Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт информационных технологий и управления Кафедра «Информационная безопасность компьютерных систем»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6

по дисциплине «Электроника и схемотехника»

Выполнил

студент гр. 23508/4 Е.Г.Проценко

Проверил

доцент А.Ф. Супрун

1. Цель работы

Экспериментально исследовать вольт-амперные характеристики (ВАХ) транзисторов и изучить основные параметры биполярных транзисторов.

2. Ход работы

2.1. Модель исследуемой цепи

2.2. Исследование входных характеристик транзистора, включенного по схеме ОЭ

2.2.1. Зависимость тока базы от напряжения между базой и эмиттером

$U_{\text{K3}} = 15 \text{ B}$		$U_{\text{K9}} = 10 \text{ B}$		$U_{\kappa 9} = 5 \text{ B}$	
$U_{б9}$, В	<i>I</i> б, мА	<i>U</i> бэ, В	<i>I</i> б, мА	<i>U</i> бэ, В	<i>I</i> б, мА
1	83	1	84	1	85
0.903	8.745	0.903	8.759	0.903	8.769
0.881	5.034	0.881	5.037	0.881	5.041
0.857	2.692	0.857	2.693	0.857	2.694
0.833	1.485	0.827	1.263	0.827	1.264
0.805	0.713	0.799	0.623	0.799	0.624
0.773	0.317	0.768	0.275	0.773	0.317
0.737	0.125	0.737	0.125	0.744	0.148
0.7	0.048	0.708	0.059	0.708	0.059
0.656	0.016	0.666	0.02	0.666	0.02
0.5	0.00333	0.638	0.009	0.638	0.009

2.2.2. Зависимость тока коллектора от напряжения на коллекторе

$I_{6} = 0.1 \text{ MA}$		$I_6 = 0.15 \text{ MA}$		$I_{6} = 0.2 \text{ MA}$	
$U_{\kappa \vartheta}$, B	$I_{\rm K}$, MA	$U_{\kappa \vartheta}$, B	I_{K} , MA	$U_{\text{\tiny K9}}$, B	I_{κ} , мА
0,046	0,369	0,045	0,521	0,044	0,645
0,078	1,106	0,073	1,374	0,069	1,586
0,1	1,725	0,089	2,089	0,083	2,310
0,111	2,310	0,1	2,611	0,092	2,824
0,122	2,692	0,108	2,992	0,098	3,209
0,129	3,024	0,113	3,324	0,102	3,513
0,136	3,292	0,120	3,810	0,108	3,966
0,150	3,891	0,125	4,163	0,112	4,309
0,156	4,204	0,133	4,573	0,117	4,710
0,166	4,578	0,136	4,816	0,119	4,946
0,171	4,812	0,141	5,023	0,123	5,153
0,181	4,998	0,143	5,245	0,124	5,367
0,185	5,213	0,147	5,441	0,127	5,564
0,194	5,517	0,152	5,745	0,130	5,866
0,204	5,813	0,157	6,054	0,136	6,161
0,246	6,482	0,166	6,834	0,146	6,927
0,434	6,838	0,179	7,306	0,149	7,295
1,065	7,284	0,186	7,557	0,154	7,692
5	10	0,196	7,972	0,159	8,122
		0,201	8,279	0,164	8,430
		0,215	8,752	0,169	8,937

0,228	8,892	0,172	9,116
0,242	9,237	0,178	9,491
0,265	9,575	0,185	9,896
0,307	9,870	0,192	10
0,413	9,943	0,203	11
5	15	0,247	12
		0,324	13
		5	20

2.3. Исследование ВАХ транзистора, включенного по схеме ОБ

2.3.1. Модель исследуемой цепи

2.3.2. Зависимость тока эммитера от напряжения между эммитером и базой

$U_{\kappa 6} = 15 \text{ B}$		$U_{\text{K6}} = 10 \text{ B}$		$U_{\text{K6}} = 5 \text{ B}$	
<i>U</i> бэ, В	$I_{\mathfrak{I}}$, м A	<i>U</i> бэ, В	<i>I</i> _э , мА	<i>U</i> бэ, В	<i>I</i> _э , мА
0,563	43,141	0,571	42,344	0,582	41,261
0,541	22,411	0,548	22,019	0,559	21,491
0,528	15,198	0,535	14,937	0,546	14,586
0,518	11,498	0,526	11,302	0,537	11,039
0,505	7,709	0,518	9,08	0,528	8,869
0,488	4,578	0,508	6,49	0,517	5,532
0,473	2,953	0,483	3,129	0,493	3,049
0,453	1,584	0,462	1,635	0,471	1,584
0,427	0,721	0,345	0,734	0,446	0,739
0,391	0,239	0,414	0,384	0,419	0,326
0,370	0,126	0,378	0,131	0,393	0,151
0,339	0,049	0,348	0,052	0,358	0,052
0,297	0,014	0,316	0,2	0,325	0,02
0,249	0,003	0,279	0,006	0,289	0,006

2.3.3. Зависимость тока коллектора от напряжения на коллекторе

$I_9 = 2 \text{ MA}$		$I_{\scriptscriptstyle 9}=4\mathrm{mA}$		$I_9 = 8 \text{ MA}$	
$U_{ m \kappa 6}$, В	$I_{\scriptscriptstyle m K}$, mA	$U_{ m \kappa 6}$, В	$I_{\scriptscriptstyle m K}$, mA	$U_{ m \kappa 6}$, В	$I_{\scriptscriptstyle m K}$, mA
15	1,991	15	3,984	15	7,969
10	1,99	10	3,981	10	7,96
5	1,989	5	3,97	5	7,943
2,5	1,984	2,5	3,966	2,5	7,93
1	1,982	1	3,959	1	7,911

3. Вывод

3.1. Подключении транзистора по схеме ОЭ

- 3.1.1. Зависимость тока базы от напряжения базы экспоненциальная.
- 3.1.2. Зависимость тока коллектора от напряжения коллектора прямая, только сначала резко возрастающая, а после определенного значения более полого возрастающая.

3.2. Подключении транзистора по схеме ОБ

- 3.2.1. Зависимость тока эмиттера от напряжения эмиттера экспоненциальная.
- 3.2.2. Ток на коллекторе почти не зависит от напряжения на коллекторе, меняется очень медленно.