Yüksek Basamaktan Lineer Diferensiyel Denklemler

 ${\bf Tanım~1.}~x$ bağımsız, ybağımlı değişken olmak üzere $n\text{-}\mathrm{inci}$ basamaktan lineer diferensivel denklem

$$a_0(x)\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = F(x)$$
 (1)

ile verilir. Burada a_0 katsayısı aşikar olarak sıfır olamaz. Ayrıca, $a_0,...,a_n$ katsayıları ve F fonksiyonu $a \leq x \leq b$ aralığı üzerinde tanımlı sürekli reel fonksiyonlar olduğu kabul edilmektedir. Lineer diferensiyel operatör cinsinden (1) denklemi

$$L(D) = a_0(x) D^n + a_1(x) D^{n-1} + ... + a_{n-1}(x) D + a_n(x)$$

olmak üzere

$$L(D)y = F(x)$$

şeklinde yazılabilir. F(x) fonksiyonuna homogen olmayan terim denir. F(x) = 0 ise bu durumda (1) denklemi

$$a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = 0$$
 (2)

denklemine indirgenir. (2) denklemine (1) denklemine karşılık gelen homogen denklem denir.

Örnek 1.

$$y^{''} + 3xy^{'} + x^{3}y = e^{x}$$

ikinci basamaktan değişken katsıyılı homogen olmayan lineer bir diferensiyel denklemdir.

Tanım 2. $f_1, ..., f_m$ m tane fonksiyon ve $c_1, ..., c_m$ m tane sabit olsun. Bu durumda $c_1 f_1 + ... + c_m f_m$ ifadesine $f_1, ..., f_m$ fonksiyonlarının lineer kombinasyonu denir.

Teorem 1. Lineer homogen (2) diferensiyel denkleminin çözümlerinin herhangi bir lineer kombinasyonu da (2) denkleminin bir çözümüdür.

Örnek 2. $\sin x$ ve $\cos x$ fonksiyonlarının

$$y^{"} + y = 0$$

denkleminin çözümleri olduğu gösterilebilir. Teorem 1'den bunların lineer kombinasyonu olan

$$c_1\cos x + c_2\sin x$$

fonksiyonu da denklemi sağlar. Örneğin $5\cos x + 6\sin x$ bir çözümdür.

Tanım 3. Bir Iaralığında tanımlı $f_1,...,f_n$ fonksiyonları en az bir $c_j\neq 0$ j=0,1,...,niçin

$$c_1 f_1 + \dots + c_n f_n = 0 (3)$$

koşulunu sağlıyorsa, bu durumda bu fonksiyonlar I aralığı üzerinde lineer bağımlıdır denir. Eğer (3) denklemi ancak

$$c_1 = c_2 = \dots = c_n = 0$$

olması durumunda sağlanıyorsa, $f_1,...,f_n$ I aralığı üzerinde lineer bağımsızdır denir.

Örnek 3. $f_1(x) = \sin x$, $f(x) = -\sin x$ ve $f_3(x) = 3\sin x$ fonksiyonları lineer bağımlıdır. Çünkü

$$c_1 \sin x + c_2 (-\sin x) + c_3 (3\sin x) = 0$$

eşitliği $c_1 = 1$, $c_2 = 4$, $c_3 = 1$ sağlanır.

Örnek 4. $f_1(x) = x$, $f(x) = x^2$ fonksiyonları lineer bağımsızdır. Çünkü

$$c_1x + c_2x^2 = 0$$

olabilmesi ancak

$$c_1 = c_2 = 0$$

ile mümkündür.

Tanım 4. $f_1, ..., f_n$ fonksiyonları bir [a, b] aralığı üzerinde tanımlı reel değerli, (n-1) kez türevlenebilir fonksiyonlar olsun.

determinantına $f_1,...,f_n$ fonksiyonlarının Wronskiyeni denir ve $W\left(f_1,...,f_n\right)(x)$ ile gösterilir.

Teorem 2. (2) denkleminin $f_1, ..., f_n$ çözümlerinin [a, b] aralığı üzerinde lineer bağımlı olması için gerek ve yeter koşul

$$W(f_1,...,f_n)(x) = 0, x \in [a,b]$$

olmasıdır.

Tanım 5. $f_1, ..., f_n$ fonksiyonları n-inci basamaktan lineer homogen (2) diferensiyel denkleminin lineer bağımsız çözümleri ise, bu durumda $\{f_1, ..., f_n\}$ kümesine (2) denkleminin temel çözümler kümesi denir.

$$f\left(x\right) = c_1 f_1 x + \dots + c_n f_n\left(x\right)$$

fonksiyonuna da (2) denkleminin genel çözümü denir. Burada $c_1, ..., c_n$ ler keyfi sabitlerdir.

Örnek 5.

$$y^{'''} - 6y^{''} + 5y^{'} + 12y = 0$$

diferensiyel denkleminin çözümü olan e^{3x} , e^{-x} , e^{4x} fonksiyonları lineer bağımsızdır. Çünkü her x için $W\left(e^{3x},e^{-x},e^{4x}\right)(x)=-20e^{6x}\neq 0$ dır. O halde, bu denklemin temel çözümler kümesi $\left\{e^{3x},e^{-x},e^{4x}\right\}$ ve genel çözümü $c_1e^{3x}+c_2e^{-x}+c_3e^{4x}$ şeklindedir.

Şimdi

$$L(D) y = F(x) \tag{4}$$

homogen olmayan denklemini ele alalım.

