Math 19 E
Spring 2019
Final Exam
May 6
Version A

Name:	

This exam contains 7 pages and 7 questions. Total of points is 100. For full credit you must show your work. Partial credit may be given for incorrect solutions if sufficient work is shown. Messy/unorganized answers may be penalized, even if correct.

Grade Table (for teacher use only)

Question	Points	Score
1	20	
2	20	
3	20	
4	12	
5	8	
6	8	
7	12	
Total:	100	

HONORS PLEDGE (sign after exam is completed): I have neither given nor received aid on this exam, nor have I observed a violation of the UVM Code of Academic Integrity.

Signature:	
Digital at C.	

- 1. (20 points) Evaluate the following indefinite integrals
 - (a) (8 points)

$$\int (4x^6 - 3x^2 + 8)dx$$

(b) (6 points)

$$\int (8x^3 + 2)e^{x^4 + x} dx$$

(c) (6 points)

$$\int \frac{4x-1}{2x^2-x} dx$$

- 2. (20 points)
 - (a) (6 points) Given that

$$\frac{d}{dx}\left(xe^x - e^x\right) = xe^x.$$

Find the particular antiderivative of

$$f(x) = xe^x$$

which passes through the point (1,1).

(b) (6 points) Given that

$$\int_0^5 f(x)dx = 4; \qquad \int_0^3 g(x)dx = 2; \qquad \int_3^5 g(x)dx = 12$$

Compute $\int_0^5 (3f(x) + g(x))dx$.

(c) (8 points) Compute the definite integral

$$\int_{4}^{6} (5x+4)dx$$

- 3. (20 points) When evaluating limits make sure to justify your answer. Write DNE if a limit does not exist.
 - (a) (6 points) Evaluate

$$\lim_{x \to 5} \frac{x-4}{x-5}$$

(b) (6 points) Evaluate

$$\lim_{x \to 0} \frac{e^{4x} - 4x - 1}{x^2}$$

(c) (8 points) Find all horizontal and vertical asymptotes of

$$f(x) = \frac{x^2 - 16}{3(x^2 - 6x + 8)}$$

- 4. (12 points) Compute the following derivatives
 - (a) (6 points)

$$\frac{d}{dx}\left(x^4 + \ln(1+x^4)\right)$$

(b) (6 points)

$$\frac{d}{dx}\left(e^x(x^2-4x+2)^7\right)$$

5. (8 points) Find the equation of the tangent line to the function

$$f(x) = x^4 + x - 1$$

at the point (0, -1).

6. (8 points) Find y' given that

$$xy - y^3 - e^x = 0.$$

- 7. (12 points) For the function $f(x) = x^3 6x^2 + 9x$
 - (a) (8 points) Find the intervals where f is increasing/decreasing

(b) (4 points) Find any local maxima or minima.

Bonus (3 pts) The 3rd-degree Taylor polynomial approximation for f(x) at x = 1 is defined to be

$$p(x) = f(1) + f'(1)x + \frac{1}{2}f''(1)x^2 + \frac{1}{6}f'''(1)x^3$$

where f'(1), f''(1), and f'''(1) are the 1st, 2nd, and 3rd derivatives of f evaluated at x = 1.

Compute the 3rd-degree Taylor polynomial at x = 1 for $f(x) = \ln(x)$.