

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 101 09 386.1
Anmeldetag: 27. Februar 2001
Anmelder/Inhaber: BBS Motorsport & Engineering GmbH,
Schiltach/DE
Bezeichnung: Rad für ein Kraftfahrzeug aus einer magnesium-
haltigen Legierung
IPC: B 60 B 3/14

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 21. Februar 2002
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

w ihmayt

WESTPHAL MUSSGNUG & PARTNER

PATENTANWÄLTE · EUROPEAN PATENT ATTORNEYS

bbs156

**BBS Motorsport & Engineering GmbH
Welschdorf 220**

D-77757 Schiltach

- Patentanmeldung -

**Rad für ein Kraftfahrzeug aus einer magnesiumhaltigen
Legierung**

Beschreibung

Rad für ein Kraftfahrzeug aus einer magnesiumhaltigen Legierung

5

Die Erfindung betrifft ein Rad für ein Kraftfahrzeug aus einer magnesiumhaltigen Legierung gemäß Oberbegriff des Anspruchs 1.

Leichtmetallräder für Kraftfahrzeuge erfreuen sich zunehmender Beliebtheit, da sie neben einem gesteigerten ästhetischen Gesamterscheinungsbild des Kraftfahrzeugs auch technische Vorteile bieten, die aus dem reduzierten Gewicht im Vergleich zu herkömmlichen Rädern aus Stahl herrühren. Zunehmend werden Leichtmetallräder auch aus magnesiumhaltigen Legierungen gefertigt, um eine weitergehende Gewichtsreduzierung zu erreichen.

Im einfachsten Fall ist das Rad einteilig gefertigt und besteht somit vollständig aus einer magnesiumhaltigen Legierung. Für höhere Ansprüche, speziell beim Einsatz an Rennsportfahrzeugen oder an Fahrzeugen der Oberklasse, finden sich zunehmend auch mehrteilige Räder, bei denen bestimmte Abschnitte, den mechanischen Anforderungen entsprechend, aus unterschiedlichen Legierungen bestehen. Die nachstehende Erfindung bezieht somit auch solche Räder ein, bei denen die Radschüssel, oder zumindest deren Zentralbereich, aus einer magnesiumhaltigen Legierung bestehen.

Obwohl sich derartige Räder infolge ihres geringen Gewichts bestens bewährt haben, tritt in der Praxis, insbesondere im Alltagseinsatz von straßenzugelassenen Kraftfahrzeugen, das Problem der Kontaktkorrosion auf. Dies betrifft einerseits den Anlagebereich des Rades an der Bremsscheibe, die zumindest derzeit noch überwiegend aus Stahl gefertigt ist. Andererseits

werden zur Befestigung des Rads weiterhin Stahlschrauben verwendet, so daß insbesondere im Anlagebereich des Schraubenkopfes Kontaktkorrosion auftritt. Speziell dort ist diese unerwünscht, da sie zusätzlich das optische Erscheinungsbild 5 nachhaltig beeinträchtigt. Gerade hierauf wird jedoch beim Kauf derartiger Räder besonderer Wert gelegt.

Der Erfindung lag deshalb das Problem zugrunde, ein Rad der eingangs genannten Art derart weiterzuentwickeln, daß es die 10 beschriebenen Nachteile nicht mehr aufweist. Insbesondere sollte das Problem der Kontaktkorrosion zuverlässig gelöst werden, ohne die Eigenschaften des Rades als solches und dessen Handhabung, insbesondere bei der Montage, zu beeinträchtigen.

5

Gelöst wird dieses Problem durch ein Rad mit den Merkmalen des Anspruchs 1.

Vorteilhafte Ausführungsformen der Erfindung sind durch die 20 Merkmale der Unteransprüche angegeben.

