LIMITE ET CONTINUITE

I) LIMITE D'UNE FONCTION

1) Activité et rappelles

1.1 Activités :

Activité 1 :

Déterminer les limites suivantes :

$$\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4}$$

$$\lim_{x \to 2} \frac{\sqrt{4x+1}-3}{x^2-3x+2}$$

$$\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4} \qquad \lim_{x \to 2} \frac{\sqrt{4x + 1} - 3}{x^2 - 3x + 2} \qquad \lim_{x \to -1} \frac{\sqrt{4 - 5x} - 3}{1 - \sqrt{2 + x}} \qquad \lim_{x \to 0} \frac{2x^2 + x}{|x^2 + x| - 2x} \qquad \lim_{x \to 0} \frac{\sin 7x}{5x}$$

$$\lim_{x \to 0} \frac{2x^2 + x}{|x^2 + x| - 2x}$$

$$\lim_{x\to 0} \frac{\sin 7x}{5x}$$

Activité 2:

Considérons la fonction f définie par :

$$\begin{cases} f(x) = \frac{3x^2 + x - 4}{\sqrt{x^2 + 3} - 2} ; si \ x \neq 1 \\ f(1) = 14 \end{cases}$$

1- Déterminer D_f

2- a) Déterminer : $\lim_{x\to 1} f(x)$.

b) Comparer $\lim_{x\to 1} f(x)$ et f(1)

On dit que f est continue en $x_0 = 1$

2) Rappelles

2.1 Définition

Définition:

Soit f une fonction définie sur un intervalle pointé de centre a et l un réel. On dit que la fonction f tend vers le réel l quand x tend vers a si : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < |x - a| < \alpha \Rightarrow |f(x) - l| < \varepsilon$

2.2 Opérations sur les limites

2) Opérations sur les limites

Toutes les propriétés qui seront citées dans ce paragraphe sous forme de tableau sont admises et on peut les démontrer en utilisant les définitions des limites.

1) Limite de la somme

$\lim_{x\to a} f(x)$	l	l		+∞	-8	$-\infty$
$\lim_{x\to a}g(x)$	l'	+8	-8	+8	-8	+8
$\lim_{x \to a} (f + g)(x)$	l + l'	+8	-8	+∞	-8	Formes indéterminées

Ces propriétés sont vraies si x tend vers a^+ ; a^- ; $+\infty$ ou $-\infty$

Formes indéterminées: Veut dire qu'on ne peut pas calculer la limite directement, il faut faire d'autres calcules car il y a plusieurs cas.

Exemples:

$$\mathbf{0} f(x) = 2 + x^2 \quad \text{, } g(x) = 5 - x^2 \quad \text{on a} \quad \lim_{x \to +\infty} f(x) = +\infty \text{ ; } \lim_{x \to +\infty} g(x) = -\infty \quad \text{et } \lim_{x \to +\infty} (f+g)(x) = \mathbf{7}$$

$$\lim_{x \to +\infty} (f+g)(x) = \lim_{x \to +\infty} x^2 - x + 7 = \lim_{x \to +\infty} x^2 \left(1 - \frac{1}{x} + \frac{7}{x^2}\right) = +\infty$$

Dans les deux exemples on a le même cas que dans la dernière colonne du tableau mais on a deux résultats différents

2) Limites des produits

$\lim_{x \to a} f(x)$	l	l > 0	ou +∞	l < 0 o	u –∞	±∞
$\lim_{x\to a}g(x)$	l'	+∞	-∞	+∞	-∞	0
$\lim_{x \to a} (f \times g)(x)$	l. l'	+∞	-∞	-∞	+∞	Formes indéterminées

3) Limites des inverses

$\lim_{x \to a} f(x)$	$l \neq 0$	0+	0-	±∞
$\lim_{x \to a} \left(\frac{1}{f}\right)(x)$	$\frac{1}{l}$	+∞	-∞	0

<u>Remarque:</u> $\lim_{x\to a} f(x) = 0^+$ veut dire que f tend vers 0 mais de la droite.

