

Escrever título (escolher no final)

Universidade Federal da Paraíba - CCEN

Gabriel de Jesus Pereira

10 de agosto de 2024

Índice

1	Resumo						
2	Capítulo 1 2.1 Introdução 2.2 Objetivos 2.2.1 Objetivo Geral 2.2.2 Objetivos Específicos 2.3 Organização do Trabalho						
3	Сар	ítulo 2		8			
_	3.1		sos Computacionais	8			
		3.1.1	Linguagem de Programação R	8			
		3.1.2	Linguagem de Programação Python	8			
		3.1.3	Quarto	8			
		3.1.4	Linguagem de Programação Python	8			
		3.1.5	Web Scraping	8			
4	Algo	oritmos	de Aprendizado de Máquina	9			
	4.1	Árvore	es de decisão	9			
	4.2	Métod	os Ensemble	13			
		4.2.1	Bagging	14			
		4.2.2	Random Forest	15			
		4.2.3	Boosting Trees	16			
		4.2.4	Stacked generalization	17			
		4.2.5	Gradient Boosting	17			
		4.2.6	Diferentes implementações de Gradient Boosting	19			
5	Met	odolog	ia	23			
	5.1	Os dad	dos e o procedimento adotado para sua obtenção	23			
	5.2			23			
	5.3			23			
	5.4		,	23			
	5.5	Tunag	em de hiperparâmetros	23			
		5.5.1	Otimização Bayesiana	24			

	5.5.2 Tree-Structured Parzen Estimator	24
6	Capítulo 4 6.1 Resultados	25 25
7	Conclusão	26
8	Referências	27

Lista de algoritmos

4.1	Algoritmo para crescer uma árvore de regressão	13
4.2	Algoritmo de uma Random Forest para regressão ou classificação	20
4.3	Método Boosting aplicado a árvores de regressão	21
4.4	Gradient Tree Boosting	22

Lista de Figuras

4.1	Exemplo de estrutura de árvore de regressão. A árvore tem cinco folhas	
	e quatro nós internos	10

1 Resumo

2 Capítulo 1

- Fazer antes da conclusão –
- 2.1 Introdução
- 2.2 Objetivos
- 2.2.1 Objetivo Geral
- 2.2.2 Objetivos Específicos
- 2.3 Organização do Trabalho

3 Capítulo 2

— Fazer depois dos modelos baseados em árvore —

3.1 Recursos Computacionais

- 3.1.1 Linguagem de Programação R
- 3.1.2 Linguagem de Programação Python
- **3.1.3 Quarto**
- 3.1.4 Linguagem de Programação Python
- 3.1.5 Web Scraping

4 Algoritmos de Aprendizado de Máquina

Neste capítulo, serão descritos os algoritmos de aprendizado de máquina utilizados neste trabalho. Alguns dos métodos utilizados podem fazer uso de diversos algoritmos ou modelos estatísticos. No entanto, o foco principal e o mais utilizado foram as árvores de decisão, especialmente em sua forma particular, as árvores de regressão. Assim, os algoritmos descritos são métodos baseados em árvores.

Os métodos baseados em árvore envolvem a estratificação ou segmentação do espaço dos preditores¹ em várias regiões simples. Dessa forma, todos os algoritmos utilizados neste trabalho partem dessa ideia. Portanto, o primeiro a ser explicado será o de árvores de decisão, pois fundamenta todos os outros algoritmos. Depois das árvores de decisão, serão explicados os métodos ensemble e, por fim, diferentes variações do método de gradient boosting.

4.1 Árvores de decisão

Árvores de decisão podem ser utilizadas tanto para regressão quanto para classificação. Elas servem de base para os modelos baseados em árvores empregados neste trabalho, focando particularmente nas árvores de regressão². O processo de construção de uma árvore se baseia no particionamento recursivo do espaço dos preditores, onde cada particionamento é chamado de nó e o resultado final é chamado de folha ou nó terminal. Em cada nó, é definida uma condição e, caso essa condição seja satisfeita, o resultado será uma das folhas desse nó. Caso contrário, o processo segue para o próximo nó e verifica a próxima condição, podendo gerar uma folha ou outro nó. Veja um exemplo na Figura 4.1.

O espaço dos preditores é dividido em J regiões distintas e disjuntas denotadas por R_1,R_2,\ldots,R_J . Essas regiões são construídas em formato de caixa de forma a minimizar a soma dos quadrados dos resíduos. Dessa forma, pode-se modelar a variável resposta como uma constante c_j em cada região R_j

 $^{^{1}}$ O espaço dos preditores é o conjunto de todos os valores possíveis para as variáveis independentes \mathbf{x} 2 Uma árvore de regressão é um caso específico da árvore de decisão, mas para regressão.

Figura 4.1: Exemplo de estrutura de árvore de regressão. A árvore tem cinco folhas e quatro nós internos.

$$f\left(x\right) = \sum_{j=1}^{J} c_{j} I\left(x \in R_{j}\right)$$

O estimador para a constante c_j é encontrado pelo método de mínimos quadrados. Assim, deve-se minimizar $\sum_{x_i \in R_j} \left[y_i - f\left(x_i\right)\right]^2$. No entanto, perceba que $f\left(x_i\right)$ está sendo avaliado somente em um ponto específico x_i , o que reduzirá $f\left(x_i\right)$ para uma constante c_j . É fácil de se chegar ao resultado se for observada a definição da função indicadora $I\left(x \in R_j\right)$

$$I_{R_j}(x_i) = \begin{cases} 1, & \text{se } x_i \in R_j \\ 0, & \text{se } x_i \notin R_j \end{cases}$$

Como as regiões são disjuntas, x_i não pode estar simultaneamente em duas regiões. Assim, para um ponto específico x_i , apenas um dos casos da função indicadora será diferente de 0. Portanto, $f\left(x_i\right)=c_j$. Agora, derivando $\sum_{x_i\in R_j}\left(yi-c_j\right)^2$ em relação a c_j

$$\frac{\partial}{\partial c_j} \sum_{x_i \in R_j} \left(y_i - c_j \right)^2 = -2 \sum_{x_i \in R_j} \left(y_i - c_j \right) \tag{4.1}$$

e igualando Equação 4.1 a 0, tem-se a seguinte igualdade

$$\sum_{x_i \in R_j} \left(y_i - \hat{c}_j \right) = 0$$

que se abrirmos o somatório e dividirmos pelo número total de pontos N_j na região R_j , teremos que o estimador de c_j será simplesmente a média dos y_i na região R_j :

$$\sum_{x_i \in R_j} y_i - \hat{c}_j N_j = 0 \Rightarrow \hat{c}_j = \frac{1}{N_j} \sum_{x_i \in R_j} y_i \tag{4.2}$$

No entanto, JAMES et~al.~(2013) caracteriza como inviável considerar todas as possíveis partições do espaço das variáveis em J caixas devido ao alto custo computacional. Dessa forma, a abordagem a ser adotada é uma divisão binária recursiva. O processo começa no topo da árvore de regressão, o ponto em que contém todas as observações, e continua sucessivamente dividindo o espaço dos preditores. As divisões são indicadas como dois novos ramos na árvore, como pode ser visto na Figura 4.1.

Para executar a divisão binária recursiva, deve-se primeiramente selecionar a variável independente X_j e o ponto de corte s tal que a divisão do espaço dos preditores conduza a maior redução possível na soma dos quadrados dos resíduos. Dessa forma, definimos dois semi-planos

$$R_1(j,s) = \{X | X_i \le s\} \in R_2(j,s) = \{X | X_i > s\}$$

e procuramos a divisão da variável j e o ponto de corte s que resolve a equação

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} \left(y_i - c_1 \right)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} \left(y_i - c_2 \right)^2 \right]$$

em que c_1 e c_2 é a média da variável dependente para as observações de treinamento nas regiões $R_1(j,s)$ e $R_2(j,s)$, respectivamente. Assim, encontrando a melhor divisão, os dados são particionados nas duas regiões resultantes e o processo de divisão é repetido em todas as outras regiões.

