

REAL TIME VIDEO ANALYTICS

Dr TIAN Jing tianjing@nus.edu.sg

Module: Video analytics

Knowledge and understanding

Fundamentals of video understanding, action recognition

Key skills

 Design, build, implement and evaluate various action recognition and video understanding systems

From image analytics to video analytics

Reference: Deep Learning for Intelligent Video Analysis, ACM Multimedia 2017, https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/Tao-Mei-Intelligent-Video-Analysis-ACMMM-2017-Pub.pdf

- Video analytics applications typically address information needs that are typically referred to as four "W" questions:
 - Who (people detection and identification);
 - What (object, activity, event, behavior, and relationship analysis);
 - Where (frame space, 3D space, and world map space); and
 - When (date/day, time-of-day, time-of-year)
- Video analytics can be applied to
 - Forensic analysis of archives (archive management, search, forensic investigation).
 - Real-time analysis of live video streams (situation awareness and alerting).
 - Predictive analyses leveraging both live video streams and archives as well as data from other correlated domains (prediction based on the past and present, event/activity prediction, anomaly detection).

Reference: NIST Video Analytics in Public Safety, https://www.nist.gov/sites/default/files/documents/2017/07/26/ir_8164.pdf

- Action recognition
- Workshop: Build action recognition systems

📫 Human activity in video

- Action: Atomic motion patterns, gesture-like, single clear-cut trajectory, single nameable behavior (e.g., sit, wave arms)
- Activity: Series or composition of actions (e.g., interactions between people)
- Event: Combination of activities or actions (e.g., a sport game, a traffic accident)

Action recognition: Given an input video clip, perform some appropriate processing, and output the "action label" of the whole video clip.

Photo: http://www.thumos.info/

Applications

- Intelligent assisted living
- Crowd analysis in surveillance
- Social activity recognition
- Many other applications

Photo: https://warwick.ac.uk/fac/sci/dcs/people/victor sanchez/siplab/code/; https://tomhsu1990.github.io/research/ActionRecog.html; https://www.researchgate.net/figure/Examples-of-Our-Senior-Activity-Recognition-Dataset fig11 221263478;

Challenges in action recognition

- Intra- and inter-class variations: People behave differently for the same actions.
- Cluttered background and camera motion: Indoor controlled environments but not in outdoor uncontrolled environments.
- Insufficient annotated benchmark dataset
- Uneven contributions from frames: Not all frames are equally discriminative.

Figure: Deep Learning for Intelligent Video Analysis, ACM Multimedia 2017, https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/Tao-Mei-Intelligent-Video-Analysis-ACMMM-2017-Pub.pdf

Human action recognition in history

A study in 1878

The Horse in Motion is a series of six cabinet cards by Eadweard Muybridge, each showing a sequential series of six photos depicting the movement of a horse. Reference: https://en.wikipedia.org/wiki/Eadweard_Muybridge

An animation generated from photos

📫 Human action recognition in history

original background foreground

A study in 1992

J. Yamato, et al., Recognizing human action in time-sequential images using hidden Markov model, CVPR 1992, https://www.cs.sfu.ca/~mori/courses/cmpt888/summer10/papers/yamato cvpr92.pdf

aij=number of black mesh(ij)/MmNm

Symbol sequence

60 61 61 62 <u>62</u> 62 63 63 <u>64</u> 64 65 66 <u>66</u> 66 67 68 <u>68</u> 69 69 70 <u>70</u> 70 71 71

The symbol (number) indicates state of action.

Action: Single frame based methods

Key idea

- Action can be recognized by posture (see the horse in motion slide)
- So many research works in image recognition particularly in deep learning

CNN for action recognition

- Input: Region containing the actor
- Output: Action category labels

MPII human pose dataset (http://human-pose.mpi-inf.mpg.de/)

410 actions and 40000 instances

Multiple frames based methods

- Intuitive idea: If we can convert multiple frame into a single frame, then we can apply previously-studied single frame based methods
- Question: How to convert video sequence (a set of images) into a single frame?

Extract silhouette by background subtraction

- Given an action video with a set of frames, extract the associated sequence of moving silhouettes.
- The silhouette images are centred and normalized on the basis of keeping the aspect ratio property of the silhouette.
- Combine silhouette to obtain a 'special image' (see next a few slides).

Reference: Recognizing human activities from silhouettes: Motion subspace and factorial discriminative graphical model, CVPR 2007, http://vigir.missouri.edu/~gdesouza/Research/Conference CDs/IEEE CVPR 2007/data/papers/0330.pdf

Motion energy image

Motion energy image: A single binary cumulative motion image, where the brighter region (location of the motion) can be used to suggest the movement.

