NAME: SANSKAR SHAH

USN: 1BM20CS142

MACHINE LEARNING LAB OBSERVATION

Date: 1-04-2023

Lab 1: Exploring Datasets

IRIS DATASET:

• Features in the Iris dataset:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- Target classes to predict:
 - 1. Iris Setosa
 - 2. Iris Versicolour
 - 3. Iris Virginica

```
In [8]: from sklearn.datasets import load_iris
             iris=load_iris()
 In [9]: print(iris)
             {'data': array([[5.1, 3.5, 1.4, 0.2],
                      [4.9, 3., 1.4, 0.2],
                      [4.7, 3.2, 1.3, 0.2],
                      [4.6, 3.1, 1.5, 0.2],
                      [5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
                      [4.6, 3.4, 1.4, 0.3],
                      [5., 3.4, 1.5, 0.2],
                      [4.4, 2.9, 1.4, 0.2],
                      [4.9, 3.1, 1.5, 0.1],
                      [5.4, 3.7, 1.5, 0.2],
                      [4.8, 3.4, 1.6, 0.2],
                      [4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
                      [5.8, 4., 1.2, 0.2],
                      [5.7, 4.4, 1.5, 0.4],
                      [5.4, 3.9, 1.3, 0.4],
                      [5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
 In [5]: type(iris)
Out[5]: function
In [12]: iris.kevs()
Out[12]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
In [13]: iris
                      [4.7, 3.2, 1.6, 0.2],
                      [4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
                      [5.2, 4.1, 1.5, 0.1],
                      [5.5, 4.2, 1.4, 0.2],
                      [5.5, 4.2, 1.4, 6.2],

[4.9, 3.1, 1.5, 0.2],

[5., 3.2, 1.2, 0.2],

[5.5, 3.5, 1.3, 0.2],

[4.9, 3.6, 1.4, 0.1],
                      [4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
                      [5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
                      [4.4, 3.2, 1.3, 0.2],
                      [5. , 3.5, 1.6, 0.6],
                      [5.1, 3.8, 1.9, 0.4],
                      [4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
```

```
In [17]: print(iris['target_names'])
          ['setosa' 'versicolor' 'virginica']
In [20]: n_samples,n_features=iris.data.shape
         print("no.of samples:",n_samples)
print("no.of features:",n_features)
          no.of samples: 150
          no.of features: 4
In [28]: iris.data[[12,26,89,114]]
Out[28]: array([[4.8, 3. , 1.4, 0.1],
                  [5., 3.4, 1.6, 0.4],
                 [5.5, 2.5, 4., 1.3],
                 [5.8, 2.8, 5.1, 2.4]])
In [29]: print(iris.data.shape)
          (150, 4)
In [31]: print(iris.target.shape)
          (150,)
In [32]: import numpy as np
          np.bincount(iris.target)
```

Scattered graph for samples vs features.

```
In [32]: import numpy as np
         np.bincount(iris.target)
Out[32]: array([50, 50, 50], dtype=int64)
In [42]: import matplotlib.pyplot as plt
         plt.scatter(n_samples,n_features)
Out[42]: <matplotlib.collections.PathCollection at 0x1d1c8c45550>
           4.20
           4.15
           4.10
           4.05
           4.00
           3.95
           3.90
           3.85
           3.80
               142
                       144
                               146
                                       148
                                              150
                                                      152
                                                              154
                                                                      156
                                                                              158
```

Scattered graph: with first two features (septal width vs septal length) The three colors represents three different classes respectively.

```
4.0
                                                                                   . .
sepal width (cm)
   3.5
   3.0
   2.5
   2.0
               4.5
                         5.0
                                    5.5
                                               6.0
                                                         6.5
                                                                   7.0
                                                                              7.5
                                                                                         8.0
                                        sepal length (cm)
```

WINE DATASET:

```
In [51]: from sklearn.datasets import load_wine
          wine=load_wine()
 In [52]: print(wine)
          {'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                  1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                  1.050e+03],
                 [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
In [57]: wine.data
Out[57]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                 1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
                 1.185e+03],
                [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
                 8.350e+02],
                 [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
                  8.400e+02],
                 [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
                 5.600e+02]])
In [58]: wine.keys()
Out[58]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names'])
In [60]: print(wine['target_names'])
         ['class_0' 'class_1' 'class_2']
```

Date: 15/04/2023

Lab 2: FIND-S ALGORITHM FOR ENJOY SPORT:

Program 2 – Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file Data set:Enjoysport

a. Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Algorithm:

initialize h to the most specific hypothesis in H h- $(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$

- 1. First training example X1=< Sunny, Warm. Normal, Strong Warm Same>. EnjoySport=+ve Observing. The first trainin example, it is clear that hypothesis h is too specific. None of the " \emptyset " constraints in h are satisfied by this example, so each is replaced by the next more general constraint that fits the example h1 = < Sunny, Warm, Normal, Strong Warm, Same>.
- 2.Consider the second training example x2 < Sunny, Warm, High, Strong, Warm, Same>. EnjoySport+ve. The second training example forces the algorithm to further generalize h, this time substituting a "?" in place of any attribute value in h that is not satisfied by the new example. Now h2 =< Sunny, Warm, ?, Strong, Warm, Same>
- 3. Consider the third training example x3< Rainy, Cold, High, Strong, Warm. Change EnjoySport ve. The FIND-S algorithm simply ignores every negative example. So the hypothesis remain as before, so 13=< Sunny, Warm, ?, Strong, Warm, Same>
- 4. Consider the fourth training example x4 <Sunny, Warm, High. Strong. Cool, Change, EnjoySport +ve. The fourth example leads to a further generalization of h as h4=< Sunny, Warm, ?, Strong, ?, ?>
- 5. So the final hypothesis is < Sunny, Warm, ?, Strong, ?, ?>

Page No. AVUOY find -s algorithm A most specific hyper en 4 h = { 0, d, d 2) for each possifive training sustance 's' constraint at for h for each altribute constraint a: is satisfied by x then do nothing else splace a; in h by neset more general constraint that is replaced by it 3) output hypothedis 4 Part.

