RC and RL Circuits with Piecewise Constant Sources

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* If all sources are DC (constant), $V_{Th} = \text{constant}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} \, i + v \rightarrow V_{Th} = R_{Th} C \, \frac{dv}{dt} + v \rightarrow \frac{dv}{dt} + \frac{v}{R_{Th} C} = \frac{V_{Th}}{R_{Th} C}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} \, i + v \rightarrow V_{Th} = R_{Th} \, C \, \frac{dv}{dt} + v \rightarrow \frac{dv}{dt} + \frac{v}{R_{Th} C} = \frac{V_{Th}}{R_{Th} C}$.
- * Homogeneous solution:

$$rac{dv}{dt} + rac{1}{ au} \, v = 0$$
 , where $au = R_{Th} \, C$ is the "time constant." $\left(rac{ extsf{V}}{ extsf{Coul/sec}} imes rac{ extsf{Coul}}{V}
ight)$

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} \, i + v \rightarrow V_{Th} = R_{Th} C \, \frac{dv}{dt} + v \rightarrow \frac{dv}{dt} + \frac{v}{R_{Th} C} = \frac{V_{Th}}{R_{Th} C}$.
- * Homogeneous solution:

$$\begin{split} &\frac{dv}{dt} + \frac{1}{\tau} \, v = 0 \, , \, \text{where} \, \tau = R_{Th} \, C \, \text{is the "time constant."} \, \left(\frac{V}{\text{Coul/sec}} \times \frac{\text{Coul}}{V} \right) \\ &\rightarrow \, \frac{dv}{v} = -\frac{dt}{\tau} \, \rightarrow \, \log \, v = -\frac{t}{\tau} + K_0 \, \rightarrow \, v^{(h)} = \exp \left[(-t/\tau) + K_0 \right] = K \, \exp(-t/\tau) \, . \end{split}$$

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v \rightarrow \frac{dv}{dt} + \frac{v}{R_{Th} C} = \frac{V_{Th}}{R_{Th} C}$.
- * Homogeneous solution:

$$\begin{split} &\frac{dv}{dt} + \frac{1}{\tau} \ v = 0 \ , \ \text{where} \ \tau = R_{Th} \ C \ \text{is the "time constant."} \ \left(\frac{V}{\text{Coul/sec}} \times \frac{\text{Coul}}{V} \right) \\ &\rightarrow \ \frac{dv}{V} = -\frac{dt}{\tau} \ \rightarrow \ \log \ v = -\frac{t}{\tau} + K_0 \ \rightarrow \ v^{(h)} = \exp \left[(-t/\tau) + K_0 \right] = K \ \exp(-t/\tau) \, . \end{split}$$

* Particular solution is a specific function that satisfies the differential equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v \rightarrow \frac{dv}{dt} + \frac{v}{R_{Th} C} = \frac{V_{Th}}{R_{Th} C}$.
- * Homogeneous solution:

$$\begin{split} &\frac{dv}{dt} + \frac{1}{\tau} \, v = 0 \, \text{, where } \tau = R_{Th} \, C \text{ is the "time constant."} \, \left(\frac{V}{\text{Coul/sec}} \times \frac{\text{Coul}}{V} \right) \\ &\rightarrow \, \frac{dv}{V} = -\frac{dt}{\tau} \, \rightarrow \, \log \, v = -\frac{t}{\tau} + K_0 \, \rightarrow \, v^{(h)} = \exp \left[(-t/\tau) + K_0 \right] = K \, \exp(-t/\tau) \, . \end{split}$$

- * Particular solution is a specific function that satisfies the differential equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(\rho)} = V_{Th}$ as a particular solution (which happens to be simply a constant).
- * $v = v^{(h)} + v^{(p)} = K \exp(-t/\tau) + V_{Th}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v \rightarrow \frac{dv}{dt} + \frac{v}{R_{Th} C} = \frac{V_{Th}}{R_{Th} C}$.
- * Homogeneous solution:

$$\begin{split} &\frac{dv}{dt} + \frac{1}{\tau} \ v = 0 \ , \ \text{where} \ \tau = R_{Th} \ C \ \text{is the "time constant."} \ \left(\frac{V}{\text{Coul/sec}} \times \frac{\text{Coul}}{V} \right) \\ &\rightarrow \ \frac{dv}{V} = -\frac{dt}{\tau} \ \rightarrow \ \log \ v = -\frac{t}{\tau} + K_0 \ \rightarrow \ v^{(h)} = \exp \left[(-t/\tau) + K_0 \right] = K \ \exp(-t/\tau) \, . \end{split}$$

- * Particular solution is a specific function that satisfies the differential equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).
- * $v = v^{(h)} + v^{(p)} = K \exp(-t/\tau) + V_{Th}$
- * In general, $v(t) = A \exp(-t/\tau) + B$, where A and B can be obtained from known conditions on v.

* If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = R_{Th}C$.

- * If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = R_{Th}C$.
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.

- * If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = R_{Th}C$.
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.
- * As $t \to \infty$, $i \to 0$, i.e., the capacitor behaves like an open circuit since all derivatives vanish.

- * If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = R_{Th}C$.
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau).$
- * As $t \to \infty$, $i \to 0$, i.e., the capacitor behaves like an open circuit since all derivatives vanish.
- * Since the circuit in the black box is linear, any variable (current or voltage) in the circuit can be expressed as $x(t) = K_1 \exp(-t/\tau) + K_2$, where K_1 and K_2 can be obtained from suitable conditions on x(t).

t/ au	$e^{-t/ au}$	$1-e^{-t/ au}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

t/ au	$e^{-t/ au}$	$1-e^{-t/ au}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

* For
$$t/\tau = 5, \ e^{-t/\tau} \simeq 0, \ 1 - e^{-t/\tau} \simeq 1.$$

t/ au	$e^{-t/ au}$	$1-e^{-t/ au}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

- * For $t/\tau = 5$, $e^{-t/\tau} \simeq 0$, $1 e^{-t/\tau} \simeq 1$.
- ${f *}$ We can say that the transient lasts for about 5 time constants.

t/ au	$e^{-t/ au}$	$1-e^{-t/ au}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

- * For $t/\tau = 5$, $e^{-t/\tau} \simeq 0$, $1 e^{-t/\tau} \simeq 1$.
- * We can say that the transient lasts for about 5 time constants.

Plot of
$$f(t) = A e^{-t/\tau} + B$$

* At t = 0, f = A + B.

- * At t = 0, f = A + B.
- * As $t \to \infty$, $f \to B$.

- * At t = 0, f = A + B.
- * As $t \to \infty$, $f \to B$.
- * The graph of f(t) lies between (A + B) and B.

Note: If A > 0, A + B > B. If A < 0, A + B < B.

- * At t = 0, f = A + B.
- * As $t \to \infty$, $f \to B$.
- * The graph of f(t) lies between (A+B) and B. Note: If A>0, A+B>B. If A<0, A+B<B.
- * At t = 0, $\frac{df}{dt} = A e^{-t/\tau} \left(-\frac{1}{\tau} \right) = -\frac{A}{\tau}$.

If A>0, the derivative (slope) at t=0 is negative; else, it is positive.

