13 décembre 2012

Corrigé test

Exercice 1. (10 points)

- 1. On définit une application $\psi: \mathbb{C}^3 \to M_2(\mathbb{C})$ par $\psi(x,y,z) = \begin{pmatrix} x+iy & y-iz \\ ix-y & 0 \end{pmatrix}$. On admet que ψ est une application \mathbb{C} -linéaire. Soit C la base canonique (ordonnée) de \mathbb{C}^3 et $B = (E_{11}, E_{12}, E_{21}, E_{22})$ une base ordonnée de $M_2(\mathbb{C})$. (Rappel: E_{ij} est la matrice dont le seul coefficient non nul est $(E_{ij})_{ij} = 1$.)
 - a) Trouver $\ker \psi$, $\dim(\ker \psi)$ et le rang de ψ .
 - b) Trouver une partie génératrice de $\operatorname{Im} \psi$.
 - c) Trouver la matrice de ψ par rapport aux bases C et B, c'est-à-dire trouver $(\psi)_C^B$.
- 2. Soit C la base canonique de \mathbb{C}^3 et $B = \{1 + t, t^2 + t, it^2\}$ une base de $\mathbb{C}[t]_{\leq 2}$. Soit $\theta : \mathbb{C}^3 \to \mathbb{C}[t]_{\leq 2}$ une application \mathbb{C} -linéaire dont la matrice par rapport aux bases données est

$$(\theta)_C^B = \begin{pmatrix} i & i & 0 \\ 0 & -1 & 2 \\ 1 & 1 & 1+i \end{pmatrix}.$$

Trouver le polynôme $\theta((1,-1,i)) \in \mathbb{C}[t]$.

Solution 1. 1. a)

$$\begin{split} \ker \psi &= \{(x,y,z) \in \mathbb{C}^3 \mid \psi(x,y,z) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \} \\ &= \{(x,y,z) \mid x+iy=0, y-iz=0, ix-y=0 \} = \{(x,ix,x) \mid \in \mathbb{C} \}. \end{split}$$

Comme tout vecteur dans $\ker \psi$ est un multiple scalaire de (1,i,1), une base de $\ker \psi$ est $\{(1,i,1)\}$. De plus cela montre que dim $\ker \psi = 1$. Par le théorème du rang, le rang de ψ est égal à 3-1=2.

- b) Im $\psi = \{\psi(v) \mid v \in \mathbb{C}^3\}$ et tout $v \in \mathbb{C}^3$ etant une combinaison linéaire des vecteurs dans la base canonique C, l'image de v est une combinaison linéaire des vecteurs $\{\psi(e_1), \psi(e_2), \psi(e_3)\}$. Une partie génératrice est donc $\{\begin{pmatrix} 1 & 0 \\ i & 0 \end{pmatrix}, \begin{pmatrix} i & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ 0 & 0 \end{pmatrix}\}$.
- c) On place les coordonnées de $\psi(e_i)$ par rapport à la base B dans la i-ème colonne :

$$(\psi)_C^B = \begin{pmatrix} 1 & i & 0 \\ 0 & 1 & -i \\ i & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

2.
$$(\theta((1,-1,i)))_B = (\theta)_C^B \cdot \begin{pmatrix} 1\\-1\\i \end{pmatrix} = \begin{pmatrix} i & i & 0\\0 & -1 & 2\\1 & 1 & 1+i \end{pmatrix} \begin{pmatrix} 1\\-1\\i \end{pmatrix} = \begin{pmatrix} 0\\1+2i\\-1+i \end{pmatrix}$$
. Donc $\theta((1,-1,i)) = 0 \cdot (1+t) + (1+2i)(t^2+t) + (-1+i)(it^2) = it^2 + (1+2i)t$.

