Import Libraries

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics
```

Load Data and Prepare

```
data=pd.read_csv("gold.csv")
```

data.head()

₽		Date	SPX	GLD	US0	SLV	EUR/USD	1	th
	0	1/2/2008	1447.160034	84.860001	78.470001	15.180	1.471692		
	1	1/3/2008	1447.160034	85.570000	78.370003	15.285	1.474491		
	2	1/4/2008	1411.630005	85.129997	77.309998	15.167	1.475492		
	3	1/7/2008	1416.180054	84.769997	75.500000	15.053	1.468299		
	4	1/8/2008	1390.189941	86.779999	76.059998	15.590	1.557099		

Data Summary

data.info()

Data Analysis

data chana

data.describe()

	SPX	GLD	USO	SLV	EUR/USD	7
count	2290.000000	2290.000000	2290.000000	2290.000000	2290.000000	0
mean	1654.315776	122.732875	31.842221	20.084997	1.283653	
std	519.111540	23.283346	19.523517	7.092566	0.131547	
min	676.530029	70.000000	7.960000	8.850000	1.039047	
25%	1239.874969	109.725000	14.380000	15.570000	1.171313	
50%	1551.434998	120.580002	33.869999	17.268500	1.303297	
75%	2073.010070	132.840004	37.827501	22.882500	1.369971	
max	2872.870117	184.589996	117.480003	47.259998	1.598798	

```
uata.snape
```

```
(2290, 6)
```

data.isnull().sum()

```
Date 0
SPX 0
GLD 0
USO 0
SLV 0
EUR/USD 0
dtype: int64
```

correlations=data.corr()

```
plt.figure(figsize=(6,6))
sns.heatmap(correlations,cbar=True,square=True,fmt='.1f',annot=True,annot_kws={'size':8},cmap='Blues')
```


sns.displot(data['GLD'],color='green')

```
Train Test Split Data
```

```
250 ┤
X=data.drop(['Date','GLD'],axis=1)
Y=data['GLD']
       200 H
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=2)
Model Training
                           regressor=RandomForestRegressor()
regressor.fit(X_train,Y_train)
    ▼ RandomForestRegressor
    RandomForestRegressor()
                #tested result
result=regressor.predict(X_test)
result=pd.DataFrame(result)
result.head()
                      th
    0 168.719499
    1 82.318900
    2 115.824600
    3 127.735701
    4 120.696401
score=metrics.r2_score(Y_test,result)
print("R square Error: ",score)
   R square Error: 0.9888553066534357
Application Phase
SPX=input("Enter SPX: ").strip()
EUR=input("Enter EUR/USD: ").strip()
USO=input("Enter USO: ").strip()
SLV=input("Enter SLV: ").strip()
   Enter SPX: 1390.189941
   Enter EUR/USD: 1.557099
   Enter USO: 76.05998
   Enter SLV: 15.590
data = {'SPX': [SPX],'USO': [USO], 'SLV': [SLV], 'EUR/USD': [EUR], }
df = pd.DataFrame(data)
print("User Input DataFrame:")
print(df)
   User Input DataFrame:
                    US0
                           SLV EUR/USD
   0 1390.189941 76.05998 15.590 1.557099
nradict-regressor predict(df)
```

```
print("The Price of GLD is: ",predict)
```

The Price of GLD is: [86.69339943]

Colab paid products - Cancel contracts here

✓ 0s completed at 6:27 AM

×