

Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code WFM01_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2019 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes	Marks	
1.	$A(12, 12)$ lies on $y^2 = 12x$. l passes through				
	<i>l</i> meets the directrix of the parabola at <i>B</i>				
(a)	$\{a=3 \Rightarrow S \text{ has coordinates}\}\ (3,0)$		Either states or uses $(3, 0)$	B1	
(4)		Can be implied by later work			
	Way 1 Both $m_l = \frac{12}{12 - "3"}$ and either • $y = \frac{12}{12 - "3"}(x - "3")$ or • $0 = \frac{12}{12 - "3"}("3") + c \Rightarrow y = \frac{12}{12 - "3"}$ • $12 = \frac{12}{12 - "3"}(12) + c \Rightarrow y = \frac{12}{12 - "3"}$ $\frac{\text{Way 2}}{12m + c = 12} \Rightarrow m =, c = \text{ and } y = 0$	Correct method for finding the gradient between their S and $(12, 12)$ and a correct method for finding the equation of l Uses $y = mx + c$, their S and $(12, 12)$ to write two linear equations.	M1		
	$\lfloor 12m + c = 12 \rfloor$,	Finds $m =, c =$ and writes $y = (\text{their } m)x + \text{their } c$ Any correct form for the		
	e.g. $l: y = \frac{12}{9}(x-3), y = \frac{4}{3}x-4, y-12$	$=\frac{12}{9}(x-12),$	equation of <i>l</i> which can be simplified or un-simplified Note: ignore subsequent	A1	
	4x - 3y - 12 = 0 or $3y = 4x - 1$	2	working following on from a correct answer seen		
	Note: At least one of either x_S	or y_s must be corr			(3)
	5	- 3	Either states or uses $x = -3$. ,
(b)	{directrix has equation} $x = -3$	or sta	ates or uses $x = -(\text{their } a)$, $a > 0$	M1	
			ere a is the x-coordinate of their S		
		Substitu	indent on the previous M1 mark tes $x = -3$ into their equation of l tutes $x = -a$, $a > 0$ where a is the		
	$y = \frac{12}{9}(-3-3) \ \{=-8\}$	x-coordinate (and not a c	of their S into their equation of l. Note: l must represent a line urve) for this mark to be awarded Note: This mark may be implied by their y-coordinate	dM1	
	{coordinates of B are} $(-3, -8)$		(-3, -8)	A1	
	, , , ,		· , ,		(3)
					6

		Question 1 Notes			
1. (a)	Note	Give B0 for $a = 3$ by itself without reference to $(3, 0)$			
	Note	Give B1 in part (a) for $S(3, 0)$ (and not $(3, 0)$) stated in part (b)			
(b)	Note	Give 1 st M1 for stating the x-coordinate of B as -3 or the x-coordinate of B as $-(\text{their } a)$, $a > 0$			
		where a is the x -coordinate of their S			
		E.g. Give 1^{st} M1 for $B(-3,)$			
	Note	Give A0 for $x = -3$, $y = -8$ without reference to $(-3, -8)$			
	Note	Give A0 for $x = -3$, $y = -8$ followed by $(-8, -3)$			
	Note	Give A0 if more than one set of coordinates are given for B			
(a), (b)	Note	Give B1 for a sketch with either 3 or $(3, 0)$ marked on the x-axis			
	Note	Give 1 st M1 in part (b) for a sketch with a vertical line drawn at $x = -3$ with -3 indicated			
	Note	Give 1 st M1 in part (b) a statement "directrix is $x = -3$ " seen anywhere			

Question Number		Scheme		Notes	Marks			
2.	$f(z) = z^3$	$-2z^2+16z-32$						
(a)	• {f(2) =	= $ 8 - 8 + 32 - 32 = 0 $ or		11 11 1 1 1 1 (0)				
	• {f(2) =	$= $ $ (2)^3 - 2(2)^2 + 16(2) - 32 = $	= 0	Uses working to show that $f(2) = 0$	B1			
					(1)			
(b)				es only $(z-2)$ to find a quadratic factor.				
	$\{f(\tau) - \}$	$(z-2)(z^2+16)$ e.g	g. using long di	vision with $(z-2)$ to get as far as $z^2 +$	M1			
	(1(2)-)			or factorising to give $(z-2)(z^2 +)$	1411			
			lote: 1 st M1 car	n be given for sight of a correct $(z^2 + 16)$				
	$\{(z^2+16)$	$0 = 0 \Rightarrow z = \frac{1}{2} \pm 4i$ \Rightarrow z = \frac{1}{2} \text{ 2, 4i, -4i}	Correc	t method of solving their quadratic factor	M1			
	$\{f(z)=0$	$\Rightarrow z = $ $\}$ 2, 4i, – 4i		2, 4i and – 4i	A1			
(2)			Cuitouio		(3)			
(c)	In	n 🛧	Criteria The number	per 2 plotted correctly on the positive				
	(0,4	4)	real axis	The second secon				
	(0,	' [nt on a correct method for solving				
				dratic factor or dependent on g correct roots of 2, 4i, - 4i				
		(2.0)	_	al two roots of the form $\pm \mu i$, $\mu \neq 0$ or				
		$O \xrightarrow{(2,0)} Re$		$\lambda \pm \mu i$, $\mu \neq 0$, are plotted correctly				
	'	O Re		Satisfies at least one of the criteria	B1ft			
				roots plotted, satisfying both criteria with				
			some indication of scale or coordinates stated. Note: The pair of complex roots should be					
	(0, -1)	4) ♥		eximately symmetrical about the real axis	B1ft			
		I	marked on the y-axis					
					(2)			
			Question	2 Notes				
2. (b)	Note	You can assume $x \equiv z$ for						
• •	Note	No algebraic working lead	ing to $z = 2, 4$	i, -4i is M0 M0 A0				
	Note	II		$i) \{=0\} \Rightarrow z = 2, 4i, -4i$				
	Note	Allow M1 M0 A0 for $(z -$	2)(z+4i)(z-4)	i) $\{=0\}$ by itself, but please note that you	cannot			
		recover the final M1 A1 marks for work seen in part (c)						
	Note	Give M1 M0 A0 for $(z-2)(z^2+16) = 0$ $\Rightarrow (z-2)(z+4i)(z-4i) = 0$ by itself, but						
				A1 marks for work seen in part (c)				
	Note	$z = \pm \sqrt{16}i$ unless recover	red is 2 nd M0 1 st	A0				
	Note	Give 2^{nd} M1 for $z^2 + k = 0$	Give 2^{nd} M1 for $z^2 + k = 0$, $k > 0 \Rightarrow$ at least one of either $z = \sqrt{k}$ i or $z = -\sqrt{k}$ i					
		So, e.g. give 2^{nd} M1 for z^2	$+16=0 \Rightarrow z=$	- 4i				
	Note	Give 2^{nd} M0 for $z^2 + k = 0$, $k > 0 \Rightarrow z = \pm ki$						
	Note	Give 2^{nd} M0 for $z^2 + k = 0$, $k > 0 \Rightarrow z = \pm k$ or $z = \pm \sqrt{k}$						
	Note	Give 2^{nd} M1 for $z^2 - k = 0$						
	Note							
		<u>Special Case:</u> If <i>their quadratic</i> factor $z^2 + "a"z + "b"$ can be factorised then give Special Case 2^{nd} M1 for correct factorisation leading to $z =$						
		give opecial case 2 William	or correct racto	z = 1.5				

