Algebra Qualifying Exam January 20, 2000

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems that you would like to be graded by circling the problem numbers on the problem sheet. **Note:** All rings in this exam are associative and with 1 and all integral domains are commutative.

- 1. Let G be a finite group, let p be a prime, and let S be a Sylow p-subgroup of G. Prove that if $N \triangleleft G$ is a normal subgroup of G, then $S \cap N$ is a Sylow p-subgroup of N.
- 2. Let G be a finite group of odd order and let $x \in G$ be a nonidentity element. Prove that x and x^{-1} are not conjugate in G.
- 3. Let G be a group acting transitively on the finite set X. Let $x \in X$ and denote by $G_x = \{g \in G | gx = x\}$ the *isotropy subgroup* of x. Let $H \triangleleft G$ be a normal subgroup of G; note that HG_x is a subgroup of G and that H acts on X. Prove that the number of distinct orbits of the action of H on X equals the index $[G: HG_x]$.
- 4. Let $I = (2, x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}$ be the ideal in the ring $R = \mathbb{Z}[x]$ of polynomials in the indeterminate x with integer coefficients. Prove that I is *not* a free R-module.
- 5. Let R be a Euclidean domain with respect to the function d: $R \{0\} \to \mathbb{Z}^+ \ (= \{1, 2, \ldots\})$. Assume that d satisfies
 - (a) d(ab) = d(a)d(b), for all $a, b \in R \{0\}$,
 - (b) $d(a+b) \le \max\{d(a), d(b)\}$, for all $a, b, a+b \in R \{0\}$.

Prove that either R is a field, or that there exists a field $\mathbb{F} \subseteq R$ such that $R \cong \mathbb{F}[x]$, the ring of polynomials in the indeterminate x with coefficients in \mathbb{F} . [Hint: Let $\mathbb{F} = \{a \in R | d(a) = 1\}$.]

6. Let $A, B: V \to V$ be linear transformations on the finite dimensional vector space V over the complex numbers \mathbb{C} . Prove that if

- AB = BA then there exists a nonzero vector $0 \neq v \in V$ that is simultaneously an eigenvector for both A and B.
- 7. Let $T: V \to V$ be a linear transformation of the finite dimensional vector space V over the field \mathbb{F} . Define the usual $\mathbb{F}[x]$ -module structure on V by setting $f(x) \cdot v = f(T)(v)$, $f(x) \in \mathbb{F}[x]$, $v \in V$. Prove that V is a cyclic $\mathbb{F}[x]$ -module if and only if the characteristic polynomial of T equals the minimal polynomial of T.
- 8. Let $\mathbb{F} = \mathbb{F}_q$ be the finite field of $q \ (= p^r)$ elements, where p is prime, and let $\mathbb{K} = \mathbb{F}_{q^4} \supseteq \mathbb{F}$. Say that elements $\alpha, \beta \in \mathbb{K}$ are equivalent if they have the same minimimal polynomial over \mathbb{F} . Clearly this is an equivalence relation on \mathbb{K} . Compute the number of equivalence classes in \mathbb{K} as a function of q. (Hint: consider $\mathbb{F} \subseteq \mathbb{F}_{q^2} \subseteq \mathbb{F}_{q^4} = \mathbb{K}$.)
- 9. Let $\mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{K}$ be fields, where the extension degrees are finite, let $\alpha \in \mathbb{K}$, and let f(x) be the minimal polynomial of α over \mathbb{F} . Assume that $[\mathbb{E} : \mathbb{F}]$ and deg f(x) are relatively prime. Prove that f(x) is also the minimal polynomial of α over \mathbb{E} .
- 10. Let $n \geq 3$ be an integer and let $f(x) = x^n 2 \in \mathbb{Q}[x]$. Prove that the Galois group of f(x) is nonabelian but solvable.