Organização de computadores digitais / Arquitetura de computadores

Grupo 1: Gustavo Damiani João Gabriel de Carvalho Raul Douglas

Conceitos Notáveis

- Computar
 - calcular
 - o orçar

Computador

- antigamente, o termo
 "computadores" era designado às pessoas que computavam os cálculos manualmente
- o computador atual é chamado desse modo por causa dessas pessoas que passaram a operá-lo em vez de realizar os cálculos manualmente

Conceitos Notáveis

Computadores digitais

 Os computadores eletrônicos digitais recebem essa denominação porque são desenvolvidos a partir de circuitos eletrônicos e são capazes de realizar cálculos, operações lógicas e movimentação de dados entre o processador, seus dispositivos de armazenamento e de entrada e saída sem o uso de instrumentos analógicos.

Conceitos Notáveis

Software

- parte lógica do computador
- conjunto de instruções(comandos)
 ordenadas que realizam algo
- processados e executados por meio de um circuito eletrônico presente nos hardwares
- exemplos: programas de computador, S.O.s

Hardware

- parte física do computador
- conjunto de componentes físicos que constituem um computador
- hardware sozinho é inerte, sendo necessário uma instrução para realizar uma tarefa
- exemplos: mouse, teclado, circuito integrado...

Resumindo

- Software
 - é o que você xinga

- Hardware
 - o é o que você bate

1ª Geração

- Arquitetura de John von Neumann
- EDVAC (von Neumann)

3ª Geração

- Circuitos Integrados
- LSI
- Microcomputadores

5ª Geração

- ULSI
- IA

- 1ª Geração(1945 1957)
 - computadores gigantes, elevado consumo de energia
 - utilizado somente para cálculos balísticos
 - John von Neumann (28/12/1903 8/02/1957)
 - matemático húngaro, naturalizado estadunidense
 - participação em muitas áreas de pesquisa como: Física Nuclear e Hidrodinâmica
 - Arquitetura de von Neumann

John von Neumann ao lado do EDVAC

Arquitetura de von Neumann

Unidade de

Controle(UC)

- "Software" armazenado na mesma memória que os dados
- Com isso, alterações no programa são mais rápidas e simples

Arquitetura de von Neumann

- 1ª Geração(1945 1957)
 - John von Neumann (28/12/1903 8/02/1957)
 - matemático húngaro, naturalizado estadunidense
 - participação em muitas áreas de pesquisa como: Física Nuclear e Hidrodinâmica
 - **■** Arquitetura de von Neumann
 - EDVAC (Electronic Discrete Variable Automatic Computer)

• 1° computador capaz de armazenar programas junto com os dados (von

Neumann)

• 1º computador binário

John von Neumann ao lado do EDVAC

- 2ª Geração (1957 1964)
 - a Bells Labs inventou o <u>transistor</u>
 - os transistores são menores, mais velozes, mais baratos e consomem menos energia do que seus antecessores, as válvulas termoiônicas
 - permitiu que os computadores ficassem menores e mais baratos facilitando seu uso para fins comerciais e não apenas científicos e bélicos
 - o primeira linguagem de programação básica (Assembly)

```
INCH
                    C014 24 FA
                                                         RECIEVE NOT READY
                    C016 B6 80 05
                                               ACIA+1
                    C019 84 7F
                                                         MASK PARITY
                    C01B 7E C0 79
                                  ************
                                  * OUTPUT: Digit in acc A
                                  * CALLS: INCH
                                  * DESTROYS: acc A
                                  * Returns to monitor if not HEX input
                    C01E 8D F0
                                                         GET A CHAR
                                         CMP A
                                                         ZERO
                    C020 81 30
                                               #'0
                    C022 2B 11
                                                         NOT HEX
                                                HEXERR
                    C024 81 39
                    C026 2F 0A
                                                HEXRTS
                                                         GOOD HEX
Assembly
                    C02A 2B 09
                                                HEXERR
                                                         NOT HEX
```

transistor

válvula termoiônica X transistor

- 3ª Geração (1964 1971)
 - o <u>circuitos integrados</u>
 - compostos por vários transistores
 - permitiu uma redução ainda maior nas dimensões e nos custos dos computadores
 - são categorizados de acordo com a integração que possuem:
 - LSI (Large Scale Integration 100 transistores): computadores da terceira geração
 - VLSI (Very Large Scale Integration 1.000 transistores): computadores da quarta geração
 - ULSI (Ultra-Large Scale Integration milhões de transistores):
 computadores da quinta geração

- 3ª Geração (1964 1971)
 - IBM's System 360
 - arquitetura "plugável"
 - linguagem de programação de alto nível

Figure 16. Machine-to-machine communication IBM Series 360

4ª Geração

- surgimento dos processadores modernos
- primeiros HDs(disco rígido)
- criação dos teclados com o estilo atual
- desenvolvimento de linguagens de programação orientada a objeto(C++ e Smalltalk)

- 5ª Geração
 - IA (inteligência artificial)
 - o conectividade (WI-FI, bluetooth)

objetivos, descrição da área

Objetivo

 O objetivo da Organização de Computadores Digitais e também da Arquitetura Computacional é moldar fisicamente a estrutura do computador para melhorar ao máximo o seu desempenho.