Denglement and demonstrate F510 S algorithms
for flinding most spesific hypothesis

simport (SV

def uptake Hypothesis (Dr. 1)

Shirin 2

for i fin jeinge (O, len (h));

B 153, upper ()); > h(i), uppor ();

h(i) 3 = 1 fli

settlen h

ff - mater " - mater";

data = 13

h = 13

th ending (SV face

Lefth open ("Desklap Head S. CSV", '8") asfer

rader ("Data")

for Die to Jender (Jere)

print ("Data")

for I for Jender ("Desklap (Jere)

print ("Data")

for I for Jender ("Data")

Potal ("Marin, h)

Of

CREATING CSV FILE:

	Α	В	С	D	E	F	G
1	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
2	Sunny	Warm	Normal	Strong	Warm	Same	Yes
3	Sunny	Warm	High	Strong	Warm	Same	Yes
4	Rainy	Cold	High	Strong	Warm	Change	No
5	Sunny	Warm	High	Strong	Cool	Change	Yes
6							
7							


```
[ ] def findS(c,t):
    for i, val in enumerate(t):
        if val == "Yes":
            specific_hypothesis = c[i].copy()
            break

for i, val in enumerate(c):
    if t[i] == "Yes":
        for x in range(len(specific_hypothesis)):
        if val[x] != specific_hypothesis[x]:
            specific_hypothesis[x] = '?'
        else:
            pass

return specific_hypothesis

print("\n The final hypothesis is:",findS(d,target))
```

The final hypothesis is: ['Sunny' 'Warm' '?' 'Strong' '?' '?']

SECOND DATASET: FIND-S ALGORITHM

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	small	no	affordable	many	yes

CREATING CSV FILE


```
import numpy as np
     import pandas as pd
[ ] from google.colab import drive
    drive.mount("/content/drive")
    Mounted at /content/drive
[ ] path ="/content/finds_1BM20CS066 - Sheet1.csv"
[ ] data = pd.read_csv(path)
[ ] print(data,"\n")
                size inLibrary price editions buy
      citation
          some small no affordable many
    0
                                                      no
                  big
                         no expensive
    1
          many
                                                one
                                                      yes
                 big always expensive
    2
          some
                                                few
                        no expensive
    3
          many medium
                                               many yes
                           noo affordable
    4
          many small
                                              many yes
[ ] d = np.array(data)[:,:-1]
    print("\n The attributes are: ",d)
     The attributes are: [['some' 'small' 'no' 'affordable' 'many']
['many' 'big' 'no' 'expensive' 'one']
     ['some' 'big' 'always' 'expensive' 'few']
     ['many' 'medium' 'no' 'expensive' 'many']
     ['many' 'small' 'noo' 'affordable' 'many']]
target = np.array(data)[:,-1]
    print("\n The target is: ",target)
 C.
    The target is: ['no' 'yes' 'no' 'yes' 'yes']
                                                        + Code
                                                                  + Text
[ ] def find s(d, target):
       for i, val in enumerate(target):
         if val=='yes':
            hypothesis=d[i].copy()
            break
       for i, var in enumerate(d):
         if target[i]=="yes":
            for x in range(len(hypothesis)):
              if var[x]!=hypothesis[x]:
                hypothesis[x]='?'
              else:
                pass
      return hypothesis
     print("The Hypothesis is",find_s(d,target))
     The Hypothesis is ['many' '?' '?' '?']
```

DATE: 15/04/2023

LAB 3: CANDIDATE- ELIMINATION- ENJOY SPORT

Program 3: For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.Data set: Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

ALGORITHM:

Step1: Load Data set

Step2: Initialize General Hypothesis and Specific Hypothesis.

Step3: For each training example

Step4: If example is positive example

if attribute_value == hypothesis_value:

Do nothing

else:

replace attribute value with '?' (Basically generalizing it)

Step5: If example is Negative example

Make generalize hypothesis more specific.

		M T W T F	3 3						
	. 3	Date:	YOUVA						
13131		7. 2	7 1 1						
-> (Cardidak Elemenation Algoristan	LINE TO THE							
-7	contra to the sea of		75						
2	Instialize on to set of maximally general hypothesis in H Instialize # 5 to set of maximally specific hypothesis in H								
12	what je to be of manimary specific	hypothesis ;	Per H						
0	or each footing example d, do								
	· y d & a possitive example								
	- Remove from Cr any hypothesis full restered with a								
	- for each hypothesis of the B not consistent								
	been d	0 10 1 0	6						
	· Remove s from S	8 > = 67	Ù.						
	· Add to g all meneral gove	rolization	4 9						
- 2	J MILL FURY								
	· h & consignent week d, an	of Somo	newter of						
	or more general tean in								
	· Remove from 5 any hypothe	sily that r	more						
	general than any other hypothesis & 5								
	11 -4 -6 19 9 7 9 9 6 9 8 7								
	of y d & a negative exempt								
	· Remove hon 5 any hundlessy Exalestes								
	· Remove from 5 any hypothesis Encousestains								
	· for each hypothesis g ma	that is	and						
	Consisted were d		The state of the s						
	· Persere g from a	- Land	2 0-						
9	· Add to to all mineral one	es da a a	· 1. of						
	. Add to be all meneral spe	Jano	2 4 2						
	· his consistent with d,								
	Menter ment of 5	The Solin	- 4						
TANK	Man h	Tone xpx	elie -						
	eneral them are explose	A TOTAL	50						
	general than an another	Morrens							
			Y Control of						

					Date:	AVUVA
	-		1 2 2			
	alge.	tourk	fuel	No. of	Туре	Target
9 4	Snow	Available	Clonory	passengns 4	Conomy	YL
-	Big		Kigh.	2	Spores	N
	Smed	Available		4	economy	y
	Smel	NA+	High low	2	Sporas	N
		available		4	economy	V
William	med com	Available	high		12.	1
1.574		II time 1		1		
	50 -	(0, d, 0	(a A)	1	Day 1	-
	(000)	- 29 0	9,9,93	1	10.4	-
10			****		1- A E	-
+ve	51 -	C 01	wal to 1	. / / 00	1987	
W. 10.1	Gi.	0 0	evailable, h	igu, 7, el	oromy	
			1,9,9	A11-16-1-95-7 CS	2 4	
-Ve	5 -	2	-9/1		70	
	10	C.C.	woolebre,	vg4, 4, ec	ording	
L	2 21	caneu, y	, 9, 9, 0), (1, 7 , high	, 9, 9)	
		1,1,1,9	4) (9,9,9	, economy)	
TUP	5 -	America.	14-4-1	1. 10 to to to	7 B #	
	(m -	(froll	evatable h	gh, 3, eco	morning	
2/						
10	1	1,1,4	4, 9) (9, 9	, 9, econ	ony)	
100						
X	-4 -	Canal, a	wailable his	94, 4, 200	rony	
1	Ury 2	1, 7, Lig	walaser sign	9,7 9, 8)	(9,99,9	economi
	- 1	Small, 9	, 9, 9 erone	my)		
		0	1	Man de 1		
	25 =	(avei	cole hig	4, 4, 2000	arry	
4VE	-		791699	4 4 07 19	0000	1
476	05=	cr, t, high	-1716	1	79 260	comy)
ave			1	1	79 1 060	romy!
ive		czy, wyc	1 1	1	12	3

