Artificial Neural Networks and Applications

Systems Modeling and Control Using Dynamic Neural Networks and Fuzzy-Neural Networks

Antonio Moran, Ph.D.

amoran@ieee.org

The Human Being is Intelligent

It has the capacity for:

- Thinking
- Reasoning
- LearningImproving
- Adapting

Able to Work in an **Autonomous Way**

The Brain A Natural Neural Network

Millons of highly interconnected neurons

The Brain

Behaves as a System with Inputs and Outputs

Face Recognition

Face Recognition

Car Driving

Car Driving

Car Driving A Control Problem

Medical Treatment

Medical Treatment

Medical Treatment A Control Problem

The Brain A Natural Neural Network

Millons of highly interconnected neurons

Artificial Neural Network Models

Multilayer Neural Network

Self-Organizing
Map

Boltzmann Completion Network

Neural Networks

Systems capable of estimating functions of several inputs and outputs using input-output data

Neural Networks

$$y = \Phi(x)$$

Face Recognition

Petroleum Prediction

Petroleum Prediction

10m 50m

	Tem	Hum	Ca	Su	Tem	Hum	Ca	Su	Petroleum
Well 1	42	55	14	2	56	42	12	1	1
Well 2	39	62	20	4	54	40	18	1	0
Well 3	33	31	36	1	51	40	31	2	0
				••		••			
		••							
Well 50	45	51	19	5	60	48	21	3	1

$$y = ax + b$$

$$y = ax^2 + bx + c$$

Data				
X	y			
X ₁	<u>y</u> 1			
X_2	<u>y</u> 2			
X_3	y ₃			
	:			
YN	· V N			
ΧN	Ум			

Sum of Errors Squares

$$J = 0.5 e_1^2 + 0.5 e_2^2 + \cdots + 0.5 e_N^2$$

$$J = 0.5 (y_1 - \overline{y}_1)^2 + 0.5 (y_2 - \overline{y}_2)^2 + \cdots + 0.5 (y_N - \overline{y}_N)^2$$

$$J = 0.5 (y_1 - \overline{y}_1)^2 + 0.5 (y_2 - \overline{y}_2)^2 + \cdots + 0.5 (y_N - \overline{y}_N)^2$$

Problem: Find a and b that minimize J

$$y = ax + b$$

$$J = 0.5 (y_1 - \overline{y}_1)^2 + 0.5 (y_2 - \overline{y}_2)^2 + \cdots + 0.5 (y_N - \overline{y}_N)^2$$

Problem: Find a and b that minimize J

Solution

$$\frac{\partial a}{\partial J} = 0 \qquad \frac{\partial b}{\partial J} = 0$$

$$\frac{\partial P}{\partial A} = 0$$

Iterative Method:

$$a = a - \eta \frac{\partial J}{\partial a}$$
 $b = b - \eta \frac{\partial J}{\partial b}$

$$\mathbf{b} = \mathbf{b} - \eta \frac{\partial \mathbf{J}}{\partial \mathbf{b}}$$

Iterative Method

$$a = a - \eta \frac{\partial J}{\partial a}$$

$$b = b - \eta \frac{\partial J}{\partial b}$$

η: Learning rate

Fix value of η

Initial values of a and b

► Compute derivatives ∂J/∂a and ∂J/∂b
Update a and b

Verify convergence condition

Neural Network

Input Layer

 \overrightarrow{x}

Linear

Hidden Layer

Non-Linear

Output

Layer

Linear

 $V_{11} \dots V_{23}$ $W_{11} \dots W_{32}$

Weights, Connection Coefficients

Neural Network

Linear

Non-Linear

Linear

$$n = \frac{1}{1 + e^{-m}}$$

$$n = f(m)$$

$$n = e^{-m^2}$$

Neural Network

$$\rightarrow$$

$$\overrightarrow{y}$$

$$m_1 = v_{11} x_1 + v_{21} x_2$$

 $m_2 = v_{12} x_1 + v_{22} x_2$
 $m_3 = v_{13} x_1 + v_{23} x_2$

$$n_1 = f(m_1)$$

$$n_2 = f(m_2)$$

$$n_3 = f(m_3)$$

$$y_1 = w_{11}n_1 + w_{21}n_2 + w_{31}n_3$$

$$y_2 = w_{12}n_1 + w_{22}n_2 + w_{32}n_3$$

Data						
<u>x</u> ₁	X ₂		y ₂			
*	*	*	*			
*	*	*	*			
*	*	*	*			
*	*	*	*			

Cost function to be minimized:

$$J = 0.5 (y_{(1)} - \overline{y}_{(1)})^{T} (y_{(1)} - \overline{y}_{(1)}) + \cdots + 0.5 (y_{(N)} - \overline{y}_{(N)})^{T} (y_{(N)} - \overline{y}_{(N)})$$
$$y_{(k)} = [y_{1(k)} \ y_{2(k)}]^{T}$$

$$J = 0.5 (y_{(1)} - \overline{y}_{(1)})^{T} (y_{(1)} - \overline{y}_{(1)}) + \cdots + 0.5 (y_{(N)} - \overline{y}_{(N)})^{T} (y_{(N)} - \overline{y}_{(N)})$$

Problem

Find
$$V_{11} \dots V_{23}$$
 that minimize J $W_{11} \dots W_{32}$

$$J = 0.5 (y_{(1)} - \overline{y}_{(1)})^{T} (y_{(1)} - \overline{y}_{(1)}) + \cdots + 0.5 (y_{(N)} - \overline{y}_{(N)})^{T} (y_{(N)} - \overline{y}_{(N)})$$

Problem

Find
$$V_{11} \dots V_{23}$$
 that minimize J $W_{11} \dots W_{32}$

Iterative Method

$$V_{ij} = V_{ij} - \eta \frac{\partial J}{\partial V_{ij}}$$

$$i = 1, 2$$

$$j = 1, 2, 3$$

$$W_{jk} = W_{jk} - \eta \frac{\partial J}{\partial W_{jk}}$$

$$k = 1, 2$$

$$J = 0.5 (y_{(1)} - \overline{y}_{(1)})^{T} (y_{(1)} - \overline{y}_{(1)}) + \cdots + 0.5 (y_{(N)} - \overline{y}_{(N)})^{T} (y_{(N)} - \overline{y}_{(N)})$$

Iterative Method

$$v_{ij} = v_{ij} - \eta \frac{\partial J}{\partial v_{ij}}$$

$$\mathbf{w_{jk}} = \mathbf{w_{jk}} - \eta \frac{\partial \mathbf{J}}{\partial \mathbf{w_{jk}}}$$

Fix value of η

Initial values of v_{ii} and w_{ik}

Compute derivatives $\partial J/\partial v_{ij}$ and $\partial J/\partial w_{jk}$ Update v_{ij} and w_{jk} Verify convergence condition

How to compute the derivatives

$$\frac{\partial J}{\partial v_{ij}}$$
 $\frac{\partial J}{\partial w_{jk}}$

Error Back Propagation Algorithm

Delta Rule

Error Back Propagation

Error Back Propagation

$$\overline{e}_1 = (w_{11}e_1 + w_{12}e_2) f'(m_1)$$
 $e_1 = (y_1 - \overline{y}_1)$
 $e_2 = (y_2 - \overline{y}_2)$
 $\overline{e}_2 = (w_{21}e_1 + w_{22}e_2) f'(m_2)$
 $\overline{e}_3 = (w_{31}e_1 + w_{32}e_2) f'(m_3)$

Error Back Propagation

Computing Derivatives:

(back propagated error) (output of previous neuron)

$$\frac{\partial J}{\partial v_{ij}} = e_j x_i \qquad \frac{\partial J}{\partial w_{jk}} = e_k n_j$$

Bias Neuron

In some cases, learning significantly improves with an additional input neuron having a constant input. This is the bias neuron.

Input – Output Scaling

Given the saturation characteristics of neuron activation functions (sigmoid, gaussian) is desirable that the inputs to the neuron do not be of large value. To achieve that:

- Inputs (and corresponding outputs) should be scaled to the range [-2 2] (for instance). Linear scaling.
- Weigths v_{ii} and w_{ik} should be of small value.

Neural network for recognizing 10 faces

Neural Network for Face Recognition

Input: Face

Output: Code for each face

Assigning a code to each face

Considering 10 faces, the code will be of 10 digits of 1's and 0's in an orthogonal scheme

```
Face 1: 1 0 0 0 0 0 0 0 0
```

Face 2: 0 1 0 0 0 0 0 0 0

Face 3: 0 0 1 0 0 0 0 0 0

Face 4: 0 0 0 1 0 0 0 0 0

Face 9: 0 0 0 0 0 0 0 1 0

Face 10: 0 0 0 0 0 0 0 0 1

Neural Network Inputs

Given that an image contains great amount of information, it should be reduced to be processed by the neural network.

There are several ways to accomplish this reduction:

- Principal Components Analysis PCA.
- Discrete Cosine Transformation Coefficients.
- Pixeling (used in this report)

Full Color 2808 x 2425

Reducing the size of images - Pixeling

Full Color 2808 x 2425

Monocromatic
40 x 30
1200 pixels

Network Input


```
00000000000000000000
000000001100000000
000000011110000000
00000011111110000000
0000101111111001000
00001000000000110000
  0000000000000000
```

The matrix should be transformed into vector

Network Input: Converting 40x30 matrix into 1200x1 vector

```
000000001100000000
000000011110000000
00000011111110000000
00001011111110010000
00001000000000110000
0000000000000000000
                40x30
```

1200x1

Neural Network for Face Recognition

To generate input-output training data, several faces of a person could be considered but all of them with the same output code

Neural Network for Face Recognition

Image Preprocessing - Pixeling

1213x1013

2644x2106

2854x2370

2446x2016

2507x2190

40x30

40x30

40x30

40x30

40x30

Number Recognition

9 x 6 = 54 Inputs

1	0	0		0
0	1	0		0
0	0	1		0
0	0	0		0
0	0	0		0
0	0	0	•••	0
0	0	0		0
0	0	0		0
0	0	0		0
0	0	0		1

10 Outputs

Number Recognition

Recognition of 100% for training data Recognition of 92% for validation data

Detection of Cardiac Anomalies

Normal

Anomaly 1

Anomaly 2

Anomaly 3

Training of Neural Network

600 samples in a period

600 Inputs

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

4 Outputs

Validation with Noisy Signals

Detection of Cardiac Anomalies

600 Inputs

4 Outputs

Recognition of 100% for low and medium level noise

Recognition of 90% for high level noise

Dynamic Neural Networks

Modeling of Dynamical Systems

Static System

$$x_k = \Phi(u_k)$$

Dynamic System

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

Output becomes input in the next step

Input u

Desired Ouput \overline{x}

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

$$x_0$$
, $u_0 \longrightarrow x_1$
 x_1 , $u_1 \longrightarrow x_2$
 x_2 , $u_2 \longrightarrow x_3$
 \vdots
 x_N , $u_N \longrightarrow x_N$

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

Desired Ouput
$$\overline{x} = \left| \frac{\overline{x}_1}{\overline{x}_2} \right|$$

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^2$$

$$\overline{x}_k \rightarrow \text{Estado (Salida) de la red}$$

$$\overline{x}_k \rightarrow \text{Salida deseada (data)}$$

If x is a vector
$$x = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$$

Cost Function to be Minimized

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T (x_k - \overline{x}_k)$$

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$v_{ij} = v_{ij} - \eta \frac{\overline{\partial J}}{\overline{\partial v_{ij}}}$$

$$w_{jk} = w_{jk} - \eta \frac{\overline{\partial J}}{\overline{\partial w_{jk}}}$$
Total partial derivatives

Cost Function to be Minimized $J = 0.5 \sum_{k=1}^{\infty} (x_k - \overline{x}_k)^T (x_k - x_k)$

$$\frac{\overline{\partial J}}{\overline{\partial v}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\overline{\partial x}_k}{\overline{\partial v}}$$

$$\frac{\overline{\partial J}}{\overline{\partial w}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\overline{\partial x}_k}{\overline{\partial w}}$$

Total partial derivative of x_k

Unfolding the Network Along Time

$$v_{ij} = v_{ij} - \eta \frac{\overline{\partial J}}{\overline{\partial v_{ij}}}$$
 Total partial derivatives
$$w_{jk} = w_{jk} - \eta \frac{\overline{\partial J}}{\overline{\partial w_{jk}}}$$

$$z = 3y + 2x$$

$$y = 4x + 5r$$

$$r = 2x + 6s$$

Simple Derivative

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} = 2$$

Total Derivative

$$\frac{\overline{\partial z}}{\overline{\partial x}} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial x}$$

Computation of Total Partial Derivatives

Back Propagation Through Time BPTT
 Paul Werbos, 1972

Dynamic Back Propagation DBP
 Kumpati Narendra, 1989

Dynamic Back Propagation

$$\frac{\overline{\partial x_1}}{\overline{\overline{x}}} = \frac{\partial x_1}{\overline{\overline{x}}}$$

$$\frac{\overline{\partial x}_2}{\overline{\partial v}} = \frac{\partial x_2}{\partial v} + \frac{\partial x_2}{\partial x_1} \frac{\overline{\partial x}_1}{\overline{\partial v}}$$

$$\overline{\partial x_3}$$
 ∂x_3 $\overline{\partial x_2}$

$$\frac{\partial x_3}{\overline{\partial v}} = \frac{\partial x_3}{\partial v} + \frac{\partial x_3}{\partial x_2} \frac{\partial x_2}{\overline{\partial v}}$$

Dynamic Back Propagation

$$\frac{\overline{\partial x_{k+1}}}{\overline{\partial v}} = \frac{\partial x_{k+1}}{\partial v} + \frac{\partial x_{k+1}}{\partial x_k} \frac{\overline{\partial x_k}}{\overline{\partial v}}$$

Recursive expression for computation of total partial derivatives

Modeling of Nonlinear Dynamic System One Input and Two Outputs Network Training

Input Signal u

Training SignalModel Output

Output Signal x1

Output Signal x2

Modeling of Nonlinear Dynamic System Validation: Input-Output Signals

Input Signal u

Training SignalModel Output

Output Signal x1

Output Signal x2

Modeling of Nonlinear Dynamic System

Matlab Simulation

Dynamical system with 1 input and 3 outputs

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{bmatrix}$$

Nonlinear system

$$x_k = Ax_k + Bu_k + Gx_k u_k$$

Dynamic Neural Networks

Control of Dynamical Systems

Car Driving A Control Problem

Control of Dynamical Sytems

Stabilization

Tracking

Control of Dynamical Sytems Stabilization

Controller

$$u_k = \Omega(x_k)$$

System

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

Represented by:

Neural Network

State Equation

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^2$$

$$\overline{x}_k \rightarrow \text{Estado (Salida)}$$

$$\overline{x}_k \rightarrow \text{Salida deseada}$$

If x is a vector
$$x = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$$

Cost Function to be Minimized

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T (x_k - \overline{x}_k)$$

 \overline{x}_{k} Desired output

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$\mathbf{v}_{ij} = \mathbf{v}_{ij} - \eta \frac{\overline{\partial J}}{\overline{\partial \mathbf{v}_{ij}}}$$

$$\mathbf{w}_{jk} = \mathbf{w}_{jk} - \eta \frac{\overline{\partial J}}{\overline{\partial \mathbf{w}_{jk}}}$$
Total partial derivatives

Cost Function to be Minimized $J = 0.5 \sum_{k=1}^{\infty} (x_k - \overline{x}_k)^T (x_k - x_k)$

$$\frac{\partial \overline{J}}{\partial \overline{v}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\partial \overline{x}_k}{\partial \overline{v}}$$

$$\frac{\partial \overline{J}}{\partial \overline{w}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\partial \overline{x}_k}{\partial \overline{w}}$$

