

CHƯƠNG I: TỔNG QUAN VỀ KHÍ NÉN

- I. NHỮNG ĐẶC TRƯNG CƠ BẢN CỦA KHÍ NÉN
- II. PHẠM VI ỨNG DỤNG
- III. ƯU, KHUYẾT ĐIỂM
- IV. CÁC ĐẠI LƯỢNG VẬT LÝ
- V. CẤU TRÚC CƠ BẢN HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNG KHÍ NÉN
- VI. BÀI TẬP CHƯƠNG 1

I. ĐẶC TRƯNG CƠ BẢN CỦA KHÍ NÉN

- a. Khí nén là một phần của lưu chất với không khí hoặc các loại khí khác được nén lai. Pneumatics: xuất phát từ tiếng Hy Lạp là Pneuma có nghĩa là khí, gió hoặc hơi thở.
- b. Điều khiến khí nén được thiết kế với mục đích hướng dòng chảy của khí nén theo các mạch để điều khiển cơ cấu chấp hành (chuyển động tinh tiến hay quay).
- c. Các dòng chảy dưới dạng năng lượng khí nén sẽ điều khiển cơ cấu chấp hành thực hiện chuyển động tinh tiền hay quay.

II. PHAM VI ỨNG DỤNG

Dây chuyền tự động sản xuất, lắp ráp thiết bị điện tử: ti vi, tủ lạnh, vi mạch..

Dây chuyền sản xuất, chế biến thực phẩm: chế biến thịt, sữa

Dây chuyền tự động: sản xuất dược phẩm, hoá chất, nước giải khát,....

Dây chuyển tự động: đóng gói, vận chuyển, ...

Dây chuyển tự động: cấp phôi, gá đặt...

Xem Video minh hoa:

https://drive.google.com/drive/folders/1XsQ6cl1Zsa

Ar5FJ9K1coeKkAWtXSKO1u?usp=sharing

III. ƯU, KHUYẾT ĐIỂM

1. Ưu điểm:

- Có sắn và trong thiên nhiên, có thể được lưu trữ dễ dàng trong thể tích lớn.
- Truyền động đơn giản, hiệu suất cao, chi phí thấp.
- Không gây ô nhiễm môi trường.
- Phần tử khí nén có tuổi thọ cao do đó hệ thống làm việc ổn định
- Có khả năng truyền tải năng lượng đi xa do độ nhớt động học của khí nén nhỏ và tổn thất trên đường dẫn thấp.

2. Nhược điểm:

- Kích thước lớn hơn so với hệ thống thủy lực có cùng công suất.
- Lực truyền tải trọng thấp
- Tính nén được của khí ảnh hưởng tới chất lượng làm việc của hệ thống.
- Do vận tốc của các cơ cấu chấp hành khí nén lớn nên dễ xảy ra va đập ở cuối hành trình.
- Do khí xả ra qua các cửa tạo nên âm thanh khá ồn.
- Việc điều khiển theo quy luật vận tốc cho trước và dừng lại ở vị trí trung gian cũng khó thực hiện được chính xác như đối với các hệ thống khác.

3. So sánh truyền động: Thủy lực (2) - Khí nén (3) - Điện (4)- Cơ (5)

TIÊU CHUẨN	THỦY LỰC	KHÍ NÉN	ĐIỆN TỬ	CQ, HÓC
(1)	(2)	(3)	(4)	(5)
Mang năng lượng	Dầu	Khí nén	Electron	Trục; bánh răng; xích
Truyền năng lượng	ống dẫn, đầu nối	ống dẫn, đầu nối	Dây điện	Trục, bánh răng
Tạo ra năng lượng	Bơm,	Máy nén khí,	Máy phát điện,	Trục,
hoặc chuyển đổi	xi lanh truyền lực,	xi lanh truyền lực,	động cơ điện,	bánh răng,
thành dạng năng	động cơ thủy lực	động cơ khí nén.	pin, ắc quy	đai truyền,
lượng khác				xích truyền.
Các đại lượng	Áp suất p (400bar),	Áp suất p (6 bar),	Hiệu điện thế U,	Lực F, mômen xoắn M,
cơ bản	lưu lượng Q (m³/h)	Lưu lượng Q (m³/h)	cường độ dòng điện I	vận tốc v, số vòng
				quay n.
	Rất tốt, áp suất đến	Tốt	Tốt, trọng lượng động cơ điện	Tốt, bởi vì không có
Công suất	khoảng 400 bar,	bị giới hạn bởi áp	có cùng công suất lớn hơn 10	chuyển đổi năng
	kết cấu gọn nhỏ, giá	suất làm việc khoảng	lần so với động cơ thủy lực.	lượng. Bị giới hạn
	cả phù hợp.	6 bar.	Sự đóng mở của các tiếp điểm	trong lĩnh vực điều
			thuận lợi van đảo chiều.	khiển và điều chỉnh.

