SECURITY (COMP0141): MATHEMATICAL BACKGROUND

BASIC MATHEMATICAL NOTATION

Sets: $A = \{1, 2\}, B = \{a, b, c\}$

Cardinality: |A| = 2, |B| = 3

Set inclusion: $x \in A$ means x belongs to A ($1 \in A$, $3 \notin A$)

Integers: whole numbers (positive or negative)

Division: $x \mid y \text{ means } x \text{ (evenly) divides } y \text{ (} y = ax \text{ for some integer a)}$

Set conditions: $\{x:2 \mid x\}$ means all x that are even

MODULAR ("CLOCK") ARITHMETIC

 $6 = 6 \mod 12$

 $12 = 0 \mod 12$

 $14 = 2 \mod 12$

We technically should use = to denote equivalence but will use = instead

True or false?

 $14 = 2 \mod 12$

 $37 = 26 \mod 7$

 $5 = -10 \mod 3$

MODULAR ARITHMETIC

Given integers x > 0, y, z we write $z = y \mod x$ when $x \mid (z-y)$

More examples: $5 = 1 \mod 2$, $18 = 3 \mod 5$

Given x > 0 and z, we can find unique a and $y \in \{0,1,...,x-1\}$ such that

More examples: 5 = 2*2 + 1, 18 = 3*5 + 3

If z = ax + y then $z = y \mod x$ (because z - y = ax and $x \mid ax$)

GREATEST COMMON DIVISOR

Greatest common divisor of a and b is the largest number that divides both a and b; i.e., $gcd(a, b) = max\{d: d \mid a \text{ and } d \mid b\}$

Bézout's identity: for all a,b there are r,s such that gcd(a,b) = ra + sb

PROOF OF BEZOUT'S IDENTITY

Bézout's identity: for all a,b there are r,s such that gcd(a,b) = ra + sb

Proof:

- (1) Define $d = min\{ra + sb \mid ra + sb > 0\}$
- (2) Want to show that gcd(a,b) = d, which we can do by showing that (a) $gcd(a,b) \le d$ and that (b) $d \le gcd(a,b)$
- (2a) Write d = ra + sb. Since $gcd(a,b) \mid a$ and $gcd(a,b) \mid b$ we have $gcd(a,b) \mid ra + sb$ so $gcd(a,b) \mid d$
- (2b) If d a and d b then $d \le gcd(a,b)$, so we show this instead.

Assume a = kd + t for 0 < t < d (meaning $d \nmid a$). Then t = a - kd = a - kd

k(ra + sb) = (1 - kr)a - ksb. But this implies that 0 < t = Ra + Sb < d

(for R = 1-kr and S = ks) which contradicts the fact that d is minimal

EUCLIDEAN ALGORITHM

Euclidean algorithm: used to efficiently compute gcd(a,b) for a > b

- -start by finding r_0 such that $a = q_0b + r_0$ (so $r_0 = b \mod a$)
- -then r_1 such that $b = q_1r_0 + r_1$ (so $r_1 = b \mod r_0$)
- -eventually, get to $r_{n-2} = q_n r_{n-1} + 0$
- -this final non-zero remainder r_{n-1} is the gcd of a and b

EUCLIDEAN ALGORITHM

Euclidean algorithm: used to efficiently compute gcd(a,b) for a > b

Example: find gcd(270,192)

$$-270 = 1*192 + 78$$

$$-192 = 2*78 + 36$$

$$-78 = 2*36 + 6$$

$$-36 = 6*6 + 0$$

$$-so \gcd(270,192) = 6$$

EUCLIDEAN ALGORITHM

Why does the algorithm work?

- -There are finitely many numbers between a and 0 so it terminates
- -Bottom up $(r_{n-1} \text{ divides a and b})$:

$$r_{n-2} = q_n r_{n-1} + 0 \Rightarrow r_{n-1} = 0 \mod r_{n-2}$$

$$r_{n-3} = q_{n-1}r_{n-2} + r_{n-1} \Rightarrow r_{n-1} = 0 \mod r_{n-3}$$

... \Rightarrow $r_{n-1} = 0$ mod a and 0 mod b (so r_{n-1} is a common divisor)

-Top down (any other divisor divides r_{n-1}):

 $a = q_0b + r_0 \Rightarrow c$ dividing a and b divides r_0

 $b = q_1r_0 + r_1 \Rightarrow c \text{ divides } r_1$

... \Rightarrow c divides r_{n-1} (so r_{n-1} is the greatest common divisor)

EXTENDED EUCLIDEAN ALGORITHM

Extended Euclidean algorithm: used to calculate r,s such that gcd(a,b) = ra + sb

In the Euclidean algorithm, focused just on remainders and ignored quotients: equations of the form $r_{i-2} = q_{i-1}r_{i-1} + r_i$, or $r_i = r_{i-2} - q_{i-1}r_{i-1}$

In the extended algorithm, add in two extra variables with the same quotient: $s_i = s_{i-2} - q_{i-1}s_{i-1}$ and $t_i = t_{i-2} - q_{i-1}t_{i-1}$, start with $s_0 = 1$, $s_1 = 0$, $t_0 = 0$, and $t_1 = 1$ (because a = 1*a + 0*b and b = 0*a + 1*b)

