

Introduction to Geometric Algebra

Enzo Harquin

June 2, 2025

LIGM, Université Gustave Eiffel

Part 1

Formal sum

Linear Algebra			Geometric Algebra		
$\vec{u} =$	(a) b c	$\begin{pmatrix} e_x \\ e_y \\ e_z \end{pmatrix}$	$\vec{\mathbf{u}} = a \mathbf{e}_{x} + b \mathbf{e}_{y} + c \mathbf{e}_{z} + \cdots$		
	(:)	(:)			

$$\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}$$

Anti-Commutativity!

$$\|\vec{A}\| = \sin(\theta) \|\vec{u}\| \|\vec{v}\|$$

$$\|\vec{A}\| = 0$$

Contract parallel dimensions!

$$\vec{u} \wedge \vec{v} = \vec{A}$$

$$\lambda \wedge \vec{u} = \lambda \vec{u}
(\vec{u} \wedge \vec{v}) \wedge \vec{w} = \vec{u} \wedge (\vec{v} \wedge \vec{w})
\vec{u} \wedge (\vec{v} + \vec{w}) = (\vec{u} \wedge \vec{v}) + (\vec{u} \wedge \vec{w})
\vec{u} \wedge (\lambda \vec{v}) = \lambda (\vec{u} \wedge \vec{v})
\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}
\vec{u} \wedge \lambda \vec{u} = 0$$

$$\vec{u} \wedge \vec{v} = \vec{A}$$

$$\lambda \wedge \vec{u} = \lambda \vec{u}
(\vec{u} \wedge \vec{v}) \wedge \vec{w} = \vec{u} \wedge (\vec{v} \wedge \vec{w})
\vec{u} \wedge (\vec{v} + \vec{w}) = (\vec{u} \wedge \vec{v}) + (\vec{u} \wedge \vec{w})
\vec{u} \wedge (\lambda \vec{v}) = \lambda (\vec{u} \wedge \vec{v})
\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}
\vec{u} \wedge \lambda \vec{u} = 0$$

Limitations (again)

Not enough information about the vectors

Bivector in 2D

$$\vec{u} = a_1 \mathbf{e}_x + b_1 \mathbf{e}_y \qquad \vec{v} = a_2 \mathbf{e}_x + b_2 \mathbf{e}_y$$

$$\vec{u} \wedge \vec{v} = (a_1 \mathbf{e}_x + b_1 \mathbf{e}_y) \wedge (a_2 \mathbf{e}_x + b_2 \mathbf{e}_y)$$

$$= a_1 a_2 (\mathbf{e}_x \wedge \mathbf{e}_x) + a_1 b_2 (\mathbf{e}_x \wedge \mathbf{e}_y)$$

$$+ b_1 a_2 (\mathbf{e}_y \wedge \mathbf{e}_x) + b_1 b_2 (\mathbf{e}_y \wedge \mathbf{e}_y)$$

$$= (a_1 b_2 - b_1 a_2) (\mathbf{e}_x \wedge \mathbf{e}_y)$$

$$= (a_1 b_2 - b_1 a_2) \mathbf{e}_{xy}$$

5

$$\vec{\mathbf{u}} = a_1 \mathbf{e}_{\mathsf{x}} + b_1 \mathbf{e}_{\mathsf{y}} + c_1 \mathbf{e}_{\mathsf{z}} \qquad \vec{\mathsf{v}} = a_2 \mathbf{e}_{\mathsf{x}} + b_2 \mathbf{e}_{\mathsf{y}} + c_2 \mathbf{e}_{\mathsf{z}}$$

$$\vec{u} \wedge \vec{v} = (a_1b_2 - b_1a_2) \mathbf{e}_{xy} + (c_1a_2 - a_1c_2) \mathbf{e}_{zx} + (b_1c_2 - c_1b_2) \mathbf{e}_{yz}$$

$$\vec{u} \times \vec{v} = (a_1b_2 - b_1a_2) \mathbf{e}_z + (c_1a_2 - a_1c_2) \mathbf{e}_y + (b_1c_2 - c_1b_2) \mathbf{e}_x$$

Note: looks like the cross product of \mathbb{R}^3 but:

- is actually defined in any dimension
- is associative: $(\vec{u} \wedge \vec{v}) \wedge \vec{w} = \vec{u} \wedge (\vec{v} \wedge \vec{w})$

6

Trivectors

Properties:

- Magnitude (Volume)
- Orientation

Operations:

- Addition
- Multiplication by a scalar
- . . .

k-vectors and subspaces

Set of vector spaces in 3D:

$$\left\{ \underbrace{\mathbf{1}}_{\text{scalar}}, \quad \underbrace{\mathbf{e}_{x}, \ \mathbf{e}_{y}, \ \mathbf{e}_{z}}_{\text{vector space}}, \quad \underbrace{\mathbf{e}_{xy}, \ \mathbf{e}_{zx}, \ \mathbf{e}_{yz}}_{\text{bivector space}}, \quad \underbrace{\mathbf{e}_{xyz}}_{\text{trivector space}} \right\}$$

