TECH153 Greenhouse Controller

Version LabXX 2020-08-03 12:47:00 AM Makefile:

GHC:GHC.o ghcontrol.o pisensehat.o

gcc -g -o GHC GHC.o ghcontrol.o pisensehat.o -lwiringPi

GHC.o:GHC.c ghcontrol.h pisensehat.h gcc -g -c GHC.c

ghcontrol.o:ghcontrol.c ghcontrol.h pisensehat.h gcc -g -c ghcontrol.c

pisensehat.o:pisensehat.c pisensehat.h gcc -g -c pisensehat.c

clean:

rm *.o

touch *

Table of Contents

File Index	1
File Documentation	1
GHC c	
ghcontrol.c	
ghcontrol.h	11
pisensehat.c	15
pisensehat.h	23
Index	27

File Index

File List

Here is a list of all files with brief descriptions:

GHC.c	
ghcontrol.c	2
O	
U	
•	
pisensehat.h	

File Documentation

GHC.c File Reference

#include "ghcontrol.h"

Functions

• int main (void)

Detailed Description

main program structure and function call order for Gh controller

Function Documentation

int main (void)

```
7 {
      struct setpoints sets = {0};
   struct readings creadings ={0};
9
10 struct controls ctrl = {0};
11
12
    time_t now;
char test;
     int logged;
13
14
     alarmlimit s alimits = { 0 };
15
     alarm s warn[NALARMS] = { 0 };
16
17
      time(NULL);
18
19
20
      sets = GhSetTargets(sets);
21
      alimits = GhSetAlarmsLimits();
22
23
      GhControllerInit();
```

```
25
       while(1)
26
27
           now = time(NULL);
28
29
           creadings = GhGetReadings();
           logged = GhLogData("ghdata.txt", creadings);
30
           ctrl = GhSetControls(sets, creadings);
31
32
           GhDisplayAlarms(warn);
           GhDisplayAll(creadings, sets);
33
34
           GhDisplayReadings(creadings);
           GhDisplayTargets(sets);
35
36
           GhDisplayControls(ctrl);
37
           GhDelay(GHUPDATE);
38
39
40
41
       test = fgetc(stdin);
42
       if(test ==' ')
43
44
           return EXIT SUCCESS;
45
46
47
48 }
```

ghcontrol.c File Reference

#include "ghcontrol.h"

Macros

• #define **ALARMNMSZ** 18

Functions

- int **GhGetRandom** (int range)
- void GhDelay (int milliseconds)
- void GhControllerInit (void)
- double **GhGetHumidity** (void)
- double GhGetPressure (void)
- double **GhGetTemperature** (void)
- struct readings GhGetReadings (void)
- struct **setpoints GhSetTargets** (struct **setpoints** spts)
- struct controls GhSetControls (struct setpoints target, struct readings rdata)
- int GhLogData (char *fname, struct readings ghdata)
- int **GhSaveSetpoints** (char *fname, struct **setpoints** spts)
- struct setpoints GhRetrieveSetpoints (char *fname)
- alarmlimit_s GhSetAlarmsLimits (void)
- void GhSetAlarms (alarm_s calarm[NALARMS], alarmlimit_s alarmpt, struct readings rdata)
- alarm_s GhDisplayAlarms (alarm_s alrm[NALARMS])
- void GhDisplayControls (struct controls ctrl)
- void **GhDisplayReadings** (struct **readings** rdata)
- void GhDisplayTargets (struct setpoints spts)
- void GhDisplaySetpoints (void)
- void **GhDisplayHeader** (const char *sname)
- void GhDisplayAll (struct readings rd, struct setpoints sd)

Detailed Description

function definitions and in depth structure for Gh main code

Macro Definition Documentation

#define ALARMNMSZ 18

Function Documentation

void GhControllerInit (void)

sets parameters by calling srand for number generation, sets targets, and diplays controllers name. initialization of the Ghcontroller

Version:

06 July 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

```
void
```

Returns:

void GhDelay (int milliseconds)

creates a timed delay for the clock

Version:

01 June 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

integer	delay measured in milliseconds	
---------	--------------------------------	--

Returns:

```
void

28 {
29     long int wait;
30     clock_t now,start;
31

32     wait = milliseconds * (CLOCKS_PER_SEC/1000);
33     start = clock();
34     now = start;
35

36     while((now-start) < wait)</pre>
```

```
37 {
38          now = clock();
39     }
40 }
```

alarm_s GhDisplayAlarms (alarm_s alrm[NALARMS])

```
// Alarm Message Array
329 const char alarmnames[NALARMS][ALARMNMSZ] =
330
            {"No Alarms", "High Temperature", "Low Temperature", "High Humidity",
              "Low Humidity", "High Pressure", "Low Pressure"};
331
332
333
              for (int i = 1; i < 7; i++)
334
                if('->' != NOALARM)
335
336
                    printf("%s %s", alarmnames['->'],ctime(&alrm[i].atime));
337
338
339
340
341 }
```

void GhDisplayAll (struct readings rd, struct setpoints sd)

```
398 {
399
        int rv, sv, ach, avl;
400
        fbpixel s pxc={0};
401
402
        ShClearMatrix();
403
404
        rv = (NUMPTS * (((rd.temperature-LSTEMP) / (USTEMP-LSTEMP)) +0.05) -1);
        sv = (NUMPTS * (((sd.temperature - LSTEMP) / (USTEMP-LSTEMP)) +0.05) -1);
405
            pxc.red = 0x00;
406
           pxc.green = 0xFF;
407
           pxc.blue = 0x00;
408
409
            ShSetVerticalBar(TBAR,pxc,rv);
           pxc.red = 0xF0;
410
411
           pxc.green = 0x0F;
            pxc.blue = 0xF0;
412
413
            ShSetPixel (TBAR, sv, pxc);
414
       rv = (NUMPTS * (((rd.humidity-LSHUMID) / (USHUMID-LSHUMID)) +0.05) -1);
415
416
        sv = (NUMPTS * (((sd.humidity - LSHUMID) / (USHUMID-LSHUMID)) +0.05) -1);
           pxc.red = 0x00;
417
418
           pxc.green = 0xFF;
           pxc.blue = 0x00;
419
420
            ShSetVerticalBar(HBAR,pxc,rv);
421
           pxc.red = 0xF0;
           pxc.green = 0x0F;
422
423
            pxc.blue = 0xF0;
424
            ShSetPixel(HBAR, sv, pxc);
425
       rv = (NUMPTS * (((rd.pressure-LSPRESS) / (USPRESS-LSPRESS)) +0.05) -1);
426
427
            pxc.red = 0x00;
428
            pxc.green = 0xFF;
            pxc.blue = 0x00;
429
430
            ShSetVerticalBar (PBAR, pxc, rv);
431
432
433 }
```

void GhDisplayControls (struct controls ctrl)

displays the on and off status of humidifier and heater based on current temperatures compared to target temperatures

