Logic and theory of computation

theory of computation part, 6th lecture

(Un)directed Hamiltonian path/cycle

Hamiltonian path/cycle

Given an (un)directed graph G = (V, E) (|V| = n). A listing $P = v_{i_1}, \ldots, v_{i_n}$ of the vertices in G is called a **Hamiltonian path** if $\{v_{i_1}, \ldots, v_{i_n}\} = V$ and for all $1 \le k \le n - 1$ $\{v_{i_k}, v_{i_{k+1}}\} \in E$ ($(v_{i_k}, v_{i_{k+1}}) \in E$ in the undirected case). If $\{v_{i_n}, v_{i_1}\} \in E$ ($(v_{i_n}, v_{i_1}) \in E$ resp.) holds, too than P is called a **Hamiltonian cycle**.

Notation: H-path, H-cycle for Hamiltonian path/cycle.

HP={ $\langle G, s, t \rangle$ | there's an H-path in the directed graph G form s to t}.

UHP= $\{\langle G, s, t \rangle \mid \text{there's an H-path in the undirected graph } G \text{ form } s \text{ to } t \}.$

UHC= $\{\langle G \rangle \mid G \text{ is undirected and has an H-cycle}\}.$

Theorem

HP is NP-complete

Proof: It's in NP, since a list *P* of *n* vertices can be constructed in polynomial time. Being *P* a permutation of the vertices and an H-path are verifiable in polynomial time, too.

SAT \leq_p HP. For an arbitrary CNF φ it is enough to construct (G_{φ}, s, t) with the property of φ satisfiable \Leftrightarrow there is an H-path in G_{φ} from s to t.

Let $p_1, \ldots p_n$ be the atoms appearing in φ and $C_1, \ldots C_m$ be the clauses of φ .

the construction of G_{φ}

- $\forall 1 \le i \le n : (x_{i-1}, u_i), (x_{i-1}, v_i), (u_i, x_i), (v_i, x_i) :\in E(G_{\varphi})$
- $ightharpoonup s := x_0, t := x_n$
- ▶ $\forall 1 \leq i \leq n$ there is path in both direction with 2m inner vertices $w_{i,1}, \ldots, w_{i,2m}$.
- ightharpoonup All $w_{i,k}$'s are connected by at most one C_j .
- ▶ If $X_i \in C_j$, then $(w_{i,k}, C_j)$ and $(C_j, w_{i,k+1}) :\in E(G_{\varphi})$. (positive bound)
- ▶ If $\neg X_i \in C_j$, then $(w_{i,k+1}, C_j)$ and $(C_j, w_{i,k}) :\in E(G_{\varphi})$. (negative bound)

Positive traversal of $u_i v_i$: $u_i \rightsquigarrow v_i$.

Negative traversal of $u_i v_i$: $u_i \leftrightarrow v_i$.

- An s t H-path contains (x_{i-1}, u_i) or (x_{i-1}, v_i) but not both $(\forall 1 \le i \le n)$. It must be continued by a positive traversal of $u_i v_i$ in the first case. On the other hand it must be continued by a negative traversal.
- An s t H-path bounds each C_j exactly one. For a positive traversal of $u_i v_i$, only a positive bound is possible while for a negative one the only option is a negative bound.
- For an H-path, Positive/negative traversals of $u_i v_i$ determine an interpretation, the bound to C_j ($\forall 1 \leq j \leq m$) shows a literal in C_j evaluated for true.
- If φ is satisfiable, choose an interpretation and a a true literal for each clause. Choose the positive traversal of u_iv_i if p_i is true, otherwise choose the negative one. Bounding the C_j 's to the path at the chosen literals we get an H-path from s to t.

 G_{φ} can be constructed in polynomial time so SAT \leq_p HP, proving that HP is NP-hard. But it is in NP, so it is NP-complete as well.

NP-completeness of undirected s - t-H-path

Remark: UHP and UHC are in NP by the same reason as HP.

Theorem

UHP NP-complete

Proof: $HP \le_p UHP$. For a given G, s, t, where G is directed we need G', s', t', where G' is undirected and G has an H-path from s to $t \Leftrightarrow G'$ has an H-path from s' to t'.

Let 3 nodes correspond to each vertex v of G in G': v_{in} , v_{middle} and v_{out} . Edges of G' contains $\{v_{in}, v_{middle}\}$ and $\{v_{middle}, v_{out}\}$ for each $v \in V(G)$. Forthermore for each edge E = (u, v) in G add the edge $\{u_{out}, v_{in}\}$ to E(G'). $s' := s_{in}, t' := t_{out}$.

Easy to see that P is an H-path in $G \Leftrightarrow P'$ is an H-path in G', where P' can be constructed for P by replacing v by $v_{\rm in}$, $v_{\rm middle}$ and $v_{\rm out}$.

NP-completeness of undirected Hamiltonian path/cycle

On the other hand if P is an H-path in G' than $v_{\rm in}$, $v_{\rm middle}$, $v_{\rm out}$ should follow each other in P (otherwise $v_{\rm middle}$ is left out). Replacing these triples in P by a single node v we get an H-path for G.

