Zbrani zapiski za 3. letnik

Patrik Žnidaršič

Prevedeno dne 2. januar 2024

Kazalo

1	Ana	liza 3
	1.1	Splošno
	1.2	Linearna NDE prvega reda
	1.3	Prvi integral enačbe
	1.4	Parametrično reševanje
		1.4.1 Lagrangeova in Clairontova enačba
		1.4.2 Ovojnice družin krivulj
	1.5	Enačbe drugega reda
	1.6	Eksistenčni izrek
	1.7	Sistemi linearnih NDE
	1.8	Linearne NDE višjega reda
		1.8.1 Enačbe s konstantnimi koeficienti
2	Meł	nanika 29
	2.1	Osnove Newtonove mehanike
	2.2	Premočrtno gibanje
	2.3	Gibanje po krivulji
	2.4	Gibanje v polju centralne sile
	2.5	Relativno gibanje
3	Uvo	d v numerične metode 49
	3.1	Računske napake
	3.2	Nelinearne enačbe
		3.2.1 Bisekcija
		3.2.2 Navadna iteracija
		3.2.3 Tangentna metoda
		3.2.4 Sekantna metoda
		3.2.5 Ostale metode
		3.2.6 Ničle polinomov
		3.2.7 Durand-Kernerjeva metoda
	3.3	Sistemi linearnih enačb
		3.3.1 Matrične norme
		3.3.2 Občutljivost sistema linearnih enačb 61
		3.3.3 LU razcep
		3.3.4 Razcep Choleskega
	3.4	Sistemi nelineranih enačb

Kazalo

	3.5	Linear	ni problemi najmanjših kvadratov 6	96
		3.5.1	Normalni sistem	ç
		3.5.2	QR razcep	"(
		3.5.3	Gram-Schmittova ortogonalizacija	"(
		3.5.4	Givensove rotacije	1
	3.6	Haush	olderjeva zrcaljenja	2
4	Verj	etnost	7	5
	4.1	Izidi, d	dogodki, verjetnosti	76
		4.1.1	Pogojna verjetnost in neodvisnost	8
		4.1.2	Neodvisnost dogodkov	8
4.2 Slučajne spremenljivke in por		Slučaj	ne spremenljivke in porazdelitve	30
		4.2.1	Slučajni vektorji	34
		4.2.2	Neodvisnost slučajnih spremenljivk	35
		4.2.3	Pričakovana vrednost diskretnih spremenljivk 8	36
		4.2.4	Večrazsežne zvezne porazdelitve	37

1 Analiza 3

1.1 Splošno

Definicija. Naj bo $F: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ zvezna funkcija in I interval v \mathbb{R} . NAVADNA DIFERENCIALNA ENAČBA PRVEGA REDA je enačba oblike F(x, y(x), y'(x)) = 0, kjer je y(x) neka funkcija. Rešitev enačbe je vsaka funkcija $y_r(x): I \to \mathbb{R}$, za katero velja enačba.

Opomba. NDE n-tega reda definiramo podobno kot enačbo oblike

$$F(x, y, y', y'', \dots, y^{(n)}) = 0.$$

Opomba. Smiselno je opazovati tudi enačbe, kjer je $F=(F_1,\ldots,F_m)$ vektorska funkcija. Temu pravimo SISTEM NDE.

Opomba. Naj bo $y^{(n)} = F(x, y, y', \dots, y^{(n-1)})$ enačba reda n. Ta enačba je ekvivalentna primernemu sistemu $n \times n$ prvega reda; definirajmo $y_1 = y, y_2 = y', \dots, y_{n-1} = y^{n-2}$. Tedaj dobimo enačbo $y'_n = F(x, y_1, \dots, y_n)$.

Definicija. INTEGRALSKA KRIVULJA γ vektorskega polja $F: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$ skozi točko $x_0 \in \Omega$ je krivulja $\gamma: [0,b) \to \Omega$, za katero velja

- v vsaki točki t je $\dot{\gamma}(t) = F(\gamma(t)),$
- $\gamma(0) = x_0$.

Vprašanje 1. Definiraj integralske krivulje.

Če prvi pogoj iz definicije zapišemo v koordinatah,

$$\begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} (t) = \begin{bmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{bmatrix},$$

dobimo sistem n NDE prvega reda z n neznankami. Ta sistem ni eksplicitno odvisen od t; takim sistemom pravimo AVTONOMNI SISTEMI. Pokazali bomo, da za vsako izbiro x_0 obstajata interval [0,a) in krivulja γ , za katero veljata pogoja v definiciji.

Vsak neavtonomen sistem lahko prepišemo v avtonomnega, z uvedbo nove odvisne spremenljivke v(t) = t. Dobimo nov sistem

$$\dot{v} = 1,$$

$$\dot{x}_1 = F_1(v, x_1, \dots, x_n),$$

$$\vdots$$

$$\dot{x}_n = F_n(v, x_1, \dots, x_n).$$

Partikularna rešitev tega sistema je tedaj integralska krivulja vektorskega polja $\vec{F}(v, \vec{x})$ v razširjenem faznem prostoru $\mathbb{R} \times \Omega$ (Ω je običajen fazni prostor), ki ustreza primernemu začetnemu pogoju.

Vprašanje 2. Kako spremenimo neavtonomni sistem v avtonomnega?

V nekaterih primerih poznamo rešitev NDE. Če imamo enačbo z ločljivima spremenljiv-kama

$$\dot{x} = f(t)g(x),$$

lahko enačbo delimo z g(x), in definiramo h(x) = 1/g(x). Dobimo

$$h(x)\dot{x} = f(t).$$

Sedaj definiramo H(x) kot primitivno funkcijo h(x), in F(t) kot primitivno funkcijo f(t). Velja $\dot{H}(x) = \dot{F}(t)$, torej je $x(t) = H^{-1}(F(t) + C)$.

Vprašanje 3. Kako rešiš enačbo z ločljivima spremenljivkama?

Če imamo enačbo s homogeno desno stranjo, torej $\dot{x} = f(t,x)$, kjer velja $f(t,x) = f(\lambda t, \lambda x)$ za $\lambda \in \mathbb{R} \setminus \{0\}$, potem velja f(t,x) = f(1,x/t). Vpeljemo novo spremenljivko v = x/t, in s kratkim računom pridemo do $\dot{x} = t\dot{v} + v$. Po drugi strani velja $\dot{x} = f(1,v)$, torej

$$\dot{v} = \frac{1}{t} \left(f(1, v) - v \right).$$

To je enačba z ločljivima spremenljivkama, ki jo znamo rešiti.

Vprašanje 4. Kako rešiš enačbo s homogeno desno stranjo?

1.2 Linearna NDE prvega reda

LINEARNA NDE PRVEGA REDA je enačba oblike

$$y' = f(x)y + g(x),$$

kjer sta f(x) in g(x) znani funkciji. Ta enačba je nehomogena z nehomogenostjo g(x). Njena homogenizacija je enačba

$$y' = f(x)y$$
.

Predpostavimo, da je $y(x) \in \mathcal{C}^1([a,b])$. Oglejmo si operator $A: \mathcal{C}^1([a,b]) \to \mathcal{C}([a,b])$, definiran kot

$$Ay(x) = y'(x) - f(x)y.$$

Trditev. Preslikava A je linearen operator.

Dokaz je trivialen, in zato izpuščen. Vidimo, da je y rešitev homogene enačbe natanko tedaj, ko je A(y) = 0. Rešitev homogene enačbe je torej jedro preslikave A. Homogena enačba je enačba z ločljivimi spremenljivkami, torej jo znamo rešiti. Rešitve so oblike

$$y(x) = C \exp\left(\int_{a}^{x} f(\xi)d\xi\right)$$

za $C \in \mathbb{R}$. Množico teh rešitev označimo z R_h .

Trditev. Naj bosta y_1, y_2 rešitvi nehomogene enačbe. Tedaj je $y(x) = y_1(x) - y_2(x)$ rešitev homogene enačbe.

Dokaz. Izračun odvoda nam da

$$(y_1(x) - y_2(x))' = f(x)y_1(x) + g(x) - (f(x)y_2(x) + g(x)) = f(x)(y_1(x) - y_2(x)).$$

Definicija. Naj bo V nek vektorski prostor in $W \subseteq V$. Če obstaja tak vektorski podprostor $H \subseteq V$, da za poljubna $w_1, w_2 \in W$ velja $w_1 - w_2 \in H$, je W AFIN PODPROSTOR v V, modeliran z vektorskim podprostorom H.

Rešitve nehomogene enačbe so torej afin prostor, modeliran s prostorom R_h rešitev homogene enačbe. Če želimo poiskati splošno rešitev, poiščemo rešitev homogenega sistema, in neko partikularno rešitev. Partikularno rešitev dobimo z nastavkom

$$y_p(x) = C(x) \exp\left(\int_a^x f(\xi)d\xi\right),$$

temu postopku pravimo VARIACIJA KONSTANTE.

Vprašanje 5. Kako rešiš linearno NDE prvega reda? Utemelji postopek.

S tem znanjem lahko rešimo še dve posebni NDE. Prva je Bernoulijeva enačba

$$p(x)y' + q(x)y = r(x)y^{\alpha}(x)$$

za $\alpha \in \mathbb{R}$. V primeru $\alpha = 0$ ali $\alpha = 1$, je to nehomogena linearna enačba prvega reda. Sicer vpeljemo $z(x) = (y(x))^{1-\alpha}$ in računamo

$$p(x)z'(x)\frac{1}{1-\alpha} + q(x)z(x) = r(x)$$

oziroma

$$z'(x) + \frac{q(x)}{p(x)}(1 - \alpha)z(x) = \frac{r(x)}{p(x)}(1 - \alpha).$$

To je nehomogena linearna NDE prvega reda, torej jo znamo rešiti.

Vprašanje 6. Kako rešiš Bernoulijevo enačbo?

Druga taka enačba je Riccatijeva enačba

$$y'(x) = a(x)y^{2}(x) + b(x)y(x) + c(x),$$

ki je v splošnem ne znamo rešiti. Poznamo pa dva načina obravnave, ki nas lahko včasih pripeljeta do rešitve. Denimo, da uganemo neko partikularno rešitev $y_p(x)$. Enačbo tedaj rešujemo z nastavkom $y(x) = y_p(x) + z(x)$ za neko neznano funkcijo z. Če to vstavimo v enačbo, dobimo

$$y_p' + z' = ay_p^2 + 2ay_pz + az^2 + by_p + bz + c,$$

členi y_p' , ay_p^2 , by_p in c odpadejo, ker tvorijo rešitev enačbe. Ostane torej

$$z' = (2ay_p + b)z + az^2,$$

kar je Bernoulijeva enačba, ki jo znamo rešiti.

Drug način za reševanje Riccatijeve enačbe je s pretvorbo na linearni sistem prvega reda. Vpeljemo y = u/v, s čimer dobimo

$$u'v - uv' = au^2 + buv + cv^2.$$

Ker imamo dve neznanki, potrebujemo še eno enačbo. Izberemo $u'v = buv + cv^2$. Iz tega izpeljemo v' = -au in u' = bu + cv. Zapisano matrično

$$\begin{bmatrix} v' \\ u' \end{bmatrix} = \begin{bmatrix} 0 & -a \\ c & b \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix}$$

Sistema v splošnem ne znamo rešiti, ker funkcije a,b,c niso konstantne. Lahko pa rešitev zapišemo v obliki neskončne vrste.

Vprašanje 7. Kako rešiš Riccatijevo enačbo?

1.3 Prvi integral enačbe

Splošna rešitev enačbe y'=f(x,y) je enoparametrična družina funkcij $y=\phi(x,C)$. Denimo, da obstaja taka funkcija $u(x,y):[a,b]\times M\to\mathbb{R}$ na razširjenem faznem prostoru, da zanjo velja u(x)y(x,C)= konst. za vsak C (konstanta je lahko drugačna za različne C). Taki funkciji pravimo PRVI INTEGRAL ENAČBE. Recimo, da velja $\partial_y u\neq 0$. Potem lahko iz enakosti izračunamo funkcijo y(x,D), da velja u(x,y(x,D))=D.

Trditev. Vsaka krivulja y(x), ki je implicitno podana z enačbo u(x,y) = D, kjer je u prvi integral enačbe y' = f(x,y), je rešitev te enačbe.

Dokaz. Naj bo $y_0(x)$ dana krivulja. Tedaj velja $u(x,y_0(x))=D.$ Če odvajamo pox, dobimo

$$\partial_x u + y_0' \partial_y u = 0,$$

torej

$$y_0' = -\frac{\partial_x u}{\partial_u u}.$$

Po drugi strani za vsako rešitev velja y' = f(x, y), iz česar izpeljemo

$$f(x,y) = -\frac{\partial_x u}{\partial_y u}.$$

Sledi, da je y_0 res rešitev enačbe.

Vsaka diferencialna enačba ima neskončno mnogo prvih integralov, vsakega lahko še transformiramo s poljubno $\psi : \mathbb{R} \to \mathbb{R}$.

Vprašanje 8. Kaj je prvi integral enačbe? Kako iz njega dobiš rešitev enačbe?

Imejmo dano vektorsko polje $F: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}^2$, podano z

$$F(x,y) = \begin{bmatrix} P(x,y) \\ Q(x,y) \end{bmatrix}$$

Poiščimo družino krivulj, ortogonalnih na polje F(x,y), in jih parametrizirajmo z $\gamma(x) = (x,y(x))$. Izpeljemo lahko pogoj

$$y'(x) = -\frac{P(x,y)}{Q(x,y)},$$

kar je diferencialna enačba prvega reda. Recimo, da je polje potencialno. Tedaj obstaja taka funkcija $u:[a,b]\times\mathbb{R}\to\mathbb{R}$, da velja $\partial_x u=P$ in $\partial_y u=Q$. Krivulje, ki so ortogonalne na $\vec{\nabla}.u$, so natanko izohipse ploskve (x,y,u(x,y)). Za izohipso velja u(x,y(x))=C, iz česar z odvajanjem izpeljemo

$$y' = -\frac{\partial_x u}{\partial_u u}.$$

Potencial u je torej prvi integral zgornje enačbe. Ker lahko potencial poiščemo z integralom, enačbo v tem primeru znamo rešiti.

Če polje ni potencialno, imamo še vedno ortogonalne krivulje, torej še vedno velja y' = -P/Q. Denimo, da je y(x,C) splošna rešitev. Če lahko poiščemo prvi integral u, mora obstajati funkcija $\lambda(x,y)$, za katero je polje $(\lambda P,\lambda Q)$ potencialno, oziroma $\partial_x u = \lambda P$ in $\partial_y u = \lambda Q$. Taki funkciji pravimo integrirujoči množitelj. Če ga lahko najdemo, lahko rešimo enačbo; tega pa v splošnem ne znamo.

Vprašanje 9. Kako poiščeš družino krivulj, pravokotnih na dano vektorsko polje *F*? Kaj je integrirujoči množitelj?

1.4 Parametrično reševanje

Naj bo NDE prvega reda podana implicitno,

$$F(x, y, y') = 0.$$

Denimo, da y' ne moramo eksplicitno izraziti zx,y, ali pa je ekspliciten izraz nepriraven. Na F poglejmo nekoliko drugače; vsaka dovolj lepa funkcija treh spremenljivk podaja družino ploskev, $F(\xi,\eta,\zeta)=C$ je implicitna enačba ploskve v \mathbb{R}^3 za vsak $C\in\mathbb{R}$. Tako podano ploskev lahko parametriziramo. Naj bo $(u,v)\mapsto (\varphi(u,v),\psi(u,v),\chi(u,v))$ neka parametrizacija. Imamo tri pristope za reševanje, v odvisnosti od F.

Če y ne nastopa eksplicitno, torej F(x,y')=0, nam enačba definira krivuljo. Parametriziramo jo z $\xi=\varphi(t)$ in $\eta=\psi(t)$, da velja $F(\varphi,\psi)=0$. Za poljubno rešitev $t\mapsto (x(t),y(t))$ velja $\dot{y}=y'\dot{x}$, torej za $\varphi(t)=x(t)$ in $\psi(t)=y'(t)$ dobimo $\dot{y}=\chi\dot{\varphi}$, oziroma

$$y(t) = \int_0^t \chi(\tau) \dot{\varphi(\tau)} d\tau.$$

Dobimo parametrično izraženo rešitev $t \mapsto (\varphi(t), y(t))$.

Vprašanje 10. Kako parametrično rešiš enačbo F(x, y') = 0?

Če x ne nastopa eksplicitno, torej F(y, y') = 0, dobimo enačbo krivulje $F(\xi, \eta) = 0$, ki jo parametriziramo s $t \mapsto (\chi(t), \psi(t))$. Če označimo $\psi = y$ in $\chi = y'$, velja $\dot{\psi} = \chi \dot{x}$ oziroma

$$x(t) = \int_0^t \frac{\dot{\psi}(\tau)}{\chi(\tau)} d\tau,$$

torej je $t \mapsto (x(t), \psi(t))$ parametrično podana rešitev.

Vprašanje 11. Kako parametrično rešiš enačbo F(y, y') = 0?

V splošnem nam F(x, y, y') = 0 definira ploskev. Parametriziramo jo kot zgoraj z

$$x = \varphi(u, v)$$
 $y = \psi(u, v)$ $y' = \chi(u, v)$

Naj bo $t \mapsto (x(u(t), v(t)), y(u(t), v(t)))$ neka rešitev naše enačbe. Potem je $t \mapsto (\varphi, \psi, \chi)$ krivulja na ploskvi. V nadaljevanju predpostavimo, da je preslikava $(u, v) \mapsto (x, y)$ obrnljiva, in izračunajmo

$$\dot{y} = y_u \dot{u} + y_v \dot{v} = \psi_u \dot{u} + \psi_v \dot{v},$$
$$\dot{x} = \varphi_u \dot{u} + \varphi_v \dot{v}.$$

Ker tudi tu velja $\dot{y} = y'\dot{x}$, izrazimo

$$u' = \frac{\dot{u}}{\dot{v}} = -\frac{\psi_v - \chi \varphi_v}{\psi_u - \chi \varphi_u}.$$

Dobili smo eksplicitno enačbo prvega reda v spremenljivki u = u(v).

Vprašanje 12. Kako parametrično rešiš F(x, y, y') = 0?

1.4.1 Lagrangeova in Clairontova enačba

Lagrangeova enačba je enačba oblike

$$y = x\varphi(y') + \psi(y').$$

Rešujemo jo parametrično; $x=u,\,y'=v$ in $y=u\varphi(v)+\psi(v)$. Velja dy=y'dx, iz česar izpeljemo

$$(\varphi(v) - v)du + (u\varphi'(v) + \psi'(v))dv = 0.$$

Če je $\varphi(v) \neq v$, dobimo

$$(\phi(v) - v)\frac{du}{dv} + u\varphi'(v) + \psi'(v) =,$$

kar je linearna diferencialna enačba prvega reda, če pa je $\varphi(v)=v$, pa imamo Clairontovo enačbo

$$y = xy' + \psi(y').$$

To predelamo v

$$(u + \psi'(v))dv = 0,$$

in obravnavamo dva primera. Če je dv=0, je y' konstanta, torej dobimo družino rešitev $y=Cx+\psi(C)$ (to vstavimo v enačbo; ni nujno vsak C dober). Če pa je $u+\psi'(v)=0$, pa dobimo še eno rešitev.

Vprašanje 13. Kaj sta Lagrangeova in Clairontova enačba? Kako ju rešimo?

1.4.2 Ovojnice družin krivulj

Imejmo družino krivulj, podano implicitno z enačbo F(x,y,C)=0. Denimo, da je družina taka, da obstaja krivulja, ki se v vsaki svoji točki dotika natanko enega člana družine. Taki krivulji pravimo OVOJNICA družine. Smiselno jo je parametrizirati z $C \mapsto (x(C),y(C))$, pri čemer se ovojnica v točki (x(C),y(C)) dotika člana družine s tem C. Denimo, da je parametrizacija regularna, torej za vsak C

$$(\partial_C x)^2 + (\partial_C y)^2 \neq 0.$$

Definirajmo

$$\phi(C) = F(x(C), y(C), C).$$

Ker funkcija izračuna F v točki na krivulji, je $\phi = 0$. Torej

$$\phi'(C) = \partial_x F \partial_C x + \partial_y F \partial_C y + \partial_C F = 0.$$

Če je $t \mapsto (x(t), y(t))$ parametrizacija C_0 -tega člana družine, velja

$$\partial_t F(x(t), y(t), C_0) = \partial_x F\dot{x} + \partial_y F\dot{y} = 0$$

v točki dotika z ovojnico. Vektor $[\dot{x},\dot{y}]^T$ je vzporeden z $[\partial_C x,\partial_C y]^T$ v tej točki, torej je

$$\begin{bmatrix} \partial_x F \\ \partial_y F \end{bmatrix} \perp \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} \perp \begin{bmatrix} \partial_C x \\ \partial_C y \end{bmatrix}$$

in zato

$$\partial_x F \partial_C x + \partial_y F \partial_C y = 0.$$

Torej v točki dotika velja

$$\partial_C F = 0.$$

Iz para enačb F(x, y, C) = 0 in $\partial_C F = 0$ dobimo vse točke na ovojnici.

Vprašanje 14. Kaj je ovojnica družine krivulj? Kako jo izračunaš? Izpelji.

1.5 Enačbe drugega reda

Najpomembnejša enačba drugega reda je drugi Newtonov zakon. Malce posplošeno ima obliko

$$\ddot{x}_i = F_i(x_1, \dots, x_n)$$

za i = 1, ..., n. Če vpeljemo $p = \dot{x}$ in q = x, dobimo sistem prvega reda

$$\dot{q}_i = p_i$$

$$\dot{p}_i = F_i(q_1, \dots, q_n)$$

Sistem lahko še posplošimo. Naj bosta $F,G:M\subseteq\mathbb{R}^{2n}\to\mathbb{R}^n$ preslikavi iz faznega prostora M. Zanima nas časovni razvoj sistema, ki je podan z enačbami

$$\dot{q} = G(q, p),$$

 $\dot{p} = F(q, p).$

Posebej pomembni so sistemi, za katere obstaja funkcija $H:M\to\mathbb{R}$, za katero velja

$$\frac{\partial H}{\partial q_i} = -F_i,$$
$$\frac{\partial H}{\partial p_i} = G_i.$$

Taki funkciji pravimo Hamiltonian.

Izrek. Če Hamiltonian obstaja, potem je prvi integral sistema.

Dokaz. Naj bo $t \mapsto (q(t), p(t))$ neka rešitev sistema. Potem imamo

$$\partial_t H(q,p) = \partial_q H \dot{q} + \partial_p H \dot{p} = \begin{bmatrix} -F & F \end{bmatrix} \cdot \begin{bmatrix} G \\ G \end{bmatrix} = 0$$

Vprašanje 15. Kaj je Hamiltonian? Dokaži, da je prvi integral.

Definicija. Naj bo podana funkcija $H: M \subseteq \mathbb{R}^{2n} \to \mathbb{R}$. Sistem enačb

$$\dot{q} = \partial_p H$$
$$\dot{p} = -\partial_q H$$

je hamiltonski sistem s hamiltonsko funkcijo H.

Da bo sistem $\dot{q} = G(q, p), \dot{p} = F(q, p)$ Hamiltonski, mora obstajati funkcija H, za katero velja $\partial_p H = G$ in $\partial_q H = -F$. Zapisano v drugačni obliki

$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \cdot \begin{bmatrix} \partial_q H \\ \partial_p H \end{bmatrix} = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \vec{\nabla}.H,$$

torej

$$\vec{\nabla}.H = \begin{bmatrix} -F \\ G \end{bmatrix}.$$

Da bo sistem hamiltonski, mora biti torej polje $[-F, G]^T$ potencialno.

Vprašanje 16. Pod katerim pogojem je sistem hamiltonski? Dokaži.

Definicija. ELIPTIČNI INTEGRAL PRVE VRSTE z modulom m je funkcija, podana s predpisom

 $F(x;m) = \int_0^x (1 - m\sin^2 \xi)^{-1/2} d\xi.$

Inverzna funkcija te funkcije se imenuje JACOBIJEVA AMPLITUDA, velja

$$y = F(x; m) \Leftrightarrow x = \operatorname{am}(y; m).$$

Vprašanje 17. Obravnavaj gravitacijsko nihalo.

