STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=493.677\pm0.016$$
 MeV ^[a] (S = 2.8)
Mean life $\tau=(1.2380\pm0.0020)\times10^{-8}$ s (S = 1.8)
 $c\tau=3.711$ m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \to \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%^{[b]}$

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_\mu$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$
 $K^+ \to \mu^+ \nu_\mu \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$
 $K^+ \to \pi^0 \mu^+ \nu_\mu$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $g^{[c]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} g = -0.21134 \pm 0.00017$$

$$(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$$
 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} g = 0.626 \pm 0.007$

$$(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$$

K^{\pm} decay form factors [d,e]

Assuming $\mu\text{-}e$ universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e 3}^{+}) = (2.97 \pm 0.05) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.95 \pm 0.12) \times 10^{-2}$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.98 \pm 0.05) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu 3}^{+}) = (2.96 \pm 0.17) \times 10^{-2}$
 $\lambda_{0}(K_{\mu 3}^{+}) = (1.96 \pm 0.13) \times 10^{-2}$

 K_{e3} form factor quadratic fit

$$\lambda'_{+} \left(K_{e3}^{\pm}\right) \text{ linear coeff.} = \left(2.49 \pm 0.17\right) \times 10^{-2}$$

$$\lambda''_{+} \left(K_{e3}^{\pm}\right) \text{ quadratic coeff.} = \left(0.19 \pm 0.09\right) \times 10^{-2}$$

$$K_{e3}^{+} \quad \left|f_{S}/f_{+}\right| = \left(-0.3_{-0.7}^{+0.8}\right) \times 10^{-2}$$

$$K_{e3}^{+} \quad \left|f_{T}/f_{+}\right| = \left(-1.2 \pm 2.3\right) \times 10^{-2}$$

$$K_{\mu 3}^{+} \quad \left|f_{S}/f_{+}\right| = \left(0.2 \pm 0.6\right) \times 10^{-2}$$

$$K_{\mu 3}^{+} \quad \left|f_{T}/f_{+}\right| = \left(-0.1 \pm 0.7\right) \times 10^{-2}$$

$$K^{+} \rightarrow e^{+}\nu_{e}\gamma \quad \left|F_{A} + F_{V}\right| = 0.133 \pm 0.008 \quad (S = 1.3)$$

$$K^{+} \rightarrow \mu^{+}\nu_{\mu}\gamma \quad \left|F_{A} - F_{V}\right| = 0.165 \pm 0.013$$

$$K^{+} \rightarrow e^{+}\nu_{e}\gamma \quad \left|F_{A} - F_{V}\right| < 0.49, \text{ CL} = 90\%$$

$$K^{+} \rightarrow \mu^{+}\nu_{\mu}\gamma \quad \left|F_{A} - F_{V}\right| = -0.21 \pm 0.06$$

Charge radius

$$\langle r \rangle = 0.560 \pm 0.031 \text{ fm}$$

Forward-backward asymmetry

$${\rm A}_{FB}(K^{\pm}_{\pi\,\mu\,\mu}) = \frac{\Gamma(\cos(\theta_{K\,\mu}) > 0) - \Gamma(\cos(\theta_{K\,\mu}) < 0)}{\Gamma(\cos(\theta_{K\,\mu}) > 0) + \Gamma(\cos(\theta_{K\,\mu}) < 0)} \ < \ 2.3 \times 10^{-2}, \ {\rm CL} = 90\%$$

Created: 5/30/2017 17:13

 K^- modes are charge conjugates of the modes below.

