Theoretical Questions of Chapter 2

张志心 混合 2106

日期: 2023 年 10 月 9 日

2.9.1-I.

For $f \in C^2[x_0, x_1]$ and $x \in (x_0, x_1)$, linear interpolation of f at x_0 and x_1 yields

$$f(x) - p_1(f;x) = \frac{f''(\xi(x))}{2}(x - x_0)(x - x_1).$$

Consider the case $f(x) = \frac{1}{x}$, $x_0 = 1$, $x_1 = 2$.

- Determine $\xi(x)$ explicity.
- Extend the domain of ξ continuously from (x_0, x_1) to $[x_0, x_1]$. Find $\max \xi(x)$, $\min \xi(x)$ and $\max f''(\xi(x))$.

解. • 线性插值结果为
$$p_1(f;x) = \frac{1-\frac{1}{2}}{1-2}(x-1) + 1 = -\frac{1}{2}x + \frac{3}{2}$$
, 因为 $f(x) = \frac{1}{x}$, $f''(x) = \frac{2}{x^3}$, 所以
$$f(x) - p_1(f;x) = \frac{1}{x} + \frac{1}{2}x - \frac{3}{2} = \frac{f''(\xi(x))}{2}(x-x_0)(x-x_1) = \xi^{-3}(x)(x-1)(x-2).$$

$$\frac{(x-1)(x-2)}{2x} = \frac{(x-1)(x-2)}{\xi^3(x)}.$$

所以 $\xi(x) = (2x)^{\frac{1}{3}}$ 。

• 由于 $\xi(x)$ 在 $[x_0,x_1] = [1,2]$ 上单调递增,所以

$$\max \xi(x) = \xi(2) = \sqrt[3]{4}, \quad \min \xi(x) = \xi(1) = \sqrt[3]{2}$$
由于 $f''(\xi(x)) = 2\left(\sqrt[3]{2x}\right)^{-3} = \frac{1}{x}$,在 [1,2] 单调递减,所以
$$\max f''(\xi(x)) = \frac{1}{1} = 1.$$

2.9.1-II.

Let \mathbb{P}_m^+ be the set of all polynomials of degree $\leq m$ that are non-negative on the real line,

$$\mathbb{P}_m^+ = \{ p : p \in \mathbb{P}_m, \ \forall x \in \mathbb{R}, \ p(x) \ge 0 \}.$$

Find $p \in \mathbb{P}_{2n}^+$ such that $p(x_i) = f_i$ for $i = 0, 1, \dots, n$ where $f_i \ge 0$ and x_i are distinct points on \mathbb{R} .

解. 设 $p_n(f;x)$ 为在 x_0,x_1,\cdots,x_n 点的插值多项式,满足

$$\forall i = 0, \cdots, n, p_n(f; x_i) = \sqrt{f_i},$$

那么令 $p(x) = p_n^2(f;x)$,则有 $\forall x \in \mathbb{R}, p(x) \ge 0$,并且对于 $i = 0, \dots, n, p(x_i) = f_i$ 。 具体的,

$$p(x) = \left(\sum_{i=0}^{n} \sqrt{f_i} \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}\right)^2.$$

2.9.1-III.

Cnosider $f(x) = e^x$.

• Prove by induction that

$$\forall t \in \mathbb{R}, \qquad f[t, t+1, \dots, t+n] = \frac{(e-1)^n}{n!} e^t.$$

• From Corollary 2.22 we know

$$\exists \xi \in (0, n) \text{ s.t. } f[0, 1, \dots, n] = \frac{1}{n!} f^{(n)}(\xi).$$

Determine ξ from the above two equations. Is ξ located to the left or to the right of the midpoint n/2?

