Travaux dirigés ET2 Transformations chimiques

ET2.1. Avancement d'une réaction

On étudie la réaction suivante :

$$2 NO + O_2 = N_2 O_4$$

dans un réacteur fermé. A l'instant initial, le système a la composition suivante : 0,5 mole de NO ; 0,7 mole de O_2 ; 0,2 mole de N_2O_4 .

- 1. Quel est le réactif limitant ?
- 2. Au bout d'un temps t, il reste 0,3 mole de NO. Quel est l'avancement ξ de la réaction atteint à ce temps ? Quel est le taux de conversion (de transformation) τ du réactif limitant ? Quelles quantités de O_2 et de N_2O_4 sont présentes dans le système à ce moment ?
- 3. A quelle valeur de l'avancement ξ correspond le taux d'avancement $\tau = 90 \%$?

ET2.2. Fluoration du dioxyde d'uranium

On étudie l'équilibre hétérogène suivant, à la température de 1000 K :

$$UO_{2(s)} + 4 HF_{(g)} \rightleftharpoons UF_{4(s)} + 2 H_2O_{(g)}$$
 $K^{\circ}_{1000K} = 900$

On mélange à 1000 K, sous une pression maintenue constante et égale à 1 bar, 1,0 mole de HF et 1,0 mole de UO_2 .

- 1. Déterminer la composition finale du système.
- 2. Quelle est la composition du système lorsque, dans les mêmes conditions, on mélange 1,0 mole de HF et 0,1 mole de UO_2 ?

ET2.3. Évolution d'un système gazeux

On étudie la réaction suivante :

$$CO_{(g)} + H_2O_{(g)} = CO_{2(g)} + H_{2(g)}$$

 $K^{\circ}_{1500K} = 0.31$ $K^{\circ}_{900K} = 1.28$

- 1. Comment évolue un système contenant une mole de *CO*, une mole d'eau, une mole de dihydrogène et une mole de dioxyde de carbone *CO*² sous un bar à 1500 K puis à 900 K?
- 2. Quel est l'état final du système qui contient initialement une mole de monoxyde de carbone et une mole d'eau à 1500 K sous une pression de 1 bar ?
- 3. Comment est modifié l'état d'équilibre si, toutes choses égales par ailleurs, on modifie la pression *P* ?

ET2.4. Dimérisation d'un gaz

On étudie en phase gazeuse l'équilibre de dimérisation :

$$2 FeCl_{3(g)} \rightleftharpoons Fe_2Cl_{6(g)}$$

à $T_1 = 700$ K sous la pression standard. La densité du mélange gazeux vaut d = 10,5 à l'équilibre. Sachant qu'initialement la densité de $FeCl_{3(g)}$ vaut $d_0 = 5,6$, calculer la constante d'équilibre à T_1 .

ET2.5. Équilibres simultanés

Le vaporeformage du méthane issu du gaz naturel est réalisé à $T_1 = 1100$ K sous une pression égale à 5 bar en faisant réagir le méthane avec de la vapeur d'eau en présence d'un catalyseur à base de nickel. L'équation-bilan de la réaction équilibrée mise en jeu s'écrit :

(1)
$$CH_{4(g)} + H_2O_{(g)} = CO_{(g)} + 3 H_{2(g)}$$

Le monoxyde de carbone formé et l'eau présente dans le réacteur réagissent pour donner du dioxyde de carbone et du dihydrogène selon l'équation-bilan :

(2)
$$CO_{(g)} + H_2O_{(g)} = CO_{2(g)} + H_{2(g)}$$

Les constantes d'équilibre à 1100 K sont respectivement données par $K^{\circ}_{1} = 315$ et $K^{\circ}_{2} = 0,990$. On introduit dans un réacteur isotherme ($T_{1} = 1100$ K) et isobare (p = 5,00 bar) 1 mol de méthane et 3,00 mol de vapeur d'eau.

- 1. Exprimer les quantités de matière $n(CH_4)$, $n(H_2O)$, n(CO), $n(H_2)$, $n(CO_2)$ ainsi que la quantité de matière totale gazeuse $n^{\rm g}_{\rm tot}$ à la sortie du réacteur en fonction des avancements ξ_1 et ξ_2 des réactions (1) et (2).
- 2. Pour $\xi_1 = 0.965$ mol et $\xi_2 = 0.300$ mol, calculer les quotients de réaction Q_1 et Q_2 des réactions (1) et (2). Comparer ces quotients de réaction obtenus aux constantes d'équilibre et commenter les résultats obtenus.

ET2.6. Synthèse du trioxyde de soufre

On souhaite étudier l'effet de la pression sur le rendement de la synthèse de SO_3 à 730 K, décrite par la réaction suivante :

$$2 SO_{2(g)} + O_{2(g)} = 2 SO_{3(g)}$$
 $K^{\circ}_{730K} = 1,4.10^4$

- 1. On souhaite obtenir un rendement de 90% à partir d'un mélange initial constitué de 0,0500 mol de $O_{2(g)}$, 0,0500 mol de $SO_{2(g)}$ et 0,400 mol de $N_{2(g)}$. Quelle doit être la valeur de la pression totale ?
- 2. Comment évolue le rendement lors de l'augmentation de la pression à température constante ?
- 3. À partir de l'état d'équilibre, il se produit une entrée d'air : 0,0100 mol de $O_{2(g)}$ et 0,0400 mol de $N_{2(g)}$ à température et pression constantes. Quel est l'effet de cette entrée d'air sur le rendement ?
- 4. Évaluer le rendement dans les conditions industrielles : T = 730 K, P = 1,00 bar.