

Grundlagen Netzwerke

- 1. Internet Protokoll Geschichte
- 2. IPv4 Adressierung
- 3. Aufbau einer IPv4 Adresse
- 4. Besondere IP Adressen
- 5. Die Subnetzmaske
- 6. Subnetze | Subnetting
- 7. Topologien

Internet-Protokoll Geschichte

Entstehung des Netzwerkprotokolls (Mai 1974):

 Vint Cerf und Bob Kahn veröffentlichen ein Netzwerkprotokoll zur Kommunikation zwischen paketvermittelnden Netzen

TCP/IP-Referenzmodell:

- Endgeräte führen ein TCP (Transmission Control Protocol) aus, um Datenströme zwischen Prozessen zu sichern
- Gateways transformieren Pakete an Netzwerkgrenzen
- RFC 675 (Dez. 1974) bringt die erste vollständige Protokollspezifikation

TCP/IP-Referenzmodell-Aufteilung:

 Das Monolitische TCP wird in ein Modell aus IPv4 (Host zu Host) und TCP (Prozess zu Prozess) aufgeteilt

Internet-Protokoll Geschichte

IP-Versionen und Adressierung:

- Ursprüngliches Adressierungsschema mit variabler Länge
- IP-Adressen festgelegt auf 32 Bit (8 Bit Netzadresse, 24 Bit Hostadresse)
- RFC 791 führt Netzklassen für mehr Flexibilität ein

Knappheit von IPv4 Adressen:

- Anfang der 1990er entwickelt sich IPv6 aufgrund der IPv4-Knappheit
- IPv4 begrenzt auf max. 2³² IP-Adressen (4.394.967.296 max. Geräte Host's)
- IPv6 als Nachfolger mit erheblich größerem Adressraum (340 Sextillionen Adressen)

Internet-Protokoll Geschichte

IPv4-Versionen und Nachfolger:

- IPv5 durch das experimentelle Internet Stream Protocol Version 2 (ST-2)
- Sollte ursprünglich Audio und Video über Multicast (1 Sender, mehrere Empfänger) übertragen
- IPv6 als Nachfolger mit erheblich größerem Adressraum

Verbreitung IPv6:

- Langsameres Wachstum als bei IPv4
- Gängige Betriebssysteme unterstützen beide Protokolle
- IPv4 und IPv6 funktionieren übergreifend sowie parallel zueinander
- Seit dem World IPv6 Day und World IPv6 Launch Day 2011 und 2012 bieten Websites und Internet-Provider IPv6 an

Internet Protokoll Version 4

Vergabe von IPv4-Adressen

- IPv4 Adressen sind begrenzt verfügbar und müssen offiziell beantragt und zugestellt werden
- Adressraum wurde in Regionen aufgeteilt und IP-Adressen durch die RIR (Regional Internet Registries) vergeben
- Vergabe der IP-Adressen in Europa und dem Mittleren Osten durch RIPE NCC
- Réseaux IP Européens Network Coordination Centre Europa, Mittlerer-Osten und Teile von Zentral-Asien
- Durch Fehler bei der Vergabepraxis von Adressbereichen und Wachstums des Internets entstand IP-Adressen Knappheit
- Unterversorgte Gebiete sind auf Einführung von IPv6 angewiesen

Aufbau einer IPv4 Adresse

- Eine IPv4 Adresse besteht aus 32 Bit
- 1 Bit bezeichnet ein Zeichen aus dem Binärsystem / Dualsystem
- Das Binärsystem besteht aus 2 Zeichen 0 und 1
- Eine IPv4 Adresse wird für Rechner / Maschinen aus 32 Zeichen aus Nullen und Einsen dargestellt 11000000101010001011001000011100 (32 Stellen)
- Für Menschen wird die IPv4 Adresse in 4 Zahlengruppen (OKTETT) zu je 8 Bit dargestellt

Aufteilung der binären Zahl in 4 Oktetten

1100 0001 01010001 01100100 0011100

Aufbau einer IPv4 Adresse

192.168.178.15

1100 0000

1010 1000

1011 0000

0000 1111

Netzanteil

Netzanteil

Netzanteil

HOST Anteil

1 Byte = 8 Bit

1 Byte = 8 Bit

1 Byte = 8 Bit

| 1 Byte = 8 Bit |

1.Oktett

2.Oktett

3.Oktett

4.Oktett

Klasse A Netz

Klasse-A-Adresse

10.0.0.0

Subnetzmaske

255.0.0.0

Anzahl Hosts: $2^{24} = 16$ Mio.

