Elements of Econometrics. Lecture 9. Model Misspecification.

FCS, 2022-2023

Data set: Demand; Disposable Personal Income (DPI), Relative Price for Tobacco (PRTOB) and Demand for Tobacco (TOB), 45 annual observations, USA:

Dependent variable: log(TOB), 45 observations:

	Variable		Coefficient	Std. Error	t-Statistic	Prob.
	(LOG		5.483083 -0.114311	0.282674 0.034158	19.39721 -3.346537	0.0000 0.0017
	R-squared		0.206632	Mean depend	ent var	4.538406
Variable	Coefficient	Std. Error	t-Statis	tic Prob.		
C LOG(DPI) LOG(PRTOB) R-squared	4.828287 0.193227 -0.483213 0.870876	0.123689 0.025143 0.032874 Mean depe	7.6851 -14.698	0.0000		
	Varia	able	Coefficient	Std. Error	t-Statistic	Prob.
	•		0.216060 0.764471 -0.385691 -0.021276	1.019210 0.127301 0.034577 0.004678	0.211988 6.005233 -11.15448 -4.548159	0.8332 0.0000 0.0000 0.0000
	R-squared		0.914176	Mean depend	ent var	4.538406

VARIABLE MISSPECIFICATION

	Consequences of variable misspecification					
		True	True model			
		$Y = \beta_1 + \beta_2 X_2 + u$	$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$			
Fitted model	$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2$	Correct specification, no problems	First we consider the case of Omission of a relevant variable.			
Fitted	$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$		Correct specification, no problems			

There are two types of Variable Misspecification: Omission of a relevant variable and Including an irrelevant one.

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u - \text{true model } \hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2 - \text{fitted model } (X_3 \text{ omitted})$$

$$\begin{split} \hat{\beta}_2 &= \frac{\sum (X_{2i} - \bar{X}_2)(Y_i - \bar{Y})}{\sum (X_{2i} - \bar{X}_2)^2} \\ &= \frac{\sum (X_{2i} - \bar{X}_2) \left((\beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i) - (\beta_1 + \beta_2 \bar{X}_2 + \beta_3 \bar{X}_3 + \bar{u}) \right)}{\sum (X_{2i} - \bar{X}_2)^2} \\ &= \frac{\sum (\beta_2 (X_{2i} - \bar{X}_2)^2 + \beta_3 (X_{2i} - \bar{X}_2)(X_{3i} - \bar{X}_3) + (X_{2i} - \bar{X}_2)(u_i - \bar{u}) \right)}{\sum (X_{2i} - \bar{X}_2)^2} \\ &= \beta_2 + \beta_3 \frac{\sum (X_{2i} - \bar{X}_2)(X_{3i} - \bar{X}_3)}{\sum (X_{2i} - \bar{X}_2)^2} + \frac{\sum (X_{2i} - \bar{X}_2)(u_i - \bar{u})}{\sum (X_{2i} - \bar{X}_2)^2} \end{split}$$

We simplify and demonstrate that $\hat{\beta}_2$ has three components: true value β_2 , bias and random component (error term).

$$E(\hat{\beta}_2) = \beta_2 + \beta_3 \frac{\sum (X_{2i} - \bar{X}_2)(X_{3i} - \bar{X}_3)}{\sum (X_{2i} - \bar{X}_2)^2} + E\left(\frac{\sum (X_{2i} - \bar{X}_2)(u_i - \bar{u})}{\sum (X_{2i} - \bar{X}_2)^2}\right)$$

$$E\left(\frac{\sum (X_{2i} - \bar{X}_{2})(u_{i} - \bar{u})}{\sum (X_{2i} - \bar{X}_{2})^{2}}\right) = \frac{1}{\sum (X_{2i} - \bar{X}_{2})^{2}} E\left(\sum (X_{2i} - \bar{X}_{2})(u_{i} - \bar{u})\right)$$

$$= \frac{1}{\sum (X_{2i} - \bar{X}_{2})^{2}} \sum E\{(X_{2i} - \bar{X}_{2})(u_{i} - \bar{u})\}$$

$$= \frac{1}{\sum (X_{2i} - \bar{X}_{2})^{2}} \sum (X_{2i} - \bar{X}_{2}) E(u_{i} - \bar{u})$$

$$= 0$$

By Assumption A.3, E(u)=0. It follows that $E(\bar{u})=0$. Hence the expected value of the error term is 0. Thus we have shown that the expected value of $\hat{\beta}_2$ is equal to the true value β_2 plus a bias term. As a consequence of the misspecification, the standard errors, t tests and F test are invalid.

