```
In [1]: from sklearn.datasets import load_breast_cancer
        import pandas as pd
        # 데이터 로드
        cancer = load_breast_cancer()
        # DataFrame으로 변환 (타겟 값 제외)
        data = pd.DataFrame(cancer.data, columns=cancer.feature_names)
In [3]: # 데이터 정보 확인
        data.info()
      <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 569 entries, 0 to 568
      Data columns (total 30 columns):
           Column
       #
                                   Non-Null Count Dtype
          -----
                                   -----
       0
           mean radius
                                   569 non-null
                                                  float64
                                                  float64
       1
           mean texture
                                   569 non-null
           mean perimeter
                                   569 non-null
                                                  float64
                                   569 non-null
                                                  float64
       3
           mean area
                                   569 non-null
                                                  float64
       4
           mean smoothness
       5
                                                 float64
           mean compactness
                                   569 non-null
                                                  float64
       6
           mean concavity
                                   569 non-null
       7
           mean concave points
                                   569 non-null
                                                  float64
       8
           mean symmetry
                                   569 non-null
                                                  float64
           mean fractal dimension 569 non-null
                                                  float64
       9
       10 radius error
                                   569 non-null
                                                  float64
       11 texture error
                                   569 non-null
                                                  float64
       12 perimeter error
                                   569 non-null
                                                  float64
       13 area error
                                   569 non-null
                                                  float64
                                                  float64
       14 smoothness error
                                   569 non-null
       15 compactness error
                                   569 non-null
                                                  float64
                                   569 non-null
                                                  float64
       16 concavity error
                                   569 non-null
                                                  float64
       17 concave points error
       18 symmetry error
                                   569 non-null
                                                  float64
       19 fractal dimension error 569 non-null
                                                  float64
       20 worst radius
                                   569 non-null
                                                  float64
       21 worst texture
                                   569 non-null
                                                  float64
       22 worst perimeter
                                                  float64
                                   569 non-null
       23 worst area
                                   569 non-null
                                                  float64
       24 worst smoothness
                                   569 non-null
                                                  float64
                                   569 non-null
                                                  float64
       25 worst compactness
       26 worst concavity
                                   569 non-null
                                                  float64
       27 worst concave points
                                   569 non-null
                                                  float64
                                                  float64
       28 worst symmetry
                                   569 non-null
```

float64

In [5]: # 데이터 통계량 확인 data.describe()

dtypes: float64(30)
memory usage: 133.5 KB

29 worst fractal dimension 569 non-null

| O         |    |   | ٦.  |
|-----------|----|---|-----|
| ( )       | т. | - | 1 ° |
| $\circ$ u | _  | - |     |

|       | mean<br>radius | mean<br>texture | mean<br>perimeter | mean area   | smoothness | mean<br>compactness | (  |
|-------|----------------|-----------------|-------------------|-------------|------------|---------------------|----|
| count | 569.000000     | 569.000000      | 569.000000        | 569.000000  | 569.000000 | 569.000000          | 56 |
| mean  | 14.127292      | 19.289649       | 91.969033         | 654.889104  | 0.096360   | 0.104341            |    |
| std   | 3.524049       | 4.301036        | 24.298981         | 351.914129  | 0.014064   | 0.052813            |    |
| min   | 6.981000       | 9.710000        | 43.790000         | 143.500000  | 0.052630   | 0.019380            |    |
| 25%   | 11.700000      | 16.170000       | 75.170000         | 420.300000  | 0.086370   | 0.064920            |    |
| 50%   | 13.370000      | 18.840000       | 86.240000         | 551.100000  | 0.095870   | 0.092630            |    |
| 75%   | 15.780000      | 21.800000       | 104.100000        | 782.700000  | 0.105300   | 0.130400            |    |
| max   | 28.110000      | 39.280000       | 188.500000        | 2501.000000 | 0.163400   | 0.345400            |    |

8 rows × 30 columns

In [ ]: from sklearn.preprocessing import StandardScaler

# 데이터 스케일링

scaler = StandardScaler()

scaled\_data = scaler.fit\_transform(data) # ndarray returned

# 스케일링된 데이터 데이터 프레임 변환 (ndarray -> Dataframe)

scaled\_df = pd.DataFrame(scaled\_data, columns=data.columns)

