Persistent Betti Numbers over time

Theory, computation, and applications

A simplicial complex $K=\{\sigma^{\text{Problem}}\}$ over set $V=\{v_1,\ldots,v_n\}$ satisfies:

1.
$$v \in V \Longrightarrow \{v\} \in K$$

2.
$$au \subseteq \sigma \in K \Longrightarrow au \in K$$

A filtration K_ullet is a family $\set{K_i}_{i\in I}$ indexed over totally ordered index set I:

$$\emptyset = K_0 \subsetneq K_1 \subsetneq \cdots \subsetneq K_m = K_ullet$$

Additional requirements here:

- 1. Essential: i
 eq j implies $K_i
 eq K_j$
- 2. Simplexwise: $K_j \setminus K_i = \{\sigma_j\}$ whenever $j = \mathrm{successor}(i)$
- 3. I may be \mathbb{R}_+ or $[m]=\set{1,2,\ldots,m}$

Given a pair (K, \mathbb{T}) , a p-chain is a formal \mathbb{T} -linear combination of p-simplices of K

Given an $\emph{oriented}\ p$ -simplex $\sigma \in K$, define its p-boundary as the alternating sum:

$$\partial_p(\sigma) = \partial_p([v_0,v_1,\ldots,v_p]) = \sum_{i=0}^p (-1)^i [v_0,\ldots,\hat{v}_i,\ldots v_p]$$

Three groups of interest:

- 1. $C_p(K) = (\,K\,,\,+\,,\, imes\,,\,\mathbb{F}\,)$ (vector space of p-chains)
- 2. $B_p(K) = (\operatorname{Im} \circ \partial_{p+1})(K)$ (boundary group)
- 3. $Z_p(K) = (\operatorname{Ker} \circ \partial_p)(K)$ (cycle group)

Homology

The p-th homology of K is the quotient group $H_p(K)=Z_p(K)/B_p(K)$

Note: $H_p(K)$ depends on the choice of ${\mathbb F}$!

Persistent Homology

Inclusions $K_i \subsetneq K_j$ induce linear transformations $h_p^{i,j}$ between homology groups

$$H_p(K_0) o \cdots o H_p(K_i) igodots \cdots o H_p(K_j) o \cdots o H_p(K_m) = H_p(K_ullet)$$

- 1. $H_p^{i,j}(K) = \operatorname{Im}(h_p^{i,j}) \Leftrightarrow$ persistent homology groups
- 2. $H_p(K_ullet)$ admits a decomposition $\operatorname{dgm}(K) = \{(\sigma_i, \sigma_j):\}$
- 3. (unique iff \mathbb{F} is a field!)
- 4. (σ_i, σ_j) = birth/death pair, |i j| = persistence of the pair
- 5. $eta_p^{i,j} = \dim(H_p^{i,j})$ the *persistent* Betti number

So far, we have two defined two topological invariants of K + a summary rep. $\mathrm{dgm}_p(K)$:

$$H^{i,j}_p=\operatorname{Im} h^{i,j}_p, \quad eta^{i,j}_p=\dim(H^{i,j}_p)$$

Note we only need $eta_p^{i,j}$ to define $\mathrm{dgm}_p(K)$.

To see this, define the *multiplicity* $\mu_p^{i,j}$, for all $0 < i < j \leq m+1$:

$$\mu_p^{i,j} = (\beta_p^{i,j-1} - \beta_p^{i,j}) - (\beta_p^{i-1,j-1} - \beta_p^{i-1,j})$$

The alternative definition:

Definition The p-th persistence diagram $\mathrm{dgm}_p(K) \subset \mathbb{\bar{R}}^2$ of K is the set of points (i,j)

The question: Suppose you wanted a continuous version of $eta_p^{i,j}$