Lista 01 - PGM2017

Renato Assunção - DCC, UFMG

Agosto 2017

1. Considere o exemplo das notas de aula em que observamos as variáveis Inteligência (I, em dois níveis), Dificuldade da disciplina (D, em dois níveis) e Nota (G, em três níveis). Quais das colunas abaixo não pode representar uma distribuição de probabilidade conjunta do vetor $\mathbf{X} = (I, D, G)$? Isto é, quais das colunas não são representações válidas para as probabilidades $\mathbb{P}(I = i, D = d, G = g)$?

I	D	G	₽?	₽?	₽?	₽?	₽?	₽?
i^0	d^0	g^1	0.106	0.106	0.106	0.106	0.500	1/12
i^0	d^0	g^2	0.125	0.125	0.125	1.125	0.500	1/12
i^0	d^0	g^3	0.020	0.020	-0.020	0.020	0.000	1/12
i^0	d^1	g^1	0.007	0.007	0.027	0.027	0.000	1/12
i^0	d^1	g^2	0.150	0.150	0.150	0.150	0.000	1/12
i^1	d^1	g^3	0.186	0.186	0.186	0.186	0.000	1/12
i^1	d^0	g^1	0.022	0.022	0.022	0.022	0.000	1/12
i^1	d^0	g^2	0.078	0.078	0.078	0.078	0.000	1/12
i^1	d^0	g^3	0.005	0.005	0.005	0.005	0.000	1/12
i^1	d^1	g^1	0.081	0.081	0.081	0.081	0.000	1/12
i^1	d^1	g^2	0.041	0.041	0.041	0.041	0.000	1/12
i^1	d^1	g^3	0.178	0.008	0.178	0.178	0.000	1/12

- 2. O arquivo alunos3var.txt contem os dados estaísticos de uma amostra de estudantes em diversas disciplinas de um curso técnico. A partir desses dados estatísticos, estime a distribuição conjunta do vetor $\mathbf{X} = (I, D, G)$. Basta contar as frequências das ocorrências de cada uma das $2 \times 2 \times 3$ configurações possíveis.
- 3. Numa primeira tentativa de definir causas probabilísticas, suponha que vamos dizer que A causa B probabilisticamente se $\mathbb{P}(B|A) > \mathbb{P}(B)$. Mostre que isto é equivalente a dizer que A causa B se $\mathbb{P}(B|A) > \mathbb{P}(B| \backsim A)$.
- 4. Se $\mathbb{P}(B|A) = \mathbb{P}(B)$ dizemos que B é independente de A. Mostre que neste caso teremos também $\mathbb{P}(A|B) = \mathbb{P}(A)$ e portanto A é independente de B. Assim, a relação de independência entre eventos é simétrica e podemos simplesmente dizer que A e B são independentes.
- 5. V ou F: Se $\mathbb{P}(A) > \mathbb{P}(B)$ então $\mathbb{P}(A|C) > \mathbb{P}(B|C)$.
- 6. Mostre que, se $\mathbb{P}(B|A) < \mathbb{P}(B)$, então $\mathbb{P}(\neg B|A) > \mathbb{P}(\neg B)$ e portanto A causa $\neg B$ probabilisticamente. (Obs: $\neg B$ significa o complementar do evento B ou a não ocorrência do evento B).
- 7. Assuma que A e B sejam eventos independentes. Quais das seguintes opções (de zero a 4) são corretas?
 - $\mathbb{P}(A) = \mathbb{P}(B)$

- $\mathbb{P}(B \cap A) = \mathbb{P}(A) + \mathbb{P}(B)$
- $\mathbb{P}(B \cap A) = \mathbb{P}(A) \cdot \mathbb{P}(B)$
- $\mathbb{P}(B|A) = \mathbb{P}(B)$