Lecture 13: Principal Component Analysis

Statistical Learning and Data Mining

Xingye Qiao

Department of Mathematical Sciences

Binghamton University

E-mail: qiao@math.binghamton.edu

Read: ELSII Ch. 14.5, ISLR 10.2 & 10.4, and SLS 8.2

Outline

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

From Supervised Learning to Unsupervised Learning

- Supervised Learning: regression and classification. Response Y is used in training and the goal is to predict Y
- Unsupervised Learning: No information about the response is used. The goal is to understand the *X* data.

The next section would be

- 1 Interpretations & Uses
 - Data Visualization
 - Pattern Recognition
 - Dimension Reduction
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

The next section would be

- 1 Interpretations & Uses
 - Data Visualization
 - Pattern Recognition
 - Dimension Reduction
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

Data Visualization

- Suppose there are variables X_1, \ldots, X_p . To visualize the data, one may draw pairwise scatterplots. But there are p(p-1)/2 such plots.
- Data lie in p-dimensional space, but not all the dimensions are interesting.
- Solution: find a low-dimensional representation of the data that captures as much of the information as possible.
- PCA seeks a small number of dimensions that are as interesting as possible, where interesting-ness is measured by the amount that the observations vary along each dimension.

Data Exploration - Multivariate data

Dimension p = 6 example – Swiss bank notes

- \blacksquare n=200 Swiss bank notes (See Fig. 1.1, Härdle and Simar)
- **Each** note (obs.) has p = 6 measurements (variables).
- Additional information: first half are genuine; the other half are counterfeit.
- Visualization of 6-dim'l data?
- Can use 6 KDEs overlaid with jitterplot for each measurements (variables)
- jitterplot: heights of dots (y value) are random for visualization. The x value represents the realized value of the data point.

Swiss bank notes - Marginal KDEs

Marginal KDEs overlaid with jitterplot for each of 6 variables.

- Informative, realistic when p is small
- No information about association between variables.

- Variable pair best visualized by scatterplot, e.g. X_4 vs X_6 .
- Understood as point clouds, which empirically representing the distribution

- Scatters of three variables can also be informative
- But only if software allows to rotate the axes.
- Otherwise, the 3D scatterplot is just a 2D scatterplot of two linear combinations of the three variables.
- Angle matters.

■ A traditional, yet powerful, tool is to construct a matrix of scatterplots. - Too busy with p = 6.

Better to visualize with principal component scores.

 With principal component scores, we can focus on fewer combinations (it's called Dimension Reduction)

The next section would be

- 1 Interpretations & Uses
 - Data Visualization
 - Pattern Recognition
 - Dimension Reduction
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

Pattern Recognition

PCA can sometimes help discover previously unknown patterns, and help learn from labelled data.

Example: mRNA expression profiling

- Bhattacharjee et al (2001) PNAS
- Preprocessed gene expressions with d = 2530 genes and n = 56 subjects with lung cancer.
- Subgroup for different types of lung cancers?

mRNA expression profiling

mRNA expression profiling

Color by true subgroups

Successfully capture the major pattern in the data: the black, red, green, blue and cyan observations that are near each other in the high-dimensional space remain nearby in these two-dimensional representations.

The next section would be

- 1 Interpretations & Uses
 - Data Visualization
 - Pattern Recognition
 - Dimension Reduction
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

Dimension Reduction

- Lastly, PCA is a way of dimension reduction.
- For example, as in principal component regression, we simply use principal components as predictors in a regression model in place of the original larger set of variables.

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
 - Matrix Factorization
 - Covariance
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
 - Matrix Factorization
 - Covariance
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

Matrix factorization

■ Given matrix X, we seek to find matrices U and V such that $X \approx UV := \hat{X}$.

- It is ideal that U has very few columns.
- Why are low-rank approximations important?
 - Intuitively, if matrix is low rank, then the observations can be explained by linear combinations of few underlying factors
 - Want to know which factors control the observations

PCA

- Imagine that *X* is the **centered** data matrix where the *i*th column *X*(*i*) is the *i*th observation.
- $X \approx UV$ means that we seek to find U and V so that $X_{(i)} \approx \sum_{j=1}^{q} v_{ji} U_j$ where U_j is the jth column of U.