CREATING CSV FILE:


```
[ ] concepts = np.array(data.iloc[:,0:-1])
[ ] print(concepts)
     [['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'Change']
       ['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'Change']]
[ ] target = np.array(data.iloc[:,-1])
      print(target)
      ['Yes' 'Yes' 'No' 'Yes']
[ ] import csv
  with open("'/content/enjoysport.csv.csv'") as f:
      csv_file = csv.reader(f)
      data = list(csv_file)
      specific = data[1][:-1]
      general = [['?' for i in range(len(specific))] for j in range(len(specific))]
      for i in data:
          if i[-1] == "Yes":
               for j in range(len(specific)):
                   if i[j] != specific[j]:
                       specific[j] = "?"
                       general[j][j] = "?"
          elif i[-1] == "No":
               for j in range(len(specific)):
                   if i[j] != specific[j]:
                       general[j][j] = specific[j]
                   else:
                       general[j][j] = "?"
          print("\nStep " + str(data.index(i)) + " of Candidate Elimination Algorithm")
          print(specific)
          print(general)
```

gh = [] # gh = general Hypothesis

print("\nFinal Specific hypothesis:\n", specific)
print("\nFinal General hypothesis:\n", gh)

if j != '?':
 gh.append(i)

for i in general:
for j in i:

```
Step 1 of Candidate Elimination Algorithm
          Step 2 of Candidate Elimination Algorithm
         Singly 20 Commitment Elements Elements (Sene) ["Sunny, "Sene"] ["Sunny, "Strong, "Senem", "Senem"
         Step 4 of Candidate Elimination Algorithm
          Final Specific hypothesis:
['Sunny', 'Warm', '?', 'Strong', '?', '?']
         Final General hypothesis: [['Sunny', '?', '?', '?'], ['?', 'Narm', '?', '?', '?', '?']]
  [ ] def learn(concepts, target):
                         for i, h in enumerate(concepts):
    if target[i] == "Yes":
        for x in range(len(specific_h)):
                                                          if h[x] != specific_h[x]:
    specific_h[x] = '?'
                                                                      general_h[x][x] - '?'
                                     if target[i] -- "No":
    for x in range(len(specific_h)):
                                                         if h[x] != specific_h[x]:
    general_h[x][x] = specific_h[x]
                                     general_h[x][x] - '?'
print("Step", i+1, ":")
print("Specific Hypothesis: ", specific_h)
print("General Hypothesis: ", general_h)
print("-----")
                          indices = [i for i,val in enumerate(general_h) if val == ['?', '?', '?', '?', '?', '?']]
                          for 1 in indices:
                          general_h.remove(['?', '?', '?', '?', '?', '?'])
return specific_h, general_h
               s_final, g_final = learn(concepts, target)
               print("Final S:", s_final, sep="\n")
print("Final G:", g_final, sep="\n")
Step 0:
Specific Hypothesis: ['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
Specific Hypothesis: ['Surmy' 'Warm' 'Normal' 'Strong' 'Normal' 'Normal' 'Normal' 'Strong' 'Normal' 'N
5tep 3 ;
Specific Hypothesis: ['Sunny' 'Warm' '?' 'Strong' 'Warm' 'Same']
Specific Hypothesis: ['Sunny' 'Warm' '?' 'Strong' '?' '?']
Final S:
```

['Sunny' 'Warm' '?' 'Strong' '?' '?']

[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?']]

Final G:

SECOND DATASET:

example	citations	size	inLibrary	price	editions	buy	
1	some	small	small no		many	no	
2	many	big	no	expensive	one	yes	
3	some	big	always	expensive	few	no	
4	many	medium	no	expensive	many	yes	
5	many	small	no	affordable	many	yes	

CREATING CSV FILE:


```
from google.colab import drive
      drive.mount('/content/drive')
      Mounted at /content/drive
[ ] import numpy as np
      import pandas as pd
[ ] data = pd.DataFrame(data=pd.read_csv('/content/finds_1BM20CS066 - Sheet1.csv'))
     print(data,"\n")
        citation size inLibrary
                                                   price editions buy
                      small no affordable many
      0
             some
                                                                          no
                                no expensive
always expensive
no expensive
no affordable
                      big
                                                                one
few
                                                                         yes
no
      1
              manv
                          big
                                                                many
      3
              many medium
                                                                         yes
                       small
                                                                 many
                                                                         yes
              many
[ ] concepts = np.array(data.iloc[:,0:-1])
      print("The attributes are: ",concepts)
      The attributes are: [['some' 'small' 'no' 'affordable' 'many']
['many' 'big' 'no' 'expensive' 'one']
['some' 'big' 'always' 'expensive' 'few']
['many' 'medium' 'no' 'expensive' 'many']
['many' 'small' 'noo' 'affordable' 'many']]
[ ] target = np.array(data.iloc[:,-1])
    print("\n The target is: ",target)
      The target is: ['no' 'yes' 'no' 'yes' 'yes']
```

```
[ ] def learn(concepts, target):
       specific_h = concepts[0].copy()
       print("\n Initialization of specific_h and general_h")
       print(specific_h)
       general_h = [["?" for i in range(len(specific_h))] for i in
     range(len(specific_h))]
      print(general_h)
       for i, h in enumerate(concepts):
            if target[i] == "yes":
                 for x in range(len(specific_h)):
                      if h[x]!= specific_h[x]:
                           specific_h[x] ='?'
                           general_h[x][x] = '?'
                      print(specific_h)
            print(specific_h)
            if target[i] == "no":
                 for x in range(len(specific_h)):
                      if h[x]!= specific_h[x]:
                           general_h[x][x] = specific_h[x]
                          general_h[x][x] = '?'
            print("\n Steps of Candidate Elimination Algorithm",i+1)
            print(specific_h)
            print(general_h)
       indices = [i for i, val in enumerate(general_h) if val ==
      ['?', '?', '?', '?', '?', '?']]
       for i in indices:
            general_h.remove(['?', '?', '?', '?', '?', '?'])
      return specific_h, general_h
     s_final, g_final = learn(concepts, target)
 Initialization of specific_h and general_h
['some' 'small' 'no' 'affordable' 'many']
[['?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?']]
['some' 'small' 'no' 'affordable' 'many']
  Steps of Candidate Elimination Algorithm 1
 '?' '?' 'no' 'affordable' 'many']
 ['?' '?' 'no' 'affordable' 'many']
['?' '?' 'no' '?' 'many']
['?' '?' 'no' '?' '?']
['?' '?' 'no' '?' '?']
  Steps of Candidate Elimination Algorithm 2
 ['?' '?' 'no' '?' '?']
[['?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?']]
['?' 'no' '?' '?']
  Steps of Candidate Elimination Algorithm 3
 ['?' '?' 'no' '?' '?']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', 'no', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?']
['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
  Steps of Candidate Elimination Algorithm 4
 ['?' '?' 'no' '?' '?']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', 'no', '?', '?'], ['?', '?', '?', '?'], ['?', '?'],
['?' 'no' '?' '?']
 [,ذ, ,ذ, ,uo, ,ذ, ,ذ,]
  17: 17: 17: 17: 17:
 ָרְיכִּי יכִּי יכִּי יכִּי יכִּי יכִּי
 ['?' '?' '?' '?' '?' 
['?' '?' '?' '?' '?' ]
  Steps of Candidate Elimination Algorithm 5
 ['?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?']
print("\nFinal Specific_h:", s_final, sep="\n")
print("\nFinal General_h:", g_final, sep="\n")
Final Specific_h:
[1,5, 1,5, 1,5, 1,5, 1,5, 1,5, 1]
Final General_h:
```

