CMIP6 Model Documentation

Institute: CCCMA
Model: CANESM5
Topic: Atmosphere

Doc. Generated: 2018-12-16

Doc. Seeded From: N/A

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	10
4	Radiation	16
5	Turbulence Convection	2 9
6	Microphysics Precipitation	33
7	Cloud Scheme	35
8	Observation Simulation	39
9	Gravity Waves	42
10	Natural Forcing	46

1 Key Properties

 $Atmosphere\ key\ properties$

1	.1.	1 T	'op	level	pro	perties

Atmosphere key properties

1.1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

CanESM2 atmosphere

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of atmos model.

Enter TEXT:

1	1.1	4 N	Mode	1 Fa	mily	*
1		+ 1	mode	1 1 0		

Type of atmospheric me	odel
------------------------	------

\bowtie	AGCM - Atmospheric General Circulation Mode
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
	Hydrostatic
	Quasi-hydrostatic
П	Other - please specify:

1.2.1 Resolution

Characteristics of the model resolution

1.2.1.1 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

Enter TEXT:

1.2.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

Enter TEXT:

1.2.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Enter TEXT:

1.2.1.4 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

Enter INTEGER value:

1.2.1.5 High Top *

 $Does \ the \ atmosphere \ have \ a \ high-top? \ High-Top \ atmospheres \ have \ a \ fully \ resolved \ stratosphere \ with \ a \ model \ top \ above \ the \ stratopause.$

Select either	TRUE or	FALSE:
True		False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

 $Timestep\ for\ the\ dynamics\ in\ seconds$

900

1.3.1.2 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.1.3 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

1.4.1 Orography

Characteristics of the model orography

1.4.1.1	Type *
Type of o	rographic representation.
	Fixed: present day
	Fixed: modified - Provide details of modification below
	Other - please specify:
1.4.1.2	Modified
If the oro	graphy type is modified describe the adaptation.
Selec	t MULTIPLE options:
	Related to ice sheets
	Related to tectonics
	Modified mean
	Modified variance if taken into account in model (cf gravity waves)
	Other - please specify:
1.4.1.3	Time-varying
Describe d	any time varying orographic change

1.5.1 Tuning Applied

Tuning methodology for atmospheric component

1.5.1.1 Description *

Enter TEXT:

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.5.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.5.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

2 Grid

 $Atmosphere\ grid$

2.1.1 Top level properties

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type *

 $Horizontal\ discretisation\ type$

	Spectra
--	---------

Fixed grid

U Other - please specify:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Select SINGLE option:

Finite volumes

Finite difference

Centered finite difference

2.1.2.3 Scheme Order *

 $Horizontal\ discretisation\ function\ order$

Select SINGLE option:

	Second
	Third
	Fourth
	Other - please specify:
2.1.2.4	Horizontal Pole
Horizonta	l discretisation pole singularity treatment
Select	t SINGLE option:
	Filter
	Pole rotation
	Artificial island
	Other - please specify:
2125	Grid Type *
	l grid type
	t SINGLE option:
Selec	
	Gaussian
	Latitude-Longitude
	Cubed-Sphere
	Icosahedral
	Other - please specify:
2.1.3 V	Vertical
	there discretisation in the vertical
21011103p11	and discretisations in the vertical
2.1.3.1	Coordinate Type *
Type of ve	ertical coordinate system
Select	t MULTIPLE options:
	Isobaric - Vertical coordinate on pressure levels
	Sigma - Allows vertical coordinate to follow model terrain
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above
	Hybrid pressure
	Vertically lagrangian

Other - please specify:

3 Dynamical Core

Characteristics of the dynamical core

3.	1	.1	Top	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.3	Timestepping	Type	*
0.1.1.0	Timescopping	- ., pc	

Time stepp	ing framework type
	Adams-Bashforth
	Explicit
	Implicit
	Semi-implicit
	Leap frog
	Multi-step
	Runge Kutta fifth order
	Runge Kutta second order
	Runge Kutta third order
	Other - please specify:
3.1.1.4 1	Prognostic Variables *
List of the	$model\ prognostic\ variables$
	Surface pressure
	Wind components
	Divergence/curl
	Temperature

