

#### 판별분석을 이용한 산악지역 도로 연결 하천 연결 특성 분석



연구목적

산악지역 도로의 배수구와 인근 하천의 연결 특성에 영향을 미치는 다양한 인자들을 조사하고, 이들 관계를 이용하여 산악지역 도로-하천 연결 특성을 정량적으로 표현 하고자 한다

### 변수 및 특성



본 연구는 대상 유역으로 한강 유역의 소양강 댐 인근 지역51곳을 선택하였다

#### 독립변수

- 1. 기여길이(contrivuting length) 배수구에서 다음 배수구까지 길이
- 2. 도로경사(road slope) 배수구에서 다음 배수구까지의 평균 경사
- 3. 물길흔적 배수구 출구지점으로부터 최인접 하천까지
- 4. 물길 거리(length of flowpath) 도로의 배수구에서 최인접 하천까지의 거리





#### 모집단



Table 1. Characteristic parameters of 51 drainage outlets in this study

| No. | Contributing length(m) | Road slope<br>(degree) | Tan<br>(road slope) | Contributing road $\textcircled{4}(=\textcircled{1}\times\textcircled{3})$ | Length of flowpath (m) | Flowpath slope (degree) | Road-to-stream linkage (linkage=1, non-linkage=2) |
|-----|------------------------|------------------------|---------------------|----------------------------------------------------------------------------|------------------------|-------------------------|---------------------------------------------------|
| 1   | 197.0                  | 6.0                    | 0.105               | 20.702                                                                     | 310.0                  | 20.2                    | 2                                                 |
| 2   | 142.0                  | 5.3                    | 0.093               | 13.170                                                                     | 196.0                  | 19.9                    | 2                                                 |
| 3   | 85.0                   | 3.5                    | 0.061               | 5.198                                                                      | 252.0                  | 22.2                    | 2                                                 |
| 4   | 122.0                  | 6.0                    | 0.105               | 12.820                                                                     | 223.0                  | 25.8                    | 2                                                 |
| 5   | 18.0                   | 6.5                    | 0.114               | 2.050                                                                      | 3.0                    | 73.3                    | 1                                                 |
| 6   | 73.0                   | 6.5                    | 0.114               | 8.316                                                                      | 3.0                    | 71.6                    | 1                                                 |
| 7   | 66.7                   | 7.0                    | 0.123               | 8.188                                                                      | 25.0                   | 1.8                     | 2                                                 |
| 8   | 58.0                   | 7.0                    | 0.123               | 7.120                                                                      | 3.0                    | 66.8                    | 1                                                 |
| 9   | 10.0                   | 8.0                    | 0.141               | 1.405                                                                      | 306.6                  | 8.3                     | 2                                                 |

# 기술통계분석



Table 2. Basic statistics of road-to-stream linkage groups

| Туре        | Variables               | Mean    | Standard deviation | The number of effective outlets |  |
|-------------|-------------------------|---------|--------------------|---------------------------------|--|
|             | Contributing length (m) | 7.218   | 5.034              |                                 |  |
| All type    | Length of flowpath (m)  | 98.137  | 144.669            | 51                              |  |
|             | Flowpath slope (degree) | 16.178  | 16.334             |                                 |  |
|             | Contributing length (m) | 7.239   | 4.588              |                                 |  |
| Linkage     | Length of flowpath (m)  | 32.719  | 57.199             | 27                              |  |
|             | Flowpath slope (degree) | 20.459  | 20.721             |                                 |  |
| Non-linkage | Contributing length (m) | 7.195   | 5.593              |                                 |  |
|             | Length of flowpath (m)  | 171.733 | 176.419            | 24                              |  |
|             | Flowpath slope (degree) | 11.363  | 6.996              |                                 |  |

# 집단평균의 동질성에 대한 검정



**Table 3.** Test of homogeneity for two groups

| Variables          | Wilks 1 | F - value | Significance probability |  |
|--------------------|---------|-----------|--------------------------|--|
| Contributing road  | 1.000   | 0.001     | 0.976                    |  |
| Length of flowpath | 0.765   | 15.022    | 0.000                    |  |
| Flowpath slope     | 0.921   | 4.192     | 0.046                    |  |

F값에 대한 유의확률은 각각 0.000, 0.046 로서 유의수준(0.05)보다 작으므로 집단간의 차이가 있음을 보여준다반면 기여도로의 경우 0,976 > 0.05이므로 차이가 없다는것을 보여준다

## 판별식 및 유의검정



Table 4. Significance test of unstandardized canonical discriminant function

| Canonical correlation coefficients | Eigen value | Wilks 1 | Chi - square | Significance probability |
|------------------------------------|-------------|---------|--------------|--------------------------|
| 0.522                              | 0.375       | 0.727   | 15.122       | <mark>0.00</mark> 2      |

