Unit 2: THE MOSFET transistor

Objectives

At the end of this chapter, the student should:

- Know the importance of MOSFET transistors in the development of computers, knowing their characteristics and their relationships with the success of the digital world.
- Know the operating principles
 of MOSFET transistors, their characteristic
 curves and operating regions.
- Solve simple DC circuits with one or more transistors.
- Understand MOSFET operation inside basic circuits and digital switching systems.
- Known protection techniques for MOSFETs inputs

Unit 2: Contents

- 2.1 Introduction
- 2.2 Basic principles of operation
 - Operating regions
 - Biasing
- 2.3 The MOSFET in switching mode
- 2.4 NMOS logic gates
- 2.5 Protecting circuits for MOSFET transistors
- 2.6 Summary

Bibliography

THEORY:

- A.R.Hambley, "Electronics" (2^a Ed.)", Prentice Hall, 2002.
- M.H.Rashid, "Microelectronic circuits. Analysis and design", Thomson, 2002.
- N. R. Malik, "Electronic circuits: analysis, simulation and design", Prentice Hall, 2000.
- R. Boylestad, L. Nashelsky, "Electronics, circuit theory", Pearson, 2009.
- A.P. Malvino, D.J. Bates, "Electronic principles", Mc Graw Hill, 2007.

PROBLEMS:

 G. Benet, J. V. Benlloch, V. Busquets, D. Gil, P. Pérez: "Ejercicios resueltos de Tecnología de Computadores", 2006.916

2.1 Introduction

FET = Field Effect Transistor Current controlled by an electric field (Voltage Control)
Unipolar device (Only ove type of carriers ("n" or "p") Symmetric JFET (Junction FET), Shockley, 1952 MOSFET (Metal-Oxide-Semiconductor FET)

Kahn y Atalla, 1960

Deplexion Enhancement (Used in digital apps)

> N Channel (NMOS Transistor) & Both used P Channel (PMOS Transistor)

2.1 Introduction(2)

- Some advantages:
 - High integration density=> VLSI
 - Versatility: R, C, switch,
 - Low power
 - High input impedance
- Some drawbacks:
 - Slower than BJT

```
• Less linearity J_{s} \neq \beta J_{c} Control
```

2.2 Basic principles of operation

Internal structure:

N-channel Enhancement MOSFET (NMOS transistor):

NMOS Transistor: cross section

Constants:

Transconductance K (mA/V2) Pspice: K = (W/L) Kp/2
Threshol voltage V_T (V) Pspice: V_T = vto
L= xot constant (In Expolar Vector) - 0.7=cfe) 8

 $K = (\frac{W}{2}) \frac{kp}{2}$, $Kp: \mu Cox$ L > gate capacity L > Mobility of carriersM / Mp -> electrons (n channel)

M / Mp -> holes (p channel) un > up; (Si) => un ~ 3 up => Smaller (narrower) "n" channel transistors conducts as much as bigger (wider) "p" channel transistors.

Operating regions: channel formation

Channel formation:

 $V_{GS} > V_{T}$: a N-type channel is formed between S and D

 $V_{GS} \le V_T$: no channel is formed \rightarrow CUT-OFF

Operating regions: linear region

- ohmic

Assuming $V_{GS} > V_{T:}$

B

Carrent-flows

through the channel

from D to 5

(IDS = ID)

Conducting condition:

$$V_{DS} > 0 \rightarrow I_{DS} > 0$$

Working principles: linear region (2)

Condition:
$$V_{DS} \leq V_{GS} - V_{T}$$

V/I function:
$$I_D = K \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$

For small V_{DS}:

$$I_D \approx K [2 (V_{GS}-V_T) V_{DS}]$$

$$R_{DS(on)} = R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} - V_{T})}$$

The MOSFET resistance decreases when K and V_{GS} increase

JDS 1 saturation > Jos= K (Vas-47)2 NONI LINEAR LINEAR > Vas eohmic -