```
import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          import statsmodels.api as sm
          from scipy import stats
In [90]: data = pd.read_csv(r'C:\Users\HP\Desktop\Advance Data Analyst\4. The Power of Stats\2. Module 2\5. Prob distribution with python\Files\modified_c4_epa_air_quality.csv')
             date_local state_name county_name city_name
                                                                                    local_site_name parameter_name units_of_measure aqi_log
          0 2018-01-01
                                                                                        BUCKEYE Carbon monoxide
                                                                                                                  Parts per million 2.079442
                            Arizona
                                       Maricopa
                                                  Buckeye
          1 2018-01-01
                              Ohio
                                        Belmont Shadyside
                                                                                        Shadyside Carbon monoxide
                                                                                                                  Parts per million 1.791759
                                         Teton Not in a city Yellowstone National Park - Old Faithful Snow ... Carbon monoxide
                                                                                                                  Parts per million 1.098612
          2 2018-01-01
                          Wyoming
                                    Philadelphia Philadelphia
          3 2018-01-01 Pennsylvania
                                                                             North East Waste (NEW) Carbon monoxide
                                                                                                                  Parts per million 1.386294
          4 2018-01-01
                                          Polk Des Moines
                                                                                      CARPENTER Carbon monoxide
                                                                                                                  Parts per million 1.386294
          5 2018-01-01
                                       Honolulu Not in a city
                                                                                           Kapolei Carbon monoxide Parts per million 2.708050
                            Hawaii
          6 2018-01-01
                            Hawaii
                                       Honolulu Not in a city
                                                                                           Kapolei Carbon monoxide Parts per million 1.098612
          7 2018-01-01 Pennsylvania
                                                      Erie
                                           Erie
                                                                                             NaN Carbon monoxide
                                                                                                                 Parts per million 1.098612
          8 2018-01-01
                                                  Honolulu
                                                                                          Honolulu Carbon monoxide
                                                                                                                  Parts per million 1.791759
                            Hawaii
                                       Honolulu
          9 2018-01-01
                                                                         Fort Collins - CSU - S. Mason Carbon monoxide
                          Colorado
                                        Larimer Fort Collins
                                                                                                                  Parts per million 1.945910
In [92]: # Get descriptive stats.
          data.describe()
                    aqi_log
          count 260.000000
                  1.766921
                  0.714716
            std
                  0.000000
                  1.098612
           25%
                  1.791759
           75%
                  2.302585
           max 3.931826
In [94]: # Get descriptive stats about the states in the data.
          data["state_name"].describe()
Out[94]: count
                            260
                             52
          unique
                    California
          top
                             66
          freq
          Name: state_name, dtype: object
In [96]: # Create a histogram to visualize distribution of aqi_log.
          data["aqi_log"].hist();
         60
         50
         40
         30
         20
         10
                     0.5
                             1.0
                                                    2.5
                                                           3.0
                                    1.5
                                            2.0
              0.0
In [98]: # Define variable for aqi_log mean.
          mean_aqi_log = data["aqi_log"].mean()
          # Print out the mean.
          print (mean_aqi_log)
         1.7669210929985582
In [100... # Define variable for aqi_log standard deviation.
          std_aqi_log = data["aqi_log"].std()
          # Print out the standard deviation.
          print(std_aqi_log)
        0.7147155520223721
In [102... # Define variable for lower limit, 1 standard deviation below the mean.
          lower_limit = mean_aqi_log - 1 * std_aqi_log
          # Define variable for upper limit, 1 standard deviation above the mean.
          upper_limit = mean_aqi_log + 1 * std_aqi_log
          # Display lower_limit, upper_limit.
          print(lower_limit, upper_limit)
         1.052205540976186 2.4816366450209304
In [104...  # Display the actual percentage of data that falls within 1 standard deviation of the mean.
          ((data["aqi_log"] >= lower_limit) & (data["aqi_log"] <= upper_limit)).mean() * 100</pre>
Out[104... 76.15384615384615
In [106... # Define variable for lower limit, 2 standard deviations below the mean.
          lower_limit = mean_aqi_log - 2 * std_aqi_log
          # Define variable for upper limit, 2 standard deviations below the mean.
          upper_limit = mean_aqi_log + 2 * std_aqi_log
          # Display lower_limit, upper_limit.
          print(lower_limit, upper_limit)
         0.3374899889538139 3.1963521970433026
In [108... # Display the actual percentage of data that falls within 2 standard deviations of the mean.
          ((data["aqi_log"] >= lower_limit) & (data["aqi_log"] <= upper_limit)).mean() * 100</pre>
Out[108... 95.76923076923077
         # Define variable for lower limit, 3 standard deviations below the mean.
          lower_limit = mean_aqi_log - 3 * std_aqi_log
          # Define variable for upper limit, 3 standard deviations above the mean.
          upper_limit = mean_aqi_log + 3 * std_aqi_log
          # Display lower_limit, upper_limit.
          print(lower_limit, upper_limit)
         -0.37722556306855815 3.9110677490656744
In [112... # Display the actual percentage of data that falls within 3 standard deviations of the mean.
          ((data["aqi_log"] >= lower_limit) & (data["aqi_log"] <= upper_limit)).mean() * 100</pre>
Out[112... 99.61538461538461
In [114... # Compute the z-score for every aqi_log value, and add a column named z_score in the data to store those results.
          data["z_score"] = stats.zscore(data["aqi_log"], ddof=1) # ddof=degrees of freedom correction (sample vs. population)
          # Display the first 5 rows to ensure that the new column was added.
          data.head()
Out [114...
             date_local
                        state_name county_name city_name
                                                                                    local_site_name parameter_name units_of_measure aqi_log z_score
          0 2018-01-01
                                       Maricopa
                                                  Buckeye
                                                                                        BUCKEYE Carbon monoxide Parts per million 2.079442 0.437265
                            Arizona
          1 2018-01-01
                              Ohio
                                        Belmont Shadyside
                                                                                        Shadyside Carbon monoxide Parts per million 1.791759 0.034753
                                         Teton Not in a city Yellowstone National Park - Old Faithful Snow ... Carbon monoxide Parts per million 1.098612 -0.935070
          2 2018-01-01
                          Wyoming
                                    Philadelphia Philadelphia
                                                                             North East Waste (NEW) Carbon monoxide Parts per million 1.386294 -0.532557
          3 2018-01-01 Pennsylvania
          4 2018-01-01
                                          Polk Des Moines
                                                                                      CARPENTER Carbon monoxide Parts per million 1.386294 -0.532557
In [116... # Display data where `aqi_log` is above or below 3 standard deviations of the mean
          data[(data["z_score"] > 3) | (data["z_score"] < -3)]</pre>
               date_local state_name county_name city_name local_site_name parameter_name units_of_measure aqi_log z_score
          244 2018-01-01 Arizona
                                      Maricopa Phoenix WEST PHOENIX Carbon monoxide Parts per million 3.931826 3.029044
 In [ ]: # some key takeaways that you learned
          # Plotting the data using a histogram, then observing the shape, enables you to visually determine whether the data is normally distributed.
          # The empirical rule can be used to verify whether a distribution is normal.
          # The mean and standard deviation are important measures when applying the empirical rule to a distribution.
```

In [72]: # Import Library

Z-score allows you to identify potenial outliers in the data.

What summary would you provide to stakeholders?

The distribution of the aqi_log data is approximately normal.
Using statistical methods, it was determined that the site at West Phoenix has worse air quality than the other sites.
Consider allocating more resources toward further examining this site in order to improve its air quality.