



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ACA122962

AFWAL-TR-82 - 4069





# TPE331/T76 TURBOPROP PROPULSION ENGINE DURABILITY

GARRETT TURBINE ENGINE COMPANY 111 S. 34TH ST., P.O. BOX 5217 PHOENIX, AZ 85010

**AUGUST 1982** 

FINAL REPORT



C EILE COPY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO8 5433 01 03

#### NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related there to.

This technical report has been reviewed and is approved for publication.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

FOR THE COMMANDER

AFWAL/MLLN

RONALD P. SINCAVAGE, 2LT/USAF

METALS Behavior Branch

Metals and Ceramics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/MLLN, W-P AFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

| REPORT DOCUMENT                                        | READ INSTRUCTIONS BEFORE COMPLETING FORM |                                                                |
|--------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 1. REPORT NUMBER                                       | 2. GOVT ACCESSION NO.                    | 3. RECIPIENT'S CATALOG NUMBER                                  |
| AFWAL-TR-82-4069                                       | 00-A122962                               |                                                                |
| 4. TITLE (and Subtitle)                                |                                          | S. TYPE OF REPORT & PERIOD COVERES                             |
| TPE331/T76 Turboprop Propuls                           | Final Report                             |                                                                |
| Engine Durability                                      | ;                                        | S. PERFORMING ORG. REPORT NUMBER                               |
|                                                        |                                          | 21-3640(22)                                                    |
| 7. AUTHOR(a)                                           |                                          | S. CONTRACT OR GRANT NUMBER(-)                                 |
| Larry P. Wynn                                          |                                          | F33615-81-C-5016                                               |
| 9. PERFORMING ORGANIZATION NAME AND                    |                                          | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| Garret Turbine Engine Compan                           | ~                                        | P.E. 61102F                                                    |
| 111 S. 34 St., P.O. Box 5217<br>Phoenix, Arizona 85010 |                                          | Project 2303Q316                                               |
| 11. CONTROLLING OFFICE NAME AND ADD                    | DES                                      | 12. REPORT DATE                                                |
| Materials Laboratory (AFWAL/                           | <del>-</del>                             | August 1982                                                    |
| AF Wright Aeronautical Labor                           |                                          | 13. NUMBER OF PAGES                                            |
| Wright-Patterson AFB, OH 45                            |                                          | 186                                                            |
| 14. MONITORING AGENCY NAME & ADDRESS                   | S(II dillerent from Controlling Office)  | 15. SECURITY CLASS. (of this report)                           |
|                                                        |                                          | Unclassified                                                   |
|                                                        |                                          | 15a, DECLASSIFICATION/DOWNGRADING                              |

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) aircraft propulsion engine durability

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report on retirement-for-cause is based on the Garrett TPE331/T76 turboprop engine second-stage turbine wheel. This second-stage turbine wheel is an
integrally bladed wheel with continuous rim slots between each blade at the rim.
The slot is ended with a circular hole. The slot and hole reduce thermal and
centrifugal stresses existing at the heated outer rim and extend turbine
low-cycle-fatigue life. This program was planned to develop criteria from
examination and analysis of field service wheels that would allow the

DD TORM 1473 EDITION OF 1 NOV 65 IS OSSOLETE

Air Force to define how much life remained in the wheel with an observed crack.

The investigated wheel displayed significant scatter in cycles to initiate a given crack size. This scatter was traceable to the large variation in grain size at the rim of these cast integrally bladed wheels. Crack propagation analysis was able to predict the observed crack-growth rate. However, no correlation between crack initiation and usage could be identified during this program that would aid implementation of retirement-for-cause.

| Disc TAP  Unarmounced  Justification  By  Distribution/  Availability Codes  [avail and/or |   | Accession For       |           |  |
|--------------------------------------------------------------------------------------------|---|---------------------|-----------|--|
| Distribution/                                                                              | 1 | NTIS GRAMA DOIC TAP |           |  |
| Totods Items                                                                               | 1 | Distribution/       |           |  |
| Digt Special                                                                               | ! | Digt Special        | AZIC SOPY |  |

# TABLE OF CONTENTS

| 1.0 | Intr       | ODUCTION                                                                                                                                                | Page<br>1-1                  |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 2.0 | SUMM       | ARY AND RECOMMENDATIONS                                                                                                                                 | 2-1                          |
|     |            | Summary<br>Recommendations                                                                                                                              | 2-1<br>2-3                   |
| 3.0 | TECH       | NICAL DISCUSSION                                                                                                                                        | 3-1                          |
|     |            | Component Selection Engine Start Information                                                                                                            | 3-1<br>3-2                   |
|     |            | 3.2.1 Service Definition 3.2.2 Engine Start Peak Temperature Variations 3.2.3 Engine Start Transient Test Data                                          | 3-2<br>3-5<br>3-5            |
|     | 3.3        | Engine Service Information                                                                                                                              | 3-9                          |
|     |            | 3.3.1 Commuter Survey Forms 3.3.2 Customer Survey Results                                                                                               | 3-9<br>3-9                   |
|     | 3.4        | Thermal Analysis                                                                                                                                        | 3-9                          |
|     |            | 3.4.1 Secondary Flow Analysis 3.4.2 Steady State Boundary Condition Analysis 3.4.3 Transient Boundary Condition Scaling 3.4.4 Transient Thermal Results | 3-14<br>3-24<br>3-27<br>3-30 |
|     | 3.5<br>3.6 | Stress Analysis<br>Material Mechanical Properties                                                                                                       | 3-30<br>3-43                 |
|     |            | 3.6.1 LC Procedure for Material Properties 3.6.2 Results of Material Testing                                                                            | 3-43<br>3-56                 |
|     |            | 3.6.2.1 Tensile Properties 3.6.2.2 LCF Properties 3.6.2.3 Cyclic Crack Growth Rate                                                                      | 3-56<br>3-60<br>3-60         |
|     |            | 3.6.2.3.1 Data Reduction 3.6.2.3.2 Discussion                                                                                                           | 3-60<br>3-70                 |
|     |            | 3.6.3 Conclusions of Materials Testing                                                                                                                  | 3-75                         |
|     | 3.7        | Analytical Life Prediction                                                                                                                              | 3-75                         |
|     |            | 3.7.1 Crack Propagation Analysis 3.7.2 Low-Cycle-Fatigue Prediction                                                                                     | 3-75<br>3-76                 |
|     | 3.8        | Turbine Wheel Crack Characterization from Field Service Wheels                                                                                          | 3-93                         |

# TABLE OF CONTENTS (Contd)

|          |                                                          | Page  |
|----------|----------------------------------------------------------|-------|
| 3.9      | Correlation of Cracked Wheels with Analytical Prediction | 3-107 |
|          | 3.9.1 Isolation of Problem Areas in Data<br>Correlation  | 3-107 |
|          | 3.9.1.1 Crack Initiation Determination                   | 3-107 |
| 3.1      | 0 Whirlpit Test                                          | 3-120 |
| APPENDIX |                                                          |       |
| A        | Fluid Boundary Conditions                                | A-1   |
| В        | Secondary Flow Conditions                                | B-1   |
| С        | Summary of Heat Transfer Ratios                          | C-1   |
| D        | Crack Lengths from MA Numbers                            | D-1   |

# LIST OF ILLUSTRATIONS

| <u>Figure</u> | <u>Title</u>                                                                                                                                | Page |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1-1           | Model TPE331 Engine Cross-Section View                                                                                                      | 1-2  |
| 1-2           | Model TPE331 Solid-Rim Turbine Wheel with Typical                                                                                           |      |
|               | Rim-Check Locations                                                                                                                         | 1-4  |
| 1-3           | Model TPE331 Solid-Rim Turbine Wheel Rim Cracks                                                                                             | 1-5  |
| 1-4           | Model TPE331 Solid-Rim Turbine Wheel Rim Cracks                                                                                             | 1-6  |
| 1-5           | Model TPE331 Solid-Rim Turbine Wheel Rim Cracks                                                                                             | 1-7  |
| 1-6           | Model TPE331 Turbine Disks with and without Rim Holes/Slots                                                                                 | 1-8  |
| 1-7           | Forward Face of Model T76 Second-Stage Turbine Wheel P/N868272, S/N 7-13488-3673, Showing Location and Rework of Rivet-Hole Cracks (Arrows) | 1-9  |
| 3-1           | Typical Flight Spectrum                                                                                                                     | 3-3  |
| 3-2           | Start History on the Merlin IV Aircraft Starboard                                                                                           | 3-3  |
| 3-2           | Engine, S/N 03001, January 1973 to January 1973 to January 1974.                                                                            | 3-4  |
| 3-3           | Start-Up Transient ITT Temperatures for L/H Engine APU Starts                                                                               | 3-7  |
| 3-4           | Start-Up Transient ITT Temperatures for R/H Engine APU Starts                                                                               | 3-8  |
| 3-5           | Blade and Disk Geometry                                                                                                                     | 3-25 |
| 3-6           | Schematic Diagram of Disk                                                                                                                   | 3-26 |
| 3-7           | Normalized Temperature Versus Normalized Time for Hot and Cold Starts.                                                                      | 3-31 |
| 3-8           | Percent Speed Versus Normalized Time for Hot and Cold Starts.                                                                               | 3-32 |
| 3-8a          | Disk Temperatures During Light-Off Cold<br>Start/Normal Spike                                                                               | 3-33 |
| 3-8b          | Disk Temperatures During Light-Off Cold Start/Hot Spike                                                                                     | 3-34 |
| 3-8c          | Disk Temperatures During Light-Off Warm<br>Start/Normal Spike                                                                               | 3-35 |
| 3-8đ          | Disk Temperature Take-Off at 180 Seconds to<br>Landing Cold Start/Normal Spike                                                              | 3-36 |
| 3-8e          | Disk Temperatures Take-Off at 500 Seconds to<br>Landing Cold Start/Normal Spike                                                             | 3-37 |

# LIST OF ILLUSTRATIONS (Contd)

| Figure        | <u>Title</u>                                                                                         | Page |
|---------------|------------------------------------------------------------------------------------------------------|------|
| 3-8f          | Disk Temperatures Take-Off at 180 Seconds to Landing Warm Start/Normal Spike                         | 3-38 |
| 3 <b>-</b> 8g | Disk Temperatures Take-Off at 500 Seconds to Landing Warm Start/Normal Spike                         | 3-39 |
| 3-9           | Isometric View of Stress Model                                                                       | 3-40 |
| 3-10          | Meridional View of Stress Model                                                                      | 3-41 |
| 3-11          | Axial View of Stress Model                                                                           | 3-42 |
| 3-12          | Peak Stress During Ignition (Cold Engine)                                                            | 3-45 |
| 3-13          | Peak Stress During Ignition (Cold Engine)                                                            | 3-46 |
| 3-14          | Peak Stress During Ignition (Warm Engine)                                                            | 3-47 |
| 3-15          | Peak Stress During Ignition (Warm Engine)                                                            | 3-48 |
| 3-16          | Peak Stress During Takeoff at 180 Seconds (Cold Engine)                                              | 3-49 |
| 3-17          | Peak Stress During Takeoff at 180 Seconds (Cold Engine)                                              | 3-50 |
| 3-18          | Peak Stress During Takeoff at 500 Seconds (Cold Engine)                                              | 3-51 |
| 3-19          | Peak Stress During Takeoff at 500 Seconds (Cold Engine)                                              | 3-52 |
| 3-20          | Peak Stress During Landing                                                                           | 3-53 |
| 3-21          | Peak Stress During Landing                                                                           | 3-54 |
| 3-22          | Sketch Showing Location of Test Specimens                                                            | 3-57 |
| 3-23          | Small Center Notched Specimen for Compressive CCGR Testing                                           | 3-58 |
| 3-24          | Yield Strength of IN-100                                                                             | 3-62 |
| 3-25          | Ultimate Tensile Strength                                                                            | 3-63 |
| 3-26          | Percent Elongation of IN-100                                                                         | 3-64 |
| 3-27          | Percent Reduction In Area of IN-100, of IN-100                                                       | 3-65 |
| 3-28          | Axial Strain Controlled LCF of IN-100                                                                | 3-67 |
| 3-29          | Axial Strain Controlled LCF of IN-100                                                                | 3-68 |
| 3-30          | Axial Strain Control LCF of IN-100 at 593°C (1100°F)<br>Compared to Baseline at Various Temperatures | 3-69 |

# LIST OF ILLUSTRATIONS (Contd)

| <u> Figure</u> | <u>Title</u>                                                                                      | Page |
|----------------|---------------------------------------------------------------------------------------------------|------|
| 3-31           | Crack Growth Rate Data for IN-100                                                                 | 3-71 |
| 3-32           | Crack Growth Rate Data for IN-100                                                                 | 3-72 |
| 3-33           | Crack Growth Rate Data for IN-100                                                                 | 3-73 |
| 3-34           | Crack Growth Rate Data for IN-100                                                                 | 3-74 |
| 3-35           | Cycles to Failure Versus Crack Length, Turbine Rim<br>Durability, Forward Corner - Principle      | 3-77 |
| 3-36           | Cycles to Failure Versus Crack Length, Turbine Rim<br>Durability, Aft Corner - Principle          | 3-78 |
| 3-37           | Cycles to Failure Versus Crack Length, Turbine Rim<br>Durability, Rivet Retainer - Principle      | 3-79 |
| 3-38           | Crack Length Versus Crack Depth, Turbine Rim<br>Durability, Forward Corner - Principle            | 3-80 |
| 3-39           | Crack Length Versus Crack Depth, Turbine Rim Durability<br>Aft Corner - Principle                 | 3-81 |
| 3-40           | Crack Length Versus Crack Depth, Turbine Rim Durability Rivet Retainer - Principle                | 3-82 |
| 3-41           | Stress Intensity Factor Versus Crack Depth, Turbine<br>Durability, Forward Corner - Principle     | 3-83 |
| 3-42           | Stress Intensity Factor Versus Crack Depth, Turbine<br>Rim Durability, Aft Corner - Principle     | 3-84 |
| 3-43           | Stress Intensity Factor Versus Crack Depth, Turbine<br>Rim Durability, Rivet Retainer - Principle | 3-85 |
| 3-44           | Crack Face at A Versus Crack Length at B                                                          | 3-87 |
| 3-45           | Crack Face at A Versus Crack Face at C                                                            | 3-88 |
| 3-46           | Crack Face at A Versus Crack Length at D                                                          | 3-89 |
| 3-47           | Crack Face at A Versus Crack Face at E                                                            | 3-90 |
| 3-48           | Crack Face at A Versus Crack Length at F                                                          | 3-91 |
| 3-49           | Crack Face at A Versus Crack Face at G                                                            | 3-92 |
| 3-50           | Crack Locations and Dimensions                                                                    | 3-94 |
| 3-51           | Crack Face at A Versus Crack Length at B.                                                         | 3-95 |
| 3-52           | Crack Face at A Versus Crack Face at C                                                            | 3-96 |
| 3-53           | Crack Face at A Versus Crack Length at D                                                          | 3-97 |
| 2-54           | Crack Page at & Vergue Crack Page at P                                                            | 3-00 |

# LIST OF ILLUSTRATIONS (Contd)

| Figure | <u>Title</u>                                                                                                       | Page  |
|--------|--------------------------------------------------------------------------------------------------------------------|-------|
| 3-55   | Crack Face at A Versus Crack Length at F                                                                           | 3-99  |
| 3-56   | Crack Face at A Versus Crack Face at G                                                                             | 3-100 |
| 3-57   | Crack Length at A Versus Crack Depth at A                                                                          | 3-101 |
| 3-58   | Crack Length at B Versus Crack Depth at B                                                                          | 3-102 |
| 3-59   | Crack Length at C Versus Crack Depth at C                                                                          | 3-103 |
| 3-60   | Crack Length at D Versus Crack Depth at D                                                                          | 3-104 |
| 3-61   | Crack Length at E Versus Crack Depth at E                                                                          | 3-105 |
| 3-62   | Crack Length at F Versus Crack Depth at F                                                                          | 3-106 |
| 3-63   | Crack Locations and Directions                                                                                     | 3-108 |
| 3-64   | Cycles Versus Maximum Cracks Forward Corner - Equivalent                                                           | 3-109 |
| 3-65   | Cycles Versus Maximum Crack Aft Corner - Equivalent                                                                | 3-110 |
| 3-66   | Cycles Versus All Cracks Forward Corner - Equivalent                                                               | 3-111 |
| 3-67   | Cycles Versus All Cracks Aft Corner - Equivalent                                                                   | 3-112 |
| 3-68   | Turbine Rim Durability - Aft Corner                                                                                | 3-113 |
| 3-69   | Turbine Rim Durability - Forward Corner                                                                            | 3-115 |
| 3-70   | Turbine Rim Durability - Rivet Retainer                                                                            | 3-116 |
| 3-71   | Turbine Rim Durability - Rivet Retainer                                                                            | 3-117 |
| 3-72   | Turbine Rim Durability - Forward Corner                                                                            | 3-118 |
| 3-73   | Turbine Rim Durability - Aft Corner                                                                                | 3-119 |
| 3-74   | Crack Growth Data from Whirlpit Test Wheel 2197                                                                    | 3-122 |
| 3-75   | Crack Growth Data from Whirlpit Test Wheel 4275                                                                    | 3-123 |
| 3-76   | Typical Stress Intensity Factor Range Versus Incremental Crack Growth Rate for IN-100 Castings at Room Temperature | 3-124 |

# LIST OF TABLES

| <u>Table</u> | <u>Title</u>                                                                  | Page  |
|--------------|-------------------------------------------------------------------------------|-------|
| 3-1          | Peak Light-off Temperatures of Merlin and Metro<br>Aircraft                   | 3-6   |
| 3-2          | Computer Airline Questionnaire for Turbine Wheel Durability Program           | 3-10  |
| 3-3          | Platform Heat Transfer Coefficients                                           | 3-15  |
| 3-4          | Blade Heat Transfer Coefficients                                              | 3-16  |
| 3-5          | Blade Adiabatic Wall Temperatures                                             | 3-17  |
| 3-6          | Second Stage Disk Heat Transfer Coefficients                                  | 3-18  |
| 3-7          | Second Stage Adiabatic Wall Temperatures                                      | 3-19  |
| 3-8          | Second Stage Disk Bore Heat Transfer Coefficients                             | 3-20  |
| 3-9          | Heat Transfer Coefficients in Rivet Hole                                      | 3-21  |
| 3-10         | Heat Transfer - Coefficient Ratios - Cold Start                               | 3-22  |
| 3-11         | Heat Transfer Coefficient Ratios - Hot Start                                  | 3-22  |
| 3-12         | Transient Heat Transfer Coefficient Ground Idle to Maximum Power Acceleration | 3-23  |
| 3-13         | Transient Temperature Ratios                                                  | 3-23  |
| 3-14         | Transient Stress Analysis Peak Stresses                                       | 3-44  |
| 3-15         | Listing of Half Wheels                                                        | 3-55  |
| 3-16         | Room Temperature Tensile Properties                                           | 3-59  |
| 3-17         | Tensile Test Results (Garrett)                                                | 3-61  |
| 3-18         | LCF Data Summary                                                              | 3-66  |
| 3-19         | LCF Life Prediction Summary                                                   | 3-86  |
| 3-20         | Crack Sizes in Cyclic Whirlpit Test                                           | 3-121 |

#### 1.0 INTRODUCTION

The U.S. Air Force Materials Laboratory, in its continuing effort to control support costs for engine replacement hardware, undertook the task to define the data base and technology necessary to implement a retirement-for-cause program. A major part of the initial objectives of retirement-for-cause was to define useful disk life remaining after a crack had been identified. This objective requires that a predictable and repeatable process be found to identify crack initiation and predict crack growth after initiation of the crack. Large economic returns are foreseen if identifiable disk life exists after discovery of a crack. Procedures needed to make retirement-for-cause a viable approach for the Air Force fleet indicate defining a crack analysis model and a switched data base to which the model can be applied.

To meet these objectives, the Garrett Turbine Engine Company (then called AiResearch) entered into this contract with the Materials Laboratory whereby the large data base existing from commuter airline use of the Garrett TPE331/T76 engine could be analyzed with widely available analytical models (including models the USAF contracted with Garrett to develop) to establish retirement-for-cause principles.

The Model TPE331/T76 turboprop propulsion engines have been in production for about 13 years. To date, over 6000 engines are in commercial flight service as power plants for commuter airlines, executive aircraft, crop dusters, and helicopters (TSE331). The military version, T76, is the power plant in the North American Rockwell OV10A, used by the Navy, Marine Corps, and Air Force.

The power section of this engine, shown in Figure 1-1, consists of two centrifugal compressor stages and three axial turbine stages. Early development testing with the conventional continuous rim turbine



Figure 1-1. Model TPE331 Engine Cross-Section View.

21-3640(22) 1-2 wheels resulted in the identification of multiple rim cracks after numerous engine start-stop cycles. These rim cracks are shown in Figures 1-2 through 1-5. To minimize the high transient compressive stress at the rim, a continuous slot was introduced between the blades at the rim. The slot was terminated by a circular hole. Figure 1-6 shows three turbine stages, one of which has the slots and holes. A rivet was inserted into each hole to minimize bypass gas leakage. This concept was patented by Garrett and has proven to substantially increase the crack-free LCF life of the rim. Furthermore, crack-propagation life has been considerably extended.

Nonetheless, rim cracks still occur with these turbine wheels after moderate field usage. Figure 1-7 is the forward face of the second-stage turbine wheel with arrows pointing to cracks at the rim holes. The tolerance of disk structural integrity to these cracks has been demonstrated by their routinely observed presence when disks are retired from field service.

The rim-crack problem for the first two turbine stages is recognized to be the result of low-cycle-fatigue. Field service usage has substantiated that a portion of the usable disk life exists well after crack initiation. Analytical methods applied to this problem prior to this program predicted acceptable disk life to be beyond the service life limitations now imposed. The program described herein was to achieve the following objectives:

- o Rigorously quantify the local rim three-dimensional stress field, both transient and steady-state, resulting from the imposed centrifugal and thermal fields.
- o Analytically predict rim-crack initiation and propagation rates considering combined LCF and creep damage.



TYPE OF CRACK

A —— RIM

B —— EDGE

C —— FILLET

D —— PLATFORM

E —— PARTING LINE

F —— EDGE OD

G —— EDGE ID

H —— EDGE OD

AROUND TO
INSIDE

I —— ACROSS FACE

Figure 1-2. Model TPE331 Solid-Rim Turbine Wheel With Typical Rim-Crack Locations.



Figure 1-3. Model TPE331 Solid-Rim Turbine Wheel Rim Cracks.



Figure 1-4. Model TPE331 Solid-Rim Turbine Wheel Rim Cracks.



Figure 1-5. Model TPE331 Solid-Rim Turbine Wheel Rim Cracks.



Figure 1-6. Model TPE331 Turbine Disks With and Without Rim Holes/Slots.



Figure 1-7. Forward Face of Model T76 Second-Stage Turbine Wheel Part 868272, Serial No. 7-13488-3673, Showing Location and Rework of Rivet-Hole Cracks (Arrows).

- o Verify analytical predictions with disks retired from field usage for which cycle, mission profile, and temperature histories are known.
- o Refine analytical correlations and establish a pragmatic design procedure.
- o As a future option, further verify analytical predictions of disk life by imposing additional cycles on selected disks beyond the maximum cycles to which disks have operated.

The generalized benefits to be achieved from this effort:

- o Quantified prediction of turbine disk usable-life potential for Model TPE331/T76 turboprop engines from which attendant service life increase and ancillary economic return can be realized.
- o Predictive design methodology that can be rigorously applied to future generation turbine disk designs and by which damage tolerance can be reliably predicted.

#### 2.0 SUMMARY AND RECOMMENDATIONS

#### 2.1 Summary

At the initiation of this program, it was believed that the variation of light-off temperature would have a major impact on the scatter of the fatigue crack initiation of the subject turbine wheel. For this reason, a great deal of effort was expended to determine the thermal boundary conditions to be used in this analysis. The result of this work concluded that light-off temperature variations had a minor effect on the actual variations in stress level. The primary stress variation driver was whether or not the engine was started for the first time of the day when the metal temperatures were ambient, or whether the engine was restarted after a delay of approximately 15 minutes.

A survey of commuter users determined how the damage from these two different starts accumulated to cause fatigue damage.

A test program was initiated to determine the low-cycle-fatigue and crack-propagation characteristics of the material for specimens taken from actual cast wheels. This test program consisted of smooth-bar-fatigue tests and center panel crack-propagation tests.

A three-dimensional stress and thermal analysis was made for the turbine for both steady-state and transient conditions. This analysis was the basis for all fatigue and crack-propagation calculations.

A crack-propagation analysis was made using a progam called "BIGIF." The results of this analysis gave the life remaining in the wheel, given an initial crack size. However, definition of crack initiation became the major drawback in the correlation of crack data from field service wheels and analysis.

Garrett does utilize TPE331 turbine disks in the manner desired under retirement-for-cause. However, no intermediate inspection is scheduled between crack initiation and crack rework or wheel removal. Therefore, in order to verify the analytical crack-propagation results, a program measuring the sizes and location of cracks in wheels retired from field service was conducted. The program measured the cracks at designated locations around the rivet hole. This was accomplished by cracking open each slot of each wheel and recording the crack depth and length. This data provided information on crack sizes in wheels for which cyclic history was known.

Many cracks were measured on wheels destructively examined for this program. The key problem encountered was the inability to separate crack initiation from crack propagation. Ideally if the crack initiation point were known for the cracks examined, a correlation between actual and analytical results could be obtained. With this correlation, analytical procedures and limits could be refined to a point of increased confidence in crack-propagation prediction.

Lacking the qualitative information on crack initiation needed for a straightforward correlation of the crack propagation, a number of approaches were made to statistically determine the initiation cycles and crack size.

These approaches to determine crack initiation statistically are presented in this report, but the results are inconclusive. The field wheel cracks can be bounded by the analysis, so while the data does not dispute the analysis, the large scatter does not allow identification or removal of errors in analysis or basic assumptions. In this regard, Garrett was unable to define the procedures needed to establish retirement-for-cause (RFC).

Garrett attempted to experimentally define the critical crack size and to allow an extension of the allowable number of cycles on the TPE331/T76 wheel. A whirlpit test of two wheels was undertaken. One wheel failed in a region of no interest to this program, and the other ran for another 7500 cycles without breaking. lead Garrett to the following recommendations.

### 2.2 Recommendations

The USAF has been successful in developing RFC principles for extremely fine-grained materials. The course-grained materials used by Garrett for integrally bladed turbine wheels cannot apply these same principles. In order to establish RFC principles applicable with coarse-grained materials, Garrett recommends that the following steps be taken, singly or in groups:

- Apply the existing models and methodology to an accelerated (a) endurance test (or simulated engine cycle test) where both the crack initiation and propagation phases were covered by multiple inspections that included measurement of crack size.
- Apply the existing models and methodology to a whirlpit test (b) with multiple inspections covering crack initiation and propagation phases. The test specimens must be a specifically designed wheel to avoid unwanted failure at other locations.

pata from either, or both, of these steps could be used to establish RFC principles for other than fine-grained materials.

#### 3.0 TECHNICAL DISCUSSION

#### 3.1 Component Selection

The second-stage turbine wheel for the Model TPE331/T76 was selected as the component to study for this hot-section durability analysis for the following reasons:

- o This turbine wheel represents a component from an engine that has seen experience in both commercial and military service. To date, about 13-million fleet hours have been accrued in commercial service alone.
- One of the life-limiting factors in restricting the life of these turbines to 4240 hours or 4900 cycles in commercial service has been the high-temperature, low-cycle-fatigue cracking in the holes at the rim of the disk. These holes were designed to reduce stresses due to thermal gradients encountered during engine start.
- o The turbine configuration is well defined with a long history of operation under several definable mission profiles for both commercial and military operations.
- The uprated versions of the Model TPE331 are used on popular aircraft such as the Cessna Conquest. The present production rate is about 60 engines per month and is increasing to meet a projected delivery totaling 5500 engines by the end of 1982.
- o The selected turbine wheel is an integral one-piece vacuum investment casting of IN100. The one-piece casting has been developed to minimize turbine costs.

The time-dependent thermal analysis of the second-stage turbine disk was conducted for a representative service cycle, as shown in Figure 3-1, comprising engine light-off and acceleration to ground-idle, acceleration to maximum takeoff power, and the cycle duration from takeoff through landing, engine shutdown, and thermal soakback. The engine-start transient from a residually hot engine is known to be much more benign to the turbine disk rim than from an isothermally ambient temperature engine with respect to low-cycle fatigue. Hence, thermal analysis was conducted for the two initial temperature conditions, where the hot-engine start will correspond to disk temperatures resulting 15 minutes after the previous shutdown. These results were used for correlation of damage severity of hot and cold-engine starts with field engines.

Treatment of the variation in light-off peak temperature will use the spectral distribution of measured temperatures shown in Figure 3-2, as well as data obtained primarily for this program from flight tests.

# 3.2 Engine Start and Service Information

# 3.2.1 Engine Service Definition

In order to obtain as much data as possible on engine flight conditions and start histories, a two-fold program was pursued. The first step was to record the interstage turbine temperature and speed as a function of time on an in-service aircraft with TPE331 engines. The second step was to send questionnaires to the commercial users of this engine, asking such questions as:

- o Duration of flight
- o Which engine starts first
- o What power source is used to start the engine
- o Altitude spectrum



Figure 3-1. Typical Flight Spectrum.

GAS PLOW TEMPERATURE



Figure 3-2. Start History on the Merlin IV Aircraft Starboard Engine, Serial No. 03001, January 1973 to January 1974.

- o Duration of taxi
- o Take-off and cruise
- o Outside ambient conditions.

# 3.2.2 Engine Start Peak Temperature Variations

To date, peak light-off temperatures for over 1000 engine starts have been recorded during a year of service on the Garrett Merlin and Metro aircraft. This data has been tabulated and is shown in Table 3-1. Some interesting and possible significant results that can be seen from this data are: the Merlin aircraft has a peak light-off temperature about 50°C (122°F) colder than the Metro aircraft; for both the Metro and Merlin, the left-hand engine is hotter by about 30° to 40°C (86° to 104°F) than the right-hand engine; and a battery start is generally about 60°C (140°F) hotter than an APU start. This information was used in establishing the correlation between predicted crack initiation and the actual crack history of an engine with known service histories.

# 3.2.3 Engine Start Transient Test Data

Another aspect of the data acquisition program is the recording of start temperatures for the Merlin and Metro aircraft as a function of time. This data provided the engine gas temperatures as a function of time and was input to the transient thermal analysis. Data from nine engine starts were recorded for both left and right engines. A sample of this data is shown in Figures 3-3 and 3-4. From this data, it is possible to obtain a range of times required for the engine to reach peak temperature. Comparing the peak temperature of these limited number of starts with the large number of starts (as described in the preceding paragraph) gave statistical significance to the data obtained for the transient study.

TABLE 3-1. PEAK LIGHT-OFF TEMPERATURES OF MERLIN AND METRO AIRCRAFT.

#### METRO II ONLY

| Engine  | Start | Average<br>°C | Peak<br>*C | Low<br>•C | St. Dev. |
|---------|-------|---------------|------------|-----------|----------|
| L/H     | APU   | 1018.7        | 1095.      | 905.      | 31.98    |
| L/H     | BATT  | 1048.2        | 1127.      | 990.      | 34.48    |
| R/H     | APU   | 976.3         | 1085.      | 910.      | 30.97    |
| R/H     | BATT  | 1046.6        | 1097.      | 991.      | 26.22    |
| LER (2) | APU   | 997.7         | 1095.      | 905.      | 37.94    |
| LGR (2) | BATT  | 1047.7        | 1127.      | 990.      | 31.89    |
| L/H     | ALL   | 1025.9        | 1127.      | 905.      | 34.92    |
| R/H     | ALL   | 985.9         | 1097.      | 910.      | 38.77    |
| ALL     | ALL   | 1007.4        | 1127.      | 905.      | 41.79    |

#### MERLIN IV ONLY

| Engine  | Start | Average<br>°C | Peak<br>*C | Low<br>•C | St. Dev. |
|---------|-------|---------------|------------|-----------|----------|
| L/H     | APU   | 964.5         | 1085.      | 890.      | 28.06    |
| L/H     | BATT  | 1036.3        | 1090.      | 950.      | 32.65    |
| R/H     | APU   | 930.9         | 1050.      | 870.      | 30.07    |
| R/H     | BATT  | 1004.7        | 1060.      | 910       | 37.34    |
| LGR (2) | APU   | 947.8         | 1085.      | 870.      | 33.56    |
| LGR (2) | BATT  | 1021.3        | 1090.      | 910       | 38.19    |
| L/H     | ALL   | 976.2         | 1090.      | 890       | 39.20    |
| R/H     | ALL   | 942.1         | 1060.      | 870       | 40.96    |
| ALL     | ALL   | 959.4         | 1090.      | 870.      | 43.53    |

#### METRO II AND MERLIN IV

| Engine  | Start | Average<br>°C | Peak<br>°C | Low<br>C | St. Dev. |
|---------|-------|---------------|------------|----------|----------|
| LER (4) | APU   | 971.4         | 1095.      | 870.     | 43.53    |
| L&R (4) | BATT  | 1035.4        | 1127.      | 910.     | 37.26    |
| ALL     | TOTAL | 982.7         | 1127.      | 870.     | 48.96    |



Start-Up Transient ITT Temperatures for L/H Engine APU Starts. Figure 3-3.



Start-Up Transient ITT Temperatures for R/H Engine APU Starts. Figure 3-4.

### 3.3 Engine Service Information

#### 3.3.1 Commuter Survey Forms

A reproduction of the commuter survey that was sent to various airlines is shown in Table 3-2.

# 3.3.2 <u>Customer Survey Results</u>

Customer survey forms for three different airlines have been received. A total of six aircraft were monitored for one week. The significant results are summarized as follows:

- O Typical time at take-off is 2 to 3 minutes with a minimum of 1 minute and a maximum of 3 minutes.
- o All replies had a time at climb power of 10 minutes.
- o All altitudes at cruise were 3658 to 4572 m (12,000 to 15,000 feet).
- o Between 85 percent and 100 percent of the starts were made with APU's.
- o All airlines reported that at least 3 minutes of ground-idle power was held before take-off power was initiated.
- o A small number of times (0 to 8 percent), the left-hand engine was shutdown for loading passengers, while the right engine remained at idle.

#### 3.4 Thermal Analysis

This section describes the analysis to develop thermal boundary conditions to be used in a three-dimensional thermal analysis of the second-stage turbine wheel for the TPE331-3U. Boundary conditions were calculated for three engine conditions - maximum power, cruise,

### TABLE 3-2. COMMUTER AIRLINE QUESTIONNAIRE.

# COMMUTER AIRLINE QUESTIONNAIRE FOR TURBINE WHEEL DURABILITY PROGRAM

I Select a sample of aircraft from your fleet. (We would prefer data on all your aircraft but not wanting to impose more than absolutely necessary a sampling of your fleet can serve our purposes.)

| Fleet Size         | Sample Size |
|--------------------|-------------|
| 1 to 3 aircraft    | l aircraft  |
| 4 to 8 aircraft    | 2 aircraft  |
| 9 or more aircraft | 3 aircraft  |

- II Choose, from operating records for each aircraft in the sample, a recent week during which the aircraft experienced a normal operating schedule. The same week need not be chosen for all aircraft.
- III Please answer the following 17 questions regarding aircraft and engine operation during the chosen week.

# Aircraft data

| 1. | Data is for week beginning |      |
|----|----------------------------|------|
| 2  | Aircraft model             | Date |
| 3. | Aircraft serial no.        |      |
| 4. | No. departures             |      |
| 5. | No. aircraft hours logged  |      |

### TABLE 3-2. COMMUTER AIRLINE QUESTIONNAIRE (COND).

|     | - t                                                                                                | R.H.        | L.H              |         |
|-----|----------------------------------------------------------------------------------------------------|-------------|------------------|---------|
| 6.  | •                                                                                                  |             |                  |         |
| 7.  | Engine hours at<br>beginning of week                                                               |             |                  |         |
| 8.  | Engine hours logged<br>during week                                                                 |             |                  |         |
| 9.  | Engine cycles at<br>beginning of week                                                              |             |                  |         |
| 10. | Cycles logged<br>during week                                                                       |             |                  |         |
| 11. | No. engine starts for ground checks, moving A/C, etc. not logged as cycles                         |             | <del></del>      |         |
| 12. | No. engine starts, including (11) above which were made within 30 minutes of the previous shutdown |             |                  |         |
| 14. | On approximately whengine was shut downing discharge and board                                     | and R.H. e  | ngine kept runni |         |
| 15. | •                                                                                                  | was shut de | own (question 14 |         |
| 16. | On approximately wh                                                                                | nat percen  | tage of landin   | gs was  |
|     |                                                                                                    | rcle one    |                  | _       |
|     | ground operation (o                                                                                | ther than   | while discharg   | jing or |
|     | boarding passengers p                                                                              | per (14) ab | ove))            | -       |
| 17. | What was typical time                                                                              | of such o   | peration (16) ab | ove:    |
|     | minutes.                                                                                           | •           |                  |         |

### TABLE 3-2. COMMUTER AIRLINE QUESTIONNAIRE (COND).

| IV | Please a  | nswer the following 5 questions based on your normal      |
|----|-----------|-----------------------------------------------------------|
|    | operating | procedures (not necessarily on the above sample weeks).   |
|    | 1.        | Which engine is normally started first R.H L.H.           |
|    | 2.        | What power source is used for 1st engine starts indi-     |
|    |           | cated in (1) above)?                                      |
|    |           | Auxiliary power unit % of starts                          |
|    |           | Aircraft batteries % of starts                            |
|    |           | Auxiliary batteries % of starts                           |
|    | 3.        | What power source is used for starting the second engine? |
|    |           | Auxiliary power unit % of starts                          |
|    |           | Aircraft batteries 8 of starts                            |
|    |           | Auxiliary battereis % of starts                           |
|    |           | Cross generator % of starts                               |
|    | 4.        | On what percent of landings is "full" reverse used?       |
|    | 5.        | How are cycles counted?                                   |
|    |           | 1. By actual number of engine starts                      |
|    |           | 2. By number of A/C flights                               |
|    |           | 3. By number of A/C flights followed by engine            |
|    |           | shutdown                                                  |
|    |           | 4. Other (describe)                                       |
|    |           |                                                           |
|    |           |                                                           |

### TABLE 3-2. COMMUTER AIRLINE QUESTIONNAIRE (COND).

### VI ROUTE STRUCTURE:

|      | Plea | se pr | ovide    | the     | Eollowin   | ng in  | forma  | tion f      | or typ      | ical f | lights |
|------|------|-------|----------|---------|------------|--------|--------|-------------|-------------|--------|--------|
| over | your | regul | larly    | schedu  | led rou    | tes.   | Use C  | one she     | et for      | each l | .eg.   |
|      |      | Route | e No.    |         | <u>,, </u> |        | Leg No | ·           |             |        |        |
|      |      | From  | <b>.</b> |         |            |        | _To:   |             | (city)      |        |        |
|      |      |       |          | (ci     | ty)        |        |        |             | (city)      |        |        |
|      |      | Numbe | er of    | times   | flown p    | er we  | ek:    | <del></del> |             |        |        |
|      |      | 1.    | Engi     | ne grou | nd opera   | ation  | prior  | to ta       | ke-off:     |        |        |
|      |      |       | (a)      | Is eng  | ine shu    | tdown  | after  | previ       | ous lan     | ding?  |        |
|      |      |       |          | L       | .H         |        | _R.H   |             | <del></del> |        |        |
|      |      |       |          |         | yes o      | r no   | У      | es or       | no          |        |        |
|      |      |       | (b)      | Time a  | t ground   | a ial  | e:     |             |             |        |        |
|      |      |       |          | L       | .н         |        | _min.  | R.H.        |             | min.   | •      |
|      |      |       | (C)      | Taxi t  | ime:       |        | _      |             |             |        |        |
|      |      |       |          | L       | .н         |        | _min.  | R.H.        |             | min.   |        |
|      |      | 2.    | Norma    | al in-f | light e    | ngine  | opera  | tion:       |             |        |        |
|      |      |       |          |         | ITT        |        | RPM    | TI          | ME min      |        |        |
|      |      |       | (a)      |         | ff         | °C,    |        |             | min         | •      |        |
|      |      |       | (b)      | Climb   |            |        |        |             | min         |        |        |
|      |      |       |          |         |            |        |        |             | min.        |        |        |
|      |      |       | (d)      | Descen  | t          | _ °C . |        | _ 8 _       | min         | •      |        |
|      |      |       | (e)      | Cruise  | Altitud    | de ·   |        | ft.         | ,           |        |        |
|      |      | 3.    | Norma    | al engi | ne opera   | ation  | after  | landi       | .ng:        |        |        |
|      |      |       | (a)      | Taxi t  | ime:       |        | L.H.   |             | min. P.     | н.     | min.   |

Ground idle time: L.H. min. R.H.

\_min.

and ground idle. The boundary conditions at these steady-state points, along with knowledge of engine operating characteristics, were used for transient scaling of the boundary conditions for engine starts, engine accels from ground idle to maximum power, etc.

Throughout the analysis, pressure and temperature boundary conditions as well as velocity distributions along the blade were used. This information was supplied by the Aero/Thermo Components Group for maximum power, cruise and idle conditions and is summarized in Appendix A. The analysis consisted of determining the engine secondary flows at steady-state, calculation of the corresponding steady-state thermal boundary conditions, and scaling of the steady-state values to find the transient thermal boundary conditions.

Transient scaling is usually done strictly from maximum power conditions. However, for this analysis, estimates of engine conditions (main gas flow path pressures and temperatures) at cruise and idle were also used. It should be emphasized that the engine conditions at cruise and idle were estimates and not the result of detailed calculations as were done at maximum power.

The steady-stage heat-transfer coefficients and gas temperatures are shown in Tables 3-3 through 3-9. The ratio of transient heat-transfer coefficients and gas temperatures to their appropriate steady-state values are listed in Tables 3-10 through 3-12.

### 3.4.1 Secondary Flow Analysis

The first step in the analysis was to develop a model of the engine to determine the secondary flows in the vicinity of the second-stage disk. A computer program was used to carry out the analysis. The program solves for steady-state pressures and flow distribution in a network of cavities connected by flow resistances. The cavities and resistances used in the analysis are given in Appendix B.

TABLE 3-3. PLATFORM HEAT TRANSFER COBFFICIENTS.