Die Erfindung basiert auf der Idee, in den korrosionsgefährdeten Bereichen Abstandshalter vorzusehen, die zuverlässig einen unmittelbaren Kontakt zwischen dem betreffenden Abschnitt aus einer magnesiumhaltigen Legierung und dem Bauteil aus Stahl, also den Befestigungsschrauben, der Nabe und der Bremsscheibe, zu verhindern. Die Abstandshalter sind somit im Bereich der Befestigungsbohrungen, der Nabenoehrung sowie der Anlagefläche für die Bremsscheibe angebracht, so daß ein unmittelbarer Kontakt 30 zuverlässig verhindert wird.

Die Abstandshalter sind aus einer aluminiumhaltigen Legierung gefertigt. Diese Legierungen sind hierfür besonders prädestiniert, da sie aufgrund ihres geringen spezifischen Gewichts

das Gesamtgewicht des Rads nur geringfügig erhöhen und darüberhinaus korrosionsbeständig sind. Mit Hilfe dieser Abstandshalter gelingt es auf einfache und zuverlässige Art und Weise, das Problem der Kontaktkorrosion zwischen den magnesi-
5 umhaltigen Bauteilen des Rads und den stahlhaltigen Bauteilen, wie den Befestigungsschrauben, der Radanlage im Nabenherrich und der Bremsscheibe, zu unterbinden.

Die Abstandshalter können hierbei je nach spezifischer Anfor-
10 derung und den jeweiligen Konturverlauf im eigentlichen Kontaktbereich weitgehend freizügig gestaltet werden.

Bevorzugt ist im Bereich der Anlagefläche des Rades an die Bremsscheibe eine Distanzscheibe vorgesehen. Diese ist einfach zu fertigen und stellt eine sichere und vollflächige Anlage des Rads an den Bereich der Bremsscheibe sicher.

Im Bereich der Nabenbohrung ist bevorzugt eine Distanzhülse vorgesehen, die die Nabenbohrung in axialer Richtung zumindest teilweise durchsetzt. Die axiale Erstreckung ist so gewählt,
20 daß eine sichere Zentrierung der Anlage des Rads gewährleistet ist.

Bevorzugt sind die Distanzscheibe und die Distanzhülse als einstückiges, flanschartiges Bauteil gestaltet. Dies vereinfacht die Anbringung der Abstandshalter am Zentralbereich des Rads, da sowohl der Nabenherrich als auch der Anlagebereich an die Bremsscheibe durch ein einziges Bauteil abgedeckt werden können. Darüberhinaus wird die Distanzscheibe in Bezug auf das
30 Rad selbsttätig zentriert, gesonderte Zentrierhilfsmittel sind somit nicht erforderlich.

Im Bereich der Befestigungsbohrungen werden bevorzugt Distanz-

- buchsen verwendet, die die Befestigungsbohrungen in axialer Richtung durchsetzen. Die Distanzbuchsen weisen zur Außenseite des Rads hin einen trichterförmigen Axialabschnitt mit einem sphärischen Anlagebereich für den Kopf der Radschraube auf.
- 5 Damit ist sichergestellt, daß auch der Kopf der Radschraube nicht in unmittelbarem Kontakt mit dem Rad gelangt.

Es ist von Vorteil, die Distanzbuchsen in den Befestigungsbohrungen unverlierbar zu fixieren. Unter fertigungs-

10 technischen Gesichtspunkten hatte es sich als besonders vorteilhaft erwiesen, die Distanzbuchsen in die Befestigungsbohrungen einzupressen.

Alternativ oder zusätzlich hierzu können einzelne oder alle Distanzbuchsen mit der Distanzscheibe verbunden sein, so daß insbesondere im Falle der einstückigen Ausbildung von Distanzscheibe und Distanzbuchse sich ein unverlierbarer Verbund der Abstandshalter realisieren läßt.

20 Eine Variante sieht vor, die Distanzbuchsen zur Radinnenseite hin durch korrespondierende Bohrungen, die an der Distanzscheibe vorgesehen sind, hindurchzuführen und auf der Radinnenseite mit der Distanzscheibe zu verbinden.

