Fiches de Mathématiques

Terminale S

Anne-Sophie PHILIPPE

Table des matières

1	Suites				
	1.1 Rappels sur les suites	2			
	1.2 Suites arithmétiques et suites géométriques	2			
	1.3 Démonstration par récurrence	3			
	1.4 Limite d'une suite	3			
	1.5 Suites adjacentes	5			
2	Les fonctions	6			
	2.1 Les limites d'une fonction	6			
	2.2 Opérations sur les limites	7			
	2.3 Propriétés des limites	7			
	2.4 Continuité	8			
	2.5 Dérivation	11			
3	Fonction exponentielle et équation différentielle	11			
4	Fonction logarithme népérien	12			
5	Fonctions puissances et croissances comparées	13			
	5.1 Fonctions puissances x^n et $\frac{1}{x^n}$	13			
	5.2 Fonctions racine $n^{\text{ième}}$	14			
	5.3 Croissances comparées	14			
	5.4 Fonctions exponentielles de base	15			
6	Les produits scalaires	16			
	6.1 Produits scalaires dans le plan	16			
	6.2 Produits scalaires dans l'espace	17			
7	Représentation analytique d'une droite de l'espace	18			
8	Les nombres complexes	19			
	8.1 Introduction aux nombres complexes	19			
	8.2 Calculs avec les nombres complexes	19			
	8.3 Equation du second degré à coefficients réels	20			
	8.4 Module et argument d'un nombre complexe	21			
	8.5 Propriétés du module et des arguments	22			
	8.6 Lien avec le plan complexe	23			
	8.7 Notation exponentielle	24			
	8.8 Nombres complexes et transformations	24			
9	Intégration	25			
	9.1 Intégration des fonctions	25			
	9.2 Propriétés de l'intégrale	26			
	9.3 Primitive	27			
	9.4 Intégrale et primitive	28			
	9.5 Intégration par parties	28			
10	Les probabilités	29			
	10.1 Introduction aux probabilités	29			
	10.2 Calculs de probabilités	29			
	10.3 Variable aléatoire	30			

	Dénombrement et lois de probabilité	31
	11.1 Dénombrement	31
	11.2 Exemples de lois discrètes	32
	11.3 Lois de probabilité continue	33
12	Probabilités conditionnelles	34
	12.1 Les probabilités conditionnelles	34
	12.2 Indépendance	

1 Suites

Rappels sur les suites

Variations d'une suite

- * La suite $(u_n)_{n\in\mathbb{N}}$ est croissante à partir du rang n_0 si et seulement si, pour tout $n \ge n_0$, $u_{n+1} \ge n_n$.
- * La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante à partir du rang n_0 si et seulement si, pour tout $n\geqslant n_0$, $U_{n+1}\leqslant U_n$.
- * Une suite $(u_n)_{n\in\mathbb{N}}$ est dite monotone si elle est croissante ou décroissante.

Etude du sens de variation d'une suite

- * Etude du signe de $u_{n+1} u_n$.
- * $u_n = f(n)$, si f est monotone sur $[0; +\infty]$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est monotone, de même variation que f (formule explicite).
- * Si $(u_n)_{n\in\mathbb{N}}$ est strictement positive, on peut comparer $\frac{u_{n+1}}{u_n}$ et 1.
- Si $\frac{u_{n+1}}{u_n} > 1$, $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
- Si $\frac{u_{n+1}}{u}$ < 1, $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.

Suites majorées, minorées, bornées...

- * La suite $(u_n)_{n\in\mathbb{N}}$ est majorée s'il existe un réel M tel que pour tout entier $n, u_n \leq M$.
- * La suite $(u_n)_{n\in\mathbb{N}}$ est minorée s'il existe un réel m tel que pour tout entier $n, u_n \ge m$.
- * La suite $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est à la fois majorée et minorée.

Suites arithmétiques et suites géométriques 1.2

Suites arithmétiques

* Une suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique s'il existe un réel r (la raison) indépendant de n tel que, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n + r$$

- * Pour tous entiers n et p, $u_n = u_p + (n p) \times r$. * $u_n = u_0 + n.r$. * $\lim_{n \to +\infty} u_n = \begin{cases} +\infty, & \text{si } r > 0 \\ -\infty, & \text{si } r < 0 \end{cases}$

- * Somme de termes consécutifs :

$$(nombre de termes) \times \frac{1^{er} terme \times dernier terme}{2}$$

Exemple:

$$1+2+...+n = \frac{n \times (n+1)}{2}$$

Suites géométriques

* Une suite $(u_n)_{n\in\mathbb{N}}$ est géométrique s'il existe un réel q (la raison) indépendant de n tel que, pour tout

$$u_{n+1} = u_n + q$$

* Pour tous entiers n et p, $u_n = u_p \times q^{n-q}$.

$$* u_n = u_0 \times q^n.$$

$$* \lim_{n \to +\infty} q^n = \begin{cases} +\infty, & \text{si } q > 1 \\ 0, & \text{si } 0 < q < 1 \end{cases}$$

$$(1^{\text{er}} \text{termes}) \times \frac{1 - q^{\text{nombre de termes}}}{1 - q}$$

Exemple:

$$1+q^1+q^2+...+q^n = 1 \times \frac{1-q^{n+1}}{1-q}$$

Attention: nombre de termes = $n + 1 - 1^{er}$ terme

Démonstration par récurrence

Démonstration par récurrence

Pour démontrer que pour tout entier $n \ge n_0$, P_n (proposition qui dépend de n) est vraie, il faut :

- * Initialisation : vérifier que P_{n_0} est vraie pour $n_0 \ge 0$.
- * Hypothèse de récurrence : considérer que P_k est vraie pour un certain entier $k \ge n_0$.
- * Propriété d'hérédité : démontrer que P_{n+1} est vraie.
- * Conclusion : pour tout $n \ge n_0$, P_n est vraie.

Limite d'une suite 1.4

Limites d'une suite numérique $(u_n)_{n\in\mathbb{N}}$

* La suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ . Ceci signifie que tout intervalle contenant ℓ contient aussi tous les termes de la suite à partir d'un certain rang p.

$$\lim_{n\to+\infty}u_n=\ell$$

 $(u_n)_{n\in\mathbb{N}}$ est convergente et converge vers ℓ .

- * La suite $(u_n)_{n\in\mathbb{N}}$ a pour limite $+\infty$. Cela signifie que tout intervalle ouvert A; $+\infty$ [contient tous les termes de la suite à partir d'un certain rang p. La suite est divergente.
- * La suite $(u_n)_{n\in\mathbb{N}}$ a pour limite $-\infty$. Ceci signifie que tout intervalle ouvert $]-\infty;B[$ contient tous les termes de la suite à partir d'un certain rang p. La suite est divergente.
- * La suite $(u_n)_{n\in\mathbb{N}}$ n'admet aucune limite. La suite est divergente.

Suites monotones

* Si une suite $(u_n)_{n\in\mathbb{N}}$ est croissante et non majorée, alors :

$$\lim_{n \to +\infty} u_n = +\infty$$

* Si une suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et non minorée, alors :

$$\lim_{n\to+\infty}u_n=-\infty$$

- * Une suite croissante et majorée est convergente.
- * Une suite décroissante et minorée est convergente.