Odgovor: Gravitacijsko nihalo je oblike

$$\ddot{q} = -\sin q.$$

Temu sistemu pripada hamiltonska funkcija

$$H(q,p) = \frac{1}{2}p^2 - (\cos q - 1).$$

Vzdolž neke rešitve $t\mapsto (q(t),p(t))$ je to konstanta, in velja

$$\frac{1}{2}\dot{q}^2 - \cos q + 1 = E.$$

Enačbo lahko prevedemo v

$$\frac{dq}{\sqrt{1 - \frac{2}{E}\sin^2 q/2}} = \sqrt{2E}dt.$$

Rešitev je

$$q=2\operatorname{am}\left(\sqrt{\frac{E}{2}}t+C;\frac{2}{E}\right).$$

 \boxtimes

1.6 Eksistenčni izrek

Izrek (Eksistenčni). Naj bo vektorsko polje F(t,x) podano na valju

$$C_{a,b} = \{(t,x) \mid |t - t_0| \le a, ||x - x_0|| \le b\}$$

za neki par t_0, x_0 in $a, b \in \mathbb{R}^+$. Naj bo F(t, x) na $C_{a,b}$ zvezno in naj bo $F(t, x) : C_{a,b} \to \mathbb{R}^n$ Lipschitzova glede na x pri vsakem t. Alternativno je lahko preslikava F(t, x) odvedljiva po x pri vsakem t in $||D_x F||$ na $C_{a,b}$ omejeno število. Potem obstaja natanko ena rešitev začetnega problema

$$\dot{x} = F(t, x) \qquad \qquad x(t_0) = x_0$$

za vsak x_0 . Rešitev $\varphi(t)$ obstaja na $[t_0 - a', t_0 + a']$ za nek $a' \leq a$. Še več: za družino začetnih problemov $\dot{x} = F(t,x), x(t_0) = \hat{x}$, kjer je $||x_0 - \hat{x}||$ dovolj majhno, obstajata $0 < a'' \leq a$ in funkcija $g(t,x) : \mathcal{C}_{a,b} \to \mathbb{R}^n$, za katero velja

- je zvezna na obe spremenljivki,
- $\partial_t g(t,x) = F(t,x)$,
- $g(t_0, \hat{x}) = \hat{x}$.

Vprašanje 18. Formuliraj eksistenčni izrek.

Začetni problem $\dot{x} = F(t, x), x(t_0) = x_0$ je ekvivalenten integralski enačbi

$$x(t) = x_0 + \int_{t_0}^t F(\tau, x(\tau)) d\tau.$$

Dokaz bo uporabil Picardov operator

$$Af(x) = x_0 + \int_{x_0}^t F(\tau, f(\tau)) d\tau$$

na posebnem funkcijskem prostoru.

Naj bo

$$C_{a,b} = \{(t,x) \mid |t - t_0| \le a, ||x - x_0|| \le b\}.$$

Predpostavimo, da F ustreza predpostavkam izreka. Naj bo L Lipschitzova konstanta za F na $\mathcal{C}_{a,b}$ in

$$C = \max_{(t,x)\in\mathcal{C}_{a,b}} \|F(t,x)\|.$$

Velikokrat lahko za L vzamemo kar maksimum norme Jacobijeve matrike na $C_{a,b}$. Označimo s K_0 stožec

$$K_0 = \{(t, x) \mid |t - t_0| \le a', ||x - x_0|| \le C |t - t_0|\},$$

kjer je a' dovolj majhen, da velja $K_0 \subseteq \mathcal{C}_{a,b}$. Sedaj sprostimo začetno vrednost x_0 . Naj bo $\|\hat{x} - x_0\| < b'$, $K_{\hat{x}} = K_0 + (\hat{x} - x_0)$ premik prostora in

$$K = \bigcup_{\|\hat{x} - x_0\| < b'} K_{\hat{x}},$$

kjer je b' dovolj majhen, da je $K \subseteq \mathcal{C}_{a,b}$. Za nas bo pomemben nov prostor $\mathcal{C}_{a',b'}$.

Začetni problem zapišimo nekoliko drugače. Spomnimo se: Iščemo $g(t, \hat{x})$, da bo $\partial_t g = F(t, g)$ in $g(t_0, \hat{x}) = \hat{x}$. Vpeljimo novo funkcijo $h(t, x) : \mathcal{C}_{a,b} \to \mathbb{R}^n$,

$$g(t,x) = x + h(t,x).$$

Velja

$$\partial_t h(t, x) = F(t, g(t, x))$$

$$h(t_0, x) = g(t_0, x) - x = 0.$$

Torej je h pri vsakem x rešitev začetnega problema $\dot{h} = F(t, x + h(t, x)), h(t_0, x) = 0.$ Definiramo

$$M = \{h(t, x) : \mathcal{C}_{a',b'} \to \mathbb{R}^n \mid hzvezna, ||h(t, x)|| \le C |t - t_0|\}.$$

Te preslikave zavzemajo vrednosti v stožcu K_0 .

Vprašanje 19. Povej postopek konstrukcije funkcijskega prostora v dokazu eksistenčnega izreka.

Opremimo M z maksimum normo (in s tem z metriko in topologijo)

$$||h|| = \max_{(t,x) \in \mathcal{C}_{a'b'}} ||h(t,x)||.$$

Trditev. Prostor M je poln metrični prostor.

Dokaz. Naj bo $\{h_n(t,x)\}_n$ Cauchyjevo zaporedje v M. Ker je \mathbb{R}^n poln, obstaja limita $\lim_{n\to\infty}h_n(t,x)$ za poljubna t,x. Ker je norma definirana z maksimumom, je konvergenca glede na to normo enakomerna, torej je

$$h(t,x) = \lim_{n \to \infty} h_n(t,x)$$

zvezna. Če je $h_n \in M$, velja $||h_n(t,x)|| \leq C|t-t_0|$. To očitno velja tudi v limiti.

Vprašanje 20. Dokaži, da je ta funkcijski prostor poln.

Našo rešitev poiščemo kot limito iteracij Picardove preslikave. Označimo

$$h_n(t,x) = A^n(h_0(t,x))$$

za $h_0=0$. Dokazati moramo, da za vsak $n\in\mathbb{N}$ velja $\|h_n(t,x)\|\leq C\,|t-t_0|$. To naredimo z indukcijo na n. Pri n=0 to očitno velja, indukcijski korak pa pokažemo z računom

$$||h_{n+1}(t,x)|| = \left| \left| \int_{t-0}^{t} F(\tau, x + h_n(\tau, x)) d\tau \right| \right| \le \int_{t_0}^{t} ||F(\tau, x + h_n(\tau, x))|| d\tau.$$

Po indukcijski predpostavki vemo, da točka $h_n(t,x)$ leži v K_0 za vsak (t,x), zato $x+h_n(t,x)$ leži v $K_x\subseteq \mathcal{C}_{a',b'}\subseteq \mathcal{C}_{a,b}$. Sledi

$$||F(\tau, x + h_n(\tau, x))|| \le C,$$

zato

$$||h_{n+1}(t,x)|| \le \left| \int_{t_0}^t Cd\tau \right| = C |t - t_0|.$$

Pokazali smo, da je $h_n \in M$ za vsak n. Ker je M poln, je tudi limita v M, če obstaja.

Pokazati moramo še, da je A na M skrčitev. Naj bosta $h_1, h_2 \in M$ poljubni. Oglejmo si

$$||Ah_1(t,x) - Ah_2(t,x)|| = \left\| \int_{t_0}^t F(\tau, x + h_1(\tau, x)) - F(\tau, x + h_2(\tau, x)) d\tau \right\|$$

$$\leq \int_{t_0}^t ||F(\tau, x + h_1(\tau, x)) - F(\tau, x + h_2(\tau, x))|| d\tau.$$

Ker je F Lipschitzova glede na x, velja

$$||Ah_{1}(t,x) - Ah_{2}(t,x)|| \leq \int_{t_{0}}^{t} L ||h_{1}(\tau,x) - h_{2}(\tau,x)|| d\tau$$

$$\leq \int_{t_{0}}^{t} L ||h_{1} - h_{2}|| d\tau$$

$$= L ||h_{1} - h_{2}|| |t - t_{0}|$$

$$\leq L ||h_{1} - h_{2}|| a'$$

Po potrebi še zmanjšamo a', da bo La' < 1.

Ker je A skrčitev, limita zaporedja h_n obstaja in je fiksna točka preslikave A. Torej je rešitev začetnega problema

$$\partial_t h = F(t, x + h(t, x)) \qquad h(t_0, x) = 0,$$

iz katere dobimo preslikavo g(t,x) = x + h(t,x). Naša limita je po konstrukciji zvezna (ker leži v M), torej je tudi g zvezna glede na oba argumenta.

To je konec dokaza eksistenčnega izreka.

Vprašanje 21. Dokaži eksistenčni izrek.

Trditev. Naj bo $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ zvezno odvedljiva na konveksnem kompaktu $M \subseteq U$. Potem je na M Lipschitzova.

Dokaz. Naj bosta $x,y\in M$ poljubni točki. Definiramo z(t)=x+t(y-x)kot daljico med x in y. Velja

$$f(y) - f(x) = \int_0^1 \partial_\tau f(z(\tau)) d\tau = \int_0^1 Df(z(\tau))(y - x) d\tau.$$

Ker je f zvezno odvedljiva na kompaktu, norma Jacobijeve matrike doseže maksimum, torej velja

$$||f(x) - f(y)|| = \left\| \int_0^1 Df(z(\tau))(y - x)d\tau \right\| \le \int_0^1 ||Df|| \, ||y - x|| \, d\tau = ||Df|| \, ||y - x|| \, .$$

Vprašanje 22. Dokaži, da je zvezno odvedljiva funkcija na konveksnem kompaktu Lipschitzova.

Imejmo NDE $\dot{x} = F(t, x)$. Tok te enačbe je preslikava

$$\phi: (a,b) \times (\alpha,\beta) \times U \to \mathbb{R}^n$$
,

definirana s predpisom

$$\phi(t, t_0, x) = \gamma(t),$$

kjer je γ rešitev začetnega problema $\dot{\gamma}(t) = F(t, \gamma(t)), \gamma(t_0) = x$.

Trditev. Za tok enačbe velja

- Za vsak t_0 , za katerega rešitve začetnih problemov $\gamma(t_0) = x$ obstajajo, in za vsak t dovolj blizu t_0 , je $x \mapsto \phi(t, t_0, x)$ difeomorfizem U na svojo sliko.
- $Za t_1, t_2 dovolj blizu t_0 velja$

$$\phi(t_2, t_1, \phi(t_1, t_0, x)) = \phi(t_2, t_0, x).$$

Dokaz. Prva točka: Uporabimo izrek o inverzni preslikavi na $\phi(t, t_0, \cdot)$. Ker je $\phi(t_0, t_0, x) = x$, obstaja okolica t_0 , v kateri je det $D_x(t, t_0, x) \neq 0$, in dobimo difeomorfizem.

Druga točka sledi iz edinosti, ki nam jo da eksistenčni izrek.

Vprašanje 23. Kaj je tok enačbe? Kakšne lastnosti ima?

1.7 Sistemi linearnih NDE

Naj bodo podane funkcije $a_{ij}:[a,b]\to\mathbb{R}$ in $b_k:[a,b]\to\mathbb{R}$, ki so na [a,b] omejene. Sistem NDE prvega reda s koeficienti $a_{ij}(t)$ in desno stranjo $b_k(t)$ je sistem

$$\dot{x}_1 = a_{11}x_1 + \ldots + a_{1n}x_n$$

$$\vdots$$

$$\dot{x}_n = a_{n1}x_1 + \ldots + a_{nn}x_n$$

Naj bo matrika A(t) podana s koeficienti a_{ij} in b vektor podan s komponentami b_k . Za $x = [x_1 \dots x_n]^T$ sistem zapišemo kot $\dot{x} = Ax + b$. Če je b = 0 pravimo, da je sistem HOMOGEN.

Izrek. Če je $A:[a,b]\to\mathbb{R}^{n\times n}$ zvezna in omejena, je množica rešitev homogenega sistema $\dot{x}=Ax$ je n-dimenzionalen vektorski prostor v prostoru $\mathcal{C}^1([a,b])$.

Dokaz. Naj bo R prostor rešitev. Najprej moramo pokazati, da je R vektorski podprostor. Za vsak par rešitev x_1, x_2 in $\alpha, \beta \in \mathbb{R}$ velja

$$A(\alpha x_1 + \beta x_2) = \alpha A x_1 + \beta A x_2 = \partial_t (\alpha x_1 + \beta x_2).$$

Naj bo $t_0 \in [a, b]$. Po eksistenčnem izreku obstaja rešitev vsakega začetnega problema $\dot{x} = Ax, x(t_0) = c \in \mathbb{R}^n$. Naj bo e_1, \ldots, e_n kanonična baza v \mathbb{R}^n . Obstajajo torej rešitve x_i začetnih problemov $\dot{x} = Ax, x(t_0) = e_i$. Dokazati moramo še, da so x_i tudi globalne rešitve; ta del pustimo za kasneje, preostanek dokaza je lokalen.

Trdimo, da je $\{x_i\}_i$ baza R. Linearna neodvisnost je trivialna. Naj bo x rešitev sistema in $c = x(t_0)$. Vektor c razvijemo po bazi e_i v $c = \alpha_1 e_1 + \ldots + \alpha_n e_n$ in definiramo

$$\tilde{x} = \alpha_1 x_1 + \ldots + \alpha_n x_n.$$

Ker sta tako x kot \tilde{x} rešitvi začetnega problema $\dot{x} = Ax, x(t_0) = c$, sta po eksistenčnem izreku enaki.

Vprašanje 24. Kaj je množica rešitev homogenega sistema linearnih NDE? Dokaži.

Definicija. Fundamentalna matrika sistema $\dot{x} = Ax$ je matrika

$$\phi(t,t_0) = \begin{bmatrix} x_{11}(t) & \dots & x_{1n}(t) \\ \vdots & \ddots & \vdots \\ x_{n1}(t) & \dots & x_{nn}(t) \end{bmatrix},$$

v kateri je *i*-ti stolpec enak *i*-ti rešitvi iz dokaza.

Za matriko $\phi(t,t_0)$ velja $\phi(t_0,t_0)=I$. Naj bo x rešitev začetnega problema $\dot{x}=Ax, x(t_0)=c$. Potem velja $x=\phi(t,t_0)c$.

Trditev. Za vsak t veja det $\phi(t, t_0) \neq 0$.

Dokaz. Recimo, da obstaja t_1 , da je det $\phi(t,t_0)=0$. Potem je matrika $\phi(t_1,t_0)$ singularna, zato ima netrivialno jedro, torej obstaja vsaj en neničeln vektor $d \in \mathbb{R}^n$, da $\phi(t_1,t_0)d=0$. Torej

$$\phi(t_1, t_0)d = \sum_{i=1}^{n} x_i(t_1)d_i = 0.$$

Definirajmo

$$z(t) = \sum_{i=1}^{n} d_i . x_i(t).$$

Ta funkcija je rešitev sistema, zanjo velja $z(t_1) = 0$. Tudi funkcija w(t) = 0 je rešitev začetnega problema $\dot{x} = Ax, x(t_1) = 0$, torej po eksistenčnem izreku z = 0. Ker so v točki t_0 vektorji x_i linearno neodvisni, velja $d_i = 0$.

Vprašanje 25. Kaj je fundamentalna matrika homogenega sistema linearnih NDE? Dokaži, da je nesingularna.

Oglejmo si preslikavo $\mathcal{F}: (t_0 - \varepsilon, t_0 + \varepsilon) \times \mathbb{R}^n \to \mathbb{R}^n$, definirano z

$$\mathcal{F}(t,y) = \phi(t,t_0)y.$$

To je tok enačbe $\dot{x}=Ax$. Za vsak dovolj majhen t je preslikava $y\mapsto \mathcal{F}(t,y)$ difeomorfizem, saj je obrnljiva linearna preslikava $\mathbb{R}^n\to\mathbb{R}^n$. Vzemimo $t_0=0$ in označimo $\phi(t,0)=\phi(t)$.

Trditev. *Velja* $\phi(t_1 + t_2) = \phi(t_1)\phi(t_2)$.

Dokaz. Po eni strani imamo za vsak $x \in \mathbb{R}^n$

$$\phi(t_1)x = \mathcal{F}(t_1, x),$$

$$\phi(t_2)\phi(t_1)x = \mathcal{F}(t_2, \phi(t_1)x) = \mathcal{F}(t_2 + t_1, x),$$

ker je \mathcal{F} tok, po drugi strani pa

$$\phi(t_1+t_2)x=\mathcal{F}(t_1+t_2,x).$$

Vprašanje 26. Pokaži, da velja $\phi(t_1 + t_2) = \phi(t_1)\phi(t_2)$.

Trditev. Splošna rešitev sistema $\dot{x} = Ax + b$ je afin podprostor v $C^1([a,b])$, modeliran nad prostorom R rešitev homogenega sistema.

To pomeni, da obstajajo vektorji $x_p \in \mathcal{C}^1([a,b])$, da je množica rešitev $\dot{x} = Ax + b$ enaka

$$W = \{x_h + x_p \mid x_h \in R\}.$$

Če imamo R in želimo poiskati W, potrebujemo eno partikularno rešitev nehomogenega sistema. To dobimo z variacijo konstante. Za vsak konstanten vektor $c \in \mathbb{R}^n$ je $\phi(t)c$ rešitev homogenega sistema. Poskusimo poiskati kakšno rešitev $\dot{x} = Ax + b$ z nastavkom $x_p = \phi(t)c(t)$, kjer je $c(t) : \mathbb{R} \to \mathbb{R}^n$ neznana funkcija. Začnemo z

$$\dot{x}_p = \dot{\phi}c + \phi\dot{c} = Ax_p + b,$$

iz česar dobimo $\phi \dot{c} = b$, oziroma $\dot{c} = \phi(-t)b(t)$. Sledi

$$c(t) = \int_0^t \phi(-\tau)b(\tau)d\tau$$

in

$$x_p(t) = \phi(t)c(t) = \int_0^t \phi(t-\tau)b(\tau)d\tau.$$

Dokazali smo

Trditev. Splošna rešitev nehomogenega problema $\dot{x} = Ax + b$ je

$$x(t,c) = \phi(t)c + \int_0^t \phi(t-\tau)b(\tau)d\tau,$$

 $kjer\ je\ c\ začetni\ pogoj\ pri\ t_0=0.$

Vprašanje 27. Kako poiščeš množico rešitev $\dot{x} = Ax + b$?

Kako pa izračunamo ϕ ? V zaključeni obliki za splošen A izračunati ne moremo, lahko pa dobimo izrazitev z Dysonovo vrsto. Oglejmo si začetni problem

$$\dot{\phi} = A\phi, \phi(0) = I.$$

Ta je ekvivalenten integralski enačbi

$$\phi(t) = I + \int_0^t A(\tau)\phi(\tau)d\tau.$$

To lahko razvijemo naprej v

$$\phi(t) = I + \int_0^t A(\tau_1) \left(I + \int_0^{\tau_1} A(\tau_2) \phi(\tau_2) \right) d\tau_1,$$

in nadaljujemo. Na koncu dobimo

$$\phi(t) = I + \sum_{n=1}^{\infty} \int_{0}^{t} A(\tau_{1}) \int_{0}^{\tau_{1}} A(\tau_{2}) \dots \int_{0}^{\tau_{n-1}} A(\tau_{n}) d\tau_{n} \dots d\tau_{1}$$

Trditev. Naj bo matrična funkcija $A(t):[0,T]\to\mathbb{R}^{n\times n}$ omejena po normi $||A(t)||\leq M$, Potem Dysonova vrsta konvergira.

Dokaz. Ocenimo lahko

$$\|\phi\| \le 1 + \sum_{n=1}^{\infty} \int_{\Delta_n(t)} \|A(\tau_1) \dots A(\tau_n)\| d\tau \le 1 + \sum_{n=1}^{\infty} \int_{\Delta_n(t)} M^n d\tau,$$

kjer je $\Delta_n(t)$ urejeni n-simpleks. Nadalje velja

$$\|\phi\| \le 1 + \sum_{n=1}^{\infty} V(\Delta_n(t))M^n = 1 + \sum_{n=1}^{\infty} \frac{t^n}{n!}M^n = e^{Mt} \le e^{MT}.$$

Vprašanje 28. Pod katerim pogojem Dysonova vrsta konvergira? Dokaži.

Recimo, da je A konstanta matrika. V tem primeru se Dysonova matrika glasi

$$\phi(t) = e^{At}$$
.

Vprašanje 29. Kakšna je Dysonova vrsta, če je matrika koeficientov konstanta?

Trditev. Naj bo $A:[0,T]\to\mathbb{R}^{n\times n}$ matrična funkcija, za katero velja $A(t_1)A(t_2)=A(t_2)A(t_1)$ za vsaka $t_1,t_2\in[0,T]$. Potem velja

$$\phi(t) = \exp\left(\int_0^t A(\tau)d\tau\right).$$

Dokaz. Označimo $\square_n(t) = [0,t]^n.$ Oglejmo si

$$\int_{\square_n(t)} A(\tau_1) \dots A(\tau_n) d\tau.$$

Za skoraj vsak $\tau \in \square_n(t)$ obstaja natanko ena permutacija $\sigma \in S_n$, da velja $\sigma \cdot \tau \in \Delta_n(t)$. Označimo

$$\Delta^{\sigma}(t) = \{ \tau \in \square_n(t) \, | \, \sigma \cdot \tau \in \Delta_n(t) \}.$$

Razen na množici z mero 0 velja

$$\Box_n(t) = \bigcup_{\sigma \in S_n} \Delta^{\sigma}(t),$$

zato za vsako funkcijo $\mathcal{A}:\Box_n(t)\to\mathbb{R}^{n\times n}$ velja

$$\int_{\square_n(t)} \mathcal{A}(\tau) d\tau = \sum_{\sigma \in S_n} \int_{\Delta^{\sigma}(t)} \mathcal{A}(\tau) d\tau = \sum_{\sigma \in S_n} \int_{\Delta_n(t)} \mathcal{A}(\tau_{\sigma(1)}, \dots, \tau_{\sigma(n)}) \underbrace{|\det \sigma|}_{-1} d\tau.$$

Če matrike komutirajo, torej velja

$$\int_{\square_n(t)} A(\tau_1) \dots A(\tau_n) d\tau = n! \int_{\Delta_n(t)} A(\tau_1) \dots A(\tau_n) d\tau.$$

Torej je

$$\int_{\Delta_n(t)} A(\tau_1) \dots A(\tau_n) d\tau = \frac{1}{n!} \int_0^t A(\tau_1) d\tau_1 \dots \int_0^t A(\tau_n) d\tau_n = \frac{1}{n!} \left(\int_0^t A(\tau) d\tau \right)^n.$$

Vprašanje 30. Kakšna je fundamentalna matrika, če $A(t_1)$ komutira z $A(t_2)$ za vsaka t_1, t_2 ? Dokaži.

Trditev (Liouvilloeva formula). Za fundamentalno matriko $\phi(t)$ sistema $\dot{x} = Ax + b$ velja

$$\det \phi(t) = \exp\left(\int_0^t \mathrm{sl}(A(\tau))d\tau\right)$$

Dokaz. Naj bo

$$\phi(t) = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{bmatrix}.$$

Če definicijo determinante odvajamo, dobimo

$$\partial_t \det \phi(t) = \sum_{\pi \in S_n} (-1)^{s(\pi)} \sum_{i=1}^n x_{1,\pi(1)} \dots \dot{x}_{i,\pi(i)} \dots x_{n,\pi(n)}.$$

Velja $\dot{\phi} = A\phi$, torej

$$\begin{bmatrix} \dot{x}_{11} & \cdots & \dot{x}_{1n} \\ \vdots & \ddots & \vdots \\ \dot{x}_{n1} & \cdots & \dot{x}_{nn} \end{bmatrix} = \begin{bmatrix} \sum_{i} a_{1i} x_{i1} & \cdots & \sum_{i} a_{1i} x_{in} \\ \vdots & \ddots & \vdots \\ \sum_{i} a_{ni} x_{i1} & \cdots & \sum_{i} a_{ni} x_{in} \end{bmatrix},$$

iz česar dobimo $\dot{x}_{ij} = \sum_k a_{ik} x_{kj}.$ To vstavimo v prejšnji zapis

$$\partial_t \det \phi(t) = \sum_{\pi \in S_n} (-1)^{s(\pi)} \sum_{i=1}^n x_{1,\pi(1)} \dots \left(\sum_{j=1}^n a_{ij} x_{j,\pi(j)} \right) \dots x_{n,\pi(n)},$$

ki ga prvo seštejemo po π . Pri vsakem i dobimo determinanto

$$\begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ \sum_{j} a_{ij} x_{j1} & \cdots & \sum_{j} a_{ij} x_{jn} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} = \begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ a_{ii} x_{i1} & \cdots & a_{ii} x_{in} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} = a_{ii} \det \phi$$

Torej

$$\partial_t \det \phi(t) = a_{11} \det \phi + a_{22} \det \phi + \ldots + a_{nn} \det \phi = \operatorname{sl} A \det \phi.$$

To je diferencialna enačba, katere rešitev je

$$\det \phi = \exp\left(\int_0^t \operatorname{sl} A d\tau\right).$$

Vprašanje 31. Povej in dokaži Liouvilloevo formulo.

