Analyse réel

Sarah S. Sawyer

Table des matières

1	Fonction réelle		
		Définition	
		Continuité	
	1.3	Propriétés sur la continuité	3
		Dérivabilité	
	1.5	Propriétés sur la dérivabilité	3
2	Suite	Suite de nombre	
3	Série de suite de nombre		5
4	Suite	e de fonction	6
5	Série	e de suite de fonction	7

Introduction

Ce cours d'analyse introduit les concepts propres aux mathématiques : nombre, ensemble, fonction et suite. Nous manipulons ces objets sur l'ensemble $\mathbb R$ car il s'agit d'obtenir leur bonne manipulation pour pouvoir traiter ces mêmes concepts vers quelque chose de plus générale : le calcul différentiel.

Attention. Ce cours est rédigé de sorte à ce qu'il soit vivement accessible aux étudiants n'ayant aucunes bases mathématiques sur ce thème.

Fonction réelle

Ce chapitre vise à comprendre la notion de fonction d'une variable réelle ainsi que les caractères qui lui sont propres : continuité et dérivabilité.

1.1 Définition

Définition 1. On appelle fonction de E vers F toute application f définie par

$$f: E \to F$$

$$x \mapsto f(x)$$

Si tel est le cas, E est appelé ensemble de départ et F est appelé ensemble d'arrivée. On note l'ensemble des fonctions de E vers F par $\mathcal{F}(E,F)$.

En pratique, on manipule toujours une fonction sur un intervalle car elle possède des propriétés intéressantes qui se gagne et qui se perd suivant la « taille » de l'intervalle. Ce même exercice peut se faire sur $\mathbb R$ tout entier, mais, rares sont les fonctions qui maintiennent leurs propriétés sur cet ensemble.

- monotonie de la fonction.
- bornitude de la fonction.
- correspondance de la fonction.

Définition 2. On dit qu'une fonction f est

— croissante (resp. strictement croissante) sur E si f vérifie

$$\forall x \le y \in E, f(x) \le f(y) \text{ (resp. } f(x) < f(y))$$

— décroissante (resp. strictement décroissante) sur E si f vérifie

$$\forall x \le y \in E, f(x) \ge f(y) \text{ (resp. } f(x) > f(y))$$

— constante sur E si f vérifie

$$\forall x \le y \in E, f(x) = f(y)$$

Définition 3. On dit qu'une fonction f est

— majoré sur E si f vérifie

$$\exists M \in \mathbb{R}, \ \forall x \in E, \ f(x) \leq M$$

— minoré sur E si f vérifie

$$\exists m \in \mathbb{R}, \ \forall x \in E, \ f(x) \leq m$$

— borné sur E si f est majoré et minoré. Formellement,

$$\exists m, M \in \mathbb{R}, \ \forall x \in E, \ m \le f(x) \le M$$

Définition 4. On dit qu'une fonction f est

— injective sur E si f vérifie

$$\forall x, x' \in E, f(x) = f(x') \Longrightarrow x = x'$$

— surjective sur E si f vérifie

$$\forall y \in F, \exists x \in E, f(x) = y$$

— bijective sur E si f est injective et surjective. Formellement,

$$\forall y \in F, \exists ! x \in E, f(x) = y$$

Définition 5. On dit qu'une fonction f est

— paire sur E si f vérifie

$$\forall x \in E, f(-x) = f(x)$$

— impaire sur E si f vérifie

$$\forall x \in E, \ f(-x) = -f(x)$$

1.2 Propriétés

Proposition 1. Si f et g sont croissantes (resp. décroissantes) sur E alors leur somme f+g et leur produit f g sont croissantes sur E.

Démonstration. On raisonne directement. Supposons que f et g sont croissantes sur E alors $\forall x \leq y \in E$, $f(x) \leq f(y)$ et $g(x) \leq g(y)$ par définition. Par somme d'inégalité, on obtient l'inégalité suivante $f(x) + g(x) \leq f(y) + g(y)$.

- 1.3 Continuité
- 1.4 Propriétés sur la continuité
- 1.5 Dérivabilité
- 1.6 Propriétés sur la dérivabilité

Suite de nombre

Série de suite de nombre

Suite de fonction

Série de suite de fonction