FIG. 1

S2

FIG.4

Start

Compare encoded data R(t) with possible data points taken by branches i, and select data point $L_i(t)$ of branch i closest to encoded data R(t).

Data corresponding to data point $L_i(t)$ of branch i closest to encoded data R(t) is stored in path memory as first path information or as candidate for decoded data. For trace back system, data $Y_2(\text{for 4-state transition})$ or data $X_2(\text{for 8-state transition})$ corresponding to the closest data point $L_i(t)$ is stored in path memory as candidate for data Y_2 , $X_2(\text{first path information})$. For register exchange system, data $Y_2Y_1(\text{for 4-state transition})$ or data $X_2X_1(\text{for 8-state transition})$ corresponding to the closest data point $L_i(t)$ is stored in path memory as candidate for decoded data.

Calculate branch metric $Bm_i(t)$ for branch i $Bm_i(t)=(R(t)-L_i(t))^2$

Calculate sum $(Pm_j(t-1)+Bm_i(t))$ of path metric $Pm_j(t-1)$ and branch metric $Bm_i(t)$ corresponding to branch i

Select one of two paths merging to state S_k in which sum $(Pm_j(t-1)+Bm_i(t))$ of path metric $Pm_j(t-1)$ and branch metric $Bm_i(t)$ is smaller, to be new path metric $Pm_k(t)$ for state $S_k(Pm_k(t)=[Pm_j(t-1)+Bm_i(t)]-min[Pm_k(t)])$, and store new path metric $Pm_k(t)$ in path metric memory.

For path metric memory not to overflow, path metric is normalized by subtracting minimum value of path metric $min[Pm_k(t)]$ from each path metric.

For trace back system, path selection information for selected path is stored in path memory.

Perform maximum likelihood decoding operation on data $Y_2Y_1(4 \text{ states})$ or data $X_2X_1(8 \text{ states})$, obtained by tracing back for cut—off path length, corresponding to state Sm whose path metric value $Pm_k(t)$ is smallest.

For trace back system, use path selection information stored in path memory to reconstruct surviving path corresponding to state Sm whose path metric value $Pm_k(t)$ is smallest and perform maximum likelihood decoding operation on data $Y_2Y_1(4 \text{ states})$ or data $X_2X_1(8 \text{ states})$, obtained by tracing back cut—off path length along the surviving path.

S5

End

Inventor(s): Hiroyuki Senda, et al. Title: Error Correction Circuit and Error Correction Method Customer No. 23122 Atty. Docket No. YAO-4210US1 Express Label No.: EV351884480US

4-state transition diagram

FIG. 8A

	X ₂	D5 D4	Y ₂ Z ₂	Z3	W ₃	W ₂	Level
	1	0	1	1	0	1	8,10,12,14
	0	0	0	1	0	0	0,2,4,6
	0	1	1	1	0	0	0,2,4,6
	1	0	1	0	0	0	0,2,4,6
	0	0	0	0	1	1	-8,-6,-4,-2
	0	1	1	0	1	1	-8,-6,-4,-2
l	1	1	0	1	1	1	-8,-6,-4,-2
	1	1	0	0	1	0	-14,-12,-10

FIG.8B

Y ₁ X ₁	Z ₃	W ₁	W ₀	Level
1	1	0	0	-8,0,8
0	1	0	0	-8,0,8
0	0	0	1	-14, -6, 2, 10
1	1	0	1	-14, -6, 2, 10
0	1	0	1	-14, -6, 2, 10
0	0	1	0	-12, -4, 4, 12
1	1	1	0	-12,-4,4,12
1	0.	1	1	-10,-2,6,14
0	0	1	1	-10,-2,6,14
1	1	1	1	-10,-2,6,14

FIG.9D

State transition diagram used commonly for 8-state transition and 4-state transition

FIG. 9E

 $L/\chi_2\chi_1$ for respective branches

					,	
AC	-12	-8	-4	0	4	8
	1	0	0	0	1	10
BD	-8	-4	0	4	8	12
	1	1	0	1	1	1
EG	-10	-6	-2	2	6	10
	1	0	0	0	1	0
FH	-6	-2	2	6	10	14
	1	1	0	1	1	1
HI	-10	-6	-2	2	6	10
	1	1	0	1	1	1
GJ	-14	-10	-6	-2	2	6
	1	0	0	0	1	0

FIG. 10

FIG.~1~1AState transition from time 0 to time 1 (L=-9.4)

Branch metric	L/X ₂ X ₁	X ₁ /coset
$\begin{array}{c} Bm_{A}(1) = (-9.4 - (-8))^{2} = 1.96 \\ Bm_{B}(1) = (-9.4 - (-4))^{2} = 29.16 \\ Bm_{C}(1) = (-9.4 - (-12))^{2} = 6.76 \\ Bm_{D}(1) = (-9.4 - (-8))^{2} = 1.96 \\ Bm_{E}(1) = (-9.4 - (-6))^{2} = 11.56 \\ Bm_{F}(1) = (-9.4 - (-2))^{2} = 54.76 \\ Bm_{G}(1) = (-9.4 - (-10))^{2} = 0.36 \\ Bm_{H}(1) = (-9.4 - (-6))^{2} = 11.56 \\ Bm_{J}(1) = (-9.4 - (-6))^{2} = 11.56 \\ B$	-8/10 -4/11 -12/10 -8/11 -6/10 -2/11 -10/10 -6/11 -10/11 -6/00	0/UA 1/UC2 0/UC1 1/UA 0/UD2 1/UB2 0/UB1 1/UD2 1/UB1 0/UD1

