МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №5

по дисциплине: «Вычислительная математика»

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Бондаренко Татьяна Владимировна

Тема: Одномерная минимизация функции

Вариант: 23

Цель работы: изучить методы нахождения приближенного решения задачи одномерной минимизации функции одной переменной, и получить практические навыки их применения.

Ход работы:

$$y = 2(x^2 + 2)x^2$$

Задание 1. Найти область определения заданной функции y = f(x) и построить её график, используя равномерную сетку значений xi (шаг сетки выбрать самостоятельно).

Задание 2. Найти промежутки унимодальности функцииу=f(x), используя построенный график.

Задание 3. Найти первую y'=f'(x) и вторую y''=f''(x) производные заданной функции y=f(x).

Задание 4. Найти точное решение задачи одномерной минимизации — минимум функции y = f(x), точку xT, и минимальное значение функции

Функция имеет единственный промежуток унимодальности

$$(-\infty; + \infty)$$

$$(-\infty;$$

Задание 5. Найти приближенное решение задачи одномерной минимизации, точку такую, что вручную, используя численные методы одномерной минимизации:

• Метод оптимального поиска;

• Метод деления отрезка пополам;

А	В	С	D
Шаг	<u>a</u>	b	delta
0	-1,5	1	
f	19,125	6	
1	-0,251	-0,249	
f	0,259942252	0,255692248	
Новый отрезок	-0,251	1	1,251
2	0,3735	0,3755	
f	0,596930756	0,603763141	
Новый отрезок	-0,251	0,3755	0,6265
3	0,06125		
f		0,016034259	
Новый отрезок	-0,251	0,06325	0,31425
4	-0,094875		
f	0,036167108	0,03465187	
Новый отрезок	-0,094875	0,06325	0,158125
5	-0,0168125		
f		0,000877737	
Новый отрезок	-0,0168125	0,06325	0,0800625
6	0,02221875	0,02421875	
f	0,001975179		
Новый отрезок	-0,0168125	0,02421875	0,04103125
	0.000700405	0.004700405	
7		0,004703125	
ţ		8,847852E-05	0.004545505
Новый отрезок	-0,0168125	0,004703125	0,021515625
	0.00705450	0.00505460	
8		-0,00505469	
ţ		0,000102201	0.000
Новый отрезок	-0,0070547	-0,0050547	0,002
1.1.	0.00707.		
delta	-0,00705469		
sigma	0		

$$x_{min} = -0.0071$$

$$f(x_{min}) = 0.0002$$

• Метод, основанный на использовании чисел Фибоначчи

Шаг	<u>a</u>	b	delta	į	Числа Фибоначчи
				0	
0	-1,5	1	2,5	1	
f	19,125	6		2	2
				3	3
1	-0,54513889	0,045138889		4	5¦
f	1,365333268	0,00815838		5	8,
овый отрезс•	-0,54513889	1	1,545138889	6	13¦
				7	21
2	0,045138889	0,409722222		8	
f	0,00815838	0,727851415		9	55
овый отрезс	-0,90972222	0,409722222	1,319444444	10	89
				11	144
3	-0,40593434	-0,09406566		12	233
f		0,035549977		13	377
овый отрезс			0,815656566	14	610
•				15	
4	-0,09406566	0,097853535		16	· ·
f		0,038484631		17	2584
овый отрезс			0,503787879		1
•		•			1
5	-0,21401515	-0,09406566			1
f		0,035549977			i
овый отрезс			0,311868687		1
•		-			
6	-0,09406566	-0,02209596			i
f	0,035549977	0,001953402			i
овый отрезс	-0,09406566	0,097853535	0,191919192		I
					I I
7	-0,02209596	0,025883838			1
ť		0,00268079			I
овый отрезс	-0,09406566	0,025883838	0,119949495		
8		-0,02209596			
f		0,001953402			
овый отрезс	-0,04608586	0,025883838	0,071969697		
9	-0,02209596	0,001893939			I I
ť	0,001953402	1,434805E-05			
овый отрезс	-0,022096	0,02588384	0,0479798		I
•					
delta	-0,02209596				i
sigma	0				

0,0221

 $f(x_{min}) = 0.0002$

с точностью ϵ =0,01. Необходимые параметры методов выбрать самостоятельно. Подробно «вручную» достаточно выполнить только первый шаг численного метода решения. Окончательный результат вычислений может быть получен с помощью приложения MS Excel.

