Latex Practice

Harish

June 2025

1 Overview of Electromagnetic Theory

Electromagnetic theory is a branch of physics that studies electric and magnetic fields and their interactions with matter. It is fundamental to understanding waves, optics, and modern communication systems.

Electric Fields and Gauss's Law 1.1

Electric fields are generated by electric charges. Gauss's law states that the electric flux through a closed surface is proportional to the charge enclosed:

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\varepsilon_0} \tag{1}$$

1.2 Magnetic Fields and Ampere's Law

Magnetic fields are produced by moving charges or currents. Ampere's law with Maxwell's addition relates the magnetic field around a loop to the current and charging electric field:

$$\oint \vec{B} \cdot d\vec{1} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} \tag{2}$$

1.3 Faraday's Law of Induction

Faraday's law states that a changing magnetic field induces an electromotive force (EMF):

$$\mathcal{E} = -\frac{d\Phi_B}{dt} \tag{3}$$

Maxwell's Equations 1.4

Maxwell's equations summarize the laws of electricity and magnetism in differential form:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \tag{4}$$

$$\nabla \cdot \vec{B} = 0 \tag{5}$$

$$\nabla \cdot \vec{B} = 0 \tag{5}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{6}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \tag{7}$$

Electromagnetic Waves

Maxwell's equations predict that electric and magnetic fields propagate as waves at the speed of light;

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \tag{8}$$

2 Comparison of EM Wave Types

Type	Wavelength Range	Application
Radio Waves	> 1 m	Broadcasting, communication
Microwaves	1 mm to 1 m	Radar, Cooking
Infrared	700 nm to 1 mm	Night Vision, Remote Controls
Visible Light	400-700 nm	Human Vision
Ultraviolet	10 nm to 400 nm	Sterilization, Fluorescence

Table 1: Types of Electromagnetic Waves and Their Applications

3 Wave Representation

Figure 1: Electric and Magnetic Field Vectors in an Electromagnetic Wave

4 Key Features of EM Theory

- Describes electric and magnetic fields as interrelated.
- Forms the basis for all classical wave and optical phenomena.
- Supports technologies from antennas to fiber optics.
- Predicts wave propagation at the speed of light.

As shown in equation 1, the electric flux is proportional to the enclosed charge. The wide range of EM wave types is summarized in Table 1, and their field orientations are visualized in Figure 1.