Klasse B Netz

Klasse-B-Adresse

172.16.0.0

Subnetzmaske

255.255.0.0

Anzahl Hosts: $2^{16} = 65 \text{ K}$.

Klasse C Netz

Klasse-C-Adresse

192.168.128.0

Subnetzmaske

255.255.255.0

Anzahl Hosts: 254

Klasse A

- 126 Netzwerke mit 16.777.214 Rechner
- Die Größe der Netzwerkkennung 8 Bit (1 Oktett)
- Die Hostkennung 24 Bit (3 Oktetten)
- Das erste Bit von links im ersten Oktett beginnt mit einer 0 und hat eine Netzkennung von 1-126

	Netzkennung	Hostkennung	Hostkennung	Hostkennung
Klasse A	1-126			
Binär	00000001 - 01111111	00000000 - 11111111	00000000 - 11111111	00000000 - 11111111

Merke: Die 0 und die 127 sind NUR für Testzwecke reserviert. Diese können nicht verwendet werden.

Klasse B

- 16.384 Netzwerke mit 65.534 Rechner
- Die Größe der Netzwerkkennung 16 Bit (2 Oktetten)
- Die Hostkennung 16 Bit (2 Oktetten)
- Die ersten beiden Bits von links im ersten Oktett beginnen mit einer 10 und haben eine Netzkennung von 128 – 191

	Netzkennung	Netzkennung	Hostkennung	Hostkennung
Klasse B	128-191			
Binär	10 0000000 - 10 1111111	00000000 - 11111111	00000000 - 11111111	00000000 - 11111111

Klasse C

- 2.097.152 Netzwerke mit 254 Rechner
- Die Größe der Netzwerkkennung 24 Bit (3 Oktetten)
- Die Hostkennung 8 Bit (1 Oktett)
- Das erste drei Bits von links im ersten Oktett beginnt mit einer 10 und hat eine Netzkennung von 192 – 223

	Netzkennung	Netzkennung	Netzkennung	Hostkennung
Klasse C	192-223			
Binär	110 000000 - 110 111111	00000000 - 11111111	00000000 - 11111111	00000000 - 11111111

Aufbau einer IPv4 Adresse – Binär in Dezimal

- Die größte 8 Bit Zahl in einem Oktett ist 255
- Eine 256 würde bereits 9 Bit betragen und kommt in einer IPv4 Adresse nicht vor da diese nur aus 4 x
 8 Bit besteht und begrenzt ist
- 255 = 1111 1111
- 256 = 1 0000 0000

Umrechnung eines Oktett

Beispiel 1 (1111 1111)

Bit	1	1	1	1	1	1	1	1
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Dezimalwert: 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

Aufbau einer IPv4 Adresse – Binär in Dezimal

Beispiel 2 (1010 1000)

Bit	1	0	1	0	1	0	0	0
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Dezimalwert: 128 + 32 + 8 = 168

Beispiel 3 (1011 0010)

Bit	1	0	1	1	0	0	1	0
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Dezimalwert: 128 + 32 + 16 + 2 = 178

Dezimal – System in das Binär-System umrechnen

Gegeben ist der Dezimalwert 178 einer IPv4 Adresse

Bit	1							
Potenz 2	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Wir prüfen von links nach rechts Wie oft die 128 in die 178 passt Die 128 passt einmal in die 178 Wir setzen also das erste Bit auf 1 Als Rest bleiben 50 übrig

Bit	1	0						
Potenz 2	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Als nächstes prüfen wir wie oft die 64 in die 50 passt Die 64 passt nicht in die 50 somit setzen wir das 2 Bit auf 0

Dezimal – System in das Binär-System umrechnen

Gegeben ist der Dezimalwert 178 einer IPv4 Adresse

Bit	1	0	1					
Potenz 2	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Wir prüfen von links nach rechts Wie oft die 32 in den Rest 50 pass Die 32 passt einmal in die 50 Wir setzen also das dritte Bit auf 1 Als Rest bleiben 18 übrig

