	CSE Computer Vision Assignment 3 Name: Arka Sarkar Roll Number: 2018222 from google.colab import drive drive.mount('/gdrive') Mounted at /gdrive Sad /gdrive /MyDrive /CV Assignment 3
In [3]:	<pre>%cd /gdrive/MyDrive/CV_Assignment3 /gdrive/MyDrive/CV_Assignment3 Checking for GPU device import tensorflow as tf device_name = tf.test.gpu_device_name() if device_name = t'/device:GPU:0': raise SystemError('GPU device not found') print('Found GPU at: {}'.format(device_name)) SystemError</pre>
In [2]: In [3]:	'nvidia-smi' is not recognized as an internal or external command, operable program or batch file. Importing Dependencies import numpy as np from IPython.display import Image import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import copy import pickle import cv2 import csv from keras.preprocessing import image from keras.utils import layer_utils import numpy as np import os import skimage.io as io
In [442]: In [443]: Out[443]:	<pre>test_df = pd.read_csv("dataset/mnist_test.csv") train_df</pre>
In [444]:	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	<pre>Y_test = np.zeros((test.shape[0], 10)) X_test = [] for i in range(train.shape[0]): X_train.append(train[i,1:]) Y_train[i,train[i,0]] = 1 for i in range(test.shape[0]): X_test.append(test[i,1:]) Y_test[i,test[i,0]] = 1 X_train = np.array(X_train) X_test = np.array(X_train) X_test = np.array(X_test) print("Testing X Shape : ", X_test.shape) print("Training X Shape : ",Y_test.shape) print("Training Y Shape : ",Y_train.shape) Testing X Shape : (10000, 784) Training X Shape : (60000, 784) Testing Y Shape : (10000, 10) Training Y Shape : (60000, 10)</pre> sample MNIST image
	<pre>idx = 10 sample = X_train[idx].reshape((28,28)) print(Y_train[idx]) plt.imshow(sample, cmap = "gray") [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] <matplotlib.image.axesimage 0x234700acd88="" at=""> 0 5 10 5 10 5 10 5 10 15 20 25</matplotlib.image.axesimage></pre>
In [446]:	<pre>OTSU TTS thresholding def otsu_tts(img): img = img.reshape((28,28)) min_cost = float('inf') threshold = 0 for i in range(1,256): v0 = img[img < i] s0 = np.sum((v0 - np.mean(v0))**2) w0 = len(img[img < i]) v1 = img[img >= i] s1 = np.sum((v1 - np.mean(v1))**2) w1 = len(img[img >= i]) cost = s0 + s1 if(cost < min_cost): min_cost = cost threshold = i return threshold def select_foreground(img, s = 0): if(s == 0):</pre>
	<pre>m, n = img.shape m0 = int(0.15*m) n0 = int(0.15*n) c0 = 0 c1 = 0 for i in range(m//2 - m0, m//2 + m0):</pre>
	<pre>for i in range(m): for j in range(n): if (i < m0): c0 = c0 + 1 else: c1 = c1 + 1 elif (i > m-m0): if(img[i,j] == 0): c0 = c0 + 1 elif (i > m-m0): if(img[i,j] == 0): c0 = c0 + 1 else: c1 = c1 + 1 elif (j < n0): if(img[i,j] == 0): c0 = c0 + 1 else: c1 = c1 + 1 else: c1 = c1 + 1 elif (j > n-n0): if(img[i,j] == 0): c0 = c0 + 1 else: c1 = c1 + 1 elf (j > c1 + 1) else: c1 = c1 + 1</pre>
	Question 1 Perform the following on MNIST dataset to build three new datasets: 1. Obtain foreground segmentation masks for images in MNIST dataset using TSS-based threshold [Q1, Assignment 1]. In this way, you have rough groundtruth masks required to build a new foreground segmentation dataset. [1 Mark] Note: The pre-existing labels are of no use here. The goal of the dataset is just to extract the foreground. 2. Obtain tight groundtruth circles around the foreground segmentation masks obtained in (a). In this way, you can build a new dataset of 10 classes for performing classification with circlization (circular localization). You can use existing libraries for generating the tight circles. [1 Mark] 3. Randomly concatenate 4 images and their corresponding groundtruths obtained in (a), along with the pre-existing labels, in a 2x2 manner to develop new images and semantic segmentation groundtruths, respectively. In this way, you have a new dataset of 10 classes for performing semantic segmentation. [2 Marks]
