(R-Phyloseq)

16S data → QIIME → ??

So far...

- 1. NeCTAR website tutorials
- 2. UNIX command line basics google it
- 3. Installing QIIME QIIME website instructions
- 4. Using QIIME quime tutorials as templates

Mostly A-to-Z processes = easy ...when you know how

Following on from the last session...

Know your data

- QIIME's .qzv files
 - reads in vs reads out
 - <u>outliers</u>: ASVs, samples
 - general relationship between samples

reads in vs reads out – denoising stats.qzv

The highlighted sample retained only 55% of reads after processing, but the final read count is still good.

sample- id #q2:types	input numeric 11	filtered numeric 11	percentage of input passed filter numeric	denoised numeric 11	merged 11	percentage of input merged numeric	non- chimeric numeric	percentage of input non-chimeric I1
a1_1_01	16806	14508	86.33	14229	12848	76.45	12752	75.88
a1_1_02	12482	10589	84.83	10251	8957	71.76	8915	71.42
a1_1_03	16818	14604	86.84	14354	13122	78.02	13074	77.74
a1_1_04	18675	16162	86.54	15803	14358	76.88	14266	76.39
a1_1_05	16591	14423	86.93	14178	13046	78.63	12853	77.47
a1_2_01	15778	12003	76.07	11801	10544	66.83	10004	C5.5
a1_2_02	14611	8890	60.84	8756	8120	55.57	8053	55.12
a1_2_03	11780	9774	82.97	9676	9295	78.9	9200	78.17
a1_2_04	10771	9429	87.54	9252	8809	81.78	8701	80.78

outliers ASVs, samples – representative_seqs.qzv

Our target region was ~277 bp. These ASVs might be PCR artefacts. Check read count and taxonomy.

Download sequence-length statistics as a TSV (descriptive_stats.tsv)				Download seven	Download seven-number summary as a TSV (seven_number_summary.tsv)								
Sequence Count	Min Length	Max Length	Mean Length	Range	Standard Deviation	Percentile:	2%	9%	25%	50%	75%	91%	98%
554	240 363	363		123	6.52	Length* (nts):	251	253	257	259	261	261	265
Feature ID			Sequence Length	Sequence									
fbf10cb48bb23	3a060d4b0168	3b8fa5a9c	363	TTGCTCCGCA	ATCAGCGCATCAT'	TGTCGAGCTTTTCTGTGGC1	rgcgtagc(CCCAATGO	CTGAGTGC	GCACTGT(GCATGCA'	IGTACTCT	GCCAGCGCT
0ae23b19ed21	134869ab1dbf	db6270834	329	GTCCACGCCG	TGACCTATGAGTG	AGAAAATATGTATTTATTTA	AAATACCA	rgtattt <i>i</i>	AATTTCT	AACTTTT	TTTTATAG'	TTGTTTTT	TGAAAAATI
0a51b2f077fc2	281e02a1706f3	3b8ea531	289	GTCTATACTG	TAAATTCTGAGTG(CTGTAATTTAATGTAAATTA	AAAATTGT <i>I</i>	AAAAGATT	ГТААААТТ	TATTTAG <i>I</i>	ATTTTTAA(GCTAACGC	TATAAGCA(

<u>outliers</u> ASVs, samples – barchart.qzv

Check for samples with unusual compositions...

...and trends (Gamma are higher in Day 2 samples)

25%
Only one sample with so much of this ASV

outliers ASVs, samples – emperor.qzv

A useful exploratory tool

- Neg controls are distinct from samples

- We see some separation of samples by day, but...

...this image is a 2-D depiction of a 3-D ordination = dodgy!

Today's session...

QIIME \rightarrow R \rightarrow basic visualisations + stats

- analysis of our 'toy' data set
- this will be a demonstration...
 but if you can run the scripts, great!
- this will <u>not</u> be an R'tutorial' 100-1000's already exist

16S 'toy data'

- 2 x sea anemone
 genotypes (a1, a4)
- Exposed to temp.
 increase (26 30 °C)
 over 24 hr
- 2 x sampling timepoints:

Day 1, 26 °C Day 2, 30 °C

Q: How did the bacterial communities differ/change?

QIIME output (naming is arbitrary):

tax.tsv tab-separated taxonomic information

links ASV to tax info

table.tsv tab-separated ASV read count data

ASV 'abundance'

tree.nwk phylogenetic info in Newick format

reqd for some distance matrices e.g. unifrac

metadata user defined

Following on from the last session...

QIIME2:

- see today's demo script (30 min runtime: 64 Gb RAM, 16 cores)
- Pro tip: if files have odd names, use a manifest file
- -> reproducible + publishable

Getting QIIME output in to R:

- we can tidy up files programmatically

```
# Remove header from otu table
sed -i "1d" ~/output/table.tsv
```

- but Excel is easiest for trouble-shooting

```
_Peredibacter
_Ralstonia
_Coryne D_6__Corynebacterium doosanense CAU 2 2 = DSM 45436
_uncultured
_Pseudomonas
_Rhizob D_6__Rhizobiales bacterium NRL2
_uncult D_6__uncultured alpha proteobacterium
Pelagibius
```

a_import_data.R

```
emri otu <- read.table(
  "table.tsv",
  header = TRUE,
  sep = "\t",
  row.names = 1)
phy <- phyloseq(otu_table(emri_otu_mat,</pre>
                 taxa are rows = T),
                 tax table(emri tax mat),
                 sample data(emri met))
```

Phyloseq (R package)

- combines all files:

OTU table, taxonomy, tree, metadata

- many useful functions for microbiome analysis

OK, what now?

- essential checksQC (seq depth, contamination)
- some basic analyses:
 - a diversity metrics + stats
 - β diversity ordinations + stats

b_rare_curves.R

Curves plateau

= seq depth OK

c_decontam.R

Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple **statistical identification and removal of contaminant sequences** in marker-gene and metagenomics data. Microbiome 2018, 6, doi:10.1186/s40168-018-0605-2.

...the prevalence of contaminants will be higher in negative controls than in true samples...

Using the 'prevalence' method, only ASVs that are present in the negative controls will be considered potential contaminants.

c_decontam.R

	Phylum	Class	Order	Family	Genus
0.469	Proteobacteria	Gammaproteobacteria	Oceanospirillales	Litoricolaceae	Litoricola
0.136	Bacteroidetes	Bacteroidia	Chitinophagales	Chitinophagaceae	Hydrotalea
0.015	Bacteroidetes	Bacteroidia	Chitinophagales	Chitinophagaceae	Sediminibacterium
0.009	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Micrococcus
0.004	Firmicutes	Bacilli	Lactobacillales	Carnobacteriaceae	Granulicatella
0.007	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus
0.372	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Roseibacterium
0.040	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Pelomonas

1.062

e_barchart.R

Select the deepest level of taxonomy that show a trends in the data.

If not very informative, leave it out or put it in the supplementary / appendix.

f_alpha_metrics.R

Info about intra-sample diversity:

- How many ASVs?
- Dominance?
- Overall alpha diversity?

"Alpha diversity decreased from Day 1 to Day 2 in both genotypes"

g_alpha_stats.R

Was the decrease in alpha diversity (Shannon index) significant? (p < .05)

- Check whether data meet assumptions for ANOVA
 - normality: shapiro.test
 - homogeneity of variance: leveneTest
- If assumptions not met, look at non-parametric alternatives
 - Kruskal-Wallis etc
- Likewise if data have special features e.g. irregular time-series
 - GLS model etc

g_alpha_stats.R

Was the decrease in alpha diversity (Shannon index) significant? (p < .05)

a1_1: shapiro.test((diversityMetrics\$Observed)[1:5])

p-value = 0.7842

Does not differ sig from normality:)

all samples: leveneTest(Observed ~ grouping, data = diversityMetrics)

p-value = 0.7351

Variance is not sig dif:)

g_alpha_stats.R

Was the decrease in alpha diversity (Shannon index) significant? (p < .05): Yes!

summary(aov(Shannon ~ genotype * samplingDay, data = diversityMetrics))

	Df Sur	n Sq Mean Sq F	value Pr(>F)	
genotype	1 0.074	0.074 0.5	0.48056	58
samplingDay	1 3.636	3.636 25	.549 0.00011	7 ***
genotype:samplingDay	1 0.167	0.167 1.1	0.29425	53

"There was no sig dif in Shannon diversity based on genotype (p = 0.48), however both genotypes' Shannon diversity was lower on Day 2 compared to Day 1 (p < 0.05)"

h_beta_nMDS.R

What is the relationship between the sample types?

- Ordinations are great for helping us assess the relationships between samples based on their bacterial community compositions
- Choose a distance matrix (see Ashley's QIIME2 notes)
 - Jaccard presence-absence
 - Bray-Curtis presence-absence + relative abundance
 - Unifrac incorporates phylogenetic relatedness
 - ...many more

h_beta_nMDS.R

What is the relationship between the sample types?

- nMDS based on Bray-Curtis distance
- The bacterial communities of both genotypes differ from from Day 1 to Day 2.
- The bacterial communities of the genotypes differ from each other at Day 1, but not Day 2.
- Were these differences significant?

h_beta_mvabund.R

What is the relationship between the sample types?

- Analysis of count data is problematic zeroes, non-normality...
- permANOVA and ANOSIM overcome this through permutation = loss of power
- So, we will use a method that accomodates the nature of the data: mvabund (GLM)

	Res.Df	Df.diff	Dev	Pr(>Dev)
genotype	18	1	270.7	0.017 *
samplingDay	17	1	680.4	0.001 ***
genotype:samplingDay	16	1	133.6	0.026 *

- The data differ significantly based on genotype & sampling-day.
- However, there is also a significant interaction. We need more p-values! :-P

h_beta_mvabund.R

What is the relationship between the sample types?

- Day 1		Res.Df	Df.diff	Dev	Pr(>Dev)
	Day1\$genotype	8	1	330.2	0.024 *

"The compositions of the genotypes' bacterial communities differed significantly on Day 1 (p = 0.024) ..."

"...but by Day 2 they were no longer significantly different (p = 0.269)."