Red Hat Ceph Performance & Sizing Guide

Jose De la Rosa

September 7, 2016

Agenda

- Ceph Overview
 - a. Architecture
 - b. Approach to storing data
- 2. Test methodology
 - a. What was tested
 - b. How it was tested & measured
- 3. Results
 - a. Key findings
 - b. Recommendations

Ceph Overview

Ceph Overview

- 1. Open source software defined storage: logical storage services and capabilities are abstracted from the underlying physical storage systems.
- 2. Provides object, block and file system storage. All data is stored as objects.
- 3. Massively scalable to thousands of storage nodes.
- 4. Self-healing with no single point of failure: If a node fails, it is automatically detected and data rebalances to ensure availability.

Client access

Architecture

Storage Protection Method

3x Replication

Data copied 3 times Actual disk usage = 33%

Erasure Coded (3+2)

Data split into 3 + 2 disks used for parity Actual disk usage = 60%

Reading and Writing Data

Test Setup & Methodology

Server configuration

Testbed Details					
Ceph tier	Storage Nodes (5)	Monitors (3)	Clients (10)		
Platform	Dell PowerEdge R730xd	Dell PowerEdge R630	Dell PowerEdge R220		
СРИ	2x Intel Xeon E5-2630 v3 2.4GHz	2x Intel Xeon E5-2650 v3 2.3 GHz	1x Intel Celeron G1820 2.7 GHz		
Memory	4x 16 GB 1866 MHz DDR4	8x 16 GB 2133MHz DDR4	4x 4 GB 1600 MHz DDR3		
Network	1x Intel X520/2P I350 LOM	1x Intel X520/2P I350 LOM	1x Intel X520/2P I350		
Storage	PERC H730 Mini / 1 GB Cache Up to 16x: SEAGATE 4 TB SAS (ST4000NM0005) Up to 3x: Intel DC S3700 SSD 200 GB SATA (SSDSC2BA20) 1x Intel DC P3700 SSD 800 GB NVMe	PERC H730 Mini / 1 GB Cache 6x SEAGATE 500 GB SAS (ST9500620S)	1x Toshiba 50 GB SATA (DT01ACA0)		

Network Topology

Configuration Guidance

- General rules of thumb
 - 1 Core-GHz per OSD
 - SATA/SAS SSD to HDD Ratio: 1:4 1:5
 - NVME SSD to HDD Ratio: 1:17-1:18
 - 16GB RAM Baseline + 2-3GB per OSD
- 2. More details at https://www.redhat.com/en/resources/red-hat-ceph-storage-hardware-configuration-guide

Storage node configurations tested

OSD to Journal Ratio [drives]	12+3	16+0	16+1
OSD node configuration	12+3	16+0	16+1
HDDs	12	16	16
HDD RAID mode	Single-disk RAID0	Single-disk RAID0	Single-disk RAID0 / HBA mode
SATA SSDs	3	0	0
SSD RAID mode	JBOD	JBOD	JBOD
NVMe SSDs	0	0	1
Network	1x 10 GbE Front-End 1x 10 GbE Back-End	1x 10 GbE Front-End 1x 10 GbE Back-End	1x 10 GbE Front-End 1x 10 GbE Back-End

Benchmarking with CBT

- 1. For benchmark automation, the open source utility Ceph Benchmarking Tool (CBT) was used.
- 2. It supports different drivers for examining different layers of the storage stack:
 - radosbench uses librados API (used in this study)
 - librbdfio test block storage without KVM/QEMU instances
 - kvmrbdfio test block volumes attached to KVM/QEMU instances
- 3. Available at https://github.com/ceph/cbt

Factors that influence performance

- 1. Device used for journaling (SSD vs. HDD)
- 2. RAIDO vs. pass-through (HBA) mode
- 3. Number of clients (single stream vs. parallel access)
- 4. Data-protection mode (3-way replication vs. erasure coding)

