Assignment – 2

Data Visualization and Pre-processing

Assignment Date	22 September 2022
Student Name	Mr. G. ABINESH
Student Roll Number	142219106003
Maximum Marks	

TASKS:

- 1. Download the dataset
- 2. Load the dataset

- 3. Perform Below Visualizations.
 - Univariate Analysis

Bi-Variate Analysis

• Multivariate Analysis

4. Perform descriptive statistics on the dataset

```
data
  C+
          RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
         1 15634602 Hargrave 619 France Female 42 2 0.00
                                                                       1 1 1
                                                                                                       101348.88
                                            Spain Female 41
     2
                  15619304
                                           France Female 42
                                                                                                                 1
      3
               4 15701354
                            Boni
                                     699
                                           France Female 39
                                                            1 0.00
                                                                              2
                                                                                      0
                                                                                                        93826.63
                  15737888 Mitchell 850
                                          Spain Female 43 2 125510.82
                                                                                                        79084.10
             9996 15606229 Obijiaku 771 France Male 39 5 0.00
      9995
                                                                                                        96270.64
      9996
                                      516
                                                            10 57369.61
             9997
                  15569892 Johnstone
                                           France Male 35
                                                                                                       101699.77
             9998 15584532 Liu 709 France Female 36 7 0.00
                                     772 Germany Male 42
      9999 10000 15628319 Walker 792 France Female 28 4 130142.79
                                                                                                        38190.78 0
     10000 rows x 14 columns
```

Standard Deviation = 10.49

#To find statistics of all numerical Datas round(data.describe(),2)

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.0
mean	5000.50	15690940.57	650.53	38.92	5.01	76485.89	1.53	0.71	0.52	100090.24	0.2
std	2886.90	71936.19	96.65	10.49	2.89	62397.41	0.58	0.46	0.50	57510.49	0.4
min	1.00	15565701.00	350.00	18.00	0.00	0.00	1.00	0.00	0.00	11.58	0.0
25%	2500.75	15628528.25	584.00	32.00	3.00	0.00	1.00	0.00	0.00	51002.11	0.0
50%	5000.50	15690738.00	652.00	37.00	5.00	97198.54	1.00	1.00	1.00	100193.92	0.0
75%	7500.25	15753233.75	718.00	44.00	7.00	127644.24	2.00	1.00	1.00	149388.25	0.0
max	10000.00	15815690.00	850.00	92.00	10.00	250898.09	4.00	1.00	1.00	199992.48	1.0

```
[32] data.loc[data['EstimatedSalary']>60000]
         RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
          1 15634602
                         Hargrave 619 France Female 42 2 0.00 1 1 1 101348.88 1
              2 15647311
                                     608
                                           Spain Female 41
                                                           1 83807.86
                                                                                                    112542.58
      2 3 15619304 Onio 502 France Female 42 8 159660.80
                                                                                                   113931.57
              4 15701354
                           Boni
                                   699 France Female 39 1 0.00
                                                                           2
                                                                                                    93826.63
      3
      4 5 15737888 Mitchell 850 Spain Female 43 2 125510.82
                                                                                                    79084.10
     9992 9993 15657105 Chukwualuka 726 Spain Male 36 2 0.00
     9994
            9995 15719294 Wood
                                    800 France Female 29
                                                                                                    167773.55
     9995 9996 15606229 Obijiaku 771 France Male 39 5 0.00
                                                                                                   96270.64
            9997 15569892 Johnstone
     9996
                                     516 France Male 35
                                                           10 57369.61
                                                                                                    101699.77
                                                                                                             0
           9999 15682355 Sabbatini 772 Germany Male 42 3 75075.31
                                                                                                    92888.52
     9998
     7039 rows × 14 columns
```

/ [34] data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
7.57			
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtyn	es float64(2) i	nt64(9) object(3)

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

5. Handle the Missing values.

```
/ [36] data.isnull().sum()
      RowNumber
                    0
      CustomerId
                      0
      Surname
      CreditScore
      Geography
      Gender
      Age
                      0
      Tenure
      Balance
      NumOfProducts 0
      HasCrCard 0
IsActiveMember 0
      EstimatedSalary 0
      Exited
      dtype: int64
```