Teorem 3. (4) homogen olmayan denkleminin bir çözümü g ve bu denkleme karşılık gelen L(D)y=0 homogen denkleminin bir çözümü f olsun. Bu durumda f+g de (4) denkleminin bir çözümüdür.

Tanım 6. (2) denkleminin genel çözümüne (1) denkleminin tamamlayıcı çözümü denir. (1) denkleminin herhangi bir keyfi sabit içermeyen çözümüne (1) denkleminin bir özel çözümü denir. (1) denkleminin tamamlayıcı çözümü y_c , bir özel çözümü de y_p ile gösterilsin. Bu durumda (1) denkleminin genel çözümü $y_c + y_p$ şeklindedir.

Örnek 6.

$$y^{''} - 5y^{'} + 6y = 1$$

diferensiyel denklemini ele alalım. $f_1(x) = e^{3x}$ ve $f_2(x) = e^{2x}$ bu denkleme karşılık gelen homogen

$$y'' - 5y' + 6y = 0$$

denkleminin lineer bağımsız çözümleridir. Ayrıca $y_p=\frac{1}{6}$ olarak bulunabilir. Bu durumda verilen denklemin genel çözümü

$$y(x) = c_1 e^{3x} + c_2 e^{2x} + \frac{1}{6}$$

olur.

Sabit Katsayılı Homogen Denklemler

$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = 0$$
 (1)

sabit katsayılı homogen denklemini ele alalım. $y\left(x\right)=e^{rx}$ (1) denkleminin bir çözümü olsun. Bu durumda

$$a_0r^ne^{rx} + a_1r^{n-1}e^{rx} + \dots + a_{n-1}re^{rx} + a_ne^{rx} = 0$$
$$e^{rx} (a_0r^n + a_1r^{n-1} + \dots + a_{n-1}r + a_n) = 0$$

elde edilir. $e^{rx} \neq 0$ olduğundan

$$a_0r^n + a_1r^{n-1} + \dots + a_{n-1}r + a_n = 0$$

olur. (2) denklemine (1) denkleminin karakteristik denklemi denir. (2) denkleminin köklerinin yapısına göre çözüm yazılır. Şimdi, ikinci basamaktan sabit katsayılı homogen

$$y'' + ay' + by = 0 (2)$$

diferensiyel denklemini ele alalım. (2) diferensiyel denklemine ilişkin karakteristik denklem

$$r^2 + ar + b = 0$$

şeklindedir.

Durum 1. Kökler reel ve birbirinden farklı ise, $(r_1, r_2 \in \mathbb{R}, r_1 \neq r_2)$

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

genel çözümü elde edilir.

Durum 2. Kökler reel ve birbirine eşit ise, $(r_1 = r_2 = r)$

$$y(x) = (c_1 + c_2 x) e^{rx}$$

genel çözümü elde edilir.

Durum 3. Kökler eşlenik kompleks ise, $(r_{1,2} = a \pm ib)$

$$y(x) = e^{ax} \left(c_1 \cos bx + c_2 \sin bx \right)$$

genel çözümü elde edilir.

Örnek 1.

$$y^{'''} - y^{''} - 2y^{'} = 0$$

diferensiyel denkleminin genel çözümünü bulunuz.

Çözüm. Verilen denkleme ilişkin karakteristik denklem ve kökleri

$$r^3 - r^2 - 2r = 0$$

$$r_1 = 0, \ r_2 = 2, \ r_3 = -1$$

şeklindedir. O halde, verilen denklemin genel çözümü

$$y(x) = c_1 + c_2 e^{2x} + c_3 e^{-x}$$

olarak bulunur.

Örnek 2.

$$y^{''} + 4y^{'} + 5y = 0$$

diferensiyel denkleminin genel çözümünü bulunuz.

Çözüm. Verilen denkleme ilişkin karakteristik denklem ve kökleri

$$r^2 + 4r + 5 = 0$$

$$r_{1,2} = -2 \pm i$$

şeklindedir. O halde, verilen denklemin genel çözümü

$$y(x) = e^{-2x} \left(c_1 \cos x + c_2 \sin x \right)$$

olarak bulunur.

Örnek 3.

$$y^{(4)} - 2y^{'''} + 2y^{''} - 2y^{'} + y = 0$$

diferensiyel denkleminin çözümünü bulunuz.

Çözüm. Verilen denkleme ilişkin karakteristik denklem ve kökleri

$$r^4 - 2r^3 + 2r^2 - 2r + 1 = 0$$

$$r_1 = r_2 = 1, r_{3,4} = \pm i$$

şeklindedir. O halde, verilen denklemin genel çözümü

$$y(x) = (c_1 + c_2 x) e^x + c_3 \cos x + c_4 \sin x$$

olarak bulunur.

Örnek 4.

$$y^{(4)} - 4y^{"'} + 14y^{"} - 20y' + 25y = 0$$

diferensiyel denkleminin genel çözümünü bulunuz.

Çözüm. Verilen denkleme ilişkin karakteristik denklem ve kökleri

$$r^4 - 4r^3 + 14r^2 - 20r + 25 = 0$$

$$r_{1,2} = 1 + 2i, \ r_{3,4} = 1 - 2i$$

şeklindedir. O halde, verilen denklemin genel çözümü

$$y(x) = e^{x} [(c_1 + c_2 x) \cos 2x + (c_3 + c_4 x) \sin 2x]$$

olarak bulunur.