```
5/5/1
DIALOG(R) File 351: Derwent WPI
(c) 2003 Thomson Derwent. All rts. reserv.
012853547
             **Image available**
WPI Acc No: 2000-025379/*200003*
XRAM Acc No: C00-006503
  Aspartic acid copolymers useful as emulsifiers, components of cleaning or
  cosmetic products, pesticide additives, etc
Patent Assignee: GOLDSCHMIDT AG TH (GOLD ); GRUNING B (GRUN-I); SIMPELKAMP
  J (SIMP-I); WEITEMEYER C (WEIT-I)
Inventor: GRUENING B; SIMPELKAMP J; WEITEMEYER C; GRUNING B
Number of Countries: 026 Number of Patents: 004
Patent Family:
Patent No
             Kind
                    Date
                             Applicat No
                                           Kind
                                                  Date
              A1 19991124 EP 99109050
EP 959091
                                            A 19990507 200003 B
DE 19822599
              Al 19991125 DE 1022599
                                            Α
                                                19980520 200003
US 20020119171 A1 20020829 US 99311539
                                            Α
                                                19990513 200259
DE 19822599
              C2 20030206 DE 1022599
                                            A
                                                19980520 200312
Priority Applications (No Type Date): DE 1022599 A 19980520
Patent Details:
Patent No Kind Lan Pg
                       Main IPC
                                    Filing Notes
EF 959091
            Al G 18 C08G-073/10
  Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
  LI LT LU LV MC MK NL PT RO SE SI
DE 19822599
            A1
                    C08G-069/10
US 20020119171 A1
                       A61K-031/74
DE 19822599
                      C08G-069/10
Abstract (Basic): *EP 959091* Al
       NOVELTY - Copolymers of aspartic acid and N-substituted
   aspartamides are new.
       DETAILED DESCRIPTION - Polyamino acid copolymers comprising at
   least 75 mol. % of units of formula (I), (II) or (III), including at
   least 1 unit of formula (I;R1=R4), at least one unit of formula (II)
   and no more than 20 wt. % of units of formula (II), are new:
       A=a group of formula Al or A2:
       R1=R4, R5 or R6;
       R2=1-30C alkyl, alkenyl or aryl; 1-22C hydroxyalkyl or aminoalkyl
   containing 1-6 OH and/or amino groups, optionally acylated with 1-22C
   carboxylic acids; or R5;
       R3=H or R2;
       R4=H, alkali(ne earth) metal or (NR7R8R9R10)+;
       R7-R10=H or 1-22C alkyl, alkenyl or hydroxyalkyl;
       R5=R11 or YR11;
       R11=6-30C alkyl or alkenyl;
        Y=a chain of 1-100 oxyalkylene units;
       R6=1-5C alkyl or alkenyl;
       B=the residue of a proteinogenic or nonproteinogenic amino acid.
       ACTIVITY - None given.
       MECHANISM OF ACTION - None given.
       USE - The copolymers are useful as:
        (a) as emulsifiers in cosmetic water-in-oil or oil-in-water
   emulsions (claimed), especially containing 5-99 wt. % of oils selected
   from fatty acid esters, esters of fatty alcohols, polyhydric alcohols
```

or Guerbet alcohols, triglycerides, animal and vegetable cils, branched primary alcohols, substituted cyclohexanes, Guerbet carbonates, dialkyl ethers and aliphatic or napthenic hydrocarbons, and preferably containing a hydrophilic wax selected from fatty alcohols, fatty acids, wocl-wax alcohols, mono- and diglycerides and sorbitan fatty acid esters and a coemulsifier which is an alkoxylated fatty alcohol or wool-wax alcohol; ethoxylated mono- or diglyceride; ethoxylated sorbitan fatty acid ester; alkoxylated fatty acid or alkylphenol; ethoxylated fatty acid ester; polyalkylene glycol, sugar alcohol or polyglucoside fatty acid ester; polysiloxane copolyether; or anionic, cationic, nonionic, zwitterionic or amphoteric surfactant; especially skin care products, day or night creams, care creams, nourishing creams, body lotions, pharmaceutical ointments or lotions, aftershave lotions or sunscreens;

(b) in cleaning and/or cosmetic compositions (claimed) containing other surfactants, especially shampoos, washing lotions, products for cleansing the face, hair, skin and intimate parts, shaving creams and lotions, liquid soaps, dishwashing compositions, hard-surface cleaners, soap bars, foam baths, shower gels, toothpaste's and mouthwashes; and

(c) as detergent aids, complexing agents for polyvalent cations, dispersants for lacquers and paints, incrustation inhibitors, absorbent materials, metal deactivators in plastics, paper, leather and textile auxiliaries, or activity enhancers for pesticides or insecticides.

pp; 18 DwgNo 0/0

Title Terms: ASPARTIC; ACID; COPOLYMER; USEFUL; EMULSION; COMPONENT; CLEAN; COSMETIC; PRODUCT; PEST; ADDITIVE

Derwent Class: A23; A26; A60; A96; A97; B07; C07; D18; D21; D25; F06; F09;

International Patent Class (Main): A61K-031/74; C08G-069/10; C08G-073/10
International Patent Class (Additional): A61K-006/00; A61K-007/00;
 A61K-007/06; A61K-007/075; A61K-007/48; A61K-007/50; A61K-009/00;
 B01J-020/26; C02F-005/12; C08G-069/36; C08G-073/02; C08G-073/12;
 C08G-073/14; C08L-077/00; C09D-007/02; C11D-003/37

File Segment: CPI

### 5/5/2

DIALOG(R)File 351:Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv.

012853536

WPI Acc No: 2000-025368/\*200003\*

XRAM Acc No: C00-006501

Cosmetic oil-in-water emulsions containing nature-like emulsifier useful in day or night cream, care cream, nourishing cream, body lotion, pharmaceutical ointment or lotion, aftershave lotion or sunscreen

Fatent Assignee: GOLDSCHMIDT AG TH (GOLD )

Inventor: GRUENING B; SIMPELKAMP J; WEITEMEYER C Number of Countries: 025 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week EP 958811 Al 19991124 EP 99109059 Α 19990507 200003 B DE 19822601 Al 19991125 DE 1022601 Α 19980520 200003

Priority Applications (No Type Date): DE 1022601 A 19980520

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

**Europäisches Patentamt European Patent Office** Office européen des brevets

EP 0 959 091 A1 (11)

(12)

## **EUROPÄISCHE PATENTANMELDUNG**

(43) Veröffentlichungstag: 24.11.1999 Patentblatt 1999/47

(21) Anmeldenummer: 99109050.7

(22) Anmeldetag: 07.05.1999

(51) Int. Cl.6: C08G 73/10, C08G 73/14, C08G 73/02, A61K 7/48,

C11D 3/37, A61K 7/06

(84) Benannte Vertragsstaaten: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 20.05.1998 DE 19822599

(71) Anmelder: Th. Goldschmidt AG 45127 Essen (DE)

(72) Erfinder:

Grüning, Burghard Dr. 45134 Essen (DE)

 Simpelkamp, Jörg Dr. 45130 Essen (DE)

· Weltemeyer, Christian Dr. 45134 Essen (DE)

Copolymere hydrophob modifizierte Polyasparaginsäureesteramide und Ihre Verwendung (54)

Diese Erfindung betrifft copolymere Polyasparaginsäureesteramide, welche mit Alkyl- oder Alkenylresten mit 6-30 C-Atomen modifiziert sind, ihre Herstellung sowie ihre Verwendung.

Von Polyaminosauren abgeleitete Copolymere, die zu mindestens 75 Mol. % der vorhandenen Einheiten aus Struktureinheiten der allgemeinen Formeln (I),(II) oder (III)

$$\begin{bmatrix}
NH-A-CO \\
COO-R
\end{bmatrix}, (II) \begin{bmatrix}
NH-A-CO \\
CO-NR^2R^3
\end{bmatrix}, (III) \begin{bmatrix}
NH-B-CO
\end{bmatrix}$$

$$\begin{bmatrix}
-CH_2 \\
CH_2
\end{bmatrix}$$
(A2)
$$\begin{bmatrix}
-CH_2 \\
CH_-
\end{bmatrix}$$

bestehen, in denen die Strukturelemente A gleiche oder verschiedene trifunktionelle Kohlenwasserstoffradikale mit 2 C-Atomen des Typs (A1) oder (A2) sind, worin

R<sup>1</sup> die Bedeutung von R<sup>4</sup>, R<sup>5</sup>, und R<sup>6</sup> haben kann,

für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkyl-, Alkenyl- oder Arylreste mit 1 bis 30 C-Atomen für Hydroxy- oder Aminoalkylreste mit 1 bis 22 C-Atomen und 1 bis 6 Hydroxyund/oder Aminogruppen und/oder deren Acylierungsprodukte mit 1 bis 22 C-Carbonsauren oder die Bedeutung von R<sup>5</sup> annimmt, und

gleich Wasserstoff oder R2 ist.

für ein oder mehrere Reste aus der Gruppe der Alkali-, Erdalkalimetalle, Wasserstoff oder Ammonium, [NR7R8R9R10]+, worin R<sup>7</sup> bis R<sup>10</sup> unabhängig voneinander Wasserstoff, Alkyl oder Alkenyl mit 1 bis 22 C-Atomen oder Hydroxyalkyl

mit 1 bis 22 C-Atomen ist, mit 1 bis 6 Hydroxygruppen.

für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkyl- oder Alkenylre-

- ste R<sup>11</sup> mit 6 bis 30 C-Atomen oder Radikale der Struktur -Y-R<sup>11</sup>, wobei Y eine Oligo- oder Polyoxyalkylenkette mit 1 bis 100 Oxyalkyleneinheiten ist, und
- für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkyl- oder Alkenytreste mit 1 bis 5 C-Atomen steht,
  und wenigstens jeweils eine Einheit der allgemeinen Formel (I), bei dem der Rest R<sup>1</sup> die Bedeutung von R<sup>4</sup>
  annimmt, und wenigstens eine Einheit der allgemeinen Formel (II) enthalten ist, und die Einheiten der allgemeinen Formel (III) proteinogene oder nicht proteinogene Aminosäuren sind und zu nicht mehr als 20 Gew.-%,
  bezogen auf copolymere Polyasparaginsäurederivate, enthalten sind.

#### Beschreibung

[0001] Diese Erfindung betrifft copolymere Polyasparaginsaureesteramide, welche mit Alkyl- oder Alkenylresten mit 6-30 C-Atomen modifiziert sind, ihre Herstellung sowie ihre Verwendung.

