OLS の比較分析への応用

労働経済学 2

川田恵介

Table of contents

1		過剰適合	2
	1.1	OLS の問題点	2
	1.2	数值例: 母平均	2
	1.3	数値例: データ	3
	1.4	数値例: 平均値による推定	3
	1.5	含意	4
	1.6	数値例: 平均値 VS シンプルなモデル	4
	1.7	数値例: 平均値 VS 複雑なモデル	5
	1.8	含意	5
	1.9	Takeaway	5
	1.10	Takeaway: 過剰適合	6
	1.11	課題	6
	1.12	数值例: 50000 事例	6
	1.13	数値例: 平均値 VS シンプルなモデル	7
	1.14	数値例: 平均値 VS 複雑なモデル	7
2		LASSO	8
	2.1	実装	8
	2.2	実装: OLS	8
	2.3	実装: LASSO	9
	2.4	罰則付き回帰	10
	2.5	罰則付き回帰の基本手順	10
	2.6	入門経済学による例え話	10
	2.7	罰則の定式化	11
	2.8	λ の設定 \ldots	11
	2.9	伝統的な推定方法との関係性	11
	2.10	罰則付き回帰の問題点	11

2.11	Takeaway	11
2.12	よくある誤解: 完璧なモデル	12
2.13	よくある誤解: 予測と比較	12
Refer	rence	12

1 過剰適合

1.1 OLS の問題点

- 事例数に比べて、単純なモデルを推定するのであれば、OLS は有効な選択肢
 - 実用的な推定精度
 - 信頼区間の計算
- 複雑なモデルを推定しようとすると、データ上の平均値に近づくが、母平均との乖離が大きくなる
 - 過剰適合/過学習
 - * データではなく、母集団を関心とするのであれば、大問題

1.2 数值例: 母平均

1.3 数値例: データ

1.4 数値例: 平均値による推定

1.5 含意

- データ上の平均値は、母平均から基本的に乖離する
 - 事例数が少ないグループ (X = 9, 16) において特に乖離する

1.6 数値例: 平均値 VS シンプルなモデル

1.7 数値例: 平均値 VS 複雑なモデル

1.8 含意

- シンプルなモデルは、データ上の平均値よりも、母平均に近い
 - 線型モデルへの仮定 (Y は X に応じて、"緩やかに変化する" (smoothness)) が事例の少なさを 補う
- 複雑なモデルは、データ上の平均値と一致する
 - シンプルなモデルよりも、母平均から乖離している

1.9 Takeaway

- OLS は、研究者が設定したモデルを、データに極力適合するように推定する
 - 複雑なモデルを用いると、データ上の平均値を"なぞった"モデルが推定される
 - * データにより適合する
- データ上の平均値と母平均は、基本的に乖離する
 - 事例数が限られており、上振れ/下振れする

* 特に少数しかないカテゴリ (X = 9,18)

1.10 Takeaway: 過剰適合

- 適度に複雑なモデルを OLS で推定: データ上の平均と母平均を、ほどほど近似する
- 複雑すぎるモデル: データ上の平均をよく近似するが、母平均から乖離する
 - 過剰適合
- 単純すぎるモデル: データ上の平均と母平均から、乖離する
 - 過小適合

1.11 課題

- 実践において、適度に複雑なモデルを定式化することが非常に難しい
 - 特に X の数が多い場合は、ほぼ不可能
 - "(T)here are parts of the (statistical) model where economic theory is silent" (Imbens and Athey 2021) の代表例
 - *()は川田が補った部分

1.12 数值例: 50000 事例

1.13 数値例: 平均値 VS シンプルなモデル

1.14 数値例: 平均値 VS 複雑なモデル

2 LASSO

2.1 実装

```
library(tidyverse)

data("CPS1985", package = "AER")

data <- mutate(
   CPS1985,
   Y = log(wage), # log of wage

D = if_else(
   occupation == "technical",
   1,
   0
) # occupation dummy
)</pre>
```

2.2 **実装**: OLS

```
lm(Y ~ D +
     (education + ethnicity + region + gender)^2 +
     I(education^2) + I(age^2),
    data
)
```

```
Call:
```

```
lm(formula = Y \sim D + (education + ethnicity + region + gender)^2 + I(education^2) + I(age^2), data = data)
```

Coefficients:

```
(Intercept) D
1.2342971 0.1432014
education ethnicityhispanic
0.0746214 -0.1399608
ethnicityother regionother
0.1422315 -0.4574510
```

genderfemale I(education^2) -0.8052570 -0.0015238 $I(age^2)$ education:ethnicityhispanic 0.0001293 -0.0117403 education:ethnicityother education:regionother -0.0259754 0.0388527 education:genderfemale ethnicityhispanic:regionother 0.0336461 0.3266717 ethnicityother:regionother ethnicityhispanic:genderfemale 0.0948690 -0.0006260 ethnicityother:genderfemale regionother:genderfemale 0.1618201 0.1242733

2.3 実装: LASSO

```
hdm::rlasso(Y ~ D +
          (education + ethnicity + region + gender)^2 +
          I(education^2) + I(age^2),
          data,
          post = FALSE
     )
```

