

机器学习与人工智能 Machine Learning and Artificial Intelligence

ecture 6 Ensemble Models, HMM, Clustering

Yingjie Zhang (张颖婕)

Peking University

yingjiezhang@gsm.pku.edu.cn

2021 Fall

Ensemble Models

Wisdom of the Crowd

Ensemble Methods

Why it works:

- Diversity!
- Image that we have 5 completely independent classifiers; each of them individually is correct 70% of the time
 - Prob(correctly classify a record by a majority vote)

=
$$C_{(5,3)}(0.7)^3(0.3)^2 + C_{(5,4)}(0.7)^4(0.3)^1 + C_{(5,5)}(0.7)^5 = 0.837$$

Downside:

- Increased complexity, more difficult to interpret
- Does not always guarantee performance improvements

Ensemble Methods

- Voting Classifiers
- Stacking
- Bagging
- Boosting

Voting Classifiers

Stacking

Bagging

Parallel

Boosting

Sequential

Bagging: Bootstrap Aggregation

- Ideas:
 - Use the same training algorithm for every predictor, but to train them on different random subsets of the training set

Bagging

- Given
 - Labelled dataset
 - Specific predictive modeling techniques
- Train k models on different training data samples
 - Bootstrap samples: sampled with replacement, typically of the same size as the original training data
- Final prediction is done by combining (i.e., majority vote, averaging) the predictions of k individual models

Overview

- Definition
 - Collection of unpruned trees
 - Rule to combine individual tree decisions
- Purpose
 - Improve prediction accuracy
 - Improve efficiency
- Principle
 - Encouraging diversity among the tree
- Solution: randomness
 - Bagging
 - Random decision trees

Details

- Build many "random" trees
- Randomness: using only a random sample of m attributes to calculate each split
- For each tree:
 - Choose a different training sample
 - For each node, choose m random attributes and find the best split
 - Trees are often fully grown (not pruned)
- Predication: majority vote among all the trees

Boosting

AdaBoost

$$\varepsilon_1 = 0.3$$
 $\alpha_1 = 0.42$

$$\varepsilon_1 = 0.3$$
 $\alpha_1 = 0.42$

$$\varepsilon_1 = 0.3$$
 $\alpha_1 = 0.42$

$$\varepsilon_2 = 0.21$$
 $\alpha_2 = 0.65$

$$\varepsilon_1 = 0.3$$
 $\alpha_1 = 0.42$

$$\varepsilon_2 = 0.21$$
 $\alpha_2 = 0.65$

$$\varepsilon_1 = 0.3$$
 $\alpha_1 = 0.42$

$$\varepsilon_2 = 0.21$$
 $\alpha_2 = 0.65$

$$\varepsilon_3 = 0.14$$
 $\alpha_3 = 0.92$

AdaBoost Algorithm

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$

For t=1,...,T:

Train weak learner using distribution D_t

Get week hypothesis $h_t: X \to \{-1, +1\}$ with error $\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$

Choose
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases} = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution)

Output the final hypothesis: $H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$

Hidden Markov Models

 An HMM provides a joint distribution with an assumption of dependence between adjacent states

$$p(0, S, S, 0, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .2 * .08 * .03 * .7 * \cdots)$$

 An HMM provides a joint distribution with an assumption of dependence between adjacent states

$$p(0, S, S, 0, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .2 * .08 * .03 * .7 * \cdots)$$

Naïve Bayes: $P(X, Y) = \prod_{t=1}^{T} P(X_t | Y_t) p(Y_t)$

HMM: $P(X, Y|Y_0) = \prod_{t=1}^{T} P(X_t|Y_t) p(Y_t|Y_{t-1})$

Naïve Bayes: $P(X, Y) = \prod_{t=1}^{T} P(X_t | Y_t) p(Y_t)$

HMM: $P(X, Y|Y_0) = \prod_{t=1}^{T} P(X_t|Y_t) p(Y_t|Y_{t-1})$

Supervised Learning for HMM

- HMM Parameters:
 - Emission matrix, A, where $P(X_t = k | Y_t = j) = A_{jk}, \forall t, k$
 - Transition matrix, B, where $P(Y_t = k | Y_{t-1} = j) = B_{jk}, \forall t, k$
- Assumption: $y_0 = START$
- Generative Story:
 - $Y_t \sim Multinomial(B_{Y_{t-1}}), \forall t$
 - $X_t \sim Multinomial(A_{Y_t}), \forall t$
- Joint Distribution:
 - $p(X, Y|y_0) = \prod_{t=1}^{T} p(x_t|y_t) p(y_t|y_{t-1}) = \prod_{t=1}^{T} A_{y_t, x_t} B_{y_{t-1}, y_t}$

