Kochen-Specker Uncolorable Sets:

An Algorithmic Approach to Proving Contradictions

Camilo Morales

Department of Mathematics University of California, Irvine

Vector Spaces

Vector Spaces

Figure 1: Vector addition

Figure 2: Scalar multiplication

Orthogonality

Figure 3: $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_3}$ are pairwise orthogonal.

Orthogonality

Orthogonality

Computing the dot product of each pair of vectors above will always yield 0:

$$(1,0,0)\cdot(0,1,0)=(1\cdot0)+(0\cdot1)+(0\cdot0)=0+0+0=0.$$

Orthogonal Sets

Definition

A set of vectors $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ in a vector space V is called an **orthogonal set** if all pairs of distinct vectors in the set are orthogonal – that is, if

$$\vec{v_i} \cdot \vec{v_j} = 0$$
 whenever $i \neq j$ for $i, j = 1, 2, \dots, k$.

Coloring and Contextuality

Coloring and Contextuality

Kochen-Specker, 1967

There is a finite set $S \subset \mathbb{R}^3$ such that there is no function $f: S \to \{0, 1\}$ satisfying

$$f(\vec{u}) + f(\vec{v}) + f(\vec{w}) = 1$$

for all triples $(\vec{u}, \vec{v}, \vec{w})$ of mutually orthogonal vectors in S.

$$\mathbb{R}^3 := \{(x, y, z) : x, y, z \in \mathbb{R}\}$$

Let S be a set of vectors and consider the value function $f: S \to \{0, 1\}$.

Let S be a set of vectors and consider the value function $f: S \to \{0, 1\}$.

$$f(\vec{v_1}) = 0$$
 $f(\vec{v_2}) = 0$ $f(\vec{v_3}) = 1$

Figure 4: A graphical representation of the set of 117 vectors in the original proof of the KS Theorem (Budroni et al, 2022).

Uncolorable Sets of Integer Vectors

Uncolorable Sets of Integer Vectors

Let N be a positive squarefree integer. We define

$$S_n(N) = \{ \vec{v} \in \mathbb{Z}^n : ||\vec{v}||^2 \text{ is a unit in } \mathbb{Z}[1/N] \}$$
$$= \{ \vec{v} \in \mathbb{Z}^n : ||\vec{v}||^2 \text{ divides a power of } N \}.$$

Uncolorable Sets of Integer Vectors

Let N be a positive squarefree integer. We define

$$S_n(N) = \{ \vec{v} \in \mathbb{Z}^n : ||\vec{v}||^2 \text{ is a unit in } \mathbb{Z}[1/N] \}$$
$$= \{ \vec{v} \in \mathbb{Z}^n : ||\vec{v}||^2 \text{ divides a power of } N \}.$$

Question

For which positive squarefree integers N is the set of vectors $S(N) := S_3(N)$ Kochen-Specker uncolorable?

(Un)colorable Sets of Integer Vectors

Let M be an integer such that M divides a squarefree integer N. It follows that $S(M) \subseteq S(N)$. Furthermore,

 $\mathcal{S}(N)$ colorable $\implies \mathcal{S}(M)$ colorable, $\mathcal{S}(M)$ uncolorable $\implies \mathcal{S}(N)$ uncolorable.

(Un)colorable Sets of Integer Vectors

Let M be an integer such that M divides a squarefree integer N. It follows that $S(M) \subseteq S(N)$. Furthermore,

$$\mathcal{S}(N)$$
 colorable $\implies \mathcal{S}(M)$ colorable, $\mathcal{S}(M)$ uncolorable $\implies \mathcal{S}(N)$ uncolorable.

Ben-Zvi et al., 2017

If S(N) is KS uncolorable, then 6 divides N.

(Un)colorable Sets of Integer Vectors

Let M be an integer such that M divides a squarefree integer N. It follows that $S(M) \subseteq S(N)$. Furthermore,

$$\mathcal{S}(N)$$
 colorable $\implies \mathcal{S}(M)$ colorable, $\mathcal{S}(M)$ uncolorable $\implies \mathcal{S}(N)$ uncolorable.