O tamanho da árvore pode ser considerado um hiperparâmetro para regular a complexidade do modelo, pois uma árvore muito grande pode causar sobreajuste aos dados de treinamento, capturando não apenas os padrões relevantes, mas também o ruído. Como resultado, o modelo pode apresentar bom desempenho nos dados de treinamento, mas falhar ao lidar com novos dados devido à sua incapacidade de generalização. Por outro lado, uma árvore muito pequena pode não captar padrões, relações e estruturas importantes presentes nos dados. Dessa forma, a estratégia

adotada para selecionar o tamanho da árvore consiste em crescer uma grande árvore T_0 , interrompendo o processo de divisão apenas ao atingir um tamanho mínimo de nós. Posteriormente, a árvore T_0 é podada utilizando o critério de custo complexidade, que será definido a seguir.

Para o processo de poda da árvore, definimos uma árvore qualquer T que pode ser obtida através do processo da poda de T_0 , de modo que $T \subset T_0$. Assim, sendo N_j a quantidade de pontos na região R_i , seja

$$Q_{j}\left(T\right) = \frac{1}{N_{j}} \sum_{x_{i} \in R_{j}} \left(y_{i} - \hat{c}_{j}\right)^{2}$$

uma medida de impureza do nó pelo erro quadrático médio. Assim, define-se o critério de custo complexidade

$$C_{\alpha}\left(T\right) = \sum_{m=1}^{|T|} N_{j}Q_{j}\left(T\right) + \alpha|T|$$

onde |T| denota a quantidade total de folhas, e $\alpha \geq 0$ é um hiperparâmetro que equilibra o tamanho da árvore e a adequação aos dados. A ideia é encontrar, para cada α , a árvore $T_{\alpha} \subset T_0$ que minimiza $C_{\alpha}(T)$. Valores grandes de α resultam em árvores menores, enquanto valores menores resultam em árvores maiores, e $\alpha = 0$ resulta na própria árvore T_0 . A busca por T_{α} envolve colapsar sucessivamente o nó interno que provoca o menor aumento em $\sum_j N_j Q_j(T)$, continuando o processo até produzir uma árvore com um único nó. Esse processo gera uma sequência de subárvores, na qual existe uma única subárvore menor que, para cada α , minimiza $C_{\alpha}(T)$.

A estimação de α é realizada por validação cruzada com cinco ou dez folds, sendo $\hat{\alpha}$ escolhido para minimizar a soma dos quadrados dos resíduos durante o processo de validação cruzada. Assim, a árvore final será $T_{\hat{\alpha}}$. O Algoritmo 4.1 exemplifica o processo de crescimento de uma árvore de regressão:

No caso de uma árvore de decisão para classificação, a principal diferença está no critério de divisão dos nós e na poda da árvore. Para a classificação, a previsão em um nó j, correspondente a uma região R_j com N_j observações, será simplesmente a classe majoritária. Assim, tem-se

$$\hat{p}_{jk} = \frac{1}{N_j} \sum_{x_i \in R_i} I\left(y_i = k\right)$$

como a proporção de observações da classe k no nó j. Dessa forma, as observações no nó j são classificadas na classe $k(j) = \arg\max_k \hat{p}_{jk}$, que é a moda no nó j.