Bit	1	0	1	1				
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Als nächstes prüfen wir wie oft die 16 in die 18 passt. Die 16 passt einmal in die 18 somit setzen wir das 4 Bit auf 1 Als Rest bleiben 2 übrig

Dezimal – System in das Binär-System umrechnen

Gegeben ist der Dezimalwert 178 einer IPv4 Adresse

Bit	1	0	1	1	0			
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Wir prüfen von links nach rechts Wie oft die 8 in den Rest 2 passt Die 8 passt nicht in die 2 Wir setzen also das 5 Bit auf 0 Als Rest bleiben 2 übrig

Bit	1	0	1	1	0	0		
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Als nächstes prüfen wir wie oft die 4 in die 2 passt.
Die 4 passt nicht in die 2 somit setzen wir das 6 Bit auf 0

Dezimal – System in das Binär-System umrechnen

Gegeben ist der Dezimalwert 178 einer IPv4 Adresse

Bit	1	0	1	1	0	0	1	
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Wir prüfen von links nach rechts Wie oft die 2 in den Rest 2 passt Die 2 passt einmal in die 2 Wir setzen also das 7 Bit auf 1 Es bleibt kein Rest übrig

Bit	1	0	1	1	0	0	1	0
Potenz 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Wert	128	64	32	16	8	4	2	1

Als letztes setzen wir den 8 Bit auf 0 da wir keine weiteren Werte gegeben haben

Der Dezimalwert 178 ist als Binäre Zahl: 10110010

Besondere IP-Adressen

Weitere Adressbereiche die NUR für besondere Zwecke verwendet werden

Loopbackadresse

- Die IP-Adresse 127.0.0.1 dient ausschließlich nur für Testzwecke
- Mit dieser IP kann in der Kommandozeile über den Befehl "ping 127.0.0.1" die Funktion der eigenen Netzwerkkarte überprüft werden

Private IP Adressen

- In all den IPv4 Adressen wurden Adressenbereiche für private IP Adressen reserviert
- Diese können aus dem Internet nicht geroutet werden da Router im Internet diese Adressbereiche nicht kennen
- Die gleichen Adressbereiche können in anderen privaten Netzwerken genutzt werden z.B.: 192.168.0.1

Besondere IP-Adressen

Weitere Adressbereiche die NUR für besondere Zwecke verwendet werden

APIPA (Automatic Private OP Adressing)

- Adressbereich 169.254.0.0 in der Klasse B (Hostkennung der letzten beiden Oktetten)
- Steht kein DHCP Server zur Verfügung der automatisch die IP-Adressen zuweist Können Rechner auf den automatischen Bezug einer IP-Adresse eingestellt sein und sich diese selbstständig vergeben z.B. 169.254.13.37

Wichtige Richtlinien

- Die Hostkennung darf nicht NUR aus 0 (Binär: 0000 0000) oder NUR aus 255 (Binär 1111 1111) bestehen die Zahl 255 wird ausschließlich für die Broadcast (Rundruf) verwendet, alle Rechner im Netzwerk Empfangen die selben Datensendungen und bearbeiten diese
- Die Hostkennung darf NUR einmalig im Netzwerk vorhanden sein

IP-Adressen IPv4-Die Subnetzmaske

Zu jeder IP-Adresse gehört auch eine Subnetzmaske damit lassen sich Netzkennung und Hostkennung ermitteln

Merke:

- eine Subnetzmaske besteht in der Binären-Darstellung aus Einsen gefolgt von Nullen
- besteht in der Dezimal-Darstellung aus der Zahl 255 gefolgt von Nullen
- die Darstellung von 255.0.255.0 oder 255.255.0.255 gibt es nicht

Klassen		Subnetzmaske	(Binär)		Dezimal
А	11111111	00000000	00000000	00000000	255.0.0.0
В	11111111	11111111	00000000	00000000	255.255.0.0
С	11111111	11111111	11111111	00000000	255.255.255.0

Darstellung der Standard Subnetzmaske in den verschiedenen Netzklassen

IP-Adressen IPv4-Die Subnetzmaske

Eine IP Adresse ist einer Subnetzmaske zugeordnet und stellt ein Klasse C Netzwerk dar

