	rocessing and Computer Vision	MI	
Joacnim	Weickert, Summer Term 2019	A	
Lecture 17:		1 2	
Global Filters I:		3 4	
Discrete Variational	l Methods	5 6	
		7 8	
Contents		9 10	
1. Motivation		11 12	
2. The One-Dimensional Case		13 14	
3. Thomas Algorithm for Tridi	agonal Systems	15 16	
4. The m -Dimensional Case		17 18	}
		19 20	
		21 22	
		23 24	
© 2000–2019 Joachim Weicke	ert	25 26	

Motivation	N	1	I A
Motivation	1		2
So far our image enhancement methods were more or less localised:	3	;	4
• point operations	5	,	6
• (linear or nonlinear) local methods analysing a patch around each pixel	7		8
 nonlocal means where patches are compared within some neighbourhood 	9	,	10
 Moreover, they were motivated heuristically and their optimality was unclear. 	13	1	 12
 Today we start considering our first global methods: The filtered image satisfies a global optimality criterion. 	13	3	14
• Such approaches are called <i>variational methods</i> or <i>regularisation methods</i> .	15	5	16
Both discrete and continuous models play a role.	17	7	18
◆ They allow a transparent mathematical modelling.	19	9	20
 Optimality is one key issue of modern image processing and computer vision. 	2	1	22
 Optimality principles will also be useful for applications beyond denoising: 	23	3	24
deblurring, segmentation, motion analysis, stereo, shape-from-shading.		5	26

The One-Dimensional Case (1) The One-Dimensional Case 3 **Goals** 5 find a smoothing process that satisfies an optimality criterion 7 8 clearly state all model assumptions without any hidden assumptions 9 10 filtered discrete image $oldsymbol{u}$ should be 11 12 ullet close to the original image f13 14 • as smooth as possible 15 16 approach that can be modified such that one obtains edge-preserving smoothing 17 18 automatically correct treatment at boundaries of the image domain 19|20 21 | 22 23 24 25|26

The One-Dimensional Case (2)

A Simple 1-D Approach

- goal: smooth a one-dimensional discrete signal $\mathbf{f} = (f_1, ..., f_N)^{\top}$
- filtered signal $u = (u_1, ..., u_N)^{\top}$ as minimiser of the cost function (energy)

$$E(\boldsymbol{u}) := \frac{1}{2} \underbrace{\sum_{k=1}^{N} (u_k - f_k)^2}_{\text{similarity}} + \frac{\alpha}{2} \underbrace{\sum_{k=1}^{N-1} (u_{k+1} - u_k)^2}_{\text{smoothness}}$$

3

5 | 6

7 | 8

9 10

11|12

13|14

15|16

17 18

19 20

21 | 22

- lacktriangle first term rewards similarity to f: data term
- lacktriangle second term rewards smoothness of u: smoothness term
- smoothness weight $\alpha > 0$ is called *regularisation parameter:* larger values yield smoother (i.e. less fluctuating) solutions
- ◆ Models with quadratic smoothness terms are often called Tikhonov regularisation. However, they have been studied earlier by Whittaker (1923). Thus, we call them *Whittaker-Tikhonov regularisation*.
- Quadratic optimisation models are convenient: Their derivatives give linear models.

The One-Dimensional Case (3)

Left: Edmund Taylor Whittaker (1873–1956) proposed a discrete model for data regularisation already in 1923. He was also involved in the discovery of the sampling theorem (Lecture 5). Source: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Whittaker.html. **Right:** Andrei Nikolaevich Tikhonov (1906–1993) did extensive research on regularisation methods for solving ill-posed problems. Source: http://turnbull.mcs.st-and.ac.uk/history/PictDisplay/Tikhonov.html.

The One-Dimensional Case (4)

Necessary Condition for a Minimum:

• first partial derivatives w.r.t. $u_1,...,u_N$ must vanish:

$$0 = \frac{\partial E}{\partial u_1} = u_1 - f_1 + \alpha (u_1 - u_2),$$

$$0 = \frac{\partial E}{\partial u_i} = u_i - f_i + \alpha (-u_{i+1} + 2u_i - u_{i-1}) \qquad (i = 2, ..., N-1),$$

$$0 = \frac{\partial E}{\partial u_N} = u_N - f_N + \alpha (u_N - u_{N-1}).$$

- ◆ Note that the boundaries are handled without additional assumptions.
- yields linear system of equations $\boldsymbol{B}\boldsymbol{u} = \boldsymbol{f}$ with unknown $\boldsymbol{u} = (u_1,...,u_N)^{\top}$:

$$\begin{pmatrix} 1+\alpha & -\alpha & & & & \\ -\alpha & 1+2\alpha & -\alpha & & & \\ & & \ddots & \ddots & \ddots & \\ & & -\alpha & 1+2\alpha & -\alpha \\ & & & -\alpha & 1+\alpha \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{N-1} \\ f_N \end{pmatrix}.$$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

