EAE1223: ECONOMETRIA III AULA 2 - PROCESSOS ESTOCÁSTICOS

Luis A. F. Alvarez

4 de março de 2024

ESPAÇO DE PROBABILIDADE

- Formalmente, o conceito utilizado para se definir a noção de incerteza associada a um problema é o de espaço de probabilidade.
- Um espaço de probabilidade é uma tripla $(\Omega, \Sigma, \mathbb{P})$, onde:
 - Ω é um conjunto, denominado espaço amostral, contendo todos as possíveis realizações da incerteza.
 - Σ é uma coleção de subconjuntos de Ω , denominada σ -álgebra. A cada subconjunto de Ω pertencente a Σ damos o nome de evento. Os elementos de Σ são aqueles para os quais somos capazes de definir a incerteza.
 - uma lei de probabilidade $\mathbb P$ que atribui, a cada conjunto $E \in \Sigma$, um número $\mathbb P[E]$ entre 0 e 1. A lei de probabilidade satisfaz os axiomas de Kolmogorov.
- Por que não definimos a probabilidade para todo subconjunto de Ω ?
 - Resposta: se Ω é "complexo" (por exemplo, [0,1]), é impossível definir uma probabilidade que satisfaça todos os axiomas de Kolmogorov para todo subconjunto do espaço.

EXEMPLO

- Considere um lançamento de um dado não viciado.
- Nesse caso, espaço amostral é $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Como lançamento é não viciado, sabemos que:

$$\mathbb{P}[\{1\}] = \mathbb{P}[\{2\}] = \mathbb{P}[\{3\}] = \mathbb{P}[\{4\}] = \mathbb{P}[\{5\}] = \mathbb{P}[\{6\}] = 1/6 \,.$$

- Pelos axiomas da probabilidade, segue que podemos tomar Σ como o conjunto de todos os subconjuntos de Ω , e, para qualquer $E \in \Sigma$:

$$\mathbb{P}[E] = \mathbb{P}[\cup_{e \in E} \{e\}] = \sum_{e \in E} \mathbb{P}[\{e\}] = \frac{\#E}{6},$$

onde #E é o número de elementos de E.

- Exemplo: probabilidade de que o lançamento dê um número par é:

$$\mathbb{P}[\{2,4,6\}] = \frac{3}{6} = \frac{1}{2}$$

Variável aleatória e processo estocástico

- Uma variável aleatória Z é uma função, com domínio no espaço amostral (onde definimos a incerteza), e valores em outro espaço (para nossos fins, os reais).
 - Por exemplo, $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade descrevendo a incerteza associada aos retornos de ativos financeiros, e $Z: \Omega \mapsto \mathbb{R}$ é a variável aleatória que representa o retorno de um fundo.
 - Incerteza em $(\Omega, \Sigma, \mathbb{P})$ traduz-se em incerteza em Z, i.e. Z é incerto pois o valor $\omega \in \Omega$ que ocorre é incerto.
- Um processo estocástico é uma coleção de variáveis aleatórias $\{X_t: t \in \mathcal{T}\}$, com domínio no **mesmo** espaço de probabilidade e indexada por um conjunto \mathcal{T}
- Uma série de tempo é um processo estocástico indexado no tempo, i.e. \mathcal{T} é um conjunto de períodos.
 - Sempre tomaremos $\mathcal{T}=\mathbb{Z}$ ou $\mathcal{T}=\mathbb{N}.$
 - Para cada $\omega \in \Omega$, $\{X_t(\omega) : t \in \mathcal{T}\}$ é uma trajetória possível da série de tempo. Para cada $t \in \mathcal{T}$, X_t é uma variável aleatória.

SÉRIE DE TEMPO ESTRITAMENTE ESTACIONÁRIA

- Uma série de tempo $\{X_t: t \in \mathcal{T}\}$ é dita estritamente estacionária se, para todo $t \in \mathcal{T}$, $j \in \mathbb{N}$:

$$(X_t, X_{t+1}, \dots, X_{t+j}) \stackrel{d}{=} (X_{t+h}, X_{t+1+h}, \dots, X_{t+j+h}), \quad \forall h \geq 0,$$

onde $\stackrel{d}{=}$ significa igualdade das distribuições conjuntas, isto é

$$\mathbb{P}[X_t \le c_1, X_{t+1} \le c_2, \dots, X_{t+j} \le c_j] = \\ \mathbb{P}[X_{t+h} \le c_1, X_{t+1+h} \le c_2, \dots, X_{t+j+h} \le c_j], \quad \forall c_1, c_2, \dots, c_j.$$

- Estacionariedade estrita requer que distribuição de qualquer número finito de períodos do processo seja a mesma ao longo do tempo.