K+ DECAY MODES	Eroc	ction (Γ_i/Γ)		cale factor/ dence level(N	•
	TTAC	tion (1 j/1)	Com	delice level(i	ne v/c)
	Leptonic and sen	nileptonic mo	des		
$e^+ u_e$	(1.582 ± 0.00	$7) \times 10^{-5}$		247
$\mu^+ \nu_{\mu}$	(63.56 ± 0.11) %	S=1.2	236
$\pi^0 e^+ \nu_e$	(5.07 ± 0.04) %	S=2.1	228
Called K_{e3}^+ .					
$\pi^0 \mu^+ u_\mu$	(3.352 ± 0.033	3) %	S=1.9	215
Called $K_{\mu 3}^+$.					
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.55 ± 0.04	$) \times 10^{-5}$	S=1.1	206
$\pi^+\pi^-e^+ u_e$	(4.247 ± 0.024	4) \times 10 ⁻⁵		203
$\pi^+\pi^-\mu^+ u_\mu$	(1.4 ± 0.9	$) \times 10^{-5}$		151
$\pi^{0}\pi^{0}\pi^{0}e^{+\nu_{e}}$	<	3.5	\times 10 ⁻⁶	CL=90%	135

Hadronic modes

$\pi^+\pi^0$	(20.67 \pm 0.08)%	S=1.2	205
$\pi^+\pi^0\pi^0$	($1.760\pm0.023)~\%$	S=1.1	133
$\pi^{+}\pi^{+}\pi^{-}$	($5.583 \pm 0.024)\%$		125

Leptonic and semileptonic modes with photons

$\mu^+ u_{\mu} \gamma$	[f,g] (6.2 ± 0.8) $\times 10^{-3}$		236
$\mu^+ \nu_\mu \gamma (SD^+)$	[d,h] (1.33 ± 0.22) $\times 10^{-5}$		_
$\mu^+ \nu_\mu \gamma (SD^+ INT)$	[d,h]	2.7×10^{-5}	CL=90%	_
$\mu^+ u_\mu \gamma (SD^- + SD^- INT)$	[d,h]	2.6×10^{-4}	CL=90%	_
$e^+ \nu_e \gamma$	(9.4 ± 0.4) $\times 10^{-6}$		247
$\pi^0 e^+ \nu_e \gamma$	[f,g] (2.56 ± 0.16) $\times 10^{-4}$		228
$\pi^0 e^+ \nu_e \gamma(SD)$	[d,h]	5.3×10^{-5}	CL=90%	228
$\pi^0 \mu^+ u_\mu \gamma$	[f,g] ($1.25 \pm 0.25) \times 10^{-5}$		215
$\pi^0 \pi^0 e^+ \nu_e \gamma$	<	5×10^{-6}	CL=90%	206

Hadronic modes with photons or $\ell \overline{\ell}$ pairs

$\pi^+\pi^0\gamma$ (INT)		(-	4.2	± 0.9) $\times 10^{-6}$		_
$\pi^+\pi^0\gamma(DE)$		•		± 0.4) $\times 10^{-6}$		205
$\pi^+\pi^0\pi^0\gamma$	[f,g]	(7.6	$^{+6.0}_{-3.0} \)\times 10^{-6}$		133
$\pi^+\pi^+\pi^-\gamma$	[f,g]	(1.04	± 0.31) $\times10^{-4}$		125
$\pi^+ \gamma \gamma$	[<i>f</i>]	(1.01	± 0.06) $\times 10^{-6}$		227
π^+ 3 γ	[f]		1.0	× 10 ⁻⁴	CL=90%	227
$\pi^+ e^+ e^- \gamma$		(1.19	$\pm 0.13) \times 10^{-8}$		227

Leptonic modes with $\ell \overline{\ell}$ pairs

$e^+ \nu_e \nu \overline{\nu}$	<	6	$\times10^{-5}$	CL=90%	247
$\mu^+ \nu_\mu \nu \overline{\nu}$	<	2.4	$\times 10^{-6}$	CL=90%	236
$e^+ \nu_e e^+ e^-$	(2.48 ± 0.20	$) \times 10^{-8}$		247
$\mu^+ u_\mu e^+ e^-$	(7.06 ± 0.31	$) \times 10^{-8}$		236
$e^{+} \nu_{e} \mu^{+} \mu^{-}$	(1.7 ± 0.5	$) \times 10^{-8}$		223
$\mu^{+} \nu_{\mu} \mu^{+} \mu^{-}$	<	4.1	$\times10^{-7}$	CL=90%	185