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u \qquad \hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2$$

$$E(\hat{\beta}_2) = \beta_2 + \beta_3 \frac{\sum (X_{2i} - \bar{X}_2)(X_{3i} - \bar{X}_3)}{\sum (X_{2i} - \bar{X}_2)^2}$$

The reason is that, in addition to its direct effect β_2 , X_2 has an apparent indirect effect as a consequence of acting as a proxy for the missing X_3 .

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u \qquad \hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2$$

Is the estimator of β_1 biased? If yes, what is the value of bias?

$$E(\hat{\beta}_1) = \beta_1 + bias(\hat{\beta}_1)$$
:
do at home before the class!

The intercept may be considered as one more explanatory variable.

It also shows some indirect effect of the omitted variable.

$$Y = \beta_1 + \beta_2 X_2 + u \qquad \qquad \hat{Y} = \hat{\beta}_2 X_2$$

Is the estimator of β_2 biased? If yes, what is the value of bias?

$$E(\hat{\beta}_2) = \beta_2 + bias(\hat{\beta}_2)$$
:
do at home before the class!

The intercept may be considered as one more explanatory variable.

If it is missing, then its indirect effect is reflected by another explanatory variable.

$$LGEARN = \beta_1 + \beta_2 S + \beta_3 ASVABC + u$$

Dependent Variable: LGEARN

Durbin-Watson stat 1,728273

Method: Least Squares

Included observations: 570

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.777056	0.132301	5.873384	0.0000
S	0.077404	0.010007	7.734779	0.0000
ASVABC	0.012379	0.002662	4.650030	0.0000
R-squared	0.227830	Mean dependent var	2.456463	
S.D. dependent var	0.541347	S.E. of regression	0.476537	
Sum squared resid	128.7586	F-statistic	83.64712	

We will illustrate the bias using an Earnings Function (EAEF 40). Assume that in the true model *LGEARN* depends only on *S* and *ASVABC*. Both are highly significant.

$$LGEARN = \beta_1 + \beta_2 S + \beta_3 ASVABC + u$$
 $LGEARN = \hat{\beta}_1 + \hat{\beta}_2 S$

Dependent Variable: LGEARN Method: Least Squares Included observations: 570

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.062208	0.119340	8.900668	0.0000
S	0.102202	0.008620	11.85613	0.0000

R-squared 0.198383 Mean dependent var 2.456463 S.D. dependent var S.E. of regression 0.541347 0.48511 Sum squared resid 133.6689 F-statistic 140.5678 **Durbin-Watson stat** 1.746617

$$E(\hat{\beta}_{2}) = \beta_{2} + \beta_{3} \frac{\sum (ASVABC_{i} - \overline{ASVABC})(S_{i} - \overline{S})}{\sum (S_{i} - \overline{S})^{2}} = \frac{\sum (S_{i} - \overline{S})^{2}}{\sum (S_{i} - \overline{S})^{2}} = \beta_{2} + \beta_{3} \frac{\widehat{Cov}(ASVABC, S)}{\widehat{Var}(S)} = \beta_{2} + \beta_{3} \frac{11.13}{5.556} \approx 0.0774 + 0.0124 * 2 = 0.102$$

$$= \beta_2 + \beta_3 \frac{\widehat{\text{Cov}}(ASVABC, S)}{\widehat{\text{Var}}(S)} = \beta_2 + \beta_3 \frac{11.13}{5.556} \approx 0.0774 + 0.0124 * 2 = 0.102$$

Covariance Matrix:

S **ASVABC** 5.556122 11.13060 ASVABC 11.13060 78.51596

$$LGEARN = \beta_1 + \beta_2 S + \beta_3 ASVABC + u$$
 $LGEARN = \hat{\beta}_1 + \hat{\beta}_3 ASVABC$

Dependent Variable: LGEARN Method: Least Squares Included observations: 570

Coefficient Std. Error t-Statistic Prob. Variable C 1.280356 0.121012 10.58043 0.0000 ASVABC 0.023352 0.002366 9.868220 0.0000