ROC 1 : limite d'une suite croissante non majorée

- * La suite $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée : quelque soit le réel A, on peut trouver un entier p tel que $u_p \ge A$.
- * La suite $(u_n)_{n \in \mathbb{N}}$ est croissante. Pour tout $n \ge p : \begin{cases} u_n \ge u_p \\ u_n > A \end{cases}$.
- * A partir du rang p, tous les termes de la suite sont dans $]A; +\infty[$.
- * Conclusion : par définition, cela prouve :

$$\lim_{n \to +\infty} u_n = +\infty$$

ROC 2 : limite d'une suite décroissante non minorée

- * La suite $(u_n)_{n\in\mathbb{N}}$ n'est pas minorée : quelque soit le réel B, on peut trouver un entier p tel que $u_p \leq B$
- * La suite $(u_n)_{n \in \mathbb{N}}$ est décroissante. Pour tout $n \geqslant p : \begin{cases} u_n \leqslant u_p \\ u_n < B \end{cases}$.
- * A partir du rang p, tous les termes de la suite sont dans $]-\infty;B[$
- * Conclusion : par définition, cela prouve :

$$\lim_{n \to +\infty} u_n = -\infty$$

ROC 3 : limite d'une suite croissante et majorée

- * Soit la suite $(u_n)_{n\in\mathbb{N}}$, croissante et majorée par un réel M. Notons A, le plus petit des majorants.
- * Tout intervalle $]A \alpha; A + \alpha[$ contient au moins un terme u_p de la suite. Sinon, $A \alpha$ serait un majorant de la suite, ce qui contredit le fait que A soit le plus petit des majorants.
- * La suite $(u_n)_{n\in\mathbb{N}}$ est croissante : pour tout $n \ge p$, $u_n \ge u_p$.
- * Conclusion : l'intervalle $]A \alpha; A + \alpha[$ contient tous les termes de la suite à partir du rang p. Ceci est vrai, quel que soit le réel $\alpha > 0$.

Par définition, la suite $(u_n)_{n\in\mathbb{N}}$ converge et à pour limite A.

ROC 4: limite d'une suite décroissante et minorée

- * Soit la suite $(u_n)_{n\in\mathbb{N}}$ décroissante et minorée par un réel m. Notons B, le plus grand des minorants.
- * Tout intervalle $]B \alpha; B + \alpha[$ contient au moins un terme u_p de la suite. Sinon, $B + \alpha$ serait un minorant de la suite, ce qui contredit le fait que B soit le plus grand des minorants.
- * La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante : pour tout $n \ge p$, $u_n \le u_p$.
- * Conclusion : l'intervalle $]B \alpha; B + \alpha[$ contient tous les termes de la suite à partir du rang p. Ceci est vrai, quelque soit le réel $\alpha > 0$.

Par définition, la suite $(u_n)_{n\in\mathbb{N}}$ converge et à pour limite B.

¿Limite d'une suite géométrique

* Soit $(u_n)_{n\in\mathbb{N}}$, une suite géométrique de raison q non nulle.

Pour tout entier n:

$$u_n = u_0 \times q^n$$

- * Si |q| < 1, $\lim_{n \to +\infty} q^n = 0$ * Si q > 1, $\lim_{n \to +\infty} q^n = +\infty$ * Si q = 1, $\lim_{n \to +\infty} q^n = 1$ * Si $q \le -1$, q^n n'a pas de limite.

Théorème d'encadrement (« des gendarmes »)

Soient trois suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ telles que :

$$\forall n \geqslant n_0, \quad \lim_{\substack{n \to +\infty \\ \lim_{n \to +\infty}}} v_n = \ell \\ \lim_{\substack{n \to +\infty }} w_n = \ell \end{array} \right\} \lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = \ell$$

Suites adjacentes 1.5

Théorème et définition

Deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes si et seulement si :

- $*(u_n)_{n\in\mathbb{N}}$ est croissante.
- $*(u_n)_{n\in\mathbb{N}}$ est décroissante.
- $* \lim_{n \to +\infty} u_n v_n = 0$

Théorème : Si deux suites sont adjacentes alors elles convergent et elles ont la même limite.

2 Les fonctions

2.1 Les limites d'une fonction

aDéfinitions

* Limite finie d'une fonction en + ou $-\infty$: présence d'une assymptote horizontale (d'équation $y = \ell$) à \mathscr{C}_f en + ou $-\infty$.

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

* Limite infinie d'une fonction à l'infini. Pas d'assymptote.

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\lim_{x \to -\infty} x^n = +\infty \ (n \text{ pair})$$

$$\lim_{x \to +\infty} x^n = -\infty \ (n \text{ impair})$$

* Cas particulier:

$$\lim_{x \to +\infty} f(x) - (ax + b) = 0$$

La droite d'équation y = ax + b est assymptote oblique à \mathscr{C}_f en $+\infty$.

* Limite de f(x) quand x tend vers a en $+\infty$: présence d'une assymptote verticale (x = a) à \mathcal{C}_f .

$$\lim_{x \to 0^+} \frac{1}{x^n} = \lim_{x \to 0^-} \frac{1}{x^n} = +\infty \ (n \text{ pair})$$

$$\lim_{x \to 0^+} \frac{1}{x^n} = +\infty \text{ et } \lim_{x \to 0^-} \frac{1}{x^n} = -\infty \text{ (n impair)}$$

* Limite finie de la fonction en un réel a. $\lim_{x \to a} f(x) = \ell$

2.2 Opérations sur les limites

& Formes indéterminées

$$\lim_{\substack{x \to \alpha \\ \lim_{x \to \alpha} g = -\infty}} f = +\infty$$

$$\lim_{x \to \alpha} f = +\infty$$

$$\lim_{x \to \alpha} f + g \text{ est indéterminée}$$

$$\lim_{\substack{x \to \alpha \\ \lim_{x \to \alpha} g = 0}} f = \pm \infty$$

$$\lim_{x \to \alpha} f \times g \text{ est indéterminée}$$

$$\lim_{\substack{x \to \alpha \\ \lim_{x \to \alpha} g = \pm \infty}} f = \pm \infty$$

$$\lim_{x \to \alpha} \frac{f}{g} \text{ est indéterminée}$$

$$\lim_{\substack{x \to \alpha \\ \lim_{x \to \alpha} g = 0}} f = 0$$

$$\lim_{x \to \alpha} \frac{f}{g} \text{ est indéterminée}$$

«Limite d'une fonction polynôme ou d'une fonction rationnelle

- * Règle 1 : en $\pm \infty$, la limite d'une fonction polynôme est égale à la limite de son terme de plus haut degré.
- * Règle 2 : en $\pm \infty$, la limite d'une fonction rationnelle (quotient de deux polynômes) est égale à la limite du quotient du terme de plus haut degré du numérateur par le terme de plus haut degré du dénominateur.

& Composé de deux fonctions

On note f, la composé de u suivie de v:

$$f = v \circ u$$

$$\left| \lim_{\substack{x \to a \\ \lim_{x \to b} v(x) = c}} u(x) = b \right| \lim_{x \to a} v \circ u(x) = c$$

Remarque : vérifier les domaines de définition. u, définie sur l'intervalle I et v définie sur l'intervalle J tel que : $\forall x \in I, u(x) \in J$

2.3 Propriétés des limites

&Unicité

Si f admet une limite en α , alors, cette limite est unique.

aThéorèmes de comparaison

* Théorème 1 : au voisinage de α ,

Si
$$f(x) \ge u(x)$$
 et $\lim_{x \to a} u(x) = +\infty$, alors, $\lim_{x \to a} f(x) = +\infty$ (1)

Si
$$f(x) \le v(x)$$
 et $\lim_{x \to \alpha} u(x) = -\infty$, alors, $\lim_{x \to \alpha} f(x) = -\infty$ (2)

* Démonstrations (ROC)

(1) Soit, $\alpha = +\infty$. Tout intervalle $M; +\infty[$, où M est un réel, contient tous les u(x) pour x assez grand. Or, au voisinage de α , $f(x) \ge u(x)$. Donc, pour x assez grand, tous les f(x) sont contenus dans

Par définition,

$$\lim_{x \to +\infty} f(x) = +\infty$$

(2) Idem

* Théorème 2 : au voisinage de α ,

Si
$$\lim_{x \to \alpha} |f(x) - \ell| \le u(x)$$
 et $\lim_{x \to \alpha} u(x) = 0$

Alors,
$$\lim_{x \to \alpha} f(x) = \ell$$
.

* Théorème 3 : Théorème des gendarmes : au voisinage de α

Si
$$u(x) \le f(x) \le v(x)$$
 et $\lim_{x \to a} u(x) = \lim_{x \to a} v(x) = \ell$,

alors,
$$\lim_{x \to \alpha} f(x) = \ell$$
.

* Démonstration (ROC)

Soit, $\alpha = +\infty$.

Pour $x > A : u(x) \le f(x) \le v(x)$

 $\lim_{x \to +\infty} u(x) = \ell$ signifie que pour x > B, $u(x) \in I$ avec I intervalle contenant ℓ .