Algoritmo 4.1 Algoritmo para crescer uma árvore de regressão

- 1. Use a divisão binária recursiva para crescer uma árvore grande T_0 nos dados de treinamento, parando apenas quando cada folha tiver menos do que um número mínimo de observações.
- 2. Aplique o critério custo de complexidade à árvore grande T_0 para obter uma sequência de melhores subárvores T_{α} , em função de α .
- **3.** Use validação cruzada K-fold para escolher α . Isto é, divida as observações de treinamento em K folds. Para cada k = 1, ..., K:
 - (a) Repita os Passos 1 e 2 em todos os folds, exceto no k-ésimo fold dos dados de treinamento.
 - (b) Avalie o erro quadrático médio de previsão nos dados no k-ésimo fold deixado de fora, em função de α . Faça a média dos resultados para cada valor de α e escolha α que minimize o erro médio.
- 4. Retorne a subárvore $T_{\hat{\alpha}}$ do Passo 2 que corresponde ao valor estimado de α .

Algoritmo 4.1: Fonte: JAMES et al. (2013, p. 337).

Para a divisão dos nós no caso da regressão, foi utilizado o erro quadrático médio como medida de impureza. Para a classificação, algumas medidas comuns para $Q_j\left(T\right)$ são o erro de classificação, o índice de Gini ou a entropia cruzada.

4.2 Métodos Ensemble

As árvores de decisão são conhecidas por sua alta interpretabilidade, mas geralmente apresentam um desempenho preditivo inferior em comparação com outros modelos e algoritmos. No entanto, é possível superar essa limitação construindo um modelo preditivo que combina a força de uma coleção de estimadores base, um processo conhecido como aprendizado em conjunto (Ensemble Learning). De acordo com HASTIE et al. (2009), o aprendizado em conjunto pode ser dividido em duas etapas principais: a primeira etapa consiste em desenvolver uma população de algoritmos de aprendizado base a partir dos dados de treinamento, e a segunda etapa envolve a combinação desses algoritmos para formar um estimador agregado. Portanto, nesta seção, serão definidos os métodos de aprendizado em conjunto utilizados neste trabalho.

4.2.1 Bagging

O algoritmo de Bootstrap Aggregation, ou Bagging, foi introduzido por BREIMAN (1996). Sua ideia principal é gerar um estimador agregado a partir de múltiplas versões de um preditor, que são criadas por meio de amostras bootstrap do conjunto de treinamento, utilizadas como novos conjuntos de treinamento. O Bagging pode ser empregado para melhorar a estabilidade e a precisão de modelos ou algoritmos de aprendizado de máquina, além de reduzir a variância e evitar o sobreajuste. Por exemplo, o Bagging pode ser utilizado para melhorar o desempenho da árvore de regressão descrita anteriormente.

BREIMAN (1996) define formalmente o algoritmo de Bagging, que utiliza um conjunto de treinamento \mathcal{L} . A partir desse conjunto, são geradas amostras bootstrap $\mathcal{L}^{(B)}$ com B réplicas, formando uma coleção de modelos $\varphi(x, \mathcal{L}^{(B)})$, onde φ representa um modelo estatístico ou algoritmo treinado nas amostras bootstrap para prever ou classificar uma variável dependente y com base em variáveis independentes \mathbf{x} . Se a variável dependente y for numérica, a predição é obtida pela média das previsões dos modelos:

$$\varphi_{B}\left(x\right) = \frac{1}{B} \sum_{b=1}^{B} \varphi\left(x, \mathcal{L}^{(B)}\right)$$

onde φ_B representa a predição agregada. No caso em que y prediz uma classe, utiliza-se a votação majoritária. Ou seja, se estivermos classificando em classes $j \in 1, \ldots, J$, então $N_j = \#\{B; \varphi(x, \mathcal{L}^{(b)}) = j\}$ representa o número de vezes que a classe j foi predita pelos estimadores. Assim,

$$\varphi_{B}\left(x\right)=\arg\max_{j}N_{j}$$

isto é, o j para o qual N_j é máximo

Embora a técnica de Bagging possa melhorar o desempenho de uma árvore de regressão ou de classificação, isso geralmente vem ao custo de menor interpretabilidade. Quando o Bagging é aplicado a uma árvore de regressão, construímos B árvores de regressão usando B réplicas de amostras bootstrap e tomamos a média das predições resultantes (JAMES $et\ al.$, 2013). Nesse processo, as árvores de regressão crescem até seu máximo, sem passar pelo processo de poda, resultando em cada árvore individual com alta variância e baixo viés. No entanto, ao agregar as predições das B árvores, a variância é reduzida.

