Simplex Method Using the Dictionaries Formulation Approach

Antonio Flores-Tlacuahuac

ITESM, México

February 17, 2020

Solve by Simplex Method:

$$\begin{array}{lll} \max_{x_1, x_2, x_3} & \Omega = 5x_1 + 4x_2 + 3x_3 \\ \text{s.t.} & 2x_1 + 3x_2 + x_3 & \leq & 5 \\ & 4x_1 + x_2 + 2x_3 & \leq & 11 \\ & 3x_1 + 4x_2 + 2x_3 & \leq & 8 \\ & x_1, x_2, x_3 & \geq & 0 \end{array}$$

► Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables

- ► Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- ▶ Use a slack variable for each inequality constraint

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\max_{x_1, x_2, x_3} \quad \Omega = 5x_1 + 4x_2 + 3x_3$$

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\max_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} \Omega = 5x_1 + 4x_2 + 3x_3$$
s.t.
$$2x_1 + 3x_2 + x_3 + x_4 = 5$$

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\max_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} \Omega = 5x_1 + 4x_2 + 3x_3$$
s.t.
$$2x_1 + 3x_2 + x_3 + x_4 = 5$$

$$4x_1 + x_2 + 2x_3 + x_5 = 11$$

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\begin{array}{lll} \max_{x_1, x_2, x_3} & \Omega = 5x_1 + 4x_2 + 3x_3 \\ \text{s.t.} & 2x_1 + 3x_2 + x_3 + x_4 & = & 5 \\ & 4x_1 + x_2 + 2x_3 + x_5 & = & 11 \\ & 3x_1 + 4x_2 + 2x_3 + x_6 & = & 8 \end{array}$$

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\begin{array}{lll} \max_{x_1, x_2, x_3} & \Omega = 5x_1 + 4x_2 + 3x_3 \\ \text{s.t.} & 2x_1 + 3x_2 + x_3 + x_4 & = & 5 \\ & 4x_1 + x_2 + 2x_3 + x_5 & = & 11 \\ & 3x_1 + 4x_2 + 2x_3 + x_6 & = & 8 \\ & x_1, x_2, x_3, x_4, x_5, x_6 & \geq & 0 \end{array}$$

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\begin{array}{lll} \max _{x_1,x_2,x_3} & \Omega = 5x_1 + 4x_2 + 3x_3 \\ \text{s.t.} & 2x_1 + 3x_2 + x_3 + x_4 & = & 5 \\ & 4x_1 + x_2 + 2x_3 + x_5 & = & 11 \\ & 3x_1 + 4x_2 + 2x_3 + x_6 & = & 8 \\ & x_1,x_2,x_3,x_4,x_5,x_6 & \geq & 0 \end{array}$$

 \blacktriangleright where x_4, x_5 and x_6 are the so-called slack variables

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\max_{x_1, x_2, x_3} \Omega = 5x_1 + 4x_2 + 3x_3$$
s.t.
$$2x_1 + 3x_2 + x_3 + x_4 = 5$$

$$4x_1 + x_2 + 2x_3 + x_5 = 11$$

$$3x_1 + 4x_2 + 2x_3 + x_6 = 8$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- \triangleright where x_4, x_5 and x_6 are the so-called slack variables
- Note that the slacks variables also become decision variables and are bounded by a non-negativity bound

- Transform the set of inequalities constrains into a set of Equality constraints introducing slack variables
- Use a slack variable for each inequality constraint

$$\max_{x_1, x_2, x_3} \Omega = 5x_1 + 4x_2 + 3x_3$$
s.t.
$$2x_1 + 3x_2 + x_3 + x_4 = 5$$

$$4x_1 + x_2 + 2x_3 + x_5 = 11$$

$$3x_1 + 4x_2 + 2x_3 + x_6 = 8$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- \triangleright where x_4, x_5 and x_6 are the so-called slack variables
- Note that the slacks variables also become decision variables and are bounded by a non-negativity bound

▶ Write the optimization problem using the *Dictionary* Approach

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$\begin{array}{rcl} x_4 & = & 5 - 2x_1 - 3x_2 - x_3 \\ x_5 & = & 11 - 4x_1 - x_2 - 2x_3 \end{array}$$