Eine besonders einfache Möglichkeit hierfür besteht darin, die Distanzbuchsen mit Bördelrändern zu versehen, die nach dem Aufsetzen der Distanzscheibe radial auswärts aufgebördelt werden. Es entsteht somit eine formschlüssige Verbindung zwischen den Distanzbuchsen und der Distanzscheibe, die eine sichere und unverlierbare Anbringung der Abstandshalter am Rad ermöglicht.

Es versteht sich von selbst, daß die Durchgangsbuchsen nach dem Umlegen des Bördelrandes die Distanzscheibe in axialer

Richtung nicht überragen dürfen, damit eine vollflächige Anlage zwischen Rad bzw. Distanzscheibe und dem korrespondierenden Bremsscheibenbereich sichergestellt ist. Hierfür ist im Bereich der Durchgangsbohrungen ein Absatz vorgesehen, der so dimensioniert ist, daß er den Bördelrand vollständig aufnehmen kann.

Die Erfindung wird nachstehend anhand des in der einzigen Figur schematisch dargestellten Ausführungsbeispiels erläutert. Es zeigt

Fig.1 Radausschnitt mit Abstandshaltern im Axialteilschnitt

Ein Rad 1 ist zumindest im Bereich einer Radschüssel bzw. in einem Zentralbereich 2 aus einer magnesiumhaltigen Legierung gefertigt.

Im Zentralbereich sind in an sich bekannter Weise Befestigungsbohrungen 10 für hier nicht näher dargestellte Radbefestigungsschrauben angebracht. Die Befestigungsbohrungen 10 sind bei diesem Ausführungsbeispiel im Bereich von Vertiefungen 12 angebracht, so daß die Befestigungsschrauben gegenüber dem Zentralbereich 12 versenkt sind.

Weiterhin ist eine Nabenoehrung 20 vorhanden, mit der das Rad 1 auf eine hier nicht dargestellte Nabe aufsetzbar ist und der Zentrierung dient.

Schließlich ist ein Anlagebereich 30 vorgesehen, mit dem das Rad 1 rückseitig mit einem korrespondierendem Bereich einer hier nicht dargestellten Bremsscheibe verbunden wird.

Zur Vermeidung von Kontaktkorrosion zwischen der Radschüssel 2, die aus magnesiumhaltiger Legierung besteht, und den genannten Bauteilen, wie Befestigungsschrauben, Nabe und Bremsscheibe, die in der Regel aus Stahl bestehen, sind nachstehend näher beschriebene Abstandshalter vorgesehen. Diese sind aus einer aluminiumhaltigen Legierung gefertigt, die selbst korrosionsbeständig ist und wegen ihres geringen spezifischen Gewichts zu keiner nennenswerten Erhöhung des Gesamtgewichts des Rades 1 beiträgt.

10

Der Anlagebereich 30 wird durch eine Distanzscheibe 130 abgedeckt, die im hier vorliegenden Ausführungsbeispiel in radialer Richtung r am Außenumfang mit dem Anlagebereich 30 bündig gestaltet ist.

In radialer Richtung r innenliegend geht die Distanzscheibe 130 in einen Übergangsabschnitt 126 über, der die Verbindung zu einer Distanzhülse 120 darstellt. Die Distanzhülse 120 ist in axialer Richtung ax in die Nabenoehrung 20 hineingeführt und stellt somit eine Zentrierfläche 122 für die hier nicht dargestellte Nabe dar.

Die Distanzscheibe 130 und die Distanzhülse 120 bilden somit ein einteiliges Bauteil, das im vorliegenden Ausführungsbeispiel einstückig ausgeführt ist. Ebenso ist es möglich, die Distanzscheibe 130 und die Distanzhülse 120 zunächst separat zu fertigen und anschließend zu einer Baueinheit zusammenzufügen. In jedem Falle ist sichergestellt, daß durch das Einschieben des die Distanzhülse 120 darstellenden Abschnitts in die Nabenoehrung 20 eine selbstdärtige Zentrierung des die Distanzscheibe 130 darstellenden Abschnitts erfolgt. Das Bauteil wird soweit in die Nabenoehrung 20 eingeschoben, bis die Distanzscheibe 130 am Anlagebereich 30 des Zentralbereichs 2 vollflächig anliegt. Die Kontaktfläche zur Bremsscheibe hin

bildet demnach die als Anlagefläche 132 ausgebildete Stirnseite der Distanzscheibe 130.