	Potential temperature
	Total water
	Water vapour
	Water liquid
	Water ice
	Total water moments
	Clouds
	Radiation
	Other - please specify:
	Top Boundary
Type of	boundary layer at the top of the model
3.2.1.1	Top Boundary Condition *
Top bound	dary condition
Selec	t SINGLE option:
	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.2.1.2	Top Heat *
	dary heat treatment
Enter	TEXT:
2 2 1 2	Top Wind *
	dary wind treatment
	ng sponge on wind in excess of $90 \mathrm{m/s}$ above $10 \mathrm{hPa}$ to maintain CFL stability for given
3.3.1 I	Lateral Boundary
Type of	lateral boundary condition (if the model is a regional model)
3.3.1.1	Condition
	teral boundary condition
Selec	t SINGLE option:

	Sponge layer Radiation boundary condition
	Other - please specify:
3.4.1 I	Diffusion Horizontal
Horizont	al diffusion scheme
3.4.1.1	Scheme Name
Horizonta	l diffusion scheme name
Leith	(1971)
3.4.1.2	Scheme Method *
Horizontal	l diffusion scheme method
Select	SINGLE option:
	Iterated Laplacian
	Bi-harmonic
	Other - please specify:
3.4.2 T	racers
Tracer a	$dvection\ scheme$
3.4.2.1	Scheme Name
Tracer adv	vection scheme name
Select	SINGLE option:
	Heun
	Roe and VanLeer
	Roe and Superbee
	Prather
	UTOPIA
	Other - please specify:
	Scheme Characteristics *
Tracer adv	vection scheme characteristics

Select MULTIPLE options:

	Eulerian	
	Modified Euler	
	Lagrangian	
	Semi-Lagrangian	
	Cubic semi-Lagrangian	
	Quintic semi-Lagrangian	
	Mass-conserving	
	Finite volume	
	Flux-corrected	
	Linear	
	Quadratic	
	Quartic	
	Other - please specify:	
	Conserved Quantities * vection scheme conserved quantities Dry mass Tracer mass	
	Other - please specify:	
3.4.2.4	Conservation Method *	
Tracer ad	vection scheme conservation method	
	Conservation fixer	
	Priestley algorithm	
	Other - please specify:	
3.4.3 Momentum		
Moment	um advection scheme	
3.4.3.1	Scheme Name	
Momentum	m advection schemes name	
Selec	t SINGLE option:	
	VanLeer	

	Janjic
	SUPG (Streamline Upwind Petrov-Galerkin)
	Other - please specify:
3.4.3.2	Scheme Characteristics *
Momenti	um advection scheme characteristics
Selec	et MULTIPLE options:
	2nd order
	4th order
	Cell-centred
	Staggered grid
	Semi-staggered grid
	Other - please specify:
3.4.3.3	Scheme Staggering Type *
Momenti	um advection scheme staggering type
Selec	et SINGLE option:
	Arakawa B-grid
	Arakawa C-grid
	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:
3.4.3.4	Conserved Quantities *
Momenti	um advection scheme conserved quantities
	Angular momentum
	Horizontal momentum
	Enstrophy
	Mass
	Total energy
\boxtimes	Vorticity
	Other - please specify:

3.4.3.5 Conservation Method *	
$Momentum\ advection\ scheme\ conservation\ method$	
Select SINGLE option:	
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

Commonly used name for the radiation in atmos model.

Enter TEXT:

4.1.1.2 Overview

Overview of characteristics of the atmosphere radiation process in atmos model.

The Shortwave SchemeType and Longwave SchemeType is correlated-k. Both Shortwave and Longwave use the Monte Carlo Independent Column Approximation.