A TO THE PERSON NAMED IN

| 1.14/-0.45       |         |                    |             |               | ****    | 7.66               | 73.4    | C./K     |
|------------------|---------|--------------------|-------------|---------------|---------|--------------------|---------|----------|
| 07/00            | 746/365 | 795/389            | 634/310     | 685/335       | 736/360 | 785/384            | 836/409 | 674/336  |
| 0-/70            | 681/333 | 726/355            | 581/284     | 626/306       | 673/329 | 718/351            | 763/373 | 617/302  |
| 0-/68            | 615/301 | 656/321            | 525/257     | 566/277       | 607/297 | 648/317            | 689/337 | 558/273  |
| 76/-0            | 605/296 | 429/211            | 484/237     | 240/264       | 593/290 | 648/317            | 701/343 | 527/256  |
| 63/-0            | 609/298 | 405/198            | 468/229     | 532/260       | 597/292 | 660/323            | 456/223 | 519/254  |
| 0-/15            | 613/300 | 370/181            | 446/218     | 521/255       | 597/292 | 673/329            | 429/210 | 507/248  |
| 0-/67            | 262//60 | 384/188            | 452/221     | 517/253       | 583/285 | 648/317            | 437/214 | 503/246  |
| )                | 0/7/700 | 2/4/183            | 017/674     | 167/534       | 240/264 | 597/292            | 411/204 | 474/232  |
| 04/69            | 162/676 | 200/100            | 413/202     | 458/524       | 505/247 | 550/269            | 597/292 | 450/220  |
| 0 2 / 4 C        | 167/7/4 | / \$7 / COC        | /61/FOP     | 435/213       | 466/228 | 499/244            | 529/229 | 429/210  |
| )<br> <br> <br>  | 462/204 | 482/236            | 421/206     | 440/215       | 458/224 | 478/234            | 497/243 | 517/253  |
| ) \ \ C          | 077/704 | 4/0/230            | 460/235     | 077/05        | 460/225 | 468/229            | 478/234 | 489/239  |
| 7/10             | 4/0/230 | 167/7/4            | 267/7/4     | 4/0/233       | 4/0/230 | 4/2/231            | 474/232 | 476/233  |
| 27/0             | 452/221 | 452/231            | 452/221     | 450/230       | 469/239 | 462/230            | 4/0/233 | 4/0/230  |
|                  |         |                    | /           | 7-2-/         | 130/200 | 436/264            | 177/761 | 199/764  |
|                  |         |                    | *           | MAXINUM POWER |         |                    |         |          |
| 14/-0.           | 527/258 | 560/274            | 458/224     | 489/239       | 521/255 | 554/271            | 587/287 | 482/236  |
| 02/-0.           | 478/234 | 509/249            | 413/202     | 442/216       | 472/231 | 503/246            | 534/261 | 435/213  |
| 9/-0             | 429/210 | 458/224            | 368/180     | 395/193       | 423/207 | 452/221            | 480/235 | 390/191  |
| 76/-0.           | 423/207 | 301/147            | 339/166     | 376/184       | 415/203 | 454/222            | 491/240 | 368/181  |
| 63/-0.           | 427/209 | 288/141            | 331/162     | 376/184       | 419/205 | 462/226            | 323/158 | 366/179  |
| 51/-0            | 429/210 | 258/126            | 311/152     | 364/178       | 417/204 | 470/230            | 301/147 | 354/173  |
| 25/-0.           | 415/203 | 266/130            | 313/153     | 360/176       | 405/198 | 452/221            | 303/148 | 350/171  |
| 13/+0            | 384/188 | 262/128            | 301/147     | 337/165       | 378/185 | 415/203            | 292/143 | 331/162  |
| 38/40.           | 300/1/9 | 25/1/4             | 191/997     | 323/128       | 358/1/5 | 395/193            | 429/210 | 317/155  |
| . 07/46<br>76/40 | 349/101 | 7/1/700            | 261/0/7     | 301/14/       | 323/128 | 348/T/0            | 372/182 | 296/145  |
|                  | 213/153 | 123/164<br>124/158 | 231/222     | 201/143       | 313/133 | 201/100            | 340/1/0 | 300/1/3  |
| +1.02/+0.40      | 321/157 | 321/157            | 327/160     | 331/162       | 351/116 | 321/12/            | 337/160 | ישז/דוני |
| 14/+0            | 333/163 | 331/162            | 329/161     | 325/159       | 335/164 | 331/162            | 329/161 | 127/166  |
| 27/+0.           | 352/172 | 343/168            | 335/164     | 329/161       | 323/158 | 345/169            | 337/165 | 331/162  |
|                  |         |                    |             | CDITCE        |         |                    |         |          |
|                  |         |                    |             | CROIDE        |         |                    |         |          |
| 14/-0-4          | 368/180 | 429/210            | 233/114     | 294/144       | 356/174 | 417/204            | 478/234 | 282/138  |
| 12/-0.4          | 307/150 | 360/176            | 192/94      | š             | 296/145 | 350/171            | 401/196 | 235/115  |
| 89/-0-3          | 247/121 | 290/142            | 151/74      | 196/96        | 239/117 | 282/138            | 325/159 | 186/91   |
| 76/-0-3          | 251/123 | 121/59             | 161/79      | 202/99        | 239/117 | 284/139            | 325/159 | 194/95   |
| 53/-0-2          | 255/124 | 79//21             | 168/82      | 206/101       | 245/120 | 284/139            | 159/78  | 198/97   |
| 7-0-/10          | 230/175 | 133/65             | 1/2/04      | 201/117       | 171/171 | 286/140            | 164/80  | 202/99   |
| 7.01/21          | 245/102 | 139/68             | 161/79      | 100/30        | 204/114 | 001/007<br>011/007 | 6//101  | 194/40   |
| +0.38/+0.15      | 196/96  | 135/66             | 153/75      | 174/85        | 192/94  | 211/103            | 231/113 | 170/83   |
| 53/+0.2          | 174/85  | 190/93             | 145/71      | 159/78        | 174/85  | 188/92             | 202/99  | 157/77   |
| 76/+0.3          | 170/83  | 180/88             | 149/73      | 159/78        | 168/82  | 178/87             | 188/92  | 198/97   |
| 89/+0.3          | 168/82  | 174/85             | 180/88      | 161/79        | 168/82  | 174/85             | 180/88  | 184/90   |
| 02/+0.4          | 174/85  | 176/86             | 176/86      | 178/87        | 174/85  | 176/86             | 176/86  | 178/87   |
| 14/+0.4          | 182/89  | 180/88             | 178/87      | 78/ 7CL       | 100/00  | 100/00             | 130/01  | 70/ 761  |
|                  | 11 11 1 | 20 /004            | . ) . ) . 4 |               | 60/701  | 100/00             | 10/0/1  | 99/9/T   |

TABLE 3-4. BLADE HEAT TRANSPER COEFFICIENTS, J/Hr cm2.c/Btu/Hr Ft2.F.

| -1.14/-0.45 2745/1343 2745/1343 5920/2896 5920/2896 -1.02/-0.040 760/372 590/289 1002/500 920/450 4920/0.40 760/372 590/289 1002/500 920/450 4920/0.50 666/316 474/232 707/346 419/205 -0.51/-0.25 636/311 446/218 693/339 204/197 20.51/-0.25 636/311 446/218 693/339 204/197 20.51/-0.25 636/311 446/218 693/339 204/197 20.51/-0.25 636/316 419/205 646/316 419/205 646/316 419/205 646/316 997/917 20.51/-0.25 517/223 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 419/205 646/316 691/240 640/222 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640/223 640                                                                                                                                                                                                                                                                                                                                                                                                                         | 4479/2191<br>971/475<br>844/413<br>775/319<br>742/363<br>711/348<br>681/333<br>630/308<br>585/286<br>572/286<br>558/273 | 4479/2191<br>613/300<br>409/200 | 111        | 1 1 1    | 111       |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|----------|-----------|-----------|
| 22,-0.40 766/312 590/289 1002/500 920/45  89-0.35 666/326 527/258 748/366 488/22  89-0.35 666/316 446/218 693/339 204/19  11/-0.20 626/306 413/202 679/332 395/19  12/-0.10 599/293 419/205 646/316 395/19  18/+0.15 564/26 417/204 621/304 427/20  18/+0.35 616/313 421/204 427/20  18/+0.35 616/313 421/204 427/20  18/+0.35 416/233 470/230 505/24  18/+0.45 464/221 331/162 495/242 507/24  18/+0.45 464/221 331/162 495/242 507/24  18/+0.45 464/221 331/162 495/242 507/24  18/+0.50 452/221 452/221 452/221 292/14  18/+0.50 417/204 290/142 495/242 292/14  18/+0.50 417/204 290/142 452/221 292/14  18/+0.50 417/204 290/142 452/221 292/14  18/+0.50 333/163 319/156 360/176 366/17  18/+0.45 313/163 319/156 360/176 366/17  18/+0.45 321/144 1521/744 1355/663 135/63  18/+0.50 399/195 204/100 429/210 245/12  18/+0.50 22/128 133/163 319/156 310/19  21/+0.50 399/195 204/100 429/210 133/63  13/+0.50 22/128 153/75 280/131 131/66  21/+0.50 213/104 155/76 229/112 131/66  21/+0.50 213/104 155/76 229/112 131/66  21/+0.50 213/104 155/76 229/112 149/77  13/+0.0.20 226/128 155/77 198/97 164/84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4479/2191<br>971/475<br>844/413<br>775/319<br>742/363<br>711/348<br>681/333<br>630/308<br>585/286<br>572/280<br>558/273 | 4479/2191<br>613/300<br>409/200 | <b>;</b> } | 1   5    | 1 1       | !         |
| 39,-0.35         666/326         527/258         748/366         458/32           36,-0.35         666/316         474/232         707/346         458/22           31,-0.20         656/316         474/232         707/346         419/20           31,-0.20         656/316         419/205         646/316         419/205           31,-0.20         656/306         419/205         646/316         397/19           31,-0.25         419/205         646/316         397/19           31,-0.25         417/204         551/203         397/19           31,-0.25         417/204         551/204         460/22           31,-0.35         417/234         451/22         460/22           32,-0.35         417/234         451/22         451/22           32,-0.35         451/22         451/22         558/27           31,-0.26         419/205         419/24         451/22           31,-0.27         464/227         466/218         558/24           31,-0.28         419/205         419/24         558/24           31,-0.29         451/227         466/218         311/24           31,-0.29         451/22         451/22         351/24           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 971/475<br>844/413<br>775/379<br>742/333<br>711/348<br>681/333<br>681/338<br>586/286<br>572/280<br>558/273              | 613/300                         | }          | 100      | ;         |           |
| 10, -0.30   646/316   474/232   707/346   419/202   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   419/203   41                                                                                                                                                                                                                                                                                                                                                                                                                           | 844/413<br>775/379<br>742/363<br>711/348<br>681/333<br>630/308<br>572/286<br>572/280<br>550/269                         | 409/200                         | )          | 2717     |           | ;         |
| 17-0.25   636/311   446/218   693/339   204/19     17-0.25   636/311   446/218   693/339   204/19     17-0.25   636/316   413/202   679/332   395/19     17-0.15   636/325   413/202   679/332   395/19     18/+0.15   544/266   417/204   556/272   460/22     18/+0.25   511/253   421/206   540/264   491/24     18/+0.35   511/253   421/206   556/272   460/22     18/+0.35   511/253   421/206   529/259   503/24     18/+0.45   511/253   470/230   505/247   521/25     18/+0.45   511/253   470/230   505/247   521/25     18/+0.45   512/27   487/238   503/246   558/27     18/+0.45   512/27   487/238   503/246   558/27     18/+0.25   452/22   452/22   313/25   319/15     18/+0.25   446/218   317/155   484/237   292/13     18/+0.15   388/190   292/143   415/203   319/15     18/+0.15   388/190   292/143   415/203   319/15     18/+0.15   333/163   319/15   366/17     18/+0.16   333/163   319/15   366/17     18/+0.16   333/153   319/15   366/17     18/+0.16   333/153   319/15   319/15     18/+0.16   311/155   348/170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 775/379<br>742/363<br>711/348<br>681/333<br>681/338<br>685/286<br>572/280<br>558/273                                    |                                 | 3389/1658  |          | 1551/1717 | 3551/1737 |
| 517-0.20 626/306 413/202 679/332 395/19 13.4-0.20 599/293 419/205 646/316 397/19 13.4-0.15 542/265 415/203 641/304 427/204 13.4-0.15 542/265 417/204 556/272 460/224 13.4-0.15 517/238 421/206 540/248 503/24 14.4-0.45 517/233 470/230 505/241 505/241 14.4-0.45 464/227 467/231 470/230 505/242 505/241 14.4-0.45 464/227 487/238 503/246 558/27 14.4-0.45 464/227 487/238 503/246 558/27 14.4-0.45 464/227 487/238 503/246 558/27 14.4-0.45 464/227 364/142 288/143 675/338 18.4-0.35 464/227 364/227 364/237 282/13 18.4-0.35 464/227 364/143 288/143 576/133 18.4-0.35 464/227 364/144 378/185 313/162 18.4-0.30 393/192 292/143 415/203 319/15 11.4-0.45 313/163 313/163 313/163 316/176 11.4-0.45 313/163 313/163 313/163 316/176 11.4-0.45 313/163 313/163 313/163 313/163 11.4-0.45 313/163 313/163 313/163 313/163 11.4-0.45 313/163 313/163 313/163 312/174 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 135/164/88 11.4-0.45 313/147 1521/744 247/121 131/68 11.4-0.45 313/163 123/75 266/173 131/68 11.4-0.45 313/163 123/75 266/173 131/68 11.4-0.45 313/163 135/164/88 11.4-0.45 313/163 135/163 135/163 135/163 135/163/163 135/163 135/163 135/163 135/163 136/174 135/163 136/174 135/163 131/64/88 11.4-0.45 313/163 133/163 135/163 135/163 135/163 135/163 135/163 135/163 136/174 135/163 136/174 135/163 136/174 135/163 136/174 135/163 131/47 131/48 11.4-0.45 313/163 133/163 135/163 135/163 135/163 135/163 136/174 135/163 136/174 135/163 136/174 135/163 136/174 135/163 136/174 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/184 136/                                                                                                                                                                                                                                                                                                                                                                                                                         | 742/363<br>711/348<br>681/333<br>681/338<br>585/286<br>572/286<br>558/273                                               | 403/107                         | 1103/540   | 7/300    | 1329/650  | 1073/52   |
| 15.7-0.10 529/230 413/202 616/312 355/12<br>13/+0.05 562/275 415/203 621/304 427/20<br>13/+0.05 562/275 415/203 621/304 427/20<br>13/+0.05 561/245 437/214 529/254 460/22<br>16/+0.35 487/238 454/222 507/248 503/24<br>16/+0.45 467/233 457/230 505/247 521/25<br>10/-0.45 467/231 470/230 505/247 521/25<br>10/-0.45 467/231 470/205 777/380 675/33<br>10/-0.25 466/218 317/155 484/237 282/13<br>10/-0.25 446/218 317/155 484/237 282/13<br>10/-0.02 417/204 290/142 452/221 292/14<br>10/-0.02 417/204 290/142 435/213 278/13<br>10/-0.05 393/192 290/142 435/213 278/13<br>10/-0.05 393/192 290/142 435/213 298/14<br>10/-0.05 393/193 319/156 360/176 366/17<br>10/-0.05 317/155 348/170 290/19<br>10/-0.03 323/163 313/163 319/165 360/176 366/17<br>10/-0.03 282/138 153/75 280/137 131/64/88<br>11/-0.045 11/18 151/74 247/120 131/64/88<br>11/-0.05 21/108 155/76 229/112 149/77<br>11/-0.05 21/108 155/76 119/88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 711/348<br>681/333<br>630/308<br>585/286<br>572/280<br>558/273                                                          | 101/00                          | 030/000    | 200/044  | 257/550   | 270/07    |
| 25/-0.10 599/293 419/205 646/316 397/19 13/+0.05 546/265 417/204 621/204 13/+0.05 546/265 417/204 556/272 460/224 13/+0.25 517/253 421/206 540/264 491/24 16/+0.30 621/238 454/222 509/259 503/24 16/+0.45 476/233 470/230 505/247 521/25 12/+0.40 476/233 470/230 505/248 505/244 16/-0.45 464/227 466/223 487/234 558/27 14/+0.45 464/227 466/223 131/162 495/242 292/14 14/-0.25 464/227 368/180 513/251 319/15 15/+0.0 50 417/204 290/142 484/237 282/13 13/+0.0 50 417/204 290/142 485/223 276/133 13/+0.0 50 393/192 292/143 415/203 319/15 13/+0.0 50 393/192 292/143 415/203 319/15 13/+0.0 50 313/163 313/163 313/163 313/163 14/-0.45 1521/744 1521/744 1355/663 1355/66 14/-0.45 1521/744 1521/744 1355/663 1355/66 14/-0.45 1521/744 1521/744 1355/663 1355/66 13/-0.0 50 317/155 264/110 429/210 245/12 13/+0.0 50 221/188 153/75 266/130 1313/66 13/+0.0 50 213/104 1521/744 247/121 131/68 13/+0.0 50 213/104 155/76 229/112 149/76 13/+0.0 50 213/104 155/76 229/112 149/76 13/+0.0 50 213/104 155/76 229/112 149/76 13/+0.0 50 213/104 155/77 196/30 119/64/88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 611/348<br>630/333<br>630/338<br>585/286<br>572/280<br>558/273                                                          | KKT / 108                       | 001/076    | C77/004  | 0/8/6/6   | C07/7%C   |
| 13/+0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 681/333<br>630/308<br>585/286<br>572/280<br>558/273<br>550/269                                                          | 419/205                         | 822/402    | 077/05   | 178/871   | 797/564   |
| 18/+0.15         544/266         417/204         556/272         460/22           53/+0.25         517/253         421/206         540/264         491/24           56/+0.25         517/253         421/206         540/264         491/24           56/+0.35         417/234         529/259         503/24           20/+0.40         476/227         481/227         481/224         521/25           14/+0.45         464/227         481/227         481/227         561/246         521/25           14/+0.45         464/227         481/227         481/227         581/26         521/25           14/+0.45         466/227         481/227         481/227         581/26         581/26           20/-0.40         452/221         481/26         419/205         513/251         319/15           21/-0.20         431/214         286/142         46/233         276/13         296/142         46/233         276/13           25/-0.20         417/204         290/142         452/221         294/14         46/213         276/13           25/+0.25         333/163         319/156         319/156         319/156         319/156           27/+0.50         317/15         294/144         37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 630/308<br>585/286<br>572/280<br>558/273<br>550/269                                                                     | 164/227                         | 699/342    | 292/985  | 836/409   | 484/237   |
| 13/+0.25         517/253         421/206         540/264         491/24           16/+0.30         501/245         437/214         529/259         503/24           16/+0.30         501/245         437/214         529/259         503/24           16/+0.45         464/227         467/230         505/247         503/246         503/246           14/+0.45         464/227         467/223         470/230         505/247         521/25           14/+0.45         46/227         467/227         467/227         508/20         521/25           14/+0.45         46/227         467/227         467/227         528/27         558/27           16/+0.50         46/227         46/227         368/180         513/251         292/14           16/+0.25         446/227         311/155         484/237         292/14           16/+0.25         446/227         311/155         484/237         292/14           16/+0.30         317/24         288/141         475/221         292/14           16/+0.15         318/190         292/143         415/203         319/15           16/+0.05         313/163         319/15         316/15         316/15           114/+0.45         311/14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 585/286<br>572/280<br>558/273<br>550/269                                                                                | 532/260                         | 642/314    | 609/298  | 711/348   | 560/274   |
| 16/+0.30 501/245 437/214 529/259 503/24 89/+0.35 487/238 454/222 507/248 505/24 46/233 470/230 505/247 521/25 17/+0.50 452/221 452/221 452/221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 572/280<br>558/273<br>550/269                                                                                           | 562/275                         | 595/291    | 636/311  | 617/302   | 658/322   |
| 99,40.35 487/238 454/222 507/248 505/24<br>14,40.45 464/221 452/221 452/221 505/247 521/25<br>14,40.45 464/227 487/238 503/246 558/27<br>48,40.25 465/221 452/221 1997/97 1997/97<br>14,-0.45 2175/1064 2175/1064 1997/977 1997/97<br>16,-0.35 446/218 317/155 484/237 282/13<br>18,-0.25 446/218 317/155 484/237 282/13<br>18,-0.25 446/218 317/155 484/237 282/13<br>18,-0.25 446/218 317/155 484/237 282/13<br>18,-0.25 437/214 288/141 476/233 276/13<br>18,-0.25 362/177 290/142 435/221 278/13<br>18,-0.25 362/177 290/142 435/221 278/13<br>18,-0.25 362/177 290/142 435/213 298/14<br>18,-0.25 362/177 290/142 386/196 343/16<br>14,-0.45 333/163 319/164 378/185 352/17<br>14,-0.45 321/744 1521/744 1355/663 1355/66<br>14,-0.45 1521/744 153/75 368/175 119/56<br>113,-0.25 262/128 153/75 226/130 133/63<br>113,-0.25 221/108 155/76 229/112 149/76<br>13,-0.25 213/104 155/76 229/112 149/76<br>13,-0.15 213/104 155/76 229/112 149/76<br>13,-0.15 213/104 155/76 221/108 164/88<br>16,-0.10 241/118 151/74 221/108 164/88<br>16,-0.10 190/93 157/77 198/97 164/88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 558/273<br>550/269                                                                                                      | 581/284                         | 589/28B    | 112/929  | 005/219   | FCE/033   |
| 227+0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 550/269                                                                                                                 | 505/201                         |            |          |           |           |
| 14/+0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         | 100/000                         | 1          |          |           |           |
| 14/10.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                       | 067/000                         | :          | ;        | <b>!</b>  | ľ         |
| 14/-0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         | <b>!</b>                        | ;          | ļ        | ;         | ł         |
| 1.14/-0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | !                                                                                                                       | ŀ                               | 1          | 1        | ł         | !         |
| 1.14/-0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAXIMUM POWER                                                                                                           |                                 |            |          |           |           |
| 11.14/-0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                                 |            |          |           |           |
| 1.02/-0.40 532/260 419/205 777/380 675/330 0.89/-0.35 464/227 368/180 513/251 319/156 0.06/-0.30 452/221 331/152 484/237 282/143 0.05/-0.25 445/218 317/155 484/237 282/143 0.05/-0.20 417/204 290/142 452/221 278/136 0.25/-0.10 417/204 290/142 452/221 278/136 0.25/-0.10 417/204 290/142 452/221 278/136 0.05/-0.25 393/192 292/143 415/203 319/156 0.03/+0.35 393/192 292/143 415/203 319/156 0.03/+0.35 319/166 305/149 370/181 354/173 1.02/+0.40 333/163 319/156 360/176 366/179 1.14/+0.45 323/158 333/163 352/172 390/191 1.27/+0.50 317/155 348/170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :                                                                                                                       | 1                               | ;          | ;        | ;         | }         |
| 0.89/-0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1907/933                                                                                                                | 1907/933                        | 1          | 1        | 1         | 1         |
| 0.76/-0.30 452/221 331/162 495/242 292/143 0.63/-0.25 446/218 317/155 484/237 282/138 0.51/-0.20 437/214 288/141 476/233 278/136 0.25/-0.10 437/214 290/142 452/221 278/136 0.13/+0.05 393/192 290/142 455/213 278/136 0.38/+0.15 388/190 292/143 415/203 319/156 0.63/+0.25 362/177 290/142 378/185 352/172 0.63/+0.25 362/177 290/142 378/185 352/172 0.63/+0.40 333/168 319/156 360/176 366/179 1.14/+0.45 323/158 333/163 352/172 390/191 1.14/+0.45 323/158 333/163 352/172 390/191 1.27/+0.50 317/155 348/170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 767/375                                                                                                                 | 409/200                         | ł          | ŀ        | 1         | 1         |
| 0.63/-0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 613/300                                                                                                                 | 286/140                         | 1962/960   | 1962/960 | 2104/1029 | 2104/10   |
| 0.51/-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 558/273                                                                                                                 | 280/137                         | 695/340    | 440/215  | 817/400   | 511/25    |
| 0.25/-0.10<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.05<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+0.15<br>0.13/+                                                                     | 542/245                                                                                                                 | 282/138                         | 593/290    | 127/160  | 680/333   | 384/18    |
| 13/+0.05<br>13/+0.05<br>13/+0.05<br>13/+0.05<br>13/+0.05<br>13/+0.05<br>13/+0.05<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0.15<br>13/+0. | 400/244                                                                                                                 | 204/144                         | 572/250    | 215/154  | 615/301   | 345/16    |
| 13/+0.05 353/152 292/143 453/213 292/146<br>13/+0.15 386/190 292/143 453/213 219/156<br>63/+0.25 362/177 290/142 386/190 343/168<br>76/+0.30 352/172 294/144 378/185 352/172<br>89/+0.35 339/166 305/149 370/181 354/173<br>14/+0.45 323/158 333/163 352/172 390/191<br>27/+0.50 317/155 348/170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000/101                                                                                                                 | 101/160                         | 201/200    | 274/103  | 501/204   | 31/65     |
| 53,+0.15 5362/177 290/142 388/190 343/158 53,+0.25 362/177 290/142 388/190 343/168 365/10.25 3362/172 294/144 378/185 352/172 294/144 378/185 352/172 294/144 378/185 354/173 502/+0.40 333/163 319/156 360/176 366/179 327/+0.50 317/155 348/170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/017                                                                                                                  | 355/136                         | 46/75      | 475/103  | 101/101   | 01/000    |
| 63/+0.25 362/177 290/142 388/190 343/168 76/+0.30 352/172 294/144 378/185 352/172 89/+0.40 333/166 305/149 378/181 354/173 02/+0.40 333/163 319/156 360/176 366/179 14/+0.45 323/158 333/163 352/172 390/191 27/+0.50 317/155 348/170 14/-0.45 1521/744 1521/744 1355/663 1355/663 02/-0.40 399/195 204/100 429/210 245/120 76/-0.30 282/138 153/75 307/150 119/58 63/-0.25 270/132 155/76 266/130 133/67 25/-0.10 241/118 151/74 247/121 133/67 13/+0.05 213/104 155/76 229/112 149/73 13/+0.05 213/104 155/76 229/112 149/73 13/+0.05 213/104 155/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CT7/044                                                                                                                 | 326/1/2                         | 677/044    | 907/074  | 697/64    | 37065     |
| 76/+0.30 352/172 294/144 378/185 352/172<br>89/+0.35 339/166 305/149 370/181 354/173<br>02/+0.40 323/156 339/165 366/176 366/179<br>14/+0.45 323/156 333/163 352/172 390/191<br>27/+0.50 317/155 348/170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 409/200                                                                                                                 | 390/191                         | 413/202    | 444/217  | 458/224   | 452/221   |
| 89/+0.35 339/166 305/149 370/181 354/173 12/+0.40 333/163 319/156 360/176 366/179 14/+0.45 323/158 333/163 352/172 390/191 27/+0.50 317/155 348/170 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 399/195                                                                                                                 | 405/198                         | 411/201    | 442/216  | 433/212   | 460/22    |
| 02/+0.40 333/163 319/156 360/176 366/179 14/+0.45 323/158 333/163 352/172 390/191 27/+0.50 317/155 348/170 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 388/190                                                                                                                 | 415/203                         | ì          | ;        | ;         | 1         |
| 14/+0.45 323/158 333/163 352/172 390/191<br>27/+0.50 317/155 348/170 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 382/187                                                                                                                 | 421/206                         | 1          | ;        | ;         | 1         |
| .27/+0.50 317/155 348/170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŀ                                                                                                                       | 1                               | ŀ          | !        | ;         | !         |
| 14/-0.45 1521/744 1521/744 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/63 1355/63 1355/63 1355/63 1355/63 1355/63 1355/63 1355/63 1355/63/136 135/75 280/137 133/65 125/-0.10 241/118 151/74 247/121 137/67 135/76 229/112 137/67 135/76 225/113 1365/36 155/76 225/1108 164/80 155/76 130/33 155/75 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł                                                                                                                       | !                               | ;          | <b>¦</b> | }         | 1         |
| 14/-0.45 1521/744 1521/744 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/63 1355/63 1355/63 1355/63 135/64 135/60.30 282/138 153/75 280/137 131/64 131/64 131/64 131/67 131/64 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131/67 131                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                 |            |          |           |           |
| 14/-0.45 1521/744 1521/744 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 1355/663 135/64/80 136/-0.30 282/138 153/75 307/150 119/58 153/75 280/137 131/64 251/-0.20 262/128 155/76 266/130 133/65 137/67 131/40.05 213/104 155/76 229/112 149/73 131/64/80 156/40.30 196/93 157/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRUISE                                                                                                                  |                                 |            |          |           |           |
| 22/-0.40 399/195 204/100 429/210 245/120<br>89/-0.35 301/147 153/75 358/175 164/80<br>.63/-0.25 270/132 153/75 280/137 131/64<br>.51/-0.20 262/128 155/76 2f6/130 133/65<br>.51/-0.20 241/118 151/74 247/121 137/67<br>.13/+0.05 213/104 155/76 229/112 149/73<br>.36/+0.35 196/96 153/75 220/108 164/80<br>.76/+0.30 190/93 157/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . :                                                                                                                     |                                 | 1          | :        | 1         | 1         |
| 89/-0.35 30/147 153/75 358/75 164/80<br>89/-0.35 30/147 153/75 358/75 164/80<br>63/-0.25 270/132 153/75 280/137 131/64<br>551/-0.20 262/128 155/76 266/130 133/65<br>13/+0.05 213/104 155/76 229/112 149/73<br>13/+0.15 209/102 155/76 221/108 164/80<br>163/+0.35 196/96 153/75 206/101 174/85<br>164/+0.30 190/93 157/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1265/619                                                                                                                | 1265/619                        |            | }        | ;         | !         |
| 76/-0.30 282/138 153/75 307/150 119/58<br>76/-0.30 282/138 153/75 280/137 131/64<br>51/-0.20 262/128 155/76 246/130 133/65<br>25/-0.10 241/118 151/74 247/121 137/67<br>13/+0.05 213/104 155/76 229/112 149/73<br>33/+0.15 209/102 155/76 221/108 164/80<br>.63/+0.25 196/96 153/75 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 611/250                                                                                                                 | 1204/100                        |            | : {      | ļ         | }         |
| .65/-0.25 270/132 153/75 280/137 131/64<br>.65/-0.25 270/132 153/75 280/137 131/64<br>.25/-0.10 241/118 151/74 247/121 137/67<br>.13/+0.05 213/104 155/76 229/112 149/73<br>.38/+0.15 209/102 155/76 221/108 164/80<br>.63/+0.25 196/96 153/75 206/101 174/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400/200                                                                                                                 | 94/46                           | 1275/624   | 1275/624 | 1365/668  | 1365/66   |
| .51/-0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 337/66                                                                                                                  | 27.61                           | 720/074    | 700/5/5  | 611/260   | 207/15    |
| .25/-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21//13                                                                                                                  | /6//11                          | 017/676    | 09/101   | 067/116   | 201/100   |
| 25/-0.10 241/118 151/74 247/121 137/67<br>.13/+0.05 213/104 155/76 229/112 149/73<br>.38/+0.15 209/102 155/76 221/108 164/80<br>.36/+0.25 196/96 153/75 206/101 174/85<br>.76/+0.30 190/93 157/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 587/767                                                                                                                 | 59/671                          | 7/1/706    | 09/571   | 201/100   | 7 / 507   |
| .13/+0.05 213/104 155/76 229/112 149/73<br>.18/+0.15 209/102 155/76 221/108 164/80<br>.63/+0.25 196/96 153/75 206/101 174/85<br>.76/+0.30 190/93 157/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 266/130                                                                                                                 | 141/69                          | 294/144    | 145/11   | 333/163   | 153//     |
| .38/+0.15 209/102 155/76 221/108 164/80<br>.63/+0.25 196/96 153/75 206/101 174/85<br>.76/+0.30 190/93 157/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245/120                                                                                                                 | 155/76                          | 347/121    | 182/83   | 311/152   | 153/7     |
| .63/+0.25 196/96 153/75 206/101 174/85<br>.76/+0.30 190/93 157/77 198/97 164/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 227/111                                                                                                                 | 176/86                          | 227/111    | 206/101  | 258/126   | 186/9     |
| .76/+0.30 190/93 157/77 198/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210/103                                                                                                                 | 196/96                          | 206/101    | 223/109  | 235/115   | 221/10    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 209/102                                                                                                                 | 206/101                         | 204/100    | 225/110  | 227/111   | 233/114   |
| .89/+0.35 184/90 164/80 192/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 198/97                                                                                                                  | 213/104                         | 1          | 1        | !         | 1         |
| .02/+0.40 178/87 174/85 184/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 194/95                                                                                                                  | 217/106                         | ;          | :        | 1         | 1         |
| .14/+0.45 174/85 182/89 180/88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                       | 1                               | 1          | 1        | i         | ;         |
| 127/+0.50 170/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !                                                                                                                       | ;                               | 1          | ;        | :         | !         |
| ATION PRIESS SICH PRIESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SUCT                                                                                                                    | PRESS                           | SUCT       | PRESS    | SUCT      | PRESS     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |                                 |            |          | )         |           |

TABLE 3-5. BLADE ADIABATIC WALL TEMPERATURES (°C/°F).

| 774/1425 774/1425 784/1443 784/1443 791/1455 791/1455 791/1455 791/1455 767/1412 781/1437 788/1450 767/1412 771/1420 775/1428 781/1437 788/1450 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782                                                                                                                                                                                                                                                                                                                                                                                                                                       | 714/1425 767/1412 768/1414                                                       |        | 184/1443             |          |                      |                      |                      |           |                   |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------|----------------------|----------|----------------------|----------------------|----------------------|-----------|-------------------|-----------------------|
| 767/1412 776/1428 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782/1439 782                                                                                                                                                                                                                                                                                                                                                                                                                                       | 767/1412 768/1414 741/1365 735/1355                                              | /1420  | 181/1437             | 784/1443 | 791/1455<br>788/1450 | 791/1455             | 801/1474<br>799/1470 | 801/1474  | 813/1495          | 802/1495              |
| 786/1414 768/1414 777/1430 777/1430 782/1439 782/1439 782/1439 768/1414 777/1430 777/1430 CRUISE 741/1365 746/1375 746/1375 746/1375 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1393 756/1                                                                                                                                                                                                                                                                                                                                                                                                                                       | 768/1414 768/1414 741/1365 735/1355                                              |        |                      | :        | 781/1437             | 788/1450             | 791/1456             | 1799/1471 | 802/1475          | 809/1488              |
| 768/1414 768/1414 777/1430 777/1430 CRUISE 741/1365 741/1365 746/1375 746/1375 756/1393 756/1393 735/1355 740/1354 741/1369 742/1367 748/1376 748/1376 733/1354 740/1354 739/1362 739/1362 748/1376 748/1378 748/1378 573/1063 590/1094 575/1067 587/1088 577/1071 586/1087 570/1058 588/1080 572/1067 588/1087 574/1066 583/1081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 768/1414<br>741/1365<br>735/1355                                                 |        |                      | 776/1428 | 782/1439             | 782/1439             | 791/1456             | 791/1456  | 802/1475          | 802/1475<br>802/1475  |
| 741/1365 741/1365 746/1375 746/1375 756/1393 756/1393 756/1393 756/1393 756/1393 735/1355 740/1354 741/1369 742/1367 747/1376 747/1376 747/1376 747/1376 747/1376 747/1376 747/1376 748/1378 748/1378 748/1378 748/1378 750/1063 590/1094 575/1067 587/1088 575/1067 586/1087 577/1071 586/1087 570/1058 588/1090 572/1062 584/1083 574/1066 583/1081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 741/1365                                                                         |        |                      | 777/1430 |                      |                      |                      |           |                   |                       |
| 741/1365 740/1364 741/1369 756/1393 756/1393 735/1355 740/1364 741/1369 742/1367 747/1376 742/1367 742/1367 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 748/1378 752/1067 587/1068 583/1087 572/1067 584/1087 572/1067 584/1087 572/1066 583/1081 572/1067 584/1087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 741/1365<br>735/1355                                                             |        |                      |          | CRUIS                | <b>6</b> 1           |                      |           |                   |                       |
| 742/1367<br>742/1367<br>742/1367<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/1378<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138<br>748/138 | 0.76/-0.30<br>0.63/-0.25<br>0.51/-0.20                                           |        | 746/1375<br>741/1369 | 746/1375 | 756/1393             | 756/1393             | 767/1413             | 767/1413  | 774/1426          | 774/1426              |
| 742/1367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ř                                                                                |        |                      |          | 747/1376             |                      | 758/1396             |           | 763/1406          |                       |
| 734/1354 740/1354 739/1362 739/1362  573/1063 590/1094 575/1067 587/1088  575/1067 587/1088  572/1067 586/1087  572/1068 588/1080  574/1066 583/1081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                |        |                      | 742/1367 | 748/1378             | 748/1378             | 758/1396             | 758/1396  | 758/1396 763/1406 | 763/1406<br>763/: 406 |
| 573/1063 590/1094 575/1067 587/1088<br>575/1067 586/1087<br>572/1062 586/1087<br>570/1058 588/1090 572/1062 583/1081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 734/1354                                                                         |        | ŀ                    | 739/1362 |                      |                      |                      |           |                   |                       |
| 27/+0.50 573/1063 590/1094 575/1067 587/1088<br>14/-0.45<br>92/-0.35<br>93/-0.35<br>572/1067<br>586/1087<br>577/1071 586/1087<br>577/1071 586/1087<br>517/1071 586/1087<br>577/1071 586/1087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |        |                      |          | IDLE                 |                      |                      |           |                   |                       |
| 575/1067<br>572/1062<br>586/1087<br>577/1071<br>586/1087<br>570/1068<br>588/1080<br>574/1066<br>583/1081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 573/1063                                                                         |        | 75/1067              | 587/1088 |                      |                      |                      |           |                   |                       |
| 574/1066 583/1081<br>570/1058 588/1090 572/1062 584/1083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.14/-0.45<br>1.02/-0.40<br>1.02/-0.35<br>1.05/-0.30<br>1.31/-0.25<br>1.25/-0.10 | KT 16) | 175/1067             | 586/1087 | 578/1072<br>577/1071 | 586/1087<br>586/1087 | 580/1076<br>576/1069 | 588/1091  | 581/1080          | 593/1100              |
| 570/1058 SB8/1040 572/1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |        |                      |          | 574/1066             | 583/1081             | 576/1069             | 585/1085  | 578/1072          | 589/1092              |
| #007/2/6 0007/000 000#/out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 570/1058                                                                         | 960    | 2                    | 584/1083 |                      |                      |                      |           |                   |                       |

R = 7.526 cm (2.963 in.) AT THE HUB X = 0.0 AT THE BLADE STACKING AXIS LINEAR INTERPOLATION WAS USED TO FILL IN THE TABLE.

TABLE 3-6. SECOND-STAGE DISK HEAT TRANSFER COEFFICIENTS.

J/Hr CM<sup>2</sup> °C/(BTU/Hr Ft<sup>2</sup> °F)

### FORWARD FACE

| R<br>cm./in. | MAXIMUM<br>POWER | CRUISE   | IDLE    |
|--------------|------------------|----------|---------|
| 4.06/1.60    | 217/106.         | 143/70.  |         |
| 4.19/1.65    | 237/116.         | 155/76.  | 90/44.  |
| 4.45/1.75    | 258/126.         | 170/83.  | 98/48.  |
| 4.70/1.85    | 272/133.         | 180/88.  | 104/51. |
| 4.95/1.95    | 288/141.         | 192/94.  | 110/54. |
| 5.21/2.05    | 301/147.         | 200/98.  | 114/56. |
| 5.46/2.15    | 321/157.         | 215/105. | 125/61. |
| 5.72/2.25    | 358/175.         | 237/116. | 137/67. |
| 5.97/2.35    | 382/187.         | 253/124. | 145/71. |
| 6.22/2.45    | 395/193.         | 260/127. | 149/73. |
| 6.48/2.55    | 401/196.         | 266/130. | 151/74. |
| 6.73/2.65    | 407/199.         | 268/131. | 153/75. |
| 6.99/2.75    | 411/201.         | 270/132. | 155/76. |
| 7.24/2.85    | 415/203.         | 272/133. | 155/76. |
| 7.49/2.95    | 419/205.         | 274/134. | ·       |

### AFT FACE

| 4.06/1.60 | 70/34.     | 51/25.   | 39/19.  |
|-----------|------------|----------|---------|
| 4.19/1.65 | 92/45.     | 65/32.   | 43/21.  |
| 4.45/1.75 | 144/56.    | 80/39.   | 47/23.  |
| 4.70/1.85 | 131/64.    | 90/44.   | 49/24.  |
| 4.95/1.95 | 147/72.    | 100/49.  | 51/25.  |
| 5.21/2.05 | 164/80.    | 112/55.  | 55/27.  |
| 5.46/2.15 | 180/88.    | 123/60.  | 57/28.  |
| 5.72/2.25 | 196/96.    | 131/64.  | 61/30.  |
| 5.97/2.35 | 213/104.   | 143/70.  | 63/31.  |
| 6.22/2.45 | 231/113.   | 155/76.  | 67/33.  |
| 6.48/2.55 | 253/124.   | 172/84.  | 74/36.  |
| 5.73/2.65 | 284/139.   | 190/93.  | 80/39.  |
| 5.99/2.75 | /319/156.  | 217/106. | 92/45.  |
| 7.24/2.85 | / 386/189. | 264/129. | 139/68. |
| 7.49/2.95 | / 421/206. | 311/152. | 186/91. |

TABLE 3-7. SECOND STAGE DISK ADIABATIC WALL TEMPERATURES (°F).

|     | MAXI<br>POW |          | CRU  | TISE     | IDL  | <u> </u> |
|-----|-------------|----------|------|----------|------|----------|
| R   | FWD         | AFT      | FWD  | AFT      | FWD  | AFT      |
| 1.6 | 1013.       | 1265.    | 909. | 1213.    |      | 783.     |
| 1.7 | 1015.       |          | 909. | 1        | 626. | 1 1      |
| 1.8 | 1018.       | <b>[</b> | 909. | <b>}</b> | 620. | 1 1      |
| 1.9 | 1021.       |          | 910. |          | 616. | 1 1      |
| 2.0 | 1024.       | (        | 911. | {        | 613. | 1 1      |
| 2.1 | 1026.       |          | 913. | j        | 610. |          |
| 2.2 | 1029.       | {        | 916. | ł        | 606. |          |
| 2.3 | 1033.       | 1        | 927. | İ        | 604. | 1 1      |
| 2.4 | 1038.       | 1        | 935. | ł        | 604. | 1 1      |
| 2.5 | 1044.       | <b>\</b> | 942. |          | 606. | 1 1      |
| 2.6 | 1051.       | {        | 951. | 1        | 609. | 1 1      |
| 2.7 | 1060.       | }        | 962. |          | 613. | ! [      |
| 2.8 | 1070        | i        | 974. | 1        | 619. | 1 1      |
| 2.9 | 1082.       | 1        | 974. | +        | 625. | •        |

TABLE 3-8. SECOND STAGE DISK BORE HEAT TRANSFER COEFFICIENTS J/HR, CM<sup>2</sup> °C (BTU/HR, FT<sup>2</sup> °F)

|     | Maximu | m Power | Cru   | ise    | 16    | <u>lle</u> |
|-----|--------|---------|-------|--------|-------|------------|
| x   |        |         |       |        |       |            |
| 0.1 | 253.5  | (124.0) | 179.9 | (88.0) | 101.4 | (49.6)     |
| 0.2 | 122.9  | ( 60.1) | 87.3  | (42.7) | 49.1  | (24.0)     |
| 0.3 | 80.1   | ( 39.2) | 56.8  | (27.8) | 32.1  | (15.%)     |
| 0.5 | 46.8   | ( 22.9) | 33.3  | (16.3) | 18.9  | ( 9.2)     |
| 0.7 | 32.8   | ( 16.0) | 23.3  | (11.4) | 13.1  | (6.4)      |
| 1.0 | 22.5   | ( 11.0) | 15.9  | (7.8)  | 9.0   | (4.4)      |
| 1.2 | 18.6   | ( 9.1)  | 13.3  | ( 6.5) | 7.4   | ( 3.6)     |
| 1.4 | 15.7   | ( 7.7)  | 11.2  | (5.5)  | 6.3   | ( 3.1)     |

X = 0.69 Corresponds to the Stacking Axis\*
Gas Temperatures (°C (°F)



TABLE 3-9. HEAT TRANSPER COEFFICIENTS IN RIVET HOLE AND SLOT, J/Hr cm2 °C /(BTU/HR FT<sup>2 °F</sup>).

|      | X422           | 357      | 227      | 097       | 030      | .030      | . 1035   | .2505     | .3850    | .470      |
|------|----------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
| REGE |                | o        | 785/384  | 1057/517. | 1057/517 | 1026/502. | 1026/502 | 1145/560. | 1104/540 | 1104/540. |
| 78   | 2.84 810/396.  | 810/396. | 480/235. | 405/198.  | 405/198. | 501/245.  | 501/245. | 317/155.  | 243/119. | 243/119.  |
| 745  | 2.745 691/338. | 691/338. | 409/200. | 345/169.  | 345/169. | 437/214.  | 437/214. | 276/135.  | 211/103. | 211/103.  |
| 65   |                | 572/280. | 339/166. | 286/140.  | 286/140. | 372/182.  | 372/182. | 235/115.  | 180/88.  | 180/88.   |

# MAXIMUM POWER

| SLOT 0. | 0.                     | 0.       | 660/323. | 861/421. | 861/421. | 850/413. | 850/412. | 921/451. | 921/451. | 921/451. |
|---------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 2.84    | 2.84 601/294.          | 601/294  | 360/176. | 290/142. | 296/142. | 233/114. | 233/114. | 145/71.  | 119/58.  | 119/58.  |
| 2.745   |                        | 515/252. | 309/151. | 249/122. | 249/122. | 213/104. | 213/104. | 108/64.  | 108/53.  | 108/53.  |
| 2.65    | 2.65 429/210. 429/210. | 429/210. | 258/126. | 209/102  | 209/102. | 192/94.  | 192/94.  | 98/28.   | 98/48.   | 98/48.   |

### CRUISE

21-3640 (22) 3- 21

| SLOT  | o.                 | ٥.       | 444/217. | 609/298. | 609/298. | 718/351. | 718/351 | 750/367. | 750/367. | 750/367. |
|-------|--------------------|----------|----------|----------|----------|----------|---------|----------|----------|----------|
| 284   | 284 286/140.       | 286/140. | 182/89.  | 141/69.  | 141/69.  | 164/80.  | 164/80. | 96/47.   | 80/39.   | 80/39.   |
| 2.745 | 2.745 251/123.     | 251/123. | 159/78.  | 123/60.  | 123/60.  | 151/74.  | 151/74. | 89/44.   | 74/36.   | 74/36.   |
| 2.65  | 2.65 217/106. 217/ | 217/106. | 139/68.  | 106/52.  | 106/52.  | 139/68.  | 139/68. | 82/40.   | 67/33.   | 67/33.   |
|       |                    |          |          |          |          |          |         |          |          |          |

## 221 4.07 4.73 (2.34) 2.345 2.345 (2.34) 2.345 2.345 (2.34) 2.345 (2.345)

GAS TEMPERATURE IN RIVET HOLE AND SLOT, °C (°F)

HAXIMUM POWER CRUISE IDLE

POFWARD 567 (1053) 512 (954.) 324 (615.)

Aft 768 (1415.) 735 (1355.) 579 (1075.)

1058

MEASUREMENTS: CM (IN.)

TABLE 3-10. HEAT TRANSFER COEFFICIENT RATIOS.

### COLD START

|               |                      |             |                     | RIVET HOLES |      | DISK  | 2022 |       |
|---------------|----------------------|-------------|---------------------|-------------|------|-------|------|-------|
| TIME<br>(SEC) | PLATFORM<br>& BLADES | slot<br>fwd | slot<br><b>af</b> t | FWD         | AFT  | FWD   | AFT  | BORE  |
| 0             | 0                    | 0           | 0                   | 0           | 0    | 0     | 0    | 0     |
| 3.2           | .0056                | .197        | .210                | .019        | .032 | .012  | .005 | .009  |
| 6.4           | .026                 | .287        | .315                | .061        | .089 | .045  | .026 | .034  |
| 12.8          | .049                 | .334        | .420                | .096        | .134 | .075  | .044 | .057  |
| 16.0          | .064                 | .358        | .498                | .115        | .160 | .093  | .054 | .072  |
| 19.2          | .081                 | .381        | .551                | .137        | .186 | .112  | .066 | .087  |
| 22.4          | .099                 | .404        | .584                | .159        | .213 | .133  | .081 | .104  |
| 25.6          | .13                  | .443        | .612                | .200        | .259 | .172  | .113 | .137  |
| 28.8          | .16                  | .467        | .643                | .227        | .289 | .198  | .133 | .160  |
| 32.0          | .25                  | .547        | .760                | .326        | .396 | . 295 | .212 | . 248 |
| 35.2          | .35                  | .625        | .758                | .429        | .492 | .399  | .324 | .347  |
| 38.4          | .33                  | .625        | .665                | .429        | .483 | .399  | .349 | .347  |

TABLE 3-11. HEAT TRANSFER COEFFICIENT RATIOS.