7 | 8

9 10

11|12

13 14

15 16

17|18

19|20

21 22

23 | 24

The One-Dimensional Case (5) **Properties of This Approach** 3 Image domain boundaries are automatically taken into account. 5 6 The system matrix B is strictly diagonally dominant, i.e. 7 8 $|b_{i,i}| > \sum_{i, i \neq i} |b_{i,j}|$ for all i. 9 | 10 Strictly diagonally dominant matrices are invertible by *Gershgorin's theorem:* 11 12 The eigenvalues of an N imes N matrix $oldsymbol{A}=(a_{i,j})$ lie in the union of all discs K_i with centre $a_{i,i}$ and radius $\sum_{j,j\neq i} |a_{i,j}|$. 13 14 15 16 lacktriangle Moreover, for our specific system matrix $m{B}$, the following can be shown: $oldsymbol{B}^{-1}$ is a fully populated matrix with positive entries only ! 17 18 lacktriangle Thus, u results from f via averaging over a mask that does not vanish within the 19|20 entire signal length. 21 | 22 Such filters are called *IIR filters:* infinite impulse response. 23 | 24 So far, most of our convolution filters were *FIR filters*: finite impulse response (convolution kernel has finite support).

The One-Dimensional Case (6)

Is This Solution Really a Global Minimum?

• It is sufficient to show that E(u) is strictly convex in u, i.e.

$$E(\beta \boldsymbol{u} + (1-\beta)\boldsymbol{v}) < \beta E(\boldsymbol{u}) + (1-\beta) E(\boldsymbol{v})$$

for all $0 < \beta < 1$ and for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^N$ with $\boldsymbol{u} \neq \boldsymbol{v}$.

lack A strictly convex function $E({m u})$ has a single extremum. Moreover, this extremum is a minimum.

Forthcoming Assignment:

- lacktriangle Show that in our case, $E(\boldsymbol{u})$ is strictly convex.
- lacktriangle Hint: Use the strict convexity of $g(s)=s^2$. (Functions with positive second derivative are strictly convex.)

	23	20
	M	
		A
	1	2
	3	4
	5	6
	7	8
	9	10
	11	12
	13	14
	15	16
	17	18
	19	20
	21	22
	23	24
	25	26
<u> </u>		

Thomas Algorithm for Tridiagonal Systems (1)

Thomas Algorithm for Tridiagonal Systems

◆ We have seen that the discrete 1-D variational method creates the linear system

$$\begin{pmatrix} 1+\alpha & -\alpha & & & \\ -\alpha & 1+2\alpha & -\alpha & & & \\ & \ddots & \ddots & \ddots & \\ & & -\alpha & 1+2\alpha & -\alpha \\ & & & -\alpha & 1+\alpha \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{N-1} \\ f_N \end{pmatrix}.$$

- ◆ A matrix where all nonvanishing entries are located in the diagonal and the neighbouring left and right off-diagonal is called *tridiagonal matrix*.
- ◆ Tridiagonal matrices appear frequently in 1-D problems (see also cubic B-spline interpolation in Lecture 9).
- For tridiagonal linear systems already a simple variant of the Gauß elimination algorithm is highly efficient. In the English literature this is often called *Thomas algorithm*, since it has been used by Llewellen Hilleth Thomas in 1949.

Thomas Algorithm for Tridiagonal Systems (2)

Left: Carl-Friedrich Gauß (1777-1855) is regarded as one of the most famous mathematicians. Source: http://www-gap.dcs.st-and.ac.uk/~history/PictDisplay/Gauss.html. **Right:** Llewellen Hilleth Thomas (1903-1992) was a physicist, applied mathematician and computer scientist. He invented core memory in 1946. Source: http://www.columbia.edu/acis/history/thomas.html.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

21 22

23 | 24

25 | 26

Thomas Algorithm for Tridiagonal Systems (3)

The Thomas Algorithm in Three Steps

We want to solve a linear system $\,Bu=d\,$ with

$$\boldsymbol{B} = \begin{pmatrix} \alpha_1 & \beta_1 & & & & \\ \gamma_1 & \alpha_2 & \beta_2 & & & & \\ & \ddots & \ddots & \ddots & & \\ & & \gamma_{N-2} & \alpha_{N-1} & \beta_{N-1} \\ & & & \gamma_{N-1} & \alpha_N \end{pmatrix}.$$

10

11 12

13 14

15 16

17 18

19|20

21 | 22

23|24

8

9 10

15|16

17 18

This is done in three steps:

1. LR Decomposition:

 $m{B} = m{L}m{R}$ with a lower bidiagonal matrix $m{L}$ and an upper bidiagonal matrix $m{R}$.

