ECON 490 HW4

1. su sat

sat	4,137	1030.331	139.4014	470	1540
Variable	Obs	Mean	Std. dev.	Min	Max
. su sat					

There are 4137 Observations.

2. reg colgpa athlete, rob

3. colgpa=2.666028-0.2845336athlete

From the model inference, if the person is not an athlete, his/her gpa is 2.666028. For 1 unit increase in athlete, there will be 0.2845336 unit of College GPA decrease, and since the athlete is a logical variable, thus we could also say that when study is an athlete, the estimated colgpa will decrease for 0.2845336.

- 4. The error term has to be uncorrelated with the explanatory variable, which is athlete. Besides, this regression also needs to include the correct variable and additional variables, like athlete.
- 5. It is normally impossible for me to estimate the effect

of athlete is an unbiased estimate since there are many factors that are included in error term is related to athlete, such as the female, shrank and etc. terms.

```
6. ge satsq = sat^2
ge satcub = sat^3
ge verbmathsq = verbmath^2
ge verbmathcub = verbmath^3
```

local x "hsize hsrank sat satsq satcub female verbmath verbmathsq verbmathcub i.tothrs" reg colgpa athlete `x', rob

```
. ge satcub = sat^3
```

- . ge verbmathsq = verbmath^2
- . ge verbmathcub = verbmath^3

. local x "hsize hsrank sat satsq satcub female verbmath verbmathsq verbmathcub i.tothrs"

. reg colgpa athlete `x', rob

Linear regression Number of obs = 4,137F(130, 4002) = .

Prob > F = . R-squared = 0.3335 Root MSE = .54663

Robust colgpa Coefficient std. err. t P>|t| [95% conf. interval] athlete .1262987 .0386025 3.27 0.001 .0506162 .2019812 hsize .0579356 .0064037 9.05 0.000 .0704904 .0453809 hsrank -.0034132 .0001755 -19.45 0.000 -.0030692 -.0037573 -.0043144 .0029291 .0014282 -1.47 0.141 -.010057 sat satsq 4.32e-06 2.91e-06 1.48 0.138 -1.39e-06 .00001 0.345 satcub -9.02e-10 9.54e-10 -0.94 -2.77e-09 9.69e-10 female .1676872 .0186113 9.01 0.000 .1311987 .2041757 verbmath -.564694 2.530723 -0.22 0.823 -5.526321 4.396933 verbmathsa .5349674 2.58299 0.21 0.836 -4.529131 5.599066 verbmathcub -.189332 .8553011 -0.22 0.825 -1.866199 1.487534 tothrs 9 34.95 0.000 1.166759 .0333818 1.101312 1.232206 10 -.6082065 -5.46 0.000 .1114951 -.826799 -.389614 11 -.2672486 .1333036 -2.00 0.045 -.5285978 -.0058993 12 -.3602308 .0950212 -3.79 0.000 -.5465252 -.1739364 13 -.3626754 .0659108 -5.50 0.000 -.4918972 -.2334535 -.2184005 -3.90 0.000 -.1084799 14 .056066 -.3283211 15 -.1654739 .0476254 -3.47 0.001 -.2588461 -.0721017 .0510315 16 -.0295001 .0410759 -0.72 0.473 -.1100316 17 -.0169598 .0384945 -0.44 0.660 -.0924305 .0585108 18 -.0282522 .0549501 -0.51 0.607 -.135985 .0794806 19 .0518595 .1106177 0.47 0.639 -.1650128 .2687319 .0719334 0.63 0.526 20 .1134775 -.1505457 .2944126 21 .2188149 .2303115 0.95 0.342 -.2327238 .6703536

100	.1658921	.1154027	1.44	0.151	0603615	.3921456
101	1704272	.0956693	-1.78	0.075	3579923	.0171379
102	115947	.1024073	-1.13	0.258	3167224	.0848285
103	.0933916	.1388618	0.67	0.501	1788549	.3656381
104	.0159774	.1206981	0.13	0.895	2206582	.252613
105	.0610474	.1386461	0.44	0.660	2107761	.332871
106	1163251	.0907494	-1.28	0.200	2942445	.0615943
107	1383102	.105389	-1.31	0.189	3449313	.0683109
108	.0567691	.0713835	0.80	0.427	0831823	.1967205
109	1651594	.1036198	-1.59	0.111	3683119	.0379931
110	.1423876	.0713432	2.00	0.046	.0025152	.2822601
111	.1001366	.0706931	1.42	0.157	0384611	.2387344
112	.2538851	.0768791	3.30	0.001	.1031592	.4046111
113	.1263419	.0968201	1.30	0.192	0634793	.3161632
114	.1507692	.0741414	2.03	0.042	.0054107	.2961277
115	.0368089	.0966089	0.38	0.703	1525983	.2262161
116	.1468627	.0666597	2.20	0.028	.0161726	.2775528
117	.0667038	.0792124	0.84	0.400	0885965	.2220041
118	.2140968	.0998143	2.14	0.032	.0184051	.4097885
119	.0807495	.0994175	0.81	0.417	1141642	.2756631
120	.0077251	.1108863	0.07	0.944	2096737	.2251239
121	.1382967	.0933334	1.48	0.138	0446888	.3212822
122	0993638	.0968533	-1.03	0.305	2892503	.0905227
123	0089179	.1374937	-0.06	0.948	2784821	.2606462
124	.2962014	.1153153	2.57	0.010	.0701191	.5222837
125	.1162994	.1604508	0.72	0.469	1982734	.4308722
126	.0237637	.1325793	0.18	0.858	2361655	.283693
127	231197	.1652303	-1.40	0.162	5551404	.0927465
128	0452173	.2655734	-0.17	0.865	5658891	.4754545
129	4997246	.1768836	-2.83	0.005	846515	1529343
130	4152458	.7082421	-0.59	0.558	-1.803795	.9733032
131	.3287013	.1187478	2.77	0.006	.0958896	.5615131
132	.1290691	.1713426	0.75	0.451	2068578	.464996
133	.1815349	.1635762	1.11	0.267	1391656	.5022354
134	647872	.0198939	-32.57	0.000	6868751	6088688
136	8524644	.005155	-165.37	0.000	862571	8423578
137	.5507171	.2025983	2.72	0.007	.1535115	.9479227
_cons	3.680433	1.270118	2.90	0.004	1.190293	6.170572

