Ising Model Nucleation Nucleation in the Ising Model Outlook History Lattice & lattice sites Energy & Monte Carlo Temperature Summary

Nucleation in the Ising Model

Abraham Hinteregger

University of Vienna

17.5.2013

Chapter

Ising Model

History

Lattice & lattice sites

Energy & Monte Carlo

Temperature

Summary

Nucleation

Nucleation in the Ising Model

History

- ➤ 1924: Ernst Ising Beitrag zur Theorie des Ferromagnetismus¹

 "Es entsteht ...[durch] ... die Beschränkung der

 Wechselwirkung auf diejenige benachbarter Elemente

 [...] kein Ferromagnetismus."
- ➤ 1936: Rudolph Peierls On Ising's model of ferromagnetism²

 "[...] for sufficiently low temperatures the Ising

 model in two [or more] dimensions shows

 ferromagnetism [...].

¹Zeitschrift für Physik Februar-April 1925, Volume 31, Issue 1, pp 253-258

²Cambridge Philosophical Society 1936 / Volume 32 / Issue 03 / October

Lattice

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Lattice

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 and 3 dimensions

Figure: Lattice in 1 dimension

Figure: Lattice in 2 and 3 dimensions

Lattice Sites

lacktriangle Each site has a state $s_i = -1 \lor 1$

Lattice Sites

- ▶ Each site has a state $s_i = -1 \lor 1$
- Assignment of states $s = (s_0, s_1, s_2, \dots, s_{N-1})$ to the lattice sites is called a configuration
- ► Therefore 2^N unique configurations for a lattice with N lattice sites.

Energy

► Each configuration has a corresponding energy - the Hamiltonian *H*

$$H(s) = H(s_0, s_1, \dots, s_{N-1}) = -J \sum_{\langle i, j \rangle} s_i \cdot s_j - h \sum_i s_i$$

Energy

► Each configuration has a corresponding energy - the Hamiltonian *H*

$$H(s) = H(s_0, s_1, \dots, s_{N-1}) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j - h \sum_i s_i$$

Energy

► Each configuration has a corresponding energy - the Hamiltonian *H*

$$H(s) = H(s_0, s_1, \dots, s_{N-1}) = -J \sum_{\langle i, i \rangle} s_i \cdot s_j - h \sum_i s_i$$

$$H(s) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j$$

Figure: Energy contribution (from nearest neighbor interaction) of the central lattice site

$$H(s) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j$$

Figure: Energy contribution (from nearest neighbor interaction) of the central lattice site

$$H(s) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j$$

Figure: Energy contribution (from nearest neighbor interaction) of the central lattice site

$$H(s) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j$$

Figure: Energy contribution (from nearest neighbor interaction) of the central lattice site

$$H(s) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j$$

Figure: Energy contribution (from nearest neighbor interaction) of the central lattice site

$$H(s) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j$$

Figure: Energy contribution (from nearest neighbor interaction) of the central lattice site

Single Flip Monte Carlo (Metropolis- Hastings Algorithm)

- ightharpoonup Current configuration is s_t
 - first configuration arbitrary
- ▶ Flip one lattice site $\rightarrow s_f$
 - has to be chosen randomly suitable RNG necessary
- ▶ Calculate energy difference $\Delta H = H(s_f) H(s)$
- Calculate acceptance probability P

$$P = \min\left(1, e^{-\beta \cdot \Delta H}\right), \qquad \beta = 1/kT > 0$$

- Generate random number $r \in [0, 1[$
 - $ightharpoonup r < P \rightarrow s_{t+1} = s_f$
 - $ightharpoonup r > P \rightarrow s_{t+1} = s_t$

Temperature in the Ising Model

$$P = \min \left(1, e^{-\beta \cdot \Delta H} \right), \qquad \beta = 1/kT > 0$$

- $ightharpoonup \Delta H < 0 \rightarrow P = 1$
- ▶ high temperature leads to higher acceptance probability \rightarrow unordered (low magnetization, Curie Temperature T_c)
- lacktriangle critical temperature T_c when $\left\langle \sum_i^N s_i \right
 angle / N pprox 0$

Temperature in the Ising Model

$$P = \min \left(1, e^{-\beta \cdot \Delta H} \right), \qquad \beta = 1/kT > 0$$

- $ightharpoonup \Delta H < 0 \rightarrow P = 1$
- ▶ high temperature leads to higher acceptance probability \rightarrow unordered (low magnetization, Curie Temperature T_c)
- lacktriangle critical temperature T_c when $\left\langle \sum_i^N s_i \right
 angle / N pprox 0$

$$kT_c/J = 2.269$$

Summary - Ising Model

- molecules on a lattice each with with one of two possible states
- (magnetic) moments prefer to align
- low temperatures: ordered
- high temperatures: disordered

Chapter

Ising Mode

Nucleation

What is Nucleation?

Homogeneous Nucleation

Heterogeneous Nucleation

Nucleation in the Ising Model

Outlook

Nucleation

- ▶ is a phase transformation process
- phase transformation grows from small nucleus

Examples

- ► cloud chamber
- supercooled water

Nucleation

- Homogeneous nucleation
 - ▶ in a uniform substance
 - no nucleation until nucleus with critical size "appears" (due to stochastic processes)
 - higher supersaturation leads to smaller critical radius.
 - rarely occurs in nature
- Heterogeneous Nucleation
 - begins at some preferable interface and grows from there
 - ► much (!) more likely
 - common in nature (freezing (in most cases), bubbles in water,...)

Nucleation

- Homogeneous nucleation
 - ▶ in a uniform substance
 - no nucleation until nucleus with critical size "appears" (due to stochastic processes)
 - higher supersaturation leads to smaller critical radius.
 - rarely occurs in nature
- Heterogeneous Nucleation
 - begins at some preferable interface and grows from there
 - much (!) more likely
 - common in nature (freezing (in most cases), bubbles in water,...)

