Briefing Contents

- Analysis assumptions
- Heat loads
- Cooling mass flow calculation
- Bay penetration sizing analysis
- M5 Flight Test Profile analysis

Internal Cooling Analysis Assumptions

- Avionics will be air-cooled
- Rates of waste heat produced by Avionics are as specified in Master Equipment List
- AV has 2 inlets, 4 outlets for cooling air flow.
- AV will operate in Dryden weather (20° to 100°F ambient temperature)
- Altitude of operation is limited from sea level to 35 Kft.
- Air vehicle velocity is between Mach 0 to 1.2
- Bay Power Dissipations 5 kW Total
- Hot-Day Ambient Temperature: 100 degF @ sea-level
- Mach #: 0.35
- Max Air Exit Temperature: 130 degF Assumption used on other programs based on use of COTS equipment. Also compatible with structural temperature range
- Mdot Air Total: 50 lbm/min
- Adiabatic Bay Walls
- Scoop Pressure Recovery (Propulsion Definition): 95 percent
- Scoop Outlet Air Temperature: 114 degF
- Scoop Outlet Air Pressure: 15.2 psia

Summary Results

- Max air exit temperature: 137.8 deg. F.
- Max bay penetration area: 57.8 sq. Inch
- Inlet #1 air flow rate: 32.6 lbm/min
- Inlet #2 air flow rate: 17.4 lbm/min

Thermal Control Analysis Planning Logic

Thermal Cooling of Avionics Inside AV Equipment Bays

Approach

- The AV cabin is divided into a large number of compartments
- The locations and rates of heat produced by Avionics are as specified in each compartment per Master Equipment List
- The waste heat is assumed not to conduct from one compartment to another
- The mass of Avionics are assigned as specified per Master Equipment List, assuming solid aluminum properties

Cooling Air Flow Path Inside AV Equipment Bays

Cooling Mass Flow Analysis

- Inlets and exhausts are designed to provide adequate avionics cooling flow to 2 primary cooling zones
- Inlet Design
 - 2 AV inlets located under the wing
 - Variable and passive inlet design
- Exhaust Design
 - 4 AV exhausts (or 2 exhaust per inlet) located upper and aft of wing
 - Passive exhaust design with porous surface (fixed exhaust area)

AV Cooling Design Nomenclature

- Ram scoop design is used as the inlet for avionics cooling flow
- Ram scoop inlet has better pressure recovery compare to flushed inlet during both subsonic and supersonic flights

AV Cooling Flow Requirements

Avionics Cooling Flow Requirements

Alt (ft)	Mach	Total Flow (ppm)
0	0.35	46
10,000	0.45	16
20,000	0.6	12
30,000	1.2	38
40,000	0.85	10

Calculated Parameters

Calculation Results

Alt Mac	David				Singl	e scoop	propertie	es based	on two ra	am scoop	Design				
	100000000000000000000000000000000000000	Req'd Flow (pps)	Req'd Flow (pps)	Corr. Flow (pps)	MFR	A3 (in²)	CR	A4 (in²)	M4	A5 (in²)	Pt6	PR6	AV Comp. Allocation (Q)	A9 (in²)	W9 (pps)
0	0.35	46	0.383	0.371	1.000	1.924	1.1	1.749	0.39	3.499	15.15	0.947	1.023	8	0.382
10000	0.45	16	0.133	0.173	1.000	0.73	1.1	0.663	0.51	1.327	10.65	0.917	1.266	8	0.133
20000	0.6	12	0.100	0.17	0.987	0.599	1.1	0.544	0.7	1.089	7.502	0.87	1.544	8	0.1
30000	1.2	38	0.316	0.467	0.849	1.639	1.1	1.49	0.7	2.98	9.139	0.864	7.935	8	0.316
40000	0.85	10	0.083	0.268	0.847	0.941	1.1	0.856	0.7	1.712	3.8	0.87	4.402	8	0.083
			1	MFR limit	ted to 1	for b	etter in	gned to i	rmance	and stab				***	

