МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 2.1.6

Эффект Джоуля-Томсона

Автор: Вронский Александр Сергеевич Б05-226

Долгопрудный 16 апреля 2024 г.

Цель работы: 1) Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) Вычисление по результатам опытов коэффициентов a, b уравнения состояния Ван-дер-Ваальса.

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

1 Теоретические сведения

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями трубки до перегородки (I) и после нее (II). Пусть, для определенности, через трубку прошел 1 моль углекислого газа с молярной массой μ . Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Покидая рассматриваемый объем, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right).$$

Подставляя выражения для A_1 и A_2 и перегруппировывая члены, найдем:

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2}\mu(v_2^2 - v_1^2).$$

Для процесса Джоуля-Томсона важно то, что он протекает медленно, то есть макроскопической скоростью течения газа можно пренебречь, следовательно $\Delta H=0$. Представляя энтальпию как функцию переменных P и T, имеем:

$$0 = \Delta H = \left(\frac{\partial H}{\partial T}\right)_P \frac{\Delta T}{\Delta P} + \left(\frac{\partial H}{\partial P}\right)_T.$$

Далее воспользуемся соотношениями:

$$\left(\frac{\partial H}{\partial T}\right)_P = C_P, \qquad \left(\frac{\partial H}{\partial P}\right)_T = T\left(\frac{\partial S}{\partial P}\right)_T + V = -T\left(\frac{\partial V}{\partial T}\right)_P + V,$$

откуда окончательно получим формулу коэффициента Джоуля-Томсона:

$$\mu_{\text{ДT}} = \frac{\Delta T}{\Delta P} = \frac{T \left(\frac{\partial V}{\partial T}\right)_P - V}{C_P}.$$

Для идеального газа выполнено $(\partial V/\partial T)_P = V/T$, поэтому $\mu_{\rm ДT} = 0$, то есть эффект Джоуля-Томсона не наблюдается. Применим полученную формулу к газу Ван-дер-Ваальса, чье уравнение состояния:

 $P = \frac{RT}{v-b} - \frac{a}{v^2}$, где v – молярный объем.

Раскладывая первое слагаемое в ряд, в первом приближении получим:

$$\frac{Pv}{RT} = 1 + \frac{1}{v} \left(b - \frac{a}{RT} \right).$$

Используя приближение в виде v = RT/P, получим:

$$v = \frac{RT}{P} + b - \frac{a}{RT},$$

следовательно:

$$T\left(\frac{\partial V}{\partial T}\right)_{P} - v = \left(\frac{RT}{P} + \frac{a}{RT}\right) - \left(\frac{RT}{P} + b - \frac{a}{RT}\right) = -b + \frac{2a}{RT},$$

$$\mu_{\text{ДT}} = \frac{\frac{2a}{RT} - b}{C_{P}}.$$
(1)

При достаточно малых температурах эффект положительный – при дросселировании газ охлаждается, однако при достижении температуры инверсии:

$$T_{\text{инв}} = \frac{2a}{Rb}$$

эффект меняет знак на отрицательный. Используя понятие критической температуры, несложно установить, что

 $T_{\text{инв}} = \frac{27}{4} T_{\text{кр}}.$

Качественно, эффект Джоуля-Томсона можно понять из следующих соображений. С одной стороны газ совершает работу против сил давления «на выходе», а также при увеличении расстояния между молекулами (расширении газа) увеличивается их потенциальная энергия, то

есть совершается работа против сил притяжения. Все это частично происходит за счет уменьшения кинетической энергии молекул (выраженное в охлаждении газа), и частично — за счет работы, совершенной над газом «на входе». Параметр а учитывает силу притяжения молекул, поэтому его большие значения способствуют охлаждению. Параметр b учитывает «силы отталкивания», поэтому его большие значения способствуют нагреванию. При малых значениях температуры (и большом объеме, хотя в нашем приближении этот эффект не попал в формулу) силы притяжения доминируют над силами отталкивания, и газ остывает. Наоборот, при больших температурах (и большом давлении) газ стремится к расширению и доминируют силы отталкивания, газ нагревается.

2 Экспериментальная установка

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рис. 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со мно- жеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P=4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля—Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра Tк.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, то есть при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки ΔP

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь-константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

3 Ход работы

Проведем серию измерений разности напряжения ΔU на термопаре от разности давлений ΔP при фиксированной температуре T. Используя табличные значения чувствительности термопары dU/dT, найдем разность температур входящего и выходящего газа DeltaT. Результаты приведены в таблицах 1, а также отображены на рис. 2. Для удобства все значения указаны с противоположным знаком – например, $\Delta T > 0$, тогда газ остывает.

Температура $T = 21$ °C				
ΔP , бар	ΔU , мкВ	ΔT , °C		
2.0 ± 0.1	40 ± 2	0.99 ± 0.05		
$2,5 \pm 0,1$	59 ± 2	$1,46 \pm 0,05$		
$3,0 \pm 0,1$	78 ± 2	$1,93 \pm 0,05$		
3.5 ± 0.1	97 ± 2	$2,4 \pm 0,05$		
$4{,}0\pm0{,}1$	116 ± 2	$2,88 \pm 0,05$		

Температура $T = 50$ °C					
ΔP , бар	ΔU , мкВ	ΔT , °C			
$2,0 \pm 0,1$	25 ± 2	0.58 ± 0.05			
$2,5 \pm 0,1$	41 ± 2	0.96 ± 0.05			
$3,0 \pm 0,1$	55 ± 2	$1,29 \pm 0,05$			
$3,5 \pm 0,1$	73 ± 2	$1,71 \pm 0.05$			
4.0 ± 0.1	88 ± 2	$2,06 \pm 0,05$			

Температура $T=30$ °C				
ΔP , бар	ΔU , мкВ	ΔT , °C		
$2,0 \pm 0,1$	31 ± 2	$0,75 \pm 0,05$		
$2,5 \pm 0,1$	47 ± 2	$1,14 \pm 0,05$		
$3,0 \pm 0,1$	66 ± 2	$1,61 \pm 0,05$		
$3,5 \pm 0,1$	86 ± 2	$2,09 \pm 0,05$		
$4{,}0\pm0{,}1$	104 ± 2	$2,\!53\pm0,\!05$		

Температура $T=60^{\circ}\mathrm{C}$				
ΔP , бар	ΔU , мкВ	ΔT , °C		
$2,0 \pm 0,1$	25 ± 2	$0,57 \pm 0,05$		
2.5 ± 0.1	40 ± 2	0.92 ± 0.05		
$3,0 \pm 0,1$	54 ± 2	$1,24 \pm 0,05$		
$3,5 \pm 0,1$	72 ± 2	$1,65 \pm 0,05$		
$4,0 \pm 0,1$	86 ± 2	$1,97 \pm 0,05$		

Таблица 1: Измерения процесса Джоуля-Томсона при фиксированных температурах

Рис. 2: Зависимость разности температур от разности давлений в процессе Джоуля-Томсона

На основании полученных зависимостей посчитаем значение коэффициента Джоуля-Томсона $\mu_{\rm ДT}=\frac{\Delta T}{\Delta P}.$ Результаты представлены в таблице 2.

T, °C	21	30	50	60
$\mu_{\rm ДT},~{ m K/бар}$	$0,93 \pm 0,07$	0.89 ± 0.06	$0,73 \pm 0,05$	0.7 ± 0.05

Таблица 2: Значения коэффициента Джоуля-Томсона при разных температурах

Чтобы вычислить коэффициенты уравнения состояния Ван-дер-Ваальса, линейно приблизим зависимость $\mu_{\text{ДТ}}$ от 1/T, см. рис 3. Воспользовавшись уравнением (1), и приняв $C_p=37,1\,\frac{\mathcal{A}_{\text{ж}}}{\text{K}\cdot\text{моль}}$, окончательно получим:

$$a = 9.7 \pm 2.9 \ 10^{-2} \frac{\text{H·m}^4}{\text{MOJIb}^2}$$
 $b = 44 \pm 22 \ \frac{\text{cm}^3}{\text{MOJIb}}$ $T_{\text{инв}} = 524 \pm 559 \ \text{K}$

 $b^{\text{табл}} = 42.8 \frac{\text{см}^3}{\text{моль}}$

 $T_{\text{инв}}^{\text{табл}} = 1500 \, \, \, \mathrm{K}$

3,35

 $3,40 \times 10^{-3}$

3,30

В то время как табличные значения составляют

3,05

3,00

3,10

 $a^{\text{табл}} = 36.5 \ 10^{-2} \, \frac{\text{H} \cdot \text{M}^4}{\text{моль}^2}$

Рис. 3: Зависимость коэффициента Джоуля-Томсона от обратной температуры

3,20

Обратная температура 1/T, 1/K

3,25

3,15

4 Выводы

Как видно, результаты совершенно не сходятся с табличными значениями, более того, табличные значения даже не попадают в кресты погрешности. Помимо очевидного несовершенства эксперимента, причиной может быть локальный характер применимости уравнения состояния Ван-дер-Ваальса: коэффициенты хорошо описывают поведение газа лишь в некоторой окрестности фазового пространства, при этом их табличные значения могли быть получены в условиях, отличных от условий нашего эксперимента.