PCA9685 16路12位pwm信号发生器

1.16路12位PWM信号发生器,可用于控制<mark>舵机</mark>、led、电机等设备,i2c通信,节省主机资源。

一、概述和硬件

1、概述

很常见的模块板子如上图所示,这个板子也比较便宜,十几块钱一个。i2c通信,只需要几根i2c线就可以控制16路pwm,周期和占空比都可控。可以多个模块级联。可控制16路通道的四种工作模式:关、开、pwm、可变pwm。精度是12位:

工作频率 时间分辨率 通常舵机500~2500us可分成份数 通常舵机500~2500us,旋转角180°的角度分辨率 对于电调,500us对应100%的占空比分辨率

工作频率	时间分辨率	通常舵机500~2500us可分成份数	通常舵机500~2500us,旋转角180°的角度分辨率
50Hz	4.88us	410份	0.439°
60Hz	4us	492份	0.366°

驱动方式可以选择开漏输出或推挽输出。

2、硬件

1、电压

数字电路电压范围可接受3.3和5v电平。

此外还有一个v+引脚,这个引脚是给舵机供电用的,可以接稍微高一点的电压。

2、i2c地址

有6个地址控制脚,通过这些引脚可以控制设备的i2c地址。

7位的I2C地址为: 0x40 + A5:A0, A5到A0如果不做任何处理的话是0,想要把哪一位置1就把那个引脚焊到一起。 另外用i2cdetect检测出还有一个0x70地址一直存在,这是一个通用地址,可以给所有从机下达指令。

3、使能脚

模块有一个OE反使能脚,这个引脚低电平使能,不接的话模块内部默认已经接地使能了,所以正常使用可以不接。

二、寄存器功能

内部地址(hex)	名称	功能
00	MODE1	设置寄存器1
01	MODE2	设置寄存器2
02	SUBADR1	i2c-bus subaddress1
03	SUBADR2	i2c-bus subaddress2
04	SUBADR3	i2c-bus subaddress3
05	ALLCALLADR	
06	LED0_ON_L	
07	LED0_ON_H	
08	LED0_OFF_L	
09	LED0_OFF_H	
222	224	922
0x06 + 4*X	LEDX_ON_L	
0x06 + 4*X + 1	LEDX_ON_H	
0x06 + 4*X + 2	LEDX_OFF_L	
0x06 + 4*X + 3	LEDX_OFF_H	
	est)	上面共16路通道
FA	ALL_LED_ON_L	
FB	ALL_LED_ON_H	
FC	ALL_LED_OFF_L	
FD	ALL_LED_OFF_H	
FE	PRE_SCALE	控制周期的寄存器
FF	TestMode	

MODE1寄存器

位	名称	功能
D7	RESTART	写1复位,写完后此位自动清除。一定要在SLEEP位写0后至少500us后才能对此位写1进行复位。
D6	EXTCLOCK	0-使用内部时钟(25MHz)。1-使用外部时钟引脚的时钟。修改此位前,一定要先SLEEP,再修改此位(此时SLEEP位 仍然写1),再退出SLEEP。
D5	Al	0-内部地址读写后不自动增加。1-内部地址读写后自动增加。一般i2c设备在对从机读写后内部地址都会自动增加,这个芯片可以手动设置是否自动增加,我们一般都会设成自动增加。
D4	SLEEP	0-退出SLEEP模式。1-进入SLEEP模式。注:1、写0退出sleep模式后,最多等500us后即可产生稳定的时钟信号。2、写1进入sleep模式后,时钟会关闭。此时可以修改时钟源寄存器EXTCLOCK和周期寄存器PRE_SCALE,修改这两个寄存器之前必须先进入sleep模式。
D3	SUB1	
D2	SUB2	
D1	SUB3	
D0	ALLCALL	0-不响应0x70通用i2c地址。1-响应0x70通用i2c地址。这个芯片除了可以通过A5:A0自定义i2c地址外,还有一个通用i2c地址0x70,此寄存器可以控制是否响应这个通用地址。注意啊:这个寄存器的设置好像绰毛会保存的 1003228

各个通道的ON和OFF寄存器

总共16个通道,每个通道都有 LEDX_ON_L、LEDX_ON_H、LEDX_OFF_L、LEDX_OFF_H 四个寄存器。 系统中有一个12位的计数ACK,ACK根据PRE_SCALE寄存器设置的周期进行增加,没增加一次就会和上述四个寄存器对比:

当发现 ACK == LEDX_ON_H[3:0]:LEDX_ON_L 时,X通道输出高电平;

当发现 ACK == LEDX_OFF_H[3:0]:LEDX_OFF_L 时, X通道输出低电平。

PRE SCALE寄存器

这个寄存器是用来设置周期的,具体原理可以不用管,只要记住这个公式:

$$prescale\ value = round\ \left(\frac{osc_clock}{4096 \times update_rate} \right) - 1$$
 其中osc_clock是时钟,根据上面的寄存器设置

其中osc_clock是时钟,根据上面的寄存器设置选择是内部25MHz时钟还是外部时钟;update_rate是频率,比如周期是20ms,那么频率就是50。

注意:实际应用中发现有误差,需要加入校准,要把udpate_rate乘以0.915。

包括从网上下载的arduino驱动中也加入了此校准。