### Санкт-Петербургский политехнический университет Петра Великого

### Институт прикладной математики и механики Кафедра «Прикладная математика»

### Отчёт по лабораторной работе №3 по дисциплине «Математическая статистика»

Выполнил студент:

Кондратьев Д. А. группа: 3630102/70301

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

# Содержание

| 1. | Пос                               | становка задачи                                                                                                                                        | 4      |  |  |  |  |  |  |  |
|----|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|
| 2. | Теория         2.1. Распределения |                                                                                                                                                        |        |  |  |  |  |  |  |  |
| 3. | Pea                               | видаєми.                                                                                                                                               | 4      |  |  |  |  |  |  |  |
| 4. | 4.1.<br>4.2.                      | ультаты Боксплот Тьюки                                                                                                                                 | 4      |  |  |  |  |  |  |  |
| 5. | Обс                               | суждение                                                                                                                                               | 8      |  |  |  |  |  |  |  |
| 6. | Лиз                               | гература                                                                                                                                               | 8      |  |  |  |  |  |  |  |
| 7. | Приложение                        |                                                                                                                                                        |        |  |  |  |  |  |  |  |
| С  | пис                               | сок таблиц                                                                                                                                             |        |  |  |  |  |  |  |  |
|    | 1 2                               | Доля выбросов                                                                                                                                          | 8      |  |  |  |  |  |  |  |
| С  | пис                               | сок иллюстраций                                                                                                                                        |        |  |  |  |  |  |  |  |
|    | 1<br>2<br>3<br>4<br>5             | Нормальное распределение          Распределение Коши          Распределение Лапласа          Распределение Пуассона          Равномерное распределение | ;<br>6 |  |  |  |  |  |  |  |

### 1. Постановка задачи

Для 5-ти рапределений:

- Нормальное распределение N(x, 0, 1);
- Распределение Коши C(x, 0, 1);
- Распределение Лапласа  $L(x, 0, \frac{1}{\sqrt{2}});$
- Распределение Пуассона P(k, 10);
- Равномерное Распределение  $U(x,-\sqrt{3},\sqrt{3});$

Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки.

Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выбросов и их дисперсии) и сравнить с результатами, полученными теоретически.

Средняя доля выбросов:

$$E(z) = \overline{z} \tag{1}$$

Дисперсия:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

# 2. Теория

### 2.1. Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi(1+x^2)} \tag{4}$$

• Распределение Лапласа

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}\tag{5}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное Распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \leqslant \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (7)

#### 2.2. Боксплот Тьюки

#### 2.2.1. Определение

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей.

#### 2.2.2. Описание

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы [1].

#### 2.2.3. Построение

Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длину «усов» определяют разность первого квартиля и полутора межквартильных расстояний и сумма третьего квартиля и полутора межквартильных расстояний. Формула имеет вид:

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \ X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$
 (8)

где  $X_1$  — нижняя граница уса,  $X_2$  — верхняя граица уса,  $Q_1$  — первый квартиль,  $Q_3$  — третий квартиль.

Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков.

### 2.3. Теоретическая вероятность выбросов

Встроенными средствами языка программирования Python можно вычислить теоретические первый и третий квартили распределений ( $Q_1^T$  и  $Q_3^T$  соответственно). По формуле (8) можно вычислить теоретические нижнюю и верхнюю границы уса ( $X_1^T$  и  $X_3^T$  соответственно). Выбросами считаются величины x, такие что:

$$\begin{bmatrix}
x < X_1^T \\
x > X_3^T
\end{bmatrix}$$
(9)

Теоретическая вероятность выбросов для непрерывных распределений:

$$P_{out}^{T} = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T)),$$
 (10)

где  $F(X) = P(x \le X)$  — функция распределения. Теоретическая вероятность выбросов для дискретных распределений:

$$\begin{split} P_{out}^T &= P(x < X_1^T) + P(x > X_2^T) = (F(X_1^T) - P(x = X_1^T)) + (1 - F(X_2^T)), \\ \text{где } F(X) &= P(x \leq X) - \text{функция распределения}. \end{split}$$

### 3. Реализация

Лабораторная работа выполнена на программном языке Python~3.8 в среде разработки Jupyter~Notebook~6.0.3. В работе использовались следующие пакеты языка Python:

- numpy для генерации выборки и работы с массивами;
- matplotlib.pyplot для построения боксплотов Тьюки;
- *scipy.stats* содержит все необходимые распределения, а также именно с помощью него можно получить теоретические оценки.

Ссылка на исходный код лабораторной работы приведена в приложении.

# 4. Результаты

#### 4.1. Боксплот Тьюки



Рис. 1. Нормальное распределение



Рис. 2. Распределение Коши



Рис. 3. Распределение Лапласа



Рис. 4. Распределение Пуассона



Рис. 5. Равномерное распределение

# 4.2. Доля выбросов

Таблица 1. Доля выбросов

| Распределение             | n = 20 |        | n = 100 |        |  |  |  |
|---------------------------|--------|--------|---------|--------|--|--|--|
| т аспределение            | E(1)   | D(2)   | E       | D      |  |  |  |
| Нормальное распределение  | 0.024  | 0.0019 | 0.0101  | 0.0002 |  |  |  |
| Распределение Коши        | 0.152  | 0.0049 | 0.154   | 0.0011 |  |  |  |
| Распределение Лапласа     | 0.074  | 0.0044 | 0.0632  | 0.0009 |  |  |  |
| Распределение Пуассона    | 0.024  | 0.0022 | 0.0105  | 0.0002 |  |  |  |
| Равномерное распределение | 0.0020 | 0.0002 | 0.0     | 0.0    |  |  |  |

### 4.3. Теоретическая вероятность выбросов

Таблица 2. Теоретическая вероятность выбросов

| Распределение             | $Q_1^T$ | $Q_3^T$ | $X_1^T (8)$ | $X_{2}^{T}(8)$ | $P_{out}^{T}$ (10), (11) |
|---------------------------|---------|---------|-------------|----------------|--------------------------|
| Нормальное распределение  | -0.6745 | 0.6745  | -2.698      | 2.698          | 0.007                    |
| Распределение Коши        | -1      | 1       | -4          | 4              | 0.156                    |
| Распределение Лапласа     | -0.4901 | 0.4901  | -1.9605     | 1.9605         | 0.0625                   |
| Распределение Пуассона    | 8       | 12      | 2           | 18             | 0.0077                   |
| Равномерное распределение | -0.866  | 0.866   | -3.4641     | 3.4641         | 0                        |

# 5. Обсуждение

Исходя из полученных результатов можно сделать следующие выводы:

- Справедливо следующее соотношение для долей выбросов: равномерное распределение < нормальное распределение < распределение Пуассона < распределение Лапласа < распределение Копти.
- Доля выбросов, полученная экспериментально, близка с результатами, полученными теоретически.

# 6. Литература

1) Box plot. URL: https://en.wikipedia.org/wiki/Box\_plot

# 7. Приложение

- 1) Код лабораторной. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab\_3/Lab\_3.ipynb
- 2) Код отчёта. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab\_3/Lab\_report\_3.tex