## Synthèse de l'ammoniac

Groupe 1254

Ecole polytechnique de Louvain-la-neuve

### Démarche suivie

#### Nous allons vous présenter :

- La tâche 3 : Etude environnementale
- La tâche 8 : Comment diminuer notre rejet en CO<sub>2</sub>?
  - L'électolyse
  - Le Biogaz
  - Les Algues

### Aspects énergétique

#### Points d'entrée et de sorties :

- Four à méthane
- Condensation du CO<sub>2</sub> et de l'H<sub>2</sub>O
- Refroidissement du réacteur à NH<sub>3</sub>
- Condensation de l'ammoniac

#### Amélioration possible :

• Réutilisation de l'eau rejetée

# Rejets CO<sub>2</sub>

#### Sources

- Four à méthane :  $207 \mathrm{\ t}$  de  $\mathrm{CO}_2$ .
- Réformeur primaire + Réformeur secondaire + Water-gas shift : 1718 t CO<sub>2</sub>.

#### Solutions

- Autre source d'hydrogène
- Le biogaz
- Capturer et stocker le CO<sub>2</sub>

## Electrolyse de l'eau

$$2\,\mathrm{H_2O_{(l)}} \Longleftrightarrow 2\,\mathrm{H_{2(g)}} + \mathrm{O_{2(g)}}$$

#### Principaux avantages :

- Pas de rejet de CO<sub>2</sub>
- Coûts de transport diminués



A link to tex.sx

### Electrolyse de l'eau

Puissance requise pour produire 1500 [tonnes/jour] d'ammoniac

- ullet  $\simeq$  5.7 [GW]
- → 4 réacteurs nucléaires (d'une puissance de 1.5 [GW])
- $\Rightarrow$  2850 Ha de panneaux photovoltaïques (avec un rendement de 20 % pour un rayonnement d'une intensité 1000 [W/ $m^2$ ])

### Principaux désavantages

- Consommation d'électricité
- Stockage de l'hydrogène
- Dangerosité de l'hydrogène

#### Biométhanisation



Synthèse de l'ammoniac

### Biométhanisation

### Composition:

- 50 à 70 % de CH₄
- $\bullet$  15 à 45 % de  $CO_2$
- 5 % de H<sub>2</sub>O
- $\bullet$  0 à 2 % de  $H_2S$
- impuretés (négligeable)



### Biogaz

### Avantages :

- Ecologique
  - CO<sub>2</sub>
  - CH<sub>4</sub>
- Réduction des problèmes liés au transport
- Réduction de la consommation d'énergie

#### Faisabilité :

- Région wallonne : environ 485.33 · 10<sup>3</sup> t/an de CH<sub>4</sub> provenant de biogaz (potentiel)
- $1500 \text{ t/j de NH}_3 \Longrightarrow 258.7 \cdot 10^3 \text{ t/an de CH}_4$
- Représente 53.3 % de la production en biométhane wallonne
- Impossibilité de remplacer le gaz naturel totalement par du biogaz

## Chlamydomonas reinhardtii : l'hydrogène du futur?



Mécanisme de production d'hydrogène découvert en 1990 à l'Université de Californie à Berkeley.

Privée de soufre. C. reinhardtii produit de l'hydrogène au lieu d'oxygène.

# Avantages de la production d'hydrogène par des algues

- Pas d'impact CO<sub>2</sub> direct
- Source renouvelable et extensible d'hydrogène
- Avantages de l'hydrogène (combustion propre, haute densité d'énergie)



### **Prédictions**

Sur base des recherches actuelles, nous pouvons extrapoler :

- Pour produire  $1500~\rm t/j$  de NH $_3$ , il nous faut  $266~\rm t/j$  d'hydrogène
- En Belgique, cela nécessite  $200 \text{ km}^2$
- ullet pprox 0.6 % surface de la Belgique

Coût de l'hydrogène

- À partir d'algues : entre 1 et 6 USD/kg
- À partir de gaz naturel :  $\sim 3~\mathrm{USD/kg}$

### En conclusion

Beaucoup de potentiel mais aucune réelle alternative au gaz naturel aujourd'hui

⇒ investir pour le futur.

Slides supplémentaires

### Analyse du progrès du groupe

#### Organisation du groupe :

- Utilisation de Github.
- Planification par écrit des tâches.
- Réservation de Locaux en BST.

## Le biogaz en Wallonie l

|                                             | Gisement $(10^6~{\rm t})$ | Productivité ( ${ m m}_{{ m CH}_4}^3/{ m t}$ ) |
|---------------------------------------------|---------------------------|------------------------------------------------|
| Effluents agricoles                         | 18.2                      | 31.5                                           |
| Résidus agro-industriels                    | 1.15                      | 60                                             |
| Résidus organiques ménagers + déchets verts | 1                         | 65                                             |
| Boues de STEP                               | 0.07                      | 230                                            |
| Total                                       | 20.42                     |                                                |

A partir de ces données, nous pouvons faire un estimation de la production de biométhane en Wallonie :

$$18.2 \cdot 10^6 \cdot 31.5 + 1.15 \cdot 10^6 \cdot 60 + 1 \cdot 10^6 \cdot 65 + 0.07 \cdot 10^6 \cdot 230 = 729.4 \cdot 10^6 \text{ m}^3$$

A link to tex.sx

## Le biogaz en Wallonie II

en sachant que le masse volumique du CH<sub>4</sub> est de  $0.6790 \text{ kg/m}^3$ , on obtient que la combinaison de ces 4 ressources, nous engendre une production de  $485.33 \cdot 10^3$  t/an de CH<sub>4</sub>.

Comme nous avons besoin de 708.76 t/day de  $CH_4$ , il nous faut 258697.5 T/ans de CH<sub>4</sub>. Ce qui équivaut à 53.3 % de la production de biométhane en Wallonie.

### **Flowsheet**

