CSC3631 Cryptography - Zero Knowledge

Thomas Gross

CSC3631 Cryptography - Zero-knowledge

1

How to create a certificate chain? $sign(sk_{c}, pk_{A}) \quad sign(sk_{A}, pk_{B})$ $Charlie \quad Alice \quad Bob \quad Dee \quad pk_{c} \quad pk_{A} \quad pk_{B}$ $(CA) \quad pk_{C} \quad pk_{A} \quad pk_{B} \quad pk_{C} \quad$

Certificate Verification Procedure

- 1. Acquire the authentic public key pk_c of the CA
- 2. Obtain an identifying string id_A which uniquely identifies party ${\bf A}$
- 3. Acquire over an unsecure channel the public-key certificate $pk_{\mathbf{A}}$ of party \mathbf{A} , agreeing with the identifying string $id_{\mathbf{A}}$.
- 4. Verify:
 - a) Current date and time against the validity period of pk_A
 - b) Current validity of CA's public key *pk*_C
 - c) Signature on A's certificate using the CA's pkc
 - d) Certificate on pk_A not revoked
- 5. If all checks succeed, accept pk_A in the certificate as authentic public key.

CSC3631 Cryptography – Digital Signatures

4

.

Roadmap

- The Notion of Zero-Knowledge
 - A Tale of Ali Baba
 - Interactive Proof Systems
 - Zero-Knowledge Proof of Knowledge
- The Schnorr Identification Protocol

Goal for today:

- What's the intuition behind zero-knowledge?
- How does a simple zero-knowledge protocol work?

CSC3631 Cryptography - Zero-knowledge

10

Problem Statement

How can we prove knowledge of a secret to a verifier without disclosing any information about the secret?

CSC3631 Cryptography - Zero-knowledge

14

Properties & Problems of SRP

- · Widely deployed, especially in OpenSSL
- No security proof exists.
- There exist precomputation attacks: Standardized SRP does not protect from server leaks, adversary can precompute values wrt. user salt and password dictionary.
- Timing attack:
 OpenSSL implementations of SRP attacked with offline dictionary attacks, based on non-constant time execution of a modular exponentiation.

[Braga, Fouque, Sabt. PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild. 2021]

CSC3631 Cryptography – Zero-knowledge

13

15

Roadmap

- The Notion of Zero-Knowledge
 - A Tale of Ali Baba
 - Interactive Proof Systems
 - Zero-Knowledge Proof of Knowledge
- The Schnorr Identification Protocol

Goal for today:

- What's the intuition behind zero-knowledge?
- How does a simple zero-knowledge protocol work?

CSC3631 Cryptography – Zero-knowledge

15

Ali Baba's Cave

A

A

Metaphor and graphic adapted from Quisquater et al., CRYPTO'98]

CSC3631 Cryptography – Zero-knowledge 18

Roadmap

- The Notion of Zero-Knowledge
 - A Tale of Ali Baba
 - Interactive Proof Systems
 - Zero-Knowledge Proof of Knowledge
- The Schnorr Identification Protocol

Goal for today:

- What's the intuition behind zero-knowledge?
- How does a simple zero-knowledge protocol work?

CSC3631 Cryptography – Zero-knowledge

22

Proof of Knowledge

How can Peggy prove that she knows a secret?

Completeness:

If the prover knows the secret, then the proof succeeds with overwhelming probability.

Soundness:

There exists a polynomial-time **knowledge extractor** M, such that if an adversary can execute the protocol successfully with non-negligible probability, then M can be used to extract from Eve the knowledge to run the protocol successfully.

CSC3631 Cryptography - Zero-knowledge

28

Roadmap

- The Notion of Zero-Knowledge
 - A Tale of Ali Baba
 - Interactive Proof Systems
 - Zero-Knowledge Proof of Knowledge
- The Schnorr Identification Protocol

Goal for today:

- What's the intuition behind zero-knowledge?
- How does a simple zero-knowledge protocol work?

CSC3631 Cryptography - Zero-knowledge

30

29

Zero-Knowledge Property

Zero-Knowledge:

There exists a polynomial-time **simulator** which can produce upon input of the assertions without access to the real prover, transcripts **indistinguishable** from those resulting from a protocol with a real prover.

