Home Equity Line of Credit

### Risk Prediction



Chen Cao, Xu liu, Shuyu Huang, Yi Huang, Shuyi Chen MSMA Group 34



**01.**Overview

Data Cleaning

Model Selection

Interface



Overview

### **Overview**





**Data Cleaning** 

### **Data Cleaning**

# 23

**Variables** 

### **Consolidation of Synonymous**

data['MaxDelq2PublicRecLast12M'] 5&6;8&9

### **Datatype Transfer**

data['MaxDelqEver'] . astype (object)
data['MaxDelq2PublicRecLast12M'] . astype (object)
data['RiskPerformance'] .astype (bool)

### **Value Imputer**

data.replace(-7,150)
data.replace(-8,np.nan)
Imputer(strategy="mean") or
Imputer(strategy="median")
data['ExternalRiskEstimate'].isin([-9]

# **Output**Risk Performance



**Model Selection** 

### Model Selection - SVC got the highest score

|                         |            | SVC    | LDA-svd | LDA-Isqr | AdaBoost | Logistic<br>Regression | KNN    | Decision<br>Tree | QDA    |
|-------------------------|------------|--------|---------|----------|----------|------------------------|--------|------------------|--------|
| Imputer=<br><b>mean</b> | CV_Score   | 70.34% | 73.17%  | 72.42%   | 73.53%   | 72.34%                 | 69.80% | 70.32%           | 70.23% |
|                         | Test_Score | 71.52% | 71.87%  | 71.70%   | 72.07%   | 71.75%                 | 69.74% | 71.02%           | 69.31  |
| Imputer=<br>median      | CV_Score   | 72.51% | 71.48%  | 71.50%   | 72.24%   | 70.17%                 | 71.41% | 70.59%           | 70.29% |
|                         | Test_Score | 72.42% | 70.94%  | 70.94%   | 72.32%   | 70.83%                 | 70.41% | 69.69%           | 69.98% |

### **Future Protential-SNN**

```
137 class SimpleNN(nn.Module):
       def __init__(self, in_dim=IN_DIM, hidden_dim_1=HIDDEN_DIM, hidden_dim_2=HIDDEN_DIM):
           super(SimpleNN, self). init ()
139
           self.fc1 = nn.Linear(IN DIM, HIDDEN DIM)
140
           self.fc1 bn = nn.BatchNorm1d(HIDDEN DIM)
           self.dropout1 = nn.Dropout(p=0.5)
142
           self.fc2 = nn.Linear(HIDDEN DIM, HIDDEN DIM)
144
           self.fc2 bn = nn.BatchNorm1d(HIDDEN DIM)
145
           self.dropout2 = nn.Dropout(p=0.5)
146
           self.fc3 = nn.Linear(HIDDEN_DIM, 1)
147
           self.act = nn.Sigmoid()
148
149
       def forward(self, x):
           x = F.relu(self.fc1 bn(self.fc1(x)))
150
151
           x = F.relu(self.fc2_bn(self.fc2(self.dropout1(x))))
152
           x = self.fc3(self.dropout2(x))
           return self.act(x)
153
154
```

### Accuray:

Epoch 1, train loss: 0.586499, dev acc: 0.727053
Epoch 2, train loss: 0.577453, dev acc: 0.731401
Epoch 3, train loss: 0.568702, dev acc: 0.740097
Epoch 4, train loss: 0.565585, dev acc: 0.738164
Epoch 5, train loss: 0.564307, dev acc: 0.742995
Epoch 6, train loss: 0.565393, dev acc: 0.736715
Epoch 7, train loss: 0.563329, dev acc: 0.739614
Epoch 8, train loss: 0.564499, dev acc: 0.739130

Epoch 9, train loss: 0.562446, dev acc: 0.733333



Interface



### **Credit Risk Report**

☐ Show dataframe

Choose a row of information in the dataset (0~10458):

23

Which algorithm?

Support Vector Machine

Prediction: Bad

http://10.5.63.150:8501

**Risk Prediction** 

## Thank You!



Chen Cao, Xu liu, Shuyu Huang, Yi Huang, Shuyi Chen MSMA Group 34