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

203
151
227
172
227
205
236
236

$\pi^+\mu^+e^-$	LF	<	1.3	$\times10^{-11}$	CL=90%	214
$\pi^+\mu^-e^+$	LF	<	5.2	$\times 10^{-10}$	CL=90%	214
$\pi^-\mu^+e^+$	L	<	5.0	$\times 10^{-10}$	CL=90%	214
$\pi^-e^+e^+$	L	<	6.4	$\times 10^{-10}$	CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	[j] <	1.1	$\times 10^{-9}$	CL=90%	172
$\mu_{\perp}^{+}\overline{\nu}_{e}$	L	[j] <	3.3	$\times 10^{-3}$	CL=90%	236
$\pi^0 e^+ \overline{ u}_e$	L	<	3	$\times 10^{-3}$	CL=90%	228
$\pi^+ \gamma$		[k] <	2.3	\times 10 ⁻⁹	CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=497.611\pm0.013$$
 MeV (S = 1.2) $m_{K^0}-m_{K^\pm}=3.934\pm0.020$ MeV (S = 1.6)

Mean square charge radius

$$\langle \mathit{r}^2 \rangle = -0.077 \pm 0.010 \; \mathrm{fm}^2$$

T-violation parameters in K^0 - \overline{K}^0 mixing [e]

Asymmetry A_T in K^0 - \overline{K}^0 mixing = $(6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$$Re(\epsilon) = (1.596 \pm 0.013) \times 10^{-3}$$

CPT-violation parameters [e]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [/] $(\Gamma_{K^0} - \Gamma_{\overline{K}^0}) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

$$Re(x_{+})$$
, K_{e3} parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

K_S^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life
$$au=(0.8954\pm0.0004)\times10^{-10}$$
 s (S = 1.1) Assuming *CPT*

Mean life $au=(0.89564\pm0.00033)\times10^{-10}$ s Not assuming *CPT*
 $c au=2.6844$ cm Assuming *CPT*

CP-violation parameters [n]

$$\begin{array}{ll} \text{Im}(\eta_{+-0}) &= -0.002 \pm 0.009 \\ \text{Im}(\eta_{000}) &= -0.001 \pm 0.016 \\ \left|\eta_{000}\right| = \left|A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)\right| &< 0.0088, \text{ CL} = 90\% \end{array}$$

CP asymmetry *A* in $\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Created: 5/30/2017 17:13

•	Hadronic modes	
$\pi^0\pi^0$	$(30.69\pm0.05)~\%$	209
$\pi^+\pi^-$	$(69.20\pm0.05)~\%$	206
$\pi^+\pi^-\pi^0$	$(3.5 \ ^{+1.1}_{-0.9}) imes 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 [p] $(7.04 \pm 0.08) \times 10^{-4}$ 229

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

$3\pi^0$	CP	< 2.6	$\times 10^{-8}$	CL=90%	139
$\mu^+\mu^-$	S1	< 9	\times 10 ⁻⁹	CL=90%	225
e^+e^-	<i>S</i> 1	< 9	\times 10 ⁻⁹	CL=90%	249
$\pi^0 e^+ e^-$	<i>S</i> 1	$[o]$ (3.0 $^{+1}_{-1}$	$^{.5}_{.2}$) × 10 ⁻⁹		230
$\pi^{0} \mu^{+} \mu^{-}$	<i>S</i> 1	$(2.9 \begin{array}{c} +1 \\ -1 \end{array})$	$^{.5}_{.2}$) × 10 ⁻⁹		177

$$I(J^P) = \tfrac{1}{2}(0^-)$$

$$\begin{array}{l} m_{{\cal K}_L} - m_{{\cal K}_S} \\ = (0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ {\rm s}^{-1} \quad ({\rm S} = 1.3) \quad {\rm Assuming} \ {\it CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \ {\rm MeV} \quad {\rm Assuming} \ {\it CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \ \hbar \ {\rm s}^{-1} \quad {\rm Not} \ {\rm assuming} \ {\it CPT} \\ {\rm Mean} \ {\rm life} \ \tau = (5.116 \pm 0.021) \times 10^{-8} \ {\rm s} \quad ({\rm S} = 1.1) \\ c\tau = 15.34 \ {\rm m} \end{array}$$

Slope parameters [c]

