Cours de modélisation mathématique

Guilherme Dias da Fonseca

TP 2 – Stable maximum d'un graphe de disques unitaires

1 Présentation abstraite

Entrée : Un ensemble de n points du plan $S = \{p_1, \dots, p_n\}$ et un nombre réel r.

Sortie : Un sous-ensemble $I \subseteq S$ tel que si $p_i, p_j \in I$ et $i \neq j$, alors $||p_i - p_j|| > r$, où $||p_i - p_j||$ est la distance euclidienne entre p_i, p_j . C'est à dire si $p_i = (x_i, y_i), p_j = (x_j, y_j)$, on a

$$||p_i - p_j|| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$$

Objectif : Maximiser le nombre d'éléments |I|.

Un graphe de disques unitaires est un graphe où chaque sommet correspond à un disque de rayon r/2 et il y a un arc si deux disques s'intersectent. Un ensemble indépendant ou stable d'un graphe est un sous-ensemble I des sommets tel que il n'y pas d'arête entre les sommets de I. Notre problème consiste de trouver un ensemble indépendant de taille maximum dans un graphe de disques unitaires.

2 Présentation appliquée

On a les coordonnées de n antennes fixes. Chaque antenne transmet dans un rayon de r/2 kilomètres. Pour éviter des interférences, deux antennes qui sont à une distance inférieure ou égale à r ne peuvent pas être utilisé au même temps. On veut choisir le maximum d'antennes pour transmettre simultanément.

3 Exemple

Disons que l'entrée est l'ensemble de points représenté sur la figure 1 et r=1. Une solution possible de taille 4 est

$$\{(.75, 1.5), (.75, .25), (2.25, 1.5), (2.75, .25)\}$$

Par contre, on peut faire mieux. Une solution de taille 5 est

$$\{(0, 1.75), (2.25, 1.5), (2.75, .25), (.25, .75), (1.25, 1)\}$$

FIGURE 1 – Exemple de graphe de disques unitaires et son stable de taille 5.

Pour représenter la solution on utilise des disques de rayon r/2 centrés sur les points. Alors, deux disques s'intersectent si la distance entre les points correspondants est d'au moins r.

4 Fichiers d'entrée

Le fichier d'entrée est textuel et consiste de deux flottants par ligne séparés par un espace, sauf la première ligne qui contient l'entier n et la deuxième ligne qui contient le flottant r. Les n lignes de deux flottants correspondent aux coordonnées x, y de chaque point.

Pour l'exemple on a le fichier :

9

1.0

0 1.75

1.5 2

.75 1.5

.25 .75

.75 .25

1.25 1

2 .5

2.25 1.5

2.75 .25

Vous allez trouver 4 fichiers d'entrée sur l'ENT, pour n=20,100,1000,10000. Les fichiers sont basés sur les coordonnées des villes de différents pays.

5 Fichier de sortie

La première ligne du fichier de sortie est l'entier |I|. Ensuite on liste les points comme dans l'entrée. Pour l'exemple on a :

5 0 1.75 2.25 1.5 2.75 .25 .25 .75 1.25 1

6 Stratégies

Glouton La stratégie la plus simple est une méthode gloutonne (greedy) où à chaque pas on choisi un point arbitraire et ensuite enlève les points qui sont à une distance d'au plus r du point choisi. Plusieurs ordres différentes pour les points peuvent être utilisées. Faite plusieurs essais. Le logiciel peut aussi essayer plusieurs ordres au hasard et prendre le meilleur résultat trouvé.

Local Search Une fois qu'on a trouvé une bonne solution on peut essayer de la raffiner. On peut par exemple choisir un point p et essayer d'échanger chaque points de notre solution actuelle pour un point plus loin de p. Si tout si passe bien, on arrive à ajouter p à la solution. Sinon, on essaye un autre point p, comme dans la figure 2

FIGURE 2 – Exemple de local search.

7 Notation

La notation sera basée sur le tableau ci-dessous, qui indique la taille du stable nécessaire pour avoir la note à gauche pour chaque fichier. La note du projet est la moyenne des notes des 4 fichiers.

Note	20.in2	100.in2	1000.in2	10000.in2
10	4	28	100	270
12		31	120	370
14	5	33	123	377
16	6	35	126	385
18		36	129	390
20	7	37	131	400

8 Exemples de solutions

Le logiciel pour tester la solution produit un fichier SVG qui représente la solution de manière graphique. Voici les 4 exemples sur les figures 3 à 6.

FIGURE 3 – 20 capitales européennes et un stable de taille 7.

FIGURE 4 – 100 villes du Japon et un stable de taille 37.

FIGURE 5 – 1000 villes de la Grèce et un stable de taille 131.

FIGURE 6 – 10000 villes de l'Italie et un stable de taille 401.