•
$$I(x,y,t)$$
: Image sequence
• $D(x,y,t)$: Binary image indicating regions of motion
• $H_N(x,y,t)$: Motion energy image calculated based

- I(x, y, t): Image sequence
- on past N frames

https://www.researchgate.net/publication/3193234 The recognition of human movement using temporal templates

Motion history image

Motion history image: Pixel intensity is a function of the motion history at that location, where brighter values correspond to more recent motion.

$$H_N(x, y, t) = \begin{cases} N & \text{if } D(x, y, t) = 1\\ \max(0, H_N(x, y, t - 1) - 1) & \text{otherwise} \end{cases}$$

- I(x, y, t): Image sequence
- D(x, y, t): Binary image indicating regions of motion
- $H_N(x,y,t)$: Motion history image calculated based on past *N* frames

Reference: The recognition of human movement using temporal templates, IEEE Trans. on PAMI, 2001, https://www.researchgate.net/publication/3193234 The recognition of human movement using temporal templates

	Shape representation			
	Contour-based		Region-based	
	Structural	Global	Global	Structural
•	Chain code	Shape descriptors	 Histogram (# of non-zero pixels) 	 Geometrical features

Reference:

- Motion history image: Its variants and applications, https://www.researchgate.net/publication/225968468_Motion_history_image_Its_variants_and_applications;
- Shape descriptors, https://medium.com/machine-learning-world/shape-context-descriptor-and-fast-characters-recognition-c031eac726f9
- Matching with Shape Contexts, https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html

🛖 Action recognition: Milestones

Assumption

- Treat video sequence as a bag of fixed-size clip.
- This is called "trimmed video classification".
- We can apply sliding window, or automatically segment the long video sequence into short sequence (called action localization)

Key questions

- Where the features should be extracted? Every pixel or key points?
- What features need to be extracted?
- How does the additional motion information influence the predictions of a CNN and how much does it improve performance overall?
- What temporal connectivity pattern in a CNN architecture is best at taking advantage of local motion information present in the video?

Action recognition: Milestones

PyTorchVideo: A deep learning library for video understanding research, released in April, 2021

Action recognition: Milestones

deeply rned entation	Sparse feature	HoF	I. Laptev, et al., "Learning realistic human actions from movies," CVPR 2008, https://www.di.ens.fr/~laptev/actions/	
	Dense feature	DT	H. Wang, et al., "Action recognition by dense trajectories," CVPR 2011, https://hal.inria.fr/hal.inria.fr/hal.inria.fr/hal.inria.fr/hal.inria.fr/hal-00873267v2/document .	
	Single-	CNN	A. Karpathy, et al., "Large-scale video classification with convolutional neural networks," CVPR 2014, https://cs.stanford.edu/people/karpathy/deepvideo/	
	stream	LRCN	J. Donahue, et al., "Long-term recurrent convolutional networks for visual recognition and description," CVPR 2015, https://arxiv.org/abs/1411.4389	
tation		Two-stream	K. Simonyan, et al., "Two-stream convolutional networks for action recognition in videos," NIPS 2014, https://arxiv.org/abs/1406.2199	
Deeply learned representation	Two- stream	Two-stream fusion	C. Feichtenhofer, et al., "Convolutional two-stream network fusion for video action recognition," CVPR 2016, https://arxiv.org/abs/1604.06573	
ned rep		TDD	L. Wang, et al., "Action recognition with trajectory-pooled deep-convolutional descriptors," CVPR 2015, https://arxiv.org/abs/1505.04868	
ly learr		C3D	D. Tran, et al., "Learning spatiotemporal features with 3D convolutional networks", ICCV 2015, https://arxiv.org/abs/1412.0767	
Deep	3D CNN	i3D	Carreira, et al., "Action recognition? A new model and the Kinetics dataset", CVPR 2017, https://arxiv.org/abs/1705.07750	
		P3D	Qiu et al., Learning spatio-temporal representation with Pseudo-3D residual networks, ICCV 2017, https://arxiv.org/abs/1711.10305	
		SlowFast	C. Feichtenhofer, et al., SlowFast networks for video recognition, ICCV 2019, https://arxiv.org/abs/1812.03982	

- Detect local structures in space-time where the image values have significant local variations in both space and time.
- At every keypoint, extract its space-time parch in its neighborhood.
- Each space-time patch is subdivided into a (n_x, n_y, n_t) grid $(3 \times 3 \times 2)$ in the paper) of cuboids; for each cuboid we compute histograms of oriented gradient (HoG) and optic flow (HoF).

