

Data Exploration and Mining

Week 8
Predictive Data Mining: Introduction

Professor Richi Nayak r.nayak@qut.edu.au

School of Computer Science
Centre for Data Science
Faculty of Science
https://research.gut.edu.au/adm

Weeks 8 - 11 Learning

- Lectures: Predictive Mining
 - Predictive mining process
 - Decision tree classification
 - Linear and logistic regression
 - Neural Networks
 - K-nearest neighbour (a brief introduction)
- Computer Tutorials (Weeks 10, 11 & 12)
 - Part 1 Reflective Pen-and-Paper exercises
 - Decision trees, regression and neural networks
 - Part 2 Practical Exercises
 - Building, evaluating and comparing decision tree models
 - Building, evaluating and comparing logistic regression models
 - Building, evaluating and comparing neural network models

Learning Objectives: Week 8

- What is predictive data mining (classification)?
- Predictive Data Mining
 - Basic Concepts
 - Supervised Learning Process
 - Overfitting or Poor Generalisation
 - Class prediction (classification) vs Value prediction (regression)
 - A quick overview
 - Decision Tree; Neural Networks; Nearest Neighbours; Logistic Regression
 - Evaluation Measures

What Should You Do in Week 8?

- Review the lecture slides and reading materials.
- Attempt the exercise questions on Association Mining in the tutorial
- Complete the Python tasks concerning Association Mining
- Consult the Lecturer/tutor if you have any questions related to the subject.
- Assessment Item 2
 - Read through the specifications
 - Register your team on Canvas
 - Association mining: Should be attempted

Classification: Introduction

Predictive Modeling: Classification

- Classifying observations/instances into different "given" classes or predicting a value
- Use historical data to make predictions (learn from it)
- Example (Infectious Disease Survival Rate Prediction))
 - Build a model of users based on their history (disease symptoms, physiological data, demographic data, clinical data etc.), output whether the patient made the recovery
 - Exploit factors that lead to survival
 - Predict the chance of recovery for the patient so the treatment strategies can be built accordingly

Other Examples

 Classifying credit applicants as low, medium, or high risk; Attrition prediction; Using climate conditions to predict play/not play for a particular event.

Classification Dataset: An Example

No.	<u>Risk</u>	Credit History	<u>Debt</u>	<u>Collateral</u>	<u>Income</u>
1	high	bad	high	none	\$0 to \$15k
2	high	unknown	high	none	\$15 to \$35k
3	moderate	unknown	low	none	\$15 to \$35k
4	high	unknown	low	none	\$0 to \$15k
5	low	unknown	low	none	over \$35k
6	low	unknown	low	adequate	over \$35k
7	high	bad	low	none	\$0 to \$15k
8	moderate	bad	low	adequate	over \$35k
9	low	good	low	none	over \$35k
10	low	good	high	adequate	over \$35k
11	high	good	high	none	\$0 to \$15k
12	moderate	good	high	none	\$15 to \$35k
13	low	good	high	none	over \$35k
14	high	bad	high	none	\$15 to \$35k

Classification Model: Decision Tree An Example (cont.)

Classification

- Like clustering, classification is the organization of data into classes
 - however, <u>class labels are known</u> and it is up to the classification algorithm to use the label information to distinguish the data by learning general features of each class.
 - called <u>supervised classification</u>, because the classification is dictated by given class labels

	Sepal length	Sepal width	Petal length	Petal width	Type
1	5.1	3.5	1.4	0.2	Iris setosa
2 :	4.9	3.0	1.4	0.2	Iris setosa
51 ⁵	7.0	3.2	4.7	1.4	Iris versicolor
5 2 5	6.4	3.2	4.5	1.5	Iris versicolor
10110°	6.3	3.3	6.0	2.5	Iris virginica
1020	5.8	2.7	5.1	1.9	Iris virginica

Clustering vs. Classification

Clustering: <u>Unsupervised</u> learning
Finds "natural" grouping of instances
given <u>un-labeled data</u>

Classification: Supervised learning
Learns a model for predicting the
instance class from pre-labeled
instances

- Both aim to partition data (high-dimensional) into groups / classes/ clusters
- Data items within a group are as similar to each other as possible, but are dissimilar to data items in other groups

Association Mining vs Classification

- Association mining can be applied if <u>no class</u> is <u>specified</u> and <u>any</u> kind of <u>structure</u> is considered "interesting"
- Association mining
 - Data is sparse.
 - Can predict any variable's value, not just the class,

more than one variable's value at a time.

