DEFS

- 1. a proper ideal of a ring is an ideal $I \leq R$ so that I is not zero ideal and I is not R.
- 2. an integral domain is a commutative ring with idneity so that *R* has no nonzero zero divisors.
- 3. an ideal *I* of a ring *R* is a prime ideal iff $ab \in I$ implies $a \in I$ or $b \in I$.
- 4. let *D* be an integral domain. $p \in D$ is prime iff $p \mid ab \implies p \mid a \lor p \mid b$.
- 5. let *D* be an ID. then $p \in D$ irredubible iff $p = ab \implies$ a or b is a unit.
- 6. a principal ideal domain is an integral domain D so that every ideal in D is a principal ideal.
- 7. a unique factorization domain (UFD) is an integral domain so that (1): let $a \in D$ nonzero, nonunit. then we have that a can be written as a product of irreducibes in D. (2): if $a = p_1, \dots p_n = q_1 \dots q_m$, then n = m and there exists $\pi \in S_n$ so that $p_i, q_{\pi(j)}$ are associates.
- 8. An integral domain D is a euclidean domain with a function $v: D \setminus \{0\} \to \mathbb{N}$ so that (1): if $a, b \in D$ nonzero, then $v(a) \le v(ab)$. (2): if $a, b \in D$ and $b \ne 0$, then there exist $q, r \in D$ so that a = bq + r with r = 0 or v(r) < v(b).
- 9. let I,J be ideals. Then their product is $I \cdot J = \{\sum_{k=1}^n a_k b_k \mid a_k \in I, b_k \in J, n \in \mathbb{Z}_{>0}\}.$
- 10. let R be a ring. it is finitely generated iff there exist $x_1, \ldots, x_n \in R$ (for some $n \in \mathbb{Z}_{>0}$) so that $R = \langle x_1, \ldots, x_n \rangle = \{a_1x_1 + \cdots + a_nx_n \mid a_i \in R \forall i\}$.
- 11. let R be a commutative ring with identity. then $x, y \in R$ are associates iff there exist $c \in U(R)$ so that x = yc.
- 12. a vector space is a set *V* so that
 - (a) (V,+) is an abelian group, with so that $+: V \times V \to V$ so that $(u,v) \mapsto u+v$.
 - (b) *V* closed under scalar multiplication, i.e. if $\lambda \in F$ and $v \in V$, then $\lambda \cdot v \in V$.
 - (c) $(\alpha\beta)v = \alpha(\beta v)$.
 - (d) $\alpha(u+v) = \alpha u + \alpha v$.
 - (e) $(\alpha + \beta)v = \alpha v + \beta v$.
 - (f) $1 \cdot v = v$.
- 13. a linear map from F-vector spaces V, W is a map $\phi: V \to W$ so that $\phi(v+w) = \phi(v) + \phi(w)$ and $\phi(cv) = c\phi(v)$.
- 14. let $E \ge F$ be fields with field extension. then $E \ge F$ is a simple algebraic field extension iff $E = F(\alpha_1)$ where $\alpha \in E$ and algebraic over F.
- 15. let E and F be fields. $E \ge F$ is a simple algebraic field extension iff $E \cong F[x]\langle p(x) \rangle$ for irreducible p(x).
- 16. $F[p(x)] := F(\alpha_1, \dots, \alpha_n)$, where $\alpha_1, \dots, \alpha_n$ are all the roots of p(x).
- 17. let F be a field and p(x) be a nonconstant polynomial in F[x]. Then $E \ge F$ is a splitting field of the extension $E \ge F$ iff $E = F(\alpha_1, \dots, \alpha_n)$ for some $\alpha_i \in E(\forall i)$ and so that $p(x) = \prod (x \alpha_i)$.
- 18. the degree of a splitting field extension is the dimension of the vector space it genrates.
- 19. let $E \ge F$ be a field extension. then an automorphism of E over F is a bijective ring homoomrphism $\phi : E \to E$ so that $\phi(f) = f \forall f \in F$.
- 1. if *T* is a field, then its only ideals are the zero one and *T* itself.
- 2. R/I is a field iff I is maximal in R.
- 3. for a given ring, the set of zero divisors is disjoint from the set of units.
- 4. R/I is an integral domain iff I is a prime ideal in R.
