Билеты по мат. анализу, 2 сем (преподаватель Кононова А. А.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	Интегральные суммы Римана. Интегрируемость по Риману.	5
2	Интегрируемость по Риману. Ограниченность интегрируемой функции.	7
3	Суммы Дарбу, их свойства (связь с суммами Римана, поведение при измельчении).	8
4	Критерий интегрируемости в терминах сумм Дарбу. Критерий Римана (б/д).	9
5	Интегрируемость непрерывной функции, монотонной функции.	10
6	Интегрируемость кусочно-непрерывной функции.	11
7	Интегрируемость суммы, произведения, модуля.	12
8	Интегрируемость функции и ее сужений.	13
9	Свойства интеграла Римана (линейность; аддитивность; свойства, связанные с неравенствами).	14
10	Первая теорема о среднем. Следствие для непрерывных функций.	16
11	Формула Ньютона-Лейбница. Теорема об интеграле с переменным верхним пределом.	17
12	Формула интегрирования по частям в интеграле Римана. Применение: формула Валлиса.	20
13	Формула Тейлора с остаточным членом в интегральной форме.	22
14	Формула интегрирования по частям в интеграле Римана. Вторая теорема о среднем.	23

15	Замена переменной в определенном интеграле (две формулировки, доказательство одной).	24
16	Признаки сравнения для положительных рядов.	26
17	Признаки Даламбера и Коши для положительных рядов.	27
18	Абсолютная и условная сходимость рядов. Сходимость следует из абсолютной сходимости.	29
19	Абсолютная и условная сходимость. Пример: $\sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$	30
2 0	Перестановка абсолютно сходящегося ряда. Теорема Римана (б/д).	31
21	Асимптотика частичных сумм расходящегося ряда (случай гармонического ряда). Постоянная Эйлера.	33
22	Несобственные интегралы. Примеры. Несобственный интеграл в смысле главного значения. Критерий Больцано-Коши для несобственных интегралов.	34
23	Свойства несобственных интегралов (линейность, аддитивность, монотонность, формула Ньютона-Лейбница).	36
24	Свойства несобственных интегралов (интегрирование по частям, замена переменной).	38
25	Интегральный признак Коши сходимости несобственных интегралов и рядов.	39
26	Признаки сравнения для несобственных интегралов.	40
27	Абсолютная и условная сходимость интегралов. Сходимость следует из абсолютной сходимости.	42
28	Абсолютная и условная сходимость. Пример: $\int\limits_0^\infty \frac{\sin x}{x}$	43
2 9	Признаки Дирихле и Абеля для несобственных интегралов (док-во одного из них).	44
30	Признаки Дирихле и Абеля для рядов (док-во одного из них).	45
31	Применение интеграла Римана для вычисления площадей и объемов. Примеры.	46

32 Путь. Длина пути. Спрямляемый путь. Аддитивность длины пути.	49
33 Кривая. Длина кривой.	5 2
34 Теорема о вычислении длины гладкого пути.	5 3
35 Функциональные последовательности и ряды. Поточечная и равномерная сходимость. Примеры.	55
36 Критерий Коши для равномерной сходимости функциональной последовательности.	57
37 Сохранение непрерывности при равномерном предельном переходе. Теорема Дини ($6/д$). Теорема о предельном переходе под знаком интеграла.	58
38 Дифференцируемость и равномерная сходимость.	60
39 Признак Вейерштрасса равномерной сходимости функциональных рядов.	61
40 Степенной ряд (в $\mathbb C$). Радиус сходимости. Формула Коши-Адамара.	62
41 Теорема о комплексной дифференцируемости степенного ряда. Следствие: единственность разложения в степенной ряд.	64
42 Ряд Тейлора. Примеры $(e^x, \sin x, \ln(1+x), e^{-\frac{1}{x^2}})$.	65
43 Биномиальный ряд $(1+x)^{\alpha}$	66
44 Признак Абеля-Дирихле для равномерной сходимости функциональных рядов (доказательство одного).	67
45 Теорема Абеля. Сумма ряда $\sum\limits_{n=1}^{\infty} rac{(-1)^{n-1}}{n}$.	68
46 Интеграл комплекснозначной функции. Скалярное произведение и норма в пространстве $C(\mathbb{C}\setminus\mathbb{R}),$ в пространстве $R([a;b]).$ Ортогональность. Пример: $e_k(x)=e^{2\pi i k x}.$	69
47 Свойства скалярного произведения и нормы (теорема Пифагора, неравенство Коши-Буняковского-Шварца, неравенство треугольника).	70

48	Коэффициенты Фурье функции по ортогональной системе e_k . Ряд Фурье. Пример: тригонометрический полином.	71
49	Свойства коэффициентов Фурье (коэффициенты Фурье сдвига, производной).	72
50	Неравенство Бесселя. Лемма Римана-Лебега (light).	73
51	Вычисление интеграла Дирихле $\int\limits_0^\infty \frac{\sin x}{x}$.	74
52	Ядра Дирихле, их свойства. Выражение частичных сумм ряда Фурье через ядра Дирихле.	7 5
53	Свертка. Простейшие свойства. Свертка с тригонометрическими и алгебраическими полиномами.	76
54	Принцип локализации Римана.	77
55	Теорема о поточечной сходимости ряда Фурье для локально- Гельдеровой функции.	7 8
56	Ядра Фейера, их свойства. Связь с $\sigma_N(f)$.	79
57	Аппроксимативная единица. Определение, примеры. Теорема о равномерной сходимости свертки с аппроксимативной единицей.	80
58	Теорема Фейера. Теорема Вейерштрасса.	81
5 9	Среднеквадратичное приближение функций, интегрируемых по Риману, тригонометрическими полиномами.	82
60	Равенство Парсеваля.	83
61	Замечания из конспектов, которые не вошли в билеты 61.1 Множества меры ноль	84 84 84

1 Интегральные суммы Римана. Интегрируемость по Риману.

Опр

 τ -разбиение на [a;b]:

$$\tau = \{x_k\}_{k=0}^n : a = x_0 < x_1 < \dots < x_n = b$$

Опр

Мелкость разбиения τ:

$$\lambda(\tau) = \max_{k=0...n-1} \Delta_k = x_{k+1} - x_k$$

Опр

Оснащение разбиения т:

$$\xi = \{\xi_k\}_{k=0}^{n-1} : \xi_k \in [x_k, x_{k+1}]$$

Опр

Пусть $f:[a,b] \to \mathbb{R}$, тогда сумма Римана:

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k$$

Опр

Интегралом Римана функции f по отрезку [a,b] называется $I\in\mathbb{R}$:

$$\forall \mathcal{E} > 0 \ \exists \delta > 0 : \forall \tau : \ \lambda(\tau) < \delta, \ \forall \xi \ |S(f, \tau, \xi) - I| < \mathcal{E}$$

то есть неформально

$$\lim_{\lambda(\tau)\to 0} S(f,\tau,\xi) = I$$

Опр

Будем говорить, что f интегрируема по Риману на [a;b], если $\exists I$ - интеграл функции f по Риману на [a,b]. И записывать это как

$$f \in R[a,b], \ I = \int_a^b f(x)dx = \int_a^b f$$

Пример

$$f(x) = C$$

Решение

$$\forall \tau \ \forall \xi \ S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = C \sum_{k=0}^{n-1} \Delta_k = C(b-a)$$
$$I = C(b-a) = \int_a^b C dx$$

Пример

Функция Дирихле $\mathcal{D}(x) = \mathcal{X}_{\mathbb{Q}}$ на отрезке [0,1]

$$A \subset \mathbb{R}, \,\, \mathcal{X}_{\mathbb{A}} = egin{cases} 1, & ext{если } x \in A \ 0, & ext{если } x
otin A \end{cases}$$

Решение

Пусть τ - произвольное разбиение.

$$\xi^*=\{\xi_k^*\}: \xi_k^*\in \mathbb{Q}\cap [x_k,x_{k+1}]$$
 - рациональное оснащение $\widetilde{\xi}=\{\widetilde{\xi}_k\}: \widetilde{\xi}_k\in [x_k,x_{k+1}]\setminus \mathbb{Q}$ - иррациональное оснащение
$$S(f,\tau,\xi^*)=\sum_{k=0}^{n-1}\mathcal{D}(\xi_k^*)\Delta_k=\sum_{k=0}^{n-1}\Delta_k=b-a$$

$$S(f,\tau,\widetilde{\xi})=0$$

 $\mathcal{D} \notin R[0,1]$. Док-во от противного, пусть это не так, тогда

$$\exists I: \ \forall \mathcal{E} > 0 \ \exists \delta > 0: \forall \tau: \ \lambda(\tau) < \delta, \ \forall \xi \ |S(f, \tau, \xi) - I| < \mathcal{E}$$

Возьмём ξ^* и $\widetilde{\xi}$:

$$1 = |S(f, \tau, \xi^*) - S(f, \tau, \widetilde{\xi})| \leqslant |S(f, \tau, \xi^*) - I| + |S(f, \tau, \widetilde{\xi}) - I| \leqslant 2\mathcal{E}$$

Пример

$$f(x) = \mathcal{X}_0, f \in R[-1, 1]$$

Решение

Покажем, что I=0. ξ_i на интервалах δ_i может max два раза попадать в 0. Пусть это будет при $k,\,k+1$. Тогда:

$$S(f, \tau, \xi) = \sum_{i=0}^{n-1} f(\xi_i) \Delta_i = \sum_{i=0, i \neq k, k+1}^{n-1} f(\xi_i) \Delta_i + f(\xi_k) \Delta_k + f(\xi_{k+1}) \Delta_{k+1} =$$

$$= f(\xi_k) \Delta_k + f(\xi_{k+1}) \Delta_{k+1} \leqslant \Delta_k + \Delta_{k+1} < 2\lambda(\tau) \to 0$$

2 Интегрируемость по Риману. Ограниченность интегрируемой функции.

Определение интегрируемости см. в первом билете.

y_{TB}

Если $f \in R[a,b]$, то f - ограничена на [a,b].

Док-во (от противного)

Пусть
$$\sup_{[a,b]} f(x) = +\infty$$
.

Для
$$\mathcal{E}=1$$
 $\exists \delta>0: \forall \tau: \ \lambda(\tau)<\delta, \ \forall \xi \ |S(f,\tau,\xi)-I|<\mathcal{E}.$

Зафиксируем $\tau^* : \lambda(\tau^*) < \delta$:

Так как
$$\sup_{[a,b]} f(x) = +\infty \Rightarrow \exists k : \sup_{[x_k,x_{k+1}]} f(x) = +\infty.$$

"отпустим ξ_k^* ". $S(f, \tau, \xi) = \sum_{i=0}^{n-1} f(\xi_i) \Delta_i = \sum_{i \neq k}^{n-1} f(\xi_i) \Delta_i + f(\xi_k) \Delta_k$ (неограничена, выберем ξ_k так чтобы) $> \mathcal{E} + I$, Противоречие.

3 Суммы Дарбу, их свойства (связь с суммами Римана, поведение при измельчении).

Опр

Пусть
$$f:[a,b] \to \mathbb{R}$$
, au -разбиение. $M_k = \sup_{[x_k,x_{k+1}]} f(x)$, $m_k = \inf_{[x_k,x_{k+1}]} f(x)$, тогда: $S^*(f, au) := \sum_{k=0}^{n-1} M_k \Delta_k$ - верхняя сумма Дарбу $S_*(f, au) := \sum_{k=0}^{n-1} m_k \Delta_k$ - нижняя сумма Дарбу

Опр

 τ' называется измельчением τ ($\tau' \prec \tau$), если $\tau \subset \tau'$

Свойства

1.
$$\forall \xi, f, \tau$$
 - зафикс $\Rightarrow S_*(f, \tau) \leqslant S(f, \tau, \xi) \leqslant S^*(f, \tau)$

2. (a)
$$S^*(f,\tau) = \sup_{\xi} S(f,\tau,\xi)$$
, (b) $S_*(f,\tau) = \inf_{\xi} S(f,\tau,\xi)$

3.
$$S^*(f,\tau') \leq S^*(f,\tau), S_*(f,\tau') \geq S_*(f,\tau)$$

4.
$$\forall \tau_1, \tau_2 : S_*(\tau_1) \leq S^*(\tau_2)$$

Док-во

- 1. Очевидно из определения
- 2. Докажем пункт (а). Нужно доказать, что:

$$\forall \mathcal{E} > 0 \ \exists \xi^* \ S(f, \tau, \xi^*) > S^*(f, \tau) - \mathcal{E}$$

$$M_k = \sup_{[x_k, x_{k+1}]} \Rightarrow \exists \xi_k^* : f(\xi_k^*) > M_k - \frac{\mathcal{E}}{b - a}$$

$$S(f, \tau, \xi^*) = \sum_{k=0}^{n-1} f(\xi^*) \Delta_k > \sum_{k=0}^{n-1} M_k \Delta_k - \frac{\mathcal{E}}{b - a} \sum_{k=0}^{n-1} \Delta_k = S^*(f, \tau) - \mathcal{E}$$

3. Пусть $\tau : x_0 < x_1 < ... < x_n$, добавим x':

$$\tau': x_0 < x_1 < \dots < x_k < x' < x_{k+1} < \dots < x_n,$$

$$S^*(f,\tau) - S^*(f,\tau') = \sup_{[x_k, x_{k+1}]} f(x)(x_{k+1} - x_k) - \sup_{[x_k, x']} f(x)(x' - x_k) - \sup_{[x', x_{k+1}]} f(x)(x_{k+1} - x') \geqslant \sup_{[x_k, x_{k+1}]} f(x)(x_{k+1} - x_k - x' + x_k - x_{k+1} + x') = 0, \Rightarrow S^*(f,\tau') \leqslant S^*(f,\tau)$$

4. Пусть $\tau = \tau_1 \cup \tau_2$ (произведение разбиений в обозначениях Кононовой), тогда $\tau \prec \tau_1, \tau_2$, значит

$$S_*(f, \tau_1) \leqslant S_*(f, \tau) \leqslant S^*(f, \tau) \leqslant S^*(f, \tau_2)$$

4 Критерий интегрируемости в терминах сумм Дарбу. Критерий Римана (б/д).

