

plt.legend(loc=1, prop={'size': 19})

2.00

1.75

1.50

0.75

0.50

0.25

2.00

1.75

1.50

1.50 disp 1.25 1.00

0.75

0.50

0.25

0

and plot the combined waveform

plt.xlabel('Frame', fontsize=20) plt.ylabel('RFLy_disp', fontsize=20)

7.20 1.00 1.00

#plt.savefig('Test_Forelimb_Aligned.pdf')

plt.savefig('star_all_stacked.pdf')# You can save the figure here if you'd like

20

#plt.savefig('Test_Forelimb_Average.pdf') # You can save the figure here if you'd like

20

save your data: Possum_number_lighting_pattern_correctormiss

d_rflx_align.to_csv('Will_20984_Light_Var1_correct_date.csv',index=False)

sns.lineplot(x="x_vals", y="RFLy_disp_interp",data=d_rflx_align)

plt.tick_params(axis = 'both', which = 'major', labelsize = 20)

40

40

Frame

Frame

60

60

80

80

0

2

100

100

import pandas as pd import seaborn as sns

import matplotlib import numpy as np

import statsmodels

ladder_position = 91 height_of_video = 312

########

import statsmodels.formula.api as smf

#import warnings #check your version of scipy/numpy/matplolib if you receive warnings (wont affect data)

dlc_output_data['Snouty_disp'] = (height_of_video - dlc_output_data.Snouty - ladder_position)/scale dlc_output_data['LFLy_disp'] = (height_of_video - dlc_output_data.LFLy - ladder_position)/scale dlc_output_data['RFLy_disp'] = (height_of_video - dlc_output_data.RFLy - ladder_position)/scale

read in pre-processed data here, the output csv of running the pre-process code

import matplotlib.pyplot as plt

from scipy import interpolate

#warnings.filterwarnings("ignore")

#print (dlc_output_data.columns)

dlc_output_data['possum'] = 20984 dlc_output_data['condition'] = 'EB' dlc_output_data['biosex'] = 'male' dlc_output_data['lighting'] = 'light'

dlc_output_data['pattern'] = 1 dlc_output_data['Whiskers'] = 'yes'

get position of ladder from photoshop

scale = 11 # 11 pixels = 1 cm for this video

dlc_output_data['Strike_Type'] = 'Correct'

dlc_output_data = pd.read_csv('20984_var_test.csv')

#Double-check the column names to make sure they are correct

change everything to displacement from rung and add time in