[0002] Polyaminosäurederivate, insbesondere Polyasparaginsäure, haben in jüngster Zeit aufgrund ihrer Eigenschaften, insbesondere ihrer biologischen Abbaubarkeit und Naturnähe, besondere Aufmerksamkeit gefunden. Es werden u.a. Anwendungen als biologisch abbaubare Komplexierungsmittel, Enthärter und Waschmittel-Builder vorgeschlagen. Polyasparaginsäure wird i.A. durch alkalische Hydrolyse der unmittelbaren Synthesevorstufe Polysuccinimid (PSI, Anhydropolyasparaginsäure), dem cyclischen Imid der Polyasparaginsäure gewonnen. PSI kann beispielsweise nach EP 0 578 449 A, WO 92/14753, EP 0 659 875 A oder DE 44 20 642 A aus Asparaginsäure hergestellt werden oder ist beispielsweise nach DE 36 26 672 A, EP 0 612 784 A, DE 43 00 020 A oder US 5 219 952 A aus Maleinsäurederivaten und Ammoniak zugänglich. Für diese üblichen Polyasparaginsäuren werden u.a. Anwendungen als Inkrustationsinhibitor, Builder in Waschmitteln, Düngemitteladditiv und Hilfsstoff in der Gerberei vorgeschlagen.

[0003] Die von verschiedenen Arbeitsgruppen beschriebene Umsetzung von Polysuccinimid mit Aminen führt zu Polyssparaginsäureamiden (Kovacs et al., J. Med. Chem. 1967, 10, 904-7; Neuse, Angew. Makromol. Chem. 1991, 192, 35-50). Die Ringöffnung von Polysuccinimid mit Polyaminen und die nachfolgende alkalische Hydrolyse zur Herstellung von Polyasparaginsäurederivaten für Anwendungen als Superabsorber wird beispielsweise in der WO 95/35337 beschrieben.

US 5,292,858 A beschreibt die Umsetzung von Maleinsäuremonoestern mit Ammoniak oder Ammoniak und Aminen zu Polysuccinimid oder amidgruppen-enthaltenden Polysuccinimidderivaten, welche im Endprodukt keine Estergruppen mehr enthalten.

[0004] Von besonderem Interesse u.a. für Anwendungen als Emulgator, Dispergiermittel und Tensid sind copolymere Polyasparaginsäureester, welche partiell mit langkettigen Fettalkoholen oder deren Derivaten verestert sind. Derartige Verbindungen sind auf Basis von Maleinsäuremonoestern und Ammoniak leicht zugänglich, wie aus der DE 195 45 678 A beziehungsweise der EP 96 118 806.7 A hervorgeht.

[0005] In ihren anwendungstechnischen Eigenschaften weisen diese Derivate jedoch verschiedene Nachteile auf, insbesondere bezüglich der Temperatur- und Langzeitstabilität der Zubereitungen beispielsweise im Bereich kosmetischer W/O und O/W-Emulsionen.

[0006] Aufgabe der Erfindung war daher die Bereitstellung copolymerer Polyasparaginsäureesterderivate, welche verbesserte Anwendungseigenschaften besitzen.

[0007] Die Aufgabe wird erfindungsgemäß gelöst durch copolymere Polyasparaginsäureester mit Ester- und Amidgruppen in der Polymerseitenkette, welche aus Derivaten α,β-ungesättigter Carbonsäuren und Ammoniak hergestellt werden. Dabei bewirkt das gleichzeitige Vorhandensein von Ester- und Amidgruppen im Molekül überraschenderweise besonders vorteilhafte Anwendungseigenschaften.

[0008] Die eingesetzten, von Polyasparaginsäure abgeleiteten Copolymeren bestehen zu wenigstens 75 Mol.-% der vorhandenen Einheiten aus Struktureinheiten der allgemeinen Formeln (I), (II) und (III), wobei die Strukturelemente A gleiche oder verschiedene trifunktionelle Kohlenwasserstoffradikale mit 2 C-Atomen der Struktur (A1) oder (A2) sind,

40
$$\begin{bmatrix}
NH-A-CO \\
COO-R
\end{bmatrix}$$
(II)
$$\begin{bmatrix}
NH-A-CO \\
CO-NR^2R^3
\end{bmatrix}$$
45
$$\begin{bmatrix}
-CH \\
CH_2
\end{bmatrix}$$
(A2)
$$WOrin$$

- R1 die Bedeutung von R4, R5, und R6 hat.
- R<sup>2</sup> für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkyl-, Alkenyl- oder Arylreste mit 1 bis 30 C-Atomen, für Hydroxy- oder Aminoalkylreste mit 1 bis 22 C-Atomen und 1 bis 6 Hydroxyund/oder Aminogruppen und/oder deren Acylierungsprodukte mit 1 bis 22 C-Carbonsäuren oder die Bedeutung von R<sup>5</sup> annimt, und
- R<sup>3</sup> gleich Wasserstoff oder R<sup>2</sup> ist,

5

10

20

30

35

- für ein oder mehrere Reste aus der Gruppe der Alkali-, Erdalkalimetalle. Wasserstoff oder Ammonium, [NR<sup>7</sup>R<sup>8</sup>R<sup>9</sup>R<sup>10</sup>]+, worin R<sup>7</sup> bis R<sup>10</sup> unabhängig voneinander Wasserstoff, Alkyl oder Alkenyl mit 1 bis 22 C-Atomen und 1 bis 6 Hydroxygruppen ist,
- R<sup>5</sup> für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkyl- oder Alkenylreste R<sup>11</sup> mit 5 bis 30 C-Atomen oder Radikale der Struktur -Y-R<sup>11</sup> wobei Y eine Oligo- oder Polyoxyalkylenkette mit 1 bis 100 Oxyalkyleneineiten ist, und
- 15 R<sup>6</sup> für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylreste mit 1 bis 5 C-Atomen steht, und wenigstens jeweils ein Baustein (I), bei dem der Rest R<sup>1</sup> die Bedeutung von R<sup>4</sup> annimmt, und wenigstens ein Baustein (II), bei dem der Rest R<sup>1</sup> die von R<sup>5</sup> oder R<sup>6</sup> annimmt, und wenigstens ein Baustein (III) enthalten ist.
  - die Einheiten der allgemeinen Formel (III) proteinogene oder nicht proteinogene Aminosauren sind und zu nicht mehr als 20 Gew.-%, bezogen auf copolymere Polyasparaginsaurederivate, enthalten sind.

[0009] Alle gegebenen Angaben zur Zusammensetzung der polymeren Produkte beziehen sich wie üblich auf die mittlere Zusammensetzung der Polymerketten.

[0010] Bevorzugt eingesetzt werden Produkte, in denen wenigstens ein Rest R<sup>1</sup> oder R<sup>2</sup> die Bedeutung von R<sup>5</sup> annimmt.

[0011] Die restlichen Einheiten (max. 25 Mol.-% welche nicht die Struktur (I), (II) oder (III) haben) können unter anderem Immodisuccinateinheiten der Struktur (IV)

sowie verschiedene Endgruppen sein, am N-Terminus beispielsweise Asparaginsäure-, Maleinsäure-, Fumarsäureund Apfelsäureeinheiten sowie deren Ester oder Amide, Maleinimideinheiten oder Diketopiperazine abgeleitet von Asparaginsäure und/oder den Aminosäurebausteinen (III), sowie Esser oder Amide der Aminosäurebausteine (III), am C-Terminus beispielsweise Asparaginsäure- oder Apfelsäureeinheiten, deren Mono- oder Diester, Amide oder cyclischen Imide.

[0012] Als Aminosaurebausteine (III) aus der Gruppe der proteinogenen Aminosauren kommen z. B. Glutamin, Asparagin, Lysin, Alanin, Glycin, Tyrosin, Tryptophan, Serin und Cystein sowie deren Derivate in Frage; nicht proteinogene Aminosauren können beispielsweise β-Alanin, ω-Amino-1-alkansauren etc. sein.

[0013] Die Einheiten (II) leiten sich bevorzugt von primären oder sekundären Aminen NR<sup>2</sup>R<sup>3</sup>H ab, bei denen R<sup>2</sup> ein geradkeitiger oder verzweigter, gesättigter, oder ungesättigter Alkyl-, Alkenyl- oder Arytrest mit 1 bis 30 C-Atomen, besonders bevorzugt ein Alkylrest mit 8 bis 24 C-Atomen (beispielsweise verzweigte oder lineare Octyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl-, Docosylreste, auch ungesättigte und mehrfach ungesättigte Spezies wie beispielsweise Oleyl), und R<sup>3</sup> Wasserstoff oder Methyl ist. Weiterhin bevorzugte Amine sind Aminoalkohole, beispielsweise Ethanolamin, Diethanolamin, Aminopropanol, deren N-Methylderivate sowie deren Acylierungsprodukte beispielsweise mit geradkettigen oder verzweigten, gesättigten, oder ungesättigten Carbonsäuren mit 1 bis 30 C-Atomen, besonders bevorzugt mit 8 bis 24 C-Atomen.

[0014] Eine bevorzugte Form der erfindungsgemäßen Copolymeren enthält wenigstens eine freie Carboxylatgruppe (R<sup>1</sup> = H, Metall, Ammonium), wenigstens einen Baustein (I), bei dem R<sup>1</sup> die Bedeutung von R<sup>5</sup> oder R<sup>6</sup> hat, sowie wenigstens einen Baustein (II), der als Rest R<sup>2</sup> einen Alkyl- oder Alkenylrest aus der Gruppe der geradkettigen oder verzweigten, gesättigten oder ungesättigten Alkylreste mit 8 bis 24 C-Atomen enthält (z. B. verzweigte oder lineare Octyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl-, Docosylreste, auch ungesättigte und mehrfach ungesättigte Spezies wie z. B. Oleyl).

[0015] Eine weitere bevorzugte Form der erfindungsgem

ßen Copolymeren enth

ßt wenigstens eine freie Carboxylatgruppe (R¹ = H, Metall, Ammonium), wenigstens einen Baustein (I), bei dem R¹ die Bedeutung von R⁶ hat und R⁶

aus der Gruppe der geradkettigen oder verzweigten, gesättigten oder ungesättigten Alkyl- oder Alkenylreste mit 1 bis 5

C-Atomen stammt (z. B. Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, n-Pentyl), sowie wenigstens einen

Baustein (II), der als Rest R² einen Alkyl- oder Alkenylrest aus der Gruppe der geradkettigen oder verzweigten, gesättigten oder ungesättigten Alkyl- oder Alkenylreste mit 8 bis 24 C-Atomen enth

ßt (beispielsweise verzweigte oder lineare

Octyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl-, Docosylreste, auch ungesättigte und mehrfach ungesättigte Spezies wie beispielsweise Oleyl). Besonders bevorzugt sind Verbindungen, bei denen R³ Wasserstoff oder

Methyl ist.