TIÊU CHUẨN	THỦY LỰC	KHÍ NÉN	ĐIỆN TỬ	со нос
(1)	(2)	(3)	(4)	(5)
Độ chính xác vị trí (hành trình)	Rất tốt ,bởi vì dầu không có độ đàn hồi.	Ít tốt hơn bởi vì khí nén có độ đàn hồi.	Tốt, độ trễ nhỏ.	Rất tốt, khả năng ăn khớp truyền động.
Hiệu suất	Vừa phải, tổn thất thể tích, ma sát ở truyền động, chuyển đổi năng lượng, tổn thất áp suất van	Tính chất khí nén có ảnh hưởng trong quá trình truyền tải	Vừa phải.	Tổn thất lớn.
Khả năng tạo ra chuyển động thẳng	Đơn giản bởi xilanh truyền lực.	Đơn giản.	Thông qua động cơ.	Đơn giản thông qua trục.
Khả năng ứng dụng		Lắp ráp. Dây chuyền tự động.	Truyền động quay. Tịnh tiến.	Truyền động khoảng cách ngắn.

IV. CÁC ĐẠI LƯỢNG

4.1 Áp suất khí nén

Ap suất khí nén: **p** là lực **F** [N] tác động trên diện tích **A** [m²] bề mặt chịu lực.

$$\mathbf{p} = \frac{\mathbf{F}}{\mathbf{A}} \quad [N/m^2]$$

1. Theo hệ SI: đơn vị áp suất là pascal, viết tắt là Pa: 1 Pa = 1N/1m²

Áp suất khí quyển p_a:

$$m = V. \rho_n$$
 \longrightarrow $m = A. h. \rho_n$ \longrightarrow $p = \frac{F}{A} = \frac{A. h. \rho_n . g}{A} = h. \rho_n . g$

- Chiều cao cột khí quyển h [m]
- Khối lượng riêng không khí ρ_n = 1,29 kg/m³,

- Gia tốc trọng trường: $g = 9.81 \text{ m/s}^2$ $p_a = 1.013.10^5 \text{ [Pa]} = 1 \text{ atm}$

2. Hệ Metric:

Độ lớn của áp suất khí quyển bằng áp suất của cột thuỷ ngân trong ống Tô-ri-xe-li. 1 atm = 760 mmHg.

1 Bar = 100 000 Pa và hơi thấp hơn so với áp suất khí quyển trung bình trên Trái đất tại mặt nước biển. 1 atm = 1 bar.

3. Hệ thống Imperial System-hệ Anh (pound, inch):

Pound (0,45336 kg)-force per square inch (6,4521 cm²). Ký hiệu lbf/in² (psi). 1 bar = 14.50 psi

Trọng lực khí quyển F = m.g h [m]

WISE

5. Các thang đo áp suất thông dụng:

Trong kỹ thuật: khi khối lượng **m=1 kg** đặt trên diện tích **1 cm²**, gọi là **áp suất kỹ thuật**, viết tắt là **1at**.

1 at =
$$0.981.10^5$$
 pa

hoặc viết tắt là 1 at = $1 \text{ KG/cm}^2 = 1 \text{ kgf/cm}^2$.

