Definitionen von Stetigkeit

Jendrik Stelzner

9. Dezember 2014

Im Folgenden wollen wir die unterschiedlichen Definitionen der Stetigkeit einer Abbildung $f\colon \mathbb{R} \to \mathbb{R}$ angebeben und ihre Äquivalenz beweisen.

Definition 1. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt ε - δ -stetig im Punkt $x \in \mathbb{R}$, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$
 für alle $y \in \mathbb{R}$.

Die Abbildung f heißt ε - δ -stetig, falls f ε - δ -stetig an jeder Stelle $x \in \mathbb{R}$ ist.

Beispiel(e). Wir betrachten die Abbildung $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ an einer Stelle $x \in \mathbb{R}$. Für alle $y \in \mathbb{R}$ haben wir

$$|x^{2} - y^{2}| = |(x+y)(x-y)| = |x+y||x-y| \le (|x|+|y|)|x-y|$$

$$< (|x|+|x|+|x-y|)|x-y| = 2|x||x-y|+|x-y|^{2},$$
(1)

wobei wir die Dreiecksungleichung für $|x+y| \le |x| + |y|$ und |y| = |x| + |x-y| nutzen. Wir unterscheiden nun zwischen zwei Fällen:

Ist x=0, so ist $|x^2-y^2|=|y|^2$ für alle $y\in\mathbb{R}$. Wählt man dann $\delta\coloneqq\sqrt{\varepsilon}$, so ist für alle $y\in\mathbb{R}$ mit $|y|=|x-y|<\delta$ auch $|x^2-y^2|=|y|^2<\varepsilon$.

Ist $x \neq 0$, so ergibt sich für $\delta \coloneqq \min\{\varepsilon/(4|x|), \sqrt{\varepsilon/2}\}$ aus (1), dass für alle $y \in \mathbb{R}$ mit $|x-y| < \delta$

$$\left|x^2-y^2\right| \leq 2|x||x-y|+|x-y|^2 < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Das zeigt, dass f an jeder Stelle $x \in \mathbb{R}$ stetig ist

Übung 1.

Es sei $f : \mathbb{R} \to \mathbb{R}$ ε - δ -stetig an der Stelle $x \in \mathbb{R}$. Zeigen Sie: Ist f(x) > 0, so gibt es ein $\delta > 0$ mit f(y) > 0 für alle $y \in (x - \delta, x + \delta)$. Gilt die Aussage auch für f(x) < 0 oder $f(x) \neq 0$?

Übung 2.

Es seien $f, g: \mathbb{R} \to \mathbb{R}$. Zeigen Sie: Ist $f \in \delta$ -stetig an der Stelle $x \in \mathbb{R}$ und $g \in \delta$ -stetig an der Stelle f(x), so ist die Komposition $g \circ f \in \delta$ -stetig an der Stelle x.

Definition 2. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt folgenstetig an $x \in \mathbb{R}$, falls für jedes Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n \to x$ für $n \to \infty$ auch die Folge $(f(x_n))_{n \in \mathbb{N}}$ konvergiert und

$$\lim_{n \to \infty} f(x_n) = f(x) = f\left(\lim_{n \to \infty} x_n\right).$$

f heißt folgenstetig, falls f an jeder Stelle $x \in \mathbb{R}$ folgenstetig ist.

Beispiel(e). Wir betrachten erneut die Abbildung $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ an einer Stelle $x \in \mathbb{R}$. Ist $(x_n)_{n \in \mathbb{N}}$ eine Folge mit $\lim_{n \to \infty} x_n = x$, so folgt aus den bekannten Eigenschaften konvergenter Folgen, dass auch die Folge $(x_n^2)_{n \in \mathbb{N}}$ konvergiert und

$$\lim_{n \to \infty} x_n^2 = \lim_{n \to \infty} (x_n \cdot x_n) = \left(\lim_{n \to \infty} x_n\right) \cdot \left(\lim_{n \to \infty} x_n\right) = x \cdot x = x^2.$$

Das zeigt, dass f an jeder Stelle $x \in \mathbb{R}$ folgenstetig ist.

Übung 3.

Es seien $f,g:\mathbb{R}\to\mathbb{R}$ beide folgenstetig an der Stelle $x\in R$. Zeigen Sie, dass auch die Funktionen f+g und $f\cdot g$ folgenstetig an der Stelle x sind.

Definition 3. Es sei $f: \mathbb{R} \to \mathbb{R}$ eine Abbildung und $x_0 \in \mathbb{R}$. Für $y \in \mathbb{R}$ schreiben wir $\lim_{x \uparrow x_0} f(x) = y$, falls

für alle
$$\varepsilon > 0$$
 existiert $\delta > 0$, s.d. $|f(x_0) - f(x)| < \varepsilon$ für alle $x_0 - \delta < x < x_0$,

und bezeichnen y dann als den linksseitigen Limes von f an x_0 . Analog schreiben wir $\lim_{x\downarrow x_0}f(x)=f(y)$, falls

für alle
$$\varepsilon > 0$$
 existiert $\delta > 0$, s.d. $|f(x_0) - f(x)| < \varepsilon$ für alle $x_0 < x < x_0 + \delta$.

