رمزنگاری نامتقارن(کلید عمومی)

Asymmetric (Public Keyl Encryption

اصغراصل اصغریان - دانشگاه امرومیر

فهرست مطالب

- 🗗 مبانی رمزنگاری کلید عمومی
- 🗗 کاربردها و مقایسه با رمزنگاری متقارن
 - **B** الگوريتم رمز RSA
 - 🗗 پروتکل دیفی هلمن
 - (ElGamal) الگوريتم رمزالجمل

نیازمندیهای منجر به رمزنگاری کلید عمومی

- ط کلیدهای رمزنگاری و رمزگشایی متفاوت اما مرتبط باشند
- ط رسیدن به کلید رمزگشایی از کلید رمزگذاری از لحاظ محاسباتی ناممکن باشد □ در عمل ممکن ولی سخت است
- □ رمزگذاری امری همگانی است و باید بدون نیاز به اطلاعات محرمانه مشترک ممکن باشد(در کاربردهای حفظ محرمانگی)
- ◘ رمزگشایی امری اختصاصی است و باید فقط توسط صاحب پیام ممکن باشد (در
 کاربردهای حفظ محرمانگی)
 - △ دیفی و هلمن اولین بار در سال ۱۹۷۶ یک راه راه حل ارائه کردند

Bailey Whitfield Diffie (1944 –)

Martin Edward Hellman (1945 –)

نمادها و قراردادها

- این کلید را برای شخص A با PU_a نشان میدهیم $oxedsymbol{\square}$
 - 🗗 کلید خصوصی:کلید رمز گشایی(در حفظ محرمانگی)
- این کلید را برای شخص A با PR_a نشان می دهیم \Box

نیازمندی های رمزنگاری کلید عمومی

- از نظر محاسباتی برای طرف A، تولید یک زوج کلید آسان باشد: \Box
 - PR_a کلید عمومی و PU_a کلید عمومی lacktriangleright
 - ط برای فرستنده تولید متن رمز آسان باشد:

$$C=E_{PU_a}(M)$$

ط برای گیرنده رمزگشایی با استفاده از کلید متناظر آسان باشد:

$$M=D_{PR_a}(C)=D_{PR_a}(E_{PU_a}(M))$$

🗗 نیازمندیهای امنیتی:

- از نظر محاسباتی به دست آوردن کلید خصوصی PR_a ، با دانستن کلید عمومی Pu_a غیر ممکن باشد
 - بازیابی پیام M با دانستن، متن رمز C و کلید عمومی PU_a غیرممکن باشد oxdot

مراحل رمزنگاری کلید عمومی

- 🗗 هر کاربر یک زوج کلید عمومی و خصوصی تولید می کند
- ط کاربران کلید عمومی خود را به صورت عمومی اعلان می کنند در حالی که کلید خصوصی مخفی نگه می دارند
- همگان قادر به ارسال پیام رمز شده برای هر کاربر دلخواه با استفاده از کلید عمومی او هستند
- هر کاربر میتواند با کمک کلید خصوصی پیامهایی که با کلید عمومی او رمز شده رمز گشایی کند

رمزگذاری و رمز گشایی با کلید عمومی

فهرست مطالب

- 🗗 مبانی رمزنگاری کلید عمومی
- 🗗 کاربردها و مقایسه با رمزنگاری متقارن
 - RSA الگوريتم رمز
 - 🗗 پروتکل دیفی هلمن
 - (ElGamal) الگوريتم رمزالجمل

کاربردهای رمز نگاری کلید عمومی

- 🗗 رمز گذاری /رمز گشایی:
- 🗗 برای حفظ محرمانگی
 - 🗗 امضای دیجیتال (رقمی):
- 🗈 برای حفظ صحت پیام
- 🗗 و برای معین نمودن فرستنده پیام (پیوند دادن پیام با امضا کننده)
 - 🗗 عدم انکار
 - 🗗 توزیع کلید:
- ارتباط برای توافق طرفین روی کلید مخفی نشست,قبل از برقراری ارتباط

