Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 449 841 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 25.08.2004 Bulletin 2004/35

(21) Application number: 03356029.3

(22) Date of filing: 19.02.2003

(51) Int CI.7: **C07D 405/12**, C07D 409/12, C07D 413/12, C07D 401/12, C07D 417/12, A01N 43/40

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT SE SI SK TR
Designated Extension States:

AL LT LV MK RO

(71) Applicant: Bayer CropScience SA 69266 Lyon Cedex 09 (FR)

(72) Inventors:

 Mansfield, Darren James 69004 Lyon (FR)

Rieck, Heiko
 69110 Ste Foy Les Lyon (FR)

 Greul, Jörg Nico 42799 Leichlingen (DE)

 Coqueron, Pierre-Yves 69006 Lyon (FR)

 Desbordes, Philippe 69007 Lyon (FR)

 Genix, Pierre 69004 Lyon (FR)

 Grosjean-Cournoyer, Marie-Claire 69250 Curis au Mont d'Or (FR)

Perez, Joseph
 69009 Lyon (FR)

 Villier, Alain 69370 Saint Didier au Mont d'Or (FR)

(54) New fungicidal compounds

(57) Compound of general formula (I):

 $(Y)_n \qquad \qquad X \\ \qquad \qquad \qquad \\ N \qquad \qquad \\ N \qquad \qquad \\ Het \qquad \qquad \\ (I)$

Process for preparing this compound. Novel intermediate of general formula (E):

 Z^{1} NH R^{1} (E)

for the preparation of compound of general formula (I)

Fungicidal composition comprising a compound of general formula (I).

Method for treating plants by applying a compound of general formula (I) or a composition comprising it.

EP 1 449 841 A

Description

.15

20

25

35

40

45

50

[0001] The present invention relates to novel N-[2-(2-pyridinyl)ethyl]carboxamides derivatives, their process of preparation, their use as fungicides, particularly in the form of fungicidal compositions, and methods for the control of phytopathogenic fungi of plants using these compounds or their compositions.

[0002] The international patent application WO 01/11965 discloses a broad family of fungicidal compounds which generically covers the compounds according to the present invention. Nevertheless, the compounds according to the present invention are not specifically disclosed in this document and their activity as fungicides has not been tested.

[0003] It is always of high-interest in agriculture to use pesticidal compounds more active than the compounds already

known by the man ordinary skilled in the art in order to decrease the quantity of active ingredient used by the farmer as to maintain an efficacy at least equivalent to compounds already known.

[0004] We have now found a new family of compounds selected in a broad family of compounds which possess the above mentioned characteristics.

[0005] Accordingly, the present invention relates to N-[2-(2-pyridinyl)ethyl]carboxamide derivative of general formula (1):

$$(Y)_n$$
 X
 Het
 R^1
 (I)

in which:

- X may be an oxygen atom or a sulphur atom;
- Y may be the same or different and may be a halogen atom, a nitro group, a cyano group, a hydroxy, an amino group, a carboxyl group, a C₁-C₈-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₈-alkylamino, a di-C₁-C₈-alkylamino, a C₁-C₈-alkoxy, a C₁-C₆-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₈-alkylthio, a C₁-C₆-halogenoalkylthio having 1 to 5 halogen atoms, a C₂-C₈-alkinyloxy, a C₂-C₈-halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-cycloalkyl, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₆-alkoximino-C₁-C₆-alkyl;
- R¹ may be a hydrogen atom, a cyano group, a nitro group, a formyl group, a C₁-C₆-alkyl, a C₁-C₆-alkylcarbamoyl, a C₂-C₆-alkenyl, a C₂-C₆-alkynyl, a C₁-C₆-halogenoalkyl having 1 to 7 halogen atoms, a C₁-C₆-alkoxy-C₁-C₆-alkyl, a C₁-C₆-cyanalkyl, a C₁-C₆-aminoalkyl, a C₂-C₆-cycloalkyl, a C₁-C₆-alkylcarbonyl, a C₁-C₆-halogenalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₆-alkoxy-C₁-C₆-alkylcarbonyl, a C₁-C₆-alkylsulfanyl or a C₁-C₆-halogenalkylsulfanyl having 1 to 5 halogen atoms;
- n may be 1, 2, 3 or 4; and
- Het represents an optionally substituted 5-, 6- or 7-membered heterocycle with one, two or three heteroatoms which may be the same or different; Het being linked by a carbon atom.

[0006] In the context of the present invention:

- halogen means fluorine, bromine, chlorine or iodine;
- heteroatom means N, O or S.

[0007] According to the present invention, X represents an oxygen atom or a sulphur atom. Preferably, X represents an oxygen atom.

[0008] According to the present invention, the 2-pyridyl may be substituted in every position by (Y)_n, in which Y and n are as defined above. Preferably, the present invention relates to N-[2-(2-pyridinyl)ethyl]carboxamide derivative of general formula (I) in which the different characteristics may be chosen alone or in combination as being:

as regards n, n is 1 or 2. More preferably n is 2.

- as regards Y, at least one of the Y substituent is a halogen atom, a C₁-C₆-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms or a C₁-C₆-alkoxy-C₁-C₆-alkylcarbonyl. More preferably, at least one of the Y substituent is a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms. Even more preferably, at least one of the Y substituent is -CF₃.
- as regards the positions in which the 2-pyridyl is substituted, the 2-pyridyl is substituted in 3- and/or in 5-position.

[0009] Even more preferably, the substituent in 5-position is -CF₃.

[0010] According to the present invention, "Het" of the compound of general formula (I) may be a five membered ring heterocycle. Specific examples of compounds of the present invention where Het is a five membered heterocycle include:

* Het represents a heterocycle of the general formula (II)

$$R^3$$
 R^4
(II)

20 in which:

5

10

15

25

30

35

45

50

- R² and R³ may be the same or different and may be a hydrogen atom, a halogen atom, an amino group, a nitro group, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R⁴ may be a hydrogen atom, a halogen atom, a nitro group, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - * Het represents a heterocycle of the general formula (III)

$$R^{6}$$
 O R^{5} (III)

in which:

- R⁵ may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms;
- R⁶ and R7⁶ may be the same or different and may be a hydrogen atom, a halogen atom, an amino group, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - * Het represents a heterocycle of the general formula (IV)

$$R^9$$
 Q R^8 (IV)

- R8 may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R⁹ may be a hydrogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - Het represents a heterocycle of the general formula (V)

$$R^{10} \longrightarrow R^{12}$$

$$(V)$$

in which:

10

15

5

- R¹º and R¹¹ may be the same or different and may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkylthio, a C₁-C₄-alkylsulphonyl, a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl or a pyridyl otpionally substituted by a halogen atom or a C₁-C₄-alkyl; and
 R¹² may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - * Het represents a heterocycle of the general formula (VI)

$$R^{14}$$

$$R^{13}$$

$$S$$

$$R^{15}$$
(VI)

in which:

- R¹³ and R¹⁴ may be the same or different and may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-alkyl, a C₁-C₄-alkyloxy or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
 - R15 may be a hydrogen atom, a halogen atom, a C1-C4-alkyl or a C1-C4-halogenoalkyl having 1 to 5 halogen atoms.
 - Het represents a heterocycle of the general formula (VII)

35

40

in which:

- R16 may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms;
- R¹⁷ and R¹⁹ may be the same or different and may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R18 may be a hydrogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl, a hydroxy-C₁-C₄-alkyl, a C₁-C₄-alkylsulphonyl, a di(C₁-C₄-alkyl)aminosulphonyl, a C₁-C₆-alkylcarbonyl, a phenylsulphonyl optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a benzoyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.
- ⁵⁵ Het represents a heterocycle of the general formula (VIII)

in which:

- R²⁰ may be a hydrogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl, a hydroxy-C₁-C₄-alkyl, a C₁-C₄-alkyisulphonyl, a di(C₁-C₄-alkyl)aminosulphonyl, a C₁-C₆-alkylcarbonyl, a phenylsulphonyl optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a benzoyl optionally substituted by a halogen atom or a C₁-C₄-alkyl; and
- R²¹, R²² and R²³ may be the same or different and may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a C₁-C₄-alkylcarbonyl.
 - * Het represents a heterocycle of the general formula (IX)

20

25

15

$$R^{24}$$
 O R^{25} O O O

in which:

30

- R²⁴ may be a hydrogen atom or a C₁-C₄-alkyl; and
- R²⁵ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - * Het represents a heterocycle of the general formula (X)

35

40

$$R^{26}$$
 R^{27} R^{27}

in which:

- 45 R²⁶ may be a hydrogen atom or a C₁-C₄-alkyl; and
 - R²⁷ may be a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.
 - Het represents a heterocycle of the general formula (XI)

50

55

(XI)

in which:

- R²⁸ may be a hydrogen atom, a halogen atom, an amino group, a cyano group, a C₁-C₄-alkylamino, a di-(C₁-C₄-alkyl) amino, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl; and
 - R²⁹ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - Het represents a heterocycle of the general formula (XII)

N N S P31

(XII)

in which:

- R³⁰ may be a hydrogen atom, a halogen atom, an amino group, a cyano group, a C₁-C₄-alkylamino, a di-(C₁-C₄-alkyl) amino, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
 - R31 may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - * Het represents a heterocycle of the general formula (XIII)

 $\begin{array}{cccc}
R^{32} & & & \\
R^{33} & & & & \\
R^{34} & & & & (X) \\
\end{array}$

in which:

