

Product Specification ____

NHD-2.7-12864WDW3

Graphic OLED Display Module

NHD- Newhaven Display

2.7- 2.7" Diagonal Size

12864- 128x64 Pixel Resolution

WD- Model

W- Emitting Color: White

3- +3.3V Power Supply

Table of Contents

Document Revision History	, 2
Functions and Features	2
Mechanical Drawing	3
Pin Description	4
nterface Selection	5
On-Board Jumper Options	5
Electrical Characteristics	6
Optical Characteristics	
Controller Information	6
Table of Commands	7
Timing Characteristics	10
Recommended Initialization	14
Example Software Routines	15
Quality Information	16

Additional Resources

- > Support Forum: http://www.nhdforum.newhavendisplay.com
- ➤ **Github:** https://github.com/newhavendisplay
- Example Code: https://www.newhavendisplay.com/example_code.html
- Knowledge Center: https://www.newhavendisplay.com/knowledge_center.html
- **Quality Center:** https://www.newhavendisplay.com/quality_center.html
- Precautions for using LCDs/LCMs: https://www.newhavendisplay.com/specs/precautions.pdf
- ➤ Warranty / Terms & Conditions: https://www.newhavendisplay.com/terms.html

Document Revision History

Revision	Date	Description	Changed By
_	6/9/2017	Initial Release	ML
4			
1	7/25/2017	Update Storage Temperature range	ML
2	5/12/2020	Included Additional Dimensions on Mechanical Drawing	AS
3	2/4/2021	Bezel Redesign; Updated 2D Mechanical Drawing	AS
4	2/26/2021	Rectified error in MPU Pin Assignment Summary	AS

Functions and Features

- 128 x 64 Pixel resolution
- Built-in SSD1322 controller
- Parallel or Serial MPU interface
- Single, low voltage power supply
- Power options via on-board jumpers
- RoHS Compliant

Pin Description

Parallel Interface:

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED module
3	N.C.	-	No Connect by default. Can be configured to provide
	(BC_V _{DD})		independent supply voltage (2.8V – 12V DC) for boost
			converter. (refer to On-Board Jumper Options table below)
4	D/C	MPU	Data/Command select signal, D/C=0: Command; D/C=1: Data
			(tie LOW for 3-wire Serial Interface)
5	R/W or	MPU	6800-interface:
	/WR		Read/Write select signal, R/W=1: Read, R/W=0: Write
			8080-interface:
			Active LOW Write signal
6	E or /RD	MPU	6800-interface:
			Operation Enable signal Active High
			8080-interface:
			Active LOW Read signal
7-14	DB0 – DB7	MPU	8-bit bi-directional Data Bus
15	N.C. (VCC)	-	No Connect by default. Can be configured for external VCC (+15V).
			(refer to On-Board Jumper Options section below)
16	/RES	MPU	Active LOW Reset signal
17	/CS	MPU	Active LOW Chip Select signal
18	/SHDN	MPU	Active LOW Shutdown control pin for boost converter
	(N.C.)		(pulled HIGH via on-board 15kΩ resistor)
			Can be made a No Connect by removing resistor R1.
19	BS1	MPU	MPU Interface select signal
20	BS0	MPU	MPU Interface select signal

Serial Interface:

Pin No.	Symbol	External Connection	Function Description
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED module
3	N.C.	-	No Connect by default. Can be configured to provide
	(BC_V _{DD})		independent supply voltage (2.8V – 12V DC) for boost
			converter. (refer to On-Board Jumper Options table below)
4	D/C	MPU	Data/Command select signal, D/C=0: Command; D/C=1: Data
			(tie LOW for 3-wire Serial Interface)
5-6	VSS	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal
8	SDIN	MPU	Serial Data Input signal
9	N.C.	-	No Connect
10-14	VSS	Power Supply	Ground
15	N.C. (VCC)	-	No Connect by default. Can be configured for external VCC (+15V).
			(refer to On-Board Jumper Options section below)
16	/RES	MPU	Active LOW Reset signal
17	/CS	MPU	Active LOW Chip Select signal
18	/SHDN	MPU	Active LOW Shutdown control pin for boost converter
	(N.C.)		(pulled HIGH via on-board 15kΩ resistor)
			Can be made a No Connect by removing resistor R1.
19	BS1	MPU	MPU Interface select signal
20	BS0	MPU	MPU Interface select signal