چند نکته درباره رمز نگاری کلید عمومی

- ط کلیدهای این نوع از الگوریتمها, اغلب بسیار طولانی تر از الگوریتمهای رمز متقارن هستند
- الگوریتم RSA با پیمانه ۱۰۲۴ بیتی, امنیتی در حد الگوریتمهای متقارن با کلید NSA بیتی دارد
- ط سرعت الگوریتم های کلید عمومی از الگوریتم های رمزگذاری متقارن پایین تر است
 - الگوریتم \mathbf{RSA} چندین هزار بار کندتراز رمزهای متقارن (با امنیت یکسان) است

رمزنگاری متقارن در مقایسه با رمزنگاری کلید عمومی

🗗 مشکلات رمزنگاری متقارن

- 🗗 نیاز به توافق بر روی کلید قبل از برقرار ارتباط
- نیاز به n^2 کلید برای ارتباط محرمانه n نفر باهم
 - عدم پشتیبانی از امضای دیجیتال

🗗 مزایای رمزنگاری متقارن

- 🗈 سرعت بسيار بالا
- 🗗 پیادهسازی کاراتر 🗈
 - طول کلید کوتاهتر

🗗 بنابراین

- ارمزنگاری کلید عمومی مکمل رمزنگاری متقارن است (و ﴿ جایگزین آن)
 استفاده از (مزنگاری کلید عمومی برای توزیع کلید نشست

 - استفاده از رمزنگاری متقارن برای رمز کردن پیاههای نشست

سوء برداشت!

- 🗗 رمزنگاری کلید عمومی امنیت بیشتری دارد
- 🗗 رمزنگاری کلید عمومی مسئله توزیع کلید را حل می کند
- چگونه مطمئن شویم کلید عمومی لزوما متعلق به شخص دعا کننده است؟!
 - ممله مرد میانی
 - نیاز به زیر ساخت کلید عمومی

حملات به رمزنگاری کلید عمومی

- (Brute force) جستجوی جامع
- محاسبه کلید خصوصی از کلید عمومی یا محاسبه پیام از روی متن رمز + کلید عمومی
 - 🗗 اثبات نشده که غیرممکن است
- 🗗 معمولا امنیت هر روش برمبنای یک یا چند فرض معقول استوار است
 - مثلا در rsa به سختی تجزیه اعداد بزرگ به عوامل اول ■

فهرست

- 🗗 مبانی رمزنگاری کلید عمومی
- 🗗 کاربردها و مقایسه با رمزنگاری متقارن
 - B الگوريتم رمز RSA
 - 🗗 پروتکل دیفی هلمن
 - (ElGamal) الگوريتم رمزالجمل

RSA کلیات الگوریتم رمزنگاری

- 🗗 ارائه کنندگان؛
- (1974) A و ادلمن R شامیر R و ادلمن R
- 🗗 مشهور ترین و پر کاربردترین الگوریتم رمزنگاری نامتقارن
 - ◘ مبتنی بر توان رسانی پیمانهای با اعداد خیلی بزرگ
- 🗗 مبتنی بر دشواری تجزیه اعداد خیلی بزرگ به عوامل اول

مبانی ریاضی (۱)

- n مجموعه اعداد نامنفی کوچکتر از: \mathbb{Z}_n
- مجموعه اعداد طبیعی کوچکتر از n که نسبت به nاول هستند: \mathbb{Z}_n^*
 - 🗗 مثال:

$$\mathbb{Z}_{12} = \{0,1,2,3,4,5,6,7,8,9,10,11\}$$

$$\mathbb{Z}^*_{12} = \{1,5,7,11\}$$

مبانی ریاضی (۲)

 \mathbb{Z}_n^* تعداد اعضای : $\varphi(n)$ تعداد اعضای \mathbf{G}

 $\varphi(12)=4$

اگر n عددی اول باشد:

 $\varphi(n)=n-1$

- اگر n حاصلضرب دو عدد اول p باشد:
- $\varphi(n) = \varphi(p) \times \varphi(q) = (p-1) \times (q-1)$

مبانی ریاضی (۳)

🗗 قضیه کوچک فرما (Fermat):

