Name: Solutions — Caleb McWhorter

MATH 308 Fall 2021

HW 12: Due 11/12

"People think that computer science is the art of geniuses but the actual reality is the opposite, just many people doing things that build on each other, like a wall of mini stones."

-Donald Knuth

Problem 1. (10pt) Define a relation \sim on $\mathbb{N} \times \mathbb{N}$ via $(x,y) \sim (a,b)$ if and only if x-y=a-b.

- (a) Is $(3,1) \sim (2,5)$? Explain.
- (b) Is $(7,3) \sim (5,1)$? Explain.
- (c) Show that \sim is an equivalence relation on X.
- (d) Find at least 3 elements in each of the equivalence classes [(1,1)] and [(3,5)].

Solution.

- (a) Let (x,y) = (3,1) and (a,b) = (2,5). Then x-y=3-1=2 and a-b=2-5=-3. Because $x-y \neq a-b$, $(3,1) \not\sim (2,5)$.
- (b) Let (x, y) = (7, 3) and (a, b) = (5, 1). Then x y = 7 3 = 4 and a b = 5 1 = 4. Because x y = a b, $(7, 3) \sim (5, 1)$.
- (c) To show \sim is an equivalence relation on $\mathbb{N} \times \mathbb{N}$, we need to show the relation is reflexive (for all $x \in X$, $x \sim x$), symmetric (if $x, y \in X$ and $x \sim y$, then $y \sim x$), and transitive (if $x, y, z \in X$, $x \sim y$, and $y \sim z$, then $x \sim z$):
 - Reflexive: Let $(x,y) \in \mathbb{N} \times \mathbb{N}$. We need to show that $(x,y) \sim (x,y)$. Observe that x-y=0=x-y. Therefore, $(x,y) \sim (x,y)$.
 - *Symmetric:* Let $(x,y),(a,b)\in\mathbb{N}\times\mathbb{N}$ and $(x,y)\sim(a,b)$. We need to show that $(a,b)\sim(x,y)$. Because $(x,y)\sim(a,b)$, we know that x-y=a-b. But then a-b=x-y. Therefore, $(a,b)\sim(x,y)$.
 - Transitive: Let $(x,y), (a,b), (n,m) \in \mathbb{N} \times \mathbb{N}$ with $(x,y) \sim (a,b)$ and $(a,b) \sim (n,m)$. Because $(x,y) \sim (a,b)$, we know x-y=a-b. Similarly, because $(a,b) \sim (n,m)$, we know a-b=n-m. But then x-y=a-b=n-m, so that x-y=n-m. Therefore, $(x,y) \sim (n,m)$.
- (d) If $(x,y) \in [(1,1)]$, then x-y=1-1=0. But then x-y=0 so that x=y. Clearly, if x=y, then x-y=0=1-1 so that $(x,y) \in [(1,1)]$. Therefore, $(x,y) \in [(1,1)]$ if and only if x=y. This shows the elements of [(1,1)] are of the form (x,x), where $x \in \mathbb{N}$. This shows that $[(1,1)] = \{(x,x) \colon x \in \mathbb{N}$. But then, for example, $(1,1), (2,2), (15,15), (23^{23},23^{23}) \in [(1,1)]$.
- (e) If $(x,y) \in [(3,5)]$, then x-y=3-5=-2. But then x-y=-2 so that x=y-2. Suppose x=y-2. Because $x \in \mathbb{N}$, $x \ge 1$. As x=y-2, we know that $x=y-2 \ge 1$. But then $y \ge 3$. Clearly, if x=y-2, then x-y=(y-2)-y=-2=3-5 so that $(x,y) \in [(3,5)]$. Therefore, $(x,y) \in [(3,5)]$ if and only if x=y-2 and $y \ge 3$. This shows the elements of [(3,5)] are of the form (x,y)=(y-2,y), where $y \ge 3$. Therefore, $[(3,5)]=\{(y-2,y)\colon y \in \mathbb{N}, y \ge 3\}$. But then, for example, $(3,5), (4,6), (10,12), (103,105) \in [(3,5)]$.

Problem 2. (10pt) Define a relation on \mathbb{R} via $x \sim y$ if and only if $x \leq y$. Prove or disprove whether \sim is an equivalence relation on \mathbb{R} .