SÉRIE DE TEMPO FRACAMENTE ESTACIONÁRIA

- Para modelos lineares de séries de tempo, vamos considerar o conceito de processo (fracamente) estacionário.
- Uma série de tempo $\{X_t:t\in\mathcal{T}\}$ é dita (fracamente) estacionária se:
 - 1. $\mathbb{E}[X_t] = \mu$ para todo $t \in \mathcal{T}$.
 - 2. $\mathbb{V}[X_t] = \sigma^2 < \infty$ para todo $t \in \mathcal{T}$.
 - 3. $cov(X_t, X_s) = \phi_{|t-s|}$ para todo $t, s \in \mathcal{T}$.
- Processo é fracamente estacionário se sua média e variância mantêm-se constantes no tempo e covariância entre duas observações depende somente da distância entre as duas observações no tempo.
- Estacionariedade fraca impõe um mínimo de estabilidade no processo ao longo do tempo para que análise estatística usual possa prosseguir.
 - De modo geral, alguma noção de estacionariedade + dependência fraca entre as observações (observações muito distantes no tempo comportam-se "como" observações independentes) vai ser requerida das séries de tempo para o funcionamento "padrão" de estimadores.
- Processo é dito não estacionário se não for fracamente estacionário.

Ruído branco

- Um processo Z_t , $t \in \mathcal{T}$, é dito um ruído branco se:
 - 1. $\mathbb{E}[Z_t] = 0$ para todo t.
 - 2. $\mathbb{V}[Z_t] = \sigma^2 < \infty$ para todo t.
 - 3. $cov(Z_t, Z_s) = 0$ se $t \neq s$.
- Um ruído branco tem média zero, variância constante finita e não apresenta correlação serial.
 - Por construção, é um processo fracamente estacionário.

Ruído branco (gráfico)

PROCESSO MA(Q)

- Um processo Z_t , $t \in \mathbb{Z}$, é dito de média movel de ordem q, ou tão somente MA(q), se:

$$Z_t = \mu + \epsilon_t + \sum_{j=i}^q \psi_i \epsilon_{t-i} ,$$

onde $\{\epsilon_t\}_{t\in\mathbb{Z}}$ é um ruído branco com variância σ^2_ϵ .

- Vamos verificar que o processo é (fracamente) estacionário. De fato
 - 1. $\mathbb{E}[Z_t] = \mu$.
 - 2. $V[Z_t] = \sigma_{\epsilon}^2 (1 + \sum_{j=1}^q \psi_j^2).$
 - 3. $cov(Z_{t+j}, Z_t) = \begin{cases} \sigma_{\epsilon}^2(\psi_j + \psi_{j+1}\psi_1 + \dots + \psi_q \psi_{q-j}), & \text{se } 0 < j \le q \\ 0, & \text{se } j > q \end{cases}$
- Processo tem memória curta: correlações desaparecem após q períodos.

Processo MA(2) com $\psi_1 = 1$ e $\psi_2 = 0.5$

Processo AR(1) estacionário

- Um processo Z_t , $t \in \mathbb{Z}$, é dito autorregressivo de ordem um estacionário, ou tão somente AR(1) estacionário, se:

$$Z_t=lpha+
ho Z_{t-1}+u_t$$
 onde $|
ho|<1$, $\{u_t\}_{t\in\mathbb{Z}}$ é ruído branco com $\mathbb{V}[u_t]=\sigma_u^2$ existem $S\in\mathbb{Z}$,

 $C \in \mathbb{R}$ tais que $\mathbb{E}[|Z_t|] \leq C$ para todo $t \leq S$.

