

RAJARATA UNIVERSITY OF SRI LANKA **FACULTY OF APPLIED SCIENCES**

B.Sc. (General) Degree in Applied Sciences Second Year - Semester II Examination - April / May 2015

PHY 2106 - ATOMIC & NUCLEAR PHYSICS

Answer All Questions.

Time allowed: One hour

Electron Charge (e) -1.6×10^{-19} C, Electron Mass (m_e) -9.1×10^{-31} kg

1. A Hydrogen atom with magnetic moment μ is placed inside an external magnetic field of **B** as shown in the following figure.

a) If the change in the orbital angular momentum is $|dL| = L \sin \theta \ d\varphi$, show that the precession frequency (Larmor Frequency) of the above atom is given by, $\omega_L = \frac{d\varphi}{dt} = \frac{e}{2m}B$, where *m* and *e* represent the mass and the charge of an (15 Marks) electron respectively.

1 of 2

- b) If the magnetic potential energy of an atom is given by $U = \frac{eB}{2m} L_z$, where L_z is the z component of the orbital angular momentum vector, show that the total magnetic energy of an atom placed in an applied magnetic field B, is given by $E = E_0 + m_l \omega_L \hbar$, where E_0 is the energy of an atom in the absence of an applied magnetic field, m_l is the magnetic quantum number and \hbar is the reduced Planck constant. (10 Marks)
- c) Explain the Normal Zeeman Effect using transition between (n = 2, l = 1) and (n = 1, l = 0) levels in a Hydrogen atom. (10 Marks)
- d) If the transitions in part (c) occur in a magnetic field of 0.6 T and the wavelength before the field was turned on was 5000 Å, determine the wavelengths that are observed.

 (10 Marks)
- e) What is Anomalous Zeeman Effect? (05 Marks)
- Two isotopes of Oxygen ¹⁶₈O and ¹⁸₈O have nuclear masses 15.990523 amu and 17.994768 amu respectively. If the mass of a proton is 1.007276 amu and mass of a neutron is 1.008665 amu,
 - a) Calculate the binding energy per nucleon for $^{16}_{8}O$ in MeV. (05 Marks)
 - b) Calculate the binding energy per nucleon for ¹⁸₈O in MeV. (05 Marks)
 - c) Which of the above Oxygen isotopes is more abundance in the nature? Explain your answer. (10 Marks)
 - d) The half-life of radioactive nucleus $^{226}_{88}Ra$ is about 1.6 imes 10³ years.
 - i. Calculate the decay constant of ²²⁶₈₈Ra. (10 Marks)
 - ii. If a sample contains 3.0×10^{16} such nuclei at t = 0 s, determine its activity at this time. (1 $Ci = 3.7 \times 10^{10}$ decays/s) (10 Marks)
 - iii. What is the decay rate when the sample is 2×10^3 years old? (10 Marks)

END

2 of 2