- * At t = 0, f = A + B.
- * As $t \to \infty$, $f \to B$.
- * The graph of f(t) lies between (A+B) and B. Note: If A>0, A+B>B. If A<0, A+B<B.
- * At t = 0, $\frac{df}{dt} = A e^{-t/\tau} \left(-\frac{1}{\tau} \right) = -\frac{A}{\tau}$.

If A > 0, the derivative (slope) at t = 0 is negative; else, it is positive.

* As $t \to \infty$, $\frac{df}{dt} \to 0$, i.e., f becomes constant (equal to B).

- * At t = 0, f = A + B.
- * As $t \to \infty$, $f \to B$.
- * The graph of f(t) lies between (A + B) and B. Note: If A > 0, A + B > B. If A < 0, A + B < B.
- * At t = 0, $\frac{df}{dt} = A e^{-t/\tau} \left(-\frac{1}{\tau}\right) = -\frac{A}{\tau}$.

If A > 0, the derivative (slope) at t = 0 is negative; else, it is positive.

* As $t \to \infty$, $\frac{df}{dt} \to 0$, i.e., f becomes constant (equal to B).

- * At t = 0, f = A + B.
- * As $t \to \infty$, $f \to B$.
- * The graph of f(t) lies between (A + B) and B.

Note: If A > 0, A + B > B. If A < 0, A + B < B.

* At
$$t = 0$$
, $\frac{df}{dt} = A e^{-t/\tau} \left(-\frac{1}{\tau}\right) = -\frac{A}{\tau}$.

If A > 0, the derivative (slope) at t = 0 is negative; else, it is positive.

* As $t \to \infty$, $\frac{df}{dt} \to 0$, i.e., f becomes constant (equal to B).

* If all sources are DC (constant), $V_{Th} = \text{constant}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$rac{di}{dt} + rac{1}{ au}i = 0$$
 , where $au = L/R_{Th}$ $ightarrow i^{(h)} = K \exp(-t/ au)$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$rac{di}{dt} + rac{1}{\tau}i = 0$$
 , where $\tau = L/R_{Th}$
 $\rightarrow i^{(h)} = K \exp(-t/\tau)$.

* Particular solution is a specific function that satisfies the differential equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$\frac{di}{dt} + \frac{1}{\tau}i = 0$$
, where $\tau = L/R_{Th}$
 $\rightarrow i^{(h)} = K \exp(-t/\tau)$.

- * Particular solution is a specific function that satisfies the differential equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).
- * $i = i^{(h)} + i^{(p)} = K \exp(-t/\tau) + V_{Th}/R_{Th}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$rac{di}{dt} + rac{1}{\tau}i = 0$$
 , where $\tau = L/R_{Th}$
 $\rightarrow i^{(h)} = K \exp(-t/\tau)$.

- * Particular solution is a specific function that satisfies the differential equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).
- * $i = i^{(h)} + i^{(p)} = K \exp(-t/\tau) + V_{Th}/R_{Th}$
- * In general, $i(t) = A \exp(-t/\tau) + B$, where A and B can be obtained from known conditions on i.

* If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R_{Th}$.

- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R_{Th}$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.

RL circuits with DC sources (continued)

- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R_{Th}$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.
- * As $t \to \infty$, $v \to 0$, i.e., the inductor behaves like a short circuit since all derivatives vanish.

RL circuits with DC sources (continued)

- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R_{Th}$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.
- * As $t \to \infty$, $v \to 0$, i.e., the inductor behaves like a short circuit since all derivatives vanish.
- * Since the circuit in the black box is linear, any variable (current or voltage) in the circuit can be expressed as $x(t) = K_1 \exp(-t/\tau) + K_2$, where K_1 and K_2 can be obtained from suitable conditions on x(t).

M. B. Patil, IIT Bombay

* V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 $V/1 \mu$ s = 10⁶ V/s?

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 $V/1 \mu$ s = 10⁶ V/s?

*
$$i = C \frac{dV_c}{dt} = 1 \,\mu\text{F} \times 10^6 \,\frac{V}{\text{s}} = 1 \,A.$$

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1~V in $1~\mu s$ at a constant rate of $1~V/1~\mu s = 10^6~V/s$?
- * $i = C \frac{dV_c}{dt} = 1 \,\mu\text{F} \times 10^6 \,\frac{V}{\text{s}} = 1 \,A.$
- * With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1~V in $1~\mu s$ at a constant rate of $1~V/1~\mu s = 10^6~V/s$?
- * $i = C \frac{dV_c}{dt} = 1 \,\mu F \times 10^6 \, \frac{V}{s} = 1 \,A.$
- * With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.
- * We conclude that $V_c(0^+) = V_c(0^-) \Rightarrow$ A capacitor does not allow abrupt changes in V_c if there is a finite resistance in the circuit.

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1~V in $1~\mu s$ at a constant rate of $1~V/1~\mu s = 10^6~V/s$?
- * $i = C \frac{dV_c}{dt} = 1 \,\mu\text{F} \times 10^6 \,\frac{V}{\text{s}} = 1 \,A.$
- * With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.
- * We conclude that $V_c(0^+) = V_c(0^-) \Rightarrow A$ capacitor does not allow abrupt changes in V_c if there is a finite resistance in the circuit.
- * Similarly, an inductor does not allow abrupt changes in i_L .

Let
$$\mathbf{v}(\mathbf{t}) = \mathsf{A} \exp(-\mathbf{t}/\tau) + \mathsf{B}, \ \ \mathbf{t} > 0$$
 (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V_S}(0^-) = 0 \ \mathbf{V}$$

$$v(0^+) \simeq v(0^-) = 0 \text{ V}$$

Note that we need the condition at $0^+\ ({\rm and\ not\ at}\ 0^-)$

because Eq. (A) applies only for t > 0.

(2) As
$$t\to\infty\,, i\to 0\,\to v(\infty)=V_{\text{S}}(\infty)=V_0$$

Let
$$\mathbf{v}(\mathbf{t}) = \mathsf{A} \exp(-\mathbf{t}/\tau) + \mathsf{B}, \ \ \mathbf{t} > 0$$
 (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = 0 V$$

$$v(0^+) \simeq v(0^-) = 0 \text{ V}$$

Note that we need the condition at $0^+\ ({\rm and\ not\ at}\ 0^-)$

because Eq. (A) applies only for
$$t > 0$$
.

(2) As
$$t\to\infty\,, \mathsf{i}\to 0\,\to \mathsf{v}(\infty)=\mathsf{V_S}(\infty)=\mathsf{V}_0$$

$$t = 0^+$$
: $0 = A + B$,

$$t\to\infty{:}\; V_0=B\,.$$

i.e.,
$$\mathsf{B} = \mathsf{V}_0\,, \mathsf{A} = -\mathsf{V}_0$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = 0 V$$

$$v(0^+) \simeq v(0^-) = 0 \text{ V}$$

Note that we need the condition at 0^+ (and not at 0^-)

because Eq. (A) applies only for
$$t > 0$$
.

