Feuille de TD 3 : continuité, dérivabilité

Exercice 1. Les fonctions suivantes admettent-elles une limite au point indiqué? Laquelle?

- (a) $f(x) = x \cos(1/x)$ quand $x \to 0$.
- (b) $g(x) = e^{\frac{1}{x}}$ quand $x \to 0^-$.
- (c) $h(x) = \sin(x) \ln(x)$ quand $x \to +\infty$.
- (d) $i(x) = \frac{\sin(x^2)}{\cos(x) 1}$ quand $x \to 0$.

Exercice 2. Soit f une fonction continue sur \mathbb{R} telle que, pour tout $x \in \mathbb{R}$, f(2x) = f(x).

- (a) Démontrer que : $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, f(x) = f(x/2^n).$
- (b) En déduire que f est constante.

Exercice 3. Soit f une fonction continue sur \mathbb{R} , à valeurs dans \mathbb{Z} . Prouver que f est constante.

Exercice 4. Soit f une fonction continue de [a,b] dans [a,b]. Démontrer qu'il existe $c \in [a,b]$ tel que f(c) = c.

Exercice 5. Soit f une fonction strictment positive sur un segment [a, b].

- (a) Existe-t-il un nombre $\epsilon > 0$ tel que pour tout $x \in [a,b], f(x) \ge \epsilon$?
- (b) Et si f est continue?

Exercice 6. Les formules suivantes définissent des fonctions sur \mathbb{R} . En quels points sont-elles continues? Dérivables?

- (a) $f(x) = \frac{x}{1+|x|}$.
- (b) $g(x) = \cos(\sqrt{|x|})$.
- (c) $h(x) = \frac{\sin x}{\ln |x|}$ si $x \notin \{0, 1, -1\}$ et $h(0) = h(\pm 1) = 0$.

Exercice 7. Dériver.

- (a) $a(x) = \frac{1}{\sqrt[3]{x^2}} \frac{1}{\sqrt{x^3}}$, pour $x \in \mathbb{R}_+^*$.
- (b) $b(x) = x \tan x \text{ pour } x \in]-\pi/2, \pi/2[.$
- (c) $c(x) = \frac{2x+3}{x-4}$, pour $x \in \mathbb{R} \setminus \{4\}$.

- (d) $d(x) = \cos(\sin x) + e^{x^2}$, pour $x \in \mathbb{R}$.
- (e) $e(x) = (\cos x)^{\sin x}$ pour $x \in]-\pi/2, \pi/2[$.

Exercice 8. Calculer la dérivée de $f: x \mapsto \arctan(x) + \arctan(1/x)$ sur \mathbb{R}^* . En déduire la valeur de f(x) pour tout $x \in \mathbb{R}^*$.

Exercice 9. Utiliser le théorème des accroissement finis pour majorer $\sqrt[3]{1001}$.

Exercice 10. Etant donnés des réels a et b, ainsi qu'un entier $n \ge 2$, on considère l'équation $x^n + ax + b = 0$, d'inconnue $x \in \mathbb{R}$. Prouver qu'elle admet au plus 2 solutions si n est pair et au plus 3 solutions si n est impair.

Exercice 11. On dit qu'une fonction $f: I \to \mathbb{R}$ est uniformément continue si $\forall \epsilon > 0, \exists \eta > 0, \forall x, y \in I, \quad |x - y| < \eta \implies |f(x) - f(y)| < \epsilon.$

- (a) Prouver que $f: x \mapsto |x|$ est uniformément continue sur \mathbb{R} .
- (b) On suppose que f est dérivable et que sa dérivée f' est bornée sur l'intervalle I. Prouver que f est uniformément continue.
- (c) Prouver que $f: x \mapsto x^2$ n'est pas uniformément continue sur \mathbb{R} .

Exercice 12. (théorème de Heine) Soit f une fonction continue sur un segment [a,b]. On veut montrer que f est uniformément continue. Par l'absurde, on suppose que non.