Interface Selection

MPU Interface Pin Selections

Pin	6800 Parallel	8080 Parallel	3-wire Serial	4-wire Serial
Name	8-bit interface	8-bit interface	Interface	Interface
BS1	1	1	0	0
BS0	1	0	1	0

MPU Interface Pin Assignment Summary

Bus			Data	/Comma	and Inte	Control Signals							
Interface	D7										/CS	D/C	/RES
8-bit 6800				D[7	7:0]	•		•	E	R/W	/CS	D/C	/RES
8-bit 8080				D[7	7:0]				/RD	/WR	/CS	D/C	/RES
3-wire SPI		Tie LOW NC SDIN SCL								LOW	/CS	Tie LOW	/RES
4-wire SPI		•	Tie LOW			NC	SDIN	SCLK	Tie	LOW	/CS	D/C	/RES

On-Board Jumper Options

Default Jumper Setting

R4	R5	R7	Description
Close	Open	Open	(default) OLED controller and boost converter + OLED panel are powered from VDD (pin #2). This allows the full module to be powered by a single low-voltage supply.

Jumper Option #1 - Independent Supply Voltage for Boost Converter (BC VDD)

R4	R5	R7	Description
Open	Close	Open	Boost converter + OLED panel are powered from BC_VDD (pin #3). OLED controller is still powered from VDD (pin #2). This allows for increased efficiency through the boost converter, by allowing a supply voltage up to +12V at its input, BC_VDD (pin #3).

Jumper Option #2 – External Supply Voltage for OLED Panel (VCC)

_				17
	R4	R5	R7	Description
	Open	Open	Close	OLED panel is powered from VCC (pin #15) – boost converter is not used. OLED controller is still powered from VDD (pin #2). This allows for maximum module efficiency, and drastically reduced total current consumption.

Jumper Option #1

Jumper Option #2

For detailed electrical information on each jumper option, please see the Electrical Characteristics table below.

Electrical Characteristics

Values for Current shown below are based on the recommended initialization provided on page 12.

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-40	-	+85	°C
Storage Temperature Range	T _{ST}	Absolute Max	-40	-	+85	°C
		Default Jumper Setting				
Supply Voltage for Module	V_{DD}	-	2.8	3.3	3.5	V
Complex Company for Blooded		VDD=3.3V, 50% ON	-	215	235	mA
Supply Current for Module	I _{DD}	VDD=3.3V, 100% ON	-	345	375	mA
		Jumper Option #1				
Supply Voltage for Module	V_{DD}	-	2.8	3.3	3.5	V
Supply Voltage for Boost Converter	BC_V _{DD}	-	2.8	-	12	V
Supply Current for Module	I _{DD}	VDD=3.3V	-	190	305	μΑ
		BC_VDD=5.0V, 50% ON	-	135	150	mA
Supply Compant for Boart Compant		BC_VDD=5.0V, 100% ON	-	200	215	mA
Supply Current for Boost Converter	I _{DD_BC}	BC_VDD=12.0V, 50% ON	-	60	70	mA
		BC_VDD=12.0V, 100% ON	-	80	90	mA
		Jumper Option #2				
Supply Voltage for Module	V_{DD}	-	2.8	3.3	3.5	V
Supply Voltage for OLED Panel	Vcc	-	14.5	15	15.5	V
Supply Current for Module	I _{DD}	V _{DD} =3.3V	-	180	300	μΑ
Supply Current for OLED Band		Vcc=15V, 50% ON	-	45	50	mA
Supply Current for OLED Panel	I _{CC}	V _{CC} =15V, 100% ON	-	60	70	mA
Sleep Mode Current	I _{DD_SLEEP}	-	-	25	120	μΑ
"H" Level input	V _{IH}	-	0.8 * V _{DD}	-	V_{DD}	V
"L" Level input	V _{IL}	-	Vss	-	0.2 * V _{DD}	V
"H" Level output	V _{OH}	-	0.9 * V _{DD}	-	V_{DD}	V
"L" Level output	V _{OL}	-	Vss	-	0.1 * V _{DD}	V

Note: The electrical characteristics shown above for Jumper Option #1 and Jumper Option #2 apply only when the on-board jumpers are configured accordingly. By default, only Default Jumper Setting supply voltage and current (in bold) need to be considered. For details, see On-Board Jumper Options section on previous page.

Optical Characteristics

Values for Brightness shown below are based on the recommended initialization provided on page 12.

	Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit
Optimal Viewing Angles	Top)	φΥ+		-	85	-	0
	Bot	tom	φΥ-		-	85	-	0
	Left	t	θХ-	-	-	85	-	0
	Rigl	ht	θX+		-	85	-	0
Contrast Rat	io		Cr	-	>10,000:1	1	-	-
Posponso Tir	~ ~	Rise	T_R	-	-	15	-	ns
Response Tir	ne	Fall	T _F -		-	15	-	ns
Brightness			Lv	50% Checkerboard	60	80	130	cd/m ²
Lifetime	•	_	-	$T_{OP} = 25^{\circ}C$, $L_V = 80 \text{cd/m}^2$	30,000	1	-	hrs
Lifetiffie			-	$T_{OP} = 25^{\circ}C$, $L_V = 60 \text{cd/m}^2$	50,000	1	-	hrs

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. To extend the life of the display, lower values may be used for the contrast setting registers – see below table of commands for details.

Controller Information

Built-in SSD1322 controller.

For details, view full datasheet at http://www.newhavendisplay.com/app notes/SSD1322.pdf

Table of Commands

Instruction					Cod	e			Description			
Instruction	D/C	HEX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	value
Enable Grayscale Table	0	00	0	0	0	0	0	0	0	0	Enable the Grayscale table settings. (see command 0xB8)	
Set Column	0	15	0	0	0	1	0	1	0	1	Set column start and end address	
Address	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	A[6:0]: Column start address. Range: 0-119d	0
	1	B[6:0]	*	В6	В5	В4	В3	B2	B1	В0	B[6:0]: Column end address. Range: 0-119d	119d
Write RAM Command	0	5C	0	1	0	1	1	1	0	0	Enable MCU to write Data into RAM	
Read RAM Command	0	5D	0	1	0	1	1	1	0	1	Enable MCU to read Data from RAM	
Set Row Address	0	75	0	1	1	1	0	1	0	1	Set row start and end address	
	1	A[6:0]	*	Α6	A5	A4	А3	A2	A1	Α0	A[6:0]: Row start address. Range: 0-127d	0
	1	B[6:0]	*	В6	B5	B4	В3	B2	B1	В0	B[6:0]: Row end address. Range: 0-127d	127d
Set Re-map	0	Α0	1	0	1	0	0	0	0	0	A[0] = 0; Horizontal Address Increment	0
	1	A[5:0]	0	0	A5	A4	0	A2	A1	A0	A[0] = 1; Vertical Address Increment	
	1	B[4]	*	*	0	В4	0	0	0	1	A[1] = 0; Disable Column Address remap	0
											A[1] = 1; Enable Column Address remap	
											A[2] = 0; Disable Nibble remap	0
											A[2] = 1; Enable Nibble remap	
											A[4] = 0; Scan from COM0 to COM[N-1]	0
											A[4] = 1; Scan from COM[N-1] to COM0	
											A[5] = 0; Disable COM split Odd/Even	0
											A[5] = 1; Enable COM split Odd/Even	
											B[4] = 0; Disable Dual COM mode B[4] = 1; Enable Dual COM mode	0
											Note: A[5] must be 0 if B[4] is 1.	
Set Display Start	0	A1	1	0	1	0	0	0	0	1	Set display RAM display start line register from 0-127.	0
Line	1	A[6:0]	*	A6	A5	A4	A3	A2	A1	A0	Set display Kalvi display start line register from 0 127.	
Set Display Offset	0	A2	1	0	1	0	0	0	1	0	Set vertical shift by COM from 0~127.	0
. ,	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0		
Display Mode	0	A4~A7	1	0	1	0	0	X2	X1	X0	0xA4 = Entire display OFF	0xA6
											0xA5 = Entire display ON, all pixels Grayscale level 15	
											0xA6 = Normal display	
											0xA7 = Inverse display	
Enable Partial	0	A8	1	0	1	0	1	0	0	0	Turns ON partial mode.	
Display	1	A[6:0]	0	A6	A5	A4	А3	A2	A1	A0	A[6:0] = Address of start row	
	1	B[6:0]	0	В6	B5	В4	В3	B2	B1	В0	B[6:0] = Address of end row (B[6:0] > A[6:0])	
Exit Partial Display	0	A9	1	0	1	0	1	0	0	1	Exit Partial Display mode	

