01QZD

Laboratorio di Internet e Comunicazioni

Internet - Laboratorio 6

Performance test on Ethernet links

Configurazione di rete

A - Rete tipo A

Protocollo	AVG TCP	goodput	Collision probability Loss at the appl Layer			
	Pred	Obs	Pred	Obs	Pred	Obs
ТСР	9,500	9,441	0%	0%	0%	0%
UDP	9,600	9,572	0%	0%	0%	0%

La rete è occupata solamente dalla comunicazione tra H1 e H2 che quindi raggiunge il massimo goodput consentito dal protocollo (circa 9,5 per il TCP e circa 9,6 per l'UDP).

Essendo tutti i canali in full duplex non vi possono essere collisioni.

Non vi è perdita a livello applicazione in quanto non vi sono pacchetti persi nelle code dello switch in quanto riceve a 10Mbit/s e trasmette alla stessa velocità, le code non possono dunque riempirsi.

B - Rete tipo B

Protocollo	AVG TCP goodput		Collision probability		Loss at the application Layer	
	Pred	Obs	Pred	Obs	Pred	Obs
ТСР	< 9,5 (dovuto a trasmissione degli ack)	8,236	Bassa ma presente (sempre dovuta agli ack)	19,723%	0%	0%
UDP	9,600	9,571	0%	0%	0%	0%

Per quanto riguarda la comunicazione attraverso UDP non cambia nulla dal punto A in quanto non viene trasmesso nulla in senso contrario e quindi il canale in half duplex non ha effetti (non vi sono collisioni).

Invece per la connessione TCP vi sono dei cambiamenti: gli ACK devo essere mandati al trasmettitore sul canale half duplex causando possibile collisione con i pacchetti in arrivo. Il goodput è quindi minore rispetto a quello permesso dal protocollo in condizioni ottimali.

Non vi sono comunque perdite a livello applicazione perchè il protocollo TCP prevede ritrasmissione dei pacchetti in caso di perdite.

C - Rete tipo A

Protocollo	AVG TCP	AVG TCP goodput		Collision probability		Loss at the application Layer	
	Pred	Obs	Pred	Obs	Pred	Obs	
TCP - H1	< 9,5 (ci	9,143	0%	0%	0%	0%	
TCP - H2	sono sia i pacchetti che gli ack su ogni canale)	9,180	0%	0%	0%	0%	
UDP - H1	9,600	9,572	0%	0%	0%	0%	
UDP - H2	9,600	9,571	0%	0%	0%	0%	

Nella connessione TCP il goodput è minore di 9,5 perchè su entrambi i canali passano anche gli ACK dell'altra comunicazione occupando parte del canale. Cosa che non succede nella comunicazione UDP dove i due flussi non si disturbano a vicenda (non vi sono gli ACK).

Essendo la rete interamente in full duplex non ci possono essere collisioni.

Inoltre non ci sono perdite a livello applicazione perchè le velocità di trasmissione non permettono alle code dello switch di riempirsi.

AVG TCP	goodput	AVG UDP g	OP goodput		
Pred	Obs	Pred	Obs		
9,500	8,905	< 9,6 (canale condiviso tra UDP e ack del TCP)	9,307		

Grafici di IO di Wireshark: C_misto_H1

Nel grafico sono mostrati in rosso i bytes trasmessi dalla connessione TCP, in blu quelli trasmessi in UDP.

Il flusso UDP non riesce a raggiungere i 9,6Mbit/s perchè condivide il canale con gli ACK della connessione TCP.

D - Rete tipo B

Protocollo	AVG TCP	goodput	Collision p	on probability Loss at the applicatio		
	Pred	Obs	Pred	Obs	Pred	Obs
TCP - H1	< 9,5/2 perchè il	3,848	Possibile la collisione	33,992%	0%	0%
TCP - H2	canale tra H1 e lo switch è condiviso dalle due comunicazio ni + gli ack	5,206	0%	0%	0%	0%
UDP - H1	circa 9,6 / 2	4,536	Possibile la collisione	9,483%	alta probabilità di perdita	24,268%
UDP - H2	circa 9,6 / 2	3,595	0%	0%	alta probabilità di perdita	24,658%

Le due connessioni TCP dovrebbero condividere in maniera uguale il canale tra H1 e lo switch, mentre non si disturbano (tranne che per gli ACK) tra lo switch e H2.

Come si vede dal grafico ad un certo punto ($t \approx 6s$) una delle due connessioni prende il sopravvento sull'alta creando la differenza di goodput osservato.

