Лабораторная работа №7

Эффективность рекламы

Дидусь К.В.

Содержание

Цель работы	5
Задание	6
Выполнение лабораторной работы	7
Теоретическое введение	7
Код программы	10
Результаты	14
Ответы на вопросы	15
1. Записать модель Мальтуса (дать пояснение, где используется данная	
модель)	15
2. Записать уравнение логистической кривой (дать пояснение, что	
описывает данное уравнение)	15
3. На что влияет коэффициент $lpha_1(t)$ и $lpha_2(t)$ в модели распространения	
рекламы	16
4. Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg \alpha_2(t)$	
5. Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$	16
Выводы	17

Список таблиц

Список иллюстраций

Цель работы

Ознакомиться с моделью распространения рекламы

Задание

- 1. Построить график распространения рекламы о салоне красоты
- 2. Сравнить эффективность рекламнои кампании при различных параметрах

Выполнение лабораторной работы

Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{\partial n}{\partial t}$ — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить;

- t время, прошедшее с начала рекламной кампании;
- n(t) число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем. Это описывается следующим образом:

$$\alpha_1(t)(N-n(t))$$

N — общее число потенциальных платежеспособных покупателей

 $\alpha_1(t) > 0$ — характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной

$$\alpha_2(t)n(t)(N-n(t))$$

эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{\partial n}{\partial t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

Код программы

```
import numpy as np
       from scipy.integrate import odeint
       import matplotlib.pyplot as plt
       N0 = 7 # количество людей, знающих о товаре в начальный момен
       N = 1505 # общее число платежеспособных покупателей
       t = np.arange(0, 0.1, 0.001) # временной промежуток
       # функции, отвечающие за платную рекламу (a1)
       def k1(t):
                            #случай 1
           g = 0.68
           return g
                            #случай 2
           g = 0.00001
           return g
       def k3(t):
                            #случай 3
           g = 0.1*np.sin(5*t)
           return g
       # функции, описывающие сарафанное радио (a2)
       def p1(t):
                            #случай 1
           V = 0.00009
           return V
38
39
       def p2(t):
                            #случай 2
           \mathbf{v} = 0.28
           return V
                            #случай 3
       def p3(t):
           v = 0.4*np.cos(3*t)
           return v
       def p4(t):
                            #сравнительный коэффициент для задания
           V = 0.005
49
           return V
       # функции, описывающие уравнения распространения рекламы
       def f1(x, t):
                                #Случай 1
           xd1 = (k1(t) + p1(t)*x)*(N - x)
           return xd1
           f2(x, t): # Случай 2
xd2 = ( k2(t) + p2(t)*x )*( N - x )
       def f2(x, t):
           return xd2
       def f3(x, t):
           xd3 = (k3(t) + p3(t)*x)*(N - x)
           return xd3
       def f4(x, t):
                                \# a1 = 0
           xd4 = (p4(t)*x)*(N - x)
           return xd4
       def f5(x, t):  # a
xd5 = p4(t) *( N - x )
           return xd5
       # решение ОДУ
       x1 = odeint(f1, N0, t)
x2 = odeint(f2, N0, t)
       x3 = odeint(f3, N0, t)
       x4 = odeint(f4, N0, t)
       x5 = odeint(f5, N0, t)
```

\$\$. (рис. @fig:000)

```
Приведу полный код программы (Python):
!! !! !!
lab07: Эффективность рекламы
Created on Fri Mar 26 13:34:42 2021
@author: kirilldi
!! !! !!
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
N0=7~\# количество людей, знающих о товаре в начальный момент времени
N=1505~\# общее число платежеспособных покупателей
t = np.arange(0, 10, 0.1) \# временной промежуток
# функции, отвечающие за платную рекламу (а1)
               #случай 1
def k1(t):
  g = 0.68
  return g
def k2(t):
               #случай 2
  g = 0.00001
  return g
```

```
def k3(t):
              #случай 3
  g = 0.1*np.sin(5*t)
  return g
# функции, описывающие сарафанное радио (а2)
def p1(t):
              #случай 1
  v = 0.00009
  return v
            #случай 2
def p2(t):
  v = 0.28
  return v
              #случай 3
def p3(t):
  v = 0.4*np.cos(3*t)
  return v
def p4(t):
              #сравнительный коэффициент для задания
  v = 0.005
  return v
# функции, описывающие уравнения распространения рекламы
def f1(x, t):
                 #Случай 1
  xd1 = (k1(t) + p1(t)*x)*(N-x)
  return xd1

def f2(x, t): # Случай 2
```

```
xd2 = (k2(t) + p2(t)*x)*(N-x)
   return xd2
def f3(x, t):
                  #Случай 3
  xd3 = (k3(t) + p3(t)*x)*(N-x)
  return xd3
def f4(x, t):
             \# a1 = 0
  xd4 = (p4(t)*x)*(N-x)
  return xd4
def f5(x, t): \# a2 = 0
  xd5 = p4(t) *(N - x)
  return xd5
# решение ОДУ
x1 = odeint(f1, N0, t)
x2 = odeint(f2, N0, t)
x3 = odeint(f3, N0, t)
x4 = odeint(f4, N0, t)
x5 = odeint(f5, N0, t)
plt.plot(t,\,x1,\,label=\,\,'a1>a2\,')\;\#случай 1
plt.plot(t, x2, label='a1 < a2') \# случай 2
plt.plot(t, x3, label='случай 3') # случай 3
plt.legend()
plt.plot(t, x4, label= 'Только сарафанное радио')
```

plt.plot(t, x5, label='Только платная реклама')

plt.legend()

Результаты

- 1. Первый случай: $\alpha_1(t) = 0.68$, $\alpha_2(t) = 0.00009$.
- 2. Второй случай: $\alpha_1(t)=0.00001,$ $\alpha_2(t)=0.28.$ Наибольшая скорость достигается в момент времени 0.011.
- 3. Третий случай: $\alpha_1(t) = 0.1 * sin(5 * t), \ \alpha_2(t) = 0.4 * cos(3 * t).$

График 2 и 3 случая совпал, так как в моем варианте, реклама в этих случаях значительно эффективней первого случая.

\$\$. (рис. @fig:001)

Дополнение графиками эффективности рекламы в случаях a1=0 и a2=0. $\alpha_1(t)=alpha_2(t)=0.005$. Видим что реклама при равных коэффициентах a1,a2 распространяется гораздо медленнее, без помощи "сарафанного радио".

\$\$. (рис. @fig:002)

Ответы на вопросы

1. Записать модель Мальтуса (дать пояснение, где используется данная модель)

Демографическая модель

Скорость роста пропорциональна текущему размеру популяции

$$\frac{\partial x}{\partial t} = \alpha x$$

где x — исходная численность населения, α — некоторый параметр, определяемый разностью между рождаемостью и смертностью. t — время.

2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{\partial x}{\partial t} = \alpha (1 - \frac{x}{x_s}) x$$

где x_s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равно-

весному значению x_s , причем такое поведение структурно устойчиво. Данное уравнение описывает рождаемость и смертность с учетом роста численности.

- 3. На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы
- $lpha_1(t)$ интенсивность рекламной кампании, зависящая от затрат $lpha_2(t)$ интенсивность рекламной кампании, зависящая от сарафанного радио.
- 4. Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg \alpha_2(t)$ При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса.

$$\frac{\partial x}{\partial t} = \alpha x$$

5. Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$ При $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой:

$$\frac{\partial x}{\partial t} = \alpha (1 - \frac{x}{x_s}) x$$

Выводы

Ознакомился с моделью распространения рекламы и построил графики распространения с различными параметрами.