14MA101

4. a) (i) State Cauchy's root test.

(ii) Test for the convergence of the series $\frac{2}{1} + \frac{2.5}{1.5} + \frac{2.5.8}{1.5.9} + \dots$

- b) If $y = (x^2 1)^n$ then prove that $(1 x^2)y_{n+2} 2xy_{n+1} + n(n+1)y_n = 0$.
- c) i) Obtain the Maclaurin's series expansion of $f(x) = \tan^{-1} x$ up to the terms containing x^3 . ii) State Leibnitz theorem for the nth derivative of y=uv where u and v are differentiable functions of x.

5. a) If $z = e^{ax+by} f(ax-by)$ then prove that $b \frac{\partial z}{\partial y} + a \frac{\partial z}{\partial y} = 2abz$

- b) If $u = \frac{yz}{y}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ then show that $\frac{\partial(u, v, w)}{\partial(x, v, z)} = 4$.
- c) Find the percentage error in the calculated value of the volume of a rectangular parallelopiped when errors of 2%,-1% and 1% are made in measuring the length, breadth and height respectively.
- If u is a homogeneous function of degree n in x and y, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$. 6. a)

Hence deduce that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u$.

- b) Using Maclaurin's series expand $f(x,y) = e^{ax+by}$ upto second degree terms in x and y.
- c) Find the maximum value of $x^2 + y^2 + z^2$ when x + y + z = 3a by Lagrange's multipliers

Unit - IV

- 7. a) If ho_1 and ho_2 are the radii of curvature at the extremities of any chord of the cardinal $r = a(1 + \cos \theta)$ which passes through the pole, then show that $\rho_1^2 + \rho_2^2 = \frac{16a^2}{2}$.
 - b) Prove that the curves $r = a(1 + cos\theta)$ $r = b(1 cos\theta)$ intersect each other orthogonally.
 - c) With usual notations prove that $\rho = \frac{(1+y_1^2)^{\frac{1}{2}}}{1+y_1^2}$.
- Verify Cauchy's mean value theorem for the functions $f(x) = \frac{1}{x^2}$, $g(x) = \frac{1}{x}$ in [a,b], b>a>0 b) State and prove Lagrange's mean value theorem.
 - Verify Rolle's theorem for the function $f(x) = log(\frac{x^2+12}{7x}) in [3, 4]$
- Obtain the reduction formula for $\int \cos^n x dx$. Hence evaluate $\int \cos^n x dx$.
 - b) Find the surface area of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the x-axis. c) Trace the curve $r = a(1 + \cos 0)$
- Find the volume of the solid generated by the revolution of the cardioid $r=a(1+\cos\theta)$ a) 10.
 - b) Evaluate (i) $\int_{0}^{2a} \frac{x^{2}}{\sqrt{2ax-x^{2}}} dx$ ii) $\int_{0}^{a} Sin^{4}x dx$.
 - Find the area bounded by the parabola $y^2 = 4ax$ and its latus rectum.

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belgaum) First Semester B.E. (Credit System) Degree Examinations

Make up Examinations - January 2015

14MA101 - ENGINEERING MATHEMATICS -1 ouration: 3 Hours

Max, Marks: 100

6

7

6

Note: Answer Five full questions choosing One full question from each Unit.

Find the rank of the following matrix using elementary row transformations. Unit - I

 $\begin{bmatrix} -1 & 7 & 4 & 9 \\ 7 & -7 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Using Rayleigh's power method, obtain the largest eigen value and the corresponding eigen vector of the matrix $\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$, select $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ as the initial eigen vector and carry

out five iterations.

Use Gauss-Seidel iteration method to solve the following system of linear equations:

20x + y - 2z = 17 $x^{(0)} = y^{(0)} = z^{(0)} = 0$ and carry out three iterations. 2x - 3y + 20z = 25

a) Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4xz$ to canonical form.

b) (i) If A is an orthogonal matrix then prove that A^T is also orthogonal.

(ii) Prove that the matrix $\begin{vmatrix} -2 & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{vmatrix}$ is an orthogonal matrix.