 $\lim_{x\to +\infty} \left(\frac{1}{x}\right) = 0 \ (0^+) \quad \lim_{x\to -\infty} \left(\frac{1}{x}\right) = 0 \ (0^-)$ chose qu'on voit bien sur la courbe de la fonction f

3) Limites des auotients

= / = · · · · · = = · · · · · · · · · · 							
$\lim_{x \to a} f(x)$	l	$l > 0$ ou $+\infty$		$l < 0$ ou $-\infty$		0	±∞
$\lim_{x\to a}g(x)$	$l' \neq 0$	0+	0-	0+	0-	0	±∞
$\lim_{x \to a} \left(\frac{f}{g}\right)(x)$	$\frac{l}{l'}$	+∞	-8	-∞	+∞	Formes indéterminées	Formes indéterminées

Exemple:

On veut déterminer la $\lim_{x\to 1^+} \frac{3x+1}{x^2+x-2}$ on a :

On a :
$$\begin{cases} \lim_{x \to 1^+} (3x + 1) = 4 \\ \lim_{x \to 1^+} (x^2 + x - 2) = 0^+ \end{cases}$$

 $\lim_{x \to 1^+} \frac{3x+1}{x^2 + x - 2} = +\infty$ Donc

х	-∞	-2	1,← +∞
$x^2 + x - 2$	+	0 -	0 +

Remarque:

- Eviter d'écrire ces expressions qui n'ont pas de sens mathématique : $\frac{?}{o^+}$, $\frac{?}{o^-}$
- Ne pas utiliser $+\infty$ ou $-\infty$ dans les opérations dans \mathbb{R} ($+\infty$ et $-\infty$ ne sont pas des réels)

Exercices

Déterminer les limites suivantes : $\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4}$ $\lim_{x \to 2} \frac{\sqrt{4x + 1} - 3}{x^2 - 3x + 2}$

$$\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4}$$

$$\lim_{x \to 2} \frac{\sqrt{4x+1} - 3}{x^2 - 3x + 2}$$

II) CONTINUITE D'UNE FONCTION EN UN POINT

Définition:

Soit f une fonction définie sur un intervalle de centre a. On dit que la fonction f est continue en a si :

elle admet une limite finie en a et $\lim_{x \to a} f(x) = f(a)$

C'est-à-dire : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 \le |x - \alpha| < \alpha \Rightarrow |f(x) - f(\alpha)| < \varepsilon$

Exemples:

Considérons la fonction f définie par :

$$\int f(x) = \frac{2x^3 - x - 14}{x^2 - x - 2} ; si x > 2$$

$$f(x) = \frac{x - 2}{2x^2 + x - 10} ; si x < 2$$

$$f(2) = \frac{1}{9}$$

En utilisant la notion des limites étudier la continuité de la fonction f en $x_0 = 2$.

3- Interprétations graphiques

3.1 Activité:

Activité 1:

Considérons la fonction f définie par : $f(x) = \begin{cases} x^2 + 2x, & x < 1 \\ -x^2 + 4x, & x \ge 1 \end{cases}$

1- Déterminer f(1) et étudier la continuité de la fonction f en

2- Représenter graphiquement la fonction f.

Activité 2:

Considérons la fonction h définie par : $h(x) = \begin{cases} 2x + 2, & x < -1 \\ -3x + 3, & x > -1 \end{cases}$ et h(-1) = 3

- 1- a) la fonction h admet-elle une limite en $x_0 = -1$
 - b) la fonction h est-elle continue en $x_0 = -1$
- 2- Représenter graphiquement la fonction h.

3.2 Interprétations

La courbe	L'interprétation	
$f(x) = \begin{cases} 2x^2 + x, & x < 1 \\ -x^2 + 2, & x \ge 1 \end{cases}$	 f est définie en 1 f n'admet pas de limite en 1 f n'est pas continue en 1 	
$f(x) = \begin{cases} 2x^2 + x - 2, & x < 1 \\ -x^2 + 2, & x > 1 \end{cases}; f(1) = 2$	• f est définie en 1 • f admet une limite en 1 et $\lim_{x\to 1} f(x) \neq f(1)$ • f n'est pas continue en 1	
$f(x) = \begin{cases} 2x^2 + x - 2, & x < 1 \\ -x^2 + 2, & x \ge 1 \end{cases}$	 f est définie en 1 f admet une limite en 1 et lim f(x) = f(1) f est continue en a 	

Exercice:

Etudier la continuité de la fonction

$$\begin{cases} f(x) = x \sin\left(\frac{3}{x}\right), & x \neq 0 \\ f(0) = 0, & x \ge 1 \end{cases}$$

III) CONTINUITE A DROITE CONTINUITE A GAUCHE.

1) Activité et définition.