Thông thường:

- 1 bar = 1 at = 1 kgf/cm² = KG/cm² đọc là ki lô gram lực (force) trên cm²
- 1 bar = 1 atm = 14.50 psi = 1 at
- 1 bar = 100 kPa = 0,1 Mpa = 760 mmHg

4.2 Lực

Khí nén tác dụng **lực F** với giá trị bằng **áp suất p** tác dụng lên bề mặt nhân với **diện tích A** chịu lực.

Trong đó:

F: Lực đẩy của pittông (N). A: Diện tích pittông (m²).

p : Áp suất khí nén cấp lên xy lanh (Pa).

Định luật Pascal: "Áp suất khí nén sẽ được truyền đi theo mọi hướng bằng nhau".

$$P = \frac{F_1}{A_1} = \frac{F_2}{A_2} = \frac{F_3}{A_3} = \frac{F_4}{A_4} = \frac{F_5}{A_5}$$

4.3 Lưu lượng Q

Lưu lượng được định nghĩa là **lượng không khí** lưu động trong một **đơn vị thời gian**, lượng không khí này có thể đo theo **thể tích** hoặc **trọng lượng**.

$$Q = A \cdot v$$
 [m³/s]

A – Tiết diện chảy [m²]
v - Vận tốc chảy khí [m/s]
t - Thời gian [s]
V - Thể tích [m³]
Q - Lưu lượng [m³/s]

Lít hoặc dm³ trên giây: l/s hoặc dm³/s, Mét khối trên phút : m³/ph.

4.4 Thành phần và đại lượng cơ bản không khí - dầu

	N ₂	02	Ar	CO ₂	H ₂	Ne.10 ⁻³	He.10 ⁻³	Kr.10 ⁻³	X.10 ⁻⁶
Thể tích%	78,08	20,95	0,93	0,03	0,01	1,8	0,5	0,1	9
Khối lượng%	75,51	23,01	1,286	0,04	0,001	1,2	0,07	0,3	40

Nr	Tên đại lượng	ký hiệu	giá trị	đơn vị	ghi chú
1	Khối lượng riêng khí	ρ_{n}	1,293	kg/m³	Trạng thái tiêu chuẩn:
					T = 273 K p _a = 1,013 bar
	Dầu thủy lực	ρ _t	900	kg/m³	T=297 K
	Nước	ρ_{t}	1000	Ng/III	
2	Hằng số khí	R	287	J/kg.K	
3	Nhiệt lượng riêng	c_{p}	1,004	kJ/kg.K	khi áp suất hằng số
		c_{v}	0,717	kJ/kg.K	khi thể tích hằng số
4	Độ nhớt động	η	17,17.10-6	Pa.s	ở trạng thái tiêu chuẩn
5	Độ nhớt động học	ν	13,28.10-6	m²/s	ở trạng thái tiêu chuẩn

4.5 Độ ẩm không khí

Khí quyển là khí hỗn hợp của hơi nước và không khí. Theo định luật Dalton, áp suất toàn phần của khí hỗn hợp là tổng của các áp suất riêng phần.

Lượng hơi nước chứa nhiều nhất trong 1 kg không khí gọi là **lượng ẩm bảo hòa x1 [g/kg]**Lượng hơi nước thực tế chứa trong 1 kg không khí (cùng nhiệt độ) gọi là **lượng ẩm tuyệt đối x [g/kg].**

Độ ẩm tương đối không khí biểu thị dưới dạng % của lượng ẩm tuyệt đối x và lượng ẩm bảo hòa x1:

Độ ẩm tương đối
$$\varphi = \frac{\text{lượng ẩm tuyệt đối x [g/kg].}}{\text{lượng ẩm bảo hòa x1 [g/kg]}}$$
. 100 %

Quá trình nung nóng, sấy khô và làm lạnh không khí trong các thiết bị làm lạnh sẽ làm thay đổi giá trị các đại lượng như hơi nước chứa trong không khí, độ ẩm.. Được thể hiện trong biểu đồ Mollier.

