CSCI-H 335: Homework 2: Number representation

Siyi Xian

February 20, 2019

1. Answer to question 1:

Assume the largest number for N digits is L(N).

Base case (N=0):

For binary number, $L(0) = 0 = 1 - 1 = r^0 - 1 = r^N - 1$.

Induction case:

Assume $L(N)=r^N-1$ for some $r,N\in\mathbb{N}$. $L(N+1)=r^{N+1-1}\cdot(r-1)+L(N) \qquad \qquad \text{Add largest number in r-radix to highest digit.}$ $=r^N-1+r^N\cdot(r-1)N \qquad \qquad \text{By IH}$ $=r^N-1+r^{N+1}-r^N$ $=r^{N+1}-1$

2. Answer to question 2

Because B is magnitude less than 2^{N2} , -B can be represent in N bits. We define the twos complement of a binary number by inverting its bits and adding 1. Thus $-(b_{N-1}..b_0)_{\bar{2}} = (\overline{b_{N-1}..b_0})_{\bar{2}} + 1$.

3. Answer to question 3

Assume I is k digits binary number, m > k, and a_1 is 0 or 1.

Positive case:

$$I = \sum_{i=0}^{k} a_i \cdot 2^i = 0 + \sum_{i=0}^{k} a_i \cdot 2^i = \sum_{i=1}^{m} 0 \cdot 2^i + \sum_{i=0}^{k} a_i \cdot 2^i$$
 (1)

Thus, it's value prevente for positive value because the highest digit of positive number always be 0. Negative case:

For all two's complement number, highest digit is always 1 if the given number is in range. Inverse 1 we get 0, and we proved in positive case. Thus extension will always keep value same.

4. Answer to question 4

Left-shift:

Assume $b_{-1} = 0$

$$(b_{N-1}..b_0)_{\bar{2}} \cdot 2 = (-b_{N-1} \cdot 2^{N-1} + \sum_{i=0}^{N-2} b_i \cdot 2^i) \cdot 2 = -b_{N-1} \cdot 2^{(N+1)-1} + \sum_{i=-1}^{(N+1)-2} b_{i+1} \cdot 2^i = (b_{N-1}..b_0, b_{-1})_{\bar{2}} = (b_{N-1}..b_0, 0)_{\bar{2}} \cdot 2 = (-b_{N-1} \cdot 2^{N-1} + \sum_{i=0}^{N-2} b_i \cdot 2^i) \cdot 2 = -b_{N-1} \cdot 2^{(N+1)-1} + \sum_{i=-1}^{(N+1)-2} b_{i+1} \cdot 2^i = (b_{N-1}..b_0, b_{-1})_{\bar{2}} = (b_{N-1}..b_0, 0)_{\bar{2}} \cdot 2 = (-b_{N-1} \cdot 2^{N-1} + \sum_{i=0}^{N-2} b_i \cdot 2^i) \cdot 2 = -b_{N-1} \cdot 2^{(N+1)-1} + \sum_{i=0}^{(N+1)-2} b_{i+1} \cdot 2^i = (b_{N-1}..b_0, b_{-1})_{\bar{2}} = (b_{N-1}..b_0, b$$

Arithmetic right-shift:

$$(b_{N-1}..b_0)_{\bar{2}}/2 = (-b_{N-1}\cdot 2^{N-1} + \sum_{i=0}^{N-2} b_i \cdot 2^i)/2 = -b_{N-1}\cdot 2^{N-3} + \sum_{i=1}^{N-3} b_i \cdot 2^i = (b_{N-1}..b_1)_{\bar{2}} = (b_{N-1}..b_1)_{\bar{2}} = (b_{N-1}..b_1)_{\bar{2}}$$
(3)

5. Answer to question 5

	Repeated Division (mod 2)									
(a)	Quotients	273	136	68	34	17	8	4	2	1
	Remainders	1	0	0	0	1	0	0	0	1
	(070) (100	01000	1)							

 $(273)_{10} = (100010001)_2$

	Repeated Division (mod 2)											
(b)	Quotients	1327	663	331	165	82	41	20	10	5	2	1
	Remainders	1	1	1	1	0	1	0	0	1	0	1

 $(1327)_{10} = (10101001111)_2$

 $(31673)_{10} = (111101110111001)_2$

	Repeated Division (mod 2)								
(d)	Quotients	107	53	26	13	6	3	1	
	Remainders	1	1	0	1	0	1	1	

$$(107)_{10} = (1101011)_2$$

6. Answer to question 6

$$233 - 21 = 212$$

$$1001 - 902 = 99$$

$$173 - 123 = 50$$

(d)
$$\begin{array}{c|ccccc}
\hline
0 & \hline
0 & \hline
0 & \hline
1 & \\
2 & 7 & 8 & 0 \\
- & 1 & 7 & 7 \\
\hline
1 & 6 & 0 & 3 \\
\hline
2780 - 177 = 1603
\end{array}$$

7. Answer to question 6

(a) Repeated Division (mod 2)

Quotients 111 55 27 13 6 3 1

Remainders 1 1 1 1 0 1 1

$$(111)_{10} = (01101111)_2$$

$$(-111)_{10} = (10010000 + 1)_2 = (10010001)_2$$

(b) Repeated Division (mod 2)
Quotients 59 29 14 7 3 1
Remainders 1 1 0 1 1 1

$$(59)_{10} = (00111011)_2$$

 $(-59)_{10} = (11000100 + 1)_2 = (11000101)_2$

(c) Repeated Division (mod 2)

Quotients 105 52 26 13 6 3 1

Remainders 1 0 0 1 0 1 1

$$(105)_{10} = (01101001)_2$$

$$(-105)_{10} = (10010110 + 1)_2 = (10010111)_2$$

(d) Repeated Division (mod 2)
Quotients 31 15 7 3 1
Remainders 1 1 1 1 1
$$(31)_{10} = (00011111)_2$$

8. Answer to question 8:

```
Base case (i=0): V((c_{i+1},s_i)_2) = V((c_1,s_0)_2) = V((a_0)_2) + V((b_0)_2) + V((c_0)_2) = V((a_i)_2) + V((b_i)_2) + V((c_i)_2) Induction case :  \text{Assume } V((c_N,s_{N-1},...,s_0)_2) = V((a_{N-1},...,a_0)_2) + V((b_{N-1},...,b_0)_2) + V((c_0)_2).  V((c_{N+2},s_{N+1},...,s_0)_2 = V((a_N,0,...,0)_2) + V((b_N,...,b_0)_2) + V((c_N,0,...,0)_2) + V((c_N,s_{N-1},...,s_0)_2)  = V((a_N,0,...,0)_2) + V((b_N,...,b_0)_2) + V((c_N,0,...,0)_2) + V((a_{N-1},...,a_0)_2) + V((b_{N-1},...,b_0)_2) + V((c_0)_2)  By IH = V((a_N,...,a_0)_2) + V((b_N,...,b_0)_2) + V((c_0)_2)
```