Assignment-1 Choose the correct option ts6959@srmist.edu.in Switch account \odot Your email will be recorded when you submit this form * Required Name * Your answer Register Number * Your answer What is a formal language? (1) It is a spoken language (2) It is a set of 2 points strings (3) It can definitely be represented using a DFA. * None of the above 1 only 2 only 3 only 1 and 2 only 2 and 3 only 1 and 3 only 1,2 and 3

To prove a set A = set B, I have to prove (1) A \subseteq B (2) B \subseteq A (3) A - B \neq Ø *	2 points
None of the above	
1 only	
2 only	
3 only	
1 and 2 only	
2 and 3 only	
1 and 3 only	
1,2 and 3	
Regarding mathematical induction. If P(k) is a proposition, and a. P(1) is true b. P(k) is true implies P(k+1) is true, then (1) P(k) is true only for some (proper subset) positive integers k (2) P(k) is true for all positive integers k (3) P(k) is true for all integers k (positive and negative). *	2 points
true b. $P(k)$ is true implies $P(k+1)$ is true, then (1) $P(k)$ is true only for some (proper subset) positive integers k (2) $P(k)$ is true for all positive integers k	
true b. P(k) is true implies P(k+1) is true, then (1) P(k) is true only for some (proper subset) positive integers k (2) P(k) is true for all positive integers k (3) P(k) is true for all integers k (positive and negative). *	
true b. P(k) is true implies P(k+1) is true, then (1) P(k) is true only for some (proper subset) positive integers k (2) P(k) is true for all positive integers k (3) P(k) is true for all integers k (positive and negative). * None of the above	
true b. P(k) is true implies P(k+1) is true, then (1) P(k) is true only for some (proper subset) positive integers k (2) P(k) is true for all positive integers k (3) P(k) is true for all integers k (positive and negative). * None of the above	
true b. P(k) is true implies P(k+1) is true, then (1) P(k) is true only for some (proper subset) positive integers k (2) P(k) is true for all positive integers k (3) P(k) is true for all integers k (positive and negative). * None of the above 1 only 2 only	
true b. P(k) is true implies P(k+1) is true, then (1) P(k) is true only for some (proper subset) positive integers k (2) P(k) is true for all positive integers k (3) P(k) is true for all integers k (positive and negative). * None of the above 1 only 2 only 3 only	
true b. P(k) is true implies P(k+1) is true, then (1) P(k) is true only for some (proper subset) positive integers k (2) P(k) is true for all positive integers k (3) P(k) is true for all integers k (positive and negative). * None of the above 1 only 2 only 3 only 1 and 2 only	

Regular expressions (1) Can represent finite languages (2) Can represent 2 points infinite languages (3) Have finite length. *
None of the above
1 only
2 only
3 only
1 and 2 only
2 and 3 only
1 and 3 only
1,2 and 3
What can be said about the strings generated by the regular expression 2 points (0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2) They contain atleast as many 0's as 1's (3) No two 1's occur continuously. *
(0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2)
(0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2) They contain atleast as many 0's as 1's (3) No two 1's occur continuously. *
(0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2) They contain atleast as many 0's as 1's (3) No two 1's occur continuously. * None of the above
(0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2) They contain atleast as many 0's as 1's (3) No two 1's occur continuously. * None of the above 1 only
(0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2) They contain atleast as many 0's as 1's (3) No two 1's occur continuously. * None of the above 1 only 2 only
(0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2) They contain atleast as many 0's as 1's (3) No two 1's occur continuously. * None of the above 1 only 2 only 3 only
(0+10)*? (1) They all contain alternating 1's and 0's (e.g1010101). (2) They contain atleast as many 0's as 1's (3) No two 1's occur continuously. * None of the above 1 only 2 only 3 only 1 and 2 only

The DFA below accepts (1) All strings containing 110 (2) All strings beginning in 110 (3) All strings ending in 110 *

2 points

- None of the above
- 1 only
- 2 only
- 3 only
- 1 and 2 only
- 2 and 3 only
- 1 and 3 only
- 1,2 and 3

Which among the following statements is true? (1) language of every DFA 2 points is accepted by some NFA (2) language of every NFA is accepted by some DFA (3) DFA and NFA are equivalent *
None of the above
1 only
O 2 only
3 only
1 and 2 only
2 and 3 only
1 and 3 only
1,2 and 3

Which among the following NFA's represents the regular expression (0+1)* 2 points + 01? *

- O None of the above
- 1 only
- 2 only
- 3 only
- 1 and 2 only
- 2 and 3 only
- 1 and 3 only
- 1,2 and 3

- (0,1)*
- O Set of binary strings which contain a 1 in third position
- O Set of binary strings which contain a single 1
- Set of binary strings which contain a 1 in the third position from the end

- (q0)
- (q0, q2)
- (q0, q2, q3)
- (q0, q2, q3, q4)
- (q0, q3, q4)

In the \in -NFA below, what is extended transition function deltacap(q0, 0)? * 1 point

- (q1)
- (q1, q3)
- (q1, q3, q4)
- (q1, q2, q3, q4)
- (q1, q2, q4)

What is the regular expression corresponding to the DFA shown in the figure below? *

1 point

- (01*0+1)
- 01*0(0+1)*
- 0 1(0+1)*
- (01*0+1)(0+1)*
- (01*0+1)*(0+1)*

A copy of your responses will be emailed to ts6959@srmist.edu.in.

Page 1 of 1

Submit Clear form

Never submit passwords through Google Forms.

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms