MULUNGUSHI UNIVERSITY

SCHOOL OF SCIENCE, ENGINEERING AND TECHNOLOGY DEPARTMENT OF MATHEMATICS AND SCIENCES

MSM 111 - Mathematical Methods I

Tutorial Sheet 4 - 2020/2021 - Polynomial Functions of Degree 3 and 4

1. Use long-division to divide

Dividend	Divisor
$x^3 + 6x^2 + 7x + 2$	x-1
$2x^3 + 6x^2 - x + 3$	$2x^2 - 1$
$x^4 + 3x^2 + 1$	$x^2 - 2x + 3$

2. Use synthetic division to divide the polynomials and write the function in the form p(x) = (x - k)q(x) + r, where q(x) is the quotient and r is the remainder :-

Dividend	Divisor
$x^3 - 10x^2 + 13x - 30$	x-3
$x^3 + 15x^2 + 68x + 96$	x+4
$6x^3 + x^2 - 21x - 10$	2x + 1

3. Factorize the following polynomials completely:

(i)
$$x^3 - 2x^2 - 5x + 6$$

(ii)
$$2x^3 + 3x^2 - 17x + 12$$

$$3x^3 + 10x^2 - 27x - 10$$

4. Using the remainder theorem, write the function in the form p(x) = (x - k)q(x) + r, where q(x) is the quotient and r is the remainder:

(i)
$$p(x) = x^3 + x^2 - 12x + 20, k = 2$$

(ii)
$$p(x) = x^3 - 2x^2 - 15x + 7, k = -4$$

(ii)
$$p(x) = x^3 + 2x^2 - 3x - 12, k = \sqrt{3}$$

(iv)
$$p(x) = 3x^3 - 19x^2 + 27x - 7, k = 3 - \sqrt{2}$$

5. Factorize the polynomial $x^3 - 3x^2 - 4x + 12$. Hence, calculate the range of values of x for which $x^3 - 3x^2 > 4x - 12$.

6. Given that (x-1) and (x+1) are the factors of $px^3 + qx^2 - 3x + 7$, find the values of p and q.

- 7. The expression $2x^3 x^2 + ax + b$ gives a remainder of 14 when divided (x-2) and a remainder of -86 when divided by (x+3). Find the values of a and b.
- 8. The remainder obtained when $2x^3 + ax^2 6x + 1$ is divided by (x + 2) is twice the remainder obtained when the some polynomial is divided by (x-1). Find the value of a.
- 9. The polynomial $3x^3 + 2x^2 px + q$ is divisible by (x-1) but gives a remainder of 10 when divided by (x+1). Find the values of p and q.

10. Find the zeros of each of the following polynomial function. Hence, sketch its graph indicating the x and y intercepts:

(i)
$$p(x) = x^3 - 2x^2 - 7x + 12$$

(i)
$$p(x) = x^3 - 2x^2 - 7x + 12$$
 (ii) $p(x) = 15 + 5x - 3x^2 - x^3$ (ii) $p(x) = -x^3 + x^2 + 5x - 2x^3$

(ii)
$$p(x) = -x^3 + x^2 + 5x - 2$$

(iv)
$$p(x) = x^3 + 5x^2 + 6x + 2$$

(v)
$$p(x) = 2x^3 - 15x^2 + 24x + 16$$

11. Find the coordinates of the points where the curve $y = x^3 + 6x^2 + 11x + 6$ cutes the

(i)
$$u$$
-axis

(ii)
$$x$$
-axis

Hence, make a sketch of the curve and state the range of values for which y < 0.

- 12. Show that x-y is a factor of x^5-y^5 , x^6-y^6 , x^7-y^7 by using synthetic division. Find the quotient in each case.
- 13. Sketch the graph of each of the following rational functions, indicating the intercepts, vertical asymptotes, horizontal asymptotes and slant asymptotes if they exists:

1

(i)
$$f(x) = \frac{-1}{x+1}$$

(ii)
$$f(x) = \frac{x}{x^2 - 3x - 4}$$
 (iii) $\frac{3x^2 - 12}{x^2 + 3x - 4}$ (iii) $\frac{2x^2 + 1}{x}$

(iii)
$$\frac{3x^2-12}{x^2+2x+4}$$

(iii)
$$\frac{2x^2+1}{}$$

Indicate the domain and range in each case.