Self-training with Noisy Student improves ImageNet classification

Бондаренко Наталия, БПМИ171

Проблема

До сих пор используем только обучение с учителем, для этого нужно много размеченных данных (особенно для "сложных" датасетов). При этом имеем много больше неразмеченных данных, которые бы хотели использовать для обучения тоже.

Сеть-учитель и сеть-студент

- Обучили сеть-учителя
- Использовали для генерации меток к 300 миллионам неразмеченных изображений
- Добавили их к датасету и обучили сеть-студента на нем
- Использовали сеть-студента как учителя

Шумный студент

Сеть-студент должна быть зашумленной, в то время как сеть-учитель должна быть незашумленной.

Источники шума:

- RandAugment
- дропаут
- стохастическая глубина

Алгоритм

- **Вход**: размеченные изображения $\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\}$ и неразмеченные изображения $\{\tilde{x}_1,\tilde{x}_2,...,\tilde{x}_m\}$.
- ullet Обучение модели-учителя $heta_*^t$, функция потерь -- стандартная кроссэнтропия: $\frac{1}{n} \sum_{i=1}^n \ell(y_i, f^{noised}(x_i, heta^t))$
- Использование незашумленной модели-учителя для генерации меток для неразмеченных изображений $\tilde{y}_i = f(\tilde{x}_i, \theta_*^t), \forall i = 1, \cdots, m$
- Обучаем **такую же или большую** модель-студента с добавленным шумом, функция потерь -- кросс-энтропия:

$$rac{1}{n}\sum_{i=1}^n \ell(y_i, f^{noised}(x_i, heta^s)) + rac{1}{m}\sum_{i=1}^m \ell(ilde{y}_i, f^{noised}(ilde{x}_i, heta^s))$$

Отличия от других моделей

- Больше шума в студенте
- Модель студент больше (по крайней мере не меньше)
 модели-учителя

Похоже на **дистилляцию**, только дистиллируют не в меньшую сеть, а наоборот.

EfficientNets

- Основаны на архитектуре MobileNetV2 и MnasNet
- Исходя из возможностей, определяют оптимальные ширину, глубину и разрешение изображения
- Масштабируют сеть

EfficientNets

Эксперименты. Работа с данными

- Неразмеченные данные из набора JFT-300М (метки проигнорировали)
- Запустили EfficientNet-B0, обученный на ImageNet, чтобы разметить
- Выбрали изображения, в классе которых модель уверена больше, чем на 0.3
- В каждом классе -- не более 130К изображений
- Продублировали некоторые случайные изображения в классах,
 где их меньше 130К
- Получили 130М изображений (из них 81М уникальных)

Архитектура и эксперименты

- EfficientNets -- базовая модель
- Размер батчей -- 2048 (обнаружили, что 512 и 1024 приводит к той же производительности)
- Большие модели-студенты (больше EfficientNet-B4) -- 350 эпох, модели поменьше -- 700 эпох.
- Сначала обучают с меньшим разрешением 350 эпох, потом точно настраивают модель на изображениях с большим разрешением и без аугментации 1.5 эпохи
- Наибольшая модель тренировалась 6 дней на Cloud TPU v3 Pod c 2048 ядрами, когда размер неразмеченных батчей был в 14 раз больше размера размеченных

Результаты

	ImageNet top-1 acc.	ImageNet-A top-1 acc.	ImageNet-C mCE	ImageNet-P mFR
Prev. SOTA	86.4%	61.0%	45.7	27.8
Ours	88.4 %	83.7 %	28.3	12.2

Method	Top-1 Acc.	Top-5 Acc.
ResNet-101 [30]	4.7%	-
ResNeXt-101 [30] (32x4d)	5.9%	=
ResNet-152 [30]	6.1%	-
ResNeXt-101 [30] (64x4d)	7.3%	-
DPN-98 [30]	9.4%	-
ResNeXt-101+SE [30] (32x4d)	14.2%	-
ResNeXt-101 WSL [51, 55]	61.0%	-
EfficientNet-L2	49.6%	78.6%
Noisy Student (L2)	83.7%	95.2%

Table 3: Robustness results on ImageNet-A.

- Лучшие результаты получили, когда повторили цикл три раза
- Шум помог больше, чем увеличение модели
- На "сложных"
 датасетах
 (ImageNet-A,
 ImageNet-C,
 ImageNet-P) также
 хорошие
 результаты

Важность шума

Model / Unlabeled Set Size	1.3M	130M
EfficientNet-B5	83.3%	84.0%
Noisy Student (B5)	83.9%	84.9%
student w/o Aug	83.6%	84.6%
student w/o Aug, SD, Dropout	83.2%	84.3%
teacher w. Aug, SD, Dropout	83.7%	84.4%

Iteration	Model	Batch Size Ratio	Top-1 Acc. 87.6%	
1	EfficientNet-L2	1:14		
2	EfficientNet-L2	1:14	88.1%	
3	EfficientNet-L2	1:28	88.4%	

Выводы

- Большая производительная модель-учитель приводит к лучшим результатам
- Для повышения производительности нужно много неразмеченных данных
- Мягкие псевдо-метки работают лучше жестких
- Большая модель-студент важна для того, чтобы позволить студенту изучить более мощную модель
- Балансировка данных полезна для небольших моделей
- Совместное обучение по маркированным данным и немаркированным данным лучше предварительной подготовки с немаркированными данными, а затем тонкой настройки на размеченные данные
- Использование большого соотношения между немаркированными размерами батча и маркированный размерами батча позволяют моделя достигать более высокой точности
- Обучать студента с нуля лучше, чем инициализировать с помощью учителя