MECH 421: Mechatronics System Instrumentation 2020/21 Winter Session – Term 2

Homework 6

Assigned: Mar 19, 2021 Due: Mar 26, 2021

Figure 1: Block diagram of a position control system.

Figure 1 shows a block diagram of a position control system. Here, $G_a(s)$ is the transconductance amplifier, $K_f = 1 \text{ N/A}$ is the actuator force constant, $G_m(s)$ is the mechanical system, and $G_s(s)$ is the sensor. The transfer functions and parameters are given as follows.

$$G_a(s) = \frac{1}{s/\omega_a + 1}$$
 $\omega_a = 2\pi \times 10^3 \, \text{rad/s}$ $G_s(s) = \frac{1}{s/\omega_s + 1}$ $\omega_s = 10\pi \times 10^3 \, \text{rad/s}$ $\omega_s = 10\pi \times 10^3 \, \text{rad/s}$ $\omega_s = 11 \, \text{kg}$

The controller C(s) is implemented in a real-time computer at a sampling rate $f_s = 10 \,\mathrm{kHz}$. The real-time computer interfaces with the sensor via an ADC and with the amplifier via a DAC. The ADC has a gain of $0.1 \,\mathrm{V^{-1}}$ and the DAC has a gain of $10 \,\mathrm{V}$ with a half-sample delay $e^{-s\frac{T}{2}}$, where $T = 1/f_s = 100 \,\mathrm{\mu s}$. Use MATLAB to answer the following questions.

(a) Draw the Bode plot of the plant

$$P(s) = \frac{Y(s)}{U(s)}$$

(b) Design a controller that implements a proportional gain and lead compensator

$$C(s) = K_p \frac{\alpha \tau s + 1}{\tau s + 1}$$

such that the loop transfer function L(s) = C(s)P(s) achieves the gain crossover at $\omega_c = 100\,\mathrm{Hz}$ with a phase margin $\phi_m > 45^\circ$. Select the values for K_p , α , and τ . Draw the Bode plot of L(s).

(c) With C(s) designed in part (b), simulate the step responses of the closed-loop system 1) from the reference r to position x and 2) from the disturbance d to position x, i.e.,

$$G_{xr}(s) = \frac{X(s)}{R(s)}$$
 $G_{xd}(s) = \frac{X(s)}{D(s)}$

(d) Design a controller that additionally implements an integral action

$$C(s) = K_p \left(1 + \frac{1}{T_i s} \right) \frac{\alpha \tau s + 1}{\tau s + 1}$$

such that the loop transfer function L(s) = C(s)P(s) achieves the gain crossover at $\omega_c = 100 \,\text{Hz}$ with a phase margin $\phi_m > 40^\circ$. Use the same values K_p , α , and τ from the part (b), and select the value of the integral time constant T_i . Draw the Bode plot of L(s).

(e) With C(s) designed in part (d), simulate the step responses of the closed-loop system $G_{xr}(s)$ and $G_{xd}(s)$. Compare the results with those from part (c).