 $\lim v(x) = \ell \text{ signific que pour } x > C, v(x) \in I.$

Prenons M le plus grand des nombres A, B, C.

$$\forall x \geqslant M, \text{ on a } \begin{cases} u(x) \leqslant f(x) \leqslant v(x) \\ u(x) \in I \\ v(x) \in I \end{cases}$$

Donc $f(x) \in I$. Par définition, $\lim_{x \to +\infty} f(x) = \ell$.

* Comptabilité avec l'ordre

Au voisinage de α : si $f(x) \le g(x)$ et $\lim_{x \to \alpha} f(x) = \ell$ et $\lim_{x \to \alpha} g(x) = \ell'$

Alors, $\ell \leqslant \ell'$

2.4 Continuité

Opénitions et théorèmes

* Si f est continue en a:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$$

* Si f est dérivable en $a \in I$, alors f est continue en a.

* Si f est dérivable sur I, alors f est continue sur I.

Remarque : la réciproque est fausse, une fonction continue n'est pas toujours dérivable.

& Démonstration (ROC) toute fonction dérivable est continue

f est dérivable en a signifie que,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

Soit g, la fonction définie sur un voisinage de a par :

$$g(x) = \frac{f(x) - f(a)}{x - a}$$

avec $x \neq a$

$$f(x) = (x - a) \times g(x) + f(a)$$

$$\lim_{x \to a} x - a = 0 \text{ et } \lim_{x \to a} g(x) = f'(a)$$

Donc
$$\lim_{x \to a} f(x) = f(a)$$

Par définition, f est continue en a.

Cas particuliers

- * Les fonctions polynômes sont continues sur \mathbb{R} .
- * Les fonctions rationnelles sont continues sur chacun des intervalles du domaine de définition.
- * Les fonctions sinus et cosinus sont continues sur $\mathbb R$
- * Toute fonction construite par addition, multiplication ou composition de fonctions continues est une fonction continue.
- * La fonction racine carrée est définie sur $[0; +\infty[$ et est dérivable sur $]0; +\infty[$.

Selon le théorème, cette fonction est continue sur $]0;+\infty[$.

Mais, sa limite en 0 est 0 donc elle est continue sur $[0; +\infty[$.

Nombre dérivé

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \ell$$

$$f(a+h) = f(a) + \ell h + h \varphi(h)$$
 avec $\lim_{h \to 0} \varphi(h) = 0$

Si ces propositions sont vraies, f est dérivable en a et ℓ est le nombre dérivé de f en a noté f'(a). Si f est dérivable en a, la courbe \mathscr{C}_f admet au point A(a; f(a)) une tangente \mathscr{T} dont le coefficient directeur est f'(a). L'équation de \mathscr{T} est :

$$y = f'(a) \times (x - a) + f(a)$$

Si la limite du taux d'accroissement entre a et a+h de f est $\pm \infty$, alors f n'est pas dérivable. Il y a pas de tangente verticale en a.

Si les limites sont différentes à droite et à gauche, alors f n'est pas dérivable en a. Il y a un point anguleux en a.

a Théorème des valeurs intermédiaires

Si f est continue sur [a;b], alors, pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c appartenant à [a;b] tel que

$$f(c) = k$$
.

L'équation f(x) = k admet au moins une solution dans [a; b].

Théorème de bijection ou corollaire du theorème des valeurs intermédiaires

Si f est continue et strictement croissante sur [a;b], f([a;b]) = [f(a);f(b)]. Alors,

$$\forall y \in [f(a); f(b)]$$
, il existe un et un seul réel $c \in [a; b]$ tel que $f(c) = y$.

L'équation f(x) = y admet une et une seule solution dans [a; b].

Idem pour une fonction strictement décroissante. f([a;b]) = [f(b);f(a)].

Toute fonction continue et strictement monotone sur un intervalle donné réalise une bijection...

Démonstration (ROC)

- * Supposons f continue et strictement croissante sur [a; b].
- * Existence:

f est continue sur [a;b]. D'après le théorème des valeurs intermédiaires, $\forall y \in [f(a);f(b)]$, l'équation f(x) = y admet au moins une solution.

* Unicité:

Supposons que $f(c_1) = f(c_2) = y$ avec $c_1 < c_2$. f est strictement croissante sur [a; b], alors pour $c_1 < c_2$ on a $f(c_1) < f(c_2)$.

Cela contredit la supposition $f(c_1) = f(c_2) = y$.

Donc, il existe un seul réel c tel que f(c) = y.

Dérivation 2.5

Rappels

- * f est constante si et seulement si f' est nulle.
- * f est croissante si et seulement si f' est positive.
- *f est décroissante si et seulement si f' est négative.
- * Si f(a) est un extremum local de f en a alors, f'(a) = 0. (réciproque fausse)
- * Si f' s'annule et change de signe en a alors, f(a) est un extremum local.

Dérivée d'une fonction composée

g dérivable sur J et u dérivable sur I tels que : $\forall x \in I, u(x) \in J$. Alors, $f = g \circ u$ est dérivable sur I et on a $(g \circ u)'(x) = g'(u(x)) \times u'(x)$

$$(g \circ u)' = (g' \circ u) \times u'$$

Exemples importants

u, fonction positive et dérivable sur I.

- * $f = \sqrt{u}$ est dérivable et donne : $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$.
- * $f = u^n$ est dérivable et donne : $(u^n)' = n \times u^{n-1} \times u'$

Fonction exponentielle et équation différentielle 3

•• Définition

On dit que f, fonction dérivable sur un intervalle I, est solution de l'équation différentielle y' = k.y, lorsque $\forall x \in I, f'(x) = k.f(x)$.

Fonction exponentielle

Il existe une et une seule fonction dérivable sur \mathbb{R} telle que y' = y et y(0) = 1 (condition initiale). C'est la fonction exponentielle.

- * La fonction exponentielle est strictement croissante sur $\mathbb R$
- $\lim_{x \to +\infty} e^x = +\infty \text{ et } \lim_{x \to -\infty} e^x = 0$
- $* \lim_{h \to 0} \frac{e^h 1}{h} = 1$
- $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \text{ et } \lim_{x \to -\infty} x \cdot e^x = 0$ $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \text{ et } \lim_{x \to -\infty} x^n \cdot e^x = 0$
- * Fonction composée e^u . $(e^u)' = u' \cdot e^u$

Equation y' = a.y

L'ensemble des solutions dans \mathbb{R} de l'équation y' = ay est l'ensemble des fonctions

$$x \mapsto c.e^{ax}$$

où c est un réel quelconque.

Il existe une unique solution vérifiant la condition initiale $y'(x_0) = y_0$.

Les solutions de l'équation (E): y' = a.y + b sont les fonctions définies sur \mathbb{R} , de la forme $f - \frac{b}{d}$ où fest solution de y' = ay. C'est-à-dire

$$x \mapsto Ce^{ax} - \frac{b}{a}$$

où $C \in \mathbb{R}$. Si $y(x_0) = y_0$, (E) admet une unique solution.

Fonction logarithme népérien

Propriétés

Etude de la fonction

- * La fonction ln est définie et continue sur]0; $+\infty$ [.
- * $\forall x \in]0; +\infty[, \ln'(x) = \frac{1}{x}]$.
- * La fonction ln est croissante sur]0; $+\infty$ [.
- * $\lim_{x \to +\infty} \ln(x) = +\infty$ et $\lim_{x \to 0} \ln(x) = -\infty$ * $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ et $\lim_{x \to 0} x \cdot \ln(x) = 0$ * $\lim_{x \to 1} \frac{\ln(x)}{x-1} = 1$ et $\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$

*Démonstration (ROC)

Soit a > 0, démontrons que $\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \frac{1}{a}$ ou $\lim_{x \to 0} \frac{\ln(a) - \ln(x)}{a - x} = \frac{1}{a}$.

