Basic Theory

OeGOR Summer-School 2024, Krems

Timo Gschwind Lehrstuhl für BWL, insb. Logistik

July 22 - 26, 2024

Agenda

Column Generation

2 Dantzig-Wolfe Reformulation

3 Branching and Cutting

Column Generation

PART I

Column Generation

=

An algorithm to solve LPs with many(!) variables (=columns).

Cutting Stock

Cutting Stock Problem:

- L length of rolls to cut
- m pieces with shorter lengths $\ell_1, \ldots, \ell_m \leq L$
- b_1, \ldots, b_m demands for pieces
- Goal: Minimize number of rolls

Cutting Stock

Example: Roll
$$L = 11$$
, pieces $\ell = (\ell_1, \ell_2, \ell_3)^{\top} = (5, 4, 3)^{\top}$

Cutting patterns (efficient, i.e., loss < 3):

Pattern	$\ell_1 = 5$	$\ell_2 = 4$	$\ell_3=3$	Loss	roll L = 11
j	#	#	#	r_j) 1011 2 = 11
1	2	0	0	1	$j=1$ $\ell_1=5$ $\ell_1=5$
2	1	1	0	2	$j=2$ $\begin{pmatrix} \ell_1=5 \end{pmatrix}$ $\begin{pmatrix} \ell_2=4 \end{pmatrix}$ $\begin{pmatrix} \ell_2=4 \end{pmatrix}$
3	1	0	2	0	3 01 1 02 1
4	0	2	1	0	i i i
5	0	1	2	1	$j=6$ $\ell_3=3$ $\ell_3=3$ $\ell_3=3$
6	0	0	3	2	

Here: Only n = 6 efficient patterns.

$$A_{1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, A_{3} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, A_{4} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, A_{5} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, A_{6} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$$

Cutting Stock

Example (cont'd): Demand $b = (b_1, b_2, b_3)^{\top} = (100, 400, 300)^{\top}$.

Model:

Modell, Gilmore & Gomory (1961, 1963): $A = (a_{ij}) = (A_1, \dots, A_n)$

$$z = \min \sum_{j=1}^{n} \lambda_j \tag{1}$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \lambda_j \geq b_i \quad i = 1, 2, \dots, m$$
 (2)

$$\lambda_j \geq 0 \quad j = 1, 2, \dots, n \tag{3}$$

Remark: This is an LP! Later: integer problems: λ_j integer...

Growth of #patterns in Gilmore & Gomory Model

Example: Roll *L* to be cut into pieces
$$\ell = (\ell_1, \ell_2, \ell_3, \ell_4, \ell_5)^{\top} = (10, 8, 5, 4, 3)^{\top}$$

Number of patterns n (#patterns) depending on L?

L	#patterns	L	#patterns	L	#patterns
10	8	12	10	14	14
16	19	18	25	20	33
25	57	30	94	35	143
40	216	35	307	50	429
60	770	70	1282	80	2015
90	3024	100	4371	110	6124
120	8358	130	11153	140	14596
150	18780	200	54516	250	126344
300	252936	350	456870	400	764631

Recall: Simplex Algorithm – Basics . . .

Linear Program (LP) in standard form:

$$\begin{aligned}
\min c^{\top} \lambda &= b \\
\lambda &\geq \mathbf{0}
\end{aligned}$$

If an LP has at least one optimal solution, then there also exists a feasible basic solution which is an optimal solution.

Main idea of Simplex algorithm (G. Dantzig, 1947):

- 1 Start in feasible basic solution
- 2 Iteration: Go to a better feasible basic solution, if existing

Recall: Simplex Algorithm – Basics . . .

Definition (basis, basic variables, feasible basic solution)

A basis B is an invertible submatrix of A. We can reorder the columns of A such that A = (B|N). Let $\lambda = (\lambda_B|\lambda_N)^{\top}$ and $c^{\top} = (c_B|c_N)$ be the corresponding partitions of x and c. The variables λ_B are basic variables, the variables λ_N are non-basic variables. A feasible basic solution is a feasible solution with $\lambda_N = \mathbf{0}$.

We can rewrite:

$$A\lambda = (B|N) \begin{pmatrix} \lambda_B \\ \lambda_N \end{pmatrix} = b \qquad c^{\top}\lambda = c_B^{\top}\lambda_B + c_N^{\top}\lambda_N$$

$$\Rightarrow \qquad B\lambda_B + N\lambda_N = b$$

$$\Rightarrow \qquad \lambda_B + B^{-1}N\lambda_N = B^{-1}b$$

$$\Rightarrow \qquad \lambda_B = B^{-1}b - B^{-1}N\lambda_N$$

Recall: Simplex Algorithm – Basics . . .

Impact of basis change on cost:

$$c^{\top}\lambda = c_{B}^{\top}\lambda_{B} + c_{N}^{\top}\lambda_{N}$$

$$= c_{B}^{\top} (B^{-1}b - B^{-1}N\lambda_{N}) + c_{N}^{\top}\lambda_{N}$$

$$= c_{B}^{\top}B^{-1}b + (c_{N}^{\top} - c_{B}^{\top}B^{-1}N)\lambda_{N}$$

$$= \pi^{\top} \text{ components:}$$

$$(dual sol.) (c_{j} - c_{B}^{\top}B^{-1}A_{j})\lambda_{j}$$

Definition (reduced cost)

The **reduced cost** of a variable λ_j is $\tilde{c}_j(\pi) = c_j - c_B^\top B^{-1} A_j = c_j - \pi^\top A_j$.

- If $\tilde{c}_j(\pi) < 0$ for some λ_{j^*}
 - \rightarrow (one of those) λ_i^{\star} should enter the basis
 - \rightarrow Dantzig's criterion: select λ_{i^*} such that $j^* = \arg\min_i \tilde{c}_i(\pi)$
- If $\tilde{c}_j(\pi) \geq 0$ for all λ_j
 - \rightarrow current solution is optimal!
- Simplex explicitly computes $\tilde{c}_j(\pi)$ for all λ_j in each iteration

Column Generation - Principle

Instead of all variables
$$\lambda_{j}$$
, $j \in J \dots$ such that λ_{j} , $j \in J \dots$ for $j \in J' \subset J$ for $j \in J' \subset J$
$$z_{MP} = \min c_{J}^{\top} \lambda_{J} \qquad z_{RMP} = \min c_{J'}^{\top} \lambda_{J'} \qquad (MP) \qquad A_{J} \lambda_{J} = b \qquad (RMP) \qquad A_{J'} \lambda_{J'} = b \qquad [\pi]$$

$$\lambda_{J} \geq 0 \qquad \qquad \lambda_{J'} \geq 0$$
 "Master Program (MP) " "Restricted Master Program (RMP) "

Does there exist a variable λ_{j^*} for $j^* \in J \setminus J'$ with negative reduced cost (rdc)? This is the "pricing problem (PP)":

(PP)
$$\tilde{c}^{\star}(\pi) = \min_{i \in J} \left(c_j - \pi^{\top} A_i \right) \stackrel{?}{<} 0$$

yes: Add j^* to J' (add column A_{i^*}) and re-optimize RMP

no: Done! MP solved!

