-\arctan M$, 则当 $\frac{\pi}{2}-\delta < x < \frac{\pi}{2}$ 时, $\tan x>\tan(\frac{\pi}{2}-\delta)=M$.

(4) 对 $\forall M > 0$, 取 $\delta = \frac{1}{\log M}$, 则当 $0 < x < \delta$ 时, $e^{1/x} > e^{1/\delta} = M$.

习题 1.3.12 证明: 函数 $y = x \sin x$ 在 $(0, +\infty)$ 内无界, 但当 $x \to +\infty$ 时, 这个函数并不是无穷大量.

 $\mathbf{H} \ \forall M > 0$, 存在 $x_0 = (2k-1)\pi$, $k \in \mathbb{N}^*$, 2k-1 > M, 因此 $y(x_0) = x_0 \sin x_0 = x_0 > M$. 由此可知 $y = x \sin x$ 在 $(0, +\infty)$ 内无界.

 $\forall X > 0$, 总存在 $x_1 = 2k\pi, k \in \mathbb{N}^*, 2k\pi > X$, 使得 $y(x_1) = x_1 \sin x_1 = 0$. 因此当 $x \to +\infty$ 时, $y = x \sin x$ 并不是无穷大量.

习题 1.3.13 函数 $y = \frac{1}{x} \cos \frac{1}{x}$ 在区间 (0,1) 内是否有界? 又当 $x \to 0^+$ 时, 这个函数是否为无穷大量?

解 考虑 0^+ 处的 $\frac{1}{x}\cos\frac{1}{x}$ 与考虑 $+\infty$ 处的 $x\cos x$ 是等价的. 以与习题 1.3.12类似的方法可知, $y=x\cos x$ 在 $(0,+\infty)$ 内无界,但当 $x\to +\infty$ 时, $y=x\cos x$ 并不是无穷大量. 因此, $y=\frac{1}{x}\cos\frac{1}{x}$ 在 (0,1) 内无界,但当 $x\to 0^+$ 时, $y=\frac{1}{x}\cos\frac{1}{x}$ 并不是无穷大量.

习题 1.3.14 本题所涉及的函数极限有着鲜明的几何意义.

记函数 y = f(x) 所表示的曲线为 C. 若动点沿曲线无限远离原点时, 此动点与某一固定直线的距离趋于零, 则称该直线为曲线 C 的一条渐近线.

(i) 垂直渐近线 易知 (垂直于x轴的) 直线 $x=x_0$ 为曲线 C 的渐近线的充分必要条件是

$$\lim_{x\to x_0^-}f(x)=\infty\quad \vec{\boxtimes}\quad \lim_{x\to x_0^+}f(x)=\infty.$$

(ii) 水平渐近线 易知 (平行于x轴的) 直线 y = b 为曲线 C 的渐近线的充分必要条件是

$$\lim_{x \to +\infty} f(x) = b \quad \vec{\mathbf{g}} \quad \lim_{x \to -\infty} f(x) = b.$$

(iii) 斜渐近线 请读者证明, 方程为 y=ax+b ($a\neq 0$) 的直线 L 为曲线 C 的渐近线的充分 必要条件是

$$a = \lim_{x \to +\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to +\infty} (f(x) - ax);$$

或者

$$a = \lim_{x \to -\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to -\infty} (f(x) - ax).$$

这里自然要假定所说的极限都存在. (提示: 以 $x \to +\infty$ 为例, 设曲线 C 及直线 L 上的横坐标为 x 的点分别为 M,N. 则 M 至 L 的距离, 是 |MN| 的一个常数倍. 因此, 直线 L 为曲线 C 的渐近线, 等价于 $\lim_{x\to +\infty} (f(x)-(ax+b))=0$, 由此易得所说结果.)

求下列曲线的渐近方程.

(1)
$$y = x \ln \left(e + \frac{1}{x} \right);$$
 (2) $y = \frac{3x^2 - 2x + 3}{x - 1}.$

解

(1) (a). 垂直渐近线,
$$x = -\frac{1}{e}$$
: $\lim_{x \to (-\frac{1}{2})^{-}} = -\frac{1}{e} \lim_{y \to 0^{+}} \ln y = +\infty$;

(b). 斜新近线,
$$y = x + \frac{1}{e}$$
: $\lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to +\infty} \ln(e + \frac{1}{x}) = 1$, $\lim_{x \to +\infty} (y(x) - x) = \lim_{x \to \infty} x (\ln(e + \frac{1}{x}) - 1) = \lim_{x \to \infty} x \ln(1 + \frac{1}{ex}) = \lim_{x \to \infty} \frac{\ln(1 + \frac{1}{ex})}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{1/ex}{1/x} = \frac{1}{e}$;

(2) (a). 斜渐近线,
$$\lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to +\infty} \frac{3 - \frac{2}{x} + \frac{3}{x^2}}{1 - \frac{1}{x}} = 3$$
, $\lim_{x \to +\infty} (y(x) - 3x) = \lim_{x \to \infty} \frac{x + 3}{x - 1} = 1$;

习题 1.3.15 证明: 在同一极限过程中等价的无穷小量有下列性质:

- 1. $\alpha(x) \sim \alpha(x)$ (自反性);
- 2. 若 $\alpha(x) \sim \beta(x)$, 则 $\beta(x) \sim \alpha(x)$ (对称性);
- 3. 若 $\alpha(x) \sim \beta(x)$, $\beta(x) \sim \gamma(x)$, 则 $\alpha(x) \sim \gamma(x)$ (传递性).