2. Forward Elimination:

Solve Ly = d for y.

3. Backward Substitution:

Solve $\mathbf{R}\mathbf{u}=\mathbf{y}$ for \mathbf{u} .

Let us investigate these steps in more detail.

Thomas Algorithm for Tridiagonal Systems (4)

Step 1: LR Decomposition

We write ${m B}$ as a product of two simpler matrices:

- lacktriangle a lower bidiagonal matrix $m{L}$ with diagonal entries 1
- lacktriangle an upper bidiagonal matrix R

$$m{B} = m{L} m{R} = \begin{pmatrix} 1 & & & & & \\ \ell_1 & 1 & & & & \\ & \ddots & \ddots & & \\ & & \ell_{N-2} & 1 & \\ & & & \ell_{N-1} & 1 \end{pmatrix} \begin{pmatrix} m_1 & r_1 & & & \\ & m_2 & r_2 & & & \\ & & \ddots & \ddots & & \\ & & & m_{N-1} & r_{N-1} & \\ & & & & m_N \end{pmatrix}$$

$$= \begin{pmatrix} m_1 & r_1 \\ \ell_1 m_1 & \ell_1 r_1 + m_2 & r_2 \\ & \ddots & \ddots & \ddots \\ & & \ell_{N-2} \, m_{N-2} & \ell_{N-2} \, r_{N-2} + m_{N-1} & r_{N-1} \\ & & & \ell_{N-1} \, m_{N-1} & \ell_{N-1} \, r_{N-1} + m_N \end{pmatrix}$$

Thomas Algorithm for Tridiagonal Systems (5)

Comparing this with the coefficients of ${m B}$ shows that

$$r_i = \beta_i$$
 $(i = 1, ..., N-1).$

3

5

7

10

11 | 12

13 14

15 16

17 18

19|20

21 22

23 24

7 | 8

9 10

11|12

13 14

15|16

17 18

19 20

21 | 22

23|

Moreover, the coefficients m_i and ℓ_i can be computed via

Thomas Algorithm for Tridiagonal Systems (6)

Step 2: Forward Elimination

We solve Ly = d for y:

$$\begin{pmatrix} 1 & & & & & \\ \ell_1 & 1 & & & & \\ & \ddots & \ddots & & & \\ & & \ell_{N-2} & 1 & \\ & & & \ell_{N-1} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{N-1} \\ y_N \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_{N-1} \\ d_N \end{pmatrix}$$

Proceeding from the first to the last equation gives

Thomas Algorithm for Tridiagonal Systems (7)

3

5

7 | 8

9 10

11 12

13 14

15 16

17 18

19|20

21 22

23 24

25|26

3

5

7 | 8

10

11|12

13 14

15 16

17 18

19 20

21 | 22

23|24

Step 3: Backward Substitution

We solve $\mathbf{R}\mathbf{u} = \mathbf{y}$ for \mathbf{u} (using $r_i = \beta_i$ for i = 1,...,N-1):

$$\begin{pmatrix} m_1 & \beta_1 & & & & \\ & m_2 & \beta_2 & & & \\ & & \ddots & \ddots & \\ & & m_{N-1} & \beta_{N-1} \\ & & & m_N \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{N-1} \\ y_N \end{pmatrix}$$

Proceeding from the last to the first equation gives

$$u_N := y_N/m_N$$
 for $i = N-1, N-2, ..., 1$: $u_i := (y_i - \beta_i u_{i+1})/m_i$

Thomas Algorithm for Tridiagonal Systems (8)

Remarks

- The Thomas algorithm can be shown to be stable for every strictly diagonally dominant system.
- ◆ It can be regarded as *recursive filtering*:
 - step 1: computation of the filter coefficients
 - step 2: *causal* filter
 - step 3: anticausal (acausal) filter
- The algorithm is highly efficient: It requires only
 - $\bullet \ (N\!-\!1) + N \ = \ 2N\!-\!1 \ \ {\rm divisions},$
 - (N-1) + (N-1) + (N-1) = 3N-3 multiplications,
 - $\bullet \ (N\!-\!1) + (N\!-\!1) + (N\!-\!1) \ = \ 3N\!-\!3 \ \ {\rm subtractions}.$

Thus, its complexity is linear in N.

lacktriangle The memory requirement is also linear in N.

