Exercise 02

(1)
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

 $(\sin z)' = \frac{e^{iz} + ie^{-iz}}{2i} = \frac{e^{iz} + e^{-iz}}{2} = \cos z$

(3)
$$\angle .H.S. = \frac{e^{i(2i-8i)} + e^{i(3i-8i)}}{2}$$

$$= \frac{(e^{i\delta_1}e^{i\delta_2} + e^{i\delta_1}e^{i\delta_2}) - (e^{i\delta_1}e^{i\delta_2} - e^{i\delta_2}e^{i\delta_1})}{2}$$

$$= e^{i\delta_1}\cos\delta_2 - ie^{i\delta_2}\sin\delta_1$$

$$= (\cos\delta_1 + i\sin\delta_1)\cos\delta_2 - i(\cos\delta_2 + i\sin\delta_1)\sin\delta_2$$

$$= R.H.S.$$

$$= \frac{\sin\delta_1\cos\delta_2 + \cos\delta_1\sin\delta_2}{\cos\delta_1\cos\delta_2}$$

$$= \frac{\sin\delta_1\cos\delta_2 + \cos\delta_1\cos\delta_2}{\cos\delta_1}$$

$$= \frac{\sin\delta_1}{\cos\delta_1} + \frac{\sin\delta_2}{\cos\delta_2}$$

$$= R.H.S.$$

$$= \frac{e^{i\delta_1}\cos\delta_1}{2} - e^{i\delta_2}$$

$$= \frac{e^{i\delta_1}\cos\delta_1}{2} - e^{i\delta_2}$$

$$= \frac{e^{i\delta_1}\cos\delta_1}{2} + e^{i\delta_2}\cos\delta_1$$

$$= \frac{e^{i\delta_1}\cos\delta_1}{2} + e^{i\delta_2}\cos\delta_1$$

$$= \frac{e^{i\delta_1}\cos\delta_1}{2} + e^{i\delta_2}\cos\delta_2$$

$$= \frac{e^{i\delta_1}\cos\delta_2}{2} + e^{i\delta_2}\cos\delta_1$$

$$= \frac{e^{i\delta_1}\cos\delta_2}{2} + e^{i\delta_2}\cos\delta_2$$

$$= \frac{e^{i\delta_1}\cos\delta_2}{2} + e^{i\delta_2}\cos\delta_2$$

$$= \frac{e^{i\delta_1}$$

Part 3.

(1)
$$\cos z = 4 = 1$$
 $e^{iz} + e^{-iz} = 4$

$$= 1 e^{iz} - 8e^{iz} + 1 = 0$$

$$= 1 e^{iz} - 8e^{iz} + 1 = 0$$

$$= 1 e^{iz} - 8e^{iz} + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 = 0$$

$$= 1 e^{iz} - e^{iz} = 1 + 1 =$$

Thus,
$$\overline{z} = \frac{2\pi}{2}\pi + 2n\pi - \ln \overline{z}$$
 i or $\overline{z} = \overline{z} + 2n\pi - \ln \frac{\overline{z}}{z}$ i
(3) Let $a = \cosh(z)$

then $2a^2 - 3a + 1 = 0$
 $\Rightarrow a = \frac{1}{z}$ or $a = 1$

If $a = \frac{1}{z}$, $e^z + e^{-\frac{1}{z}} = \frac{1}{z}$
 $\Rightarrow e^z = \frac{1 \pm \sqrt{3}i}{2}$
 $\Rightarrow e^z = \frac{1 \pm \sqrt{3}i}{2}$
 $\Rightarrow e^z = \frac{1 \pm \sqrt{3}i}{2}$
 $\Rightarrow e^z + e^{-\frac{1}{z}} = e^z$

If $a = 1$, $e^z + e^{-\frac{1}{z}} = e^z$
 $\Rightarrow e^z + e^{-\frac{1}{z}} = e^z$
 $\Rightarrow e^z = e^z + e^{-\frac{1}{z}} = e^z$

Thus, $z = 2n\pi i$ or $z = (\pm \frac{\pi}{3} + 2n\pi)i$

Part 4.

(i) Let $w = \arccos z$. $e^{iw} + e^{-iw}$
 $z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$

=)
$$e^{i\omega} = \frac{1}{8} \pm \sqrt{8^2 - 1} = \frac{1}{8} + \sqrt{8^2 - 1}$$

(2) Let
$$2 = \tan w$$

$$= \frac{e^{iw} - e^{-iw}}{i(e^{iw} + e^{-iw})}$$