

Correction to Effects of Thermal Treatment on the Coagulation of Soy Proteins Induced by Subtilisin Carlsberg [J. Agric. Food Chem. 57, 717. DOI: 10.1021/jf802693f]. Kuniyo Inouye,* Mikio Nakano, Kohei Asaoka, and Kiyoshi Yasukawa

The correct name of the second author is Mikio Nakano.

DOI: 10.1021/jf903926t Published on Web 11/12/2009

Correction to Profile of Plasma and Urine Metabolites after the Intake of Almond [Prunus dulcis (Mill.) D.A. Webb] Polyphenols in **Humans** [J. Agric. Food Chem. **2009**, 57, 10134. DOI: 10.1021/ jf901450z]. Mireia Urpi-Sarda, Ignacio Garrido, Mara Monagas, Carmen Gómez-Cordovés, Alexander Medina-Remón, Cristina Andres-Lacueva,* and Begoña Bartolomé

Tables 2 and 3 have been corrected as follows:

Table 2. Concentrations of Conjugated Phenolic Metabolites Detected in Nonhydrolyzed Human Plasma and Urine before and after Consumption of Almond Skin Extract

	MRM transition	plasma ^a (nM)				urine ^b (nM)			
metabolite		before		after		before		after	
		mean	SD	mean	SD	mean	SD	mean	SD
flavan-3-ols									
(epi)catechin-O-glucuronide 1	465→289	nd^c		nd		0.55	0.78	6.95	3.29
(epi)catechin-O-glucuronide 2	465→289	nd		nd		2.25	0.05	6.39	0.89
(epi)catechin-O-glucuronide 3	465→289	nd		19.51	3.99	3.08	0.17	21.35	3.91
O-methyl (epi)catechin-O-glucuronide 1	479→303	nd		8.54	3.47	1.93	0.70	25.30	9.74
O-methyl (epi)catechin-O-glucuronide 2	479→303	nd		7.94	3.98	2.28	0.62	46.92	7.28
(epi)catechin sulfate 1	369→289	nd		5.59^{d}		5.33	1.77	972.70	344.64
(epi)catechin sulfate 2	369→289	nd		14.71	9.02	10.62	5.79	200.40	28.55
O-methyl (epi)catechin sulfate 1	383→303	nd		41.82	17.17	8.24	4.04	586.31	90.34
O-methyl (epi)catechin sulfate 2	383→303	nd		17.83 ^d		7.14	1.83	537.34	132.70
O-methyl (epi)catechin sulfate 3	383→303	nd		nd		2.90	0.57	87.52	10.37
hydroxyphenylvalerolactones									
5-(dihydroxyphenyl)-γ-valerolactone glucuronide derivative 1	383→207	nd		nd		18.03	3.95	2939.65	501.22
5-(dihydroxyphenyl)- γ -valerolactone glucuronide derivative 2	383→207	nd		nd		35.28	17.30	7682.78	1942.14
5-(dihydroxyphenyl)- γ -valerolactone sulfate derivative	287→207	278.81	160.36	368.23	224.37	3969.68	283.23	449558.92	146817.62
5-(hydroxymethoxyphenyl)-γ-valerolactone glucuronide derivative 1	397→221	7.62	6.11	5.94	4.84	362.61	97.5	832.89	291.5
5-(hydroxymethoxyphenyl)-γ-valerolactone glucuronide derivative 2	397→221	nd		nd		6.18	1.68	117.89	41.19
5-(hydroxymethoxyphenyl)-γ-valerolactone sulfate derivative 1	301→221	nd		nd		57.26	50.50	1495.68	828.12
5-(hydroxymethoxyphenyl)-γ-valerolactone sulfate derivative 2	301→221	nd		nd		14.36	7.15	704.80	266.53
flavanones									
naringenin-O-glucuronide 1	447→271	0.84	0.15	3.35	0.17	2.81	1.44	14.97	6.41
naringenin-O-glucuronide 2	447→271	0.61	0.05	1.27	0.17	8.15	8.35	15.43	5.61
flavonols									
isorhamnetin-O-glucuronide 1	491→315	1.68	0.03	2.40	1.46	5.08	2.74	6.71	0.55
isorhamnetin-O-glucuronide 2	491→315	1.14	0.81	1.49	0.54	4.54	1.38	4.89	1.72
isorhamnetin sulfate	395→315	nd		nd		37.39	4.54	62.75	29.13

^a Mean (n = 2), standard deviation (SD). Before (at 0 h); after (at 2.5 h). ^b Mean (n = 2), standard deviation (SD). Before (from -2 to 0 h); after (from 0 to 24 h). ^c nd, not detected. ^d Detected in only one volunteer.

