Vision and Image Processing: Very Brief Recall on Derivatives

François Lauze

Department of Computer Science University of Copenhagen

VIP, 24.11.2021

Plan for this lecture

- Derivatives in 1D
- ▶ Derivatives in 2D/3D, Gradients

Outline

Derivatives in 1D

Derivatives in Several Variables

Secant : line joining two point on the graph of f. Slope between (x, f(x)) and (x + h, f(x + h)):

$$\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}$$

Derivative: limit of the slope when h o 0 (but h
eq 0!) Slope of the tangent at x

$$\frac{df}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative: a limit on the rate of change of a function.

Differentiable function

- f is differentiable at x if the limit above exists.
- f is differentiable if the limit exists for all x.

Differentiable function

- f is differentiable at x if the limit above exists.
- f is differentiable if the limit exists for all x.

Differentiable function

- f is differentiable at x if the limit above exists.
- f is differentiable if the limit exists for all x.

f(x) = |x| not differentiable at x = 0.

Derivatives and variations of a function

 $f'(x) \ge 0$: f is increasing around x

Derivatives and variations of a function

 $f'(x) \le 0$: f is decreasing around x

Null derivative

- $f'(x_1) = 0$, f is locally below its tangent: local maximum
- f'(x) > 0 if $x < x_1$ locally, f'(x) < 0 if $x > x_1$ locally.
- $ightharpoonup x_1$ is a local maximizer of f.

Null derivative

- $f'(x_2) = 0$, f is locally above its tangent: local minimum
- f'(x) < 0 if $x < x_2$ locally, f'(x) < 0 if $x > x_2$ locally.
- \triangleright x_2 is a local minimizer of f.

Null derivative

- $f'(x_3) = 0$, f is crosses its tangent. neither minimum nor maximum.
- f'(x) > 0 if $x < x_3$ locally, f'(x) > 0 if $x > x_3$ locally.
- x₃ is an inflection point.
- ▶ The opposite situation also possible: f'(x) < 0 if $x < x_3$ locally, f'(x) < 0 if $x > x_3$ locally. Make a picture!

Example: Derivative of x^n

Use the binomial formula

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
$$= a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n$$

Develop

$$\frac{(x+h)^n - x^n}{h} = \frac{x^n + hnx^{n-1} + h^2 \frac{n(n-1)}{2} x^{n-1} + \dots + h^n - x^n}{h}$$

$$= nx^{n-1} + \underbrace{h \left(\frac{n(n-1)}{2} x^{n-1} + \dots + h^{n-2}\right)}_{\text{goes } \to 0 \text{ when } h \to 0}$$

The limit when $h \to 0$ is nx^{n-1} .

Some Classical Formulas

function	derivative	domain/remark
χ^{α}	$\alpha x^{\alpha-1}$	if α is not an integer, x should be > 0
e ^x	e ^x	$x \in \mathbb{R}$
ln x	$\frac{1}{x}$	x > 0
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	special case of first rule with $\alpha = \frac{1}{2}$, $x > 0$
cos x	— sin <i>x</i>	$x \in \mathbb{R}$
sin x	cos x	$x \in \mathbb{R}$
tan x	$\frac{1}{\cos^2 x}$	$x \neq k \pm \frac{\pi}{2}, k \in \mathbb{Z}$
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	-1 < x < 1
arccos x	$-\frac{1}{\sqrt{1-x^2}}$	-1 < x < 1
arctan x	$\frac{1}{1+x^2}$	$x \in \mathbb{R}$

Example: Derivative of a Product - Leibniz Rule

Rule for differentiating $x \mapsto f(x)g(x)$. Write secant ratios:

Example: Derivative of a Product – Leibniz Rule

Rule for differentiating $x \mapsto f(x)g(x)$. Write secant ratios:

$$\frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \frac{f(x+h)(g(x+h) - g(x)) + (f(x+h) - f(x))g(x)}{h}$$

$$= f(x+h)\frac{g(x+h) - g(x)}{h} + \frac{f(x+h) - f(x)}{h}g(x)$$

Example: Derivative of a Product – Leibniz Rule

Rule for differentiating $x \mapsto f(x)g(x)$. Write secant ratios:

$$\frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \frac{f(x+h)(g(x+h) - g(x)) + (f(x+h) - f(x))g(x)}{h}$$

$$= f(x+h)\frac{g(x+h) - g(x)}{h} + \frac{f(x+h) - f(x)}{h}g(x)$$

At the limit when $h \to 0$,

► The first term

$$f(x+h)\frac{g(x+h)-g(x)}{h} \to f(x)g'(x)$$

▶ The second term

$$\frac{f(x+h)-f(x)}{h}g(x)\to f'(x)g(x)$$

▶ We get Leibniz Rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).

Classical Rules for Computing Derivatives

·	1 1 1	
function	derivative	rule name
$\lambda f(x)$	$\lambda f'(x)$	scalar multiplication rule
f(x) + g(x)	f'(x) + g'(x)	sum rule
f(x)g(x)	f'(x)g(x) + f(x)g'(x)	Leibniz rule
$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$	quotient rule
f(g(x))	f'(g(x))g'(x)	chain rule
$e^{f(x)}$	$f'(x)e^{f(x)}$	exponentiation rule (chain rule!)
$\ln f(x) $	$\frac{f'(x)}{f(x)}$	logarithm rule
$(f(x)g(x))^{\prime\prime}$	f''(x)g(x) + 2f'(x)g'(x) + g''(x)	iterated Leibniz rule

f''(x) is the derivative of f'(x) at x. Second (order) derivative of f.

A Not That Simple Example: $f(x) = x \cos(e^{\sin(x)})$

$$\begin{split} f'(x) &= g'(x)h(x) + g(x)h'(x) & \text{(Leibniz rule)} \\ &= \cos(e^{\sin(x)}) + xh'(x) & \text{(} g'(x) = 1) \end{split}$$

▶ Write h(x) as I(m(x)) with $I(x) = \cos(x)$, $m(x) = e^{\sin(x)}$.

$$h'(x) = l'(m(x))m'(x)$$
 (chain rule)
= $-\sin(m(x))m'(x)$ (cos'(x) = $-\sin(x)$)

• Use Exponential rule $e^{a(x)} = a'(x)e^{a(x)}$ for $m(x) = e^{\sin(x)}$

$$\left(e^{\sin(x)}\right)' = \cos(x)e^{\sin(x)}, \quad (\sin'(x) = \cos(x))$$

Reassemble the parts

$$f'(x) = \cos(e^{\sin(x)}) - x\sin(e^{\sin(x)})\cos(x)e^{\sin(x)}$$

• Given *n* real numbers x_1, \ldots, x_n .

- ▶ Given *n* real numbers $x_1, ..., x_n$.
- Classical Arithmetic Mean

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Given *n* real numbers x_1, \ldots, x_n .
- ► Classical Arithmetic Mean

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance function $V(x) = \frac{1}{2n} \sum_{i=1}^{n} (x - x_i)^2$.

- Given *n* real numbers x_1, \ldots, x_n .
- Classical Arithmetic Mean

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- ▶ Variance function $V(x) = \frac{1}{2n} \sum_{i=1}^{n} (x x_i)^2$.
- ▶ When is the derivative 0?

$$V'(x) = \frac{1}{2n} \sum_{i=1}^{n} \frac{d(x - x_i)^2}{dx} = \frac{1}{2n} \sum_{i=0}^{n} 2(x - x_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x - x_i) = \frac{1}{n} \sum_{i=1}^{n} x - \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$= x - \mathbf{x}$$

- Given *n* real numbers x_1, \ldots, x_n .
- Classical Arithmetic Mean

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- ▶ Variance function $V(x) = \frac{1}{2n} \sum_{i=1}^{n} (x x_i)^2$.
- ▶ When is the derivative 0?

$$V'(x) = \frac{1}{2n} \sum_{i=1}^{n} \frac{d(x - x_i)^2}{dx} = \frac{1}{2n} \sum_{i=0}^{n} 2(x - x_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x - x_i) = \frac{1}{n} \sum_{i=1}^{n} x - \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$= x - \mathbf{x}$$

V'(x) = 0 if and only if x = x. Minimum? Maximum? Inflection point?

