Problem 1

a) State the hypothesis of the test H: there was no fraudulent use of absentee ballots H: there was fraudulent use of absentee ballots

b) Explain

Since p-value: $p=0.06 > \alpha=0.05 \implies reject H_0$. Therefore, the judge does not use a level of significant of $\alpha = 0.05$. Instead, the judge use a level of significant of 0.06.

a) Test the claim

Problem 2

H: only 10% of females have at least one tattoo H: more than 10% of females have at least one tattoo

d = 0.07

$$P = 10\% = 0.1$$
 $Z_c = InvNorm(1_0.07, 1, 0)$ $X = 143$ $Z_c = 1.48$ $Z_c = 1.48$

$$\Rightarrow Z = 3.35 \text{ is in RR}$$

$$P = 4.0 \& > \alpha = 0.07$$

 $H_a: P_1 \neq P_2$

: Accept $H_0: p_1 = p_2$. There are no evidence that the proportion of males with at least one tattoo differs from the proportion of females with at least

.. There are not enough evidence that the mean grades differ between

= 1.645

 $Z_c = InvNorm(0.05, 1, 0)$

RR: (_00,_1.645]U[1.645,00)

one tattoo.

Problem 3

 $H_0: \mu_0 = \mu_B$ Ha: Ma + MB

 \Rightarrow t = 0.93

the two students.

 \Rightarrow Z = 1.37 \rightarrow is not in RR

 $p = 0.17 > \alpha = 0.05$

 $p = 0.39 > \alpha = 0.05 \Rightarrow Accept H_2$

Problem 4

a) Determine

	Group A	Group B	Group 3	Total	
Experienced Pain	51	5	16	72	
Experienced No Pain	1532	152	163	18կԴ	
Total	1583	157	179	1919	

Group A: Expected Pain = (51 x 1583)/1919

= 42.07

Group B:

= 0,409

Group C:

Expected Pain = (16 x 179)/1919

Expected Pain = $(5 \times 157)/1919$

= 1.49

 $\chi^{2} = \frac{(51 - 42.07)^{2}}{42.07} + \frac{(1532 - 1263.76)^{2}}{1263.76} + \frac{(5 - 0.409)^{2}}{0.409} + \frac{(152 - 12.44)^{2}}{12.44} + \frac{(16 - 1.49)^{2}}{1.49}$

+ (163 _ 15.20)²

= 3254.50

Γ= 2 C = 3

 $\Rightarrow V = (2-1)(3-1) = 2$

Expected No Pain = (1539 x 1583)/1919

= 1263.76

Expected No Pain = (15% x 157)/1919 = 12.44

Expected No Pain = $(163 \times 179)/1919$

= 15.20

$$\Rightarrow P = 0 < \alpha = 0.01 \Rightarrow \text{Reject H}_{\circ}$$

$$d = 0.05$$
 $n = 3$ $p = 0.85$ 300 days

Cakes	Days	Probability	Expected Count		
sold	O)			
0	1	0.003375	300(0.003375) = 1.0125		
1	16	0.057375	300(0.057375) = 17.2125		
2	55	0.32512	300 (0.32512) = 97.536		
3	228	0.61 ₄ 125	300 (0.614125) = 184.2375		

$$H_o$$
: The data are binomial with success probability $\pi_c = 0.85$

$$\chi^2 = 29.03$$
 $p = 4.966 \times 10^{-7} < \alpha = 0.05 \Rightarrow \text{Reject H}_{0}$

 \therefore The data are not from binomial distribution with success probability $\pi = 0.85$