Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию №1 по курсу «Численные методы линейной алгебры»

Выполнил: студент 304 группы Гераськин А. Ю.

Содержание

Постановка задачи	2
Метод Холецкого	2
Метод Хаусхолдера	2
Алгоритм решения системы уравнений с треугольной матрицей	3
Сравнение методов	4
Сборка и запуск программы	5

Постановка задачи

Требуется двумя различными методами получить QR-разложение данной матрицы $A \in \mathbb{R}^{n \times n}$ и сравнить полученные разложения, вычислив матричную норму разности ||A-QR|| для каждого построенного разложения. Используется матричная норма, подчиненная максимум-норме арифметического пространства \mathbb{R}^n .

Далее необходимо с помощью генератора псевдослучайных чисел построить вектор $X \in \mathbb{R}^n$ с компонентами $x_k \in [-1,1], k=1,\ldots,n$ и решить систему $A\overline{x}=f$ с правой частью f=Ax при помощи полученных разложений, а также вычислить максимум-норму невязки $r=A\overline{x}-f$ и максимум-норму погрешности решения $\delta=\overline{x}-x$.

В данном варианте используются метод Холецкого (метод квадратного корня) и метод отражений Хаусхолдера.

Метод Холецкого

Данный метод заключается в представлении симметричной положительно определённой матрицы L в виде $A=LL^T$, где L — нижняя треугольная матрица со строго положительными элементами на диагонали.

Элементы матрицы L можно вычислить, начиная с верхнего левого угла матрицы, по формулам

$$l_{11} = \sqrt{a_{11}},$$

$$l_{j1} = \frac{a_{j1}}{l_{11}}, \quad j \in [2, n],$$

$$l_{ii} = \sqrt{a_{ii} - \sum_{p=1}^{i-1} l_{ip}^2}, \quad i \in [2, n],$$

$$l_{ji} = \frac{1}{l_{ii}} \left(a_{ji} - \sum_{p=1}^{i-1} l_{ip} l_{jp} \right), \quad i \in [2, n-1], j \in [i+1, n].$$

Выражение под корнем всегда положительно, если A — действительная положительно определённая матрица. Вычисление происходит сверху вниз, слева направо, т. е. сперва L_{ij} , а затем L_{ii} .

Выполнив разложение $A = LL^T$, решение x можно получить последовательным решением двух треугольных систем уравнений: Ly = b и $L^Tx = y$ (это нетрудно сделать, т. к. матрицы L и L^T треугольные). Такой способ решения иногда называется методом квадратных корней. По сравнению с более общими методами, такими как метод Гаусса или LU-разложение, он устойчивее численно и требует вдвое меньше арифметических операций.

Метод Хаусхолдера

Метод Хаусхолдера (метод отражений) используется для разложения матриц в виде A=QR (Q — унитарная, R — верхняя треугольная матрица). При

этом матрица Q хранится и используется не в своём явном виде, а в виде произведения матриц отражения. Каждая из матриц отражения может быть определена одним вектором. Это позволяет в классическом исполнении метода отражений хранить результаты разложения на месте матрицы A с использованием минимального одномерного дополнительного массива.

Для выполнения QR-разложения матрицы используются умножения слева её текущих модификаций на матрицы Хаусхолдера (отражений) — матрицы вида $P = I - 2uu^T$, где u — вектор, удовлетворяющий равенству $u^T u = 1$. Является одновременно унитарной ($P^T P = I$) и эрмитовой ($P^T = P$), поэтому обратна самой себе ($P^{-1} = P$).

На i-м шаге метода с помощью преобразования отражения убираются ненулевые поддиагональные элементы в i-м столбце. Таким образом, после n-1 шагов преобразований получается матрица R из QR-разложения.

Алгоритм

Инициализация:

$$Q = I$$
$$R = A$$

На каждой итерации для $k = 1, \dots, n-1$:

$$x = a_k$$

$$x_1, \dots, x_{k-1} = 0$$

$$u = x - ||x||e$$

$$P = I - \frac{2uu^T}{||u||^2}$$

$$Q = QP$$

$$A = PA$$

$$R = A$$

где e - орт, у которого на каждой итерации только k-ый элемент равен 1.

После получения разложения решение x можно получить, решив систему с верхнетреугольной матрицей

$$QRx = f \iff Rx = Q^T f$$

(поскольку $Q^{-1} = Q^{T}$).

Алгоритм решения системы уравнений с треугольной матрицей

Для СЛАУ Ax = f с верхнетреугольной матрицей A: для $i = n, \ldots, 1$

$$x_i = \frac{f_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}.$$

Для СЛАУ Ax = f с нижнетреугольной матрицей A: для $i = 1, \ldots, n$

$$x_i = \frac{f_i - \sum_{j=1}^{i-1} a_{ij} x_j}{a_{ii}}.$$

Сравнение методов

Оба метода разложения, а также решение системы уравнений при помощи разложений были реализованы программно с замерением времени работы. Результаты вычислений приведены в таблицах ниже.

Метод	A - QR	Время, мс
Холецкий	1.45439e-14	0.447019
Хаусхолдер	3.71744e-13	149.285

Таблица 1: Результаты разложений

Тест	$ A\overline{x} - Ax $	$ \overline{x} - x $	Время, мс
1	9.9476e-14	1.44329e-15	0.028233
2	8.52651e-14	1.44329e-15	0.027121
3	9.9476e-14	1.33227e-15	0.027471
4	7.10543e-14	8.88178e-16	0.027291
5	8.52651e-14	1.22125e-15	0.027071
Среднее	8.81073e-14	1.26565e-15	0.027437

Таблица 2: Результаты решения СЛАУ при помощи метода Холецкого

Тест	$ A\overline{x} - Ax $	$ \overline{x} - x $	Время, мс
1	5.96856e-13	8.54872e-15	0.025909
2	3.48166e-13	5.55112e-15	0.024757
3	6.89226e-13	9.65894e-15	0.024596
4	3.90799e-13	6.55032e-15	0.024356
5	3.97904e-13	5.32907e-15	0.024296
Среднее	4.8459e-13	7.12763e-15	0.024782

Таблица 3: Результаты решения СЛАУ при помощи метода Хаусхолдера

Как можно видеть, метод Хаусхолдера работает гораздо медленнее, чем метод Холецкого. Это связано с тем, что он вычислительно сложнее, поскольку в нем выполняется большое количество перемножений и вычитаний матриц, в то время как метод Холецкого сразу заполняет значения матриц без промежуточных вычислений. Этот результат можно улучшить, если оптимизировать аллокации памяти при операциях над матрицами, но не существенно.

В плане же точности оба метода показали себя хорошо — абсолютные погрешности всех полученных значений не превышают 10^{-13} . Поэтому каждый

из этих методов имеет место быть и может успешно применяться в различных задачах.

Сборка и запуск программы

Для сборки программы необходима установленная утилита СМаке версии не ниже 3.15, а также поддержка стандарта C++17.

Команда сборки:

```
cmake . && cmake --build .
```

У собранной программы поддерживаются следующие аргументы командной строки:

- -i, --input: имя файла со входной матрицей (обязательный аргумент);
- -o, --output: имя файла, в который будет записан вывод программы (по умолчанию вывод производится на стандартный выходной поток);
- --qr-method: метод разложения матрицы (обязательный аргумент, значения cholesky/householder);
- -n, --n-tests: количество тестов для решения СЛАУ (натуральное число, по умолчанию 5).

Пример запуска программы:

./QrDecompositionSolver -i SLAU_var_2.csv --qr-method cholesky