Jede der Befestigungsbohrungen 10 wird durch eine Distanz-
5 buchse 110 geschützt, die die Befestigungsbohrung 10 in axialer Richtung ax vollständig durchsetzt. Die Distanzbuchse 110 weist einen trichterförmigen Axialabschnitt 112 auf, in den ein sphärischer Anlagebereich 114 für die Radschraube einge-
arbeitet ist. In axialer Richtung ax stützt sich die Distanz-
10 buchse 110 mit dem trichterförmigen Axialabschnitt 112 am Grund der Vertiefung 12 ab.

Korrespondierend zu den Befestigungsbohrungen 10 sind Durchgangsbohrungen 134 in der Distanzscheibe 130 eingearbeitet, in welche die Distanzbuchsen 110 in axialer Richtung ax hineinragen.

Eine Besonderheit des dargestellten Ausführungsbeispiels besteht nun darin, daß die Distanzbuchse 110 einen Bördelrand 116 aufweist, mit dem die Distanzscheibe 130 unverlierbar an der Radschüssel 2 befestigbar ist. Hierzu ist an der Distanzscheibe 130 jeweils im Bereich der Durchgangsbohrung 134 ein Absatz 136 angebracht, der den aufgebördelten Abschnitt des Bördelrands 116 aufnimmt. Auf diese Weise ist sichergestellt,
25 daß die Distanzbuchse 110 in axialer Richtung ax nicht über die als Anlagefläche 133 dienende Stirnseite hinausragt.

Für eine optimale Vormontage ist es von Vorteil, wenn die Distanzbuchsen 110 in die Befestigungsbohrungen 10 eingepreßt,
30 d.h. als Einpreßbuchsen ausgeführt sind. Das flanschartige Bauteil mit der Distanzscheibe 130 und der Distanzhülse 120 kann dann von der Radinnenseite her auf die Distanzbuchsen 110 aufgesteckt werden. Die formschlüssige Verbindung wird dann durch Umbördeln der Bördelränder 116 hergestellt. Es entsteht

damit ein Verbund der als Abstandshalter dienenden Bauteile,
nämlich Distanzbuchsen 110, Distanzhülse 120 und Distanz-
scheibe 130, der unverlierbar an dem Rad 1 bzw. der Rad-
schüssel 2 befestigt ist. Bei der Montage bzw. Demontage des
5 Rades 1 ergeben sich in der Handhabung keine Unterschiede zu
herkömmlichen Leichtmetallrädern.

Bezugszeichenliste

- 1 Rad
- 2 Radschüssel, Zentralbereich
- 5
- 10 Befestigungsbohrung
- 130 Vertiefung
- 20 Nabenbohrung
- 30 Anlagebereich
- 10
- 110 Distanzbuchse
- 131 trichterförmiger Axialabschnitt
- 114 sphärischer Anlagebereich
- 115 Bördelrand
- 15
- 120 Distanzhülse
- 132 Zentrierfläche
- 126 Übergangsabschnitt
- 20
- 133 Distanzscheibe
- 134 Anlagefläche
- 134 Durchgangsbohrung
- 136 Absatz

1 Patentansprüche

1. Rad für ein Kraftfahrzeug aus einer magnesiumhaltigen Legierung, mit einer Radschüssel, die einen Zentralbereich aufweist, in dem Befestigungsbohrungen für Befestigungsbolzen sowie eine Nabenbohrung angeordnet sind, und der einen rückseitigen, ringförmigen Anlagebereich zur Anbindung an eine Bremsscheibe besitzt

dadurch gekennzeichnet, dass
10 die Befestigungsbohrungen (10), die Nabenbohrung (20) und der Anlagebereich (30) mit Abstandshaltern (110, 120, 130) aus einer aluminiumhaltigen Legierung versehen sind.

