Gaussian processes

Manuel SAMUELIDES, Zhigang SU

高斯过程基本原理 微积分在高斯空间的应

Gaussian processes

MA13-Probability and statistics: Courses 21-22

September 2014

Manuel SAMUELIDES¹ Zhigang SU²

¹Professor
Institut Supereur de l'Aeronautique et de l'Espace

²Professor Sino-European Institute of Aviation Engineering Civil Aviation University of China

- A(second order)stochastic process is a measurable application $(t, \omega) \in \mathcal{T} \times \Omega \to X_t(\omega)$ such that $X_t \in L^2$.
- \mathcal{T} is the time set which can be discrete $\mathcal{T}=\mathbb{N}$ or $\mathcal{T}=ZZ$ or continuous $\mathcal{T}=[a,b], \mathcal{T}=\mathbb{R}^+, \mathcal{T}=\mathbb{R}$.
- \bullet When T is many-dimensional as in images or in multi-sensor fusion or in fluid mechanics, the right term is random field
- We shall consider that time set $\mathcal T$ is continuous.
- Mean-square continuity of the process is the continuity of $t \in \mathcal{T} \to X_t \in L^2$. Hereafter, continuity is meaning "mean square continuity".
- In that case,

$$t \in \mathcal{T} \to m(t) = \mathrm{E}(X_t)$$

and

$$(s,t) \in \mathcal{T} \times \mathcal{T} \to k(s,t) = Cov(X_s, X_t)$$

are continuous.

- A Gaussian vector \mathbf{X} is a random vector such that the vector subspace of L^2 generated by its components (X_1, \ldots, X_n) is a set of Gaussian random variables.
- The law of a Gaussian vector is completely determined by its expectation ${\bf m}$ and its covariance matrix ${\bf \Gamma}$. More precisely, its characteristic function is

$$\phi_X(\mathbf{u}) = \exp[i(\mathbf{m}|\mathbf{u}) - \frac{1}{2}(\mathbf{u}|\Gamma\mathbf{u})]$$

- If X is a Gaussian vector with law $\mathcal{N}(\mathbf{m}, \Gamma)$ then $A\mathbf{X} + \mathbf{b}$ is a Gaussian vector with law $\mathcal{N}(A\mathbf{m} + \mathbf{b}, A\Gamma\widetilde{A})$
- \bullet When Γ is invertible, $\!X$ has the following probability density

$$x \to \frac{1}{\sqrt{(2\pi)^n |\Gamma|}} \exp\left[-\frac{1}{2}(\mathbf{X} - \mathbf{m}|\Gamma^{-1}(\mathbf{X} - \mathbf{m}))\right]$$

●中國氏航大学

微积分在高斯空间的应 用

Definition

A Gaussian process is a stochastic process such that for any $(t_1,\ldots,t_n)\in\mathcal{T}^n$ and any $(\alpha_1,\ldots,\alpha^n)\in\mathbb{R}$ the random variable $\sum_{k=1}^n \alpha_k X_{t_k}$ is Gaussian.

The law of (X_{t_1},\dots,X_{t_n}) is defined by the mean function $t\to m(t)$ and the covariance kernel $(s,t)\to k(s,t)$ of the process since

$$\mathbf{E} \begin{bmatrix} X_{t_1} \\ \dots \\ X_{t_n} \end{bmatrix} = \begin{bmatrix} m(t_1) \\ \dots \\ m(t_n) \end{bmatrix}$$

$$Cov\begin{bmatrix} X_{t_1} \\ \dots \\ X_{t_n} \end{bmatrix} = \begin{bmatrix} k(t_1,t_1) & k(t_1,t_2) & \dots & k(t_1,t_n) \\ k(t_2,t_1) & k(t_2,t_2) & \dots & k(t_2,t_1) \\ \dots & \dots & \dots & \dots \\ k(t_{n-1},t_1) & k(t_{n-1},t_2) & \dots & k(t_{n-1},t_n) \\ k(t_n,t_1) & k(t_n,t_2) & \dots & k(t_n,t_n) \end{bmatrix}$$