4.1.1.3 Aerosols *

Aerosols	whose radiative effect is taken into account in the atmosphere model
	Sulphate
	Nitrate
	Sea salt
	Dust
	Ice
	Organic
	BC - Black carbon / soot
	SOA - Secondary organic aerosols
	POM - Particulate organic matter
	Polar stratospheric ice
	NAT - Nitric acid trihydrate
	NAD - Nitric acid dihydrate
	STS - Supercooled ternary solution aerosol particle
	Other - please specify:

4.2.1 Shortwave Radiation

 $Properties \ of \ the \ shortwave \ radiation \ scheme$

4.2.1.1 Name	
Commonl	y used name for the shortwave radiation scheme
Enter	TEXT:
4.2.1.2	Spectral Integration *
Shortwave	e radiation scheme spectral integration
Selec	t SINGLE option:
	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:
4.2.1.3	Transport Calculation *
Shortwave	e radiation transport calculation methods
Selec	t MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
	Spectral Intervals *
Shortwave	e radiation scheme number of spectral intervals
35	
4.2.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:	
	CO2 - Carbon Dioxide	
	CH4 - Methane	
	N2O - Nitrous Oxide	
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalenc	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a $CFC-12$ ee concentration	
concentrat	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion	
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons	
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $	
	O3	
	H2O	
	Other - please specify:	
4.3.1.2 ODS Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model		
Selec		
	t MULTIPLE options:	
	t MULTIPLE options: CFC-12 - CFC	
	CFC-12 - CFC	
	CFC-12 - CFC CFC-11 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC	
	CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC	

	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	rinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC

	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 \$	Shortwave Cloud Ice
Shortwa	ve radiative properties of ice crystals in clouds
4.4.1.1	Physical Representation *
Physical 1	representation of cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
typically l	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
	Optical Methods *
-	ethods applicable to cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

4.5.1.1	Physical Representation *
Physical 1	representation of cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2 $$
	Other - please specify:
4.5.1.2	Optical Methods *
Optical m	sethods applicable to cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.6.1 \$	Shortwave Cloud Inhomogeneity
Cloud in	phomogeneity in the shortwave radiation scheme
4.6.1.1	Cloud Inhomogeneity *
Method fo	or taking into account horizontal cloud inhomogeneity
Selec	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:

4.7.1 Shortwave Aerosols

 $Shortwave\ radiative\ properties\ of\ aerosols$

4.7.1.1 Physical Representation * $Physical\ representation\ of\ aerosols\ in\ the\ shortwave\ radiation\ scheme$ Select MULTIPLE options: Number concentration Effective radii Size distribution Asymmetry Aspect ratio Mixing state - For shortwave radiative interaction Other - please specify: 4.7.1.2 Optical Methods * Optical methods applicable to aerosols in the shortwave radiation scheme Select MULTIPLE options: T-matrix - For non-spherical particles Geometric optics - For non-spherical particles Finite difference time domain (FDTD) - For non-spherical particles Mie theory - For spherical particles Anomalous diffraction approximation Other - please specify: 4.8.1 Longwave Radiation Properties of the longwave radiation scheme 4.8.1.1 Name $Commonly\ used\ name\ for\ the\ longwave\ radiation\ scheme.$ Enter TEXT: 4.8.1.2 Spectral Integration * Longwave radiation scheme spectral integration Wide-band model Correlated-k

Exponential sum fitting

	Other - please specify:
4.8.1.3	Transport Calculation *
Longwave	radiation transport calculation methods
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
	radiation scheme number of spectral intervals
46	
4.8.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 l	Longwave GHG
	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexi	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	et MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ca concentration

concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	Other - please specify:
4.9.1.2	
Ozone de model	pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	et MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:

4.9.1.3 Other Flourinated Gases

 $Other\ flour in ated\ gases\ whose\ longwave\ radiative\ effects\ are\ explicitly\ taken\ into\ account\ in\ the\ atmosphere\ model$

Select MULTIPLE options:		
	HFC-134a - HFC	
	HFC-23 - HFC	
	HFC-32 - HFC	
	HFC-125 - HFC	
	HFC-143a - HFC	
	HFC-152a - HFC	
	HFC-227ea - HFC	
	HFC-236fa - HFC	
	HFC-245fa - HFC	
	HFC-365mfc - HFC	
	HFC-43-10mee - HFC	
	CF4 - PFC	
	C2F6 - PFC	
	C3F8 - PFC	
	C4F10 - PFC	
	C5F12 - PFC	
	C6F14 - PFC	
	C7F16 - PFC	
	C8F18 - PFC	
	C-C4F8 - PFC	
	NF3	
	SF6	
	SO2F2	
	Other - please specify:	
10.1 Longwave Cloud Ice		

4.