35

40

45

50

55

15

25

30

- R^{32} may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_1 - C_4 -alkyl, a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, a C_3 - C_6 -cycloalkyl, a C_1 - C_4 -alkoxy, a C_1 - C_4 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_4 -alkylthio, a C_1 - C_4 -halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl group or an aminocarbonyl- C_1 - C_4 -alkyl;
- R³³ may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₁-C₄-alkyl, a C₁-C₄-alkoxy or a C₁-C₄-alkylthio; and
- R³⁴ may be a hydrogen atom, a phenyl, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-C₁-C₄-alkyl, a C₂-C₆-alkenyl, a C₃-C₆-cycloalkyl, a C₁-C₄-alkylthio-C₁-C₄-alkyl, a C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl or a C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl having 1 to 5 halogen atoms.
 - Het represents a heterocycle of the general formula (XIV)

- R35 may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₃-C₆-cycloalkyl, a C₁-C₄-alkoxy, a C₁-C₄-halogenoalkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl or an aminocarbonyl-C₁-C₄-alkyl;
- R³⁶ may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-alkoxy, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms or a C₁-C₄-alkylthio; and
 - R³⁷ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-C₁-C₄-alkyl, a C₂-C₆-alkenyl, a C₃-C₆-cycloalkyl, a C₁-C₄-alkyl, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl, a C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-alkoxyalkyl or a nitro group.
 - * Het represents a heterocycle of the general formula (XV)

in which:

10

15

20

30

35

40

45

- 25 R³⁸ may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₃-C₆-cycloalkyl, a C₁-C₄-alkoxy, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl, or an aminocarbonyl-C₁-C₄-alkyl;
 - R³⁹ may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-alkoxy, a C₁-C₄-alkylthio or a C₁-C₄-halogenoalky having 1 to 5 halogen atoms;
 - R⁴⁰ may be a hydrogen atom, a phenyl, a benzyl, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-C₁-C₄-alkyl, a C₂-C₆-alkenyl, a C₃-C₆-cycloalkyl, a C₁-C₄-alkylthio-C₁-C₄-alkyl, a C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl, a C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl having 1 to 5 halogen atoms.
 - Het represents a heterocycle of the general formula (XVI)

in which R^{41} and R^{42} may be the same or different and may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms.

* Het represents a heterocycle of the general formula (XVII)

$$R^{43}$$

$$R^{44}$$

$$(XVI)$$

in which R^{43} and R^{44} may be the same or different and may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl, a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, a phenyl optionally substituted by a halogen atom or a C_1 - C_4 -alkyl, or a heterocyclyl optionally substituted by a halogen atom or a C_1 - C_4 -alkyl.

Het represents a heterocycle of the general formula (XVIII)

in which R^{45} and R^{40} may be the same or different and may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms.

Het represents a heterocycle of the general formula (XIX)

in which R^{47} may be a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms.

* Het represents a heterocycle of the general formula (XX)

in which:

10

15

20

25

30

35

40

45

50

55

- R⁴⁸ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R⁴⁹ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.
 - Het represents a heterocycle of the general formula (XXI)

in which R⁵⁰ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms. [0011] According to the present invention, "Het" of the compound of general formula (1) may be a six membered ring heterocycle. Specific examples of compounds of the present invention where Het is a six membered heterocycle include:

* Het represents a heterocycle of the general formula (XXII)

$$R^{53}$$
 R^{52}
 R^{51}
 R^{51}
 R^{51}
 R^{51}
 R^{51}

in which:

15

20

25

35

40

45

50

- R51 may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms or a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms;
- R52, R53 and R54, which may be the same or different, may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkylsulphonyl.
 halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₄-alkylsulphinyl or a C₁-C₄-alkylsulphonyl.
 - * Het represents a heterocycle of the general formula (XXIII)

in which:

- R⁵⁵ may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy, a C₁-C₅-alkylthio, a C₂-C₅-alkenylthio a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms, a phenyloxy optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a phenylthio optionally substituted by a halogen atom or a C₁-C₄-alkyl;
- R⁵⁶, R⁵⁷ and R⁵⁸, which may the same or different, may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₄-alkylsulphinyl, a C₁-C₄-alkylsulphonyl or a N-morpholine optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a thienyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.
 - Het represents a heterocycle of the general formula (XXIV)

$$R^{62} \longrightarrow R^{59}$$

$$R^{60} \qquad (XXIV)$$

in which R⁵⁹, R⁶⁰, R⁶¹ and R⁶², which may be the same or different, may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C_1 - C_4 -alkyl, a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, a C_1 - C_4 -halogenoalkylthio having 1 to 5 halogen atoms, a C_1 - C_4 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_4 -alkylsulphinyl or a C_1 - C_4 -alkylsulphonyl.

Het represents a heterocycle of the general formula (XXV)

$$\mathbb{R}^{64}$$
 \mathbb{N} \mathbb{R}^{63} \mathbb{R}^{63}

in which:

10

15

20

25

40

45

50

55

- R⁵³ may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms;
 R⁵⁴ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₆-alkoxycarbonyl, a benzyl optionally substituted by 1 to 3 halogen atoms, a benzyloxycarbonyl optionally substituted by 1 to 3 halogen atoms or a heterocyclyl.
 - Het represents a heterocycle of the general formula (XXVI)

$$\mathbb{R}^{66} \longrightarrow \mathbb{R}^{65}$$
 (XXVI)

in which:

- R⁶⁵ may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms or a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms,
 - R⁶⁶ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a benzyl.
 - Het represents a heterocycle of the general formula (XXVII)

 $\begin{array}{c}
R^{69} \\
X1
\end{array}$

in which:

- X¹ may be a sulphur atom, -SO-, -SO₂- or -CH₂-;
 - R67 may be a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
 - R⁶⁸ and R⁶⁹ may be the same or different and may be a hydrogen atom or a C₁-C₄-alkyl.
 - Het represents a heterocycle of the general formula (XXVIII)

S (XVIII)

- R⁷⁰ may be a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms;
 - * Het represents a heterocycle of the general formula (XXIX)

5

10

$$R^n$$
 (XXIX)

in which:

- R⁷¹ may be a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
 - * Het represents a heterocycle of the general formula (XXX)

20

$$\mathbb{R}^{n}$$
 (XXX)

25

35

40

in which R^{72} may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms.

[0012] The present invention also relates to a process for the preparation of the compound of general formula (I). Thus, according to a further aspect of the present invention there is provided a process for the preparation of compound of general formula (I) as defined above, which comprises reacting a carboxylic acid derivative of the general formula (A)

G Het

in which :

- Het is as defined above;
- G may be a halogen atom, a hydroxy group or a C₁-C₆-alkoxy;

with a 2-pyridine derivative of general formula (B)

45

50

in which Y, R1 and n are as defined above;

in the presence of a catalyst if G is a hydroxy or a C_1 - C_6 -alkoxy group, or in the presence of an acid binder if G is a halogen atom.

[0013] According to the present invention, the process for the preparation of compound of general formula (!) is carried out in the presence of a catalyst if G is a hydroxy or a C₁-C₆-alkoxy group. Suitable catalyst includes the coupling

reagents dicyclohexylcarbodiimide, N,N'-carbonyldimidazole, bromotripyrrolidinophosphonium hexafluorophosphate and trimethylaluminium.

[0014] According to the present invention, the process for the preparation of compound of general formula (1) is carried out in the presence of an acid binder if G is a halogen atom. Suitable acid binder includes carbonates, aqueous alkali or tertiary amines.

[0015] The present invention also relates to another process for the preparation of the compound of general formula (I). Thus, according to a further aspect of the present invention there is provided a second process for the preparation of compound of general formula (I) as defined above, which comprises reacting a carboxylic acid anhydride derivative of general formula (C)

in which:

10

15

20

25

30

45

50

- Het is as defined above;
 - W may be defined as Het or a C₁-C₆-alkyl;
 with a 2-pyridine derivative of the formula (D)

in which R¹ and n are each as defined above; in the presence of a reducing agent.

[0016] According to the present invention, the second process for the preparation of compound of general formula (I) is carried out in the presence of a reducing agent. Suitable reducing agent includes H₂ and NaBH₄.

[0017] The compound according to the present invention can be prepared according to the general processes of preparation described above. It will nevertheless be understood that the skilled worker will be able to adapt this method according to the specifics of each of the compounds, which it is desired to synthesise. For example, the above mentioned processes may be carried out in the presence of a diluent if appropriate. If appropriate, the second process for the preparation of compound of general formula (I) may also be carried out in the presence of a catalyst such as NiCl₂-H₂O or CoCl₃-H₂O.

[0018] Certain of the intermediate compounds used for the preparation of compound of general formula (I) are novel. Therefore, the present invention also relates to novel intermediate compound useful for the preparation of compound of general formula (1). Thus, according to the present invention, there is provided a novel compound of general formula (E):

$$Z^{1}$$
 N
 R^{1}
 (E)

55 in which:

Z may be the same or different and may be a halogen atom, a nitro group, a cyano group, a hydroxy, a carboxyl group, a C₁-C₈-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₆-halogenoalkoxy having 1 to 5

halogen atoms, a C_1 - C_8 -alkylthio, a C_1 - C_6 -halogenoalkylthio having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyloxy, a C_2 - C_8 -halogenoalkenyloxy having 1 to 5 halogen atoms, a C_3 - C_8 -halogenoalkinyloxy-having 1 to 5 halogen atoms, a C_3 - C_8 -halogenoalkinyloxy-having 1 to 5 halogen atoms, a C_3 - C_8 -alkylsulphinyl, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -alkylsulphinyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkoximino- C_1 - C_8 -alkyl;

- Z¹ may be a halogen atom or a C₁-C₈-alkyl;
- R¹ and n are as defined above.

