S&DS 365 / 665 Intermediate Machine Learning

Variational Inference and VAEs

March 9

Reminders

- Assignment 2 due today at midnight
- Practice midterm posted tomorrow
- Multiple review sessions

For Today

- Variational inference: The ELBO
- Derivations (partial) and examples
- Autoencoders
- Variational autoencoders (VAEs)

Inverting generative models

Template for generative model:

- ↑ Choose Z
- ② Given z, generate (sample) X

We often want to invert this:

- Given x
- What is Z that generated it?

Inverting models

Bayesian setup:

- **1** Choose θ
- 2 Given θ , generate (sample) X

Posterior inference:

- Given x
- **2** What is θ that generated it?

Approximate inference

If we have a random vector $Z \sim p(Z \mid x)$, we might want to compute the following:

- marginal probabilities $\mathbb{P}(Z_i = z \mid x)$
- marginal means $\mathbb{E}(Z_i = z \mid x)$
- most probable assignments $z^\star = \operatorname{\mathsf{arg}} \max_{Z} \mathbb{P}(\{Z_i = z_i\} \,|\, x)$
- maximum marginals $z_i^* = \arg \max_{z_i} \mathbb{P}(Z_i = z_i \mid x)$
- joint probability $\mathbb{P}(Z \mid x)$
- joint mean $\mathbb{E}(Z \mid x)$

Each of these quantities is intractable to calculate exactly, in general.

Variational methods

- Gibbs sampling is stochastic approximation
- Variational methods iteratively refine deterministic approximations
- Variational and Markov chain approximationsj originated in physics

Example 1: Interacting particles

We have a graph with edges E and vertices V. Each node i has a random variable Z_i that can be "up" (Z_i) or "down" $(Z_i = 0)$

$$\mathbb{P}_{eta}(z_1,\ldots,z_n) \propto \exp\left(\sum_{s\in V} eta_s z_s + \sum_{(s,t)\in E} eta_{st} z_s z_t
ight).$$

This is called an "Ising model" and is central to statistical physics.

Example 1: Interacting particles

We have a graph with edges E and vertices V. Each node i has a random variable Z_i that can be "up" (Z_i) or "down" $(Z_i = 0)$

$$\mathbb{P}_{\beta}(z_1,\ldots,z_n) \propto \exp\left(\sum_{s\in V} \beta_s z_s + \sum_{(s,t)\in E} \beta_{st} z_s z_t\right).$$

E are the set of edges, V are the vertices. Imagine the Z_i are votes of politicians, and the edges encode the social network of party affiliations

Stochastic approximation

Gibbs sampler

Iterate until converged:

- **1** Choose vertex $s \in V$ at random
- 2 Sample according to

$$egin{aligned} heta_{\mathcal{S}} &= \operatorname{sigmoid}\left(eta_{\mathcal{S}} + \sum_{t \in \mathcal{N}(\mathcal{S})} eta_{\mathit{St}} z_{t}
ight) \ Z_{\mathcal{S}} \,|\, heta_{\mathcal{S}} \sim \operatorname{Bernoulli}(heta_{\mathcal{S}}) \end{aligned}$$

ć

Determinnistic approximation

Mean field variational algorithm

Iterate until converged:

- **1** Choose vertex $s \in V$ at random
- 2 Update mean estimate

$$\mu_{s} = \operatorname{sigmoid}\left(\beta_{s} + \sum_{t \in N(s)} \beta_{st} \, \mu_{t}\right)$$

Determinnistic vs. stochastic approximation

- The z_i variables are random
- The μ_i variables are deterministic
- The Gibbs sampler convergence is in distribution
- The mean field convergence is numerical
- The Gibbs sampler approximates the full distribution
- The mean field algorithm approximates the mean of each node

Think of how to interpret this with Z_i the vote of politician i

Example 2: A finite mixture model

Fix two distributions F_0 and F_1 , with densities $f_0(x)$ and $f_1(x)$, and form the mixture model

$$heta \sim \mathsf{Beta}(lpha,eta) \ X \, | \, heta \sim heta \mathsf{F}_1 + (1- heta) \mathsf{F}_0.$$

