AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Program of Computer Engineering and Software Systems

Fall Semester, 2020/2021 Course Code: CSE 440

CSE 440: Selected Topics in Software (Neural Networks)

Maximum Marks: 10 Marks

1/2

Project

Implement CNN to classify the given images as 0,1,2,3,4,5,6,7,8,9

Data Description:

Data type: .jpgData size: 28x28

• Labels: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Data link: Link

•

Required:

- Build the neural network with TensorFlow and Keras
- Creating the .h5 model
- Create the following files
 - Train.py (to train the model)
 - Inference.py (to predict given images)
 - Word file
- Create the following functions
 - In Train.py
 - Load data(directory):
 - Taking path to the train directory load every image inside it
 - Return two arrays
 - First array contains all images
 - Second array contain the label for each image
 - Train(images array,label array):
 - Taking the array containing the images and the array containing the labels
 - Write the model inside this function and start the train
 - After the training predict on some of the training data, and show the true label, the predicted label and the image itself

1st Semester, 2020-2021 Course Code: CSE 440

CSE 440: Selected Topics in Software (Neural Networks)

2 **/ 2**

- Save the .h5 of the model in the same directory as the Train.py
- o In Inference.py
 - Predict(image path):
 - Load the image in the image path
 - Load the .h5 model
 - Inference on the image
 - Print and return the predicted label for this image
- Each function must be commented
- Each layer must be commented (number of channels, input shape, output shape)

Document:

- In the word file
- The model summary
- What is your hyperparameters
- Your environment (TensorFlow version, NumPy version, cuda version, etc...)
- If you are going to use google colab
 - Link to your notebook
 - The cells to train and test
- Screenshots to the model training and the predicted samples after training

Bonus:

- Make The model taking any input size for example: 20 x 20, 100x100, 50x50, without resizing the image (hint: modify the model input layer), and Using tensorboard (hint: making tensorboard event) (0.5 mark)
- Making a docker for your environment and the files (SUPER BONUS) (0.5 mark)

Deliverables: Submit Before 14 January 2021, 11:59 PM at LMS.