セイファートのミリ波超過成分の起源

井上芳幸(理研)•土居明広(宇宙研)

ASJ Meeting @ Online, 2020-09-09

Multi-wavelength spectrum of AGNs

Millimeter excess in nearby Seyferts

Spectral excess in the mm-band

(e.g., Antonucci & Barvainis'88; Barvainis+'96; Doi & Inoue '16; Behar+'18).

- Contamination of extended components?
- Multi-frequency property?

ALMA observations toward nearby Seyferts

- Clear excess in nearby Seyferts (YI & Doi '18; YI, Khangulyan, & Doi '20; YI+in prep.)
- Flux ~ 1-10 mJy peaking @ a few tens GHz
- Some shows time variability ~1 month (see also Behar+'20)
- Size : < 10 pc → Nucleus

Structure of AGN core in the <10 pc scale

Ramos-Almeida & Ricci '17

- Dust torus?
 - spectral shape, not enough, variability
- Free-free?
 - spectral shape, not enough
- Jet?
 - radio-quiet, no blazar like activity
- Corona?

Supermassive black hole corona?

Hickox & Alexander+'16

- Hot corona (~100 keV)
- Heated by magnetic activity? (e.g., Haardt & Maraschi '91; Liu, Mineshige, & Shibata '02)
- If so, <u>coronal synchrotron radiation</u> is expected (Di Matteo+'97; YI & Doi '14; Raginski & Laor '16)

cm-mm spectrum of AGN core

A case of IC 4329A

- Hybrid corona model (YI & Doi '14)
- Non-thermal electron fraction : $\eta = 0.03$ (fixed)
 - Consistent with the MeV gammaray background spectrum (YI, Totani, & Ueda '08; YI+'19)
- Non-thermal spectral index: p = 2.9
- Size: 40 r_s
- B-field strength: 10 G

Reconnection Corona Heating?

Implication for the truncated accretion disk structure.

- Heating and Cooling
 - Magnetic Heating: $B^2V_A/4\pi$
 - $Q_{B, heat} \sim 10^{10} \text{ erg/cm}^2/\text{s}$
 - Compton Cooling: $4kTn_e\sigma_T cU_{\rm rad}l/m_ec^2$
 - $Q_{IC, cool} \sim 10^{13} \text{ erg/cm}^2/\text{s}$
 - Magnetic field energy is <u>NOT</u> sufficient to keep coronae hot.

- Disk truncation at some radii (e.g. ~40 r_s)
 - The inner part = hot accretion flow (Ichimaru '77, Narayan & Yi '94, '95).
 - Heated by advection.
 - Suggested for Galactic X-ray binaries. (e.g. Poutanen+'97; Kawabata+'10; Yamada+'13).
- Simultaneous model fitting to X-ray and radio data is required.

Summary

- Radio spectra (mm-band) of Seyferts are still not well understood.
- The mm-excess seems exist ubiquitously in nearby Seyferts.
 - ~1-10 mJy
 - Spectral peak at ~a few tens GHz.
 - Variable (at least monthly time scale)
 - Probably, originated from coronal synchrotron emission.
- Magnetic field are not strong enough to keep coronae hot.

