Глава 2. Лексический анализ

2.7. Регулярные выражения

Альтернативой регулярным грамматикам для формального описания регулярных языков являются регулярные выражения. Регулярные выражения эквивалентны регулярным грамматикам и широко используются на практике.

Регулярное выражение r над алфавитом T описывает язык L(r), который рекурсивно определяется на основании языков, описываемых подвыражениями r.

Базисные регулярные выражения образованы тремя правилами:

- 1. Символ \varnothing , представляющий пустое множество, является регулярным выражением, а $L(\varnothing)$ представляет собой пустой язык.
- 2. Символ пустой строки ε является регулярным выражением, а $L(\varepsilon)$ представляет собой множество $\{\varepsilon\}$, т. е. язык, единственный член которого пустая строка.
- 3. Если $a \in T$, то a представляет собой регулярное выражение, а L(a) представляет множество $\{a\}$, т. е. язык с одной строкой единичной длины с символом a.

Имеют место правила, посредством которых регулярные выражения строятся из подвыражений. Пусть r и s являются регулярными выражениями, описывающими соответственно языки L(r) и L(s).

- $1. \ r \mid s$ (объединение) регулярное выражение, описывающее язык $L(r) \cup L(s)$. Вместо символа '|' можно использовать символ '+', т. е. записи $r \mid s$ и r+s эквивалентны.
 - 2. rs (конкатенация) регулярное выражение, описывающее язык L(r)L(s).
- 3. r^* (итерация, т. е. нуль или более повторений r) регулярное выражение, описывающее язык $(L(r))^*$.

Все операции левоассоциативны. Подразумевается следующая система приоритетов: унарная операция итерации обладает наивысшим приоритетом, за ним следует операция конкатенации, а затем следует операция объединения. Приоритеты можно изменять с помощью использования скобок.

Одним из расширений регулярных выражений является унарная операция r^+ (один или более повторений r). Эта операция имеет тот же приоритет и ассоциативность, что и операция итерации. Имеют место алгебраические законы: $r^* = r^+ \mid \varepsilon$ и $r^+ = rr^* = r^* r$.

Регулярное выражение генерирует регулярное множество. Например, регулярное выражение $(a \mid b)c$ генерирует регулярное множество (регулярный язык) $\{ac, bc\}$, а регулярное выражение $(aab \mid ab)^*$ – множество $\{aab, ab\}^*$, включающее строки

є aabaabab ababaab abaabababaab и т. п.

Регулярное выражение, описывающее классическое определение идентификатора, имеет вид $l(l \mid d)^*$, где l и d обозначают соответственно букву и цифру. Если в определение идентификатора добавить маркер конца ввода лексемы $\bot \notin \{l, d\}$, т. е. любой символ кроме буквы и цифры, то регулярное выражение для него примет вид $l(l \mid d)^*\bot$.

Существует алгебра регулярных выражений, позволяющая выполнять эквивалентные преобразования выражений. Основные алгебраические свойства регулярных выражений (q, r, s) некоторые регулярные выражения) [14]:

- 1) $q \mid q = q, q \mid \emptyset = q$
- 2) $q \mid r = r \mid q$, свойство коммутативности
- 3) $(q \mid r) \mid s = q \mid (r \mid s) = q \mid r \mid s$ ассоциативность
- 4) (qr)s = q(rs) = qrs ассоциативна, но не коммутативна
- 5) $q\varepsilon = \varepsilon q = q$, $q\varnothing = \varnothing q = \varnothing$
- 6) (r | s)q = rq | sq
- 7) q(r | s) = qr | qs8) $q^*q^* = q^*$
- 9) $(q^*)^* = q^*$
- $10)qq^{\hat{}} = q^{\hat{}}q$
- 11) $\varepsilon^* = \varepsilon$, $\varnothing^* = \varepsilon$
- $12)(q^* \mid r^*)^* = (q^*r^*)^* = (q \mid r)^*$
- $13)(\overline{rq})^*r = r(qr)^*$
- $(14)(q^*r)^*q^* = (q \mid r)^*$
- $(15)(q^*r)^* = (q | r)^*r | \epsilon$
- 16) $(qr^*)^* = q(q | r)^* | \varepsilon$

Для любого регулярного выражения можно определить НКА, который принимает регулярный язык, соответствующий заданному регулярному выражению. Как и для регулярных грамматик, существует процедура построения конечного автоматараспознавателя по заданному регулярному выражению.

