Question 1

We would like to run a kernel where every thread handles only one cell. Give the statement that calculates the *cell_id* for each thread as shown in each of the following figures:

1. The grid is configured as M * N matrix of thread blocks.

Block	Block (0, 0)					
Cell 0	Cell 1	Cell 2	Cell 3	Cell 4		
Cell 5	Cell 6	Cell 7	Cell 8	Cell 9		
Cell 10	Cell 11	Cell 12	Cell 13	Cell 14		

Block (1, 0)					
Cell 15	Cell 16	Cell 17	Cell 18	Cell 19	
Cell 20	Cell 21	Cell 22	Cell 23	Cell 24	
Cell 25	Cell 26	Cell 27	Cell 28	Cell 29	

Block	Block (0, 1)					
Cell 30	Cell 31	Cell 32	Cell 33	Cell 34		
Cell 35	Cell 36	Cell 37	Cell 38	Cell 39		
Cell 40	Cell 41	Cell 42	Cell 43	Cell 44		

Block	Block (1, 1)					
Cell 45	Cell 46	Cell 47	Cell 48	Cell 49		
Cell 50	Cell 51	Cell 52	Cell 53	Cell 54		
Cell 55	Cell 56	Cell 57	Cell 58	Cell 59		

$$1*15*2+1*15+2*5+2=30+15+10+2=57$$

2. The grid is configured as M * N matrix of thread blocks.

Block (0, 0)					
Cell 0	Cell 1	Cell 2	Cell 3	Cell 4	
Cell 5	Cell 6	Cell 7	Cell 8	Cell 9	
Cell 10	Cell 11	Cell 12	Cell 13	Cell 14	

Block (1, 0)					
Cell 30	Cell 31			Cell 34	
Cell 35				Cell 39	
Cell 40				Cell 44	

Block	Block (0, 1)				
Cell 15	Cell 16			Cell 19	
Cell 20				Cell 24	
Cell 25				Cell 29	

1 * 15 + 1 * 15 * 2 + 1*5 + 3 = 15 + 30 + 5 + 3 = 53

3. The grid is configured as M * N matrix of thread blocks.

E	Block (0, 0)					
	Cell 0	Cell 3	Cell 6	Cell 9	Cell 12	
	Cell 1	Cell 4	Cell 7	Cell 10	Cell 13	
	Cell 2	Cell 5	Cell 8	Cell 11	Cell 14	

Block (1, 0)					
Cell 15	Cell 18	Cell 21	Cell 24	Cell 27	
Cell 16	Cell 19	Cell 22	Cell 25	Cell 28	
Cell 17	Cell 20	Cell 23	Cell 26	Cell 29	

Block	Block (0, 1)					
Cell 30	Cell 33	Cell 36	Cell 39	Cell 42		
Cell 31	Cell 34	Cell 37	Cell 40	Cell 43		
Cell 32	Cell 35	Cell 38	Cell 41	Cell 44		

Block	Block (1, 1)					
Cell 45	Cell 48	Cell 51	Cell 54	Cell 57		
Cell 46	Cell 49	Cell 52	Cell 55	Cell 58		
Cell 47	Cell 50	Cell 53	Cell 56	Cell 59		

1. The grid is configured as M * N matrix of thread blocks.

Block	Block (0, 0)					
Cell 0	Cell 1	Cell 2	Cell 3	Cell 4		
Cell 10	Cell 11	Cell 12	Cell 13	Cell 14		
Cell 20	Cell 21	Cell 22	Cell 23	Cell 24		

Block (1, 0)						
Cell 5	Cell 6	Cell 7	Cell 8	Cell 9		
Cell 15	Cell 16	Cell 17	Cell 18	Cell 19		
Cell 25	Cell 26	Cell 27	Cell 28	Cell 29		

1.

Block (0, 1)						
Cell 30	Cell 31	Cell 32	Cell 33	Cell 34		
Cell 40	Cell 41	Cell 42	Cell 43	Cell 44		
Cell 50	Cell 51	Cell 52	Cell 53	Cell 54		

Block (1, 1)						
Cell 35	Cell 36	Cell 37	Cell 38	Cell 39		
Cell 45	Cell 46	Cell 47	Cell 48	Cell 49		
Cell 55	Cell 56	Cell 57	Cell 58	Cell 59		

2. The grid is composed of **N blocks** of **M threads** each.


```
1- int index = blockldx.y * blockDim.x * blockDim.y * gridDlm.x + blockldx.x * blockDim.x + threadldx.y * blockDim.x * gridDim.x + threadldx.x
```

3 + 1 * 4 = 7

2- int index = blockldx.x + threadldx.x * gridDlm.x