Column Generation for Cutting Stock - Pricing Problem

Given: Dual solution $\pi = (\pi_1, \pi_2, \dots, \pi_m)^{\top} \geq 0$ of RMP

Reduced cost of pattern $A_j = (a_{ij})_{i=1,...,m}$:

$$\tilde{c}_j(\pi) = 1 - \sum_{i=1}^m \pi_i a_{ij}$$

Task: Find a pattern A_i with minimum $\tilde{c}_i(\pi)$!

- → explicit enumeration of all patterns with their rdc is not practical
- ightarrow instead: implicit enumeration by solving auxiliary optimization problem

Column Generation for Cutting Stock - Pricing Problem

Feasible Patterns: A pattern $A_j = (a_{ij})_{i=1,...,m} \in \mathbb{Z}_+^m$ is feasible if

$$\sum_{i=1}^m \ell_i a_{ij} \leq L.$$

Substituting a_{ij} (index j is irrelevant) by new variables x_i , i = 1, 2, ..., m:

Pricing Problem = Subproblem

$$\tilde{c}^*(\pi) = \min \quad 1 - \sum_{i=1}^m \pi_i x_i$$

s.t.
$$\sum_{i=1}^{m} \ell_i x_i \le L$$

$$x_1,\ldots,x_m\in\mathbb{Z}_+$$

Integer Knapsack Problem

$$z_{IKP}(\pi) = \max \sum_{i=1}^{m} \pi_i x_i$$

s.t.
$$\sum_{i=1}^{m} \ell_i x_i \le L$$

$$x_1,\ldots,x_m\in\mathbb{Z}_+$$

Column Generation for Cutting Stock - Pricing Problem

Excursus (solution of integer knapsack problem):

Example: Roll
$$L = 7$$
, $m = 2$ pieces, $\ell = (2,3)^{\top}$, dual solution $\pi = (\pi_1, \pi_2)^{\top} = (0.3, 0.5)^{\top}$

Solution by dynamic programming:

- Solution is pattern (2,1) and $z_{IKP} = 1.1$
- Reduced cost of this pattern is $\tilde{c}^{\star}(\pi) = 1 1.1 = -0.1 < 0$
- Linear relaxation of Master Program (MP) not yet solved. Iterate:
 - → re-optimize RMP with new pattern
 - $\,\rightarrow\,$ solve pricing problem with new dual prices again

Column Generation – Initialization of the RMP

Task: Provide feasible basic solution to RMP

ightarrow does not necessarily have to be feasible for *real problem*

Two common alternatives:

feasible initial solution may be difficult in some applications

big-M simple to implement!

Example: Roll L = 102, m = 5 pieces of length $\ell = (10, 8, 5, 4, 3)^{\top}$ with demand $b = (37, 920, 177, 422, 899)^{\top}$.

Initial feasible solution: one pattern for each piece $i \in \{1, 2, ..., m\}$

- take piece i with maximal multiplicity $|L/\ell_i|$
- fill remaining "space" with smallest piece so that loss $< \min_k \ell_k$

Initial patterns:

$$\begin{pmatrix} 10 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 12 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 20 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 25 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 34 \end{pmatrix}$$

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$ $\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941		

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	č*(π)	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$

Z _{RMP}	π_1	π_2 π_3	π_4	π_5	2	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843 0.0	5 0.04	0.02941	1	1.02	-0.02	$(0,0,18,3,0)=A_6$

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941			

z_{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$
127.4901	0.1	0.07843	0.04903	0.03913	0.02941			

z_{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$
127.4901	0.1	0.07843	0.04903	0.03913	0.02941	1.0176	-0.0176	$(9,0,1,1,1) = A_8$

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$
127.4901	0.1	0.07843	0.04903	0.03913	0.02941	1.0176	-0.0176	$(9,0,1,1,1) = A_8$

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$
127.4901	0.1	0.07843	0.04903	0.03913	0.02941	1.0176	-0.0176	$(9,0,1,1,1) = A_8$
127.451	0.09804	0.07843	0.04902	0.03922	0.02941			

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$
127.4901	0.1	0.07843	0.04903	0.03913	0.02941	1.0176	-0.0176	$(9,0,1,1,1) = A_8$
127.451	0.09804	0.07843	0.04902	0.03922	0.02941	1.0	0.0	

z_{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$
127.4901	0.1	0.07843	0.04903	0.03913	0.02941	1.0176	-0.0176	$(9,0,1,1,1) = A_8$
127.451	0.09804	0.07843	0.04902	0.03922	0.02941	1.0	0.0	Optimality!

Restricted master program (RMP):

Z _{RMP}	π_1	π_2	π_3	π_4	π_5	$z_{IKP}(\pi)$	$\tilde{c}^{\star}(\pi)$	pattern
128.028	0.1	0.07843	0.05	0.04	0.02941	1.02	-0.02	$(0,0,18,3,0)=A_6$
127.8314	0.1	0.07843	0.04889	0.04	0.02941	1.02	-0.02	$(1,0,0,23,0) = A_7$
127.4901	0.1	0.07843	0.04903	0.03913	0.02941	1.0176	-0.0176	$(9,0,1,1,1) = A_8$
127.451	0.09804	0.07843	0.04902	0.03922	0.02941	1.0	0.0	Optimality!

Try the same with big-M!

Example (cont'd): The last RMP terminates with:

- Optimal (LP) objective value $z_{RMP} = 127.451$
- Use pattern (0,12,0,0,2) exactly $\lambda_2=76.6667$ times 77 (0,0,0,0,34) exactly $\lambda_5=21.866$ times 22 (0,0,18,3,0) exactly $\lambda_6=9.7098$ times 10 (1,0,0,23,0) exactly $\lambda_7=16.9856$ times 17 (9,0,1,1,1) exactly $\lambda_8=2.2239$ times 3

Sum $\Sigma = 129$

Implications for Integer Cutting Stock Problem (CSP):

- [127.451] = 128 is a lower bound for the integer CSP
- Rounding up the λ -values gives a feasible integer solution with value 129
- An optimal integer solution uses either 128 or 129 rolls

More on integer formulations and solutions in Part II

Some Takeaways

- Column generation allows to solve HUGE models (many variables)
 - → only a tiny fraction of the variables actually considered
 - \rightarrow example: 3 variables generated (8 in total) of more than 4300
- There is a price to pay:
 - \rightarrow iterate between re-optimization of RMP and PP
- PP is an optimization problem itself
 - \rightarrow need to be solved often
 - → better have a good algorithm for that

Dantzig-Wolfe Reformulation

PART II

Dantzig-Wolfe Reformulation

=

A systematic way to produce extensive formulations (many columns) from compact formulations.

Polyhedra

Minkowski-Weyl Theorem (1897/1935):

For $X \subseteq \mathbb{R}^d$ the following statements are equivalent:

- **I** X is a polyhedron, i.e., for some matrix D and vector d, $X = \{x : Dx \le d\}$;
- **2** There are finite vectors $\{x_p, p \in P\}$ and $\{x_r, r \in R\}$ in \mathbb{R}^d such that $X = \operatorname{conv}(x_p, p \in P) + \operatorname{nonneg}(x_r, r \in R)$;
- $\mathbf{3}$ X is the sum of a polytope and a convex cone.

