Second Edition

Assessing the Accuracy of Remotely Sensed Data

Principles and Practices

Russell G. Congalton Kass Green

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-5512-2 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Congalton, Russell G., 1957-

Assessing the accuracy of remotely sensed data: principles and practices / Russell G. Congalton and Kass Green. -- 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-4200-5512-2 (alk. paper)

1. Remote sensing--Evaluation. I. Green, Kass. II. Title.

G70.4.C647 2008

621.36'78--dc22 2008030228

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Dedication

The second edition of this book is dedicated to our families, including our spouses Jeanie Congalton and Gene Forsburg: our children Ashton, Emma, and Brandon Congalton, and our parents Bob and Janet Congalton, John and Jean Samson, Mary Green, William and Carol McDevitt, and Frank and Janet Forsburg. Together they have made us much more than we would be alone. We are forever grateful for their love, support, and companionship.

Table of Contents

Preface	xi
Acknowledgments	
About the Authors	
Chapter 1 Introduction	1
Why Map?	1
Why Assess the Accuracy of a Map?	
Types of Map Accuracy Assessment	
Critical Steps in Accuracy Assessment	
Organization of the Book	
Chapter 2 The History of Map Accuracy Assessment	5
How Maps Are Made	5
History of Accuracy Assessment	
Positional Accuracy Assessment	
Thematic Accuracy Assessment	
Chapter 3 Positional Accuracy	19
What Is Positional Accuracy?	19
What Are the Common Standards for Positional Accuracy?	
National Map Accuracy Standards	
Principles of Error Theory and Cartographic Applications	
ASPRS Interim Accuracy Standards for Large-Scale Maps	
National Standard for Spatial Data Accuracy	
Guidelines and Specifications for Flood Hazard Mapping Partners	
ASPRS Guidelines: Vertical Accuracy Reporting for Lidar Data	
Guidelines for Digital Elevation Data.	
Positional Accuracy Assessment Design and Sample Selection	
How Is Positional Accuracy Analyzed?	29
Review of Basic Statistics	
Parameters and Statistics	
Estimating the Dispersal of Variables	
Estimating the Reliability of the Estimate of the Mean	
Statistics in Positional Accuracy Assessment	
Vertical Accuracy	
Horizontal Accuracy	
Summary	
Appendix 3.1	
Determining the Required Sample Size	
O T	

Chapter 4	Thematic Accuracy	55
Non-Site-Sp	ecific Assessments	55
	: Assessments	
The Error	r Matrix	57
Mathe	ematical Representation of the Error Matrix	59
	•	
Chapter 5	Sample Design Considerations	63
What Are the	e Thematic Map Classes to Be Assessed?	63
The Class	sification Scheme	64
Other Da	ta Considerations	66
Contin	nuous versus Noncontinuous Data	66
Spatia	l Autocorrelation	68
What Is the	Appropriate Sample Unit?	70
Single Pi	xel	70
	f Pixels	
	of Polygons	
	Samples Should Be Taken?	
	Distribution	
	nial Distribution	
	the Samples Be Chosen?	
	g Schemes	
	Scheme Considerations	
Final Consid	lerations	83
Chapter 6	Reference Data Collection	85
What Should	d Be the Source of the Reference Data?	86
	isting versus Newly Collected Data	
	ersus Ground	
	the Reference Data Be Collected?	
	d the Reference Data Be Collected?	
	ejectivity and Consistency	
	ependence	
	lection Consistency	
	Control	
Chapter 7	Basic Analysis Techniques	105
	Kappa	
	appa	
Compensation	on for Chance Agreement	115

Confidence Limits	115
Area Estimation/Correction	119
Chapter 8 Analysis of Differences in the Error Matrix	121
Errors in the Reference Data	
Sensitivity of the Classification Scheme to Observer Variability	
Inappropriateness of the Remote Sensing Data Employed to Make the Map	
Mapping Error	
Summary	
Appendix 8.1	127
Wrangell-St. Elias National Park and Preserve: Land Cover Mapping	
Classification Key	127
Chapter 9 Fuzzy Accuracy Assessment	131
Expanding the Major Diagonal of the Error Matrix	132
Measuring Map Class Variability	
The Fuzzy Error Matrix Approach	
The Fuzzy Error Matrix	
Implementation of the Fuzzy Error Matrix	
Another Fuzzy Error Matrix Example	
Summary	
Juliiniu y	1 10
Chapter 10 Case Study	
Accuracy Assessment for the NOAA Next-Generation C-CAP Pilot Project	1/11
Overview of the Case Study	141
Design of the Accuracy Assessment	144
What Are the Thematic Classes to Be Assessed?	
What Is the Appropriate Sampling Unit?	145
How Many Samples Should Be Taken?	
How Should the Samples Be Chosen?	145
Data Collection	146
What Should Be the Source of the Reference Data?	146
How Should the Reference Data Be Collected?	147
When Should the Reference Data Be Collected?	
How Do I Ensure Consistency and Objectivity in My Data Collection?	
Analysis	
What Are the Different Analysis Techniques for Continuous versus	
Discontinuous Map Data?	149
What Is an Error Matrix and How Should It Be Used?	
What Are the Statistical Properties Associated with the Error Matrix and	150
What Analysis Techniques Are Applicable?	150
What Is Fuzzy Accuracy and How Can You Conduct a Fuzzy Accuracy	150
Assessment?	150

