論文勉強メモ

A Fourier analytic approach to pathwise stochastic integration

基礎工学研究科システム創成専攻修士 1 年 学籍番号 29C17095 百合川尚学

2018年3月17日

目次

第 1 章	Notation	2
第 2 章	Preliminaries	3
2.1	Ciesielski 同型	3

第 1 章

Notation

 $\mathbb{N} = \{0, 1, 2, \dots\},$ λ :Lebesgue measure.

第2章

Preliminaries

2.1 Ciesielski 同型

定義 2.1.1 (Haar 関数系). Haar 関数系 $(H_{pm}, p \in \mathbb{N}, 1 \le m \le 2^p)$ は次で定義される:

$$H_{pm}(t) := \begin{cases} \sqrt{2^p}, & t \in \left[\frac{m-1}{2^p}, \frac{2m-1}{2^{p+1}}\right), \\ -\sqrt{2^p}, & t \in \left[\frac{2m-1}{2^{p+1}}, \frac{m}{2^p}\right), \\ 0, & \text{otherwise,} \end{cases}$$
 $(t \in [0, 1]).$

定理 2.1.2. Haar 関数系 $(H_{pm}, p \in \mathbb{N}, 1 \le m \le 2^p)$ に $H_{00} \equiv 1$ を加えたものを \mathbb{H} とおくと、 \mathbb{H} は $L^2([0,1],\lambda)$ における完全正規直交基底である.

証明. $L^2([0,1],\lambda)$ のノルムと内積をそれぞれ $\|\cdot\|$, $\langle\cdot,\cdot\rangle$ で表す. $\mathbb H$ が正規直交系であることは積分により従うから、以下では $\mathbb H$ の完全性を示す. つまり $f\in L^2([0,1],\lambda)$ が全ての $H_{pm}\in\mathbb H$ に対して $\left\langle f,H_{pm}\right\rangle =0$ を満たすなら f=0 が成り立つことを示す.

第一段 $p \in \mathbb{N}$ に対し $\mathfrak{I}_p \coloneqq \left\{ \left[\frac{i-1}{2^{p+1}}, \frac{i}{2^{p+1}} \right] \; ; \quad i = 1, 2, \cdots, 2^{p+1} \right\}$ とおき,

$$\mathfrak{B}_p\coloneqq\sigma\bigl[\mathfrak{I}_p\bigr]$$

によりフィルトレーション $\left(\mathfrak{B}_p\right)_{p\in\mathbb{N}}$ を定めれば、 $\mathfrak{B}([0,1])=\vee_{p\in\mathbb{N}}\mathfrak{B}_p$ が成り立つ。実際、 \subset の関係は [0,1] の開集合が $\cup_{p\in\mathbb{N}}\mathfrak{I}_p$ の元の可算和で表現できることにより従う。

第二段 任意の $p \in \mathbb{N}$ に対して

$$E\left[f \mid \mathfrak{B}_{p}\right] = \sum_{i=1}^{2^{p+1}} 2^{p+1} \left(\int_{\left[\frac{i-1}{2^{p+1}}, \frac{i}{2^{p+1}}\right)} f \, d\lambda \right) \mathbb{1}_{\left[\frac{i-1}{2^{p+1}}, \frac{i}{2^{p+1}}\right)}, \quad \lambda\text{-a.e.}$$
 (2.1)

が成り立つことを示す。実際、右辺を g_p と表せば

$$\{\emptyset\} \cup \mathfrak{I}_p \subset \left\{ E \in \mathfrak{B}_p \; ; \quad \int_E \mathbf{E} \left[f \mid \mathfrak{B}_p \right] \, \mathrm{d} \, \lambda = \int_E g_p \, \, \mathrm{d} \, \lambda \, \right\}$$

が従うから、Dynkin 族定理により $\left\{E \in \mathfrak{B}_p \; ; \; \int_E \mathrm{E}\left[f \,\middle|\, \mathfrak{B}_p\right] \,\mathrm{d}\lambda = \int_E g_p \,\mathrm{d}\lambda \right\} = \mathfrak{B}_p$ となる. そして $\mathrm{E}\left[f \,\middle|\, \mathfrak{B}_p\right], g_p$ ともに \mathfrak{B}_p -可測であるから (2.1) が得られる.

第三段 $\left\langle f,H_{pm}\right\rangle =0\,(\forall H_{pm}\in\mathbb{H})$ が満たされているとき $g_p\equiv 0\,(\forall p\in\mathbb{N})$ が出る. 先ず

$$0 = \langle f, H_{pm} \rangle = \sqrt{2^{p+1}} \int_{\left[\frac{m-1}{2^{p+1}}, \frac{2m-1}{2^{p+2}}\right)} f \, d\lambda - \sqrt{2^{p+1}} \int_{\left[\frac{2m-1}{2^{p+2}}, \frac{m}{2^{p+1}}\right)} f \, d\lambda, \quad (\forall p, m)$$

により
$$\left\langle f, 1_{\left[\frac{m-1}{2p+1}, \frac{2m-1}{2p+2}\right)} \right\rangle =$$

$$\int_{\left[\frac{m-1}{2p+1}, \frac{m}{2p+1}\right)} f \, d\lambda = 2 \int_{\left[\frac{2m-2}{2p+2}, \frac{2m-1}{2p+2}\right)} f \, d\lambda$$

$$= 2^2 \int_{\left[\frac{4m-4}{2p+3}, \frac{4m-3}{2p+3}\right)} f \, d\lambda$$

$$= \cdots$$

$$= 2^k \int_{\left[\frac{2^k m - 2^k}{2p+k+1}, \frac{2^k m - 2^k + 1}{2p+k+1}\right)} f \, d\lambda$$

$$= \cdots$$

一方で (2.1) の左辺は、マルチンゲール収束定理により λ -a.e. に $\mathrm{E} \left[f \, \middle| \, \mathfrak{B}_p \right] \longrightarrow f \, (p \longrightarrow \infty)$ が成り立つ、以上より $f \equiv 0$ が得られる.