$p(conclusions|Skipping {*2*})$

Bayesian Language Modelling with Skipgrams

Bayesian Language Modelling with Skipgrams

Louis Onrust
Centre for Language Studies, Radboud University
Center for Processing Speech and Images, KU Leuven
Lonrust@let.ru.nl
github.com/naiaden

Scope of the Project

Scope

- Language models
- Latent variable models
- Domain-dependence of LVLM
- Intrinsic & extrinsic evaluation

Goal

- Bring back language modelling in Bayesian language modelling
- Improve cross domain langauge modelling with skipgrams

Traditional method

The process:

- Read n-gram p
- Increment frequency of p
- Repeat, preferably ad infinitum

n-gram probabilities are then determined by their MLE

Smoothed Traditional Language Mode

What to do when the occurrence count of p is 0?

- Not assign 0 as probability → smoothing
- Fall back to the last (n-1) words of p o backoff

One of the best methods is still Modified Kneser-Ney: backoff and smoothing

Traditional method

The process:

- Read n-gram p
- Increment frequency of p
- Repeat, preferably ad infinitum

n-gram probabilities are then determined by their MLE

Smoothed Traditional Language Model

What to do when the occurrence count of p is 0?

- Not assign 0 as probability \rightarrow smoothing
- Fall back to the last (n-1) words of p o backoff

One of the best methods is still Modified Kneser-Ney: backoff and smoothing

Bayesian method

- Assume texts are generated by some process
- Consider the texts to be a sample from the process
- Infer underlying process

Bayesian Unigram Language Model: Chinese Restaurant Process

- Clusters are tables, unigram tokens are customers
- Initially tokens seat at the same type table
- In the inference step, customers get to choose a new identity

Bayesian n-gram Language Model: Nested Chinese Restaurant

- Each contact is a read
- Each n is a floor
- Each *n*-gram is a table
- Each (n-1)-gram sits at a table on the (n-1)th floor
- All restaurants share the same global menu

Bayesian method

- Assume texts are generated by some process
- Consider the texts to be a sample from the process
- Infer underlying process

Bayesian Unigram Language Model: Chinese Restaurant Process

- Clusters are tables, unigram tokens are customers
- Initially tokens seat at the same type table
- In the inference step, customers get to choose a new identity

Bayesian n-gram Language Model: Nested Chinese Restaurant

Process

- Each context is a restaurant
- Each n is a floor
- Each n-gram is a table
- Each (n-1)-gram sits at a table on the (n-1)th floor
- All restaurants share the same global menu

Bayesian method

- Assume texts are generated by some process
- Consider the texts to be a sample from the process
- Infer underlying process

Bayesian Unigram Language Model: Chinese Restaurant Process

- Clusters are tables, unigram tokens are customers
- Initially tokens seat at the same type table
- In the inference step, customers get to choose a new identity

Bayesian *n*-gram Language Model: Nested Chinese Restaurant Process

- Each context is a restaurant
- Each n is a floor
- Each n-gram is a table
- Each (n-1)-gram sits at a table on the (n-1)th floor
- All restaurants share the same global menu

Bayesian Language Model: Learning & Estimating

Chinese Restaurant Process: Empirical Distribution

- Each *n*-gram enters the restaurant, and goes to the *n*th floor, to the room that represents the context
- There he seeks for the table with other *n*-grams of the same type
 - If there is such a table, he joins that table
 - Otherwise he seats himself at an empty table
- For each new table, a family member of the same n-gram but of length (n-1) is sent to represent the family
 - This process repeats for $0 < x \le n$

Chinese Restaurant Process: Inference

With m customers in the restaurant, a customer re-enters the restaurant and sits a table t with probability

- $\frac{1}{m+1}$ with another *n*-gram *p*, or $\frac{|t|}{m+1}$ at the same table as *p*
- $\frac{1}{m+1}$ at a new table

The number of tables grows logarithmically

Bayesian Language Model: Learning & Estimating

Chinese Restaurant Process: Empirical Distribution

- Each *n*-gram enters the restaurant, and goes to the *n*th floor, to the room that represents the context
- There he seeks for the table with other *n*-grams of the same type
 - If there is such a table, he joins that table
 - Otherwise he seats himself at an empty table
- For each new table, a family member of the same n-gram but of length (n-1) is sent to represent the family
 - This process repeats for $0 < x \le n$

Chinese Restaurant Process: Inference

With m customers in the restaurant, a customer re-enters the restaurant and sits a table t with probability

- $\frac{1}{m+1}$ with another *n*-gram *p*, or $\frac{|t|}{m+1}$ at the same table as *p*
- $\frac{1}{m+1}$ at a new table

The number of tables grows logarithmically

Processes and Priors

The Generative Model

We described a Chinese restaurant process mixture model

$$\pi_{[M]} \sim \mathsf{CRP}(M)$$
 (1)

$$\phi_t | \pi_{[M]} \sim G_0$$
 for $t \in \pi_{[M]}$, (2)

$$x_i|\phi,\pi_{[M]}\sim F(\phi_t)$$
 for $t\in\pi_{[M]}$ and $i\in t$ (3)

Nested Pitman-Yor Chinese Restaurant Process

- CRP and DPCRP give logarithmic growth
- Language manifests typically in power law growth
- PYCRP as generalisation of CRP and DPCRP

