Contents

- testing algorithm with a set of initial and final states.
- Trajectory planning block
- TODO: IMPLEMENT THE CONTROLLER
- TODO: IMPLEMENT THE CONTROLLER TO AVOID CHATTERING.
- In Robust control without chattering, the model performed slightly better in the sense that the sudden high spikes were reduced. It basically eliminated the discontinuity problem of previous case.
- Trajectory planning using polynomial functions.

```
function []= robustControl(theta10,theta20,dtheta10, dtheta20,theta1f, theta2f,dtheta1f,dtheta2f,tf)
```

testing algorithm with a set of initial and final states.

```
clc
clear all
close all
%link1 initial and final position and velocities.
theta10=-0.6;
dtheta10 =0;
theta1f = 0.9;
dtheta1f=0;
%time
tf= 60:
%link2 initial and final position and velocities.
theta20=-0.8;
dtheta20= 0.1;
theta2f = 0.6;
dtheta2f=0;
% the nominal model parameter:
m1 =10; m2=5; l1=1; l2=1; r1=0.5; r2 =.5; I1=10/12; I2=5/12; \% parameters in the paper.
% the nominal parameter vector b0 is
b0 = [ m1* r1^2 + m2*11^2 + I1; m2*r2^2 + I2; m2*l1*r2];
```

Trajectory planning block

Initial condition (TODO: CHANGE DIFFERENT INITIAL AND FINAL STATES)

```
x0=[-0.6,-0.8,0,0.1];
x0e = [-0.7,0.5,-0.2,0]; % an error in the initial state.
xf=[0.9,0.6, 0, 0];
% The parameter for planned joint trajectory 1 and 2.
global a1 a2 % two polynomial trajectory for the robot joint
nofigure=1;
% Traj generation.
a1 = planarArmTraj(theta10,dtheta10, theta1f, dtheta1f,tf, nofigure);
a2 = planarArmTraj(theta20,dtheta20, theta2f, dtheta2f,tf, nofigure);
torque=[];
options = odeset('RelTol',1e-4,'AbsTol',[1e-4, 1e-4, 1e-4, 1e-4]);
```

TODO: IMPLEMENT THE CONTROLLER

```
[T,X] = ode45(@(t,x)planarArmODERobust(t,x),[0 tf],x0e,options);
figure('Name','theta1');
plot(T, X(:,1),'r-');
hold on
plot(T, a1(1)+a1(2)*T+ a1(3)*T.^2+a1(4)*T.^3,'b-');
```

```
title('Theta_1 under Robust Control');
figure('Name','theta2');
plot(T, X(:,2),'r-');
hold on
plot(T, a2(1)+a2(2)*T+ a2(3)*T.^2+a2(4)*T.^3, 'b-');
title('Theta_2 under Robust Control');

figure('Name', 'I/p- Robust control')
plot(T, torque(1,1:size(T,1)), 'b-');
hold on
plot(T, torque(2,1:size(T,1)), 'r--');
legend('torque1', 'torque2')
title('Torque for Robust Control');
torque = [];
```


TODO: IMPLEMENT THE CONTROLLER TO AVOID CHATTERING.

```
[T,X] = ode45(@(t,x)planarArmODERobustApprx(t,x),[0 tf],x0e,options);
figure('Name','theta1');
plot(T, X(:,1), 'r-');
hold on
plot(T, a1(1)+a1(2)*T+ a1(3)*T.^2+a1(4)*T.^3, 'b-');
title('Theta_1 under Robust Control w/o chattering');
figure('Name','theta2');
plot(T, X(:,2),'r-');
hold on
plot(T, a2(1)+a2(2)*T+ a2(3)*T.^2+a2(4)*T.^3, 'b-');
title('Theta_2 under Robust Control w/o chattering');
figure('Name', 'I/p- Robust control w/o chattering')
plot(T, torque(1,1:size(T,1)), 'b-');
hold on
plot(T, torque(2,1:size(T,1)), 'r--');
legend('torque1', 'torque2')
title('Torque for Robust Control without chattering');
torque = [];
% Robust control with chattering
    function [dx ] = planarArmODERobust(t,x)
        \mbox{\em {\sc Kp}} and \mbox{\sc Kd} .
        \% Compute the desired state and their time derivatives from planned
        % trajectory.
        vec_t = [1; t; t^2; t^3]; % cubic polynomials
        theta_d= [a1'*vec_t; a2'*vec_t];
        %ref = [ref,theta_d];
        % compute the velocity and acceleration in both theta 1 and theta2.
        a1_vel = [a1(2), 2*a1(3), 3*a1(4), 0];
        a1_acc = [2*a1(3), 6*a1(4),0,0];
        a2_{vel} = [a2(2), 2*a2(3), 3*a2(4), 0];
        a2_acc = [2*a2(3), 6*a2(4),0,0];
        dtheta_d =[a1_vel*vec_t; a2_vel* vec_t];
        ddtheta_d =[a1_acc*vec_t; a2_acc* vec_t];
        theta= x(1:2,1);
        dtheta= x(3:4,1);
```

