Задача 2.3.8. Две длинные параллельные нити равномерно заряжены с одинаковой линейной плотностью заряда τ . Найти максимальное значение модуля напряженности поля в плоскости симметрии этой системы. Расстояние между нитями d.

Будем считать нити бесконечно длинными. Тогда известна напряженности заряженной нити до точки на расстоянии r: $\frac{2k\tau}{r}$

В точке между нитями в силу симметрии напряженность равна по модулю и противоположна по напрявлению. Найдем напряженность в точке, отрезки от которой до одной из нитей и середины между нитями образуют угол α . В силу симметрии, напряженности каждой нити в точке равны:

$$|\vec{E}_1| = |\vec{E}_2| = 2k\tau \frac{2\sin\alpha}{d}$$

Спроецируем эти вектора на плоскость симметрии:

$$|\vec{E}| = 2\cos\alpha |\vec{E}_1| = \frac{8k\tau\sin\alpha\cos\alpha}{d} = \frac{4k\tau\sin2\alpha}{d}$$

Получаем, что $|\vec{E}|$ принимает наибольшее значение при $\sin 2\alpha = 1 \Longrightarrow \alpha = \frac{\pi}{4}$

В этом случае $|\vec{E}| = \frac{4k\tau}{d}$

$$\underline{\text{Otbet}} \colon \frac{4k\tau}{d}$$

C

Задача 3.3.5. Два коаксиальных кольца одинакового радиуса R заряжены равномерно зарядами q_1 и q_2 . Плоскости колец находятся на расстоянии h друг от друга. Найти потенциал в произвольной точке A на оси колец.

Пусть точка находится на расстоянии d от первого кольца. Найдем формулу потенциал в этой точки Очевидно, что потенциал на бесконечном расстоянии от точки можем считать равным нулю (тогда считаем кольцо точечным зарядом).

Кольцо точечным зарядом). Тогда
$$\varphi_A - \varphi_\infty = \int_d^\infty \vec{E} d\vec{l} = \int_d^\infty \frac{kqr}{\sqrt{R^2 + r^2}} dr = -\frac{kq}{\sqrt{R^2 + r^2}} \Big|_d^\infty = \frac{kq}{\sqrt{R^2 + d^2}}$$
 В нашем случае по принципу суперпозиции потенциал в точке A равен $\varphi = \varphi_1 + \varphi_2 = \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} = -\frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}$

$$kq\left(\frac{\sqrt{R^2+d^2}+\sqrt{R^2+(h-d)^2}}{\sqrt{(R^2+d^2)(R^2+(h-d)^2)}}\right)^{\sqrt{R^2+d^2}}$$

$$\frac{\text{Otbet}}{\sqrt{R^2 + d^2}} : \frac{kq}{\sqrt{R^2 + d^2}} + \frac{kq}{\sqrt{R^2 + (h - d)^2}}$$

Задача 1.10. Потенциал поля внутри заряженного шара зависит только от расстояния r до его центра по закону $\varphi = ar^2 + b$, где a и b — постоянные. Найти распределение объемного заряда $\rho(r)$ внутри шара.

По уравнению Пуассона:

$$-\Delta \varphi = \frac{\rho}{\varepsilon_0}$$

В нашем случае
$$-\Delta \varphi = -\vec{\nabla} \vec{\nabla} (ar^2 + b) = -\vec{\nabla} \vec{\nabla} (a(x^2 + y^2 + z^2) + b) = -\vec{\nabla} \left(2ax\vec{i} + 2ay\vec{j} + 2az\vec{k} \right) = -2a - 2a - 2a = -6a$$

Из этого $\rho(r) = -\Delta \varphi \varepsilon_0 = -6a\varepsilon_0$

Ответ: $-6 a \varepsilon_0$

Задача 15.47. Тонкий стержень согнут в кольцо радиусом R=10 см. Он заряжен с линейной плотностью $\tau=300$ нКл/м. Какую работу A надо совершить, чтобы перенести заряд Q=5 нКл из центра кольца в точку, расположенную на оси кольца на расстоянии l=20 см от центра его?

Из лекций знаем, что работа по перемещению заряда равна произведению величины заряда на разность потенциалов: $A=Q\Delta \varphi$

Потенциал поля кольца в точке на оси равен

$$\varphi(r) = \frac{kq_{\text{кольца}}}{\sqrt{R^2 + r^2}}$$

Тогда
$$\varphi_1=rac{kq_{ ext{кольца}}}{R}, \ \mathrm{a} \ \varphi_2=rac{kq_{ ext{кольца}}}{\sqrt{R^2+l^2}}$$

$$q_{\text{кольца}} = \tau \cdot 2\pi R$$

Тогда работа равна

$$A = Q\Delta \varphi = Q(\varphi_1 - \varphi_2) = Q\left(\frac{kq_{\text{кольца}}}{R} - \frac{kq_{\text{кольца}}}{\sqrt{R^2 + l^2}}\right) = Qk\tau \cdot 2\pi R\left(\frac{1}{R} - \frac{1}{\sqrt{R^2 + l^2}}\right) = Qk\tau \cdot 2\pi \left(1 - \frac{R}{\sqrt{R^2 + l^2}}\right) = 4.689 \cdot 10^{-5}$$
 Дж

<u>Ответ</u>: $4.689 \cdot 10^{-5}$ Дж