Function Selection	0	AB	1	0	1	0	1	0	1	1	A[0] = 0; External VDD	
	1	A[0]	0	0	0	0	0	0	0	A0	A[0] = 1; Internal VDD regulator	1
Set Sleep Mode	0	AE~AF	1	0	1	0	1	1	1	ХO	0xAE = Sleep Mode ON (display OFF)	
ON/OFF											0xAF = Sleep Mode OFF (display ON)	
Set Phase Length	0	B1	1	0	1	1	0	0	0	1	A[3:0] = P1. Phase 1 period of 5-31 DCLK clocks	9
	1	A[7:0]	A7	A6	A5	A4	A3	A2	A1	A0	A[7:4] = P2. Phase 2 period of 3-15 DCLK clocks	7
Set Display Clock	0	В3	1	0	1	1	0	0	1	1	A[3:0] = 0000; divide by 1	0
Divide Ratio /	1	A[7:0]	A7	A6	A5	A4	A3	A2	A1	A0	A[3:0] = 0001; divide by 2	
Oscillator											A[3:0] = 0010; divide by 4	
Frequency											A[3:0] = 0011; divide by 8	
											A[3:0] = 0100; divide by 16	
											A[3:0] = 0101; divide by 32	
											A[3:0] = 0110; divide by 64 A[3:0] = 0111; divide by 128	
											A[3:0] = 1000; divide by 256	
											A[3:0] = 1000, divide by 230 A[3:0] = 1001; divide by 512	
											A[3:0] = 1010; divide by 1024	
											A[3:0] >= 1011; invalid	1100b
											A[7:4] = Set the Oscillator Frequency. Frequency increases with the	
											value of A[7:4]. Range 0000b~1111b.	
VSL / Display	0	B4	1	0	1	1	0	1	0	0	A[1:0] = 00b; Enable external VSL	
Enhancement	1	A[1:0]	1	0	1	0	0	0	A1	A0	A[1:0] = 10b; Internal VSL	10b
	1	B[7:3]	B7	В6	B5	В4	В3	1	0	1	B[7:3] = 11111b; Enhanced low GS display quality	
	_	5[7.10]						_		_	B[7:3] = 10110b; Normal	10110b
Set GPIO	0	B5	1	0	1	1	0	1	0	1	A[1:0] = 00; GPIO0 input disabled	
	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[1:0] = 01; GPIO0 input enabled	
											A[1:0] = 10; GPIO0 output LOW	10b
											A[1:0] = 11; GPIO0 output HIGH	
											A[3:2] = 00; GPIO1 input disabled	
											A[3:2] = 01; GPIO1 input enabled	
											A[3:2] = 10; GPIO1 output LOW	10b
											A[3:2] = 11; GPIO1 output HIGH	
Set Second Pre-	0	В6	1	0	1	1	0	1	1	0	Sets the second precharge period	1000b
charge Period	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = DCLKs	
Set Grayscale	0	B8	1	0	1	1	1	0	0	0	Sets the gray scale pulse width in units of DCLK. Range 0-180d.	
Table	1	A1[7:0]	A1 ₇	A1 ₆	A1 ₅	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀	A1[7:0] = Gamma Setting for GS1	
	1	A2[7:0]	A2 ₇	A2 ₆	A2 ₅	A24	A2 ₃	A2 ₂	A2 ₁	A2 ₀	A2[7:0] = Gamma Setting for GS2	
	1						.					
			1	1	1	1			1	1		
	1										•	

