Computing with Signals

Signal

Model

or

Compute

Representation

Taylor Series:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

Taylor Series:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

Examples:

$$\sin(x) pprox x - rac{x^3}{3!} + rac{x^5}{5!} - rac{x^7}{7!}$$

Taylor Series:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

Examples:

$$e^x = \sum_{n=0}^{\infty} rac{x^n}{n!} = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} + \cdots$$

More examples:

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \qquad = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \qquad \text{for all } x$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \qquad = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \qquad \text{for all } x$$

$$\tan x = \sum_{n=1}^{\infty} \frac{B_{2n}(-4)^n (1-4^n)}{(2n)!} x^{2n-1} \qquad = x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots \qquad \text{for } |x| < \frac{\pi}{2}$$

$$\sec x = \sum_{n=0}^{\infty} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} \qquad = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \cdots \qquad \text{for } |x| < \frac{\pi}{2}$$

$$\arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \qquad = x + \frac{x^3}{6} + \frac{3x^5}{40} + \cdots \qquad \text{for } |x| \le 1$$

Taylor Series

- Assumes the function is differentiable
- Works like a charm if you know the function (in closed form) apriori
- Approximation only in the neighborhood of the sampled point

Using in practice requires derivative information of the signal.

Can we use ideas from Taylor?

Signal Model Processing

or

Representation

Polynomial Series:

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$$

Polynomial Series:

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$$

A univariate polynomial of degree n with real or complex coefficients has n complex roots, if counted with their multiplicities.

Polynomial Series:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 -$$

Polynomial Series:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 - a_4 x^3 - a_5 x^3 - a_5$$

Polynomial Series:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Step 1: Sample the signal at at least (n) points (why?). (n-1) is the degree of f(x).

Polynomial Series:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Step 1: Sample the signal at at least (n) points (why?). (n-1) is the degree of f(x).

Polynomial Curve Fitting Data

Polynomial Curve Fitting

Data

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

Polynomial Curve Fitting

Data

Model

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

Los

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Polynomial Curve Fitting

Data

Model

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

 $y(x_n, \mathbf{w})$

 \dot{x}_n

Loss

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

del
$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

del
$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

odel
$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Impact of M

 $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum w_j x^j$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Same M, increasing data points (N)

Summary, Polynomial series approximation,

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$$

Weierstrass Approximation Theorem — Suppose f is a continuous real-valued function defined on the real interval [a, b]. For every $\varepsilon > 0$, there exists a polynomial p such that for all x in [a, b], we have $|f(x) - p(x)| < \varepsilon$, or equivalently, the supremum norm $||f - p|| < \varepsilon$.

- Parameters of the model are $\{a_0, a_1, ..., a_n\}$
- Estimating the parameters requires a regression approach

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Regularized Loss

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Tour into Vector Spaces

Vector Space review

Real plane as a vector space

$$x = \begin{bmatrix} x_0 & x_1 \end{bmatrix}^{\mathsf{T}}$$

Vectors

Real plane as a vector space

$$x = \begin{bmatrix} x_0 & x_1 \end{bmatrix}^{\mathsf{T}}$$

- Adding two vectors in the plane produces a third one also in the plane
- multiplying a vector by a real scalar produces a second vector also in the plane.

Operations on/with vectors

Real plane as a vector space

$$x = \begin{bmatrix} x_0 & x_1 \end{bmatrix}^ op$$
 Inner Product and Norm $y = \begin{bmatrix} y_0 & y_1 \end{bmatrix}^ op$ $\langle x, y
angle = x_0 y_0 + x_1 y_1$ $\langle x, x
angle = x_0^2 + x_1^2$ $\|x\| = \sqrt{\langle x, x
angle} = \sqrt{x_0^2 + x_1^2}$

Operations on/with vectors

Inner Product (alternate computation)


```
\langle x, y \rangle = x_0 y_0 + x_1 y_1
= (\|x\| \cos \theta_x)(\|y\| \cos \theta_y) + (\|x\| \sin \theta_x)(\|y\| \sin \theta_y)
= \|x\| \|y\| (\cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y)
= \|x\| \|y\| \cos(\theta_x - \theta_y).
```