Задание 6. Определить абсолютную Δ и относительную δ погрешность решения задачи одномерной минимизации для каждого из используемых численных методов. Представить полученные результаты в виде таблицы (табл. 6.1)

Погрешность	ОППИМАЛЬНОГО		Метод чисел Фибоначчи
delta	0	-0,0070546875	-0,02209596
sigma	0	0	0

Задание 7. Описать в модуле функции, которые возвращают приближенные значения минимума функции y = f(x) для заданного промежутка унимодальности с заданной точностью ε каждым из рассмотренных численных методов: метод оптимального поиска; метод, основанный на использовании чисел Фибоначчи; метод деления отрезка пополам

```
#include <iostream>
#include "cmath"
#include "vector"
using namespace std;
cypedef float func(float x);
struct Segment {
float taskFunction(float x) {
 return 2 * (x*x+2)*x*x;
loat findMinFunctionValue(func f, Segment segment, float eps, float &xMinValue) {
  float minValueArgument = segment.l;
  float minFunctionValue = f(segment.l);
  for (float x = segment.l; x \le segment.r; x += eps) {
    if(f(x) < minFunctionValue) {
      minFunctionValue = f(x);
      minValueArgument = x;
  xMinValue = minValueArgument;
  return minFunctionValue;
loat findMinFunctionValueDivisionByTwo(func f, Segment segment, float eps, float &xMinValue) {
  float precision = abs(segment.r - segment.l);
  while (precision > eps) {
    float alpha = (segment.l + segment.r) / 2 - (segment.r - segment.l) / 4;
    float betta = (segment.l + segment.r) / 2 + (segment.r - segment.l) / 4;
    if (f(alpha) >= f(betta)) {
      segment.l = alpha;
    } else {
      segment.r = betta;
    precision = abs(segment.r - segment.l);
  xMinValue = segment.l;
```

```
return f(segment.l);
loat findMinFunctionValueFibonacci(func f, Segment segment, float eps, float &xMinValue) {
 int N = 100;
 vector<float> fibonacciValues{1, 1};
 for (int i = 2; i \le N; i++) {
    fibonacciValues.push back(fibonacciValues[fibonacciValues.size() - 2] +
                    fibonacciValues[fibonacciValues.size() - 1]);
 float precision = abs(segment.r - segment.l);
 while (precision > eps && step < N - 1) {
    float delta = segment.r - segment.l;
    int fibonacciMainIndex = N - step;
    float alpha = segment.l + fibonacciValues[fibonacciMainIndex - 1] /
                    fibonacciValues[fibonacciMainIndex + 1] * delta;
   float betta = segment.l + fibonacciValues[fibonacciMainIndex] /
                    fibonacciValues[fibonacciMainIndex + 1] * delta;
   if (f(alpha) >= f(betta)) {
      segment.l = alpha;
    } else {
      segment.r = betta;
   precision = abs(segment.r - segment.l);
   step++;
 xMinValue = segment.l;
 return f(segment.l);
```

Задание 8. Составить программу для вычисления приближенного решения задачи одномерной минимизации для заданного варианта задания с использованием функций, описанных в модуле

```
int main() {
    float xMinValue;
    cout << findMinFunctionValueFibonacci(taskFunction, {-1, 1}, 0.00001, xMinValue) << " " <<
    xMinValue << "\n";
}</pre>
```

Результат работы программы:

```
D:\BGTU\VicMat\Lab6\Example\Code\cmake-build-debug\Code.exe
2.1236e-11 -2.30413e-06

Process finished with exit code 0
```

Вывод: в ходе лабораторной работы мы изучили методы нахождения приближенного решения задачи одномерной минимизации функции одной переменной, и получили практические навыки их применения