# Tx Driver - CML

1 Gbps

Muhammad Aldacher

### **Current-Mode Logic (CML)**



- Current Steering
- Both sides are terminated by 50Ω
- Basic structure in high-performance serial link

## 1) Without Replica



$$V_{Swing_{(pk2pk)}} = V_{out+} - V_{out-}$$
$$V_{Swing_{(pk2pk)}} = I_{BIAS} * Z_{O}$$

For 
$$V_{Swing_{(pk2pk)}} = 500 \text{ mV}$$
:
$$I_{BIAS} = \frac{500 \text{ mV}}{50 \Omega} = \mathbf{10 mA}$$

#### **Device Sizing:**

- ➤ Input devices (M1 & M2) act as switches, so we should increase W (reducing RoN) to improve headroom.
- Bias devices (Mbias & Mmirror) should have large L to reduce channel length modulation. Also we need to increase their W to reduce their V<sub>GS</sub> & V<sub>OV</sub>.

M1 = M2 :  $L = L_{MIN}$  , m=100x Mbias = Mmirror :  $L = 4 * L_{MIN}$  , m=200x

## 2) With Replica



$$V_{Ref} = V_{DD} - I_{BIAS} * Z_{O}$$

$$V_{Swing_{(pk2pk)}} = V_{DD} - V_{REF}$$

```
For V_{Swing_{(pk2pk)}} = 500 \, mV:

V_{REF} = 1V - 250 \, mV

= 750mV
```

M1 = M2 = Mr1:  $L = L_{MIN}$ , m=100xMbias = Mmirror:  $L = 4 * L_{MIN}$ , m=200x

# Testbenchs & Setups

- VDD = 1V
- Data-Rate = 1 Gb/s
- VSWING = 0.5V (pk2pk)
- IBIAS = 10mA

### Testbench

## A) Without Replica



### Testbench

# B) With Replica



## Channel Settings (mtline)

#### → For Zo = 50 Ohms:

$$Z_0 \approx \frac{87}{\sqrt{\varepsilon_r + 1.41}} \ln \left( \frac{5.98 \, H}{0.8 \, W + T} \right)$$

Dielectric\_const =  $\varepsilon_r$  = 4.8 Dielectric\_thickness = H = 360u Line\_width = W = 625u Line\_thickness = T = 17.78u





## Ideal OpAmp





### Simulation Setup



| Time Step                      | Algorithm   | State | File | Output | EM/IR | Output |  |  |
|--------------------------------|-------------|-------|------|--------|-------|--------|--|--|
|                                |             |       |      |        |       |        |  |  |
| SIMULATION INTERVAL PARAMETERS |             |       |      |        |       |        |  |  |
|                                |             |       |      |        |       |        |  |  |
| start                          |             |       |      |        |       |        |  |  |
|                                |             |       |      |        |       |        |  |  |
| outputsta                      | irt         |       |      |        |       |        |  |  |
|                                |             |       |      |        |       |        |  |  |
| TTME STE                       | P PARAMETER | 10    |      |        |       |        |  |  |
| TIME STEF PARAMETERS           |             |       |      |        |       |        |  |  |
| step                           |             |       |      |        |       |        |  |  |
| ·                              |             |       |      |        |       |        |  |  |
| maxstep                        |             |       |      |        |       |        |  |  |
|                                |             |       |      |        |       |        |  |  |
| minstep                        |             |       |      |        |       |        |  |  |
|                                |             |       |      |        |       |        |  |  |

### Measurements

| Name             | Туре     | Details                                                        | EvalType |
|------------------|----------|----------------------------------------------------------------|----------|
| Filter           | Filter 🔽 | Filter                                                         | Filter   |
| *** Voltages *** | expr     |                                                                | point    |
|                  | signal   | /inp                                                           | point    |
|                  | signal   | /inn                                                           | point    |
|                  | signal   | /outp                                                          | point    |
|                  | signal   | /outn                                                          | point    |
|                  | signal   | /outp_load                                                     | point    |
|                  | signal   | /outn_load                                                     | point    |
|                  | signal   | /x                                                             | point    |
|                  | signal   | /vbias                                                         | point    |
|                  | signal   | /Vref                                                          | point    |
|                  | signal   | /out_rep                                                       | point    |
|                  | signal   | /x_rep                                                         | point    |
| *** Currents *** | expr     |                                                                | point    |
| /Vdd_I/PLUS_I    | signal … | /Vdd_I/PLUS                                                    | point    |
| /Rout/PLUS_I     | signal … | /Rout/PLUS                                                     | point    |
| *** Outputs ***  | expr     |                                                                | point    |
| Vtxout_pk2pk     | expr     | (VT("/outp") - VT("/outn"))                                    | point    |
| Vtxout_eye       | expr     | eyeDiagram(Vtxout_pk2pk 0 VAR("sim_time") 2e-09 ?autoCenter t) | point    |
| Vload_pk2pk      | expr     | (VT("/outp_load") - VT("/outn_load"))                          | point    |
| Vload_eye        | expr     | eyeDiagram(Vload_pk2pk 0 VAR("sim_time") 2e-09 ?autoCenter t)  | point    |



# Simulations & Results

### Waveforms



### Waveforms (Eye-Diagrams)





#### No Replica:

 $V_{SW(pk2pk)} = 496.18 \text{ mV}$ 

#### With Replica:

 $V_{SW(pk2pk)} = 499.9 \text{ mV}$ 

→ More Accurate Swing, at the expense of an extra branch + additional power drawn by the OpAmp

## **Current Consumption**

• Total current drawn = 20 mA

(10 mA from main driver + 10 mA from current branch/Replica)