Week 3 Thursday Lecture Notes

Prep For Class:

- Review Recitation Questions for Quiz 2 Today.
- Creating and Solving Algorithms for Runtime Complexity.

Lecture 5: Maximum Subarray

Problem: Maximum subarray

Problem Definition:

Given an array A of numbers, find the contiguous subarray that has the largest sum

Example: for input A=(4,-5,6,7,8,-10,5,2), what is the solution?

Brute force solution?

- Given an Array A, find the contiguous subarray that has the largest sum.
- Example Array A = (4,-5,6,7,8,-10,5,2).
- Maximum Contagious Subarray is [6,7,8] = 21.

Brute Force: For all $I = 1 \dots n$ For $j = i+1 \dots n$. $O(n^2)$

- We can Brute Force this problem by comparing every possible combination with another, running at $O(n^2)$

Divide and Conquer.

- Recursively compute the Max subarray for the left and right sides respectively.
- How do we combine the cross sections? We're aiming for O (n log n) runtime.

Looking at the middle between the two Subarrays

Divide and Conquer: high level idea

 ${\color{red} \bullet}$ Partition the array A into two rough equal sized part ${\color{blue} A_L}$ and ${\color{blue} A_R}$

$$A_L = (4, -5, 6, 7)$$
 $A_R = (, 8, -10, 5, 2)$

- ${\bf .}$ Recursively compute the maximum subarray ${\bf A}_{\rm L}$ and ${\bf A}_{\rm R}$ for respectively
- How to combine? What run time to aim for if we want O(n log n) overall run time?
- Start at the middle point. Scanning the whole array once to find the cross solution maximum.
- Combine left side [6,7] with right side [8].
- Compare this cross solution with the best solution of the left and right side.

Example: Overall [4,-5,6,7,8,-10,5,2]

Now we split the array in half into:

- Left [4,-5,6,7]
- Right side [8,-10,5,2]

Now we find the Maximum contagious array of both left and right.

- Left side Contiguous Maximum (6,7) = 13
- Right Contiguous Maximum (8) = 8

Find the Maximum of the cross section (It must require the first node on the edges (7,8)

- Cross Solution Maximum [6,7,8] = 21

Combined Best is better than the left or right side maximum.

Overall Largest Contagious Array Solution = Cross Solution = 21!

Example Problem 2: Array of Sorted Integers that have been shifted by a number of positions

Example Problem 2

Input: an array A of sorted integers that have been shifted.

Goal: find the largest element in A

Example:

(40, 57, 89, 2, 8, 25, 30) shifted 3 positions

Bruteforce? Can we do better?

- How do we achieve O(log n)?
- We can use a Binary Search!

How to find the Largest Element in Shifted Array A? Formula

- 1: Let A_M be the Middle Element of Array A.
- 2: Let A_L be the First Element in Array A.
- 3: Let A_R be the Last Element in Array A.
- 3: If $A_M < A_L$ than The Maximum point is between $[A_L,A_M]$
- 4: else the Max point is Between $[A_M,A_R]$

Example: Let Array A contain elements:; (5,10,15,20,25,3,4)

- 1. Let A_M be the **Middle** element in position 4 = 20.
- 2. Let A_L be the **Left** (First position) element = 5.
- 3. Let A_R be the **Right** (Last Position) element = 4
- 4. Compare if $A_M < A_L$. 20 is Not Less than 4 so this ss FALSE. So we go to 5.
- 5. The Max Point is between $A_M A_R$ [20,25,3,4]

This holds to be true since the max point 25 is between the middle and the last element in the array.

Next Time:

- Review 2nd Quiz results.
- Dynamic Programming (Lecture 6)
- Reading 1 and Reading 2 for Dynamic Programming.
- Work on Implementation 1 Assignment (Due Feb. 2nd).

Week 3 Thursday Lecture Notes

~Information composed by Notetaker Scott Russell for CS 325 DAS student