Solution. We prove that \sim is *not* an equivalence relation on \mathbb{R} . If \sim were an equivalence relation on \mathbb{R} , we would need to show the relation is reflexive (for all $x \in X$, $x \sim x$), symmetric (if $x, y \in X$ and $x \sim y$, then $y \sim x$), and transitive (if $x, y, z \in X$, $x \sim y$, and $y \sim z$, then $x \sim z$):

- Reflexive: Let $x \in \mathbb{R}$. We need to show that $x \sim x$. But $x \leq x$ so that $x \sim x$. Therefore, \sim is a reflexive relation on \mathbb{R} .
- *Symmetric:* Let $x,y\in\mathbb{R}$ with $x\sim y$. We need to show that $y\sim x$. Because $x\sim y$, we know that $x\leq y$. However, it need not be the case that $y\leq x$, implying $y\sim x$. For instance, we know that $1\sim 3$ because $1\leq 3$. But $3\not\leq 1$ so that $3\not\sim 1$. Observe that if $x\sim y$, then $x\leq y$, and if $y\sim x$, then $y\leq x$. But then $x\sim y$ and $y\sim x$ implies that $x\leq y$ and $y\leq x$ so that x=y. Clearly, if x=y, then $x\sim y$ and $y\sim x$. Therefore, $x\sim y$ and $y\sim x$ if and only if x=y. The relation $x\sim y$ is only symmetric only for the equal elements in $x\sim y$.
- *Transitive*: Let $x,y,z\in\mathbb{R}$ with $x\sim y$ and $y\sim z$. We need to show that $x\sim z$. Because $x\sim y$, we know $x\leq y$. Furthermore, because $y\sim z$, we know $y\leq z$. But then $x\leq y\leq z$ so that $x\leq z$. This shows that $x\sim z$. Therefore, \sim is a transitive relation on \mathbb{R} .

Despite the fact that \sim is a reflexive and transitive relation on \mathbb{R} , \sim is *not* an equivalence relation on \mathbb{R} because \sim is not symmetric on \mathbb{R} .

Problem 3. (10pt) Define a relation on \mathbb{R}^2 via $(x,y) \sim (a,b)$ if and only if (x,y) and (a,b) are the same distance from the origin.

- (a) Prove that \sim is an equivalence relation.
- (b) Explicitly find the equivalences classes as a set.
- (c) Describe the equivalence classes graphically.

Solution.

- (a) We know the distance, d, between two points, (x,y) and (a,b), in the place is given by $d=\sqrt{(x-a)^2+(y-b)^2}$. Therefore, the distance from (x,y) to the origin is $d=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}$. To show \sim is an equivalence relation on $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$, we need to show the relation is reflexive (for all $x\in X$, $x\sim x$), symmetric (if $x,y\in X$ and $x\sim y$, then $y\sim x$), and transitive (if $x,y,z\in X$, $x\sim y$, and $y\sim z$, then $x\sim z$):
 - Reflexive: Let $(x,y) \in \mathbb{R}^2$. We need to show that $(x,y) \sim (x,y)$. But it is clear that (x,y) has the same distance to the origin as itself. Therefore, $(x,y) \sim (x,y)$.
 - Symmetric: Let $(x,y), (a,b) \in \mathbb{R}^2$ and $(x,y) \sim (a,b)$. Because $(x,y) \sim (a,b)$, we know that (x,y) has the same distance to the origin as (a,b). But then it is immediate that (a,b) has the same distance to the origin as (x,y). Therefore, $(a,b) \sim (x,y)$.
 - Transitive: Let $(x,y), (a,b), (r,s) \in \mathbb{R}^2$ with $(x,y) \sim (a,b)$ and $(a,b) \sim (r,s)$. Because $(x,y) \sim (a,b)$, we know (x,y) and (a,b) have the same distance to the origin, i.e. $\sqrt{x^2+y^2}=\sqrt{a^2+b^2}$. Because $(a,b) \sim (r,s)$, we know (a,b) and (r,s) have the same distance to the origin, i.e. $\sqrt{a^2+b^2}=\sqrt{r^2+s^2}$. But then $\sqrt{x^2+y^2}=\sqrt{a^2+b^2}=\sqrt{r^2+s^2}$, which implies $\sqrt{x^2+y^2}=\sqrt{r^2+s^2}$. But then (x,y) and (r,s) have the same distance to the origin. Therefore, $(x,y) \sim (r,s)$.
- (b) Let $(a,b),(v,w)\in\mathbb{R}^2$ and suppose $(a,b)\in[(v,w)]$. Suppose that the distance from (v,w) to the origin is $d\in\mathbb{R}$, where $d\geq 0$. We know that $(a,b)\in[(v,w)]$ if and only if (a,b) and (v,w) have the same distance to the origin. But (a,b) and (v,w) have the same distance to the origin if and only if $d=\sqrt{a^2+b^2}$. But $d=\sqrt{a^2+b^2}$ if and only if $d^2=a^2+b^2$. Therefore, $[(v,w)]=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=d^2\}$.
- (c) From (b), we know that $(a,b) \in [(v,w)]$ if and only if $d^2 = a^2 + b^2$, where d is the distance from (v,w) to the origin. But $d^2 = a^2 + b^2$ if and only if (a,b) is a point on the circle $d^2 = x^2 + y^2$, i.e. the circle of radius d centered at the origin. That is, [(v,w)] is the set of points on the circle centered at the origin that passes through the point (v,w). This includes the 'trivial circle $\{(0,0)\}$ (the origin), i.e. the circle with radius 0 centered at the origin.