Lessons Learned	154
Appendix 10.1	155
Decision Rules for the Classification Scheme	
Chapter 11 Advanced Topics	159
Change Detection	159
Reference Data	
Sampling	
Change Detection Error Matrix	
Two-Step Approach to Change Detection Accuracy Assessment	165
Case Study	
Step 1: Accuracy of the Change Areas	
Step 2: Change/No Change Assessment	
Multilayer Assessments	
Appendix 11.1	
Class Descriptions of the 2005 NLCD Land Cover	
Bibliography	173

Preface

The field of assessing the accuracy of maps derived from remotely sensed data has continued to develop and mature since the first edition of this book was published in 1999. The original eight chapters have been expanded to eleven. Of most significance is a new chapter that covers positional accuracy. The accuracy of any spatial data set is a combination of both the positional accuracy and the thematic accuracy. Therefore, a complete presentation of how to assess the positional accuracy of a map has been added along with a discussion of the impact of positional accuracy on thematic accuracy. The use of fuzzy accuracy assessment has increased since the first edition, and we have included an entire chapter on this important process. Also, the chapter on assessing the accuracy of a map of change detection has been expanded with a more thorough discussion of the special sampling issues that must be considered to effectively assess the change. Finally, a new case study has been presented that is up-to-date and reflects the complications and issues one would face when conducting an accuracy assessment today.

Acknowledgments

There are a large number of people to thank for their help on this book. The first edition of this book was inspired by Dr. John Lyon and dedicated to Dr. Roy Mead. In addition, we are especially thankful to Dr. John Jensen, Dr. Greg Biging, Dr. Tom Lillesand, Dr. Jim Smith, Mr. Ross Lunetta, Mr. Mike Renslow, Dr. George Lee, and Dr. Jim Campbell for their positive feedback and support. Along the way, many colleagues at Pacific Meridian Resources, Space Imaging Solutions, Fugro-Earthdata, Dewberry, Tukman Geospatial and Sanborn Solutions as well as numerous graduate students in the Department of Natural Resources at the University of New Hampshire helped make this book better.

We would especially like to thank Mr. Mike Palmer for the many hours of discussion on change detection accuracy assessment that added significantly to this second edition. Many professionals have contributed to our new chapter on positional accuracy assessment. We would like to especially thank Drs. George Lee, Greg Biging, and Dave Maune, who carefully reviewed multiple drafts of Chapter 3 and provided invaluable new materials, insight and clarification. We would also like to thank Dewberry, the NOAA Coastal Services Center, and Sanborn Solutions for allowing us to use samples of their real world accuracy data in our examples. Additionally, we thank Mark Tukman of Tukman Geospatial and Chad Lopez of Fugro–Earthdata for their contribution and insight. We also gratefully acknowledge all of our friends and colleagues in the geospatial community who inspired and encouraged us on many occasions. Finally, we would like to thank our families for the time they managed without us while we worked on this book.

About the Authors

Russell G. Congalton is professor of remote sensing and GIS in the Department of Natural Resources and the Environment, University of New Hampshire. He is responsible for teaching courses in photogrammetry and photo interpretation, digital image processing, and geographic information systems. Russ has authored or coauthored more than 150 papers and conference proceedings. He is the author of eight book chapters and is coeditor of a book on spatial uncertainty in natural resource databases titled *Quantifying Spatial Uncertainty in Natural Resources: Theory and Applications for GIS and Remote Sensing*. Russ served as president of the American Society for Photogrammetry and Remote Sensing (ASPRS) in 2004–2005 and as the National Workshop Director for ASPRS from 1997–2008. In January 2008 he was appointed editor-in-chief of *Photogrammetric Engineering and Remote Sensing*.

Dr. Congalton received a B.S. (in natural resource management) from Rutgers University in 1979. He earned an M.S. (1981) and a Ph.D. (1984) in remote sensing and forest biometrics from Virginia Tech. In addition to his academic position, Russ served as chief scientist of Pacific Meridian Resources from its founding in 1988 until 2000, and then as chief scientist of Space Imaging Solutions from 2000–2004. Currently he serves as senior technical advisor with the Solutions Group of Sanborn, the oldest mapping company in the U.S.

Kass Green is the current president of the American Society of Photogrammetry and Remote Sensing (ASPRS 2008–09) and the president of Kass Green and Associates, where she consults on geospatial strategy, technology and policy issues to private, educational, and public organizations. Several years ago, Kass retired as president of Space Imaging Solutions. Prior to joining Space Imaging (now GeoEye), Kass was the president of Pacific Meridian Resources, a geospatial services company she cofounded in 1988 and sold to Space Imaging in 2000.

Kass received her B.S. degree in forestry from the University of California at Berkeley and her M.S. degree in resource policy and management from the University of Michigan; she advanced to her Ph.D. candidacy at the University of California at Berkeley.