اگر p عددی اول و a عدد صحیحی که مضرب p نیست باشد: \Box

$$a^{p-1} \equiv 1 \pmod{p}$$

🗗 مثال:

$$p=11, a=7$$

$$7^{11-1} \equiv 282475249$$

= $25679568 \times 11 + 1$
 $\equiv 1 \pmod{11}$

مبانی ریاضی (۴)

🗗 قضیه اویلر (تعمیم قضیه فرما)؛

اگر a و اعدادی طبیعی و نسبت به هم اول باشند: \Box

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

🗗 مثال:

$$n=12, a=7$$

$$7^{\phi(12)} = 7^4$$

= 2401 = 200×12 + 1
= 1 (mod 12)

ویژگیهای RSA

- متن آشکار و متن رمز اعداد صحیح بزرگ در نظر گرفته می شوند n-1 اعداد بین n-1
- 🗗 هر بلاک از متن آشکار یک عدد صحیح خیلی بزرگ فرض میشود
 - باشد $\log(n)$ و $\log(n)$ باشد بیتهای هر بلاک باید بین و باشد
 - ط عملیات رمز گذاری و رمزنگاری مبتنی بر عمل به توان رسانی
 - همه اعمال در پیمانه n انجام می شود \Box

نمادهای مورد استفاده در RSA

```
n 🗗 بيمانه عمومي (Public Modulus)
```

q و p حاصل ضرب دو عدد اول بسیار بزرگ p

- n=pq یعنی
- ◄ و و مخفى نگهدارى مىشوند

e 🗗 نمای عمومی (Public Exponent): انمای عمومی

اول باشد
$$\varphi(n)$$
 و نسبت به $\varphi(n)$ اول باشد e

(Private Exponent) نمای خصوصی:d 🗗

```
به طوریکه d معکوس ضربی e در پیمانه \phi(n) است یعنی: eta
```

```
ed \equiv 1 \pmod{\varphi(n)}

ed \equiv k\varphi(n) + 1
```

 \mathbb{Z}_n متن آشکار، در قالب یک عدد متعلق به m 🗗

🗗 تابع رمز گذاری

$$c = E(m) = m^e \pmod{n}$$

 $m = D(c) = c^d \pmod{n}$

مثالی از RSA

$$p = 61, q = 53$$

 $n = pq = 3233$
 $\varphi(n) = (61-1)(53-1) = 3120$
 $e = 17$
 $d = 2753 \rightarrow ed = 15 * 3120 + 1$
 $m = 65$
 $c = E(m) = 65^{17} \pmod{3233} = 2790$
 $m = D(c) = 2790^{2753} \pmod{3233} = 65$

محاسبه معكوس ضربي

🗗 الگوريتم اقليدس توسعه يافته

(عند) معکوس ضربی a به پیمانه a) a باید نسبت به هم اول باشند) معال:

🗗 معکوس ضربی ۲۷۵۳ را به پیمانه ۳۱۲۰

	٣1 ٢٠	۱۷	٩	٨	1	•	
q_i		۱۸۳	1	1	٨		
p_i	•	1	-184	1,14	-464=4404		

$$p_0=0$$
, $p_1=1$

$$p_i = p_{i-2} - p_{i-1} \ q_{i-1} \quad \oplus \quad$$

	۳۱۲۰	۲۷۵۳	757	۱۸۴	١٨٣	١	
q_i		١	Υ	١	١	١٨٣	
p_i	•	١	-1	٨	- 9	۱Y	

اثبات درستی RSA

اگر $m\in\mathbb{Z}_n$ باشد آنگاه با استفاده از قضیه اویلر اثبات ساده است:

```
c^{d} \pmod{n} = ((m^{e} \pmod{n}))^{d} \pmod{n})
= m^{ed} \pmod{n}
= m^{k\varphi(n)+1} \pmod{n}
= m^{1} \pmod{n}
```