%the true model

```
m2t = m2+ 10*rand(1);% m1 true value is in [m1, m1+epsilon_m1] and epsilon_m1 a random number in [0,10];
        r2t = r2 + 0.5*rand(1);
        I2t = I2 + (15/12)*rand(1);
        a = I1 + I2t + m1*r1^2 + m2t*(11^2 + r2t^2);
        b = m2t*11*r2t;
        d = I2t+ m2t*r2t^2;
        %lower bound
        a_1 = I1+I2+m1*r1^2+ m2*(11^2+ r2^2);
        b_1 = m2*11*r2;
        d_1 = I2 + m2*r2^2;
        %Upper bound
        m2t_u = m2 + 10;
        r2t_u = r2 + 0.5;
        I2t_u = I2 + (15/12);
        a_u = I1+I2t_u+m1*r1^2+ m2t_u*(11^2+ r2t_u^2);
        b_u = m2t_u*11*r2t_u;
        d u = I2t u + m2t u*r2t u^2;
        % lower bound M
        M 1 = [a 1 + 2*b 1*cos(x(2)), d 1 + b 1*cos(x(2)); d 1 + b 1*cos(x(2)), d 1];
        %Cmat = [-b*sin(x(2))*x(4), -b*sin(x(2))*(x(3)+x(4)); b*sin(x(2))*x(3),0];
        % upper bound M
        M u = [a u + 2*b u*cos(x(2)), d u + b u*cos(x(2)); d u + b u*cos(x(2)), d u];
        %Cmat = [-b*\sin(x(2))*x(4), -b*\sin(x(2))*(x(3)+x(4)); b*\sin(x(2))*x(3),0];
        % Control law M and C
        global M_bar C_bar
        M_bar = inv((M_u + M_1)/2);
        d_{bar} = M_{bar}(2,2);
        b_{bar} = (M_{bar}(2,1) - d_{bar})*sec(x(2));
        C_{bar} = [-b_{bar}*\sin(x(2))*x(4), -b_{bar}*\sin(x(2))*(x(3)+x(4)); b_{bar}*\sin(x(2))*x(3),0];
        \% actual dynamic model of the system is characterized by M and C
        global Mmat Cmat
        Mmat = [a+2*b*cos(x(2)), d+b*cos(x(2)); d+b*cos(x(2)), d];
        Cmat = [-b*sin(x(2))*x(4), -b*sin(x(2))*(x(3)+x(4)); b*sin(x(2))*x(3),0];
        invM = inv(Mmat);
        invMC = invM*Cmat;
        %TODO: compute the robust controller
        tau = Rob_ctrl(theta_d, dtheta_d, ddtheta_d, theta, dtheta);
        torque = [torque, tau];
        %TODO: update the system state, compute dx
        dx=zeros(4,1);
        dx(1) = x(3);
        dx(2) = x(4);
        dx(3:4) = -invMC* \ x(3:4) \ +invM*tau; \ \% \ because \ ddot \ theta = -M^{-1}(C \ \ tau) \ + \ M^{-1} \ tau
    end
% Robust control without chattering
    function [dx] = planarArmODERobustApprx(t,x)
        \mbox{\em {\sc Kp}} and \mbox{\sc Kd}.
        % Compute the desired state and their time derivatives from planned
        % trajectory.
        vec_t = [1; t; t^2; t^3]; % cubic polynomials
        theta_d= [a1'*vec_t; a2'*vec_t];
        %ref = [ref,theta_d];
        % compute the velocity and acceleration in both theta 1 and theta2.
        a1_vel = [a1(2), 2*a1(3), 3*a1(4), 0];
        a1_acc = [2*a1(3), 6*a1(4),0,0];
        a2_{vel} = [a2(2), 2*a2(3), 3*a2(4), 0];
```

```
a2_{acc} = [2*a2(3), 6*a2(4),0,0];
       dtheta_d =[a1_vel*vec_t; a2_vel* vec_t];
       ddtheta_d =[a1_acc*vec_t; a2_acc* vec_t];
       theta= x(1:2,1);
       dtheta= x(3:4,1);
       %the true model
       m2t = m2 + 10*rand(1);% m1 true value is in [m1, m1+epsilon_m1] and epsilon_m1 a random number in [0,10];
       r2t = r2 + 0.5*rand(1);
       I2t = I2 + (15/12)*rand(1);
       a = I1+I2+m1*r1^2+ m2t*(11^2+ r2t^2);
       b = m2t*11*r2t;
       d = I2t+ m2t*r2t^2;
       %lower bound
       a_1 = I1+I2+m1*r1^2+ m2*(11^2+ r2^2);
       b_1 = m2*11*r2;
       d_1 = I2 + m2*r2^2;
       %Upper bound
       m2t_u = m2 + 10;
       r2t_u = r2 + 0.5;
       I2t_u = I2 + (15/12);
       a_u = I1+I2t_u+m1*r1^2+ m2t_u*(11^2+ r2t_u^2);
       b u = m2t u*11*r2t u;
       d u = I2t u + m2t u + r2t u^2;
       % lower bound M
       M_1 = [a_1 + 2*b_1*cos(x(2)), d_1 + b_1*cos(x(2)); d_1 + b_1*cos(x(2)), d_1];