 $Longwave\ radiative\ properties\ of\ ice\ crystals\ in\ clouds$

4.10.1.1 Physical Reprenstation *

 $Physical\ representation\ of\ cloud\ ice\ crystals\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:

typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.10.1.2	Optical Methods *
$Optical\ m$	ethods applicable to cloud ice crystals in the longwave radiation scheme
Select	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.11.1	Longwave Cloud Liquid
Longwav	e radiative properties of liquid droplets in clouds
4.11.1.1	Physical Representation *
Physical r	epresentation of cloud liquid droplets in the longwave radiation scheme
Select	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:

4.11.1.2	Optical Methods *
$Optical\ m$	ethods applicable to cloud liquid droplets in the longwave radiation scheme
Selec	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.12.1	Longwave Cloud Inhomogeneity
Cloud in	homogeneity in the longwave radiation scheme
4.12.1.1	Cloud Inhomogeneity *
	r taking into account horizontal cloud inhomogeneity
Selec	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.13.1	Longwave Aerosols
Longway	ne radiative properties of aerosols
4.13.1.1	Physical Representation *
Physical r	representation of aerosols in the longwave radiation scheme
Selec	t MULTIPLE options:
	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:

4.13.1.2	Optical	Methods	*
----------	---------	---------	---

 $Optical\ methods\ applicable\ to\ aerosols\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:		
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

 $Atmosphere\ Convective\ Turbulence\ and\ Clouds$

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.1.2 Overview

Overview of atmosphere convective turbulence and clouds in atmos model.

Further information may be found in von Salzen 2011

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name

Boundary layer turbulence scheme name

Select SINGLE option:			
	Mellor-Yamada		
	Holtslag-Boville		
	EDMF - Combined Eddy Diffusivity Mass-Flux		
	Other - please specify:		
5.2.1.2	Scheme Type *		
Boundary	layer turbulence scheme type		
Select	Select MULTIPLE options:		
	TKE prognostic		
	TKE diagnostic		
	TKE coupled with water		
	Vertical profile of Kz		
	Non-local diffusion		

	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land
П	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
Ш	Other - please specify:
5.2.1.3	Closure Order *
	l layer turbulence scheme closure order
Ente	r INTEGER value:
E 9 1 1	Counter Gradient *
	ndary layer turbulence scheme counter gradient
	True False
	True Truste
5.3.1 I	Deep Convection
Properti	es of the deep convection scheme
.	
	Scheme Name
	vection scheme name
Zhan	g McFarlane 1995; Scinocca and McFarlane (2004)
	Scheme Type *
Deep con	vection scheme type
	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
	Scheme Method *
Deep con	vection scheme method
\boxtimes	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics

sphere	${\it CAPE/WFN\ based\ -\ CAPE-Cloud\ Work\ Function:\ Based\ on\ the\ quasi-equilibrium\ of\ the\ free\ tropological and the statement of the $
	TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer
	Other - please specify:
5211	Processes *
	processes taken into account in the parameterisation of deep convection
1 nysicai p	
	Vertical momentum transport
	Convective momentum transport
	Entrainment
	Detrainment
	Penetrative convection
	Updrafts
	Downdrafts
	Radiative effect of anvils
	Re-evaporation of convective precipitation
	Other - please specify:
5.3.1.5	Microphysics
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of
	rometeor and water vapor from updrafts
Selec	t MULTIPLE options:
	Tuning parameter based
	Single moment
	Two moment
	Other - please specify:
5.4.1 Shallow Convection	
Properties	es of the shallow convection scheme
5.4.1.1	Scheme Name
Shallow co	onvection scheme name
Von S	Salzen McFarlane 2002