Exercice 2. (10 points)

1. Soit K un corps, $A \in M_n(K)$, et V un K-espace vectoriel. Soit $B = (e_1, \dots, e_n)$ une base ordonnée de V.

- a) On définit une application $\varphi:V\to M_{n\times 1}(K)$ par $\varphi(v)=(v)_B$. Démontrer que φ est une application K-linéaire.
- b) On pose $V^A = \{v \in V \mid A \cdot (v)_B = (v)_B\}$. Démontrer que V^A est un sous-espace vectoriel de V.
- c) Dans le cas particulier où $K = \mathbb{R}$, $V = \mathbb{R}^3$, B est la base canonique, et $A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, trouver une base et la dimension de V^A .
- 2. Soit

$$W = \text{Vect}((1, 2, 1, 0), (0, 1, 2, 1), (0, 1, 0, 0), (3, 6, 1, -1)) \subset \mathbb{R}^4.$$

Démontrer que $\{(1,0,1,0),(0,0,2,1),(0,1,0,0)\}$ est une base de W et la compléter en une base de \mathbb{R}^4 .

Solution 2. 1. a) Soient $u, v \in V$ et $\lambda \in K$. On a $u = \sum_{i=1}^n a_i e_i$ et $v = \sum_{i=1}^n b_i e_i$. Donc

$$\lambda u + v = \sum_{i=1}^{n} (\lambda a_i + b_i) e_i,$$

et

$$\phi(\lambda u + v) = \begin{pmatrix} \lambda a_1 + b_1 \\ \vdots \\ \lambda a_n + b_n \end{pmatrix} = \lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \lambda \phi(u) + \phi(v).$$

- b) V^A n'est pas vide car $A \cdot (0)_B = (0)_B$. Soit $u, v \in V^A$ et $\lambda \in K$. Donc $A \cdot (u)_B = (u)_B$ et $A \cdot (v)_B = (v)_B$. On calcule $A \cdot (\lambda u + v)_B$: Par la partie a), on a que $(\lambda u + v)_B = \lambda(u)_B + (v)_B$. Donc $A \cdot (\lambda u + v)_B = A(\lambda(u)_B + (v)_B) = \lambda A \cdot (u)_B + A \cdot (v)_B$, par les propriétés de la multiplication des matrices. Enfin, $\lambda A \cdot (u)_B + A \cdot (v)_B = \lambda(u)_B + (v)_B = (\lambda u + v)_B$ et $\lambda u + v \in V^A$, ce qui montre que V^A est un sous-espace vectoriel.
- c) Pour $v=(x,y,z)\in\mathbb{R}^3,\ v\in V^A$ si et seulement si $\begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, si et seulement si $2x+y=x,\ -x+y+z=y$ et x+y+z=z. Ces équations sont vérifiées si et seulement si y=-x et z=x. Donc une base de V^A est $\{(1,-1,1)\}$ et sa dimension est 1.
- 2. Posons $v_1 = (1, 0, 1, 0)$, $v_2 = (0, 0, 2, 1)$ et $v_3 = (0, 1, 0, 0)$. D'abord on montre que ces trois vecteurs sont linéairement indépendants Si a(1, 0, 1, 0) + b(0, 0, 2, 1) + c(0, 1, 0, 0) = (0, 0, 0, 0) alors on a que a = 0, c = 0 et b = 0.

Ensuite on montre que la dimension de W est trois. Une méthode consiste à appliquer la méthode de Gauss: on place les vecteurs dans les lignes d'une matrice et on réduit à une forme échelonnée. Le rang ligne de la matrice qui résulte est la dimension de W.

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 \\ 3 & 6 & 1 & -1 \end{pmatrix} \xrightarrow{L_{41}(-3)} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -1 \end{pmatrix} \xrightarrow{L_{32}(-1)} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & -2 & -1 \end{pmatrix}$$

Comme le rang ligne de la matrice échelonnée est 3, $\dim W = 3$.

Si on n'utilise pas la méthode de Gauss pour échelonner le système, on résout l'équation a(1, 2, 1, 0) + b(0, 1, 2, 1) + c(0, 1, 0, 0) + d(3, 6, 1, -1) = (0, 0, 0, 0) et on trouve que b = d, a = -3d et c = -d. On déduit, en posant d = 1, que (3, 6, 1, -1) = 3(1, 2, 1, 0) - (0, 1, 2, 1) + (0, 1, 0, 0). Donc

W = Vect((1,2,1,0),(0,1,2,1),(0,1,0,0)). On vérifie ensuite facilement que les trois vecteurs (1,2,1,0),(0,1,2,1),(0,1,0,0) sont linéairement indépendants et forment donc une base de W. D'où dim W = 3.

