

2G & 3G **Subscriber Security** C1601 P1 Security Training

Agenda

- 2G network architecture
- GSM and the CS domain
- GPRS, EDGE and the PS domain
- 2G network security
 - 2G subscriber authentication
 - GSM security activation
 - GPRS authentication and security activation
 - Temporary identifiers
- Attacks against 2G networks
- 3G network architecture
- 3G network security
 - o 3G subscriber authentication
 - UMTS security activation
- Attacks against 3G networks
- Conclusion

2G network architecture

GSM network architecture

GSM - GPRS network architecture

GSM and the CS domain

Initial 2G network services

- Initial technical specifications worked on at the end of the 80's
 - Mostly by Germany, France and UK
- Circuit-switched network
 - Connect calls from / to mobile terminal
 - Interconnect with the fixed telephony infrastructure (PSTN)
- Digital radio interface
 - 200 kHz bandwidth per channel (or ARFCN: Absolute Radio Frequency Channel Number)
 - GMSK modulation
 - FDD: separated uplink and downlink bands
 - GSM 900 (45 MHz duplex spacing), GSM 1800 (95 MHz duplex spacing)
 - GSM 850 and 1900 in North America
 - TDMA (Time Division Multiple Access)
 - Subscribers multiplexed into different time-slots
- SIM cards for handling subscriber's authentication

TDMA multiplexing (GSM and EDGE)

GSM channel types

- Different types of GSM channels defined
- Downlink-only
 - BCCH (Broadcast Control Channel), DL-only
 - broadcasts network settings and configuration (PLMN network codes, LAC, CellID, neighbouring cells...)
- Downlink and Uplink
 - CCCH (Common Control Channel)
 - Paging and channel assignment in the DL, RACH in the UL
 - SDCCH (Standalone Dedicated Control Channel)
 - Optionally with SACCH (Slow Associated Control Channel)
 - TCH (Traffic Channel)
 - TCH/F: Full-Rate, TCH/H: Half-Rate, supporting encoded voice
 - Optionally with FACCH (Fast Associated Control Channel) or SACCH
- Channel hopping for frequency diversity
- See <u>3GPP TS 45.001</u>

Circuit-Switched domain

- Connect calls within / between Mobile Switching Centers
- Handle UE mobility
 - Idle mobility: tracking inactive subscribers
 - At the LAC level within VLR
 - At the MSC/VLR level within HLR
 - Active mobility / handovers: support subscriber's mobility without interrupting on-going calls
 - change of BTS/BSC (handled within the MSC/VLR)
 - change of MSC/VLR (handled between MSCs/VLRs)
- Authenticate subscribers, because MNOs
 - want accurate billing
 - do not want to be frauded
- Short Message Service
 - enable exchange of short messages between subscribers, carried over the signaling

GPRS, EDGE and the PS domain

Introduction of GPRS

- "General Packet Radio Service"
- Reuse the GSM air interface (Um) to enable connectivity to packet-based applications (e.g. the Internet)
 - Define new TDMA channel types for packet service
 - 8 to 20 kbit/s per time-slot
 - Aggregate multiple slots to provide more bandwidth
 - Then enhance it with EDGE
 - 8-PSK modulation and more multiplexing: 8 to 60 kbit/s per time-slot, up-to 4 time-slots aggregated
- New mobile core network equipments PS domain
 - SGSN (Serving GPRS Support Node) and GGSN (Gateway GPRS Support Node)
 - UE connects to the PS domain in parallel to the CS domain
 - 2 distincts mobility and security contexts
 - GPRS adds RAC (Routing Area Code) in addition to GSM LAC

GPRS services

- Subscribers connect to APNs (Access Point Name)
 - Corresponds to a route from a GGSN to a data network
 - Access to a given APN depends on the subscription (stored within the HLR)
 - And eventually a PAP or CHAP login / password
- Network encapsulates subscribers' data (e.g. IP packets) within the GTP protocol to the Gi interface
 - o GTP: GPRS Tunneling protocol (IP infrastructure / UDP / IP subscriber)
- Subscriber connection can be routed locally (directly within the visited network), or home-routed (through the home network)
 - Home-routing is often required by regulators due to law intercept requirements

GPRS connectivity to APN

2G Network Security

2G subscriber authentication

- Based on a symmetric key Ki
 - Shared between the AuC and the SIM card
 - o 128 bit
- Simple challenge (RAND) response (RES) protocol
 - Generate a shared session key Kc as side effect
- Few variants of the cryptographic algorithm
 - COMP-128-1: 56 bit Kc, algorithm broken and public tool to retrieve Ki from SIM
 - OMP-128-2: 56 bit Kc, fix cryptographic problem with the 1st version
 - o COMP-128-3: 64 bit Kc
- New algorithm adapted from the 3G authentication protocol
 - Milenage-2G: AES-based, provided as a recommendation (and not a specification)
- No authentication of the network to the subscriber
 - o Do not forget, this was the end of the 80's!