- Given *n* real numbers x_1, \ldots, x_n .
- Classical Arithmetic Mean

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- ▶ Variance function $V(x) = \frac{1}{2n} \sum_{i=1}^{n} (x x_i)^2$.
- ▶ When is the derivative 0?

$$V'(x) = \frac{1}{2n} \sum_{i=1}^{n} \frac{d(x - x_i)^2}{dx} = \frac{1}{2n} \sum_{i=0}^{n} 2(x - x_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x - x_i) = \frac{1}{n} \sum_{i=1}^{n} x - \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$= x - \mathbf{x}$$

- V'(x) = 0 if and only if x = x. Minimum? Maximum? Inflection point?
- Minimum! Why?

- Given *n* real numbers x_1, \ldots, x_n .
- Classical Arithmetic Mean

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Variance function $V(x) = \frac{1}{2n} \sum_{i=1}^{n} (x x_i)^2$.
- ▶ When is the derivative 0?

$$V'(x) = \frac{1}{2n} \sum_{i=1}^{n} \frac{d(x - x_i)^2}{dx} = \frac{1}{2n} \sum_{i=0}^{n} 2(x - x_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x - x_i) = \frac{1}{n} \sum_{i=1}^{n} x - \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$= x - \mathbf{x}$$

- V'(x) = 0 if and only if x = x. Minimum? Maximum? Inflection point?
- ► Minimum! Why?
- ▶ The arithmetic mean is the *unique* point where V(x) is minimum!

Outline

Derivatives in 10

Derivatives in Several Variables

Partial derivatives

- ▶ Function $(x, y) \in \mathbb{R}^2 \mapsto f(x, y) \in \mathbb{R}$: two variables x and y.
- ▶ partial derivative $\frac{\partial f}{\partial x}(x,y)$ in x-direction: derivative of $x \mapsto f(x,y)$.

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to \mathbf{0}} \frac{f(x+h,y) - f(x,y)}{h}$$

▶ partial derivative $\frac{\partial f}{\partial x}(x,y)$ in y-direction: derivative of $y \mapsto f(x,y)$

$$\frac{\partial f}{\partial y}(x,y) = \lim_{h \to \mathbf{0}} \frac{f(x,y+h) - f(x,y)}{h}$$

- if partial derivatives exist at (x₀, y₀) f is differentiable at (x₀, y₀).
- ▶ if partial derivatives exist everywhere, *f* is *differentiable*.
- Example $f(x, y) = x^2 + y^2$ (squared Euclidean distance).
- ▶ Partial derivatives $\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = 2y$
- f is differentiable.
- ► Euclidean distance: Is $f(x, y) = \sqrt{x^2 + y^2}$ differentiable?

Example $f(x, y) = \frac{xy}{1+x^2+y^2}$

- Partial derivatives
- ightharpoonup in x

$$\frac{\partial f}{\partial x} = \frac{y(1-x^2+y^2)}{(1+x^2+y^2)^2}$$

▶ in *y*

$$\frac{\partial f}{\partial x} = \frac{x(1+x^2-y^2)}{(1+x^2+y^2)^2}$$

Computation in x. y supposed to be fixed: Using quotient rule, power rule,

$$\frac{\partial f}{\partial x}(x,y) = \frac{\frac{\partial xy}{\partial x}(1+x^2+y^2) - xy\frac{\partial(1+x^2+y^2)}{\partial x}}{(1+x^2+y^2)^2}$$
$$= \frac{y(1+x^2+y^2) - xy(2x)}{(1+x^2+y^2)^2} = \frac{y(1-x^2+y^2)}{(1+x^2+y^2)^2}$$

▶ Differential of f(x, y): the *line vector* made of partial derivatives.

$$Df(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

▶ Differential of f(x, y): the *line vector* made of partial derivatives.

$$Df(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

▶ Gradient of f(x, y): the *column vector* made of partial derivatives.