The work above shows \sim partitions \mathbb{R}^2 into circles centered at the origin (including the 'trivial circle'

at the origin).

Problem 4. (10pt) Define a relation on \mathbb{Z} via $a \sim b$ if and only if a and b have the same parity, i.e. a and b are either both even or they are both odd.

- (a) Show that \sim is an equivalence relation.
- (b) Describe all the equivalence classes, i.e. determine the set \mathbb{Z}/\sim .

Solution.

- (a) To show \sim is an equivalence relation on \mathbb{Z} , we need to show the relation is reflexive (for all $x \in X$, $x \sim x$), symmetric (if $x, y \in X$ and $x \sim y$, then $y \sim x$), and transitive (if $x, y, z \in X$, $x \sim y$, and $y \sim z$, then $x \sim z$):
 - Reflexive: Let $n \in \mathbb{Z}$. We need to show that $n \sim n$. But n clearly has the same parity as n. Therefore, $n \sim n$.
 - *Symmetric*: Let $n, m \in \mathbb{Z}$ with $n \sim m$. Because $n \sim m$, n and m have the same parity. But then m has the same parity as n. Therefore, $n \sim m$.
 - Transitive: Let $n, m, p \in \mathbb{Z}$ with $n \sim m$ and $m \sim p$. Because $n \sim m$, n has the same parity as m. Because $m \sim p$, m and n have the same parity. But an integer cannot be both even an odd. Thus, m has a fixed parity. The parity of m from $n \sim m$ must then be the same parity of m from $m \sim p$. But then because n has the same parity as m, n must have the same parity as m. Therefore, $n \sim p$.
- (b) Consider the equivalence class of $0 \in \mathbb{Z}$. We know that 0 is even. But then if $n \in \mathbb{Z}$ is even, we know that $n \sim 0$. Therefore, $[0] = \{\text{even integers}\} = \{2k \mid k \in \mathbb{Z}\}$. Now consider the equivalence class of $1 \in \mathbb{Z}$. We know that 1 is odd. But then if $n \in \mathbb{Z}$ is odd, we know that $n \sim 1$. Therefore, $[1] = \{\text{odd integers}\} = \{2k+1 \mid k \in \mathbb{Z}\}$. If $n \in \mathbb{Z}$, then n is either even or odd (but not both). But then $n \in [0]$ or $n \in [1]$. Therefore, $\mathbb{Z}/\sim=\{[0],[1]\}$, i.e. there are only two equivalence classes:

$$[0] = \{2k \mid k \in \mathbb{Z}\} = \{\text{even integers}\} = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$$

$$[1] = \{2k+1 \mid k \in \mathbb{Z}\} = \{\text{odd integers}\} = \{\pm 1, \pm 3, \pm 5, \pm 7, \ldots\}$$

Problem 5. (10pt) Prove that if X is a set and $S \subseteq X$ is a nonempty subset of X, then $\{S, X \setminus S\}$ is a partition of X.

