Содержание

1	Сис	темы множеств			
	1.1	Последовательность попарно непересекающихся множеств			
	1.2	Верхние и нижние пределы			
		1.2.1 Верхний предел			
		1.2.2 Нижний предел			
	1.3	Монотонная последовательность множеств			
	1.4	Пример последовательности, у которой верхний не равен нижнему			
	1.5	Закон де Моргана для верхних и нижних пределов			
	1.6	Замкнутость относительно верхних и нижних пределов			
	1.7	Отображения колец и σ -алгебр			
	1.8	Невозможность использования пар операций для определения кольца			
	1.9	Действия с σ -алгебрами			
	1.10	Описание \$sigma-алгебр			
		Построение конечной σ -алгебры			
		Возможные мощности конечных σ -алгебр			
		Возможные размеры вероятностного пространства			
2	Mep				
	2.1	Аддитивная функция, но не мера			
	2.2	Базовые сввойства полукольца			
	2.3	Множества, построенные на основе других множеств			
	2.4	σ -аддитиность следует из непрерыввности			
	2.5	Непрерывность убывающих множеств			
	2.6	Непрерывность возрастающих множеств			
3	Buo	шняя мера			
3	3.1	•			
	3.2	Внешняя мера строго меньше обычной меры			
	3.3				
	3.4				
	$3.4 \\ 3.5$				
	3.6	Полнота меры Лебега			
	5.0	мера нижнего предела меньше нижнеи меры предела			
4	Измеримые функции				
	4.1	Композиция измеримых функций			
	4.2	Измеримость индикатора множества			
	4.3	Измеримость прообраза синглетона			
	4.4	Измеримость функции, у которой измеримы прообразы лучей			
	4.5	Разрывная в каждой точке измеримая функция			
	4.6	Измеримость эквивалентных функций			
	4.7	Монотонная измерима			
	4.8	Непрерывная функция, переводящая множество меры ноль в ненулевое			
	4.9	Возрастающая функция, переводящая множество меры ноль в ненулевое			
	4.10	Прообраз измеримого множества неизмерим			
		Образ измеримого меры ноль незимерим			
		Измеримое небарелевское			

5	Сходимость		8
	5.1	Функция максимальной цифры из десятичной записи числа	8
	5.2	Из сходимости п.в. не следует сходимость по мере в случае, когда мера сигма-	
		конечная	8
	5.3	Отделимость от нуля сходящейся последовательности неотрицательных функ-	
		ций по мере	9
	5.4	Доказательство сходимости последовательности	9
	5.5	Хуйня	9

1 Системы множеств

Последовательность попарно непересекающихся множеств

Пусть
$$B_n := A_n \setminus (\bigcup_{i=1}^{n-1} A_i)$$

1.2 Верхние и нижние пределы

1.2.1Верхний предел

$$a \in \overline{\lim}_n A_n \Leftrightarrow \forall N \in \mathbb{N} \ \exists n \geqslant N \ a \in A_n \Leftrightarrow \forall N \in \mathbb{N} \ a \in \bigcup_{i \geq n} A_i \Leftrightarrow a \in \bigcap_{n=1}^{\infty} \bigcup_{i \geq n} A_i$$

1.2.2 Нижний предел

$$a \in \underline{\lim}_n A_n \Leftrightarrow \exists N \in \mathbb{N} \ \forall n \geqslant N \ a \in A_n \Leftrightarrow \exists N \in \mathbb{N} \ a \in \bigcap_{i \geqslant n} A_i \Leftrightarrow a \in \bigcup_{n=1}^{\infty} \bigcap_{i \geqslant n} A_i$$

1.3 Монотонная последовательность множеств

Пусть без ограничения общности $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$

Тогда
$$\overline{\lim}_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{i \geqslant n} A_i = \bigcup_{i \geqslant n} A_i$$
, т.к. $\{\bigcup_{i \geqslant n} A_i\}_n$ - тоже монотонная.
Ну а $\underline{\lim}_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{i \geqslant n} A_i = \bigcup_{n=1}^{\infty} A_n$

Hy a
$$\underline{\lim}_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{i \ge n} A_i = \bigcup_{n=1}^{\infty} A_n$$