(See Particle Listings for other linear and quadratic coefficients)

$$K_L^0 \rightarrow \pi^+ \pi^- \pi^0$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $K_L^0 \rightarrow \pi^+ \pi^- \pi^0$: $h = 0.076 \pm 0.006$
 $K_L^0 \rightarrow \pi^+ \pi^- \pi^0$: $k = 0.0099 \pm 0.0015$
 $K_L^0 \rightarrow \pi^0 \pi^0 \pi^0$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [e]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e 3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$
 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming μ -e universality

$$\lambda'_{+}(K^{0}_{\mu3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2}$$
 (S = 1.2)
 $\lambda''_{+}(K^{0}_{\mu3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2}$ (S = 1.2)
 $\lambda_{0}(K^{0}_{\mu3}) = (1.16 \pm 0.09) \times 10^{-2}$ (S = 1.2)

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e 3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$
 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\Lambda_{+} = (0.251 \pm 0.006) \times 10^{-1} \quad (S = 1.5)$$
 $\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0)$
 $K_{e3}^{0} \quad |f_{S}/f_{+}| = (1.5_{-1.6}^{+1.4}) \times 10^{-2}$
 $K_{e3}^{0} \quad |f_{T}/f_{+}| = (5_{-5}^{+4}) \times 10^{-2}$
 $K_{\mu 3}^{0} \quad |f_{T}/f_{+}| = (12 \pm 12) \times 10^{-2}$
 $K_{L} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{K^{*}} = -0.205 \pm 0.022 \quad (S = 1.8)$
 $K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{DIP} = -1.69 \pm 0.08 \quad (S = 1.7)$
 $K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}: a_{1}/a_{2} = -0.737 \pm 0.014 \text{ GeV}^{2}$
 $K_{L} \rightarrow \pi^{0}2\gamma: a_{V} = -0.43 \pm 0.06 \quad (S = 1.5)$

CP-violation parameters [n]

$$\begin{split} A_L &= (0.332 \pm 0.006)\% \\ |\eta_{00}| &= (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ |\eta_{+-}| &= (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ |\epsilon| &= (2.228 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ |\eta_{00}/\eta_{+-}| &= 0.9950 \pm 0.0007 \,^{[q]} \quad (S = 1.6) \\ |\text{Re}(\epsilon'/\epsilon) &= (1.66 \pm 0.23) \times 10^{-3} \,^{[q]} \quad (S = 1.6) \end{split}$$

Assuming CPT

$$\begin{split} \phi_{+-} &= (43.51 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.3) \\ \phi_{\epsilon} &= \phi_{\mathsf{SW}} = (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \mathsf{Im}(\epsilon'/\epsilon) &= -(\phi_{00} \ - \ \phi_{+-})/3 = (-0.002 \pm 0.005)^{\circ} \quad (\mathsf{S} = 1.7) \end{split}$$

Not assuming CPT

$$\phi_{+-} = (43.4 \pm 0.5)^{\circ} \quad (S = 1.2)$$
 $\phi_{00} = (43.7 \pm 0.6)^{\circ} \quad (S = 1.2)$
 $\phi_{\epsilon} = (43.5 \pm 0.5)^{\circ} \quad (S = 1.3)$

CP asymmetry A in
$$K_L^0 \to \pi^+\pi^-e^+e^- = (13.7 \pm 1.5)\%$$
 β_{CP} from $K_L^0 \to e^+e^-e^+e^- = -0.19 \pm 0.07$ γ_{CP} from $K_L^0 \to e^+e^-e^+e^- = 0.01 \pm 0.11$ (S = 1.6) j for $K_L^0 \to \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008$ f for $K_L^0 \to \pi^+\pi^-\pi^0 = 0.004 \pm 0.006$ $|\eta_{+-\gamma}| = (2.35 \pm 0.07) \times 10^{-3}$ $\phi_{+-\gamma} = (44 \pm 4)^\circ$ $|\epsilon'_{+-\gamma}|/\epsilon < 0.3$, CL = 90% $|g_{E1}|$ for $K_L^0 \to \pi^+\pi^-\gamma < 0.21$, CL = 90%

