Experiment 1

Objective:

Determination of unknown capacitance using De Sauty's Bridge method.

Items Required:

- 1. De Sauty's Bridge Trainer
- 2. 2mm Patch cords
- 3. Multimeter

Procedure:

- 1. Connect mains cord to the Trainer.
- 2. Connect terminal 1 to 4 (for evaluating unknown capacitance Cx1).
- 3. Rotate variable resistance R1 towards anticlockwise direction.
- 4. Connect null detector (i.e. terminal 5 to 9 and 8 to 10).
- 5. Set Amplitude Control knob in fully clockwise direction.
- 6. Connect terminal 19 to 6 and 20 to 7.
- 7. Now switch 'On' the power supply.

1

Nvis 6037

8. Now vary the R1 towards clockwise direction very precisely until the Null Point is detected.

(Null Point: It is the point where the voltage is minimum and on rotating R1 in any direction voltage always increases.)

- 9. Now remove the patch cord between terminal 1 & 4 and record the value of R1 in the observation table using multimeter.
- 10. Repeat above procedure for different value of unknown capacitors (i.e. Cx2 and Cx3).
- 11. Tabulate all the retrieved data in observation table below.

Observation Table:

1	Unknown Capacitor	Resistance R1 ohm	Resistance R2 ohm	Capacitor C2 µF
1.	Cx1	1		1,
2.	Cx2	, , , , ,		
3.	Cx3			

Calculations

1. For unknown Capacitance Cx1:

$$CX1 = R_2 \times \frac{C_2}{R_1}$$

$$= 2 \times \frac{311}{\mu}$$

2. For unknown Capacitance Cx2:

$$CX2 = R_2 \times \frac{C_2}{R_1}$$

0.2078 MF

3. For unknown Capacitance Cx3:

$$CX3 = R_2 \times \frac{C_2}{R_1}$$

0.4936 MF