REPORT DOCUMENTATION PAGE

AFRL-SR-BL-TR-00-

THE AND SUBTITE Sentember 30,2000 Final Report - 6/1/97 - 5/31/09 THE AND SUBTITE Droplet Collision in Liquid Propellant Combustion PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) Chung K. Law PHATORNING ORGANIZATION NAME(S) AND ADDRESSIES) Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) APOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is Inited ABSTRACT (Maximum 200 words) 20001025 004 The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fluids can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. 15. NUMBER OF PAGES 15. NUMBER OF PAGES 16. PRACE CODE	AGENCY OUT OVER	AK Z. REPORT DATE	3. REPORT TYPE AN	DONTES
THE AND SUBTITED Proplet Collision in Liquid Propellant Combustion PE - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 61102F PR - 2308 SA - AS G - F49620-97-1-020: PR - 2308 SA - AS G - F49620-97 SA - AS SENSORING MONITORING AGANCA ACSTRANCA 10. SPONSORING MONITORING AGANCA ACSTRANCA 10. SPONSORING MONITORING AGANCA ACSTRANCA 10. SPONSORING MONITORI			Final Report	<u> </u>
Droplet Collision in Liquid Propellant Combustion PER - 2308 SA - AS G - F49620-97-1-0201 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 PRODSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is 12b. DISTRIBUTION CODE ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.	TITLE AND SUBTITLE			5. FUNDING NUMBERS
AUTHORIS; Chung K. Law PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESSIES) AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) 20001025 004 The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS DETAY, atomization, droplet collision, spray statistics 4.			PE - 61102F	
AUTHORIS; Chung K. Law PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fluid droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS DESTRIBUTION NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING AGENCY REPORT NUMBER 10. SPONSORING MONITORING AGENCY REPORT NUMBER 11. SPONSORING MONITORING AGENCY REPORT NUMBER 12. DISTRIBUTION CODE 13. NUMBER OF PAGES 14. SUBJECT TERMS 15. NUMBER OF PAGES 15. NUMBER OF PAGES				
Chung K. Law PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) APOSR, NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fluid droplets can actually merge. These collision dynamics were also compute algorithms developed for droplet collision who were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS DESCRIPTION AND ADDRESS(ES) 10. SPONSORING MONITORING AGENCY NUMBER AGENCY REPORT NUMBER 12. DISTRIBUTION CODE 13. NUMBER of PAGES 4.				1
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fluid droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS 15. NUMBER OF PAGES PRAY, atomization, droplet collision, spray statistics 4	AUTHOR(S)	•		G - F49620-97-1-020
Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite Bll5 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fluel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS DISTRIBUTION CODE 12. DISTRIBUTION CODE 13. NUMBER OF PAGES 15. NUMBER OF PAGES DETAY, atomization, droplet collision, spray statistics 4	Chung K. Law			
Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSGRING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite Bll5 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS 15. NUMBER OF PAGES Prays, atomization, droplet collision, spray statistics 4				
Princeton University Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Massimum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS DETAY, atomization, droplet collision, spray statistics 15. NUMBER OF PAGES	PERFORMING ORGANIZATION N.	AME(S) AND ADDRESS(ES)		
Department of Mechanical and Aerospace Engineering Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Massimum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS DISTRIBUTION (ADDITIONAL MONITORING AGENCY REPORT NUMBER OF PAGES DETAY, atomization, droplet collision, spray statistics 15. NUMBER OF PAGES DETAY, atomization, droplet collision, spray statistics				REPORT NUMBER
Princeton, NJ 08544 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. SUBJECT TERMS DISTRIBUTION CODE 12b. DISTRIBUTION CODE 12c. DISTRIBUTION CODE	Department of Mechan	ical and Aerospace Eng:	ineering	
SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NA 110 Duncan Avenue, Suite Bl15 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION AVAILABILITY STATEMENT Approved for public release; distribution is Imited ABSTRACT (Massimum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.			3	
AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.				
AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-001 SUPPLEMENTARY NOTES DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.		THEY MANGE AND ADDRESSIES		10 SPONSORING MONITORING
DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.	SPONSORING: MONITORING AGENCY NAME(S) AND ADDRESS(ES)			
SUPPLEMENTARY NOTES DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.	•		•	
DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is limited ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.		• •		
ABSTRACT (Maximum 200 words) ABSTRACT (Maximum 200 words) The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.	Bolling AFB, DC 203	32-001		
ABSTRACT (Maximum 200 words) 20001025 004 The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.				
Approved for public release; distribution is limited 20001025 004 The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells.	SUPPLEMENTARY NOTES			
The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of Pages pray, atomization, droplet collision, spray statistics		release; distribution i	is	·
The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages	limited		ŀ	
The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages pray, atomization, droplet collision, spray statistics				
The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages			- 2000	400E 007
The collision behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages	ABSTRACT (Maximum 200 Words	,	Z1111111	111 25 1104
collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages pray, atomization, droplet collision, spray statistics		•	FAAA	IVE VUT
collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages pray, atomization, droplet collision, spray statistics				