- Vamos verificar que as condições acima garantem que o processo seja, de fato, estacionário.
- Note que:

$$Z_{t} = \alpha + \rho(\alpha + \rho Z_{t-2} + u_{t-1}) + u_{t}$$

$$= \alpha + \rho\alpha + \rho^{2}(\alpha + \rho Z_{t-3} + u_{t-2}) + u_{t} + \rho u_{t-1}$$

$$= \dots$$

$$= \sum_{j=0}^{\tau} \rho^{j} \alpha + \rho^{\tau} Z_{t-\tau} + \sum_{j=0}^{\tau} \rho^{j} u_{t-j}$$

Processo AR(1) estacionário (cont.)

- Pelas hipóteses, $\lim_{\tau\to\infty} \rho^{\tau}\mathbb{E}[|Z_{t-\tau}|]=0$. Isso nos garante que $\rho^{\tau}|Z_t|\to 0$ e podemos escrever

$$Z_{t} = \sum_{j=0}^{\infty} \rho^{j} \alpha + \sum_{j=0}^{\infty} \rho^{j} u_{t-j} = \frac{\alpha}{1-\rho} + \sum_{j=0}^{\infty} \rho^{j} u_{t-j}$$

- AR(1) estacionário se escreve como MA(∞).
- Usando representação acima, podemos checar que o processo é estacionário. De fato:

1.
$$\mathbb{E}[Z_t] = \frac{\alpha}{1-\rho}$$

2.
$$\mathbb{V}[Z_t] = \frac{\sigma_u^2}{1-\rho^2}$$
.

3.
$$\operatorname{cor}(Z_t, Z_s) = \rho^{|t-s|}$$
.

${ m AR}(1)$ estacionário com ho=0.7 (gráfico)

Processo AR(p) estacionário

- Um processo Z_t , $t \in \mathbb{Z}$, é dito autorregressivo de ordem p estacionário, ou tão somente AR(p) estacionário, se:

$$Z_t = \alpha + \beta_1 Z_{t-1} + \beta_2 Z_{t-2} + \ldots + \beta_p Z_{t-p} + u_t$$

onde $\{u_t\}_{t\in\mathbb{Z}}$ é ruído branco com $\mathbb{V}[u_t] = \sigma_u^2$, existem $S \in \mathbb{Z}$, $C \in \mathbb{R}$ tais que $\mathbb{E}[|Z_t|] \leq C$ para todo $t \leq S$, e os parâmetros $(\beta_1, \beta_2, \dots, \beta_p)$ são tais que processo resultante é estacionário.

- No AR(p), processo se escreve como uma combinação linear do que aconteceu nos últimos p períodos, mais uma inovação.

OPERADOR DEFASAGEM

- Para a análise de séries de tempo, é conveniente definir uma função L, denominada operador defasagem, que, para uma dada série de tempo $(X_t)_{t\in\mathcal{T}}$, nos devolve a série de tempo que consiste em $(X_t)_{t\in\mathcal{T}}$ defasado em um período, i.e.

$$LX_t \stackrel{\text{definição}}{=} L(X_t) = X_{t-1}, \quad \forall t \in \mathcal{T}$$

- A notação \mathcal{L}^d será usada para denotar a aplicação do operador \mathcal{L} d vezes em sequência, i.e.

$$L^d X_t \stackrel{\text{definição}}{=} \underbrace{L \dots L}_{\text{d vezes}} X_t = X_{t-d} \,, \quad \forall t \in \mathcal{T}$$

- Por fim, definiremos $L^0 = 1$, de modo que:

$$L^0 X_t = 1 X_t = X_t \quad \forall t \in \mathcal{T}$$

Propriedades do operador defasagem

LEMA

Sejam $(X_t)_{t\in\mathcal{T}}$ e $(Y_t)_{t\in\mathcal{T}}$ duas séries de tempo, e $\alpha\in\mathbb{C}$ um número complexo. Então

- 1. (Linearidade) $L(X_t + \alpha Y_t) = LX_t + \alpha LY_t$.
- 2. (Existência de soma infinita) Se $(X_t)_{t\in\mathcal{T}}$ é estacionário e $|\alpha|<1$, o processo

$$Z_t = \sum_{j=0}^{\infty} \alpha^j L^j X_t = \sum_{j=0}^{\infty} \alpha^j X_{t-j},$$

existe e é estacionário.

