

IMPACT purification of native proteins

Brian Baltzar

Abstract

Citation: Brian Baltzar IMPACT purification of native proteins. protocols.io

dx.doi.org/10.17504/protocols.io.giqbudw

Published: 28 Nov 2016

Guidelines

IMPACT Column Buffer (1L)

Reagent	Volume	
Tris-HCl 7-8 pH 1M	20 ml	
NaCl 5M	100 ml	
EDTA 0.5M	2 ml	
Tween-20	2 ml	
H_2O	-> 1000m	

IMPACT Cleavage Buffer (100ml)

Reagent	Volume	
Tris-HCl 7-8 pH 1M	2 ml	
NaCl 5M	10 ml	
EDTA 0.5M	0.2 ml	
DTT	0.2 ml	
H_2O	-> 100ml	

Before start

Make sure that the desired protein has the correct restriction sites and is in frame with the intein in the purification vector.

1. If that is not the case natively, design primers using the sequences in the following table.

RESTRICTION SITE	SEQUENCE (RESTRICTION SITE UNDERLINED)	CLONING VECTOR
Ndel	5'- GGT GGT <u>CAT ATG</u> NNN NNN3' (forward primer)	pTXB1
Sapl ¹	5'- GGT GGT TGC TCT TCC GCA NNN NNN3' (reverse primer)	pTXB1
SapI ²	5'- GGT GGT TGC TCT TCC AAC NNN NNN3' (forward primer)	pTYB21
Pstl ³	5'- GGT GGT <u>CTG CAG</u> TCA NNN NNN3' (reverse primer)	pTYB21

Sapl digestion creates a 3-nt overhang (GCA) for ligation with the Sapl-digested pTXB1 vector (containing a TGC overhang), resulting in an in-frame fusion to the N-terminus of an intein. The Sapl site can be used to add one or more extra amino acid residue(s) to the target protein by including an appropriate sequence (e.g. add ACC in the reverse primer corresponding to a GGT codon for a glycine residue). The Sapl site is not regenerated after cloning.

2.

3. Then perform a Phusion PCR with the designed primers

Materials

- Chitin Resin 100 ml S6651L by New England Biolabs
 EDTA (0.5 M), pH 8.0 AM9260G by Life Technologies
- ✓ Sodium Chloride <u>PubChem CID: 5234</u> by Contributed by users Tween 20 <u>170-6606-MSDS</u> by <u>Bio-rad Laboratories</u> Econo-Pac Columns <u>7321010</u> by <u>Bio-rad Laboratories</u>

Protocol

Insert gene into IMPACT vector

Step 1.

- 1. Digest the pPCR product with Ndel & Sapl in minimum 2 hours.
- 2. Digest the IMPACT vector (pTXB1) with Ndel & Sapl in minimum 2 hours.
- 3. Purify the digest on colums
- 4. Ligate the purified digest products using the preferred ligation protocol

² Sapl digestion creates a 3-nt overhang (AAC) compatible with the Sapl digested pTYB21 (containing a GTT overhang). The Sapl site is not regenerated after cloning.

³ A stop codon should be included in the reverse primer when constructing a N-terminal fusion.

- 5. Make a TSB transformation into E. Coli:K-12 use your preferred transformation protocol
- 6. Inspect the ligation with a colonyPCR
- 7. Make ON of the verified transformation
- 8. Purify the plasmid from the ON from step 1.7 using Miniprep

Protein expression

Step 2.

- 1. Transform the minipreped plasmid from step 1.8 into E. Coli:ER2566
- 2. Inoculate 1L LB+Amp with a fresh colony from the transformation above.
- 3. Incubate at 37°C till it reaches a OD₆₀₀ at 0.5-0.8
- 4. Add IPTG for a end concentration of 0.4 mM
- 5. Incubate at 16-20°C over night.
- 6. Centrifuge the 1L ON at 5000G in 15 min. at 4°C remove the supernatant.
- 7. Resuspend the cellpellet in 100 ml cold column buffer (See recipe in description)
- 8. Centrifuge at 8000G in 20 min at 2°C remove the supernatant.
- 9. Resuspend the cellpellet in a small volume of cold column buffer (2-4 mL)
- 10. Lyse the cells using french press
- 11. Centrifuge the lysant at 15000G in 30 min. at 4°C

Binding to Chitin beads

Step 3.

- 1. Take 10 ml Chitin beads put into a 50ml falcon tube
- Centrifuge at 200G in 5 min. remove the supernantant
- 3. Wash with 50 ml Column Buffer
- 4. Centrifuge at 200G in 5 min. remove the supernantant
- 5. Load the supernantant from step 2.11
- 6. Attach on a rotor with slow spin for 2 hours.
- 7. Add to a collum, open valve just enough that it slowly drips out.
- 8. Add 200 ml of column Buffer.
- 9. When the column buffer has run trough, close the valve and add Cleavage Buffer (just enough that i covers the beads + 1ml.) (See recipe in description)
- leave at room temperature over night (minimum 16 hours)

Eluate the protein

Step 4.

- 1. Open valve and drip eluate into tubes in 0.5 ml aliquots
- 2. Measure protein concentration

3. The aliquots with the highest concentrations is mixed and used for further work. ✓ protocols.io Published: 28 Nov 2016