

Intelligent Agents

Department of Electrical and Electronics Engineering

Dr. Afşar Saranlı

Overview

We will discuss:

- The nature of Agents (perfect or otherwise)
- The diversity of Environments
- Resulting agent types

What are Intelligent Agents?

What are Intelligent Agents?

- Percepts,
- Percept Sequence

Good Behavior: Rationality

- A Rational Agent does the <u>right thing!</u>
- What it the right thing?
- One approximation:
 Actions which lead to
 the success of the Agent
 within the Environment!

Performance Measure

- Success: <u>Performance Measure</u>
- Should we ask the Agent?
- Maybe not. Rather:
 We would prefer <u>objective measures</u>, often imposed by the designer

Performance Measure

- Success: <u>Performance Measure</u>
- Should we ask the Agent?
- Maybe not. Rather:
 We would prefer <u>objective measures</u>, often imposed by the designer

Rational Agent: Definition

- Rationality at any given time depends on:
 - The performance measure that defines success,
 - The agent's "a-priori" knowledge of the Environment,
 - The actions that the Agent can perform,
 - The Agent's percept sequence to date.

Rational Agent: Definition

Now we can define a <u>Rational Agent:</u>

For each possible percept sequence, A Rational Agent should select an action that is expected to maximize its performance measure, given evidence provided by its percept sequence and whatever built-in knowledge the Agent has.

Other Aspects

- Rationality vs Omniscience
- Information Gathering Exploration
- Learning
- Autonomy

The Nature of Environments

Specifying the Task Environment:

(Performance, Environment, Actuators, ____

Sensors: PEAS Description)

Example: Taxi Driver

Agent Type	Performance Measure	Environment	Actuators	Sensors
Taxi Driver	Safe, fast legal, comfortable trip, maximize profits	Roads, other traffic, pedestrians, customers	Steering, accelerator, brake, signal, horn, display	Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard

The Nature of Environments

Example: Medical Diagnosis System

Agent Type	Performance Measure	Environment	Actuators	Sensors
Medical Diagnosis System	Healthy patient, minimize costs and lawsuits	Patient, hospital, staff	Display questions, tests, diagnoses, treatments, referrals	keyboard entry of symptoms, findings, patient's answers

Properties of Task Environments

- Fully Observable vs. Partially Observable,
- Deterministic vs. Stochastic,
- Episodic vs. Sequential,
- Static vs. Dynamic,
- Discrete vs. Continuous,
- Single agent vs. multi-agent.

Structure of Agents

Agent = Architecture + Program

- Simplest program: Table Driven Agent (Not necessarily possible to implement!)
- Simple reflex agents,
- Model-based reflex agents,
- Goal based agents,
- Utility-based agents,
- Finally: Learning agents

Simple Reflex Agents

Model-Based Reflex Agents

Goal-Based Agents

Utility-Based Agents

Learning Agents

