Data Preprocessing Data Integration

Data Integration

- Data integration is the process of combining the data from multiple sources into a coherent data store
- These sources may include multiple databases or flat files
- Example:
 - Temperature sensor, pressure sensor and rain gauge records temperature, atmospheric pressure and amount of rain at different locations
 - Each location has separate temperature, pressure and amount of rain tables (database)

Data Integration

- Data integration is the process of combining the data from multiple sources into a coherent data store
- These sources may include multiple databases or flat files
- Example:

 - different 2 08-07-2018 t10 25.46875 82.1875 6.75 - Each loci 09-07-2018 t10 26.19298 85.42 amount c 5 10-07-2018 t10 11-07-2018 t10 25.17021 85.34043 652.5 **25.1368** 87.68657 6 08-07-2018 t11 23.53846 61.92308 26.8494 7 09-07-2018 t11 85.42 8 10-07-2018 t11 **25.1368** 75.07463 13583 9 11-07-2018 t11 27.35915 76.02113 19769 10 23-07-2018 t12 **25.1368** 94.4065 1071 11 24-07-2018 t12 24.16197 97.66901 438.8 12 25-07-2018 t12 25.29323 94.84211 13667 13 26-07-2018 t12 22.19718 864

re, pressure and

Data Integration

- Data integration is the process of combining the data from multiple sources into a coherent data store
- These sources may include multiple databases or flat files
- Example:
 - Temperature sensor, pressure sensor and rain guage records temperature, pressure and amount of rain at different locations
 - Each location has separate temperature, pressure and amount of rain tables (database)
- Issues to consider during data integration:
 - Schema integration (entity matching)
 - Data value conflict
 - Redundancy

Schema Integration (Entity Matching)

- Database schema: The organization of data as a blueprint of how the database is constructed
- Entity: Each entity in real-world problem is the attribute in the database
- · Addresses the question of
 - "how can equivalent real-world entities from multiple sources be matched up?"
 - "how can data analysts are sure that they are same?"
- Attribute name conflict across the multiple sources of data
 - Example: customer_id, customer_num, cust_num
- Entity identification problem:
 - Metadata is associated with each attribute
 - Matadata include:
 - · Name, Meaning, Data type, Range of values permitted

Data Value Conflict

- Issue: Detection and resolution of data value conflicts
- For the same real-world entity, attribute values from different sources may differ
- This may be due to difference in representation, scaling, or encoding
- Example:
 - "weight" attribute may be stored in metric unit (gram, kilogram, etc.) in one system, British imperial unit (pound, ounce, etc.) in another system
 - In a database for hotel chain in different countries:
 - "price of room" attribute may be stored with price value in different currencies
 - Categorical data: "gender" may be stored with male and female or M and F

Redundancy

- · Major issue to be addressed
- Sources of redundancy:
 - An attribute may be redundant, if it can be derived from another attribute or set of attributes
 - Example: Attribute "Total Marks" derived from Marks from each courses
 - Inconsistency in the attribute naming can also cause redundancy in resulting data sets
 - Example: (1) registration_id and roll_num
 (2) customer_id and customer num
- Two types of redundancies:
 - Redundancy between the attributes
 - Redundancy at the tuple level
 - · Duplication of tuples
 - · Remove the duplicate tuples

Redundancy Between Attributes

- · Two attributed may be related or dependent
- Detected by the correlation analysis
- Correlation analysis measures how strongly one attribute implies (related) to other, based on available data
- Correlation analysis for numerical attributes:
 - Compute correlation coefficient between two attributes A and B (e.g. Pearson's product moment coefficient i.e. Pearson's correlation coefficient)
- Correlation analysis for categorical attributes:
 - Correlation relationship between two categorical attributes ${\tt A}$ and ${\tt B}$ can be discovered by χ^2 (chi-square) test

Redundancy Between Numerical Attributes

• Pearson's correlation coefficient ($\rho_{A,B}$):

$$\rho_{A,B} = \frac{\frac{1}{N} \sum_{i=1}^{N} (a_i - \mu_A)(b_i - \mu_B)}{\sigma_A \sigma_B} = \frac{\text{Cov}(A, B)}{\sigma_A \sigma_B}$$

- -N: number of tuples
- $-a_i$ and b_i : respective values of attribute A and attribute B in tuple i
- $-\mu_{\rm A}$ and $\mu_{\rm B}$: respective mean values of A and B
- $\sigma_{\rm A}$ and $\sigma_{\rm B}$: respective standard deviation of A and B
- Cov(A, B) : Covariance between A and B
- Note: $-1 \le \rho_{A,B} \le +1$