		Question 2 Notes Continued						
2. (b)	Note	<u>Reminder:</u> Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "						
		Formula: Attempt to use the correct formula (with values for a , b and c)						
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$						
	Note	Send to review solutions involving α , β , γ roots. E.g. $-2 = -(\alpha + \beta + \gamma)$						
(c)	Note	Drawing the lines $z = 2$, $z = 4i$, $z = -4i$ instead of plotting the points $(2, 0)$, $(0, 4)$ and $(0, -4)$ is B0 B0						
	Note	Indication of coordinates includes stating e.g. $z_1 = 2$, $z_2 = 4i$, $z_3 = -4i$ and plotting z_1 , z_2 and						
		z_3 in their relevant positions on an Argand diagram						
(b), (c)	Note	You cannot recover work for part (b) in part (c)						

Question Number		Scheme		Notes	Marks	
3. (a)	$\sum_{r=1}^{n} (2r + 5)$	$(5)^{2} = 4\sum_{r=1}^{n} r^{2} + 20\sum_{r=1}^{n} r + \sum_{r=1}^{n} 25$				
				Attempts to expand $(2r+5)^2$ and attempts to substitute at least one formula for either $\sum_{r=1}^{n} r^2 \text{ or } \sum_{r=1}^{n} r \text{ into their resulting expression}$	M1 (B1 on ePEN)	
	$=4\left(\frac{1}{6}n(n)\right)$	$(n+1)(2n+1) + 20\left(\frac{1}{2}n(n+1)\right) + 20\left(\frac{1}{2}n(n+1)\right)$	25 <i>n</i>	$4\left(\frac{1}{6}n(n+1)(2n+1)\right) + 20\left(\frac{1}{2}n(n+1)\right)$ which can be simplified or un-simplified	A1 (M1 on ePEN)	
				Use of $\sum_{r=1}^{n} 1 = n$	B1	
	$=\frac{1}{3}n(2(n$	(n+1)(2n+1) + 30(n+1) + 75		Obtains an expression of the form $\alpha n(n+1)(2n+1) + \beta n(n+1) + \lambda n$; $\alpha, \beta, \lambda \neq 0$ and attempts to factorise out at least n	M1	
	$=\frac{1}{3}n(4n^2)$	+6n+2+30n+30+75)				
	$=\frac{n}{3}(4n^2-$	+ 36 <i>n</i> + 107)				
	$=\frac{n}{3}\Big[(2n+1)\Big]$	$+9)^2 + 26$ $\left\{ \text{or } \frac{n}{3} \left[(-2n-9)^2 + \frac{n}{3} \right] \right]$	- 26]}	Correct completion Note: $a = 2$, $b = 9$ and $c = 26$ or $a = -2$, $b = -9$ and $c = 26$	A1	
					(5)	
(b)	$\begin{cases} \sum_{r=0}^{100} (2r + 100) \\ 100 \end{cases}$,		Substitutes $n = 100$ into their expression for $\sum_{r=1}^{n} (2r+5)^2$ which is in terms of n ,	M1	
	$=\frac{3}{3}[(20$	$(100) + 9)^2 + 26$] + $(5)^2$	and ac	dds $(5)^2$ or 25 or $(2(0)+5)^2$ o.e. to the result		
	$= \frac{100}{3}(4$	3707) + 25		Obtains 1456925	A1	
					(2)	
		1	Qı	uestion 3 Notes		
3. (a)	Note	Applying e.g. $n = 1$, $n = 2$ and formulae to give $a = 2$, $b = 9$ a		to the printed equation without applying the sta 26 is M0 A0 B0 M0 A0	ındard	
	Alt 1	Alt Method 1 (Award the fir	Alt Method 1 (Award the first three marks using the main scheme)			
		Using $\frac{4}{3}n^3 + 12n^2 + \frac{107}{3}n = \frac{a^2}{3}n^3 + \frac{2ab}{3}n^2 + \frac{b^2 + c}{3}n$ o.e.				
	M1	Equating coefficients to find at least two of $a =, b =$ or $c =$ and at least one of				
	1411	either $a = 2$, $b = 9$ or $c = 26$ or $a = -2$, $b = -9$ and $c = 26$				
	A1	Finds $a = 2$, $b = 9$ and $c = 26$ or $a = -2$, $b = -9$ and $c = 26$				
'	Note	Allow final M1A1 for $\frac{4}{3}n^3 + \frac{1}{3}$	Allow final M1A1 for $\frac{4}{3}n^3 + 12n^2 + \frac{107}{3}n \rightarrow \frac{n}{3}[(2n+9)^2 + 26]$ with no incorrect working.			
	Note	12		$[(2n+9)^2+26]$ followed by stating an incorrect		
		e.g. $a = 9$, $b = 2$ and $c = 26$ is	s M1 A	A1 B1 M1 A1 (ignore subsequent working)		

		Question 3 Notes Continued
3. (b)	Note	Allow M1 for $\frac{100}{3}(4(100)^2 + 36(100) + 107) + (5)^2$ and A1 for obtaining 1456925
	Note	Allow M1 for $4\left(\frac{1}{6}(100)(101)(201)\right) + 20\left(\frac{1}{2}(100)(101)\right) + 25(100) + (5)^2$
		$\{=1353400 + 101000 + 2500 + 25\}$ and A1 for obtaining 1456925
	Note	dependent on obtaining 1st M1, 1st A1 and B1 in part (a)
		Allow M1 A1 for 1456900 + 25 = 1456925
	Note	Give M0 A0 for writing down 1456925 by itself with no supporting working
	Note	Give M0 A0 for listing individual terms
		i.e $\sum_{r=0}^{100} (2r+5)^2 = 5^2 + 7^2 + 9^2 + 11^2 + + 205^2 = 1456925$, by itself is M0 A0
	Note	Give M0 A0 for applying
		$\frac{100}{3} \left[(2(100) + 9)^2 + 26 \right] + \frac{(-1)}{3} \left[(2((-1)) + 9)^2 + 26 \right] = 145690025 = 1456925$

