Rotten Tomatoes Freshness Analyzer

Progetto d'Esame

Corso di Programmazione di Applicazioni Data Intensive

Laurea in Ingegneria e Scienze Informatiche

DISI - Università di Bologna, Cesena

Studenti:

- Luca Giuliani, 0000792513, luca.giuliani10@studio.unibo.it
- Filippo Pilutti, 0000793420, filippo.pilutti@studio.unibo.it

0. Introduzione

Lo scopo dell'applicazione è di stabilire se, data la recensione di un film presente nel sito **Rotten Tomatoes**, tale recensione è **fresh** o **rotten**, ovvero se il film è considerato o meno positivo da chi ha scritto la recensione. Per il training del sistema si è utilizzato un dataset di recensioni reperito da **Kaggle** al seguente link:

https://www.kaggle.com/rpnuser8182/rotten-tomatoes (https://www.kaggle.com/rpnuser8182/rotten-tomatoes)

Setup Librerie

Durante il progetto, si farà largo uso delle seguenti librerie:

- NumPy, per l'utilizzo di vettori e matrici e le relative operazioni matematiche
- Pandas, per la struttura dei dati tabulari sotto forma di dataframe facilmente accessibili e comprensibili
- Matplotlib, per la visualizzazione sotto forma di grafico delle caratteristiche del dataset
- Ntlk, per l'elaborazione dei dati in linguaggio naturale dei testi delle canzoni

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import nltk
%matplotlib inline
```

1/2. Analisi Dataset e Standardizzazione

Importazione

Nel caso il dataset non fosse presente, è possibile scaricarlo direttamente da kaggle mettendo le proprie credenziali e facendo uso del modulo 'kaggle' che contiene delle API per il download automatico dei dati. Il modulo può essere installato con il comando: pip install kaggle --upgrade

Il download da github è stato inserito successivamente per permettere l'esecuzione diretta da Colab senza bisogno di scaricare le API di Kaggle e di autenticarsi

In [2]:

```
import os.path
if not os.path.exists('reviews.tsv'):
   # import kaggle
    # kaggle.api.authenticate()
    # kaggle.api.dataset_download_files('rpnuser8182/rotten-tomatoes', unzip=True)
    from urllib.request import urlretrieve
    urlretrieve('https://raw.githubusercontent.com/giuluck/RottenTomatoesFreshnessAnaly
zer/master/src/reviews.tsv',
                'reviews.tsv')
original_dataset = pd.read_csv('reviews.tsv', sep='\t', encoding = 'unicode_escape')
```

Descrizione dei Dati

```
In [3]:
```

```
original_dataset.shape
Out[3]:
(54432, 8)
```

In [4]:

pd.concat([original_dataset.head(5), original_dataset.tail(5)])

Out[4]:

	id	review	rating	fresh	critic	top_critic	publisher	date
0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	November 10, 2018
1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	May 23, 2018
2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	January 4, 2018
3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	November 16, 2017
4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	October 12, 2017
54427	2000	The real charm of this trifle is the deadpan c	NaN	fresh	Laura Sinagra	1	Village Voice	September 24, 2002
54428	2000	NaN	1/5	rotten	Michael Szymanski	0	Zap2it.com	September 21, 2005
54429	2000	NaN	2/5	rotten	Emanuel Levy	0	EmanuelLevy.Com	July 17, 2005
54430	2000	NaN	2.5/5	rotten	Christopher Null	0	Filmcritic.com	September 7, 2003
54431	2000	NaN	3/5	fresh	Nicolas Lacroix	0	Showbizz.net	November 12, 2002

Il dataset è popolato con 54432 recensioni di film prese dal sito Rotten Tomatoes.

Dato che è possibile che alcune siano ripetute, viene tenuta una sola istanza per ognuna di esse.

