Two types of learning problems:
Supervised problems = first half of course
of course
2) UN-SUPERVISION PROBLEMINI
Supervised Cearning:
DILLO LOGAR SOMMO "I BUILDO " PURANIA DE P
De have some "training" examples we to learn from them
basically a prediction problem!
Want to predict some I from X
have examples
two flavors:
D'Regression: predicting a continuous outcome
Ex predict stack price from economic
Ex. predict stock price from economic indicators
Expendict adult lagid + forms
Ex. predict adult height from
2 "Classification": predicting a categorical
Ex. Will an individual default on a loan given credit score?
loan given credit score? Outerns - O = don't default

Outcome = { O = don't default 1 = will default Ex. Predict disease status from bloodwork outcome = { 0 = no-disease } binary 1 = have disease problems Ex. predict race from genomic data "Multi-class problem" Outcome = }; (II) Unsupervisco problems Don't have "training data". We want to learn/symmarize importent trends in the data. (No specifie quantity me are predicting.) General Setup for Supervised problems We have some variable ? called! outcome, predicted var, dependent the thing we want to predict

the thing we want to predict
we're gony to try to predict Y using
we're gony to fry to predict Y using ofher variables X,, Xp # vars.
called predictors features, covariates, independent variables. The things used to predict Y.
the things used to predict Y.
Predict
Want to come up w/ a function f so that Y ~ f(x,, xp)
Y (V) (V) (V)
Goal of this carse:
(methods) (1) hav do we construct f?
(Evaluation) 2) how do we defensive if I is good?
INJAN STONIA & TOURS INTONEY:
Way superiord problems work: We will use training data to construct of

Statistical Learning
Assure une hour some trains data Size where (y_n, χ_n) for n=1,...,N where $y_n \in S$ and $\chi_n \in \mathbb{R}$ reasonations. (y_n, χ_n) for n=1,...,N reasonations. S= Sc, cz, cz, cz, cx3 for classification
Statistical learning # classes
we think of the train data & (yn, xn)3n=1 ces having some (maybe complicated) joint distribution (prebabilistic model) We vert to construt some f, to du this we first construct a measure of "wrongness" Called a Loss function L. F. > R So that some potentials space of possible is L(f) en han good a job f does i.e. Nan close is f(x,,..,x,e)

ideally we wald bet
ideally we wald let Risk
(x) f = aymin \(\mathbb{E}[L(f)] \) \(\text{expected loss} \) \(\text{Risk uninimization} \)
we offen dat know the foint dist of training data exacety. So instead we lot we only have train data
= f=argmin L Z L(f) (empirical risk minimization)
Linear Regression:
(1) classic method (well-studied)
(2) Simple (this is good)
3) can be powerful
4) basis for mong offer methods we want f. Regression assumes
Se Bur estimato
We want f. Regression assumes
$Y = f(X_1, \dots, X_p) = \beta_0 + \sum_{j=1}^p \beta_j X_j$
$Y = f(X_1,, X_p) = \beta_0 + \sum_{j=1}^p \beta_j X_j$ the includes the a linear relation by model by the Y and Xs
If we let $X = (1, X_1,, X_p) \in \mathbb{R}^{p+1}$

If we let $X = (1, X_1, ..., X_p) \in \mathbb{R}$ and $\beta = (\beta_0, \beta_1, ..., \beta_p) \in \mathbb{R}$ the we can simply write the β s assoc. $Y = X \beta e$ We say regression is linear b/c f is linear in BS (linear = inner product) LR: makes simplifyir assumption Navely: linearty F could be infinite climensland (intractible) F ~ p+1 (we aly need to team pt (Bs) To deterne f une med $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ so me form a loss function han sood and then

han 8009 and then B = argunin L(B) Subsequently, $\hat{f}(x) = X^T \beta$ Praeticaly: empiral risk to minnize $L(\beta) = \sum_{n=1}^{N} (y_n - \beta_0 - \sum_{j=1}^{p} \beta_j X_{nj})^2$ If we let X be our "desyn " matrix then our empircul risk to minimize is L(B)= 11y-XB11² note this takes the correct form. turns out (Calc III from hell) 2 - /VTV)VTII

Lecture Notes Page