1.8 Linearne NDE višjega reda

Obravnavamo enačbe oblike

$$a_n(t)x^{(n)} + \ldots + a_1(t)\dot{x} + a_0(t)x = b(t).$$

Definicija. Linearni diferencialni operator s koeficienti $a_i(t)$ je preslikava

$$L: \mathcal{C}^1([a,b]) \to \mathcal{C}([a,b]),$$

podana s predpisom

$$Lx(t) = a_n(t)x^{(n)} + \ldots + a_0(t)x.$$

Splošna rešitev homogene enačbe Lx=0 je ker L. Vemo, da je splošna rešitev n-dimenzionalni vektorski prostor. Enačbo s substitucijo

$$x_1 = x$$

$$x_2 = \dot{x}$$

$$\vdots$$

$$x_n = x^{(n-1)}$$

prepišemo v sistem

$$\dot{x}_0 = x_1
\dot{x}_1 = x_2
\vdots
\dot{x}_n = \frac{1}{a_n} (b - a_0 x_1 - a_2 x_1 - \dots - a_{n-1} x_{n-2})$$

Označimo

$$p_i(t) = \frac{a_i(t)}{a_n(t)},$$

s čimer izrazimo matriko koeficientov zgornjega sistema

$$A(t) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -p_0 & -p_1 & -p_2 & \cdots & -p_{n-1} \end{bmatrix}.$$

Izrek. Naj bo $L: \mathcal{C}^n([a,b]) \to \mathcal{C}^0([a,b])$ regularen diferencialni operator. Za vsak začetni pogoj $x(t_0) = c_0, \dot{x}(t_0) = c_1, \dots, x^{(n-1)}(t_0) = c_{n-1}$ ima enačba Lx = b natanko eno rešitev na vsem intervalu [a,b].

Opomba. Diferencialni operator: $Lx = a_n x^{(n)} + \ldots + a_1 \dot{x} + a_0 x = b$ je regularen, če je $a_n(t) \neq 0$ za vsak t in če so $a_i(t)$ omejene.

Množica rešitev homogene linearne enačbe Lx=0 je n-dimenzionalen vektorski prostor v $\mathcal{C}^n([a,b])$. Vsaka rešitev x(t) namreč na enoličen način določa rešitev sistema $\dot{\vec{x}}=A\vec{x}$ za

$$\dot{\vec{x}} = \begin{bmatrix} x(t) \\ \dot{x}(t) \\ \vdots \\ x^{(n-1)}(t) \end{bmatrix}.$$

Tudi obratno je res: vsak vektor \vec{x} na enoličen način določa svojo prvo komponento.

Oglejmo si fundamentalno matriko

$$\phi(t) = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ \dot{x}_1 & \dot{x}_2 & \cdots & \dot{x}_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(n-1)} & x_2^{(n-1)} & \cdots & x_n^{(n-1)} \end{bmatrix}.$$

Denimo, da so funkcije $x_1(t), x_2(t), \ldots, x_n(t)$ baza rešitev enačbe Lx=0. Za bazo velikokrat vzamemo take vektorje $\vec{x}_1, \ldots, \vec{x}_n$, da je $\phi(t=0)=I$. Če je ta baza dobljena iz baze rešitev enačbe Lx=0, potem za te rešitve velja $x_i(0)=0,\ldots,x_i^{(i-1)}(t)=0,x_i^{(i)}(0)=1,x_i^{(i+1)}(0)=0,\ldots,x_i^{(n-1)}(0)=0$. Determinanta

$$W(t) = \det \phi(t)$$

se imenuje determinanta Wronskega. V tem primeru se Liouvilleova formula glasi

$$W(t) = W(t_0) \exp\left(-\int_{t_0}^t p_{n-1}(\tau)d\tau\right).$$

Rešitev nehomogene enačbe dobimo s pomočjo variacije konstante;

$$\vec{x} = \int_{t_0}^t \phi(t)\phi^{-1}(\tau)\vec{b}(\tau)d\tau,$$

oziroma, ker ima \vec{b} v tem primeru le eno neničelno komponento b(t), bo prva komponenta \vec{x} enaka

$$x(t) = \int_{t_0}^{t} \sum_{i=1}^{n} \phi_{1i}(t)\phi_{in}^{-1}(\tau)b(\tau)d\tau = \sum_{i=1}^{n} x_i(t) \int_{t_0}^{t} \phi_{in}^{-1}(\tau)b(\tau)d\tau,$$

kjer je $(x_i(t))_i$ baza rešitev homogene enačbe Lx = 0.

Vprašanje 32. Kako izračunaš rešitev linearne NDE višjega reda?

1.8.1 Enačbe s konstantnimi koeficienti

Naj bo sedaj linearen diferencialni operator L podan z

$$Lx = x^{(n)} + a_1 x^{(n-1)} + \ldots + a_n x.$$

Oglejmo si enačbo Lx = 0. Če vstavimo nastavek $x(t) = e^{\lambda t}$:

$$\lambda^n e^{\lambda t} + a_1 \lambda^{n-1} e^{\lambda t} + \dots + a_{n-1} \lambda e^{\lambda t} + a_n e^{\lambda t} = 0$$

oziroma (ker $e^{\lambda t} \neq 0$ tudi za $\lambda \in \mathbb{C}$)

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n = 0.$$

Ta polinom imenujemo KARAKTERISTIČNI POLINOM ENAČBE Lx=0 in označimo s $P(\lambda)$.

Trditev. Če so $\lambda_1, \ldots, \lambda_n$ različne ničle karakterističnega polinoma $P(\lambda)$, potem so funkcije $x_i(t) = e^{\lambda_i t}$ baza rešitev homogene enačbe Lx = 0.

Dokaz. Vemo, da je rešitev sistema vektorski prostor, dokazati moramo samo, da so te rešitve linearno neodvisne. Priredimo našim rešitvam pripadajoče rešitve sistema, ki je prirejen Lx=0,

$$x_i(t) \mapsto \vec{x}_i(t) = \begin{bmatrix} x_i(t) \\ \dot{x}_i(t) \\ \vdots \\ x_i^{n-1}(t) \end{bmatrix}.$$

Te stolpce zložimo v matriko in dobimo kandidatko za fundamentalno matriko $\phi(t)$

$$\phi(t) = \begin{bmatrix} e^{\lambda_1 t} & e^{\lambda_2 t} & \cdots & e^{\lambda_n t} \\ \lambda_1 e^{\lambda_1 t} & \lambda_2 e^{\lambda_2 t} & \cdots & \lambda_n e^{\lambda_n t} \\ \lambda_1^2 e^{\lambda_1 t} & \lambda_2^2 e^{\lambda_2 t} & \cdots & \lambda_n^2 e^{\lambda_n t} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 t} & \lambda_2^{n-1} e^{\lambda_2 t} & \cdots & \lambda_n^{n-1} e^{\lambda_n t} \end{bmatrix}$$

Matrika $\phi(0)$ je vandermondova, torej

$$W(t) = \det \phi(t) = W(0) \exp \left(\int_0^t \operatorname{sl}(A) d\tau \right) = \prod_{i>j} (\lambda_i - \lambda_j) \cdot e^{-a_1 t}.$$

Ker so vsi λ_i različni, velja $W(0) \neq 0$, torej je $W(t) \neq 0$ za vsak t, in so funkcije x_i res linearno neodvisne in so baza prostora rešitev enačbe Lx = 0.

Vprašanje 33. Kaj je karakteristični polinom homogene linearne NDE višjega reda? Kako z njim poiščemo rešitve enačbe, če so vse ničle različne? Dokaži.

Z razvojem po prvem stolpcu lahko izračunamo

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 & 0 & \cdots & 0 \\ 0 & -\lambda & 1 & \cdots & 0 \\ 0 & 0 & -\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 - \lambda \end{vmatrix} = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n.$$

Lastne vrednosti matrike A so torej res ničle karakterističnega polinoma $P(\lambda)$ enačbe Lx=0.

Kaj pa če ima A večkratne lastne vrednosti?

Trditev. Naj bo λ k-kratna ničla polinoma $P(\lambda)$. Potem so funkcije $x_0(t) = e^{\lambda t}, x_1(t) = te^{\lambda t}, \dots, x_{k-1}(t) = \lambda^{k-1}e^{\lambda t}$ linearno neodvisne rešitve Lx = 0.

Dokaz. Opazimo, da velja $x_i(t) = \frac{\partial^i}{\partial \lambda^i} e^{\lambda t}$ za $i = 0, \dots, k-1$. Kot že vemo, velja $Lx_0(t) = P(\lambda)e^{\lambda t}$. Odvedemo to enačbo *i*-krat po λ . Na levi dobimo

$$\frac{\partial^{i}}{\partial \lambda^{i}} Lx_{0}(t) = L(\frac{\partial^{i}}{\partial \lambda^{i}} e^{\lambda t}) = L(x_{i}(t)).$$

To je res, ker so vsi koeficienti a_i konstantni na t in λ . Imamo torej

$$Lx_{i}(t) = \frac{\partial^{i}}{\partial \lambda^{i}} Lx_{0}(t) = \frac{\partial^{i}}{\partial \lambda^{i}} (P(\lambda)e^{\lambda t})$$

$$= \sum_{l=0}^{i} {i \choose l} P^{(l)}(\lambda) \frac{\partial^{i-l}}{\partial \lambda^{i-l}} e^{\lambda t}$$

$$= \sum_{l=0}^{i} {i \choose l} P^{(l)}(\lambda) \lambda^{i-l} e^{\lambda t}$$

$$= \sum_{l=0}^{i} {i \choose l} P^{(l)}(\lambda) x_{i-l}(t).$$

Naj bo sedaj λ ničla k-te stopnje in $i \leq k$. Potem velja $P^{(l)}(\lambda) = 0$, torej $Lx_i(t) = 0$, funkcija $x_i(t) = t^i e^{\lambda t}$ je torej res rešitev enačbe Lx = 0 za $i = 0, \ldots, k-1$.

Vprašanje 34. Kako s karakterističnim polinomom poiščemo rešitve linearne NDE višjega reda s konstantnimi koeficienti, če niso vse ničle različne? Dokaži.

Naj bo sedaj λ kompleksna ničla $\lambda=a+ib$. Če so koeficienti operatorja L realni, potem je tudi $\overline{\lambda}$ ničla P. Če je $\lambda=a+ib$ ničla k-tega reda, je tudi $\overline{\lambda}$ ničla k-tega reda. Ti dve lastni vrednosti dasta 2k baznih rešitev. Če jih želimo na najpreprostejši način izraziti

1 Analiza 3

z realnimi funkcijami, dobimo bazo

$$x_0(t) = e^{ta} \cos(bt), x_1(t) = e^{ta} \sin(bt),$$

$$x_2(t) = te^{ta} \cos(bt), x_3(t) = te^{ta} \sin(bt),$$

$$\vdots$$

$$x_{2k-2} = t^{k-1} e^{ta} \cos(bt), x_{2k-1} = t^{k-1} e^{ta} \sin(bt).$$

2 Mehanika

2.1 Osnove Newtonove mehanike

Definicija. Afin prostor \mathcal{A} nad vektorskim prostorom V je množica z binarno operacijo $+: \mathcal{A} \times V \to \mathcal{A}$, za katero velja:

- Za poljuben $A \in \mathcal{A}$ ter $\mathbf{a}, \mathbf{b} \in V$ velja $(A + \mathbf{a}) + \mathbf{b} = A + (\mathbf{a} + \mathbf{b})$
- Za poljubna $A, B \in \mathcal{A}$ obstaja natanko določen $\mathbf{a} \in V$, da je $B = A + \mathbf{a}$.

Dimenzija afinega prostora je enaka dimenziji vektorskega prostora V.

Definicija. Naj bo \mathcal{A} afin prostor nad vektorskih prostorom V. Definiramo operacijo odštevanja $\mathcal{A} \times \mathcal{A} \to V$ s predpisom

$$B - A = \mathbf{a} \Leftrightarrow B = A + \mathbf{a}$$
.

Trditev. V afinem prostoru veljajo naslednje zveze:

- A A = 0.
- $(A B) + (B A) = \mathbf{0}$.
- $(A-B) + (B-C) + (C-A) = \mathbf{0}$.
- $(A B) + \mathbf{a} = (A + \mathbf{a}) B$.
- (A B) + C = (C B) + A.

Definicija. Preslikava $g: \mathcal{A} \to \mathcal{A}'$ med afinima prostoroma je AFINA, če obstaja $dg \in L(V, V')$, da za vsaka $A, B \in \mathcal{A}$ velja g(A) - g(B) = dg(A - B).

Za afino preslikavo g si lahko izberemo POL O, ter izpeljemo

$$g(A) = g(O) + dg(A - O).$$

Vrednosti funkcije seveda niso odvisne od izbire pola.

Vprašanje 1. Definiraj afin prostor in afino preslikavo.

Definicija. Galilejeva struktura je trojica $\mathcal{G} = (\mathcal{A}, \mathfrak{t}, \rho)$, kjer je \mathcal{A} štirirazsežni afin prostor nad V, $\mathfrak{t} \in L(V, \mathbb{R})$ in ρ ekvlidska metrika na ker \mathfrak{t} , porojena z normo $\|\cdot\|$. Funkciji \mathfrak{t} pravimo časovnost, elementom \mathcal{A} pa pravimo dogodki. Pretečeni čas med dogodkoma A in B označimo s $\mathfrak{t}(A, B)$. Dogodka sta istočasna, če je $\mathfrak{t}(A, B) = 0$. Za istočasne dogodke lahko definiramo razdaljo $\rho(A, B) = \|B - A\|$ (uporabimo isto oznako kot za metriko v ker \mathfrak{t}).

Definicija. Galilejevi strukturi $\mathcal{G} = (\mathcal{A}, \mathfrak{t}, \rho)$ in $\mathcal{G}' = (\mathcal{A}', \mathfrak{t}', \rho')$ sta EKVIVALENTNI, če obstaja afina bijekcija $g : \mathcal{A} \to \mathcal{A}'$, ki ohranja časovnost in razdaljo med istočasnimi dogodki;

$$\mathfrak{t}'(q(A) - q(B)) = \mathfrak{t}(A, B), \qquad \rho'(q(A), q(B)) = \rho(A, B).$$

Taki transformaciji pravimo Galilejeva transformacija.

Vprašanje 2. Definiraj Galilejevo strukturo in Galilejeve transformacije.

Modelni primer je naravna Galilejeva struktura na $\mathcal{A} = \mathbb{R} \times \mathbb{E}$, kjer je \mathbb{E} trirazsežni Evklidski prostor. Za elemente $A_i = (t_i, \mathbf{P}_i) \in \mathcal{A}$ naravne strukture velja

- $\mathfrak{t}(A_1 A_2) = t_1 t_2$,
- $\rho(A_1, A_2) = \|\mathbf{P}_1 \mathbf{P}_2\|.$

Definicija. KOORDINATNI SISTEM na \mathcal{A} je bijekcija $\phi : \mathcal{A} \to \mathbb{R} \times \mathbb{E}$ s komponentami $\phi(A) = (\tau \phi(A), \pi \phi(A))$, in pri kateri je $\tau \circ \phi$ linearna preslikava.

Opomba. Če sta ϕ in ϕ' koordinatna sistema, je preslikava $\phi' \circ \phi^{-1} : \mathbb{R} \times \mathbb{E} \to \mathbb{R} \times \mathbb{E}$ bijekcija.

Vprašanje 3. Kaj je koordinantni sistem?

Izrek. Galilejeva transformacija $g: \mathbb{R} \times \mathbb{E} \to \mathbb{R} \times \mathbb{E}$ je oblike

$$g(t, \mathbf{P}) = (t_0' + t, \mathbf{P}_0' + \vec{c}t + Q(\mathbf{P} - \mathbf{P}_0)),$$

kjer je $Q \in O(3)$ ortogonalna transformacija.

Dokaz. Ker je g afina preslikava, jo lahko zapišemo kot

$$g(t, \mathbf{P}) = g(t_0, \mathbf{P}_0) + dg(t - t_0, \mathbf{P} - \mathbf{P}_0),$$

kjer je $dg \in L(\mathbb{R}^4, \mathbb{R}^4)$. Če označimo $g(t_0, \mathbf{P}_0) = (t'_0, \mathbf{P}'_0)$, in zapišemo dg kot bločno matriko, dobimo

$$g(t,\mathbf{P}) = (t_0',\mathbf{P}_0') + \begin{bmatrix} \alpha & \vec{a}^T \\ \vec{c} & Q \end{bmatrix} \begin{bmatrix} t - t_0 \\ \mathbf{P} - \mathbf{P}_0 \end{bmatrix} = (t_0',\mathbf{P}_0') + \begin{bmatrix} \alpha(t-t_0) + \vec{a} \cdot (\mathbf{P} - \mathbf{P}_0) \\ (t-t_0).\vec{c} + Q(\mathbf{P} - \mathbf{P}_0) \end{bmatrix}.$$

Za dogodka (t_1, \mathbf{P}_1) in (t_2, \mathbf{P}_2) zahtevamo

$$t_2 - t_1 = \tau(g(t_2, \mathbf{P}_2) - g(t_1, \mathbf{P}_1)).$$

Če razvijemo desno stran zahteve po izpeljani formuli, dobimo pogoj

$$t_2 - t_1 = \alpha(t_2 - t_1) + \vec{a} \cdot (\mathbf{P}_2 - \mathbf{P}_1).$$

Iz tega sledi $\alpha=1$ in $\vec{a}=\vec{0}$. Drug pogoj je, da se mora razdalja med istočasnimi dogodki ohranjati. Iz spodnjega dela bločne matrike dobimo pogoj

$$\|\mathbf{P}_2 - \mathbf{P}_1\| = \|Q(\mathbf{P}_2 - \mathbf{P}_1)\|,$$

torej mora biti Q ortogonalna.

Vprašanje 4. Kakšno obliko imajo Galilejeve transformacije $\mathbb{R} \times \mathbb{E} \to \mathbb{R} \times \mathbb{E}$? Dokaži.

Če definiramo $\vec{v} = \dot{\mathbf{P}}$ in $\vec{a} = \dot{\vec{v}}$, lahko opazujemo, kako se ti količini obnašata pri Galilejevi transformaciji. V koordinatnem sistemu $\phi'(t', \mathbf{P}')$ velja $\vec{v}' = \partial_{t'}\mathbf{P}' = \dot{\mathbf{P}}'$ in $\vec{a}' = \dot{\vec{v}}'$. Izpeljemo $\vec{v}' = \vec{c} + Q\dot{\mathbf{P}}(t' - t'_0) = \vec{c} + Q\dot{\mathbf{P}}(t)$ in $\vec{a}' = Q\ddot{\mathbf{P}}(t)$.

Za sistem materialnih točk $\mathcal{P} = \{\mathbf{P}_1, \dots, \mathbf{P}_n\}$ lahko definiramo

$$\underline{\mathbf{P}} = (\mathbf{P}_1, \dots, \mathbf{P}_n)
\underline{\mathbf{P}}'_0 = (\mathbf{P}'_0, \dots, \mathbf{P}'_0)
\underline{\vec{c}} = (\vec{c}, \dots, \vec{c})
\underline{\mathbf{P}}' = (\mathbf{P}'_1, \dots, \mathbf{P}'_n) = \underline{\mathbf{P}}'_0 + \underline{\vec{c}}t + Q(\underline{\mathbf{P}} - \underline{\mathbf{P}}_0)$$

Gibanje lahko tedaj zapišemo s tremi principi.

• Princip determiniranosti: Trajektorija sistema materialnih točk \mathcal{P} je v danem koordinantnem sistemu natanko določena z začetnim položajem in hitrostjo. To pomeni, da obstaja funkcija interakcije \vec{f} , da velja

$$\ddot{\underline{\mathbf{P}}} = \vec{f}(t, \underline{\mathbf{P}}, \dot{\underline{\mathbf{P}}}).$$

• Princip relativnosti: Obstaja tak razred koordinatnih sistemov, v katerem je funkcija interakcije invariantna na Galilejeve transformacije. Temu razredu pravimo RAZRED INERCIALNIH KOORDINATNIH SISTEMOV. To pomeni, da je funkcija interakcije invariantna v tem razredu,

$$\ddot{\mathbf{P}}' = \vec{f}(t', \mathbf{P}', \dot{\mathbf{P}}').$$

• Princip o sorazmernosti: Obstajajo pozitivne konstante α_{ij} , da za vsako interakcijo med materialnimi točkami sistema $\mathcal{P} = (\mathbf{P}_1, \dots, \mathbf{P}_n)$ velja

$$\vec{f_i} = -\sum_{j \neq i} \alpha_{ji} \vec{f_j}.$$

Te konstante so enake za vse možne interakcije v sistemu.

Vprašanje 5. Kateri so principi gibanja?

Z ozirom na princip relativnosti izpeljemo $\underline{Q}\underline{\ddot{\mathbf{P}}} = \underline{Q}\underline{\ddot{f}}(t,\underline{\mathbf{P}},\underline{\dot{\mathbf{P}}})$. Če v to enakost vstavimo vrednosti $t' = t'_0 + t$, $\vec{c} = \vec{0}$, Q = I ter $\mathbf{P}'_0 = \mathbf{P}_0$, dobimo $\underline{\ddot{f}}(t'_0 + t,\underline{\mathbf{P}},\underline{\dot{\mathbf{P}}}) = \underline{\ddot{f}}(t,\underline{\mathbf{P}},\underline{\mathbf{P}}_0)$, kar mora veljati za vsak t'_0 . Sledi, da funkcija \vec{f} ne mora biti eksplicitno odvisna od časa. Tej ugotovitvi pravimo HOMOGENOST ČASA.

Če sedaj vstavimo $\vec{c} = \vec{0}$, Q = I in $\mathbf{P}_0' = \mathbf{P}_0 + \vec{a}$, kjer je \vec{a} poljuben vektor (in ne pospešek), izpeljemo $\mathbf{P}' = \mathbf{P} + \vec{a}$, in sledi $\underline{\vec{f}}(\mathbf{P} + \underline{\vec{a}}, \dot{\mathbf{P}}) = \underline{\vec{f}}(\mathbf{P}, \dot{\mathbf{P}})$, torej \vec{f} ne more biti odvisna od absolutnih položajev. Seveda je še vedno lahko odvisna od relativnih položajev (v tem primeru se \vec{a} odšeteje). Tej lastnosti pravimo HOMOGENOST PROSTORA.

S poljubno izbiro vektorja \vec{c} in Q = I lahko podobno izpeljemo, da je $\underline{\vec{f}}$ lahko odvisna le od relativnih hitrosti, čemur pravimo HOMOGENOST PROSTORA HITROSTI.

Če nenazadnje relaksiramo še pogoj na Q, dobimo

$$\vec{f}(Q(\mathbf{P}_i - \mathbf{P}_j), Q(\dot{\mathbf{P}}_i, \dot{\mathbf{P}}_j)) = Q\vec{f}(\mathbf{P}_i - \mathbf{P}_j, \dot{\mathbf{P}}_i - \dot{\mathbf{P}}_j).$$

Funkcijam, ki zadoščajo ta pogoj, pravimo izotropične funkcije.

V posebnem primeru za n=1 je \vec{f} konstantna funkcija (ker ne more biti odvisna od ničesar). Ker za vsak $Q \in O(3)$ velja $\vec{f} = Q\vec{f}$, mora biti $\vec{f} = \vec{0}$. Torej se prosta materialna točka v inercialnem koordinantem sistemu premika premočrtno s konstantno hitrostjo. To je ena od implikacij v prvem Newtonovem zakonu.

Vprašanje 6. Izpelji homogenost časa in faznega prostora iz principov gibanja.

Definicija. Interakcija \vec{f} je PARSKA, če lahko zapišemo

$$\vec{f_i} = \sum_{j \neq i} \vec{f_{ji}} (\mathbf{P}_i - \mathbf{P}_i, \dot{\mathbf{P}}_j - \dot{\mathbf{P}}_i)$$

za vse indekse i.

Definicija. Interakcija \vec{f} je LOKALNA, če je parska in če velja

$$\lim_{\mathbf{P}_i - \mathbf{P}_i \to \infty} \vec{f}_{ji} = \vec{0}.$$

Vprašanje 7. Definiraj parske in lokalne interakcije.

Lema. Za števila α_{ij} iz principa sorazmernosti velja

- $\alpha_{ij}\alpha_{ji}=1$,
- $\alpha_{ij}\alpha_{jk}\alpha_{kj} = 1$.

Dokaz. Prva točka: Izberemo si take interakcije $\vec{f_k}$, ki so parske in lokalne in ki so neodvisne od relativnih hitrosti. Vse točke razen i in j pošljemo v neskončnost, da je njihov vpliv ničeln. Tedaj velja $\vec{f_i} = -\alpha_{ji}\vec{f_j}$ in $\vec{f_j} = -\alpha_{ij}\vec{f_i}$, torej $\vec{f_i} = \alpha_{ij}\alpha_{ji}\vec{f_i}$.

Druga točka: Izberemo si indekse i,j,k in podobno kot prej pošljemo druge točke v neskončnost. Ob predpostavki parske in lokalne interakcije tako dobimo

$$\vec{f_i} = -\alpha_{ji}\vec{f_j} - \alpha_{ki}\vec{f_k},$$

$$\vec{f_j} = -\alpha_{ij}\vec{f_i} - \alpha_{kj}\vec{f_k}.$$

Če vstavimo drugo enačbo v prvo,

$$\vec{f_i} = \alpha_{ji}\alpha_{ij}\vec{f_i} + \alpha_{ji}\alpha_{kj}\vec{f_k} - \alpha_{ki}\vec{f_k},$$

nam člen na levi in prvi člen na desni po prvi točki odpadeta. Dobljeno enačbo še pomnožimo z α_{ik} in nam ostane

$$\vec{f_k} = \alpha_{ji} \alpha_{kj} \alpha_{ik} \vec{f_k}.$$

Lema. Naj za pozitivna števila α_{ij} velja ugotovitev prejšnje leme. Potem obstajajo števila m_i , da je $\alpha_{ji} = m_j/m_i$.