解. • 当
$$n = 0$$
 时, $f[t] = f(t) = e^t = \frac{(e-1)^n}{n!} e^t$,归纳法,若 $f[t, t+1, \dots, t+n-1] = \frac{(e-1)^{n-1}}{(n-1)!} e^t$, $\forall t \in \mathbb{R}$,那么

$$f[t,t+1,\cdots,t+n] = \frac{f[t+1,t+2,\cdots,t+n] - f[t,t+1,\cdots,t+n-1]}{(t+n)-t}$$
$$= \frac{\frac{(e-1)^{n-1}}{(n-1)!}e^{t+1} - \frac{(e-1)^{n-1}}{((n-1)!)}e^{t}}{n} = \frac{(e-1)^{n}e^{t}}{n!}$$

所以结论成立。

• $e^{\xi} = (e-1)^n$, 所以 $\xi = n \ln(e-1)$, 因为 $\ln(e-1) = 0.5413... > \frac{1}{2}$, 所以 ξ 在中点右侧。

2.9.1-IV.

Consider f(0) = 5, f(1) = 3, f(3) = 5, f(4) = 12.

- Use the Newton's formula to obtain $p_3(f;x)$;
 - The data suggests that f has a minimum in $x \in (1,3)$. Find an approximate value for the location x_{\min} of the minimum.

所以
$$p_3(f;x) = 5 - 2x + x(x-1) + \frac{1}{4}x(x-1)(x-3) = \frac{1}{4}x^3 - \frac{9}{4}x + 5$$
。

•
$$p_3'(f;x) = \frac{3}{4}x^2 - \frac{9}{4} = 0 \Rightarrow x = \sqrt{3}$$
, $\text{ with } f_3''(f;\sqrt{3}) = \frac{2\sqrt{3}}{2} \ge 0$, $\text{ figure } x_m in = \sqrt{3} \approx 1.732$.

2.9.1-V.

Consider $f(x) = x^7$.

- Compute f[0, 1, 1, 1, 2, 2].
- We know that this devided difference is expressible in terms of the 5th derivative of f evaluated at some $\xi \in (0, 2)$. Determine ξ .

解. •
$$f(0) = 0$$
, $f(1) = 1$, $f'(1) = -1$, $\frac{f''(1)}{2} = 21$, $f(2) = 128$, $f'(2) = 448$,

根据 Newton's formula 计算差商表如下:

所以
$$f[0,1,1,1,2,2] = 30$$
。
• $\frac{f^{(5)}(x)}{5!} = \frac{2520x^2}{120} = 21x^2$,所以 $21\xi^2 = 30$, $\xi = \sqrt{\frac{10}{7}}$ 。

2.9.1-VI.

f is a function on [0,3] for which one knows that

$$f(0) = 1$$
, $f(1) = 2$, $f'(1) = -1$, $f(3) = f'(3) = 0$.

- Estimate f(2) using Hermite's interpolation.
- Estimate the maximum possible error of the above answer if one konws, in addition, that $f \in \mathcal{C}^5[0,3]$ and $|f^{(5)}(x)| \le M$ on [0, 3]. Express the answer in terms of M.

因此
$$f(x) = 1 + x - 2x(x - 1) + \frac{2}{3}x(x - 1)^2 - \frac{5}{36}x(x - 1)^2(x - 3) = \frac{36 + 147x - 155x^2 + 49x^3 - 5x^4}{36}$$
。
 $f(2) = \frac{11}{18}$ 。

根据讲义 Thm 2.37,
$$f(x) - p_4(f;x) = \frac{f^{(5)}(\xi)}{5!}x(x-1)^2(x-3)^2$$
。
因为 $f \in C^5$ 且 $|f^{(5)}(x)| \le M$,且

$$\frac{d}{dx} \left[x(x-1)^2 (x-3) \right]^2 = (x-1)(x-3)(5x^2 - 12x + 3)$$

令导数为 0 得到 $x=1,3,\frac{6\pm\sqrt{21}}{5}$,分别代入得 $x=\frac{6+\sqrt{21}}{5}$ 时取得最大绝对值 $\frac{48(102+7\sqrt{21})}{3125}$ 。 因此 $|f(x)-p_4(f;x)|\leq \frac{204+14\sqrt{21}}{15625}M$ 。

2.9.1-VII.