Program 4: Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new

Day Outlook D1 Sunny		Temperature	Humidity	Wind	PlayTennis
		Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
sample	**************				

ALGORITHM:

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples Otherwise Begin
- $A \leftarrow$ the attribute from Attributes that best* classifies Examples
- The decision attribute for Root \leftarrow A
- For each possible value, v_i , of A,
- Add a new tree branch below *Root*, corresponding to the test $A = v_i$
- Let Examples v_i , be the subset of Examples that have value v_i for A
- If $Examples_{vi}$, is empty
- Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
- Else below this new branch add the subtree ID3($Examples_{vi}$, Targe_tattribute, Attributes {A}))
- End
- Return Root

	Page No.	AAAA
1914123	Date:	
=> Decision Tree	1	201
Entropy (s) = (- 9/169294) +	(-5 1092 34)	
1 5 m E ann 1 m 2 1	- 600	The same
= 0.94	The same of the same	*12
a Cum No sa		CAT IN LES
Entropy (5) = -P. (00, Pr - Po	Leg ₂ PO	
Information was Gr(S, A)		
Information cross $Gr(S,A)$ $= E(S) - \frac{S}{2} \frac{ S_V }{ S_V } E$ $= \frac{ S_V }{ S_V } \frac{ S_V }{$	(5v)	
VE ATTO) IST	SEC 1 - 6	
	55.1	
Gr(S, Orllook)		
-> E(5) - [5/4 * E(QUE	ook = Oscing) +	
'yy * E(Ou	that = Overcost)	+
Sig & FCO	Hook = Overcose)	
Tr a sa	7	
= F(5) - [5 4 x E(2	2+,3-)] +	
9/4 * E (4	4,0-) }	
5, * G(3	e, 2-1J	376
- 14	11-1218-13	\$100 m34
- E(5)-[C 74 * (-3 log_	210/-31-	3 17 2 34
*(1/4 * (1/4 *	924)+(-26	2号] [
+ (5 .1-3 /	- 31 1/-21-0	227
+ (5 x (-3 to	\$ 5) (5	5)
13 7 3	E 00- (5	
30863		Program.
- 0.247	*	سيدوروا عي
	0	and large
2.31	1.0	

		Date:	YOUVA
			1
	Ho-CT.	Dept. se	0
	Cr(S, Temperature) =	Departure .	
Temp Hot = 1	(21,2-) => F(5) - [(4 * E HOB) -P		
- Mild =	(G = F rold) f	Erray V	
	64 × Eccol)	allowed I	
	E E E S - E 18-1 E E E		
	⇒(5) - [4 x (-2 100, 2) + (-2 1	P2 2)	
	Ex * (-4 (052 4) p (-26 6	9267	
-30	tu * (-3 60, 3) + (-1 609	2 + 1)	
		0	
	=> 0-029	3 25	

€	> ≥		룹	100%	•	\$ %	.0。	.00	123	Defaul	•	—	1
A1		→ ,	£x ou	ıtlook									

	Α	В	С	D	E
1	outlook	temperture	humidity	wind	play tennis
2	sunny	hot	high	weak	no
3	sunny	hot	high	strong	no
4	overcast	hot	high	weak	yes
5	rain	mild	high	weak	yes
6	rain	cool	normal	weak	yes
7	rain	cool	normal	strong	no
8	overcast	cool	normal	strong	yes
9	sunny	mild	high	weak	no
10	sunny	cool	normal	weak	yes
11	rain	mild	normal	weak	yes
12	sunny	mild	normal	strong	yes
13	overcast	mild	high	strong	yes
14	overcast	hot	normal	weak	yes
15	rain	mild	high	strong	no
16					

