Duong Minh Duc, Real Analysis

NGUYEN QUAN BA HONG*

Students at Faculty of Math and Computer Science, Ho Chi Minh University of Science, Vietnam

email. nguyenquanbahong@gmail.com ${\tt blog.} \quad {\tt www.nguyenquanbahong.com} \ ^{\dagger}$

April 13, 2017

Abstract

I retype and correct some errors in [1].

^{*}Typer

[†]Copyright © 2016-2017 by Nguyen Quan Ba Hong, Student at Ho Chi Minh University of Science, Vietnam. This document may be copied freely for the purposes of education and non-commercial research. Visit my site www.nguyenquanbahong.com to get more.

Contents

1	L^p Spaces	3
2	Convolution Product	15
3	Fourier Transform	20

1 L^p Spaces

Definition 1.1. Let X be a nonempty set. Let \mathfrak{M} be a nonempty family of subsets in X satisfying the following properties.

$$\Omega \in \mathfrak{M} \tag{1.1}$$

$$\Omega \backslash A \in \mathfrak{M}, \ \forall A \in \mathfrak{M} \tag{1.2}$$

$$\bigcup_{n=1}^{\infty} A_n \in \mathfrak{M}, \ \forall \{A_n\}_{n=1}^{\infty} \subset \mathfrak{M}$$
 (1.3)

then we call \mathfrak{M} a σ -algebra in X.

Definition 1.2. Let $\mu: \mathfrak{M} \to [0, \infty]$ be a mapping satisfying the following properties

1. Countably Additive. If $\{A_n\}_{n=1}^{\infty}$ is a sequence of disjoint sets in \mathfrak{M} then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(A_n\right) \tag{1.4}$$

2. There exists B in \mathfrak{M} such that $\mu(B) < \infty$.

Then we call μ a positive measure in X.

Proposition 1.3. There exists a σ -algebra and a positive measure μ in space \mathbb{R}^n satisfying the following properties

- 1. All open sets and closed sets in \mathbb{R}^n belong to \mathfrak{M} .
- 2. For every cell $[a_1, b_1] \times \cdots \times [a_n, b_n]$,

$$\mu([a_1, b_1] \times \dots \times [a_n, b_n]) = \prod_{i=1}^n (b_i - a_i)$$
 (1.5)

$$\mu((a_1, b_1) \times \dots \times (a_n, b_n)) = \prod_{i=1}^n (b_i - a_i)$$
 (1.6)

3. μ is preserved through a translation transformation

$$\mu(E+a) = \mu(E), \quad \forall E \in \mathfrak{M}, a \in \mathbb{R}^n$$
 (1.7)

4. Through a homothetic transformation,

$$\mu\left(cE\right) = \left|c\right|^{n} \mu\left(E\right), \ \forall E \in \mathfrak{M}, c \in \mathbb{R}^{n} \setminus \{0\}$$

$$\tag{1.8}$$

Definition 1.4. We call \mathfrak{M} and μ Lebesgue σ -algebra and Lebesgue measure in \mathbb{R}^n , respectively.

From now on, we use \mathfrak{M} and μ to denote Lebesgue σ -algebra and Lebesgue measure in \mathbb{R}^n , respectively.

Theorem 1.5. Let E be a measurable set in \mathbb{R}^n for which $\mu(E) < \infty$, and ε be a positive real number. Then there exist a compact set K and an open set V such that

$$K \subset E \subset V \tag{1.9}$$

$$\mu\left(V\backslash K\right) < \varepsilon \tag{1.10}$$

Theorem 1.6. Let K be a compact set and an open set V in \mathbb{R}^n such that $K \subset V$. Then there exists a continuous function $\varphi : \mathbb{R}^n \to [0,1]$ such that

$$\varphi(x) = \begin{cases} 1, & \forall x \in K \\ 0, & \forall x \in \mathbb{R}^n \backslash V \end{cases}$$
 (1.11)

Problem 1.7. Let E be a measurable set in \mathbb{R}^n for which $\mu(E) < \infty$, and ε be a positive real number. Then there exists a continuous function $\varphi : \mathbb{R}^n \to [0,1]$ such that

$$\mu\left(\left\{x \in R^{n} : \chi_{E}\left(x\right) \neq \varphi\left(x\right)\right\}\right) < \varepsilon \tag{1.12}$$

HINT. Use Theorem 1.5 and Theorem 1.6.

Definition 1.8. Let Ω be a measurable set in \mathbb{R}^n , c_1, \ldots, c_m be m real numbers, and A_1, \ldots, A_m be m measurable sets contained in Ω . Define

$$s(x) = \sum_{i=1}^{m} c_i \chi_{A_i}(x), \quad \forall x \in \Omega$$
 (1.13)

Then we call f a simple function in Ω .

Definition 1.9. Let Ω be a measurable set in \mathbb{R}^n . Let f be a mapping from Ω into $[-\infty,\infty]$. We call f a measurable mapping in Ω if $f^{-1}((a,\infty]) \in \mathfrak{M}$ for all real number a.

Theorem 1.10. Let f be a measurable function in a measurable set Ω . Then there exists a sequence of simple function $\{t_n\}_{n=1}^{\infty}$ in Ω such that

$$0 \le s_1(x) \le s_2(x) \le \dots \le s_n(x) \le f(x), \quad \forall x \in \Omega, \forall n \in \mathbb{Z}_+$$
 (1.14)

and

$$\lim_{n \to \infty} s_n(x) = f(x), \ \forall x \in \Omega$$
 (1.15)

Definition 1.11. Let $E \in \mathfrak{M}$. Define

$$\int_{E} s d\mu = \sum_{k=1}^{m} c_k \mu \left(A_k \cap E \right) \tag{1.16}$$

and call $\int_E sd\mu$ the integral of s in E. This integral can be ∞ .

Definition 1.22. Let Ω be a measurable set in \mathbb{R}^n , let $E \in \mathfrak{M}$, and f be

a measurable function from Ω into $[0,\infty]$. Define $\mathfrak{F}(f)$ be the family of all simple functions s in Ω such that $0 \le s \le f$, and define

$$\int_{E} f d\mu = \sup_{s \in \mathfrak{F}(f)} \int_{E} s d\mu \tag{1.17}$$

We call $\int_E f d\mu$ Lebesgue integral of f in E with respect to measure μ . This integral of f can be ∞ .

Problem 1.23. Let Ω be a measurable set in \mathbb{R}^n , $E \in \Omega$, and f be a measurable function from Ω into $[0,\infty]$. Suppose that $\mu(E) = 0$. Prove that

$$\int_{E} f d\mu = 0 \tag{1.18}$$

HINT. Consider that f is a simple function.

