

## DA2I Data Description and Preparation

Leandro Nunes de Castro, Ph.D.

Idecastrosilva@fgcu.edu

# DA2I Data Description and Preparation

## Summary

- The Data Science Workflow
- Data Description
- Data Preparation

#### Data Analysis and Preparation Workflow





Made with ≽ Napkin

## The Data Analysis Workflow

#### Data Analysis Workflow Stages



## **Data Description**

## **Data**

- Data is everything that can be used, moved, processed, or translated to carry some meaning. A number, a word, an image, a text, a graph, and a sound are all examples of data. In computational terms, anything that can be stored and/or processed is a kind of data.
- Data vs Datum.

## **Data** → **Information** → **Knowledge**





## **Tabular and Mathematical Representation of Data**

**Table 1:** First four objects of the Car Evaluation Dataset available at UCI.

| Car ID | Buying | Maintenance | Doors | Persons | Lug_boot | Safety | Class |
|--------|--------|-------------|-------|---------|----------|--------|-------|
| 1      | vhigh  | vhigh       | 2     | 2       | small    | low    | unacc |
| 2      | vhigh  | vhigh       | 2     | 2       | small    | med    | unacc |
| 3      | vhigh  | vhigh       | 2     | 2       | small    | high   | unacc |
| 4      | vhigh  | vhigh       | 2     | 2       | med      | low    | unacc |



Lug\_boot



## **Data Dictionary**

**Table 2:** Example of a simple data dictionary for the Car Evaluation Dataset presented in Table 1.

| Variable name | Definition (meaning)                  | Domain                    |
|---------------|---------------------------------------|---------------------------|
| Car ID        | ID number of each car in the dataset  | Integer number            |
| Buying        | Buying price {v-high, high, med, low} |                           |
| Maintenance   | Level of maintenance required         | {v-high, high, med, low}  |
| Doors         | Number of doors {2, 3, 4, 5-more}     |                           |
| Persons       | Number of persons accommodated        | {2, 4, more}              |
| Lug-boot      | Trunk size                            | {small, med, big}         |
| Safety        | Level of safety                       | {low, med, high}          |
| Class         | Car acceptability                     | {unacc, acc, good, vgood} |



## **Mammographic Dataset**

**Table 5:** Mammographic dataset sample: first and last five objects in the dataset. Question marks, '?', indicate missing values.

| Patient | BI-RADS | Age | Shape     | Margin        | Density | Severity  |
|---------|---------|-----|-----------|---------------|---------|-----------|
| 0       | 5       | 67  | Lobular   | Spiculated    | Low     | Malignant |
| 1       | 4       | 43  | Round     | Circumscribed | ?       | Malignant |
| 2       | 5       | 58  | Irregular | Spiculated    | Low     | Malignant |
| 3       | 4       | 28  | Round     | Circumscribed | Low     | Benign    |
| 4       | 5       | 74  | Round     | Spiculated    | ?       | Malignant |
|         |         |     |           |               |         |           |
| 956     | 4       | 47  | Oval      | Circumscribed | Low     | Benign    |
| 957     | 4       | 56  | Irregular | Spiculated    | Low     | Malignant |
| 958     | 4       | 64  | Irregular | Spiculated    | Low     | Benign    |
| 959     | 5       | 66  | Irregular | Spiculated    | Low     | Malignant |
| 960     | 4       | 62  | Lobular   | Obscured      | Low     | Benign    |



## **Data Dictionary**

Table 14: Data dictionary for the Mammographic dataset.

| Variable<br>name | Definition (meaning)                                                                                                              | Variable Type: Domain                                                                       | Number of<br>Missing<br>Values |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|
| BI-RADS          | Breast Imaging-Reporting and<br>Data System. International sys-<br>tem to evaluate, interpret and<br>report breast imaging exams. | Ordinal: [1,5]                                                                              | 2                              |
| Age              | Patient age in years                                                                                                              | Integer                                                                                     | 5                              |
| Shape            | Mass shape                                                                                                                        | Nominal: {Round=1, Oval=2,<br>Lobular=3, Irregular=4}                                       | 31                             |
| Margin           | Mass margin                                                                                                                       | Nominal: {Circumscribed=1,<br>Microlobulated=2, Obscured=3,<br>Ill-defined=4, Spiculated=5} | 48                             |
| Density          | Mass density                                                                                                                      | Ordinal: {Mass density high=1,<br>Iso=2, Low=3, Fat-contain-<br>ing=4}                      | 76                             |
| Severity         | Severity level                                                                                                                    | Binary: {Benign=0, Malig-<br>nant=1}                                                        | 0                              |



## **Data Preparation**

## Introduction

- Raw data: source or primary data that has not been prepared or processed for being used; is the one originally input in a database by operators, sensors or any person or device.
- Main problems:
  - Data overload: excessive number of objects or variables.
  - Incompleteness: missing objects, values or variables.
  - Inconsistency: domain violations and discrepancies.
  - Noise: random variations or irregularities in the data that are not part of the underlying pattern or signal.



## Dealing with Data Overload: Sampling

- Random Sampling with Replacement (RSWR)
- Random Sampling without Replacement (RSWoR)
- Systematic Sampling
- Group Sampling
- Stratified Sampling



