Na ćwiczeniach wykonasz dekompozycję szeregu czasowego przy założeniu jego addytywności metodą klasyczną

```
import pandas as pd
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib as mpl
import numpy as np
import itables
from itables import show
from itables import init_notebook_mode
import copy
```

1. Wgraj zbiór danych CO2

```
In [ ]: df = pd.read_csv('CO2 dataset.csv')
    df
```

Year	Month	Decimal Date	Carbon Dioxide (ppm)	Seasonally Adjusted CO2 (ppm)	Carbon Dioxide Fit (ppm)	Seasonally Adjusted CO2 Fit (ppm)
1958	1	1958.0411	NaN	NaN	NaN	NaN
1958	2	1958.1260	NaN	NaN	NaN	NaN
1958	3	1958.2027	315.69	314.42	316.18	314.89
1958	4	1958.2877	317.45	315.15	317.30	314.98
1958	5	1958.3699	317.50	314.73	317.83	315.06
	1958 1958 1958 1958	1958 1 1958 2 1958 3 1958 4	Year Month Date 1958 1 1958.0411 1958 2 1958.1260 1958 3 1958.2027 1958 4 1958.2877	Year Month Decimal Date Dioxide (ppm) 1958 1 1958.0411 NaN 1958 2 1958.1260 NaN 1958 3 1958.2027 315.69 1958 4 1958.2877 317.45	Year Month Decimal Date Dioxide (ppm) Adjusted CO2 (ppm) 1958 1 1958.0411 NaN NaN 1958 2 1958.1260 NaN NaN 1958 3 1958.2027 315.69 314.42 1958 4 1958.2877 317.45 315.15	Year Month Decimal Date Dioxide (ppm) Adjusted CO2 (ppm) Dioxide Fit (ppm) 1958 1 1958.0411 NaN NaN NaN 1958 2 1958.1260 NaN NaN NaN 1958 3 1958.2027 315.69 314.42 316.18 1958 4 1958.2877 317.45 315.15 317.30

NaN

NaN

2017	10	2017.7890	NaN	NaN	NaN	NaN
2017	11	2017.8740	NaN	NaN	NaN	NaN
2017	12	2017.9562	NaN	NaN	NaN	NaN
	2017 2017 2017	2017 10 2017 11	2017 10 2017.7890 2017 11 2017.8740	2017 10 2017.7890 NaN 2017 11 2017.8740 NaN	2017 10 2017.7890 NaN NaN 2017 11 2017.8740 NaN NaN	2017 10 2017.7890 NaN NaN NaN 2017 11 2017.8740 NaN NaN NaN

NaN

NaN

NaN

NaN

NaN

NaN

720 rows × 7 columns

715 2017

716 2017

1. Stwórz wykres pamiętając o podpisaniu osi

2017.6219

9 2017,7068

Stężenie CO2 na przestrzeni lat

1. Określ sezonowość i wylicz krzywą trendu. Przykładowo dla danych o częstotliwości miesięcznej oraz rocznej sezonowości zjawiska potrzebne będzie stworzenie okna w rozmiarze 12. Jeśli okresowość naszego zjawiska jest liczbą nieparzystą to średnią kroczącą do wyliczenia trendu możemy obliczyć dla okna 1xT, natomiast gdy jest liczbą parzystą używamy okna 2xT. Wykonujemy ten krok by pozbyć się fluktuacji sezonowych.

Przykład dla danych o częstotliwości miesięcznej, sezonowści rocznej (12 obserwacji = miesięcy)

```
rozmiar_okna = 12
df['trend'] = df.rolling(window=rozmiar_okna).mean()['Carbon Dioxide (ppm)']
show(df)
```

10 v entries per page

Year 🔷	Month 🖣	Decimal Date	Carbon Dioxide (ppm) 🏺	Seasonally Adjusted CO2 (ppi
1958	1	1958.0411	NaN	
1958	2	1958.126	NaN	
1958	3	1958.2027	315.69	:
1958	4	1958.2877	317.45	
1958	5	1958.3699	317.5	:
1958	6	1958.4548	NaN	
1958	7	1958.537	315.86	:
1958	8	1958.6219	314.93	:
1958	9	1958.7068	313.21	:
1958	10	1958.789	NaN	

Showing 1 to 10 of 720 entries

1. Wykonaj wizualizację sygnału wejściowego oraz trendu na jednym wykresie

```
In []: fig, ax = plt.subplots(1,1, figsize=(15,8))
    sns.lineplot(x=df['Decimal Date'],y=df['Carbon Dioxide (ppm)'])
    sns.lineplot(x=df['Decimal Date'],y=df['trend'])
    ax.set_xlabel("Lata")
    ax.set_ylabel("Stężenie CO2")
    ax.set_title(" Stężenie CO2 na przestrzeni lat")
```

Out[]: Text(0.5, 1.0, ' Stężenie CO2 na przestrzeni lat')

