Some noteworthy alternating trilinear forms

Jan Draisma* and Ron Shaw

Abstract

Given an alternating trilinear form $T \in \text{Alt}(\times^3 V_n)$ on $V_n = V(n, \mathbb{F})$ let \mathcal{L}_T denote the set of T-singular lines in $\text{PG}(n-1) = \mathbb{P}V_n$, consisting that is of those lines $\langle a, b \rangle$ of PG(n-1) such that T(a, b, x) = 0 for all $x \in V_n$. Amongst the immense profusion of different kinds of T we single out a few which we deem noteworthy by virtue of the special nature of their set \mathcal{L}_T .

Keywords: trivector; alternating form; singular line; division algebra; Desarquesian line-spread

MSC 2010: 15A69, 17A35, 51E23

1 Introduction

We will deal with a finite-dimensional vector space $V_n = V(n, \mathbb{F})$ and the associated projective space $\operatorname{PG}(n-1,\mathbb{F}) = \mathbb{P}V_n$. The $\binom{n}{2}$ -dimensional space $\operatorname{Alt}(\times^2 V_n)$ consisting of alternating bilinear forms on V_n is of course very well understood. If n = 2m, or if n = 2m+1, then the nonzero elements $B \in \operatorname{Alt}(\times^2 V_n)$ fall into $m \operatorname{GL}(n,\mathbb{F})$ -orbits $\{\Omega_k\}_{k=1,2,\dots m}$, where Ω_k consists of those B which have rank 2k. For a given $B \in \operatorname{Alt}(\times^2 V_n)$ a point $\langle a \rangle \in \mathbb{P}V_n$ is said to be (B-)singular whenever B(a,x) = 0 holds for all $x \in V_n$. Consequently if n is odd then B-singular points exist for any B, while if n = 2m is even then only when B is on the orbit Ω_m do B-singular points not exist.

In the present paper we consider instead the $\binom{n}{3}$ -dimensional space $\mathrm{Alt}(\times^3 V_n)$ consisting of alternating trilinear forms on V_n . In contrast with $\mathrm{Alt}(\times^2 V_n)$ the mathematics of the space $\mathrm{Alt}(\times^3 V_n)$ is much more complicated (and interesting!). In particular the orbit structure of $\mathrm{Alt}(\times^3 V_n)$ is only known in certain low-dimensional cases. Alternating trilinear forms have been classified in dimension $n \leq 7$ over an arbitrary field, see [3, 11], and also in dimension 8 over $\mathbb C$ and $\mathbb R$, see [4, 6]. Over $\mathbb C$ there are 23 orbits in dimension n = 8, but in dimension n = 9 the number of orbits is known to be infinite.

^{*}Jan Draisma is supported by a Vidi grant from the Netherlands Organisation for Scientific Research (NWO)

Over a finite field GF(q) there are of course, in any finite dimension n, "only" a finite number of GL(n,q)-orbits. But in fact the number of orbits increases extremely rapidly with increasing n. To demonstrate this it will suffice to use a crude upper bound on the order of the group GL(n,q), namely $|GL(n,q)| \ll q^{n^2}$, which holds on account of the inclusion $GL(V_n) \subset L(V_n, V_n)$. Since $\wedge^3 V_{n,q}$ is of size $q^{n(n-1)(n-2)/6}$ it follows that $|\wedge^3 V_{n,q}|/|GL(n,q)| \gg q^{n(n^2-9n+2)/6}$. In particular for n=10 we have $|\wedge^3 V_{10}|/|GL(10,q)| \gg q^{20}$, and so even on the ridiculous assumption that the stabilizer group of every $T \in \wedge^3 V_{10}$ is the whole of GL(10,q) the number of GL(10,q)-orbits would be substantially more than q^{20} . And for n=20 the number of GL(20,q)-orbits in $\wedge^3 V_{20}$ is much more than q^{740} .

The violence of the combinatorial explosion which takes place for n>8 is really quite startling! This occurs even over the smallest fields. For on setting $N(n,q)=|\wedge^3 V_{n,q}|/|\operatorname{GL}(n,q)|$ we find for q=2 the following approximate values

n =	5	6	7	8	9	10	11	
N(n,2)	0.00010	0.000053	0.00021	0.0135	27.6	3.6×10^6	6.1×10^{13}	١.

