Condensation Heat Transfer

Condensation on a Vertical Surface

Heat transfer to a surface occurs by condensation when the surface temperature is less than the saturation temperature of an adjoining vapor.

Film Condensation

- Entire surface is covered by the condensate, which flows continuously from the surface and provides a resistance to heat transfer between the vapor and the surface.
- Thermal resistance is reduced through use of short vertical surfaces and horizontal cylinders
- Characteristic of clean, uncontaminated surfaces.

Dropwise Condensation

Dropwise Condensation

- Surface is covered by drops ranging from a few micrometers to agglomerations visible to the naked eye
- Thermal resistance is greatly reduced due to absence of a continuous film
- Surface coatings may be applied to inhibit wetting and stimulate dropwise condensation.

Film Condensation – Nusselt Analysis Refer to Class Notes

Film Condensation on a Vertical Plate

- Refer to class notes for derivations of momentum and energy equations
- Derived expressions

Film thickness:

$$\delta(x) = \left[\frac{4k_l \mu_l (T_{sat} - T_s) x}{g \rho_l (\rho_l - \rho_v) h_{fg}} \right]^{1/4}$$

Flow rate per unit width:

$$\Gamma \equiv \frac{m}{b} = \frac{g\rho_l(\rho_l - \rho_v)\delta^3}{3\mu_l}$$

Average Nusselt Number:

$$\overline{Nu}_{L} = \frac{\overline{h}_{L}L}{k_{l}} = 0.943 \left[\frac{\rho_{l}g(\rho_{l} - \rho_{v})h_{fg}^{\prime}L^{3}}{\mu_{l}k_{l}(T_{sat} - T_{s})} \right]^{1/4}$$

$$h'_{fg} = h_{fg} (1 + 0.68 \ Ja)$$

$$Ja = \frac{c_p (T_{sat} - T_s)}{h_{fg}} \rightarrow \text{Jakob number}$$

Total heat transfer and condensation rates:

$$q = \overline{h}_L A \left(T_{sat} - T_s \right)$$

$$\stackrel{\square}{m} = \frac{q}{h'_{fg}}$$

• Effects of Turbulence:

Transition may occur in the film and three flow regimes may be identified and delineated in terms of a Reynolds number defined as

$$\operatorname{Re}_{\delta} \equiv \frac{4\Gamma}{\mu_{l}} = \frac{4m}{\mu_{l}b} = \frac{4\rho_{l}u_{m}\delta}{\mu_{l}}$$

Correlations – Laminar to Turbulent

 \triangleright Wave-free laminar region (Re_{δ} < 30):

$$\frac{\overline{h}_L(v_l^2/g)^{1/3}}{k_l} = 1.47 \text{ Re}_{\delta}^{-1/3}$$

$$\text{Re}_{\delta} = \frac{4g\rho_l(\rho_l - \rho_v)\delta^3}{3\mu_l^2}$$

 \triangleright Wavy laminar region $(30 < \text{Re}_{\delta} < 1800)$:

$$\frac{\bar{h}_L (v_l^2 / g)^{1/3}}{k_l} = \frac{\text{Re}_{\delta}}{1.08 \text{ Re}_{\delta}^{1.22} - 5.2}$$

ightharpoonup Turbulent region (Re_{δ}>1800):

$$\frac{\bar{h}_L (v_l^2 / g)^{1/3}}{k_l} = \frac{\text{Re}_{\delta}}{8750 + 58 \text{ Pr}^{-0.5} (\text{Re}_{\delta}^{0.75} - 253)}$$

Calculation procedure:

- Assume a particular flow regime and use the corresponding expression for *h* to determine *Re*
- ➤ If value of *Re* is consistent with assumption, proceed to determination of *h* and *q*
- ➤ If value of *Re* is inconsistent with the assumption, recompute its value using a different expression for *h*, and proceed to determination of *q*

