1. Gleiche die folgenden Reaktionen aus.

2. Die folgenden Reaktionen sollen als chemische Gleichungen formuliert werden.

- a) Reaktion von Eisensulfid (FeS) mit Hydrogenchlorid zu Dihydrogensulfid (H₂S) und Eisen(II)chlorid.
- b) Verbrennung von Benzin (C₈H₁₈) mit Sauerstoff zu Kohlenstoffdioxid und Wasser.
- c) Belichten von Silberchlorid (AgCl), wobei Chlor und Silber entstehen.
- d) Reaktion von Magnesium mit Sauerstoff.
- e) Pyrit (Fe₂S) wird geröstet, dabei entsteht Eisen(III) –oxid und es entweicht Schwefeldioxid.
- f) Natriumchlorid und Schwefelsäure (H₂SO₄) reagieren zu Natriumhydrogensulfat (NaHSO₄) und Chlorwasserstoff.
- g) Titandioxid, Kohlenstoff und Chlor reagieren zu Titan(II)-chlorid und Kohlenstoffmonoxid.
- h) Phosphor(V)-chlorid und Wasser reagieren zu Phosphorsäure (H₃PO₄) und Chlorwasserstoff.
- i) Kaliumchlorat (KClO₃) und Schwefeldioxid reagieren zu Chlordioxid und Kaliumsulfat (K₂SO₄).
- j) Chlordioxid reagiert mit Wasserstoffperoxid (H₂O₂) und Natriumlauge (NaOH) weiter zu NaClO₂, Sauerstoff und Wasser.
- k) Bariumperxenat (Ba₂XeO₆) und Schwefelsäure (H₂SO₄) reagieren zu Bariumsulfat (BaSO₄), Xenontetraoxid und Wasser.
- Arsen(III)-oxid und Fluorwasserstoff reagieren zu Arsen(III)-fluorid und Wasser.

3. Bestimme die Wertigkeiten aller Elementatome und benenne die Verbindung korrekt.

a.	NaBr	und	CaCl ₂
b.	FeCl ₂	und	MgO
c.	Al_2O_3	und	Fe ₂ O ₃
d.	Cu ₂ O	und	FeO
e.	Fe ₂ O ₃	und	H ₂ O
f.	Na ₂ O	und	H_2S
g.	PbJ_2	und	ZnS
h.	PbS	und	CrO ₃
i.	CS_2	und	TiO ₂
j.	CuO	und	N_2O
k.	AlBr ₃	und	PbO
l.	NaCl	und	As ₂ O ₃
m.	PbO	und	PCI ₅

4. Chemisches Rechnen - Stöchiometrie

- 1. Wie viele Sauerstoffmoleküle sind in 10 g Sauerstoff enthalten?
- 2. Welches Volumen nehmen 15 g Wasserstoff im Normalzustand ein?
- Eine Portion von 28 g Schwefeltrioxid reagiert vollständig mit Wasser.
 Berechne die Stoffmenge n der gebildeten Schwefelsäure!
- 4. Ammoniumnitrat (NH₄NO₃) zersetzt sich beim Erwärmen in Wasser und Distickstoffmonoxid (Lachgas). Berechne die Masse an Ammoniumnitrat, die zur Bildung von 3,36 L Lachgas nötig ist!
- 5. Welche Masse an Salpetersäure ist notwendig, um mit Bariumhydroxid 20 g Bariumnitrat zu bilden?
- 6. Eine Magnesium-Portion mit m(Mg) = 1,0 g wird in reinem Sauerstoff verbrannt. Wie groß sind das Volumen V(O₂) der benötigten Sauerstoffportion und die Masse m(MgO) der entstandenen Magnesiumoxid-Portion?
- 7. Wie groß sind Volumen V(NH₃) und Anzahl der Moleküle N(NH₃) der Ammoniakportion, die bei der vollständigen Reaktion von 15 L Wasserstoff und 10 L Stickstoff entstehen kann?
- 8. Wasserstoff kann im Labor aus Zink Zn und Salzsäure dargestellt werden.
 Dabei entsteht noch Zinkchlorid ZnCl₂. Wie groß ist die Masse der Zinkportion, die umgesetzt werden muss, um 4 L Wasserstoff zu erhalten?
- Metallisches Aluminium gewinnt man durch Schmelzelektrolyse von Aluminiumoxid (Al₂O₃) mit Hilfe von Kohleelektroden. Aus dem Kohlenstoff entsteht Kohlenstoffmonooxid. Wie groß ist die Masse der benötigten Kohlenstoffportion, um 100 kg Aluminiumoxid umzusetzen.