Redundancy Between Numerical Attributes: Pearson's correlation coefficient

- If $\rho_{A,B}$ is greater than 0, then attributes A and B are positively correlated
 - The values of ${\tt A}$ increases as the values of ${\tt B}$ increases or vice versa
 - The higher the value, the stronger the correlation
 - A higher correlation value may indicate that A (or B) may be removed as a redundancy
- If $\rho_{A,B}$ is equal to 0, then attributes A and B have no correlation between them (may be independent)
- If $\rho_{A,B}$ is less than 0, then attributes A and B are negatively correlated
 - The values of ${\tt A}$ increases as the values of ${\tt B}$ decreases or vice versa
 - Each attribute discourages the other

Redundancy Between Numerical Attributes: Pearson's correlation coefficient

- Assumption:
 - Both attributes (variables) should be normally distributed (normally distributed variables have a bellshaped curve)
 - Linearity: The two attributes have linear relationship
 - Homoscedasticity: Data is equally distributed about the regression line.
- Scatter plots can also be use to view correlation between the numerical attributes

Illustration of Pearson's Correlation Coefficient Salary (in Rs 1000) Years of Scatter plot experience 100 (x)(y) 90 3 30 80 8 57 70 9 64 Salary 13 72 3 36 40 6 43 30 59 11 20 21 90 10 1 20 Years of experience 16 83 The two attributes have linear relationship • Data is equally distributed about the $\rho_{\rm A,B} = 0.97$ regression line (roughly)

Redundancy Between Numerical Attributes: Spearman Rank Correlation

- Spearman rank correlation is a non-parametric measure of rank correlation between two attributes (variables)
- Rank correlation between variables: Statistical dependence between the rankings of two variables
 - The values the variables take should be at least ordinal
- The values in the attributes should be converted into ranks of the values (ordinal values), if the attribute is not ordinal
- As it is non-parametric measure, it does not carry any assumptions about the distribution of the data
- The Spearman correlation coefficient is defined as the Pearson correlation coefficient between the rank variables

Redundancy Between Numerical Attributes: Spearman Rank Correlation

• Spearman correlation coefficient (ρ_{R_A,R_B}) :

$$\rho_{R_A,R_B} = \frac{Cov(R_A, R_B)}{\sigma_{R_A}\sigma_{R_B}}$$

- $R_{\rm A}$ and $R_{\rm B}\!$: ranks attribute ${\tt A}$ and attribute ${\tt B}$
- $\sigma_{\,R_{A}}$ and $\sigma_{\,R_{B}}$: respective standard deviation of ranks of A and B
- $Cov(R_{\mbox{\scriptsize A}},\,R_{\mbox{\scriptsize B}})$: Covariance between the ranks of $\mbox{\scriptsize A}$ and $\mbox{\scriptsize B}$
- Only if all N ranks are distinct integers, then it can be computed using the popular formula

$$\rho_{R_A,R_B} = 1 - \frac{6\sum_{i=1}^{N} d_i^2}{N(N^2 - 1)}$$

- $\rho_{\mathrm{R}_{\mathrm{A}},\mathrm{R}_{\mathrm{B}}} = 1 \frac{6\sum_{i=1}^{N}d_{i}^{2}}{N(N^{2}-1)} \frac{N}{\mathrm{c}}: \text{ number of tuples} \\ \frac{d_{i}}{n}: \text{ difference between the rank values of A and B in tuple } i$

$$-1 \le \rho_{R_A,R_B} \le +1$$

Redundancy Between Numerical Attributes: Spearman Rank Correlation

- Pearson's correlation assesses linear relationships
- Spearman's correlation assesses monotonic relationships (whether linear or not)

Monotonically increasing

Monotonically decreasing

Not monotonic

Illustration of S	pearman's	Correlation
Co	efficient	

Years of experience (x)	Salary (in Rs 1000) (y)	\mathbf{R}_{x}	\mathbf{R}_{y}
3	30	2	2
8	57	4	5
9	64	5	7
13	72	7	8
3	36	2	3
6	43	3	4
11	59	6	6
21	90	9	10
1	20	1	1
16	83	8	9

$$\rho_{R_x, R_y} = 0.9806$$

• Convert the values of both attribute into rank values

45

Illustration of Spearman's Correlation Coefficient

Temp (x)	Humidity (y)	Rx	Ry
25.47	82.19	14	1
26.19	83.15	15	2
25.17	85.34	12	3
24.30	87.69	10	5
24.07	87.65	9	4
21.21	95.95	1	9
23.49	96.17	7	10
21.79	98.59	3	12
25.09	88.33	11	6
25.39	90.43	13	7
23.89	94.54	8	8
22.51	99.00	4	14
22.90	98.00	5	11
21.72	99.00	2	14
23.18	98.97	6	13

$$\rho_{R_x, R_y}$$
 = -0.8523

18