### HOT START

| 0    | 0    | .124 | 0    | .004 | 0     | 0     | 0    | .001 |
|------|------|------|------|------|-------|-------|------|------|
| 2.7  | .000 | .207 | .209 | .022 | .036  | .014  | .006 | .010 |
| 5.3  | .021 | .270 | .320 | .051 | .077  | .037  | .019 | .028 |
| 10.6 | .055 | .342 | .482 | .111 | .144  | .081  | .045 | .062 |
| 13.  | .070 | .365 | .526 | .122 | .170  | .099  | .057 | .077 |
| 16.  | .093 | .396 | .575 | .151 | . 204 | .126  | .076 | .099 |
| 19.  | 1.11 | .419 | .599 | .175 | .232  | .148  | .093 | .117 |
| 21.  | .14  | .451 | .631 | .209 | . 269 | .180  | .119 | .145 |
| 24.  | 1.18 | .490 | .707 | .255 | .321  | . 225 | .151 | .184 |
| 27.  | .35  | .616 | .848 | .417 | .490  | .387  | .291 | .335 |
| 29.  | .46  | .706 | .759 | .545 | .595  | .518  | .460 | .465 |
| 32.  | .35  | .642 | .666 | .454 | .505  | .424  | .380 | .371 |

TABLE 3-12. TRANSIENT HEAT TRANSFER COEFFICIENT GROUND IDLE TO MAXIMUM POWER ACCELERATION.

| GT1/F         | nt lemony            | GT OF       | ST.07               | RIVET | HOLES | DISK |      |       |
|---------------|----------------------|-------------|---------------------|-------|-------|------|------|-------|
| Time<br>(SEC) | PLATFORM<br>& BLADES | slot<br>FWD | slot<br><b>af</b> t | FWD   | AFT   | FWD  | AFT  | BORE  |
| 0.            | .367                 | .651        | .666                | .466  | .552  | .402 | .396 | .384  |
| 1.            | .477                 | .715        | .795                | .558  | .642  | .501 | .471 | .479  |
| 2.            | .641                 | .811        | .878                | . 703 | .816  | .661 | .632 | .639  |
| 3.            | .771                 | .840        | .932                | .812  | .856  | .785 | .761 | .765  |
| 3.5           | .926                 | .849        | .859                | .922  | .883  | .939 | .948 | .933  |
| 6.            | .927                 | .951        | .795                | .963  | 1.935 | .980 | 1.09 | .977  |
| 8.            | .998                 | 1.050       | .954                | 1.012 | 1.027 | 1.02 | 1.07 | 1.022 |
| 10.5          | 1.017                | 1.050       | 1.021               | 1.012 | 1.036 | 1.02 | 1.03 | 1.022 |
| 14.           | 1.026                | 1.050       | 1.052               | 1.012 | 1.055 | 1.02 | 1.02 | 1.022 |

TABLE 3-13. TRANSIENT TEMPERATURE RATIOS (°F/°F).

| COLD START    |                          |                          | Ī             | OT STAI                  | <u>RT</u>       | GROUND IDLE TO MAXIMUM POWER ACCELERATION |                          |                          |  |
|---------------|--------------------------|--------------------------|---------------|--------------------------|-----------------|-------------------------------------------|--------------------------|--------------------------|--|
| TIME<br>(SEC) | <sup>T</sup> cđ<br>RATIO | T <sub>t4</sub><br>RATIO | TIME<br>(SEC) | T <sub>cđ</sub><br>RATIO | T <sub>t4</sub> | TIME<br>(SEC)                             | T <sub>cd</sub><br>RATIO | <sup>T</sup> t4<br>RATIO |  |
| 0.            | .147                     | .324                     | 0.            | .150                     | .494            | 0.                                        | .559                     | .697                     |  |
| 3.2           | .165                     | .560                     | 2.7           | .170                     | .520            | 1.0                                       | .637                     | .888                     |  |
| 6.4           | .205                     | .611                     | 5.3           | .195                     | .674            | 3.0                                       | .848                     | .979                     |  |
| 12.8          | .235                     | .762                     | 10.6          | .240                     | .899            | 3.5                                       | .957                     | 939                      |  |
| 16.0          | . 250                    | .897                     | 13.3          | . 260                    | .944            | 6.0                                       | .986                     | .697                     |  |
| 19.2          | .270                     | .964                     | 16.0          | . 285                    | .980            | 8.0                                       | 1.014                    | .854                     |  |
| 22.4          | . 290                    | .981                     | 18.6          | .305                     | .980            | 10.5                                      | 1.014                    | .967                     |  |
| 25.6          | .325                     | .956                     | 21.3          | .335                     | .980            | 14.0                                      | 1.014                    | 1.024                    |  |
| 28.8          | .350                     | .973                     | 23.9          | .380                     | 1.061           | 14.0                                      | 1.014                    | 1.024                    |  |
| 32.0          | .440                     | 1.065                    | 26.6          | .520                     | 1.120           |                                           |                          |                          |  |
| 35.2          | .530                     | .947                     | 29.3          | .565                     | .862            |                                           |                          |                          |  |
| 38.4          | .530                     | .788                     | 31.9          | .550                     | 773             |                                           |                          |                          |  |

### 3.4.2 Steady State Boundary Condition Analysis

Heat-transfer coefficients and gas temperatures on the blades were calculated using a Garrett computer program. The program input consists of velocity distributions along the blade at several radial stations, as well as upstream pressure and temperature. The program calculates leading edge heat-transfer coefficients using a correlation for a cylinder in a cross flow. The remainder of the blade is treated as a flat plate in turbulent flow. Heat-transfer coefficients and gas temperatures on the platform were calculated by linearly interpolating the values at the hub from suction surface to pressure surface on adjacent blades. Since the adiabatic wall temperature on the platform showed so little variation, a constant value was used at each power setting in the thermal analysis. These values are given in Table 3-4. The platform heat-transfer coefficients and the blade heat-transfer coefficients and adiabatic wall temperatures are shown in Tables 3-3, 3-4, and 3-5 respectively. Figure 3-5 shows the wheel geometry.

The heat-transfer coefficients and gas temperatures on the disk faces were calculated using a program whose input consisted of disk geometry, wheel speed, estimated metal temperatures, and the pressure and temperatures of the gas where it first contacts the disk. Heat-transfer coefficients and adiabatic wall temperatures adjacent to the disk are given in Tables 3-6 and 3-7, respectively.

Heat-transfer coefficients in the disk bore were calculated by treating the bore as an annular tube. The flow rate through the bore was determined in the secondary flow analysis. The gas temperature in the bore was the compressor discharge temperature. The heat-transfer coefficients and gas temperatures are listed in Table 3-8.

The flow distribution in the region of the rim-rivet hole and slot was much more difficult to analyze than any other area on the wheel. This is due, in part, to the fact that pressures are known far away



DIMENSIONS IN CM (IN.)

Figure 3-5. Blade and Disk Geometry.

from the region (in the cavity adjacent to the disk and in the main gas flow path) but variations inside the rivet hole are unknown. The following procedure was used to estimate the flow distribution. Please refer to Figure 3-6 for a schematic diagram.



Figure 3-6. Schematic Diagram of Disk.

The pressure,  $P_C$ , in the cavity adjacent to the disk is known as a function of radius from the program DSKFLO. Since the boundary layer cannot support a pressure gradient normal to the wheel,  $P_C$  is approximately equal to  $P_a$ . The rivet hole is small enough that the pressure should not vary substantially across it. For this reason, the pressure,  $P_h$ , in the rivet hole was assumed to be the same as the cavity pressure,  $P_C$ , evaluated at the centerline of the rivet hole. The static pressure in the gas path at the blade hub is known as a function of axial position. The flow rate across the slot was calculated using the pressure ratio and treating the slot as an orifice. Heat-transfer

coefficients were calculated using Figure 6-24 of Reference 1. mass flow rate through the rivet hole is the same as the mass flow rate in the slot. The rivet hole was treated as a tube with known through flow to calculate the heat-transfer coefficients. The values calculated in this manner assume a stationary tube. The augmentation of the heat-transfer coefficient due to rotation was accounted for using Reference 2. In the forward-rivet hole, the augmentation varied from approximately 225 percent at idle to 320 percent at maximum power. the aft-rivet hole, the corresponding values were 150 percent and 245 percent. The gas temperatures in the rim-rivet hole and slots on the forward face of the disk were the adiabatic wall temperatures predicted earlier at the corresponding radius. The secondary flow analysis showed that air from the main gas flow path was ingested on the aft side of the disk so the gas temperature at the blade hub was used for the aft slot and rivet hole. Engine tests conducted in January and February of 1981 showed the original temperature predictions to be somewhat low. The final predictions were corrected to reflect the results of these tests. Heat-transfer coefficients and gas temperatures in the rivet hole and slot are shown in Table 3-9.

### 3.4.3 Transient Boundary Condition Scaling

The transient boundary was scaled from the steady-state values as described below. The basic heat-transfer coefficient correlation was used to express the ratio of the value at some time varying state 1 to a normalizing state o. In this analysis, subscript o represents maximum power conditions. For example, on the blades away from the leading edge, the ratio of Musselt numbers can be expressed as:

Kays, William, and London, A.L.; Compact Heat Exchangers, p 119; 2nd Edition.

<sup>&</sup>lt;sup>2</sup>Metzger, D.E.; SA-8610-MR, March 27, 1972, "Literature Summary and Design Recommendations -- Friction and Heat-Transfer in Rotating Passages",

$$\frac{Nu_1}{Nu_0} = \frac{C \operatorname{Re}_1^{\cdot 8} \operatorname{Pr}_1^{\cdot 6}}{C \operatorname{Re}_1^{\cdot 8} \operatorname{Pr}_1^{\cdot 6}}$$
(1)

Fluid properties can be expressed as a function of absolute temperature as follows:

Conductivity: K  $\propto$  T Viscosity:  $\mu \propto$  T.75 Density:  $\rho \propto$  P/T

For the temperature range of interest, the Prandtl number can be considered to be a constant. The Reynolds number can be written

$$R_e = \frac{\hbar L_c}{\mu A}$$

where m is mass flow rate

L is a characteristic length and is constant for a given geometry.

A is a flow area which is constant for a given geometry.

Substituting this information in eq. (1) and solving for the ratio of heat transfer coefficient yields:

$$\left(\frac{h_1}{h_0}\right) = \left(\frac{m_1}{m_0}\right) \cdot 8 \qquad \left(\frac{T_1}{T_0}\right) \cdot 4 \tag{2}$$

Reference 5 shows that the flow rate is proportional to engine speed raised to a power. If the mass flow rate and speed are known at two different conditions, the exponent can be calculated from:

<sup>5</sup>Hale, Pat, 22-0101, March 24, 1977, "Transient Variation of Boundary Conditions in Thermal Analyses".

$$\frac{\hbar_a}{\hbar_b} = \left(\frac{N_a}{N_b}\right)^C \qquad . \tag{3}$$

If "a" represents conditions at ground idle and "b" represents conditions at maximum power, the exponent, c, for this engine is approximated as 2.2 between these conditions only. The ratio of heat-transfer coefficients becomes:

$$\frac{h_1}{h_0} = \left(\frac{N_1}{N_0}\right)^{2.2} \qquad \left(\frac{T_1}{T_0}\right)^{-.4} \qquad (4)$$

This same procedure was followed at other positions on the wheel to obtain the expressions given in Appendix C. For those correlations which were presented in graphical form in the original reference, curve fits were developed so that the scaling could be done. Note that the temperature used for the scaling should be the compressor discharge temperature for the bore, the forward slot and rivet hole, and the forward face of the disk. The interstage turbine temperature (ITT) should be used for the platform, blades, aft rivet hole and slot, and the aft face of the disk.

In order to complete the scaling process, some information about engine operation is required. Engine speed and temperature were recorded as a function of time for several engine starts. This data was normalized by setting the maximum value of ITT equal to one and setting the time required to reach maximum temperature equal to one. Normalized curves were plotted and then divided into two groups, cold starts and hot starts. A cold start occurs when the engine metal temperatures are approximately the same as ambient air prior to the start. A hot start occurs when the engine metal temperatures are greater than ambient prior to the start. Definite trends could be observed from the normalized plots. The cold starts exhibit a gradual increase in ITT with a short plateau immediately preceeding a hot spike. The hot starts reach the plateau temperature sooner and have a longer plateau prior to the spike than the cold starts. After

comparing the data from several starts, the average hot- and coldstart cycles shown in Figure 3-7 and 3-8 were developed.

All engine data that was received was scaled and the resulting ratios of transient heat-transfer coefficients and gas temperatures divided by the corresponding values at maximum power are summarized in Tables 3-10 and 3-13.

#### 3.4.4 Transient Thermal Results

The boundary conditions described previously were applied to a thermal model and the temperatures were calculated for the key transient conditions. These temperatures were used to predict transient thermal stresses later. The temperatures are shown in Figures 3-8a through 3-8g.

### 3.5 Stress Analysis

The stress analysis of the turbine wheel was accomplished using Garrett Program ISO3DQ. This is an isoparametric finite element, three-dimensional stress analysis program developed under a contract from the Air Force Propulsion Laboratory (Contract No. F33615-75-C-2012).

The three-dimensional, finite-element model of the turbine rotor is shown in Figures 3-9, 3-10, and 3-11. As may be seen in the model plots, the blade appears to overhang - hang over the edge of the platform. This is done to aid in the modeling and allow the blade to be input as a single unit. The stress program allows the blade to be tied to and restrained by the platform on the other side of the slot. The model is a wedge taken out of the wheel that is equal to 1/40th of a wheel with symmetrical boundary conditions on the side of the wedge. This is an acceptable mathematical representative of the actual wheel due to the symmetry of the thermal profile.



Normalized Temperature Versus Normalized Time for Hot and Cold Starts. Figure 3-7.



Percent Speed Versus Normalized Time for Hot and Cold Starts. Figure 3-8.



Disk Temperaturs During Light-Off Cold Start/Normal Spike. Figure 3-8a.

21-3640 (22) 3-33



Disk Temperatures During Light-Off Cold Start/Hot Spike. Figure 3-8b.



Figure 3-8c. Disk Temperatures During Light-Off Warm Start/Normal Spike.

21-3640 (22) 3-35



The second secon

Disk Temperatures Take-Off at 180 Seconds to Landing Cold Start/Normal Spike. Figure 3-8d.



Disk Temperatures Take-Off at 500 Seconds to Landing Cold Start/Normal Spike. Figure 3-8e.



Disk Temperatures Take-Off at 180 Seconds to Landing Warm Start/Normal Spike. Figure 3-8f.



Disk Temperatures Take-Off at 500 Seconds to Landing Warm Start/Normal Spike. Figure 3-8g.

21-3640 (22) 3-39



Figure 3-9. Isometric View of Stress Model.

21-3640(22) 3-40



Figure 3-10. Meridional View of Stress Model.

21-3640(22) 3-41



Figure 3-11. Axial View of Stress Model.

21-3640 (22) 3-42 The first step in the stress analysis was to apply rotational loads to the model at room temperature and save the deflections and stresses. Then the thermal analyses were done at various key times in the transient cycle. These stresses were also saved and added to the mechanical stresses due to rotation. The key stress analyses presented were reduced to those times that had the highest compressive and tensile stresses and are summarized below:

- O Start with cold engine, 21°C (70°F)
- o Start with warm engine, 121°C (250°F)
- o Take-off power with cold start at 180 seconds
- o Take-off power with warm start at 180 seconds
- o Take-off power with cold start at 500 seconds
- o Take-off power with warm start at 500 seconds
- o Landing

The peak stresses for each of the above conditions are summarized in Table 3-14.

The isopleths for each of these cases are shown in Figures 3-12 through 3-21.

The results of these transient analyses are then used to predict the crack initiation and propagation for a typical commuter aircraft.

### 3.6 <u>Material Mechanical Properties</u>

### 3.6.1 LC Procedure for Material Properties

The specimens were taken from production wheels, P/N 868272-1, which represent several master heats and casting lots. Howmet (Austenal LaPorte), ships to Garrett a half wheel with each lot of castings. A group of these half-wheels were obtained for this program. Table 3-15 is a listing of the half-wheels used with their master heat numbers and casting dates.

21-3640 (22)



TABLE 3-14. TRANSIENT STRESS ANALYSIS PEAK STRESSES. (TOP NUMBER IN EACH CASE IS Pa. BOTTOM NUMBER IS PSI)

| Isopleth |      |                    |                      |                    | Rot               | Equiv-<br>alent<br>Stress* |                  |                    |
|----------|------|--------------------|----------------------|--------------------|-------------------|----------------------------|------------------|--------------------|
| Figure   | Case | $\sigma_{	t pl}$   | $\sigma_{	t p2}$     | $\sigma_{	t p3}$   | $\sigma_{	t pl}$  | $\sigma_{p2}$              | $\sigma_{ m p3}$ | $\sigma_{e}$ , Psi |
| 1, 2     | a.   | -9,239<br>-13,400  | -134,466<br>-195,027 | -26,200<br>-38,000 | 33,233<br>48,200  | 1338<br>1940               | 5585<br>8100     |                    |
| 3, 4     | b.   | -7,977<br>-11,570  | -105,766<br>-153,400 |                    | 33,302<br>48,300  | 1338<br>1940               | 5585<br>8100     |                    |
| 5, 6     | c.   | -8,984<br>-13,030  | -146,720<br>-212,800 |                    | 79,634<br>115,500 | 3199<br>4640               | 13,376<br>19,400 |                    |
| N/A      | đ.   | -10,310<br>-14,953 | -137,081<br>-198,820 |                    | 79,630<br>115,500 | 3199<br>4640               | 13,376<br>19,400 |                    |
| 7, 8     | e.   | -10,396<br>-15,078 | -122,692<br>-177,950 |                    | 79,630<br>115,500 | 3199<br>4640               | 13,376<br>19,400 |                    |
| N/A      | f.   | -11,004<br>-15,960 | -120,934<br>-175,400 |                    | 79,634<br>115,500 | 3199<br>4640               | 1338<br>1940     |                    |
| 9, 10    | . g. | 117<br>170         | -10,514<br>-15,250   | -1351<br>-1960     | 81,702<br>118,500 | 3378<br>4900               | 13,790<br>20,000 | -                  |

\*Equivalent stress (Hincky-VonMises),

$$\sigma_{\rm e} = (\sigma_{\rm p1} - \sigma_{\rm p3})^2 + (\sigma_{\rm p2} - \sigma_{\rm p3})^2 + (\sigma_{\rm p1} - \sigma_{\rm p2})^2$$



Figure 3-12. Peak Stress During Ignition (Cold Engine).

PRESSURE SIDE

21-3640 (22) 3-45



EQUIVALENT STRESS

SUCTION SIDE

Pigure 3-13. Peak Stress During Ignition (Cold Engine).



Peak Stress During Ignition (Warm Engine). Figure 3-14.



EQUIVALENT STRESS

# SUCTION SIDE

Figure 3-15, Peak Stress During Ignition (Warm Engine).



Peak Stress During Takeoff at 180 Seconds (Cold Engine). Figure 3-16.



EQUIVALENT STRESS

SUCTION SIDE

Peak Stress During Takeoff at 180 Seconds (Cold Engine). Figure 3-17.



Figure 3-18. Peak Stress During Takeoff at 500 Seconds (Cold Engine).



Peak Stress During Takeoff at 500 Seconds (Cold Engine). Figure 3-19.



Figure 3-20. Peak Stress During Landing.



Figure 3-21. Peak Stress During Landing.

TABLE 3-15. LISTING OF HALF-WHEELS.

| Casting S/N | Heat<br>Code | Casting<br>Date |
|-------------|--------------|-----------------|
| J773        | 58-KPE       | 12-14-76        |
| н988        | 58-JEM       | 2-9-76          |
| J339        | 58-JTN       | 6-15-76         |
| J313        | 58-JJP       | 6-22-76         |
| J406        | 58-KDZ       | 9-10-76         |
| J840        | 58-KSM       | 1-20-77         |
| K039        | 58-KSE       | 6-20-77         |
| AT10        | 58-K=PKB     | 12-20-78        |
| N651        | 58-PLE       | 1-5-79          |
| J845        | 58-KSE       | 1-20-77         |

Prior to removing any specimens, the half-wheels were heat treated at 982-996°C (1800°F-1825°F) for 4 hours, air cooled, and aged at 871°C (1600°F)  $\pm 25$ °F for 12 hours, followed by air cooling.

Since the program is concerned with the initiation and propagation of cracks from the rivet holes, specimens were as close as possible to the rim area of the wheel. The wheels were sectioned as shown in Figure 3-22. The LCF specimens were machined tested by Martest, Inc. in Cincinnati, OH. The LCF tests were conducted at 593°C (1100°F) in air at an R ratio of -1.0 under axial strain control at 20 cpm. To contain the crack growth within the region of interest and to allow for negative R ratio testing (i.e., compressive mean stress), a center cracked panel specimen was designed (Figure 3-23). crack growth rate tests were performed by Materials Behavior Research Corp. of Cincinnati, OH. Tests were conducted at 593°C (1100°F) in air at 3 R ratios: R = -1.0, -1.5, and 0.0, under load control at 0.5 Hz. Tensile tests were also conducted at room temperature, 537°C (1000°F) and 593°C (1100°F) in air as part of materials verification. Table 3-16 is a summary of the specimens and test conditions used in the program.

# 3.6.2 Results of Materials Testing

In order to provide support for the empirical field data, it was decided to generate LCF and crack growth data using standard test specimens taken from actual unmachined wheels without any field service. The following presents the results of the in-lab test program.

#### 3.6.2.1 Tensile Properties

Table 3-16 shows the room temperature tensile results from the casting lot qualification testing done by Howmet prior to shipment of the wheels. The specimens, taken tangentially in the hub, received



Figure 3-22. Sketch Showing Location of Test Specimens.



- NOTE RADIUS AND GAGE SECTION TO BLEND SMOOTHLY WITHOUT UNDERCUTS
  - REMOVE ALL BURRS AND SHARP EDGES
  - DIMENSIONS ARE IN CENTIMETERS (INCHES)

Figure 3-23. Small Center Notched Specimen for Compressive CCGR Testing.

TABLE 3-16. ROOM TEMPERATURE TENSILE PROPERTIES (HOWMET).

|                     | 0.2 PERCENT YS | UTS         | % EL |
|---------------------|----------------|-------------|------|
|                     | MPa/Ksi        | MPa/Ksi     |      |
| J773-KPE            | 710/103        | 752/109     | 5.0  |
| н988-јем            | 703/102        | 738/107     | 4.7  |
| J339-JTN            | 731/106        | 779/113     | 9.4  |
| J313-JTP            | 710/103        | 745/108     | 5.9  |
| J406-KDZ            | 710/103        | 752/109     | 7.5  |
| J840-KSM            | 710/103        | 731/106     | 3.8  |
| J845-KSE            | 717/104        | 745/108     | 5.7  |
| K039-LKL            | 703/102        | 779/113     | 8.5  |
| AT10-PKB            | 710/103        | 731/106     | 2.2  |
| N651-PLE            | 752/109        | 793/115     | 6.2  |
|                     |                |             |      |
| x                   | 710.2/103.0    | 754.3/109.4 | 6.0  |
| s <sub>x</sub>      | 14.5/ 2.1      | 22.1/ 3.2   |      |
| x̄-35 <sub>x</sub>  | 671.5/ 97.4    | 688.8/ 99.9 | 1.7  |
|                     |                |             |      |
| EMS52466<br>Minimum | 14/97          | 696/101     | 2.0  |
| MDD x               | 704.6/102.2    | 763.9/110.8 | 6.2  |
| ₹-35 <sub>x</sub>   | 635 / 92.1     | 647.4/ 93.9 | 1.5  |

the 982°C (1800°F) 4-hour heat treatment plus aging after eloxing, but before machining. The results show all the wheels exceeded the specification minima given in EMS52466. Table 3-17 shows the tensile results from the current test program at room temperature, 537°C (1000°F) and 593°C (1100°F). The wheels received the 982°C (1800°F) 4-hour heat treatment before eloxing similar to the actual wheels. These specimens were taken from the area between the rim and the hub as shown in Figure 3-22. The tensile properties as plotted in Figure 3-24 through 3-27 show that the tensile strength of IN 100 is constant from RT up to 537°C (1000°F) with a slight decrease at 38°C (100°F), with a corresponding increase in ductility.

#### 3.6.2.2 LCF Properties

The results of the LCF testing are presented in Table 3-18 and plotted in Figures 3-28 and 3-29. The data was generated for fatigue lives between 10<sup>2</sup> and 5.4 x 10<sup>4</sup> cycles to failure at total strain ranges between 0.5 percent and 1.2 percent. A runout (1.3 x 10<sup>5</sup>) was encountered at 0.45 percent strain. There is no other LCF data for IN 100 at 593°C (1100°F). Figure 3-30 shows a comparison between 593°C (1100°F) LCF Neuber and the MDD baseline at 24°C (75°F), 427°C (800°F) and 648°C (1200°F). This comparison indicates that the 593°C (1100°F) data is probably typical.

# 3.6.2.3 Cyclic Crack-Growth Rate

#### 3.6.2.3.1 Data Reduction

The crack length versus number of cycles, a-N data, was analyzed using a 7-point incremental polynomial method as outlined in ASTM E647. The crack length was measured on both sides of the specimen and the average crack length calculated. For the center crack specimens, half the total crack length was used in calculating da/dN and  $\Delta K$  values. The da/dN and  $\Delta K$  values were evaluated at the mid-point of the

TABLE 3-17. TENSILE TEST RESULTS (GARRETT)

| SPECIMEN I.D. (1) |                               | 0.2 PE | RCENT YS | <u>u</u> | TS.   | % EL | 8 RA |  |
|-------------------|-------------------------------|--------|----------|----------|-------|------|------|--|
|                   |                               | cm     | in.      | CM       | in.   |      |      |  |
| RT                | KPE                           | 269.0  | 105.9    | 296.9    | 116.9 | 6.0  | 6.3  |  |
|                   | JEM                           | 269.5  | 106.1    | 310.9    | 122.4 | 11.0 | 7.8  |  |
|                   | JTN                           | 269.5  | 106.1    | 306.3    | 120.6 | 6.6  | 13.9 |  |
|                   | JTP                           | 265.9  | 104.7    | 315.7    | 124.3 | 10.6 | 14.3 |  |
|                   | KDZ                           | 264.9  | 104.3    | 284.5    | 112.0 | 10.6 | 14.3 |  |
|                   | KSM                           | 261.4  | 102.9    | 283.5    | 111.6 | 5.7  | 7.8  |  |
|                   | KSE                           | 269.0  | 105.9    | 289.8    | 114.1 | 5.0  | 9.0  |  |
|                   | LKL                           | 266.4  | 104.9    | 303.0    | 119.3 | 9.5  | 8.6  |  |
|                   | PKB                           | 224.3  | 108.0    | 289.8    | 114.1 | 4.7  | 6.3  |  |
|                   | PLE                           | 269.0  | 105.9    | 293.4    | 293.4 | 6.9  | 9.4  |  |
|                   | x                             | 268.0  | 105.5    | 297.4    | 117.1 | 7.1  | 9.6  |  |
|                   | s <sub>x</sub>                | 3.5    | 1.36     | 11.4     | 4.5   |      |      |  |
|                   | <del>x</del> −3s <sub>x</sub> | 257.6  | 101.4    | 263.9    | 103.9 | 2.69 | 3.9  |  |

<sup>(1)</sup> Tensile specimens were identified with the 3 letter heat treat code.

#### YIELD STRENGTH



TEST TEMPERATURE, OC (OF)

Figure 3-24. Yield Strength of IN-100.

# ULTIMATE TENSILE



Figure 3-25. Ultimate Tensile Strength of IN-100.



TEST TEMPERATURE, OC (OF)

Figure 3-26. Percent Elongation of IN-100.



Figure 3-27. Percent Reduction in Area of IN-100, of IN-100.

# TABLE 3-18. LCF DATA SUMMARY.

| 6.0<br>A<br>Free, | ⊾ 16°4°7<br>20 qm |              |            |          |             | LOT W<br>ABIAL STI | TA SUPURI<br>ALIA PEAGLA     | fon I    | M-1       | 90        |                    | E. ef             | ı                     |                       |            |              |              |            |            | Emploser:<br>P.S. No:<br>Jab No.: | 50(16)E<br>7006761<br>006-233        |
|-------------------|-------------------|--------------|------------|----------|-------------|--------------------|------------------------------|----------|-----------|-----------|--------------------|-------------------|-----------------------|-----------------------|------------|--------------|--------------|------------|------------|-----------------------------------|--------------------------------------|
| herten<br>1.8.    | ĝoj<br>E          | M 15/2       | e' d<br>Mi | 4 14/1   | e<br>Qr∑les | g-Eles             | Test<br>Test<br>Test<br>Test |          | hel<br>D. |           | Het<br>Army<br>In. | 8.].<br>]@<br>pa1 | MACHINA<br>Mac<br>ISI | ao At<br>Stort<br>ISI | H 4/1      | # 14/2       | ěj.          | ÷.         | <u>.</u>   | -<br>                             |                                      |
| , m               | 1.00              | 0.630        | 29.6       | 193.6    | 439         | 100                | 1190                         |          | •         | 2500      | eset.              | 10.0              | 200.0                 | 108.4                 | 14.6       | 98.9         | .070         | .00        | 29.5       | a.c.                              | ·····                                |
| et.               | 4.00              | 0.775        | 24.9       | 199.2    |             | 199                | 1166                         |          | •         | 2101      |                    |                   |                       | 100.0                 |            | dec          | AS           |            | *****      |                                   | ·                                    |
| .pn               | 0.00              | 0.100        | 24.9       | 146.7    | 3.25        | <u></u>            | 1100                         |          | •         | 700       | *****              | -                 | -                     | 147.3                 | <b></b>    | 71.5         |              | ****       | 270.5      |                                   |                                      |
| J#P               | 0.10              | 0.495        | 85.3       | 125.3    | n.m.        | £3.991             | 1100                         |          |           | 200       |                    | -                 |                       | 125.9                 |            | *****        | -            |            | 1,290.5    |                                   |                                      |
|                   | 4.98              | 0.000        | 24.7       | 200.0    | n           |                    | 1100                         |          | ١.        | aid       |                    |                   |                       | 196.6                 |            | 100.0        |              |            |            |                                   |                                      |
| 158               | 1.80              | 0.100        | 86.9       | 202.2 1  |             | 195                | 1100                         |          |           | 7001      |                    |                   | 4                     |                       |            | 121.7        |              |            |            |                                   | ···································· |
| LEL               | 0.95              | 0.135        | 21.8       | 116.9    | 21.750      | 274149             | 1100                         |          | •••       | 2013      | 0101               | -                 |                       | 119.2                 | *****      |              |              |            | 1,260.4    |                                   |                                      |
| <b>E</b>          | 2.4               | 0.000        | 20.2       | 100.2    | 4.          | 4.                 | 1190                         |          |           | 233       | 0660               | -                 | 4                     | <b>4</b>              | 66.7       | 42.5         | +            |            |            | 4                                 |                                      |
| 740               | 6.70              | 0.675        | 59.1       | 176.3    | 1,991       | 1.79               | 1100                         |          |           | no        | 0603               | -                 | 163.4                 | 176.3                 | ****       | 00.4         |              |            | 119.3      |                                   |                                      |
| N.                | 0.475             | 0.475        | 24.9       | 116.5    | 10.202      | H-M                | 1160                         | 1        | 5         | 2719      | 0500               | 19.               | 118.3                 | 110.1                 | 4.0        | 14.7         | <u>).eee</u> | 0.011      | 2,994.0    | a.b.                              | ·                                    |
|                   |                   | <u> </u>     | <b></b>    | <u> </u> |             | <u> </u>           |                              | 1 1      |           |           | <b>↓</b>           | 1                 | <b> </b>              | ļ                     | ļ          | <u> </u>     | <del> </del> | Ь.         |            |                                   |                                      |
|                   |                   | <u> </u>     | <u> </u>   | <u> </u> | <u></u>     | ļ                  | ļ                            |          |           |           | <b></b> _          | <del> </del>      | ļ                     | ļ                     | ļ          | <b>↓</b>     | <b>↓</b>     | <b> </b>   | ļ          | <b> </b>                          |                                      |
| <u> </u>          |                   | <u> </u>     | <u> </u>   | ļ        |             | ļ                  |                              | 1 1      |           | ļļ        | 1                  | 1_                | <b> </b>              | <b> </b>              | ļ          | ļ            | <b>↓</b>     | <b>Ļ</b>   | <b> </b>   | <b></b>                           |                                      |
|                   |                   | <u> </u>     | <b> </b>   | <b></b>  | <b></b>     | ļ                  | ļ                            | 1        |           |           | ļ                  | <b>↓</b>          | ļ                     | ļ                     | <b> </b>   | <del> </del> | <b>ļ</b> .   | <b>-</b>   | ļ          |                                   |                                      |
|                   |                   | <del> </del> | <b> </b>   | <b>!</b> | ļ           | ļ                  |                              | 11       |           |           | 4                  | 4-                | <b> </b>              | <b>.</b>              | ļ          | <del> </del> | ļ            | ļ          | <b> </b>   | <del>}</del>                      |                                      |
| <u> </u>          |                   | <u> </u>     | <u> </u>   | ļ        | ļ           | ļ                  | ļ                            | 1 1      |           | -         |                    | ٠,                | <b> </b>              | . <b> </b> _          | <b>↓</b>   | ļ            | <del> </del> | ļ          | ļ          | <b> </b>                          |                                      |
|                   |                   | <u> </u>     | ļ          | ļ        | ļ           | ļ                  | <b> </b>                     | Į        |           | <b>  </b> | <b>.</b>           | .                 | <b>↓.</b>             | <b> </b>              | <b>}</b> - | <del> </del> | ↓            | <b> </b> - | ļ          | <b> </b>                          |                                      |
| <u> </u>          | ļ                 |              | <b>!</b>   | ļ        | ļ           | ļ                  | ļ                            |          |           | ļ;        |                    | <b>.</b>          | ļ                     | <b></b>               | ļ          | ļ            | <del> </del> | ļ          | <b> </b> - | <b></b>                           |                                      |
| ļ                 |                   | <u> </u>     |            | ļ        | ļ           | ļ                  |                              | ] ]      |           |           | 4                  | J                 | <b>↓</b>              | ļ                     | <b>↓</b>   | ļ            | <b>.</b>     | <b> </b>   | ļ          | <b>}</b>                          |                                      |
|                   | ļ                 | <u> </u>     |            | ļ        | ļ           | ļ                  |                              | <b>.</b> |           | -         | J                  | 4                 | <del> </del>          | <b>↓</b>              | <b></b>    | ļ            | <b>↓</b>     | ļ          | <b>}</b> - | <b> </b>                          |                                      |
| <u></u>           |                   |              |            | <b> </b> | ļ           | ļ                  | ļ                            | 1 1      |           |           | 1                  | .↓_               | <b>↓</b>              | ļ                     | <b> </b>   | ļ            | 4            | <b>ļ</b> . | <b> </b>   | ļ                                 |                                      |
| <u></u>           |                   | <u> </u>     |            | ļ        | ļ           | ļ                  |                              | łl       |           |           | <b></b>            | <b>.</b>          | <b>ļ</b>              | <b></b>               | <b></b> -  |              | <b></b>      | <b> </b>   | ļ          | <del> </del>                      |                                      |
| <u></u>           | ļ                 | <del></del>  | <b> </b>   | ļ        |             |                    |                              | 1 1      |           | ļ!        | 4                  | 4                 |                       | .                     |            |              | . <b>.</b>   | <b>ļ</b>   | <b> </b>   | <b> </b>                          |                                      |
| ļ                 | ļ. <u></u>        | .            |            | ļ        | ļ           |                    |                              |          |           | <b></b> . |                    | <b>.</b>          | . <b> </b> .          | .                     |            |              | . <b>ļ</b>   | <b>ļ</b> . | <b> </b>   | ļ                                 |                                      |
| l                 | }                 | l            | l          | 1        | l           | l                  | l                            | 1 1      |           | 1         | .1                 | 1                 | 1                     | L                     | <b>.</b>   | . L          | 1            | L          | <u> </u>   | L                                 |                                      |

(a) up Shundown (b) feiled in gage (c) failed out of gage in uniform section (d) humout at 133,112 cycles, charge - 5000.0 minutes. (4 E.at host temperature (45 at termination (4) at cycle did

Mor-Tost 1mg. 7/85



```
MATHEMATICAL MODEL
```

Y = AO + A1\*X + A2\*ABS(X - XO)

YMIN = Y - K#SEE

WHERE X = ALOGIO(TOTAL STRAIN RANGE, PERCENT)

Y = ALOGIO(CYCLES TO FAILURE, N(F))

A0 = 2.28227 R = -1.0 R = -1.0 R = -1.0 R = -6.93313 R = -1.0

A2 = 1.73555 FREGUENCY = 2C CPM X0 = -.174C2 TEMPERATURE = 1100 F

SEE = .18045 NUMBER OF DATA POINTS = 10
K = 3.000 SPECIMEN TYPE =PAP244001-1

Figure 3-28. Axial Strain Controlled LCF of IN-100.



```
MATHEMATICAL MODEL

Y = AC + A1*X + A2*ABS(X - X0)

YMIN = Y - K*SEE

WHERE X = ALOG10( NEUBER PARAMETER RANGE, KSI )

Y = ALOG10( CYCLES TO FAILURE, N(F) )
```

| AC =  | 19.58481 | R =-1.C                    |
|-------|----------|----------------------------|
| A1 =  | -7.27022 | K(T) =1.0                  |
| A2 =  | 1.03905  | FREGUENCY =2C CPM          |
| XO =  | 2.21219  | TEMPERATURE =1100 F        |
| SEE = | .16533   | NUMBER OF DATA POINTS = 10 |
| K =   | 3.0CC    | SPECIMEN TYPE =PAP244001-1 |

Figure 3-29. Axial Strain Controlled LCF of IN-100.



MATHEMATICAL MODEL

 $Y = A0 + A1 \times X + A2 \times ABS(X - X0)$ 

YMIN = Y - K\*SEE

WHERE X = ALOGIO( NEUBER PARAMETER RANGE, KSI )

Y = ALOGIO( CYCLES TO FAILURE. N(F) )

|     | 15°F      | 800°F             | 11007    | 1300%     |
|-----|-----------|-------------------|----------|-----------|
| A.  | 15.58638  | 18.11022          | A.58481  | 16, 21223 |
| A   | - 4 18518 | -6,525 <b>5</b> 2 | -121022  | -5.84511  |
| Az. | 0.0       | 0.0               | 1.039 05 | 00        |
| X۵  | 2239K     | 2.18281           | 2.21219  | 2.09154   |
| Sړ  | . 159 143 | ,125621           | .16533   | .223764   |

Figure 3-30. Axial Strain Control LCF of IN-100 at 1100°F Compared to Baseline

7 data points. A modified sigmoidal fit was used to find the average growth rate for the R=-1.0 and R=1.5 data. For the R=0.0 data, a linear technique was used to determine the average growth rate because of the limited data for R=0.0. The curves are plotted in Figures 3-31, 3-32, and 3-33.

# 3.6.2.3.2 Discussion

The crack-growth rates for the three R ratios are compared in Figure 3-34. The minor differences in the range of crack-growth rates,  $10^{-6}$  to  $10^{-4}$  inch per cycle are within the expected scatter for crack-growth testing which is usually considered a factor of 2 on growth rate. The differences at crack-growth rates below  $10^{-7}$  and above  $10^{-4}$  inches per cycle are due to differences in the curve fitting technique used, and the scatter in the data due to the large grain size of IN 100.

The crack-growth-rate testing did not provide an accurate measurement of the threshold stress intensity  $K_{\rm TH}$  or the critical stress intensity,  $K_{\rm Q}$ . Values for  $K_{\rm TH}$  and  $K_{\rm Q}$  were assumed in order to provide the asymptotes for the sigmoidal curve fit. As the average line approaches the asymptotes, the degree of curvature is dependent on the amount of data at the low and high-crack-growth rates. Additionally, the linear curve fit is not asymptotic and will give a different indication of the behavior at low and high-crack rates when compared to a sigmoidal curve fit. However, due to insufficient data for R = 0.0, a linear curve fit was needed.

Additional scatter came from the crack fronts growing unevenly caused by cracks growing quicker on one surface than on the opposite surface. The alignment on the machines was checked after the first specimen exhibited this behavior and was found to be accurate. The cracks continued to grow unevenly despite efforts to obtain even growth. It is conjectured that the large grain size of IN 100 and the



AYERAGE LN(DA/DN) = AO+A1=X

AO= -28.3775

TEMP= 1100 F

**HHERE** 

X = LN(DELTA (K) ) A1= 5.4539

R= 0.000

FREQ= 0.50 HZ

SPECIMEN TYPE= PAP244387

NO. OF SPECIMENS= 2

Figure 3-31. Crack Growth Rate Data for IN-100.



 AVERACE LN(DA/DN) = B+P\*X+Q\*LN(X)+D\*LN(Y)
 B= -11.6072 KT= 8.50
 TEMP= 1100 F

 WHERE
 X = LN(DELTA(K)/KT)
 P= -2.1151 KC= 40.00
 R= -1.000

 Y = LN(KC/DELTA(K))
 G= 0.4147
 FREQ= 30.00 HZ

 D= -5.1361
 SPECIMEN TYPE= PAP 244387

 NO. OF SPECIMENS= 5

Figure 3-32. Crack Growth Rate Data for IN-100.





MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A



AVERAGE LN(DA/DN) = B+P\*X+Q\*LN(X)+D\*LN(Y)

B= -8.0845 KT= 8.50

TEMP= 1100 F

WHERE

X = LN(DELTA(K)/KT)

P= -5.7902 KC= 40.00

R= -1.500

Y = LN(KC/DELTA(K))

Q= 3.1796

FREQ= 30.00 HZ

D= -3.6706

SPECIMEN TYPE= PRP 244387

NO. OF SPECIMENS= 3

Figure 3-33. Crack Growth Rate Data for IN-100.



TEMP - 593°C (1100°F)

R = 0.000, -1.0, -1.5

FREQ = 0.50 HZ SPECIMEN TYPE = PAP244387

Figure 3-34. Crack Growth Rate Data for IN-100.

small size of the specimen caused the uneven growth. Relatively few grains are contained across the width of the specimen. When the crack started at one corner of the notch, it could grow a distance without running into a grain boundary. Once the crack fronts became uneven, the loading becomes uneven and the problem is accentuated. Therefore, the threshold and final failure region of the curve should not be taken as a true threshold or fracture toughness.

### 3.6.3 Conclusions of Materials Testing

- 1. Tensile strength is constant over the temperature range of  $24^{\circ}$ C  $(75^{\circ}$ F) to  $593^{\circ}$ C  $(1100^{\circ}$ F).
- 2. Ductility increases slightly with temperature.
- 3. LCF at  $1100^{\circ}$ F is consistent with the baseline data at 75°F,  $426^{\circ}$ C ( $800^{\circ}$ F), and  $648^{\circ}$ C ( $1200^{\circ}$ F).
- 4. There was no significant difference between crack growth rates for R = 0.0, -1.0, and -1.5.
- 5. The large grain size of IN 100 caused considerable scatter in the crack growth rate.

# 3.7 Analytical Life Prediction

#### 3.7.1 Crack Propagation Analysis

Fracture mechanics life prediction requires calculation of cracktip stress intensity factors to quantify both subcritical crack growth
and the conditions for unstable fracture in complex geometries under
complex loading conditions which lead to high-stress gradients. The
"BIGIF" (Boundary-Integral-Equation-Generated-Influence-Functions)
codes have been developed and distributed to perform accurately and
inexpensively these life predictions for a wide range of two- and
three-dimensional elastic and contained plastic stress fields, and
crack and structural geometries, given that the elastic stress for the
uncracked structure is available from an independent source.

The independent source for these elastic stresses is the three-dimensional stress analysis. This analysis was conducted under this program and uses the Garrett Program ISO3DQ.

Three areas of interest have been analyzed. These areas are the forward and aft corner cracks at the bottom of the rivet hole and corner cracks in the small hole that is used as a rivet retainer.

The crack-growth rate analysis has been calculated for the maximum principle stress fields for all three crack locations. The forward-crack growth is shown in Figure 3-35. The aft-crack growth is shown in Figure 3-36, and the rivet-retainer crack growth is shown in Figure 3-37.

The crack depth versus crack length for the forward aft and the rivet-retainer hole crack locations are shown in Figures 3-38 through 3-40. This data was used to correlate crack-aspect ratio from field examination with calculated values.

The stress-intensity factor as a function of crack depth is shown in Figures 3-41 through 3-43 for the same crack locations.

#### 3.7.2 Low-Cycle-Fatigue Prediction

The low-cycle-fatigue prediction for the forward and aft-rivet hole areas are summarized in Table 3-19.

The trends observed in the data indicate that there is a large variation in rivet-hole cracks from slot-to-slot, and from wheel-to-wheel. A slot may have a large crack at the "A" location, and the very next slot may have no crack. There is also no relationship between a crack at location "A" and a crack at any other location for any one slot. The relationship between cracks for any slot that has cracks at more than one location is shown in Figures 3-44 through 3-49.



21-3640 (22) 3-77



Cycles to Failure Versus Crack Length, Turbine Rim Durability, Aft Corner - Principle. Figure 3-36.



Cycles to Failure Versus Crack Length, Turbine Rim Durability, Rivet Retainer - Principle. Figure 3-37.





Crack Length Versus Crack Depth, Turbine Rim Durability, Aft Corner - Principle. Figure 3-39.



Crack Length Versus Crack Depth, Turbine Rim Durability, Rivet Retainer - Principle. Figure 3-40.



Stress Intensity Factor Versus Crack Depth, Turbine Rim Durability, Forward Corner - Principle. Figure 3-41.





TABLE 3-19. LCF LIFE PREDICTION SUMMARY.

| Min.         Avg.         Max.         Stress         Min.         Avg.         Max.           Life         Life         Range         Life         Life         Life         Min.         Avg.           Cycle         Cycle |   |      |                       |                        | Cold 8                | Start                 |                       |                        | Warm                  | tart                  |                       | To            | Fotal Life    | *             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|---------------|---------------|---------------|
| 210 205 650 2070 174 535 1700 5320 435 1380<br>215 180 570 1800 184 453 1440 4560 372 1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | j |      |                       | Stress<br>Range<br>Kai | Min.<br>Life<br>Cycle | Avg.<br>Life<br>Cycle | Max.<br>Life<br>Cycle | Stress<br>Range<br>Ksi | Min.<br>Life<br>Cycle | Avg.<br>Life<br>Cycle | Max.<br>Life<br>Cycle | Min.<br>Cycle | Avg.<br>Cycle | Max.<br>Cycle |
| Aft Rivet 215 180 570 1800 184 453 1440 4560 372 1180<br>Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - | . Y. | Torward<br>Nivet Area | 210                    | 205                   | 650                   | 2070                  | 174                    | 535                   | 1700                  | 5320                  | 435           | 1380          | 4380          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - | W.B. | Nft Rivet<br>Nrea     | 215                    | 180                   | 570                   | 1800                  | 184                    | 453                   | 1440                  | 4560                  | 372           | 1180          | 3740          |

\*TOTAL LIFE =  $\frac{1}{7} \frac{1}{\text{cold}} + \frac{6}{7} \frac{1}{\text{Warm}}$ 

(1 cold start for every 6 warm starts)

21-3640 (22) 3-86



Figure 3-44. Crack Face at A Versus Crack Length at B.