Problem 1.24. Let Ω be a measurable set in \mathbb{R}^n and f be a measurable function from Ω into $[0,\infty]$. Suppose

$$\int_{\Omega} f d\mu < \infty \tag{1.19}$$

Prove that

$$\mu\left(\left\{x\in\Omega:f\left(x\right)=\infty\right\}\right)=0\tag{1.20}$$

HINT. Let $\alpha \in (0, \infty)$. Define

$$B = \{x \in \Omega : f(x) \ge \alpha\} \tag{1.21}$$

Prove

$$\int_{\Omega} f d\mu \ge \int_{B} f d\mu \tag{1.22}$$

$$\geq \int_{B} \alpha \chi_{B} d\mu \tag{1.23}$$

$$=\alpha\mu\left(B\right) \tag{1.24}$$

Try it.
$$\Box$$

Definition 1.25. Let Ω be a measurable set in \mathbb{R}^n , $E \in \mathfrak{M}$, and f be a real measurable function in Ω . Then |f| is a function from Ω into $[0, \infty)$. Suppose

$$\int_{\Omega} |f| \, d\mu < \infty \tag{1.25}$$

Define

$$f^{+}(x) = \max\{f(x), 0\}$$
 (1.26)

$$f^{-}(x) = \max\{-f(x), 0\}$$
 (1.27)

and

$$\int_{\mathcal{F}} f d\mu = \int_{\mathcal{F}} f^+ d\mu - \int_{\mathcal{F}} f^- d\mu \tag{1.28}$$

We call $\int_E f d\mu$ the *Lebesgue integral* of f in E with respect to μ . This integral of f is a real number.

Theorem 1.26 (Monotone Convergence Theorem). Let Ω be a measurable set in \mathbb{R}^n and $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable mappings from Ω into $[0,\infty]$, and f be a mapping from X into $[0,\infty]$. Suppose that

$$f_1(x) \le f_2(x) \le \dots \le f_n(x) \le \dots, \ \forall x \in \Omega$$
 (1.29)

and

$$f(x) = \lim_{n \to \infty} f_n(x), \quad \forall x \in \Omega$$
 (1.30)

Then

$$\int_{X} f d\mu = \int_{X} \lim_{n \to \infty} f_n(x) d\mu = \lim_{n \to \infty} \int_{X} f_n d\mu$$
 (1.31)

Lemma 1.27 (Fatou's Lemma). Let Ω be a measurable set in \mathbb{R}^n , $E \in \mathfrak{M}$, and $\{g_n\}_{n=1}^{\infty}$ be a sequence of measurable mappings from Ω into $[0,\infty]$. Then the following inequality holds

$$\int_{E} \liminf_{n \to \infty} g_n d\mu \le \liminf_{n \to \infty} \int_{E} g_n d\mu \tag{1.32}$$

Theorem 1.28 (Lebesgue Dominated Convergence Theorem). Let Ω be a measurable set in \mathbb{R}^n and $\{f_n\}_{n=1}^{\infty}$ be a sequence of Lebesgue integrable functions in Ω , and f be a function in X. Suppose that there exists a Lebesgue integrable function g in Ω such that

$$|f_n(x)| \le g(x), \quad \forall x \in \Omega, \forall n \in Z_+$$
 (1.33)

$$f(x) = \lim_{n \to \infty} f_n(x), \ \forall x \in \Omega$$
 (1.34)

Then f in Lebesgue integrable in Ω and

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu \tag{1.35}$$

$$\lim_{n \to \infty} \int_{\Omega} |f_n - f| \, d\mu = 0 \tag{1.36}$$

Problem 1.29. Let Ω be a measurable set in \mathbb{R}^n , f, g be two Lebesgue integrable functions in Ω . Define

$$B = \{x \in \Omega : f(x) \neq g(x)\} \tag{1.37}$$

Suppose $\mu(B) = 0$. Let E be a measurable set contained in Ω . Prove that

$$\int_{E} f d\mu = \int_{E} g d\mu \tag{1.38}$$

HINT. Prove

$$\int_{E} f d\mu = \int_{E \cap B} f d\mu + \int_{E \setminus B} f d\mu \tag{1.39}$$

Try it. \Box

Problem 1.30. Let Ω be a measurable set in \mathbb{R}^n , and f, g be two Lebesgue integrable functions in Ω . Define

$$B = \{x \in \Omega : f(x) \neq g(x)\}$$

$$\tag{1.40}$$

Suppose that for all measurable set E contained in Ω

$$\int_{E} f d\mu = \int_{E} g d\mu \tag{1.41}$$

Prove that $\mu(B) = 0$.

HINT. Define

$$C_n = \left\{ x \in \Omega : f(x) - g(x) > \frac{1}{n} \right\}$$

$$(1.42)$$

$$D_{n} = \left\{ x \in \Omega : g\left(x\right) - f\left(x\right) > \frac{1}{n} \right\} \tag{1.43}$$

for all positive integers n. Notice that

$$B = \left(\bigcup_{n=1}^{\infty} C_n\right) \cup \left(\bigcup_{n=1}^{\infty} D_n\right)$$
 (1.44)

and

$$\int_{C_n} (f - g) \, d\mu \ge \int_{C_n} \frac{1}{n} d\mu \tag{1.45}$$

$$=\frac{1}{n}\mu\left(C_{n}\right)\tag{1.46}$$

Try it.
$$\Box$$

Definition 1.31. Define $M(\Omega)$ be the set of all real measurable functions in Ω . Let f, g in $M(\Omega)$, we denote $f \sim g$ if

$$\mu(\{x \in \Omega : g(x) - f(x) \neq 0\}) = 0 \tag{1.47}$$

Problem 1.32. Prove the relation \sim is a equivalent relation in $M(\Omega)$.

HINT. Let f, g, h in $M(\Omega)$, prove that

$$f \sim f \tag{1.48}$$

$$f \sim g \Rightarrow g \sim f$$
 (1.49)

$$(f \sim g) \land (g \sim h) \Rightarrow f \sim h \tag{1.50}$$

Definition 1.33. Suppose that for all $x \in \Omega$, there exists a property P(x). We say that P holds almost everywhere (abbr. a.e.) in Ω if

$$\mu(\{x \in \Omega : P(x) \text{ fails}\}) = 0$$
 (1.51)

Definition 1.34. Let $f \in M(\Omega)$. Define

$$\widetilde{f} = \{ g \in M(\Omega) : g \sim f \} \tag{1.52}$$

$$N\left(\Omega\right) = \left\{\widetilde{h} : h \in M\left(\Omega\right)\right\} \tag{1.53}$$

Definition 1.35. Let α be a real number, and $f,g \in M(\Omega)$. Put h = f + gand $k = \alpha f$ and

$$\widetilde{f} + \widetilde{g} = \widetilde{h} \tag{1.54}$$

$$\alpha \widetilde{f} = \widetilde{k} \tag{1.55}$$

Problem 1.36. Prove that $N(\Omega)$ is a vector space with defined addition and multiplication operators defined by (1.54) and (1.55).