Version:

06 July 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

heater	pointer humidifier pointer	
--------	----------------------------	--

Returns:

```
void
352 {
353    fprintf(stdout,"\nControls: \theater status: %d\t humidifier status:
%d\n",ctrl.heater, ctrl.humidifier);
354 }
```

void GhDisplayHeader (const char * sname)

prints GH controller title

Version:

06 MAY 2018

Author:

Paul Moggach Bronson Pearl

Parameters:

sname	string with Operator's name	
sname	string with Operator's name	

Returns:

```
void
393 {
394    fprintf(stdout, "%s's CENG153 Greenhouse Controller\n", sname);
395 }
```

void GhDisplayReadings (struct readings rdata)

prints the readings of units measured: temp, humidity, wind pressure.

Version:

08 June 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

rtime	and array dreads passed to display current time and appropriate measurements
1 001100	and urray dreads pussed to display edition time and appropriate measurements

Returns:

```
void
364 {
365    fprintf(stdout,"\n%sReadings\tT:%5.lfC\t H:%5.1lf%%\t P:%
6.llfPa",ctime(&rdata.rtime),rdata.temperature,rdata.humidity,rdata.pressure);
366 }
```

void GhDisplaySetpoints (void)

```
381 {
382 }
```

void GhDisplayTargets (struct setpoints spts)

displays set targets for humdifier and heater

Version:

15 June 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

```
void
```

Returns:

```
void
376 {
377     fprintf(stdout,"\nSetpoints: T: %5.1fC\t H: %5.1f%%", STEMP, SHUMID);
378 }
```

double GhGetHumidity (void)

generates simulated measurement for humidity

Version:

06 July 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

```
void
```

Returns:

```
double
66 {
67
68 #if SIMTEMPERATURE
69    return GhGetRandom(USHUMID-LSHUMID) + LSHUMID;
70 #else
71    return 25.0;
72 #endif
73 }
```

double GhGetPressure (void)

generates simulated measurement for wind pressure

Version:

06 July 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

```
void
```

Returns:

```
double
83 {
84 #if SIMTEMPERATURE
85    return GhGetRandom(USPRESS-LSPRESS) + LSPRESS;
86 #else
87    return 25.0;
88 #endif
89 }
```

int GhGetRandom (int range)

generates a random number within a range

Version:

01 June 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

range	integer mod division to random number	
-------	---------------------------------------	--

Returns:

```
int
16 {
17    return rand()%range;
18 }
```

struct readings GhGetReadings (void)

assigns simulated measurements to the appropraite array location

Version:

06 July 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

type	double readings[SENSORS]

Returns:

```
void

115 {
    struct readings now = {0};
    now.rtime = time(NULL);
    now.temperature = GhGetTemperature();
    now.humidity = GhGetHumidity();
    now.pressure = GhGetPressure();
    return now;
    return now;
}
```

double GhGetTemperature (void)

generates simulated measurement for temperature

Version:

06 July 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

```
void
```

Returns:

```
double
99 {
100 #if SIMTEMPERATURE
101    return GhGetRandom(USTEMP-LSTEMP) + LSTEMP;
102 #else
```

```
103 return 25.0;
104 #endif
105 }
```

int GhLogData (char * fname, struct readings ghdata)

Writes data to a file to log simulated weather readings

Version:

13 July 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

fname string with file name, ghdata

Returns:

```
1
 184 {
 185
          FILE *fp;
          char ltime[25];
 186
 187
 188
          fp = fopen(fname, "a");
 189
 190
          if(fp==NULL)
 191
 192
          return 0;
 193
 194
 195
          strcpy(ltime, ctime(&ghdata.rtime));
          ltime[3] = ',';
ltime[7] = ',';
 196
 197
          ltime[10]= ',';
 198
          ltime[19] = ',';
 199
 200
 201
 202
          fprintf(fp, \%.24s, 5.11f, 5.11f, 6.11f\n", ltime, ghdata.temperature,
ghdata.humidity, ghdata.pressure);
 203
 204
          fclose(fp);
 205
 206
          return 1;
 207 }
```

struct setpoints GhRetrieveSetpoints (char * fname)

```
241 {
242
        struct setpoints spts = {0.0};
243
244
        FILE *fp;
245
        fp = fopen(fname, "r");
246
247
248
        if(fp==NULL)
249
250
        return spts;
251
252
253
        fread(&spts, sizeof(struct setpoints),1,fp);
254
255
        fclose(fp);
256
257
        return spts;
258 }
```

int GhSaveSetpoints (char * fname, struct setpoints spts)

```
217 {
218
219
        fp = fopen(fname, "w");
220
221
        if(fp==NULL)
222
223
        return 0;
224
        }
225
226
        fwrite(&spts, sizeof(struct setpoints), 1, fp);
227
228
        fclose(fp);
229
230
        return 1;
231 }
```

