

b) min $\sum x_i$ $s+ x ^2=1$
El Lagrangeano L(x, l)
$L(x,\lambda) = \sum xi + \lambda (x ^2 - 1)$ $\nabla x L(x,\lambda) = 1 + 2\lambda x$
$\nabla \lambda L(x,\lambda) = x ^2 - 1$
Igualamos los V a O
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
De (1): $x_i = -1$ 2λ
Introduciendo en (2) $\sum_{x} x_1^2 = \sum_{x} (-1)^2 = h = 1 \Rightarrow \lambda = + \sqrt{h}$
$\sum_{x_1^2} \sum_{x_2^2} \left(\frac{-1}{2\lambda} \right)^2 = \frac{h}{4\lambda^2} = 1 \Rightarrow \lambda = \pm \frac{h}{2\lambda}$
$\Rightarrow x^{i} = -\frac{1}{2} = \mp \frac{1}{\sqrt{n}}$ $= 2\left(\pm \frac{\sqrt{n}}{2}\right) = \pm \frac{1}{\sqrt{n}}$

C) $\left(\min_{s \neq s} \frac{ x ^2}{ s ^2} \right) = 0$ con $Q \ge 0$ $y = 0$
El Lagrangeano del problema es: $L(x,\lambda) = 1 x ^2 + \lambda (x^TQx-1)$
Sus gradientes son: $V \times L(x,\lambda) = 2 \times + 2 \lambda Q \times$
TYAL(x, X)= xTQx-1
Como $\nabla L(\bar{x}, \bar{\lambda}) = 0$ es una condición hecesaria para que \bar{x} sea áptimo, busquemo el \bar{x} que la cumpla $\forall x + \lambda Q = 0$ $\forall x = -1 \times (1)$ $\forall \nabla L(\bar{x}, \bar{\lambda}) = 0 = 0 \mid x^T Q = -1 = 0$ $(x + \lambda Q = 0)$ $(x + \lambda$
Llamemos di al i-esimo valor propio de Q. De la ec. (1) sabemos que z debera ser un v.a.p. de Q asociado a xi=-1
ser un v.a.p. de a asociado à a:=-1 Si introducimos (1) en (2) se hene:

Por b tanta, sabemos que à además de sex vap de Q debera tener norma 1 Sabemas que el problema tiene minimo parque la función les convexa. Es posible boscar cual de todos los andidatos optimizo el problema Lo anterior lleva a que el x que optimiza el problema sea el vector propio asociado al valor propio más grande (a) de Q y que además su norma sea 1

Ejercicia 2
min $\sum dixi$ con $di29$ $y \sum di=1$
$\begin{cases} 3.1. & \text{if } x = 1 \\ x > 0 & \text{if } x = 1, \dots, n \end{cases}$
Tomemos que yi= Lhxi => xi=e'
Apliquemos Ln a ambos lados de la restricción $= Ln(T \times i^{di}) = Ln(1)$
$\Rightarrow \sum_{i} L_{i} \times i^{\alpha i} = Q$
-D \ \(\times \ \tin
Aplicar Ln a ambas lados y que la restricción sea la mismo es valido yat que Ln es monotono creciente.
Apliquemos el combio de variable xi=e' sobre la funcion a minimizar:
Saixi = Saieti
Notar que si xi70 siempre es valido tomar yi=lnxi

Un problema equivalente en termina de yi min I diet = f(4) St Zai/i=9=h(x) hallamos los yi aptimos, luego tenemos los aptimos como xi = exi El Lagrangeano de (Q) es: L(y, 1) = I xiel + / Ediyi Su gradiente respecto a y es: $|a_1(e^{y_1}+\lambda)|$ $\nabla_y L(y,\lambda) = |a_2(e^{y_2}+\lambda)|, \text{ Es decir}(\nabla_y \lambda) = a_j(e^{y_3}+\lambda)$ an (eyn+))/ Notar que Tyl = 04 e = -) + D yi = Lh(-) El gradiente respecto a l esi VAL(y, X) = h(y) = Idiyi = Ediln(-X) = Ln(-1) \(\frac{1}{2} \) = Ln(-1) Notar que VIL = 0 to / =-1

$$\frac{1}{(m+\lambda)^{2}} = 1 \Leftrightarrow m+\lambda = \pm ||\hat{a}|| \\
|(m+\lambda)^{2}| \Rightarrow \lambda = -m \pm ||\hat{a}|| \\
| \forall velvo a introducir en (1) \\
\Rightarrow x = \hat{a} = \pm \hat{a} \\
|(m+\lambda)^{2}| = \pm \hat{a} \\
|(m+\lambda$$