end of do-file

- 7. the RMSE is 0.54663. the MSE is 0.54663^2=0.29880.
- 8. set seed 1234 local x hsize hsrank sat satsq satcub female verbmath verbmathsq verbmathcub i.tothrs lasso linear colgpa athlete `x'

Lasso linear model	No.	of	obs	=	4,137
	No.	of	covariates	=	131
Selection: Cross-validation	No.	of	CV folds	=	10

ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	.2733989	0	0.0006	.4334285
39	lambda before	.0079697	70	0.2991	.3039925
* 40	selected lambda	.0072617	74	0.2992	.3039314
41	lambda after	.0066166	79	0.2992	.3039468
46	last lambda	.0041554	100	0.2975	.304667

^{*} lambda selected by cross-validation.

9. So basically, as we are using Lasso for prediction, we are trying to reach our assumption that there are few variables related to the number of observations in the sample in the unknown true model, and as lambda increase, Lasso will use the penalty regression that shrinkage those variables that has 0 coefficients, since their penalty is larger than contribution, and they are not contributing enough to the model, and this process select the most important covariates out of the potential explanatory variables list, and preventing the overfitting for the model.

When lambda is small, Lasso will have almost same solution to OLS, and we are choosing the lambda by cross validation, with the highest out-of-sample R-square in this case.

10. lassoselect lambda=0.0072617

Lassoinfo . lassoinfo Estimate: active Command: lasso Dependent variable Model method criterion lambda variables colgpa linear user user .0072617 74

There are 74 non-zero variables are retained at the

selected lambda. (also can obtain from last question, ID=40)

11. lassoselect lambda=0.0072617 lassocoef

- . do "C:\Users\suisx\AppData\Local\Temp\STD97d4 000000.tmp"
- . lassoselect lambda=0.0072617 ID = 40 lambda = .0072617 selected
- . lassocoef

	active
athlete	×
hsize	×
hsrank	×
satsq	×
satcub	×
female	×
verbmathsq	×
	l

The variable athlete is still **retained** at the selected value of lambda

12.

Lasso lin	ear model	No. of		=	4,137	
			No. of	covariates	=	131
Selection	: Cross-validation	No.		of CV folds		16
			No. of	Out-of- sample		CV mean
ID	Description	lambda	coef.	R-squared		error
1	first lambda	.2733989	0	0.0006		.4334285
39	lambda before	.0079697	70	0.2991		.3039925
* 40	selected lambda	.0072617	74	0.2992		.3039314
41	lambda after	.0066166	79	0.2992		.3039468
46	last lambda	.0041554	100	0.2975		.304667
					_	

* lambda selected by cross-validation.

The Mean prediction Error of the Lasso at the lambda=0.0072617 is: 0.3039314.

From the Question 7, the MSE of the OLS regression (full set of explanatory variables) is 0. 54663^2=0.29880.

13. coefpath, xunit(lnlambda) minmax

14. The Lasso algorithm will iterates in descending order through the lambda, while lambda is decreasing from lambda-Max, there are more and more variables coefficients are shrinking, reached a 0 coefficients, determined and then drop out from the Lasso algorithm. During the process, lambda will keep decreasing and until all of the nonzero coefficient are presented at this lambda.

The shrinking of the graph represents the higher penalty of the lasso algorithm while lambda is increasing. The selection effect of the Lasso will depend on the cross-validation, which could also be plotted by: cvplot, graphregion(color(white)), and we could see it will select a lambda with best fitting, which has not-too-big explain power for coefficients and has the intermediate value for model complexity.

15. set seed 1234

dsregress colgpa athlete, controls(hsize hsrank sat satsq satcub female verbmath verbmathsq verbmathcub i.tothrs) select(cv)

//-----(I tried 2 methods, and if I do not set seed,

the result will be different) ds colgpa athlete, not set seed 1234

local x hsize hsrank sat satsq satcub female verbmath verbmathsq verbmathcub i.tothrs

local controls 'x'

dsregress colgpa athlete, controls('x') select(cv)

Wald chi2(1)

Prob > chi2

There are 107 selected control variables retained. The reason that more controls are retained is because there are Double selection Lasso, it run a lasso of z of x

12.19

0.0005

which the original lasso does not have, and then it run the original lasso which is y on x, and then there is a last regress for y on z and the union of the selected covariate from 2 previous lasso. Therefore, the union set might result in a larger number of selected variables.

17. H0: the effect of athlete on college gpa is 0.

Ha: the effect of athlete on college gpa is not 0

The P value that we had from previous question is 0, and 0 < 0.01.

Therefore, we should reject the Null hypotheses at the 1% significance level.