Faced with this great multitude of orbits for alternating trilinear forms one naturally hopes that there are a few orbits which are singled out by having some special property and which thus deserve further attention. In the case of alternating bilinear forms the outstanding $GL(n, \mathbb{F})$ -orbit occurs of course in even dimension n=2m and consists of those $B \in Alt(\times^2 V_n)$ which have no singular points, the stabilizer groups being $\cong Sp(2m, \mathbb{F})$. Now in the case of $T \in Alt(\times^3 V_n)$ one may define a point $\langle a \rangle \in \mathbb{P}V_n$ to be T-singular whenever T(a, x, y) = 0 holds for all $x, y \in V_n$. Also one may define a subspace rad T of V_n by

$$rad T = \{a \in V_n : T(a, x, y) = 0 \text{ for all } x, y \in V_n\}$$

$$\tag{1}$$

and call T non-degenerate whenever rad $T=\{0\}$. But, just as in the bilinear case, there is not much interest in degenerate T, since one naturally switches one's attention to the non-degenerate trilinear form induced in the lower-dimensional quotient space $V_n/\operatorname{rad} T$. However of crucial importance in the case of $T\in\operatorname{Alt}(\times^3V_n)$ are those projective lines $\langle a,b\rangle$ in $\operatorname{PG}(n-1)=\mathbb{P}V_n$ which are T-singular, satisfying that is

$$T(a,b,x) = 0$$
 for all $x \in V_n$. (2)

For a given $T \in \text{Alt}(\times^3 V_n)$ we will denote by \mathcal{L}_T the set consisting of all the T-singular lines in $\text{PG}(n-1,\mathbb{F}) = \mathbb{P}V_n$.

Remark 1 The space $Alt(\times^3 V_n)$ of alternating 3-forms is naturally isomorphic to the space $\wedge^3 V_n^*$ of dual trivectors, and sometimes statements concerning an element $T \in Alt(\times^3 V_n)$ will be phrased in terms of its isomorphic image $t \in Alt(\times^3 V_n)$

 $\wedge^3 V_n^*$. If $\{f_i\}_{1 \leq i \leq n}$ is the basis for V_n^* dual to the basis $\{e_i\}_{1 \leq i \leq n}$ for V_n then, on writing $f_{ijk} := f_i \wedge f_j \wedge f_k$, we have

$$t = \sum_{1 \le i \le j \le k \le n} c_{ijk} f_{ijk}, \quad \text{where } c_{ijk} := T(e_i, e_j, e_k). \tag{3}$$

Equivalently expressed, each $t \in \wedge^3 V_n^*$ gives rise to an element $T \in \text{Alt}(\times^3 V_n)$ by way of

$$T(x, y, z) = \langle t | x \land y \land z \rangle, \tag{4}$$

where $\langle \cdot | \cdot \rangle$ is the standard determinantal pairing of $\wedge^3 V_n^*$ with $\wedge^3 V_n$ given by $\langle f_1 \wedge f_2 \wedge f_3 | v_1 \wedge v_2 \wedge v_3 \rangle = \det[f_i(v_j)].$

2 Alternating 3-forms having no singular lines?

A question immediately arises: at least for some (n, \mathbb{F}) , does there exist $T \in \text{Alt}(\times^3 V_n)$ such that \mathcal{L}_T is empty?

Well, for any field \mathbb{F} , certainly not in even dimension n=2m. For given $T\in \mathrm{Alt}(\times^3 V_{2m})$ choose any direct sum decomposition $V_{2m}=\prec a\succ \oplus V_{2m-1}$ and consider the element $B_a\in \mathrm{Alt}(\times^2 V_{2m-1})$ defined by $B_a(x,y)=T(a,x,y)$. Since the dimension of V_{2m-1} is odd there exists at least one B_a -singular point $\langle b \rangle$, whence $\langle a,b \rangle$ is a T-singular line. It follows that through each point $\langle a \rangle \in \mathbb{P}V_{2m}$ there passes at least one T-singular line.

