

National Library of Medicine

PubMed

4 mg .		Protein	Genome	Structure	PopSet	Taxonomy	OMIM
PubMed	Nucleotide	riotelli	Conomo			Go Clear	
earch Publ	Med ▼ for	Limits	Preview/In	doy His		Clipboard	
	Dis	splay Citatio	on 🔻	Save Text	Order	Add to Clipbo	pard
	1	· Camput A	ont Riasci 199	93 Jun:9(3):29	9-314	Rental	russ V.

_1: Comput Appl Biosci 1993 Jun:9(3):299-314

A system for pattern matching applications on biosequences.

Mehldau G, Myers G

Department of Computer Science, University of Arizona, Tucson 85721.

ANREP is a system for finding matches to patterns composed of (i) spacing constraints called 'spacers', and (ii) approximate matches to 'motifs' that are, recursively, patterns composed of 'atomic' symbols. A user specifies such patterns via a declarative, free-format and strongly typed language called A that is presented here in a tutorial style through a series of progressively more complex examples. The sample patterns are for protein and DNA sequences, the application domain for which ANREP was specifically created. ANREP provides a unified framework for almost all previously proposed biosequence patterns and extends them by providing approximate matching, a feature heretofore unavailable except for the limited case of individual sequences. The performance of ANREP is discussed and an appendix gives a concise specification of syntax and semantics. A portable C software package implementing ANREP is available via anonymous remote file transfer.

MeSH Terms:

- Base Sequence*
- Human
- Molecular Sequence Data
- Pattern Recognition*
- Software*
- Support, Non-U.S. Gov't
- Support, U.S. Gov't, P.H.S.
- User-Computer Interface

Grant support:

R01-4960 PHS

PMID: 8324630