Closing Time

Венгрия состоит из N городов, пронумерованных от 0 до N-1.

Города соединены N-1 двусторонними дорогами, дороги пронумерованы от 0 до N-2. Для всех j, таких что $0 \le j \le N-2$, дорога j соединяет города U[j] и V[j] и имеет длину W[j], эта дорога позволяет проехать из одного города в другой за W[j] единиц времени. Каждая дорога соединяет два различных города, любые два города соединены не более одной дорогой.

Путем между двумя различными городами a и b называется последовательность различных городов p_0, p_1, \ldots, p_t , такая что:

- $p_0 = a$,
- $p_t = b$,
- для всех i ($0 \le i < t$) есть дорога, соединяющая города p_i и p_{i+1} .

Из любого города можно доехать до любого другого используя дороги, то есть существует путь между любыми двумя различными городами. Можно показать, что этот путь единственный для каждой пары различных городов.

Длиной пути p_0, p_1, \dots, p_t называется сумма длин t дорог, соединяющих соседние города вдоль пути.

В Венгрии многие люди ездят на фестиваль в честь дня города в два крупных города. Когда фестиваль заканчивается, они возвращаются домой. Правительство хочет, чтобы толпа людей не помешала местным жителям, поэтому они планируют закрыть города в некоторые моменты времени. Правительство назначит каждому городу неотрицательное **время закрытия**. Правительство решило, что сумма времен закрытия должна быть не больше K. Более формально, для любого i ($0 \le i \le N-1$) время закрытия города i это неотрицательное целое число c[i]. Сумма c[i] должна быть не больше K.

Рассмотрим город a и некоторое распределение времен закрытия. Мы говорим, что город b **достижим** из города a тогда и только тогда, когда b=a, или путь p_0,\ldots,p_t между этими двумя городами (то есть $p_0=a$ и $p_t=b$) удовлетворяет следующим условиям:

- ullet длина пути p_0, p_1 не превосходит $c[p_1]$, и
- ullet длина пути p_0, p_1, p_2 не превосходит $c[p_2]$, и
- ...

• длина пути $p_0, p_1, p_2, \ldots, p_t$ не превосходит $c[p_t]$.

В этом году два главных фестиваля пройдут в городах X и Y. Для каждого распределения времен закрытия назовем **оценкой удобства** сумму следующих двух чисел:

- Количество городов достижимых из города X.
- Количество городов достижимых из города Y.

Обратите внимание, что если город достижим из города X и достижим из города Y, он считается $\partial s a \mathcal{M} \partial s$ в оценке удобства.

Найдите максимальную оценку удобства, которую можно получить для некоторого распределения времен закрытия.

Implementation Details

Вы должны реализовать следующую функцию.

```
int max_score(int N, int X, int Y, int64 K, int[] U, int[] V, int[] W)
```

- N: количество городов.
- X, Y: города, в которых пройдут главные фестивали.
- K: ограничение сверху на сумму времен закрытия.
- ullet U, V: массивы длины N-1 описывающие дороги.
- W: массив длины N-1 описывающий длины дорог.
- Эта функция должна вернуть максимальную оценку удобства, которая может быть получена с помощью некоторого распределения времен закрытия.
- Эта функция может быть вызвана **несколько раз** в одном тесте.

Example

Рассмотрим следующий вызов функции:

```
max_score(7, 0, 2, 10, [0, 0, 1, 2, 2, 5], [1, 3, 2, 4, 5, 6], [2, 3, 4, 2, 5, 3])
```

Он соответствует следующей дорожной сети:

Допустим времена закрытия распределены следующим образом:

Город	0	1	2	3	4	5	6
Время закрытия	0	4	0	3	2	0	0

Обратите внимание, что сумма времен закрытия равна 9, что не превосходит K=10. Города 0, 1 и 3 достижимы из города X (X=0), тогда как города 1, 2 и 4 достижимы из города Y (Y=2). Таким образом, оценка удобства равна 3+3=6. Не существует ни одного распределения времен закрытия, которое имеет оценку удобства больше 6, поэтому функция должна вернуть 6.

Также рассмотрим следующий вызов функции:

Он соответствует следующей дорожной сети:

Допустим времена закрытия распределены следующим образом:

Город	0	1	2	3
Время закрытия	0	1	19	0

Город 0 достижим из города X (X=0), тогда как города 2 и 3 достижимы из города Y (Y=3). Таким образом, оценка удобства равна 1+2=3. Не существует ни одного распределения времен закрытия, которое имеет оценку удобства больше 3, поэтому функция должна вернуть 3.

Constraints

- 2 < N < 200000
- $0 \le X < Y < N$
- $0 < K < 10^{18}$
- ullet $0 \leq U[j] < V[j] < N$ (для всех j таких что $0 \leq j \leq N-2$)
- $1 < W[j] < 10^6$ (для всех j таких что 0 < j < N-2)
- От любого города можно доехать до любого другого, используя дороги.
- ullet $S_N \leq 200\,000$, где S_N это сумма N по всем вызовам функции <code>max_score</code> в одном тесте.

Subtasks

Будем называть дорожную сеть **линейной**, если дорога i соединяет города i и i+1 (для всех i таких что $0 \le i \le N-2$).

- 1. (8 баллов) Длина пути между городом X и городом Y больше чем 2K.
- 2. (9 баллов) $S_N \leq 50$, дорожная сеть линейная.
- 3. (12 баллов) $S_N \leq 500$, дорожная сеть линейная.
- 4. (14 баллов) $S_N < 3\,000$, дорожная сеть линейная.
- 5. (9 баллов) $S_N \leq 20$
- 6. (11 баллов) $S_N \le 100$
- 7. (10 баллов) $S_N \leq 500$
- 8. (10 баллов) $S_N < 3\,000$
- 9. (17 баллов) Нет дополнительных ограничений.

Sample Grader

Пусть C обозначает число сценариев в тесте, иначе говоря, число вызовов функции max_score. Грейдер читает тест в следующем формате:

строка 1: С

Далее следуеют описания C сценариев в следующем формате:

- строка 1: N X Y K
- строка 2+j ($0 \le j \le N-2$): $U[j] \ V[j] \ W[j]$

Грейдер выводит единственную строку для каждого сценария в следующем формате:

• строка 1: значение, которое вернула функция max_score