1.4 Пример последовательности, у которой верхний не равен нижнему

Пусть
$$A_{2n} := \{0\}; A_{2n+1} := \emptyset$$

Тогда $\overline{\lim}_n A_n = \{0\}; \underline{\lim}_n A_n = \emptyset$

1.5 Закон де Моргана для верхних и нижних пределов

$$\overline{\overline{\lim}_n A_n} = \underline{\lim}_n \overline{A_n}$$

$$\overline{\bigcup_{n=1}^{\infty} \bigcap_{i \ge n} A_i} = \bigcap_{n=1}^{\infty} \overline{\bigcap_{i \ge n} A_i} = \bigcap_{n=1}^{\infty} \bigcup_{i \ge n} \overline{A_i}$$

1.6 Замкнутость относительно верхних и нижних пределов

 $\overline{\lim}_n A_n = \bigcap_{n=1}^\infty \bigcup_{i\geqslant n} A_i,$ по определению, σ -алгебра замкнута относительно счётных пере-

сечений и объединений, поэтому
$$\bigcup_{i\geqslant n}A_i\in\sigma$$
-алгебра, и $\bigcap_{n=1}^\infty\bigcup_{i\geqslant n}A_i\in\sigma$ -алгебра.

Аналогично с нижним пределом.

1.7 Отображения колец и σ -алгебр

• $\varnothing \in f^{-1}(B), \varnothing = f^{-1}(\varnothing)$ - следует из определения прообраза, т.к. если никого нет, то никто в нас не перейдёт

$$C_{1,2} \in f^{-1}(B) \Rightarrow \exists X_{1,2} \in B : f^{-1}(X_{1,2}) = C_{1,2}$$
$$x \in f^{-1}(C_1 \cap C_2) \Rightarrow \exists y \in C_1 \cap C_2 : f(y) = x \Rightarrow y \in C_1 \cap C_2 \subseteq C_{1,2} \Rightarrow$$
$$x \in f^{-1}(C_1) \cap f^{-1}(C_2) \Rightarrow f^{-1}(C_1 \cap C_2) \subseteq f^{-1}(C_1) \cap f^{-1}(C_2)$$

$$x \in f^{-1}(C_1) \cap f^{-1}(C_2) \Rightarrow x \in f^{-1}(C_1) \land x \in f^{-1}(C_2) \Rightarrow \exists ! y : f(x) = y \Rightarrow y \in C_1 \land y \in C_2 \Rightarrow y \in C_1 \cap C_2 \Rightarrow x \in f^{-1}(C_1 \cap C_2) \Rightarrow f^{-1}(C_1) \cap f^{-1}(C_2) \subseteq f^{-1}(C_1 \cap C_2)$$

Получили, что $f^{-1}(C_1 \cap C_2) = f^{-1}(C_1) \cap f^{-1}(C_2)$, аналогично делаем с \triangle , получили все свойства кольца у $f^{-1}(B)$.

• В данном пункте будет выполняться $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$, но не будет выполняться включение в другую сторону из-за отсутствия сюръективности у f. Приведём контрпример.

Пусть
$$\mathcal{A} = \{\emptyset, \{1,2\}, \{3,4\}, \{1,2,3,4\}\}$$
 - это кольцо, пусть тогда Пусть $\mathcal{B} = \{\emptyset, \{5,6\}, \{6\}, \{5\}\}$ $f(\{\emptyset\}) = \{\emptyset\}; f(\{1,2\}) = \{5,6\}; f(\{3,4\}) = \{6\}; f(\{1,2,3,4\}) = \{5,6\}$

• Аналогично первому пункту.

1.8 Невозможность использования пар операций для определения кольца

- Приведём контрпример: $A = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$
- Приведём контрпример: $A = \{\varnothing, \{1\}, \{0\}\}$

1.9 Действия с σ -алгебрами

- 1. Каждая операция на пересечении замкнута, значит итоговое множество также останется замкнутым
- 2. Нет, приведём контрпример: $\mathcal{B}_1 = \{\{1\}, \{\varnothing\}\}, \mathcal{B}_2 = \{\{2\}, \{\varnothing\}\}$
- 3. Нет, т.к. в разности двух множеств нет пустого множества.
- 4. Нет, т.к. в симметрической разности двух множеств нет пустого множества.

1.10 Описание \$sigma-алгебр

Первые 4 пункта очевидные и предлагаются читателю в качестве занимательного упражнения: взять все пересечения и симметрические разности.