Solution. Let X be a nonempty set and $A \subseteq \mathcal{P}(S)$. Recall that A is a partition of X if...

- $\varnothing \notin \mathcal{A}$
- $X = \bigcup_{A \in A} A$
- For all $A, B \in \mathcal{A}$, if $A \neq B$, then $A \cap B = \emptyset$.

To prove that $A = \{S, X \setminus S\}$ is a partition of X, we need to check each of these conditions.

- $\varnothing \notin \mathcal{A}$: There are only two distinct sets in $\bigcup_{A \in \mathcal{A}} A S$ and $X \setminus S$. So we need only check that they are both nonempty. By assumption, S is nonempty. Because $S \subsetneq X$, we know there exists $x \in X$ such that $x \notin S$. But then $x \in X \setminus S$, which implies that $X \setminus S \neq \varnothing$.
- $X = \bigcup_{A \in \mathcal{A}} A$: To show $X = \bigcup_{A \in \mathcal{A}} A$, we need to show that $X \subseteq \bigcup_{A \in \mathcal{A}} A$ and $\bigcup_{A \in \mathcal{A}} A \subseteq X$. We begin by showing $X \subseteq \bigcup_{A \in \mathcal{A}} A$. We need to show that if $x \in X$, then $x \in \bigcup_{A \in \mathcal{A}} A$. Let $x \in X$. Either $x \in S$ or $x \notin S$. But then either $x \in S$ or $x \in X \setminus S$, respectively. But then...

$$x \in S \cup (X \setminus S) = \bigcup_{A \in A} A$$

This proves that $X\subseteq\bigcup_{A\in\mathcal{A}}A$. Now we need to show that $\bigcup_{A\in\mathcal{A}}A\subseteq X$, i.e. we need to show that if $x\in\bigcup_{A\in\mathcal{A}}A$, then $x\in X$. If $x\in\bigcup_{A\in\mathcal{A}}A=S\cup(X\setminus S)$, then either $x\in S$ or $x\in X\setminus S$. But $S\subseteq X$ and $X\setminus S\subseteq X$. But then either $x\in S\subseteq X$ or $x\in X\setminus S\subseteq X$. This implies that $x\in X$, so that $\bigcup_{A\in\mathcal{A}}A\subseteq X$. Because $X\subseteq\bigcup_{A\in\mathcal{A}}A$ and $\bigcup_{A\in\mathcal{A}}A\subseteq X$, we know that $X=\bigcup_{A\in\mathcal{A}}A$.

• For all $A, B \in \mathcal{A}$, if $A \neq B$, then $A \cap B = \emptyset$: There are only two distinct sets in $\bigcup_{A \in \mathcal{A}} A - S$ and $X \setminus S$. So we need only check that $S \cap (X \setminus S) = \emptyset$. Suppose that $x \in S \cap (X \setminus S)$. This implies that $x \in S$ and $x \in X \setminus S$. Because $x \in X \setminus S$, we know that $x \in X$ and $x \notin S$. This contradicts the fact that $x \in S$. Therefore, $S \cap (X \setminus S) = \emptyset$.

Problem 6. (10pt) Let X be a nonempty set. Every equivalence relation \sim on X gives rise to a partition on X. Moreover, every partition on X gives rise to an equivalence relation \sim on X. We proved the first statement in class. Suppose that $\{X_i\}_{i\in\mathcal{I}}$ is a partition of X. Show that this partition induces an equivalence relation X/\sim given by $a\sim b$ if and only if $a,b\in X_i$ for some $i\in\mathcal{I}$.