1. Odejmij od sygnału wejściowego wyliczony trend i wykonaj na jednym wykresie wykres wszystkich trzech składowych w celu sprawdzenia. Skomentuj KRÓTKO wynik

```
df["Input_detrended"] = df['Carbon Dioxide (ppm)'] - df_notrend['Carbon Dioxide (ppm)']
In [ ]:
         show(df["Input_detrended"])
         fig, ax = plt.subplots(1,1, figsize=(15,8))
         sns.lineplot(x=df['Decimal Date'],y=df['Carbon Dioxide (ppm)'],label='Stężenie CO2'
         sns.lineplot(x=df['Decimal Date'],y=df['trend'],label='Trend')
         sns.lineplot(x=df['Decimal Date'],y=df["Input_detrended"],label='Sezonowość')
         ax.set_xlabel("Lata")
         ax.set_ylabel("Stężenie CO2")
         ax.set_title(" Stężenie CO2 na przestrzeni lat")
                                                           Search:
                entries per page
                                          Input_detrended 

                                                       NaN
                                                       2
                                                            3
                                                                       5
                                                                                   72
        Showing 1 to 10 of 720
        entries
```

Out[]. Text(0.5, 1.0, ' Stężenie CO2 na przestrzeni lat')

Stężenie CO2 na przestrzeni lat

Dzięki zastosowaniu średniej kroczącej, udało się dokonać ekstracji sygnału na 2 składowe - trend oraz składową odpowiedzialną za sezonowość. Widoczne jest, że amplituda sezonowości jest stała w czasie, a za wzrost stężenia CO2 w kolejnych latach odpowiedzialny jest trend.

1. Wylicz średnia szeregu czasowego po odfiltrowaniu trendu dla danej częstotliwości i skomentuj wynik. Oto przykład dla częstotliwości miesięcznej:

```
In []: # Średnia dla każdego miesiąca
    sezonowosc = df.groupby("Month").mean()["Input_detrended"]
    sezonowosc.name = "sezonowosc"
    fig, ax = plt.subplots(figsize=[12, 5])
    sezonowosc.plot(y="sezonowosc", ax=ax, marker="o", color="red", markersize=18)
    ax.set_xlabel("Miesiąc", fontsize=18)
    ax.set_ylabel("Sezonowość", fontsize=18)
    ax.set_title("Średnia szeregu czasowego po odfiltrowaniu trendu dla każdego miesiąc
    plt.tight_layout()
    plt.show()
```


1. Powtórz pattern sezonowości wyliczony w kroku 6 i oblicz rezydua. Przykład:

```
In [ ]: df = df.merge(right=sezonowosc, left_on="Month", right_index=True)
    df = df.sort_index()
    show(df)
```

10 **∨** entries per page

*	Year 🗣	Month 🖣	Decimal Date	Carbon Dioxide (ppm) 🏺	Seasonally Adjusted C
0	1958	1	1958.0411	NaN	
1	1958	2	1958.126	NaN	
2	1958	3	1958.2027	315.69	
3	1958	4	1958.2877	317.45	
4	1958	5	1958.3699	317.5	
5	1958	6	1958.4548	NaN	
6	1958	7	1958.537	315.86	
7	1958	8	1958.6219	314.93	
8	1958	9	1958.7068	313.21	
9	1958	10	1958.789	NaN	

Showing 1 to 10 of 720 entries

10 **∨** entries per page

Search:

72

•	residu	al 🔷
0		NaN
1		NaN
2		NaN
3		NaN
4		NaN
5		NaN
6		NaN
7		NaN
8		NaN
9		NaN

Showing 1 to 10 of 720 entries

1. Wykonaj wykres dla rezyduów

```
In []: fig, ax = plt.subplots(figsize=[12, 5])
    sns.scatterplot(x=df['Decimal Date'],y=df["residual"], ax=ax)
    ax.set_xlabel("Miesiąc", fontsize=18)
    ax.set_ylabel("Sezonowość", fontsize=18)
    ax.set_title("Wykres rozrzutu residuów", fontsize=18)
    plt.tight_layout()
    plt.show()
```


1. Wykonaj zbiorczy wykres i krótki zinterpretuj wyniki. Przykład:

```
fig, ax = plt.subplots(nrows=4, figsize=[12, 12], sharex=True)

df['Carbon Dioxide (ppm)'].plot(ax=ax[0], legend="Input")
```

```
ax[0].set_xlabel("Lata")
ax[0].set_ylabel("Stężenie CO2")

df["trend"].plot(ax=ax[1], legend="trend")
ax[1].set_ylabel("Trend")

df["sezonowosc"].plot(ax=ax[2], legend="sezonowsc")
ax[2].set_ylabel("Komponent Sezonowy")

df["residual"].plot(ax=ax[3], marker=".", legend="residual", ls="None")
ax[3].set_ylabel("Rezydua")

ax[0].set_title("Wykres sygnału wejściowego, jego składowych trendu i sezonowości cax[3].set_xlabel("Czas")

plt.tight_layout()
```


Ogólny wniosek jest taki, jak w punkcie 5. Korzystając z trendu oraz średniej szeregu czasowego dla zadanej częstotliwości, jesteśmy w stanie otrzymać bardzo zbliżone wyniki do sygnału wejściowego.