### Indifférentiabilité et modèles de preuve idéalisés

#### Yannick Seurin

ANSSI, Laboratoire de cryptographie

21 février 2012 Univ. Limoges, Séminaire Crypto

#### Introduction

Principaux types de preuves de sécurité en cryptographie :

- preuves de sécurité inconditionnelles (sécurité au sens de la théorie de l'information) : valable contre des attaquants à capacité de calculs non bornée, schémas inefficaces (one-time pad)
- modèle standard : adversaires polynomiaux, repose sur des hypothèses de complexité non prouvées (factorisation, log discret)
- modèles idéalisés : modélisation parfaite de certaines primitives, moins fort que le modèle standard mais donne des schémas très efficaces

On va s'intéresser aux liens entre les deux principaux modèles idéalisés :  $ROM (Random \ Oracle \ Model)$  et  $ICM (Ideal \ Cipher \ Model)$ 

#### Plan

- Modèles de preuve idéalisés
- Indifférentiabilité : définition
- 3 Attaque du schéma de Feistel à 5 tours
- Indifférentiabilité du schéma de Feistel pour 14 tours
- 5 Indifférentiabilité publique et résistance à la corrélation

### Plan

- Modèles de preuve idéalisés
- Indifférentiabilité : définition
- 3 Attaque du schéma de Feistel à 5 tours
- 4 Indifférentiabilité du schéma de Feistel pour 14 tours
- 5 Indifférentiabilité publique et résistance à la corrélation

### Modèle standard vs. modèles idéalisés

- deux primitives cryptographiques fondamentales :
  - fonction de hachage :  $H: \{0,1\}^* \to \{0,1\}^n$ , calculable efficacement
  - chiffrement par blocs :  $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ ,  $E(K,\cdot)$  bijectif, efficacement calculable et inversible
- hypothèses de sécurité dans le modèle standard :
  - fonction de hachage : résistance à la pré-image, aux collisions, etc.
  - chiffrement par blocs : permutation pseudo-aléatoire
- souvent, ces hypothèse ne sont pas suffisantes pour prouver la sécurité d'un cryptosystème
  - ⇒ on a recours à des modèles idéalisés :
    - fonction de hachage : modèle de l'oracle aléatoire
    - chiffrement par blocs : modèle du chiffrement idéal



## Fonctions de hachage, modèle standard

Propriétés attendues d'une fonction de hachage? ⇒ nombreuses!

- résistance aux collisions
- résistance à la pré-image, seconde pré-image
- résistance aux "near-collisions"
- résistance à la recherche d'entrées  $x_1, \ldots, x_k$  telles que  $H(x_1) \oplus \cdots \oplus H(x_k) = 0$
- . . .

En fait, on attend d'une fonction de hachage qu'elle se "comporte comme" une fonction aléatoire

# Le modèle de l'oracle aléatoire (ROM)

- modélise une fonction de hachage comme un oracle publiquement accessible  $\mathbf{H}:\{0,1\}^* \to \{0,1\}^n$  retournant une chaine de n bits uniformément aléatoires à chaque nouvelle requête
- introduit par Bellare et Rogaway ('93)
- très utilisé dans les preuves de sécurité, not. clé publique (OAEP, FDH, PSS...)
- résultats d'ininstantiabilité [CanettiGH98, Nielsen02] : il existe des cryptosystèmes prouvés sûrs dans le ROM mais vulnérables avec n'importe quelle fonction de hachage
- schémas prouvés sûrs dans le modèle standard : souvent moins efficaces ou utilisant des hypothèses de complexité moins classiques
  - chiffrement de Cramer-Shoup
  - signatures de Boneh-Boyen...



