## Section 1.1

# Section 1.1: Fields of Real Numbers (2025-01-06)

#### The Real Numbers $\mathbb R$

- The **Real Numbers** ( $\mathbb{R}$ ) form a *field*.
  - **Field**: A set where the usual algebraic operations (addition, subtraction, multiplication, and division) make sense.
  - Operations:
    - Add: a+b
    - Subtract: a b
    - Multiply:  $a \cdot b$
    - Divide:  $\frac{a}{b}$  (if  $b \neq 0$ )

#### **Field Property: Existence of Solutions**

- Fact: For  $a, b \in \mathbb{R}$ , if  $a \neq 0$ , the equation ax = b has a unique solution:
  - Solution:  $x = \frac{b}{a} **$

## Vectors in the Plane $\mathbb{R}^2$

- $\mathbb{R}^2$  represents the **Cartesian Plane**, a set of ordered pairs of real numbers.
  - Points in the plane correspond to vectors in  $\mathbb{R}^2$ .



#### **Definition: Vector**

A **vector** is an arrow with:

- A tail (initial point)
- A head (final point)

### **Common Representations of Vectors**

- Column Vector:  $\binom{x}{y}$
- Row Vector:  $(x \ y)$
- Tuple: (x, y)

These represent the "head" of an arrow with the tail at the origin  $\binom{0}{0}$ .

## **Examples**

- Let  $A=(a_x,a_y)$  and  $B=(b_x,b_y)$ .
- O represents the **origin** (0,0).



#### **Standard Position of Vectors**

• A vector  $\vec{V}$  is in **standard position** if its tail is at the origin O and the vector corresponds to a point  $A \in \mathbb{R}^2$ :

- 
$$ec{V}=ec{OA}$$



#### **Equivalent Vectors**

- Two vectors in the plane are **equivalent** if they point in the same direction and have the same length.
  - Fact: Every vector in the plane is equivalent to a unique vector in standard position.

### **Vector Addition**

Let 
$$ec{V} = inom{a}{b}$$
 and  $ec{W} = inom{c}{d}$ .

- To add vectors, add corresponding components:
  - $led ec V + ec W = inom{a+c}{b+d}$

#### **Example:**

Given points P = (1, 1), Q = (3, 2), and R = (2, 3):

- $\vec{V} = \vec{PQ} = (3-1, 2-1) = (2, 1)$
- $\vec{W} = \vec{QR} = (2-3, 3-2) = (-1, 1)$
- $\vec{V} + \vec{W} = (2 + (-1), 1 + 1) = (1, 2)$



Thus, the vector  $\vec{PR}$  is given by:  $\vec{PR} = (2-1,3-1)-(1,2) = \vec{V} + \vec{W}$ 

 $\vec{PQ} + \vec{QR} = \vec{PR}$ , which geometrically means the head of the first vector equals the tail of the second.

#### Unit Vectors in $\mathbb{R}^2$

• Unit Vectors:



## **Properties of Vector Addition**

### **Commutative Property**

• Vector addition is **commutative**, meaning the order does not matter:  $ec{V} + ec{W} = ec{W} + ec{V}$ 

### **Proofs of Commutativity:**

1. Algebraic Proof:

• Let 
$$\vec{V}=\binom{a}{b}$$
 and  $\vec{W}=\binom{c}{d}$   
 $\Rightarrow a+c=c+a$   
 $\Rightarrow b+d=d+b$ 

2. Geometric Proof:



To Be Continued