```
In [5]:
```

```
original_dataset.drop_duplicates(keep = 'first', inplace = True)
original_dataset.shape
Out[5]:
```

(54423, 8)

Rimangono 54423 recensioni, ognuna delle quali contiene informazioni memorizzate in 8 colonne:

- 1. id, ovvero l'identificatore del film (i dati del film sono infatti mantenuti in un'altro dataset)
- 2. review, ovvero la recensione del film
- 3. **rating**, ovvero un voto della recensione, che tuttavia è espresso in scale non standardizzate e, spesso, non è nemmeno presente, rendendo di fatto questa colonna inutile per il sistema di regressione
- 4. fresh, ovvero se il film è complessivamente positivo o meno
- 5. critic, ovvero il nome del critico
- 6. top critic, ovvero se il critico è considerato top critic di Rotten Tomatoes
- 7. publisher, ovvero chi ha pubblicato la recensione
- 8. date, ovvero la data della recension

Per quanto riguarda lo scopo del nostro sistema, le colonne importanti sono la 2 (**reviews**), ovvero la variabile da analizzare, e la 4 (**fresh**), ovvero la variabile da predire.

Estrazione Feature Utili

Per prima cosa, è necessario creare un **nuovo dataset**, sottoinsieme del precedente, che contenga soltanto le colonne utili, e scartiamo innanzitutto i valori **nan** di entrambe le colonne.

In [6]:

```
dataset = original_dataset[['review', 'fresh']].dropna().astype({'review' : 'object',
    'fresh' : 'object'})
pd.concat([dataset.head(5), dataset.tail(5)])
```

Out[6]:

	review	fresh
0	A distinctly gallows take on contemporary fina	fresh
1	It's an allegory in search of a meaning that n	rotten
2	life lived in a bubble in financial dealin	fresh
3	Continuing along a line introduced in last yea	fresh
4	a perverse twist on neorealism	fresh
54423	Despite the title, Wasabi isn't so spicy.	rotten
54424	Dawdles and drags when it should pop; it doesn	rotten
54425	Despite Besson's high-profile name being Wasab	fresh
54426	The film lapses too often into sugary sentimen	rotten
54427	The real charm of this trifle is the deadpan c	fresh

Analisi Esplorativa

A questo punto, descriviamo i dati principali del dataset ottenuto.

In [7]:

```
dataset.describe()
```

Out[7]:

	review	fresh
count	48867	48867
unique	48682	2
top	Parental Content Review	fresh
freq	24	29875

Facciamo poi un'**analisi delle variabili** necessarie per il training e il testing del sistema, in modo da capire se alcuni dati vanno scartati perché non disponibili e/o corrotti.

Analisi Giudizi

In [8]:

```
dataset['fresh'].value_counts(normalize = 'True') * 100
```

Out[8]:

fresh 61.135326 rotten 38.864674

Name: fresh, dtype: float64

In [9]:

```
dataset['fresh'].value_counts().plot.pie()
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x2b6ece069b0>

La maggior parte delle recensioni sono **positive**, cosa di cui bisognerà tenere conto nel momento in cui si va a validare il modello ottenuto.

Analisi Recensioni

Come visto tramite l'analisi dei dati, alcune recensioni non contengono altro che la frase **Parental Content Review**. Risulta ammissibile, inoltre, che ci siano altre recensioni non significative, pertanto queste vanno cercate ed eliminate.

In [10]:

```
values = dataset['review'].value_counts()
values[values > 2]
```

Out[10]:

```
Parental Content Review 24
full review at Movies for the Masses 15
full review in Greek 9
click to read the full review 3
Click to read review 3
Name: review, dtype: int64
```

Dato che non contengono informazioni utili, queste recensioni andranno eliminate.

In [11]:

```
dataset.drop_duplicates(subset = ['review'], keep = False, inplace = True)
dataset.shape

Out[11]:
(48541, 2)
```

Dataset Finale

Prima di costruire il dataset finale, effettuiamo un reindexing dei dati per comodità.

In [12]:

```
dataset.index = np.arange(0, dataset.index.size)
pd.concat([dataset.head(5), dataset.tail(5)])
```

Out[12]:

	review	fresh
0	A distinctly gallows take on contemporary fina	fresh
1	It's an allegory in search of a meaning that n	rotten
2	life lived in a bubble in financial dealin	fresh
3	Continuing along a line introduced in last yea	fresh
4	a perverse twist on neorealism	fresh
48536	Despite the title, Wasabi isn't so spicy.	rotten
48537	Dawdles and drags when it should pop; it doesn	rotten
48538	Despite Besson's high-profile name being Wasab	fresh
48539	The film lapses too often into sugary sentimen	rotten
48540	The real charm of this trifle is the deadpan c	fresh

Mappiamo infine la colonna **fresh** in una colonna booleana: quella sarà la variabile numerica da prevedere.

