Anomaly Detection in Host Log Files

Kate Stadelman

Research Question

Anomaly Detection in Host Log Files

Can we detect suspicious user activity hidden in massive computer log files?

Unified Network & Network Data Set

"A subset of network and computer (host) events collected from the Los Alamos National Laboratory enterprise network over the course of approximately 90 days." 1

Details

- Microsoft Windows Computers
- Logs Deidentified for Security
- Day One: 55.6M Events

Hacking 101

- 1. Gain Access to a Computer with a Low-Level User
- 2. Escalate Privileges (to Administrator)
- 3. Run Harmful Code
 - Hijack Processes
 - Steal / Destroy Data
 - Breach Other Computers on the Network

Connect Logs By

Event Time

Computer (Host) Name

User Name

Logon ID

Computer (Host) Events

- Windows Authentications (Kerberos)
- Logins Using Explicit Credentials
- Login Failures (with Reason Codes)
- Special Privileges Assigned to Login
- Process Started / Stopped
- Computer Locked / Unlocked
- Screen Saver Started / Stopped

Log Aggregation

Counts by User

- Login Attempts
- Login Failures
- Hosts Accessed
- Privileged Actions
- Processes Started
- Mapped Credentials

Variable Check

19,220 Users

Isolation Forest

- First Presented in 2008
- Developed for Anomaly Detection
- Unsupervised Tree Ensemble Method
- Extension of Random Forest
- Scales Well for Large Data Sets

Which One is Different?

Data Requirements

Bad Data? Isolation Forest STILL WORKS

- High-Dimension Problems
- Data is Not Well-Behaved
- Large Number of Irrelevant Attributes
- Small Training Sets
- Training Sets Without Anomalies

isotree Package

```
library('Rcpp')
library(isotree)

# Generate Isolation Forest Model
logs.iForest <- isolation.forest(dat.train[-c(1)], output_score = TRUE )
summary.isolation_forest(logs.iForest$model)</pre>
```

```
# Use model to detect outliers in test data
dat.test$score <- predict.isolation_forest(logs.iForest$model, newdata=dat.test[-c(1)])
# Visualize distribution of Isolation Forest scores on test set
ggplot(dat.test, aes(x=score)) + geom_density() +
  labs(title="Density of Isolation Forest Scores (Test)")</pre>
```

Process

- 1. Split Data (50%/50%)
- 2. Train Model
- 3. Review Output
- 4. Pick Outlier Threshold
- 5. Adjust Parameters
- 6. Test Model
- 7. Identify Outliers

Model Output

Anomaly Scores

- Generated for Each Observation
- Derived From Average Path Length
- Closer to 0.5 Nemmal
- Closer to 1 → Outlier
- Set Outlier Threshold for Analysis (0.7)

Training Results

Test Results

Anomalous Users

user_name <chr></chr>	score <dbl></dbl>	login_auth_attempts <int></int>	failed_logins <int></int>	hosts_accessed <int></int>	processes_started <int></int>	privileged_actions <int></int>
Comp065845\$	0.7769989	153964	153131	2	831	21
User006226	0.7473575	10514	5210	11	752	0
User515356	0.7469937	34728	17264	4	42	2
User031784	0.7466268	39844	19595	8	39	3
User816098	0.7436512	14905	2875	4	0	0
User071989	0.7385587	6121	2162	7	396	561
User587067	0.7352707	14939	2873	5	5	0
User096590	0.7345938	14943	2873	5	12	10
User829284	0.7298513	17382	1917	11	66	0
User643724	0.7280946	493756	0	3	160	108994
User324202	0.7156618	583	0	90	1	196
User247683	0.7140114	3098	778	2	0	0
User015659	0.7043780	5970	2218	8	78	1

Discussion

Q & A

References

Turcotte M., Kent A., & Hash C. (2018, November). Unified Host and Network Data Set. *Data Science for Cyber-Security*, (1–22). https://www.worldscientific.com/doi/abs/10.1142/9781786345646_001

Liu F. T., Ting K. M., & Zhou, Z.-H. (2008). *Isolation Forest*. Proceedings of the 8th IEEE International Conference on Data Mining (ICDM'08), Pisa, Italy. https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf

Zhu, A. & Suresh, S. (2019, December 13). *Isolation Forest for Data Mining*. Medium. https://medium.com/@siddharth.suresh92/isolation-forest-for-data-mining-a2c44a26d646

Young, A. (2020, November 13). *Isolation Forest is the best Anomaly Detection Algorithm for Big Data Right Now*. Towards Data Science. https://towardsdatascience.com/isolation-forest-is-the-best-anomaly-detection-algorithm-for-big-data-right-now-e1a18ec0f94f