Lecture Notes for **Machine Learning in Python**

Table Data using Numpy, Pandas

Problem Types in Machine Learning

Problem Types in Machine Learning

Google - American Sign Language Fingerspelling...

Train fast and accurate American Sign...

Research · Code Competition

1269 Teams

\$200,000

3 days to go

CommonLit - Evaluate Student Summaries

Automatically assess summaries writt...

Featured · Code Competition

925 Teams

\$60,000

2 months to go

Bengali.Al Speech Recognition

Recognize Bengali speech from out-of...
Research · Code Competition
317 Teams

\$53,000

2 months to go

CAFA 5 Protein Function Prediction

Predict the biological function of a pro...

Research · Code Competition

1655 Teams

\$50,000

10 hours to go

Kaggle - LLM Science Exam

Use LLMs to answer difficult science ...
Featured · Code Competition
1471 Teams

\$50,000

2 months to go

RSNA 2023 Abdominal Trauma Detection

 $\label{eq:decomposition} \mbox{Detect and classify traumatic abdomi...} \\ \mbox{Featured} \cdot \mbox{Code Competition}$

333 Teams

\$50,000

2 months to go

Predict CO2 Emissions in Rwanda

Playground Series - Season 3, Episod...

Playground

1401 Teams

Swag

10 hours to go

Titanic - Machine Learning from Disaster

Start here! Predict survival on the Tita...

Getting Started

14897 Teams

Knowledge

Ongoing

Classification and Regression, Supervised

Some Popular Datasets

ImageNet

224 x 224 Color Image

↓

1000 Classes

(prominent object)

MNIST

0	0	0	
1	l	١	
2	J	2	
3	3	3	
	4		60k
5	5	5	OUK
6	G	6	
Ŧ	7	7	
8	8	8	
9	૧	9	

24 x 24 Grey Image

10 Classes (digits)

Adult

5k

# feature	original feature
1	age
2	workclass
3	final weight
4	education
5	ed_num
6	marital_status
7	occupation
8	relationship
9	race
10	sex
11	capital_gain
12	capital_loss
13	$hours \times week$
14	country

Binary (salary > 50k?)

CoCo

200k Images

Large, Multi-sized Images

Location, Size, 80 Objects

Boston Housing

House/Neighborhood
Descriptions

House Price

500 Examples

Translation

Language A

Language B

Many datasets

SQuAD

Question

Answer

100k+

Imdb

Movie/Actors/Director/+

Critic/Audience rating

50k reviews

Self Test

- A. Classification
 - **B.** Regression
 - C. Not Machine Learning
- D. Machine Learning Generation
- Dividing up customers by potential profitability?
- Extracting frequency of sound?

Before Next Lecture

- Before next class:
 - install python on your laptop
 - install anaconda distribution of python
 - use environments (conda env)
- Look at Python primer if you need review
 - Dr. Larson made ~4 hours of YouTube content...
 - https://www.youtube.com/playlist?list=PL7IPdRN 5E0YKCnVI-fvx8jOOCWVeGTsrV

Class Logistics and Agenda

- Canvas? Anaconda Installs?
- In-person versus Zoom and other classes
- Agenda:
 - Data Encodings
 - Demo: Table Data, Numpy
 - Data Quality
 - Attributes Representation
 - documents
 - The Pandas eco-system
 - loading and manipulating attributes

Types of Data and Categorization

Table Data

Table Data: Collection of data

instances and their features

Python: Pandas Dataframe

R: Data.frame

Matlab: Table Class

C++: Trick Question

Attributes, columns, variables, fields, characteristics, Features

Objects,

	1				
TID	Pregnant	ВМІ	Age	Diabetes	
1	Υ	33.6	41-50	positive	
2	N	26.6	31-40	negative	
3	Y	23.3	31-40	positive	
4	N	28.1	21-30	negative	
5	N	43.1	31-40	positive	
6	Υ	25.6	21-30	negative	
7	Y	31.0	21-30	positive	
8	Y	35.3	21-30	negative	
9	N	30.5	51-60	positive	
10	Y	37.6	51-60	positive	