CSC3631 Cryptography - Zero-knowledge

30

28

Roadmap

- The Notion of Zero-Knowledge
 - A Tale of Ali Baba
 - Interactive Proof Systems
 - Zero-Knowledge Proof of Knowledge
- The Schnorr Identification Protocol

Goal for today:

- What's the intuition behind zero-knowledge?
- How does a simple zero-knowledge protocol work?

CSC3631 Cryptography - Zero-knowledge

34

33

Schnorr Key Generation

How to create a strong setting for Schnorr?

 $GenSchnorr(1^n)$

Input: key length *n*

Create a cyclic group G, sub-group of $(\mathbf{Z}_p)^*$ with generator g with prime-order q.

Choose random x in \mathbf{Z}_q

Compute $y = g^x \pmod{q}$

Output: pk=(G, q, g, y), sk=(G, q, g, x)

CSC3631 Cryptography – Digital Signatures

Example Schnorr Identification Protocol

- **Setup:** prime modulus *p* = 48731 *q* = 443, *q* = 11444
- Private key x = 357, public key y = 45776
- Witness: r = 274, $t = q^r = 37123 \pmod{48731}$
- Challenge: *c* = 129
- Response: $s = r + cx = 255 \pmod{443}$
- Verification: $11444^{255} = 3712345776^{129} \pmod{48731}$

[Menezes. Chapter 10.4.4 Schnorr Identification Protocol. Note: example is changed slightly to match description]

CSC3631 Cryptography – Zero-knowledge 38

37

Is this Zero-Knowledge?

Let's build a simulator.

(Only considering honest prover and verifiers)

Choose $c, s \text{ in } \mathbf{Z}_q$ Compute $t = g^s / y^c$ (mod p)Output(t, c, s)transcript

Schnorr is Honest-Verifier Zero-Knowledge.

CSC3631 Cryptography – Zero-knowledge

Example Simulation

- Same setup as previous example
- Choose *c*, *s* first:
 - -c := 129
 - -s := 255
- Compute $t := g^s / y^c \pmod{p}$
 - $-t = 11444^{255} / 45776^{129} \pmod{48731}$
 - $-t = 11444^{255} (12806)^{-1} (mod 48731)$
 - $-t = 11444^{255} 10575 \pmod{48731} = 37123$

CSC3631 Cryptography - Zero-knowledge

40

40

Zero-Knowledge Proof Notation

We can prove knowledge of linear equations in the exponent.

To **prove knowledge** of a secret x and a relation to a public y, we write:

```
PK \{(x):

y = g^x \pmod{p}

}
```

CSC3631 Cryptography – Anonymou Credentials

42

Schnorr is also a Signature Scheme

Transformation of an Interactive Proof with Fiat-Shamir

Sign:

Choose random r; $t = g^r \pmod{p}$

Compute c = H(m | | t)

Compute $s = r - cx \pmod{q}$

Signature: $\sigma = (s, c)$

Verify:

Compute $t_V = g^s y^c \pmod{p}$ Check $c \stackrel{?}{=} H(m \mid |t_V)$

CSC3631 Cryptography - Zero-knowledge

4:

... and a Signature Scheme (Fiat-Shamir) sk=(G, q, g, x)pk=(G, q, g, y)Witness: $t = g^r \pmod{p}$ "random"c tr={B,(1)}t|< tq Challenge: $s = r - cx \pmod{q}$ Response: Peggy **SPK** {(**x**): (Signer) Victor (Verifier) $y = q^x \pmod{p}$ accept only if $t \stackrel{?}{=} g^s y^c$ $c \stackrel{?}{=} H(m||t)$ CSC3631 Cryptography - Zero-knowledge

Literature

Menezes et al.

Handbook of applied cryptography. 1997

http://cacr.uwaterloo.ca/hac/

Section 10.4.1 Overview of zero-knowledge concepts Section 10.4.4 The Schnorr identification protocol

CSC3631 Cryptography - Zero-knowledge

46

Summary

Schnorr protocol as simple zero-knowledge protocol.

Only zero-knowledge in presence of an honest verifier.

Can be transformed to a signature with **Fiat-Shamir heuristic**.

CSC3631 Cryptography - Zero-knowledge

4