Clase 1

Cálculo 3

Carlos Martínez Ranero

Departamento de Matemática Universidad de Concepción

Evaluaciones

Forma de evaluación:

- Cértamen 1 ponderación 35 %
- Cértamen 2 ponderación 45 %
- 4 Tareas ponderación de 20 % (máximo cuatro personas por equipo)
- · Cértamen de Recuperación ponderación 40 %

Plan de la clase de hoy.

• Recordatorio de nociones básicas de Algebra Lineal.

Plan de la clase de hoy.

- · Recordatorio de nociones básicas de Algebra Lineal.
- Nociones topológicas: puntos interiores, frontera, exteriores.

Plan de la clase de hoy.

- Recordatorio de nociones básicas de Algebra Lineal.
- Nociones topológicas: puntos interiores, frontera, exteriores.
- · Gráficas de funciones y conjuntos de nivel.

Recordemos que $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}, \ 1 \le i \le n\}$ es un espacio vectorial, es decir, tiene una suma y un producto por escalares. Además existen tres operaciones interconectadas, el producto punto, la norma y la métrica.

Recordemos que $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}, \ 1 \le i \le n\}$ es un espacio vectorial, es decir, tiene una suma y un producto por escalares. Además existen tres operaciones interconectadas, el producto punto, la norma y la métrica.

Definición

1. $\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$ (producto punto).

Recordemos que $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}, \ 1 \le i \le n\}$ es un espacio vectorial, es decir, tiene una suma y un producto por escalares. Además existen tres operaciones interconectadas, el producto punto, la norma y la métrica.

Definición

- 1. $\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$ (producto punto).
- 2. $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$ (norma).

Recordemos que $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}, \ 1 \le i \le n\}$ es un espacio vectorial, es decir, tiene una suma y un producto por escalares. Además existen tres operaciones interconectadas, el producto punto, la norma y la métrica.

Definición

- 1. $\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$ (producto punto).
- 2. $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$ (norma).
- 3. $d(\vec{x}, \vec{y}) = ||\vec{x} \vec{y}||$ (distancia).

Proposición

Para cada $\vec{x}, \vec{y} \in \mathbb{R}^n$ se tiene:

Proposición

Para cada $\vec{x}, \vec{y} \in \mathbb{R}^n$ se tiene:

1. La desigualdad de Cauchy-Schwarz $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$.

Proposición

Para cada $\vec{x}, \vec{y} \in \mathbb{R}^n$ se tiene:

- 1. La desigualdad de Cauchy-Schwarz $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$.
- 2. La desigualdad triangular $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.

Sean $\vec{x}_0 \in \mathbb{R}^n$ y $\epsilon > 0$.

Sean $\vec{x}_0 \in \mathbb{R}^n$ y $\epsilon > 0$.

Definición

 $B_{\epsilon}(\vec{x_0}) = \{\vec{x} \in \mathbb{R}^n : \|\vec{x} - \vec{x_0}\| < \epsilon\}$ denota la bola abierta con centro en $\vec{x_0}$ y radio $\epsilon > 0$.

Sean $\vec{x}_0 \in \mathbb{R}^n$ y $\epsilon > 0$.

Definición

 $B_{\epsilon}(\vec{x_0}) = \{\vec{x} \in \mathbb{R}^n : \|\vec{x} - \vec{x_0}\| < \epsilon\}$ denota la bola abierta con centro en $\vec{x_0}$ y radio $\epsilon > 0$.

Definición

 $\overline{B}_{\epsilon}(\vec{x}_0) = \{\vec{x} \in \mathbb{R}^n : \|\vec{x} - \vec{x}_0\| \le \epsilon\}$ denota la bola cerrada con centro en \vec{x}_0 y radio $\epsilon > 0$.

Ejemplo 1

Bosquejar las bolas $\overline{B}_1(-2, -3)$ y $B_1(2, 2)$.

Ejemplo 1

Bosquejar las bolas $\overline{B}_1(-2, -3)$ y $B_1(2, 2)$.

• Primero observemos que en el primer caso ϵ = 1 y $\vec{x_0}$ = (-2, -3)

Ejemplo 1

Bosquejar las bolas $\overline{B}_1(-2, -3)$ y $B_1(2, 2)$.

