Parallel Algorithms

Jongseo Lee (KAIST)

Note

Goals & Non-Goals

- Goals
 - Explore about two recent models of parallelism
- Non-Goals
 - Understand everything in the textbook

Definition

- Massively Parallel Computing Model (MPC)
 - What does the MPC consist of?
 - How does the input given to the MPC?
 - How does the MPC output the answer?
 - How does the MPC perform computation?
 - Which parameters of the MPC are important?

Massively Parallel Computing Model (MPC) Definition

- The Massively Parallel Computing Model (MPC) consists of:
 - The input data size N
 - The number of machines M (machines will communicate with each other)
 - The memory size, s words, each machine can hold
- We are mostly interested if $M \cdot s = \Theta(N)$, $M \cdot s = O(N \operatorname{polylog} N)$, etc.
 - Note that $M \cdot s$ is the amount of the available resources

Definition

- Input
 - The input data is split across the M machines arbitrarily
- Output
 - Some machines will be the output machines.
 - The answer will be in the output machines.

Definition

Example - An integer array A[] is given in the form of (i, a_i) across the machines

M ₀ (0, 2) (2, 2) (3, 3) (8, 1) (10, 3)
--

M_1	(4, 0)	(6, 1)	(1, 0)			
-------	--------	--------	--------	--	--	--

|--|

Definition

Example - The output data, prefix sums of the given array are stored across the machines

M_0	(0, 2)	(1, 2)	(2, 4)	(3, 7)	

M ₁	(4, 7)	(5, 8)	(6, 9)	(7, 9)		
----------------	--------	--------	--------	--------	--	--

Massively Parallel Computing Model (MPC) Definition

- In each round of the computation,
 - 1. each machine performs some computation on the local data
 - 2. each machine sends/receives messages to any other machine
 - Note: A machine can send/receive at most s words per round

Massively Parallel Computing Model (MPC) Definition

- Main Parameters
 - The number of machines, M (mostly omitted)
 - The number of communication rounds an algorithm
 - The size of local memory s
 - Problems are easier to solve with larger s. What if $s \gg N$?
 - Typically, $s = O(N^{\varepsilon})$ for $\varepsilon < 1$.

Definition

Definition.

An MPC algorithm is **sublinear** if $s \ll N$. Formally, $s = N^{\varepsilon}$ for some constant $\varepsilon < 1$.

Example.

An MPC algorithm with $s=n^{1+\delta}$ for some $\delta < 1$ on dense graphs is considered to be sublinear.

Example: Computing Prefix Sum

- Input: n pair of integers $(0,a_0),(1,a_1),\cdots,(N-1,a_{N-1})$
- Output: $(i, \sum_{j=0}^{i} a_j)$ for $0 \le i < N$.
- In this example, we assume $M, s = \Theta(N^{0.5})$.

Example: Computing Prefix Sum

• Input: n pair of integers $(0,a_0),(1,a_1),\cdots,(N-1,a_{N-1})$

• Output: $(i, \sum_{j=0}^{i} a_j)$ for $0 \le i < N$.

2	0	2	3	0	1	1	0	1	2	3	4
2	2	4	7	7	8	9	9	10	12	15	19

Example: Computing Prefix Sum

Initial State

N 4	(0, 0)	(0, 0)	(0, 0)	(0.4)	(4.0.0)
M_0	(0, 2)	(2, 2)	(3, 3)	(8, 1)	(10, 3)

M_1 (4, 0)	(6, 1)	(1, 0)			
--------------	--------	--------	--	--	--

M ₂ (7, 0) (11, 4) (5, 1)

Example: Computing Prefix Sum

Communication Round 1: Send (i, A_i) to machine $\left| \frac{Mi}{N} \right|$

M_1	(4, 0)	(5, 1)	(7, 0)	(6, 1)		
-------	--------	--------	--------	--------	--	--

M_2	(9, 2)	(11, 4)	(8, 1)	(10, 3)	

Example: Computing Prefix Sum

Computation Round 1: Sort and compute prefix sum in each machine

M ₁	(4, 0)	(5, 1)	(6, 1)	(7, 0)		
----------------	--------	--------	--------	--------	--	--

M_2	(8, 1)	(9, 2)	(10, 3)	(11, 4)			
-------	--------	--------	---------	---------	--	--	--

Example: Computing Prefix Sum

Computation Round 1: Sort and compute prefix sum in each machine

M_0	(0, 2)	(1, 2)	(2, 4)	(3, 7)		

M ₁	(4, 0)	(5, 1)	(6, 2)	(7, 2)	

M ₂	(8, 1)	(9, 3)	(10, 6)	(11, 10)	

Example: Computing Prefix Sum

Communication Round 2: Send total sum of machine i to machine j(j > i)

