Final Exam Review

:≡ Week	THURS. Week 10
	HW5 Due — (Clustering)
Assignment Done	
■ Due Date	@March 17, 2023 11:59 PM
	✓

Final Exam Notes

This course covered:

- Curse of dimensionality
 - More dimensions = less coverage of feature space
 - Looked at techniques that would reduce dimensionality
- Supervised datasets
 - SMAPE
 - RMSE
 - Accuracy
 - Confusion matrix
 - Precision
 - Recall
 - F-measure
 - Trade-off between precision/recall
- Linear discriminate analysis
 - \circ Projects data to K dimensions, where K is the number of classes, to do classification

 Similar to PCA, but instead of maximizing variance of data after projection, we want to maximize distance of the means of class data

KNN

- Straight-forward, expensive algorithm b/c you need to carry data around with you
- Statistical approaches
 - Joint distributions (if available)
 - Bayes' rule
 - Naïve Bayes rule
- Decision trees
 - Intuitive in how to build one, starting w/ node that gives best split of data so class entropy is lowest
- Logistic regression
 - Being able to do binary classification via a probability with a weighted sum of the features and processing it through a logistic activation function
 - Gives value between 0 and 1, which we interpret as probability of class 1
 - To get weights, we looked at gradient based learning
- SVMs
 - Linear approach where we're trying to do binary classification
 - Want hyperparameters that separates data by a hyperplane
- Midterm
- Linear regression
 - Computes target value as weighted sum of features plus a bias, finding them through a gradient based approach or a direct solution
- Ensembles
 - Idea of there "no free lunch theorem" → no one algorithm is the best
 - Maybe we want several algorithm to work together

- Talked about voting schemes, bagging
 - Bagging → for each system we grab random set of training observations with replacement
 - Boosting → idea that after training a sytem with some bag of observations, we can see in our training data what we got wrong/right and focus new training to focus on what we got wrong
 - Random forest → trees are build s.t. any time we have to choose a feature to split on, we choose the best of random options, adding a bit of randomness
- Clustering
 - K-means clustering
 - Mixture models
 - Talked about how mixture models are a generalization of k-means
 - Require you to know clusters k ahead of time
 - Agglomerative clustering tree
 - Possibly can do
- ANN
 - Extension of linear/logistic regression
 - Have idea of a weight matrix and bias offset as with linear/logistic regression
 - Put this into an activation function
 - Could take output optimally and have multiple outputs and weight this
 with a second weight matrix, add more bias, and take this new weighted
 sum output into another activation function until we get to a place that
 we'd like

Format

Similar to midterm, but longer

1. Short responses (a word or sentence or a plot/drawing)

- 2. Computations
- 3. Derivations (given an objective function, computing a gradient and/or closed form solution