

TEKNOFEST 2020 ROKET YARIŞMASI Kirkor Divarcı Roket **Takımı** Atışa Hazırlık Raporu (AHR)

Gülhan KAYA

Berkay Rıza OĞUZ

Mehmet KUZU

Musa AKSU

Doğukan Gökmen

İsim Soyisim	Eğitim Bilgileri				
Sakip DİKMEN	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 3.Sınıf Öğrencisi				
Feridun Cem AKKUŞ	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 3.Sınıf Öğrencisi				
Mustafa Ali BÜYÜKYOLDAŞ	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 4.Sınıf Öğrencisi				
Kaan KORU	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 3.Sınıf Öğrencisi				
İsmail Hakkı BAŞEFE	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 3.Sınıf Öğrencisi				
Gülhan KAYA	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 3.Sınıf Öğrencisi				
Musa AKSU	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 1.Sınıf Öğrencisi				
Berkay Rıza OĞUZ	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Programı 1.Sınıf Öğrencisi				
Doğukan Gökmen	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Mekatronik Mühendisliği Programı 4.Sınıf Öğrencisi				
Mehmet KUZU	Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Mekatronik Mühendisliği Programı 2.Sınıf Öğrencisi				

Departman	Sorumlular				
Roket Tasarımı ve Analizi	Prof. Dr. Kubilay ASLANTAŞ, Sakip DİKMEN, Kaan KORU				
Aviyonik Sistem Ar-Ge	Doğukan Gökmen				
Mekanik Sistem Tasarımı	Sakip DİKMEN, Kaan KORU				
Uçuş Dinamiği	Gülhan KAYA, Mustafa Ali BÜYÜKYOLDAŞ, Sakip DİKMEN				
Açık İstihbarat	Musa AKSU, Berkay Rıza OĞUZ, Kaan KORU				
Malzeme Planlama	Kaan KORU, İsmail Hakkı BAŞEFE, Mustafa Ali BÜYÜKYOLDAŞ				
Bilgi İşlem	Feridun Cem AKKUŞ, İsmail Hakkı BAŞEFE				
Open Rocket Ar-Ge	Gülhan KAYA				
Üretim ve Montaj Planlama	Sakip DİKMEN, Feridun Cem AKKUŞ				
Grafik Tasarım	Mustafa Ali BÜYÜKYOLDAŞ				
Operasyon Konsepti Planlama	Sakip DİKMEN, Kaan KORU, Mustafa Ali BÜYÜKYOLDAŞ				
3D Video Edition	Musa AKSU, Berkay Rıza OĞUZ				

Takım Logosu

KTR'den Değişimler

☐ KTR'den sonra yapılan tasarım	ı değişiklikleri bu sayfada belirtilecektir.
---------------------------------	--

☐ KTR'de beyan edilmiş üretim yöntemleri ve kullanılan üretim yöntemleri farklı ise nedeninin anlatılması gerekmektedir.

Raporlar arası uyumsuzluklar, varsa değişiklikler için yapılmayan analiz ve testler, risk tanımlanmamış problemler uygun görülmeyecektir.

Yarışma günü alana getirilen roketler ile AHR resim / videoları arasındaki uyumsuzluklar <u>uygun görülmeyecektir.</u>
AHR bu nedenle özenle, son ürünü gösterecek şekilde hazırlanmalıdır.

Bu kısım 2 yansıyı geçmemelidir.

KTR'den Değişimler

ÖNEMLİ!!!

Aktrüs roketinin tasarım sürecinde, yakın zamanda çok etkili bir sorun ile karşılaşıldı. Bu sorunu siz ile paylaşıp, nasıl bir çözüm bulduğumuzu anlatacağım. THR videolarında paraşüt testleri gerçekleştirilirken, birebir boyutta üretilen paraşütler, muhafazalarına sığmamıştı. Bu sorunun kaynağı seçilen paraşüt malzemesi olduğunu düşünmüştük ve tekrardan daha ince ve hafif bir paraşüt malzemesi alarak "muhafazası içine sığdırma testi gerçekleştirdik, ne yazık ki bu çözüm işe yaramadı. Bu olayı fark etmemiz çok yakın bir zamanda olduğu için roketin bir çok mekanik parçasını ürettik. Lakin bu durumu atlatabilmek için acilen tasarımda değişikliklere gidildi. Bu değişiklik için tekrardan OpenRocket dosyası oluşturulup ilerleyen yansılarda bu değişikliğin tasarım kriterlerini karşıladığını kanıtlamak için ek sunular yerleştirildi.

Gene bazda bakıldığında kısaca yapılan değişiklikler sırasıyla:

- Faydalı yükün ağırlığı 7.5 kg dan 6 kg a düşürüldü.
- 1. Modülün uzunluğu 475mm den, 650mm ye uzatıldı.
- 3. Modülün uzunluğu 550mm den, 650mm ye uzatıldı.

Baş ve Gövde kısımlarında bulunan paraşüt muhafazalarının boyları uzatılarak, elimizde bulunan paraşütün sığabileceği boyutlara getirme fikri ortaya çıkarıldı, Bu değişiklik Elimizde bulunan tasarımın yerine yapılan bir değişiklik olamamakla birlikte sadece ek aparat kullanarak paraşütlerin sığmama problemi ortadan kaldırılması planlanmaktadır. Eğer AHR elemesinden bu değişiklik yüzünden elenmez isek ek aparatları 20.08.2020 tarihinde üretimini gerçekleştirilecektir. Üretilen parçalar genelde videoda gösterilmiştir.