HINT. Prove that the addition and multiplication operators defined by (1.54)and (1.55) are well-defined as follows. Let $f_1, g_1 \in M(\Omega)$. Put $h_1 = f_1 + g_1$, $k_1 = \alpha f_1$. Check that $h \sim h_1, k \sim k_1$. Then check that the defined $+, \cdot$ operators satisfy all laws of a vector space.

Problem 1.37. Let $f, g \in M(\Omega)$ for which

$$f(x) \le g(x)$$
 a.e. on Ω (1.56)

Define

$$A = \{x \in \Omega : f(x) > g(x)\}$$
 (1.57)

and

$$u(x) = \begin{cases} f(x), & \forall x \in \Omega \backslash A \\ 0, & \forall x \in A \end{cases}$$

$$v(x) = \begin{cases} g(x), & \forall x \in \Omega \backslash A \\ 0, & \forall x \in A \end{cases}$$

$$(1.58)$$

$$v\left(x\right) = \begin{cases} g\left(x\right), & \forall x \in \Omega \backslash A \\ 0, & \forall x \in A \end{cases}$$
 (1.59)

Prove that

$$u(x) = f(x)$$
 a.e. on Ω (1.60)

$$v(x) = g(x)$$
 a.e. on Ω (1.61)

$$v(x) \le u(x), \ \forall x \in \Omega$$
 (1.62)

Definition 1.38. Given $u, v \in N(\Omega)$, $f \in u$ and $g \in v$. We denote $u \leq v$ if

$$\mu(\{x \in \Omega : f(x) > g(x)\}) = 0 \tag{1.63}$$

Problem 1.39. Prove that $u \leq v$ is well-defined.

HINT. Given $h \in u$ and $k \in v$. Prove that

$$\mu\left(\left\{x\in\Omega:h\left(x\right)>k\left(x\right)\right\}\right)=0\tag{1.64}$$

Definition 1.40. Let $\{u_n\}_{n=1}^{\infty}$ be a sequence in $N(\Omega)$ and $u \in N(\Omega)$. We say that $\{u_n\}_{n=1}^{\infty}$ converges to u in Ω if there exists $f \in u$ and $f_n \in u_n$ such that $\{f_n\}_{n=1}^{\infty}$ converges to f a.e. on Ω .

Problem 1.41. Let $\{u_n\}_{n=1}^{\infty}$ be a sequence in $N(\Omega)$ converging to u in $N(\Omega)$. Let $g \in u$ and $g_n \in u_n$. Prove that $\{g_n\}_{n=1}^{\infty}$ converges to g a.e. on Ω .

HINT. Define

$$B = \Omega \setminus \left\{ x \in \Omega : \lim_{n \to \infty} f_n(x) = f(x) \right\}$$
 (1.65)

$$A_n = \{x \in \Omega : f_n(x) \neq g_n(x)\}$$

$$\tag{1.66}$$

$$A = \{x \in \Omega : f(x) \neq g(x)\}$$

$$(1.67)$$

$$D = A \cup B \cup \left(\bigcup_{n=1}^{\infty} A_n\right) \tag{1.68}$$

Prove $\mu(D) = 0$ and $\{g_n\}_{n=0}^{\infty}$ converges to g in $\Omega \backslash D$.

Definition 1.42. Let $p \in [1, \infty)$, $\widetilde{f} \in L^p(\Omega)$ and $g \in \widetilde{f}$. Define

$$\int_{\Omega} \widetilde{f} dx = \int_{\Omega} g dx \tag{1.69}$$

We call $\int_{\Omega} \widetilde{f} dx$ the *integral* of \widetilde{f} .

Problem 1.43. Prove that $\int_{\Omega} \widetilde{f} dx$ is well-defined.

Problem 1.44. Suppose $\int_{\Omega} |\widetilde{f}| dx = 0$ and $\mu(\Omega) > 0$. Prove that $\widetilde{f} = \widetilde{0}$.

HINT. Given $h \in \tilde{f}$, prove that $h \sim 0$.

Problem 1.45. Let $\{u_n\}_{n=0}^{\infty}$ be a sequence in $N\left(\Omega\right)$ and u in $N\left(\Omega\right)$. Suppose

- 1. $\{u_n\}_{n=0}^{\infty}$ converges to u in Ω .
- 2. $0 \le u_1 \le u_2 \le \cdots \le u_n \le \cdots$ in Ω .

Prove that

$$\lim_{n \to \infty} \int_{\Omega} u_n dx = \int_{\Omega} u dx \tag{1.70}$$

HINT. Let $f_n \in u_n$. Define

$$B_n = \{x \in \Omega : f_n(x) > f_{n+1}(x)\}$$
(1.71)

and

$$B = \bigcup_{n=1}^{\infty} B_n \tag{1.72}$$

Prove that $\mu(B) = 0$, then apply previous problems.

Definition 1.46. Let $\{u_n\}_{n=0}^{\infty}$ be a sequence in $N(\Omega)$ and $f_n \in u_n$. Define

- 1. $\liminf_{n\to\infty} u_n$ is the equivalent class of $\liminf_{n\to\infty} f_n$.
- 2. $\limsup_{n\to\infty} u_n$ is the equivalent class of $\limsup_{n\to\infty} f_n$.

Problem 1.47. Let $\{u_n\}_{n=0}^{\infty}$ be a sequence in $N(\Omega)$. Suppose $u_n \geq 0$ in Ω for all positive integers n. Prove that

$$\int_{\Omega} \liminf_{n \to \infty} u_n dx \le \liminf_{n \to \infty} \int_{\Omega} u_n dx \tag{1.73}$$

HINT. Proceed as Problem 1.45.

Problem 1.48. Let $\{u_n\}_{n=0}^{\infty}$ be a sequence in $N(\Omega)$ and u in $N(\Omega)$. Suppose that there exists a v in $N(\Omega)$ such that

- 1. $\{u_n\}_{n=0}^{\infty}$ converges to u in Ω .
- 2. $|u_n| \le v \text{ in } \Omega, \ \forall n \in \mathbb{Z}_+.$
- 3. $\int_{\Omega} v dx < \infty$.

Prove that

$$\lim_{n \to \infty} \int_{\Omega} u_n dx = \int_{\Omega} u dx \tag{1.74}$$

and

$$\lim_{n \to \infty} \int_{\Omega} |u_n - u| \, dx = 0 \tag{1.75}$$

HINT. Proceed as Problem 1.45.