Definition

Let (X_t) be a Gaussian process. The mapping $t \to X_t \in L^2$ is continuous if the covariance kernel is continuous since

$$||X_s - X_t||^2 = k(s, s) + k(t, t) - 2\operatorname{Re}\{k(s, t)\}\$$

The continuity of the process allows to compute in the Hilbert space L^2 . Notably, if $\mu \in \mathcal{M}([a,b])$, we can define

$$Z = \int_{a}^{b} X_{t} d\mu(t) = \lim_{\Delta t \to 0} \sum_{k=0}^{\frac{b}{\Delta t}} X_{a+k\Delta t} \mu([a+k\Delta t, a+(k+1)\Delta t])$$

Definition

A stochastic process with $\mathcal{T}=\mathbb{R}$ is said stationary if any finite dimensional law is invariant by time shift, i.e.

$$\forall (t_1, \dots, t_n, t) \in \mathbb{R}^{n+1}, (X_{t_1}, \dots, X_{t_n}) \sim (X_{t_1-t}, \dots, X_{t_n-t})$$

Proposition

A Gaussian process is stationary if and only if its mean function is constant and his covariance kernel is of the form

$$k(t,s) = c(t-s)$$

Application: finite filtering by moving average (MAn)

Gaussian processes

Manuel SAMUELIDES, Zhigang SU

Proposition

Consider a stochastic process (X_t) and a finite set of times and weights $((\alpha_1,t-1),\ldots,(\alpha_n,t_n))\in(\mathbb{R}\times\mathcal{T})^n$. The stochastic process (Y_t) defined by $Y_t=X_t-\alpha_1X_{t-t_1}\ldots\alpha X_{t-t_n}$ is called amoving average process of order n (MAn) The stochastic process (Y_t) is Gaussian -resp. continuous, stationary- as soon as (X_t) is Gaussian, - stationary, continuous.

It is easy to compute the mean function and the covariance kernel of (Y_t) (left to exercise)

Basic example: Brownian motion alias Wiener process

Gaussian processes

SAMUELIDES, Zhigang SU

高斯过程基本原理

微积分在高斯空间的应 用

Proposition

The Wiener processt $t \in \mathbb{R}^+ \to W_t$ is the stationary independent increase Gaussian process with mean function m(t)=0 and covariance kernel k(s,t)=min(s,t)

Proposition

The Wiener process is continuous (in quadratic mean sense)

More advanced theory shows that we can build a probability space where almost all the trajectories of the Wiener process are continuous

Exercises on the Wiener process as limit of discrete random walks

Gaussian processes

Manuel SAMUELIDES, Zhigang SU

6斯讨程基本原理

微积分在高斯空间的应 用

Exercise

We consider the discrete time process with stationary independent increase $X(n\epsilon) \sim \mathcal{N}(0,n\epsilon^2)$. Show that when $\epsilon \to 0$ it converges towards the Wiener process.

Exercise

Let $(Y_N$ a sequence of independent identically distributed binary variables such that $P(\mathbb{Y}_n=1)=1-P(Y_n=-1)=p$. Let $X(n\epsilon)=\epsilon(Y_1+\cdots+Y_n)$.

- (1) If p = 0.5, show that its limit in law is the Wiener process.
- ② What about the general case 0 ?

Proposition

Let $\{X_n\}$ a sequence of Gaussian random variables that converges in L^2 towards X. Then X is Gaussian too.

Proof We have $E(X_n) \to E(X)$ and $Var(X_n) \to Var(X)$. So

$$\phi_X(u) = \lim \phi_{X_n}(u) = \lim \exp(jE(X_n)u - \frac{Var(X_n)u^2}{2})$$
$$= \exp(jE(X)u - \frac{Var(X)u^2}{2})$$

Definition

Let $t\in\mathcal{T}\to X_t\in L^2$ a Gaussian process, then the associate Gaussian space is the Hilbert sub-space $\mathcal{H}_X\subset L^2$ generated by the Gaussian variables X_t .

It's clear that all the elements of \mathcal{H}_X are Gaussian random variables.