- Any number of items in the rule body and head.
- Hence: far more association rules in numbers
 than classification rules

TID	Products		
1	A, B, E		
2	B, D		
3	B, C		
4	A, B, D		
5	A, C		
6	B, C		
7	A, C		
8	A, B, C, E		
9	A, B, C		

	TID	Α	В	ပ	D	Е
	1	1	1	0	0	1
	2	0	1	0	1	0
	3	0	1	1	0	0
	4	1	1	0	1	0
1	5	1	0	1	0	0
	6	0	1	1	0	0
	7	1	0	1	0	0
	8	1	1	1	0	1
	9	1	1	1 1	0	0

A Typical Predictive DM Process

Classification: 3-Step Process

1. Model Construction /Training/Learning:

- Each instance is assumed to belong to a predefined class, called the target or class label
- Training set: A set of all records used for the construction of the model
- The model is usually represented in the form of classification rules, (IF-THEN statements) or decision trees or neural networks

2. Model Evaluation/Testing:

- Estimate <u>Accuracy rate of the model</u> based on a <u>test/validation</u> set
- Accuracy rate: the percentage of test set samples that are correctly classified by the model

3. Model Use:

The model is used to classify unseen instances, i.e. assign the class labels

Training: Model Construction

Testing: Model Evaluation

Name	Income	Age	Credit rating
Tom	Medium	<30	bad
Jane	High	<30	bad
Wei	High	>40	good
Hua	Medium	[3040]	good

How accurate is the model?

IF Income = 'High' OR Age > 30 THEN CreditRating = 'Good'

Choosing the best model

- Several models are built for 1 classification task.
 - Using several subsets of the dataset
 - Using several sets of features
 - Using several algorithms
 - Several parameters
- Which one to use for predictions?

Estimate the Accuracy of the model

- The known label of the test sample is compared with the classified result from the model
- Accuracy rate is the percentage of test set samples that are correctly classified by the model
- Test set should be independent of Training set
 - Helps to identify <u>over-fitting</u>.

Overfitting: An Example

Overfitting

Approximate Fitting

Model Use: Classification

Model Complexity

- Build a number of models on the <u>training data set</u>
- Select the model that performs best on the validation data set
- Use the <u>test data</u> to estimate generalization

Overfitting: Summary

http://wiki.bethanycrane.com/overfitting-of-data

<u>Overfitting</u>: Learned hypothesis may **fit** the training data very well, even outliers (**noise**) but fail to **generalize** to new examples (test data)

Bias is the simplifying assumptions made by the **model** to make the target function easier to approximate.

Variance is the amount that the estimate of the target function will change given different training data.

Two Types of Predictive Modeling

1. Classification (Predict categorical labels)

<u>Task</u>: Find a *model* for the <u>class attribute</u> as a function of the values of other attributes.

- Predict categorical labels
 - Event/no event (binary target)
 - Class label (multi-class problem Nominal or Ordinal)

Example of class labels:

- Eligibility of clients for a loan ('YES' 'NO)
- Course of treatment for a patient ('A' 'B' or 'C')
- Topic of a document ('sport' 'politics' 'entertainment')
- Rating of a product ('good' 'average' 'bad')
- Urgency of an email ('urgent' 'non-urgent')
- Anomaly of a transaction ('anomalous' 'normal')
- Personality of a person ('introvert' 'extravert' 'both')

Regresseion Modelling

2. Regression (or value prediction)

<u>Task</u>: Find a *model* for <u>the continuous attribute</u> as a function of the values of other attributes.

- Predict continuous labels
 - Age or Amount

Example:

- Approved Loan Amount (\$\$\$\$)
- Crash rate prediction
- House price prediction

Classification and Regression Prediction

Classification learning: class is <u>Binary</u> or <u>Nominal</u> or <u>Ordinal</u>

Outlook	Temperature	Humidity	Windy	Play-time
Sunny	Hot	High	False	YES
Sunny	Hot	High	True	NO
Overcast	Hot	High	False	YES

- Regression learning: class is <u>Numeric (Interval)</u>
 - Each training sample is provided with a target value that is continuous.

Outlook	Temperature	Humidity	Windy	Play-time
Sunny	Hot	High	False	5
Sunny	Hot	High	True	0
Overcast	Hot	High	False	55

Classification learning

Data set: $\{(x_1, y_1), ..., (x_n, y_n)\}, (x, y) \sim D$

x: feature vectors

y: binary label in {-1, +1} representing which class x belongs to

Learning: train classifier f(x) on data

Prediction: use f(x) to predict the label for arbitrary x

Classification: An Example

Learn a model for predicting the instance class from the pre-labelled instances

Each point is a multidimensional instance that includes several attributes.