[0016] Eine weitere bevorzugte Form der erfindungsgem

ßem Copolymeren enth

ßem R

die Bedeutung von R

hat und R

f

ür gleiche oder verschiedene, geradkettige oder verzweigte, gesattigte oder unges

ättigte Alkyl- oder Alkenylreste R

mit 6 bis 30 C-Atomen oder Radikale der Struktur -Y-R

note bis 30 C-Atomen oder Radikale der Struktur -Y-R

note bis 30 C-Atomen oder Radikale der Struktur -Y-R

note bis 30 C-Atomen oder Radikale der Struktur -Y-R

note bis 30 C-Atomen oder Radikale der Struktur -Y-R

note bis 30 C-Atomen oder Polyoxyalkylenkette mit 1 bis 100

Oxyalkyleneinheiten ist, sowie wenigstens einen Baustein (II), der als Rest R

einen Alkyl- oder Alkenylreste mit 1 bis 30 C-Atomen, enth

ßesonders bevorzugt 1 bis 8 C-Atomen, enth

ßesonders bevorzugt sind Verbindungen mit Alkyl- oder Alkenylresten R

oder Alkenylresten R

oder Alkenylresten R

die Wasserstoff oder Methyl sind.

[0017] Die erfindungsgemäßen Copolymeren lassen sich beispielsweise dadurch erhalten, daß man ein Gemisch von Monoestern und Monoamiden, optional in Gegenwart von Diestern und/oder Diamiden und/oder Anhydriden, monoethylenisch ungesättigter Dicarbonsäuren mit 0,5-1,5 Äquivalenten Ammoniak umsetzt bzw. die Ammoniumsalze dieser Säuren thermisch in das Polymer überführt. Eingesetzt werden können beispielsweise Derivate der Maleinsäure, Fumarsäure, Itaconsäure, Alkenylbernsteinsäure, Alkylmaleinsäure, Citraconsäure oder deren Ammoniumsalze, vorzugsweise Derivate der Maleinsäure, Fumarsäure oder Itaconsäure, besonders vorzugsweise Maleinsäurederivate der allgemeinen Formeln (V), (VI) und (VII)

40

wobei Z für Wasserstoff oder Ammonium, R<sup>2</sup>, R<sup>3</sup>, R<sup>5</sup> und R<sup>6</sup> für die oben genannten Reste stehen und der Anteil an (VII) nicht gleich 0 ist ebenso wie die Summe der Anteile aus (V) und (VI). Eingesetzt werden Mischungen mit einem Gesamtanteil von 0.5 bis 99 Gew.-%, bevorzugt 10 bis 90 Gew.-%, besonders bevorzugt 40 bis 95 Gew.-%, an Esterkomponente (V) und/oder (VI) sowie mit 1 bis 100 Gew.-%, bevorzugt 10 bis 90 Gew.-%, besonders bevorzugt 5 bis 60 Gew.% an Amidkomponente (VII).

[0018] Vorzugsweise eingesetzte Reste R<sup>5</sup> sind Alkyl- oder Alkenytreste mit 8 bis 30 C-Atomen, beispielsweise lineare oder verzweigte Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, oder Octadecylreste sowie ungesättigte Alkyl- oder Alkenytreste, wie z. B. Oleyl. Vorzugsweise eingesetzte Reste R<sup>4</sup> sind Alkylreste mit 1 bis 4 C-Atomen, vorzugsweise Methyl, Ethyl, n-Propyl, i-Propyl, i-Butyl, i-Butyl, s-Butyl.

[0019] Die Reaktion kann mit oder ohne Zusatz von organischen Lösungsmitteln erfolgen. Als Lösungsmittel kommen beispielsweise Alkohole, Ketone, Ester, Oligo- und Poly(alkylen)glykole bzw. - glykolether, Dimethylsulfoxid, Dimethylformamid, N,N-Dimethylacetamid oder N-Methylpyrrolidon sowie deren Gemische und andere in Frage. Bevorzugt eingesetzt werden Alkohole mit 2-4 C-Atomen, davon besonders bevorzugt der kurzkettige Alkohol R<sup>4</sup>OH, sowie Ketone wie beispielsweise Methylisobutylketon oder Methylisoamylketon oder Alkylester von Carbonsauren mit 1-4 C-Atomen, wie beispielsweise Essigsaure-sec-Butylester oder Essigsaurepentylester.

[0020] Die Reaktion kann optional in Gegenwart von verträglichkeitsfördernden Agenzien durchgeführt werden. Dieses können grenzflächenaktive Verbindungen sein, beispielsweise Anlagerungsprodukte von 1 bis 30 Mol Ethylenoxid

und /oder 0 bis 5 Mol Propytenærid an C<sub>12</sub>-C<sub>30</sub>-Fettalkohole und Wollwachsalkohole; Ethylenæridanlagerungsprodukte von Glycerinmono- und -diestern und Sorbitanmono- und diestern von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 C-Atomen; Anlagerungsprodukte von 2 bis 30 Mol Ethylenærid und / oder 0 bis 5 Mol Propytenærid an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mir 8 bis 15 C-Atomen in der Alkylgruppe; C<sub>12</sub>-C<sub>18</sub>-Fettsäurepartialesser von Anlagerungsprodukten von 1 bis 30 Mol Ethylenærid an Glycerin; Anlagerungsprodukte von Ethylenærid an Fette und Öle, beispielsweise Rizinusöl oder gehärtetes Rizinusöl; Partialester von gesättigten oder ungesättigten C<sub>12</sub>-C<sub>22</sub>-Fettsäuren, auch verzweigte oder hydræxysubstituierte, mit Polyolen, beispielsweise Ester von Glycerin, Ethylenglykol, Polyalkylenglykolen, Pentaerythrit, Polyglyrerin, Zuckeralkoholen wie Sorbit und Polyglucosiden wie Cellulose; Polysiloxan-Polyalkyl-Polyether-Copolymere und deren Derivate sowie hydrophob modifizierte Polyasparaginsäuren oder Kondensate aus Maleinsäuremonoestern und Ammoniak, beispielsweise hergestellt nach dem erfindungsgemäßen Vertahren oder nach DE 195 45 678 A, wobei das Herstellverfahren der genannten Polyaminosäurederivate keinen Einfluß auf deren verträglichkeitsvermittelnde Wirkung hat. Gegebenenfalls kann auch ein gewisser Teil der Produktmischung im Reaktor verbleiben und als Lösungsvermittler für eine folgende Umsetzung dienen.

[0021] Als verträglichkeits- bzw. löslichkeitsvermittelnde Agenzien können auch kationische Tenside, beispielsweise aus der Gruppe der quarternären Ammoniumverbindungen, quarternären Proteinhydrolysare, Alkylamidoamine, quarternären Esterverbindungen, quarternären Siliconöle oder quarternären Zucker- und Polysaccharidderivate, anionische Tenside beispielsweise aus der Gruppe der Sulfate, Sulfonate, Carboxylate sowie Mischungen derselben, beispielsweise Alkylbenzolsulfonate, α-Olefinsulfonate, α-Sulfonierte Fettsäureester, Fettsäureglycerinestersulfate, Paraffinsulfonate, Alkylsulfate, Alkylpolyethersulfate, Sulfobernsteinsäurealkylester, Fettsäuresalze (Seifen), Fettsäureester der Polymilchsäure, N-Acylaminosäureester, N-Acylaminosäureester, Ronoalkylphosphate, N-Acylaminosäurederivate wie N-Acylaspartate oder N-Acylglutamate, N-Acylsarcosinate, amphotere oder zwitterionische Tenside wie beispielsweise Alkylbetaine, Alkylamidoalkylbetaine des Typs Cocoamidopropylbetain, Sultobetaine, Phosphobetaine, Sultaine und Amidosultaine, Imidazoliniumderivate, Amphoglycinate, oder nichtionische Tenside wie beispielsweise oxethylierte Fettalkohole, oxethylierte Alkylphenole, oxethylierte Fettsäureester, oxethylierte Mono-, Di- oder Triglyceride oder Polyalkylenglykolfettsäureester, Zuckerester, z.B. Fettsäureester der Saccharose, Fructose oder des Methylglucosids, Sorbitolfettsäureester und Sorbitanfettsäureester (gegebenenfalls oxethyliert), Alkyl- oder Alkenylpolyglucoside und deren Ethoxylate, Fettsäure-N-alkylpolyhydroxyalkylamide, Polyglycerinester, Fettsäurealkanolamide, langkettige tertiäre Aminoxide oder Phosphinoxide sowie Dialkylsulfoxide enthalten sein.

[0022] Vorzugsweise verbleiben die verträglichkeitsf\u00f6rdernden Agenzien im Produkt. Die Umsetzung zum Copolymeren erfolgt in einer bevorzugten Ausf\u00fchrungsweise mit w\u00e4\u00e4rigem oder gasf\u00f6rmigen Ammoniak bei Temperaturen von 0 bis 150°C, vorzugsweise 50-140°C sowie nachfolgendem Ausdestillieren bei 70 bis 240°C, vorzugsweise 110 bis 150°C, unter vermindertem Druck, beispielsweise in Knetapparaturen, Hochviskoreaktoren, Extrudern und R\u00fchrreaktoren, gegebenenfalls unter Einsatz scherkraftreicher R\u00fchrer wie Mig- oder Intermig-R\u00fchrer.

[0023] Unter den Reaktionsbedingungen werden gleichzeitig ein Teil der Estergruppen, bevorzugt die von R<sup>6</sup>OH abgeleiteten, hydrolysiert und die gewünschten Carbonsäure- bzw. Carboxylatgruppen freigesetzt. Durch nachfolgende milde partielle oder vollständige Hydrolyse, bevorzugt der vom kurzkettigen Alkohol R<sup>6</sup>OH abgeleiteten Esterfunktionen kann, wenn gewünscht, der Anteil freier Säuregruppen weiter erhöht werden, beispielsweise durch Umsetzung mit Wasser ggf. in Gegenwart von Säuren oder Basen, oder mit Alkalimetallhydroxiden, ggf. in Gegenwart eines organischen Solvens oder Cosolvens.

[0024] Die Ester- und Amidkomponente können jeweils beliebige Mischungen aus Verbindungen mit unterschiedlichen Resten R<sup>2</sup>, R<sup>3</sup>, R<sup>5</sup>, bzw. R<sup>6</sup> sein.

[0025] Anstelle von Maleinsäuremonoester und -amiden kann auch direkt Maleinsäureanhydrid im Gemisch mit den entsprechenden Alkoholen und Aminen eingesetzt werden.