Теорема (критерий Дарбу)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \delta > 0 : \forall \lambda(\tau) < \delta \Rightarrow S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

Док-во

 (\Rightarrow) Необходимость. $f \in R[a,b] \Rightarrow I \in \mathbb{R}$:

$$\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta, \; \forall \xi \; |S(f, \tau, \xi) - I| < \frac{\mathcal{E}}{3}$$
$$I - \frac{\mathcal{E}}{3} \leqslant S_*(f, \tau) \leqslant S(f, \tau, \xi) \leqslant S^*(f, \tau) \leqslant I + \frac{\mathcal{E}}{3}$$
$$0 \leqslant S^*(f, \tau) - S_*(f, \tau) \leqslant \frac{2\mathcal{E}}{3} < \mathcal{E}$$

 (\Leftarrow) Достаточность.

$$\forall \mathcal{E} > 0 \ \exists \delta > 0 : \forall \tau : \ \lambda(\tau) < \delta \ S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

$$I^* := \inf_{\tau} S^*(f,\tau), \ I_* := \sup_{\tau} S_*(f,\tau)$$

$$0 \leqslant I^* - I_* \leqslant S^*(f,\tau) - S_*(f,\tau) < \mathcal{E} \Rightarrow I^* = I_* = I$$

$$\forall \mathcal{E} \ S_*(f,\tau) \leqslant S(f,\tau,\mathcal{E}) \leqslant S^*(f,\tau) \Rightarrow |S(f,\tau,\mathcal{E}) - I| < \mathcal{E}$$

Теорема (критерий Римана)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \tau : S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

5 Интегрируемость непрерывной функции, монотонной функции.

Опр

Колебание
$$f: E \to \mathbb{R}$$
 на $E \subset \mathbb{R}$, $\omega(f, E) = \sup_{x \in E} f(x) - \inf_{x \in E} f(x)$,
$$d_k = [x_k, x_{k+1}], \ S^*(f, \tau) - S_*(f, \tau) = \sum_{k=0}^{n-1} M_k \Delta_k - \sum_{k=0}^{n-1} m_k \Delta_k = \sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k$$

Теорема (критерий Дарбу, другая форма)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \delta > 0 : \forall \tau : \lambda(\tau) < \delta \Rightarrow \sum_{k=0}^{n-1} \omega(f,d_k) \Delta_k < \mathcal{E}$$

(неформально
$$\lim_{\lambda(\tau)\to 0}\sum_{k=0}^{n-1}\omega(f,d_k)\Delta_k=0)$$

Следствие (1)

$$C[a,b] \subset R[a,b]$$

Док-во

$$f \in C[a,b] \Rightarrow f$$
равн. непр. на $[a,b]$

$$\Leftrightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall x', x'' \in E$$
 справедливо $|x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \mathcal{E}$

$$\Rightarrow \forall \tau : \lambda(\tau) < \delta \Rightarrow \omega(f, d_k) < \mathcal{E}$$
, рассмотрим

$$\sum_{k=0}^{n-1} \omega(f,d_k) \Delta_k < \mathcal{E} \sum_{k=0}^{n-1} \Delta_k = \mathcal{E}(b-a) \widetilde{\mathcal{E}} \Rightarrow \text{ по критерию Дарбу } f \in R[a,b]$$

<u>Следствие</u> (2)

f-ограничена и монотонна на $[a,b]\Rightarrow f\in R[a,b]$

$$(f\nearrow)$$
 $\forall \mathcal{E}>0$ $\exists \delta=rac{\mathcal{E}}{f(b)-f(a)},$ пусть $\lambda(au)<\delta$

$$\sum_{k=0}^{k-1} \omega(f, d_k) \Delta_k \leqslant \delta \sum_{k=0}^{k-1} (f(x_{k+1}) - f(x_k)) = \delta(f(b) - f(a)) = \mathcal{E}$$

6 Интегрируемость кусочно-непрерывной функции.

Опр

 $f:[a,b] o \mathbb{R}$ - кусочно-непрерывная функция, если:

$$f \in C([a,b] \setminus \{t_1,...,t_n\})$$
 и $t_1,...,t_n$ - точки разрыва I рода

Следствие (3)

$$f:[a,b] o \mathbb{R}$$
 - кусочно-непрерывная $\Rightarrow f \in R[a,b]$

Док-во

Пусть $A = \{k \in \mathbb{N} | \exists j : t_j \in d_k\}, C = \omega(f, [a, b]) < \infty$

Если $k \notin A \Rightarrow f$ - непр. на $d_k \Rightarrow \mathrm{p/H} \Rightarrow \exists \delta_k$ из $\mathrm{p/H}$. Причем $|A| \leqslant 2n$, потому что t_i могут попасть в тах два соседниих промежутка.

Возьмём $\delta = \min_{k \notin A} \delta_k$, если $\tau : \lambda(\tau) < \delta$, то

$$\sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k = \sum_{k \in A} \omega(f, d_k) \Delta_k + \sum_{k \notin A} \omega(f, d_k) \Delta_k \leqslant 2nC\lambda_k + \mathcal{E} \sum_{k=0}^{n-1} \Delta_k < 2nC\lambda_k + \mathcal{E} \sum_{k=0}^{n$$

$$<2nC\lambda(\tau)+\mathcal{E}(b-a)<$$
 (пусть $\widetilde{\delta}=\min(\delta,\frac{\mathcal{E}}{2nC})$, тогда $\forall \tau:\lambda(\tau)<\delta)$ $<\mathcal{E}+\mathcal{E}(b-a)=\mathcal{E}(1+b-a)$

7 Интегрируемость суммы, произведения, модуля.

Свойство (1)

$$f, g \in R[a, b] \Rightarrow f + g \in R[a, b]$$

Док-во

$$\omega(f+g,E) = \sup_{E} (f+g) - \inf_{E} (f+g) \leqslant \sup_{E} f + \sup_{E} g - \inf_{E} f - \inf_{E} g$$

$$\leqslant \omega(f,E) + \omega(g,E) \to 0 \underset{\text{KD. } \overrightarrow{\text{Map6}}_{\text{V}}}{\Rightarrow} f + g \in R[a,b]$$

Свойство (2)

$$f \in R[a,b] \Rightarrow f^2 \in R[a,b]$$

Док-во

$$f$$
 - ограничено $\Rightarrow \exists M>0: |f(x)|\leqslant M \quad \forall x\in [a,b]$
$$\omega(f^2,E)=\sup_E(f^2)-\inf_E(f^2)=\sup_{x_1,x_2\in E}(f^2(x_2)-f^2(x_1))=$$

$$=\sup_{x_1,x_2\in E}(f(x_2)-f(x_1))(f(x_2)+f(x_1))\leqslant 2M\omega(f,E)\to 0$$

Свойство (3)

$$f,g \in R[a,b] \Rightarrow f \cdot g \in R[a,b]$$

Док-во

Так как
$$f\in R[a,b]\Rightarrow -f\in R[a,b]$$

$$\Rightarrow f\cdot g=\frac{1}{4}((f+g)^2-(f-g)^2)\in R[a,b]$$

Свойство (4)

$$f \in R[a,b] \Rightarrow |f| \in R[a,b]$$

$$||f(x_1)| - |f(x_2)|| \le |f(x_2) - f(x_1)| \xrightarrow{\sup} \omega(|f|, E) \le \omega(f, E) \to 0 \Rightarrow \in R[a, b]$$

8 Интегрируемость функции и ее сужений.

Свойство (5)

$$f \in R[a,b], [c,d] \subset [a,b] \Rightarrow f \in R[c,d]$$

Док-во

$$f \in R[a,b] \Rightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 :$$

для всех τ' на [c,d] расширенных до τ на [a,b]:

$$\lambda(\tau) < \delta \Rightarrow \sum_{\text{pash } \tau'} \omega(f, d_k) \Delta_k \Rightarrow \sum_{\text{pash } \tau} \omega(f, d_k) \Delta_k \Rightarrow < \mathcal{E}$$

Свойство (6)

$$a < c < b \Rightarrow R[a, c] \cup R[c, b] \subset R[a, b]$$

Док-во

$$orall \mathcal{E} > 0 \; \exists \delta_1 > 0 \; \mathrm{Ha} \; [\mathrm{a,c}] : \lambda(\tau_1) < \delta_1 \Rightarrow S^*(f_1,\tau_1) - S_*(f_1,\tau_1) < \mathcal{E}$$
 $\exists \delta_2 > 0 \; \mathrm{Ha} \; [\mathrm{c,b}] : \lambda(\tau_2) < \delta_2 \Rightarrow S^*(f_2,\tau_2) - S_*(f_2,\tau_2) < \mathcal{E}$ Пусть $\delta = min(\delta_1,\delta_2), \; \tau = \tau_1 \cup \tau_2, \; \lambda(\tau_1) < \delta, \; \lambda(\tau_2) < \delta$

Мог произойти разрыв, но $|f| \leqslant M \Rightarrow \omega(f,[a,b]) < W$

$$\sum \omega(f, d_k) \Delta_k = S^*(f, \tau) - S_*(f, \tau) \leqslant S^*(f, \tau_1) - S_*(f, \tau_1) + S^*(f, \tau_2) - S_*(f, \tau_2) + d_m^{\Pi} \Delta_m^{\Pi} + d_m^{\Pi} \Delta_m^{\Pi} \leqslant (d_m = d_m^{\Pi} \cup d_m^{\Pi}, \ \widetilde{\delta} = \min(\delta_1, \delta_2, \frac{\mathcal{E}}{W})) 2\mathcal{E} + W\widetilde{\delta} < 3\mathcal{E}$$

9 Свойства интеграла Римана (линейность; аддитивность; свойства, связанные с неравенствами).

Опр

Если
$$a < b$$
, то $\int\limits_{b}^{a} f = -\int\limits_{a}^{b} f$ и $\int\limits_{a}^{a} = 0$

Свойство (1, линейность)

$$orall f,g\in R[a,b], lpha,eta\in\mathbb{R}\Rightarrow\int\limits_{b}^{a}(lpha f+eta g)=lpha\int\limits_{b}^{a}f+eta\int\limits_{b}^{a}g$$

Док-во

Знаем, что $\alpha f + \beta g \in R[a,b],$

$$S(\alpha f + \beta g, \tau, \xi) = \alpha S(f, \tau, \xi) + \beta S(g, \tau, \xi)$$
 (очевидно из определения сумм Римана)

Свойство (2, аддитивность)

$$\forall f \in R[a, b], \ a < c < b \Rightarrow \int_{b}^{a} f = \int_{c}^{a} f + \int_{b}^{c} f$$

Док-во

Очевидно (аналогично прошлому)

Свойство (3)

$$\forall f \in R[a, b], \ a < b, \ f \geqslant 0 \Rightarrow \int_{a}^{b} f \geqslant 0$$

Док-во

Очевидно из определения суммы Римана

<u>Свойство</u> (4)

$$\forall f, g \in R[a, b], \ g(x) \leqslant f(x) \ \forall x \in [a, b], a < b \Rightarrow \int_{b}^{a} g \leqslant \int_{b}^{a} f(x) \ dx = f(a, b)$$

Док-во

Очевидно, если взять одно разбиение и оснащение

Свойство (5)

$$\forall f \in R[a,b], \ m \leqslant f(x) \leqslant M \ \forall x \in [a,b], \ a < b \Rightarrow m(b-a) \leqslant \int\limits_{b}^{a} f \leqslant M(b-a)$$

Док-во

С использованием предыдущего свойства взять интеграл

Свойство (6)

$$f \in R[a,b], \ m = \inf_{[a,b]} f, \ M = \sup_{[a,b]} f \Rightarrow \exists \mu \in [m,M] : \int_{b}^{a} f = \mu(b-a)$$

Док-во

$$\mu = \frac{\int\limits_{b}^{a}f}{b-a} \in [m,M] \ (\text{по предыдущему неравенству})$$

Свойство (7)

$$f \in C[a,b], \Rightarrow \exists \xi \in [a,b]: \int_{b}^{a} f = f(\xi)(b-a)$$

Док-во

По теореме о промежуточном значении (Больцано-Коши) используя предыдущее свойство

Свойство (8)

$$f \in R[a,b], \Rightarrow |\int_{b}^{a} f| \leqslant \int_{b}^{a} |f|$$

$$\overline{-|f|} \leqslant f \leqslant |f| \Rightarrow -\int_{b}^{a} |f| \leqslant \int_{b}^{a} f \leqslant \int_{b}^{a} |f| \Rightarrow |\int_{b}^{a} f| \leqslant \int_{b}^{a} |f|$$

10 Первая теорема о среднем. Следствие для непрерывных функций.

Теорема

$$f, g \in R[a, b], g \geqslant 0, m \leqslant f \leqslant M$$

$$\forall x \in [a, b] \Rightarrow \exists \mu \in [m, M] : \int_{b}^{a} fg = \mu \int_{b}^{a} g$$

Док-во

$$\overline{mg} \leqslant fg \leqslant Mg \Rightarrow m \int_{b}^{a} g \leqslant \int_{b}^{a} fg \leqslant M \int_{b}^{a} g$$

$$\frac{m \int_{b}^{a} g}{\int_{b}^{a} g} \leqslant \frac{\int_{b}^{a} fg}{\int_{b}^{a} g} \leqslant \frac{M \int_{b}^{a} g}{\int_{b}^{a} g}$$

$$m \leqslant \frac{\int_{b}^{a} fg}{\int_{b}^{a} g} \leqslant M$$

а)
$$\int\limits_{b}^{a}g=0$$
, тогда μ - любое.