21-3640 (22) 3-87



Figure 3-45. Crack Face at A Versus Crack Face at C.



Figure 3-46. Crack Face at A Versus Crack Length at D.



21-3640 (22) 3-90





Figure 3-49. Crack Pace at A Versus Crack Face at G.

It became obvious that the cracks at the high-stress areas must start at different locations around the peak-stress location due to machining marks and nonhomogenous material weaknesses; therefore, crack depth will show wide variation until the crack has achieved a rather large size.

## 3.8 Turbine Wheel Crack Charcteristics from Field-Service Wheels

For the purpose of comparing the analytically predicted crack sizes and shapes predicted as described in Section 3.8, a program was initiated to examine wheels that were retired from service that had cracks in the rivet-hole area of interest. A total of 14 wheels were examined with cyclic lives ranging from 2400 to 5600 cycles. The data from the examination of these wheels were stored in a data bank so that cross-correlation between different wheels and between different rivet-hole locations could be examined.

For the purpose of identification a diagram of crack locations and directions is shown in Figure 3-50. The raw data is from the data bank reproduced in Appendix D.

For the above stated reasons a series of plots, using only the largest crack on each wheel, was plotted. These are shown in Figures 3-51 through 3-56 for the various correlations. From this correlation it is shown that the larger crack occurs most predominately at the "A" and "G" locations, and the largest cracks at "B" through "F" were always smaller than those at "A" or "G". Also as shown in Figure 3-56, the relationship between "A" and "G" is very close to one-to-one.

The field service wheel crack data was also used to estimate the aspect ratios of the cracks. Again, only the largest crack from each wheel was used to obtain these results. These are shown in Figures 3-57 through 3-62.



Figure 3-50. Crack Locations and Dimensions.

21-3640 (22) 3-94



Figure 3-51. Crack Face at A Versus Crack Length at B.





21-3640 (22) 3-97







21-3640 (22) 3-100



21-3640 (22) 3-101







21-3640 (22) 3-104



21-3640 (22) 3-105



21-3640 (22) 3-106

## 3.9 Correlation of Cracked Wheels with Analytical Prediction

The crack locations are shown in Figure 3-63, and the maximum crack for the turbine wheels in the data base as a function of equivalent cycles is shown in Figures 3-64 and 3-65, forward- and aft-rivet holes.

Also shown in Figures 3-64 and 3-65 is the analytical crack propagation as a function of equivalent cycles. The cracks are assumed to propagate from an initial size of 0.030 inch, and the propagation is shown for the minimum, average, and maximum equivalent cycles affecting the 0.030-inch crack.

The same plots are shown in Figures 3-66 and 3-67 with all of the data points presented.

## 3.9.1 Isolation of Problem Areas in Data Correlation

## 3.9.1.1 Crack Initiation Determination

Many cracks have been measured on wheels destructively examined for this program. The key problem encountered is the inability to separate crack initiation from crack propagation. Ideally, if the crack-initiation point were known for the cracks examined, a correlation between actual and analytical procedures and limits could be refined to a point of increased confidence in crack-propagation prediction.

Lacking the qualitative information on crack initiation needed for a straight-forward correction of the crack propagation, a number of approaches have been made to statistically determine the initiation cycles and crack size.



Figure 3-63. Crack Locations and Directions.

21-3640(22) 3-108



Cycles Versus Maximum Cracks Forward Corner - Equivalent. Figure 3-64.

21-3640 (22) 3-109



Cycles Versus Maximum Crack Aft Corner - Equivalent. Figure 3-65.

Cycles Versus All Cracks Forward Corner - Equivalent. Figure 3-66.

21-3640(22) 3-111



21-3640(22) 3-112

Cycles Versus All Cracks Aft Corner - Equivalent. Figure 3-67.



Figure 3-68. Turbine Rim Durability - Aft Corner.

The first approach was to plot the largest of all the cracks on the forward edge of the rivet hole for each wheel, and then to pass the predicted propagation line through these points. A curve with a least squares fit can be passed through the data points with an initial cracks size from 0.0762-0.1016 cm (0.030-0.040 inch). Using an initial crack size of 0.030 inch, the average number of initiation cycles would be 147. Using an initial crack size of 0.1016 cm (0.040 inch) the average number is 1780 cycles. The minimum calculated cycles in initiation, as shown previously, is 430 cycles.

Another approach to back calculate the initiation from the crack data was to pass the propagation line through each crack in the wheels and calculate the number of cycles needed to arrive at that point based upon an initial estimate of crack size and cycles. From this approach it was found that the average initial crack size for the forward rivet hole area (crack location "A") was 0.0508 cm (0.020 inch) with an initiation of 1985 cycles. For the aft rivet hole area (crack location "G"), the crack initiation was 0.0508 cm (0.020 inch) with an initiation of 2730 cycles. For the rivet retainer area (crack location "C"), the crack initiation was 0.0508 cm (0.020) with an initiation of 2186 cycles. These are shown in Figures 3-68, 3-69, and 3-70 for the aft, forward, and rivet retainer areas, respectively. this method, it was also possible to estimate the distribution of the cracks as a function of cycles. The maximum, minimum, and average curves are shown in Figures 3-71, 3-72, and 3-73 for the rivet retainer, forwards, and aft areas, respectively.

While these two approaches tend to support the fact that the data does correlate with the prediction, the results are not conclusive.

CHACK LENGTH (CM)

21-3640(22) 3-115





Figure 3-70. Turbine Rim Durability - Rivet Retainer.

21-3640 (22) 3-116



Figure 3-71. Turbine Rim Durability - Rivet Retainer.



Figure 3-72. Turbine Rim Durability - Forward Corner.



Figure 3-73. Turbine Rim Durability - Aft Corner.

### 3.10 Whirlpit Test

With the resources allocated for this program, it was not possible to run a heated whirlpit rig test to propagate cracks in wheels retired from service. A room temperature test, however, was devised. It was not possible to run the wheel to a speed that would duplicate the crack-growth rate that was predicted in service. Conditions related to bore stresses and pedestal stresses limited the speed of the test, and if a crack occurred in the pedestal or bore, it would propagate faster than in the rivet hole.

The test was conducted at 52,000 rpm for two wheels to 7500-cycles. The data from these tests is summarized in Table 3-20 and plotted in Figures 3-74 and 3-75. A failure occurred on the first wheel at 6600 cycles due to a pedestal failure. The second wheel was concluded at 7500 cycles with no failure.

The comparison of the predicted crack-growth rate with the results from the whirlpit indicated that the results are within the range of the material properties and tend toward the slower crack-growth rate of that range. The material data curve used for the analysis is shown in Figure 3-76 along with the material curve that would yield the same growth rate as that which was found from the measured data.

TABLE 3-20. CRACK SIZES IN CYCLIC WHIRLPIT TEST.

Wheel No: 4275

|        |                | Crack Size, cm (in.) |                  |
|--------|----------------|----------------------|------------------|
| Cycles | Slot No. (4)   | Slot No.<br>(17)     | Slot No.<br>(38) |
| 0      | 0.0254 (0.010) | 0.0635 (0.025)       | 0.0254 (0.010)   |
| 500    | 0.0381 (0.015) | 0.0762 (0.030)       | 0.0381 (0.015)   |
| 1500   | 0.1016 (0.040) | 0.0762 (0.030)       | 0.0508 (0.020)   |
| 2500   | 0.1016 (0.040) | 0.0762 (0.030)       | 0.0635 (0.025)   |
| 4000   | 0.1016 (0.040) | 0.0762 (0.030)       | 0.0762 (0.030)   |
| 5500   | 0.1016 (0.040) | 0.0762 (0.030)       | 0.0889 (0.035)   |
| 7500   | 0.1016 (0.040) | 0.1016 (0.040)       | 0.0889 (0.035)   |

Wheel No. 2197

|        |                  | Crack Size, cm (in.) |                  |  |
|--------|------------------|----------------------|------------------|--|
| Cycles | Slot No.<br>(13) | Slot No.<br>(23)     | Slot No.<br>(28) |  |
| 0      | 0.1016 (0.040)   | 0.1016 (0.040)       | 0.0762 (0.030)   |  |
| 500    | 0.1016 (0.040)   | 0.1016 (0.040        | 0.0762 (0.030)   |  |
| 1500   | 0.1016 (0.040)   | 0.1016 (0.040)       | 0.0889 (0.035)   |  |
| 2500   | 0.1143 (0.045)   | 0.1016 (0.040)       | 0.1016 (0.040)   |  |
| 4000   | 0.127 (0.050)    | 0.1143 (0.045)       | 0.1143 (0.045)   |  |
| 5000   | 0.1397 (0.055)   | 0.1143 (0.045)       | 0.1143 (0.045)   |  |



Figure 3-74. Crack Growth Data From Whirlpit Test Wheel 2197.



Figure 3-75. Crack Growth Data From Whirlpit Test Wheel 4275.



Figure 3-76. Typical Stress Intensity Factor Range Versus Crack Growth Rate for IN-100 Castings at Room Temperature.

APPENDIX A

### FLUID BOUNDARY CONDITIONS

### MAXIMUM POWER

| LOCATION              | P <sub>t</sub> ABS | P <sub>t</sub> Rel | P <sub>st</sub> | Tt ABS | <sup>T</sup> t Rel | T <sub>st</sub> |
|-----------------------|--------------------|--------------------|-----------------|--------|--------------------|-----------------|
| OIL SUMP (5)          | -                  | -                  | 16.70           | 770.0  | -                  | 770.0           |
| COMP. INLET (6)       | 15.27              | -                  | 11.62           | 518.7  | -                  | 484.9           |
| COMP. EXIT            |                    |                    |                 |        |                    |                 |
| BEFORE DESWIRL (1)    | 157.6              | -                  | 116.9           | 1140.  | -                  | 1021.7          |
| AFTER DESWIRL (7)     | 157.6              | - ,                | 152.8           | 1140.  | -                  | 1130.0          |
| 1ST STG STATOR IN (9) | -                  | •                  | 143.61          | 2299.7 | 2299.7             | 2280.5          |
| 1ST STG TURB. IN (11) | -                  | •                  | 98.30           | 2299.7 | 2148.4             | 2101.6          |
| 1ST STG TURB EX (34)  | -                  | -                  | 76.94           | 2056.6 | 2147.4             | 2010.1          |
| 2ND STG TURB IN (22)  | 81.23              | 56.45              | 50.52           | 2056.6 | 1885.6             | 1836.3          |
| 2ND STG TURB EX (27)  | 44.64              | 52.08              | 42.10           | 1812.8 | 1881.6             | 1787.0          |
| 3RD STG TURB IN (29)  | -                  | -                  | 21.5            | 1812.8 | 1540.9             | 1517.7          |
| 3RD STG TURB EX (33)  | -                  | -                  | 13.7            | 1452.1 | 1547.0             | 1407.5          |
| (17)                  | 157.6              | -                  | 157.6           | 1140.0 | -                  | 1140.0          |

PRESSURES IN PSIA TEMPERATURES IN  $^{\circ}$ R NUMBERS IN PARENTHESES REFER TO STATION NUMBERS IN SECONDARY FLOW ANALYSIS. PLEASE SEE APPENDIX B.

### FLUID BOUNDARY CONDITIONS

### CRUISE

| LOCATION               | P <sub>t</sub> ABS | Pt Rel | Pst   | <sup>T</sup> t ABS | <sup>T</sup> t Rel | <sup>T</sup> st |
|------------------------|--------------------|--------|-------|--------------------|--------------------|-----------------|
| OIL SUMP (5)           | -                  | -      | 9.15  | 745.6              | -                  | 770.            |
| COMP. INLET (6)        | 9.67               | -      | 8.055 | 502.2              | -                  | 480.            |
| COMP EXIT              |                    |        |       |                    |                    |                 |
| BEFORE DESWIRL (1)     | 99.8               | -      | 74.5  | 1103.8             | -                  | 1060.           |
| AFTER DESWIRL (7)      | 99.8               | -      | 96.19 | 1103.8             | -                  | 1060.           |
| 1ST STG STATOR IN (9)  | •                  | -      | 90.9  | 2226.7             | 2226.7             | 2251.           |
| 1ST STG STATOR EX (11) | -                  | -      | 62.2  | 2226.7             | 2080.2             | 2075.           |
| 1ST STG TURB EX (34)   | -                  | -      | 49.4  | 1991.3             | 2079.2             | 1985.           |
| 2ND STG TURB IN (22)   | 51.4               | 35.74  | 31.98 | 1991.3             | 1825.8             | 1714.           |
| 2ND STG TURB EX (27)   | 28.26              | 32.97  | 26.65 | 1755.3             | 1821.9             | 1766.           |
| 3RD STG TURB IN (29)   | -                  | -      | 13.60 | 1755.3             | 1755.              | 1501            |
| 3RD STG TURB EX (33)   | -                  | -      | 8.65  | 1406.0             | 1400.              | 1392.           |
| ) 17)                  | 99.8               | -      | 96.19 | 1103.8             | -                  | 1060.           |
|                        |                    |        |       |                    |                    |                 |

21-3640(22) Appendix A A-2

### FLUID BOUNDARY CONDITIONS

IDLE

| LOCATION               | Pt ABS | P <sub>t</sub> Rel | Pst   | Tt ABS     | Tt Rel | T <sub>st</sub> |
|------------------------|--------|--------------------|-------|------------|--------|-----------------|
| OIL SUMP (5)           | -      | -                  | 16.7  | -          | -      | 780.0           |
| COMP INLET (6)         | -      | -                  | 14.5  | _ <b>_</b> | -      | 572.7           |
| COMP EXIT              |        |                    |       |            |        |                 |
| BEFORE DESWIRL (1)     | -      | -                  | 37.3  | -          | -      | 839.7           |
| AFTER DESWIRL (7)      | -      | • •                | 40.98 | -          | -      | 839.7           |
| 1ST STG STATOR IN (9)  | -      | -                  | 39.2  | -          | •      | 1787.0          |
| 1ST STG STATOR EX (11) | 38.8   | -                  | 29.1  | 1777.      | -      | 1777.0          |
| 1ST STG TURB EX (34)   | 25.3   | -                  | 24.0  | 1627.      | -      | 1627.0          |
| 2ND STG TURB IN (22)   | 24.4   | -                  | 19.2  | 1627.      | -      | 1627.0          |
| 2ND STG TURB EX (27)   | 17.1   | -                  | 16.3  | 1512.      | -      | 1512.0          |
| 3RD STG TURB IN (29)   | 16.5   | -                  | 15.2  | 1512.      | -      | 1512.0          |
| 3RD STG TURB EX (33)   | 14.75  | -                  | 14.65 | 1473.      | -      | 1473.0          |
| (17)                   | -      | -                  | 40.98 | -          | -      | 839.7           |

## SECOND STAGE ROTOR AXIAL VELOCITY DISTRIBUTION R= 2.963"

### SUCTION SURFACE

### PRESSURE SURFACE

| AXIAL<br>DISTANCE                                                                                                                                                                                  | CRITICAL MACH NUMBER                                                                                                                                    | AXIAL<br>DISTANCE                                                                                                                                                                                 | CRITICAL<br>MACH NUMBER                                                                                                           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0.0<br>.03799<br>.07598<br>.11398<br>.151968<br>.18996<br>.22795<br>.26594<br>.30394<br>.34193<br>.37992<br>.41791<br>.45588<br>.49390<br>.53189<br>.56988<br>.60678<br>.64599<br>.68386<br>.72185 | 0.0<br>.482<br>.509<br>.547<br>.585<br>.619<br>.646<br>.665<br>.673<br>.650 (.67)<br>.651 (.67)<br>.673<br>.675<br>.679<br>.683<br>.685<br>.685<br>.685 | 0.0<br>.03799<br>.07598<br>.11398<br>.151968<br>.18996<br>.22795<br>.26594<br>.30344<br>.34193<br>.37992<br>.41791<br>.45588<br>.4939<br>.53189<br>.56988<br>.60678<br>.64599<br>.68386<br>.72185 | MACH NUMBER  0.0 .388 (.29) .343 .341 .339 .338 .346 (.339) .340 .344 .351 .360 .371 .381 .391 .406 .406 .412 .418 .425 .435 .435 |  |  |
| .75984<br>.7978<br>.8358<br>.8738                                                                                                                                                                  | .647<br>.642<br>.640                                                                                                                                    | .7978<br>.8358<br>.8738                                                                                                                                                                           | .478<br>.500<br>.538                                                                                                              |  |  |

Axial Chord = 2.412 cm. (0.9498 in.

 $M_i^* = 0.429$ 

 $M_0$ \* = 0.623

Critical Velocity 584.55 m/sec (1917.8 ft/sec)

MACH NUMBERS IN PARENTHESES WERE USED TO SMOOTH OUT THE VELOCITY DISTRIBUTIONS

MAXIMUM POWER

21-3640 (22) Appendix A

# SECOND STAGE ROTOR AXIAL VELOCITY DISTRIBUTION

R= 3.263"

### SUCTION SURFACE

### PRESSURE SURFACE

| AXIAL    |     | CRITICAL    | AXIAL    | CRITICAL    |  |
|----------|-----|-------------|----------|-------------|--|
| DISTANCE |     | MACH NUMBER | DISTANCE | MACH NUMBER |  |
| 0.0      | 0   | 0.0         | 0.0      | 0.0         |  |
| .03397   | .04 | .452        | .03397   | .212        |  |
| .06794   | .08 | .476        | .06794   | .229        |  |
| .1019    | .12 | .526        | .1019    | .2399       |  |
| .1359    | .16 | .562        | .1359    | .249        |  |
| .1699    | .20 | .601        | .1699    | .258        |  |
| .2038    | .24 | .625        | .2038    | .266        |  |
| .2378    | .28 | .610 (.64)  | .2378    | .275        |  |
| .2178    | .32 | .620 (.65)  | .2178    | .284        |  |
| .3057    | .36 | .658        | .3057    | .302        |  |
| .3396    | .40 | .669        | .3396    | .306        |  |
| .3737    | .44 | .684        | .3737    | .328        |  |
| .4076    | .48 | .701        | .4076    | .334        |  |
| .4416    | .52 | .702 (.72)  | .4416    | .349        |  |
| .4756    | .56 | .733        | .4756    | .378        |  |
| .4856    | .60 | .740        | .4856    | .387        |  |
| .5435    | .64 | .744        | .5435    | .408        |  |
| .5775    | .68 | .735        | .5775    | .430        |  |
| .6115    | .72 | .740 (.74)  | .6115    | .464        |  |
| .6454    | .76 | .717 (.72)  | .6454    | .478        |  |
| .6794    | .80 | .709        | .6794    | .503        |  |
| .7134    | .84 | .710        | .7134    | .529        |  |
| .7813    | .92 | .703 (.708) | .7813    | .558        |  |
| .7813    | .96 | .707        | .7813    | .592        |  |

Axial Chord = 2.157 cm. (0.8493 in.

 $M_{i}^{*} = 0.346$ 

 $M_0^* = 0.689$ 

Critical Velocity 586.37 m/sec (1923.8 ft/sec)

MACH NUMBERS IN PARANTHESES WERE USED TO SMOOTH OUT THE VELOCITY DISTRIBUTIONS.

MAXIMUM POWER

21-3640 (22) Appendix A

# TPE 331-3U DURABILITY STUDY SECOND STAGE ROTOR AXIAL VELOCITY DISTRIBUTION R= 3.563"

SUCTION SURFACE

PRESSURE SURFACE

| AXIAL<br>DISTANCE | CRITICAL<br>MACH NUMBER | AXIAL<br>DISTANCE | CRITICAL<br>MACH NUMBER |
|-------------------|-------------------------|-------------------|-------------------------|
| 0.0               | 0.0                     | 0.0               | .30                     |
| .02999            | (.42)                   | .02999            | .143                    |
| .05998            | .514                    | .05998            | .188                    |
| .08998            | .566                    | .08998            | .201                    |
| .11997            | .601                    | .11997            | .220                    |
| .1500             | .627                    | .1500             | .235                    |
| .1800             | .644                    | .1800             | .250                    |
| .2099             | .655                    | .2099             | . 263                   |
| .2399             | .668                    | .2399             | .277                    |
| .2699             | .683                    | .2699             | .290                    |
| .2999             | .701                    | .2999             | .314                    |
| .3299             | .728                    | .3299             | .321                    |
| .3599             | .744                    | .3599             | .338                    |
| .3899             | .761                    | .3899             | .356                    |
| .4199             | .773                    | .4199             | .377                    |
| .4499             | .780                    | .4499             | .400                    |
| .4799             | .781                    | .4799             | .426                    |
| .5100             | .773                    | .5100             | .454                    |
| .5399             | .779 (.77)              | .5399             | .484                    |
| .5699             | .758                    | .5699             | .516                    |
| .5998             | .753                    | .5998             | .550                    |
| .6300             | .750                    | .6300             | .587                    |
| .6600             | .751                    | .6600             | .625                    |
| .6898             | .760                    | .6898             | .666                    |
|                   | .75                     |                   | .75                     |

Axial Chord = 1.904 cm. (0.7498 in.

 $M_i^* = 0.299$ 

 $M_0^* = 0.743$ 

Critical Velocity 588.84 m/sec (1931.9 ft/sec)

MACH NUMBERS IN PARENTHESES WERE USED TO SMOOTH OUT THE VELOCITY DISTRIBUTIONS.

MAXIMUM POWER

21-3640 (22) Appendix A A-6

### TPE 331-3U DURABILITY STUDY SECOND STAGE ROTOR

### AXIAL VELOCITY DISTRIBUTION

R= 3.863

### SUCTION SURFACE

### PRESSURE SURFACE

| AXIAL<br>DISTANCE | CRITICAL<br>MACH NUMBER | AXIAL<br>DISTANCE | CRITICAL<br>MACH NUMBER |
|-------------------|-------------------------|-------------------|-------------------------|
| 0.0               | 0.0                     | 0.0               | 0.0                     |
| .05212            | .651 (.43)              | .02583            | .183                    |
| .07748            | .609 (.53)              | .05212            | .191                    |
| .1033             | .645                    | .07748            | .223                    |
| .1291             | .658                    | .1033             | .2295                   |
| .1549             | .673                    | .1291             | .244                    |
| .1808             | .691                    | .1549             | .267                    |
| .2066             | .709                    | .1808             | .272                    |
| . 2324            | .715 (.735)             | . 2066            | .285                    |
| .2583             | .751                    | .2324             | .2999                   |
| . 2841            | .770                    | .2583             | .326                    |
| .3099             | .786                    | .2841             | .345                    |
| .3357             | .798                    | .3099             | .367                    |
| .3616             | .806                    | .3357             | .891                    |
| .3874             | .820 (.806)             | .3616             | .417                    |
| .4132             | .806                    | .3874             | .432                    |
| .4390             | .802                    | .4132             | .464                    |
| .4649             | .799                    | .4390             | •500                    |
| .4907             | .803                    | .4649             | .555 (.53)              |
| .5165             | .795                    | .4907             | .577                    |
| .5423             | .795                    | .5165             | .634 (.61)              |
| .5682             | .744                    | . 5423            | .655 (.68)              |
| .5940             | .808                    | .5682             | .708                    |
| .6456             | .79                     | . 5940            | .727                    |
| <b>-</b>          |                         |                   | .79                     |

Axial Chord = 1.640 cm (0.6456 in.)

 $M_{T}^{*} = 0.300$ 

 $M_{\phi}^* = 0.791$ 

Critical Velocity = 591.92 m/sec (1942.0 ft/sec)

MACH NUMBERS IN PARENTHESES WERE USED TO SMOOTH OUT THE VELOCITY DISTRIBUTIONS.

MAXIMUM POWER

21-3640(22) Appendix A

APPENDIX B

SECONDARY FLOW CONDITIONS



TPE331-3U Secondary Flow Model.





21-3640 (22) Appendix B B-1

### SECONDARY FLOW PROGRAM INPUT MAX. POWER

| STANCE                                                                                                         | CLDE                                                        | EF UA                                                              | AREA OR                                                                                    | CLEAPANCE                                                | TOOTH                                                                                        | NO. OF                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                |                                                             | CAEEL.                                                             | אנין נישי                                                                                  | ABUILE                                                   | AT LCH                                                                                       | le éth .                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 .                                                                                                            | 4                                                           | 4.000                                                              | •.0000                                                                                     | +.00000                                                  | -0.000                                                                                       | 1.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                                              | 4                                                           | 4.000                                                              | •.0200                                                                                     | *.00006                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                                                              | 1                                                           | .750                                                               | .0042                                                                                      | 1.00000                                                  | -0.000                                                                                       | -0.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                | 1                                                           | -400                                                               | -3113                                                                                      | 1.00000                                                  | -0.000                                                                                       | -0.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                                              | ?                                                           | .715                                                               | .9000                                                                                      | .03900                                                   | .100                                                                                         | -                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                                                                                              | ,                                                           | .700                                                               | 1.4970                                                                                     | .01000                                                   | .125                                                                                         |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                                                              | 1                                                           | 637                                                                | . 9350                                                                                     |                                                          |                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                              | 1                                                           | •632                                                               | .0334                                                                                      | 1.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                              | 1                                                           | .472                                                               | .5200                                                                                      | 1.70700                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                                             |                                                             | a.c.00                                                             |                                                                                            |                                                          | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                                                                                             | 1                                                           | .753                                                               | .1575                                                                                      | 1.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                                                                                                             | 1                                                           | •600                                                               | .01*0                                                                                      | 1.00000                                                  | ~0.030                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                                                                                             | T                                                           | •05                                                                | -2197                                                                                      | 1.70300                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14                                                                                                             | 1                                                           | .000                                                               | 1500                                                                                       | 1.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                                                                                                             | 1                                                           | .713                                                               | .3574                                                                                      | 1.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16                                                                                                             | •                                                           | 4.000                                                              | *.0000                                                                                     | ***********                                              |                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                                                                                                             | 1                                                           | ••00                                                               | .1079                                                                                      | 1.30300                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19                                                                                                             | •                                                           | 10.000                                                             | *.0000                                                                                     | •.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ia .                                                                                                           | 7                                                           | - 777                                                              | - 1. FRGE                                                                                  |                                                          | .575                                                                                         |                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 70                                                                                                             | •                                                           | 11.000                                                             | *. 7007                                                                                    | *.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21                                                                                                             | 1                                                           | •600                                                               | • วกจา                                                                                     | 1.00006                                                  | -0.000                                                                                       | -                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55                                                                                                             | <u> </u>                                                    | #05                                                                | ,2147-                                                                                     |                                                          | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23                                                                                                             | 1                                                           | ••00                                                               | .1250                                                                                      | 1.00000                                                  | -0.000                                                                                       | '                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24                                                                                                             |                                                             | 11.000                                                             | *.0000                                                                                     | •.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ?5                                                                                                             | ,                                                           |                                                                    | 1.5875                                                                                     |                                                          |                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76                                                                                                             | •                                                           | 11.000                                                             | •.0000                                                                                     | *.30000                                                  | -0.350                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27                                                                                                             | 1                                                           | .970                                                               | .5977                                                                                      | 1.00000                                                  | -0.050                                                                                       | _                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ?• —                                                                                                           | <u> </u>                                                    |                                                                    |                                                                                            |                                                          |                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                                                                                                             | 1                                                           | . 271                                                              | .2197                                                                                      | 1.00300                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70                                                                                                             | -C                                                          | -0.000                                                             | *.0000                                                                                     | *.37730                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31                                                                                                             | _                                                           |                                                                    |                                                                                            |                                                          | -0.500                                                                                       | _                                                                        | The state of the s |
| 32                                                                                                             | 1                                                           | .070                                                               | .5277                                                                                      | 1.0000                                                   | -0.500                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33                                                                                                             | 1                                                           | . 417                                                              | .1149                                                                                      | 1.00000                                                  | -0.000                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34                                                                                                             |                                                             | זכינטי .                                                           | *.5330                                                                                     | ·····••••••••••••••••••••••••••••••••                    | -6.500                                                                                       | 1.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                             |                                                                    |                                                                                            |                                                          |                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LEF14-                                                                                                         | 612 S. 126                                                  | בפנט בווס:                                                         | ected betw                                                                                 | ATAL - LUB BE                                            | SISTANCE                                                                                     | 1                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51 TA- 648                                                                                                     |                                                             |                                                                    | T4-0/0 Cn                                                                                  |                                                          | 174-040 6                                                                                    | 22 51 04                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELT8-F/P                                                                                                       |                                                             |                                                                    |                                                                                            |                                                          | LTA-P/P C                                                                                    | Jan Lena                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                             |                                                                    |                                                                                            | AA33AA                                                   | 221468                                                                                       | 41 44 64                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .252200                                                                                                        | .0005                                                       |                                                                    | 091700"                                                                                    | • 335530                                                 | .231400                                                                                      | .010-20                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42420C                                                                                                        |                                                             |                                                                    | 041.00                                                                                     | •005500                                                  | _                                                                                            | .010*20                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                | .0005                                                       |                                                                    | 001.000                                                                                    | . 332399                                                 | .231400                                                                                      | .010=00                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .424200                                                                                                        | .02140                                                      | 20                                                                 |                                                                                            |                                                          | <u> </u>                                                                                     |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .424200                                                                                                        | .02140                                                      | 20                                                                 |                                                                                            | TABLE FOR RE                                             | <u> </u>                                                                                     |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42429C<br>PELTA-                                                                                              | 0/0 3 Att                                                   | iini Cube                                                          | FCTEN FLOW                                                                                 | TARLE FOR RE                                             | SISTANCE                                                                                     | 2                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42420C<br>PELTA-<br>FLTA-P/P-                                                                                 | COUNTY OF STREET                                            | in ber<br>Linz Cubb                                                | 5016h Flow<br>Ta-P/P - 69                                                                  | TABLE FOR RE                                             | SISTANCE                                                                                     | <br>2<br>190. Ftnw                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42420C                                                                                                        | 0/0 3 Att                                                   | rd                                                                 | 50169 FLOW                                                                                 | TABLE FOR RE                                             | SISTANCE                                                                                     | 2                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42420C<br>PELTA-<br>FLTA-P/P-<br>.017210                                                                      | .ccne.                                                      | rd                                                                 | 50169 FLOW                                                                                 | TABLE FOR RE                                             | SISTANCE<br>LTA-P/P C                                                                        | <br>2<br>190. Ftnw                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42420C<br>PELTA-<br>FLTA-P/P-<br>.017210                                                                      | .ccne.                                                      | rd                                                                 | 50169 FLOW                                                                                 | TARLE FOR RE                                             | SISTANCE<br>LTA-P/P C                                                                        | <br>2<br>190. Ftnw                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42620C<br>PELTA-<br>FLTA-P/P-<br>.017270<br>.034310                                                           | .02140<br>.02140<br>.02140<br>.00164<br>.0164               | etus chee<br>Pur —— nel<br>et                                      | FCTEN FLOW<br>TA-P/P - CO<br>G20500                                                        | TARLE FOR RE                                             | SISTANCE<br>ETA-PIP C<br>•CZ6CAO                                                             | 2<br>.ge. Ft.nw<br>.gl1460                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42620C<br>PELTA-<br>FLTA-P/P-<br>.017270<br>.034310                                                           | .02140<br>.02140<br>.02140<br>.00164<br>.0164               | etus chee<br>Pur —— nel<br>et                                      |                                                                                            | TABLE FOR RE                                             | SISTANCE  LTA-P/P C .C26CAO  SISTANCE 1                                                      | 2<br>70. Ft nw<br>.011460                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .62620C  PELTA- FLTA-P/P017210 .026310                                                                         | .co.e.<br>.co.e.<br>.co.e.<br>.co.e.<br>.co.e.              | TUS COPP<br>TW DEL<br>40 .<br>70                                   | FCTEN FLOW<br>TR-P/P CO<br>G20600<br>FCTEO FLOW                                            | TABLE FOR RE                                             | SISTANCE  LTA-P/P C .C26CAO  SISTANCE 1                                                      | 2<br>70. Ft nw<br>.011460                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42620C  PELTA-  FLTA-P/P017200 .026310  DELTA-  FLTA-P/P                                                      |                                                             | PTUS COPP<br>TW DEL<br>FO PSUS CORP<br>CV DEL                      | FCTEN FLOW TR-P/P - CO GCTED FLOW TA-P/P - CO                                              | TABLE FOR RE                                             | SISTANCE  CTA-P7P C  C26CA0                                                                  | 2<br>.J. Ft. T.                      | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .42620C  PELTA- FLTA-P/P017210  DELTA- FLTA-P/P0323CC                                                          | .coneconeconeconeconeconeconeconeconecone.                  | PSUS CORP                                                          | FCTED FLOW T3-P/P C0 G20500 FCTED FLOW T4-P/P 00 031300                                    | TABLE FOR RE                                             | SISTANCE  LTA-P/P C .C26CAO  SISTANCE 1  LTA-P/P C                                           | 2<br>.J. Ft. T.                      | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .42620C  PELTA- FLTA-P/P017210  DELTA- FLTA-P/P0323CC -029500                                                  | .coneconeconeconeconeconeconeconeconecone.                  | 70                                                                 | FCTED FLOW T1-P/P CO G20500 FCTFD FLOW T1-P/P CO 031300                                    | TARLE FOR RE                                             | SISTANCE  LTA-P/P C  .C26CA0  SISTANCE 1  LTA-P/P C  .03C3G0                                 | 2<br>.J. Ft. T.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42420C  PELTA-  FLTA-P/P017210  DELTA-  FLTA-P/P0323CC -029500                                                | .CCS3(                                                      | 70                                                                 | FCTED FLOW T1-P/P CO G20500 FCTFD FLOW T1-P/P CO 031300                                    | TARLE FOR RE                                             | SISTANCE  UTA-P/P C  C26CAO  SISTANCF 1  LTA-P/P C  C303300  C27PCC                          | 2<br>.00. Ft nw<br>.011460<br>.001200<br>.001200<br>.002000              | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .42670C  PELTA-  FLTA-P/P017210  DELTA-  FLTA-P/P0323CC -0271CC                                                |                                                             | PTUS COPP<br>TW DFL<br>LO<br>70<br>PSUS CORP<br>CV DEL<br>CO       | FCTED FLOW TA-P/P CO G20500  FCTED FLOW TA-P/P CO 031300 028600                            | TARLE FOR RE                                             | SISTANCE  LTA-P/P  CCCCAO  SISTANCE  LTA-P/P  COCCACO  CCCPPCO  CCCPPCO                      | 2<br>.DP. Ft OW<br>.D11460<br>.DP. FLCW<br>.O01200<br>.DC2000<br>.DC2000 | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *42429C  PELTA-  FLTA-P/P- *017290  *0174910  *144-  FLTA-P/P- *01230C *027100  DELTA-  DELTA-  DELTA-  DELTA- | P/P19 VE                                                    | PSUS CORP  TV DEL  TO  TSUS CORP  TV DEL  TO  TSUS CORP  TSUS CORP | FCTED FLOW  T1-P/P CO G20500  FCTED FLOW  T1-P/P CO 031300 028600  FCTED FLOW              | TABLE FOR RE .004550  TABLE FOR RE .000900001700002600 - | SISTANCE  LTA-P/P C .C26CAO  SISTANCE 1  LTA-P/P C .03C3GC .C27PCC .O25PCO                   | 2<br>JP. Ft TW<br>.011460<br>OP. Ft CW<br>.001200<br>.02200<br>.029100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .42420C  PELTA-  FLTA-P/P017210  OFLTA-  FLTA-P/P0323CC -03295000271CC  DELTA-  FLTA-7/P-                      | P/P12 VES  CC0. FLI  CC0. FLI  CC0. CC150  CC230  P/P12 VES | 70                                                                 | FCTED FLOW  T1-P/P CO  G20500  FCTFD FLOW  T1-P/P CO  031300 028600  FCTFD FLOW  T1-P/P CO | TABLE FOR RE .004550 TABLE FOR RE .000900001700002600 -  | SISTANCE  LTA-P/P C  C26CAO  SISTANCE 1  LTA-P/P C  C3C3CC  C27PCC  C3PCC  C3PCC  SISTANCE 1 | 2  JP. Ft TW  DP. FL CW  001200  022000  029100                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PELTA-<br>PELTA-<br>PELTA-<br>017200<br>0324710<br>PELTA-<br>PELTA-P/P<br>-0323CC<br>-0271CC                   | P/P12 VES  CC0. FLI  CC0. FLI  CC0. CC150  CC230  P/P12 VES | TUS COPP  TW PFL  TO  TSUS COPP  TW  TSUS COPP                     | FCTED FLOW  T1-P/P CO G20500  FCTFD FLOW  T1-P/P CO 031300 028600                          | TABLE FOR RE .004550  TABLE FOR RE .000900001700002600 - | SISTANCE  LTA-P/P C .C26CAO  SISTANCE 1  LTA-P/P C .03C3GC .C27PCC .O25PCO                   | 2<br>JP. Ft TW<br>.011460<br>OP. Ft CW<br>.001200<br>.02200<br>.029100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

21-3640 (22) Appendix B B-2

| . DELTA-  | PIPEC ALBERT | COssicia b       | LOW TABLE FOR | PESISTANCE | 10          |
|-----------|--------------|------------------|---------------|------------|-------------|
| DELTA-0/0 | COR. FLCW    | DELTA-P/P        | COR. FLOW     | DELTA-P/P  | COR. FLOW   |
| 023500    | .004633      | 019900           | .007500       | 014#C0     | .011500     |
| 011300    | *013500      | 005700           | * 014100      | 006500     | .022700     |
| 005300    | .039200      | 004000           | . 330600      | 003090     | .034400     |
| DELTA-    | P/PZZ VERSÜS | -                | LOW TABLE FOR | RESISTANCE | 20          |
| DELTA-P/P | COR. FLOW    | DELT4-0/P        | COR. #[ Nd    | DELTA-P/P  | CO. FLC     |
| 030400    | .003500      | 086200           | . 907000      | 021100     | .013960     |
| 019300    | *650460      | 015500           | .027430       | =:013100   | .034900     |
| 014000    | .041700      | 013000           | .047700       | 012100     | -055600     |
| 0112CC    | .063600      | 010300           | . 364573      |            | <del></del> |
| DELTA-    | P/P77 VEPSUS | COPPECTED F      | LOW TABLE FOR | RESISTANCE | 24          |
| DELTA-P/P | CC*. FLCW    | 9*LT1-9/9        | CTP. FLTW     | D=LTA-P/P  | COR. FLOW   |
| 036100    | . CC4COO     | 032300           | .001010       | 02000      | .016100     |
| 050;cc-   | · C5 41CO    |                  | 035100        | -:011366   | 0402C0      |
| 004500    | .049200      | 006300           | .056330       | 094500     | .064300     |
| 005400    | .072300      | 001500           | .010300       |            |             |
| nel Ta-   | alasa Ataini | CUBAECLEU E      | ING TABLE FOR | *F315TANCE | 26          |
| DELTA-P/P | COP. FLOW    | <b>NFLT4-P/P</b> | COR. FLOW     | DELTA-P/P  | COP. FLOS   |
| 031400    | .001490      | 029800           | .002960       | 674060     | .003050     |
| 021900    |              |                  | - 773440      | *:CIPICC   | 214810      |
| 316700    | . C17770     | 015400           | .020730       | 014900     | .023690     |
| 913760    | •656460      | 012900           | • 254450      |            | <del></del> |
| DELTA-    | 61634 AE62A2 | CARRECTED F      | LOW TABLE FOR | RESISTANCE | 34          |
| DELTA-P/P | COP. FLCW    | 9-1 TA-P/P       | COR. FLOW     | 0ELT4-P/P  | CCR. FLOW   |
| 002900    | .03900       | 001240           | .507530       | 000560     | .011500     |
| 000550    | · · · c153cc |                  |               |            | .05542      |
| .202210   | .(26700      | . 630543         | .032670       | .005346    | .03040      |
| .070320   | .028200      |                  |               |            |             |

THE FLOW RESISTANCES USED IN THE SECONDARY FLOW MODEL AT CRUISE AND IDLE ARE THE SAME AS FOR MAXIMUM POWER EXCEPT THAT SEVERAL CORRECTED FLOW TABLES WERE CHANGED TO PUMPING RESISTANCES AS SHOWN BELOW:

### \*\* PUMPING PESISTANCE INPUT \*\*

| PESTSTANCE | CCCF | PADTUS 1<br>LOCATION | PADTUS<br>1 | RADIUS | SLIP<br>FACTOR | SPEED  | TEMP.<br>Deg f |      |      |
|------------|------|----------------------|-------------|--------|----------------|--------|----------------|------|------|
| 1          | 7    | 1.                   | 1.400       | 4.150  | . 3600         | 40060. | 1060.          | -050 | .400 |
| 10         | 7    | 10.                  | 1.400       | 2.950  | .3750          | 40060. | 1012.          | .050 | .080 |
| 3.6        | 7    | 16.                  | 1.550       | 2.600  | .3750          | 40060. | 1160.          | .120 | .080 |
| 50         | 7    | 21.                  | 1.550       | 2.900  | . 3750         | 40060. | 1313.          | .075 | .080 |
| 24         | 7    | 27                   | 1.550_      |        | 4000           | 40060- |                | .060 | .080 |
| 26         | 7    | 28.                  | 1.550       | 2.900  | .3750          | 40060. | 1015.          | .075 | .060 |
| 30         | 7    | 32.                  | 1.400       | 2.900  | .3750          | 40060. | 848.           | .080 | .080 |
| 34         | 7    | 20-                  | 2.600       | 2.950  | 3750           | 40060. | 1160.          | .080 | .080 |

#### CRUISE

### \*\* PUMPING RESISTANCE INPUT \*\*

| RESISTANCE | CODE | RADIUS 1<br>LOCATION | RADIUS | RADIUS | SLIP<br>FACTOR | SPEED<br>RPM | TEMP.<br>DEG F |      |      |
|------------|------|----------------------|--------|--------|----------------|--------------|----------------|------|------|
| , ,        | 7    | 1.                   | 1.400  | 4.150  | .3600          | 27125.       | 840.           | .050 | .400 |
| 10         | į    | 10.                  | 1.400  | 2.950  | .3500          | 27125.       | 1012.          | .050 | .080 |
| 19         | 7    | 16.                  | 1.550  | 2.600  | . 3500         | 27125.       | 1160.          | .120 | .080 |
| ŽO         | 7    | 21.                  | 1.550  | 2.900  | .3500          | 27125.       | 1313.          | .075 | .080 |
| 24         | 7    | 27.                  | 1.550  | 2.900  | .3800          | 27125.       | 1900.          | .060 | .080 |
| 26         | 7    | 29.                  | 1.550  | 2.900  | . 3650         | 27125.       | 1015.          | .075 | .080 |
| 30         | 7    | 32.                  | 1.430  | Z.900  | . 3650         | 27125.       | 848.           | .080 | .080 |
| 34         | 7    | 20.                  | 2.600  | 2.950  | 3500           | 27125.       | 1160           | .000 | .080 |

IDLE

21-3640 (22) Appendix B B-4

### P BOUNDARY CONDITIONS FOR SECONDARY FLOW

### MAX POWER

|        | ** ASON THOU | T **          |
|--------|--------------|---------------|
| CAVITY | . bockdiet   | 4cabes #1.10k |
| 1      | 114.90000    | 630.00000     |
| ę,     | 16.70000     | 310.00000     |
| 6      | 11.42000     | 24.93000      |
| 7      | 152.80000    | 5#2.000CO     |
| 9      | 143.51000    | 1920.50000    |
| - 11   | 98.30000     | 1541.50000    |
| 17     | 157.50000    | 630.00000     |
| 22     | 50.52000     | 1374.33700    |
| 27     | 42.10000-    | 1327.00000    |
| ? 9    | 21.49000     | 1057.70000    |
| 3.3    | 13.67000     | 947.50000     |

### CRUISE

|            | + AFRO INPU | IT **       |
|------------|-------------|-------------|
| CAVITY     | PRESSURE    | TEMPERATURE |
| 1          | 74.54000    | 600.00000   |
| 5          | 9.15000     | 310.00000   |
| 6          | 8.05500     | 20.00000    |
| 7          | 96.19000    | 600.00000   |
| 9          | 90.90000    | 1791.00000  |
| 11         | 62.20000    | 1615.00000  |
| 17         | 96.19000    | 600.00000   |
| <b>?</b> ? | 31.98000    | 1354.00000  |
| 27         | 26.65000    | 1306.00000  |
| 29         | 13.60000    | 1041.00000  |
| 33         | 6.65000     | 932.00000   |
| 34         | 49.40000    | 1525.00000  |

### IDLE

|        | ** AERO INPO | UT **       |
|--------|--------------|-------------|
| CAVITY | PRESSURE     | TEMPERATUR: |
| 1      | 37.30000     | 379.70000   |
| 5      | 16.70000     | 310.00000   |
| 6      | 14.50000     | 112.70000   |
| 7      | 40.98000     | 379.70000   |
| 9      | 39.20000     | 1327.00000  |
| 11     | 29.13000     | 1317.00000  |
| 17     | 40.98060     | 379.70000   |
| 22     | 19.20000     | 1147.00000  |
| 27     | 16.30000     | 1052.00000  |
| 29     | 15.20000     | 1052.00000  |
| 33     | 14.55000     | 1013.00000  |
| 34     | 24.00000     | 1167.00000  |

#### APPENDIX C

### SUMMARY OF HEAT TRANSFER COEFFICIENT RATIOS

### **PLATFORM**

$$\begin{pmatrix} h_{1} \\ \overline{h_{o}} \end{pmatrix} = \begin{pmatrix} N_{1} \\ \overline{N_{o}} \end{pmatrix}^{2 \cdot 2} \begin{pmatrix} T_{1} \\ \overline{T_{o}} \end{pmatrix}^{0 \cdot 2}$$

WHERE:

N is wheel speed

T is ITT (Absolute Scale)

Subscript 1 is transient value Subscript 2 is baseline value

### RIVET HOLES

WHERE: The first two terms arise from rotation of the rivet hole about the engine centerline and the second two terms arise from varying engine conditions.