CRP No parameters

DPCRP Concentration parameter α

PYCRP Concentration parameter α and discount parameter γ

Processes and Priors

The Generative Model

We described a Chinese restaurant process mixture model

$$\pi_{[M]} \sim \mathsf{CRP}(M)$$
 (1)

$$\phi_t | \pi_{[M]} \sim G_0 \qquad \text{for } t \in \pi_{[M]}, \tag{2}$$

$$x_i|\phi,\pi_{[M]}\sim F(\phi_t)$$
 for $t\in\pi_{[M]}$ and $i\in t$ (3)

Nested Pitman-Yor Chinese Restaurant Process

- CRP and DPCRP give logarithmic growth
- Language manifests typically in power law growth
- PYCRP as generalisation of CRP and DPCRP

CRP No parameters

DPCRP Concentration parameter α

PYCRP Concentration parameter α and discount parameter γ

Processes and Priors

A Suboptimal Unigram Language Model

We described a Chinese restaurant process mixture model

$$G_0 = \mathcal{U}$$
 (1)

$$G \sim \mathsf{CRP}(G_0)$$
 (2)

$$x_i \sim G$$
 (3)

Nested Pitman-Yor Chinese Restaurant Process Mixture Model

$$G_0 = \mathcal{U}$$
 (4)

$$G_1 \sim \mathsf{PYCRP}(\alpha_1, \gamma_1, G_0)$$
 (5)

$$G_{u} \sim \mathsf{PYCRP}(\alpha_{|u|}, \gamma_{|u|}, G_{\pi(u)})$$
 (6)

$$x_i|u_j\sim G_{u_i}$$
 (7)

Bayesian Language Model: The Implementation

Motivation

Existing Bayesian language models...

- are merely an algorithmic showcase without real language modelling aspirations
- cannot handle really big data sets

Implementation

We use the following software:

```
cpyp an existing C++ framework on BNP with PYP priors
```

Advantages

- We can now handle many patterns such as n-grams, skipgrams, and flexgrams
- Tresholding patterns on many levels

Bayesian Language Model: The Implementation

Motivation

Existing Bayesian language models...

- are merely an algorithmic showcase without real language modelling aspirations
- cannot handle really big data sets

Implementation

We use the following software:

colibri an existing C++ framework on BNP with PYP priors **colibri** an existing C++ framework for pattern modelling

Advantages

We can now handle many patterns such as n-grams, skipgrams, and flexgrams

• Tresholding patterns on many levels

Results: The Setup

Data Sets

- JRC-Acquis English
- Google 1 billion words
- EMEA English
- Wikipedia English

Backoff Methods

ngram full recursive backoff to shorter *n*-grams

limited recursive backoff to all patterns $\leq n$ until match

full recursive backoff to all patterns $\leq r$

Evaluation Measure

Intrinsic evaluation with perplexity

Results: The Setup

Data Sets

- JRC-Acquis English
- Google 1 billion words
- EMEA English
- Wikipedia English

Backoff Methods

ngram full recursive backoff to shorter *n*-grams

limited recursive backoff to all patterns $\leq n$ until match

full recursive backoff to all patterns $\leq n$

Evaluation Measure

Intrinsic evaluation with perplexity

Results: The Setup

Data Sets

- JRC-Acquis English
- Google 1 billion words
- EMEA English
- Wikipedia English

Backoff Methods

ngram full recursive backoff to shorter *n*-grams

limited recursive backoff to all patterns $\leq n$ until match

full recursive backoff to all patterns $\leq n$

Evaluation Measure

Intrinsic evaluation with perplexity

Results: An Overview

Summary

- Within-domain evaluation yields best performance
- Adding skipgrams increases performance on cross-domain evaluation
- For generic corpora, limited recursive backoff performs best
- Seems to outperform Generalised Language Model
- If significant, perhaps not enough for extrinsic evaluation

Results: Domains and Patterns

Observations

domains Within-domain evaluation yields best performance

patterns Adding skipgrams increases performance on cross-domain

evaluation

	<i>n</i> -gram				skipgram				
	jrc	1bw	emea	wp	jrc	1bw	emea	wp	
jrc	13	1195	961	1011	13	1162	939	1008	
1bws	768	158	945	493	751	162	921	507	
emea	600	1143	4	843	581	1155	4	842	
wps	555	455	1005	217	565	470	990	227	

Results: Effect of Different Backoff Methods

Observations

backoff For generic corpora, limited recursive backoff performs best

		<i>n</i> -gram				skipgram				
		jrc	1bw	emea	wp	jrc	1bw	emea	wp	
jrc	ngram	13	1510	1081	1293	13	1843	1295	1623	
	limited	14	1477	1122	1263	13	1542	1149	1356	
	full	69	1195	961	1011	65	1162	939	1008	
1bws	ngram	768	158	946	493	879	163	1105	550	
	limited	815	185	1025	563	751	162	921	507	
	full	800	264	1039	583	769	252	988	561	
emea	ngram	769	1552	4	1097	969	2090	4	1416	
	limited	779	1385	4	1018	838	1655	4	1139	
	full	600	1143	32	843	581	1155	32	842	
wps	ngram	555	455	1005	217	623	504	1,132	233	
	limited	629	543	1168	260	565	470	990	227	
	full	656	579	1184	357	625	548	1,106	336	

Future Work

Experiments

- Validate significance by testing on multiple languages
- Investigate influence skipgrams with qualitative analysis
- When we find a more substantial drop in perplexity:
 - Machine translation experiments
 - Automated speech recognition experiments
- Investigate multi-domain language models (DHPYPLM)
- Generalise skipgrams to flexgrams
- ..