Concerning odd dimension n, certainly a non-zero $T \in Alt(\times^3 V_n)$ has no T-singular lines in the special case n = 3. But for n > 3 if \mathbb{F} is quasi-algebraically closed then it is known that T-singular lines always exist: see [5, Theorem 1.1].

An important field not covered in this last statement is the real field \mathbb{R} . And in the case of a real 7-dimensional space we have an affirmative answer to our query: if $V_7 = V(7, \mathbb{R})$ there exists $T \in \text{Alt}(\times^3 V_7)$ such that \mathcal{L}_T is empty. To see this, recall that in a real 7-dimensional Euclidean space V_7 there exist, see [2], bilinear vector cross products $a \times b$ which satisfy (i) $a \times b.a = 0 = a \times b.b$ and (ii) $a \times b.a \times b = (a.a)(b.b) - (a.b)^2$. Then upon defining $T(a,b,c) = a \times b,c$ it follows that $T \in \text{Alt}(\times^3 V_7)$; moreover, since, by (ii), $a \times b \neq 0$ for linearly independent a, b, we see that \mathcal{L}_T is empty. One such T has for its isomorphic image the dual trivector t given by

$$t = f_{124} + f_{235} + f_{346} + f_{457} + f_{561} + f_{672} + f_{713}, \tag{5}$$

where the presence of $+f_{ijk}$ in this expression for t goes along with the cross product relation $e_i \times e_j = +e_k$.

As is well known, the existence in real seven dimensions of these vector cross products is related to the exceptional existence of the real division algebra of the (non-split) octonions. The next theorem shows that the real dimension n=7 is also exceptional since T-singular lines always exist for $T \in \text{Alt}(\times^3 V_n)$ in any other real dimension n>3.

Theorem 2 Except when $n \in \{3,7\}$ every alternating trilinear form on a real vector space $V_n, n > 2$, possesses singular lines.

Proof. Suppose that $T \in \text{Alt}(\times^3 V_n)$ is such that \mathcal{L}_T is empty. Set $V_{n+1} = \mathbb{R} \oplus V_n$, and equip V_n with O(n)-geometry by making a(ny) choice x.y of a positive definite scalar product on V_n . Extend this to a positive definite scalar product a.b on V_{n+1} by defining

$$(\alpha, x).(\beta, y) = \alpha\beta + x.y , \quad \alpha, \beta \in \mathbb{R}, \ x, y \in V_n.$$
 (6)

Make V_n into a real algebra by defining the algebra product of x and y to be that element $x \times y \in V_n$ such that

$$x \times y.z = T(x, y, z),$$
 for all $z \in V_n$. (7)

Since T is alternating it follows that

$$x \times y = -y \times x \in \prec x, y \succ^{\perp}. \tag{8}$$

Further, since we are supposing that there are no T-singular lines, if x and y are linearly independent then

 $x \times y$ is a *nonzero* element of V_n which is perpendicular to the plane $\langle x, y \rangle$.

We now make V_{n+1} into a real algebra \mathcal{A} by laying down that $1 \in \mathbb{R}$ is an identity element and that the \mathcal{A} -product of $x, y \in V_n$ is

$$xy = -x \cdot y + x \times y, \qquad x, y \in V_n. \tag{10}$$

It follows from (8)-(10) that the algebra \mathcal{A} has no zero divisors. Consequently, see [10, Section II.2], \mathcal{A} is a division algebra over \mathbb{R} . The theorem now follows since real division algebras exist only in dimensions 1, 2, 4, 8: see [1], [7].

Remark 3 In [5, Theorem 3.2] it was proved that, over any field \mathbb{F} , the union of all lines $L \in \mathcal{L}_T$, $T \in \text{Alt}(\times^3 V_{2k+1})$, is either the whole of V_{2k+1} or is a hypersurface in PG(2k) with equation $f_T(x) = 0$, $x \in V_{2k+1}$, where f_T is a certain homogeneous polynomial of degree k-1. In the case of a space V_T the polynomial f_T has degree 2, and if T has trivector t as in (5) then (up to an overall sign) one finds that

$$f_T(x) = \sum_{i=1}^{7} (x_i)^2.$$
 (11)

In the case $\mathbb{F} = \mathbb{R}$ it follows that $f_T(x) \neq 0$ for all $x \neq 0$. Thus we have obtained another proof that \mathcal{L}_T is empty if t is as in (5) and $V_7 = V(7, \mathbb{R})$.

