Fitting

Machine Learning with R Basel R Bootcamp

May 2019

Fitting

Models are actually **families of models**, with every parameter combination specifying a different model.

To fit a model means to **identify** from the family of models the specific model that fits the data best.

CURVE-FITTING METHODS AND THE MESSAGES THEY SEND

adapted from explainxkcd.com

Which of these models is better? Why?

Which of these models is better? Why?

Loss function

Possible **the most important concept** in statistics and machine learning.

The loss function defines some **summary of the** errors committed by the model.

$$Loss = f(Error)$$

Two purposes

Purpose	Description
Fitting	Find parameters that minimize loss function.
Evaluation	Calculate loss function for fitted model.

5/29

Regression

Decision Trees

Random Forests

Regression

In **regression**, the criterion Y is modeled as the sum of features X_1, X_2, \ldots times weights β_1, β_2, \ldots plus β_0 the so-called the intercept.

$$\hat{Y}=eta_0+eta_1 imes X_1+eta_2 imes X2+\dots$$

The weight eta_i indiciates the **amount of change** in \hat{Y} for a change of 1 in X_i .

Ceteris paribus, the more extreme β_i , the more important X_i for the prediction of Y (Note: the scale of X_i matters too!).

If $\beta_i=0$, then X_i does not help predicting Y

Regression

In **regression**, the criterion Y is modeled as the sum of features X_1, X_2, \ldots times weights β_1, β_2, \ldots plus β_0 the so-called the intercept.

$$\hat{Y}=eta_0+eta_1 imes X_1+eta_2 imes X2+\ldots$$

The weight eta_i indiciates the **amount of change** in \hat{Y} for a change of 1 in X_i .

Ceteris paribus, the more extreme β_i , the more important X_i for the prediction of Y (Note: the scale of X_i matters too!).

If $eta_i=0$, then X_i does not help predicting Y

•	Sales [‡]	CompPrice [‡]	Income [‡]	Advertising [‡]
1	9.50	138	73	11
2	11.22	111	48	16
3	10.06	113	35	10
4	7.40	117	100	4
5	4.15	141	64	3

$$\hat{Y} = 3.88 + \\ .015 * CompPrice + \\ .014 * Income + \\ .111 * Advertising$$

Regression loss

Mean Squared Error (MSE)

Average squared distance between predictions and true values?

$$MSE = rac{1}{n} \sum_{i \in 1,...,n} (Y_i - \hat{Y_i})^2$$

Mean Absolute Error (MAE)

Average absolute distance between predictions and true values?

$$MAE = rac{1}{n} \sum_{i \in 1,...,n} \lvert Y_i - \hat{Y_i}
vert$$

Fitting

There are two fundamentally different ways to find the set of parameters that minimizes loss.

Analytically

In rare cases, the parameters can be directly **calculated**, e.g., using the *normal equation*:

$$=(\ ^{T}\)^{-1}$$

Numerically

In most cases, parameters need to be found using a directed trial and error, e.g., gradient descent:

$$_{n+1}=~_{n}+\gamma
abla F(~_{n})$$

adapted from me.me

10/29

Fitting

There are two fundamentally different ways to find the set of parameters that minimizes loss.

Analytically

In rare cases, the parameters can be directly **calculated**, e.g., using the *normal equation*:

$$=(\ ^T \)^{-1} \ ^T$$

Numerically

In most cases, parameters need to be found using a directed trial and error, e.g., gradient descent:

$$_{n+1} = _{n} + \gamma
abla F(_{n})$$

adapted from dunglai.github.io

adapted from dunglai.github.io

2 types of supervised problems

There are two types of supervised learning problems that can often be approached using the same model.

Regression

Regression problems involve the prediction of a quantitative feature

E.g., predicting the cholesterol level as a function of age.

Classification

Classification problems involve the **prediction of a** categorical feature.

E.g., predicting the type of chest pain as a function of age.

Logistic regression

In logistic regression, the class criterion $Y \in (0,1)$ is modeled also as the sum of feature times weights, but with the prediction being transformed using a logistic link function:

$$\hat{Y} = Logistic(eta_0 + eta_1 imes X_1 + \dots)$$

The logistic function maps predictions to the range of 0 and 1, the two class values.

$$Logistic(x) = rac{1}{1 + exp(-x)}$$

Logistic regression

In **logistic regression**, the class criterion $Y \in (0,1)$ is modeled also as the **sum of feature times** weights, but with the prediction being transformed using a logistic link function:

$$\hat{Y} = Logistic(eta_0 + eta_1 imes X_1 + \dots)$$

The logistic function maps predictions to the range of 0 and 1, the two class values.

