CLASE #2: 31 DE ENERO DE 2019

Ejercicio 5.6.a. Estudiar la continuidad de la función $f : \mathbb{R} \to \mathbb{R}$, dada por la expresión:

$$f(x) = \begin{cases} 0 & si \operatorname{sen}(x) \le 0, \\ 1/e & si \cos(2x) = 0, \operatorname{sen}(x) > 0, \\ (2\operatorname{sen}(x))^{1/\cos(2x)} & en \ caso \ contrario. \end{cases}$$

para todos los números reales x.

Demostración. La función es claramente 2π -periódica, de forma que nos podemos ceñir sencillamente a $[0, 2\pi]$ para discutir la continuidad de f. En dicho intervalo se distinguen los cambios en la definición de f en 0 y en π , así como en $\pi/4$ y $3\pi/4$. En el caso de $\pi/4$, tenemos lo siguiente¹:

$$\lim_{x \to \pi/4^-} f(x) = \lim_{x \to \pi/4^-} (2 \operatorname{sen}(x))^{1/\cos(2x)} = (\sqrt{2})^{\infty} = \infty.$$

mientras que el otro límite lateral resulta

$$\lim_{x \to \pi/4^+} f(x) = \lim_{x \to \pi/4^+} (2\operatorname{sen}(x))^{1/\cos(2x)} = (\sqrt{2})^{-\infty} = 0.$$

Se obtiene un resultado análogo en $3\pi/4$. Por último, observamos que

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2\operatorname{sen}(x))^{1/\cos(2x)} = 0,$$

dado que sen $(x) \to 0$ cuando $x \to 0$ mientras que $\cos(2x) \to 1$ cuando $x \to 0$, con lo que f es continua en 0. Se razona de la misma forma para concluir que f es continua en π . Así, la función no es continua en los puntos $\pi/4 + 2\kappa\pi$, $3\pi/4 + 2\kappa\pi$, cualquiera que sea $\kappa \in \mathbb{Z}$.

$$\lim_{x \to \pi/4^-} c^{1/\cos(2x)} = +\infty,$$

como hemos visto como consecuencia de la Desigualdad de Bernoulli y que las exponenciales con base mayor que 1 son funciones estrictamente crecientes, lo cual significa más concretamente que para todo M>0, existe $\eta(M)>0$ de forma que para todo $x\in (\pi/4-\eta(M),\pi/4)$, se tiene $c^{1/\cos(2x)}>M$. Concluimos así que dado cualquier M>0 existe $\delta(M):=\min\{\delta_0,\eta(M)\}$ de forma que

$$(2\operatorname{sen}(x))^{1/\cos(2x)} \ge c^{1/\cos(2x)} > M,$$

como queríamos demostrar.

¹Resulta interesante estudiar rigurosamente la justificación dicho límite, mediante el Criterio ε -δ de Weierstraß. En primer lugar, dado que $2 \operatorname{sen}(x) \to \sqrt{2}$ cuando $x \to \pi/4^-$, pues $x \mapsto 2 \operatorname{sen}(x)$ deducimos que para todo $\varepsilon > 0$, existe $\delta > 0$ de forma que si $x \in (\pi/4 - \delta, \pi/4)$, entonces $\sqrt{2} - 2 \operatorname{sen}(x) < \varepsilon$. Si tomamos, por ejemplo, $\varepsilon_0 := (\sqrt{2} - 1)/2 > 0$, deducimos que para cierto $\delta_0 > 0$, cualquiera que sea $x \in (\pi/4 - \delta_0, \pi/4)$, tenemos que $2 \operatorname{sen}(x) \ge (\sqrt{2} + 1)/2 =: c$, que satisface c > 1 (gracias a que hemos elegido ε_0 de la forma anterior, aunque podríamos haber elegido sencillamente $\varepsilon_0 := \sqrt{2} - 1{,}0001$). Ahora bien, dado que

Ejercicio 5.8. Determínese el número real positivo c para que sea continua la función $f: \mathbb{R} \to \mathbb{R}$, dada por la expresión:

$$f(x) = \begin{cases} 3 - \sqrt{c} x & \text{si } x \le c, \\ \frac{x - c}{\sqrt{x} - \sqrt{c}} & \text{si } x > c. \end{cases}$$

para todos los números reales x.

