TRAVAUX DIRIGÉS OS4 Grandeurs et dipôles électriques

Niveau 1

*Exercice 1. Lois de Kirchhoff et lois d'Ohm

- 1. Écrire la loi des mailles dans la maille ABCD afin d'établir la relation liant e, u_1 , u_2 , u_3 et u_L .
- 2. En déduire la relation liant E, L, R_1 , R_2 , R_3 , i et j.
- 3. Quelle relation lie i, j et η ?
- 4. Exprimer u_4 en fonction de R_4 et η .
- 5. Existe-t-il des points qui soient au même potentiel?

*Exercice 2. Étude d'une pile

On dispose d'un voltmètre idéal (résistance d'entrée Rv infinie) et d'un résistor de résistance $R=10~\Omega$. On cherche à déterminer les caractéristiques d'une pile.

- 1. On branche d'abord le voltmètre aux bornes de la pile : l'écran du voltmètre affiche la valeur $4.5~\rm V$. Que mesure le voltmètre ?
- 2. On branche ensuite le résistor aux bornes de la pile. Le voltmètre branché également aux bornes de la pile affichet-il toujours 4,5 V ? Justifier.
- 3. On constate en fait que lorsqu'on branche le résistor aux bornes de la pile, le voltmètre affiche la valeur $3,0~\rm V$. Calculer la résistance interne de la pile.
- 4. Que se passe-t-il si on inverse les pôles du voltmètre?

Exercice 3. Détermination de tensions

Déterminer les expressions littérales et calculer les valeurs numériques des tensions U_1 et U_2 .

 $\underline{\mathrm{Donn\acute{e}s}}:\ E=10\ \mathrm{V}\ ,\ R_{_{\!1}}=R_{_{\!2}}=1,0\ \mathrm{k}\Omega,\ R_{_{\!3}}=3,0\ \mathrm{k}\Omega$

*Exercice 4. Résistance équivalente

Déterminer la résistance équivalente RAB du dipôle AB ci-dessous (à gauche).

Exercice 5. Résistances équivalentes

On considère le réseau ci-dessus (à droite) avec $R_1=R_2=2R$, $R_3=R_4=R$ et $R_5=\frac{R}{2}\,.$

- 1. Déterminer la résistance équivalente $R_{\ell qAB}$ du réseau vu depuis les points A et B, en considérant qu'aucun courant n'entre ni ne sort par les points C et D.
- 2. Déterminer la résistance équivalente $R_{\ell qCD}$ du réseau vu depuis les points C et D, en considérant qu'aucun courant n'entre ni ne sort par les points A et B.

*Exercice 6. Montage potentiométrique

On considère le montage potentiométrique ci-contre. La résistance totale R du potentiomètre est placée entre les points A et B tandis que son curseur est relié au point C de sorte que la résistance entre B et C soit égale à xR (avec $0 \le x \le 1$).

- 1. Exprimer U en fonction des données en utilisant la notion de diviseur de tension.
- 2. Retrouver le résultat précédent en utilisant la loi des mailles. On connecte maintenant entre les points B et C une résistance utilisatrice R_u .
- 3. Déterminer la nouvelle valeur de *U* en fonction des données.
- 4. À quelle condition portant sur la résistance du potentiomètre peut-on utiliser, en première approximation, le résultat de la première question ?

Niveau 2

Exercice 7. Utilisation des lois de Kirchhoff

Exprimer, à l'aide des lois de Kirchhoff, l'intensité i du courant dans la branche centrale orientée, en fonction des grandeurs du circuit.

Exercice 8. Générateur équivalent

1. Montrer que le réseau situé à gauche des points A et B est équivalent à un unique générateur de tension de fem E' et de résistance interne R', dont les expressions sont à déterminer en fonction de E, R_1 , R_2 et R_3 .

2. Exprimer la tension U_4 en fonction de E', R' et R_4 .

Exercice 9. Point de fonctionnement d'un circuit

On a relevé la caractéristique statique d'un dipôle D en convention récepteur.

U(V)	0	2,0	4,0	6,0	6,2	6,4	6,6	6,8	7,0	7,2
I(mA)	0	0	0	0	50	100	150	200	250	300

- 1. Tracer la caractéristique I = f(U). Échelles : 1 V/cm ; 50 mA/cm.
- 2. Comment se comporte ce dipôle D pour U entre 0 et 6,0 V?
- 3. Pour U entre 6,0 V et 7,2 V, déterminer l'équation de la courbe I = f(U) du dipôle, puis en déduire la relation U = f(I). En déduire le modèle équivalent de Thévenin de ce dipôle D.

