Proof Theory The First Step Into Impredicativity

Wolfram Pohlers

August 1, 2021

Contents

1	Primitive Recursive Functions and Relations		1
	1.1	Primitive Recursive Functions	1
	1.2	Primitive Recursive Relations	1
2	Ord	inals	1
	2.1	Some Basic Facts about Ordinals	1
	2.2	Fundatmentals of Ordinal Arithmetic	2
1	D.	imitive Degracive Franctions and Delations	
1	ГГ	imitive Recursive Functions and Relations	
1.1	P	rimitive Recursive Functions	
1.2	1.2 Primitive Recursive Relations		
2	Oı	rdinals	
2.1 Some Basic Facts about Ordinals			
		$\alpha \in On :\Leftrightarrow Tran(\alpha) \land (\alpha, \in) \text{ is well-ordered}$	
wh	ere		
		$Tran(M) :\Leftrightarrow (\forall x \in M)(\forall y \in x)[y \in M]$	
Pro	posi	ition 2.1. $\alpha \in On \Rightarrow Tran(\alpha) \land (\forall x \in \alpha)[Tran(x)]$	
Pro	of. I	If $z \in y \in x \in \alpha$, then $z \in x$ because α is well-ordered by \in .	

so we have

$$\alpha \in On \land x \in \alpha \Rightarrow x \in On$$
, i.e., $Tran(On)$

and obtain

$$\alpha \in On \Rightarrow \alpha = \{\beta \mid \beta < \alpha\}$$

We assume that an ordinal is a transitive set α is **hereditarily transitive** iff $Tran(\alpha) \wedge (\forall x \in \alpha)[Tran(x)]$

Lemma 2.2. Assume that the membership relation \in well-founded. Then α is an ordinal iff α is a hereditarily transitive set

Proof. Assume α is hereditarily transitive. By the foundation scheme \in is irreflexive and well-founded on α . Since α is hereditarily transitive, it's also transitive. Assume β is also hereditarily transitive, we show

if
$$\beta$$
 is well-ordered by \in *and* $\alpha \subseteq \beta$ *then* $\alpha = \beta \lor \alpha \in \beta$

2.2 Fundatmentals of Ordinal Arithmetic