USA health insurance cost analysis

Summary

Analysis of USA health insurance data to predict the cost of premiums.

Outline

- Business Problem
- Data and methods
- Results
- Conclusions

Business Problem

- This information could be used by potential customers researching how much their premiums would be.
- This could also be used by health insurance companies as well to compare their premiums or how they have weighted an individuals variable.

Data and methods

- The data used in this analysis is from Kaggle.
- This is a collection of data on various factors that can influence medical costs and premiums for health insurance in the United States. The dataset includes information on 10 variables, including age, gender, body mass index (BMI), number of children, smoking status, region, income, education, occupation, and type of insurance plan.
- I used multi linear regression on the raw data, dummies for the categorical variables and log transformed the continuous variables to ascertain the most accurate predictive model

Results

• Using the coefficients I gathered the top 5 variables which increase the cost of health insurance premiums and the top 5 which lower them.

TOP 5 FEATURES FOR COST INCREASE		
	coefficients	
Smoker_yes	5008.534372	
Coverage_level	2500.48536	
BMI	1599.932202	
Family_medical_history	1402.349659	
Medical_history	1401.419856	

TOP 5 FEATURES FOR LOWER COST			
	coefficients		
Unemployed	-1487.756091		
Student	-992.579746		
South-west Region	-798.248727		
North-west Region	-703.109754		
South-east Region	-499.342339		

Results

	RAW MODEL	DUMMIES MODEL	LOG TRANSFORMED MODEL
TRAIN MSE	4305117.2286 1077	2255545.56821866	2261219.7409103
TEST MSE	4302655.6872 4418	2259460.9798744	2264208.15957426
ADJ. R-SQUARED	0.7796010024 17424	0.884528944300211	0.884238459053467

- The Mean squared error and R-squared improved significantly between the raw and dummied data.
- It had a tiny affect between the dummied data and log transformed data.
- The train MSE and test MSE are very close in the log transformed data. The model fits well.

Conclusions

- This model can measure an individuals health information and predict their health insurance premium with 88% accuracy.
- Current health, habits and family health history play a significant role in the cost of premiums

MOVING FORWARD

 With more time, I would have looked at the outliers and used GLS for the heteroscedasticity contained within the data to perhaps render a more accurate predictive model.