In [13]:

```
dataset['fresh'] = dataset['fresh'] == 'fresh'
dataset['fresh'].dtype

Out[13]:
```

dtype('bool')

Il dataset finale sarà quindi così strutturato:

In [14]:

```
pd.concat([dataset.head(5), dataset.tail(5)])
```

Out[14]:

	review	fresh
0	A distinctly gallows take on contemporary fina	True
1	It's an allegory in search of a meaning that n	False
2	life lived in a bubble in financial dealin	True
3	Continuing along a line introduced in last yea	True
4	a perverse twist on neorealism	True
48536	Despite the title, Wasabi isn't so spicy.	False
48537	Dawdles and drags when it should pop; it doesn	False
48538	Despite Besson's high-profile name being Wasab	True
48539	The film lapses too often into sugary sentimen	False
48540	The real charm of this trifle is the deadpan c	True

Ed avrà le seguenti caratteristiche:

In [15]:

```
dataset.shape
```

Out[15]:

(48541, 2)

In [16]:

```
dataset.describe()
```

Out[16]:

	review	fresh
count	48541	48541
unique	48541	2
top	In addition to some trite set pieces, writer-d	True
freq	1	29738

3/4. Generazione e Validazione di Modelli Differenti

Divisione in Traning Set e Test Set

Come da pratica generale, il **test set** corrisponde al 30% dell'intero data set, mentre il 70% viene lasciato per il **training**.

In [17]:

```
from sklearn.model_selection import train_test_split
trainset, testset = train_test_split(dataset, test_size = 0.3, random_state = 0)
```

In [18]:

```
trainset.head()
```

Out[18]:

	review	fresh
26829	A sprawling, melancholy epic anti-Western.	True
31370	The script for this comedy is so half-baked th	False
15670	A bold and rousing historical epic.	True
21106	Russell is obviously working out his considera	False
5188	The result is a film that lacks the coherence,	False

In [19]:

```
testset.head()
```

Out[19]:

	review	fresh
36388	It is like Winnie the Pooh: it might be of Ver	True
26974	The story's strong point isn't psychological d	True
12789	Chappaquiddick" is exactly what you want it to	True
7999	Life, death, the beyond Ah, the beyond. Suc	False
8668	The story bungles ahead pointlessly, mixing me	False

Importazione Features

Come prima cosa bisogna importare le **features** necessarie dalla libreria **sklearn**:

In [20]:

```
from sklearn.feature extraction.text import CountVectorizer
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
stopwords = nltk.corpus.stopwords.words('english')
lemmatizer = nltk.stem.WordNetLemmatizer()
pos_dictionary = {'N': 'n', 'V': 'v', 'J': 'a', 'R': 'r'}
def tokenize(sentence):
    return [lemmatizer.lemmatize(word, pos_dictionary.get(pos[0], 'a'))
            for word, pos in
            nltk.pos_tag(list(filter(lambda s: s not in stopwords,
                                     list(map(lambda s: s.lower(),
                                              nltk.tokenize.word tokenize(sentence
))))))]
```

```
[nltk_data] Downloading package punkt to
[nltk_data]
                C:\Users\Luke\AppData\Roaming\nltk_data...
[nltk_data]
             Package punkt is already up-to-date!
[nltk_data] Downloading package stopwords to
                C:\Users\Luke\AppData\Roaming\nltk_data...
[nltk_data]
[nltk_data]
             Package stopwords is already up-to-date!
[nltk data] Downloading package averaged perceptron tagger to
[nltk_data]
                C:\Users\Luke\AppData\Roaming\nltk_data...
[nltk_data]
             Package averaged_perceptron_tagger is already up-to-
[nltk_data]
                  date!
[nltk_data] Downloading package wordnet to
[nltk data]
                C:\Users\Luke\AppData\Roaming\nltk data...
[nltk_data]
              Package wordnet is already up-to-date!
```

Scelta del Modello

A questo punto non rimane che scegliere il modello migliore e addestrarlo.

