Direct Proofs Example

Definition: The arithmetic mean of two real numbers a and b is (a+b)/2.

Definition: The geometric mean of two positive real numbers a and b is $\sqrt{(ab)}$.

Proposition: If a and b are positive real numbers, then the geometric mean of a and b is less than or equal to their arithmetic mean.

Proposition: If a and b are positive real numbers, then the geometric mean of a and b is less than or equal to their arithmetic mean.

Proposition: If a and b are positive real numbers, then:

Problem Solving Phase

Show: $\sqrt{ab} \leq (a+b)$ $\sqrt{2}$?? Lema: $a \geq b$ then $a^2 > b^2$?? $ab \leq (a+b)^2$ Need to know: $4ab \leq (a+b)^2 = a^2 + 2ab + b^2$ $5a \geq b^2$

Isolating the needed lemma

Lemma: If a and b are positive, and $a \le b$, then $\sqrt{a} \le \sqrt{b}$ where \sqrt{x} denotes the positive square root of x.

Given
$$b-\alpha \ge 0$$
 Want $\sqrt{b}-\sqrt{a} \ge 0$

KNOW $\sqrt{a}+\sqrt{b} \ge 0$
 $(\sqrt{a}+\sqrt{b})(\sqrt{b}-\sqrt{a}) = b-a = (\sqrt{b})^2-(\sqrt{c})^2$
 $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b}) = b-a$
 $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b}) = b-a$
 $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b}) = b-a$

Given and bya. Therefore b-a >0. Therefore

b-a = (15+12)(15-12)>0. Since 15+12>0

we can divid both sides of this acquily by 15+12

To Obtain 15-12>0 50 15>12.

The proof

Proposition: If a and b are positive real numbers, then:

$$\sqrt(ab) \le \frac{(a+b)}{2}$$

Proof:

We know that $(a-b)^2 \ge 0$. Therefore $a^2 + b^2 - 2ab \ge 0$ and so $a^2 + b^2 \ge 2ab$. Add 2ab to both sides to obtain $a^2 + 2ab + b^2 \ge 4ab$ so $(a+b)^2 \ge 4ab$. Both sides of this inequality are positive, since the left side is a square the right side is a product of positive numbers. Now apply the lemma to take the square root of both sides to obtain

$$(a+b)\geq 2\sqrt{ab}.$$

Dividing both sides by 2 yields the desired result.