Call:

```
rlasso.formula(formula = Y ~ D + (education + ethnicity + region +
gender)^2 + I(education^2) + I(age^2), data = data, post = FALSE)
```

Coefficients:

D (Intercept) 1.318e+00 1.187e-01 education ethnicityhispanic 3.779e-02 0.000e+00 ethnicityother regionother 0.000e+00 0.000e+00 I(education^2) genderfemale -1.823e-01 6.254e-04 I(age^2) education:ethnicityhispanic 8.555e-05 0.000e+00 education:ethnicityother education:regionother

0.000e+00 7.712e-03

education:genderfemale ethnicityhispanic:regionother

0.000e+00 0.000e+00

ethnicityother:regionother ethnicityhispanic:genderfemale

0.000e+00 -4.452e-02

ethnicityother:genderfemale regionother:genderfemale

0.000e+00 0.000e+00

2.4 罰則付き回帰

• OLS の問題点: 定式化のもとで、データへの適合のみを目指して推定する

- 過剰適合を避けるには、定式化を単純するしかない
- 罰則付き回帰のアイディア: 複雑性への罰則を与えることで、複雑に定式化されたモデルを、過剰適合 を減らしながら推定できる
 - LASSO,Ridge,elastic net など

2.5 罰則付き回帰の基本手順

- Step 1. **研究者** が線型モデル $\beta_0 + \beta_1 X_1 + ...$ を設定
- Step 2. 以下を最小化するように、線型モデルの β を算出

データへの不適合度 + 複雑性への罰則

• 「モデルを複雑にしない」ことも"目的関数"に加える

2.6 入門経済学による例え話

- 生産方法を企業の自主的な意思決定に任せると
 - 同じ生産量を達成する方法の中で、最も費用が少ない方法が選ばれる
 - * 希少な資源の利用を減らせ、それなりに望ましい
 - 一般に"負の外部性"が生じる
 - * 温室効果ガスの過剰排出等
 - 社会的に望ましい水準に誘導するための政策が必要
 - * 総量規制、環境税、補助金等

2.7 罰則の定式化

複雑性への罰則 = $\underset{\widehat{\mathcal{H}}^{\mathtt{w}}}{\underline{\lambda}}$ ×複雑性の測定値

- LASSO においては、

複雑性の測定値 = $|\beta_1| + |\beta_2|$..

- Ridge においては、

複雑性の測定値 = $\beta_1^2 + \beta_2^2$...

2.8 λ の設定

- λは、推定されたモデルが母平均に近づく(予測性能が高まる)ように設定する
 - いろいろな方法が提案されている
 - 本講義では、hdm package で実装されている理論的指標を用いる

2.9 伝統的な推定方法との関係性

- $\lambda = 0$: OLS
- $\bullet \ \ \lambda = \infty : \, \beta_1 = \beta_2 = .. = 0$
 - 推定されたモデル = $\beta_0 = Y$ の平均値
- OLS と単純平均の中間的なモデルが推定される

2.10 罰則付き回帰の問題点

- LASSO を含む罰則付き回帰 (および Random Forest, Boosting, Deep Learning 等の機械学習の手法) において、推定結果とデータの間に複雑な関係性が生じる
 - 基本的に、中心極限定理が適用できず、信頼区間の計算が難しい
 - 分析結果として、職種間賃金格差は概ね"この範囲"という主張ができない

2.11 Takeaway

- OLS は、「限られたデータで、複雑なモデルを推定する」に適した推定手法ではない
 - 事例数に比べて、単純なモデルを推定するのであれば、優れた手法

- LASSO は、「限られたデータで、複雑なモデルを推定する」ための手法の一つ
 - データと推定結果の関係性が複雑であり、妥当な推論が難しい
- 次回 LASSO の性質である変数選択を適切に利用することで、上記の問題を克服できることを紹介

2.12 よくある誤解: 完璧なモデル

- 「LASSO で推定したモデルが、母平均と一致している」ことが確認できるのであれば、信頼区間の計算は不要
 - "Yを完璧に予測できるモデル"であれば、上記の条件を満たす
 - * ただし人間行動や社会的な現象について、"完璧に予測できるモデル"は非現実的 (Narayanan and Kapoor 2024)

2.13 よくある誤解: 予測と比較

- LASSO は典型的な予測で有効
 - モデル全体の適合度で良し悪しを測定
 - * 例えば、 $(Y モデルの予測値)^2$ の母平均
- 比較では、モデルの特定の部分 (特定の変数間の関係性) の信頼できる推定が重要
 - セミパラ推定 (Double-Debiased/Targeted learning)
 - Applied Causal Inference Powered by ML and AI
 - Introduction to Modern Causal Inference

Reference

Imbens, Guido, and Susan Athey. 2021. "Breiman's Two Cultures: A Perspective from Econometrics." Observational Studies 7 (1): 127–33.

Narayanan, Arvind, and Sayash Kapoor. 2024. AI Snake Oil: What Artificial Intelligence Can Do, What It Can't, and How to Tell the Difference. Princeton University Press.