3. (Inversa) Se $(X_t)_{t\in\mathcal{T}}$ é estacionário e $|\alpha|<1$:

$$(1 - \alpha L)^{-1}(X_t) = \sum_{i=0}^{\infty} \alpha^j L^j X_t$$

AR(P) EM NOTAÇÃO POLINOMIAL

 Usando a notação aprendida anteriormente, podemos reescrever o AR(p) como:

$$\phi(L)Z_t = \alpha + u_t, \qquad (1)$$

onde $\phi(L) = 1 - \beta_1 L - \beta_2 L^2 \dots - \beta_p L^p$, e $\{u\}_{t \in \mathbb{Z}}$ é ruído branco.

Proposição

Existe um processo $\{Z_t\}_{t\in\mathbb{Z}}$ fracamente estacionário que satisfaz (1), se, e somente se, as p raízes da equação $\phi(x)=0$ se encontram **fora** do círculo unitário, isto é:

$$\phi(x) = 0 \implies |x| > 1.$$

Neste caso, o processo fracamente estacionário que satisfaz (1) é único, e pode ser escrito como:

$$Z_t = \phi^{-1}(L)(\alpha + u_t) = \tau + \sum_{i=0}^{\infty} \omega_i u_{t-i}$$

Estacionariedade do AR(P)

- A proposição anterior nos provê uma caracterização para a existência de um $\{Z_t\}_t$ estacionário que satisfaz (1), em termos das raízes do polinômio característico $\phi(x)$.
 - Note que a proposição fala de existência de uma solução. Por quê?
 - Isso se deve ao fato de que também podem existir processos $\{Z_t\}_{t\in\mathbb{Z}}$ não estacionários que satisfazem (1), mesmo quando as raízes estão todas fora do círculo.
 - Mas o teorema nos diz que, se ao menos uma das raízes está dentro do círculo, com certeza não há nenhuma solução estacionária.
 - A restrição que fazíamos, na definição de AR(p) estacionário, de que o passado não explodia, justamente descartava as soluções não estacionárias, garantindo que selecionássemos a solução estacionária.
- No curso e na vida, vamos seguir como tradicionalmente feito na literatura econométrica e implicitamente sempre descartar as soluções não estacionárias (explosivas) que existem mesmo quando todas as raízes estão fora do círculo.
 - Dessa forma, diremos que um AR(p) é fracamente estacionário se, e somente se, **todas** as raízes de $\phi(x)$ estão fora do círculo.

Encontrando os coeficientes da representação $MA(\infty)$

- As propriedades do operador defasagem podem ser utilizadas para encontrar a representação $MA(\infty)$ de um AR(p) estacionário.
- De fato, considere um AR(2) estacionário:

$$(1 - \beta_1 L - \beta_2 L^2) y_t = \alpha + u_t$$

- Da fatoração de polinômios, podemos escrever:

$$(1-\beta_1x-\beta_2x^2)=\left(\frac{1}{\lambda_1}x-1\right)\left(\frac{1}{\lambda_2}x-1\right)\,,$$

onde λ_1 e λ_2 são as raízes de $(1 - x - \beta_2 x^2) = 0$.

Portanto:

$$(1 - \beta_1 L - \beta_2 L^2) y_t = \left(1 - \frac{1}{\lambda_1} L\right) \left(1 - \frac{1}{\lambda_2} L\right) y_t = \alpha + u_t$$

Encontrando os coeficientes da representação $\mathrm{MA}(\infty)$

- Mas então

$$y_{t} = (1 - \beta_{1}L - \beta_{2}L^{2})^{-1}(\alpha + u_{t}) =$$

$$\left(1 - \frac{1}{\lambda_{2}}L\right)^{-1}\left(1 - \frac{1}{\lambda_{1}}L\right)^{-1}(\alpha + u_{t}) =$$

$$\left(\sum_{i=0}^{\infty} \frac{1}{\lambda_{2}^{i}}L^{i}\right)\left(\sum_{j=0}^{\infty} \frac{1}{\lambda_{1}^{j}}L^{j}\right)(\alpha + u_{t}) =$$

$$\frac{1}{(1 - \lambda_{1}^{-1})(1 - \lambda_{2}^{-1})}\alpha + \sum_{t=0}^{\infty} \omega_{k}u_{t-k}$$
(2)

onde ω_k é a soma de termos $\frac{1}{\lambda_i^i \lambda_n^j}$ tais que i+j=k.

