Machine Learning

Michele Sebag — Alexandre Allauzen TAO, CNRS — INRIA — LRI — Université Paris-Sud

Orsay - Oct. 2017

Where we are

You are here

Where we are

You are here

Types of application

Domain But : Modelling

Physical phenomenons

analysis & control

manufacturing, experimental sciences, numerical engineering Vision, speech, robotics..

Social phenomenons

+ privacy

Health, Insurance, Banks ...

Individual phenomenons

+ dynamics

Consumer Relationship Management, User Modelling Social networks, games...

RoadMap

Decision trees

Types of Machine Learning problems

WORLD - DATA - USER

Observations + Target + Rewards

Understand
CodePredictDecideCodeClassification/RegressionPolicy

Unsupervised Supervised Reinforcement LEARNING LEARNING LEARNING

Data

Example

- ▶ row : example/ case
- column : feature/ variable/ attribute
- ▶ attribute : class/ label

Instance space $\mathcal X$

- $lackbox{Propositionnal}: \mathcal{X} \equiv \mathbb{R}^d$
- Structured : sequential, spatio-temporal, relational.

age	employme	education	edun	marital	job	relation	race	gender	hour	country	wealth
39	State_gov	Bachelors	13	Never_mar	 Adm_cleric	Not_in_fan	White	Male	40	United_S	tapoor
51	Self_emp_	Bachelors	13	Married	Exec_man	Husband	White	Male	13	United_S	poor
39	Private	HS_grad	9	Divorced	Handlers_c	Not_in_fan	White	Male	40	United_S	poor
54	Private	11th	7	Married	Handlers_c	Husband	Black	Male	40	United_S	poor
28	Private	Bachelors	13	Married	Prof_speci	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married	Exec_man	Wife	White	Female	40	United_S	poor
50	Private	9th	5	Married_sp	Other_serv	Not_in_fan	Black	Female	16	Jamaica	poor
52		HS_grad		Married	Exec_man	Husband	White	Male	45	United_S	rich
31	Private	Masters	14	Never_mar	Prof_speci	Not_in_fan	White	Female	50	United_S	a rich
42	Private	Bachelors	13	Married	Exec_man	Husband	White	Male	40	United_S	rich
37	Private	Some_coll	10	Married	Exec_man	Husband	Black	Male	80	United_St	rich
30	State_gov	Bachelors	13	Married	Prof_speci	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar	Adm_cleric	Own_child	White	Female	30	United_S	poor
33	Private	Assoc_acc	12	Never_mar	Sales	Not_in_fan	Black	Male	50	United_S	poor
41	Private	Assoc_voc	11	Married	Craft_repai	Husband	Asian	Male	40	*Missing\	/ rich
34	Private	7th_8th	4	Married	Transport_	Husband	Amer_India	Male	45	Mexico	poor
26	Self_emp_	HS_grad	9	Never_mar	Farming_fi	Own_child	White	Male		United_S	
33	Private	HS_grad	9	Never_mar	Machine_c	Unmarried	White	Male		United_S	
38	Private	11th	7	Married	Sales	Husband	White	Male	50	United_S	poor
44	Self_emp_	Masters	14	Divorced	Exec_man	Unmarried	White	Female	45	United_S	a rich
41	Private	Doctorate	16	Married	Prof_speci	Husband	White	Male	60	United_S	rich
											1:

aminoacid

Data / Applications

- Propositionnal data
- Spatio-temporal data
- Relationnal data
- Semi-structured data
- Multi-media

80% des applis. alarms, mines, accidents chemistry, biology text, Web

images, music, movies,...

Difficulty factors

Quality of data / of representation

- Noise; missing data
- + Relevant attributes

Feature extraction

Structured data: spatio-temporal, relational, text, videos,...

Data distribution

- + Independants, identically distributed examples
- Other: robotics; data streams; heterogeneous data

Prior knowledge

- + Goals, interestingness criteria
- + Constraints on target hypotheses

Difficulty factors, 2

Learning criterion

- + Convex optimization problem
- \searrow Complexity: n, nlogn, n^2
- Combinatorial optimization

Scalability

Learning criteria, 2

The user's criteria

- ► Relevance, causality,
- ► INTELLIGIBILITY
- Simplicity
- Stability
- ▶ Interactive processing, visualisation
- ▶ ... Preference learning

