Chương 5 Tầng mạng

MẠNG MÁY TÍNH NÂNG CAO

Mục tiêu

☐Thiết lập kết nối giữa 2 host để truyền dữ liệu từ host - host

Application
Presentation
Session
Transport
Network
Data link
Physical

Tầng mạng vs tầng vận chuyển

- ☐ *Tầng mạng:* cung cấp kết nối logic giữa các host
- ☐ *Tầng vận chuyển:* cung cấp kết nối logic giữa các tiến trình
 - Dựa trên, mở rộng dịch vụ của tầng mạng

Ví du:

A gởi B 1 bức thư qua đường bưu điện

- o processes = A, B
- o app messages = bức thư
- o hosts = nhà của A, nhà của B
- transport protocol ???
- o network-layer protocol????

3

Nội dung

- □Giới thiệu
- □Định tuyến chuyển tiếp
- □Giao thức IP
- □Giao thức ICMP
- □Giao thức NAT

Nhắc lại

giới thiệu - 1

- ☐ Thực hiện chuyển các segment từ host gởi đến host nhân
- ☐ Tai host gởi:
 - Nhận các segment từ transport layer
 - Dóng gói thành các packet
- ☐ Tại họst nhận:
 - Nhận các packet từ data link layer
 - Chuyển các segment lên transport layer
- ☐ Tại các router:
 - Dựa vào thông tin đích đến để chuyển các packet đến host nhân
 - Định tuyến: quyết định gói tin đi đường nào
 - Chuyển tiếp: chuyển gói tin từ interface nhân ra interface gởi

giới thiệu - 2

□Tầng mạng cung cấp 2 loại dịch vụ

- Hướng kết nối (Connection)
 - · Virtual Circuit
 - Trước khi truyền dữ liệu, 2 host phải thiết lập kết nối
- Hướng không kết nối (Connectionless)
 - Datagram Network
 - · Không cần thiết lập kết nối trước khi gởi
- ☐ Trong 1 kiến trúc mạng: chỉ hỗ trợ duy nhất 1 loại dịch vụ

7

Virtual circuit (VC) network - 1

- ☐ Thiết lập, quản lý, duy trì mỗi kết nối khi truyền dữ liệu
 - 1 đường đi ảo khi truyền dữ liệu
 - Số hiệu VC (VC number)
 - Khác nhau trên mỗi link
 - Mỗi gói tin có một virtual circuit identifier (VC ID)
 - Các router duy trì trang thái kết nối đi qua
 - · bảng chuyển đổi VC ID
 - · Thay thế thông tin VD ID của gói tin đi ngang qua router
- ☐ Thông tin định tuyến: Virtual Circuit number (VC ID)
- ☐ Dùng trong ATM, X.25, Frame-Relay,...

Virtual circuit (VC) network - 2

9

Virtual circuit network - 3

Cổng vào	VC# vào	Cổng ra	VC# ra
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

Routers duy trì thông tin về trạng thái kết nối!

Datagram network - 1

- □Không thiết lập kết nối trước khi truyền dữ liệu
 - Router không cần quản lý trạng thái kết nối
- □Thông tin định tuyến: địa chỉ đích đến
 - Mỗi router duy trì một bảng định tuyến
- □Dùng trong Internet

11

Datagram network - 2

Destination Network	Subnetmask	Out Interface	Next hop
210.245.10.0	255.255.255.0	3	
210.245.15.0	255.255.255.0	1	
210.245.15.192	255.255.255.192	2	

Nội dung

- □Giới thiệu
- □Định tuyến chuyển tiếp
- □Giao thức IP
- □Giao thức ICMP
- □Giao thức NAT

13

Định tuyến - Chuyển tiếp

□Định tuyến:

- Quyết định "lộ trình" mà gói tin di chuyển từ host nguồn đến host đích đến
- Sử dụng thông tin toàn cục

□Chuyển tiếp:

- Di chuyển gói tin từ cổng vào đến cổng ra
- Sử dụng thông tin cục bộ

Định tuyến

- □Được thực hiện bởi các bộ định tuyến.
 - VD: router
- □Dùng bảng định tuyến (routing/forwarding table)
 - destination/subnetmask
 - Out interface
 - next hop
 - chi phí
 - · Hop count
 - Delay
 - Bandwidth
 - ..

