AOR Dr. Hendrik Kasten Mathematisches Institut

FAKULTÄT FÜR MATHEMATIK UND INFORMATIK

19. November 2021

Modulformen 1 - Übungsblatt 5

Wintersemester 2021/22

Aufgabe 1 (8 Punkte)

Sei $\Gamma \subseteq \operatorname{SL}_2(\mathbb{Z})$ eine Kongruenzuntergruppe und $f,g \in M_k(\Gamma)$ mit $f \cdot g \in S_{2k}(\Gamma)$ Modulformen vom Gewicht $k \in \mathbb{Z}$. Sei weiter

$$\Omega(f,g)(z) := f(z) \cdot \overline{g(z)} (\operatorname{Im} z)^k d\omega(z)$$
 für alle $z \in \mathbb{H}$.

Zeigen Sie die folgenden Aussagen:

(a) Für alle $M \in \mathrm{GL}_2(\mathbb{R})^+$ gilt

$$\Omega(f|_k M, g|_k M)(z) = \Omega(f, g)(M\langle z \rangle).$$

(b) Für alle $M\in \mathrm{GL}_2(\mathbb{Q})^+$ mit $M\Gamma M^{-1}\subseteq \mathrm{SL}_2(\mathbb{Z})$ gilt

$$\left[\overline{\operatorname{SL}_2(\mathbb{Z})}:\overline{\Gamma}\right] = \left[\overline{\operatorname{SL}_2(\mathbb{Z})}:M\overline{\Gamma}M^{-1}\right].$$

(c) Unter den Voraussetzungen von (b) gilt für zwei Spitzenformen $f,g\in S_k(M\Gamma M^{-1})$

$$\langle f|_k M \mid g|_k M \rangle_\Gamma = \langle f \mid g \rangle_\Gamma \quad \text{und} \quad \langle f|_k M \mid g \rangle_\Gamma = \langle f \mid g|_k M^\# \rangle_\Gamma \ ,$$

wobei $M^{\#} := \det(M) \cdot M^{-1}$ die **Adjunkte** zu M ist.

Aufgabe 2 (6 Punkte)

Zeigen Sie, dass die Fourier-Koeffizienten der Spitzenform $\Delta \in S_{12}$ ganze Zahlen sind.

Hinweis: Zeigen Sie dafür zunächst

$$\sigma_3(n) \equiv \sigma_5(n) \bmod (12)$$
 für alle $n \in \mathbb{N}$.

Aufgabe 3 (4 Punkte)

Zeigen Sie $E_4^2=E_8$. Beweisen Sie damit die Gleichung

$$\sigma_7(n) = \sigma_3(n) + 120 \sum_{m=1}^{n-1} \sigma_3(m) \sigma_3(n-m)$$

für alle $n \in \mathbb{N}$.

Abgabe: online über MaMpf bis Freitag, den 26. November 2021, spätestens um 12 Uhr s. t.