Forward face T is Tcd Aft Face T is ITT

|                      | VALUES        | OF Z         | VALUE        | S OF X       |
|----------------------|---------------|--------------|--------------|--------------|
| Engine Speed         | FWD           | AFT          | FWD          | AFT          |
| 0 - 96%<br>96 - 100% | 1.27<br>11.20 | 1.29<br>9.96 | 1.85<br>0.98 | 1.22<br>1.92 |

#### SLOTS

$$\begin{pmatrix} h_{\underline{1}} \\ \overline{h_{\underline{o}}} \end{pmatrix} = \begin{pmatrix} N_{\underline{1}} \\ \overline{N_{\underline{o}}} \end{pmatrix} \stackrel{0.3875z}{0.3875z} \begin{pmatrix} T_{\underline{1}} \\ \overline{T_{\underline{o}}} \end{pmatrix} \stackrel{0.71}{}$$

WHERE:

Z is given above Forward Face T is Tcd Aft Face T is ITT DISK FACES

$$\left(\frac{h_1}{h_0}\right) = \left(\frac{N_1}{N_0}\right)^{2.4} \left(\frac{T_1}{T_0}\right)^{-0.4}$$

WHERE:

Forward Face T is  $T_{C\bar{C}}$  Aft Face T is ITT

BORE

WHERE: T is Tcd

| CRACH A | A       | <br>     | 14919 |
|---------|---------|----------|-------|
|         | 5-01-03 | RA WYSER | 14/1/ |
|         |         |          |       |

| 3 NIG |             | IN VI        | LS INST     | 645 E | 06-051  |              |                               |                                 |                               |                              |                                        |
|-------|-------------|--------------|-------------|-------|---------|--------------|-------------------------------|---------------------------------|-------------------------------|------------------------------|----------------------------------------|
|       | R EP        | _;_          | <del></del> |       |         | <del>-</del> | 17 1 7                        | LIV                             | AP X Y                        | , 1 A                        | 10 I V                                 |
| ī     | 50          | 100          | (161)       |       | 1 6 3 1 |              | ( )) ( )) (                   | 90 90 20<br>1 (127) (127) ( 90) | 30 20 20<br>(76) (50) (50)    | 3 100 15<br>( 0) (254) ( 37) | (76) (25) (25)                         |
| 2.    | 50          | 10           | 50          | 0     | 0       | •            | 35 110 39                     | • • •                           | 10 20 10                      | 0 0 3                        | 30 10 40                               |
|       | 1127)       | 110          | (127)       | ( 0)  | ( 6)    | ( 0)         | ( 88) (279) ( 84<br>25 129 29 |                                 | (25) (50) (25)                | ( 0) ( 0) ( 3)               | ( 76) (228) (141)                      |
|       | (152)       | (279)        |             |       | ) ( )   |              | ( 63) (317) ( 61              |                                 | (101) (152) (127)             | ( 0) ( 0) ( 0)               | ( 0) ( 0) ( 0)                         |
| •     | 50<br>(127) | 100          | (101)       | 150   | 129     | ( 39)        | (114) ( 0) (101               |                                 | ( 0) ( 04) ( 70)              | ( 0) ( 0) ( 0)               | ( 0) ( 0) ( 0)                         |
| 5     | 30          | 20           | ( 30)       | •     |         | •            | ( 0) ( 0) (                   | 30 15 25                        | ( 0) ( 0) ( 0)                |                              | 20 40 25                               |
| •     | 0           | ٥            | 6           | 0     | •       | •            | 35 125 39                     | 0 0 30                          | 30 <b>0</b> 30                | 0 0                          | 9 10 5                                 |
| 7     | ( 6)        | 76           | ( 0)        | ( 01  | ( 0)    | ( 0)         | ( 06) (317) ( 06<br>30 275 35 |                                 | (76) ( 0) ( 76)               | ( 0) ( 0) ( 0)               | ( 12) ( 25) ( 12)                      |
|       | (101)       | (177)        | (201)       | 1 61  | 1 65    | 1 01         | 1 76) (598) ( 88              | ) ( 0) ( 0) ( 0)                | (101) ( 0) (101)              | ( )) ( )) ( 25)              | (127) (192) ( 74)                      |
| •     | 75<br>(190) | 130          | (152)       | ( 01  |         | ( 0)         | 29 30 25                      |                                 | (0)(0)(03)                    | ( 0) ( 0) ( 0)               | 25 150 20<br>( <b>b3</b> ) (381) ( 50) |
| 9     | 50          | 40           | 1 841       | (_ 3) | ( 0)    | ( 0)         | 50 130 50<br>(127) (330) (127 |                                 | 55 0 60                       | ( 0) ( 0) ( 0)               | #0 45 40<br>(203) (114) (101)          |
| 10    | 60          | 90           | 90          | 0     | ě       | 0            | 10 40 40                      | 0 0 0                           | (134) ( 0) (192)              | • • •                        | 150 50 30                              |
| 11    | (152)       | (203)<br>70  | (127)       | ( 0)  | ( 0)    | ( 2)         | ( 25) (152) (152              |                                 | (0)(0)(0)                     | ( 0) ( 0) ( 0)               | (361) (127) ( 76)<br>45 120 45         |
|       |             | (177)        | ( 50)       | ( 01  | c ár    | ( ó)         | ( 0) ( 0) ( 0                 |                                 | (127) (127) (127)             | ( 0) (177) ( 53)             | (114) (304) (314)                      |
| 12    | ( 0)        | ( 0)         | ( 0)        | 1 61  |         | ( 2)         | 10 125 10                     |                                 | 0 20 20                       | ( 0 0 0 0                    | 11521 (220) (252)                      |
| 1.3   | 50          | 130          | 55          | . 0   | Ó       | •            | (101) (101) (101              | <b>3</b> 6 6                    | 0 0 0                         | 10 10 10                     | 55 120 40                              |
| 14    | 0           | •            | (139)       |       | 0       | ( 2)         | 25 125 30                     | 0 0 25                          | 30 0 36                       | ( 25) ( 25) ( 25)            | (139) (304) (152)<br>60 136 50         |
| 19    | ( 0)        | ( 0)         | ( 6)        | ( 01  | ( 0)    | ( 0)         | ( 63) (317) ( 76<br>15 125 15 |                                 | (76) ( 0) ( 76)               | ( 0) ( 0) ( 0)               | (152) (330) (127)<br>40 110 35         |
|       | ( 0)        |              | ( 0)        | ( 01  | ( )     | ( 6)         | ( 36) (317) ( 36              | ) ( 4) ( 4) ( 34)               | ( 36) ( 3) ( 36)              | ( 0) ( 0) ( 2)               | (101) (279) ( 86)                      |
| 16    | (101)       |              | (101)       | ( 0)  | ( 0)    | ( ))         | 20 20 20 20                   |                                 | 30 9G 50<br>(127) (220) (127) | (101) (152) ( 76)            | 70 70 45<br>(177) (177) (114)          |
| 17    | ( 0)        | ( 0)         | ( 0)        | 40    | 25      | 10           | (0)(0)(0)                     | 0 0 0                           | 16 30 10                      | ( 0) ( 2) ( 0)               | 49 90 30                               |
| 18    | ò           | 0            | 0           | 0     |         | 0            | 50 159 50                     | 0 0 35                          | 50 0 50                       | • • •                        | 90 170 50                              |
| 19    | ( 0)        | •            | Ö           | Ö     | 0       | 0            | ( 30) (317) ( 50<br>30 125 29 | 0 0 30                          | (127) ( 0) (127)              | 0 0 0                        | (7G3) (431) (127)<br>40 140 49         |
| 26    | 50          | ( 0)         | ( 0)        | ( 01  | ( 0)    | ( 4)         | ( 76) (317) ( 63              | ) ( 0) ( 0) ( 76)               | (114) ( 0) (101)<br>15 70 15  | ( 0) ( 0) ( 1)               | (101) (355) (i14)<br>25 100 30         |
|       | (127)       | (203)        | (114)       | ( 01  | ( စိုး  |              | ( 0) ( 0) ( 0                 |                                 | ( 36) (177) ( 36)             |                              | ( 63) (254) ( 76)                      |
| 21    | ( 63)       | 20<br>( 50 ) | 10          | { B   |         | ( %)         | 29 125 25<br>( 63) (317) ( 63 |                                 | 35 0 30<br>( 40) ( 0) ( 76)   | 0 0 15                       | 90 160 40<br>(127) (406) (131)         |
| 22    | ( 0)        | ( 0)         | ( 6)        | 4 0   | ( 0)    | ( 0)         | (0)(0)(0)                     | ) ( 0) ( 0) ( 0)                | 1 20 40 52                    | 0 70 29<br>( 0) (177) ( 59)  | 55 55 45<br>(139) (139) (114)          |
| 23    | 70          | 70           | 60          | 0     | 0       | ,            | 0 0 0                         | 10 10 20                        | 0 0 0                         | 0 0 (                        | 0 0 0                                  |
| 24    | (177)       | (177)<br>70  | (152)       | ( 0)  | 1 01    | ( 0)         | 39 110 30                     | J 0 15                          | ( 0) ( 0) ( 0)                | ( 61 ( 3) ( 0)               | (0)(0)(6)                              |
| 25    | (161)       | (177)        | (114)       | ( )   | ( 01    | ( 2)         | ( 86) (279) ( 76              | 10 40 10                        |                               | ( 0) ( 0) ( 2)               | ( 53) ( 76) ( 50)                      |
| 43    | (101)       | (101)        | ( 40)       | -     | ( ě)    | ( ó)         | ( )) ( )) ( )                 | 1 ( 25) (152) ( 76)             | ( 0) ( 0) ( 6)                | t on t on t on               | 1 0) ( 0) ( 0)                         |
| 26-   | (161)       | (101)        | 30<br>( 76) | ( 4)  | ( 3)    | ( 2)         | 15 125 20                     |                                 | 35 0 30<br>( 90) ( 0) ( 76)   | ( 0) (152) ( 0)              | 4G 70 43<br>(101) (177) (101)          |
| 27    | 40          | 120          | 40          | ٥     | ( 01    | •            | 0 0 0                         | 3 3 3                           | 15 70 15                      | 0 0 0                        | 45 20 20                               |
| 20    | 0           | 0            | (161)       |       | Ö       | ٥            | 29 125 30                     | 0 9 29                          | 30 (177) ( 30)                | 0 0 9                        | 133 70 70                              |
| 29    | ( 0)        | ( 0)         | ( 6)        | ( 0)  | ( 0)    | ( 3)         | ( 63) (317) ( 76<br>30 90 30  | ) ( 3) ( 6) ( 63)               | (76) ( 0) (76)                | (0) (0) (2)                  | 70 100 00                              |
| •     | (101)       | (127)        | 12243       | ( 0)  | ( 3)    | ( 3)         | ( 76) (228) ( 76              | 1 ( 4) ( 6) ( 30)               | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)               | (177) (254) (152)                      |
|       |             |              |             |       |         |              | _                             |                                 | •                             | -                            |                                        |
| 30    | 30          | (152)        | 30<br>( 74) | 1 0   |         | ( 0)         | 0 0 0                         | ) ( 2) ( 0) ( 0)                | 20 70 15                      | _ 0 0 0 0 0 0 0              | LO 30 LO (25)                          |
| 31    | 0           | ( 0)         | •           | 0     | ( 41    | 2            | 9 129 9<br>( 121 (317) ( 12   | 0 0 25                          | 25 0 25                       | ( 0) ( 0) ( 0)               | 40 80 48                               |
| 32    | 5           | 15           | 5           | 0     | ٠       | •            | 49 129 10                     | a 0 40                          | 45 0 45                       | 0 0 7                        | 10 40 10                               |
| 33    | ( 12)       | (36)         | 10          | 1 01  | ( 3)    | ( ()         | (114) (317) (101              | 0 ( 0) ( 0) (101)               | 20 0 ZO                       | ( 0) ( 6) ( 0)               | ( 25) (101) ( 25)                      |
|       | ( 30)       | 13041        | ( 25)       | ( 01  | ( )     | ı ģi         | ( 25) (317) ( 25              |                                 | ( 30) ( 0) ( 50)              | ( ) ( ) ( )                  | ( 761 (127) ( 50)                      |
| 34    | 1121)       | 56<br>(127)  | 30<br>( 76) | ( 0,  | ( 0)    | ( 2)         | 30 40 30<br>(76) (101) (7e    | ) ( 3) ( 6) (, 8)               | 15 90 15<br>( 30) (127) ( 30) | ( 0) ( 3) ( 2)               | (152) (177) (131)                      |
| 15    | 96          | 700          | (101)       | , 0   | ( 0)    | ( 0)         | 20 125 20<br>( 90) (317) ( 90 | 0 0 15                          | 10 0 10                       | (3) ( 0) ( 2)                | 95 79 40<br>(151) (171) (151)          |
| 36    | 50          | 120          | 95          | ` 5   |         | 9            |                               | 40 40 10                        | 9 0 6                         | 0 0                          | 6 6 3                                  |
| 37    | "           | 105          | (139)       | . 0   | ( 01    | 'n,          | ( ) ( 0) ( 6                  | 167) (107) (58)                 | ( 01 ( 01 ( 01<br>40 50 40    | ( 6) ( 6) ( 6)               | 46 100 43                              |
| 10    | (139)       |              | (127)       | ( 01  | ( 31    | 1 1/1        | ( )) ( 0) ( 0                 |                                 | (101) (203) (101)             | 1 11 61 6 71                 | 1192) (254) (161)<br>56 10 40          |
|       |             | ( 6)         | ( 6)        | ( )   | ( 01    | 1 /21        | ( 90) (317) ( 61              | ) ( 0) ( 0) ( 76)               | (76) ( 0) (76)                |                              | (152) (203) (151)                      |
| 39    | 1127)       | (127)        | (161)       | 1 01  |         | € 61         | 10 125 10                     |                                 | 30 0 30<br>(127) ( 0) (127)   | 3 79 19<br>( 3) (177) ( 49)  | 1 401 (JOT) ( 341<br>50 40 12          |
| +3    | 70          | 140          | 76<br>(477) | 0     | 1 31    | / ,          | ( )) ( () ( )                 | 3 3 3                           | 40 70 50                      | 0 3 7                        | 10 72 43                               |
|       |             |              | 14111       |       | . •     |              |                               |                                 |                               |                              | 1446                                   |

21-3640(22) Appendix D D-1

17. Mil.

### MIN DURABILITY PROGRAM AFVAL/ML CONTRACT MUMBER F33015-60-C-9027

| CBACK | LENGTHS | FROM | AR   | MUMBER | 15468   |
|-------|---------|------|------|--------|---------|
|       | 41 PMB1 |      | 6 96 | I POST | 100-051 |

| HOLE   | · |     |     |    |            |     |    | _   | _   | -   | _   |          |   | _        | _ | _   | - |    | - | _  | _ |     | _    | 0    | _ | _   |      | <u> </u> | -   | -   | ÷ | _   | - |     | _  | -  |     | _          | _ |             |     | _   |     | _          |
|--------|---|-----|-----|----|------------|-----|----|-----|-----|-----|-----|----------|---|----------|---|-----|---|----|---|----|---|-----|------|------|---|-----|------|----------|-----|-----|---|-----|---|-----|----|----|-----|------------|---|-------------|-----|-----|-----|------------|
| NUMBER | _ |     |     |    |            |     |    |     |     |     | ī   |          |   | 7        |   | 19  |   |    | 1 | ,  |   | L   |      | i    |   | 7   | i ,  |          |     | _   |   | 1   |   |     |    |    |     |            |   | 40          |     | í   |     | ,          |
| -      | • | ~~  |     | ٠. |            | ٠,  |    |     | `^  |     |     | <b>a</b> |   | `.       |   | •   |   | ۰. |   | ٠. |   | •   |      | 44   |   | `•  | 1 '  | ·· •     | -   |     |   | Δ   | • | •   | -  |    | •   | •          |   | ~           |     |     |     | •          |
| •      |   |     |     | ×  |            | - 7 | ί. |     | ×   |     | . : | ň        |   | ă.       |   | ă,  |   | ăı |   | ă. |   | 121 | - (1 | 141  |   | 121 |      | - 5.     |     | ٠.  |   | ă,  |   | Z.  |    | ۲. |     | ě          |   | Ι.          |     | Ž.  |     | Ž.         |
|        | • |     | , , |    |            |     | "  | •   |     | •   | •   | ĭ.       | • | *        | • | 7.  | • | 7. | • | 7. | • | -¥. | •    | ~    | • | -2. | i •  | Ι.       | •   | χ.  | • | Ι'  | • | 7"  | •  | Υ, | •   | Ž.         | • | 7'          | ٠.  | Τ'  | •   | Ĭ.         |
| •      |   | 9   |     | 9  | ١          | •   | ί. |     |     |     |     | ٠.       |   | ž.       |   | ž.  |   | ž. |   | Ž. |   | Χ.  |      | ž.   |   | Ž.  |      | Ι.       |     | ٧.  |   | ě,  |   | ٠.  |    | ٠. |     | Ψ.         |   |             | . : |     |     | ۲.         |
|        | • | 91  | , ( |    |            | •   | "  | ٠   | . 9 | •   | •   | ψ,       | • | 9,       | • | ٠,  | • | ٠, | • | ٠, | • | Υ.  | •    | Υ,   | • | Ţ,  |      | 7,       | •   | 9,  |   |     | • | ă.  | •  | 9, | •   | 7'         | • | rži         | •   | 131 | •   | •,         |
| ,      |   | 9   |     | 9  | •          | •   |    |     |     |     | . ' | ٠.       | _ | 9.       |   | ٠.  |   | ٧. |   | ٧. |   | ٧.  |      | ٧.   |   | ٧.  | 1 .  | •        |     | 9.  |   | •   |   | •   |    | •  |     | •          | _ |             |     | 7.  | _   | •          |
|        | • | 0   |     | 0  | 1) (       | - ( | 9) | •   | •   | ,   | •   | O)       | 4 | 0)       | • | Ō,  | • | ē, | t | 01 | • | 91  | •    |      | • | 91  | 1 •  | 01       | •   | 01  | ſ | 61  | • | 0)  | •  | 0) | (   | 0)         | • | LZ)         | ( ) | 121 | •   | 01         |
| 7      |   | 0   |     | ۰  | )          | •   | )  |     | •   | •   |     | •        |   | 0        | _ | •   |   | 9  |   | •  | _ |     |      |      |   | 9.  | 1.   | •        |     | •   |   | 0   |   | •   |    | ,  |     | •          |   | 20          | - 1 | 15  | 2   | <b>20</b>  |
|        | • | 0   | •   | 0  | 1) (       | •   | 3) | - ( | •   | ,   | •   | 91       | • | 91       | • | 0)  | • | 91 | • | 01 | • | 01  | •    | 01   |   | 91  |      | 0)       | •   | 01  | • | Õ)  | • | 0)  | •  | 01 | •   | 91         | • | <b>30</b> ) |     | 101 | 1 1 | <b>181</b> |
| •      |   |     |     |    | )          | - ( | •  |     | ۰   |     |     | 0        |   | •        |   | 0   |   | 9  |   | •  |   | 0   |      | •    |   | **  |      | •        |     | 0   |   | 0   |   | 0   |    | •  |     | •          |   | 5           |     | 5   |     | ð          |
|        |   | 0   |     | ٥  | ) (        | •   | "  | •   | •   | 3   | t i | 01       | 1 | 01       | ľ | 01  | • | G} | • | 0) | • | 01  | •    | 0)   | • | 0)  |      | 0)       | •   | 01  | • | 0)  | • | 01  | •  | 0) | •   | • •        | ( | LSI         | ( 1 | 121 | •   | 40         |
|        |   |     |     | 10 | )          |     | •  |     | •   |     | - 1 | 0        |   | 0        |   | 0   |   | 0  |   | 0  |   | •   |      | 0    |   | 9   |      | •        |     | 0   |   | ٥   |   | •   |    | 9  |     | •          |   | •           |     | •   |     | •          |
|        | t | 121 |     | 25 |            |     | 9) | ŧ   | ٥   | ) 1 | 1   | 0)       | ŧ | 9)       | t | 0)  | • | ٥) | 1 | 0) | ŧ | 91  |      | 91   |   | 9)  | 1 1  | 0)       | •   | 0)  | ı | 01  | • | 0)  | •  | 0) | •   | 01         | • | 0)          | (   | 01  | ŧ   | 01         |
| 12.    |   | 0   |     | 0  | ) .        | •   | •  |     | 0   |     |     | 0        |   | 2        |   | 0   |   | 0  |   | •  |   | ٥   |      | 0    |   | ٥   | !    | •        |     | ٥   |   | ٥   |   | 0   |    | ۰  |     | •          |   | ,           | 1   | 10  | 1   | .0         |
|        | t | 0   |     | ۰  | 1 (        | (   | 41 | 1   | 3   |     |     | 01       | • | 91       | • | 0)  | ſ | 01 | ( | 91 | ( | 01  | •    | 01   | • | 01  | 1 6  | 31       | (   | 91  | ( | 6)  | • | 0)  |    | 6) | •   | 21         | ť | 12)         |     | 251 |     | 291        |
| 13     | • | 0   |     | ā  |            |     | 3  |     |     |     |     | 0        |   | 0        |   | 0   |   | 0  |   | 0  |   | 0   |      | 0    |   | ٥   | 1    | 10       |     | 13  |   | 10  |   | 0   |    | ã  | -   | •          |   | õ           | -   | ě   |     | ۵          |
|        | t | ā:  |     | ã  | 11 (       | -   | )) | •   | ٥   |     |     | 81       | • | 91       | • | 01  | • | 01 | t | 01 | • | 0   |      | 01   | • | 01  | 1 (  | 25)      | - ( | 30) | • | 251 | • | 0)  | •  | 01 | •   | 91         | t | ٥ı          | 4   | Ō١  | •   | Ŏ١         |
| 16     | • | ۵   |     | ă  |            | -   | 5  |     | ā   |     |     | ٥        |   | 0        |   | 0   |   | 0  |   | •  |   | ۰   |      | 0    |   | 0   | :    | •        |     | 0   |   | ٥   |   | 6   |    | •  |     |            |   | 10          | · 1 | LÕ  |     | ă          |
| ••     |   | 4   |     | ŏ  |            | ì   | 3) |     | ă   |     |     | ā١       | ť | 01       |   | 41  | ι | 0) | • | 01 | • | 01  |      | 01   |   | 0)  | 1 (  | 01       | •   | a ı | ι | 61  | t | 0.1 | ŧ  | ă١ |     | ă,         | • | 251         | ( ) | 25. |     | ě١         |
| 17     | • | ă.  |     | ŏ  |            | - 7 |    | •   | ă   |     |     | 3        |   | ò        |   | 3   |   | •  |   | 0  |   | 3   |      | •    |   | 0   | •    | 3        |     | 6   |   | á   |   | ۵   | -  | ž  | •   | ė.         | - | 15          |     |     | -   | ā          |
|        |   | ă   |     | ă  | is (       | - 7 |    | ŧ   | ă   |     |     | ٥ì       | • | 91       | ť | 01  | ŧ | 01 | • | 10 | • | 01  |      | 01   |   | 01  |      | 01       | •   | Õ)  | • | a)  | t | Õ   |    | Ă١ |     | 21         | • | 341         | ( ) | iě۱ |     | ăı         |
| 1.0    | • |     | •   | 14 | •          | - 1 |    | •   | ă   | -   | •   | ă        | • | ā        |   | ō   | - | Ü  |   | ō. |   | 34  |      | 30   |   | 10  | -    |          | -   | ٥   | - | ă   | - | ă   | ٠, | Ă. | •   | <b>.</b> . | - | Ă.          | • • |     | •   | ă.         |
|        |   | . 5 |     | ~  |            | - 2 | ٠, |     | 7   |     |     | ۵ı       | • | 21       |   | ۵ı  |   | ė. | ŧ | ā. |   | 761 |      | 76 1 |   | 251 |      | Õ        |     | ٥ì  | ŧ | Õ)  |   | Ă١  |    | Ž. |     | Ä.         |   | ۵.          |     | 7.  |     | ٠.         |
| 21.    | • | **  | ٠.  | -7 | "、         | 7   |    | •   | ă   |     | •   | Α.       | • | ă.       | • | ă   | • | ă  | • | ă  | • |     | •    | ă    | • |     | •    | •        | •   | ă   | • | ă.  | • | ¥.  | •  | 7. | •   | ~          | • |             | ٠.  |     | •   | ž'         |
| 21.    |   | -   |     | ×  |            | - 3 | ί. |     | ž   |     |     | Ξ.       |   | á)       |   | ă.  | r | Ă١ | ŧ | ٥ı | t | ă,  |      | ۸ì   |   | ۵ı  |      | ě,       |     | ă., |   | ě,  |   | ۲.  |    | ٧. |     | <b>7</b> . |   |             | (1å | ٠.  |     | ¥.         |
| -      | • |     | , , |    | ,,,        | - 3 | "  | •   | ×   | •   | •   | ž.       | • | <i>"</i> | • | Ξ.  | • | ă. | • | ă. | • | 15  | •    | 25   | • | ă   | •    | ă.       | •   | Χ.  | • | 7.  | • | χ,  | •  | 7' | •   | 2'         | • |             | *** |     | •   | ú,         |
| 24     |   |     |     | ×  | ٠          | •   | ί. |     | ž   |     |     | Σ.       |   | 91       |   | Ä   |   | Ă١ |   | ă, |   | 10  |      | 11   |   | ăı  |      | Ă١       |     | ٠.  |   | ě,  |   | ž.  |    | Ϊ. |     | 7.         |   |             | . : |     |     | ¥.         |
|        | • | 9.  | • • |    | "          | - 1 |    | •   | ٥   | •   | •   | ž,       | • | ă'       | • | χ,  | • | ă. | • | 7. | • | -   | •    | 4    | • | ă.  | •    | Υ.       | •   | Ξ,  | ٠ | Σ,  | • | Υ,  | •  | Ă, | •   | 7,         | • | 36 )        | ٠:  | (0) | •   | 6,         |
| 25     | _ |     |     | 9  | <u>.</u> . |     |    |     | 9   | ١.  |     | ٧.       |   | 3,       |   | ž.  |   | ž. |   | ŏı |   |     |      | Ň    |   | ٨.  |      | 4.       |     | ž.  |   | ŏ,  |   | ۳.  |    | 3  |     | ۲.         | • |             | . : | 2.  |     | Ψ.         |
|        | E | 9/  |     | 9  | ,, (       |     | "  | ŧ   | 9   | ,   | •   | ž,       | • | 2,       | 4 | ž,  | • | Ž, | • | ζ, | • | 3,  | •    | ٠,   | • | χ,  | •    | 7,       |     | 7,  |   | ٧,  | • | ,,  | •  | "  | •   | 77         | • | 93)         |     | ,,, | ٠.  | Ŏ,         |
| 31     | _ | •   |     | 9  | ! .        | 9   |    |     | 9   |     | . ! | ٠.       |   | 7.       |   | ٠.  |   | ٧. |   | Ž. |   |     |      | ٠.   |   | ٧.  |      | ۲.       |     | ٧.  |   | •   |   | ₹.  |    |    | . ' | 7.         |   | . 0         |     |     | . 1 | .0         |
|        | • |     |     | 9  | ) (        |     | 3) | •   | J   | •   | •   | g,       | • | 3)       | • | • • | • | 41 | • | Ψ, | • | •   |      | 9,   | • | 4,  | 1.3. | _91.     | _'_ |     |   | 0)  |   | 0 J |    | 9) | •   | 77         |   | 101         |     | 31  |     | .5)        |



- Apple

PLR BURABILITY PROGRAM AFWAL/RL CONTRACT MUMMER FRIEIS-66-C-5027

. .,

orgenia.

| <u> </u> |            | <u> </u>   |     | _         | _  | _         |    | •         |     | _       | _   |         |     | ·č   |     | Ţ          | -  |             |      | - <u>-</u> |     | -          | *   |           |      | +           |     | -               | _ |           |     | _           |      | -        |     |            |      | -          |   |
|----------|------------|------------|-----|-----------|----|-----------|----|-----------|-----|---------|-----|---------|-----|------|-----|------------|----|-------------|------|------------|-----|------------|-----|-----------|------|-------------|-----|-----------------|---|-----------|-----|-------------|------|----------|-----|------------|------|------------|---|
|          | 46         | 70         |     | 40        |    | ٠,        |    | ٠,        |     | •       |     | ZP<br>O |     | ٠,   |     | •          |    | 45          |      | 45         |     | •          |     | 10<br>10  | ,    | 10          | 7   | •               | L | •         | I   | ٠           | ٠,   | ,        |     | 0          |      |            |   |
| . •      | 0)         |            | ) ( | 9)        | •  | 91        | •  | . 91<br>3 | •   | 97      | •   | 0.1     |     | 0    | ) ( | 91         | •  | 1114        | ) (1 | 1151       | •   | 8)         | (   | 761       | •    | 761         | •   | 0)              | • | 0)        | (   | 91          | ( 0  | ))<br>3  |     | 9)         |      |            | ( |
| t        | 91         | ŧ          | ) ( | Õ)        | (  | 01        | •  | 41        | ť   | 91      | •   | Ŏ1      | t   | 0    | 1   | Ō1         | •  |             | ) (  | 301        | ŧ   | į١         | •   |           | •    | ۱٥١         | (   | Ğ,              | ( | ě         | •   | ě١          | •    | )        |     |            | ( )  | 161        | ( |
| •        | 91         | , ,        |     | Ö         | t  | •         |    | 01        | •   | 3,      | ť   | 01      |     | 8    |     | ě          |    | 121         | . (  | 761        | ( ) | 2)         |     | 301       |      | 301         |     | 10<br>13)       | ı | ě,        | t   | 31          | . ?  | ,        |     | 19 J       |      | L9<br>10)  | • |
| ٠,       | 0,         | , 8        |     | 0)        |    |           |    | 91        |     | 31      |     | 0       |     | 8    |     | 8,         |    | 25          | ,    | 50         |     | 9          |     | 121       |      | 10          | •   | 0,              |   | 0,        | •   | o.          |      | )<br>)   |     | ٥,         |      | :,         | , |
|          | ė          | Ö          |     | Ó         | -  | •         |    | 9         |     | 0       | -   | 0       |     | Ò    |     | 0          |    | 40          |      | 20         | i   |            |     | 0         |      | 0           |     | 0               |   | 0         |     | Ò           | •    | ,        | -   | 0          | •    | 6          |   |
| •        | 10         | ( @        |     | 93        | ť  | 0,        | •  | 97        | ŧ   | 0,      | •   | 91      | , , | 9.   | , ( | 9)         |    | 110         |      | 25         | 1 1 | (5)        | •   | 30        | •    | 45          |     | 8)<br>[5        | • | 9,        | •   | Çı          |      | •        |     | 91         |      | 67         | • |
| •        | 551        | ( 50       | ) ( | 12)       | •  | Ō         | •  | Ō1        | f   | Õ1      | •   |         | •   | 0    | 3 ( | ٥ì         |    | 279         |      | 631        | •   | ٥١         | : ( | 761       | ) (I | 141         |     | 184             | ŧ | ٥١        | •   | šı          |      | )        | ( ) | Ĭ          |      |            | ŧ |
| ŧ        | öı         | . :        | ) ( | ě,        |    | ě,        | •  | 91        | t   | 21      | •   | 91      |     |      |     | öı         |    | 60<br>  203 | , (  | 30<br>761  | ( ) | Z)         |     | 35        | (1   | 40<br>.01 ) |     | 10<br>761       | ŧ | •)        | •   | Ğ           |      | ,<br>))  | •   | 61         |      | Ĝ          | ( |
|          | 01         |            |     | 01        |    | 0         |    | 91        |     | 01      | t   | 0       |     | 0    |     | 9          | (  | . 0:        |      | 8,         |     | 0,         |     | 15        | ,    | 70<br>771   |     | 15<br>181       |   | 0,        |     | 3,          | . :  | )<br>) ) |     | 0,         |      | 0,         |   |
| •        | •          |            |     | •         | •  | 9         | •  | 2         | -   | 3       | •   |         |     | ě.   |     | ŏ          |    | 0           |      | 3          | •   | •          |     | 20        |      | 25          |     | ٥               | - | 0         |     | 3           | (    | c        | Ž   | 20         | ` 1  | 10         | ٠ |
| •        | 0)         |            |     | 0)        | •  | 0)        | •  | 9)        | •   | 91      | •   | 01      | •   | 61   | • ( | 01         | (  | او          | • (  | 91         | •   | <b>0</b> ) | •   | 20        | •    | 43)<br>75   |     | 23              | ŧ | •,        | ı   | <b>\$</b> } |      | ))       |     | 10 )<br>10 |      | /+ /<br>15 | ſ |
| €        | Ŏì         | ( ŏ        |     | ō,        | ŧ  | ě         | •  | ò         | f   | ó١      | •   | 01      | •   | Ö    | ) ( | Ö          | •  | i           | ) (  | ٥ì         | •   | ٥ı         | - 4 | 301       | 14   | 101         |     | 1               | ŧ | Õ         | ŧ   | ě           | ( )  | ,        | ( 5 | 101        | . 4  | 10)        | ŧ |
|          | 30<br>70)  | ?5<br>190  |     | 35<br>88) | ι  | 0,        | •  | 91        | •   | 0)      | - ( | 81      |     | 8    |     | å,         |    |             |      | 01         | ı   | 01         |     | 81        |      | 3,          | ı   | 91              | ( | ů         | •   | 91          |      | ,        |     | !5<br> 31  |      | 10<br>70 ) | ( |
|          | •          | 0          |     | C.        |    | 50<br>271 |    | 60        | •   | 9,      |     | 9       |     | 6    |     | 0          |    | 50<br>1271  |      | 40         |     | 9          | ٠.  |           |      | 0,          |     | 0               | ( | 0,        |     | 3           | 1 0  | 9,       |     | ن<br>01    |      | 0,         |   |
| C        | 10)        | 10         | •   | 6)        | •  | 0         |    | ٥         |     | 0       | •   | 0       |     | 0    |     | ă,         |    | 0           |      | 0          |     | 0          | ٠   | ;         | ) (  | 19          | •   | ō               |   | 0         |     | ٥           | 0    | •        |     | à          |      | 0          |   |
| •        | 1 55       | ( 25       | ) ( | 0)        | (  | 91        | •  | 91        | ť   | 21      | (   | 91      | • ( | 81   |     | 91         | •  | 91          | • •  | 91         |     | 9)         | , • | 121       | •    | 301         | t   | 91              | • | •51       |     | 01<br>20    | 1 6  | ••       |     | 91         |      | 4;         | ( |
| •        | ō,         |            | ) ( | 61        | •  | ěı        | (  | Õ         | •   | 91      | •   | ā       | •   | ě    | •   | ěı         | •  |             | • (  | ě,         |     | ٥ì         | : 4 | 121       | (1   | 01)         | 1   | LŽ)             |   | ij,       |     |             |      |          |     | ië)        | ( )  | 763        | • |
|          | <b>0</b> , | . :        | ) ( | ÷,        | •  | 0)        | •  | •)        | ť   | 31      | (   | 0       |     | 6    | , , | <b>3</b> , | •  |             | , (  | 91         |     | å,         |     | 381       |      | 30 1        |     | 0)              | ( | 91        | •   | 0)          | , 8  | ,<br>,   | •   | Ĝ          |      | Ĉ,         | • |
|          | 0          | ١          |     | •         |    | 0         |    | 0         |     | 2.      |     | 0       |     | 0    |     | •          |    | 60          |      | 70         |     | 9          |     | 20        |      | 50          |     | 5               |   | 0         |     | o<br>J)     | . :  | )<br>) ) |     | 10         |      |            |   |
| •        | 25         | , 0        | , ( | 20        | t  | 91        | •  | 31        | (   | 91      | '   | 01      | •   | 01   |     | 91         | •  | 1521        |      | 30         |     | 81         |     | 501       |      | 30)<br>15   |     | ) () ()<br>  () | 4 | 0,        | •   | 8           | ` ;  | j'       |     | 0          |      | 13         | ٠ |
| 1        | 63)<br>20  | 1119       |     | 56)<br>10 | ı  | 0)        | •  | 91        | 1   | 91      | (   | 01      | ) ( | 01   | 1   | 91         | •  | 151         | 1 12 | 27)        |     | 5)         | •   | 251       | •    | 30 )        |     | 25 )<br>20      | ( | 01        | •   | 01          | ( 9  |          | 1 2 | 25 )<br>5  |      | 131        | • |
| •        |            | ( 76       |     |           | (  | ŏı        | •  | ٩ì        | ſ   | žı      | (   | 01      | 1   | Ö    | ı   | ěı         | •  |             | •    | Ö          |     | šı         |     | 40)       | (1   | 011         |     | 101             | ( | 61        | ſ   |             |      |          | ( 1 | ŽI         | (    | 101        | • |
|          | ٥,         | , ;        | , ( | å,        |    | 8,        | •  | 9,        | ť   | 9,      | ŧ   | 0,      |     | 0    |     | ٥,         | ŧ  |             |      | 0,         |     | 0<br>0)    |     | 25<br>631 | •    | 63)<br>29   |     | 0)              | ť | 3)        |     | 81          |      | )<br>)   | , 2 | :5<br>:3)  |      | 10         |   |
| Ī        | •          | Š          |     |           | ٠  | 0         |    | 9         |     | 9       |     | 0       |     | 0    |     | 0          |    | 0           |      | 9          |     | Ö          | ì   | •         |      | 0           |     | ٥               |   | 0         |     | 0           | 1    | )        | 1   | 3          | 2    | 23         |   |
|          | 0)         |            |     | 0)        | •  | 0,        | •  | 91        | •   | •       | •   | 0       | •   | 0    |     | 91         | (  | 50          |      | •31        |     | 01<br>3    | . ' | 52        |      | 30          |     | 0)<br>!\$       | ( | 91        | t   | ٦١<br>3     | ' 0  | )        |     | 9          | ( 3  | 6<br>10 1  | • |
| •        | 9,         |            | , ( | 0,        | •  | 31        | •  | 91        | ſ   | • 1     | •   | 91      | •   | 91   | •   | 91         | •  | 1271        |      | 75         |     | 2).<br>5   | •   | 431       | - (1 | 27)         | "   | 31              | ( | 15        |     | 6)          |      | }1       | •   | 91         | (    | G)         | • |
| •        | ŏı         |            |     | ěı        | t  | ě,        | •  | ٥ì        | •   | óı      | t   | 31      | t   | 91   | •   | ě          | ı  | 1521        |      | 901        | ( ) | <b>ā</b> 1 | _(  | 01        |      | ō,          | •   | ěı              |   |           | (10 |             |      | ,        | •   | ē,         |      | ě          | ŧ |
|          | 10<br>251  | 29<br>80 ) |     | 10<br>25) |    | ٥,        |    | 3         | ı   | 3,      |     | 0       |     | 81   |     | 31         | •  | 1011        | 1 (1 | 40         |     | 31         | •   | 8,        |      | 8,          | ı   | e,              | ŧ | ë,        | ŧ   | o,          | , ,  | ,        | , į | 3,         |      | 15<br>16)  | • |
|          | •          | •          |     | 0,        | Ċ  | 0         |    | Ö,        |     | )<br>)) |     | 0       |     | 0    |     | 0          |    | 100         |      | 10         |     | 9          |     | 0,        |      | 0,          |     | 0)              |   | 0,        |     | 0,          |      |          | •   | ٥,         |      | 3          |   |
| •        | TO<br>E1   | , 50       | •   | 10        | ı  | 36        | •  | 50        |     | 19      | •   | ě       | •   | 0    | , . | ő          | •  | 1254 I<br>G | •    |            | ٠.  | ő          | •   | •         | -    | •           |     | Ô               |   | ٥         |     | •           | 1    | •        |     | 0          |      | ٥          |   |
| ı        | 53)        | 1 30       | •   | 231       | ŧ  | 76)       | (1 | 271       | 1 1 | 141     | •   | 91      | (   | 20   | •   | Ď,         | •  | •3          |      | 19         |     | 91         | •   | 01        | •    | 91          | (   | 91              | • | 01        | (   | 91          | ' '  | ) )      |     | 0,         |      | 4)<br>10   | • |
| ŧ        | ăı         |            | t   | Ğ         | •  | ٥ı        | •  | 31        | •   | 21      | ŧ   | 12)     |     | 501  |     | 12)        | •  | 1521        | 11   | 391        | < ž | 91         | C   | ě         | •    | 01          | ŧ   | ě١              | • | ٥١        | •   | ō)          |      | )        | 1 5 | 5)         | . 7  | 4)         | ţ |
|          | 15         | 15<br>138  |     | 53)<br>16 | •  | å,        | •  | 31        | •   | 91      | •   | 15      |     | 10T1 |     | 15         |    | 45<br>215 1 |      | 50)<br>22  |     | ,<br>21    | ι   | ö         | •    | ö,          | •   | ě,              | • | åı        | •   | 31          | , ,  | i        |     | 31         |      | _          | • |
|          | 0          | •          |     | 0         |    | 0         | -  | 9         |     | •       | į   | 0       |     | ٥    |     | •          |    | 10          |      | 35         | ì   | .0         |     | 0         |      | 0,          |     | ġ<br>0)         |   | 0,        |     | 91          | , 0  | )<br>);  |     | (C)        |      | 15         |   |
| •        | 0)         | ( 0        | , ( | C)        | •  | 3,        |    | ji<br>O   | •   | ?!<br>? | •   | •       | •   | 91   |     | 41         |    | 220 I       |      | 99         |     | 91         | -   | 15        |      | 10          |     | •               | • | •         |     | 0           | 1    | )        | 2   | 0          | 3    | 10         |   |
| ŧ        | 0)         |            | •   | 6)<br>10  | ŧ  | 91        | ŧ  | 3)        | ſ   | 91      | •   | 91      | ) t | 91   | •   | 9)         | ı  | 1771<br>10  |      | 39)        | •   | 91         | •   | 341       | •    | 531         | "   | 6)              | • | 91        | •   | 61          | ( 0  | "        |     | 9          |      | 41         | • |
| •        | 15<br>30)  | 05<br>07   |     | 291       | ŧ  | ŏı        | ſ  | ٥١        | t   | óı      | ŧ   | 31      | •   | 01   |     | ăı         | t  | 251         | 1 (1 | iã S I     | ı   | 31         | (   | Ŏ)        | •    | ě           | ſ   | Č)              | • | ٩١        | t   | ě١          |      | ,        |     |            |      |            | ŧ |
|          | 0,         | . 0        |     | 01        |    | 3,        | ı  | 0,        | •   | "       |     | 6,      |     | ě,   |     | 01         | c  | 169 :       |      | 391        |     | 3          | C   | •         | •    | 91          | •   | 0,              | t | åı        | •   | 3<br>01     |      | ,        |     | °,         |      | 01         | ţ |
| •        | à          | Ö          |     | ٥         | -  | 0         |    | 9         |     | 3       |     | 0       |     | 0    |     | 3          |    | 0           |      | 91         | ,   | 3          | ,   | 121       |      | 52 i<br>70  | , , | 21              |   | 0         |     | 9,          | , 1  | •        |     | 9,         |      |            |   |
| •        | 0)         | 1 0        | 1   | 6)        | •  | 31        | •  | 31        | •   | "       | •   | 91      |     | 91   |     | ā          | ٠, | 0           |      | 3          |     | 0          |     | 9         |      | 3           |     | C               | • | 0         |     | 0           |      | •        | ı,  | .5         | 2    | :5         |   |
| •        | Ŏ1         |            | •   | ě١        | •  | رز        |    | 21        | •   | 21      | •   | 91      | •   | 61   | • • | 9)         | •  | 10          | ) 1  | 33         |     | 0)<br>5    |     | 13        | •    | 30          | ٠,  | 91              | t | ار<br>20  |     | 31          | 1    |          |     | 10 J<br>15 |      | 131        | • |
|          | 17         | 1 30       | ) ( | ,<br>12)  | 13 | 53<br>27) |    | 33<br>791 | • • | 121     | •   | 31      |     | 31   |     | 31         | •  | 2031        |      | 841        | 1 1 | <b>( )</b> | . ( | 161       | •    | 76 1        | ı i | •               | • | šŌ١       | (17 | 771         | 1 39 | ,        | ( ) | ið 1       | ( \$ | 161        | • |
|          | 0          | 3          | ) ( | 0         | •  | O s       |    | 3,        | 1   | )<br>)) |     | 2       | , ( | C 01 |     | 31         | •  | 35<br>1991  | ) (1 | 46         |     | .a<br>.31  | ١,  | 91        |      | 61          |     | ŏ               |   | 19<br>30) | 152 |             | 1 10 |          |     | 31         |      | e,         | • |
| •        | <b>v</b> , |            | , , | č         | •  | ٠,        | •  | Ψ,        | •   |         | -   |         | •   | ă.   |     |            | •  | 70          |      | 78         |     |            | 1 . |           | -    |             | -   | •               | - |           |     | _           | ē    |          |     |            |      |            | - |

Appendix D

;