Para mitigar a falta de interpretabilidade do método Bagging aplicado a árvores de regressão, pode-se usar a medida de impureza baseada no erro quadrático médio,

definida anteriormente, como uma métrica de importância das variáveis independentes. Um valor elevado na redução total média do erro quadrático médio, calculado com base nas divisões realizadas por um determinado preditor em todas as B árvores, indica que o preditor é importante.

As árvores construídas pelo algoritmo de árvore de decisão se beneficiam da proposta de agregação do Bagging, mas esse benefício é limitado devido à correlação positiva existente entre as árvores. Se as árvores forem variáveis aleatórias independentes e identicamente distribuídas, cada uma com variância σ^2 , a variância da média das previsões das B árvores será $\frac{1}{B}\sigma^2$. No entanto, se as árvores forem apenas identicamente distribuídas, mas não necessariamente independentes, e apresentarem uma correlação positiva ρ entre pares, a esperança da média das B árvores será a mesma que a esperança de uma árvore individual. Portanto, o viés do agregado das árvores é o mesmo das árvores individuais, e a melhoria é alcançada apenas pela redução da variância. A variância da média das previsões será dada por:

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2 \tag{4.3}$$

Isso significa que, à medida que o número de árvores B aumenta, o segundo termo da soma se torna menos significativo. Portanto, os benefícios da agregação proporcionados pelo algoritmo de Bagging são limitados pela correlação entre as árvores (HASTIE $et\ al.$, 2009). Mesmo com o aumento do número de árvores no Bagging, a correlação entre elas impede que as previsões individuais sejam completamente independentes, resultando em menor diminuição da variância da média das previsões do que seria esperado se as árvores fossem totalmente independentes. Uma maneira de melhorar o algoritmo de Bagging é por meio do Random Forest, que será descrito a seguir.

4.2.2 Random Forest

O algoritmo Random Forest é uma técnica derivada do método de Bagging, mas com modificações específicas na construção das árvores. O objetivo é melhorar a redução da variância ao diminuir a correlação entre as árvores, sem aumentar significativamente a variabilidade. Isso é alcançado durante o processo de crescimento das árvores por meio da seleção aleatória de variáveis independentes.

No algoritmo Random Forest, ao construir uma árvore a partir de amostras bootstrap, antes de cada divisão, selecionam-se aleatoriamente $m \leq p$ das p variáveis independentes como candidatas para a divisão (com m=p no caso do Bagging). Apenas uma dessas m variáveis é usada para realizar a divisão, com base em critérios como a minimização da impureza. Diferentemente do Bagging, que tende a gerar árvores de decisão semelhantes e, portanto, previsões altamente correlacionadas, o Random Forest

visa minimizar esse problema ao proporcionar oportunidades para que outros preditores sejam considerados. Assim, em média, (p-m)/p das divisões nem sequer considerarão o preditor mais forte, permitindo que outros preditores também tenham a chance de serem usados (JAMES et al., 2013). Esse processo de redução da correlação entre as árvores resulta em uma média das árvores menos variável e, consequentemente, mais confiável.

A quantidade de variáveis independentes m selecionadas aleatoriamente é um hiperparâmetro que pode ser estimado por meio de validação cruzada. Valores comuns para m são $m = \sqrt{p}$ com tamanho mínimo do nó igual a um para classificação, e m = p/3 com tamanho mínimo do nó igual a cinco para regressão (HASTIE et~al., 2009). Quando o número de variáveis é grande, mas poucas são realmente relevantes, o algoritmo Random Forest pode ter um desempenho inferior com valores pequenos de m, pois isso reduz as chances de selecionar as variáveis mais importantes. No entanto, usar um valor pequeno de m pode ser vantajoso quando há muitos preditores correlacionados. Além disso, assim como no Bagging, a Random Forest não sofre de sobreajuste com o aumento da quantidade de árvores B. Portanto, é suficiente usar um B grande o bastante para que a taxa de erro se estabilize (JAMES et~al., 2013).