To resolve identifiable issue, we may require $U^TU = \mathbb{I}$.

PCA can be viewed as the following matrix factorization / matrix approximation problem.

$$(U, V) = \underset{U, V, U^T U = \mathbb{I}}{\operatorname{argmin}} \|X - UV\|_F^2 = \underset{U, V, U^T U = \mathbb{I}}{\operatorname{argmin}} \sum_{i=1}^n \|X_{(i)} - \sum_{j=1}^q v_{ji} U_j\|_2^2$$

where $\|A\|_F^2 = \sum_{i=1}^n \sum_{j=1}^n A_{ij}^2$ is the Frobenius norm of matrix A

Geometric understanding of PCA

A 3D point cloud. Mean is removed

left: best 1-d approximation (q = 1)

right: best 2-d approximation (q = 2)

Next, another formulation of PCA using eigen-decompostion of covariance matrix.

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
 - Matrix Factorization
 - Covariance
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

Linear dimension reduction

For a random vector $\mathbf{X} \in \mathbb{R}^p$, consider reducing the dimension from p to d, i.e., p variables $(X_1, \ldots, X_p)^T$ to a set of *most interesting* d variables. Here, $1 \le d \le p$.

- Best subset?
- Linear dimension reduction: Construct d variables Z_1, \ldots, Z_d as linear combinations of X_1, \ldots, X_p , i.e.

$$Z_i = a_{i1}X_1 + \cdots + a_{ip}X_p = a'_iX \quad (i = 1, \dots, d),$$

with $\boldsymbol{a}_i \in \mathbb{R}^p$.

Linear dimension reduction seeks a sequence of such Z_i , or equivalently a sequence of a_i , where the random variables Z_i 's are most important among all choices.

Principal Component Analysis

Require $\|\boldsymbol{a}_1\|=1$ and $\langle \boldsymbol{a}_i, \boldsymbol{a}_j\rangle=0$. Thus the problem is to find an interesting set of (orthogonal) direction vectors $\{\boldsymbol{a}_i:i=1,\ldots,p\}$, where the projection scores of \boldsymbol{X} onto \boldsymbol{a}_i are useful.

PCA aims for a set of direction vectors which lead to maximal variances of the projected random variables.

Take d = 1. PCA for the distribution of \boldsymbol{X} finds \boldsymbol{a}_1 such that

$$m{a}_1 = rgmax_{m{a} \in \mathbb{R}^p, \|m{a}\| = 1} extsf{Var}(m{Z}_1(m{a})) \left(= rgmax_{m{a} \in \mathbb{R}^p, \|m{a}\| = 1} m{a}' extsf{Var}(m{X}) m{a}
ight),$$

where
$$Z_1(\mathbf{a}) = a_1 X_1 + \cdots + a_p X_p = \mathbf{a}' \mathbf{X}$$
.

Geometric understanding of PCA for point cloud

n (= 200) data points in 2D

PCA is best understood with a point cloud. Take a look at this 2D example.

Take a = (1, 0)'.

Which one is better?

Take $\mathbf{a} = (1,0)', (0,1)', (1/\sqrt{2}, 1/\sqrt{2})'.$

Formulation of population PCA-1

Suppose a random vector \boldsymbol{X} with mean μ , covariance Σ (not necessarily normal).

The first principal component (PC) direction vector is the unit vector $\mathbf{u}_1 \in \mathbb{R}^p$ that maximizes the variance of $\mathbf{u}_1'\mathbf{X}$ among all unit vectors, i.e.,

$$oldsymbol{u}_1 = \operatorname*{argmax}_{oldsymbol{u} \in \mathbb{R}^p, \|oldsymbol{u}\| = 1} \mathsf{Var}(oldsymbol{u}'oldsymbol{X}).$$

- $u_1 = (u_{11}, ..., u_{1p})'$ is the first PC direction vector, sometimes called *loading vector*.
- u_{11}, \ldots, u_{1p} are loadings of the 1st PC.
- $Z_1 = u_{11}X_1 + \cdots + u_{1p}X_p = u_1'X$ is the first PC score or the first principal component (it's a random variable).
- $\lambda_1 = Var(\boldsymbol{u}'\boldsymbol{X}) = Var(Z_1)$ is the variance explained by the first PC

Formulation of population PCA-2

The second PC direction is the unit vector $\mathbf{u}_2 \in \mathbb{R}^p$ that

- can maximize the variance of $u_2'X$;
- lacksquare among directions orthogonal to the first PC direction $oldsymbol{u}_1$.