Definition 1.49. Given $p \in [1, \infty)$. We denote by $L^p(\Omega)$ the set of all class of function u in $N(\Omega)$ for which

$$\int_{\Omega} |u|^p dx < \infty \tag{1.76}$$

We define

$$||u||_{p} = \left(\int_{\Omega} |u|^{p} dx\right)^{\frac{1}{p}}, \quad \forall u \in L^{p}\left(\Omega\right)$$

$$(1.77)$$

Definition 1.50. We denote by $L^{\infty}(\Omega)$ the set of all class of functions u in $N(\Omega)$ such that there exist a f in u and a real number M such that

$$\mu(\{u: |f(x)| > M\}) = 0 \tag{1.78}$$

We define

$$\|u\|_{\infty} = \inf\{M \ge 0 : \mu(\{x \in \Omega : |f(x)| > M\}) = 0\}$$
 (1.79)

for all $u \in L^{\infty}(\Omega)$ and $f \in u$.

Problem 1.51. Let $p \in [1, \infty]$, $u \in L^p(\Omega)$ and $f \in u$. Prove that

$$\mu\left(\left\{x\in\Omega:f\left(x\right)=\infty\right\}\right)=0\tag{1.80}$$

Problem 1.52. Prove that $\|\cdot\|_{\infty}$ is a norm in $L^{\infty}(\Omega)$.

Theorem 1.53 (Hölder). Let $p, q \in (1, \infty)$ such that

$$\frac{1}{p} + \frac{1}{q} = 1 \tag{1.81}$$

and $f \in L^p(\Omega)$ and $g \in L^q(\Omega)$. Then the following inequality holds

$$\left| \int_{\Omega} f g dx \right| \le \|f\|_{L^{p}(\Omega)} \|g\|_{L^{q}(\Omega)} \tag{1.82}$$

Theorem 1.54 (Minkowski). Let $p \in [1, \infty)$, $f, g \in L^p(E)$. Then

$$||f + g||_{L^{p}(\Omega)} \le ||f||_{L^{p}(\Omega)} + ||g||_{L^{p}(\Omega)}$$
(1.83)

Problem 1.55. Given $p \in [1, \infty)$. Prove that $\left(L^{p}(\Omega), \|\cdot\|_{p}\right)$ is a normed space.

Problem 1.56. Given $p \in [1, \infty)$ and $\{u_n\}_{n=1}^{\infty}$ in $L^p(\Omega)$, suppose that $\sum_{n=1}^{\infty} u_n$ converges to u in $L^p(\Omega)$. Prove that

$$||u||_{L^p(\Omega)} \le \sum_{n=1}^{\infty} ||u_n||_{L^p(\Omega)}$$
 (1.84)

HINT. Prove

$$\left\| \sum_{n=1}^{m} u_n \right\|_{L^{p}(\Omega)} \le \sum_{n=1}^{m} \|u_n\|_{L^{p}(\Omega)} \tag{1.85}$$

for all positive integers m.

Problem 1.57. Let $p \in [1, \infty)$ and $\{v_n\}_{n=1}^{\infty}$ be a sequence in $L^p(\Omega)$ and $v \in L^p(\Omega)$. Suppose that there exist $g \in L^p(\Omega)$, $f \in u$ and $f_n \in u_n$ for all positive integers n, such that

$$\lim_{n \to \infty} f_n(x) = f(x), \ \forall x \in \Omega$$
 (1.86)

$$|f_n(x)| \le g(x) \tag{1.87}$$

Prove that

$$\lim_{n \to \infty} \int_{\Omega} |u_n - u|^p dx = 0 \tag{1.88}$$

HINT. Use Lebesgue dominated convergence theorem to prove

$$\lim_{n \to \infty} \int_{\Omega} |f_n - f|^p dx = 0 \tag{1.89}$$

Try it. \Box

Problem 1.58. Let $p \in [1, \infty)$ and $\{u_n\}_{n=1}^{\infty}$ be a sequence in $L^p(\Omega)$. Suppose that

$$\sum_{n=1}^{\infty} \|u_n\|_{L^p(\Omega)} \le 1 \tag{1.90}$$

Let $f_n \in u_n$ for all positive integers n. Prove that $\sum_{n=1}^{\infty} f_n(x)$ converges a.e. in Ω , and there exists a $v \in L^p(\Omega)$ such that

$$\left| \sum_{n=1}^{m} u_n(x) \right| \le v, \quad \forall m \in \mathbb{Z}_+ \tag{1.91}$$

HINT. Define

$$g_m(x) = \sum_{n=1}^{m} |f_n(x)|$$
 (1.92)

$$g(x) = \sum_{n=1}^{\infty} |f_n(x)| \tag{1.93}$$

for all $x \in \Omega$.

Use Minkowski theorem to prove $||g_m||_{L^p(\Omega)} \leq 1$. Notice that

$$g = \liminf_{m \to \infty} g_m \tag{1.94}$$

$$g = \liminf_{m \to \infty} g_m$$

$$g^p = \liminf_{m \to \infty} g_m^p$$
(1.94)

Apply Fatou's lemma to prove $||g||_{L^p(\Omega)} < \infty$.

Prove that g(x) is a real number a.e. on Ω .

Problem 1.59. Let $p \in [1, \infty)$ and $\{v_n\}_{n=1}^{\infty}$ be a sequence converging to v in $L^p(\Omega)$. Given $w_n \in v_n$ and $w \in v$. Prove that there exists subsequence $\{w_n\}_{k=1}^{\infty}$ of the sequence $\{w_n\}_{n=1}^{\infty}$ and h such that

$$w_{n_k} \to w \text{ as } k \to \infty \text{ a.e. in } \Omega$$
 (1.96)

$$\int_{\Omega} h^p dx < \infty \tag{1.97}$$

$$|w_{n_k}(x)| \le h(x) \text{ a.e. in } \Omega \tag{1.98}$$

HINT. Choose a subsequence $\{w_{n_k}\}_{k=1}^{\infty}$ of the sequence $\{w_n\}_{n=1}^{\infty}$ such that

$$\|w_{n_{k+1}} - w_{n_k}\|_{L^p(\Omega)} \le \frac{1}{2^k}, \ \forall k \in \mathbb{Z}_+$$
 (1.99)

Apply Problem 1.57 for

$$u_k = v_{n_{k+1}} - v_{n_k} (1.100)$$

$$f_k = w_{n_{k+1}} - w_{n_k} (1.101)$$

Define $h = g + |w_{n_1}|$. Notice that

$$w_{n_{k+1}} = w_{n_1} + \sum_{j=1}^{k} f_j \tag{1.102}$$

converges a.e. to w in Ω . Use Problem 1.57, prove

$$\lim_{k \to \infty} \|w_{n_k} - w\|_{L^p(\Omega)} = 0 \tag{1.103}$$

to deduce $||w - z||_{L^p(\Omega)} = 0$.