Unsupervised Learning for HMMs

- We don't observe any y's
- This unsupervised learning setting can be achieved by finding parameters that maximize the marginal likelihood
- We optimize using the Expectation-Maximization (EM) algorithm
 - Marginal probability: $p_{\theta}(x) = \sum_{y \in \mathbb{Y}} p_{\theta}(x, y)$
 - $l(\theta) = \log \prod_{i=1}^{N} p_{\theta}(x^{(i)}) = \sum_{i=1}^{N} \log \sum_{y \in \mathbb{Y}} p_{\theta}(x^{(i)}, y)$

Inference for HMMs

- Evaluation: Compute the probability of a given sequence of observations
- Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
- Learning: find the optimal parameters to maximize the probability of the sequence of observations

Part-of-Speech (POS) Tagging

Forward-Backward Algorithm

Forward-Backward Algorithm

Forward-Backward Algorithm

Forward-Backward Algorithm: Finds Marginals

Forward-Backward Algorithm

- Define $\alpha_t(k) \triangleq p(x_1, ..., x_t, y_t = k), \beta_t(k) \triangleq p(x_{t+1}, ..., x_T | y_t = k)$
- Assume $y_0 = START$, $y_{T+1} = END$
- 1. Initialize $\alpha_0(START) = \beta_{T+1}(END) = 1$, $\alpha_0(k) = 0$, $\forall k \neq START$, $\beta_{T+1}(k) = 0$, $\forall k \neq END$
- 2. Forward algorithm:

for t = 1,..., T: for k = 1, ..., K:
$$\alpha_t(k) = p(x_t|y_t = k) \sum_{j=1}^K \alpha_{t-1}(j) p(y_t = k|y_{t-1} = j)$$

3. Backward algorithm:

for t = T,...,1: for k = 1, ..., K:
$$\beta_t(k) = \sum_{j=1}^K p(x_{t+1}|y_{t+1}=j)\beta_{t+1}(j)p(y_{t+1}=j|y_t=k)$$

- 4. Evaluation: $p(\vec{x}) = \alpha_{T+1}(END)$
- 5. Marginal: $p(y_t = k|\vec{x}) = \frac{\alpha_t(k)\beta_t(k)}{p(\vec{x})}$

Viterbi Algorithm (Decoding)

- Define $\omega_t(k) \triangleq \max_{y_1, \dots, y_{t-1}} p(x_1, \dots, x_t, y_1, \dots, y_t = k),$ $b_t(k) \triangleq \operatorname*{argmax} p(x_1, \dots, x_t, y_1, \dots, y_t = k)$ y_1, \dots, y_{t-1}
- Assume $y_0 = START$
- 1. Initialize $\omega_0(START) = 1$, $\omega_0(k) = 0$, $\forall k \neq START$
- 2. For t = 1, ..., T: for k = 1, ..., K: $\omega_t(k) = \max_{j \in \{1, ..., K\}} p(x_t | y_t = k) \omega_{t-1}(j) p(y_t = k | y_{t-1} = j)$ $b_t(k) = \operatorname*{argmax}_{j \in \{1, ..., K\}} p(x_t | y_t = k) \omega_{t-1}(j) p(y_t = k | y_{t-1} = j)$
- 3. Compute most probable assignment

$$\widehat{y_T} = b_{T+1}(END)$$

for $t = T - 1, ..., 1$: $\widehat{y_t} = b_{t+1}(\widehat{y_{t+1}})$

Unsupervised Learning

Learning Paradigms

Paradigm

Supervised

- ⇔ Binary classification

Unsupervised

Semi-supervised

Reinforcement Learning

Data

$$\mathcal{D} = \left\{ x^{(i)}, y^{(i)} \right\}_{i=1}^{N}$$

$$x \sim p^*(\cdot)$$
 and $y = c^*(\cdot)$

$$y^{(i)} \in \mathbb{R}$$

$$y^{(i)} \in \{1,\ldots,K\}$$

$$y^{(i)} \in \{+1, -1\}$$

$$\mathcal{D} = \left\{ \boldsymbol{x}^{(i)} \right\}_{i=1}^{N} \qquad \boldsymbol{x} \sim p^{*}(\cdot)$$

$$x \sim p^*(\cdot)$$

Predict $\{z^{(i)}\}_{i=1}^{N}$ where $z^{(i)} \in \{1, ..., K\}$

Convert each $x^{(i)} \in \mathbb{R}^M$ to $u^{(i)} \in \mathbb{R}^K$ with $K \ll M$

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \right\}_{i=1}^{N_1} \cup \left\{ \mathbf{x}^{(j)} \right\}_{j=1}^{N_2}$$

$$\mathcal{D} = \{ (s^{(1)}, a^{(1)}, r^{(1)}), (s^{(2)}, a^{(2)}, r^{(2)}), \dots \}$$

Goals

- To discover interesting things from the data:
 - Is there an informative way to visualize the data?
 - Can we discover subgroups among the variables?

