0.1. Матричные транспортные задачи (МТЗ)

Матричные транспортные задачи являются частным случаем сетевых транспортных задач — это задачи о минимальном потоке на простой сети, изображенной на рис. 1. Здесь множество узлов разбито на два непересекающихся подмножества — источники I_1 и стоки I_2 , причем каждый источник соединен дорогами с каждым стоком: $U = \{(i_1, i_2), i_1 \in I_1, i_2 \in I_2\}$. В силу специфики этих задач их решение осуществляется в другой по сравнению с СТЗ форме — в матричной форме.

Рис. 1: Матричная транспортная задача — сетевая транспортная задача

Введем транспортную $m \times n$ таблицу, в которой строкам соответствуют пункты производства (источники) A_i , $i \in I_1$, а столбцам — пункты потребления (стоки) B_j , $j \in I_2$. Объем производства запишем справа от строки, объем потребления — снизу столбца. Клетка (i,j) соответствует дороге из A_i в B_j . Клетку разделим на шесть частей как указано на рис. 2, где c_{ij} — стоимость перевозки, d_{ij} — пропускная способность дороги (верхнее ограничение на поток: $0 \le x_{ij} \le d_{ij}$), x_{ij} — величина перевозки, Δ_{ij} — оценка перевозки, l_{ij} — направление (в клетку будем записывать или + или — в зависимости от того, равен шаг 1 или -1), θ_{ij} — шаг.

Условия баланса в узлах сводятся к следующим равенствам:

$$\sum_{j=1}^{n} x_{ij} = a_i, i = \overline{1, m}; \quad \sum_{i=1}^{m} x_{ij} = b_j, j = \overline{1, n},$$

а условие общего баланса имеет вид:

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j.$$

Рис. 2: Матричная транспортная задача: Клетка и ее данные

Определение 0.1. Множество клеток называется базисным, если оно состоит из m+n-1 клетки, и из его элементов невозможно составить ни одного цикла. Остальные клетки таблицы — небазисные.

Определение 0.2. План перевозок называется базисным, если его небазисные компоненты принимают граничные значения: $x_{ij} = 0 \bigvee d_{ij}$.

0.2. Построение начального базисного потока

В классической задаче без ограничений на перевозки существует несколько правил построения начального базисного плана перевозок: северо-западного угла, минимального элемента, Фогеля, двойного предпочтения и др. Отметим, что как показывает практика, более близкий к оптимальному первоначальный план получается по правилу Фогеля, затем двойного предпочтения, минимального элемента и, наконец, по правилу северо-западного угла, хотя это и необязательно, о чем свидетельствуют приведенные ниже примеры.

Правило северо-западного угла. Заполняем клетку (1,1), в которую помещаем перевозку $x_{11}=\min\{a_1,b_1\}$. Если $x_{11}=a_1$, тогда вычеркиваем первую строку и рассматриваем уменьшенную транспортную таблицу, в которой вместо b_1 полагаем $\bar{b}_1=b_1-a_1$. Если $x_{11}=b_1$, тогда вычеркиваем первый столбец, а в уменьшенной транспортной таблице полагаем

 $\bar{a}_1 = a_1 - b_1$. В обоих случаях в уменьшенной матричной таблице опять по тому же правилу заполняем клетку в левом верхнем углу (северо-западный угол) и т.д. Поскольку на каждом шаге вычеркивается либо одна строка, либо один столбец, то через n+m-1 шагов останется не вычеркнутой либо строка, либо столбец, но заполненными будут n+m-1 клеток. Они и образуют базисное множество клеток. В незаполненных клетках полагаем $x_{ij} = 0$. Построенный вектор $x = (x_{ij}, (i,j) \in U_B)$ и будет базисным планом перевозок. Если на каком-то шаге окажется, что минимум достигается одновременно на обоих элементах $(x_{ij} = a_i = b_j)$, тогда вычеркивается либо только i-я строка, либо только j-й столбец. В результате на следующем шаге базисная перевозка будет нулевой, т.е. построенный базисный план перевозок будет вырожденным.

Пример построения начального базисного плана перевозок по методу северо-западного угла приведен на рис. 3.

