The main aim of this section is to construct codes using some mathematical constructs called **Latin Squares**, and vice-versa. Further, we will solve the *main coding theory problem* for single-error-correcting codes of length 4 i.e. find the values of $A_q(4,3)$ for all values of q.

Definition 0.1. A Latin square of order q is a $q \times q$ array whose entries are from a set F_q of q distinct symbols suzh that each row and each column of the array contains each symbol exactly once.

Example: Let $F_3 = \{1, 2, 3\}$. Then an example of a Latin square of order 3 is

Theorem 0.2. There exists a Latin square of order q for any positive integer q.

Proof. We can take $1 \ 2 \ \cdots \ q$ as the first row and cycle this round once for each subsequent row to get

Alternatively, the addition table of Z_q is a Latin square of order q.

Definition 0.3. Let A and B be two Latin squares of order q. Let a_{ij} and b_{ij} denote the i, jth entries of A and B respectively. Then A and B are said to be **mutually orthogonal** Latin squares (abbreviated as MOLS) if the q^2 ordered pairs (a_{ij}, b_{ij}) , i, j = 1, 2, ..., q are all distinct.

Example: The Latin squares

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$

0.1 Optimal single-error-correcting code of length 4

Theorem 0.4. $A_q(4,3) \le q^2$, for all q.

Proof. Suppose C is a q-ary (4, M, 3)-code and let $\mathbf{x} = x_1x_2x_3x_4$ and $\mathbf{y} = y_1y_2y_3y_4$ be distinct codewords of C. Then $(x_1, x_2) \neq (y_1y_2)$, for otherwise \mathbf{x} and \mathbf{y} could differ only in the last two places, contradicting d(C) = 3. Therefore, $M \leq q^2$.

Theorem 0.5. There exists a q-ary $(4, q^2, 3)$ -code if and only if there exists a pair of MOLS of the order q.

Proof. Let

$$C = \{(i, j, a_{ij}, b_{ij}) | (i, j) \in (F_q)^2\}$$

As in the proof of Theorem 0.4, the minimum distance of C is 3 if and only if, for each pair of coordinate positions, the ordered pairs appearing in those positions are distinct. Now the q^2 pairs of (i, a_{ij}) and q^2 pairs of (j, a_{ij}) are distinct if and only if A is a Latin square. Similarly, the q^2 pairs of (i, b_{ij}) and q^2 pairs of (j, b_{ij}) are distinct if and only if B is a Latin square. Lastly, the q^2 pairs (a_{ij}, b_{ij}) are distinct if and only if there exists a MOLS of order q.

Theorem 0.6. If q is a prime-power and $q \neq 2$, then there exists a pair of MOLS of order q.

Proof. Let F_q be the field $GF(q) = \{\lambda_0, \lambda_1, \dots, \lambda_{q-1}\}$ where $\lambda_0 = 0$. Let μ and ν be two distinct non-zero elements of GF(q). Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $q \times q$ arrays defined by

$$a_{ij} = \lambda_i + \mu \lambda_j$$
 and $b_{ij} = \lambda_i + \nu \lambda_j$

We now see that A id Latin square and similarly so is B. As if two elements in the same of A are identical, then we have

$$\lambda_i + \mu \lambda_j = \lambda_i + \mu \lambda_j'$$

implying j = j' as μ is non-zero. Now for columns,

$$\lambda_i + \mu \lambda_j = \lambda_i' + \mu \lambda_j$$

implying that i = i'. Now, we prove that A and B are orthogonal, suppose on contrary that $(a_{ij}, b_{ij}) = (a_{i'j'}, b_{i'j'})$, then

$$\lambda_i + \mu \lambda_j = \lambda'_i + \mu \lambda'_j$$

and
$$\lambda_i + \nu \lambda_j = \lambda'_i + \nu \lambda'_j$$

which on subtraction gives

$$(\mu - \nu)\lambda_j = (\mu - \nu)\lambda_j'$$

Since $\mu \neq \nu$, we have j = j', and consequently, i = i'.

Theorem 0.7. If there exists a pair of MOLS of order n as well as order m, then there exists a pair of MOLS of order mn.

