

Docupedia Export

Author:Goncalves Donathan (SO/OPM-TS21-BR) Date:24-Jul-2024 16:22

Table of Contents

1	Sites para representar de maneira gráfica	5
2	SQL DBM	6
3	LUCIDCHART	6
4	BR Modelo	6
5	Modelagem Conceitual	7
6	Representação Gráfica	8
7	Traçando Relacionamentos	10
8	Cardinalidade	12
9	Atributos	14
10	Generalização e Especialização	15
11	Modelagem Lógica	17
11.1	1 Chave Estrangeira (FK)	17
12	Atributos	18
13	Cardinalidade	19
14	Atividade	21

Após a aplicação do **MER** (Modelo Entidade Relacionamento) com uma situação problema. Foi possível encontrar as **entidades** e os **atributos** necessários para que o sistema comece a funcionar.

Resolução

Dados (Atributos)	Descrição	Tabela
Identificação	Identificar individualmente cada uma das salas	Sala
Descrição	Descreve o tipo e a localização da sala	Sala
Capacidade	Capacidade de pessoas que podem utilizar a sala simultaneamente	Sala
Identificação	Identificar individualmente as pessoas envolvidas na utilização de alguma sala de reunião	Pessoa
Nome	Descreve o nome da pessoa	Pessoa
Tipo	Identifica o papel/cargo/função da pessoa	Pessoa
Identificação	Identifica de forma individualizada cada equipamento	Equipamento
Descrição	Nome do equipamento utilizado nas salas de reunião	Equipamento
Tipo	Classifica o equipamento de acordo com seu tipo/funcionalidade	Equipamento
Quantidade	Identifica a quantidade disponível daquele equipamento	Equipamento
Identificação	Identifica de maneira individualizada o evento	Evento
Descrição	Descreve a finalidade ou outros detalhes do evento	Evento
Data e Hora Inicial	Momento em que a sala começou a ser utilizada	Evento

Dados (Atributos)	Descrição	Tabela
Data e Hora Final	Momento em que a sala foi liberada	Evento

É possível **facilitar** a visualização desses dados, deixado mais **fácil a interpretação** para quem irá criar esse sistema. Então, veremos o funcionamento do **DER**.

DER - Diagrama Entidade Relacionamento

Representar de forma **gráfica** o que foi descrito no **MER** através de diagramas. Muitas vezes utilizado como **sinônimos**, geralmente o **DER** e o **MER** são criados juntos.

Existem três tipos de diagramas para representar nosso sistema,

- Modelagem CONCEITUAL
- Modelagem LÓGICA
- Modelagem FÍSICA

Sites para representar de maneira gráfica

3 **LUCIDCHART**

BR Modelo

5 Modelagem Conceitual

Visão mais **alto nível de abstração**, que contém o **mínimo de detalhes**. Com o objetivo de mostrar um **âmbito geral** do modelo e retratar a **arquitetura** do sistema.

Muito utilizado nas fases **iniciais** da modelagem de dados. Sendo como principal **benefício**, a **velocidade de interpretação**.

6 Representação Gráfica

Entidades (tabelas) em um diagrama é um retângulo, mas existem dois tipos de entidades.

Entidades Fortes

São entidades que independem de outras para existir, pois já possuem total sentido de existir.

Em um sistema de vendas, a entidade produto, por exemplo. independe de quaisquer outra entidade para existir.

Representado por um retângulo simples.

Entidades Fracas

Mas entidades fracas dependem de outra entidade para existir, pois não fazem sentido por si só.

No mesmo exemplo, a entidade venda depende da entidade produto, pois não faz sentido uma venda sem itens.

Representado por um retângulo duplo.

Se passarmos a nossa situação anterior para um diagrama, utilizando do modelo conceitual e definidos as entidades fortes e as fracas, teremos o seguinte diagrama:

7 Traçando Relacionamentos

O relacionamento é a **associação** entre **entidades**, onde cada entidade é responsável por desempenhar uma função dentro desse relacionamento.

Para **representar** esses relacionamentos, utilizaremos os **losangos**.

Os relacionamentos também possuem nome e devem expressar o real significado dentro do contexto modelado.

O relacionamento **não precisa ser somente entre duas entidades**. Ou seja, pode ter 3, 4 ou mais entidades em uma associação.

O **grau de um relacionamento** é referente à quantidade de entidades presentes em um mesmo relacionamento.

Tipos de relacionamentos

Grau 1: Unário Grau 2: Binário Grau 3: Ternário

Grau 4 ou mais: n-ário

8 Cardinalidade

Representa a quantidade de vezes que uma entidade pode estar associado em um dado relacionamento.

A cardinalidade de uma relação é definida em **cada um dos sentidos** do relacionamento por um conjunto (x, y) onde x representa a cardinalidade mínima e y representa a cardinalidade máxima.

Temos os conjuntos (1, 1), (0, 1), (1, N) ou (0, N).

No exemplo acima, temos que:

Produto pode não possuir uma nota fiscal ou só pode pertencer a uma nota fiscal. Nota Fiscal pode possuir 1 ou vários produtos.

