- G*Power covers statistical power analyses for many different statistical tests such as: t test, F test, χ2-test. z test and some exact tests.
- G*Power offers five different types of statistical power analysis:
 - A priori (sample size N is computed as a function of power level 1-β, significance level α, and the to-be-detected population effect size)
 - Compromise (both α and 1- β are computed as functions of effect size, N, and an error probability ratio $q = \beta/\alpha$)
 - Criterion (α and the associated decision criterion are computed as a function of 1-β, the effect size, and N)
 - Post-hoc (1- β is computed as a function of α , the population effect size, and N)
 - Sensitivity (population effect size is computed as a function of α , 1- β , and N)
- G*Power is available for Mac OS X and Windows. G*Power is free.

- G*Power covers statistical power analyses for many different statistical tests such as: t test, F test, χ2-test. z test and some exact tests.
- G*Power offers five different types of statistical power analysis:
 - A priori (sample size N is computed as a function of power level 1-β, significance level α, and the to-be-detected population effect size)
 - Compromise (both α and 1- β are computed as functions of effect size, N, and an error probability ratio $q = \beta/\alpha$)
 - Criterion (α and the associated decision criterion are computed as a function of 1-β, the effect size, and N)
 - Post-hoc (1-β is computed as a function of α, the population effect size, and N)
 - Sensitivity (population effect size is computed as a function of α , 1- β , and N)
- G*Power is available for Mac OS X and Windows. G*Power is free.