MAC 1140 Section 6.4 Logarithmic Functions

Xin Li

July 17, 2018

Objectives

- 1 Change Exponential Statements to Logarithmic Statements
- Change Logarithmic Statements to Exponential Statements
- 3 Evaluate Logarithmic Expressions
- 4 Determine the domain of a Logarithmic Function

Definition

The **logarithmic function with base a**, where a > 0 and $a \ne 1$, is denoted by

$$y = \log_a x$$

and is defined by

$$y = \log_a x$$
 if and only if $x = a^y$

the domain of the logarithmic function $y = \log_a x$ is x > 0

Change Exponential Statements to Logarithmic Statements

Definition

The **logarithmic function with base a**, where a>0 and $a\neq 1$, is denoted by $y=\log_a x$ and is defined by $y=\log_a x$ if and only if $x=a^y$ the domain of the logarithmic function $y=\log_a x$ is x>0

Change each exponential statement to an equivalent statement involving a logarithm

 $1.2^3 = m$

 $e^b = 9$

 $a^4 = 24$

Change Logarithmic Statements to Exponential Statements

Definition

The **logarithmic function with base a**, where a>0 and $a\neq 1$, is denoted by $y=\log_a x$ and is defined by $y=\log_a x$ if and only if $x=a^y$ the domain of the logarithmic function $y=\log_a x$ is x>0

$$\log_{a} 4 = 5$$

2
$$\log_{e} b = -3$$

$$\log_3 5 = c$$

Evaluate Logarithmic Expressions

To find the exact value of a logarithm:

- Write the logarithm in exponential notation.
- 2 Use the fact that if $a^u = a^v$ then u = v

Example: Find the exact value of

1 log₂ 16

 $\log_3 \frac{1}{27}$

Determine the domain of a Logarithmic Function

Definition

The **logarithmic function with base a**, where a>0 and $a\neq 1$, is denoted by $y=\log_a x$ and is defined by $y=\log_a x$ if and only if $x=a^y$ the domain of the logarithmic function $y=\log_a x$ is x>0

Find the domain of each logarithmic function

•
$$F(x) = \log_2(x+3)$$

2
$$g(x) = \log_5 \frac{1+x}{1-x}$$

$$b(x) = \log_{1/2} |x|$$

Xin Li