- (a) Vérifier qu'il existe $\epsilon > 0$ et des suites (x_n) et (y_n) dans [a, b] telles que $(x_n y_n)$ tend vers 0 et $|f(x_n) f(y_n)| \ge \epsilon$.
- (b) Pourquoi peut-on supposer que les suites (x_n) et (y_n) sont convergentes?
- (c) Conclure.

Exercice 13. Soit f une fonction dérivable sur \mathbb{R}_+ telle que f' tend vers un réel ℓ en $+\infty$.

(a) Soit $\epsilon > 0$. Prouver qu'il existe un réel A > 0 tel que

$$\forall x > A, \quad \ell - \epsilon \le \frac{f(x) - f(A)}{x - A} \le \ell + \epsilon.$$

(b) En déduire que $\lim_{x \to +\infty} \frac{f(x)}{x} = \ell$.

Exercice 14. Soit f une fonction deux fois dérivable sur un intervalle I de \mathbb{R} . On suppose que $f'' \geq 0$. (Une telle fonction est dite *convexe*.)

(a) Vérifier que f' est croissante et en déduire que pour $a, b \in I$ et a < x < b,

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(x)}{b - x}.$$

(b) Une corde du graphe de f est par définition un segment reliant deux points (a, f(a)) et (b, f(b)) du graphe de f. Donner l'équation d'une telle corde, puis montrer que le graphe de f est situé au-dessous de chacune de ses cordes.

(c) Soient $a, b \in I$ tels que a < b. Démontrer les inégalités

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b).$$

- (d) En déduire que le graphe de f est situé au-dessus de chacune de ses tangentes.
- (e) Qu'en déduit-on pour les fonctions dont la dérivée seconde est négative? (Une telle fonction est dite concave.)
- (f) Application: démontrer les inégalités suivantes et les illustrer par un dessin.
 - $\forall x \in \mathbb{R}, \quad \exp(x) \ge 1 + x.$

 - $$\begin{split} & \quad \forall x \in]-1, +\infty[, \qquad \ln(1+x) \leq x. \\ & \quad \forall x \in [0, \pi/2], \qquad \frac{2}{\pi} x \leq \sin(x) \leq x. \end{split}$$

Exercice 15. (sinus et cosinus hyperboliques) Pour $x \in \mathbb{R}$, on pose

$$sh(x) = \frac{e^x - e^{-x}}{2}, \quad ch(x) = \frac{e^x + e^{-x}}{2}.$$

- (a) Etudier les variations et tracer le graphe des deux fonctions ainsi définies.
- $\forall x \in \mathbb{R}, \quad \operatorname{ch}(x)^2 \operatorname{sh}(x)^2 = 1.$ (b) Etablir la formule :
- (c) Quel est le développement limité de sh et ch en 0?
- (d) Vérifier que sh : $\mathbb{R} \to \mathbb{R}$ admet une réciproque dérivable Argsh : $\mathbb{R} \to \mathbb{R}$. Calculer Argsh'.
- $\forall x \in \mathbb{R}, \quad \operatorname{Argsh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right).$ (e) Etablir la formule :
- (f) Vérifier que la fonction ch : $\mathbb{R}_+ \to [1, +\infty[$ admet une réciproque continue $Argch: [1, +\infty[\rightarrow \mathbb{R}_+]$. Déterminer en quels points la fonction Argch est dérivable et calculer sa dérivée.
- $\forall x \in [1, +\infty[, \quad \operatorname{Argch}(x) = \ln\left(x + \sqrt{x^2 1}\right).$ (g) Etablir la formule :

Exercice 16. On considère la fonction tangente hyperbolique th = $\frac{\text{sh}}{ch}$.

- (a) Etablir les formules : $\forall x \in \mathbb{R}$, $\operatorname{th}'(x) = 1 \operatorname{th}(x)^2 = \frac{1}{\operatorname{ch}(x)^2}$.
- (b) Etudier les variations et tracer le graphe de th.
- (c) Démontrer que th: $\mathbb{R} \to]-1,1[$ admet une réciproque Argth: $]-1,1[\to \mathbb{R}$ donnée par

$$\forall x \in \mathbb{R}, \quad \operatorname{Argth}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$