	Oktett 1	Oktett 2	Oktett 3	Oktett 4	Dezimal
	Ne	etzwerkkennu	ng	Hostkennung	
IPv4	11000000	10101000	10110010	00010100	192.168.178.20
Subnetz	11111111	11111111	11111111	00000000	255.255.255.0

- Anhand einer Subnetzmaske lässt sich bei IP-Adressen schnell ermitteln, aus wie vielen Bit's die Netzwerkkennung und die Hostkennung besteht
- alle Felder wo die 1 übereinander stehen, stellt die Netzkennung dar
- In dem Oktett wo KEINE 1 übereinander stehen ist die Hostkennung

- Besteht ein Oktett (8 Bit) nur aus Einsen (11111111) ergibt das die Dezimalzahl 255
- Eine Subnetzmaske eines Klasse C Netzes sieht wie folgt aus: 255.255.255.0 und nimmt 3 Oktetten zu je 8 Bit ein
- Als Ergebnis haben wir eine 24 Bit Netzkennung und 8 Bit Hostkennung
- Man teilt im Prinzip die Netzkennung immer in jeweils 8 Bit 1 Oktett

Zusammenfassung der verschiedenen Klassenbereiche

	0.011	46.00	2.4.03	0.0 0.1
	8 Bit	16 Bit	24 Bit	32 Bit
Klasse A	Netzkennung	Hostkennung	Hostkennung	Hostkennung
IPv4	1-126	0	0	0
Binär	00000001 - 01111111	00000000 - 11111111	00000000 - 11111111	00000000 - 11111111
Subnetmaske	255	0	0	0
Binär	11111111	00000000	00000000	00000000
Klasse B	Netzkennung	Netzkennung	Hostkennung	Hostkennung
IPv4	128-191	0	0	0
Binär	10 0000000 - 10 1111111	00000000 - 11111111	00000000 - 11111111	00000000 - 11111111
Subnetmaske	255	255	0	0
Binär	11111111	11111111	00000000	00000000
Klasse C	Netzkennung	Netzkennung	Netzkennung	Hostkennung
IPv4	192-223	0	0	0
Binär	11000000 - 11011111	00000000 - 11111111	00000000 - 11111111	00000000 - 11111111
Subnetmaske	255	255	255	0
Binär	11111111	11111111	11111111	00000000

- Nicht jede IP kann mit jeder Subnetzmaske genutzt werden z.B. 192.168.12.0 kann nicht mit einer Subnetzmaske von 255.255.0.0 verwendet werden weil die IP zu einem Klasse C Netz gehört und die Subnetzmaske zu einem Klasse B Netz gehört
- um eine große Anzahl an IPv4 Adressen zu nutzen hat man 1993 das Classless Inter-Domain Routing eingeführt um mehr 32 Bit Subnetzmasken als den damaligen Standard zu erzeugen (255.0.0.0, 255.255.0.0, 255.255.255.0)
- Durch die CIDR Notation können Adressbereiche effektiver genutzt werden
- Zur Notation werden "Suffixe" angewandt die angeben wie viele Bits in der Netzadressierung verwendet werden
- Dadurch ergibt sich eine vereinfachte Darstellung der Dezimal-Schreibform 192.168.12.0 / 255.255.255.0 durch die Notation 192.168.12.0 /24

Die feste Zuordnung einer IP – Adresse zur Netzklasse und durch eine Standard-Subnetzmaske entfällt Es existiert nur noch eine Netzmaske die eine IP-Adresse in die Netzkennung und Hostkennung unterteilt

Was früher in 8 Bit Schritten verschoben wurde, wird seit 1993 in 1 Bit-Schritten verschoben

Beispiel 1

Ermittlung der Netzkennung und Hostkennung. Netzwerk-IP: 192.168.207.8 / 18 Die Trennung der Netzkennung und Hostkennung erfolgt im 3.Oktett nach dem 2 Bit Die Subnetzmasken-Trennung ebenfalls im 3.Oktett nach dem 2 Bit

	Oktett 1 Oktett 2		Oktett 3	Oktett 4		
	Netz	kennung		Hostkennung		
IP-Adresse	192	168		207	8	
Binär	11000000	10101000	11	001111	00001000	
Subnetmaske	255	255		192	0	
Binär	11111111	11111111	11	000000	00000000	

