ECE 65: Components & Circuits Lab

Amplifier practice problems

Reference notes: sections 6.1, 6.2

Sedra & Smith (7th Ed): section 7.3

Saharnaz Baghdadchi

Course map

7. Transistor Amplifier Configurations

The below BJT amplifier circuit is biased with a constant current source (I). Design the circuit (find I, R_B , and R_C) to meet the following specifications:

- a) $R_i = 10 k\Omega$.
- b) The DC voltage drop across R_B is 0.2 V.
- c) The open loop voltage gain of the amplifier (A_{Vo}) is -160 V/V.

Assume $\beta=100$, $V_{D0}=0.7~V$, $V_A=\infty$, $V_T=25~mV$ and the capacitors are short for the signal circuit.

- a) $R_i = 10 k\Omega$. $R_i = R_g || r_{\eta}$
- b) The DC voltage drop across R_B is 0.2 V.
- c) The open loop voltage gain of the amplifier (A_{Vo}) is -160 V/V.

a)
$$R_{B} || r_{B} = R_{B} || \frac{V_{T}}{I_{B}} = 10 \text{ km}$$

a)
$$R_i = 10 k\Omega$$
. $R_i = R_g || r_{\eta}$

- b) The DC voltage drop across R_B is 0.2 V.
- c) The open loop voltage gain of the amplifier (A_{Vo}) is -160 V/V.

a)
$$R_{B} \parallel r_{D} = R_{B} \parallel \frac{V_{T}}{I_{D}} = 10 \text{ km}$$

$$\frac{R_{S} \times \frac{25mV}{I_{S}}}{R_{S} + \frac{25mV}{I_{S}}} = 10kS$$

- $R_i = 10 k\Omega$.
- The DC voltage drop across R_B is 0.2 V.
- The open loop voltage gain of the amplifier (A_{Vo}) is -160 V/V.

a)
$$0.025 \frac{R_B}{I_B} = 10^4 R_B + \frac{250}{I_B}$$

$$0.025R_{B} = 10^{4} R_{D} I_{D} + 250$$

 $6) R_{D} I_{D} = 0.2V$

$$I = 0.22 m A$$

- $R_i = 10 k\Omega$.
- The DC voltage drop across R_B is 0.2 V.
- The open loop voltage gain of the amplifier (A_{Vo}) is -160 V/V.

$$g_{m} = \frac{IC}{V_{T}} = \frac{0.22 \text{ mA}}{25 \text{ mV}} = 8.89 \text{ mA}_{V}$$

Amplifier design problem

- 1. Select a value for R_S to bias the transistor at $I_D=0.3\ mA$ and $V_{OV}=0.3\ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.

The PMOS in the below common-source amplifier circuit has $V_{tp}=-0.7~V$ and $\lambda=0.$

1. Select a value for R_S to bias the transistor at $I_D=0.3\ mA$ and $V_{OV}=0.3\ V$.

Since
$$I_G = 0 \rightarrow V_G = 0$$

 $V_{OV} = V_{SG} - |V_{TP}|$
 $V_{SG} = 0.3 V + 0.7 V = 1V$
 $V_{SG} = V_S - V_G = V_S = 1 V$

$$V_S = 1V$$
 $R_S = \frac{2.5V - 1V}{0.3 \text{ mA}} = 5 \text{ kg}$

- 1. Select a value for R_S to bias the transistor at $I_D=0.3\ mA$ and $V_{OV}=0.3\ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.

$$A_{V_0} = -g_m R_D = -10 \%$$

$$g_m = \frac{2 I_D}{V_{OV}} = \frac{2 \times 0.3 \text{ mA}}{0.3 \text{ V}} = \frac{2 \text{ mA/}}{0.3 \text{ V}}$$

$$2 (mA/) R_D = 10 \longrightarrow R_D = 5 \text{ kg}$$

Amplifier design problem

The PMOS in the below common-source amplifier circuit has $V_{tp}=-0.7~V$ and $\lambda=0$.

- 1. Select a value for R_S to bias the transistor at $I_D=0.3\ mA$ and $V_{OV}=0.3\ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.

3. If
$$V_{sig} = 5 \sin(\omega t)$$
 (mV) and $R_{sig} = 1 k \Lambda$, find and sketch all node voltages k io.

DC node voltages and DC drain current:

$$V_S = 1V$$
, $V_G = 0V$, $I_D = 0.3 \text{ mA}$

$$V_{\rm D} = R_{\rm D} I_{\rm D} - 2.5 V = 5 k_{\rm A} \times 0.3 mA - 2.5 = -1 V$$

Amplifier design problem

- 1. Select a value for R_S to bias the transistor at $I_D = 0.3 \ mA$ and $V_{OV} = 0.3 \ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.
- 3. If $V_{sig} = 5 \sin(\omega t)$ (mV) and $R_{sig} = 1k\Lambda$, find and sketch all node voltages $k i_0$.

Amplifier design problem

- 1. Select a value for R_S to bias the transistor at $I_D=0.3\ mA$ and $V_{OV}=0.3\ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.
- 3. If $V_{sig} = 5 \sin(\omega t)$ (mV) and $R_{sig} = 1k\Lambda$, find and sketch all node voltages & io.

$$V_{L} = V_{0} = V_{sig} \times -10 \% = -10 V_{sig}$$

$$V_s = 0$$
 , $V_g = V_{sig}$

$$id = -g_m V_{gs} = -g_m V_{sig} = -2 V_{sig} (mA)$$

Amplifier design problem

- 1. Select a value for R_S to bias the transistor at $I_D = 0.3 \ mA$ and $V_{OV} = 0.3 \ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.

3. If
$$V_{sig} = 5 \sin(\omega t) (mv)$$
 and $R_{sig} = 1kn$, find and sketch all node voltages & io.

$$V_{5} = 0$$
, $V_{g} = V_{sig}$, $V_{d} = V_{o} = -10$ V_{sig} , $V_{d} = -2$ V_{sig} (mA)

Amplifier design problem

- 1. Select a value for R_S to bias the transistor at $I_D=0.3\ mA$ and $V_{OV}=0.3\ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.

3. If
$$V_{sig} = 5 \sin(\omega t)$$
 (mV) and $R_{sig} = 1k\Lambda$, find and sketch all node voltages k_i io.

$$V_5 = 0$$
, $V_g = V_{sig}$, $V_d = V_o = -10$ V_{sig} , $id = -2 V_{sig}$ (mA) $v_{sig} = -10$