On associe à ce dipôle une pile de fem E = 12 V et de résistance interne $r = 40 \Omega$.

4. Déterminer le point de fonctionnement du circuit lorsque le dipôle est connecté à la pile, par deux méthodes : graphiquement et analytiquement.

Transfert de puissance Exercice 10.

On considère un générateur de f.e.m. E=10 V et de résistance interne $r = 5,0 \Omega$ alimentant un résistor de résistance $R = 5.0 \Omega$.

- 1. Déterminer la tension U aux bornes de R et l'intensité I du courant qui le traverse.
- 2. Calculer les puissances dissipées par effet Joule.
- 3. Calculer la puissance reçue par le générateur idéal de tension.
- 4. Faire un bilan de puissance pour l'ensemble du circuit.

*Exercice 11. Bilan de puissance dans un moteur à courant continu

On modélise un petit moteur par un dipôle AB, association en série d'un générateur idéal de tension de f.e.m. E, et d'un résistor de résistance $r = 50 \Omega$.

Quand on impose la tension d'alimentation U=12 V à ses bornes, le moteur tourne à la fréquence de rotation $n_1 = 20 \text{ tr.s}^{-1}$ et il est traversé par un courant d'intensité $I_1 = 0.10 \text{ A}$.

- 1. Calculer la f.e.m. E_1 du moteur.
- 2. Calculer le rendement η_1 du moteur défini comme le rapport entre la puissance mécanique $\mathcal{L}_{m\acute{e}cal} = E_1 I_1$ et la puissance totale \mathcal{L}_{tot} consommée par le moteur.
- 3. Le moteur est utilisé pour soulever une charge pesante. La f.e.m. est proportionnelle à la fréquence de rotation du moteur et l'intensité du courant est proportionnelle à la masse de la charge. Calculer la fréquence n_2 de rotation, l'intensité I_2 et le rendement η_2 si on doublait la masse de la charge à tension d'alimentation constante.
- 4. Calculer l'intensité I_3 du courant si, pour une raison quelconque, le moteur était empêché de tourner. Quelle serait la puissance totale \mathscr{G}_{tot3} consommée par le moteur? Sous quelle forme?
- 5. Quelle serait la fréquence n_4 de rotation du moteur si le câble de traction de la charge venait à casser ? Quelle serait la puissance totale \mathcal{G}_{tot4} consommée par le moteur?
- 6. Pour ralentir la rotation, on diminue progressivement d'alimentation, la charge étant celle de la question 1. Calculer la tension seuil ou tension de démarrage U_d en deçà de laquelle le moteur ne tourne plus.

SOLUTIONS

*Exercice 1. Lois de Kirchhoff et lois d'Ohm

1. Loi des mailles dans la maille ABCD parcourue dans le sens horaire :

$$u_1 + e - u_3 + u_L - u_2 = 0$$

- 2. Pour écrire les <u>lois d'Ohm</u> correctement, il faut regarder si les dipôles sont représentés en <u>convention récepteur ou générateur</u> :
- Résistance R_1 en convention récepteur donc $u_1 = R_1 i$
- ightharpoonup Résistance R_2 en convention générateur donc $u_2 = -R_2i$
- Finductance L en convention récepteur donc $u_L = L \frac{di}{dt}$
- Résistance R_3 en convention récepteur donc $u_3 = R_3 j$
- En reportant dans la relation précédente, on a : $R_1 i + e R_3 j + L \frac{di}{dt} + R_2 i = 0$
- 3. La <u>loi des nœuds</u> appliquée en C donne : $i + j + \eta = 0$
- 4. Le courant circulant dans R_4 est η . La <u>loi d'Ohm</u> appliqué à R_4 en convention générateur est : $u_4 = -R_4 \eta$.
- 5. Les points B et E étant reliés par un fil, ils sont au <u>même potentiel</u>.