Beispiel 2

Ermittlung der Netzkennung und Hostkennung. Netzwerk-IP: 10.135.129.3 /9 Die Trennung der Netzkennung und Hostkennung erfolgt im 2.Oktett nach dem 1.Bit Die Subnetzmasken-Trennung ebenfalls im 2. Oktett nach dem 1 Bit

	Oktett 1		Oktett 1 Oktett 2		Oktett 4		
	Netzkennung		Hostkennung				
IP-Adresse	10		135	129	3		
Binär	00001010	1	0000111	100000001	000000011		
Subnetmaske	255		128	0	0		
Binär	11111111	1	0000000	00000000	00000000		

Berechnungshilfen

Oktett

Netzmasken

			(Oktett	(8 Bit)			Gesamt
Binär	1	0	0	0	0	0	0	0	1 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	128
Binär	1	1	0	0	0	0	0	0	2 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	192
Binär	1	1	1	0	0	0	0	0	3 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	224
Binär	1	1	1	1	0	0	0	0	4 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	240
Binär	1	1	1	1	1	0	0	0	5 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	248
Binär	1	1	1	1	1	1	0	0	6 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	252
Binär	1	1	1	1	1	1	1	0	7 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	254
Binär	1	1	1	1	1	1	1	1	8 Bit(s)
Wert Dezimal	128	64	32	16	8	4	2	1	255

Bit	Dezimal	Oktett 1	Oktett 2	Oktett 3	Oktett 4	CIDR	Info
	255.255.255.128	11111111	11111111	11111111	1 0000000	/25	
1 Bit	255.255.128.0	11111111	11111111	10000000	00000000	/17	
128	255.128.0.0	11111111	10000000	00000000	00000000	/9	
	128.0.0.0	1 0000000	00000000	00000000	00000000	/1	
	255.255.255.192	11111111	11111111	11111111	11 000000	/26	
2 Bit	255.255.192.0	11111111	11111111	11 000000	00000000	/18	
192	255.192.0.0	11111111	11 000000	00000000	00000000	/10	
	192.0.0.0	11 000000	00000000	00000000	00000000	/2	
	255.255.255.224	11111111	11111111	11111111	111 00000	/27	
3 Bit	255.255.224.0	11111111	11111111	111 00000	00000000	/19	
224	255.224.0.0	11111111	111 00000	00000000	00000000	/11	
	224.0.0.0	111 00000	00000000	00000000	00000000	/3	
	255.255.255.240	11111111	11111111	11111111	1111 0000	/28	
4 Bit	255.255.240.0	11111111	11111111	1111 0000	00000000	/20	
240	255.240.0.0	11111111	1111 0000	00000000	00000000	/12	
	240.0.0.0	1111 0000	00000000	00000000	00000000	/4	
	255.255.255.248	11111111	11111111	11111111	11111 000	/29	
5 Bit	255.255.248.0	11111111	11111111	11111 000	00000000	/21	
248	255.248.0.0	11111111	11111 000	00000000	00000000	/13	
	248.0.0.0	11111 000	00000000	00000000	00000000	/5	
	255.255.255.252	11111111	11111111	11111111	111111 00	/30	
6 Bit	255.255.252.0	11111111	11111111	111111 00	00000000	/22	
252	255.252.0.0	11111111	111111 00	00000000	00000000	/14	
	252.0.0.0	11111100	00000000	00000000	00000000	/6	
	255.255.255.254	11111111	11111111	11111111	1111111 0	/31*	
7 Bit	255.255.254.0	11111111	11111111	1111111 0	00000000	/23	Nur 1
254	255.254.0.0	11111111	1111111 0	00000000	00000000	/15	Computer
	254.0.0.0	1111111 0	00000000	00000000	00000000	/7	
	255.255.255.255	11111111	11111111	11111111	11111111	/32*	1 Computer
8 Bit	255.255.255.0	11111111	11111111	11111111	00000000	/24	Netzklasse C
255	255.255.0.0	11111111	11111111	00000000	00000000	/16	Netzklasse B
	255.0.0.0	11111111		00000000	00000000	/8	Netzklasse A