4.2.3 Boosting Trees

O Boosting, assim como o Bagging, é um método destinada a melhorar o desempenho de modelos ou algoritmos. No entanto, neste trabalho, o Boosting foi aplicado apenas às árvores de regressão. Portanto, a explicação do Boosting será restrito ao caso de Boosting Trees (Algoritmo 4.3).

No algoritmo de Bagging, cada árvore é construída e ajustada utilizando amostras bootstrap, e ao final, um estimador agregado φ_B é formado a partir das B árvores. O Boosting Trees funciona de maneira semelhante, mas sem o uso de amostras bootstrap. A ideia principal é corrigir os erros das árvores anteriores, ajustando as novas árvores aos resíduos das anteriores, visando melhorar suas previsões. Assim, as árvores são construídas de forma sequencial, incorporando as informações das árvores anteriores.

No caso da regressão, o Boosting combina um grande número de árvores de decisão $\hat{f}^1,\ldots,\hat{f}^B$. A primeira árvore é construída utilizando o conjunto de dados original, e seus resíduos são calculados. Com a primeira árvore ajustada, a segunda árvore é ajustada aos da árvore anterior resíduos e, em seguida, é adicionada ao estimador para atualizar os resíduos. Dessa forma, os resíduos servem como informação crucial para construir novas árvores e corrigir os erros das árvores anteriores. Como cada nova árvore depende das árvores já construídas, árvores menores são suficientes (JAMES et al., 2013).

O processo de aprendizado no método de Boosting é lenta, o que acaba gerando melhores resultados. Esse processo de aprendizado pode ser controlado por um hiperparâmetro λ chamado de shrinkage, ou taxa de aprendizado, permitindo que mais árvores, com formas diferentes, corrijam os erros das árvores passadas. No entanto, um valor muito pequeno para λ requer uma quantidade muito maior B de árvores e, diferente do Bagging e Random Forest, o Boosting pode sofrer de sobreajuste se a quantidade de árvores é muito grande. Além disso, a quantidade de divisões d em cada árvore, que controla a complexidade do boosting, pode ser considerado também um hiperparâmetro. Para d=1 é ajustado um modelo aditivo, já que cada termo involve apenas uma variável. JAMES $et\ al.\ (2013)$ define d como a profundidade de interação que controla a ondem de interação do modelo boosting, já que d divisões podem envolver no máximo d variáveis.

4.2.4 Stacked generalization

A Stacked Generalization, ou Stacking, é um método de ensemble que consiste em treinar um modelo gerado a partir da combinação da predição de vários outros modelos, visando melhorar a precisão das predições. Esse método pode ser aplicado a qualquer modelo estatístico ou algoritmo de aprendizado de máquina. A ideia principal é atribuir pesos às predições, de modo a dar maior importância aos modelos que produzem melhores resultados, ao mesmo tempo em que se evita atribuir altos pesos a modelos com alta complexidade.

Matematicamente, o Stacking define predições $\hat{f}_m^{-i}(x)$ em x, utilizando o modelo m, aplicado ao conjunto de treinamento com a i-sima observação removida (HASTIE et~al.,~2009). Assim, os peso são estimados de forma a minimizar o erro de predição combinado, dado pela seguinte expressão:

$$\hat{w}^{st} = \arg\min_{w} \sum_{i=1}^{N} \left[y_i - \sum_{m=1}^{M} w_m f_m^{-i}\left(x_i\right) \right]^2$$

A previsão final dos modelos empilhados é $\sum_m \hat{w}_m^{st} \hat{f}_m(x)$. Assim, em vez de escolher um único modelo, o método de Stacking combina os modelos utilizando pesos estimados, o que melhora a performance preditiva, mas pode comprometer a interpretabilidade.