That is,

$$\mathbf{u}_2 = \underset{\mathbf{u} \in \mathbb{R}^p, \|\mathbf{u}\|=1, \mathbf{u}'\mathbf{u}_1=0}{\operatorname{argmax}} \operatorname{Var}(\mathbf{u}'\mathbf{X}).$$

- $\mathbf{u}_2 = (u_{21}, \dots, u_{2p})'$ is the second PC direction vector, and is the vector of the 2nd set of loadings.
- **Z**₂ = $u_2'X$ is the second principal component.
- $\lambda_2 = \text{Var}(Z_2)$ is the variance explained by the second PC, and $\lambda_1 \ge \lambda_2$.
- $Corr(Z_1, Z_2) = 0.$

Formulation of population PCA-(3,4,...p)

Given the first k-1 PC directions $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_{k-1}$, the kth PC direction is the unit vector $\boldsymbol{u}_k \in \mathbb{R}^p$ that

- maximizes the variance of $u'_k X$;
- among those orthogonal to the 1st to the (k-1)th PC directions \boldsymbol{u}_i $(j=1,\ldots,k-1)$

That is,

$$oldsymbol{u}_k = \mathop{\mathrm{argmax}}_{\substack{oldsymbol{u} \in \mathbb{R}^p, \|oldsymbol{u}\|=1 \ oldsymbol{u}'oldsymbol{u}_i = 0, j = 1, \dots, k-1}} \mathsf{Var}(oldsymbol{u}'oldsymbol{X}).$$

- $\mathbf{u}_k = (u_{k1}, \dots, u_{kp})'$ is the kth PC direction vector, and is the vector of the kth loadings.
- $Z_k = u'_k X$ is the kth principal component.
- $\lambda_k = \text{Var}(Z_k)$ is the variance explained by the k PC score, and $\lambda_1 \ge \cdots \ge \lambda_{k-1} \ge \lambda_k$.
- Corr $(Z_i, Z_j) = 0$ for all $i \neq j \leq k$.

Relation to eigen-decomposition of Σ

Recall the eigen-decomposition of the symmetric positive definite $\Sigma = \mathbf{U}\Lambda\mathbf{U}'$ with

- $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_p]$ orthogonal matrix
- $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ with $\lambda_1 \geq \dots \geq \lambda_p$,
- $\Sigma u_i = \lambda_i u_i$.

In next two slides we show that:

- **1** The kth eigenvector \mathbf{u}_k is the kth PC direction vector.
- 2 The kth eigenvalue λ_k is the variance explained by the kth principal component.
- B PC directions are both orthogonal $m{u}_i' m{u}_j = 0 \ (i \neq j)$ and Σ -orthogonal

$$\mathbf{u}_i' \Sigma \mathbf{u}_i = 0 \iff \mathsf{Cov}(Z_i, Z_i) = 0 \quad (i \neq j).$$

Gradient

Let $f: \mathbb{R}^d \to \mathbb{R}$. Define

$$\nabla f(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_d} \end{pmatrix}_{d \times 1}$$

Facts:

$$\nabla_{\mathbf{x}}(\mathbf{c}'\mathbf{x}) = \frac{\partial(\mathbf{c}'\mathbf{x})}{\partial\mathbf{x}} = \mathbf{c}$$

$$\nabla_{\mathbf{x}}(\mathbf{x}'\mathbf{A}\mathbf{x}) = \frac{\partial(\mathbf{x}'\mathbf{A}\mathbf{x})}{\partial\mathbf{x}} = 2\mathbf{A}$$

for symmetric A

Relation to eigen-decomposition of Σ

The first PC direction maximizes $Var(\boldsymbol{u}'\boldsymbol{X})$ with the constraint $\boldsymbol{u}'\boldsymbol{u}=1$. Using Lagrange multiplier λ , it is the same as finding a stationary point of

$$\Phi(\mathbf{u}, \lambda) = Var(\mathbf{u}'\mathbf{X}) - \lambda(\mathbf{u}'\mathbf{u} - 1)$$
$$= \mathbf{u}'\Sigma\mathbf{u} - \lambda(\mathbf{u}'\mathbf{u} - 1).$$