[0019] The present invention also relates to a fungicidal composition comprising an effective amount of an active material of general formula (I). Thus, according to the present invention, there is provided a fungicidal composition comprising, as an active ingredient, an effective amount of a compound of general formula (I) as defined above and an agriculturally acceptable carrier or filler.

[0020] In the present specification, the term "support" denotes a natural or synthetic, organic or inorganic material with which the active material is combined to make it easier to apply, notably to the parts of the plant. This support is thus generally inert and should be agriculturally acceptable. The support may be a solid or a liquid. Examples of suitable supports include clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol, organic solvents, mineral and plant oils and derivatives thereof. Mixtures of such supports may also be used. [0021] The composition may also comprise additional components. In particular, the composition may further comprise a surfactant. The surfactant can be an emulsifier, a dispersing agent or a wetting agent of ionic or non-ionic type or a mixture of such surfactants. Mention may be made, for example, of polyacrylic acid salts, lignosulphonic acid salts, phenolsulphonic or naphthalenesulphonic acid salts, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (in particular alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (in particular alkyl taurates), phosphoric esters of polyoxyethylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the above compounds containing sulphate, sulphonate and phosphate functions. The presence of at least one surfactant is generally essential when the active material and/or the inert support are water-insoluble and when the vector agent for the application is water. Preferably, surfactant content may be between 5% and 40% by weight.

[0022] Optionally, additional components may also be included, e.g. protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents. More generally, the active materials can be combined with any solid or liquid additive, which complies with the usual formulation techniques.

[0023] In general, the composition according to the invention may contain from 0.05 to 99% (by weight) of active material, preferably 10 to 70% by weight.

[0024] Compositions according to the present invention can be used in various forms such as aerosol dispenser, bait (ready for use), bait concentrate, block bait, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure),gas generating product, grain bait, granular bait, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, plate bait, powder for dry seed treatment, scrap bait, seed coated with a pesticide, smoke candle, smoke cartridge, smoke generator, smoke pellet, smoke rodlet, smoke tablet, smoke tin, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), tracking powder, ultra low volume (ulv) liquid, ultra low volume (ulv) suspension, vapour releasing product, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder.

[0025] These compositions include not only compositions which are ready to be applied to the plant or seed to be treated by means of a suitable device, such as a spraying or dusting device, but also concentrated commercial compositions which must be diluted before they are applied to the crop.

[0026] The compounds of the invention can also be mixed with one or more insecticides, fungicides, bactericides, attractant acaricides or pheromones or other compounds with biological activity. The mixtures thus obtained have a broadened spectrum of activity. The mixtures with other fungicides are particularly advantageous.

[0027] The fungicidal compositions of the present invention can be used to curatively or preventively control the phytopathogenic fungi of crops. Thus, according to a further aspect of the present invention, there is provided a method for curatively or preventively controlling the phytopathogenic fungi of crops characterised in that a fungicidal composition as hereinbefore defined is applied to the seed, the plant and/or to the fruit of the plant or to the soil in which the plant is growing or in which it is desired to grow.

[0028] The composition as used against phytopathogenic fungi of crops comprises an effective and non-phytotoxic amount of an active material of general formula (I).

[0029] The expression "effective and non-phytotoxic amount" means an amount of composition according to the invention which is sufficient to control or destroy the fungi present or liable to appear on the crops, and which does not

entail any appreciable symptom of phytotoxicity for the said crops. Such an amount can vary within a wide range depending on the fungus to be combated, the type of crop, the climatic conditions and the compounds included in the fungicidal composition according to the invention.

[0030] This amount can be determined by systematic field trials, which are within the capabilities of a person skilled in the art.

[0031] The method of treatment according to the present invention is useful to treat propagation material such as tubers and rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants pricking out. This method of treatment can also be useful to treat roots. The method of treatment according to the present invention can also be useful to treat the overground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruits of the concerned plant.

[0032] Among the plants targeted by the method according to the invention, mention may be made of cotton; flax; vine; fruit crops such as Rosaceae sp. (for instance pip fruits such as apples and pears, but also stone fruits such as apricots, almonds and peaches), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for instance banana trees and plantins), Rubiaceae sp., Theaceae sp., Sterculiceae sp., Rutaceae sp. (for instance lemons, oranges and grapefruits); leguminous crops such as Solanaceae sp. (for instance tomatoes), Liliaceae sp., Asteraceae sp. (for instance lettuces), Umbelliferae sp., Cruciferae sp., Chenopodiaceae sp., Cucurbitaceae sp., Papilionaceae sp. (for instance strawberries); big crops such as Graminae sp. (for instance maize, cereals such as wheat, rice, barley and triticale), Asteraceae sp. (for instance sunflower), Cruciferae sp. (for instance colza), Papilionaceae sp. (for instance soja), Solanaceae sp. (for instance potatoes), Chenopodiaceae sp. (for instance beetroots); horticultural and forest crops; as well as genetically modified homologues of these crops.

[0033] Among the plants and the possible diseases of these plants targeted by the method according to the present invention, mention may be made of

- wheat, as regards controlling the following seed diseases: fusaria (Microdochium nivale and Fusarium roseum), stinking smut (Tilletia caries, Tilletia controversa or Tilletia indica), septoria disease (Septoria nodorum) and loose smut;
 - wheat, as regards controlling the following diseases of the aerial parts of the plant: cereal eyespot (Tapesia yallundae, Tapesia acuiformis), take-all (Gaeumannomyces graminis), foot blight (F. culmorum, F. graminearum), black speck (Rhizoctonia cerealis), powdery mildew (Erysiphe graminis forma specie tritici), rusts (Puccinia striiformis and Puccinia recondita) and septoria diseases (Septoria tritici and Septoria nodorum);
 - wheat and barley, as regards controlling bacterial and viral diseases, for example barley yellow mosaic;
 - barley, as regards controlling the following seed diseases: net blotch (Pyrenophora graminea, Pyrenophora teres
 and Cochliobolus sativus), loose smut (Ustilago nuda) and fusaria (Microdochium nivale and Fusarium roseum);
 - barley, as regards controlling the following diseases of the aerial parts of the plant: cereal eyespot (*Tapesia yallundae*), net blotch (*Pyrenophora teres* and *Cochliobolus sativus*), powdery mildew (*Erysiphe graminis forma specie hordei*), dwarf leaf rust (*Puccinia hordei*) and leaf blotch (*Rhynchosporium secalis*);
 - potato, as regards controlling tuber diseases (in particular *Helminthosporitim solani*, *Phoma tuberosa*, *Rhizoctonia solani*, *Fusarium solani*), mildew (*Phytopthora infestans*) and certain viruses (virus Y);
- potato, as regards controlling the following foliage diseases: early blight (Alternaria solani), mildew (Phytophthora infestans);
 - cotton, as regards controlling the following diseases of young plants grown from seeds: damping-off and collar rot (Rhizoctonia solani, Fusarium oxysporum) and black root rot (Thielaviopsis basicola);
 - protein yielding crops, for example peas, as regards controlling the following seed diseases: anthracnose (Ascochyta pisi, Mycosphaerella pinodes), fusaria (Fusarium oxysporum), grey mould (Botrytis cinerea) and mildew (Peronospora pisi):
 - oil-bearing crops, for example rape, as regards controlling the following seed diseases: Phoma lingam, Alternaria brassicae and Sclerotinia sclerotiorum;
 - com, as regards controlling seed diseases: (Rhizopus sp., Penicillium sp., Trichoderma sp., Aspergillus sp., and Gibberella fujikuroi);
 - flax, as regards controlling the seed disease: Alternaria linicola;

30

35

45

- forest trees, as regards controlling damping-off (Fusarium oxysporum, Rhizoctonia solani);
- rice, as regards controlling the following diseases of the aerial parts: blast disease (Magnaporthe grisea), bordered sheath spot (Rhizoctonia solani);
- leguminous crops, as regards controlling the following diseases of seeds or of young plants grown from seeds: damping-off and collar rot (Fusarium oxysporum, Fusarium roseum, Rhizoctonia solani, Pythium sp.);
 - leguminous crops, as regards controlling the following diseases of the aerial parts: grey mould (Botrytis sp.), powdery mildews (in particular Erysiphe cichoracearum, Sphaerotheca fuliginea and Leveillula taurica), fusaria (Fusar-

ium oxysporum, Fusarium roseum), leaf spot (Cladosporium sp.), alternaria leaf spot (Alternaria sp.), anthracnose (Colletotrichum sp.), septoria leaf spot (Septoria sp.), black speck (Rhizoctonia solani), mildews (for example Bremia lactucae, Peronospora-sp., Pseudoperonospora sp., Phytophthora sp.);

- fruit trees, as regards diseases of the aerial parts: monilia disease (Monilia fructigenae, M. laxa), scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha);
- vine, as regards diseases of the foliage: in particular grey mould (Botrytis cinerea), powdery mildew (Uncinula necator), black rot (Guignardia biwelli) and mildew (Plasmopara viticola);
- beetroot, as regards the following diseases of the aerial parts: cercospora blight (Cercospora beticola), powdery mildew (Erysiphe beticola), leaf spot (Ramularia beticola).

10

40

45

50

55

[0034] The fungicide composition according to the present invention may also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds of the present invention, or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.