(2) As
$$t\to\infty$$
 , i $\to 0$ \to v($\infty)=$ V_S($\infty)=$ V_0

$$t = 0^+$$
: $0 = A + B$,
 $t \to \infty$: $V_0 = B$.

i.e.,
$$B = V_0$$
, $A = -V_0$

$$v(t) = V_0 \left[1 - \exp(-t/\tau)\right]$$

Let
$$\mathbf{v}(\mathbf{t}) = \mathsf{A} \exp(-\mathbf{t}/\tau) + \mathsf{B}, \ \ \mathbf{t} > 0$$
 (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = 0 V$$

$$\mathsf{v}(0^+) \simeq \mathsf{v}(0^-) = 0 \ \mathsf{V}$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

$$\begin{aligned} \mathbf{t} &= \mathbf{0}^+ \colon \mathbf{0} = \mathsf{A} + \mathsf{B} \,, \\ \mathbf{t} &\to \infty \colon \mathsf{V_0} = \mathsf{B} \,. \end{aligned}$$

i.e.,
$$B = V_0$$
, $A = -V_0$

$$\mathrm{v}(\mathrm{t}) = \mathrm{V}_0 \left[1 - \exp(-\mathrm{t}/\tau) \right]$$

$$\label{eq:left_loss} \text{Let } \mathbf{v}(\mathbf{t}) = \mathsf{A} \exp(-\mathbf{t}/\tau) + \mathsf{B}, \ \ \, \mathbf{t} > 0 \qquad \text{ (A)}$$

Conditions on v(t):

(1)
$$\mathbf{v}(0^{-}) = \mathbf{V_s}(0^{-}) = 0 \ \mathbf{V}$$

 $\mathbf{v}(0^{+}) \simeq \mathbf{v}(0^{-}) = 0 \ \mathbf{V}$

Note that we need the condition at
$$0^+$$
 (and not at 0^-)

because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

$$\begin{aligned} \mathbf{t} &= \mathbf{0}^+ \colon \mathbf{0} = \mathsf{A} + \mathsf{B} \,, \\ \mathbf{t} &\to \infty \colon \mathsf{V_0} = \mathsf{B} \,. \end{aligned}$$

i.e.,
$$B = V_0$$
, $A = -V_0$

$$\mathrm{v}(\mathrm{t}) = \mathrm{V}_0 \left[1 - \exp(-\mathrm{t}/\tau) \right]$$

$$\label{eq:left_loss} \text{Let } \mathbf{v}(\mathbf{t}) = \mathsf{A} \exp(-\mathbf{t}/\tau) + \mathsf{B}, \ \ \, \mathbf{t} > 0 \qquad \text{ (A)}$$

Conditions on v(t):

(1)
$$\mathbf{v}(0^{-}) = \mathbf{V_S}(0^{-}) = 0 \ \mathbf{V}$$

 $\mathbf{v}(0^{+}) \simeq \mathbf{v}(0^{-}) = 0 \ \mathbf{V}$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$t = 0^+$$
: $0 = A + B$,
 $t \to \infty$: $V_0 = B$.

i.e.,
$$B = V_0$$
, $A = -V_0$

$$\mathrm{v}(\mathrm{t}) = \mathrm{V}_0 \left[1 - \exp(-\mathrm{t}/\tau) \right]$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V_S}(0^-) = \mathbf{V_0}$$
 $\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = \mathbf{V_0}$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = 0 V$

$$\label{eq:left_loss} \text{Let } \mathbf{v}(\mathbf{t}) = \mathsf{A} \exp(-\mathbf{t}/\tau) + \mathsf{B}, \ \ \, \mathbf{t} > 0 \qquad \text{ (A)}$$

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V_S}(0^-) = 0 \ \mathbf{V}$$

$$\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = 0 \ \mathsf{V}$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$t = 0^+$$
: $0 = A + B$,
 $t \to \infty$: $V_0 = B$.

i.e.,
$$B = V_0$$
, $A = -V_0$

$$\mathrm{v}(\mathrm{t}) = \mathrm{V}_0 \left[1 - \exp(-\mathrm{t}/\tau) \right]$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V_S}(0^-) = \mathbf{V_0}$$

$$\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = \mathbf{V_0}$$

Note that we need the condition at $0^+\ \mbox{(and not at }0^-\mbox{)}$

because Eq. (A) applies only for
$$t > 0$$
.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_S(\infty) = 0 V$

$$\mathsf{t} = 0^+ \colon \mathsf{V}_0 = \mathsf{A} + \mathsf{B} \,,$$

$$t \to \infty$$
: $0 = B$.

i.e.,
$$A = V_0$$
, $B = 0$

Let
$$\mathbf{v}(\mathbf{t}) = \mathsf{A} \exp(-\mathbf{t}/\tau) + \mathsf{B}, \ \ \mathbf{t} > 0$$
 (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = 0 V$$

$$v(0^+) \simeq v(0^-) = 0 \text{ V}$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t>0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$t = 0^+$$
: $0 = A + B$.

$$t \to \infty$$
: $V_0 = B$.

i.e.,
$$B = V_0$$
, $A = -V_0$

$$\mathrm{v}(\mathrm{t}) = \mathrm{V}_0 \left[1 - \exp(-\mathrm{t}/\tau) \right]$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$v(0^-) = V_s(0^-) = V_0$$

$$v(0^+) \simeq v(0^-) = V_0$$

Note that we need the condition at 0^+ (and not at 0^-)

because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = 0 V$

$$t = 0^+$$
: $V_0 = A + B$.

$$t \to \infty$$
: $0 = B$.

i.e.,
$$A = V_0$$
, $B = 0$

$$v(t) = V_0 \exp(-t/\tau)$$

Compute i(t), t>0.

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \left[1 - \text{exp}(-t/\tau) \right] \\ &= \frac{C V_0}{\tau} \, \text{exp}(-t/\tau) = \frac{V_0}{R} \, \text{exp}(-t/\tau) \end{split}$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.
$$t = 0^+; \ v = 0 \ , \ V_S = V_0 \ \Rightarrow i(0^+) = V_0/R \, .$$

$$t \to \infty \colon i(t) = 0 \, .$$

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}}, \; \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.
$$t = 0^+ \colon v = 0 \ , \ V_S = V_0 \ \Rightarrow i(0^+) = V_0/R \, .$$

$$t \to \infty \colon i(t) = 0 \, .$$

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t>0.

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.
$$t = 0^+; \ v = 0 \ , \ V_S = V_0 \ \Rightarrow i(0^+) = V_0/R \, .$$

$$t \to \infty \colon i(t) = 0 \, .$$

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad & i(t) = C \, \frac{d}{dt} \, V_0 \left[exp(-t/\tau) \right] \\ \\ & = - \frac{CV_0}{\tau} \, exp(-t/\tau) = - \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.
$$t = 0^+ \colon v = 0 \ , \ V_S = V_0 \ \Rightarrow i(0^+) = V_0/R \, .$$

$$t \to \infty \colon i(t) = 0 \, .$$

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \, \mathsf{exp}(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad & i(t) = C \, \frac{d}{dt} \, V_0 \left[exp(-t/\tau) \right] \\ & = - \frac{C V_0}{\tau} exp(-t/\tau) = - \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.

$$t = 0^+$$
: $v = V_0$, $V_S = 0 \Rightarrow i(0^+) = -V_0/R$.

