

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

Recommendation engines identify things that a user may like based on what they've watched in the past

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

The factorization splits this matrix into row factors and column factors that are essentially user and item embeddings

To recommend movies to users, we recommend the movies that we predict they will rate the highest

0.9	-1	1	1	-0.9
-0.2	-0.8	-1	0.9	1

$$0.2*1 + (-1)*0.9 = -0.7$$

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

YouTube video recommendations

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

Architecture of an end-to-end system for recommendations

Machine learning on Google Cloud Platform

cloud.google.com