# 데이터 확인 scaled\_df.head()

Out[ ]:

|   | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean<br>compactness | mean<br>concavity | C  |
|---|----------------|-----------------|-------------------|--------------|--------------------|---------------------|-------------------|----|
| 0 | 1.097064       | -2.073335       | 1.269934          | 0.984375     | 1.568466           | 3.283515            | 2.652874          | 2. |
| 1 | 1.829821       | -0.353632       | 1.685955          | 1.908708     | -0.826962          | -0.487072           | -0.023846         | 0. |
| 2 | 1.579888       | 0.456187        | 1.566503          | 1.558884     | 0.942210           | 1.052926            | 1.363478          | 2. |
| 3 | -0.768909      | 0.253732        | -0.592687         | -0.764464    | 3.283553           | 3.402909            | 1.915897          | 1. |
| 4 | 1.750297       | -1.151816       | 1.776573          | 1.826229     | 0.280372           | 0.539340            | 1.371011          | 1. |

5 rows × 30 columns

In [9]: from sklearn.decomposition import PCA

# PCA 모델 생성 및 적용

pca = PCA(n\_components=10) # 주성분 10개로 설정

principal\_components = pca.fit\_transform(scaled\_df) # PCA 적용

# PCA 결과 확인

print("주성분 분석 결과 (앞 5개):\n", principal\_components[:5]) # 변환된 데이터

```
# 설명 분산 비율 확인
        explained_variance_ratio = pca.explained_variance_ratio_
       주성분 분석 결과 (앞 5개):
       [ 9.19283683 1.94858307 -1.12316617 3.6337309 -1.19511012 1.41142456
         2.15936955 -0.39841327 -0.15711879 -0.87739925]
        [ 2.3878018 -3.76817174 -0.52929268 1.11826386 0.62177497 0.02865623
         5.73389628 -1.0751738 -0.5517476 0.91208267 -0.1770859
                                                             0.54145225
        -0.66816655 0.09737327 0.02405747 0.45428616]
       1.42991105 1.05957591 -1.40545131 -1.11696724]
        [ 3.93530207 -1.94807157 1.38976673 2.94063935 0.5467474 -1.22649472
        -0.93621258  0.63638139  -0.26380244  0.37769712]]
In [11]: # 각 주성분이 설명하는 분산 비율
        print("설명 분산 비율:\n", explained_variance_ratio)
       설명 분산 비율:
        [0.44272026 0.18971182 0.09393163 0.06602135 0.05495768 0.04024522
       0.02250734 0.01588724 0.01389649 0.01168978]
In [13]: # 누적 설명 비율
        print("누적 설명 분산 비율:\n", explained_variance_ratio.cumsum())
       누적 설명 분산 비율:
        [0.44272026 0.63243208 0.72636371 0.79238506 0.84734274 0.88758796
       0.9100953 0.92598254 0.93987903 0.95156881]
In [15]: import matplotlib.pyplot as plt
        from matplotlib import font_manager
        # 한글 폰트 설정 (예: 'Malgun Gothic'은 윈도우에서 사용 가능)
        # 맥일 경우 아래 코드 활성화
        #plt.rcParams['font.family'] = 'AppleGothic'
        # 윈도우일 경우 아래 코드 활성화
        plt.rcParams['font.family'] = 'Malgun Gothic'
        # 그래프 그리기
        plt.figure(figsize=(10, 6))
        plt.plot(range(1, len(explained_variance_ratio) + 1), explained_variance_ratio.c
        plt.bar(range(1, len(explained_variance_ratio) + 1), explained_variance_ratio, a
        # 그래프 꾸미기
        plt.title('주성분 분석 결과', fontsize=14)
        plt.xlabel('주성분 개수', fontsize=12)
        plt.ylabel('설명 분산 비율', fontsize=12)
        plt.axhline(y=0.9, color='r', linestyle='--', label='90% 누적 설명 비율')
        plt.xticks(range(1, len(explained_variance_ratio) + 1))
        plt.legend()
        plt.grid()
        plt.show()
```



In [17]: # 시각화 결과에 따라 pca 재진행
pca = PCA(n\_components=7) # 주성분 7개로 설정
principal\_components = pca.fit\_transform(scaled\_df) # PCA 적용

# 설명 분산 비율 확인
pca.explained\_variance\_ratio\_

Out[17]: array([0.44272026, 0.18971182, 0.09393163, 0.06602135, 0.05495768, 0.04024522, 0.02250734])