Polyhedra

Let $X = \{x : Dx \le d\}$. Every $x \in X$ can be written as:

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r$$

with

$$\lambda_p \ge 0, p \in P$$
 $\sum_{p \in P} \lambda_p = 1$ and $\lambda_r \ge 0, r \in R$

For a polyhedron $X = \{Dx \leq d, x \geq 0\}$,

- $\{x_p, p \in P\}$ can be chosen as the set of extreme points of X
- $\{x_r, r \in R\}$ can be chosen as the set of extreme rays of X

Overview

Three types of Dantzig-Wolfe reformulation:

- for Linear Programs (LP)
- 2 for (Mixed) Integer Programms (IP) by Convexification
- 3 for (Mixed) Integer Programms (IP) by Discretization

Dantzig-Wolfe Reformulation for LP

"Original model/formulation":

$$z_{LP} = \min_{\mathbf{c}} \mathbf{c}^{\top} \mathbf{x}$$
 $A\mathbf{x} = \mathbf{b}$
 $D\mathbf{x} = \mathbf{d}$
 $\mathbf{x} > \mathbf{0}$
 $X = \{x : D\mathbf{x} = \mathbf{d}, x \ge \mathbf{0}\}$
 $\{x_p, p \in P\}$ extreme points of X

Substitute

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r$$

Equivalent LP (master program): "extensive formulation"

$$z_{MP} = \min \sum_{p \in P} (c^{\top} x_p) \lambda_p + \sum_{r \in R} (c^{\top} x_r) \lambda_r$$

$$\sum_{p \in P} (A x_p) \lambda_p + \sum_{r \in R} (A x_r) \lambda_r = b \quad [\pi]$$

$$\sum_{p \in P} \lambda_p = 1 \quad [\mu]$$

$$\lambda_p \ge 0, p \in P, \quad \lambda_r \ge 0, r \in R$$

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r \qquad \leftarrow \text{No need to keep in LP}$$

D-W Reformulation for IP by Convexification

"Original model/formulation":

$$z_{IP} = \min c^{\top} x$$
 $Ax = b$
 $Dx = d$
 $x \ge 0$, integer

 $X = \{x : Dx = d, x \ge 0 \text{ integer}\}$
 $\{x_p, p \in P\}$ extreme points of $conv(X)$

Substitute

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r$$

Equivalent IP (integer master program): "extensive formulation"

$$z_{IMP} = \min \sum_{p \in P} (c^{\top} x_p) \lambda_p + \sum_{r \in R} (c^{\top} x_r) \lambda_r$$

$$\sum_{p \in P} (A x_p) \lambda_p + \sum_{r \in R} (A x_r) \lambda_r = b \quad [\pi]$$

$$\sum_{p \in P} \lambda_p = 1 \quad [\mu]$$

$$\lambda_p \ge 0, p \in P, \quad \lambda_r \ge 0, r \in R$$

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r \quad \text{integer} \leftarrow \text{Important!}$$

"Original model/formulation":

$$z_{IP} = \min c^{\top} x$$
 $X = \{x : Dx = d, x \ge \mathbf{0} \text{ integer}\}$
 $Ax = b$ $\{x_p, p \in P\}$ integer points of X
 $Dx = d$ $\{x_r, r \in R\}$ integer rays of X
 $x \ge \mathbf{0}$, integer

Substitute

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r \text{ binary/non-neg. integer combinations}$$

Equivalent IP (integer master program): "extensive formulation"

$$\begin{aligned} \mathbf{z}_{IMP} &= \min \sum_{p \in P} (c^{\top} \mathbf{x}_p) \lambda_p + \sum_{r \in R} (c^{\top} \mathbf{x}_r) \lambda_r \\ &\qquad \sum_{p \in P} (A \mathbf{x}_p) \lambda_p + \sum_{r \in R} (A \mathbf{x}_r) \lambda_r &= b \quad [\pi] \\ &\qquad \sum_{p \in P} \lambda_p &= 1 \quad [\mu] \\ &\qquad \lambda_p \in \{0, 1\}, p \in P, \quad \lambda_r \in \mathbb{Z}_+, r \in R \\ &\qquad \mathbf{x} = \sum \lambda_p \mathbf{x}_p &+ \sum \lambda_r \mathbf{x}_r &\leftarrow \boxed{\text{redundant}} \end{aligned}$$

Overview

Three types of Dantzig-Wolfe reformulation:

- for Linear Programs (LP)
- 2 for (Mixed) Integer Programms (IP) by Convexification
- 3 for (Mixed) Integer Programms (IP) by Discretization

"Original model/formulation":

$$egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} X &= \{x: Dx = d, x \geq \mathbf{0}\} \\ blue &= b \\ blue &= b \\ blue &= x \\ x_p, p \in P\} \end{array} &= & \text{ extreme rays of } X \\ blue &= x \\ x_r, r \in R \end{array}$$

Substitute

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r$$

Equivalent LP (master program): "extensive formulation"

$$z_{MP} = \min \sum_{p \in P} (c^{\top} x_p) \lambda_p + \sum_{r \in R} (c^{\top} x_r) \lambda_r$$

$$\sum_{p \in P} (A x_p) \lambda_p + \sum_{r \in R} (A x_r) \lambda_r = b \quad [\pi]$$

$$\sum_{p \in P} \lambda_p = 1 \quad [\mu]$$

$$\lambda_p \ge 0, p \in P, \quad \lambda_r \ge 0, r \in R$$

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r \qquad \leftarrow \text{No need to keep in LP}$$

Original and extensive formulations are equivalent!

$$z_{LP} = z_{MP}$$

Extensive formulation (=MP) has huge number of variables |P|+|R|

Solution by column generation:

- → RMP solved with LP-solver (primal, dual, barrier)
 - > dual solution π, μ
- \rightarrow pricing (=sub)problem (PP):

$$\tilde{c}^*(\pi, \mu) = -\mu + \min(c^\top - \pi^\top A)x$$

s.t. $Dx = d$
 $x \ge 0$

- > extreme point(s) x_p or extreme ray(s) x_r with negative rdc
- > partial pricing possible! (\rightarrow not necessary to solve PP to optimality)
- Allows exploiting that D has block-diagonal structure . . .

Block-diagonal structure:

$$z_{LP} = \min c^{1\top} x^{1} + c^{2\top} x^{2} + \dots + c^{\bar{k}\top} x^{\bar{k}}$$

$$A^{1} x^{1} + A^{2} x^{2} + \dots + A^{\bar{k}} x^{\bar{k}} = b$$

$$D^{1} x^{1} = d^{1}$$

$$D^{2} x^{2} = d^{2}$$

$$\vdots$$

$$D^{\bar{k}} x^{\bar{k}} = d^{\bar{k}}$$

 $x^1, \quad x^2, \quad \cdots, \quad x^{\bar{k}} \geq \mathbf{0}$

Dx = d decomposes into blocks

$$D^1 x^1 = d^1$$
 $D^2 x^2 = d^2$ \cdots $D^{\bar{k}} x^{\bar{k}} = d^{\bar{k}}$

- Individual Dantzig-Wolfe reformulation for each block
 - → new variables for each block
 - → one subproblem per block