Question Number	Scheme					Notes		Marks	
4.	Given $f(x)$	$=2x^3-\frac{7}{x^2}+16$, x	$\neq 0$; Root	α, β :	-2≤ <i>c</i>	$\alpha \le -1$ and	and $0.6 \le \beta \le 0.7$		
(a)	f(-1.5) =						Attempts to ev	valuate $f(-1.5)$	M1
Way 1	f(-1.75) =				dependent on the previous M mark Evaluates $f(-1.75)$ (and not $f(-1.25)$)		dM1		
		depen Both	dependent on the 2 previous marks						
	f(-2) = -1	or	-2) correctly $f(-1) =$		correct av	vrt (or truncated)	to 1sf		
	f(-1.5) = 6	1.1388 or $\frac{221}{36}$	1	1 sf and	the con	rrect inte	rect or correct awr	, ,	A 1
	f(-1.75) =	2.9955 or $\frac{671}{224}$		$-2 \le 6$	$\alpha \leq -1$.75 or -	$\leq x \leq -1.75$ or -2 $\leq 2 < \alpha < -1.75$ or in words. Condo	[-2, -1.75] or	A1
	so interval i	Allov	w a mixtı	ure of '	'ends". I	Do not allow income 2 or $(-1.75, -2)$	rrect statements or -1.752		
				Ign	ore the s	unless they ubsequent iteratio	y are recovered. on of $f(-1.875)$		
	Note that some candidates only indicate the sign of f and not its value.				(3)				
		In this case the M							
(a) Way 2		Common approac							
way 2	-2	f(a) -1.75	b -1		f(b)		$\frac{a+b}{2}$ -1.5	$f\left(\frac{a+b}{2}\right)$	
	-2	-1.75	-1.			/ 388	-1.75	6.1388 2.9955	
							arks in part (a)	2.7755	
(b)	$f'(x) = 6x^2$	$+14x^{-3}$	At least	t one of e	either 2	$2x^3 \rightarrow \pm 2$	$4x^2 \text{ or } -\frac{7}{x^2} \to \pm x$	$Bx^{-3}; A, B \neq 0$	M1
(-)	1 (11)						an be simplified o		A1
	$\left\{\beta \simeq 0.65 - \right.$	$-\frac{f(0.65)}{f'(0.65)}$ $\Rightarrow \beta \simeq$	$0.65 - \frac{-0.5}{5}$.0187973 3.513607	33728 719				dM1
	$\{\beta = 0.6503$	$3512623\} \Rightarrow \beta = 0$	0.6504 (4	dp)			endent on all 3 p 0.6504 on the Ignore any subsec	eir first iteration	A1 cso cao
	Correct d	ifferentiation follo	wed by a c	correct a	nswer		•		(4)
		Correct answ	er with <u>no</u>	<u>o</u> workin	g scor	es no ma	rks in part (b)		
				Опес	tion 4	Notes			7
4. (a)	Note	Give 2 nd M0 and A0	for evalua				f(-1.75)		
	-	Do not allow "interv							
		A method of evaluat	, ,	•				e of evaluating	
	8	at least one of either	f(-2) or	f(-1) is	s M1 d	M1 A0.		<u></u> _	
	Note 1	Do not confuse the	-1.75 in f	$\widehat{c}(-2) = -$	-1.75 v	with the	-1.75 in $(-2, -1.6)$.75)	

		Question 4 Notes Continued
4. (b)	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(0.65)$ or their
		$f'(0.65)$ (where $f'(0.65)$ is found using their $f'(x)$) to 1 significant figure in $0.65 - \frac{f(0.65)}{f'(0.65)}$.
		So just $0.65 - \frac{f(0.65)}{f'(0.65)}$ with an incorrect answer and no other evidence scores final dM0A0.
	Note	If you see $0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6504$ with no algebraic differentiation, then send the response to
		review.
	Note	You can imply the M1 A1 marks for algebraic differentiation for either • $f'(0.65) = 6(0.65)^2 + 14(0.65)^{-3}$
		• f'(0.65) applied correctly in $\beta \approx 0.65 - \frac{2(0.65)^3 - \frac{7}{(0.65)^2} + 16}{6(0.65)^2 + 14(0.65)^{-3}}$
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x^2 - 14x^{-3}$ leads to
		$\beta \simeq 0.65 - \frac{-0.01879733728}{-48.44360719} = 0.6496119749 = 0.6496 (4 dp)$
		This response should be awarded M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $6x^2 - 14x^{-3}$ and
		$\beta \approx 0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6496$ is M1 A0 dM1 A0

Question Number	Scheme			Notes	Marks	S
5.	$H: xy = 16$; $P\left(4p, \frac{4}{p}\right)$, $p \neq 0$, lies on H .					
	Tangent to H at	P passes	through the po	int $(7,1)$		
(a)	$y = \frac{16}{x} = 16x^{-1} \implies \frac{dy}{dx} = -16x^{-2}$ or	$-\frac{16}{x^2}$		$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-2} ; k \neq 0$		
	$xy = 16 \implies x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$			Uses implicit differentiation to give $\pm x \frac{dy}{dx} \pm y$	M1	
	$x = 4t, \ y = \frac{4}{t} \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left($	$\frac{4}{t^2}$ $\left(\frac{1}{4}\right)$	thei	$ \operatorname{tir} \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\operatorname{their} \frac{\mathrm{d}y}{\mathrm{d}t}}; $ Condone $t \equiv p$		
	So at $P, m_T = -\frac{1}{p^2}$		Correct calc	ulus work leading to $m_T = -\frac{1}{p^2}$	A1	
	• $y - \frac{4}{p} = -\frac{1}{p^2}(x - 4p)$ or • $\frac{4}{p} = -\frac{1}{p^2}(4p) + c \implies y = -\frac{1}{p^2}x + t$	heir <i>c</i>		Correct straight line method for an equation of the tangent where $m_T \left(\neq \frac{-1}{\text{their } m_T} \text{ or } \neq \frac{1}{\text{their } m_T} \right)$ is found by using calculus. Note: m_T must be a function of p Note: Condone (slip) of using $m_T = -(\text{their } m_T)$	M1	
	Correct algebra leading to $x + p^2 y = 8$	p *		Correct solution only	A1 *	
						(4)
(b)	$\{(7,1) \Longrightarrow \} 7+p^2 = 8p$	1	Note: Condone	y = 1 into the given equation or their answer to part (a). substituting $x = 1$, $y = 7$ into the or their answer to part (a) for M1	M1	
	$\{ \Rightarrow p^2 - 8p + 7 = 0 \}$					
	$(p-7)(p-1) = 0 \Rightarrow p = \dots$		Correct meth	ndent on the previous M mark od (e.g. factorising, applying the nula or completing the square) of solving a 3TQ to find $p =$	dM1	
	$\{p=1 \Rightarrow \} \ x=4, \ y=4$ $\{p=7 \Rightarrow \} \ x=28, \ y=\frac{4}{7} \text{ or awrt } 0.57$, (given equa	substituing $x = 7$, $y = 1$ into the tion or their answer to part (a) one correct set of corresponding values for $x =$ and $y =$	A1	
	{So P can be} $(4, 4), (28, \frac{4}{7})$		Botl	h correct sets of coordinates of B	A1	
						(4)
						8