$$Logistic(x) = rac{1}{1 + exp(-x)}$$

Classification loss - two ways

Distance

Logloss is **used to fit the parameters**, alternative distance measures are MSE and MAE.

$$LogLoss = -rac{1}{n}\sum_{i}^{n}(log(\hat{y})y + log(1-\hat{y})(1-y))$$

$$MSE = rac{1}{n}\sum_{i}^{n}(y-\hat{y})^2, \; MAE = rac{1}{n}\sum_{i}^{n}|y-\hat{y}|$$

Overlap

Does the predicted class match the actual class. Often preferred for ease of interpretation.

$$Loss_{01} = rac{1}{n} \sum_{i}^{n} I(y
eq \lfloor \hat{y}
ceil)$$

Confusion matrix

The confusion matrix tabulates prediction matches and mismatches as a function of the true class.

The confusion matrix permits specification of a number of helpful performance metrics.

Confusion matrix

$$\hat{\mathbf{y}} = 1 \qquad \qquad \hat{\mathbf{y}} = 0$$

y = 1 True positive (TP) False negative (FN)

y = 0 False positive (FP) True negative (TN)

Accuracy: Of all cases, what percent of predictions are correct?

$$Acc. = rac{TP + TN}{TP + TN + FN + FP} = 1 - Loss_{01}$$

Sensitivity: Of the truly Positive cases, what percent of predictions are correct?

$$Sensitivity = rac{TP}{TP + FN}$$

Specificity: Of the truly Negative cases, what percent of predictions are correct?

$$Specificity = rac{TN}{TN + FP}$$

Confusion matrix

The confusion matrix tabulates prediction matches and mismatches as a function of the true class.

The confusion matrix permits specification of a number of helpful performance metrics.

Confusion matrix

Accuracy: Of all cases, what percent of predictions are correct?

$$Acc. = rac{TP + TN}{TP + TN + FN + FP} = 1 - Loss_{01}$$

Sensitivity: Of the truly Positive cases, what percent of predictions are correct?

$$Sensitivity = rac{TP}{TP + FN}$$

Specificity: Of the truly Negative cases, what percent of predictions are correct?

$$Specificity = rac{TN}{TN + FP}$$

Let's fit regression models with caret!

18 / 29

caret

caret's key fitting functions

Function	Description
trainControl()	Choose settings for how fitting should be carried out.
train()	Specify the model and find *best* parameters.
postResample()	Evaluate model performance (fitting or prediction) for regression.
confusionMatrix()	Evaluate model performance (fitting or prediction) for classification.

```
# Step 1: Define control parameters
# trainControl()
ctrl <- trainControl(...)</pre>
# Step 2: Train and explore model
# train()
mod <- train(...)</pre>
summary(mod)
mod$finalModel # see final model
# Step 3: Assess fit
# predict(), postResample(), fon
fit <- predict(mod)</pre>
postResample(fit, truth)
confusionMatrix(fit, truth)
```

trainControl()

trainControl() controls how caret fits an ML model.

For now, set method = "none" to keep things simple. More in the session on **optimization**.

```
# Fit the model without any
# advanced parameter tuning methods
ctrl <- trainControl(method = "none")</pre>
```

?trainControl

trainControl {caret}

R Documentation

Control parameters for train

Description

Control the computational nuances of the train function

Usage

```
trainControl(method = "boot", number = ifelse(grepl("cv", method), 10, 25),
  repeats = ifelse(grepl("[d_]cv\$", method), 1, NA), p = 0.75,
  search = "grid", initialWindow = NULL, horizon = 1,
  fixedWindow = TRUE, skip = 0, verboseIter = FALSE, returnData = TRUE,
  returnResamp = "final", savePredictions = FALSE, classProbs = FALSE,
  summaryFunction = defaultSummary, selectionFunction = "best",
  preProcOptions = list(thresh = 0.95, ICAcomp = 3, k = 5, freqCut = 95/5,
  uniqueCut = 10, cutoff = 0.9), sampling = NULL, index = NULL,
  indexOut = NULL, indexFinal = NULL, timingSamps = 0,
  predictionBounds = rep(FALSE, 2), seeds = NA, adaptive = list(min = 5,
  alpha = 0.05, method = "gls", complete = TRUE), trim = FALSE,
  allowParallel = TRUE)
```

Arguments

method

The resampling method: "boot", "boot632", "optimism_boot", "boot_all", "cv", "repeatedcv", "LOOCV", "LGOCV" (for repeated training/test splits), "none" (only fits one model to the entire training set), "oob" (only for random forest, bagged trees, bagged earth, bagged flexible discriminant analysis, or conditional tree forest models), timeslice, "adaptive_cv", "adaptive_boot" or "adaptive_LGOCV"

number

Either the number of folds or number of resampling iterations

train() is the fitting workhorse of caret, offering you 200+ models just by changing the **method** argument!

