Homework 3 Report

Classification of liver malfunction severity (LDA)

Ian Effendi \ iae2784@rit.edu

October 12, 2021

Contents

Certification	1
Overview	1
ELT	1
EDA	2
Response Encoding	3
Feature Correlations	4
Model Analysis	5
Baseline Model Analysis	6
Optimal Priors (for Total Error Rate)	7
Optimal Priors (for Total Cost)	8
Cross-Validation Analysis	11
10-fold CV	11
3-fold CV	13
Session Information	15

Certification

I certify that I indeed finished reading Ch. 4 from An Introduction to Statistical Learning, by James Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani.

Overview

In this assignment we will:

- Perform exploratory data analysis (EDA) on the dataset.
- Fit and analyze a linear discriminant analysis (LDA) model on the dataset.
- Perform multiple cross-validation tasks at different k-fold values (k = 3, k = 10).

ELT

Much of the extract, load, and transform (ELT) process from the previous report has been revised for this assignment. Notably, a make.dataset() function streamlines the process of parsing the source Liver.txt file into a compatible data.frame.

```
# Import the dataset as variable called "Liver".
invisible(setup.analysis(target = "Liver"))
## Use cached dataset? TRUE
## 'Liver' exists.
## Importing dataset...
## Parsing dataset from local file...
## Reading dataset from compressed cache file...
## Done.
## Dataset imported.
## Registered target dataset to global environment. Access using 'Liver'.
## Use 'Liver' to access underlying tbl_df.
## Dataset of type: 'tbl_df/tbl/data.frame'.
## tibble [345 x 7] (S3: tbl_df/tbl/data.frame)
## $ blood.1 : int [1:345] 85 85 86 91 87 98 88 88 92 90 ...
## $ blood.2 : int [1:345] 92 64 54 78 70 55 62 67 54 60 ...
## $ blood.3 : int [1:345] 45 59 33 34 12 13 20 21 22 25 ...
## $ blood.4 : int [1:345] 27 32 16 24 28 17 17 11 20 19 ...
## $ blood.5 : int [1:345] 31 23 54 36 10 17 9 11 7 5 ...
## $ drinks : num [1:345] 0 0 0 0 0 0 0.5 0.5 0.5 0.5 ...
## $ severity: Factor w/ 2 levels "Not Severe", "Severe": 2 1 1 1 1 1 2 2 2 2 ...
```

The setup.analysis() function imports a dataset into the global environment with the name provided to the target = argument.

EDA

This section reviews the Liver dataset. In an improvement over the previous report, it now incorporates an assessment of feature correlations.

Response Encoding

##

```
# Recode the response.
liver <- Liver %>% make.response()
summary(liver)
##
      blood.1
                    blood.2
                                  blood.3
##
       : 65.0
                 Min.
                     : 23.0 Min. : 4.0
   Min.
   1st Qu.: 87.0 1st Qu.: 57.0 1st Qu.: 19.0
##
   Median: 90.0 Median: 67.0
                              Median: 26.0
##
   Mean : 90.2 Mean : 69.9 Mean : 30.4
   3rd Qu.: 93.0 3rd Qu.: 80.0 3rd Qu.: 34.0
##
##
   Max. :103.0 Max. :138.0
                              Max. :155.0
##
    blood.4
                   blood.5
                                  drinks
##
   Min. : 5.0 Min. : 5.0
                              Min. : 0.00
##
   1st Qu.:19.0
               1st Qu.: 15.0
                              1st Qu.: 0.50
   Median :23.0
                Median: 25.0
                              Median: 3.00
##
## Mean :24.6
                Mean : 38.3
                              Mean : 3.46
   3rd Qu.:27.0
                3rd Qu.: 46.0
                              3rd Qu.: 6.00
##
##
   Max. :82.0
                Max. :297.0
                              Max. :20.00
##
        severity
##
   Not Severe:200
##
   Severe :145
```

```
truth <- (liver$severity == "Severe")</pre>
```

Feature Correlations

```
liver.info <- analysis.eda(Liver, truth)</pre>
summary(liver.info)
## n_samples n_features
##
         345
## Label counts:
## pos neg total
## 145 200 345
## Class prior probabilities:
## pos neg
## 0.4203 0.5797
# Plot using corrplot::corrplot wrapper.
liver.corrplot <- corr.plot(</pre>
liver, sig.level = 0.05, insig = "blank",
title = "Correlation Plot",
mar = c(1,1,2,1)
)
```

Correlation Plot

The data behind the above correlation plot is provided below:

```
## Feature correlation matrix:
           blood.1 blood.2 blood.3 blood.4 blood.5 drinks
            1.0000 0.04410 0.14770
## blood.1
                                    0.1878
                                             0.2223 0.3127
            0.0441 1.00000 0.07621
## blood.2
                                    0.1461
                                             0.1331 0.1008
## blood.3
           0.1477 0.07621 1.00000
                                    0.7397
                                             0.5034 0.2068
## blood.4
            0.1878 0.14606 0.73967
                                    1.0000
                                             0.5276 0.2796
## blood.5
            0.2223 0.13314 0.50344
                                    0.5276
                                             1.0000 0.3412
            0.3127 0.10080 0.20685
## drinks
                                    0.2796
                                            0.3412 1.0000
```