R-squared 0.146355 S.D. dependent var 0.541347 0.146355 Mean dependent var 2.456463 S.E. of regression 0.5006 Sum squared resid 142.3446 F-statistic 97.38176

Durbin-Watson stat 1.761189

$$E(\hat{\beta}_3) = \beta_3 + \beta_3 \frac{\sum (ASVABC_i - \overline{ASVABC})(S_i - \overline{S})}{\sum (ASVABC_i - \overline{ASVABC})^2} =$$

$$E(\hat{\beta}_{3}) = \beta_{3} + \beta_{3} \frac{\sum (ASVABC_{i} - \overline{ASVABC})(S_{i} - \overline{S})}{\sum (ASVABC_{i} - \overline{ASVABC})^{2}} =$$

$$= \beta_{3} + \beta_{2} \frac{\widehat{Cov}(ASVABC, S)}{\widehat{Var}(ASVABC)} = \beta_{3} + \beta_{2} \frac{11.13}{78.516} \approx 0.0124 + 0.0774 * 0.142 = 0.0234$$

Covariance Matrix:

S **ASVABC** S 5.556122 11.13060 ASVABC 11.13060 78.51596

VARIABLE MISSPECIFICATION: OMITTED VARIABLE BIAS

Omitted variable bias conclusion: all estimated coefficients will be biased

$$x_2 = \delta_0 + \delta_1 x_1 + v \qquad \text{If x_1 and x_2 are correlated, assume a linear regression relationship between them} \\ \Rightarrow \qquad y = \beta_0 + \beta_1 x_1 + \beta_2 (\delta_0 + \delta_1 x_1 + v) + u \\ = \left[(\beta_0 + \beta_2 \delta_0) \right] + \left[(\beta_1 + \beta_2 \delta_1) x_1 + \left[(\beta_2 v + u) \right] \right] \\ \text{If y is only regressed} \\ \text{on x_1 this will be the} \\ \text{estimated intercept} \qquad \text{If y is only regressed} \\ \text{on x_1, this will be the} \\ \text{estimated slope on x_1} \\ \text{The proposed of the substitution of the s$$

More general case:

$$y=\beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3+u$$
 True model (contains x_1 , x_2 , and x_3)
$$y=\beta_0+\beta_1x_1+\beta_2x_2+w$$
 Estimated model (x_3 is omitted)

- No general statements possible about direction of bias
- Analysis as in simple case if one regressor uncoreelated with others

Consequences of variable misspecification					
		True model			
		$Y = \beta_1 + \beta_2 X_2 + u$ $Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$			
model	$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2$	Correct specification, no problems	Coefficients are biased (in general). Standard errors are invalid.		
Fitted model	$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$		Correct specification, no problems		

Now we will investigate the consequences of including an irrelevant variable in a regression model.

$$Y = \beta_1 + \beta_2 X_2 + u$$

$$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

$$Y = \beta_1 + \beta_2 X_2 + 0X_3 + u$$

$$\sigma_{\widehat{\beta}_2}^2 = \frac{\sigma_u^2}{\sum (X_{2i} - \bar{X}_2)^2} \times \frac{1}{1 - r_{X_2, X_3}^2}$$

The estimator of β_2 in the multiple regression model is less efficient than the alternative one in the simple regression model. The standard errors remain valid, because the model is formally correctly specified, but they will tend to be larger than those obtained in a simple regression, reflecting the loss of efficiency.

VARIABLE MISSPECIFICATION II: INCLUSION OF AN IRRELEVANT VARIABLE, EXAMPLE

$$LGEARN = \beta_1 + \beta_2 S + \beta_3 ASVABC + u$$

$$LGEARN = \hat{\beta}_1 + \hat{\beta}_2 S + \hat{\beta}_3 ASVABC + \hat{\beta}_4 SF$$

Dependent Variable: LGEARN Method: Least Squares Included observations: 570

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.774212	0.133080	5.817655	0.0000
S	0.076872	0.010321	7.448213	0.0000
ASVABC	0.012257	0.002725	4.497968	0.0000
SF	0.001367	0.006397	0.213677	0.8309