1.1 Activité.

Introduction

Dans l'exercice prrécedent où f était définie par :

$$f(x) = \frac{2x^3 - x - 14}{x^2 - x - 2} ; si x > 2$$

$$f(x) = \frac{x - 2}{2x^2 + x - 10} ; si x < 2$$

$$f(2) = \frac{1}{9}$$

On a trouvé que : $\lim_{x\to 2^-} f(x) = \frac{1}{9} = f(2)$; on dit que la fonction f est continue à gauche de 2 et $\lim_{x\to 2^+} f(x) \neq \frac{1}{9} = f(2)$ on dit que la fonction f n'est pas continue à droite de 2.

1.2 Définitions

Définition

• Soit f une fonction définie sur un intervalle de la forme [a, a + r[(où > 0)

On dit que la fonction f est continue à droite de a si : f admet une limite finie à droite de a et $\lim_{x \to a^+} f(x) = f(a)$

C'est-à-dire : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 \le x - \alpha < \alpha \Rightarrow |f(x) - f(\alpha)| < \varepsilon$

2 Soit f une fonction définie sur un intervalle de la forme |a-r,a| (où > 0)

On dit que la fonction f est continue à gauche de a si : f admet une limite finie à gauche de a et $\lim_{-} f(x) = f(a)$

C'est-à-dire : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 \le \alpha - x < \alpha \Rightarrow |f(x) - f(\alpha)| < \varepsilon$

Théorème

Une fonction est continue en un point a si et seulement si elle est continue à droite et à gauche de a

Exercice 1:

Etudier la continuité de la fonction
$$\begin{cases} f(x) = \frac{3x^2 - x - 2}{|4x - 3| - 1} & \text{si } x \neq 1 \\ f(1) = \frac{5}{4} & \text{en } a = 1 \end{cases}$$

Exercice 2:

Soit la fonction
$$g$$
 définie par :
$$\begin{cases} g(x) = \frac{x^2 + x - 6}{\sqrt{2x + 12} - 4} & \text{si } x > 2 \\ g(x) = \frac{x^2 + \alpha x - \alpha + 1}{x - 2} & \text{si } x < 2 \\ g(2) = l \end{cases}$$

Existent-t-il α et l pour que g soit continue en 2 ?

III) OPERATIONS SUR LES FONCTIONS CONTINUES.

1) Continuité sur un intervalle

Définition:

Soit f une fonction dont le domaine de définition est D_f , soit a,b un intervalle inclus dans b_f

- On dit que f est continue sur l'ouvert a, b si elle est continue en tout point de a, b
- On dit que f est continue sur [a, b[si elle est continue sur]a, b[et à droite de a
- On dit que f est continue sur [a, b] si elle est continue sur [a, b[, à droite de a et à gauche de b

Remarque:

- \checkmark Si une fonction f est continue sur [a, b] et sur [b, c] elle est continue sur [a, c]
- ✓ En général si f est continue sur un intervalle I et sur un intervalle I et si $I \cap I \neq \emptyset$ alors f est continue sur $I \cup I$.
- \checkmark f peut-être continue sur [a, b] et sur [b, c] sans qu'elle soit continue sur [a, c] Dans le graphique ci-dessous f estcontinue sur [-3,0] et continue sur [0,2] mais pas continue sur [-3,0] car elle n'est pas continue en 0

$$\begin{cases} f(x) = \frac{1}{x} & \text{si } x < 0 \\ f(x) = x^2 & \text{si } x \ge 0 \end{cases}$$

2) Opérations sur les fontions continues

2.1 Rappelles sur les opérations sur les limites finies

Propriété:

Soient f et g deux fonctions tels que : $\lim_{x \to a} f(x) = l \lim_{x \to a} g(x) = l'$ on a :

- $\lim_{x \to a} (f+g)(x) = l + l'$
- $\lim_{x \to a} (f \times g)(x) = l \times l'$
- $\lim_{x \to a} (|f|)(x) = |l|$
- $\lim_{x \to a} (|f|)(x) = |l|$ $\lim_{x \to a} \left(\frac{1}{g}\right)(x) = \frac{1}{l'} \qquad l' \neq 0$ $\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{l}{l'} \qquad l' \neq 0$
- $\lim_{x \to a} \left(\sqrt{f} \right)(x) = \sqrt{l} \qquad l > 0$

Ces propriétés sont vraies à droite et à gauche d'un réel a.