Per fare ciò, si sono susseguite delle **iterazioni** utili alla scelta degli **iperparametri** e degli **algoritmi da utilizzare**.

Di seguito sono quindi elencati i passaggi eseguiti durante le varie iterazioni, le quali hanno generato modelli con **score differenti** e tra i quali è stato possibile scegliere il migliore dopo aver identificato dei trend che indicavano il settaggio più adeguato.

Il punteggio ottenuto dai vari modelli è stato calcolato, in ogni iterazione, tramite il seguente validatore:

In [21]:

```
validator = KFold(n_splits = 10)
```

Prima Iterazione

Inizialmente, si è utilizzato un **CountVectorizer** e un classificatore di tipo **LogisticRegression** utilizzante l'algoritmo **liblinear**:

In [22]:

```
first_model = model = Pipeline([
    ('vectorizer', CountVectorizer(stop_words = 'english')),
    ('classifier', LogisticRegression(solver = 'liblinear'))
])
```

La griglia di iperparametri è stata impostata come segue:

In [23]:

```
first_grid = {
    'vectorizer__min_df': [1, 3, 10],
    'vectorizer__max_df': [0.8, 0.9, 1.0],
    'vectorizer__ngram_range': [(1, 1), (1, 2), (1, 3)],
    'classifier__penalty': ['l1', 'l2'],
    'classifier__C': np.logspace(-2, 2, 3)
}
```

Riasumendo, questi sono i risultati ottenuti:

- miglior configurazione: {'classifierC': 1.0, 'classifierpenalty': 'l2', 'vectorizermax_df': 1.0, 'vectorizermin_df': 1, 'vectorizer__ngram_range': (1, 1)}
- score: 0.7720
- dettagli sulle altre configurazioni: in tutte le configurazioni migliori, il valore di C era 1.0 e la penalty di tipo l2, mentre né l'utilizzo di ngram né un basso max_df hanno influito particolarmente, per cui si è scelta la configurazione (1, 1) e 0.8 perché più veloce; al contrario, con un basso min_df lo score si è dimostrato notevolmente migliore

Seconda Iterazione

Utilizzando i dati precedentemente acquisiti, si è fatta un'analisi su altri algormitmi.

Il modello è rimasto lo stesso, ma griglia di iperparametri è stata costruita nel seguente modo:

In [24]:

```
second_grid = {
    'vectorizer__max_df': [0.8, 0.9, 1.0],
    'classifier__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
    'classifier__C': np.logspace(-2, 2, 3)
}
```

I risultati ottenuti sono molto simili a quelli dell'iterazione precedente, e mostrano come i due algoritmi che permettono di ottenere una confidenza maggiore sono *newton-cg* e *liblinear*. Per tentare di migliorare ulteriormente il modello, infine, sono stati aggiunti altri elementi quali un **Tfidf Vectorizer** con custom tokenization che tiene conto della **Part of Speech** e della **lemmatizzazione**.

Terza Iterazione

Nella terza iterazione, si sono introdotte ulteriori metodi sperando che lo score potesse aumentare.

A tale scopo, è stata usata anche la funzione *tokenize* precedentemente definita, allo scopo di considerare soltanto le parole utili.

Il modello utilizzato è stato quindi:

In [25]:

```
third_model = Pipeline([
    ('vectorizer', TfidfVectorizer()),
    ('classifier', LogisticRegression())
])
```

Mentre la griglia di iperparametri su cui basare il modello è stata così costruita:

In [26]:

```
third_grid = {
    'vectorizer__tokenizer': [None, tokenize],
    'vectorizer__max_df': [0.8, 0.9],
    'classifier__solver': ['newton-cg', 'liblinear'],
    'classifier__C': np.logspace(-4, -4, 5)
}
```

Il **punteggio ottenuto** non si è rivelato soltanto di poco superiore a quello delle precedenti iterazioni.

Nel modello finale, tuttavia, si è scelto di usare un *TfidfVectorizer* perché, seppur non aumentando di troppo lo score, i punteggi assegnati alle parole sembrano adatti a qualsiasi tipo di recensione, mentre utilizzando il *CountVectorizer* alcune parole con punteggio estremamente alto/basso non sembravano avere significato generale ma soltanto nel dataset ottenuto.