Bag-of-words representation

Reference: I. Laptev, et al., "Learning realistic human actions from movies," CVPR 2008, https://www.di.ens.fr/~laptev/actions/

Note: An additional bin is added for histogram of optical flow. It accounts for pixels whose optical flow magnitudes are lower than a threshold (i.e., static, no motion).

- Densely sample feature points on a grid spaced by a few pixels. The volume is subdivided into a spatio-temporal grid of $n_{\sigma} \times n_{\sigma} \times n_{t}$ (2 × 2 × 3 in the paper) cuboids. We compute descriptor in each cuboid of the spatial-temporal grid.
- In both HOG and HOF, orientations are quantized into 8 bins, magnitudes are used for weighting. An additional zero bin is added for HOF (i.e., in total 9 bins). It accounts for pixels whose optical flow magnitudes are lower than a threshold. The final descriptor size is 96 for HOG (i.e., $2 \times 2 \times 3 \times 8$) and 108 for HOF (i.e., $2 \times 2 \times 3 \times 9$).

Motion boundary histograms (MBH) descriptor

- Compute optical flow for two consecutive frames. Separate the optical flow for the horizontal and vertical components of the optical flow.
- Compute spatial derivatives for each of them and orientation information is quantized into histograms. The magnitude is used for weighting. We obtain a 8bin histogram for each component.
- The MBH descriptor encodes the <u>relative</u> motion between pixels (in the sense that the camera motion, which is same for all pixels, is somehow excluded).

Reference: H. Wang, et al., "Action recognition by dense trajectories," CVPR 2011, https://hal.inria.fr/hal-00725627v2/document

- Single Frame: Apply single-image-based CNN on a <u>randomly</u> chosen single frame.
- Early Fusion: Combines information across an <u>entire sequence</u>. The filters on the first convolutional layer is modified (e.g., $11 \times 11 \times 3 \times T$) if $11 \times 11 \ conv2D$ filter is applied for T RGB frames.
- Late Fusion: Places separate single-frame network with shared parameters for consecutive or sampled frames, and then merges them.
- Slow Fusion: Slowly fuses temporal information throughout the network such that higher layers get access to progressively more global information in both spatial and temporal dimensions.

Legend: Red, green and blue boxes indicate convolutional, normalization and pooling layers respectively. In the Slow Fusion model, the depicted columns share parameters.

Reference: A. Karpathy, et al., "Large-scale video classification with convolutional neural networks," CVPR 2014, https://cs.stanford.edu/people/karpathy/deepvideo/

Class cores: C

Reference: A. Karpathy, et al., "Large-scale video classification with convolutional neural networks," CVPR 2014, https://cs.stanford.edu/people/karpathy/deepvideo/

Apply space-time average pooling to obtain: $D \times 1$

LRCN processes the (possibly) variable-length visual input (left) with a CNN (middle-left), whose outputs are fed into a stack of recurrent sequence models (LSTMs, middle-right), which finally produce a variable-length prediction (right). Both the CNN and LSTM weights are shared across time, resulting in a representation that scales to arbitrarily long sequences.

Reference: J. Donahue, et al., "Long-term recurrent convolutional networks for visual recognition and description," CVPR 2015, https://arxiv.org/abs/1411.4389

Video: Appearance + Motion

- Single RGB frame: Static appearance
- Multiple motion frames: Optical flow, pixel displacement as motion information
- Spatial stream: Operates on (randomly) individual video frames, effectively performing action recognition from still images.
- Temporal stream: Input to the model is formed by stacking optical flow displacement fields between several consecutive frames.

Reference: K. Simonyan, et al., "Two-stream convolutional networks for action recognition in videos," NIPS 2014, https://arxiv.org/abs/1406.2199

📫 Two-stream fusion

- Objective: Fuse the two networks (at a particular convolutional layer) such that channel responses at the same pixel position are put in correspondence.
- Sum fusion: Computes the sum of two feature maps at the same spatial locations i,j and feature channel d: $y_{i,j,d}^{\text{Sum}} = x_{i,j,d}^a + x_{i,j,d}^b$
- Max fusion: Takes maximum of the two feature map, $y_{i,j,d}^{\max} = \max\{x_{i,j,d}^a, x_{i,j,d}^b\}$
- Concatenation fusion: Stacks the two feature maps at the same spatial locations i, j across the feature channels $d: y_{i,j,2d}^{\text{cat}} = x_{i,j,d}^a$, $y_{i,j,2d-1}^{\text{cat}} = x_{i,j,d}^b$
- Bilinear fusion: Computes a matrix outer product of two features at each pixel location, followed by a summation over the locations $y_{i,i,d}^{\text{bil}} = \sum_i \sum_j \mathbf{x}_{i,j}^{a} \mathbf{x}_{i,j}^{b}$