	1 1	A14[7:0]	A14 ₇ A15 ₇	A14 ₆ A15 ₆	A14 ₅ A15 ₅	A14 ₄ A15 ₄	A14 ₃ A15 ₃	A14 ₂ A15 ₂	A14 ₁ A15 ₁	A14 ₀ A15 ₀	A14[7:0] = Gamma Setting for GS14 A15[7:0] = Gamma Setting for GS15	
	1	A15[7:0]	A157	A156	A135	A154	A153	A152	A151	A150	A15[7:0] = Gamma Setting for G515	
											Note: 0 < GS1 < GS2 < GS3 < GS14 < GS15	
											The setting must be followed by command 0x00.	
Select Default	0	В9	1	0	1	1	1	0	0	1	Sets Linear Grayscale table	
Linear Gray Scale											GS0 pulse width = 0	
Table											GS0 pulse width = 0	
											GSO pulse width = 8	
											GSO pulse width = 16	
											•	
											·	
											GS0 pulse width = 104	
											GS0 pulse width = 112	
Set Pre-charge	0	ВВ	1	0	1	1	1	0	1	1	Set precharge voltage level.	0x17
Voltage	1	A[4:0]	*	*	*	A4	A3	A2	A1	A0	A[4:0] = 0x00; 0.20*VCC	
Voltage	1 -	ره.د]				^-	7.5	72	71	70		
											A[4:0] = 0x3E; 0.60*VCC	
Set VCOMH	0	BE	1	0	1	1	1	1	1	0	Sets the VCOMH voltage level	0x04
Voltage	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = 0x00; 0.72*VCC	
											A[3:0] = 0x04; 0.8*VCC	
											•	
											A[3:0] = 0x07; 0.86*VCC	
Set Contrast	0	C1	1	1	0	0	0	0	0	1	Double byte command to select 1 out of 256 contrast steps.	0x7F
Control	1	A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	Contrast increases as the value increases.	
Master Contrast	0	С7	1	1	0	0	0	1	1	1	A[3:0] = 0x00; Reduce output for all colors to 1/16	0x0f
Control	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = 0x01; Reduce output for all colors to 2/16	
											A[3:0] = 0x0E; Reduce output for all colors to 15/16	
C . AA III I	+		-			<u> </u>	-	 _	-	<u> </u>	A[3:0] = 0x0F; no change	4071
Set Multiplex	0	CA	1	1	0	0	1	0	1	0	Set MUX ratio to N+1 MUX	127d
Ratio	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	N=A[6:0]; from 16MUX to 128MUX (0 to 14 are invalid)	
Set Command	0	FD	1	1	1	1	1	1	0	1	A[2] = 0; Unlock OLED to enable commands	0x12
Lock	1	A[2]	0	0	0	1	0	A2	1	0	A[2] = 1; Lock OLED from entering commands	

For detailed instruction information, view full SSD1322 datasheet here (pages 32-47):

http://www.newhavendisplay.com/app_notes/SSD1322.pdf

MPU Interface

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/cs	D/C
Write Command	\rightarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
DW	Chip Select Low Pulse Width (read)	120			
PW _{CSL}	Chip Select Low Pulse Width (write)	60	-	-	ns
DW	Chip Select High Pulse Width (read)	60			
PW _{CSH}	Chip Select High Pulse Width (write)	60	-	-	ns
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/cs	D/C
Write Command	1	\uparrow	0	0
Read Status	\uparrow	1	0	0
Write Data	1	\uparrow	0	1
Read Data	个	1	0	1

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Typ	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	7	-	-	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
tpWLR	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
tpWHR	Read High Time	60	-	-	ns
tpWHW	Write High Time	60	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns
t _{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns

Serial Interface (4-wire)

The 4-wire serial interface consists of Serial Clock (SCLK), Serial Data (SDIN), Data/Command (D/C), and Chip Select (/CS). D0 acts as SCLK and D1 acts as SDIN. D2 must be left as a No Connect D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/cs	D/C	D0
Write Command	Tie LOW	Tie LOW	0	0	\uparrow
Write Data	Tie LOW	Tie LOW	0	1	\uparrow

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Typ	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t _{AS}	Address Setup Time	15	-	-	ns
t _{AH}	Address Hold Time	15	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	15	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDDRAM or command register in the same clock.

Note: Read functionality is not available in serial mode.

Serial Interface (3-wire)

The 3-wire serial interface consists of Serial Clock (SCLK), Serial Data In (SDIN), and Chip Select (/CS). D0 acts as SCLK and D1 acts as SDIN. D2 must be left as a No Connect. D3~D7, E, R/W, and D/C should be connected to Ground.

Function	/RD	/WR	/CS	D/C	D0
Write Command	Tie LOW	Tie LOW	0	Tie LOW	
Write Data	Tie LOW	Tie LOW	0	Tie LOW	\uparrow

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	15	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D/C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM (D/C = 1) or the command register (D/C = 0).

Note: Read functionality is not available in serial mode.

For detailed timing information for each interface mode, view full SSD1322 datasheet here (pages 50-54): http://www.newhavendisplay.com/app notes/SSD1322.pdf

