Metrische Räume

Definitionen

- Norm: Abbildung $\|\cdot\|:V\to\mathbb{R}_{\geq 0}$ sodass $\forall v,w\in V,\lambda\in\mathbb{R}$:
 - \circ Definitheit: $||v|| = 0 \Leftrightarrow v = 0$
 - Absolute Homogenität: $||\lambda v|| = |\lambda| * ||v||$
 - Dreiecksungleichung: $||v + w|| \le ||v|| + ||w||$

 $(\mathbb{R}\text{-Vektorraum }V)$

- Einheitssphäre: $S_1^n \coloneqq \left\{x \in \mathbb{R}^{n+1}: \|x\| = 1\right\} n$ -te Einheitssphäre Metrik: $d: X \times X \to \mathbb{R}_{\geq 0}$ (Menge X) sodass $\forall x, y, z \in X$:
- \circ Positivität: $d(x, y) = 0 \Leftrightarrow x = y$
- Symmetrie: d(x, y) = d(y, x)
- o Dreiecksungleichung: $d(x, z) \le d(x, y) + d(y, z)$
- Wichtige Metriken:
 - $\circ \ \textit{Triviale Metrik:} \ d(x,y) := \begin{cases} 0, & x=y \\ 1, & x \neq y \end{cases}$
 - o Euklidische Metrik: $X = \mathbb{R}^n$, $d_e(x,y) \coloneqq \sqrt{\sum_{i=1}^n (x_i y_i)^2} = \|x y\|$
- $\circ \ \mathit{Induzierte\ Metrik:}\ d(v,w) \coloneqq \|v-w\|\ (\mathrm{Norm}\ \|\cdot\|)$
- Winkelmetrik: $d_W(x, y) := \arccos(\langle x, y \rangle)$
- Pseudometrik: Metrik, aber $d(x, y) = 0 \Rightarrow x = y$ gilt nicht
- Metrischer Raum: (X, d) (Menge X, Metrik d auf X)
- Abgeschlossener Ball: abgeschlossener r-Ball um x

$$\overline{B_r(x)} \coloneqq \{ y \in X : d(x,y) \le r \}$$

- Abstandserhaltende Abbildung: $f: X \to Y$ sodass $\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$

(metrische Räume (X, d_X), (Y, d_Y))

- Isometrie: bijektive abstandserhaltende Abbildung
- $\rightarrow X, Y \text{ isometrisch} \Leftrightarrow \exists \text{ Isometrie } f: (X, d_X) \rightarrow (Y, d_Y)$

Längenmetriken

Graphen

- Graph: G = (E, K)
- \circ Eckenmenge E
- Kantenmenge $K \subseteq \{\{u, v\} : u \neq v \in E\}$
- Erreichbarkeit: $p,q \in E$ erreichbar $\iff \exists$ Kantenzug zwischen p und q
- Zusammenhängend ⇔ alle Ecken von beliebiger, fester Ecke aus erreichbar
- $\rightarrow \ d(p,q)$ = kürzester Kantenzug zwischen p und q definiert Metrik

Euklidische Metrik

- Kurvenmenge: $\Omega_{pq}(X\subseteq \mathbb{R}^n)$ Menge der stetig db. Kurven zwischen p und q
- Euklidische Länge: $L_{\mathrm{euk}}(c) = \int_a^b \left\| c'(t) \right\| \mathrm{d}t \, (c \in \Omega_{pq}(\mathbb{R}^2))$
- o unabhängig von Kurvenparametrisierung
- o invariant unter Translationen, Drehungen, Spiegelungen
- Euklidische Metrik auf \mathbb{R}^2 -Kurven: $d_{\mathrm{euk}}(p,q)\coloneqq\inf L_{\mathrm{euk}}(c)$ $(p,q \in \mathbb{R}^2, c \in \text{Menge der stetig differenzierbaren Kurven zwischen } p \text{ und } q)$ → $(\mathbb{R}^2, d_{\text{euk}}) = (\mathbb{R}^2, d_e)$

Sphärische Geometrie

- Sphärische Länge: $L_S(c) \coloneqq \int_a^b \|c'(t)\| dt = \int_a^b \sqrt{{x'}_1^2 + {x'}_2^2 + {x'}_3^2} dt$ (für $c : [a,b] \ni t \mapsto (x_1(t),x_2(t),x_3(t)) \in S_R^2 \subset \mathbb{R}^3$) invariant unter \mathbb{R}^2 -Rotationen
- Sphärenmetrik: $d_S(p,q) := \inf L_s(c) (c \in \Omega_{pq}(S_R^2))$
- \circ Großkreise sind kürzeste Verbindungkurven zwischen Punkten in S_R^2
- o (S_R^2, D_S) ist metrischer Raum und isometrisch zu $(S_R^2, R*d_W)$