T-violation parameters

Im(
$$\xi$$
) in $K_{\mu3}^0=-$ 0.007 \pm 0.026

CPT invariance tests

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

$\Delta \mathcal{S} = -\Delta \mathcal{Q}$ in $\mathcal{K}_{\ell 3}^0$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

•				Scale factor/	p
KL DECAY MODES		Fraction (Γ_i/Γ)	Со	nfidence level (MeV/ <i>c</i>)
	Semil	eptonic modes			
$\pi^{\pm} e^{\mp} \nu_{e}$	Jennik [p	•) %	S=1.7	229
Called K_{e3}^0 .	[P	, (10.00 ±0.11	, , ,	3 1	
$\pi^{\pm}\mu^{\mp} u_{\mu}$	[p	(27.04 ± 0.07)) %	S=1.1	216
Called $K_{\mu 3}^0$.	•	•	,		
$(\pi\mu atom) u$		(1.05 ± 0.11	$) \times 10^{-7}$		188
$\pi^0\pi^{\pm}e^{\mp\nu}$	[p				207
$\pi^{\pm}e^{\mp} ue^{+}e^{-}$	[<i>p</i>				229
Hadronic modes, including	og Charge	conjugation × Pa	rity Viola	ting (CP\A	modes
$3\pi^0$	ig Citalge	(19.52 ± 0.12	•	S=1.6	139
$\pi^{+}\pi^{-}\pi^{0}$		(19.52 ± 0.12) (12.54 ± 0.05)	•	3=1.0	133
$\pi^+\pi^-$	CPV [r	$\begin{bmatrix} 12.97 \pm 0.03 \\ 1.967 \pm 0.010 \end{bmatrix}$	· _	S=1.5	206
$\pi^0 \pi^0$	CPV [.	(8.64 ± 0.06)	,	S=1.8	209
C		•	,		
	-	modes with ph			222
$\pi^{\pm} e^{\mp} \nu_{e} \gamma$	[g,p,s	$\begin{array}{cccc} (3.79 \pm 0.06 \\ (5.65 \pm 0.23) \end{array}$,		229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$		(5.05 ±0.23) × 10 ·		216
Hadro	nic modes	with photons of	r $\ell \overline{\ell}$ pairs		
$\pi^{0}\pi^{0}\gamma$		< 2.43	$\times 10^{-7}$	CL=90%	209
$\pi^+\pi^-\gamma$	[g,s	± 0.15		S=2.8	206
$\pi^+\pi^-\gamma(DE)$		(2.84 ± 0.11		S=2.0	206
$\pi^0_0 2\gamma$	[s	$[1.273\pm0.033]$			230
$\pi^0 \gamma e^+ e^-$		(1.62 ± 0.17)) × 10 ⁻⁸		230
Othe	er modes w	vith photons or	$\ell \overline{\ell}$ pairs		
2γ		(5.47 ± 0.04)		S=1.1	249
3γ		< 7.4	$\times 10^{-8}$	CL=90%	249
$e^+e^-\gamma$		(9.4 ± 0.4	$) \times 10^{-6}$	S=2.0	249
$\mu^+\mu^-\gamma$		(3.59 ± 0.11		S=1.3	225
$e^+e^-\gamma\gamma$] (5.95 ± 0.33			249
$\mu^+\mu^-\gamma\gamma$	[s	$] (1.0 ^{+0.8}_{-0.6}$	$) \times 10^{-8}$		225
C1				. (15)	
Charge conjugation		-	_		
violating modes,				oi) modes	225
$\mu^+\mu^-$	S1	(6.84 ± 0.11)	•	,	225
e^+e^-	<i>S</i> 1	(9 + 6 - 4)	$) \times 10^{-12}$	<u>'</u>	249
$\pi^{+}\pi^{-}e^{+}e^{-}$	S1 [s	$[]$ (3.11 ± 0.19	•		206
$\pi^{0}\pi^{0}e^{+}e^{-}$	<i>S</i> 1	< 6.6		CL=90%	209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S</i> 1	< 9.2		CL=90%	57
$\mu^{+}\mu^{-}\mathrm{e}^{+}\mathrm{e}^{-}$	<i>S</i> 1	(2.69 ± 0.27)) × 10 ⁻⁹		225
HTTP://PDG.LBL.GOV	,	Page 8	Created:	5/30/2017	17:13

