Math 302/600 Spring 2017 Homework #12

Due May 9, Tue in class

Note: For any Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Let the sequence (f_n) converge uniformly to f_* on the set $A \subseteq \mathbb{R}$, where $f_n : \mathbb{R} \to \mathbb{R}$. Suppose that each f_n is bounded on A, i.e., for each f_n , there exists $C_n > 0$ (depending on n) such that $|f_n(x)| \leq C_n, \forall x \in A$. Show that f_* is bounded on A. Is this result still true if the assumption of uniform convergence is removed? If so, prove it; otherwise give a counterexample.
- 2. Construct a sequence of real-valued functions (f_n) on the interval [0,1] such that each f_n : $[0,1] \to \mathbb{R}$ is discontinuous at every point of [0,1] and (f_n) converges uniformly to a function that is continuous at every point of [0,1].
- 3. Let $f_n(x) = (x^2 + n^4)^{-1}$, where $x \in \mathbb{R}$. Use the Weierstrass M-test to show the uniform convergence of the series $\sum_{n=1}^{\infty} f_n(x)$ on \mathbb{R} .
- 4. Let $f_n:[1,2]\to\mathbb{R}$ be given by $f_n(x)=\frac{x}{(x+1)^n}$.
 - (1) Determine if $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on A = [1, 2].
 - (2) Determine if $\int_1^2 \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_1^2 f_n(x) dx$.
- 5. Let $A = [-a, a] \subset \mathbb{R}$ with a > 0, and let

$$f_n(x) = \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}, \quad x \in \mathbb{R}.$$

- (1) Use the Weierstrass M-test to show uniform convergence of the series $\sum_{n=1}^{\infty} f_n$ on A.
- (2) Let f_* be the limit function of the series on A, i.e., $f_*(x) = \sum_{n=1}^{\infty} f_n(x)$. Is f_* differentiable on (-a, a)? If so, is $f'_*(x) = \sum_{n=1}^{\infty} f'_n(x)$ on (-a, a)? Prove your answers.

The following extra problem(s) are for Math 600 students only:

6. Let each $f_n : \mathbb{R} \to \mathbb{R}$ be

$$f_n(x) = \frac{(-1)^{n+1}x}{n}.$$

Let A be a bounded set in \mathbb{R} . Show that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A. (*Hint*: use the Cauchy criterion.)

- \star This problem shows that the Weierstrass M-test is sufficient for uniform convergence but not necessary.
- 7. Suppose that each $f_n : \mathbb{R} \to \mathbb{R}$ is continuous on the set A, and (f_n) converges to f_* uniformly on A. Let (x_n) in A converge to $x_* \in A$. Show that $(f_n(x_n))$ converges to $f_*(x_*)$.

1