Introvert or Extrovert: A Myers-Briggs Experiment

Jose Reyes 02/01/2018

Introduction

Human Personality

- For ages scholars have studied & aimed to classify human personality.
- Various approaches:
 - 1. Humorism: Ancient Greeks used the balance of body fluids to classify personality.
 - 2. Phrenology/Physiognomy: Classify personality based on outward appearance.
 - 3. Psychological: Myers-Briggs, Rorschach, and Thematic Apperception Test (TAT).

Assessing Personality

- Reasons why:
 - Form an accurate picture of an individual.
 - If personality is know, easy to predict future actions.
 - Easy to identify preferred preferences.

- Problems:
 - Time-consuming
 - Issues of low-reliability
 - Issues of low-validity

The Solution

- If we can analyze social media posts to assess personality we can:
 - 1. Identify key words/speech patterns that determine personality type.
 - 2. Firms can use findings to better target marketing campaigns.
 - 3. Education institutions can better tailor their lessons to students of different personality types.
- Using Python and the Myers-Briggs Personality Indicator dataset from the Kaggle website, we will aim to classify people as Introverts or Extroverts using text data.

The Dataset

Dataset Inspection

- Dataset contains 2 columns:
 - A collection of a user's internet posts, concatenated as a string.
 - The user's Myers-Briggs Personality Identifier (MBTI).
- 8,675 Observations
- Sample posts:

```
In [8]: # Original Post
    print(df.posts[0])
```

'http://www.youtube.com/watch?v=qsXHcwe3krw|||http://41.media.tumblr.com/tumblr_lfouy03PMAlqalroool_500.jpg|||enfp and intj moments https://www.youtube.com/watch?v=iz7lE1g4XM4 sportscenter not top ten plays https://www.youtube.com/watch?v=uCdfzeletec pranks|||What has been the most life-changing experience in your life?|||http://www.youtube.com/watch?v=u8ejam5DP3E On repeat for most of today.|||May the PerC Experience immerse you.|||The last thing my INFJ friend posted on his facebook before committing suicide the next day. Rest in peace-http://vimeo.com/22842206|||Hello ENFJ7. Sorry to hear of your distress. It's only natural for a relation ship to not be perfection all the time in every moment of existence. Try to figure the hard times as times of growth,

Data Wrangling

Assumptions

- Each observation is a unique observation, no unique identifier.
- All user posts are truly self-reported, no high jacked accounts.
- All user posts were posted over time, not all posts in one day.

Initial Data Quality Findings

- Relatively clean dataset with minor exceptions:
 - Posts separated by a triple pipe ("|||")
 - Posts contain URLs, numeric data, and MBTI codes.
 - Posts contain a multiple of stop words (i.e. "the", "of", "a", "though" ... etc.)

Data Wrangling

Original Posts (Sample)

```
# Original Post
print(df.posts[0])
```

'http://www.youtube.com/watch?vd intj moments https://www.youwatch?v=uCdfzeletec pranks|||watch?v=vXZeYwwRDw8 http://wwnce immerse you.|||The last thiin peace~ http://vimeo.com/22 ship to not be perfection all t

Cleansed Posts (Sample)


```
# Cleansed posts
print(df.posts[0])
```

['moments', 'sportscenter', 'top' ife', 'repeat', 'today', 'may', '] posted', 'facebook', 'committing', 'distress', 'natural', 'relation, 'try', 'figure', 'hard', 'times tch', 'prozac', 'wellbrutin', 'leat', 'sitting', 'desk', 'chair', 'we 'alternative', 'basically', 'come

Data Wrangling (con't)

- Additional data wrangling includes value transformation:
 - Creation of a 3rd column: "Attitude"
 - Denotes if user is Introvert or Extrovert, based on MBTI value. If MBTI starts with "I," user is Introvert. If MBTI starts with "E," user is Extrovert.
 - Creation of a 4th column: "word_qty"
 - Denotes word count of the cleansed string.

Inferential Statistics

_		INFP	INFJ	INTP	INTJ	ENTP	ENFP	ISTP	ISFP	ENTJ	ISTJ	ENFJ	ISFJ	ESTP	ESFP	ESFJ	ESTJ
	QTY	1832	1470	1304	1091	685	675	337	271	231	205	190	166	89	48	42	39

Inferential Statistics (con't)

String Word Count Distribution

Distribution of Word Qty per Post AVG = 584.78 AVG = 584.78 AVG = 584.78 O 200 400 600 800

String Word Count Descriptive Statistics

count	8675.000000
mean	584.782939
std	137.993167
min	0.000000
25%	508.000000
50%	609.000000
75%	686.000000
max	870.000000

Inferential Statistics (con't)

Word Cloud of Introvert posts:

n=6,676

Word Cloud of Extrovert posts:

n=1,999

Building the Algorithm

Training/Testing Set Creation

- Utilized Python's Scikit-Learn machine learning library.
- Dataset was split into striated training and testing sets:
 - Training set = 90% of data
 - Testing set = 10% of data
- Strings were transformed to numeric vectors: CountVectorizer & TfidfVectorizer

Results

- Each algorithm was trained using the training set.
- Each algorithm was fitted to the testing set to assess model performance.
- Each algorithm was fine-tuned to improve performance.

Algorithm	Best Test Score				
Multinomial Naïve Bayes	77.76% (Count Vectorizer)				
Logistic Regression	78.11%* (Tfidf Vectorizer)				
Support Vector Machines (SVM)	77.65% (Count/Tfidf Vectorizers)				
Decision Tree	77.30% (Count Vectorizer)				
Random Forest	76.96% (Count Vectorizer)				

^{*}Best Score

Discussion/Recommendations

Discussion

- A score of 78.11% is not ideal for real-life applications.
- Dataset is highly skewed, too many introverted MBTIs.
- With limited data we're unable to generate a meaningful model:
 - The lack of a unique user identifier provides no knowledge potential duplicates.
 - No socio-economic, demographic or time-series data provided.

Recommendations

- Review user posts with higher scrutiny and remove remaining stop words.
- Consolidate words with same root word (i.e. "testing", "tested", "test").
- Re-run study with equal amounts of introverted and extroverted participants.
- Collect additional data: demographic information and time spent generating posts.

Questions?