Example: Computing Prefix Sum

Computation Round 2: Add the numbers received into prefix sums

M_0 (0, 2) (1, 2) (2, 4) (3, 7)

M_1	(4, 7)	(5, 8)	(6, 9)	(7, 9)		
-------	--------	--------	--------	--------	--	--

Example: Computing Prefix Sum

Example: Computing Prefix Sum

- By taking $M = N^{0.5}$, $s = 2 \times N^{0.5}$, we used
 - $O(N^{0.5})$ machines each of them having $O(N^{0.5})$ words of memory
 - O(1) rounds of communications, with total O(N) words

Algorithms - Maximal Matching

Maximal Matching

Instance

A graph G = (V, E)

Question

Return a matching $M \subseteq E$ with every edge in $E \setminus M$ having an endpoint in M

Algorithms - Maximal Matching

Overview

- Repeat until the number of remaining edges fit into a single machine:
 - Put a subset of edges into a single machine
 - Compute a maximal matching
 - remove matched vertices

Algorithms - Maximal Matching

The algorithm (Note: $s = n^{1+\varepsilon}$)

- Let $G_0 := G$
- For round $r = 0, 1, \dots, R 1$ (Note: $E(G_r) = \emptyset$)
 - Each machine marks each of its edges independently with probability $p=rac{n^{1+arepsilon}}{2m}$
 - Each machine sends marked edges to machine 0
 - Machine 0 computes a maximal matching $M_{\it r}$ and announce matched vertices
 - Remove edges having a matched endpoint and set G_{r+1} as a current graph

Algorithms - Maximal Matching

Fix a round and let m be the number of edges at the start of the round.

Lemma.

With high probability, the number of marked edges fit into a single machine

Lemma.

With high probability, the number of remaining edges is at most $\frac{10m}{n^{\varepsilon}}$

Algorithms - Maximal Matching

Theorem.

The algorithm terminates in $R = O(1/\varepsilon)$ rounds

Proof.

There are at most n^2 edges initially

After $R \leq \log_{n^{\varepsilon}} n^2 = O(1/\varepsilon)$ rounds, due to the second Lemma, there are at most $s = n^{1+\varepsilon}$ edges left.

Algorithms - Connected Components

Connected Components (ConnComp)

Instance

An undirected graph G = (V, E)

Question

Which vertices are in the same connected component?

A solution is a labeling of vertices s.t. $\ell(u) = \ell(v)$ iff there's a path from u to v

Algorithms - Connected Components

Idea for handling sparse graphs: Graph Exponentiation

- Operation: Connect every vertex with vertices of distance ≤ 2
- Repeating the operation $O(\log D)$ steps, each connected component becomes a clique
 - D: diameter of G, the length of the longest shortest path
- Problem: required memory of a single machine can be up to $\Omega(n^2)$

Algorithms - Connected Components

Idea for handling dense graphs: Label Contraction

- Operation
 - Mark each vertex independently with prob. p
 - Relabel each unmarked vertex with a marked neighbor
 - The denser the graph, the smaller the value of p required for the contraction

Algorithms - Connected Components

The Algorithm: Putting them together (Rough Sketch)

- Repeat the following phase:
 - 1. Perform the graph exponentiation, collapse the vertices into a supernode
 - 2. Perform label contraction
- Choosing the appropriate p allows us to obtain a sublinear algorithm having $O(\log D \cdot \log \log_{m/n} n)$ round complexity
 - Each phase takes $O(\log D)$ rounds
 - $O(\log \log_{m/n} n)$ phases suffice

What the MPC can't do

2-Cycle Problem

- Instance: A graph that is either one cycle or the union of two cycles
- Question: Determine if the graph is one cycle or the union of two cycles

2-Cycle Conjecture

Any sublinear MPC algorithm for the 2-Cycle problem requires $\Omega(\log n)$ rounds

Furthermore, it is conjectured to hold even for the problem of distinguishing

- A cycle of length n
- Or the two cycles of length n/2

What the MPC can't do

Theorem. Assuming 2-Cycle conjecture, any sublinear MPC for undirected connectivity problem requires $\Omega(\log n)$ rounds

Proof. Reduction from 2-Cycle problem to undirected connectivity problem

- consisting of one cycle → connected
- consisting of two cycles → disconnected

What the MPC can't do

Component-stable MPC algorithms for a graph problem

 The output of each vertex depends only on the connected component that it belongs to

What the MPC can't do

Theorem. Assuming 2-Cycle conjecture, following holds for sublinear component-stable MPC algorithms

- Maximal matching requires $\Omega(\log\log n)$ rounds (including its constant approximation)
- For every constant c, c-coloring of a cycle requires $\Omega(\log \log^* n)$ rounds
- Any constant approximation for Vertex Cover requires $\Omega(\log\log n)$ rounds
- (Using more assumptions) ($\Delta+1$)-coloring of a graph requires $\Omega(\sqrt{\log\log n})$ rounds

Adaptive Massively Parallel Model (AMPC) Definition

The Adaptive Massively Parallel Model (AMPC) is basically the MPC model but with shared random access memory

- In the i-th round, each machine can read data from random access memory D_{i-1} and write to D_i
 - D_i s are common for all machines
- Each machine can perform $\leq S$ reads and $\leq S$ writes in a single round
 - Note: S is different from s

Clearly, the AMPC is at least as strong as the MPC.

