

Fundação CECIERI - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 1° semestre de 2019

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

1 - Primeira questão (2,0 pontos)

Abaixo é apresentado o gráfico de uma distribuição que deve ser normalizada, ou seja, dividida por um valor de forma que a sua integral seja igual a 1. A função é nula fora do intervalo [1,4].

a) Normalize a função obtendo uma distribuição de probabilidade (0.5 ponto);

Resolução:

Faremos este item de duas maneiras: i) pela soma das áreas do triângulo dado no intervalo [1, 2], do quadrado dado no intervalo [2, 3] e pela do trapézio dado no intevalo [3, 4]; ii) calcularemos usando integrais nestes mesmos intevalos.

i) Aqui faremos

$$A_{total} = A_{tri\hat{a}ngulo} + A_{quadrado} + A_{trap\acute{e}zio} = \frac{b \times h}{2} + l^2 + \frac{b + B}{2} \times h = \frac{1 \times 1}{2} + 1^2 + \frac{1 + 2}{2} \times 1 = \frac{1}{2} + 1 + \frac{3}{2} = 3.$$

Esta é a constante de normalização.

ii) Achemos as equações das retas dadas em cada intervalo, descrevendo a equação de uma reta genérica como y=ax+b .

No intervalo [1, 2] determinamos a reta que passa pelos pontos (1, 0) e (2, 1) teremos $0=a\times 1+b$; $1=a\times 2+b$. Resolvendo este sistema teremos a equação y=x-1 .

No intervalo [2, 3] temos uma função constante valendo 1.

No intervalo [3, 4] teremos uma uma reta, esta agora definida pelos pontos (3, 1) e (4, 2), ou seja, $1=a\times 2+b$; $2=a\times 4+b$. Revolver este sistema resulta na equação y=x-2. Integremos

$$C = \int_{1}^{2} (x-1) dx + \int_{2}^{3} dx + \int_{3}^{4} (x-2) dx = \int_{1}^{2} x dx - \int_{1}^{2} dx + \int_{2}^{3} dx + \int_{3}^{4} x dx - 2 \int_{3}^{4} dx = \frac{x^{2}}{2} |_{1}^{2} - x|_{1}^{2} + x|_{2}^{3} + \frac{x^{2}}{2} |_{3}^{4} - 2 x|_{3}^{4}$$

ou seja,

$$C = \frac{2^2 - 1^2}{2} - (2 - 1) + (3 - 2) + \frac{4^2 - 3^2}{2} - 2(4 - 3) = \frac{3}{2} - 1 + 1 + \frac{7}{2} - 2 = 3.$$

b) Calcule o valor médio da distribuição obtida (0,5 ponto);

Resolução:

Aqui usaremos a definição da média dada por

$$\mu = \int_{-\infty}^{\infty} x f(x) dx$$

que no nosso caso, já com a renormalização, será escrita como

$$\mu = \frac{1}{3} \left[\int_{1}^{2} x(x-1) dx + \int_{2}^{3} x dx + \int_{3}^{4} x(x-2) dx \right] .$$

Calculemos esta integral

$$\mu = \frac{1}{3} \left[\int_{1}^{2} x(x-1) dx + \int_{2}^{3} x dx + \int_{3}^{4} x(x-2) dx \right] = \frac{1}{3} \left[\int_{1}^{2} x^{2} dx - \int_{1}^{2} x dx + \int_{2}^{3} x dx + \int_{3}^{4} x^{2} dx - 2 \int_{3}^{4} x dx \right]$$

que nos leva a

$$\mu = \frac{1}{3} \left[\frac{x^3}{3} |_1^2 - \frac{x^2}{2} |_1^2 + \frac{x^2}{2} |_2^3 + \frac{x^3}{3} |_3^4 - 2 \frac{x^2}{2} |_3^4 \right] = \frac{1}{3} \left[\frac{2^3 - 1^3}{3} - \frac{2^2 - 1^2}{2} + \frac{3^2 - 2^2}{2} + \frac{4^3 - 3^3}{3} - (4^2 - 3^2) \right]$$

ou

$$\mu = \frac{1}{3} \left[\frac{7}{3} - \frac{3}{2} + \frac{5}{2} + \frac{37}{3} - 7 \right] = \frac{26}{9} \approx 2,8889.$$

c) Calcule a variância da distribuição obtida (0,5 ponto);

Resolução:

Partindo da definição de variância para funções contínuas,

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

calculemos a integral acima,

$$\int_{-\infty}^{\infty} x^2 f(x) dx = \frac{1}{3} \left[\int_{1}^{2} x^2 (x-1) dx + \int_{2}^{3} x^2 dx + \int_{3}^{4} x^2 (x-2) dx \right] = \frac{1}{3} \left[\int_{1}^{2} x^3 dx - \int_{1}^{2} x^2 dx + \int_{2}^{3} x^2 dx + \int_{3}^{4} x^3 dx - 2 \int_{3}^{4} x^2 dx \right]$$

que resulta em

$$\int_{-\infty}^{\infty} x^2 f(x) dx = \frac{1}{3} \left[\frac{x^4}{4} |_1^2 - \frac{x^3}{3}|_1^2 + \frac{x^3}{3} |_2^3 + \frac{x^4}{4} |_3^4 - 2\frac{x^3}{3} |_3^4 \right] = \frac{1}{3} \left[\frac{2^4 - 1^4}{4} - \frac{2^3 - 1^3}{3} + \frac{3^3 - 2^3}{3} + \frac{4^4 - 3^4}{4} - \frac{2}{3} (4^3 - 3^3) \right]$$

que nos dá

$$\int_{-\infty}^{\infty} x^2 f(x) dx = \frac{1}{3} \left[\frac{15}{4} - \frac{7}{3} + \frac{19}{3} + \frac{175}{4} - \frac{74}{3} \right] = \frac{161}{18} \approx 8,9444 .$$

Com este resultado obtemos

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 = \frac{161}{18} - \left(\frac{26}{9}\right)^2 = \frac{97}{162} \approx 0,5988 .$$

d) Calcule a moda da distribuição obtida (0,5 ponto).

Resolução:

A função de dsitribuição tem seu ponto de máxima probabilidade em x = 4. Portanto, esta é a moda e a distribuição é monomodal.

2 – Segunda questão (1,5 pontos)

Verifique se as expressões abaixo são funções de probabilidade. Caso alguma não seja devido à constante de normalização, apresente a função normalizada.

a)
$$f(x) = \frac{3}{7}(x^2 - x); x \in [1;3]$$
 (0,5 ponto);

Resolução:

Observe que a função é crescente no intervalo dado e que tem seu ponto de menor valor no intervalo em x=1, onde a função se anula. Assim esta função é não negativa no intervalo dado. Integremos

$$\int_{1}^{3} \frac{3}{7} (x^{2} - x) dx = \frac{3}{7} \left[\int_{1}^{3} x^{2} dx - \int_{1}^{3} x dx \right] = \frac{3}{7} \left[\frac{x^{3}}{3} \Big|_{1}^{3} - \frac{x^{2}}{2} \Big|_{1}^{3} \right] = \frac{3}{7} \left[\frac{3^{3} - 1^{3}}{3} - \frac{3^{2} - 1^{2}}{2} \right] = \frac{3}{7} \left(\frac{26}{3} - 4 \right) = 2 .$$

Logo, para que a função seja uma distribuição de probabilidade ela deve ser normalizada o que resulta na expressão

$$f(x) = \frac{3}{14}(x^2 - x); x \in [1;3] .$$

b)
$$f(x) = \frac{1}{16}(x^3 - x); x \in [1,3]$$
 (0,5 ponto);

Resolução:

Esta função tem um comportamento similar à anterior, sendo crescente dentro do intervalo e tendo seu menor valor, zero, em x = 1. Sendo não negativa, calculemos a integral

$$\int_{1}^{3} \frac{1}{16} (x^{3} - x) dx = \frac{1}{16} \left[\int_{1}^{3} x^{3} dx - \int_{1}^{3} x dx \right] = \frac{1}{16} \left[\frac{x^{4}}{4} \Big|_{1}^{3} - \frac{x^{2}}{2} \Big|_{1}^{3} \right] = \frac{1}{16} \left[\frac{3^{4} - 1^{4}}{4} - \frac{3^{2} - 1^{2}}{2} \right] = \frac{1}{16} (20 - 4) = 1$$

ou seja, esta função é uma distribuição de probabilidade.

c)
$$f(x) = -\frac{1}{3} [sen(x)cos(x)]; x \in [-\pi/3; 0]$$
 (0,5 ponto).