Conditions for the beginning and the ending of paths hold, too.

Theorem

UHC is NP-complete

Proof: UHP \leq_p UHC. Given G, s, t. G': Add a new vertex x to G and add two new edges $\{s, x\}$ and $\{t, x\}$ to G.

Easy to see that G has an H-path \Leftrightarrow G' has an H-cycle.

The travelling salesman problem (TSP)

Function problem: Given an undirected graph G with nonnegative weights on its edges. Determine the H-cycle with the lowest possible total weight (if there's any at all).

Decision problem:

TSP= $\{\langle G, K \rangle \mid G \text{ has an H-cycle with total weights } \leq K \}$.

Theorem

TSP is NP complete.

Proof: TSP∈ NP, due to similar reasons as HP (total weight condition is also verifiable in polynomial time).

UHC \leq_p TSP. G' := G, all weights are equal to 1 and let K := |V|. easy to see, that G has an H-cycle $\Leftrightarrow G'$ has an H-cycle of total weight $\leq K$.

The Structure of the NP class

NP-intermediate language

L is NP-intermediate, if $L \in NP$, $L \notin P$ and L is non-NP-complete.

Ladner's Theorem

If $P \neq NP$, then there are NP-intermediate languages.

(without proof)

NP-intermediate candidates (we are not sure of course):

- GraphIsomorphism= $\{\langle G_1, G_2 \rangle \mid G_1 \text{ and } G_2 \text{ are undirected isomorphic graphs}\}.$
- ► PrimeFactors: produce the prime factors of a natural number [function problem],

coC

co© complexity class

If \mathfrak{C} is a complexity class, then let $\operatorname{co}\mathfrak{C} = \{L \mid \overline{L} \in \mathfrak{C}\}.$

 \mathbb{C} is closed for polynomial time reduction if whenever $L_2 \in \mathbb{C}$ and $L_1 \leq_p L_2$ holds $L_1 \in \mathbb{C}$ holds, too.

W know so far: P and NP are closed for polynomial time reduction.

Theorem

If C is closed for polynomial time reduction then so does coC as well

Proof: Let $L_2 \in co\mathfrak{C}$ and L_1 be arbitrary languages satisfying $L_1 \leq_p L_2$. From the later one it follows $\overline{L}_1 \leq_p \overline{L}_2$ (the same reduction is good). Since $\overline{L}_2 \in \mathfrak{C}$, we get $\overline{L}_1 \in \mathfrak{C}$. I.e., $L_1 \in co\mathfrak{C}$.

coC

Is it true that P=coP? Yes. (Changing q_a and q_r in a TM deciding L we get a TM deciding \overline{L} polynomial time.)

Is it true, that NP=coNP? The above construction does not work, it may not decide \overline{L} .

Corollary

coNP is closed for polynomial time reduction.

Theorem

L is \mathfrak{C} -complete $\iff \overline{L}$ is $\operatorname{co}\mathfrak{C}$ -complete.

Proof:

- ▶ If $L \in \mathfrak{C}$, then $\overline{L} \in \text{co}\mathfrak{C}$.
- Let $L' \in \mathfrak{C}$, satisfying $L' \leq_p L$. Then $\overline{L'} \leq_p \overline{L}$. $L' \mapsto \overline{L'}$ is a bijection between \mathfrak{C} and $\operatorname{co}\mathfrak{C}$. So all $\operatorname{co}\mathfrak{C}$ languages are polynomial time reducable to \overline{L}

So $\overline{L} \in co\mathbb{C}$ and it is $co\mathbb{C}$ -hard, so, it is $co\mathbb{C}$ -complete.

Examples for coNP complete languages

UNSAT := $\{\langle \varphi \rangle | \varphi \text{ is an unsatisfiable propositional formula} \}$.

VALID := $\{\langle \varphi \rangle \mid a \varphi \text{ is a valid propositional formula }\}.$

Theorem

UNSAT and VALID are coNP-complete.

Proof: GENSAT = $\{\langle \varphi \rangle | \varphi \text{ is a satisfiable propositional formula} \}$ is NP-complete as well.

GENSAT = UNSAT, by the previous Theorem UNSAT is coNP-complete.

UNSAT \leq_p VALID, since $\varphi \mapsto \neg \varphi$ is a polynomial time reduction.

Informally: coNP contains the problems for which there is a polynomial time *refutation* for the "no" instances.

Remarks:

Conjecture: $NP \neq coNP$.

Another conjecture: $P \neq NP \cap coNP$.

It is known, that $NP \cap coNP$ -complete $\neq \emptyset$ implies NP = coNP.

Space complexity

Problems with measuring space complexity: The size of the input is always a lower bound for the number of used cells. One solution is the following:

Off-line Turing machine (OTM)

An **off-line Turing machine** (OTM) is a multitape TM with the following properties. The first tape is a read-only input tape. For function problems the last tape is a write-only output tape. Further tapes has no restrictions, they are called storage tapes.

Space complexity of OTM's

For a given input, the **storage space** used up by the OTM is the number of cells the computation(s) use up on the storage tapes. An OTM is f(n) **space-bounded** (or has **space complexity** f(n)) if it uses at most f(|u|) storage space for any input $u \in \Sigma^*$.