Pseudo-scalar:
$$I = \mathbf{e}_x \wedge \mathbf{e}_y \wedge \mathbf{e}_z = \mathbf{e}_{xyz}$$

8

Part 2

Metric $\overline{\mathbb{R}_{3,0,1}}$

3D Projective geometric algebra: $\mathbb{R}_{3,0,1}$

	\mathbf{e}_{x}	\mathbf{e}_{y}	\mathbf{e}_z	\mathbf{e}_0
$\mathbf{e}_{\scriptscriptstyle X}$	1	0	0	0
\mathbf{e}_{y}	0	1	0	0
\mathbf{e}_z	0	0	1	0
\mathbf{e}_0	0	0	0	0

$$\mathbf{p} = x \, \mathbf{e}_x + y \, \mathbf{e}_y + z \, \mathbf{e}_z + w \, \mathbf{e}_0$$
$$\vec{\mathbf{u}} = a \, \mathbf{e}_x + b \, \mathbf{e}_y + c \, \mathbf{e}_z$$

9

$$\mathbf{p} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z + w\mathbf{e}_0$$
 $\vec{\mathbf{u}} = a\mathbf{e}_x + b\mathbf{e}_y + c\mathbf{e}_z$

p₂

$$\textbf{p}_1 \wedge \textbf{p}_2$$

 $oldsymbol{\mathsf{p}}_1$

$$\mathbf{p} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z + w\mathbf{e}_0$$
 $\vec{\mathbf{u}} = a\mathbf{e}_x + b\mathbf{e}_y + c\mathbf{e}_z$

$$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \mathbf{p}_3$$

$$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \vec{\mathbf{u}}$$

$$\mathsf{P} = \mathsf{p}_1 \wedge \vec{\mathsf{u}} \wedge \vec{\mathsf{v}}$$

$$\mathbf{p} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z + w\mathbf{e}_0$$
 $\vec{\mathbf{u}} = a\mathbf{e}_x + b\mathbf{e}_y + c\mathbf{e}_z$

$$\vec{\mathbf{u}} = a\mathbf{e}_{\mathsf{x}} + b\mathbf{e}_{\mathsf{y}} + c\mathbf{e}_{\mathsf{y}}$$

$$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \mathbf{p}_3$$

$$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \vec{\mathbf{u}}$$

$$\textbf{P} = \textbf{p}_1 \wedge \vec{\textbf{u}} \wedge \vec{\textbf{v}}$$

$$\mathbf{p} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z + w\mathbf{e}_0$$
 $\vec{\mathbf{u}} = a\mathbf{e}_x + b\mathbf{e}_y + c\mathbf{e}_z$

$$\vec{\mathbf{u}} = a\mathbf{e}_{\mathsf{x}} + b\mathbf{e}_{\mathsf{y}} + c\mathbf{e}_{\mathsf{z}}$$

$$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \mathbf{p}_3$$

$$\textbf{P} = \textbf{p}_1 \wedge \textbf{p}_2 \wedge \vec{\textbf{u}}$$

$$\textbf{P} = \textbf{p}_1 \wedge \vec{\textbf{u}} \wedge \vec{\textbf{v}}$$

$$\mathbf{p} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z + w\mathbf{e}_0$$
 $\vec{\mathbf{u}} = a\mathbf{e}_x + b\mathbf{e}_y + c\mathbf{e}_z$

$$\vec{\mathbf{u}} = a\mathbf{e}_{x} + b\mathbf{e}_{y} + c\mathbf{e}_{z}$$

$$\textbf{P} = \textbf{p}_1 \wedge \textbf{p}_2 \wedge \textbf{p}_3$$

$$\textbf{P} = \textbf{p}_1 \wedge \textbf{p}_2 \wedge \vec{\textbf{u}}$$

$$\mathsf{P} = \mathsf{p}_1 \wedge \vec{\mathsf{u}} \wedge \vec{\mathsf{v}}$$

$$\mathbf{p} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z + w\mathbf{e}_0$$
 $\vec{\mathbf{u}} = a\mathbf{e}_x + b\mathbf{e}_y + c\mathbf{e}_z$

$$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \mathbf{p}_3$$

$$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \vec{\mathbf{u}}$$

$$\mathsf{P}=\mathsf{p}_1\wedge\vec{\mathsf{u}}\wedge\vec{\mathsf{v}}$$

$$\mathbf{p} \in \mathbf{P} \quad \Leftrightarrow \quad \mathbf{P} \wedge \mathbf{p} = 0$$

Plane line intersection

