- · Now we have IE, Ic, and IB interms of materials parameters: Wb, DPE and DPC (>> Dp(Up) and Lp(Tp)
- OPE, OPE relate to VBE, VCB so can get performance (4,13,8) from I sunder different biasing.
- · IE, Ic, IB equations are general

 all biasing conditions *

Example

(hole corrent since PnP)

OF IFUBE shorted, then DP==0 etc.

For a pnp device with $I_{\rm Ep}=1$ mA, $I_{\rm En}=0.01$ mA, $I_{\rm Cp}=0.98$ mA, and $I_{\rm Cn}=0.1$ $\mu{\rm A}$, calculate

- (a) Base transport factor B
- (c) α_{dc} and β_{dc} ; the value of I_B
- (e) If $I_{Cp} = 0.99$ mA, calculate β_{dc} and I_B .
- (f) If $I_{Cp} = 0.99$ mA and $I_{En} = 0.005$ mA, calculate β_{dc} and I_{B} .
- (g) How will β_{dc} change if I_{En} is increased?

$$(a) B = I_{cp}/I_{Ep} =$$

$$\gamma = \frac{I_{EP}}{I_{En} + I_{EP}} =$$

$$\beta = I_{CP}/I_{EP} = 0.99$$
, $\alpha_{dc} = 0.9802$
 $\beta_{dc} = I_{B} = I_{CP}/I_{EP} = 0.99$

Approximations of the Terminal Currents

IE, Ic, and Is for round transistor biasing Thus for collector reverse-biased, DPC = - Pro and for small Pr, can neglect DPC. TE=IEP= 8A DP DP Ctnh Wb LP Ic = BADIO DRE coch Wb IB = gAPP OFE tanh 22p

For small values of W_b/L_p , can expand Hyperbolic trig. functions and keep only lowest order:

sech
$$(y) = 1 - y^2/2 + 5y^4/24 - \dots$$

ctnh $(y) = 1/y + y/3 - y^3/45 + \dots$
csch $(y) = 1/y - y/6 + 7y^3/360 - \dots$
tanh $(y) = y - y^3/3 + \dots$

Charge Control Approximation

Comments

between E and C. Otherwise,

Ig=0

But for normal biasing, see basic relationships:

. Ic = gairs increases as IB decreases.
IB

as we gets smaller ("narrow base"), gain vicreases.

To ~ Cach The ~ \frac{1}{y} = \frac{1}{y^2/2} = \frac{2Lp^2}{V_b^2} = \frac{1}{y^2/2} = \frac{1}{V_b^2} = \frac{1}{V_b^2

as we gets smaller ("narrow loase"), gain increases.

· IB - BADE WO

as Tp gets larger, IB decreases, gain

can increase Tp by light doping in base. (improves emitter efficiency too)

But tradeoff: longer to slower bandwidth and frequency response

Corrent Transfer Ratio can write in terms of emitter and base properties: L= TED I_Ep+Ien = [1+ Lpnnun tanh Wb] Homework = [1 + Monnum]-1 bup lew. IEP . [+ IEn] Make & large: ~ 1 For P-n-p transistor, make Pp

Example p-n-p transistor

$$P_{p} = 10 \text{ n}_{n} \quad \mathcal{A}_{n}^{p} = \frac{1}{2} \mathcal{A}_{p}^{n} \quad \mathcal{W}_{b} = \frac{1}{10} \mathcal{L}_{p}^{n}$$

carrier lifetimes $T_{n} = T_{p}$

Calculate x and x
 $L = \sqrt{DT}$; $L = \sqrt{MRTT/g}$
 $L = \sqrt{L_{n}^{p}} = \sqrt{L_{n}^{p}} \int_{0.1}^{p} for equal lifetimes$
 $L = \left[\cosh 0.1 + \sqrt{Z} \left(0.1\right) \left(0.5\right) \sinh 0.1\right]$
 $L = \left[\cosh 0.1 + \sqrt{Z} \left(0.1\right) \left(0.5\right) \sinh 0.1\right]$

and $R = \frac{x}{1-x} = \frac{x}{1-x}$

Heterojunction Bipolar Transistors Useful to improve device properties Want high emitter efficiency & -> high and & X=[1+ to Po Mon] for P-n-P

so keep

But also	want low boose keep	resistance	Voltage drop)
And want	low emitter jun	ctions capacita	nce higher w)
Need ne	w mechanism to		
Solutio	→ `C ·		

Heterojunction Barrier Differences Much bigger hole barrier so electron emitter & is high. Exponential Effect. So even small DEg has 9 46>>4 A huge effect. Meterojunction Homogenetion

So could now choose heavily doped base + lightly doped emitter.

Example shows that: Amplification depends on -doping (PP, Dn) - base width (Wb) - diffusion length (Lp, Ln) - mobility (un, up)

- lifetime (Tn, Tp)

-> Fundamental physical parameters and designs parameters