$$t \to \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

$$\mathsf{A}' = -rac{\mathsf{V}_0}{\mathsf{R}}\,, \; \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = -rac{\mathsf{V}_0}{\mathsf{R}}\exp(-\mathsf{t}/ au)$$

$$\begin{aligned} \mathbf{v}(\mathbf{t}) &= \mathbf{V}_0 \left[1 - \exp(-\mathbf{t} \cdot \mathbf{r}) \right] \\ \mathbf{i}(\mathbf{t}) &= \frac{\mathbf{V}_0}{\mathsf{R}} \exp(-\mathbf{t}/\tau) \end{aligned}$$

$$v(t) = V_0 \left[1 - \text{exp}(-t/\tau) \right]$$

$$v(t) = V_0 \exp(-t/\tau)$$

* Identify intervals in which the source voltages/currents are constant. For example,

- (1) $t < t_1$
- (2) $t_1 < t < t_2$
- (3) $t > t_2$

Analysis of RC/RL circuits with a piece-wise constant source

* Identify intervals in which the source voltages/currents are constant. For example,

- (1) $t < t_1$
- (2) $t_1 < t < t_2$
- (3) $t > t_2$
- * For any current or voltage x(t), write general expressions such as,

$$x(t) = A_1 \exp(-t/\tau) + B_1, \quad t < t_1,$$

$$x(t) = A_2 \exp(-t/\tau) + B_2$$
, $t_1 < t < t_2$,

$$x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$$

Analysis of RC/RL circuits with a piece-wise constant source

* Identify intervals in which the source voltages/currents are constant. For example,

* For any current or voltage x(t), write general expressions such as, $x(t) = A_1 \exp(-t/\tau) + B_1$, $t < t_1$,

$$x(t) = A_1 \exp(-t/\tau) + B_1,$$
 $t < t_1,$ $x(t) = A_2 \exp(-t/\tau) + B_2,$ $t_1 < t < t_2,$ $x(t) = A_3 \exp(-t/\tau) + B_3,$ $t > t_2.$

* Work out suitable conditions on x(t) at specific time points using

Analysis of RC/RL circuits with a piece-wise constant source

* Identify intervals in which the source voltages/currents are constant. For example,

- (1) $t < t_1$
- (2) $t_1 < t < t_2$
- (3) $t > t_2$
- * For any current or voltage x(t), write general expressions such as,

$$x(t) = A_1 \exp(-t/\tau) + B_1, \quad t < t_1,$$

$$x(t) = A_2 \exp(-t/\tau) + B_2$$
, $t_1 < t < t_2$,

- $x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$
- * Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

$$\Rightarrow i_C = C \, rac{dV_c}{dt} = 0$$
 , and $V_L = L \, rac{di_L}{dt} = 0$.

Analysis of RC/RL circuits with a piece-wise constant source

* Identify intervals in which the source voltages/currents are constant. For example,

- $(1) t < t_1$
- (2) $t_1 < t < t_2$
- (3) $t > t_2$
- * For any current or voltage x(t), write general expressions such as,

$$x(t) = A_1 \exp(-t/\tau) + B_1$$
, $t < t_1$,

$$x(t) = A_2 \exp(-t/\tau) + B_2, \quad t_1 < t < t_2,$$

$$x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$$

- * Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

$$\Rightarrow i_C = C \frac{dV_c}{dt} = 0$$
, and $V_L = L \frac{di_L}{dt} = 0$.

(b) When a source voltage (or current) changes, say, at $t=t_0$, $V_c(t)$ or $i_L(t)$ cannot change abruptly, i.e., $V_c(t_0^+) = V_c(t_0^-)$, and $i_L(t_0^+) = i_L(t_0^-)$.

Analysis of RC/RL circuits with a piece-wise constant source

* Identify intervals in which the source voltages/currents are constant.

For example.

- (1) $t < t_1$
- (2) $t_1 < t < t_2$
- (3) $t > t_2$
- * For any current or voltage x(t), write general expressions such as,

$$x(t) = A_1 \exp(-t/\tau) + B_1, \quad t < t_1,$$

$$x(t) = A_2 \exp(-t/\tau) + B_2$$
, $t_1 < t < t_2$,

$$x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$$

- * Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

$$\Rightarrow i_C = C \frac{dV_c}{dt} = 0$$
, and $V_L = L \frac{di_L}{dt} = 0$.

- (b) When a source voltage (or current) changes, say, at $t=t_0$, $V_c(t)$ or $i_L(t)$ cannot change abruptly, i.e., $V_c(t_0^+)=V_c(t_0^-)$, and $i_L(t_0^+)=i_L(t_0^-)$.
- * Compute A_1 , B_1 , \cdots using the conditions on x(t).

. ...d .(c).

There are three intervals of constant $\ensuremath{V_s} \colon$

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

$$\mathsf{R_1} = 10\,\Omega$$

$$\mathsf{R_2} = 40\,\Omega$$

$$\mathsf{L} = 0.8\,\mathsf{H}$$

$$t_0 = 0$$

$$t_1\!=\!0.1\,s$$

There are three intervals of constant V_s :

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

 R_{Th} seen by L is the same in all intervals:

$$\begin{aligned} &\mathsf{R}_1 = 10 \, \Omega \\ &\mathsf{R}_2 = 40 \, \Omega \\ &\mathsf{L} = 0.8 \, \mathsf{H} \\ &\mathsf{t}_0 = 0 \\ &\mathsf{t}_1 = 0.1 \, \mathsf{s} \end{aligned}$$

Find i(t).

There are three intervals of constant $\ensuremath{V_s}\xspace$:

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

 R_{Th} seen by L is the same in all intervals:

$$R_1 = 10 \Omega$$

 $R_2 = 40 \Omega$
 $L = 0.8 H$
 $t_0 = 0$
 $t_1 = 0.1 s$

$$\begin{split} &\text{At } t=t_0^-, \ v=0 \ V, \ V_s=0 \ V \, . \\ &\Rightarrow i(t_0^-)=0 \ A \Rightarrow i(t_0^+)=0 \ A \, . \end{split}$$

Find i(t).

There are three intervals of constant V_s :

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

R_{Th} seen by L is the same in all intervals:

$$R_1 = 10 \Omega$$

 $R_2 = 40 \Omega$
 $L = 0.8 H$
 $t_0 = 0$
 $t_1 = 0.1 s$

At
$$t = t_0^-$$
, $v = 0$ V, $V_s = 0$ V.

$$\Rightarrow i(t_0^+) = 0 \text{ A} \Rightarrow i(t_0^+) = 0 \text{ A}.$$
If V. did not change at $t = t_0$.

If V_s did not change at $t = t_1$, we would have

$$\mathsf{v}(\infty) = \mathsf{0} \; \mathsf{V}, \, \mathsf{i}(\infty) = \mathsf{10} \; \mathsf{V}/\mathsf{10} \; \Omega = \mathsf{1} \; \mathsf{A} \, .$$

Find i(t).

