UNIVERSITY OF GHANA

(All rights reserved)

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits)

PRE IA EXERCISES - 2

- 1. Given that $f(x) = b^x$ for b > 0, determine the values of b that will make the function f an increasing or a decreasing function.
- 2. Given that $f(x) = \log_b x$ for b > 0, determine the values of b that will make the function f an increasing or a decreasing function.
- 3. Explain with graphs why the coordinate (a, b) is on the graph of f whenever the coordinate (b, a) is on the graph of f^{-1} .
- 4. Evaluate the following limits
 - (a) $\lim_{x\to 0^+} x \ln x$
 - (b) $\lim_{x \to \infty} x^{-3} e^x$
 - (c) $\lim_{x\to 0} (1+2h)^{\frac{1}{h}}$
 - (d) $\lim_{x \to 0} \frac{\ln(1+x)}{x}$
 - (e) $\lim_{u \to \frac{\pi}{4}} \frac{\tan u \cot u}{u \frac{\pi}{4}}$
 - (f) $\lim_{x \to 0^+} (\sin x) \sqrt{\frac{1-x}{x}}$
 - (g) $\lim_{x \to 0^+} \cot x \frac{1}{x}$
 - (h) $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{\ln x}$
- 5. Find the derivatives of the following:
 - (a) $y = \log_8(|\tan x|)$
 - (b) $y = \log_2(\log_2 x)$
 - (c) $f(x) = (\sin x)^{\tan x}$ for $0 < x < \pi$ and $x \neq \frac{\pi}{2}$
 - (d) $f(x) = \frac{e^{2x} x(\sin x)^{\cos x}}{x \cot x}$ for $x \neq \frac{\pi}{2}$.
- 6. Suppose f and g are differentiable functions of x and show, by logarithmic differentiation, that

$$\frac{d}{dx}(f^g) = g\left(f^{g-1}\right)\frac{df}{dx} + (f^g \ln f)\frac{dg}{dx}$$

- 7. For each of the following functions below, find $(f^{-1})'(a)$ where possible.
 - (a) f(x) = x + 5 for a = 5
 - (b) $f(x) = 2x^2 + 3$ for a = 1
 - (c) $f(x) = x^3$ for a = 27
 - (d) $f(x) = 16 x^2$ for $0 \le x \le 3$ and a = 15
 - (e) $f(x) = x^3 + 3\sin x + 2\sin x$ for a = 2.
 - (f) $f(x) = 2x^3 + 3x^2 + 7x + 4$ for a = 4
- 8. Consider the following functions defined on the entire real line. Find the inverse if it exists. If the inverse does not exist, provide a restriction to the domain so that you can find an inverse to the function.
 - (a) $f(x) = x^2 2x$
 - (b) $g(x) = \frac{1}{x}$
 - (c) h(x) = 10 3x
 - (d) f(x) = |x|
 - (e) $h(x) = 1 + \cos x$
- 9. Do all linear functions have inverses? If yes, provide a proof. If no, provide a proof for those that have inverses and a proof for those that do not have inverses.
- 10. Determine the intervals for which $f(x) = x^2 1$ has an inverse function.
- 11. If a function f is one-to-one, does it mean that it has an inverse? If yes, show why. If no, what can you do to make it possible for the function to have an inverse?
- 12. Prove that $\frac{2}{\pi} < \frac{\sin x}{x} < 1$ whenever $0 < x < \frac{\pi}{2}$.
- 13. Suppose $3 \le f'(x) \le 5$ for all x, show that $18 \le f(8) f(2) \le 30$.
- 14. Without evaluating derivatives, which of the following functions have the same derivatives?

$$f(x) = \ln x$$
, $g(x) = \ln 2x$, $h(x) = \ln x^2$, $k(x) = \ln 10x^2$

- 15. Find the values of k for which the function $f(x) = -4x^2 + (4k-1)x k^2 + 4$ is negative for all values of x.
- 16. Show that for real values of x, $f(x) = \frac{3 \sin x}{2 + \cos x}$ cannot have a value greater than $\sqrt{3}$ or a value less than $-\sqrt{3}$.
- 17. If $\epsilon \in \mathbb{R}$ and the function $f(x) = \epsilon x \frac{x^3}{1+x^2}$ is increasing $\forall x \in \mathbb{R}$, show also that $\epsilon \geq \frac{9}{8}$.

18. Find the interval of increase and decrease of the following functions;

(a)
$$f(x) = x^3 + 4x + 1$$

(b)
$$f(x) = x^3(5-x)^2$$

(c)
$$f(x) = x + \sin x$$

(d)
$$f(x) = (x^2 - 4)^2$$

- 19. Prove that $\frac{\tan x}{x} > \frac{x}{\sin x}$ whenever $0 < x < \frac{\pi}{2}$.
- 20. Use the Mean Value Theorem (MVT) to establish the following inequalities:

(a)
$$|\sin x - \sin y| \le |x - y| \ \forall x, y \in \mathbb{R}$$
.

(b)
$$\frac{x}{1+x} < \ln(1+x) < x \text{ for } -1 < x < 0 , x > 0$$

- 21. Show that the real valued function defined by $f(x) = x^3 3x^2 + 3x + 1$ increases for all $x \in \mathbb{R}$.
- 22. Consider the function $f(x) = x^3 7x^2 + 10x$
 - (a) Find an interval on which Rolles' Theorem applies to f.
 - (b) Find all points in the interval for which f'(x) = 0
- 23. The lapse rate is the rate at which the temperature T decreases in the atmosphere with respect to increasing altitude z. It is typically reported in units of ${}^{\circ}C/\mathrm{km}$ and is defined by $\gamma = \frac{dT}{dz}$. When the lapse rate rises above $7{}^{\circ}C/\mathrm{km}$ in a certain layer of the atmosphere, it indicates favourable conditions for thunderstorm and tornado formation, provided other atmospheric conditions are also present. Assume the following:
 - the temperature function is continuous and differentiable at all altitudes of interest;
 - the temperature at $z=2.9\mathrm{km}$ is $T=7.6^{\circ}C$
 - the temperature at z = 5.26km is T = -14.3°C.

What can a meteorologist conclude from this information?