4.2.5 Gradient Boosting

O algoritmo de Gradient Boosting é semelhante ao de Boosting, mas com diferenças mínimas. Ele constrói modelos aditivos ajustando sequencialmente funções bases aos pseudos-resíduos, que correspondem aos gradientes da função perda do modelo atual (FRIEDMAN, 2002). Esses gradientes indicam a direção na qual a função perda

diminui. Neste trabalho, foram utilizadas diferentes implementações de Gradient Boosting. No entanto, todas empregam o Gradient Boosting com árvores de regressão, com algumas modificações para a construção das árvores ou para melhorar a eficiência do algoritmo existente. Assim, o algoritmo a ser explicado será o Gradient Tree Boosting (Algoritmo 4.4).

O Gradient Boosting aplicado para árvores de regressão, tem que cada função base é uma árvore de regressão com J_m folhas. Dessa forma, cada árvore de regressão tem a forma aditiva

$$h_m(x; \{b_j, R_j\}_1^J) = \sum_{j=1}^{J_m} b_{jm} I(x \in R_{jm})$$
(4.4)

em que $\{R_{jm}\}_1^{J_m}$ são as regiões disjuntas que, coletivamente, cobrem o espaço de todos os valores conjuntos das variáveis preditoras \mathbf{x} . Essas regiões são representadas pelas folhas de sua correspondente árvore. Como as regiões são disjuntas, Equação 4.4 se reduz simplesmente a $h_m(x) = b_{jm}$ para $x \in R_{jm}$. Por mínimos quadrados, b_{jm} é simplesmente a média dos pseudo-resíduos r_{im} ,

$$\hat{b}_{jm} = \frac{1}{N_{jm}} \sum_{x_i \in R_{jm}} r_{im}$$

que dão a direção de diminuição da função perda L pela expressão do gradiente da linha 2(a). Assim, cada árvore de regressão é ajustada aos r_{im} de forma a minimizar o erro das árvores anteriores. N_{jm} denota a quantidade de pontos na região R_{jm} . Por fim, a atualização do estimador é expresso da seguinte forma

$$f_{m}\left(x\right)=f_{m-1}\left(x\right)+\lambda\sum_{j=1}^{J}\gamma_{jm}I\left(x\in R_{jm}\right)$$

em que γ_{jm} representa a atualização da constante ótima para cada região, baseado na função de perda L, dada a aproximação $f_{m-1}\left(x\right)$. O λ , assim como no algoritmo de boosting, representa o hiperparâmetro shrinkage para controlar a taxa de aprendizado. Pequenos valores de λ necessitam maiores quantidades de iterações M para diminuir o risco de treinamento.

- 4.2.6 Diferentes implementações de Gradient Boosting
- 4.2.6.1 Light Gradient Boosting
- 4.2.6.2 Extreme Gradient Boosting
- 4.2.6.3 Categorial Gradient Boosting

Algoritmo 4.2 Algoritmo de uma Random Forest para regressão ou classificação

- 1. Para b = 1 até B:
 - (a) Construa uma amostra bootstrap Z^* de tamanho N dos dados de treinamento.
 - (b) Faça crescer uma árvore de floresta aleatória T_b para os dados bootstrap, repetindo recursivamente os seguintes passos para cada folha da árvore, até que o tamanho mínimo do nó n_{min} seja atingido.
 - i. Selecione m variáveis aleatoriamente entre as p variáveis.
 - ii. Escolha a melhor variável entre as m.
 - iii. Divida o nó em dois subnós.
- 2. Por fim, o conjunto de árvores $\{T_b\}_1^B$ é construído.

