TEMA TIPO 3 - SOLUTIONE

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore delle resistenze R_3 e R_5 in modo che le correnti di drain di M_1 e M_2 valgano rispettivamente $I_{D1} = 2$ mA e $I_{D2} = 10$ mA;
- 2) il punto di lavoro dei transistor M_1 , M_2 , M_3 e M_4 ;
- 3) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_{sig}$;
- 4) le resistenze di ingresso e uscita ai piccoli segnali ac R_i e R_o .

PROBLEMA P2

Dato il circuito che usa amplificatori operazionali e componenti passivi ideali:

- ricavare l'espressione (simbolica, senza sostituire i valori dei componenti) della funzione di trasferimento W(s)=Vout(s)/Vin(s);
- tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di H(jω), usando, nel caso della fase, l'approssimazione senza discontinuità;
- determinare il valore della tensione di uscita sapendo che la tensione di ingresso vale V_{in}=0.1sin(ωt) [V]

con ω =400 rad/s.

DATI: $R_1 = 330\Omega$, $R_2 = 3k\Omega$, $R_3 = 30k\Omega$, $R_4 = 90k\Omega$, $R_5 = 10k\Omega$ $C_3 = 3.3nF$, $C_4 = 1\mu F$

$$\frac{2}{2} = \frac{2}{2} + \frac{5}{2} \frac{8}{2} \cdot \frac{8}{3} = \frac{2}{2} + \frac{8}{2} \frac{1}{4 + 5} \frac{2}{3} \frac{1}{4 + 5} \frac{2}{3} \frac{1}{4} \frac{2}{3} \frac{$$

PROBLEMA Q1

L'amplificatore differenziale illustrato in figura ha un guadagno di modo differenziale pari ad $A_d = 100 \text{ V/V}$ e un guadagno di modo comune pari ad $A_c = 1 \text{ V/V}$. Si calcoli il valore della tensione di uscita V_o , giustificando chiaramente la risposta.

$$V_0 = Ad \cdot \nabla id + Az \cdot \nabla ie$$

$$\nabla id = V_1 - V_2 = O_1 I V$$

$$\nabla ic = V_1 + V_2 = 2V$$

$$V_0 = (00 \times 0_1 I V + I \times 2V = 12V_1$$

PROBLEMA Q2		0	0	0	0	1	ŀ
Data la seguente tabella della verità		0	0	0	1	1	
1) Ricavare la mappa di Karnaugh corrispondente;		0	0	1	0	1	ŀ
2) Trovare una F minimizzata		0	0	1	1	0	
3) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.		0	1	0	0	1	
Toridamentan:		0	1	0	1	1	
CD, , ,		0	1	1	0	0	ŀ
AP 00 01 11 10 P B		0	1	1	1	1	
AB 00 01 11 10		1	0	0	0	1	ľ
		1	0	0	1	0	
		1	0	1	0	1	l.
01		1	0	1	1	0	
11 6 1 1 6		1	1	0	0	0	ŀ
		1	1	0	1	1	ŀ
10 0 0 1		1	1	1	0	0	l
		1	1	1	1	1	

PROBLEMA O2

A B

D

F

