Probability

8.11.17

Probability

Given an experiment with a random outcome, the "sample space" of the experiment is the set of all possibilities

 $S = \{1,2,3\}$

Sets notation is represented as follows: Notation for number of items in a set or it's "cardinality" is represented as follows:

- The outcome of rolling a single dice:
 - Sample space: $D = \{1,2,3,4,5,6\}$
 - Cardinality: ID = 6

- Example: Tossing a coin:
 - Sample space $C = \{H, T\},\$
 - Cardinality = |C| = 2

Tossing a Coin

- All possible outcomes of flipping two coins in sequence:
 - C2 = {HT, TH, HH, TT}
 - | C2 | = 4

Rolling Two Dice

- The sum of the outcome of rolling two dice:
 - $D2 = \{2^*, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
 - | D2 | = 11

N.B. Not the total number of possible outcomes - see later for that...

Flipping a Coin & Rolling a Dice

- The outcome of flipping a coin then rolling a dice:
 - F = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}
 - | F | = 12

Definitions

Intersection:	all common elements	A n B =	{5, 7}	
		C n D =	∅ (null set symbol)	
		AnBnC=	Ø	
Union:	the set of all elements of two sets	C u D =	D = {1, 2, 4, 6, 9, 10}	
		A ∪ B =	{3, 4, 5, 6, 7, 9, 10}	
Compliment:	all elements that are not in a set	A ^c =	{1,2,3,4,6,8}	
		A υ A ^c =	this would equal the universe of all numbers	
Subset:	a set is a subset of another set if each element of the first set is contained in the second set	D⊆B 1∈C D∉A	⊆ = is an element of∈ = is an element of*∉ = is not an element of	

^{*} only used for single integers

Definitions in Action

Sets:

- $A = \{5, 7, 9, 10\}$
- $B = \{3, 4, 5, 6, 7\}$
- $C = \{1, 2, 9, 10\}$
- $D = \{4, 6\}$

- 1∈C = 1 is a member of C (we use this for a single element only)
- {1,2} = C is not correct as this is a set. For a set, we do as follows:
 - \bullet {1,2} \subseteq C

P(A^c) = 1- P(A) the probability of something not happening is equal to 1 minus the probability of something happening

Probability Axioms

• Definitions:

- A subset of probabilities from the sample space is called an "event":
 - Example: in tossing 2 coins, the following captures the event of having at least a single head (H): Q = {HH, HT, TH} this is called an event as it captures all the possibilities
 - Example: both coins landing on the same side: B = {TT, HH}
- **Probability**: given and event E, the probability of the event P(E) is the likelihood of the event happening:
 - R = {HH, TT}
 - P(R) represents the probability of R happening

• 3 axioms for probability:

- 1) For all events E: 0 <= P (E) <= 1 (the probability of this happening is between 0 and 1)
- 2) P(U) = 1 (the probability of U always being equal to 1) i.e. something will always happen
- 3) Given n disjoint events: E^1 , E^2 E^n then the probability $P(E^1 \cup E^2 \cup \cup E^n) = \sum_{i=1}^n P(E^2)^*$

^{*} what this means is that for this axiom to work, there can be no commonality between the events

Experiment of Rolling Two Dice

When rolling 2 dice, the maximum possibilities are 36 (6*6)

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Experiment of Rolling Two Dice continued...

When rolling 2 dice, the maximum possibilities are 36 (6*6)

- E1: Both of them have an even number:
 - E¹={22, 24, 26, 42, 44, 46, 62, 64, 66} **Probability: 9/36**
- E²: The first number is a 2:
 - E²={21, 22, 23, 24, 25, 26} **Probability: 6/36**
- E³: The first number is a 3:
 - E³={31, 32, 33, 34, 35, 36} **Probability: 6/36**
- E4: The sum of the dice is less than 4:
 - E⁴={11,12,21} **Probability: 3/36**
- E⁵: The sum is more than 10:
 - E⁵={56, 65, 66} **Probability: 3/36**
- E⁶: The sum of the dice is equal to 11:
 - E⁶={56, 65} **Probability: 2/36**

- P(E⁴ ∪ E⁵):
 - P({11,12,21} ∪ {56,65,66}) or;
 - P({11,12,21,56,65,66})
 - = 6/36 (16.7% probability)
- E⁴ is disjoint from E⁵ because:
 - $E^4 \cap E^5 = \emptyset$
 - Because they are disjoint, we must apply the 3rd axiom
 - Using the 3rd axiom of probability we have
 P(E⁴) + P(E⁵) = 6/36 (16.7% probability)
- P(E⁵ U E⁶):
 - P({56,65,66} u {56,65})
 - P({56,65,66}) or 3/36 (8.3% probability)

In Summary...

$$1 = P(U)$$
 (axiom 2)

$$P(Au Ac) = P(A) + P(Ac)$$
 (axiom 3)

Therefore:

$$1 = P(A) + P(A^c) \text{ or } 1-P(A) = P(A^c)$$

I.e. the probability of something not happening is equal to 1 minus the probability of something happening!

$$P(A^c) = 1 - P(A)$$

$$U = Universe$$