

Guitar

最多可支持 10 点的电容屏控制芯片

Rev.01——2010年11月9日

本出版物中所述的器件应用信息及其他类似内容仅为您提供,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。GOODIX对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。GOODIX 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经GOODIX书面批准,不得将GOODIX 的产品用作生命维持系统中的关键组件。在GOODIX 知识产权保护下,不得暗中或以其他方式转让任何许可证。

1、 概述

多点电容式触摸屏控制芯片 Guitar,采用投射式电容检测原理,由 15 个驱动通道与 10 个感应通道组成触摸检测网络,通过内置模拟放大电路、数字运算模块,及高性能 MPU 得到实时准确的触摸信息,并通过 I^2C 传输给主控芯片。实现"所点即所得"的非凡用户体验。

Guitar 可同时识别 5 个触摸点位的实时准确位置,移动轨迹及触摸力度。并可根据主控需要,读取相应点数的触摸信息。

2、产品特点

- ◆ 内置电容检测电路及高性能 MPU
 - ▶ 采用投射式电容检测方式
 - ▶ 电容检测频率: 60Hz
 - ▶ 触摸点坐标实时输出
 - ▶ 支持配置固定触摸按键位置
 - ▶ 统一软件版本适用于多种尺寸的电容屏
- ◇ 抗干扰能力
 - > 采用自主专利的噪声抑制电路
 - ▶ 支持 35V 高压驱动
- ◆ 电容屏传感器
 - ▶ 电容屏尺寸范围: 2.8"~12"
 - ▶ 免屏蔽层设计
 - ▶ 同时支持 ITO 玻璃和 ITO Film
 - Cover Lens 厚度支持:玻璃≤2mm 亚克力≤0.9mm
- ◆ 环境适应性能
 - > 初始化自动校准
 - ▶ 自动温漂补偿
 - 工作温度: -40℃~+85℃,湿度: ≦95%RH
 - ▶ 储存温度: -60℃~+150℃,湿度: ≦95%RH
- ◇ 通讯接口
 - ▶ 标准 I²C 通讯接口
 - ▶ 从设备工作模式

◇ 响应时间

Green mode: <48ms
Sleep mode: <642.5ms
Initialization: <642.5ms

◆ 电源电压:

▶ 数字部分 DVDD: 2.5V~3.6V▶ 模拟部分 AVDD: 2.5V~3.6V▶ 触控驱动 EVDD: 2.7V~35V

◆ 电源纹波:

> Vpp≤50mV

> Vpp≤100mV@EVDD≥19V

◆ 封装: 48 pins, 7mm*7mm QFN

◆ 应用开发支持工具

- ▶ 触摸屏模组参数侦测及配置参数自动生成
- ▶ 触摸屏模组性能综合测试工具
- ▶ 模组量产测试工具
- 主控软件开发参考驱动代码及文档指导
- ▶ 在线烧录和软件升级

◇ 应用领域

- ▶ 智能手机
- ▶ 移动上网设备
- ▶ 便携式/平板电脑
- ➤ GPS/数码相机/游戏机等

3、 Guitar 系列

型号	AVDD	DVDD	EVDD	检测触点	触摸屏尺寸
GT800	2.7V~3.6V		5	≦4.3 "	
GT801	2.5V~3.6V	2.5V~3.6V	2.7V~35V	5	4.3"~7"
GT801*2+ARM			2.7V~35V	10	7"~12"