		3. 3.3
Input	Method	Output
Two feature	Sum fusion	$H \times W \times D$
maps, each has a dimension of	Max fusion	$H \times W \times D$
$H \times W \times D$	Concatenation fusion	$H \times W \times 2D$
	Bilinear fusion	 Outer product at each pixel location: H × W × D × D Summation over pixel locations: D × D

Reference: C. Feichtenhofer, et al., "Convolutional two-stream network fusion for video action recognition," CVPR 2016, https://arxiv.org/abs/1604.06573

- Treat the learned two-stream ConvNets as generic feature extractors, and use them to obtain multi-scale convolutional feature maps for each video.
- Detect a set of point trajectories using dense trajectories in original video.
- Pool the local ConvNet responses over the spatiotemporal tubes centered at the trajectories, based on convolutional feature maps and trajectories.

Reference: L. Wang, et al., "Action recognition with trajectory-pooled deep-convolutional descriptors," CVPR 2015, https://arxiv.org/abs/1505.04868

- 3D ConvNets are more suitable for spatiotemporal feature learning compared to 2D ConvNets.
- The learned features, namely C3D (Convolutional 3D), can be further integrated with other classifiers.

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer. All 3D convolution kernels are $3 \times 3 \times 3$ with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box. The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are $2 \times 2 \times 2$, except for pool1 is $1 \times 2 \times 2$. Each fully connected layer has 4096 output units.

Reference: D. Tran, et al., "Learning spatiotemporal features with 3D convolutional networks", ICCV 2015, https://arxiv.org/abs/1412.0767

Param #

```
c3d model = Sequential()
c3d model.add(Conv3D(32, kernel size=(3, 3, 3), input shape=(x train.shape[1:]), padding='same'))
c3d model.add(Activation('relu'))
c3d_model.add(Conv3D(32, kernel_size=(3, 3, 3), padding='same'))
c3d model.add(Activation('softmax'))
c3d model.add(MaxPooling3D(pool size=(3, 3, 3), padding='same'))
c3d model.add(Dropout(0.25))
c3d_model.add(Conv3D(64, kernel_size=(3, 3, 3), padding='same'))
c3d model.add(Activation('relu'))
c3d_model.add(Conv3D(64, kernel_size=(3, 3, 3), padding='same'))
c3d model.add(Activation('softmax'))
c3d_model.add(MaxPooling3D(pool_size=(3, 3, 3), padding='same'))
c3d model.add(Dropout(0.25))
c3d_model.add(Flatten(name='flatten_feature'))
c3d_model.add(Dense(512, activation='sigmoid'))
c3d model.add(Dropout(0.2))
c3d model.add(Dense(nb classes, activation='softmax'))
c3d model.compile(loss=categorical crossentropy, optimizer=Adam(), metrics=['accuracy']
c3d model.summary()
```

The c3d model used in our workshop

$(3 \times 3 \times 3 + 1) \times 32 = 896$	
$(3 \times 3 \times 3 \times 32 + 1) \times 32 = 27680$	
$(3 \times 3 \times 3 \times 32 + 1) \times 64 = 55360$	
$(3 \times 3 \times 3 \times 64 + 1) \times 64 = 110656$	
$(2048 + 1) \times 512 = 1049088$	
$(512 + 1) \times 11 = 5643$	

conv3d_1 (Conv3D)		32, 32, 10, 32)	896
activation_1 (Activation)	(None,	32, 32, 10, 32)	0
conv3d_2 (Conv3D)	(None,	32, 32, 10, 32)	27680
activation_2 (Activation)	(None,	32, 32, 10, 32)	0
max_pooling3d_1 (MaxPooling3	(None,	11, 11, 4, 32)	0
dropout_1 (Dropout)	(None,	11, 11, 4, 32)	0
conv3d_3 (Conv3D)	(None,	11, 11, 4, 64)	55360
activation_3 (Activation)	(None,	11, 11, 4, 64)	0
conv3d_4 (Conv3D)	(None,	11, 11, 4, 64)	110656
activation_4 (Activation)	(None,	11, 11, 4, 64)	0
max_pooling3d_2 (MaxPooling3	(None,	4, 4, 2, 64)	0
dropout_2 (Dropout)	(None,	4, 4, 2, 64)	0
flatten_feature (Flatten)	(None,	2048)	0
dense_1 (Dense)	(None,	512)	1049088
dropout_3 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	11)	5643
Total params: 1,249,323 Trainable params: 1,249,323 Non-trainable params: 0			