Quarta Iterazione

Infine, si è tentato di cambiare modello di classificazione e utilizzare una **Support Vector Machine** per capire se, utilizzando una separazione non lineare dei dati, si sarebbe potuto ottenere un risultato migliore.

Come modello dei dati, quindi, si è usato questo:

```
In [27]:
```

```
fourth_model = Pipeline([
    ('vectorizer', TfidfVectorizer(tokenizer = tokenize, max_df = 0.8)),
    ('classifier', SVC())
])
```

Mentre sono state provate le combinazioni di iperparametri presenti in questa griglia:

```
In [28]:
```

```
fourth_grid = {
    'classifier__solver': ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'],
    'classifier__C': np.logspace(-2, -2, 3)
}
```

Il risultato ottenuto si è dimostrato in linea con quelli ottenuti in precedenza, con uno **score** che nei migliori casi si aggira intorno al **77%**, e ha favorito il kernel di tipo **linear**, dimostrando che difficilmente sarà possibile ottenere risultati migliori su questo dataset.

Come modello finale dei dati, pertanto, si è scelto di utilizzare quello ottenuto durante la terza iterazione.

5. Scelta del Modello Ottimo e Analisi del Risultato

Modello Ottimo

Dalle tre iterazioni precedenti, il modello ottimo fra quelli indagati è risultato guesto:

```
In [29]:
```

```
model = Pipeline([
    ('vectorizer', TfidfVectorizer(tokenizer = tokenize, max_df = 0.8)),
    ('classifier', LogisticRegression(C = 1.0, penalty = 'l2', solver = 'liblinear'))
])
```

A questo punto, è quindi possibile addestrare il modello sui dati di training:

```
In [30]:
```

```
model.fit(trainset['review'], trainset['fresh'])

Out[30]:

Pipeline(memory=None,
    steps=[('vectorizer', TfidfVectorizer(analyzer='word', binary=False,
decode_error='strict',
    dtype=<class 'numpy.float64'>, encoding='utf-8', input='content',
    lowercase=True, max_df=0.8, max_features=None, min_df=1,
    ngram_range=(1, 1), norm='l2', preprocessor=None, smooth_idf=...ty
='l2', random_state=None, solver='liblinear',
    tol=0.0001, verbose=0, warm_start=False))])
```

Per poi validarlo sui dati di testing:

In [31]:

```
model.score(testset['review'], testset['fresh'])
```

Out[31]:

0.772986335233125

Ottenendo uno score del 77% circa.

Analisi delle Probabilità

Creiamo un checkset che associa a ogni riga del testset il valore originale e quello predetto dal modello.

In [32]:

```
checkset = testset.rename(columns = {'fresh': 'actual'})
checkset['predicted'] = model.predict(testset['review'])
checkset['hyperplane distance'] = model.decision_function(testset['review'])

probs = model.predict_proba(testset['review'])
checkset['fresh probability'] = probs[:, 1]
checkset['rotten probability'] = probs[:, 0]

checkset.index = np.arange(0, checkset.index.size)
pd.concat([checkset.head(5), checkset.tail(5)])
```

Out[32]:

	review	actual	predicted	hyperplane distance	fresh probability	rotten probability
0	It is like Winnie the Pooh: it might be of Ver	True	True	0.804448	0.690925	0.309075
1	The story's strong point isn't psychological d	True	False	-0.113371	0.471687	0.528313
2	Chappaquiddick" is exactly what you want it to	True	True	0.787265	0.687244	0.312756
3	Life, death, the beyond Ah, the beyond. Suc	False	True	0.996858	0.730440	0.269560
4	The story bungles ahead pointlessly, mixing me	False	False	-0.444620	0.390641	0.609359
14558	This movie has no focus, no point of view and	False	False	-1.894391	0.130745	0.869255
14559	The only noticeable Resident Evil on display h	False	False	-0.538831	0.368460	0.631540
14560	Instead of gently skewering the conventions of	False	False	-0.465478	0.385687	0.614313
14561	Smith carries it off with his effortless charm	True	True	0.958294	0.722780	0.277220
14562	Cosmopolis may, like Packer's limo, be an elab	True	True	1.002788	0.731606	0.268394

In [33]:

```
row = checkset[checkset['fresh probability'] == checkset['fresh probability'].max()]
row.iloc[0]['review']
```

Out[33]:

"Fincher's achievement is, in both quality and spirit, a film of great bea uty, and it touched me deeply."