4、 芯片原理图

5、管脚定义

管脚号.	名称	功能描述	备注
1	Vrof	世界中 巨松山	接 220KΩ 电阻到 AVDD,
'	Vref	基准电压输出	接 0.1uF 电容到 AGND
2 ~11	SENS0~SENS9	触摸模拟信号输入	
12~13	AGND	模拟电源地	
14	SHUTDOWN	工作模式控制脚	内部下拉 0: 工作模式
14	SHUTDOWN	工作保入红型	1: sleep 模式
15	/RSTB	系统复位脚	内部上拉, 拉低复位
16	DGND	数字电源地	
17	INT	输出更新中断信号	
18	DVDD	数字电源正	
19	INT_MONITOR_EN	"2+1"方案控制脚	单芯片应用时 NC 或接 DGND
20	DGND	数字电源地	
21	EXC_CLK_SEL	外部时钟选择脚	内部下拉,拉高指外接时钟
22	DRV14	驱动信号输出	
23	EVDD	驱动电源正	
24~37	DRV13-DRV0	驱动信号输出	
38	EGND	驱动电源地	
39-40	NC	悬空	
41	20MHz	时钟脚	
42	SCL	I ² C 时钟信号	内部上拉
43	DVDD	数字电源正	
44	DGND	数字电源地	
45	RXD	UART RX	
46	SDA	I ² C 数据信号	内部上拉
47	TXD	UART TX	
48	AVDD	模拟电源	

6、 传感器设计

6.1、感应通道排布

SENS0~SENS9 是 10 个电容检测输入通道,直接与触摸屏模组的 10 个 ITO 检测通道相连。这 10 个 ITO 检测通道布局可采用两种排布方式:

● 排布方式1: 芯片管脚到ITO检测通道的走线全部在触摸屏一侧,按照从0到9或者从9到0顺序连接:

● 排布方式2(仅适应于屏尺寸≦4.3″): 芯片管脚到ITO检测通道的走线分布在触摸屏两侧,每边5条走线,分两组接入,一组为4到0顺序接入,一组按5到9顺序接入:

注: 芯片仅支持以上两种方式。为使输出坐标与物理坐标匹配,需要配置Guitar的相关 寄存器来保证各感应通道的逻辑位置关系与物理位置关系一致。

6.2、驱动通道排布

DRV0~DRV14 是 15 个电容检测驱动信号输出通道,直接与触摸屏模组的 15 个 ITO 驱动通道相连。与感应通道不同,15 个驱动通道可根据布局方便灵活排布。在确定排布方式后,需配置 Guitar 芯片的相关寄存器来保证各驱动通道的逻辑位置关系与物理位置关系一致,以使输出坐标与物理坐标匹配。

6.3、传感器设计参数要求

	0
	Guitar
驱动通道走线阻抗	≦3KΩ
驱动通道阻抗	≦10KΩ
感应通道走线阻抗	≦10KΩ
感应通道阻抗	≦60KΩ
节点电容	≦4pF
感应通道 RC 常数	≦6us. Typ.=3.6us

实际模组生产过程中,驱动通道和感应通道是用 ITO 制作,阻抗波动性相对较小。通道走线采用金属走线时,由于工艺控制等原因会导致部分走线被氧化,阻抗变大,导致各通道走线存在差异;当采用 ITO 材料走线时,虽然设计时会尽力通过长度、宽度匹配使得各通道走线一致,但还是会存在不同程度的差异。为保证整屏数据一致性和均匀性,需要控制走线阻抗符合上表要求。

6.4、触摸按键设计

屏尺寸≦5"时:最多可支持 4 个独立触摸按键。按键的布局必须在同一行。触摸按键由同一驱动与不同感应通道组成,采用哪一驱动以及按键位置由配置信息确定。启用了触摸按键之后,触摸按键之外的操作区由另外的 14 个驱动和 10 个感应通道组成。

屏尺寸=7"时:采用单颗Guitar芯片应用于7"电容屏时,不能支持触摸按键。需要支持触摸按键时,可外挂汇项科技触摸按键芯片 HA2605 解决,此时主机需要再增加一个外部中断 IO,用于检测 HA2605 是否有按键输出。

屏尺寸≥7"时: 此时需要两颗 Guitar 芯片,可支持 4X2=8 个独立触摸按键。但同样必须放在同一排,且采用同一个驱动通道。

注: 为使方案简单可靠, 触摸按键位置的选择应具备两个特征:

- 1、触摸按键必须沿平行于驱动线方向摆放;
- 2、触摸按键与 FPC 最好不要在同一端

7、 功能描述

7.1、工作模式

a) Normal mode

Guitar 在 Normal mode 时,屏幕扫描周期为 16ms,输出坐标的更新频率为 60Hz。若 3s 内未检测到新的触摸动作,芯片自动转入 Green mode。

b) Green mode

在 Green mode 下,屏幕扫描周期为 48ms,若检测到有触摸动作发生,自动进入 Normal mode。

c) Sleep mode

主 CPU 可通过对 SHUTDOWN 口状态的设置,使 Guitar 进入或退出 Sleep mode。"1"表示进入 Sleep mode;"0"表示退出。当 Guitar 退出 Sleep mode时,直接进入 Normal mode。

7.2、I²C 通讯

Guitar 提供标准的 I²C 通讯接口,由 SCL 和 SDA 与主 CPU 进行通讯。在系统中 Guitar 始终作为从设备,所有通讯都是由主 CPU 发起,其最高通讯速度为 250K bps。

Guitar 的从设备地址为 Ob1010 101x. 主 CPU 寻址 Guitar 时,同时还要发送读写控制位,读写控制位是附在从设备地址后,"0"表示写操作,"1"表示读操作,从而与设备地址组成一个字节。即:OxAA——对 Guitar 进行写操作;OxAB——对 Guitar 进行读操作。

a) 数据传输

通讯总是由主 CPU 发起,有效的起始信号为:在 SCL 保持为"1"时,SDA 上发生由"1"到"0"的跳变。地址信息或数据流均在起始信号之后传输。

所有连接在 I²C 总线上的从设备,都要检测总线上起始信号之后所发送的 8 位地址信息,并做出正确反应。在收到与自己相匹配的地址信息时,Guitar 在第 9 个时钟周期,将 SDA 改为输出口,并置"0",作为应答信号。若收到不与自己匹配的地址信息,即非 0XAA 或 0XAB,Guitar 将保持闲置状态。

SDA 口上的数据按 9 个时钟周期串行发送 9 位数据: 8 位有效数据+1 位接收方发送的应答信号 ACK 或非应答信号 NACK。数据传输在 SCL 为"1"时有效。

当通讯完成时,由主 CPU 发送停止信号。停止信号是当 SCL 为 "1" 时,SDA 状态由 "0" 到 "1" 的跳变。接收到一个有效的停止信号后,Guitar 内部 I^2 C 的指针变为 0x00。

b) 对 Guitar 写操作

上图为主 CPU 对 Guitar 进行的写操作流程图。首先主 CPU 产生一个起始信号,然后发送地址信息及读写位信息"0"表示写操作:0XAA。

在收到应答后,主 CPU 发送寄存器的 8 位地址,随后是 8 位要写入到寄存器的数据内容。

Guitar 寄存器的地址指针会在写操作后自动加 1, 所以当主 CPU 需要对连续地

多点电容式触摸屏控制芯片 Guitar

GODIX[®]

址的寄存器进行写操作时,可以在一次写操作中连续写入。写操作完成,主 CPU 发送停止信号结束当前写操作。

c) 对 Guitar 读操作

上图为主 CPU 对 Guitar 进行的读操作流程图。首先主 CPU 产生一个起始信号,然后发送设备地址信息及读写位信息"0"表示写操作: 0XAA。

在收到应答后,主 CPU 发送首寄存器的 8 位地址信息,设置要读取的寄存器地址。在收到应答后,主 CPU 重新发送一次起始信号(不要发送停止信号,否则寄存器地址变回为 0X00),发送读操作: 0XAB。收到应答后,主 CPU 开始读取数据。

Guitar 同样支持连续的读操作,<mark>默认为连续读取数据</mark>。主 CPU 在每收到一个 Byte 数据后需发送一个应答信号表示成功接收。在接收到所需的最后一个 Byte 数据后,主 CPU 发送"非应答信号 NACK",然后再发送停止信号结束通讯。

