Linear Representations of Finite Groups

Homework #2

Due on 2022 年 10 月 26 日

苏可铮 2012604

Problem 1

苏可铮 2012604

设 (ρ, V) 是有限群 G 的有限维不可约复表示,证明:对任意 $g \in Z(G)$, $\rho(g)$ 是 V 上的数乘变换 *Proof.* 对 $\forall g \in Z(G)$,则 $\rho(g)$ 为 V 上的线性变换 \mathscr{A} ,且对 $\forall h \in G$,有:

$$\mathscr{A}\rho(h) = \rho(g)\rho(h) = \rho(gh) = \rho(hg) = \rho(h)\rho(g) = \rho(h)\mathscr{A}$$

则 \mathscr{A} 为 V 到自身的缠结算子,则由 Schur 引理可知, $\rho(g) = \mathscr{A}$ 为数乘变换

Problem 2

设 χ_i 和 χ_j 是有限群 G 的不可约复表示的特征标,特征标间的卷积定义为

$$\chi_i * \chi_j(x) = \frac{1}{|G|} \sum_{y \in G} \chi_i(y) \chi_j(y^{-1}x)$$

证明: $\chi_i * \chi_j = \frac{\delta_{i,j}}{\gamma_i(1)} \chi_i$

Proof. 设 χ_i, χ_j 分别为有限群 G 的不可约复表示 ρ_i, ρ_j 的特征标,则 $dim\rho_i = dim\rho_j = dimG = n$ 记 $\rho_i(g), \rho_j(g)$ 对应的矩阵分别为 $r_{i_1i_2}(g), r_{j_1j_2}(g)$, 则有:

$$\chi_{i} * \chi_{j}(x) = \frac{1}{|G|} \sum_{y \in G} \chi_{i}(y) \chi_{j} (y^{-1}x)
= \frac{1}{|G|} \sum_{y \in G} \left(\sum_{1 \leq i_{1} \leq n} r_{i_{1}i_{2}}(y) \right) \left(\sum_{1 \leq j_{1} \leq n} \sum_{1 \leq k \leq n} r_{j_{1}k}(y^{-1}) r_{kj_{1}}(x) \right)
= \frac{1}{|G|} \sum_{1 \leq k \leq n} \sum_{y \in G} r_{i_{1}i_{2}}(y) r_{j_{1}k}(y^{-1}) r_{kj_{1}}(x)
= \sum_{1 \leq i_{1}, j_{1}, k \leq n} r_{kj_{1}}(x) \frac{1}{|G|} \sum_{y \in G} r_{i_{1}i_{2}}(y) r_{j_{1}k}(y^{-1})
= \sum_{1 \leq i_{1}, j_{1}, k \leq n} r_{kj_{1}}(x) \frac{1}{n} \delta_{ij} \delta_{i_{1}j_{1}} \delta_{i_{1}k_{1}}
= \frac{\delta_{ij}}{n} \sum_{1 \leq j_{1} \leq n} r_{j_{1}j_{2}}(x)
= \frac{\delta_{ij}}{n} \chi_{j}(x)
= \frac{\delta_{ij}}{\chi_{i}(1)} \chi_{i}(x)$$

即得证: $x_i * x_j = \frac{\delta_{ij}}{\gamma_i(1)} \chi_i$

Problem 3

将有限群 $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$ 的元素依次换成变量 $x_1, x_2, x_3. x_4, x_5, x_6, x_7, x_8$,设 $X = [x_i x_i^{-1}]_{8\times 8}$ 是 Q_8 的群矩阵,把 X 的行列式分解成不可约多项式的乘积

Proof. 由题意, 群矩阵为:

$$X = \begin{bmatrix} x_1 & x_2 & x_4 & x_3 & x_6 & x_5 & x_8 & x_7 \\ x_2 & x_1 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_3 & x_4 & x_1 & x_2 & x_8 & x_7 & x_5 & x_6 \\ x_4 & x_3 & x_2 & x_1 & x_7 & x_8 & x_6 & x_5 \\ x_5 & x_6 & x_7 & x_8 & x_1 & x_2 & x_4 & x_3 \\ x_6 & x_5 & x_8 & x_7 & x_2 & x_1 & x_3 & x_4 \\ x_7 & x_8 & x_6 & x_5 & x_3 & x_4 & x_1 & x_2 \\ x_8 & x_7 & x_5 & x_6 & x_4 & x_3 & x_2 & x_1 \end{bmatrix}_{8 \times 8}$$

则有:

由 Q_8 有 5 个等价类 $\left\{\{1\},\{-1\},\{\pm i\},\{\pm j\},\{\pm k\}\right\}$,故 Q_8 共有 5 种不等价的不可约表示,记其维数分别为: n_1,n_2,n_3,n_4,n_5 ($n_1\leqslant n_2\leqslant n_3\leqslant n_4\leqslant n_5$),则由于 $n_1^2+n_2^2+n_3^2+n_4^2+n_5^2=|Q_8|=8$ 且又由 $n_1,n_2,n_3,n_4,n_5\in\mathbb{Z}$ 可得: $n_1=n_2=n_3=n_4=1,n_5=2$

对于四元数群 Q_8 的特征标表为 (其中 n=2, j=r=1):

g_i	1	a^n	a^r	b	ab
$ C_G(g_i) $	4n	4n	2n	4	4
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ3	1	1	$(-1)^r$	1	-1
χ_4	1	1	$(-1)^r$	-1	1
ψ_j	2	$2(-1)^{j}$	$\omega^{rj} + \omega^{-rj}$	0	0

则对应群 X 的特征标表为:

g_i	$\{1\}_{(1)}$	$\{-1\}_{(1)}$	$\{\pm i\}_{(2)}$	$\{\pm j\}_{(2)}$	$\{\pm k\}_{(2)}$
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χз	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	2	-2	0	0	0

则 X 的行列式分解成不可约多项式的乘积为:

$$|X| = (x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8)(x_1 + x_2 + x_3 + x_4 - x_5 - x_6 - x_7 - x_8)$$

$$(x_1 + x_2 - x_3 - x_4 + x_5 + x_6 - x_7 - x_8)(x_1 + x_2 - x_3 - x_4 - x_5 - x_6 + x_7 + x_8)$$

$$[(x_1 - x_2)^2 + (x_3 - x_4)^2 + (x_5 - x_6)^2 + (x_7 - x_8)^2]^2$$

Problem 4

设 $G = \langle x, y | x^7 = y^3 = 1, yxy^{-1} = x^2 \rangle$,求 G 的特征标表和所有正规子群

Proof. 由 $G=F_{7,3}=< x,y\,|\,x^7=y^3=1,yxy^{-1}=x^2>$,则由其定义关系, $G=F_{7,3}$ 有 5 个共轭类,分别为 $\left\{\{1\},\{a\},\{a^3\},\{b\},\{b^2\}\right\}$,且有 3 个线性特征标和 2 个 3 次不可约特征标设 $\eta=\frac{2\pi i}{7},\omega=\frac{2\pi i}{3}$,我们就可以构造其特征标表为:

g_i	1	x	x^3	y	y^2
$ C_G(g_i) $	21	7	7	3	3
χ_1	1	1	1	1	1
χ_2	1	1	1	ω	ω^2
χ_3	1	1	1	ω^2	ω
ϕ_1	3	$\eta + \eta^2 + \eta^4$	$\eta^3 + \eta^5 + \eta^6$	0	0
ϕ_2	3	$\eta^3 + \eta^5 + \eta^6$	$\eta + \eta^2 + \eta^4$	0	0

且其平凡正规子群为: $\{e\}$, $F_{7,3}$; 非平凡正规子群为: < x, y >