Deep Learning on Large-scale Point Clouds for 3D Segmentation

27/03/2019

Presented by: Ying Li

Mobile Sensing And Geodata Science Lab

CONTENT

Introduction

Challenges

Model requirements

Deep learning networks

Conclusion

Introduction

Autonomous Vehicle

3D Reconstruction

Problem Definition

3D Segmentation: Given an arbitrary point cloud data, the goal of segmentation task is to group points with similar geometric attributes into homogeneous region. These regions are labeled with a semantic class, such as ground, tree, building.

Challenges on deep learning models

Name	Number of points
Oakland	1.61M
Semantic3D	1660M
Paris-rue- Madame	20M
IQmulus	12M
Paris-Lille- 3D	143.1M

Unstructured data

Unordered data

Changed number of points

Challenges on point cloud data

Noisy and unevenly distributed data

Similar objects interference

Models requirements

Point Cloud Geometry 4 4 3 4 3 4 2 1 Point Cloud Representation # x y z # x y z

- Translation invariance
- Permutation invariance
- Scale invariance
- Density invariance
- Local and global feature learning

Data augmentation

Scaling

- Rotation invariance
- Translation invariance

PointNet Architecture

Classification Network

Segmentation Network

Objection

- Permutation invariance => symmetric function
- arbitrarily approximate any continuous set function => universal approximators

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Symmetric function example:

$$f(x_1, x_2, ..., x_n) = \max\{x_1, x_2, ..., x_n\}$$
$$f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n$$

VATERLOO DIMENT

PG. 10

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

- Permutation invariance => max-pooling
- arbitrarily approximate any continuous set function =>MLP

Multi-layer perceptron (MLP)

The **universal approximation theorem** states that a <u>feed-forward</u> network with a single hidden layer containing a finite number of <u>neurons</u> can approximate <u>continuous</u> <u>functions</u> on <u>compact subsets</u> of \mathbb{R}^n , under mild assumptions on the activation function

Methods: Max-pooling

Max-pooling: uses the maximum value from each of a cluster of neurons at the prior layer

Pros:

- Translation invariance: learned features can be successfully extracted regardless of the locations of these features
- Lower in dimensions, and improve the results (avoid over-fitting)

Embedding Space Alignment

Regularization:

Transform matrix A 64x64 close to orthogonal:

$$L_{reg} = ||I - AA^T||_F^2$$

PointNet

PointNet

Pros:

- solve the point cloud permutation problem
- Extract global feature

Cons:

- Not capture local structure
- Not scale invariance
- Not density invariance
- Not suitable for large-scale point cloud data

PointNet++ Architecture

Hierarchical Point Set Feature Learning (set abstraction level)

Objection

- Scale invariance => sampling
- Density invariance => grouping
- Permutation invariance => PointNet

Hierarchical point set feature learning

Point clouds sampling -scale invariance

Farthest point sampling (FPS): Given input points $\{x1, x2, ..., xn\}$, FPS is iteratively used to choose a subset of points $\{xi1 \text{ distance}\}$ from the set $\{xi1, xi2, ..., xim\}$, such that xij is the most distant point (in metric, xi2, ..., xij-1) with regard to the rest points.

Pros:

- Evenly cover the entire point set given the same number of centroids.
- Sampling strategy generates receptive fields in a data dependent manner.

Point clouds grouping

Ball query: finds all points that are within a radius to the query point (an upper limit of K is set in implementation).

Pros: guarantees a fixed region scale thus making local region feature more generalizable across space.

Cons: not robust to noisy points

Ball Trees

Ball-tree Example

Point clouds grouping

K nearest neighbor (KNN): finds a fixed

number of neighboring

Pros: robust to noisy points

Cons: not scale-invariance

high computation cost

Multi-scale grouping (MSG)-density invariance

MSG: grouping layers with different scales followed by according PointNets to extract features of each scale. Features at different scales are concatenated to form a multi-scale feature. => random input dropout

Pros: simple

Cons: not density-invariance

high computation cost

Multi-resolution grouping (MRG)- density invariance

MSG: One feature is obtained by summarizing the features at each subregion from the lower level. The another feature is obtained by directly processing all raw points in the local region using a single PointNet.