[0035] The dose of active material usually applied in the treatment according to the present invention is generally and advantageously between 10 and 800 g/ha, preferably between 50 and 300 g/ha for applications in foliar treatment. The dose of active material applied is generally and advantageously between 2 and 200 g per 100 kg of seed, preferably between 3 and 150 g per 100 kg of seed in the case of seed treatments. It is clearly understood that the doses indicated above are given as illustrative examples of the invention. A person skilled in the art will know how to tailor the application doses according to the nature of the crop to be treated.

[0036] The fungicidal composition according to the present invention may also be used in the treatment of genetically modified organisms with the compounds according to the invention or the agrochemical compositions according to the invention. Genetically modified plants are plants into whose genome a heterologous gene encoding a protein of interest has been stably integrated. The expression "heterologous gene encoding a protein of interest" essentially means genes which give the transformed plant new agronomic properties, or genes for improving the agronomic quality of the transformed plant.

[0037] The compositions according to the present invention may also be used to curatively or preventively treat human and animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by *Aspergillus spp.*, for example *Aspergillus fumigatus*.

[0038] The aspects of the present invention will now be illustrated with reference to the following tables of compounds and examples. The following Tables A to V illustrate in a non-limiting manner examples of fungicidal compounds according to the present invention. In the following Examples, M+1 (or M-1) means the molecular ion peak, plus or minus 1 a.m.u. (atomic mass units) respectively, as observed in mass spectroscopy and M (Apcl+) means the molecular ion peak as it was found via positive atmospheric pressure chemical ionisation in mass spectroscopy.

Table A

		F

R^4 R^3	N R ¹	Y¹	Y ² N	, Υ ³ `Υ ⁴
R^2				

Compound	R^{1}	\mathbb{R}^2	\mathbb{R}^3	R ⁴	Y¹	Y ²	Y ³	\mathbf{Y}^4	M+1
1	Н	Н	Н	Н	Cl	Н	CF ₃	Н	319 at 1 ³⁵ Cl
2	Н	NO ₂	Н	Н	Cl	Н	CF ₃	Н	364 at 1 35Cl
3	Н	Н	Н	Me	Cl	Н	CF ₃	Н	333 at 1 35Cl

Table B

10

	Y ²
n ⁷ 0	Y ¹ Y ³
$\mathbb{R} \setminus \mathbb{L}$	、
\mathbb{R}^6	√ ′N′ ′Y⁴
$Q \sim R^{5} R^{5}$	

				•						
Compound	R ¹	R ⁵	R ⁶	R ⁷	Y¹	Y ²	Y ³	Y ⁴	M (Apcl+)	M+1
4	Ή	Мс	. H 4-	Н	Cl	H	CF ₃	Н		333 at 1 ³⁵ Cl
5	Н	CF ₃	chloro- phenyl	H	Cl	Н	CF ₃	Н		497 at 2 ³⁵ Cl
6	Н	Н	Н	Н	Cl	Н	CF ₃	Н		319 at 1 ³⁵ Cl
7	Н	Me	t-Bu	Н	Cl	Н	CF ₃	Н		389 at 1 35Cl
8	Н	Me	Ph 4-	Н	Cl	Н	CF ₃	Н		409 at 1 ³⁵ Cl
9	H	Me	chloro- phenyl	Н	Cl	Н	CF ₃	Н		443 at 2 ³⁵ Cl
10	H	Me	Me	Н	Cl	Н	CF ₃	Н		347 at 1 35Cl
11	Н	CF ₃	Me 3-	Н	Cl	Н	CF ₃	Н		401 at 1 ³⁵ Cl
12	Н	CF ₃	chloro- phenyl	Н	Cl	Н	CF ₃	Н	496 at 2 ³⁵ Cl	
13	H	CF ₃	Ph	H	Cl	H	CF ₃	H		463 at 1 35Cl
14	Н	Н	Н	Me	Cì	Н	CF ₃	Н		333 at 1 ³⁵ Cl
15	Н	CF ₃	Н	Н	Cl	Н	CF ₃	Н		387 at 1 35Cl

50

<u>Table C</u>

٤	5	

10

 $\begin{array}{c|c}
 & Y^1 \\
 & Y^2 \\
 & Y^3 \\
 & Y^4 \\
 & R^{10}
\end{array}$

15

	Compound	R¹	R ¹⁰	R11	R ¹²	Y¹	Y ²	Y ³	Y ⁴	M (Apcl+)	M+1
20	16	Н	Н	Н	H	CI	Н	CF ₃	Н		335 at 1 35Cl
	17	Н	Н	Н	Cl	Cl	Н	CF ₃	Н		369 at 2 35Cl
	18	Н	Н	Н	Me	Cl	Н	CF ₃	Н		349 at 1 35Cl
25	19	Н	Н	SO ₂ iPr	Cl	Cl	Н	CF ₃			475 at 2 35Cl
	20	Н	Н	Н	Br	Cl	Н	CF ₃	H	412 at 1 ³⁵ Cl and 1 ⁷⁹ Br	
30	21	Н	2- Pyridyl	Н	Н	Cl	Н	CF ₃	Н		412 at 1 ³⁵ Cl
	22	Н	Ph	Н	Н	Cl	Н	CF ₃	Н		411 at 1 ³⁵ Cl
35	23	Н	Н	SO ₂ Me	Cl	Cl	Н	CF ₃	H	446 at 1 35Cl	
	24	Н	SMe	SO ₂ iPr	Cl	Cl	Н	CF ₃	Н		521 at 2 ³⁵ Cl
40	25	Н	SMe	SO ₂ iPr	I	Cl	Н	CF ₃	Н	612 at 1 35Cl	
40	26	Н	Cl	Cl	Cl	Cl	Н	CF ₃	Н	436 at 4 35Cl	
	27	Н	Н	Н	I	Cl	Н	CF ₃	Н		461 at 1 35Cl
45	28	Н	Н	Н	Cl	Cl	Н	CF ₃	Н		369 at 2 35Cl

50

Table D

5

$$R^{14} \xrightarrow{O} \qquad \qquad Y^{1} \xrightarrow{Y^{2}} \qquad Y^{3}$$

$$R^{13} \xrightarrow{S} \qquad \qquad R^{15} \qquad \qquad R^{1}$$

10

15 $R^{13} \stackrel{\cdot}{-}$ R^{14} R^{15} $\mathbf{Y^l}$ $\mathbf{Y}^{\mathbf{2}}$ $\boldsymbol{Y^3}$ \mathbf{Y}^{4} R^1 M+1Compound 399 at 2 35Cl Cl CF_3 29 OMe Н ClН Н 20 335 at 1 ³⁵Cl CF₃ Cl Н 30 Н H Н Н Н 349 at 1 35Cl Cl Н CF_3 Н 31 Н H Н Me

25

Table E

30

35

$$R^{16} \longrightarrow R^{16} \longrightarrow R^{19} \longrightarrow R^{19} \longrightarrow R^{18} \longrightarrow R^{19} \longrightarrow R^{19} \longrightarrow R^{18} \longrightarrow R^{19} \longrightarrow R$$

40

Compound	R¹	R ¹⁶	R ¹⁷	R ¹⁸	R ¹⁹	Y¹	Y ²	Y ³	Y ⁴	M-1
32	Н	Н	Me	Me	Me	Cl	Н	CF ₃	Н	358 at 1 ³⁵ Cl

50

45

<u>Table F</u>

 $R^{23} \longrightarrow N$ $R^{20} \longrightarrow N$ $R^{20} \longrightarrow N$ $R^{21} \longrightarrow N$ $R^{20} \longrightarrow N$ $R^{21} \longrightarrow N$

Compound	R¹	R ²⁰	R ²¹	R ²²	R ²³	Y¹	Y ²	Y ³	Y ⁴	M (APcI+)	M+1
33	Н	Me	Н	Н	Н	Cl	Н	CF ₃	Н		332 at 1 ³⁵ Cl
34	Н	Н	Me	Ac	Me	Cl	Н	CF ₃	Н	387 at 1 35Cl	

Table G

Compound	R¹	R ²⁶	R ²⁷	Y	Y ²	Y ³	Y ⁴	M+1
35	J-I	Н .	Ph	Cl	Н	CF ₃	Н	396 at 1 ³⁵ Cl

Table H

Compo	und R ¹	R ²⁸	R ²⁹	Y ¹	Y ²	Y ³	Y ⁴	M+1
36	Н	Me	CF ₃	Cl	Н	CF ₃	Н	418 at 1 ³⁵ Cl
37	Н	Me	CHF ₂	Cl	Н	CF ₃	Н	400 at 1 35Cl
38	Н	Ph	Me	Cl	Н	CF ₃	Н	426 at 1 35Cl

Table I

$$R^{32} \longrightarrow N-N \qquad R^{1} \qquad N$$

Compound	R ¹	R ³²	R ³³	R ³⁴	Y¹	Y ²	Y ³	Y ⁴	M (APcI+)	M+1
39	Н	Н	Me	t-Bu	Cl	Н	CF ₃	H		389 at 1 35Cl
40	Н	Н	Me	Me	Cl	Н	CF ₃	Н		347 at 1 35Cl
41	Н	Br	NO ₂	Me	CI	Н	CF ₃	Н	455 at 1 ³⁵ Cl and 1 ⁷⁹ Br	
42	Н	I	Н	Me	Cl	Н	CF ₃	Н		459 at 1 35Cl