$e^{+} e^{-} e^{+} e^{-}$	<i>S</i> 1	(3.56 ± 0.21)	$\times 10^{-8}$		249
$\pi^0 \mu^+ \mu^-$	CP,S1	[t]	3.8	$\times 10^{-10}$	CL=90%	177
$\pi^{0} e^{+} e^{-}$	CP,S1	[t]	2.8	$\times 10^{-10}$	CL=90%	230
$\pi^0 u \overline{ u}$	CP,S1	[u] <	2.6	$\times 10^{-8}$	CL=90%	230
$\pi^0\pi^0 u\overline{\nu}$	<i>S</i> 1	<	8.1	$\times 10^{-7}$	CL=90%	209
$e^{\pm}\mu^{\mp}$	LF	[p]	4.7	$\times 10^{-12}$	CL=90%	238
$e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$	LF	[p]	4.12	$\times 10^{-11}$	CL=90%	225
$\pi^0 \mu^{\pm} e^{\mp}$	LF	[p]	7.6	$\times 10^{-11}$	CL=90%	217
$\pi^0\pi^0\mu^\pme^\mp$	LF	<	1.7	$\times 10^{-10}$	CL=90%	159

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

 $K^*(892)^{\pm}$ hadroproduced mass $m=891.76\pm0.25$ MeV $K^*(892)^{\pm}$ in τ decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.55\pm0.20$ MeV (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width Γ = 50.3 ± 0.8 MeV $K^*(892)^{\pm}$ in τ decays full width Γ = 46.2 ± 1.3 MeV $K^*(892)^0$ full width Γ = 47.3 ± 0.5 MeV (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	~ 100	%	290
$K^0\gamma$	(2.46 ± 0.21)	$\times 10^{-3}$	307
$\mathcal{K}^{\pm}\overset{'}{\gamma}$	(1.00 ± 0.09)	\times 10 ⁻³	309
$K\pi\pi$	< 7	$\times 10^{-4}$ 95%	223

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1272\pm7$ MeV ^[v] Full width $\Gamma=90\pm20$ MeV ^[v]

K₁(1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\rho$	(42 ±6)%	46
$K_0^*(1430)\pi$	(28 ±4)%	†
$\check{K^*}(892)\pi$	$(16$ ± 5 $)$ %	302
$K \omega$	$(11.0\pm2.0)~\%$	†
$K f_0(1370)$	(3.0±2.0) %	†
γK^{0}	seen	539

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7~{\rm MeV}$ Full width $\Gamma=174\pm13~{\rm MeV}~~(S=1.6)$

HTTP://PDG.LBL.GOV

Page 9

K₁(1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	402
$K \rho$	(3.0±3.0) %	293
$K f_0(1370)$	(2.0±2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
$K_0^*(1430)\pi \\ \gamma K^0$	not seen	†
γK^0	seen	613

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1421\pm 9~{\rm MeV}$ Full width $\Gamma=236\pm 18~{\rm MeV}$

K*(1410) DECAY MODES	Fraction (I	- _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	416
$K\pi$	(6.6±1	3) %		617
$\kappa_{\rho} \sim \kappa^0$	< 7	%	95%	313
γK^0	< 2.2	× 10	90%	623

K*(1430) [×]

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1425\pm 50~{
m MeV}$ Full width $\Gamma=270\pm 80~{
m MeV}$

K *(1430) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(93 ±10)%	619
$K\eta$	$(8.6^{+}_{-}\overset{2.7}{3.4})\%$	486
$K \eta'(958)$	seen	†