[0026] Durch Zusatz von amino- und carboxyfunktionellen Verbindungen zur Reaktionsmischung können Copolymere erhalten werden, in denen die angebotenen Bausteine über Amidbindungen gebunden vorliegen. Geeignete Bausteine sind Aminosäuren aus der Gruppe der 20 proteinogenen Aminosäuren, welche als Monomere in allen natürlichen Proteinen enthalten sind, in enamtiomerenreiner oder racemischer Form, wie beispielsweise Glutaminsäure, Glutamin, Asparagin, Lysin, Alanin, Glycin, Tyrosin, Tryptophan, Serin und Cystein sowie deren Derivate, oder nicht proteinogenen Aminosäuren mit jeweils einer oder mehreren Amino- bzw. Carboxyfunktionen, wie beispielsweise β-Alanin, ω-Amino-1-alkansäuren, beispielsweise 6-Aminocapronsäure. Die Bausteine, vorzugsweise 0 bis 15 Gew. %, werden der Ausgangsmischung der Maleinsäurederivate zugesetzt oder zur Modifizierung der Kettenenden nach erfolgter Synthese des Polymeren mit diesem umgesetzt, vorzugsweise unter Zusatz polarer Solventien, wie beispielsweise Alkoholen oder Dimethyformamid.

55 [0027] Die Molekularmasse der Polyasparaginsäurederivate kann durch Zusatz von di- und/oder polyfunktionellen Bausteinen, abgeleitet von einer Di- oder Polyhdroxyverbindung, einer Di- oder Polyaminoverbindung, oder Aminoalkoholen mit einem linearen, verzweigten oder cyclischen, gesättigten , ungesättigten oder aromatischen Kohlenwasserstoffgerüst, ggf. oxo- oder aza-Analogen mit O- oder N-Atomen in der Kette, oder von Polyalkylenglykolen bzw.

Ethylenoxid-Propylenoxid-Copolymeren, erhöht werden. Die Einführung der molekularmassenerhöhenden Gruppen erfolgt durch Zusatz der polyfunktionellen Amino- bzw. Hydroxyverbindungen bzw. deren Umsetzungsprodukten mit Maleinsäureanhydrid zur Reaktionsmischung oder zum gebildeten Polymeren, ggf. unter Zusatz von sauren oder lewissauren Katalysatoren.

5 [0028] Die beschriebenen Vorgehensweisen k\u00f6nnen auch kombiniert werden.

[0029] Die resultierenden Polymeren können nachbehandelt werden, beispielsweise durch Behandlung mit Ammoniak, Umesterungskatalysatoren wie beispielsweise lewissauren Titan-(IV)-Verbindungen, mit Aktivkohle oder anderen Adsorbentien, Bleichung mit Oxidationsmitteln wie H<sub>2</sub>O<sub>2</sub>, Cl<sub>2</sub>, O<sub>3</sub>, Natriumchlorit, Natriumhypochlorit etc. oder Reduktionsmitteln wie beispielsweise NaBH<sub>4</sub> oder H<sub>2</sub> in Gegenwart von Katalysatoren, unter üblichen Bedingungen.

[0030] Die erfindungsgemäßen Copolymeren besitzen hervorragende Eigenschaften als Sequestriermittel, als Additive zu Farben und Lacken, als Schaumstabilisatoren, Tenside und Emulgatoren. Insbesondere die Temperatur- und Langzeitstabilität von O/W- und W/O-Emulsionen wird positiv beeinflußt.

[0031] Die erfindungsgemäßen Polymeren können als O/W-Emulgatoren für kosmetische Emulsionen eingesetzt werden, beispielsweise für Lotionen mit einer vergleichsweise niedrigen Viskosität oder Cremes und Salben mit einer hohen Viskosität, für Anwendungen als Hautpflegemittel wie beispielsweise Tagescremes, Nachtcremes, Pflegecremes, Nährcremes, Bodylotions, Salben und dergleichen. Als weitere Hilfs- und Zusatzstoffe können übliche Coemulgatoren, Konsistenzgeber, Ölkörper, Überfettungsmittel, Fette, Wachse, Stabilisatoren, Wirkstoffe, Glycerin, Farb- und Duftstoffe enthalten.

[0032] Als Konsistenzgeber können hydrophile Wachse, beispielsweise C<sub>12</sub>-C<sub>30</sub>-Fetralkohole, C<sub>16</sub>-C<sub>22</sub>-Fettsäuren, Glycerinmono- und -diester und Sorbitanmono- und diester von gesättigten Fettsäuren mit 12 bis 22 C-Atomen eingesetzt werden.

[0033] Als weitere Coemulgatoren kommen beispielsweise in Frage: Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und /oder 0 bis 5 Mol Propylenoxid an C<sub>12</sub>-C<sub>30</sub>-Fettalkohole und Wollwachsalkohole, vorzugsweise lineare, gesättigte C<sub>16</sub>-C<sub>22</sub>- Fettalkohole; Ethylenoxidanlagerungsprodukte von Glycerinmono- und - diestern und Sorbitanmono- und diestern von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 C-Atomen; Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und /oder 0 bis 5 Mol Propylenoxid an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe; C<sub>12</sub>-C<sub>18</sub>-Fettsäurepartialester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin; Anlagerungsprodukte von Ethylenoxid an Fette und Öle, beispielsweise Rizinusöl oder gehärtetes Rizinusöl; Partialester von gesättigten oder ungesättigten C<sub>12</sub>-C<sub>22</sub>-Fettsäuren, auch verzweigte oder hydroxysubstituierte, mit Polyolen, beispielsweise Ester von Glycerin, Ethylenglykol, Polyalkylenglykolen, Pentaerythrit, Polyglycerin, Zuckeralkoholen wie Sorbit und Polyglucosiden wie Cellulose; Polysiloxan-Polyalkyl-Polyether-Copolymere und deren Derivate sowie hydrophob modifizierte Polyasparaginsäurederivate.

[0034] Als Coemulgatoren können auch anionische, kationische, nichtionische, amphotere und/oder zwitterionische Tenside, beispielsweise aus der als verträglichkeitsfördernden Agenzien bezeichneten Gruppe ausgewählt sein.

[0035] Es können jeweils beliebige Mischungen der o.g. Konsistenzgeber und Coemulgatoren eingesetzt werden. [0036] Als Ölkörper kommen beispielsweise Ester von linearen C<sub>6</sub>-C<sub>20</sub>-Fettsäuren mit linearen C<sub>6</sub>-C<sub>20</sub>-Fettsäuren mit linearen C<sub>6</sub>-C<sub>20</sub>-Fettsäuren mit verzweigten C<sub>6</sub>-C<sub>21</sub>-Fettsäuren mit verzweigten Alkoholen, Ester von linearen und/oder verzweigten C<sub>6</sub>-C<sub>20</sub>-Carbonsäuren mit mehrwertigen Alkoholen und/oder Guerbetalkoholen, Triglyceride auf Basis von C<sub>6</sub>-C<sub>10</sub>-Fettsäuren, pflanzliche und tierische Öle und Fette, verzweigte primäre Alkohole, substituierte Cyclohexane, Guerbetcarbonate, Dialkylether und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht.

[0037] Als Überfettungsmittel können beispielsweise Lanolin und Lecithinderivate sowie deren Ethoxylate, Polyoffettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden. Es können Siliconverbindungen wie Polydimethytsiloxane, Cyclodimethicone sowie amino-, fettsäure-, alkohol- epoxy-, fluor-, und/oder alkylmodifizierte
Siliconverbindungen sowie Wachse wie beispielsweise Bienenwachs, Paraffirmachse oder Mikrowachse enthalten
sein. Die Emulsionen können Verdickungsmittel wie Polyacrylsäurederivate oder kationische Polymere wie z.B. kationische Cellulose- oder Stärkederivate, kationische Chitin oder Chitosanderivate, kationische Siliconpolymere, Copolymere von Diallylammoniumsalzen beispielsweise mit Acrylamiden, Polyethylenimin enthalten. Weiterhin können
Metallsalze von Fettsäuren, beispielsweise Magnesium-, Aluminium- oder Zinkstearat als Stabilisatoren oder Zinksalze
der Ricinolsäure als Geruchshemer enthalten sein. Es können übliche Sonnenschutzwirkstoffe wie Titandioxid, p-Aminobenzoesäure etc., Duftstoffe, Farbstoffe, biogene Wirkstoffe wie Pflanzenextrakte oder Vitaminkomplexe sowie pharmazeutische Wirkstoffe enthalten sein. Weiterhin können die Emulsionen Perlglanzmittel wie Ethylenglykoldistearat
sowie die üblichen Konservierungsmittel wie Parabene, Sorbinsäure, Phenoxyethanol und andere enthalten.

[0038] Die erfindungsgemäßen Polyasparaginsäurederivate können auch in W/O-Emulsionen eingesetzt werden, beispielsweise als Emulgatoren und/oder Coemulgatoren für die Herstellung von Hautpflegecremes und -lotionen.

[0039] Die erfindungsgemäßen Polyasparaginsäurederivate mit einem naturnahen Polyaminosäurerückgrat sind milde Tenside, welche alleine oder in Kombination mit anionischen, kationischen, nichtionischen, zwitterionischen und/oder amphoteren Tensiden eingesetzt werden können. Es sind feste, flüssige oder pastöse Zubereitungen mög-

lich, z.B. Seifenstücke, Waschlotionen, Duschgele, Shampoos.

[0040] Die in Kombination mit den erfindungsgemäßen Polyasparaginsäurederivaten einsetzbaren Tenside können beispielsweise anionische Tenside aus der Gruppe der Sulfate, Sulfonate, Carboxylate sowie Mischungen derselben sein. Die anionischen Gruppen können in neutralisierter Form vorliegen, mit kationischen Gegenionen aus der Gruppe der Alkalimetalle, Erdalkalimetalle, Ammonium oder substituiertem Ammonium. Eingesetzt werden beispielsweise Alkylbenzolsulfonate, α-Olefinsulfonate, α-sulfonierte Fettsäureester, Fettsäureglycerinestersulfate, Paraffinsulfonate, Alkylsulfate, Alkylpolyethersulfate, Sulfobernsteinsäurealkylester, Fettsäuresalze (Seifen), Fettsäureester der Polymlichsäure, N-Acylaminosäureester, N-Acylaminosäurederivate wie N-Acylaminosäurederivate oder N-Acylgintamate, N-Acytsarco-sinate, Polyasparaginsäurederivate und andere

[0041] Die in Kombination mit den erfindungsgem

ßen Polyasparagins

äurederivaten einsetzbaren Tenside k

nen beispielsweise amphotere oder zwitterionische Tenside sein, beispielsweise Alkylbetaine, Alkylamidoalkylbetaine des Typs Cocoamidopropylbetain, Sulfobetaine, Phosphobetaine, Sultaine und Amidosultaine, Imidazoliniumderivate, Amphoglycinate und andere.