The stationary point solves the following:

$$\frac{1}{2}\frac{\partial}{\partial u}\Phi(u,\lambda)=\Sigma u-\lambda u=\mathbf{0},$$

which leads to

$$\lambda = \mathbf{u}' \Sigma \mathbf{u} = \mathsf{Var}(\mathbf{u}' \mathbf{X}), \quad \Sigma \mathbf{u} = \lambda \mathbf{u}. \tag{1}$$

Recall: any eigenvector-eigenvalue pair $(\boldsymbol{u}_i, \lambda_i), (i=1,\ldots,p)$ satisfies the second eq. in (1). It is clear that the first PC direction is the first eigenvector \boldsymbol{u}_1 , as it gives the largest variance $\lambda_1 = \boldsymbol{u}_1' \boldsymbol{\Sigma} \boldsymbol{u}_1 = \operatorname{Var}(\boldsymbol{u}_1' \boldsymbol{X}) \geq \lambda_i \ (j>1).$

Relation to eigen-decomposition of Σ

For the kth PC direction, we form a Lagrangian function

$$\Phi(\mathbf{u},\lambda,\gamma_1^k) = \mathbf{u}'\Sigma\mathbf{u} - \lambda(\mathbf{u}'\mathbf{u} - 1) - \sum_{j=1}^{k-1} 2\gamma_j\mathbf{u}'_j\mathbf{u},$$

given the first k-1 PC directions. The derivative of Φ , equated to zero, is then

$$\frac{1}{2} \frac{\partial}{\partial \mathbf{u}} \Phi(\mathbf{u}, \lambda, \gamma_1^k) = \Sigma \mathbf{u} - \lambda \mathbf{u} - \sum_{j=1}^{k-1} \gamma_j \mathbf{u}_j = \mathbf{0},
\frac{\partial}{\partial \gamma_j} \Phi(\mathbf{u}, \lambda, \gamma_1^k) = \mathbf{u}_j' \mathbf{u} = 0.$$
(2)

We have $\gamma_j = \boldsymbol{u}_j' \Sigma \boldsymbol{u} = 0$ (since $\Sigma \boldsymbol{u}_j = \lambda_j \boldsymbol{u}_j$), thus

$$\lambda = \mathbf{u}' \Sigma \mathbf{u} = Var(\mathbf{u}' \mathbf{X}), \quad \Sigma \mathbf{u} = \lambda \mathbf{u}. \tag{3}$$

The kth to the last eigen-pairs $(\boldsymbol{u}_i, \lambda_i), (i = k, ..., p)$ all satisfy both (3) and (2). Thus, the kth PC direction is \boldsymbol{u}_k , as it gives the largest variance $\lambda_k = \boldsymbol{u}_k' \Sigma \boldsymbol{u}_k$ among the remaining eigen-pairs.

Computation of PCA

PCA is either computed using eigenvalue decomposition of $\mathbf{S} = \frac{1}{n-1} \mathbf{\tilde{X}} \mathbf{\tilde{X}}'$ or using the singular value decomposition of $\mathbf{\tilde{X}}$.

Eigen-decomposition of S

For $S = U \Lambda U'$.

- **1** PC directions \boldsymbol{u}_k (eigenvectors)
- 2 Variance of PC (scores) λ_k (eigenvalues)
- 3 Matrix of centered principal component scores

$$\mathbf{U}'\tilde{\mathbf{X}} = \mathbf{Z} = \begin{bmatrix} \mathbf{z}_{(1)} \\ \vdots \\ \mathbf{z}_{(p)} \end{bmatrix}.$$

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
 - Properties of the SVD
 - SVD & PCs
 - PC loadings/directions and PC scores
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
 - Properties of the SVD
 - SVD & PCs
 - PC loadings/directions and PC scores
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

Computation of PCA

Singular value decomposition (SVD) of $\tilde{\mathbf{X}}$

The singular value decomposition (SVD) of $p \times n$ matrix $\tilde{\mathbf{X}}$ has the form

$$\tilde{\mathbf{X}} = \mathbf{U}\mathbf{D}\mathbf{V}'$$
.