Sia in TCP che in UDP è possibile la collisione tra H1 e lo switch (canale HD), in UDP questo ha effetto sulle perdite a livello applicazione (che sono molto elevate).

Va considerato che i pacchetti UDP sono frazionati in più pacchetti IP e, quindi, anche se uno solo dei pacchetti IP che lo compongono va perso, il pacchetto UDP non giunge correttamente a destinazione.

A causa delle ritrasmissioni dovute alle collisioni le code dello switch si riempiono e molti pacchetti vengono scartati.

AVG TCP goodput		AVG UDP		
Pred	Obs	Pred	Obs	
< 9,5 perchè ridotto dalle collisioni con i pacchetti UDP inviati dall'altro host e con gli ack	5,160	< 9,6 perché il canale è condiviso con gli ack	9,483	Il canale HD è dalla parte del TCP, il FD dalla parte dell'UDP

Grafici di IO di Wireshark: D_misto_H1

La connessione UDP (in blu) riesce a fermare quasi del tutto quella TCP (in rosso) che può completarsi solo dopo l'istante in cui il flusso UDP cessa.

Questo comportamento spiega la grande diversità di goodput osservato: quello dell'UDP è molto vicino a quello ideale, mentre quello TCP è poco più della metà (per 7 secondi circa la velocità è prossima allo 0, mentre per i 7 secondi successivi è prossima a quella ideale).

E - Rete tipo A

Protocollo	AVG TCP	goodput	Collision probability		Loss at the application Layer	
	Pred	Obs	Pred	Obs	Pred	Obs
TCP - H1	9,5 / 2	4,707	0%	0%	0%	0%
TCP - H2	perchè il canale tra H2 e lo switch è condiviso tra le due comunicazio ni	4,754	0%	0%	0%	0%
UDP - H1	molto < (9,6 / 2) perchè il canale è condiviso dai due flussi	0,331	0%	0%	Alta probabilità di perdita	95,605%
UDP - H2		0,589	0%	0%	Alta probabilità di perdita	92,139%

Essendo l'intera rete in full duplex non è possibile osservare collisioni. Il collo di bottiglia in questo esperimento è il canale tra lo switch ed H3.

Per quanto riguarda le comunicazioni in TCP queste si dividono equamente il canale e non si osservano (ovviamente) perdite a livello applicazione.

Invece in UDP il comportamento è molto diverso. I due flussi UDP che si spostano indisturbati tra H1 e lo switch e tra H2 e lo switch riempiono le code di quest'ultimo causando la coda di molti pacchetti (circa la metà).

pacchetti ricevuti ≈ 20Mbit/s pacchetti inviati ≈ 10Mbit/s

La perdita a livello applicazione è ancora più alta in quanto anche un solo pacchetto IP componente il pacchetto UDP perso causa la perdita dell'intero pacchetto.

AVG TCF	goodput	AVG UDP	goodput	
Pred	Obs	Pred	Obs	
circa 9,5 / 2 perchè durante la trasmissione dell'UDP la velocità è circa 0, quando UDP finisce trasmette a tutta velocità per un tempo circa uguale	4,820	< di 9,6 perchè parte del canale è comunque occupato dal flusso TCP	6,800	Il valore dell'UDP è basso in quanto il TCP regge abbastanza bene all'inizio

Grafici di IO di Wireshark: E_misto_H3

Nei primi istanti il flusso UDP e quello TCP condividono il canale ma molto presto quello UDP prende il sopravvento.

La velocità del flusso TCP è circa la metà di quella ideale (dovuta alla velocità prossima a zero nella prima parte e prossima all'idealità nella seconda).

Il flusso UDP invece agisce abbastanza indisturbato tranne che per i primi secondi.

Singolo flusso TCP su canale WiFi

Il canale WiFi è stato impostato per avere una velocità di trasferimento pari a 54 Mbit/s. Per abbassare gli errori di misura, i dati trasmessi sono stati aumentati rispetto al valore di default a 20000 pacchetti da 1500 bytes.

La velocità effettiva calcolata grazie ad nttcp varia ad ogni prova con valori variabili tra 7.24 Mbit/s e 12.80 Mbit/s.

Questa varietà di risultati è dovuta alla natura del canale WiFi. Infatti il canale è in half duplex e quindi soggetto a collisioni. È inoltre

soggetto a disturbi dovuti ad altre reti WiFi nelle vicinanze.

Anche in condizioni ottime il goodput è molto minore alla velocità indicata in quanto il protocollo WiFi prevede molta più intestazione ai pacchetti rispetto alla normale intestazione ethernet.