1.Детектирование ЧМ-сигнала. СХД. Расчет рабочего режима

Назначение частотного детектора (ЧД) состоит в том, чтобы из ВЧ модулированного ЧМ сигнала получить НЧ модулирующий сигнал.

ЧД преобразует ЧМ сигнал в амплитудно - частотно модулированный (АЧМ), который детектируется с помощью амплитудного детектора. Наиболее

распространенная схема ЧД - ЧД с расстроенными контурами. Его принципиальная схема имеет вид:

Контура расстроены относительно средней частоты ЧМ сигнала ω_0 . Например: $\omega_1 > \omega_0$, $\omega_2 < \omega_0$.

Если частота ЧМ сигнала больше ω_0 [$\omega_{\text{чм}}(t) > \omega_0$], то она ближе к ω_1 , чем к ω_2 , т.е. напряжение (его амплитуда) на верхнем контуре (на входе Д1) больше чем напряжение на выходе нижнего контура (на входе Д2). Напряжение в точке 1 будет больше чем в точке 2.

Если [$\omega_{\text{чм}}$ (t) < ω_0], т.е. ближе к ω_2 то, так же рассуждая, получим, что напряжение в точке 2 будет больше чем в точке 1. Полярность напряжения на выходе $U_{\text{нч}}(t)$ меняется на противоположную.

Основная характеристика - статическая характеристика детектора. Это зависимость постоянной составляющей тока в нагрузке детектора I_0 от частоты входного сигнала.

$$I_0$$
 = $\phi(\omega)$ или I_0 = $\phi(f)$

Стандартный вид СХД следующий:

Расчет рабочего режима по СХД.

Выбираем линейный участок.

Определяем $\omega_{\text{max.}}$, ω_{min} , $I_{\text{max.}}$, $I_{\text{min.}}$

Выбираем рабочую точку в середине линейного участка характеристики.

Определяем ω_0 , I_{00} \cong 0.

Определяем допустимую девиацию частоты $\Delta\omega_{\text{max}} = (\omega_{\text{max}} - \omega_{\text{min}})/2$.

Определяем максимально допустимый индекс $M_{^{\rm H}}$ макс входного ЧМ сигнала для неискаженного детектирования $M_{^{\rm H}}$ макс = $\Delta \omega_{\rm max}/\Omega$, где Ω - модулирующая низкая частота.

Рассчитаем амплитуды первых четырех гармоник и коэффициент нелинейных искажений полезного сигнала. Для расчета вводим обозначения:

$$\begin{split} I_1 &= \frac{I_{\text{max}} - I_{\text{min}} + I_{01} - I_{02}}{3} \\ I_2 &= \frac{I_{\text{max}} + I_{\text{min}} - 2I_{00}}{4} \\ I_3 &= \frac{I_{\text{max}} - I_{\text{min}} - 2(I_{01} - I_{02})}{6} \\ I_4 &= \frac{I_{\text{max}} + I_{\text{min}} - 4(I_{01} + I_{02}) + 6I_{00}}{12} \\ \mathbf{K}_{\Gamma} &= \frac{\sqrt{\mathbf{I}_2^{\ 2} + \mathbf{I}_3^{\ 2} + \mathbf{I}_4^{\ 2}}}{\mathbf{I}_1} \end{split}$$

2.Оптимальное декодирование линейных блоковых кодов. Синдромное кодирование

Блоковый (n,k) код способен обнаружить $d_{\min}-1$ ошибку и исправить

$$\left\lfloor \frac{1}{2}(d_{\min}-1) \right\rfloor$$
 ошибок,

Пусть C_i - переданное кодовое слово, $Y = C_i + e$ - принятое кодовое слово, где e - вектор ошибок. Тогда

$$YH^{T} = (C_{i} + e)H^{T} = C_{i}H^{T} + eH^{T} = eH^{T} = S$$
, T.K. $C_{i}H^{T} = 0_{1 \times (n-k)}$.

Произведение $YH^T = eH^T = S$

называется **синдромом**. S - характеристика образцов ошибок. Существует 2^n возможных образцов ошибок, но только 2^{n-k} синдромных. Следовательно, разные образцы ошибок приводят к одинаковым синдромам.

Для декодирования составляется таблица размером , $2^k \times 2^{n-k}$ которая называется стандартным расположением для заданного кода.

C_1	C_2	C_3	•••	C_{2^k}
e_2	$C_2 + e_2$	$C_3 + e_2$	•••	$C_{2^k} + e_2$
e_3	$C_2 + e_3$	$C_3 + e_3$		$C_{2^k} + e_3$
i	i i	:	i i	:
$e_{2^{n-k}}$	$C_2 + e_{2^{n-k}}$	$C_3 + e_{2^{n-k}}$	•••	$C_{2^k} + e_{2^{n-k}}$

Первый столбец — образцы ошибок, первая строка — все возможные кодовые слова, начиная с кодового слова, состоящего из одних нулей. Каждую строку называют **смежным классом**, а первый столбец — **лидеры смежных классов**. Таким образом, смежный класс состоит из всевозможных принимаемых кодовых слов, получающегося от частного образца ошибки (лидера смежного класса).

Пример. Задан код (5,2) с порождающей матрицей
$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
.

Тогда
$$2^k = 2^2 = 4$$
, $2^{n-k} = 2^{5-2} = 8$, проверочная матрица $H = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$.

Стандартное расположение (таблица декодирования):

$$X_1 = (00)$$
 $X_2 = (01)$ $X_3 = (10)$ $X_4 = (11)$

00000	01011	10101	11110
00001	01010	10100	11111
00010	01001	10111	11100
00100	01111	10001	11010
01000	00011	11101	10110
10000	11011	00101	01110
11000	10011	01101	00110
10010	11001	00111	01100

Образцы ошибок с весом 2 были выбраны так, чтобы соответствующие ей синдромы отличались от тех, которые соответствуют одиночным ошибкам.

Для заданного кода минимальное кодовое расстояние $d_{\min} = 3$. Его можно определить по формуле (6.3) для разрешенных кодовых комбинаций (первая строка таблицы 1), исключая из рассмотрения нулевое кодовое слово.

e_i	S_i
00000	000
00001	001
00010	010
00100	100
01000	011
10000	101
11000	110
10010	111

Пусть принято кодовое слово Y. Находим синдром $S = YH^T$, далее выбираем соответствующий этому синдрому наиболее правдоподобный вектор ошибки \hat{e} (по таблице 2). Тогда оценка передаваемого кодового слова

Рисунок 6.2. Структурная схема декодера.

Данный код может обнаружить 2 $(d_{\min} - 1 = 3 - 1 = 2)$ ошибки, исправить все одиночные ошибки $(\left\lfloor \frac{1}{2} (d_{\min} - 1) \right\rfloor = 1)$ и только 2 двойные, синдромы которых отличаются от синдромов одиночных ошибок. Подтвердим сказанное на примере.

Пусть принимаемое кодовое слово Y = (11111), где $C_i = (01011) = C_2$, e = (10100).

Тогда
$$S = (11111) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (001)$$
. Полученному синдрому соответствует вектор

ошибки $\hat{e} = (00001) = e_1$. По (6.9) находим оценку переданного кодового слова $\hat{C} = (11111) \oplus (00001) = (11110) = C_4 \neq C_2$. Т.е получаем ошибку декодирования.

Задача. Установить связь между параметрами a, b для случайного процесса с одномерной плотностью распределения вероятности $w(x) = ae^{-b|x|}, x \in (-\infty, \infty).$