- The left singular vectors $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_p]_{p \times p}$ and the right singular vectors $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_p]_{n \times p}$ are orthogonal $(\mathbf{U}'\mathbf{U} = \mathbb{I}_p, \mathbf{V}'\mathbf{V} = \mathbb{I}_p)$.
- The columns of **U** span the column space of **X**; the columns of **V** (which are n-vectors) span the row space.
- **D** = diag (d_1, \ldots, d_p) , $d_1 \ge d_2 \ge \ldots \ge d_p \ge 0$ are the singular values of $\tilde{\mathbf{X}}$.

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
 - Properties of the SVD
 - SVD & PCs
 - PC loadings/directions and PC scores
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

SVD and Eigen-decomposition Connection

If SVD of $\tilde{\mathbf{X}} = \mathbf{UDV}'$, then

$$\mathbf{S} = \frac{1}{n-1} \tilde{\mathbf{X}} \tilde{\mathbf{X}}' = \frac{1}{n-1} \mathbf{U} \mathbf{D} \mathbf{V}' \mathbf{V} \mathbf{D} \mathbf{U}' = \mathbf{U} \operatorname{diag}(\frac{1}{n-1} d_j^2) \mathbf{U}'$$

- \blacksquare PC directions \boldsymbol{u}_k (left singular vectors)
- **2** Variance of PC (scores) = $\frac{1}{n-1}d_i^2$ (scaled singular values²)
- Matrix of principal component scores (<u>scaled</u> right singular vectors)

$$\begin{bmatrix} \mathbf{z}_{(1)} \\ \vdots \\ \mathbf{z}_{(p)} \end{bmatrix} = \mathbf{Z} = \mathbf{U}'\tilde{\mathbf{X}} = \mathbf{D}\mathbf{V}' = \begin{bmatrix} d_1\mathbf{v}_1' \\ \vdots \\ d_p\mathbf{v}_p' \end{bmatrix}$$

NOTE: we are working with the centered $\tilde{\mathbf{X}}$ here, not $\mathbf{X}!!$

PCA in R

The standard data format is the $n \times p$ data frame or matrix x. To perform PCA by eigen decomposition:

```
spr <-princomp(x)
U<-spr$loadings
L<-(spr$sdev)^2
Z <-spr$scores</pre>
```

To perform PCA by singular value decompositoin

```
gpr <- prcomp(x)
U <- gpr$rotation
L <- (gpr$sdev)^2
Z <- gpr$x</pre>
```

Scaling? Correlation PCA

- PCA is not scale invariant.
- SOMETIMES, good idea to do normalization.
- Correlation matrix of a random vector X is given by

$$\mathbf{R} = \mathbf{D}_{\boldsymbol{\Sigma}}^{-\frac{1}{2}} \boldsymbol{\Sigma} \mathbf{D}_{\boldsymbol{\Sigma}}^{-\frac{1}{2}},$$

where \mathbf{D}_{Σ} is the $p \times p$ diagonal matrix consisting of diagonal elements of Σ .

- Correlation PCA: PC directions obtained by eigen-decomposition of $\mathbf{R} = \mathbf{U}_R \Lambda_R \mathbf{U}_R'$.
- Preferred if measurements are not commensurate (e.g. X_1 = household income, X_2 = years in school).

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
 - Properties of the SVD
 - SVD & PCs
 - PC loadings/directions and PC scores
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

PC loadings and PC scores

- For some students, it is often confusing between PC loadings and PC scores.
- PC direction U_i : jth column of U, a p-dimensional vector.
- PC loadings: elements of U_j , measuring contributions from different dimensions (variables) to the jth principal component
- PC scores: inner products of $\mathbf{x}_i^T \mathbf{U}_j$, i = 1, ..., n, coordinates of obs. i in the new coordinate system spanned by \mathbf{U}_i 's

Which variables are most responsible for the principal components?