In []:	<pre># making the training set fg_masks_train = [] for i in tqdm(range(len(X_train)), position = 0, desc = "Progress : "): thres = otsu_tts(X_train[i]) img = X_train[i].reshape((28,28)) mask = copy.deepcopy(img) mask[mask<thres] 0="" =="" mask[mask=""> thres] = 1 fg_masks_train.append(mask.flatten()) Saving the dataset in a .csv file. with open('dataset/Olfg_mask_train.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(fg_masks_train) # run only once # making the testing set fg_masks_test = [] for i in tqdm(range(len(X_test)), position = 0, desc = "Progress : "): thres = otsu_tts(X_test[i]) img = X_test[i].reshape((28,28))</thres]></pre>
In [447]:	<pre>mask = copy.deepcopy(img) mask[maskxthres] = 0 mask[mask > thres] = 1 fg_masks_test.append(mask.flatten()) Saving the dataset in a.csv file. with open('dataset/Q1fg_mask_test.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(fg_masks_test) idx = 10 sample_x = np.array(pd.read_csv('dataset/mnist_train.csv'))[idx,1:].reshape((28,28)) sample_y = np.array(pd.read_csv('dataset/Q1fg_mask_train.csv', header = None))[idx].reshape((28,28)) fig=plt.figure(figsize=(8, 8)) columns = 2 rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(sample_x, cmap = 'gray') plt.title("Original Image") fig.add_subplot(rows, columns, 2) plt.imshow(sample_y, cmap = 'gray') plt.title("Original Image") fig.add_subplot(rows, columns, 2) plt.imshow(sample_y, cmap = 'gray')</pre>
	plt.title ("Foreground Mask") fig.tight_layout() plt.show() Original Image Foreground Mask 10 10 20 25 25 25 part (b)
In []:	<pre>X_train = pd.read_csv("dataset/Q1fg_mask_train.csv", header = None) X_test = pd.read_csv("dataset/Q1fg_mask_test.csv", header = None) y_label_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,0] y_label_test = np.array(pd.read_csv("dataset/mnist_test.csv"))[:,0] X_train = np.array(X_train) X_test = np.array(X_test) Writing the MNIST images into disc #code for saving the original images #run once X_orig_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,1:] for i in tqdm(range(len(X_orig_train)), position = 0, desc = "Progress : "): img = X_orig_train[i].reshape((28,28)) cv2.imwrite('dataset/mnist_images/train/' + str(i) + '.png', img) Progress : 100% 60000/60000 [08:52<00:00, 112.63it/s] #code for saving the original images #run once X orig_test = np.array(pd.read_csv("dataset/mnist_test.csv"))[:,1:]</pre>
	<pre>for i in tqdm(range(len(X_orig_test)), position = 0, desc = "Progress : "): img = X_orig_test[i].reshape((28,28)) cv2.imwrite('dataset/mnist_images/test/' + str(i) + '.png', img) Progress : 100% </pre>
	<pre>'radius': normalsed radius coordinate for the bounding circle. # making the center radius dataset center_radius_dataset_train = [] for i in tqdm(range(60000)): img = cv2.imread('dataset/mnist_images_fg/train/' + str(i) + '.png',cv2.IMREAD_GRAYSCALE) cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] (x,y), radius = cv2.minEnclosingCircle(cnts[0]) center_x = round(int(x)/28,2) center_y = round(int(y)/28,2) radius = round(int(radius)/(28/(2)**0.5),2) center_radius_dataset_train.append([y_label_train[i],center_x, center_y, radius]) 100% ###################################</pre>