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

▶ Variables in the LHS (x_4, x_5, x_6) are called Basic variables

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

- ▶ Variables in the LHS (x_4, x_5, x_6) are called Basic variables
- ▶ Variables in the RHS (x_1, x_2, x_3) are called Non-Basic variables

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

- ▶ Variables in the LHS (x_4, x_5, x_6) are called Basic variables
- ▶ Variables in the RHS (x_1, x_2, x_3) are called Non-Basic variables

Basic Variables

Non-Basic Variables

×₁

- ▶ Write the optimization problem using the *Dictionary* Approach
- Move the slacks variables to LHS and keep the original decision variables in the RHS

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

- ▶ Variables in the LHS (x_4, x_5, x_6) are called Basic variables
- ▶ Variables in the RHS (x_1, x_2, x_3) are called Non-Basic variables

Basic Variables

Non-Basic Variables

×₁

▶ Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

▶ Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

Fix to zero the values of the remaining variables: $x_2=0, x_3=0$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- ightharpoonup Amount by which x_1 can be increased keeping feasibility?

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- ightharpoonup Amount by which x_1 can be increased keeping feasibility?

$$2x_1 + 3x_2 + x_3 \le 5 \longrightarrow x_4$$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- ightharpoonup Amount by which x_1 can be increased keeping feasibility?

Basic Variable

$$2x_1 + 3x_2 + x_3 \le 5 \rightarrow x_4 4x_1 + x_2 + 2x_3 \le 11 \rightarrow x_5$$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- ightharpoonup Amount by which x_1 can be increased keeping feasibility?

Basic Variable

$$2x_1 + 3x_2 + x_3 \le 5 \rightarrow x_4$$

 $4x_1 + x_2 + 2x_3 \le 11 \rightarrow x_5$
 $3x_1 + 4x_2 + 2x_3 \le 8 \rightarrow x_6$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- \triangleright Amount by which x_1 can be increased keeping feasibility?

Basic Variable

$$2x_1 + 3x_2 + x_3 \le 5 \rightarrow x_4$$

 $4x_1 + x_2 + 2x_3 \le 11 \rightarrow x_5$
 $3x_1 + 4x_2 + 2x_3 \le 8 \rightarrow x_6$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- \triangleright Amount by which x_1 can be increased keeping feasibility?

Basic Variable

$$\begin{array}{rclcrcr} 2x_1 + 3x_2 + x_3 & \leq & 5 & & \to x_4 \\ 4x_1 + x_2 + 2x_3 & \leq & 11 & & \to x_5 \\ 3x_1 + 4x_2 + 2x_3 & \leq & 8 & & \to x_6 \end{array}$$

$$2x_1 \leq 5 \rightarrow x_1 = 2.5$$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- \triangleright Amount by which x_1 can be increased keeping feasibility?

Basic Variable

$$\begin{array}{rcl} 2x_1 + 3x_2 + x_3 & \leq & 5 & \to x_4 \\ 4x_1 + x_2 + 2x_3 & \leq & 11 & \to x_5 \\ 3x_1 + 4x_2 + 2x_3 & \leq & 8 & \to x_6 \end{array}$$

$$2x_1 \le 5 \rightarrow x_1 = 2.5$$

 $4x_1 \le 11 \rightarrow x_1 = 2.75$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- \triangleright Amount by which x_1 can be increased keeping feasibility?

Basic Variable

$$2x_1 + 3x_2 + x_3 \le 5$$
 $\rightarrow x_4$
 $4x_1 + x_2 + 2x_3 \le 11$ $\rightarrow x_5$
 $3x_1 + 4x_2 + 2x_3 \le 8$ $\rightarrow x_6$

$$2x_1 \le 5 \rightarrow x_1 = 2.5$$

 $4x_1 \le 11 \rightarrow x_1 = 2.75$
 $3x_1 < 8 \rightarrow x_1 = 2.66$

Want to increase the value of the objective function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

select the largest coefficient variable in Ω : x_1

- Fix to zero the values of the remaining variables: $x_2=0, x_3=0$
- \triangleright Amount by which x_1 can be increased keeping feasibility?