Demostración. En primer lugar, calculemos el límite lateral por la izquierda

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{-}} (3 - \sqrt{c}x) = 3 - \sqrt{c}c = 3 - (\sqrt{c})^{3} = f(c),$$

mientras que el límite lateral por la derecha resulta

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{+}} \frac{x - c}{\sqrt{x} - \sqrt{c}} = \lim_{x \to c^{+}} \frac{x - c}{\sqrt{x} - \sqrt{c}} \frac{\sqrt{x} + \sqrt{c}}{\sqrt{x} + \sqrt{c}}$$

$$= \lim_{x \to c^{+}} \frac{(x - c)(\sqrt{x} + \sqrt{c})}{x - c} = \lim_{x \to c^{+}} (\sqrt{x} + \sqrt{c}) = 2\sqrt{c}.$$

de forma que para que ambas expresiones coincidan, y equivalentemente f sea continua, basta hallar las soluciones de la ecuación

$$2\sqrt{c} = 3 - (\sqrt{c})^3$$

o equivalentemente, tras realizar el cambio de variable $z \equiv \sqrt{c}$, las soluciones reales no negativas de la ecuación $z^3 + 2z - 3 = 0$. En virtud del Teorema Fundamental del Álgebra, dicha ecuación tiene a lo sumo tres soluciones, y un método que suele funcionar consiste en probar soluciones enteras, más concretamente divisores del término independiente, como consecuencia del Teorema del Resto. Una solución es claramente z = 1, de forma que podemos escribir $z^3 + 2z - 3 = (z - 1)(z^2 + z + 3)$ empleando la Regla de división de Ruffini. La ecuación $z^2 + z + 3 = 0$ no tiene, sin embargo, soluciones reales, de forma que c = 1 es la única elección posible para que c = 1 sea continua.

Ejercicio 5.9. (a) Hállese una función definida en los números reales que sea discontinua en $\{1/n : n \in \mathbb{N}\}$, pero continua en los demás puntos (b) Hállese una función definida en los números reales que sea discontinua en $\{1/n : n \in \mathbb{N}\} \cup \{0\}$, pero continua en los demás puntos.

Demostración. Definimos $f: \mathbb{R} \to \mathbb{R}$, dada por

$$f(x) = \begin{cases} 1 & \text{si } x = 1/n \text{ para algún } n \in \mathbb{N}, \\ 0 & \text{en caso contrario.} \end{cases}$$

Observamos que f no es continua en cada punto de la forma 1/n dado que f es nula en (1/(n+1), 1/n), y por ende

$$\lim_{x \to 1/n^+} f(x) = 0 \neq 1 = f(1/n).$$

En 0 tampoco es continua, dado que

$$f(0) = 0 \neq 1 = \lim_{n \to \infty} f(1/n),$$

esto es, no es secuencialmente continua. Ahora, $g: \mathbb{R} \to \mathbb{R}$, dada por

$$g(x) = \begin{cases} 1/n & \text{si } x = 1/n \text{ para algún } n \in \mathbb{N}, \\ 0 & \text{en caso contrario.} \end{cases}$$

es continua en 0, como sencillamente se puede comprobar. Sin embargo, es claramente discontinua en $\{1/n : n \in \mathbb{N}\}$ como se razona análogamente al caso anterior.