Dokaz. Števila α_{ij} so definirana le za $i \neq j$. Definicijo lahko razširimo, da je $\alpha_{ii} = 1$. Definiramo $l_{ij} = \log \alpha_{ij}$. Velja $l_{ii} = 0$ in $L_{ij} = -l_{ji}$, poleg tega pa tudi $l_{ij} + l_{jk} + l_{ki} = 0$.

Izberemo si indeks i_0 , ki nam bo definiral enoto mase. Velja $l_{i_0j} + l_{jk} + l_{ki_0} = 0$, kar odštejemo od prejšnje vsote treh členov in dobimo

$$l_{ij} - l_{i_0j} + l_{ki} - l_{ki_0} = 0.$$

Od tu izpeljemo, da za poljubna j in k velja

$$l_{ij} - l_{i_0j} = l_{ik} - l_{i_0k},$$

torej je $n_{ii_0} = l_{ij} - l_{i_0j}$ dobro definirana količina. Opazimo, da za i = j velja $n_{ii_0} = l_{ii_0}$. Definiramo $m_i = \exp n_{ii_0}$. Sledi

$$\log \alpha_{ij} = l_{ij} = l_{i0j} + n_{ii_0} = -l_{ji} + n_{ii_0} = -n_{ji_0} + n_{ii_0} = \log m_i - \log m_j = \log \frac{m_i}{m_j}.$$

Opomba. Številom m_i pravimo inercijske mase.

Vprašanje 8. Kaj so inercijske mase? Dokaži, da res obstajajo.

Produktu $m\vec{f} = \vec{F}$ pravimo SILA. Iz parskosti sledi

$$\vec{F}_i = \sum_{j \neq i} \vec{F}_{ji} (\mathbf{P}_i - \mathbf{P}_j, \dot{\mathbf{P}}_i - \dot{\mathbf{P}}_j).$$

Naj velja $\sum_{i\neq j} \vec{F}_{ji} = \vec{0}$. Predpostavimo, da so sile lokalne, in fiksiramo indeksa $k \neq l$. Če vsa ostala telesa pošljemo v neskončnost, ostane

$$\vec{F}_{kl} + \vec{F}_{lk} = \vec{0}.$$

S tem smo dokazali tretji Newtonov zakon.

Trditev (tretji Newtonov zakon). Če so vse sile parske in lokalne, velja $\vec{F}_{kl} = -\vec{F}_{lk}$.

Za nadaljevanje potrebujemo še dodaten princip gibanja, ki ga imenujemo princip o masi. Pravi, da je inercijska masa enaka v vseh koordinatnih sistemih.

Vprašanje 9. Kaj je princip o masi?

Najpreprostejši primer sile je gravitacija. Med točkama (m_1, \mathbf{P}_1) in (m_2, \mathbf{P}_2) deluje sila

$$\vec{F}_{21} = rac{\kappa M_1 M_2}{|\mathbf{P}_1 - \mathbf{P}_2|^2} rac{\mathbf{P}_2 - \mathbf{P}_1}{|\mathbf{P}_2 - \mathbf{P}_1|}.$$

Številoma M_1 in M_2 pravimo GRAVITACIJSKI MASI. Z eksperimentiranjem je Newton ugotovil, da so pravzaprav enake inercijskim masam.

Definicija. Zunanja sila $\vec{F} = \vec{F}(t, \mathbf{P}, \dot{\mathbf{P}})$ je potencialna, če obstaja potencial U, da je $\vec{F} = -\vec{\nabla}_{\cdot \mathbf{P}} U$.

Definicija. Delo sile \vec{F} pri gibanju materialne točke od \mathbf{P}_1 do \mathbf{P}_2 je krivuljni integral

$$A = \int_{\mathbf{P}_1}^{\mathbf{P}_2} \vec{F} \cdot d\mathbf{P} = \int_{t_1}^{t_2} \vec{F} \cdot \dot{\mathbf{P}} dt,$$

kjer smo pot parametrizirali s $\mathbf{P}(t)$. Produktu $\vec{F} \cdot \dot{\mathbf{P}}$ pravimo MOČ.

Definicija. KINETIČNA ENERGIJA T je enaka $\frac{1}{2}m\left|\dot{\mathbf{P}}\right|^2$.

Za rezultanto vseh sil \vec{F} na telo m lahko izpeljemo

$$A = \int_{t_1}^{t_2} \vec{F} \cdot \dot{\mathbf{P}} dt = \int_{t_1}^{t_2} m \ddot{\mathbf{P}} \cdot \dot{\mathbf{P}} ddt = m \int_{t_1}^{t_2} \partial_t (\frac{1}{2} \dot{\mathbf{P}} \cdot \dot{\mathbf{P}}) dt = T_2 - T_1,$$

kar lahko zapišemo v izrek.

Izrek (izrek o delu). Delo rezultante vseh sil je enako razliki kinetične energije telesa.

Vprašanje 10. Povej in dokaži izrek o delu.

Definicija. Sila je KONZERVATIVNA v danem razredu inercialnih koordinatnih sistemov, če obstaja inercialni koordinatni sistem, v katerem je \vec{F} potencialna in odvisna samo od položaja.

Tedaj je \vec{F} potencialna, torej velja $\vec{F} = -\vec{\nabla}.U$ za nek potencial U, ki mu pravimo POTENCIALNA ENERGIJA. Velja

$$A = \int_{t_1}^{t_2} \vec{F} \cdot \dot{\mathbf{P}} dt = -\int_{t_1}^{t_2} \vec{\nabla} \cdot U \cdot \dot{\mathbf{P}} dt = U(\mathbf{P}_1) - U(\mathbf{P}_2).$$

Vidimo, da je delo odvisno le od začetnega in končnega položaja. Sledi $T_2 - T_1 = U_1 - U_2$, torej je $T_1 + U_1 = T_2 + U_2 = E_0$ konstantna vrednost.

Izrek (izrek o energiji). Če je rezultanta vseh sil konzervativna, je vsota kinetične in potencialne energije konstanta gibanja.

Vprašanje 11. Povej in dokaži izrek o energiji.

2.2 Premočrtno gibanje

Definicija. Gibanje je PREMOČRTNO, če ima pospešek konstantno smer.

Primer takega gibanja je poševni met. Opazimo, da lahko vedno izberemo koordinatni sistem, v katerem tir poti leži na premici: Če je $\vec{a}=a\vec{e}$, kjer je \vec{e} konstanten vektor, velja

$$\vec{v} = \vec{e} \int_{t_0}^t a dt + \vec{v}_0.$$

Izberemo lahko sistem, kjer je \vec{v}_0 enak $\vec{0}$, in bo torej \vec{v} vzporeden \vec{e} .

Če gibanje poteka pod vplivom konzervativne sile, lahko zapišemo potencial U, in velja izrek o energiji

$$\frac{1}{2}m\dot{x}^2 + U(x) = E_0.$$

Od tod izpeljemo

$$\dot{x} = \pm \sqrt{\frac{2}{m} \left(E_0 - U(x) \right)}.$$

Enačbo z ločljivimi spremenljivkami tedaj integriramo in dobimo

$$\pm \int_{x_0}^{x} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}} = \int_{t_0}^{t} dt = t - t_0.$$

Dobimo funkcijo t=t(x). Če se na poti ne ustavimo, po izreku o inverzni preslikavi obstaja funkcija x=x(t). Pravimo, da je premočrtno gibanje integrabilno.

Če v kvalitativni analizi ugotovimo, da je neko gibanje periodično med točkama a in b, lahko periodo izračunamo kot

$$T = \int_{x_0}^{b} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}} - \int_{a}^{b} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}} + \int_{a}^{x_0} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}}$$
$$= \sqrt{2m} \int_{a}^{b} \frac{dx}{\sqrt{E_0 - U(x)}}.$$

Ker je E=U(x) v krajiščih, je to posplošen integral. Situacija v obeh krajiščih je simetrična, torej preverimo le za levo krajišče, da integral res konvergira. V prvem koraku razvijemo preslikavo U v Taylorjev polinom prve stopnje v točki a, kjer se pojavi vrednost odvoda U v neki točki ξ blizu a. Ker je odvod zvezen, obstaja tak $\delta>0$, da za $\xi\in[a,a+\delta)$ velja $2\partial_x U(a)<\partial_x U(\xi)<\frac{1}{2}\partial_x U(a)$, torej

$$\int_a^{a+\delta} \frac{dx}{\sqrt{E_0 - U(x)}} = \int_a^{a+\delta} \frac{dx}{\sqrt{-\partial_x U(\xi)(x-a)}} \le \int_a^{a+\delta} \frac{1}{\sqrt{-\frac{1}{2}\partial_x U(a)}} \frac{1}{\sqrt{x-a}} dx < \infty.$$

Vprašanje 12. Izpelji izraz za periodo premočrtnega potencialnega gibanja.

Lema. $Za \ a < b \ velja$

$$\int_{a}^{b} \frac{dx}{\sqrt{(b-x)(x-a)}} = \pi.$$

Dokaz. Uvedemo novo spremenljivko $x=\frac{1}{2}(a+b)+\frac{1}{2}(b-a)z,$ s čimer se integral spremeni v

$$\int_{-1}^{1} \frac{dz}{\sqrt{(1-z)(1+z)}} = \pi.$$

Primer. Oglejmo si harmonični oscilator, ki deluje pod potencialom $U = \frac{1}{2}kx^2$. Tedaj velja $F = -\partial_x U = -kx$, torej $m\ddot{x} = -kx$. Rešitev tega sistema je $x = A\cos\omega t + B\sin\omega t$ za $\omega = \sqrt{k/m}$. Iz tega lahko kar direktno preberemo $T = 2\pi/\omega$. Posebnost harmoničnega oscilatorja je, da je T neodvisen od E_0 . Takemu gibanju pravimo IZOHRONIČNO, harmonični potencial je edini primer izohroničnega potenciala, ki je simetričen glede na svoj minimum.

Če ima potencial lokalni minimum v x_0 , lahko za določanje potenciala uporabimo harmonično aproksimacijo. Zapišemo

$$\hat{U}(x) = U(x_0) + \partial_x U(x_0)(x - x_0) + \frac{1}{2}\partial_{x^2} U(x_0)(x - x_0)^2,$$

kar je harmonični potencial s periodo

$$T = 2\pi \sqrt{\frac{m}{\partial_{x^2} U(x_0)}}.$$

Ta aproksimacija je dobra, če velja $E_0 - U(x) \ll 1$.

Vprašanje 13. Izpelji harmonično aproksimacijo.

Druga vrsta aproksimacije, ki jo lahko uporabimo, je LIBRACIJSKA. Računamo

$$t = \operatorname{sgn} \dot{x} \int_{x_0}^{x} \frac{dx}{\sqrt{\frac{2}{m}(E_0 - U(x))}} = \sqrt{\frac{m}{2}} \operatorname{sgn} \dot{x} \int_{\theta_0}^{\theta} \frac{\frac{1}{2}(b - a)(-\sin\theta)d\theta}{\frac{1}{2}(b - a)\sqrt{\chi(\theta)}\sqrt{1 - \cos^2\theta}}$$

za substitucijo $x = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\theta$. Pri tem smo si x predstavljali kot kosinus kota v krožnici, ki poteka skozi točki a in b in ima središče na njuni zveznici. Če računamo dalje, dobimo

$$t = \sqrt{\frac{m}{2}} \int_{\theta_0}^{\theta} \frac{1}{\sqrt{\chi(\theta)}} d\theta.$$

Če želimo dobiti periodo gibanja, bo θ tekel od 0 do π .

$$T = 2\sqrt{\frac{m}{2}} \int_0^{\pi} \frac{d\theta}{\sqrt{\chi(\theta)}}.$$

Ta integral aproksimiramo s trapezno formulo, ki je natančna v primeru, da je funkcija v integralu afina. Rešitev je tedaj

$$T \doteq \pi \sqrt{\frac{m}{2}} \left(\frac{1}{\sqrt{\chi(a)}} + \frac{1}{\sqrt{\chi(b)}} \right).$$

Vprašanje 14. Izpelji libracijsko aproksimacijo.

Trditev. Za premočrtno potencialno periodično gibanje velja $\frac{dA}{dE_0} = \frac{T}{m}$ na poti med robnima točkama energijskega nivoja.

Dokaz. Velja $A=2\sqrt{\frac{m}{2}}\int_a^b\sqrt{E_0-U}dx,$ torej

$$\frac{dA}{dE_0} = 2\sqrt{\frac{m}{2}} \left(b'\sqrt{E_0 - U(b)} - a'\sqrt{E_0 - U(a)} + \int_a^b \frac{dx}{2\sqrt{E_0 - U}} \right).$$

Ker je $U(a)=U(b)=E_0$, sta prva dva člena v oklepaju enaka 0, torej

$$\frac{dA}{dE_0} = \sqrt{\frac{m}{2}} \int_a^b \frac{dx}{\sqrt{E_0 - U}} = \frac{m}{T}.$$

Vprašanje 15. Kako se opravljeno delo v nihaju spreminja z energijskim nivojem E_0 ?

2.3 Gibanje po krivulji

Dana je krivulja $\vec{r} = \vec{r}(s(t))$, kjer je s naravni parameter. Če s **P** označimo trenutno lokacijo, velja

$$\vec{v} = \frac{d\mathbf{P}}{dt} = \frac{d\mathbf{P}}{ds}\frac{ds}{dt} = \vec{e}_t \dot{s},$$

kjer je \vec{e}_t enotski vektor, tangenten na krivuljo, in

$$\vec{a} = \ddot{s}\vec{e}_t + \dot{s}\frac{d\vec{e}_t}{dt} = \ddot{s}\vec{e}_t + \dot{s}^2\kappa\vec{e}_n.$$

V enačbi κ predstavlja ukrivljenost, \vec{e}_n pa normalo na krivuljo. Tretji Newtonov zakon poleg rezultante vseh sil vsebuje tudi silo vezi \vec{S} . Razpisan v smereh krivuljnega koordinatnega sistema ima obliko

$$m\ddot{s} = \vec{F} \cdot \vec{e}_t + \vec{S} \cdot \vec{e}_t$$
$$m\kappa \dot{s}^2 = \vec{F} \cdot \vec{e}_n + \vec{S} \cdot \vec{e}_n$$
$$0 = \vec{F} \cdot \vec{e}_b + \vec{S} \cdot \vec{e}_b$$

Tu imamo štiri neznanke (s, \vec{S}) ter tri enačbe, torej potrebujemo še dodatno konstitutivno relacijo za silo vezi. Če se omejimo na gladke krivulje (take, kjer ni trenja), dobimo dodatno enačbo

$$\vec{S} \cdot \vec{e}_t = 0.$$

Delo take sile vezi je enako 0. Če je \vec{F} konzervativna sila, $\vec{F} = -\vec{\nabla}.U$, dobimo

$$m\ddot{s} = -\frac{dU}{ds},$$

iz česar lahko izpeljemo energijsko enačbo

$$\frac{1}{2}m\dot{s}^2 + U(s) = E_0.$$

Torej je gibanje po gladki krivulji pod vplivom konzervativne sile reducibilno na premočrtno gibanje v ločni dolžini.

Vprašanje 16. Na kaj se reducira gibanje po gladki krivulji pod vplivom konzervativne sile? Izpelji.

Vprašanje 17. Obravnavaj matematično nihalo kot gibanje po gladki krožnici.

Odgovor: Če je l polmer krožnice, velja $s=l\theta.$ Na točko poleg sile vezi deluje tudi teža, ki ima potencial

$$U = -m\vec{g}\vec{r} = -mgl\cos\frac{s}{l}.$$

Za dovolj majhen E_0 je gibanje periodično, in velja

$$T = \sqrt{2m} \int_{-s_0}^{s_0} \frac{ds}{\sqrt{E_0 + mgl\cos\frac{s}{l}}}.$$

Če uporabimo substitucijo $s=l\theta$ in začetno energijo zapišemo z začetnim odklonom, dobimo

$$T = \sqrt{2ml} \int_{-\theta_0}^{\theta_0} \frac{d\theta}{mgl(\cos\theta - \cos\theta_0)}.$$

Na tej točki upoštevamo, da je funkcija soda, in uporabimo $\cos\theta=1-2\sin^2\frac{\theta}{2};$

$$T = 2\sqrt{\frac{l}{g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\sin^2 \frac{\theta_0}{2} - \sin^2 \frac{\theta}{2}}},$$

kar se s substitucijo sin $\frac{\theta}{2} = u \sin \theta_0 2$ končno predela na

$$T = 4\sqrt{\frac{l}{g}} \int_0^1 \frac{du}{\sqrt{(1 - u^2)(1 - u^2 \sin^2 \frac{\theta_0}{2})}}.$$

To je eliptični integral, odgovor je

$$T = 4\sqrt{\frac{l}{g}K\left(\sin^2\frac{\theta_0}{2}\right)}$$

 \boxtimes

2.4 Gibanje v polju centralne sile

Definicija. Sila $\vec{F} = \vec{F}(\mathbf{P})$ je CENTRALNA, če obstaja točka $\mathbf{0}$ (pol sile), da \vec{F} deluje v smeri zveznice med \mathbf{P} in $\mathbf{0}$, in da je njena velikost odvisna le od razdalje.

Trditev. Konzervativna sila \vec{F} je centralna natanko tedaj, ko obstaja pol, okoli katerega je vrtilna količina konstantna.

Dokaz. Recimo, da je \vec{F} centralna. Tedaj za vrtilno količino okoli $\mathbf{0}$, velja

$$\vec{l}(\mathbf{0}, \mathbf{P}) = (\mathbf{P} - \mathbf{0}) \times m\dot{\mathbf{P}}$$
$$\partial_t \vec{l} = \dot{\mathbf{P}} \times m\dot{\mathbf{P}} + (\mathbf{P} - \mathbf{0}) \times m\ddot{\mathbf{P}} = (\mathbf{P} - \mathbf{0}) \times \vec{F}$$

Če je \vec{F} centralna, je vzporedna $\mathbf{P} - \mathbf{O}$, in se izniči tudi drugi člen.

Recimo, da je vrtilna količina konstantna. Po zgornjem izračunu $\dot{\vec{l}} = (\mathbf{P} - \mathbf{0}) \times \vec{F} = 0$, torej je \vec{F} vzporedna zveznici. Pokazati moramo še, da je velikost sile odvisna le od razdalje. Po predpostavki je sila konzervativna, torej $\vec{F} = -\vec{\nabla}.U$ in

$$\vec{F} = -\left(\partial_r U \vec{e}_r + \frac{1}{r} \partial_\theta U \vec{e}_\theta + \frac{1}{r \sin \theta} \partial_\varphi U \vec{e}_\varphi\right)$$

v sferičnih koordinatah. Ker je sila vzporedna zveznici \vec{e}_r , mora veljati U = U(r).

Vprašanje 18. Definiraj centralno silo in jo karakteriziraj ob predpostavki, da je konzervativna. Dokaži karakterizacijo.

Trditev. Zvezna centralna sila je konzervativna.

Dokaz. Definiramo

$$U = \int_{|\mathbf{P}_0 - \mathbf{O}|}^{|\mathbf{P} - \mathbf{O}|} F(r) dr + U(\mathbf{P}_0).$$

Vprašanje 19. Dokaži: zvezna centralna sila je konzervativna.

Trditev. Gibanje v polju centralne sile je ravninsko. Dogaja se na ravnini, ki vsebuje center sile in ima normalo v smeri \vec{l} .

Dokaz. Računamo

$$(\mathbf{P} - \mathbf{P}_0) \cdot \vec{l} = (\mathbf{P} - \mathbf{O}) \cdot \vec{l} + (\mathbf{O} - \mathbf{P}_0) \cdot \vec{l}_0 = 0 + 0 = 0,$$

upoštevaje definicijo \vec{l} .

Vprašanje 20. Dokaži, da je gibanje v polju centralne sile ravninsko.

Izpeljimo kinematiko v polarnem koordinatnem sistemu. Definiramo

$$\vec{e}_r = \cos\theta \vec{i} + \sin\theta \vec{j},$$

$$\vec{e}_\theta = \partial_\theta \vec{e}_r = -\sin\theta \vec{i} + \cos\theta \vec{j},$$

in izračunamo

$$\vec{r} = r\vec{e}_r,$$

$$\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_{\theta}, \vec{a} = (\ddot{r} - r\dot{\theta}^2)\vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{e}_{\theta}.$$

Prvi komponenti hitrosti pravimo RADIALNA HITROST, drugi OBODNA HITROST. Podobno prvi komponenti pospeška pravimo RADIALNI POSPEŠEK, drugi pa OBODNI POSPEŠEK.

Za vrtilno količino velja

$$\vec{l} = \vec{r} \times m\vec{v} = mr^2 \dot{\theta} \vec{k}.$$

Pogledamo lahko tudi ploščinsko hitrost

$$\dot{\vec{A}} = \frac{1}{2}\vec{r} \times \vec{v},$$

iz česar dobimo $\vec{l}=2m\dot{\vec{A}}$ oziroma $\dot{\vec{A}}=\frac{1}{2}r^2\dot{\theta}\vec{k}$. Za gibanje v polju centralne sile je \vec{l} konstantna, torej sta konstantni tudi ploščinska hitrost in DVOJNA PLOŠČINSKA HITROST

$$c_0 = r^2 \dot{\theta}$$
.

Vprašanje 21. Izpelji kinematiko v polarnem koordinatnem sistemu. Kaj je dvojna ploščinska hitrost?

Računamo lahko

$$\dot{r} = \frac{dr}{d\theta}\dot{\theta} = \frac{dr}{d\theta}\frac{c_0}{r^2} = -c_0\partial_{\theta}\left(\frac{1}{r}\right),$$

iz česar s spremenljivko $u=1/r, u'=\partial_{\theta}u$ izpeljemo

$$\ddot{r} = -c_0 u'' \dot{\theta} = -c_0^2 u^2 u''.$$

To uporabimo v Binetovi formuli

$$a_r = \ddot{r} - r\dot{\theta}^2 = -c_0^2 u^2 (u + u'').$$

Vprašanje 22. Izpelji Binetovo formulo.

Prvi Keplerjev zakon pravi, da se planeti gibljejo okoli Sonca v elipsah. Elipso lahko parametriziramo kot

$$r = \frac{p}{1 + \varepsilon \cos \theta}.$$

2 Mehanika

Z uporabo Binetove formule dobimo

$$a_r = -c_0^2 \frac{1}{pr^2}.$$

Za silo gravitacije $\vec{F} = -\kappa m M u^2 \vec{e}_r$ bo potem veljalo

$$\frac{c_0^2}{p} = \kappa M = \text{konst.}$$

Za tako parametrizacijo elipse velja

$$a = \frac{p}{1 - \varepsilon^2}$$
$$b = \frac{p}{\sqrt{1 - \varepsilon^2}}$$

 \check{C} e je T perioda gibanja, je

$$A = \frac{1}{2}c_0T,$$

torej

$$T = \frac{2\pi ab}{c_0}.$$

Drugi Keplerjev zakon pravi, da je kvadrat periode gibanja sorazmeren kubu večje polosi elipse, $T^2=ka^3$, torej

$$\frac{p}{c_0^2} = \frac{k}{4\pi^2} = \frac{1}{\kappa M}.$$

Dobimo, da je k konstanten za vse planete.

Vprašanje 23. Povej drugi Keplerjev zakon. Pokaži, da je koeficient enak za vse planete.

Centralna sila je potencialna, $\vec{F} = -\vec{\nabla}.V$. Velja energijska enačba

$$\frac{1}{2}mv^2 + V(r) = E_0,$$

ki jo lahko predelamo v

$$\frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + V(r) = E_0.$$

Upoštevaje $r^2\dot{\theta} = c_0$ dobimo

$$\frac{1}{2}m\dot{r}^2 + \frac{l^2}{2mr^2} + V(r) = E_0.$$

Če zadnja dva člena na levi strani pospravimo v EFEKTIVNI POTENCIAL U(r), smo reducirali gibanje na premočrtno s potencialom. Če to razrešimo na r=r(t), lahko zapišemo

$$\theta(t) = \int_{t_0}^t \frac{c_0}{r^2(t)} dt.$$

Pravimo, da je gibanje v polju centralne sile integrabilno.

Vprašanje 24. Pokaži, da je gibanje v polju centralne sile integrabilno.

V primeru gravitacije integral žal ni zaprte oblike. Dobimo pa lahko enačbo trajektorije:

$$\frac{dr}{d\theta} = \frac{dr}{dt}\frac{dt}{d\theta} = \dot{r}\frac{1}{\dot{\theta}} = \pm \frac{1}{c_0}r^2\sqrt{\frac{2}{m}(E_0 - U(r))}.$$

Za $c_0 = l/m$ po integraciji dobimo

$$\theta - \theta_0 = \pm \frac{l}{\sqrt{2m}} \int_{r_0}^r \frac{dr}{r^2 \sqrt{E_0 - U(r)}}.$$

Za gravitacijsko silo in $\gamma = \kappa m M$ velja

$$U(r) = \frac{l^2}{2mr^2} - \frac{\gamma}{r}.$$

Po integriranju dobimo

$$p = \frac{l^2}{m\gamma}, \qquad \qquad \varepsilon = \sqrt{\frac{2l^2}{m\gamma^2}E_0 + 1}.$$

Za $E_0<0$ je $\varepsilon<1$, in dobimo elipso, pri $E_0=0$ dobimo parabolo $\varepsilon=1$ in pri $E_0>0$ imamo hiperbolo za $\varepsilon>1$.

