These slides are being provided with permission from the copyright for in-class (CS2208B) use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

Tutorial 03: Addition/Subtraction using 2's Complement

Computer Science Department

CS2208: Introduction to Computer Organization and Architecture

Winter 2020-2021

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: elsakka@csd.uwo.ca

Phone: 519-661-2111 x86996

Binary Arithmetic

☐ These tables cover the fundamental arithmetic operations.

Addition	Subtraction	Multiplication
0 + 0 = 0 (carry 0)	0 - 0 = 0 (borrow 0)	$0 \times 0 = 0$
0 + 1 = 1 (carry 0)	0 - 1 = 1 (borrow 1)	$0 \times 1 = 0$
1 + 0 = 1 (carry 0)	1 - 0 = 1 (borrow 0)	$1 \times 0 = 0$
1 + 1 = 0 (carry 1)	1 - 1 = 0 (borrow 0)	$1 \times 1 = 1$

Addition (three bits)

Subtraction (three bits)

$$0 - 0 - 0 = 0$$
 (borrow 0)
 $0 - 0 - 1 = 1$ (borrow 1)
 $0 - 1 - 0 = 1$ (borrow 1)
 $0 - 1 - 1 = 0$ (borrow 1)
 $1 - 0 - 0 = 1$ (borrow 0)
 $1 - 0 - 1 = 0$ (borrow 0)
 $1 - 1 - 0 = 0$ (borrow 0)
 $1 - 1 - 1 = 1$ (borrow 1)

Sign and Magnitude Addition/Subtraction

- The operations are carried out similar to normal math calculations
- The resultant sign is arranged separately
 - \square The sign of A B depends on the values of A and B
 - \square If B > A, the answer will be calculated as -(B A), O.W., it is +(A B)
- The location of the radix points needs to be aligned before performing the operation.
- If the provided number of bits are not enough to hold the result, it means an overflow occurred.

- A subtraction operation is converted to an addition operation (after performing the 2's complement to the operand appearing after the negative sign)
- When adding two *positive* numbers and finding the result is *negative*, this means an *overflow occurred*.
- When adding two *negative* numbers and finding the result is *positive*, this means an *overflow occurred*.
- Overflow will never occur when adding a positive number to a negative number, or vice versa.
- How about
 - □ subtracting a negative number from a positive number?
 - □ subtracting a positive number from a negative number?

■ *Example 1*:

Perform $20_{10} - 10_{10}$ using 2's complement 6-bit system

- \bullet 20₁₀ \rightarrow 10100₂
- \bullet 10₁₀ \rightarrow 1010₂
- $20_{10} 10_{10} \rightarrow 10100_2 1010_2$
 - \rightarrow 010100₂ 001010₂
 - \rightarrow 010100₂ + (-001010₂)
- This is the answer in 2's complement

This is the

- $\rightarrow 010100_2 +$
- \rightarrow 001010₂
- answer in decimal to verify \rightarrow $+10_{10}$

© Mahmoud R. El-Sakka

Carry out

■ *Example 2*:

Perform $10_{10} - 20_{10}$ using 2's complement 6-bit system

- \bullet 10₁₀ \rightarrow 1010₂
- \blacksquare 20₁₀ \rightarrow 10100₂
- $10_{10} 20_{10} \rightarrow 1010_2 10100_2$
 - \rightarrow 001010₂ 010100₂
 - \rightarrow 001010₂ + (-010100₂)
- This is the answer in 2's complement

This is the

- \rightarrow 001010₂ + 101100₂
- \rightarrow 110110₂
 - **→**-001010₂

answer in decimal to verify

■ *Example 3*:

Perform $20_{10} + 10_{10}$ using 2's complement 6-bit system

- \bullet 20₁₀ \rightarrow 10100₂
- $\blacksquare 10_{10} \rightarrow 1010_2$

$$\blacksquare 20_{10} + 10_{10} \rightarrow 10100_2 + 1010_2$$

This is the answer in 2's complement

 \rightarrow 010100₂ + 001010₂

 $^{\circ}$ \rightarrow 0111110₂

This is the answer in decimal to verify

 $\rightarrow +30_{10}$

■ *Example 4*:

Perform $-20_{10} - 10_{10}$ using 2's complement 6-bit system

- \bullet 20₁₀ \rightarrow 10100₂
- $\blacksquare 10_{10} \rightarrow 1010_2$
- $-20_{10} 10_{10} \rightarrow -10100_2 1010_2$
 - \rightarrow -010100₂ 001010₂
 - \rightarrow (-010100₂)+ (-001010₂)

This is the answer in 2's complement

This is the

answer in decimal to verify

- \rightarrow 101100₂ + 110110₂
- \rightarrow 100010₂
- **→** -011110₂

 \rightarrow -30₁₀

Overflow might occur, but it did not in this case

Carry out to be ignored 1111 1011002 +1101102

■ *Example 5*:

Perform $20_{10} + 20_{10}$ using 2's complement 6-bit system

 \bullet 20₁₀ \rightarrow 10100₂

■
$$20_{10} + 20_{10}$$
 → $10100_2 + 10100_2$
→ $010100_2 + 010100_2$

No carry out

Overflow might occur, and indeed it did in this case

- Example 6:
 - Perform $-20_{10} 20_{10}$ using 2's complement 6-bit system
- $20_{10} \rightarrow 10100_2$
- $-20_{10} 20_{10} \rightarrow -10100_2 10100_2$
 - \rightarrow -010100₂ 010100₂
 - \rightarrow (-010100₂)+ (-010100₂) Carry out
 - → 101100₂ + 101100₂

to be ignored

Overflow might occur, and indeed it did in this case

11 1011000

- **■** *Example 7*:
 - Perform $20_{10} 20_{10}$ using 2's complement 6-bit system
- $\blacksquare 20_{10} \rightarrow 10100_2$
- $\blacksquare 20_{10} 20_{10} \rightarrow 10100_2 10100_2$
 - \rightarrow 010100₂ 010100₂
 - \rightarrow 010100₂ + (-010100₂)
- This is the answer \rightarrow 010100₂ + 101100₂
 - **→** 0000000₂
- decimal to verify

 answer in
 decimal to verify

This is the

■ *Example 8*:

Perform $31_{10} + 1_{10}$ using 2's complement 6-bit system

- \blacksquare 31₁₀ \rightarrow 11111₂

■ *Example 9*:

Perform -31_{10} – 1_{10} using 2's complement 6-bit system

- \blacksquare 31₁₀ \rightarrow 11111₂

Carry out to be ignored

$$-31_{10} - 1_{10} \rightarrow -111111_2 -$$

$$\rightarrow$$
 (-0111111₂) + (-000001₂)

This is the answer in 2's complement

This is the

$$\rightarrow$$
 (100001₂) + (111111₂)

→ 100000₂

$$\rightarrow$$
 -100000₂

$$\frac{\text{answer in}}{\text{decimal to verify}} \longrightarrow -32_{10}$$

Overflow might occur, but it did not in this case

■ *Example 10*:

Encode –3.25₁₀ using 2's complement 6-bit system

- $3.25_{10} \rightarrow 11.01_2$
- $-3.25_{10} \rightarrow -0011.01_2$
 - **→** 1100.11₂

Carry out to be ignored

You can also look at it as if it is -3_{10} -0.25_{10}

- $-3_{10} 0.25_{10} \rightarrow -11_2 0.01_2$
 - \rightarrow $(-000011_2) + (-0000.01_2)$

This is the answer in 2's complement

- \rightarrow (1111101₂) + (1111.11₂)
- **1**111100.11₂

1100.11₂

 -3.25_{10}

Overflow might occur, but it did not in this case

Binary points MUST be aligned

111111

111101.00,

•+111111.11,

1111100.11,

Jourer Organization and Architecture

14

CS 2208: Intro-