Department of Computer Science and Engineering School of Electrical and Computer Sciences Indian Institute of Technology, Bhubaneswar

HIGH PERFORMANCE COMPUTER ARCHITECTURE

PROJECT PHASE 2

Analytical Modeling of LLM Computation and Communication on Real CPU/GPU Hardware

Team Members

Nali Bhavana - 24AI06013 Puvvula Nikhileswari - 24AI06017 Devesh Sharma - 24CS06002 Sapna Vishwakarma - 24CS06012

1 Introduction

Large Language Models (LLMs) have become essential for tasks like summarization, translation, question answering, and code generation. However, their high computational demands and varying hardware constraints pose challenges for real-world deployment. Efficient inference is crucial for reducing latency, optimizing resource utilization, and ensuring scalability across different platforms.

Understanding the computational behavior of LLMs across different hardware setups helps in identifying performance bottlenecks and improving execution efficiency. Profiling various models under diverse workloads provides insights into optimizing resource allocation. Such analysis is essential for designing scalable AI solutions while balancing speed, accuracy, and energy efficiency.

2 Methodology

2.1 Models Evaluated

We profiled four models:

• Decoder-Only Models: OPT-350M, BLOOM-560M

• Encoder-Decoder Models: T5-Small, BART-Base

2.2 Experiment Setup

• Device: Tesla GPU

• Batch Sizes: 1, 8, 32, 128

• Metrics: Latency, CUDA Execution Time, CPU Execution Time, Memory Bandwidth

• Workloads: Summarization, Question Answering, Code Generation, Translation

3 Initial Results and Observations

3.1 Latency vs. Batch Size

Trend: Latency increases with batch size but varies by model

Observation: Encoder-decoder models (T5, BART) have higher latency due to additional decoder computations.

Figure 1: Latency vs Batch Size for different Models

3.2 CUDA vs. CPU Execution Time

Trend: Decoder-only models rely more on CUDA acceleration, while encoder-decoder models involve higher CPU computation overhead.

Observation: CPU bottlenecks impact performance at higher batch sizes.

Figure 2: CUDA VS CPU Execution Time Across Models

3.3 Workload-Specific Performance

Summarization & Translation: Encoder-decoder models perform well but at higher latency.

Question Answering & Code Generation: Decoderonly models like OPT-350M are more efficient.

Figure 3: Latency Analysis Across Models

Figure 4: Latency Analysis Across Workloads

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	Self CUDA	Self CUDA %	CUDA total	CUDA time avg	CPU Mem	Self CPU Mem	CUDA Mem	Self CUDA Mem	# of Call
aten::linear	0.98%	1.243ms	9.49%	12.021ms	81.773us	0.000us	0.00%	119.884ms	815.540us	0 b	0 b	474.15 Mb	0 b	147
volta_sgemm_128x64_tn	0.00%	0.000us	0.00%	0.000us	0.000us	119.714ms	90.01%	119.714ms	814.382us	0 b	0 b	0 Ь	0 Б	147
aten::addmm	4.33%	5.488ms	6.91%	8.749ms	60.759us	110.766ms	83.28%	110.766ms	769.207us	0 ь	0 b	391.75 Mb	247.75 Mb	144
aten::matmul	0.03%	34.212us	0.28%	352.050us	117.350us	0.000us	0.00%	9.118ms	3.039ms	0 b	0 b	82.40 Mb	0 Б	3
aten::mm	0.19%	234.390us	0.24%	299.033us	99.678us	9.118ms	6.86%	9.118ms	3.039ms	0 b	0 b	82.40 Mb	82.40 Mb	3
aten::scaled_dot_product_attention	0.27% 0.21%	338.058us 263.599us	1.49%	1.888ms 1.550ms	78.652us 64.566us	0.000us 0.000us	0.00%	8.008ms 8.008ms	333.648us 333.648us	0 b 384 b	-384 b	48.00 Mb 48.00 Mb	0 b	24 24
aten::_scaled_dot_product_efficient_attention	0.21%	426.360us	0.80%	1.55ems 1.017ms	42.377us	8.008ms	6.02%	8.008ms	333.648us	384 b	0 b	48.00 Mb	0 b	24
aten::_efficient_attention_forward na_cutlassF_f32_aligned_64x64_rf_sm75(PyTorchMemEf	0.00%	0.000us	0.00%	0.000us	0.000us	8.008ms	6.02%	8.008ms	333.648us	9 b	0 b	48.00 Mb	0 b	24
aten::layer norm	0.19%	237.381us	2.08%	2.638ms	54.953us	0.000us	0.00%	1.409ms	29.344us	0 b	0 b	94.50 Mb	-188.00 Kb	49
acenayer_norm	0.15%	237.30105	2.000	2.03005	34.93305	0.00003	0.00.0	1.40505	25.34405			54.36 ND		
If CPU time total: 126.622ms														
1f CUDA time total: 132.999ms														
II COOK CINE COCAL. ISLESSONS														
		T:	. 7. D.	art 117a	-l-ld	of OD	r Infon	A A						
		rigur	e 1: De	est vvo	rkioad	OI OP.	ı mier	епсе А	nalysis					
		0							•					
profiling results_T5-Small_translation_batch_32 -	Motopad													_
proming_results_13-3mail_translation_batch_32 -	ivotepau													
ile Edit Format View Help														
ae cuit roiniat view neip														

File Edit Format View Help

Name Self CFU % Self CFU total % Self CUDA % CUDA time avg CFU Mem Self CFU Mem CUDA Mem Self CUDA Mem 8 of Call stems; linear atem; linear 1.15% 626.15% 41.22% 18.136m; 136.362us 6.000u 6.000u 6.000u 13.362us 6.000u 6.

Figure 8: Best Workload of T5 Inference Analysis

4 Project Timeline

Table 1: Project Timeline

Task	Duration	Status
Model Selection	Week 1	Completed
Profiling Implementation	Week 2	Completed
of Basic Models		
Data Collection & GPU Setup	Week 3	Ongoing
Advanced Profiling (FLOPs)	Week 4	Planned
Optimization Strategies	Week 5	Planned
Report & Documentation	Week 6	Planned

5 Next Steps

- Memory Profiling: Use nvidia-smi to track memory consumption across models.
- Compute FLOPs Estimation: Integrate fv-core.nn.FlopCountAnalysis to estimate model computational complexity.
- Optimization Strategies: Investigate quantization and pruning techniques to improve efficiency.

• Validation on Real Hardware: Test models on different GPU architectures to analyze scalability.

6 Conclusion

This project analyzed the computational and communication characteristics of LLMs on real CPU/GPU hardware. Our profiling indicates that decoder-only models are more efficient for tasks like code generation and QA, while encoder-decoder models offer better summarization and translation accuracy but with higher latency. CPU execution overhead highlights the need for CUDA acceleration.

References

- 1 Amey Agrawal, Nitin Kedia, Jayashree Mohan, Ashish Panwar, Nipun Kwatra, Bhargav Gulavani, Ramachandran Ramjee, Alexey Tumanov. "Vidur: A Large-Scale Simulation Framework For LLM Inference."
- 2 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. "Attention Is All You Need."