There are three intervals of constant V_s :

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

 R_Th seen by L is the same in all intervals:

$$R_1 = 10 \Omega$$

 $R_2 = 40 \Omega$
 $L = 0.8 H$
 $t_0 = 0$
 $t_1 = 0.1 s$

$$\begin{split} \text{At } t &= t_0^-, \, \text{v} = 0 \text{ V, V}_s = 0 \text{ V.} \\ \Rightarrow i(t_0^-) &= 0 \text{ A} \Rightarrow i(t_0^+) = 0 \text{ A.} \\ \text{If V}_s \text{ did not change at } t = t_1, \\ \text{we would have} \end{split}$$

$$\label{eq:vinite} \mathsf{v}(\infty) = \mathsf{0} \; \mathsf{V}, \, \mathsf{i}(\infty) = \mathsf{10} \; \mathsf{V}/\mathsf{10} \; \Omega = \mathsf{1} \; \mathsf{A} \, .$$

Using $i(t_0^+)$ and $i(\infty)$, we can obtain i(t), t > 0 (See next slide).

 $R_1 = 10 \,\Omega$

 $R_2 = 40 \,\Omega$

 $\mathsf{L} = 0.8\,\mathsf{H}$

 $t_1=0.1\,\text{s}$

 $t_0 = 0$

In reality, V_s changes at $t=t_1$, and we need to work out the solution for $t>t_1$ separately.

solution for $t > t_1$ separately.

$$\begin{aligned} \mathsf{R}_1 &= 10\,\Omega \\ \mathsf{R}_2 &= 40\,\Omega \\ \mathsf{L} &= 0.8\,\mathsf{H} \\ \mathsf{t}_0 &= 0 \\ \mathsf{t}_1 &= 0.1\,\mathsf{s} \end{aligned}$$

Combining the solutions for $t_0 < t < t_1 \mbox{ and } t > t_1, \label{eq:total_total_total}$ we get

(SEQUEL file: ee101_rl1.sqproj)

 $t=0^-\colon$ capacitor is an open circuit $\Rightarrow i(0^-)=6~V/(5~k+1~k)=1~mA.$

 $v_c(0^-) = i(0^-) R_1 = 5 V \Rightarrow v_c(0^+) = 5 V$

$$t=0^-\colon$$
 capacitor is an open circuit $\Rightarrow i(0^-)=6~V/(5~k+1~k)=1~mA.$

$$t=0^-$$
: capacitor is an open circuit \Rightarrow $i(0^-)=6$ V/(5 k+1 k) = 1 mA.

$$v_c(0^-) = i(0^-) R_1 = 5 V \Rightarrow v_c(0^+) = 5 V$$

$$\Rightarrow i(0^+) = 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA}.$$

$$t=0^-$$
: capacitor is an open circuit \Rightarrow i(0⁻) = 6 V/(5 k + 1 k) = 1 mA.

$$v_c(0^-) = i(0^-) R_1 = 5 V \Rightarrow v_c(0^+) = 5 V$$

 $\Rightarrow i(0^+) = 5 V/(5 k + 5 k) = 0.5 \text{ mA}.$

Let
$$i(t) = A \exp(-t/\tau) + B$$
 for $t > 0$, with $\tau = 10 \text{ k} \times 5 \mu\text{F} = 50 \text{ ms}$.

$$t = 0^-$$
: capacitor is an open circuit $\Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA}$.

$$v_c(0^-) = i(0^-) R_1 = 5 V \Rightarrow v_c(0^+) = 5 V$$

 $\Rightarrow i(0^+) = 5 V/(5 k + 5 k) = 0.5 mA.$

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using
$$i(0^+)$$
 and $i(\infty) = 0$ A, we get $i(t) = 0.5 \exp(-t/\tau)$ mA.

$$t=0^-$$
: capacitor is an open circuit $\Rightarrow i(0^-)=6 \ V/(5 \ k+1 \ k)=1 \ mA$.

$$\begin{split} & v_c(0^-) = i(0^-) \, R_1 = 5 \, V \Rightarrow v_c(0^+) = 5 \, V \\ & \Rightarrow i(0^+) = 5 \, V/(5 \, k + 5 \, k) = 0.5 \, mA. \end{split}$$

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using
$$i(0^+)$$
 and $i(\infty)=0$ A, we get

$$i(t) = 0.5 \exp(-t/\tau) \text{ mA}.$$

$$t=0^-\colon$$
 capacitor is an open circuit $\Rightarrow i(0^-)=6~V/(5~k+1~k)=1~mA.$

$$\begin{split} & v_c(0^-) = i(0^-) \, R_1 = 5 \, V \Rightarrow v_c(0^+) = 5 \, V \\ & \Rightarrow i(0^+) = 5 \, V/(5 \, k + 5 \, k) = 0.5 \, mA. \end{split}$$

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using i(0⁺) and i(
$$\infty$$
) = 0 A, we get i(t) = 0.5 exp(-t/ au) mA.

$$t=0^-$$
 : capacitor is an open circuit \Rightarrow i(0^-) = 6 V/(5 k+1 k) = 1 mA.

v_c(0^-) = i(0^-) R_1 = 5 V \Rightarrow v_c(0^+) = 5 V

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using $i(0^+)$ and $i(\infty) = 0$ A, we get

 $\Rightarrow i(0^+) = 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA}.$

$$i(t) = 0.5 \exp(-t/\tau) \text{ mA}.$$

M. B. Patil. IIT Bombay

0.5

Find expressions for $V_C(t)$ and $i_C(t)$ in steady state (in terms of R, C, V_0 , T_1 , T_2).

$$\begin{array}{|c|c|} \hline 0 < t < T_1 \\ \hline V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0 \\ \hline \rightarrow B = V_0, \ A = V_1 - V_0.
\end{array}$$

$$\boxed{0 < t < T_1} \quad \text{Let } V_C^{(1)}(t) = A e^{-t/\tau} + B
V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0
\rightarrow B = V_0, \ A = V_1 - V_0.
V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
(1)

$$\boxed{0 < t < T_1}$$
 Let $V_C^{(1)}(t) = A e^{-t/ au} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

$$\to B = V_0, A = V_1 - V_0.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$\overline{T_1 < t < T_2}$$
 Let $V_C^{(2)}(t) = A' e^{-t/ au} + B'$

$$0 < t < T_1$$
 Let $V_C^{(1)}(t) = A e^{-t/\tau} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

 $\to B = V_0, \ A = V_1 - V_0.$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$\boxed{T_1 < t < T_2}$$
 Let $V_C^{(2)}(t) = A' \, e^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0$$

$$0 < t < T_1$$
 Let $V_C^{(1)}(t) = A e^{-t/\tau} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

$$\rightarrow B = V_0$$
, $A = V_1 - V_0$.

