Robust Versions of the Complex SSA Method

Senov Mikhail

St Petersburg University
Department of Statistical Modelling

Science and Progress

St Petersburg, November 9, 2021

Introduction: Problem

 $X_N = (x_1, \dots, x_N)$ time series, N series length.

Model: $X_N = S_N + R_N$, S_N signal, R_N noise.

Problem: Signal extraction $\tilde{S} = F(X_N)$, F is used method.

Method: SSA (Singular Spectrum Analysis) [Analysis of Time Series Structure: SSA and Related Techniques, Golyandina N., Nekrutkin V., Zhigljavsky A., 2001].

Introduction: Time series with outliers and SSA

Basic SSA: reacts to outliers.

Robust SSA: does not reacts to outliers.

Introduction: Aim of the talk

Robust SSA is developed for real-valued time series.

Aim: Generalize Robust SSA to the complex-valued time series case.

Common example of complex time series is engineering tasks where data are produced by Fourier transform.

$$\begin{aligned} \mathbf{X}_N^{(t)} &= (x_1^{(t)}, \dots, x_N^{(t)}), \ t = 1 \dots M, \\ \mathbf{DFT}(\mathbf{X}_N^{(t)}) &= f_k^{(t)} = \sum_{n=1}^N x_n^{(t)} e^{-2\pi i k n / N}, \ k = 1 \dots N, \\ \mathbf{F}_k^{(M)} &= (f_k^{(1)}, \dots, f_k^{(M)}). \end{aligned}$$

Methods: Notations

Consider the time series $X_N = (x_1, \dots, x_N)$.

 $\mathcal{M}_{\mathcal{H}}$ — space of hankel matrix $L \times K$, \mathcal{M}_r — space of matrix of rank at most r, $L \times K$.

Embedding operator $\mathcal{T}: \mathbb{R}^N \to \mathcal{M}_{\mathcal{H}}: \mathcal{T}(\mathsf{X}_\mathsf{N}) = \mathbf{X}$,

 $\Pi_r: \mathcal{M} \to \mathcal{M}_r$ — projector onto the space of matrices of rank at most r in some norm in the matrix space,

 $\Pi_{\mathcal{H}}:\mathcal{M}\to\mathcal{M}_{\mathcal{H}}$ — projector onto the space of hankel matrices in some norm in the matrix space.

Methods: Signal extraction

Time series $X_N = (x_1, \dots, x_N)$.

Algorithm for signal extraction

$$\tilde{\mathsf{S}} = \mathcal{T}^{-1} \Pi_{\mathcal{H}} \Pi_r \mathcal{T}(\mathsf{X}_\mathsf{N}).$$

Norms for both Π_r and $\Pi_{\mathcal{H}}$:

- \mathbb{L}_2 (Frobenius). Basic SSA signal extraction.
- L₁. Robust SSA version.
- weighted \mathbb{L}_2 . Robust SSA version.

Methods: Illustrative example

Example

$$(x_1,\ldots,x_N)$$
, norm $p(x)$, $\underset{c}{\operatorname{argmin}} p((x_1-c,\ldots,x_N-c)) = ?$

Norms:

- \mathbb{L}_2 . $\overline{x} = \operatorname{argmin} \sqrt{\sum_{i=1}^N |x_i c|^2}$. If $x_i \to \infty$, then $\overline{x} \to \infty$. Non-robust.
- \mathbb{L}_1 . med = argmin $\sum_{i=1}^N |x_i c|$. If $x_i \to \infty$, then med $\not\to \infty$. Robust.
- weighted \mathbb{L}_2 . $\overline{x}_w = \operatorname{argmin} \sqrt{\sum_{i=1}^N w_i |x_i c|^2}$. If $x_i \to \infty$, then $w_i = 0$ and $\overline{x}_w \not\to \infty$. Robust.

\mathbb{L}_2 CSSA (Basic)

Trajectory matrix $\mathbf{Y} \in \mathbb{C}^{L \times K}$ as input.

$$\mathbf{X}^{\mathrm{H}} = \overline{\mathbf{X}^{\mathrm{T}}}.$$

Problem

$$\|\mathbf{Y} - \mathbf{M}\mathbf{V}^{\mathrm{H}}\|_F^2 \longrightarrow \min_{\mathbf{M}, \mathbf{V}}, \, \mathbf{M} \in \mathbb{C}^{L \times r}, \mathbf{V} \in \mathbb{C}^{K \times r}$$

$$SVD(\mathbf{Y}) = \sum_{i=1}^{r} \sqrt{\lambda_i} U_i V_i^{\mathrm{H}} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{H}},$$

 U_i eigenvector of $\mathbf{Y}\mathbf{Y}^{\mathrm{H}}$, λ_i *i*-th eigenvalue of $\mathbf{Y}\mathbf{Y}^{\mathrm{H}}$, V_i eigenvector of $\mathbf{Y}^{\mathrm{H}}\mathbf{Y}$.

There is closed-from solution $\mathbf{M}\mathbf{V}^H$, $\mathbf{M}=\mathbf{U}\boldsymbol{\Lambda}.$

Trajectory matrix $\mathbf{Y} \in \mathbb{C}^{L \times K}$ as input.