Diagonalise the matrix 3 5

a) Prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p>1 and diverges for $p\leq 1$

using Cauchy's integral test. b) State comparison test. Test for convergence of the series $\frac{1}{1^2} + \frac{1+2}{1^2+2^2} + \frac{1+2+3}{1^2+2^2+3^2}$

If $y = \tan^{-1}x$, then prove that $(1+x^2)y_{n+2} + [2(n+1)x]y_{n+1} + n(n+1)y_n = 0$ P.T.O.

(i) Test for convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{1}{2}}}$

7

6

7

7

7

6

7

7

- (ii) Test for convergence of the series $\sum_{n=1}^{\infty} 3^n (\frac{n}{n+1})^{n^2}$
- c) Prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for $p \le 1$ using Cauchy's integral test.
- Unit III

 Unit III

 Hence deduce that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u$.
 - b) If z = f(u, v) where $u = x^2 y^2$, v = 2xy then prove that $x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y} = 2(x^2 + y^2) \frac{\partial z}{\partial u}$ 7
- c) Expand $f(x, y) = e^{xy}$ about (1,1) in Taylor's series up to terms of second degree. 3. a) The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest
 - temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$. b) Find the possible error in computing the resistance r from the formula, $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$ if r_1 , r_2 are both in error by 2%.
 - c) If x + y + z = u, y + z = uv and z = uvw, find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

Unit – IV

- a) With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$.
- b) Find the angle of intersection between the curves $r = 2\sin\theta$ and $r = \sin\theta + \cos\theta$.
- Show that the radius of curvature at any point of the cardioid $r = a(1 \cos \theta)$ varies as \sqrt{r} .
- a) State Rolle's theorem. Verify Rolle's theorem for the function f(x) = 2x³ + x² 4x 2 in [-√2,√2].
 b) State and prove Lagrange's mean value theorem
- State and prove Lagrange 8 means of the functions $f(x) = x^3$, $g(x) = x^2$ in [1,2].
- Unit V $\frac{5}{2}$ Unit V $\frac{5}{2}$
- Obtain the reduction formula for $\int \sin^n x dx$. Hence evaluate $\int_0^2 \sin^n x dx$.

 End the volume of the spindle shaped solid generated by the revolution of the astroid
- Find the volume of the spindle snaps $x^{\frac{7}{3}} + y^{\frac{7}{3}} = a^{\frac{7}{3}}$ about the x-axis.
- c) Evaluate $\int_{0}^{2a} \frac{x^{\frac{7}{2}}}{\sqrt{2a-x}} dx.$
- a) Trace the curve $y^2 = x^2(\frac{a-x}{a+x}), a>0$ b) Find the area bounded by one arch of the cycloid $x=a(\theta-\sin\theta)$, $y=a(1-\cos\theta)$ and its
- b) Find the area bounded by one area.
 b) base
 c) Find the surface area of the solid generated by revolving the astroid
- Find the surface area of the solid $y = a \sin^3 t$ about the x-axis.

P.T.O.

If $y = \tan^{-1} x$ then prove that

 $(1+x^2)y_{n+2}+2(n+1)xy_{n+1}+n(n+1)y_n=0.$

	[전[MOTO]		
V	State and prove Cauchys Mean value theorem.		
	and the angle of intersection between the	7	L2
	$2a\cos\theta$ and $r=a(1-\cos\theta)$ and	6	L1 L3
1	With usual notations prove that $\tan \phi = r \frac{d\theta}{dr}$		
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	7	LZ
1	State Lagranges mean value theorem. Using Lagranges Mean value theorem determine c in the function $f(x) = (x-1)[x-2][x-3]$ in [0,4]	7	L1 L2
	and the pedal equation for the curve $\frac{2a}{r} = 1 - \cos\theta$	6	L1 L3
	Unit – V		
	Obtain the reduction formula $\int \sin^n x dx$. Hence evaluate $\int\limits_0^{\frac{\pi}{2}} \sin^n x dx$ where	7	L: L:
	n is a positive integer.	•	L
	Find the length of the cardioid $r=a(1+\cos\theta)$ also show that the upper half is bisected by $\theta=\pi/3$	7	L
	Evaluate i) $\int_{0}^{a} \frac{x^{7}}{\sqrt{(a^{2}-x^{2})}} dx$ ii) $\int_{0}^{a} \frac{x^{7}}{\sqrt{(a^{2}-x^{2})}} dx$		
	ii) $\int_{0}^{\frac{\pi}{2}} \cos^{6} x dx$	6	L
		7	L
1	Frace the curve $x=a\cos^3 t$, $y=a\sin^3 t$.	7	L
	Find the surface of the solid formed by revolving the cardioid $r = a(1+\cos\theta)$ about	6	t
	the initial line.		

n's Taxonomy, L* Level

15MA101

b) Test for the convergence of the series (i)
$$1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots \infty$$

(ii)
$$\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+2^3} + \dots, \infty$$

c) (i) State Leibnitz theorem.