	<pre>center_radius_dataset_test = [] for i in tqdm(range(10000)): img = cv2.imread('dataset/mnist_images_fg/test/' + str(i) + '.png',cv2.IMREAD_GRAYSCALE) cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] (x,y), radius = cv2.minEnclosingCircle(cnts[0]) center_x = round(int(x)/28,2) center_y = round(int(y)/28,2) radius = round(int(radius)/(28/(2)**0.5),2) center_radius_dataset_test.append([y_label_test[i],center_x, center_y, radius]) 100% </pre>
In [126]: In [129]:	<pre>Sample Visualization idx = 10 sample x = np.array(pd.read_csv('dataset/mnist_train.csv'))[idx,1:].reshape((28,28)) sample_y = np.array(pd.read_csv('dataset/Qlb_center_rad_train.csv'))[idx] img = cv2.imread('dataset/mnist_images_fg/train/' + str(idx) + '.png') label = sample_y[0] x = int(round(sample_y[1]*28)) y = int(round(sample_y[2]*28)) center_coordinates = (x, y) color = (255, 0, 0) thickness = 1 radius = int(round(sample_y[3]*28/(2)**0.5)) sample_y = cv2.circle(img, center_coordinates, radius, color, thickness) img = cv2.imread('dataset/mnist_images_fg/train/' + str(idx) + '.png') fig=plt.figure(figsize=(8, 8)) columns = 2 rows = 1</pre>
	fig.add_subplot(rows, columns, 1) plt.imshow(img, cmap = 'gray') plt.title ("Foreground Image from Q1(a)") fig.add_subplot(rows, columns, 2) plt.imshow(sample_y) plt.title ("For Image with bounding circle") fig.tight_layout() plt.show() Foreground Image from Q1(a) Foreground Image with bounding circle 10 10 15 20 25 25 25 25 25 25 27 27 28 Part (c)
	<pre>X_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,1:] X_test = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,0] + 1 y_label_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,0] + 1 y_label_test = np.array(pd.read_csv("dataset/mnist_test.csv"))[:,0] + 1 y_train = np.array(pd.read_csv("dataset/olfg_mask_train.csv") header = None)) y_test = np.array(pd.read_csv("dataset/olfg_mask_train.csv", header = None)) y_train[y_train >= 1] = 1 y_test[y_test >= 1] = 1 Segmentation Dataset In this datasset each pixel has an label associated with it, which is to predicted by the model in Q4. Dataset Size:(n_samples, 56,56,1) number of classes = 11 Classes:</pre>
	<pre>w Creating the training set q4_dataset_x_train = [] q4_dataset_y_train = [] indexes = np.arange(60000) while(len(indexes) > 0): e1 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e1)[0][0]) e2 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e2)[0][0]) e3 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e3)[0][0]) e4 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e4)[0][0]) img1, y1 = X_train[e1].reshape((28,28)), y_train[e1].reshape((28,28))*y_label_train[e1] img2, y2 = X_train[e2].reshape((28,28)), y_train[e2].reshape((28,28))*y_label_train[e2] img3, y3 = X_train[e3].reshape((28,28)), y_train[e3].reshape((28,28))*y_label_train[e3] img4, y4 = X_train[e4].reshape((28,28)), y_train[e4].reshape((28,28))*y_label_train[e4] final_img = np.zeros((56,56)) final_seg = np.zeros((56,56)) final_img[0:28,0:28] = img2 final_img[0:28,0:28] = img2 final_img[0:28,0:28] = img2 final_img[28:,0:28] = img3</pre>
	<pre>final_img[28:,28:] = img4 final_seg[0:28,0:28] = y1 final_seg[0:28 ,28:] = y2 final_seg[28:,0:28] = y3 final_seg[28:,28:] = y4 q4_dataset_x_train.append(final_img.flatten()) q4_dataset_y_train.append(final_seg.flatten()) q4_dataset_y_train = np.array(q4_dataset_x_train) q4_dataset_y_train = np.array(q4_dataset_y_train) Saving the dataset in a.csv file. with open('dataset/question4/Qlimage_segmentation_train_x.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(q4_dataset_x_train) with open('dataset/question4/Qlimage_segmentation_train_y.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(q4_dataset_y_train) # Creating the Test Set g4_dataset_x_train = tile # Creating the Test Set g4_dataset_x_train = tile # Creating the Test Set</pre>