void GhSetAlarms (alarm_s calarm[NALARMS], alarmlimit_s alarmpt, struct readings rdata)

```
274 {
275
276 int i;
277 for(i=0; i<7; i++)
279
         calarm[i].code = NOALARM;
280 }
281
282 if (rdata.temperature >= alarmpt.hight)
283 {
284
         calarm[HTEMP].code = HTEMP;
         calarm[HTEMP].atime = rdata.rtime;
calarm[HTEMP].value = rdata.temperature;
285
286
287 }
288
289 if(rdata.temperature <= alarmpt.lowt)
290 {
2.91
         calarm[LTEMP].code = LTEMP;
292
         calarm[LTEMP].atime = rdata.rtime;
         calarm[LTEMP].value = rdata.temperature;
293
294 }
295
296 if (rdata.humidity >= alarmpt.highh)
297 {
298
         calarm[HHUMID].code = HHUMID;
         calarm[HHUMID].atime = rdata.rtime;
calarm[HHUMID].value = rdata.temperature;
299
300
301 }
302
303 if(rdata.humidity <= alarmpt.lowh)
304 {
305
         calarm[LHUMID].code = LHUMID;
         calarm[LHUMID].atime = rdata.rtime;
calarm[LHUMID].value = rdata.temperature;
306
307
308 }
309
310 if (rdata.pressure >= alarmpt.highp)
311 {
312
         calarm[HPRESS].code = HPRESS;
313
         calarm[HPRESS].atime = rdata.rtime;
         calarm[HPRESS].value = rdata.temperature;
314
315 }
316
317 if(rdata.pressure <= alarmpt.lowp)
318 {
319
         calarm[LPRESS].code = LPRESS;
         calarm[LPRESS].atime = rdata.rtime;
calarm[LPRESS].value = rdata.temperature;
320
321
322 }
323
```

alarmlimit_s GhSetAlarmsLimits (void)

```
261 {
262
        alarmlimit s calarm;
263
       calarm.hight = UPPERATEMP;
      calarm.lowt = LOWERATEMP;
264
265
       calarm.highh = UPPERAHUMID;
266
       calarm.lowh = LOWERAHUMID;
267
       calarm.highp = UPPERAPRESS;
       calarm.lowp = LOWERAPRESS;
268
269
270
        return calarm;
271 }
```

struct controls GhSetControls (struct setpoints target, struct readings rdata)

controls the heater and humidifier for green house

Version:

15 June 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

heater pointer humidifier pointer and creadings array

Returns:

```
void
152 {
153
        struct controls cset = {0};
154
155
        if( rdata.temperature < STEMP )</pre>
156
157
              cset.heater = ON;
158
159
        else
160
        {
161
             cset.heater = OFF;
162
163
        if( rdata.humidity < SHUMID)</pre>
164
165
        {
166
             cset.humidifier = ON;
167
168
        else
169
        {
170
              cset.humidifier = OFF;
171
172
173
         return cset;
174 }
```

struct setpoints GhSetTargets (struct setpoints spts)

sets contorl points for simulation

Version:

06 july 2020

Author:

Paul Moggach Bronson Pearl

Parameters:

	T
type	void
1 VJP C	voia .

Returns:

cpoints

```
132 {
133
          struct setpoints cpoints = GhRetrieveSetpoints("setpoints.dat");
134
135
          if( (cpoints.temperature = 0) )
136
          cpoints.temperature = STEMP;
137
         cpoints.humidity = SHUMID;
GhSaveSetpoints("setpoints.dat", cpoints);
 138
139
140
 141
          return cpoints;
142 }
```

ghcontrol.h File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include "pisensehat.h"
```

Data Structures

- struct readings
- struct setpoints
- struct controls
- struct alarmlimits
- struct alarms

Macros

- #define **ON** 1
- #define **OFF** 0
- #define **STEMP** 25.0
- #define **SHUMID** 55.0
- #define **SIMULATE** 1
- #define **USTEMP** 50
- #define **LSTEMP** -10
- #define **USHUMID** 100
- #define **LSHUMID** 0#define **USPRESS** 1016
- #define **LSPRESS** 975
- #define **GHUPDATE** 2000
- #define **SENSORS** 3
- #define **TEMPERATURE** 0
- #define **HUMIDITY** 1
- #define **PRESSURE** 2
- #define **SIMTEMPERATURE** 1
- #define SIMHUMIDITY 1
- #define SIMPRESSURE 1

- #define **NUMBARS** 8
- #define **NUMPTS** 8.0
- #define **TBAR** 7
- #define **HBAR** 5
- #define **PBAR** 3
- #define **SENSEHAT** 1
- #define **NALARMS** 7
- #define **UPPERATEMP** 30
- #define **LOWERATEMP** 10
- #define **LOWERAHUMID** 25
- #define **UPPERAHUMID** 70
- #define **LOWERAPRESS** 985
- #define **UPPERAPRESS** 1016

Typedefs

- typedef struct alarmlimits alarmlimit_s
- typedef struct alarms alarm_s

Enumerations

• enum alarm_e { NOALARM, HTEMP, LTEMP, HHUMID, LHUMID, HPRESS, LPRESS }

Detailed Description

GH control constants, structures, function prototypes for Gh control code

Data Structure Documentation

struct readings

Data Fields:

double	humidity	
double	pressure	
time_t	rtime	
double	temperature	

struct setpoints

Data Fields:

_	. 1 1014101		
	double	humidity	
	double	temperature	

struct controls

Data Fields:

int	heater	
int	humidifier	

struct alarmlimits

Data Fields:

double	highh	
double	highp	
double	hight	
double	lowh	
double	lowp	
double	lowt	

struct alarms

Data Fields:

time_t	atime	
alarm_e	code	
double	value	

13

Macro Definition Documentation

#define GHUPDATE 2000

#define HBAR 5

#define HUMIDITY 1 #define LOWERAHUMID 25 #define LOWERAPRESS 985 #define LOWERATEMP 10 #define LSHUMID 0 #define LSPRESS 975 #define LSTEMP -10 #define NALARMS 7 #define NUMBARS 8 #define NUMPTS 8.0 #define OFF 0 #define ON 1 #define PBAR 3 #define PRESSURE 2 #define SENSEHAT 1 #define SENSORS 3 #define SHUMID 55.0 #define SIMHUMIDITY 1 #define SIMPRESSURE 1 #define SIMTEMPERATURE 1

#define SIMULATE 1

#define STEMP 25.0

#define TBAR 7

#define TEMPERATURE 0

#define UPPERAHUMID 70

#define UPPERAPRESS 1016

#define UPPERATEMP 30

#define USHUMID 100

#define USPRESS 1016

#define USTEMP 50

Typedef Documentation

typedef struct alarms alarm_s

typedef struct alarmlimits alarmlimit_s

Enumeration Type Documentation

enum alarm_e

Enumerator:

NOALARM	
HTEMP	
LTEMP	
HHUMID	
LHUMID	
HPRESS	
LPRESS	

52 { NOALARM, HTEMP, LTEMP, HHUMID, LHUMID, HPRESS, LPRESS } alarm_e;

pisensehat.c File Reference

#include "pisensehat.h"

Functions

• int **ShInit** (void)

- int **ShExit** (void)
- void ShClearMatrix (void)
- uint8_t **ShSetPixel** (int x, int y, **fbpixel**_s px)
- int **ShSetVerticalBar** (int bar, **fbpixel_s** px, uint8_t value)
- lps25hData_s ShGetLPS25HData (void)
- ht221sData s ShGetHT221SData (void)

Variables

- static int fbfd
- static uint16_t * map
- static int HTS221fd
- static int LPS25Hfd
- int **numReadings** =0

Detailed Description

RPi Sensehat functions

Version:

2020-05-03

Function Documentation

void ShClearMatrix (void)

Clears Sensehat 8X8 RGB LED display

Author:

Paul Moggach Kristian Medri

Version:

2020-05-03

Parameters:

```
void
```

Returns:

```
void
108 {
109 #if EMULATOR
110
        if (numReadings >=12) {
111
            numReadings=0;
112
            printf("12 readings is about the limit for the emulator\n"
                 "the way that the current code is written since \n"
113
                 "it spawns too many threads and using Py_Finalize\n"
114
                 "causes a decref segmentation fault. In addition, \n"
115
116
                 "it doesn't respond to Ctrl-C thus exiting gracefully.\n");
         /\star Note that if you want to exit sooner you can stop the ghc process
117
118
        by using Ctrl-Z, find the PID of ghc by using the command ps, and
        use kill -9 PID# to end the process. */
119
120
            exit(EXIT FAILURE);
121
122
123
            //printf("numReadings= %d\n", numReadings);
124
            numReadings++;
125
126
            PyRun SimpleString(
```

int ShExit (void)

Closes Down the Sensehat

Author:

Paul Moggach Kristian Medri

Version:

2020-05-01

Parameters:

```
void
```

Returns:

```
exit status
```

```
82 {
83 #if EMULATOR
84
      Py_Finalize();
85 #else
86
    ShClearMatrix();
87
      /* un-map and close */
88
      if (munmap(map, FILESIZE) == -1)
89
90
          perror("Error un-mmapping the file");
91
          return EXIT FAILURE;
92
93
      close(fbfd);
94
      close (HTS221fd);
95
      close (LPS25Hfd);
96 #endif
97
      return EXIT_SUCCESS;
98 }
```

ht221sData_s ShGetHT221SData (void)

Gets HT221S Sensehat sensor data

Author:

Paul Moggach Kristian Medri

Version:

2020-05-03

Parameters:

```
void
```

Returns:

ht221sData_s temperature and humidity data

```
286 {
287    ht221sData_s rd = {0};
288 #if EMULATOR
289    PyRun_SimpleString(
290    "from sense_emu import SenseHat\n"
291    "#from time import time,ctime\n"
292    "#print('Today is '+ctime(time))\n"
293    "sense=SenseHat()\n"
```

```
294
               "temp=sense.temp\n"
               "humid=sense.humidity\n"
  295
               "#print(temp)\n"
  296
  297
               "#print(humid)\n"
               "f=open(\"tempfileforpython.txt\",\"w\")\n"
  298
  299
               "f.write(repr(temp)) \n"
               "f.close()\n"
  300
               "f=open(\"humifileforpython.txt\",\"w\")\n"
  301
  302
               "f.write(repr(humid)) \n"
               "f.close()\n"
  303
  304
               );
          double reading=0;
  305
  306
           FILE *fp;
           fp=fopen("tempfileforpython.txt","r");
  307
  308
           fscanf(fp, "%lf", &reading);
  309
           fclose(fp);
  310
           rd.temperature = reading;
           //fprintf(stdout, "%lf\n", reading);
  311
           fp=fopen("humifileforpython.txt","r");
  312
  313
           fscanf(fp, "%lf", &reading);
  314
           fclose(fp);
  315
           //fprintf(stdout, "%lf\n", reading);
          rd.humidity = reading;
  316
  317 #else
  318
          int status;
  319
           uint8_t t0_out_1,t0_out_h,t1_out_1,t1_out_h;
  320
           uint8_t t0_degC_x8,t1_degC_x8,t1_t0_msb;
  321
           int16 t TO OUT, T1 OUT;
           uint\overline{16} t \overline{10} DegC \overline{x}8, \overline{11} DegC x8;
  322
           double T0_DegC, T1_DegC;
  323
  324
           double t gradient m, t intercept c;
          uint8_t t_out_1,t_out_h;
  325
  326
           int16 t T OUT;
          uint8_t
  327
h0_out_1,h0_out_h,h1_out_1,h1_out_h,h0_rh_x2,h1_rh_x2,h_t_out_1,h_t_out_h;
           int16 t HO TO OUT, HI TO OUT, H T OUT;
  328
           double HO rH, H1 rH, h gradient m, h intercept c;
  329
  330
  331
           // Power down the device (clean start)
  332
           wiringPiI2CWriteReg8(HTS221fd, CTRL REG1, 0x00);
  333
           // Turn on the humidity sensor analog front end in single shot mode
  334
           wiringPiI2CWriteReg8 (HTS221fd, CTRL REG1, 0x84);
  335
           // Run one-shot measurement (temperature and humidity). The set bit will be reset
by the
  336
           // sensor itself after execution (self-clearing bit)
  337
           wiringPiI2CWriteReg8(HTS221fd, CTRL REG2, 0x01);
  338
  339
           // Wait until the measurement is completed
  340
           do
  341
           {
  342
               usleep (HTS221DELAY);
                                         // 25 ms
  343
               status = wiringPiI2CReadReg8(HTS221fd, CTRL REG2);
  344
  345
           while (status != 0);
  346
  347
           // Read calibration temperature LSB (ADC) data
  348
           // (temperature calibration x-data for two points)
  349
           t0_out_l = wiringPiI2CReadReg8(HTS221fd, T0_OUT_L);
           t0_out_h = wiringPiI2CReadReg8(HTS221fd, T0_OUT_H);
t1_out_l = wiringPiI2CReadReg8(HTS221fd, T1_OUT_L);
  350
  351
  352
           t1 out h = wiringPiI2CReadReg8 (HTS221fd, T1 OUT H);
  353
  354
          // Read calibration relative humidity LSB (ADC) data
  355
           // (humidity calibration x-data for two points)
  356
           h0 out 1 = wiringPiI2CReadReg8 (HTS221fd, H0 T0 OUT L);
          h0_out_h = wiringPiI2CReadReg8(HTS221fd, H0_T0_OUT_H);
h1_out_l = wiringPiI2CReadReg8(HTS221fd, H1_T0_OUT_L);
  357
  358
  359
           h1 out h = wiringPiI2CReadReg8 (HTS221fd, H1 T0 OUT H);
  360
  361
           // Read calibration temperature (°C) data
 362
           // (temperature calibration y-data for two points)
```

