by Sergei Savin

Spring 2020

Content

- Parameter estimation
 - Problem statement
 - Parameter uncertainty sources
 - Problem statement more precise
 - System Linear in Parameters
 - Example
- Least Squares in parameter estimation
 - Problem statement
 - Solution
 - Multiple measurements

Problem statement

Assume we have a system, whose model is defined in terms of parameters θ :

$$\dot{x} = f(x, u, \theta)$$

Task: knowing relations $f(x, u) = f(x, u, \theta)$, find a stabilizing control law.

In case of a linear system, the dynamics is given in the form:

$$\dot{\mathbf{x}} = \mathsf{A}(\theta)\mathbf{x} + \mathsf{B}(\theta)\mathbf{u}$$

and the task is: knowing relations $A = A(\theta)$ and $B = B(\theta)$, find a stabilizing control law.

Parameter uncertainty sources

There are a number of reasons parameters of the model can be unknown:

- Parameters that can't be measured.
- Parameters change with time.
- Unmodeled dynamics.
- Unknown forces.
- Dynamic changes in the system (picking up a load, etc).

Problem statement - Example 1

Unfortunately, in order to treat the problem we need to assume that we can, directly or indirectly, measure higher order derivatives.

Example 1

Let us consider spring-damper system: $m\ddot{q} + \mu\dot{q} + kq = u$. Introducing notation y = u we arrive at:

$$y = m\ddot{q} + \mu \dot{q} + kq$$

Problem statement - Example 2

Example 2

Consider a general mechanical system:

$$H\ddot{q} + c(\dot{q}, q) = u$$

This system is *linear* with respect to parameters such as m_i , $l_i l_j$, l_i^2 , $m_i l_i^2$, $m_i g$, etc., where l_i are lengths, m_i are masses, g is the gravitational acceleration. Same as before, we make y = u. Therefore we can rewrite it as follows:

$$y = Y(\ddot{q}, \dot{q}, q)\theta$$

where matrix Y can be a nonlinear function of the coordinates q and their derivatives. It is called a *regressor*.

System Linear in Parameters

From here on we assume that we measure y and we know that y is a function of state and it's derivatives, and parameters θ . Moreover, we assume that y is *linear with respect to parameters* θ :

$$y = M(x, \dot{x})\theta$$

where M will be referred to as regressor matrix.

We introduce definitions:

- $\tilde{\theta}$ estimated value of parameters θ ;
- $\varepsilon_{\theta} = \theta \tilde{\theta}$ parameter estimation error;
- $e_{\theta} = y M\tilde{\theta}$ parameter estimation output error.

Example

Going back to the spring-damper system $y = m\ddot{q} + \mu\dot{q} + kq$, we can denote:

- $M = [\ddot{q} \ \dot{q} \ q]$ regressor matrix;
- $\theta = [m \ \mu \ k]^{\top}$ parameters;

Thus we get:

$$y = [\ddot{q} \ \dot{q} \ q][m \ \mu \ k]^{\top} = M\theta$$

Another example is a pendulum: $y = ml^2\ddot{\varphi} + mglsin(\varphi)$. We can denote:

- $M = [\ddot{\varphi} \sin(\varphi)]$ regressor matrix;
- $\theta = [ml^2 \ mgl]^{\top}$ parameters;

Thus we get:

$$y = [\ddot{\varphi} \sin(\varphi)][ml^2 \ mgl]^{\top} = \mathsf{M}\theta$$

Least Squares in parameter estimation

Problem statement

We want to minimize parameter estimation error ε_{θ} . However, we do not measure it directly. Let us instead minimize directly measured parameter estimation output error e_{θ} .

To this end we introduce a cost function J:

$$J = rac{1}{2} \mathrm{e}_{ heta}^{ op} \mathrm{e}_{ heta}$$

Expanding the definition, we get:

$$J = \frac{1}{2} (\mathbf{y} - \mathbf{M} \tilde{\theta})^{\top} (\mathbf{y} - \mathbf{M} \tilde{\theta}) = \frac{1}{2} (\mathbf{y}^{\top} \mathbf{y} - 2 \tilde{\theta}^{\top} \mathbf{M}^{\top} \mathbf{y} + \tilde{\theta}^{\top} \mathbf{M}^{\top} \mathbf{M} \tilde{\theta})$$

Derivative of J with respect to parameters estimate is:

$$\frac{\partial J}{\partial \tilde{\theta}} = -\mathsf{M}^{\top}\mathsf{y} + \mathsf{M}^{\top}\mathsf{M}\tilde{\theta}$$

Least Squares in parameter estimation

Solution

We know that when the optimal estimation is found, the derivative $\frac{\partial J}{\partial \tilde{\theta}}$ of the cost function will be equal to zero. Therefore:

$$\frac{\partial J}{\partial \tilde{\theta}} = -\mathsf{M}^{\top} \mathsf{y} + \mathsf{M}^{\top} \mathsf{M} \tilde{\theta} = 0$$
$$\tilde{\theta} = (\mathsf{M}^{\top} \mathsf{M})^{-1} \mathsf{M}^{\top} \mathsf{v}$$

This presents the *least squares solution* for the estimation problem.

Least Squares in parameter estimation

Multiple measurements

If the parameters θ are constant, we can use multiple measurements to find them. Let us denote the value of M matrix for i-th measurement as M_i and the corresponding value of output vector y as y_i .

Then we can introduce compound output and estimation matrices for nmeasurements:

$$\bar{M} = \begin{bmatrix} M_1 \\ \dots \\ M_n \end{bmatrix}$$

$$\bar{v} = \begin{bmatrix} y_1 \\ y_1 \end{bmatrix}$$

$$\bar{y} = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$$

Then we can use least squares to determine optimal parameter estimate same as before:

$$ilde{ heta} = (ar{\mathsf{M}}^{ op}ar{\mathsf{M}})^{-1}ar{\mathsf{M}}^{ op}ar{\mathsf{y}}$$

Lecture slides are available via Moodle.

You can help improve these slides at:

 $\verb|https://github.com/SergeiSa/Linear-Control-Slides-Spring-2020| \\$

Check Moodle for additional links, videos, textbook suggestions.