## Sampling Rate: 60%

| BI-RADS | Age                                       | Shape                                                                | Margin                                                                                                              | Density                                                                                                                                                                                                                                                    | Severity                                                                                                                                                                                                                                                        |
|---------|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5       | 67                                        | Lobular                                                              | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                        | Malignant                                                                                                                                                                                                                                                       |
| 4       | 43                                        | Round                                                                | Circumscribed                                                                                                       | ?                                                                                                                                                                                                                                                          | Malignant                                                                                                                                                                                                                                                       |
| 5       | 58                                        | Irregular                                                            | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                        | Malignant                                                                                                                                                                                                                                                       |
| 4       | 28                                        | Round                                                                | Circumscribed                                                                                                       | Low                                                                                                                                                                                                                                                        | Benign                                                                                                                                                                                                                                                          |
| 5       | 74                                        | Round                                                                | Spiculated                                                                                                          | ?                                                                                                                                                                                                                                                          | Malignant                                                                                                                                                                                                                                                       |
| 4       | 47                                        | Oval                                                                 | Circumscribed                                                                                                       | Low                                                                                                                                                                                                                                                        | Benign                                                                                                                                                                                                                                                          |
| 4       | 56                                        | Irregular                                                            | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                        | Malignant                                                                                                                                                                                                                                                       |
| 4       | 64                                        | Irregular                                                            | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                        | Benign                                                                                                                                                                                                                                                          |
| 5       | 66                                        | Irregular                                                            | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                        | Malignant                                                                                                                                                                                                                                                       |
| 4       | 62                                        | Lobular                                                              | Obscured                                                                                                            | Low                                                                                                                                                                                                                                                        | Benign                                                                                                                                                                                                                                                          |
|         | 5<br>4<br>5<br>4<br>5<br>4<br>4<br>4<br>4 | 5 67<br>4 43<br>5 58<br>4 28<br>5 74<br>4 47<br>4 56<br>4 64<br>5 66 | 5 67 Lobular 4 43 Round 5 58 Irregular 4 28 Round 5 74 Round 4 47 Oval 4 56 Irregular 4 64 Irregular 5 66 Irregular | 5 67 Lobular Spiculated 4 43 Round Circumscribed 5 58 Irregular Spiculated 4 28 Round Circumscribed 5 74 Round Spiculated 4 47 Oval Circumscribed 4 56 Irregular Spiculated 4 64 Irregular Spiculated 5 66 Irregular Spiculated 5 566 Irregular Spiculated | 5 67 Lobular Spiculated Low 4 43 Round Circumscribed ? 5 58 Irregular Spiculated Low 4 28 Round Circumscribed Low 5 74 Round Spiculated ? 4 47 Oval Circumscribed Low 4 56 Irregular Spiculated Low 4 64 Irregular Spiculated Low 5 66 Irregular Spiculated Low |

#### **Sampling with Replacement**

|    | BI-RADS | Age | Shape     | Margin     | Density | Severity  |
|----|---------|-----|-----------|------------|---------|-----------|
| 1  | 5       | 67  | Lobular   | Spiculated | Low     | Malignant |
| 1  | 5       | 67  | Lobular   | Spiculated | Low     | Malignant |
| 7  | 4       | 56  | Irregular | Spiculated | Low     | Malignant |
| 10 | 4       | 62  | Lobular   | Obscured   | Low     | Benign    |
| 7  | 4       | 56  | Irregular | Spiculated | Low     | Malignant |
| 3  | 5       | 58  | Irregular | Spiculated | Low     | Malignant |

#### **Sampling without Replacement**

|    | <b>BI-RADS</b> | Age | Shape     | Margin        | Density | Severity  |
|----|----------------|-----|-----------|---------------|---------|-----------|
| 3  | 5              | 58  | Irregular | Spiculated    | Low     | Malignant |
| 4  | 4              | 28  | Round     | Circumscribed | Low     | Benign    |
| 10 | 4              | 62  | Lobular   | Obscured      | Low     | Benign    |
| 6  | 4              | 47  | Oval      | Circumscribed | Low     | Benign    |
| 1  | 5              | 67  | Lobular   | Spiculated    | Low     | Malignant |
| 5  | 5              | 74  | Round     | Spiculated    | ?       | Malignant |



## Systematic and Group Sampling Examples

|    | BI-RADS | Age | Shape     | Margin        | Density | Severity  |
|----|---------|-----|-----------|---------------|---------|-----------|
| 1  | 5       | 67  | Lobular   | Spiculated    | Low     | Malignant |
| 2  | 4       | 43  | Round     | Circumscribed | ?       | Malignant |
| 3  | 5       | 58  | Irregular | Spiculated    | Low     | Malignant |
| 4  | 4       | 28  | Round     | Circumscribed | Low     | Benign    |
| 5  | 5       | 74  | Round     | Spiculated    | ?       | Malignant |
| 6  | 4       | 47  | Oval      | Circumscribed | Low     | Benign    |
| 7  | 4       | 56  | Irregular | Spiculated    | Low     | Malignant |
| 8  | 4       | 64  | Irregular | Spiculated    | Low     | Benign    |
| 9  | 5       | 66  | Irregular | Spiculated    | Low     | Malignant |
| 10 | 4       | 62  | Lobular   | Obscured      | Low     | Benign    |



#### **Systematic Sampling: Odd objects**

|   | BI-RADS | Age | Shape     | Margin     | Density | Severity  |
|---|---------|-----|-----------|------------|---------|-----------|
| 1 | 5       | 67  | Lobular   | Spiculated | Low     | Malignant |
| 3 | 5       | 58  | Irregular | Spiculated | Low     | Malignant |
| 5 | 5       | 74  | Round     | Spiculated | ?       | Malignant |
| 7 | 4       | 56  | Irregular | Spiculated | Low     | Malignant |
| 9 | 5       | 66  | Irregular | Spiculated | Low     | Malignant |

#### **Group Sampling: Class Severity = Benign**

| BI-RADS | Age | Shape     | Margin        | Density | Severity |
|---------|-----|-----------|---------------|---------|----------|
| 4       | 28  | Round     | Circumscribed | Low     | Benign   |
| 4       | 47  | Oval      | Circumscribed | Low     | Benign   |
| 4       | 64  | Irregular | Spiculated    | Low     | Benign   |
| 4       | 62  | Lobular   | Obscured      | Low     | Benign   |



## Stratified Sampling Example: 50% Sample

| BI-RADS | Age | Shape     | Margin        | Density | Severity  |
|---------|-----|-----------|---------------|---------|-----------|
| 5       | 67  | Lobular   | Spiculated    | Low     | Malignant |
| 4       | 43  | Round     | Circumscribed | ?       | Malignant |
| 5       | 58  | Irregular | Spiculated    | Low     | Malignant |
| 4       | 28  | Round     | Circumscribed | Low     | Benign    |
| 5       | 74  | Round     | Spiculated    | ?       | Malignant |
| 4       | 47  | Oval      | Circumscribed | Low     | Benign    |
| 4       | 56  | Irregular | Spiculated    | Low     | Malignant |
| 4       | 64  | Irregular | Spiculated    | Low     | Benign    |
| 5       | 66  | Irregular | Spiculated    | Low     | Malignant |
| 4       | 62  | Lobular   | Obscured      | Low     | Benign    |







