# Language Modeling for Anomalous Network Activity Detection

Elliott Skomski, Josh Loehr, Robin Cosbey, Brian Hutchinson Computer Science Department, Western Washington University

#### Overview

# Motivation: Network analysts need to identify potential security incidents. Large computer networks make manual inspection intractable. Traditional automated methods rely on costly feature aggregation and don't provide insight into why events . Baseline Models are flagged.

Goal: Achieve highly accurate, interpretable anomaly detection with minimal feature processing using deep learning and natural language processing techniques.

### Background

- Aggregate Features: user activity counted or averaged over user-days.
- One 108-dimensional aggregate feature vector per user, per day.

- Principal Components Analysis (PCA): dimensionality reduction followed by reconstruction.
- Isolation Forest: Tree-based decision algorithm for detecting outliers.

| time | src_user  | dst_user  | src_pc | dst_pc | auth_type | logon_type | auth_orient | success? |
|------|-----------|-----------|--------|--------|-----------|------------|-------------|----------|
| 1    | C625@D0M1 | U147@D0M1 | C625   | C625   | Negotiate | Batch      | Log0n       | Success  |

Figure: Example LANL log line.

## Language Model

Intuition: log lines are like sentences in a language—we can build a language model to generate probability distributions over sequences of words.

Given a log line of words  $x_1, x_2, \ldots, x_T$ , we want to predict the word  $x_t$  at time t. To do this, we find the probability of word  $x_t$  at time t given all preceding words:  $P(x_t|x_1x_2...x_{t-1}).$ 

We use recurrent neural networks to generate these probability distributions.



Figure: Recurrent neural network language model.

- Language model learns grammar of "normal" log lines.
- Unusual log lines won't be properly replicated.
- Anomaly score is sum of cross entropy losses over all T words.
- Since model operates on log lines directly, no aggregation is required.



Figure: Interpreting the model's decision with token probabilities.

#### Acknowledgements

Many thanks to the work and contributions of our past and present collaborators: Aaron Tuor, Ryan Baerwolf, Nicolas Knowles, Nicole Nichols, and Rob Jasper.

#### Experimental Setup

• LANL Cyber Security Dataset: over one billion event log lines collected over 58 consecutive days.

| Field        | Example   | # unique labels |
|--------------|-----------|-----------------|
| time         | 1         | 5011198         |
| source user  | C625@DOM1 | 80553           |
| dest. user   | U147@DOM1 | 98563           |
| source pc    | C625      | 16230           |
| dest. pc     | C625      | 15895           |
| auth. type   | Negotiate | 29              |
| logon type   | Batch     | 10              |
| auth. orient | LogOn     | 7               |
| success      | Success   | 2               |
|              |           |                 |

Figure: Authentication log fields and statistics

#### Results and Analysis



Figure: ROC curves for best baseline, word-level, and character-level language models.



Figure: Character-level red-team log-line anomaly scores in relation to percentiles over time.

#### Conclusions and Future Work

- Perform granularity analysis for fair baseline comparison.
- Obtain results on other datasets.
- Explore methods of interpretability.