Recordemos ahora que los números racionales son densos en los números reales, esto es, si escogemos cualquier número real, podemos encontrar un número racional tan cercano a éste como queramos; más concretamente, dado $x \in \mathbb{R}$, para todo $\varepsilon > 0$ existe $r \in \mathbb{Q}$ de forma que $|x-r| < \varepsilon$. Sabemos también que $\mathbb{R} \setminus \mathbb{Q}$ es denso en \mathbb{R} . En la mayoría de ocasiones, y con el objetivo de evitar sobrecargar la notación, evitaremos hacer referencia a las dependencias de unas variables respecto de otras. Por ejemplo, en la anterior expresión, r dependerá tanto de x como de ε . Podríamos denotar entonces $r_{x,\varepsilon}$ o bien $r(x,\varepsilon)$ para hacer énfasis en dicha dependencia. Otra opción suele ser escribir $r \equiv r(x,\varepsilon)$ y no hacer más referencias a x y ε . Especificar las dependencias y tenerlas en mente es muy importante, y es particularmente clarificador, por ejemplo, a la hora de distinguir entre la continuidad de una función y la continuidad uniforme. Por otra parte, y en adelante, si X es un conjunto cualquiera, denotaremos, para cada subconjunto $A \subseteq X$, por $\chi_A : X \to \{0,1\}$, la función dada por

$$\chi_A(x) = \begin{cases} 0 & \text{si } x \notin A, \\ 1 & \text{si } x \in A, \end{cases}$$

comúnmente conocida como función característica de A en X. Por último, recordemos que, en lógica matemática, si P (la hipótesis) y Q (la tesis) denotan dos proposiciones lógicas, la implicación $P \Longrightarrow Q$ se define como $\neg P \lor Q$, la cual es necesariamente cierta si no se cumple la hipótesis P, o se cumple la tesis Q si se cumple la hipótesis P. Por tanto, $\neg(P \Longrightarrow Q)$ equivale a $P \land \neg Q$. Además, si R es una proposición sobre los elementos de un conjunto, $\neg(\exists x \ R(x))$ es equivalente a $\forall x \ \neg R(x)$ y de la misma forma, $\neg(\forall x \ R(x))$ es equivalente a $\exists x \ \neg R(x)$. Con ello, se deduce fácilmente que la negación de la continuidad de una función f en un punto $x \in \mathbb{R}$,

$$\neg(\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall y \in \mathbb{R} \quad |x-y|<\delta \implies |f(x)-f(y)|<\varepsilon)$$

es equivalente a la siguiente proposición:

$$\exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists y \in \mathbb{R} \quad |x - y| < \delta \land |f(x) - f(y)| \ge \varepsilon.$$

Esto resultará suficiente para demostrar, en muchos ejercicios, con elecciones sencillas de ε e y, la falta de continuidad en ciertos puntos x.

Ejercicio 5.10. Dar un ejemplo de función $f : \mathbb{R} \to \mathbb{R}$ que sea discontinua en cualquier número real pero tal que |f| sea continua en todos los números reales.

Demostración. Consideremos la función $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f = \chi_{\mathbb{Q}} - \chi_{\mathbb{R} \backslash \mathbb{Q}},$$

la cual toma el valor -1 en $\mathbb{R} \setminus \mathbb{Q}$, el valor +1 en \mathbb{Q} y no es continua en ningún punto. En efecto, siguiendo la negación de la continuidad de f, dado $x_0 \in \mathbb{Q}$, se tiene que $f(x_0) = 1$, pero existe $\varepsilon := 1$, de forma que para todo $\delta > 0$ podemos encontrar $y \in B(x_0, \delta) \cap (\mathbb{R} \setminus \mathbb{Q})$, dada la densidad de $\mathbb{R} \setminus \mathbb{Q}$ en \mathbb{R} , que satisface $|f(x_0) - f(y)| = |1 - (-1)| = 2 \ge \varepsilon = 1$, como queríamos. Se razona análogamente supuesto que $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Sin embargo, |f| = 1 en \mathbb{R} , la cual es trivialmente continua.