В пункте f) возьмём множество всех подмножеств $\mathbb{Q} \cap [0; 1]$

1.11 Построение конечной σ -алгебры

Разобьём Ω на некоторое дизъюнктное разбиение и возьмём множество всех подмножеств получившегося разбиения.

1.12 Возможные мощности конечных σ -алгебр

Из предыдущего пункта очевидно следует, что мощности такой σ -алгебры должна быть степенью двойки. Значит подходит только 128.

1.13 Возможные размеры вероятностного пространства

Минимум - 2, возьмём пустое множества и всё множество.

Максимум - 2^n , возьмём множество всех подмножеств множества элементарных событий.

2 Mepa

2.1 Аддитивная функция, но не мера

Пусть $S = \{\varnothing, \{1\}, \{2\}, \{3\}, \{1,2,3\}\}$, и зададим φ .

$$\varphi(\{1,2,3\}) = 2; \ \varphi(\{1\}) = \varphi(\{2\}) = \varphi(\{3\}) = 1; \ \varphi(\varnothing) = 0$$

2.2 Базовые сввойства полукольца

1.
$$A = B \sqcup C \Rightarrow m(A) = m(B) + m(C); \ m(C) \geqslant 0 \Rightarrow m(B) \leqslant m(A)$$

$$2. \ m(\varnothing) = m(\varnothing \cup \varnothing) = 2*m(\varnothing) \Rightarrow m(\varnothing) = 0$$

3.
$$B=(A\cap B)\sqcup (\sqcup C_i),$$
 где $C_i\in S$

$$m(B) = m(A \cap B) + m(\Box C_i)$$

$$m(A \cup (\Box C_i)) = m(A \cup B) = m(A) + m(\Box C_i)$$

$$m(A \cup B) = m(A) + m(B) - m(A \cap B)$$

4.

$$B \setminus A = \sqcup C_i; \ A \setminus B = \sqcup D_i; \ m(A \triangle B) = m((B \setminus A) \sqcup (A \setminus B)) = 0 \Rightarrow m(A \setminus B) = 0 \land m(B \setminus A) = 0$$
$$m(A) = m((A \cap B) \sqcup (A \setminus B)) = m(A \cap B) = m((A \cap B) \sqcup (B \setminus A)) = m(B)$$

2.3 Множества, построенные на основе других множеств

- Пусть $A_0 \subseteq A \in S_1 \subseteq S$, тогда по свойству полукольца $S: \exists C_i: A_0 \sqcup (\sqcup C_i) = A;$ $\forall A, B \in S_1: m(A \cap B) \leqslant 0 \Rightarrow m(A \cap B) = 0;$ $m(\varnothing) = 0 \Rightarrow \varnothing \in S_1$
- $m(\varnothing) = 0 \Rightarrow \varnothing \in R_1;$

Пересечение принадлежит R_1 аналогично первому пункту.

$$m(A \triangle B) = m((A \setminus B) \sqcup (B \setminus A)) \leqslant m(A) + m(B) \leqslant 0 \Rightarrow m(A \triangle B) = 0$$

• Неверно, возьмём отрезок [0;1] и классическую меру Лебега, тогда заметим, что мера каждой точки равна 0, а объединение всех точек имеет меру 1, значит в A_1 нет единицы.

2.4 σ -аддитиность следует из непрерыввности

Пусть для некоторого $B = \bigsqcup B_i$, обозначим $C_k = \bigsqcup_{i=k}^{\infty} B_k$

Тогда
$$m(C_k) = m(B) - \sum_{i=1}^k m(B_i); \varnothing = \lim m(C_k)$$

Тогда из непрерывности меры следует $m(\emptyset) = \lim m(C_k) \Rightarrow 0 = \lim_{k \to \infty} (m(B) - \sum_{i=1}^k m(B_i))$ $m(B) = \sum m(B_i)$ - σ -аддитиновсть доказана.

В случае полукольца это не работает, т.к. мы можем взять $S = \mathbb{Q} \cap [a;b] \subseteq [0;1]$, где $m(\lfloor a;b \rceil) = b-a$ заметим что условие задачи выполняется, но $1 = m(\lfloor 0;1 \rceil \cap \mathbb{Q}) \neq \sum m(\mathbb{Q} \cap [r_i;r_i]) = 0$.

