多媒體技術概論 AS1

105060016 謝承儒

1. DCT image compression

實作步驟

- 先將 input image 中的 RGB 分離出來,得到三個 2-D 矩陣。
 input R、input G、input B
- 2. 將 input_R 和 keepRange 放入自己寫的 **DCT2** function,在裡面先從 input_R 切出 8x8 的 tmp_f,對 tmp_f 做 DCT 得到 tmp_F 和該區的 coefficient。 DCT 的作法基於以下公式,將其轉變成矩陣運算,這是因為 matlab 對於矩 陣運算有更好的表現,所以採用講義上矩陣運算的方法。(Unit2 p114,115)

$$F(u,v) = \sum_{r=0}^{M-1} \sum_{s=0}^{N-1} \frac{2C(u)C(v)}{\sqrt{MN}} f(r,s) \cos(\frac{(2r+1)u\pi}{2M}) \cos(\frac{(2s+1)v\pi}{2N})$$

$$where \quad C(\delta) = \begin{cases} \sqrt{2}/2 & \delta = 0\\ 1 & otherwise \end{cases}$$

- 3. 再將 tmp_F、keepRange 放入 **keepTheLowerFrequency** function, 將 tmp_F 的 高頻部分濾掉。
- 4. 把已經濾過高頻的 tmp F 放進相對應的 DCT R 的位置。
- 5. 接著找下一個 8x8 的 tmp_f 重複步驟 2.~4.,全部做完即可得到 DCT_R 和完整的 coefficient U R。
- 7. 將 DCT_R、U_R 放入自己寫的 **IDCT2** function,就可以得到 IDCT_R。 IDCT_G、IDCT、B 也是如此得到。 IDCT 的做法一樣參照講義上的矩陣運算(Unit2 p110)
- 8. 將 IDCT R、IDCT G、IDCT B 組合在一起,即可得到 output
- 9. 將 input 和 output 放入 **computePSNR** function,就可以得到 PSNR_RGB。 PSNR 的算法参照下方公式:

$$PSNR = 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight) = 20 \cdot \log_{10} \left(rac{MAX_I}{\sqrt{MSE}}
ight)$$

10. 把 input 放進 **RGB2YIQ**,得到 inputYIQ,接著對 inputYIQ 做跟步驟 1.~8.相同的處理,得到 outputYIQ。再將 outputYIQ 放進 **YIQ2RGB** 轉回 RGB model,接著和 input 一起放進 **computePSNR**,得到 PSNR_YIQ。 RGB 和 YIQ 的轉換參照下方:

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

結果圖片

表1Q1的結果

	RGB,KeepRange=2	RGB,KeepRange=4	RGB,KeepRange=8
PSNR_RGB	27.2944	35.6460	Inf

表 2 PSNR RGB 的值

	YIQ,KeepRange=2	YIQ,KeepRange=4	YIQ,KeepRange=8
PSNR_YIQ	27.2944	35.6460	Inf

表 3 PSNR YIQ 的值

分析以及討論

1. KeepRange 大小與 PSNR 的關係

從圖片中可以很明顯的看出,當 KeepRange 越小、濾掉的細節越多,圖片就會越模糊。

從 PSNR 來看,當 KeepRange 越小,PSNR 也會越低,代表 output 和 input 相 差越多。

而當 KeepRange=8,前後兩張圖是相同的,所以相當於分母 MSE=0,因此出現 PSNR = inf 的情況。

2. 由 RGB model 和 YIQ model 做處理,是否會有不同

不管是圖片上或 PSNR,兩種 color model 都不會產生差異。

2. Dithering

實作步驟

- 1. 將 input image 放入 NoiseDithering function。
- 2. 隨機產生一個 threshold。
- 3. 然後檢查第一個 pixel(1,1)如果高於 threshold,就為 255;反之如果低於 threshold,就為 0。
- 4. 選擇下一個 pixel,再次隨機產生一個 threshold,重複步驟 3.。
- 5. 全部 pixel 檢查完,即可得到經過 Noise Dithering 的 input image。
- 6. 將 input image 放入 Average Dithering function。
- 7. 計算 input image 的全部 pixel 的平均,其值為 threshold
 - ⇒ threshold = average of pixels
- 8. 檢查所有的 pixel,如果該 pixel 高於 threshold,就為 255;反之如果低於 threshold,就為 0。結束後即可得到經過 Average Dithering 的 input image。
- 9. 將 input image 放入 ErrorDiffusionDithering function。
- 10. 從第一個 pixel 開始,對其值 p 做以下的檢查

err =
$$\begin{cases} p, p < 128 \\ p - 255, p \ge 128 \end{cases}$$

並把 err 按照下面方法擴散

擴散完後,換到下一個 pixel,直到所有 pixel 都做過。

11. 將經過擴散後的 input image 裡的所有 pixel 做以下處理,得到經過 Error Diffusion Dithering 的 input image。

$$output(i,j) = \begin{cases} 0 & if \ input(i,j) < 128 \\ 255 & if \ input(i,j) \ge 128 \end{cases}$$

結果圖片

表 4 Q2 的結果

圖(d) Error Diffusion Dithering

圖(c) Average Dithering

分析以及討論

1. 三種方法得出的結果比較

先將上面結果拉遠來看

經過 Noise Dithering 後的圖片,會有很類似電視機雜訊的效果,已經很明顯將原圖給遮蓋住,所以它並不是一種很有效的 Dithering 方法,但若是追求特殊效果,該方法可以使用。

經過 Average Dithering 後的圖片,會有很強烈的黑白對比。

經過 Error Diffusion Dithering 後的圖片,和原圖比起來會看起來有更多種中間顏色,且會有些許的顆粒感。

3. Image Convolution

實作步驟

- 先將 input image 的 RGB 分成出來,得到 input_R、input_G、input_B,以及 做出 Gaussian filter G。
- 2. 將 input R和G放入 Cov2 function。
- 3. 把 input_R 的四周做 zero padding, 至於 padding size 就等於 G 的 size 一半

padding size =
$$\left[\frac{\text{hsize}}{2}\right]$$
, []是高斯符號

- 4. 接著把經過 zero padding 的 input_R 和 G 做 convolution,得到 output_R
- 5. 將 input_B 和 input_G 也做跟步驟 2.~4.的處理,得到 output_G、output_B
- 6. 將 output_R、output_G、output_B 組合在一起,得到的 output 即是經過 Gaussian filter 的 input.

結果圖片

表 5 Q3 的圖片

	hsize = 3x3	hsize = 5x5	hsize = 7x7
PSNR_hsize	22.5374	22.1638	22.1354

表 2 PSNR hsize 的值

	sigma = 1	sigma = 5	sigma = 10
PSNR_sigma	22.1638	20.8829	20.8500

表 3 PSNR sigma 的值

分析以及討論

1. hsize 和 Gaussian filter 的效果關係

當 hsize 越大,越會包括越外層的 pixel,就越會讓該 pixel 自己的值比重越低,使得該 pixel 和周圍越相近,整體看起來更模糊。

2. sigma 和 Gaussian filter 的效果關係

當 sigma 越大,filter 裡每格的比重就越均勻,就越會讓該點 pixel 和周遭的 pixel 相似,使整體看起來更模糊。