Model Analysis

Models will be tracked using a named list MODELS:

```
# Create a global `models` variable to keep track of models.
MODELS <<- list()</pre>
# Also, declares a reusable formula.
.FORMULA <<- severity ~ .
```

Baseline Model Analysis

```
# Fit LDA with priors calculated from the input sample.
# Equivalent to: MASS::lda(severity ~ ., data = liver)
# We use `.` instead of `baseline` for ease of typing.
MODELS$. <- fit.model(quote(liver), algorithm = lda, formula = .FORMULA)</pre>
# Temporary variable `model` for current analysed model:
model <- MODELS$.
## Baseline LDA Summary:
## Call:
## lda(severity ~ ., data = liver)
##
## Prior probabilities of groups:
## Not Severe
                 Severe
      0.5797
                  0.4203
##
##
## Group means:
             blood.1 blood.2 blood.3 blood.4 blood.5 drinks
## Not Severe 89.81
                        68.34
                                29.82
                                        25.99 43.17 3.393
                                        22.79
## Severe
                90.63
                      71.98
                                31.21
                                                31.54 3.541
##
## Coefficients of linear discriminants:
##
                LD1
## blood.1 0.08312
## blood.2 0.02263
## blood.3 0.05893
## blood.4 -0.11812
## blood.5 -0.01497
## drinks
           0.06061
## Baseline model error rate:
## 0.2957
##
## Baseline misclassification table:
##
                Not Severe Severe
##
     Not Severe
                       165
                               67
                        35
                               78
##
     Severe
##
## Total misclassified: 102
```

Optimal Priors (for Total Error Rate)

Prepare next analysis.

We can calculate the model that minimizes the total error rate while explicitly setting the prior probability for the positive class. As a reminder:

```
p = P(\text{Severe}), q = (1 - p) = P(\text{Not Severe})
```

```
MODELS$min_error <- LDA.ANALYSIS$calc.optimal.prior.error.rates(</pre>
 liver, truth,
 formula = severity ~ .,
 from = 0.001, to = 0.999, m = 25,
 minimize_cost = FALSE, penalty = 10
)
## -----
## Finding optimal error rates with explicit priors.
## # Penalty factor applied to cost function: x10
## # Checking 25 pos class priors in range [0.001, 0.999]:
## tibble [25 x 2] (S3: tbl_df/tbl/data.frame)
## $ p: num [1:25] 0.001 0.0426 0.0842 0.1258 0.1673 ...
## $ q: num [1:25] 0.999 0.957 0.916 0.874 0.833 ...
## Summary of minimum error rate search:
## Min. total cost: 703 (Penalty = x10)
## Min. total error: 0.2899
## Min. total miss: 703
## Optimal q/p ratio: 1.39904038384646
## Optimal priors: p = 0.4168, q = 0.58317
## Summary:
## tibble [1 x 7] (S3: tbl df/tbl/data.frame)
## $ p : num 0.417
## $ q
        : num 0.583
## $ fp : int 67
## $ fn : int 33
## $ miss : int 100
## $ cost : num 703
## $ error: num 0.29
## -----
## -----
## Call:
## 0.416833333333333))
##
## Prior probabilities of groups:
## Not Severe Severe
      0.5832
##
                0.4168
##
## Group means:
##
            blood.1 blood.2 blood.3 blood.4 blood.5 drinks
```

```
## Not Severe
                89.81
                        68.34
                                 29.82
                                         25.99
                                                 43.17 3.393
## Severe
                90.63
                        71.98
                                 31.21
                                         22.79
                                                 31.54
                                                        3.541
##
## Coefficients of linear discriminants:
##
                LD1
## blood.1 0.08312
## blood.2 0.02263
## blood.3 0.05893
## blood.4 -0.11812
## blood.5 -0.01497
            0.06061
## drinks
## Total cost of misclassification (Penalty x10): 703.00
## Total error rate (100 misclassifications): 0.29
##
##
                Not Severe Severe
##
                       167
                                67
     Not Severe
##
                        33
                                78
     Severe
##
```

Optimal Priors (for Total Cost)

Notice the current "cost" is a penalty factor of 10. The penalty value is a ratio that can be used to scale how a misclassification for the positive class affects the model.

We can also minimize our model based on the total cost. The following plots summarize both scenarios:

Cross-Validation Analysis

This section is a revision of the logistic regression CV. I was unable to complete the LDA CV analysis but I had reworked this analysis from my previous report in order to better understand how to accomplish the assignment. I hope to submit a revision before solutions are released for homework 3; the work is simply in progress.