## Dealing with Incompleteness: Missing Values

- Ignore the object
- Manually input missing values
- Global constant imputation
- Hot-deck imputation
- Central tendency measure of the variable
- Central tendency measure of the variable class



## **Missing Values**

|    | BI-RADS | Age | Shape     | Margin        | Density        | Severity  |
|----|---------|-----|-----------|---------------|----------------|-----------|
| 1  | 5       | 67  | Lobular   | Spiculated    | Low            | Malignant |
| 2  | 4       | 43  | Round     | Circumscribed | <mark>?</mark> | Malignant |
| 3  | 5       | 58  | Irregular | Spiculated    | Low            | Malignant |
| 4  | 4       | 28  | Round     | Circumscribed | Low            | Benign    |
| 5  | 5       | 74  | Round     | Spiculated    | <mark>?</mark> | Malignant |
| 6  | 4       | 47  | Oval      | Circumscribed | High           | Benign    |
| 7  | 4       | 56  | Irregular | Spiculated    | Low            | Malignant |
| 8  | 4       | 64  | Irregular | Spiculated    | High           | Benign    |
| 9  | 5       | 66  | Irregular | Spiculated    | Low            | Malignant |
| 10 | 4       | 62  | Lobular   | Obscured      | High           | Benign    |





#### **Ignore the Object**

|    | BI-RADS | Age | Shape     | Margin        | Density | Severity  |
|----|---------|-----|-----------|---------------|---------|-----------|
| 1  | 5       | 67  | Lobular   | Spiculated    | Low     | Malignant |
| 3  | 5       | 58  | Irregular | Spiculated    | Low     | Malignant |
| 4  | 4       | 28  | Round     | Circumscribed | Low     | Benign    |
| 6  | 4       | 47  | Oval      | Circumscribed | High    | Benign    |
| 7  | 4       | 56  | Irregular | Spiculated    | Low     | Malignant |
| 8  | 4       | 64  | Irregular | Spiculated    | High    | Benign    |
| 9  | 5       | 66  | Irregular | Spiculated    | Low     | Malignant |
| 10 | 4       | 62  | Lobular   | Obscured      | High    | Benign    |

#### **Manual Input**

| BI-RADS | Age | Shape     | Margin        | Density           | Severity  |
|---------|-----|-----------|---------------|-------------------|-----------|
| 5       | 67  | Lobular   | Spiculated    | Low               | Malignant |
| 4       | 43  | Round     | Circumscribed | <mark>Low</mark>  | Malignant |
| 5       | 58  | Irregular | Spiculated    | Low               | Malignant |
| 4       | 28  | Round     | Circumscribed | Low               | Benign    |
| 5       | 74  | Round     | Spiculated    | <mark>High</mark> | Malignant |
| 4       | 47  | Oval      | Circumscribed | High              | Benign    |
| 4       | 56  | Irregular | Spiculated    | Low               | Malignant |
| 4       | 64  | Irregular | Spiculated    | High              | Benign    |
| 5       | 66  | Irregular | Spiculated    | Low               | Malignant |
| 4       | 62  | Lobular   | Obscured      | High              | Benign    |

#### **Global Constant**

| BI-RADS | Age | Shape     | Margin        | Density           | Severity  |  |
|---------|-----|-----------|---------------|-------------------|-----------|--|
| 5       | 67  | Lobular   | Spiculated    | Low               | Malignant |  |
| 4       | 43  | Round     | Circumscribed | <mark>High</mark> | Malignant |  |
| 5       | 58  | Irregular | Spiculated    | Low               | Malignant |  |
| 4       | 28  | Round     | Circumscribed | Low               | Benign    |  |
| 5       | 74  | Round     | Spiculated    | <mark>High</mark> | Malignant |  |
| 4       | 47  | Oval      | Circumscribed | High              | Benign    |  |
| 4       | 56  | Irregular | Spiculated    | Low               | Malignant |  |
| 4       | 64  | Irregular | Spiculated    | High              | Benign    |  |
| 5       | 66  | Irregular | Spiculated    | Low               | Malignant |  |
| 4       | 62  | Lobular   | Obscured      | High              | Benign    |  |
|         |     |           |               |                   |           |  |

## **Missing Values**

| BI-RADS | Age                                       | Shape                                                                | Margin                                                                                                              | Density                                                                                                                                                                                                                                                     | Severity                                                                                                                                                                                                                                                          |
|---------|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5       | 67                                        | Lobular                                                              | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                         | Malignant                                                                                                                                                                                                                                                         |
| 4       | 43                                        | Round                                                                | Circumscribed                                                                                                       | <mark>?</mark>                                                                                                                                                                                                                                              | Malignant                                                                                                                                                                                                                                                         |
| 5       | 58                                        | Irregular                                                            | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                         | Malignant                                                                                                                                                                                                                                                         |
| 4       | 28                                        | Round                                                                | Circumscribed                                                                                                       | Low                                                                                                                                                                                                                                                         | Benign                                                                                                                                                                                                                                                            |
| 5       | 74                                        | Round                                                                | Spiculated                                                                                                          | <mark>?</mark>                                                                                                                                                                                                                                              | Malignant                                                                                                                                                                                                                                                         |
| 4       | 47                                        | Oval                                                                 | Circumscribed                                                                                                       | High                                                                                                                                                                                                                                                        | Benign                                                                                                                                                                                                                                                            |
| 4       | 56                                        | Irregular                                                            | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                         | Malignant                                                                                                                                                                                                                                                         |
| 4       | 64                                        | Irregular                                                            | Spiculated                                                                                                          | High                                                                                                                                                                                                                                                        | Benign                                                                                                                                                                                                                                                            |
| 5       | 66                                        | Irregular                                                            | Spiculated                                                                                                          | Low                                                                                                                                                                                                                                                         | Malignant                                                                                                                                                                                                                                                         |
| 4       | 62                                        | Lobular                                                              | Obscured                                                                                                            | High                                                                                                                                                                                                                                                        | Benign                                                                                                                                                                                                                                                            |
|         | 5<br>4<br>5<br>4<br>5<br>4<br>4<br>4<br>4 | 5 67<br>4 43<br>5 58<br>4 28<br>5 74<br>4 47<br>4 56<br>4 64<br>5 66 | 5 67 Lobular 4 43 Round 5 58 Irregular 4 28 Round 5 74 Round 4 47 Oval 4 56 Irregular 4 64 Irregular 5 66 Irregular | 5 67 Lobular Spiculated 4 43 Round Circumscribed 5 58 Irregular Spiculated 4 28 Round Circumscribed 5 74 Round Spiculated 4 47 Oval Circumscribed 4 56 Irregular Spiculated 4 64 Irregular Spiculated 5 66 Irregular Spiculated 5 5 66 Irregular Spiculated | 5 67 Lobular Spiculated Low 4 43 Round Circumscribed ? 5 58 Irregular Spiculated Low 4 28 Round Circumscribed Low 5 74 Round Spiculated ? 4 47 Oval Circumscribed High 4 56 Irregular Spiculated Low 4 64 Irregular Spiculated High 5 66 Irregular Spiculated Low |







