

Test

Metaheurísticas

Convocatoria Ordinaria Enero – 10/octubre/2019

Normativa:

- Indicar con V o F la respuesta en el test. En caso de cambiar la respuesta se debe tachar con una X la que no se desea. Otra fórmula penaliza como ERROR.
- El tipo test se evalúa como ACIERTOS ERRORES, y si el resultado del mismo es negativo se restará a la parte de las preguntas cortas.
- Se debe obtener un mínimo de 1 punto en test, 1 punto en preguntas cortas y 3 puntos en problemas para superar el examen, salvo grupos de trabajo que deben obtener 2 puntos en teoría y 3 puntos en problemas

۸nal	lidos.	Nom	hro:
AUG	111(11(1)	13())11	UII C

Tipo test (2 puntos)

El algoritmo de búsqueda tabú permite movimientos de empeoramiento.
Un algoritmo de búsqueda del mejor y del primer mejor deben devolver, por regla general,
distintos resultados aun ejecutándose con la misma semilla para un mismo problema.
La mejor estrategia con respecto al uso de la memoria a largo plazo en un estancamiento en
la búsqueda tabú es la oscilación estratégica.
Una metaheurística híbrida mezcla técnicas que permitan obtener un buen equilibrio entre
exploración y explotación.
En las metaheurísticas paralelas la búsqueda por entornos mantiene una solución en cada
momento mientras que las poblaciones mantienen un conjunto de soluciones.
Los algoritmos evolutivos son las mejores técnicas de todas las vistas para resolver
problemas combinatorios.
El operador de recombinación ternario del algoritmo JADE permite la obtención de nuevo
individuos seleccionando, entre otros, al mejor del momento anterior.
La evolución diferencial son una generalización de los sistemas de partículas.
Los sistemas de colonias de hormigas tienen buen comportamiento en problemas de tipo
grafo dirigido, pero se encuentran con problemas cuando el grafo sufre cambios.
Los sistemas de hormigas son métodos constructivos como la búsqueda tabú.

Preguntas cortas (2 puntos)

- 1. Describe brevemente qué es la representación de una solución a un problema en metaheurísticas y representa tres tipos de ellas para cualquier problema que desees.
- 2. ¿Por qué los algoritmos de programación genética deben de utilizar un tamaño de la población superior al de los algoritmos evolutivos?
- 3. ¿Por qué incorporó Marco Dorigo algunos cambios entre los sistemas de hormigas y los sistemas de colonias de hormigas? Describe máximo 4-5 líneas.
- 4. ¿Qué nos dice el teorema del No Free Lunch aplicado a metaheurísticas?
- 5. En la construcción de un algoritmo genético, ¿qué pasos son necesarios desde el punto de vista del propio algoritmo? Describe máximo 2-3 líneas por elemento.

Problemas (6 puntos)

1. (2 puntos) Necesitamos resolver un problema de optimización continua para maximizar la siguiente función:

$$\sum_{i=1}^{n} \frac{\alpha_i^2}{\sqrt{(\alpha_i(\beta_i + \gamma_i))}}$$

considerando que solo se pueden utilizar números reales (R) en el intervalo [-10, 10] con un n=10.

- a) ¿Qué técnica consideras más oportuna para resolver este problema?
- b) Representa una solución adecuada y eficiente al problema y su función de evaluación asociada.
- 2. (4 puntos) El departamento de Biología Animal de la Universidad de Jaén necesita realizar un muestreo de la población de cientos de gatos del propio campus con una metodología de conjuntos:

A: {blanco, siamés, pardo}

B: {romano, otros}

El objetivo es obtener el rendimiento genético de los grupos considerando que:

- o todos los gatos tienen valores calculados por el equipo investigador,
- o la edad del gato influye de forma inversa a su valor en el rendimiento,
- y el color de ojos también, multiplicando el valor por 1.2 y 1.1, si es azul u otro color, respectivamente.

El objetivo final es que el valor de ambos grupos sea lo más similar posible y así poder realizar un control de la población considerando que no puede haber más de 40 gatos en cada grupo.

NOTA: Haz las consideraciones que veas oportunas para resolver el problema.

- a. ¿Consideras un algoritmo genético válido para resolver el problema? Justifica la respuesta.
- b. ¿Crees que podrías resolverlo mediante un algoritmo de búsqueda tabú? ¿Qué entorno de vecindad implementarías para una solución dada?
- c. Realizar:
 - i. representación de una solución mediante dos tipos distintos de la misma,
 - ii. evaluación para la mejor representación de la anterior,
 - iii. si lo implementases con un algoritmo genético, un cruce válido para dos individuos considerando la mejor representación de (ii)
 - iv. si lo implementases con un algoritmo genético, una mutación válida para un individuo considerando la mejor representación de (ii)
- d. ¿Cómo diseñarías un algoritmo memético para este problema? Descríbelo lo más completo posible: técnicas, parámetros, entornos, etc.