ntime Tools Help All changes saved

I GB available

+ Code + Text \square × ✓ [53] import math import csv [55] def load_csv(filename): lines=csv.reader(open(filename,"r")) dataset = list(lines)
headers = dataset.pop(0) return dataset, headers ✓ [56] class Node: def __init__(self,attribute):
 self.attribute=attribute self.children=[] self.answer="" os def subtables(data,col,delete): dic={} coldata=[row[col] for row in data] attr=list(set(coldata)) counts=[0]*len(attr) r=len(data) c=len(data[0]) for x in range(len(attr)):
 for y in range(r):
 if data[y][col]==attr[x]: counts[x]+=1 for x in range(len(attr)): dic[attr[x]]=[[0 for i in range(c)] for j in range(counts[x])] pos=0 for y in range(r): if data[y][col]==attr[x]: if delete:
 del data[y][col] dic[attr[x]][pos]=data[y] pos+=1 return attr,dic

```
   [58] def entropy(S):
            attr=list(set(S))
            if len(attr)==1:
                return 0
           counts=[0,0]
            for i in range(2):
                counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
            sums=0
            for cnt in counts:
                sums+=-1*cnt*math.log(cnt,2)
            return sums
5 [59] def compute_gain(data,col):
           attr,dic = subtables(data,col,delete=False)
            total_size=len(data)
            entropies=[0]*len(attr)
            ratio=[0]*len(attr)
            total_entropy=entropy([row[-1] for row in data])
            for x in range(len(attr)):
                ratio[x]=len(dic[attr[x]])/(total_size*1.0)
                entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
                total_entropy-=ratio[x]*entropies[x]
            return total_entropy

[60] def build_tree(data,features):
            lastcol=[row[-1] for row in data]
            if(len(set(lastcol)))==1:
               node=Node("")
                node.answer=lastcol[0]
                return node
            n=len(data[0])-1
            gains=[0]*n
            for col in range(n):
                gains[col]=compute_gain(data,col)
            split=gains.index(max(gains))
            node=Node(features[split])
            fea = features[:split]+features[split+1:]
            attr,dic=subtables(data,split,delete=True)
            for x in range(len(attr)):
                child=build_tree(dic[attr[x]],fea)
                node.children.append((attr[x],child))
            return node
```

```
def print_tree(node,level):
               if node.answer!="":
                    print(" "*level, node.answer)
                    return
               print(" "*level,node.attribute)
               for value, n in node.children:
                    print(" "*(level+1),value)
                    print_tree(n,level+2)

[62] def classify(node,x_test,features):
           if node.answer!="":
               print(node.answer)
               return
           pos=features.index(node.attribute)
           for value, n in node.children:
               if x_test[pos]==value:
                   classify(n,x_test,features)
✓ [63]
       dataset,features=load_csv("1BM20CS066_ID3.csv")
       node1=build_tree(dataset,features)
       print("The decision tree for the dataset using ID3 algorithm is")
       print_tree(node1,0)
       testdata, features=load_csv("1BM20CS066_ID3.csv")
       for xtest in testdata:
           print("The test instance:",xtest)
           print("The label for test instance:")
```

classify(node1,xtest,features)

```
The decision tree for the dataset using ID3 algorithm is
            outlook
              rain
               wind
                 weak.
                  yes
                 strong
                  no
              sunny
               humidity
                 high
                  no
                 normal
                  yes
              overcast.
               ves
The test instance: ['sunny', 'hot', 'high', 'weak', 'no']
The label for test instance:
The test instance: ['sunny', 'hot', 'high', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'hot', 'high', 'weak', 'yes']
The label for test instance:
The test instance: ['rain', 'mild', 'high', 'weak', 'yes']
The label for test instance:
ves
The test instance: ['rain', 'cool', 'normal', 'weak', 'yes']
The label for test instance:
The test instance: ['rain', 'cool', 'normal', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'cool', 'normal', 'strong', 'yes']
The label for test instance:
The test instance: ['sunny', 'mild', 'high', 'weak', 'no']
The label for test instance:
The test instance: ['sunny', 'cool', 'normal', 'weak', 'yes']
The label for test instance:
The test instance: ['rain', 'mild', 'normal', 'weak', 'yes']
The label for test instance:
ves
```

```
The test instance: ['sunny', 'mild', 'normal', 'strong', 'yes']
The label for test instance:
yes
The test instance: ['overcast', 'mild', 'high', 'strong', 'yes']
The label for test instance:
yes
The test instance: ['overcast', 'hot', 'normal', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'mild', 'high', 'strong', 'no']
The label for test instance:
no
```

PROGRAM 5: Simple linear regression program

Dataset used:

	А		В
1	x		у
2		1	1
3		2	2
4		3	1.3
5		4	3.75
6		5	2.25
7			

ALGORITHM:

- The main function to calculate values of coefficients
- Initialize the parameters.
- Predict the value of a dependent variable by giving an independent variable.
- Calculate the error in prediction for all data points.
- Calculate partial derivatives w.r.t a0 and a1.
- Calculate the cost for each number and add them.
- Update the values of a0 and a1.

1511	2
_>	Lencar Regression
	1. Reading and understanding date
	. vibualizing data (Exploratory bake analyting)
	3. Data preparation
	4. splanning data ento framing and loss se
	5. Building linear model
-	6. Assident analysis of tran data
	7. making predictions using final model and evaluation
	y; ≥ b > 2 + bo
	bo - (Ey) (Ex2) - (E(x)) (Exy) n(Ex2) - (Ex)2
	$b_1 = \frac{n(\epsilon_2 \epsilon_0) - (\epsilon_2 \epsilon_0)(\epsilon_3)}{n(\epsilon_2 \epsilon_0) - (\epsilon_2 \epsilon_0)^2}$
	nun+=(2(1) - x- mean) * y(1) - y- mean).
	den + = (2063 - x _ mean) * x)
	m = neum/den
	c = Y-mean - m * x mean


```
[ ] import numpy as np
    import matplotlib.pyplot as plt
[ ] def plot regression line(x, y, b):
      plt.scatter(x, y, color = "m",
          marker = "o", s = 30)
      y_pred = b[0] + b[1]*x
      plt.plot(x, y_pred, color = "g")
      plt.xlabel('x CO-EFF')
      plt.ylabel('y CO-EFF')
      plt.show()
[ ] def estimate_coef(x, y):
      n = np.size(x)
      m_x = np.mean(x)
      m_y = np.mean(y)
      SS_xy = np.sum(y*x) - n*m_y*m_x
      SS xx = np.sum(x*x) - n*m x*m x
      b_1 = SS_xy / SS_xx
      b_0 = m_y - b_1*m_x
      return (b_0, b_1)
```

```
def plot_regression_line(x, y, b):
    plt.scatter(x, y, color = "b",
        marker = "*", s = 30)

y_pred = b[0] + b[1]*x

plt.plot(x, y_pred, color = "y")

plt.xlabel('x')
    plt.ylabel('y')

plt.show()
```

```
def main():
  x = np.array([1,2,3,4,5])
 y = np.array([1,2,1.3,3.75,2.25])
  b = estimate_coef(x, y)
  print("Estimated coefficients:\nb_0 = {} \
    \nb_1 = {}".format(b[0], b[1]))
  plot_regression_line(x, y, b)
if __name__ == "__main__":
 main()
Estimated coefficients:
b 0 = 0.7850000000000001
b_1 = 0.4249999999999966
   3.5
    3.0
    2.5
    2.0
    1.5
    1.0
                 1.5
                        2.0
                                2.5
                                               3.5
                                                       4.0
                                                              4.5
         1.0
                                        3.0
                                                                      5.0
                                        X
```

Conclusion:

This model is not appropriate for this model. All the points of this dataset are away from the prediction line.

