Compiler Design

Week - 9

Topic:

Implementation of LR(0)

AIM:

TO FIND LR(0) ITEMS OF GIVEN GRAMMAR IN C++.

ALGORITHM:

- Start with C0 by including all marked productions [$S \rightarrow .\alpha$]
- Compute the closure of the item set C0 by If [A \rightarrow . X α 2] where X \in Vn, we include in C0 all items of the form [X \rightarrow . β]
- Perform a read operation on items in an item set,

e.g. if [$A \rightarrow \alpha . X\beta$] is in the item set, then read X yielding a new item set whose initial member is [$A \rightarrow AX.\beta$].

• Compute the closure of the new item set.

If [A $\rightarrow \alpha 1$.X $\alpha 2$] where X \in Vn, we include in C0 all items of the form [X \rightarrow . β].

• Continue reading until all s have traveled through all item sets.

Code:

```
#include<iostream>
    #include<string.h>
    using namespace std;
    char prod[20][20],listofvar[26]="ABCDEFGHIJKLMNOPQR";
    int novar=1,i=0,j=0,k=0,n=0,m=0,arr[30];
    int noitem=0;
    struct Grammar
        char rhs[8];
    }g[20],item[20],clos[20][10];
    int isvariable(char variable)
        for(int i=0;i<novar;i++)</pre>
            if(g[i].lhs==variable)
    void findclosure(int z, char a)
        int n=0,i=0,j=0,k=0,l=0;
        for(i=0;i<arr[z];i++)</pre>
            for(j=0;j<strlen(clos[z][i].rhs);j++)</pre>
                if(clos[z][i].rhs[j]=='.' && clos[z][i].rhs[j+1]==a)
                    clos[noitem][n].lhs=clos[z][i].lhs;
                    strcpy(clos[noitem][n].rhs,clos[z][i].rhs);
                    char temp=clos[noitem][n].rhs[j];
                    clos[noitem][n].rhs[j]=clos[noitem][n].rhs[j+1];
                    clos[noitem][n].rhs[j+1]=temp;
                    n=n+1;
        for(i=0;i<n;i++)</pre>
            for(j=0;j<strlen(clos[noitem][i].rhs);j++)</pre>
                if(clos[noitem][i].rhs[j]=='.' && isvariable(clos[noitem][i].rhs[j+1])>0)
                    for(k=0;k<novar;k++)</pre>
                        if(clos[noitem][i].rhs[j+1]==clos[0][k].lhs)
                                if(clos[noitem][1].lhs==clos[0][k].lhs &&
strcmp(clos[noitem][1].rhs,clos[0][k].rhs)==0)
                            if(1==n)
                                clos[noitem][n].lhs=clos[0][k].lhs;
                            strcpy(clos[noitem][n].rhs,clos[0][k].rhs);
```

```
n=n+1;
         arr[noitem]=n;
         int flag=0;
         for(i=0;i<noitem;i++)</pre>
             if(arr[i]==n)
                 for(j=0;j<arr[i];j++)</pre>
                     for(k=0;k<arr[i];k++)</pre>
                         if(clos[noitem][k].lhs==clos[i][k].lhs &&
strcmp(clos[noitem][k].rhs,clos[i][k].rhs)==0)
                             c=c+1;
                     if(c==arr[i])
                         flag=1;
         if(flag==0)
            arr[noitem++]=n;
    int main()
         cout<<"ENTER THE PRODUCTIONS OF THE GRAMMAR(0 TO END) :\n";</pre>
             cin>>prod[i++];
         }while(strcmp(prod[i-1],"0")!=0);
         for(n=0;n<i-1;n++)</pre>
            m=0;
            j=novar;
             g[novar++].lhs=prod[n][0];
             for(k=3;k<strlen(prod[n]);k++)</pre>
                 if(prod[n][k] != '|')
                 g[j].rhs[m++]=prod[n][k];
                 if(prod[n][k]=='|')
                     g[j].rhs[m]='\0';
                     j=novar;
                     g[novar++].lhs=prod[n][0];
         for(i=0;i<26;i++)</pre>
             if(!isvariable(listofvar[i]))
```

```
g[0].lhs=listofvar[i];
char temp[2]={g[1].lhs,'\0'};
strcat(g[0].rhs,temp);
cout<<"\n\n augumented grammar \n";</pre>
for(i=0;i<novar;i++)</pre>
    cout<<endl<< g[i].lhs <<"->" <<g[i].rhs<<" ";</pre>
for(i=0;i<novar;i++)</pre>
    clos[noitem][i].lhs=g[i].lhs;
    strcpy(clos[noitem][i].rhs,g[i].rhs);
    if(strcmp(clos[noitem][i].rhs, "e")==0)
        strcpy(clos[noitem][i].rhs,".");
        for(int j=strlen(clos[noitem][i].rhs)+1;j>=0;j--)
            clos[noitem][i].rhs[j]=clos[noitem][i].rhs[j-1];
        clos[noitem][i].rhs[0]='.';
arr[noitem++]=novar;
for(int z=0;z<noitem;z++)</pre>
    char list[10];
    int 1=0;
    for(j=0;j<arr[z];j++)</pre>
        for(k=0;k<strlen(clos[z][j].rhs)-1;k++)</pre>
            if(clos[z][j].rhs[k]=='.')
                 for(m=0;m<1;m++)</pre>
                     if(list[m]==clos[z][j].rhs[k+1])
                         break;
                 if(m==1)
                     list[1++]=clos[z][j].rhs[k+1];
    for(int x=0;x<1;x++)</pre>
        findclosure(z,list[x]);
cout<<"\n THE SET OF ITEMS ARE \n\n";</pre>
for(int z=0;z<noitem;z++)</pre>
    cout<<"\n I"<<z<<"\n\n";</pre>
    for(j=0;j<arr[z];j++)</pre>
        cout<<clos[z][j].lhs<<"->"<<clos[z][j].rhs<<"\n";</pre>
```

Manual Calculation:

Table	0):	-	Goto		-1
states	a Action	\$	A	S	-
70	\$3 54	a coant	2	-	
I,		accept	5		
J ₂	S3 S4.		6		
1 3	\$3 SH 13 13	r.3			1
I ₄ I ₅	Y3 Y3 Y1 Y1	V,			
I ₆	r ₂ r ₂	Y2			
it reduce	s present	t in t	that .	state redu	ther
ymbols.					

Pusing	LR(O): Stack		=aabb\$				
check in parsing table.							
skeps	Parsing Stack	1/P	Action				
1	\$0.	aabb \$	Shift 3 -	initial			
2	\$083	abb\$	Shift 3 -				
3	\$00303	bb\$	Shift 4	-			
Ч	\$00303(64)	b\$.	reduce r3	3			
5	\$0030BAB	<u>b</u> \$	$(A \rightarrow b)$ reduce r_2	3 with			
6	\$003A6	<u>b</u> \$	A > AA	get Shift 6.			
1.0		3/	reduce 12 A -> aA	el write at end.			
7	\$0A2	1	shift 4	2010			
8	\$0A264	1	seduce 13	T. B. C.			
19	+ ON O LOO	\$	A > b	100			
7	\$ 0A 2 00 A 5	-	P & I AA	1=			
1 10	1 +601	1 3	SAA				
1 10	\$657	1	1-1-	192			
1	11 \$ 5051	\$	Accept	138			
		0					
1000	9	1	22	19			

```
| Moneton | Constant | Style | Austral | Style | Constant | Style | Style | Constant | Style | Style | Style | Constant | Style | Style
```

Result: LR(0) Succefully implemented.