Define foward difference by

$$\Delta f(x) = f(x+h) - f(x), \qquad \Delta^{k+1} f(x) = \Delta \Delta^k f(x) = \Delta^k f(x+h) - \Delta^k f(x).$$

and backward difference by

$$\nabla f(x) = f(x) - f(x - h), \qquad \nabla^{k+1} f(x) = \nabla \nabla^k f(x) = \nabla^k f(x) - \nabla^k f(x - h).$$

Prove

$$\Delta^{k} f(x) = k! h^{k} f[x_{0}, x_{1}, \dots, x_{k}],$$

$$\nabla^{k} f(x) = k! h^{k} f[x_{0}, x_{-1}, \dots, x_{-k}],$$

where $x_i = x + jh$.

证明.

$$\Delta f(x) = f(x+h) - f(x) = hf[x,x+h]$$

$$\nabla f(x) = f(x) - f(x - h) = hf[x, x - h]$$

设结论对 k-1 成立,即

$$\Delta^{k-1} f(x) = (k-1)! h^{k-1} f[x_0, x_1, \dots, x_{k-1}]$$

$$\nabla^{k-1} f(x) = (k-1)! h^{k-1} f[x_0, x_{-1}, \dots, x_{-(k-1)}]$$

则

$$\begin{split} \Delta^k f(x) = & (k-1)!h^{k-1}f[x_1,\cdots,x_k] - (k-1)!h^{k-1}f[x_0,\cdots,x_{k-1}] \\ = & (k-1)!h^{k-1}(hkf[x_0,x_1,\cdots,x_k]) \\ = & k!h^k f[x_0,x_1,\cdots,x_k]. \\ \nabla^k f(x) = & (k-1)!h^{k-1}f[x_{-1},\cdots,x_{-k}] - (k-1)!h^{k-1}f[x_0,\cdots,x_{-(k-1)}] \\ = & (k-1)!h^{k-1}(hkf[x_0,x_{-1},\cdots,x_{-k}]) \\ = & k!h^k f[x_0,x_{-1},\cdots,x_{-k}]. \end{split}$$

所以结论成立。

2.9.1-VIII.

Assume f is differentiable at x_0 . Prove

$$\frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_n] = f[x_0, x_0, x_1, \dots, x_n] \tag{1}$$

What about the partial derivate with respect to one of the other variables?

解. 归纳,对
$$n = 0$$
,有 $\frac{\partial}{\partial x_0} f[x_0] = \frac{\partial}{\partial x_0} f(x_0) = f[x_0, x_0]$ 。
设结论对 $n = k$ 成立,即 $\frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_{k-1}] = f[x_0, x_0, x_1, \dots, x_{k-1}]$,则

$$\begin{split} &\frac{\partial}{\partial x_0} f[x_0, x_1, \cdots, x_k] \\ &= \frac{\partial}{\partial x_0} \frac{f[x_1, x_2, \cdots, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_0} \\ &= \frac{-f[x_0, x_0, x_1, \cdots, x_{k-1}](x_k - x_0) + (f[x_1, x_2, \cdots, x_k] - f[x_0, x_1, \cdots, x_{k-1}])}{(x_k - x_0)^2} \\ &= -\frac{f[x_0, x_0, x_1, \cdots, x_{k-1}]}{x_k - x_0} + \frac{f[x_0, x_1, \cdots, x_k]}{x_k - x_0} \\ &= f[x_0, x_0, x_1, \dots, x_k]. \end{split}$$

2.9.1-IX. A min-max problem

For $n \in \mathbb{N}^+$, determine

$$\min \max_{x \in [a,b]} |a_0 x^n + a_1 x^{n-1} + \dots + a_n|.$$

where $a_0 \neq 0$ is fixed and the minimum is taken over all $a_i \in \mathbb{R}$, $i = 1, 2, \dots, n$.