		Question 5 Notes
5. (a)	Note	Allow $yp^2 + x = 8p$ or $8p = x + p^2y$ or $8p = p^2y + x$ for the final A1
(b)	Note	Do not confuse $(7, 1)$ or $x = 7$, $y = 1$ with $p = 7, 1$
	Note	A decimal answer of e.g. (4, 4), (28, 0.57) (without a correct exact answer) is 2 nd A0
	Note	Imply the dM1 mark for writing down the correct roots for their quadratic equation
		E.g. $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = 7, 1$
	Note	E.g. give dM0 for $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = -7, -1$ [incorrect solution]
		with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 for either
		• $7 + p^2 = 8p \rightarrow x = 4, y = 4 \text{ or } (4, 4)$
		• $7 + p^2 = 8p \rightarrow x = 28, y = \frac{4}{7} \text{ or awrt } 0.57 \text{ or } \left(28, \frac{4}{7}\right) \text{ or } \left(28, \text{ awrt } 0.57\right)$
		with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 A1 for
		• $7 + p^2 = 8p \rightarrow (4, 4), \left(28, \frac{4}{7}\right)$
		with NO INTERMEDIATE working.
	Note	Give M0 dM0 A0 A0 for writing down $(4, 4), (28, \frac{4}{7})$ with no prior working.
	Note	Only a maximum of M1 dM1 A0 A0 can be scored for
		substituting for $x = 1$, $y = 7$ (and not $x = 7$, $y = 1$) into $x + p^2y = 8p$
		Note: $x = 1$, $y = 7 \Rightarrow 1 + 7p^2 = 8p \Rightarrow (7p - 1)(p - 1) \Rightarrow p = \frac{1}{7}, 1 \Rightarrow (\frac{4}{7}, 28), (4, 4)$
	Note	Alt 1 Method
		• $x = 7, y = 1 \Rightarrow 7 + p^2 = 8p \Rightarrow (p-1)(p-7) \Rightarrow p = 1, 7$
		• $p=1 \Rightarrow x+(1)y=8(1)$ and $x+\frac{16}{x}=8 \Rightarrow x^2-8x+16=0 \Rightarrow (x-4)(x-4)=0$
		$\Rightarrow x = 4, y = 4 \Rightarrow (4, 4)$
		• $p = 7 \Rightarrow x + 49y = 56$ and $x + 49\left(\frac{16}{x}\right) = 56 \Rightarrow x^2 - 56x + 784 = 0 \Rightarrow (x - 28)(x - 28) = 0$
		$\Rightarrow x = 28, \ y = \frac{4}{7} \Rightarrow \left(28, \frac{4}{7}\right)$
	Note	Incorrect method of substituting $xy = 16$ and $(7, 1)$ into $x + p^2y = 8p$
	1,000	Give M0 dM0 A0 A0 for
		• $x + p^2 \left(\frac{16}{x}\right) = 8p$ and $x = 7 \Rightarrow 7 + \frac{16}{7}p^2 = 8p \Rightarrow 16p^2 - 56p + 49 = 0 \Rightarrow (4p - 7)(4p - 7) = 0$
		$\Rightarrow p = \frac{7}{4} \Rightarrow x = 7, \ y = \frac{16}{7} \Rightarrow \left(7, \frac{16}{7}\right)$
		• $\frac{16}{y} + p^2 y = 8p$ and $y = 1 \Rightarrow 16 + p^2 = 8p \Rightarrow p^2 - 8p + 16 = 0 \Rightarrow (p-4)(p-4) = 0$
		$\Rightarrow p = 4 \Rightarrow x = 16, y = 1 \Rightarrow (16, 1)$
	Note	Give M1 dM0 A0 A0 for
	000	• $x = 7$, $y = 1$ into $x + p^2y = 8p \Rightarrow 7 + p^2 = 8 \Rightarrow (p+1)(p-1) \Rightarrow p = 1, -1 \Rightarrow (4, 4), (-4, -4)$

