

LD1085 **SERIES**

3A LOW DROP POSITIVE VOLTAGE REGULATOR ADJUSTABLE AND FIXED

- TYPICAL DROPOUT 1.3V (AT 3A)
- THREE TERMINAL ADJUSTABLE OR FIXED OUTPUT VOLTAGE 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 3.6V, 5V, 8V, 9V, 12V.
- GUARANTEED OUTPUT CURRENT UP TO 3A
- OUPUT TOLERANCE ±1% AT 25°C AND ±2% IN FULL TEMPERATURE RANGE
- INTERNAL POWER AND THERMAL LIMIT
- WIDE OPERATING TEMPERATURE RANGE -40°C TO 125°C
- PACKAGE AVAILABLE: TO-220, TO-220FP D²PAK, D²PAK/A
- PINOUT COMPATIBILITY WITH STANDARD ADJUSTABLE VREG

DESCRIPTION

The LD1085 is a LOW DROP Voltage Regulator able to provide up to 3A of Output Current. Dropout is guaranteed at a maximum of 1.2V at the maximum output current, decreasing at lower loads. The LD1085 is pin to pin compatible with the older 3-terminal adjustable regulators, but has better performances in term of drop and output tolerance.

A 2.85V output version is suitable for SCSI-2 active termination. Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1085 quiescent current flows into the load, so increase efficiency. Only a 10µF minimum capacitor is need for stability.

The device is supplied in TO-220, TO-220FP. D²PAK and D²PAK/A. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within ±1% at 25°C.

Figure 1: Schematic Diagram

Rev. 14

LD1085 SERIES

Figure 2: Pin Connection (top view)

Table 1: Order Codes

TO-220	TO-220FP	D ² PAK (*)	D ² PAK/A (*)	OUTPUT VOLTAGE
LD1085V15	LD1085P15	LD1085D2T15	LD1085D2M15	1.5 V
LD1085V18	LD1085P18	LD1085D2T18	LD1085D2M18	1.8 V
LD1085V25	LD1085P25	LD1085D2T25	LD1085D2M25	2.5 V
LD1085V28	LD1085P28	LD1085D2T28	LD1085D2M28	2.85 V
LD1085V33	LD1085P33	LD1085D2T33	LD1085D2M33	3.3 V
LD1085V36	LD1085P36	LD1085D2T36	LD1085D2M36	3.6 V
LD1085V50	LD1085P50	LD1085D2T50	LD1085D2M50	5.0 V
LD1085V80	LD1085P80	LD1085D2T80	LD1085D2M80	8.0 V
LD1085V90	LD1085P90	LD1085D2T90	LD1085D2M90	9.0 V
LD1085V12	LD1085P12	LD1085D2T12	LD1085D2M12	12.0 V
LD1085V	LD1085P	LD1085D2T	LD1085D2M	ADJ

^(*) Available in Tape & Reel with the suffix "R" for fixed version and "-R" for adjustable version.

Table 2: Absolute Maximum Ratings

2/19

Symbol	Parameter	Value	Unit	
VI	DC Input Voltage	30		
10	Output Current	Internally Limited		
PD	Power Dissipation	Internally Limited	mA mW	
T _{stg}	Storage Temperature Range	-55 to +150		
Top	Operating Junction Temperature Range	-40 to +125	°C	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is

577

LD1085 SERIES

Table 3: Thermal Data

Symbol	Parameter	TO-220	D ² PAK	Unit
R _{thj-case}	Thermal Resistance Junction-case	3	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	50	62.5	°C/W

Figure 3: Application Circuits

Table 4: Electrical Characteristics Of LD1085#15 (V_I =4.5 V_i , C_I = C_O =10 μ F, T_A = -40 to 125 $^{\circ}$ C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 0 mA T _J = 25°C	1.485	1.5	1.515	V
		I _O = 0 to 5AV _I = 3.1 to 30V (note 1)	1.47	1.5	1.53	V
ΔVO	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 3.1 \text{ to } 18V$ $T_J = 25^{\circ}C$		0.2	4	mV
		I _O = 0 mA V _I = 3.1 to 15V		0.4	4	mV
ΔVO	Load Regulation	I _O = 0 to 3AT _J = 25°C		2	10	mV
		I _O = 0 to 3A		4	20	mV
V_d	Dropout Voltage	I _O =3 A		1.3	1.5	V
l _q	Quiescent Current	V ₁ ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	V _I - V _O = 5V	3.2	4.5		A
		V _I - V _O = 25V	0.2	0.5		А
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	f = 120 Hz, C_O = 25 μF, I_O = 3A V_I = 7.5 ± 3V	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	T _A = 25°C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

LD1085 SERIES

Table 5: Electrical Characteristics Of LD1085#18 (V_1 =4.8 V_1 , C_1 = C_0 =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 0 mA T _J = 25°C	1.782	1.8	1.818	V
		I _O = 0 to 5AV _I = 3.4 to 30V (note 1)	1.764	1.8	1.836	V
ΔV_{O}	Line Regulation	I _O = 0 mA V _I = 3.4 to 18V T _J = 25°C		0.2	4	mV
		I _O = 0 mA V _I = 3.4 to 15V		0.4	4	mV
ΔV_{O}	Load Regulation	I _O = 0 to 3AT _J = 25°C		2	10	mV
		I _O = 0 to 3A		4	20	mV
V_d	Dropout Voltage	I _O =3 A		1.3	1.5	V
lq	Quiescent Current	V ₁ ≤ 30V	1	5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/V
SVR	Supply Voltage Rejection	f = 120 Hz, C_O = 25 μF, I_O = 3A V_I = 7.5 ± 3V	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	T _A = 25°C f = 10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

Table 6: Electrical Characteristics Of LD1085#25 (V_i =5.5V, C_i = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 0 mA T _J = 25°C	2.475	2.5	2.525	V
		I _O = 0 to 3AV _I = 4.1 to 30V (note 1)	2.45	2.5	2.55	V
ΔVO	Line Regulation	$I_0 = 0 \text{ mA}$ $V_1 = 4.1 \text{ to } 18V$ $T_J = 25^{\circ}C$		0.2	4	mV
		I _O = 0 mA V _I = 4.1 to 18V		0.4	4	mV
ΔV_{O}	Load Regulation	I _O = 0 to 3AT _J = 25°C		2	10	mV
		I _O = 0 to 3A		4	20	mV
V_d	Dropout Voltage	I _O =3 A		1.3	1.5	V
l _q	Quiescent Current	V ₁ ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	V _I - V _O = 5V	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		A
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	f = 120 Hz, C_O = 25 μF, I_O = 3A V_I = 7.5 ± 3V	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	T _A = 25°C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		0,0

NOTE 1: See short-circuit current curve for available output current at fixed dropout.