train()'s key arguments

Argument	Description
form	Formula specifying features and criterion.
data	Training data.
method()	The model (algorithm).
trControl()	Control parameters for fitting.
<pre>tuneGrid(), preProcess()</pre>	Cool stuff for later.

```
# Fit a regression model predicting Price
income_mod <-</pre>
  train(form = income ~ ., # Formula
        data = baselers, # Training data
       method = "glm", # Regression
       trControl = ctrl) # Control Param's
income_mod
```

Generalized Linear Model

1000 samples 19 predictor

No pre-processing Resampling: None

train() is the fitting workhorse of caret, offering you 200+ models just by changing the **method** argument!

train()'s key arguments

Argument	Description
form	Formula specifying features and criterion.
data	Training data.
method()	The model (algorithm).
trControl()	Control parameters for fitting.
tuneGrid(), preProcess()	Cool stuff for later.

```
# Fit a random forest predicting Price
income_mod <-</pre>
  train(form = income ~ .,# Formula
        data = baselers, # Training data
        method = "rf", # Random Forest
        trControl = ctrl) # Control Param's
income_mod
```

Random Forest

1000 samples 19 predictor

No pre-processing Resampling: None

train() is the fitting workhorse of caret, offering you 200+ models just by changing the **method** argument!

Find all 200+ models here.

6 Available Models

The models below are available in train. The code behind these protocols can be obtained using the function getModelInfo or by going to the github repository.

The criterion must be the right type:

numeric criterion = Regression factor criterion = Classification!

```
# A tibble: 5 x 5
 Default Age Gender Cards Education
   <dbl> <dbl> <dbl> <dbl>
                             <dbl>
          45 M
                               11
      1 36 F
                               14
      0 76 F
                               12
     1 25 M
                               17
           36 F
                               12
```

```
# Will be a regression task
loan_mod <- train(form = Default ~ .,</pre>
                  data = Loans,
                  method = "glm",
                  trControl = ctrl)
# Will be a classification task
load_mod <- train(form = factor(Default) ~ .,</pre>
                  data = Loans,
                  method = "glm",
                  trControl = ctrl)
```

.\$finalModel

The train() function returns a list with a key object called finalModel - this is your final machine learning model!

Access the model with mod\$finalModel and **explore** the object with generic functions:

Function	Description
summary()	Overview of the most important results.
names()	See all named elements you can access with \$.

```
# Create a regression object
income_mod <-</pre>
  train(form = income ~ age + height,
        data = baselers) # Training data
# Look at all named outputs
names(income_mod$finalModel)
                                    "fitted.values"
[1] "coefficients" "residuals"
                                    "rank"
[4] "effects"
 [ reached getOption("max.print") -- omitted 28 entries ]
# Access specific outputs
income_mod$finalModel$coefficients
(Intercept)
                             height
                    age
   177.084
               151.786
                              3.466
```

predict()

The predict() function produces predictions from a model. Simply put model object as the first argument.

```
# Get fitted values
glm_fits <- predict(object = income_mod)</pre>
glm_fits[1:8]
```

5 5508 6960 6982 8645 5325 10648 8663 4592

postResample()

The postResample() function gives a simple summary of a models' performance in a regression task. Simply put the predicted values and the true values inside the function.

```
# evaluate
postResample(glm_fits,
             baselers$income)
```

RMSE Rsquared MAE 0.821 937.113 1173.079

confusionMatrix()

The confusionMatrix() does the same for a models' performance in a classification task. Simply put the predicted values and the true values inside the function.

```
# eyecor to factor
baselers$eyecor <- factor(baselers$eyecor)</pre>
# run glm model for classification
eyecor_mod <-
 train(form = eyecor ~ age + height,
        data = baselers,
        method = "glm",
        trControl = ctrl)
# evaluate
confusionMatrix(predict(eyecor_mod),
                baselers$eyecor)
```

```
Confusion Matrix and Statistics
```

```
Reference
Prediction no yes
            0 0
      no
      yes 353 647
```

Accuracy: 0.647

95% CI: (0.616, 0.677)

No Information Rate: 0.647 P-Value [Acc > NIR] : 0.514

Kappa: 0

Mcnemar's Test P-Value : <2e-16

Sensitivity: 0.000 Specificity: 1.000 Pos Pred Value : NaN Neg Pred Value: 0.647 Prevalence: 0.353 Detection Rate: 0.000 Detection Prevalence: 0.000

Balanced Accuracy: 0.500

'Positive' Class : no

Practical