Ejercióo 4					
a) $ \min_{\substack{x_1y_1 \ge 2 \\ x = z}} \frac{1}{2} Ax - x ^2 + \frac{1}{2} Bx - \beta ^2 + \frac{1}{2} Cz - x ^2$ $ x_1y_2 \ge 2$ $ x_2 \ge 2$					
El lagrangeano del problema es:					
[(x, y, \(\frac{1}{2}\)) = \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\fra					
Las condiciones que se derivan de 71 =0 son:					
$ \begin{pmatrix} A^{T}(A \times -d) + \lambda_{1} + \lambda_{2} = 0 \\ B^{T}(B y - B) - \lambda_{1} = 0 \\ C^{T}(Cz - Y) - \lambda_{2} = 0 $ $ x = y $					
X=2					
→ Se debera cumplir:					
$A^{T}(A\times - \lambda) + B^{T}(B\times - \beta) + C^{T}(C\times - \delta) = 0$					
$\Rightarrow \boxed{\overline{x} = \overline{y} = \overline{z} = (A^T A + B^T B + C^T C)^T (A^T \alpha + B^T \beta + C^T C)}$					

d) El Lagrangeano aumentado (Lc) es: Lc(w, 1)= 1 11 Dw-8112+ 2 Hw+ 2 11 Hw 112 Para colcular d minimo, calculamos The y lo iqualamos a O => VLC= DT(DW-8)+HTX+ZHTHW TLC=O (DTD+ZHTH) W= DTS-HTX DTD+ZHTH)-1(DT8-HTA)

Implementación

Al resolver el problema de forma exacta se obtiene la siguiente solución:

$$\mathbf{x}^* = \begin{bmatrix} -0.45209767 \\ -0.11645923 \\ -0.00416928 \\ -0.06615063 \\ 0.15325308 \\ 0.12561526 \\ -0.0518167 \\ -0.00062787 \\ -0.04588603 \\ 0.00636417 \end{bmatrix}$$

La siguiente gráfica corresponde al error de cada uno de los métodos respecto al óptimo teórico(x^*), es decir se gráfica $\frac{||x^k-x^*||_2}{||x^*||_2}$ en escala vertical logarítmica.

Figure 1: Evolución del error respecto al valor óptimo (x^*) en cada uno de los 5 métodos propuestos

A primera vista esta gráfica puede parecer incorrecta ya que las curvas no terminan, pero esto se debe a que algoritmo finaliza si $\frac{\left\|w^k-w^{k-1}\right\|}{\left\|w^k\right\|} < 1e-8$ o si se alcanzan las 100 iteraciones. En la tabla 1 se muestra en una tabla la cantidad de iteraciones requeridas para cada uno de los métodos implementados.

Método	Numero de Iteraciones
Penalización cuadrática $\lambda = \lambda^*, \ \tau = \tau_0 2^k$	1
Penalización cuadrática $\lambda=0, \tau=\tau_0 2^k$	40
Multiplicadores $\lambda^0 = 0, \ \tau = 10\tau_0, \ \lambda^k = \lambda^{k-1} + \tau Hw$	100
Multiplicadores $\lambda^0 = 0, \ \tau = 1000\tau_0, \ \lambda^k = \lambda^{k-1} + \tau Hw$	100
Combinado $\lambda^0 = 0, \ \lambda^k = \lambda^{k-1} + \tau^k H w, \ \tau = \tau_0 2^k$	22

Table 1: Iteraciones requeridas por cada uno de los métodos.

A partir de la gráfica y la tabla se aprecia que la elección el λ en el método de penalización cuadrática es clave para mejorar la tasa de convergencia, cuando se usa el lambda óptimo el método converge inmediatamente, mientras que si esta elección no es exacta ($\lambda=0$) se tarda 40 iteraciones.

En cuanto los métodos de multiplicadores, ocurrió que el algoritmo no converge en menos de 100 iteraciones para los τ propuestos en la letra.

Dado que mientras se implementaba se observo que a mayor valor de τ se tenia mayor velocidad, surgió la curiosidad de si el aumentar aun mas el τ , por ejemplo a $100.000\tau_0$ se obtendrá una convergencia mayor. Al probar lo anterior se observo (ver Figura 1) que para este nuevo valor de τ el algoritmo converge rápidamente (11 iteraciones) al punto óptimo.

Se concluye que valor de τ es relevante para el método anterior.

