GDP vs Suicide Rates over the Past 30 Years

Group3

- -ChungHyun Lee
- -Evgeniy Ko
- -Tek Acharya

Abstract

- Suicide represents about ~1.5% of deaths in the U.S and in the world
- Is there a correlation between GDP and suicide rates
- K-Means will help us identify subgroups in our data
- PCA will help us reduce the dimensionality of our large data set
- Linear regression will provide us a regression function

Data set

- Suicide rates in 101 different countries, over 30 years
- 6 categorical variables: country, year, sex, age, country-year, and generation
- 6 numerical variables: suicide number, population, suicides/100k population, HDI for year, GDP for that year, and GDP per capita
 HDI has a lot of missing values

	country	sex	suicides_no	population	suicides/100k pop	gdp_for_year (\$)	gdp_per_capita (\$)
count	27820.000000	27820.000000	27820.000000	2.782000e+04	27820.000000	2.782000e+04	27820.000000
mean	50.275270	1.500000	242.574407	1.844794e+06	12.816097	4.455810e+11	16866.464414
std	29.372538	0.500009	902.047917	3.911779e+06	18.961511	1.453610e+12	18887.576472
min	1.000000	1.000000	0.000000	2.780000e+02	0.000000	4.691962e+07	251,000000
25%	25.000000	1.000000	3.000000	9.749850e+04	0.920000	8.985353e+09	3447.000000
50%	48.000000	1.500000	25.000000	4.301500e+05	5.990000	4.811469e+10	9372.000000
75%	75.000000	2.000000	131.000000	1.486143e+06	16.620000	2.602024e+11	24874.000000
max	101.000000	2.000000	22338.000000	4.380521e+07	224.970000	1.812071e+13	126352.000000

Predictions

Chunghyun Lee: A strong positive correlation between GDP and suicide rates

Tek Acharya: A strong positive relationship between GDP and suicide rates as country's economy has direct impact on people's lives

Evgeniy Ko: A weak correlation between GDP and suicide rates, because there are other factors that effect suicide rates

K-Means

K-Means

K-Means

K-Means Algorithm Score: -958.4082241363353

We decided to go with "Year", "Population", "suicide/100k pop" and "gdp_per_capita" as we believed that rest of the features do not contribute to suicide rate.

```
del df['suicides_no']
del df['country-year']
del df['age']
del df['HDI for year']
del df['generation']
del df['country']
del df[' gdp_for_year ($) ']
df = pd.read_csv("master.csv")
df = df[df.sex == 'male']
```

Male

```
df.var()

year 7.217806e+01
population 1.420207e+13
suicides/100k pop 5.310427e+02
gdp_per_capita ($) 3.657829e+08
dtype: float64
```

```
df.var()

year 7.145608e+01
population 1.877200e+13
suicides/100k pop 4.685378e+01
gdp_per_capita ($) 3.682124e+08
dtype: float64
```

Male

lf.corr()				
	уеаг	population	suicides/100k pop	gdp_per_capita (\$)
уеаг	1.000000	0.007447	-0.032333	0.355548
population	0.007447	1.000000	0.003776	0.050033
suicides/100k pop	-0.032333	0.003776	1.000000	-0.019448
gdp_per_capita (\$)	0.355548	0.050033	-0.019448-	1.000000

df.corr()						
	year	population	suicides/100k pop	gdp_per_capita (\$)		
year	1.000000	0.015950	-0.089234	0.361713		
population	0.015950	1.000000	0.053392	0.082713		
suicides/100k pop	-0.089234	0.053392	1.000000	0.045559		
gdp_per_capita (\$)	0.361713	0.082713	0.045559	1.000000		

```
X = pd.DataFrame(scale(df), index=df.index, columns=df.columns).reset_index(drop=True)
print(X)
```

	year	sex	population	suicides/100k pop	<pre>gdp_per_capita (\$)</pre>	
0	-0.031059	-0.97316	-0.309234	0.288926	0.398186	
1	-0.624237	1.02758	-0.392734	0.039301	0.185543	
2	0.206213	1.02758	0.163730	-0.578743	0.304277	
3	1.748476	1.02758	0.087227	-0.202474	1.634973	
4	1.155298	-0.97316	2.178614	-0.083680	-0.310398	
4995	1.155298	-0.97316	-0.446040	-0.688641	-0.458620	
4996	1.036662	-0.97316	9.507220	0.749974	1.838241	
4997	-0.505602	1.02758	-0.405887	-0.229687	0.492566	
4998	-0.149695	-0.97316	-0.434590	0.993843	-0.522256	
4999	0.324848	-0.97316	-0.054488	0.572568	-0.695565	

 Looks to us that the PCA (plot) for both male and female to be very similar where PC1 carries little more information to that of PC2

Male

Male

- The PC1 explained: 34.09%
- The PC2 explained: 25.14%

- PC1 explained: 34.40%
- PC2 explained: 26.90%

```
pca.explained_variance_ratio_
array([0.34092513, 0.25147703, 0.24717378, 0.16042406])
```

```
pca.explained_variance_ratio_
array([0.34396725, 0.26886955, 0.23420593, 0.15295727])
```

Male

Linear Regression

- For the first model, we performed the algorithm on a sample, n=5000, of the original data set.
- Model's Coefficient [-1.06435052e-05]
- Model's Intercept 12.604344577284488
- R-Squared model.score(X, Y)
 -0.00015962511160227955

	suicides/100k pop	gdp_per_capita (\$)
count	27820.000000	27820.000000
mean	12.816097	16866.464414
std	18.961511	18887.576472
min	0.000000	251.000000
25%	0.920000	3447.000000
50%	5.990000	9372.000000
75%	16.620000	24874.000000
max	224.970000	126352.000000

Male Linear Regression

- Male suicide rates data set information
- Model's Coefficient [-2.76333083e-05]
- Model's Intercept 20.91781478554566
- R-Squared model.score(X, Y)
 1.53970491556521e-05

	suicides/100k pop	gdp_per_capita (\$)
count	13910.000000	13910.000000
mean	20.239329	16866.464414
std	23.552754	18887.915954
min	0.000000	251.000000
25%	2.422500	3447.000000
50%	13.550000	9372.000000
75%	27.360000	24874.000000
max	224.970000	126352.000000

Female Linear Regression

- Female suicide rates data set information
- Model's Coefficient [1.61186653e-05]
- Model's Intercept 5.146179891722458
- R-Squared model.score(X, Y)
 0.002550151597456529

	suicides/100k pop	gdp_per_capita (\$)
count	13910.000000	13910.000000
mean	5.392866	16866.464414
std	7.358993	18887.915954
min	0.000000	251.000000
25%	0.410000	3447.000000
50%	3.160000	9372.000000
75%	7.410000	24874.000000
max	133.420000	126352.000000

Linear Regression Algorithm Results

- Countries with less than \$20000 GDP represents 70% of our dataset.
- No significant change in suicide rates as GDP increases
- Men have a greater suicide rate than women

Resources

https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016

https://www.fastcompany.com/90349777/gender-inequity-costs-the-united-states-2-trillion-in-lost-gdp

https://ourworldindata.org/suicide

https://www.who.int/teams/mental-health-and-substance-use/suicide-data

https://databank.worldbank.org/source/world-development-indicators

Any Questions?