Given a set of points from classes Blue • and Green • What is the class of new point \bigcirc ?

Classification: Decision Trees

if X > 5 then Blue else if Y > 3 then Blue else if X > 2 then Green else Blue

- Piecewise constant approximation of decision regions
- Symbolic if-then rules
- Linear/non-linear, continuous/categorical model of decision regions

Classification: Logistic Regression

- O Linear Regression $w_0 + w_1 x + w_2 y >= 0$
- Regression computes w_i from data to minimize squared error to 'fit' the data
- Find the "best" line (linear function y=f(X)) to explain the data.
- Not flexible enough

Classification: Neural Nets

- Linear/non-linear, continuous/categorical model of decision regions
- A number of parameters such as a set of weight matrices

- Can select more complex regions
- O Can be more accurate
- Can overfit the data find patterns
 in random noise

Classification: Nearest Neighbor

- Does not make a model
- Learns localised decision regions from data
- A metric space based on proximity – calculates the distance between the query point and data points
- Chooses nearest neighbors and makes decisions based on neighbors' outcome
- Sensitive to data errors

Relative Performance Examples: 5 Algorithms on 6 Datasets (Lee & Elder, 1997)

Comparing Classification Algorithms

- Model goodness:
 - Predictive Accuracy: Ability of the model to correctly predict the class label of new data
 - RMSE: Root Mean Square error
 - AUC: <u>A</u>rea <u>U</u>nder (ROC) <u>C</u>urve
- Speed
 - Computation cost involved in generating and using the model
- Robustness
 - Ability of the model to make a correct prediction in the presence of noise and errors in the data
- Scalability
 - Ability to construct the model efficiently with the large amounts of data
- Interpretability
 - Level of understanding and insight provided by the model

Confusion Matrix

		Predicted class		
		Yes	No	
Actual class	Yes	TP: True positive	FN: False negative	
	No	FP: False positive	TN: True negative	

- Machine Learning methods aim to minimize <u>FP+FN</u>
- TPR (True Positive Rate): TP / (TP + FN)
- FPR (False Positive Rate): FP / (TN + FP)
- A confusion matrix can also be generalized to multi-class.

Classification measures

- Precision: Proportion of all positive predictions by the model that are correct.
 - measures how many positive predictions are actual positive observations.
 Precision or Accuracy = TP/(TP+FP)
- Recall: Proportion of all real positive observations that are correct.
 - measures how many actual positive observations are predicted correctly.
 Recall or Coverage or Sensitivity = TP/(TP+FN) = TPR
- F1: The harmonic mean (average) of precision and recall.
 F-measure=(2×recall×precision)/(recall + precision)
- Specificity: Proportion of all negative predictions that are correct.
 Specificity = TN / (FP + TN) = 1 FPR
- AUC (<u>A</u>rea <u>U</u>nder the ROC <u>C</u>urve)
 - measures how well predictions are ranked, rather than their absolute values.

AUC and ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- The Area Under the ROC Curve (AUC) is a measure of the accuracy of the model
 - Shows the trade-off between the true positive rate and the false positive rate
 - true positive: Positive instances that are correctly classified as positive
 - false positive: Negative instances that are incorrectly classified as positive
- The closer to the diagonal line (i.e., AUC = approx. 0.5), the less accurate is the model
- A model with perfect accuracy will have an AUC of 1.0, which means the model predicts true positives 100% correctly.

Recap: Types of Learning

Unsupervised: Discover patterns in unlabeled data

Example: *cluster* similar documents based on text

Supervised: Learning with a labeled training set

Example: (1) email *classification* with already labeled emails

(2) loan amount prediction (regression) using the historical data

Reinforcement learning: learn to act based on feedback/reward: win or lose

Example: learn to play Go

Final Remarks

- Predictive modelling is a supervised learning method
 - Due to its use of target attribute information.
 - Algorithms vary as how they use this target information
- Predictive Modelling includes three steps
 - Training; Testing; Classification
 - Training should avoid overfitting

References

- Data Mining techniques and concepts by Han J et al, 2011.
- Discovering Data Mining, by Cabena, et al., 1997.
- Predictive Data Mining, by Weiss and Indurkhya, 1999.