Question Number		Scheme	Notes	Marks		
6.		$12x^2$	$x^2 - 3x + 4 = 0$ has roots α , β			
(a)	$\alpha + \beta = \frac{1}{1}$	$\frac{3}{2}$ or $\frac{1}{4}$, $\alpha\beta = \frac{4}{12}$ or $\frac{1}{3}$	Both $\alpha + \beta = \frac{3}{12}$ or $\frac{1}{4}$ and $\alpha\beta = \frac{4}{12}$ or $\frac{1}{3}$, seen or implied	B1		
	$\frac{2}{\alpha} + \frac{2}{\beta} =$	$=\frac{2\beta+2\alpha}{\alpha\beta}$	States or uses $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta}$ or $\frac{2(\alpha + \beta)}{\alpha\beta}$	M1		
		$2(\frac{3}{12})$ 3	dependent on BOTH previous marks being awarded	A1		
	=	$\frac{2\left(\frac{3}{12}\right)}{\left(\frac{4}{12}\right)} = \frac{3}{2}$	$\frac{3}{2}$ or $\frac{6}{4}$ or 1.5 from correct working	cso cao		
				(3)		
(b)	$Sum = \frac{2}{3}$	$\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha$	Uses at least one of their $\frac{2}{\alpha} + \frac{2}{\beta}$ or their $(\alpha + \beta)$ in an			
		,	attempt to find a numerical value for the sum of	M1		
		$a + \frac{2}{\beta} - (\alpha + \beta)$	$\left(\frac{2}{\alpha} - \beta\right)$ and $\left(\frac{2}{\beta} - \alpha\right)$			
	$=\frac{3}{2}$	$-\frac{1}{4} = \frac{5}{4}$	Correct sum of $\frac{5}{4}$ or $\frac{15}{12}$ or 1.25 which can be implied	A1		
	Due de et	(2 a)(2 a)	Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give $\frac{P}{\alpha\beta} + Q + R\alpha\beta$;			
	Product =	$= \left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$	$P, Q, R \neq 0$ and uses their $\alpha\beta$ at least once in an	M1		
	=	$=\frac{4}{\alpha\beta}-2-2+\alpha\beta$	attempt to find a numerical value for the product of	1011		
			$\left(\frac{2}{\alpha} - \beta\right)$ and $\left(\frac{2}{\beta} - \alpha\right)$			
	=	$=\frac{4}{\left(\frac{1}{3}\right)}-2-2+\frac{1}{3}=\frac{25}{3}$	Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 or $\frac{100}{12}$	A1		
		25	Applies $x^2 - (\text{sum})x + \text{product (can be implied)},$			
	$x^2 - \frac{5}{4}x$	$+\frac{25}{3}=0$	where sum and product are numerical values.	M1		
	4	<u> </u>	Note: "=0" is not required for this mark			
	$12x^2 - 15$	5x + 100 = 0	Any integer multiple of $12x^2 - 15x + 100 = 0$,	A1 cso		
			including the "=0"	(6)		
				9		
			Question 6 Notes			
6. (a)	Note	Writing down α , $\beta = \frac{3}{2}$	$\frac{+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ and then stating $\alpha + \beta = \frac{1}{4}$, $\alpha\beta = \frac{1}{3}$ or	· applying		
		$\alpha + \beta = \frac{3 + \sqrt{183}i}{24} + \frac{3 - 3}{24}$	$\alpha + \beta = \frac{3 + \sqrt{183}i}{24} + \frac{3 - \sqrt{183}i}{24} = \frac{1}{4} \text{ and } \alpha\beta = \left(\frac{3 + \sqrt{183}i}{24}\right) \left(\frac{3 - \sqrt{183}i}{24}\right) = \frac{1}{3} \text{ scores B0}$			
	Note	Those candidates who then apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/applied				
		$\alpha, \beta = \frac{3 + \sqrt{183}i}{24}, \frac{3 - \sqrt{2}}{24}$	α , $\beta = \frac{3 + \sqrt{183}i}{24}$, $\frac{3 - \sqrt{183}i}{24}$, can only score the M mark in part (a) for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta}$			
	Note	Give B0 M0 A0 for $\frac{2}{\alpha}$	$+\frac{2}{\beta} = \frac{2}{\left(\frac{3+\sqrt{183}\mathrm{i}}{24}\right)} + \frac{2}{\left(\frac{3-\sqrt{183}\mathrm{i}}{24}\right)} = \frac{3}{2}$			

	Question 6 Notes Continued
Note	Give B0 M1 A0 for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta} = \frac{2\left(\frac{3-\sqrt{183}i}{24}\right) + 2\left(\frac{3+\sqrt{183}i}{24}\right)}{\left(\frac{3+\sqrt{183}i}{24}\right)\left(\frac{3-\sqrt{183}i}{24}\right)} = \frac{3}{2}$
Note	Allow B1 for both $S = \frac{1}{4}$ and $P = \frac{1}{3}$ or for both $\sum = \frac{1}{4}$ and $\prod = \frac{1}{3}$
Note	A correct method leading to $a = 12$, $b = -15$, $c = 100$ without writing a final answer of
	$12x^2 - 15x + 100 = 0 \text{ is final M1A0}$
Note	Using $\frac{3+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ explicitly to find the sum and product of $\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$
	to give $x^2 - \frac{5}{4}x + \frac{25}{3} = 0 \Rightarrow 12x^2 - 15x + 100 = 0$ scores M0 A0 M0 A0 M1A0 in part (b)
Note	Using $\frac{3+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ to find $\alpha+\beta=\frac{1}{4}$, $\alpha\beta=\frac{1}{3}$, $\frac{2}{\alpha}+\frac{2}{\beta}=\frac{3}{2}$ and applying
	$\left\{\alpha + \beta = \frac{1}{4}, \right\} \alpha\beta = \frac{1}{3}, \frac{2}{\alpha} + \frac{2}{\beta} = \frac{3}{2} \text{ can potentially score full marks in part (b).}$
	E.g. Score M1 A1 M1 A1 M1 A1 for
	• Sum = $=\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha = \frac{2}{\alpha} + \frac{2}{\beta} - (\alpha + \beta) = \frac{3}{2} - \frac{1}{4} = \frac{5}{4}$
	• Product $=$ $\left(\frac{2}{\alpha} - \beta\right)\left(\frac{2}{\beta} - \alpha\right) = \frac{4}{\alpha\beta} - 2 - 2 + \alpha\beta = \frac{4}{\left(\frac{1}{3}\right)} - 2 - 2 + \frac{1}{3} = \frac{25}{3}$
	• $x^2 - \frac{5}{4}x + \frac{25}{3} = 0 \Rightarrow 12x^2 - 15x + 100 = 0$
Note	Alternative method for finding the sum
	$\operatorname{Sum} = \frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha = \frac{2\beta - \alpha\beta^2 + 2\alpha - \alpha^2\beta}{\alpha\beta} = \frac{2(\alpha + \beta) - \alpha\beta(\beta + \alpha)}{\alpha\beta}$
	$= \frac{2(\frac{1}{4}) - (\frac{1}{3})(\frac{1}{4})}{(\frac{1}{3})} = \frac{\frac{1}{2} - \frac{1}{12}}{\frac{1}{3}} = \frac{\frac{3}{12}}{\frac{1}{3}} = \frac{15}{12} = \frac{5}{4}$
Note	Alternative method for finding the product
	Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give
	Product = $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ $\left(\frac{(\alpha\beta - 2)^2}{\alpha\beta}\right)$ and uses their $\alpha\beta$ at least once in M1
	$= \frac{(\alpha\beta - 2)^2}{\alpha\beta} = \frac{((\frac{1}{3}) - 2)^2}{(\frac{1}{3})}$ an attempt to find a numerical value for the
	$= \frac{\alpha\beta}{\frac{25}{9}} = \frac{25}{3}$ product of $\left(\frac{2}{\alpha} - \beta\right)$ and $\left(\frac{2}{\beta} - \alpha\right)$
	Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 A1
	Note Note Note Note