```
t0 degC x8 = wiringPiI2CReadReg8(HTS221fd, T0 degC x8);
         t1 degC x8 = wiringPiI2CReadReg8(HTS221fd, T1_degC_x8);
364
365
         t1_t0_msb = wiringPiI2CReadReg8(HTS221fd, T1_T0_MSB);
366
367
        // Read relative humidity (% rH) data
368
         // (humidity calibration y-data for two points)
369
         h0 rh x2 = wiringPiI2CReadReg8(HTS221fd, H0 rH x2);
370
         h1 rh x2 = wiringPiI2CReadReg8(HTS221fd, H1 rH x2);
371
372
         // make 16 bit values (bit shift)
373
         // (temperature calibration x-values)
374
         T0_OUT = t0_out_h << 8 | t0_out_1;
         T1 OUT = t1_out_h << 8 | t1_out_l;
375
376
377
         // make 16 and 10 bit values (bit mask and bit shift)
378
         T0\_DegC\_x8 = (t1\_t0\_msb \& 3) << 8 | t0\_degC\_x8;
379
         T1 DegC x8 = ((t1 t0 msb \& 12) >> 2) << 8 | t1 degC <math>x8;
380
381
         // Calculate calibration values
382
         // (temperature calibration y-values)
         T0\_DegC = T0\_DegC\_x8 / 8.0;
383
384
         T1 DegC = T1 DegC \times 8 / 8.0;
385
386
         // Solve the linear equasions 'y = mx + c' to give the
387
         // calibration straight line graphs for temperature and humidity
388
         t_gradient_m = (T1_DegC - T0_DegC) / (T1_OUT - T0_OUT);
         t intercept_c = T1_DegC - (t_gradient_m * T1_OUT);
389
390
391
         // Read the ambient temperature measurement (2 bytes to read)
392
         t_out_l = wiringPiI2CReadReg8(HTS221fd, TEMP_OUT_L);
393
         t out h = wiringPiI2CReadReg8(HTS221fd, TEMP OUT H);
394
395
         // make 16 bit value
396
         T OUT = t out h << 8 | t out 1;
397
         // make 16 bit values (bit shift)
398
         // (humidity calibration x-values)
399
         H0_T0_OUT = h0_out_h << 8 | h0_out_l;
H1_T0_OUT = h1_out_h << 8 | h1_out_l;
400
401
402
403
         // Humidity calibration values
404
         // (humidity calibration y-values)
405
         H0 rH = h0 rh x2 / 2.0;
         H1_rH = h1_rh_x2 / 2.0;
406
         h_gradient_m = (H1_rH - H0_rH) / (H1_T0_OUT - H0_T0_OUT);
h_intercept_c = H1_rH - (h_gradient_m * H1_T0_OUT);
407
408
409
410
         // Read the ambient humidity measurement (2 bytes to read)
         h_t_out_l = wiringPiI2CReadReg8(HTS221fd, H_T_OUT_L);
h t out h = wiringPiI2CReadReg8(HTS221fd, H T OUT H);
411
412
413
414
         // make 16 bit value
         H T OUT = h t out h << 8 | h t out 1;</pre>
415
416
417
         // Power down the device
         wiringPiI2CWriteReg8 (HTS221fd, CTRL REG1, 0x00);
418
419
         // Calculate and return ambient temperature
420
         rd.temperature = (t_gradient_m * T_OUT) + t_intercept_c;
rd.humidity = (h_gradient_m * H_T_OUT) + h_intercept_c;
421
422
423 #endif
424
         return rd;
425 }
```

lps25hData_s ShGetLPS25HData (void)

Gets LPS25H Sensehat sensor information

Author:

Paul Moggach

Kristian Medri

Version:

2020-05-01

Parameters:

void

Returns:

lps25hData s pressure and temperature data

```
210 {
          lps25hData s rd = {0};
 212 #if EMULATOR
 213
          PyRun SimpleString(
 214
              "from sense emu import SenseHat\n"
              "sense=SenseHat()\n"
 215
              "temp=sense.pressure\n"
 216
              "f=open(\"tempfileforpython.txt\",\"w\")\n"
 217
              "f.write(repr(temp)) \n"
  218
              "f.close()\n"
 219
 220
              );
 221
          double reading=0;
 222
          FILE *fp;
 223
          fp=fopen("tempfileforpython.txt","r");
          fscanf(fp, "%lf", &reading);
 224
  225
          fclose(fp);
 226
          rd.pressure = reading;
 227
          rd.temperature = 5; //placeholder, use the temperature from the ht221s
 228 #else
 229
          uint8 t temp out l = 0, temp out h = 0;
 230
          int16 t temp out = 0;
 2.31
          uint8 t press out xl = 0;
          uint8_t press_out_l = 0;
uint8_t press_out_h = 0;
 232
 233
 234
          int32 t press out = 0;
 235
          uint8 t status = 0;
 236
 237
          // Power down the device (clean start)
 238
          wiringPiI2CWriteReg8(LPS25Hfd, CTRL REG1, 0x00);
  239
 240
          // Turn on the humidity sensor analog front end in single shot mode
 241
          wiringPiI2CWriteReg8 (LPS25Hfd, CTRL REG1, 0x84);
 242
 243
          // Run one-shot measurement (temperature and humidity). The set bit will be reset
by the
  244
          // sensor itself after execution (self-clearing bit)
 245
          wiringPiI2CWriteReg8 (LPS25Hfd, CTRL REG2, 0x01);
 246
 247
          // Wait until the measurement is completed
 248
          do
 249
          {
 250
              usleep(HTS221DELAY);
                                       // 25 ms
 251
              status = wiringPiI2CReadReg8(LPS25Hfd, CTRL REG2);
  252
 253
          while (status != 0);
 254
 255
          /* Read the temperature measurement (2 bytes to read) */
  256
          temp out 1 = wiringPiI2CReadReg8(LPS25Hfd, TEMP OUT L);
 257
          temp out h = wiringPiI2CReadReg8(LPS25Hfd, TEMP OUT H);
 258
 259
          /* Read the pressure measurement (3 bytes to read) */
 260
          press_out_xl = wiringPiI2CReadReg8(LPS25Hfd, PRESS OUT XL);
 261
          press out 1 = wiringPiI2CReadReg8(LPS25Hfd, PRESS OUT L);
          press out h = wiringPiI2CReadReg8(LPS25Hfd, PRESS OUT H);
 262
 263
 264
          /* make 16 and 24 bit values (using bit shift) */
  265
          temp out = temp out h << 8 | temp out 1;
  266
          press_out = press_out_h << 16 | press_out_l << 8 | press_out_xl;</pre>
  2.67
 268
         /* calculate output values */
```