Let $K = \{1, 2, 3, \dots, \bar{k}\}$. **Equivalent LP** for the block-diagonal case:

$$\begin{aligned} \mathbf{z}_{MP} &= \min \sum_{k \in \mathcal{K}} \sum_{p \in P^k} (c^{k \top} \mathbf{x}_p^k) \lambda_p^k + \sum_{k \in \mathcal{K}} \sum_{r \in R^k} (c^{k \top} \mathbf{x}_r^k) \lambda_r^k \\ &\qquad \sum_{k \in \mathcal{K}} \sum_{p \in P^k} (A^k \mathbf{x}_p^k) \lambda_p^k + \sum_{k \in \mathcal{K}} \sum_{r \in R^k} (A^k \mathbf{x}_r^k) \lambda_r^k &= b \\ &\qquad \sum_{p \in P^k} \lambda_p^k &= 1 \qquad k \in \mathcal{K} \quad [\boldsymbol{\mu}_k] \\ \lambda_p^k &\geq 0, k \in \mathcal{K}, p \in P^k, \qquad \lambda_r^k \geq 0, k \in \mathcal{K}, r \in R^k \\ \boldsymbol{x}^k &= \sum_{p \in P} \lambda_p^k \lambda_p^k &\qquad + \sum_{r \in R} \lambda_r^k \boldsymbol{x}_r^k &\qquad k \in \mathcal{K} \end{aligned}$$

One subproblem for each $k \in K$:

$$\tilde{c}^{k\star}(\pi, \mu^k) = -\mu^k + \min(c^{k\top} - \pi^\top A^k)x^k$$

s.t. $D^k x^k = d^k$
 $x^k > \mathbf{0}$

If all blocks are identical: **Aggregate** $\to A^{\bullet}, x^{\bullet}, c^{\bullet}, D^{\bullet}, d^{\bullet}$

$$z_{MP} = \min \sum_{p \in P} (c^{\bullet \top} x_{p}^{\bullet}) \lambda_{p} + \sum_{r \in R} (c^{\bullet \top} x_{r}^{\bullet}) \lambda_{r}$$

$$\sum_{p \in P} (A^{\bullet} x_{p}^{\bullet}) \lambda_{p} + \sum_{r \in R} (A^{\bullet} x_{r}^{\bullet}) \lambda_{r} = b \qquad [\pi]$$

$$\sum_{p \in P} \lambda_{p} = |K| \qquad [\mu]$$

$$\lambda_{p} \geq 0, p \in P, \quad \lambda_{r} \geq 0, r \in R$$

$$x^{\bullet} = \sum_{p \in P} \lambda_{p} x_{p}^{\bullet} + \sum_{r \in R} \lambda_{r} x_{r}^{\bullet}$$

One subproblem only:

$$\tilde{c}^{\bullet \star}(\pi, \mu) = -\mu + \min(c^{\bullet \top} - \pi^{\top} A^{\bullet}) x^{\bullet}$$
s.t.
$$D^{\bullet} x^{\bullet} = d^{\bullet}$$

$$x^{\bullet} > 0$$

Overview

Three types of Dantzig-Wolfe reformulation:

- for Linear Programs (LP)
- 2 for (Mixed) Integer Programms (IP) by Convexification
- 3 for (Mixed) Integer Programms (IP) by Discretization

D-W Reformulation for IP by Convexification

"Original model/formulation":

$$z_{IP} = \min c^{\top} x$$
 $Ax = b$
 $Dx = d$
 $x \ge 0$, integer

 $X = \{x : Dx = d, x \ge 0 \text{ integer}\}$
 $\{x_p, p \in P\}$ extreme points of $conv(X)$

Substitute

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r$$

Equivalent IP (integer master program): "extensive formulation"

$$\begin{aligned} \mathbf{z}_{IMP} &= \min \sum_{p \in P} (c^{\top} \mathbf{x}_p) \lambda_p + \sum_{r \in R} (c^{\top} \mathbf{x}_r) \lambda_r \\ &= \sum_{p \in P} (A \mathbf{x}_p) \lambda_p + \sum_{r \in R} (A \mathbf{x}_r) \lambda_r &= b \quad [\pi] \\ &= \sum_{p \in P} \lambda_p &= 1 \quad [\mu] \\ \lambda_p &\geq 0, p \in P, \quad \lambda_r \geq 0, r \in R \\ \mathbf{x} &= \sum_{p \in P} \lambda_p \mathbf{x}_p \quad + \sum_{r \in R} \lambda_r \mathbf{x}_r \quad \text{integer} \quad \leftarrow \boxed{\text{Important!}} \end{aligned}$$

D-W Reformulation for IP by Convexification

Original and extensive integer formulations are equivalent!

$$z_{IP} = z_{IMP}$$

• Original and extensive LP relaxations are generally not equivalent! $z_{IP} < z_{MP}$

- Solution of MP by column generation:
 - → RMP solved with LP-solver (primal, dual, barrier)
 - > dual solution π, μ
 - \rightarrow pricing (=sub)problem (PP):

$$\tilde{c}^*(\pi,\mu) = -\mu + \min(c^\top - \pi^\top A)x$$

s.t.
$$Dx = d$$

$$x \ge 0$$
 integer

- > (use algorithm that ensures) extreme point(s) x_p or extreme ray(s) x_r with negative rdc
- > partial pricing! (\rightarrow heuristics, heuristics, heuristics)
- Solution of IMP by branch-and-price:
 - → Each node of the branch-and-bound tree is a (modified) MP solved by column generation
- Block-diagonal structure . . .

D-W Reformulation - Better Bounds

Original Formulation: LP and IP

$$\{x : Ax = b\}$$
$$\{Dx = d, x \ge \mathbf{0}\}$$

$$P_{LP} = \{x : Ax = b\}$$
$$\cap \{x : Dx = d, x \ge \mathbf{0}\}$$

Extensive Formulation: MP and IMP

$$\{x : Ax = b\}$$

$$\{Dx = d, x \ge \mathbf{0}\}$$

$$conv(\{Dx = d, x \ge \mathbf{0} \text{ integer}\})$$

$$P_{MP} = \{x : Ax = b\}$$

$$\cap conv(\{Dx = d, x \ge \mathbf{0} \text{ integer}\})$$

Better bound possible if $P_{LP} \supseteq P_{MP}$!

Equality if subproblem formulation is integral.

D-W Reformulation - Cutting Stock

Example: Cutting Stock Problem

Arc-flow formulation: Network with nodes $V = \{0, 1, 2, ..., L\}$ and

- $arcs(i, i + \ell_d) \in E$ representing piece d
- lacksquare arcs $(i,i+1)\in E$ representing slack
- \blacksquare one arc (L,0)

Similar to [Valério de Carvalho, 1999]:

$$\begin{aligned} z_{IP} &= & \min \sum_{(0,i) \in \delta^+(0)} x_{0i} \\ \text{s.t.} && \sum_{(i,i+\ell_d) \in E} x_{i,i+\ell_d} \geq b_d \qquad d = 1,\ldots,m \\ && \sum_{(i,j) \in \delta^+(i)} x_{ij} - \sum_{(h,i) \in \delta^-(i)} x_{hi} = 0 \qquad i \in V \\ && x_{ij} \geq 0, \quad \text{integer} \qquad (i,j) \in E \end{aligned}$$

D-W Reformulation – Cutting Stock

Example (cont'd): Cutting Stock Problem

$$z_{IP} = \min \sum_{(0,i) \in \delta^{+}(0)} x_{0i}$$
s.t.
$$\sum_{(i,i+\ell_{d}) \in E} x_{i,i+\ell_{d}} \ge b_{d} \qquad d = 1, \dots, m$$

$$\sum_{(i,j) \in \delta^{+}(i)} x_{ij} - \sum_{(h,i) \in \delta^{-}(i)} x_{hi} = 0 \qquad i \in V$$

$$x_{ij} \ge 0, \text{ integer} \qquad (i,j) \in E$$

Pricing problem constraints:

- $\rightarrow X = \{x > \mathbf{0} : \text{circulation}\}\$
- → homogeneous system, unbounded

■ One extreme point $\mathbf{0}$ \leftarrow Not needed, cost 0, flow $\mathbf{0}$

All cycles are extreme rays

D-W Reformulation - Cutting Stock

Example (cont'd): Cutting Stock Problem

D-W reformulation of arc-flow formulation:

$$\begin{aligned} \mathbf{z}_{IMP} &= & \min \quad \sum_{r \in R} \lambda_r \\ \text{s.t.} & & \sum_{r \in R} \left(\sum_{(i,i+\ell_d) \in E} (\mathbf{x}_r)_{i,i+\ell_d} \right) \lambda_r \geq b_d \qquad d = 1,2,\ldots,m \\ & & \lambda_r \geq 0 \qquad r \in R \\ & & \mathbf{x}_{ij} = \sum_{r \in R} (\mathbf{x}_r)_{ij} \lambda_r \quad \text{integer} \qquad (i,j) \in E \end{aligned}$$

Compare with Modell, Gilmore & Gomory (1961, 1963)

- **Coefficient** of λ_r in dth constraint:
 - ightarrow number of times cycle/ray/pattern r uses piece $d/{
 m arcs}~(i,i+\ell_d)$
- Integer constraints on x_{ij} , not on λ_r !
- Pricing problem with integral formulation
 - \rightarrow equivalent LP relaxations, $z_{LP} = z_{MP}$

Example: Vehicle Routing Problem with Time Windows

Three-Index Formulation for the VRPTW:

$$z_{IP} = \min \sum_{k \in K} \sum_{(i,j) \in A} c_{ij} x_{ij}^{k}$$
s.t.
$$\sum_{k \in K} \sum_{(i,j) \in \delta^{+}(i)} x_{ij}^{k} = 1 \quad \forall i \in N$$

$$\sum_{(o,j) \in \delta^{+}(o)} x_{oj}^{k} = \sum_{(i,d) \in \delta^{-}(d)} x_{id}^{k} \le 1 \quad \forall k \in K$$

$$\sum_{(i,j) \in \delta^{+}(i)} x_{ij}^{k} - \sum_{(j,i) \in \delta^{-}(d)} x_{ji}^{k} = 0 \quad \forall i \in N, k \in K$$

$$u_{i}^{k} - u_{j}^{k} + Q x_{ij}^{k} \le Q - q_{j} \quad \forall (i,j) \in A, k \in K$$

$$q_{i} \le u_{i}^{k} \le Q \quad \forall i \in N, k \in K$$

$$T_{i}^{k} - T_{j}^{k} + M_{ij} x_{ij}^{k} \le M_{ij} - t_{ij} \quad \forall (i,j) \in A, k \in K$$

$$a_{i} \le T_{i}^{k} \le b_{i} \quad \forall i \in N, k \in K$$

$$x_{ij}^{k} \in \{0,1\} \quad \forall (i,j) \in A, k \in K$$

Pricing problem constraints:

→ no extreme rays

- \rightarrow decompose into |K| blocks (the vehicles)
- \rightarrow describe feasible vehicle routes (\rightarrow extreme points: λ_p)

Example: (cont'd) Vehicle Routing Problem with Time Windows

D-W reformulation with blocks $k \in K$:

$$\begin{aligned} & \min \qquad & \sum_{k \in K} \sum_{(i,j) \in A} \sum_{\rho \in P} c_{ij}(x_{\rho}^{k})_{ij} \lambda_{\rho}^{k} \\ & \text{s.t.} \qquad & \sum_{k \in K} \sum_{(i,j) \in \delta^{+}(i)} \sum_{\rho \in P} (x_{\rho}^{k})_{ij} \lambda_{\rho}^{k} = 1 \qquad i \in \mathbb{N} \\ & \sum_{\rho \in P} \lambda_{\rho}^{k} = 1 \qquad k \in \mathbb{K} \\ & \lambda_{\rho}^{k} \geq 0 \qquad k \in \mathbb{K}, p \in P \\ & \lambda_{p}^{k} \geq 0 \qquad k \in \mathbb{K}, p \in P \\ & \lambda_{ij}^{k} = \sum_{\rho \in P} (x_{\rho}^{k})_{ij} \lambda_{\rho}^{k} \in \{0,1\} \qquad k \in \mathbb{K}, (i,j) \in \mathbb{A} \end{aligned}$$

$$c_p$$
 cost of route p : $c_p = \sum_{(i,j) \in A} c_{ij}(x_p^k)_{ij}$
 a_{ip} indicator if route p visits customer i : $a_{ip} = \sum_{(i,j) \in \delta^+(i)} (x_p^k)_{ij}$
 $a_{ij,p}$ indicator if route p uses arc (i,j) : $a_{ij,p} = (x_p^k)_{ij}$

Example: (cont'd) Vehicle Routing Problem with Time Windows

(Nicer looking) D-W reformulation with blocks $k \in K$:

min
$$\sum_{k \in K} \sum_{p \in P} c_p \lambda_p^k$$
s.t.
$$\sum_{k \in K} \sum_{p \in P} a_{ip} \lambda_p^k = 1 \quad i \in N$$

$$\sum_{p \in P} \lambda_p^k = 1 \quad k \in K$$

$$\lambda_p^k \ge 0 \quad k \in K, p \in P$$

$$\lambda_{ij}^k = \sum_{p \in P} a_{ij,p} \lambda_p^k \in \{0,1\} \quad k \in K, (i,j) \in A$$

- All blocks $k \in K$ are identical!
 - → Aggregation! (eliminates symmetry w.r.t. vehicles)
 - $\rightarrow \lambda_p = \sum_{k \in K} \lambda_p^k \geq 0$
 - $\rightarrow x_{ij} = \sum_{k \in K} x_{ij}^{k} \in \mathbb{Z}_{+}$

Example: (cont'd) Vehicle Routing Problem with Time Windows

(Aggregated) D-W reformulation:

min
$$\sum_{p \in P} c_p \lambda_p$$
s.t.
$$\sum_{p \in P} a_{ip} \lambda_p = 1 \quad i \in N$$

$$\sum_{p \in P} \lambda_p = |K|$$

$$\lambda_p \ge 0 \quad p \in P$$

$$\chi_{ij} = \sum_{p \in P} a_{ij,p} \lambda_p \in \mathbb{Z}_+ \quad (i,j) \in A$$

Here(!) we can replace integer by binary constraints

$$\rightarrow x_{ij} = \sum_{p \in P} a_{ij,p} \lambda_p \in \{0,1\}$$

 $\rightarrow x_{ij} \ge 2$ is always infeasible!

