МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ им. В. И. ВЕРНАДСКОГО» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра компьютерной инженерии и моделирования

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4 «ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ОРГАНИЗАЦИИ ЦИКЛОВ»

Практическая работа
по дисциплине «Системное программирование»
студента 3 курса группы ИВТ-б-о-222(2)
Чудопалова Богдана Андреевича
09.03.01 «Информатика и вычислительная техника»

ЦЕЛЬ: 1. Изучить команды МП КР580ВМ80А для выполнения операций условного, безусловного перехода.

2. Практически закрепить знание теоретических сведений о программировании логических, арифметических операций микропроцессора, а также операций условного и безусловного перехода.

ХОД РАБОТЫ

Задание 1

Адрес	Команда	Код команды	Результат	
0800	LXI H, 00 81	21 00 81	HL = 8100	
0803	MVI M, 04	36 04	Заносим в ячейку 8100 кол-во суммируемых элементов	
0805	LDA 00 81	3A 00 81	Заносим это значение в аккумулятор	
8080	MOV B, A	47	Из аккумулятора в регистр В	
0809	SUB A	97	Обнуляем аккумулятор	
080A	LXI H, 2D 83	21 2D 83	HL = 832D	
080D	ADD M	86	Складываем аккумулятор и регистр М	
080E	DCR B	05	-1 от счетчика	
080F	JZ 16 08	CA 16 08	Если флаг Z равен 0, переходим на указанную ячейку	
0812	INX H	23	+1 к регистровой паре HL	
0813	JMP 0D 08	C3 0D 08	Переходим к ячейке 080D	
0816	HLT	76	Остановка	

```
>>> print(hex(0xa4 + 0x1f + 0x23 + 0x0d))
0xf3
```

Рис 1. Проверка решения.

Для начала в ячейку 8100 внесем кол-во чисел (рис. 2).

Рис. 2. Заносим количество чисел.

Далее необходимо внести все слагаемые (рис. 3).

Рис. 3. Внесли слагаемые.

Рис. 4. Выполнение программы.

Задание 2

8	8310	8200	D46618	341198	
	2.40360	100000000		2000.0000000000000000000000000000000000	

Адрес	Команда	Код команды	Результат
0800	MVI B, 03	06 03	B = 03
0802	LXI D, 10 83	11 10 83	DE = 8310
0805	LXI H, 00 82	21 00 82	HL = 8200
0808	LDAX D	1A	A = (DE) [Значение по адресу 8310]

0809	ADC M	8E	A = A + (HL) + CY
080A	STAX D	12	(DE) = A
080B	DCR B	05	B = B - 1
080C	JZ 14 08	CA 14 08	Переход по адресу 0814, если Z = 1
080F	INX D	13	DE = DE + 1
0810	INX H	23	HL = HL + 1
0811	JMP 08 08	C3 08 08	Переход по адресу 0808
0814	HLT	76	Остановка

```
>>> print(hex(0xd46618 + 0x341198))
0x10877b0
```

Рис. 5. Проверка решения.

Запишем 1-ое слагаемое (рис. 6).

Рис. 6. Внесли 1-ое слагаемое.

Далее необходимо записать второе слагаемое (рис. 7).

Рис. 7. Внесли 2-ое слагаемое.

Рис. 8. Результат выполнения.

Задание 3 Необходимо произвести умножение 2-х чисел

Адрес	Команда	Код команды	Комментарий
8100	MVI A, 45	3E 13	Загрузка множителя в А
8102	LXI D, 0234	11 34 02	Загрузка множимого в DE
8105	LXI H, 0000	21 00 00	Обнуление HL
8108	ORA A	В7	Проверка А и сброс переноса
8109	RZ	C8	Выход, если содержимое А равно 0
810A	RAR	1F	Циклический сдвиг вправо
810B	JNC 810F	D2 0F 81	Пропуск сложения, если перенос равен 0
810E	DAD D	19	Сложение содержимого и промеж. результата
810F	XCHG	EB	Обмен значений DE и HL
8110	DAD H	29	Удвоение HL
8111	XCHG	EB	Обмен значений DE и HL
8112	JMP 8108	C3 08 81	Организация цикла

```
>>> print(hex(0x13 * 0x234))
0x29dc
>>>
```

Рис. 9. Проверка решения.

Рис. 10. Выполнение программы.

ВЫВОД: Во время лабораторной работы №4 были изучены команды микропроцессора КР580ВМ80А, выполняющие условные и безусловные переходы. Это помогло закрепить навыки программирования логических и арифметических операций. В результате работы улучшилось понимание архитектуры процессора и практическое применение теоретических знаний.