Table 3. Concentration of Microbial-Derived Phenolic Metabolites Detected in Hydrolyzed Human Plasma and Urine before and after Consumption of Almond Skin Extract

metabolite	MRM transition	plasma ^a (nM)				urine ^b (nM)				
		before		after		before		after		
		mean	SD	mean	SD	mean	SD	mean	SD	
hydroxyphenylvalerolactones										
5-(dihydroxyphenyl)- γ -valerolactone	207→163	nd^c		nd		121.09	11.70	23553.03	1230.73	
5-(hydroxyphenyl)-γ-valerolactone	191→147	nd		nd		48.81	10.12	229.21	54.93	
hydroxyphenylpropionic acids										
3,4-dihydroxyphenylpropionic acid	181→137	2880.36	365.83	2787.25	14.53	2805.14	415.97	3618.37	787.73	
3-hydroxyphenylpropionic acid	165→121	2038.17	367.60	1780.23	335.28	8.16 ^d		51.61 ^d		
hydroxyphenylacetic acids										
3,4-dihydroxyphenylacetic acid	167→123	406.28	112.62	385.83	30.04	1759.11	559.81	3122.01	161.09	
3-hydroxyphenylacetic acid	151→107	986.95	143.93	939.50	52.28	2421.92	2366.71	7012.71	4401.08	
4-hydroxy-3-methoxyphenylacetic acid	181→137	755.81	189.16	571.49	162.27	6327.50	2186.86	25212.61	10960.16	
phenylacetic acid	135→91	8481.61	2343.50	8733.33	2384.11	5577.11	116.15	6716.28	921.82	
hydroxycinnamic acids										
<i>m</i> -coumaric acid	163→119	17.94	9.58	22.93	4.98	15.54	8.91	29.35	17.15	
p-coumaric acid	163→119	29.29	0.46	19.14	2.66	14.86	17.72	20.65	12.90	
caffeic acid	179→135	509.99	95.05	484.26	24.04	809.06	318.26	1200.01	43.82	
ferulic acid	193→134	46.50	2.68	25.38	12.68	111.13	17.70	365.45	258.27	
3-hydroxy-4-methoxycinnamic acid	193→134	71.52	26.28	66.74	5.61	3034.48	128.10	4541.98	1705.02	
hydroxybenzoic acids										
3-hydroxybenzoic acid	137→93	nd		nd		206.26	140.96	315.91	10.28	
4-hydroxybenzoic acid	137→93	6177.80	824.05	6527.09	234.47	5529.69	1759.09	7034.03	240.27	
protocatechuic acid	153→109	4553.05	792.78	4222.13	265.67	9012.44	1414.96	9451.31	1943.47	
vanillic acid	167→152	2821.25	478.51	3087.02	273.06	218.39	111.27	1676.85	1183.74	
hydroxyhippuric acids										
4-hydroxyhippuric acid	194→100	14.56	1.47	11.46	0.11	15475.48	13393.70	17909.39	12733.87	

^a Mean (n = 2), standard deviation (SD). Before (at 0 h); after (at 2.5 h). ^b Mean (n = 2), standard deviation (SD). Before (from −2 to 0 h); after (from 0 to 24 h). ^cnd, not detected. ^d Quantified in only one volunteer.

The captions of **Figures 1** and **2** have been updated (to include peak numbers) as follows:

Figure 1. MRM trace chromatograms of (epi)catechin-*O*-glucuronides (465/289) (peaks 1, 2, and 3), (epi)catechin sulfates (369/289) (peaks 4 and 5), *O*-methyl (epi)catechin-*O*-glucuronides (479/303) (peaks 6 and 7), and *O*-methyl (epi)catechin sulfates (383/303) (peaks 8, 9. and 10) detected in urine samples after intake of almond extract. The MRM trace chromatogram corresponding to (epi)catechin (289/245) is also shown to confirm metabolites.

Figure 2. MRM trace chromatograms of 5-(dihydroxyphenyl)- γ -valerolactone glucuronide derivatives (383/207) (peaks 11 and 12), 5-(dihydroxyphenyl)- γ -valerolactone sulfate derivative (287/207) (peaks 13), 5-(hydroxymethoxyphenyl)- γ -valerolactone glucuronide derivatives (397/221) (peaks 14 and 15), and 5-(hydroxymethoxyphenyl)- γ -valerolactone sulfate derivatives (301/221) (peaks 16 and 17). MRM trace chromatograms of aglycones, 5-(dihydroxyphenyl)- γ -valerolactone (207/163) and 5-(hydroxy-methoxyphenyl)- γ -valerolactone (221/162), are also shown to confirm metabolites.

DOI: 10.1021/jf9038887 Published on Web 11/10/2009