Ben-Zvi et al., 2017

If S(N) is KS uncolorable, then 6 divides N.

Bub, 1996

If 30 divides N, then the set S(N) is KS uncolorable.

Diophantine Equations

Diophantine Equations

Let N be a positive squarefree integer.

$$x^{2} + y^{2} + z^{2} = N \rightarrow (x, y, z)^{T} \in \mathcal{S}(N)$$

Diophantine Equations

Let N be a positive squarefree integer.

$$x^{2} + y^{2} + z^{2} = N \rightarrow (x, y, z)^{T} \in \mathcal{S}(N)$$

from sympy import diophantine
from sympy.abc import i, j, k
vec_sol = diophantine(i**2 + j**2 + k**2 - n, permute
= True)

Primitive and Well-Signed Vectors

Definition

An integer vector is *primitive* if its entries have a greatest common divisor equal to 1.

Primitive and Well-Signed Vectors

Definition

An integer vector is *primitive* if its entries have a greatest common divisor equal to 1.

Definition

A vector $\vec{v} = (v_1, v_2, v_3) \in \mathbb{Z}^3 \setminus \{0\}$ is well-signed if either:

- \vec{v} has only one nonzero entry which is positive,
- \vec{v} has two nonzero entries and its first nonzero entry is positive, or
- \vec{v} has three nonzero entries, at least two of which are positive.

Let N be a positive squarefree integer.

```
Let N be a positive squarefree integer.

color_dict = {(1, 0, 0): 1, (0, 0, 1): 0, (0, 1, 0): 0}

If N = 0 (mod 2), then

color_dict[(1, 0, -1)] = 1

color_dict[(1, 0, 1)] = 0

color_dict[(1, 1, 0)] = 0

color_dict[(1, -1, 0)] = 1

color_dict[(0, 1, 1)] = 0

color_dict[(0, 1, -1)] = 0.
```

```
Let n = N be a positive squarefree integer and recall that vec_sol = diophantine(i**2 + j**2 + k**2 - n, permute = True).
```

```
Let n = N be a positive squarefree integer and recall that vec\_sol = diophantine(i**2 + j**2 + k**2 - n, permute = True).
```

Let $\vec{v_1}$ be a primitive, well-signed vector in vec_sol and $\vec{v_2}$ be a vector in color_dict.

Let n = N be a positive squarefree integer and recall that $vec_sol = diophantine(i**2 + j**2 + k**2 - n, permute = True).$

Let $\vec{v_1}$ be a primitive, well-signed vector in vec_sol and $\vec{v_2}$ be a vector in color_dict.

If $\vec{v}_1 \cdot \vec{v}_2 = 0$ and \vec{v}_2 was assigned the value 1, then \vec{v}_1 must be assigned the value 0.

Let \vec{v}_1 and \vec{v}_2 be vectors in color_dict, which was updated in the previous slide.

Let $\vec{v_1}$ and $\vec{v_2}$ be vectors in color_dict, which was updated in the previous slide.

If $\vec{v}_1 \cdot \vec{v}_2 = 0$ and both \vec{v}_1 and \vec{v}_2 were assigned the value 0, then we take the cross product of \vec{v}_1 and \vec{v}_2 .

Let $\vec{v_1}$ and $\vec{v_2}$ be vectors in color_dict, which was updated in the previous slide.

If $\vec{v}_1 \cdot \vec{v}_2 = 0$ and both \vec{v}_1 and \vec{v}_2 were assigned the value 0, then we take the cross product of \vec{v}_1 and \vec{v}_2 .

Let \vec{v}_{cross} be the normalized cross product of \vec{v}_1 and \vec{v}_2 , which must be assigned the value 1.

