UML Data Modeling

Dr. Shaheen Khatoon

Data Modeling

How to represent data for application

- Relational model with design principles
- XML
- Database design model
 - -Not implemented by system
 - -Translated into model of DBMS

Data Modeling

Higher-Level Database Design Models

- Entity-Relationship Model (E/R)
- Unified Modeling Language (UML)
 Data modeling subset
- Both are graphical
- Both can be translated to relations automatically
 Or semi-automatically

UML Data Modeling: 5 concepts

- (1) Classes
- (2) Associations
- (3) Association Classes
- (4) Subclasses
- (5) Composition & Aggregation

Name, attributes, methods

For data modeling: add "pk", drop methods

Ct	L.	en	4
211	161	en	П

SID PK

SName

GPA

<Methods>

College

CName PK

State

<Methods>

UML Data Modeling: Associations

Relationships between objects of two classes

Multiplicity of Associations

Relationships between objects of two classes

Each object of class C_1 is related to at least m and at most n objects of class C_2

Multiplicity of Associations: Example

Students must apply somewhere and may not apply to more than 5 colleges. No college takes more than 20,000 applications.

Multiplicity of Associations: Types of Relationships

- One-to-One
- Many-to-One
- Many-to-Many
- Complete

Complete One-to-One

1..1

1..1

Complete Many-to-One

1..*

1..1

Complete Many-to-Many

1..*

1..*

UML Data Modeling: 5 concepts

- (1) Classes
- (2) Associations
- (3) Association Classes
- (4) Subclasses
- (5) Composition & Aggregation

UML Data Modeling: Association Classes

Relationships between objects of two classes, with attributes on relationships

Eliminating Association Classes

Unnecessary if 0..1 or 1..1 multiplicity

Eliminating Association Classes

Unnecessary if 0...1 or 1...1 multiplicity

Student	*	Applied	11	College
SID			0 1	CName
SName			01	CName State
GPA				
DateApplied				
Decision				

Self-Associations

Associations between a class and itself

UML Data Modeling: 5 concepts

- (1) Classes
- (2) Associations
- (3) Association Classes
- (4) Subclasses
- (5) Composition & Aggregation

Sub classes

Subclass Terminology & Properties

- Superclass = Generalization
- Subclass = Specialization
- *Incomplete* (Partial) vs. Complete
 - Complete if every object in the superclass is in at least one subclass, otherwise incomplete
- Disjoint (Exclusive) vs. Overlapping
 - disjoint if every object is in at most one subclass (we don't have any objects that are in more than one subclass, and that's sometimes called exclusive)

UML Data Modeling: 5 concepts

- (1) Classes
- (2) Associations
- (3) Association Classes
- (4) Subclasses
- (5) Composition & Aggregation

UML Data Modeling: Composition & Aggregation

Objects of one class belong to objects of another class

UML Data Modeling: Composition & Aggregation

Objects of one class belong to objects of another class

Practice: Map ER to Object Model

The COMPANY conceptual schema in UML class diagram notation

Homework

□ Draw a UML diagram for the following scenario:

Consider a tiny social network containing high school students and their "friendship". Each student may have a friend on at most one other student, and associated with each friendship is the length of time the friendship has been going on. Students have a name and a grade, and names are unique. Draw a UML diagram that models this information. Make sure to capture the asymmetry and multiplicity of the friendship relationship.

Homework: Solution

Summary

Higher-Level Database Design

- Unified Modeling Language (UML)
 Data modeling subset
- Graphical
- 5 concepts
 - (1) Classes
 - (2)Associations
 - (3) Association Classes
 - (4)Subclasses
 - (5) Composition & Aggregation
- * Can be translated to relations automatically