- Check loadings of principal component directions.
- Biplot scatterplot of PC1 and PC2 scores, overlaid with *p* vectors each representing the loadings of the first two PC directions.

In the Swiss Bank Note Data, the loadings are

```
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
V1 -0.326 0.562 0.753
V2 0.112 -0.259 0.455 -0.347 -0.767
V3 0.139 -0.345 0.415 -0.535 0.632
V4 0.768 -0.563 -0.218 -0.186
V5 0.202 0.659 -0.557 -0.451 0.102
V6 -0.579 -0.489 -0.592 -0.258
```


Recall that the scatter plot of PC1+PC2 is a visualization after rotation and projection.

Hence red vectors can be viewed as the rotated and projected coordinate direction vectors. For example, V1 is the rotated and projected $(1,0,0,0,\ldots)'$

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

How many components to keep? (1)

"How much of the variation within the data have PCs explained?"

Total variation in X is the sum of all marginal (sample) variances

$$\sum_{k=1}^{p} \operatorname{Var}(\{x_{ki} : i = 1, \dots, n\}) = \operatorname{Trace}(\mathbf{S}) = \operatorname{Trace}(\hat{\Lambda})$$

$$= \sum_{k=1}^{p} \hat{\lambda}_{k} = \sum_{k=1}^{p} \operatorname{Var}(\{z_{(k)i} : i = 1, \dots, n\}).$$

2 (Sample) variance of the *k*th PC:

$$Var(\{z_{(k)i}: i=1,\ldots,n\}) = \hat{\lambda}_k$$

3 Total variance in the 1st to the kth PCs: $\hat{\lambda}_1 + \ldots + \hat{\lambda}_k$.

How many components to keep? (1)

- **1** In scree plot $(k, \hat{\lambda}_k)$, we look for an elbow.
- 2 In cumulative scree plot (proportion of variance explained, $(k, \frac{\sum_{j=1}^k \hat{\lambda}_j}{\sum_{i=1}^p \hat{\lambda}_i}))$, use 90% as a cutoff.

How many components to keep? (2)

I Kaiser's rule of thumb: Retain PCs 1-k satisfying

$$\lambda_k > \bar{\lambda} = \frac{1}{p} \sum_{j=1}^p \lambda_j.$$

Tends to choose fewer components.

2 Likelihood ratio testing on null hypothesis

$$H_0(k): \lambda_{k+1} = \cdots = \lambda_p,$$

The first k components will be retained if $H_0(k)$ is not rejected at a specified level.

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

PCA for Olivetti Faces data

Olivetti Faces data

- Obtained from http://www.cs.nyu.edu/~roweis/data.html.
- Grayscale faces 8 bit [0-255], a few (10) images of several (40) different people.
- 400 total images, 64x64 size.
- From the Oivetti database at ATT.

Images as data

An image is a matrix-valued datum. In Olivetti Faces data, the matrix is of size 64×64 , with each pixel having values between [0-255]. The matrix, corresponding one observation, is vectorized (vec'd) by stacking each column into one long vector of size $d = 4096 = 64 \times 64$.

So, x_1 is a $d \times 1$ vector corresponding to

PCA is applied to the data matrix $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$. Tall and skinny data.

Olivetti Faces data-Major components

Olivetti Faces data-Scree plots

Olivetti Faces data-Interpretation

Examine the mode of variation by walking along the PC direction through the mean. Shown here are $\pm 1,2$ standard deviations of $Z_{(1)}$ apart from the mean in the direction of PC1.

Olivetti Faces data–Interpretation (Eigenfaces)

 $PC1 \sim \text{darker to lighter face}$

 $PC2 \sim$ feminine to masculine face

 $PC3 \sim \text{oval to rectangle face}$

How to walk along the PC direction?

- Vectorized data in $\mathbf{X} = [x_1, \dots, x_n]$, with mean \bar{x} .
- Compute (u_j, λ_j) : the *j*th PC direction and PC variance.
- Walk along PC-j direction and examine at position $s = \pm 2, \pm 1, 0$ by
 - 1 Reconstruction at s: $\mathbf{w}_s = \bar{\mathbf{x}} \pm s \sqrt{\lambda_j} \mathbf{u}_j$
 - 2 Convert to image by reshaping the 4096×1 vector \mathbf{w}_s into 64×64 matrix \mathbf{W}_s .