Resolução:

Um exame cuidadoso desta função nos dá que ela se anula em zero, sendo positiva no intervalo $[-\pi/3;0]$. Integremos

$$\int_{-\pi/3}^{0} -\frac{1}{3} sen(x) \cos(x) dx = -\frac{1}{3} \int_{-\pi/3}^{0} sen(x) \cos(x) dx = \frac{1}{6} \cos^{2}(x) \Big|_{-\pi/3}^{0} = \frac{1}{6} \left[1^{2} - \left(\frac{1}{2} \right)^{2} \right] = \frac{1}{6} \times \frac{3}{4} = \frac{1}{8} .$$

Assim, para que tenhamos uma função de probabilidade, teremos que usar esta constante de normalização que nos deixará com

$$f(x) = -\frac{8}{3} [sen(x)cos(x)]; x \in [-\pi/3; 0]$$
.

3 – Terceira questão (1,5 pontos)

Num tanque de produção de piscicultura, se recolheu alguns alevinos cujo o tamanho em milímetros está dado abaixo

Т	21	23	22	19	22	24	20	21	19	22
---	----	----	----	----	----	----	----	----	----	----

Usando estimadores não viciados, calcule a probabilidade que um alevino escolhido ao acaso do tanque esteja no intervalo [20,23] supondo ser possível usar a distribuição Normal.

Resolução:

Usaremos os seguintes estimadores não viciados para o cálculo da média e da variância

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \mathbf{e} \quad \sigma^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \, \bar{X}^{2} \right).$$

Assim teremos,

$$\hat{\mu} = \frac{1}{10} \sum_{i=1}^{10} x_i = \frac{(21 + 23 + 22 + 19 + 22 + 24 + 20 + 21 + 19 + 22)}{10} = \frac{213}{10} = 21,3.$$

Estimemos a variância calculando primeiro o somatório do quadrados de nossos dados.

$$\sum_{i=1}^{10} x_i^2 = 21^2 + 23^2 + 22^2 + 19^2 + 22^2 + 24^2 + 20^2 + 21^2 + 19^2 + 22^2 = 4561.$$

Teremos então

$$\sigma^2 = \frac{1}{9} (4561 - 10 \times 21,3^2) \approx 2,6778 \Rightarrow \sigma \approx 1,6364$$
.

Estamos supondo que vale a distribuição Normal. Calculemos a probabilidade solicitada, dado que para esta distribuição a probabilidade é calculada como

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma / \sqrt{n}} < Z < \frac{b - \mu}{\sigma / \sqrt{n}}\right)$$
.

$$P(20 < X < 23) = P\left(\frac{20 - 21,3}{1,6364/\sqrt{10}} < Z < \frac{23 - 21,3}{1,6364/\sqrt{10}}\right) \approx P\left(\frac{-1,3}{0,5175} < Z < \frac{1,7}{0,5175}\right) \approx P\left(-2,5121 < Z < 3,2850\right),$$

o que nos dá

$$P(20 < X < 23) \approx P(-2.51 < Z < 3.28) = P(2.51 < Z) + P(3.28 < Z) = 0.4920 + 0.5 = 0.9920$$
.

4 – Quarta questão (1,5 ponto)

Ache o intervalo de confiança de uma amostra de doze parafusos quanto à resistência à tração. A média da amostra indicava 823 N/mm². De testes anteriores a variância usada foi de 3249 N²/mm⁴. Use 90% para o coeficiente de confiança γ .

Resolução:

O intervalo de confiança é dado portanto

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right].$$

Usando nossas informações teremos

$$\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{3249}}{\sqrt{12}} \approx \frac{57}{3,4641} \approx 16,4545$$
 e $z_{0,9/2} = z_{0,45} = 1,64$.

Teremos

$$IC(\mu,\gamma)=[823-1,64\times16,4545;823+1,64\times16,4545]\approx[796,01;849,98]$$
.

5 – Quinta questão (1,0 ponto)

De uma produção de blocos de espuma de borracha foi extraída uma amostra cuja a média de volume era 6235 cm³. O desvio padrão estimado era de 3791 cm³ e a amostra estudada era de 20 peças. Esta produção foi modelada pela distribuição Normal. Calcule as seguintes probabilidades:

Resolução:

Usaremos novamente a expressão

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma / \sqrt{n}} < Z < \frac{b - \mu}{\sigma / \sqrt{n}}\right)$$
.

a) De uma peça ter volume maior que 6500 cm;

Resolução:

Com as informações dadas na questão, teremos $\frac{\sigma}{\sqrt{n}} = \frac{3791}{\sqrt{20}} \approx 847,6934$. Assim,

$$P(X > 6500) = 0.5 - P(6500 < X) = 0.5 - P\left(\frac{6500 - 6235}{847,6934} < Z\right) \approx 0.5 - P(0.3126 < Z) \approx 0.5 - P(0.$$

e finalmente

$$P(X>6500)=0.5-0.1217=0.3783$$
.

b) De uma peça ter volume entre 6300 cm e 6400 cm.

