Lecture 19: Examples

13. Reverence 2021

12.
$$4$$
, 5 , 9 , 9 , 1 , $5^2=1$, 9 , $5=5$, 1
 $= \{9, 5, 5, 9\}$, $1 \le i \le n \}$ ≤ 5 , 1

1. dim't represent proof homo $D_n \rightarrow C^n$
 $p: D_n \rightarrow C^n$ grap homo $\Rightarrow p(n^2) = 1$
 $p(n) = 1$ or -1 $p(n) = 1$

So there $p(n) = 1$ or -1 $p(n) = 1$
 $p(n) = 1$ or $p(n) = 1$
 $p(n) = 1$

1+ a = 1/2 -1

Odd case: $2+4\alpha=2n$ $\Rightarrow \alpha=\frac{n-1}{2}$

2-din/ repar p: Dn -> Glz(C)

2-divid (sr) rotation by k(2\hat{\gamma}i) kell

2-divid (sr) [0]

3-divid (2\hat{\gamma}i) kell

4-divid (2\hat{\gamma}i) kell

6-divid (2\hat{\gamma}i) kell

7-divid (2\hat{\gamma}i) kell

8-divid (2\hat{\gamma}i) kell

9-divid (2\hat{\gamma}

To verify Q: graphono $S \longrightarrow [0]$ $S \longrightarrow [0]$ Note: $R_k^n = T$, $[0,0]^2 = 1$, so need to verify $[0,0]^2$ = SR $\chi_{\varphi_{k}}(s\pi^{i}) = 0$ $\chi_{q_{n-k}} = \chi_{q_1} \implies q = q_{n-k}$ Q 0 \(\) \(Q & Q are reducible $\chi_{q_1}(x^i) = 2 \cos(\pi i) = 2(-1)^j = \chi_{q_1}(x^i) + \chi_{q_2}(x^i)$ $\chi_{q_1} = \chi_{q_2} + \chi_{q_3} + \chi_{q_4} + \chi_{q_5}$ Prick(1/2 are igned (No line is invariant) / 11/4 / 1/4 when Rx & S Hence we get $\frac{n}{2}-1$ isred 2-diml seps of D_n . 11/8 in the needl= 9 = 9 are reducible P = Y + Y P P P P N+1/2 So there are 0,0,-1 are distinct justed set of D_n

I reducible refresentations of A_4 : $A_4 = \{e, (12)(34), (23)(14), (13)(24), \}$ 3-cycles = 8 of them $C_{1}=\{(123), -\cdots \}$ $C_{2} = \{(321), --- \}$ So A4 has 4 isred reps $H = \{e, (12)(34), (23)(14), (13)(24)\}$ is a normal subgroup of A4 & A4/H = 2/32 Any reprof 2/37 is also a reprof Also righted reps of Z/3Z are, is homo.

Also righted reps of Z/3Z are, is homo.

Also righted reps of Z/3Z nepa of Au. (HW) (i Au Z/3Z)
is swajective) Since 2/32 has 3 1-di-l issed repr.

Character
$$\chi_{2}(\bar{1})=1$$
 where $w=e^{2\pi i/3}$

Let $0=\chi_{0}=0$ are $\gamma_{0}=\gamma_{0}=0$ of A_{4}

then 0_{i} are $1-di-1$ reproof A_{4}
 $\chi_{0}(e)=1$ $\chi_{0}(c_{0})=1$
 $\chi_{0}(e)=1$ $\chi_{0}(c_{0})=1$
 $\chi_{0}(e)=1$ $\chi_{0}(c_{0})=1$
 $\chi_{0}(e)=1$ $\chi_{0}(e)=1$ $\chi_{0}(e)=1$
 $\chi_{0}(e)=1$ χ_{0

So the 3rd inred repris 3-dim/lstits character is 74.

ASS4 acts on C4 via $\sigma \cdot (z_1, z_2, z_3, z_4) = (z_{\sigma 1}, z_{\sigma 2}, z_{\sigma 3}, z_{\sigma 4})$ it has 1-dimil trivial seps. $V = \{ (z, z, z, z) \mid z \in \mathbb{C} \} \subseteq \mathbb{C}^4$ $\chi_{C_4}(e) = 4$ $\chi_{C_4}(c_0) = 0$ $\chi_{C_4}(c_0) = 1$ C4 = VOWK SID rept TW = XC4-XV some super of A4. $\chi_{W}(C_{0}) = 3$ $\chi_{W}(C_{0}) = 1$ $\chi_{W}(C_{0}) = 0$ $\chi_{W}(C_{1}) = 0$ $\chi_{W}(C_{2}) = 0$ So 1/W=1/4