UVOD V GEOMETRIJSKO TOPOLOGIJO: 1. TEST 5. 4. 2013

1. NALOGA (5 točk)

Naj bo $J \subset \mathbb{R}$ interval in $x_0 \in J$. Za zvezno funkcijo $f: J \to \mathbb{R}$ naj bo $F: J \to \mathbb{R}$ funkcija, definirana s predpisom

 $F(x) = \int_{x_0}^x f(\xi) d\xi.$

Iz lastnosti integrala sledi, da je F zvezna funkcija, torej je s predpisom $\Phi(f) = F$ podana preslikava $\Phi: C(J,\mathbb{R}) \to C(J,\mathbb{R})$.

- a. Naj bo J=[a,b] in naj bo prostor $C([a,b],\mathbb{R})$ opremljen z metriko enakomerne konvergence. Dokaži, da je Φ zvezna preslikava.
- b. Naj bo $J=\mathbb{R}$ in naj bo prostor $C(\mathbb{R},\mathbb{R})$ opremljen s topologijo enakomerne konvergence na kompaktih. Dokaži, da je Φ zvezna preslikava.

2. NALOGA (5 točk)

- a. Naj L označuje zaprto kroglo polmera r s središčem v a in naj bo R > r. Dokaži, da obstaja zvezna surjekcija $f: \mathbb{R}^2 \to \mathbb{R}^2$ z naslednjimi lastnostmi:
 - $f(x) = x \text{ za } ||x a|| \geqslant R$,
 - $f(x) = a \text{ za } x \in L$,
 - $f|_{\mathbb{R}^2-L}$ je injekcija.
- **b.** Naj bodo L_1, L_2, \ldots, L_m paroma disjunktne zaprte krogle.

Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru $\mathbb{R}^2/\{L_1,L_2,\ldots,L_m\}$.

c. (*) Naj bo $\{L_i \mid i \in \mathbb{N}\}$ lokalno končna družina paroma disjunktnih zaprtih krogel v \mathbb{R}^2 . Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru $\mathbb{R}^2/\{L_1, L_2, \dots\}$.

Rešitve oziroma odgovore utemelji.

vlakno preslikave q.

Teoretična naloga (5 točk)

Za vsako	od	spodnjih	trditev '	v pripadajoč	i kvadratek	čitljivo	označi,	če je	trditev	pravilna	(\mathbf{P})	oziroma
napačna	(\mathbf{N})	. Če ne ve	š, pusti l	kvadratek pr	azen, ker se	nepravi	ilni odgo	vor št	eje nega	tivno!		

apacı	ita (14). Ce ne ves, pusti kvauratek prazen, kei se nepravimi odgovor steje negativno:
	Naj bo $U(f,K,\varepsilon)$ neka bazna odprta okolica prostora zveznih preslikav $C(X,Y)$, kjer je Y metrični prostor. Če je $g\in U(f,K,\varepsilon)$, obstaja taka bazna okolica $U(g,L,\delta)$, za katero je $U(g,L,\delta)\subset U(f,K,\varepsilon)$.
	Kvocientni prostor $\mathbb{R}/[0,\infty)$ je homeomorfen premici \mathbb{R} (z običajno topologijo).
	Topologija enakomerne konvergence na kompaktih in kompaktno odprta topologija na $C(X,Y)$ se ujemata, če je Y metrični prostor.
	Naj bo \sim ekvivalenčna relacija na prostoru X . Kvocientni prostor X/\sim je T_1 natanko tedaj, ko se ekvivalenčni razredi zaprti v X .
	Kvocientni prostor 1-števnega prostora je 1-števen prostor.
	Če je X kompakten prostor, sta kompaktna tudi stožec CX in suspenzija ΣX .
	Naj topološka grupa G deluje na prostoru X . Kvocientna projekcija $X \to X/G$ je vedno zaprta.
	Vsaka odprta ali zaprta zvezna surjekcija je kvocientna preslikava.
	Kvocientni prostor nepovezanega prostora je lahko povezan prostor.
同	Naj bo $q: X \to Y$ kvocientna preslikava. Množica $A \subset X$ je nasičena glede na q , če A seka vsako