Basic Variable

$$2x_1 + 3x_2 + x_3 \le 5$$
 $\rightarrow x_4$
 $4x_1 + x_2 + 2x_3 \le 11$ $\rightarrow x_5$
 $3x_1 + 4x_2 + 2x_3 \le 8$ $\rightarrow x_6$

$$2x_1 \le 5 \rightarrow x_1 = 2.5$$

 $4x_1 \le 11 \rightarrow x_1 = 2.75$
 $3x_1 < 8 \rightarrow x_1 = 2.66$

hence,

• for $x_1 = 2.5$

hence,

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \leq 5$$

• for
$$x_1 = 2.5$$

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \le 5$$

 $4(2.5)=10 \le 11$
 $3(2.5)=7.5 \le 8$

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \le 5$$

 $4(2.5)=10 \le 11$
 $3(2.5)=7.5 \le 8$

• for
$$x_1 = 2.75$$

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \le 5$$

 $4(2.5)=10 \le 11$
 $3(2.5)=7.5 \le 8$

• for
$$x_1 = 2.75$$

$$2(2.75)=5.5 \le 5$$

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \le 5$$

 $4(2.5)=10 \le 11$
 $3(2.5)=7.5 \le 8$

• for
$$x_1 = 2.75$$

$$2(2.75)=5.5 \le 5$$

 $4(2.75)=11 \le 11$

• for
$$x_1 = 2.5$$

$$2(2.75)=5.5 \nleq 5$$

 $4(2.75)=11 \leq 11$
 $3(2.75)=8.25 \nleq 8$

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \le 5$$

 $4(2.5)=10 \le 11$
 $3(2.5)=7.5 \le 8$

ightharpoonup for $x_1 = 2.75$

$$2(2.75)=5.5 \nleq 5$$

 $4(2.75)=11 \leq 11$
 $3(2.75)=8.25 \nleq 8$

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \le 5$$

 $4(2.5)=10 \le 11$
 $3(2.5)=7.5 \le 8$

• for $x_1 = 2.75$

$$2(2.75)=5.5 \nleq 5$$

 $4(2.75)=11 \leq 11$
 $3(2.75)=8.25 \nleq 8$

$$2(2.66)=5.32 \leq 5$$

• for
$$x_1 = 2.5$$

$$2(2.5)=5 \le 5$$

 $4(2.5)=10 \le 11$
 $3(2.5)=7.5 \le 8$

• for $x_1 = 2.75$

$$2(2.75)=5.5 \nleq 5$$

 $4(2.75)=11 \leq 11$
 $3(2.75)=8.25 \nleq 8$

$$2(2.66)=5.32 \le 5$$

 $4(2.66)=10.64 \le 11$

• for
$$x_1 = 2.5$$

• for $x_1 = 2.75$

$$2(2.75)=5.5 \nleq 5$$

 $4(2.75)=11 \leq 11$
 $3(2.75)=8.25 \nleq 8$

$$2(2.66)=5.32 \nleq 5$$

 $4(2.66)=10.64 \leq 11$
 $3(2.66)=7.98 \leq 8$

• for
$$x_1 = 2.5$$

• for $x_1 = 2.75$

$$2(2.75)=5.5 \nleq 5$$

 $4(2.75)=11 \leq 11$
 $3(2.75)=8.25 \nleq 8$

$$2(2.66)=5.32 \nleq 5$$

 $4(2.66)=10.64 \leq 11$
 $3(2.66)=7.98 \leq 8$

▶ Then we pick x_1 =2.5 (to meet constraints)

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- \triangleright and because $x_2=0$ and $x_3=0$ from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- \triangleright and because $x_2=0$ and $x_3=0$ from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

$$x_1 = 2.5$$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

$$x_1 = 2.5$$
$$x_2 = 0$$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3 = 8 - 3(2.5) - 4(0) - 2(0) = 0.5$

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3 = 8 - 3(2.5) - 4(0) - 2(0) = 0.5$

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- \triangleright and because $x_2=0$ and $x_3=0$ from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3 = 8 - 3(2.5) - 4(0) - 2(0) = 0.5$

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0.5$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3 = 8 - 3(2.5) - 4(0) - 2(0) = 0.5$

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0.5$

and,

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- \triangleright and because $x_2=0$ and $x_3=0$ from:

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0.5$

and,

$$\Omega(x) = 12.5$$

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- \triangleright and because $x_2=0$ and $x_3=0$ from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3 = 8 - 3(2.5) - 4(0) - 2(0) = 0.5$

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0.5$

and,

$$\Omega(x) = 12.5$$

Things relevant to recall:

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- \triangleright and because $x_2=0$ and $x_3=0$ from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3 = 8 - 3(2.5) - 4(0) - 2(0) = 0.5$

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0.5$

and,

$$\Omega(x) = 12.5$$

Things relevant to recall:

 \triangleright x_1 was the increasing variable

- ▶ Then we pick x_1 =2.5 (to meet constraints)
- ▶ and because x_2 =0 and x_3 =0 from:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5 - 2(2.5) - 3(0) - (0) = 0$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3 = 11 - 4(2.5) - (0) - 2(0) = 1$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3 = 8 - 3(2.5) - 4(0) - 2(0) = 0.5$

$$x_1 = 2.5$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0.5$

and,

$$\Omega(x) = 12.5$$

Things relevant to recall:

- x₁ was the increasing variable
- The maximum amount by which x_1 was changed was obtained from: $x_4 = 5 2x_1 3x_2 x_3$, which is called the *Pivot Equation*. In this Equation, x_4 is the Basic variable.

Basic Variables

Non-Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

х₆

Non-Basic Variables

x₃

Basic Variables

Non-Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

Non-Basic Variables

► How to turn a non-basic into a basic variable?

- ► How to turn a non-basic into a basic variable?
- ▶ Pick from the Dictionary formulation the Pivot Equation, in which *x*⁴ is the basic variable:

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

and solve for x_1 :

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

and replace this equation into the two remaining dictionary equations:

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

and replace this equation into the two remaining dictionary equations:

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

and replace this equation into the two remaining dictionary equations:

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

and replace this equation into the two remaining dictionary equations:

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

and replace this equation into the two remaining dictionary equations:

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$

$$\begin{array}{rcl} x_5 & = & 11 - 4x_1 - x_2 - 2x_3 \\ & = & 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - x_2 - 2x_3 \end{array}$$

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

and replace this equation into the two remaining dictionary equations:

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$= 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - x_2 - 2x_3$$

$$= 1 + 5x_2 + 2x_4$$

- ► How to turn a non-basic into a basic variable?
- Pick from the Dictionary formulation the Pivot Equation, in which x_4 is the basic variable:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

and replace this equation into the two remaining dictionary equations:

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$= 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - x_2 - 2x_3$$

$$= 1 + 5x_2 + 2x_4$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \end{array}$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$= 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3$$

$$= \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$= 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3$$

$$= \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

$$\Omega = 5x_1 + 4x_2 + 3x_3
= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

$$= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3$$

$$= \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

Also replace into the Objective Function:

$$\Omega = 5x_1 + 4x_2 + 3x_3
= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3
= \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

Also replace into the Objective Function:

$$\Omega = 5x_1 + 4x_2 + 3x_3
= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3
= \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

Also replace into the Objective Function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

$$= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3$$

$$= \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$\begin{array}{rcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 \\ x_5 & = & 1 + 5x_2 + 2x_4 \end{array}$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

Also replace into the Objective Function:

$$\Omega = 5x_1 + 4x_2 + 3x_3$$

$$= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3$$

$$= \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$\begin{array}{rcl}
x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 \\
x_5 & = & 1 + 5x_2 + 2x_4 \\
x_6 & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4
\end{array}$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

Also replace into the Objective Function:

$$\Omega = 5x_1 + 4x_2 + 3x_3
= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3
= \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$\Omega = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$\begin{array}{rcl} x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 \\ & = & 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3 \\ & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \end{array}$$

Also replace into the Objective Function:

$$\Omega = 5x_1 + 4x_2 + 3x_3
= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3
= \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$\Omega = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 : to zero x_6 : $x_$

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)

¹when solving this equation set the basic variable x_1 to zero

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

¹when solving this equation set the basic variable x_1 to zero

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 = \frac{5}{2} - \frac{1}{2}x_3 \rightarrow x_3 = 5$$