## Chiffrement par blocs, modèle standard

 notion de sécurité standard pour un chiffrement par blocs : permutation pseudo-aléatoire (PRP) ou fortement pseudo-aléatoire (SPRP)
 indistinguable d'une permutation aléatoire (inversible pour SPRP)



- la notion de (S)PRP ne prend pas en compte certains modèles d'attaques plus forts : attaques à clés reliées, attaques à clé connues. . .
- pour prouver la sécurité de certains cryptosystèmes, la seule hypothèse de (S)PRP ne suffit parfois pas (e.g. fonctions de hachage fondées sur un chiffrement par blocs)

# Le modèle du chiffrement idéal (ICM)

- modélise un chiffrement par blocs parfaitement aléatoire comme une paire d'oracles publiquement accessibles  $\boldsymbol{E}(\cdot,\cdot)$  et  $\boldsymbol{E}^{-1}(\cdot,\cdot)$ , tels que  $\boldsymbol{E}(K,\cdot)$  est une permutation aléatoire pour chaque clé K
- introduit par [Shannon49, Winternitz84]
- modèle de la permutation aléatoire (RPM) : un seule permutation P et son inverse  $P^{-1}$  (= un chiffrement idéal avec une clé fixée)
- moins populaire que le ROM :
  - très utilisé pour analyser les fonctions de hachage fondées sur un chiffrement par blocs, e.g. mode Davies-Meyer [BlackRS02, Hirose06]
  - utilisé dans les preuves de sécurités de quelques schémas à clé publique (chiffrement, échange de clé authentifié. . . )
- résultats d'ininstantiabilité comme pour le ROM [Black06]

### Liens ROM - ICM

On peut construire un chiffrement par blocs à partir d'une fonction de hachage et réciproquement :

- étant donné un chiffrement par blocs, on peut construire une fonction de compression (Davies-Meyer, Miyaguchi-Preneel, etc.) puis une fonction de hachage (Merkle-Damgård)
- étant donné une fonction de hachage, on peut construire un chiffrement par blocs avec le schéma de Feistel :



Quelles sont les propriétés de la construction lorsque la primitive sous-jacente est un oracle aléatoire ou un chiffrement par blocs idéal?

### Plan

- Modèles de preuve idéalisés
- Indifférentiabilité : définition
- 3 Attaque du schéma de Feistel à 5 tours
- 4 Indifférentiabilité du schéma de Feistel pour 14 tours
- 5 Indifférentiabilité publique et résistance à la corrélation

## Indistinguabilité du schéma de Feistel

#### Théorème

Le schéma de Feistel à trois (resp. quatre) tours avec des fonctions de tour aléatoires est indistinguable d'une permutation aléatoire (resp. permutation aléatoire inversible)

NB : Reste vrai avec des fonctions de tour pseudo-aléatoires.



⇒ tout cryptosystème prouvé sûr avec une permutation aléatoire reste sûr avec un Feistel dont les fonctions de tour sont aléatoires et secrètes.

## Limites de l'indistinguabilité

- Comment généraliser le théorème de Luby-Rackoff quand les fonctions de tours sont publiques?
- Exemple : schéma de chiffrement RSA de Phan-Pointcheval :

$$\mathsf{Enc}_{\mathrm{pk}=(N,e)}(m;r) = (P(m\|r))^e \mod N$$
, r aléa

- ⇒ prouvé sûr lorsque **P** est une permutation aléatoire (publique)
- Peut-on remplacer P par un schéma de Feistel à 4 tours avec des fonctions de tour aléatoires et publiques?
- Luby-Rackoff ne permet pas conclure car l'hypothèse "clé secrète" n'est pas vérifiée

### Indifférentiabilité

Généralisation de l'indistinguabilité au cas où le distingueur a accès aux composants internes de la construction (= fonctions de tour pour un Feistel).

#### Définition

 $\mathcal{C}^{\mathbf{F}}$  est indifférentiable de  $\mathbf{G}$  s'il existe un simulateur (polynomial)  $\mathcal{S}$  tel que les deux systèmes  $(\mathbf{G},\mathcal{S}^{\mathbf{G}})$  et  $(\mathcal{C}^{\mathbf{F}},\mathbf{F})$  sont indistinguables.



### Indifférentiabilité



Les réponses du simulateur doivent être :

- ullet cohérentes avec les réponses que  ${\mathcal D}$  peut obtenir directement de  ${\it G}$
- indistinguables de réponses uniformément aléatoires

NB : le simulateur n'a pas connaissance des requêtes de  $\mathcal D$  à  $\textbf{\textit{G}}$ .