BER DURABILITY PROGRAM AFWAL/ML CONTRACT MURRER F33615-60-C-5027

| CRACK | LENGTHS | FROM | MA NUTBER | 15133   |
|-------|---------|------|-----------|---------|
|       |         |      |           | 105-041 |

| CIMENSION:     | IN MIL      | S (METEP     | S # 10     | 06-051      |             |         |                       |      |                   |             | :                                           |                               |                               |
|----------------|-------------|--------------|------------|-------------|-------------|---------|-----------------------|------|-------------------|-------------|---------------------------------------------|-------------------------------|-------------------------------|
|                |             | <del>-</del> | - <b>L</b> | - I         | Ψ_          | EP      | 4 7                   |      | . 1               | Ψ.          | 29 X Y                                      | L & Y                         | zP A Y                        |
| 1 6            |             | ( 0)         | ( 0)       | ( 0)        |             | ( 0) (  |                       |      | ) 140<br>) (395)  | (101)       | ( 0) ( 0) ( 0                               |                               | ( )) ( 6) ( ))                |
| 2 25           | 70          | 20           | •          | 0           | •           | 30      | T00 50                |      | 0                 | 0           | 0 0 0                                       | 0 0 0                         | 40 <b>4</b> 0 40              |
| 3 0            | (177)       | ( 50)        | ( 2)       | ( 0)        | ( 0)        | 4 75 1  | ( ) ( )               | ( 6  | ) ( 01            | ( 0)        | + + + + + + + + + + + + + + + + + + + +     |                               | (101) (226) (101)             |
| ( 0)           | ( 0)        | ( 0)         | ( 0)       | ( 0)        | ( 2)        | ( 0)    | ( 9) ( 9)             | • 9  | ) ( <b>0</b> 1    | ( 0)        | 10 20 101                                   |                               | (0)(0)(0)                     |
|                |             | ( 0)         | ( 0)       | ( 0)        | ( ))        | ( 6)    |                       | ( )  |                   | ( 6)        | ( 25) ( 50) ( 25)                           |                               | ( 3) ( 6) ( 3)                |
| 5 0            |             | ( 0,         | . 0        | ( 0)        | , 3,        | ( 4)    |                       | ( 6  | ) 0<br>11 ( 41    |             |                                             |                               | 10 40 10 ( 25)                |
| b 60           | 90          | 60           |            | . 0         | • •         | •       | 0 0                   |      | 0                 | Ö           | 40 130 50                                   |                               | 0 0 0                         |
| 7 20           | 190         | (152)<br>20  | ( 2)       | ( 0)        | ( 0)        | ( 0)    |                       | 1 9  | ) ( 01            | ( 0)        | (101) (330) (127)                           |                               | ( 9) ( 6) ( 0)                |
|                | (254)       | ( 50)        | ( 0)       | ( 0)        | ( ŏ)        | ( 01    | ( ) ( )               | ( )  | ) ( )             | ı ( ğı      | 1 76) (203) ( 76                            |                               | (127) (294) (127)             |
| • ( 0)         |             | ( 0)         | ( 0)       | ( 0)        | ( %)        | ( 0)    | ( 6) ( 3)             |      | 3 ( 0)            |             | 30 40 30<br>{ 76} (203) { 76                |                               | 90 90 90<br>(127) (127) (127) |
| 9 20           | 76          | 20           | 0          | 0           | ( 2)        | 10      | 40 10                 |      | 0                 | ( 0)        |                                             | 0 0 0                         | 0 0 0                         |
| 10 0           | (177)       | ( 30)        | , 0,       | ( 0)        | , ,,        | 1 271   | (152) ( 25)           | ' 6  |                   | 40          | 3 5 6                                       |                               | ( 6) ( 0) ( 0)                |
| 11 0           | ( 0)        | ( 0)         | ( 0)       | ( 3)        | ( 0)        | ( 0) (  | ( 0) ( 0)             |      | (355)             | (101)       | (0)(0)(0)                                   |                               | ( 0) ( 0) ( 3)                |
| ( 0)           |             |              |            |             | ( 25)       | ( 0)    |                       |      | i) ( i)           |             | (127) (152) (101)                           |                               | ( 25) ( 36) ( 25)             |
| 12 60          | 50<br>(152) | 50<br>(127)  | ( 0)       | ( 3)        | ( 2)        | 20      | 60 20<br>1192) ( 96)  | , ,  | ) ( 0             |             | (0) (0) (0)                                 |                               | 10 15 10                      |
| 13 0           | ٥           | ٠            | 0          | 0           | 0           | •       | 0 0                   |      | 140               | 30          | 0 0 0                                       | 9 6 0                         | 0 0 0                         |
| 16 01          | ( 6)        | ( 0)         | ( 0)       | ( 0)        | ( 2)        | ( 0)    | ( 0) ( 0)             | 10   | 3) (355)<br>1 130 | ( 76)<br>20 |                                             |                               | ( 0) ( 0) ( 0)                |
| ( 01           | ı ( Ö)      | ( ŏ)         | ( 0)       | ( 0)        | ( 01        | ( 0)    |                       | 1 29 | 1 (330)           |             |                                             | ု ( စိုး ( စိုး ( စိုး        |                               |
| 17 0           |             | ( 0)         | ( 0)       | ( 0)        | ( 3)        | ( 3) (  | ( 0 ) ( 0 )           | ( 0  |                   | 10          | ( 0) ( 0) ( 0)                              |                               | ( 6) ( 6) ( 6)                |
| 16 0           |             | ( 0)         | ( 0)       | ( 0)        | ( 3)        | 30      | 120 30<br>(304) ( 76) |      | ) ; ;             |             | (0)(0)(0)                                   |                               | 40 70 30<br>(101) (177) ( 76) |
| 17 90          | 120         | 40           | 0          | Ö           | . 5         | ٥       | 0 3                   | Ġ.   | 140               | 20          |                                             |                               | 0 0 0                         |
| 18 40          | (304)<br>60 | 1011         | ( 0)       | ( ))        | ( 2)        | ( 0) (  | 100 ( 0)              | ( 0  | )) (3 <b>95</b> 1 | ( 30)       |                                             |                               | ( 0) ( 0) ( 0)                |
| (101)          | (152)       |              | ( 0)       | ( 0)        | ( 2)        |         | (254) (101)           |      |                   | ( Õ)        |                                             | concorran                     |                               |
| 19 0           |             | ( 0)         | , ,,       | ( 0)        | ( 0)        | 1 30)   | 100 10                |      | ) ( 0)            | ( 6)        | 39 35 <b>39</b> ( <b>68</b> ) ( <b>68</b> ) | ( ) ( ) ( )                   | ( 0) ( 0) ( 0)                |
| 20 0           | 3           |              | ( 0)       | ( 0)        | ( 0)        | ( 0)    | 0 0                   |      | ) 0               |             | (0)(0)(0)                                   |                               | ( 0) ( 0) ( 0)                |
| 27 0           | ( 0)        | ( 0)         | ` 3        | , 9,        | • •         | 0       | 2 2                   |      | 0                 | 0           | 0 0 0                                       | 0 0 0                         | 0 0 3                         |
| 22 0           | ( 0)        | ( 0)         | ( 5)       | ( 0)        | ( 2)        | ( 3) (  | 9 ( 91                | ( )  | ) ( 01            | ( 0)        | ( 0) ( 0) ( 0)<br>50 135 50                 | 70 70 70 70                   | ( )) ( 0) ( 0)                |
|                |             | ( 6)         | ( 0)       |             | 1 0)        | 1 03 1  |                       | ( )  | ) ( 0)            | ( 0)        | (127) (342) (127)                           | (177) (177) ( 90)             |                               |
| 23 0           |             | ( 0)         | ( 0)       | ( 6)        | ( 2)        | ( 4)    |                       | ( 3  | ) 0               | ( 6)        | 50 130 40<br>(127) (330) (101)              |                               |                               |
| 24- 0          | ٥           | Ö            | 3          | 0           | ,           | ō       | 0                     | Č    | 0                 | 3           | 30 130 30                                   | 0 0 2                         | 0 0                           |
| 25 0           | ( 0)        | ( 61         | ( 0)       | ( 3)        | ( ;)        | ( 9) (  |                       | ' 6  | ) ( 01            | ( 0)        | ( 76) (330) ( 76)<br>30 130 30              | ( ) ( ) ( ) ( )               | (0)(0)(3)                     |
| ( 01           |             | ( Č)         | ( Ď)       | ( 0)        | ( 2)        | ( 0)    | 0) ( 0)               | 1 9  | ) ( 0)            | ( 01        | ( 76) (330) ( 76)<br>25 130 20              |                               | ( 38) (279) ( 25)<br>30 70 30 |
| 26 10<br>( 25) | 20<br>( 50) | 10           | ( 6)       | ( 6)        | ( 0)        | ( 3) (  |                       | ( 3  | , ,               | ( 6)        | ( 63) (330) ( 50)                           |                               | ( 76) (277) ( 76)             |
| 27 50          | (1951)      | 40           | ( );       | ( 0)        | ( 2)        | 11011   | 100 40                | ( )  | ) 3               | ( 0)        | (0)(0)(0)                                   | . ( 0) ( 0) ( 0)              | 40 20 15<br>(101) ( 50) ( 38) |
| 29 0           | •           | 0            | ٥          | 0           | •           | 0       | 0 0                   | •    | 0                 | ٥           | 40 143 50                                   | 0 6 7                         | 30 70 30                      |
| 29 0           | ( 0)        | ( 0)         | ( 0)       | ( G)        | ( )1        | ( 0) (  | 0) ( 0)               | ( 0  | )) ( 0)<br>) 15   | 10)         | (101) (355) (127)                           | (0)(0)(0)                     | ( 76) (177) ( 76)<br>15 60 13 |
| ( 0)           |             |              | ( 0)       | ( 01        | ( 9)        |         | 6) ( 61               |      | ) ( 38)           | ( 25)       | ( 0) ( 0) ( 0)                              | ( 0) ( 0) ( 2)                | (38) (152) (25)               |
| 36 JO<br>1 761 | (229)       | 30<br>( 76)  | ( );       | ເລົາ        | ( 2)        | 1 76) ( | 90 30                 | 1 0  |                   | ( 0,        |                                             | (6)(3)(6)                     | (101) (203) ( 40)             |
| 37 0           | ( 0)        | 0            | ( 0)       | , 3,        | ( 0)        | ( 0) (  | 9 9                   | ( 0  |                   | ( 3)        | (0)(0)(0)                                   |                               | (101) (192) (101)             |
| 32 6           | J           | i            | Ó          | 3           | · •         | j j     | 0 3                   | 20   | 100               | 20          | 30 110 30                                   | 0 0 0                         | 20 50 20                      |
| 33 ( 0)        | ( 0)        | ( 0)         | ( 0)       | ( 2)        | ( 9)        | ( 3) (  | 1 4 1 6 2 1           | 1 39 | (254)             | ( 50)       | ( 76) (279) ( 76)                           | (0)(0)(2)                     | ( 90) (127) ( 90)             |
| ( 0)           | ( 01        | ( 0)         |            | ( 0)        | ( 2)        | 1 0)    | ( ) ( )               | ( 0  | 1 ( 0)            | ( 0)        | ( 0) ( 0) ( 0)                              | ( 6) ( 2) ( 2)                | (127) (254) (101)<br>30 45 30 |
| 34 0           | ( 0)        | ו נ ט        | ( 35)      | 70<br>(177) | ( 25)       | ( 0) (  |                       | ( 8  | ) ( 01            | ( 0)        | 50 50 40<br>(127) (127) (101)               | (0)(0)(0)                     | ( 76) (215) ( 76)             |
| 39 +9          | 50          | 10           | 0          | 140         | 2n<br>( 99) | ( 0) (  | 0 3                   | , 3  | 3                 | , ,         | ( ) ( 0) ( 0)                               | 20 120 20                     | (0)(0)(0)                     |
| 36 10          | (127)       | 7e)<br>25    | 0          |             | 2           | i oʻ    | 0 0                   | 3    |                   | ` 5         | 40 100 40                                   | 0 3 1                         | 45 116 40                     |
| 1 761          | 100         | 46           | ( 0)       | ( 91        | (, 2)       | ( 0) (  | (0) (0)               | 1 0  |                   | ( 0)        | (101) (254) (101)                           | ( 9) ( 9) ( 9)                | (114) (279) (101)             |
| (121)          | (254)       | 1011         | ( j)       | ເສັ້າ       |             | ( )) (  | g) ( g)               |      | 1 (355)           | ( iii)      | ( 5) ( 0) ( 6)                              |                               | (101) (177) (76)              |
| 36 90<br>(192) | 113         | 152)         | ( 3)       | ( ))        | ( 2)        | ( 6) (  | 3 3                   | ( 0  | 0, 0,             | ( 0)        | 0 3 6                                       | 40 50 17<br>(203) (127) ( 29) | ( 3) ( 3) ( 6)                |
| 39 50          | 70          | ••           |            | U           | 3           | ં રૂં   | O i                   | 9    |                   | 9           | 10 10 10                                    | 9 ) 9                         | 0 0 0                         |
| (127)          | (228)       | (161)        | ( 9)       | ( 0)        | 1 21        | ( 3) (  | 3 3                   | ( 0  | 1 ( 2)            | ( 0)        | (76) (76) (30)                              | (3)(3)(2)                     | (0) ( C) ( 0)                 |
| ( 0)           | ( 0)        | (5)          | ( ))       | ( :)        | 1 21        | ( )) (  | . 31 ( 31             | ( 3  | <u>i, (, i)</u>   | 1 (1)       | _ ( 0) ( 0) ( 0)                            |                               | ( 0) ( 0) ( 0)                |

21-3640(22) 7 Appendix D PER DURABELITY PROGRAM AFWALING CONTRACT WURSER F33615-60-C-5027

| CRACK LENGTHS FROM NA NI<br>OLNEMSLOWS IN MILS CHET | UMBER 19131<br>ERS = 106-091  | _                              | _                            | ••                             | _                             | _                                    |
|-----------------------------------------------------|-------------------------------|--------------------------------|------------------------------|--------------------------------|-------------------------------|--------------------------------------|
| MURBER EP E V                                       |                               | 10 1                           |                              | 10 1 1                         |                               | 19 4 7                               |
| 1. 0 0 0                                            | , a a a                       | 0 0 0                          | 0 0 0                        | 0 0 0                          | 3 9 1                         | U 0 5                                |
| 2 2 4 0                                             | ( 0) ( 0) ( 2)                | ( 0) ( 3) ( 0)                 | ( 0) ( 0) ( 0)               | ( 0) ( 0) ( 0)                 | (0) (0) (0)                   | ( 0) ( 0) ( 0)                       |
| ( 6; ( 6) ( 6)                                      | ( 0) ( 0) ( 2)                | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)               | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                | ( 6) ( 6) ( 6)                       |
| 3. 10 50 30                                         | 0 0 0                         | 0 0 0                          | 25 90 20                     | 0 0 0                          | 0 0                           | 0 0 0                                |
| ( 76) (127) ( 76)<br>+ 20 20 20                     | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                 | (63) (224) (50)              |                                | 1 91 ( 91 ( 61                | (0) (0) (0)                          |
| ( 50) ( 50) ( 50)                                   | ( 6) ( 6) ( 7)                | ( 6) ( 6) ( 6)                 | ( 25) (101) ( 25)            |                                | ( 6) ( 6) ( 6)                | (101) (127) (101)                    |
| 9 40 50 30                                          | (0) (0) (2)                   |                                |                              | 29 30 20<br>( 63) (127) ( 50)  |                               | (101) (152) (101)                    |
| (101) (127) ( 76)                                   | ( 0) ( 0) ( 2)                | ( 0) ( 0) ( 0)                 | 50 50 20                     | 4 0 0                          | 0 0 0                         | (192) (192) (101)                    |
| _ ( 0) ( 0) ( 0)                                    | concorcin                     | 1 0) ( 0) ( 0)                 | (127) (127) ( 50)            | ျပို့ ( ရုံ) ( ရုံ)            |                               | ( 0) ( 0) ( 0)                       |
| 7 0 0 0                                             | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)               |                                | ( 0) ( 0) ( 0)                | 30 00 30<br>{ 76) (152) ( 76)        |
|                                                     | 0 0                           | 0 0 1                          | 0 135 30                     |                                | 20 40 15                      | 3 4 4                                |
| ( 0) ( 0) ( 0)                                      | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                 | ( 0) (342) ( 76)             |                                | ( 30) (203) ( 3ª)             | ( 0) ( 0) ( 0)                       |
| 9 50 60 50 (127)                                    | ( 4) ( 6) ( 6)                | 39 100 30<br>( 80) (254) ( 74) |                              | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                | (0)(0)(4)                            |
| 10 0 0 0                                            | 0 0 7                         | • • •                          | 20 40 10                     | 40 50 45                       | 0 0                           | 29 30 20                             |
| (0)(0)(0)                                           | ( 0) ( 0) ( 2)                | ( 6) ( 6) ( 6)<br>30           | ( 50) (101) ( 25)            | (101) (127) (114)              | ( 3) ( 3) ( 3)                | ( 63) ( 76) ( 50)                    |
| (192) (294) (192)                                   | ( 0) ( 0) ( 0)                | ( 76) (228) ( 76)              | ( 3) ( 6) ( 6)               | (101) (127) (114)              | ( 0) ( 0) ( 0)                | ( 50) ( 76) ( 50)                    |
| 12 15 30 20<br>(38) (76) (50)                       | ( 0) ( 2) ( 2)                | 20 100 20<br>( 30) (254) ( 50) | ( 31 ( 4) ( 4)               | 30 40 30<br>( 76) (LOL) ( 76)  | ( 9) ( 9) ( 9)                | 50 30 30                             |
| 13 40 60 40                                         | 0 0 0                         | 0 0 0                          | 20 40 20                     | 0 0 0                          | ( 0) ( 0) ( 0)                | (127) (76) (76)                      |
| (101) (192) (101)                                   | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                 | ( 50) (192) ( 50)            | ( 0) ( 0) ( 6)                 | Cát cát cát cát               | ( 0) ( 0) ( 0)                       |
| 10 15 30 15                                         |                               |                                | ( 0) ( 0) ( 0)               | 56 110 50<br>(127) (274) (127) | ( 0) ( 2) ( 0)                | 20 50 28<br>( 56) (127) ( 50)        |
| 15 40 50 30                                         | 3 0 2                         | 10 100 30                      | 0 0 . 0                      | • • •                          | 0 0 0                         | 0 0                                  |
| (101) (127) ( 76)                                   | ( 9) ( 3) ( 9)                | ( 76) (294) ( 76)<br>29 49 29  | ( 9) ( 9) ( 9)               | ( 01 ( 01 ( 6)                 | ( 3) ( 6) ( 3)                | (0) (0) (0)                          |
| ( 0) ( 0) ( 0)                                      | ( o) ( o) ( o)                | ( 43) (114) ( 43)              | ( 0) ( 0) ( 0)               | (127) (254) (127)              | ( 6) ( 5) ( 6)                | ( 76) (203) ( 76)                    |
| 17 25 60 25<br>(63) (152) (63)                      | (0)(0)(0)                     | 1 9) ( 9) ( 9)                 | 3 156 46<br>( 2) (391) (101) | ( 4) ( 4) ( 4)                 | ( 2) ( 0) ( 2)                | 50 50 50<br>(127) (127) (127)        |
| 18 30 40 30                                         | 3 0 9                         | 0 0                            | 45 40 30                     | 0 0 0                          | • • •                         | 0 0 0                                |
| 176) (191) (76)                                     | ( 4) ( 3) ( 9)<br>29 110 49   | (0) (0) (0)                    | (114) (1921 ( 74)            | 50 30 20                       | ( 3) ( 3) ( 2)                | ( 6) ( 6) ( 3)                       |
| ( 0) ( 0) ( 6)                                      | ( 63) (279) (101)             | ( 50) (127) ( 50)              | ( 44) (177) ( 63)            | (127) ( 76) ( 50)              | ( )) ( )) ( ))                | ' ( 98) (127) ( 76)                  |
| (0)(0)(0)                                           | ( 4) ( 4) ( 6)                | ( 0) ( 0) ( 0)                 | 0 170 40                     | ( 0) ( 0) ( 0)                 |                               | 70 100 60<br>(177) (254) (152)       |
| 21. 40 80 46                                        | 0 3 3                         | 16 20 50                       | 73 30 15                     | 0 0                            | 3 0 9                         | 0 0                                  |
| (101) (203) (101)                                   | (4) (4) (2)                   | ( 25) ( 30) (127)              | (177) ( 76) ( 34)            | ( 8) ( 3) ( 0)                 | ( 3) ( 9) ( 9)                | ( 0) ( 0) ( 2)                       |
| (101) (152) (101)                                   | ( 6) ( 6) ( 3)                | ( 50) ( 76) ( 50)              | 1 0) ( 0) ( 0)               | 1 01 1 31 1 01                 | ( 43) (330) ( 49)             | 1 01 1 01 1 01                       |
| 23 0 0 C                                            | (0) (0) (2)                   | ( ) ( 0) ( 4)                  | (2)(0)(0)                    | (0)(0)(0)                      | 20 50 10<br>( 54) (127) ( 25) | 40 60 60 (101)                       |
| 24 60 10 60                                         | 0 0 7                         | 3 0 3                          |                              |                                | 3 3 7                         | 0 0                                  |
| (725) (503) (725)                                   | ( 0) ( 2) ( 2)                | ( 0) ( 4) ( 0)                 | ( Q) ( Q) ( Q)<br>10 130 20  | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 2)                | (0) (0) (0)                          |
| 25 15 30 15<br>(38) (76) (36)                       | ( 0) ( 3) ( 0)                | ( 0) ( 0) ( 0)                 | ( 25) (336) ( 30)            | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 3)                | ( 50) (127) ( 50)                    |
| 20 30 70 40                                         | 0 3 0                         | 10 30 10                       | 3 0 3                        | 30 70 30<br>(74) (177) (74)    | (0) (0) (7)                   | ( 2) ( 6) ( 6)                       |
| (127) (177) (101)                                   | ( 0) ( 0) ( 7)                | 7 251 ( 76) ( 25)              | ( 0) ( 0) ( 0)               | ( 76) (177) ( 76)              | (0)(0)(7)                     | (0)(6)(0)                            |
|                                                     | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                 | ( 63) (254) ( 76)            | ( 0) ( 0) ( 0)                 | 1 3) 1 0) 1 0)                | 1 38) (177) ( 76)                    |
| 28 0 0 0                                            | ( 2) ( 0) ( 2)                | 15 30 10<br>(34) (74) (25)     | (0)(0)(0)                    | 30 L30 20<br>(70)(254)(50)     | ( 0) ( 0) ( 0)                | 1 0) ( 4) ( 0)                       |
| 29 10 19 10                                         | 0 0                           | 40 40 30                       | 3 0 J                        | J9 100 J9                      | 0 0 7                         | 40 40 40                             |
| ( 25) ( 38) ( 25)<br>30 70 e0 50                    |                               | (101) (101) ( 76)              | ( 3) ( 0) ( 3)               | ( 88) (254) ( 86)              | ( 3) ( 6) ( 5)                | (192) (192) (161)                    |
| (177) (152) (127)                                   | 1 0) 1 0) 1 0)                | 1 6) ( 6) ( 6)                 | 1 3) 1 4) 1 6)               | (101) (177) (127)              |                               | to to to                             |
| 31. 0 0 0                                           | ( 2) ( 0) ( 0)                | (0)(0)(0)                      | ( 0) ( 2) ( 0)               | 90 90 60<br>(127) (228) (152)  |                               | 25 96 25                             |
| 32 0 0 0                                            | 0 0 1                         | 0 0 3                          | 20 120 +)                    |                                | 0 6 7                         | 35 145 30                            |
| 1 6) ( 0) ( 0)                                      | ( 3) ( 4) ( 2)                | (0) (0) (0)                    | ( 50) (30+) (101)            | ( 0) ( 3) ( 0)                 | (0)(3)(3)                     | ( 40) (292) ( 76)<br>25 00 25        |
| ( 63) (339) ( 50)                                   | 1 40 1 60 1 60                | 1 632 (279) ( 30)              | 1 0) 1 0) 1 0)               | 1 0) 1 0) 1 0)                 | t on t on t on                | 1 63) (252) ( 63)                    |
| 34 0 0 0                                            | 25 70 L9<br>( 03) (220) ( 10) | (0)(0)(0)                      | 3 146 36 (3) (39) (76)       |                                | ( 0) ( 0) ( 7)                | 10 10 10                             |
| 39 0 v 0                                            | 3 3 1                         | 3 3                            | 40 40 23                     | 6 3 6                          | 0 ) ^                         | 75 75 10                             |
| 4 0 0 0 0                                           | ( 0) ( 3) ( 0)                | (0)(0)(0)                      | (101) (101) ( 50)            | ( 0) ( 0) ( 0)                 | ( 3) ( 2) ( 2)                | (19C) (19C) (203)<br>15 35 15        |
| . 6) ( 6) ( 6)                                      |                               | 1 63 1 63 1 63                 |                              |                                | i ja kija kija ja             | f 341 t 4e1 t 3-1                    |
| 37 90 75 46<br>(127) (190) (101)                    | (0) (0) (2)                   | 10 40 10                       | (3)(3)(6)                    | ( 0) ( 0) ( 0)                 | 30 99 29                      | 25 65 20                             |
| 30 C G G                                            | 0 3 1                         | 19 40 23                       | 0 1 3                        | 40 40 50                       | 0 2 ?                         | 3 3 9                                |
| ( 0) ( 0) ( 0)<br>30 10 10 10                       | 1 0) ( 0) ( 7)                | ( 16) (101) ( 50)              | ( 0) ( 3) ( 6)               | (131) (263) (127)              | ( ) ( ) ( )                   | f 3) ( 2) ( 0)                       |
| (25) (25) (25)                                      | ပြောပြောပြည်                  | t ás t és t ás                 | t å) (399) (127)             | 1 01 1 31 1 01                 | t ậi t ậi t și                | 1 961 (304) ( 75)                    |
| (0)(4)(3)                                           | ( 3) ( 3) ( 2)                | (3) ( 4) ( 4)                  | ( 3) ( 0) ( 0)               | ( 76) (224) ( 76)              | ( ) ( ) ( )                   | 43 53 <u>13</u><br>(101) (127) ( 75) |
|                                                     | ,,                            | ,,,                            |                              |                                | •                             |                                      |

21-3640 (22) Appendix D D-5

| LEMETHS PACH HA N<br>SEGMS EN MELS EMET | 145 A LOE-051              |                | _                           | _                                  | •                                               | _                                     | _                                |
|-----------------------------------------|----------------------------|----------------|-----------------------------|------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------|
| 4 f<br>95 10 93                         | 40 35                      | 7 1            |                             | L X Y                              | 29 19 29                                        | , , , , , , , , , , , , , , , , , , , | 10 A                             |
| ais air air                             | 1203) ( 86) (              |                | 1 (127) ( 66)               | (1114) (177) ( 16)                 | ျက်မှာ ရောက်ရှာ                                 |                                       | (241) (399) (1                   |
|                                         |                            | , <u>3</u> , , |                             |                                    |                                                 |                                       | ( 55) (135) (                    |
| ( 63) (163) ( 0)                        | (3)(6)(                    | , j, ,         |                             | (137) (152) ( 63)                  | 25 25 20<br>( 43) ( 43) ( 50)                   | 110 70 30<br>(279) (177) ( 76)        | 79 126<br>(1 <b>90)</b> (304) (1 |
| 35 100 30                               | ( 0) ( 0) (                | 2) (2)         | 3 30 0<br>2) ( 76) (  0)    | 25 45 15<br>( 63) (114) ( 30)      | ( 0) ( 0) ( 0)                                  | ( 0) ( 0) ( 0)                        | (127) (279) (1                   |
| ( 0) ( 0) ( 0)                          | ( 0) ( 0) (                | 2 1            | 5 19 3<br>8) ( 36) ( 0)     | 10 100 0                           | (101) (203) (101)                               | 30 55 10 (76)                         | 60 55<br>(152) (134) (1          |
| ( 0) ( 0) ( 0)                          | ( 0) ( 0) (                | • •            | 0 0 0                       | ( 0) ( 0) ( 0)                     | ( 0) ( 0) ( 0)                                  | ( 9) ( 9) ( 9)                        | 40 50<br>(101) (127) (           |
| 35 30 15                                | 0 0                        | •              |                             | 30 05 25<br>( 76) (215) ( 63)      | 30 40 30<br>( 76) (101) ( 76)                   |                                       | 90 <b>9</b> 0                    |
| 40 145 45                               | 9 9                        | •              | 3 10 G                      | eg 45 35                           | 35 40 0                                         | 140 25 10                             | 50 120                           |
| (101) (200) (114)                       | ( 0) ( 0) (                | 0 2            |                             | (192) (215) ( 44)                  | ( 46) (707) ( 0)                                | (355) ( 63) ( 25)                     | (127) (304) ()                   |
| ( 9) ( 9) ( 9)                          | ( )) ( 0) (                | 0 1            | 8) (109) ( <b>00</b> )<br>5 | 10 89 40                           | (0)(0)(0)                                       | (0)(0)(0)                             | ( 0) ( 0) (<br>30 +5             |
| ( 0) ( 0) ( 0)                          | ( 0) ( 0) (                |                | 8) ( 50) ( 50)              | ( 25) (215) (101)                  | (152) (177) (152)                               | ( 0) ( 0) ( 0)                        | ( 76) (165) (<br>30              |
| 1 0) 1 0) 1 0)                          | 1 31 1 91 1                | ) ) t          |                             | ( 0) ( 0) ( 0)<br>20 100 20        | 1 0) ( 0) ( 0)                                  | ( 0) ( 0) ( 0)                        | ( 76) (215) (<br>50 140          |
|                                         | ( 0) ( 0) (                | •              | 51 ( 20) ( TS)              | ( 50) (254) ( 50)                  | ( 00) ( 00) ( 70)                               | (342) ( 76) ( 25)                     | (127) (355) (                    |
| (114) (125) (161)                       | ( å) ( å) (                |                |                             | ( 25) (201) ( 36)                  | (127) (152) (127)                               | (254) (803) ( 63)                     | ( 00) (254) (                    |
| (101) (203) ( 76)                       |                            |                | 11 ( 301 ( 01               | (177) (152) ( 0)                   | (101) (127) ( 66)                               | ( 0) ( 0) ( 0)                        | (502) (502) (1                   |
| 9 30 0                                  | ( 0) ( 0) (                | 0 10           | 5) ( 74) ( 25)              | 25 50 20<br>( 63) (127) ( 90)      | 30 39 20<br>(76) (88) (50)                      | ( 0) ( 0) ( 0)                        | 20 85<br>( 90) (215) (           |
| ( 6) ( 6) ( 6)                          | 60 65<br>(152) (165) (     | 0 20           |                             | (0)(0)(3)                          | 99 109 39<br>(1 <b>3</b> 9) ( <b>266)</b> (139) | 140 40 17<br>(395) (101) ( 19)        | 85 199<br>(219) (393) (          |
| 25 35 20                                | 90 <b>60</b> (127) (192) ( | 20 2           |                             | 39 59 29<br>(139) (139) ( 63)      | (101) (101) (101)                               | 130 40 15                             | 25 55<br>( 63) (129), (          |
| ( 0) ( 0) ( 0)                          | ( 0) ( 0) (                | 0              |                             | ( 0) ( 0) ( 0)                     | ( 0) ( 0) ( 0)                                  | ( 0) ( 0) ( 2)                        | (101) (165) (                    |
| 45 85 45                                | 55 70                      | 32             | <b>3</b> 4 0                | 35 150 30<br>( 00) (301) ( 76)     | 0 0                                             | 0 0 0                                 | 30 110                           |
| (114) (215) (114)                       | (139) (177) (              | 2              |                             | 10 40 10                           | 45 70 45                                        | 0 0 0                                 | ( 76) (279) (<br>60 69           |
| ( 25) ( 50) ( 0)<br>40                  | ( 0) ( 0)                  | •              |                             | ( 25) (152) ( 25)                  | (114) (117) (114)                               | ( 0) ( 0) ( 0)<br>80 95 27            | (152) (215) (1<br>60 110         |
| (101) (203) ( 76)                       | 0 0                        |                |                             | ( 25) (381) ( 96)<br>25   150   40 | (0)(0)(0)                                       | (203) (241) ( 43)                     | (192) (279) (<br>95 <b>9</b> 9   |
| ( )) ( 0) ( 0)                          | ( 3) ( 0) (                |                | 2) ( 0) ( 0)                | ( 63) (381) (101)<br>45 150 0      | ( 0) ( 0) ( 6)                                  | (254) ( 46) ( 74)<br>40 40 10         | (139) (241) ()<br>49 100         |
| ( 0) ( 0) ( 0)                          | ( 0) ( a) (                | 10 (           |                             | (114) (391) ( 0)                   | ( 0) ( 0) ( 0)                                  | (203) (101) ( 29)                     | (215) (254) ()<br>90 170         |
| (177) (177) (127)                       | (177) (114) (              | 3 2            | 0) ( 0) ( 0)                | (101) (301) ( 50)<br>60 70 0       | (0) (4) (0)                                     | ( 0) ( 0) ( 0)                        | (226) (431) (3<br>55 116         |
| ( 5) ( 10) ( 0)                         | ( o) ( o) (                | 71 ( 6         | 1) (192) ( 0)               | (192) (177) ( 0)                   | ( 50) ( 55) ( 0)                                | (140) (515) ( 0)                      | (139) (279) (                    |
| 40 70 45<br>(152) (220) (114)           | ( , , , , , , , , ,        |                | 1 ( 63) ( 50)               | ( 30) (177) ( 25)                  | ( )) ( )) ( ))                                  |                                       | 79 144<br>(190) (355) (          |
| 19 95 0<br>(38) (139) ( 0)              | ( 0) ( 0) (                |                | 1) ( 0) ( 0)                | 35 150 50<br>{ 00} (361) (127)     | ( 0) ( 0) ( 0)                                  | (279) (114) ( 25)                     | #0 120<br>(203) (304) (          |
| 39 55 25                                | ( 0) ( 3) (                | 2) (9)         | 3 90 30<br>3) (228) ( 76)   | 1 0) 1 0) 1 0)                     | 45 60 50<br>(114) (203) (127)                   | ( 0) ( 3) ( 0)                        | (105) (330) (                    |
| (0) (0) (0)                             | ( 0) ( 0) (                | 0 39           | ) 60 30<br>)) (192) ( 76)   | (0)(0)(0)                          | 50 110 55<br>(127) (279) (139)                  | 30 60 19<br>( 76) (192) ( 29)         | 90 90<br>(127) (228) (           |
| 30 75 0<br>( 76) (190) ( 0)             | ( 0) ( 0) (                | 0 35           |                             | (0) (0) (0)                        | 49 79 49<br>(114) (190) (114)                   | 100 70 39<br>(294) (177) ( 99)        | #0 140<br>(203) (355) (          |
| 15 90 20<br>1 30) (220) ( 50)           | 1 0) 1 0) 1                | 2 39           |                             | 70 40 25<br>(127) (192) ( 63)      | 10 50 15                                        | 3 7                                   | 90 119                           |
| 6 6 6                                   | 110 55                     | 27 55          | 100 40                      | 3 0 0                              | ( 76) (127) ( 80)<br>20 40 15                   | 20 49 25                              | 70 94                            |
| 99 100 49                               | (279) (139) (              | 0 50           | 00 55                       | 79 40 30                           | ( 50) (101) ( 30)<br>40 60 50                   | ( 90) (215) ( 43)                     | (177) (225) (                    |
| (139) (254) (114)<br>30 65 46           | (0)(0)(                    | 25 (           |                             | (177) (101) ( 76)                  | (192) (192) (127)<br>35 50 55                   | (294) (192) ( 39)                     | (229) (279) (                    |
| (127) (165) (161)<br>50 100 45          | (101) (195) (              | 2 45           | 1) ( 3) ( 6)                | (0)(0)(0)                          | ( 44) (127) (139)<br>30 65 39                   | (0) (0) (0)                           | (152) (361) (<br>70              |
| (127) (254) (114)<br>30 70 25           | ( 0) ( 0) (                | 0 39           | ) (279) (127)<br>}          | (0)(0)(0)                          | ( 74) (145) ( 48)<br>45 79 40                   | (127) (152) ( 43)                     | (177) (203) (                    |
| ( 74) (177) ( 63)<br>40 125 75          | ( 0) ( 0) (                | 01 ( 60        | 11 (139) ( 76)              | ( 3) ( 0) ( 0)                     | (114) (140) (101)                               | (114) (192) ( 50)                     | (114) (165) (<br>70 95           |
| (203) (317) (190)                       | ( 0) ( 0) (                | 9) (10)        | (177) (101)                 | (192) ( 44) ( 76)<br>30 150 53     | (101) (127) (114)                               | (203) (277) ( 53)                     | (177) (241) (                    |
| (76) (191) ( 56)                        | ( 3) ( 3) (                | 9) (           | 40 30                       | ( 76) (381) (127)                  | ( 8) ( 6) ( 6)                                  | tội tấi tội                           | (192) (279) (                    |
| (192) (192) (101)                       | ( 25) (330) (              | 2141 ( 00      | 1) (203) ( 76)              | (152) (165) ( 0)                   |                                                 |                                       | (116) (292) (                    |
| 10 05 25<br>(131) (105) ( 03)           |                            |                | 1) (190) ( 34)              | (105) (127) ( 50)                  | ( 03) ( 03) ( 0)                                | ( 2) ( 2) ( 2)                        | ( 10) (11)                       |
| 10 15 10<br>( 25) ( 30) ( 25)           | ( 0) ( 0) (                |                | 1215) ( 63)                 | ( 0) ( 0) ( 0)                     | 10 +0 15                                        | (279) (101) ( 19)                     | 99 123<br>(139) (344) (          |
| ( 3) ( 3) ( 6)                          | 1 2) ( 3) (                | 2 6            | ) 65 30<br>) (165) ( 76)    | ( 0) ( 0) ( 0)                     | 20 49 25                                        | 60 35 0                               | 40 L10 (279) (                   |
| 40 70 35<br>(101) (177) ( 00)           | 5 3                        | •              | 0 ( 0) ( 0)                 | 10 90 40 (25) (25) (20)            | 40 90 45<br>(101) (127) (114)                   | ( 3) ( 3) ( 2)                        | 11521 (241) (                    |
| 20 70 20                                | 3 3                        | 7 30           | 120 39                      | ( 4) ( 6) ( 6)                     | 35 70 46                                        | , , ,                                 | 50 76                            |
| ( 56) (177) ( 50)                       | ( 3) ( 3) (                | ,, , ,         |                             | 7 21-3640 (22)                     | ( 44) (177) (161)                               | ( 0) ( 2) ( 0)                        | (1271 (1771 (                    |

S. A. S. C.

REM- DURABILITY PROGRAM AF-AL/ML CONTEACY MUNGER F33615-66-C-5027

| CRACK | Lin614 | S FEOR | 46 | - | 1444 |
|-------|--------|--------|----|---|------|
|       |        |        |    |   |      |

| CINENSIONS IN MILS INCTERS & 1CE-091                 |                   |                      |                             |                      |                               |
|------------------------------------------------------|-------------------|----------------------|-----------------------------|----------------------|-------------------------------|
| HURGER AP & Y L X Y                                  | Th T A            | L T Y                | EP 4 Y                      | L 1 Y                | (P & T                        |
|                                                      | ( ) ( 0) ( 0)     | (0)(0)(0)            | 10 35 0                     | ( 0) ( 0) ( 0)       | 20 5 25                       |
|                                                      | ( 0) ( 0) ( 0)    | 1 3) ( 6) ( 6)       | 1 0) ( 0) ( 0)              | ( 0) ( 0) ( 0)       | 20 26 40                      |
| 1 0 0 0 0 0                                          | 0 0               | 9 9 9                | 0 0 0                       | 0 0 0                | 0 0 3                         |
|                                                      | ( 0) ( 0) ( 0)    | 10 ( 6) ( 6)         | ( 0) ( 0) ( 0)              | ( 0) ( 0) ( 0)       |                               |
|                                                      |                   | (25) (30) (0)        |                             | ( 0) ( 0) ( 0)       |                               |
|                                                      | (12) (36) (6)     | ( 3) ( 0) ( 4)       | ( 6) ( 6) ( 6)              |                      | ( 0) ( 0) ( 0)                |
| 9 35 20 50 0 0 0<br>( 00) ( 50) (127) ( 3) ( 3) ( 9) | ( 0) ( 0) ( 0)    | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)              | ( 0 ( 0) ( 0)        | ( 0) ( 3) ( 3)                |
| 7 0 0 0 0 0                                          | 0 0 0             | 0 0 0                | 0 0                         | 0 0                  | 0 0 0                         |
|                                                      | 1 9) ( 9) ( 9)    | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)              | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)                |
|                                                      | ( 0) ( 0) ( 0)    |                      |                             |                      | ( 0) ( 0) ( 0)                |
|                                                      | ( 0) ( 0) ( 0)    | ( 0) ( 0) ( 0)       |                             | ( 6) ( 6) ( 7)       | 13 29 30                      |
|                                                      | (0) (0) (0)       |                      |                             | 0 0 0                | ( 0 0 0 0                     |
| 11 30 5 40 0 0 0                                     | ( 0) ( 0) ( 0)    | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)              | ( 0) ( 0) ( 0)       | (6) (6) (6)                   |
| 12 20 10 10 0 0 7                                    | 0 0               | <b>'0 0 3</b>        | 0 0                         | 0 3 0                | 0 0 0                         |
| 130 (25) (25) (0) (0) (0)                            | ( 0) ( 0) ( 0)    | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)              | ( )) ( ()) ( ())     | ( 3) ( 0) ( 0)                |
|                                                      |                   |                      |                             | ( 0) ( 0) ( 2)       |                               |
|                                                      |                   | ( 0) ( 0) ( 3)       | ( 0) ( 0) ( 0)              | ( 0) ( 3) ( 0)       | 25 10 10<br>( 63) ( 25) ( 25) |
|                                                      | ( 0) ( 0) ( 0)    |                      | ( 0) ( 0) ( 0)              | ( 3) ( 6) ( 2)       | (8) (0) (8)                   |
| 16 0 0 0 0 0                                         | 5 25 0            | 0 0 0                | 0 0 0                       | 0 0 0                | 0 0 0                         |
| 17 0 0 0 0 0 0 0                                     | 1 12 1 63 1 61 20 |                      | ( 0) ( 0) ( 0)              | (0) (0) (0)          |                               |
|                                                      | ( 50) ( 30) ( 50) | ( 0) ( 0) ( 0)       |                             |                      | ( 0) ( 0) ( 0)                |
|                                                      |                   |                      | ( 0) ( 0) ( 0)              | ( 0) ( 2) ( 2)       | ( ) ( ) ( )                   |
| (3)(0)(0)(3)(0)(7)                                   |                   | ( 0) ( 0) ( 0)       | (0)(0)(0)                   | (0)(0)(2)            | ( 0) ( 2) ( 0)                |
|                                                      | (0)(0)(0)         | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)              |                      | ( ) ( ) ( )                   |
| 21. 0 0 0 0 0                                        | 10 25 0           | ( 4) ( 6) ( 6)       | 0 0                         | 0 0                  | 0 0                           |
| 22 0 0 0 0 0 0 0                                     | 0 0 0             | 9 9 9                | (0)(0)(0)                   | ( 0) ( 3) ( 0)       | (0)(0)(0)                     |
|                                                      | ( 0) ( 3) ( 0)    | ( 4) ( 6) ( 6)       | (0)(0)(6)                   | ( 01 ( 0) ( 0)       | ( 0) ( 0) ( 0)                |
| 26 30 25 15 0 0 7                                    | 1 01 ( 01 ( 01    | ( 0) ( 0) ( 0)       |                             | cancancin            |                               |
| (76) ( 53) ( 38) ( 0) ( 0) ( 9)                      |                   |                      | ( 0) ( 0) ( 0)              | ( 0) ( 0) ( 0)       | ( 30) ( 12) ( 23)             |
|                                                      | 10 15 15          | ( 3) ( 6) ( 6)       | 10 70 G<br>1 25) (224) ( 0) | ( 0) ( 0) ( 3)       | ( 0) ( 0) ( 0)                |
| 26 0 0 0 0 0 7                                       | (0)(0)(3)         | 0 0 0                | (0)(0)(0)                   | (3) (6) (9)          | ( 0) ( 3) ( 0)                |
| 27 0 0 0 0 0                                         | 0 0               |                      | 0 0 0                       | 3 3 0                | 20 36 15                      |
|                                                      | 10 40 0           | 0 0 3                | (0)(0)(0)                   | ( 0) ( 2) ( 2)       | ( 50) ( 76) ( 25)             |
| 1 01 ( 0) ( 0) ( 0) ( 0) ( 0)                        | ( \$5) (101) ( 0) | ( )) ( 0) ( 0)       | (0) (0) (0)                 | ( 0) ( 2) ( 0)       | ( 0) ( 0) ( 0)                |
|                                                      | ( 0) ( 0) ( 0)    | ( 12) (127) ( 0)     |                             |                      |                               |
| 30 0 0 0 0 0 0 0                                     | ( 0) ( 0) ( 3)    | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 6)              | ( 0) ( 3) ( 2)       | ( 0) ( 6) ( 0)                |
|                                                      | ( 0) ( 0) ( 0)    | (0)(0)(0)            | ( 6) ( 0) ( 0)              | (3)(3)(0)            | (4) (3) (3)                   |
| 32 0 0 6 0 0 0                                       | ( 0) ( 0) ( 0)    | ( 0) ( 0) ( 0)       | 0 0 0                       |                      | ( 0 ) ( 0)                    |
| 33 6 0 6 3 5 5                                       | 0 0 0             | 0 0 0                | 10 10 16                    | 0 3 9                | 0 0 0                         |
| 34 0 0 0 0 0 0 0                                     | ( 0) ( 0) ( 0)    | (0)(0)(0)            | ( 251 ( 251 ( 251           | ( )) ( )) ( ?)       | (0)(0)(0)                     |
| 39 9 9 9 9 9 9                                       | 1 0) 1 3) 1 0)    | ersi irsii e ši      | ( 0) ( 0) ( 0)              | ( နိုး ( နိုး ( ရိုး | ( 3) ( 2) ( 3)                |
|                                                      | ( 0) ( 0) ( 0)    | ( နိုး ( ရိုး ( ရိုး | ( )) ( )) ( ))              | (ရိုး(ခိုး(ရိုး      |                               |
|                                                      | ( 0) ( 0) ( 0)    | ( 0) ( 2) ( 0)       | (0) (0) (0)                 |                      | ( 0) ( 0) ( 0)                |
| 37 0 3 6 3 3 7                                       | ( 0) ( 6) ( 0)    | ( 0) ( 0) ( 0)       | (0) (0) (0)                 | ( 0) ( 2) ( 0)       | ( 0) ( 0) ( 0)                |
| 34 0 3 C 0 5 7                                       | 0 3 0             | 0 0 0                | 0 0 3                       | . 1                  |                               |
| ( 0) ( 0) ( c) ( 0) ( 3) ( 0)<br>30 3 0 0 0 3 7      | ( 6) ( 6) ( 6)    | ( 9) ( 6) ( 9)       | ( 0) ( 0) ( 0)              | ( 3) ( 2) ( 3)       | ( ) ( ) ( )                   |
|                                                      | (6)(0)(0)         | ( )) ( () ( ())      | ( 0) ( 0) ( 0)              | 1 0) ( 2) ( 4)       |                               |
|                                                      | ( 34) ( 74) ( 6)  |                      | <u>(3)</u> (76) (6)         | ( 5) ( 5) ( 6)       | ( 3) ( 6) ( 3)                |

