it has c, symmetry.

optical isomerism in spiranes—9
when two rings are fused with
one carbon atom. They are called
spiranes. Spiranes are optically active
if they do not have a \$\neq 6\$ and \$c\neq d.

7 th q -9(-1) - O H no- (3- 1) a - 18d - safe, N- CROH Stra - 9 ctsa 4- (-04 5 d 189 -> (159) CH204 D-94408e C1= C12-9 CC C + 3a

grane of symmetry.

· Enantioners - non super imposable mirr image w is called enantioner.

E and Z configuration—

- when higher periority groups are on the same side. It is I are
- . When higher periority groups are on the opposite side. It is E (Entgegen)

Note: Penionity of the group should be according to R,s configurat

$$(I) I \qquad B_{8}(I) \qquad B_{8} \qquad (I) I \qquad F \qquad (I) I \qquad (I) I$$

optical acti Isomerism in Allenes - 9
Allenes show optical acti Isomerism

9 4 4 6 and c \(\pm\) d

Atropisomerism - Atropisomerism is arising from hindered rotation about, a single bond, where energy differences due to stenic strain or other contributors create a barrier to rotation that is high enough to allow for isolation of individual conformers

(a) (9)

and S configuration or CIP rule C Cahn, Ingold and Prelogis rule) +

- 1) Select the periority of group according to atomic no or mass no.
- 2) The group of lowest pariority should be away from observor.
- 3) observe the rotation from a to b

i) dock wise - 9 R (Reitus)

11) Antidockwise -> S (sinsister)

Atropisomerism — Atropisomerism is arising from hindered rotation about a single bond, where energy difference due to stenic strain or other contributors create a barrier to rotation that is high enough to allow for Isolation of individual Conformers

Diasteriomers > Non-super imposable compounds which are not mirror image of each other are called diasteriomers.

Q (92)

the compounds which rotates the plane of foldsvised light are called optical isomers and phenomenon is known as optical somers.

(ristania for optical activity -)

1) compound should have at least one third centre.

2) The mirror image of compound show not superimpose on it.

$$CH = 0$$
 $CH = 0$ C

me optically inactive

spiranes are third and posses of Symmetry. They are asymmetric modecules.

optical 180 merismin biphenyl.

optical 180 merism is a arrises
in biphenyl arises from nestricted
rotation or hinderance.

Jue rotation optically in active

Jue ratation because - Home Dane very Small atoms

No free rotatation is possible.
They are optically artine.

-coop and No2 are large and bulky groups, they will not allow free rotation of two rings.

Syzuki Reaction -> Alleglation or anglolia of alkines with boronic ester and alkyl halide in presence of Pd(0) and Na OEt is known as suzuki neartion RI-CEC-R2 heat, R'-R2 Ar-Br R'-R2
NAOET mechanism Mechanism - $R^1-C \equiv C-R^2$ $R^1-C \equiv C-R^2$ $R^2-C \equiv C-R^2$ R' Pd-Ax (Transmutalation H) Pd-Ax (Transmutalation H) Pd-Ax Pd(0) + Ax-Bx-9 Ax-Pd-Bx Oxidative addition Reductive elimination R) + Pd (0) Applications 10 no BR 1) Ph-(=(-Ph &. Me-Bx)

Photo Fries Rayrangement - s when Fries 50-3. +· C-103 It is called take place in present of light o- tydroxy (32) rearrange ment Photo Fries +

Nitreme!

 (8) attracts node cule Lone bour 0

(8) attracts node cule Lone bour 0

Buzyne: In burzyne, two carbons are in sp ty. hybridization and other jour are in sp 2 hybridization

Formation of Benzyme!

The neartion Moro benzene with base to give benzyne.

Reaction: Benzyne generally gines nycleophilic addition.

ENIX+ R-Ninz -> ER MAR EITHUR.

cis

ns.

unp

rape

9~

01

E -> when attacking species are nucleophile. The e- are transferred from nucleophile to substrate malerule. This types of effect is called E effect.

Mesomeric effect -> mesomeric effect is

defined as the polarity

produced in the molecule

by interaction of two

pi bonds or between a

pi bond and lone pair of

e- present on an adjacent

It is of two types m+ and m-

1) m+: when group or atom donate the e- pair to the congregated System. It is called m+

Carbanions: carbon species containing nut negative charge are called carbanions The carbanions are intermediates and have 8c- in the outst.

Nitranes are intermediate and has six e- in outit.

Formation of Mitrene:

Berkmann Regorangement: Mitorene is formed, when the oxime is treated with and.

Curtius Rearrangement! Acid azide on heating to give nitrene.

 $R-\dot{\theta}-N_3 \xrightarrow{\Delta} R-\dot{\theta}-\dot{N} \longrightarrow R-N=C=0$ J_{1120} $R-N_{12}+L_{02}$

Mechanism R = 0 - 1 - 1 = N R = 0 - 1 = NNitrene

-> R-N=(=0 -> R-NH2 +102

2) Triplet carabene: It is non steneo Specific in nature.

cis or trans, both alkene give a mixture of 45 and trans Product.

B. Tech First jear By B. Purusottamsingh Niramjam

carbocations The carbon species containing positive charge, are called carbocations.

The carbocations are intermediates and have six electrons in the out.

01-5

25² 2P

4.5

251 2P2 1x 1x 1x 1

C+34

11× 1× 1× H H H SP 2. CH3

I 248

1200 1200 4

Shape

Trigonal planar

II - 209

me = ii - me - c = N-Et morn > Me-18-NH-C+ H€ nofmann Regrangement: When autamide is treated with Br2/ NaOH to give Nitrene intermediate: me-l- ning + Br- Br - me-l-gritte Br Me-P-N-Rs + HD

Naon Me-l-N+ Rs

Naon Nitrene + H20

intermediate

Me-N-C-O

Me-NH-C-O

Me-NH-C-O 2) Triplet carbene: Both the & are in parallel Spin and Spin multiplicity û6 3. 304971

60-3 152 252 2 P2 302 2P2 251 2P3 1 1×111 2.5 1 1 1 1 C+24

H 300 H linear

Formation of carbene:

1) carbene is formed by neartion of chloroform with base. NOON + HTKLE -> HOO + ELLE u + "Za

ndytive Effect: Tendency of shifting etowards more electronegative atom is called indytaine effect.

et 3 + ch2 +

It — swhen of tendency of e is toward

when atom push e toward

more eletronegative atom is called

It

tI tI

ch3>che>U

I'-> when atom attracts e- toward it.

9t is called Io

ch3+ch2> I

carbene is formed when digzo methane is irradiated with light

che Na - Na che + Na

Reaction of carbene:

singlet carberre carberre 1) Singlet constant: is stereospecific in

altere forms us trans albert form nature 1e. w us product where as trans product.

2) claisen condensation: 2 c/3 Host + KOH alcohalic en stillout When two molecules of lower fatty esters are treated with strong base to give carrbanion as a intermediate. CH3 POET + KOM -> CH2 OET + M20 chs Short + grand out -> enstantion ost ost

Aylation:

SN' Reaction: In SN' reaction, carbocation us formed when textiary alkyl halide is treated with any KOH

Me Me + KOH - me on + HO- me me

Me me

Formation of carbo cation:

carbocation is formed as intermediate when benzene is treated with allyl halide or anyl halide in present of leurs and like 1413.

Carbene: The carbon species containing two radical is called carbene.

The carbon is neartion intermediate and has six e in outer.

H-i 24

It is of two types

1> Singlet carben.

1cn212

Both the e- are in opposite spin multiplicity is one.

152252 2P2

Shape

y shape

Formation of carbanion! 1) Audol condensation! In Adol condensation, carbanion is formed as intermediate when addedyde or ketone is treated with to strong cn3 1 + cn3 Kon Kon Kon Cn3 OH O Alcohalic cn3 M $\frac{1}{2} + \frac{1}{2} + \frac{1}$ CH3 OH OH