Subnetzmaske anpassen

- Durch die Verschiebung der einzelnen Bits ändert sich die Netzkennung und die Hostkennung
- Rückt man um ein Bit nach rechts, erhöht sich die Netzkennung, die Hostkennung verringert sich
- Rückt man um einen Bit nach links, verringert sich die Netzkennung und die Hostkennung erhöht sich
- Durch diese Herangehensweise lassen sich die Subnetzmaske/n entsprechend anpassen
- Die Vergabe einer Subnetzmaske sollte sich an die Anzahl der Hosts anlehnen

Merke:

- ein Klasse C Netz hat 2⁸ = 256 Adressen zur Verfügung abzgl. der niedrigsten Adresse für die Netzadresse und abzüglich der höchsten Adresse für die Broadcastadresse bleiben noch 254 Adressen in einem Klasse C Netz für die Hosts übrig
- Subnetze können nur mit einer 2er Potenz gebildet werden

Wie viele Hosts passen in ein Netzwerk?

Subnetz: 255.255.255.0 /24

Binär: 111111111111111111111111111000000000

32 Bit (Anzahl der Bit in der Subnetzmaske) abzüglich 24 Bit = **8** (Entspricht auch die Anzahl der Nullen)

Wir verwenden hier immer eine Potenz von 2 (Anzahl der freien Bits) = 28

 $2^8 = 256 - 2$ (Abzüglich der 0 u. 255, die für die Hosts in einem Netz nicht verwendet werden dürfen)

Ergebnis: <u>254</u> Adressen für die Hosts

Subnetz

Netz-IP: 192.168.1.0 /24

IP f. Host:192.168.1.1 - 192.168.1.254

Broadcast: 192.168.1.255

Wie viele Hosts passen in ein Netzwerk?

Subnetz: 255.255.252.0 /22

Binär: 1111111111111111111111100.00000000

32 Bit abzüglich 22 Bit = **10**

Wir verwenden hier eine Potenz von 2 (Anzahl der freien Bits) = 2¹⁰

 2^{10} = **1024** - 2 (Abzüglich der 0 u. 255, die für die Hosts in einem Netz nicht verwendet werden dürfen)

Ergebnis: 1022 Adressen für die Hosts

Subnetz

Netz-IP: 192.168.1.0 /22

IP f. Host:192.168.0.1 - 192.168.3.254

Broadcast: 192.168.3.255

Aufteilung in Subnetze (Netzkennung erweitern)

Ziel ist es das o.g. Netz in 4 Subnetze aufzuteilen, hierzu müssen Bits verschoben werden

Wir wissen das ein Oktett aus 8 Bit besteht welches mit der Potenz von 2 errechnet wird

Potenz 2²(Anzahl der Stellen v. links im Oktett)</sup> Der linke Teil ist der Netzanteil und wird vergrößert

Möchten wir nun das o.g. Netz in 4 Netze aufteilen dann setzen wir von links nach rechts die ersten 2 Bits im 4.Oktett auf 1 ($2^2 = 4$ Subnetze -> 2 Stellen)

Subnetzmaske vorher und nachher:

Aufteilung in Subnetze (Netzkennung erweitern)

Subnetz 1

Netz-IP: 192.168.1.0 /26

IP für Host: 192.168.1.1 - 192.168.1.62

Broadcast: 192.168.1.63

Subnetz 2

Netz-IP: 192.168.1.64 /26

IP für Host: 192.168.1.65 - 192.168.1.126

Broadcast: 192.168.1.127

Subnetz 3

Netz-IP: 192.168.1.128 /26

IP für Host: 192.168.1.129 - 192.168.1.190

Broadcast: 192.168.1.191

Subnetz 4

Netz-IP: 192.168.1.192/26

IP für Host: 192.168.1.193 - 192.168.1.254

Broadcast: 192.168.1.255

Aufteilung in Subnetze (Hostkennung erweitern)

Subnetz: 255.255.255.0 /24 **Binär:**111111111111111111111111111000000000

Ziel ist es die Subnetzmaske so anzupassen das 510 Hosts darin Platz haben, auch hierfür müssen Bits verschoben werden

Wir haben gelernt das eine Netzmaske /24 CIDR 256 Adressen möglich macht

Um mehr Hosts in ein Netzwerk zu packen müssen wir die Netzkennung verkleinern bzw. den Hostanteil vergrößern

Potenz 2^{9(Anzahl der Stellen v. rechts im Oktett)} Der rechte Teil ist der Hostanteil und wird vergrößert

