I. Quantités de matière

$$n = \frac{N}{N_A}$$

$$n = \frac{m}{M}$$

$$n = V \cdot \frac{\rho}{M}$$

$$n = \frac{V}{V_m}$$

$$n = \frac{v}{V_m}$$

$$n = \frac{v}{V_m}$$

$$n = \frac{w}{V}$$

$$n = \frac{w}{V_m}$$

- <u>Liaison de covalence</u>: mise en commun de 2 électrons
- Molécule polaire : Les barycentres positifs et négatifs ne sont pas confondus
- Molécule apolaire : Les barycentres positifs et négatifs sont confondus

II. Conductance et conductimétrie

U = RI			
I = GU	G (S) : conductance	G=1/R	
	σ (S.m ⁻¹) : conductivité	σ=1/ρ	
$R = k \times \frac{1}{a}$	R (Ω) : résistance	R=1/G	
$R = k \times \sigma$	ρ (Ω.m) : résistivité	ρ=1/σ	
10 10 10	k (m) : constante de cellules	k=S/L	
$\sigma = \lambda c$	S (m²) : surface des plaques		
I.	L (m) : longueur entre les plaques		
$\sigma = \frac{L}{S}G$	λ_i (S.m ² .mol ⁻¹) : conductivité molaire ionique		
$\sigma = \Sigma \lambda_i [X_i]$	[X _i] (mol.m ⁻³) : concentration (a	ttention à l'unité)	

III. Réactions chimiques

1. Réactions acido-basiques et d'oxydo-réduction

Acido-basiques	Oxydo-réduction		
 Acide perd H⁺, base gagne H⁺ Ac/Ba (AH/A⁻) AH = A⁻ + nH⁺ Ampholyte ou amphotère : espèce qui est base d'un couple et acide d'un autre 	 Ox gagne e⁻, Red perd e⁻ Ox/Red Ox + ne⁻ = Red 		
$AH_{1} = A^{-}_{1} + xH^{+} \times y$ $A^{-}_{2} + yH^{+} = AH_{2} \times x$ $yAH_{1} + xA^{-}_{2} = xAH_{2} + yA^{-}_{1}$	$Red_1 = Ox_1 + xe^- \times y$ $Ox_2 + ye^- = Red_2 \times x$ $yRed_1 + xOx_2 = xRed_2 + yOx_1$		

2. Réactions ioniques à connaitre

Équation	Précipité (couleur, nom)	
$Cu^{2+}_{(aq)} + 2HO^{-}_{(aq)} \rightarrow Cu(HO)_{2(s)}$	Bleu	Hydroxyde de cuivre II
$Fe^{2+}_{(aq)} + 2HO^{-}_{(aq)} \rightarrow Fe(HO)_{2(s)}$	Vert	Hydroxyde de fer II
$Fe^{3+}_{(aq)} + 3HO^{-}_{(aq)} \rightarrow Fe(HO)_{3(s)}$	Rouille	Hydroxyde de fer III
$Al^{3+}_{(aq)} + 3HO^{-}_{(aq)} \rightarrow Al(HO)_{3(s)}$	Blanc	Hydroxyde d'aluminium

 $\mathbf{v2}$