7.3、Guitar 的寄存器信息

a) 配置寄存器

Addr	Dir	Default	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x30	R/W	р	LargeTouch				 大面积制	蚀摸条件	<u>-</u>		
0x31	R/W	p	ShakeCount	TS	hakeCo	ount		FingerShakeCount			
0x32	R/W	p	Filter								
0x33	R/W	p	DiffRangeLimit			基准更	新差值	范围限	制条件		
0x34	R/W	p	DiffSumRangeLimit			基准更	新差值	之和限	制条件		
0x35	R/W	p	MaxPosDiffLimit			基准更	新最大正	E差值限	制条件		
0x36	R/W	p	PosRefTimeLimit			正向更	新基准	时间限制	制条件		
0x37	R/W	р	NagRefTimeLimit			反向更	新基准	时间限制	制条件		
0x38	R/W	p	LeaveLevel				松键	阈值			
0x39	R/W	р	ModuleSwitch	Lpe	DD2	Sme	Rue	INT	RUK	rese	rved
0x3A	R/W	р	XMaxH	-			X 最大值	直高字节	î		
0x3B	R/W	р	XMaxL				X 最大值	直低字节	î		
0x3C	R/W	р	YMaxH			•	Y 最大值	直高字节	î		
0x3D	R/W	р	YMaxL			,	Y 最大值	直低字节	î		
0x3E	R/W	р	EXC1/EXC2	į	驱动通道	道 1 位置	Į.	Į	驱动通道	2 位置	Ĺ
0x3F	R/W	р	EXC3/EXC4	ļ	驱动通过	道3位置	Ī.	Ī	驱动通道	14 位置	Ĺ
0x40	R/W	р	EXC5/EXC6	Į	驱动通过	道5位置	Ī.	驱动通道6位置			
0x41	R/W	р	EXC7/EXC8	Į	驱动通过	道7位置	Ī.	驱动通道8位置			
0x42	R/W	р	EXC9/EXC10	Į	驱动通过	道 9 位置	Î.	驱动通道 10 位置			
0x43	R/W	р	EXC11/EXC12	马	区动通道	道 11 位置	置	驱动通道 12 位置			
0x44	R/W	р	EXC13/EXC14	马	区动通道	13 位5	置.	引	区动通道	14 位置	
0x45	R/W	р	EXC15/Sod	马	区动通道	15 位5	置	S1	S2	KE	SC
0x46	R/W	р	KEY1				固定按钮	建 1 位置	Ĺ		
0x47	R/W	р	KEY2				固定按钮	建2位置	Ĺ		
0x48	R/W	р	KEY3				固定按钮	建3位置	Ĺ		
0x49	R/W	р	KEY4				固定按钮	建4位置	Ĺ		
0x4A	R/W	р	ADCCFG				1级录	見敏度			
0x4B	R/W	р	SCAN1	2级灵敏度							
0x4C	R/W	р	SCAN2	3级灵敏度							
0x4D	R/W	р	F100	4级灵敏度							
0x4E	R/W	р	F200	5 级灵敏度							
0x4F	R/W	р	F300	6 级灵敏度							
0x50	R/W	р	KeyTouchLevel	触摸按键阈值							
0x51	R/W	р	KeyLimit1	触摸按键限制 1							
0x52	R/W	р	KeyLimit2	触摸按键限制 2							
0x53	R/W	р	WaterPosDiffLimit	水膜正差值限制							
0x54	R/W	р	KeyArea				触摸按	键区域			
0x55	R/W	р	RefLimitL			基	准更新阝	限制最小	值		