Difficulty factors, 3

Crossing the chasm

- ▶ No killer algorithm
- ▶ Little expertise about algorithm selection

How to assess an algorithm

Consistency

When number n of examples goes to infinity and target concept h^* is in \mathcal{H} $h^* \text{ is found:}$

$$lim_{n\to\infty}h_n=h^*$$

Speed of convergence

$$||h^*-h_n||=\mathcal{O}(1/n),\mathcal{O}(1/\sqrt{n}),\mathcal{O}(1/\ln n)$$

Context

Disciplines et critres

- Data bases, Data Mining
- Statistics, data analysis
- ► Machine learning
- Optimisation
- Computer Human Interaction
- High performance computing

Scalability

Predefined models

Prior knowledge; complex data/hypotheses

well / ill posed problems

No final solution: a process

Distributed processing; safety

Supervised Machine Learning

Context

$$\begin{array}{c} \mathsf{Oracle} \\ \mathsf{World} \to \mathsf{instance} \; \mathbf{x}_i \to \begin{matrix} \downarrow \\ y_i \end{matrix}$$

Input

Training set $\mathcal{E} = \{(\mathbf{x}_i, y_i), i = 1 \dots n, \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}\}$

Milestones

- ightharpoonup Select hypothesis space ${\cal H}$
- ▶ Assess hypothesis $h \in \mathcal{H}$
- ► Find best hypothesis *h**

score(h)

iid

iid: Independent identically distributed.

Independent

$$(x_i, y_i)$$
 does not depend on (x_i, y_i)

Counter-example:

 \triangleright x_i is the vector of sensor values of the robot at time i

Identically distributed

 x_i are drawn after the same distribution

Counter-example:

x_i is the length travelled for fixed actuator values; the distribution changes as the robot goes on different types of ground.

What is the goal ?

The goal is not to be perfect on the training set

What is the goal ?

The goal is not to be perfect on the training set

The villain: overfitting

Complexity of Hypotheses

What is the goal?

Prediction good on future instances

Necessary condition:

Future instances must be similar to training instances

"identically distributed"

Minimize (cost of) errors not all mistakes are equal.

$$\ell(y,h(x))\geq 0$$

Error: theoretical approach

Minimize expectation of error cost

Generalization error

Minimize
$$E[\ell(y, h(x))] = \int_{X \times Y} \ell(y, h(x)) p(x, y) dx dy$$

Error: theoretical approach

Minimize expectation of error cost

Generalization error

Minimize
$$E[\ell(y, h(x))] = \int_{X \times Y} \ell(y, h(x)) p(x, y) dx dy$$

Define Empirical Error

$$Err_e(h) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$$

Principle

Si function F "is well-behaved" on space $\mathcal X$ and $\mathcal E$ is a "sufficient" sample of $\mathcal X$, then integral of F on $\mathcal X$ is close to its empirical average on $\mathcal E$.

$$E[F] \leq \frac{\sum_{i=1}^{n} F(x_i)}{n} + c(F, n)$$

Classification, criteria

Generalisation error

$$Err(h) = E[\ell(y, h(x))] = \int \ell(y, h(x)) dP(x, y)$$

Empirical error

$$Err_e(h) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$$

Bound

risk minimization

$$\mathit{Err}(h) < \mathit{Err}_e(h) + \mathcal{F}(n,d(\mathcal{H}))$$

$$d(\mathcal{H}) = \mathsf{VC} ext{-dimension of } \mathcal{H}$$

Classification: Ingredients of error

Bias

Bias (\mathcal{H}) : error of the best hypothesis h^* in \mathcal{H}

Variance

Variance of h_n depending on \mathcal{E}

Espace des fonctions

The Bias-Variance trade-off

As hypothesis space increases, bias decreases; but variance increases.

Classification: Ingredients of error

Bias

Bias (\mathcal{H}) : error of the best hypothesis h^* in \mathcal{H}

Variance Variance of h_n depending on \mathcal{E}

Espace des fonctions

Optimization

negligible in small scale takes over in large scale

(Google)

Classification, Problem posed

INPUT

$$\sim P(x,y)$$

$$\mathcal{E} = \{(x_i, y_i), x_i \in \mathcal{X}, y_i \in \{0, 1\}, i = 1 \dots n\}$$

HYPOTHESIS SPACE

SEARCH SPACE

$$\mathcal{H} \quad \ \ \textit{$h:\mathcal{X}\mapsto\{0,1\}$}$$

LOSS FUNCTION

$$\ell: \mathcal{Y} \times \mathcal{Y} \mapsto {\rm I\!R}$$

OUTPUT

$$h^* = arg max\{score(h), h \in \mathcal{H}\}$$

Key notions

- ▶ The main issue regarding supervised learning is overfitting.
- ► How to tackle overfitting:
 - Before learning: use a sound criterion
 - ► After learning: cross-validation

regularization
Case studies

Summary

- ▶ Learning is a search problem
- ▶ What is the space ? What are the navigation operators ?