## Théorème de composition



Si  $C^F$  est indifférentiable de G, alors tout cryptosystème  $\Gamma$  sûr avec G est sûr lorsque  $C^{F}$  remplace G.

# L'ICM "implique" le ROM



- dans [CoronDMP05], il a été montré que des variantes de Merkle-Damgård utilisée avec un chiffrement idéal en mode Davies-Meyer sont indifférentiables d'un oracle aléatoire
- ⇒ une telle construction peut remplacer un oracle aléatoire dans n'importe quel cryptosystème sans perte de sécurité (th. de composition)

## L'ICM "implique" le ROM



- dans [CoronDMP05], il a été montré que des variantes de Merkle-Damgård utilisée avec un chiffrement idéal en mode Davies-Meyer sont indifférentiables d'un oracle aléatoire
- ⇒ une telle construction peut remplacer un oracle aléatoire dans n'importe quel cryptosystème sans perte de sécurité (th. de composition)
- réciproquement, existe-t-il une construction utilisant un oracle aléatoire indifférentiable d'un chiffrement idéal?

# L'ICM "implique" le ROM



- dans [CoronDMP05], il a été montré que des variantes de Merkle-Damgård utilisée avec un chiffrement idéal en mode Davies-Meyer sont indifférentiables d'un oracle aléatoire
- ⇒ une telle construction peut remplacer un oracle aléatoire dans n'importe quel cryptosystème sans perte de sécurité (th. de composition)
- réciproquement, existe-t-il une construction utilisant un oracle aléatoire indifférentiable d'un chiffrement idéal? ⇒ Feistel

### Plan

- Modèles de preuve idéalisés
- Indifférentiabilité : définition
- 3 Attaque du schéma de Feistel à 5 tours
- 4 Indifférentiabilité du schéma de Feistel pour 14 tours
- 5 Indifférentiabilité publique et résistance à la corrélation

Pour  $\Psi_5$ , on peut trouver 4 paires entrées/sorties telles que

$$R_0\oplus R_1\oplus R_2\oplus R_3=0$$
 et  $S_0\oplus S_1\oplus S_2\oplus S_3=0$ 



Pour  $\Psi_5,$  on peut trouver 4 paires entrées/sorties telles que

$$R_0\oplus R_1\oplus R_2\oplus R_3=0$$
 et  $S_0\oplus S_1\oplus S_2\oplus S_3=0$ 

 $X_{12}$ 



Pour  $\Psi_5$ , on peut trouver 4 paires entrées/sorties telles que

 $R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0$  et  $S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0$ 

 $X_{12}$ 

 $Y_{14} Y_{23}$ 



Pour  $\Psi_5,$  on peut trouver 4 paires entrées/sorties telles que

$$R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0$$
 et  $S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0$ 





Pour  $\Psi_5$ , on peut trouver 4 paires entrées/sorties telles que

$$R_0\oplus R_1\oplus R_2\oplus R_3=0$$
 et  $S_0\oplus S_1\oplus S_2\oplus S_3=0$ 























- pour une permutation aléatoire, trouver 4 paires entrées/sorties telles que  $R_0 \oplus R_1 \oplus R_2 \oplus R_3 = 0$  et  $S_0 \oplus S_1 \oplus S_2 \oplus S_3 = 0$  est impossible en temps polynomial
- par conséquent, si  $\mathcal{D}$  interagit avec  $(P, \mathcal{S}^P)$ , le simulateur  $\mathcal{S}$  ne peut pas être cohérent avec la permutation aléatoire



### Plan

- Modèles de preuve idéalisés
- 2 Indifférentiabilité : définition
- Attaque du schéma de Feistel à 5 tours
- Indifférentiabilité du schéma de Feistel pour 14 tours
- 5 Indifférentiabilité publique et résistance à la corrélation

### Indifférentiabilité du schéma de Feistel

### Théorème (Holenstein et al., STOC 2011)

La construction de Feistel à 14 tours (avec des fonctions de tour parfaitement aléatoires) est indifférentiable d'une permutation aléatoire inversible.