21-3640 (22) Appendix D 0-7 BIN DURABILITY PROGRAM ASHAL/ML CONTRACT WITGER \$33619-40-C-5027

| CRACK | LENGTAS | FROM | MA | NUMBER | 14509 |
|-------|---------|------|----|--------|-------|
|       |         |      |    |        |       |

|                          | SIGNS       | IN MILS INC            | TEAS E LOE-GOT                |                               |                               |                               |                      |                                 |
|--------------------------|-------------|------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|---------------------------------|
| HCL &<br>NUMB <b>E</b> E | - 17        |                        |                               | A) 1 1                        | L F Y                         | The factor                    | L ( Y                | \$P I 7                         |
| ì                        | 23          | 30 25                  | 0 0 1                         | 0 0 0                         | 20 60 10                      | 20 50 20                      | 3 3                  | 0 5 3                           |
| 2                        | ( 53)       | 1 76) ( 63)            | ( 0) ( 0) ( 2)                | ( 0) ( 0) ( 0)                | ( 50) (152) ( 25)             | ( 50) (L27) ( 50)             | ( 0) ( 3) ( 7)       | ( 6) ( 6) ( 6)                  |
|                          | ( )()       | 4 30) ( 30)            |                               | 1 01 ( 01 ( 01                | ( 0) ( 0) ( 0)                |                               | ( 0) ( 0) ( 0)       | (101) (279) ( 0)                |
| 3                        | ( 88)       | 100 40                 | 140 35 5<br>(355) ( 36) ( 12) | ( 0) ( 0) ( 0)                |                               |                               | ( 0) ( 0) ( 0)       |                                 |
| ٠.                       | •           | 0 6                    | 0 3 2                         | 0 0 0                         | 0 40 20                       | 30 60 30                      |                      | 10 10 10                        |
| 4                        | (198)       | ( 0) ( 0)              | ( 0) ( 6) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) (152) ( 50)              | ; ( 76) (152) ( 76)           | ( 0) ( 0) ( 0)       | (107) (107) (707)               |
| Ī                        | (254)       | ( 30) ( 30)            | ( 0) ( 0) ( 2)                | ( 0) ( 0) ( 0)                |                               |                               | ( 0) ( 0) ( 0)       |                                 |
| •                        | 10          | 30 16<br>(76) (25)     | (0)(.0)(0)                    |                               |                               |                               |                      | 10 30 10                        |
| 7                        | ٥           | 0 0                    | 0 0 0                         | 20 70 20                      | 0 0 0                         |                               |                      | 30 70 30                        |
|                          | ( 0)        | ( 0) ( 0)<br>70 30     | ( 0) ( 0) ( 0)                | ( 50) (177) ( 50)             | ( 3) ( 0) ( 0)                | 10 (0) (0)                    | ( 3) ( 3) ( 2)       | 76) (177) ( 76)                 |
| •                        | 1 761       |                        | ( 0) ( 0) ( 0)                | 1 0) 1 0) 1 0)                | t on ton ton                  | ( 29) (169) ( 25)             | ( 0) ( 0) ( 0)       | ( 12) ( 25) ( 12)               |
| 9                        | ( 53)       | 30 10<br>(76) (25)     | (0)(3)(9)                     |                               | (0)(3)(0)                     |                               | ( 6) ( 6) ( 6)       | 40 <b>90 40</b> (101)           |
| 10                       | 0           | 0 0                    |                               | 30 60 30                      | 0 0 3                         |                               |                      | 0 6 0                           |
|                          | ( 0)        | ( 6) ( 6)              | ( 0) ( 0) ( 2)                | ( 76) (203) ( 76)             | ( 0) ( 0) ( 0)                | ( 6) ( 6) ( 6)                | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)                  |
| 44.                      | (114)       |                        | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)       | ( 6) ( 6) ( 6)                  |
| 12                       | 20          | 35 20                  | ( 0) ( 0) ( 0)                |                               | (0)(0)(0)                     |                               | ( 0) ( 0) ( 0)       | 20 50 20                        |
| 13                       | 29          | 30 20                  | 0 0 0                         | 0 0 0                         |                               | 0 0                           |                      | 35 33 29                        |
| • •                      | 1 633       | (127) ( 50)            | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)       | (40) (40) (40)                  |
| 74                       | ( 76)       | (76) (50)              | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 3)                | ( 38) (203) ( 36)             | ( 0) ( 0) ( 0)       | ( 0) ( 0) ( 0)                  |
| 15                       | 30          | 50 30<br>(127) ( 76)   | (0) (0) (2)                   | (0)(0)(0)                     | (0)(0)(0)                     | ( 0) ( 0) ( 0)                | (0)(0)(0)            |                                 |
| 10.                      | 45          | 35 30                  | 0 0 0                         | 0 0 0                         | 0 140 10                      | 0 0 0                         |                      | 0 0 0                           |
| 17                       | (114)       | ( 88 ) ( 76 )<br>30 20 | ( 3) ( 0) ( 2)                | ( 0) ( 0) ( 0)                | ( 0) (355) ( 25)              | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)       | ( 01 ( 0) 1 0)                  |
| .,                       | ( 36)       | ( 76) ( 50)            | ( 0) ( 0) ( 0)                | ( 6) ( 6) ( 6)                | ( 6) ( 6) ( 6)                | ( 0) ( 0) ( 0)                | ( 6) ( 6) ( 6)       | ( 30) ( 76) ( 30)               |
| 18                       | (101)       | 10 +0                  | (0) (3) (0)                   |                               |                               | 40 lo 10<br>(101) ( 25) ( 25) | ( 2) ( 2) ( 0)       | 15 30 10                        |
| 19                       | 10          | 35 15                  | 0 0 0                         | 10 50 10                      | 0 3 0                         | 0 0 0                         | 0 0 0                | 0 0 0                           |
| 20                       | ( 25)<br>15 | ( 86 ) ( 36 )<br>90 15 | ( 0) ( 0) ( 2)                | ( 25) (127) ( 25)<br>20 35 25 | (0)(0)(0)                     | (0)(0)(0)                     | ( )) ( )) ( ))       | ( 0) ( 0) ( 0)                  |
| 20                       | ( 36)       | (203) ( 34)            | ( 0) ( 0) ( 0)                | 1 501 ( 60) ( 63)             | (139) (101) ( 25)             | (86) (192) (86)               | ( 0) ( 3) ( 0)       | ( 0) ( 0) ( 0)                  |
| 21                       | (101)       | 40 30<br>(101) ( 76)   | ( 0) ( 0) ( 0)                | (0)(0)(0)                     | 30 49 10<br>(76) (114) ( 29)  | 30 30 30 (76) (76)            | ( 4) ( 6) ( 0)       | 30 100 35<br>( 76) (254) ( 86)  |
| 22                       | 15          | 60 15                  | 0 0                           | 0 0                           | 4 0 0                         | 0 6 0                         | 0 0 0                | 10 00 10                        |
| 23.                      | ( 38)<br>20 | (152) ( 30)            | ( 0) ( 0) ( 0)                | (0)(0)(0)                     | (0)(0)(0)                     | ( 0) ( 0) ( 6)                | ( 0) ( 0) ( 2)       | ( 25) (152) ( 25)               |
| •-                       | ( 30)       | (101) ( 50)            | ( 0) ( 0) ( 0)                | ( 38) (294) ( 36)             | ( 0) ( 0) ( 0)                | ( 76) (127) ( 76)             | ( 0) ( 0) ( 0)       | ( 76) (254) ( 68)               |
| 24                       | 15          | 55 15<br>(139) ( 36)   | (0) (0) (2)                   | ( 0) ( 0) ( 0)                | 55 46 10<br>(139) (101) ( 25) | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)       | 10 30 10                        |
| 25.                      | 20          | 20 10                  | 0 0                           | 10 20 10                      | 30 05 15                      | 10 10 10                      |                      | 30 5e 3e                        |
| 26                       | 30          | ( 50 ) ( 25 )          | ( 0) ( 0) ( 2)                | (25) ( 50) ( 25)              | ( 76) (215) ( 38)             | ( 25) ( 25) ( 25)<br>15 70 15 | ( 0) ( 0) ( 0)       | ( 76) (127) ( 76)<br>39 70 39   |
|                          | ( 76)       | (114) ( 76)            | ( 0) ( 0) ( 2)                |                               | t ĝi t ĝi t ĝi                | ( 10) (177) ( 10)             | ( 0) ( 6) ( 0)       | ( 40) (177) ( 88)               |
| 2.7                      | 15          | 60 15<br>(152) ( 30)   | ( 2) ( 2) ( 2)                | ( 0) ( 0) ( 0)                |                               |                               | ( 0) ( 0) ( 0)       | 50 70 40<br>(127) (177) (101)   |
| 28                       | 30          | 10 30                  | 3 0 0                         | 0 0 0                         | 0 0 3                         | 0 0                           | 0 3 0                | 15 40 15                        |
| 20                       | ( 76)       | (225) ( 74)            | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)       | 1 361 (101) ( 36)               |
|                          | ( 0)        | ( 0) ( 0)              | ( 0) ( 0) ( 1)                | 1 0) 1 0) 1 0)                | ( 0) (406) ( 38)              |                               | ( နို) ( ခို) ( စို) | ( 86) (254) (114)               |
| 30                       | , 6,        | ( 8) ( 6)              | ( 0) ( 3) ( 0)                | 20 73 20                      |                               | ( 90) (203) ( 90)             | (0)(0)(0)            | 45 <b>60</b> 45                 |
| 31                       | ` 10        | 70 10                  | 0 0 0                         | 10 40 10                      | 0 0 0                         | 19 100 10                     | <b>3</b> 9 9         | 40 90 35                        |
| 32                       | 1 251       | (177) ( 25)<br>40 15   | ( )) ( )) ( ))                | ( 29) (101) ( 25)             | ( 0) ( 0) ( 0)                | ( 36) (254) ( 25)<br>10       | ( 0) ( 2) ( 2)       | (191) (203) ( 04)               |
|                          | ( 30)       |                        | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | ( 3) ( 3) ( 3)                | ( 25) ( 50) ( 25)             | ( 0) ( 5) ( 0)       | ( 0) ( 0) ( 0)                  |
| 33                       | (101)       | 60 35<br>(152) ( 88)   | (0)(0)(0)                     | ( 0) ( 0) ( 0)                | ( )) ( 0) ( 0)                | (0)(4)(4)                     | ( 4) ( 3) ( 9)       | 60 70 35<br>(152) (177) ( 88)   |
| 34                       | 35          | 100 35                 | 0 0 3                         | • • ·                         | 40 40 30                      | 0 0 0                         | 0 5 0                | 0 0 0                           |
| 15                       | ( 56)       | 35 20                  | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                | (203) (192) ( 76)             | ( 0) ( 0) ( 0)                | ( 0) ( 3) ( 0)       | ( 0) ( 0) ( 0)                  |
|                          | ( 761       | ( 48) ( 56)            | ( 0) ( 0) ( 2)                | 1 01 1 01 1 01                | (101) (215) ( 53)             |                               |                      | ( 0) ( 0) ( 0)                  |
| 34                       | 30          | (127) ( 63)            | (0) (0) (2)                   | 15 0 0                        | 15 155 0<br>(36) (363) ( 0)   | (36) ( 4) ( 0)                | (0) (2) (2)          | 20 79 19<br>( 50) (19c) ( 38)   |
| 37                       | 20          | 70 20                  | 43 50 17                      | 10 10 10                      |                               | • • 6                         | 3 3 3                | 0 0 3                           |
| 30                       | : 50)       | (177) ( 50)            | (203) (203) ( 19)             | ( 25) ( 76) ( 25)<br>15       | ( 3) ( 4) ( 6)                | ( 0) ( 0) ( 0)                | (3) (3) (8)          | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |
|                          | ( 6)        | ( 6) ( 6)              |                               | ( 10) (127) ( 25)             |                               | ( 0) ( 0) ( 0)                | ( 0) ( 2) ( 0)       | (47 ) (858) (64 )               |
| 39                       | 30<br>( 76) | 90 25<br>(127) ( 63)   | ( 0) ( 0) ( 0)                | ( 0) ( 3) ( 0)                | ( 4) ( 6) ( 6)                | (0)(0)(0)                     | ( )) ( )) ( ?)       | 15 20 13                        |
| +3                       | 20          | 39 50                  | 0 0 1                         | 0 0                           | 0 0                           | 20 40 20                      | 6 5 7                | 19 20 19                        |
|                          | 6 501       | 1 761 ( 30)            | ( 0) ( 0) ( 3)                | ( )) ( 6) ( 6)                | ( 0) ( 0) ( 3)                | ( 201 (T9F) ( 201             | ( 0) ( 2) ( 0)       | ( 30) ( 20) ( 30)               |

21-1640 (22) Appendix D D-8 PER BURNSTLITY PROGRAM AFWAL/ML CONTRACT MUMMER F33615-20-C-5027

The second secon

|                                                                    | L CONTRACT 4U44FR F33615-40-C-5               | 027                                |                                    |                               |                                                |
|--------------------------------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------------------------|
| CRACK LEMSTAS FROM MA MURBER 14<br>DIMENSIONS IN MILS IMETERS X LO |                                               |                                    |                                    |                               |                                                |
| HOLE                                                               |                                               | L I Y                              | 10 1 7                             |                               | 4P 4 T                                         |
| 1 90 75 0 0<br>(127) (130) ( 6) ( 5)                               | 3 7 0 0 0 0                                   | 29 100 3                           |                                    | 169 20 9                      | ( \$6) (145) ( 0)                              |
| 1 0 0 0                                                            | 0 0 0                                         | 9 0 0                              | 0 0 0                              | 0 0 2                         | 24 86 0                                        |
| 2 40 45 0 0                                                        |                                               | (0)(3)(0)                          | (0)(0)(0)                          | (0)(3)(7)                     | 35 20 30<br>( 90) (Tas) ( 9)                   |
| (101) (105) ( 0) ( 0)                                              | ( 4) ( 6), ( 25) ( 25) ( 4)                   | ( 50) ( 75) (  0)<br>25    28    4 | (0)(0)(0)                          | (130) (100) ( ()              | ( 41) (142) ( 70)                              |
|                                                                    | tặn tặn tặn tặn tặn                           | ( 63) ( 73) ( 20)                  |                                    | ( 0) ( 2) ( 2)                |                                                |
|                                                                    | (36) (17) ( 0) ( 0) ( 0)                      | 2 112 20                           | ( 73) (100) (101)                  | (100 19 7                     | 57 79 30<br>(164) (1 <b>00</b> ) ( <b>0</b> 0) |
|                                                                    |                                               | (0)(0)(0)                          | (0)(0)(0)                          | 00 15 0<br>(203) ( 30) ( C)   | ( 0) ( 0) ( 0)                                 |
| ÷ +0 +5 6 0                                                        |                                               | (243) ( 43) ( 4)                   | 12 30 12                           | ( 0) ( 0) ( 0)                | 60 100 43                                      |
| 5 70 60 40 0                                                       |                                               | 90 79 0                            | LS 20 0                            | 0 0 2                         | 45 75 15                                       |
| b 79 b5 50 40                                                      |                                               | 10 10 0                            | (38) (50) (6)                      |                               | (114) (196) ( 86)                              |
| (190) (165) (127) (101)                                            | (127) ( 2) ( 0) ( 0) ( 0) ( 0)                | (25) (76) ( 0)                     | ( 30) (114) ( 43)                  | ( 0) ( 0) ( 0)                | (192) (243) (114)                              |
| ( 0) ( 0) ( 0) (165)                                               |                                               | (203) ( 76) ( 30)                  |                                    | ( 6) ( 6) ( 5)                | . ( 0) ( 0) ( 0)                               |
| 7 19 12 10 0                                                       |                                               | ( 30) (204) ( 30)                  | 10 10 0                            | 150 30 0                      | ( 36) ( 50) ( 20)                              |
| * 30 50 0 5<br>(76) (127) ( C) ( 0)                                |                                               | (114) (203) ( 50)                  | 19 30 30                           | ( 0) ( 0) ( 0)                | 25 45 15<br>( 63) (114) ( 38)                  |
| * * * * * * * * * * * * * * * * * * * *                            | ( 6) ( 0) ( 0) ( 0) ( 0)                      | ( 0) ( 0) ( 0)                     | 18 35 15 (45) (45) (46) (36)       |                               | 90 114 40<br>(127) (289) (101)                 |
| 10 25 40 0 0                                                       | 0 3 10 10 0                                   | 0 0 0                              | 0 0                                | • •                           | 19 39 19                                       |
| 11 10 10 0                                                         | ( 0) ( 0) ( 29) ( 29) ( 0)                    | ( 0) ( 0) ( 0)                     | 25 49 25                           | ( 0) ( 0) ( 0)                | ( 36) ( 86) ( 36)                              |
|                                                                    |                                               | (0)(0)(0)                          | ( 63) (114) ( 63)                  | 165 25 9                      | (101) (215) ( 40)<br>70 55 50                  |
|                                                                    |                                               | ( 63) (317) ( 63)                  | ( 00) ( 62) ( 76)                  | (419) ( 63) ( 2)              | (177) (139) (127)                              |
| (0) (0) (0)                                                        |                                               |                                    |                                    |                               | (214) (165) ( 0)                               |
| 13. 0 0 0 0                                                        |                                               | ( 6) ( 6) ( 6)                     | ( 0) ( 0) ( 0)                     | (0)(0)(1)                     | 10 20 0                                        |
| 14 35 70 35 0                                                      |                                               | 50 25 5<br>(127) ( 43) ( 12)       | 30 60 35<br>(76) (152) ( 00)       | (0)(3)(0)                     | 40 55 30<br>(131) (139) ( 76)                  |
| 19 5 30 0 0                                                        |                                               | ( 9) ( 4) ( 4)                     | 0 0                                | 65 35 15                      | 10 55 20                                       |
| ( 12) ( 76) ( 0) ( 0)<br>16 45 80 35 0                             | 0 9 15 30 10                                  | 9 9 9                              | ( 0) ( 0) ( 0)                     | (215) ( 86) ( 19)             | ( 25) (139) ( 30)<br>35 45 20                  |
| (114) (203) ( 60) ( 0)                                             | ( 0) ( 0) ( 30) ( 76) ( 25)                   | (0)(0)(0)                          | (0)(0)(0)                          |                               | ( 04) (114) ( 30)<br>20 35 15                  |
|                                                                    | ( 0) ( 0) ( 63) (114) ( 56)                   | 74) (292) ( 63)                    | ( 0) ( 0) ( 0)<br>25 50 40         | ( 0) ( q) ( n)<br>155 35 15   | ( 50) ( 84) ( 38)                              |
| (177) (145) (139) ( 0)                                             | ( 6) ( 6) ( 6) ( 6) ( 6)                      | ( 12) (294) ( 76)                  | ( 63) (127) (101)                  | (393) ( 68) ( 99)             | (114) (192) ( 3)                               |
| 19 10 55 0 30                                                      | 45 10 20 70 25 (114) ( 29) ( 190) (177) ( 63) | 60 23 12<br>(152) ( 50) ( 30)      | 25 65 45<br>( 63) (165) (114)      | 130 55 25                     | 30 90 30<br>(76) (228) (127)                   |
| 19 15 35 15 0                                                      |                                               | ( 0) ( 0) ( 0)                     |                                    | ( 0) ( 0) ( 0)                | (0) (0) (3)                                    |
| 20 0 0 0 0                                                         |                                               | 9 0 0                              | 35 30 0<br>( 00) ( 76) ( 0)        | ( 0) ( 0) ( 0)                | 30 80 0                                        |
| 21. 35 60 25 0                                                     | 0 0 0 0                                       | 29 110 29                          | 30 35 30                           | 100 29 10 .                   | 80 110 45                                      |
| ( 48) (192) ( 63) ( ()) (<br>22                                    |                                               | ( 43) (277) ( 50)                  | ( 76) ( 86) ( 76)<br>16 59 16      | (294) ( 63) ( 29)<br>49 29 0  | (152) (279) (114)                              |
|                                                                    | ( 0) ( 2) ( 25) (114) ( 43)                   | ( 3) ( 0) ( 0)                     | ( 40) (130) ( 40)                  | (114) ( 43) ( 0)              | (50) (12) ( 6)                                 |
| ( 0) ( 0) ( 0) ( 0)                                                | ( o) ( o) ( o) ( o) ( o)                      |                                    | (38) (149) ( 6)                    | ( 0) ( 0) ( 01                | (177) (194) ( Ö)                               |
|                                                                    | . 30) ( 2) ( 0) ( 0) ( 0)                     | ( 76) (127) ( 3)                   | ( 6) ( 6) ( 6)                     | (101) (201) ( 25)             | (101) (114) ( 0)                               |
| 29 29 39 25 0                                                      | 0 0 20 ac 29<br>( 0) ( 0) ( 50) (192) ( a3)   | (0)(0)(0)                          | 35 90 0                            | 49 93 0<br>(145) (127) ( 0)   | 35 25 20<br>( 88) ( 68) ( 50)                  |
| 2b 25 55 25 0                                                      | 0 0 25 75 25                                  | 49 49 25<br>(149) (114) ( 45)      | 15 45 20                           | 80 70 20<br>(203) (177) ( 50) | 69 3 0<br>(169) ( 12) ( 0)                     |
| 27 30 15 0 0                                                       | 2 2 3 6 0                                     | 3 47 10                            | 30 75 35                           |                               | 70 13C 50                                      |
| 28 30 45 20 0                                                      | (0)(2)(0)(0)(0)                               | 0 0 0                              | ( 76) (241) ( 86)<br>35   110   25 | ( 0) ( 0) ( 2)<br>140 30 14   | (177) (294) (127)<br>40 30 30                  |
| 29 0 0 0 3                                                         | ( 0) ( 0) ( 63) (127) ( 63)                   | (0)(0)(0)                          | ( 461 (279) ( 63)                  | (355) ( 76) ( 36)             | (101) { 76} { 76}                              |
| 29 65 50 60 15                                                     |                                               |                                    | (0) (0) (0)                        | ( 0) ( 0) ( 0)                | ( 63), (203) ( 6)                              |
| (165) (127) (161) ( 36)                                            | (330) (101) ( 0) ( 0) ( 0)                    | ( 0) ( 0) ( 0)                     | ( 90) (127) ( 90)<br>30 30 39      | (165) ( 91) ( 10)             | (101) (177) ( 0)                               |
|                                                                    | 35 15 0 30 30<br>(139) ( 39) ( 3) (127) ( 76) | 30 100 35<br>(76) (294) ( 82)      | ( 76) ( 76) ( 88)                  | 140 30 17                     | ( 30) (226) ( 0)                               |
| 30 0 3 0 0                                                         |                                               | (0)(0)(0)                          | ( 0) ( 0) ( 6)                     | 90 90 19<br>(2031 (127) ( 30) |                                                |
| 3L 95 120 65 3                                                     |                                               | 15 30 15                           | 30 70 35<br>( 76) (177) ( 98)      | 40 35 10<br>(101) ( 90) ( 25) | 20 40 0                                        |
| 32 35 <del>9</del> 0 35 0                                          | 2 7 20 49 29                                  |                                    | 46 70 40                           | 0 0 0                         | 70 120 55                                      |
| 33 50 49 45 140                                                    | ( 0) ( 0) ( 10) (241) ( 63)                   | ( 0) ( 0) ( 0)<br>55 55 15         | (101) (177) (101)<br>29 39 0       | ( 0) ( 0) ( 2)                | (177) (264) (134)<br>50 100 45                 |
| (127) (241) (114) (299) (<br>24 50 49 39 0                         | ( 0) ( 0) ( 12) ( 12) ( 12)                   | (130) (130) ( 36)                  | (63) (56) (6)                      | (3)(6)(5)                     | (127) (254) (114)                              |
|                                                                    |                                               | (0) (0) (0)                        | ( 63) (101) ( 50)                  |                               | (131) (192) ( 3)<br>99 190 99                  |
| ( 63) (177) ( 76) ( 9)                                             | ေရိုးေရိုး ေရိုးေရိုးေရိုး                    | ( 3) ( 3) ( 9)                     | ( 43) (317) ( 43)                  | ျခော်ရော်ရော်                 | (139) (391) (139)                              |
| 16 30 100 23 3<br>(76) (254) ( 63) ( G)                            |                                               | 2 120 27<br>( \$) (304) ( 44)      | (171) (174) (701)                  | ( 3) ( 2) ( 2)                | 10 30 15<br>( 30) ( 70) ( 30)                  |
| 37 39 70 0 0                                                       | 9 7 10 20 3                                   | ( 4) ( 0) ( 3)                     | ( 0) ( 6) ( 6)                     | ( 0) ( 0) ( 1)                | 10 100 55                                      |
| 38 20 JG U U                                                       | 9 9 16 0                                      |                                    | 20 40 20                           | 0 ) •                         | ·5 120 35                                      |
| 39 +5 60 +0 +5                                                     | ( 0) ( 0) ( 12) ( 29) ( 0)                    | 1 91 ( 3) ( 9)                     | ( 90) (20)) ( 90)                  | ( 3) ( 3) ( 3)                | 1141 (364) ( 44)                               |
| +a 50 55 30 3                                                      | ( 61) ( 7) ( 36) (169) ( 36)<br>0 7 10 30 0   | ( 0) ( 0) ( 0)                     | ( 84) (213) (101)                  |                               | ( 50) (177) ( 6)<br>45 <b>69 3</b> 5           |
| (127) (165) ( 76) ( 3)                                             | ( )) ( )) ( 25) ( 76) ( 3)                    | 1 30) (233) ( 30)<br>21-3640 (32)  | ( 88) (127) ( 76)                  | carrarea                      | (114) (165) ( 66)                              |
|                                                                    |                                               | Appendix D                         |                                    |                               |                                                |
|                                                                    |                                               | ·                                  |                                    |                               |                                                |

PIN DURABILITY PROGRAM AFWAL/NL CONTRACT WURRER F33015-00-C-1027

|       | X LENGTHS FAGA AA M<br>MSIGMS IN AILS (MET) |                  |                                              |                                          |                  |                                                         |
|-------|---------------------------------------------|------------------|----------------------------------------------|------------------------------------------|------------------|---------------------------------------------------------|
| HGLE  |                                             |                  | 49 4 Y                                       |                                          |                  |                                                         |
| NLMÖE |                                             | 4 7 7            |                                              | 0 42 140 6                               |                  | 40 130 0                                                |
| _     | t ĝi t ĝi t ĝi                              | ( 0) ( 0) ( 0)   |                                              | 01 (119) (399) ( 0)                      | ( 0) ( 0) ( 0)   | (101) (301) ( 0)                                        |
| Z     |                                             |                  | 15 70 0 0 0 0 C 0 C                          |                                          | ( 0) ( 0) ( 2)   | 90 110 99<br>(127) (279) (139)                          |
| 3     | 25 30 20                                    | 0 0 0            | 10 +5 0 0                                    | 0 0 0 0                                  | 0 0 0            | 70 00 00                                                |
| ٨.    | ( 63) ( 76) ( 50)                           | ( 0) ( 0) ( 0)   | (25) (114) ( 0) ( 0) ( 0) (                  | 0) (0) (0) (0)                           | ( 0) ( 0) ( 0)   | (177) (203) (152)                                       |
| •     | (101) (101) ( 63)                           | ( 0) ( 0) ( 0)   |                                              | 0) ( 86) (444) ( 0)                      | ( 0) ( 0) ( 7)   | ( 0) ( 0) ( 0)                                          |
| •     | 50 50 35<br>(127) (203) ( 00)               | (0) (0) (2)      |                                              |                                          |                  | 76 150 B                                                |
| •     | 40 55 50                                    | 3 0 0            | 0 0 0 0                                      | 0 40 176 0                               |                  | (177) (36L) ( 6)<br>50 45 30                            |
|       | (203) (139) (127)                           | ( )) ( 0) ( 0)   |                                              | 0 101) (431) ( 0)                        | ( 0) ( 0) ( 0)   | (127) (114) ( 74)                                       |
| •     | ( 76) ( 70) ( 63)                           | ( 0) ( 0) ( 0)   | (76) (177) ( 6) ( 6) ( 6) (                  | 4) : (127) ( 6) ( 6)                     | ( 6) ( 6) ( 2)   | (127) (152) (101)                                       |
| •     | ( 0) ( 0) ( 0)                              | ( 2) ( 0) ( 2)   |                                              | 0 10 25 6                                |                  | 60 140 65<br>(152) (353) (165)                          |
| •     | +6 +6 0                                     | 3 70 10          | 0 0 0 135                                    | 13                                       | 0 0 0            | 40 110 0                                                |
|       | (114) (161) ( 0)                            | ( 0) (177) ( 25) |                                              |                                          | ( 9) ( 9) ( 9)   | (101) (279) ( 0)                                        |
|       | (127) (190) (127)                           | ( 0) ( 0) ( 0)   | (130) (177) ( '0) ( 0) (101) ( '             |                                          |                  | 35 120 75<br>(215) (304) (196)                          |
| 11    | 70 40 75<br>(224) (228) (146)               | 0 35 29          | 30                                           | 0 ( 0) (304) ( 50)                       |                  | (152) (228) (152)                                       |
| 12    | 30 45 25                                    | 0 0 0            | 20 30 0 0 0 .                                | 9 15 10 0                                | 8 8 6            | 90 70 90                                                |
|       | ( 76) (1114) ( 63)                          | 1 9) 1 9) 1 9)   | (30) (127) ( 0) ( 0) ( 0) (<br>39 120 0 6 0  | 0) (30) (76) ( 0)                        | ( 0) ( 2) ( 0)   | (127) (177) (127)<br>40 30 0                            |
| .,    | ( 0) ( 0) ( 0)                              | ( o) ( o) ( o)   | ( 30) (304) ( 0) ( 0) ( 0) (                 |                                          | ( 0) ( 0) ( 0)   | (101) ( 76) ( 0)                                        |
| 14    | 78 75 60<br>(177) (190) (152)               | ( 3) ( 6) ( 6)   | 35 76 40 0 0<br>( 60 (177) (101) ( 0) ( 0) ( | 0 45 90 50<br>01 (114) (228) (127)       | 0 90 77          | (203) (203)                                             |
| 15    | 65 65 50                                    | 0 0 0            | 20 60 0 0 3                                  | 0 15 40 0                                | 0 75 10          | 49 75 40                                                |
| 16    | (165) (215) (127)                           | ( 0) ( 0) ( 0)   | (50) (152) ( 0) ( 0) ( 0) (                  |                                          | ( 0) (190) ( 75) | (165) (190) (152)<br>65, 130, 60                        |
| 18    | ( 50) (203) ( 0)                            | ( 0) ( 0) ( 0)   | • • • • • • • • • • • • • • • • • • • •      |                                          | ( 0) ( 0) ( 0)   | 65, 130 60<br>(165) (30) (152)                          |
| 17    | 19 30 15                                    | ( 0) ( 0) ( 0)   | 25 40 25 0 0 C                               | 0 35 100 +C                              | <b>0 10</b> 35   | • • •                                                   |
| 10    | ( 30 ) ( 76 ) ( 30 )<br>30 30 25            | 0 0 0            | 0 0 0 0 110                                  |                                          | ( 0) (226) ( 98) | (0)(0)(0)                                               |
| 19.   | (76) (76) (63)                              | ( 0) ( 0) ( 0)   |                                              |                                          | ( 0) ( 0) ( 0)   | (198) (304) (169)                                       |
| 14.   | 40 50 35<br>(101) (127) ( 88)               |                  | 1 33 1 33 1 33 1 33 1                        | 0) (127) (254) ( 0)                      | ( 0) ( 0) ( 0)   | ( )) ( )) ( ))                                          |
| 29    | 25 55 30<br>( 43) (130) ( 76)               |                  | 39 70 0 0 0 0 ( a) ( a) ( a) ( a) (          | 3 12 30 25                               | (0)(0)(0)        |                                                         |
| 21.   | ( 63) (139) ( 76)<br>40 100 50              | ( 0) ( 0) ( 0)   | 10 120 0 0 0                                 | 0 30 45 20                               |                  | ( 0) ( 0) ( 0)<br>+0 135 35                             |
| 22    | (101) (254) (127)                           | ( 0) ( 0) ( 0)   | (101) (304) ( 0) ( 0) ( 0) (                 | 0 (76) (11%) ( 56)<br>0 25 11% 0         | ( 01 ( 21 ( 01   | (101) (342) ( 64)                                       |
| 22    | ( 0) ( 0) ( 0)                              | ( 0) ( 0) ( 2)   |                                              | 01 ( 63) (279) ( 0)                      | (3)(6)(7)        | (203) (177) (134)                                       |
| 23    | 0 0 0                                       | ( 0) ( 0) ( 2)   |                                              | 0 40 <b>50</b> 0<br>'6' (101) (127) ( 0) | (0)(0)(0)        | 45 50 40<br>(114) (127) (101)                           |
| 24    | 0 0 0                                       | 4 4 6            | 30 50 0 0 0                                  | 9 50 90 55                               | 0 8 0            | 0 0                                                     |
|       | ( 0) ( 0) ( 0)                              | ( 0) ( 0) ( 0)   | (76) (127) ( 0) ( 4) ( 0) (                  | 0) (127) (228) (139)<br>5 39 60 0        | 0 70 15          | ( 0) ( c) ( a)<br>• • • • • • • • • • • • • • • • • • • |
| 43    | 1 0) ( 0) ( 0)                              | ( 0) ( 0) ( 2)   | ( 0) ( 0) ( 0) ( 0) (190) (                  | 3) ( 44) (263) ( 6)                      | ( 0) (228) ( 14) | (105) ( 6) ( 76)                                        |
| 26    | 40 100 30<br>(101) (234) ( 74)              | 0 0 0            |                                              | 0) (50)(101)(50)                         | ( 0) (127) ( 97) | 40 50 40<br>(101) (127) (101)                           |
| 27    | (101) (234) ( 76)<br>55 50 40               | 0 0 0            | 0 0 U 0 0                                    | J 40 100 45                              | 0 í O            | 55 70 50                                                |
| 20    | (139) (127) (101)                           | ( 0) ( 0) ( 0)   | ( 0) ( 6) ( 0) ( 0) ( 0) ( 0) ( 0)           | 0) (101) (254) (114)                     | ( 0) ( 0) ( 2)   | (139) (177) (127)<br>65 50 90                           |
| 20    | (101) ( 76) ( 90)                           | ( . 0) ( 5) ( 5) | (101) (254) (101) ( 0) ( 0) (                | 01 ( 74) (101) ( 44)                     | ( 01 (177) ( 50) | (165) (127) (127)                                       |
| 29    | 19 20 19                                    | ( 3) ( 3) ( 2)   | 39 70 40 0 0<br>(88)(177)(101) ( 0)( 0)(     | 0 35 160 35                              |                  | (215) (279) (233)                                       |
| 30    | 20 40 20                                    | 0 0 3            | 0 0 0 0                                      | 9 0 0                                    | 0 0              | 73 90 50                                                |
| 11    | 1 50) (101) ( 50)                           | ( 0) ( 0) ( 0)   | ( 0) ( 0) ( 0) ( 0) ( 0) (                   | 0) (0) (0) (0)                           | ( 3) ( 3) ( 0)   | (196) (228) (127)                                       |
| 11    | (127) (177) ( 00)                           | ( 6) ( 3) ( 3)   | ( 76) (279) (101) ( 0) ( 0) (                | 0) ( 80) (130) (101)                     | ( 0) ( 0) ( 0)   | ( 0) ( 0) ( 0)                                          |
| 32    | ( 0) ( 0) ( 0)                              | 2 120 15         |                                              | 0 25 90 0                                | (0)(3)(3)        | 30 60 25<br>(76) (152) ( 63)                            |
| 33    | 30 5 20                                     | 0 3 9            | 20 40 29 0 0                                 | 3 40 120 45                              | 0 0              | 90 29 30                                                |
| 34    | (76) (12) (50)<br>50 100 45                 | (0) (0) (2)      | (36) (101) (36) ( 0) ( 0) (                  | 0) (101) (304) (114)                     | ( 3) ( 6) ( 0)   | (127) ( 53) ( 76)<br>10 56 25                           |
| 34    | (127) (294) (114)                           | 1 01 (101) ( 57) | ( 3) ( 6) ( 6) ( 6) ( 5) (                   | in the contract                          | ( )) ( )) ( ))   | ( 76) (127) ( 63)                                       |
| 35    | 10 36 10                                    | ( 0) ( 2) ( 2)   | 29 90 0 0 0 0 ( ) ( ) ( ) ( ) (              | 3 20 30 20<br>01 (30) (76) (30)          | ( 0) ( 3) ( 0)   | 60 76 45<br>(1521 (1771 (114)                           |
| 36    | 90 LOO +5                                   | 3 35 20          | 49 40 45 2 3                                 | 3 40 80 50                               | 3 30 56          | 10 10 40                                                |
| 17    | (228) (254) (165)<br>70 99 39               | ( 3) ( 44) ( 50) | (114) (135) (114) ( 0) ( 0) (                | 0) (101) (203) (127)                     | ( 0) ( 76) ( 12) | (127) (127) (101)                                       |
|       | (177) (139) ( 80)                           | ( 0) (477) ( 19) |                                              | 3) (101) (330) (101)                     | ( ) ( ) ( )      | ( 98) (395) ( 76)                                       |
| 30    | (192) (177) (101)                           | (0) (0) (0)      | 19 70 2 0 3                                  | 35 36 26<br>31 (88) (78) (56)            | ( 0) ( 2) ( 0)   | 100 1361 ( 3)                                           |
| 39    | +6 35 25                                    | ) ) j            | 46 190 0 0                                   | 9 9 9                                    | i ji i ji h      | 90 140 60                                               |
|       | 101) ( 88) ( 63)                            |                  | (101) (199) ( 0) ( 0) ( 0) ( 0) ( 0)         | 3) ( 0) ( 0) ( 0)                        | ( 0) ( 0) ( 2)   | (195) (395) (795)                                       |
| •     | 11277 12917 11277                           | ( 0) ( 0) ( 0)   | 1 76) (279) ( 5) 1 0) 1                      |                                          | t öst öst és     |                                                         |
|       |                                             |                  | 7 21-3640 (22                                |                                          |                  |                                                         |

21-3640 (22) Appendix D

| CRACK | LENGTHS | FRQN | REFRUM AF  | 15124   |
|-------|---------|------|------------|---------|
|       |         | -1.2 | * mares: * | 105-041 |

i

| OLAENSIONS IN ALLS INEFER; a LOE-09)                        |                                                          |                                 |                                       |                                |
|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------|---------------------------------------|--------------------------------|
| MUPSER AP 1 7 L X 7                                         |                                                          | 29 K Y<br>20 40 Zg              | 100 35 7                              | EP E 7                         |
| ( 0) ( 6) ( 6) ( 6) ( 9)                                    |                                                          |                                 | (+0+) ( ##) ( 9)                      | (101) (220) (127)              |
| 2 60 120 16 3 0 0<br>(158) (158) (127) ( 0) ( 0) ( 0)       | 29 85 25 75 35 10<br>( 58) (215) ( 63) (190) (130) ( 25) | ( 0) ( 0) ( 0)                  | 129 30 0                              | 10 35 3                        |
| 3 10 40 10 0 0                                              | 0 J 0 35 79 20 ( 0) ( 0) ( 0) ( 100) ( 50)               | 25 15 25                        | 140 20 5                              | 50 56 40                       |
| 4. 40 40 24 0 0 0                                           | 0 0 3 3 3                                                | • • •                           | 100 30 0                              | (127) (127) (10[)              |
| (131) (101) (33) ( 6) ( 3) ( 7)                             |                                                          | ( 0) ( 0) ( 0)<br>50 100 0      | (254) ( 76) ( 71                      | (0)(0)(0)                      |
| (127) (192) ( G) ( Q) ( Q) ( Q) ( Q) ( Q) ( Q) ( Q          |                                                          | (127) (294) ( C)<br>10 50 0     | ( \$1 (165) (127)                     | (25) ( 63) ( 6)                |
| (203) (304) (177) ( 0) ( 0) ( 1)                            | ( 0) ( 0) ( 0) (152) (101) ( 0)                          | ( 25) (127) ( 0)                | (ခ်) (ရိ) (ရိ)                        | ( 10) (\$)\$) (101)            |
| 7 30 40 30 0 0 0                                            | 20 40 20 45 45 15                                        | 29 30 29<br>( •3) ( 74) ( •3)   | 70 90 20<br>(177) (228) ( 99)         | (131) (152) (161)              |
| 0 40 45 30 0 0 7<br>(101) (114) ( 76) ( 0) ( 0) ( 0)        |                                                          | 15 20 0                         | ( 0) ( 3) ( 2)                        | 50 90 53<br>(127) (228) (127)  |
| 9 50 45 35 0 0 0                                            | 20 45 20 40 70 20 (50) (114) (50)                        | 0 0                             | 40 45 0<br>(192) (114) ( 0)           | 20 70 20<br>( 50) (177) ( 50)  |
| 10 65 110 60 0 0 0                                          | 30 30 30 25 70 25                                        | 35 50 35                        | 0 0 0                                 | 10 15 0                        |
| (145) (279) (152) { 01 ( 0) ( 2)<br>11                      | ( 76) ( 76) ( 76) ( 63) (177) ( 63)<br>0 0 0 65 55 15    | ( 46) (127) ( 66)<br>20         | ( 0) ( 0) ( 0)<br>130 39 15           | (25) (38) (3)<br>50 40 G       |
| 1 63) ( 76) ( 0) ( 0) ( 0) ( 0)                             | ( 6) ( 6) ( 6) (145) (139) ( 16)                         | ( 50) ( 50) ( 50)<br>40 50 40   | (336) ( 88) ( 35)<br>10 65 27         | (127) (101) ( 3)               |
| (30) (192) ( 0) ( 0) ( 0) ( 0)                              | ( 0) ( 0) ( 0) ( 0) ( 0) ( 0)<br>30 50 39 40 57 29       |                                 | ( 25) (165) ( 53)                     |                                |
| 13 30 70 39 0 0 2<br>1 76) (177) ( 00) 1 0) 1 0) 1          | ( 76) (127) ( 80) (101) (130) ( 61)                      | ( 76) (190) ( 88)               | (101) (1441) ( 69)                    | ( 0) ( 0) ( 0)                 |
| 14 50 65 40 40 45 15                                        | 30                                                       | 25 20 25<br>( 63) ( 50) ( 63)   |                                       | 30 60 30<br>( 76) (152) ( 76)  |
| 15 10 10 0 0 0 7                                            | 0 0 0 40 40 20                                           | 29 30 25<br>(50) (76) (63)      | 45 75 30<br>(114) (190) ( 75)         | 60 60 50<br>(152) (152) (127)  |
| 16 30 99 40 0 0 0                                           | 0 0 0 10 40 10                                           | 30 40 30                        | 50 110 39<br>(127) (279) ( 76)        | 60 75 50<br>(192) (190) (127)  |
| 16 0 0 0 0 0                                                | 4 6 6 50 70 25                                           | 0 0                             | 0 0 0                                 | 0 0 0                          |
|                                                             | 30 45 0 0 1 277 (177) (43)                               | 30 40 35                        |                                       | 101 (0) (0)                    |
| 1 01 ( 0) ( 0) ( 0) ( 0) ( 0)                               | (76) (114) ( 0) ( 0) ( 0) ( 0)                           | (76) (101) (88)                 | ( 0) ( 0) ( 0)                        | ( 86) (254) (101)<br>30 45 0   |
| (76) (36) (36) ( 0) ( 0) ( 0)                               | ( 0) ( 0) ( 0) ( 03) ( 04) (·25)                         | (25) (50) (25)                  | (101) (114) ( 0)                      | ( 76) (114) ( 0)<br>60 70 40   |
|                                                             | ( 12) ( 12) ( 12) (127) (114) ( 0)<br>0 0 0 40 90 19     | •- ••                           | (101) (177) ( 53)                     | (192) (177) (101)              |
|                                                             | ( 6) ( 6) ( 6) (152) (127) ( 30)                         | ( 15) ( 15) ( 12)               | (127) (177) ( 50)                     |                                |
|                                                             | 5 5 5 10 109 15<br>(12) (12) (12) (25) (266) (18)        | 20 20 15<br>( 90) ( 90) ( 38)   | 50 \$0 ?2<br>(127) (233) ( 50)        | 20 40 30<br>( 50) (101) ( 76)  |
|                                                             | 0 0 0 70 20 10                                           | 30 30 25                        | ( 0) ( 0) ( 0)                        | 30 46 30<br>(74) (224) (74)    |
| 22 0 0 0 0 0                                                |                                                          | 9 0 0                           | 3 0 0                                 | 30 5C 3<br>( 76) (127) ( 0)    |
| 23 0 3 0 50 130 10                                          |                                                          | 40 40 39                        | 20 +9 20                              | 40 50 0                        |
| 23 0 0 0 0 0 0 0                                            |                                                          | 0 0 0                           | ( 30) (241) ( 30)                     | 11011 (127) ( 5)               |
|                                                             | ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )<br>5 5 5 20 100 25         | (0)(0)(0)                       | ( Q) ( Q) ( C)<br>30 103 25           | ( 48) ( 46) ( Q)<br>40         |
| (6) (4) (6) (4) (5) (6)                                     | 10 45 30 45 30 10                                        | (101) (101) ( G) ·              | ( 76) (266) ( 53)                     | (101) (165) ( 0)<br>35         |
| (114) ( 46) ( 0) ( 0) ( 0) ( 0)                             | ( 76) (114) ( 76) (114) ( 76) ( 25)<br>5 20 0 10 120 20  |                                 | ( 0) ( 0) ( 0)<br>60 75 70            | ( 48) (203) ( 44)              |
| 26 65 65 60 50 73 37<br>(165) (169) (152) (127) (177) ( 98) | ( 12) ( 50) ( 0) ( 25) (304) ( 50)                       |                                 | (1921 (196) ( 57)                     | (131) (192) ( 44)              |
| 27 0 0 0 20 40 1*                                           | 0 0 0 20 75 10                                           |                                 |                                       | 95 75 45<br>(139) (196) (254)  |
|                                                             |                                                          | ( 0) ( 0) ( 0)                  |                                       | 20 35 2                        |
| 28 50 45 40 0 0 0                                           | 20 87 25 0 0 0                                           | 35 60 35<br>( 00) (152) ( 44)   | ( 3) ( 3) ( 2)                        | 40 40 55<br>(101) (101) ( 80)  |
| 29 40 80 35 0 0 0                                           | 0 0 0 69 45 15                                           | 30 20 25                        | 0 0 0                                 | 45 60 35                       |
| (101) (203) ( 38) ( 0) ( 0) ( 0)<br>36                      | 0 0 0 0 0 0 3 0                                          | 20 45 25                        | 100 50 15                             | (114) (192) ( 44)              |
| (203) (215) (165) (127) (114) ( 39)<br>31 40 45 0 0 0 0     |                                                          | 10 100 30                       | (294) (127) ( 39)<br>30 120 !9        | (114) (165) (101)              |
| (101) (114) ( 0) ( 0) ( 0) ( 0)<br>32                       |                                                          | ( 76) (254) ( 76) (<br>30 45 30 | ( 76) (304) ( 90)<br>110 - 90 - 90    | (0)(3)(0)                      |
| (139) (220) (127)   01   01   01   21                       | ( 0) ( 0) ( 0) (127) ( 75) ( 25)                         |                                 | (279) (127) ( 50)<br>160 <b>65</b> 22 | (127) (219) (101)<br>39 99 30  |
| 33 15 55 20 0 0 2<br>(30)(130)(50)(0)(0)(0)                 | ( 0) ( 0) ( 0) (190) (114) ( 50)                         | (101) (101) ( 88)               | (294) (165) ( 90)                     | ( 38) (29)) ( 76)              |
| 34 37 75 35 0 0 7<br>( 46) (241) ( 46) ( 0) ( 9) ( 9)       | 20 75 25 0 3 0                                           | (101) (177) (101)               | (853) (774) (35)                      | (139) (177) ( 76)              |
| 35 40 65 35 0 0 0 0 (131) (165) ( 46) ( 0) ( 2) ( 2)        | 10 70 15 60 15 25<br>(76) (177) ( 80) (152) ( 68) ( 63)  | 10 60 35<br>(761 (152) ( 88) (  | 70 90 1°<br>(177) (127) ( 79)         | ( 63) (7#3) ( 20)<br>52        |
| 35 0 0 0 0 3 2 2                                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  | 0 0 0                           | 0 0 7                                 | 20 20 10                       |
| 36 0 0 0 0 0                                                | 0 6 6 9 10                                               | 0 0 0                           |                                       | 55 134 55<br>(139) (254) (139) |
| 1 01 ( 0) ( 0) ( 0) ( 0) ( 0)<br>37 25 56 20 50 55 7        | 30 26 30 15 100 35                                       | 49 49 45                        | 135 33 2                              | 3 G G                          |
| ( 53) (127) ( 50) (127) (105) ( 0)                          | ( 75) ( 30) ( 76) ( 30) (254) ( 80)<br>25 ilu 30         | 9 4 0 /                         | 1342) ( 76) / 5)                      | ( 2) ( C) ( G)<br>39 •9 30     |
| ( 0) ( 0) ( u) ( 2) ( 2) ( 2)<br>29 25 50 25 u 0 2          | ( 93) (279) ( 76) ( 3) ( 0) ( 0)<br>35                   | 15 40 15 /                      | 2) ( 2) ( 2)                          | ( 30) (les) ( 76)<br>+5 100 +0 |
| ( 93) (127) ( 93) ( 0) ( 0) ( 2)                            | ( \$6) (114) ( 67) ( 3) ( 3) ( 3)<br>10 73 25 3 9 0      | ( 30) (fôf) ( 30), (            | 1 3) ( 3) ( 2)<br>130 49 12           | (114) (254) (131)              |
| ( 93) (131) ( 0) ( 3) ( 3) ( 3) ( 3)                        | (25) (377) ( 0a) ( 0) ( 0) ( 0)                          |                                 | 1336) (136) ( 14)                     | (127) (219) (199)              |
|                                                             | 21-3640 (22)<br>Appendix D                               |                                 |                                       |                                |
|                                                             | L                                                        | •                               |                                       |                                |

| MOARS | LE9674 | 15 / | e ca | A P | ****** | • | 19120   |
|-------|--------|------|------|-----|--------|---|---------|
|       |        |      |      |     |        |   | 106-051 |

