Matemática Discreta

Relações de Recorrência 3

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Matemática Discreta

Equações de recorrência não lineares

Exemplos

Equações de recorrência não lineares

Mudança de variáveis

Definição

As equações de recorrência que não são lineares (homogéneas ou não homogéneas) designam-se por equações de recorrência não lineares.

- Um dos métodos muito utilizados para a resolução de equações de recorrência não lineares consiste na mudança adequada de variáveis, tendo em vista a simplificação da respectiva equação.
- Seguem-se alguns exemplos de aplicação deste método.

Exemplo 1

Exemplo

Vamos resolver a equação de recorrência não linear

$$a_n^2 = 2a_{n-1}^2 + 1, (1)$$

com a condição inicial $a_0 = 2$ ($a_n \ge 0$, para todo o n).

• Procedendo à substituição de variáveis $b_n = a_n^2$, a equação de recorrência não linear (1) transforma-se na equação de recorrência linear não homogénea definida pela equação

$$b_n = 2b_{n-1} + 1, (2)$$

com condição inicial $b_0 = a_0^2 = 4$.

Exemplo 1 (cont.)

• Resolvendo a equação homogénea associada $b_n^{(1)} = 2b_{n-1}^{(1)}$, obtém-se a solução:

$$b_n^{(1)} = C_1 2^n$$
.

• Uma vez que o segundo membro da equação de recorrência linear não homogénea correspondente a (2) é polinómio de grau 0, 1, podemos concluir que existe uma solução particular da forma $b_n^{(2)} = A$. Logo, tendo em conta a equação (2), vem

$$A = 2A + 1 \Leftrightarrow A = -1$$
.

Consequentemente, a solução geral de (2) tem a forma $b_n = C_1 2^n - 1$, a partir da qual, tendo em conta que a condição inicial implica $C_1 = 5$, se obtém a solução final

$$a_n = \sqrt{5 \cdot 2^n - 1}$$
.

Exemplo 2

Exemplo

Vamos resolver a equação de recorrência não linear

$$a_n = \sqrt{a_{n-1} + \sqrt{a_{n-2} + \sqrt{a_{n-3} + \sqrt{\dots \sqrt{a_0}}}}},$$
 (3)

com condição inicial $a_0 = 4$.

Resolução

• Elevando ao quadrado ambos os membros da equação (3), para $n \ge 2$, obtém-se

$$a_n^2 = a_{n-1} + \sqrt{a_{n-2} + \sqrt{a_{n-3} + \sqrt{\dots \sqrt{a_0}}}} = a_{n-1} + a_{n-1} = 2a_{n-1}$$

e, para n = 1, obtém-se $a_1^2 = a_0$.

• Uma vez que é imediato concluir que $a_1 = 2$, vamos considerar apenas os casos em que $n \ge 2$, para os quais se obtém a equação de recorrência

$$a_n^2 = 2a_{n-1},$$

com condição inicial $a_1 = 2$.

Resolução (cont.)

• Efectuando a mudança de variável $b_n = \log_2 a_n$, obtém-se a equação de recorrência linear $2b_n = b_{n-1} + 1$, com condição inicial $b_1 = \log_2 a_1 = 1$, cuja solução geral vem dada por

$$b_n = C_1 2^{-n} + 1.$$

• Uma vez que a condição inicial implica $C_1 = 0$, conclui-se que $b_n = 1$, ou seja, voltando às variáveis iniciais,

$$a_n = 2^{b_n} = 2.$$

• Como consequência, para todos os valores de $n \ge 0$, a solução final é $a_0 = 4$ e $a_n = 2$, para $n \ge 1$.