Enfin, il faut voir que $v_i \in W$ pour $1 \le i \le 3$: pour v_3 c'est clair. $v_2 = (0, 1, 2, 1) - (0, 1, 0, 0) \in W$ et $v_1 = (1, 2, 1, 0) - 2(0, 1, 0, 0) \in W$. Comme dim W = 3 et v_1, v_2, v_3 sont trois vecteurs linéairement indépendants dans W, ils forment une base de W.

En plus, il est clair d'après la forme de la matrice échelonnée que e_4 n'appartient pas à W et donc on peut compléter la base en rajoutant e_4 . On peut aussi compléter la base par e_1 ou e_3 , par exemple. La réponse ici n'est pas du tout unique.

Exercice 3. (8 points)

- 1. Soit $A = (a_{ij}) \in M_p(K)$ et $B = (b_{k\ell}) \in M_q(K)$. Supposons que $a_{1j} = 0$ pour tout $j \ge 1$ et $b_{j1} = 0$ pour tout $j \ge 1$. Montrer que pour tout $C \in M_{p \times q}(K)$, $(ACB)_{ij} = 0$ si i = 1 ou si j = 1.
- 2. Soient U, V et W des K-espaces vectoriels de dimension finie, et soient encore $\psi : U \to V$ et $\varphi : V \to W$ deux applications K-linéaires. Supposons que les quatre conditions suivantes sont vérifiées:
 - i. $\ker \varphi \cap \operatorname{Im} \psi = 0$;
 - ii. φ est surjective;
 - iii. ψ est injective; et
 - iv. $\dim U = \dim W$.

Démontrer que $V = \ker \varphi \oplus \operatorname{Im} \psi$.

Solution 3. 1. On considère la première ligne de la matrice ACB:

 $(ACB)_{1k}=(A(CB))_{1k}=\sum_{j=1}^p a_{1j}(CB)_{jk}=0$ car $a_{1j}=0$ pour tout j. On considère aussi la première colonne de la matrice ACB:

$$(ACB)_{k1} = ((AC)B)_{k1} = \sum_{i=1}^{q} (AC)_{kj} b_{j1} = 0$$
, car $b_{j1} = 0$ pour tout j.

2. Pour montrer que $V = \ker \varphi \oplus \operatorname{Im} \psi$ on doit montrer

$$V = \ker \varphi + \operatorname{Im} \psi \text{ et } \ker \varphi \cap \operatorname{Im} \psi = 0.$$

Comme la deuxième condition est une des conditions données, on doit simplement montrer que $V=\ker\varphi+\operatorname{Im}\psi$. On a une inclusion: $\ker\varphi+\operatorname{Im}\psi\subset V$ On calcule la dimension du sous-espace $\ker\varphi+\operatorname{Im}\psi$:

On sait que $\dim(\ker \varphi + \operatorname{Im} \psi) = \dim \ker \varphi + \dim \operatorname{Im} \psi - \dim(\ker \varphi \cap \operatorname{Im} \psi) = \dim \ker \varphi + \dim \operatorname{Im} \psi$. Comme ψ est injective, $\dim \operatorname{Im} \psi = \dim U$ et comme φ est surjective, $\dim \operatorname{Im} \varphi = \dim W$ (les deux égalités découlent du théorème du rang). Mais on a aussi $\dim U = \dim W$. Par le théorème du rang, $\dim V = \dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim \ker \varphi + \dim \operatorname{Im} \psi = \dim \ker \varphi + \dim \operatorname{Im} \psi = \dim \ker \varphi + \dim \Psi$.

Donc on a bien que le sous-espace $\ker \varphi + \operatorname{Im} \psi$ a la même dimension que V et donc est égal à V.

Exercice 4. (11 points) Soit K un corps.

un sous-espace de V.

1. Vrai-faux: Seule la réponse sera évaluée, aucune justification n'est demandée. **Attention:** Réponse correcte 1 point, réponse fausse -1 point, aucune réponse, 0 point.