[0042] Die in Kombination mit den erfindungsgemäßen Polyasparaginsäurederivaten einsetzbaren kationischen Tenside k\u00f6nnen beispielsweise aus der Gruppe der quartern\u00e4ren Ammoniumverbindungen, quartern\u00e4sierten Proteinhydrolysate, Alkylamidoamine, quartern\u00e4ren Esterverbindungen, quartern\u00e4ren Silicon\u00f6le oder quartern\u00e4ren Zucker- und Polsaccharidderivate ausgew\u00e4hlt sein.

[0043] Die in Kombination mit den erfindungsgemäßen Polyasparaginsäurederiväten einsetzbaren Tenside können beispielsweise nichtionische Tenside sein, beispielsweise oxethylierte Fettalkohole, oxethylierte Alkylphenole, oxethylierte Fettsäureester, oxethylierte Mono-, Di- oder Trigtyceride oder Polyalkylenglykolfettsäureester. Andere nichtionische Tenside können aus der Gruppe der Alkylpolysaccharide, beispielsweise Alkyl- oder Alkenylpolyglucoside, Zuckerester, beispielsweise Fettsäureester der Glucose, Saccharose, Fructose oder des Methylglucosids, Sorbitolfettsäureester und Sorbitanfettsäureester (gegebenenfalls oxethyliert), Polyglycerinester, Fettsäurealkanolamide, N-Acylaminozuckerderiväte beispielsweise N-Acylglucamine, langkettige tertiäre Aminooxide oder Phosphinoxide sowie Dialkylsulfoxide stammen.

[0044] Die in Kombination mit den erfindungsgemäßen Polyasparaginsäurederivaten eingesetzten Tenside können somit auch beliebige Kombinationen aus zwei oder mehr Tensiden der obengenannten Kategorien sein.

[0045] Die erfindungsgemäßen Tensidzubereitungen können weitere Hilfs- und Zusatzstoffe enthalten wie beispielsweise Wasser und Lösungsmittel beispielsweise aus der Gruppe der Alkohole und Polyole, Verdickungsmittel, Trübungsmittel, z.B. Glykolesterderivate; Moisturizer, Emollients wie tierische und pflanzliche Öle, Carbonsäureester,
Lanolin, Bienenwachs, Silicone; polymere Agenzien zur Verbesserung des Hautgefühls, konditionierende, pflegende
oder pharmazeutisch wirksame Bestandteile wie beispielsweise kationische oder amphotere Polymere, Proteine und
Proteinderivate, Lanolinderivate, Panthothensäure, Betain, Polydimethylsiloxane oder deren Derivate, Sonnenschutzwirkstoffe sowie Lösungsvermittler, Stabilisatoren, Geruchsstoffe, Puffersubstanzen, Konservierungsmittel und/oder
Farbstoffe.

[0046] Die Polyasparaginsäurederivate enthaltenden Tensidzubereitungen lassen sich vorteilhalt anwenden in beispielsweise Haarshampoos, Duschbäder, Schaumbadzubereitungen, Hand-, Gesichts und Intimreinigungslotionen, Flüssigseifen, Seifenstücke, Rasiercremes, Handwaschpasten, hautfreundlichen Geschirrspülmitteln, Reinigungsmitteln für glatte Oberflächen sowie in Zahncremes.

[0047] Die erfindungsgemäßen Polyasparaginsäurederivate können als Dispergiermittel beispielsweise für Lacke und Farben eingesetzt werden.

[0048] Die erfindungsgemäßen hydrophob modifizierten Polyasparaginsäurederivate werden dazu vorteilhaft mit dem Stand der Technik entsprechenden Neutralisationsmitteln, insbesondere Aminen neutralisiert sofern nicht bereits als Salz vorliegend. Insbesondere bevorzugt ist hier die Verwendung von Dimethylethanolamin oder 2-Amino-2-methylpropanol. Zur Herstellung wäßriger Pigmentpasten werden 0.1-100 Gew.-%, vorzugsweise 0.5-50 Gew.-%, insbesondere 2 bis 15 Gew.-% bezogen auf das Gewicht der Pigmente verwendet. Die hydrophob modifizierten Polyasparaginsäure-derivate können bei der erfindungsgemäßen Verwendung entweder vorab mit den zu dispergierenden Pigmenten vermischt werden oder direkt in dem Dispergiermedium (Wasser, eventuelle Glycolzusätze) vor oder gleichzeitig mit der Zugabe der Pigmente und etwaiger anderer Feststoffe gelöst werden. Die Neutralisation kann dabei vor oder während der Herstellung der Pigmentpasten erfolgen. Bevorzugt werden Polyasparaginsäurezubereitungen eingesetzt, welche bereits partiell oder vollständig neutralisiert werden.

[0049] Die erfindungsgemäßen Polyasparaginsäurederivate können auch in beliebigen Gemischen mit weiteren, dem Stand der Technik entsprechenden Dispergieradditiven, beispielsweise aus der Gruppe der Fettsäurealkoxylate, Poly(meth)acrylate, Polyester, Polyether etc., eingesetzt werden.

[0050] Als Pigmente können in diesem Zusammenhang beispielsweise anorganische oder organische Pigmente, sowie Ruße genannt werden. Als anorganische Pigmente seien exemplarisch genannt Titandioxid und Eisenoxide. In Betracht zu ziehende organische Pigmente sind beispielsweise Azopigmente, Metallkomplex-Pigmente, Phthalo-

cyaninpigmente, anthrachinoide Pigmente, polycyclische Pigmente, insbesondere solche der Thioindigo-, Chinacridon-, Dioxazin-, Pyrrolopyrrol-, Naphthalintetracarbonsäure-, Perylen-, Isoamidolin(on)-, Flavanthron-, Pyranthron- oder Isoviolanthron-Reihe.

[0051] Füllstoffe, die beispielsweise in w\u00e4\u00dfrigen Lacken dispergiert werden k\u00f6nnen, sind beispielsweise solche auf Basis von Kaolin, Talkum, anderen Silik\u00e4ten, Kreide, Glasfasern, Glasperlen oder Metallpulvern.

[0052] Als Lacksysteme, in denen die erfindungsgem\u00e4\u00e4\u00e4n Pigmentpasten aufgelackt werden k\u00f6nnen, kommen beliebige w\u00e4\u00e4rige 1K- oder 2K-Lacke in Betracht. Beispielhaft genannt seien w\u00e4\u00e4rige 1K-Lacke wie beispielsweise solche auf Basis von Alkyd-, Acrylat-, Epoxid-, Polyvinylacetat-, Polyester- oder Polyurethanharzen oder w\u00e4\u00e4rige 2K-Lacke, beispielsweise solchen auf Basis von hydroxylgruppenhaftigen Polyacrylat- oder Polyesterharzen mit Melaminharzen oder gegebenenfalls blockierten Polyisocyanatharzen als Vernetzer. In gleicher Weise seien auch Polyepoxidharzsysteme genannt.

[0053] Die erfindungsgemäßen Polyasparaginsäurederivate können als komplexbildende Agenzien, beispielsweise in Waschmitteln, als Inkrustationsinhibitoren, als Metalldesaktivatoren in Kunststoffen, als Hilfsstoffe in der Papier-, Leder- und Textilindustrie oder als wirkungsverstärkende Zusatzstoffe zu Pestiziden oder Insektiziden eingesetzt werden. Hochmolekulare Derivate, vorzugsweise nach Modifizierung mit den obengenannten polyfunktionellen Hydroxy- und Aminoverbindungen, eignen sich auch als Absorbermaterialien.

#### **Beispiele**

#### 20 Beispiele 1 bis 6

[0054] Die Edukte (Monoethylmaleat, Monoalkylmaleat, N-Alkylmaleamid gemäß Tab. 1, gelöst in 4-Methyl-2-pentanon)wurden mit 1.0 bis 1.5 Äquivalenten an Ammoniakgas umgesetzt und die Reaktionsmischung im Vakuum bei 110 °C bis 140 °C für 5 h ausdestilliert.

25

30

~-

..

45

50

55

Tabelle 1:

| BEISPIEL        | R     | MOL                       | R.    | MOL   | R,     | R           | MOL   | PRODUKT: | PRODUKT: PRODUKT: PRODUKT: PRODUKT | PRODUKT: | PRODUKT |
|-----------------|-------|---------------------------|-------|-------|--------|-------------|-------|----------|------------------------------------|----------|---------|
|                 |       | 3                         |       | (VI)  |        |             | (VII) | MOL®     | MOLE                               | MOL\$    | MOL*    |
|                 |       |                           |       |       |        |             |       | COOR 5   | COOR*                              | CONR'R'  | НООО    |
| 1               | Decyl | 0,5                       | Ethyl | 3,0   | H      | Decyl       | 5'0   | 6        | 16                                 | 12       | 63      |
| 2               | Cetyl | 9,5                       | Ethyl | 2,75. | Ŧ      | Cetyl       | 0,75  | 12       | 10                                 | 16       | 62      |
| 3               | Oleyl | 2,5                       | Ethyl | 1,0   | Methyl | Dodecyl 0,5 | 0,5   | 54       | 2                                  | 10       | 34      |
| 4               | Cetyl | 1,0                       | Ethy1 | 2,5   | =      | Hydroxy 0,5 | 0,5   | 22       | 14                                 | 11       | 53      |
|                 |       |                           |       |       |        | ethyl       |       |          |                                    | , T. T.  |         |
| 5               |       | )<br> <br> <br> <br> <br> | Ethyl | 3,0   | H      | Cetyl       | 1,0   |          | 21                                 | 22       | 57      |
| 9               | Cetyl | 1,5                       | Ethyl | 1,5   | =      | Ethyl       | 1,0   | 34       | 5                                  | 20       | 31      |
| Vergleich Cetyl | Cetyl | 1,0                       | Ethy1 | 3,99  |        |             |       | 20       | 16                                 |          | 64      |
| beispiel        |       |                           |       |       |        |             |       |          |                                    |          |         |

Synthese von Polyasparaginsäurederivaten

#### Beispiel 7

## O/W-Emulsion mit Polyasparaginsäurederivaten

## [0055]

|    | Cetylpolyaspartat aus Beispiel 2 (25 % in Wasser, pH 5.5) | 2.0 %  |
|----|-----------------------------------------------------------|--------|
| 10 | Glycerin                                                  | 3,0 %  |
|    | Konservierungsmittel                                      | 0.1 %  |
|    | Wasser                                                    | 70,0 % |
| 15 | Glycerinmonostearat (Tegin® M, Th. Goldschmidt)           | 4.5 %  |

Glycerinmonostearat (Tegin® M, Th. Goldschmidt) 4.5 %
Tegosoft® CT (Capryl-Caprintriglycerid, Th. Goldschmidt) 20.00 %

[0056] Die wäßrige Phase und die Ölkörper/Glycerinmonostearatmischung wurden bei 70°C zusammengegeben, intensiv mit einem Rotor-Stator-Homogenisator bearbeitet (SG/220V, 2 min). Die Emulsion (100 ml) wurde 2 Tage bei 20°C und 7 d bei 45°C gelagert. Die sensorische Bewertung der Proben zeigte bei Beispiel 7 keine Änderung der cremeartigen Konsistenz, beim Vergleichsbeispiel 2 einen Viskositätsverlust. Die Wasserseparation der W/O-Emulsionen wurde nach 2 Tagen Lagerung bei 20°C und nach weiteren 7 Tagen Lagerung bei 45°C bestimmt.