Problem 1.60. Given $p \in [1, \infty)$. Prove that $L^{p}(\Omega)$ is a Banach space.

HINT. Let $\{v_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $L^p(\Omega)$. Choose a subsequence $\{v_{n_k}\}_{k=1}^{\infty}$ such that

$$\|v_{n_{k+1}} - v_{n_k}\|_{L^p(\Omega)} \le \frac{1}{2^k}, \forall k \in \mathbb{Z}_+$$
 (1.104)

HINT. Proceed as Problem 1.59.

Problem 1.61. Prove that $L^{\infty}(\Omega)$ is a Banach space.

Problem 1.62. Prove that $L^{2}\left(\Omega\right)$ is a Hilbert space with the following scalar product

$$\langle u, v \rangle = \int_{\Omega} uv dx, \ \forall u, v \in L^2(\Omega)$$
 (1.105)

Problem 1.63. Given $p \in [1, \infty)$. Define

$$S = \{ u \in L^p(\Omega) : \text{ there exists a simple functions } \in u \}$$
 (1.106)

Prove that S is dense in $L^{p}(\Omega)$.

HINT. Given $v \in L^p(\Omega)$, prove that there exists a sequence $\{s_n\}_{n=1}^{\infty}$ in S converging to v in $L^p(\Omega)$. Consider the case $v \geq 0$. Use Theorem 1.10 and Problem 1.57.

Problem 1.64. Given $p \in [1, \infty)$. Define

$$C = \{u \in L^p(\Omega) : \text{ there exists a continuous function } f \in u\}$$
 (1.107)

Prove that C is dense in $L^{p}(\Omega)$.

HINT. Given $v \in S$. Use Problem 1.7 to prove that there exists a sequence $\{f_n\}_{n=1}^{\infty}$ in C which converges to v in $L^p(\Omega)$.

Definition 1.65. Denote by $C_c(\mathbb{R}^n)$ the set of all real continuous function f in \mathbb{R}^n such that there exists a compact set K_f containing the set

$$\{x \in \mathbb{R}^n : f(x) \neq 0\} \tag{1.108}$$

Problem 1.66. Given $p \in [1, \infty)$. Define

$$C_c = C \cap C_c\left(\mathbb{R}^n\right) \tag{1.109}$$

Prove that C_c is dense in $L^p(\Omega)$.

HINT. Use Problem 1.7 to prove there exists a real continuous function g_m from \mathbb{R}^n into [0,1] such that

$$g_m(x) = \begin{cases} 1, & \text{if } ||x|| \le m \\ 0, & \text{if } ||x|| > m+1 \end{cases}$$
 (1.110)

Given $f \in C$. Define

$$f_m = g_m f (1.111)$$

Apply Problem 1.57.

Theorem 1.67. Let $p \in [1, \infty)$, $q \in (1, \infty]$ such that

$$\frac{1}{p} + \frac{1}{q} = 1\tag{1.112}$$

and T be a continuous linear mapping from $L^p(\Omega)$ into \mathbb{R} . Then there exists a unique $u \in L^q(\Omega)$ for which

$$T(v) = \int_{\Omega} uv dx, \ \forall v \in L^{p}(\Omega)$$
 (1.113)

$$||T|| = ||u||_q \tag{1.114}$$

Theorem 1.68. Let $p \in (1, \infty)$, $q \in (1, \infty)$ such that

$$\frac{1}{p} + \frac{1}{q} = 1\tag{1.115}$$

and $\{u_n\}_{n=1}^{\infty}$ be a bounded sequence in $L^p(\Omega)$. Then there exist a $u \in L^p(\Omega)$ and a subsequence $\{u_{n_k}\}_{k=1}^{\infty}$ of $\{u_n\}_{n=1}^{\infty}$ such that

$$\lim_{k \to \infty} \int_{\Omega} u_{n_k} v dx = \int_{\Omega} u v dx, \quad \forall v \in L^q(\Omega)$$
 (1.116)

Problem 1.69. Let $u \in L^1(\mathbb{R}^n)$ and α be a nonzero real number. Given $f \in u$, define $g(x) = f(\alpha x)$ for all $x \in \mathbb{R}^n$. Prove that g is Lebesgue integrable and

$$\int_{\mathbb{R}^n} g d\mu = \frac{1}{|\alpha|^n} \int_{\mathbb{R}^n} f d\mu \tag{1.117}$$

HINT. Let E be a measurable set in \mathbb{R}^n such that $\mu(E) < \infty$. Consider the case that f is the characteristic function of E. Prove that g is the characteristic function of $\frac{1}{\alpha}E$.

Problem 1.70. Let $u \in L^1(\mathbb{R}^n)$ and a be a vector in \mathbb{R}^n . Given $f \in u$, define g(y) = f(a - y) for all $y \in \mathbb{R}^n$. Prove that g is Lebesgue integrable and

$$\int_{\mathbb{D}^n} g d\mu = \int_{\mathbb{D}^n} f d\mu \tag{1.118}$$

HINT. Let E be a measurable set in \mathbb{R}^n such that $\mu(E) < \infty$. Consider the case that f is the characteristic function of E. Prove that g is the characteristic function of (a - E).

Problem 1.71. Let $u \in L^1(\mathbb{R}^n)$ and ε be a positive real number. Prove that there exists a positive real number δ such that for all measurable set E satisfying $\mu(E) < \delta$, the following inequality holds

$$\int_{E} |u| \, d\mu < \varepsilon \tag{1.119}$$

HINT. Consider the following cases: f is the characteristic function of E, f is a simple function, f is a nonnegative function.

Problem 1.72. Let E be a measurable set in \mathbb{R}^n satisfying $\mu(E) < \infty$, and $r, s \in [1, \infty)$ such that r < s. Prove that $L^{s}(E) < L^{r}(E)$.

HINT. Define

$$p = \frac{s}{r} \tag{1.120}$$

$$p = \frac{s}{r}$$
 (1.120)
$$q = \frac{1}{1 - \frac{r}{s}}$$
 (1.121)

Let $u \in L^{s}(E)$, $f \in u$ and g is the characteristic function of E. Applying Hölder inequality for $|f|^r$ and g.

Problem 1.73. Let E be a measurable set in \mathbb{R}^n , $p \in [1, \infty)$, $u \in L^p(E)$ and $f \in u$. Suppose

$$\int_{E} fg d\mu = 0, \quad \forall g \in C_{c}(\mathbb{R}^{n})$$
(1.122)

Prove that f = 0 a.e. in E.