En ultimo lugar se tiene el método combinado, el cual utiliza las virtudes de ambos métodos. Por un lado se aprovecha de la buena actualización de λ que realiza el método de los multiplicadores, y por otro lado utiliza un valor de τ con aumento exponencial que es la clave del método de penalización cuadrática. De esta forma se obtiene una velocidad de convergencia superior a tener uno de los dos parámetros fijos.

A continuación, se presentan los puntos obtenidos por cada método (el subíndice se corresponde con el orden en el que han sido presentado previamente).

$$x_1 = \begin{bmatrix} -0.45209767 \\ -0.11645923 \\ -0.00416928 \\ -0.06615063 \\ 0.15325308 \\ 0.12561526 \\ -0.0518167 \\ -0.00062787 \\ -0.04588603 \\ 0.00636417 \end{bmatrix}, x_2 = \begin{bmatrix} -0.45209767 \\ -0.11645923 \\ -0.00416928 \\ -0.00615063 \\ 0.15325307 \\ 0.12561526 \\ -0.0518167 \\ -0.00062787 \\ -0.004588603 \\ 0.00636417 \end{bmatrix}, x_3 = \begin{bmatrix} 0.49428732 \\ -0.359564 \\ -0.86401806 \\ -0.27124434 \\ -0.03539417 \\ 0.17024413 \\ -0.51730138 \\ 0.54697099 \\ 0.06391845 \\ -0.08557211 \end{bmatrix}$$

$$x_4 = \begin{bmatrix} -0.45180941 \\ -0.11718768 \\ -0.00445706 \\ -0.06611046 \\ 0.15273706 \\ 0.1260817 \\ -0.05162811 \\ -0.0011988 \\ -0.04811751 \\ 0.00630212 \end{bmatrix}, x_5 = \begin{bmatrix} -0.45209767 \\ -0.11645923 \\ -0.00416928 \\ -0.06615063 \\ 0.15325308 \\ 0.12561526 \\ -0.0518167 \\ -0.00062787 \\ -0.04588603 \\ 0.00636417 \end{bmatrix}$$

Lo importante a destacar de los puntos obtenidos es que en todos los casos en el que el algoritmo llega a su condición de parada (en otras palabras, converge) debido a que $\epsilon < 1x10^{-8}$ se obtiene el punto óptimo x^* .

Esto era de esperar ya que estamos en las hipótesis de la **Proposición 1** dada en el teórico, ya que que en todos los casos se toman $\{\lambda^k\}$ acotados y $\{c^k\}$ crecientes tendiendo a infinito. Por lo tanto, al cumplirse las hipótesis, teóricamente se tiene que todo punto limite de la sucesión x^k es un mínimo del problema original. Se observa que lo anterior se verifica de forma practica.

Código

Los fragmentos de código relevantes para el método combinado se encuentra a continuación. En caso de requerir más detalle, junto con este PDF se adjunta el archivo code.py que contiene la totalidad de código fuente.

```
import numpy as np
def calc_x_from_w(w):
    xyz = np.reshape(w, (3, -1))
    x = np.mean(xyz, axis=0)
    return x
def calc_error(wk, wk_1):
    error = np. lin alg. norm(wk - wk_1) / np. lin alg. norm(wk)
    return error
def print_info(k, xk):
    print('El_numero_de_iteraciones_es:_', k,'\n')
    print('El_punto_al_que_converge_es:_\n', xk[k])
    print ( '-'*50, '\n\n')
def w_lagrangeando_aumentado(D, H, S, tauk, lambda_ref):
    return np.linalg.inv(D.T@D+tauk*H.T@H) @ (D.T@S - H.T@lambda_ref)
def metodo_combinado(D, H, S, tau, epsilon=1e-8, MAX_ITER=100,
                             verbose=True):
    xk = list()
    ek = list()
    lambda_k = np. zeros(H. shape[0])
    for k in range(MAX_ITER):
        tauk = tau(k)
        lambda_ref = lambda_k
        w = w_lagrangeando_aumentado(D, H, S, tauk, lambda_ref)
        xk.append(calc_x_from_w(w_-))
        if k>0:
            ek.append(error := calc_error(xk[k], xk[k-1]))
        if k>0 and error<epsilon:
            break
        lambda_k += tauk*H@w_-
    if verbose:
        print_info(k, xk)
    xk = np.array(xk)
    return xk, ek
```

 $xk_h\;,\;\;ek_h\;=\;metodo_combinado\left(D,\;H,\;\;S\;,\;\;\textbf{lambda}\;\;k\!:\!2**k*tau0\right)$