25

| BEISPIEL             | EMULGATOR AUS BEI-<br>SPIEL | WASSERSEPAPATION<br>NACH 2 TAGEN/20°C<br>(VOL %) | WASSERSEPARATION<br>NACH 28 TAGEN/45°C<br>(VOL%) |
|----------------------|-----------------------------|--------------------------------------------------|--------------------------------------------------|
| 7                    | 2                           | < 0,1 %                                          | < 0,1 %                                          |
| Vergleichsbeispiel 2 | Vergleichsbei spiel 2       | < 0,1 %                                          | 1,0 %                                            |

30

35 [0057] Diese Ergebnisse zeigen die erh\u00f6hte Emulsionsstabilit\u00e4t bei den amidmodifizierten Polyasparagins\u00e4ureestern.

## Beispiel 8

40 Schäumende Tensidzubereitung mit Polyasparaginsäurederivaten:

## [0058]

| 45 | Rezeptur                                                                                    | (A)    | (B)    |
|----|---------------------------------------------------------------------------------------------|--------|--------|
|    |                                                                                             | [Ge    | w%]    |
|    | Produkt nach Beispiel 1 (50 %ig in Wasser, pH 5,5)                                          | 0,0 %  | 1,0 %  |
| 50 | Texapon® N28 (28 % Natriumlaurylethersultat, Henkel)                                        | 21,4 % | 21,4 % |
| 30 | Tego® Betain F50 (37,5 % Coccamidopropylbetain, Th. Goldschmidt) Wasser ad 100 %, pH ad 6,0 | 16,0 % | 16,0 % |

55 [0059] Die Schaumeigenschaften der Tensidmischung wurden durch Aufschäumen einer verdünnten Tensidlösung bestimmt. (0.5 Gew% WAS, 8°dH, 30°C, Ystral-Leitstrahlmischer, 750 W, 2 min)

| MISCHUNG | SCHAUMVOLUMEN<br>[ML] | WASSERSEPAPATION 10 MIN [ML] | SCHAUMDICHTE<br>[G/ML] |
|----------|-----------------------|------------------------------|------------------------|
| Α        | 1490 ± 17             | 240 ± 2.0                    | 0.208 ± 0.002          |
| В        | 1573 ± 10             | 236 ± 2.9                    | 0.191 ± 0.003          |

[0060] Dieses Beispiel belegt den positiven Einfluß der Polyasparaginsäurederivate auf das Schaumverhalten von Tensidsystemen.

## Beispiel 9

## [0061]

5

15

20

25

30

35

40

Polyasparaginsaurederivat nach Beispiel 1, (50 %ig in Wasser, pH 5,5) 11.0 % Texapon® N70 (70 % Natriumlaurylethersulfat, Henkel) 32,0 % Tagat® R40 (PEG-40-Ethoxylat von hydriertem Rizinusöl, Th. Goldschmidt) 5,0 % Tego® Glucosid 810 (60 % Capryl/Capringlucosid, Th. Goldschmidt) 8,0 % Zitronensäure (20 %) 0,9 % 8,5 % NaCl (25 %) 16.6 % Wasser Tego® Betain F50 (37,5 % Cocoamidopropylbetain, Th. Goldschmidt) 18,0 %

## Beispiel 10

Pflegecreme auf O/W-Basis

## [0062]

Polyasparaginsaurederivat nach Beispiel 2, (50 %ig in Wasser pH 5,5) 4.0 % Polyasparaginsaurederivat nach Beispiel 4, (50 %ig in Wasser, pH 5.5) 1,0% Tego® Care 450 (Polyglyceryl-3-methylglucosiddistearat, Th. Goldschmidt) 1.0 % Tegin® M (Glycerylstearat, Th. Goldschmidt) 0.5% Tego® Akanol 18 (Stearylalkohol, Th. Goldschmidt) 0,3 % 12.0 % Avocadoôl 9.0% Tegosoft® CT (Capryl-Caprintriglycerid, Th. Goldschmidt) 3,0 % Glycerin 69,2 % Wasser NaOH (10 %) ad pH 5,5

55

## Beispiel 11

W/O-Creme

## [0063]

|    | Polyasparaginsaurederivat nach Beispiel 3 (50 %ig in Wasser, pH 5,5) | 3.0 %  |
|----|----------------------------------------------------------------------|--------|
| 10 | Abil® EM90 (Cetylpolyethersiloxan, Th. Goldschmidt)                  | 1,5 %  |
|    | Isolan® GI 34 (Polyglyceryl-4-Isostearat, Th. Goldschmidt)           | 0.8%   |
|    | Avocadoôi                                                            | 11,0%  |
| 15 | Tegosoft <sup>®</sup> CT (Capryl-Caprintriglycerid, Th. Goldschmidt) | 11.0 % |
|    | hydriertes Rizinusól                                                 | 0.8%   |
|    | Bienenwachs                                                          | 1,0 %  |
|    | NaCl                                                                 | 0.5 %  |
| 20 | Wasser                                                               | 0,5 %  |
|    | Duftstoffe, Konservierungsmittel                                     | 70,4 % |

## Patentansprüche

50

55

1. Von Polyaminosauren abgeleitete Copolymere, die zu mindestens 75 Mol. % der vorhandenen Einheiten aus Struktureinheiten der allgemeinen Formeln (I), (II) oder (III)

30
$$(I) = \begin{bmatrix} NH - A - CO \\ COO - R \end{bmatrix}, \qquad (III) = \begin{bmatrix} NH - A - CO \\ CO - NR^2R \end{bmatrix}$$
35
$$(III) = \begin{bmatrix} NH - B - CO \\ CO - NR^2R \end{bmatrix}$$
40
$$(A2) = \begin{bmatrix} -CH_2 \\ CH_2 \end{bmatrix}$$

bestehen, in denen die Strukturelemente A gleiche oder verschiedene trifunktionelle Kohlenwasserstoffradikale mit 2 C-Atomen des Typs (A1) oder (A2) sind, worin

die Bedeutung von R<sup>4</sup>, R<sup>5</sup>, und R<sup>6</sup> haben kann,

R<sup>2</sup> für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkyl-, Alkenyloder Arytreste mit 1 bis 30 C-Atomen, für Hydroxy- oder Aminoalkytreste mit 1 bis 22 C-Atomen und 1 bis 6 Hydroxy- und/oder Aminogruppen und/oder deren Acytierungsprodukte mit 1 bis 22 C-Carbonsäuren oder die Bedeutung von R<sup>5</sup> annimmt, und

R3 gleich Wasserstoff oder R2 ist,

5

10

15

30

50

55

- R<sup>4</sup> für ein oder mehrere Reste aus der Gruppe der Alkali-, Erdalkalimetalle, Wasserstoff oder Ammonium, [NR<sup>7</sup>R<sup>8</sup>R<sup>9</sup>R<sup>10</sup>] + , worin
  - R<sup>7</sup> bis R<sup>10</sup> unabhangig voneinander Wasserstoff, Alkyl oder Alkenyl mit 1 bis 22 C-Atomen oder Hydroxyal-kyl mit 1 bis 22 C-Atomen ist, mit 1 bis 6 Hydroxygruppen.
- R<sup>5</sup> für gleiche oder verschiedene, gerædkettige oder verzweigte, gesättigte oder ungesättigte Alkyl- oder Alkenylreste R<sup>11</sup> mit 6 bis 30 C-Atomen oder Radikale der Struktur -Y-R<sup>11</sup>, wobei Y eine Oligo- oder Polyoxyalkylenkette mit 1 bis 100 Oxyalkyleneinheiten ist, und
- R<sup>6</sup> für gleiche oder verschiedene, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkyl- oder Alkenylreste mit 1 bis 5 C-Atomen steht, und wenigstens jeweils eine Einheit der allgemeinen Formel (I), bei dem der Rest R<sup>1</sup> die Bedeutung von R<sup>4</sup> annimmt, und wenigstens eine Einheit der allgemeinen Formel (II) enthalten ist, und die Einheiten der allgemeinen Formel (III) proteinogene oder nicht proteinogene Aminosäuren sind und zu nicht mehr als 20 Gew.-%, bezogen auf copolymere Polyasparaginsäurederivate, enthalten sind.
- 2. Copolymere nach Anspruch 1, in denen mindestens ein Rest R1 die Bedeutung von R5 oder R6 annimmt.
- 3. Copolymere nach Anspruch 1 oder 2, in denen mindestens ein Rest R<sup>1</sup> oder R<sup>2</sup> die Bedeutung von R<sup>5</sup> annimmt.
- 20 4. Copolymere nach einem der Ansprüche 1 bis 3, bei denen sich die Strukturelemente II von primären oder sekundaren Aminen NR<sup>2</sup>R<sup>3</sup>H ableiten, bei denen R<sup>2</sup> ein geradkettiger oder verzweigter, gesättigter, oder ungesättigter Alkyl-, Alkenyl- oder Arylrest mit 1 bis 30 C-Atomen, und R<sup>3</sup> Wasserstoff oder Methyl ist.
- Copolymere nach einem der Ansprüche 1 bis 3, bei denen sich die Strukturelemente (II) von Aminoalkoholen wie
   Ethanolamin, Diethanolamin, und/oder Aminopropanolen ableiten sowie von deren N-Methylderivaten oder deren Acytierungsprodukten.
  - 6. Copolymere nach einem der Ansprüche 1 bis 5, welche in Gegenwart von molekularmassenerhöhenden Agenzien aus der Gruppe der Di- oder Polyhydroxyverbindungen, Di- oder Polyaminoverbindungen, oder Aminoalkohole oder Mischungen daraus, mit einem linearen, verzweigten oder cyclischen, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffgerüst, ggf. oxo- oder azasubstituiert mit O- oder N-Atomen in der Kette, oder deren Umsetzungsprodukten mit Maleinsäureanhydrid, hergestellt werden oder nach der Herstellung mit diesen modifiziert werden.
- Verfahren zur Herstellung der Copolymeren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß
  man die Amide oder die Ester und Amide α,β-ungesättigter Dicarbonsäuren oder deren Ammoniumsalze, insbesondere Maleinsäurederivate der allgemeinen Formeln (V), (VI) und (VII)

alleine oder im Gernisch miteinander, mit Ammoniak umsetzt und in das Polymer überführt, wobei Z für Wasserstoff oder Ammonium, R<sup>2</sup>, R<sup>3</sup>, R<sup>5</sup> und R<sup>6</sup> für die oben genannten Reste stehen, gegebenenfalls in Gegenwart von bis zu 20 Gew.-%, bezogen auf copolymere Polyasparaginsäurederivate, proteinogener oder nicht proteinogener Aminosäuren oder deren Derivate, sowie gegebenenfalls in weiteren Schritten durch Hydrolyse Gruppen der Struktur der Formel (I), wobei R<sup>1</sup> die Bedeutung von R<sup>4</sup>, mit der oben genannten Definition von R<sup>4</sup>, hat, erzeugt.