Question Number	Scheme		Notes	Marks	
7.	$\mathbf{P} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$; (a) $\mathbf{P}^3 = 8\mathbf{I}$; (c) $\mathbf{P}^{35} = 2\mathbf{I}$				
(a)	$\left\{\mathbf{P}^2 = \right\} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -2\sqrt{3} \end{pmatrix}$		Finds $ \mathbf{P}^2 $ which can be un-simplified) with t least 3 correct elements for \mathbf{P}^2	M1	
	$ \left\{ \mathbf{P}^3 = \right\} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} * $ dependent of the previous M mathematical experiments of the previous M mathematical experi				
	$\mathbf{or} \left\{ \mathbf{P}^3 = \right\} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} -2\sqrt{3} & -2 \\ -2\sqrt{3} & -2 \end{pmatrix}$	*	4 elements for P ³ with at least 2 correct elements Correct proof with no errors	A1 *	
					(3)
(b)	Enlargement			nlargement or enlarge or dilation	M1
	Centre (0, 0) with scale factor 2	abou		o) or about O or about the origin nd scale or factor or times and 2	A1
	Rotation		F	Rotation or rotate (condone turn)	M1
				Both 120 degrees or $\frac{2\pi}{3}$	
				grees clockwise or $\frac{4\pi}{3}$ clockwise	A1
	and about $(0,0)$ or about O or about the origin				
(-)	73 5 (73)11 72 75 77	2			(4)
(c)	$\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ or $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$				
Way 1	$= (8\mathbf{I})^{11} \times \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = (2\mathbf{I})^{\frac{3}{2}}$	$^{33} \times \begin{pmatrix} -2 & 7 \\ -2\sqrt{3} & 7 \end{pmatrix}$	$\begin{pmatrix} 2\sqrt{3} \\ -2 \end{pmatrix}$	((8 I) ¹¹ or (8) ¹¹)×(their P ²) or ((2 I) ³³ or (2) ³³)×(their P ²)	M1
	$= 2^{34} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ Correct answer Note: $k = 34, a = \sqrt{3}, b = -\sqrt{3}$				A1
					(2)
(c)	$\mathbf{P}^{35} = (\mathbf{P}^3)^{12} \times \mathbf{P}^{-1} \text{ or } \mathbf{P}^{35} = \mathbf{P}^{36} \times \mathbf{P}^{-1}$				
Way 2	$= (8\mathbf{I})^{12} \times \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \qquad ((8\mathbf{I})^{12} \text{ or } (8)^{12}) \times \frac{1}{\text{their det}(\mathbf{P})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$				
	or $\begin{pmatrix} & & & & & & & & & & & & & & & & & & $				M1
	(-1)(-1) - (-3)(3)(-3) - (3)(-3)			where their $\det(\mathbf{P}) > 1$	
	$\left\{ = \left(2^{36}\right) \left(\frac{1}{4}\right) \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \right\} = 2^{34} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$		Correct answer Note: $k = 34$, $a = \sqrt{3}$, $b = -\sqrt{3}$	A1	
					(2)
					9

		Question 7 Notes				
7. (a)	7. (a) Note Proof must contain the final steps of $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ and $= 8I$ or $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$					
	Note	Other acceptable proofs for M1 dM1 A1 include				
		$\bullet \mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^3$				
	$= \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$					
		• $\mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ or $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^3$				
		$= \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$				
		• $\mathbf{P}^3 = \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$				
		• $\mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$				
(b)	Note	"original point" is not acceptable in place of the word "origin".				
	Note	"expand" is 1 st M0				
	Note	"enlarge x by 2 and no change in y" is 1 st M0 1 st A0				
	Note	Writing "120 degrees" by itself implies by convention "120 degrees anti-clockwise". So • "Rotation 120 degrees about O" is 2 nd M1 2 nd A1 • "Rotation 120 degrees clockwise about O" is 2 nd M1 2 nd A0				
	Note	Writing down "centre (0, 0) with scale factor 2" with no reference to "enlargement"				
		or "enlarge" or "dilation" is 1st M0 1st A0				
	Note	Writing down "120 degrees anti-clockwise about O" with no reference to "rotation" or "turn" is 2 nd M0 2 nd A0				
	Note	Give 1 st M1 1 st A0 for writing "stretch parallel to x-axis and y-axis"				
	Note Give 1 st M1 1 st A0 for writing "stretch scale factor 2 parallel to <i>x</i> -axis and stream factor 2 parallel to <i>y</i> -axis {with centre $(0, 0)$ }"					
	Note	If a candidate would score M1 A1 M1 A1 in part (b) and there is an error in their solution (e.g. a third transformation given) then give M1 A1 M1 A0				
(c)	Note	$8^{11} = 2^{33} = 8589934592$				
	Note	$8^{12} = 2^{36} = 68719476736$				
	Note	(their P^2) must be a genuine attempt at P^2 or must be for (their P^2) seen in part (a)				
	Note	Allow M1 A1 for writing $\mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ Stating $k = 34$, $a = \sqrt{3}$, $b = -\sqrt{3}$ from no working is M1 A1				
	Stating $k = 34$, $a = \sqrt{3}$, $b = -\sqrt{3}$ from no working is M1 A1					
	Note	Give M0 A0 for $\mathbf{P}^4 = 2^3 \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \Rightarrow \mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$				

		Question 7 Notes Continued				
7. (c)	Note	Writing down $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$				
		or $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$				
		with no attempt to evaluate $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ is M0				
	Note	Allow M1 for applying $P^{35} = (P^3)^{11} \times P^2$ or $P^{35} = P^{33} \times P^2$				
		E.g. Allow M1 for $\begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}^{11} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}^{33} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$				
		or $\begin{pmatrix} 8^{11} & 0 \\ 0 & 8^{11} \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $\begin{pmatrix} 2^{33} & 0 \\ 0 & 2^{33} \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$				
		or $(8)^{11} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $(2)^{33} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$				
	Note	Note Allow M1 for $(2)^{35}$ $\begin{pmatrix} \cos 240 & -\sin 240 \\ \sin 240 & \cos 240 \end{pmatrix}$ or $(2)^{35}$ $\begin{pmatrix} \cos 4200 & -\sin 4200 \\ \sin 4200 & \cos 4200 \end{pmatrix}$				
		or $(2)^{35}$ $\begin{pmatrix} -0.5 & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -0.5 \end{pmatrix}$ or equivalent in radians				
	Note	Give M0 for $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ by itself				
	Note	Give M0 for $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$ by itself				