FIG. 11B

State	Comparison of path metric (Pm(0)+Bm(1)=Bm(1), where Pm(0)=0)	Path metric Pm(1)
S ₀	Bm _A (1)= 1.96 < Bm _C (1)= 6.76	Pm _{s0} (1)=1.96-0.36=1.6
S ₁	Bm _H (1)=11.56 > Bm _I (1)= <u>0.36</u>	Pm _{S1} (1)=0.36-0.36=0
S ₂	$Bm_{G}(1) = 0.36 < Bm_{J}(1) = 11.56$	Pm _{s2} (1)=0.36-0.36=0
S ₃	Bm _B (1)=29.16 > Bm _D (1)= 1.96	Pm _{s3} (1)=1.96-0.36=1.6
S ₄	$Bm_E(1)=11.56 > Bm_G(1)= 0.36$	Pm _{S4} (1)=0.36-0.36=0
S ₅	Bm _B (1)=29.16 > Bm _D (1)= 1.96	Pm _{s5} (1)=1.96-0.36=1.6
S ₆	Bm _A (1)= 1.96 < Bm _C (1)= 6.76	Pm _{S6} (1)=1.96-0.36=1.6
S ₇	Bm _F (1)=54.76 > Bm _H (1)= 11.56	Pm _{s7} (1)=11.56-0.36=11.2

state transition from time 1 to time 2 (L=+4.1)	to time 2	([=+4.1)
Branch metric	L/X2X1	L/X2X1 X1/coset
$Bm_A(2) = (+4.1 - (+8))^2 = 15.21$	+8/10	0/UA
$BmB(2)=(+4.1-(+4))^2=0.01$	+4/01	1/UC2
$ Bmc(2)=(+4.1-(+4))^2=0.01$	+4/10	0/001
$ Bm_D(2)=(+4.1-(+8))^2=15.21$	+8/11	1/UA
$Bm_E(2)=(+4.1-(+2))^2=4.41$	+2/00	0/nD2
$ Bm_F(2)=(+4.1-(+6))^2=3.61$	+6/01	1/UB2
$ Bm_G(2)=(+4.1-(+6))^2=3.61$	+6/10	0/UB1
$ Bm_H(2)=(+4.1-(+2))^2=4.41$	+2/01	1/UD2
$Bm_{I}(2)=(+4.1-(+6))^{2}=3.61$	+6/11	1/UB1
$ Bm_3(2)=(+4.1-(+2))^2=4.41$	+2/10	0/UD1

5	
9 H	1
C	Į
1	
FIC	•
1	4
H	4

State	State Comparison of path metric (Pm(1)+Pm(2))	Path metric Pm(2)
S	I	Pm _{S0} (2)=0.01-0.01=0
S	S1 Pms4(1)+Bm _H (2)=4.41 < Pm _{S5} (1)+Bm _I (2)=5.21	Pm _{S1} (2)=4.41-0.01=4.4
S	$S_2 Pm_{S4}(1) + Bm_G(2) = 3.61 < Pm_{S5}(1) + Bm_J(2) = 6.01$	$Pm_{S2}(2) = 3.61 - 0.01 = 3.6$
S3	S ₃ Pm _{S0} (1)+Bm _B (2)=1.61 < Pm _{S1} (1)+Bm _D (2)=15.21	Pms3(2)=1.61-0.01=1.6
S ₄	S4 $ Pms_2(1)+Bm_E(2)=4.41 < Pms_3(1)+Bm_G(2)=5.21$	Pm _{S4} (2)=4.41-0.01=4.4
Ss	Ss Pmse(1)+Bme(2)=1.61 < Pms ₇ (1)+Bm ₀ (2)=26.41 Pm _{S5} (2)=1.61-0.01=1.6	Pm _{S5} (2)=1.61-0.01=1.6
Se	Se Pmse(1)+BmA(2)=16.81> Pms7(1)+Bmc(2)=11.21 Pms6(2)=11.21-0.01=11.2	Pm _{S6} (2)=11.21-0.01=11.2
S7	S7 $ Pms_2(1)+Bm_F(2)=3.61 < Pms_3(1)+Bm_H(2)=6.01 Pms_7(2)=3.61-0.01=3.6$	Pm _{S7} (2)=3.61-0.01=3.6