б)
$$\int\limits_{b}^{a}g\neq0\Rightarrow\mu:=\frac{\int\limits_{b}^{a}fg}{\int\limits_{b}^{g}g}\in[m,M]$$

Следствие

Если
$$f \in C[a,b], \ g \in R[a,b], \ g \geqslant 0 \Rightarrow \exists \xi \in [a,b] : \int\limits_{b}^{a} fg = f(\xi) \int\limits_{b}^{a} g$$

Док-во

По теореме о промежуточном значении (Больцано-Коши) используя неравенство из последнего доказательства для $m=\inf_{[a,b]}f,\ M=\sup_{[a,b]}f$

11 Формула Ньютона-Лейбница. Теорема об интеграле с переменным верхним пределом.

Опр

$$E \subset \mathbb{R}, \quad F: E \to \mathbb{R} \quad f: E \to \mathbb{R}$$

Тогда F называется первообразной f, если $F'(x) = f(x) \quad \forall x \in E$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

 F_1, F_2 - первообразные f на E, тогда:

$$F(x_1) - F(x_2) = \text{const}$$
 (т. Лагранжа)

Теорема (формула Ньютона-Лейбница)

 $f \in R[a, b], \ F$ -первообразная f, тогда:

$$\int_{a}^{b} f = F(b) - F(a) = F|_{a}^{b}$$

Док-во

 $\forall \tau$ на [a,b] по теореме Лагранжа:

$$\exists \xi_k \in [x_k, x_{k+1}]: F(x_{k+1}) - F(x_k) = F'(\xi_k)(x_{k+1} - x_k) = f(\xi_k)\Delta_k$$

Так как $f \in R[a,b] \Rightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta, \; \forall \xi \; |S(f,\tau,\xi) - I| < \mathcal{E}$ Возьмём оснащение ξ из теоремы Лагранжа:

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = \sum_{k=0}^{n-1} (F(x_{k+1}) - F(x_k)) = F(b) - F(a)$$

Опр

 $E \subset \mathbb{R}, \quad \mathcal{E}$ - невырожденный промежуток,

$$f:E o\mathbb{R}\quad orall lpha,eta\in E:\quad lpha для $a\in E$ (фиксированного)$$

$$F(x) := \int\limits_a^x f(t) dt$$
 - интеграл с переменным верхним пределом

$$F:E\to\mathbb{R}$$

Теорема

$$\overline{f \in R[a,b]}, \ F(x) = \int\limits_a^x f(t)dt,$$
 тогда:

- 1. $F \in C[a,b]$
- 2. (теорема Барроу) Если f непр. в т. $x_0 \in [a, b]$, то $F'(x_0) = f(x_0)$

Док-во

$$x\in [a,b],\ h:x+h\in [a,b]$$

1)
$$F(x+h)-F(x)=\int\limits_a^{x+h}f-\int\limits_a^xf=\int\limits_a^{x+h}f+\int\limits_x^af=\int\limits_x^{x+h}f$$
 Так как $f\in R[a,b]\Rightarrow \exists M\in\mathbb{R}:|f|< M,$ значит:

$$|F(x+h) - F(x)| \le \left| \int_x^{x+h} f \right| \le \int_x^{x+h} |f| \le M |h|$$

Кроме того,
$$\forall \mathcal{E} > 0, \ \delta = \frac{\mathcal{E}}{M}$$
 если $|h| < \delta \Rightarrow |F(x+h) - F(x)| < \mathcal{E}$

Кроме того,
$$\forall \mathcal{E} > 0$$
, $\delta = \frac{\mathcal{E}}{M}$ если $|h| < \delta \Rightarrow |F(x+h) - F(x)| < \mathcal{E}$
2) Рассмотрим $\left| \frac{F(x_0+h) - F(x_0)}{h} - f(x_0) \right| = \left| \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt - f(x_0) \frac{1}{h} \int_{x_0}^{x_0+h} dt \right| = \frac{1}{|h|} \left| \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt \right| \leqslant \frac{1}{|h|} \left| \int_{x_0}^{x_0+h} \mathcal{E} dt \right| = \mathcal{E}$
(при $|h| < \delta \ \forall \mathcal{E} > 0 \ \exists \delta > 0 : |t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \mathcal{E}$)

Следствие

$$F \in C[a, b] \Rightarrow \exists F : F'(x) = f(x) \ \forall x \in [a, b]$$

Пример

$$f(x) = |x|, \ F(x) = \int_{0}^{x} |t| dt = \begin{cases} \frac{t^{2}}{2} \Big|_{0}^{x}, & x \geqslant 0 \\ -\frac{t^{2}}{2} \Big|_{0}^{x}, & x < 0 \end{cases}$$

$$\frac{\mathbf{\Pi}\mathbf{pимep}}{f(x)} = \begin{cases} 1, & x \geqslant 0 \\ -1, & x < 0 \end{cases}$$

 $\forall x \neq 0$, видно что неверно для первообразной, но:

Опр

F - "почти первообразная", если:

1.
$$F'(x) = f(x) \ \forall x \in [a, b] \setminus \{t_1, ...t_n\}$$

$$2. \ F \in C[a,b]$$

Пример

Пример для "почти первообразной". Найти $\int\limits_0^2 f(x),$ для $f(x)=\max(1,x)$

$$F(t) \stackrel{?}{=} \begin{cases} t, & t \in [0, 1] \\ \frac{t^2}{2}, & t \in [1, 2] \end{cases}$$

Попробуем использовать H-Л: $F(t)\big|_0^2 = F(2) - F(0) = 2$ Неверно, потому что это не первообразная и даже не "почти первообразная". Поправим F(x):

$$F(t) = \begin{cases} t, & t \in [0, 1] \\ \frac{t^2}{2} + \frac{1}{2}, & t \in [1, 2] \end{cases}$$

Это уже "почти первообразная" можно применять Н-Л.

12 Формула интегрирования по частям в интеграле Римана. Применение: формула Валлиса.

Теорема

$$F,G$$
 - первообразные $f,g\in R[a,b]$ на $[a,b],$ тогда $\int\limits_a^b Fg=FG|_a^b-\int\limits_a^b fG$
$$(\int\limits_a^b uv'=uv|_a^b-\int\limits_a^b u'v)$$

Док-во

$$(FG)' = fG + Fg$$
, по ф-ле Н-Л: $\int\limits_a^b (FG)' = FG|_a^b = \int\limits_a^b fG + |_a^b Fg|_a^b$

Пример

Если
$$I_m:=\int\limits_0^{\frac{\pi}{2}}\sin^mxdx=\int\limits_0^{\frac{\pi}{2}}\cos^mxdx$$
, то:

$$I_m = \begin{cases} \frac{\pi}{2} \frac{(m-1)!!}{m!!}, & m \text{ - четное} \\ \\ \frac{(m-1)!!}{m!!}, & m \text{ - нечетное} \end{cases}$$

$$I_{m} = \int_{0}^{\frac{\pi}{2}} \sin^{m} x dx = \int_{0}^{\frac{\pi}{2}} (-\cos x)' \sin^{m-1} x dx =$$

$$= -\cos x \sin^{m-1} x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos^{2} x (m-1) \sin^{m-2} x dx =$$

$$= (m-1) \int_{0}^{\frac{\pi}{2}} (\sin^{m-2} x - \sin^{m} x) dx = (m-1)(I_{m-2} - I_{m})$$

$$I_m = \frac{m-1}{m} I_{m-2}, \ I_0 = \frac{\pi}{2}, \ I_1 = 1, \ I_2 = \frac{\pi}{2} \frac{1}{2}, \ I_{2k} = \frac{\pi}{2} \frac{1}{2} \frac{3}{4} \dots \frac{2k-1}{2k} = \frac{\pi}{2} \frac{(2k-1)!!}{(2k)!!}$$

Теорема (Формула Валлиса)

$$\lim_{n\to\infty}\frac{2*2*4*4*...*(2n)(2n)}{1*3*3*5*5...(2n-1)(2n+1)}=\frac{\pi}{2}\ (\text{или}\,\lim_{n\to\infty}\frac{1}{n}(\frac{(2n)!!}{(2n-1)!!})^2=\pi)$$

$$\frac{1}{\forall x \in [0, \frac{\pi}{2}]} \text{ верно } \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x$$

$$\frac{(2n)!!}{(2n+1)!!} \leqslant \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \leqslant \frac{(2n-2)!!}{(2n-1)!!}$$

$$A_{n} = \frac{((2n)!!)^{2}}{(2n-1)!!(2n+1)!!} \leqslant \frac{\pi}{2} \leqslant \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^{2}} = B_{n}$$

$$\begin{split} B_n - A_n &= \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^2} - \frac{((2n)!!)^2}{(2n-1)!!(2n+1)!!} = \\ &= (\frac{(2n)!!}{(2n-1)!!})^2 (\frac{1}{2n} - \frac{1}{2n+1}) = (\frac{((2n)!!)^2}{(2n-1)!!(2n-1)!!}) \frac{1}{(2n+1)(2n)} = \\ &= A_n \frac{1}{2n} \leqslant \frac{\pi}{2} \frac{1}{2n} \to_{n \to \infty} 0 \Rightarrow \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n = \frac{\pi}{2} \end{split}$$

13 Формула Тейлора с остаточным членом в интегральной форме.

Теорема

$$f \in C^{n+1}([a,b]) \Rightarrow f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + R_n(b,a),$$
 где $R_n(b,a) = \frac{1}{n!} \int_a^b f^{(n+1)}(t) (b-t)^n dt$

Замечание

$$f \in C^{n+1}([a,b]) \Rightarrow f^{(n+1)} \in C[a,b] \Rightarrow \exists \xi \in [a,b]:$$

$$R_n = \frac{1}{n!} f^{(n+1)}(\xi) \int_a^b (b-t)^n dt = \frac{-f^{(n+1)}(\xi)}{n!} \frac{(b-t)^{n+1}}{n+1} \Big|_a^b = \frac{-f^{(n+1)}(\xi)}{(n+1)!} (b-a)^{n+1}$$

Док-во (по индукции)

1) n = 0

$$f(b)=f(a)+\int\limits_{a}^{b}f'(t)dt$$
 - формула Н-Л

2) Инд. переход. Пусть для n-1 - доказано, $f\in C^{n-1}[a,b]\subset C^n[a,b],$ по инд. предположению:

$$f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + R_{n-1}(*)$$

$$R_{n-1} = \frac{1}{(n-1)!} \int_a^b f^{(n)}(t) (b-t)^{n-1} dt = \begin{bmatrix} u = f^{(n)}(t) \\ dv = (b-t)^{n-1} dt \end{bmatrix} =$$

$$= \frac{1}{(n-1)!} (-f^{(n)}(t) \frac{(b-t)^n}{n} \Big|_a^b + \int_a^b f^{(n+1)}(t) \frac{(b-t)^n}{n} dt) =$$

$$= \frac{1}{(n)!} (f^{(n)}(a)(b-a)^n + \int_a^b f^{(n+1)}(t)(b-t)^n dt) - \text{подставить в (*)}$$

14 Формула интегрирования по частям в интеграле Римана. Вторая теорема о среднем.

Формулу интегрирования по частям см. в 12 билете.

Теорема (Бонне или вторая теорема о среднем)

$$f\in C[a,b],\ g\in C^1[a,b],g$$
 — монотонна
$$\Rightarrow \exists \xi\in [a,b]: \int\limits_a^b fg=g(a)\int\limits_a^\xi f+g(b)\int\limits_\xi^b f$$

БК-ВО
$$(для \ g\nearrow) \ F(x):=\int\limits_a^x f\Rightarrow F'=f$$

$$\int\limits_a^b fg=\int\limits_a^b F'g=Fg|_a^b-\int\limits_a^b Fg'=F(b)g(b)-F(a)g(a)-\int\limits_a^b Fg'=$$

$$(т.к. \ g\nearrow g\geqslant 0\Rightarrow \text{по т. o среднем }\exists \xi\in[a,b]:)$$

$$=F(b)g(b)-g(a)F(a)-F(\xi)\int\limits_a^b g'=g(b)(F(b)-F(\xi))+g(a)(F(\xi)-F(a))$$

15 Замена переменной в определенном интеграле (две формулировки, доказательство одной).

Теорема

$$\varphi \subset C^1[\alpha, \beta], \ f \in C(\varphi([\alpha, \beta])), \ ext{тогда} \int\limits_{\varphi(\alpha)}^{\varphi(\beta)} f = \int\limits_{\alpha}^{\beta} (f \circ \varphi) \varphi'$$

Док-во

$$f \in C(\varphi([\alpha, \beta])) \Rightarrow \exists F : F' = f$$

$$(F \circ \varphi)' = (F' \circ \varphi)\varphi' = (f \circ \varphi)\varphi' \Rightarrow \int_{\alpha}^{\beta} (f \circ \varphi)\varphi' = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha)$$

$$\varphi(\beta)$$

$$f$$

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\alpha}^{\beta} (f \circ \varphi) \varphi'$$

Теорема

$$f \in R[a,b], \ \varphi \in C^1[\alpha,\beta], \ \varphi$$
 - строго возрастает,

$$\phi(lpha)=a, \quad \phi(eta)=b, ext{ тогда } \int\limits_a^b f=\int\limits_lpha^eta(f\circ\phi)\phi'$$

Пример

$$\int_{0}^{1} \sqrt{1 - x^2} dx, \quad \varphi(t) = \cos t, \quad \varphi(\alpha) = 0, \ \varphi(\beta) = 1$$

$$\int\limits_{0}^{1} \sqrt{1-x^2} dx = -\int\limits_{\frac{\pi}{2}}^{0} \sqrt{1-\cos^2 t} \sin t dt = -\int\limits_{\frac{\pi}{2}}^{0} \frac{1-\cos 2t}{2} dt = \left(-\frac{t}{2} + \frac{\sin 2t}{4}\right)\Big|_{\frac{\pi}{2}}^{0} = \frac{\pi}{4}$$

Напоминание (про ряды)

Опр

Числовой ряд из элементов $\{a_j\}_{j\in\mathbb{N}}$ - это $\sum\limits_{j=1}^\infty a_j$

Опр

Частичная сумма ряда $S_n = \sum_{j=1}^n a_j$

Опр

Говорят, что сумма ряда $S = \sum\limits_{j=1}^{\infty} a_j = \lim\limits_{n \to \infty} S_n$

Замечание

Ряд $\sum_{j=1}^{\infty} a_j$ сходится или расходится одновременно с рядом $\sum_{j=N}^{\infty} a_j$

Теорема (необходимое условие сходимости)

Если
$$\sum_{j=1}^{\infty} a_j$$
 - сходится, то $\lim_{j o \infty} a_j = 0$

Опр

Ряд Лейбница $\sum\limits_{j=0}^{\infty}(-1)^{j}a_{j},\,a_{j}>0,$ где $\lim\limits_{j
ightarrow\infty}a_{j}=0,\,a_{j}\searrow$

Теорема

Пусть $\sum\limits_{j=0}^{\infty}(-1)^{j}a_{j}$ - ряд Лейбница, тогда:

- 1. Ряд Лейбница сходится
- 2. $S_{2n} \setminus S_{2n-1} \nearrow$
- 3. $|S S_n| < a_{n+1}$

Теорема

Критерий Коши для числовых последовательностей.

$$\sum_{j=1}^{\infty} a_j - \operatorname{cx} \Leftrightarrow \forall \mathcal{E} > 0 \ \exists N : \forall m > n > N \ |S_m - S_n| < \mathcal{E}$$

25

16 Признаки сравнения для положительных рядов.