K₂*(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

$$K_2^*(1430)^\pm$$
 mass $m=1425.6\pm1.5$ MeV (S = 1.1) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=98.5\pm2.7$ MeV (S = 1.1) $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K**(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(49.9±1.2) %		619
$K^*(892)\pi$	$(24.7 \pm 1.5) \%$		419
$K^*(892)\pi\pi$	(13.4 ± 2.2) %		372
$K\rho$	(8.7±0.8) %	S=1.2	318
$K\omega$	$(2.9\pm0.8)\%$		311
$K^+\gamma$	$(2.4\pm0.5) \times 10$	-3 S=1.1	627
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 10$	-3 S=1.3	486
$K\omega\pi$	< 7.2 × 10	-4 CL=95%	100
$K^0\gamma$	< 9 × 10	-4 CL=90%	626

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1718\pm18~{\rm MeV}$ Full width $\Gamma=322\pm110~{\rm MeV}$ (S = 4.2)

K*(1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	782
$K \rho$	$(31.4^{+5.0}_{-2.1})$ %	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})$ %	618
$K\phi$	seen	387

K₂(1770) [y]

$$I(J^P) = \frac{1}{2}(2^-)$$

Created: 5/30/2017 17:13

Mass $m=1773\pm 8~{
m MeV}$ Full width $\Gamma=186\pm 14~{
m MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$		794
$K_2^*(1430)\pi$	dominant	288
$K^*(892)\pi$	seen	654
$K f_2(1270)$	seen	53
$K\phi$	seen	441
$K\omega$	seen	607

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1776\pm7$ MeV (S =1.1) Full width $\Gamma=159\pm21$ MeV (S =1.3)

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	$(31 \pm 9)\%$		613
$K^*(892)\pi$	$(20 \pm 5)\%$		656
$K\pi$	$(18.8 \pm \ 1.0) \%$		813
$K\eta$	$(30 \pm 13)\%$		719
$K_2^*(1430)\pi$	< 16 %	95%	291

K₂(1820) [z]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1819\pm12~{\rm MeV}$ Full width $\Gamma=264\pm34~{\rm MeV}$

K ₂ (1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K_2^*(1430)\pi$	seen	329
$K^{\overline{*}}(892)\pi$	seen	683
$K f_2(1270)$	seen	191
$K\omega$	seen	640
$K\phi$	seen	483

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2045\pm 9$ MeV (S =1.1) Full width $\Gamma=198\pm 30$ MeV

K [*] ₄ (2045) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(9.9±1.2) %	958
$K^*(892)\pi\pi$	$(9$ ± 5 $) \%$	802
$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$	768
$ ho$ K π	(5.7±3.2) %	741
ω K π	(5.0 ± 3.0) %	738
ϕ K π	$(2.8 \pm 1.4) \%$	594
ϕ K*(892)	$(1.4\pm0.7)~\%$	363

NOTES

- [a] See the note in the K^{\pm} Particle Listings.
- [b] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [c] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [d] See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm Particle Listings for definitions and details.
- [e] For more details and definitions of parameters see the Particle Listings.
- [f] See the K^{\pm} Particle Listings for the energy limits used in this measurement.
- [g] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [h] Structure-dependent part.
- [i] Direct-emission branching fraction.
- [j] Derived from an analysis of neutrino-oscillation experiments.
- [k] Violates angular-momentum conservation.
- [/] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [n] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon'$$

$$\eta_{00} = \left| \eta_{00}
ight| \mathrm{e}^{i\phi_{00}} = rac{A(\mathcal{K}_L^0
ightarrow \pi^0 \pi^0)}{A(\mathcal{K}_S^0
ightarrow \pi^0 \pi^0)} = \epsilon - 2\epsilon'$$

$$\delta = \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} ,$$

$${\rm Im}(\eta_{+-0})^2 = rac{\Gamma(K_S^0
ightarrow \ \pi^+ \pi^- \pi^0)^{CP \ viol.}}{\Gamma(K_J^0
ightarrow \ \pi^+ \pi^- \pi^0)} \; ,$$

$$\text{Im}(\eta_{000})^2 = \frac{\Gamma(K_S^0 \to \ \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \ \pi^0 \pi^0 \pi^0)} \ .$$

- where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.
- [o] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [p] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [q] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [r] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [s] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [t] Allowed by higher-order electroweak interactions.
- [*u*] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [v] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [x] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [y] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** S1 (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings.
- [z] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .