

Machine learning: Frequentist vs Bayesian

1. Classical ML with a bayesian flavor: deep ensembles

The compromise

Entraîner m réseaux de neurones avec des initialisations différentes pour obtenir $f_{\theta_1^*}, \ldots, f_{\theta_m^*}$ et quantifier l'incertitude

2. Bayesian ML with a frequentist flavor: bayesian output layer

Hidden layer 1 Hidden layer 2 · · · Hidden layer L Output layer

Input layer

Seules ω et ω_0 sont aléatoires

Optimiser tous les paramètres sauf les derniers:

Best of both worlds:

Best of both worlds:

1. Classical ML with a bayesian flavor: deep ensembles

Entraîner m réseaux de neurones avec des initialisations différentes pour obtenir $f_{\theta_1^*}, \ldots, f_{\theta_m^*}$ et quantifier l'incertitude

2. Bayesian ML with a frequentist flavor: bayesian output layer

Optimiser tous les paramètres sauf les derniers:

Seules ω et ω_0 sont aléatoires

Input layer

Hidden layer 1

Hidden layer 2

Hidden layer L

Output layer

Conclusion

1. La modélisation bayésienne:

