#### **Dataset Details**

• Source: data.fingrid.fi

Dataset ID: 191

• Name: Hydropower production in Finland (real-time)

• **Description:** Total electricity production from all hydropower plants connected to the Finnish grid, measured every 3 minutes.

Unit: MW (megawatts)

• Aggregation level: National total — i.e., sum of all hydropower plants in Finland.

#### Why I'm Ingesting This

- It's the **real-time operational dataset** in the pipeline.
- I'll use it to:
  - Monitor current hydropower generation.
  - Compute **observed capacity factor** by comparing with total installed capacity (from metadata).
  - o Compare against **modeled capacity factors** (from Zenodo) as a baseline.

#### **How It Fits in the Architecture**

| Layer  | Dataset                                 | Purpose                                                  |
|--------|-----------------------------------------|----------------------------------------------------------|
| Bronze | Fingrid Dataset #191 (raw JSON via API) | Raw ingestion of live hydropower data (3-min frequency). |
| Silver | Aggregated hourly averages              | Cleansed and aligned for comparison with Zenodo data.    |
| Gold   | Joined with metadata + Zenodo           | Compute efficiency, capacity factor, and deviations.     |

So the Fingrid data that I'm pulling in the Spark notebook is **dataset 191: Hydropower production in Finland (real-time)** — the live, national-level measurement of hydropower generation in megawatts.

**©** The Goal of Project

**Not** trying to build a massive time-series database of 40+ years of hydropower data. Instead, building a **proof-of-concept energy data platform** in **Microsoft Fabric** that demonstrates:

- Cloud-native data engineering (Bronze → Silver → Gold)
- ✓ Integration of real-time, historical, and metadata sources
- ✓ Computation of key hydropower KPIs (like capacity factor & efficiency)
- ✓ Visualization and automation (CI/CD, Power BI)

#### So, Why These Specific Datasets?

## 1 Fingrid API – 10 Days of Real-Time Data

- This is the "operational data feed."
- Purpose:
  - o To simulate real-time ingestion into the Fabric Lakehouse (Bronze → Silver).
  - o To demonstrate streaming / incremental updates.
  - To calculate current capacity factor (actual generation ÷ installed capacity).
- No need years of Fingrid data 10 days is enough to show:
  - o ETL ingestion pipeline
  - Spark transformations
  - o Real-time dashboarding
- 👉 It's the "real, changing data stream."

#### Zenodo Dataset – Historical Modeled Capacity Factors (1981–2010)

- This is the "historical climate baseline."
- Purpose:
  - o To **provide context**: what's "normal" hydropower performance for Finland?
  - o To train or compute seasonal averages (baseline by month/hour).
  - o To compare current performance vs. historical norms.
- Even though it ends in 2010, it gives us 30 years of hourly data plenty to build monthly or seasonal averages.
- 👉 It's our "climate potential reference."

# 3 Hydropower Metadata – Static Plant Information

- This is our "structural data."
- Purpose:
  - o To get total installed capacity of Finnish hydropower plants (MW).
  - o To classify by type (run-of-river, storage, pumped).
  - o To compute observed capacity factor for Fingrid data.

👉 It's our "dimension table / lookup table."

# What I Compute / Analyze (The Final Output)

| Analysis                              | Formula / Logic                               | Data Source(s)        |
|---------------------------------------|-----------------------------------------------|-----------------------|
| Observed Capacity Factor              | Fingrid generation / total installed capacity | Fingrid +<br>Metadata |
| Historical Capacity Factor (baseline) | Average Zenodo CF (1981–2010) by month/hour   | Zenodo                |
| Deviation / Anomaly                   | Observed CF – Historical CF                   | All three             |
| Type-based Efficiency                 | Compare storage vs. run-of-river trends       | Metadata +<br>Zenodo  |
| Seasonal Insights                     | Monthly average performance vs. baseline      | All three             |

Then visualize all of this in **Power BI dashboards** (Gold layer).

### What I'm Proving

By doing this, I'm demonstrating that I can:

- 1. **Design a modern data platform** multi-source ingestion, transformation, storage, analytics.
- 2. Handle real-time + historical data integration (a core use case in energy companies).
- 3. Work cloud-natively in Microsoft Fabric with Spark, Delta, CI/CD.
- 4. Deliver business insight "Are we producing as efficiently as our long-term climate potential allows?"

That's exactly what an energy-sector data engineering clients want to see.



Not building a production-scale forecast system.

I'm building a realistic, cloud-native data platform prototype that:

Combines live hydropower output, long-term climate-based potential, and plant metadata to analyze operational efficiency and climatic deviations.

#### Hydropower Data Platform Purpose & KPI Flow