15

Ví dụ - định tuyến

Destination Network	Subnet mask	Next hop	Out Interface
210.245.10.0	255.255.255.0	192.168.3.2	3
210.245.15.0	255.255.255.0	192.168.1.2	1
210.245.15.192	255.255.255.192	192.168.2.2	2

Định tuyến

- ☐ Router định tuyến một gói tin như thế nào?
 - Dùng địa chỉ đích đến và bảng định tuyến
 - Thực hiện:
 - Tìm record thích hợp trong bảng định tuyến
 - Tính địa chỉ đường mạng giữa địa chỉ đích đến với subnetmask của từng record
 - So sánh destination network với địa chỉ đường mạng vừa tính
 - · Gởi gói tin theo thông tin của record tìm được
- □ VD: R1 nhân gói tin có destination 210.245.10.5
 - **255.255.255.192**
 - Net: 210.245.10.0 → không có record thoả
 - **255.255.255.0**
 - Net: 210,245,10.0 → record số 1 thoả

→ gói tin chuyển ra interface số 3 và nơi nhận gói tin tiếp theo là 192.168.3.2

17

Bảng định tuyến

- □Xây dựng bảng định tuyến:
 - Tĩnh (static): con người tự thiết lập
 - Động (dynamic): học
 - · Distance Vector:
 - Gởi theo đinh kỳ
 - Gởi toàn bộ bảng định tuyến
 - VD: RIP, IGRP, ...
 - · Link State:
 - Gởi khi có thay đổi
 - Gởi tình trạng kết nối
 - VD: OSPF, ISIS, ...

Static route

☐Biết: Sơ đồ mạng

□Xây dựng:

■ Vẽ "đường đi" *tối ưu*

□Khi có thay đổi:

Tự cập nhật bằng tay

19

Dynamic route

□Biết: không

□Xây dựng:

- Sử dụng các giao thức định tuyến
 - Thông qua các gói tin "thu thập" thông tin
 - · Thành phần:
 - Gởi và nhận thông tin từ các router khác
 - Tính đường đi tối ưu
 - Phản ứng khi có thay đổi

■Khi thay đổi

Cập nhật tự động

Static route - Ví dụ - 1

Yêu cầu: cấu hình thông tin định tuyến cho R1 và R2 để các máy trong LAN1 có thể liên lạc với các máy trong LAN2

Tại router R1:

Destination network	Out interface	Next hop
192.168.8.0/24	E1	172.29.50.8

Tại router R2:

Destination network	Out interface	Next hop
192.168.7.0/24	E1	172.29.50.7

21

Static route — ví du 2 172.29.70.0/24 E0 172.29.60.0/29 R1 R3 E0 172.29.80.0/24 172.29.80.0/24

Yêu cầu: cấu hình thông tin định tuyến cho các router để tất cả các máy trong có thể liên lạc với nhau và có thể truy cập Internet

Static route – ví dụ 2

Tại router R1:

Destination network	Out interface	Next hop
172.29.90.0/24	E1	172.29.60.2
172.29.80.0/24	E1	172.29.60.3
172.29.50.0/24	E1	172.29.60.4
0.0.0.0/0	E1	172.29.60.5

Tại router R2:

Destination network	Out interface	Next hop
172.29.70.0/24	E1	172.29.60.1
172.29.80.0/24	E1	172.29.60.3
172.29.50.0/24	E1	172.29.60.4
0.0.0.0/0	E1	172.29.60.5

23

Dynamic route – ví dụ

Dynamic route – ví dụ

25

Dynamic route – ví dụ

Dynamic route - ví dụ

27

Yêu cầu: cấu hình thông tin định tuyến cho các router để tất cả các máy trong có thể liên lạc với nhau và có thể truy cập Internet

Dynamic route – ví dụ

```
Rl#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, R2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Cateway of last resort is not set

172.29.0.0/24 is submetted, 5 submets

172.29.50.0 [110/2] via 172.29.60.4, 00:00:15, FastEthernet0/0

172.29.70.0 is directly connected, FastEthernet0/1

172.29.80.0 [110/2] via 172.29.60.3, 00:00:15, FastEthernet0/0

172.29.90.0 [110/2] via 172.29.60.2, 00:00:46, FastEthernet0/0
```

29

Nội dung

- ■Giới thiệu
- □Định tuyến chuyển tiếp
- □Giao thức IP
- □Giao thức ICMP
- □Giao thức NAT

Routed protocol - 1

□Giao thức được định tuyến (routed protocol):

- qui định cách thức đóng gói dữ liệu truyền trên đường truyền
- VD: IP (IPv4, IPv6), IPSec,...