2.2 Opérations sur les fonctions continues

Grace à la propriété précédente et à la définition de la continuité on peut en déduire :

Propriété:

①Si f et g sont deux fonctions continues en a alors :

- f + g
- $f \times g$

sont des fonctions continues en a

② Si f et g sont deux fonctions continues en a et $g(a) \neq 0$ alors

sont des fonctions continues en a.

- ③ Si f une fonction continue en a et $f(a) \ge 0$ alors :
 - \sqrt{f} est continue en a

Remarque:

La propriété précédente reste vraie soit à droite de a, à gauche de a ou sur un intervalle I (En tenant compte des conditions)

Résultat :

Une fonction polynôme sur $\mathbb R$ est définie comme la somme des plusieurs monômes

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Et puisque la fonction $x \mapsto x^n$ est continue sur $\mathbb R$ donc la fonction $x \mapsto kx^n$ et par suite

Propriété:

Tout fonction polynôme est continue sur $\mathbb R$

Propriété:

Toute fonction rationnelle f est continue sur tout intervalle $I \subset D_f$

Propriété:

Les fonctions sin et cos sont continue sur $\mathbb R$

Exemples:

 $\mathbf{\Phi} f(x) = \sqrt{x^2 + x + 3}$ est continue sur \mathbb{R} car $x \mapsto x^2 + x + 3$ étant une fonction polynôme donc elle est continue sur \mathbb{R} de plus $(\forall x \in \mathbb{R})(x^2 + x + 3 \ge 0)$ (Son discriminant Δ est négatif)

2
$$g(x) = \frac{4x^3 + x + 1}{x^2 + 2x - 3}$$
 est continue sur] $-\infty$, -3 [; sur] -3 ,1[et sur]1, $+\infty$ [.

3 La fonction tan est continue sur tous le intervalles de la forme : $\left]\frac{-\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right[$ (où $k \in \mathbb{Z}$)

IV) IMAGE D'UN INTERVALLE PAR UNE FONCTION CONTINUE

1) Image d'un segment (intervalle fermé) :

Activité:

Le graphe ci-contre est le graphe de la fonction $f(x) = x^2 + 2x$

1- Déterminer graphiquement les images des intervalles

$$I_1 = [0,1], I_2 = [-3,-1]; I_3 = [-3,1]$$

2- Montrer algébriquement que f([-3,1]) = [-1,3]

Rappelle:

Théorème: (Admis)

L'image d'un segment [a, b] par une fonction continue est le segment [m, M] où :

$$m = \min_{x \in [a,b]} f(x)$$
 et $M = \max_{x \in [a,b]} f(x)$

La courbe ci-contre est la courbe de la fonction

$$f(x) = x^3 + 3x^2 + 2$$

$$f([a,b]) = [m,M]$$

continuitéiamgeintervalle.ggb

Cas particulier:

- Si f est continue **croissante** sur [a, b] alors f([a, b]) = [f(a), f(b)]
- Si f est continue <u>décroissante</u> sur [a, b] alors f([a, b]) = [f(b), f(a)]

Remarque:

La continuité dans le théorème précèdent est suffisante mais pas nécessaire

Dans la figure ci-contre f n'est pas continue mais

$$f([0,2]) = [f(2), f(1)] = [-1,2]$$

2) Image d'un intervalle.

2.1 Théorème général

Théorème (admis)

L'image d'un intervalle par une fonction continue est un intervalle.

Remarque:

L'intervalle I et son image f(I) par une fonction continue n'ont pas nécessairement la même forme.

Dans le cas de la courbe ci-contre on a :

$$f(]0,2]) = [-2,1]$$

deI

2.2 Cas d'une fonction strictement monotone :

L'intervalle I	f(I): f strictement	f(I): f strictement
	croissante	décroissante
[<i>a</i> , <i>b</i>]	[f(a),f(b)]	[f(b),f(a)]
[a, b[$[f(a), \lim_{x\to b^-} f(x)]$	$\lim_{x \to b^{-}} f(x), f(a)$
]a, b[$\lim_{x \to a^{+}} f(x)$, $\lim_{x \to b^{-}} f(x)$	$\lim_{x\to b^-} f(x), \lim_{x\to a^+} f(x) [$
[<i>a</i> , +∞[$[f(a), \lim_{x\to+\infty} f(x)]$	$\lim_{x\to+\infty}f(x),f(a)$
] - ∞, <i>b</i> [$\lim_{x\to-\infty} f(x), \lim_{x\to b^{-}} f(x) [$	$\lim_{x\to b^{-}} f(x), \lim_{x\to -\infty} f(x) [$
] − ∞, +∞[$ \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x) [$	$\lim_{x\to+\infty}f(x), \lim_{x\to-\infty}f(x)$

Remarque

Si f n'est pas strictement monotone sur l'intervalle I, on peut utiliser les propriétés précédentes en subdivisant l'intervalle I en intervalles où f est strictement monotone et on utilise la propriété $f(I_1 \cup I_2) = f(I_1) \cup f(I_2)$.