Descrição da área

- A arquitetura de computadores se refere ao comportamento de um sistema computacional visível para o programador, ou seja, aos aspectos relacionados com a execução lógica de um programa.
- A organização de computadores se refere às unidades estruturais e seus relacionamentos lógicos e eletrônicos

Principais subÁreas

Automação Industrial

é a aplicação de técnicas, softwares e/ou equipamentos específicos em uma determinada máquina ou processo industrial, com o objetivo de aumentar a sua eficiência, maximizar a produção com o menor consumo/custo, ou ainda, de reduzir o esforço ou a interferência humana sobre esse, processo ou máquina. É um passo além da mecanização, onde operadores humanos são providos de maquinaria para auxiliá-los em seus trabalhos

Robótica

 Robótica é um ramo educacional e tecnológico que engloba computadores, robôs e computação, que trata de sistemas compostos por partes mecânicas automáticas e controladas por circuitos integrados, tornando sistemas mecânicos motorizados, controlados manualmente ou automaticamente por circuitos eléctricos.

Mercado de trabalho

- Algumas funções:
 - Suporte técnico
 - Controle de automação
 - Desenvolvimento e produção de equipamentos
 - o pesquisas na área

Média Salarial

Mercado de trabalho

- Exemplos de cargos:
 - Analista de Automação
 - Coordenador De Projetos De Robótica
 - Programador de Robôs
 - Engenharia em geral

Analista de Automação

19.2.001.002.001

Objetivos do Cargo: Executar serviços elétricos, eletrônicos e de telecomunicações. Analisar propostas têcnicas. Instalar, configurar e inspecionar sistemas e equipamentos. Executar testes e ensaios. Projetar, planejar e especificar sistemas e equipamentos elétricos, eletrônicos e de telecomunicações. Elaborar sua documentação técnica. Coordenar empreendimentos e estudar processos elétricos, eletrônicos e de telecomunicações.

Pesquisa Salarial

Porte da Empresa	Nível Profissional						
	Trainee	Júnior	Pleno	Sênior	Master		
Pequena	R\$ 2495.21	R\$ 3119.01	R\$ 3898.76	R\$ 4873.45	R\$ 6091.81		
Média	R\$ 3243.77	R\$ 4054.71	R\$ 5068.39	R\$ 6335.49	R\$ 7919.36		
Grande	R\$ 4216.9	R\$ 5271.13	R\$ 6588.91	R\$ 8236.14	R\$ 10295.18		

Metodologia utilizada: salários pretendidos e contribuições saláriais

Média Salarial

Função: Engenheiro de Automação

17.2.001.002.001

Objetivos do Cargo: Executar serviços elétricos, eletrônicos e de telecomunicações. Analisar propostas têcnicas. Instalar, configurar e inspecionar sistemas e equipamentos. Executar testes e ensaios. Projetar, planejar e especificar sistemas e equipamentos elétricos, eletrônicos e de telecomunicações. Elaborar sua documentação técnica. Coordenar empreendimentos e estudar processos elétricos, eletrônicos e de telecomunicações.

Pesquisa Salarial

Porte da Empresa	Nível Profissional						
	Trainee	Júnior	Pleno	Sênior	Master		
Pequena	R\$ 3460.02	R\$ 4325.02	R\$ 5406.27	R\$ 6757.84	R\$ 8447.3		
Média	R\$ 4498.02	R\$ 5622.52	R\$ 7028.15	R\$ 8785.19	R\$ 10981.49		
Grande	R\$ 5847.42	R\$ 7309.28	R\$ 9136.6	R\$ 11420.75	R\$ 14275.94		

Metodologia utilizada: salários pretendidos e contribuições saláriais

Fonte: Currículos cadastrados no Banco Nacional de Empregos e contribuições salariais do Salário BR nos últimos doze meses.

