DESCRIPTION OF 72 KV VOLTAGE TRANSFORMER & ASSESSMENT OF THE INSULATION QUALITY

HIGH VOLTAGE ENGINEERING MINILAB

AINA ROMANI DALMAU
THEODOROS KALOGIANNIS
ENRIQUE MÜLLER LLANO
ELENA MALZ
LENNART PETERSEN
MARIE SCHIMMELMANN

CONTENT

- 1 DATA OF THE VOLTAGE TRANSFORMER
- 2 TRANSFER RATIO MEASUREMENT
- 3 LIGHTNING OVERVOLTAGE TEST
- 4 DIELECTRIC LOSS ANGLE MEASUREMENT
- 5 PARTIAL DISCHARGES MEASUREMENT
- 6 DIELECTRIC SPECTROSCOPY TEST
- 7 CONCLUSION LIFETIME ASSESSMENT
- 8 CLOSING WORDS

HIGH VOLTAGE ENGINEERING MINILAB 2 - 09.10.2013

DATA OF THE VOLTAGE TRANSFORMER

Inductive voltage transformer.

Rated primary voltage: 60/√3 kV Rated secondary voltage: 100/√3 V

Insulation: oil-paper-quarz

Insulator: porcelain

Dielectric strength: 12 kV/mm Creepage distance: 2248 mm

AALBORG UNIVERSITET

TRANSFER RATIO MEASUREMENT

- · Performed at different primary voltage levels
 - → under no load (no currents)
- Primary voltage supplied by capacitive voltage divider
- Secondary voltage measured by multimeter

$$\frac{N_{primary}}{N_{secondary}} = \frac{V_{primary}}{V_{secondary}} = \frac{I_{secondary}}{I_{primary}}$$

ABB voltage transformer:

$$r_{rated} = \frac{V_{pri}}{V_{sec}} = \frac{60 \, kV}{110 \, V} = 545.45$$

HIGH VOLTAGE ENGINEERING MINILAB 4 - 09.10.2013

TRANSFER RATIO MEASUREMENT

Steps	$\mathrm{Vprimset}[\mathrm{kV}]$	V primact[kV]	Vsecmeas[V]	Ratio	${\bf Abs} \ {\bf Error}$	Rel Error(%)
1	7	7.40	13.65	542.12	-3.33	-0.61
2	14	14.30	26.55	538.61	-6.85	-1.26
3	20.4	20.40	37.80	539.68	-5.77	-1.06
4	21	21.30	39.50	539.24	-6.21	-1.14
5	28	28.00	51.60	542.64	-2.82	-0.52
6	35	35.30	65.10	542.24	-3.21	-0.59

HIGH VOLTAGE ENGINEERING MINILAB 5 - 09.10.2013

LIGHTNING IMPULSES

- unidirectional voltage
- rapid rise
- slow decay
- breakdown if insulation fails
- creation in lab with simple discharging circuit:

HIGH VOLTAGE ENGINEERING MINILAB 6 - 09.10.2013

LIGHTNING OVERVOLTAGE TEST SETUP

- AC voltage supply
- transformer
- half-wave rectifier

- discharging circuit
- test object
- low pass filter

HIGH VOLTAGE ENGINEERING MINILAB 7 - 09.10.2013

LIGHTENING OVERVOLTAGE TEST RESULTS

no breakdown

breakdown

HIGH VOLTAGE ENGINEERING MINILAB 8 - 09.10.2013

LIGHTENING OVERVOLTAGE TEST RESULTS

$$P(V) = \frac{1}{\sigma\sqrt{2\cdot\pi}} \int_{-\infty}^{\infty} e^{\frac{-(V-V_{50})^2}{2\sigma^2}} dx \qquad \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (V-V_{50})^2} = 2,867kV$$

HIGH VOLTAGE ENGINEERING MINILAB 9 - 09.10.2013

DIELECTRIC LOSS ANGLE MEASUREMENT

Dielectric Equivalent

$$P_{diel} = P_1 + P_p + P_i$$

Loss Angle δ

$$tan\delta = \frac{I_w}{I_{wl}} = \frac{P_{diel}}{Q}$$

$$P_{diel} = Q \cdot tan\delta = \omega \cdot C \cdot tan\delta \cdot V^2$$

HIGH VOLTAGE ENGINEERING MINILAB 10 - 09.10.2013

DIELECTRIC LOSS ANGLE MEASUREMENT

Schering Bridge method for Capacitance and Loss angle measurement

$$Z_x \cdot Z_4 = Z_2 \cdot Z_3$$

$$|Z_x| \cdot |Z_4| = |Z_2| \cdot |Z_3|$$

$$\varphi_x + \varphi_4 = \varphi_2 + \varphi_3$$

$$\varphi_4 = 90 - \varphi_x = \delta_x$$

$$C_x = C_2 \cdot \frac{R_4}{R_3 \cdot (1 + tan^2 \delta_x)} = C_2 \cdot \frac{R_4}{R_3}$$

$$tan\varphi_4 = \omega \cdot R_4 \cdot C_4 = tan\delta_x$$

HIGH VOLTAGE ENGINEERING MINILAB 11 - 09.10.2013

DIELECTRIC LOSS ANGLE MEASUREMENT

Lab Results

Fig.~b: Measured $\tan\!\delta$ for different applied voltages

HIGH VOLTAGE ENGINEERING MINILAB 12 - 09.10.2013

PARTIAL DISCHARGES (PD)

- External partial discharges
 - Inhomogenous field in a gaseous dielectric
 - → Corona
 - → Surface discharges
- Internal partial discharges
 - Discharges in a cavity of solid/liquid dielectric.

HIGH VOLTAGE ENGINEERING MINILAB 13 - 09.10.2013

Internal Discharges

External Discharges

DIELECTRIC SPECTROSCOPY TEST

HIGH VOLTAGE ENGINEERING MINILAB 16 - 09.10.2013

DIELECTRIC SPECTROSCOPY THEORY

- effects of moisture over the dielectric, especially noticeable at the lower frequencies.
- Dissipation factor is a frequency dependent

$$j(t) = \sigma_0 E(t) + \frac{dD(t)}{dt}$$

$$j(t) = \sigma_0 E(t) + \varepsilon_0 (1 + \chi(0')) \frac{dE(t)}{dt} + \varepsilon_0 \frac{d}{dt} \int_0^t f(t - \tau) E(\tau) d\tau$$

$$j(\omega) = \{ \sigma_0 + \omega \varepsilon_0 \chi''(\omega) + i\omega \varepsilon_0 [1 + \chi'(\omega)] \} E(\omega)$$

HIGH VOLTAGE ENGINEERING MINILAB 17 - 09.10.2013

DIELECTRIC SPECTROSCOPY TEST: RESULTS

DIELECTRIC SPECTROSCOPY TEST: RESULTS

HIGH VOLTAGE ENGINEERING MINILAB 19 - 09.10.2013

CONCLUSION – LIFETIME ASSESSMENT

- Parameters and operation range: (safety of personnel and equipment)
- System's response: (overvoltage magnitude the line can sustain without a breakdown)
- Loss angle: (Scheringbridge asses power quality and dielectric characteristics)
- Partial discharges:
 (determine type of discharge ocurring through a graphical method)
- Dielectric spectroscopy test: (quality, operation parameters and effects of aging of the dielectric)
- Diagnose the operation of a system and its components.

HIGH VOLTAGE ENGINEERING MINILAB 20 - 09.10.2013

CLOSING WORDS

HIGH VOLTAGE ENGINEERING MINILAB 21 - 09.10.2013