Рис. 3: Пример 1: Метод северо-западного угла

Правило минимального элемента (минимальной стоимости). Отличается от предыдущего правила только выбором клетки заполнения. Если в предыдущем случае на каждом шаге выбиралась клетка в левом верхнем углу таблицы, то теперь каждый раз выбираем из всех клеток уменьшенной по тем же правилам транспортной таблицы клетку с минимальной стоимостью перевозок.

Пример построения начального базисного плана перевозок по методу

минимального элемента приведен на рис. 4.

Рис. 4: Пример 1: Метод минимального элемента

Правило двойного предпочтения. Если транспортная таблица велика, то правило минимального элемента вызывает определенные затруднения с выбором клетки с минимальным тарифом. В этом случае более предпочтительно следующее правило построения начального базисного плана перевозок.

В каждой строке и в каждом столбце помечаем клетки с минимальной стоимостью. В результате получим некоторые клетки, которые помечены дважды. Это означает, что в них минимальная стоимость как по строке, так и по столбцу. На практике будем помечать эти клетки знаком. По тому же правилу, что и в предыдущих случаях, заполняем сначала клетки, помеченные дваж-ды, вычеркивая каждый раз строку или столбец. Затем заполняем клетки, помеченные один раз. Наконец, в уменьшенной таблице по правилу минимального элемента заполняем недостающие клетки.

Пример построения начального базисного плана перевозок по методу двойного предпочтения приведен на рис. 5.

0.3. * Построение начального базисного потока в задаче с ограниченими на перевозки методом проб и ошибок

В задаче с ограничениями начальный базисный план строится по одному из перечисленных правил, однако при заполнении клетки (i, j) теперь минимум берется не из величин a_i , b_j , а из трех величин a_i , b_j , d_{ij} :

Рис. 5: Пример 1: Метод двойного предпочтения

 $x_{ij} = \min\{a_i, b_j, d_{ij}\}$. Если $x_{ij} = d_{ij}$, то вычеркивается только эта клетка, причем она будет небазисной (обведем d_{ij} в клетке в квадрат), а на следующем шаге значения a_i , b_j уменьшаются на величину d_{ij} . Если же $x_{ij} = a_i \bigvee b_j$, то вычеркивается либо i-я строка, либо j-й столбец, как и для задач с односторонними прямыми ограничениями. В последних случаях заполненная клетка будет базисной. Во всех остальных незаполненных клетках стоят небазисные нулевые перевозки.

При построении начального базисного плана перевозок на последнем шаге возможна ситуация: $\alpha=a_{i_1}=b_{j_1}\neq 0$, но клетка (i_1,j_1) либо уже заполнена (небазисная), либо $d_{i_1j_1}<\alpha$ (в последнем случае полагаем $x_{i_1j_1}=d_{i_1j_1}$, т.е. клетка становится небазисной, заполненной, как в первом случае, и обозначаем $\alpha:=\alpha-d_{i_1j_1}$).

Тогда в столбце B_{j_1} (или строке A_{i_1}) находим

- либо незаполненную клетку (i_2,j_1) (или (i_1,j_2)) такую, чтобы ограничение было больше $\alpha\colon d_{i_1j_1}>\alpha$,
 - либо базисную, в которой перевозка не на границе.

Рассмотрим оба случая.

Если клетка не заполнена, то помещаем в нее перевозку α и вычеркиваем соответственно столбец или строку. Клетку считаем базисной. Если при этом образовался цикл, то в нем отыскиваем базисную клетку с граничной перевозкой (она всегда существует) и выводим ее из базиса. На одном из по-

Рис. 6: Пример 2: Метод минимального элемента

Рис. 7: Пример 2: Метод северо-западного угла

следующих шагов обязательно добавляем базисную клетку. Поскольку для строки A_{i_2} нарушилось условие баланса, то необходимо из какой-либо из заполненных в этой строке клеток вычесть значение α . Лучше всего взять клетку (i_2,j_2) такую, что клетка (i_1,j_2) является незаполненной. В этом случае будем иметь $\bar{x}_{i_2j_2}=x_{i_2j_2}-\alpha$, $x_{i_1j_2}=\alpha$. Если клетка (i_2,j_2) была небазисной и $\bar{x}_{i_2j_2}$, то она становится базисной. Если при этом образовался цикл, поступаем, как и выше.