10-fold CV

```
## ------
## Performing 10-fold CV:
## # Samples: 345
## # Thresholds: 100
## # k folds: 10 || # rounds: 100
## -----
## tibble [100 x 4] (S3: tbl df/tbl/data.frame)
## $ total.err : num [1:100] 0.58 0.571 0.566 0.562 0.558 ...
## $ ci.low : num [1:100] 0.575 0.566 0.561 0.557 0.553 ...
## $ ci.high : num [1:100] 0.585 0.576 0.571 0.567 0.563 ...
## $ thresholds: num [1:100] 0 0.0101 0.0202 0.0303 0.0404 ...
## tibble [300 x 4] (S3: tbl_df/tbl/data.frame)
## $ thresholds: num [1:300] 0 0 0 0.0101 0.0101 ...
## $ category : chr [1:300] "total.err" "ci.low" "ci.high" "total.err" ...
## $ error : num [1:300] 0.58 0.575 0.585 0.571 0.566 ...
## $ linetype : logi [1:300] TRUE FALSE FALSE TRUE FALSE FALSE ...
## Calculating 10-fold CV table:
## # Samples: 345
## # Threshold: 1
## # k folds: 10 || # rounds: 100
##
                       Length Class Mode
## results
                        2 -none- list
## plot
                          2 -none- list
                         1
## optimal_threshold
                             -none- numeric
## confusion_mat
                       4000 -none- numeric
## confusion_mat_summary 2
                             -none- list
```


3-fold CV

```
## -----
## Performing 3-fold CV:
## # Samples: 345
## # Thresholds: 100
## # k folds: 3 || # rounds: 100
## -----
## tibble [100 x 4] (S3: tbl_df/tbl/data.frame)
## $ total.err : num [1:100] 0.58 0.57 0.565 0.561 0.558 ...
## $ ci.low : num [1:100] 0.575 0.566 0.561 0.556 0.553 ...
## $ ci.high : num [1:100] 0.584 0.575 0.57 0.565 0.562 ...
## $ thresholds: num [1:100] 0 0.0101 0.0202 0.0303 0.0404 ...
## tibble [300 x 4] (S3: tbl_df/tbl/data.frame)
## $ thresholds: num [1:300] 0 0 0 0.0101 0.0101 ...
## $ category : chr [1:300] "total.err" "ci.low" "ci.high" "total.err" ...
## $ error : num [1:300] 0.58 0.575 0.584 0.57 0.566 ...
## $ linetype : logi [1:300] TRUE FALSE FALSE TRUE FALSE FALSE ...
## -----
## Calculating 3-fold CV table:
## # Samples: 345
## # Threshold: 1
## # k folds: 3 || # rounds: 100
## -----
##
                      Length Class Mode
## results
                        2 -none- list
                         2 -none- list
## plot
## optimal threshold
                       1 -none- numeric
## confusion_mat
                    1200 -none- numeric
## confusion_mat_summary 2 -none- list
```


Session Information

This document was generated from an R Markdown Notebook (See the vignettes/HW3_report.Rmd in the project's sub-directory). The setup chunk for this document sets the root directory to the project root directory using the here package; all file paths are relative to the project root.

```
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19043)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC CTYPE=English United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats
                 graphics grDevices datasets
## [6] methods
                 base
##
## other attached packages:
    [1] dplyr_1.0.7
                       tidyr_1.1.4
##
                                      tibble_3.1.5
    [4] forcats 0.5.1
                       ggplot2_3.3.5
                                      foreach 1.5.1
   [7] magrittr_2.0.1 MASS_7.3-54
                                      mime 0.12
## [10] markdown_1.1
                       rmarkdown_2.11 knitr_1.36
##
## loaded via a namespace (and not attached):
    [1] highr_0.9
                         jquerylib_0.1.4
##
                                          compiler_4.1.1
##
    [4] pillar_1.6.3
                         iterators_1.0.13 tools_4.1.1
    [7] corrplot_0.90
                                          digest_0.6.28
                         bit_4.0.4
## [10] jsonlite_1.7.2
                         evaluate_0.14
                                          lifecycle_1.0.1
## [13] gtable_0.3.0
                         pkgconfig_2.0.3 rlang_0.4.11
## [16] cli_3.0.1
                         rstudioapi_0.13 yaml_2.2.1
## [19] xfun_0.26
                         fastmap_1.1.0
                                          stringr_1.4.0
## [22] withr 2.4.2
                         hms 1.1.1
                                          generics_0.1.0
## [25] vctrs_0.3.8
                         bit64_4.0.5
                                          rprojroot_2.0.2
## [28] grid_4.1.1
                         tidyselect_1.1.1 glue_1.4.2
                                          fansi_0.5.0
## [31] here_1.0.1
                         R6_2.5.1
## [34] vroom_1.5.5
                         farver_2.1.0
                                          tzdb 0.1.2
                                          scales_1.1.1
## [37] readr 2.0.2
                         purrr_0.3.4
## [40] codetools_0.2-18 htmltools_0.5.2
                                          ellipsis_0.3.2
## [43] colorspace_2.0-2 renv_0.14.0
                                          labeling_0.4.2
## [46] utf8_1.2.2
                         stringi_1.7.5
                                          munsell_0.5.0
## [49] crayon_1.4.1
```