TASK 1:TITANIC SURVIVAL PREDICTION

NAME: NUTAN SANTOSH BHILARE EMAIL: nutan10232@gmail.com domain: data science

Importing important libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snsg

Importing dataset

df=pd.read_csv("/content/archive.zip")
df.head(10)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
				Futrelle, Mrs.						
4										•

Next steps: Generate code with df

• View recommended plots

df.shape

(891, 12)

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

from above cell there are two mising values in age column

df['Survived'].value_counts()

0 549

1 342

Name: Survived, dtype: int64

#visualising the count of survivals pclass
sns.countplot(x=df['Survived'], hue=df['Pclass'])

<Axes: xlabel='Survived', ylabel='count'>


```
df["Sex"]
     0
              male
            female
     1
            female
     2
            female
              male
              male
     886
     887
            female
     888
            female
              male
     889
     890
     Name: Sex, Length: 891, dtype: object
```

sns.countplot(x=df['Sex'], hue=df['Survived'])

df.groupby('Sex')[["Survived"]].mean()

```
Survived
                         畾
        Sex
      female 0.742038
      male
             0.188908
df['Sex'].unique()
     array(['male', 'female'], dtype=object)
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
df['Sex']= labelencoder.fit_transform(df['Sex'])
df.head()
         PassengerId Survived Pclass
                                                                            Ticket
                                           Name Sex Age SibSp Parch
                                                                                      Fare (
                                         Braund.
     0
                                        Mr. Owen
                                                    1 22.0
                                                                       0 A/5 21171 7.2500
                                           Harris
                                        Cumings,
                                        Mrs. John
                                         Bradley
      1
                   2
                            1
                                                   0 38.0
                                                                       0 PC 17599 71.2833
                                        (Florence
     4
 Next steps:
             Generate code with df
                                      View recommended plots
df['Sex'], df['Survived']
     (0
             1
             0
      1
      2
             0
      3
             0
            1
      886
            1
      887
      888
      889
            1
      890
      Name: Sex, Length: 891, dtype: int64,
      0
      1
      2
      3
             1
      4
            0
      886
            0
      887
            1
      888
      889
      890
      Name: Survived, Length: 891, dtype: int64)
sns.countplot(x=df['Sex'], hue=df["Survived"])
```

<Axes: xlabel='Sex', ylabel='count'>

df.isna().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int6	4

df=df.drop(['Age'], axis=1)

df_final = df
df_final.head(10)

	PassengerId	Survived	Pclass	Name	Sex	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Braund, Mr. Owen Harris	1	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	1	0	PC 17599	71.2833	C85
2	3	1	3	Heikkinen, Miss. Laina	0	0	0	STON/O2. 3101282	7.9250	NaN
4				Futrelle, Mrs.						•

Next steps:

Generate code with df_final

View recommended plots

Model Training

X= df[['Pclass', 'Sex']]
Y=df['Survived']

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
from sklearn.linear_model import LogisticRegression
log = LogisticRegression(random_state = 0)
log.fit(X_train, Y_train)
        LogisticRegression
   LogisticRegression(random_state=0)
Model Prediction
pred = print(log.predict(X_test))
   print(Y_test)
   495
   648
       a
   278
       0
       1
   255
       1
   780
   837
       0
   215
       1
   833
       0
   372
   Name: Survived, Length: 179, dtype: int64
import warnings
warnings.filterwarnings("ignore")
res= log.predict([[2,0]])
if(res==0):
print("so sorry! not survived")
```