Solution. Assume that $\{X_i\}_{i\in\mathcal{I}}$ is a partition of a set X. Let \sim be the relation on X given by the following: if $a,b\in X$, then $a\sim b$ if and only if $a,b\in X_i$ for some $i\in\mathcal{I}$. To show \sim is an equivalence relation on X, we need to show the relation is reflexive (for all $x\in X$, $x\sim x$), symmetric (if $x,y\in X$ and $x\sim y$, then $y\sim x$), and transitive (if $x,y,z\in X$, $x\sim y$, and $y\sim z$, then $x\sim z$):

- Reflexive: Let $x \in X$. We need to show that $x \sim x$. Because $\{X_i\}_{i \in \mathcal{I}}$ is a partition of X, we know that $X = \bigcup_{i \in \mathcal{I}} X_i$. Therefore, $x \in X = \bigcup_{i \in \mathcal{I}} X_i$. Therefore, there exists $i \in \mathcal{I}$ such that $x \in X_i$. Because $x, x \in X_i$, we know that $x \sim x$.
- *Symmetric:* Let $x, y \in X$ with $x \sim y$. We need to show that $y \sim x$. Because $x \sim y$, we know there exists $i \in \mathcal{I}$ such that $x, y \in X_i$. But then $y, x \in X_i$. Therefore, $y \sim x$.
- Transitive: Let $x,y,z\in X$ with $x\sim y$ and $y\sim z$. We need to show that $x\sim z$. Because $x\sim y$, there exists $i\in \mathcal{I}$ such that $x,y\in X_i$. Similarly, because $y\sim z$, there exists $j\in \mathcal{I}$ such that $y,z\in X_j$. We know $y\in X_i$ and $y\in X_j$ so that $y\in X_i\cap X_j$. If $i\neq j$, then $X_i\cap X_j\neq\varnothing$ because $y\in X_i\cap X_j$, contradicting the fact that $\{X_i\}_{i\in \mathcal{I}}$ is a partition of X. Therefore, i=j. But then $z\in X_i=X_j$. This shows that $x,z\in X_i$. Therefore, $x\sim z$.

For completeness, we will also include the proof that every equivalence relation X/\sim gives a partition of X—namely, the collection $\mathcal{P}:=\{[x]\colon x\in X\}$, i.e. the set of equivalence classes form a partition of X. To show this is a partition, we must show the following:

- $\varnothing \notin \mathcal{P}$
- $X = \bigcup_{A \in \mathcal{P}} A$
- For all $A, B \in \mathcal{P}$, if $A \neq B$, then $A \cap B = \emptyset$.

We check each condition individually.

- $\varnothing \notin \mathcal{P}$: Let $A \in \mathcal{P}$. Because $A \in \mathcal{P}$, we know A = [x] for some $x \in X$. But $x \in [x]$ so that $x \in A$. Therefore, $A \neq \varnothing$.
- $X = \bigcup_{A \in \mathcal{P}} A$: To prove $X = \bigcup_{A \in \mathcal{P}} A$, we need to prove that $\bigcup_{A \in \mathcal{P}} A \subseteq X$ and $X \subseteq \bigcup_{A \in \mathcal{P}} A$. First, we prove that $\bigcup_{A \in \mathcal{P}} A \subseteq X$. Observe that for all $A \in \bigcup_{A \in \mathcal{P}} A$, A = [x] for some $x \in X$. But then $A = [x] \subseteq X$. Because $A \subseteq X$ for all $A \in \bigcup_{A \in \mathcal{P}} A$, it must be that $\bigcup_{A \in \mathcal{P}} A \subseteq X$. Now we need to prove that $X \subseteq \bigcup_{A \in \mathcal{P}} A$. Let $x \in X$ and define A = [x]. We know that $x \in [x] = A$. But $A \subseteq \bigcup_{A \in \mathcal{P}} A$ so that $x \in A \subseteq \bigcup_{A \in \mathcal{P}} A$. This implies that $x \in \bigcup_{A \in \mathcal{P}} A$. But then $x \in \bigcup_{A \in \mathcal{P}} A$ for all $x \in X$. Therefore, $X \subseteq \bigcup_{A \in \mathcal{P}} A$.
- For all $A, B \in \mathcal{P}$, if $A \neq B$, then $A \cap B = \emptyset$: Let $A, B \in \bigcup_{P \in \mathcal{P}} P$. Then there exist $x, y \in X$ such that A = [x] and B = [y]. Because A = [x] and B = [y] are equivalence classes for X / \sim , we know that $A \cap B = [x] \cap [y] = \emptyset$ if and only if [x] = [y], which happens if and only if A = B. Therefore, if $A \neq B$, we know that $A \cap B = \emptyset$.

¹This only used the $X = \bigcup_{A \in \mathcal{A}} A$ property of a partition.