POLS201 Spring 2019

POLS201 Spring 2019

Descriptive Statistics

February 27 and March 1

Before we begin

- Hand in your lab sheets
- FYI: Look for the new improved slide archive
- We lurched into a standard deviation discussion abruptly Monday
- Today: that and more descriptive statisticas
 - Bring your laptop Monday

Takeaways from the Homework

- Let's discuss confounds vs. intervening variables
- Units of analysis
- The diagram for experiments

Confounds are intervening variables are distinct

- Consider a causal sequence:
 - Gender ——> Opinion on FMLA
- A Confound comes from *outside* this link.
 - Partisanship correlates with Gender and correlates with FMLA

An intervening variable sits between your IV and DV

- It follows your IV and precedes your DV
- It may ultimately explain all of the variance, some, or none.

A confounding variable logically precedes or coincides with your IV

Unit of Analysis

- Don't confuse it with your variable or potential variable
- It's just the things you are counting or measuring, usually associated with a level of aggregation.
- In surveys, it's the individual, unless you have aggregated them.

Well designed experiments can be imagined this way:

POLS201 Spring 2019

Notice there are *four* separate instances of observations.

Random Assignment	Observe Pre-Test	Treat	Observe Post-Test
D.	7 0	~X	0
R	0	X	0

Two other small points from Homework 1

- Very few causal stories completely defy the imagintion.
 - From Q4: Does the sequence Exposure -> Content -> Opinion make sense? It could.
- Even though statistics never prove causation, don't be afraid to imply causation in your hypotheses.
 - Avoid "is correlated with". Don't be passive,

The Cliffhanger from Monday

- Which has greater standard deviation:
 - A survey with 9 Yes and 1 No, or 5 Yes and 5 No
 - Suppose each Yes = 1 and each No = 0
 - Let's compare:
 - A sequence of 1, 0, 0, ..., 0
 - and a sequence of 1, 0, 1, 0, ..., 1, 0

In R, we could do this:

```
POLS201
           # create the sequences
Spring 2019
           first_sequence <- c(1, rep(0, 9))
           second_sequence \leftarrow rep(c(1, 0), 5)
           first_sequence
           ## [1] 1 0 0 0 0 0 0 0 0
           second_sequence
           ## [1] 1 0 1 0 1 0 1 0 1 0
           sd(first_sequence)
           ## [1] 0.3162278
           sd(second_sequence)
           ## [1] 0.5270463
```

The basic SD formula, in English

- Find the mean
- Subtract each item from the mean, then square each difference.
- Add 'em up
- Divide by n 1. You now have the variance.
- Get the square root. You have the standard deviation.

The basic SD formula, from last time:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Descriptive Statistics

- Essential Properties of Data that reveal...
 - Central Tendency
 - Dispersion
 - Keep in mind this distinction between the data we observe and the process that generates it
 - We always drawing a single cup from the data stream.
 - The cup reveals something about the stream but never perfectly.

Recall the Levels of Measuremnt

- They are important because they tell us which operations can be performed.
- Assume that you can never take a meaningful average of an ordinal scale.

		Nominal scale			Ratio scale	Dummy
Logical/	×	X	X	X	1	1
	+	X	X	1	1	1
operations	>	X	1	1	1	✓
	- ≠	1	1	1	1	1

Recall the Measures of Central Tendency

- Mean
- Median
- Mode

Some important measures of Dispersion

- Variation Ratio
 - Proportion of units that are NOT equal to the mode.
- Range and Interquartile Range
 - Range is the maximum minus the minimum
 - Interquartile range is the 75th 25th percentiles
- Variance and Standard Deviation

Your goals:

- Learn notation and know how to calculate different measures of central tendency and dispersion.
- Learn which measures are appropriate for different levels of measurement,

Basic Notation

- You will see different mathematical notation for "samples" and "populations"
- We use sample "statistics" to estimate population "parameters"

Basic Notation

- The *i* subscript is your clue that the variable is going to taken on different values for different observations.
- *i* stands for an "individual observation" You'll see it in an operation that is repeated.
- Typically, the repeated operation is a summation. The letter sigma (Σ) tells you that the results of some equation are to be summed.
 - lacksquare ... and a capital Pi (Π) describes a product in the same way.

POLS201 Spring 2019

Χi	Χi	
X ₁	1	
X 2	3	
X 3	6	
X 4	6	

How would you calculate this?

$$\sum_{i=1}^{n} |\mathbf{x}_{i}|$$

Basic Notation

POLS201 Spring 2019

■ Different symbols are used for populations vs. samples

	(Population) Parameter	(Sample)
	Parameter	Statistic
Mean	μ	\bar{x}
Proportion	P	p
Standard Deviation	σ	S
Variance	σ^2	s ²

Modes and Medians

- Modes are the most frequently occurring value in your variable
- What is the mode? -(1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 9)
- Median represents the middle value in a rank ordering
 - What is the median? -(1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 9)

And yes, R will also tell you these things:

POLS201 Spring 2019

```
values <- c(1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 9)

getmode <- function(v) {
    uniqv <- unique(v)
    uniqv[which.max(tabulate(match(v, uniqv)))]
}
getmode(values)

## [1] 3</pre>
```

... 547 4

median(values)

Let's work through this example

- Recall the Yes/No poll example from today.
- In the data below, what is the mean? The SD?

Name	Vote
Maggie	
Sam	
David	0
Maria	
Maddie	0
Connie	0
Guy	0
lacob	
Hillary	
lerome	0

POLS201 Spring 2019

Descriptive Statistics

	Mean	Median	Mode	Range	SD/Var.
Categorical			×		
Dummy	×	X		×	Х
Ordinal		х	×	×	
Continuous	×	×	Х	×	×

The applicable measure of dispersion for categorical variables is the "variation ratio" (1- % in Mode)

Overview of Linear Correlation

- As we saw earlier, linear correlation provides a numerical measure of direction and strength of association
- Correlations lie between -1 and 1
- Positive values mean a positive association, negative means negative association
- +1 and -1 are strongest values; 0 is the weakest

Remember this graph?

POLS201 Spring 2019

■ It looks like a mess but actually has a correlation of -.31.

The formula for Pearson's R: You don't need to remember it

POLS201 Spring 2019

■ Note it cannot exceed +1 or fall below -1

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{(n-1)s_{x}s_{y}}$$

Anscombe's Quartet

- But know this: Each of these four datasets produces identical correlations of +.82:
- A correlation tells you *something* but you need to see a picture.