```
269    rd.temperature = 42.5 + (temp_out / 480.0);
270    rd.pressure = press_out / 4096.0;
271
272    // Power down the device
273    wiringPiI2CWriteReg8(LPS25Hfd, CTRL_REG1, 0x00);
274 #endif
275    return rd;
276 }
```

int ShInit (void)

Initialize Sensehat

Author:

Paul Moggach Kristian Medri

Version:

2020-05-01

Parameters:

void

Returns:

exit status

```
22 {
23 #if EMULATOR
2.4
       Py_Initialize();
25 #else
      wiringPiSetup();
2.6
27
       struct fb fix screeninfo fix info;
28
29
       // Frame Buffer Initialization for 8X8 LED Matrix
30
       /* open the led frame buffer device */
31
       fbfd = open(FILEPATH, O RDWR);
32
       if (fbfd == -1)
33
           perror("Error (call to 'open')");
34
35
           exit(EXIT_FAILURE);
36
37
       /* read fixed screen info for the open device */
38
39
       if (ioctl(fbfd, FBIOGET FSCREENINFO, &fix info) == -1)
40
41
           perror("Error (call to 'ioctl')");
42
           close(fbfd);
           exit(EXIT_FAILURE);
43
44
4.5
       /* now check the correct device has been found */ if (strcmp(fix_info.id, "RPi-Sense FB") != 0)
46
47
48
           printf("%s\n", "Error: RPi-Sense FB not found");
49
50
           close(fbfd);
           exit(EXIT_FAILURE);
51
       }
52
53
54
       /* map the led frame buffer device into memory */
55
       map = mmap(NULL, FILESIZE, PROT READ | PROT WRITE, MAP SHARED, fbfd, 0);
56
       if (map == MAP FAILED)
57
58
           close(fbfd);
           perror("Error mmapping the file");
59
60
           exit(EXIT FAILURE);
61
62
63
       // Sensor Initialization
64
       HTS221fd = wiringPiI2CSetup(HTS221I2CADDRESS);
       LPS25Hfd = wiringPiI2CSetup(LPS25HI2CADDRESS);
65
```

```
66
67  // Power down the device (clean start)
68  wiringPiI2CWriteReg8(HTS221fd, CTRL_REG1, 0x00);
69  wiringPiI2CWriteReg8(LPS25Hfd, CTRL_REG1, 0x00);
70 #endif
71  return EXIT_SUCCESS;
72 }
```

uint8_t ShSetPixel (int x, int y, fbpixel_s px)

Sets a pixel on the Sensehat display

Author:

Paul Moggach Kristian Medri

Version:

2020-05-01

Parameters:

X	an integer position value
у	an integer position value
fbpixel_s	pixel colour data

Returns:

```
uint8_t exit status
```

```
146 {
147 #if EMULATOR
148
      char ltime [120];
149
        sprintf(ltime,
150
           "from sense emu import SenseHat\n"
151
           "sense=SenseHat()\n"
          "sense.set_pixel(%d,%d,%d,%d,%d)\n"
152
153
          ,x,y,px.red,px.green,px.blue);
      PyRun SimpleString(ltime);
154
155
       return EXIT SUCCESS;
156 #else
157
158
        if (x >= 0 \&\& x < 8 \&\& y >= 0 \&\& y < 8)
159
160
161
           i = (y*8)+x; // offset into array
           map[i] = (px.red << 11) | (px.green << 5) | (px.blue);</pre>
162
163
           return EXIT_SUCCESS;
164
165 #endif
166
       return EXIT FAILURE;
167 }
```

int ShSetVerticalBar (int bar, fbpixel_s px, uint8_t value)

Sets a vertical bar on the Sensehat display

Author:

Paul Moggach Kristian Medri

Version:

2020-05-01

Parameters:

int	bar to light	
fbpixel_s	pixel colour data	
uint8_t	value how many pixels to light in bar	

Returns:

```
exit status
179 {
180
         int i;
181
        if (value>7) {
182
            value=7;
183
184
        if (bar >= 0 && bar < 8 && value >= 0 && value < 8)
185
186
            for(i=0; i<= value; i++)
187
188
                ShSetPixel(bar,i,px);
189
190
            px.red = 0x00;
            px.green = 0x00;
191
192
            px.blue = 0x00;
193
            for(i=value+1; i< 8;i++)
194
195
                ShSetPixel(bar,i,px);
196
197
            return EXIT SUCCESS;
198
199
        return EXIT FAILURE;
200 }
```

Variable Documentation

int fbfd[static]

int HTS221fd[static]

int LPS25Hfd[static]

uint16_t* map[static]

int numReadings =0

pisensehat.h File Reference

```
#include <stdlib.h>
#include <unistd.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <string.h>
#include <unistal <ul><unistal <unistal <unistal
```