In [34]:

```
row[['actual', 'predicted', 'hyperplane distance', 'fresh probability', 'rotten probabi
lity']]
```

Out[34]:

	actual	predicted	hyperplane distance	fresh probability	rotten probability
8542	True	True	5.427516	0.995625	0.004375

Recensione con Maggior Probabilità Negativa

In [35]:

```
row = checkset[checkset['rotten probability'] == checkset['rotten probability'].max()]
row.iloc[0]['review']
```

Out[35]:

"You wouldn't think a movie with this much plot could be this dull, but yo u'd be wrong."

In [36]:

```
row[['actual', 'predicted', 'hyperplane distance', 'fresh probability', 'rotten probabi
lity']]
```

Out[36]:

	actual	predicted	hyperplane distance	fresh probability	rotten probability
11289	False	False	-4.89482	0.00743	0.99257

Matrice di Confusione

Di seguito viene mostrata la **matrice di confusione** del modello ottenuto e i vari valori interessanti ricavabili da essa.

In [37]:

Out[37]:

Predicted Fresh Predicted Rotten

Actual Fresh	7832	1102
Actual Rotten	2204	3425

Accuracy

In [38]:

```
(tps + tns) / (tps + tns + fps + fns)
```

Out[38]:

0.772986335233125

Precision & Recall

In [39]:

```
precision_fresh = tps / (tps + fps)
precision_fresh
```

Out[39]:

0.7803905938620964

In [40]:

```
precision_rotten = tns / (tns + fns)
precision_rotten
```

Out[40]:

0.7565716810249613

```
In [41]:
```

```
recall_fresh = tps / (tps + fns)
recall_fresh
```

Out[41]:

0.8766509961943139

In [42]:

```
recall_rotten = tns / (tns + fps)
recall_rotten
```

Out[42]:

0.6084562089181027

F1 Measures

In [43]:

```
f1_fresh = (2 * precision_fresh * recall_fresh) / (precision_fresh + recall_fresh)
f1_fresh
```

Out[43]:

0.825724828676858

In [44]:

```
f1_rotten = (2 * precision_rotten * recall_rotten) / (precision_rotten + recall_rotten)
f1_rotten
```

Out[44]:

0.6744781410003937

Esempi di Previsioni Errate

Al fine di indagare le cause delle previsioni errate, si mostrano **due esempi**, rispettivamente con errore più basso e più alto nelle probabiltà, di falsi positivi (recensioni etichettate come *fresh* che sono invece *rotten*) e di falsi negativi (recensioni etichettate come *rotten* che sono invece *fresh*).

Falsi Positivi

In [45]:

fp.describe()

Out[45]:

hyperplane distance fresh probability rotten probability

count	2204.000000	2204.000000	2204.000000
mean	0.681288	0.652479	0.347521
std	0.547532	0.106123	0.106123
min	0.000258	0.500064	0.033481
25%	0.257508	0.564024	0.276237
50%	0.552950	0.634820	0.365180
75%	0.963206	0.723763	0.435976
max	3.362719	0.966519	0.499936

Recensione con Errore Maggiore

In [46]:

```
fp_highest_error = fp[fp['fresh probability'] == fp['fresh probability'].max()]
fp_highest_error.iloc[0]['review']
```

Out[46]:

'It demands love, which is the best way not to get it.'

In [47]:

```
fp_highest_error[['actual', 'predicted', 'hyperplane distance', 'fresh probability', 'r
otten probability']]
```

Out[47]:

	actual	predicted	hyperplane distance	fresh probability	rotten probability
12531	False	True	3.362719	0.966519	0.033481

Recensione con Errore Minore

In [48]:

```
fp_lowest_error = fp[fp['fresh probability'] == fp['fresh probability'].min()]
fp_lowest_error.iloc[0]['review']
```

Out[48]:

"Paul Weitz's American Dreamz assembles a sumptuous buffet for the viewer, but since Weitz isn't hungry, he just stares at the spread, dumbly refusin g to eat when really he should gorge."

