

VU Machine Learning

Summer Semester 2024

Exercise 2

Nysret Musliu (nysret.musliu@tuwien.ac.at)

- Groups of 3 students
- Implement machine learning techniques for predicting numeric values
- Compare to existing techniques
- Submit the source code
- Prepare approximately 15-30 slides. No report is required for this assignment
- Individual discussions for each group (all members must be present)
- Submission: May 27th (morning)
- Discussions: after May 26th (slots will be available in Tuwel)

Exercise 2 – Techniques

- Implement the gradient descent algorithm for linear regression
 - You can refer to the algorithm provided in the lecture slides and use the same cost function
 - Experiment with different learning rates
- Implement the k-nn algorithm for regression
 - Experiments with different k and distance functions
- You should implement these algorithms from scratch
- Please do not use any part of existing code
- You can use existing code/functions for general parts like
 - Partial derivatives, cost function, distance functions for k-nn
 - Code for reading the input and testing the algorithm (cross-validation, performance metrics for regression...)

- Compare your implemented techniques with
 - The existing implementations of gradient descent and k-nn
 - One other regression techniques (e.g., regression trees, random forest,...)
 - You can use the default parameters for the existing techniques
- Use at least two performance metrics for comparison
- Conclusions
 - How efficient are your algorithms
 - Performance of your algorithms regarding performance metrics for regression
 - Impact of learning rate, k, distance functions
 - Other findings

Exercise 2 – Data Sets

- Pick 3 regression datasets from UCI ML Repository, Kaggle...
- Should have different characteristics
 - number of samples small vs. large
 - number of dimensions low vs. high dimensional
- Pre-process the data set if needed (scaling, ...)

Submission

A zip file with

Source code:

- You can use any programming language: Python, R, Matlab, ...
- Provide the information for the packages needed to run you code

Slides

- Around 15 30 slides
- No report needed
- Submission deadline: May 27th, 9:00 a.m.

Slides

- A discussion of implementations
- Comparison with the existing implementations/other algorithms
- Discussion of experimental results
- Conclusions/lessons learned

Individual discussions

- Length of discussion: 30 minutes
- You will have questions about
 - Implementation/Source code
 - Theoretical questions about techniques
 - Comparison with the existing techniques
- All members of the group should be able to explain the code/experiments
 - Students in the same group can receive different numbers of points based on the discussion
- The evaluation will be based on your code, discussion, comparison, and conclusions/lessons learned