Job Title Country

Title search	Country se		
JR0066023 - SOC Analog Manager	US		
JR0068387 - NSG Director / Sr. Director, Process Engineer	US		
JR0066234 - Software Engineer Manager	CA		
JR0048691 - Senior Staff Structural/Physical Design Engineer	MY		
JR0037185 - Pre-Silicon Verification Engineering Manager	SG		
JR0030813 - Physical Design Director	IN		
JR0037184 - Design Engineering Manager - ASIC logic and micro- architecture	SG		
JR0066207 - Global Supply Management- Factory Enabling Manager	MY		
JR0063274 - Physical Design Manager	IN		
JR0063276 - Physical Design Manager	IN		

Mercado de trabalho

- Algumas empresas da área:
- 1. Intel
- 2. Amd
- 3. Nvidia
- 4. Asus
- 5. Gigabyte

Disciplinas do curso

• 3° Semestre

ACH2034 - Organização de Computadores Digitais

4° semestre

ACH2055 - Arquitetura de Computadores

Professores que atuam com na área/disciplina

Dr. Valdinei Freire da Silva

Exemplo de projeto de pesquisa

MultiBot - Modelos e Técnicas para Robôs Móveis Inteligentes Aplicados a Tarefas Individuais e Cooperativas

Descrição: O projeto MultiBot de cooperação luso-brasileira envolve a USP e o ITA, no Brasil, e o Instituto Superior Técnico da Universidade Técnica de Lisboa, em Portugal, e consiste em investigar e desenvolver agentes robóticos que sejam autônomos, eficientes, sociais e adaptativos. Estes interesses são endereçados através de atividades concentradas em três tarefas principais, que buscam não só contribuições teóricas, como também práticas: 1) Modelos de robôs móveis autônomos atuando isoladamente - inclui o estudo e desenvolvimento de modelos e arquiteturas apropriadas a robôs móveis autônomos, as quais geralmente são definidas em função de um conjunto pré-estabelecido de comportamentos primitivos; busca, também, o desenvolvimento e avaliação de técnicas de coordenação de comportamentos, aprendidas de forma autônoma através de interação direta do robô com o seu ambiente de atuação. 2) Modelos perceptuais e de fusão sensorial - consiste em estudar os princípios que norteiam a automação da percepção visual, assim como desenvolver algoritmos e métodos para dotar robôs da capacidade de interpretação visual de imagens adquiridas por meio de câmeras; investiga, também, mecanismos de fusão de diversas informações sensoriais, captadas por diferentes sensores, assim como a construção de sistemas de navegação autônoma, possibilitando ao robô que construa mapas do ambiente em que esteja inserido, localize-se neste ambiente e possua a habilidade de selecionar autonomamente marcos naturais e de navegar apropriadamente em relação a estes marcos. 3) Modelos para Robótica Cooperativa - estuda equipes de robôs cooperativos que realizam uma tarefa, a qual seria muito difícil, senão impossível, de ser realizada por um único robô. Tópicos endereçados envolvem mecanismos de coordenação de robôs, planejamento distribuído e contínuo, alocação de tarefas, linguagens de comunicação, modelos de conhecimento social e organizacional. CAPES/GRICES Proc. N.099/03..

Bibliografia

http://www.each.usp.br/si/

https://uspdigital.usp.br/jupiterweb/obterDisciplina?sqldis=SSC0511

https://uspdigital.usp.br/jupiterweb/obterDisciplina?sqldis=ACH2055&codcur=86200&codhab=204

https://edisciplinas.usp.br/pluqinfile.php/3869187/mod_resource/content/1/Aula%201%20-Introdu%C3%A7%C3%A3o_Historico_2016.pdf

https://edisciplinas.usp.br/pluqinfile.php/3987608/mod_resource/content/2/Aula2_Decodificadores%20e%20Registradores_2017.pdf

https://edisciplinas.usp.br/pluginfile.php/2798697/mod_resource/content/2/1aula%20-%20Apresentacao_Introducao.pdf

http://estudio01.proj.ufsm.br/cadernos/cafw/tecnico_informatica/arquitetura_computadores.pdf

http://producao.virtual.ufpb.br/books/camyle/introducao-a-computacao-livro/livro.chunked/ch01s02.html

http://www.diegomacedo.com.br/fundamentos-de-arquitetura-e-organizacao-de-computadores/

https://www.guiadacarreira.com.br/guia-das-profissoes/engenharia-computacao/

https://pt.wikipedia.org/wiki/Automa%C3%A7%C3%A3o_industrial

https://www.citisystems.com.br/o-que-e-automacao-industrial/

http://www.unialfa.com.br/publicacoes/noticias/a-engenharia-da-computacao-e-o-mercado-de-trabalho

https://www.trabalhabrasil.com.br/media-salarial-para-tecnologo-em-automacao-industrial

Perguntas?