Posons $A = \ln(a)$, $a = e^A$ et $X = \ln(x)$, $x = e^X$.

$$\frac{\ln(a) - \ln(x)}{a - x} = \frac{A - X}{e^A - e^X} = \frac{1}{\frac{e^A - e^X}{A - X}}.$$

Comme ln est continue sur]0; $+\infty$ [, $\lim_{x\to a} \ln(x) = \ln(a)$.

$$\lim_{X\to \ln(a)} \frac{e^A - e^X}{A - X} = \lim_{X\to A} \frac{e^A - e^X}{A - X} = \exp'(A) = \exp(A) = \exp(\ln(a)) = a.$$

$$\lim_{x \to a} \frac{\ln(a) - \ln(x)}{a - x} = \lim_{X \to A} \frac{1}{\frac{e^A - e^X}{A - X}} = \frac{1}{a}.$$

D'où ln est dérivable en a > 0 et $\ln'(a) = \frac{1}{a}$.

*Fonction ln ou

$$(\ln \circ u)'(x) = \frac{u'(x)}{u(x)}$$

Ronction logarithme décimale

$$\log(x) = \frac{\ln(x)}{\ln(10)}$$

Cette fonction a les mêmes propriétés algébriques que ln.

Fonctions puissances et croissances comparées 5

Fonctions puissances x^n et $\frac{1}{x^n}$

La fonction x^n

- * Si n est pair, pour tout réel x, $f_n(-x) = f_n(x)$ donc f_n est paire. * Si n est impaire, f_n est impaire. * $f'(x) = n.x^{n-1}$

- La fonction $\frac{1}{x^n}$ * g_n est définie sur \mathbb{R}^* .

 * Si n est pair, $g_n(-x) = g_n(x)$ donc g_n est impaire.

 * $g'_n(x) = \frac{-n}{n+1}$ * g_n est décroissante sur $]0;+\infty[$

Fonctions racine $n^{i\text{ème}}$ 5.2

Définitions

La fonction racine $n^{\text{ième}}$ est définie sur $[0; +\infty[$ par

$$x \mapsto x^{\frac{1}{n}} = \sqrt[n]{x}$$

La fonction racine $n^{\mathrm{i\grave{e}me}}$ est dérivable sur]0; $+\infty$ [et sa dérivée est :

$$x \mapsto \frac{1}{n} x^{\frac{1}{n} - 1}$$

La fonction racine $n^{\text{ième}}$ est continue sur $]0;+\infty[$.

$$\lim_{x \to 0} x^{\frac{1}{n}} = \lim_{x \to 0} e^{\frac{1}{n} \ln x}$$

Or

$$\lim_{x \to 0^+} \frac{1}{n} \ln x = -\infty \text{ et } \lim_{x \to -\infty} e^X = 0$$

Donc

$$\lim_{x\to 0} x^{\frac{1}{n}} = 0$$

La fonction racine $n^{\text{ième}}$ est croissante et continue sur $[0; +\infty[$.

Croissances comparées

$$\forall n \geqslant 1, \lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 \text{ et } \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

$$\forall n \geqslant 1, \lim_{x \to 0} x^n \ln x = 0 \text{ et } \lim_{x \to -\infty} x^n e^x = 0$$

Fonctions exponentielles de base

¹¹Définition

$$f_a(x) = a^x = e^{x \ln a}$$

Si a = 1, f(a) est la fonction constante dégale à1.

Si a = e, f_e est la fonction exp

Dérivabilité

 f_a est dérivable sur $\mathbb R$:

$$f_a'(x) = \ln a \times e^{x \cdot \ln a} = \ln a \times a^x$$

Si 0 < a < 1 alors, $\ln a < 0$ donc $f_a' < 0$. f_a est décroissante sur \mathbb{R} . Si a < 1 alors, $\ln a > 0$ donc $f_a' > 0$. f_a est croissante sur \mathbb{R} .

* Si 0 < a < 1

$$*510 < a <$$

$$\lim_{x \to +\infty} x \ln a = -\infty$$

$$\lim_{X \to -\infty} e^X = 0 \text{ donc } \lim_{x \to +\infty} a^x = 0$$

$$\lim_{x \to -\infty} x \ln a = +\infty$$

$$\lim_{X \to +\infty} e^X = +\infty \text{ donc } \lim_{x \to -\infty} a^x = +\infty$$

* Si a > 1

$$\Rightarrow$$

$$\lim_{x \to +\infty} x \ln a = +\infty$$

$$\lim_{X \to +\infty} e^X = +\infty \text{ donc } \lim_{x \to +\infty} a^x = +\infty$$

$$\lim_{x \to -\infty} x \ln a = -\infty$$

$$\lim_{X \to -\infty} e^X = 0 \text{ donc } \lim_{x \to -\infty} a^x = 0$$

Les produits scalaires

Produits scalaires dans le plan

Propriétés

* Si \overrightarrow{u} et \overrightarrow{v} sont non nuls, alors,

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u} \cdot \overrightarrow{v})$$

$$*\overrightarrow{u}\cdot\overrightarrow{v}=xx'+\gamma\gamma'$$

$$\begin{array}{l} *\overrightarrow{u}\cdot\overrightarrow{v} = xx' + yy' \\ *\overrightarrow{u}\cdot\overrightarrow{v} = \frac{1}{2}\left(||\overrightarrow{u}+\overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2\right) \\ *(k\overrightarrow{u})\cdot\overrightarrow{v} = k\left(\overrightarrow{u}\cdot\overrightarrow{v}\right) = \overrightarrow{u}\left(k\overrightarrow{v}\right) \\ *\overrightarrow{u}\cdot\left(\overrightarrow{v}+\overrightarrow{w}\right) = \overrightarrow{u}\cdot\overrightarrow{v} + \overrightarrow{u}\cdot\overrightarrow{w} \end{array}$$

$$*(k\overrightarrow{u})\cdot\overrightarrow{v}=k(\overrightarrow{u}\cdot\overrightarrow{v})=\overrightarrow{u}(k\overrightarrow{v})$$

$$*\overrightarrow{u}\cdot(\overrightarrow{v}+\overrightarrow{w})=\overrightarrow{u}\cdot\overrightarrow{v}+\overrightarrow{u}\cdot\overrightarrow{w}$$

* Dire que deux vecteurs sont orthogonaux signifie que l'un des deux est nul ou que les segments sont perpendiculaires. $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Théorème

* Théorème d'Al Kashi: dans un triangle ABC, (longueurs a,b,c),

$$a^2 = b^2 + c^2 - 2ab \times \cos(\widehat{A})$$

* Théorème de la médiane : I milieu de [AB],

$$MA^{2} + MB^{2} = \overrightarrow{MA}^{2} + \overrightarrow{MB}^{2} = 2MI^{2} + \frac{1}{2}AB^{2}$$

Définitions

- * Une droite de vecteur normal $\overrightarrow{n}(a;b)$ a une équation de la forme ax + by + c = 0 où c, est un réel. Et réciproquement, l'ensemble des points du plan dont les coordonnées vérifient l'équation ax + by + c = 0est une droite de vecteur normal $\overrightarrow{n}(a;b)$.
- * La distance du point A à la droite d est égale à

$$AH = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$$

où H est le projeté orthogonal de A sur d.

* \mathscr{C} est le cercle de centre $I(\alpha; \beta)$ et de rayon \mathbb{R} . Une équation de \mathscr{C} est

$$(x-\alpha)^2 + (y-\beta)^2 = R^2$$

avec $R^2 = IM^2$.

* Le cercle $\mathscr C$ de diamètre [AB] est l'ensemble des points M tels que : $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

Produits scalaires dans l'espace

Définitions

P, plan; $(O; \vec{i}; \vec{j})$, un repère orthonormal de ce plan; \vec{k} , vecteur normal à P. $||\vec{i}|| = ||\vec{j}|| = ||\vec{k}|| = 1$ et $\vec{i}\vec{j} = \vec{i}\vec{k} = \vec{j}\vec{k} = 0$. $(\vec{i}, \vec{j}, \vec{k})$, base orthonormale de l'espace.