records,

samples,

rows,

points,

cases,

entities,

instances

from Tan et al. Introduction to Data Mining

Feature Vector Representation

	Attribute	Representation Transformation	Comments
ete	Nominal	one hot encoding or hash function	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	Order must be preserved new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	<pre>new_value = f(old_value) + b f is monotonic through origin float</pre>	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Cor	Ratio	<pre>new_value = f(old_value) f is monotonic through origin float</pre>	Length can be measured in meters or feet, but zero is zero

Data Tables as Variable Representations

	TID	Pregnant	ВМІ	Age	Eye Color	Diabetes
a \	1	Y	33.6	41-50	brown	positive
Table	2	N	26.6	31-40	hazel	negative
•	3	Y	23.3	31-40	blue	positive
Internal Rep.	TID 1 2 3 4 5					

U

U

U

25.6

Lecture

12

Demo

Opening Demo: Jupyter Notebooks

01_Numpy and Pandas Intro.ipynb

Data Quality

programmers commenting their code

Data Quality Problems

TID	Hair Color	Hgt.	Age	Arrested
1	Brown	5'2"	23	no
2	Hazel	1.5m	12	no
3	BI	5	999	no
4	Brown	5'2"	23	no
	Numeric Feature Vector	-	rs Prediction Model Expected Output	

- Missing
 - Easy to find, NaNs
- Duplicated
 - Easy to find, hard to verify
- Noise or Outlier
 - Hard to define / catch

Information is not collected (e.g., people decline to give their age and weight)

Features **not applicable** (e.g., annual income for children)

UCI ML Repository: 90% of repositories have missing data

Handling Issues with Data Quality

- Eliminate Instance or Feature
- Ignore the Missing Value During Analysis Replace with all possible values (talk about later)
- Impute Missing Values How?

stats? mean median mode

Imputation

- When is it probably fine to impute missing data:
 - (A) When there is not much missing data
 - (B) When the missing feature is mostly predictable from another feature
 - (C) When there is not much missing data for each subgroup of the data
 - (D) When it is the class you want to predict

Split-Impute-Combine

TID	Pregnant	ВМІ	Age	Diabetes
1	Y	33.6	41-50	positive
2	Ν	26.6	31-40	negative
3	Y	23.3	?	positive
4	N	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

split: pregnant

split: BMI > 32

TID	Pregnant	ВМІ	Age	Diabetes
1	Y	>32	41-50	positive
8	Лoďe: ı	>32 101 >32	? e, ca	nęgațive an't im
TID	Pregnant		Age	Diabetes
3	Y	<32	?	positive
6	Y	<32	21-30	negative
7	Υ	<32	21-30	positive

Mode: 21-30

K-Nearest Neighbors Imputation

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	N	26.6	31-40	negative
3	Y	23.3	?	positive
4	?	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Y	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Y	35.3	?	negative
9	N	30.5	51-60	positive
10	Y	37.6	51-60	positive

$$d_{i,j} = \frac{1}{|F_{valid}|} \sum_{f \in F_{valid}} \|f_i - f_j\| \text{Or weight neighbors differently}$$
• Or have min # of valid features

For K=3, find 3 closest neighbors

	TID	Preg.	ВМІ	Age	Diabetes	Distance
•	3	Y	23.	?	positive	0
	6	Y	25. 6	21-30	negative	(0 + 2.3 + 1)/3
	2	N	26. mp	31-40 utec	negative I Age: 2	1-30 + 3.3 + 1)/3

4 How to calculate distance?1)/2

- Difference for valid features only
- May need to normalize ranges
- Euclidean, city-block, etc.

For Next Lecture

- Before next class:
 - verify installation of seaborn, plotly, (and/or bokeh if you want)
 - look at pandas table data and additional tutorials
- Next time: Documents, Data Imputation Demo