EXTENDED EUCLIDEAN ALGORITHM

Example: find s and t such that gcd(18,13) = s*18 + t*13

18 mod 13

$$-(r)$$
 5 = 18 - 1*13, (s) 1 - 0 = 1, (t) 0 - 1 = -1

13 mod 5

$$-(r)$$
 3 = 13 - 2*5, (s) 0 - 2*1 = -2, (t) 1 - 2*(-1) = 3

5 mod 3

$$-(r)$$
 2 = 5 - 1*3, (s) 1 - 1*(-2) = 3, (t) -1 - 1*(3) = -4

3 mod 2

$$-(r)$$
 1 = 3 - 1*2, (s) -2 - 1*(3) = -5, (t) 3 - 1*(-4) = 7

2 mod 1

$$-(r) 0 = 2 - 2*1$$

So
$$1 = -5*18 + 7*13$$

MODULAR ARITHMETIC

Many of the usual laws of the integers also apply when computing modulo N

Associativity (both for + and *):

- -(a + b mod N) + c mod N
- $= a + (b + c \mod N) \mod N$
- $= a + b + c \mod N$
- -(ab mod N)c mod N
- $= a(bc \mod N) \mod N$
- = abc mod N

MODULAR EXPONENTIATION

We often use modular exponentiations g^x mod p (g*g*...*g mod p)

x times

Again, usual exponentiation rules apply

$$-g^{x}g^{y} = g^{x+y} \mod p$$

$$-(g^x)^y = g^{xy} \mod p$$

COMMUTATIVE RING Z/NZ

Associative: (a + b) + c = a + (b + c) mod N

(ab)c = a(bc) mod N

Distributive: a(b+c) = ab + ac mod N

(a+b)c = ac + bc mod N

Commutative: a + b = b + a mod N

ab = ba mod N

Additive identity: a + 0 = 0 + a = a mod N

Multiplicative identity: 1a = a1 = a mod N

Additive inverse: $a + (-a) + (-a) + a = 0 \mod N$

Multiplicative inverse?

MULTIPLICATIVE INVERSES

In general, some numbers have inverses but not all

Example: 3 mod 10

$$-3 * 7 = 21 = 1 + 20 = 1 + 2*10 = 1 \mod 10$$

$$-so 3 = 7^{-1} \mod 10$$

Example: 2 mod 10

-there is no number b such that $2b = 1 \mod 10$

We define $(Z/NZ)^*$ to be all invertible elements in Z/NZ

When does a number have an inverse?

MULTIPLICATIVE INVERSES

Element a has multiplicative inverse mod N if and only if gcd(a,N) = 1

Proof:

-if gcd(a,N) = 1 we can write ra + sN = 1 (by Bézout's identity) so ra = 1 mod N, meaning $r = a^{-1}$

-if a has an inverse r, then ra = 1 mod N, which means ra + sN = 1 for some s, which means gcd(a,N) = 1

The inverse a⁻¹ is unique modulo N and can be efficiently computed using the Extended Euclidean algorithm

EXERCISE

What is Z/12Z?

What is (Z/12Z)*?

For each element in $(Z/12Z)^*$, find its inverse.

ANSWERS

What is $Z/12Z? \{0,1,2,3,...,11\}$

What is $(Z/12Z)*? \{1,5,7,11\}$

For each element in (Z/12Z)*, find its inverse.

$$-1^{-1} = 1$$

 $-5^{-1} = 5$ (5*5 = 25 = 2*12 + 1 = 1 mod 12)
 $-7^{-1} = 7$ (7*7 = 49 = 4*12 + 1 = 1 mod 12)
 $-11^{-1} = 11$ (11*11 = 121 = 10*12 + 1 = 1 mod 12)

MULTIPLICATIVE INVERSES

Element a has multiplicative inverse mod N if and only if gcd(a,N) = 1

When could we guarantee this to be the case?

PRIME NUMBERS

A natural number N is prime if its only divisors are 1 and N

Examples: 2, 3, 5, 7, 11, 13, 17, 19, ...

If p is a prime and p ab then p a or p b

Any natural number N has unique factorisation $N = p_1^{r_1}p_2^{r_2}...p_s^{r_s}$

This means $gcd(a, p) \in \{1, p\}$ when p is prime

Corollary of Bézout's identity: if p is prime then for any $a \in \{1,...,p-1\}$ there is an inverse r such that $1 = ra \mod p$

FINITE FIELDS

What is $(Z/pZ)^*$ when p is a prime?

The elements that have gcd(x,p) = 1, but for a prime this is all x not divisible by p, so $F_p^* = \{1,2,3,...,p-1\}$

A field is a commutative ring where all non-zero elements are (multiplicatively) invertible

F_p is a field with p elements (or **order** p) so is called a finite field

PRIME-ORDER FINITE FIELDS

Associative: $(a + b) + c = a + (b + c) \mod N$ $(ab)c = a(bc) \mod N$ Distributive: a(b+c) = ab + ac mod N $(a+b)c = ac + bc \mod N$ Commutative: a + b = b + a mod N $ab = ba \mod N$ Additive identity: $a + 0 = 0 + a = a \mod N$ Multiplicative identity: 1a = a1 = a mod N Additive inverse: $a + (-a) + (-a) + a = 0 \mod N$

Multiplicative inverse: a * a⁻¹ = 1 mod N