Final Exam

Mark Petersen

Exercise 1. Prove that $S \cap (T \cup R) = (S \cap T) \cup R \iff R \subseteq S$ for all sets S, T, R.

Proof: This is a biconditional statement so we must prove both ways.

- $(\Longrightarrow):$ We suppose directly that $S\cap (T\cup R)=(S\cap T)\cup R$. Then by distributing the union we get $S\cap (T\cup R)=(S\cup R)\cap (T\cup R)$. For this equality to hold, $S\cap (T\cup R)\subseteq (S\cup R)\cap (T\cup R)$ and $S\cap (T\cup R)\supseteq (S\cup R)\cap (T\cup R)$. We will see under which conditions these hold.
- (\subseteq) : Let $x \in S \cap (T \cup R)$, then $x \in S$ and $x \in T$ or $x \in R$. Thus $x \in (S \cup R)$ and $x \in (T \cup R)$. Therefore $x \in (S \cup R) \cap (T \cup R)$. Thus $S \cap (T \cup R) \subseteq (S \cup R) \cap (T \cup R)$ for any sets S, T, R.
- (\supseteq) : Let $x \in (S \cup R) \cap (T \cup R)$, then $x \in (S \cup R)$ and $x \in (T \cup R)$. In other words, $x \in S$ or $x \in R$ and $x \in T$ or $x \in R$. Assume that $x \notin S$, and that $x \in R$, then $x \in (S \cup R) \cap (T \cup R)$, but $x \notin S \cap (T \cup R)$. This can't be the case, since $S \cap (T \cup R) = (S \cap T) \cup R$. Hence, if $x \in R$, it must be that $x \in S$ in order for $x \in S \cap (T \cup R)$. Therefore $R \subseteq S$.
- (\longleftarrow) : We suppose directly that $R\subseteq S$. The term $(S\cap T)\cup R$ can be expanded by distributing the union to get $(S\cup R)\cap (T\cup R)$. Since $R\subseteq S$, $S\cup R=S$. Thus $(S\cup R)\cap (T\cup R)=S\cap (T\cup R)$.

Since we have shown both implications, the statement $S \cap (T \cup R) = (S \cap T) \cup R \iff R \subseteq S$ for all sets S, T, R is true.

Exercise 2. Show that the function $f(x) = \frac{3x+1}{5x+2}$ is continuous at x = 1 by giving ϵ , δ proof of the limit as $x \to 1$.

Proof: Let $\epsilon \in \mathbb{R} > 0$, $\delta = \min\left(\frac{1}{5}, 42\epsilon\right)$, and $x \in \mathbb{R}$. We suppose directly that $0 < |x - 1| < \delta$. We first verify that the function is defined at 1.

$$f(1) = \frac{3 \cdot 1 + 1}{5 \cdot 1 + 2} = \frac{4}{7}.$$

Since $\delta = \min\left(\frac{1}{5}, 42\epsilon\right)$, $\delta \leq \frac{1}{5}$. Thus

$$|x-1| < \frac{1}{5}$$

$$-\frac{1}{5} < x - 1 < \frac{1}{5}$$

$$-\frac{35}{5} < 35x - 35 < \frac{35}{5}$$

$$-7 < 35x - 35 < 7$$

$$-7 + 49 < 35x - 35 + 49 < 7 + 49$$

$$42 < 35x + 14 < 56$$

$$42 < |35x + 14| < 56.$$

Hence

$$\frac{|x-1|}{|35x+14|} < \frac{\delta}{42}$$

$$\left|\frac{x-1}{35x+14}\right| < \frac{42}{42}$$

$$\left|\frac{21x+7-20x-8}{35x+14}\right| < \epsilon$$

$$\left|\frac{7(3x+1)-4(5x+2)}{7(5x+1)}\right| < \epsilon$$

$$\left|\frac{3x+1}{5x+1}-\frac{4}{7}\right| < \epsilon$$

$$|f(x)-f(a)| < \epsilon$$

Therefore, $\forall \epsilon \in \mathbb{R} > 0$, $\exists \delta \in \mathbb{R} > 0$, $x \in \mathbb{R}$ such that if $0 < |x - 1| < \delta$, then $|f(x) - f(a)| < \epsilon$.

