Гомель, 1998 г. (Решения)

9 класс.

9.1. При параллельном соединении резинки и пружины их удлинения Δl одинаковы, а сумма сил упругости резинки F_1 и пружины F_2 равна весу подвешенного груза:

$$F_1 + F_2 = mg. (1)$$

Учитывая, что деформация пружины подчиняется закону Гука $F_2 = k \Delta l$, запишем выражение для деформации пружины в виде

$$\Delta l = \frac{mg - F_I}{k} \,. \tag{2}$$

Зависимость деформации резины от приложенной силы $\Delta l(F_I)$ задана в виде графика, поэтому деформация системы может быть найдена как решение системы уравнений (2) и представленной зависимости. Однако, величина деформации резины дана в виде функции от массы подвешенного груза, иными словами $F_I = m_I g$, где m_I - масса, которую «удерживает» резина. Поэтому запишем уравнение (2) в виде зависимости от m_I :

$$\Delta l = \frac{g}{k}(m - m_1). \tag{3}$$

График зависимости Δl от m_l представляет прямую линию пересекающую ось абсцисс в точке $m_l = m$ с коэффициентом наклона g / k, а решение системы есть точка пересечения данной прямой с графиком зависимости деформации резины от массы прикрепленного груза.

Проведя семейство прямых, подчиняющихся уравнению (3), для различных значений m, получим искомый набор значений деформаций системы «резинка-пружина». График такой зависимости представлен на рисунке.