¹when solving this equation set the basic variable x_1 to zero

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

$$x_1 \quad = \quad \tfrac{5}{2} - \tfrac{3}{2} x_2 - \tfrac{1}{2} x_3 - \tfrac{1}{2} x_4 \quad = \quad \tfrac{5}{2} - \tfrac{1}{2} x_3 \quad \to x_3 {=} 5^{\ 1}$$

¹when solving this equation set the basic variable x_1 to zero

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 =to zero x_6 = x_6

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

$$\begin{array}{rclcrcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 & = & \frac{5}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 5^{\ 1} \\ x_5 & = & 1 + 5x_2 + 2x_4 & = & 1 & \rightarrow x_5 = 1 \\ x_6 & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 & = & \frac{1}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 1 \end{array}$$

¹when solving this equation set the basic variable x_1 to zero

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

$$\begin{array}{rclcrclcrclcrcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 & = & \frac{5}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 5^{\ 1} \\ x_5 & = & 1 + 5x_2 + 2x_4 & = & 1 & \rightarrow x_5 = 1 \\ x_6 & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 & = & \frac{1}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 1^{\ 2} \end{array}$$

¹when solving this equation set the basic variable x_1 to zero

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

$$\begin{array}{rclcrclcrclcrcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 & = & \frac{5}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 5^{\ 1} \\ x_5 & = & 1 + 5x_2 + 2x_4 & = & 1 & \rightarrow x_5 = 1 \\ x_6 & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 & = & \frac{1}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 1^{\ 2} \end{array}$$

¹when solving this equation set the basic variable x_1 to zero

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

$$\begin{array}{rclcrclcrclcrcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 & = & \frac{5}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 5^{\ 1} \\ x_5 & = & 1 + 5x_2 + 2x_4 & = & 1 & \rightarrow x_5 = 1 \\ x_6 & = & \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 & = & \frac{1}{2} - \frac{1}{2}x_3 & \rightarrow x_3 = 1^{\ 2} \end{array}$$

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 =to zero x_6 = x_6

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 = \frac{5}{2} - \frac{3}{2}(0) - \frac{1}{2}(1) - \frac{1}{2}(0) = 2$$

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 to zero x_6 x_6 x_6

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 to zero $\leftarrow 2 \rightarrow \leftarrow 2 \rightarrow \rightarrow 2 \rightarrow 2 \rightarrow \rightarrow 2 \rightarrow$

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- ► Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 to zero x_6 x_6 x_6

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 to zero x_6 x_6 x_6 x_6

- Now, pick the non-basic variable featuring the largest positive coefficient in Ω : x_3
- Check the maximum amount by which x_3 can be increased without constraints violation and set to zero the remaining non-basic variables ($x_2 = 0, x_4 = 0$)
- From the present dictionary:

▶ Hence, setting $x_3 = 1$ (recall that in the Pivot Equation, x_6 is the Basic variable):

¹when solving this equation set the basic variable x_1 to zero

²when solving the basic variable this equation set x_6 to zero x_6 x_6 x_6

$$x_1 = 2$$

$$x_1 = 2$$
$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_5 = 1$$

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_5 = 1$$

$$x_6 = 0$$

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_5 = 1$$

$$x_6 = 0$$

and,

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_5 = 1$$

$$x_6 = 0$$

and,

$$\Omega(x) = 13$$

$$x_1 = 2$$

 $x_2 = 0$
 $x_3 = 1$
 $x_4 = 0$

 $x_5 = 1$ $x_6 = 0$

and,

$$\Omega(x)=13$$

Things relevant to recall:

$$x_1 = 2$$

 $x_2 = 0$
 $x_3 = 1$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0$

and,

$$\Omega(x)=13$$

Things relevant to recall:

x₃ was the increasing variable

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_5 = 1$$

$$x_6 = 0$$

and,

$$\Omega(x) = 13$$

Things relevant to recall:

- > x3 was the increasing variable
- \sim x₆ was the basic variable related to the equation from which maximum increase in x₃, without constraints violation, was achieved

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_5 = 1$$

$$x_6 = 0$$

and,

$$\Omega(x) = 13$$

Things relevant to recall:

- > x3 was the increasing variable
- \sim x₆ was the basic variable related to the equation from which maximum increase in x₃, without constraints violation, was achieved