       %Cmat = [-b*\sin(x(2))*x(4), -b*\sin(x(2))*(x(3)+x(4)); b*\sin(x(2))*x(3),0];
       % upper bound M
       M_u = [a_u + 2*b_u*cos(x(2)), d_u + b_u*cos(x(2)); d_u + b_u*cos(x(2)), d_u];
       %Cmat = [-b*sin(x(2))*x(4), -b*sin(x(2))*(x(3)+x(4)); b*sin(x(2))*x(3),0];
       % Control law M and C
       global M_bar C_bar
       M_{bar} = inv((M_u + M_1)/2);
       d_{bar} = M_{bar}(2,2);
       b_{bar} = (M_{bar}(2,1) - d_{bar})*sec(x(2));
       C_{bar} = [-b_{bar}*\sin(x(2))*x(4), -b_{bar}*\sin(x(2))*(x(3)+x(4)); b_{bar}*\sin(x(2))*x(3),0];
       \% actual dynamic model of the system is characterized by M and C
       global Mmat Cmat
       Mmat = [a+2*b*cos(x(2)), d+b*cos(x(2)); d+b*cos(x(2)), d];
       \label{eq:cmat} {\sf Cmat} \ = \ [-b*\sin(x(2))*x(4), \ -b*\sin(x(2))*(x(3)+x(4)); \ b*\sin(x(2))*x(3),0];
       invM = inv(Mmat);
       invMC = invM*Cmat;
       %TODO: compute the robust controller
       taur = Rob_ctrlapprx(theta_d, dtheta_d, ddtheta_d, theta, dtheta);
       torque = [torque, taur];
       %TODO: update the system state, compute dx
       dx=zeros(4,1);
       dx(1) = x(3);
       dx(2) = x(4);
       dx(3:4) = -invMC*x(3:4) +invM*taur; % because ddot theta = -M^{-1}(C \cdot Heta) + M^{-1} tau
   end
% torque function for Robust Control
   function tau = Rob_ctrl(theta_d, dtheta_d, ddtheta_d, theta, dtheta);
       global M_bar C_bar Mmat Cmat
       Kp = 300*eye(2);
       Kv = 200*eye(2);
       e = theta_d - theta;
       de = dtheta_d -dtheta;
       y1 = 0.01;
       y2 = 0.02;
```

```
y3 = 1;
      P = eye(2);
      B = [0;1];
      %for link 1
      x_{err1} = [e(1,1) ; de(1,1)];
      p1 = y1*norm(x_err1) + y2*(norm(x_err1)^2) + y3;
      w1 = transpose(x_err1)*P*B;
      if w1 == 0
          v1=0;
      else
          v1 = -((w1*p1)/ norm(w1));
      end
     %for link 2
      x_{err2} = [e(2,1); de(2,1)];
      p2 = y1*norm(x_err2) + y2*(norm(x_err2)^2) + y3;
      w2 = transpose(x_err2)*P*B;
      E = norm((inv(Mmat)*M_bar) - eye(2));
      eta = norm(((inv(Mmat)*M_bar) - eye(2)) + inv(Mmat)*((C_bar-Cmat)*dtheta));
      if w2 ==0
          v2=0;
      else
          v2 = -((w2*p2)/ norm(w2));
      end
      % Added input
      v = [v1; v2];
      aq = (ddtheta_d + Kp*e + Kv*de + v);
      tau = M_bar*aq + C_bar*dtheta;
% torque function for Robust Control without Chattering
  function taur = Rob_ctrlapprx(theta_d, dtheta_d, ddtheta_d, theta, dtheta);
      global M_bar C_bar Mmat Cmat
      Kp = 300*eye(2);
      Kv = 200*eye(2);
      e = theta_d - theta;
      de = dtheta_d -dtheta;
     y1 = 0.01;
     y2 = 0.02;
     y3 = 1;
     P = eye(2);
     B = [0;1];
     %for link 1
      x_{err1} = [e(1,1) ; de(1,1)];
      p1 = y1*norm(x_err1) + y2*(norm(x_err1)^2) + y3;
      w1 = transpose(B)*P*(x_err1);
      eps1 = 0.01;
      if w1 <= eps1</pre>
          v1= -((w1*p1)/eps1);
      else
          v1 = -((w1*p1)/ norm(w1));
      end
      %for link 2
      x_{err2} = [e(2,1); de(2,1)];
      p2 = y1*norm(x_err2) + y2*(norm(x_err2)^2) + y3;
     w2 = transpose(B)*P*(x_err2);
      E = norm((inv(Mmat)*M_bar) - eye(2));
      eta = norm(((inv(Mmat)*M_bar) - eye(2)) + inv(Mmat)*((C_bar-Cmat)*dtheta));
      eps2 = 0.01;
      if w2 <= eps2</pre>
          v2 = -((w2*p2)/eps2);
      else
          v2 = -((w2*p2)/ norm(w2));
      end
     % Added input
      v = [v1; v2];
      aq = (ddtheta_d + Kp*e + Kv*de + v);
```

