ECG Classification with Deep Unfolding Variable Projection Network

Gergő Bognár, Péter Kovács

Department of Numerical Analysis ELTE Eötvös Loránd University Budapest, Hungary

CinC 2024

This project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Project no. K146721 and TKP2021-NVA-29 have been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the K.23 "OTKA" and the TKP2021-NVA funding schemes.

Introduction •0000

- Introduction

Methodology 00000 Results

Motivations

Tasks

- Biomedical signal processing via modeling and machine learning
- ECG heartbeat classification for arrhythmia detection

Expectations

Accuracy, efficiency, explainability

Prediction techniques

Introduction

00000

Introduction
000●0Methodology
0000Results
000Summary
000

Prediction techniques

Model-based machine learning

Advantages

- Bridge between model-based direct methods and machine learning
- Domain knowledge incorporation
- Model-based representation learning
- Compact, low-dimensional, optimized representation
- Interpretable parameters, explainable representation

Challenges

- Why? modeling vs. learning
- What? model selection, parametrization, mathematical description
- How? specialized architecture development

- Introduction
- 2 Methodology
- Results
- 4 Summary

Variable projections¹ (VP, VarPro)

Separable non-linear least squares

- Parametric function system: $\Phi_k(\theta) \in \mathbb{R}^m$, θ : non-linear system parameters
- Non-linear modeling problem:

$$x \approx \hat{x} = \sum_{k=1}^{n} c_k \Phi_k(\theta) = \Phi(\theta)c, \qquad r(c, \theta) := \|x - \Phi(\theta)c\|_2^2 \to \min_{c, \theta}$$

• VP functional. Hilbert space approximation:

$$r_2(\theta) := \|x - \Phi(\theta)\Phi^+(\theta)x\|_2^2 \to \min_{\theta}, \qquad c = \Phi^+(\theta)x$$

- $\Phi^+(\theta)$: Moore–Penrose pseudoinverse of matrix $\Phi(\theta)$
- Gradient-based optimization possible (gradient descent, Gauss-Newton, Levenberg-Marquardt, ...)

¹G. H. Golub, V. Pereyra: The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate, SIAM Journal on Numerical Analysis, 1973

VPNet: Variable Projection Networks²

- Model-based neural network with VP representation learning
- VP layers: VP projections for feature learning:

$$x \mapsto f^{(\text{vp})}(x) = \Phi^+(\theta)x = c$$
 (classification), or $x \mapsto f^{(\text{vp})}(x) = \Phi(\theta)\Phi^+(\theta)x = \hat{x}$ (regression)

• Different variants: autoencoder, spiking NN, SVM, ...

²P. Kovács, G. Bognár, C. Huber, M. Huemer: VPNet: Variable Projection Networks, International Journal of Neural Systems, 2022

Deep unfolding

Idea

• Projected gradient descent:

$$\theta^{(k+1)} := \Pi \left(\theta^{(k)} - \delta \cdot \nabla_{\theta} \|x - \hat{x}\|_{2}^{2} \right)$$

Unfolding iterations to NN layers

$$\theta^{(k+1)} := \mathsf{MLP}\left(\theta^{(k)} - \delta \cdot \nabla_{\theta} \|x - \hat{x}\|_2^2\right)$$

• Representation learning, combination with dense layers

Deep unfolding layer structure³

³N. Samuel, T. Diskin, A. Wiesel: Learning to Detect, IEEE Trans. Sign. Proc., 2019

Proposed method

Original VPNet

Deep unfolding variable projection network

- ullet Motivation: expand VPNet to learn to learn (sic!) system parameters heta
- Unfolding the VP gradient iteration:

$$\theta^{(k+1)} := \mathsf{MLP}\left(\theta^{(k)} + 2\delta\left(x - \Phi(\theta)\Phi^{+}(\theta)x\right)^{T}\mathbf{D}\Phi(\theta)\Phi^{+}(\theta)x\right)$$

• Exact gradient (and gradient of gradient) computation for numerical stability

- 1 Introduction
- 2 Methodology
- Results
- 4 Summary

ECG application

Task

- ECG heartbeat classification on MIT-BIH Arrhythmia Database (PhysioNet)
- 5 AAMI classes, inter-patient paradigm (DS1 and DS2)⁴

Configuration

- Network input: preprocessed and segmented heartbeats
- Function system: combination of adaptive Hermite functions $\Phi_k(\tau,\lambda;x) := \sqrt{\lambda} \cdot \Psi_k\left(\lambda(x-\tau)\right) \quad (x \in \mathbb{R}, \tau \in \mathbb{R} \colon \text{translation}, \lambda > 0 \colon \text{dilation})$
- Light-weight models: 2 system parameters, 1-3 unfolded layers, 4-16 linear coefficients, 67-685 NN weights
- RR interval information skip-connected to dense layers

⁴P. de Chazal, M. O'Dwyer, R. B. Reilly: Automatic classification of heartbeats using ECG morphology and heartbeat interval features, IEEE Trans Biomed Eng, 2004

Results

Method	Description		Accuracy
de Chazal et al.	Waveform + RR	LD	86.1%
Llamado et al.	Waveform + wavelet + RR	LD	93%
Ye et al.	Wavelet + ICA + RR	SVM	86%
Dózsa et al.	Hermite VP (LC $+$ NLP $+$ PRD) $+$ RR	SVM	93.6%
Bognár et al.	$Rational\;VP\;(LC+NLP)+RR$	SVM	94.5%
	Hermite VPNet		91.9%
	Hermite $VPNet + RR$		93.2%
Proposed	Hermite VP Unfold		93.5%
Proposed	Hermite VP Unfold $+$ RR		94.7%

Selected state-of-the-art: 5-class AAMI, inter-patient, complete database

- Summary

Summary

- Model-based NN architecture with variable projections and deep unfolding
- Compact, low-dimensional representation learning
- Exact gradient computation, efficient implementation
- Application for ECG heartbeat classification for arrhythmia detection
- Explainable representation, parameters related to ECG morphology

Thank you for your attention!