记上式为 Q(t),其 t^n 的系数为 $a_0 \left(\frac{b-a}{2}\right)^n$ 。 所以根据讲义推论 2.47 得

$$\min \max_{x \in [a,b]} |a_0 x^n + a_1 x^{n-1} + \dots + a_n|$$

$$= \min \max_{t \in [-1,1]} Q(t)$$

$$= |a_0| \left(\frac{b-a}{2}\right)^n \frac{1}{2^{n-1}} = \frac{|a_0|(b-a)^n}{2^{2n-1}}$$

2.9.1-X. Imitate the proof of Chebyshev's Theorem

Express the Chebyshev polynomial of degree $n \in \mathbb{N}$ as a polynomial T_n and change its domain from [-1,1] to \mathbb{R} . For a fixed a > 1, define $\mathbb{P}_n^a := \{ p \in \mathbb{P}_n : p(a) = 1 \}$ and a polynomial $\hat{p}_n(x) \in \mathbb{P}_n^a$,

$$\hat{p}_n(x) := \frac{T_n(x)}{T_n(a)}.$$

Prove

$$\forall p \in \mathbb{P}_n^a, \qquad \|\hat{p}_n\|_{\infty} \le \|p\|_{\infty}$$

where the max-norm of a function $f : \mathbb{R} \to \mathbb{R}$ is defined as $||f||_{\infty} = \max_{x \in [-1,1]} |f(x)|$.

证明. 反证,设结论不成立。因为
$$T_n(x)$$
 的最值是 ± 1 ,所以 $\|\hat{p_n}\|_{\infty} = \left|\frac{1}{T_n(a)}\right|$ 。 令 $Q(x) = T_n(x) - p(x)T_n(a)$,则 $Q(a) = T_n(a) - p(a)T_n(a) = 0$,即 a 为 Q 的一个零点。设 x'_k , $k = 0, \dots, n$ 为 $T_n(x)$ 的 $n+1$ 个极值点。

又因为 $Q(x'_k) = T_n(x'_k) - p(x'_k)T_n(a), |p(x'_k)T_n(a)| < 1, |T_n(x'_k)| = 1,$ 所以对所有奇数 k, $Q(x'_k) < 0$; 对所有偶数 k, $Q(x'_k) > 0$, 所以 Q 在 $(x'_0, x'_1), (x'_1, x'_2), \dots, (x'_{k-1}, x'_k)$ 上分别有至少一个零点。Q 有至少 n+1 个零点。 Q 的次数至多为 n,所以 $Q(x)=0, p(x)=\frac{T_n(x)}{T_n(a)}$,矛盾!故原结论成立。

2.9.1-XI.

Prove Lemma 2.50: The Bernstein base polynomials $b_{n,k}(t) = \binom{n}{k} t^k (1-t)^{n-k}$ satisfy

$$\forall k = 0, 1, \dots, n, \forall t \in (0, 1), \quad b_{n,k}(t) > 0$$

$$\sum_{k=0}^{n} b_{n,k}(t) = 1$$

$$\sum_{k=0}^{n} k b_{n,k}(t) = nt$$

$$\sum_{k=0}^{n} (k - nt)^{2} b_{n,k}(t) = nt(1 - t)$$

证明.

1. 对任意
$$k = 0, 1, ..., n$$
 和 $t \in (0, 1)$, $t^k > 0$, $(1 - t)^k > 0$, $\binom{n}{k} > 0$, 所以 $b_{n,k}(t) = \binom{n}{k} t^k (1 - t)^{n-k} > 0$ 。

2. 设 $X_t \sim B(n;t)$, 则 $P(X_t = k) = b_{n,k}(t)$, $\sum_{k=0}^n P(X_t = k) = 1$, 所以 $\sum_{k=0}^n b_{n,k}(t) = 1$ 。

2.
$$\[\] \mathcal{X}_t \sim B(n;t), \] \[\] P(X_t = k) = b_{n,k}(t), \] \sum_{k=0}^n P(X_t = k) = 1, \] \[\] \[\$$

3.
$$\sum_{k=0}^{n} k b_{n,k}(t) = E(X_t) = nt$$

4.
$$\sum_{k=0}^{n} (k-nt)^2 b_{n,k}(t) = D(X_t) = nt(1-t)$$
.

6