Remark 4 It is of some interest to consider t as in (5) in the cases when $V_7 = V(7, q)$.

- (i) First suppose that $q = 2^h$ is even. In which case $f_T(x) = (\sum_{i=1}^7 x_i)^2$, whence the union of all the T-singular lines is the hyperplane with equation $\sum_{i=1}^7 x_i = 0$.
- (ii) If q is odd then the union of all the T-singular lines is the parabolic quadric \mathcal{P}_{6} in PG(6,2) having equation $\sum_{i=1}^{7} (x_{i})^{2} = 0$.

That the cases of even q and odd q are quite different is highlighted by the fact that the alternating trilinear form given by $t = f_{124} + f_{235} + f_{346} + f_{457} + f_{561} + f_{672} + f_{713}$ can be seen to belong to the same GL(7,q)-orbit as f_6 in [3, Table 1] if q is even, but to belong to the same GL(7,q)-orbit as f_9 in [3, Table 1] if q is odd. In particular, upon using Mathematica to compute the quadratic form f_T for all orbit representatives in [3, Table 1], we found that only f_9 gives rise to a nonsingular quadratic form.

3 Alternating 3-forms yielding spreads in $\mathbb{P}V_{2m}$?

As noted in the preceding section, if T is any alternating 3-form on an evendimensional space V_{2m} , over any field \mathbb{F} , then through each point $\langle a \rangle \in \mathbb{P}V_{2m}$ there passes at least one T-singular line. In our attempt to find alternating 3forms T whose set \mathcal{L}_T of singular lines is in some manner special, perhaps there exists $T \in \text{Alt}(\times^3 V_{2m})$ such that through each point $\langle a \rangle \in \mathbb{P}V_{2m}$ there passes precisely one T-singular line? That is, for some $T \in \text{Alt}(\times^3 V_{2m})$, perhaps \mathcal{L}_T is a spread of lines in $\mathbb{P}V_{2m}$? Certainly, in finite geometry circles, line-spreads in PG(2m-1,q) are of continuing interest. They also exist in great profusion, even in low dimension; in particular in PG(5,2) there exist, see [9], 131,044 inequivalent line-spreads!

In the present section we will show that in the case of $V_6 = V(6,q)$ there exists $T \in \text{Alt}(\times^3 V_6)$ such that \mathcal{L}_T is a line-spread in PG(5,q). To this end consider a space $V(3,q^2)$ with basis $\langle e_1,e_2,e_3 \rangle$. Choose any element $\rho \in GF(q^2) \backslash GF(q)$ and define

$$e_4 = \rho e_1, \quad e_5 = \rho e_2, \quad e_6 = \rho e_3.$$
 (12)

Then we may view $V(3, q^2)$ as a 6-dimensional vector space over GF(q):

$$V_6 = V(6, q) = \langle e_1, e_2, e_3, e_4, e_5, e_6 \rangle.$$
 (13)

The $q^4 + q^2 + 1$ points $\langle a \rangle$ of $\operatorname{PG}(2, q^2) = \mathbb{P}(V(3, q^2))$ give rise over $\operatorname{GF}(q)$ to a Desarguesian spread \mathcal{L} of $q^4 + q^2 + 1$ lines $\langle a, \rho a \rangle$ in $\operatorname{PG}(5, q) = \mathbb{P}(V(6, q))$. We aim to show that $\mathcal{L} = \mathcal{L}_T$ for some $T \in \operatorname{Alt}(\times^3 V_6)$.

