Literature reviews

Sr. No	Title of Danor	Name of Authors	Published	Remarks
31. NO	Title of Paper	Name of Authors	Year	Remarks
1	Stress detection using natural language processing and machine learning over social interactions	• Tanya Nijhawan, • Girija Attigeri & • T. Ananthakrishna	2022	Agarwal et al. [11] proposed a 3-way model for categorizing sentiments in three classes. The classes were positive, negative, and neutral. Models such as the unigram model, a feature constructed upon the model, and a tree kernel-based were used for testing. In the case of the tree kernel- centered model, tweets were chosen to be represented in the form of a tree. While implementing a feature-centered model over 100 features were taken into consideration. However, in the case of the unigram model, there were about 10,000 features. They concluded that features that end up combining previous polarization of words with their parts-of- speech (pos) tags are the most substantial. In terms of the result, the tree kernel-based model ended up performing better than the other two models

Γ-		T =	T	
2	STRESS	E. PADMA1 , TALAPANENI	2002	Through video-recorded
	DETECTION	PRAVEEN2 and SHAIK		face clues, this research
	USING	KARIMULLA		creates a framework for
	MACHINE			detecting and analyzing
	LEARNING AND			stress/anxiety emotional
	IMAGE			states. Through a range
	PROCESSING			of external and internal
				stresses, a complete
				experimental
				methodology was
				designed to produce
				systematic diversity in
				emotional states
				(neutral, Vol 13, Issue
				03, MARCH/2022 ISSN
				NO:0377-9254
				www.jespublication.com
				PageNo:419 calm, and
				stressed/anxious). In
				order to measure
				emotion expression
				more objectively, the
				study focused mostly on
				non-voluntary and semi-
				voluntary facial signals.
				Eye-related events,
				mouth activity, head
				motion characteristics,
				and heart rate assessed
				via camera-based
				photo-plethysmography
				were also investigated.
				In each experimental
				phase, a feature
				selection technique was
				used to pick the most
				robust characteristics,
				followed by
				classification algorithms
				that discriminated
				between stress/anxiety
				and neutral states with
				reference to a relaxed
				condition. In addition, a
				ranking transformation
				based on self-reports
				was presented to study
	1	<u>I</u>	I	1. a.s p. sseriesa to stady

				the relationship between face attributes and a participant's reported stress/anxiety level. Specific facial signals generated from eye, mouth, head, and camera-based cardiac activity acquire excellent accuracy and are acceptable as discriminative markers of stress and anxiety, according to the findings
3	Stress Detection In IT Professional by Image Processing and Machine Learning	T. predeep kumar	2022	Through video-recorded face clues, this research creates a framework for detecting and analyzing stress/anxiety emotional states. Through a range of external and internal stresses, a complete experimental methodology was designed to produce systematic diversity in emotional states (neutral, Vol 13, Issue 03, MARCH/2022 ISSN NO:0377-9254 www.jespublication.com PageNo:419 calm, and stressed/anxious). In

	order to measure
	amotion avaragion
	emotion expression
	more objectively, the
	study focused mostly on
	non-voluntary and semi-
	voluntary facial signals.
	Eye-related events,
	mouth activity, head
	motion characteristics,
	and heart rate assessed
	via camera-based
	photo-plethysmography
	were also investigated.
	In each experimental
	phase, a feature
	selection technique was
	used to pick the most
	robust characteristics,
	followed by
	classification algorithms
	that discriminated
	between stress/anxiety
	and neutral states with
	reference to a relaxed
	condition. In addition, a
	ranking transformation
	based on self-reports
	was presented to study
	the relationship
	between face attributes
	and a participant's
	reported stress/anxiety
	level. Specific facial
	signals generated from
	eye, mouth, head, and
	camera-based cardiac
	activity acquire excellent
	accuracy and are
	acceptable as
	discriminative markers
	of stress and anxiety,
Detection of C. II D. II	according to the findings
Detection of Swetha Reddy Anthony Vancing III	The primary
Stress in Anthay; Vangimalla Nagariyaa; Tathiraddy	purpose of this work
Humans Nagarjuna; Tathireddy Venkata	is to employ vivid
Masks using Mahesh; Tamba	Image Processing
Manesii, <u>lanba</u>	and Machine

Machine	<u>Aravind</u>	Learning
Learning and	Royal; Sagiraju Vivid	Techniques to
Image	<u>Varma</u>	recognise stress in
Processing		the human body.
		Our innovative
		system is an
		improved prior
		iteration systems
		includes live
		detection, periodic
		employees
		analysis, detecting
		physical and mental
		stress level and
		providing
		appropriate stress
		management
		remedies via a
		survey form. Our
		strategy focuses on
		stress management
		and providing
		employees with a
		healthy and
		spontaneous work
		environment so that
		they may get the
		most out of their
		time at work.