The likelihood for data x_1, \ldots, x_n is

$$p(x_{1:n}) = \int_0^1 \text{Beta}(\theta \mid \alpha, \beta) \prod_{i=1}^n (\theta f_1(x_i) + (1-\theta) f_0(x_i)) d\theta.$$

Our goal is to approximate the posterior $p(\theta \mid x_{1:n})$

Stochastic approximation

Gibbs sampler

- Sample $Z_i \mid \theta, x_{1:n}$
- **2** Sample $\theta \mid z_{1:n}, x_{1:n}$

The first step is carried out by sampling

$$Z_i = egin{cases} 1 & ext{with probability} \propto heta f_1(x_i) \ 0 & ext{with probability} \propto (1- heta) f_0(x_i) \end{cases}$$

Posterior is approximated as mixture of Beta distributions, number of components is n + 1

Stochastic approximation

Gibbs sampler

- **1** Sample $Z_i \mid \theta, x_{1:n}$
- **2** Sample $\theta \mid z_{1:n}, x_{1:n}$

The second step is carried out by sampling

$$\theta \sim \text{Beta}\left(\sum_{i=1}^{n} z_i + \alpha, n - \sum_{i=1}^{n} z_i + \beta\right).$$

Posterior is approximated as mixture of Beta distributions, number of components is n+1

Variational inference: Strategy

- We'd like to compute a $p(\theta, z | x)$, but it's too complicated.
- Strategy: Approximate as $q_x(\theta, z)$ that has a "nice" form
- q is a function of variational parameters, optimized for each x.
- Maximize a lower bound on p(x).

Variational inference: The ELBO

The ELBO is the following lower bound on $\log p(x)$:

$$\log p(x) = \int \sum_{z} q(z,\theta) \log p(x) d\theta$$

$$= \sum_{z} \int q(z,\theta) \log \left(\frac{p(x,z,\theta) q(z,\theta)}{p(z,\theta \mid x) q(z,\theta)} \right) d\theta$$

$$= \sum_{z} \int q(z,\theta) \log \left(\frac{p(x,z,\theta)}{q(z,\theta)} \right) d\theta + \sum_{z} \int q(z,\theta) \log \left(\frac{q(z,\theta)}{p(z,\theta \mid x)} \right) d\theta$$

$$\geq \sum_{z} \int q(z,\theta) \log \left(\frac{p(x,z,\theta)}{q(z,\theta)} \right) d\theta$$

$$= H(q) + \mathbb{E}_{q}(\log p(x,z,\theta))$$

We maximize this over the parameters of q

Variational inference: The ELBO

The inequality above uses concavity of the logarithm:

$$\log\left(\sum_{\alpha} w_{\alpha} x_{\alpha}\right) \geq \sum_{\alpha} w_{\alpha} \log x_{\alpha}$$

So, if $q_{\alpha} \geq 0$ and $p_{\alpha} \geq 0$ sum (or integrate) to one, then

$$0 = \log \left(\sum_lpha oldsymbol{p}_lpha
ight) = \log \left(\sum_lpha oldsymbol{q}_lpha rac{oldsymbol{p}_lpha}{oldsymbol{q}_lpha}
ight) \geq \sum_lpha oldsymbol{q}_lpha \log \left(rac{oldsymbol{p}_lpha}{oldsymbol{q}_lpha}
ight)$$

Therefore

$$\sum_{lpha} q_lpha \log \left(rac{q_lpha}{p_lpha}
ight) \geq 0$$

Variational inference: The ELBO

The ELBO is $H(q) + \mathbb{E}_q(\log p)$

The entropy term H(q) encourages q to be spread out:

The cross-entropy $\mathbb{E}_q \log p$ tries to match q to p

Example 2: A finite mixture model

Fix two distributions F_0 and F_1 , with densities $f_0(x)$ and $f_1(x)$, and form the mixture model

$$heta \sim \mathrm{Beta}(lpha, eta) \ X \mid heta \sim heta F_1 + (1 - heta) F_0.$$