- Primero observemos que en el primer caso ϵ = 1 y $\vec{x_0}$ = (-2, -3)
- $\overline{B}_1(-2,-3) = \{(x,y): \|(x,y)-(-2,-3)\| \le 1\}$

Ejemplo 1

Bosquejar las bolas $\overline{B}_1(-2, -3)$ y $B_1(2, 2)$.

- Primero observemos que en el primer caso ϵ = 1 y $\vec{x_0}$ = (-2, -3)
- $\overline{B}_1(-2, -3) = \{(x, y) : \|(x, y) (-2, -3)\| \le 1\}$
- $\overline{B}_1(-2,-3) = \{(x,y) : \sqrt{(x+2)^2 + (y+3)^2} \le 1\}$

Ejemplo 1

Bosquejar las bolas $B_1(-2, -3)$ y $B_1(2, 2)$.

- Primero observemos que en el primer caso ϵ = 1 y $\vec{x_0}$ = (-2, -3)
- $\overline{B}_1(-2,-3) = \{(x,y) : \|(x,y) (-2,-3)\| \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : \sqrt{(x+2)^2 + (y+3)^2} \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : (x + 2)^2 + (y + 3)^2 \le 1\}$

Ejemplo 1

Bosquejar las bolas $B_1(-2, -3)$ y $B_1(2, 2)$.

- Primero observemos que en el primer caso ϵ = 1 y $\vec{x_0}$ = (-2, -3)
- $\overline{B}_1(-2, -3) = \{(x, y) : ||(x, y) (-2, -3)|| \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : \sqrt{(x+2)^2 + (y+3)^2} \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : (x + 2)^2 + (y + 3)^2 \le 1\}$
- Para el segundo caso tenemos ϵ = 1 y $\vec{x_0}$ = (2, 2)

Ejemplo 1

Bosquejar las bolas $\overline{B}_1(-2, -3)$ y $B_1(2, 2)$.

- Primero observemos que en el primer caso ϵ = 1 y $\vec{x_0}$ = (-2, -3)
- $\overline{B}_1(-2,-3) = \{(x,y) : \|(x,y) (-2,-3)\| \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : \sqrt{(x+2)^2 + (y+3)^2} \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : (x + 2)^2 + (y + 3)^2 \le 1\}$
- Para el segundo caso tenemos ϵ = 1 y $\vec{x_0}$ = (2,2)
- $B_1(2,2) = \{(x,y) : ||(x,y) (2,2)|| < 1\}$

Ejemplo 1

Bosquejar las bolas $B_1(-2, -3)$ y $B_1(2, 2)$.

- Primero observemos que en el primer caso ϵ = 1 y $\vec{x}_0 = (-2, -3)$
- $\overline{B}_1(-2, -3) = \{(x, y) : ||(x, y) (-2, -3)|| \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : \sqrt{(x+2)^2 + (y+3)^2} \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : (x + 2)^2 + (y + 3)^2 \le 1\}$
- Para el segundo caso tenemos ϵ = 1 y $\vec{x_0}$ = (2,2)
- $B_1(2,2) = \{(x,y) : ||(x,y) (2,2)|| < 1\}$
- $B_1(2,2) = \{(x,y) : \sqrt{(x-2)^2 + (y-2)^2} < 1\}$

Ejemplo 1

Bosquejar las bolas $B_1(-2, -3)$ y $B_1(2, 2)$.

- Primero observemos que en el primer caso ϵ = 1 y $\vec{x}_0 = (-2, -3)$
- $\overline{B}_1(-2, -3) = \{(x, y) : \|(x, y) (-2, -3)\| \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : \sqrt{(x+2)^2 + (y+3)^2} \le 1\}$
- $\overline{B}_1(-2, -3) = \{(x, y) : (x + 2)^2 + (y + 3)^2 \le 1\}$
- Para el segundo caso tenemos ϵ = 1 y $\vec{x_0}$ = (2, 2)
- $B_1(2,2) = \{(x,y) : ||(x,y) (2,2)|| < 1\}$
- $B_1(2,2) = \{(x,y) : \sqrt{(x-2)^2 + (y-2)^2} < 1\}$
- $B_1(2,2) = \{(x,y) : (x-2)^2 + (y-2)^2 < 1\}$

Ejemplo 2

Ejemplo 2

Bosquejar la bola $\overline{B}_2(0,0,0)$.