5.4.1.2	Scheme Type *	
Shallow c	onvection scheme type	
	Mass-flux	
	Cumulus-capped boundary layer	
	Other - please specify:	
5.4.1.3	Scheme Method *	
Shallow c	onvection scheme method	
	Same as deep (unified)	
	Included in boundary layer turbulence	
	${\bf Separate\ diagnosis\ -\ Deep\ and\ Shallow\ convection\ schemes\ use\ different\ thermodynamic\ closure\ criteria}$	
	Other - please specify:	
5.4.1.4	Processes *	
Physical p	processes taken into account in the parameterisation of shallow convection	
Selec	t MULTIPLE options:	
	Convective momentum transport	
	Entrainment	
	Detrainment	
	Penetrative convection	
	Re-evaporation of convective precipitation	
	Other - please specify:	
5.4.1.5 Microphysics		
Microphys	sics scheme for shallow convection	
Selec	t MULTIPLE options:	
	Tuning parameter based	
	Single moment	
	Two moment	
	Other - please specify:	

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

Overview of large scale cloud microphysics and precipitation in atmos model.

Enter TEXT:

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

Modified Lohmann (LohmannandRoeckner 1996) scheme (von Salzen 2011)

6.2.1.2 Hydrometeors *

Precipitati	$ng\ hydrometeors\ taken\ into\ account\ in\ the\ large\ scale\ precipitation\ scheme$
	Liquid rain
	Snow

П	Hail

Graupel

	Other -	please	specify
--	---------	--------	---------

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

 $Commonly\ used\ name\ of\ the\ microphysics\ parameterisation\ scheme\ used\ for\ large\ scale\ clouds.$

Modified Lohmann (LohmannandRoeckner 1996) scheme (von Salzen 2011)

$Large\ scale\ cloud\ microphysics\ processes$		
Selec	t MULTIPLE options:	
	Mixed phase	
	Cloud droplets	
	Cloud ice	
	Ice nucleation	
	Water vapour deposition	
	Effect of raindrops	
	Effect of snow	
	Effect of graupel	

Other - please specify:

6.3.1.2 Processes *

7 Cloud Scheme

Characteristics of the cloud scheme

7	.1.1	Top	level	pro	perties

Characteristics of the cloud scheme

7	7 1	1 1	1 1	1	N	้ฉ	m	10

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.1.3 Scheme Type	7
---------------------	---

 $Describes\ the\ type(s)\ of\ cloud\ scheme:\ prognostic,\ diagnostic,\ other.$

Select MULTIPLE options:		
	Prognostic	
	Diagnostic	
	Other - please specify:	

7.1.1.4 Uses Separate Treatment *

 $Description \ for \ when \ different \ cloud \ schemes \ are \ used \ for \ different \ types \ of \ clouds \ e.g. \ convective, \ stratiform \ and \ boundary \ layer)$

Yes

7.1.1.5 Processes *

Processes included in the cloud scheme

Entrainment
Detrainment
Bulk cloud
Other - please specify:

7.1.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:
	Cloud amount
	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.1.7	Atmos Coupling
Atmosphe	re components that are linked to the cloud scheme
Selec	t MULTIPLE options:
	Atmosphere_radiation
	$Atmosphere_microphysics_precipitation$
	$Atmosphere_turbulence_convection$
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2.1 (Optical Cloud Properties
Optical o	cloud properties
7.2.1.1	Cloud Overlap Method
Method fo	er taking into account overlapping of cloud layers
Selec	t SINGLE option:
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
	Other - please specify:

7.2.1.2	Cloud	In	\mathbf{homoge}	\mathbf{neity}
---------	-------	----	-------------------	------------------

 $Method\ for\ taking\ into\ account\ cloud\ inhomogeneity$

Enter TEXT:

7.3.1 Sub Grid Scale Water Distribution

Sub- $grid$	scale water distribution			
7.3.1.1	Type *			
Sub-grid s	cale water distribution type			
	Prognostic			
	Diagnostic			
7.3.1.2	Function Name *			
Sub-grid s	cale water distribution function name			
Enter	Enter TEXT:			
7.3.1.3	Function Order *			
Sub-grid s	cale water distribution function type			
Enter INTEGER value:				
7.3.1.4	Convection Coupling *			
Sub-grid s	cale water distribution coupling with convection			
	Coupled with deep			
	Coupled with shallow			
	Not coupled with convection			
7.4.1 S	Sub Grid Scale Ice Distribution			
Sub- $grid$	scale ice distribution			
7.4.1.1	Type *			

$Sub\mbox{-}grid\ scale\ ice\ distribution\ function\ name$			
Enter TEXT:			
7.4.1.3 Function Order *			
Sub-grid scale ice distribution function type			
Enter INTEGER value:			
7.4.1.4 Convection Coupling *			
$Sub\mbox{-}grid\ scale\ ice\ distribution\ coupling\ with\ convection$			
Select MULTIPLE options:			
Coupled with deep			
Coupled with shallow			
☐ Not coupled with convection			

7.4.1.2 Function Name \ast

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

Commonly used name for the observation simulation in atmos model.

Enter TEXT:

8.1.1.2 Overview

Overview of characteristics of observation simulation in atmos model.

Under InputsLidar, the appropriate value for Overlap is general overlap (Hogan and Illingworth, 2000). The subcolumns used in COSP are the same as used in the Monte Carlo Independent Column Approximation (McICA) for the radiative transfer calculations.

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

$Cloud\ sim$	$ulator\ ISSCP\ top\ height\ estimation\ method\ Uo$
	No adjustment
\boxtimes	IR brightness
	Visible optical depth
	Other - please specify:
8.2.1.2	Top Height Direction
$Cloud\ sim$	ulator ISSCP top height direction
	Lowest altitude level
	Highest altitude level

8.3.1 Cosp Attributes

Other - please specify:

CFMIP Observational Simulator Package attributes

8.3.1.1	Run Configuration
Cloud sir	nulator COSP run configuration
\boxtimes	Inline
	Offline
	Other - please specify:
8.3.1.2	Number Of Grid Points
Cloud sir	nulator COSP number of grid points
Ente	er INTEGER value:
8.3.1.3	Number Of Sub Columns
Cloud sir	nulator COSP number of sub-cloumns used to simulate sub-grid variability
150	
8.3.1.4	Number Of Levels
Cloud sir	nulator COSP number of levels
40	
8.4.1	Radar Inputs
Charact	teristics of the cloud radar simulator
8.4.1.1	Frequency
Cloud sir	nulator radar frequency (Hz)
94	
8.4.1.2	Type
Cloud sir	nulator radar type
	Surface
	Space borne
	Other - please specify:
8.4.1.3	Gas Absorption
Cloud sir	nulator radar uses gas absorption
\boxtimes	True

	Effective Radius ulator radar uses effective radius
	True
	idar Inputs existics of the cloud lidar simulator
8.5.1.1	Ice Types
Cloud sim	ulator lidar ice type
	Ice spheres
	Ice non-spherical
	Other - please specify:
8.5.1.2 Cloud sim	Overlap ulator lidar overlap
Select	t MULTIPLE options:
	Max
	Random
	Other - please specify:

Gravity Waves 9

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or $other\ sources\ in\ atmos\ model.$

The complete details of the orographic gravity wave drag scheme may be found in Scinocca and McFarlane 2000.

9.1.1.3 Sponge Layer *

Effect on lifting

Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.

