3050571 Practical Clin Data Sci

Session 10: Machine learning framework

February 15, 2024

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Machine learning paradigms

Qian, B. et al. "Orchestrating the Development Lifecycle of Machine Learning-Based IoT Applications: A Taxonomy and Survey"

- Supervised: Model learns from a dataset (x, y) to predict y from x
- **Unsupervised**: Pattern recognition with no target output (only x)
- Reinforcement: Model learns by interacting and receiving feedbacks from the environment (dynamic data)

Machine learning versus human's way of thinking

Machine Learning

Performance evaluation on unseen data points

Model that best predicts new data

Understanding versus predicting

- Statistics: Identify the best knowledge-driven hypothesis that explain how y is generated from x
- Supervised learning: Find the <u>best predictor</u> for y from x
- Unsupervised learning: Use <u>similarity among x</u> to identify clusters and outliers, and hopefully relate them to y

Supervised learning

The cores of supervised learning

Objective / Loss Function

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2 \qquad MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y_i}|}{y_i} \times 100$$

$$Crossentropy = -\frac{1}{n} \sum_{i=1}^{n} y_i \ln(\hat{y_i}) + (1 - y_i) \ln(1 - \hat{y_i})$$

Optimization Algorithm

https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501

Supervised learning is all about control

https://en.wikipedia.org/wiki/Bull riding

Statistical control of overfitting

- Better model achieves higher likelihood
- Complex model has more parameters

Information Criterion

- Akaike (AIC) = $2k 2 \cdot \ln(\hat{L})$, where \hat{L} is the likelihood
- Bayesian (BIC) = $\ln(n) k 2 \cdot \ln(\hat{L})$, where n is the sample size

Nested model testing

- Simple model has n parameters, fit the data with likelihood $\widehat{L_1}$
- Complex model has m > n parameters, fit the data with likelihood $\widehat{L_2} > \widehat{L_1}$
- Is the improvement $\frac{\widehat{L_2}}{\widehat{L_1}}$ worth the increase in m-n parameters?

Linear and logistic regression

Linear regression (Ordinary Least Square)

Model:
$$\widehat{y}_i = b_0 + b_1 x_i$$

- Minimize MSE: $\frac{1}{n}\sum_{i}(\mathbf{y_i} - [b_0 + b_1x_i])^2$

$$-\frac{\delta MSE}{\delta b_0} = -2\sum_i y_i - 2b_1\sum_i x_i - 2nb_0$$

$$\frac{\delta MSE}{\delta b_1} = -2\sum_{i} x_i y_i - 2b_1 \sum_{i} x_i^2 - 2b_0 \sum_{i} x_i$$

$$b_0 = \frac{\sum xy \sum x - \sum x^2 \sum y}{(\sum x)^2 - n \sum x^2}$$

$$b_1 = \frac{\sum y \sum x - n \sum x^2}{(\sum x)^2 - n \sum x^2}$$

Ordinary Least Square interpretation

- Observed value = True value + Normally-distributed noise
- **Assumption**: Noises are identical and independent across samples
- Model: $(y_i \widehat{y}_i) \sim N(0, \sigma^2)$ Density: $P(y_i \widehat{y}_i) = \varepsilon_i \mid \sigma^2 \propto e^{\frac{-\varepsilon_i^2}{2\sigma^2}}$
- Likelihood: $\prod_{i} P(y_{i} \widehat{y}_{i} = \varepsilon_{i} \mid \sigma^{2}) \propto e^{\frac{-\sum_{i} \varepsilon_{i}^{2}}{2\sigma^{2}}}$
- MSE: $\frac{1}{n}\sum_{i}(y_{i}-\widehat{y_{i}})^{2}=\frac{1}{n}\sum_{i}\varepsilon_{i}^{2}$
- Minimizing MSE is the same as maximizing likelihood

Logistic regression

- Classification output = 0 or 1
- Linear regression outputs $-\infty$ to ∞
- Probability of success p
- Log odd: $\ln\left(\frac{p}{1-p}\right)$
 - $\ln\left(\frac{p}{1-p}\right) \to -\infty \text{ as } p \to 0$ $\ln\left(\frac{p}{1-p}\right) \to \infty \text{ as } p \to 1$
- Transform linear regression output with log odd!