The m-Dimensional Case (1)

The *m*-Dimensional Case

- Use a single index in order to count all pixels of an m-D image $f = (f_k)$. Let $\mathcal{N}(k)$ be the set of neighbours of pixel k (in 2-D: 4 for inner points, 3 for boundary points, 2 for corner points).
- lacktriangle Then the m-dimensional energy is given by

$$E(\mathbf{u}) := \frac{1}{2} \sum_{k=1}^{N} \left((u_k - f_k)^2 + \frac{\alpha}{2} \sum_{j \in \mathcal{N}(k)} (u_j - u_k)^2 \right).$$

lacktriangle Minimisation of $E(oldsymbol{u})$ yields the linear system

$$u_i + \alpha \sum_{j \in \mathcal{N}(i)} (u_i - u_j) = f_i \quad (i = 1, ..., N).$$

not (exactly) separable into simpler 1-D problems

The m-Dimensional Case (2)

Structure of the Linear System

- The system matrix is large, symmetric and sparse (dünn besetzt).
- Example:
 - $256^2 = 65536$ unknowns for an image of size 256×256
 - \bullet yields a system matrix of size $65536 \times 65536,$ i.e. with $4.3 \cdot 10^9$ entries
 - A naive storing of all entries as floats (4 bytes) would require 17 Gigabyte!
 - However, for a four-neighbourhood, the matrix has not more than 5 nonvanishing entries per row.
 Thus, at most 5: 65536 327680 out of 4.3: 10⁹ entries are interest.
 - Thus, at most $5\cdot 65536=327680$ out of $4.3\cdot 10^9$ entries are interesting. This is only 0.00763 %. The rest are zeroes.
- Direct methods such as a Gaussian algorithm would destroy many zeroes for dimensions m > 1, and would lead to a prohibitive computational burden.
- Iterative methods are reasonable alternatives:
 - Jacobi, Gauß-Seidel, SOR methods
 - preconditioned conjugate gradient (PCG) methods
 - multigrid methods

M	1
	A

3

5

7 8

9 10

11|12

13 14

15 16

17 18

19|20

21 | 22

1	2

5	6
~	_

7	8

9	10

11	12
----	----

13	14
----	----

15	16

17	18
----	----

19	20

21	7
41	۷.

The m-Dimensional Case (3)

3

5 | 6

7

9 10

11 | 12

13 14

15 16

17 18

19 20

21 | 22

23 | 24

25|26

2

7 | 8

3 | 4

5 | 6

9 10

11|12

13 | 14

15 16

17 18

19 20

21 | 22

23|24

8

Jacobi Method (Gesamtschrittverfahren)

- lacktriangle simplest (and slowest) iterative method for solving a linear system $m{B}m{x}=m{d}$
- Let B = D N with an invertible diagonal matrix D and a remainder N. Then Dx = Nx + d is solved iteratively with the fixed point scheme

$$x^{(k+1)} = D^{-1}(Nx^{(k)} + d)$$
 $(k = 0, 1, ...).$

- low computational effort per iteration if B is sparse:
 1 matrix-vector product, 1 vector addition, 1 vector scaling
- lacktriangle only small additional memory requirement: vector $oldsymbol{x}^{(k)}$
- well-suited for parallel computing (multi-core processors, GPUs)
- lacktriangle converges for any initialisation $oldsymbol{x}^{(0)}$ if $oldsymbol{B}$ is strictly diagonally dominant
- lacktriangledown residue $m{r}^{(k)} := m{B}m{x}^{(k)} m{d}$ gives stopping criterion: stop if $ig|m{r}^{(k)}ig| \leq arepsilon \ ig|m{r}^{(0)}ig|$.

The m-Dimensional Case (4)

Application to Our Problem

For our linear system of equations,

$$u_i + \alpha \sum_{j \in \mathcal{N}(i)} (u_i - u_j) = f_i \quad (i = 1, ..., N),$$

we move the non-diagonal parts to the right:

$$u_i + \alpha |\mathcal{N}(i)| u_i = f_i + \alpha \sum_{j \in \mathcal{N}(i)} u_j,$$

where $|\mathcal{N}(i)|$ denotes the number of neighbours of pixel i.