- 5. div alg. Let $a, b \in Z$ so that $b \neq 0$. Then there exist unique $q, r \in Z$ so that a = bq + r with $0 \le r < b$.
- 6. let $a, b \in Z$ nonzero, then there exist integers $p, q \in Z$ so that gcd(a, b) = pa + qb, where gcd(a, b) is unique.

- 7. fundamental theorem of arithemetic. let $n \in \mathbb{Z}_{>0}$. then n can be factored uniquely into product of primes.
- 8. if $a(x), b(x) \in F[x]$, then there exist unique $q(x), r(x) \in F[x]$ so that
 - (a) a(x) = q(x)b(x) + r(x.
 - (b) $\deg(r(x)) < \deg(b(x))$.
- 9. if *F* is a field, then $\alpha \in F$ so that α is a root of $p(x) \in F[x]$ iff $(x \alpha) \mid p(x)$.
- 10. if *F* is any field and $f(x) \in F[x]$ has degree *n*, then f(x) has at most *n* roots.
- 11. Z[i] is a commutative ring with identity but not a field.
- 12. units in Z[i] are ± 1 and is an integral domain.
- 13. N(xy) = N(x)N(y) for all x, y in the gaussian integers.
- 14. div. alg. for guassian integers. let $\alpha, \beta \in Z[i]$, and also let $\beta \neq 0$. then there exist $q, r \in Z[i]$ so that $\alpha = q\beta + r$ where r = 0 or N(r) < N(b).
- 15. Z[sqrt-5] is an integral domain, commutative ring with 1, but not a field.
- 16. the units in z sqrt -5 are ± 1 and is an integral domain.
- 17. norm is multiplicative on z sqrt -5
- 18. let *R* be an integral domain. then every prime is irreducible.
- 19. 3 is irreducible in z sqrt -5 but not prime
- 20. let *R* be a integral domain. then $\langle u \rangle = R$ iff *u* is a unit in *R*.
- 21. let *R* be an integral and $r \in R$ a nonunit. then $\langle r \rangle$ is prime iff *r* is prime.
- 22. if $I = \langle a \rangle$ and $J = \langle b \rangle$, then $I \cdot J = \langle ab \rangle$, where I and J are (principal) ideals in R.
- 23. if R = Z and $x_1, \ldots, x_n \in Z$ then $\langle x_1, \ldots, x_n \rangle = \{a_1x_1 + \cdots + a_nx_n, | a_i \in R \forall i\} = \langle \gcd(x_is) \rangle$.
- 24. z sqrt -5 is not a principal ideal domain.
- 25. let *R* be z sqrt -5. for norm we have that N(A) = 0 iff A = 0, α is a unit iff $N(\alpha) = \pm 1$, and if $N(\alpha)$ is prime, then α is irreducible.
- 26. every maximal ideal of a commutativie ring with identity is a prime ideal.
- 27. fundamental theorem of ideal theory. let R be a commutative ring with identity. and I be a nonzero proper ideal of R. then there exists a unique (up to order) factorization $I = P_1 \cdots P_k$ (for some k) so that each P_i is a prime ideal.
- 28. let α be a nonzero nonunit element of z sqrt -5. then α is irreducible iff $<\alpha>$ is prime, or iff $<\alpha>=P_1\cdot P_2$, where P_i are nonprincipal prime ideals.
- 29. if α is a nonzero elemtn of z sqrt -5, and β_1, \ldots, β_n and $\gamma_1, \ldots, \gamma_m$ are irreducible, with the products both equal to α , then s = t.
- 30. if *F* is a field then F[x] is a PID.
- 31. let $p(x) \in F[x]$. then $\langle p(x) \rangle$ is maximal iff p(x) is irreducible.
- 32. in F[x], prime ideals = maximal ideals.
- 33. if E > F is a field extension, then E is an F-vector speae.
- 34. splitting field algorithm. let F be a field and $p(x) \in F[x]$ irred. then to find the splitting field of F[p(x)], we have that put $F_1 := F[x] < p(x) >$, and write $p(x) = (x a_1)q(x)$, put F_2 and so on....
- 35. let $F = K(a_1, a_2)$ be a field extension. then the degree $[F : K] = [F : K(a_1)] \cdot [K(a_1) : K]$.
- 36. $\{id,\}$ are all the automorphisms of C over R.