🗗 درغیر اینصورت اثبات کمی پیچیده تر است

🗗 استفاده از قضیه باقیمانده چینی و قضیه فرما

= m

فرایند تولید کلید RSA

- ابتدا دو عدد اول بزرگ (برای مثال ۵۱۲ بیتی) p و p را به طور تصادفی انتخاب $(p \neq q)$
 - ط با كمك الگوريتمهای تصادفی آزمون اول بودن 🗗
 - اعداد n و $\varphi(n)$ را محاسبه کنید $oldsymbol{\Omega}$
 - عدد صحیح e کوچکتر از $\phi(n)$ را انتخاب کنید به طوریکه نسبت به $\phi(n)$ اول باشد e
 - معکوس ضربی e در پیمانه $\varphi(n)$ را پیدا کنید و آن را d بنامید $oldsymbol{d}$
 - $\mathrm{PU} = (e,n)$:کلید عمومی عباتست از
 - PR=(d,n) :کلید خصوصی عباتست از
 - اعداد q ،p و $\varphi(n)$ باید محرمانه بمانند
 - 🗗 در فرایند رمزگشایی نیازی به آنها وجود ندارد و میتوان آنها را امحا کرد

(e) عمومی انتخاب نمای عمومی

- ط بهتر است نماها تعداد کمی ۱ در نمایش بیتی خود داشته باشند
 - ط برای سرعت بیشتر الگوریتمها به توان رسانی
 - € در RSA، حتما مقداری فرد است
 - ورد) هستند، $\varphi(n)$ حتما زوج است q و q و اول (و فرد) هستند، q
 - عباید نسبت به $\varphi(n)$ اول باشد e
 - (چرا؟) بنابراین در نمایش بیتی e حداقل دو بیت ۱ داریم $\mathbf{\Phi}$
- معمولا از عدد kام فرما $(2^{2^k}+1)$ به عنوان e استفاده می شود $oldsymbol{a}$
 - 🗗 به چهار عدد اول فرما (۳، ۵، ۱۷، ۲۵۷) حملاتی وارد است
 - 🗗 استفاده از عدد چهارم (۶۵۵۳۷) ، متداول است
- چون e کوچک است، معمولا عملیات رمزنگاری بسیار سریعتر است $oldsymbol{\Phi}$
 - در عوض d مقداری بزرگتر و عملیات رمزگشایی کندتر است \Box

تولید کلید RSA با استفاده از ابزار RSA

> openssl genrsa -out rsa1024.pem 1024

```
Loading 'screen' into random state - done

Generating RSA private key, 1024 bit long modulus

....+++++

e is 65537 (0x10001)
```

Open SSL(توسط نرم افزار RSAخواندن كليد

```
> openssl rsa -text -in rsa1024.pem
Private-Key: (1024 bit)
modulus:
    00:bf:6b:7a:8b:2d:a4:19:33:1d:72:81:1d:26:4e:
    73:cb:95:17:db:11:d1:d2:46:ad:6e:ac:6f:26:52:
    c8:fa:0a:07:a7:7f:86:fd:22:e8:0b:d1:b4:fc:32:
    7f:33:6e:de:5f:c3:6a:11:2e:bb:ef:cf:83:e7:83:
    0b:95:02:3b:72:15:03:18:38:24:e8:31:7d:b4:5c:
 a8:f5:2d:c6:84:e2:18:f8:a6:3b:65:96:eb:e4:07:
    71:5e:3f:79:18:52:8d:a6:ec:10:d7:b0:61:fc:6f:
    7d:90:c6:04:73:d9:f7:e6:1f:c9:61:c1:8e:48:76:
    95:97:ac:b7:92:60:cc:ca:9f
publicExponent: 65537 (0x10001)
                                   خروجی ادامه دارد ...
```

41

نسبت اندازه اعداد در مثال قبلی

e = 0x010001 (24 bits)

d = 0x196333D989B01DF77D8C563B7B7D2436780BB5EE6319B46E0423

B28A2EA8A120FB6AE7AB0B9FB98EF7BD3D45A541390F1D3C59B0

F5B5CF5482760E175727F8A22A0AE88CB207BBCB35426E260237

401FE29EF5A7FA9CD4EC21053B55D2339C4984A560C7C96BBE1E

3163DA17A75E96FB313245E5CB5CA42DBC39BBCFCFA54CE1

a = 0xBF6B7A8B2DA419331D72811D264E73CB9517DB11D1D246AD6EAC
6F2652C8FA0A07A77F86FD22E80BD1B4FC327F336EDE5FC36A11
2EBBEFCF83E7830B95023B721503183824E8317DB45CA8F52DC6
84E218F8A63B6596EBE407715E3F7918528DA6EC10D7B061FC6F
7D90C60473D9F7E61FC961C18E48769597ACB79260CCCA9F