Vprašanje 25. Kakšna je oblika tira planeta glede na energijo? Izpelji.

Če je gibanje periodično glede na efektivni potencial, se točka giblje med krožnica med dvema APSIDNIMA RADIJEMA. Tir točke se dotika teh krožnic. Manjšemu od radijev pravimo PERICENTER, večjemu pa APOCENTER.

Trditev. Tir je simetričen glede na apsidni radij.

Dokaz. Velja

$$\theta^{+} - \theta_{0} = \frac{l}{\sqrt{2m}} \int_{r_{a}}^{r} \frac{dr}{r^{2} \sqrt{E_{0} - U(r)}}$$
$$\theta^{-} - \theta_{0} = -\frac{l}{\sqrt{2m}} \int_{r_{a}}^{r} \frac{dr}{r^{2} \sqrt{E_{0} - U(r)}}$$

Sledi $\theta^+ - \theta_0 = \theta_0 - \theta^-$.

Izračunamo lahko ovojno število

$$\Delta\theta = \frac{l}{\sqrt{2m}} \int_{r_a}^{r_b} \frac{dr}{r^2 \sqrt{E_0 - U(r)}}.$$

Tir gibanja bo zaprt takrat, ko je $\frac{\Delta \theta}{\pi} \in \mathbb{Q}$.

Trditev. Tir je zaprt ali pa je gosta množica v kolobarju $K(0, r_a, r_b)$.

Izrek (Bertrand). Vsi tiri v okolici krožnega tira so zaprti natanko tedaj, ko je V gravitacijski ali Hookov potencial.

Vprašanje 26. Kakšen je tir gibanja točke v polju centralne sile?

2.5 Relativno gibanje

Definicija. Koordinatni sistem $\varphi(t, \mathbf{P})$ se GIBLJE glede na koordinatni sistem $\varphi'(t', \mathbf{P}')$, če obstaja trojica $(\mathbf{P}_0, \mathbf{P}'_0, Q)$, kjer je $\mathbf{P}_0 \in \mathbb{E}$, $\mathbf{P}'_0 : \mathbb{R} \to \mathbb{E}$, in $Q : \mathbb{R} \to SO(3)$, da velja t = t' in

$$\mathbf{P}'(t) = \mathbf{P}'_0(t) + Q(t)(\mathbf{P} - \mathbf{P}_0).$$

Predpostavimo, da je φ' inercialen, in ga imenujmo ABSOLUTNI KOORDINATNI SISTEM, φ pa je RELATIVNI KOORDINATNI SISTEM.

Trditev. Rotacijski del gibanja je neodvisen od izbire trojice.

Dokaz. Recimo

$$\mathbf{P}' = \mathbf{P}_0' + Q(\mathbf{P} - \mathbf{P}_0) = \tilde{\mathbf{P}}_0' + \tilde{Q}(\mathbf{P} - \tilde{\mathbf{P}}_0).$$

 $\text{Za } \mathbf{P} = \mathbf{P}_0 \text{ dobimo}$

$$\mathbf{P}_0' = \tilde{\mathbf{P}}_0' + \tilde{Q}(\mathbf{P}_0 - \tilde{\mathbf{P}}_0).$$

Če to vstavimo nazaj gor, pridemo do

$$Q(\mathbf{P} - \mathbf{P}_0) = \tilde{Q}(\mathbf{P} - \mathbf{P}_0),$$

torej
$$Q = \tilde{Q}$$
.

Vprašanje 27. Kdaj se koordinatni sistem giblje glede na nek drugi koordinatni sistem? Dokaži, da je rotacijski del neodvisen od izbire trojice.

Za odvod velja

$$\vec{v}' = \dot{\mathbf{P}}_0' + \dot{Q}(\mathbf{P} - \mathbf{P}_0) + Q\dot{\mathbf{P}} = Q(Q^T\vec{v}_0' + Q^T\dot{Q}(\mathbf{P} - \mathbf{P}_0) + \vec{v}_{\text{rel}}).$$

Prvemu členu pravimo translatorna hitrost, drugemu rotacijska hitrost, tretjemu pa relativna hitrost.

Trditev. $Q^T\dot{Q}$ je poševno simetrični tenzor.

Dokaz. Velja $Q^TQ = I$. Če to odvajamo, dobimo

$$\partial_t(Q^T)Q + Q^T\dot{Q} = 0.$$

Izrek. Naj bo W poševno simetričen na trirazsežnem evklidskem prostoru. Potem obstaja vektor $\vec{\omega}$ tako, da je W $\vec{a} = \vec{\omega} \times \vec{a}$ za vsak \vec{a} .

Dokaz. Vemo, da obstaja lastna vrednost $W\vec{p} = \lambda \vec{p}$. Ker je

$$\lambda |\vec{p}|^2 = \vec{p} \cdot W \vec{p} = W^T \vec{p} \cdot \vec{p} = -\lambda |\vec{p}|^2,$$

torej $\lambda = 0$.

BŠS je $|\vec{p}|=1$. Dopolnimo ga lahko do ortonormirane baze prostora $\{\vec{p},\vec{q},\vec{r}\}$, kjer je $\vec{r}=\vec{p}\times\vec{q}$. Ker je $\vec{a}W\vec{a}=0$, dobimo

$$W\vec{q} = W\vec{q} \cdot \vec{r}.\vec{r}, \qquad \qquad W\vec{r} = W\vec{r} \cdot \vec{q}.\vec{q}.$$

Za poljuben \vec{a} je

$$W\vec{a} = \vec{a} \cdot \vec{q}.W\vec{q} \cdot \vec{r}.\vec{r} + \vec{a} \cdot \vec{r}.W\vec{r} \cdot \vec{q}.\vec{q}$$

Velja $\vec{q} \times \vec{r} = \vec{p}$ in $\vec{r} \times \vec{p} = \vec{q}$, torej

$$W\vec{a} = W\vec{q} \cdot \vec{r}.(\vec{a} \cdot \vec{q}.\vec{p} \times \vec{q} + \vec{a} \cdot \vec{r}.\vec{p} \times \vec{r}) = W\vec{q} \cdot \vec{r}.\vec{p} \times \vec{a}.$$

Vprašanje 28. Dokaži, da poševno simetričen tenzor deluje kot vektorski produkt.

Definicija. $[W_1, W_2] = W_1W_2 - W_2W_1$

Prostor poševno simetričnih tenzorjev z operacijama + in [,] je algebra.

Trditev. Preslikava $W \mapsto \vec{\omega}(W)$ je homomorfizem.

Dokaz. Pokazati želimo $\vec{\omega}([W_1, W_2]) = \vec{\omega}(W_1) \times \vec{\omega}(W_2)$. Velja

$$W_1W_2\vec{a} = \vec{\omega}_1 \times (\vec{\omega}_2 \times \vec{a}) = (\vec{\omega}_1 \cdot \vec{a}) \cdot \vec{\omega}_2 - (\vec{\omega}_1 \cdot \vec{\omega}_2) \cdot \vec{a},$$

torej dobimo

$$[W_1, W_2|\vec{a} = W_1W_2\vec{a} - W_2W_1\vec{a} = (\vec{\omega}_1 \times \vec{\omega}_2) \times \vec{a}.$$

Trditev. $(A\vec{a}) \times (A\vec{b}) = A^*(\vec{a} \times \vec{b})$

Dokaz. Če so $\vec{a}, \vec{b}, \vec{c}$ linearno neodvisni, velja

$$\det A = \frac{[A\vec{a}, A\vec{b}, A\vec{c}]}{[\vec{a}, \vec{b}, \vec{c}]}.$$

Tudi če niso neodvisni, velja

$$(A\vec{a} \times A\vec{b}) \cdot \vec{c} = [A\vec{a}, A\vec{b}, \vec{c}].$$

Za začetek predpostavimo, da je A obrnljiva. Tedaj

$$(A\vec{a} \times A\vec{b}) \cdot \vec{c} = [A\vec{a}, A\vec{b}, AA^{-1}\vec{c}]$$

$$= \det A \cdot [\vec{a}, \vec{b}, A^{-1}\vec{c}]$$

$$= \det A \cdot (\vec{a} \times \vec{b}) \cdot A^{-1}\vec{c}$$

$$= \det A^{-T} \cdot (\vec{a} \times \vec{b}) \cdot \vec{c}.$$

Torej je $A\vec{a} \times A\vec{b} = \det A^{-T}(\vec{a} \times \vec{b})$. Upoštevaje $A^{-1} = (A^*)^T/\det A$ je to nadalje enako $A^*(\vec{a} \times \vec{b})$. Če A ni obrnljiva, pa obstaja A_{ε} , da je $|A - A_{\varepsilon}| < \varepsilon$, torej v limiti velja za vse matrike.

Posledica. Če je $Q \in SO(3)$, je $Q(\vec{a} \times \vec{b}) = Q\vec{a} \times Q\vec{b}$.

Vprašanje 29. Dokaži: če je $Q \in SO(3)$, je $Q(\vec{a} \times \vec{b}) = Q\vec{a} \times Q\vec{b}$.

Definicija. Vektor kotne hitrosti rotacije Q je vektor $\vec{\omega}' = Q\vec{\omega}$, kjer je $\vec{\omega}$ osni vektor poševno simetričnega tenzorja $W = Q^T\dot{Q}$.

Trditev. Osni vektor poševno simetričnega tenzorja $\dot{Q}Q^T$ je vektor kotne hitrosti rotacije Q.

Dokaz. Računamo

$$\begin{split} \dot{Q}Q^T\vec{a} &= QQ^T\dot{Q}Q^T\vec{a} \\ &= Q\vec{\omega} \times (Q^T\vec{a}) \\ &= Q\vec{\omega} \times (QQ^T\vec{a}) \\ &= (Q\vec{\omega}) \times \vec{a}. \end{split}$$

Trditev. Vektor kotne hitrosti rotacije $R(\vec{e}, \varphi)$ okoli stalne osi \vec{e} za kot φ je $\vec{\omega}' = \dot{\varphi}\vec{e}$.

Dokaz. Imenujmo to rotacijo Q. Velja $Q\vec{e} = \vec{e}$; če to odvajamo po času, dobimo $\dot{Q}\vec{e} = 0$. Če to množimo z leve s Q^T , pridemo do $Q^T\dot{Q}\vec{e} = \vec{\omega} \times \vec{e} = 0$, torej je $\vec{\omega}$ vzporeden \vec{e} .

Dokazati moramo še, da je $\omega=\dot{\varphi}$. Naj bo \vec{f} poljuben vektor dolžine 1. Velja $\vec{f}\cdot Q\vec{f}=\cos\varphi$. Če to odvajamo po času, dobimo

$$\vec{f} \cdot \dot{Q}\vec{f} = -\sin\varphi\dot{\varphi}$$

oziroma

$$Q^T \vec{f} \cdot Q^T \dot{Q} \vec{f} = -\dot{\varphi} \sin \varphi.$$

Levo stran enakosti lahko razpišemo v

$$Q^T \vec{f} \cdot Q^T \dot{Q} \vec{f} = Q^T \vec{f} \cdot (\vec{\omega} \times \vec{f}) = \vec{\omega} \cdot (\vec{f} \times Q^T \vec{f}) = \vec{\omega} \cdot (-\sin \varphi \vec{e}).$$

Sledi
$$\omega = \dot{\varphi}$$
.

Vprašanje 30. Kaj je vektor kotne hitrosti rotacije? Kako ga izrazimo?

Trditev. Naj bo W poševno simetričen tenzor z enotskim osnim vektorjem \vec{e} . Potem je $e^{\theta W}$ rotacija okoli \vec{e} za kot θ .

Dokaz. Naj bo $A = e^{\theta W}$. Prvo dokažimo, da je $A \in SO(3)$. Če označimo $B = A^T A$ in to enakost odvajamo po θ , dobimo B' = 0, torej je B konstanta. Za $\theta = 0$ dobimo B = I. Pokazati moramo še, da je determinanta A enaka 1. Za to prvo pokažimo det $e^{\theta W} = e^{\operatorname{sl} W}$. Če je $f(\theta) = \det e^{\theta W}$, je

$$f' = \frac{\partial \det A}{\partial \theta} * WA = A^* * WA = I * WA(A^*)^T = I * WAA^{-1} \det A = \det A \operatorname{sl} W,$$

kjer * predstavlja skalarni produkt, če matrike vektoriziramo. Sledi $f' = \operatorname{sl} W \cdot f$, rešitev diferencialne enačbe je $f(\theta) = e^{\theta \operatorname{sl} W}$. Ker je $W^T = -W$, je slW = 0 in det A = 1.

Razpis A v Taylorjevo vrsto pokaže $A\vec{e} = \vec{e}$. Če definiramo $Q(t) = e^{t\theta W}$, lahko izračunamo $Q^T\dot{Q} = \theta W$, iz česar dobimo osni vektor $\vec{\omega} = \theta \vec{e}$. To je enak osni vektor kot za rotacijo $R(\vec{e}, \theta)$.

Izrek.
$$R(\vec{e}, \varphi) = \cos \varphi I + (1 - \cos \varphi) \vec{e} \otimes \vec{e} + \sin \varphi W(\vec{e})$$

Dokaz. V izrazu nastopa tenzorski produkt $(\vec{a} \otimes \vec{b})\vec{c} = (\vec{b} \cdot \vec{c}) \cdot \vec{a}$.

Velja $R(\vec{e}, \varphi) = e^{\varphi W(\vec{e})}$. Kratek račun pokaže

$$W^{k} = \begin{cases} (-1)^{n+1} (\vec{e} \otimes \vec{e} - I) & k = 2n, n \ge 1 \\ (-1)^{n} W & k = 2n + 1 \end{cases}$$

Če rotacijsko matriko razvijemo v Taylorjevo vrsto in zberemo lihe in sode člene, dobimo natanko želeno obliko. $\hfill\Box$

Vprašanje 31. Kako izrazimo rotacijo?

Iz vse te izražave lahko končno izračunamo

$$\begin{split} \dot{\mathbf{P}}' &= \dot{\mathbf{P}}'_0 + \dot{Q}(\mathbf{P} - \mathbf{P}_0) + Q\dot{\mathbf{P}} \\ &= \dot{\mathbf{P}}'_0 + QQ^T\dot{Q}(\mathbf{P} - \mathbf{P}_0) + Q\dot{\mathbf{P}} \\ &= \dot{\mathbf{P}}'_0 + Q(\vec{\omega}(\mathbf{P} - \mathbf{P}_0)) + Q\dot{\mathbf{P}} \\ &= \ddot{v}'_0 + \vec{\omega}' \times Q(\mathbf{P} - \mathbf{P}_0) + Q\vec{v}_{\text{rel}} \\ &= \ddot{v}'_0 + \vec{\omega}' \times \vec{\zeta}' + \ddot{v}'_{\text{rel}} \end{split}$$

 $Za \zeta = \mathbf{P} - \mathbf{P}_0.$

3 Uvod v numerične metode

3.1 Računske napake

Kadar z numerično metodo nekaj izračunamo, ne dobimo točne vrednosti, vendar nek približek. Absolutno napako definiramo kot razliko med približkom in točno vrednostjo:

$$d_a = \hat{x} - x$$
.

Po drugi strani je relativna napaka kvocient

$$d_r = \frac{\hat{x} - x}{x}.$$

Približek lahko izrazimo kot $\hat{x} = x(1 + d_r)$.

Vprašanje 1. Definiraj absolutno in relativno napako.

Števila predstavljamo s plavajočo vejico, ki je pravzaprav eksponentni zapis

$$x = \pm m \cdot b^e,$$

kjer je m mantisa, zapisana kot $m=0.c_1c_2\ldots c_t$ za $c_i\in\{0,\ldots,b-1\}$, število b je baza zapisa, e pa eksponent v mejah $L\leq e\leq U$. Števila običajno zapišemo normalizirana, torej s $c_1\neq 0$. V primeru najnižje možne potence dovoljujemo tudi subnormalizirana števila, kjer je $c_1=0$. Predstavljiva števila v takšnem zapisu označujemo s P(b,t,L,U).

V standardu IEEE imamo dve števili:

- Enojni zapis: P(2, 24, -125, 128),
- Dvojni zapis: P(2, 53, -1021, 1023).

Vprašanje 2. Kaj je P(b, t, L, U)? Kakšne vrednosti imata float in double?

Pri zaokoževanju številu odrežemo decimalke za neko vrednostjo, in po potrebi prištejemo b^{-t} . Boljšega od teh približkov označimo s fl(x).

Izrek. Če za x velja, da |x| leži na intervalu med najmanjšim in največjim pozitivnim predstavljivim normaliziranim številom, potem velja

$$\frac{|\mathrm{fl}(x) - x|}{|x|} \le u,$$

za osnovno zaokrožitveno napako $u=\frac{1}{2}b^{1-t}.$

Vprašanje 3. Kaj je osnovna zaokrožitvena napaka? Povej izrek.

Standard IEEE zagotovlja omejeno napako tudi pri osnovnih operacijah:

- $f(x \oplus y) = (x \oplus y)(1 + \delta)$ za $|\delta| \le u$ za osnovne operacije $+, -, \cdot, /,$
- $\operatorname{fl}(\sqrt{x}) = \sqrt{x}(1+\delta) \operatorname{za} |\delta| < u$.

Drug vir napak je občutljivost problema, ki ni povezana z numeriko. Obravanavamo vprašanje, kako se pri majhni spremembi v vhodnih podatkih spremeni pravilni odgovor. Za zvezno odvedljivo f lahko absolutno občutljivost merimo z odvodom

$$|f(x + \delta x) - f(x)| \approx |f'(x)| |\delta x|$$
.

Poznamo tri vrste napak, ki skupaj sestavljajo celotno napako:

- Neodstranljiva napaka: napaka zaradi zaokroževanja podatkov
- Napaka metode: nenatančnost metode
- Zaokrožitvena napaka: napaka zaradi zaokroževanja znotraj metode

Vprašanje 4. Katere vrste napak poznamo?

3.2 Nelinearne enačbe

Iščemo rešitve enačbe f(x) = 0 za nek $f : \mathbb{R} \to \mathbb{R}$. Pri tem lahko pridemo do več različnih situacij glede obstoja in enoličnosti rešitve; možnost je, da rešitev obstaja in je ena sama, da je rešitev več, ampak končno mnogo, da jih je neskončno mnogo, ali pa da rešitve sploh ni.

Naj bo α ničla za zvezno odvedljivo f. Ničla je enostavna natanko tedaj, ko je $f'(\alpha) \neq 0$. Če ni enostavna, je m-kratna natanko tedaj, ko je prvi neničelni odvod v α reda m. V primeru enostavne ničle lokalno obstaja inverzna funkcija, da je $\alpha = f^{-1}(0)$. Absolutna občutljivost problema je tedaj enaka $|(f^{-1})'(0)| = \frac{1}{|f'(\alpha)|}$. Če je α dvojna ničla, uporabimo Taylorjev približek druge stopnje

$$f(x) \approx \underbrace{f(\alpha)}_{=0} + \underbrace{f'(\alpha)}_{=0} (x - \alpha) + \frac{1}{2} f''(\alpha) (x - \alpha)^2,$$

torej za $|f(x)| \le \varepsilon$ velja

$$|x - \alpha| \le \sqrt{\frac{2\varepsilon}{|f''(\alpha)|}}.$$

Višje kot so ničle, bolj občutljiv je problem iskanja. Za večkratno ničlo v splošnem velja

$$|x - \alpha| \le \left(\frac{m!\varepsilon}{|f^{(m)}(\alpha)|}\right)^{1/m}$$

Vprašanje 5. Analiziraj problem iskanja ničel.

3.2.1 Bisekcija

Pri implementaciji bisekcije si hranimo zaporedja $(a_n)_n$ levih mej, $(b_n)_n$ desnih mej, $(c_n)_n$ sredinskih približkov, in $(e_n)_n$ polovičnih velikosti intervala. Nove člene izračunamo po predpisih

$$e_{n+1} = e_n/2,$$

 $a_n = a_{n-1}$ ali $c_{n-1},$
 $b_n = b_{n-1}$ ali $c_{n-1},$
 $c_n = a_n + e_n.$

Pri tem zmanjšamo število računskih operacij, se izognemo problemom glede možnih nepredvidenih zaokrožitev, skokov izven območja ali računskih napak. Bisekcija nam lahko poišče liho ničlo, ne pa sode, prav tako lahko poišče lih pol (ne pa sodega).

Vprašanje 6. Opiši delovanje bisekcije.

3.2.2 Navadna iteracija

Pri navadni iteraciji iskanje rešitve enačbe f(x) = 0 prevedemo na iskanje rešitve enačbe x = g(x) za ustrezno izbrano funkcijo g. Splošna primerna izbira je recimo g(x) = x - f(x), ali pa g(x) = x - h(x)f(x) za neničelno funkcijo h. Da postopek $x_{r+1} = g(x_r)$ konvergira, mora biti g v okolici α skrčitev.

Izrek. Naj bo $\alpha = g(\alpha)$ in naj g na intervalu $I = [\alpha - \delta, \alpha + \delta]$ za nek $\delta > 0$ zadošča Lipschitzovem pogoju $|g(x) - g(y)| \le m |x - y|$ za nek $m \in [0, 1)$, in poljubna $x, y \in I$. Potem za vsak $x_0 \in I$ zaporedje $x_{r+1} = g(x_r)$ konvergira $k \in I$, in velja

- $|x_r \alpha| \leq m^r |x_0 \alpha|$,
- $|x_{r+1} \alpha| \le \frac{m}{1-m} |x_{r+1} x_r|$.

Dokaz. Dokažimo prvo, da zaporedje ne zapusti intervala I; če velja $x_r \in I$, je $|x_r - \alpha| \le \delta$, torej

$$|x_{r+1} - \alpha| = |g(x_r) - g(\alpha)| \le m |x_r - \alpha| < |x_r - \alpha| \le \delta,$$

torej je tudi $x_{r+1} \in I$. S ponavljanjem tega postopka tudi dokažemo prvo točko, za drugo točko pa ocenimo

$$|x_{r+1} - \alpha| = |x_{r+1} - x_{r+2} + x_{r+2} - x_{r+3} + x_{r+3} - \dots - \alpha| \le |x_{r+1} - x_{r+2}| + |x_{r+2} - x_{r+3}| + \dots \le (m + 1)$$

Posledica. Če je $\alpha = g(\alpha)$, če je g zvezno odvedljiva in če velja $|g'(\alpha)| < 1$, potem obstaja nek $\delta > 0$, da za vsak x_0 , $|x_0 - \alpha| < \delta$, zaporedje $x_{r+1} = g(x_r)$ konvergira $k \alpha$.

Vprašanje 7. Povej in dokaži izrek o navadni iteraciji.

Definicija. Naj bo $\lim x_r = \alpha$. Pravimo, da $(x_r)_r$ KONVERGIRA K α Z REDOM p, če velja

$$\lim_{r \to \infty} \frac{|x_{r+1} - \alpha|}{|x_r - \alpha|^p} = C$$

za neko konstanto C > 0.

Izrek. Naj bo $\alpha = g(\alpha)$ za p-krat zvezno odvedljivo funkcijo g in naj velja $g'(\alpha) = \ldots = g^{(p-1)}(\alpha) = 0$ ter $g^{(p)}(\alpha) \neq 0$. Tedaj v bližini α zaporedje $x_{r+1} = g(x_r)$ konvergira k α z redom p.

Dokaz. Izraz $x_{r+1}=g(x_r)$ v okolici α razvijemo v Taylorjevo vrsto:

$$x_{r+1} = g(\alpha) + g'(\alpha)(x_r - \alpha) + \ldots + \frac{g^{(p-1)}(\alpha)}{(p-1)!}(x_r - \alpha)^{p-1} + \frac{g^{(p)}(\xi)}{p!}(x_r - \alpha)^p$$

za nek ξ v bližini α . Sledi

$$\frac{x_{r+1} - \alpha}{(x_r - \alpha)^p} = \frac{g^{(p)}(\xi)}{p!}.$$

Vprašanje 8. Kaj je red konvergence zaporedja? Kako ga poiščeš z odvodom?

3.2.3 Tangentna metoda

Če vzamemo $\alpha = x_r + \Delta x_r$, in razvijemo dva člena Taylorjeve vrste

$$0 = f(x_r + \Delta x_r) = f(x_r) + f'(x_r)\Delta x_r + \frac{1}{2}f''(\xi_r)\Delta x_r^2,$$

ter nato zanemarimo zadnji člen, dobimo

$$\Delta x_r = \frac{-f(x_r)}{f'(x_r)},$$

s čimer smo izpeljali tangentno metodo, ki je pravzaprav poseben primer naravne iteracije. Če je α enostavna ničla, lahko izračunamo, da ima g(x) = x - f(x)/f'(x) ničelni odvod v α (ob predpostavki $f \in \mathcal{C}^2$), in je torej konvergenca vsaj kvadratična. V primeru m-kratne ničle za $m \geq 2$ pa po dolgopisni izpeljavi dobimo, da je konvergenca zagotovljena, a linearna. Za dvakrat zvezno odvedljive funkcije je vsaka ničla f torej privlačna negibna točka.