Produit scalaire dans une base orthonormale

$$*\overrightarrow{v}(x;y;z)$$
 et $\overrightarrow{v}(x';y';z')$

$$* \overrightarrow{u}(x;y;z) \text{ et } \overrightarrow{v}(x';y';z')
* \overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'
* || \overrightarrow{u} || = \sqrt{x^2 + y^2 + z^2}
* A(x_A; y_A; z_A) \text{ et } B(x_B; y_B; z_B)$$

$$||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Equation cartésienne d'un plan dans un repère orthonormal

Dans un repère orthonormal:

* Un plan de vecteur normal $\overrightarrow{n}(a;b;c)$ a une équation de la forme

$$ax + by + cz + d = 0$$

* L'ensemble des point de l'espace dont les coordonnées vérifient l'équation ax + by + cz + d = 0 est un plan de vecteur normal $\overrightarrow{n}(a;b;c)$

Distance d'un point à un plan

P, plan d'équation ax + by + cz + d = 0 et $A(x_A; y_A; z_A)$, point de l'espace. Distance de A à P:

$$AH = \frac{|ax_A + by_A + cy_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

où H est le projeté orthogonal de A sur P.

Demi-espace

- * L'ensemble des points M(x; y; z) de l'espace tels que $ax + by + cz + d \ge 0$ (respectivement > 0) est un demi-espace fermé (respectivement ouvert) de frontière le plan P.
- * L'ensemble des points M(x; y; z) de l'espace tels que $ax + by + cz + d \le 0$ (respectivement < 0) est un demi-espace fermé (respectivement ouvert) de frontière le plan P.

Plan médiateur d'un segment

L'ensemble des points de l'espace équidistants de A et de B est un plan passant par le milieu de [AB] et perpendiculaire à la droite (AB): plan médiateur de [AB].

Plans parallèles et perpendiculaires

P: ax + by + cz + d = 0 et Q: a'x + b'y + c'z + d' = 0

Les plans P et Q sont parallèles ssi les triplets (a;b;c) et (a';b';c') sont proportionnels (vecteurs normaux colinéaires).

Les plans P et Q sont perpendiculaires ssi aa' + bb' + cc' = 0 (vecteurs normaux orthogonaux).

Sphère et produit scalaire

La sphère de centre $I(\alpha; \beta; \gamma)$ et de rayon R a pour équation :

$$(x - \alpha)^{2} + (y - \beta)^{2} + (z - \gamma)^{2} = R^{2}$$

La sphère de diamètre [AB] est l'ensemble des points M de l'espace tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

7 Représentation analytique d'une droite de l'espace

Représentation paramétrique d'une droite

 \mathcal{D} , une droite de l'espace passant par $A(a_A; y_A; z_A)$ et de vecteur directeur $\overrightarrow{u}(a; b; c)$. $M(x; y; z) : \overrightarrow{AM}$ et \overrightarrow{u} sont colinéaires. $\overrightarrow{AM} = t \overrightarrow{u}$.

$$\begin{cases} x - x_A = a.t \\ y - y_A = b.t \\ z - z_A = c.t \end{cases} \iff (S) \begin{cases} x = x_A + a.t \\ y = y_A + b.t \\ z = z_A + c.t \end{cases}$$

Le système (S) est une représentation paramétrique de la droite \mathcal{D} .

Système de deux équations cartésiennes représentant une droite

Soit \mathcal{P} , le plan d'équation ax + by + cz + d = 0, de vecteur normal $\overrightarrow{n}(a;b;c)$. Soit \mathcal{Q} , le plan d'équation a'x + b'y + c'z + d' = 0, de vecteur normal $\overrightarrow{n}(a';b';c')$.

Supposons que $\overrightarrow{n'}$ et \overrightarrow{n} ne sont pas colinéaires. Donc \mathscr{P} et \mathscr{Q} sont sécants; soit \mathscr{D} la droite d'intersection des plans \mathscr{P} et \mathscr{Q} .

La droite \mathscr{D} est représentée par le système $\begin{cases} ax + by + cz + d = 0 \\ a'z + b'y + c'z + d' = 0 \end{cases}$

Réciproquement, si les vecteurs $\overrightarrow{n}(a;b;c)$ et $\overrightarrow{n'}(a';b';c')$ ne sont pas colinéaires, l'ensemble des points M(x;y;z) tels que $\begin{cases} ax + by + cz + d = 0 \\ a'z + b'y + c'z + d' = 0 \end{cases}$ est une droite. C'est l'intersection des plans d'équations respectives ax + by + cz + d = 0 et a'x + b'y + c'z + d' = 0.

8 Les nombres complexes

8.1 Introduction aux nombres complexes

Définitions

Un nombre complexe est un nombre de la forme x + iy, où x et y désignent des réels et i un nombre imaginaire vérifiant $i^2 = -1$. L'ensemble des complexes est noté \mathbb{C} .

Soit, un point M de coordonées (x; y), le nombre complexe x + i.y est l'affixe du point M ou du vecteur \overrightarrow{OM} .

$$z_M = x + i.y$$
 ou $z_{OM} = x + i.y$

Le point M(x; y) est l'image du nombre x + i.y.

Le plan de repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$ est appelé plan complexe.

Forme algébrique

- * Tout nombre z admet une unique écriture de la forme x + i.y (forme algébrique) avec :
- x, partie réelle de z notée Re(z).
- y, partie imaginaire de z notée Im(z).
- * Si $z \in \mathbb{R}$ alors, Im(z) = 0.
- * Si z est un imaginaire pur, Re(z) = 0.
- * Si z = z', Re(z) = Re(z'), Im(z) = Im(z').
- * Si z = 0, Re(z) = Im(z) = 0.

Conjugué

Le conjugué de z est le nombre $\overline{z} = x - i.y$.

- $*\overline{z} = z$
- $*z + \overline{z} = 2 \times \text{Re}(z)$
- $*z \overline{z} = i \times 2 \operatorname{Im}(z)$
- $*z.\overline{z} = x^2 + y^2$
- * Si, $z \in \mathbb{R}$ alors $z = \overline{z}$
- * Si, z est imaginaire pur, alors, $\overline{z} = -z$

8.2 Calculs avec les nombres complexes

Sommes et produits

$$z + z' = (x + x') + i(y + y')$$

$$kz = kz + iky$$

$$zz' = xx' - yy' + i(xy' + x'y)$$

$$-1z = -x - iy = -z$$

$$z - z' = z + (-z')$$

Inverses et quotients

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}}$$

$$\frac{z}{z'} = \frac{z\overline{z'}}{z'\overline{z'}}$$

Avec $z.\overline{z} = x^2 + y^2...$

Opérations sur les conjugués

* Le conjugué d'une somme est égal à la somme des conjugués.

$$\overline{z+z'} = \overline{z} + \overline{z'}$$

* Le conjugué d'un produit est égal au produit des conjugués.

$$zz' = \overline{z}.\overline{z'}$$

* Le conjugué d'un quotient est égal au quotient des conjugués.

$$\frac{\overline{z}}{z'} = \frac{\overline{z}}{\overline{z'}}$$

*

$$\overline{z^n} = \overline{z}^n$$

8.3 Equation du second degré à coefficients réels

Théorème

$$\Delta = b^2 - 4ac$$

Dans \mathbb{C} , l'équation $az^2+bz+c=0$ a toujours des solutions. (si $\Delta=0,\,z_1$ et z_2 sont confondus).

$$z_1 = \frac{-b - \delta}{2a}$$
 et $z_2 = \overline{z_1} = \frac{-b + \delta}{2a}$

avec $\delta^2 = \Delta$

8.4 Module et argument d'un nombre complexe

Coordonnées polaires

Les nombres polaires sont notés (r, α) .

- * Pour r > 0, r = OM.
- * α est une mesure en radian de $(\overrightarrow{u}, \overrightarrow{OM})$.
- * Si (r, α) est un couple de coordonées de M, alors les coordonnées cartésiennes (x, y) sont :

$$x = r \cdot \cos \alpha$$
 et $y = r \cdot \sin \alpha$

* Réciproquement, si M a pour coordonnées cartésiennes (x,y) alors les coordonnées polaires (r,α) sont définies par :

$$r = \sqrt{x^2 + y^2}$$

$$\cos \alpha = \frac{x}{r} \text{ et } \sin \alpha = \frac{y}{r}$$

Module d'un nombre complexe

Le module z est le nombre réel positif noté |z|, défini par $|z| = \sqrt{x^2 + y^2}$.

