B-13 (ANSYS)

Формулировка задачи:

Дано: Ферма собрана с зазором. Зазор принудительно стягивают, в результате чего в стержнях фермы возникают напряжения.

E – модуль упругости материала;

 σ_T –предел текучести материала;

A – площадь поперечного сечения.

l – длина;

 $\alpha = 45^{\circ}$;

△ – монтажный зазор;

 $[n_{\scriptscriptstyle T}]$ – нормативный коэффициент запаса прочности по текучести.

Найти: 1) Допустимое значение зазора [Δ];

2) Величину вертикального перемещения точки B '.

Аналитический расчёт (см. В-13) даёт следующие решения:

$$N_{I} = N_{3} = \frac{\sqrt{2}}{3} \cdot \frac{E \cdot A \cdot \Delta}{l} = 0,4714 \cdot \frac{E \cdot A \cdot \Delta}{l} ;$$

$$N_{2} = \frac{2}{3} \cdot \frac{E \cdot A \cdot \Delta}{l} = 0,6667 \cdot \frac{E \cdot A \cdot \Delta}{l} ;$$

$$\sigma_{I} = \sigma_{3} = \frac{\sqrt{2}}{3} \cdot \frac{E \cdot \Delta}{l} = 0,4714 \cdot \frac{E \cdot \Delta}{l} ;$$

$$\sigma_{2} = \frac{1}{3} \cdot \frac{E \cdot \Delta}{l} = 0,3333 \cdot \frac{E \cdot \Delta}{l} ;$$

$$\sigma_{2} = \frac{1}{3} \cdot \frac{E \cdot \Delta}{l} = 0,3333 \cdot \frac{E \cdot \Delta}{l} ;$$

$$\sigma_{3} = \frac{\Delta l_{1}}{l} = \frac{N_{1} \cdot l}{E \cdot A \cdot \cos \alpha} = \frac{2}{3} \cdot \Delta ;$$

$$\sigma_{3} = 0,4714 \cdot \frac{E \cdot \Delta}{l} \Rightarrow [\sigma] = 0,4714 \cdot \frac{E \cdot [\Delta]}{l} = \frac{\sigma_{T}}{[n_{T}]} \Rightarrow [\Delta] = \frac{\sigma_{T} \cdot l}{0,4714 \cdot [n_{T}] \cdot E} .$$

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

<u>Решение задачи:</u> Приравняв E, A, Δ и l, к единице, результаты получим в виде чисел, обозначенных на *рис.* 1. синим цветом.

No	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи:U_M > Parameters > Scalar Parameters >E=1	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский фермовый LINK1: М_М > Preprocessor С_Р > ET,1,LINK1 > Enter Вторая строчка — контактный элемент CONTA178: М_М > Preprocessor > Element Type > Add/Edit/Delete > Add Element reference number пишем 2 В левом окошке выбираем "Contact" В правом окошке выбираем "Contact" В правом окошке "nd-to-nd 178" > ОК > В окошке Element types отметить вторую строчку "2 CONTA178" > Options > К2 установить "Penalty method" К4 установить "Real const GAP" К5 установить "Nodal coor - Y" > ОК > Close	Defined Element Types: Type 1 LINK1 Type 2 CONTA178 Add Options Delete Close Help

№	Действие	Результат
	Узлы 1, 2, 3, 4 и 5 в точках D, S, B', B'' и С соответственно:	
7	M_M> Preprocessor> Modeling> Create> Nodes> In Active CS > NODE пишем 1 X,Y,Z пишем 0,l*(1+cos(Alpha))+Delta,0 > Apply > NODE пишем 2 X,Y,Z пишем 2*l*sin(Alpha),l*(1+cos(Alpha))+Delta,0 > Apply > NODE пишем 3 X,Y,Z пишем 3 X,Y,Z пишем l*sin(Alpha),l+Delta,0 > Apply >	1 2 NODES 1 2
	NODE пишем 4 X,Y,Z пишем $l*sin(Alpha),l,0$ > Apply > NODE пишем 5 X,Y,Z пишем $l*sin(Alpha),0,0$ > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit	×x .5

№	Действие	Результат
8	Banounuse конечные элементы последовательно протягиваем по участкам фермы: M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes [TYPE]установить "1 LINK1" [MAT]установить "1" > OK M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 2 и 3 > OK M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes [REAL]установить "2" > OK M_M > Preprocessor> Modeling> Create> Elements> Elem Attributes [REAL]установить "2" > OK M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 4 и 5 > OK M_M > Preprocessor> Modeling> Create> Elements> Elem Attributes [REAL]установить "1" > OK M_M > Preprocessor> Modeling> Create> Elements> Elem Attributes [REAL]установить "1" > OK M_M > Preprocessor> Modeling> Create> Elements> Elem Attributes [REAL]установить "1" > OK M_M > Preprocessor> Modeling> Create> Elements> Elem Attributes [REAL]установить "1" > OK M_M > Preprocessor> Modeling> Create> Elements> > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 1 и 3 > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 E-N 1 2 3 1 4 2 2 Y X 5

№	Действие	Результат
9	Контактный конечный элемент в зазоре (протягиваем по направлению оси Y): Свойства элемента: M_M > Preprocessor > Modeling > Create > Elements > > ElemAttributes > [ТҮРЕ]установить "2 CONTA178" [МАТ]установить "1" [REAL]установить "3" > ОК	1 E-N 1 2
	Протягиваем контакный элемент между узлами 3 и 4 (против направления оси Y): M_M > Preprocessor > Modeling > Create > Elements >	4 2 <u>Y</u> Z_X 5

No	Действие	Результат
17	Деформированная форма конструкции: M_M > General Postproc > Plot Results >	DISPLACEMENT STEP=1 SUB =1 TIME=1 DMX = .666667 4 4 2
18	Вертикальное перемещение точки B ' конструкции (узла №3 конечноэлементной модели): М_М > General Postproc > List Results > Nodal Solution > Nodal Solution > Y-Component of displaceme > ОК Вертикальное перемещение узла №3 $UY = 0.6667 \cdot \Delta$ (отрицательное, то есть, вниз) в точности совпадает с результатом аналитического расчёта (рис. I .).	File PRINT U NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOH LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOH RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UY 1 0.0000 2 0.0000 3 -0.66667 4 0.33333 5 0.0000 HAXIHUH ABSOLUTE VALUES NODE 3 VALUE -0.66667

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.