표준화되지않은 정준 판별 함수

$$D = -0.001X_1 + 0.007X_2 - 0.027X_3 - 0.231$$
 (6)

정준상관값이 0.522이고 고유값 0.375이므로 우수하다고 판단

그러나 독립변수들 간에 상대적 중요성을 판단하는데 이용할수 없 으므로 표준화된 정준판별 함수를 추가로 유도하였다

$$D = -0.006X_1 + 0.880X_2 - 0.428X_3 \tag{7}$$

 $\therefore X_1$ : contributing load,  $X_2$ : length of flowpath,  $X_3$ : flowpath slope

## 집단분류 중심점





Fig. 5. Centroids of linkage and non-linkage groups.

식(6)에 의해 구해진 판별점수가 중심점보다 작으면 하천 연결 집 단 크면 비연결 집단으로 분류한다

# 오판별 비율

Table 6. Discriminant scores estimated by the discriminant function

| No. | Actual group | Predicted group | Discriminant score | No. | Actual group | Predicted group | Discriminant score |
|-----|--------------|-----------------|--------------------|-----|--------------|-----------------|--------------------|
| 1   | 2            | 2               | 1.335              | 27  | 1            | 1               | -0.333             |
| 2   | 2            | 2               | 0.567              | 28  | 1            | 1               | -1.591             |
| 3   | 2            | 2               | 0.899              | 29* | 1            | 2               | 1.639              |
| 4   | 2            | 2               | 0.593              | 30* | 2            | 1               | -0.182             |
| 5   | 1            | 1               | -2.191             | 31  | 2            | 2               | 0.141              |
| 6   | 1            | 1               | -2.152             | 32  | 2            | 2               | 2.146              |
| 7   | 2            | 2               | 1.019              | 33  | 2            | 2               | 0.246              |
| 8   | 1            | 1               | -2.021             | 34* | 2            | 1               | -0.201             |
| 9   | 2            | 2               | 1.654              | 35  | 2            | 2               | 0.967              |
| 10  | 2            | 2               | 0.756              | 36  | 2            | 2               | 1.530              |
| 11  | 1            | 1               | -0.204             | 37  | 2            | 2               | 0.681              |
| 12  | 1            | 1               | -0.180             | 38  | 1            | 1               | -0.272             |
| 13  | 1            | 1               | -0.834             | 39  | 1            | 1               | -0.486             |
| 14  | 1            | 1               | -0.387             | 40  | 1            | 1               | -0.375             |
| 15  | 1            | 1               | -0.215             | 41  | 1            | 1               | -0.416             |
| 16* | 2            | 1               | -0.275             | 42  | 1            | 1               | -0.810             |
| 17  | 2            | 2               | 5.242              | 43  | 1            | 1               | -0.632             |
| 18* | 2            | 1               | -0.159             | 44  | 1            | 1               | -0.377             |
| 19* | 2            | 1               | -0.092             | 45  | 1            | 1               | -0.361             |
| 20* | 2            | 1               | -0.342             | 46  | 1            | 1               | -0.363             |
| 21* | 2            | 1               | -0.389             | 47  | 1            | 1               | -0.286             |
| 22* | 2            | 1               | -0.401             | 48  | 1            | 1               | -0.485             |
| 23* | 2            | 1               | -0.371             | 49* | 2            | 1               | -0.086             |
| 24  | 1            | 1               | -0.359             | 50  | 1            | 1               | -0.401             |
| 25  | 1            | 1               | -0.166             | 51  | 1            | 1               | -0.669             |
| 26  | 1            | 1               | -0.349             |     |              | -               |                    |

<sup>\* :</sup> Wrongly discriminated cases

#### 오판별 비율



판별 점수, 판별점수로 예측된 연결 /비연결 예측집단이 제시되어 있다

연결된 지점 -> 1 비연결지점 ->2라 지정했을때총 51개중 11개가 오판별 하였으며 오판별 비율은 0.216(=11/51) 이다

#### 결론



산악 지역 도로에서 배수되는 유출이 인근 하천으로 직접 연결되는 지의 특성을 판별분석을 이용하였다

파악된 도로-하천 연결 특성은 도로배수구와 인접 하천 사이의 직접 연결을 방해 하는 방안을 도출하는데 사용될 수 있으며 오염물질 유 입을 예방하기 위한 대책 마련으로 근거자료로 활용될 수 있다

출처:

http://www.koreascience.or.kr/article/JAKO201107741469270.pdf