Routing protocol	Routed protocol
Tạo bảng định tuyến	Đóng gói gói tin tại tầng mạng

31

Routed protocol - 2

Routed protocol - 3

- □Version (4)
 - version của IP
- □Header Length (4):
 - Chiều dài IP header (byte)
- □Type of service (8)
 - Chứa định thông tin ưu tiên
 - Ít sử dụng
- □Total length (16)
 - Tổng chiều dài của datagram (tính cả header) (byte)
- □Identifier (16):
 - Khi một gói tin IP bị chia nhỏ ra thành nhiều đoạn, thì mỗi đoan được gán cùng số ID
 - Dùng khi tổng hợp

33

Routed protocol - 4

- □Flag (3) □ DF MF
 - DF
 - Don't fragment, không chia nhỏ
 - MF
 - More fragment, còn gói tin nhỏ tiếp
 - Khi 1 gói tin bị chia nhỏ, tất cả các gói nhỏ (trừ gói tin cuối cùng), bit này được bật lên
- □Fragment offset (13)
 - Vị trí gói nhỏ trong gói tin ban đầu
- □Time to live TTL (8)
 - Thời gian sống của gói tin (hop count)
 - Giảm mỗi khi gói tin đến 1 router mới
 - Khi hop count =0 thì gói tin bi loai bỏ

Routed protocol - 5

- □ Protocol (8)
 - Chỉ ra nghi thức nào ở tầng transport mà gói tin đang sử dụng
 - VD: TCP = 6, UDP =17
- ☐ Internet (Header) checksum (16)
 - Kiểm tra tính đúng đắn nội dung của IP header
 - Không theo cách kiểm tra tuần tự
- ☐ Source and destination addr (32)
 - Địa chỉ IP của bên gửi và bên nhận
- **□** Options (32)
 - Có thể dài đến 40 bytes
 - Dùng cho các tính năng mở rộng của IP
 - Vd: source routing, security, record route, ...
- ☐ Data:
 - Dữ liêu ở tầng transport gởi xuống

35

Nội dung

- Giới thiệu
- □Định tuyến chuyển tiếp
- □Giao thức IP
- □Giao thức ICMP
- □NAT

Nội dung

- ☐Giới thiệu
- □Định tuyến chuyển tiếp
- □Giao thức IP
- □Giao thức ICMP
- ■NAT

37

Định tuyến

- Dịnh tuyến là quá trình chọn lựa các đường đi trên một mạng máy tính để gửi dữ liệu qua dó.
- Dịnh tuyến chỉ ra đường di tốt nhất từ nguồn đến đích của gói tin (packet) thông qua các node trung gian là các router.
- □Có 2 loại định tuyến : tĩnh và động

Định tuyến

- Dịnh tuyến tĩnh: đường đi là cố định. Khi thay đổi trong mạng phải cấu hình lại. Phù hợp với mạng nhỏ. Rất khó triển khai trong mạng lớn.
- Dịnh tuyến động: Có ưu thế trên mạng Intrenet ngày nay. Các đường đi đến đích có tính linh hoạt

39

Các kiểu định tuyến động

- RIP (Routing information protocol)
- IGRP (Interior Gateway Routing Protocol)
- EIGRP (Enhanced IGRP)
- OSPF (Open Shortest Path First)
- IS-IS (Intermediate System-to-Intermediate System)
- BGP (Border Gateway).

Định tuyến tĩnh

- Cấu hình các đường cố định cho router.
- Router cài đặt các đường đi này vào bảng định tuyến
- Các gói dữ liệu được định tuyến theo các đường cố định.

41

Định tuyến tĩnh

- Router (config)# ip route {destination network} {subnet mask} {nexthop ip address | outgoing interface}
 <administrative distance>.
- administrative distance (AD): độ tin cậy của một con đường
- AD càng thấp càng được tin cậy.
- Giá trị AD mặc định của tuyến đường tĩnh là 1.