КА для базисных регулярных выражений \emptyset , ε , a представлены на рис. 2.11, где k_0 и k_f – начальное и конечное состояния автомата соответственно.

Рис. 2.11. Конечные автоматы для базисных регулярных выражений: $a - \emptyset$; $b - \varepsilon$; b - a

Обратите внимание, что в графах переходов автоматов могут появиться переходы, помеченные символом ε (пустая строка). Такие переходы называются ε -переходами. Таким образом, функция переходов δ определена на множестве $K \times (T \cup \{\varepsilon\})$, т. е. $\delta: K \times (T \cup \{\varepsilon\}) \to 2^K$.

Рассмотрим построение автоматов для операций над регулярными выражениями. Пусть M_1 и M_2 — конечные автоматы, распознающие языки, представленные регулярными выражениями r и s соответственно, причем их множества состояний не пересекаются. Обозначим через k_{10} и k_{20} начальные состояния этих автоматов, через k_{1f} и k_{2f} — их конечные состояния. Тогда конечный автомат M с начальным состоянием k_f , который представляет регулярное выражение q как результат регулярной операции над r и s строится следующим образом (рис. 2.12):

- $1. \ q = r \mid s$ (или r + s). Автомат M строится параллельным соединением автоматов M_1 и M_2 (рис. 2.12, a). Добавляются новые состояния k_0 и k_f , добавляются ϵ -переходы из k_0 в k_{10} и k_{20} , а также из k_{1f} и k_{2f} в k_f . Любой путь из k_0 в k_f должен пройти либо исключительно через M_1 , либо исключительно через M_2 .
- $2.\ q=rs$. Автомат M строится последовательным соединением автоматов M_1 и M_2 (рис. $2.12, \delta$). Начальным состоянием M объявляется k_{10} , конечным $-k_{2f}$. Состояния k_{1f} и k_{20} объединяются в одно состояние со всеми входящими и исходящими переходами обоих состояний. Путь из k_0 в k_f должен пройти сначала через M_1 , а затем через M_2 .
- 2 3. $q=r^*$. Автомат M строится зацикливанием автомата M_1 (рис. 2.12, s). Добавляются новые состояния k_0 и k_f , добавляются также ε -переходы из k_0 в k_{10} и k_f , из k_{1f} в k_{10} , из k_{1f} в k_f . Для достижения k_f из k_0 необходимо пройти либо по ε -переходу от k_0 к k_f , соответствующей пустой строке, либо перейти к начальному состоянию k_{10} автомата M_1 , пройти его и вернуться в k_{10} нуль или более раз.

Рис. 2.12. Графы переходов автоматов для регулярных выражений: $a-r\mid s;\ \delta-rs;\ \epsilon-r^*$

Следует отметить, что в этом методе на любом шаге построения начальные состояния не имеют входящих дуг, а конечные состояния – исходящих.

Наличие є-перехода вносит недетерминированность в функционирование конечного автомата, поскольку автомат может переходить из состояния в состояние без чтения входного символа.

В качестве примера построим конечный автомат для регулярного выражения $(a \mid b^*)b$. Автоматы для a, b и c изображены на рис. 2.11, e. С помощью конструкции на рис. 2.12, e построим автомат для b^* , как показано на рис. 2.13, e. Затем с помощью конструкции на рис. 2.12, e0 построим автомат для e1, как показано на рис. 2.13, e6. Завершаем построение автомата с помощью конструкции на рис. 2.12, e6 для e1, e2, получив автомат, изображенный на рис. 2.13, e6.

Рис. 2.13. Построение автомата для выражения $(a \mid b^*)b$: a- для b^* ; b- для $a \mid b^*$; b- для $a \mid b^*$