Exercice:

- 1- Dresser le tableau de variation de la fonction $f(x) = 2x^2 3x^2$
- 2- Déterminer les images des intervalles suivants :]-1,0]; [1,2]; [-1,2[; $[0,+\infty[$

V) THEOREME DES VALEURS INTERMEDIERE – TVI.

1) Le théorème :

Théorème T.V.I:

1.1 Cas général

Preuve:

Rappelons que :
$$f(I) = J \Leftrightarrow \begin{cases} (\forall x \in I)(f(x) \in J) \\ (\forall y \in J)(\exists x \in I)(f(x) = y) \end{cases}$$

Soit f une fonction continue sur un intervalle I; a et b deux éléments tels que : a < b.

On a donc $f(a) \in [m, M]$ et $f(b) \in [m, M]$.

Soit λ comprise ntre f(a) et f(b) on a donc : $\lambda \in [m, M]$ et puisque

f([a,b]) = [m,M] donc λ admet au moins un antécédent c dans l'intervalle [a,b].

Soit f une fonction continue sur [a, b].

Pour tout λ comprise ntre f(a) et f(b) il existe au moins un $c \in [a, b]$ tel que $f(c) = \lambda$

1.2 Cas f strictement monotone.

Théorème T.V.I (cas f strictement monotone)

Soit f une fonction continue strictement monotone $\,\,{
m sur}\,[a,b]$. Pour tout λ comprisentre f(a) et f(b) il existe un et un seul

 $c \in [a, b]$ tel que $f(c) = \lambda$

Remarque:

L'expression " Pour tout λ compris entre f(a) et f(b) il existe un et un seul $c \in [a,b]$ tel que $f(c) = \lambda$ " peut-être formulée comme :

" Pour tout λ comprise ntre f(a) et f(b) l'équation $f(x) = \lambda$ admet une solution unique dans [a,b]

Corolaire1 (T.V.I):

Soit f une fonction continue sur [a, b].

Si $f(a) \times f(b) < 0$ il existe au moins un $c \in [a, b]$ tel que f(c) = 0

Preuve:

 $f(a) \times f(b) < 0$ veut dire que f(a) et f(b) ont des signes opposés donc 0 est compris entre f(a) et f(b)

On prend $\lambda = 0$ dans le théorème général des valeurs intermédiaire.

Corolaire2 (T.V.I):

Soit f une fonction continue strictement monotone sur [a,b] .

Si $f(a) \times f(b) < 0$ il existe un et un seul c dans [a, b] tel que f(c) = 0

2) Applications:

Exercice 1:

- 1- Montrer que l'équation $x^3 + x 1 = 0$ admet une racine unique dans [0,1]
- 2- Montrer que l'équation $x^3 + x 1 = 0$ admet une racine unique dans \mathbb{R} .

VI) FONCTIONS COMPOSEES ET FONCTIONS RECIPROQUES.

1) Composition de deux fonctions

1.1 Rappelle

Activité:

Soit
$$f(x) = 2x^2 + x$$
 et $g(x) = \frac{1}{x}$

- 1- Déterminer : g(f(x)), déterminer les conditions d'existence de g(f(x)).
- 2- Déterminer : f(g(x)), déterminer les conditions d'existence de f(g(x)),

La fonction qui à tout réel x associe g(f(x)), s'appelle la composition des fonction f et g dans cet ordre et se note gof

La fonction qui à tout réel x associe f(g(x)), , s'appelle la composition des fonction g et f dans cet ordre et se note $f \circ g$

3- A-t-on
$$gof = fog$$
?

Exercice:

Soient $u(x) = \sqrt{x^2 - 1}$ et v(x) = 1 - 3x

- 1- Déterminer *uov* et son ensemble de définition.
- 2- Déterminer *vou* et son ensemble de définition.