HINT. Use Problem 1.66 and Hölder inequality, prove (1.122) holds when gis the characteristic function of a measurable set f satisfying $\mu(F) < \infty$

Problem 1.74. Let E be a measurable set in \mathbb{R}^n , $p \in [1, \infty]$, $u \in L^p(E)$ and $f \in u$. Define

$$g(x) = \begin{cases} f(x), & \text{if } x \in E \\ 0, & \text{if } x \in \mathbb{R}^n \backslash E \end{cases}$$
 (1.123)

Prove that $|g|^p$ is Lebesgue integrable.

$\mathbf{2}$ Convolution Product

We will identify \mathbb{R}^{m+n} with $\mathbb{R}^m \times \mathbb{R}^n$. Let A be a subset in \mathbb{R}^{m+n} and f be a real function in A. For each $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, we define

$$A_x = \{ y : (x, y) \in A \} \tag{2.1}$$

$$A^{y} = \{x : (x, y) \in A\} \tag{2.2}$$

$$f_x(y) = f(x, y), \text{ if } y \in A_x$$
 (2.3)

$$f^{y}(x) = f(x, y), \text{ if } x \in A^{y}$$
 (2.4)

Theorem 2.1. Let f be a Lebesgue measurable real function in \mathbb{R}^{m+n} . Then there exists measurable sets A and B, which have zero measure in \mathbb{R}^m and \mathbb{R}^n , such that

- 1. f_x is a measurable function in \mathbb{R}^n for all $x \in \mathbb{R}^m \backslash A$.
- 2. f^y is a measurable function in \mathbb{R}^m for all $y \in \mathbb{R}^n \backslash B$.

Theorem 2.2 (Fubini). Let f be a nonnegative measurable function in \mathbb{R}^{m+n} .

$$\int_{\mathbb{R}^{m+n}} f d\mu_{m+n} = \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} f_x d\mu_n \right) d\mu_m \tag{2.5}$$

$$= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^m} f^y d\mu_m \right) d\mu_n \tag{2.6}$$

Theorem 2.3 (Tonelli). Let g be a measurable real function in \mathbb{R}^{m+n} such that

$$\int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} |g|_x d\mu_n \right) d\mu_m < \infty \tag{2.7}$$

Then g is Lebesgue integrable in \mathbb{R}^{m+n} .

The converse of Theorem 2.3 is only holds as follows.

Theorem 2.4 (Fubini). Let g be a Lebesgue integrable function in \mathbb{R}^{m+n} .

- 1. g_x is Lebesgue integrable in \mathbb{R}^n for almost $x \in \mathbb{R}^n$.
- 2. g_y is Lebesgue integrable in \mathbb{R}^m for almost $y \in \mathbb{R}^n$.
- 3. The following equality holds

$$\int_{\mathbb{R}^{m+n}} g d\mu_{m+n} = \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} g_x d\mu_n \right) d\mu_m = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^m} g^y d\mu_m \right) d\mu_n \quad (2.8)$$

Problem 2.5. Let h be a measurable function in \mathbb{R}^n . Define k(x,y) = h(y) for all $(x,y) \in \mathbb{R}^{n+n}$. Prove that k is measurable in \mathbb{R}^{n+n} .

Problem 2.6. Let h be a measurable function in \mathbb{R}^n . Define k(x,y) = h(x-y) for all $(x,y) \in \mathbb{R}^{n+n}$. Prove that k is measurable in \mathbb{R}^{n+n} .

HINT. Consider the case that h is a continuous function. Then, use Problem 1.7.

Problem 2.7. Let f, g be two Lebesgue integrable functions in \mathbb{R}^n . Define k(x,y) = f(y) g(x-y) for all $(x,y) \in \mathbb{R}^{n+n}$. Prove that k is Lebesgue integrable in \mathbb{R}^{n+n} .

HINT. Prove that k is measurable in \mathbb{R}^{n+n} . Use Fubini theorem to prove

$$\int_{\mathbb{R}^{n+n}} |k(z)| dz = \int_{\mathbb{R}^n} |f(y)| \left(\int_{\mathbb{R}^n} |g(x-y)| dx \right) dy$$
 (2.9)

$$= \left(\int_{\mathbb{R}^n} |g(t)| dt \right) \left(\int_{\mathbb{R}^n} |f(y)| dy \right) \tag{2.10}$$

Problem 2.8. Let f, g be two Lebesgue integrable functions in \mathbb{R}^n . Prove that there exists a set A such that $\mu(A) = 0$ and the following integral is defined for all $x \in \mathbb{R}^n \setminus A$.

$$\int_{\mathbb{R}^n} f(y) g(x-y) dy, \quad \forall x \in \mathbb{R}^n$$
 (2.11)

HINT. Use Problem 1.24 and Fubini theorem.

Definition 2.9. Let f, g be two Lebesgue integrable functions in \mathbb{R}^n . The convolution product of f and g is a function defined by

$$f \star g(x) = \int_{\mathbb{R}^n} f(y) g(x - y) dy, \quad \forall x \in \mathbb{R}^n$$
 (2.12)

Then $f \star g$ is Lebesgue integrable and

$$||f \star g||_{L^{1}(\mathbb{R}^{n})} \le ||f||_{L^{1}(\mathbb{R}^{n})} ||g||_{L^{1}(\mathbb{R}^{n})}$$
(2.13)

Definition 2.10. Let $u, v \in L^1(\mathbb{R}^n)$. Given $f \in u$ and $g \in v$. We call the equivalent class of $f \star g$ the convolution product of u and v, which is denoted by $u \star v$. Then

$$||u \star v||_{L^{1}(\mathbb{R}^{n})} \le ||u||_{L^{1}(\mathbb{R}^{n})} ||v||_{L^{1}(\mathbb{R}^{n})} \tag{2.14}$$

Problem 2.11. Given $u, v \in L^1(\mathbb{R}^n)$. Prove that

$$u \star v = v \star u \tag{2.15}$$

HINT. Use Problem 1.70.

Problem 2.12. Let $p \in (1, \infty)$, $u \in L^1(\mathbb{R}^n)$, and $v \in L^p(\mathbb{R}^n)$. Given $f \in u, g \in v$. Prove that $f \star g$ is defined a.e. and $|f \star g|^p$ is Lebesgue integrable in \mathbb{R}^n .