	<pre>qd_dataset_x_test = [] q4_dataset_y_test = [] indexes = np.arange(10000) while(len(indexes) > 0): el = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == el)[0][0]) e2 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e2)[0][0]) e3 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e3)[0][0]) e4 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e4)[0][0]) img1, y1 = X_test[e1].reshape((28,28)), y_test[e1].reshape((28,28))*y_label_test[e1] img2, y2 = X_test[e2].reshape((28,28)), y_test[e3].reshape((28,28))*y_label_test[e2] img3, y3 = X_test[e3].reshape((28,28)), y_test[e3].reshape((28,28))*y_label_test[e3] img4, y4 = X_test[e4].reshape((28,28)), y_test[e4].reshape((28,28))*y_label_test[e4] final_img = np.zeros((56,56)) final_seg = np.zeros((56,56)) final_img(0:28,0:28] = img2 final_img(0:28,0:28] = img2 final_img(0:28,0:28] = img2 final_img(0:28,0:28] = img4 final_seg(0:28,0:28] = y1 final_seg(0:28,0:28] = y2 final_seg(0:28,0:28] = y3 final_seg(0:28,0:28] = y4 final_seg(0:28,0:28] = y4 q4_dataset_x_test_append(final_img.flatten()) q4_dataset_y_test_append(final_seg.flatten()) q4_dataset_y_test = np.array(q4_dataset_y_test) </pre>
	<pre>Saving the dataset in a .csv file. with open('dataset/question4/Olimage_segmentation_test_x.csv', 'a+', newline ='') as f: write = csv.writer(f) write open('dataset/question4/Olimage_segmentation_test_y.csv', 'a+', newline ='') as f: write = csv.writer(f) write = csv.writer(f) write.writerows(q4_dataset_y_test) Sample Visualization idx = 45 sample_x = q4_dataset_x_train[idx].reshape((56,56)) sample_y = q4_dataset_y_train[idx].reshape((56,56)) print(np.unique(sample_y)) fig=plt.figure(figsize=(8, 8)) columns = 2 rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(sample_x, cmap = 'gray') plt.title("Tange") fig.add_subplot(rows, columns, 2) plt.timshow(sample_y, cmap = 'gray') plt.title("Segmentation") fig.tight_layout() plt.show()</pre>
In [114]:	The segmentation map as each pixel has an associated label with it ranging from 0 to 10. Thus the background is 0 hence black and rest other number are positive values, thus denoting different shades of gray. Like in this example the segmentation of 6 will have all labels as 7 and segmentation of 9 will have all labels as 10. Thus 9 being more brighter than 6 Question 2 Train a DL network from scratch for performing foreground extraction on the new dataset obtained in Q1 (a). Report your test performance using Jaccard similarity. [3 Marks] X_train_df = pd.read_csv("dataset/mnist_train.csv") X_test_df = pd.read_csv("dataset/mnist_test.csv")
In [115]:	<pre>x_test_df = pd.read_csv("dataset/Q1fg_mask_train.csv", header = None) y_test_df = pd.read_csv("dataset/Q1fg_mask_test.csv", header = None) X_train = np.array(X_train_df)[;,1:] X_test = np.array(X_test_df)[:,1:] Y_train = np.array(Y_train_df) y_test = np.array(Y_test_df) X_train = X_train.reshape((X_train.shape[0], 28,28,1)) X_test = x_test.reshape((X_test.shape[0], 28,28,1)) Y_train = y_train.reshape((Y_train.shape[0], 28,28,1)) y_test = y_test.reshape((Y_test.shape[0], 28,28,1)) print(X_train.shape) print(X_train.shape) print(Y_train.shape) print(Y_train.shape) print(Y_train.shape) print(Y_test.shape) print(Y_test.shape) print(Y_test.shape) Defining the Model The Architecture of the model</pre>

	input_1: InputLayer input: [(None, 28, 28, 1)] output: [(None, 28, 28, 1)] output: input: (None, 28, 28, 1) output: (None, 28, 28, 1) output: (None, 28, 28, 16) output: (None, 28, 28, 16)
	conv2d_1: Conv2D
	conv2d_2: Conv2D
	max_pooling2d_1: MaxPooling2D