Preliminary Results

```
def color assignment(N):
                                                  """Return True if all vectors (constructed) from primative_well_signed_solutions(N) has been designate
                                                                either a 1 or 0 and False if we identify a contradiction.
                                                                      color dict[(0, 1, -1)] = 0
                                                   vec set = vectors to color(N)
  PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
  In [3]: run Vector_Coloring.py
  A contradiction has been identified from coloring (2, 1, 0), the cross product of (0, 0, 1) and (1, -2, 0).
  We colored the other vectors as follows: ((1, 0, 0): 1, (0, 0, 1): 0, (0, 1, 0): 0, (1, 0, -1): 1, (1, 0, 1): 0, (1, 1, 0): 0, (1, -1, 0): 1, (0, 1, 1): 0, (0, 1, -1): 0, (1, -1, 0): 1, (0, 1, 1): 0, (0, 1, -1): 0, (1, -1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0): 1, (0, 1, 0):
    2, 8); 8, (1, -2, 5); 8, (2, -1, 5); 8, (1, 8, 2); 8, (-1, 2, 8); 1}
  In [5]: color assignment(462)
A controlled in as Seni identified from coloring (-3, 2, 0), the cross product of (2, -4, 2) and (4, 2, 1). We colored the other vectors as followed: (1, 0, 0); (1, 0, 0, 1); (0, 0, 1); (0, 1, 0); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0); (0, 1, 0); (0, 1, 0); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0, 1, 0, 1); (0
```

Preliminary Results

```
def color assignment(N):
             """Return True if all vectors (constructed) from primative_well_signed_solutions(N) has been designate
                 either a 1 or 0 and False if we identify a contradiction.
                  color dict[(1, 0, -1)] = 1 # Now, we add vectors from Q {2} that form an orthogonal set with (0,
                  color dict[(1, 0, 1)] = 0
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
Out[5]: False
In [6]: color_assignment(6)
The vectors we have left to color are:
The vectors we have left to color are:
Every element in our original finite set of vectors has been colored.
In [7]: color assignment(6**2)
The vectors we have left to color are:
(2, -2, 1), (1, 2, -2), (2, 1, -2)}
Let's assume (-2, 1, 2) is colored 0.
The vectors we have left to color are:
Let's assume (-1, 4, 1) is colored 0.
The vectors we have left to color are:
The vectors we have left to color are:
Let's assume (-2, 2, 1) is colored 0.
The vectors we have left to color are:
Every element in our original finite set of vectors has been colored.
```

Preliminary Results

```
def color assignment(N):
                                          """Return True if all vectors (constructed) from primative_well_signed_solutions(N) has been designate
                                                       either a 1 or 0 and False if we identify a contradiction.
                                                           color dict[(1, 0, 1)] = 0
                                            vec set = vectors to color(N)
                                OUTPUT DEBUG CONSOLE TERMINAL
Let's assume (-1, 4, 1) is colored 0.
 The vectors we have left to color are:
\{(2, 1, 1), (1, -1, 2), (-1, 1, 1), (-2, 2, 1), (4, -1, 1), (1, -1, 4), (1, 2, -1), (1, 2, -2)\} Let's assume \{(2, 1, 1)\} is colored \emptyset.
 The vectors we have left to color are:
 The vectors we have left to color are:
 Every element in our original finite set of vectors has been colored.
 In [8]: color_assignment(6**3)
 The vectors we have left to color are:
 Let's assume (-2, 5, 5) is colored 0.
Ne colored the other vectors as follows: (1, 0, 0): 1, (0, 0, 1): 0, (0, 1, 0): 0, (1, 0, -1): 1, (1, 0, 1): 0, (1, 1, 0): 0, (1, 1, 0): 0, (1, 1, 0): 0, (1, 1, 0): 0, (1, 1, 0): 0, (1, 1, 0): 0, (1, 1, 0): 1, (0, 1, 1): 0, (0, 1, -1): 0, (1, 5, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (1, 1, 1): 0, (
```

References

- Ben-Zvi, Michael, et al. "A Kochen-Specker theorem for integer matrices and noncommutative spectrum functors." Journal of Algebra 491 (2017): 280-313.
- Budroni, Costantino, et al. "Kochen-specker contextuality."
 Reviews of Modern Physics 94.4 (2022): 045007.
- Cortez, Ida, and Manuel L. Reyes. "A set of integer vectors with no Kochen-Specker coloring." arXiv preprint arXiv:2211.13216 (2022).