Total partial derivative of x_k

Dynamic Back Propagation

$$\frac{\overline{\partial x}_{k+1}}{\overline{\partial v}} = \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial v} + \left(\frac{\partial x_{k+1}}{\partial x_k} + \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial x_k}\right) \frac{\overline{\partial x}_k}{\overline{\partial v}}$$

Recursive expression for computation of total partial derivatives

Dynamic Back Propagation

Positioning of Mobile Robots

Mobile Robot Following a Road

Control Problem

Robot Model

$$x(k+1) = x(k) + v\Delta t \cos(\phi(k))$$

$$y(k+1) = y(k) + v\Delta t \operatorname{sen}(\phi(k))$$

$$\phi(\mathbf{k}+1) = \phi(\mathbf{k}) - v\Delta t / L \tan(\delta(\mathbf{k}))$$

- Backward motion
- Constant speed
- No slipping No skidding

Positioning of Mobile Robot Control Structure

Positioning of Mobile Robot Control Structure

Given problem characteristics, coordinate y is not used for control

Dynamic Back Propagation

Robot Model

$$x(k+1) = x(k) + v\Delta t \cos(\phi(k))$$
$$\phi(k+1) = \phi(k) - v\Delta t / L \tan(\delta(k))$$

$$\mathbf{x_k} = \begin{vmatrix} \mathbf{x}(\mathbf{k}) \\ \mathbf{\phi}(\mathbf{k}) \end{vmatrix}$$
 $\mathbf{u_k} = \tan(\delta(\mathbf{k}))$

$$\frac{\overline{\partial x}_{k+1}}{\overline{\partial v}} = \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial v} + \left(\frac{\partial x_{k+1}}{\partial x_k} + \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial x_k}\right) \frac{\overline{\partial x}_k}{\overline{\partial v}}$$

$$\frac{\partial x_{k+1}}{\partial x_k} \frac{\partial x_{k+1}}{\partial x_k}$$

$$\frac{\partial \mathbf{x}_{k+1}}{\partial \mathbf{x}_{k}} = \begin{bmatrix} 1 & -v\Delta t \sin(\phi(k)) \\ 0 & 1 \end{bmatrix}$$

Computed with the system model

$$\frac{\partial \mathbf{x}_{k+1}}{\partial \mathbf{u}_{k}} = \begin{bmatrix} 0 \\ -v\Delta t/L \end{bmatrix}$$

Incremental Learning

Train the neural network for positions close to x*=0 (four positions)

$$x = -2$$
 -2 2 2 $\phi = -\pi/2$ $\pi/2$ $\pi/2$

Train the neural network for far away positions

Trajectories of Mobile Robot to Achieve a Final Desired Position

Trajectories of Mobile Robot to Achieve a Final Desired Position

Trajectories of Mobile Robot to Follow a Road

Fuzzy Neural Network

Integrates:

Knowledge → **IF** -THEN Rules (Fuzzy)

Data — Training (Neural Network)

Experimental Mobile Robot

Incremental Learning

- Train the neural network for controlling a car $\theta_{12} = 0$
 - Close to the desired position
 - Away from the desired position

- Train the neural network for controlling a truck-trailer $\theta_{12} \neq 0$
 - Small values of θ_{12}
 - Higher values of $\theta_{12} < \pi/2$

$$\dot{x} = v \cos \theta_{12} \cos \theta_{2}$$

$$\dot{y} = v \cos \theta_{12} \sin \theta_{2}$$

$$\dot{\theta}_{1} = -\frac{v}{L_{1}} \tan \delta$$

$$\dot{\theta}_{2} = -\frac{v}{L_{2}} \sin \theta_{12}$$

Achieving a Goal Position

Following a Straight Line

Following a Curved Path

Following a Sinusoidal Path

Thank you for your attention!

Antonio Moran, Ph.D.

amoran@ieee.org