Опр

Если
$$a_j\geqslant 0$$
, то $\sum\limits_{j=1}^{\infty}a_j$ - положительный ряд

Теорема

Положительный ряд сходится $\Leftrightarrow S_n$ - ограничены

Следствие

Пусть $0 \leqslant a_i \leqslant b_i$, тогда:

- 1. $\sum b_i$ cx $\Rightarrow \sum a_i$ cx (первый признак сходимости)
- 2. $\sum a_j$ расх $\Rightarrow \sum b_j$ расх (первый признак сравнения)

Следствие

$$a_k \geqslant 0, \ b_k \geqslant 0, \ \exists c, d > 0 \ \exists N : \forall n > N \ 0 < c \leqslant \frac{a_n}{b_n} \leqslant d \leqslant \infty$$

Тогда $\sum a_k$ и $\sum b_k$ сх. или расх. одновременно

Док-во

(T.e.
$$\sum a_k$$
 - $\operatorname{cx} \Leftrightarrow \sum b_k$ - cx)
(\Leftarrow) $0 \leqslant a_n \leqslant db_n$ T.K. db_n - $\operatorname{cx} \Rightarrow a_n$ - cx
(\Rightarrow) $0 \leqslant cb_n \leqslant a_n$ T.K. a_n - $\operatorname{cx} \Rightarrow cb_n$ - $\operatorname{cx} \Rightarrow b_n$ - cx

Следствие (второй признак сравнения)

Пусть
$$a_n,b_n\geqslant 0$$
, тогда если $\exists\lim_{n\to\infty} \frac{a_n}{b_n}=L\in(0,+\infty)$, то $\sum a_n$ и $\sum b_n$ сх или расх одновременно

Возьмём
$$\mathcal{E}:=\frac{L}{2}\Rightarrow\exists N:\forall n>N\; \left|\frac{a_n}{b_n}-L\right|<\frac{L}{2}\Rightarrow$$
 $0<\frac{L}{2}<\frac{a_n}{b_n}<\frac{3L}{2}<+\infty\Rightarrow$ по предыдущему следствию верно

17 Признаки Даламбера и Коши для положительных рядов.

Теорема (радикальный признак Коши для положительных рядов)

$$a_k\geqslant 0,\,c:=\overline{\lim_{k o\infty}}\sqrt[k]{a_k}$$
 Если $c<1$, то $\sum a_k$ - сх Если $c>1$, то $\sum a_k$ - расх

Док-во

a)
$$0 \le c < 1$$

$$q:=rac{c+1}{2},\ c< q<1,\$$
по характеристике $\overline{\lim}:\exists N: \forall n>N$ $\sqrt[n]{a_n}< q$ т.к. $0\leqslant a_n< q^n$ и $\sum q^n$ - cx $\Rightarrow \sum a_n$ - cx 6) $c>1$

$$\begin{array}{ccccc}
\downarrow & \downarrow & \downarrow \\
0 & 1 & q & c
\end{array}$$

 $q:=\frac{c+1}{2},\,1< q< c,\,$ по характеристике $\varlimsup:\forall N:\exists n>N$ $\sqrt[n]{a_n}>q$ т.е. \exists бесконечное мн-во $\sqrt[n_k]{a_{n_k}}>q,\,a_{n_k}>q^{n_k}>1$ $\Rightarrow \lim a_{n_k}\neq 0 \Rightarrow \sum a_n$ - расх

Теорема (признак Даламбера сходимости положительных рядов)

$$a_k\geqslant 0,\, \mathcal{D}:=\lim_{k o\infty}rac{a_{k+1}}{a_k}$$
 Если $\mathcal{D}<1,\, ext{то }\sum a_k$ - cx Если $\mathcal{D}>1,\, ext{то }\sum a_k$ - pacx

Док-во

a)
$$\mathcal{D} < 1$$
, $q := \frac{\mathcal{D}+1}{2} \mathcal{E} := \frac{1-\mathcal{D}}{2}$

 $\exists N: \forall k>N \ \mathcal{D}-\mathcal{E}<rac{a_{k+1}}{a_k}<\mathcal{D}+\mathcal{E}=q$ - геом пр. q<1 $a_{k+1}< qa_k< q^2a_{k-1}<\ldots< q^{k-N+1}a_N, \sum q^{k-N+1}a_k$ - $\operatorname{cx}\Rightarrow\sum a_{k+1}$ - cx по первому пр. сходимости 6) $\mathcal{D}<1,\ q:=rac{\mathcal{D}+1}{2}\ \mathcal{E}:=rac{\mathcal{D}-1}{2}$

$$\begin{array}{c|c}
 & -\mathcal{E} \\
\hline
0 & 1 & q & \mathcal{D}
\end{array}$$

 $\exists N: \forall k>N \ q=\mathcal{D}-\mathcal{E}<rac{a_{k+1}}{a_k}<\mathcal{D}+\mathcal{E}, \ q>1$ $a_{k+1}>qa_k>q^2a_{k-1}>...>q^{k-N+1}a_N, \ \sum q^{k-N+1}a_N$ - расх $\Rightarrow \sum a_{k+1}$ - расх по первому пр. сравнения

Абсолютная и условная сходимость рядов. Сходимость 18 следует из абсолютной сходимости.

$$\frac{\mathbf{Onp}}{\sum\limits_{j=1}^{\infty}a_{j}}$$
 - сх абсолютно, если $\sum\limits_{j=1}^{\infty}|a_{j}|$ - сх

Опр

Ряд сходится условно если сходится, но не абсолютно

Теорема

Если ряд сходится абсолютно, то он сходится

$$\sum_{j=1}^{\infty} |a_j|$$
 - cx, по критерию Коши $\forall \mathcal{E} > 0 \; \exists N : \forall m > n > N :$

$$||a_{n+1}| + ... + |a_m|| < \mathcal{E}$$
, по неравенству треугольника:

$$|a_{n+1} + \dots + a_m| < \mathcal{E} \Rightarrow \sum_{j=1}^{\infty} a_j - cx.$$

19 Абсолютная и условная сходимость. Пример: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

Определения см. в предыдущем билете.

Ряд не сходится абсолютно, т.к. $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ - расх. ряд, т.к.:

Теорема (критерий Коши сходимости последовательности)

$$x_n$$
 - $\operatorname{cx} \Leftrightarrow x_n$ - cx в себе.

Покажем, что для $S_n=1+\frac{1}{2}+\ldots+\frac{1}{n}\ \exists \mathcal{E}>0: \forall N\ \exists m,n\geqslant N: |x_m-x_n|>\mathcal{E}$:

Возьмём
$$\mathcal{E} = \frac{1}{4}$$
 n $= N, m = 2N$:

$$|S_{2N} - S_N| = \left| \frac{1}{N+1} + \dots + \frac{1}{2N} \right| > N \frac{1}{2N} = \frac{1}{2} > \mathcal{E}$$

Но ряд сходится (значит условно сходится) по признаку Лейбница (или это можно показать прямо, доказав что $S_{2n}\nearrow$ и ограничена сверху единицей, а $S_{2n+1}=S_{2n}$ в пределе)

20 Перестановка абсолютно сходящегося ряда. Теорема Римана (6/д).

Опр

Пусть есть ряд $\sum\limits_{k=1}^\infty a_k$ и биективная функция $\varphi:\mathbb{N}\to\mathbb{N}$, тогда ряд $\sum\limits_{k=1}^\infty a_{\varphi(k)}$ называется перестановкой ряда $\sum\limits_{k=1}^\infty a_k$

Теорема (Римана v1)

Пусть ряд $\sum a_n$ - условно сходится, тогда:

$$\forall S \in \overline{\mathbb{R}} \ \exists \phi : \mathbb{N} \to \mathbb{N} : \sum a_{\phi(k)} = S$$

Опр

$$a_k^+ = \max\{a_k, 0\}, a_k^- = \max\{-a_k, 0\}$$

Теорема (Дирихле, о перестановке абсолютно сходящегося ряда)

Если
$$\sum\limits_{n=1}^\infty a_n=S$$
 сх абсолютно, то $\forall \varphi:\mathbb{N} o \mathbb{N}$, где φ - биекция $\Rightarrow \sum\limits_{n=1}^\infty a_{\varphi(n)}=S$

Док-во

а) Пусть $a_n \geqslant 0 \ \forall n \in \mathbb{N}$

$$S:=\sum\limits_{n=1}^{\infty}a_n$$
 - cx \Leftrightarrow все частичные суммы ограничены, $S_n\leqslant S\ \forall n\in\mathbb{N}$

Частичные суммы $\sum\limits_{k=1}^n a_{\phi(k)}$ обозначим перестановками ряда $T_n:=\sum\limits_{k=1}^n a_{\phi(k)}$

Пусть $m := \max\{\varphi(1), \varphi(2), ..., \varphi(n)\}$

$$T_n \leqslant S_m := \sum_{n=1}^m a_{\varphi(a_n)} \leqslant S \Rightarrow T_n \nearrow$$
 - огр \Leftrightarrow ряд $T := \sum_{n=1}^\infty a_{\varphi(a_n)}$ сходится.

Предельный переход даёт $T\leqslant S,$ но так как S - тоже перестаовка $T\Rightarrow S\leqslant T$

Значит
$$S=T$$
, то есть $\sum\limits_{n=1}^{\infty}a_n=\sum\limits_{n=1}^{\infty}a_{\varphi(a_n)}$

б) Общий случай, $a_k \in \mathbb{R}$

Оощии случаи,
$$a_k \in \mathbb{R}$$
 $a_k = a_k^+ - a_k^-, |a_k| = a_k^+ + a_k^- \Rightarrow a_k^+ = \frac{a_k + |a_k|}{2}, \ a_k^- = \frac{|a_k| - a_k}{2}$ т.к. $\sum a_k$ - сх абсолютно $\Rightarrow \sum |a_k|$ - сх $\Rightarrow \sum a_k^+, \sum a_k^-$ - сх (причем абсолютно)

$$\sum_{k=0}^{\infty} a_{\varphi(k)} = \sum_{k=0}^{\infty} (a_{\varphi(k)}^+ - a_{\varphi(k)}^-) = \sum_{k=0}^{\infty} a_{\varphi(k)}^+ - \sum_{k=0}^{\infty} a_{\varphi(k)}^- = \text{ (ii. a) } \sum_{k=0}^{\infty} (a_k^+ - a_k^-) = \sum_{k=0}^{\infty} a_k$$

Теорема (Римана v2)

Пусть ряд $\sum a_n$ - условно сходится. Тогда $\sum a_n^+ - \sum a_n^- = +\infty$

Док-во

Можно доказать одну из теорем

21 Асимптотика частичных сумм расходящегося ряда (случай гармонического ряда). Постоянная Эйлера.

$$\frac{1}{1+k} = \frac{\frac{1}{k}}{\frac{1}{k}+1} < \ln(1+\frac{1}{k}) < \frac{1}{k} \Rightarrow 0 < \frac{1}{k} - \ln(1+\frac{1}{k}) < \frac{1}{k} - \frac{1}{k+1}$$

Значит,

$$\begin{split} 0 &< \sum_{k=1}^{n} \left(\frac{1}{k} - \ln(1 + \frac{1}{k}) \right) < \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \\ &= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n-1} = \\ &= 1 - \frac{1}{n+1} = \frac{n}{n+1} < 1 \ \forall n \in \mathbb{N} \end{split}$$

$$\Rightarrow S_n := \sum_{k=1}^n \left(\frac{1}{k} - \ln(1 + \frac{1}{k})\right) \nearrow$$
 и ограничено сверху $\Rightarrow \exists \lim_{n \to \infty} S_n$

$$\sum_{k=1}^{n} \ln(1 + \frac{1}{k}) = \sum_{k=1}^{n} (\ln(k+1) - \ln(k)) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n)$$

$$= \ln(n+1) \Rightarrow \exists \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \ln(n+1) = \lim_{n \to \infty} (\sum_{k=1}^{n} \frac{1}{k} - \ln n)$$

Опр

$$\gamma:=\lim_{n o\infty}(\sum\limits_{k=1}^nrac{1}{k}-\ln n)=0,5722...$$
 - постоянная Эйлера

22 Несобственные интегралы. Примеры. Несобственный интеграл в смысле главного значения. Критерий Больцано-Коши для несобственных интегралов.