*Exercice 2. Étude d'une pile

1. Le voltmètre étant <u>idéal</u>, sa résistance interne Rv est <u>infinie</u>: donc aucun courant ne circule, ni dans le voltmètre, ni dans la pile. Le voltmètre mesure donc <u>la tension à vide</u>: $E=4,5\ V$

- 2. La pile débite un courant I qui traverse la résistance R. Le voltmètre ne mesure plus la tension à vide, mais une <u>tension en charge</u> U telle que U < E.
- 3. Le <u>modèle équivalent de Thévenin</u> de la pile est un générateur de tension idéal de f.e.m. E en série avec une résistance interne r. Le voltmètre étant idéal, il n'absorbe aucun courant. Le courant I circule dans la maille constituée de E, r et R en série (cf. schéma ci-contre).

- ightharpoonup La loi des mailles donne : $E-U_r-U=0$ soit $E=U_r+U$
- \triangleright Lois d'Ohm appliquée à r et R en convention récepteur : $U_r = rI$ et U = RI
- For remplaçant dans la loi des mailles, on obtient: $I = \frac{E}{r+R}$ puis

$$U = RI = \frac{R}{r+R} E < E.$$

On en déduit l'expression de la résistance interne r de la pile :
$$r = R \frac{E - U}{U}$$
A.N : $r = 5,0$ Ω

4. En inversant les pôles du voltmètre, on mesure à vide -4,5 V et en charge -3.0 V.

Détermination de tensions Exercice 3.

$$R_{\acute{e}q} = \frac{R_{\rm l}R_{\rm 3}}{R_{\rm l} + R_{\rm 3}} = 0.75~{\rm k}\Omega \,, \; U_{\rm 2} = \frac{R_{\rm 2}}{R_{\rm 2} + R_{\acute{e}q}} E = 5.7~{\rm V} \,, \; U_{\rm 1} = \frac{R_{\acute{e}q}}{R_{\rm 2} + R_{\acute{e}q}} E = 4.3~{\rm V} \,. \label{eq:Reference}$$

*Exercice 4. Résistance équivalente

➤ On associe d'abord les résistances R et 2R, qui sont <u>en</u> <u>série</u> et donc équivalentes à 3R. On associe également les résistances R et 5R, qui sont <u>en série</u> et donc équivalentes à 6R. Le schéma équivalent du réseau est alors représenté ci-contre.

➤ Dans le circuit équivalent, les trois résistances, 3R, R et 6R, sont <u>en parallèle</u>: elles sont équivalentes à une résistance R_{AB} telle que : $\frac{1}{R_{AB}} = \frac{1}{3R} + \frac{1}{R} + \frac{1}{6R} = \frac{9}{6R} = \frac{3}{2R}$ donc $R_{AB} = \frac{2}{3}R$

$$c R_{AB} = \frac{2}{3} R$$

OU BIEN:

On détermine la résistance équivalente à R et 3R en parallèle :

$$R_{eq1} = \frac{R \cdot 3R}{R + 3R} = \frac{3}{4}R$$

On détermine ensuite la résistance équivalente à 6R et R_{eq1} en parallèle :

$$R_{AB} = \frac{6R \cdot R_{\acute{e}q1}}{6R + R_{\acute{e}q1}} = \frac{6R\frac{3}{4}R}{6R + \frac{3}{4}R} = \frac{18}{27}R \text{ soit } \boxed{R_{AB} = \frac{2}{3}R}$$

Exercice 5. Résistances équivalentes

1.
$$R_{éqAB} = \frac{6}{5}R$$
 2. $R_{éqCD} = \frac{9}{20}R$

*Exercice 6. Montage potentiométrique

1. DDT :
$$xR$$
 et $(1-x)R$ sont en série : $U = \frac{xR}{xR + (1-x)R}E = \frac{xR}{R}E$ soit $U = xE$

2. Loi des mailles :
$$E = RI$$
 soit $I = \frac{E}{R}$

Loi d'Ohm (convention récepteur) : $U = xRI = xR\frac{E}{R}$ soit $\overline{U = xE}$

3. U est la tension entre B et C, mais, entre B et C, il y a deux résistances en parallèle : xR et R_u .

Association des résistances en parallèle :
$$R_{\acute{e}q} = \frac{R_u x R}{R_u + x R}$$

$$DDT : U = \frac{R_{\acute{e}q}}{R_{\acute{e}q} + (1-x)R} E = \frac{1}{1 + (1-x)\frac{R}{R_c}} E \text{ et } \frac{R}{R_{\acute{e}q}} = \frac{R_u + x R}{x R_u}$$

$$U = \frac{1}{1 + (1 - x)\frac{R_u + xR}{xR_u}}E = \frac{x}{x + (1 - x)\frac{R_u + xR}{R_u}}E = \frac{x}{x + (1 - x) + x(1 - x)\frac{R}{R_u}}E$$

$$U = \frac{x}{1 + x(1 - x)\frac{R}{R}}E$$

4. On retrouve le résultat de la question 1 si $x(1-x)\frac{R}{R_u}$ << 1 soit x(1-x)R << R_u . Il faut donc que R << R_u .