• This gives the following iterative scheme for i = 1,...,N:

$$u_i^{(k+1)} := \frac{f_i + \alpha \sum_{j \in \mathcal{N}(i)} u_j^{(k)}}{1 + \alpha |\mathcal{N}(i)|}.$$

This is what you implement. It's very simple.

lacktriangle As initialisation it is natural to take $oldsymbol{u}^{(0)} := oldsymbol{f}.$

The m-Dimensional Case (5)

Stability Results

- lacktriangle This scheme performs local averaging of f_i and the neighbours $\{u_j^{(k)} \mid j \in \mathcal{N}(i)\}$.
- The weights $\frac{1}{1+\alpha\,|\mathcal{N}(i)|}$ and $\frac{\alpha}{1+\alpha\,|\mathcal{N}(i)|}$ (appears $|\mathcal{N}(i)|$ times) are nonnegative and sum up to 1.
- From this convex combination it follows that

$$\min_{j} f_{j} \leq u_{i}^{(k)} \leq \max_{j} f_{j} \quad \forall i \in \{1, ..., N\}, \quad \forall k > 0.$$

Thus, over- and undershoots cannot appear.

♦ global convergence, since the system matrix is strictly diagonally dominant

The m-Dimensional Case (6)

Can One Speed up the Jacobi Method?

- better initialisations give faster convergence
- simplest two-grid method:
 - solve the system on a downsampled image
 - interpolate the solution to its original size
 - use it as initialisation for the fine scale (nested iteration, cascadic multigrid)
- Pyramid-like downsampling and interpolation gives a simple multigrid method (Mehrgitterverfahren).

More Efficient Alternatives to the Jacobi Method

- Gauß-Seidel and SOR methods (Einzelschrittverfahren, Relaxationsverfahren)
- preconditioned conjugate gradient methods (PCG)

They are treated in many books on numerical linear algebra.

VI	
	A
1	2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

M I ∰ A

2

. | 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

The m-Dimensional Case (7)

Influence of the the regularisation parameter α for variational denoising. For improving visibility, an affine greyscale transformation to [0,255] has been performed. Author: J. Weickert.

The m-Dimensional Case (8)

Left: Test image, 256×256 pixels. **Middle:** With additive Gaussian noise. **Right:** Variational method with $\alpha=2.05$. Authors: O. Scherzer, J. Weickert.

23	24
25	
B 4	
M	I A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26

3

5

7

9 | 10

11 12

13 14

15 16

17 18

19 20

Summary
Summary
 Discrete variational methods minimise an energy with data and smoothness term
They create filter masks with maximal support (IIR filters).
♦ Image domain boundaries are taken into account automatically.
◆ The 1-D case leads to a tridiagonal system with a diagonally dominant matrix.
◆ It can be solved in a stable and efficient way with the Thomas algorithm.
 This algorithm consists of 3 steps: LR decomposition, forward elimination, backward substitution.
◆ It has linear complexity and can be regarded as a recursive filter.
$lacktriangle$ For dimensions ≥ 2 , the system is solved iteratively, e.g. with the Jacobi method
Pyramid-like multigrid methods can lead to significant speed-ups.

References

References

- G. Aubert, P. Kornprobst: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Second Edition, Springer, New York, 2006. (one of the best books on variational methods in image analysis)
- ◆ E. T. Whittaker: A new method of graduation. Proceedings of the Edinburgh Mathematical Society, Vol. 41, 63-75, 1923.

(early publication on a discrete variational model for data regression)

- ♦ H. R. Schwarz, N. Köckler: *Numerische Mathematik*. Achte Auflage, Teubner, Stuttgart, 2011. English Edition:
 - H. R. Schwarz, J. Waldvogel: Numerical Analysis: A Comprehensive Introduction. Wiley, 1989. (good description of the Thomas algorithm)
- L. H. Thomas: Elliptic problems in linear difference equations over a network. Technical Report, Watson Scientific Computing Laboratory, Columbia University, New York, NJ, 1949. (original report by Thomas)
- Y. Saad: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, Second Edition, 2003. (iterative methods for solving linear systems of equations, in particular PCG methods)
- A. Meister: Numerik linearer Gleichungssysteme. Vieweg, Braunschweig, 5. Auflage, 2014. (excellent German book on numerical methods for linear systems of equations)
- W. L. Briggs, V. E. Henson, S. F. McCormick: A Multigrid Tutorial. Second Edition, SIAM, Philadelphia, 2000. (well readable introduction to multigrid methods)

VI	
	A

13 14

15 16

17 18

19 20

21 | 22

23|24