The likelihood for data x_1, \ldots, x_n is

$$p(x_{1:n}) = \int_0^1 \text{Beta}(\theta \mid \alpha, \beta) \prod_{i=1}^n (\theta f_1(x_i) + (1-\theta) f_0(x_i)) d\theta.$$

Our goal is to approximate the posterior $p(\theta \mid x_{1:n})$

Variational approximation

Our variational approximation is

$$q(z,\theta) = q(\theta \mid \gamma_1, \gamma_2) \prod_{i=1}^n q_i^{z_i} (1-q_i)^{(1-z_i)}$$

where $q(\theta \mid \gamma_1, \gamma_2)$ is a Beta (γ_1, γ_2) distribution, and $0 \le q_i \le 1$ are n free parameters.

Need to maximize ELBO $H(q) + \mathbb{E}_q \log p$

Let's sketch part of the calculation

Variational approximation

First, we have

$$\log p(x,\theta,z) = \log p(\theta \mid \alpha,\beta) + \sum_{i=1}^{n} \left\{ \log \left(\theta^{z_i} f_1(x_i) \right) + \log \left(\theta^{1-z_i} f_0(x_i) \right) \right\}$$

Next we use identities such as

$$\mathbb{E}_q \log \theta = \psi(\gamma_1) - \psi(\gamma_1 + \gamma_2)$$

for the digamma function $\psi(\cdot)$.

After some calculus and algebra 💓 , we end up with the following algorithm

Variational algorithm for mixture

Variational inference

Iterate the following steps for variational parameters $q_{1:n}$ and (γ_1, γ_2) :

1 Holding q_i fixed, set $\gamma = (\gamma_1, \gamma_2)$ to

$$\gamma_1 = \alpha + \sum_{i=1}^n q_i$$
 $\gamma_2 = \beta + n - \sum_{i=1}^n q_i$

2 Holding γ_1 and γ_2 fixed, set q_i to

$$q_i = \frac{f_1(x_i) \exp \psi(\gamma_1)}{f_1(x_i) \exp \psi(\gamma_1) + f_0(x_i) \exp \Psi(\gamma_2)}$$

After convergence, approximate posterior distribution over θ is

$$\widehat{p}(\theta \mid x_{1:n}) = \mathsf{Beta}(\theta \mid \gamma_1, \gamma_2)$$

Digamma function

 $\psi(x)$ is the digamma function https://en.wikipedia.org/wiki/Digamma_function

Deterministic approximation

- Convergence is numerical, not stochastic
- Posterior is approximated as a single Beta
- Very similar algorithm is used for topic models distribution

Example 3: More general mixtures

$$\theta \sim \mathsf{Dirichlet}(\alpha_1, \ldots, \alpha_k)$$

$$X \mid \theta \sim \theta_1 F_1 + \cdots + \theta_k F_k.$$

The likelihood for single data point *x* is

$$p(x) = \int \mathsf{Dirichlet}(\theta \mid \alpha_1, \dots, \alpha_k) \left(\sum_{j=1}^k \theta_j f_j(x) \right) d\theta.$$

When distributions F_j are also learned, this is a "topic model." Variational inference is one of the most useful ways of training large topic models.

Variational autoencoders

- Variational autoencoders are generative models that use neural nets
- Based on variational inference
- The "decoder" is a generative model with a latent variable
- The "encoder" approximates the posterior distribution with another neural network trained using variational inference

Variational autoencoders

Start with a generative model

$$z \sim N(0, I_K)$$
$$x \mid z = G(z)$$

G(z) is the *generator network* or *decoder*

For example, use a 2-layer network

$$G(z) = A_2 \operatorname{ReLU}(A_1 z + b_1) + b_2$$

Posterior inference

How do we train the generative network?

$$Z \sim N(0, I_k)$$
$$X \mid z = G(z)$$

We want the posterior distribution $p(z \mid x)$.

But this is generally intractable to compute, because $G(\cdot)$ is nonlinear and G(z) is non-Gaussian.