دانشگاه ارومیه - دانشکده مهندسی برق و کامپیوتر

حملات عليه RSA

- در صورتی که پارامترهای RSA به درستی انتخاب شوند بهترین حمله علیه \mathbf{n} آن تجزیه n است
 - ط بهترین الگوریتم تجزیه برای یک عدد دلخواه:
 - ط حمله: General Number Field Service
- ط پیچیدگی حمله نشان میدهد مقدار کار مورد نیاز برای شکستن RSA با کلید ۱۰۲۴ بیت برابر است با
- مقدار کار مورد نیاز برای مستموی مامع برای یک الگوریتی متقارن با کلید ۸۷ بیتی

(Side Channel Attacks)حملات كانال جانبي

- ای ${
 m CPU}$ حملاتی با دسترسی به اطلاعات جانبی(توان محاسباتی/زمان محاسبه)از ${
 m CPU}$ ای که رمزنگاری روی آن انجام می شود
- هنگام توان رسانی سریع در \mathbf{RSA} , بیتهایی از dکه ۱ هستند زمان/توان بیشتری مصرف می کنند
- از زمان یا توان مصرفی می توان حدس زد که آیا یک بیت خاص از d یک هست یا نه
 - 🗗 راه های مقابله
 - △ استفاده از توان رساندن با زمان ثابت محاسباتی
 - 🗈 اضافه کردن تاخیرهای تصادفی
 - 🗗 قرار دادن اعمال اضافی و گمراه کننده در بین محاسبات

قطعی بودن RSA

- △ الگوریتم RSA در حالت عادی قطعی است
- 🗗 رمز یک پیام ثابت با یک کلید ثابت همواره یک متن رمز می دهد
 - ⊡ معروف به Textbook RSA
 - 🗗 ایراد: مهاجم تکرار پیام را می فهمد
 - 🗗 راهکار: استفاده از یک padding تصادفی برای پیامها
- pad: به انتهای پیام چسبانده می شود pad: ⊕
 - € استاندارد مرسوم: PKCS#1
 - OAEP بر مبنای شبکه فایستل به نام padding یک روش

خاصیت همریختی RSA سنتی

RSA منتی همریخت (Homomorphic) است:

```
m \equiv m_1 \times m_2 \pmod{n}

m^d \equiv m_1^d \times m_2^d \pmod{n}

RSA(m) \equiv RSA(m_1) \times RSA(m_2) \pmod{n}
```

- د. ای رمز گشایی $c = c_1 imes c_2$ می توان از حمله متن رمز گشایی $c = c_1 imes c_2$
 - و c_2 را به رمزگشا می دهیم و m_1 و m_2 را به رمزگشا می دهیم و m_1
 - است c معادل m معادل m معادل $m_2 \times m_1$
 - ط استفاده از روشهای padding این مشکل را از بین می برد
 - 🗗 در برخی از کاربردها ویژگی همریختی مطلوب یا مورد نیاز است

فهرست مطالب

- 🗗 مبانی رمزنگاری کلید عمومی
- 🗗 کاربردها و مقایسه با رمزنگاری متقارن
 - B الگوريتم رمز RSA
 - 🗗 پروتکل دیفی هلمن
 - (ElGamal) الگوريتم رمزالجمل

مبانی ریاضی

- فرض کنید p عددی اول باشد Φ
- :مجموعه توانهای مختلف عدد a به پیمانه p را با مجموعه توانهای مختلف عدد a
 - a تولید شده توسط توسط ${\overline{\bf Z}}^*_{7}$
 - 🗗 مثال:

$$p = 7$$

 $<2>_7 = {2^i \mod^7 | i \in \mathbb{N} } = {1,2,4}$
 $<3>_7 = {1,3,2,6,4,5}$

 \mathbb{Z}^*_p را یک مولد ($oldsymbol{Generetor}$) برای g مینامیم اگرg

$$\langle g \rangle_p = \mathbb{Z}_p^*$$

مبانی ریاضی (۲)