- Large area variations are observed among design points
- Variable inlet would result in better inlet matching for required AV cooling flow

AV Inlet Design

AV Inlet Schematic (Top View)

- Scarf ram scoop becomes a variable inlet via vehicle sweep angle
- The variable ram scoop inlet schedule has desired characteristic
 - Larger inlet capture area at subsonic
 - Smaller inlet capture area at supersonic
- Ram scoop flow path is designed for supersonic sweep to reduce pressure loss

Variable AV Inlet Capture Area Schedule

AV Bay Penetration Sizing: Modeling & Equations

- ECS Toolbox Used to Perform AV Bay Penetration Sizing Analysis
- ECS Toolbox was derived from AECS Fortran Code Using MATLAB/SIMULINK
- Penetration Sizing Modeled as (22) Bays and (25) Penetrations
- Bays Modeled as discrete heat loads without pressure drop
- Penetrations Modeled as Valves with External "K" Factor [Eq. 2: deltap(psid) = K * Mdot(lbm/min)]
- Flow-Split Ratio's Used as State Variables
- Air Outlet Exit Temperatures and Pressures Used as Error Variables
- Penetration Flow Data Used to Compute Orifice Flow Function [Mdot(ppm)*sqrt(T_total(degR)) / (Area(sq.inch)*P_total(psia))]
- Empirical Orifice Data Used to Iteratively Solve For Penetration Area

AV Bay Penetration Sizing For Hot-Day Low Altitude Cruise Case

Altitude: Sea-Level

Mach #: 0.35

T_amb: 100 degF

• Total Air Flow Rate: 50 PPM (use 46 PPM from cooling mass flow calculation + margin)

Scoop Pressure Recovery: 95 %

Utilized ECS Toolbox, Steady-State Analysis

Sized Penetrations Based On 130 degF Exit Air Temperature & P_amb Exit Pressure

AV Bay Penetration Sizing For Hot-Day Low Altitude Cruise

Case: (Cont.)

(Mach #: 0.35, Alt: Sea-Level, Air Flow Rate: 50 PPM, Tamb: 100 degF)

Bay	Power	Bay Exit Temperature
ID#	(W)	(degF)
1	0	N/A
2	227	128.0
3	131	124.1
4	130	121.8
5	130	123.5
6	131	127.1
7	227	133.4
8	0	N/A
9	367	137.8
10	199	131.5
11	1081	133.0
12	767	119.6
13	432	119.9
14	108	122.8
15	199	125.4
16	510	132.2
17	0	137.8
18	0	137.8
19	129	137.5
20	63	134.2
21	63	135.4
22	108	137.5

1985 1 1 193 1 196	From	То	Penetration	Penetration
Penetration	Bay	Bay	Area	Dia.
ID#	ID#	ID#	(sq. inch)	(inch)
101	Inlet #1 (RHS)	12	12.75	4.03
102	12	11	20.26	5.08
103	12	20	32.03	6.39
104	12	4	28.26	6.00
105	4	3	28.47	6.02
106	3	2	28.37	6.01
107	2	10	28.47	6.02
108	10	9	28.70	6.05
109	9	17	28.70	6.05
110	17	18	28.70	6.05
111	18	Outlet #1 (RHS)	28.86	6.06
112	11	19	57.57	8.56
113	19	Outlet #2	57.78	8.58
114	20	21	31.84	6.37
115	21	22	32.09	6.39
116	22	Outlet #3	31.93	6.38
117	Inlet #2 (LHS)	13	22.15	5.31
118	13	5	44.97	7.57
119	13	14	43.26	7.42
120	5	6	45.74	7.63
121	6	7	45.24	7.59
122	7	15	46.12	7.66
123	15	16	21.87	5.28
124	16	Outlet #4 (LHS)	22.00	5.29
125	14	15	43.93	7.48