collision in high-pressure engines, and of droplets of dissimilar fluids simulating the atomization of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages pray, atomization, droplet collision, spray statistics				
of unlike reactants, were experimentally studied. Results showed that the low-surface tension fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms 15. Number of pages atomization, droplet collision, spray statistics	The collision behavior	of droplets of low surface	tension fuels simi	ulating near-critical droplet
fuels do not readily disintegrate, while the dissimilar fuel droplets can actually merge. These collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms Pray, atomization, droplet collision, spray statistics		•		
collision dynamics were also computationally simulated using the techniques of front tracking and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms pray, atomization, droplet collision, spray statistics 15. Number Of Pages	collision in high-pressu	re engines, and of droplets of	of dissimilar fluids	simulating the atomization
and molecular dynamics. The computer algorithms developed for droplet collision were also extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms Pray, atomization, droplet collision, spray statistics	collision in high-pressur of unlike reactants, we	re engines, and of droplets or experimentally studied.	of dissimilar fluids Results showed th	simulating the atomization nat the low-surface tension
extended to simulate the dynamics of wrinkled flames in complex flows, including flame-vortex interaction and the development of the Landau-Darrieus cells. Subject terms Pray, atomization, droplet collision, spray statistics	collision in high-pressur of unlike reactants, we fuels do not readily dis	re engines, and of droplets or ere experimentally studied. sintegrate, while the dissim	of dissimilar fluids Results showed thilar fuel droplets	simulating the atomization nat the low-surface tension can actually merge. These
interaction and the development of the Landau-Darrieus cells. Subject terms pray, atomization, droplet collision, spray statistics 4	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer	re engines, and of droplets of the experimentally studied. sintegrate, while the dissim- re also computationally sim-	of dissimilar fluids Results showed the nilar fuel droplets ulated using the to	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking
SUBJECT TERMS 15. NUMBER OF PAGES Pray, atomization, droplet collision, spray statistics 4	collision in high-pressur of unlike reactants, we fuels do not readily dis collision dynamics wer and molecular dynamic	re engines, and of droplets of the experimentally studied. sintegrate, while the dissim- re also computationally sim- cs. The computer algorithm	of dissimilar fluids Results showed the hilar fuel droplets ulated using the to as developed for o	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also
pray, atomization, droplet collision, spray statistics	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer and molecular dynamic extended to simulate th	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimate also computationally sim- ces. The computer algorithm e dynamics of wrinkled flan	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also
pray, atomization, droplet collision, spray statistics	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer and molecular dynamic extended to simulate th	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimate also computationally sim- ces. The computer algorithm e dynamics of wrinkled flan	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also
pray, atomization, droplet collision, spray statistics	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer and molecular dynamic extended to simulate th	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimate also computationally sim- ces. The computer algorithm e dynamics of wrinkled flan	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also
pray, atomization, droplet collision, spray statistics	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer and molecular dynamic extended to simulate th	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimate also computationally sim- ces. The computer algorithm e dynamics of wrinkled flan	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also
pray, atomization, droplet collision, spray statistics 4 16. PRICE CODE	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer and molecular dynamic extended to simulate th	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimate also computationally sim- ces. The computer algorithm e dynamics of wrinkled flan	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also
16. PRICE CODE	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer and molecular dynamic extended to simulate th interaction and the deve	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimate also computationally sim- ces. The computer algorithm e dynamics of wrinkled flan	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also ows, including flame-vortex
	collision in high-pressur of unlike reactants, we fuels do not readily dis- collision dynamics wer and molecular dynamic extended to simulate th interaction and the deve	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimple also computationally simples. The computer algorithm e dynamics of wrinkled flamelopment of the Landau-Darro	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also ows, including flame-vortex
SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTI	collision in high-pressur of unlike reactants, we fuels do not readily discollision dynamics wer and molecular dynamic extended to simulate the interaction and the development. SUBJECT TERMS pray, atomization, discolling the development of the development.	re engines, and of droplets of the experimentally studied. sintegrate, while the dissimple also computationally simples. The computer algorithm e dynamics of wrinkled flamelopment of the Landau-Darroplet collision, spray	of dissimilar fluids Results showed the control of	simulating the atomization nat the low-surface tension can actually merge. These echniques of front tracking droplet collision were also ows, including flame-vortex 15. NUMBER OF PAGES 4 16. PRICE CODE