If τ is any element of the 1-dimensional $\mathrm{GF}(q^2)$ -space $\mathrm{Alt}(\times^3 V(3,q^2))$ then we may define an element $T\in\mathrm{Alt}(\times^3 V_6)$ by

$$T(x, y, z) = \text{Tr}(\tau(x, y, z)). \tag{14}$$

Here we use Tr to denote the trace $\operatorname{Tr}_{\mathrm{GF}(q^2)/\mathrm{GF}(q)}$ over the subfield $\mathrm{GF}(q)$ defined, see [8, Section 2.3], by

$$\operatorname{Tr}(\beta) = \beta + \beta^q, \quad \beta \in \operatorname{GF}(q^2).$$
 (15)

(So Tr here is not the absolute trace over the prime subfield GF(p) except if q = p.) Thus defined, Tr is a GF(q)-linear mapping $GF(q^2) \to GF(q)$. whence T is indeed an element of $Alt(\times^3 V_6)$.

Let us fix τ by requiring $\tau(e_1, e_2, e_3) = \beta$ for some choice of nonzero element $\beta \in GF(q^2)$. Upon defining $c_i \in GF(q^2)$ by

$$c_0 = \operatorname{Tr}(\beta), \ c_1 = \operatorname{Tr}(\beta\rho), \ c_2 = \operatorname{Tr}(\beta\rho^2), \ c_3 = \operatorname{Tr}(\beta\rho^3)$$
 (16)

it follows from (12), (14) that t in (3) is given by

$$c_{123} = c_0$$
, $c_{234} = -c_{135} = c_{126} = c_1$, $c_{156} = -c_{246} = c_{345} = c_2$, $c_{456} = c_3$, (17)

with $c_{ijk} = 0$ for other i < j < k. That is

$$t = c_0 t_0 + c_1 t_1 + c_2 t_2 + c_3 t_3, (18)$$

where the trivectors t_0, t_1, t_2, t_3 are defined by

$$t_0 = f_{123}, \ t_1 = f_{234} - f_{135} + f_{126}, \ t_2 = f_{156} - f_{246} + f_{345}, \ t_3 = f_{456}.$$
 (19)

The multiplicative group $GF(q^2)^{\times}$ of the field $GF(q^2)$ is a cyclic group $\langle \zeta \rangle$ generated by an irreducible element $\zeta \in GF(q^2)$ of order $q^2 - 1$: $\zeta^{(q-1)(q+1)} = 1$. The multiplicative group $GF(q)^{\times}$ of the subfield GF(q) is the cyclic group $\langle \xi \rangle$ generated by $\xi = \zeta^{q+1}$, of order q-1. In making a specific choice of the field elements β, ρ in (16), it will help to consider separately the cases of odd q and even q.

3.1 The case of odd q

Suppose that q = 2k + 1 is odd. Then

$$GF(q^2)^{\times} = \langle \zeta \rangle, \text{ where } \zeta^{4k(k+1)} = 1, \zeta^{2k(k+1)} = -1.$$
 (20)

In (12) let us make the following choice of $\rho \notin GF(q)$:

$$\rho = \zeta^{k+1}, \quad \text{and so} \quad \rho^{4k} = 1, \quad \rho^{2k} = -1.$$
(21)

It follows that

$$\operatorname{Tr}(\rho) = \rho(1+\rho^{2k}) = 0, \quad \operatorname{Tr}(\rho^2) = \rho^2(1+\rho^{4k}) = 2\rho^2, \quad \operatorname{Tr}(\rho^3) = \rho^3(1+\rho^{6k}) = 0. \tag{22}$$

Since Tr(1) = 2, if we make the choice $\beta = \frac{1}{2}$ then the trivector t in (18) is

$$t = f_{123} + \mu (f_{156} - f_{246} + f_{345}), \text{ where } \mu = \rho^2.$$
 (23)

Observe that μ is the square of an element ρ of $GF(q^2)$, but that μ is an element of GF(q) which is one of the non-squares in GF(q). By making different choices of the irreducible element ζ in the definition (21) of ρ we can arrange for μ in (23) to be any of the non-square elements in GF(q).

Theorem 5 If $V_6 = V(6, q)$ where q is odd, consider the 3-form $T \in Alt(\times^3 V_6)$ given by the dual trivector

$$t = f_{123} + \mu(f_{156} - f_{246} + f_{345}).$$

Then, provided only that $\mu \in GF(q)$ is chosen to be a non-square, \mathcal{L}_T is a Desarguesian line-spread in PG(5,q).

