The Renaissance

Kyle, Lewis, Gabi, Raqeem

Quantum Computing

Objectives

Classical Computing

Quantum Computing Applications
Challenges

Classical Computing

Information is stored in bits, represented logically by 0s (no current) and 1s (current).

Classical computers carry out operations using circuitry logic gates:

Quantum Computing

Three main processes:

Quantum Entanglement

Superposition

Quantum Tunnelling

Quantum Computing – Data Representation

Rather than using bits, quantum computers use **qubits** to represent data.

A qubit's state can be a superposition of both 0 and 1.

Measurement of a qubit will disturb its superposition state and destroy its coherence.

The quantum state of a qubit can be represented by a vector:

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

How much power do Quantum Computers consume compared to Classic Computers?

Classical Supercomputer

2900_{kW}

How long has the idea of Quantum Computing been around?

Almost 40 years!

Richard Feynman, a famous physicist, produced the idea of a quantum computer in 1982.

Applications

Quantum Transactions

Quantum Risk Analysis

Challenges

Classical Algorithm Transfers

Qubit Sensitivity

Temperature

There are no limits to what you can accomplish, except the limits you place on your own thinking.

Brian Tracy

Questions?