(ii) If
$$y = (\sin^{-1} x)^2$$
, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$

4. a) (i) State Cauchy's root test.

(ii) Test for the convergence of the series
$$(\frac{1}{3})^2 + (\frac{1.2}{3.5})^2 + (\frac{1.2.3}{3.5.7})^2 + \dots \infty$$

- b) Obtain the Maclaurin's series of $f(x) = e^{(\sin 2x)}$ upto terms containing χ^3
- c) State Cauchy's integral test. Using Cauchy's integral test prove that $\sum_{n=0}^{\infty} \frac{1}{n^n}$ converges for p>1 and diverges for $p \le 1$

Unit - III

a) State and prove the Euler's theorem. Verify Euler's theorem for the function $u = \sqrt{x^2 + y^2}$.

If
$$x = e^u \cos v$$
, $y = e^u \sin v$ then find $J = \frac{\partial(x,y)}{\partial(u,v)}$ and $J' = \frac{\partial(u,v)}{\partial(x,y)}$.
Hence show that $JJ' = 1$.

- c) Prove that, if the perimeter of a triangle is constant, the triangle has maximum area when it is equilateral.
- If $u = \frac{e^{x+y}}{e^x + e^y}$ then show that $u_x + u_y = u$.

b) If
$$z = f(u, v)$$
 where $u = x^2 - y^2$, $v = 2xy$, prove that
i) $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 2(x^2 + y^2) \frac{\partial z}{\partial u}$
ii) $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 4(x^2 + y^2) \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right]$.

c) Expand the function $f(x,y)=x^y$ about the point (1,1) upto third degree terms.

Unit - IV

a) Show that radius of curvature at any point of the cardioid $r=a(1-\cos\theta)$ varies

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Balagavi) First Semester B.E. (Credit System) Degree Examinations

November - December 2015

15MA101 - ENGINEERING MATHEMATICS - 1

in: 3 Hours

Max. Marks: 100

Note: Answer Five full questions choosing One full question from each Unit.

Unit - I

Marks BT'

Define the rank of a matrix. Find the rank of the matrix

$$\begin{vmatrix}
-1 & 2 & 3 & -2 \\
2 & -5 & 1 & 2 \\
3 & -8 & 5 & 2 \\
5 & -12 & -1 & 6
\end{vmatrix}$$

using elementary row transformations.

L.5 7

) Using Gauss Seidel iteration method solve the system of equations

$$20x+y-2z=17$$

$$3x+20y-z=-18$$

$$2x - 3y + 20z = 25$$
 start w

start with
$$x^{(0)} = y^{(0)} = z^{(0)} = 0$$
 and carry out three

iterations.

L3 7

Determine the values of 'a' and 'b' for which the system

$$x+2y+3z=6$$

$$x+3y+5z=9$$

$$2x+5y+az=b$$
 has i) no solution ii) unique solution.

L3 6

Using Rayleigh's power method, obtain the largest eigen value and the

$$\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix} \text{ select } \begin{bmatrix} 1 \\ 0.8 \\ 0.8 \end{bmatrix}$$

as the initial eigen vector and carry out five iterations.

L3 7

Diagonalize the matrix $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$

$$\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$

7

L5

Reduce the quadratic form $3x^2+5y^2+3z^2-2yz+2zx-2xy$ to canonical form

L2 6

Unit - II

Test for the convergence of the series (i) $\sum_{n=1}^{\infty} \left(\frac{n+1}{3n}\right)^n$.

L1 L3

(ii)
$$\frac{4}{18} + \frac{4.12}{18.27} + \frac{4.12.20}{18.27.36} + \dots \infty$$