Lecture 6: Exercise on multiple Markov chains (MMC)

Simulate the absorption of a grafted polymer to an attractive hard wall with a Monte Carlo using the MMC method. The model for the polymer is composed of N+1 monomers in the two-dimensional plane, with coordinates $\vec{r_i} = (x_i, y_i)$ for $0 \le i \le N$ (see Fig. 1(a)).

Geometry

- Grafting is imposed by fixing $(x_0, y_0) = (0, 0)$.
- Self-avoidance between any monomers i and j is imposed by requiring $|\vec{r_i} \vec{r_j}| > c$, with c = 1.
- The chain connectivity is achieved by requiring each bond length $\ell_i = |\vec{r_i} \vec{r_{i+1}}|$ to fluctuate within the interval $[\ell^{\min}, \ell^{\max}]$, with say $\ell^{\min} = c$ and $\ell^{\max} = 1.3c$.
- The hard wall constraint imposes $y_i \ge 0$ for each monomer i.

Thermodynamics

- The attraction between the wall on the monomers derives from an energetic contribution $-\epsilon = -1$ to each monomer with $y_i < h$, say with h = 1/2. We may neglect the trivial constant contribution from the grafted monomer i = 0. Thus, the total energy of a configuration \mathcal{C} is $E(\mathcal{C}) = -\epsilon n$, where n is the number of monomers in \mathcal{C} with $y_i < h$.
- Each polymer is in a canonical ensemble at its own inverse temperature $\beta \geq 0$ (β 's will be different; see the MMC scheme below).

Monte Carlo moves

• Local shifts: choose a displacement $\vec{\delta}$ from a symmetric distribution (e.g., a Gaussian around zero or an appropriate uniform distribution) and try to displace a randomly picked monomer $\vec{r_i} \to \vec{r_i} + \vec{\delta}$. If the geometric constraints are not satisfied, reject the move; otherwise, accept the new configuration C' according to the Metropolis rule at β .

Figure 1: (a) Allowed configuration of the grafted polymer, with n=3 energetic contacts between monomers and wall. (b) Pivot move around \vec{r}_p , generating another allowed configuration, reducing contacts to n=1 (thus, accepted with the Metropolis rule with probability lower than 1).

• Pivot (Fig. 1(b)): choose a monomer p at random in the range $0 \le p \le N-1$ and rotate the monomers with i > p as a rigid body with respect to $\vec{r_p}$ of an angle θ drawn randomly from an interval $[-\theta^*, \theta^*]$. Again, after checking if the geometry is fine, accept the move to \mathcal{C}' according to the Metropolis rule. Note that the difference in energy $E(\mathcal{C}') - E(\mathcal{C})$ depends only on the changes for i > p.

MMC

- Choose a reasonable set of K inverse temperatures $\{\beta_k\}$, in python or C language indexed from k=0 to k=K-1: at larger β 's, the polymer should be mostly absorbed; at small β it should float freely; at a critical β_C , it should display the largest fluctuations in energy and other geometrical indicators.
- We do not want to copy configurations in a swap because it takes $2 \times N \times 2$ operations. It is convenient to track which configuration belongs to a given β_k using an array of indices I. Initially $I = (I_0 = 0, I_1 = 1, ..., I_{K-1} = K 1)$. Then, each time there is a swap at k, k+1, only indices swap:

$$(I_0, I_1, ..., I_k = A, I_{k+1} = B, ..., I_{K-1}) \rightarrow (I_0, I_1, ..., I_k = B, I_{k+1} = A, ..., I_{K-1})$$

In this scheme, the moves at β_k act on its current configuration, stored at position I_k . This is the first index in a multidimensional matrix (the second is the monomer index i, where its (x_i, y_i) are found). In summary, at β_k , we have $r(I_k, i, 0)$ for the x_i of the configuration and $r(I_k, i, 1)$ for y_i .

• As a typical recipe, for every β_k , a block of moves contains one attempted pivot and N attempted local shifts. Furthermore, one swap between configurations at neighboring β_k and β_{k+1} (with randomly picked $k \in [0, K-2]$) should be attempted at the end of the K blocks. This recipe is by no means rigid; it is just an example.

Between samplings, B blocks of moves should be performed to decorrelate data sufficiently.

- To monitor the state of the system, evaluate:
 - The average energy $U(\beta) = \langle E \rangle_{\beta}$ and its variance $VU(\beta) = \langle E^2 \rangle_{\beta} \langle E \rangle_{\beta}^2$.
 - The mean squared end-to-end distance $R_e^2(\beta)=\langle |\vec{r}_N|^2 \rangle_{\beta}$, its variance $VR_e^2(\beta)$.
 - The mean height of the end, $Y_e(\beta) = \langle y_N \rangle_{\beta}$, and its variance $VY_e(\beta)$.

Questions

- 1. Show the energy histograms for all β_k in the same plot. Is there a good overlap between histograms of neighboring β_k 's? What was the logic for settling down to a final list of β 's after your initial attempts?
- 2. Plot the listed quantities as a function of β for a given N or many N's. Do the plots meet your expectations? Is there any signature of the critical temperature?
- 3. What did you find an appropriate distribution for the random displacements in the local shifts?
- 4. Why do we use a symmetric interval $[-\theta^*, \theta^*]$ in the pivot move? Should θ^* depend on β ?
- 5. Given the same B blocks of moves at all β_k , how does the autocorrelation in data vary with β ?

Lecture 7: Gillespie algorithm

Implement the Gillespie algorithm to simulate the Brusselator model, whose transition rates for a state $\mathcal{C}=(X,Y)$ are

$$w_1 = a\Omega$$
 for $(X,Y) \to (X+1,Y)$ (1a)

$$w_2 = X \qquad \qquad \text{for} \quad (X, Y) \to (X - 1, Y) \tag{1b}$$

$$w_3 = \frac{1}{\Omega^2} X(X - 1)Y$$
 for $(X, Y) \to (X + 1, Y - 1)$ (1c)

$$w_4 = bX$$
 for $(X, Y) \to (X - 1, Y + 1)$ (1d)

Run some simulations using a=2, b=5 and for different volume sizes: $\Omega=10^2, 10^3, 10^4$. What can one note by varying Ω ?