Program 6: Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier considering few tes data sets.

Data set used:

4	Α	В
1	outlook	play
2	rainy	Yes
3	sunny	Yes
4	overcast	Yes
5	overcast	Yes
6	sunny	No
7	rainy	Yes
8	sunny	Yes
9	overcast	Yes
10	rainy	No
11	sunny	No
12	sunny	Yes
13	rainy	No
14	overcast	Yes
15	overcast	Yes

Algorithm:

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Formula for naive bayes classifier is as follows →

- 1. Convert the given dataset into frequency tables.
- 2. Generate Likelihood table by finding the probabilities of given features.
- 3. Now, use Bayes theorem to calculate the posterior probability.
- 4. Test accuracy of the result and visualizing the test set result.

```
untime Tools Help All changes saved
             + Code + Text
   \square \times
            [7] import numpy as np
                    import math
                    import csv
                    import pdb
            def read_data(filename):
                       with open(filename, 'r') as csvfile:
                           datareader = csv.reader(csvfile)
                           metadata = next(datareader)
                           traindata=[]
                           for row in datareader:
                               traindata.append(row)
                       return (metadata, traindata)
            [9] def splitDataset(dataset, splitRatio):
                       trainSize = int(len(dataset) * splitRatio)
                       trainSet = []
                       testset = list(dataset)
                       1=0
                       while len(trainSet) < trainSize:
                           trainSet.append(testset.pop(i))
                        return [trainSet, testset]
```

```
def classify(data,test):
        total size = data.shape[0]
        print("\n")
        print("training data size=",total size)
        print("test data size=",test.shape[0])
        countYes = 0
        countNo = 0
        probYes = 0
        probNo = 0
        print("\n")
        print("target
                        count
                                   probability")
        for x in range(data.shape[0]):
            if data[x,data.shape[1]-1] == 'Yes':
                 countYes +=1
            if data[x,data.shape[1]-1] == 'No':
                 countNo +=1
        probYes=countYes/total size
         probNo= countNo / total_size
         print('Yes',"\t",countYes,"\t",probYes)
         print('No',"\t",countNo,"\t",probNo)
         prob0 =np.zeros((test.shape[1]-1))
        prob1 =np.zeros((test.shape[1]-1))
        accuracy=0
        print("\n")
        print("instance prediction target")
        for t in range(test.shape[0]):
            for k in range (test.shape[1]-1):
                 count1=count0=0
                 for j in range (data.shape[0]):
                     #how many times appeared with no
                     if test[t,k] == data[j,k] and data[j,data.shape[1]-1]=='No':
                         count0+=1
                     #how many times appeared with yes
                     if test[t,k]==data[j,k] and data[j,data.shape[1]-1]=='Yes':
                         count1+=1
```

```
prob0[k]=count0/countNo
       prob1[k]=count1/countYes
   probno=probNo
   probyes=probYes
   for i in range(test.shape[1]-1):
       probno=probno*prob0[i]
       probyes=probyes*prob1[i]
   if probno>probyes:
       predict='No'
   else:
       predict='Yes'
   print(t+1,"\t",predict,"\t
                                ",test[t,test.shape[1]-1])
   if predict == test[t,test.shape[1]-1]:
       accuracy+=1
final_accuracy=(accuracy/test.shape[0])*100
print("accuracy",final_accuracy,"%")
return
```

```
metadata,traindata= read_data("/content/1BM20CS066_NBC.csv")
splitRatio=0.6
trainingset, testset=splitDataset(traindata, splitRatio)
training=np.array(trainingset)
print("\n The Training data set are:")
for x in trainingset:
    print(x)

testing=np.array(testset)
print("\n The Test data set are:")
for x in testing:
    print(x)
classify(training,testing)
```

output:

```
The Training data set are:
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
['overcast', 'Yes']
['sunny', 'No']
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
The Test data set are:
['rainy' 'No']
['sunny' 'No']
['sunny' 'Yes']
['rainy' 'No']
['overcast' 'Yes']
['overcast' 'Yes']
training data size= 8
test data size= 6
target count probability
Yes
      7 0.875
              0.125
No
       1
instance prediction target
     Yes
1
                  No
2
       Yes
                  No
3
       Yes
                  Yes
       Yes
4
                  No
5
       Yes
                  Yes
                   Yes
       Yes
accuracy 50.0 %
```


	Jos 1 "	sur Cayse	7	
Color	1 Type	oligen	Stoles	
Red	Spores	Donesti's	7	*
Red	Sporas	Danestic	N	
Red	Sports	Emported	Y	
yellow /	SUU	Domestic	N	
jellen	SUV	Empolled	50 50	35
fellow	Suv	Domesti's	N	
yellow	Suv	Resported	N	1
Jelon /	Sports 1	Remported!	4	

Program 7: K- means clustering

Algorithm:

Initialize k means with random values

For a given number of iterations:

Iterate through items:

Find the mean closest to the item by calculating the euclidean distance of the item with each of the means Assign item to mean

Update mean by shifting it to the average of the items in that cluster

Dataset:

1	Name	1	to 22 of 22 entries Filter Income(\$)
		Age	
2	Rob	27	70000
3	Michael	29	90000
4	Mohan	29	61000
5	Ismail	28	60000
6	Kory	42	150000
7	Gautam	39	155000
8	David	41	160000
9	Andrea	38	162000
10	Brad	36	156000
11	Angelina	35	130000
12	Donald	37	137000
13	Tom	26	45000
14	Arnold	27	48000
15	Jared	28	51000
16	Stark	29	49500
17	Ranbir	32	53000
18	Dipika	40	65000
19	Priyanka	41	63000
20	Nick	43	64000
21	Alia	39	80000
22	Sid	41	82000
21	Abdul	39	58000

=> K-Means Algorithm Step 1: select number k la deside no. of chaseus Step2: Select sandom k points or 6 centroids Step3: Assign each date post to less closest certooid, which were form prodefered to augers. Step4. Calculate basiance and place new Control of of each cluster Steps: Repeat Step 3 Steps to wolich means seassings exch data point to new closerst Certooid of care clusters Step 6: If any saussignment occurs, go to step-4 else go to feren Step-7: model is ready.

```
[1] import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
%matplotlib inline
```

df = pd.read_csv('/content/Kmeans_1BM20CS066.csv')
df.head(10)

	1	Name	Age	Income(\$)
0	2	Rob	27	70000
1	3	Michael	29	90000
2	4	Mohan	29	61000
3	5	Ismail	28	60000
4	6	Kory	42	150000
5	7	Gautam	39	155000
6	8	David	41	160000
7	9	Andrea	38	162000
8	10	Brad	36	156000
9	11	Angelina	35	130000

```
[4] scaler = MinMaxScaler()
scaler.fit(df[['Age']])
df[['Age']] = scaler.transform(df[['Age']])

scaler.fit(df[['Income($)']])
df[['Income($)']] = scaler.transform(df[['Income($)']])
df.head(10)
```

	1	Name	Age	Income(\$)	6
0	2	Rob	0.058824	0.213675	
1	3	Michael	0.176471	0.384615	
2	4	Mohan	0.176471	0.136752	
3	5	Ismail	0.117647	0.128205	
4	6	Kory	0.941176	0.897436	
5	7	Gautam	0.764706	0.940171	
6	8	David	0.882353	0.982906	
7	9	Andrea	0.705882	1.000000	
8	10	Brad	0.588235	0.948718	
9	11	Angelina	0.529412	0.726496	

```
plt.scatter(df['Age'], df['Income($)'])
```

<matplotlib.collections.PathCollection at 0x7f43820d1a50>


```
k_range = range(1, 11)
sse = []
for k in k_range:
    kmc = KMeans(n_clusters=k)
    kmc.fit(df[['Age', 'Income($)']])
    sse.append(kmc.inertia_)
sse
```

```
[5.434011511988178,
2.091136388699078,
0.4750783498553096,
0.3491047094419566,
0.2798062931046179,
0.2203764169077067,
0.1685851223602976,
0.13265419827245162,
0.1038375258660356,
0.08510915216361345]
```

```
plt.xlabel = 'Number of Clusters'
    plt.ylabel = 'Sum of Squared Errors'
    plt.plot(k_range, sse)
    [<matplotlib.lines.Line2D at 0x7f438004a6e0>]
      5
      4
      3
      2
      1
      0
                 2
                               4
                                            6
                                                         8
                                                                      10
[8]
    km = KMeans(n_clusters=3)
```

1 Name Age Income(\$) cluster

0 2 Rob 0.058824 0.213075 1

1 3 Michael 0.176471 0.384615 1

2 4 Mohan 0.176471 0.136752 1

3 5 Ismail 0.117647 0.128205 1

4 6 Kory 0.941176 0.897436 0

KMeans
KMeans(n_clusters=3)

 $_{00}^{\checkmark}$ [11] df0 = df[df.cluster == 0] df0

1 Name Age Income(\$) cluster

4 6 Kory 0.941176 0.897436 0

5 7 Gautam 0.784708 0.940171 0

6 8 David 0.882353 0.982908 0

7 9 Andrea 0.705882 1.000000 0

8 10 Brad 0.588235 0.948718 0

9 11 Angelina 0.529412 0.726496 0

	1	Name	Age	Income(\$)	cluster
0	2	Rob	0.058824	0.213675	1
1	3	Michael	0.176471	0.384615	1
2	4	Mohan	0.176471	0.136752	1
3	5	Ismail	0.117647	0.128205	1
11	13	Tom	0.000000	0.000000	1
12	14	Arnold	0.058824	0.025641	1
13	15	Jared	0.117647	0.051282	1
14	16	Stark	0.176471	0.038462	1
15	17	Ranbir	0.352941	0.068376	1

	1	Name	Age	<pre>Income(\$)</pre>	cluster
16	18	Dipika	0.823529	0.170940	2
17	19	Priyanka	0.882353	0.153846	2
18	20	Nick	1.000000	0.162393	2
19	21	Alia	0.764706	0.299145	2
20	22	Sid	0.882353	0.316239	2
21	21	Abdul	0.764706	0 111111	2

```
[14] km.cluster_centers_
```

```
array([[0.72268908, 0.8974359],
[0.1372549, 0.11633428],
[0.85294118, 0.2022792]])
```

<matplotlib.legend.Legend at 0x7f437d4c73a0>

Program 8: KNN ALGORITHM

Dataset used: Iris

datasetAlgorithm:

- Select the number K of the neighbor
- o Calculate the Euclidean distance of K number of neighbors
- Take the K nearest neighbors as per the calculated Euclidean distance.
- Among these k neighbors, count the number of the data points in each category.
- Assign the new data points to that category for which the number of the neighbor is maximum.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
def most common(1st):
    return max(set(lst), key=lst.count)
def euclidean(point, data):
    # Euclidean distance between points a & data
    return np.sqrt(np.sum((point - data)**2, axis=1))
class KNeighborsClassifier:
    def __init__(self, k=5, dist_metric=euclidean):
        self.k = k
        self.dist_metric = dist_metric
    def fit(self, X_train, y_train):
        self.X_train = X_train
        self.y_train = y_train
    def predict(self, X_test):
        neighbors = []
        for x in X test:
            distances = self.dist_metric(x, self.X_train)
            y_sorted = [y for _, y in sorted(zip(distances, self.y_train))]
            neighbors.append(y sorted[:self.k])
        return list(map(most_common, neighbors))
```