1.2 Composition et limite et continuité

Théorème:

Soient f une fonction définie sur un intervalle I et g une fonction définie sur un intervalle I tels que $f(I) \subset I$ et x_0 un élément de I.

- ① Si f est continue en x_0 et g continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 .
- ② Si f est continue I et g continue en f(I) alors $g \circ f$ est continue I.

Exemples:

- $g(x) = \sqrt{1 x^2}$ est continue sur [-1,1]

Théorème:

Soit u une fonction définie sur un intervalle pointé de centre x_0 telle que $\lim_{x \to x_0} u(x) = l$; si v est continue en lalors $\lim_{x \to x_0} (vou)(x) = v(l)$

Exercices

Déterminer les limites suivantes :

- 1. $\lim_{x \to 1} \sqrt{\frac{x^2 + x 2}{\sqrt{x + 3} 2}}$ 2. $\lim_{x \to 0} \cos\left(\pi \frac{\sin 4x}{3x}\right)$

2) Fonctions réciproques

Activité:

Soit
$$f(x) = \frac{1}{1+x^2}$$

- 1- Montrer que pour tout y dans = $[0, +\infty[$, l'équation f(y) = x admet une solution unique dans l'intervalle J =]0,1]
- 2- Etudier la monotonie et la continuité de f sur $\mathbb R$

On dit que la fonction f admet une fonction réciproque de J =]0, 1] vers $I = [0, +\infty[$

Remarque:

$$\begin{cases} f^{-1}(x) = y \\ x \in F \end{cases} \Leftrightarrow \begin{cases} f(y) = x \\ y \in E \end{cases}$$

On a:

$$(\forall x \in F)(fof^{-1}(x) = x)$$

$$(\forall x \in E)(f^{-1}of(x) = x)$$

Théorème:

Soit f une fonction définie continue et strictement monotone sur un intervalle I, On a f admet une fonction réciproque f^{-1} définie de J=f(I) vers I.

Exercice 1

Soit la fonction $f(x) = 2x^2 + x + 1$ définie sur \mathbb{R} .

- 1- Déterminer J = f([0,1])
- 2- Montrer que f admet une fonction réciproque de J vers [0,1] et déterminer $f^{-1}(x)$ pour x dans J

Exercice 2:

Soit la fonction $g(x) = x - 2\sqrt{x}$ définie sur \mathbb{R} .

- 1- Montrer que g est strictement croissante sur $[1, +\infty[$ puis déterminer $J = g([1, +\infty[)$
- 2- Montrer que g admet une fonction réciproque de J vers $[1, +\infty]$ et déterminer $g^{-1}(x)$ pour x dans J

Propriété 1:

Si f admet une fonction réciproque f^{-1} de J=f(I) vers I alors f^{-1} à la même monotonie sur J que celle de f sur I.

Preuve:

$$\begin{split} T_{f^{-1}/J} &= \frac{f^{-1}(x_1) - f^{-1}(x_2)}{x_1 - x_2} \\ &= \frac{y_1 - y_2}{f(x_1) - f(x_2)} \\ &= \frac{1}{T_{f/I}} \ (T_{f/I} \neq 0 \ f \ \text{est strictement monotone}) \end{split}$$

Donc le taux de $f^{-1} \operatorname{sur} J$ à le même signe que le taux de $f \operatorname{sur} I$

Et on conclut.

Propriété 2 :

 $f^{-1}(x_{1}^{2}) = y_{1}^{2}$ $x_{1}^{2} = f(y_{1}^{2})$ $x_{2}^{2} = f(y_{2}^{2})$ $x_{3}^{2} = f(y_{2}^{2})$

Si f admet une fonction réciproque f^{-1} de J=f(I) vers I alors $\mathcal{C}_{f^{-1}}$ et \mathcal{C}_{f} sont symétriques par rapport à :

(
$$\Delta$$
) $y = x$

Rappelles:

② Dans un repère orthogonal si on a un point M(a, b) son symétrique par rapport à la droite (Δ) y = x est le point M'(b, a).

Preuve d'une propriété :

Soit f une fonction continue strictement monotone sur un intervalle I, f^{-1} sa fonction réciproque définie de I = f(I) vers I.

 \mathcal{C}_f et $\mathcal{C}_{f^{-1}}$ sont les courbes respectives de f et de f^{-1} .