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

| DIMENS.     | 2461         | IN 916           | S CHETE      | 45 # 1 | 06-051 |       |                                  |                                |                                |                                       |                                |
|-------------|--------------|------------------|--------------|--------|--------|-------|----------------------------------|--------------------------------|--------------------------------|---------------------------------------|--------------------------------|
| NUMBER      |              | 4                | <del>-</del> | -      |        | 7     | (P) ( Y                          | L X Y                          | 10 1 Y                         | L X Y                                 | X9 1 T                         |
| ٠,          | 25<br>63)    | (190)            |              |        |        | ( 0)  | 25 46 0                          | 35 60 0                        | 25 25 0                        | 0 0 0                                 | 35 120 0                       |
|             | "            | 110              | ` 36 `       | ` ;    | . ( 0) | ' 🎳   | ( 53) (101) ( 0)                 | ( 88) (152) ( 0)<br>90         | 20 30 0                        | ( 0) ( 0) ( 7)                        | ( 88) (304) ( 0)<br>30 110 0   |
|             |              |                  | (127)        |        | ( 0)   |       | ( 76) (215) ( 76)                | (203) (327) ( 50)              | ( 50) ( 76) ( 0)               | ( 3) ( 3) ( 2)                        | (192) (279) ( 01               |
| • • •       | 1141         | (553)            | 45           | 12031  | (101)  | 1 101 | ( 76) (213) (161)                | (228) ( 30) ( 38)              | 20 20 20<br>(50) (50) (50)     | 70 60 0                               | 30 3G 0<br>(76) (76) ( 0)      |
| •           | 30           | 30               | 30           | 75     | 55     | 19    | 29 0 0                           | 0 150 40                       | 30 20 40                       | 0 0                                   | 35 55 20                       |
| ٠, ١        | 761          | (751)            | ( 76)        | 117    | (130)  | ( 30) | (36) ( 6) ( 6)                   | ( 0) (301) (101)               | (76) (30) (101)                | (0) (0) (3)                           | ( 66) (139) ( 50)              |
|             | 1141         | 12261            | (114)        | (279)  |        |       | ( 6) ( 6) ( 6)                   | ( 0) ( 0) ( 0)                 | ( 30) (132) ( 63)              | (190) (114) ( 0)                      | (152) (190) ( 0)               |
|             | 130<br>254)  | 14001            | 100          | 6 41   |        | . 2,  | ( 60 ) ( 60 ) ()14)              | 15 45 35                       | 99 100 90<br>(139) (254) (127) | (0)(0)(0)                             | 10 15 10 (25)                  |
| 7 "         | 10           | 10               |              | ` ;    | ` ;    | ` ;   | 3 0 0                            | ( 30) (314) ( 60)<br>0 100 30  | 30 50 30                       | (0)(0)(0)                             | 75 110 50                      |
|             | ===          | 1 531            | ( 0)         | ( ))   | ( ))   | 1 91  | ( 0) ( 0) ( 0)                   | ( 0) (254) ( 76)               | ( 76) (127) ( 76)              | ( 0) ( 0) ( 53)                       | (196) (279) (127)              |
| • •         | 460          | ( 76)            | ( 50)        | ( .)   |        | ( 0)  | 10 90 10                         | 30 55 30<br>(127) (139) ( 76)  | 30 30 40<br>(76) (76) (101)    | ( 0) ( 0) ( 0)                        | 40 (00 )<br>(203) (254) ( 0)   |
| • .         | 10           | . 60             | 29           |        |        |       | 0 0                              | 0 125 30                       | 30 29 30                       | 50 40 29                              | 45 55 45                       |
| 10          | 76.1         | (125)            | ( • 3)       | ( 0)   | 19     | ( 2)  | ( 0) ( 0) ( 0)                   | ( 0) (317) ( 76)               | 15 60 15                       | (127) (192) ( 63)                     | (114) (139) (114)<br>40 45 43  |
| - 1         |              | 1 01             | ( 0)         | ( 50)  | ( 30)  | ( 9)  | ( 0) ( 0) ( 0)                   | ( 0) ( 0) ( 0)                 | ( 30) (152) ( 30)              | ( 0) ( 0) ( 0)                        | (192) (169) (191)              |
| . 11        | 101)         | (152)            | ( 6)         | ( 30)  | (203)  | 19    | 10 30 0<br>(25) (7b) ( 0)        | 20 100 30<br>(50)(254)(74)     | 30 40 0                        | { 9} ( 9) ( 2)                        | 40 110 46                      |
| 12          | 15           | 40               | •            | •      | ٥      | •     | 0 0                              | 5 30 10                        | 30 15 0                        | ( 0) ( 0) ( 2)                        | (101) (279) (101)              |
| 12 (        | 38)          | (101)            | ( 0)         | ( 0)   | ( 0)   | ( 2)  | ( 6) ( 6) ( 6)                   | (12) (75) (25)                 | (76) (36) ( 0)                 | ( 0) ( 0) ( 0)                        | (101) (503) (101)              |
| - (         |              | ( 6)             |              | ( 3)   | ( 0)   | ( 0)  |                                  | ( 88) (196) ( 50)              | ( 0) ( 0) ( 0)                 | ( 0) ( 2) ( 6)                        | ( 0) ( 0) ( 0)                 |
| 13          | 30           | (317)            | 30<br>( 76)  | ( 0)   | , 8,   | ( 3)  | 20 65 25<br>( 50) (165) ( 63)    | (0)(0)(0)                      | 40 90 0<br>(101) (229) ( 0)    | 45 90 27<br>(145) (228) ( 43)         | 70 40 9                        |
| 14          | 10           | 40               | •            | 0      | •      | •     | <b>+0</b> 70 +0                  | 45 50 23                       | (101) (229) ( 0)               | (145) (228) ( 43)                     | (177) (228) ( 0)               |
| 15          | 131)         | (192)            | ( 6)<br>30   | ( 0)   | ( •)   | 1 27  | (101) (177) (101)                | (169) (127) ( 90)<br>19 99 29  | (101) (101) ( 80)              | ( 0) ( 0) ( 0)                        | (274) (558) ( 0)               |
|             | 66)          | (139)            |              | ( 6)   | ( 0)   | 1 61  | ( 30) ( 76) ( 30)                | ( 66) (136) ( 67)              | ( 88) (745) ( 88)              | ( 0) ( 0) ( 0)                        | (105) (177) ( 0)               |
| 16          | 65<br>1851   | 105<br>(200)     | (192)        | ( 6)   | ( 8)   | ( 0)  | 25 150 0                         | 0 190 39<br>( 0) (381) ( 84)   | ( 0) ( 0) ( 0)                 | ( 6) ( 6) ( 0)                        | 50 65 0<br>(127) (165) ( 0)    |
| 17          | 0            | 0                | 0            | 9      |        | ,     | 40 45 45                         |                                | 39 79 35                       | 0 0 0                                 | 11271 (165) ( 3)               |
| 18          | 4)           | ( 0)             | ( 0)         | ( 01   | ( 0)   | ( 2)  | (101) (105) (114)                | (0) (0) (0)                    | ( 46) (190) ( 68)              | ( 0) ( 0) ( 0)<br>70 100 12           | ( 76) ( 50) ( 0)               |
|             | ŏı           | ( 3)             | ( 6)         | 1 01   | ( 6)   | ( ))  | (101) (192) (101)                | (139) (215) (101)              | ( 6) ( 6) ( 6)                 | 70 100 39<br>(177) (254) ( 75)        | (192) (127) ( 0)               |
| 19          | 56<br>1271   | 95<br>(241)      |              | ( 0)   | ( 3)   | , ,   | (30) (165) (30)                  | 65 70 25<br>(215) (177) ( 68)  | 50 35 0                        | 0 50 50                               | 35 70 ô                        |
| 20          | •            | •                |              | ` ;    | ` ;    | ` ;   | 0 0 0                            | 9 0 0                          | (127) ( 46) ( 6)               | ( 0) (127) (127)                      | 1 30 (177) ( 0)                |
| · ·         | 30           | ( 0)             | ( 0)<br>30   | ( 0)   | ( 0)   | ( 0)  | (0)(0)(0)                        | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                        | ( 0) ( 0) ( 0)                 |
| - <b></b> ( |              | ( 👸 )            |              |        | (254)  |       | (101) ( 04) (114)                | ( 88) (294) ( 88)              | 45 35 0<br>(114) ( 88) ( 0)    | 139) (190) (114)                      | 65 60 3<br>(165) (152) ( 3)    |
| 22          | +0           | 70               | . 40         | . 0.   | . 0    | . 0.  | 25 70 25                         | 0 0 3                          | 20 100 30                      | 9 0 0                                 | 15 140 50                      |
| 23 '        | 93<br>107)   | (177)<br>145     | 40           | ( 0)   | ( 3)   | ( 2)  | ( 63) (177) ( 63)                | ( 0) ( 0) ( 0)                 | ( 901 (294) ( 76)              | ( 0) ( 0) ( 0)<br>100 70 15           | (195) (355) (127)<br>15 55 20  |
|             |              | (366)            | (152)        |        | ( 6)   |       | (131) (203) (114)                |                                | (114) (177) (114)              | (250) (277) ( 39)                     | 1 301 (215) ( 50)              |
|             | 125)         | (500)  <br>  105 | 60<br>(152)  | (221)  | (165)  | ( 50) | 25 49 25                         | 99 60 29<br>(139) (152) ( 63)  | 35 60 35                       | 40 69 20<br>(229) (165) ( 70)         | 90 90 30<br>(228) (228) (127)  |
| 25          | 70           | 105              | 50           | 3      | 0      | 9     | 39 70 35                         | 59 70 0                        | 25 40 25                       | 120 40 20                             | 75 115 60                      |
| 26          | 1771         | (260)            | (127)        | ( 0)   | ( 0)   | ( 0)  | ( 48) (177) ( 46)                | (139) (177) ( G)<br>20 100 35  | ( 53) (101) ( 63)<br>20 30 20  | (304) (101) ( 50)                     | (190) (292) (152)              |
|             | 0)           |                  | ( Õ)         | ( 0)   | ( 0)   | ( ě)  | ( 76) ( 76) ( 76)                | ( 501 (254) ( 66)              | ( 50) ( 76) ( 50)              | ( 0) ( 0) ( 2)                        | (152) (139) ( 0)               |
| 27          | 35<br>L37) : | 100<br>(254)     | (152)        | ( 6)   | ( 6,   | ( ),  | 35 40 35<br>( 40) (152) ( 46)    | 20 95 29<br>( 30) (139) ( 63)  | (101) (139) (101)              | 20 90 10<br>( 50) (226) ( 75)         | 35 35 30<br>( 96) ( 48) ( 76)  |
| 20          | 55           | 70               | 55           | •      | 0      | ,     | <b>+0</b> 70 +0                  | 0 0 0                          | 30 75 45                       |                                       | 60 100 56                      |
| 29          | 63<br>139) - | (228)<br>90      | (139)<br>50  | ( 0)   | ( 01   | ( 0)  | (101) (177) (101)                | (0)(0)(0)                      | ( 76) (241) (114)<br>20 50 25  | ('0) (0) (0)                          | (152) (254) (127)<br>30 30 3   |
|             | LŠŽ)         | (220)            | (127)        | ( 6)   | ı ğı   | r ži  | ( 76) ( 76) ( 76)                | ( 76) (203) ( 76)              | ( 30) (127) ( 43)              | ( 30) (192) ( 75)                     | ( 761 ( 76) ( ,0)              |
|             | 10           | 50<br>(127) :    | 13<br>( 30)  | ( 6)   | ( 0)   | ( 2)  | 10 40 10                         | 75 50 20<br>(190) (127) ( 50)  | (0)(0)(0)                      | 79 79 30<br>(190) (1 <b>90)</b> ( 76) | 65 70 60<br>(169) (228) (152)  |
| 31          | • 0          | 100              | 45           | 0      | Ó      | ,     | 15 30 15                         | <b>)</b> • •                   | 40 125 40                      | 140 30 10                             | 40 70 50                       |
|             | 60           | 1254)            | 103)         | ( 0)   | ( 01   | ( 2)  | ( 38 ) ( 76 ) ( 36 )<br>25 30 30 | ( 0) ( 0) ( 0)<br>25           | (101) (317) (101)              | (355) ( 761 ( 251                     | (738) (828) (187)<br>00 115 50 |
|             | IŠŽI (       | (228)            | 152)         | ( 0)   | ( 6)   | ( ),  | 1 531 ( 76) ( 76)                | ( 62) (24) ( 76)               |                                | ( ရိုး ( နိုး ( ရုံး                  | (152) (202) (127)              |
|             | 20<br>50) (  | 35<br>( 88) (    |              | ( );   | ( 0)   | ( 2)  | ( 63) (292) ( 63)                | (0)(2)(0)                      | 30 35 30<br>(76) (86) (76)     | ( 0) ( 6) ( 0)                        | ( 44) (10T) ( 5)<br>32 40 3    |
| 34          | 16           | 70               | 40           | Ö      | j      | •     |                                  | 9 109 20                       | 30 50 30                       | 50 <del>70</del> 0                    | 69 79 50                       |
|             | 1273 (<br>40 | (229) (<br>130   | 35           | (110)  | 50     | ( 0)  | (0)(3)(0)                        | ( 12) (265) ( 50)<br>25 100 50 | (76) {127) (76)                | (127) (221) ( 7)                      | (le5) (190) (127)<br>45 90 40  |
|             |              | (330)            |              | (279)  | (127)  |       | (101) (114) (127)                | ( 43) (254) (127)              | (114) (139) (127)              | ( i) ( i) ( i)                        | (114) (229) (101)              |
| ** (        | 01           |                  | 0,           | ( 0)   | ( 0)   | ( ),  | 20 30 30<br>1 303 (203) ( 76)    | e\$ 70 20<br>(105) (177) ( 50) | 15 20 0                        | 13 115 30                             | 70 e5 3<br>(177) (165) ( 3)    |
| 37          | 50           | 95               | 35           | •      | à      | Ö     | 25 40 25                         | 10 60 30                       | 15 15 10                       | 0 : 0                                 | 29 110 25                      |
|             | 127) (<br>55 | 1139) (<br>90    | 46)<br>40    | ( 6)   | ( 5) ( | ( 2)  | 15 40 30                         | ( 76) (152) ( 76)<br>45 70 3   | (38) (36) (25)                 | ( 0) ( 3) ( 0)<br>0) 7: 30            | ( 63) (279) ( 63)              |
|             | 39) (        | (223)            | 1521         | ( ))   | ( 0) ( | ( Õ)  | ( 99) (101) ( 7e)                | (114) (177) ( 2)               | (139) (135) ( 76)<br>35 60 30  | (165) (195) ( 74)                     | ( 0) ( 0) ( 0)                 |
|             | 40<br>52) (  | 70<br>1177) (    | 40           | 1 0)   | 1 4) ( | , 9,  | 20 20 2                          | 20 +0 20<br>( 50) (229) ( 50)  | 35 55 35<br>( 40) (130) ( 60)  | 55 +5 9<br>(139) (215) ( 9)           | (127) (132) (131)              |
| 40          | 45           | 50               | 0            | 3      | 3      | 7     | 3 3 3                            | 10 130 50                      | 96 49 90                       | 100 13 19                             | 49 45 25                       |
| (1          | 14) (        | 1127)            | 0)           | ( 3)   | ( )) ( | ,     | ( 0) ( C) ( 3,                   | ( 25) (330) (127)              | (127) (114) (127)              | (254) ( 76) ( 25)                     | (198) (114) ( 63)              |
|             |              |                  |              |        |        |       |                                  | 21-3640(22)<br>Appendix D      |                                |                                       |                                |
|             |              |                  |              |        |        |       |                                  | 0-12                           |                                |                                       |                                |
|             |              |                  |              |        |        |       |                                  |                                |                                |                                       |                                |

| CRACK | LENGTHS | FROM | MA   | NUMBER | 15130 |
|-------|---------|------|------|--------|-------|
|       |         |      | 4 -4 |        |       |

| OINENSIONS IN AILS IMETE              | 45 1 106-091                   |                                       |                                |                               |                                         |                                 |
|---------------------------------------|--------------------------------|---------------------------------------|--------------------------------|-------------------------------|-----------------------------------------|---------------------------------|
| HUMBER CP 4 Y                         | L 1 7                          | tP I V                                | L 7 7                          | 19 X Y                        | LATAY                                   | RP 1 Y                          |
| (177) (317) (190)                     |                                |                                       | ( 90) (241) ( 90)              | (38) (50) (0)                 | ( စိုး( ခိုး( စိုး                      | (165) (279) (152)               |
| ( 30) (101) ( 6)                      | ( )) ( )) ( ))                 | ( 6) ( 6) ( 9)                        | (114) (193) ( 50)              | 1 761 ( 63) ( 6)              |                                         | 95 115 50<br>(139) (202) (127)  |
| 1 20 35 0                             | (3)(0)(2)                      |                                       | 10 45 50 (241)                 | 23 35 30<br>( 63) ( 66) ( 76) | ( ) ( ) ( ?)                            | 10 +5 20 (25) (25)              |
| 3 10 50 10<br>( 29) (127) ( 25)       | (0)(0)(7)                      | 1 91 ( 91 ( 91                        | (0)(0)(0)                      | (0)(0)(0)                     | (0)(0)(0)                               | ( )) ( )) ( ))                  |
| • 0 0 0<br>(u) ( a) ( 6)              | 23 30 10<br>( 50) ( 76) ( 29)  | 35 40 25<br>( 88) (203) ( 88)         | (0) (0) (0)                    | 0 0 0                         | 0 0 7                                   | 25 70 10<br>( 62) (177) ( 76)   |
| 5 6 6 G                               | 10 50 0                        | (0) (0) (0)                           | ( 0) ( 0) ( 0)                 | 40 70 40 (101)                | 20 95 40 ( 50) (201) (191)              | 75 50 70<br>(190) (127) (177)   |
| ( 0) ( 0) ( 0)                        | 1 9) ( 9) ( 9)                 | 1 0) ( 0) ( 0)                        | ( 0) ( 0) ( 0)                 | 15 45 0                       | • • •                                   | 65 125 60 .                     |
| 7 35 70 40                            | 0 0 0                          | • • •                                 | 0 0 0                          | ( 30) (145) ( C)<br>45 40 40  | ( 0) ( 0) ( 0)                          | (165) (317) (192)<br>60 70 70   |
| (139) (177) (101)<br>8 10 15 6        | ( 0) ( 0) ( 0)                 |                                       | ( 3) ( 0) ( c)<br>35 75 10     | (114) (228) (101)             | (101) (279) (139)                       | (203) (177) (177)<br>45 00 59   |
| (25) (36) ( 0)<br>• 20 30 20          | (0)(0)(0)                      |                                       | ( 66) (190) ( 25)<br>45 45 10  | 10 50 30                      | (0)(0)(0)                               | (165) (228) (134)<br>25 00 20   |
| (50) (76) (50)<br>10 76 66 56         | ( 0) ( 3) ( 0)                 | 10 35 0                               | (114) (114) ( 25)              | ( 76) (127) ( 76)<br>20 90 10 | ( 01 ( 01 ( 01                          | ( 63) (152) ( 50)               |
| (177) (152) (127)<br>11. 35 39 0      | ( 0) ( 3) ( 0)                 | ( 25) ( 44) ( 6)                      | ( 53) ( 66) ( 36)<br>70 55 10  | ( 90) (220) ( 76)             | ( 0) ( 0) ( 0)                          | (192) (220) (131)<br>05 05 05   |
| (44) (44) (4)                         | ( 0) ( 0) ( 2)                 | ( 0) ( 6) ( 0)<br>20 129 20           | (177) (139) ( 25) .            | ( 12) ( 36) ( 25)             | ( 88) (254) (101)                       | (165) (165) (165)               |
| 13 10 40 0                            |                                |                                       | 1 0) ( 0) ( 0)                 | ( ) ( ) ( )                   | (235) ( 66) ( 6)                        |                                 |
| ( 25) (101) ( 6)                      |                                |                                       | (101) (317) ( 63)              | 1 01 ( 01 ( 01                |                                         | 70 110 70<br>(177) (279) (177)  |
| 14 10 10 10                           |                                |                                       | 90 50 10<br>(127) (127) ( 25)  | ( 20) ( 00) ( 63)             |                                         | 45 40 0<br>(145) (203) ( 0)     |
| 19 0 0 0                              | 25 75 20<br>( 63) (190) ( 70)  | ( 30) (\$03) ( 93)<br>72              |                                | 25 75 30<br>( 63) (190) ( 76) | (114) ( 84) ( 12)                       | 10 40 20<br>{ 23} (101) { 50}   |
| 15 0 0 0                              | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                        | ( 3) ( 3) ( 6)                 | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                          | 30 35 3<br>( 76) ( 88) ( 0)     |
| 16 30 60 30 (76)                      | 0 3 0                          | 20 50 20<br>( 50) (127) ( 50)         | 50 45 35<br>(127) (114) ( 60)  | 40 50 45<br>(101) (127) (114) | 0 0 7                                   | 35 70 30<br>( 00) (177) ( 76)   |
| 16 0 0 0                              | ( 0) ( 0) ( 0)                 | 0 0 0                                 | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                | ( 0) ( 6) ( 6)                          | 25 56 0<br>( 63) (127) ( 6)     |
| 17 39 40 0                            | 4 0 0                          | 29 40 25<br>( 03) (101) ( 63)         | (0) (0) (0)                    | 30 50 30<br>(70) (127) (70)   | ( 0) ( 0) ( 0)                          | 15 45 23                        |
| 10 45 65 35                           | 0 0 2                          | ( 0) ( 0) ( 0)                        | 65 40 15 (165) (165) (165)     | 55 60 0                       | 0 50 55<br>( 0) (127) (139)             | 30 140 30                       |
| 19 30 110 99                          | 0 0 0                          | 15 10 0                               | 29 39 20                       | 20 50 20                      |                                         | 60 105 50                       |
| (127) ( <b>279)</b> (139)<br>19 0 0 G | ( 0) ( 0) ( 0)                 | (30) (25) (0)                         | ( 63) ( 60) ( 50)              | ( 50) (127) ( 50)             | ( 0) ( 0) ( 0)                          | (152) (266) (127)               |
| 20 0 0 0                              | ( 0) ( 0) ( 0)                 | ( 90) ( 63) ( 0)<br>30 120 35         | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)<br>30 45 0     | (0)(0)(2)                               | ( 0) ( 0) ( 0)                  |
| (0)(0)(0)                             | 0 0 0                          | ( 76) (304) ( 64)<br>35 aG 40         | ( 0) ( 0) ( 0)                 | ( 76) (114) ( 0)<br>0 0 G     | ( 30) (190) ( 0)                        | ( 4) ( 0) ( 0)                  |
| (139) (203) (127)<br>22 70 130 75     |                                | ( 66) (152) (101)                     | ( 25) (330) ( 63)<br>119 19 0  | ( 0) ( 0) ( 0)                | (127) (203) ( 63)                       | (114) (139) ( 0)<br>60 70 40    |
| (177) (294) (190)<br>23 65 80 55      | ( 0) ( 0) ( 0)                 | (0)(0)(0)                             | (292) (36) (3) .<br>23 90 15   | . ( 0) ( 0) ( 0)<br>30 60 25  | (152) (101) ( 75)<br>+0 110 15          | (132) (177) (101)<br>45 95 55   |
| (165) (203) (139)                     | ( 0) ( 0) ( 0)                 | ( 25) ( 63) ( 25)                     | ( 50) (220) ( 30)              | (74) (152) (43)               | (101) (274) ( 34)                       | (145) (2+1) (130)<br>80 86 50   |
| 25 0 3 0                              | ( 12) (228) ( 99)              | ( 0) ( 4) ( 0)                        | ( 25) (203) ( 38)<br>30 90 25  | (76) (177) ( 0)               | (203) (223) ( 50)<br>80 70 20           | (152) (203) (127)<br>35 35 0    |
| (0) (0) (0)                           | ( 0) ( 0) ( 0)                 | ( 25) ( 86) ( 0)                      | ( 76) (220) ( 63)<br>39 39 0   | ( 76) (101) ( 88)<br>49 39 0  | (203) (177) ( 50)                       | ( 86) ( 86) ( A)<br>15 65 35    |
| 27 60 65 45                           | (192) (203) ( 10)<br>39 119 39 | ( 25) (101) ( 0)                      | ( 48) (139) ( 0)<br>15 - 50 25 | (314) ( 48) ( 0)              | ( 0) (114) (114)                        | (114) (165) ( 88)               |
| 27 20 40 0                            | ( 00) (292) ( 99)              | ( 36) ( 76) ( 36)                     | ( 00) (127) ( 03)              | ( 66) (130) ( 66)             | ( 0) ( 0) ( 2)                          | (165) (266) (181)               |
| ( 30) (L31) ( 6)<br>20 26 30 20       |                                | ( 0) ( 0) ( 0)                        | ( 6) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                | (0) (0) (0)                             | ( 0) ( 0) ( 0)                  |
| ( 50) (127) ( 50)                     |                                | ( 50) (101) ( 63)                     | ( 30) (190) ( 30)              | ( 30) ( 70) ( 30)             | (24) ( 3) ( 2)                          | (177) (220) (152)               |
| 29 26 40 20<br>( 20) (101) ( 20)      | ( 2) ( 2) ( 2)                 | (25) ( 0) ( 0)                        | ( 0) ( 2) ( 30)                | (50) ( 0) ( 0)                |                                         | (152) (279) (152)               |
| (114) (114) ( 0)                      | ( 0) ( 0) ( 0)                 |                                       | ( 50) ( 80) ( 30)              | ( 30) (114) ( 30)             | (503) (725) ( 23)                       | (139) (190) (127)               |
| 31. ( 0) ( 0) ( 0)                    | 15 00 15                       | (30) (74) (0)                         | 19 49 20<br>( 80) (1114) ( 90) | (101) (190) (101)             | 130 25 10<br>(330) ( 63) ( 25)          | 15 30 25<br>(30) (76) (63)      |
| 37 0 0 0 0                            | ( 0) ( 0) ( 0)                 | 15 29 0                               | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)                          | 30 55 25<br>(127) (139) ( 63)   |
| 32 5 5 6<br>(12)(12)(0)               | ( 6) ( 0) ( 9)                 | 29 75 25<br>( <b>63</b> ) (190) ( 63) | ( 0) ( 0) ( 0)                 | 30 70 30<br>(76) (177) (76)   | 50 75 39<br>(127) (190) ( 9*)           | 60 95 70 '<br>(152) (213) (177) |
| 33 40 30 0                            | 20 99 7                        | ( 0) ( 0) ( 0)                        | ( 0) ( 0) ( 0)                 | ( 6) ( 6) ( 6)                | 80 80 30<br>(203) (203) ( 75)           | 10 45 10<br>( 25) (114) ( 25)   |
| 30 25 35 0                            | ( 0) ( 0) ( 7)                 | ( 0) ( 0) ( 0)                        | 70 60 15<br>(177) (198) ( 30)  | 0 0 0                         | ( ) ( 0) ( 0)                           | 70 120 75<br>(177) (304) (190)  |
| 39 30 79 30<br>( 76) (190) ( 76)      | ( 0) ( 0) ( 2)                 | 20 0 U                                | 3 0 40                         | 10 0 0                        | 25 e5 17<br>( 90) (165) ( 90)           | 35 35 20<br>( 00 ) ( 00 ) ( 50) |
| <b>36</b> . 15 <b>43</b> 15           |                                | , , ,                                 | 49 50 19                       | 20 40 20                      | (0)(0)(0)                               | 70 125 60                       |
| 37 30 40 43                           | ( 3) ( 0) ( 0)                 | 20 20 20                              | (114) (127) ( 36)              | ( 10) (101) ( 50)             | 25 05 10                                | (177) (317) (152)               |
| (127) (203) (114)<br>36 +0 70 +5      | 50 45 70                       | 1 961 (347) ( 50)                     | 70 49 35                       | 1 501 (279) ( 76)             | 1301 (105) ( 75)                        | 79 95 70                        |
| (151) (177) (114)<br>30 0 0 0         | (127) (114) ( 17)              | (127) (220) (127)                     | (177) (101) ( 90)              | ( 88) (127) ( 88)<br>40 45 46 | (241) ( 96) ( 14)                       | 1196) (241) (177)               |
| ( 0) ( 0) ( C)<br>+0 10 10 0          | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 3)                        | ( 15) (5)() ( 93)              | (101) (114) (101)             | ( 51 ( 0) ( 7)                          | (192) (294) (492)               |
| (25) (25) ( 6)                        | 100 27 17                      |                                       | ( )) ( )) ( ))                 | ( 50) ( 50) ( 6)              | (215) ( 76) ( 7)                        | ( ) ( ) ( ) ( )                 |
| 29 0 0 0                              | (900) ( 90) ( 17)              |                                       |                                | ( 0) ( 0) ( 0)                | ( 0) ( 3) ( 2)<br>20 70 35              | ( )) ( )) ( ))                  |
| 29 ( 0) ( 3) ( 0)                     | ( ) ( ) ( )                    |                                       | ( 2) ( 3) ( 3)                 | ( 0) ( 0) ( 0)                | ( ) 1 ( ) ( )                           |                                 |
| ( 0) ( 0) ( 0)                        | ( 0, ( 3, ( 2, )               |                                       | (10) (10)                      |                               | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | ( ) ( ) ( )                     |
| 35 ( 0) ( 1) ( 0)                     |                                |                                       | I I I.                         | ျန္မိုင္မွာျခဲ့ေန             | (145) ( 16) ( 24)                       | t çi c şi c şi                  |
| 25 6 6 6 6 6 6 6                      |                                |                                       |                                | ုင္ေရွာင္ႏွင့္မွာ             | (333) (124) ( 30)                       | ( 0) ( 0) ( 0)                  |
| 1 21 ( 0) ( 6)                        | ( 0) ( 3) ( 0)                 |                                       | (263) ( 90) ( 39)              | ( 0) ( 4) ( 6)                |                                         | ( မိုး ( ခိုး ( ဦး              |
| 30 3 3 C                              | 160 99 19                      | ( 3) ( 2) ( 3)                        | ( <u>3) ( 3) ( 3)</u> .        | 1 01 ( 01 ( 01                |                                         | 1_6, ( 5, ( 5,                  |
|                                       |                                |                                       | 21-3640 (22) (                 |                               |                                         | _                               |
|                                       |                                |                                       | <u>6-13</u>                    | ļ                             |                                         |                                 |

| REM DURABILITY PROGRAM           | AFEAL/AF CONTRACT 45          | 748FR F33615-60-C-90        | 27                             |                                  |                               |                                |
|----------------------------------|-------------------------------|-----------------------------|--------------------------------|----------------------------------|-------------------------------|--------------------------------|
| CRACK LENGTHS FROM HA N          |                               |                             |                                |                                  |                               |                                |
| HOLE                             |                               |                             |                                |                                  |                               |                                |
| NUMBER IP A Y                    | 0 3 0                         | 49 6 70                     | 75 45 13                       | 25 30 25                         | `.                            | 10 t 7                         |
| 2 9 9 9 9                        | ( 0) ( 3) ( 0)                | 1 0) ( 0) ( 0)              | (190) (114) ( 33)              | ( 63) ( 76) ( 63)                | 4 3) ( 3) ( 2)                | ( 74) (161) ( 50)              |
| ( 0) ( 0) ( 0)                   | ( 0) ( 0) ( 0)                |                             |                                |                                  | 4 11 ( 0) ( 2)                | ( 6) ( 6) ( 6)                 |
| 1 25) (192) ( 50)                | ( 0) ( 0) ( 0)                | 20 29 29<br>(50)(63)(50)    | 15 80 25<br>(34) (203) (63)    | 20 60 3<br>(50) (152) ( C)       | <b>4</b> 3) ( 3) ( **)        | (114) (203) ( 0)               |
| 3. 20 22 10<br>(50)(50)(25)      | ( 3) ( 6) ( 0)                | ( ) ( ) ( )                 | (0) (0) (0)                    | (0)(0)(0)                        | 4 3) ( 0) ( 7)                | 1 4) ( 4) ( 5)                 |
| + 50 <u>20</u> 20                | 0 10 5                        | 0 0 0                       | 0 0 0                          | 22 65 20                         | 19 50 12                      | 25 00 10                       |
| 5 0 0 0                          | ( 9) ( 25) (-12)              | ( 3) ( 3) ( 3)              | ( 0) ( 0) ( 0)<br>50           | ( 55 ) ( 165 ) ( 50)<br>35 30 40 | 4 25) ( 50) ( 27)             | ( 63) (192) ( 76)              |
| ( 0) ( 0) ( 0)<br>4 30 45 25     | ( 0) ( 3) ( 0)                | ( 0) ( 0) ( 0)              | (127) (203) ( 88)<br>45 45 20  | ( 86) ( 76) (161)<br>0 15 10     | 4 3) ( 3) ( **                | 1 50) (177) ( 76)              |
| 1 763 (365) ( 63)                | ( 3) ( 3) ( 2)                | t ài t ài t ài              | (114) (114) ( 50)              | ( 0) ( 30) ( 25)                 | 4 3) ( 0) ( 7)                | 4 0) ( 0) ( 0)                 |
| 7 10 15 5                        | ( 0) ( 3) ( 0)                |                             | ( 0) ( 0) ( 0)                 | 10 15 0                          | 33 55 20<br>4 set (134) ( 577 | 7 50) (127) (50)               |
| 1 40 80 0                        |                               | (0) (0) (0)                 | 30 90 22                       | 22 40 22<br>( 55) (101) ( 55)    | 23 45 12<br>( 50) (114) ( 30) | 30 35 35<br>(76) (165) ( 64)   |
| 9 0 0 0                          | 0 0 0                         | 3 0 0                       | 45 50 0                        | 0 0 0                            | 2 0 6                         | 55 116 40                      |
| 10 50 40 0                       | 0 3 0                         | 3 9                         | 9 9                            | 20 55 0                          |                               | (139) (279) (101)              |
| (127) (203) (. 0)<br>11 00 50 50 | ( 9) ( 9) ( 0)                | ( 3) ( 0) ( 0)              | 0 0 0 0                        | ( 50) (134) ( G)<br>30           | 80 110 17<br>80 110 17        | 7 031 (254) ( 38)              |
| 1152) (203) (127)                | (165) (226) ( 25)             | ( 0) ( 0) ( 0)              |                                | ( 76) (215) ( 76)                | ( 79) (279) ( 279<br>2 0 2    | 1 0) ( 0) ( 0)                 |
| (101) (127) ( 0)                 | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)              | ( 9) ( 9) ( 9)                 | ( 0) ( 0) ( 0)                   | ျော်ကို ကိုကို                | (131) ( 43) ( 50)              |
| 13 30 35 u<br>(76) (86) ( 0)     | 20 30 19<br>( 30) ( 76) ( 29) | 10 10 10                    | (3) (0) (0)                    | 20 60 20<br>(50) (152) (50)      | 6 93 ( 0) ( 63                | 26 35 29<br>(52)(36)(50)       |
| 14 20 45 0                       | ( 0) ( 0) ( 2)                | ( 0) ( 0) ( 0)              | 70 25 0                        | 40 70 35<br>(101) (177) ( 88)    | 3 35 10<br>( 3) ( 40) ( 25)   | 20 25 0                        |
| 15 50 70 +0                      | 0 0 2                         | 10 20 0                     | 40 55 20                       | 25 70 25                         | 3 0 2                         | 45 80 45                       |
| (127) (177) (101)<br>16. 30 40 0 | ( 0) ( 3) ( 0)<br>25 35 13    | (25) (30) (0)               | (101) (139) ( 50)              | ( 63) (177) ( 63)<br>20 70 20    | 0) ( 0) ( 2)                  | (114) (203) (114)              |
| 17 0 0 0                         | ( 63) ( 89) ( 25)             | ( 0) ( 0) ( 0)              | ( 0) ( 0) ( 0)<br>25 95 15     | (50) (177) (50)                  | 2) ( 0) ( 2)                  | ( 88) (139) ( 76)<br>45 100 35 |
| 18 0 0 0                         | ( 0) ( 3) ( 0)                | ( 0) ( 0) ( 0)              | ( 63) (139) ( 30)              | (0) (0) (0)                      | t a) ( a) ( a)<br>35 35 10    | 1214) (254) ( 48)              |
| ( 0) ( 0) ( 0)                   | 40 40 15<br>(203) (101) ( 39) | ( 0) ( 0) ( 0)              | ( 0) ( 0) ( 0)                 | ( 0) ( 0) ( 0)                   | 45-71 ( 99) ( 53)             | ( 50) ( 76) ( 36)              |
| 19 0 0 0                         | (0)(0)(0)                     | ( ) ( 0) ( 0)               | 3 93 20<br>(12) (213) (50)     | 30 55 25<br>( 76) (139) ( 63)    | 13 20 1C<br>(25) (34) (25)    | 30 65 36<br>( 76) (215) ( 76)  |
| 20 0 0 0                         | 1 0) 1 0) 1 0)                | ( 0) ( 0) ( 0)              | 60 40 20                       | 25 40 30<br>( 63) (101) ( 76)    | 3 0 0                         | 45 45 45 45 1114)              |
| 21. 0 0 0                        | 0 0 0                         | 0 0 0                       | 65 30 10                       | 0 0 6                            | +5 90 1 <del>5</del>          | 40 80 35                       |
| (0) (0) (0)                      | ( 0) ( 0) ( 0)<br>60 25 17    | ( 3) ( 0) ( 0)              | (169) ( 74) ( 29)<br>45 60 20  | (0)(0)(0)                        | (214) (127) ( 39)             | 13 45 20                       |
| 23 0 0 0                         | (152) (64) (38)               | ( 0) ( 0) ( 0)              | (114) (152) ( 50)              | (0) (0) (0)                      |                               | 1 25) (114) ( 50)<br>30 70 40  |
| ( 0) ( 0) ( C)<br>25 50 70 50    |                               | ( 0) ( 0) ( 0)              | (177) (139) ( 50)<br>25 85 20  | ( 63) ( 50) ( 63)<br>25 45 25    | ( 3) ( 0) ( 0)                | 1 76) (177) (161)              |
| (127) (177) (127)                | ( )) ( )) ( ))                | ( 0) ( 0) ( 0)              | ( 63) (213) ( 50)              | ( 03) (114) ( 03)                | £ 31 € 61 € 77                | ( 30) ( 40) ( 30)              |
| 29 20 29 25                      | ( 0) ( 0) ( 0)                | ( 0) ( 0) ( 0)              | 25 110 35<br>( 63) (279) ( 80) | (101) ( 63) (161)                | ( )) ( )) ( ))                | 35 00 30<br>(45 ) (561) (86 )  |
| 26 0 0 0                         |                               | ( 0) ( 0) ( 0)              | 30 75 5                        | 10 30 10 (25)                    | 35 80 1<br>(137) (203) ( 0)   | 30 40 0<br>1 75) (101) ( 0)    |
| 27' 50 60 0                      | 0 0 0                         | 25 105 30                   | 9 3 0                          | 19 40 15                         | •5 35 4                       | 15 26 0                        |
| (127) (152) ( 0)<br>28 19 40 10  | (9)(0)(0)                     | ( 43) (244) ( 76)           | (0)(0)(0)                      | (38) (101) (38)                  | (114) ( 86) ( 127             | 1 30) ( 5C) ( 0)<br>35         |
| 29 0 0 0                         | ( 0) ( 0) ( 0)                | ( 0) ( 0) <u>( 0</u> )      | ( 50) (279) ( 50)              | (0) (0) (0)                      | 11371 ( 501 ( 07              | ( 49) (572) ( 50)              |
| ( 0) ( 0) ( 0)<br>20 9 15 0      | ( 0) ( 0) ( 0)                | ( 0 ( 0) ( 0)               | (127) ( 50) ( 12)              | (63) (203) (63)                  | ( å) ( 0) ( b)<br>123 20 9    | 5 20 5                         |
| ( 12) ( 30) ( 0)                 | ( 86) ( 25) ( 12)             | ( 0) ( 0) ( 0)              |                                | ( 30) (101) ( 30)                | (25-) ( 50) ( 12)             | 1 12) ( 30) ( 12)              |
| 31. 10 30 10                     | ( 3) ( 0) ( 0)                | ( 0) ( 0) ( 0)              | (3) (6) (0)                    | 19 45 15<br>(38) (114) (30)      | 1 3) ( 3) ( 3)                | 50 10 40<br>(127) (203) (101)  |
| 32 0 0 0                         | ( 0) ( 0) ( 0)                | (0)(0)(0)                   | 50 20 10<br>(127) ( 50) ( 25)  | 95 45 46<br>(241) (114) (101)    | 65 40 20<br>(165) (203) (507) | 15 40 8                        |
| 33 19 25 10                      | 0 0 0                         | 0 0 0                       | 15 110 20                      | 0 0 0                            | 25 ZO 9                       | 30 60 20                       |
| (30) (AB) (25)<br>34 5 15 9      | ( 3) ( 3) ( 0)                | (0)(3)(0)                   | ( 38) (279) ( 50)              | (0) (0) (0)                      | (145) ( 50) ( 12)<br>79 60 ?5 | ( 76) (152) ( 50)<br>30 60 35  |
| ( 12) ( 36) ( 12)<br>39 30 60 0  | ( )) ( )) ( ))                | (12) (12) (12)              | (0)(0)(0)                      | (0)(0)(0)                        | (177) (192) ( 93)             | 10 40 0                        |
| ( 76) (152) ( 6)                 | ( 0) ( 2) ( 2)                | ( 0) ( 0) ( 0)              | (152) (152) ( 38)              | ( 50) ( 60) ( 56)                |                               | 1 25) (101) ( 0)               |
| ( 0) ( 0) ( 0)                   | ( )) ( )) ( ))                | 1 01 ( 3) ( 0)              | ( 0) ( 0) ( 0)                 | ( å) ( å) ( å)                   | ( 2) ( 0) ( 0)                | (139) (139) ( 3)               |
| 36 15 35 19                      | ( 0) ( 0) ( 0)                | ( 50) (152) ( 50)           | 50 60 20<br>(127) (151) (50)   | 25 35 25<br>( 63) ( 66) ( 63)    | ( 3) ( 0) ( 0)                | 30 35 0<br>(76) (44) ( 0)      |
| 37 30 65 25<br>(76) (165) (63)   | 6 0 1                         | 25 35 25                    | ( ) ( ) ( )                    | 25 70 25<br>( 63) (177) ( 63)    | 2 0 2                         | 20 25 6                        |
| 30 20 39 0                       | 0 3 2                         | 3 3 0                       | 30 60 30                       | 35 40 35                         | 3 0 2                         | 1 501 ( 63) ( 0)               |
| 39 / 0 0 0                       | ( 0) ( 2) ( 2)                | 0 0 0                       | (127) (192) ( 76)              | ( 00) (101) ( 00)                | ( 3) ( 0) ( 7)                | 127) (190) (101)               |
| 4 01 ( 0) ( 0)                   | ( 0) ( 0) ( 7)                | ( 0) ( ú) ( 0)<br>20 110 25 | ( 3) ( 3) ( 6)                 | 1 63) (114) ( 63)                | ( 2) ( 2) ( 2)                | ( 25) (101) ( 34)<br>20 40 0   |
|                                  | ( 3) ( 6) ( 7)                | ( 30) (279) ( 23)           | ( 0) ( 0) ( 0)                 |                                  | ( 2) ( 6) ( 7)                | ( 33) (191) ( 3)               |
|                                  |                               |                             | 21-3640(22)<br>Appendix D      |                                  |                               |                                |