R-squared 0.227892 Mean dependent var 2.456463 S.D. dependent var 0.541347 S.E. of regression 0.476939 Sum squared resid 128.7483 F-statistic 55.68611 Durbin-Watson stat 1.730361

$$\sigma_{\widehat{\beta}_2}^2 = \frac{\sigma_u^2}{\sum (S_i - \overline{S})^2} \times \frac{1}{1 - R_2^2};$$

For regression of S on ASVABC and SF
$$R_2^2 = 0.33$$
; $\sqrt{\frac{1}{1 - R_2^2}} = 1.22$; For regression of ASVABCon S and SF $R_3^2 = 0.32$; $\sqrt{\frac{1}{1 - R_3^2}} = 1.21$;

	Consequences of variable misspecification				
		True model			
		$Y = \beta_1 + \beta_2 X_2 + u$	$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$		
Fitted model	$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2$	Correct specification, no problems	Coefficients are biased (in general). Standard errors are invalid.		
Fitted	$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$	Coefficients are unbiased (in general), but inefficient. Standard errors are valid (in general)	Correct specification, no problems		

The coefficients in general remain unbiased, but they are inefficient.

The standard errors remain valid, but are larger than could be.

PROXY VARIABLES

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_k X_k + u$$

$$X_2 = \lambda + \mu Z$$

$$Y = \beta_1 + \beta_2 (\lambda + \mu Z) + \beta_3 X_3 + \dots + \beta_k X_k + u$$

$$= (\beta_1 + \beta_2 \lambda) + \beta_2 \mu Z + \beta_3 X_3 + \dots + \beta_k X_k$$

Comparison of regression with Z instead of X_2

- 1. The estimates for β_3 , ..., β_k are the same
- 2. S.e. and t for the estimates of β_3 , ..., β_{κ} are the same
- 3. R^2 is the same
- 4. Impossible to obtain an estimate of β_2 , unless μ is known
- 5. t statistic for Z is the same as that for X_2
- 6. Impossible to obtain an estimate of β_1

Suppose that a variable Y depends on a set of explanatory variables X_2 , ..., X_k , and there are no data on X_2 . Regression of Y on X_3 , ..., X_k would yield biased estimates and invalid standard errors and tests. Suppose that Z is linearly related with X_2 and there is data for Z.

VARIABLE MISSPECIFICATION: UNINTENDED PROXIES

$$L\widehat{GEARN} = \hat{\beta}_1 + \hat{\beta}_2 S + \hat{\beta}_3 ASVABC + \hat{\beta}_4 WEIGHT$$

	Dependent Variable: LGEARN	Method: Least Squares	Included observations: 560
--	----------------------------	-----------------------	----------------------------

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.395942	0.161431	2.452696	0.0145
S	0.079152	0.010000	7.915092	0.0000
ASVABC	0.011799	0.002649	4.455022	0.0000
WEIGHT	0.002243	0.000505	4.438712	0.0000
R-squared	0.246187	Mean depende	nt var	2.455518
S.D. dependent va	ır 0.539762	S.E. of regress	ion	0.469897
Sum squared resi	d 122.7668	F-statistic		60.52769
Durbin-Watson sta	t 1.804027			

Why WEIGHT variable is significant there? It either actually influences earnings, or acts as a proxy for some omitted variable correlated with it.

VARIABLE MISSPECIFICATION: UNINTENDED PROXIES

$$L\widehat{GEARN} = \hat{\beta}_1 + \hat{\beta}_2 S + \hat{\beta}_3 ASVABC + \hat{\beta}_4 WEIGHT + \hat{\beta}_5 MALE$$

Dependent Variable: LGEARN Method: Least Squares Included observations: 560

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.585710	0.160493	3.649445	0.0003
S	0.075840	0.009744	7.783129	0.0000
ASVABC	0.012058	0.002577	4.679895	0.0000
WEIGHT	0.000442	0.000584	0.757383	0.4491
MALE	0.265646	0.046476	5.715789	0.0000
R-squared	0.288093	Mean depende	nt var	2.455518
S.D. dependent va	r 0.539762	S.E. of regress	ion	0.457060
Sum squared resid	115.9419	F-statistic		56.14911
Durbin-Watson stat	1.857755			

The variable WEIGHT acted as a proxy for MALE. Corr(WEIGHT, MALE)=0.54.