academic year: 2023 / 2024

Author: Berrabah Sid Ahmed

1^{sr} year of engineering

Lab 4: Functions

Exercise 1:

- 1. Write the C code for a function **digits_sum** that reads an integer and returns the sum of its digits.
- 2. Write the C program that uses **digits_sum** to calculate the sum of the digits of a number entered by the user. The sum, in turn, will be converted into the sum of its digits. And so on, until the sum is only one digit long.

Example: 75 12 3.

Exercise 2:

The Syracuse sequence is defined as follows:

 \mathbf{u}_0 is a positive integer chosen by the user.

 $\mathbf{u_{n+1}} = \mathbf{u_n}/2$ if $\mathbf{u_n}$ is even.

 $\mathbf{u}_{n+1} = 3 \mathbf{u}_n + 1 \text{ if } \mathbf{u}_n \text{ is odd.}$

- 1. Write a C function (Syracuse) that returns the term u_{n+1} of the Syracuse sequence from the term u_n received as a parameter.
- 2. Write a C function that uses the Syracuse function to find the smallest value of n for which $u_n = 1$ from a term u_0 received as a parameter.
- 3. Write a C function that uses the Syracuse function to calculate the largest value reached by the terms u_n from the term u_0 received as a parameter.
- 4. Write the C program to test these functions.

Exercise 3:

A factorion is a positive integer that is equal to the sum of the factorials of its digits.

Examples:

145 = 1! + 4! + 5!40585 = 4! + 0! + 5! + 8! + 5!

- 1. Write a C function factorial() that calculates the factorial of an integer given as a parameter.
- 2. Write a C function to check if a positive integer given as a parameter is a factorion.
- 3. Test your functions in a main program for a number entered by the user.

Exercise 4:

- 1. Write a C function (procedure) to print the prime factors of a number given as a parameter.
- 2. Test the function in a main program for a number entered by the user.

Example, if the input number is 12, then the output should be "2 2 3". And if the input number is 315, then the output should be "3 3 5 7".