#### **Hot Deck**

| BI-RADS | Age | Shape     | Margin        | Density          | Severity  |
|---------|-----|-----------|---------------|------------------|-----------|
| 5       | 67  | Lobular   | Spiculated    | Low              | Malignant |
| 4       | 43  | Round     | Circumscribed | <mark>Low</mark> | Malignant |
| 5       | 58  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 28  | Round     | Circumscribed | Low              | Benign    |
| 5       | 74  | Round     | Spiculated    | <mark>Low</mark> | Malignant |
| 4       | 47  | Oval      | Circumscribed | High             | Benign    |
| 4       | 56  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 64  | Irregular | Spiculated    | High             | Benign    |
| 5       | 66  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 62  | Lobular   | Obscured      | High             | Benign    |

#### **Central Tendency of the Variable**

| BI-RADS | Age | Shape     | Margin        | Density          | Severity  |
|---------|-----|-----------|---------------|------------------|-----------|
| 5       | 67  | Lobular   | Spiculated    | Low              | Malignant |
| 4       | 43  | Round     | Circumscribed | <mark>Low</mark> | Malignant |
| 5       | 58  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 28  | Round     | Circumscribed | Low              | Benign    |
| 5       | 74  | Round     | Spiculated    | <mark>Low</mark> | Malignant |
| 4       | 47  | Oval      | Circumscribed | High             | Benign    |
| 4       | 56  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 64  | Irregular | Spiculated    | High             | Benign    |
| 5       | 66  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 62  | Lobular   | Obscured      | High             | Benign    |

#### **Central Tendency of the Class**

| BI-RADS | Age | Shape     | Margin        | Density          | Severity  |
|---------|-----|-----------|---------------|------------------|-----------|
| 5       | 67  | Lobular   | Spiculated    | Low              | Malignant |
| 4       | 43  | Round     | Circumscribed | <mark>Low</mark> | Malignant |
| 5       | 58  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 28  | Round     | Circumscribed | Low              | Benign    |
| 5       | 74  | Round     | Spiculated    | <mark>Low</mark> | Malignant |
| 4       | 47  | Oval      | Circumscribed | High             | Benign    |
| 4       | 56  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 64  | Irregular | Spiculated    | High             | Benign    |
| 5       | 66  | Irregular | Spiculated    | Low              | Malignant |
| 4       | 62  | Lobular   | Obscured      | High             | Benign    |

## Normalization (Feature Scaling)

#### Min-Max

$$x_i' = \frac{x_i - min}{max - min}(nmax - nmin) + nmin$$

#### z-score

$$x_i' = \frac{x_i - mean}{\sigma}$$

where  $x_i$  is the *i*-th value of variable x, and  $x'_i$  is its value after normalization.



## Normalization Example: Iris dataset

#### **Dataset Sample**

| Object | Sepal length | Sepal width | Petal length | Petal width | Class          |
|--------|--------------|-------------|--------------|-------------|----------------|
| 0      | 5.1          | 3.5         | 1.4          | 0.2         | Iris-setosa    |
| 1      | 4.9          | 3.0         | 1.4          | 0.2         | Iris-setosa    |
| 2      | 4.7          | 3.2         | 1.3          | 0.2         | Iris-setosa    |
| 3      | 4.6          | 3.1         | 1.5          | 0.2         | Iris-setosa    |
| 4      | 5.0          | 3.6         | 1.4          | 0.2         | Iris-setosa    |
|        |              | ***         |              | •••         |                |
| 145    | 6.7          | 3.0         | 5.2          | 2.3         | Iris-virginica |
| 146    | 6.3          | 2.5         | 5.0          | 1.9         | Iris-virginica |
| 147    | 6.5          | 3.0         | 5.2          | 2.0         | Iris-virginica |
| 148    | 6.2          | 3.4         | 5.4          | 2.3         | Iris-virginica |
| 149    | 5.9          | 3.0         | 5.1          | 1.8         | Iris-virginica |

#### **Dataset Statistics**

|      | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) |
|------|-------------------|------------------|-------------------|------------------|
| mean | 5.84              | 3.06             | 3.76              | 1.20             |
| std  | 0.83              | 0.44             | 1.77              | 0.76             |
| min  | 4.30              | 2.00             | 1.00              | 0.10             |
| 25%  | 5.10              | 2.80             | 1.60              | 0.30             |
| 50%  | 5.80              | 3.00             | 4.35              | 1.30             |
| 75%  | 6.40              | 3.30             | 5.10              | 1.80             |
| max  | 7.90              | 4.40             | 6.90              | 2.50             |