4.6 Các định luật về chất khí

<u>Định luật khí lý tưởng</u>: Xác định quan hệ giữa **áp suất, thể tích** và **nhiệt độ.**Khi áp dụng các định luật này, chỉ sử dụng áp suất và nhiệt độ tuyệt đối: p_{abs} = 1,013 bar, Tn = 273 K.

$$p_1 . V_1 . T_2 = p_2 . V_2 . T_1$$

Phương trình tổng quát:

$$\frac{p_1 * V_1}{T_1} = \frac{p_2 * V_2}{T_2} = \text{Hằng số}$$

a. Đẳng nhiệt

Định luật Boyle: "Tích giữa áp suất tuyệt đối và thể tích của khối khí luôn là hằng số nếu nhiệt độ của khí không thay đổi". **T = const**

$$p_1 . V_1 = p_2 . V_2$$

b. Đẳng tích

Định luật Gay-Lussac: "Áp suất tuyệt đối của khí tỷ lệ thuận với nhiệt độ tuyệt đối của nó" (thể tích khí không đổi, V = const).

c. Đẳng áp

Định luật Charles: "Nếu áp suất của khối khí không đổi thì thể tích sẽ tỷ lệ với nhiệt độ tuyệt đối". **p = const.**

d. Tỉ số nén

<u>Ví dụ minh họa</u>: Nén $4m^3$ áp suất khí quyển vào bình chứa có thể tích bằng $0,5m^3$ bằng máy nén khí (giả thiết quá trình nén, nhiệt độ khí không đổi). Hãy cho biết kim đồng hồ áp kế chỉ giá trị trước (p_1) và sau khi nén (p_2) là bao nhiêu?

 $p_1 = 1$ atm = 1 bar - áp suất khí quyển $V_1 = 4$ m³ - Thể tích trước khi nén

 p_2 = ?? bar - áp suất sau khi nén ? V_2 = 0,5 m³ - Thể tích sau khi nén

Phương trình đẳng nhiệt: $p_1 \cdot V_1 = p_2 \cdot V_2$

Tỉ số nén i =
$$\frac{V_1}{V_2} = \frac{p_2}{p_1} = \frac{4 \text{ m}^3}{0.5 \text{ m}^3} = 8$$

Áp suất nén $p_2 = p_1$. i \implies Áp suất nén $p_2 = 1$ bar x = 8 bar (Áp suất giá trị tuyệt đối)

Thang đo áp suất dư: Áp kế p₁ chỉ giá trị 0

áp kế p_2 chỉ giá trị (8 bar – 1 atm = 7 bar) là 7 bar.

4.7 Phương trình dòng chảy

Lưu lượng Q chảy trong đường ống từ vị trí 1 đến vị trí 2 là không đổi. Lưu lượng **Q** của chất lỏng qua mặt cắt **S** của ống bằng nhau trong toàn ống (điều kiện liên tục).

$$Q = A_1 \cdot v_1 = A_2 \cdot v_2 = H$$
ằng số

4.8 Lưu lượng và tổn thất áp suất khí nén qua khe hở (trong các loại van)

a. Lưu lượng khí nén qua khe hở (trong các loại van):

$$\mathbf{q}_{\mathsf{V}} = \alpha.\varepsilon.\mathbf{A}_{\mathsf{1}}.\sqrt{\frac{\mathbf{2}.\Delta\,\mathbf{p}}{\rho_{\mathsf{1}}}}$$

[m³/s]

Trong đó:

 α

Hệ số lưu lượng Hệ số giản nỡ

Diện tích mặt cắt khe hở [m²]

 $\Delta p = p1 - p2$

Áp suất trước và sau khe hở [N/m²]

 ρ_n

Khối lượng riêng không khí [kg/m³]

b. Tổn thất áp suất khí nén qua khe hở (trong các loại van)

Tổn thất áp suất trong các loại van Δp_{v} (trong các loại van đảo chiều, van áp suất, van tiết lưu ...) tính theo:

$$\Delta \mathbf{p_V} = \mathbf{\vartheta_v} \cdot \frac{\mathbf{\rho_1}}{2} \cdot \mathbf{w^2}$$
 W - vận tốc qua khe hở [m/s]

