CONCORDIA UNIVERSITY Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	203	All
Examination	Date	Duration
Midterm Test	8 March, 2015	1 h 30 min
Special Instructions:	Only approved calculators are allowed Show all your work for full marks	

- 1. (12 marks): (a) Solve for x: $\log_{10}(x) + \log_{10}(x-3) = 1$.
 - (b) Let $f(x) = \ln(x) 1$. Find the composite function $g = f \circ f$ and determine the domain and the range of g(x).
 - (c) Let $f(x) = \frac{x+3}{2x+1}$. Find inverse function $f^{-1}(x)$ and determine the domain of f(x) and the domain of $f^{-1}(x)$.
- 2. (8 marks) Find the limit or explain why the limit does not exist:

(a)
$$\lim_{x \to \infty} \frac{1}{x(\sqrt{x^2+1}-\sqrt{x^2-1})}$$

(b)
$$\lim_{x\to 4^+} \frac{3x-12}{|4-x|}$$

- 3. (6 marks) Find (a) all horizontal and (b) all vertical asymptotes of the graph $y = \frac{x\sqrt{4x^2 + 9}}{x^2 + 2x 8}$
- 4. (4 marks) Find the second derivative of the function $f(x) = \frac{\sin x}{1 + \cos x}$, and calculate its value at x = 0, i.e. f''(0).

(continued on the other side)

- 5. (16 marks) Find the derivatives of the following functions. (You don't need to simplify the final answer, but you must show how you calculate it):
 - (a) $f(x) = (1 + \sqrt{x}) x^{5/2} x^{-2}$ (hint: simplify first f(x))
 - (b) $f(x) = (x^3 3x)e^{-x}$
 - (c) $f(x) = \frac{\sin(x)\cos(x)}{\sin(x) + \tan(x)}$
 - (d) $f(x) = \sqrt{e^{3x} \sin(x^2 + 1)}$
- 6. (4 marks) Write equation of the tangent line to the curve $y = e^{x-2} \sqrt{x-1}$ at the point (2, f(2)).

Bonus Question (3 marks). Consider the function

$$f(x) = \begin{cases} x+a & \text{if } x \le 1\\ ax^2+b & \text{if } x > 1 \end{cases}$$

where a and b are parameters. Find the values of a and b that make f(x) differentiable everywhere, or explain why this is impossible.