Vprašanje 9. Izpelji tangentno metodo in pokaži, kakšen red konvergence ima.

Izrek. Naj bo f na $I = [0, \infty)$ dvakrat zvezno odvedljiva, strogo naraščajoča, konveksna in naj ima na I ničlo α . Potem za vsak $x_0 \in I$ tangenta metoda konvergira k α .

Dokaz. Velja f'(x) > 0 in f''(x) > 0. Z oceno

$$x_1 - \alpha = \frac{f''(\xi)}{2f'(x_0)}(x_0 - \alpha)^2 \ge 0$$

pokažemo, da je ne glede na x_0 točka x_1 vedno desno od α . Dokažimo še, da je x_{r+1} nujno med α in x_r :

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)} < x_r,$$

vedno pa velja $x_r > \alpha$. To je torej strogo padajoče omejeno zaporedje, ki mora nekam konvergirati; to bo seveda α .

Vprašanje 10. Za kakšne funkcije lahko globalno zagotoviš konvergenco tangentne metode? Dokaži.

3.2.4 Sekantna metoda

Če je izračun odvoda zahteven, ga lahko aproksimiramo z diferenčnim kvocientom. Namesto tangente na f v točki x_r tako uporabimo sekanto skozi točki $(x_r, f(x_r))$ in $(x_{r-1}, f(x_{r-1}))$. Dobljena metoda tehnično ni navadna iteracija, ker uporablja zadnja dva približka, vendar se obnaša sorodno. Naslednji približek izračunamo s predpisom

$$x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}.$$

Analiza sekantne metode je težja kot analiza metod navadne iteracije. Izkaže se, da velja

$$|e_{r+1}| \approx c |e_r| |e_{r-1}|$$

za neko konstanto c, ki je pravzaprav enaka

$$c = \frac{|f''(\alpha)|}{2|f'(\alpha)|}.$$

Označimo red sekantne metode s p. Obstaja konstanta D > 0, da je $|e_{r+1}| \approx D |e_r|^p$, torej

$$|e_{r+1}| \approx CD |e_{r-1}|^{p+1} = D^{p+1} |e_{r-1}|^{p^2}$$

iz česar sledi $p^2 = p + 1$ oziroma $p = \phi$, torej je konvergenca superlinearna.

Vprašanje 11. Razloži sekantno metodo in izpelji njen red konvergence.

3.2.5 Ostale metode

Pri Mullerjevi metodi uporabimo tri približke x_r, x_{r-1} in x_{r-2} , ter skozi točke $(x_r, f(x_r))$, $(x_{r-1}, f(x_{r-1}))$, $(x_{r-2}, f(x_{r-2}))$ potegnemo polinom stopnje 2. Za naslednji približek vzamemo tisto izmed dveh ničel polinoma, ki je bližnja x_r . Ena od prednosti te metode je, da lahko išče kompleksne ničle tudi z realnimi začetnimi približki. Izkaže se, da je red konvergence približno 1.84.

Vprašanje 12. Razloži Mullerjevo metodo.

Če zamenjamo vlogi x in y, in najdemo polinom p(y), ki poteka skozi točke $(f(x_r), x_r)$, $(f(x_{r-1}), x_{r-1})$, $(f(x_{r-2}), x_{r-2})$, dobimo približek za f^{-1} , in lahko za naslednji približek vzamemo $x_{r+1} = p(0)$. Metodo imenujemo inverzna interpolacija, ima pa isti red konvergence kot Mullerjeva metoda.

Vprašanje 13. Razloži metodo inverzne interpolacije.

3.2.6 Ničle polinomov

Ničle polinomov lahko iščemo na več načinov:

- Poiščeš eno ničlo in reduciraš polinom.
- Računaš vse ničle hkrati.
- Prevedeš problem na problem iskanja lastnih vrednosti.

Za redukcijo na problem lastnih vrednosti uporabljamo spremljevalno matriko polinoma $p(x) = a_0 x^n + \ldots + a_n$

$$C_p = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -\frac{a_n}{a_0} & -\frac{a_{n-1}}{a_0} & \dots & -\frac{a_2}{a_0} & -\frac{a_1}{a_0} \end{bmatrix}$$

Vprašanje 14. Kako izgleda spremljevalna matrika polinoma?

Ena od metod, ki računa vse ničle hkrati, je Laguerrova metoda. Za polinom p(x) =

 $a_0x^n+\ldots+a_n$ z ničlami α_1,\ldots,α_n definiramo

$$S_1(x) = \sum_{i=1}^n \frac{1}{x - \alpha_i} = \frac{p'(x)}{p(x)},$$

$$S_2(x) = \sum_{i=1}^n \frac{1}{(x - \alpha_i)^2} = -S_1'(x) = \frac{(p'(x))^2 - p(x)p''(x)}{p^2(x)},$$

$$a(x) = \frac{1}{x - \alpha_n},$$

$$b(x) = \frac{1}{n - 1} \sum_{i=1}^{n-1} \frac{1}{x - \alpha_i},$$

da velja $S_1(x) = a(x) + (n-1)b(x)$. Tedaj za

$$d_{i}(x) = \frac{1}{x - \alpha_{i}} - b(x),$$
$$d(x) = \sum_{i=1}^{n-1} d_{i}^{2}(x)$$

dobimo $S_2 = a^2 + (n-1)b^2 + d$, ker je $\sum_i d_i = 0$. Dobili smo sistem enačb v spremenljivkah a, b, ki ga lahko rešimo in dobimo

$$a_{1,2} = \frac{1}{n} \left(S_1 \pm \sqrt{(n-1)(nS_2 - S_1^2 - nd)} \right).$$

Če x obravnavamo kot približek za ničlo α_n , bo člen nd v bližini α_n majhen, zato ga zanemarimo. Iz tega izrazimo

$$\alpha_n = x - \frac{n}{S_1 \pm \sqrt{(n-1)(nS_2 - S_1^2)}}.$$

Laguerrova metoda nam torej da postopek za izračun približka ničle

$$x_{r+1} = x_r - \frac{np(x_r)}{p'(x_r) \pm \sqrt{(n-1)\left[(n-1)(p'(x_r))^2 - np(x_r)p''(x_r)\right]}}$$

Za odločitev, kateri predznak pripišemo korenu v imenovalcu, imamo tri možnosti:

- Vedno izberemo plus,
- Vedno izberemo minus,
- Stabilna varianta: izbereš tistega, ki ti v imenovalcu da večjo absolutno vrednost.

V prvih dveh primerih fiksno iščemo v eni smeri od začetnega približka, v tretjem pa to ni zagotovljeno.

Izrek. Če ima polinom p same realne ničle, potem za vsak začetni približek x_0 stabilna verzija Laguerrove metode konvergira proti najbližji desni oz. levi ničli, pri čemer si mislimo, da sta kraka realne osi pri $+\infty$ in $-\infty$ združena. Konvergenca v bližini enostavne ničle je kubična.

Če ima polinom kompleksne ničle, metoda konvergira za skoraj vse začetne približke.

Vprašanje 15. Izpelji Laguerrovo metodo in razloži, kako delujejo vse možnosti za izbiro naslednjega približka.

3.2.7 Durand-Kernerjeva metoda

Izberimo približke x_1, \ldots, x_n za ničle polinoma p(x) z vodilnih koeficientom 1. Iščemo popravke $\Delta x_1, \ldots, \Delta x_n$, da bodo $x_i + \Delta x_i$ točne ničle. Velja

$$p(x) = (x - (x_1 + \Delta x_1))(x - (x_2 + \Delta x_2)) \dots (x - (x_n + \Delta x_n)) = \prod_{i=1}^{n} (x - x_i) - \sum_{j=1}^{n} \Delta x_j \prod_{i=1}^{n} i \neq j(x - x_i) + \dots,$$

člene drugega in večjega reda pa zanemarimo (torej vse, kar je v tropičju). Če s q(x) označimo nezanemarjen del, velja

$$q(x_l) = -\Delta x_l \prod_{i \neq l} (x_l - x_i),$$

iz česar lahko izračunamo Δx_l .

Vprašanje 16. Razloži Durand-Kernerjevo metodo.

3.3 Sistemi linearnih enačb

3.3.1 Matrične norme

Definicija. Preslikava $\|\cdot\|:\mathbb{C}^n\to\mathbb{R}$ je VEKTORSKA NORMA, če velja

- $||x|| \ge 0$ za vse x, in $||x|| = 0 \Leftrightarrow x = 0$,
- $\|\alpha x\| = |\alpha| \|x\|$,
- $||x + y|| \le ||x|| + ||y||$.

Vse vektorske norme so ekvivalentne, za poljubni normi $||x||_A$ in $||x||_B$ obstajata konstanti C_1, C_2 , da velja

$$C_1 \|x\|_A \le \|x\|_B \le C_2 \|x\|_A$$
.

Konkretno za 1-normo, 2-normo in supremum normo veljajo ocene

$$||x||_{2} \le ||x||_{1} \le \sqrt{n} ||x||_{2}$$

$$||x||_{\infty} \le ||x||_{1} \le \sqrt{n} ||x||_{\infty}$$

$$||x||_{\infty} \le ||x||_{2} \le \sqrt{n} ||x||_{\infty}$$

Vprašanje 17. Definiraj vektorsko normo. V kakšnem razmerju so znane vektorske norme?

Definicija. Preslikava $\|\cdot\|:\mathbb{C}^{n\times n}\to\mathbb{R}$ je matrična norma, če velja

- $||A|| \ge 0$ in $||A|| = 0 \Leftrightarrow A = 0$,
- $\|\alpha A\| = |\alpha| \|A\|$,
- $||A + B|| \le ||A|| + ||B||$,
- $||AB|| \le ||A|| \, ||B||$ (submultiplikativnost).

Matrika je tudi vektor, na njej so tudi definirane običajne vektorske norme. Definiramo funkcije

$$N_1(A) = \sum_{i,j} |a_{ij}|,$$

$$N_2(A) = \sqrt{\sum_{i,j} |a_{ij}|^2},$$

$$N_{\infty}(A) = \max_{i,j} |a_{ij}|.$$

Te funkcije ustrezajo prvim trem točkam definicije matrične norme, to pa še ni dovolj. Za matriki

$$A = B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

velja $N_{\infty}(A) = N_{\infty}(B) = 1$, ampak $N_{\infty}(AB) = 2$, torej N_{∞} ni matrična norma. V nasprotju N_1 in N_2 dejansko sta matrični normi. Funkcijo N_2 imenujemo FROBENIUSOVA NORMA in označimo z $N_2(A) = ||A||_F$.

Vprašanje 18. Dokaži, da N_{∞} ni matrična norma. Kaj je Frobeniusova norma?

Izrek. Naj bo $\|\cdot\|_v$ vektorska norma na \mathbb{C}^n . Potem je

$$||A||_m = \max_{x \neq 0} \frac{||Ax||_v}{||x||_v}$$

matrična norma. Taki normi pravimo operatorska norma.

Dokaz. Prve tri točke so očitne, preverimo samo submultiplikativnost. Za vsak $x\neq 0$ velja $\|Ax\|_v \leq \|A\|_m \, \|x\|_v$ po definiciji, torej

$$\|AB\| = \max_{x \neq 0} \frac{\|ABx\|_v}{\|x\|_v} \le \max_{x \neq 0} \frac{\|A\|_m \|Bx\|_v}{\|x\|_v} = \|A\|_m \|B\|_m.$$

Vprašanje 19. Dokaži, da so operatorske norme res matrične norme.

Za matrično normo $\|\cdot\|_m$ in vektorsko normo $\|\cdot\|_v$ pravimo, da sta USKLAJENI, če za vsako matriko A in vektor x velja

$$||Ax||_v \leq ||A||_m ||x||_v$$
.

Lema. Za vsako matrično normo obstaja usklajena vektorska norma.

Dokaz. Za vektor x definiramo

$$||x||_v = ||[x \quad 0 \quad \dots \quad 0]||_m$$

kjer smo vektor dopolnili do kvadratne matrike. To je očitno vektorska norma, normi sta očitno usklajeni. $\hfill\Box$

Vprašanje 20. Dokaži, da ima vsaka matrična norma usklajeno vektorsko normo.

Posledica. Za vsako matrično normo in poljubno lastno vrednost λ matrike A velja $|\lambda| \leq ||A||$.

Dokaz. Naj bo $Ax = \lambda x$ za nek $x \neq 0$. Velja

$$\left|\lambda\right|\left\|x\right\|_{v}=\left\|\lambda x\right\|_{v}=\left\|Ax\right\|_{v}\leq\left\|A\right\|\left\|x\right\|_{v}.$$

Vprašanje 21. Kakšna je povezava med lastnimi vrednostmi in matrično normo? Dokaži.

Lema. Norma $||A||_1$ je enaka največji 1-normi stolpca matrike A.

Dokaz. Naj bo x vektor. Velja

$$||Ax||_1 = \left\| \sum_i x_i a_i \right\|_1 \le \sum_i |x_i| \, ||a_i||_1 \le \max_{j=1,\dots,n} \sum_i |x_i| \, ||a_j||_1 = \max_j ||x||_1 \, ||a_j||_1.$$

Sledi

$$\frac{\|Ax\|_1}{\|x\|_1} \le \max_j \|a_j\|_1.$$

Enakost dobimo, če za x vzamemo e_k , kjer je k stolpec z največjo 1-normo.

Podobno pokažemo, da je $\|A\|_{\infty}$ enaka največji 1-normi vrstice.

Vprašanje 22. Čemu sta enaki normi $||A||_1$ in $||A||_{\infty}$? Dokaži za eno.

Lema. Velja $||A||_2 = \max_j \sqrt{\lambda_j}$, kjer so λ_j lastne vrednosti matrike $A^H A$.

Dokaz. Matrika $A^{H}A$ je hermitska, torej so vse njene lastne vrednosti realne. Velja

$$x^{H}A^{H}Ax = (Ax)^{H}Ax = ||Ax||_{2} \ge 0,$$

torej je A^HA pozitivno semidefinitna, in ima nenegativne lastne vrednosti. Izraz je torej res dobro definiran.

Naj bodo $\sigma_1^2 \leq \sigma_2^2 \leq \ldots \leq \sigma_n^2$ singularne vrednosti matrike A (lastne vrednosti $A^H A$). Ker je $A^H A$ hermitska, lahko lastne vektorje izberemo tako, da so ortonormirani. Naj za v_i torej velja $A^H A v_i = \sigma_i^2 v_i$. Za poljuben x velja

$$x = \sum_{i} \alpha_i v_i,$$

torej

$$||Ax||_2^2 = (Ax)^H (Ax) = x^H A^H Ax = \sum_i |\alpha_i|^2 \sigma_i^2 \le \sigma_n^2 \sum_i |\alpha_i|^2 = \sigma_n^2 ||x||_2^2.$$

Sledi neenakost

$$\frac{\|Ax\|_2}{\|x\|_2} \le \sigma_n,$$

kjer dobimo enačaj, če vzamemo $x = v_n$.

Vprašanje 23. Čemu je enaka 2-norma matrike? Dokaži.

Frobeniusova norma ni operatorska, ker za vse operatorske norme velja ||I|| = 1, ampak $||I||_F = \sqrt{n}$. Kljub temu pa so vse matrične norme ekvivalentne. Za konkretne primere velja

$$\begin{split} &\frac{1}{\sqrt{n}} \, \|A\|_F \leq \|A\|_2 \leq \|A\|_F \,, \\ &\frac{1}{\sqrt{n}} \, \|A\|_1 \leq \|A\|_2 \leq \sqrt{n} \, \|A\|_1 \,, \\ &\frac{1}{\sqrt{n}} \, \|A\|_\infty \leq \|A\|_2 \leq \sqrt{n} \, \|A\|_\infty \,. \end{split}$$

Velja tudi $||A||_2 \le \sqrt{||A||_1 ||A||_{\infty}}$ in $N_{\infty}(A) \le ||A||_2 \le nN_{\infty}(A)$.

Vprašanje 24. Kako oceniš 2-normo matrike?

Lema. Normi $\|\cdot\|_2$ in $\|\cdot\|_F$ sta invariantni na množenje z unitarno matriko.

Dokaz. Za $x \in \mathbb{C}$ velja $||Ux||_2 = ||x||_2$. Pri 2-normi torej

$$||UA||_2 = \max_x \frac{||UAx||_2}{||x||_2} = \max_x \frac{||Ax||_2}{||x||_2} = ||A||_2,$$

za Frobeniusovo normo po

$$||UA||_F^2 = ||U[a_1 \dots a_n]||_F^2 = \sum_i ||Ua_i||_2^2 = \sum_i ||a_i||_2^2 = ||A||_F^2.$$

V drugo smer uporabimo dejstvi $\|A^H\|_2 = \|A\|_2$ in $\|A^H\|_F = \|A\|_F$.

Vprašanje 25. Dokaži, da sta 2-norma in Frobeniusova norma invariantni na množenje z unitarno matriko.

Lema. Naj bo ||X|| < 1. Potem je I - X nesingularna, inverz je enak

$$(I - X)^{-1} = \sum_{k=0}^{\infty} X^k,$$

in če je $\|I\|=1$, velja

$$||(I-X)^{-1}|| \le \frac{1}{1-||X||}.$$

Dokaz. Recimo, da je I-X singularna. Tedaj obstaja vektor $w \neq 0$, da je (I-X)w=0, torej Xw=w in je w lastni vektor za lastno vrednost 1. To je protislovje, ker mora biti norma večja od lastne vrednosti.

Računamo

$$(I - X) \sum_{k=0}^{m} X^k = I - X^{m+1} \xrightarrow[m \to \infty]{} I,$$

ker je $\|X\|<1$ in $\|X\|^{m+1}\geq \left\|X^{m+1}\right\|.$ Dodatno velja

$$\left\| \sum_{k=0}^{\infty} X^k \right\| \le \|I\| + \|X\| + \|X\|^2 + \dots = \frac{1}{1 - \|X\|}.$$

Vprašanje 26. Povej predpostavke in dokaži formulo za inverz matrike I-X.

3.3.2 Občutljivost sistema linearnih enačb

Imejmo sistem Ax = b, kjer je A nesingularna matrika. Denimo, da A in b zmotimo v $A + \Delta A$ ni $b + \Delta b$, kjer je $A + \Delta A$ še vedno nesingularna. Nov sistem ima potem obliko

$$(A + \Delta A)(x + \Delta x) = b + \Delta b.$$

Lema. Če je A nesingularna in $\|\Delta A\| < \frac{1}{\|A^{-1}\|}$, je $A + \Delta A$ nesingularna.

Dokaz. Računamo

$$A + \Delta A = A(I + A^{-1}\Delta A),$$

in ocenimo normo

$$||A^{-1}\Delta A|| \le ||A^{-1}|| ||\Delta A|| < 1,$$

torej velja po prejšnji lemi.

Naj torej velja ta pogoj za eno izmed znanih operatorskih norm. Računamo

$$(A + \Delta A)\Delta x = \Delta b - \Delta A x,$$

$$\Delta x = (I + A^{-1}\Delta A)^{-1}(\Delta b - \Delta A x),$$

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A\| \|A^{-1}\|}{1 - \|A^{-1}\| \|\Delta A\|} \left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right),$$

kjer smo v zadnjem delu uporabili sklep $\|b\| \le \|A\| \|x\|$. Kvaliteta ocene je odvisna od vrednosti

$$\kappa(A) = ||A^{-1}|| \, ||A||,$$

ki ji pravimo OBČUTLJIVOST MATRIKE ali POGOJENOSTNO ŠTEVILO.

Za 2-normo velja

$$||A^{-1}||_2 = \max_{x \neq 0} \frac{||A^{-1}x||_2}{||x||_2} = \max_{y \neq 0} \frac{||y||_2}{||Ay||_2} = \left(\min_{y \neq 0} \frac{||Ay||_2}{||y||_2}\right)^{-1} = \frac{1}{\sigma_n(A)},$$

kjer je $\sigma_n(A)$ najmanjša singularna vrednost. Dobimo torej

$$\kappa_2(A) = \frac{\sigma_1(A)}{\sigma_n(A)}.$$

Vprašanje 27. Kaj je občutljivost matrike? Kako jo uporabiš za oceno občutljivosti sistema linearnih enačb?

3.3.3 LU razcep

Naj bo dan vektor $w \in \mathbb{R}^n$ in naj velja $w_k \neq 0$. Definiramo ELIMINACIJSKO MATRIKO

$$L_k = egin{bmatrix} 1 & & & & & & & \\ & 1 & & & & & & \\ & & & \ddots & & & & \\ & & & 1 & & & & \\ & & & -l_{k+1,k} & 1 & & & \\ & & & \vdots & & \ddots & \\ & & & -l_{n,k} & & & 1 \end{bmatrix}$$

za
$$l_{i,k} = \frac{w_i}{w_k}$$
. Velja

$$L_k w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Če je $L_k = I - l_k e_k^T$, lahko izračunamo $L_k^{-1} = I + l_k e_k^T$. Če množimo matriko A z leve z L_1 , uničimo prvi stolpec, razen prvega elementa. Če to matriko množimo z L_2 z leve, uničimo poddiagonalne elemente v drugem stolpcu (L_2 gradimo iz elementom te druge matrike). Tako lahko nadaljujemo in pridemo do

$$L_{n-1}L_{n-2}\dots L_2L_1A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{(n-1)} \end{bmatrix} = U$$

Za matriko $L = L_1^{-1}L_2^{-1}\dots L_{n-1}^{-1}$ tedaj velja A = LU. Izračunamo lahko

$$L = I + \sum_{k} l_k^T e_k,$$

iz česar vidimo, da je L spodnje trikotna z enicami na diagonali. Da LU razcep lahko naredimo, morajo biti elementi $a_{11}, a_{22}^{(1)}, \ldots, a_{nn}^{(n-1)}$ na diagonali neničelni. Pravimo jim PIVOTI.

Vprašanje 28. Izpelji in razloži osnovni LU razcep. Kaj so pivoti?

Algorithm 1 LU razcep brez pivotiranja

```
\begin{array}{l} \mathbf{for} \ j=1,\ldots,n-1 \ \mathbf{do} \\ \mathbf{for} \ i=j+1,\ldots,n \ \mathbf{do} \\ l_{ij}=a_{ij}/a_{jj} \\ \mathbf{for} \ k=j+1,\ldots,n \ \mathbf{do} \\ a_{ik}=a_{ik}-l_{ij}a_{jk} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{end} \ \mathbf{for} \end{array}
```

Osnovni postopek za izračun LU razcepa je prikazan v algoritmu 1. S tem dobimo elemente matrike L, razen enic na diagonali, ter elemente matrike U nad diagonalo. Algoritem deluje v $O(n^3)$ s predfaktorjem 2 /3.

Sistem Ax = b rešimo tako, da prvo razcepimo A = LU, nato s premo substitucijo rešimo trikotni sistem Ly = b, in nazadnje z obratno substitucijo rešimo še Ux = y.

Vprašanje 29. Zapiši osnovni algoritem za LU razcep. Kakšno časovno zahtevnost ima?

Izrek. Za matriko A je ekvivalentno

- Obstaja enoličen LU razcep A = LU, kjer je L spodnje trikotna z enicami na diagonali, in U zgornje trikotna nesingularna.
- Vse vodilne podmatrike A so nesingularne.

Dokaz. V desno: A_k je produkt ustreznih vodilnih podmatrik L_k in U_k . V levo: Indukcija na n. Za matrike velikosti 1 ni nič za dokazati. Naj sedaj velja za n, dokažimo da velja tudi za n+1. Definiramo

$$\tilde{A} = \begin{bmatrix} A & b \\ c^T & \delta \end{bmatrix}.$$

Po indukcijski predpostavki lahko matriko A razcepimo v A=LU. Določimo lahko torej $u=L^{-1}b,\,l=U^{-T}c$ in $\xi=\delta-l^Tu$, da dobimo

$$\tilde{A} = \begin{bmatrix} L & 0 \\ l^T & 1 \end{bmatrix} \cdot \begin{bmatrix} U & u \\ 0^T & \xi \end{bmatrix}.$$

Po predpostavki sta ξ in det U različni od 0, torej je det $\tilde{U} = \xi \det U \neq 0$.

Vprašanje 30. Kdaj je LU razcep enoličen? Dokaži.

Ničle in majhni elementi na diagonali so problem za LU razcep. Rešimo ga tako, da uvedemo delno oz. kompletno pivotiranje. Pri delnem pivotiranju na vsakem koraku namesto elementa v diagonali vzamemo element pod diagonalo, ki je največji po absolutni vrednosti, ter ga z menjavo vrstic postavimo na pivotno mesto. Rezultat tega je razcep PA = LU, kjer je P permutacijska matrika, ki ustreza menjavi vrstic.

Lema. Če je A nesingularna, obstaja taka permutacijska matrika P, da za PA obstaja LU razcep brez pivotiranja.