Approach: Use variational inference

Using variational inference

In variational inference we take

$$q(z \mid x) = N(\mu(x), diag(\sigma^2(x)))$$

where now $\mu_j(x)$ and $\sigma_j^2(x)$ are the *variational parameters* for $j = 1 \dots, k$.

The entropy of a multivariate Gaussian with covariance Σ is $\frac{1}{2}\log|\Sigma|+constant$

Using neural networks

Build a "recognition" or encoder neural network that outputs the mean and variance.

For example:

$$\mu(x) = B_2 \text{ ReLU}(B_1 x + d_1) + d_2$$

and similarly for $\log \sigma^2(x)$.

Using neural networks

Now, approximate $\mathbb{E}_q(\log p(x, Z))$ by sampling (weak law of large numbers)

$$\mathbb{E}_q(\log p(x,Z)) \approx \frac{1}{N} \sum_{s=1}^N \log p(x,Z_s)$$

Problem: The parameters of the recognition network have disappeared!

Solution: Reparameterize the samples by $Z_i = \mu(x) + \sigma(x)\epsilon_i$ where $\epsilon_i \sim N(0, I_k)$.

This is called "the reparameterization trick." D. Kingma and M. Welling, "Autoencoding Variational Bayes," $\verb|https://arxiv.org/abs/1312.6114|.$ The entropy term isn't a problem since it's just $\log \sigma^2(x)$.

Simple example

Suppose $x \mid z \sim N(G(z), I)$ where generator network is

$$G(z) = \text{ReLU}(Az + b).$$

Then $-\log p(x \mid z)$ is

$$\frac{1}{2}||x - \text{ReLU}(Az + b)||^2$$

Simple example

Next, suppose the approximate posterior is

$$q(z \mid x) = N(\mu(x), I_K)$$

where recognition network is $\mu(x) = \text{ReLU}(Bx + d)$. Then

$$-\mathbb{E}_{q} \log p(x \mid Z) \approx \frac{1}{N} \sum_{s=1}^{N} \frac{1}{2} \|x - \text{ReLU}(AZ_{s} + b)\|^{2}$$

$$\stackrel{d}{=} \frac{1}{N} \sum_{s=1}^{N} \frac{1}{2} \|x - \text{ReLU}(A(\text{ReLU}(Bx + d) + \epsilon_{s}) + b)\|^{2}$$

Demo

Many demos are out there

Variational Autoencoder on MNIST data

This is a Tensorflow implementation of Variational Autoencoder (VAE) on MNIST data, based on Auto-Encoding Variational Bayes (Kingma and Welling 2014).

It uses probabilistic encoders and decoders realized by Multilayer Perceptrons (MLP) with a single hidden layer. The VAE was trained incrementally with mini-batches using partial fit.

The MMST dataset, distributed by Yann Lecuris THE MMIST DATABASE of handwritten digits website, consists of pair 'handwritten digit image' and 'label'. The image is a gray scale image with 28 x 28 pixels. Pixel values range from 0 (black) to 255 (white), scaled in the [0, 1] interval. The label is the actual digit, ranging from 0 to 9, the image represents.

The original notebook was composed by Jan Hendrik Metzen. Modifications were made by Sunnie Kim on May 24th, 2018.

```
In [1]: import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
tmatplotlib inline
    np.random.seed(0)
    tf.set random seed(0)
```

Load MNIST data in a format suited for Tensorflow

The 'input_data' script is available at: https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/input_data.py

```
In [2]: from tensorflow.examples.tutorials.mnist import input_data
tf.loggins.et_verbosity(tf.loggins.EXROM)
mnist = input_data.read_data_sets('MMIST_data/', one_hot=True)
n_samples = mnist.train.num_examples
```

Visualizing a 2-dim latent space

Summary

- Gibbs sampling makes stochastic approximations
- Variational methods make deterministic approximations
- General recipe: Maximize ELBO over variational parameters
- VAEs: Variational mean is output of a second neural network
- Gives a powerful approach to generative modeling