Recueil d'exercices d'analyse réelle

Pour le cours de CPB1 ENSISA maths renfort S2.

1 Propriétés des nombres réels

1.1 Exercice

1. Soient $x, y \in \mathbb{R}$. Montrer que

$$\max(x,y) = \frac{x+y+|x-y|}{2}; \quad \min(x,y) = \frac{x+y-|x-y|}{2}.$$

- 2. Soient A, B deux parties bornées de \mathbb{R} . On définit $A + B := \{a + b, a \in A, b \in B\}$. Montrer que $\sup(A) + \sup(B)$ est un majorant de A + B, puis que $\sup(A + B) = \sup(A) + \sup(B)$.
- 3. Trouver les majorants, minorants, max, min, sup et inf de :
 - (a) $[0,1] \cap \mathbb{Q}$
 - (b) $]0,1[\bigcap \mathbb{Q}]$
 - (c) $\left\{ (-1)^n + \frac{1}{n^2}, n \in \mathbb{N}^* \right\}$

1.2 Exercice

Donner, s'ils existent, le maximum, le minimum et les bornes supérieures et inférieures de

$$\mathcal{A} = \left\{ (-1)^n + \frac{1}{2n+1}, \ n \in \mathbb{N} \right\}.$$

1.3 Exercice

On considère la partie de \mathbb{R} suivante :

$$\mathcal{A} = \left\{ (-1)^n + \frac{n+1}{n+2}, \ n \in \mathbb{N} \right\}.$$

Etudier ses bornes inférieures et supérieures. Si elles existent, sont-elles atteintes?

1.4 Exercice

On considère la partie de \mathbb{R} suivante :

$$\mathcal{A} = \left\{ (-1)^n - \frac{1}{n+1}, \ n \in \mathbb{N} \right\}.$$

- 1. [2] Justifier que les bornes supérieures et inférieures de A existent. Les calculer.
- 2. [1] La borne supérieure est-elle un maximum? L'inférieure un minimum?
- 3. [2] La suite $v_n = (-1)^n \frac{1}{n+1}$ converge-t-elle? Pensez aux suites extraites.

1.5 Exercice

Soit A une partie de \mathbb{R}_+ non vide et bornée. On note $B = \{\sqrt{x}, x \in A\}$.

Montrer que $\sup(B) = \sqrt{\sup(A)}$. Indication : prendre $m \in B$, $m < \sqrt{\sup(A)}$ et montrer que m n'est pas un majorant de B.

2 Suites numériques

2.1 Exercice (suites géométriques)

Soit $a \in \mathbb{R}$, on pose $u_n = a^n$.

- 1. Montrer: si a > 1, alors $\lim_{n \to +\infty} (u_n) = +\infty$.
- 2. Montrer: si -1 < a < 1, alors $\lim_{n \to +\infty} (u_n) = 0$.
- 3. Montrer: si $a \leq -1$, alors (u_n) diverge.

2.2 Exercice

Soit (u_n) une suite réelle.

- 1. Montrer que si $\lim_{n \to +\infty} (u_n) = +\infty$, alors $\lim_{n \to +\infty} (1/u_n) = 0$.
- 2. Montrer que toute suite convergente est bornée.
- 3. Soit (v_n) une suite réelle convergeant vers 0. Montrer que si (u_n) est bornée, alors (u_nv_n) converge aussi vers 0.
- 4. En déduire que $\lim_{n\to +\infty}(u_nv_n)=\lim_{n\to +\infty}(u_n)\times\lim_{n\to +\infty}(v_n)$ pour u et v deux suites convergeant vers une limite réelle finie. Indication: remarquer que ab-cd=(a-c)b+c(b-d), pour $a,b,c,d\in\mathbb{R}.$

2.3 Exercice (calculs de limites)

Calculer les limites (si elles existent) des suites suivantes :

- 1. $\frac{(-1)^{n-1}}{n}$;
- 2. (u_n) définie par $u_1 = 0.23$, $u_2 = 0.233$, $u_3 = 0.2333$, etc;
- 3. $\frac{n+(-1)^n}{n-(-1)^n}$;
- 4. $u_n = \sum_{k=1}^n \frac{1}{2^k}$;
- 5. (v_n) définie par $v_1 = \sqrt{2}$, $v_n = \sqrt{2v_{n-1}}$. Utiliser ln et le point 4;
- 6. $\sqrt{n+1} \sqrt{n}$;
- 7. $\frac{n^2 3n + 2}{2n^2 + 5n 34}$; $\sqrt{n + \sin(n)}$; $\frac{1}{n + (-1)^n}$; $\frac{3n}{n + \cos(n)}$.

2.4 Exercice

- 1. Soit $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Montrer (par récurrence) que $u_n \leq 2 \frac{1}{n}$. Déduire que (u_n) converge.
- 2. (Série harmonique) Soit $H_n = \sum_{k=1}^n \frac{1}{k}$.
 - (a) Avec une intégrale, montrer que $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$ pour tout $n \in \mathbb{N}$.
 - (b) En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$. Limite de H_n ?
 - (c) On pose $v_n = H_n \ln(n)$. Montrer que (v_n) est positive et décroissante. Conclusion ?

2.5 Exercice

Montrer que la suite $u_n = (-1)^n + \frac{1}{n}$ ne converge pas.

2.6 Exercice

Soit $n \in \mathbb{N}$.

- 1. Calculer la limite de $u_n = \sqrt{n+1} \sqrt{n}$?
- 2. On pose

$$v_n = \frac{1}{1 + \sqrt{n+1} + (-1)^n \sqrt{n-1}}.$$

En utilisant les suites extraites v_{2n} et v_{2n+1} , montrer que la suite (v_n) ne converge pas.

2.7 Exercice (somme de Cesàro)

Pour $n \in \mathbb{N}$, soit (u_n) une suite réelle que l'on suppose convergente vers $l \in \mathbb{R}$. L'objectif est de montrer que

$$v_n := \frac{1}{n+1} \sum_{k=0}^n u_k \to l.$$

1. Montrer que

$$v_n - l = \frac{1}{n+1} \sum_{k=0}^{n} (u_k - l).$$

- 2. Écrire la définition de $u_n \to l$.
- 3. On fixe $\varepsilon > 0$. Montrer que

$$|v_n - l| \le \frac{A}{n+1} + \frac{1}{n+1} \sum_{k=N}^n |u_k - l|, \quad \text{avec } A = \sum_{k=0}^{N-1} |u_k - l| \in \mathbb{R}$$

et $N \in \mathbb{N}$ bien choisi. Indication : On utilisera l'inégalité triangulaire "généralisée" : pour a_i des réels,

$$\left| \sum_{i=0}^{n} a_i \right| \le \sum_{i=0}^{n} |a_i|$$

- 4. Écrire la définition de $\frac{A}{n+1} \to 0$. A partir de quel rang N_{max} est-on sûr d'avoir à la fois $\frac{A}{n+1} \le \varepsilon$ et $\frac{1}{n+1} \sum_{k=N}^{n} |u_k l| \le \varepsilon$?
- 5. Déduire que $\forall n \geq N_{max}, \ |v_n l| \leq 2 \, \varepsilon.$ Conclure

2.8 Exercice

- 1. [2] Étudier la convergence de $a_n = \sqrt{n + \sin(n)}$.
- 2. [2] Étudier la convergence de $b_n = \sqrt{n^2 + 1} n$.
- 3. [3] On considère $u_n = \frac{n \ln(n) 1}{n}$. Montrer que (u_n) est minorée par la suite $v_n = \ln(n) 1$. Conclure quant à la convergence de (u_n) .

2.9 Exercice

Soit
$$u_n = \sum_{k=1}^n \frac{1}{k^3}$$
 et $v_n = u_n + \frac{1}{n^2}$.

- 1. [2] Montrer que u_n est croissante, que v_n est décroissante et que $u_n v_n \longrightarrow 0$.
- 2. [1] Conclure quant à la convergence de u_n et v_n (on ne cherchera pas à calculer leur limite).

2.10 Exercice

Pour $n \ge 1$, on considère la suite

$$S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{\sqrt{k}}.$$

- 1. Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- 2. Conclure quant à la convergence de (S_n) .

3 Continuité de fonctions réelles

3.1 Exercice

- 1. Montrer que toute fonction périodique non constante n'admet pas de limite en $+\infty$;
- 2. Montrer que toute fonction croissante majorée admet une limite en $+\infty$.

3.2 Exercice

Peut-on prolonger par continuité les fonctions suivantes?

- 1. $f(x) = \sin(x)\sin(1/x)$;
- $2. \ g(x) = \frac{\ln(\operatorname{ch}(x))}{x};$
- 3. $h(x) = \frac{1}{1-x} \frac{2}{1-x^2}$

3.3 Exercice

Soient $a, b \in \mathbb{R}$ et $f: [a, b] \longrightarrow [a, b]$. On dit que x_0 est un **point fixe** de f si $f(x_0) = x_0$.

- 1. Comment peut-on traduire graphiquement le fait que f admette un point fixe?
- 2. Montrer que si f est continue, alors f admet un point fixe. (Poser h(x) = f(x) x).
- 3. Trouver une fonction $f:[0,1] \longrightarrow [0,1]$ décroissante sans point fixe.
- 4. Montrer que si $g:[0,1] \longrightarrow [0,1]$ est croissante, alors elle admet un point fixe. *Indication*: Considérer $A:=\{x\in[0,1],g(x)\geq x\}$ et montrer que le sup de A (existence?) est un point fixe de g.

3.4 Exercice

On considère $f: \mathbb{R} \setminus \{1/3\} \longrightarrow \mathbb{R}$ définie par $f(x) = \frac{2x+3}{3x-1}$. Pour tout $\varepsilon > 0$, trouver δ tel que $(x \neq 1/3 \text{ et } |x| \leq \delta) \Longrightarrow |f(x) + 3| \leq \varepsilon$.

3.5 Exercice

Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue telle que f(a)=f(b). On pose $g(t)=f(t+\frac{b-a}{2})-f(t)$.

- 1. Montrer que g s'annule en au moins un point de l'intervalle $[a, \frac{a+b}{2}]$.
- 2. Application : une personne parcourt 4km en 1h. Montrer qu'il existe un intervalle de 30 minutes durant lequel elle parcourt exactement 2km.

3.6 Exercice

Soient I un intervalle et $f: I \longrightarrow \mathbb{R}$ continue telle que $f(x)^2 = 1$ pour tout $x \in I$. Montrer que f est constante égale à 1 ou -1.

3.7 Exercice

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ continue et admettant une limite finie en $+\infty$. Montrer que f est bornée. Les bornes sont-elles forcément atteintes?

3.8 Exercice

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue en 0 et telle que f(x) = f(2x) pour tout x réel. Montrer que f est constante. *Indication*: Montrer que pour tout x, on a l'égalité $f(x) = f(\frac{x}{2^n})$.

3.9 Problème

Soit $n \in \mathbb{N}$, $n \ge 1$. On considère

$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

 $x \longmapsto x^n + x^{n-1} + \dots + x - 1.$

- 1. (a) Soit $n \geq 1$. Justifier que f_n est continue.
 - (b) Montrer que l'équation $f_n(x) = 0$ admet une unique solution, que l'on notera a_n .
 - (c) Calculer a_1 et a_2 .
 - (d) Montrer que $\forall n \geq 2$, on a l'encadrement $0 \leq a_n \leq 1$. La suite du problème est consacrée à l'étude de la convergence de la suite (a_n) .
- 2. (a) Exprimer $f_{n+1}(x)$ en fonction de $f_n(x)$ et de x^{n+1} .
 - (b) Montrer que $f_n(a_{n+1}) < 0$.
 - (c) Déduire que $a_{n+1} < a_n$.
 - (d) Conclure quant à la convergence de (a_n) .
- 3. Dans cette question, on va calculer la valeur de la limite l de (a_n) . On suppose que $n \geq 2$.
 - (a) Montrer que $\sum_{i=1}^{n} (a_n)^i = 1$.
 - (b) Déduire que $\frac{a_n(1-a_n^n)}{1-a_n} = 1$, puis que $a_n = \frac{1}{2}(1+a_n^{n+1})$.
 - (c) Justifier que $a_n^{n+1} < a_2^{n+1}$. Déduire que $a_n^{n+1} \underset{n \to +\infty}{\longrightarrow} 0$. Conclure.

3.10 Problème

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue qui vérifie $f(x) = f(x^2)$, pour tout $x \in \mathbb{R}$.

- 1. (a) Montrer que f est une fonction paire, c'est-à-dire telle que f(x) = f(-x) pour tout $x \in \mathbb{R}$.
 - (b) Montrer que pour tout x > 0, on a $f(x) = f(\sqrt{x})$.
- 2. Soit x_0 un réel strictement positif. On définit une suite réelle par $u_0 = x_0$, $u_{n+1} = \sqrt{u_n}$.
 - (a) Montrer que $\forall n \in \mathbb{N}, u_n = (x_0)^{\frac{1}{2^n}}$. On rappelle que $\sqrt{x} = x^{\frac{1}{2}}$ (pour x positif).
 - (b) Montrer que $\lim_{n\to+\infty} \ln(u_n) = 0$. Déduire que $\lim_{n\to+\infty} (u_n) = 1$.
- 3. (a) Justifier que $\lim_{n\to+\infty} f(u_n) = f(1)$.
 - (b) Montrer que la suite $(f(u_n))$ est constante, égale à $f(x_0)$, et déduire que $\forall x > 0, f(x) = f(1)$.
 - (c) En utilisant 1.(a), montrer que $\forall x < 0, f(x) = f(1)$.
 - (d) Justifier que f(0) = f(1).
 - (e) Conclusion : quelle propriété remarquable de f avons-nous montré?

3.11 Exercice

Montrer que $x \mapsto \cos(x)$ n'admet pas de limite en $+\infty$.

4 Dérivabilité de fonctions réelles

4.1 Exercice

Soient $g: I \longrightarrow J$ dérivable en $x_0 \in I$ et $f: J \longrightarrow \mathbb{R}$ dérivable en $g(x_0) \in J$, avec I, J deux intervalles réels.

En utilisant un lemme du cours, montrer que $f \circ g$ est dérivable en x_0 et que

$$(f \circ g)'(x_0) = g'(x_0)f'(g(x_0)).$$

4.2 Exercice

Soit $P(X) = (X - \alpha_1)(X - \alpha_2)...(X - \alpha_n)$ un polynôme à n racines réelles distinctes 2 à 2.

- 1. Montrer que P' admet n-1 racines distinctes.
- 2. Montrer que P + P' admet n 1 racines distinctes. Indication: utiliser $f: x \longmapsto P(x) \exp(x)$
- 3. Déduire que toutes les racines de P + P' sont réelles.

4.3 Exercice (Règle de l'Hospital)

Soient $f, g: I \longrightarrow \mathbb{R}$ deux fonctions dérivables, et $x_0 \in \mathbb{R}$. On suppose :

- $f(x_0) = g(x_0) = 0$;
- $\forall x \in I \setminus \{x_0\}, g'(x) = 0;$
- $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \in \mathbb{R}$.

Montrer que

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = l.$$

Indication: Considérer $h: x \mapsto g(a)f(x) - f(a)g(x)$ pour $a \in I \setminus \{x_0\}$.

4.4 Exercice

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivable. Supposons que pour tout x, f'(x) < 0 et que $\lim_{x \to +\infty} (f(x)) = 0$. Montrer que f ne s'annule jamais.

4.5 Exercice

Soit f dérivable sur \mathbb{R}_+^* . Supposons que $f'(x) \xrightarrow[x \to +\infty]{} 0$. Posons g(x) = f(x+1) - f(x). Montrer que

$$\lim_{x \to +\infty} g(x) = 0.$$

4.6 Exercice

Soit $f:[a,b]\to\mathbb{R}$, deux fois dérivable et telle que f(a)=f'(a) et f(b)=f'(b). Montrer qu'il existe un élément c de [a,b] tel que f(c)=f''(c).

Indication : appliquer le théorème de Rolle à la fonction $g(x) = e^x(f(x) - f'(x))$.

4.7 Exercice

On considère $f:[0,1] \longrightarrow \mathbb{R}$ dérivable telle que f(0)=f'(0)=0 et f(1)=0. L'objectif de cet exercice est de montrer qu'il existe $c \in]0,1[$ tel que $f'(c)=\frac{f(c)}{c}$.

- 1. On pose $g:[0,1] \longrightarrow \mathbb{R}, \ g(x) = \frac{f(x)}{x}$ si $x \in]0,1[,\ g(0) = 0$ sinon.
 - (a) [1] Justifier que g est continue et dérivable sur]0,1].

- (b) [2] Montrer que g est continue en 0.
- 2. (a) [1] Calculer g'(x) pour $x \in [0, 1]$.
 - (b) [2] Vérifier que g satisfait aux hypothèses du théorème de Rolle, puis montrer qu'il existe $c \in]0,1[$ tel que g'(c) = 0.
 - (c) [1] Conclure.

4.8 Exercice

On considère $f:[0,1] \longrightarrow \mathbb{R}$ et $g:[0,1] \longrightarrow \mathbb{R}$ continues sur [0,1], dérivables sur [0,1], dérivables sur [0,1] et vérifiant les conditions : $\forall x \in]0,1[,\ g'(x) \neq 0$ et f(0)=g(0)=0.

- 1. [2] Soit $x \in]0,1]$. En appliquant le théorème des accroissements finis à g sur [0,x], montrer que $g(x) \neq 0$.
- 2. Soit $x \in]0,1]$. On pose

$$\varphi: [0, x] \longrightarrow \mathbb{R}$$

$$t \longmapsto f(x)g(t) - g(x)f(t)$$

- (a) [1] Justifier que φ est continue sur [0, x] et dérivable sur [0, x].
- (b) [1] Calculer $\varphi(0)$ et $\varphi(x)$.
- (c) [2] Quel théorème peut-on appliquer? Montrer qu'il existe $c \in]0,x[$ tel que

$$\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}.$$