Exercice 7. Utilisation des lois de Kirchhoff

$$i = \frac{R_2 e_1 + R_1 e_2}{R_1 R_2 + R R_1 + R R_2}$$

Exercice 8. Générateur équivalent

1. Identification avec un générateur de Thévenin de fem $E' = \frac{R_2}{R_1 + R_2} E$ et de résistance $R' = R_3 + \frac{R_1 R_2}{R_1 + R_2}$ 2. DDT : $U_4 = \frac{R_4}{R_4 + R_1} E'$

Exercice 9. Point de fonctionnement d'un circuit

2. D = interrupteur ouvert 3. U = R'I + E' avec E' = 6 V et R' = 4 Ω 4. Pile : $I = 0,3-0,025 \cdot U$ A, point de fonctionnement : méthode graphique : P(6,6 V;135 mA) et analytique : $I = \frac{E-E'}{r+R'} = 136 \text{ mA}$, $U = \frac{rE'+R'E}{r+R'} = 6,5 \text{ V}$

Exercice 10. Transfert de puissance

1.
$$U = \frac{R}{r+R}E = 5.0 \text{ V}$$
 $I = \frac{E}{r+R} = 1.0 \text{ A}$ 2. $\mathcal{S}_R = 5.0 \text{ W}$, $\mathcal{S}_r = 5.0 \text{ W}$ 3. $\mathcal{S}_E = -10 \text{ W}$

*Exercice 11. Bilan de puissance dans un moteur à courant continu

- 1. Le moteur est un récepteur électrique : on oriente donc la tension U pour que le moteur soit en convention récepteur.
- ightharpoonup Loi des mailles $U-E_1-rI_1=0$ ou $U=E_1+rI_1$, soit $E_1=U-rI_1=7,0$ V
- 2. Puissance totale consommée par le moteur $\mathcal{G}_{tot1} = UI_1$
- \triangleright Remarque : ce rendement est faible : 42% de l'énergie consommée est dissipée par effet Joule dans la résistance r.
- 3. Masse de la charge doublée : l'intensité du courant également : $I_2 = 2I_1 = 0,20 \, A$
- **Rendement**: $\eta_2 = \frac{E_2}{U} = 0.17 = 17\%$
- 4. Si le moteur ne tourne plus : $n_3 = 0$ et donc $E_3 = 0$.
- ightharpoonup L'intensité du courant est : $I_3 = \frac{U}{r} = 0,24 A$
- \triangleright La puissance mécanique est $\mathcal{G}_{m\acute{e}ca3} = E_3I_3 = 0$
- ➤ La <u>puissance totale</u> est : $\mathcal{G}_{tot3} = UI_3 = \frac{U^2}{r} = rI_3^2 = \mathcal{G}_{Joule}$ soit $\boxed{\mathcal{G}_{tot3} = 2.9 \text{ W}}$. Toute la puissance électrique consommée est dissipée par <u>effet Joule</u> dans la résistance r. Le moteur chauffe !!!
- 5. Si le câble lâche, il n'y a plus de charge et $I_4=0$. On en déduit $E_4=U=12\;V$.
- ightharpoonup La <u>fréquence de rotation</u> est : $n_4 = n_1 \frac{E_4}{E_1} = 34 \ tr.s^{-1}$
- ightharpoonup La puissance totale consommée est : $\mathcal{G}_{tot4} = UI_4 = 0 W$
- 6. Le moteur ne tourne plus lorsque E = 0, i.e. lorsque $U = U_d = rI_1 = 5,0 \text{ V}$
- Remarque: Pour faire démarrer le moteur, on augmente progressivement U: tant que $U < U_d$, le moteur ne tourne pas et ne soulève pas la charge; dès que $U \ge U_d$, le moteur se met à tourner et soulève la charge: U_d est la tension de démarrage.