Soit M(a, f(a)) un point de la courbe C_f son symétrique par rapport à la droite (Δ) y = x est le point M'(f(a), a).

$$\operatorname{Or}: \begin{cases} f(a) = b \\ a = f^{-1}(b) \end{cases} \operatorname{donc} M'(b, f^{-1}(b)) \operatorname{d'où} M' \in C_{f^{-1}}$$

Propriété:

Soit f une fonction continue strictement monotone sur un intervalle I, f^{-1} sa fonction réciproque définie de J=f(I) vers $I.C_f$ et $C_{f^{-1}}$ sont symétriques par rapport à la droite (Δ) y=x

A remarquer que la symétrie des deux courbes concerne toutes leurs composantes ; les asymptotes ; les tangentes et demi-tangentes...

3) La fonction racine $oldsymbol{n} - lpha oldsymbol{m} oldsymbol{e}$

3.1 Définition et règles de calculs

Propriété et définition :

Soit n un élément de \mathbb{N}^* ; la fonction $u\colon x\mapsto x^n$ est une fonction continue strictement croissante sur \mathbb{R}^+ elle admet donc une fonction réciproque u^{-1} de $u(\mathbb{R}^+)=\mathbb{R}^+$ vers \mathbb{R}^+ . La fonction réciproque u^{-1} s'appelle la fonction racine $n-\acute{e}me$ et se note $\sqrt[n]{}$

Conséquence de la définition :

- La fonction $\sqrt[n]{}$ est définie sur \mathbb{R}^+
- $(\forall x \in \mathbb{R}^+)(\sqrt[n]{x} \ge 0)$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)(\sqrt[n]{x} = y \iff y^n = x)$

- La fonction $\sqrt[n]{}$ est continue sur \mathbb{R}^+ strictement croissante.
 - $\circ \quad (\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) (\sqrt[n]{x} = \sqrt[n]{y} \Longleftrightarrow x = y)$
 - $\circ \quad (\forall a \in \mathbb{R}^+) \ (\sqrt[n]{x} \ge a \Longleftrightarrow x \ge a^n)$
 - $\circ \quad (\forall a \in \mathbb{R}^+) \ (\sqrt[n]{x} \le a \Longleftrightarrow 0 \le x \le a^n)$
- $(\forall x \in \mathbb{R}^+)((\sqrt[n]{x})^n = \sqrt[n]{x^n} = x$
- $(\forall x \in \mathbb{R}^+)(\forall p \in \mathbb{N})((\sqrt[n]{x})^p = \sqrt[n]{x^p}$
- $\bullet \quad \lim_{x \to +\infty} \sqrt[n]{x} = +\infty$
- Si $\lim_{x \to **} u(x) = +\infty$ alors $\lim_{x \to **} \sqrt[n]{u(x)} = +\infty$
- Si $\lim_{x \to **} u(x) = l \ge 0$ alors $\lim_{x \to **} \sqrt[n]{u(x)} = \sqrt[n]{l}$

<u>La courbe de la fonction</u> $\sqrt[n]{}$

Règle de calcul :

- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \left(\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}\right)$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+}) \left(\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}\right)$
- $(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*) \left(\sqrt[p]{\sqrt[n]{x}} = \sqrt[np]{x}\right)$ (à prouver)
- $(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*)(\sqrt[n]{x} = \sqrt[np]{x^p})$ (à prouver)

Remarque:

- $(\forall x \in \mathbb{R}^+)(\sqrt[2]{x} = \sqrt{x})$
- $(\forall x \in \mathbb{R}^+)(\sqrt[1]{x} = x)$

L'équation $x^n = a$

Exercices d'applications:

Exercice 1:

- 1. Résoudre dans \mathbb{R} : x^4 = 16
- 2. Résoudre dans $\mathbb{R}:(x-1)^3=-27$

Exercice 2:

- 1. Résoudre dans \mathbb{R} l'équation: $\sqrt[3]{x} x = 0$
- 2. Résoudre dans \mathbb{R} l'équation: $\sqrt[3]{x} 5\sqrt[6]{x} + 6 = 0$
- 3. Résoudre dans \mathbb{R} l'inéquation: $\sqrt{x-1} \sqrt[3]{x-2} > 1$.