```
def evaluate(self, X_test, y_test):
        y_pred = self.predict(X_test)
        accuracy = sum(y_pred == y_test) / len(y_test)
        return accuracy
iris = datasets.load_iris()
X = iris['data']
y = iris['target']
# Split data into train & test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Preprocess data
ss = StandardScaler().fit(X_train)
X_train, X_test = ss.transform(X_train), ss.transform(X_test)
# Test knn model across varying ks
accuracies = []
ks = range(1, 30)
for k in ks:
    knn = KNeighborsClassifier(k=k)
    knn.fit(X_train, y_train)
    accuracy = knn.evaluate(X_test, y_test)
    accuracies.append(accuracy)
# Visualize accuracy vs. k
fig, ax = plt.subplots()
ax.plot(ks, accuracies)
ax.set(xlabel="k",
       ylabel="Accuracy",
      title="Performance of knn")
plt.show()
```

S & & & & & & & & & & & & & & & & & & &	C-Noarest Neighbor (KNN) Clep 1: Enstablep of KNN, we must loool training as well as less value Lep 2: Near, we need to change value of k i.e ready John Doints. K can be any Enterpor Clep 3: Les each point & feel data do following - B. 1 > Calculate destance between test data and Each sow of training data celety help of any method namely: Enthidean, manhatean on Kanneng Distance. Most commonly & wheel
\$ 0 \$1 \$ \$ \$ \$ \$ \$ \$	Exitable of KNN, we must loool training as well as less labor. Tep2: Near, we need to chasse value of the 1.e reasont data sources. It can be easy subergo. Sitep3: Sor each point so feel data do following - 8.1 > calculate desseure between test data and each sow of training data celle help of any method namely: Eutlidean, manhaten as
\$ 0 \$1 \$ \$ \$ \$ \$ \$ \$	Exitable of KNN, we must loool training as well as less labor. Tep2: Near, we need to chasse value of the 1.e reasont data sources. It can be easy subergo. Sitep3: Sor each point so feel data do following - 8.1 > calculate desseure between test data and each sow of training data celle help of any method namely: Eutlidean, manhaten as
8 4 3	Near, we need to change value of the 1. e realized data overs. It can be easy Pulleyon. Sep 3: for each point on feeled data do following - But alculate dissecure between feet data and each sow of freeling data celeth help of any method namely: Euthidean, manhattan an
8 4 3	Near, we need to chanse value of the 1. e realized Salm Doners. It can be easy Pulleyon. The east point in fedit data do following - B.1 -> calculate desteure between fest data and each sow of freeling sala celeth help of any method namely: Euthidean, manhaten a
8 4	Soins. k can be any futerpos. Sep cases point on feel data do following - B.1 -> calculare desteure between test data and Each sow of training data celite help of any method namely: Euthidean, manhaten on
8	for each point in fedt data do following - 8.1 -> calculare desteure between test data and Each 2010 of training data celith help of any method namely: Euthidean, manhaten on
3	for each point in fedt data do following - 8.1 -> calculare destante between test data and Each sow of training data celith help of any method namely: Enthidean, manhaten on
3	for each point in fedt data do following - 8.1 -> calculare destante between test data and Each sow of training data celith help of any method namely: Enthidean, manhaten on
3	8.1 → calculars desteurs between test data and each sow of training data cells help of any method namely: Eutlidean, manhatern on
2 4	each sow of freeling date cell help of any nethod namely: Euthidean, manhattan on
2 4	each sow of freeling date cell help of any nethod namely: Euthidean, manhattan on
3	any milhod namely; Euthidean, manhattan or
3	
3	
3	method & Euclidean
3	Reconstruction of the second
	3. 2 > Dased on difference value, fort peem in
	assending order
	S OX - Miles A A
3	,3 -> Neach & well choose top 10 somes from
	Sorler anay
3	.4 -> Now, It well askign class to text
	posed lasad on most frequent class of
	Kese souls
S	tep-4! End
	~ · · · · · · · · · · · · · · · · · · ·

Program 9: Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

Algorithm for k means clustering:

- Initialize k means with random values
- For a given number of iterations:
- Iterate through items:
- Find the mean closest to the item by calculating the euclidean distance of the item with each of the means
- Assign item to mean
- Update mean by shifting it to the average of the items in that clusters

Algorithm for EM algorithm:

- The very first step is to initialize the parameter values. Further, the system is provided with incomplete observed data with the assumption that data is obtained from a specific model.
- This step is known as Expectation or E-Step, which is used to estimate or guess the values of the missing or incomplete data using the observed data. Further, E-step primarily updates the variables.
- This step is known as Maximization or M-step, where we use complete data obtained from the 2nd step to update the parameter values. Further, M-step primarily updates the hypothesis.
- The last step is to check if the values of latent variables are converging or not.

Dataset: Iris dataset

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np

iris = datasets.load_iris()

X = pd.DataFrame(iris.data)
X.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']

y = pd.DataFrame(iris.target)
y.columns = ['Targets']

model = KMeans(n_clusters=3)
model.fit(X)

plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
```

```
# Plot the Original Classifications
plt.subplot(1, 2, 1)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# Plot the Models Classifications
plt.subplot(1, 2, 2)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[model.labels], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrixof K-Mean: ',sm.confusion_matrix(y, model.labels_))
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns = X.columns)
#xs.sample(5)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n components=3)
gmm.fit(xs)
y_gmm = gmm.predict(xs)
#y cluster gmm
```

```
plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
plt.title('EM Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')

print('The accuracy score of EM: ',sm.accuracy_score(y, y_gmm))
print('The Confusion matrix of EM: ',sm.confusion_matrix(y, y_gmm))
```


Program 10: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.

Algorithm:

1. F is approximated near Xq using a linear function:

$$\hat{f}(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

2. Minimize the squared error:

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

$$\Delta w_j = \eta \sum_{x \in k \text{ nearest nbrs of } x_q} K(d(x_q, x)) (f(x) - \hat{f}(x)) a_j(x)$$

It is weighted because the contribution of each training example is weighted by its distance from the query point.

Dataset: tip.csv

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

[] def kernel(point,xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights

[] def localWeight(point,xmat,ymat,k):
    wei = kernel(point,xmat,k)
    w = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
    return W
```

```
def localWeightRegression(xmat,ymat,k):
        m,n = np.shape(xmat)
        ypred = np.zeros(m)
        for i in range(m):
            ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
        return ypred
[ ] def graphPlot(X,ypred):
        sortindex = X[:,1].argsort(0)
        xsort = X[sortindex][:,0]
        fig = plt.figure()
        ax = fig.add subplot(1,1,1)
        ax.scatter(bill,tip, color='green')
        ax.plot(xsort[:,1],ypred[sortindex], color = 'red', linewidth=5)
        plt.xlabel('Total bill')
        plt.ylabel('Tip')
        plt.show();
    data = pd.read_csv('/content/tips.csv')
    bill = np.array(data.total_bill)
    tip = np.array(data.tip)
    mbill = np.mat(bill)
    mtip = np.mat(tip)
    m= np.shape(mbill)[1]
    one = np.mat(np.ones(m))
    X = np.hstack((one.T,mbill.T))
    # increase k to get smooth curves
```

ypred = localWeightRegression(X,mtip,3)

graphPlot(X,ypred)