Resolução:

Aqui teremos

$$P\left(6300 < X < 6400\right) = P\left(\frac{6300 - 6235}{847,6934} < Z < \frac{6400 - 6235}{847,6934}\right) = P\left(0,0767 < Z < 0,1946\right) \approx P\left(0,08 < Z < 0,19\right) \text{ ,}$$

assim teremos,

$$P(6300 < X < 6400) = P(0.08 < Z) + P(0.19 < Z) = 0.0753 - 0.0319 = 0.0434$$
.

6 – Sexta questão (2,5 pontos)

Calcule as seguintes probabilidades:

a) P(1,7<X<2,7) para a distribuição de probabilidade da primeira questão;

Resolução:

Neste caso, e no intervalo no qual calcularemos a probabilidade solicitada, teremos

$$P(1,7 < X < 2,7) = \frac{1}{3} \left[\int_{1,7}^{2} (x-1) dx + \int_{2}^{2,7} dx \right] = \frac{1}{3} \left[\int_{1,7}^{2} x dx - \int_{1,7}^{2} dx + \int_{2}^{2,7} dx \right] = \frac{1}{3} \left[\frac{x^{2}}{2} \Big|_{1,7}^{2} - (2-1,7) + (2,7-2) \right]$$

e então,

$$P(1,7 < X < 2,7) = \frac{1}{3} \left[\frac{2^2 - 1,7^2}{2} + 0,4 \right] = \frac{0,955}{3} \approx 0,3183$$
.

b) P(1,7<X<2,7) para a distribuição Normal de média 2 e variância 6,17;

Resolução:

$$P(a < X < b) = \left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

$$P(1,7 < X < 2,7) = P\left(\frac{1,7-2}{\sqrt{6,17}} < Z < \frac{2,7-2}{\sqrt{6,17}}\right) \approx P\left(\frac{-0,3}{2,4839} < Z < \frac{0,7}{2,4839}\right) \approx P(-0,1208 < Z < 0,2818)$$

ou ainda

$$P(1,7 < X < 2,7) \approx P(-0,12 < Z < 0,28) = P(0,12 < Z) + P(0,28 < Z) = 0,0478 + 0,1103 = 0,1581$$
.

c) P(1,7<X<2,7) para a distribuição Normal de média 1 e desvio padrão 6,17;

Resolução:

Para esta situação teremos

$$P(1,7 < X < 2,7) = P\left(\frac{1,7-1}{6,17} < Z < \frac{2,7-1}{6,17}\right) = P \approx P(0,1135 < Z < 0,2755) \approx P(0,11 < Z < 0,28)$$

ou

$$P(1,7X<2,7)=P(0,11< Z)+P(0,28< Z)=0,1103-0,0438=0,0665$$
.

d) P(1,7<X<2,7) para uma distribuição de Exponencial com α =0,617 ;

Resolução:

Sabemos que a probabilidade para esta distribuição é dada por

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

Usando as informações dadas obtemos

$$P(a1,7X < 2,7) = e^{-0.617 \times 1.7} - e^{-0.617 \times 2.7} = e^{-1.0489} - e^{-1.6659} \approx 0.3503 - 0.1890 = 0.1613$$
.

e) P(1,7<X<2,7) para uma distribuição uniforme no intervalo [0, 4].

Resolução:

A probabilidade para a distribuição Uniforme é calculada como

$$P(a < X < b) = \frac{1}{B - A} \int_{a}^{b} dx ; X \in [A, B]$$
.

Para o problema específico ficaremos com

$$P(1,7 < X < 2,7) = \frac{1}{4-0} \int_{1.7}^{2.7} dx = \frac{1}{4} x \Big|_{1.7}^{2.7} = \frac{2.7-1.7}{4} = \frac{1}{4} = 0.25$$
.

Atenção:

- I) Não haverá formulário na segunda avaliação presencial.
- II) As respostas da AD serão digitadas no editor de sua conveniência e após isto gerado um arquivo de formato pdf que será enviado como resposta de suas questões. Digitalizações de material escrito não serão aceitos e terão nota zero como resultado;
- II) Todos os cálculos deverão ser feitos com pelo menos quatro casas decimais e arrendondados para duas APENAS ao final, seja na AD2 ou na AP2.
- III) Tenha cuidado quanto a notação. Caso não a siga, você terá pontos descontados, seja na lista ou na prova.

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{C}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.