ARMA(P,Q)

- Um processo $\{Y_t\}_{t\in\mathbb{Z}}$ é dito ARMA(p,q) se:

$$Y_t = \alpha + \sum_{j=1}^p \gamma_j Y_{t-j} + \epsilon_t + \sum_{l=1}^q \pi_l \epsilon_{t-l},$$

onde $\{\epsilon_t\}_{t\in\mathbb{Z}}$ é ruído branco.

- Processo ARMA(p,q) tem notação polinomial:

$$\begin{split} \Gamma(L)Y_t &= \alpha + \Pi(L)\epsilon_t\,,\\ \text{onde } \Gamma(L) &= (1-\gamma_1L-\gamma_2L^2\ldots-\gamma_pL^p) \text{ e}\\ \Pi(L) &= (1+\pi_1L+\pi_2L^2\ldots+\pi_qL^q). \end{split}$$

- Um ARMA(p,q) é dito em forma simplificada se Γ e Π não possuem raízes em comum, i.e. $\Gamma(x)=0 \implies \Pi(x)\neq 0$ e $\Pi(x)=0 \implies \Gamma(x)\neq 0$.
 - Sempre é possível colocar um ARMA em forma simplificada, fatorando os dois polinômios em termos das raízes comuns e cortando-os dos dois lados.

ESTACIONARIEDADE DO ARMA(P,Q)

 A estacionariedade do ARMA(p,q) depende, fundalmente, do comportamento da parte AR.

Proposição

Considere um processo ARMA(p,q). Se, as p raízes da equação característica $\Gamma(x)=0$ estão todas fora do círculo unitário, então o ARMA(p,q) é estacionário. Por outro lado, se o ARMA(p,q) está em forma simplificada e uma das raízes de $\Gamma(x)$ está dentro do círculo (i.e. existe $\Gamma(x^*)=0$ com $|x^*|\leq 1$), o ARMA(p,q) não é estacionário.

Processo ARMA(P,Q) invertível

- Um ARMA(p,q) estacionário é dito invertível se admite representação AR(∞), i.e. se pode ser escrito como:

$$Y_t = \omega + \sum_{j=1}^{\infty} \kappa_j y_{t-j} + \epsilon_t.$$

- Invertibilidade depende do comportamento da parte MA.

Proposição

Considere um processo ARMA(p,q) estacionário. Se, as q raízes da equação característica $\Pi(x)=0$ estão todas fora do círculo unitário, então o ARMA(p,q) é invertível. Por outro lado, se o ARMA(p,q) está em forma simplificada e uma das raízes de $\Pi(x)$ está dentro do círculo (i.e. existe $\Pi(x^*)=0$ com $|x^*|\leq 1$), o ARMA(p,q) não é invertível.

- Invertibilidade será importante para distinguirmos entre processos ARMA.

MÉTODO PARA VERIFICAR ESTACIONARIEDADE E INVERTIBILIDADE DO ARMA

- Para verificar a estacionariedade do ARMA(p,q).
 - 1. Calcular as p raízes de $\Gamma(x) = 0$. Se todas estão fora do círculo, processo é estacionário.
 - 2. Se há raízes dentro do círculo, calculá-las (tratar raízes em multiplicidade como distintas). Se todas as raízes dentro do círculo de Γ aparecem como raízes de $\Pi(x)=0$ (as raízes em multiplicidade precisam aparecer pelo menos o mesmo número de vezes repetidas em Π), o processo ainda é estacionário. Se não for o caso, o processo é não estacionário.
- Para verificar a invertibilidade do ARMA(p,q) estacionário.
 - 1. Calcular as q raízes de $\Pi(x) = 0$. Se todas estão fora do círculo, processo é invertível.
 - 2. Se há raízes dentro do círculo, calculá-las (tratar raízes em multiplicidade como distintas). Se todas as raízes dentro do círculo de Π aparecem como raízes de Γ(x) = 0 (as raízes em multiplicidade precisam aparecer pelo menos o mesmo número de vezes repetidas em Γ), o processo ainda é invertível. Se não for o caso, o processo não é invertível.