Film Condensation on Radial Systems

• Single tube or sphere:

$$\overline{h}_D = C \left[\frac{g \rho_l (\rho_l - \rho_\upsilon) k_l^3 h_{fg}'}{\mu_l (T_{sat} - T_s) D} \right]^{1/4}$$

Tube: *C* = 0.729 Sphere: *C*=0.826

Vertical stack of N tubes

$$\bar{h}_{D,N} = 0.729 \left[\frac{g \rho_l (\rho_l - \rho_v) k_l^3 h_{fg}'}{N \mu_l (T_{sat} - T_s) D} \right]^{1/4}$$

Dropwise Condensation

• Steam condensation on copper surfaces [Griffith]:

$$q = \overline{h}_{dc} A (T_{sat} - T_s)$$

$$\overline{h}_{dc} = 51,100 + 2044 T_{sat} \qquad 22^{\circ} \text{C} < T_{sat} < 100^{\circ} \text{C}$$

$$\overline{h}_{dc} = 255,500 \qquad T_{sat} > 100^{\circ} \text{C}$$

Boiling Heat Transfer

When does boiling occur?

When <u>heat is added to a liquid</u> from <u>a submerged</u> solid surface which is at a temperature higher than the saturation temperature of the liquid it is <u>usual</u> for a part of the liquid to change phase and become <u>vapour</u>. This change of phase is called BOILING.

Pool boiling

(a) Heat transfer through heater plate at bottom

(b) Heat transfer through immersed heater coil

Flow Boiling

 Liquid is forced to move by an external agency like a pump

Boiling Curve

Nukiyama's Experiment

Nukiyama's Curve – Hysteresis Effect

Pool Boiling - pictures

Animation

https://www.youtube.com/watch?v=N1yZwRcQSZw

Pool Boiling Modes

1. Natural Convection Boiling: $\Delta T_e \le 5$ C

2. Nucleate Boiling: $5C \le \Delta T_e \le 30 C$

3. Transition Boiling: $30C \le \Delta Te \le 120 C$

4. Film Boiling: ∆Te ≥120 C

Correlation – Natural Convection Regime

Natural Convection Boiling: all single phase natural convection correlations are valid

For horizontal wire or cylinder inside a pool of liquid:

$$q'' = \frac{k}{D} \left(T_w - T_s \right) \left\{ 0.36 + \frac{0.518 R a_D^{1/4}}{\left[1 + \left(0.559 / \text{Pr} \right)^{9/16} \right]^{4/9}} \right\} \qquad for \ 10^{-6} < R a_D < 10^9$$

$$= \frac{k}{D} \left(T_w - T_s \right) \left\{ 0.60 + \frac{0.387 R a_D^{1/6}}{\left[1 + \left(0.559 / \text{Pr} \right)^{9/16} \right]^{8/9}} \right\} \qquad for \ 10^9 < R a_D < 10^{12}$$

Correlation: Nucleate boiling

Rohsenow Correlation

$$q_{s}'' = \mu_{l} h_{fg} \left[\frac{g(\rho_{l} - \rho_{v})}{\sigma} \right]^{1/2} \left(\frac{c_{p,l} \left(T_{w} - T_{s} \right)}{C_{s,f} h_{fo} \operatorname{Pr}_{l}^{n}} \right)^{3} \qquad n = 1.0 \text{ for water} \\ = 1.7 \text{ for other liquids}$$

- Rohsenow's correlation is used for horizontal wires, tubes and plates
- $C_{s,f}$ depends on surface fluid combination
 - all properties evaluated at liquid saturation temp

$$q_s^{"}\alpha(T_w-T_s)^3$$

Correlation: Critical Heat Flux

Infinite horizontal surface facing up (Kutateladze, Zuber)

$$q_{\text{max}}'' = \frac{\pi}{24} h_{fg} \rho_{v} \left[\frac{\sigma g(\rho_{l} - \rho_{v})}{\rho_{v}^{2}} \right]^{1/4} \left(\frac{\rho_{l} + \rho_{v}}{\rho_{v}} \right)^{1/2}$$