Опр (1)

 $f:[a,+\infty)\to\mathbb{R},\,f\in R[a,b]\;\forall b\in(a,+\infty).$

Если $\exists \lim_{b \to \infty} \int_a^b f$, то говорят, что несобственный интеграл

$$\int\limits_{a}^{+\infty}f$$
 - сходится и равен $\lim\limits_{b\to\infty}\int\limits_{a}^{b}f$

Oπp (2)

 $f:[a,\omega)\to\mathbb{R},\ -\infty< a<\omega\leqslant +\infty\ ,\ f\in R[a,b]\ \forall b\in(a,+\infty).$

Если $\exists \lim_{b \to \omega_-} \int_a^b f$, то говорят, что несобственный интеграл

$$\int\limits_{a}^{\omega}f$$
 - сх и равен $\lim\limits_{b\to\omega_{-}}\int\limits_{a}^{b}f$

Опр (3)

 $f:\mathbb{R} \to \mathbb{R}$ и $\forall a < b \in \mathbb{R}: f \in R[a,b]$, тогда $\int\limits_{-\infty}^{+\infty} f := \lim_{a \to -\infty} \int\limits_{a}^{0} f + \lim_{b \to +\infty} \int\limits_{0}^{b} f$,

Если оба предела \exists и конечны, то говорят что $\int\limits_{-\infty}^{+\infty} f$ - сходится

Опр (4)

Аналогично $\int\limits_{\omega_1}^{\omega_2}$, если $f\in R[a,b]\ \forall [a,b]\subset (\omega_1,\omega_2)$. $\int\limits_{\omega_1}^{\omega_2}f=\int\limits_{\omega_1}^cf+\int\limits_c^{\omega_2}$

Пример

1.
$$\alpha = 1$$
,
$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \ln|x| \Big|_{1}^{b} = +\infty - \text{pacx}$$

2.
$$\alpha > 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{b} = 0 - \frac{1}{1-\alpha} - cx$

3.
$$\alpha < 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = +\infty$ - pacx

Пример

$$\int\limits_{-1}^{1} \frac{dx}{x} = \lim_{a \to 0_{-}} \int\limits_{-1}^{a} \frac{dx}{x} + \lim_{b \to 0_{+}} \int\limits_{b}^{1} \frac{dx}{x}$$
 - расх по опр, т.к. оба предела расх

Опр

$$f:\mathbb{R} o\mathbb{R}$$
 и $orall a < b \in \mathbb{R}: f \in R[a,b],$ тогда (V.P.) $\int\limits_{-\infty}^{+\infty} f := \lim\limits_{A o +\infty} \int\limits_{-A}^A f$

Пример

(V.P.)
$$\int_{-\infty}^{+\infty} x = \lim_{A \to +\infty} \int_{-A}^{A} x = \lim_{A \to +\infty} \frac{x^{2}}{2} \Big|_{-A}^{A} = 0$$

(Ho
$$\int_{-\infty}^{+\infty} x = \lim_{a \to -\infty} \int_{a}^{0} x + \lim_{b \to +\infty} \int_{0}^{b} x - \text{pacx}$$
)

Теорема (критерий Больцано-Коши для несобственных интегралов)

$$f:[a,\omega) o \mathbb{R}, \quad -\infty < a < \omega \leqslant +\infty, \quad f \in R[a,b] \quad orall b \in (a,+\infty),$$
 тогда:

$$\int_{a}^{\omega} f - cx \iff \forall \mathcal{E} > 0 \; \exists B \in (a, \omega) : \forall b_1, b_2 \in (B, \omega) \mid \int_{b_1}^{b_2} \mid < \mathcal{E}$$

$$\int\limits_a^\omega f - \mathrm{cx} \Leftrightarrow \exists \lim\limits_{b \to \omega} \int\limits_a^b f \Leftrightarrow (\mathrm{кр} \ \mathrm{Коши} \ \mathrm{для} \ \mathrm{пределов} \ \varphi.)$$

$$\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall b_1, b_2 \in (\omega - \delta, \omega) \mid \int_a^{b_1} f - \int_a^{b_2} f \mid \langle \mathcal{E} \Rightarrow \mid \int_{b_1}^{b_2} f \mid \langle \mathcal{E} \rangle \mid \langle$$

23 Свойства несобственных интегралов (линейность, аддитивность, монотонность, формула Ньютона-Лейбница).

Свойство (1, линейность)

$$\int_{a}^{\omega} f_1, \int_{a}^{\omega} f_2 - \operatorname{cx} \implies \forall k_1, k_2 \in \mathbb{R} \quad \int_{a}^{\omega} (k_1 f_1 + k_2 f_2) = k_1 \int_{a}^{\omega} f_1 + k_2 \int_{a}^{\omega} f_2$$

Свойство (2, монотонность)

$$f, g : [a, \omega) \to \mathbb{R}, \quad f, g \in R[a, b], \quad \forall b \subset [a, \omega), \quad f(x) \leqslant g(x),$$

$$\forall x \in [a, \omega) \Rightarrow \int_{a}^{\omega} f \leqslant \int_{a}^{\omega} g$$

Лемма

$$f:[a,\omega) o\mathbb{R},\quad f\in R[a,b],\ \forall b\in(a,\omega).$$
 Пусть $c\in(a,\omega),\$ тогда $\int\limits_a^\omega f$ и $\int\limits_c^\omega f$ - сх или расх одновременно

Док-во

$$\int_{a}^{\omega} f - \operatorname{cx} \Leftrightarrow \lim_{b \to \omega_{-}} \int_{a}^{b} f = A \in \mathbb{R}$$
 Тогда
$$\int_{a}^{\omega} f = \lim_{b \to \omega_{-}} \int_{a}^{b} f = \lim_{b \to \omega_{-}} (\int_{a}^{b} f - \int_{a}^{c} f) = A - \int_{a}^{c} f \in \mathbb{R} \Rightarrow \int_{a}^{\omega} f - \operatorname{cx}$$

Свойство (3, аддитивность)

$$f:[a,\omega)\to\mathbb{R},\quad f\in R[a,b]\ \forall b\subset[a,\omega)$$

$$\forall c \in [a,\omega) \Rightarrow \int\limits_a^\omega f = \int\limits_a^c f + \int\limits_c^\omega f$$
, причем $\int\limits_a^\omega f$ и $\int\limits_c^\omega f$ - сх или расх одновременно

Свойство (4, формула Н-Л)

Если F - первообразная f, то:

$$\int_{a}^{\omega} f = \lim_{b \to \omega_{-}} (F(b) - F(a)) =: F \Big|_{a}^{\omega_{-}} = F(\omega_{-}) - F(a)$$

Свойство (5)

Если
$$f \in R[a,\omega]$$
 ($\omega \in \mathbb{R}$), то (несоб. инт) $\int\limits_a^\omega f = \int\limits_a^\omega f$ (инт Римана)

Док-во

$$\overline{f} \in R[a, \omega] \Rightarrow F(x) := \int_{a}^{x} f \in C[a, \omega],$$
 (несоб. инт)
$$\int_{a}^{\omega} f = \lim_{b \to \omega} \int_{a}^{b} f(=F(b) \text{ (непр. в т } \omega)) = F(\omega) = \int_{a}^{\omega} f \text{ (инт Римана)}$$

24 Свойства несобственных интегралов (интегрирование по частям, замена переменной).

Свойство (интегрирование по частям)

Пусть
$$f,g\in C^1[a,\omega),\quad\exists\lim_{x\to\omega_-}f(x)g(x)\in\mathbb{R},$$
 тогда:
$$\int\limits_a^\omega f'g\text{ и }\int\limits_a^\omega fg'\text{ - сх или расх одновременно, причем}$$

$$\int\limits_a^\omega fg'=fg|_a^\omega-\int\limits_a^\omega f'g(fg|_a^\omega=\lim_{x\to\omega_-}(f(x)g(x)-f(a)g(a))$$

Свойство (замена переменной)

Если
$$\int\limits_a^\omega f$$
 - cx, $\phi: [\alpha, \upsilon) \to [a, \omega), \quad \phi \in C^1[\alpha, \upsilon), \quad \phi$ - монот.,
$$\phi(\alpha) = a, \quad \lim_{t \to \upsilon} \phi(t) = \omega, \text{ тогда } \int\limits_a^\omega f = \int\limits_\alpha^\upsilon (f \circ \phi) \phi'$$

25 Интегральный признак Коши сходимости несобственных интегралов и рядов.

Теорема

Пусть $f:[1,+\infty) \to [0,+\infty), \, f \in R[1,A] \,\, \forall A>1, \, f$ - строго убывает (можно строго возрастает)

Тогда $\int\limits_{0}^{\infty}f$ и $\sum\limits_{n=1}^{\infty}f(n)$ - сх или расх одновременно, причем

$$\sum_{n=1}^{\infty} f(n+1) \leqslant \int_{1}^{\infty} f \leqslant \sum_{n=1}^{\infty} f(n)$$

Лемма

Если
$$f>0,\ f\in[a,\omega]\to[0,+\infty),\ f\in R[a,b]\ \forall b\in(a,\omega)$$

Тогда $\int\limits_a^\omega f$ - $\mathrm{cx}\Leftrightarrow F(x)=\int\limits_a^x f,\ \exists M<\infty:F(x)\leqslant M\ \forall x\in[a,\omega)$

Док-во

 (\Rightarrow) очевидно

$$(\Leftarrow)$$
 почти очевидно, $f\geqslant 0\Rightarrow F\nearrow$ и огр $\Rightarrow \exists \lim_{x\to \omega} F(x)=\int\limits_a^\omega f<+\infty$

Док-во

$$\frac{1}{n} f(n+1) \leqslant \int\limits_{n}^{n+1} f \leqslant f(n)$$
 (видно через суммы Дарбу) | $\sum\limits_{n=1}^{N} f(n+1)$

$$\sum\limits_{n=1}^N f(n+1) \leqslant \int\limits_1^{N+1} f \leqslant \sum\limits_{n=1}^N f(n),$$
 при $N \to +\infty$ получим наше уравнение

1) Если
$$\sum_{1}^{\infty}f(n)$$
 - $\operatorname{cx}\Leftrightarrow\sum_{1}^{N}f(n)\leqslant A\in\mathbb{R}\Rightarrow F(N+1)=\int\limits_{1}^{N+1}f\leqslant A\in\mathbb{R}$ cx

2) Если
$$\int\limits_1^\infty f$$
 - cx $\Rightarrow \sum\limits_1^N f(n+1) \leqslant \int\limits_1^{N+1} f \leqslant \int\limits_1^\infty f \in \mathbb{R}$ - orp $\Rightarrow \sum\limits_1^N f(n+1)$ cx

$$\frac{\mathbf{\Pi}\mathbf{римеры}}{1. \sum_{n=1}^{\infty} \frac{1}{n^2}. \ \mathrm{Рассмотрим} \ \int\limits_{1}^{\infty} \frac{1}{x^2} = -\frac{1}{x}|_{1}^{\infty} = 0 - (-1) - \mathrm{cx}$$

2.
$$\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}}$$
. Сх. при $\alpha>1$, расх. при $\alpha\leqslant 1$ (аналогично интегралу $\int\limits_{1}^{\infty}\frac{1}{x^{\alpha}}$)

26 Признаки сравнения для несобственных интегралов.

Теорема (I признак сравнения)

$$f,g:[a,\omega) o\mathbb{R},\quad f,g\geqslant 0,\quad f,g\in R[a,b],\quad b\in(a,\omega),$$
 $0\leqslant f(x)\leqslant g(x)\quad orall x\in [a,\omega)$ Тогда $\int\limits_a^\infty g$ - $\operatorname{cx}\Rightarrow\int\limits_a^\omega f$ - $\operatorname{cx}\left(\int\limits_a^\omega f$ - $\operatorname{pacx}\Rightarrow\int\limits_a^\infty g$ - $\operatorname{pacx}
ight)$

Док-во

$$F(b) := \int_{a}^{b} f \leqslant \int_{a}^{b} g \leqslant \int_{a}^{\omega} g \in \mathbb{R}$$

То есть $\int\limits_a^\omega f$ - сх, т.к. $F\nearrow$ и огр сверху на $[a,\omega)$

Теорема (II признак сравнения)

$$f,g:[a,\omega)\to(0,+\infty),\,f,g\in R[a,b]\;\forall b\in(a,\omega)$$

Тогда если $\exists\lim_{x\to\omega_-} \frac{f(x)}{g(x)}\in(0,+\infty),$ то $\int\limits_a^\omega f$ и $\int\limits_a^\omega g$ - сх или расх одновременно

Док-во

$$k := \lim_{x \to \omega_{-}} \frac{f(x)}{g(x)} \in (0, +\infty), \ \mathcal{E} := \frac{k}{2}$$

$$\Rightarrow \exists b \in (a, \omega) : \forall x \in (b, \omega) \ |\frac{f(x)}{g(x)} - k| < \mathcal{E} \Rightarrow \mathcal{E} < \frac{f(x)}{g(x)} < 3\mathcal{E}$$

То есть с некоторого места $f(x)\leqslant g(x)$, а так как $\int\limits_a^\omega=\int\limits_a^b+\int\limits_b^\omega$ и $\int\limits_a^bf,\int\limits_a^bg$ - конечные числа, то $\int\limits_a^\omega f$ и $\int\limits_a^\omega g$ - сх или расх одновременно по первому признаку

Пример

$$\int_{0}^{+\infty} e^{-x^{2}} dx = \int_{0}^{1} + \int_{1}^{+\infty}$$

$$e^{-x^2} \geqslant e^{-x} \Rightarrow x \in [0, 1], \quad \int_{0}^{1} e^{-x} = \frac{1}{e} \underset{\text{no I np. cp.}}{\Rightarrow} \int_{1}^{+\infty} e^{-x^2} - cx$$

Пример

$$\int_{1}^{+\infty} \sin^2 \frac{1}{x} dx$$

$$\lim_{x\to\infty}\frac{\sin^2\frac{1}{x}}{\frac{1}{x^2}}=1\in(0,+\infty)\Rightarrow\int\limits_1^{+\infty}\sin^2\frac{1}{x}dx$$
 и
$$\int\limits_1^{+\infty}\frac{1}{x^2}dx$$
 - сх или расх одновр \Rightarrow сх

Абсолютная и условная сходимость интегралов. Сходимость следует из абсолютной сходимости.