- Suppose there's a function $g: X \to X$ and $\{(x, g(x)) : x \in X\} \subseteq D_{i-1}$.
- Then, given $y \in X$ and k = O(S), a machine can compute $g^k(y)$.

What the AMPC can do better than the MPC

For now, 2-Cycle problem refers to the problem of distinguishing between:

- A single cycle on *n* vertices
- Two cycles on n/2 vertices each

We aim to derive an AMPC algorithm solving 2-Cycle problem in O(1) rounds with high probability

What the AMPC can do better than the MPC

The Algorithm: $s = O(n^{\varepsilon})$ (sublinear) and takes $O(1/\varepsilon) = O(1)$ rounds

ALGORITHM 1: SHRINK($G = (V, E), \delta, t$)

- (1) For $i := 1, \ldots, t$:
 - (a) Sample each vertex independently with probability $n^{-\delta/2}$. Denote the set of sampled vertices by M. Randomly distribute the vertices of M to the machines.
- (b) For each sampled vertex v traverse the cycle in each direction until a sampled vertex is reached. Let l_v and r_v be the sampled vertices, where the each of two traversals finishes.
- (2) Return the graph $(M, \{xl_x \mid x \in M\} \cup \{xr_x \mid x \in M\})$.

ALGORITHM 2: 2-Cycle(G = (V, E))

- (1) $G' := SHRINK(G, \epsilon, O(1/\epsilon))$
- (2) Solve the 2-Cycle problem on G', which has size $O(n^{\epsilon})$ w.h.p. on a single machine.

What the AMPC can do better than the MPC

Lemma.

Let G be a graph consisting of cycles and n := |V(G)|. Fix an iteration from $SHRINK(G, \varepsilon, O(1/\varepsilon))$.

If the size of a cycle was $\Omega(n^{\varepsilon})$ at the beginning of the iteration, its size shrinks by at least $\Omega(n^{\varepsilon/2})$ times after the iteration w.h.p.

Lemma.

After the shrink operation, the length of each cycle becomes $O(n^{\varepsilon})$ w.h.p.

Lemma.

Total communication of each machine is $O(n^{\varepsilon})$ in each round w.h.p.

What the AMPC can do better than the MPC

Problem	AMPC	MPC
Connectivity	$O(\log \log_{m/n} n)$	$O(\log D + \log \log_{m/n} n)$ [10]
Minimum spanning tree	$O(\log \log_{m/n} n)$	$O(\log n)$
2-edge connectivity	$O(\log \log_{m/n} n)$	$O(\log D \cdot \log \log_{m/n} n)$ [2]
Maximal independent set	O(1)	$\widetilde{O}(\sqrt{\log n})$ [25]
2-Cycle	O(1)	$O(\log n)$
Forest Connectivity	O(1)	$O(\log D \cdot \log \log_{m/n} n)$ [2]

Fig. 1. Round complexities of our algorithms in the AMPC model compared to the state-of-the-art MPC algorithms. D denotes the diameter of the input graph. We consider the setting where the space per machine is sublinear in the number of vertices, that is $S = O(n^{\epsilon})$ for constant $\epsilon < 1$.

What the AMPC can't do

Theorem. (Note: 2-Cycle problem refers to the original 2-Cycle problem)

- Any deterministic AMPC algorithm for 2-Cycle problem takes $\geq \frac{1}{2} \log_S(n/2)$ rounds
 - If $S=n^{\varepsilon}$, the number of rounds is $\Omega(1/\epsilon)$
- Any good (informal) randomized AMPC algorithm for 2-Cycle takes $\geq \frac{1}{2} \log_S(n/2)$ rounds
 - If $S = n^{\varepsilon}$, the number of rounds is $\Omega(1/\epsilon)$

References

- Computational Intractability: A Guide to Algorithmic Lower Bounds <u>https://hardness.mit.edu/</u>
- S. Behnezhad et al. Massively Parallel Computation via Remote Memory Access. ACM Transactions on Parallel Computing, Vol. 8, No. 3
- Massively Parallel Algorithms
 http://people.csail.mit.edu/ghaffari/MPA19/Notes/MPA.pdf