

Seminar/Project Data Science

Daniel Hebenstreit

Introduction

- Discomforting content is common in literature
 - abduction of children in "Rumpelstiltskin"
 - burning witches in "Hansel and Gretel"

Introduction

- Discomforting content is common literature
 - abduction of children in "Rumpelstiltskin"
 - burning witches in "Hansel and Gretel"

Read Dead Redemption Back Cover

- Perception of what is discomforting is different for every individual
 - often referred to as triggering content
 - traditional media protects us via trigger warnings
 - e.g. use of violence, FSK18+...

Introduction

- Discomforting content is common literature
 - abduction of children in "Rumpelstiltskin"
 - burning witches in "Hansel and Gretel"

Read Dead Redemption Back Cover

- Perception of what is discomforting is different for every individual
 - often referred to as triggering content
 - traditional media protects us via trigger warnings
 - e.g. use of violence, FSK18+...
- Fan fiction is mostly unregulated
 - subgroups vulnerable to potentially triggering content

Dataset

- Data of the 'PAN 2023' trigger detection challenge
 - 307.102 Fan fiction works from AO3 + respective trigger labels
 - one or multiple trigger labels per document
 - top challenge solutions already published
 - predictions on the validation set of 17.104 works
 - measured with F1-micro and F1-macro score

Dataset

- Data of the 'PAN 2023' trigger detection challenge
 - 307.102 Fan fiction works from AO3 + respective trigger labels
 - one or multiple trigger labels per document
 - top challenge solutions already published
 - predictions on the validation set of 17.104 works
 - measured with F1-micro and F1-macro score
- Goal is to advance the research in this area
 - can we improve the state of the art?
 - w.r. to the metric
 - w.r. to the computational complexity

Dataset Properties

Why is this dataset intriguing to analyse?

- Label Imbalance
 - some labels more frequent
 - pornographic-content (77%)
 - animal-cruelty (0.0004%)

Dataset Properties

Why is this dataset intriguing to analyse?

- Label Imbalance
 - some labels more frequent
 - pornographic-content (77%)
 - animal-cruelty (0.0004%)
- Length of Documents
 - surpass SOTA model input capacities
 - Bert (512 tokens) BigBird (4096 tokens)
 - median 2.124 words
 - maximum 13.253 words

Preprocessing

- Removing HTML code
- Lowercasing
- Removing special characters, numbers, multiple spaces
- Transformers: tokenization
- BoW: lemmatization and n-grams

Bag-of-Words

- Tf-idf encodings of uni-grams
- Linear Support Vector Machine
 - low computation time
 - typically excellent results in text classification tasks
 - one-versus-all strategy
- Implicitly solves length of text problem
- Class imbalance?
 - inverse label frequencies as weights

Transformers

[Tong Wu et al. Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets. 2021. arXiv: 2007.09654]

- Class Imbalance
 - distribution balanced loss
 - takes information of label co-occurence into account
 - assign lower weight on "easy-to-classify" negative instances

Transformers

[Tong Wu et al. Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets. 2021. arXiv: 2007.09654]

- Class Imbalance
 - distribution balanced loss
 - takes information of label co-occurence into account
 - assign lower weight on "easy-to-classify" negative instances
- Length of text problem
 - training longformers too expensive
 - Bert (512 tokens) information loss?
 - truncation
 - summarization
 - combination

Transformers: TextGuide

Krzysztof Fiok et al. "Text Guide: Improving the Quality of Long Text Classification by a Text Selection Method Based on Feature Importance". IEEE Access 9 (2021)

- Summarize Text based on important Keywords
- Extract features associated to highest coefficents of our BoW model
 - resembles important words
 - e.g. top 5 words "homophobia": gay, faggot, homophobic, fag, queer
- Iterate each text and search for important words
 - If we match a keyword, extract it and its k-Neighbours
 - Add them to the Summary, repeat until Max Input Size is reached
 - e.g. k=1, I_Word="killed", Sentence: "Harry killed Voldemort last year"
 - -> Harry killed Voldemort

Transformers: Max-Pooled Bert Encodings

Results

- Max Pooled Encodings superior
- TextGuide as computationally cheap alternative (~7 times faster)
- SVM/Bert comparably poor performance

Table 1: Validation Scores of the Applied Approaches.

Approach	F1-Macro	F1-Micro
PAN 2023 Baseline	0.2575	0.7274
SVM	0.2256	0.7150
SVM Balanced	0.2768	0.5644
Hierarchical SVM	0.2657	0.7201
Bert	0.1586	0.6754
TextGuide	0.3366	0.7465
PAN 2023 Top Solution	0.3720	0.7360
Max-Pooled Encodings	0.4198	0.7613

