University of Hawai'i

Last name: $_{\perp}$			
First name:			
r ii st name.			

Question:	1	2	3	4	Total
Points:	15	15	15	5	50
Score:					

Instructions:

- Write your complete name on your copy.
- Answer all 4 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your Signature:	

Let T(x, y, z) = (x, -y, x).

- (a) (5 Pts) Show that T is a linear transformation.
- (b) (5 Pts) Find the kernel and the image of T.
- (c) (5 Pts) Find the nullity and the rank of T.

QUESTION 2 ______ (15 pts)

Let $U = \text{span}\{(1, 1, 1), (-1, 0, 2)\}.$

- (a) (5 Pts) Are (1,1,1) and (-1,0,2) orthogonal?
- (b) (5 Pts) Is the vector (2, -3, 1) in U?
- (c) (5 Pts) Using the Gram-Schmidt process, transform the set $\{(1,1,1),(-1,0,2)\}$ into a set F of orthogonal vectors.

Let $V = \mathbb{R}^3$. Let B be the standard basis for \mathbb{R}^3 and let $D = \{(1, 1, 0), (1, 0, 1), (0, 1, 0)\}$ be another basis of \mathbb{R}^3 . Let T(a,b,c)=(2a-b,b+c,c-3a) be a linear operator.

- (a) (5 Pts) Find the change matrix $P_{B\leftarrow D}$.
- (b) (5 Pts) Find the matrix representation of T in the basis B.
- (c) (5 Pts) Knowing that

$$P_{D \leftarrow B} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix},$$

find the matrix representation of the linear operator T in the basis D. [Hint: $P_{D\leftarrow B}^{-1}M_D(T)P_{D\leftarrow B} = M_B(T)$ and $P_{D\leftarrow B}^{-1} = P_{B\leftarrow D}$.]

(5 pts)

Let $T: \mathbf{P_n} \to \mathbf{P_n}$ be the linear operator T(p(x)) = p(x) - p(-x).

- (a) (3 Pts) Show that $\ker T = \{p : p(x) = p(-x)\}\$ and $\operatorname{im} T = \{q : q(-x) = -q(x)\}.$
- (b) (2 Pts) If U is the subspace of all **even**¹ polynomials and V is the subspace of all \mathbf{odd}^2 polynomials, then show that

 $n+1 = \dim U + \dim V.$

¹Recall that a function f(x) is even if f(-x) = f(x).

²Recall that a function f(x) is odd if f(-x) = -f(x).