3. Theoretical Part

3.1. Big-O notation

1. $10n \log n + 500n + n^2 + 123 = O(n^2)$

Proof. By definition of big-O notation, it is sufficient to show that there exist constants c>0 and $n_0>0$ such that for all $n\geq n_0$ we have $n\log n+n+n^2\leq c\cdot n^2$ (constants can be omitted, because they do not affect the growth of the function).

Thus, let $n_0 = 0$ and c = 2. Then, for $n \ge n_0$ we have

$$n \log n + n + n^2 \le 2n^2$$

2.
$$n^{\frac{9}{2}} + 7n^4 \log n + n^2 = O(n^{\frac{9}{2}})$$

Proof. By definition of big-O notation, it is sufficient to show that there exist constants c>0 and $n_0>0$ such that for all $n\geq n_0$ we have $n^{\frac{9}{2}}+n^4\log n+n^2\leq c\cdot n^{\frac{9}{2}}$ (constants can be omitted, because they do not affect the growth of the function).

Thus, let $n_0 = 1$ and c = 2. Then, for $n \ge n_0$ we have

$$n^{\frac{9}{2}} + n^4 \log n + n^2 \le 2n^{\frac{9}{2}}$$

3.
$$6^{n+1} + 6(n+1)! + 24n^{42} = O((n+1)!)$$

Proof. By definition of big-O notation, it is sufficient to show that there exist constants c>0 and $n_0>0$ such that for all $n\geq n_0$ we have

 $6^{n+1} + (n+1)! + n^{42} \le c \cdot (n+1)!$ (constants can be omitted, because they do not affect the growth of the function).

Thus, let c=10. Then, since the growth of the factorial exceeds the growth of any degree we have

$$6^{n+1} + (n+1)! + n^{42} \le 10 \cdot (n+1)!$$

3.2. Dynamic binary search

1. Search

Instructions	Cost	Times
for array in arrays {	c ₁	а
int I = 0, r = array.length;	c ₂	a * 2
while (I < r) {	c ₃	a * log(n)
int mid = (I + r) / 2;	<i>c</i> ₄	a * log(n)
if (array[mid] < value) { I = mid + 1; }	c ₅	a * 2 * log(n)
else if (array[mid] > value) { r = mid; }	c ₆	a * 2 * log(n)
else { return true; }	c ₇	a * log(n)
}	0	a * 2
}	0	1
return false;	c ₈	1

$$T(n) = 5a + 7a * log(n) + 2 = O(a * log(n))$$

Asymptotic complexity analysis:
 $O(log(n) * log(n + 1)) = O(log^2(n))$

2. Insert

Instructions	Cost	Times
function insert(value) {		
values = new array of size 1;	c_{1}	1
values[0] = value;	c_2	1
insertMany(values);	<i>c</i> ₃	$O(k^k)$

}		
function insertMany(values) {		
if (arrays is empty) { arrays.add(values); }	c_4	2
else {		
head = arrays[0];	<i>c</i> ₅	1
if (arrays.head.size > values.size) {	c ₆	1
arrays.add(values)	c ₇	1
} else {		
merged = new array of size (values.size + head.size);	c ₈	1
i = 0; j = 0;	c ₉	2
for (k from 0 to merged.size - 1) {	c ₁₀	0(k)
if (j >= head.size) { merged[k] = values[i++];	c ₁₁	2 * O(k)
} else if (i >= values.size) { merged[k] = head[j++];	c ₁₂	2 * O(k)
} else if (values[i] <= head[j]) { merged[k] = values[i++];	c ₁₃	2 * O(k)
} else { merged[k] = head[j++]; }	c ₁₄	0(k)
}		
arrays.remove(0);	c ₁₅	1
insertMany(merged);	c ₁₆	1
}		
}		
}		

Running time: $O(k^{k+1})$ Asymptotic complexity: $O(k^k)$

3.3. Recurrences and Master Theorem

$$T(n) = \sqrt{k} \cdot T(\frac{n}{k^2}) + c \cdot \sqrt[3]{n}$$

$$T(1) = 0$$

$$a=\sqrt{k}$$

$$b = k^2$$

$$f(n) = c \cdot \sqrt[3]{n}$$

$$\log_{k^2} \sqrt{k} = \frac{1}{4} = c \ (critical)$$

$$c_p = \frac{1}{3}$$

$$\frac{1}{3} > \frac{1}{4} \Rightarrow$$
 Third case

Regularity condition:

$$\sqrt{k} \cdot c \sqrt[3]{\frac{n}{k^2}} \le l \cdot c \cdot \sqrt[3]{n}$$

$$\sqrt{k} \cdot \sqrt[3]{\frac{1}{k^2}} \le l$$

$$\sqrt[6]{\frac{1}{k}} \leq l$$

If $k \ge 1$, then l < 1, so the regularity condition is not violated.

- 1. $T(n) = \theta(\sqrt[3]{n})$
- 2. 3^{rd} case. Because if $k \ge 1$, the regularity condition is not violated and $c > \log_b a$.