Exercise 3. Let $x \in \mathbb{Z}$. Prove that if 5x + 7 is even, then 3x + 2 is odd in three different ways: directly, contrapositively, and by contradiction.

a) Directly

Proof: We suppose directly that 5x+7 is even, then 5x+7=2k for some $k\in\mathbb{Z}.$ Thus

$$5x + 7 = 2k$$

$$5x + 7 - 2x - 5 = 2k - 2x - 5$$

$$3x + 2 = 2(k - x - 3) + 1.$$

Hence 3x + 2 is odd.

b) Contrapositively

Proof: We assume contrapositively that 3x+2 is even. Then 3x+2=2n for some $n\in\mathbb{Z}.$ Thus

$$3x + 2 = 2n$$
$$3x + 2 + 2x + 5 = 2n + 2x + 5$$
$$5x + 7 = 2(n + x + 2) + 1,$$

which shows that 5x + 7 is odd. Therefore, if 5x + 7 is even, then 3x + 2 is odd.

c) Contradiction

Proof: We assume by contradiction that 5x+7 is even and 3x+2 is even. Then 5x+7=2k for some $k\in\mathbb{Z}$ and 3x+2=2n for some $n\in\mathbb{Z}$. Thus

$$5x + 7 + 3x + 2 = 2k + 2n$$
$$8x + 9 = 2k + 2n$$
$$2(4x + 4) + 1 = 2(k + n),$$

which is a contradiction since the left hand side is odd and the right hand side is even. Therefore, if 5x + 7 is even, then 3x + 2 is odd.

Exercise 4. Let $A = (0,1) \cup (2,5) \cup \{7,10,\pi\}$ and B = (8,13). Show that A has the same cardinality as B.

Proof: To show that |A| = |B|, we can show that there exists an injective map $f: A \to B$ and an injective map $g: B \to A$. We also quickly note that $A = (0,1) \cup (2,5) \cup \{7,10\}$ since $\pi \in (2,5)$.

 $f:A\to B$: Let $A_1=(0,1),\ A_2=(2,5),\ A_3=\{7\},\ A_4=\{10\},\ B_1=(8,9),\ B_2=(9,12),\ B_3=\{9\}$ and $B_4=\{12.9999\}.$ We can define the injective functions

$$f_1: A_1 \to B_1; x \mapsto x + 8$$

 $f_2: A_2 \to B_2; x \mapsto x + 7$
 $f_3: A_3 \to B_3; x \mapsto 9$
 $f_4: A_4 \to B_4; x \mapsto 12.9999.$

It is easily seen that the functions are injective. Since $\{A_i\}_{i\in\{1,2,3,4\}}$ forms a partition of A, and since all of the functions f_i are injective with disjoint codomains, we can glue the functions together to form one injective function $f:A\to B$ defined as $f(x)=f_i(x)$ when $x\in A_i$.

 $g: B \to A$. Let $A_1 = (0,1) \subseteq A$, and define g as the injection $g(x) = \frac{x-8}{5}$. It's injective since if

$$f(b_1) = f(b_2)$$

$$\frac{b_1 - 8}{5} = \frac{b_2 - 8}{5}$$

$$b_1 = b_2$$

for all $b_1, b_2 \in B$.

Since both function f and g are injective, |A| = |B|.

Exercise 5. let $x_1 = 1$ and $x_{n+1} = \sqrt{1 + 3x_n}$. Prove that $x_n \leq 4$ for all $n \in \mathbb{N}$.

Proof: We want to prove that the open sentence

$$P(n)$$
: Given $x_1 = 1$ and $x_{n+1} = \sqrt{1 + 3x_n}, x_n \le 4$,

for all $n \in \mathbb{N}$. We work this by induction.

Base Case: We verify P(1) and P(2). Since $x_1 = 1$ and $x_2 = 2$, we see that $x_1 \le 4$ and $x_2 \le 4$. Thus P(1) and P(2) are true.

Inductive Step: Let $k \in \mathbb{N}$. We suppose that P(k) is true, and we want to show that P(k+1) is true, which is the statement $x_{k+1} \leq 4$. Since P(k) is true, we know that $x_k \leq 4$. We now solve for x_{k+1} .

$$x_{k+1} = \sqrt{1 + 3x_k}$$

$$\leq \sqrt{1 + 3 \cdot 4}$$

$$= \sqrt{13}$$

$$< 4,$$

thus P(k+1) is true. Therefore P(n) is true for all $n \in \mathbb{N}$.