510 Hosts + 2 Adressen (Netzadresse 0 und Broadcastadresse 255) = 512 Adressen In das 4 Oktett passen 8 Bit und diese ergeben 256 Adressen, nehmen wir noch ein Bit aus der 3 Oktette hinzu erhalten wir 512 Adressen für den Hostanteil

Die CIDR verringert sich um 1 Stelle von /24 auf /23

Aufteilung in Subnetze (Hostkennung erweitern)

Subnetzmaske vorher und nachher

255.255.255.0 /24 Binär: 1111111111111111111111111111000000000

255.255.255.128/23 Binär: 111111111111111111111111111000000000

Die Aufteilung erfolgt in 2 Netzen da pro Netz nur 256 Adressen zur Verfügung stehen

Subnetz 1

Netz-IP: 192.168.0.0 /23

IP für Host: 192.168.0.1 - 192.168.0.254

Broadcast: 192.168.0.255

Subnetz 2

Netz-IP: 192.168.1.0 /23

IP für Host: 192.168.1.1 - 192.168.1.254

Broadcast: 192.168.1.255

- Durch verschiedene Netzwerktopologien werden Geräte und Leitungen, die ein Netzwerk formen spezifisch angeordnet, damit z.B. Rechner untereinander kommunizieren- und Daten austauschen können.
- Hierbei unterscheidet man zwischen Zwei Arten von Topologien -> die physikalische Topologie bezeichnet die Netzwerkverkabelung.
- die logische Topologie beschreibt den Datenfluss zwischen den Endgeräten
- Je nach Situation werden in großen Netzwerken verschiedene Topologien verwendet.
 Entscheidend ist immer die hohe Ausfallsicherheit.
- Das heißt, dass immer ein alternativer Weg zwischen den Netzwerken vorhanden sein sollte, um einen Komplettausfall des Netzwerks zu verhindern.

Baum-Topologie

Vorteile

- Strukturelle Erweiterbarkeit
- Weite Entfernung umsetzbar
- Ausfälle von Endgeräten (Blatts) haben keine
- Konsequenzen

- Fällt ein Verteiler aus, ist der betroffene Baum nicht mehr erreichbar
- Netzwerkleistung hängt von zentralen Knoten ab

Bus - Topologie

Vorteile

- eignet sich für kleinere Netzwerke
- flexibel erweiterbar
- Einfaches anschließen und entfernen von Geräten, ohne andere Geräte im Netzwerk zu beeinträchtigen

- Anfällig für Netzwerkverlangsamungen und Ausfälle
- Ein Kabel versorgt das gesamte Netzwerk
- Geringe Netzwerkleistung bei hohem Datenverkehr

Ring - Topologie

Vorteile

- reduziert das Risiko von Paketkollisionen
- Fehlerfreie Datenübertragung in eine Richtung
- geeignet für hohen Datenverkehr
- günstig zu realisieren

- Beim Ausfall eines Knotens gesamte Netzwerk betroffen
- Hinzufügen von Geräten nicht ohne Beeinflussung des Netzwerkes möglich
- Ausfallzeiten bei Neuorganisation des Netzwerkes

Cloud Command

Stern - Topologie

Vorteile

- Gute Verwaltungsmöglichkeiten
- Entfernen oder Hinzufügen von Geräten Problemlos möglich
- Fehler im Netzwerk einfach zu lokalisieren
- Bei einem Knotenausfall funktioniert das Netzwerk weiterhin

- Netzwerkgeschwindigkeit abhängig vom zentralen HUB
- Teuer in Installation und Betrieb
- Fällt der Zentralrechner aus ist das gesamte Netzwerk betroffen

Vermaschte – Topologie

Vorteile

- Sehr hohe Ausfallsicherheit
- Sicherste Struktur eines Rechnernetzwerkes

Nachteile

- Sehr hoher Verkabelungsaufwand
- Sehr hoher Energieverbrauch

Solche Strukturen werden nur in Ausnahmefällen verwendet, da die Anzahl der Verbindungen quadratisch ansteigt und der Aufwand schon für kleinere Netze nicht vertretbar ist. Diese Topologie trifft man in Hochleistungsrechnern an.

Vielen Dank für Eure Aufmerksamkeit