

planetmath.org

Math for the people, by the people.

identification topology

Canonical name IdentificationTopology
Date of creation 2013-03-22 14:41:26
Last modified on 2013-03-22 14:41:26

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 11

Author rspuzio (6075)
Entry type Definition
Classification msc 54A99
Synonym final topology
Related topic InitialTopology

Let f be a function from a topological space X to a set Y. The *identification topology* on Y with respect to f is defined to be the finest topology on Y such that the function f is continuous.

Theorem 1. Let $f: X \to Y$ be defined as above. The following are equivalent:

- 1. \mathcal{T} is the identification topology on Y.
- 2. $U \subseteq Y$ is open under \mathcal{T} iff $f^{-1}(U)$ is open in X.
- *Proof.* (1. \Rightarrow 2.) If U is open under \mathcal{T} , then $f^{-1}(U)$ is open in X as f is continuous under \mathcal{T} . Now, suppose U is not open under \mathcal{T} and $f^{-1}(U)$ is open in X. Let \mathcal{B} be a subbase of \mathcal{T} . Define $\mathcal{B}' := \mathcal{B} \cup \{U\}$. Then the topology \mathcal{T}' generated by \mathcal{B}' is a strictly finer topology than \mathcal{T} making f continuous, a contradiction.
- $(2. \Rightarrow 1.)$ Let \mathcal{T} be the topology defined by 2. Then f is continuous. Suppose \mathcal{T}' is another topology on Y making f continuous. Let U be \mathcal{T}' -open. Then $f^{-1}(U)$ is open in X, which implies U is \mathcal{T} -open. Thus $\mathcal{T}' \subseteq \mathcal{T}$ and \mathcal{T} is finer than \mathcal{T}' .

Remarks.

- $S = \{f(V) \mid V \text{ is open in } X\}$ is a subbasis for f(X), using the subspace topology on f(X) of the identification topology on Y.
- More generally, let X_i be a family of topological spaces and $f_i: X_i \to Y$ be a family of functions from X_i into Y. The *identification topology* on Y with respect to the family f_i is the finest topology on Y making each f_i a continuous function. In literature, this topology is also called the *final topology*.
- The dual concept of this is the initial topology.
- Let $f: X \to Y$ be defined as above. Define binary relation \sim on X so that $x \sim y$ iff f(x) = f(y). Clearly \sim is an equivalence relation. Let X^* be the quotient X/\sim . Then f induces an injective map $f^*: X^* \to Y$ given by $f^*([x]) = f(x)$. Let Y be given the identification topology and X^* the quotient topology (induced by \sim), then f^* is continuous. Indeed, for if $V \subseteq Y$ is open, then $f^{-1}(V)$ is open in X. But then $f^{-1}(V) = \bigcup f^{*-1}(V)$, which implies $f^{*-1}(V)$ is open in X^* .

Furthermore, the argument is reversible, so that if U is open in X^* , then so is $f^*(U)$ open in Y. Finally, if f is surjective, so is f^* , so that f^* is a homeomorphism.