Hypothesis Spaces

Logical Spaces

Concept $\leftarrow \bigvee \bigwedge$ Literal, Condition

- ► Conditions = [color = blue]; [age < 18]
- ▶ Condition $f: X \mapsto \{True, False\}$
- Find: disjunction of conjunctions of conditions
- Ex: (unions of) rectangles of the 2D-planeX.

Hypothesis Spaces

Numerical Spaces

Concept
$$=(h()>0)$$

- $h(x) = \text{polynomial}, \text{ neural network}, \dots$
- $h: X \mapsto \mathbb{R}$
- Find: (structure and) parameters of h

Hypothesis Space \mathcal{H}

Logical Space

- ▶ h covers one example x iff h(x) = True.
- $ightharpoonup {\cal H}$ is structured by a partial order relation

$$h \prec h'$$
 iff $\forall x, h(x) \rightarrow h'(x)$

Numerical Space ${\cal H}$

- h(x) is a real value (more or less far from 0)
- we can define $\ell(h(x), y)$
- lacktriangleright H is structured by a partial order relation

$$h \prec h'$$
 iff $E[\ell(h(x), y)] < E[\ell(h'(x), y)]$

Hypothesis Space ${\mathcal H}$ / Navigation

	\mathcal{H}	navigation operators
Version Space	Logical	spec / gen
Decision Trees	Logical	specialisation
Neural Networks	Numerical	gradient
Support Vector Machines	Numerical	quadratic opt.
Ensemble Methods	_	adaptation ${\cal E}$

RoadMap

Decision trees

Decision Trees

C4.5 (Quinlan 86)

- Among the most widely used algorithms
- Easy
 - to understand
 - ▶ to implelement
 - to use
 - ▶ and cheap in CPU time
- ▶ J48, Weka, SciKit

Decision Trees

Decision Trees (2)

Procedure DecisionTree(\mathcal{E})

- 1. Assume $\mathcal{E} = \{(x_i, y_i)_{i=1}^n, x_i \in \mathbb{R}^D, y_i \in \{0, 1\}\}$
 - If \mathcal{E} single-class (i.e., $\forall i, j \in [1, n]; y_i = y_j$), return
 - If *n* too small (i.e., < threshold), return
 - Else, find the most informative attribute att
- 2. Forall value val of att
 - Set $\mathcal{E}_{val} = \mathcal{E} \cap [att = val]$.
 - Call DecisionTree(\mathcal{E}_{val})

Criterion: information gain

$$\begin{array}{rcl} p & = & Pr(\mathit{Class} = 1 | \mathit{att} = \mathit{val}) \\ I([\mathit{att} = \mathit{val}]) & = & -p\log p - (1-p)\log (1-p) \\ I(\mathit{att}) & = & \sum_i Pr(\mathit{att} = \mathit{val_i}).I([\mathit{att} = \mathit{val_i}]) \end{array}$$

Decision Trees (3)

Contingency Table

Quantity of Information (QI)

Computation

	•	
value	p(value)	p(poor value)
[0,10[0.051	0.999
[10,20]	0.25	0.938
[20,30]	0.26	0.732

QI (value)	p(value) * QI (value)
0.00924	0.000474
0.232	0.0570323
0.581	0.153715

Decision Trees (4)

Limitations

- ► XOR-like attributes
- Attributes with many values
- Numerical attributes
- Overfitting

Limitations

Numerical Attributes

- ▶ Order the values $val_1 < ... < val_t$
- ► Compute QI([att < val_i])

The XOR case

Bias the distribution of the examples

Complexity

Quantity of information of an attribute

 $n \ln n$

Adding a node

 $D \times n \ln n$

Tackling Overfitting

Penalize the selection of an already used variable

Limits the tree depth.

Do not split subsets below a given minimal size

Limits the tree depth.

Pruning

- Each leaf, one conjunction;
- Generalization by pruning litterals;
- Greedy optimization, QI criterion.

Decision Trees, Summary

Still around after all these years

- ▶ Robust against noise and irrelevant attributes
- ► Good results, both in quality and complexity

Random Forests Breiman 00