Logistic regression

- Model:
$$\ln\left(\frac{\widehat{y_i}}{1-\widehat{y_i}}\right) = f(x_i) = b_0 + b_1 x_{i,1} + \dots + b_n x_{i,n}$$

$$\widehat{y}_{i} = \frac{e^{b_0 + b_1 x_{i,1} + \dots + b_n x_{i,n}}}{1 + e^{b_0 + b_1 x_{i,1} + \dots + b_n x_{i,n}}}$$

- When $f(x_i) \to \infty$, $\widehat{y_i} \to 1$
- When $f(x_i) \to -\infty$, $\widehat{y_i} \to 0$
- Can we keep using MSE as the loss function?
 - Brier score = $\frac{1}{N}\sum_{i}(y_{i}-\widehat{y}_{i})^{2}$
 - But this does not interpret logistic output as probability

Likelihood for logistic regression

- Likelihood: $P(y_i \mid x_i) = \widehat{y_i}^{y_i} (1 \widehat{y_i})^{1-y_i}$
 - v_i is either 0 or 1
 - When y_i is 0, the likelihood is $1 \hat{y}_i$
 - When y_i is 1, the likelihood is \hat{y}_i
- Log likelihood: $y_i \ln(\hat{y}_i) + (1 y_i) \ln(1 \hat{y}_i)$
 - This is the cross-entropy loss function!
 - Maximizing likelihood is the same as minimizing cross-entropy

Regularization of linear model

- L1 regularization (LASSO): MSE + $\alpha \sum_{k} |b_{k}|$
- L2 regularization (Ridge): MSE + $\alpha \sum_{k} b_{k}^{2}$
- α is the hyperparameter that controls the regularization strength
- Hyperparameter must be tuned for every dataset!
- Elastic Net = L1 + L2

Tuning regularization strength

Weighted regression

- Different data point can be weighted
- Weighted error = $\sum_{i} w_{i} (y_{i} \hat{y}_{i})^{2}$

Sun, C. et al. "Machine Learning Allows Calibration Models to Predict Trace Element Concentration in Soils with Generalized LIBS Spectra" Scientific Reports (2019)

Support Vector Machine

Margin as a measure of model quality

Margin as a regularization

Hyperplane equation

$$w_1 x_1 + \dots + w_n x_n - b = 0$$

Scale the space so that the nearest data points on each side of the hyperplane satisfies

$$w_1x_1 + \dots + w_nx_n - b = \pm 1$$

Then, margin = $\frac{2}{\|w\|_2}$ where $\|w\|_2$ is the L-2 norm of w

Hinge loss

- Hinge loss: $\max(0, 1 y_i(w \cdot x_i b))$
 - Penalize misclassification and data points lying within the margin

Kernel as feature engineering

• Transform (x, y) to $(x, y, x^2 + y^2)$

Nonlinear models from linear technique

SVM for regression = ignore small error

Image from https://slideplayer.com/slide/15044351/

Feature selection

Using all features can be harmful

Start with a model with no variables Null Model Add the most significant variable Model with 1 variable X2 Keep adding the most significant variable until reaching

the stopping rule or running out of variables

Model with 2 variables

Forward stepwise selection example with 5 variables:

Backward stepwise selection example with 5 variables:

Not every model can handle large number of features

Model evaluation

Train-Val-Test

- Training data determines the best coefficients / weights
- **Validation** data determine the best hyperparameters
- **Test** data determine performance on new datasets

Source: medium.com

Performance metrics: regression

- Mean Square Error
- Mean Absolute Error
- Mean Absolute Percentage Error
- R² (Coefficient of Determination)

Performance metrics: classification

Predicted

Actual

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

Predicted < 0.5 Predicted > 0.5

- Accuracy = (TN + TP) / total
- Precision = TP / (TP + FP) = Positive predictive value
- Recall = TP / (TP + FN) = Sensitivity
- Specificity = TN / (TN + FP)

Performance metrics can be misleading

Good

- Accuracy = (25 + 340) / 400 = 91%
- Specificity = 340 / 350 = 97%

	Predict YES	Predict NO
Known YES	25	25
Known NO	10	340

Bad

- Precision = 25 / (25 + 10) = 71.4%
- Sensitivity = 25 / 50 = 50%
- Why is accuracy so high while sensitivity and precision are low?

Metrics must match the question

Would you want to use this model if:

- YES = Patient will benefit from a high-risk surgery
- YES = Patient will be allergic to a given drug
- YES = Patient is at high risk of AKI

	Predict YES	Predict NO
Known YES	25	25
Known NO	10	340

Threshold-free metrics

- Sensitivity-specificity at every output threshold
- Area under the ROC curve (AUROC, AUC)
 - Random guess = 0.5
 - Perfect model = 1.0
- Pick threshold based on use case
 - Specificity >0.9
 - Sensitivity > 0.9

Precision-Recall curve

https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used

The best model can depend on use case

Any questions?

See you on February 22nd