Recommended Initialization

```
void NHD12864WDY3 Init(void){
        digitalWrite(RES, LOW);
                                         //pull /RES (pin #16) low
                                         //keep /RES low for minimum 200µs
        delayUS(200);
        digitalWrite(RES, HIGH);
                                         //pull /RES high
        delayUS(200);
                                         //wait minimum 200µs before sending commands
        writeCommand(0xAE);
                                         //display OFF
        writeCommand(0xB3);
                                         //set CLK div. & OSC freq.
        writeData(0x91);
                                         //set MUX ratio
        writeCommand(0xCA);
        writeData(0x3F);
        writeCommand(0xA2);
                                         //set offset
        writeData(0x00);
        writeCommand(0xAB);
                                         //function selection
        writeData(0x01);
        writeCommand(0xA0);
                                         //set re-map
        writeData(0x16);
        writeData(0x11);
        writeCommand(0xC7);
                                         //master contrast current
        writeData(0x0F);
                                         //set contrast current
        writeCommand(0xC1);
        writeData(0x9F);
        writeCommand(0xB1);
                                         //set phase length
        writeData(0xF2);
        writeCommand(0xBB);
                                         //set pre-charge voltage
        writeData(0x1F);
        writeCommand(0xB4);
                                         //set VSL
        writeData(0xA0);
        writeData(0xFD);
        writeCommand(0xBE);
                                         //set VCOMH
        writeData(0x04);
        writeCommand(0xA6);
                                         //set display mode
        writeCommand(0xAF);
                                         //display ON
```


Example Software Routines

```
void setColumn(unsigned char xStart, unsigned char xEnd){
  writeCommand(0x15);
                             //set column (x-axis) start/end address
  writeData(xStart);
                             //column start; 28 is left-most column
  writeData(xEnd);
                             //column end; 91 is right-most column
void setRow(unsigned char yStart, unsigned char yEnd){
  writeCommand(0x75);
                             //set row (y-axis) start/end address
  writeData(yStart);
                             //row start; 0 is top row
  writeData(yEnd);
                             //row end; 63 is bottom row
void clearDisplay(void){
  unsigned int i;
  setColumn(28,91);
                             //set column (x-axis) start/end address
                             //set row (y-axis) start/end address
  setRow(0,63);
  writeRAM();
                             //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  for(i=0;i<4096;i++){}
                             // ((91-28)+1)*((63-0)+1)
   writeData(0x00);
   writeData(0x00);
void write2Pixels(unsigned char xPos, unsigned char yPos, unsigned char pixel1), unsigned char pixel2){
  if(pixel1>=1) pixel1 = 0xFF;
                                       //set 1st pixel value to ON
  else pixel1 = 0x00;
                                       //set 1st pixel value to OFF
  if(pixel2>=1) pixel2 = 0xFF;
                                       //set 2nd pixel value to ON
                                       //set 2nd pixel value to OFF
  else pixel2 = 0x00;
                                       //boundary check (MIN xPos = 0, MAX xPos = 127)
  if(xPos>127) xPos = 127;
  xPos = xPos/2;
                                       //account for GDDRAM address mapping
  xPos+=28;
                                       //account for GDDRAM address mapping
  if(yPos>63) yPos = 63;
                                       //boundary check (MIN yPos = 0, MAX yPos = 63)
  setColumn(xPos,xPos);
                                       //set column (x-axis) start/end address
                                       //set row (y-axis) start/end address
  setRow(yPos,yPos);
                                       //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  writeRAM();
  writeData(pixel1);
                                       //write 1st of 2 pixels to the display
  writeData(pixel2);
                                       //write 2nd of 2 pixels to the display
void displayArray12864(const unsigned char arr[]){
                                                           //display 128x64 monochrome bitmap, horizontal pixel arrangement, 8-pixels per byte
  unsigned int i, j;
  setColumn(28,91);
                                       //set column (x-axis) start/end address
  setRow(0,63);
                                       //set row (y-axis) start/end address
  writeRAM();
                                       //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  for(i=0;i<1024;i++){
                                       //translate each byte/bit into pixel data
   for(j=0;j<8;j++){
    if(((arr[i] << j) & 0x80) == 0x80){
     writeData(OxFF);
    else{
     writeData(0x00);
```


Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+85°C, 240hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-40°C, 240hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+85°C, 240hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-40°C, 240hrs	1,2
High Temperature / Humidity Storage	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+60°C, 90% RH, 240hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-40°C, 30min -> +25°C, 5min -> +85°C, 30min = 1 cycle 100 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-22Hz, 15mm amplitude. 22-500Hz, 1.5G 30min in each of 3 directions X, Y, Z	3
Atmospheric Pressure Test	Test the endurance of the display by applying atmospheric pressure to simulate transportation by air.	115mbar, 40hrs	3
Static electricity test	Endurance test applying electric static discharge.	Air: $\pm 8KV$; 300Ω , $150pF$ Contact: $\pm 4KV$; 300Ω , $150pF$	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Evaluation Criteria:

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value