## I PRE LAB

Objectine 1 a Stale Diagram!



## State Table:

| Presnt State | Next State | Flip Flop would. |
|--------------|------------|------------------|
| AB           | AB         | DA DB Be         |
| 0 0          | 0 1        | 0 1              |
| 0 1          | 1 0        | t O              |
| 1 0          | 1 (        |                  |
| 1 1          | 0 0        |                  |

$$D_A = AB + AB'$$

$$= A \oplus B$$



b) module off (
input D, alk,
Output Cl
);
reg Cl
always @ (foredge c/k)

Cl = D
nol module
module Counter (
input cl, lk, reset,
Outfut Clo, Cl I
);

olff d1 ((Oo ^ Cl I), clk, reset, Cl I)

end module.

Objective 2

a) State Diagram.



State Table

| Present State | Next State | Flip-Flop input               |
|---------------|------------|-------------------------------|
| A B           | AB         | JAKA JBKB                     |
| 0 0 1 1 0 1   | 0 1        | × 0 × 1<br>× 1 1 ×<br>0 × × 1 |





$$J_A = K_{\mathbf{A}} = B'$$

$$J_B = K_B = 1$$





b) module jkff(

hput j, k, elk, clean;

output Q:

reg Q;

always @ (posedge (clk))

begin

y(r clear) begin

el = 1'b0;

and

else

begin

case (ij, k)

2'b00: Q <= Q

2'b01: Q <= Q;

2'b01: Q <= 0;

2'b10: Q <= 1;

21 511: 0=~0;

encl case

encl
encl
encl
encl
encl
module counter (
hput J, K, clk, clean;
coutput Qo, Q,

is jkff BEQ, ~Q, clk, clean, Qo);
and module.

Objectine 3

Page:

Objective 3 a) State Diagram







TA = BC, TB = C Tc = 1



b) module tff (
input T, clk, clear;
output Co
);
rey Co;
always @ (posedge (clk))
begin
if (~ clear)
begin
O=1'60;
end
else
begin
Cox=TrQ;
end
end module.

module counter (
input T, c/k, clear;
output clo, O, O,

Eff ((cl\_2 && O,), c/k, clear);

Eff (cl\_2, c/k, clear);

tff (t, c/k, clear);
endmodule.

II LAB

Components Regulared.

|      |                       | r.            |                 |
|------|-----------------------|---------------|-----------------|
| 2.No | Name of the Conformal | Specification | Clumbity.       |
| 1    | D-Flip Flop           | IC-7474       | 1               |
| 2    | J-KFIIB-Flop          | IC-7476       | 2               |
| 3    | XOR gates             | IC-7486       | I design        |
| 4    | AND geles             | IC-7408       | Q               |
| 5    | Connectify Wines      | 23 SW G       | As for required |

Conclusion

Obj 1- It can be concluded that 2 D-FlipFlop an used to Design 2 bit Synchronous up counter

Obj 2- It can be concluded that 2 JK Flip Flopare used the Design 2 bit Synchronous of clown

Qbj 3- It can be concluded that 3 7 Flip Flop are used to Design 3 but Synchronous Up Counter.

## IV POST LAB

1001100111

Pager

100 - 4 Flip-Flop will be confilemented

2 State diagram



State table:

| Present State | Next State | Fliff | =lop h | buls |
|---------------|------------|-------|--------|------|
| ABC           | ABC        | DA    | De     | Dc   |
| 000           | 001        | 0     | 0      | )    |
| 001           | 010        | 0     |        | 0    |
| 010           | 100        | X     | 0      | 0    |
| 011           | × × ×      |       | Υ .    |      |
| 100           | 1 10       | ×     | ×      | ×    |
| 101           | × × ×      | ()    | 0      | 0    |
| 110           | 000        | X     | ×      | ×    |
| 1 1 1         | X          |       |        |      |