Table J

10

15

20	Compound	R ¹	R ³⁵	R ³⁶	R ³⁷	Y¹	Y ²	Y ³	Y ⁴	M+1
	43	Н	Me	F	Me	Cl	Н	CF ₃	Н	365 at 1 ³⁵ Cl
	44	Н	Me	H	Me	Cl	Н	CF ₃	Н	347 at 1 35Cl
25	45	Н	CHF ₂	H	Me	CI	Н	CF ₃	Н	383 at 1 ³⁵ Cl
	46	Н	Н	CF ₃	Ph	Cl	Н	CF ₃	Н	463 at 1 35Cl
30	47	H	Н	CF ₃	4-chlorophenyl	Cl	Н	CF ₃	Н	497 at 2 35Cl
	48	Н	Н	Cl	Me	Cl	Н	CF ₃	Н	367 at 2 35Cl
	49	Н	Н	Me	4-fluorophenyl	Cl	Н	CF ₃	Н	427 at 1 35Cl
35	50	Н	Н	Me	4-methoxyphenyl	Cl	Н	CF ₃	Н	439 at 1 35Cl
	51	H	Н	Me	Ph	Cl	Н	CF ₃	Н	409 at 1 35Cl
	52	Н	Н	Me	2-methylphenyl	Cl	Н	CF ₃	Н	423 at 1 35Cl
40	53	H	Н	n-Pr	Ph	Cl	Н	CF ₃	Н	437 at 1 ³⁵ Cl
	54	Н	Н	n-Pr	4-chlorophenyl	Cl	Н	CF ₃	Н	471 at 2 35Cl
	55	Н	Н	CF ₃	4-nitrophenyl	Cl	Н	CF ₃	Н	508 at 1 35Cl
45	56	Н	Me	Me	Me	Cl	Н	CF ₃	Н	361 at 1 35Cl
	57	Н	Cl	Н	Me	Cl	Н	CF ₃	Н	367 at 2 35Cl
50	58	Н	I	Н	Me	Cl	Н	CF ₃	Н	459 at 1 35Cl
	59	Н	Me	Me	Me	CI	Н	Cl	Н	??? at 2 35Cl
	60	Н	Me	F	Me	Cl	Н	Cl	Н	330 at 2 ³⁵ Cl

<u>Table K</u>

5

10

15

20

25

30

35

40

45

50

 $R^{39} \longrightarrow N \longrightarrow R^{1} \longrightarrow N^{2} \longrightarrow Y^{2}$ $X^{39} \longrightarrow N \longrightarrow R^{1} \longrightarrow N^{2} \longrightarrow Y^{4}$

Compound	R¹	R ³⁸	R ³⁹	R ⁴⁰	Y¹	Y ²	Y ³	Y ⁴	M+1
61	Н	Me	Н	t-Bu	Cl	Н	CF ₃	Н	389 at 1 35Cl
62	Н	t-Bu	Н	Me	Cl	Н	CF ₃	Н	334 at 1 35Cl
63	Н	t-Bu	Н	Benzyl	Cl	Н	CF ₃	Н	465 at 1 35Cl
64	Н	Me	Н	Me	Cl	Н	CF ₃	Н	347 at 1 35Cl
65	Н	H	Н	Ph	Cl	Н	CF ₃	Н	395 at 1 35Cl
66	Н	Me	Br	Et	Cl	Н	CF ₃	Н	439 at 1 ³⁵ Cl and 1 ⁷⁹ Br
							_		43

Table L

 $O \longrightarrow \begin{pmatrix} Y^1 & Y^2 & Y^3 & Y^4 & Y^4$

 \mathbb{R}^{41} $\mathbf{Y}^{\mathbf{2}}$ Y^3 R^1 R^{42} $\mathbf{Y}^{\mathbf{1}}$ Y^4 Compound M+1 394 at 1 35Cl 67 Н Me . H Cl H CF_3 H

Table M

10

 $\begin{array}{c|c}
R^{43} & O & Y^1 & Y^2 \\
N & N & R^4 & R^1 & N
\end{array}$

15

	Compound	R¹	R ⁴³	R ⁴⁴	Y¹	Y ²	Y ³	Y4	M-1	M+1
25	68	Н	Ме	4-methyl- [1,2,3]thiadiazol- 5-yl	Cl	Н	CF ₃	Н		432 at 1 ³⁵ Cl
	69	Н	Ме	Me	Cl	Н	CF ₃	Н		348 at 1 ³⁵ Cl
30	70	Н	Ph	Me	Cl	Н	CF ₃	Н	408 at 1 ³⁵ Cl	
35	71	Н	2-chlorophenyl	Me	CI	H.	CF ₃	Н		444 at 2 ³⁵ Cl
40	72	Н	2,6- dichlorophenyl	Me	Cl	Н	CF ₃	Н		478 at 3 ³⁵ Cl
	73	Н	2-chloro-6-fluorophenyl	Me	CI	Н	CF ₃	Н		462 at 2 ³⁵ Cl

5**0**

45

Table N

Cömpound	R ¹	R ⁴⁵	R ⁴⁶	Y¹	Y ²	Y ³	Y ⁴	M+1
74	Н	Н	Н	Cl ·	Н	CF ₃	Н	320 at 1 ³⁵ Cl

Table O

Compound	R¹	R ⁴⁸	R ⁴⁹	Y ¹	Y ²	Y ³	Y ⁴	M+1
75	H	Me	Ph	Cl	Н	CF ₃	H	410 at 1.35Cl

Table P

5

10

15

20

25

30

35

40

45

R ⁵⁰	o 	Y ¹	Y^3
N, S	N I R	N	Y

 R^1 R^{50} $\cdot Y^1$ $\mathbf{Y}^{\mathbf{2}}$ $\mathbf{Y}^{\mathbf{3}}$ $\boldsymbol{Y^4}$ Compound M+1 351 at 1 35Cl 76 Н Cl · H CF_3 Н Me

Table Q

$$R^{52}$$

$$R^{51}$$

$$N$$

$$N$$

$$N$$

$$N$$

$$N$$

$$Y^{1}$$

$$Y^{2}$$

$$Y^{3}$$

$$Y^{4}$$

Compound R¹ R^{51} R^{52} R^{53} R^{54} $\mathbf{Y}^{\mathbf{I}}$ $\mathbf{Y}^{\mathbf{2}}$ M (APcI+) M+1 432 at 2 35Cl 77 Н Н CF₃ Н CI Cl Н 397 at 3 35Cl **78** Н Cl CI Н Н Cl Н

55

Table R

5 R⁵⁷

15	Compound	R ¹	R ⁵⁵	R ⁵⁶	R ⁵⁷	R ⁵⁸	Y¹	Y²	Y ³	Y ⁴	M (ApcI+)	M+1
	79	H	Cl	Н .	.H	Н	CI	Н	CF ₃	Н		364 at 2 ³⁵ Cl
20	80	Н	Cl	Н	Н	Н	Cl	Н	Cl	Н		
	81	Н	SEt	Н	Н	Н	Cl	Н	CF ₃	Н		390 at 1 ³⁵ Cl
25	82	Н	Н	Cl	Н	Н	Cl	Н	CF ₃	Н		364 at 2 ³⁵ Cl
30	83	Н	Н	Н	Н	Н	Cl	Н	CF ₃	Н		330 at 1 ³⁵ Cl
•	84	Н	SPh	Н	Н	Н	Cl	Н	CF ₃	Н		438 at 1 ³⁵ Cl
35	85	Н	4-chloro- phenoxy	Н	H	Н	Cl	Н	CF ₃	Н		456 at 2 ³⁵ Cl
	86	Н	Н	Н	2- Thienyl	Н	Cl	H	CF ₃	Н		412 at 1 ³⁵ Cl
40	87	Н	Н	N- Morpholino	Н	Н	Cl	Н	CF ₃	Н		415 at 1 ³⁵ Cl
45	88	Н	Me	Н	Н	Н	Cl	Н	CF ₃	Н		344 at 1 ³⁵ Cl
50	89	Н	3- propenyl- sulfinyl	Н	Н	Н	Cl	H	CF ₃	Н		402 at 1 ³⁵ Cl

EP 1 449 841 A1

Comp	ound	R¹	R ⁵⁵	R ⁵⁶	R ⁵⁷	R ⁵⁸	$\mathbf{Y^1}$	Y²	Y ³	Y ⁴	M (ApcI+)	M+1
9	90	Н	SnPr	Н	Н	Н	Cl	Н	CF ₃	Н		404 at 1 ³⁵ Cl
9	1	Н	n-pentyl- sulfinyl	Н	Н	H	Cl	Н	CF ₃	H		432 at 1 35Cl
9	2	Н	Cl	Cl	F	Н	Cl	Н	CF ₃	Н	415 at 3 ³⁵ Cl	
9	3	Н	Me	CF ₃	Н	Н	Cl	Н	CF ₃	Н		412 at 1 ³⁵ Cl
9	04	Н	CN	Н	Н	Н	Cl	Н	CF ₃	Н		355 at 1 ³⁵ Cl
9	05	Н	Cl	Ме	Н	Н	Cl	Н	CF ₃	Н		378 at 2 ³⁵ Cl
9	96	Н	CF ₃	н	Н	Н	Cl	Н	CF ₃	Н		398 at 1 ³⁵ Cl
9	7	Н	F	Н	Н	Н	CI	Н	CF ₃	Н		348 at 1 ³⁵ Cl

Table S

 $R^{61} \xrightarrow{R^{62}} 0 \xrightarrow{Y^1} Y^2$ $X^{61} \xrightarrow{R^{69}} R^{1}$ $X^{61} \xrightarrow{N} Y^4$