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$\boxed{T_1 < t < T_2}$$
 Let $V_C^{(2)}(t) = A' \, e^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0$$

$$\to B' = 0, A' = V_2 e^{T_1/\tau}.$$

(2)

$$\boxed{0 < t < T_1} \quad \text{Let } V_C^{(1)}(t) = A e^{-t/\tau} + B
V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0
\rightarrow B = V_0, \ A = V_1 - V_0.
V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$

$$\boxed{T_1 < t < T_2} \quad \text{Let } V_C^{(2)}(t) = A' e^{-t/\tau} + B'
V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0
\rightarrow B' = 0, \ A' = V_2 e^{T_1/\tau}.
V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
(2)

$$0 < t < T_1$$
 Let $V_C^{(1)}(t) = A e^{-t/\tau} + B$
$$V_C^{(1)}(0) = V_1, V_C^{(1)}(\infty) = V_0$$

$$V_{C}^{-1}(0) = V_{1}, \ V_{C}^{-1}(\infty) = V_{0}$$

 $\to B = V_{0}, A = V_{1} - V_{0}.$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$\boxed{T_1 < t < T_2}$$
 Let $V_C^{(2)}(t) = A' \, e^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0$$

 $\to B' = 0, \ A' = V_2 e^{T_1/\tau}.$

$$V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
 (2)

$$V_C^{(1)}(T_1) = V_2, \ V_C^{(2)}(T_1 + T_2) = V_1.$$

$$\boxed{0 < t < \mathcal{T}_1}$$
 Let $V_C^{(1)}(t) = A \, \mathrm{e}^{-t/ au} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

$$\rightarrow B = V_0, A = V_1 - V_0.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$\boxed{T_1 < t < T_2}$$
 Let $V_C^{(2)}(t) = A' \, \mathrm{e}^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0$$

 $\to B' = 0, \ A' = V_2 e^{T_1/\tau}.$

$$V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
 (2)

$$V_C^{(1)}(T_1) = V_2, \ V_C^{(2)}(T_1 + T_2) = V_1.$$

$$V_2 = -(V_0 - V_1)e^{-T_1/\tau} + V_0$$
(3)

$$\begin{array}{|c|c|c|} \hline 0 < t < T_1 & \text{Let } V_C^{(1)}(t) = A e^{-t/\tau} + B \\ V_C^{(1)}(0) = V_1, V_C^{(1)}(\infty) = V_0 \\ \rightarrow B = V_0, A = V_1 - V_0. \\ V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0 \\ \hline \end{array}$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
(1)

$$\boxed{T_1 < t < T_2} \text{ Let } V_C^{(2)}(t) = A' e^{-t/\tau} + B'$$

$$V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0$$

$$\rightarrow B' = 0, \ A' = V_2 e^{T_1/\tau}.$$

$$V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
(2)

$$V_C^{(1)}(T_1) = V_2, \ V_C^{(2)}(T_1 + T_2) = V_1.$$

$$V_2 = -(V_0 - V_1)e^{-T_1/\tau} + V_0 \tag{3}$$

$$V_1 = V_2 e^{-(T_1 + T_2 - T_1)/\tau} = V_2 e^{-T_2/\tau}$$
 (4)

$$0 < t < T_1$$
 Let $V_C^{(1)}(t) = A e^{-t/\tau} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

$$\rightarrow B = V_0, A = V_1 - V_0.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$\boxed{T_1 < t < T_2}$$
 Let $V_{\mathcal{C}}^{(2)}(t) = A' \, \mathrm{e}^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, V_C^{(2)}(\infty) = 0$$

 $\to B' = 0, A' = V_2 e^{T_1/\tau}.$

$$V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
 (2)

Now use the conditions:

$$V_C^{(1)}(T_1) = V_2, \ V_C^{(2)}(T_1 + T_2) = V_1.$$

$$V_2 = -(V_0 - V_1)e^{-T_1/\tau} + V_0$$
 (3)

$$V_1 = V_2 e^{-(T_1 + T_2 - T_1)/\tau} = V_2 e^{-T_2/\tau}$$
 (4)

Rewrite with $a \equiv e^{-T_1/\tau}$, $b \equiv e^{-T_2/\tau}$.

$$0 < t < T_1$$
 Let $V_C^{(1)}(t) = A e^{-t/\tau} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

$$\to B = V_0, A = V_1 - V_0.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$\boxed{T_1 < t < T_2}$$
 Let $V_C^{(2)}(t) = A' \, \mathrm{e}^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0$$

 $\to B' = 0, \ A' = V_2 e^{T_1/\tau}.$

$$V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
 (2)

Now use the conditions:

$$V_C^{(1)}(T_1) = V_2, \ V_C^{(2)}(T_1 + T_2) = V_1.$$

$$V_2 = -(V_0 - V_1)e^{-T_1/\tau} + V_0$$
 (3)

$$V_1 = V_2 e^{-(T_1 + T_2 - T_1)/\tau} = V_2 e^{-T_2/\tau}$$
 (4)

Rewrite with $a \equiv e^{-T_1/\tau}$, $b \equiv e^{-T_2/\tau}$.

$$V_2 = -(V_0 - V_1)a + V_0 (5)$$

$$0 < t < T_1$$
 Let $V_C^{(1)}(t) = A e^{-t/\tau} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

$$\rightarrow B = V_0, A = V_1 - V_0.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$$
 (1)

$$oxed{T_1 < t < T_2}$$
 Let $V_{\mathcal{C}}^{(2)}(t) = A'\,\mathrm{e}^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, V_C^{(2)}(\infty) = 0$$

 $\to B' = 0, A' = V_2 e^{T_1/\tau}.$

$$V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
 (2)

Now use the conditions:

$$V_C^{(1)}(T_1) = V_2, \ V_C^{(2)}(T_1 + T_2) = V_1.$$

$$V_2 = -(V_0 - V_1)e^{-T_1/\tau} + V_0$$
 (3)

$$V_1 = V_2 e^{-(T_1 + T_2 - T_1)/\tau} = V_2 e^{-T_2/\tau}$$
 (4)

Rewrite with $a \equiv e^{-T_1/\tau}$, $b \equiv e^{-T_2/\tau}$.

$$V_2 = -(V_0 - V_1)a + V_0 (5)$$

$$V_1 = b V_2 \tag{6}$$

$$0 < t < T_1$$
 Let $V_C^{(1)}(t) = A e^{-t/\tau} + B$

$$V_C^{(1)}(0) = V_1, \ V_C^{(1)}(\infty) = V_0$$

$$\rightarrow B = V_0, A = V_1 - V_0.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0 \tag{1}$$

$$oxed{T_1 < t < T_2}$$
 Let $V_{\mathcal{C}}^{(2)}(t) = A' \, \mathrm{e}^{-t/ au} + B'$

$$V_C^{(2)}(T_1) = V_2, \ V_C^{(2)}(\infty) = 0$$

$$\to B' = 0, \ A' = V_2 e^{T_1/\tau}.$$

$$V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$$
(2)

Now use the conditions:

$$V_C^{(1)}(T_1) = V_2, \ V_C^{(2)}(T_1 + T_2) = V_1.$$

$$V_2 = -(V_0 - V_1)e^{-T_1/\tau} + V_0$$
 (3)

$$V_1 = V_2 e^{-(T_1 + T_2 - T_1)/\tau} = V_2 e^{-T_2/\tau}$$
 (4)

Rewrite with $a \equiv e^{-T_1/\tau}$, $b \equiv e^{-T_2/\tau}$.

$$V_2 = -(V_0 - V_1)a + V_0 (5)$$

$$V_1 = b V_2 \tag{6}$$

Solve to get

$$V_1 = b V_0 \frac{1-a}{1-ab}, \ V_2 = V_0 \frac{1-a}{1-ab}$$

$$V_1 = b V_0 \frac{1-a}{1-ab}$$
, $V_2 = V_0 \frac{1-a}{1-ab}$, with $a = e^{-T_1/\tau}$, $b = e^{-T_2/\tau}$. $V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0$, $V_C^{(2)}(t) = V_2 e^{-(t-T_1)/\tau}$.

$$V_1 = b V_0 \frac{1-a}{1-ab}$$
, $V_2 = V_0 \frac{1-a}{1-ab}$, with $a = e^{-T_1/\tau}$, $b = e^{-T_2/\tau}$.