Proof. Because in (14) we have $\tau(a,\rho a,z)=0$ for all z, the q^4+q^2+1 lines $\langle a,\rho a\rangle$ in PG(5, q) are certainly all T-singular. To complete the proof we need to show that no other lines $\langle a,b\rangle$ in PG(5, q) are T-singular. Suppose to the contrary that $b\notin \langle a,\rho a\rangle$ yet T(a,b,x)=0 for all $x\in V_6$. Now $\tau(Aa,Ab,Ax)=\tau(a,b,x)$ for any $A\in \mathrm{SL}(3,q^2)$. So if $b\notin \langle a,\rho a\rangle$ we can choose $A\in \mathrm{SL}(3,q^2)$ such that $Aa=e_1$, $Ab=e_2$, Since $\mathrm{Tr}(\tau(e_1,e_2,x))\neq 0$ if $x=e_3$ it follows that $T(a,b,x)\neq 0$ for all $x\in V_6$.

3.2 The case of even q

If $q=2^h$ then every element $\mu \in \mathrm{GF}(q)$ is a square and for no choice of μ in (23) is \mathcal{L}_T a spread. For example, if $\mu=1$ then every line in the plane $\langle e_1+e_4,e_2+e_5,e_3+e_6\rangle$ is T-singular. However, as we now demonstrate, \mathcal{L}_T is a line-spread for a different choice of T.

In proving this, in addition to the previous GF(q)-linear mapping $Tr: GF(q^2) \to GF(q)$, we will also make use of the GF(2)-linear mapping $tr: GF(q) \to GF(2)$, where $tr(\mu) \in GF(2)$ is the absolute trace of $\mu \in GF(2^h)$:

$$tr(\mu) = \mu + \mu^2 + \mu^4 + \dots + \mu^{2^{h-1}}.$$
 (24)

Observe that $GF(q) = \mathcal{T}_0 \cup \mathcal{T}_1$ where

$$\mathcal{T}_i := \{ \mu \in GF(q) | \operatorname{tr}(\mu) = i \}, \quad i \in \{0, 1\};$$
 (25)

in particular \mathcal{T}_0 is the kernel of the linear mapping tr, and is a hyperplane in the $\mathrm{GF}(2)$ -space $\mathrm{GF}(q)$. It is easy to see also that $\mathcal{T}_0 = \mathrm{im}\, F$, where F denotes the linear endomorphism of the $\mathrm{GF}(2)$ -space $\mathrm{GF}(q)$ defined by $F(\lambda) = \lambda + \lambda^2$. Consequently \mathcal{T}_1 consists of those $\mu \in \mathrm{GF}(q)$ not expressible as $\mu = \lambda + \lambda^2$ for any $\lambda \in \mathrm{GF}(q)$.

Lemma 6 There exists $\rho \in GF(q^2) \setminus GF(q)$, $q = 2^h$, such that

(i)
$$h \text{ odd}$$
: $\text{Tr}(\rho) = 1$, $\text{Tr}(\rho^2) = 1$, $\text{Tr}(\rho^3) = 0$; (26)

(ii) h even:
$$\operatorname{Tr}(\rho) = 1$$
, $\operatorname{Tr}(\rho^2) = 1$, $\operatorname{Tr}(\rho^3) = \mu$, where $\operatorname{tr}(\mu) = 1$. (27)

Moreover in (ii) we can choose ρ so that μ is any pre-assigned element of \mathcal{T}_1 .

Proof. For any $\zeta \in \operatorname{GF}(q^2) \setminus \operatorname{GF}(q)$ we have $\operatorname{Tr}(\zeta) \neq 0$. So, since $\operatorname{Tr}(\alpha\zeta) = \alpha \operatorname{Tr}(\zeta)$ for $\alpha \in \operatorname{GF}(q)$, $\zeta \in \operatorname{GF}(q^2)$, then $\rho = (\operatorname{Tr}\zeta)^{-1}\zeta$ achieves $\operatorname{Tr}(\rho) = 1$. It then follows that $\operatorname{Tr}(\rho^2) = \rho^2 + \rho^{2q} = (\rho + \rho^q)^2 = 1$. It further follows that $\rho^{3q} = \rho^q \rho^{2q} = (1+\rho)(1+\rho^2)$, whence

$$\mu := \text{Tr}(\rho^3) = \rho^3 + \rho^{3q} = 1 + \rho + \rho^2. \tag{28}$$

Now from $\mu + 1 = \rho + \rho^2$ we obtain

$$\operatorname{tr}(\mu+1) = (\rho+\rho^2) + (\rho^2+\rho^4) + \dots + (\rho^{2^{h-1}} + \rho^{2^h})$$
$$= \rho + \rho^q = \operatorname{Tr}(\rho) = 1. \tag{29}$$