ДАННЫЙ ПРИМЕР ПОДХОДИТ ДЛЯ ВСЕХ ОСТАЛЬНЫХ ЗАДАЧ ИЗ ДАННОЙ ТЕМЫ, КОТОРЫЕ НЕ БЫЛИ РАССМОТРЕНЫ ДАЛЕЕ

2.5 Непрерывность убывающих множеств

$$A = \bigcap A_i \Rightarrow \overline{A} = \bigcup \overline{A_i} \Rightarrow \lim m(\overline{A_i}) = m(\overline{A}) = \lim m(E \setminus A_i) = m(E \setminus A)$$

 $m(E) - \lim m(A_i) = m(E) - m(A) \Rightarrow \lim m(A_i) = m(A)$

2.6 Непрерывность возрастающих множеств

Пусть
$$A = \bigcup A_i = \bigsqcup_{i \to \infty} B_i$$
, где $B_i = A_i \setminus A_{i-1}$

$$\lim_{i \to \infty} m(A_i) = \lim_{i \to \infty} \sum_{k=1}^i m(B_k) = \sum_{i=1}^\infty m(B_i) = m(\bigcup B_i) = m(\bigcup A_i) = m(A)$$

3 Внешняя мера

3.1 Внешняя мера строго меньше обычной меры

Возьмём наш пример $\mu^*(\mathbb{Q} \cap \lfloor 0; 1 \rceil) = 0 < m(\mathbb{Q} \cap \lfloor 0; 1 \rceil) = 1$

3.2 Внешняя мера объединения

 $\mu^*(A \cup B) = \inf_{(A \cup B) \subseteq \coprod A_i} \sum m(A_i) \leqslant \inf_{A \subseteq \coprod A_i} \sum m(A_i) + \inf_{B \subseteq \coprod B_i} \sum m(B_i) = \mu^*(A) + \mu^*(B)$

3.3 Про меру Жордана

Заметим, что $\forall r_i \in (\mathbb{Q} \cap [0;1]) : m(r_i) = 0$, но $\mathbb{Q} \cap [0;1]$ неизмерима по Жордану В качестве σ -аддитивной мере на \mathcal{M}_J возьмём тождественный ноль:)

3.4 Пример объъединения неизмеримых, объединение которых измеримых

В качесте A_1 выберем множество Витали (неизмеримое по Лебегу), а в качестве A_2 возьмём дополнение множества Витали.

3.5 Полнота меры Лебега

$$B \subseteq A \Rightarrow \mu^*(B) \leqslant \mu^*(A) = 0 \Rightarrow \mu(B) \leqslant \mu^*(B) = 0$$

3.6 Мера нижнего предела меньше нижней меры предела

Пусть $A_{2n}=[0;\frac{1}{2}];\ A_{2n+1}=(\frac{1}{2};1].$ Очевидно, что $\forall i:\mu(A_i)=\frac{1}{2},$ а $\mu(\liminf A_n)=\mu(\varnothing)=0$

4 Измеримые функции

4.1 Композиция измеримых функций

 $\{x: f(x) < g(x)\} = \bigcup \{x: f(x) < r_i < g(x)\} = \bigcup \{x: f(x) < r_i\} \cap \{x: g(x) > r_i\}),$ отсюда $\{x: f(x) + g(x) < a\} = \{x: f(x) < a - g(x)\}$ очевидно измеримо.

4.2 Измеримость индикатора множества

- \Rightarrow Возьмём возьмём в качестве a из Лебегова множества $\frac{1}{2}$, тогда множество $\{x:f(x)>\frac{1}{2}\}$ измеримо, а это множество в точности M.
- \Leftarrow Рассмотреть все возможные случаи при выборе a в Лебеговом множестве и понять, что при каждом случае оно измеримо.

4.3 Измеримость прообраза синглетона

Возьмём в качестве $f(x) = \mathbb{I}_E(x) * x + (1 - \mathbb{I}_E(x)) * (-x)$

4.4 Измеримость функции, у которой измеримы прообразы лучей

Для любого Лебегова множества приблизимся к его числа a какой-то последовательностью $\{b_n\}$, где $b_n \in \{a_n\}_n$, а $\lim b_n = a$ подходит к a слева, тогда $f^{-1}(a; +\infty) = \bigcap f^{-1}(b_n; +\infty)$

4.5 Разрывная в каждой точке измеримая функция

Возьмём в качестве f функцию Дирихле.