OpenRocket Dosyası İçin Tıklayınız

Roket Alt Sistemleri

Hücre (Birim)	Durumu (%) Bakımından				
Burun Konisi (Uç ve Alt Tabakası)	100				
Gövde Borular	100				
Gövde Yapısal Elemanlar	95				
Aviyonik Sistem	80				
1. Kurtarma Mekanizması	100				
2. Kurtarma Mekanizması	100				

M2020 Motoruna Göre Open Rocket Tasarımı:

M2020 Motoruna Göre Bir Tasarım:

Uçuş Profili	Fırlatma Öncesi	Rampa Tepesi	Yanma Sonu	Tepe Noktası	Ana Paraşüt Açılması	Yer Teması Öncesi	
Zaman (s)	0	0.1	4.3	25	154.6	215	
İrtifa (m) + Rakım	0 + 970	5.98 + 970	668.3 + 970	3018 + 970	500 + 970	0 + 970	
Hız (m/s)	0	31.4	252	0	18.8	8.06	

M2020 Motoru İçin Simülasyon Tabloları:

Name	Configuration	Velocity of Rod	Apogee	Velocity at Deployment	Optimum Delay	Max. Velocity	Max. Acceleration	Time to Apogee	Flight Time	Ground hit Velocity
Simulation-1	[8429-M2020-IM-0]	31.4 m/s	3019 m	18.6 m/s	20.8 s	259 m/s	84.2 m/s ²	25 s	215 s	8.03 m/s
Simulation-2	[8429-M2020-IM-0]	31.4 m/s	3019 m	18.6 m/s	20.8 s	259 m/s	84.2 m/s ²	25 s	215 s	8.05 m/s
Simulation-3	[8429-M2020-IM-0]	31.4 m/s	3019 m	18.6 m/s	20.8 s	259 m/s	84.2 m/s ²	25 s	214 s	8.02 m/s
Simulation-4	[8429-M2020-IM-0]	31.4 m/s	3018 m	18.6 m/s	20.8 s	259 m/s	84.2 m/s ²	25 s	215 s	8.02 m/s
Simulation-5	[8429-M2020-IM-0]	31.4 m/s	3018 m	18.6 m/s	20.8 s	259 m/s	84.2 m/s ²	25 s	215 s	8.04m/s

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Burun Konisi Tamamlandı.

Burun – Detay

Burun konisi üretimi sıvama metodu ile yapılmıştır. Üretim İzmir sanayisinde gerçekleştirilmiştir.
Sıvama için önce CNC tornada kalıp üretilerek, Alüminyum sıvama ustaları tarafından, sıvama takım tezgahında kılavuzun üzerine sıvanır.
Burun konisini Üretmek için iki kademeli üretim metodu kullanılmıştır. Birincisi uç kısmını üretmek için 3D printerdan ABS Plastik malzeme

kullanılarak üretilmiştir. İkincisi ise burunun alt kısmını alüminyum sıvama ile üretilmiştir. Birbirine montaj işlemi 4 adet cıvata ile gerçekleşmektedir.

Faydalı Yük ve Faydalı Yük Bölümü – Detay

Faydalı yük yan tarafta bulunduğu konumu görülmektedir işlemleri videoda anlatılmıştır.

Faydalı yük bölümü. 1. ayrılmaya yardımcı olmaktadır. Videolarda anlatılmıştır.

Kurtarma Sistemi Mekanik Görünüm

Yan taraflarda bulunan fotoğraflarda kurtarma sisteminin görünümleri bulunmaktadır.(Montajlı hali)

Birincil ayrılma kurtarma sistemi video ile anlatılmıştır.

Ayrılma Sistemi – Detay

- 1. Ayrılma işlemi aktif bir madde olan kara barut ile gerçekleştirilmektedir. Roket içerisinde bulunan konumu videolarda gösterilerek anlatılmıştır.
- 2. Ayrılma Sistemi roket içerisinde bulunan konumu videolarda detaylı bir şekilde gösterilerek anlatılmıştır.

1.Ayrılma Sistem Videosu

2.Ayrılma Sistem Videosu

Paraşütler – Detay

Paraşüt Kesim Kalıpları

Ekip olarak üretilen paraşütün yarım daire şeklinde olmasını istenildiğinden dolayı el hesabı ile kürenin açılımını hesaplayarak terziye bir kalıp oluşturduk, Afyonda bulunan Meryem kumaş mağazasından aldığımız kumaşları dikerek paraşütümüzü oluşturduk.

Paraşüt Katlama ve Sığdırma Videosu

Paraşüt üretimi sırasında çekilen videolar.

Aviyonik Sistem Mekanik Görünüm

Gövde Aviyonik Sistem Ranzası

Aviyonik sistemlerin roket içerisinde bulundukları konum ve sabitleme aparatları ile birlikte bu sistemlerin nasıl çalıştığını videolarda anlatılmıştır.

Baş Kısım Aviyonik Sistem Ranzası

Aviyonik Sistem – Detay

Aviyonik Sistem

Kanatçıklar Mekanik Görünüm

Roket üzerinde bulunan kanat ve kanatçık mekanik görünümleri

Kanatçıklar – Detay

Kanatçık Detayt

Roket Genel Montajı

Roket Genel Montajı

Roket Motoru Montajı

Roket Motoru Montajı

Atış Hazırlık Videosu

Arayüzler sayesinde barutu fişek isimli parçamıza özel bir aparat kullanarak ikmal yapılacaktır.

Aviyoniklerin aktifleştirilmesi, dış arayüz kapakta on-off ile gerçekleştirilecektir.

Yarışma Alanı Planlaması

