Exercice 1 Soit f une fonction croissante sur [0,1]. Montrer que les points de discontinuité de f (points où f n'est pas continue) forment un ensemble au plus dénombrable.

Exercice 2 Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $f(x,y) = \frac{xy}{x^2+y^2}$ si $(x,y) \neq (0,0)$ et f((0,0)) = 0. Montrer que pour tout $y \in \mathbb{R}$, l'application $x \mapsto f(x,y)$ est continue, que pour tout $x \in \mathbb{R}$, l'application $y \mapsto f(x,y)$ est continue; mais que f n'est pas continue en (0,0).

Exercice 3 1. Les fonctions continues de \mathbb{Q} dans \mathbb{Q} vérifient-elles le théorème des valeurs intermédiaires?

2. Soit $f : \mathbb{R} \to \mathbb{R}$ continue. Si f est injective sur \mathbb{Q} , est-elle nécessairement injective sur \mathbb{R} ? Et si elle est injective sur $\mathbb{R} \setminus \mathbb{Q}$?

Exercice 4 Soit E l'espace des fonctions \mathcal{C}^{∞} de [0,1] dans \mathbb{R} , muni de la métrique $d(f,g) = \sum_{k\geq 0} 2^{-k} min(1, ||f^{(k)} - g^{(k)}||_{\infty})$. On dit qu'une partie X de E est très bornée si pour tout r>0, il existe $\lambda>0$ tel que $X\subset \lambda B(0,r)$.

- 1. Montrer que E est borné mais pas très borné.
- 2. Montrer que les parties compactes de E sont exactement les parties fermées très bornées.

Exercice 5 Soit (X, d) un espace métrique compact. On considère l'espace vectoriel E des fonctions lipschitziennes réelles de X, muni de la norme $||f|| = \sup_{x \in X} |f(x)| + \sup_{x \neq x'} \frac{|f(x) - f(x')|}{d(x,x')}$.

- 1. Montrer que $(E, ||\cdot||)$ est complet.
- 2. Soit Y un espace métrique compact et pour a > 0, on note \mathcal{L}_a l'ensemble des fonctions a-lipschitziennes de X dans Y que l'on munit de la distance sup. Montrer que pour tout a > 0, l'espace \mathcal{L}_a est compact.

Exercice 6 Notons $E = \mathcal{C}([a,b],\mathbb{R})$ muni de la norme sup. Soit $K : [a,b]^2 \to R$ continue. On définit l'opérateur $T_K : E \to E$ tel que $T_K(f)(x) = \int_a^b K(x,y)f(y)\mathrm{d}y$. Montrer que l'image d'une partie bornée de E par T_K est relativement compacte dans E.

Exercice 7

Soit (X, d) un espace métrique dans lequel toute boule ouverte est connexe. Soit A une partie connexe. Montrer que l'ensemble

$$A_{\epsilon} = \{x \in X, d(x, A) < \epsilon\}$$

est connexe pour tout ϵ strictement positif.

Exercice 8 Soit (X, d) un espace métrique, et (K_n) une suite de compacts connexes de X, vérifiant $K_{n+1} \subset K_n$. Montrer que $\bigcap_n K_n$ est connexe. La propriété reste-t-elle vraie si on ne suppose pas les K_n compacts?

Exercice 9 Soit (X, d) un espace métrique. Si $x \in X$, on note C(x) la composante connexe de x, et C'(x) l'intersection des ouverts fermés contenant x.

- 1. Montrer que $C(x) \subset C'(x)$.
- 2. Soit $\epsilon > 0$. On dit que y est ϵ -relié à x s'il existe x_0, \dots, x_n avec $x_0 = x$ et $x_n = y$ et $d(x_i, x_{i+1}) < \epsilon$. On note $C_{\epsilon}(x)$ l'ensemble des points qui sont ϵ reliés à x. Montrer que $C_{\epsilon}(x)$ est ouvert et fermé, et en déduire que $C'(x) \subset C_{\epsilon}(x)$.
- 3. Supposons X compact. Montrer que $\bigcap_{\epsilon>0} C_{\epsilon}(x) \subset C(x)$, et en déduire que C(x) = C'(x).
- 4. On considère le sous-espace de \mathbb{R}^2 suivant : $X = D_1 \cup D_{-1} \cup (\bigcup_{n \geq 2} R_n)$, où D_a est la droite d'équation y = a et R_n est le rectangle de sommets $(\pm n, \pm (1 1/n))$. Donner les composantes connexes de X, et vérifier qu'il existe x tel que $C(x) \neq C'(x)$.