Congratulations! You passed!

Grade received 100% To pass 80% or higher

1/1 point

1. To adapt the Newton-Raphson root-finding method to inverse kinematics when the desired end-effector configuration is represented as a transformation matrix $X_d \in SE(3)$, we need to express the error between $T_{tb}(\theta^i)$ (the forward kinematics, where θ^i is our current guess at a joint solution) and X_d . One expression of this error is the twist that takes the thre both from $T_{tb}(\theta^i)$ to X_t until time. When this twist is expressed in the endeffector frame (b), we write it as \mathcal{V}_b . Which of the following is a correct expression?

 $\bigcirc \ \mathcal{V}_b = \log(T_{sb}^{-1}(\theta^i)X_d)$

 $\bigcirc \hspace{-0.8em} [\mathcal{V}_b] = \log(T_{sb}^{-1}(\theta^i)X_d)$

 $\bigcirc V_b = \exp(T_{sb}^{-1}(\theta^i)X_d)$

 \bigodot Correct T_{ab}^{-1} is the same as T_{ba} , and X_d can be written as T_{ad} so $T_{ab}^{-1}T_{ad}=T_{bd}$ by the subscript cancellation rule. The log of this is the se(3) matrix representation of the twist (expressed in the [b] frame) that takes [b] to [d] in unit time.