Aplique a cardinalidade em nosso exemplo **Modelagem Conceitual**

MODELO CONCEITUAL (0, N) (0, N) Acontecer Participar Evento (0, N) (1, N) (1,1) Utilizar Sala Pessoa (0,1) (0, N) (0, N) Possuir Equipamento

9 Atributos

Como visto, atributos são características das nossas entidades, ou seja, as colunas das nossas tabelas.

Uma entidade Pessoa pode possuir nome, idade e cpf como atributos.

E podemos representa-los com uma elipse ligado na entidade na qual ela faz referência.

10 Generalização e Especialização

Na entidade **Pessoa** do nosso diagrama, estamos apenas representando o **Nome** e o **Tipo** de cada participante de nosso evento. Mas nos deparamos com um grande **problema** quando queremos **inserir mais** do que apenas essas duas informações.

Podemos ter vários tipos de funcionários com diferentes salários, bonificações, carga horária. Ou até mesmo ser um palestrante ou professor de fora da empresa, ou a contratação de uma empresa terceira.

Se colocarmos todos os atributos que temos na entidade Pessoa, terão muitos casos de colunas vazias, o que pode ser um problema para o armazenamento do nosso banco de dados.

Então podemos criar outras entidades que vão possuir apenas os atributos específicos de cada tabela. E deixar com que essas entidades sejam referenciadas pela entidade Pessoa.

Para representar em forma de diagrama, é utilizado um **triângulo**, ou uma **seta** apontando para a entidade na qual as outras herdarão.

Tanto a pessoa física quanto a jurídica possuem nome e um telefone, mas também possuem atributos que somente a eles pertencem.

Em herança, é necessário especificar o tipo de representação está ocorrendo entre as entidades, no lugar do (T, E).

TOTAL - Todas as pessoas são físicas ou jurídicas, não havendo a possibilidade de existir uma pessoa que não seja uma das filhas representadas.

- PARCIA Quando não está representado todas as especializações da entidade genérica.
- EXCLUSIVA A ocorrência só pode existir em uma das entidades especializadas.
- SOBREPOSIÇÃO A ocorrência pode existir em mais de uma entidade especializada.

Para deixar mais simplificado, utilizaremos somente a entidade pessoa pois não precisamos ir muito afundo nos dados.

11 Modelagem Lógica

Mapeamento do esquema conceitual para o modelo de dados do SGBD escolhido.

Através desse tipo de modelagem, poderemos:

- Ter acesso aos **atributos** de cada entidade.
- Encontrar outra maneira de visualizar as cardinalidades.

Chave Primária (PK)

Primary Key é um dado (atributo) que identifica um registro (linha) de maneira **única** e **exclusiva**, ou seja, não podem existir dados duplicados no atributo (coluna).

11.1 Chave Estrangeira (FK)

Foreign Key é um dado que define o relacionamento (ligação) entre entidades.

As duas entidades terão o mesmo atributo, e quando for o mesmo dado, saberemos que está se referindo à mesma informação.

Ex: Saber qual **produto** estamos nos referindo em uma **venda**.

12 Atributos

Os atributos descrevem as características das entidades, mas existem diferentes tipos de atributos.

- 1. Simples Serão a maioria dos atributos, pois não possuem nenhuma característica em especial. Uma Pessoa pode ter um nome, idade, etc.
- 2. Composto É formado por outros itens menores. Em um atributo endereço, posso ter outros atributos simples como rua, número, bairro.

 Obs: Quando estamos falando de maneira conceitual, podemos utilizar o endereço apenas como um único atributo, enquanto na prática, utilizaremos cada um dos itens menores como atributos individuais.
- **3. Multivalorado** Quando um atributo de uma mesma entidade possa ter mais de um valor. Uma pessoa pode possuir dois telefones ao invés de apenas um. Problema:
 - Adicionar mais um atributo(Telefone2) e deixar vários valores nulos na entidade.
 - Adicionar os telefones na mesma "célula" de valor, o que vai ser péssimo no momento da busca.
 - Criar outra entidade para relacionarmos no momento da busca, o que gera atraso no sistema.
- **4. Determinante** Basicamente nossa Primary Key (Chave Primária), onde teremos um valor único para cada conjunto de dados. Obs: Ideal que tenhamos um atributo determinante em cada entidade.

13 Cardinalidade

Agora que vamos para a modelagem **lógica** e depois a **física**, utilizaremos **outra forma de representar a cardinalidade**. Apenas na forma de símbolos, sem nenhuma escrita.

Aplicando para a Modelagem Lógica

Utilizando dos atributos que encontramos no levantamento dos dados da aula passada, adicione-os nas suas respectivas entidades. Modifique também, a visualização da cardinalidade para os símbolos passados acima. **Modelagem Lógica**

14 Atividade

"Sou dono de um pequeno comércio e preciso criar uma base de dados para manter informações de meus **clientes**, das vendas que faço, por meio da emissão de **Notas Fiscais**, assim como, manter um cadastro de **produtos e serviços** que presto, com seus respectivos valores e saldos de estoque."

Através do cenário que foi passado acima:

- Identifique as entidades e seus respectivos atributos.
- Crie os modelos Conceitual e Lógico.

Resultado

Modelagem Conceitual

Modelagem Lógica