Pros: density-invariance computation efficient

Cons: features are constrained by the number of

neighbors

concat

Point Feature Propagation

Objection: obtain point features for all the original points from subsampled point set

Point clouds interpolation

Inverse distance weighted average: multivariate interpolation with a known scattered set of points. it resorts to the inverse of the distance to each known point based on KNN when assigning weights

Pros: will not produce estimated values outside neighborhoods

Cons: not robust to noise

PointNet++ Architecture

Segmentation results

PointNet++

Pros:

Orientation invariance

Rotation invariance

Translation invariance

Permutation invariance

Scale invariance

Density invariance

Local and global feature learning

Cons:

Points neighbor spatial relationships are not exploited

Loss function for 3D segmentation

Prediction for a selected pixel

Target for the corresponding pixel

Pixel-wise loss is calculated as the log loss, summed over all possible classes

$$-\sum_{classes} y_{true} \log (y_{pred})$$

This scoring is repeated over all **pixels** and averaged

PUBLIC MLS DATASETS

Dataset	Laser scanner	Camera	Year	Data size	Path	Creator
KITTI Vision Benchmark	Velodyne HDL-64E laser scanner	PointGray Flea2 grayscale and color cameras	2011	180G	~ 50 km	KIT & University of Toronto
New College Dataset	LMS 291-S14 lasers scanning	Point Grey BumbleBee 20 Hz grayscale	2009	30GB	2.2km	Oxford
Malaga Dataset 2013	SICK scanners	Point Grey Research's Bumblebee 2 stereo camera	2013	90.22 G	36.8 km	University of Málaga
Ford Campus Vision and Lidar Dataset	Velodyne HDL-64E lidar & Riegl LMS-Q120 lidar	Point Grey Ladybug3 omnidirectional camera	2009	~100 GB		Ford & University of Michigan SITY OF WATERLOC

PUBLIC MLS DATASETS

Dataset	Laser scanner	Camera	Year	Data	Path	Creator
				size		
NCLT Dataset	Velodyne HDL-32E	Ladybug3	2012	~1000	147.4	Ford & The
	3D lidar & Hokuyo	omnidirectional		GB	km	University of
	planarb lidars	camera				Michigan North
						Campus
Paris-Lille-3D	Velodyne HDL-32E	-	2017	8.8G	1.94km	PSL Research
	LiDAR					University
Apollo scape	VUX-1HA laser	VMX-CS6 camera	2018	~10G	-	Baidu
	scanners	system				
OXFORD	LMS-151 2D LIDAR &	Point Grey	2017	23.15T	1010.4	University of
ROBOTCAR		Bumblebee XB3		В	6km	Oxford
DATASET	SICK LD-MRS 3D LIDAR	trinocular stereo				
		camera, Point Grey				
		Grasshopper2				
		monocular camera				

EVALUATION METRICS

$$IoU_{i} = \frac{c_{ii}}{c_{ii} + \sum_{j \neq i} c_{ij} + \sum_{k \neq i} c_{ki}}$$

$$\overline{IoU} = \frac{\sum_{i=1}^{N} IoU_{i}}{N}$$

$$OA = \frac{\sum_{i=1}^{N} c_{ii}}{\sum_{j=1}^{N} \sum_{k=1}^{N} c_{jk}}$$

N is number of object classes, c_{ij} is the number of points from ground-truth class i predicted as class j

Conclusion

- PointNet proposes a Joint alignment network solving input point cloud permutation problem
- PointNet++ extract the local and global feature of point clouds

Improvements:

- High level neighbor relationship feature extraction
- more effective sampling methods

UNIVERSITY OF WATERLOO FACULTY OF ENVIRONMENT

THANK YOU Q&A

