101-210

問題文

以下のうち、一般的に乳糖を賦形剤として用いるのはどれか。2つ選べ。

- 1. アミノフィリン水和物末
- 2. イソニアジド末
- 3. ヨウ化カリウム末
- 4. β-ガラクトシダーゼ散
- 5. ロートエキス散

解答

問210:2,5問211:3,5

解説

問210

選択肢 1 ですが

フラノースという語尾は、O を含む「五員環」を示します。(フラン から連想できるのではないでしょうか。)A の構造中のそれぞれの環は、O を含む「六員環」です。よって、選択肢 1 は誤りです。

選択肢2は、正しい選択肢です。

乳糖とは、ラクトースのことです。グルコースとガラクトースが結合した二糖類の一種です。二糖類は、スクロースを除き還元性を有します。

選択肢 3 ですが

乳糖(ラクトース)を分解するのは、 β -ガラクトシダーゼの一種であるラクターゼです。従って、選択肢 3 は誤りです。

補足)この選択肢については「 α ーグルコシダーゼ阻害薬」が「ラクターゼ」も阻害する という知識から、 ラクターゼも要はグルコシダーゼの一種 \rightarrow 「グルコシダーゼにより分解」は \bigcirc では・・・?と考えた人もいる のではないでしょうか。

 α -グルコシダーゼはいわゆるマルターゼです。そして「 α -グルコシダーゼ阻害薬」は、 α -グルコシダーゼ、つまりマルトースだけでなく他の酵素とも結合して阻害します。阻害されるマルトース以外の酵素にもそれぞれ名前がありたとえばラクターゼ(β -ガラクトシダーゼの一種)も阻害する、というわけです。補足以上

選択肢 4 ですが

水に溶かすと、アノマー炭素と呼ばれる O - C - OH (構造式の右上部分)部分が、鎖状と環状構造の平衡をとり旋光性が変わります。これを、変旋光と呼びます。旋光性を「失う」わけでは、ありません。よって、 選択肢 4 は誤りです。

選択肢 5 は、正しい選択肢です。

 α 、 β という接頭語は、アノマー炭素についている OH に注目して考えます。OH が平面に対して上なら、 β です。

次に、 α 結合 や、 β 結合 とあった場合は、結合部分の O がアノマー炭素を含む側の糖の平面に対して上かどうかで考えます。上なら、 β 結合 です。 1 位は、アノマー炭素の所です。 4 位は、アノマー炭素のちょうど向かい側の炭素です。

構造 A は、β 結合であり、かつ結合している炭素が、ガラクトースの 1 位とグルコースの 4 位 です。そのため、 β 1 \rightarrow 4 結合と呼ばれます。

以上より、正解は 2,5 です。

問211

選択肢 1.2 ですが

これらは、乳糖を賦形剤として用いません。配合変化による、含量低下が知られています。よって、選択肢 1,2 は誤りです。

また、選択肢 4 ですが

β-ガラクトシダーゼ散は、乳糖分解酵素製剤です。乳糖不耐により生じる消化不良の改善に用いられます。 よって、乳糖を賦形剤として用いるのは不適切であると考えられます。

以上より、正解は 3,5 です。