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = Df(x,y)^T$$

▶ Differential of f(x, y): the *line vector* made of partial derivatives.

$$Df(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

▶ Gradient of f(x, y): the *column vector* made of partial derivatives.

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = Df(x,y)^T$$

▶ Difference between Differential and Gradient: not too much in this course!

▶ Differential of f(x, y): the *line vector* made of partial derivatives.

$$Df(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

▶ Gradient of f(x, y): the *column vector* made of partial derivatives.

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = Df(x,y)^T$$

▶ Difference between Differential and Gradient: not too much in this course!

▶ Differential of f(x, y): the *line vector* made of partial derivatives.

$$Df(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

▶ Gradient of f(x, y): the *column vector* made of partial derivatives.

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = Df(x,y)^T$$

▶ Difference between Differential and Gradient: not too much in this course!

 $ightharpoonup \nabla f(x,y)^T \nabla f(x,y) = \|\nabla f(x,y)\|^2$: length of gradient vector.

Gradients and Critical Points

A point (x, y) is *critical* for f if $\nabla f(x, y) = \vec{0}$. Minima, Maxima, Saddle points...

- ▶ All the three functions have only one critical point, at (x, y) = (0, 0).
- ► For f: minimum
- ► For g: maximum
- For h: saddle point.

Fact: The gradient points in the direction of the steepest ascent of the function.

Fact: The gradient points in the direction of the steepest ascent of the function. Its opposite points in the direction of steepest descent.

Fact: The gradient points in the direction of the steepest ascent of the function. Its opposite points in the direction of steepest descent.

What can this be useful for?

Fact: The gradient points in the direction of the steepest ascent of the function. Its opposite points in the direction of steepest descent.

What can this be useful for? Optimization - gradient descent!

Second order derivatives

Second order derivatives in x: Different combinations

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial f}{\partial x}, \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial f}{\partial y}$$

Mixed Partial Derivatives: (equality from Schwarz' Theorem)

$$\frac{\partial^2 f}{\partial xy} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial yx}$$

Hessian matrix of f: symmetric matrix (still function of x and y)

$$\operatorname{Hess} f = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial xy} \\ \frac{\partial^2 f}{\partial xy} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

Laplacian of f:

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \text{Trace Hess } f$$

Some Examples

 $\blacktriangleright \text{ Hessian of } f(x,y) = x^2 + y^2$

$$\mathsf{Hess}\, f = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2\mathit{I}_2, \quad \mathit{I}_2 = 2 \times 2\text{-identity matrix}$$

 $ightharpoonup \Delta f = 4.$

► Hessian of $f(x,y) = \frac{xy}{1+x^2+y^2}$: not as nice as previous one!

$$\operatorname{Hess} f = \frac{1}{(x^2 + y^2 + 1)^3} \begin{bmatrix} 2xy\left(x^2 - 3y^2 - 3\right) & 6x^2y^2 - x^4 - y^4 + 1 \\ 6x^2y^2 - x^4 - y^4 + 1 & -2xy\left(3x^2 - y^2 + 3\right) \end{bmatrix}$$

Laplacian of f

$$\Delta f = -\frac{4xy(x^2 + y^2 + 3)}{(x^2 + y^2 + 1)^3}$$

In More Variables

Function $f(x_1, x_2, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$.

▶ Partial Derivative w.r.t x_i

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)}{h}$$

- ▶ The same, but we need more letters!
- Differentials, Gradients:

$$Df = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right), \quad \nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)^T$$

Hessian: n × n symmetric matrices

$$\mathsf{Hess}\,f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \frac{\partial^2 f}{\partial x_1 x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_1 x_n} & \frac{\partial^2 f}{\partial x_2 x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Laplacian

$$\nabla f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x^i}$$

That's all Folk!