|            | Original | Min-Max    | Z-Score    |  |
|------------|----------|------------|------------|--|
|            |          | Normalized | Normalized |  |
| 0          | 5.1      | 0.22       | -0.90      |  |
| 1          | 4.9      | 0.17       | -1.14      |  |
| 2          | 4.7      | 0.11       | -1.39      |  |
| 3          | 4.6      | 0.08       | -1.51      |  |
| <b>4 5</b> | 5.0      | 0.19       | -1.02      |  |
| 5          | 5.4      | 0.31       | -0.54      |  |
| 6          | 4.6      | 0.08       | -1.51      |  |
| 7          | 5.0      | 0.19       | -1.02      |  |
| 8          | 4.4      | 0.03       | -1.75      |  |
| 9          | 4.9      | 0.17       | -1.14      |  |
| 10         | 5.4      | 0.31       | -0.54      |  |
| 50         | 7.0      | 0.75       | 1.40       |  |
| 51         | 6.4      | 0.58       | 0.67       |  |
| 52         | 6.9      | 0.72       | 1.28       |  |
| 53         | 5.5      | 0.33       | -0.42      |  |
| 54         | 6.5      | 0.61       | 0.80       |  |
| 55         | 5.7      | 0.39       | -0.17      |  |
| 56         | 6.3      | 0.56       | 0.55       |  |
| 57         | 4.9      | 0.17       | -1.14      |  |
| 58         | 6.6      | 0.64       | 0.92       |  |
| 59         | 5.2      | 0.25       | -0.78      |  |
| 60         | 5.0      | 0.19       | -1.02      |  |
| 100        | 6.3      | 0.56       | 0.55       |  |
| 101        | 5.8      | 0.42       | -0.05      |  |
| 102        | 7.1      | 0.78       | 1.52       |  |
| 103        | 6.3      | 0.56       | 0.55       |  |
| 104        | 6.5      | 0.61       | 0.80       |  |
| 105        | 7.6      | 0.92       | 2.13       |  |
| 106        | 4.9      | 0.17       | -1.14      |  |
| 107        | 7.3      | 0.83       | 1.77       |  |
| 108        | 6.7      | 0.67       | 1.04       |  |
| 109        | 7.2      | 0.81       | 1.64       |  |
| 110        | 6.5      | 0.61       | 0.80       |  |

## Al-Enhanced Data Preparation

## Sampling with Al

For the mammographic dataset, prompt:

"Using a stratified sampling approach, sample 20% of the dataset. Assume variable 'severity' as the target variable."

"Using a stratified sampling approach, sample 20% of the dataset. Assume variable 'shape' as the target variable."

Analyze the results.

## Finding and Replacing Missing Values with Al

- Open the mammographic\_masses\_nominal dataset using Excel.
- Observe the missing values represented with '?'.
- Apply filters in all variables to observe the missing values.
- Prompt the tools to find missing values:
- "Find the missing values of the mammographic data (they are represented by the question mark)"
- Prompt the tools to replace missing:
- "Replace these missing values by a central tendency measure of the variable and save the dataset with the name mammographic\_data\_wo\_missing\_values."

## **Data Normalization with Al**

• For the Iris dataset of Fisher, prompt the tools to:

"Normalize the iris dataset attached using a min-max method and the z-score"

Analyze the results.

## Leandro Nunes de Castro

Idecastrosilva@fgcu.edu

https://www.linkedin.com/in/Indecastro/





## DA2I Descriptive Data Analysis

Leandro Nunes de Castro, Ph.D.

Idecastrosilva@fgcu.edu

## DA2I <a href="Descriptive Analysis">Descriptive Analysis</a>

## Summary

- What is Descriptive Data Analysis
- Distributions
- Summary Measures
  - Central Tendency
  - Variability
  - Relative Position
  - Measures of Shape
- The Normal Distribution
- Association Measures
- Linear Regression

## What is Descriptive Data Analysis (DDA)?

- DDA involves a range of methods and techniques capable of summarizing, organizing, characterizing, and describing data in numerical terms.
- DDA differs from *data analytics* in the sense that it does not involve generalizing beyond the data available.
- <u>Generalization</u> is the capability of responding appropriately to unknown data, what usually requires building a model or a solution that is capable of extrapolating what it learnt from a given set of data to these new, unknown data samples.



## Some questions to be answered:

- 1. How are the variables distributed?
- 2. What are the typical values of each variable?
- 3. What is the dispersion (variability) of each variable?
- 4. What is the shape of the variable's distribution?
- 5. What is the type and level of association among variables?







## **Forest Fires Dataset**

**Table 6:** Forest Fires dataset sample: first and last five objects in the dataset.

| Obj | X | Y | month | day | FFMC | DMC   | DC    | ISI  | temp | RH | wind | rain | area  |              |
|-----|---|---|-------|-----|------|-------|-------|------|------|----|------|------|-------|--------------|
| 0   | 7 | 5 | mar   | fri | 86.2 | 26.2  | 94.3  | 5.1  | 8.2  | 51 | 6.7  | 0.0  | 0.00  | 517 objects  |
| 1   | 7 | 4 | oct   | tue | 90.6 | 35.4  | 669.1 | 6.7  | 18.0 | 33 | 0.9  | 0.0  | 0.00  | 13 variables |
| 2   | 7 | 4 | oct   | sat | 90.6 | 43.7  | 686.9 | 6.7  | 14.6 | 33 | 1.3  | 0.0  | 0.00  |              |
| 3   | 8 | 6 | mar   | fri | 91.7 | 33.3  | 77.5  | 9.0  | 8.3  | 97 | 4.0  | 0.2  | 0.00  |              |
| 4   | 8 | 6 | mar   | sun | 89.3 | 51.3  | 102.2 | 9.6  | 11.4 | 99 | 1.8  | 0.0  | 0.00  |              |
|     |   |   |       |     |      |       |       |      |      |    |      |      |       |              |
| 512 | 4 | 3 | aug   | sun | 81.6 | 56.7  | 665.6 | 1.9  | 27.8 | 32 | 2.7  | 0.0  | 6.44  |              |
| 513 | 2 | 4 | aug   | sun | 81.6 | 56.7  | 665.6 | 1.9  | 21.9 | 71 | 5.8  | 0.0  | 54.29 |              |
| 514 | 7 | 4 | aug   | sun | 81.6 | 56.7  | 665.6 | 1.9  | 21.2 | 70 | 6.7  | 0.0  | 11.16 |              |
| 515 | 1 | 4 | aug   | sat | 94.4 | 146.0 | 614.7 | 11.3 | 25.6 | 42 | 4.0  | 0.0  | 0.00  |              |
| 516 | 6 | 3 | nov   | tue | 79.5 | 3.0   | 106.7 | 1.1  | 11.8 | 31 | 4.5  | 0.0  | 0.00  |              |

FFMC: Fine Fuel Moisture Code, which is a numeric rating of the moisture content of litter and other cured fine fuels. DMC: Duff Moisture Code, which is a numeric rating of the average moisture content of loosely compacted organic layers. DC: Drought Code, which is a numeric rating of the drying potential of deep organic layers.



## **Distributions**

## **Frequency Distributions**

**Table 13:** Frequency table and pie chart of variable 'Shape' in the mammographic dataset.

| Shape     | Absolute<br>Frequency | Relative<br>Frequency (%) | Cumulative<br>Frequency (%) |
|-----------|-----------------------|---------------------------|-----------------------------|
| Irregular | 400                   | 41.62                     | 41.62                       |
| Round     | 224                   | 23.31                     | 64.93                       |
| Ova1      | 211                   | 21.96                     | 86.89                       |
| Lobular   | 95                    | 9.89                      | 96.77                       |
| ?         | 31                    | 3.23                      | 100.00                      |





### Frequency Table and Pie Chart with Al

• For the normalized or unnormalized mammographic dataset, prompt:

"Print the frequency table with the absolute, relative, and cumulative frequency, then plot the pie chart of variable 'Shape' in the mammographic dataset"

Analyze the results.

### **Frequency Table and Histogram**

Table 13: Frequency table for variable 'temp' of the Forest Fires dataset.

| Bins           | Absolute  | Relative  | Cumulative |
|----------------|-----------|-----------|------------|
| DIII2          | Frequency | Frequency | Frequency  |
| (0.0, 3.33]    | 1         | 0.19      | 0.19       |
| (3.33, 6.66]   | 20        | 3.87      | 4.06       |
| (6.66, 9.99]   | 15        | 2.90      | 6.96       |
| (9.99, 13.32]  | 47        | 9.09      | 16.05      |
| (13.32, 16.65] | 75        | 14.51     | 55.32      |
| (16.65, 19.98] | 128       | 24.76     | 40.81      |
| (19.98, 23.31] | 119       | 23.02     | 78.34      |
| (23.31, 26.64] | 69        | 13.35     | 91.68      |
| (26.64, 29.97] | 30        | 5.80      | 97.49      |
| (29.97, 33.3]  | 13        | 2.51      | 100.00     |





Figure 10: Histogram for the variable 'temp' of the Forest Fires dataset.

# **Distributions and Histograms**







# Forest Fires Dataset: Frequency Distributions



Multimodal Right-skewed (positive skew)



Multimodal Almost uniform



# Forest Fires Dataset: Frequency Distributions



Unimodal Left-skewed (negative skew)



Bimodal Right-skewed (positive skew)

# Forest Fires Dataset: Frequency Distributions



### **Contingency Tables**

**Table 16:** Contingency table for the pair 'Shape' x 'Severity' of the mammographic dataset

|               | Severity              |               |       |  |  |  |
|---------------|-----------------------|---------------|-------|--|--|--|
| Shape         | $\mathbf{Benign} = 0$ | Malignant = 1 | Total |  |  |  |
| Round = 1     | 158                   | 32            | 190   |  |  |  |
| Oval = 2      | 149                   | 31            | 180   |  |  |  |
| Lobular = 3   | 39                    | 42            | 81    |  |  |  |
| Irregular = 4 | 81                    | 298           | 379   |  |  |  |
| Total         | 427                   | 403           | 830   |  |  |  |

• There are 158 women with the mass shape 'Round' that present a 'Benign' diagnosis, and 32 women with the mass shape 'Round' that present a 'Malignant' diagnosis...



### **Contingency Table and Frequency Distribution with Al**

"Draw the contingency table for variables 'Shape' vs 'Severity' of the mammographic dataset"

For the forestfires dataset, prompt:

"Plot the frequency distribution for all variables of the attached forestfires dataset"

In **Claude.ai** you may try: "I want you to show the visuals. You can create an interactive artifact to show them."

# **Summary Measures**

## **Central Tendency Measures**

• Mean: 
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Median: central value.
- Mode: most frequent value.
- Midpoint: (max + min)/2

- Trimmed mean:  $\bar{x} = \frac{1}{n_t} \sum_{i=1}^{n_t} x_i$
- Mean of a frequency distribution:

$$\bar{x} = \frac{\sum_{i=1}^{n} (f_i \cdot x_i)}{\sum_{i=1}^{n} f_i}$$

• Weighted average:  $\bar{x} = \frac{\sum_{i=1}^{n} (w_i \cdot x_i)}{\sum_{i=1}^{n} w_i}$ 



# **Central Tendency Measures**

Table 17: Comparison of the different central tendency measures.

| Measure          | Sensitivity<br>to Outliers | Computation       | Existence                 | When to Use                                                                      |  |  |
|------------------|----------------------------|-------------------|---------------------------|----------------------------------------------------------------------------------|--|--|
| Mean             | High                       | All values        | Always                    | Normal distributions; variation measures are needed; there are no extreme values |  |  |
| Median           | No                         | All values        | Always                    | Skewed distributions; there are extreme values                                   |  |  |
| Mode             | No                         | Some values       | Not always<br>or Multiple | Categorical data; when need to find the<br>most frequent value                   |  |  |
| Midpoint         | High                       | Extreme<br>values | Always                    | Middle point is desired                                                          |  |  |
| Weighted<br>Mean | High                       | All values        | Always                    | Different values have different<br>importance in the average                     |  |  |
| Trimmed<br>Mean  | No                         | Some values       | Always                    | There are extreme values; skewed distributions                                   |  |  |



# **Central Tendency Measures**





### **Central Tendency Measures: Interpretation**



**FFMC** 

Mean: 90.64

Median: 91.60

Midpoint: 57.45

Weighted Mean: 91.74

Trimmed Mean: 91.45

#### Interpretation:

The mean and median are very close, indicating a symmetric distribution. However, the midpoint is significantly lower than the other measures, suggesting that there might be a left skew and some outliers in the dataset. The trimmed mean is close to the mean and median, indicating that after removing some extreme values the distribution becomes more symmetric and with shorter tails.

### **Central Tendency Measures: Interpretation**



temp

Mean: 18.89

Median: 19.30

Midpoint: 17.75

Weighted Mean: 21.70

Trimmed Mean: 19.09

#### Interpretation:

The mean, median and midpoint are close, indicating a symmetric distribution. The midpoint slightly smaller than the mean indicate a small left skew. The trimmed mean is close to the mean and median, indicating that after removing some extreme values the distribution becomes more symmetric and with shorter tails.