Compound	R ¹	R ⁵⁹	R ⁶⁰	R ⁶¹	R ⁶²	Y ¹	Y ²	Y ³	Y ⁴	M+1
98	Н	Н	Cl	Cl	H	Cl	Н	CF ₃	Н	398 at 3 35CI
99	Н	Н	Me	CI	Н	Cl	Н	CF ₃	Н	378 at 2 35Cl
100	Н	Н	OMe	Cl	Н	Cl	Н	CF ₃	Н	330 at 2 35Cl
101	Н	Н	Н	Н	Н	Cl	Н	CF ₃	Н	330 at 1 35Cl
102	Н	Н	Н	Cl	Н	Cl	Н	CF ₃	Н	364 at 2 35Cl

Table T

Compound	R ¹	R ⁶³	R ⁶⁴	Y¹	Y ²	Y ³	Y ⁴	M+1
103	Н	Н	Benzyloxycarbonyl	Cl	Н	CF ₃	Н	470 at 1 ³⁵ Cl
104	Н	Н	4-trifluormethyl- pyrimidin-2-yl	CI	Н	CF ₃	Н	482 at 1 ³⁵ Cl

Table U

5

10

15

20

25

30

35

40

45

50

 $R^{66} \xrightarrow{N^{-1}} N^{1} \xrightarrow{Y^{2}} Y^{3}$

 $\mathbf{Y}^{\mathbf{3}}$ R^1 R^{65} R^{66} Y^1 $\mathbf{Y}^{\mathbf{2}}$ Y^4 Compound M+1 428 at 1 35Cl Н Н · Cl : Η CF_3 Н 105 Benzyl

Table V

$$\begin{array}{c|c}
R^{69} & X^1 & Y^1 & Y^2 \\
R^{68} & Q & R^{67} & R^1
\end{array}$$

 $\mathbf{Y}^{\mathbf{2}}$ $Y^{3} \\$ R^1 R^{67} R^{68} R⁶⁹ X^1 $\mathbf{Y}^{\mathbf{l}}$ \mathbf{Y}^{4} M+1 Compound 367 at 1 35Cl Н 106 Н Me Н Н S Cl H CF₃ 421 at 1 35Cl CF₃ 107 Н CF3 Н Н S Cl Н Н 435 at 1 35Cl 108 Н CF3 Me Н S Cl Н CF₃ Н 435 at 1 35Cl CF_3 Н CF3 Н S CI Н Н 109 Me

[0039] Examples of process for preparation of the compound of general formula (I)

Example A: Preparation of N-[2-(3-Chloro-5-trifluoromethyl-pyridin-2-yl)-ethyl}-2-trifluoromethyl-nicotinamide

[0040]

5

10

20

30

OH FFF

[0041] A solution of 204 mg (1 mmol) of 2-trifluormethyl nicotinic acid, 200 mg (0.9 mmol) of 2-(3-chloro-5-trifluormethyl-pyridin-2-yl)-ethylamine and 620 mg (1.3 mmol) of bromotripyrrolidinophosphonium hexafluorophosphate and 230 mg (1.8 mmol) N,N-Diisopropylethylamine in 8 ml methylene chloride is stirred for 20 h at room temperature.

[0042] The mixture is diluted with 10 ml water, separated and the methylene chloride phase is washed with sat. NH4Cl solution and water. The organic phase is dried over sodium sulfate. After evaporation of the solvent the residue is purified by column chromatography over silica-gel (eluant:hexane/ethylacetate = 10:1 to 1:1). Yield: 370 mg (98%).

Example B: Preparation of 2-Chloro-N-[2-(3-chloro-5-trifluoromethyl-pyridin-2-yl)-ethyl]-6-methyl-nicotinamide

[0043]

[0044] A solution of 161 mg (0.7 mmol) 2-chloro-6-methylnictotinyl chloride, 160 mg (0.7 mmol) 2-(3-chloro-5-trif-luormethyl-pyridin-2-yl)-ethylamine hydrochloride and 236 mg (1.7 mmol) sodium carbonate in 8 ml acetonitrile is stirred for 3 days at room temperature.

[0045] The mixture is diluted with 5ml water and 5 ml ethylacetate, separated and the organic phase is washed with sat. NH₄Cl solution and water. The organic phase is dried over sodium sulfate and evaporated. Yield: 200 mg (62%).

Example C: Preparation of 1-Methyl-3-trifluoromethyl-1*H*-pyrazole-4-carboxylic acid [2-(3-chloro-5-trifluoromethyl-pyridin-2-yl)-ethyl]-amide

40 [0046]

[0047] 132 mg (3.5 mmol) of sodium borohydrate is added in small portions to a solution of 370 mg (1.0 mmol) 1-methyl-3-trifluoromethyl-1H pyrazole-4-carboxylic acid-anhydride, 110 mg (0.5 mmol) (3-chloro-5-trifluormethyl-pyridin-2-yl)-acetonitrile and 120 mg (0.5 mmol) Nickel(II) chloride hexahydrate in 5 ml of acetonitrile at 0°C. Stirring was continued at room temperature for 4 hours.

[0048] After evaporation of the solvent, the residue is purified by column chromatography over silica-gel (eluant: hexane/ethylacetate = 10:1 to 1:1). Yield: 80 mg (40%).

Examples of biological activity of the compound of general formula (I)

Example 1: in vivo test on Alternaria brassicae (Leaf spot of crucifers):

The active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.

[0050] Radish plants (Pernot variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-20°C, are treated at the cotyledon stage by spraying with the aqueous suspension described above.

[0051] Plants, used as controls, are treated with an aqueous solution not containing the active material.

[0052] After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Alternaria brassicae spores (40,000 spores per cm³). The spores are collected from a 12-13-day-old culture.

[0053] The contaminated radish plants are incubated for 6-7 days at about 18°C, under a humid atmosphere.

[0054] Grading is carried out 6 to 7 days after the contamination, in comparison with the control plants.

[0055] Under these conditions, good (at least 50%) or total protection is observed at a dose of 300ppm with the following compounds: 3, 4, 5, 7, 8, 10, 11, 12, 13, 17, 18, 20, 21, 23, 27, 35, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 54,

55, 63, 65, 66, 69, 71, 72, 73, 74, 75, 77, 78, 79, 83, 84, 85, 88, 89, 91, 92, 93, 99, 102, 106.

Example 2: in vivo test on Erisyphe graminis f. sp. tritici (wheat powdery mildew):

[0056] The active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.

[0057] Wheat plants (Audace variety) in starter cups, sown on 50/50 peat soil-pozzolana substrate and grown at 12°C, are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above.

[0058] Plants, used as controls, are treated with an aqueous solution not containing the active material.

[0059] After 24 hours, the plants are contaminated by dusting them with *Erysiphe graminis* f. sp. *tritici* spores, the dusting being carried out using diseased plants.

Grading is carried out 7 to 14 days after the contamination, in comparison with the control plants.

[0060] Under these conditions, good (at least 50%) or total protection is observed at a dose of 300ppm with the following compounds: 4, 7, 11, 17, 18, 27, 33, 36, 37, 41, 43, 44, 45, 61, 72, 73, 79, 88.

Example 3: in vivo test on Botrytis cinerea (cucumber Grey mould):

[0061] The active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.

[0062] Cucumber plants (Marketer variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-20°C, are treated at the cotyledon Z11 stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.

[0063] After 24 hours, the plants are contaminated by depositing drops of an aqueous suspension of *Botrytis cinerea* spores (150,000 spores per ml) on upper surface of the leaves. The spores are collected from a 15-day-old culture and are suspended in a nutrient solution composed of:

20 g/L of gelatin

40

45

- 50 g/L of cane sugar
- 2 g/L of NH4NO3
- 1 g/L of KH2PO4

[0064] The contaminated cucumber plants are settled for 5/7 days in a climatic room at 15-11°C (day/night) and at 80% relative humidity.

[0065] Grading is carried out 5/7 days after the contamination, in comparison with the control plants. Under these conditions, good (at least 50%) protection is observed, at a dose of 500 g/ha, with a number of compounds of the present invention.

[0066] Under these conditions, good (at least 50%) or total protection is observed at a dose of 300ppm with the following compounds: 10, 11, 18, 27, 36, 37, 43, 44, 45, 79, 88, 106.

Example 4: in vivo test on Pyrenophora teres (Barley Net blotch):

[0067] The active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.

[0068] Barley plants (Express variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 12°C, are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.

[0069] After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of *Pyrenophora teres* spores (12,000 spores per ml). The spores are collected from a 12-day-old culture. The contaminated barley plants are incubated for 24 hours at about 20°C and at 100% relative humidity, and then for 12 days at 80% relative humidity.

[0070] Grading is carried out 12 days after the contamination, in comparison with the control plants. Under these conditions, good (at least 50%) protection is observed, at a dose of 500 g/ha, with a number of compounds of the present invention.

[0071] Under these conditions, good (at least 50%) or total protection is observed at a dose of 300ppm with the following compounds: 4, 6, 10, 11, 18, 20, 27, 35, 36, 37, 39, 41, 43, 44, 45, 49, 50, 52, 66, 71, 76, 79, 87, 88, 92, 93, 99, 106.

15 Example 5: in vivo test on Peronospora brassicae (Cabbage downy mildew):

[0072] The active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.

[0073] Cabbage plants (Eminence variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-20°C, are treated at the cotyledon stage by spraying with the aqueous suspension described above.