Homogeneous Nucleation Transition Path Sampling Heterogeneous Nucleation Forward Flux Sampling

Chapter

Ising Mode

Nucleation

Nucleation in the Ising Model
Homogeneous Nucleation
Transition Path Sampling
Heterogeneous Nucleation
Forward Flux Sampling

Homogeneous Nucleation in the Ising Model

- ► Necessary modifications:
 - none
- Problems
 - ▶ long time until nucleus of critical size appears
 - inefficient to simulate billions of cycles until phase change takes place

Cluster size

Figure: Propability of finding a cluster of size N at different times³

³Pan, Rappl, Chandler, Balsara: J. Phys. Chem. B 2006

Transition Path Sampling (TPS) - "shooting" method⁴

- needs two stable states (A & B)
- ▶ path through configuration space connecting these
- change the path a little at a random point between A and B
- sample new path and accept if it connects A with B

⁴aaDellago, Bolhuis, Chandler: Advances in Chemical Physics 123 (1998)

Transition Path Sampling

Figure: First path (red), slightly changed and accepted path (blue), rejected path (green)⁵

⁵Esobedo, Borrero, Araque - J. Phys.: Condens. Matter 21 (2009)

Heterogeneous Nucleation

- ► Necessary modifications:
 - ▶ handle boundaries in heterogeneous nucleation

$$H(s) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j - h \sum_i s_i - J_s \sum_{\langle i,j \rangle}^{11} s_i \cdot s_j$$

▶ implement walls/surfaces with fixed spins

Nucleation in and out of Pores⁶

$$H(s) = -0.8 \sum_{\langle i,j \rangle} s_i \cdot s_j - 0.05 \sum_{i} s_i - 0 \sum_{\langle i,j \rangle}^{|I|} s_i \cdot s_j, \qquad kT = 1$$

- nucleation near surfaces 10¹² times faster
- ► fastest in pores
- nucleation in 2 steps
- diversified pore sizes lead to fastest reaction as probability of existence optimal pore size is higher

 $^{^6}$ Page, Sear - Heterogeneous Nucleation in and out of Pores PRL 97, 065701 (2006)

Nucleation in and out of Pores⁶

Figure: 2 phases of nucleation

⁶Page, Sear - Heterogeneous Nucleation in and out of Pores PRL 97, 065701 (2006)

Problems

- phase transitions are rare events (with realistic values for the coupling constant, ...)
- nonequilibrium systems therefore TPS (transition path sampling) not applicable.

Problems

- phase transitions are rare events (with realistic values for the coupling constant, ...)
- nonequilibrium systems therefore TPS (transition path sampling) not applicable.
- ▶ → Forward Flux Sampling

Forward Flux Sampling

- Similar to TIS (transition interface sampling a modified TPS)
 - initial state A: $\lambda < \lambda_A = \lambda_0$
 - final state B: $\lambda > \lambda_B = \lambda_n$
 - ▶ path has to pass every λ_i in increasing order (can go backwards in between too) until it reaches λ_n (B)
- ▶ after reaching a new interface (λ_{i+1}) configuration is stored
- stored configurations used as starting point for new trial runs
- ▶ trial runs continued until path reaches A (\rightarrow failure) or a new interface λ_{i+1} (\rightarrow success)

(Direct) Forward Flux Sampling⁷

Figure: Sampling path starting in A - store configurations where the path leaves A(X)

⁷ Allen, Valeriani, Rein ten Wolde: 2009 J. Phys.: Condens. Matter 21

(Direct) Forward Flux Sampling⁷

Figure: Sampling new paths from every stored configuration. Discard if path goes back to A

⁷Allen, Valeriani, Rein ten Wolde: 2009 J. Phys.: Condens. Matter 21

Chapter

Ising Mode

Nucleation

Nucleation in the Ising Model

Outlook

Possible Adjustments

Potts Model

Possible Adjustments to the Ising Model

- next-nearest neighbor interaction or even higher range
- forces from the outside, e.g. gravity
- Multi Hit Swendsen Wang algorithm
- Kawasaki Dynamics (alternative Metropolis algorithm with fixed state ratios and amounts)
 - choose any (A-B) bond
 - $\blacktriangleright (A-B) \to (B-A)$
 - calculate new energy
 - **>**

Potts Model

- ▶ states not only $-1 \land 1$ but (discrete) angles.
- $H = -J_c \sum_{i,j} \cos(\theta_i \theta_j) + \dots$
- Applications
 - percolation (Wu: "Percolation and the Potts Model" (1978))
 - flow of foam (Sanyal, Soma: "Viscous instabilities in flowing foams" (2006))
 - cancerous tumors (Sun, Chang, Cai: "A Discrete Simulation of Tumor Growth Concerning Nutrient Concentration" (2004))

- ➤ Page, Sear Heterogenous Nucleation in and out of Pores (2006): PRL 97, 065701
- Allen, Valeriani, Rein ten Wolde Forward Flux Sampling for rare event simulations (2009): J. Phys.: Condens. Matter 21 (2009) 463102 (21pp)
- ► Allen, Frenkel, Rein ten Wolde Forward Flux Sampling-type schemes for simulating rare events: Efficiency analysis (2008): http://arxiv.org/abs/cond-mat/0602269v1
- Escobedo, Borrero, Araque Transition path sampling and forward flux sampling. Applications to biological systems 2009
 J. Phys.: Condens. Matter 21 333101

Additional Literature Simulation

► Sourcefiles and binaries on my github https://github.com/oerpli/Ising2D