HINT. Consider $|f| \star |g|^p$. Define $q = \frac{p}{p-1}$. Use Hölder inequality to prove

$$\int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} |f(y)|^{\frac{1}{q}} |f(y)|^{\frac{1}{p}} |g(x-y)| \, dy \right)^{p} dx \tag{2.16}$$

$$\leq \int_{\mathbb{R}^{n}} \left(\left(\int_{\mathbb{R}^{n}} \left| f\left(y \right) \right| dy \right)^{\frac{p}{q}} \left(\int_{\mathbb{R}^{n}} \left| f\left(y \right) \right| \left| g\left(x - y \right) \right|^{p} dy \right) \right) dx \tag{2.17}$$

$$\leq \left(\int_{\mathbb{R}^{n}} \left| f\left(y\right) \right| dy\right)^{\frac{p}{q}} \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \left| f\left(y\right) \right| \left| g\left(x-y\right) \right|^{p} dy\right) dx \tag{2.18}$$

$$\leq \left(\int_{\mathbb{D}^{n}} |f(y)| \, dy\right)^{\frac{p}{q}} \left(\int_{\mathbb{D}^{n}} |f(y)| \, dy\right) \left(\int_{\mathbb{D}^{n}} |g(y)|^{p} dy\right) \tag{2.19}$$

$$\leq \left(\int_{\mathbb{D}_{n}} |f(y)| \, dy\right)^{p} \left(\int_{\mathbb{D}_{n}} |g(y)|^{p} dy\right) \tag{2.20}$$

$$= \|f\|_{L^1(\mathbb{R}^n)}^p \|g\|_{L^p(\mathbb{R}^n)}^p \tag{2.21}$$

Definition 2.13. Given $p \in (1, \infty)$, $u \in L^1(\mathbb{R}^n)$, $v \in L^p(\mathbb{R}^n)$, $f \in u$ and $g \in v$. We call the equivalent class of $f \star g$ the *convolution product* of u and v, which is denoted by $u \star v$. The following inequality holds

$$||u \star v||_{L^{p}(\mathbb{R}^{n})} \le ||u||_{L^{1}(\mathbb{R}^{n})} ||v||_{L^{p}(\mathbb{R}^{n})}$$
(2.22)

Given $s = (s_1, \ldots, s_n)$, we define

$$|s| = \sum_{i=1}^{n} |s_i| \tag{2.23}$$

and denote partial derivative $\frac{\partial^s f}{\partial x}$ by $\frac{\partial^{|s|} f}{\partial^{s_1} x_1 \cdots \partial^{s_n} x_n}$.

Definition 2.14. Let r be a positive integer and Ω be an open set in \mathbb{R}^n . Define $C^r(\Omega)$ the set of real function in Ω such that all partial derivatives of order s of f exist and are continuous in Ω if $|s| \leq r$.

Definition 2.15. Let r be a positive integer and Ω be an open set in \mathbb{R}^n . Define $C_c^r(\Omega)$ is the set of all functions $f \in C^r(\Omega)$ such that there exists a compact set K_f for which f(x) = 0 for all $x \in \mathbb{R}^n \setminus K_f$. Then we define

$$C^{\infty}(\Omega) = \bigcap_{r=1}^{\infty} C^{r}(\Omega)$$
 (2.24)

$$C_c^{\infty}(\Omega) = \bigcap_{r=1}^{\infty} C_c^r(\Omega)$$
 (2.25)

Problem 2.16. Given $p \in [1, \infty)$, $u \in L^p(\mathbb{R}^n)$, $f \in u$ and $g \in C_c^r(\mathbb{R}^n)$. Prove $f \star g \in C^r(\mathbb{R}^n)$ and

$$\frac{\partial^{s} (f \star g)}{\partial x} = f \star \frac{\partial^{s} g}{\partial x}, \ \forall s, |s| \le r$$
 (2.26)

HINT. Choose a compact set $K \subset \mathbb{R}^n$ such that g(x) = 0 for all $x \in \mathbb{R}^n \setminus K$. Choose a positive real number r_0 such that $K \subset B(0, r_0)$. Put $e := (1, 0, \dots, 0) \in \mathbb{R}^n$. Let $t \in (-1, 1) \setminus \{0\}$. Prove that

$$g(y+te) - g(y) = 0, \quad \forall y \in \mathbb{R}^n \backslash B(0, r_0 + 2)$$
(2.27)

Prove

$$\frac{f \star g(x+te) - f \star g(x)}{t} = \int_{B(0,r+2)} f(y) \frac{g(x+te-y) - g(x-y)}{t} dy \quad (2.28)$$

Then use Lebesgue dominated convergence theorem to prove

$$\lim_{t \to 0} \frac{f \star g\left(x + te\right) - f \star g\left(x\right)}{t} = \int_{B(0, r+2)} f\left(y\right) \frac{\partial g}{\partial x_1} \left(x - y\right) dy \tag{2.29}$$

$$= \int_{\mathbb{P}^n} f(y) \frac{\partial g}{\partial x_1} (x - y) dy \qquad (2.30)$$

$$= f \star \frac{\partial g}{\partial x_1} \left(x \right) \tag{2.31}$$

Problem 2.17. Prove that there exists a function $\rho \in C_c^{\infty}(\mathbb{R}^n)$ satisfying the following property

$$\rho\left(x\right) \ge 0, \ \forall x \in \mathbb{R}^n \tag{2.32}$$

$$\rho(x) = 0, \ \forall x \in \mathbb{R}^n \backslash B(0,1)$$
 (2.33)

$$\int_{\mathbb{R}^n} \rho d\mu = 1 \tag{2.34}$$

HINT. Define

$$\phi(t) = \begin{cases} e^{\frac{1}{t^2 - 1}}, & \forall t \in \mathbb{R}, |t| < 1\\ 0, & \forall t \in \mathbb{R}, |t| \ge 1 \end{cases}$$
 (2.35)

Prove that $\phi \in C^{\infty}(\mathbb{R})$ and

$$\phi^{(m)}(t) = \begin{cases} e^{\frac{1}{t^2 - 1}} \sum_{\alpha, \beta} c_{m,\alpha,\beta} t^{\alpha} (t^2 - 1)^{\beta}, & \forall t \in \mathbb{R}, |t| < 1\\ 0, & \forall t \in \mathbb{R}, |t| \ge 1 \end{cases}$$

$$(2.36)$$

Define $\psi(x) = \phi(|x|^2)$ for all $x \in \mathbb{R}^n$ and

$$c = \int_{\mathbb{P}^n} \psi d\mu \tag{2.37}$$

Define

$$\rho\left(x\right) = \frac{1}{c}\psi\left(x\right), \ \forall x \in \mathbb{R}^{n}$$
(2.38)

Check that ρ defined by (2.38) satisfies all requirements.

Problem 2.18. Let ρ be defined by (2.38). Define $\rho_m(x) = m^n \rho(mx)$ for all positive integer m and for all $x \in \mathbb{R}^n$. Prove that

$$\rho_m \in C_c^{\infty}(\mathbb{R}^n) \tag{2.39}$$

$$\rho_m(x) \ge 0, \quad \forall x \in \mathbb{R}^n$$
(2.40)

$$\rho_m(x) = 0, \quad \forall x \in \mathbb{R}^n \backslash B\left(0, \frac{1}{m}\right)$$
(2.41)

$$\int_{\mathbb{P}^n} \rho_m d\mu = 1 \tag{2.42}$$

HINT. Use Problem 1.69.