Question Number	Scheme	Notes			
8.	(i) $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$ (ii) $u_1 = 8$, $u_2 = 40$, $u_{n+2} = 8u_{n+1} - 12u_n \Rightarrow u_n = 6^n + 2^n$				
(i)	Shows or states that $n = 1, \text{ LHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix},$ $RHS = \begin{pmatrix} 1+4(1) & -8(1) \\ 2(1) & 1-4(1) \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ $(Assume the result is true for n = k) n = 1, \text{ LHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}, \text{ RHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} n = 1, \text{ LHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}, \text{ RHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} n = 1, \text{ LHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}, \text{ RHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$				
	$\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^{k+1} = \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ $\mathbf{or} = \begin{pmatrix} 5 & -k \\ 2 & -k \end{pmatrix}$	States intention to n $ \begin{pmatrix} -8 \\ -3 \end{pmatrix} $ States intention to n $ \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \text{ by } \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} $ way	nultiply (either M1 round)		
	$= \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix}$	Uses algebra to achieve this with no	s result o errors A1		
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be true for $n = 1$, then the result <u>is true for all n</u> $(\in \mathbb{Z}^+)$				
(ii)	Shows $u_1 = 8$ by writing an intermediate step of e.g. $6^1 + 2^1$ or $6 + 2$ and shows $u_2 = 40$ by writing an intermediate step of e.g. $6^2 + 2^2$ or $36 + 4$				
	(Assume the result is true for $n = k$ and $n = k + 1$)				
l	(Assume the result is true for $n = k$ and $n = k + 1$) $\{u_{k+2} = 8u_{k+1} - 12u_k \Rightarrow \}$ $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k)$ Finds u_{k+2} by attempting to substitute $u_{k+1} = 6^{k+1} + 2^{k+1}$ and $u_k = 6^k + 2^k$ into $u_{k+2} = 8u_{k+1} - 12u_k$ Condone one slip				
	either $\{u_{k+2}\} = 48(6^k) + 16(2^k) - 12(2^k)$ $= 36(6^k) + 4(2^k)$ $= 6^2(6^k) + 2^2(2^k)$ or $\{u_{k+2}\} = 8(6^{k+1} + 2^{k+1}) - 2(6^k)$ $= 6(6^{k+1}) + 2(2^{k+1})$ or $\{u_{k+2}\} = 8(6^{k+1}) - 2(6^{k+1}) + 4(2^k)$ or $\{u_{k+2}\} = 48(6^k) - 12(6^k) + 4(2^k)$	Expresses u_{k+2} correctly in to only 6^k or only 6^{k+1}) or as $8(6^{k+1}) - 2(6^{k+1}) + 4(2^{k+2}) - 2(2^{k+2}) - 3(2^{k+2})$ or as $48(6^k) - 12(6^k) + 4(2^{k+2}) - 2(2^{k+2}) - 2(2^{k+2})$	erms of and 2^k nd 2^{k+1} $(M1 \text{ on ePEN})$		
	$= 6^{k+2} + 2^{k+2}$	dependent on the previous A Uses algebra in a complete to achieve this result with no	method A1		
	If the result is <u>true for $n = k$ and for $n = k + 1$, then it is <u>true for $n = k + 2$.</u></u>				
	As the result has been shown to be true for $n = 1$ and $n = 2$,				
	then the result is true for all $n \in \mathbb{Z}^+$				
·			10		

	Question 8 Notes					
8. (i)	Note	Final A1 is dependent on all previous marks being scored.				
		It is gained by candidates conveying the ideas of all four underlined points in part (i)				
		either at the end of their solution or as a narrative in their solution.				
	Note	"Assume for $n = k$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^k = \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix}$ " satisfies the requirement "true for $n = k$ "				
	Note	"For $n \in \mathbb{Z}^+$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$ " satisfies the requirement "true for all n "				
	Note	Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$				
	Note	Allow for B1 for stating either, $n = 1$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ or $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 1+4 & -8 \\ 2 & 1-4 \end{pmatrix}$				
	Note	E.g. $\binom{1+4k}{2k} \frac{-8k}{1-4k} \binom{5}{2} \frac{-8}{-3} = \binom{1+4(k+1)}{2(k+1)} \frac{-8(k+1)}{1-4(k+1)}$ with no intermediate working				
	N T 4	is M1 dM0 A0 A0				
	Note	E.g. Writing any of $ \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5+20k-16k & -8-32k+24k \\ 10k+2-8k & -16k-3+12k \end{pmatrix} = \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix} $				
(ii)	Note	Ignore $u_3 = 8u_2 - 12u_1 = 8(40) - 12(8) = 224$ as part of their solution to (i)				
()	Note	Ignore $\{n=3,\}$ $u_2=6^3+2^3=224$ as part of their solution to (i)				
	Note	Full marks in (i) can be obtained for an equivalent proof where $n = k \rightarrow n = k - 1$; i.e. $k \equiv k - 1$				
	Note	Final A1 is dependent on all previous marks being scored.				
		It is gained by candidates conveying the ideas of all four underlined points in part (ii)				
		either at the end of their solution or as a narrative in their solution.				
	"Assume for $n = k$, $u_k = 6^k + 2^k$ and for $n = k + 1$, $u_{k+1} = 6^{k+1} + 2^{k+1}$ " satisfies the requirement					
		"true for $n = k$ and $n = k + 1$ "				
	Note	"For $n \in \mathbb{Z}^+$, $u_n = 6^n + 2^n$ " satisfies the requirement "true for all n "				
	Note	Writing $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$ with no intermediate working				
	NT 4	is M1 A0 A0 A0				
	Note	E.g. Writing either $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 48(6^k) + 16(2^k) - 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$				
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^{k} + 2^{k}) = 48(6^{k}) + 16(2^{k}) - 12(6^{k} + 2^{k}) = 6^{k+2} + 2^{k+2}$ • $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^{k} + 2^{k}) = 36(6^{k}) + 4(2^{k}) = 6^{k+2} + 2^{k+2}$				
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^{k} + 2^{k}) = 6^{2}(6^{k}) + 4(2^{k}) = 6^{k+2} + 2^{k+2}$ • $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^{k} + 2^{k}) = 6^{2}(6^{k}) + 2^{2}(2^{k}) = 6^{k+2} + 2^{k+2}$				
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^{k} + 2^{k}) = 8(6^{k+1} + 2^{k+1}) - 2(6^{k+1}) - 6(2^{k+1}) = 6^{k+2} + 2^{k+2}$				
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6(6^{k+1}) + 2(2^{k+1}) = 6^{k+2} + 2^{k+2}$				
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 8(6^{k+1}) - 2(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2}) = 6^{k+2} + 2^{k+2}$				
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = (6)(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2}) = 6^{k+2} + 2^{k+2}$				
		$ u_{k+2} = 3(0 + 2 + 2 + 2) = 12(0 + 2 + 2) = (0)(0 + 4(2 + 2) = 3(2 + 2 + 2) = 0 $ is M1 A1 A1				
	Note	Writing $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = (6)6^{k+1} + 2^{k+2} = 6^{k+2} + 2^{k+2}$				
		with no intermediate working is M1 A0 A0 A0				
	<u> </u>	C - 1 - 1 - 1				