Định tuyến tĩnh

• Default Route:

Cú pháp: ip route 0.0.0.0 0.0.0.0 {nexthop ip address
 outgoing interface}

Default route: gởi các packet đến các mạng đích mà không có trong bảng định tuyến.

43

Định tuyến động

- Router Information Protocol (RIP)
- Tìm đường đi tốt nhất trong mạng và duy trì chúng.
- ■Có rất nhiều cách để xây dựng lên bảng định tuyến một cách tự động.
- ■Thực hiện một số quy tắc đã định trước để xác định ra đường tốt nhất đến đích.

- Đặc điểm:
- Là giao thức định tuyến theo Distance Vector.
- Thông tin định tuyến là số lượng họp.
- Nếu gói dữ liệu đến mạng đích có số lượng hop lớn hơn 15
 thì gói dữ liệu đó sẽ bị hủy bỏ.
- Chu kỳ cập nhật mặc định là 30 giây.

•

45

Routing Information Protocol (RIP)

- □ Đặc điểm:
- RIPv1 sử dụng phổ biến
- Mọi router đều có hỗ trợ giao thức này.
- RIPv1 đơn giản và tính tương thích cao
- Chia tải ra tối đa là 6 đường có metric bằng nhau.

- Một số giới hạn của RIPv1:
- Không gửi thông tin subnet mask
- Gửi quảng bá ttheo địa chỉ 255.255.255.255
- Không hỗ trợ xác minh thông tin nhận được
- Không hỗ trợ VLSM và CIDR

47

Routing Information Protocol (RIP)

- RIPv2:
- RIPv2 được phát triển từ RIPv1
- Là một giao thức theo Distance Vector
- Sử dụng thời gian holddown để chống loop với thời gian mặc định là 180 giây.
- Sử dụng cơ chế split horizon để chống loop.
- Số họp tối đa là 15.
- Gửi thông tin định tuyến theo địa chỉ Multicast 224.0.0.9

- **■** RIPv2:
- RIPv2 được phát triển từ RIPv1
- Là một giao thức theo Distance Vector
- Sử dụng thời gian holddown để chống loop với thời gian mặc định là 180 giây.

49

Routing Information Protocol (RIP)

- **Q** RIPv2:
- Sử dụng cơ chế split horizon để chống loop.
- Số họp tối đa là 15.
- Gửi thông tin định tuyến theo địa chỉ Multicast 224.0.0.9

- Uu điểm của RIPv2:
- Cung cấp thêm nhiều thông tin định tuyến hơn.
- Có cơ chế xác minh giữa các router khi cập nhật để bảo mật cho bảng định tuyến.
- Có hỗ trợ VLSM (variable Length Subnet Masking-Subnet mask có chiều dài khác nhau).

51

Routing Information Protocol (RIP)

- Cấu hình mẫu:
- Router(config)#router rip (dùng giao thức định tuyến RIP)

Router(config-router)#network địa_chỉ_ip (địa chỉ mạng muốn quảng bá bằng giao thức RIP)

Router(config-router)#version 2 (dùng RIP version 2,mặc định là version 1)

Giao thức Open Shortert Path First (OSPF)

- OSPF là giao thức định tuyến dạng Link-state
- Dựa trên chuẩn mở
- Được phát triển để thay thế phương thức RIP
- OSPF phù hợp với mạng lớn, có khả năng mở rộng

53

OSPF

- Uu điểm của OSPF:
- Tốc độ hội tụ nhanh .
- Hỗ trợ mạng con (VLSM).
- Có thể áp dụng cho mạng lớn.

OSPF

- Uu điểm của OSPF:
- Chọn đường theo trạng thái đường link hiệu quả hơn distance vector
- Đường đi linh hoạt hơn
- Hỗ trợ xác thực (Authenticate)

55

SO SÁNH RIP & OSPF

- Hệ thống RIP: Mạng đích không được có quá 15 router
- Mạng dùng RIP nhỏ
- Whả năng mở rộng kém
- OSPF thì không bị giới hạn về kích thước, tăng khả năng mở rộng.