Next, reconstruct the original face using PCs.

Approximation to the original data matrix

Recall the matrix factorization viewpoint of PCA: $X \approx UV$.

$$x_i = \bar{x} + \sum_{j=1}^{p} z_{(j)i} u_j, \quad (i = 1, ..., n)$$

Approximation of the original observation x_i by the first m < p principal components:

$$\hat{\boldsymbol{x}}_i = \bar{\boldsymbol{x}} + \sum_{j=1}^m z_{(j)i} \boldsymbol{u}_j,$$

- The larger m, the better approximation by \hat{x}_i .
- The smaller m, the more succinct dimension reduction of X.

See some mathematical explanations in the next page.

Olivetti Faces data–Reconstruction of original data

Recall

- \mathbf{I} $\mathbf{\tilde{X}} = \mathbf{U}\mathbf{D}\mathbf{V}'$
- $\mathbf{Z} = \mathbf{U}'\tilde{\mathbf{X}} = \mathbf{D}\mathbf{V}'$
- $\tilde{X} = UZ$
- 4 $\tilde{x}_i = \mathbf{U}z_i = \sum_{j=1}^p \mathbf{u}_j z_{(j)i}$ In a coordinate system with $\{\mathbf{u}_i, i=1,\ldots,n\}$ as the p basis vectors, $z_{(j)i}$ is the jth coordinate for the ith observation $\tilde{x}_i = x_i - \bar{x}$.

Hence

$$\mathbf{x}_i = \bar{\mathbf{x}} + \sum_{j=1}^p \mathbf{u}_j z_{(j)i}$$

Reconstruction of original face

Observation index i = 5.

5th face. from top left to bottom right: (mean, 1, 5, 10) & (20, 50, 100, 400) PCs

Reconstruction of original face

Observation index i = 19.

19th face. from top left to bottom right: (mean, 1, 5, 10) & (20, 50, 100, 400) PCs

Reconstruction of original face

Observation index i = 100.

100th face. from top left to bottom right: (mean, 1, 5, 10) & (20, 50, 100, 400) PCs

- Human eyes require > 50 principal components to see resemblance between \hat{x}_i and x_i .
- Corresponds to about 90 percent of variance explained in PCs.
- 50 is still much smaller than 4096!
- Subjective and heuristic decision on "how many components to use"
- Reconstruction by PCA most useful and meaningful when
 - each datum is visually represented (rather than being just numbers).
 - for example: images, functions, shapes.

Handwritten Digits

FIGURE 14.22. A sample of 130 handwritten 3's shows a variety of writing styles.

FIGURE 14.23. (Left panel:) the first two principal components of the handwritten threes. The circled points are the closest projected images to the vertices of a grid, defined by the marginal quantiles of the principal components. (Right panel:) The images corresponding to the circled points. These show the nature of the first two principal components.

$$\hat{f}(\lambda) = \bar{x} + \lambda_1 v_1 + \lambda_2 v_2
= + \lambda_1 \cdot + \lambda_2 \cdot .$$

PCA as a mean of dimension reduction

- We can use only the first d PCs to approximately represent the data. Instead of $\mathbf{X}_{p \times n}$, we store the data as $\mathbf{Z}_{d \times n}$.
- However,
 - 1 Unsupervised learning (no information on Y).
 - 2 Hard to interpret. Each PC (new variable) is a linear combination of *p* variables.
 - **3** Eigen-decomposition/SVD are problematic when $p \gg n$.

The next section would be

- 1 Interpretations & Uses
- 2 Models & Optimization Problems
- 3 Solution via the SVD
- 4 Amount of Variance Explained
- 5 Real Example
- 6 Extensions

Matrix Completion

The matrix-completion problem has attracted a lot of attention, largely as a result of the celebrated Netflix Prize competition.

Foundation of collaborative filtering and recommendation system.

