DEVOIR EN TEMPS LIBRE: MACHINES THERMIQUES

Système: Le R134a

Equation d'état : Gaz : gaz parfait Pv = rT

Liquide: fluide incompressible: V = constant

Transformation: cycle

A. Caractéristique du R134A

Le coefficient de Laplace (exposant adiabatique) $\gamma = \frac{c_p}{C}$

Relation de Mayer $c_p - c_v = r$ Ainsi $c_p = \frac{\gamma r}{\nu - 1} = 0.79 \text{ kJ.K}^{-1}.\text{kg}^{-1}$

B. Etude du cycle

1. Diagramme

- ① Vapeur saturante à 3.5 bars : sur la courbe de saturation
- ② Intersection de h = 415 kJ.kg⁻¹ et P = 3,5 bars
- ③ On suit une ligne d'entropie constante (transformation adiabatique réversible) jusqu'à P = 10 bars
- A pression constante on arrive à un liquide saturant
- © et © Sur l'isobare 3.5 bars on repère le titre en vapeur 0,2 on a alors ©. A l'intersection de la verticale passant par le point 6 (la transformation est isenthalpique $\Delta h = 0$ J) et de l'isobare 10 bars on place le point ®

2. Valeur de θ₂

Sur le diagramme on relève θ₂ ≈19°C Aux incertitudes près on a bien $\theta_2 = 20^{\circ}$ C

3.a. Lecture de θ₃

On relève en suivant l'allure d'une isotherme θ_3 = 55°C

3.b. Valeur de w_{2.3}

Premier principe pour un système ouvert : $\Delta h = q + w$

La transformation est adiabatique : $q_{2,3} = 0$ J

Ainsi: $\mathbf{w}_{23} = \Delta_2^3 \mathbf{h} = \mathbf{h}_3 - \mathbf{h}_2 = 440 - 415 = 25 \text{ kJ.kg}^{-1}$

3.c. Puissance à fournir par le compresseur

En une seconde on traite D_m kilogramme de fluide.

Ainsi
$$P_1 = \frac{mw_{2,3}}{\Delta t} = D_m w_{2,3} = 3,25 \text{ kW}$$

4. Les transformations ③→⑤

En ③ on a de la vapeur sèche, elle subit refroidissement jusqu'à l'état ③' qui correspond à la vapeur saturante. Ensuite le fluide subit une liquéfaction jusqu'en @ où il est sous la forme de liquide saturant ; Enfin le liquide subit un refroidissement jusqu'à l'état 9 où il est toujours liquide.

Transfert thermique

③ →⑤ la transformation est isobare on a donc $q_{3.5} = \Delta h$

D'où $a_c = a_{3.5} = \Delta_3^5 h = h_5 - h_3 = 245 - 440 = -195 \text{ kJ.kg}^{-1}$

q_c est négatif, le transfert thermique est donc perdu par le système. En effet dans un climatiseur le fluide prend de la chaleur à la source froide et en cède à la source chaude.

5. Transfert thermique ⑥→②

© →② la transformation est isobare on a donc $q_{26} = \Lambda h$

D'où $q_f = q_{2.6} = \Delta_2^6 h = h_6 - h_2 = 415 - 245 = 170 \text{ kJ.kg}^{-1}$

qf est positif, le système prélève bien de la chaleur à la source froide

6. La puissance frigorifique

De même qu'au 3.c. $P_2 = D_m q_f = 22,1 \text{ kW}$

C. Efficacité de l'installation
Par définition e = $\frac{obtenu}{couteux}$

Ainsi **e** =
$$\frac{P_2}{P_1}$$
 = 6,8