Test Matrix

Server configuration	PowerEdge R730xd 12+3, 3xRep	PowerEdge R730xd 16+0, EC3+2	PowerEdge R730xd 16r+1, 3xRep	PowerEdge R730xd 16+1, EC 3+2	PowerEdge R730xd 16j+1, 3xRep
OS disk	2x 500 GB 2.5"	2x 500 GB 2.5"	2x 500 GB 2.5"	2x 500 GB 2.5"	2x 500 GB 2.5"
Data disk type	HDD 7.2K SAS 12Gbps, 4TB	HDD 7.2K SAS 12Gbps, 4TB	HDD 7.2K SAS 12Gbps, 4TB	HDD 7.2K SAS 12Gbps, 4TB	HDD 7.2K SAS 12Gbps, 4TB
HDD quantity	12	16	16	16	16
Number of Ceph write journal devices	3	0	1	1	1
Ceph write journal device type	Intel SATA SSD S3710 (6Gb/s)	n/a	Intel P3700 PCIe NVMe HHHL AIC	Intel P3700 PCIe NVMe HHHL AIC	Intel P3700 PCIe NVMe HHHL AIC
Ceph write journal device size (GB)	200	0	800	800	800
Controller model	PERC H730, 1 GB Cache	PERC H730, 1 GB Cache	PERC H730, 1 GB Cache	PERC H730, 1 GB Cache	PERC H730, 1 GB Cache
PERC Controller configuration for HDDs	RAID	RAID	RAID	RAID	JBOD (PERC pass-through mode)
Raw capacity for Ceph OSDs (TB)	48	64	64	64	64

Benchmark Test Results

Throughput / server

R730xd 12+3, 3xRep

R730xd 16+0, EC3+2

R730XD 16+1, EC3+2

R730xd 16j+1, 3xRep

R730xd 16r+1, 3xRep

200

0

400

600

MBps per Server (4MB seq IO)

Performance Comparison Throughput per Server

800

1000

1200

1400

Reads

Overall Solution Price/Performance

Solution Price/Performance Comparison 500TB Usable Cluster (less \$ per MBps is better)

Overall Solution Price Capacity

Solution Price/Capacity Comparison (less \$ per GB is better)

Replication vs. Erasure Coding

Performance Comparison Replication vs. Erasure-coding

JBOD vs. RAIDO

Performance conclusions

- Replication mode yielded better performance for read operations and the erasure-coded mode proved better for write operations.
- 2. The PowerEdge **R730xd 16+1 3x replication** configuration yielded optimal price for **read-write throughput-oriented workloads**.
- The PowerEdge R730xd 12+3 3x replication configuration yielded optimal price for read-only throughput-oriented workloads.
- 4. The PowerEdge **R730xd 16+1 erasure-coded** configuration proved to be the choice for **write-heavy operations**.
- 5. When used with Ceph Storage, Dell & Red Hat recommend the usage of single-drive RAIDO mode on PowerEdge R730xd with PERC H730.

Sizing Recommendations

Storage Capacity	Extra Small	Small	Medium	
Cluster Capacity	100 TB+	500 TB+	1 PB+	
Throughput-Optimized	>4x R730xd (8U)	>8x R730xd (16U)	NA	
	1x server/2U chassis	1x server/2U chassis		
	16x 6 TB HDD	16x 6 TB HDD		
	1x 800 GB NVMe SSD	1x 800 GB NVMe SSD		
	2x 10 GbE	2x 10 GbE		
	3x Replication	3x Replication		
Cost/Capacity-Optimized	NA	NA	>15x R730xd (30U)	
			1x server/2U chassis	
			16x 8 TB HDD	
			1x HHHL AIC SSD	
			2x 10 GbE	
			8:3 Erasure-coding	

Observations

- 1. Obey SSD to HDD ratio
- 2. Hardware matters, look at RAID controllers if you use HDDs
- 3. Don't use RAID controllers on SSDs
- 4. SSD sequential write bandwidth becomes a bottleneck
- 5. Random workloads should go on Flash-only
- 6. 10GbE Bonding not necessary with <=16 drives

Recommended Reading

Dell PowerEdge R730xd Red Hat Ceph Storage Performance and Sizing Guide

http://en.community.dell.com/techcenter/cloud/m/dell_cloud_resources/20442913

Enterprise Ceph: Every Way, Your Way

https://www.redhat.com/files/summit/session-assets/2016/SS88828-enterprise-ceph_every-way-your-way.pdf