Output Shape

Layer (type)

Note: Paddings are used in this table to keep the feature map resolution unchanged

	Note. Fadulings are used in this table to keep the leature map resolution uncl			
Method	Model architecture example	Size ($C \times T \times H \times W$)		
	Input	$3 \times 20 \times 64 \times 64$		
	Conv2D (3×3 , 12 kernels)	$12 \times 64 \times 64$		
Early Fusion (2D CNN)	Pool2D (4×4)	$12 \times 16 \times 16$		
(ZD ONN)	Conv2D (3×3 , 24 kernels)	$24 \times 16 \times 16$		
	GlobalAvgPool	$24 \times 1 \times 1$		
	Input	$3 \times 20 \times 64 \times 64$		
	Conv2D (3×3 , 12 kernels)	$12 \times 20 \times 64 \times 64$		
Late Fusion (2D CNN)	Pool2D (4×4)	$12 \times 20 \times 16 \times 16$		
(ZD ONN)	Conv2D (3×3 , 24 kernels)	$24 \times 20 \times 16 \times 16$		
	GlobalAvgPool	$24 \times 1 \times 1 \times 1$		
	Input	$3 \times 20 \times 64 \times 64$		
	Conv3D ($3 \times 3 \times 3$, 12 kernels)	$12 \times 20 \times 64 \times 64$		
3D CNN (used in C3D)	Pool3D $(4 \times 4 \times 4)$	$12 \times 5 \times 16 \times 16$		
(4364 111 665)	Conv3D ($3 \times 3 \times 3$, 24 kernels)	$24 \times 5 \times 16 \times 16$		
	GlobalAvgPool	$24 \times 1 \times 1 \times 1$		

- Question: Can we leverage the pre-trained 2D ConvNet for video?
- Solution: Inflated 3D ConvNet (I3D) is based on 2D ConvNet inflation. Filters
 and pooling kernels of image classification 2D ConvNets are expanded into 3D,
 making it possible to learn seamless spatio-temporal feature extractors from
 video while leveraging successful 2D ConvNet architecture designs and even
 their parameters. Replace 2D CNN with 3D CNN version. Duplicate pre-trained
 2D CNN parameters to be 3D CNN parameters.

Reference: Carreira, et al., "Action recognition? A new model and the Kinetics dataset", CVPR 2017, https://arxiv.org/abs/1705.07750

- Question: Can we address the computational complexity of Conv3D?
- Solution: Pseudo-3D Residual Net (P3D ResNet). Convert $3 \times 3 \times 3$ convolutions with $1 \times 3 \times 3$ convolutional filters on spatial domain (equivalent to 2D CNN) plus $3 \times 1 \times 1$ convolutions to construct temporal connections on adjacent feature maps in time.

Conventional ResNet Proposed P3D ResNet with three variants

Reference: Qiu et al., Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks, ICCV 2017, https://arxiv.org/abs/1711.10305

Two streams with different frame rates

- A low frame rate, low temporal resolution Slow pathway
- A high frame rate, higher temporal resolution Fast pathway. The Fast pathway
 is lightweight by using a fraction of convolutional channels.

 α : Adjust frame rate

 β : Adjust convolutional channels (for consideration of computational complexity)

Reference:

- C. Feichtenhofer, et al., SlowFast Networks for Video Recognition, ICCV 2019, https://arxiv.org/abs/1812.03982
- https://github.com/facebookresearch/SlowFast

Solution 1: hand wash recognition, https://arxiv.org/pdf/2011.11383.pdf, https://github.com/edi-riga/handwash

Solution 2: Hand wash recognition (Fujisu) https://www.youtube.com/watch?v=P1BQW Oza_jc,

https://www.fujitsu.com/global/about/resources/news/press-releases/2020/0526-01.html

- Action recognition
- Workshop: Build action recognition systems

- Dataset: UCF11 Dataset, https://www.crcv.ucf.edu/data/UCF_YouTube_Action.php.
- It contains 11 action categories: basketball shooting, biking/cycling, diving, golf swinging, horse back riding, soccer juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking, and walking with a dog.

- Exercise 1: Perform action recognition using histogram of optical flow
- Exercise 2: Perform action recognition using C3D deep learning approach
- Exercise 3: Perform action recognition using C3D+SVM

Submission guideline:

Rename your *.ipynb file to be your name and submit to LumiNUS.

Thank you!

Dr TIAN Jing Email: tianjing@nus.edu.sg