Deterministic and nondeterministic space complexity classes

With OTM's we can measure sublinear space complexities.

- SPACE $(f(n)) := \{L \mid L \text{ is decidable by a } O(f(n)) \}$ space-bounded deterministic off-line TM}
- ► NSPACE $(f(n)) := \{L \mid L \text{ is decidable by a } O(f(n))$ space-bounded nondeterministic off-line TM}
- ▶ PSPACE:= $\bigcup_{k>1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k>1}$ NSPACE (n^k) .
- ightharpoonup L:=SPACE ($\log n$).
- ightharpoonup NL:=NSPACE ($\log n$).

Deterministic space complexity of the Reachability problem

For a (directed) graph G and vertices its x and y, y is called reachable from x, if there is a path from x to y.

Reachability= $\{\langle G, s, t \rangle \mid t \text{ is reachable in } G \text{ from } s\}.$

Reachability \in P (in fact $O(n^2)$)

Theorem

REACHABILITY \in SPACE($\log^2 n$).

Proof:

- For vertices x, y of G let PATH(x, y, i) be TRUE if there is a path of length at most 2^i from x to y.
- ▶ *t* is reachable in *G* from $s \iff PATH(s, t, \lceil \log n \rceil) = TRUE$.
- ► PATH(x, y, i)=TRUE $\iff \exists z (PATH(x, z, i 1) = TRUE \land PATH(z, y, i 1) = TRUE).$
- Based on this observation a recursive algorithm will be given. The algorithm stores only 3-tuples (x, y, i). If (x, y, i) is stored it means PATH(x, y, i) was called and this call is still in progress.

REACHABILITY: **PATH**(x, y, i) algorithm

- Let an order of the vertices be given.
- If i = 0, then $2^0 = 1$, PATH(x, y, i) is TRUE if and only if (x, y) is an edge of the graph.
- We start by writing $(s, t, \lceil \log n \rceil)$ on the storage tape. For the 3-tuples (x, y, i) on the storage tape, i is strictly decreasing (by 1) from $\lceil \log n \rceil$, so the number of 3-tuples is at most $\lceil \log n \rceil + 1$.
- Suppose that we just called PATH(x, y, i), so (x, y, i) is the last 3-tuple on the storage tape. Then for the first $z \neq x, y$ call PATH(x, z, i 1) and write (x, z, i 1) on the tape.
- ▶ If PATH(x, z, i 1) =FALSE then delete (x, z, i 1), try next z.
- ► If PATH(x, z, i 1) =TRUE then delete (x, z, i 1), call PATH(z, y, i 1) and write (z, y, i 1) on the tape (y is known from the previous 3-tuple).
- ▶ If PATH(z, y, i 1) =FALSE then delete (z, y, i 1), try next z.
- ▶ If PATH(z, y, i 1) =TRUE then return TRUE.
- ▶ If there are no more *z*'s return FALSE.

Configuration graph

PATH(s, t, $\lceil \log n \rceil$) stores $O(\log n)$ 3-tuples and each 3-tuple is of length $O(\log n)$ (we can store a natural number of at most n on $O(\log n)$ bits).

So Reachability \in SPACE($\log^2 n$), finishing the proof.

Configuration graph

For a TM M G_M denotes its **configuration graph**. The vertices are configurations of M and $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Reachability method: a method for proving connections between space complexity classes by using either

Reachability ∈ P or

REACHABILITY \in SPACE($\log^2 n$)

for the configuration graph or one of its subgraphs.

Savitch's Theorem

Savitch's Theorem

If $f(n) \ge \log n$, then $\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n))$.

Proof: Let M be f(n) space-bounded NTM and w be an input of M of length n.

A configuration of M can be stored at $O(f(n) + \log n)$ cells (actual state, contents of storage tapes, positions of the heads, the position of the head on the 1st tape can be n-wise, that's why we always need $\geq \log n$ storage). If $f(n) \geq \log n$, then this is O(f(n)).

We can suppose, that M has only one accepting configuration. (Delete the content of the storage tapes before going to q_a .)

The size of the configuration graph of configurations with this limit is at most $2^{df(n)}$ for some d > 0 constant. So there is $aO(\log^2(2^{df(n)})) = O(f^2(n))$ space-bounded deterministic TM deciding reachability from the starting configuration to the accepting one by the previous theorem.

Savitch Theorem

Corollaries

Corollary 1

PSPACE = NPSPACE

Proof: square of a polynomial is a polynomial.

Corollary 2

 $NL\subseteq P$

(without proof) (Applies Reachability method.)

Hierarchy Theorem

Immerman-Szelepcsényi Theorem

NL = coNL

(without proof)

EXPTIME:= $\bigcup_{k\in\mathbb{N}}$ TIME(2^{n^k}).

Theorem

 $NL \subset PSPACE$ és $P \subset EXPTIME$.

(without proof)

Theorem

 $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

(without proof)

Conjecture: All inclusions are proper.

Structure of R

Structure of R supposing P≠NP