- on obtient un chiffrement par blocs idéal en concaténant la clé à l'entrée de chaque fonction de tour  $(F_{i,K}(x) = H(i||K||x))$
- preuve : il faut construire un simulateur

# Simulation : stratégie générale

- Rappel : le simulateur doit renvoyer des réponses :
  - cohérentes avec P :

$$\forall x_0, x_1, \ \Psi_{14}(x_0, x_1) = \mathbf{P}(x_0, x_1)$$

- indistinguables de réponses unif. aléatoires
- le simulateur maintient un historique de valeurs pour chaque F<sub>i</sub>
- lorsque le distingueur fait une requête F<sub>i</sub>(x<sub>i</sub>), le simulateur complète certaines "chaines" par avance



# Simulation : stratégie générale

- Le simulateur complète deux types de chaines :
  - les centres  $(x_7, x_8)$
  - les chaines externes  $(x_1, x_2)$  ou  $(x_{13}, x_{14})$  telles que :

$$\mathbf{P}(x_0, x_1) = (x_{14}, x_{15}),$$
  
où  $x_0 = x_2 \oplus F_1(x_1)$  et  $x_{15} = x_{13} \oplus F_{14}(x_{14})$ 

 Ces chaines sont "adaptées" en F<sub>4</sub>, F<sub>5</sub> ou F<sub>10</sub>, F<sub>11</sub> pour "coller" avec la permutation aléatoire P



## Adaptation

- Lorsque le simulateur détecte un centre  $(x_7, x_8)$  lors de la requête  $F_7(x_7)$  :
  - il prolonge la chaine en avant en définissant les fonctions de tour aléatoirement et en faisant un appel à P:

$$x_{9} = x_{7} \oplus F_{8}(x_{8})$$

$$x_{10} = x_{8} \oplus F_{9}(x_{9})$$

$$\vdots$$

$$(x_{0}, x_{1}) = \mathbf{P}^{-1}(x_{14}, x_{15})$$

$$\vdots$$

$$x_{4} = x_{2} \oplus F_{3}(x_{3})$$



## Adaptation

- Lorsque le simulateur détecte un centre  $(x_7, x_8)$  lors de l'ajout de  $x_7$ :
  - il prolonge la chaine en arrière en définissant les fonctions de tour aléatoirement :

$$x_6=x_8\oplus F_7(x_7)$$

$$x_5 = x_7 \oplus F_6(x_6)$$



## Adaptation

- Lorsque le simulateur détecte un centre  $(x_7, x_8)$  lors de l'ajout de  $x_7$ :
  - il prolonge la chaine en arrière en définissant les fonctions de tour aléatoirement :

$$x_6 = x_8 \oplus F_7(x_7)$$
$$x_5 = x_7 \oplus F_6(x_6)$$

$$x_5 = x_7 \oplus F_6(x_6)$$

il adapte la chaine en définissant :

$$F_4(x_4) = x_3 \oplus x_5$$

$$F_5(x_5)=x_4\oplus x_6$$

de façon à ce que  $\Psi_{14}(x_0, x_1) = P(x_0, x_1)$ 



## Adaptation

- symétrique si détection lors de l'ajout de  $x_8$
- similaire pour compléter une chaine externe  $(x_1, x_2)$  ou  $(x_{13}, x_{14})$



## Ce qui pourrait faire échouer le simulateur. . .

- temps d'exécution exponentiel dû à la complétion récursive des chaines :
  - compléter un centre peut créer de nouvelles chaines externes...
  - compléter une chaine externe crée de nouveaux centres...
  - etc.