taur = M_bar*aq + C_bar*dtheta ;
end

In Robust control without chattering, the model performed slightly better in the sense that the sudden high spikes were reduced. It basically eliminated the discontinuity problem of previous case.

Trajectory planning using polynomial functions.

```
function [a] = planarArmTraj(theta10, dtheta10, theta1f, dtheta1f, tf, nofigure)
% Input: Initial and final position and velocities, planning horizon [0,tf]
% nofigure=1 then do not output the planned trajectory.
% Cubic polynomial trajectory.
% formulate the linear equation and solve.
M= [1 0 0 0;
    0 1 0 0;
    1 tf tf^2 tf^3;
    0 1 2*tf 3*tf^2];
b=[theta10; dtheta10;theta1f; dtheta1f];
a=M\b;
t=0:0.01:tf;
if nofigure==1
    return
else
figure('Name', 'Position (degree)');
plot(t,a(1)+a(2)*t+ a(3)*t.^2+a(4)*t.^3, 'LineWidth',3);
title('Position (degree)')
grid
figure('Name','Velocity (degree/s)');
plot(t,a(2)*t+ 2*a(3)*t +3*a(4)*t.^2,'LineWidth',3);
title('Velocity (degree/s)')
grid
figure('Name','Acceleration (degree/s^2)');
plot(t, 2*a(3) +6*a(4)*t, 'LineWidth',3);
title('Acceleration (degree/s^2)')
grid
end
end
```

end

Published with MATLAB® R2017b