■ Typically, the empty route is allowed:

$$\rightarrow \sum_{p \in P} \lambda_p \leq |K|$$

Example: Vertex Coloring Problem

Given Graph
$$G = (V, E)$$

Task Assign colors to vertices such that adjacent vertices receive different colors and the number of colors used is minimum

Sufficiently many colors $K = \{blue, green, orange, magenta, \dots\}$

$$\begin{aligned} \mathbf{z}_{IP} &= \min \qquad \sum_{k \in \mathcal{K}} \mathbf{y}^k \\ \text{s.t.} \qquad \sum_{k \in \mathcal{K}} \mathbf{x}_i^k &= 1 \qquad i \in V \\ &\qquad \mathbf{x}_i^k + \mathbf{x}_j^k \leq 1 \qquad \{i, j\} \in \mathcal{E}, k \in \mathcal{K} \\ &\qquad \mathbf{x}_i^k \leq \mathbf{y}^k \qquad i \in V, k \in \mathcal{K} \\ &\qquad \mathbf{x}_i^k, \mathbf{y}^k \in \{0, 1\} \qquad i \in V, k \in \mathcal{K} \end{aligned}$$

Example (cont'd): Vertex Coloring Problem

$$z_{IP} = \min \qquad \sum_{k \in K} y^k$$
s.t.
$$\sum_{k \in k} x_i^k = 1 \qquad i \in V$$

$$x_i^k + x_j^k \le 1 \qquad \{i, j\} \in E, k \in K$$

$$x_i^k \le y^k \qquad i \in V, k \in K$$

$$x_i^k, y^k \in \{0, 1\} \qquad i \in V, k \in K$$

- Pricing problem constraints:
 - \rightarrow decompose into |K| blocks (the colors)
 - → coupling of "color and coloring" and non-adjacency
- Extreme points:
 - $\rightarrow (y^k, x_i^k) = \mathbf{0}$
 - $\rightarrow (y^k, x_i^k) = (1, x_i) \in \{0, 1\}^{1+|V|}$, where $\{i \in V : x_i = 1\}$ are independent sets
 - > new variables λ_S^k for independent sets $S \subset V$
- No extreme rays

Example (cont'd): Vertex Coloring Problem

Let
$$S = \{S \subseteq V : S \text{ independent set in } G\}$$

D-W reformulation with blocks $k \in K$:

$$\begin{aligned} & \min & & \sum_{k \in K} \sum_{S \in \mathcal{S}} \lambda_S^k \\ & \text{s.t.} & & \sum_{k \in k} \sum_{S \in \mathcal{S}: i \in S} \lambda_S^k = 1 & i \in V \\ & & \sum_{S \in \mathcal{S}} \lambda_S^k \le 1 & k \in K & (\text{Why } \le ?) \\ & & \lambda_S^k \ge 0 & k \in K, S \in \mathcal{S} \\ & & \lambda_i^k = \sum_{S \in \mathcal{S}: i \in S} \lambda_S^k \in \{0, 1\} & i \in V, k \in K \end{aligned}$$

■ Integer requirement $x_i^k \in \{0,1\}$ can be shifted on λ_S^k variables

Example (cont'd): Vertex Coloring Problem

Integer requirement shifted on λ_S^k

D-W reformulation with blocks $k \in K$:

$$\begin{aligned} & \min & & \sum_{k \in \mathcal{K}} \sum_{S \in \mathcal{S}} \lambda_S^k \\ & \text{s.t.} & & \sum_{k \in \mathcal{k}} \sum_{S \in \mathcal{S}: i \in \mathcal{S}} \lambda_S^k = 1 & i \in V \\ & & \sum_{S \in \mathcal{S}} \lambda_S^k \leq 1 & k \in \mathcal{K} \\ & & \lambda_S^k \in \{0, 1\} & k \in \mathcal{K}, S \in \mathcal{S} \end{aligned}$$

- All blocks $k \in K$ are identical!
 - → Aggregation! (eliminates symmetry w.r.t. colors)

$$\rightarrow \lambda_S = \sum_{k \in K} \lambda_S^k \in \mathbb{Z}_+ \text{ for all } S \in \mathcal{S}$$

Example (cont'd): Vertex Coloring Problem

Aggregated D-W reformulation:

$$\begin{split} z_{\mathit{IMP}}^{\mathit{aggr}} &= \min \qquad \sum_{S \in \mathcal{S}} \lambda_S \\ \text{s.t.} \qquad \sum_{S \in \mathcal{S}: i \in S} \lambda_S &= 1 \qquad i \in V \\ \sum_{S \in \mathcal{S}} \lambda_S &\leq |\mathcal{K}| \qquad \qquad \text{(Redundant! Why?)} \\ \lambda_S &\geq 0 \quad \text{integer} \qquad S \in \mathcal{S} \end{split}$$

- Here(!) we can replace integer by binary constraints $\lambda_S \in \{0,1\}$
 - $\rightarrow \lambda_S \geq 2$ is always infeasible!

Overview

Three types of Dantzig-Wolfe reformulation:

- for Linear Programs (LP)
- 2 for (Mixed) Integer Programms (IP) by Convexification
- 3 for (Mixed) Integer Programms (IP) by Discretization

"Original model/formulation":

$$z_{IP} = \min c^{\top} x$$
 $X = \{x : Dx = d, x \ge \mathbf{0} \text{ integer}\}$
 $Ax = b$ $\{x_p, p \in P\}$ integer points of X
 $Dx = d$ $\{x_r, r \in R\}$ integer rays of X
 $x \ge \mathbf{0}$, integer

Substitute

$$x = \sum_{p \in P} \lambda_p x_p + \sum_{r \in R} \lambda_r x_r \text{ binary/non-neg. integer combinations}$$

Equivalent IP (integer master program): "extensive formulation"

$$\begin{aligned} \mathbf{z}_{IMP} &= \min \sum_{p \in P} (c^{\top} \mathbf{x}_p) \lambda_p + \sum_{r \in R} (c^{\top} \mathbf{x}_r) \lambda_r \\ &\qquad \sum_{p \in P} (A \mathbf{x}_p) \lambda_p + \sum_{r \in R} (A \mathbf{x}_r) \lambda_r &= b \quad [\pi] \\ &\qquad \sum_{p \in P} \lambda_p &= 1 \quad [\mu] \\ &\qquad \lambda_p \in \{0, 1\}, p \in P, \quad \lambda_r \in \mathbb{Z}_+, r \in R \\ &\qquad \mathbf{x} &= \sum \lambda_p \mathbf{x}_p &+ \sum \lambda_r \mathbf{x}_r &\leftarrow \boxed{\text{redundant}} \end{aligned}$$

Kantorovich (1960) formulation for Cutting Stock:

$$\begin{aligned} z_{IP} &= & \min \sum_{k \in K} y^k \\ \text{s.t.} && \sum_{k \in K} x_i^k \geq b_i \qquad i = 1, 2, \dots m \\ && \sum_{i=1}^m \ell_i x_i^k \leq L y^k \qquad k \in K \\ && y^k \in \{0, 1\} \qquad k \in K \\ && x_i^k \in \mathbb{Z}_+ \qquad k \in K, i = 1, 2, \dots, m \end{aligned}$$

Feasible integer points in the kth block:

$$S^k = \{(y^k, \mathbf{x}_i^k) \in \{0, 1\} \times \mathbb{Z}_+^m : \sum_{i=1}^m \ell_i x_i^k \le L y^k\}$$

Example (taken from [Ben Amor and Valério de Carvalho, 2005]):

- Roll L=6, m=2 pieces of length $\ell_1=2$ and $\ell_2=3$
- Demand $b_1 = 4$ and $b_2 = 3$

Discretization uses

$$S^{k} = \{(0, (0, 0)), (1, (0, 0)), (1, (1, 0)), (1, (0, 1)), (1, (1, 1)), (1, (2, 0)), (1, (0, 2)), (1, (3, 0))\}$$

while Convexification uses

$$X^{k} = conv(S^{k}) = conv(\{(0, (0, 0)), (1, (0, 0)), (1, (0, 2)), (1, (3, 0))\})$$

i.e., $P = \{(0, (0, 0)), (1, (0, 0)), (1, (3, 0)), (1, (0, 2))\}$ are the extreme points.