6. Find the outliers and replace the outliers

```
y [39] out = data.quantile(q =(0.25,0.75))
          out

            RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 🥻
       0.25 2500.75 15628528.25 584.0 32.0 3.0 0.00 1.0 0.0 0.0 51002.1100 0.0
       0.75 7500.25 15753233.75 718.0 44.0 7.0 127644.24
                                                                                1.0
                                                                      2.0
                                                                                              1.0 149388.2475 0.0
[41] iq = out.loc[0.75]-out.loc[0.25]
       RowNumber

        RowNumber
        4999.5000

        CustomerId
        124705.5000

        CreditScore
        134.0000

        Age
        12.0000

        Tenure
        4.0000

      Balance 127644.2400
NumOfProducts 1.0000
HasCrCard 1.0000
      HasCrCard 1.0000
IsActiveMember 1.0000
EstimatedSalary 98386.1375
       Exited
       dtype: float64
[42] lower = out.loc[0.25]-1.5*iq
            lower
           RowNumber -4.9905001.
CustomerId 1.544147e+07
CreditScore 3.830000e+02
1.400000e+01
           Tenure -3.000000e+00
Balance -1.914664e+05
NumOfProducts -5.000000e+00
HasCrCard -1.500000e+00
IsActiveMember -1.500000e+00
            EstimatedSalary -9.657710e+04
            Exited
                                       0.000000e+00
            dtype: float64
    [43] upper = out.loc[0.75]+1.5*iq
              upper
                                            1.499950e+04
             RowNumber
                                            1.594029e+07
             CustomerId
             CreditScore
                                           9.190000e+02
             Age
                                             6.200000e+01
             Tenure
                                           1.300000e+01
             Balance
                                            3.191106e+05
             NumOfProducts
                                           3.500000e+00
             HasCrCard
                                             2.500000e+00
             IsActiveMember
                                           2.500000e+00
             EstimatedSalary
                                            2.969675e+05
             Exited
                                              0.000000e+00
             dtype: float64
```

data.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWa """Entry point for launching an IPython kernel.

5.000500e+03 RowNumber CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 5.012800e+00 Tenure Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01

dtype: float64

sns.boxplot(data['Tenure'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7ff5c603a050>

7. Check for Categorical columns and perform encoding.

8. Split the data into dependent and independent variables.

Obijiaku

Sabbatini

Walker

Liu

10000 rows x 3 columns

15569892 Johnstone

```
[56] # Independent
     y = data['Exited']
     y
     0
     1
             0
     2
             1
     3
             0
     4
     9995
             0
     9996
             0
     9997
             1
     9998
             1
     9999
             0
     Name: Exited, Length: 10000, dtype: int64
9. Scale the independent variables
```

```
[58] x= data_main.drop(columns=['Surname'],axis=1)
[59] names = x.columns

√ [60] names

      'EstimatedSalary', 'Exited', 'Geography_France', 'Geography_Germany',
            'Geography_Spain'],
           dtype='object')
[61] from sklearn.preprocessing import scale
     x = scale(x)
  array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.99720391,
              -0.57873591, -0.57380915],
             [-1.7315312 , -0.60653412, -0.44003595, ..., -1.00280393,
              -0.57873591, 1.74273971],
             [-1.73118479, -0.99588476, -1.53679418, ..., 0.99720391,
              -0.57873591, -0.57380915],
             [ 1.73118479, -1.47928179, 0.60498839, ..., 0.99720391,
             -0.57873591, -0.57380915],
             [ 1.7315312 , -0.11935577, 1.25683526, ..., -1.00280393,
              1.72790383, -0.57380915],
            [ 1.73187761, -0.87055909, 1.46377078, ..., 0.99720391,
              -0.57873591, -0.57380915]])
```

```
// [63] x = pd.DataFrame(x,columns=names)
```


10. Split the data into training and testing

COLAB LINK:

 $https://colab.research.google.com/drive/1v5GSQB_R4UiRDTSUiZZweKCYpPN2nblT\#scrollTo=eyzUNIQQvCza$