Wir nennen y dann denn rechtsseitigen Limes von f an x_0 . Existieren links- und rechtsseitiger Limes von f an x_0 und ist $\lim_{x\uparrow x_0} f(x) = \lim_{x\downarrow x_0} f(x)$, so nennen wir

$$\lim_{x\to x_0} f(x)\coloneqq \lim_{x\uparrow x_0} f(x) = \lim_{x\downarrow x_0} f(x)$$

den beidseitgen Limes von f an x_0 .

Definition 4. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt *linksstetig an der Stelle* $x \in \mathbb{R}$, falls $\lim_{y \uparrow x} f(y) = f(x)$. f heißt rechtsstetig an der Stelle x, falls $\lim_{y \downarrow x} f(y) = f(x)$. f heißt beidseitig stetig an x, falls $\lim_{y \to x} f(y) = f(x)$. (Insbesondere müssen die entsprechenden Grenzwerte existieren.)

f heißt linksstetig, falls f an jeder Stelle $x \in \mathbb{R}$ linksstetig ist, und rechtsstetig, falls f an jeder Stelle $x \in \mathbb{R}$ rechtsstetig ist. Ist f an jeder Stelle $x \in \mathbb{R}$ beidseitig stetig, so heißt f beidseitig stetig.

Bemerkung 5. Rechts-, Links- und beidseitige Limites sind eindeutig (sofern sie existieren).

Übung 4.

Zeigen Sie, dass f genau dann beidseitig stetig ist, wenn f links- und rechtsstetig ist.

Übung 5

Zeigen Sie, dass für eine monoton steigende Funktion $f: \mathbb{R} \to \mathbb{R}$ an jeder Stelle $x \in \mathbb{R}$ sowohl der linksseitige als auch der rechtsseitige Limes exitieren, und dass

$$\lim_{y \uparrow x} f(y) = \sup\{f(y) \mid y < x\} \quad \text{und} \quad \lim_{y \downarrow x} f(y) = \inf\{f(y) \mid y > x\}.$$

Übung 6.

Es sei $f\colon \mathbb{R} \to \mathbb{R}$ und $x_0 \in \mathbb{R}$. Zeigen Sie, dass $\lim_{x \to x_0} f(x) = y$ genau dann, wenn

für alle $\varepsilon > 0$ gibt es $\delta > 0$ mit $|f(x) - y| < \varepsilon$ für $|x - x_0| < \delta$ und $x \neq x_0$.

Proposition 6. *Es sei* $f: \mathbb{R} \to \mathbb{R}$ *und* $x \in \mathbb{R}$. *Dann sind äquivalent:*

- 1. f ist ε - δ -stetig an der Stelle x.
- 2. f ist folgenstetig an der Stelle x.
- 3. f ist beidseitig stetig an der Stelle x.

Beweis. $(1\Rightarrow 2)$ Sei $(x_n)_{n\in\mathbb{N}}$ ein Folge mit $\lim_{n\to\infty}x_n=x$. Sei $\varepsilon>0$ beliebig aber fest. Da f ε - δ -stetig an x ist, gibt es $\delta>0$ mit $|f(x)-f(y)|<\varepsilon$ falls $|x-y|<\delta$. Da $\lim_{n\to\infty}x_n=x$ gibt es $N\in\mathbb{N}$ mit $|x-x_n|<\delta$ für alle $n\geq N$. Für alle $n\geq N$ ist also $|f(x)-f(x_n)|<\varepsilon$. Wegen der Beliebigkeit von $\varepsilon>0$ folgt, dass $\lim_{n\to\infty}f(x_n)=f(x)$. Das zeigt, dass f folgenstetig an x ist.

 $(2\Rightarrow 1)$ Angenommen, f ist nicht ε - δ -stetig an x. Dann gibt es $\varepsilon>0$, so dass es für jedes $\delta>0$ ein $y\in\mathbb{R}$ mit $|x-y|<\delta$ und $|f(x)-f(y)|\geq \varepsilon$ gibt. Insbesondere gibt es für jedes $n\geq 1$ ein $x_n\in\mathbb{R}$ mit $|x-x_n|<1/n$ und $|f(x)-f(x_n)|\geq \varepsilon$. Es ist dann $\lim_{n\to\infty}x_n=x$ aber nicht $\lim_{n\to\infty}f(x_n)=f(x)$. Dies steht im Widerspruch zur Folgenstetigkeit von f an x.

 $(1\Rightarrow 3)$ Sei $\varepsilon>0$ beliebig aber fest. Da f ε - δ -stetig an x ist, gibt es $\delta>0$ mit $|f(x)-f(y)|<\varepsilon$ für alle $y\in\mathbb{R}$ mit $|x-y|<\delta$. Inbesondere ist $|f(x)-f(y)|<\varepsilon$ für alle $y\in(x-\delta,x)$ und für alle $y\in(x,x+\delta)$. Also ist f sowohl rechts- als auch linksstetig an x, und somit beidseitig stetig an x.

 $(3\Rightarrow 1)$ Es sei $\varepsilon>0$ beliebig aber fest. Da f beidseitig stetig an x ist, existiert der beidseitige Limes $\lim_{y\to x}f(y)$ und es ist $f(x)=\lim_{y\to x}f(y)$. Nach Übung 6 gibt daher $\delta>0$, so dass $|f(x)-f(y)|<\varepsilon$ für alle $y\in\mathbb{R}$ mit $|x-y|<\delta$ und $x\neq y$; für x=y gilt dies offenbar ebenfalls. Also ist f ε - δ -stetig an x.