IPRJ - Laboratório de Física 1 Experimento 5 – Grupo 10

Rotações e Momento de Inércia

Gustavo Dias de Oliveira

Matrícula: 2020-1-00785-11

Nome do aluno: Thiago Bastos da Silva

Matrícula: 2020-1-00760-11

Objetivos do Experimento

Esse experimento tem o objetivo de verificar a dissipação de energia, observando o movimento em um plano inclinado de uma bola de gude e uma pilha, com isso, achar aceleração, velocidade, a diferença percentual entre a velocidade esperada e a medida, a perda percentual de energia por metro percorrido de ambos os corpos, depois calcular as velocidades da pilha e da gude com e sem perdas de energia e ver a diferença.

1. Introdução e Desenvolvimento Teórico

Temos presente nesse experimento, dois casos, o primeiro em que a energia mecânica é conservada, ou seja, não há a dissipação da mesma, e no segundo caso, temos o movimento com a dissipação de energia [1].

Para o primeiro caso temos a seguinte igualdade:

$$E_{TOTAL} = E_{CINETICA} + E_{POTENCIAL}$$

A partir dessa igualdade, sabendo que não ocorrerá dispersão de energia, podemos concluir que a energia inicial, a potencial (pois o corpo tem velocidade igual a zero) e a energia final é igual a cinética (pois a altura será nula e a velocidade diferente de zero), logo, podemos igualar a energia final com a inicial o que nos dará a seguinte fórmula:

$$mgh = \frac{mv^2}{2} + \frac{I\omega^2}{2}$$

Em um rolamento sem deslizamento, temos que:

$$\omega = \frac{v}{R}$$

Logo, substituindo na equação anterior, temos que:

$$mgh = \frac{mv^2}{2} + \frac{Iv^2}{2R^2}$$

Isolando o v, temos:

$$v^2 = \frac{2mgh}{m + \frac{I}{R^2}}$$

Sabemos também que, em mecânica, o **momento de inércia**, ou **momento de inércia de massa**, expressa o grau de dificuldade em se alterar o estado de movimento de um corpo em rotação, e temos [2]:

• Para um cilindro maciço de massa m e raio da base R, em torno de seu eixo:

$$I = \frac{1}{2}mR^2$$

Para uma esfera maciça de massa m e raio R, em torno de seu centro:

$$I = \frac{2}{5}mR^2$$

Substituindo agora na fórmula de v, temos que:

$$v_{cilindro} = \sqrt{\frac{4}{3}gh}$$

$$v_{esfera} = \sqrt{\frac{10}{7}gh}$$

Essas seriam as velocidades ideais em casos sem a dissipação de energia, já com a dissipação de energia temos que:

$$v_f = \sqrt{2\alpha\Delta S}$$

Com a energia cinética dada por:

$$E_c = \frac{1}{2} \left(m + \frac{I}{R^2} \right) v_f^2$$

Logo, a dissipação de energia será dada por:

$$\Delta E = E_c - E_{P,g}$$

[2] Situação do experimento

Para achar a aceleração usamos a seguinte equação:

$$S = S_0 + vt + \frac{1}{2}\alpha t^2 \tag{7}$$

Como essa equação apresenta comportamento de uma equação de grau 2, podemos compara-la a uma equação de 2º grau, da forma:

$$y = c + bx + ax^2$$

Onde $\alpha \to \frac{a}{2}$. Assim, usaremos o MMQ com ajuste polinomial de grau 2 no SciDAVIs para encontrar os melhores resultados possíveis.

2. Materiais Utilizados e Roteiro Experimental

Materiais utilizados:

- Uma pilha e uma bolinha de gude para realizar o movimento;
- Livro de capa dura para deixar o plano uniforme;
- Celular usado para inclinar a superfície;
- Régua para ter noção de espaço no Tracker;
- Câmera para realizar a gravação e colocar no Tracker;

Materiais utilizados no experimento.

Materiais utilizados no experimento.

Primeiro colocar o celular de baixo do livro para inclina-lo, colocar a regua de uma forma que não atrapalhe e realizar o movimento, filmar esse processo com a camera.

Após isso colocar o video gravado pela camera no Tracker para obter os dados (x, t) da bolinha e da pilha.

Usando o SciDAVIs, plotar os dados pegos no Tracker e gerar os graficos de x[t], depois, analisar e tirar as conclusões sobre os resultados.

3. Apresentação e Análise dos Dados Experimentais

Os dados retirados do Tracker juntamente ao SciDAVIs :

Tabela da Bolinha de Gude

t(s)	x(m)
0,00000	0,00000
0,01700	0,00001
0,03300	0,00044
0,05000	0,00095
0,06700	0,00120
0,08300	0,00146
0,10000	0,00180
0,11700	0,00222
0,13300	0,00273
0,15000	0,00350
0,16700	0,00417
0,18400	0,00477
0,20000	0,00562
0,21700	0,00672
0,23400	0,00774
0,25000	0,00935
0,26700	0,01105
0,28400	0,01249
0,30000	0,01377
0,31700	0,01572
0,33400	0,01708
0,35000	0,01878
0,36700	0,02098
0,38400	0,02311
0,40000	0,02489
0,41700	0,02667
0,43400	0,02879
0,45000	0,03151
0,46700	0,03414
0,48400	0,03609
0,50100	0,03822
0,51700	0,04127
0,53400	0,04390
0,55100	0,04671
0,56700	0,04942
0,58400	0,05265