Опр

$$f:[a,\omega)\to\mathbb{R},\ f\in R[a,b]\ \forall b\in(a,\omega)$$

$$\int\limits_a^\omega f\text{ - сx абсолютно}\Leftrightarrow\int\limits_a^\omega |f|\text{ - cx}$$

$$\int\limits_a^\omega f\text{ - cx условно}\Leftrightarrow\int\limits_a^\omega f\text{ - cx},\int\limits_a^\omega |f|\text{ - pacx}$$

$$\underbrace{\mathbf{y_{TB}}}_{a} \mathop{\int}\limits_{a}^{\omega} f$$
 - сх абсолютно \Rightarrow сходится

Док-во

Пусть
$$\int_{a}^{\omega} |f|$$
 - cx \Leftrightarrow (кр. Больцано-Коши) $\forall \mathcal{E} > 0 \; \exists A \in (a, \omega) : \forall b_1, b_2 \in (A, \omega)$ $|\int_{b_1}^{b_2} |f|| < \mathcal{E} \Rightarrow \text{т.к.} \; |\int_{b_1}^{b_2} f| \leqslant |\int_{b_1}^{b_2} |f|| < \mathcal{E}, \; \text{то по кр. Б-K} \int_{b_1}^{b_2} f \; \text{- cx}$

Пример

$$\int\limits_{0}^{+\infty}\cos(x^{3})dx = \left| \frac{x^{3} = t}{x = \sqrt[3]{t}} \right| = \frac{1}{3}\int\limits_{0}^{\infty}\cos t\frac{dt}{t^{\frac{2}{3}}} = \frac{1}{3}\frac{\sin t}{t^{\frac{2}{3}}} \Big|_{0}^{\infty} + \frac{2}{9}\int\limits_{0}^{\infty}\frac{\sin t}{t^{\frac{5}{3}}} = \frac{2}{9}\int\limits_{0}^{\infty}\frac{\sin t}{t^{\frac{5}{3}}}$$
 Исследуем
$$\int\limits_{0}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}} = \int\limits_{0}^{1}\frac{|\sin t|}{t^{\frac{5}{3}}} + \int\limits_{1}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}} :$$
a)
$$\int\limits_{0}^{1}\frac{|\sin t|}{t^{\frac{5}{3}}}, |\sin t| \leqslant t \text{ на } [0,1]$$

$$\int\limits_{0}^{1}\frac{t}{t^{\frac{5}{3}}} = \int\limits_{0}^{1}t^{-\frac{2}{3}} = 3t^{\frac{1}{3}}|_{0}^{1} = 3 - \text{cx} \underset{\text{по I пр cp}}{\Rightarrow} \int\limits_{0}^{1}\frac{|\sin t|}{t^{\frac{5}{3}}} - \text{cx}$$

$$6) \int\limits_{1}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}}, \quad \frac{|\sin t|}{t^{\frac{5}{3}}} \leqslant \frac{1}{t^{\frac{5}{3}}}$$

$$\int\limits_{1}^{\infty}\frac{1}{t^{\frac{5}{3}}} = -\frac{3}{2}t^{-\frac{2}{3}}|_{1}^{\infty} = \frac{3}{2} - \text{cx} \underset{\text{по I пр cp}}{\Rightarrow} \int\limits_{1}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}} - \text{cx}$$
Значит
$$\int\limits_{0}^{\infty}\frac{\sin t}{t^{\frac{5}{3}}} - \text{a6c cx} \Rightarrow \int\limits_{0}^{+\infty}\cos(x^{3}) - \text{cx}$$

28 Абсолютная и условная сходимость. Пример: $\int\limits_0^\infty \frac{\sin x}{x}$

Определения и теорему см. в билете 27

Пример

$$\int\limits_{0}^{\infty} \frac{\sin x}{x} = \int\limits_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} + \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x}$$

1)
$$\int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x} = \frac{-\cos x}{x} \Big|_{\frac{\pi}{2}}^{\infty} - \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2} = \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$$

Исследуем
$$\int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$$
 на абс сходимость. $\frac{|\cos x|}{x^2} \leqslant \frac{1}{x^2}$, а $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{1}{x^2}$ - сходится

$$\Rightarrow$$
 по 1 признаку сравнения $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{|\cos x|}{x^2}$ - cx $\Rightarrow \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$ - cx абс $\Rightarrow \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x}$ - cx

$$2) \quad \int_{0}^{\frac{\pi}{2}} \frac{|\sin x|}{x}$$

Знаем, что $\lim_{x\to 0}\frac{|\sin x|}{x}=1$. Кроме того, $\frac{|\sin x|}{x}<1$, значит на конечном

промежутке
$$(0,\frac{\pi}{2}]$$
 интеграл конечный $\Rightarrow \int\limits_0^\infty \frac{\sin x}{x}$ - cx

3) Покажем, что
$$\int\limits_{\frac{\pi}{2}}^{\infty} \frac{|\sin x|}{x}$$
 - pacx. $\Rightarrow \int\limits_{0}^{\infty} \frac{|\sin x|}{x}$ - pacx

$$|\sin x| \geqslant |\sin^2 x|, \quad \int_{\frac{\pi}{2}}^{\infty} \frac{\sin^2 x}{x} = \int_{\frac{\pi}{2}}^{\infty} \frac{1 - \cos 2x}{x} = \frac{1}{2} \int_{\frac{\pi}{2}}^{\infty} \frac{dx}{x} (\operatorname{pacx}) + \int_{\frac{\pi}{2}}^{\infty} \frac{\cos 2x}{x} (\operatorname{cx})$$

29 Признаки Дирихле и Абеля для несобственных интегралов (док-во одного из них).

Теорема (признак Абеля-Дирихле)

$$f,g:[a,\omega)\to\mathbb{R},\quad f\in C[a,\omega),\quad g\in C^1[a,\omega),\ \mathrm{g}$$
 - монотонна.

Тогда если выполнено одно из условий:

(A)
$$\int_a^{\omega} f - cx$$
, g - orp

(Д)
$$F(x) := \int_{a}^{x} f - \text{ orp, } g(x) \underset{x \to \omega_{-}}{\longrightarrow} 0$$

Тогда
$$\int\limits_{a}^{\omega}fg$$
 - cx

Док-во

(Д) без теоремы Бонне

$$|F(x)| \leqslant C : g(x) \underset{x \to \alpha}{\longrightarrow} 0$$

$$\lim_{b \to \omega_{-}} \int_{a}^{b} fg = \lim_{b \to \omega_{-}} (Fg|_{a}^{b} - \int_{a}^{b} Fg') = F(a)g(a) - \lim_{b \to \omega_{-}} \int_{a}^{b} Fg'$$

Исследуем интеграл на абс сходимость.

$$\int\limits_a^b |Fg'| \leqslant C \int\limits_a^b |g'| = \text{(т.к. g - монотонна)} C |\int\limits_a^b g'| = C |g(b) - g(a)| \underset{b \to \omega_-}{\longrightarrow} C |g(a)|$$

Таким образом инт. ограничен ⇒ изначальный сходится

30 Признаки Дирихле и Абеля для рядов (док-во одного из них).

Опр

$$A_n := \sum_{k=1}^n a_k, A_0 = 0$$

Теорема (преобразование Абеля)

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Док-во

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k =$$

$$= \sum_{k=1}^{n} A_k b_k - \sum_{k=0}^{n-1} A_k b_{k+1} = A_n b_n + \sum_{k=0}^{n-1} A_k (b_k - b_{k+1})$$

Теорема (признак Дирихле для рядов)

Пусть
$$A_n$$
 - огр., $b_k o 0$, b_k - монотонно. Тогда $\sum\limits_{k=1}^\infty a_k b_k$ - сх

Док-во

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) \underset{n \to \infty}{\to} \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Ряд
$$\sum\limits_{k=1}^{\infty}a_kb_k$$
 - $\operatorname{cx}\Leftrightarrow\sum\limits_{k=1}^{\infty}A_k(b_k-b_{k+1})$ - $\operatorname{cx}\Leftrightarrow\operatorname{все}$ частичные суммы огр $\sum\limits_{k=1}^{N}|A_k||b_k-b_{k+1}|\leqslant M\sum\limits_{k=1}^{N}|b_k-b_{k+1}|=M|b_1-b_{N+1}|\leqslant 2M|b_1|\Rightarrow\operatorname{исx}$ ряд cx

Теорема (признак Абеля для рядов)

Пусть
$$A_n$$
 - cx. b_k - монотонно, b_k - огр. Тогда $\sum_{k=1}^\infty a_k b_k$ - cx

31 Применение интеграла Римана для вычисления площадей и объемов. Примеры.

Опр (школьное)

Пусть $P \in \mathbb{R}^2$ ("фигрура"), \mathcal{P} - некоторый набор плоских "фигур", $P_i \in \mathcal{P}$ $g: \mathcal{P} \to [0, +\infty)$ - называется площадью, если:

1.
$$\forall P \in \mathcal{P}, S(P) \geqslant 0$$

2.
$$\forall P_1, P_2 \in \mathcal{P} : P_1 \cap P_2 = \emptyset \Rightarrow S(P_1 \cup P_2) = S(P_1) + S(P_2)$$

Опр

 $\tau: \mathbb{R}^2 \to \mathbb{R}^2$, сохраняет расстояние

3. $\forall P \in \mathcal{P}$ τ -движения $S(\tau(P)) = S(P)$

Площадь криволинейной трапеции.

Опр

Подграфиком $f \in R[a,b]$ называется $P_f := \{(x,y)|a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant f(x)\}$

Возьмём разбиение и верх. и нижн. суммы Дарбу. S - монотонна, т.е.

$$P_1 \subset P_2 \Rightarrow S(P_1) \leqslant S(P_2), \ S_*(\tau) = S(P_*(\tau)), \ S^*(\tau) = S(P^*(\tau))$$

$$P_*(f,\tau) \subset P(f) \subset R^*(f,\tau)$$

$$S(P_*(f,\tau)) = S_*(f,\tau) \to \int_a^b f, \ S(P^*(f,\tau)) = S^*(f,\tau) \to \int_a^b f, \ S(P_f) := \int_a^b f$$

Пример

Первая четверть эллипса с радиусами (a,b).

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad y = b\sqrt{1 - \frac{x^2}{a^2}}, \quad S = \int\limits_0^a b\sqrt{1 - \frac{x^2}{a^2}} dx$$
 - сложно, перейдём в поляры
$$\int x = a \cos t$$

$$\begin{cases} x = a\cos t \\ y = b\sin t \end{cases}$$

$$\int_{0}^{a} f(x)dx = \int_{\frac{\pi}{2}}^{0} b \sin t d(a \cos t) = ab \int_{\frac{\pi}{2}}^{0} \sin^{2} t dt = -ab(t - \frac{\sin 2t}{2})|_{\frac{\pi}{2}}^{0} = 0 - (-\frac{\pi ab}{4}) = \frac{\pi ab}{4}$$

Вычисление объемов

y_{TB}

Принцип Кавальери. Если у двух тел одни сечения на одном уровне, то их объемы равны.

$$\sum\limits_{k=0}^{n-1}S(\xi_k)\Delta_k$$
 - сумма Римана $V=\int\limits_a^bS(x)dx$ - измельчаем плоскости

Пример

(на самом деле тела вращения можно считать как $V=\pi\int\limits_{a}^{b}f^{2}(x)dx$)

Путь. Длина пути. Спрямляемый путь. Аддитивность длины пути.

$$\frac{\mathbf{Oпр}}{\gamma: [a,b] \to \mathbb{R}^n, \quad \gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \dots \\ \gamma_n \end{pmatrix}, \quad \gamma_k: [a,b] \to \mathbb{R}. \text{ Расстояние считается как}$$

$$d(x,y) = ||x-y||_2 = \sqrt{\sum\limits_{k=1}^n (x_k-y_k)^2}, \ \gamma \text{ - путь, если } \forall i \in \{1,\dots k\} \ \gamma_i \in C[a,b]$$

Опр

Путь называется r-гладким, если $\forall i \in \{1,...k\} \ \gamma_i \in C^r[a,b]$

Опр

Два пути считаются эквивалентными если можно сделать замену переменной. Т.е. пусть $\gamma:[a,b]\to\mathbb{R},\,\widetilde{\gamma}:[\alpha,\beta]\to\mathbb{R}$, тогда: $\gamma \sim \widetilde{\gamma} \Leftrightarrow \exists \varphi : [a,b] \to [\alpha,\beta]$ - строго возрастающая, $\alpha = \varphi(a), \beta = \varphi(b),$ $\nu = \widetilde{\nu} \circ \omega$

Опр

Кривая - класс эквивалентности путей. Упуть - представитель класса эквивалентности называется "параметризацией"

Пример

$$\gamma_1 : \begin{cases} x = \cos t & 0 \leqslant t \leqslant 2\pi \\ y = \sin t & 0 \leqslant t \leqslant 2\pi \end{cases} \qquad \gamma_2 : \begin{cases} x = \cos t^2 & 0 \leqslant t \leqslant 2\pi \\ y = \sin t^2 & 0 \leqslant t \leqslant 2\pi \end{cases}$$

 $\gamma_1 \sim \gamma_2$, определяют одну и ту же кривую (окружность)

Опр

Кривая называется r-гладкой, если v неё есть r-гладкая параметризация

Опр

 γ - простой путь $\Leftrightarrow \gamma$ - биекция на (a,b), т.е. $\forall t_1,t_2 \in (a,b): \gamma(t_1) \neq \gamma(t_2)$ (без самопересечений).

Если $\gamma(a) = \gamma(b)$, γ - замкнутый путь.

Опр (длины пути)

 $\gamma: [a,b] \to \mathbb{R}^m, \, \tau - [a,b]: a = t_0 < t_1 < \ldots < t_n = b.$ Соединим $[\gamma(t_k), \gamma(t_{k+1})]$ отрезками - получим вписанную ломанную.