GSM subscriber authentication

GSM subscriber authentication (2)

Encryption of channels for CS services

- GSM CS services are encrypted at a very low radio layer
 - TCH and SDCCH radio burst between the UE and the BTS are encrypted
- 2 initial algorithms defined for encryption:
 - Using a 64 bits symmetric key
 - o A5/1: main GSM ciphering algorithm, stream-cipher, LFSR-based
 - Broken since the early 2000's, a public tool for cryptanalysis available since 2009
 - Still in use today
 - A5/2: "trapped" GSM ciphering algorithm, stream-cipher, LFSR-based
 - Broken since the early 2000's with a public tool for cryptanalysis straight
 - Not supported by handsets since 2007 / 2008.
- New algorithms derived from the work done for UMTS security
 - o based on Kasumi, block-cipher
 - A5/3: 64 bit variant, today widely deployed and used
 - A5/4: 128 bit variant, rarely supported and not deployed at all
- Encryption is not mandatory, but a MNO decision and configuration
 - A5/0: actually no encryption

GSM security activation

GSM security activation (2)

GSM security activation (3)

Encryption of GPRS links

- GPRS services encrypted at the logical link layer
 - LLC link between the UE and the SGSN is encrypted
- 2 initial algorithms defined for encryption:
 - Using a 64 bits symmetric key
 - GEA1: "trapped" GPRS ciphering algorithm, stream-cipher, LFSR-based
 - Known to be weak since 2011
 - "Officially" broken since 2021, public tools for cryptanalysis available
 - Little used today
 - GEA2: main GPRS ciphering algorithm, stream-cipher, LFSR-based
 - Not weakened like GEA1! May still be used in some networks
- New algorithms derived from the work done for UMTS security
 - based on Kasumi, block-cipher, used in a counter mode (mimicking a stream-cipher)
 - GEA3: 64 bit variant, widely deployed and used today
 - GEA4: 128 bit variant, rarely supported and deployed
- Encryption is not mandatory, but a MNO decision and configuration
 - GEA0: actually no encryption

GPRS authentication and security activation

GPRS authentication and security activation (2)

GPRS authentication and security activation (3)

Temporary identifiers

- As soon as GSM radio channel or GPRS link is encrypted, the network assigns a temporary identity to the subscriber
 - TMSI assigned by the MSC/VLR
 - P-TMSI assigned by the SGSN
- From here, the UE will use this temporary identity to identify itself to the network
 - Specifically in signaling message, before activation of the ciphering
- This prevents passive tracking of network subscribers through their IMSI
- It is renewed on a regular basis: e.g. every 2 to 4 hours
 - Depends on the MNO configuration

Attacks against 2G networks

Tracking 2G subscribers

Passive tracking:

- IMSI is sometimes requested in clear-text
- IMEI (in the CS domain) and IMEI-SV are also often requested in clear-text by MSC/VLR and SGSN

Semi-passive tracking:

- TMSI is often not renewed after each active connection.
- Enables the tracking of a given MSISDN, by correlating TMSI paged by the network after a few "silent" calls

Active tracking:

IMSI-catcher: simply fakes a legitimate BTS and requests IMSI, IMEI and TMSI of all surrounding UEs

Open-source tools for 2G air interface monitoring

- o <u>osmocom-bb</u>
- o <u>gr-gsm</u>

Breaking 2G encryption

2G encryption is globally outdated

- o 64 bit keys
- Initial algorithms with LFSR design from the 80's
- No support for 128 bit keys algorithms in recent handsets

Open-source tools exist to break A5/1 and A5/2 encryption

- A5/2: real-time cracking with no significant processing
- A5/1: almost real-time cracking, using rainbow tables (~1.8TB) and a GPU

GSM encryption is badly designed

- Stream-cipher, many known plain-text (SI in SACCH frames, padding bits)
- Error correction code encrypted
- Presentation (from Blackberry at Defcon 2019) about cracking A5/3 with rainbow tables

GPRS encryption is also supposed to be badly designed

- GEA1 and GEA2 specifications was not public
- Cryptanalysis from 2021: revealed GEA1 has intentional weakness and GEA2 is still weak
- Open-source tools:
 - https://github.com/P1sec/gea-implementation
 - https://github.com/airbus-seclab/GEA1_break

2G security is outdated

- No network-to-subscriber authentication
 - Fake base-stations are straightforward
 - Capture surrounding subscribers of a given PLMN
 - Obtain their identification
 - Relay / intercept their GSM and GPRS traffic
 - Inject any signaling (SMS) and traffic (web pages, media files)
- Many open-source software for 2G network emulation
 - OpenBTS
 - YateBTS
 - Osmocom stack
- No integrity-protection of the RRC / NAS signaling
 - o enables clever (less detectable) attacks, by e.g. modifying UE security capabilities

3G Network Architecture

3G Network Architecture

Principles of UMTS

Entire rework of the radio interfaces and RAN equipments

- WCDMA for base-stations and subscribers multiplexing
- 5 MHz bandwidth per channel
 - QPSK (UMTS), 16-QAM and 64-QAM (HSPA)
- o FDD mode: 2100 MHz downlink, 1900 MHz uplink
- Rationalization of RAN interfaces and procedures

Reuse of the CS and PS core domains

- No new services compared to GSM / GPRS networks
- Just an higher throughput for data connection and crystal-clear CS calls!

New security procedures

- New mutual authentication protocol: USIM application onto SIM card
- Integrity-protection of the signaling

3G Network Security

3G-AKA authentication properties

Mutual authentication

- Single challenge response roundtrip
- Anti-replay mechanism, based on a 48 bit counter SQN
- Network-to-subscriber authentication based on a Message Authentication Code MAC-A,
 - using K, over {RAND, SQN, AMF}
- Subscriber-to-network authentication based on a Message Authentication Code RES,
 - using K, over {RAND}
- Two 128 bit keys {Ck, Ik} produced as side effect
 - To be used for ciphering and integrity-protection of the radio connection

Resynchronization procedure

- In case the SQN in the USIM shifted from the SQN in the AuC
- USIM outputs its own SQN value, masked, to be processed by the AuC

Efficient implementation proposal

Milenage: using AES as internal cryptographic function

3G subscriber authentication

3G subscriber authentication (2)

Cryptographic protection of 3G connections

- All CS and PS services are handled in a uniform way at the radio interface
 - Parallel security contexts still exist
 - Protection of the radio interface between the UE and the RNC
- Initial algorithms defined for UMTS
 - Kasumi: 64 bit block-cipher with 128 bit key
 - UEA1: counter mode for encryption of both dedicated signaling and traffic channels with key Ck
 - UIA1: MAC mode for integrity protection for dedicated signaling channels with key Ik
- Second algorithms developed in 2007
 - SNOW-3G: stream-cipher with 128 bit key
 - Used as is for encryption (UEA2) and in a specific MAC mode for integrity-protection (UIA2)
 - Reused in LTE
- Encryption is not mandatory, but a MNO decision and configuration
 - UEA0: actually no encryption
- Integrity-protection of the signaling mandatory in all cases!
 - Except for emergency calls in LSM (Limited Service Mode)

UMTS security activation

UMTS security activation (2)

UMTS security activation (3)

Attacks against 3G networks

Not as many as in 2G, but still

- Passive, semi-active tracking still possible on 3G
 - However no open-source stack to do this
- Push surrounding handsets to fallback to GSM / GPRS
 - Jamming 3G frequencies (distincts from 2G)
 - Install a fake 3G base-station redirecting UE to a fake 2G base-station
 - OpenBTS-UMTS
 - Potentially catching IMSI, IMEI and TMSI too
- Mutual authentication and integrity-protection of the signaling in 3G saves from traffic interception with a fake 3G base-station
 - Attacker need a legitimate RNC from a MNO to access clear-text 3G traffic
 - Why not try a femtocell ?
- If you have access to a roaming interconnect
 - Attacker can obtain legitimate authentication vectors
 - Attacker's NodeB / RNC / femtocell setup becomes legitimate from the subscriber perspective

Conclusion

Conclusion

2G networks are largely insecure

- Many possible attacks
- Many low cost equipments and open-source tools available

3G networks are more secure

- Most of the issues from 2G are addressed
- Need to compromise legitimate femtocells, or access SS7 signalling, for intercepting 3G traffic
- Protocol complexity leads to software bugs and potential vulnerable implementations
 - Both on handsets and network equipments
 - UE are multi-mode (support both 2G and 3G)

Questions?

Thank you for attention!

contact@p1sec.com