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0, \quad V_C^{(2)}(t) = V_2e^{-(t-T_1)/\tau}.$$

Current calculation:

$$V_1 = b V_0 \frac{1-a}{1-ab}, \quad V_2 = V_0 \frac{1-a}{1-ab}, \text{ with } a = e^{-T_1/\tau}, \ b = e^{-T_2/\tau}.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0, \quad V_C^{(2)}(t) = V_2e^{-(t-T_1)/\tau}.$$

Current calculation:

Method 1:

$$i_C(t) = C \frac{dV_C}{dt}$$
 (home work)

$$V_1 = b V_0 \frac{1-a}{1-ab}, \quad V_2 = V_0 \frac{1-a}{1-ab}, \quad \text{with} \quad a = e^{-T_1/\tau}, \quad b = e^{-T_2/\tau}.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0, \quad V_C^{(2)}(t) = V_2e^{-(t-T_1)/\tau}.$$

Current calculation:

Method 1:

$$i_C(t) = C \frac{dV_C}{dt}$$
 (home work)

Method 2:

Start from scratch!

$$V_1 = b \ V_0 \ \frac{1-a}{1-ab}, \ \ V_2 = V_0 \ \frac{1-a}{1-ab}, \ \ \text{with} \ \ \ a = e^{-T_1/ au}, \ \ b = e^{-T_2/ au}.$$

$$V_C^{(1)}(t) = -(V_0 - V_1)e^{-t/\tau} + V_0, \quad V_C^{(2)}(t) = V_2e^{-(t-T_1)/\tau}.$$

Current calculation:

Method 1:

$$i_C(t) = C \frac{dV_C}{dt}$$
 (home work)

Method 2:

Start from scratch!

$$0 < t < T_1$$
 Let $i_C^{(1)}(t) = A e^{-t/ au} + B$

$$\begin{array}{|c|c|}\hline 0 < t < T_1 \\ \hline l_C^{(1)}(0) = I_1, \ i_C^{(1)}(\infty) = 0 \\ \hline \rightarrow B = 0, \ A = I_1. \end{array}$$

$$\boxed{0 < t < T_1} \quad \text{Let } i_C^{(1)}(t) = A e^{-t/\tau} + B$$

$$i_C^{(1)}(0) = I_1, i_C^{(1)}(\infty) = 0$$

$$\rightarrow B = 0, A = I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau}$$
(1)

$$\begin{array}{|c|c|} \hline 0 < t < T_1 \\ \hline l_C^{(1)}(t) = A e^{-t/\tau} + B \\ \hline l_C^{(1)}(0) = l_1, \ l_C^{(1)}(\infty) = 0 \\ \hline \rightarrow B = 0, \ A = l_1. \\ \hline
\end{array}$$

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/ au} + B'$

$$\begin{array}{|c|c|} \hline 0 < t < T_1 \\ \hline I_C^{(1)}(t) = A e^{-t/\tau} + B \\ \hline i_C^{(1)}(0) = I_1, \ i_C^{(1)}(\infty) = 0 \\ \hline \rightarrow B = 0, \ A = I_1.
\end{array}$$

$$B = 0, A = I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau}$$
(1)

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$ $i_C^{(2)}(T_1) = -l_2$, $i_C^{(2)}(\infty) = 0$

$$\boxed{0 < t < T_1} \text{ Let } i_C^{(1)}(t) = A e^{-t/\tau} + B$$
$$i_C^{(1)}(0) = I_1, \ i_C^{(1)}(\infty) = 0$$

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$
 $i_C^{(2)}(T_1) = -l_2, i_C^{(2)}(\infty) = 0$

$$\to B' = 0$$
, $A' = -I_2 e^{T_1/\tau}$.

$$0 < t < T_1$$
 Let $i_C^{(1)}(t) = A e^{-t/\tau} + B$
$$i_C^{(1)}(0) = h, i_C^{(1)}(\infty) = 0$$

$$i_C^{(1)}(0) = I_1, i_C^{(1)}(\infty) = 0$$

 $\rightarrow B = 0, A = I_1.$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau}$$
 (1)

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/ au} + B'$

$$i_C^{(2)}(T_1) = -I_2, \ i_C^{(2)}(\infty) = 0$$

$$ightarrow B' = 0$$
, $A' = -I_2 e^{T_1/\tau}$.

$$i_C^{(2)}(t) = -I_2 e^{-(t-T_1)/\tau}$$
 (2)

$$0 < t < T_1$$
 Let $i_C^{(1)}(t) = A e^{-t/\tau} + B$

$$i_C^{(1)}(0) = I_1, \ i_C^{(1)}(\infty) = 0$$

$$\rightarrow B = 0, A = I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau} \tag{1}$$

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$

$$i_C^{(2)}(T_1) = -I_2, i_C^{(2)}(\infty) = 0$$

$$\Rightarrow R' = 0, A' = -I_2, \sigma^{T_1/T}$$

$$ightarrow B' = 0$$
, $A' = -I_2 e^{T_1/\tau}$.

$$i_C^{(2)}(t) = -I_2 e^{-(t-T_1)/\tau}$$
 (2)

$$i_C^{(1)}(T_1) - i_C^{(2)}(T_1) = \Delta = V_0/R,$$

$$\boxed{0 < t < T_1} \quad \text{Let } i_C^{(1)}(t) = A e^{-t/\tau} + B$$

$$i_C^{(1)}(0) = I_1, \ i_C^{(1)}(\infty) = 0$$

$$\rightarrow B = 0, \ A = I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau}$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau}$$
 (1)

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$

$$i_C^{(2)}(T_1) = -l_2, i_C^{(2)}(\infty) = 0$$

$$\to B' = 0, A' = -l_2 e^{T_1/\tau}.$$

$$i_C^{(2)}(t) = -l_2 e^{-(t-T_1)/\tau}$$
 (2)

Now use the conditions:
$$i_C^{(1)}(T_1) - i_C^{(2)}(T_1) = \Delta = V_0/R$$
, $i_C^{(1)}(0) - i_C^{(2)}(T_1 + T_2) = \Delta = V_0/R$.

$$\begin{array}{|c|c|c|}
\hline
0 < t < T_1
\end{array}
\text{ Let } i_C^{(1)}(t) = A e^{-t/\tau} + B$$

$$i_C^{(1)}(0) = I_1, \ i_C^{(1)}(\infty) = 0$$

$$\rightarrow B = 0, \ A = I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau}$$
 (1)

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$

$$i_C^{(2)}(T_1) = -l_2, i_C^{(2)}(\infty) = 0$$

$$\to B' = 0, A' = -l_2 e^{T_1/\tau}.$$

$$i_C^{(2)}(t) = -l_2 e^{-(t-T_1)/\tau}$$
 (2)

Now use the conditions:
$$T_1$$
 T_2 I_2 I_2 I_2 I_3 I_4 I_5 I_5

(2)

$$0 < t < T_1$$
 Let $i_C^{(1)}(t) = A e^{-t/\tau} + B$

$$i_C^{(1)}(0) = I_1, i_C^{(1)}(\infty) = 0$$

 $\rightarrow B = 0, A = I_1.$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau} \tag{1}$$