Длина
$$k$$
-ого звена: $\sqrt{\sum_{j=0}^m (\gamma_j(t_{k+1}) - \gamma_j(t_k))^2}$

Тогда длина вписанной ломанной:
$$l = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^m (\gamma_j(t_{k+1}) - \gamma_j(t_k))^2}$$

Длиной пути назовём $S_{\gamma}:=\sup_{\tau}l_{\tau}$ - всевозможных ломанных

Опр

Путь называется спрямляемым, если $S_{\gamma} < +\infty$

y_{TB}

Аддитивность длины пути. $\gamma:[a,b]\to\mathbb{R},\,c\in(a,b),$ пусть γ_1 - сужение γ на $[a,c],\,\gamma_2$ - сужение γ на [c,b]. Тогда $S_\gamma=S_{\gamma_1}+S_{\gamma_2}$

Док-во

а)
$$S_{\gamma} \geqslant S_{\gamma_1} + S_{\gamma_2}$$
?

Пусть τ_1 - разбиение $[a,c]$, τ_2 - разбиение $[c,b]$, $\tau = \tau_1 + \tau_2$, $l_{\tau_1} + l_{\tau_2} = l_{\tau} \leqslant S_{\gamma}$ (т.к. S_{γ} - sup)

Возьмём sup по всем разбиениям отрезка $[a,c]$ $\Rightarrow \sup_{\tau_1} (l_{\tau_1} + l_{\tau_2}) = S_{\gamma_1} + l_{\tau_2} \leqslant S_{\gamma}$

Теперь sup по всем разбиениям отрезка $[c,b]$ $\Rightarrow \sup_{\tau_1} (S_{\gamma_1} + l_{\tau_2}) = S_{\gamma_1} + S_{\gamma_2} \leqslant S_{\gamma}$

б) $S_{\gamma} \leqslant S_{\gamma_1} + S_{\gamma_2}$?

Пусть τ - разбиение $[a,b]$.

Пусть $\tau^* = \tau \cup \{c\}$. $l_{\tau} \leqslant l_{\tau^*}$, $\tau = \tau_1 \cup \tau_2$, где τ_1 - разбиение $[a,c]$, τ_2 - разбиение $[c,b]$. $l_{\tau} \leqslant l_{\tau^*} = l_{\tau^1} + l_{\tau^2} \leqslant S_{\gamma_1} + S_{\gamma_2}$

Возьмём sup по всем разбиениям τ : $\sup_{\tau} (l_{\tau}) = S_{\gamma} \leqslant S_{\gamma_1} + S_{\gamma_2}$

Примеры

Неспрямляемые пути:

1) Кривая Пеано

В пределе $\gamma:[0,1]\to [0,1]^2$ - сюръективное отображение. В итоге получается прямая заполняющая весь квадрат с пересеченями (в смысле дополнение до подкривых пределе пусто)

2)
$$y = \begin{cases} x \cos \frac{\pi}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Докажем, что прямая не является спямляемой. Пусть $\tau:0<\frac{1}{N}<\frac{1}{N-1}<...<1,\ t_N=\frac{1}{N},$ тогда

$$y(t_k) = \frac{1}{k}\cos\pi k = \frac{1}{k}(-\pi)^k$$

Длина k-ого звена:

$$\frac{1}{k} - \left(-\frac{1}{k+1}\right) \geqslant \frac{2}{k} \Rightarrow l_{\tau} \geqslant \sum_{k=1}^{N} \frac{1}{k} \Rightarrow \sup l_{\tau} = +\infty$$

33 Кривая. Длина кривой.

Опр. см. в билете 32

Теорема (о длинах эквивалентных путей)

Пусть
$$\gamma_1:[a_1,b_1]\to\mathbb{R}^m,\,\gamma_2:[a_2,b_2]\to\mathbb{R}^m.$$
 Если $\gamma_1\sim\gamma_2\Rightarrow S_{\gamma_1}=S_{\gamma_2}$

Док-во

 $\gamma_1 \sim \gamma_2 \Rightarrow \exists \varphi: [a_1,b_1] \rightarrow [a_2,b_2]$ - строго возрастающая, $\gamma_1(t) = \gamma_2(\varphi(t)),$ $\varphi(\tau_1) = \tau_2$ - разбиение $[a_2,b_2],$

$$l_{\tau_1} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} = l_{\tau_2} \leqslant S_{\tau_2}$$

Перейдём к sup по всем au_1 : $\sup_{ au_1}(l_{ au_1})=S_{ au_1}\leqslant S_{ au_2}$

Аналогично получим неравенство $S_{ au_2} \leqslant S_{ au_1}$

Замечание

Корректность определения (с классами эквивалентности) длины пути следует из доказанной выше теоремы

34 Теорема о вычислении длины гладкого пути.

Теорема

 $\overline{\gamma:[a,b]} o\mathbb{R}^m$ - C^1 -гладкая кривая, тогда γ - спрямляется, $S_\gamma=\int\limits_a^b|\gamma'|$

Док-во

1) у - спрямляемая? $\gamma_j \in C^1[a,b] \ \forall j \in \{1,2,...,m\} \ \Rightarrow (\text{ф-ия достигает min и max на } [a,b] \ по т.Вейерштрасса)$

$$m_j \leqslant \gamma_j \leqslant M_j, \ M := \sqrt{\sum_{j=1}^m M_j}, \ m := \sqrt{\sum_{j=1}^m m_j}, \ \gamma' = \begin{pmatrix} \gamma_1' \\ \gamma_2' \\ \dots \\ \gamma_n' \end{pmatrix}$$

$$\forall au$$
-разбиения $[a,b]: l_{ au} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} =$
(по т. Лагранжа $\forall k = 0, 1, ...n - 1 \exists \xi_k \in [t_k, t_{k+1}]: \gamma_j(t_{k+1}) - \gamma_j(t_k) = \gamma_j'(\xi_k) \Delta_{t_k})$
 $= \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_j'(\xi_k))^2 \Delta_{t_k}^2} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_j'(\xi_k))^2 \Delta_{t_k}} \Rightarrow m \sum_{k=0}^{n-1} \Delta_{t_k} \leqslant l_{ au} \leqslant l_{ au} \leqslant M \sum_{k=0}^{n-1} \Delta_{t_k} \leqslant l_{ au} \leqslant l_{ a$

Пусть $\gamma^{(k)}$ - сужение γ на $[t_k, t_{k+1}]$. Для него выполняется пункт (1): *переобозначим γ' как $\overset{\bullet}{\gamma}$ из-за сложности обозначений*

$$m_j^{(k)} = \min_{t \in [t_k, t_{k+1}]} |\stackrel{\bullet}{\gamma_j}(t)|, \ M_j^{(k)} = \max_{t \in [t_k, t_{k+1}]} |\stackrel{\bullet}{\gamma_j}(t)|$$

$$m^{(k)} = \sqrt{\sum_{j=1}^m (m_j^{(k)})^2}, \ M^{(k)} = \sqrt{\sum_{j=1}^m (M_j^{(k)})^2}$$

$$m^{(k)} \Delta t_k \leqslant S_{\gamma^{(k)}} \leqslant M^{(k)} \Delta t_k \Rightarrow \sum_{k=1}^{n-1} \leqslant S_{\gamma} \leqslant \sum_{k=1}^{n-1} M^{(k)} \Delta t_k$$

$$m_j^{(k)} \leqslant |\stackrel{\bullet}{\gamma_j}^{(k)}(t) \leqslant M_j^{(k)}| \ t_k \leqslant t \leqslant t_{k+1}, \ \forall j=1,...,m$$
 Суммируем, возводим в квадрат, иззвлекаем корень:

$$m^{(k)}\leqslant |\stackrel{\bullet}{\gamma}^{(k)}(t)|\leqslant M^{(k)}|\ t_k\leqslant t\leqslant t_{k+1}$$
 Проинтегрируем по
$$\int\limits_{t_k}^{t_{k+1}}dt:\ m^{(k)}\Delta t_k\leqslant \int\limits_{t_k}^{t_{k+1}}|\stackrel{\bullet}{\gamma}^{(k)}(t)|dt\leqslant M^{(k)}\Delta t_k$$

35 Функциональные последовательности и ряды. Поточечная и равномерная сходимость. Примеры.

Опр

$$f_n:E o\mathbb{R}$$
 $E\subset\mathbb{R}$ говорят, что функ. последовательность сходится поточечно к ф. $f:E o\mathbb{R}$, если $\forall x\in E$ $\forall \mathcal{E}>0$ $\exists N_{(x,\mathcal{E})}: \forall n>N$ $|f_n(x)-f(x)|<\mathcal{E}$

Опр

Говорят, что функ. послед. сходится к f равномерно на E

$$f_n \underset{E}{\Longrightarrow} f$$
Если $\sup_{x \in E} |f_n(x) - f(x)| \underset{n \to \infty}{\to} 0$
 $\Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{(\mathcal{E})} \quad \forall n > N \quad \sup_{x \in E} |f_n(x) - f(x)| < \mathcal{E}$
 $\Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{(\mathcal{E})} \quad \forall n > N \quad \forall x \in E \quad |f_n(x) - f(x)| < \mathcal{E}$

Примеры

$$\frac{\sin x}{1} = \frac{\sin^2(e^x) - \arctan(n^2\sqrt{x})}{\sqrt{n}} \qquad x \in [0; +\infty)$$

$$0 \leqslant \sup_{[0, +\infty)} |f_n(x)| \leqslant \frac{10}{\sqrt{n}} \to 0$$

$$\Rightarrow f_n \underset{[0, +\infty)}{\Longrightarrow} 0$$

2.
$$f_n(x) = x^n - x^{2n}$$
 $x \in [0,1]$ $f_n(x) \underset{n \to \infty}{\to} 0$ $\forall x \in [0,1]$ - поточечно. Равномерно ли?
$$f'_n(x) = nx^{n-1} - 2nx^{2n-1} = x^{n-1}(n-2nx^n)$$
 $x_n = \frac{1}{\sqrt[n]{2}}$ - крит. точка
$$f_n(x_n) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
 $\Rightarrow \sup_{x \in [0,1]} |f_n(x)| = \frac{1}{4}$ \Rightarrow равномерной сх-ти нет

Горбик убегает

Замечание

Из равномерной сх-ти \Rightarrow поточечная

36 Критерий Коши для равномерной сходимости функциональной последовательности.

Теорема (Критерий Коши для равномерной сходимости функ. послед.)

$$f_n \underset{E}{\Longrightarrow} f \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} : \forall m, n > N_{\mathcal{E}} \qquad \sup_{x \in E} |f_n(x) - f_m(x)| < \mathcal{E}$$

Док-во

$$(\Rightarrow)$$
:

$$f_n \Rightarrow f \Leftrightarrow \sup |f_n(x) - f(x)| \to 0$$

$$\Rightarrow \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} > 0 : \quad \forall m, n > N_{\mathcal{E}} :$$

$$\sup |f_n - f_m| \leqslant \sup(|f_n - f| + |f - f_m|) < \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} = \mathcal{E}$$

$$(\Leftarrow)$$
:

$$\forall x \in E \quad \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} : \forall m, n > N_{\mathcal{E}} \quad |f_n(x) - f_m(x)| < \mathcal{E}$$

т.е.
$$\{f_n(x)\}$$
 - сх. в себе $\Leftrightarrow \{f_n(x)\}$ имеет конеч. предел

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 T.O. $f_n(x) \to f(x) \quad \forall x \in E$

(т.е. f - поточеч. предел послед.)

$$\forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} : \forall m, n > N_{\mathcal{E}} \quad \forall x \in E$$

$$f_m(x) - \mathcal{E} < f_n(x) < f_m(x) + \mathcal{E} \underset{n \to \infty}{\to} f_m(x) - \mathcal{E} \leqslant f(x) \leqslant f_m(x) + \mathcal{E}$$

$$\Rightarrow |f_m(x) - f(x)| \le \mathcal{E} < 2\mathcal{E}$$

$$\Rightarrow \sup |f_m(x) - f(x)| < \mathcal{E}$$

37 Сохранение непрерывности при равномерном предельном переходе. Теорема Дини (б/д). Теорема о предельном переходе под знаком интеграла.

Теорема (о равномерном пределе непр. функции)

$$f_n$$
 - непр в т. $x_0 \in E$
$$f_n \underset{E}{\Longrightarrow} f$$
 Тогда f - непр. в т. x_0

Док-во

$$orall \mathcal{E}>0$$
 (зафиксир.)
 Т.к. $f_n \rightrightarrows f$, то $\exists N_{\mathcal{E}}: \forall n>N_{\mathcal{E}}$ (зафикс $n^*>N_{\mathcal{E}}$) $\sup_E |f_n-f|< \dfrac{\mathcal{E}}{3}$ (*)
 В частности, для $n^*>N_{\mathcal{E}}$ $\sup_E |f_n-f|< \dfrac{\mathcal{E}}{3}$
$$f_{n^*} \text{ - Helip. B T } x_0: \quad \exists \delta>0 \quad \forall t\in E: \quad |t-x_0|<\delta \quad |f_{n^*}(t)-f_{n^*}(x_0)|< \dfrac{\mathcal{E}}{3}$$

 Тогда $\forall x\in E: \quad |x-x_0|<\delta$
$$|f(x)-f(x_0)|\leqslant |f(x)-f_{n^*}(x)|+|f_{n^*}(x)-f_{n^*}(x_0)|+|f_{n^*}(x_0)-f(x_0)|<\mathcal{E}$$

Следствие

Если
$$f_n \in C(E), \quad f_n \underset{E}{\Longrightarrow} f$$
, то $f \in C(E)$

Теорема (Дини)

$$f_n\in C[a,b]$$
 $f_n(x)\to f(x)$ (поточ. на $[a,b]$) причем $\forall x\in [a,b]$ $f_n(x)\searrow$ (по n). т.е $f_{n+1}(x)\leqslant f_n(x)$ Если $f\in C[a,b]$, то $f_n\overset{}{\Rightarrow} f$

Теорема (о предельном переходе под знаком интеграла)

$$f_n \in R[a,b]$$
 $f_n \underset{[a,b]}{\Longrightarrow} f \in R[a,b]$
Тогда $\int_a^b f_n \underset{n \to \infty}{\longrightarrow} \int_a^b f$

Док-во

$$\left| \int_a^b f_n - \int_a^b f \right| \leqslant \int_a^b |f_n - f| < \sup_{[a,b]} \left| f_n - f \right| \cdot (b - a) \to 0$$

y_{TB}

Функ. ряд сход равномерно \Leftrightarrow посл-ть частичных сумм сход равномерно

Следствие (1)

$$f_n \in C[a,b] \quad \sum_{n=1}^N f_n
ightrightarrows f,$$
 тогда:

1)
$$f(x) = \sum_{n=1}^{\infty} f_n \in C[a, b]$$

$$2) \quad \int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$$

Следствие (2)

Если
$$f_n(x) \geqslant 0 \quad \forall x \in [a,b] \qquad f_n \in C[a,b]$$

$$\sum_{n=1}^{\infty} f_n = f \in C[a, b]$$

То
$$\sum f_n$$
 - сход. равномерно на $[a,b]$

38 Дифференцируемость и равномерная сходимость.