2. Rad nach Anspruch 1,

dadurch gekennzeichnet, dass
15 die Abstandshalter (110, 120, 130) unverlierbar an der Radschüssel bzw. am Zentralbereich (2) befestigt sind.

3. Rad nach Anspruch 1 oder 2,

dadurch gekennzeichnet, dass
20 am Anlagebereich (30) eine Distanzscheibe (130) vorgesehen ist.

4. Rad nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet, dass
25 eine Distanzhülse (120) vorgesehen ist, die die Nabeno
bohrung (20) in axialer Richtung (ax) zumindest teilweise durchsetzt.

30 5. Rad nach Anspruch 4,

dadurch gekennzeichnet, dass
die Distanzhülse (120) und die Distanzscheibe (130) als einteiliges, vorzugsweise einstückiges, flanschartiges Bauteil gestaltet sind.

35 6. Rad nach einem der vorstehenden Ansprüche,

dadurch gekennzeichnet, dass
Distanzbuchsen (110) vorgesehen sind, die die Befestigungsbohrungen (10) in axialer Richtung ax durch-

Zusammenfassung

Rad (1) für ein Kraftfahrzeug aus einer magnesiumhaltigen Legierung, mit einer Radschüssel, die einen Zentralbereich (2) aufweist, in dem Befestigungsbohrungen (10) für Befestigungsbolzen sowie eine Nabenbohrung (20) angeordnet sind und der einen rückseitigen, ringförmigen Anlagebereich (30) zur Anbindung an eine Bremsscheibe besitzt wobei die Befestigungsbohrungen (10), die Nabenbohrung (20) und der Anlagebereich (30) mit Abstandshaltern (110, 120, 130) aus einer aluminiumhaltigen Legierung versehen sind. Hierdurch wird Kontaktkorrosion zu den stahlhaltigen Befestigungs- und Fahrzeugteilen vermieden.

15

Figur

**COPY OF PAPERS
ORIGINALLY FILED**

4119102
#4
PH

**IN THE
UNITED STATES
PATENT AND TRADEMARK OFFICE**

IN RE Joerg Wurft
APPLICATION OF:
CASE: 2020318 **TRANSMITTAL OF CERTIFIED**
SERIAL NO: 10/086,229 **COPY OF PRIORITY DOCUMENT**
FILED ON: February 27, 2002
FOR: WHEEL FOR A MOTOR
VEHICLE MADE FROM A
MAGNESIUM-CONTAINING
ALLOY

**COMMISSIONER FOR PATENTS
WASHINGTON, D.C. 20231**

**ATTENTION OF:
Group Art Unit 3617
EXAMINER:**

Dear Sir:

If any charges or fees must be paid in connection with the following communication, they may be paid out of our Deposit Account No. 04-1030.

Applicant submits herewith a certified copy of German Priority Document No. 101 09 386.1, which forms the basis for the claim of priority for the above-identified U.S. patent application. The claim for foreign priority was made in the previously-filed Declaration to this application.

Accordingly, Applicant respectfully submits that all requirements for completing the claim of priority in accordance with 37 C.F.R. §1.55 have been met.

LAW OFFICES OF
DICK AND HARRIS
181 WEST MADISON STREET
SUITE 3800
CHICAGO, ILLINOIS 60602
(312) 726-4000

Richard E. Dick	27778	Douglas B. Teaney	33459
Richard D. Harris	27898	Herbert H. Finn	38139
Howard E. Silverman	32492	James K. Cleland	44619
John S. Pacocha	25197	Brad R. Bertoglio	47422
		Jeffrey P. Dunning	50686

Should anything further be required, a telephone call to the undersigned, at (312) 726-4000, is respectfully invited.

Respectfully submitted,

LAW OFFICES OF DICK AND HARRIS

Dated: April 22, 2002

Douglas B. Teaney
One of Attorneys for Applicant

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited on the date set forth below, pursuant to 37 C.F.R. § 1.8, with the United States Postal Service as First Class Mail in an envelope addressed to Commissioner for Patents, Washington, D.C. 20231.

Dated: April 22, 2002

Douglas B. Teaney