AV Bay Penetration Sizing - ECS Toolbox: TOP

AV Bay Penetration Sizing — ECS Toolbox: Bays & Penetrations

AV Bay Penetration Sizing — ECS Toolbox: Bays

AV Bay Penetration Sizing — ECS Toolbox: Penetrations

AV Bay Penetration Sizing – ECS Toolbox: Pen_Data

AV Bay Penetration Sizing — ECS Toolbox: State & Error Variables

AV Bay Penetration Sizing - ECS Toolbox: Inputs

AV Bay Penetration Sizing: Empirical Orifice Data / Orifice Flow Function

AV: BAY AIR TEMPERATURE ASSUMPTIONS

- M5 Flight Test Profile points (1) through (22)
- Prior calculated bay-to-bay penetration areas
- Prior defined bay interior power dissipations
- Steady-state flow assumed at each of points (1) thru (22)
- No convective heat transfer to the bay interior wall surfaces
- EAFB Hot/Cold-Day Atmosphere Model (see attached)
- Ground Cold Air Cart: 40 degF @ 50 ppm & 0.5 psid
- +136 degF Max & -34 degF Min Op Extremes
- Recommend: +160 degF Max & -40 degF Min Non-Op/Storage Extremes

Flight Test Points

Milestone 5

AV: EAFB HOT/COLD-DAY ATMOSPHERE MODEL

AV: BAY AIR TEMPERATURE EXTREMES

	OVERALL				
Bay (#)	T_max (degF)	T_min (degF)			
Bay_2	122	-27			
Bay_3	117	-30			
Bay_4	114	-31			
Bay_5	111	-33			
Bay_6	113	-32			
Bay_7	116	-30			
Bay_9	136	-20			
Bay_10	127	-24			
Bay_11	123	-27			
Bay_12	111	-33			
Bay_13	109	-34			
Bay_14	111	-32			
Bay_15	114	-31			
Bay_16	120	-28			
Bay_17	136	-20			
Bay_18	136	-20			
Bay_19	125	-25			
Bay_20	124	-26			
Bay_21	126	-25			
Bay_22	129	-24			

T_max:	136	n/a
T_min:	n/a	-34

AV: BAY AIR TEMPERATURE RESULT SUMMARY

	OVE	RALL	нот-	-DAY	COLL	D-DAY	GROUND-CART
Bay (#)	T_max (degF)	T_min (degF)	T_outlet_max (degF)	T_outlet_min (degF)	T_outlet_max (degF)	T_outlet_min (degF)	T_inlet = 40 degF @ 50 PPM (degF)
Bay_2	122	-27	122	27	44	-27	62
Bay_3	117	-30	117	24	42	-30	55
Bay_4	114	-31	114	22	41	-31	51
Bay_5	111	-33	111	21	39	-33	46
Bay_6	113	-32	113	22	40	-32	48
Bay_7	116	-30	116	23	42	-30	52
Bay_9	136	-20	136	33	55	-20	79
Bay_10	127	-24	127	29	47	-24	68
Bay_11	123	-27	123	27	45	-27	62
Bay_12	111	-33	111	21	39	-33	47
Bay_13	109	-34	109	20	38	-34	44
Bay_14	111	-32	111	21	40	-32	47
Bay_15	114	-31	114	22	41	-31	49
Bay_16	120	-28	120	25	43	-28	56
Bay_17	136	-20	136	33	55	-20	79
Bay_18	136	-20	136	33	55	-20	79
Bay_19	125	-25	125	28	46	-25	65
Bay_20	124	-26	124	28	45	-26	64
Bay_21	126	-25	126	28	46	-25	66
Bay_22	129	-24	129	30	48	-24	70
T_max:	136	n/a	136	n/a	55	n/a	79
T_min:	n/a	-34	n/a	20	n/a	-34	44