• Primero observemos que ϵ = 2 y $\vec{x_0}$ = (0, 0, 0)

Ejemplo 2

- Primero observemos que ϵ = 2 y $\vec{x_0}$ = (0,0,0)
- $\overline{B}_2(0,0,0) = \{(x,y,z) : ||(x,y,z) (0,0,0)|| \le 2\}$

Ejemplo 2

- Primero observemos que ϵ = 2 y $\vec{x_0}$ = (0, 0, 0)
- $\overline{B}_2(0,0,0) = \{(x,y,z) : \|(x,y,z) (0,0,0)\| \le 2\}$
- $\overline{B}_2(0,0,0) = \{(x,y,z) : \sqrt{x^2 + y^2 + z^2} \le 2\}$

Ejemplo 2

- Primero observemos que ϵ = 2 y $\vec{x_0}$ = (0,0,0)
- $\bullet \ \overline{B}_2(0,0,0) = \{(x,y,z): \, \|(x,y,z) (0,0,0)\| \leq 2\}$
- $\overline{B}_2(0,0,0) = \{(x,y,z) : \sqrt{x^2 + y^2 + z^2} \le 2\}$
- $\overline{B}_2(0,0,0) = \{(x,y,z) : x^2 + y^2 + z^2 \le 4\}$

Definición

Sea $S \subset \mathbb{R}^n$. Definimos los siguientes conjuntos:

Definición

Sea $S \subset \mathbb{R}^n$. Definimos los siguientes conjuntos:

1. El interior de S es el conjunto

$$int(S) = {\vec{x} \in \mathbb{R}^n : \exists \epsilon > 0, \ B_{\epsilon}(\vec{x}) \subset S}$$

Definición

Sea $S \subset \mathbb{R}^n$. Definimos los siguientes conjuntos:

1. El interior de S es el conjunto

$$int(S) = \{ \vec{x} \in \mathbb{R}^n : \exists \epsilon > 0, \; B_{\epsilon}(\vec{x}) \subset S \}$$

2. El exterior de S es el conjunto

$$ext(S) = {\vec{x} \in \mathbb{R}^n : \exists \epsilon > 0, \ B_{\epsilon}(\vec{x}) \subset \mathbb{R}^n \setminus S}$$

Definición

Sea $S \subset \mathbb{R}^n$. Definimos los siguientes conjuntos:

1. El interior de S es el conjunto

$$int(S) = \{ \vec{x} \in \mathbb{R}^n : \exists \epsilon > 0, \ B_{\epsilon}(\vec{x}) \subset S \}$$

2. El exterior de S es el conjunto

$$ext(S) = \{ \vec{x} \in \mathbb{R}^n : \, \exists \epsilon > 0, \, \, B_{\epsilon}(\vec{x}) \subset \mathbb{R}^n \backslash S \}$$

3. La frontera de S es el conjunto

$$\partial(S) = \{ \vec{x} \in \mathbb{R}^n : \, \forall \epsilon > 0, \, \, B_{\epsilon}(\vec{x}) \cap (\mathbb{R}^n \backslash S) \neq \emptyset \wedge B_{\epsilon}(\vec{x}) \cap S \neq \emptyset \}$$

Ejemplo 3

Sean
$$S = \{(x,y): 1 < x^2 + y^2 \le 4\}$$
 y $A = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$, $B = (3,2)$, $C = (-\sqrt{3}, 1)$ y $D = (1, 1)$. Determinar cuales de los puntos A, B, C y D pertenecen al interior, al exterior y a la frontera de S .

Ejemplo 3

Sean $S = \{(x,y): 1 < x^2 + y^2 \le 4\}$ y $A = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$, B = (3,2), $C = (-\sqrt{3}, 1)$ y D = (1, 1). Determinar cuales de los puntos A, B, C y D pertenecen al interior, al exterior y a la frontera de S.

- · A es un punto frontera.
- B es un punto exterior.
- · C es un punto frontera.
- D es un punto interior.