	Question 8 Notes Continued			
8. (ii)	Note	Note Full marks in (i) can be obtained for an equivalent proof where e.g.		
		• $n = k, n = k + 1, \rightarrow n = k - 2, n = k - 1$; i.e. $k \equiv k - 2$		
8. (i), (ii)	Note	Note Referring to <i>n</i> as a real number their conclusion is final A0		
	Note Referring to <i>n</i> as any integer in their conclusion is final A0			
	Note Condone $n \in \mathbb{Z}^*$ as part of their conclusion for the final A1			

Question Number	Scheme			Marks	
9.	$z_1 = -1 - i, \ z_2 = 3$	3 – 4i	; (d) $\frac{p + iq - 8z_1}{p - iq - 8z_2}$		
(a)	$z_1 - z_2 = -4 + 3i$	$z_1 - z_2 = -4 + 3i$, seen or implied			B1
	$\{z_1 - z_2 = -4 + 3i \Rightarrow \}$ $\arg(z_1 - z_2) = \pi - \tan^{-1}\left(\frac{3}{4}\right)$ $\{\arg(z_1 - z_2) = \pi - 0.6435011 \Rightarrow \}$		and uses trigonom $arg(z_1 - z_2)$ so the	$z_1 - z_2 = \alpha + \beta i$; $\alpha < 0$, $\beta > 0$ netry to find an expression for at $arg(z_1 - z_2)$ is in the range 1.58, 3.14) or $(90^\circ, 180^\circ)$ -4.71) or $(-180^\circ, -270^\circ)$	M1
	$arg(z_1 - z_2) = 2.4980915$ {= 2.498 (3 dp	o)}		awrt 2.498	A1
	g(-1 -2)				(3)
(b) Way 1	$\left\{\frac{z_1}{z_2} = \right\} \frac{(-1-i)(3+4i)}{(3-4i)(3+4i)}$			es numerator and denominator conjugate of the denominator	M1
	$= \frac{-3 - 4i - 3i + 4}{9 + 16} \left\{ = \frac{1 - 7i}{25} \right\}$			correct (with $i^2 = -1$ applied) correct (with $i^2 = -1$ applied)	A1
	$= \frac{1}{25} - \frac{7}{25}i \text{or} 0.04 - 0.28i$			$\frac{1}{25} - \frac{7}{25}i \text{or} 0.04 - 0.28i$	A1
(1)		<u> </u>			(3)
(b) Way 2	$\frac{-1-1}{3-4i} = a + ib \implies -1-i = (a+ib)(3-4i)$ $\{\text{Real} \implies \} -1 = 3a+4b$ $\{\text{Imaginary} \implies \} -1 = -4a+3b$ $\implies a = \dots \text{ or } b = \dots$		Sets $\frac{z_1}{z_2} = a + ib$ attempts to equimaginary part solves to give a	M1	
	$a = \frac{1}{25}$ or 0.04, $b = -\frac{7}{25}$ or -0.28		At least	A1	
	So, $\frac{z_1}{z_2} = \frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$			A1	
					(3)
(c)	$\left\{ \left \frac{z_1}{z_2} \right = \right\} \sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7}{25}\right)^2} \left\{ \mathbf{or} \frac{ z_1 }{ z_2 } \right\}$	=} -	$\frac{\sqrt{(-1)^2 + (-1)^2}}{\sqrt{(3)^2 + (-4)^2}}$	Finds $\left \frac{z_1}{z_2} \right $ by applying a full Pythagoras method	M1
	$\left\{ = \frac{\sqrt{50}}{25} \right\} = \frac{\sqrt{2}}{5}$			A1 cao	
(4)			May 14111 1 1		(2)
(d)	$p + iq - 8z_1 = 3i(p - iq - 8z_2)$ $\Rightarrow p + iq - 8(-1 - i) = 3i(p - iq - 8(3 - 4i))$))	Multiplies both sides by only $(p-iq-8z_2)$, and substitutes the given values for z_1 and z_2		M1
	$\Rightarrow p + iq + 8 + 8i = 3pi + 3q - 72i - 96$ {Real \Rightarrow} \partial p + 8 = 3q - 96		depende attempts to the imaginary	dM1	
	{Imaginary \Rightarrow } $q+8=3p-72$		Both correct equations which can be simplified or un-simplified		A1
	$\begin{cases} p - 3q = -104 \\ 3p - q = 80 \end{cases} \Rightarrow \begin{cases} p - 3q = -104 \\ 9p - 3q = 240 \end{cases}$		depende Obtains two equal and solves at l	ddM1	
	$\Rightarrow p = 43, q = 49$			p = 43, q = 49	A1
					(5) 13
•	·				•

	Question 9 Notes					
9. (a)	(a) Note Allow M1 (implied) for awrt 2.5, truncated 2.4, awrt -3.8, truncated -3.7, aw awrt -217° or truncated -216°					
	Note Give B1 M1 A1 for writing $arg(z_1 - z_2) = awrt 2.498$ from no working.					
(b)	Note	Give 2^{nd} A0 for writing down $\frac{1-7i}{25}$ with no reference to $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$				
	Note	Give M1 1 st A1 for writing down $\frac{1-7i}{25}$ from no working in (b)				
	Note Give M1 A1 A1 for writing down $\frac{1-7i}{25} = \frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no w					
	Give M1 A1 A1 for writing down $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no working in (b)					
	Note	Give 2^{nd} A0 for simplifying a correct $\frac{1}{25} - \frac{7}{25}i$ to give a final answer of $1-7i$				
(c)						
	Note	Give A0 for $\frac{\sqrt{50}}{25}$ or 0.28284 without reference to $\frac{\sqrt{2}}{5}$ or $\frac{1}{5}\sqrt{2}$				
	Note	Give M0 for $\sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7i}{25}\right)^2}$ unless recovered by later working				
	Note	Give M1 A1 for writing $\left \frac{z_1}{z_2} \right = \frac{\sqrt{2}}{5}$ from no working.				