Если клетка (i_2, j_1) была базисной, то увеличиваем в ней перевозку и поступаем дальше, как и в первом случае. Иногда приходится сделать больше шагов для окончательного построения начального базисного плана перевозок.

0.4. Метод потенциалов решения матричных транспортных задач

Пусть найден начальный базисный план перевозок.

Алгоритм метода потенциалов:

1) Строкам поставим в соответствие потенциалы u_i , $i=\overline{1,m}$, столбцам $-v_j$, $j=\overline{1,n}$, (на рисунках записываем слева от строк и над столбцами). Общая формула для вычисления потенциалов имеет вид (по книге):

$$u_i + v_j = -c_{ij}, \quad (i,j) \in U_B,$$

а на практике поступают следующим образом: для некоторой строки или столбца (как правило, с наибольшим числом базисных клеток) полагают потенциал равным 0.

Замечание 0.1. Возможно, в Лекциях потока ПМ другой знак:

$$u_i + v_j = c_{ij}, (i, j) \in U_B.$$

2) Подсчитываем оценки (записываем их в клетку):

$$\Delta_{ij} = -c_{ij} - (u_i + v_j), \quad (i, j) \in U_H.$$

Замечание 0.2. Возможно, в Лекциях потока ПМ другой знак:

$$\Delta_{ij} = c_{ij} - (u_i + v_j), \ (i, j) \in U_H.$$

3) Проверяем условия оптимальности:

$$\Delta_{ij} \leq 0$$
 при $x_{ij} = 0$,

$$\Delta_{ij} \geq 0$$
 при $x_{ij} = d_{ij}, \ (i,j) \in U_H.$

При их выполнении сетевой поток x оптимален, решение прекращаем. Иначе переходим к следующему шагу.

4) Выберем клетку (i_0, j_0) :

$$|\Delta_{i_0j_0}| = \max |\Delta_{ij}|,$$

где максимум берется по всем небазисным клетках, на которых нарушаются условия оптимальности.

Эту клетку будем добавлять в базис. Вместе с другими базисными клетками получится ровно один цикл.

Этой клетке припишем знак +, если $x_{i_0j_0}=0$, и знак -, если $x_{i_0j_0}=d_{i_0j_0}$. Начиная с этой клетки, обойдем цикл, чередуя знаки + и -.

5) Для клеток цикла подсчитаем шаги

$$\theta_{ij} = \begin{cases} d_{ij} - x_{ij}, & \text{если } (i,j) - \text{клетка со знаком+}; \\ x_{ij}, & \text{если } (i,j) - \text{клетка со знаком-}, \end{cases}$$

и минимальный шаг

$$\theta^0 = \min_{(i,j) \in \text{ЦИКЛУ}} \theta_{ij}.$$

6) Построим новый базисный план перевозок:

$$ar{x}_{ij} = \left\{ egin{array}{ll} x_{ij} + heta^0, & ext{если } (i,j) - ext{клетка со знаком+;} \ x_{ij} - heta^0, & ext{если } (i,j) - ext{клетка со знаком-;} \ (i,j) \in U. \ x_{ij} & ext{если } (i,j) - ext{не из цикла,} \end{array}
ight.$$

7) Отметим новое базисное множество клеток: если $\theta^0 = \theta_{i_0 j_0}$, то $\bar{U}_B = U_B$, если $\theta^0 = \theta_{i_* j_*}$, то

$$\bar{U}_B = (U_B \setminus (i_*j_*)) \cup (i_0, j_0).$$

0.5. Пример: задача с ограничениями на потоки, прямой метод

Решим пример 2, взяв в качестве начального потока построенный по методу минимального элемента. Ниже в таблице представлена первая итерация, переход к новому базису (план остается прежним), и доказательство оптимальности полученного плана (потенциалы и оценки подсчитаны как на лекциях групп ПМ, смю задачник).