SO SÁNH RIP & OSPF

- Hệ thống OSPF : Có thể cấu hình theo
 nhiều vùng (area)
- Có thể giới hạn lưu thông trong từng vùng.
- Thay đổi vùng này không ảnh hưởng đến vùng khác
- Whả năng mở rộng cao

57

OSPF

- □ Cấu hình mẫu:
- Router(config)# router ospf process ID
 Router(config-router)# network

Network_number Wildcard_mask area_ID

Mô phỏng

Bảng so sánh

Giao thức	Administrative distance
Nối trực tiếp	0
Static route	1
EIGRP summary route	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EGP	140
ODR	160
External EIGRP	170
Internal BGP	200
Không xác định	255

Nhắc lại

□Địa chỉ IP:

- Kích thước: 32 bits → không gian: 2³² địa chỉ
 - 0.x.x.x/8, 127.0.0.0/8, lớp D, lớp E; không dùng
 - Số lượng node trên Internet "khổng lồ"
 - → Giải quyết:
 - dùng địa chỉ private trong mạng LAN
 - Dùng địa chỉ public khi giao tiếp bên ngoài Internet

□Gởi dữ liệu giữa 2 host

- Địa chỉ host gởi
- Địa chỉ host nhận

61

NAT – giới thiệu

- ■NAT = Network Address Translation
- □RFC 1631, 1918, 2663
- □Chức năng: "thay đổi" địa chỉ

NAT – thuật ngữ

NAT – bảng chuyển đổi địa chỉ

□Dùng chuyển đổi global <-> local

- Thông tin cục bộ bên trong (Inside local)
- Thông tin toàn cục bên trong (Inside global)

□Thông tin trong bảng chuyển đổi

- Static
- dynamic

65

Nat – phân loại

□Static

■ Cố định: 1 local IP ⇔ 1 global IP

□Dynamic

- n local IP ⇔ m global IP
- NAT: chọn 1 global IP còn rảnh để NAT

□Overloading

- lacktriangle n local IP \Leftrightarrow 1 global IP
- NAT: <local IP, local port> ⇔ <global IP, global port>

■Overlapping

Cố định: <local IP, port> ⇔ <global IP, port>

- ☐ Thứ tự gởi các gói tin như sau:
 - Máy 10.0.0.1 gởi 1 gói tin đến 128.119.40.186, 80 từ ứng dụng 3345
 - Úng dụng <128.119.40.186, 80> gởi lại gói tin phản hồi
 - Máy 10.0.0.3 gởi 1 gói tin đến 158.19.20.16, 80 từ ứng dụng 1234
 - Úng dụng <120.11.40.18, 3345> gởi gói tin truy cập dịch vụ web tại máy 10.0.0.1

67

Static NAT

□Cấu hình cố định: 1 local IP ⇔ 1 global IP

- Số máy kết nối ra ngoài bằng với số địa chỉ IP global
- Bên ngoài (outside) có thể chủ động tạo kết nối với bên trong (inside)

Dynamic NAT

- ☐ Cấu hình: n local IP ⇔ m global IP
 - Có m kết nối đồng thời
 - Bên ngoài (outside) không thể chủ động tạo kết nối với bên trong (inside)
- □ Ví du: 10.0.0.0/24 \Rightarrow 138.76.29.7 và 138.76.29.8

Overloading NAT

- ☐ Cấu hình: n local IP ⇔ 1 global IP
 - NAT: <local IP, local port> ⇔ <global IP, global port>
 - Có n kết nối đồng thời
 - Bên ngoài (outside) không thể chủ động tạo kết nối với bên trong (inside)

Overlaping NAT

- □Cấu hình cố định: <local IP, port> ⇔ <global IP, port>
 - Bên ngoài (outside) có thể chủ động tạo kết nối với bên trong (inside)

71

NAT – mô tả bài toán

192.168.1.0/24

☐ Yêu cầu:

- Các máy tính trong LAN: 192.168.1.0/24 có thể truy cập ra ngoài bằng IP: 172.29.1.1
- Bên ngoài có thể truy cập dịch vụ FTP trên máy 192.168.3.253

NAT – Cấu hình Windows Server

□Chọn card public và private

Private: 192.168.1.1Public: 172.29.1.1

□Chọn dịch vụ để publish (nếu có): Web

Local IP: 192.168.1.253Incoming port: 80Outgoing port: 80

73

Tài liệu tham khảo

□J.F Kurose and K.W. Ross về Computer Networking: A Top Down Approach