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89

Final Report

(June 1, 1997 to May 31, 1999)

DROPLET COLLISION IN LIQUID PROPELLANT COMBUSTION

(Grant No.: F49620-97-1-0205)

Submitted By:

Chung K. Law Noung K. Law

Department of Mechanical and Aerospace Engineering

Princeton University

Princeton, NJ 08544

Phone: 609-258-5178 Fax: 609-258-6233 E-Mail: cklaw@princeton.edu

For Consideration By:

Dr. Mitat Birkan Air Force Office of Scientific Research

Narrative

For the subject grant, experimental and computational research were conducted on the dynamics of droplet collision and flamefront motion. Accomplishments of these two projects are separately discussed in the following.

Droplet Collision Dynamics

The collisional behavior of droplets of low surface tension fuels simulating near-critical droplet collision in high-pressure engines were experimentally studied by adding detergent in conventional liquid fuels. Results show that, contrary to expectation, the colliding droplets spread out but do not readily disintegrate. Coalescence, however, was relatively difficult. Further experiments are being conducted to define the transition to splashing collision.

Collision of non-similar fluids was also experimentally investigated in order to understand the efficiency of impinging atomization of two jets of unlike reactants such as fuel and oxidizer. An unexpected result was observed in that when the two fluids are rheologically immiscible, they actually merged and form a single droplet upon collision at moderate Weber numbers. While it is not clear if mixing at the molecular level occurred, they were certainly mixed at the macroscopic level of the droplet. It is expected that the ability to mix two nominally immiscible fluids could have significant technological implication. Discussion has been initiated with material scientists to identify possible applications.

Droplet collision was simulated using two computational approaches, namely front tracking and molecular dynamics. By using the front tracking technique, the collision sequence in different collision regimes was simulated, the history of pressure and viscous dissipation within the droplet was spatially resolved, and the energy partition among the various modes was identified. By using molecular dynamics, bouncing and coalescence were successfully simulated for the first time

without the artificial manipulation of the inter-droplet gaseous film. Furthermore, splashing collision was also observed.

Flame Dynamics

Considerable efforts were expanded in the development of computational algorithms for the simulation of flame surfaces. The specific emphasis here is the recognition that much of previous efforts in flame simulation did not account for thermal expansion in crossing the flame front. Since heat release across the flame is significant, leading to substantial disparities in the gas density, assumptions of constant density flames are quantitatively inadequate in describing flame dynamics. Furthermore, since density jump across and interface also induces the Landau-Darrieus instability, neglecting thermal expansion also physically falsifies the phenomena of interest.

Two front-tracking algorithms were developed. The first adopts the multi-fluid approach used for the droplet collision simulation. Specifically, in droplet collision there is a great density disparity between the gas and the liquid, which are separated by a sharp deformable interface. This is similar to the situation of a wrinkled flame sheet separating the high-density unburnt gas from the low-density burnt gas. The second algorithm emphasizes the need for a sharp interface, recognizing that the interfaces in existing algorithms actually consist of several numerical grids and hence are not true discontinuities. The algorithm developed is believed to be the most accurate in the simulation of sharp interfaces.

By using these two algorithms, several flame dynamics problems were simulated, including flame-vortex interaction and flamefront instability in large-scale flows. In particular, it was found that wrinkling of a flame surface in the presence of a vortex is very much influenced by the Landau-Darrieus instability instead of the motion of the vortex itself, and that the wrinkling due to large-scale flows can suppress the formation of small-scale instabilities.

Publications

- 1. "A Front Tracking Method for the Motion of Premixed Flames," by J. Qian, G. Tryggvason, and C. K. Law, *Journal of Computational Physics*, Vol. 144, pp. 52-69 (1998).
- 2. "A Numerical Method for Solving Incompressible Flow Problems with a Surface of Discontinuity," by B.T. Helenbrook, L. Martinelli, and C.K. Law, *Journal of Computational Physics*, Vol. 148, pp. 366-396 (1999).
- 3. "The Role of Landau-Darrieus Instability in Large Scale Flows," by B.T. Helenbrook and C.K. Law, *Combustion and Flame*, Vol. 117, pp. 155-169 (1999).
- 4. "Molecular Simulation of Droplet Collision in the Presence of Ambient Gas," by S. Murad and C. K. Law, *Molecular Physics*, Vol. 96, pp. 81-85 (1999).