No caso da regressão, para fazer uma predição em um novo ponto x, temos a seguinte função:

$$\hat{f}_{rf}^{B}\left(x\right) = \frac{1}{B} \sum_{b=1}^{B} T_{b}\left(x\right)$$

Para a classificação é utilizado o voto majoritário. Assim, seja $\hat{C}_b\left(x\right)$ a previsão da classe da árvore de floresta aleatória b. Então,

$$\hat{C}_{rf}^{B}\left(x\right)=\arg\max_{c}\sum_{b=1}^{B}I\left(\hat{C}_{b}\left(x\right)=c\right)$$

onde c representa as classes possíveis.

Algoritmo 4.2: Fonte: HASTIE et al. (2009, p. 588).

Algoritmo 4.3 Método Boosting aplicado a árvores de regressão

- 1. Defina $\hat{f}\left(x\right)=0$ e $r_{i}=y_{i}$ para todos os i no conjunto de treinamento
- **2.** Para b = 1, 2, ..., B, repita:
 - (a) Ajuste uma árvore \hat{f}^b com d divisões para os dados de treinamento (X,r).
 - (b) Atualize \hat{f} adicionando uma versão com o hiperparâmetro λ de taxa de aprendizado:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x)$$

(c) Atualize os resíduos,

$$r_i \leftarrow r_i - \lambda \hat{f}^b\left(x_i\right)$$

3. Retorne o modelo de boosting,

$$\hat{f}\left(x\right) = \sum_{b=1}^{B} \lambda \hat{f}^{b}\left(x\right)$$

Algoritmo 4.3: Fonte: JAMES et al. (2013, p. 349).

Algoritmo 4.4 Gradient Tree Boosting

- 1. Inicialize $f_{0}\left(x\right)=\arg\min_{\gamma}\sum_{i=1}^{N}L\left(y_{i},\gamma\right)$
- **2.** Para m = 1 até M:
 - (a) Para $i=1,2,\ldots,N,$ calcule

$$\tilde{y}_{i} = -\left[\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f = f_{m-1}}$$

(b) Ajuste uma árvore de regressão aos pseudo-resíduos r_{im} , obtendo regiões terminais

$$R_{jm},\ j=1,2,\ldots,J.$$

(c) Para $j=1,2,\ldots,J_m,$ calcule

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L\left(y_i, f_{m-1}\left(x_i\right) + \gamma\right)$$

- (d) Atualize $f_{m}\left(x\right)=f_{m-1}\left(x\right)+\lambda\sum_{j=1}^{J}\gamma_{jm}I\left(x\in R_{jm}\right)$
- 3. Retorne $\hat{f}(x) = f_M(x)$

Algoritmo 4.4: Fonte: HASTIE et al. (2009)

5 Metodologia

5.1 Os dados e o procedimento adotado para sua obtenção

— AINDA SERÁ MODIFICADO —

- 5.2 Descritiva dos dados
- 5.3 Reamostragem para avaliação de performance

- 5.4 Métricas de avaliação
- 5.5 Tunagem de hiperparâmetros

B(Round edge) B -> C{Decision} "' ->

- 5.5.1 Otimização Bayesiana
- 5.5.2 Tree-Structured Parzen Estimator

6 Capítulo 4

6.1 Resultados

7 Conclusão

8 Referências

BISCHL, B. *et al.* Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. **Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery**, 2023. v. 13, n. 2, p. e1484.

BREIMAN, L. Bagging predictors. Machine learning, 1996. v. 24, p. 123–140.

FRIEDMAN, J. H. Stochastic gradient boosting. Computational statistics & data analysis, 2002. v. 38, n. 4, p. 367–378.

GARNETT, R. Bayesian optimization. [S.l.]: Cambridge University Press, 2023.

HASTIE, T. et al. The elements of statistical learning: data mining, inference, and prediction. [S.l.]: Springer, 2009. V. 2.

JAMES, G. et al. An introduction to statistical learning. [S.l.]: Springer, 2013. V. 112.