(注意, (1) 中自然需假定 $\alpha(x)$ 不取零值; 而在 (2)、(3) 中, 条件蕴含着, 所说的无穷小量在极限过程中均不取零值.)

解

(1) 显然,
$$\lim \frac{\alpha(x)}{\alpha(x)} = 1$$
, 因此 $\alpha(x) \sim \alpha(x)$.

(2) 由
$$\alpha(x) \sim \beta(x)$$
 可知, $\lim \frac{\alpha(x)}{\beta(x)} = 1$, 因此 $\lim \frac{\beta(x)}{\alpha(x)} = 1$, 即 $\beta(x) \sim \alpha(x)$.

(3) 由
$$\alpha(x) \sim \beta(x)$$
, $\beta(x) \sim \gamma(x)$ 可知, $\lim \frac{\alpha(x)}{\beta(x)} = 1$, $\lim \frac{\beta(x)}{\gamma(x)} = 1$, 因此 $\lim \frac{\alpha(x)}{\gamma(x)} = \lim \frac{\alpha(x)}{\beta(x)}$. $\lim \frac{\beta(x)}{\gamma(x)} = 1$, 即 $\alpha(x) \sim \gamma(x)$.

习题 1.3.16 当 $x \to 0$ 时, 比较下列无穷小的级:

(1)
$$\tan x - \sin x = x^3$$
; (2) $x^3 + x^2 = \sin^2 x$;

(3) $1 - \cos x = x^2$.

(1)
$$\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \cdot \frac{1 - \cos x}{\cos x}.$$

由 $\sin x \sim x, 1 - \cos x \sim \frac{x^2}{2}, \cos x \sim 1$, 可知

$$\tan x - \sin x \sim x \cdot \frac{x^2/2}{1} = \frac{x^3}{2}.$$

因此,

$$\tan x - \sin x \sim \frac{1}{2}x^3.$$

(2)

$$\sin^2 x = (\sin x)^2 \sim x^2 (x \to 0).$$

因此,

$$x^3 + x^2 \sim x^2(x \to 0).$$

(3)

$$1 - \cos x = 2\sin^2 \frac{x}{2} \sim 2 \cdot \left(\frac{x}{2}\right)^2 = \frac{x^2}{2}(x \to 0).$$

习题 1.3.17 当 $x \to +\infty$ 时, 试比较下列无穷大量的级:

- (1) n 次多项式 $P_n(x)$ 与 m 次多项式 $P_m(x)$ (2) x^{α} 与 x^{β} ($\alpha, \beta > 0$); (m, n 均为正整数);
- (3) $a^x = b^x (a, b > 1)$.

习题 1.3.18 试用等价无穷小量代换的方法计算下列极限.

- (1) $\lim_{x\to 0} \frac{\sin mx}{\sin nx}$ (m, n 均为正整数);
- $(2) \lim_{x\to 0} \frac{\tan ax}{x};$

(3) $\lim_{x\to 0} \frac{\sqrt[3]{1+\sin x}-1}{\arctan x};$

(4) $\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x};$

(5) $\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-1}{\sin 2x}$;

(6) $\lim_{x \to 0} \frac{\sqrt{1+x^2} - 1}{1 - \cos x}.$

解

(1) 由 $\sin x \sim x$, 可知

$$\lim_{x \to 0} \frac{\sin mx}{\sin nx} = \lim_{x \to 0} \frac{mx}{nx} = \frac{m}{n}.$$

(2) 由 $\tan x \sim x$, 可知

$$\lim_{x \to 0} \frac{\tan ax}{x} = \lim_{x \to 0} \frac{ax}{x} = a.$$

(3) 由
$$(1+x)^{\alpha}-1\sim\alpha x$$
, $\arctan x\sim x$, 可知

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + \sin x} - 1}{\arctan x} = \lim_{x \to 0} \frac{\frac{1}{3} \sin x}{x} = \frac{1}{3}.$$

(4)
$$\frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} = \frac{(\sqrt{2} - \sqrt{1 + \cos x})(\sqrt{2} + \sqrt{1 + \cos x})}{\sin^2 x(\sqrt{2} + \sqrt{1 + \cos x})} = \frac{1 - \cos x}{\sin^2 x(\sqrt{2} + \sqrt{1 + \cos x})}.$$

由
$$1 - \cos x \sim \frac{x^2}{2}$$
, $\sin x \sim x$, 可知

$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{x^2(\sqrt{2} + \sqrt{1 + \cos x})} = \frac{1}{4\sqrt{2}}.$$

(5) 由
$$(1+x)^{\alpha}-1\sim\alpha x$$
, $\sin x\sim x$, 可知

$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{\sin 2x} = \lim_{x \to 0} \frac{\frac{1}{2}(x + x^2)}{2x} = \frac{1}{4}.$$

(6) 由
$$(1+x)^{\alpha} - 1 \sim \alpha x$$
, $1 - \cos x \sim \frac{x^2}{2}$, 可知

$$\lim_{x \to 0} \frac{\sqrt{1+x^2} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{\frac{x^2}{2}} = 1.$$