Теорема (диф-сть и равном. сх-ть)

$$f_n \in C^1[a,b]$$
 $f'_n \underset{[a,b]}{\Longrightarrow} g$ и $\exists c \in [a,b]: \{f_n(c)\}_{n=1}^{\infty}$ - cx

Тогда:

1.
$$f_n \rightrightarrows f$$
 на $[a,b]$

2.
$$f \in C^1[a,b]$$
 и $f' = g$

Док-во

$$(b) \quad f_n(x) - f_n(c) = \int_c^x f_n' \underset{n \to \infty}{\to} \int_c^x g = f(x) - f(c) \qquad f(c) = \lim_{n \to \infty} f_n(c)$$
 (по т. о предельном переходе под знаком интеграла)
$$f(x) = \int_c^x g + f(c)$$
 т.о $f_n(x) \to f(x)$ поточ. на $[a,b]$
$$f'(x) = g(x)$$
 непр (равн. предел непр ф.)
$$\Rightarrow f \in C^1[a,b]$$
 (a) покажем, что $f_n \rightrightarrows f$
$$\sup_{x \in [a,b]} |f_n(x) - f(x)| = \sup \left| f_n(x) - f_n(c) + f_n(c) - f(c) + f(c) - f(x) \right| \leqslant \sup \left| \int_c^x f_n' - \int_c^x g + f_n(c) - f(c) \right| \leqslant \sup \left| \int_c^x (f_n' - g) \right| + |f_n(c) - f(c)| \quad (*)$$

$$f'_n \rightrightarrows g \Rightarrow \left| \int_c^x (f_n' - g) \right| \leqslant \sup \left| f_n' - g \right| \underbrace{(x - c)}_{\leqslant (a - b)}$$

$$\forall \mathcal{E} > 0 \quad \exists N : \forall n > N \quad \left| \int_c^x (f_n' - g) \right| \leqslant \mathcal{E}$$

$$\exists N_2 : \forall n > N_2 \quad |f_n(c) - f(c)| \leqslant \mathcal{E}$$

Пример

 \Rightarrow (*) < 2 \mathcal{E}

$$f_n(x) = \frac{1}{n}\arctan(x^n)$$

$$\sup_{\mathbb{R}} |f_n(x)| \leqslant \frac{\pi}{2n} \to 0 \quad \text{ r.e. } f_n \underset{\mathbb{R}}{\Longrightarrow} 0 = f$$

$$f'_n(1) = \frac{1}{n} \cdot \frac{1}{1 + x^{2n}} \cdot n \cdot x^{n-1} \Big|_1 = \frac{1}{2}$$
Ho $(\lim_{n \to \infty} f_n)'_{x=1} = 0 \neq \lim_{n \to \infty} f'_n(1)$

39 Признак Вейерштрасса равномерной сходимости функциональных рядов.

Теорема (признак Вейерштрасса равн сх-ти)

$$f_n:E\to\mathbb{R}$$

$$\forall n\;\exists M_n\quad |f_n(x)|\leqslant M_n\quad\forall x\in E$$

$$\sum_{n=1}^\infty M_n<\infty\;\text{(сход. мажоранта)}$$

 Тогда ряд
$$\sum_{n=1}^\infty f_n(x)\;\text{сх. равн. (и абс) на }E$$

Док-во

$$\forall \mathcal{E}>0 \quad \exists N: \forall m,n>N \quad \left|\sum_{k=m}^n M_k\right|<\mathcal{E} \Leftrightarrow \sum M_k<\infty$$
 Тогда $|S_n-S_{m-1}|=\left|\sum_{k=m}^n f_k(x)\right|\leqslant \sum_{k=m}^n |f_k(x)|\leqslant \left|\sum_{k=m}^n M_k\right|<\mathcal{E}$ Т.е. $|S_n-S_{m-1}|<\mathcal{E}$ т.е. вып. кр. Коши для $S_n(x)=\sum_{k=1}^n f_k(x)$

част. суммы сх равн. ⇒ функ. ряд сх. равн.

40 Степенной ряд (в \mathbb{C}). Радиус сходимости. Формула Коши-Адамара.

Опр

Будем рассматривать

$$\sum_{k=0}^{\infty} c_k z^k \qquad c_k, z \in \mathbb{C}$$

Опр

$$x=\operatorname{Re} z$$
 $y=\operatorname{Im} z$ $|z|=\sqrt{x^2+y^2}$ $x=|z|\cos arphi$ $y=|z|\sin arphi$ $|z_1-z_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ $C_n=a_n+ib_n\quad n\in \mathbb{N}$ $\lim_{n\to\infty}c_n=c,\ \text{если}\ \forall \mathcal{E}>0\quad \exists N:\forall n>N\quad |c_n-c|<\mathcal{E}$

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$c_n \underset{n \to \infty}{\to} c \Leftrightarrow \frac{a_n \to a}{b_n \to b} \quad (n \to \infty)$$

$$c_n = a_n + ib_n$$

$$c = a + ib$$

$$a, b \in \mathbb{R}$$

$$a_n, b_n \in \mathbb{R}$$

Опр

Радиусом сх-ти степ. ряда $\sum c_n z^n$ назыв $R \in [0, +\infty]$ такое, что $(z \neq 0)$

$$\forall z : |z| < R$$
 - ряд. сх

$$\forall z: |z| > R$$
 - ряд расх.

$$\dfrac{\Pi$$
римеры $_{k=0}^{\infty}k!z^{k}$ по пр. Даламб расх $\forall z \neq 0 \quad R=0$

$$\lim_{k\to +\infty} \frac{\left|(k+1)!z^{k+1}\right|}{|k!z^k|} = \infty, \quad z\neq 0$$

2.
$$\sum_{k=0}^{\infty} \frac{z^k}{k!} - \text{cx. } \forall z \in \mathbb{C}$$

3.
$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$

$$z^* = -1$$
 : $\sum \frac{(-1)^n}{n}$ - cx \Rightarrow cx. равн. $\forall |z| \leqslant d < 1$ $z_0 = 1$: $\sum \frac{1}{n}$ - расх $\Rightarrow \forall |z| > 1$

Теорема (ф-ма Коши-Адамара)

$$\sum_{k=0}^{\infty} c_k z^k$$
 R - рад. сх-ти

$$\frac{1}{R} = \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k|}$$

41 Теорема о комплексной дифференцируемости степенного ряда. Следствие: единственность разложения в степенной ряд.

Ряд Тейлора. Примеры $(e^x, \sin x, \ln(1+x), e^{-\frac{1}{x^2}})$.

Опр

$$f\in C^\infty(U_{x_0})$$
 U_{x_0} - окр x_0 Ряд $\sum_{n=0}^\infty rac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ назыв. Рядом Тейлора ф-и в т x_0

$$\frac{\mathbf{\Pi}\mathbf{pимеры}}{1.\ e^x = \sum_{k=0}^{\infty} \frac{x_k}{k!}}$$

2.
$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

3.
$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

4.
$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^k \frac{x^k}{k}$$

43 Биномиальный ряд $(1+x)^{\alpha}$

Опр

$$(1+x)^{\alpha} \qquad \alpha \in \mathbb{R}$$

Запишем (формально) ряд Тейлора для $(1+x)^{\alpha}$ в т. $x_0=0$

$$\frac{f^{(k)}(0)}{k!} = \frac{\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - k + 1)}{k!} = C_{\alpha}^{k}$$

Найдем интервал сходимость $\sum_{k=0}^{\infty} c_{\alpha}^k z^k \quad z \in \mathbb{C}$ (по Даламберу)

$$\lim_{k\to\infty}\left|\frac{c_{\alpha}^{k+1}z^{k+1}}{c_{\alpha}^{k}z^{k}}\right|=\lim_{k\to\infty}$$

44 Признак Абеля-Дирихле для равномерной сходимости функциональных рядов (доказательство одного).

45 Теорема Абеля. Сумма ряда $\sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

46 Интеграл комплекснозначной функции. Скалярное произведение и норма в пространстве $C(\mathbb{C}\setminus\mathbb{R})$, в пространстве R([a;b]). Ортогональность. Пример: $e_k(x)=e^{2\pi ikx}$.

47 Свойства скалярного произведения и нормы (теорема Пифагора, неравенство Коши-Буняковского-Шварца, неравенство треугольника).

48 Коэффициенты Фурье функции по ортогональной системе e_k . Ряд Фурье. Пример: тригонометрический полином.

49 Свойства коэффициентов Фурье (коэффициенты Фурье сдвига, производной).

50 Неравенство Бесселя. Лемма Римана-Лебега (light).

51 Вычисление интеграла Дирихле $\int\limits_0^\infty \frac{\sin x}{x}$.

52 Ядра Дирихле, их свойства. Выражение частичных сумм ряда Фурье через ядра Дирихле. 53 Свертка. Простейшие свойства. Свертка с тригонометрическими и алгебраическими полиномами.

54 Принцип локализации Римана.

55 Теорема о поточечной сходимости ряда Фурье для локально-Гельдеровой функции.

56 Ядра Фейера, их свойства. Связь с $\sigma_N(f)$.

57 Аппроксимативная единица. Определение, примеры. Теорема о равномерной сходимости свертки с аппроксимативной единицей.

58 Теорема Фейера. Теорема Вейерштрасса.

59 Среднеквадратичное приближение функций, интегрируемых по Риману, тригонометрическими полиномами.

60 Равенство Парсеваля.

61 Замечания из конспектов, которые не вошли в билеты

61.1 Множества меры ноль

Опр

 $E \subset \mathbb{R}$, говорят, что E - мн-во меры ноль, если:

$$\forall \mathcal{E} > 0 \quad \exists I_j = (\alpha_j, \beta_j) : E \subset \bigcup_{j \in \mathbb{N}} I_j \quad \sum_{j=1}^{\infty} |I_j| < \mathcal{E} \ (|I_j| = \beta_j - \alpha_j)$$

Примеры

1) ∀ Конечное множество - мн-во меры ноль

$$E = \{x_1, ..., x_n\}, I_j := (x_j - \frac{\mathcal{E}}{4n}, x_j + \frac{\mathcal{E}}{4n}), \sum_{j=1}^n |I_j| = \frac{\mathcal{E}}{2}$$

- (2) $A=\{a_j\}_{j\in\mathbb{N}}$ счётное \Rightarrow имеет меру 0. Как покрыть \mathbb{N} ? $|I_j|=rac{\mathcal{E}}{2^{j+1}}$ - геом. прогрессия
- 3) Несчетное множество меры ноль: Канторовское мн-во (Канторовский компакт), построение:

$$C = \bigcap_{n=1}^{\infty} C_n$$

Определим $C_{\frac{1}{3^p}}$ как множество отрезков, получинных для $\mathcal{E}=\frac{1}{3^p}$ для крайних точек каждого отрезка из C_p (они их покроют "вплотную" и по краям будет немного лишнего). На каждом шаге p у нас 2^p отрезков

$$\Rightarrow |C_{\frac{1}{3^p}}| = 5 \frac{2^{p-1}}{3^p} \underset{p \to \infty}{\to} 0$$

61.2 Критерий Лебега интегрируемости функции

Теорема

Пусть $f:[a,b]\to\mathbb{R},$ тогда: $f\in R[a,b]\Leftrightarrow f$ имеет ограниченное мн-во точек разрыва и меру 0

Примеры

1) Функция Дирихле $\mathcal{D}(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$

 $\mathcal{D} \notin R[0,1]$. Проверим по критерию Лебега. Множество точек разрыва - \mathbb{R} , но оно не множество меры 0 (слишком много точек).

2) Функция Римана $\Phi(x)=\begin{cases} 0,&x\notin\mathbb{Q}\\ \frac{1}{n},&x=\frac{m}{n} \text{ - несократимая дробь} \end{cases}$

Оказывается, она интегрируема по Риману на любом отрезке. Рассмотрим [0,1]:

- а) $\forall a \in \mathbb{Q}$ точка разрыва Φ :
- $\Phi(a)>0$ по определению. С другой стороны как угодно близко найдётся иррациональная точка, в которой функция принимает значение 0.
 - б) $\forall a \notin \mathbb{Q}$ непрерывна:

Для произвольного $\mathcal{E} > 0$ рассмотрим множество $M = \{x \in \mathbb{R} : f(x) \geq \mathcal{E}\}$. Никакая иррациональная точка не лежит в M, поскольку в иррациональ-

Никакая иррациональная точка не лежит в M, поскольку в иррациональных точках функция f обращается в ноль.

Если $x\in M$, тогда x есть рациональное число вида $x=\frac{m}{n}$, где $m\in\mathbb{Z},\ n\in\mathbb{N}$, дробь $\frac{m}{n}$ несократима, и тогда $f(x)=\frac{1}{n}\geq\mathcal{E}$ и, следовательно, $n\leq\frac{1}{\mathcal{E}}$. Из ограничения на n следует, что пересечение множества M и любого ограниченного интервала состоит из конечного числа точек.

Пусть α - произвольное иррациональное число. По определению $f(\alpha)=0$. Мы можем выбрать окрестность точки α так, чтобы в ней не содержалась ни одна точка множества M. Если же $x\notin M$, то $f(x)<\mathcal{E}$. Таким образом, мы нашли интервал, который требуется в определении непрерывности.