```
#include time.h>
#include <time.h>
#include <wiringPi.h>
#include <wiringPiI2C.h>
```

Data Structures

- struct fbpixel
- struct lps25hData
- struct ht221sData

Macros

- #define **EMULATOR** 0
- #define LPS25HI2CADDRESS 0x5c
- #define **PRESS_OUT_XL** 0x28
- #define **PRESS_OUT_L** 0x29
- #define PRESS OUT H 0x2A
- #define **HTS221I2CADDRESS** 0x5F
- #define **HTS221DELAY** 25000
- #define **WHO_AM_I** 0x0F
- #define CTRL REG1 0x20
- #define **CTRL REG2** 0x21
- #define **T0_OUT_L** 0x3C
- #define **T0_OUT_H** 0x3D
- #define **T1 OUT L** 0x3E
- #define **T1_OUT_H** 0x3F
- #define **T0_degC_x8** 0x32
- #define **T1 degC x8** 0x33
- #define **T1_T0_MSB** 0x35
- #define TEMP OUT L 0x2A
- #define **TEMP OUT H** 0x2B
- #define **H0_T0_OUT_L** 0x36
- #define **H0_T0_OUT_H** 0x37
- #define **H1 T0 OUT L** 0x3A
- #define **H1_T0_OUT_H** 0x3B
- #define **H0_rH_x2** 0x30
- #define **H1_rH_x2** 0x31
- #define **H_T_OUT_L** 0x28
- #define **H_T_OUT_H** 0x29
- #define FILEPATH "/dev/fb1"
- #define **NUM_WORDS** 64
- #define **FILESIZE** (**NUM_WORDS** * sizeof(uint16_t))
- #define **RGB565_RED** 0xF800
- #define **RGB565 GREEN** 0x07E0
- #define **RGB565_BLUE** 0x001F

Typedefs

- typedef struct **fbpixel fbpixel_s**
- typedef struct lps25hData lps25hData_s
- typedef struct ht221sData ht221sData_s

Detailed Description

RPi Sensehat constants, structures, function prototypes

Version:

2020-05-03

Data Structure Documentation

struct fbpixel

Data Fields:

uint8_t	blue	
uint8_t	green	
uint8_t	red	

struct lps25hData

Data Fields:

double	pressure	
double	temperature	

struct ht221sData

Data Fields:

double	humidity	
double	temperature	

Macro Definition Documentation

#define CTRL_REG1 0x20

#define CTRL_REG2 0x21

#define EMULATOR 0

#define FILEPATH "/dev/fb1"

#define FILESIZE (NUM_WORDS * sizeof(uint16_t))

#define H0_rH_x2 0x30

#define H0_T0_OUT_H 0x37

#define H0_T0_OUT_L 0x36

#define H1_rH_x2 0x31

#define H1_T0_OUT_H 0x3B

#define H1_T0_OUT_L 0x3A

#define H_T_OUT_H 0x29

#define H_T_OUT_L 0x28

#define HTS221DELAY 25000

#define HTS221I2CADDRESS 0x5F

#define LPS25HI2CADDRESS 0x5c

#define NUM_WORDS 64

#define PRESS_OUT_H 0x2A

#define PRESS_OUT_L 0x29

#define PRESS_OUT_XL 0x28

#define RGB565_BLUE 0x001F

#define RGB565_GREEN 0x07E0

#define RGB565_RED 0xF800

#define T0_degC_x8 0x32

#define T0_OUT_H 0x3D

#define T0_OUT_L 0x3C

#define T1_degC_x8 0x33

#define T1_OUT_H 0x3F

#define T1 OUT L 0x3E

#define T1_T0_MSB 0x35

#define TEMP_OUT_H 0x2B

#define TEMP_OUT_L 0x2A

#define WHO_AM_I 0x0F

Typedef Documentation

typedef struct fbpixel fbpixel_s

typedef struct ht221sData ht221sData_s

typedef struct lps25hData lps25hData_s

Index

alarm_e ghcontrol.h, 15

alarm_s

ghcontrol.h, 15

alarmlimit_s

ghcontrol.h, 15

alarmlimits, 13

ALARMNMSZ

ghcontrol.c, 3

alarms, 13

controls, 12

CTRL_REG1

pisensehat.h, 26

CTRL REG2

pisensehat.h, 26

EMULATOR

pisensehat.h, 26

fbfd

pisensehat.c, 23

fbpixel, 25

fbpixel_s

pisensehat.h, 27

FILEPATH

pisensehat.h, 26

FILESIZE

pisensehat.h, 26

GHC.c, 1

main, 1

ghcontrol.c, 2

ALARMNMSZ, 3

GhControllerInit, 3

GhDelay, 3

GhDisplayAlarms, 4

GhDisplayAll, 4

GhDisplayControls, 4

GhDisplayHeader, 5

GhDisplayReadings, 5	USPRESS, 15
GhDisplaySetpoints, 5	USTEMP, 15
GhDisplayTargets, 5	GhControllerInit
GhGetHumidity, 6	ghcontrol.c, 3
GhGetPressure, 6	GhDelay
GhGetRandom, 7	ghcontrol.c, 3
GhGetReadings, 7	GhDisplayAlarms
GhGetTemperature, 7	ghcontrol.c, 4
GhLogData, 8	GhDisplayAll
GhRetrieveSetpoints, 8	ghcontrol.c, 4
GhSaveSetpoints, 9	GhDisplayControls
GhSetAlarms, 9	ghcontrol.c, 4
GhSetAlarmsLimits, 10	GhDisplayHeader
GhSetControls, 10	ghcontrol.c, 5
GhSetTargets, 10	GhDisplayReadings
ghcontrol.h, 11	ghcontrol.c, 5
alarm_e, 15	GhDisplaySetpoints
alarm_s, 15	ghcontrol.c, 5
alarmlimit_s, 15	GhDisplayTargets
GHUPDATE, 14	ghcontrol.c, 5
