Exercises (15) May 28, 2024

1. (a) Suppose that E is a Jordan region in \mathbb{R}^n and that $f_k : E \to \mathbb{R}$ are integrable on E for $k \in \mathbb{N}$. If $f_k \to f$ uniformly on E as $k \to \infty$, prove that f is integrable on E and

$$\lim_{k \to \infty} \int_E f_k(x) dx = \int_E f(x) dx.$$

(b) Prove that

$$\lim_{k \to \infty} \int_E \cos(x/k) e^{y/k} dV$$

exists, and find its value for any Jordan region E in \mathbb{R}^2 .

2. Suppose that V is open in \mathbb{R}^n and that $f: V \to \mathbb{R}$ is continuous. Prove that if

$$\int_{E} f dV = 0$$

for all nonempty Jordan regions $E \subseteq V$, then f = 0 on V.

- 3. Suppose that E is a Jordan region and that $f: E \to \mathbb{R}$ is integrable.
 - (a) If $f(E) \subseteq H$, for some compact set H, and $\phi : H \to \mathbb{R}$ is continuous, prove that $\phi \circ f$ is integrable on E.
 - (b) Show that part (a) is false if ϕ has even one point of discontinuity.
- 4. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be continuous and suppose D_2f is continuous. Define $F(y)=\int_a^b f(x,y)dx$.
 - (a) Prove that $F(y) = \int_a^b f(x,y)dx = \int_a^b (\int_c^y D_2 f(x,t)dt + f(x,c))dx$.
 - (b) Use (a) to prove that $F'(y) = \int_a^b D_2 f(x, y) dx$.