8. Kosmetische W/O- oder O/W-Emulsionen, enthaltend copolymere Polyasparaginsäurederivate gemäß den

Ansorüchen 1 bis 7.

5

10

45

55

- 9. Kosmetische Emulsionen nach Anspruch 8, dadurch gekennzeichnet, daß der nichtwäßrige Anteil 5 bis 99 Gew.-% an Ölkörpern aus der Gruppe der Ester von linearen C<sub>6</sub>-C<sub>20</sub>-Fettsäuren mit linearen C<sub>6</sub>-C<sub>20</sub>-Fettalkoholen, Ester von verzweigten C<sub>6</sub>-C<sub>13</sub>-Carbonsäuren mit linearen C<sub>6</sub>-C<sub>20</sub>-Fettsäuren mit-verzweigten Alkoholen, Ester von linearen und/oder verzweigten C<sub>6</sub>-C<sub>20</sub>-Carbonsäuren mit mehrwertigen Alkoholen und/oder Guerbetalkoholen, Triglyceride auf Basis von C<sub>6</sub>-C<sub>10</sub>-Fettsäuren, pflanzliche und tierische Öle und Fette, verzweigte primäre Alkohole, substituierte Cyclohexane, Guerbetcarbonate, Dialkylether und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe enthält.
- 10. Kosmetische O/W-Emulsionen nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß hydrophile Wachse aus der Gruppe der C<sub>12</sub>-C<sub>30</sub>-Fettalkohole, Wollwachsalkohole, C<sub>16</sub>-C<sub>22</sub>-Fettsäuren, Glycerinmono- und -diester und Sorbitanmono- und diester von gesättigten Fettsäuren mit 12 bis 22 C-Atomen enthalten sind.
- 11. Kosmetische Emulsionen nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß ein oder mehrere Coemulgatoren aus der Gruppe der Anlagerungsprodukte von Ethylenoxid oder Ethylenoxid und Propylenoxid an C<sub>12</sub>-C<sub>30</sub>-Fettalkohole und Wollwachsalkohole, der Ethylenoxidanlagerungsprodukte von Glycerinmono- und -diestern und Sorbitanmono- und diestern von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 C-Atomen, der Anlagerungsprodukte von Ethylenoxid und /oder Propylenoxid an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, der C<sub>12</sub>-C<sub>18</sub>-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin, der Anlagerungsprodukte von Ethylenoxid an Fette und Öle, der Polyolester von gesättigten oder ungesättigten C<sub>12</sub>-22-Fettsäuren, auch verzweigte oder hydroxysubstituierte, Polysiloxan-Polyalkyl-Polyether-Copolymere und deren Derivate, der anionischen Tenside, kationischen Tenside, nichtionischen Tenside sowie zwitterionischen oder amphoteren Tenside enthalten sind.
  - 12. Verwendung der Emulsionen nach einem der Ansprüche 8 bis 11 als Hautpflegemittel, Tagescreme, Nachtcreme, Pflegecreme, Nährcreme, Bodylotion, pharmazeutische Salbe und Lotion, Aftershavelotion und Sonnenschutzmittel.
- 30 13. Tensidische Zubereitungen für Reinigungsmittel und/oder kosmetische Mittel, enthaltend Polyasparaginsäurederivate nach einem der Ansprüche 1 bis 7, gegebenenfalls enthaltend ein oder mehrere weitere Tenside aus der Gruppe der anionischen, kationischen, nichtionischen, amphoteren und zwitter-ionischen Tenside sowie deren Mischungen daraus neben üblichen Hilfs- und Zusatzstoffen.
- 35 14. Verwendung der Tensidzubereitungen nach Anspruch 13 für Shampoos, Waschlotionen und Reinigungsmittel für Gesicht, Haar, Haut und Intimbereich, Rasiercreme und -lotionen, Flüssigseife, Geschirrspülmittel, Reinigungsmittel für glatte Oberflächen, Seifenstücke, Schaumbad, Duschgel sowie in Zahncreme und/oder Mundspülung.
- 15. Verwendung der Copolymeren gemäß einem der Ansprüche 1 bis 7 als Waschmittelhilfsstoff, Komplexagens für mehrwertige Kationen, Dispergierhilfsmittel für Lacke und Farben, Inkrustationsintibitor, Absorbermaterialien, Metalldesaktivatoren in Kunststoffen, als Hilfsstoffe in der Papier-, Leder und Textillindustrie oder als wirkungsverstärkende Zusatzstoffe zu Pestiziden oder Insektiziden.



# Europäisches EUROPÄISCHER TEILRECHERCHENBERICHT

Number der Anmeidung

der nach Regel 45 des Europäischen Patentübereinkommens für das weitere Verfahren als europäischer Recherchenbericht gilt

EP 99 10 9050

|                                                             | EINSCHLÄGIGE DOKUMENT                                                                                                                                                                                                                                                                                                                                                  | E                                                                                                                                                                 |                                                                                     |                                             |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|
| Katagonia                                                   | Kennzeichnung des Dokuments mit Angabe, so<br>der maßgeblichen Teile                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                     | LASSIFIKATION DER<br>MMELDUNG (INLCLS)      |
| A                                                           | US 4 675 381 A (BICHON DANIEL)<br>23. Juni 1987 (1987-06-23)<br>* Ansprüche 1-11 *                                                                                                                                                                                                                                                                                     | 1-1                                                                                                                                                               | C                                                                                   | 98G73/19<br>98G73/14<br>98G73/92<br>51K7/48 |
| A                                                           | WO 94 01486 A (BUECHNER KARL HI<br>;HARTMANN HEINRICH (DE); SCHWEI<br>VOLKER () 20. Januar 1994 (1994<br>* Ansprüche 1-5 *                                                                                                                                                                                                                                             | IDEMANN                                                                                                                                                           | 5   C                                                                               | 1103/37<br>51K7/06                          |
| A,P                                                         | EP 0 884 344 A (GOLDSCHMIDT AG<br>16. Dezember 1998 (1998-12-16)<br>* Ansprüche 1-9 *                                                                                                                                                                                                                                                                                  | TH) 1-1                                                                                                                                                           | 6                                                                                   |                                             |
| A                                                           | DE 195 28 782 A (BAYER AG)<br>6. Februar 1997 (1997-02-86)<br>* Anspruch 1 *                                                                                                                                                                                                                                                                                           | 1-1                                                                                                                                                               | 5                                                                                   |                                             |
| A,D                                                         | US 5 292 858 A (WOOD LOUIS L)<br>8. März 1994 (1994-03-08)<br>* Ansprüche 1-8 *                                                                                                                                                                                                                                                                                        | 1-1                                                                                                                                                               |                                                                                     | NECHE ROMERITE                              |
| A,D                                                         | DE 195 45 678 A (GOLDSCHMIDT AC<br>12. Juni 1997 (1997-86-12)<br>* Ansprüche 1-11 *                                                                                                                                                                                                                                                                                    | 5 TH)  1-1                                                                                                                                                        | 5 C6                                                                                | MACHGERRETE (INLCLS)<br>186<br>11K<br>11D   |
| UNVC                                                        | OLLSTÄNDIGE RECHERCHE                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                     |                                             |
| n green<br>der Teeh<br>Volletänd<br>Unvolletä<br>Nicht reci | erchenstrefung ist der Auffassung, daß ein oder michnen Ar<br>solichen Umfang nicht entspricht bzw. entspreisten, daß einn<br>die für diese Ansprüche nicht, izw. nur teileusse, möglich ein<br>lig recherchierte Patentansprüche:<br>indig recherchierte Patentansprüche:<br>herobierte Patentansprüche:<br>r die Besehrfahung der Recherche:<br>he Engänzungsblatt C | mprusme, oan voncommen der<br>volle Ermittlungen über den 3b<br>1.                                                                                                | and                                                                                 |                                             |
|                                                             | · ·                                                                                                                                                                                                                                                                                                                                                                    | Maturn der Recherche                                                                                                                                              |                                                                                     | Proteir                                     |
| X:vor<br>Y:vor                                              | DEN HAAG 12. ATEGORIE DER GENANNTEN DOKUMENTEN  I besonderer Bedeutung aftein betrachtet  I besonderer Bedeutung in Verbindung mit einer  Investigender Hintergrund  Inselnsteine Offenberung                                                                                                                                                                          | T: der Erindung zugrunde<br>E: älteres Palentidotumen<br>nach dem Anmeldedtu<br>D: m der Anmelden gange<br>L: aus anderen Gründen a<br>8: Mitglied der gleichen P | legende Theo<br>des jedsch er<br>m veröffentlicht<br>Whites Dekum<br>ngeführtes Dok | et am doer<br>worden ist<br>int<br>unment   |



## UNVOLLSTÄNDIGE RECHERCHE ERGÄNZUNGSBLATT C

Nummer der Anmeidun

EP 99 10 9850

|   | Unvollständig recherchierte Ansprüche:<br>1-15                                                                                                                                                                                                                                                                    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l | Grund für die Beschränkung der Recherche:                                                                                                                                                                                                                                                                         |
|   | Die geltenden Patentansprüche 1-15 beziehen sich auf eine<br>unverhältnismäßig große Zahl möglicher Produkte. In der Tat umfassen sie<br>so viele Wahlmöglichkeiten                                                                                                                                               |
|   | dass sie im Sinne von Art. 84 EPÜ in einem solche MaBe unklar oder zu weitläufig gefasst erscheinen, als daß sie eine sinnvolle Recherche ermöglichten. Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, die als klar und knapp gefaßt gelten können, nämlich Produkten von Beispilen 1-11. |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   | <br>                                                                                                                                                                                                                                                                                                              |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                   |

# ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 10 9050

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbencht angelührten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entaprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unternoftung und erfolgen ohne Gewähr.