Dans le plan complexe, |z| = OM

- * Si z est un nombre réel x, alors |z| est la valeur absolue de x. $z = \sqrt{x^2}$.
- * Si |z| = 0, alors z = 0.
- * $z \cdot \overline{z} = x^2 + y^2$ avec z = x + iy, alors $z \cdot \overline{z} = |z|^2$.

Arguments d'un nombre complexe non nul

Dans le plan complexe z a pour image un point M. L'argument de z est noté arg z et correspond à toute mesure en radians de l'angle $(\overrightarrow{u}, \overrightarrow{OM})$.

Un nombre complexe a une infinité d'arguments. Si θ est l'un d'entre eux, les réels $\theta + k2\pi$ sont des arguments de z. On note : $\arg(z) = \theta$ ($\mod 2\pi$ ou $[2\pi]$) ou $\arg(z) = \theta$.

Forme trigonométrique d'un nombre complexe

$$z = r(\cos\theta + i\sin\theta)$$

avec r > 0, r = |z| et $\theta = \arg(z)$.

- * Deux nombres complexes sont égaux ssi ils ont le même module et le même argument à 2π près.
- * Si $z = \ell(\cos\theta + i\sin\theta)$ (avec $\ell > 0$), alors $|z| = \ell$ et $\arg(z) = \theta \pmod{2\pi}$.

Propriétés du module et des arguments

Propriétés

- $*|\overline{z}| = |z| \arg(\overline{z}) = \arg(z) [2\pi].$
- $* |-z| = |z| \arg(-z) = \arg(z) + \pi [2\pi].$
- * $\forall z \in \mathbb{R}$, z = 0 ou $\arg(z) = 0$ ou $\arg(z) = \pi$ [2 π].
- * Pour z imaginaire pur, $\arg(z) = \frac{\pi}{2}$ ou $\arg(z) = \frac{-\pi}{2}$ [2 π].

* Théorème:

Soit $z = r(\cos \alpha + i.\sin \alpha)$ et $z' = r'(\cos \beta + i.\sin \beta)$ avec r et r' supérieurs à 0.

$$zz' = rr'(\cos(\alpha + \beta) + i.\sin(\alpha + \beta)) \tag{1}$$

$$\frac{z}{z'} = \frac{r}{r'}(\cos(\alpha - \beta) + i \cdot \sin(\alpha - \beta)) \tag{2}$$

* Démonstration ROC:

(1)

$$zz' = [r(\cos\alpha + i.\sin\alpha)] \times [r'(\cos\beta + i.\sin\beta)]$$

$$zz' = rr'(\cos\alpha + i.\sin\alpha) \times (\cos\beta + i.\sin\beta)$$

 $zz' = rr' \times [(\cos \alpha . \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha . \sin \beta + \sin \alpha \cos \beta)]$

$$zz' = rr'(\cos(\alpha + \beta) + i.\sin(\alpha + \beta))$$

(2)

$$\frac{z}{z'} = Z$$

avec $Z = \ell(\cos\theta + \sin\theta)$

$$z = z'Z$$

$$r(\cos \alpha + i \sin \alpha) = r'\ell \left[\cos(\beta + \theta) + i \sin(\beta + \theta)\right]$$

$$\iff \left\{ \begin{array}{l} r = r'\ell \\ \alpha = \beta + \theta[2\Pi] \end{array} \right. \iff \left\{ \begin{array}{l} \ell = \frac{r}{r'} \\ \theta = \alpha - \beta[2\pi] \end{array} \right.$$

$$Z = \frac{z}{z'} = \frac{r}{r'} \left[\cos(\alpha - \beta) + i \cdot \sin(\alpha - \beta) \right]$$

Conséquences

Produit	$ zz' = z \times z' $	$\arg(zz') = \arg(z) + \arg(z') [2\pi]$			
Puissance	$ z^n = z ^n \text{ avec } n \in \mathbb{N}$	$arg(z^n) = n.arg(z) [2\pi]$			
Inverse	$\left \frac{1}{z}\right = \frac{1}{ z }$	$\arg\left(\frac{1}{z}\right) = -\arg(z)\left[2\pi\right]$			
Quotient	$\left \frac{z}{z'}\right = \frac{ z }{ z' }$	$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z') [2\pi]$			

Inégalité triangulaire

$$|z+z'| \leqslant |z| + |z'|$$

8.6 Lien avec le plan complexe

Propriétés des affixes

I, milieu de [*AB*] signifie que :

$$z_I = \frac{z_A + z_B}{2}$$

G, barycentre de $\{(A, \alpha); (B, \beta); (C, \gamma)\}$ signifie que :

$$z_G = \frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}$$

Propriétés des modules

A et B, deux points d'affixes z_A et z_B .

- $*AB = |z_A z_B|$
- * Si $A \neq B$, alors $(\overrightarrow{u}, \overrightarrow{AB}) = \arg(z_B z_A)[2\pi]$

Conséquences

A, B, C, D quatre points distincts deux à deux d'affixes respectives z_A, z_B, z_C, z_D .

$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg\left(\frac{z_D - z_C}{z_B - z_A}\right) [2\pi]$$

8.7 Notation exponentielle

Définitions et propriétés

$$e^{i\theta} = \cos\theta + i\sin\theta$$

 $\forall z \in \mathbb{C} \{0\}$, de module r et d'argument θ , la forme exponentielle de r s'écrit :

$$z = r.e^{i\theta}$$

Propriétés:

$$* |e^{i\theta}| = 1 \text{ et arg}(e^{i\theta}) = \theta$$

$$* e^{i\theta} \times e^{i\theta'} = e^{i(\theta + \theta')}$$

*
$$\frac{e^{i\theta}}{i\theta'} = e^{i(\theta - \theta')}$$

$$*\frac{\overline{e^{i\theta}}}{e^{i\theta}} - e^{-i\theta}$$

$$*(e^{i\theta})^n = e^{i.n.\theta}$$

Formules de Moine et d'Euler

* Formule de Moine:

$$(\cos \alpha + i.\sin \alpha)^n = \cos(n.\alpha) + i.\sin(n.\alpha)$$

$$(\cos \alpha + i.\sin \alpha)^n = \cos(n.\alpha) - i.\sin(n.\alpha)$$

* Formule d'Euler:

$$\cos \alpha = \frac{e^{i.\alpha} + e^{-i.\alpha}}{2}$$

$$\sin \alpha = \frac{e^{\mathrm{i}.\alpha} - e^{-\mathrm{i}.\alpha}}{2.\mathrm{i}}$$

Equation paramétrique d'un cercle du plan complexe

 \mathscr{C} , cercle de centre Ω , d'affixe ω et de rayon R. M, d'affixe z. $M \in \mathscr{C} \iff$ il existe $\theta \in \mathbb{R}$, tel que :

$$z = R.e^{i.\theta} + \omega$$

C'est l'équation paramétrique du cercle &.

8.8 Nombres complexes et transformations

Translation

Soit \overrightarrow{w} , le vecteur d'affixe b. L'écriture complexe de la translation de vecteur \overrightarrow{w} s'écrit :

$$z' = z + b$$

Homothétie

Soit Ω , d'affixe ω et k, réel non nul. L'écriture complexe de l'homothétie de centre Ω et de rapport k

$$z' = k.(z - \omega) + \omega$$

Rotation

Soit Ω , le point d'affixe ω et θ , un réel. L'écriture complexe de la rotation de centre Ω et d'angle θ est :

$$z' = e^{i.\theta}.(z - \omega) + \omega$$

Démonstration ROC:

Soit, r, la rotation de centre Ω et d'angle θ .

 $*M \neq \Omega, M' = r.M$

$$\iff \Omega.M = \Omega.M' \text{ et, } (\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}) = \theta$$

$$\iff |z - \omega| = |z' - \omega| \text{ et arg} \left(\frac{z' - \omega}{z - \omega}\right) = \theta$$

$$\iff \left| \frac{z' - \omega}{z - \omega} \right| = 1 \text{ et } \arg\left(\frac{z' - \omega}{z - \omega}\right) = \theta$$

 $\frac{z'-\omega}{z-\omega}$ est le nombre complexe de module 1 et d'argument θ .

$$\frac{z'-\omega}{z-\omega} = e^{\mathrm{i}.\theta}$$

$$z' - \omega = e^{i.\theta}.(z - \omega)$$

$$z' = e^{i.\theta}.(z - \omega) + \omega$$

 $*M = \Omega \iff z = \omega \text{ donc } z' = \omega.$

Intégration 9

Intégration des fonctions

Intégration d'une fonction positive

* Soit une fonction f continue et positive sur [a; b]. Le réel noté

$$\int_{a}^{b} f(x) dx$$

est l'aire, en unité d'aire, du domaine $\mathbb D$ délimité par $\mathscr C_f$, l'axe des abscisses, les droites d'équations x = a et x = b. a et b sont les bornes de l'intégrale.

* Valeur moyenne : la valeur moyenne de f sur [a; b] est :

$$\mu = \frac{1}{b-a} \times \int_{a}^{b} f(x) \, \mathrm{d}x$$

Intégration d'une fonction de signe quelconque

* Soit une fonction f continue et négative sur [a;b].

$$\int_{a}^{b} f(x) dx = -aire \mathcal{D}$$

Où $\mathcal D$ est le domaine délimité par $\mathscr C_f$, l'axe des abscisses et les droites d'quation x=a et x=b.

* La valeur moyenne se calcul de la même façon.

9.2 Propriétés de l'intégrale

Relation de Chasles

Soit f, fonction continue sur [a; b] et $c \in [a; b]$.

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

Cas particulier:

$$\int_{a}^{c} f(x) dx + \int_{c}^{a} f(x) dx = \int_{a}^{a} f(x) dx = 0$$
$$\int_{a}^{c} f(x) dx = -\int_{c}^{a} f(x) dx$$

Uinéarité

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx = \int_{a}^{b} f(x) + g(x) dx$$
$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{c}^{b} f(x) dx$$

Positivité

Soit f, fonction continue sur [a; b] avec $a \le b$. Si f est positive sur [a; b] alors, $\int_a^b f(x) dx \ge 0$

Si f est positive sur I	$a \le b, \int_a^b f(x) dx \ge 0$	$a \geqslant b, \int_{a}^{b} f(x) dx \leqslant 0$
Si f est négative sur I	$a \le b$, $\int_{a}^{b} f(x) dx \le 0$	$a \ge b$, $\int_a^b f(x) dx \ge 0$

Conservation de l'ordre

Si $f \le g$ sur [a; b], alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$

Inégalité de la moyenne

S'il existe deux réels m et M tels que $m \le f \le M$ sur I et si $a \le b$, alors :

$$m(a-b) \le \int_a^b f(x) dx \le M(b-a)$$

S'il existe un réel M tel que $|f| \le M$ alors :

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leq M|a - b|$$

9.3 Primitive

Définition

Soit f une fonction définie sur un intervalle I de \mathbb{R} . On appelle primitive de f sur I toute fonction F dérivable sur I telle que, pour tout x de I, F'(x) = f(x).

Quelques primitives importantes

Fonction	Une primitive		
f(x) = a	F(x) = a.x		
$f(x) = x^n$	$F(x) = \frac{1}{n+1} \cdot x^{n+1}$		
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$		
$f(x) = \cos x$	$F(x) = \sin x$		
$f(x) = \sin x$	$F(x) = -\cos x$		
$f(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$	$F(x) = \tan x$		
$f(x) = \frac{1}{x}$	$F(x) = \ln x$		
$f(x) = \exp(x)$	$F(x) = \exp(x)$		

Primitives de fonctions "composées"

Soient u et v, deux fonctions admettant pour primitives respectives U et V sur un intervalle I et g, une fonction admettant une primitive G sur l'intervalle I contenant u(I).

f = au + bv	F = aU + bV
$f = u' \times g \circ u$	$F = G \circ u$
$f = u'.u^n$	$F = \frac{1}{n+1} \cdot u^{n+1}$
$f = \frac{u'}{\sqrt{u}}$	$F = 2\sqrt{u}$
$f = u'.\cos(u)$	$F = \sin u$
$f = u'\sin(u)$	$F = -\cos u$
$f = \frac{u'}{u}$	$F = \ln u$
$f = u'.e^u$	$F=e^u$

Existence des primitives

Théorème : Si f est une fonction continue sur un intervalle I alors f admet des primitives sur I. Si F est une primitive de f sur I, alors les primitives de f sur I sont les fonctions de la forme F(x) + k. Pour tout couple (x_0, y_0) , il existe une unique primitive F_0 de f sur I telle que $F_0(x_0) = y_0$.

9.4 Intégrale et primitive

Théorème

Soit f, une fonction continue sur un intervalle I et a, un réel quelconque de I. La fonction ϕ définie sur I par $\phi(x) = \int_a^x f(t)d(t)$ est l'unique primitive de f qui s'annule en a.

Remarques

 ϕ est dérivable sur I de dérivée f. Les solutions de l'équation différentielle y' = f(t) sont les fonctions : $\phi(x) = \int_{x}^{a} f(t) dt + k$.

Calcul d'une intégrale à l'aide des primitives

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

9.5 Intégration par parties

Théorème

$$\int_{a}^{b} u(x).v'(x) dx = [u(x).v(x)]_{a}^{b} - \int_{a}^{b} u'(x).v(x) dx$$

Démonstration ROC

(u.v)' = u'v + uv' donc, uv' = (uv)' - u'v. u, v, u', v' sont continues, donc uv, u'v et uv' sont continues aussi. Par linéarité de l'intégrale :

$$\int_{a}^{b} u(x) \cdot v'(x) dx = \int_{a}^{b} (uv)'(x) dx - \int_{a}^{b} u'(x)v(x) dx$$

$$[u(x)v(x)]_a^b - \int_a^b u'(x)v(x) dx$$

10 Les probabilités

10.1 Introduction aux probabilités

2 Définitions

* $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$ est l'ensemble des résultats d'une expérience aléatoire. On l'appelle univers. Un événement est une partie de Ω . Lorsque ω appartient à l'événement A, on dit qu'il réalise A. \varnothing est un évenement impossible. Ω est l'évènement certain. Un événement élémentaire est constitué d'un seul résultat.

Probabilité d'un événement

La probabilité de l'événement A est notée p(A).

$$0 \leqslant p(A) \leqslant 1$$

$$p(\Omega) = 1$$

$$p(\emptyset) = 0.$$

2 Définitions

* L'espérance de la loi de probabilité est :

$$\mu = \sum_{i=1}^{n} p_i . \omega_i$$

où, pour tout $i \in \{1, 2, ..., n\}$, p_i est la probabilité de l'évènement ω_i .

* La variance de la loi de probabilité est :

$$V = \sum_{i=1}^{n} p_i (\omega_i - \mu)^2 = \left(\sum_{i=1}^{n} p_i \omega_i^2\right) - \mu^2$$

* L'écart type de la loi de probabilité est :

$$\sigma = \sqrt{V}$$

? Cas de l'équiprobabilité

Lorsque la loi de probabilité associe à tous les résultats d'une expérience la même probabilité, on parle de loi équirépartie et la situation est dite d'équiprobabilité.

$$p(A) = \frac{\text{nombre de résultats de A}}{\text{nombre de résultats de }\omega}$$

10.2 Calculs de probabilités

Probabilité de la réunion, de l'intersection d'événements

 $A \cap B$ est l'événement formé des résultats qui réalisent à la fois A et B.

 $A \cup B$ est l'événement formé des résultats qui réalisent au moins un des événements A ou B.

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Probabilité de l'événement contraire

L'événement contraire de A est l'événement formé des résultats qui ne réalisent pas A. On le note \overline{A} . $p(\overline{A}) = 1 - p(A)$

10.3 Variable aléatoire

2 Loi de probabilité d'une variable aléatoire

Une loi de probabilité est définie sur Ω .

 $\Omega' = x_1, x_2, ... x_n$ est l'ensemble des valeurs prises par une variable aléatoire X.

Loi de probabilité de la variable aléatoire \hat{X} sur $\hat{\Omega}'$ associe à chaque valeur x_i la probabilité de l'événement $(X=x_i)$.

2 Espérence, variance, écart-type d'une variable aléatoire

Espérence:

$$E(X) = \sum_{i=1}^{m} x_i p_i$$

Variance:

$$V(X) = \sum_{i=1}^{m} p_i \left[x_i - E(X) \right]^2 = \sum_{i=1}^{m} p_i x_i^2 - \left[E(X) \right]^2$$

Ecart-type:

$$\sigma(X) = \sqrt{V(X)}$$

11 Dénombrement et lois de probabilité

11.1 Dénombrement

? Tirages successifs

* Avec remise:

On tire un jeton d'une urne, on note son numéro puis on le remet dans l'urne. On effectue p tirages $(p \ge 1)$ dits successifs avec remise. Le nombre de n listes ordonnées de p éléments de l'urne est

$$n^p$$

* Sans remise:

On tire un jeton de l'urne contenant n jetons, on note le numéro mais on ne le remet pas dans l'urne. On effectue p tirage. Le nombre d'arrangements de p éléments de l'urne est :

$$n \times (n-1) \times ... \times (n-p+1)$$

* Cas particulier : les permutations.

Lorsque p = n, tous les jetons de l'urne ont été tirés. Le nombre d'arrangements de l'urne est :

$$n \times (n-1) \times ... \times 1 = n$$

? Tirages simultannés

On tire simultanément p jetons de l'urne. On obtient un ensemble de p éléments purs parmi n que l'on appelle combinaison. Le nombre de combinaisons de p éléments parmi n est noté $\binom{n}{p}$, on le lit p parmi n et il est égal à :

$$\binom{n}{p} = \frac{n \times (n-1) \times (n-2) \times \dots \times (n-p+1)}{p!} = \frac{n!}{p!(n-p)!}$$

? Coefficients binômiaux

- * Pour tout entier n non nul, $\binom{n}{0} = 1$, $\binom{n}{1} = n$, $\binom{n}{n} = 1$.
- * Pour tout entier p avec $0 \le p \le n$ on a

$$\binom{n}{p} = \binom{n}{n-p}$$

* Pour $1 \le p \le n-1$, la Relation de Pascal

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$$

? Triangle de Pascal

	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1	7	21	35	35	21	7	1

Pormule du binôme de Newton

$$(a+b)^{n} = \sum_{p=0}^{n} \binom{n}{p} a^{p} b^{n-p}$$

$$(a+b)^{n} = \binom{n}{0} a^{0} b^{n} + \binom{n}{1} a^{1} b^{n-1} + \binom{n}{2} a^{2} b^{n-2} + \dots + \binom{n}{n-1} a^{n-1} b^{1} + \binom{n}{n} a^{n} b^{0}$$

$$(a+b)^{n} = b^{n} + n \cdot a \cdot b^{n-1} + \binom{n}{2} a^{2} b^{n-2} + \dots + n \cdot a^{n-1} b + a^{n}$$

11.2 Exemples de lois discrètes

2 Loi de Bernouilli

* L'épreuve de Bernouilli :

C'est une expérience aléatoire qui ne comporte que 2 issus S et \overline{S} .

S correspond au succès : p = p(S).

 $\overline{S} = E$ correspond à l'échec : $q = 1 - p = p(\overline{S})$.

* Loi de Bernouilli:

Soit une épreuve de Bernouilli d'issues S (de probabilité p) et E (de probabilité q=1-p) et X, la variable aléatoire qui prend la valeur 1 quand S est réalisée et 0 sinon. Par définition, cette variable aléatoire suit la loi de Bernouilli de paramètre p.

On a: E(X) = p et V(X) = pq

2 La loi binomiale

* Un schéma de Bernouilli est la répétition de n épreuves de Bernouilli identiques et indépendantes. La variable aléatoire X à valeurs dans $\{0;1;2;\ldots;n\}$ associe à chaque liste le nombre de succès. Par définition, X suit la loi binomiale de paramètres n et p.

On note : $\mathcal{B}(n; p)$ et p = p(S).

* Caractéristiques:

Soit X, une variable aléatoire qui suit la loi binomiale $\mathcal{B}(n, p)$.

Pour $k \in \{0; 1; ...; n\}$,

$$p(X = k) = \binom{n}{k} p^k \times (1 - p)^{n - k}$$

$$E(X) = n p$$
 et $V(X) = n p(1-p)$

11.3 Lois de probabilité continue

Quand l'intervalle est un univers

Une expérience prend ses valeurs dans un intervalle et peut atteindre n'importe quel nombre de cet intervalle.

P Densité

On appelle densité de probabilité sur l'intervalle I, toute fonction f définie sur I et vérifiant : f est continue et positive sur I

On définit la loi de probabilité P de densité f sur I associant à tout intervalle [a;b] de I:

$$P([a;b]) = \int_{a}^{b} f(x)dx$$

? La loi uniforme

On appelle loi uniforme sur I = [a; b], la loi de probabilité continue sur I dont la fonction f de densité est constante égale à $\frac{1}{h-a}$

2 La loi exponentielle

On appelle loi exponentielle de paramètre λ , la loi continue admettant pour densité la fonction définie sur \mathbb{R}^+ par :

$$f(x) = \lambda e^{-\lambda x}$$

avec $\lambda > 0$.

Pour tout intervalle $[\alpha; \beta]$ de \mathbb{R}^+ :

$$p([\alpha,\beta]) = \int_{\alpha}^{\beta} \lambda e^{-\lambda x} dx$$

$$p([\alpha,\beta]) = \left[-e^{-\lambda x}\right]_{\alpha}^{\beta}$$

$$p([\alpha,\beta]) = -e^{-\lambda\beta} + e^{-\lambda\alpha}$$

12 Probabilités conditionnelles

12.1 Les probabilités conditionnelles

2 Définition

A et B sont deux événements d'une même expérience aléatoire, avec $p(A) \neq 0$. La probabilité que l'événement B se réalise est :

$$p_A(B) = \frac{p(A \cap B)}{p(A)}$$

Probabilité d'une intersection

$$p(A \cap B) = p_A(B) \times p(A)$$

ou

$$p(A \cap B) = p_B(A) \times p(B)$$

? Formule des probabilités totales

Les événements $\Omega_1,\Omega_2,\ldots\Omega_n$ forment une partition de l'univers Ω quand :

les Ω_i sont deux à deux disjoints

la réunion des Ω_i est l'univers Ω

Formule des probabilités totales :

$$\begin{split} p(A) &= p(A \cap \Omega_1) + p(A \cap \Omega_2) + \ldots + p(A \cap \Omega_n) \\ p_{\Omega_1}(A) \times p(\Omega_1) + p_{\Omega_2}(A) \times p(\Omega_2) + \ldots + p_{\Omega_n}(A) \times p(\Omega_n) \end{split}$$

12.2 Indépendance

Définition

Si deux événements A et B sont indépendants, alors :

$$p(A \cap B) = p(A) \times p(B)$$

Si $p(A) \neq 0$, alors $p_A(B) = p(B)$

Deux événements de probabilités non nulles, incompatibles ne sont pas indépendants :

$$\forall A \cap B = \emptyset, \ p(A \cap B) = 0 \\ p(A) \times p(B) \neq 0 \$$
 donc $p(A \cap B) \neq p(A) \times p(B)$

? Expériences aléatoires indépendantes

Soit une expérience succession de n expériences aléatoires indépendantes $E_1, E_2, E_3, \ldots, E_n$. Une issue de l'expérience est une liste (e_1, e_2, \ldots, e_n) . Soit Ω_i et p_i l'univers et la loi de probabilité de l'expérience E_i .

$$p(e_1, e_2, \dots, e_n) = p_1(E_1) \times p_2(E_2) \times \dots \times p_n(E_n)$$

? Variables aléatoires indépendantes

Soient X et Y, deux variables aléatoires discrètes sur un univers Ω .

X prend pour valeurs : x_1, x_2, \dots, x_p

Y prend pour valeurs: y_1, y_2, \dots, y_k

Dire que X et Y sont indépendantes signifie que : pour tout $i \in 1; 2; ...; p$ et pour tout $j \in 1; 2; ...; k$, les événements $(X = x_i)$ et $(Y = y_i)$ sont indépendants.

$$p\left[(X=x_i)\cap (Y=y_j)\right]=p(X=x_i)\times p(Y=y_j)$$