COMP 228 Winter 2020

Memory & Cache Practice Problems

A memory address as seen by the cache looks like this

tag Index offs	et
----------------	----

<u>Index</u>: Contains frame index in direct-mapped cache or set index in m-way associative cache.

<u>Cache-line-number</u> The tag + Index fields. This is the block number in main memory.

(Direct-mapped cache) Frame Index = cache-line-number mod # cache frames

(Associative cache) <u>Set Index</u> = cache-line-number mod # cache Sets

Offset: Relative address of a particular byte inside a cache frame or memory block.

E.g. if frame size is 4 bytes, then offset field would have require 2-bits and has 4 possible values (00,01,10,11) for each of the bytes inside the frame.

<u>Cache-line:</u> The block of data transferred from main memory to cache and vice-versa.

<u>Size of cache-line</u> = size of a cache frame = size a block in main memory

Exercises

- 1- Suppose a computer using direct mapped cache has 2³² bytes of byte-addressable main memory, and a cache size of 512 bytes, and each cache block contains 64 bytes.
- a- How many blocks of main memory are there?
- b- What is the format of a memory address as seen by the cache? i.e. what are the sizes of the tag, block and offset fields?
- c- To which cache block, will the memory address 13A4498A₁₆ map?

Solution:

b-

- a- Block size (memory or cache) = $64 = 2^6 \rightarrow$ offset 6 bits # main memory blocks = $2^{32} / 2^6 = 2^{26}$
- # cache frames = $512/64 = 8 = 2^3 \rightarrow Index 3 bits$

tag	Index	offset
23	3	6

c- We only need to look at the lower 3 digits of address: 98A = 100110001010

Cache block 6

- 2- Suppose a byte-addressable computer using set associative cache has 2²¹ of bytes of Main memory and a cache of 64 frames, where each cache frame contains 4 bytes.
- a- If this cache is 2-way associative, what is the format of a memory address?
- b- If this cache is 4-way associative, what is the format of a memory address?

Solution:

a- Cache frame size = $4 = 2^2 \rightarrow$ offset 2 bits # sets = $64 / 2 = 32 = 2^5 \rightarrow$ set index 5 bits Tag 14 bits

tag	Set Index	offset	
14	5	2	

b- # sets = $64 / 4 = 16 = 2^4 \rightarrow$ set index 4 bits Tag 15 bits

tag	Set Index	offset
15	4	2

3- Suppose that we have a computer that uses a memory address of 8-bits. This computer has a 16 byte cache and 4 bytes per block. The computer accesses a number of memory locations throughout the course of running a program. Suppose the computer uses direct-mapped cache.

The system accesses memory addresses (in hex) in this exact order: 6E, B9, A9, E0, 4E, A8, A9, AA, 93, and 94. What memory blocks will be in the cache after the last memory access?

Solution:

Memory size = 2^8 bytes

memory blocks = $2^8 / 4 = 2^6 = 64$ blocks

There will be 4 cache frames

Cache will look like this

Frame	Content (memory block)	Tag
0		
1		
2		
3		

Initially Cache is empty. Each time a memory block is requested; its address would be mapped and placed in the cache along with the tag. Here is the order of requests in this example. These are 8-bit memory byte addresses (each address is for a particular byte in the frame) that we map to get frame index.

Remember that each cache frame contains 4 bytes so it is possible that multiple addresses map to the same frame with no conflict.

Memory	Cache line	Frame Index	Tag	Cache Content	Hit/Miss
Req.	number				
	Tag+fr Index				
	Mem Block #				
6E	011011 = 27	27 mod 4 =3	6	Cache[3] = block 27	Frame 3 empty.
01101110				Tag[3] = 6	Compulsory miss
B9	101110 = 46	46 mod 4 =2	В	Cache[2] = block 46	Frame 2 empty.
10111001				Tag[2] = B	Compulsory miss
A9	101010 = 50	50 mod 4 =2	Α	Cache[2] = block 50	Frame 2 is not empty
10101001				Tag[2] = A	tags compared. A9 tag
					is A and Tag[2] is B.
					Frame 2 is <u>evicted</u> . This
					is a <u>conflict miss</u> .
EO	111000 = 56	56 mod 4 =0	Е	Cache[0] = block 56	Frame 0 empty.
11100000				Tag[0] = E	Compulsory miss
4E	010011 = 19	19 mod 4 =3	4	Cache[3] = block 19	Frame 3 is not empty

01001110				Tag[3] = 4	tags compared. 4E tag is 4 and Tag[3] is 6. Frame 3 is <u>evicted</u> . This is a <u>conflict miss</u> .
A8 10101000	101010=50	50 mod 4 =2	А	Cache[2] = block 50 Tag[2] = A	Frame 2 is not empty tags compared. A8 tag is A and Tag[2] = A. So, it is a hit.
A9 10101001	101010=50	50 mod 4 =2	Α	Cache[2] = block 50 Tag[2] = A	Again a <u>hit</u> .
AA 10101010	101010=50	50 mod 4 =2	А	Cache[2] = block 50 Tag[2] = A	Again a <u>hit</u> .
93 10010011	100100=36	36 mod 4 =0	9	Cache[0] = block 36 Tag[0] = 9	Frame 0 is not empty. Tags compared. 93 tag is 9 and Tag[0] = E. Frame 0 has to be evicted. This is a conflict miss.
94 10010100	100101=37	37 mod 4 =1	9	Cache[1] = block 37 Tag[1] = 9	Frame 1 empty. Compulsory miss