## Ce qui pourrait faire échouer le simulateur. . .

- temps d'exécution exponentiel dû à la complétion récursive des chaines :
  - compléter un centre peut créer de nouvelles chaines externes...
  - compléter une chaine externe crée de nouveaux centres...
  - etc.
- impossibilité de s'adapter :
  - si la valeur en laquelle le simulateur doit s'adapter est déjà dans l'historique de F<sub>i</sub>, impossibilité de rester cohérent avec P



• Rappel : le distingueur fait au plus un nombre polynomial q de requêtes



- Rappel : le distingueur fait au plus un nombre polynomial q de requêtes
- Remarque cruciale : une chaine externe ne peut être crée que si le distingueur a fait la requête correspondante à P
  - $\Rightarrow$  nombre inférieur à q



- Rappel : le distingueur fait au plus un nombre polynomial q de requêtes
- Remarque cruciale : une chaine externe ne peut être crée que si le distingueur a fait la requête correspondante à P
  - $\Rightarrow$  nombre inférieur à q
- implique que la taille des historiques de  $F_7$  et  $F_8$  est inférieure à 2q



- Rappel : le distingueur fait au plus un nombre polynomial q de requêtes
- Remarque cruciale : une chaine externe ne peut être crée que si le distingueur a fait la requête correspondante à P
  - $\Rightarrow$  nombre inférieur à q
- implique que la taille des historiques de  $F_7$  et  $F_8$  est inférieure à 2q
- et par conséquent le nombre de centres complétés est  $\leq 4q^2$



# Le simulateur peut toujours s'adapter

- ex : détection d'un centre  $(x_7, x_8)$  lors de l'ajout de  $x_7$ 
  - $\Rightarrow$  adaptation en  $F_4$  et  $F_5$



# Le simulateur peut toujours s'adapter

- ex : détection d'un centre (x<sub>7</sub>, x<sub>8</sub>) lors de l'ajout de x<sub>7</sub>
   ⇒ adaptation en F<sub>4</sub> et F<sub>5</sub>
- prolongation chaine arrière :
   x<sub>5</sub> = x<sub>7</sub> ⊕ F<sub>6</sub>(x<sub>6</sub>) est uniformément distribué, donc dans l'historique de F<sub>5</sub> avec proba.
   négligeable



# Le simulateur peut toujours s'adapter

- ex : détection d'un centre (x<sub>7</sub>, x<sub>8</sub>) lors de l'ajout de x<sub>7</sub>
   ⇒ adaptation en F<sub>4</sub> et F<sub>5</sub>
- prolongation chaine arrière :
   x<sub>5</sub> = x<sub>7</sub> ⊕ F<sub>6</sub>(x<sub>6</sub>) est uniformément distribué, donc dans l'historique de F<sub>5</sub> avec proba.
   négligeable
- prolongation chaine avant :  $x_3$  ne peut pas être dans l'historique de  $F_3$  sinon la chaine externe  $(x_1, x_2)$  aurait déjà été détectée et complétée
  - $\Rightarrow x_4 = x_2 \oplus F_3(x_3)$  est uniformément distribué, donc dans l'historique de  $F_4$  avec proba. négligeable



 Résultat principalement théorique sur la possibilité de construire un oracle de permutation à partir d'un oracle de fonction.

- Résultat principalement théorique sur la possibilité de construire un oracle de permutation à partir d'un oracle de fonction.
- Dans la pratique, une analyse dédiée est souvent plus efficace que remplacer génériquement une permutation aléatoire par un Feistel à 14 tours.

- Résultat principalement théorique sur la possibilité de construire un oracle de permutation à partir d'un oracle de fonction.
- Dans la pratique, une analyse dédiée est souvent plus efficace que remplacer génériquement une permutation aléatoire par un Feistel à 14 tours.
- exemple du schéma de chiffrement RSA de Phan-Pointcheval :

$$\mathsf{Enc}_{\mathsf{pk}=(N,e)}(m;r) = (P(m\|r))^e \mod N$$
, r aléa

 $\Rightarrow$  **P** peut en fait être remplacée par un Feistel à 3 tours et le schéma reste prouvé sûr dans le ROM

- Résultat principalement théorique sur la possibilité de construire un oracle de permutation à partir d'un oracle de fonction.
- Dans la pratique, une analyse dédiée est souvent plus efficace que remplacer génériquement une permutation aléatoire par un Feistel à 14 tours.
- exemple du schéma de chiffrement RSA de Phan-Pointcheval :

$$\mathsf{Enc}_{\mathrm{pk}=(N,e)}(m;r) = ( extbf{ extit{P}}(m\|r))^e \mod N$$
 ,  $r$  aléa