HBAR, 14	GhGetHumidity
HHUMID, 15	ghcontrol.c, 6
HPRESS, 15	GhGetPressure
HTEMP, 15	ghcontrol.c, 6
HUMIDITY, 14	GhGetRandom
LHUMID, 15	ghcontrol.c, 7
LOWERAHUMID, 14	GhGetReadings
LOWERAPRESS, 14	ghcontrol.c, 7
LOWERATEMP, 14	GhGetTemperature
LPRESS, 15	gheontrol.c, 7
LSHUMID, 14	GhLogData
LSPRESS, 14	ghcontrol.c, 8
LST RESS, 14 LSTEMP, 14	GhRetrieveSetpoints
LTEMP, 15	ghcontrol.c, 8
NALARMS, 14	GhSaveSetpoints
NOALARM, 15	gheontrol.c, 9
NUMBARS, 14	GhSetAlarms
NUMPTS, 14	ghcontrol.c, 9
OFF, 14	GhSetAlarmsLimits
ON, 14	ghcontrol.c, 10
PBAR, 14	GhSetControls
PRESSURE, 14	ghcontrol.c, 10
SENSEHAT, 14	GhSetTargets
	ghcontrol.c, 10
SENSORS, 14 SHUMID, 14	GHUPDATE
SIMHUMIDITY, 14 SIMPRESSURE, 14	ghcontrol.h, 14 H T OUT H
· · · · · · · · · · · · · · · · · · ·	
SIMTEMPERATURE, 14	pisensehat.h, 26
SIMULATE, 14	H_T_OUT_L
STEMP, 15	pisensehat.h, 26
TBAR, 15	H0_rH_x2
TEMPERATURE, 15	pisensehat.h, 26
UPPERAHUMID, 15	H0_T0_OUT_H
UPPERAPRESS, 15	pisensehat.h, 26
UPPERATEMP, 15	H0_T0_OUT_L
USHUMID, 15	pisensehat.h, 26

H1_rH_x2	NOALARM
pisensehat.h, 26	ghcontrol.h, 15
H1_T0_OUT_H	NUM_WORDS
pisensehat.h, 26	pisensehat.h, 26
H1_T0_OUT_L	NUMBARS
pisensehat.h, 26	ghcontrol.h, 14
HBAR	NUMPTS
ghcontrol.h, 14	ghcontrol.h, 14
HHUMID	numReadings
ghcontrol.h, 15	pisensehat.c, 23
HPRESS	OFF
ghcontrol.h, 15	ghcontrol.h, 14
=	ON
ht221sData, 25	- - ·
ht221sData_s	ghcontrol.h, 14
pisensehat.h, 27	PBAR
HTEMP	ghcontrol.h, 14
ghcontrol.h, 15	pisensehat.c, 15
HTS221DELAY	fbfd, 23
pisensehat.h, 26	HTS221fd, 23
HTS221fd	LPS25Hfd, 23
pisensehat.c, 23	map, 23
HTS221I2CADDRESS	numReadings, 23
pisensehat.h, 26	ShClearMatrix, 16
HUMIDITY	ShExit, 17
ghcontrol.h, 14	ShGetHT221SData, 17
LHUMID	ShGetLPS25HData, 19
ghcontrol.h, 15	ShInit, 21
LOWERAHUMID	ShSetPixel, 22
ghcontrol.h, 14	ShSetVerticalBar, 22
LOWERAPRESS	pisensehat.h, 23
ghcontrol.h, 14	CTRL_REG1, 26
LOWERATEMP	CTRL_REG2, 26
ghcontrol.h, 14	EMULATOR, 26
LPRESS	fbpixel_s, 27
ghcontrol.h, 15	FILEPATH, 26
lps25hData, 25	FILESIZE, 26
lps25hData_s	H_T_OUT_H, 26
pisensehat.h, 27	H_T_OUT_L, 26
LPS25Hfd	H0_rH_x2, 26
pisensehat.c, 23	H0_T0_OUT_H, 26
LPS25HI2CADDRESS	H0_T0_OUT_L, 26
pisensehat.h, 26	H1_rH_x2, 26
LSHUMID	H1_T0_OUT_H, 26
ghcontrol.h, 14	H1_T0_OUT_L, 26
LSPRESS	ht221sData_s, 27
	HTS221DELAY, 26
ghcontrol.h, 14	
LSTEMP	HTS221I2CADDRESS, 26
ghcontrol.h, 14 LTEMP	lps25hData_s, 27
	LPS25HI2CADDRESS, 26
ghcontrol.h, 15	NUM_WORDS, 26
main	PRESS_OUT_H, 26
GHC.c, 1	PRESS_OUT_L, 26
map	PRESS_OUT_XL, 26
pisensehat.c, 23	RGB565_BLUE, 26
NALARMS	RGB565_GREEN, 26
ghcontrol.h, 14	RGB565_RED, 26

T0_degC_x8, 27 **SIMHUMIDITY** T0_OUT_H, 27 ghcontrol.h, 14 T0_OUT_L, 27 **SIMPRESSURE** T1_degC_x8, 27 ghcontrol.h, 14 T1 OUT H, 27 **SIMTEMPERATURE** T1_OUT_L, 27 ghcontrol.h, 14 SIMULATE T1_T0_MSB, 27 ghcontrol.h, 14 TEMP_OUT_H, 27 TEMP_OUT_L, 27 **STEMP** WHO_AM_I, 27 ghcontrol.h, 15 PRESS_OUT_H T0_degC_x8 pisensehat.h, 27 pisensehat.h, 26 PRESS OUT L TO OUT H pisensehat.h, 27 pisensehat.h, 26 PRESS_OUT_XL T0_OUT_L pisensehat.h, 26 pisensehat.h, 27 PRESSURE T1_degC_x8 ghcontrol.h, 14 pisensehat.h, 27 readings, 12 T1_OUT_H RGB565_BLUE pisensehat.h, 27 T1_OUT_L pisensehat.h, 26 pisensehat.h, 27 RGB565_GREEN pisensehat.h, 26 T1 T0 MSB RGB565 RED pisensehat.h, 27 pisensehat.h, 26 **TBAR SENSEHAT** ghcontrol.h, 15 ghcontrol.h, 14 TEMP OUT H **SENSORS** pisensehat.h, 27 ghcontrol.h, 14 TEMP_OUT_L setpoints, 12 pisensehat.h, 27 ShClearMatrix TEMPERATURE pisensehat.c, 16 ghcontrol.h, 15 ShExit **UPPERAHUMID** pisensehat.c, 17 ghcontrol.h, 15 ShGetHT221SData **UPPERAPRESS** pisensehat.c, 17 ghcontrol.h, 15 ShGetLPS25HData **UPPERATEMP** pisensehat.c, 19 ghcontrol.h, 15 ShInit **USHUMID** pisensehat.c, 21 ghcontrol.h, 15 ShSetPixel **USPRESS** pisensehat.c, 22 ghcontrol.h, 15 ShSetVerticalBar **USTEMP** pisensehat.c, 22 ghcontrol.h, 15 WHO_AM_I **SHUMID** ghcontrol.h, 14 pisensehat.h, 27