 ϑ_v - hệ số cản, đại lượng đặc trưng cho van

4.9 Các đại lượng cơ bản: Hệ SI

	3			
Ký hiệu	Tên	Đơn vị		
ky męu	Tiếng Anh	Tiếng Việt	9	
1	Length	Chiều dài	m	
m	Mass	Khối lượng	Kg	
t	Time	Thời gian	S	
T	Temperature	Nhiệt độ	K	
F	Force	Lực	N	
Α	Area	Diện tích	m ²	
V	Volume	Thể tích	m ³	
qv	Volumetric flow rate	Lưu lượng	m³/s	
Q B	Air consumption	Khí tiêu thụ	I/min	
qn	Nominal flow rate	Lưu lượng danh định	l/min	
р	Pressure Áp suất		bar(Pa)	
Pabs	Absolute pressure	Áp suất tuyệt đối	bar(Pa)	
Pamb	Ambient pressure	Áp suất môi trường	bar(Pa)	
pe	Excess or vacuum pressure Áp suất dư hoặc chân không		bar(Pa)	
Δр	Differential pressure Chênh lệch áp suất		bar(Pa)	
p _n	Standard pressure	Áp suất tiêu chuẩn	P _n = 101325 Pa	
Α	Piston surface	Diện tích mặt Pittông	m ²	
A	Annular surface (ring area)	Diện tích vành khăn	m ²	
d	Piston rod diameter	Đường kính cần Pittông	m	
D	Cylinder diameter	Đường kính trong Xilanh	m	
Feff	Effective piston force	Lực tác dụng bởi pittông	N	
FF	Force of retract spring	Lực phản hồi bởi lò xo	N	
FR	Friction force	Lực ma sát	N	
S	Stroke length Khoảng tác dụng(của p		cm	
n	Revolutions per minute	Tốc độ quay (cho động cơ)	1/min (rpm)	
V	Velocity of piston	Vân tốc của Pittông	m/s	

V. CẤU TRÚC CƠ BẢN HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNG KHÍ NÉN

- 1. Hệ thống điều khiển tự động khí nén- khí nén
- 2. Cấu trúc cơ bản hệ thống điều khiển tự động điện khí nén

VI. BÀI TẬP VẬN DỤNG CHƯƠNG 1

1. Ví du tính toán:

- **1.1** Nén $V_0 = 6[m^3]$ áp suất khí quyển vào bình chứa có thể tích bằng $V_1 = 0.5 [m^3]$ bằng máy nén khí (giả thiết quá trình nén, nhiệt độ khí không đổi). Hãy tính áp suất khí nén trong bình (áp suất dư)? $1 \text{ atm} = 10^5 \text{ [Pa]}$
- **1. 2.** Một máy nén khí có lưu lượng hút Q = 3m³/min, nén vào bình chứa có thể tích 0,5m³. Hãy tính thời gian cần thiết để bình được nạp đầy khí nén có áp suất P = 6 bar và nhiệt độ là T = 293 K. Biết rằng, khí quyển ở điều kiện tiêu chuẩn (Pn = 1,013 bar và T = 273K).
- **1.3** Trong một ống kín $V_1 = 60 \text{ dm}^3$, áp suất $p_{1abs} = 700 \text{ kPa}$ (7 bar/101.5 psi), nhiệt độ $T_1 = 280 \text{ K}$ (7°C). Khi nhiệt độ tăng lên T_2 = 300 K (27°C) thì áp suất mới trong ống là bao nhiêu?

2. Giải thích các ứng dụng thực tế:

2.1 Trình bày, giải thích nguyên lý của dụng cụ sau: Nhiệt kế thủy ngân, Kinh khí cầu và Nồi áp suất dựa vào định luật khí?

3. Câu hỏi tham khảo thêm:

- 3.1 Trong quá trình đẳng nhiệt của một khối khí lý tưởng, thể tích của khối khí giảm đi 3 lít thì áp suất của nó tăng lên 5 lần. Thể tích ban đầu của khối khí là bao nhiêu lít?
- 3.2 Một quả bóng cao su có thể tích V= 4 lít có áp suất trong bóng là p= 2 atm. Mỗi lần bơm đưa được 100 cm³ không khí ở áp suất khí quyển vào bóng. Bơm châm để nhiệt độ không đổi và ban đầu trong bóng có không khí ở áp suất khí quyển, (biết áp suất khí quyển là 1 atm) số lần cần bơm của bóng là bao nhiêu?