### **Variability Measures**

- Variability measures, also called dispersion measures, provide numeric indices about the spread of the data, that is, the extent to which the values are spread out from the average.
- The most common variability measures are the range, interquartile range, semi-interquartile range, variance, standard deviation, and the variation coefficient.



### **Variability Measures**

- Range:  $R = x^L x^l$ .
- Interquartile range:  $IQR = Q_3 Q_1$ .
- Semi-interquartile range:  $sIQR = (Q_3 Q_1)/2$ .
- Variance:  $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$
- Standard deviation:  $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2}$
- Coefficient of variation:  $CV = \frac{s}{\overline{x}}.100\%$



## **Variability Measures**

Table 17: Comparison of the different variability measures.

| Measure                     | Sensitivity to<br>Outliers | Computation        | Comments                                                                         |  |  |
|-----------------------------|----------------------------|--------------------|----------------------------------------------------------------------------------|--|--|
| Range                       | Yes                        | Extreme values     | Sensitive to extreme values and does not take into account the data distribution |  |  |
| IQR                         | No                         | Half of the values | Not sensitive to extreme values and is suita-<br>ble for skewed data             |  |  |
| sIOR                        | No                         | Half of the values | Not sensitive to extreme values and is suita-<br>ble for skewed data             |  |  |
| Variance                    | Yes                        | All values         | Sensitive to extreme values and with unit measured as the square of the x unit   |  |  |
| Standard De-<br>viation     | Yes                        | All values         | Sensitive to extreme values and measured in the same unit as x                   |  |  |
| Coefficient<br>of Variation | Yes                        | All values         | Sensitive to extreme values and suitable for data with a mean close to zero      |  |  |



### Variability Measures: Forest Fires Data

```
*Variability Measures*
Range of variable FFMC: 77.50

IQR of variable FFMC: 2.70

sIQR of variable FFMC: 1.35

Variance of variable FFMC: 30.41

Standard deviation of variable FFMC: 5.51

Variation coefficient of variable FFMC: 6.08
```

- The difference between the highest and lowest 'FFMC' values is 77.50, which is its range.
- IQR = 2.70 means that 50% of the objects are within a 2.70 range of values.
- The sIQR represents the spread of the middle 50% of the 'FFMC' values around the median, and is equal to 1.35, which is half of the IQR value found.
- By knowing that 'FFMC'  $\in$  [18.7, 96.20], a variance of 30.41 indicates that the 'FFMC' values are spread out over a wide range.
- A coefficient of variation (CV) equals to 6.08 is a relatively high value. A CV greater than 1 usually indicates high variability in the data.



#### **Relative Position Measures**

- There are situations in which you may want to know how a given value, e.g., a score, compares with others.
- For example, if you scored 6.3 in an exam, but the average score was 8.2, then you performed relatively poorly in relation to the group that took the exam.
- Measures that can be used to compare the relative performance of a value, that is, how it compares in relation to others, are called relative position measures.



### **Relative Position Measures**

• **z-score** 
$$z = \frac{x - \overline{x}}{s}$$

- Quantiles and Quartiles
  - First quartile (Q1): divides the 25% lowest ordered values from the remaining 75%.
  - Second quartile (Q2): divides the 50% lowest ordered values from the remaining 50%, that is, it is the same as the median.
  - Third quartile (Q3): divides the 75% lowest ordered values from the remaining 25%.



### **Relative Position Measures: Interpretation**



Z-score for temp value 5: -2.39

Z-score for temp value 10: -1.53

Z-score for temp value 15: -0.67

Z-score for temp value 20: 0.19

Z-score for temp value 25: 1.05

Z-score for temp value 30: 1.91





### **Measures of Shape**

• The **shape** of a distribution brings important information about the underlying data, such as where the data are accumulated, the presence or absence of outliers, and if the distribution is more or less **skewed**, and more or less **spread**.



### Measures of Shape: Skewness

- **Skewness** is a measure of the asymmetry (lack of symmetry) of a distribution, allowing us to quantify the shape, in terms of direction and length, of its tail.
- A positively skewed, or right-skewed, distribution has a long tail to its right, whilst a negatively skewed, or left-skewed, distribution has a long tail to its left.
- Therefore, in positively skewed distributions the mean is usually greater than the median, which is greater than the mode.
- By contrast, in negatively skewed distributions, the mean is usually smaller than the median, which is smaller than the mode.

### Measures of Shape: Skewness

• Fischer-Pearson Skewness Coefficient  $\gamma = \frac{m_3}{m_2^{3/2}}$ ,  $m_i = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^i (x_i - \bar{x})^i$ 





**Right-skewed distribution**: Mean, median and midpoint: 0.17 0.13 0.40 Skewness (Fischer-Pearson Coefficient): 1.06



**Left-skewed distribution**: Mean, median and midpoint: 0.83 0.86 0.57 Skewness (Fischer-Pearson Coefficient): -1.14

### Measures of Shape: Kurtosis

- Kurtosis is a measure of the taildness of the distribution, and is useful to analyze the peak, the tails of the curve, and the presence of outliers.
- The distribution can have a steeper or flatter peak, and a longer or shorter tail.



### Measures of Shape: Kurtosis

• Excess Kurtosis 
$$\beta = \frac{m_4}{(s^2)^2} - 3 = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^4}{(s^2)^2} - 3$$

Platykurtic distribution: negative kurtosis (usually has a flatter peak and shorter tail, meaning that it produces less extreme values than normal distributions).

**Leptokurtic distribution**: *positive kurtosis* (usually has a longer tail and steeper peak, producing more outliers than a normal distribution).