×₁
×₅
×₆

x₄
x₂
x₃

Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

Non-Basic Variables

Basic Variables

ightharpoonup Once again, turn a non-basic into a basic variable (x_3)

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- ► Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- ► Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which *x*₆ is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

and replace in the remaining dictionary equations:

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- ► Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

and replace in the remaining dictionary equations:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- ► Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

and replace in the remaining dictionary equations:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

For x_1 :

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

and replace in the remaining dictionary equations:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

For *x*₁:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

and replace in the remaining dictionary equations:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

For x_1 :

$$\begin{array}{rcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 \\ & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}(1 + x_2 + 3x_4 - 2x_6) - \frac{1}{2}x_4 \end{array}$$

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

and replace in the remaining dictionary equations:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

For *x*₁:

$$\begin{array}{rcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 \\ & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}(1 + x_2 + 3x_4 - 2x_6) - \frac{1}{2}x_4 \\ & = & 2 - 2x_2 - 2x_4 + x_6 \end{array}$$

- ightharpoonup Once again, turn a non-basic into a basic variable (x_3)
- Similarly to the previous iteration, pick from the past Dictionary formulation that equation in which x_6 is the basic variable:

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

and replace in the remaining dictionary equations:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

For *x*₁:

$$\begin{array}{rcl} x_1 & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 \\ & = & \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}(1 + x_2 + 3x_4 - 2x_6) - \frac{1}{2}x_4 \\ & = & 2 - 2x_2 - 2x_4 + x_6 \end{array}$$

$$\Omega = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$\begin{array}{rcl} \Omega & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4 \\ & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(1 + x_2 + 3x_4 - 2x_6\right) - \frac{5}{2}x_4 \end{array}$$

$$\begin{array}{rcl} \Omega & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4 \\ & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(1 + x_2 + 3x_4 - 2x_6\right) - \frac{5}{2}x_4 \\ & = & 13 - 3x_2 - x_4 - x_6 \end{array}$$

$$\begin{array}{rcl} \Omega & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4 \\ & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(1 + x_2 + 3x_4 - 2x_6\right) - \frac{5}{2}x_4 \\ & = & 13 - 3x_2 - x_4 - x_6 \end{array}$$

The new dictionary reads:

$$\begin{array}{rcl} \Omega & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4 \\ & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(1 + x_2 + 3x_4 - 2x_6\right) - \frac{5}{2}x_4 \\ & = & 13 - 3x_2 - x_4 - x_6 \end{array}$$

The new dictionary reads:

$$\begin{array}{rcl} x_1 & = & 2 - 2x_2 - 2x_4 + x_6 \\ x_3 & = & 1 + x_2 + 3x_4 - 2x_6 \\ x_5 & = & 1 + 5x_2 + 2x_4 \\ \Omega & = & 13 - 3x_2 - x_4 - x_6 \end{array}$$

$$\begin{array}{rcl} \Omega & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4 \\ & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(1 + x_2 + 3x_4 - 2x_6\right) - \frac{5}{2}x_4 \\ & = & 13 - 3x_2 - x_4 - x_6 \end{array}$$

The new dictionary reads:

since all coefficients in the past objective function are negative, no further improvement of the Objective Function can be achieved.

$$\begin{array}{rcl} \Omega & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4 \\ & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(1 + x_2 + 3x_4 - 2x_6\right) - \frac{5}{2}x_4 \\ & = & 13 - 3x_2 - x_4 - x_6 \end{array}$$

The new dictionary reads:

since all coefficients in the past objective function are negative, no further improvement of the Objective Function can be achieved. This means that the optimal solution has been found.

$$\begin{array}{rcl} \Omega & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4 \\ & = & \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}\left(1 + x_2 + 3x_4 - 2x_6\right) - \frac{5}{2}x_4 \\ & = & 13 - 3x_2 - x_4 - x_6 \end{array}$$

The new dictionary reads:

since all coefficients in the past objective function are negative, no further improvement of the Objective Function can be achieved. This means that the optimal solution has been found.

$$x_1 = 2$$

 $x_2 = 0$
 $x_3 = 1$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 0$
 $\Omega(x) = 13$