Dokaz. Vmesne matrike so oblike $L_{j-1}P_{j-1}\dots L_2P_2L_1P_1A$. Ker so vse naštete matrike nesingularne, mora biti tudi produkt nesingularen, torej obstaja neničelni element v ostanku stolpca.

Vprašanje 31. Kako deluje LU razcep z delnim pivotiranjem? Pod katerim pogojem ga lahko naredimo?

Pri kompletnem pivotiranju poiščemo največji element v neobdelani podmatriki, in ga postavimo na pivotno mesto z zamenjavo stolpcev in vrstic. Dobimo razcep PAQ = LU, kjer P permutira vrstice in Q stolpce. V algoritmu dobimo $O(n^3)$ dodatnih primerjanj.

Vprašanje 32. Opiši LU razcep s kompletnim pivotiranjem.

Sistem Ax = b rešimo numerično z eno izmed variant LU razcepa, in dobimo rešitev \hat{x} . Zanima nas ocena obratne stabilnosti $\|\Delta A\|$, kjer je $(A + \Delta A)\hat{x} = b$. Za analizo si mislimo, da smo pivotiranje že naredili, tako da lahko analiziramo le osnovni LU razcep.

Lema. Naj bo $L \in \mathbb{R}^{n \times n}$ nesingularna spodnje trikotna matrika. Če sistem Ly = b numerično rešimo s premo substitucijo, potem za izračunani \hat{y} velja $(L + \Delta L)\hat{y} = b$, kjer $|\Delta L| \leq nu |L|$ po elementih.

Dokaz. V i-tem koraku nastavimo

$$\hat{y}_i = \frac{1}{l_{ii}(1+\alpha_i)(1+\beta_i)} \left(b_i - \sum_{k=1}^{i-1} l_{ik} \hat{y}_k (1+\gamma_{ik}) \right),$$

kjer so $\alpha_i, \beta_i, \gamma_{ik}$ manjše od osnovne računske napake u. Za $\gamma_{ii} = (1 + \alpha_i)(1 + \beta_i)$ velja $|\gamma_{ii}| \leq 2u$, in $|\gamma_{ik}| \leq (i-1)u$, torej za poljubna j, l velja $|\gamma_{jl}| \leq nu$.

Lema. Če je U nesingularna zgornje trikotna matrika, in če sistem Ux = y numerično rešimo z obratno substitucijo, izračunani \hat{x} zadošča enačbi $(U + \Delta U)\hat{x} = y$, kjer je $|\Delta U| \leq nu |U|$.

Lema. Naj bo A taka matrika, da se izvede LU razcep brez pivotiranja. Za izračunani matriki \hat{L} in \hat{U} tedaj velja $\hat{L}\hat{U} = A + E$, kjer je $|E| \leq nu \left| \hat{L} \right| \left| \hat{U} \right|$.

Izrek. Če sistem Ax = b rešimo z LU razcepom, potem za izračunani \hat{x} velja $(A+\Delta A)\hat{x} = b$, kjer je $|\Delta A| \leq 3nu$ |L| $|U| + O(u^2)$.

Posledica tega je, da velja $\|\Delta A\|_{\infty} \leq 3nu \|L\|_{\infty} \|U\|_{\infty}$, to pa nam ne pomaga zares, ker je lahko produkt norm L in U poljubno velik v primerjavi z normo A.

Če ne pivotiramo, postopek ni obratno stabilen, če pa pivotiramo, pa je $|l_{ij}| \leq 1$, torej je $||L||_{\infty} \leq n$. Če vpeljemo pivotno rast

$$g = \frac{\max_{ij} |u|_{ij}}{\max_{ij} |a_{ij}|},$$

velja $\|U\|_{\infty} \leq ng \|A\|_{\infty}$, in $\|\Delta A\|_{\infty} \leq 3n^3gu \|A\|_{\infty}$. Pri delnem pivotiranju velja $g \leq 2^{n-1}$, kar se v splošnem tudi lahko kdaj zgodi, recimo za matriko

torej LU razcep z delnim pivotiranjem tudi ni obratno stabilen, v praksi pa se to redko zgodi.

Točne ocene za LU razcep s kompletnim pivotiranjem ne poznamo, smatramo pa, da je obratno stabilno.

Vprašanje 33. Analiziraj obratno stabilnost LU razcepa. Kaj je pivotna rast?

3.3.4 Razcep Choleskega

Izrek. Veljajo naslednje točke:

- Če je A simetrična pozitivno definitna matrika, je vsaka vodilna podmatrika simetrično pozitivno definitna.
- Če je A simetrična pozitivno definitna, obstaja enoličen razcep A = LU, kjer je L spodnje trikotna matrika z enicami na diagonali in U zgornje trikotna matrika s pozitivnimi diagonalnimi elementi.
- A je simetrična pozitivno definitna natanko tedaj, ko je $A = VV^T$ za neko spodnje trikotno matriko V, ki ima pozitivne diagonalne elemente.

Dokaz. Prva točka: Velja $x^T A_k x = \tilde{x}^T A \tilde{x}$, kjer je \tilde{x} vektor x, dopolnjen z ničlami.

Druga točka: Vse vodilne podmatrike so simetrične pozitivno definitne, torej nesingularne in obstaja enoličen LU razcep. Če je A = LU, je det $A_k = u_{11}u_{22}...u_{kk}$, torej so $u_{ii} > 0$.

Tretja točka: Razcepimo A = LU in to dodatno razcepimo v A = LDW, kjer je D diagonalna matrika z elementi u_{11}, \ldots, u_{nn} , in $W = D^{-1}U$ zgornje trikotna matrika z enicami na diagonali.

Ker je $A=A^T$, je W^TDL^T LU razcep matrike A (če združimo desni dve matriki) in velja $W^T=L$ ter $DL^T=U$. Torej je $A=LDL^T$, in lahko definiramo $V=L\sqrt{D}$.

Vprašanje 34. Karakteriziraj pozitivno definitnost matrike z razcepom Choleskega in dokaži karakterizacijo.

Če imamo izračunan razcep Choleskega, za j < k velja

$$a_{jk} = \sum_{i=1}^{k-1} v_{ji} v_{ki} + v_{jk} v_{kk},$$

pri j = k pa dobimo

$$a_{kk} = \sum_{i=1}^{k-1} v_{ki}^2 + v_{kk}^2.$$

Vidimo, da če poznamo vse elemente V pred v_{jk} , ga lahko direktno izračunamo. Iz tega dobimo algoritem 2. Ta porabi $\frac{1}{3}n^3$ operacij za račun razcepa, pri čemer pa računamo n korenov.

Algorithm 2 Razcep Choleskega

 $\overline{\mathbf{for}\ k} = 1, \dots, n\ \mathbf{do}$

Nastavi

$$v_{kk} = \sqrt{a_{kk} - \sum_{i=1}^{k-1} v_{ki}^2}$$

for $j = k + 1, \dots, n$ do Nastavi

$$v_{jk} = \frac{1}{v_{kk}} \left(a_{jk} - \sum_{i=1}^{k-1} v_{ji} v_{ki} \right)$$

end for end for

Vprašanje 35. Zapiši algoritem za izračun razcepa Choleskega.

Če rešujemo sistem z razcepom Choleskega, izračunamo rešitev \hat{x} . Tedaj vemo $(A + \Delta A)\hat{x} = b$, kjer velja $|\Delta A| \leq 3nu |V| |V^T|$. Ocenimo lahko

$$[|V||V^T|]_{jk} = \sum_{i=1}^{\min(j,k)} |v_{ji}||v_{ki}| \le \sqrt{\sum_{i=1}^{j} |v_{ji}|^2} \sqrt{\sum_{i=1}^{k} |v_{ki}|^2}$$

po Cauchy-Schwarzu. To je nadalje enako

$$\leq \sqrt{a_{jj}}\sqrt{a_{kk}} \leq ||A||_{\infty}$$
.

Reševanje sistema z razcepom Choleskega je torej obratno stabilno, in velja

$$\|\Delta A\|_{\infty} \le 3n^2 u \|A\|_{\infty},$$

kjer dodaten n na desni pride od tega, da smo na levi vzeli normo namesto absolutne vrednosti.

Vprašanje 36. Analiziraj stabilnost razcepa Choleskega.

3.4 Sistemi nelineranih enačb

Rešujemo sistem

$$f_1(x_1, \dots, x_n) = 0$$

$$\vdots$$

$$f_n(x_1, \dots, x_n) = 0$$

za $f_i: \mathbb{R} \to \mathbb{R}$ ali $\mathbb{C} \to \mathbb{C}$. Ekvivalentno F(x) = 0 za $F: \mathbb{R}^n \to \mathbb{R}^n$ (ali $\mathbb{C}^n \to \mathbb{C}^n$).

Prvi možni pristop reševanja je navadna iteracija. Sistem F(x) = 0 zapišemo v ekvivalenti obliki x = G(x), izberemo $x^{(0)}$ ter iteriramo.

Izrek. Naj bo $G: \mathbb{R}^n \to \mathbb{R}^n$ zvezno odvedljiva na zaprti množici $\Omega \subseteq \mathbb{R}^n$. Če za $x \in \Omega$ velja

- $G(x) \in \Omega$,
- $\rho(JG(x)) \le m < 1$,

kjer je JG Jacobijeva matrika, ρ pa spektralni radij (po absolutni vrednosti največja lastna vrednost), potem ima G na Ω natanko eno negibno točko α , in za vsak $x^{(0)} \in \Omega$ zaporedje $x^{(r+1)} = g(x^{(r)})$ konvergira k α .

Zadosten pogoj za konvergenco je že, da je $||JG(\alpha)|| < 1$ v neki matrični normi. Za kvadratično konvergenco mora biti $JG(\alpha) = 0$ po komponentah.

Vprašanje 37. Kako poiščeš rešitev sistema nelinearnih enačb z navadno iteracijo? Povej izrek.

Podobno kot v enodimenzionalnem primeru lahko uporabimo razvoj v Taylorjevo vrsto in zanemarimo višje člene. Dobimo izraz za popravek

$$x^{(r+1)} = x^{(r)} - (JF(x^{(r)}))^{-1}F(x^{(r)}).$$

V praksi raje uporabimo algoritem 3.

Algorithm 3 Newtonova metoda

```
Izberi x^{(0)}.

for r=0,1,2,\ldots do

Reši sistem JF(x^{(r)})\Delta x^{(r)}=-F(x^{(r)}).

x^{(r+1)}=x^{(r)}+\Delta x^{(r)}.

end for
```

Vprašanje 38. Razloži Newtonovo metodo za rešitev sistema nelinearnih enačb.

Ker je računanje Jacobijeve matrike zahtevno, se lahko poslužimo kakšne kvazi-Newtonove metode. Pri taki metodi na različne načine aproksimiramo Jacobijevo matriko in zmanjšamo zahtevnost enega koraka. S tem običajno pade red konvergence na superlinearno. Najbolj znana kvazi-Newtonova metoda je Broydnova metoda, kjer približek Jacobijeve matrike B_{r+1} določimo kot najbližjo matriko, ki zadošča t.i. sekantnemu pogoju

$$B_{r+1}(x^{(r+1)} - x^{(r)}) = F(x^{(r+1)}) - F(x^{(r)}).$$

Ker je $B_r \Delta x^{(r)} = -F(x^{(r)})$, mora torej veljati

$$\Delta B_r \Delta x^{(r)} = F(x^{(r+1)}),$$

matrika ΔB_r pa je taka, da je $\|\Delta B_r\|_2$ minimalna.

Lema. Dana sta neničelna vektorja x, y. Matrika A z minimalno normo, ki preslika x v y, je

$$A = \frac{y^T x}{\|x\|_2^2}.$$

Dokaz. Očitno je Ax=y. Če za matriko B velja Bx=y, je $\|y\|_2=\|Bx\|_2\leq \|B\|_2\,\|x\|_2,$ torej

$$\|B\|_2 \ge \frac{\|y\|_2}{\|x\|_2}.$$

Po drugi strani se da preveriti, da za matrike ranga 1 velja $||yx^T||_2 = ||y||_2 ||x||_2$.

Algorithm 4 Broydnova metoda

Določi $x^{(0)}$ in B_0 . **for** r = 0, 1, ... **do** Reši $B_r \Delta x^{(r)} = -F(x^{(r)})$. Izračunaj

$$B_{r+1} = B_r + \frac{F(x^{(r+1)})(\Delta x^{(r)})^T}{\|\Delta x^{(r)}\|_2^2}.$$

end for

Vprašanje 39. Izpelji Broydnovo metodo.

3.5 Linearni problemi najmanjših kvadratov

3.5.1 Normalni sistem

Dana je matrika $A \in \mathbb{R}^{m \times n}$ za m > n in vektor $b \in \mathbb{R}^m$. Iščemo $x \in \mathbb{R}^n$, ki minimizira napako $||Ax - b||_2$. Ta napaka bo minimalna, ko bo Ax pravokotna projekcija b na sliko im A. Velja $Ax - b \perp Az$ za vse $z \in \mathbb{R}^n$ natanko tedaj, ko je za vsak z

$$z^T A^T (Ax - b) = 0.$$

Sledi $A^T(Ax - b) = 0$ oziroma $A^TAx = A^Tb$, čemur pravimo NORMALNI SISTEM. Pri tem smo tiho predpostavili, da je rang A = n, sicer sistem nebi bil enolično rešljiv.

Velja $w^T A^T A w = \|Aw\|_2^2 > 0$ za $w \neq 0$, torej je Gramova matrika $A^T A$ simetrična pozitivno definitna, in zanjo obstaja razcep Choleskega. Pri reševanju sistema seveda uporabimo ta razcep.

Vprašanje 40. Izpelji normalni sistem. Kaj je Gramova matrika?

3.5.2 QR razcep

Izrek. Naj bo $A \in \mathbb{R}^{m \times n}$ za $m \geq n$ polnega ranga. Potem obstaja enoličen razcep A = QR, kjer je $Q \in \mathbb{R}^{m \times n}$ z ortonormiranimi stolpci ($Q^TQ = I_n$) in $R \in \mathbb{R}^{n \times n}$ zgornje trikotna s pozitivnimi diagonalnimi elementi.

Dokaz. Če bi veljalo A=QR, je $A^TA=R^TQ^TQR=R^TR$. Matrika A^TA je simetrična pozitivno definitna, torej je R^TR njen razcep Choleskega, in velja $R=V^T$. Iz A=QR sledi $Q=AR^{-1}$.

Vprašanje 41. Povej in dokaži izrek o obstoju in enoličnosti QR razcepa.

Če poznamo A = QR, je im A = im Q. V drugem primeru bo vsakršno delo stabilnejše, ker so stolpci ortonormirani. Normalni sistem se tedaj prevede na $Rx = Q^T b$, ki ga lahko rešimo s premo substitucijo.

3.5.3 Gram-Schmittova ortogonalizacija

Poznamo tri načine za izračun QR razcepa. Najenostavnejši pristop je Gram-Schmittova ortogonalizacija. Velja

$$a_k = \sum_{i=1}^{k-1} r_{ik} q_i + r_{kk} q_k.$$

Če to enačbo množimo z leve s q_i^T , nam ostane

$$r_{jk} = q_j^T a_k.$$

Celoten postopek je prikazan v algoritmu 5, ki ima računsko zahtevnost $2mn^2$.

Algorithm 5 QR razcep s klasičnim Gram-Schmittovim postopkom

```
\begin{aligned} & \textbf{for } k = 1, \dots, n \textbf{ do} \\ & q_k = a_k \\ & \textbf{for } i = 1, \dots, k-1 \textbf{ do} \\ & r_{ik} = q_i^T a_k \\ & q_k = q_k - r_{ik} q_i \\ & \textbf{end for} \\ & r_{kk} = \|q_k\|_2 \\ & q_k = \frac{1}{r_{kk}} q_k \\ & \textbf{end for} \end{aligned}
```

Vprašanje 42. Izpelji in zapiši klasični Gram-Schmittov postopek za izračun QR razcepa.

V algoritmu naredimo še popravek, ki bo povečal stabilnost; pri računanju r_{ik} namesto formule $r_{ik} = q_i^T a_k$ uporabimo $r_{ik} = q_i^T q_k$. Novemu postopku pravimo MODIFICIRAN

GRAM-SCHMITT, in je v teoriji ekvivalenten klasičnemu. Modificiran postopek moramo tudi bolj pametno uporabiti; izračunamo QR razcep razširjene matrike

$$\begin{bmatrix} Q & q_{n+1} \end{bmatrix} \cdot \begin{bmatrix} R & z \\ 0 & \rho \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix},$$

in dobimo

$$Ax - b = \begin{bmatrix} Q & q_{n+1} \end{bmatrix} \cdot \begin{bmatrix} R & z \\ 0 & \rho \end{bmatrix} \cdot \begin{bmatrix} x \\ -1 \end{bmatrix} = \begin{bmatrix} Q & q_{n+1} \end{bmatrix} \cdot \begin{bmatrix} Rx - z \\ -\rho \end{bmatrix}.$$

Najboljšo rešitev dobimo, ko je Rx = z. Dejansko je $z = Q^T b$, le da smo ga v tem postopku izračunali z modificiranem Gram-Schmittovem postopkom, kar je numerično bolje.

Vprašanje 43. Kaj je modificiran Gram-Schmittov postopek? Kako ga pravilno uporabiš za reševanje sistema najmanjših kvadratov?

3.5.4 Givensove rotacije

Če je $c = \cos \varphi$ in $s = \sin \varphi$, matrika

ki ima elemente na diagonali in v stolpcih in vrsticah i, k, predstavlja rotacijo za φ v ravnini, ki jo razpenjata e_i in e_k v \mathbb{R}^m . Z ustrezno izbiro c in s lahko slikamo (x_i, x_k) v $(y_i, 0)$. Če je $r = \sqrt{x_i^2 + x_k^2}$, je taka izbira $c = x_i/r$ in $s = x_k/r$. Če te rotacije ustrezno kombiniramo, dobimo QR razcep, kakor je prikazano v algoritmu 6, ki ima zahtevnost $3mn^2 - n^3$ če ne računamo Q, za računanje Q pa porabimo še $6m^2n - 3mn^2$ operacij.

Vprašanje 44. Izpelji QR razcep z Givensonovimi rotacijami. Kakšna je njegova časovna zahtevnost?

Algorithm 6 QR razcep z Givensonovimi rotacijami

$$Q=I_m$$
 for $i=1,\ldots,n$ do for $k=i+1,\ldots,m$ do $r=\sqrt{a_{ii}^2+a_{ki}^2}$ $c=a_{ii}/r$ $s=a_{ik}/r$ Izračunaj

$$A([i,k],i:n) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \cdot A([i,k],i:n)$$
$$b([i,k]) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \cdot b([i,k])$$
$$Q([i,k],:) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \cdot Q([i,k],:)$$

end for $Q = Q^T$

3.6 Hausholderjeva zrcaljenja

Vzemimo $w \in \mathbb{R}^m$, ki je različen od 0, in definirajmo

$$P = I - \frac{2}{w^T w} w w^T.$$

Velja $P=P^T$ in $P^2=I$, poleg tega pa je w lastni vektor za P z lastno vrednostjo -1. Če je $u \perp w$, je Pu=u. Preslikavo lahko torej obravnavamo kot zrcaljenje čez ravnino, katere normala je w.

Če imamo dana dva enako dolga vektorja x, y, lahko z izbiro w = x - y dobimo y = Px. Z izbiro $w = x \mp ||x||_2 e_1$ se x preslika v

$$P \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \pm \|x\|_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Za numerično stabilnost si izberemo, da prištevamo, če je x_1 pozitiven, sicer odštevamo; $w = x + \operatorname{sgn} x_1 \|x\|_2 e_1$, kjer je $\operatorname{sgn} 0 \neq 0$. Z zrcaljenjem na enem koraku uničimo celoten stolpec matrike. Postopek izračuna QR razcepa je prikazan v algoritmu 7. Algoritem ima časovno zahtevnost $2mn^2 - \frac{2}{3}n^3$, če nas ne zanima Q.

Vprašanje 45. Izpelji QR razcep s Householderjevimi zrcaljenji.

Algorithm 7 QR razcep s Householderjevimi zrcaljenji

```
Q = I_m

for i = 1, \dots, n do

Določi w_i \in \mathbb{R}^{m-i+1} iz A(i:m,i)

A(i:m,i:n) = P_i A(i:m,i:n)

b(i:m) = P_i b(i:m)

Q(i:m,:) = P_i Q(i:m,i)

end for

Q = Q^T
```

4 Verjetnost

Komentar za učenje: poglej si tudi vserazne primere v zvezku, in jih poračunaj za vajo.

4.1 Izidi, dogodki, verjetnosti

Vprašanje 1. Kaj je množica Ω vseh možnih izidov? Povej nekaj primerov.

Odgovor: To je množica, ki hrani vse možne rezultate nekega poskusa. Pri mešanju kupa n kart velja $\Omega = S_n$, pri n-kratnem metu kovanca je to $\Omega = \{G, S\}^n$, itd. \boxtimes

Definicija. Družina \mathcal{F} podmnožic množice Ω je σ -ALGEBRA, če velja:

- $\Omega \in \mathcal{F}$,
- $A \in \mathcal{F} \implies A^{\mathsf{c}} \in \mathcal{F}$,
- $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_i A_i \in \mathcal{F}.$

Definicija. Naj bo Ω množica možnih izidov, in \mathcal{F} σ-algebra nad Ω . VERJETNOST je preslikava $P: \mathcal{F} \to [0,1]$, za katero velja $P(\Omega) = 1$, in kjer za disjunktne dogodke $A_1, A_2, \ldots \in \mathcal{F}$ velja $P(\bigcup_i A_i) = \sum_i P(A_i)$.

Opomba. To sta aksioma Kolmogorova.

Vprašanje 2. Kaj je verjetnost?

Izrek (Formula za vključitve in izključitve). Naj bodo A_1, \ldots, A_n dogodki. Potem velja

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_i).$$

Dokaz. Definirajmo dogodke

 $B_r = \{ \omega \in \Omega \, | \, \omega \text{ je vsebovan v natanko } r \text{ množicah } A_i \}.$

To so disjunktni dogodki, za katere velja $\bigcup_i A_i = \bigcup_r B_r$. Sledi

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{r=1}^{n} P(B_r).$$

Poglejmo si, kolikokrat smo v formuli v izreku šteli vsako izmed množic B_r . Ta množica je vsebovana v preseku do r dogodkov, torej se v prvem členu pojavi r-krat, v drugem $\binom{r}{2}$, v tretjem $\binom{r}{3}$, itd. Vsota je tedaj

$$\binom{r}{1} - \binom{r}{2} + \binom{r}{3} - \ldots + (-1)^r \binom{r}{r} = 1,$$

kar lahko izpeljemo iz razvoja izraza $0 = (1-1)^r$.

Vprašanje 3. Povej formulo za izključitve in izključitve. Kaj je ideja dokaza?

Lema. Naj bodo A_1, A_2, \ldots dogodki. Če je $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$, je verjetnost unije

$$P(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} P(A_n).$$

 $\check{C}e \ namesto \ tega \ velja \ A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots, \ je$

$$P(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} P(A_n).$$

Dokaz. Druga formula sledi iz De Morganovih pravil, dokažemo samo prvo. Zapišemo

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \backslash A_1) \cup (A_3 \backslash (A_1 \cup A_2)) \cup \dots$$

To so disjunktni dogodki, torej zanje velja

$$P(\bigcup_{i=1}^{\infty} A_i) = P(A_1) + \sum_{k=2}^{\infty} P(A_k \setminus (A_1 \cup \ldots \cup A_{k-1}))$$

$$= \lim_{n \to \infty} (P(A_1) + \sum_{k=2}^{n} P(A_k \setminus (A_1 \cup \ldots \cup A_{k-1})))$$

$$= \lim_{n \to \infty} P(\bigcup_{k=1}^{n} A_k \setminus (A_1 \cup \ldots \cup A_{k-1}))$$

$$= \lim_{n \to \infty} P(A_n).$$

Lema (Prva Borel-Cantorjeva lema). Naj bodo A_1, A_2, \ldots dogodki, za katere velja $\sum_i P(A_i) < \infty$. Definiramo $\overline{A} = \{ \omega \in \Omega \mid \omega \text{ je vsebovan v neskončno mnogo } A_k \}$. Tedaj velja $P(\overline{A}) = 0$.

Dokaz. Prepričamo se lahko, da velja $\overline{A} = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$. Te unije so padajoče za $n \to \infty$, zatorej po prejšnji lemi velja

$$P(\overline{A}) = \lim_{n \to \infty} P(\bigcup_{m=n}^{\infty} A_m).$$

Iz dokaza prešnje leme vidimo, da velja sklep

$$P(\bigcup_{k=1}^{n} A_k) \le \sum_{k=1}^{n} P(A_k) \implies P(\bigcup_{k=1}^{\infty}) \le \sum_{k=1}^{\infty} P(A_k).$$

Torej velja

$$P(\overline{A}) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k).$$

Izraz na desni pa je rep konvergenčne vrste, torej je limita enaka 0.

Vprašanje 4. Povej in dokaži prvo Borel-Cantorjevo lemo.

4.1.1 Pogojna verjetnost in neodvisnost

Definicija. Naj boBdogodek sP(B)>0. POGOJNA VERJETNOST dogodka A glede na B je

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$

Vprašanje 5. Kaj je pogojna verjetnost?