**Mesokurtic distribution**: close to zero or zero kurtosis, like the normal distribution.



### Measures of Shape: Kurtosis



### Measures of Shape: Forest Fires Data

```
FFMC Skewness: -6.58
                                       temp Skewness: -0.33
                                       temp Kurtosis: 0.14 (Leptokurtic)
FFMC Kurtosis: 67.07 (Leptokurtic)
                                      RH Skewness: 0.86
DMC Skewness: 0.55
DMC Kurtosis: 0.20 (Leptokurtic)**
                                      RH Kurtosis: 0.44 (Leptokurtic)
                                      wind Skewness: 0.57
DC Skewness: -1.10
DC Kurtosis: -0.25 (Platykurtic)
                                      wind Kurtosis: 0.05 (Leptokurtic) ***
                                      rain Skewness: 19.82
ISI Skewness: 2.54
                                      rain Kurtosis: 421.30 (Leptokurtic)
ISI Kurtosis: 21.46 (Leptokurtic)
```



# Measures of Shape: Interpretation



FFMC Skewness: -6.58 (left skew) FFMC Kurtosis: 67.07 (Leptokurtic)



wind Skewness: 0.57 (right skew) wind Kurtosis: 0.05 (Mesokurtic)



ISI Skewness: 2.54 (right skew)
ISI Kurtosis: 21.46 (Leptokurtic)

### **The Normal Distribution**



The *empirical rule* 68-95-99.7 is known, as follows:

- Approximately 68% of all values are within one standard deviation from the mean;
- Approximately 95% of all values are within two standard deviations from the mean;
- Approximately 99.7% of all values are within three standard deviations from the mean.



### **Measures of Association**

- Covariance:  $cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$
- Covariance matrix:  $\Sigma_{ij} = cov(x_i, x_j), \forall i, j$

|      | X      | Y      | FFMC   | DMC      | DC       | ISI    | temp   | RH      | wind   | rain |
|------|--------|--------|--------|----------|----------|--------|--------|---------|--------|------|
| X    | 5.35   | 1.54   | -0.27  | -7.17    | -49.31   | 0.07   | -0.69  | 3.22    | 0.08   | 0.04 |
| Y    | 1.54   | 1.51   | -0.31  | 0.61     | -30.87   | -0.14  | -0.17  | 1.25    | -0.04  | 0.01 |
| FFMC | -0.27  | -0.31  | 30.47  | 135.27   | 452.59   | 13.38  | 13.83  | -27.11  | -0.28  | 0.09 |
| DMC  | -7.17  | 0.61   | 135.27 | 4101.95  | 10838.50 | 89.10  | 174.64 | 77.12   | -12.09 | 1.42 |
| DC   | -49.31 | -30.87 | 452.59 | 10838.50 | 61536.84 | 259.19 | 714.75 | -158.64 | -90.43 | 2.63 |
| ISI  | 0.07   | -0.14  | 13.38  | 89.10    | 259.19   | 20.79  | 10.44  | -9.86   | 0.87   | 0.09 |
| temp | -0.69  | -0.17  | 13.83  | 174.64   | 714.75   | 10.44  | 33.72  | -49.97  | -2.36  | 0.12 |
| RH   | 3.22   | 1.25   | -27.11 | 77.12    | -158.64  | -9.86  | -49.97 | 266.26  | 2.03   | 0.48 |
| wind | 0.08   | -0.04  | -0.28  | -12.09   | -90.43   | 0.87   | -2.36  | 2.03    | 3.21   | 0.03 |
| rain | 0.04   | 0.01   | 0.09   | 1.42     | 2.63     | 0.09   | 0.12   | 0.48    | 0.03   | 0.09 |

### **Measures of Association**

- It is now time to measure the association between two variables and there are different measures of association (MAs) to calculate the strength and direction of the relationship between two variables.
- Most MAs are within the [-1, 1] range, where -1 indicates a perfect negative correlation, 0 indicates no correlation, and +1 indicates a perfect positive correlation.
- Two variables are negatively correlated when one variable increases and the other decreases, and vice-versa; they are positively correlated if they either increase or decrease simultaneously; and when there is no correlation it means that the change of one variable does not exert any influence in the change of the other.



### **Measures of Association**

• Correlation: 
$$\rho(x,y) = \frac{cov(x,y)}{\sigma(x).\sigma(y)}$$
  $r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{j=1}^{n} (x_j - \bar{x})^2}.\sqrt{\sum_{j=1}^{n} (y_j - \bar{y})^2}}$ 

```
**Forest Fires Dataset: PCC
Pearson Correlation Coefficient (PCC)
                            DC ISI temp RH wind rain area
                      DMC
  1.00 0.54 -0.02 -0.05 -0.09 0.01 -0.05 0.09
                                                0.02
                                                     0.07
                                                           0.06
Y
     0.54 1.00 -0.05 0.01 -0.10 -0.02 -0.02 0.06 -0.02 0.03 0.04
FFMC -0.02 -0.05 1.00 0.38 0.33 0.53 0.43 -0.30 -0.03 0.06 0.04
DMC -0.05 0.01 0.38 1.00 0.68 0.31 0.47 0.07 -0.11 0.07 0.07
DC -0.09 -0.10 0.33 0.68 1.00
                               0.23 0.50 -0.04 -0.20 0.04 0.05
ISI 0.01 -0.02 0.53 0.31
                           0.23 1.00 0.39 -0.13 0.11 0.07 0.01
temp -0.05 -0.02 0.43 0.47 0.50 0.39 1.00 -0.53 -0.23 0.07 0.10
     0.09 0.06 -0.30 0.07 -0.04 -0.13 -0.53 1.00
                                               0.07 0.10 -0.08
RH
wind 0.02 -0.02 -0.03 -0.11 -0.20 0.11 -0.23 0.07 1.00 0.06 0.01
rain 0.07 0.03 0.06 0.07 0.04 0.07 0.07 0.10 0.06 1.00 -0.01
area 0.06 0.04 0.04 0.07 0.05 0.01 0.10 -0.08 0.01 -0.01 1.00
```



# **Linear Regression + Correlation**



# **Linear Regression + Correlation**





Linear regression: y = a + b.x



### **Descriptive Analysis with Al**

Prompt:

"For the forestfires dataset, do:

- 1) Create a table with the central tendency, variability measures, and the measures of shape of the variables in the forest fires dataset.
- 2) Plot the correlation matrix of all numeric variables.
- 3) Plot the dispersion graphs of some pairs of numeric variables involving 'temp' and 'ffmc' with the best linear regressors showing their correlation trend."

### Leandro Nunes de Castro

Idecastrosilva@fgcu.edu

