Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 1

- 1. Пусть $z=\sqrt{3}+i$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{1+\sqrt{3}i}$ имеет аргумент $-\frac{5\pi}{24}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-14+12i) + y(3-13i) = 78 - 166i \\ x(2+7i) + y(-13-8i) = 39 - 66i \end{cases}$$

- 3. Найти корни многочлена $2x^6 + 2x^5 + 8x^4 336x^3 + 1070x^2 2386x + 1640$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -4 5i, \, x_2 = 1 2i, \, x_3 = 4$.
- 4. Даны 3 комплексных числа: 4, -15+27i, -19-21i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{1}{2} + \frac{\sqrt{3}i}{2}, z_2 = -1$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 2 + 2i| < 1\\ |arg(z + 5 + 5i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-8, -2, 4), b = (-1, -3, -2), c = (0, 8, 7). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(9,-8,3) и плоскость P:-2x+12y+34z+664=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(3,2,-14), $M_1(-2,-18,4)$, $M_2(32,-1,4)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -25x - 5y + 2z - 107 = 0 \\ -11x - 8y - 17z + 81 = 0 \end{cases} \qquad L_2: \begin{cases} -14x + 3y + 19z - 2452 = 0 \\ -14x + 12z - 1820 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.