Primer (Bertrandov paradoks). Imamo tri škatle. V prvi sta dva zlatnika, v drugi zlatnik in srebrnik, in v zadnji dva srebrnika. Izberemo eno škatlo tako, da ima vsaka verjetnost 1/3. Iz izbrane škatle tedaj naključno izberemo kovanec. Definiramo dogodka A, drugi kovanec v škatli je zlatnik, in B, izbrani kovanec je zlatnik. Z izpisom izidov izračunamo $P(A \mid B) = 2/3$.

Definicija. Družina dogodkov $\{H_1, \ldots, H_n, \ldots\}$ je PARTICIJA Ω , če je njihova unija enaka Ω in če so paroma disjunktni.

Vprašanje 6. Kaj je družina dogodkov? Izpelji formulo za popolno verjetnost.

Odgovor: Za definicijo glej zgoraj. Naj bo A dogodek. Računamo

$$P(A) = P(A \cap \Omega)$$

$$= P(A \cap \bigcup_{i} H_{i})$$

$$= P(\bigcup_{i} A \cap H_{i})$$

$$= \sum_{i} P(A \cap H_{i})$$

$$= \sum_{i} \frac{P(A \cap H_{i})}{P(H_{i})} P(H_{i})$$

$$= \sum_{i} P(A \mid H_{i}) P(H_{i}).$$

Če je $P(H_i) = 0$, lahko člen izpustimo.

4.1.2 Neodvisnost dogodkov

Definicija. Dogodki $\{A_i\}_{i\in I}$ so NEODVISNI, če za vsako končno poddružino A_1,A_2,\ldots,A_n velja

$$P(A_1 \cap \ldots \cap A_n) = P(A_1) \ldots P(A_n).$$

Vprašanje 7. Kdaj so dogodki neodvisni?

Definicija. Družina dogodkov $\mathcal{P} = \{A_1, \dots, A_n\}$ je π -SISTEM, če za vsaka $A_i, A_j \in \mathcal{P}$ velja $A_i \cap A_j \in \mathcal{P}$.

Opomba. Če π -sistemu dodamo \varnothing in Ω , spet dobimo π -sistem.

Izrek. Če je $\mathcal{P} = \{B_1, \dots, B_n\}$ π -sistem in je A neodvisen od vseh B_k , je A neodvisen od vseh dogodkov, ki jih lahko sestavimo iz dogodkov v \mathcal{P} s komplementiranjem, preseki in unijami.

Dokaz. S preprostim izračunom lahko pokažemo, da če je A neodvisen od dogodkov C_1, \ldots, C_m , ki so vsi disjunktni od A, je A neodvisen tudi od njihove unije. Poleg tega opazimo, da so vsi dogodki, ki jih sestavimo v izreku, končne unije dogodkov $B_1^* \cap \ldots \cap B_m^*$, kjer je B_i^* bodisi enak B_i bodisi B_i^c .

V luči teh ugotovitev je dovolj dokazati, da je A neodvisen od vsakega dogodka $B_1^* \cap \ldots \cap B_m^*$. Če izberemo vse dogodke, kjer ni komplementa, je presek v \mathcal{P} , zato jih lahko nadomestimo z enim samim. Brez škode za splošnost se torej omejimo na dogodke oblike $B_1^c \cap \ldots \cap B_m^c \cap B_{m+1}$. Velja

$$P\bigg(A\cap \left(\bigcup_i B_i\right)^{\mathsf{c}}\cap B_{m+1}\bigg) = P(A\cap B_{m+1}) - P\bigg(\left(\bigcup_i B_i\right)\cap A\cap B_{m+1}\bigg)\,,$$

kjer smo uporabili pomožni sklep $P(A \cap B^c) = P(A) - P(A \cap B)$, ki ga izpeljemo iz dejstva $P(A) = P(A \cap B) + P(A \cap B^c)$. Zgornji izraz je nadalje enak

$$P(A)P(B_{m+1}) - P\left(\bigcup_{i} A \cap B_i \cap B_{m+1}\right),$$

ker sta A in B_{m+1} neodvisna. Drugi člen razvijemo po formuli za vključitve in izključitve in dobimo

$$P(A)P(B_{m+1}) - \sum_{i} P(A \cap B_i \cap B_{m+1}) + \sum_{i,j} P(A \cap B_i \cap B_j \cap B_{m+1}) - \ldots + (-1)^m P(A \cap B_1 \cap \ldots \cap B_{m+1}).$$

V vseh členih dobimo presek A z dogodkom v \mathcal{P} , torej lahko izpostavimo P(A);

$$P(A)\left(P(B_{m+1})-\sum_{i}P(B_{i}\cap B_{m+1})+\ldots\right).$$

V drugem členu produkta smo dobili razvoj dogodka po formuli za vključitve in izključitve, ki ga lahko skrčimo v

$$P(A)\left(P(B_{m+1})-P\left(\bigcup_{i}B_{i}\cap B_{m+1}\right)\right).$$

Nazadnje še uporabimo zgornji sklep v drugo smer in dobimo

$$P(A)P\left(B_{m+1}\left(\bigcup_{i}B_{i}\right)^{c}\right),$$

kar zaključi dokaz.

4.2 Slučajne spremenljivke in porazdelitve

Definicija. Slučajna spremenljivka X je funkcija $\Omega \to \mathbb{R}$, da je za a < b množica $X^{-1}((a,b])$ dogodek v σ -algebri dogodkov \mathcal{F} .

Opomba. Ekvivalentno definicijo dobimo, če namesto polodprtih intervalov vzamemo odprte ali zaprte. Izbiro je predpisal ISO standard.

Opomba. Funkcija sama po sebi je popolnoma deterministična, naključna je izbira argumenta.

Definicija. Slučajna spremenljivka je DISKRETNA, če je njena zaloga vrednosti števna ali končna množica.

Definicija. Porazdelitev diskretne slučajne spremenljivke X z vrednostmi $(x_i)_i$ je dana z verjetnostmi $P(X^{-1}(x_i))$.

Vprašanje 8. Definiraj slučajne spremenljivke. Kdaj je slučajna spremenljivka diskretna? Kaj je porazdelitev?

Obstaja nekaj standardnih diskretnih porazdelitev.

Primer (Hipergeometrijska porazdelitev). Imamo posodo z B belimi in R rdečimi kroglicami. Označimo N=B+R in naključno izberemo $n\leq N$ kroglic tako, da so vse podmnožice enako verjetne. Če z X označimo število izbranih belih kroglic, dobimo slučajno spremenljivko. Za $\max\{0,n-R\}\leq k\leq \min\{n,B\}$ je

$$P(X = k) = \frac{\binom{B}{k} \binom{R}{n-k}}{\binom{N}{k}}.$$

Na kratko označimo $X \sim \text{HiperGeom}(n, B, N)$.

Vprašanje 9. Opiši hipergeometrijsko porazdelitev.

Primer (Binomska porazdelitev). Kovanec z maso m vržemo n-krat zaporedoma, pri čemer so vsi meti medsebojno neodvisni, verjetnost grba pa je $p \in (0,1)$. Naj bo X število grbov v teh n metih. Tedaj za $k=0,\ldots,n$ velja

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Označimo $X \sim \text{Bin}(n, p)$.

Vprašanje 10. Opiši binomsko porazdelitev.

Primer (Geometrijska porazdelitev). Naj bo X število metov kovanca, potrebnih, da pade prvi grb. Pri tem so meti neodvisni, kovanec pade na grb z verjetnostjo p. Možne vrednosti za X so vsi $k \in \mathbb{N}$, velja

$$P(X = k) = (1 - p)^{k-1}p.$$

Na kratko označimo $X \sim \text{Geom}(p)$.

Vprašanje 11. Opiši geometrijsko porazdelitev.

Primer (Negativna binomska porazdelitev). Mečemo kovanec in čakamo na m grbov; naj bo X število potrebnih metov. Možne vrednosti X so tedaj $k=m,m+1,\ldots$, pri čemer velja

$$P(X = k) = {\binom{k-1}{m-1}} p^m (1-p)^{k-m}.$$

Oznaka je $X \sim \text{NegBin}(m, p)$.

Vprašanje 12. Opiši negativno binomsko porazdelitev.

Definicija. Pochhammerjev simbol $(a)_n$ je definiran kot

$$(a)_n = a(a+1)\dots(a+n-1).$$

Opomba. Izračunamo ga lahko tudi kot

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}.$$

Primer (Poissonova porazdelitev). Oglejmo si dogajanje binomske porazdelitve, ko velja $np = \lambda$ konstanta, in ko $n \to \infty$. Tedaj

$$\lim_{n\to\infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k} = \lim_{n\to\infty} \frac{\lambda^k}{k!} \frac{n(n-1)\dots(n-k+1)}{n^k} \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-k} = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Če je za $k = 0, 1, \dots$ verjetnost

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!},$$

pravimo, da ima X Poissonovo porazdelitev, in označimo $X \sim Po(\lambda)$.

Vprašanje 13. Opiši Poissonovo porazdelitev.

Definicija. Porazdelitev zvezne slučajne spremenljivke je podana z verjetnostmi $P(X \in (a, b])$ za a < b.

Opomba. Pogosto želimo izračunati $P(X \in A)$, kjer $A \subseteq \mathbb{R}$ ni interval. V tem primeru lahko verjetnost izračunamo, če je A sestavljena iz števnih unij, števnih presekov in komplementov polodprtih intervalov. Taki družini pravimo BORELOVE MNOŽICE, in jo označimo z $B(\mathbb{R})$. Tehnično so to najmanjša σ-algebra na \mathbb{R} , ki vsebuje vse polodprte intervale.

Definicija. Slučajna spremenljivka X ima ZVEZNO PORAZDELITEV, če obstaja nenegativna funkcija $f_X : \mathbb{R} \to [0, \infty)$, da je

$$P(X \in (a,b]) = \int_a^b f_X(x)dx.$$

Funkciji f_X pravimo GOSTOTA PORAZDELITVE.

Vprašanje 14. Definiraj zvezno porazdelitev in gostoto porazdelitve.

Primer (Normalna porazdelitev). Pravimo, da ima X normalno porazdelitev s parametroma μ in σ^2 , če je gostota enaka

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Pri tem je σ razdalja od μ do prevoja, μ pa središče porazdelitve.

Vprašanje 15. Opiši normalno porazdelitev.

Primer (Eksponentna porazdelitev). Pravimo, da ima X eksponentno porazdelitev s parametrom λ , če velja

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$

Označimo z $X \sim \exp(\lambda)$.

Primer (Gama porazdelitev). Slučajna spremenljivka X ima gama porazdelitev s parametroma $a, \lambda > 0$, če je gostota enaka

$$f_X(x) = \begin{cases} \frac{\lambda^a}{\gamma(a)} x^{a-1} e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Oznaka: $X \sim \Gamma(a, \lambda)$.

Primer (Enakomerna porazdelitev). Predvidljivo je

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b, \\ 0 & \text{sicer.} \end{cases}$$

Oznaka: $X \sim U(a, b)$.

Primer (Beta porazdelitev). Spremenljivka X ima beta porazdelitev, če je

$$f_X(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & 0 < x < 1, \\ 0 & \text{sicer.} \end{cases}$$

Oznaka: $X \sim \text{Beta}(a, b)$.

Vprašanje 16. Opiši eksponentno, gama, enakomerno in beta porazdelitev.

Če je X slučajna spremenljivka, kakšna mora biti funkcija $f: \mathbb{R} \to \mathbb{R}$, da bo Y = f(X) tudi slučajna spremenljivka? Za poljubna a < b mora biti $X^{-1}(f^{-1}((a,b)))$ dogodek. Če je funkcija (odsekoma) zvezna, že zadošča; potreben in zadosten pogoj pa je, da je f merljiva, torej da je $f^{-1}(A)$ dogodek za vse $A \in B(\mathbb{R})$.

Definicija. Porazdelitvena funkcija slučajne spremenljivke X je funkcija F_X : $\mathbb{R} \to \mathbb{R}$, podana z $F_X(x) = P(X \le x)$.

Če ima X gostoto f_X , je

$$F_X(x) = \int_{-\infty}^x f_X(u) du.$$

Izrek. Naj bo F_X porazdelitvena funkcija slučajne spremenljivke X. Tedaj velja

- F_X je nepadajoča,
- $\lim_{x\to\infty} F_X(x) = 1$ in $\lim_{x\to-\infty} F_X(x) = 0$,
- F_X je desno zvezna.

Dokaz. Prva točka: za x < y velja $F_X(y) - F_X(x) = P(X \in (x, y]) \ge 0$.

Druga točka: Definiramo $A_n = \{X \leq n\}$. Tedaj velja

$$\bigcup_{n=1}^{\infty} A_n = \Omega,$$

in ti dogodki so naraščajoči. Potem je

$$1 = P(\Omega) = P\left(\bigcup_{n} A_{n}\right) = \lim_{n \to \infty} P(A_{n}) = \lim_{n \to \infty} F_{x}(n).$$

Ker je F_X nepadajoča, velja tudi $\lim_{x\to\infty} F_X(x) = 1$ zvezno. Za drugo formulo podobno definiramo $B_n = \{X \le -n\}$, kar je padajoče zaporedje dogodkov s praznim presekom. Za limito velja podoben sklep kot prej.

Tretja točka: Naj bo $x_n \downarrow x$. Definiramo $C_n = \{X \leq x_n\}$, velja

$$\bigcap_{n=1}^{\infty} C_n = \{ X \le x \}.$$

Ker so C_n padajoči, je

$$F_X(x) = P\left(\bigcap_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} P(X \le x_n) = \lim_{n \to \infty} F_X(x_n),$$

torej je F_X res desno zvezna.

Vprašanje 17. Definiraj porazdelitveno funkcijo slučajne spremenljivke. Kakšne lastnosti ima?

Vprašanje 18. Naj velja $X \sim N(\mu, \sigma^2)$ in Y = aX + b. Kakšna je gostota Y?

Odgovor: Računamo

$$F_Y(y) = P(Y \le y) = P(X \le \frac{y-b}{a}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{(y-b)/a} \exp\left(-\frac{(u-\mu)^2}{2\sigma^2}\right) du.$$

Ker je F_X zvezno odvedljiva, je

$$f_Y(y) = F_Y'(y) = \frac{1}{\sqrt{2\pi\sigma a}} \exp\left(-\frac{(y-b-a\mu)^2}{2a^2\sigma^2}\right),$$

torej $Y \sim N(a\mu + b, a^2\sigma^2)$. \boxtimes

Definicija. Če je $Z \sim N(0,1)$, rečemo, da ima Z STANDARDIZIRANO NORMALNO PORAZDELITEV. Porazdelitveno funkcijo Z označimo s ϕ , torej

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left(-\frac{1}{2}u^{2}\right) du.$$

Če je $X \sim N(\mu, \sigma^2)$, je torej

$$F_X(x) = \phi(\frac{x-\mu}{\sigma}).$$

Vprašanje 19. Kaj je standardizirana normalna porazdelitev?

Vprašanje 20. Kaj je verjetnostna transformacija?

Odgovor: Naj bo X zvezno porazdeljena s porazdelitveno funkcijo F_X , za katero predpostavimo, da je zvezna. Definiramo $Y = F_X(X)$ in računamo za $y \in (0,1)$

$$P(Y \le y) = P(X \in F^{-1}((-\infty, y])) = F_X(\sup\{x \mid F_X(x) \le y\}) = y,$$

torej $Y \sim U(0,1)$.

Definicija. Naj bo $p \in (0,1)$. Vsakemu številu x_p , za katerega je $P(X \leq x_p) = p$, rečemo p-TI KVANTIL porazdelitve slučajne spremenljivke X.

Opomba. p-ti kvantil <u>ni</u> enolično določen.

Vprašanje 21. Kaj je *p*-ti kvantil porazdelitve slučajne spremenljivke?

4.2.1 Slučajni vektorji

Primer (Multinomska porazdelitev). Imamo r škatel, vanje mečemo n kroglic. Meti so neodvisni, škatlo k zadenemo z verjetnostjo p_k . Velja $\sum_k p_k = 1$. V vsaki škatli je pristalo slučajno število kroglic $X_k \sim \text{Bin}(n, p_k)$. Te spremenljivke zložimo v vektor $\underline{X} = (X_1, \dots, X_r)$, ki ima porazdelitev

$$P(X_1 = k_1, \dots, X_r = k_r) = p_1^{k_1} \dots p_r^{k_r} \binom{n}{k_1, \dots, k_r}.$$

Pravimo, da ima \underline{X} multinomsko porazdelitev s parametroma n in \underline{p} , ter označimo $\underline{X} \sim \text{Multinom}(n, p)$.

Vprašanje 22. Kaj je multinomska porazdelitev?

Definicija. Slučajni vektor \underline{X} s komponentami X_1, \ldots, X_r je funkcija $\underline{X} : \Omega \to \mathbb{R}^r$, da je

$$\underline{X}^{-1}\left(\prod_{k=1}^r (a_k, b_k]\right)$$

dogodek za vse $a_k < b_k$.

Definicija. Slučajni vektor je DISKRETEN, če ima vrednosti v končni ali števni množici.

Vprašanje 23. Definiraj slučajne vektorje.

Izrek. Naj bosta \underline{X} in \underline{Y} diskretna slučajna vektorja. Za vse možne vrednosti \underline{x} vektorja \underline{X} velja

$$P(\underline{X} = \underline{x}) = \sum_{y} P(\underline{X} = \underline{x}, \underline{Y} = \underline{y}).$$

Formuli pravimo formula za robno porazdelitev.

Vprašanje 24. Povej formulo za robno porazdelitev.

4.2.2 Neodvisnost slučajnih spremenljivk

Definicija. Slučajni spremenljivki X in Y sta NEODVISNI, če za vsaki Borelovi A in B velja $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$.

Definicija. Slučajne spremenljivke X_1, \ldots, X_n so NEODVISNE, če za vsak nabor Borelovih množic A_1, \ldots, A_n velja

$$P(\forall i \, X_i \in A_i) = \prod_j P(X_j \in A_j).$$

Definicija. Slučajne spremenljivke $\{X_i\}_{i\in I}$ so NEODVISNE, če so neodvisne vse končne poddružine.

Vprašanje 25. Definiraj neodvisnost slučajnih spremenljivk.

Izrek. Naj za diskretni slučajni spremenljivki X in Y velja P(X=x,Y=y)=f(x)g(y) za funkciji $f:R(X)\to\mathbb{R}$ in $g:R(Y)\to\mathbb{R}$ (R je zaloga vrednosti). Potem sta X in Y neodvisni.

Dokaz. Po formuli za robne porazdelitve je

$$P(X = x) = f(x) \sum_{y} g(y) = f(x)C_1.$$

Podobno $P(Y = y) = C_2 g(y)$. Predpišemo

$$P(X=x,Y=y) = P(X=x)P(Y=y)C_1^{-1}C_2^{-1}.$$

Dokazati moramo še, da velja $C_1C_2 = 1$. Seštejmo

$$\begin{split} 1 &= \sum_{x,y} P(X = x, Y = y) \\ &= \frac{1}{C_1 C_2} \sum_{x,y} P(X = x) P(Y = y) \\ &= \frac{1}{C_1 C_2} \left(\sum_x P(X = x) \right) \left(\sum_y P(Y = y) \right) \\ &= \frac{1}{C_1 C_2}. \end{split}$$

Vprašanje 26. Kako še lahko določiš, da sta slučajni spremenljivki neodvisni? Dokaži.

4.2.3 Pričakovana vrednost diskretnih spremenljivk

Definicija. Naj bo X diskretna slučajna spremenljivka z vrednostmi x_1, x_2, \ldots Pričakovana vrednost E(X) je število, dano z

$$E(X) = \sum_{i} x_i P(X = x_i).$$

Če slučajno spremenljivko X vstavimo v funkcijo, spet dobimo slučajno spremenljivko Y = f(X). Če je X diskretna, je taka tudi Y, torej

$$E(Y) = \sum_{y} y P(Y = y) = \sum_{x} f(x) P(X = x).$$

Vprašanje 27. Definiraj pričakovano vrednost diskretne spremenljivke. Kako se preslika s funkcijo?

Izrek. Naj bodo X_1, \ldots, X_n slučajne spremenljivke in $\alpha_1, \ldots, \alpha_n$ konstante. Če obstaja $E(X_i)$ za $i = 1, \ldots, n$, obstaja tudi

$$E\left(\sum_{i} \alpha_{i} X_{i}\right) = \sum_{i} \alpha_{i} E(X_{i}).$$

Definicija. Slučajna spremenljivka I ima BERNOULLIJEVO PORAZDELITEV, če je njena zaloga vrednosti enaka $\{0,1\}$. Če označimo p=P(I=1), pišemo $I\sim \text{Bernoulli}(p)$.

Vprašanje 28. Kaj je Bernoullijeva porazdelitev?

4.2.4 Večrazsežne zvezne porazdelitve

Definicija. Slučajni vektor \underline{X} ima ZVEZNO PORAZDELITEV, če obstaja nenegativna funkcija $f_X(\underline{x})$, da za $A \subseteq \mathbb{R}^n$ velja

$$P(\underline{X} \in A) = \int_A f_{\underline{X}}(\underline{x}) d\underline{x}.$$

Funkciji f_X pravimo GOSTOTA.

Vprašanje 29. Definiraj gostoto porazdelitve.

Izrek. Naj bo $f_X(\underline{x})$ gostota vektorja \underline{X} in m < n. Privzemimo, da je funkcija

$$(x_1,\ldots,x_n)\mapsto \int_{\mathbb{R}^{n-m}}f_{\underline{X}}(x_1,\ldots,x_n)dx_{m+1}\ldots dx_n$$

Riemannovo integrabilna (lahko tudi v izlimitiranem smislu) po vseh Jordanovo izmerljivih množicah. Potem je to funkcija gostote vektorja $\underline{X}' = (x_1, \dots, x_m)$.

Izrek. Slučajna vektorja $\underline{X},\underline{Y}$ sta neodvisna natanko tedaj, ko je

$$f_{\underline{X},\underline{Y}}(\underline{x},\underline{y}) = f_{\underline{X}}(\underline{x})f_{\underline{Y}}(\underline{y})$$

skoraj povsod.

Dokaz. V desno: Velja

$$P(X \in A, Y \in B) = \int_{A \times B} f_{\underline{X}, \underline{Y}}(\underline{x}, \underline{y}) d\underline{x} d\underline{y},$$

$$P(X \in A)P(Y \in B) = \int_{A} f_{\underline{X}}(\underline{x}) d\underline{x} \int_{B} f_{\underline{Y}}(\underline{y}) d\underline{y} = \int_{A \times B} f_{\underline{X}} f_{\underline{Y}}.$$

Ker sta vektorja neodvisna, sta ti količini enaki, torej sta integrirani funkciji enaki skoraj povsod.

V levo: Velja

$$\begin{split} P(\underline{X} \in A, \underline{Y} \in B) &= \int_{A \times B} f_{\underline{X}}(\underline{x}) f_{\underline{Y}}(\underline{y}) d\underline{x} d\underline{y} \\ &= \int_{A} f_{\underline{X}}(\underline{x}) d\underline{x} \int_{B} f_{\underline{Y}}(\underline{y}) d\underline{y} \\ &= P(\underline{X} \in A) P(\underline{Y} \in B). \end{split}$$

Vprašanje 30. Karakteriziraj neodvisnost zvezno porazdeljenih slučajnih vektorjev in dokaži karakterizacijo.

Izrek. Naj bo $f_{X,Y}(\underline{x},y) = f(\underline{x})g(y)$ za nenegativni f,g. Potem sta \underline{X} in \underline{Y} neodvisni.

4 Verjetnost

Dokaz je praktično enak kot pri podobnem izreku za diskretne spremenljivke, le da pišemo integrale namesto vsot.

Izrek. Naj bo \underline{X} slučajni vektor z gostoto $f_{\underline{X}}(\underline{x})$. Predpostavimo $P(\underline{X} \in U) = 1$ za neko odprto množico $U \subseteq \mathbb{R}^n$. Naj bo $\phi : U \to V$ difeomorfizem in $\underline{Y} = \phi(\underline{X})$. Velja $P(\underline{Y} \in V) = 1$ in

$$f_{\underline{Y}}(\underline{y}) = \begin{cases} f_{\underline{X}} \left(\phi^{-1}(\underline{y}) \right) \left| \det D \phi^{-1}(\underline{y}) \right| & \underline{y} \in V \\ 0 & \underline{y} \notin V \end{cases}$$

Vprašanje 31. Povej transformacijsko formulo.

Definicija. Naj bo X zvezno porazdeljena slučajna spremenljivka z gostoto $f_X(x)$. Definiramo

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx,$$

$$E(g(x)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

Vprašanje 32. Kako je definirana pričakovana vrednost zvezne slučajne spremenljivke?

Definicija. Za slučajno spremenljivko X imenujemo količino $E(X^m)$ m-TI MOMENT.

Definicija. Za slučajno spremenljivko X imenujemo količino $E((X-E(x))^m)$ m-ti centralni moment.

Vprašanje 33. Kaj je moment in kaj centralni moment slučajne spremenljivke?