

Tropospheric Ozone Production Pathways with Detailed Chemical Mechanisms

Jane Coates

17th March 2015

Introduction and Motivation

Previous Meeting Re-cap

Comparison of O_x Production in Chemical Mechanisms

Impact of Solvent Speciations on O₃

Other Contributions

Tropospheric Ozone

Meteorology Affects O₃ Formation

Introduction and Motivation

Previous Meeting Re-cap

Comparison of O_x Production in Chemical Mechanisms

Impact of Solvent Speciations on O_3

Other Contributions

Re-Cap of Previous Meeting

- Include CB05 in mechanism comparison study.
- Submit mechanism comparison paper to ACP.
- O_x production under different conditions: use all mechanisms or just a subset?
- Use realistic conditions from regional model.
- Compare VOC substitution techniques using WRF-Chem with Katie.

Introduction and Motivation

Previous Meeting Re-cap

Comparison of O_x Production in Chemical Mechanisms

Impact of Solvent Speciations on O_3

Other Contributions

Main Research Question

How is O_x production affected by the differing simplification techniques used in different chemical mechanisms?

Chemical Mechanisms

Chemical Mechanism	Lumping Approach	Reference
MCM v3.2	No lumping	[http://mcm.leeds.ac.uk/MCM/]
MCM v3.1	No lumping	[Saunders et al., ACP, 2003]
		[Jenkin et al., ACP, 2003]
CRI v2	Lumped intermediates	[Jenkin et al., AE, 2008]
MOZART-4	Lumped molecule	[Emmons et al., GMD, 2010]
RADM2	Lumped molecule	[Stockwell et al., JGR, 1990]
RACM	Lumped molecule	[Stockwell et al., JGR, 1997]
RACM2	Lumped molecule	[Goliff et al., AE, 2013]
CBM-IV	Lumped structure	[Gery et al., JGR, 1989]
CB05	Lumped structure	[Yarwood et al., EPA report, 2005]

Boxmodel Setup

- MECCA boxmodel over Los Angeles, under equinoctical conditions over 7 days.
- Initial NMVOC typical of urban environments.
- Same NMVOC emissions and reactive carbon in each model run.
- \blacktriangleright NO source tuned for maximum O_3 production.
- Mechanisms tagged for each NMVOC.

Organic Degradation Product Tagging

Organic Degradation Product Tagging

 O_X Production Budgets

TOPP Calculation

- ► Attribute daily O_x production to each NMVOC.
- Sum daily O_x production from each NMVOC.
- Normalise by total emissions of the NMVOC on day 1.

Paper Status

Introduction and Motivation

Previous Meeting Re-cap

Comparison of O_x Production in Chemical Mechanisms

Impact of Solvent Speciations on O_3

Other Contributions

Main Research Question

How does VOC speciation affect O3 concentrations in models?

Motivation

Compared Solvent Speciations

Speciation	Reference
TNO	[Stockwell et al., JGR, 1997]
IPCC	[Stockwell et al., JGR, 1990]
EMEP	[Saunders et al., ACP, 2003]
DE94	[http://mcm.leeds.ac.uk/MCM/]
GR95	[Emmons et al., GMD, 2010]
GR05	[Jenkin et al., AE, 2008]
UK98	[Yarwood et al., EPA report, 2005]
UK08	[Goliff et al., AE, 2013]

Boxmodel Setup

- MECCA boxmodel, equinoctical conditions over 7 days.
- Idealised urban area of 1000 km².
- Total NMVOC emissions of 1000 ton/day [Warnecke et al., JGR, 2007].
- NMVOC emissions constant until noon of day 1.

Model Scenarios

Introduction and Motivation

Previous Meeting Re-cap

Comparison of O_x Production in Chemical Mechanisms

Impact of Solvent Speciations on ${\sf O_3}$

Other Contributions

Other Contributions

Presentations and Posters

- Poster and presentation at PhD Conference on Earth System Science, Mar 2014.
- Poster at IASS Evaluation, May 2014.
- Poster at Our Climate Our Future (REKLIM) Conference, Oct 2014.
- Presentation at OH Reactivity Specialists Uniting Meeting (ORSUM), Oct 2014.

Courses

- Atmospheric Science in Context of Global Change at Potsdam Universität by Prof. Mark Lawrence, Oct 2013 – Jan 2014.
- Presenting Data and Information by Edward Tufte, Feb 2015.

Introduction and Motivation

Previous Meeting Re-cap

Comparison of O_x Production in Chemical Mechanisms

Impact of Solvent Speciations on O_3

Other Contributions

Future Work

- Conclude chemical mechanism study.
 - Include SAPRC-11?
- Publish chemical mechanism study results.
 - Split into two papers?

Future Work (Cont.)

- Different meteorological parameters.
 - Temperature.
 - Amount of sunlight.
- Different NO_x concentrations.
- Calculate indirect effects of VOC degradation.
- TOPP values in more realistic atmospheric conditions.
- Improve lumping of emitted VOC species in models.