TMUA Practice - Logarithms and Exponentials

- Given that $5^a = 32$ and $2^b = 125$, find the value of ab1.
 - A $\frac{log 5}{log 2}$ B $\frac{5}{2}$ C $\frac{15}{2}$ D 10 E 15

2. Find the product of the real roots of the equation

$$(log_{10}x^2)^2 + log_{10}x = 3$$

- A $-\frac{3}{4}$ B 10^{-1} C $10^{-\frac{1}{4}}$ D $\frac{3}{4}$ E $10^{\frac{1}{3}}$

- 3. Given $log_a y = \frac{1}{3}$ and $log_8 a = x + 1$ Express y in terms of x

- A $y = x^{1/3}$ B $y = x^3 + 2$ C $y = 2^{x+1}$ D $y = 8^{x+1}$ E $y = 2^{x+\frac{1}{3}}$

A
$$\frac{log7}{log3}$$
 B $\frac{1}{2}$ C 2 D $\frac{7}{3}$ E 3

$$B = \frac{1}{2}$$

$$D = \frac{7}{3}$$

5. Given that x and y satisfy the following simultaneous equations

$$log_{v}x = 5$$

$$log_{y}x = 5 \qquad \qquad log_{2}x = 2 + log_{2}y$$

what is the value of x + y

A
$$\sqrt{2}$$

$$C = 4\sqrt{2}$$

D
$$5\sqrt{2}$$

A
$$\sqrt{2}$$
 B 2 C $4\sqrt{2}$ D $5\sqrt{2}$ E $2 + \sqrt{2}$

Given that x and y satisfy the following simultaneous equations 6.

$$log_2(y-1) = 1 + log_2x$$
 $2log_3y = 2 + log_3x$

$$2log_3y = 2 + log_3x$$

the sum of the smallest solutions for x and y is

$$A = \frac{1}{4}$$

A
$$\frac{1}{4}$$
 B $\frac{5}{4}$ C $\frac{3}{2}$ D $\frac{7}{4}$ E 4

$$C \frac{3}{2}$$

$$D = \frac{7}{4}$$

7. Find the sum of the real solutions of the equation

$$log_2 x = \frac{2}{log_2 x} + 1$$

- A $\frac{9}{2}$ B 4 C $\frac{7}{2}$ D 2 E $\frac{3}{2}$

8.

Given that 6^{4x-3} can be written as 216^a what is a in terms of x

- A 12x 9 B $\frac{4x 3}{3}$ C 4x 1 D $\sqrt[3]{4x 3}$

9. $(log_{\frac{1}{2}}2)(log_{\frac{1}{3}}3)(log_{\frac{1}{4}}4)....(log_{\frac{1}{1000}}1000)$ is equal to:

- A 2

- B 1 C 0 D ± 1 E -1

10. The following three numbers are consecutive terms in an arithmetic progression

$$log_{10}2$$

$$log_{10}(2^{x}-1)$$

$$log_{10}(2^x-1)$$
 $log_{10}(2^x+3)$

what is the value of x

- A 2⁵
- B 5

- C log_25 D log_52 E $log_{10}\frac{5}{2}$

11. The positive real numbers a and b satisfy the following simultaneous equations

$$log_24a - log_2b = 4$$

$$log_2 4a - log_2 b = 4$$
 $log_2 a + log_2 2b = 3$

what is the value of 2a + b

- A 2
- B 4
- C 5 D 9
- E 12

12. The number of positive solutions x to the equation

$$log_2 x = log_2(x+a) + b$$

where a, b are non-zero real numbers, is

- zero if ab < 1, or one if ab > 1Α
- В one if ab < 1, or two if ab > 1
- one if ab < 0, or zero if ab > 0C
- zero if ab < 0, or one if ab > 0D
- one if ab < 1, or zero if ab > 1E

13. Let
$$a, b, c > 0$$
. The equations: $log_a b = c$ $log_b a = c + \frac{3}{2}$ $log_c a = b$

$$log_a b = c \qquad log_b a$$

$$log_c a = b$$

- A specify a, b and c uniquely
- В specify c uniquely but have infinitely many solutions for a and b
- \mathbf{C} specify a and b uniquely but have infinitely many solutions for c
- D have no solutions for a, b and c
- E have infinitely many solutions for a, b and c

14. The equation
$$log_b((b^x)^x) + log_a(\frac{c^x}{b^x}) + log_a(\frac{1}{b})log_ac = 0$$
 has a repeated root when:

$$A \quad b^2 = 4ac$$

$$B \quad b = \frac{1}{a}$$

$$C \quad c = \frac{1}{b}$$

A
$$b^2 = 4ac$$
 B $b = \frac{1}{a}$ C $c = \frac{1}{b}$ D $c = \frac{b}{a}$

15. If
$$\frac{loga}{b-c} = \frac{logb}{c-a} = \frac{logc}{a-b}$$

then
$$(a^{b+c})(b^{c+a})(c^{a+b}) =$$

$$A - 1$$

$$C$$
 abo

$$D = 0$$

B 1 C
$$abc$$
 D 0 E $a+b+c$