3.2 L'expression conjuguai et ses applications

Ordre 3:

On sait que $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ et $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

Il en résulte : $a-b = \frac{a^3-b^3}{a^2+ab+b^2}$ et $a+b = \frac{a^3+b^3}{a^2-ab+b^2}$

Par suite:

$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+}) \left(\sqrt[3]{x} - \sqrt[3]{y} = \frac{x - y}{\sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2}} \right)$$
$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+}) \left(\sqrt[3]{x} + \sqrt[3]{y} = \frac{x + y}{\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}} \right)$$

Applications:

① Rendre le dénominateur rationnel :

$$a = \frac{3\sqrt{2}}{\sqrt[3]{2}-2}$$

$$b = \frac{1}{\sqrt[3]{4} + \sqrt[3]{2} + 1}$$

② Déterminer les limites suivantes :

$$\lim_{x \to 1} \frac{\sqrt[3]{20x^2 + 7} - 3}{x^2 + x - 2}$$

$$\lim_{x \to 4} \frac{\sqrt[3]{3x-4} - \sqrt{x}}{x-4}$$

D'ordre 4:

On sait que : $a^4 - b^4 = (a - b)(a^3 + a^2b + ab^2 + b^3)$

Il en résulte que : $a - b = \frac{a^4 - b^4}{a^3 + a^2 b + a^2 b^2 + b^3}$

Et par suite:

$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+}) \left(\sqrt[4]{x} - \sqrt[4]{y} = \frac{x - y}{\sqrt[4]{x^3} + \sqrt[4]{x^2y} + \sqrt[4]{xy^2} + \sqrt[4]{y^3}} \right)$$

A remarquer qu'on ne peut pas factoriser : $a^4 + b^4$

Applications:

Déterminer les limites suivantes :

$$\lim_{x \to 1} \frac{\sqrt[4]{20x - 4} - 2}{2x^2 + x - 3}$$

$$\lim_{x \to 0} \frac{\sqrt[4]{2x+1} - 1}{\sqrt[3]{2x+8} - 2}$$

4) Puissance rationnelle :

4.1 Puissance entier

Rappelle:

Soit x un réel et n un entier naturel non nul on a : $x^n = \underbrace{x \times x \times ... \times x}_{n \text{ fois}}$ et $x^0 = 1$ ($x \neq 0$)

Pour $x \neq 0$ on a $x^{-n} = \frac{1}{x^n}$

4.2 Puissance rationnelle

Propriété:

Pour tout réel $x \ge 0$ et pour tout entier non nul q on pose : $\sqrt[q]{x} = x^{\left(\frac{1}{q}\right)}$

Preuve : (en exercice)

Définition:

Soit x un réel positif et r un rationnel ($r\in\mathbb{Q}$) ; $r=\frac{p}{q}$ où $p\in\mathbb{Z}$ et $q\in\mathbb{N}^*$ on pose :

$$x^{r} = x^{\left(\frac{p}{q}\right)} = \sqrt[q]{x^{p}} = \left(\sqrt[q]{x}\right)^{p}$$

Propriétés

Soit x et y deux réels positifs, r et r' des rationnels on a :

1.	$x^{r+r'} = x^r \times x^{r'}$
2.	$x^{r \times r'} = (x^r)^{r\prime} = (x^{r\prime})^r$
	$x^{-r\prime} = \frac{1}{x^{r\prime}} (x \neq 0)$
4.	$x^{r-r\prime} = \frac{x^r}{x^{r\prime}} (x \neq 0)$
5.	$(xy)^r = x^r y^r$
6.	$\left(\frac{x}{y}\right)^r = \frac{x^r}{y^r}$

Exercice 1:

Démontrer 1 et 2

Exercice 2:

Comparer les nombres $a = \sqrt[3]{5}$ et $b = \sqrt[4]{20}$

Application aux calculs des limites.

Calculer les limites suivantes :

$$\circ \lim_{x \to +\infty} \sqrt[5]{2x^2 + 3x} - \sqrt[4]{3x^3 + x^2}$$

$$\lim_{x \to +\infty} \sqrt{2x^2 + 3x} - \sqrt{3x^3 + x}$$

$$\lim_{x \to +\infty} \sqrt[3]{8x^2 + 3x} - 2\sqrt[3]{x^2 - x^2}$$

$$\lim_{x \to +\infty} \sqrt[4]{x - 1 - 1}$$

$$0 \quad \lim_{x \to +\infty} \frac{\sqrt[4]{x-1}-1}{\sqrt[3]{x+1}+x}$$

$$\circ \lim_{x \to +\infty} \sqrt[p]{x^q + 1} - \sqrt[q]{x^p + 1} \text{ (discuter suivant les valeurs de } p \text{ et } q)$$