D-W Reformulation for IP

Convexification vs. Discretization

■ Integer formulations are equivalent!

$$z_{IMP}^{conv} = z_{IMP}^{disc}$$

LP relaxations are equivalent!

$$z_{MP}^{conv} = z_{MP}^{disc}$$

■ Same pricing (=sub)problem (PP):

$$\tilde{c}^*(\pi, \mu) = -\mu + \min(c^\top - \pi^\top A)x$$

s.t. $Dx = d$
 $x \ge 0$ integer

- \rightarrow every interior point is dominated with respect to objective values by at least one extreme point of conv(X)
- \rightarrow extreme point(s) x_p or extreme ray(s) x_r with negative rdc
- Interior points are not needed for LP relaxation
- Branching/cutting ensures that interior points are generated
 - → structure of subproblem changes. . . !!

Some Takeaways

Why should we think about D-W Reformulation?

- For Linear Programs
 - → does (usually) not pay off: just solve original model
 - → not beneficial even for large LPs with block-diagonal structure
- For (Mixed) Integer Programms
 - → better dual bounds
 - → elimination of symmetry
 - → manage non-linearities in the subproblem
 - → for many applications: very powerful algorithms for subproblems available

Dantzig-Wolfe Reformulation

PART III

Branching and Cutting

_

From integer formulations to integer solutions

Branch-Price-and-Cut

Solving integer formulations:

- Standard method for solving IP (original formulation): branch-and-cut
- Branch-price-and-cut is the equivalent for solving IMP (extensive formulation)
 - → column generation is reapplied on modified D-W reformulation
 - > at each node of the branch-and-bound search tree
 - > after adding (violated) valid inequalities

We discuss:

- f 1 Branching on the λ variables of the MP
- **2** Branching and cutting on the x variables of the original formulation
- 3 Ryan-Foster branching for set partitioning MPs
- 4 Valid inequalities on the λ variables of the MP

Branching on λ Variables

Do not branch (directly) on the λ variables of the master program!

- 1 Search tree tends to be very unbalanced
 - \rightarrow branch $\lambda_p = 1$ is typically a very strong decision (\rightarrow lower bound improves well)
 - \rightarrow branch $\lambda_p=0$ is typically a very weak decision (\rightarrow MP almost unchanged, often lower bound don't improve)
- 2 Subproblem becomes much more involved!
 - \rightarrow forbidden $p \in P$ must not be re-generated
 - \rightarrow how to enforce this?

Original formulation with **additional constraints** in the x variables:

$$z_{IP} = \min c^{\top} x$$
 $Ax = b$
 $Ex \le e \leftarrow Additional constraints!$
 $Dx = d$
 $x \ge 0$, integer

Two possibilities to integrate $Ex \le e$ in D-W reformulation:

Master Constraints:

$$Ax = b \rightarrow \text{new master}$$
 $Ax = b$
 $Ex \leq e \rightarrow Ax = b$ $Ex \leq e$
 $Dx = d$ $Dx = d$

Subproblem Constraints:

ter
$$Ax = b$$
 $Ex \le e \rightarrow \text{new subproblem}$
 $Dx = d \rightarrow Dx = d$

Integrating $Ex \le e$ in Master Constraints:

Modified master program (additional constraints):

$$\min \sum_{p \in P} (c^{\top} x_p) \lambda_p + \sum_{r \in R} (c^{\top} x_r) \lambda_r$$

$$\sum_{p \in P} (A x_p) \lambda_p + \sum_{r \in R} (A x_r) \lambda_r = b \quad [\pi]$$

$$\sum_{p \in P} (E x_p) \lambda_p + \sum_{r \in R} (E x_r) \lambda_r \leq e \quad [\alpha]$$

$$\sum_{p \in P} \lambda_p = 1 \quad [\mu]$$

$$\lambda_p \geq 0, p \in P, \quad \lambda_r \geq 0, r \in R$$

Modified subproblem (modified reduced cost):

$$\tilde{c}^*(\pi, \alpha, \mu) = -\mu + \min(c^\top - \pi^\top A - \alpha^\top E)x$$

s.t. $Dx = d$
 $x \ge \mathbf{0}$ integer

Integrating $Ex \le e$ in Subproblem Constraints:

Modified master program (modified columns):

$$\min \sum_{p \in P_{(Ex \le e)}} (c^{\top} x_p) \lambda_p + \sum_{r \in R_{(Ex \le e)}} (c^{\top} x_r) \lambda_r$$

$$\sum_{p \in P_{(Ex \le e)}} (Ax_p) \lambda_p + \sum_{r \in R_{(Ex \le e)}} (Ax_r) \lambda_r = b \qquad [\pi]$$

$$\sum_{p \in P_{(Ex \le e)}} \lambda_p = 1 \qquad [\mu]$$

$$\lambda_p \ge 0, p \in P_{(Ex \le e)}, \quad \lambda_r \ge 0, r \in R_{(Ex \le e)}$$

Modified subproblem (additional constraints):

$$\tilde{c}^*(\pi, \mu) = -\mu + \min(c^\top - \pi^\top A)x$$

s.t. $Ex \le e$
 $Dx = d$
 $x > 0$ integer

Two possibilities. But which should we chose?

- Subproblem:
 - → convexifying the constraints is potentially stronger
 - → if they go well with (or even simplify) the subproblem algorithm
- Master:
 - → if the constraints link several variable types/subproblems
 - → if subproblem algorithm is not compatible with them

Examples: (for VRPs)

Additional Master constraints

■ branching on # of vehicles $\sum_{(0,i)} x_{0j} \le k$ or

$$\sum_{(0,j)} x_{0j} \ge k + 1$$
• cut on total cost

$$\sum_{(i,j)} c_{ij} x_{ij} \ge \lfloor LB \rfloor$$

- 2-path cuts $\sum_{(i,j)\in\delta^+(S)} x_{ij} \ge 2$
- branching on flow into subset

$$\sum_{(i,j)\in\delta^{-}(S)} x_{ij} \le k \text{ or }$$

$$\sum_{(i,j)\in\delta^{-}(S)} x_{ij} \ge k+1$$

Additional Subproblem constraints

- branching on arcs
 - $x_{ij} = 0$ or $x_{ij} = 1$
- branching on time vars TW $[a_i, m]$ or TW $[m + 1, b_i]$
- branching on resource vars res in $[a_i, m]$ or res in $[m+1, b_i]$

Assumptions:

- MP has set partitioning (sub)structure with rows $i \in I$
 - \rightarrow Tasks $i \in I$ that have to be fulfilled (color vertices, pack items, visit customers,...)
 - → Aggregation has been performed on MP
- $x_i \in \{0,1\}$ indicator variable for task $i \in I$ in original model
- $x_i(p) \in \{0,1\}$ indicator if task i is covered by column $p \in P$

Property [Ryan and Foster, 1981]:

Let $\lambda = (\lambda_p)_{p \in P}$ be a fractional solution of a set partitioning model. There exist two rows i and j with

$$w_{ij}(\lambda) := \sum_{p \in P: \ x_i(p) = x_i(p) = 1} \lambda_p \in (0,1) \qquad \leftarrow \quad \mathsf{fractional}$$

Branch on $w_{ij} = 0$ (=separate-branch) and $w_{ij} = 1$ (=together-branch)!

Ryan and Foster branching for Bin Packing: Decide whether two items are packed together into one bin or packed separately into two bins.

Example: Length L = 10, m = 4 with $\ell_1 = 5$, $\ell_2 = \ell_3 = \ell_4 = 2$.

$$z(P_{BP}) = \min \mathbf{1}^{\top} x$$
s.t.
$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} x \ge \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda \ge 0$$

- P_{BP} has solution $\bar{\lambda} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})^{\top}$ with $z(P_{BP}) = \frac{4}{3} = 1.\overline{3}$
- For i=1 (weight 5) and j=2 (weight 2), the solution $\bar{\lambda}$ implies that that "in $w_{ii}=2/3$ of the cases", they are packed together
- Two branches:
 - \rightarrow together: items i = 1 and j = 2 have to be in the same bin
 - \rightarrow separate: items i = 1 and j = 2 have to be in different bins

Examples:

Bin Packing items i and j are packed in different bins/the same bin Vertex Coloring vertices i and j receive different colors/the same color VRPs customers i and j are visited by different vehicles/the same vehicle

How to handle R-F branching decisions?

- Master problem:
 - → remove incompatible columns
- Subproblem: (formally)
 - \rightarrow integrate additional $w_{ii} \in \{0, 1\}$ variables
 - \rightarrow ensure $w_{ij} = 1$ if and only if $x_i = x_j$

Depending on the type of subproblem (or the solution algorithm), the branches $w_{ij} = 0$ and $w_{ij} = 1$ may be **simple or hard** to implement:

- Binary knapsack problems (\rightarrow bin packing): hard
 - \rightarrow merge items ($w_{ij} = 1$) or add conflict ($w_{ij} = 0$)
 - ightarrow knapsack problem with (general) conflict constraints is hard
- Independent set problems (→ vertex coloring): simple
 - \rightarrow merge vertices $(w_{ij} = 1)$ or add edge $(w_{ij} = 0)$
- ESPPRCs solved by labeling (→ VRPs): hard
 - \rightarrow pairing $(w_{ij} = 1)$ or anti-pairing $(w_{ij} = 0)$ require additional resource
- Formulation directly solved with MIP solver: **simple**
 - \rightarrow set $w_{ij} = 1$ or $w_{ij} = 0$ if w variables are present
 - \rightarrow otherwise: add constraints $x_i = x_j$ or $x_i + x_j \le 1$

Master program with additional constraints in the λ variables:

$$\min \sum_{p \in P} (c^{\top} x_p) \lambda_p + \sum_{r \in R} (c^{\top} x_r) \lambda_r$$

$$\sum_{p \in P} (A x_p) \lambda_p + \sum_{r \in R} (A x_r) \lambda_r = b \quad [\pi]$$

$$\sum_{p \in P} g(x_p) \lambda_p + \sum_{r \in R} g(x_r) \lambda_r \leq g \quad [\gamma]$$

$$\sum_{p \in P} \lambda_p = 1 \quad [\mu]$$

$$\lambda_p \geq 0, p \in P, \quad \lambda_r \geq 0, r \in R$$

 $g(x_p)/g(x_r)$: are the cut coefficients of λ_p/λ_r in the master

Corresponding subproblem: (master with add. constraints in λ)

$$\tilde{c}^*(\pi, \alpha, \mu) = -\mu + \min(c^\top - \pi^\top A)x - \gamma^\top g(x)$$

s.t. $Dx = d$
 $x \ge \mathbf{0}$ integer

- $g(x_p)/g(x_r)$ are the cut coefficients of λ_p/λ_r in the master
- Subproblem needs to compute these coefficients
- g(x) is a function in x
 - ightarrow does generally not translate back to (individual) original variables x
 - > changes structure of subproblem
 - \rightarrow compare with coefficient of constraints in x variables: Ex_p/Ex_r

Example: Subset Row Inequalities (w. subsets of size 3) [Jepsen et al., 2008]

Typical situation for set partitioning:

$$\begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & 1 & 1 & 0 & \cdots \\ \cdots & 1 & 0 & 1 & \cdots \\ \cdots & 0 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \vdots \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ 1 \\ 1 \\ 1 \\ \vdots \end{pmatrix} \qquad \begin{array}{l} \leftarrow \mathsf{task/row} \ i_1 \\ \leftarrow \mathsf{task/row} \ i_2 \\ \leftarrow \mathsf{task/row} \ i_3 \\ \vdots \end{pmatrix}$$

with fractional solution $\lambda_1 = \lambda_2 = \lambda_3 = 0.5!$

This solution can be cut by inequality

$$\lambda_1 + \lambda_2 + \lambda_3 \le 1$$

General form:

$$\sum_{p \in P_c} \lambda_p \le 1$$

- S subset of tasks with |S| = 3
- \blacksquare P_S subset of columns that cover at least two tasks from S

$$\rightarrow \text{ i.e., } g(x_p) = \begin{cases} 1 & \text{if column covers two or more tasks of } S \\ 0 & \text{otherwise} \end{cases}$$

Example: Chvátal-Gomory Rank-1 Cuts

Assumptions:

- Master program is (extended) set partitioning/packing formulation
- Tasks/rows $i \in I$
- Coefficient a_{ip} of column p in row i
- Weights $u_i \in [0,1)$

Chvátal-Gomory Rank-1 Cut:

$$\sum_{p \in P} \left[\sum_{i \in I} u_i a_{ip} \right] \lambda_p \le \left[\sum_{i \in I} u_i \right]$$

Remarks:

- Coefficient $g(x_p) = \lfloor \sum_{i \in I} u_i a_{ip} \rfloor$ must be computed when solving the subproblem
- Subset row inequalities are Chvátal-Gomory rank-1 cuts

Some Takeaways

- Never ever ever ever branch directly on master variables!
 - → there might be exceptions...?!
- Put valid inequalities in the subproblem, if they go well with it
- Valid inequalities in the master:
 - \rightarrow inequalities in the original x variables (= robust cuts)
 - > many families of inequalities known in the literature
 - > often already implied by the reformulation
 - > impact on subproblem: only reduced cost change, structure does not change
 - $(\rightarrow$ there might be exceptions: linear node costs)
 - \rightarrow inequalities in the λ variables (= non-robust cuts)
 - > might be stronger
 - > impact on subproblem: structural change
 - · harder to solve/adaptation of algorithm necessary
 - · add cautiously
- Number of branch-and-bound nodes that can be explored is typically limited (compared to branch-and-cut)

- Hatem Ben Amor and José Valério de Carvalho. Cutting stock problems. In Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors, *Column Generation*, pages 131–161. Springer US, 2005.
- Mads Jepsen, Bjørn Petersen, Simon Spoorendonk, and David Pisinger. Subset-row inequalities applied to the vehicle-routing problem with time windows. *Operations Research*, 56(2):497—511, 2008.
- D. M. Ryan and B. A. Foster. An integer programming approach to scheduling. In A. Wren, editor, Computer scheduling of public transport: Urban passenger vehicle and crew scheduling, pages 269–280. Amsterdam, North-Holland, 1981.
- J. M. Valério de Carvalho. Exact solution of bin-packing problems using column generation and branch-and-bound. *Annals of Operations Research*, 86:629–659, 1999.