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$

$$i_C^{(2)}(T_1) = -I_2, i_C^{(2)}(\infty) = 0$$

 $\Rightarrow B' = 0, A' = -I_2 e^{T_1/\tau}.$

$$i_c^{(2)}(t) = -l_2 e^{-(t-T_1)/\tau}$$

$$i_C^{(1)}(T_1) - i_C^{(2)}(T_1) = \Delta = V_0/R,$$

$$i_C^{(1)}(0) - i_C^{(2)}(T_1 + T_2) = \Delta = V_0/R.$$

$$I_1 e^{-T_1/\tau} - (-I_2) = \Delta$$
 (3)

$$I_1 - (-I_2 e^{-(T_1 + T_2 - T_1)/\tau}) = \Delta$$
 (4)

$$i_C^{(1)}(0) = I_1, i_C^{(1)}(\infty) = 0$$

$$\rightarrow B = 0, A = I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau}$$
 (1)

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/ au} + B'$

$$i_C^{(2)}(T_1) = -l_2, i_C^{(2)}(\infty) = 0$$

 $\rightarrow B' = 0, A' = -l_2 e^{T_1/\tau}.$

$$i_C^{(2)}(t) = -I_2 e^{-(t-T_1)/\tau}$$
 (2)

$$i_C^{(1)}(T_1) - i_C^{(2)}(T_1) = \Delta = V_0/R,$$

$$i_C^{(1)}(0) - i_C^{(2)}(T_1 + T_2) = \Delta = V_0/R.$$

$$I_1 e^{-T_1/\tau} - (-I_2) = \Delta$$
 (3)

$$I_1 - (-I_2 e^{-(T_1 + T_2 - T_1)/\tau}) = \Delta$$
 (4)

$$a I_1 + I_2 = \Delta \tag{5}$$

$$0 < t < T_1$$
 Let $i_C^{(1)}(t) = A e^{-t/ au} + B$

$$i_C^{(1)}(0) = I_1, i_C^{(1)}(\infty) = 0$$

$$\rightarrow B = 0, A = I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau} \tag{1}$$

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$

$$i_C^{(2)}(T_1) = -I_2, \ i_C^{(2)}(\infty) = 0$$

$$\rightarrow B' = 0, A' = -I_2 e^{T_1/\tau}.$$

$$i_C^{(2)}(t) = -I_2 e^{-(t-T_1)/\tau}$$
 (2)

$$i_C^{(1)}(T_1) - i_C^{(2)}(T_1) = \Delta = V_0/R$$

$$i_C^{(1)}(0) - i_C^{(2)}(T_1 + T_2) = \Delta = V_0/R.$$

$$I_1 e^{-T_1/\tau} - (-I_2) = \Delta$$
 (3)

$$I_1 - (-I_2 e^{-(T_1 + T_2 - T_1)/\tau}) = \Delta$$
 (4)

$$a I_1 + I_2 = \Delta \tag{5}$$

$$I_1 + b I_2 = \Delta \tag{6}$$

$$\boxed{0 < t < T_1}$$
 Let $i_C^{(1)}(t) = A e^{-t/\tau} + B$

$$i_C^{(1)}(0) = I_1, i_C^{(1)}(\infty) = 0$$

$$\rightarrow B=0, A=I_1.$$

$$i_C^{(1)}(t) = I_1 e^{-t/\tau} \tag{1}$$

$$T_1 < t < T_2$$
 Let $i_C^{(2)}(t) = A' e^{-t/\tau} + B'$

$$i_C^{(2)}(T_1) = -I_2, \ i_C^{(2)}(\infty) = 0$$

$$\rightarrow B' = 0, A' = -I_2 e^{T_1/\tau}.$$

$$i_C^{(2)}(t) = -I_2 e^{-(t-T_1)/\tau}$$
 (2)

$$i_C^{(1)}(T_1) - i_C^{(2)}(T_1) = \Delta = V_0/R,$$

$$i_C^{(1)}(0) - i_C^{(2)}(T_1 + T_2) = \Delta = V_0/R.$$

$$I_1 e^{-T_1/\tau} - (-I_2) = \Delta$$
 (3)

$$I_1 - (-I_2 e^{-(T_1 + T_2 - T_1)/\tau}) = \Delta \tag{4}$$

$$a I_1 + I_2 = \Delta \tag{5}$$

$$I_1 + b I_2 = \Delta \tag{6}$$

Solve to get

$$I_1 = \Delta \frac{1-b}{1-ab}$$
, $I_2 = \Delta \frac{1-a}{1-ab}$

$$(a = e^{-T_1/\tau}, b = e^{-T_2/\tau})$$

Charge conservation:

$$i_C = \frac{dQ}{dt} = C \frac{dV_C}{dt}$$

Charge conservation:

Periodic steady state: All quantities are periodic, i.e.,

$$x(t_0+T)=x(t_0)$$

$$i_C = \frac{dQ}{dt} = C \frac{dV_C}{dt}$$

Charge conservation:

Periodic steady state: All quantities are periodic, i.e.,

$$x(t_0+T)=x(t_0)$$

Capacitor charge: $Q(t_0 + T) = Q(t_0)$

$$i_C = \frac{dQ}{dt} = C \frac{dV_C}{dt}$$

Charge conservation:

Periodic steady state: All quantities are periodic, i.e.,

$$x(t_0+T)=x(t_0)$$

Capacitor charge: $Q(t_0 + T) = Q(t_0)$

$$i_C = rac{dQ}{dt}
ightarrow Q = \int i_C dt.$$

2.....

$$i_C = \frac{dQ}{dt} = C \frac{dV_C}{dt}$$

Charge conservation:

Periodic steady state: All quantities are periodic, i.e., $x(t_0 + T) = x(t_0)$

Capacitor charge:
$$Q(t_0 + T) = Q(t_0)$$

$$i_C = \frac{dQ}{dt} \rightarrow Q = \int i_C dt.$$

$$Q(t_0 + T) = Q(t_0) \rightarrow Q(t_0 + T) - Q(t_0) = 0$$

$$ightarrow \int_{t_0}^{t_0+T} i_{\mathcal{C}} \ dt = 0.$$

Unit: Farad (F)

$$i_C = \frac{dQ}{dt} = C \frac{dV_C}{dt}$$

Charge conservation:

Periodic steady state: All quantities are periodic, i.e., $x(t_0+T)=x(t_0)$

Capacitor charge: $Q(t_0 + T) = Q(t_0)$

$$i_C = \frac{dQ}{dt} \rightarrow Q = \int i_C dt.$$

$$Q(t_0+T)=Q(t_0)\to Q(t_0+T)-Q(t_0)=0$$

$$\to \int_{t_0}^{t_0+T} i_C \ dt = 0.$$

$$\int_{0}^{T} i_{C} dt = 0 \to \int_{0}^{T_{1}} i_{C} dt + \int_{T_{1}}^{T_{1} + T_{2}} i_{C} dt = 0$$

$$\to \int_{T_{2}}^{T_{1} + T_{2}} i_{C} dt = -\int_{0}^{T_{1}} i_{C} dt.$$

$$i_C = \frac{dQ}{dt} = C \frac{dV_C}{dt}$$

M. B. Patil, IIT Bombay