Select	t SINGLE option:
	Rayleigh friction
	Diffusive sponge layer
	Other - please specify:
	Background * ad wave distribution
Select	t SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify:
9.1.1.5	Subgrid Scale Orography *
Subgrid sc	ale orography effects taken into account.
	Effect on drag
	Effect on lifting

	Enhanced topography - To enhance the generation of long waves in the atmosphere
	Other - please specify:
9.2.1	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1.1	Name
	y used name for the orographic gravity wave scheme
	r TEXT:
9.2.1.2	Source Mechanisms *
Orographi	ic gravity wave source mechanisms
Selec	t MULTIPLE options:
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orographi	ic gravity wave calculation method
Selec	t MULTIPLE options:
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
	Propagation Scheme *
<i>J</i> 1	ic gravity wave propogation scheme
Selec	t SINGLE option:
	Linear theory
	Non-linear theory
	Includes boundary layer ducting

	Other - please specify:		
9.2.1.5	Dissipation Scheme *		
Orographs	ic gravity wave dissipation scheme		
Selec	t SINGLE option:		
	Total wave		
	Single wave		
	Spectral		
	Linear		
	Wave saturation vs Richardson number		
	Other - please specify:		
9.3.1 Non Orographic Gravity Waves Gravity waves generated by non-orographic processes. 9.3.1.1 Name			
Commonl	ly used name for the non-orographic gravity wave scheme		
Ente	r TEXT:		
9.3.1.2 Source Mechanisms *			
Non-oroga	raphic gravity wave source mechanisms		
Selec	t MULTIPLE options:		
	Convection		
	Precipitation		
	Background spectrum		
	Other - please specify:		
9.3.1.3	Calculation Method *		
Non-oroga	raphic gravity wave calculation method		
Selec	t MULTIPLE options:		
	Spatially dependent		
	Temporally dependent		

9.3.1.4	9.3.1.4 Propagation Scheme *			
Non-orogn	raphic gravity wave propogation scheme			
Selec	t SINGLE option:			
	Linear theory			
	Non-linear theory			
	Other - please specify:			
9.3.1.5 Dissipation Scheme *				
Non-orographic gravity wave dissipation scheme				
Select SINGLE option:				
	Total wave			
	Single wave			
	Spectral			
	Linear			
	Wave saturation vs Richardson number			
	Other - please specify:			

10 Natural Forcing

Natural j	forcing:	solar	and vol	lcanic.

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

Commonly used name for the natural forcing in atmos model.

Enter TEXT:

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

Ш	SW radiation - Shortwave solar spectral irradiance.
tons) and	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper e, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.

10.3.1 Solar Constant

Other - please specify:

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

Time adaptation of the solar constant.

Fixed
Transient

Enter FLOAT value:		
10.3.1.3 Transient Characteristics		
Solar constant transient characteristics (W m-2)		
Secular variation for each band in radiative transfer model using data from Lean 2009		
10.4.1 Orbital Parameters		
Orbital parameters and top of atmosphere insolation characteristics		
10.4.1.1 Type *		
Type of orbital parameter		
Fixed		
☐ Transient		
10.4.1.2 Fixed Reference Date		
Reference date for fixed orbital parameters (yyyy)		
1950		
10.4.1.3 Transient Method		
Description of transient orbital parameters		
Enter TEXT:		
10.4.1.4 Computation Method		
Method used for computing orbital parameters.		
Berger 1978		
Laskar 2004		
Other - please specify:		
10.5.1 Insolation Ozone		
Impact of solar insolation on stratospheric ozone		
10.5.1.1 Solar Ozone Impact *		
Does top of atmosphere insolation impact on stratospheric ozone?		
☐ False		

10.3.1.2 Fixed Value

If the solar constant is fixed, enter the value of the solar constant (W m-2).

10.6.1 Volcanoes Treatment

 $Characteristics\ and\ treatment\ of\ volcanic\ forcing\ in\ the\ atmosphere$

10.6.1.1 Volcanoes Characteristics *

 $Description\ of\ how\ the\ volcanic\ forcing\ is\ taken\ into\ account\ in\ the\ atmosphere.$

Enter TEXT:

10.6.1.2 Volcanoes Implementation *

How volcanic effects are modeled in the atmosphere.

Select SINGLE option:		
	High frequency solar constant anomaly	
	Stratospheric aerosols optical thickness	
	Other - please specify:	