[0074] Plants, used as controls, are treated with an aqueous solution not containing the active material.

[0075] After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of *Peronospora brassicae* spores (50,000 spores per ml). The spores are collected from infected plant.

[0076] The contaminated cabbage plants are incubated for 5 days at 20°C, under a humid atmosphere.

[0077] Grading is carried out 5 days after the contamination, in comparison with the control plants.

[0078] Under these conditions, good (at least 50%) or total protection is observed at a dose of 300ppm with the following compounds: 9, 10.

30 Claims

45

50

55

1. Compound of general formula (I):

$$(Y)_{n}$$

$$X$$

$$R^{1}$$

$$(I)$$

- X may be an oxygen atom or a sulphur atom;
 - Y may be the same or different and may be a halogen atom, a nitro group, a cyano group, a hydroxy, an amino group, a carboxyl group, a C₁-C₈-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₈-alkylamino, a di-C₁-C₈-alkylamino, a C₁-C₈-alkoxy, a C₁-C₆-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₈-alkylthio, a C₁-C₆-halogenoalkylthio having 1 to 5 halogen atoms, a C₂-C₈-alkenyloxy, a C₂-C₈-halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-alkinyloxy, a C₃-C₈-halogenoalkinyloxy having 1 to 5 halogen atoms, a C₃-C₈-grycloalkyl, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C₁-C₆-alkoximino-C₁-C₆-alkyl;
 - R¹ may be a hydrogen atom, a cyano group, a nitro group, a formyl group, a C₁-C₆-alkyl, a C₁-C₆-alkylcarbamoyl, a C₂-C₆-alkenyl, a C₂-C₆-alkynyl, a C₁-C₆-halogenoalkyl having 1 to 7 halogen atoms, a C₁-C₆-alkoxy-C₁-C₆-alkyl, a C₁-C₆-cyanalkyl, a C₁-C₆-aminoalkyl, a C₃-C₆-cycloalkyl, a C₁-C₆-alkylcarbonyl, a C₁-C₆-halogenalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₆-alkylcarbonyl, a C₁-C₆-alkylcarbonyl or a C₁-C₆-halogenalkylsulfanyl having 1 to 5 halogen atoms;

- n may be 1,2,3 3 or 4; and
- Het represents an optionally substituted 5-, 6- or 7-membered heterocycle with one, two or three heteroatoms which may be the same or different; Het being linked by a carbon atom.
- A compound according to claim 1, characterised in that X represents an oxygen atom.
 - 3. A compound according to claim 1 or 2, characterised in that n is 1 or 2.
 - 4. A compound according to claim 3, characterised in that n is 2.
 - A compound according to any of the claims 1 to 4, characterised in that at least one of the Y substituent is a
 halogen atom, a C₁-C₈-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms or a C₁-C₆-alkoxy-C₁-C₆-alkylcarbonyl.
- 6. A compound according to claim 5, characterised in that at least one of the Y substituent is a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms.
 - 7. A compound according to claim 6, characterised in that at least one of the Y substituent is -CF₃.
- A compound according to any of the claims 1 to 7, characterised in that the 2-pyridyl is substituted in 3- and/or in 5-position.
 - 9. A compound according to claim 7 and 8, characterised in that the 2-pyridyl is substituted in 5-position by -CF₃.
- 25 10. A compound according to any of the claims 1 to 9, characterised in that Het is a five membered ring heterocycle.
 - 11. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (II)

$$R^3$$
 R^4
(II)

in which :

10

30

35

40

45

50

55

- R² and R³ may be the same or different and may be a hydrogen atom, a halogen atom, an amino group, a nitro group, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R⁴ may be a hydrogen atom, a halogen atom, a nitro group, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
- 12. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (III)

$$R^7$$
 R^6
 Q
 R^5
(III)

- R5 may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
 - R⁶ and R7⁶ may be the same or different and may be a hydrogen atom, a halogen atom, an amino group, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.

13. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (IV)

$$R^9$$
 R^8 (IV)

in which:

5

20

25

30

35

40

45

- R8 may be a halogen, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R⁹ may be a hydrogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.

14. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (V)

$$R^{11}$$
 R^{12}
 R^{10}
 S
 $(V$

in which:

- R¹⁰ and R¹¹ may be the same or different and may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkylthio, a C₁-C₄-alkylsulphonyl a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl or a pyridyl otpionally substituted by a halogen atom or a C₁-C₄-alkyl and
- R¹² may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having
 1 to 5 halogen atoms or a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms.
- 15. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (VI)

in which:

- R¹³ and R¹⁴ may be the same or different and may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-alkyloxy or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R15 may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
- 16. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (VII)

in which:

5

10

15

20

25

30

35

40

45

50

55

- R16 may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms;
- R¹⁷ and R¹⁹ may be the same or different and may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R¹⁸ may be a hydrogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl, a hydroxy-C₁-C₄-alkyl, a C₁-C₄-alkylsulphonyl, a di(C₁-C₄-alkyl)aminosulphonyl, a C₁-C₆-alkylcarbonyl, a phenylsulphonyl optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a benzoyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.

17. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (VIII)

in which:

- R²⁰ may be a hydrogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoyl-C₁-C₄-alkyl, a hydroxy-C₁-C₄-alkyl, a C₁-C₄-alkylsulphonyl, a di(C₁-C₄-alkyl)aminosulphonyl, a C₁-C₆-alkylcarbonyl, a phenylsulphonyl optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a benzoyl optionally substituted by a halogen atom or a C₁-C₄-alkyl; and
- R²¹, R²² and R²³ may be the same or different and may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a C₁-C₄-alkylcarbonyl.

18. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (IX)

$$R^{24} \longrightarrow 0$$

$$(IX)$$

- R²⁴ may be a hydrogen atom or a C₁-C₄-alkyl; and
- R²⁵ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
- 19. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (X)

$$\begin{array}{c}
N \\
R^{26}
\end{array}$$

$$\begin{array}{c}
N \\
R^{27}
\end{array}$$

$$(X)$$

in which:

5

10

15

20

25

30

35

40

45

- R²⁶ may be a hydrogen atom or a C₁-C₄-alkyl; and
- R²⁷ may be a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.
- 20. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XI)

$$\mathbb{R}^{28} \stackrel{N}{\searrow} \mathbb{S}^{29}$$
(XI)

in which:

- R²⁸ may be a hydrogen atom, a halogen atom, an amino group, a cyano group, a C₁-C₄-alkylamino, a di-(C₁-C₄-alkyl) amino, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl; and
- R²⁹ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
- 21. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XII)

$$R^{30} \searrow R^{31}$$
(XII)

in which:

- R³⁰ may be a hydrogen atom, a halogen atom, an amino group, a cyano group, a C₁-C₄-alkylamino, a di-(C₁-C₄-alkyl) amino, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms; and
- R³¹ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
- 22. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XIII)

- R³² may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₃-C₆-cycloalkyl, a C₁-C₄-alkoxy, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl group or an aminocarbonyl-C₁-C₄-alkyl;
- R³³ may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₁-C₄-alkyl, a C₁-C₄-alkoxy or a C₁-C₄-alkylthio; and
- R³⁴ may be a hydrogen atom, a phenyl, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-C₁-C₄-alkyl, a C₂-C₆-alkenyl, a C₃-C₆-cycloalkyl, a C₁-C₄-alkylthio-C₁-C₄-alkyl, a C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl or a C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl having 1 to 5 halogen atoms.
- 23. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XIV)

in which:

5

10

15

20

25

30

35

40

45

50

55

- R³⁵ may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₃-C₆-cycloalkyl, a C₁-C₄-alkoxy, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl or an aminocarbonyl-C₁-C₄-alkyl;
- R³⁶ may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-alkoxy, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms or a C₁-C₄-alkylthio; and
- R³⁷ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-C₁-C₄-alkyl, a C₂-C₆-alkenyl, a C₃-C₆-cycloalkyl, a C₁-C₄-alkylthio-C₁-C₄-alkyl, a C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy-C₁-C₄-alkyl, a C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom, a C₁-C₄-alkyl, a C₁-C₄-alkoxyalkyl or a nitro group.
- 1.3. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XV)

$$\begin{array}{c}
R^{39} \\
N \\
N \\
R^{40}
\end{array}$$
(XV)

- R³⁸ may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₃-C₆-cycloalkyl, a C₁-C₄-alkoxy, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl, or an aminocarbonyl-C₁-C₄-alkyl;
- R³⁹ may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-alkoxy, a C₁-C₄-alkylthio or a C₁-C₄-halogenoalky having 1 to 5 halogen atoms;
- R⁴⁰ may be a hydrogen atom, a phenyl, a benzyl, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-C₁-C₄-alkyl, a C₂-C₆-alkenyl, a C₃-C₆-cycloalkyl, a C₁-C₄-alkylthio-C₁-C₄-alkyl, a C₁-C₄-alkyl

halogenoalkylthio- C_1 - C_4 -alkyl having 1 to 5 halogen atoms, a C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, a C_1 - C_4 -halogenoalkoxy- C_1 - C_4 -alkyl having 1 to 5 halogen atoms.

25. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XVI)

5

10

15

20

25

30

35

40

45

50

55

in which R^{41} and R^{42} may be the same or different and may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms.

26. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XVII)

in which R^{43} and R^{44} may be the same or different and may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl, a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, a phenyl optionally substituted by a halogen atom or a C_1 - C_4 -alkyl, or a heterocyclyl optionally substituted by a halogen atom or a C_1 - C_4 -alkyl.

27. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XVIII)

in which R^{45} and R^{46} may be the same or different and may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms.

28. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XIX)

in which R⁴⁷ may be a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.

29. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XX)

in which:

5

10

20

25

30

35

45

55

- R^{48} may be a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms; and
- R⁴⁹ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or a phenyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.
- 30. A compound according to claim 10, characterised in that Het represents a heterocycle of the general formula (XXI)

in which R50 may be a halogen atom, a C1-C4-alkyl or a C1-C4-halogenoalkyl having 1 to 5 halogen atoms.

- 31. A compound according to any of the claims 1 to 9, characterised in that Het is a six membered heterocycle.
- 32. A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXII)

- R51 may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms or a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms;
- R⁵², R⁵³ and R⁵⁴, which may be the same or different, may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkylsulphinyl or a C₁-C₄-alkylsulphonyl.
- 33. A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula(XXIII)

in which:

5

10

15

20

25

35

40

45

50

55

- R55 may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy, a C₁-C₅-alkylthio, a C₂-C₅-alkenylthio a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms, a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms, a phenyloxy optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a phenylthio optionally substituted by a halogen atom or a C₁-C₄-alkyl;
- R56, R57 and R58, which may the same or different, may be a hydrogen atom, a halogen atom, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkylsulphonyl, a C₁-C₄-alkylsulphonyl, a N-morpholine optionally substituted by a halogen atom or a C₁-C₄-alkyl, or a thienyl optionally substituted by a halogen atom or a C₁-C₄-alkyl.
- A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXIV)

$$R^{62}$$
 R^{59}
 R^{60}
(XXIV)

in which R^{59} , R^{60} , R^{61} and R^{62} , which may be the same or different, may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C_1 - C_4 -alkyl, a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, a C_1 - C_4 -alkylthio, a C_1 - C_4 -halogenoalkylthio having 1 to 5 halogen atoms, a C_1 - C_4 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_4 -alkylsulphinyl or a C_1 - C_4 -alkylsulphinyl.

35. A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXV)

$$R^{64}$$
 R^{63}
 R^{63}
 R^{63}

in which:

- R63 may be a hydrogen atom, a halogen atom, a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms:
- R⁶⁴ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₆-alkoxycarbonyl, a benzyl optionally substituted by 1 to 3 halogen atoms, a benzyloxycarbonyl optionally substituted by 1 to 3 halogen atoms or a heterocyclyl.
- A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXVI)

- R⁶⁵ may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₄-alkoxy, a C₁-C₄-alkylthio, a C₁-C₄-halogenoalkylthio having 1 to 5 halogen atoms or a C₁-C₄-halogenoalkoxy having 1 to 5 halogen atoms;
- R⁶⁶ may be a hydrogen atom, a C₁-C₄-alkyl, a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms or a benzyl.
- A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXVII)

$$\begin{array}{c}
R^{69} \\
 & X1 \\
 & R^{67}
\end{array}$$
(XXVII)

in which:

5

10

15

20

25

30

35

40

45

50

- X¹ may be a sulphur atom, -SO-, -SO₂- or -CH₂-;
- R67 may be a C1-C4-alkyl or a C1-C4-halogenoalkyl having 1 to 5 halogen atoms; and
- R⁶⁸ and R⁶⁹ may be the same or different and may be a hydrogen atom or a C₁-C₄-alkyl.
- 38. A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXVIII)

in which:

- R⁷⁰ may be a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms;
- 39. A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXIX)

$$R^{n}$$
 (XXIX)

- R⁷¹ may be a C₁-C₄-alkyl or a C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms.
- A compound according to claim 31, characterised in that Het represents a heterocycle of the general formula (XXX)

$$\begin{array}{c}
N \\
R^{72}
\end{array}$$
(XXX)

in which R^{72} may be a hydrogen atom, a halogen atom, a C_1 - C_4 -alkyl or a C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms.

41. A process for the preparation of compound of general formula (I) according to any of the claims 1 to 40, which comprises reacting a carboxylic acid derivative of the general formula (A)

$$G$$
 Het

20 in which:

5

10

30

35

45

- Het is as defined above;
- G may be a halogen atom, a hydroxy group or a C₁-C₆-alkoxy;
- with a 2-pyridine derivative of general formula (B)

$$(Y)_{n}$$

$$NH$$

$$R^{1}$$

$$(B)$$

in which Y, R1 and n are as defined in claim 1;

in the presence of a catalyst if G is a hydroxy or a C_1 - C_6 -alkoxy group, or in the presence of an acid binder if G is a halogen atom.

- 40 42. A process according to claim 41, characterised in that the catalyst may be dicyclohexylcarbodiimide, N,N'-carbonyldimidazole, bromotripyrrolidinophosphonium hexafluorophosphate or trimethylaluminium.
 - 43. A process according to claim 42, **characterised in that** the acid binder may be a carbonate, an aqueous alkali or a tertiary amine.
 - 44. A process for the preparation of compound of general formula (I) according to any of the claims 1 to 40, which comprises reacting a carboxylic acid anhydride derivative of general formula (C)

- Het is as defined above;
- W may be defined as Het or a C₁-C₆-alkyl,

with a 2-pyridine derivative of the formula (D)

10

15

5

in which R^1 and n are each as defined in claim 1; in the presence of a reducing agent .

- 45. A process according to claim 44, characterised in that the reducing agent is H₂ or NaBH₄.
- 46. Compound of general formula (E):

$$Z^{1}$$
 NH
 R^{1}
 E

25

20

in which:

30

- Z may be the same or different and may be a halogen atom, a nitro group, a cyano group, a hydroxy, a carboxyl group, a C₁-C₈-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₆-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₈-alkylthio, a C₁-C₆-halogenoalkylthio having 1 to 5 halogen atoms, a C₂-C₈-alkenyloxy, a C₂-C₈-halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-alkinyloxy, a C₃-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl, a C₁-C₈-alkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-halogenoalkylsulphinyl having 1 to 5 halogen atoms or a C₁-C₆-alkoximino-C₁-C₆-alkyl;
- 35
- Z¹ may be a halogen atom or a C₁-C₈-alkyl;
- R1 and n are as defined in claim 1.
- 40
 - 47. Fungicidal composition comprising an effective amount of a compound according to any of the claims 1 to 40 and an agriculturally acceptable support.
 - 48. Fungicidal composition according to claim 47 further comprising a surfactant.
- 45
- 49. Fungicidal composition according to either of claims 47 and 48, comprising from 0.05% to 99% by weight of active material.
- 50
- 50. Method for preventively or curatively combating the phytopathogenic fungi of crops, characterised in that an effective and non-phytotoxic amount of a composition according to any of the claims 46 to 48 is applied to the plant seeds or to the plant leaves and/or to the fruits of the plants or to the soil in which the plants are growing or in which it is desired to grow them.

EUROPEAN SEARCH REPORT

Application Number EP 03 35 6029

Category	Citation of document with in of relevant passa	dication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Ini.Cl.7)		
Х	WO 01 11965 A (AVEN	TIS CROPSCIENCE GMBH	1-50	C07D405/12 C07D409/12 C07D413/12 C07D401/12 C07D417/12 A01N43/40		
х	WO 00 21934 A (COX LTD (GB); CONNOLLY 20 April 2000 (2006 * Example 6, page 1 * claim 1 *		1-50	7011143740		
Х	GB 1 386 965 A (ARC 12 March 1975 (1975 * claim 1 *		1-50			
Х	GB 1 316 667 A (XEF 9 May 1973 (1973-05 * claim 1; examples	5-09)	1-50			
X	EP 0 442 497 A (SUM) 21 August 1991 (199) * claim 1 *	01-08-21)	1-50	TECHNICAL FIELDS SEARCHED (InLCL.7) CO7D A01N		
	Place of search	Date of completion of the search	<u> </u>	Examiner		
	MUNICH	21 May 2003	Bas	ston, E		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		T: theory or principle E: earlier patent doc after the filing dah D: document cited in L: document cited fo	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons S: member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 03 35 6029

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

21-05-2003

Patent document cited in search report		Publication date		Patent fami member(s)		Publication date
O 0111965	A	22-02-2001	AU BR CN WO EP JP	7278500 0013371 1370047 0111965 1204323 2003506465	A T A1 A1	13-03-2001 07-05-2002 18-09-2002 22-02-2001 15-05-2002 18-02-2003
VO 0021934	Α	20-04-2000	AU WO	1424200 0021934		01-05-2000 20-04-2000
GB 1386965	A	12-03-1975	AU BE DE FR IL JP NL US ZA	467216 4050172 780552 2213843 2132000 38977 53017595 7204199 3935313 7201728	A A1 A1 A5 A B A	04-10-1973 04-10-1973 11-09-1972 12-10-1972 17-11-1972 10-02-1975 09-06-1978 -03-10-1972 27-01-1976
GB 1316667	Α	09-05-1973	BE DE FR NL	750931 2025752 2048799 7007601	A1 A5	26-11-1970 03-12-1970 19-03-1971 30-11-1970
EP 0442497	A	21-08-1991	AT CA DE DE EP ES JP JP KR US	141272 2036163 69121259 69121259 0442497 2093037 3005045 3264586 173987 5227376	A1 D1 T2 A1 T3 B2 A B1	15-08-1996 15-08-1991 19-09-1996 09-01-1997 21-08-1991 16-12-1996 31-01-2000 25-11-1991 01-02-1999 13-07-1993
··	- 					

O w For more details about this annex : see Official Journal of the European Patent Office, No. 12/82