	conv2d_5: Conv2D input: (None, 7, 7, 64) output: (None, 7, 7, 64) dropout: Dropout input: (None, 7, 7, 64) output: (None, 7, 7, 64) output: (None, 7, 7, 64)
	up_sampling2d: UpSampling2D input: (None, 7, 7, 64) output: (None, 14, 14, 64) conv2d 6: Conv2D input: (None, 14, 14, 64)
	output: (None, 14, 14, 32) concatenate: Concatenate input: [(None, 14, 14, 32), (None, 14, 14, 32)] output: (None, 14, 14, 64) conv2d_7: Conv2D input: (None, 14, 14, 64)
	output: (None, 14, 14, 32) conv2d_8: Conv2D
	conv2d_9: Conv2D
	conv2d_10: Conv2D
	conv2d_12: Conv2D
n []:	<pre>def SkipNet(input_shape = (28,28,1)): inputs = Input(input_shape) conv1 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(input_shape)</pre>
	<pre>conv1 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (conv pool1 = MaxPooling2D(pool_size=(2, 2)) (conv1) conv2 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (pool conv2 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (conv pool2 = MaxPooling2D(pool_size=(2, 2)) (conv2) conv3 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (pool</pre>
	conv3 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (conv drop3 = Dropout(0.2) (conv3) up4 = Conv2D(32, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (UpSamp ling2D(size = (2,2)) (drop3)) merge4 = concatenate([conv2,up4], axis = 3) conv4 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (merge4) conv4 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (conv 4)
	<pre>up5 = Conv2D(16, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (UpSamp ling2D(size = (2,2)) (conv4)) merge5 = concatenate([conv1,up5], axis = 3) conv5 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (merg e5) conv5 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (conv5) conv5 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal') (conv5) conv6 = Conv2D(1, 1, activation = 'sigmoid') (conv5)</pre>
	<pre>model = Model(inputs = inputs, outputs = conv6, name = "SkipNet") model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) model.summary() return model</pre> Training from sratch
	Parameters: Optimizer: Adam optimization algorithm loss: Binary Crossentropy Learning Rate: 0.0001 epochs: 20 batch size: 256 metrics: accuracy
n []:	<pre>model = SkipNet() model.fit(X_train, y_train, epochs = 20, batch_size = 256) Model: "SkipNet" Layer (type)</pre>
	conv2d_29 (Conv2D) (None, 28, 28, 16) 2320 conv2d_28[0][0] max_pooling2d_4 (MaxPooling2D) (None, 14, 14, 16) 0 conv2d_29[0][0] conv2d_30 (Conv2D) (None, 14, 14, 32) 4640 max_pooling2d_4[0][0] conv2d_31 (Conv2D) (None, 14, 14, 32) 9248 conv2d_30[0][0] max_pooling2d_5 (MaxPooling2D) (None, 7, 7, 32) 0 conv2d_31[0][0] conv2d_32 (Conv2D) (None, 7, 7, 64) 18496 max_pooling2d_5[0][0]
	conv2d_33 (Conv2D) (None, 7, 7, 64) 36928 conv2d_32[0][0] dropout_2 (Dropout) (None, 7, 7, 64) 0 conv2d_33[0][0] up_sampling2d_4 (UpSampling2D) (None, 14, 14, 64) 0 dropout_2[0][0] conv2d_34 (Conv2D) (None, 14, 14, 32) 8224 up_sampling2d_4[0][0] concatenate_4 (Concatenate) (None, 14, 14, 64) 0 conv2d_31[0][0] conv2d_34[0][0] conv2d_34[0][0]
	conv2d_35 (Conv2D) (None, 14, 14, 32) 18464 concatenate_4[0][0] conv2d_36 (Conv2D) (None, 14, 14, 32) 9248 conv2d_35[0][0] up_sampling2d_5 (UpSampling2D) (None, 28, 28, 32) 0 conv2d_36[0][0] conv2d_37 (Conv2D) (None, 28, 28, 16) 2064 up_sampling2d_5[0][0] concatenate_5 (Concatenate) (None, 28, 28, 32) 0 conv2d_29[0][0] conv2d_38 (Conv2D) (None, 28, 28, 16) 4624 concatenate_5[0][0]
	conv2d_39 (Conv2D) (None, 28, 28, 16) 2320 conv2d_38[0][0] conv2d_40 (Conv2D) (None, 28, 28, 2) 290 conv2d_39[0][0] conv2d_41 (Conv2D) (None, 28, 28, 1) 3 conv2d_40[0][0] Total params: 117,029 Trainable params: 117,029 Non-trainable params: 0