<u>-</u> =])
~
time
2
7
time
from
transition
State

Branch metric	L/X2X1	L/X2X1 X1/coset
$Bm_A(2) = (-5.7 - (-8))^2 = 5.29$	-8/10	V/0A
$Bm_B(2) = (-5.7 - (-4))^2 = 2.89$	-4/11	1/UC2
$Bmc(2)=(-5.7-(-4))^2=2.89$	-4/00	0/UC1
$ Bm_D(2)=(-5.7-(-8))^2=5.29 $	-8/11	1/UA
$ Bm_E(2)=(-5.7-(-6))^2=0.09 $	-6/10	0/UD2
$ Bm_F(2)=(-5.7-(-2))^2=13.69 $	-2/11	1/082
$Bm_G(2) = (-5.7 - (-2))^2 = 13.69$	-2/10	0/UB1
$Bm_H(2) = (-5.7 - (-6))^2 = 0.09$	-6/11	1/UD2
$ Bm_{\rm I}(2)=(-5.7-(-2))^2=13.69 $	-2/01	1/UB1
BmJ(2)=(-5.7-(-6))2=0.09	-6/00	0/UD1

FIG. 13B S

State	Comparison of path metric (Pm(2)+Pm(3))	Path metric Pm(3)
So	So Pmso(2)+BmA(3)=5.29 < Pms1(2)+Bmc(3)=7.29 Pmso(3)=5.29-1.69=3.6	Pm ₅₀ (3)=5.29-1.69=3.6
Š	St Pms4(2)+BmH(3)=4.49 < Pms5(2)+Bm1(3)=15.29	Pms ₁ (3) = 4.49 – 1.69 = 2.8
S ₂		$Pm_{S2}(3)=1.69-1.69=0$
S3	S ₃ Pm _{S0} (2)+Bm _B (3)=2.89 < Pm _{S1} (2)+Bm _D (3)=9.69	Pms3(3)=2.89-1.69=1.2
S ₄	S4 Pms2(2)+BmE(3)=3.69 < Pms3(2)+Bmg(3)=15.29	$Pms_4(3) = 3.69 - 1.69 = 2.0$
Ss	S ₅ Pms ₆ (2)+Bm _B (3)=14.09 > Pm _{S7} (2)+Bm _D (3)=8.89	Pmss(3)=8.89-1.69=7.2
Š		Pms ₆ (3)=6.49-1.69=4.8
S ₇	S7 $ Pms_2(2)+Bmr(3)=17.29>Pms_3(2)+BmH(3)=1.69$	$Pms_7(3)=1.69-1.69=0$

ate transition from time 3 to time 4 (L=+7.2)	time 4 (I	-=+7.2)
Branch metric	L/X2X1	L/X ₂ X ₁ X ₁ /coset
$Bm_A(4)=(+7.2-(+8))^2=0.64$	+8/10	0/UA
$BmB(4)=(+7.2-(+4))^2=10.24$	+4/01	1/UC2
$Bmc(4)=(+7.2-(+4))^2=10.24$	+4/10	0/001
$ Bm_0(4)=(+7.2-(+8))^2=0.64 $	+8/11	1/UA
$ BmE(4)=(+7.2-(+10))^2=7.84 +10/10$	+10/10	0/UD2
$ Bm_F(4)=(+7.2-(+6))^2=1.44$	+6/01	1/UB2
$ Bm_G(4)=(+7.2-(+6))^2=1.44$	+6/10	0/UB1
$ Bm_H(4)=(+7.2-(+10))^2=7.84 +10/11 $	+10/11	1/UD2
$ Bm_{I}(4)=(+7.2-(+6))^{2}=1.44 $	+6/11	1/UB1
$[Bm_3(4)=(+7.2-(+2))^2=27.04] + 2/10$	+2/10	0/001

State	State Comparison of path metric (Pm(3)+Pm(4))	Path metric Pm(4)
S	So Pmso(3)+BmA(4)=4.24 < Pms1(3)+Bmc(4)=13.04 Pmsn(4)=4.24-0.64=3.6	Pmsn(4) = 4.24 - 0.64 = 3.6
S	$Pms_4(3)+Bm_H(4)=9.84 > Pms_5(3)+Bm_I(4)=8.64$	Pms ₁ (4)=8.64-0.64=8.0
S		$Pms_2(4) = 3.44 - 0.64 = 2.8$
S	$Pmso(3)+Bmg(4)=13.84>Pms_1(3)+Bmp(4)=3.44$	$Pm_{S3}(4) = 3.44 - 0.64 = 2.8$
\$	$Pms_2(3)+Bm_E(4)=7.84 > Pms_3(3)+Bm_G(4)=2.64$	$Pms_4(4) = 2.64 - 0.64 = 2.0$
Ss	Pms ₆ (3)+Bm _B (4)=15.04>Pm _{S7} (3)+Bm _D (4)= 0.64	Pmss(4)=0.64-0.64=0
Se	Pms ₆ (3)+Bm _A (4)=5.44 < Pm _{S7} (3)+Bm _C (4)=10.24	Pms6(4)=5.44-0.64=4.8
S 2	S7 Pms2(3)+Bm _F (4)=1.44 < Pms ₃ (3)+Bm _H (4)=9.04	Pms7(4)=1.44-0.64=0.8

FIG.~18A State transition diagram

FIG.~18B Relationship between out1,out2 and signal level

out1,out2	Signal level
0	-7,-3,+1,+5
1	-5,-1,+3,+7

o bit