Proof. Suppose A_1, A_2 is a pair of MOLS of order m and B_1, B_2 is a pair of MOLS of order n. Let C_1 and C_2 be the $mn \times mn$ squares defined by

$$C_k = \begin{array}{c} (a_{11}^{(k)}, B_k) & (a_{12}^{(k)}, B_k) & \cdots & (a_{1m}^{(k)}, B_k) \\ (a_{12}^{(k)}, B_k) & (a_{22}^{(k)}, B_k) & \cdots & (a_{2m}^{(k)}, B_k) \\ \vdots & & & \vdots \\ (a_{m1}^{(k)}, B_k) & (a_{m2}^{(k)}, B_k) & \cdots & (a_{mm}^{(k)}, B_k) \end{array}$$

where $k \in \{1,2\}$, $A_k = [a_{ij}^{(k)}]$ and $(a_{ij}^{(k)}, B_k)$ denotes an $n \times n$ array (referred as block in this proof) whose r, sth entry is $(a_{ij}^{(k)}, b_{rs}^{(k)})$ for $r, s \in \{1, 2, \dots, n\}$. From this construction it is trivial to see that C_k are Latin squares. Further assuming them to be not

From this construction it is trivial to see that C_k are Latin squares. Further assuming them to be not a pair of MOLS implies that in both C_1, C_2 either two entries in a block are same or, two entries are same in blocks having different row and column. The first possibility contradicts B_k being a pair of MOLS, and the latter contradicts A_k being a pair of MOLS.

Theorem 0.8. If $q \equiv 0, 1$ or 3 (mod 4). Then there exists a pair of MOLS of order q.

Proof. One can break down each of q satisfying $q \equiv 0, 1$ or $3 \pmod{4}$ into their prime factorisation, then each of the prime-power in it will be ≥ 3 . Thus, repeated application of Theorem 0.6 and Theorem 0.7 will give us the required pair of MOLS for each of these q.

Note: Theorem 0.8 leaves cases when $q \equiv 2 \pmod{4}$. It has been proved pair of MOLS also exist for these cases except for q = 2 and q = 6. The proof will not be covered in this report.

Corollary 0.8.1. $A_q(4,3) = q^2$ for all $q \neq 2, 6$.

Proof. This is immediate from Theorems 0.4, 0.5 and 0.8.

Remark. For q = 2, it is trivial to see that $A_2(4,3) = 2$, while for q = 6, a construction similar to pair of orthogonal Latin squares gives $A_6(4,3) = 34$.

Some generalization of the above results.

Theorem 0.9 (Singleton bound).

$$A_q(n,d) \le q^{n-d+1}.$$

Proof. Suppose C is a q-ary (n, M, d)-code. Same as in proof of Theorem 0.4, if now we delete the last d-1 coordinates from each codeword, then the M vectors of length n-d+1 so obtained must be distinct and so $M \leq q^{n-d+1}$.

Definition 0.10. A set $\{A_1, A_2, \dots, A_t\}$ of Latin squares of order q is called a set of mutually orthogonal Latin squares (MOLS) if each pair $\{A_i, A_i\}$ is a pair of MOLS, for $1 \le i < j \le t$.

Theorem 0.11. There are at most q-1 Latin squares in any set of MOLS of order q.

Proof. Let A_1, A_2, \ldots, A_t be the set of MOLS of order q. If we relabel elements of each Latin square such that the first row of A_i is $1 \ 2 \cdots q$ (as relabelling conserves orthogonality). Now considering t entries appearing in the (2,1)th positions cannot be 1 as well as no two of them can be same, as for all i, the pair (i,i) has already occurred in the first row.

Therefore, we must have $t \le q - 1$.

Definition 0.12. If a set of q-1 MOLS of order q exists, it is called a *complete* set of MOLS of order q.

Theorem 0.13. If q is prime-power, then there exists a complete set of q-1 MOLS of order q.

Proof. Similar to what we in Theorem 0.6, if we define $A_k = [a_{ij}^{(k)}], k \in \{1, 2, \dots, q-1\}$, with

$$a_{ij}^{(k)} = \lambda_i + \lambda_k \lambda_j.$$

It follows exactly as in the proof of Theorem 0.6, that the set formed by the Latin squares A_k is a set of MOLS of order q.

Theorem 0.14. A q-ary $(n, q^2, n-1)$ -code is equivalent to a set of n-2 MOLS of order q.

Proof. As in Theorem 0.5, code C of the form

$$\{(i,j,a_{ij}^{(1)},a_{ij}^{(2)},\ldots,a_{ij}^{(n-2)})|(i,j)\in (F_q)^2\}$$

has d(C) = n - 1 if and only if $A_k = [a_{ij}^{(k)}]$, form a set of MOLS of order q, same outline as in proof of Theorem 0.5.

Corollary 0.14.1. If q is a prime power and $n \leq q + 1$, then

$$A_q(n, n-1) = q^2$$

Proof. This is immediate from above theorems.