	Epoch 1/20 235/235 [====================================
	Epoch 7/20 235/235 [====================================
	Epoch 13/20 235/235 [====================================
	235/235 [====================================
[]:	<pre>model.save('ModelZoo/FgExtractor') INFO:tensorflow:Assets written to: ModelZoo/FgExtractor/assets Loading the weights from tensorflow import keras model = keras.models.load_model('ModelZoo/FgExtractor')</pre> Evaluating on the test set
	<pre>y_pred = model.predict(X_test) y_pred[y_pred < 0.5] = 0 y_pred[y_pred >= 0.5] = 1 idx = 15 img = np.squeeze(X_test[idx]) pred = np.squeeze(y_pred[idx]) y = np.squeeze(y_test[idx]) fig=plt.figure(figsize=(10, 10)) columns = 3</pre>
	<pre>rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(img, cmap = 'gray') plt.title("Original Image") fig.add_subplot(rows, columns, 2) plt.imshow(pred, cmap = "gray") plt.title("Predicted Foreground map") fig.add_subplot(rows, columns, 3) plt.imshow(y, cmap = "gray") plt.title("Ground truth Foreground map") fig.tight_layout() plt.show()</pre>
	Original Image Predicted Foreground map Ground truth Foreground map 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
	10 - 10 - 15 - 15 - 15 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
.22]:	15 - 20 - 25 - 25 - 25 - 25 - 25 - 25 - 2
122]:	15 - 20 - 20 - 20 - 25 - 25 - 25 - 25 - 2
[4]:	Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard score(y_test[i].flatten(), y_pred[i].flatten(), average = 'binary') avg_jacc_score+=jc avg_jacc_score/=len(y_pred) print("Average \033[lm Jaccard Similarity \033[0m on the Test set :", avg_jacc_score) Average Jaccard Similarity on the Test set : 0.9517986598096035 Question 3 Train a DL network from scratch for performing classification with circlization on the new dataset obtained in Q1 (b). Report your test performance using Jaccard Similarity. [4 Marks]
[4]:	Calculating the jaccard Similarity avg_jacc_score = 0 for i in range (len(y_pred)): jc = jaccard score(y_test[i].flatten(), y_pred[i].flatten(), average = 'binary') avg_jacc_score+jc avg_jacc_score/elen(y_pred)) print("Average \(\) 033[lm Jaccard Similarity \(\) 033[0m on the Test set : ", avg_jacc_score) Average \(\) Jaccard Similarity \(\) on the Test set : 0.9517986599096035 Question 3 Train a DL network from scratch for performing classification with circlization on the new dataset obtained in Q1 (b). Report your test performance using Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity score will become zero. Reading the Dataset X_train_df = pd.read_csv("dataset/mnist_train.csv") X_test_df = pd.read_csv("dataset/plb_center_rad_train.csv") Y_train_df = pd.read_csv("dataset/glb_center_rad_train.csv") Y_test_df = pd.read_csv("dataset/glb_center_rad_test.csv")
[4]: [5]: z[5]:	Calculating the jaccard Similarity avg_jacc_score = 0 for i in range (len(y, pred)): jc = jaccard_score(y, test[i].flatten(), y_pred[i].flatten(), average = 'binary') avg_jacc_score(-jc avg_jacc_score(-jc)
[4]: [5]:	### Calculating the Jaccard Similarity Average Secure O
[4]: [5]: [6]:	25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
[4]: [5]: [6]:	Cutculating the jaccard Similarity 20 20 21 21 22 23 24 25 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28
[4]: [5]: [6]:	Section Sect
[4]: [5]: [6]:	Colonialing the process Similaring Constituting the process Similaring Constituting the process Similaring Constituting the process Similaring second Similaring value of 11. This work is a size of 11. Size o
4]: 5]: 7]:	The content of the pieces of Similarity The
[4]: [5]: [6]: [9]:	Contributing the present Similarity See Section 1. See Section 2. See Section 3.