- Models:
 - Clustering
 - K-means
 - DBSCAN
 - Hierarchical Clustering

Clustering

Clustering

- Partition unlabeled data into groups (clusters)
- Points within a cluster should be "similar"

Points in different clusters should be "different"

Applications

K-Means

Overview

- K-means (MacQueen, 1967)
- Each cluster has a cluster center, called centroid
- K is specified by the user

K-means Algorithm

- Given K and unlabeled feature vectors $D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$
- Initialize cluster center $c=\{c^{(1)},\dots,c^{(K)}\}$ and cluster assignments $z=\{z^{(1)},z^{(2)},\dots,z^{(N)}\}$
- Repeat until convergence:
 - For j in $\{1,...,K\}$ $c^{(j)}$ is the mean of all points assigned to cluster j
 - for i in $\{1,...,N\}$ $z^{(i)}$ is the index j of cluster center nearest to $x^{(i)}$

Given a set of data points

Select initial centers at random (k=3)

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

Measure the Distance

- Similarity measure (distance measure)
 - Euclidean distance $d(x,y) = \sqrt{(x-y)^2} = \sqrt{\sum_{i=1}^{d} (x_i y_i)^2}$
 - Manhattan distance $d(x, y) = |x y| = \sum_{i=1}^{d} |x_i y_i|$

Stopping Criterion

- no (or minimum) re-assignments of data points to different clusters, or
- no (or minimum) change of centroids, or
- minimum decrease in the sum of squared error(SSE),

How to choose k?

Elbow method:

run k-means clustering on the dataset for a range of values of k for each value of k calculate the sum of squared errors (SSE) If the line chart looks like an arm, then the "elbow" on the arm is the value of k that is the best

Pros and Cons

- Strengths:
 - Simple: each to understand and to implement
 - Efficient
- Weakness:
 - The algorithm is sensitive to outliers
 - it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity
 - Might be sensitive to initial seeds
 - Only simple cluster shapes

DBSCAN

Density-Based Spatial Clustering of Applications with Noise

Density-based Clustering

- Basic Idea:
 - Clusters are dense regions in the data space, separated by regions of lower object density
 - A cluster is defined as a maximal set of density-connected points

Density Definition

- ε -Neighborhood Objects within a radius of ε from an object $N_{\varepsilon}(p)$: $\{q | d(p,d) \le \varepsilon\}$
- "High density" -- ε -Neighborhood of an object contains at least MinPts of objects

Density of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 3)

Core, Border, Outlier

- Given ε and MinPts, categorize the objects into three exclusive groups:
 - Core point: has more than MinPts points within ε (these are points that are at the interior of a cluster)
 - Border point: has fewer than MinPts within ε , but is the neighborhood of a core point
 - Noise point: any point that is neither a core nor a border point

Density-reachability

• An object q is directly density-reachable from object p if p is a core object and q is in p's ε -neighborhood.

q is directly density-reachable from p p is not directly density-reachable from q Density-reachability is asymmetric

Density-reachability

A point p is directly density-reachable from p_2 p_2 is directly density-reachable from p_1 p_1 is directly density-reachable from q $p \leftarrow p_2 \leftarrow p_1 \leftarrow q$ form a chain

DBSCAN Algorithm

```
for each o \in D do

if o is not yet classified then

if |o's| \varepsilon-neighborhood|< MinPts

assign o to NOISE

else

collect all objects density-reachable from o

and assign them to a new cluster
```


Pros and Cons

- Can learn arbitrary cluster shapes (resistant to noise)
- Can detect outliers
- Needs two parameters to adjust

Hierarchical Clustering

Types

- Divisive (top-down) clustering
 - All objects in one cluster
 - Select a cluster and split it into two sub clusters
 - Until each leaf cluster contains only one object

Types

- Agglomerative (bottom-up) clustering
 - Each object is a cluster
 - Merge two clusters which are most similar to each other
 - Until all objects are merged into a single cluster

Dendrogram

- A tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster
- A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster

Inter-Cluster Distance

MIN (Single Link)

- The distance between two clusters is represented by the distance of the closest pair of data objects belonging to different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph

Limitation: sensitive to noise/outliers

MAX (Complete link)

 The distance between two clusters is represented by the distance of the farthest pair of data objects belonging to different clusters

MAX (Complete link)

• Strength: less sensitive to noise/outliers

• Limitations: tends to break large clusters

Group average

- The distance between two clusters is represented by the average distance of all pairs of data objects belonging to different clusters
- Determined by all pairs of points in the two clusters

Centroid Distance

- The distance between two clusters is represented by the distance between the centers of the clusters
- - Determined by cluster centroids

Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
- Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers

