

Collected Experiment Report: DecisionTree - RandomForest - GradientBoosting.

18/12/2024

Introduction

This is an automated report for the Test on Tetouan City consumption data; the following models have been analyzed:

- DecisionTree
- RandomForest
- GradientBoosting

Experiment description:

First experiment on the dataset with Tetouan City dataset.

Model setup

The models have been used for the following forecast purposes:

- one_step
- multistep
- o recursive

The models have been optimized using the following hyperparameters:

- max_depth: [2, 4, 6, 8, 10, 15, 20]
- criterion: ['squared_error']
- random_state: [42]
- min_samples_split: [5, 10, 50, 150, 200, 250]
- min_samples_leaf: [5, 10, 25, 50, 100]
- scaler: [None, StandardScaler(), MinMaxScaler(), RobustScaler(), PowerTransformer()]

And with the following search algorithms:

grid

o random

The used performance measure is the r2 measure.

Dataset setup

The baseline dataset used for these forecasts is

the 'Power consumption of Tetouan City between 2017-01-01 and 2017-12-31 in 10 minutes resolution.' dataset: 'Power consumption of Tetouan City between 2017-01-01 and 2017-12-31 in 10 minutes resolution. Has the weather data for temperature, humidity, wind speed and diffuse flows, as well as the consumption data for 3 different zones in the city. For simplicity, we will only use one of the zones.'.

The test size used for the forecasts is 0.2.

ODataset 1

- name: univariate_temporal

- dataset_type: univariate

- prediction_type: one_step

- components: ['one_step_target', 'temporal_features']

ODataset 2

- name: univariate_lagged

- dataset type: univariate

- prediction_type: one_step

- components: ['one_step_target', 'lagged_target']

ODataset 3

- name: univariate_temporal_and_lagged

- dataset_type: univariate

- prediction_type: one_step

- components: ['one_step_target', 'temporal_features', 'lagged_target']

ODataset 4

- name: univariate_multistep_temporal

- dataset_type: univariate

- prediction_type: multistep

- components: ['multistep_target', 'temporal_features']

ODataset 5

- name: univariate_multistep_lagged

- dataset_type: univariate

- prediction_type: multistep

- components: ['multistep_target', 'lagged_target']

ODataset 6

- name: univariate_multistep_temporal_and_lagged

- dataset_type: univariate

- prediction_type: multistep

- components: ['multistep_target', 'temporal_features', 'lagged_target']

ODataset 7

- name: multivariate temporal

- dataset_type: multivariate

- prediction_type: one_step

- components: ['one_step_target', 'feature_columns', 'temporal_features']

ODataset 8

- name: multivariate_lagged

- dataset_type: multivariate

- prediction_type: one_step

- components: ['one_step_target', 'feature_columns', 'lagged_target']

ODataset 9

- name: multivariate_temporal_and_lagged

- dataset_type: multivariate

- prediction_type: one_step

- components: ['one_step_target', 'feature_columns', 'temporal_features', 'lagged_target']

ODataset 10

- name: multivariate_multistep_temporal

- dataset_type: multivariate

- prediction_type: multistep

- components: ['multistep_target', 'feature_columns', 'temporal_features']

ODataset 11

- name: multivariate_multistep_lagged

- dataset_type: multivariate

- prediction_type: multistep

- components: ['multistep_target', 'feature_columns', 'lagged_target']

ODataset 12

- name: multivariate_multistep_temporal_and_lagged

- dataset_type: multivariate

- prediction_type: multistep

- components: ['multistep_target', 'feature_columns', 'temporal_features', 'lagged_target']

Results

For the models; DecisionTree, RandomForest, GradientBoosting, the following models and datasets yielded the best results.

The best model for one_step forecasting.

The best model for one_step forecasting is the GradientBoosting model. The model has been trained on the multivariate_lagged_lags24 dataset.

The best score for the one_step forecasting is 0.996613697726021.

Best GradientBoosting forecast over time

The best model for multistep forecasting.

The best model for multistep forecasting is the GradientBoosting model.

The model has been trained on the multivariate_multistep_temporal_and_lagged_lags24_steps24 dataset.

The best score for the multistep forecasting is 0.9052468783883622.

Best predicted days for GradientBoosting.

Worst predicted days for GradientBoosting.

Time Step

Steps plots for GradientBoosting forecasts over time

Multistep forecast for GradientBoosting_multistep_multistep_temporal_and_lagged_lags24_steps24, Power Consumption, average performance 0.9052468783883622, step score 0.887086196756694

Multistep forecast for GradientBoosting_multistep_multivariate_multistep_temporal_and_lagged_lags24_steps24, Power Consumption, average performance 0.9052468783883622, step score 0.854576682626919

The best model for recursive forecasting.

The best model for recursive forecasting is the GradientBoosting model.

The model has been trained on the multivariate_temporal_and_lagged_lags24 dataset.

The best score for the recursive forecasting is 0.8559304262069055.

Best predicted days for GradientBoosting.

Worst predicted days for GradientBoosting.

Time Step

Steps plots for GradientBoosting forecasts over time

 $Multistep\ forecast\ for\ Gradient Boosting_recursive_multivariate_temporal_and_lagged_lags 24,\ Power\ Consumption,\ average\ performance\ 0.8559304262069055,\ step\ score\ 0.8656243012194411$

Multistep fore_cast for GradientBoosting_recursive_multivariate_temporal_and_lagged_lags24, Power Consumption, average performance 0.8559304262069055, step score 0.7029214762733671

