Optimization Theory

Lecture 08

Fudan University

luoluo@fudan.edu.cn

Line Search Methods

2 Barzilai-Borwein Step Size

1 Line Search Methods

2 Barzilai-Borwein Step Size

Line Search Methods

A line search method computes a search direction \mathbf{p}_k and then decides how far to move along that direction.

The iteration is given by

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t \mathbf{p}_t,$$

where the positive scalar α_t is called step size, step length or learning rate.

We typically require \mathbf{p}_t to be a descent direction that satisfies

$$\langle \mathbf{p}_t, \nabla f(\mathbf{x}_k) \rangle < 0.$$

For example

- **2** $\mathbf{p}_t = -\mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t)$ with some positive definite $\mathbf{G}_t \in \mathbb{R}^{d \times d}$

Line Search Methods

The ideal choice for α is based on

$$\min_{\alpha>0}\phi(\alpha)\triangleq f(\mathbf{x}_t+\alpha\mathbf{p}_t),$$

but it is not practical.

We want to efficiently select α_t that leads to sufficient reduction in f.

The simple decrease condition

$$f(\mathbf{x}_t + \alpha_t \mathbf{p}_t) < f(\mathbf{x}_t)$$

is not enough.

Wolfe Conditions

We require

$$f(\mathbf{x}_t + \alpha_t \mathbf{p}_t) \le f(\mathbf{x}_t) + c_1 \alpha_t \langle \nabla f(\mathbf{x}_t), \mathbf{p}_t \rangle, \langle \nabla f(\mathbf{x}_t + \alpha_t \mathbf{p}_t), \mathbf{p}_t \rangle \ge c_2 \langle \nabla f(\mathbf{x}_t), \mathbf{p}_t \rangle$$
(1)

for some $c_1 \in (0,1)$ and $c_2 \in (c_1,1)$, that is Wolfe conditions.

Theorem

Suppose that $f: \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and lower bounded. Let \mathbf{p}_t be a descent direction at \mathbf{x}_t , then there exist intervals of step lengths satisfying the conditions (1) with $0 < c_1 < c_2 < 1$.

Wolfe Conditions

We still consider Wolfe conditions

$$f(\mathbf{x}_t + \alpha_t \mathbf{p}_t) \le f(\mathbf{x}_t) + c_1 \alpha_t \langle \nabla f(\mathbf{x}_t), \mathbf{p}_t \rangle, \langle \nabla f(\mathbf{x}_t + \alpha_t \mathbf{p}_t), \mathbf{p}_t \rangle \ge c_2 \langle \nabla f(\mathbf{x}_t), \mathbf{p}_t \rangle$$
(2)

for some $c_1 \in (0,1)$ and $c_2 \in (c_1,1)$, that is Wolfe condition.

Theorem

Let $\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t \mathbf{p}_t$, where \mathbf{p}_t is a descent direction and α_k satisfies the Wolfe conditions. Suppose that continuously differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth and lower bounded on \mathbb{R}^d and continuously differentiable. Then

$$\sum_{t=0}^{+\infty}(\cos\theta_t)^2\left\|\nabla f(\mathbf{x}_t)\right\|_2^2<+\infty,\quad \text{where }\cos\theta_t=\frac{-\langle\nabla f(\mathbf{x}_t),\mathbf{p}_t\rangle}{\left\|\nabla f(\mathbf{x}_t)\right\|_2\left\|\mathbf{p}_t\right\|_2}.$$

Backtracking Line Search

If the algorithm chooses candidate step lengths appropriately, we can use just the sufficient decrease condition.

Algorithm 1 Backtracking Line Search Method

- 1: **Input:** $\mathbf{x}_t, \mathbf{p}_t \in \mathbb{R}^d$, $\hat{\alpha} > 0$, $\tau, c_1 \in (0, 1)$
- 2: $\alpha = \hat{\alpha}$
- 3: while $f(\mathbf{x}_t + \alpha \mathbf{p}_t) > f(\mathbf{x}_t) + c_1 \alpha \langle \nabla f(\mathbf{x}_t), \mathbf{p}_t \rangle$ do
- 4: $\alpha \leftarrow \tau \alpha$
- 5: Output: $\alpha_t = \alpha$

Line Search Methods

2 Barzilai-Borwein Step Size

Barzilai-Borwein Step Size

Gradient descent methods with Barzilai-Borwein step size has the forms of

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t \nabla f(\mathbf{x}_t)$$

where

$$\alpha_t = \frac{\|\mathbf{x}_t - \mathbf{x}_{t-1}\|_2^2}{\langle \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}), \mathbf{x}_t - \mathbf{x}_{t-1} \rangle}$$

or

$$\alpha_t = \frac{\langle \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}), \mathbf{x}_t - \mathbf{x}_{t-1} \rangle}{\|\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1})\|_2^2}.$$

Line Search Methods

2 Barzilai-Borwein Step Size

Parameter-Free Methods

Algorithm 2 Adaptive Gradient Descent

1: Input:
$$\mathbf{x}_0 \in \mathbb{R}^d$$
, $\lambda_0 > 0$, $\theta_0 = +\infty$

2:
$$\mathbf{x}_1 = \mathbf{x}_0 - \lambda_0 \nabla f(\mathbf{x}_0)$$

3: **for**
$$t = 1, 2, ...$$
 do

4:
$$\lambda_t = \min \left\{ \sqrt{1 + \theta_{t-1}} \, \lambda_{t-1}, \, \frac{\|\mathbf{x}_t - \mathbf{x}_{t-1}\|_2}{2 \, \|\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1})\|_2} \right\}$$

5:
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \lambda_t \nabla f(\mathbf{x}_t)$$

6:
$$\theta_t = \frac{\lambda_t}{\lambda_{t-1}}$$

7: Output: $\alpha_t = \alpha$