Bases for permutation groups. H. Y. Huang (Bristol) @ Birmingham

30/11/23

1. Bases

Let G = Sym(se), where |se| < and G is transitive Ga = {g ∈ G : a = a } Point stabiliser:

Note OG Ga = 1.

with $G_{\alpha} = 1$? Question Any subset $\Delta \subseteq \Omega$

Examples

•
$$G = S_n$$
, $|\Omega| = n$, $\Delta = \{1, ..., n-1\}$ $\{b(G) = n-1\}$

$$G = D_{2n}, |\Omega| = n, \Delta = \{1, 2\}$$
 $\frac{1}{5}(6) = 2$

a contains a basis of V ; b(G) = dim V?

, b(a) = smallest of s.t.

$$\sum_{\substack{\pi = (1^{c_1}, \dots, n^{c_n}) \\ b_i}} \frac{(-1)^{m-\sum c_i}}{\prod_{j=0}^{c_{i+1}}} \left(\sum_{\substack{n \in k \\ n \in (1^{b_1}, \dots, k^{b_n})}} \prod_{j=0}^{c_{i+1}} \binom{c_{i}}{b_{i}}\right)^{j} d \neq 0$$

by Meceners & Spiga. 04/08/23

same (?) result by del Valle & Roney-Dougal .8/08/23

Def. $\Delta \subseteq \Omega$ is called a base for G if $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

. The base size of G, denoted 6(6). is the minimal size of a base for G.

Q1 Determine 6(6)?

Q2 Bounds on b(G)?

Q3 Classify G with b(G) = 2?

Lower bound

Let α be a base of size $b(\alpha)$ and $x,y \in G$. Then $x' = \alpha^y \quad \forall \alpha \in \Omega \iff xy^{-1} \in \bigcap_{\alpha \in \Omega} G_{\alpha}$ $\iff x = y$.

That is,

elements of G (-1) images of a.

Hence, 191 = 1521 b(6) and so b(6) = log 161.

Upper bound

Write $a = \{\alpha_1, \dots, \alpha_{\delta(6)}\}$ and $G^{(k)} = \bigcap_{i=1}^k G_i$. Then

 $G \neq G^{(1)} \neq G^{(2)} \neq \cdots \neq G^{(b(6))} = 1$

Thus. 191 = 2 b(6), so b(9) = log_191.

Primitive groups

"Primitive" = "transitive" + " $G_{\alpha} \leq G$ "

e.g. $G = D_{2n}$, $|S_{\alpha}| = n$. Then G is primitive \iff n is primitive \iff halasi, Liebeck & Maróti, 2019: $b(G) \leq 2\log_{|M|} |G| + 24$.

(originally Pyber's conjecture).

O'Nan - Scott

Finite primitive groups are divided into 5 types:

- Affine
- . Almost simple
- Diagonal type
- Product type
- Twisted wreath product

2. Diagonal type

Let T be a non-abelian finite simple group and let $D = \{(t, \dots, t) : t \in T\} \leq T^t$

Then T' = Sym (sc) with SL = [T': D].

A group G is said to be of <u>diagonal type</u> if $T^{k} \trianglelefteq G \subseteq N_{Sym(\Sigma^{2})}(T^{k}) \cong T^{k}. \left(\mathcal{O}_{UV}(T) \times S_{k}\right).$

Note G induces PG = SK, so T = G = T. (Out(T) × B).

Lemma G is primitive => PG is primitive, or | k=2 and PG=1

 $T: I_{nn}(\tau) \leq G \leq T: Aut(\tau) = Ho((\tau))$

Theorem (Fawcett, 2013)

- · PG & {Ak, Sk} => 6(G) = 2
- · $P_G \in \{A_{le}, S_k\}$ and $b(G) = 2 \implies 2 < k < |T|$

key observation

b(6) = 2 if $\exists S \subseteq T$ s.t. |S| = k and $Hol(T)_{\{S\}} = 1$.

An approach.

Let A = { S \subseteq T : | S| = k and Hol(T) \xis\ \forall \frac{1}{2}.

Suppose S € A.

Then] of Hol(T) ss} of prime order

Thus,

Let P be the set of elements of Hol(T) of prime orde

Then

$$\left| \mathcal{A} \right| = \left| \bigcup_{\sigma \in \mathcal{P}} f_{ix}(\sigma, \kappa) \right|$$

$$\leq \sum_{\sigma \in \mathcal{P}} \left| f_{ix}(\sigma, \kappa) \right| =: m.$$

Note
$$b(G) = 2$$
 if $m < \binom{|T|}{k}$

Main results

Theorem
$$(H, 2023+)$$
 If $3 \le k \le |T|-3$, then $\exists S \subseteq T$ s.t.
$$|S| = k \text{ and } Hol(T)_{SS}^{-1} = 1.$$

- · PG & {AK, Sk}
- · 3 & K = 171-3
- k ∈ { | T| 2, |T| 1} and Sk & G.

Theorem (H, 2023+) The precise base site of every primitive group of diagonal type is determined.

3. Regular orbits

Note G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on Ω^k .

Problem Classify the transitive groups G with r(G) = 1?

Burness & H, 22/23: G almost simple primitive. God soluble of e.g. $G = PGL_2(q)$, $GG = D_2(q-1)$.

(note that $\Omega = \{2-\text{subsett} \text{ of } \{1-\text{spaces of } \mathbb{F}_q^2\}\}$)

H, 2023+1: G diagonal type, b(G) = 2 of $G = T^k$. (Dut(T) $\times S_k$), $T = A_5$, $G = K \in \{3,57\}$.

Freedman, H, Lee & Rekvényi, 2023+1:

G diagonal type, $b(a) > 2 \implies r(a) > 1$.

Note (17) = 2 if m < (17)

Theorem (14, 2023 +) If 356 (111-3-454) If 557 17

1 = 12 (T) lott home as = 121

Theorem (H, 2024+) 6(4) = 2

12 . AA? > ST -

1-171 = 4 = 8 . .

F & 171-2 and [1-17] and 5

Enoug to 1617 and minory and (+ free H) - morentt

has mostile in my linephilo & group or it ming