多点电容式触摸屏控制芯片 Guitar

0x56	R/W	р	RefLimitM	基准更新限制中间值	
0x57	R/W	р	RefLimitH	基准更新限制最大值	
0x58	R/W	р	RefLimitCount	基准更新特殊限制点个数	
0x59	R/W	Р	Keyleavelevel	触摸按键松键阈值	
0x5A	R/W	р	TouchLevel	触摸屏按键阈值	
0x64	R/W	р	Config_Fresh	配置信息被更新	
0x68	R/W	р	Origin	坐标原点	

b) 输出信息寄存器

Addr	Dir	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x00	R	TouchpointFlag	0	0	key	tp4	tp3	tp2	tp1	tp0
0x01	R	Touchkeystate	0	0	0	0	key4	key3	key2	key1
0x02	R	Point0Xh			触摸	点 0 ,X	(坐标高	ī 8 位		
0x03	R	Point0XI			触摸	点 0,X	坐标低	8位		
0x04	R	Point0Yh			触摸	点 0, Y	′坐标高	78位		
0x05	R	Point0YI			触摸	点 0,Y	'坐标低	8位		
0x06	R	Point0Pressure			触	摸点 0,	触摸压	力		
0x07	R	Point1Xh			触摸	点 1 ,X	(坐标高	78位		
0x08	R	Point1XI			触摸	点 1 ,X	(坐标低	8位		
0x09	R	Point1Yh			触摸	点 1,Y	′坐标高	78位		
0x0A	R	Point1YI			触摸	点 1,Y	'坐标低	8位		
0x0B	R	Point1Pressure			触	摸点 1 ,	触摸压	五力		
0x0C	R	Point2Xh			触摸	点 2 ,X	(坐标高	ī 8 位		
0x0D	R	Point2XI			触摸	点 2 ,X	(坐标低	8位		
0x0E	R	Point2Yh			触摸	点 2 ,Y	′坐标高	ī 8 位		
0x0F	R	Point2YI			触摸	点 2 ,Y	'坐标低	8位		
0x10	R	Point2Pressure			触	摸点 2 ,	触摸压	力		
0x11	R	Point3Xh			触摸	点 3 ,X	(坐标高	78位		
0x18	R	Point3XI			触摸	点 3 ,X	(坐标低	8位		
0x19	R	Point3Yh			触摸	点 3,Y	′坐标高	ī 8 位		
0x1A	R	Point3YI			触摸	点 3,Y	′坐标低	8位		
0x1B	R	Point3Pressure			触	摸点 3,	触摸压	五力		
0x1C	R	Point4Xh	触摸点 4, X 坐标高 8 位							
0x1D	R	Point4XI	触摸点 4, X 坐标低 8 位							
0x1E	R	Point4Yh	触摸点 4, Y 坐标高 8 位							
0x1F	R	Point4YI	触摸点 4, Y 坐标低 8 位							
0x20	R	Point4Pressure	触摸点 4, 触摸压力							
0x21	R	Data_check_sum				数据标	交验值			

7.4、脉冲方式呼叫

为有效减轻主 CPU 负担,Guitar 仅在输出信息有变化时,才会通知主 CPU 读取坐标信息。由 INT 口输出脉冲信号。主 CPU 可通过对 Guitar 配置寄存器的设定,来选择适合自己的脉冲信号极性。

7.5、睡眠模式

为保证 Guitar 内部电容检测电路的可靠性,Guitar 专门规划了一个独立的 SHUTDOWN 输入口,用来切换芯片的工作状态。当显示屏熄灭时或在其他不需要操作触摸屏的状态下,可以通过将 SHUTDOWN 口置"1",使 Guitar 进入 Sleep mode 以降低功耗。当需要 Guitar 正常工作时,将 SHUTDOWN 口置"0"即可。在退出 Sleep mode 时,Guitar 从初始化地址开始工作,因此 SHUTDOWN 还有复位的功能。

7.6、自动校准

a) 初始化校准

不同的温度、湿度及物理空间结构均会影响到电容传感器在闲置状态的基准值。 Guitar 会在初始化的 640.5ms 内根据环境情况自动获得新的检测基准。完成触 摸屏检测的初始化。

b) 自动温漂补偿

温度、湿度或灰尘等环境因素的缓慢变化,也会影响到电容传感器在闲置状态的基准值。Guitar 实时检测各点数据的变化,对历史数据进行统计分析,由此来修正检测基准。从而降低环境变化对触摸屏检测的影响。

8、参考电路图

GT800 参考应用电路图

注:

- 1、 本电路仅表示基本应用方式,实际或根据应用环境需要对部分电路进行调整。
- 2、 电容建议采用 X7R 材质

GT801 参考应用电路图

上图中, DC-DC 升压电路的输出电压 V_{HV} 可由电阻 R4 和 R5 调整。公式为:

$$V_{HV} = 0.2 \times \frac{R4 + R5}{R5}$$
,单位为 V。

R5 的取值范围建议为: $1K\Omega \sim 5.1K\Omega$,R4 和 R5 均采用+/-1%的精密电阻。 注:

- 1. 在实际应用中, V_{HV} 需要配合 GT801 的软件参数一起调节
- 2. 电容 C5、C7 和 C9 的耐压值要大于电压 V_{HV}
- 3. 建议电容采用 X7R 材质, 其中 C4 请采用 NPO 材质
- 4. 本电路仅表示基本应用方式,实际方案或根据应用需要对部分电路进行调整。

9、电气特性

9.1、极限电气参数 (环境温度为25℃)

参	最小值	最大值	单位	
模拟电源AVDD	0.3	4	V	
数字电源DVDD	(参考DGND)	0.3	4	V
驱动电源EVDD	GT800	-0.3	4	V
(参考EGND)	GT801	-0.3	40	V
数字I/O可	「承受电压	-0.3	DVDD+0.3	V
工作温	度范围	-40	+85	$^{\circ}\mathbb{C}$
存储温	度范围	-60	+150	$^{\circ}\mathbb{C}$
工作湿	_	95	%	
焊接温度		+220	$^{\circ}$	
ESD保护电压	(HB Model)		±1.5	KV

9.2、推荐工作条件 (环境温度为25℃, VDD=2.8V)

参数	最小值	典型值	最大值	单位	
模拟电源AVDD	(参考AGND)	2.5	2.8	3.6	V
数字电源DVDD	(参考DGND)	2.5	2.8	3.6	V
驱动电源EVDD	GT800	2.7	2.8	3.6	V
(参考EGND)	GT801	2.7	_	35	V
电源纹波	GT800	_		50	mV
电源纹仪	GT801	_		100	mV
工作温度		-20	+25	+85	$^{\circ}\mathbb{C}$
工作》	_		95	%	

9.3、AC 特性 (环境温度为 25℃, VDD=2.8V)

参数	最小值	典型值	最大值	单位
OSC 振荡频率	19.86	20	20.14	MHz
触摸通道扫描周期	15.9	16	17	ms
电容检测灵敏度	_	0.01	_	pF
Sleep 启动延时	66.25	130.25	642.5	ms
无触摸进入Green mode延时	0	3	_	S
Green模式启动延时	0	24	48.5	ms
I/O 输出由低到高转换时间	_	30	_	ns
I/O 输出由高到低转换时间	_	25		ns

9.4、 DC 特性 (环境温度为 25℃, VDD=2.8V)

参数	最小值	典型值	最大值	单位
工作电流 (Normal mode)		15.7	19	mA
工作电流 (Green mode)		12	14.5	mA
工作电流 (Sleep mode)		40	200	uA
数字输入为低电平最大电压值	_		0.7	V
数字输入为高电平最小电压值	2		_	V
数字输出为低电平最大电压值	_		0.1	V
数字输出为高电平最小电压值	2.7	- ,	_	V

10、 产品封装

			单位: mm		
符号	最小值	典型值	最大值		
Α	0.70	0.75	0.80		
A1		0.20			
b	0.15	0.25	0.35		
D	6.90	7	7.10		
D2	5.05	5.15	5.25		
E	6.90	7	7.10		
E2	5.05	5.15	5.25		
е	0.50				
L	0.30	0.40	0.50		

联系方式

深圳市汇顶科技有限公司

深圳市福田保税区腾飞工业大厦 B 座 13 层 518000

Floor 13, Phase B, TengFei Industrial Building, FuTian Free Trade Zone ShenZhen 518000

电话/TEL: +86-755-33338828 传真/FAX: +86-755-33338787

www.goodix.com

