I - Variétés allotropiques du carbone

On suposse que les graphites et diamants sont considéré comme phases condensées idéaux.

I.A -

On a le carbone graphite est plus stable que le carbone diamant car $\mu_G^{\circ} < \mu_D^{\circ}$ dans cette température.

I.B -

On a
$$V_m^G = \frac{V^G}{n} = \frac{m}{n\rho_G} = \frac{M}{\rho_G}$$
. A.N. $V_m^G = \frac{12.0*10^{-3}}{2260} = 5.31*10^{-6}m^3mol^{-1}$. De même, $V_m^D = \frac{M}{\rho_D}$. A.N. $V_m^D = \frac{12.0*10^{-3}}{3513} = 3.42*10^{-6}m^3mol^{-1}$

I.C -

À température constante, on a $\frac{du^*}{dP} = V_m^*$ pour un corps pur. On a donc $\frac{du^*}{dP} = V_m^*$, en intégrant entre P° et P, on a $\mu^*(T,P) = \mu^\circ(T) + V_m^*(P-P^\circ)$, où $P^\circ = 1$ bar. Donc $\mu^G(P) = \mu_G^\circ + V_m^G(P-P^\circ)$, et $\mu^D(P) = \mu_D^\circ + V_m^D(P-P^\circ)$

I.D -

À T=298K, pour préparer du carbone diamant à partir du carbone graphite, il faut que $\mu^G(P)>\mu^D(P)$, c'est à dire

$$\mu_G^\circ + V_m^G(P - P^\circ) > \mu_D^\circ + V_m^D(P - P^\circ)$$
 Finalement, on a
$$P > P^\circ + \frac{\mu_D^\circ - \mu_G^\circ}{V_m^G - V_m^D}.$$
 A.N.
$$P > 10^5 + \frac{2870}{5.31*10^{-6} - 3.42*10^{-6}} = 1.52*10^9 Pa, \text{ soit } \boxed{1.52*10^4 \text{ bar}}.$$

II - Grandeurs de mélange

FIGURE 1 – Figure du récipient adiabatique

II.A -

On applique le premier principe thermodynamique sur $S = S_1 \cup S_2$:

$$\Delta U + \Delta E_c = W + Q$$

On a $\Delta E_c = W = Q$ car c'est une transformation adiabatique, immobile macroscopiquement est isochore. Donc par additivité, on a $\Delta U = \Delta U_1 + \Delta U_2 = 0$. Donc

$$n_1 C_{v,m,H_2}(T_f - T_1) + n_2 C_{v,m,Ar}(T_f - T_2) = 0$$

Finalemant,
$$T_f = \frac{n_1 T_1 + n_2 T_2}{n_1 + n_2 n_2}$$
. A.N. $T_f = \frac{2 * 298 + 3 * 298}{2 + 3} = 298K$

II.B -

C'est une transformation isotherme. Par additivité on a $n_f = n_1 + n_2 = 5$ mol.

- ▶ Par le théorème d'Euler, on a $\Delta_{mix}H = \Delta H_{m,1}n_1 + \Delta H_{m,2}n_2$, où $\Delta H_{m,i} = C_{p,m,i}\Delta T$, lorsque c'est une transformation isotherme, on a dT = 0, d'où $\Delta_{mix}H = 0$
- ▶ De même, on a $\Delta_{mix}S = \Delta S_{m,1}n_1 + \Delta S_{m,2}n_2$, où $\Delta S_{m,i} = C_{v,m,i} \ln \frac{T_f}{T_i} + R \ln \frac{V_f}{V_i}$, on a dT = 0, donc $T_f = T_i$, et $V_f = 2V_i$.

Alors, on a
$$\Delta_{mix} S = n_f R \ln 2$$
. A.N. $\Delta_{mix} S = 5.0 * 8.314 * 0.69 = 29 JK^{-1}$

▶ Puisque G = H - TS, donc dG = dH - TdS - SdT = dH - TdS lorsque dT = 0. En intégrant entre E_i et E_f , on a $\Delta_{mix}G = \Delta_{mix}H - T\Delta_{mix}S = -\ln 2 \, n_f RT$.

A.N.
$$\Delta_{mix}G = -0.69 * 5.0 * 8.314 * 298 = -8.5 * 10^3 J$$

Conclusion : cette transformation est irreversible comme $\Delta_{mix}S > 0$, spontané comme $\Delta_{mix}G < 0$, et l'enthalpie totale ne change pas.