In [49]:

```
fp_lowest_error[['actual', 'predicted', 'hyperplane distance', 'fresh probability', 'ro
tten probability']]
```

Out[49]:

	actual	predicted	hyperplane distance	fresh probability	rotten probability
7698	False	True	0.000258	0.500064	0.499936

Falsi Negativi

In [50]:

```
fn.describe()
```

Out[50]:

hyperplane distance fresh probability rotten probability

count	1102.000000	1102.000000	1102.000000
mean	-0.556208	0.373465	0.626535
std	0.501559	0.099603	0.099603
min	-3.363231	0.033465	0.500121
25%	-0.776936	0.314981	0.547921
50%	-0.419072	0.396739	0.603261
75%	-0.192273	0.452079	0.685019
max	-0.000486	0.499879	0.966535

Recensione con Errore Maggiore

In [51]:

```
fn_highest_error = fn[fn['rotten probability'] == fn['rotten probability'].max()]
fn_highest_error.iloc[0]['review']
```

Out[51]:

'Depp and Jolie lack sparks, but The Tourist is a light little lark of a m ystery-love story.'

In [52]:

```
fn_highest_error[['actual', 'predicted', 'hyperplane distance', 'fresh probability', 'r
otten probability']]
```

Out[52]:

9948

actual	predicted	hyperplane distance	fresh probability	rotten probability
True	False	-3 363231	0 033465	0 966535

Recensione con Errore Minore

In [53]:

```
fn_lowest_error = fn[fn['rotten probability'] == fn['rotten probability'].min()]
fn_lowest_error.iloc[0]['review']
```

Out[53]:

'There are no wasted moments here. There are no wasted characters. The fil m is as much about Martin Luther King Jr. as it is about the people he worked with, and fought for.'

In [54]:

```
fn_lowest_error[['actual', 'predicted', 'hyperplane distance', 'fresh probability', 'ro
tten probability']]
```

Out[54]:

actual predicted hyperplane distance fresh probability rotten probability

12293	True	False	-0.000486	0.499879	0.500121

Considerazioni

Risulta chiaro che le recensioni etichettate in maniera errata sono perlopiù ambigue e/o contengono termini positivi negati (o viceversa), che il modello non riesce ad interpretare nel complesso.

Parole Con Coefficienti Più Alti

In ultimo, vengono mostrate due liste di parole con i relativi coefficienti il cui peso incide sul valore positivo (*fresh*) o negativo (*rotten*) della recensione in base al segno del coefficiente stesso.

In [55]:

```
logistic_regression = model.named_steps['classifier']
count_vectorizer = model.named_steps['vectorizer']
coefs = pd.Series(logistic_regression.coef_[0], index = count_vectorizer.get_feature_na
mes())
coefs.sort_values(inplace = True)
```

Parole a Maggiore Incidenza Negativa

In [56]:

coefs.head(10)

Out[56]:

lack -4.110912 unfortunately -4.108123 fail -4.099627 tedious -4.099480 bland -3.871457 dull -3.852082 bad -3.742408 misfire -3.595049 fails -3.464217 mess -3.406680

dtype: float64

Parole a Maggiore Incidenza Positiva

In [57]:

coefs.tail(10)

Out[57]:

masterpiece 2.854368 classic 2.867702 2.904831 rare best 3.031230 performance 3.036795 entertain 3.133429 powerful 3.184236 perfect 3.266599 enjoyable 3.432693 fun 3.652566

dtype: float64

Considerazioni

Come già spiegato durante il paragrafo sulla scelta del modello, si è preferito usare un *TfidVectorizer* piuttosto che un *CountVectorizer* proprio perché il primo ha prodotto una lista di parole a incidenza positiva/negativa coerenti con il linguaggio naturale, mentre il secondo ha prodotto anche parole che avrebbero permesso un ottimo score su questo dataset ma che non avevano alcuna incidenza positiva/negativa nel linguaggio naturale, quali ad esempio dei nomi propri di persone o città.