t(s)	x(m)
0,60100	0,05545
0,61700	0,05834
0,63400	0,06105
0,65100	0,06445
0,66700	0,06784
0,68400	0,07132
0,70100	0,07514
0,71700	0,07795
0,73400	0,08202
0,75100	0,08542
0,76700	0,08924
0,78400	0,09297
0,80100	0,09739
0,81700	0,10100
0,83400	0,10500
0,85100	0,10900
0,86800	0,11400
0,88400	0,11800
0,90100	0,12200
0,91800	0,12700
0,93400	0,13200
0,95100	0,13600
0,96800	0,14100
0,98400	0,14500
1,00100	0,15000
1,01800	0,15500
1,03400	0,16000
1,05100	0,16500
1,06800	0,17100
1,08400	0,17600
1,10100	0,18100
1,11800	0,18600
1,13400	0,19200
1,15100	0,19800
1,16800	0,20300

t(s)	x(m)
0,00000	0,00000
0,01700	0,00014
0,03300	0,00033
0,05000	0,00081
0,06700	0,00138
0,08300	0,00186
0,10000	0,00243
0,11700	0,00330
0,13300	0,00387
0,15000	0,00454
0,16700	0,00578
0,18400	0,00674
0,20000	0,00770
0,21700	0,00913
0,23400	0,00990
0,25000	0,01133
0,26700	0,01296
0,28400	0,01401
0,30000	0,01535
0,31700	0,01698
0,33400	0,01861
0,35000	0,02004
0,36700	0,02224
0,38400	0,02368
0,40000	0,02559
0,41700	0,02751
0,43400	0,02942
0,45000	0,03191
0,46700	0,03373
0,48400	0,03593
0,50100	0,03775
0,51700	0,04004
0,53400	0,04234
0,55100	0,04473
0,56700	0,04741
0,58400	0,04971
0,60100	0,05267
0,61700	0,05526
0,63400	0,05794
0,65100	0,06090
0,66700	0,06397

t(s)	x(m)
0,68400	0,06684
0,70100	0,06971
0,71700	0,07239
0,73400	0,07574
0,75100	0,07899
0,76700	0,08263
0,78400	0,08559
0,80100	0,08923
0,81700	0,09277
0,83400	0,09603
0,85100	0,10000
0,86800	0,10300
0,88400	0,10600
0,90100	0,11000
0,91800	0,11500
0,93400	0,11900
0,95100	0,12200
0,96800	0,12600
0,98400	0,13000
1,00100	0,13400
1,01800	0,13800
1,03400	0,14200
1,05100	0,14600
1,06800	0,15000
1,08400	0,15400
1,10100	0,15800
1,11800	0,16200
1,13400	0,16600
1,15100	0,17100
1,16800	0,17500
1,18500	0,18000
1,20100	0,18400
1,21800	0,18800
1,23500	0,19200
1,25100	0,19700
1,26800	0,20100
1,28500	0,20500
1,30100	0,21000
1,31800	0,21400

4. Resultados e Conclusões

Com a fórmula da velocidade em uma situação sem dissipação de energia, podemos calcular:

$$v_{cilindro} = \sqrt{\frac{4}{3} * 9.8 * 0.09}$$
$$v_{cilindro} = 1.08 \, m/s$$

$$v_{esfera} = \sqrt{\frac{10}{7} * 9.8 * 0.09}$$
 $v_{esfera} = 0.939 \, m/s$

Agora calculando a velocidade com a dissipação de energia, e a aceleração achada no sciDAVIs igual a 0,206 para o cilindro e 0,288 para a esfera, para uma distância de 0,21 metros do trajeto em questão:

$$v_{fc} = \sqrt{2 * 0.206 * 0.21}$$

 $v_{fc} = 0.29 \text{ m/s}$

$$v_{fe} = \sqrt{2 * 0.288 * 0.21}$$

 $v_{fe} = 0.348 \, m/s$

Iremos calcular agora a porcentagem em relação a velocidade esperada e a achada pelo experimento

diferença percentual para o cilindo
$$\rightarrow \frac{0,29}{1,08} = 26,8\%$$

diferença percentual para a esfera
$$\rightarrow \frac{0,348}{0,939} = 37,16\%$$

Calculando a dissipação de energia por metro, para 0,21 metros, e com a massa da bolinha de gude como 0,009 quilos e a da pilha como 0,0076 quilos, pela seguinte fórmula:

$$\Delta E = \frac{1}{2} \left(m + \frac{I}{R^2} \right) v_f^2 - mgh$$

Temos então que:

$$\Delta E_c = -0.00047J$$

Logo, se para 0,21 metros temos essa quantidade de energia dissipada, para 1 metro teremos:

$$\Delta E_c = -0.029 J por metro$$

Enquanto para a esfera temos:

$$\Delta E_{\rho} = -0.00714$$

Logo, se para 0,21 metros temos essa quantidade de energia dissipada, para 1 metro teremos:

$$\Delta E_e = -0.034 J por metro$$

Podemos concluir então que fazendo esse experimento com objetos do nosso cotidiano, temos uma situação em que há muita perda de energia, logo, estamos longe de uma situação em que a energia se conserva, pois a energia no caso do experimento se dissipa por meio de energia térmica e sonora e entre outras.

5. Bibliografia

- [1] Fundamentos de Física Volume 1; D. Halliday, R, Resnick, J. Walker; LTC Editora (2006).
- [2] Momento de inércia Wikipédia, a enciclopédia livre (wikipedia.org)