Рис. 8: Пример 2

Рис. 9: Пример 2

Решим пример 2, взяв в качестве начального потока построенный по методу северо-западного угла. Ниже в таблице представлена первая итерация и переход к новому базису.

0.6. Первая фаза для матричной транспортной задачи

Для построения начального базисного плана перевозок используется **первая фаза** метода потенциалов, которая состоит в следующем.

Добавляется искусственный пункт производства A_{m+1} (искусственная строка) $a_{m+1} = \sum_{j=1}^n b_j$ и искусственный пункт потребления B_{n+1} (искусственный столбец) с интенсивностью $a_{m+1} = \sum_{i=1}^m a_i$. Стоимость перевозок

- =0 для клеток исходной таблицы и клетки (m+1,n+1) (она не считается искусственной);
 - = 1 для искусственных клеток.

Начальный базис — все искусственные клетки. Начальный поток: $x_{ij}=0$ для клеток исходной таблицы и клетки (m+1,n+1); $x_{m+1,j}=b_j$ для искусственной строки; $x_{i,n+1}=a_i$ для искусственного столбца.

Задача первой фазы решается методом потенциалов.

В результате решения задачи первой фазы получим оптимальный план перевозок x^* с базисным множеством клеток U_B^* , который обладает одним из следующих свойств:

- 1) существует клетка $(i_*, j_*) \in U_{\mathcal{U}}$, что $x_{i_*, j_*} \neq 0$;
- 2) $x_{ij}^0 = 0$, $(i,j) \in U_{I\!\!I}$; среди базисных клеток имеется лишь одна искусственная;
- 3) $x_{ij}^0=0\,,\;(i,j)\in U_{I\!\!I}\,;$ среди базисных клеток имеется больше одной искусственной.

В случае 1 исходная задача не имеет решения.

В случае 2 отбрасываем искусственные строку и столбец. Получим начальный базисный поток исходной задачи.

В случае 3 возьмем среди небазисных клеток исходной таблицы клетку (i_*, j_*) , которая с базисными клетками образует цикл. Выведем искусственную из базиса, заменив ее клеткой (i_*, j_*) . Через конечное число шагов придем к случаю 2.

Составим и решим задачу первой фазы для следующего примера 3 (пособие).

	B_1		B_2	-	a_i
A_1	3	1	15	3	
					12
A_2	9	4	7	5	
					11
A_3	11	2	17	1	
					23
b_{j}	10		36		

Рис. 10: Пример 3

Итерации первой фазы приведены в таблицах на рис. 11. В последней таблице получено решение задачи первой фазы, все искусственные переменные равны нулю. Удалим третий столбец и четвертую строку, переходим к решению задачи второй фазы (см. таблицы на рис. 12)

Рис. 11: Пример 3: Итерации первой фазы

0.7. Пример: задача без ограничений на потоки

Модификации, которые необходимо внести для задач без ограничений на потоки состоят в следующим:

3) Проверяем условия оптимальности:

$$\Delta_{ij} \ge 0 \ (i,j) \in U_H.$$

		7	Габли	ya 4.11
v_j	0		-2	a_i
u_i				.
	3 1	15	3	
-1	0	(12)		12
	9 4	7	5	
-4	(4)		1	11
	11 2	17	1	
-2	(6)		3	23
b_j	10	36		-

Рис. 12: Пример 3: Итерации второй фазы

При их выполнении сетевой поток x оптимален, решение прекращаем. Иначе переходим к следующему шагу.

- 4) Выберем клетку (i_0, j_0) , этой клетке припишем знак +, обойдем цикл, чередуя знаки + и -.
- 5) Только для клеток цикла со знаком подсчитаем шаги

$$\theta_{ij} = x_{ij}$$
.

и найдем минимальный шаг в клетке (i_*, j_*) .

- 6) Построим новый базисный план перевозок по тем же правилам
- 7) Отметим новое базисное множество клеток:

$$\bar{U}_B = (U_B \setminus (i_*, j_*)) \cup (i_0, j_0).$$

Пример см. на стр. 156 задачника.