19 مثال: توانهای اعداد مختلف به پیمانه

а	a^2	a^3	a^4	a^5	a ⁶	a^7	a ⁸	a ⁹	a ¹⁰	a ¹¹	a ¹²	a ¹³	a ¹⁴	a ¹⁵	a ¹⁶	a ¹⁷	a ¹⁸
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

مبانی ریاضی (۳)

- قضیه ۱: برای هر \mathbb{Z}^*_p حداقل یک مولد وجود دارد (با فرض: p اول است) فضیه ۲: مولد \mathbb{Z}^*_p همیشه یکتا نیست، ولی با داشتن تجزیه p میتوان به سادگی یک مولد دلخواه برای آن یافت.
 - عدد اول p و یک مولد دلخواه مانند g برای m > 2 را در نظر بگیرید α عدد α را به تصادف از m > 2 انتخاب کنید
 - 🗗 مسئله لگاریتم گسسته (DL):
 - پیدا کردن lpha با داشتن مقادیر زیر: $p,\ g,\ g^lpha\ (\mathrm{mod}\ p)$

مسئله ديفي هلمن

اعداد β ، α انتخاب می کنیم β انتخاب می کنیم β همه محاسبات به پیمانه p انجام می گیرد \mathbf{a}

€ مسئله دیفی هلمن محاسباتی (CDH):

 p,g,g^{lpha},g^{eta} با داشتن: $g^{lphaeta}$

🗈 تمیز دادن دو زوج زیر: 🗈

 $(p, g, g^{\alpha}, g^{\beta}, g^{\alpha\beta})$ $(p, g, g^{\alpha}, g^{\beta}, g^{\gamma})$

به عبارت دیگر با داشتن یک مقداری تشخیص بدهیم که آن مقدار $g^{lphaeta}$ هست یا نه دانشگاه ارومیه - دانشکده مهندسی برق و کامپیوتر

مسئله ديفي هلمن (۲)

وجود دارد DDH راهحلهای کارایی برای مساله DDH

☐ تمیز دادن دو زوج با استفاده از مفهومی به نام «نماد لژاندر»

€ برای سخت کردن DDH مسئله را اصلاح می کنیم

- به جای اینکه g را مولد \mathbb{Z}^*_p بگیریم، \oplus
- $|<\!\!g>_p|=q$ را به گونهای انتخاب می کنیم که $g\in \mathbb{Z}_p^*$
- یعنی توانهای g فقط تعداد q تا از اعضای $\mathbb{Z}^*_{\ p}$ را تولید کند lacksquare
 - مىتوان ثابت كرد كه: 1-q|p
 - علاوهبر این g طوری انتخاب می شود که q اول باشد $oldsymbol{\Box}$
 - اعداد eta، و γ به تصادف از $ar{\mathbb{Z}}^*_{q}$ انتخاب می شوند eta
- کماکان همه محاسبات به پیمانه p انجام میشود که اول است $oldsymbol{\Box}$

مسئله دیفی هلمن (۳)

پیچیدگی بهترین الگوریتمی که DL به پیمانه p را حل می کند $p^{1/2}$ است \mathbf{D}

ط شکستن CDH و DDH سخت تر از DL نیست

اگر DL را بتوانیم حل کنیم هر دو مسئله DH قابل حل خواهد بود \Box

پروتکل دیفی هلمن

- 🗗 ارائه شده توسط Diffie و Hellman در سال ۱۹۷۶
 - 🗗 کاربرد: تبادل کلید
- ط کلید نشست مبادله شده باید غیرقابل تمایز از یک مقدار تصادفی باشد
 - ط امنیت روش مبتنی بر دشواری شکستن DDH است
 - طرفین از قبل روی مقادیر q p و g توافق می کنند \mathbf{d}
 - (p=2q+1) به طوری که p و p اول باشند و
 - و g مولد $\overline{\mathbb{Z}}^*_{q}$ باشد Ξ
- اصطلاحا q را Sophie Germain prime متناظر با q اصطلاحا q اصطلاحا q اصطلاحا q اصطلاحا q اصطلاحا و q اصلاحا و q اصل
 - p کلیه محاسبات به پیمانه \Box

تبادل کلید دیفی هلمن

حمله مرد میانی

- $oldsymbol{\Phi}$ با فرض دشواری $oldsymbol{DH}$, پروتکل دیفیهلمن در برابر حملات منفعلانه (passive) امن است
 - امن نیست (active) امن نیست فعال (active) امن نیست

 - مهاجم برای A وانمود می کند که B است
 - مهاجم برای B وانمود می کند که A است

حمله مرد میانی

مقابله با حمله مرد میانی در دیفیهلمن

- (Long-Term Key) استفاده از یک کلید طولانی مدت
 - g^{eta} و g^{lpha} برای احراز اصالت پیامهای مبادله شده: eta
- طرفین باید قبل از شروع پروتکل این کلید LTK را به اشتراک بگذارند
 - از یک LTK می توان در چندین پروتکل استفاده کرد 🗗
 - طید عمومی باشد کلید متقارن یا یک زوج کلید عمومی باشد لیک نوج کلید عمومی باشد
 - € پروتکل حاصل را ADH مینامند
 - Authenticated Diffie-Hellman

خاصیت محرمانگی پیشرو(Forward secrecy)

تعریف: در صورت لو رفتن LTK در زمان tکلیدهای نشستی که که قبل از زمان t تبادل شده اند امن بمانند

🗗 گاه به آن PFS هم گفته می شود(Perfect forward Secrecy)

ADH و دارای خاصیت PFSاست

- ط از LTK فقط برای حفظ صحت و نه محرمانگی استفاده می شود ط
 - طرمانگی کلید نشست وابسته به LTK نیست 🗗
- وجود MITM لو برود فقط از زمان لو رفتن آن به بعد امکان حمله MITM وجود دارد

فهرست مطالب

- 🗗 مبانی رمزنگاری کلید عمومی
- 🗗 کاربردها و مقایسه با رمزنگاری متقارن
 - **B** الگوريتم رمز RSA
 - 🗗 پروتکل دیفی هلمن
 - (ElGamal) الگوريتم رمزالجمل

رمز الجمل (ElGamal)

ط ابداع توسط طاهر الجمل، رمزنگار مصری آمریکایی (۱۹۸۵)

الجمل دانشجوی دکترای هلمن در دانشگاه استنفور بوده است الجمل مبتنی بر دشواری DDH

- الگوریتم امضای دیجیتال (DSA) گونهای از رمز الجمل است الگوریتم استاندارد مورد استفاده برای امضای دیجیتال \Box
- الجمل یک رمز غیر قطعی (احتمالاتی) است (بر خلاف RSA) \Box متن رمز حاصل از یک متن آشکار با یک کلید همواره یکسان نیست الجمل یک رمز همریخت است (مشابه RSA) \Box طول متن رمز از طول متن آشکار بیشتر است
 - 🗗 تقریبا دو برابر

توليد كليد الجمل

- p انتخاب عدد اول بزرگ
- ييمانهي کليه محاسبات
- $|<\!\!g>_p|=q$ انتخاب $g\in\mathbb{Z}^*_p$ به گونهای که
 - باید عددی اول و بزرگ باشد q
- و g پارامترهای عمومی خوانده میشوند q p f a
 - 🗗 مقدار آنها را همه میدانند
- $extbf{h} = \hspace{-1pt} g^{lpha}$ انتخاب عدد تصادفی lpha از lpha و محاسبهی $f{a}$
 - α کلید خصوصی: α
 - h:کلید عمومی

رمزگذاری و رمزگشایی الجمل

- ابتدا پیام M به یک روش قابل برگشت به $g>_p$ نگاشته می شود M
 - یک عدد تصادفی مانند r از \mathbb{Z}^*_q انتخاب میشود \oplus
 - متن رمز عبارت است از: $c=(g^r,mh^r)$
 - $\cdot lpha$ رمز گشایی از متن رمز رمز $c = (c_1, c_2)$ با کلید خصوصی $oldsymbol{ alpha}$

$$m = c_2 \times c_1^{-\alpha} = mg^{r\alpha}g^{-r\alpha}$$

ط رمزنگاری نیازمند دو عمل توانرسانی و رمزگشایی نیازمند یک عمل توانرسانی