Projeto 1 de Introdução ao Processamento de Imagens Quinta Parte

Gabriel Martins de Miranda 130111350

Universidade de Brasília Email:gabrielmirandat@hotmail.com

Resumo—O presente experimento realiza a filtragem da imagem characters_test_pattern com filtros passa altas e passa baixas. Foram implementados dois modelos de filtros : ideal e Butterworth.

I. Introdução

Algumas considerações sobre a *Transformada de Fourier*. Através da Transformada, sinais no domínio do tempo são representados no domínio da frequência. Através disto obtemos o *espectro de frequencia*, e este subsivide—se em *espectro de amplitude* e em *espectro de fase*. As operações de Fourier fazem aproximações de funções em intervalos definidos por um somatório de senos e cossenos, em que o primeiro termo em geral representa a componente *dc* do sinal e os outros as componentes *ac*. É usada a *Serie de Fourier* para representar sinais *periodicos* e a *Transformada de Fourier* propriamente dita para sinais *aperiodicos*. Ambas subdividem—se em :

- Série de Fourier:
- (a) Sinal de tempo contínuo FS Série de Fourier
- (b) Sinal de tempo discretoDTFS Série de Fourier de tempo discreto
- Transformada de Fourier:
- (a) Sinal de tempo contínuo FT Transformada de Fourier
- (b) Sinal de tempo discreto DTFT Transformada de Fourier de tempo discreto

Como o computador digital trabalha apenas com valores discretos, usaremos o modelo da DTFS, também chamada de $Transformada\ Discreta\ de\ Fourier = DFT$ para trabalhar com imagens digitais. Para o proposto experimento, mais especificamente, será usada a $Transformada\ Rapida\ de\ Fourier = FFT$, um algoritmo de baixa complexidade computacional relativa para se calcular a $Transformada\ Discreta\ de\ Fourier$, que se baseia no método chamado $metodo\ dos\ dobramentos\ sucessivos$.

II. METODOLOGIA

Para resolução do problema seguiu-se os seguintes passos:

- A imagem f = characters_test_pattern foi lida pelo Matlab.
- Realizou—se o preenchimento na f = fpa. De forma que fpa passou a ter o dobro do tamanho(do número de linhas e colunas) de f e f a ocupar o centro da fpa. O procedimento foi realizado pela função preenchimento.m.
- Foi calculada a DFT de fpa = Fpa através da função fft2 do Matlab.
- Fpa foi deslocada para concentrar as baixas frequências (maior parte do espectro) da imagem no centro = Fpad através da função fftshift do Matlab.
- Para i=1 até 4, sendo (1 = ideal passa baixas, 2 = ideal passa altas, 3 = butterworth passa baixas, 4 = butterworth passa altas):
- (a) Fpad é mandada para a função cujo nome é o nome do filtro e esta retorna o produto de Fpad com o filtro correspondente = Gpad_i. As funções são(ideal_passa_baixas.m,ideal_passa_altas.m, Butterworth_passa_baixas.m,Butterworth_passa_altas.m).
- (b) O deslocamento foi desfeito em $Gpad_i = Gpa_i$
- através da função *ifftshift* do Matlab.
- (c) Aplicou—se DFT inversa em $Gpa_i = gpa_i$ através da função ifft2 do Matlab.
- (d) O preenchimento foi desfeito em $gpa_i = g_i.$ O procedimento foi realizado pela função despreenchimento.m.
- (e) g_i foi normalizada. O procedimento foi realizado pela função normalizador.m.
- (f) g_i, que corresponde a imagem filtrada, é mostrada na tela.
- Uma função auxiliar log_auxiliar.m foi usada para tornar visíveis as imagens do tipo complex_double das transformadas.

III. RESULTADOS

Resultados previstos na Metodologia:

Fig. 1: $f = \text{characters_test_pattern}$.

Fig. 2: fpa = f com preenchimento.

Fig. 3: Fpa = DFT da fpa. Para tornar—la visível extrapolou—se Fig. 5: $Gpad_1 = resultado$ da multiplicação do filtro ideal passa para que qualquer pixel diferente de preto fosse branco. baixas pela Fpad.

Fig. 4: Fpad = Fpa deslocada no novo domínio. Usou—se o mesmo método da Fpa para torná—la visível.

IDEAL PASSA BAIXAS

IDEAL PASSA ALTAS

Fig. 6: $Gpa_1 = Gpad_1$ com deslocamento desfeito. Usou—se o mesmo método da Fpa para torná—la visível.

Fig. 7: gpa_1 = DFT inversa na Gpa_1 .

Fig. 8: Imagem filtrada g_1 = despreenchimento na gpa_1 .

Fig. 9: $Gpad_2$ = resultado da multiplicação do filtro ideal passa altas pela Fpad.

Fig. 10: $Gpa_2 = Gpad_2$ com deslocamento desfeito.

Fig. 11: gpa_2 = DFT inversa na Gpa_2 .

Fig. 12: Imagem filtrada g_2 = despreenchimento na gpa_2 .

BUTTERWORTH PASSA BAIXAS

Fig. 13: $Gpad_3$ = resultado da multiplicação do filtro butterworth passa baixas pela Fpad.

Fig. 14: $Gpa_3 = Gpad_3$ com deslocamento desfeito. Usou—se o mesmo método da Fpa para torná—la visível.

Fig. 15: gpa_3 = DFT inversa na Gpa_3 .

Fig. 16: Imagem filtrada g_3 = despreenchimento na gpa_3 .

BUTTERWORTH PASSA ALTAS

Fig. 17: $Gpad_4$ = resultado da multiplicação do filtro butterworth passa altas pela Fpad.

Fig. 18: $Gpa_4 = Gpad_4$ com deslocamento desfeito.

Fig. 19: gpa_4 = DFT inversa na Gpa_4 .

Fig. 20: Imagem filtrada g_4 = despreenchimento na gpa_4 .

IV. CONCLUSÃO

Através do uso de ferramentas matemáticas ajustadas para representações discretas pode—se construir imagens de aproximações ou passa—baixas, que é caracterizada por borrar e imagens de detalhes ou passa—altas, caracterizada pelo aguçamento e melhora do contraste.