Amazon.com -Employee Access Challenge

Machine Learning | Final Project Xiaotian Huang, Cheng Zeng, Wenyu Zeng

Introduction

- Amazon Employee Access computer access
- Protects user information, and prevent unauthorized access, disclosure, disruption, modification, inspection, recording or destruction.
- Employees access encounter roadblocks
 - Not able to log into a reporting portal
- Access discovery/recovery cycle wastes a nontrivial amount of time and money

Objective

Creating a best model to determine an employee's access needs

About the dataset...

- ☐ The data consists of real historical data collected from 2010 & 2011
- Original file
 - ☐ Train
 - □ ACTION (ground truth), RESOURCE, and information about the employee's role at the time of approval
 - □ Test
 - Each row asks whether an employee having the listed characteristics should have access to the listed resource.
- Column Descriptions
 - Action, Resource, Manager ID, Role grouping Category, Role department description, Role title, Role family description and role code.
- → Target: Action

	ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME
0	1	39353	85475	117961	118300	123472
1	1	17183	1540	117961	118343	123125
2	1	36724	14457	118219	118220	117884
3	1	36135	5396	117961	118343	119993

Data Preprocessing

Original training dataset

	# rows	# columns
0	32769	10

- Splitted training dataset into training (80%) and validation (20%).
- After cleaning the missing values, uncommon values, and identifiers
- Training

	# rows	# columns
0	26215	10

Validation

	# rows	# columns
0	6554	10

Models

```
models = {'lr': LogisticRegression(class_weight='balanced', random_state=42),
'dtc': DecisionTreeClassifier(class_weight='balanced', random_state=42),
'rfc': RandomForestClassifier(class_weight='balanced', random_state=42),
'hgbc': HistGradientBoostingClassifier(random_state=42),
'xgbc': XGBClassifier(seed=42),
'mlpc': MLPClassifier(early_stopping=True, random_state=42)}
```

- We use sklearn StandardScaler to do hyperparameter tuning and model selection
- We creating the dictionary of the parameter grids
 - Acronym of the model
 - The value is the parameter grid of the model.
- We use sklearn GridSearchCV to fine-tune the hyperparameters the models.

Model Comparison

For the best scores, we considered some important values of each model, including 'rank_test_score', 'mean_test_score', 'std_test_score', 'mean_train_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time'.

	best_score	best_param	best_estimator
0	0.948886	{'modelmin_samples_leaf': 1, 'modelmin_sam	((DecisionTreeClassifier(ccp_alpha=0.0, class
1	0.945224	{'modellearning_rate': 0.1, 'modelmin_samp	(HistGradientBoostingClassifier(I2_regularizat
2	0.942478	{'modelalpha': 1e-05, 'modellearning_rate	(MLPClassifier(activation='relu', alpha=1e-05,
3	0.942325	{'modeleta': 0.0001, 'modelgamma': 0, 'mod	(XGBClassifier(base_score=0.5, booster='gbtree
4	0.754959	{'modelmax_depth': 1, 'modelmin_samples_le	(DecisionTreeClassifier(ccp_alpha=0.0, class_w
5	0.433323	{'modelC': 0.01, 'modeltol': 1e-06}	(LogisticRegression(C=0.01, class_weight='bala

Conclusion

- Random Forest has the highest score, which means that the variables selected have high accuracy and are important for predicting the action.
- Since logistic regression model has a best score value of 0.43, thus logistic regression might not be a good model for prediction the "Action".

	Features	Importance
0	RESOURCE	0.212523
1	MGR_ID	0.193336
2	ROLE_DEPTNAME	0.136798
3	ROLE_FAMILY_DESC	0.116233
4	ROLE_ROLLUP_2	0.0975683

Reference

- 1. https://www.kaggle.com/c/amazon-employee-access-challenge/data
- https://github.com/yuxiaohuang/teaching/tree/master/gwu/machine_learning_l /spring_2020