Suppose first that h is odd. Then $\operatorname{tr}(1)=1$ and so $\mu\in\mathcal{T}_0$. Now for any $\alpha\in\operatorname{GF}(q)$ consider $\rho':=\rho+\alpha$. Then $\operatorname{Tr}(\rho')=1$, and hence $\operatorname{Tr}((\rho')^2)=1$. Further if $\mu':=\operatorname{Tr}((\rho')^3)$ then

$$\mu' = \operatorname{Tr}(\rho^3) + \alpha \operatorname{Tr}(\rho^2) + \alpha^2 \operatorname{Tr}(\rho) + \alpha^3 \operatorname{Tr}(1) = \mu + \alpha + \alpha^2, \tag{30}$$

whence $\mu' = 0$ for a suitable choice of α , thus achieving (26).

If instead h is even and so $\mu \in \mathcal{T}_1$, then we see from (30) that we can achieve (27) for any pre-assigned $\mu \in \mathcal{T}_1$.

Theorem 7 If $V_6 = V(6,q)$ where $q = 2^h$ is even, then if h is odd the 3-form $T \in Alt(\times^3 V_6)$ given by the trivector

$$t = f_{234} + f_{135} + f_{126} + f_{156} + f_{246} + f_{345} \tag{31}$$

is such that \mathcal{L}_T is a Desarguesian line-spread in PG(5,q). If h is even then, for any $\mu \in GF(q)$ satisfying $tr(\mu) = 1$, the 3-form $T \in Alt(\times^3V_6)$ given by the trivector

$$t = f_{234} + f_{135} + f_{126} + f_{156} + f_{246} + f_{345} + \mu f_{456}$$
 (32)

is such that \mathcal{L}_T is a Desarguesian line-spread in PG(5, q).

Proof. In (16) choose ρ as in Lemma 6 and choose $\beta = 1$, and so $c_0 = \text{Tr}(1) = 0$. Then we obtain (31) and (32) from (18) (19). The rest of the proof is as in the proof of Theorem 5. \blacksquare

Remark 8 The canonical form (31) was obtained previously in [12], albeit only in the special case q = 2. In [12] two alternative canonical forms were also found, namely t' and t'' as given by

$$t' = f_{156} + f_{246} + f_{345} + f_{123} + f_{456}$$

$$t'' = f_{234} + f_{135} + f_{126} + f_{123} + f_{456} .$$
(33)

These are also alternatives to (31) for any $q=2^h$, h odd. One way to obtain these alternatives is by use of the choice $\rho=\zeta^{(q-1)(q+1)/3}$.in (16). For if h is odd then 3|(q+1) and so $\zeta^{(q+1)/3} \in \mathrm{GF}(q)$, whence $\rho \notin \mathrm{GF}(q)$. Since $\rho^3=1$, we have $\mathrm{Tr}(\rho^2)=\mathrm{Tr}(\rho)$ and $\mathrm{Tr}(\rho^3)=0$. So in (16) the choices $\beta=1$, $\beta=\rho$, $\beta=\rho^2$ give rise respectively to the trivectors t (as in (31)), t', t''.

Remark 9 For even n one might wonder whether \mathcal{L}_T can be a line spread for fields other than finite fields. Indeed, suppose that \mathbb{F} is algebraically closed; is it possible that \mathcal{L}_T is a spread? The T's for which this is the case can be shown to form a Zariski-open subset of $\mathrm{Alt}(\times^3 V_n)$, but this subset may be empty. Indeed, we have performed Gröbner basis calculations which show that for n=4 and n=6 and for algebraically closed \mathbb{F} of characteristic zero there are no trilinear forms T for which \mathcal{L}_T is a spread. For n=8 our computational approach is not feasible, and new ideas will be needed.

4 Some other noteworthy alternating 3-forms

So far we have been looking at alternating 3-forms T for which \mathcal{L}_T is as small a set as possible. In contrast we now give some examples of interesting alternating 3-forms $T \in \text{Alt}(\times^3 V_n)$ which are non-degenerate yet for which some sizeable subspace V_r of V_n is such that every line in $\mathbb{P}V_r$ is T-singular. Let us term such a subspace V_r totally T-singular. Our first example is in dimension n=6, where

$$t = f_{156} + f_{246} + f_{345} \tag{34}$$

is the trivector of a non-degenerate $T \in \text{Alt}(\times^3 V_6)$ for which, for any field \mathbb{F} , the 3-space $V_3 = \prec e_1, e_2, e_3 \succ$ is totally T-singular. It is easy to check that no subspace of dimension > 3 is totally singular. A second example is in dimension n = 10, where, writing x = 10,

$$t = f_{17x} + f_{28x} + f_{39x} + f_{489} + f_{579} + f_{678}$$
(35)

is the trivector of a non-degenerate $T \in \text{Alt}(\times^3 V_{10})$ for which the 6-space $V_6 = \langle e_1, \dots, e_6 \rangle$ is totally T-singular.

Theorem 10 If $n = \frac{1}{2}s(s+1)$, s > 2, then, for any field \mathbb{F} , there exists a single $\mathrm{GL}(n,\mathbb{F})$ -orbit, say Ω , of non-degenerate alternating 3-forms T on V_n with the property that there is a unique totally T-singular subspace V_r of V_n of dimension $r = \frac{1}{2}s(s-1)$.

Proof. See [5, Section 4].

Remark 11 In dimension n=15 the subspace V_r in the theorem is of dimension 10. By use of the crude inequality $|\operatorname{GL}(n,q)| \ll q^{n^2}$, as in Section 1, we get the even cruder lower bound q^{230} for the number of $\operatorname{GL}(15,q)$ orbits of alternating 3-forms T on V(15,q). Clearly there is no possibility of studying all of these zillions of orbits! But perhaps the orbit Ω does deserve further study?

References

- [1] Bott R., Milnor, J.W.: On the parallelizability of the spheres. Bull. Am. Math. Soc. **64**, 87-89 (1958)
- [2] Brown, R.B., Gray, A.: Vector cross products. Comment. Math. Helv. 42, 222–236 (1967)
- [3] Cohen, A.M., Helminck, A.G.: Trilinear alternating forms on a vector space of dimension 7. Commun. Algebra 16, 1–25 (1988)
- [4] Djoković, D.Ž.: Classification of trivectors of an eight-dimensional real vector space. Linear Multilinear Algebra 13, 3-39 (1983)
- [5] Draisma, J., Shaw, R.: Singular lines of trilinear forms. Linear Algebra Appl. 433, 690-697 (2010)
- [6] Gurevich, G.B.: Classification des trivecteurs ayant le rang huit. C. R. (Dokl.) Acad. Sci. URSS, 2, 353-356 (1935)
- [7] Kervaire, M.A.: Non-parallelizability of the n-sphere for n > 7. Proc. Nat. Acad. Sci. USA 44, 280-283 (1958)
- [8] Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press (1994)
- [9] Mateva, Z.T., Topalova, S.I.: Line spreads of PG(5, 2). J. Combin. Des. 17, 90–102 (2009)
- [10] Schafer, R.D.: An introduction to nonassociative algebras. Academic Press, New York-London (1966)
- [11] Schouten, J.A.: Klassifizierung der alternierenden Grössen dritten Grades in sieben Dimensionen. Rend. Circ. Mat. Palermo 55, 137–156 (1931)
- [12] Shaw, R.: Trivectors yielding spreads in PG(5,2). J. Geom. 96, 149-165 (2010)

Jan Draisma

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven

(also CWI Amsterdam)

The Netherlands

e-mail: j.draisma@tue.nl

Ron Shaw

Centre for Mathematics

University of Hull

 $Hull\ HU6\ 7RX$

United Kingdom

e-mail: r.shaw@hull.ac.uk