12-08-1999

| 96-1987<br>91-1994<br>92-1998<br>92-1997 | AT<br>AU<br>CA<br>WO<br>DK<br>EP<br>FI<br>DE<br>ES<br>US<br>KEI             | 2698<br>1241<br>8596<br>88<br>9136<br>9156<br>856<br>4221<br>59397<br>9648<br>2195<br>5747        | 5584 T<br>1684 A<br>1322 A<br>1372 A<br>1385 A<br>1935 A<br>1935 A<br>184 A<br>1835 A<br>218 D<br>2241 A<br>227 A<br>363 A<br>279 A<br>360 A | 97<br>36<br>31<br>27<br>99<br>97<br>8. 28<br>95<br>92<br>19<br>16<br>95             | 5-05-1<br>7-02-1<br>9-08-1<br>1-01-1<br>7-02-1<br>9-01-1<br>7-08-1<br>9-02-1<br>9-04-1<br>9-04-1<br>9-02-1<br>9-02-1<br>9-03-1 |
|------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 01-1994<br>                              | AU<br>CA<br>WO<br>DK<br>EP<br>FI<br>DE<br>EP<br>ES<br>US<br>KEI             | 2698<br>1241<br>8596<br>88<br>9136<br>9156<br>856<br>4221<br>59397<br>9648<br>2195<br>5747        | 3684 A<br>322 A<br>3372 A<br>3385 A<br>935 A<br>1184 A<br>835 A,<br>875 A<br>218 D<br>241 A<br>287 T<br>635 A<br>363 A<br>279 A<br>369 A     | 97<br>36<br>31<br>27<br>99<br>97<br>8. 28<br>95<br>92<br>19<br>16<br>95             | 7-02-1<br>9-08-1<br>1-01-1<br>7-02-1<br>9-01-1<br>7-08-1<br>1-01-1<br>1-10-1<br>1-10-1<br>1-05-1<br>1-02-1<br>1-02-1<br>1-05-1 |
|                                          | CA<br>WO<br>DK<br>EP<br>FI<br>DE<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US | 1241<br>8596<br>88<br>9136<br>9156<br>856<br>4221<br>59397<br>9648<br>2195<br>5747                | 322 A<br>372 A<br>385 A<br>935 A<br>935 A<br>184 A<br>1835 A,<br>875 A<br>218 D<br>241 A<br>287 T<br>635 A<br>363 A<br>279 A<br>360 A        | 36<br>31<br>27<br>89<br>67<br>8. 28<br>95<br>19<br>16<br>95                         | 0-08-1<br>1-01-1<br>7-02-1<br>1-01-1<br>1-08-1<br>1-02-1<br>1-10-1<br>1-05-1<br>1-02-1<br>1-02-1<br>1-05-1<br>1-05-1           |
|                                          | DE EP ES US CA WO EP US                                                     | 8596<br>88<br>9136<br>9156<br>856<br>4221<br>59397<br>9648<br>2195<br>5747                        | 1372 A<br>1385 A<br>1935 A<br>1935 A<br>1835 A,<br>1835 A,<br>1875 A<br>218 D<br>241 A<br>287 T<br>635 A                                     | 95<br>97<br>8. 28<br>95<br>92<br>19<br>16<br>95                                     | -01-1<br>-02-1<br>-08-1<br>-08-1<br>-01-1<br>-01-1<br>-04-1<br>-10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                       |
|                                          | DK<br>EP<br>EP<br>FI<br>DE<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US       | 88<br>9136<br>9156<br>856<br>4221<br>59307<br>9648<br>2105<br>5747<br>INE<br>2228<br>9706<br>9842 | 385 A<br>1935 A<br>1184 A<br>835 A,<br>875 A<br>218 D<br>241 A<br>287 T<br>635 A                                                             | 95<br>8, 28<br>95<br>92<br>19<br>16<br>95                                           | -02-1<br>-01-1<br>-08-1<br>-02-1<br>-01-1<br>-10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                         |
|                                          | EP<br>EP<br>FI<br>DE<br>EP<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US       | 9136<br>9156<br>856<br>4221<br>59397<br>9648<br>2195<br>5747<br>(NE                               | 935 A<br>184 A<br>1835 A,<br>875 A<br>218 D<br>241 A<br>287 T<br>635 A<br>363 A<br>279 A<br>360 A                                            | 8. 28<br>97<br>8. 28<br>95<br>92<br>19<br>16<br>95                                  | -01-1<br>-08-1<br>-02-1<br>-01-1<br>-04-1<br>-10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                         |
|                                          | EP<br>FI<br>DE<br>DE<br>EP<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US       | 9156<br>856<br>4221<br>59307<br>9648<br>2105<br>5747<br>(NE                                       | 184 A<br>1835 A<br>1875 A<br>218 D<br>2241 A<br>287 T<br>635 A<br>363 A<br>279 A<br>360 A                                                    | 8. 28<br>95<br>92<br>19<br>16<br>95<br>20<br>20<br>20                               | -08-1<br>-02-1<br>-01-1<br>-10-1<br>-04-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                                  |
|                                          | DE<br>DE<br>EP<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US                   | 4221<br>59307<br>0648<br>2105<br>5747<br>INE<br>2228<br>9706<br>0842                              | 835 A,<br>875 A<br>218 D<br>241 A<br>287 T<br>635 A<br>363 A<br>279 A<br>380 A                                                               | 8, 28<br>95<br>92<br>19<br>16<br>95<br>20<br>20<br>20                               | -02-1<br>-01-1<br>-10-1<br>-04-1<br>-10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                                  |
|                                          | DE<br>DE<br>EP<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP                         | 4221<br>59307<br>0648<br>2105<br>5747<br>INE<br>2228<br>9706<br>0842                              | 875 A<br>218 D<br>241 A<br>287 T<br>635 A<br>363 A<br>279 A<br>380 A                                                                         | 95<br>92<br>19<br>16<br>95<br>20<br>20                                              | -01-1<br>-10-1<br>-04-1<br>-10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                                           |
|                                          | DE<br>EP<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US                         | 59307<br>0648<br>2105<br>5747<br>INE<br>2228<br>9706<br>0842                                      | 218 D<br>241 A<br>287 T<br>635 A<br>                                                                                                         | 92<br>19<br>16<br>95<br>                                                            | -10-1<br>-04-1<br>-10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                                                    |
| 2-1997                                   | EP<br>ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US                               | 9648<br>2195<br>5747<br>INE<br>2228<br>9796<br>9842                                               | 241 A<br>287 T<br>635 A<br>363 A<br>279 A<br>300 A                                                                                           | 19<br>16<br>95<br>                                                                  | -04-1<br>-10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                                                             |
| 2-1997                                   | ES<br>US<br>KEI<br>CA<br>WO<br>EP<br>US                                     | 2105<br>5747<br>INE<br>2228<br>9706<br>0842                                                       | 287 T<br>635 A<br>363 A<br>279 A<br>300 A                                                                                                    | 16<br>95<br>                                                                        | -10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                                                                      |
| 2-1997                                   | US<br>KEI<br>CA<br>WO<br>EP<br>US                                           | 5747<br>INE<br>2228<br>9706<br>0842                                                               | 363 A<br>279 A<br>380 A                                                                                                                      | 16<br>95<br>                                                                        | -10-1<br>-05-1<br>-02-1<br>-02-1<br>-05-1                                                                                      |
| 2-1997                                   | KEI<br>CA<br>WO<br>EP<br>US                                                 | 2228<br>9706<br>0842                                                                              | 363 A<br>279 A<br>300 A                                                                                                                      | 29<br>29<br>29<br>29                                                                | -02-19<br>-02-19                                                                                                               |
| 2-1997                                   | CA<br>WO<br>EP<br>US                                                        | 2228<br>9706<br>0842                                                                              | 279 A<br>300 A                                                                                                                               | 28<br>28                                                                            | -02-19<br>-05-19                                                                                                               |
|                                          | WO<br>EP<br>US                                                              | 9706<br><del>084</del> 2                                                                          | 279 A<br>300 A                                                                                                                               | 28<br>28                                                                            | -02-19<br>-05-19                                                                                                               |
|                                          | WO<br>EP<br>US                                                              | 9706<br><del>084</del> 2                                                                          | 279 A<br>300 A                                                                                                                               | 28<br>28                                                                            | -02-19<br>-05-19                                                                                                               |
| 3-1994                                   | EP<br>US                                                                    | 0842                                                                                              | 3 <del>00</del> A                                                                                                                            | 28                                                                                  | -05-19                                                                                                                         |
| 3-1994                                   | ÜS                                                                          |                                                                                                   |                                                                                                                                              |                                                                                     |                                                                                                                                |
| 3-1994                                   | •••••                                                                       | 2002                                                                                              |                                                                                                                                              |                                                                                     | -63-13                                                                                                                         |
| 3-1994                                   |                                                                             |                                                                                                   | 7/7 A<br>                                                                                                                                    |                                                                                     |                                                                                                                                |
|                                          | AU                                                                          | 689                                                                                               | 470 B                                                                                                                                        | 82                                                                                  | -04-19                                                                                                                         |
|                                          | AU                                                                          | 6442                                                                                              | 894 A                                                                                                                                        | 11                                                                                  | -10-19                                                                                                                         |
|                                          | CA                                                                          |                                                                                                   | 972 A                                                                                                                                        | 17                                                                                  | -09-19                                                                                                                         |
|                                          | ΕP                                                                          | 9698                                                                                              | 885 A                                                                                                                                        |                                                                                     | -01-19                                                                                                                         |
|                                          | JP                                                                          | 8597                                                                                              | 822 T                                                                                                                                        | 20                                                                                  | -08-19                                                                                                                         |
|                                          | WO                                                                          | 9421                                                                                              | 710 A                                                                                                                                        |                                                                                     | -09-19                                                                                                                         |
| 6-1997                                   |                                                                             | 2102                                                                                              | <br>256 A                                                                                                                                    |                                                                                     | -06-19                                                                                                                         |
|                                          |                                                                             |                                                                                                   |                                                                                                                                              |                                                                                     | -07-19                                                                                                                         |
|                                          |                                                                             |                                                                                                   |                                                                                                                                              |                                                                                     | -07-19                                                                                                                         |
|                                          |                                                                             |                                                                                                   |                                                                                                                                              |                                                                                     | -06-19                                                                                                                         |
|                                          | 6-1997<br>                                                                  | JP<br>WO                                                                                          | JP 8507:<br>W0 9421<br>6-1997 CA 2192:<br>EP 0783:<br>JP 9183:                                                                               | JP 8597822 T<br>WO 9421710 A<br>6-1997 CA 2192256 A<br>EP 9783013 A<br>JP 9183841 A | EP 0690885 A 10 JP 8507822 T 20 W0 9421710 A 29 6-1997 CA 2192256 A 08 EP 0783013 A 09 JP 9183841 A 15                         |

Für nähere Einzelheiten zu diesem Anhang : siehe Amtablatt des Europäischen Patentamts, Nr.12/82