ARMA(1,2) (GRÁFICO)

Processo não estacionário: tendência determinística

- Considere, agora, o processo:

$$Z_t = \alpha + \beta \cdot t + u_t \tag{3}$$

onde $\beta \neq 0$ e $\{u_t\}_t$ é ruído branco. Note que esse processo é não estacionário, visto que:

$$\mathbb{E}[Z_t] = \alpha + \beta \cdot t$$

varia no tempo.

- Processo é estacionário em torno de uma tendência.
- Dizemos que processos que incluem componentes determinísticos da forma f(t), onde f é uma função do tempo, apresentam tendência determinística.

EXEMPLO DE PROCESSO COM TENDÊNCIA DETERMINÍSTICA (GRÁFICO)

FIGURA: $Z_t = 0.05 \cdot t + u_t, \ u_t \sim N(0, 1)$

Processo não estacionário: tendência estocástica

- Considere agora um passeio aleatório simples, definido como:

$$Z_t = Z_{t-1} + u_t, \quad t > 0$$
 (4)

onde $\{u_t\}_{t\in\mathbb{N}}$ é ruído branco, e $Z_0=0$.

- Nesse caso, é possível verificar que:

$$Z_t = \sum_{s=1}^t u_s, \quad t > 0 \tag{5}$$

e vemos que o processo é não estacionário, visto que:

$$\mathbb{V}[Z_t] = t \cdot \sigma_u^2$$

- De (5), notamos que o processo apresenta tendência estocástica: choques têm efeito permanente no nível da série.

EXEMPLO DE PROCESSO COM TENDÊNCIA ESTOCÁSTICA (GRÁFICO)

FIGURA: Passeio aleatório simples

Processo não estacionário: quebra estrutural

- Um terceiro tipo de processo não estacionário é dado por:

$$Y_t = \begin{cases} \mu_0 + u_t, & \text{se } t \le T \\ \mu_1 + u_t, & \text{se } t > T \end{cases}$$
 (6)

onde $\{u_t\}_{t\in\mathbb{N}}$ é ruído branco e $\mu_0 \neq \mu_1$.

- Processo apresenta quebra de nível: média é μ_0 até T, e μ_1 para a frente.
- Outro tipo de processo com quebra de estrutura é dado por:

$$Y_t = \begin{cases} u_t \,, & \text{se } t \le T \\ \sigma u_t \,, & \text{se } t > T \end{cases} \tag{7}$$

para $\sigma \neq 1$. Processo apresenta quebra de escala ou na variância.

Processo não estacionário: quebra estrutural (gráfico)

(A) Quebra de nível

(B) Quebra de escala

Removendo não estacionariedades

- Cada tipo de estacionariedade enseja um tratamento particular.
- Podemos remover a tendência determinística do processo (3) ajustando um modelo de regressão linear de Z_t em t e extraindo os resíduos.
 - Também é possível trabalhar com a série em primeira diferenças, isto é, trabalhar com a série $Y_t = Z_t Z_{t-1}$ embora isso não seja a maneira mais eficiente de fazê-lo (e não funciona para tendências não lineares).
- Por outro lado, para remover a tendência estocástica em (4), devemos trabalhar com a série diferenciada $\Delta Z_t = Z_t Z_{t-1}$.
 - Observe que, de (4), $\Delta Z_t = Z_t Z_{t-1}$ é um processo estacionário.
- Por fim, para processos com quebra estrutural, o ideal é analisar os processos em janelas separadas, dentro das quais há estacionariedade.
 - O problema, neste caso, é identificar o ponto de quebra T.

Os diferentes tipos de não estacionariedade

- Processos com tendência determínistica, que se tornam estacionários após a subtração de uma f(t), são conhecidos como estacionários em torno de tendência (trend-stationary).
- Processos com tendência estocástica, que requerem diferenciação para se tornarem estacionários, são conhecidos como I(1) ou com uma raiz unitária.
- Processos estacionários são conhecidos como I(0).
- Nas próximas aulas, desenvolveremos métodos estatísticos para distinguir entre os três processos.
 - Não vamos focar na detecção de quebra estrutural, embora seja importante saber que esta é uma área ativa da Econometria.
 - Mas, se der tempo, veremos como quebras "exógenas" de variância podem ser usadas na identificação de efeitos causais.