4.6 Измеримость эквивалентных функций

$$\{x: g(x) < a\} = (\{x: f(x) < a\} \setminus \{x: f(x) \neq g(x)\}) \sqcup \{x: (g(x) < a) \land (f(x) \neq g(x))\}$$

4.7 Монотонная измерима

Каждое Лебегово множество будет иметь вид [a; c), которое, очевидно, измеримо.

4.8 Непрерывная функция, переводящая множество меры ноль в ненулевое

Канторова лестница

4.9 Возрастающая функция, переводящая множество меры ноль в ненулевое

Пусть $\varphi(x)$ - канторова лестница, тогда нужная нам функция имеет вид $f(x) = \frac{x + \varphi(x)}{2}$

4.10 Прообраз измеримого множества неизмерим

4.11 Образ измеримого меры ноль незимерим

4.12 Измеримое небарелевское

Возьмём $\varphi(x)$ - канторову лестницу, из её области значений [0;1] достанем неизмеримое подмножество, возьмём его прообраз. Его прообраз - подмножество Канторова множества, значит оно измеримо и имеет меру 0. Если бы оно было барелевский, то его образ был бы измерим, поэтому это ИЗМЕРИМОЕ НЕБАРЕЛЕВСКОЕ множество МЕРЫ 0.

5 Сходимость

5.1 Функция максимальной цифры из десятичной записи числа

Давайте посчитаем меру множества, где f(x)=9. Разделим отрезок [0;1] на десять чистей и выберем множество, где первая цифра после запятой - это девятка, далее разделим каждую из 9 оставшихся частей на 10 частей и из каждого снова выберем $\frac{1}{10}$ часть. Получим, что $\mu(\{x: f(x)=9\}) = \sum \frac{9^{n-1}}{10^n} = 1$

5.2 Из сходимости п.в. не следует сходимость по мере в случае, когда мера сигма-конечная

Возьмём
$$f_n(x) = \begin{cases} 1, x \in [n; \ n+1) \\ 0, else \end{cases}$$

Отделимость от нуля сходящейся последовательности неотри-5.3 цательных функций по мере

Пусть $B_{\frac{1}{n}}=\{x: f(x)<-\frac{1}{n}\}$, очевидно, что $\forall n\in\mathbb{N}: \nu(B_{\frac{1}{n}})=0$, и $B_{\frac{1}{n}}\subseteq B_{\frac{1}{n+1}}\Rightarrow \lim B_{\frac{1}{i}}=\bigcup B_{\frac{1}{i}}=B$. Тогда $\nu(B)=\sum \nu(B_{\frac{1}{i}})=0$, что нам и требовалось доказать.

Доказательство сходимости последовательности

Последовательности сходится поточечно, если $\forall x \in (0; 1) \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > 0$ $N \parallel \frac{1}{\sqrt{n}(x-r_n)} \parallel < \varepsilon \Leftrightarrow \frac{1}{\sqrt{n}(x-r_n)} < \varepsilon \Leftrightarrow \frac{1}{\varepsilon(x-r_n)} < \sqrt{n} \Leftrightarrow n > \frac{1}{\varepsilon^2(x-r_n)^2}$

5.5 Хуйня

$$\forall \varepsilon>0\lim_{n\to\infty}\nu\{x:\ e^{-(p_n-q_nx)^2}>\varepsilon\}\Leftrightarrow \forall \varepsilon>0\lim_{n\to\infty}\nu\{x:\ -(p_n-q_nx)^2>\ln(\varepsilon)\}\Leftrightarrow \forall \varepsilon>0\lim_{n\to\infty}\nu\{x:-\sqrt{\ln(\varepsilon)}< p_n-q_nx<\sqrt{\ln(\varepsilon)}\}\Leftrightarrow \forall \varepsilon>0\lim_{n\to\infty}\nu\{x:-\frac{\sqrt{\ln(\varepsilon)}}{q_n}<\frac{p_n}{q_n}-x<\frac{\sqrt{\ln(\varepsilon)}}{q_n}\}\Leftrightarrow \forall \varepsilon>0\lim_{n\to\infty}\nu\{x:(x>\frac{p_n}{q_n}-\frac{\sqrt{\ln(\varepsilon)}}{q_n})\wedge(x<\frac{p_n}{q_n}+\frac{\sqrt{\ln(\varepsilon)}}{q_n})\}=\lim_{n\to\infty}\frac{2\sqrt{\ln(\varepsilon)}}{q_n}=0$$
 Она не сходится ни в одной точке, т.к. мы можем взять подпоследовательность, у

которой p-