If the plate is finite size (Lienhard and Dhir)

$$q_{\text{max}}'' = 0.149 h_{fg} \rho_v \left[\frac{\sigma g(\rho_l - \rho_v)}{\rho_v^2} \right]^{1/4}$$

Correlation – Transition regime

Transition Boiling – no suitable correlation

Leidenfrost point

$$q_{\min}'' = Ch_{fg}\rho_{v} \left[\frac{\sigma g(\rho_{l} - \rho_{v})}{(\rho_{l} + \rho_{v})^{2}}\right]^{1/4}$$

Correlation – Stable Film boiling

Film Boiling (similar to film condensation)

For cylinders or spheres

$$\overline{Nu_D} = \frac{\overline{h_{conv}}D}{k_v} = C\left[\frac{g\rho_v(\rho_l - \rho_v)h_{fg}D^3}{\mu_v k_v(T_w - T_s)}\right]^{1/4}$$

$$\overline{h}_{rad} = rac{\mathcal{E}\sigma\left(T_w^4 - T_s^4\right)}{\left(T_w - T_s\right)}$$

$$h'_{fg} = h_{fg} + 0.8C_{p,v}(T_w - T_s)$$

Geometry	\boldsymbol{C}
Cylinder(Hor.)	0.62
Sphere	0.67

The cumulative (and coupled effects) of convection and radiation across the vapor layer $\text{If } \overline{h}_{conv} > \overline{h}_{rad}.$

$$\overline{h}^{4/3} \approx \overline{h}_{conv}^{4/3} + \overline{h}_{rad} \overline{h}^{1/3}$$

$$\bar{h} \approx \bar{h}_{conv} + 0.75 \; \bar{h}_{rad}$$

Summary

Studied different regimes of pool boiling

 Looked at correlations governing heat transfer at each region

 Learnt the concept of Critical or Peak Heat Flux (CHF)

Example Problem

Known: Boiling from outer surface of horizontal cylinder in water

Find: Power dissipation per unit length for the cylinder, q_s'

Schematic:

Example (cont.)

Assumptions: Steady-state, Water exposed to 1 atm, at uniform T_{sat}

Properties: Saturated water, liquid at 100C: ρ_l =1/ v_f =957.9 kg/ m^3 ,

 h_{fg} =2257kJ/kg. Saturated water vapor (T_f =450K): ρ_v =1/ v_v =4.808 kg/ m^3 ,

 $c_{p,v} = c_{p,g} = 2.56 \text{kJ/kgK}, \ k_v = k_g = 0.0331 \text{W/mK}, \ \mu_v = \mu_g = 14.85 \times 10^{-6} \text{Ns/m}^2.$

Analysis:

$$\Delta T_e = T_s - T_{sat} = 255 - 100 = 155C > 120 C$$

Pool film boiling conditions are met

Example (cont.)

Heat transfer rate per unit length is:

$$q_s' = q_s'' \pi D = \overline{h} \pi D \Delta T_e$$

For combined heat transfer by convection + radiation

$$\overline{h}^{4/3} = \overline{h_{conv}}^{4/3} + \overline{h_{rad}} \overline{h}^{1/3}$$

$$\overline{h_{conv}} = 0.62 \left[\frac{k_v^3 \rho_v (\rho_l - \rho_v) g(h_{fg} + 0.8c_{p,v} \Delta T_e)}{\mu_v D \Delta T_e} \right]^{1/4} = 238W / m^2 K$$

$$\overline{h_{rad}} = \frac{\varepsilon \sigma (T_s^4 - T_{sat}^4)}{T_s - T_{sat}} = 21.3W / m^2 K$$

Example (cont.)

$$\overline{h}^{4/3} = 238^{4/3} + 21.3\overline{h}^{1/3}$$

Solve for \bar{h}

$$\overline{h} = 254.1W / m^2 K$$

$$q_s' = q_s''\pi D = \overline{h}\pi D\Delta T_e = 742W/m$$

Thank You!