4]: (5]: (6]: (9]:	The content of the process deministry
[4]: [5]: [6]: [9]:	Consideration for proceed Standards of the Control
[4]: [5]: [6]: [9]:	Committee Comm
[4]: [5]: [6]: [9]:	Counting Payment Students The Action of the County Payment Students of the County Payment St
[4]: [5]: [6]: [7]:	Consideration of the control of the
[4]: [5]: [6]: [9]:	Control of the property desiration of the control o
[4]: [5]: [6]: [7]:	Contact of the contac
[4]: [5]: [6]: [7]:	Continues to Augment Annales Operation 2 Operation 2 Date 2: A continue to a continue desired to perform a continue and a c
[4]: [5]: [6]: [7]:	Company Comp
[4]: [5]: [6]: [7]:	Company
[4]: [5]: [6]: [10]:	Campaign
[4]: [5]: [6]: [10]: [10]:	Comparison Com
[4]: [5]: [10]: [10]:	Company Comp
[4]: [5]: [10]: [13]:	March Marc
[14]: [5]: [10]: [10]: [13]:	
[14]: [5]: [10]: [10]: [13]:	
[15]: t[5]: [10]: [13]:	
[4]: [5]: [10]: [13]:	March Marc
[14]: [5]: [17]: [17]: [17]: [17]:	Part

INFO:tensorflow:Assets written to: ModelZoo/ObjectLocalizer\assets

5]: \(\frac{1}{2} \) 6]: \(\frac{1}{2} \) 6]: \(\frac{1}{2} \)	Evaluating on the test set y_pred,y_coor = model.predict(testloader) y_pred[y_pred < 0.5] = 0 y_pred[y_pred > 0.5] = 1 y_pred = np.argmax(y_pred, axis = 1) y_pred array([7, 2, 1,, 4, 5, 6], dtype=int64) print(y_coor) y_coor[:,0] = y_coor[:,0]*28 y_coor[:,1] = y_coor[:,1]*28 y_coor[:,2] = y_coor[:,2]*28/(2)**0.5 [[0.47272468 0.57472044 0.526576] [0.51313406 0.4295074 0.5609449] [0.49180645 0.44644102 0.46394607] [0.563763 0.5231803 0.49714106] [0.55173963 0.52794296 0.54207116] [0.55173963 0.52794296 0.54207116] [0.45740402 0.3839616 0.44101104]]
2]: [: 2]: [: 2]: [: 3]: [: 3]: [: 4]: [: 3]: [: 4]	<pre>idx = 448 img1 = X_test[idx].reshape(28,28) img = cv2.imread('dataset/mnist_images/test/' + str(idx) + '.png') x = y_coor[idx,0] y = y_coor[idx,1] center_coordinates = (x, y) color = (255, 0, 0) thickness = 1 radius = int(round(y_coor[idx,2])) image = cv2.imread('dataset/mnist_images/test/' + str(idx) + '.png') x = int(round(test_coor[idx,0]*28,2)) y = int(round(test_coor[idx,1]*28,2)) center_coordinates = (x, y) color = (255, 0, 0) thickness = 1 radius = int(round(test_coor[idx,2]*28/(2)**0.5)) image_gt = cv2.circle(img, center_coordinates, radius, color, thickness) rig=plt.figure(figsize=(10, 10)) columns = 3 rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(img1, cmap = 'gray') plt.title("Original Image") rig.add_subplot(rows, columns, 2) plt.imshow(image, cmap = "gray") plt.title("Predicted Bounding Circle") fig.add_subplot(rows, columns, 3) plt.imshow(image_gt, cmap = "gray") plt.title("Ground Truth Bounding Circle") fig.tight_layout()</pre>
	Original Image Origi
14]:	binary_mask1 : list of all the points in mask A. binary_mask2 : list of all the points in mask B. Returns IOU : Jaccard Similarity of the two masks. """ intersection = len(list(set(binary_mask1).intersection(set(binary_mask2)))) union = len(set(binary_mask1).union(set(binary_mask2)))) if(union == 0): return 0 return float(intersection) / union Calculating the average jaccard score We would be calculating the jaccard score into two parts: 1. Calculating the jaccard scores on the input image and the predicted circle. 2. Calculating the jaccard scores on the Ground truth circle and the predicted circle. I. Calculating the jaccard scores on the input image and the predicted circle. j_score= 0 for i in tqdm(range(len(X_test)), position = 0, desc = "Progress : "): img = X_test[i].reshape(28,28) idxs = np.where(img > 0) x = idxs[0]