Vrai Faux

Soit $\phi: V \to V$ une application K-lineaire d'un K-espace vectoriel V. Si $\ker \phi \cap \operatorname{Im} \phi = \{0\}$ alors ϕ est injective.
Soit $\phi:V\to V$ une application K -linéaire injective. Alors l'application $\phi:V\to\operatorname{Im}\phi$ est bijective. (Attention: V n'est pas nécessairement de dimension finie.)
L'ensemble $\{t+1, t^2+2, t^2+t\}$ est une base de $\mathbb{F}_3[t]_{\leq 2}$.
Soient $A \in M_n(K)$ et $B, C \in M_{n \times m}(K)$. Si $AB = AC$ alors $B = C$.
Soit V un K -espace vectoriel de dimension finie avec sous-espaces W et U . Alors $\dim(U+W)>\dim U$.
Soit $\{v_1, v_2, v_3\}$ une partie libre d'un K -espace vectoriel V de dimension finie, alors il existe une base de V contenant l'ensemble $\{v_1 + v_2, v_2 + v_3, v_3\}$.
Soit $\psi: K^n \to K^m$ une application K-linéaire. Si ψ est injective alors $n < m$.

- 2. Donner une définition précise de chacune des notions suivantes:
 - i. Qu'est-ce qu'une partie liée dans un espace vectoriel ?
 - ii. Qu'est-ce que le noyau d'une application linéaire d'espaces vectoriels?

Solution 4. 1.

- Vrai, car une des conditions pour que la somme soit directe est que $V_i \cap (\sum_{k \neq i} V_k) = 0$. Comme pour $j \neq i$, $V_j \subset (\sum_{k \neq i} V_k)$, alors $V_i \cap V_j \subset V_i \cap (\sum_{k \neq i} V_k) = 0$.
- Vrai. L'intersection de sous-espaces est un sous-espace.
- Faux. Prenons ϕ la projection orthogonale sur le plan xy dans \mathbb{R}^3 . Donc ϕ n'est pas injective, son noyau est l'axe z et son image est le plan xy, qui ont l'intersection égale au vecteur nul.
- Vrai. L'application est injective par l'hypothèse et surjective, car pour tout $v \in \text{Im } \phi$, il existe $x \in V$ tel que $v = \phi(x)$.
- Faux. Ces trois vecteurs sont linéairement dépendants car: $t+1=t^2+t-(t^2+2)$ (dans $\mathbb{F}_3[t]$).
- Faux. Considérerar exemple, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} a & b & c \\ x & y & z \end{pmatrix}$, et $C = \begin{pmatrix} 0 & 0 & 0 \\ x & y & z \end{pmatrix}$.
- Faux. prenons $W \subset U$ et donc U + W = U et $\dim(U + W) = \dim U$.
- Vrai. On montre que ces trois vecteurs sont linéairement indépendants: supposons que

$$a(v_1 + v_2) + b(v_2 + v_3) + cv_3 = 0.$$

Donc $av_1 + (a+b)v_2 + (b+c)v_3 = 0$. Par l'indépendance linéaire de v_1, v_2, v_3 , on a que a=0=a+b=b+c. De ces trois egalités on déduit que a=0=b=c et donc les trois vecteurs sont linéairement indépendants. On peut donc prolonger en une base de V.

- Faux. Ce qui est vrai est que $n \leq m$. Mais on peut trés bien avoir n = m, par exemple dans le cas d'une application bijective, qui est en particulier injective.
- 2. i. Soit V un K-espace vectoriel et soit $S \subset V$ un sous-ensemble. On dit que S est une partie liée s'il existe v_1, \ldots, v_t dans S et des scalaires $\lambda_1, \ldots, \lambda_t$ dans K, non tous nuls, tels que $\lambda_1 v_1 + \cdots + \lambda_t v_t = 0$.
 - ii. Soient V et W deux K-espaces vectoriels. Soit $\phi: V \to W$ une application K-linéaire. Le noyau de ϕ , noté ker ϕ , est l'ensemble ker $\phi = \{v \in V \mid \phi(v) = 0\}$.