Problem 2.19. Let f be a real continuous function in \mathbb{R}^n . Define

$$f_m(x) = \int_{\mathbb{R}^n} f(y) \, \rho_m(x - y) \, dy, \quad \forall x \in \mathbb{R}^n$$
 (2.43)

Let r and ϵ be two positive real numbers. Prove that there exists a positive integer N such that

$$|f(x) - f_m(x)| \le \varepsilon, \quad \forall m \ge N, x \in B(0, r)$$
 (2.44)

HINT. Choose N such that

$$|f(x) - f(z)| \le \varepsilon, \quad \forall x, z \in B'(0, r+1), |x - z| \le \frac{1}{N}$$
 (2.45)

Prove

$$f(x) - f_m(x) = \int_{\mathbb{R}^n} (f(x) - f(x - y)) \rho_m(y) dy$$
 (2.46)

$$= \int_{B(0,\frac{1}{m})} (f(x) - f(x - y)) \rho_m(y) dy$$
 (2.47)

Problem 2.20. Given $p \in [1, \infty)$, $u \in L^p(\mathbb{R}^n)$ and $f \in u$. Prove that there exists a sequence $\{f_m\}_{m=1}^{\infty}$ in $C_c^{\infty}(\mathbb{R}^n)$ such that

$$\lim_{m \to \infty} \int_{\mathbb{R}^n} |f - f_m|^p d\mu = 0 \tag{2.48}$$

HINT. Define

$$g_k(x) = \begin{cases} f(x), & \text{if } |x| < k \\ 0, & \text{if } |x| \ge k \end{cases}$$
 (2.49)

Use Lebesgue dominated convergence theorem to prove

$$\lim_{m \to \infty} \int_{\mathbb{R}^n} \left| f - g_m \right|^p d\mu = 0 \tag{2.50}$$

Then apply Problem 1.64, Problem 2.18 and Lebesgue dominated convergence theorem. $\hfill\Box$

3 Fourier Transform

Definition 3.1. Let f, g be two real Lebesgue integrable functions in \mathbb{R}^n . Define

$$\int_{\mathbb{R}^n} (f + ig) \, d\mu = \int_{\mathbb{R}^n} f d\mu + i \int_{\mathbb{R}^n} g d\mu \tag{3.1}$$

Definition 3.2. Let f be a real Lebesgue integrable function in \mathbb{R} . Define

$$\widehat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i t x} d\mu, \quad \forall t \in \mathbb{R}^n$$
(3.2)

We call \hat{f} the Fourier transform of f.

Problem 3.3. Prove that \hat{f} is continuous in \mathbb{R}^n .

HINT. Let $\{t_m\}_{m=1}^{\infty}$ be a sequence converging to t in \mathbb{R}^n . Use Lebesgue dominated convergence theorem to prove that

$$\lim_{m \to \infty} \int_{R^n} f(x) \left(e^{-2\pi i t_m x} - e^{-2\pi i t x} \right) d\mu = 0$$
 (3.3)

Definition 3.4. Let $u \in L^1(\mathbb{R}^n)$ and $f \in u$. We denote the equivalent class of \widehat{f} by \widehat{u} . We call \widehat{u} the Fourier transform of u.

Problem 3.5. Let f be a real Lebesgue integrable function in \mathbb{R}^n and $z \in \mathbb{R}^n$. Define

$$f_z(x) = f(x+z), \ \forall x \in \mathbb{R}^n$$
 (3.4)

Prove that

$$\widehat{f}_{z}\left(t\right) = \widehat{f}\left(t\right)e^{-2\pi itz}, \ \forall t \in \mathbb{R}^{n}$$
 (3.5)

HINT. Use definition.

Problem 3.6. Given $f \in C_c^{\infty}(\mathbb{R}^n)$, $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$. Define $g = \frac{\partial^{\alpha} f}{\partial x}$. Prove that

$$\widehat{g}(t) = \widehat{f}(t) \prod_{j=1}^{n} t_{j}^{\alpha_{j}}, \ \forall t \in \mathbb{R}^{n}$$
(3.6)

HINT. Use definition and Lebesgue dominated convergence theorem. \Box

Problem 3.7. Given $f \in C_c^{\infty}(\mathbb{R}^n)$. Prove that

$$\lim_{|t| \to \infty} \widehat{f}(t) = 0 \tag{3.7}$$

HINT. Use Problem 1.66 and Problem 1.30.

Problem 3.8. Denote by $C_0(\mathbb{R}^n)$ the set of all real continuous functions h in \mathbb{R}^n such that $h(t) \to 0$ as $|t| \to \infty$. Prove that $C_0(\mathbb{R}^n)$ is a normed space equipped the following norm

$$||h||_{\infty} = \sup\left\{|h\left(t\right)| : t \in \mathbb{R}^n\right\}$$
(3.8)

Problem 3.9. Prove that the mapping $u \to \widehat{u}$ is a continuous linear mapping from $L^1(\mathbb{R}^n)$ into $C_0(\mathbb{R}^n)$.

HINT. Use previous problems.

Problem 3.10. Let f and g be two real Lebesgue integrable functions in \mathbb{R}^n . Define $h = f \star g$ for all $x \in \mathbb{R}^n$. Prove that

$$\widehat{h}(t) = \widehat{f}(t)\widehat{g}(t), \quad \forall t \in \mathbb{R}^n$$
 (3.9)

HINT. Prove that

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(y) g(x - y) dy \right) e^{-2\pi i t x} dx \tag{3.10}$$

$$= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(y) e^{-2\pi i t y} g(x - y) dy \right) e^{-2\pi i t (x - y)} dx \tag{3.11}$$

Use Fubini theorem.

Problem 3.11. Let f, g be two real Lebesgue integrable functions in \mathbb{R}^n . Prove that

$$\int_{\mathbb{R}^n} \widehat{g} f d\mu = \int_{\mathbb{R}^n} \widehat{f} g d\mu \tag{3.12}$$

HINT. Use Fubini theorem to prove

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(x) e^{-2\pi i t x} dx \right) g(t) dt = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} g(t) e^{-2\pi i t x} dt \right) f(x) dx \quad (3.13)$$

Theorem 3.12. Suppose that f and \widehat{f} are Lebesgue integrable functions in \mathbb{R}^n . Then

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(t) e^{2\pi i t x} dt, \text{ a.e. in } \mathbb{R}^n$$
 (3.14)

THE END

References

 $[1]\,$ Duong Minh Duc, Real~Analysis, Faculty of Math and Computer Science, Ho Chi Minh University of Science.