Proposición:

Sea $S \subset \mathbb{R}^n$.

• \mathbb{R}^n es la unión disjunta de los conjuntos int(S), ext(S) y $\partial(S)$.

Proposición:

Sea $S \subset \mathbb{R}^n$.

- \mathbb{R}^n es la unión disjunta de los conjuntos int(S), ext(S) y $\partial(S)$.
- $int(S) \subset S \ y \ ext(S) \subset \mathbb{R}^n \backslash S$.

Proposición:

Sea $S \subset \mathbb{R}^n$.

- \mathbb{R}^n es la unión disjunta de los conjuntos int(S), ext(S) y $\partial(S)$.
- $int(S) \subset S \ y \ ext(S) \subset \mathbb{R}^n \setminus S$.

Los puntos frontera pueden o no pertenecer a S.

Proposición:

Sea $S \subset \mathbb{R}^n$.

- \mathbb{R}^n es la unión disjunta de los conjuntos int(S), ext(S) y $\partial(S)$.
- $int(S) \subset S \ y \ ext(S) \subset \mathbb{R}^n \backslash S$.

Los puntos frontera pueden o no pertenecer a S.

Definición

Sea $S \subset \mathbb{R}^n$.

S es abierto si S = int(S)

Proposición:

Sea $S \subset \mathbb{R}^n$.

- \mathbb{R}^n es la unión disjunta de los conjuntos int(S), ext(S) y $\partial(S)$.
- $int(S) \subset S \ y \ ext(S) \subset \mathbb{R}^n \setminus S$.

Los puntos frontera pueden o no pertenecer a S.

Definición

Sea $S \subset \mathbb{R}^n$.

- S es abierto si S = int(S)
- S es cerrado si S = $int(S) \cup \partial(S)$

Ejemplo 4

Sea $S = \{(x, y): 1 < x^2 + y^2 \le 4\}$. Encontrar int(S), ext(S) y ∂S . Utilizar esta información para determinar si S es abierto o cerrado.

•
$$int(S) = \{(x, y) : 1 < x^2 + y^2 < 4\}.$$

- $int(S) = \{(x, y) : 1 < x^2 + y^2 < 4\}.$
- $ext(S) = \{(x, y) : x^2 + y^2 > 4 \lor x^2 + y^2 < 1\}.$

- $int(S) = \{(x, y) : 1 < x^2 + y^2 < 4\}.$
- $ext(S) = \{(x, y) : x^2 + y^2 > 4 \lor x^2 + y^2 < 1\}.$
- $\partial(S) = \{(x, y) : x^2 + y^2 = 1 \lor x^2 + y^2 = 4\}.$

- $int(S) = \{(x, y) : 1 < x^2 + y^2 < 4\}.$
- $ext(S) = \{(x, y) : x^2 + y^2 > 4 \lor x^2 + y^2 < 1\}.$
- $\partial(S) = \{(x, y) : x^2 + y^2 = 1 \lor x^2 + y^2 = 4\}.$
- S no es ni abierto ni cerrado ya que S ≠ int(S) y
 S ≠ int(S) ∪ ∂(S).

Definición

Sea $S \subset \mathbb{R}^n$.

• S es acotado si existe M > 0 tal que $S \subset B_M(\vec{0})$

Definición

Sea $S \subset \mathbb{R}^n$.

- S es acotado si existe M > 0 tal que $S \subset B_M(\vec{0})$
- S es no acotado si no existe tal M.

Definición

Sea $S \subset \mathbb{R}^n$.

- S es acotado si existe M > 0 tal que $S \subset B_M(\vec{0})$
- S es no acotado si no existe tal M.

Ejemplo 5

• El conjunto $S = \{(x, y) : \frac{x^2}{4} + \frac{y^2}{9} \le 1\}$ es acotado.

Definición

Sea $S \subset \mathbb{R}^n$.

- S es acotado si existe M > 0 tal que $S \subset B_M(\vec{0})$
- S es no acotado si no existe tal M.

Ejemplo 5

- El conjunto $S = \{(x, y) : \frac{x^2}{4} + \frac{y^2}{9} \le 1\}$ es acotado.
- El conjunto $R = \{(x, y) : xy = 1\}$ es no acotado.