Problem

$$\|\mathbf{Y} - \mathbf{M}\mathbf{V}^{\mathrm{H}}\|_{1} \longrightarrow \min_{\mathbf{M}, \mathbf{V}}, \, \mathbf{M} \in \mathbb{C}^{L \times r}, \mathbf{V} \in \mathbb{C}^{K \times r}$$

There is no closed-from solution. Solve it iteratively

$$\mathbf{M}(\mathbf{t}) = \underset{\mathbf{M} \in \mathbb{C}^{L \times r}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{M}\mathbf{V}^{H}(t-1)\|_{1}$$

$$\mathbf{V}(\mathbf{t}) = \operatorname*{argmin}_{\mathbf{V} \in \mathbb{C}^{K \times r}} \|\mathbf{Y} - \mathbf{M}(t)\mathbf{V}^{H}\|_{1}.$$

Can be reduced to the linear case and solved by evaluating weighted-median.

Weighted \mathbb{L}_2 CSSA: Algorithm

Trajectory matrix $\mathbf{Y} \in \mathbb{C}^{L \times K}$ as input.

Iteratively compute matrix of weights $\mathbf{W} \in \mathbb{R}^{L \times K}$

Problem

$$\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{M}\mathbf{V}^{\mathrm{H}})\|_F^2\longrightarrow \min_{\mathbf{M},\mathbf{V}},\,\mathbf{U}\in\mathbb{C}^{L\times r},\mathbf{V}\in\mathbb{C}^{K\times r}$$

There is not closed-from solution. Solve it iteratively

$$\mathbf{M}(\mathbf{t}) = \underset{\mathbf{M} \in \mathbb{C}^{L \times r}}{\operatorname{argmin}} \| \mathbf{W}^{1/2} \odot (\mathbf{Y} - \mathbf{M} \mathbf{V}^{H}(t-1)) \|_{F}^{2}$$

$$\mathbf{V}(\mathbf{t}) = \underset{\mathbf{V} \in \mathbb{C}^{K \times r}}{\operatorname{argmin}} \|\mathbf{W}^{1/2} \odot (\mathbf{Y} - \mathbf{M}(t)\mathbf{V}^{H})\|_{F}^{2}$$

Can be reduced to the IRLS.

Weighted \mathbb{L}_2 CSSA: Weights computation

Outliers are determined by their absolute value.

Algorithm

- Residuals matrix computing $\mathbf{R} = \{r_{ij}\}_{i,j=1}^{n,p} = \mathbf{Y} \mathbf{M}\mathbf{V}^{\mathrm{H}}$
- 2 Updating matrix $\Sigma = {\{\sigma_{ij}\}_{i,j=1}^{L,K}}$
- **3** Computing weights $\mathbf{W} = \{w_{ij}\}_{i,j=1}^{L,K} = \{w(\frac{r_{ij}}{\sigma_{i:}})\}_{i,j=1}^{L,K}$, using

$$w(x) = \begin{cases} (1 - (\frac{|x|}{\alpha})^2)^2 & |x| \le \alpha \\ 0 & |x| > \alpha \end{cases}$$

Algorithm similar to loess method.

Senov M. Robust CSSA

Weighted \mathbb{L}_2 CSSA: Heteroscedastic noise specifics

Consider time series with heteroscedastic noise.

Right-sided non-outliers is bigger than left-sided outliers.

Basic: Normalizing coefficient σ_{ij} is the same for each series element. Outliers determination is incorrect.

Modification: Compute σ_{ij} as trend of residual series.

Implementations

Basic CSSA: R-package Rssa (Korobeynikov et al, 2020)

L1 CSSA: Was implemented in R language.

Weighted L2 CSSA: Was implemented in R language using real-valued implementation (Tretyakova, 2020).

A typo that was essential for the weighted \mathbb{L}_2 implementation was found in article (Chen et al, 2015) and corrected.

Figure: weighted \mathbb{L}_2 version with typo

Example: Time series

Motivation:

- Demonstrate that Robust versions better than basic CSSA for some series with outliers.
- Demonstrate that modified weighted \mathbb{L}_2 version is better than the unmodified one for the case of heteroscedastic noise.

Example: Time series of length N=240 with heteroscedastic noise.

$$f_n = e^{4n/N} e^{2n\pi/30i} + \frac{1}{2} e^{4n/N} \varepsilon_n, \ \varepsilon_n \sim CN(0, 1),$$

with 0% outliers and 5% outliers with outlier value $5f_i$.

Example: RMSE comparison

Table: RMSE of different methods

Outliers	L2	L1	w-L2	mod. w-L2
0%	1.28	1.52	1.90	1.36
5%	6.14	1.78	1.66	1.48

All comparisons with the **best** meaningful for $\alpha = 0.05$.

Example conclusions:

- Basic CSSA demonstrates the best result without outliers,
- Robust versions demonstrates significantly better result than basic CSSA with outliers,
- Modified method shows better result than unmodified for heteroscedastic noise.

Conclusions

- Robust SSA versions were generalized to the complex-valued case.
- Complex Robust SSA versions were implemented in R language.
- Example demonstrating the effectiveness of the methods was considered.