- $\Rightarrow$  **P** peut en fait être remplacée par un Feistel à 3 tours et le schéma reste prouvé sûr dans le ROM
- ullet exemple du chiffrement de Even-Mansour :  $E_{k_1,k_2}(m)=k_2\oplus {m P}(m\oplus k_1)$ 
  - sûr lorsque **P** est une permutation aléatoire
  - reste sûr dans le ROM avec un Feistel à 4 tours [GentryR04]



### Plan

- Modèles de preuve idéalisés
- 2 Indifférentiabilité : définition
- 3 Attaque du schéma de Feistel à 5 tours
- 4 Indifférentiabilité du schéma de Feistel pour 14 tours
- 5 Indifférentiabilité publique et résistance à la corrélation

## Indifférentiabilité publique

Affaiblissement du modèle de l'indifférentiabilité générale : le simulateur a connaissance des requêtes de  $\mathcal D$  à  $\pmb G$ 



Le théorème de composition est valable pour les cryptosystèmes où toutes les requêtes à la primitive G sont publiques (e.g. requêtes de hachage dans la majorité des schémas de signature).

## Indifférentiabilité publique du schéma de Feistel

#### Théorème (MandalPS12)

Le schéma de Feistel à 6 tours (avec des fonctions de tour aléatoires) est publiquement indifférentiable d'une permutation aléatoire inversible (et 6 et le nombre de tours minimal pour avoir cette propriété).

Preuve beaucoup plus simple que pour l'indifférentiabilité générale.

#### Résistance à la corrélation

Une construction  $C^F$  est résistante à la corrélation (par rapport à la primitive idéale G) si toute relation entré-sortie difficile à trouver pour G(appelée relation évasive) est difficile à trouver pour  $C^F$  (même en avant accès à **F**).

Exemple : pour une permutation aléatoire inversible P sur 2n bits, la relation suivante est évasive :

$$\{(L||R,S||T): L=0^n \text{ et } S=0^n\}$$

NB : Notion impossible à satisfaire dans le modèle standard.

#### Théorème

Si  $C^F$  est publiquement indifférentiable de G, alors  $C^F$  est résistante à la corrélation.

### Conclusion

| Notion                  | nbre de tours de Feistel |
|-------------------------|--------------------------|
| PRP                     | 3                        |
| SPRP                    | 4                        |
| Résistance à la corrél. | 6                        |
| Indiff. publique        | 6                        |
| Indiff. générale        | entre 6 et 14            |

- les résultats d'indifférentiabilité ne sont valables qu'avec des fonctions de tour aléatoires
  - $\Rightarrow$  pas applicable à DES (fonctions de tour trop simples)

### Conclusion

| Notion                  | nbre de tours de Feistel |
|-------------------------|--------------------------|
| PRP                     | 3                        |
| SPRP                    | 4                        |
| Résistance à la corrél. | 6                        |
| Indiff. publique        | 6                        |
| Indiff. générale        | entre 6 et 14            |

- les résultats d'indifférentiabilité ne sont valables qu'avec des fonctions de tour aléatoires
  - $\Rightarrow$  pas applicable à DES (fonctions de tour trop simples)
- le résultat ne dit rien sur la possibilité d'instancier un chiffrement idéal avec AES ou un oracle aléatoire avec SHA-2

#### Conclusion

| Notion                  | nbre de tours de Feistel |
|-------------------------|--------------------------|
| PRP                     | 3                        |
| SPRP                    | 4                        |
| Résistance à la corrél. | 6                        |
| Indiff. publique        | 6                        |
| Indiff. générale        | entre 6 et 14            |

- les résultats d'indifférentiabilité ne sont valables qu'avec des fonctions de tour aléatoires
  - $\Rightarrow$  pas applicable à DES (fonctions de tour trop simples)
- le résultat ne dit rien sur la possibilité d'instancier un chiffrement idéal avec AES ou un oracle aléatoire avec SHA-2
- principal problème ouvert : nombre optimal de tours pour l'indifférentiabilité générale? (entre 6 et 14)



The end...

Merci de votre attention! Commentaires ou questions?