I (() () () () () () () () ()	<pre>x = loxs(0) y = idxs(1) pixels = [(i,j) for (i,j) in zip(x,y)] c_x = round(y_coor[i,0]) c_y = round(y_coor[i,0]) rad = int(round(y_coor[i,1]) rad = int(round(y_coor[i,2])) y_p = y_pred[i] y_t = test_labels[i] if(y_p == y_t): points_circle = points_in_circle_np(rad,c_x,c_y) score = jaccard_similarity(points_circle,pixels) j_score+score else: j_score+=0 avg_jacc_score = j_score/(len(X_test)) print("The \033[lm average jaccard score on input image and predicted circle \033[0m is : ", avg_core) Progress: 100%[</pre>
I C	<pre>x = round(x*28) y = round(y*28) r = int(round(r*28/(2)**0.5)) c_x = round(y_coor[i,0]) c_y = round(y_coor[i,1]) rad = int(round(y_coor[i,2])) y_p = y_pred[i] y_t = test_labels[i] if(y_p == y_t): points_circle = points_in_circle_np(rad,c_x,c_y) gt_circle = points_in_circle_np(rx,y) score = jaccard_similarity(gt_circle,points_circle) j_score+=score else: j_score+=0 avg_jacc_score = j_score/(len(X_test)) print("The \033[lm average jaccard score on Ground truth Circle and predicted circle \033[0m is : g_jacc_score) Progress : 100%[[]] Progress : 100%[[]] Average jaccard score on Ground truth Circle and predicted circle \033[0m is : 0.8457513813013228] Question 4</pre>
35]: [36]: [37]: [Train a DL network from scratch for performing semantic segmentation on the new dataset obtained in Q1 (c). Report your test performing Jaccard Similarity. [4 Marks] X_train_df = pd.read_csv("dataset/question4/Q1image_segmentation_train_x.csv", header = None) y_train_df = pd.read_csv("dataset/question4/Q1image_segmentation_train_y.csv", header = None) X_test_df = pd.read_csv("dataset/question4/Q1image_segmentation_test_x.csv", header = None) y_test_df = pd.read_csv("dataset/question4/Q1image_segmentation_test_x.csv", header = None) y_test_df = pd.read_csv("dataset/question4/Q1image_segmentation_test_y.csv", header = None) X_train = np.array(X_train_df).astype(int) y_train_orig = np.array(y_train_df).astype(int) X_test = np.array(X_test_df).astype(int) y_test_orig = np.array(y_test_df).astype(int) X_train = X_train.reshape((X_train.shape[0], 56,56,1)) y_train_orig = y_train_orig.reshape((y_train_orig.shape[0], 56,56,1)) y_test_orig = y_test_orig.reshape((y_test_orig.shape[0], 56,56,1)) #To load the train set (takes a lot of RAM) y_train = np.zeros((y_train_orig.shape[0]), 56,56,11), dtype = int) for i in tqdm(range(y_train.shape[0]), position = 0, desc = "Progress :"): for j in range(y_train.shape[1]): y_train[i,j,k,y_train_orig[i,j,k,0]] = 1
I I I I I I I I I I I I I I I I I I I	<pre>print(X_train.shape) print(y_train.shape) print(y_train.shape) progress :: 100% </pre>
1	max pooling2d 2: MaxPooling10
	None, 28, 28, 64 36928 conv2d_27[0][0]
H 33 H 3	33/30 [===================================
3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H	### Special Strategy
]: <	
40]:	<pre>from tensorflow import keras model = keras.models.load_model('ModelZoo/semanticSegmentor') Evaluating on the test set y_pred = model.predict(X_test) y_pred = np.argmax(y_pred, axis = 3) y_pred = y_pred.reshape((y_pred.shape[0], 56,56,1)) idx = 98 img = np.squeeze(X_test[idx]) sample_y = np.squeeze(y_pred[idx]) fig=plt.figure(figsize=(8, 8)) columns = 2 rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(img, cmap = 'gray')</pre>
56]:	<pre>plt.title("Input Image") fig.add_subplot(rows, columns, 2) plt.imshow(sample_y, cmap = "gray") plt.title("Predicted Segmentation") fig.tight_layout() plt.show()</pre> <pre> Input Image O Predicted Segmentation</pre>