Candès and Tao (2009), Mazumder et al. (2010):

$$\min_{M} \frac{1}{2} \| (X - M)_{\Omega} \|_{F}^{2} + \lambda \| M \|_{*}$$

where Ω is the set of available entries and $\|M\|_*$ is the nuclear norm which is the sum of the singular values of M

Rennie and Srebro (2005):

$$\min_{A,B} \frac{1}{2} \| (X - AB^T)_{\Omega} \|_F^2 + \lambda (\|A\|_F^2 + \|B\|_F^2)$$

where A and B have r columns.

Sparse PCA

Goal: PC directions should be sparse (many zero loadings)

Why? Better interpretation

Shen and Huang (2006): suppose rank =1

$$\underset{\boldsymbol{u},\boldsymbol{v}}{\operatorname{argmin}} \|\mathbf{X} - \boldsymbol{u}\boldsymbol{v}^T\|_F^2 + \lambda \|\boldsymbol{u}\|_1$$

subject to $\|\mathbf{v}\|_2 = 1$ Zou, Hastie and Tibshirani (2006):

$$\underset{\boldsymbol{u},\boldsymbol{v}}{\operatorname{argmin}} \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \boldsymbol{\theta} \boldsymbol{u}^{T} \boldsymbol{x}_{i}\|_{2}^{2} + \lambda \|\boldsymbol{u}\|_{2} + \lambda_{1} \|\boldsymbol{u}\|_{1}$$

subject to $\|\boldsymbol{\theta}\|_2 = 1$

Functional PCA

- Functional extension of PCA.
- FPCA. Suppose we observe functions $X_1(\cdot), X_2(\cdot), \dots, X_n(\cdot)$. We want to find an orthonormal basis $\phi_1(\cdot), \dots, \phi_K(\cdot)$ such that

$$\sum_{i=1}^{n} \|X_i - \sum_{k=1}^{K} \langle X_i, \phi_k \rangle \phi_k \|^2$$

is minimized.

- Once such a basis is found, we can replace each curve X_i by $\sum_{k=1}^K \langle X_i, \phi_k \rangle \phi_k$ as a good approximation.
- This means instead of working with infinitely dimensional curves X_i , we can work with K-dimensional vectors $(\langle X_i, \phi_1 \rangle, \cdots, \langle X_i, \phi_K \rangle)^{\mathsf{T}}$.

See Ramsay, J. and Silverman, B. (1997). Functional Data Analysis, Springer, New York.

PCA for Functional Data In Practice

- Each $X(\cdot)$ is observed at p times and stored as a p-dimensional vector
- *n* curves are organized as a $n \times p$ data matrix.
- Apply the regular PCA
- The *p* dimensional PC direction vector is converted to the eigenfunction $\phi_i(\cdot)$
- The PC scores are $\langle X_i, \phi_k \rangle$

Kernel PCA

- Goal: re-express PCA using inner products.
- Recall $\tilde{\mathbf{X}} = \mathbf{UDV}'$.
- Here **U** are the loadings and $\mathbf{Z} = \mathbf{D}\mathbf{V}'$ is the PC scores.
- Let $\mathbf{K} = \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} \in \mathbb{R}^{n \times n}$. Then $\mathbf{K} = \mathbf{V} \mathbf{D}^2 \mathbf{V}'$
- Conclusion: PCA = eigen decomposition of $\tilde{\mathbf{X}}^T \tilde{\mathbf{X}} = (\mathbb{I} \mathbf{M})^T \mathbf{X}^T \mathbf{X} (\mathbb{I} \mathbf{M})$
- Kernel PCA: eigen decomposition of $(\mathbb{I} \mathbf{M})^T \mathbf{K} (\mathbb{I} \mathbf{M})$, where **K** is the kernel matrix.

Note that there is no loading matrix (what is the PC direction vector in this case anyway?)

Supervised Dimension Reduction

- Partial Least Squares:
 - Best dimension reduction of cross-covariance between X and Y such that factors are orthogonal to X.
- Canonical Correlations Analysis:
 - Best dimension reduction of cross-covariance between X and Y such that bi-projection is orthogonal to X or Y.
- Linear Discriminant Analysis (classification):
 - Best dimension reduction of between class covariance matrix relative to within-class covariance.