Option Pricing via Monte Carlo simulations

Raj Patil - CS18BTECH11039

[2021-11-30 Tue 14:50]

Monte Carlo Methods

Context

- a broad class of computational algorithms
 - repeated random sampling
- increasing utility value with increasing complexity
 - can be difficult to capture all variables with deterministic models

Principle

- essentially sample mean
- provides an unbiased estimate of the entity being estimated
 - the entity can be a deterministic one (includes the expectation of a stochastic entity)
- ▶ "The Law of Large Numbers" ensures convergence to true value

Notation

```
r \triangleq \text{risk free interest rate}
T \triangleq \text{time to maturity}
S \triangleq \text{stock Price}
\mu \triangleq \text{drift of stock (expected increment)}
\sigma \triangleq \text{volatality of the stock}
W \triangleq \text{geometric brownian motion}
```

Computing S_t

The stock price can be modeled as the following Ito process:

$$dS = S\mu dt + S\sigma dW(t)$$

Prerequisites

- given that this is an Ito's Process, one may choose to employ Ito's Lemma
- one may wish to formulate this as a Markov chain and then use the Euler-Maruyama approximation

Project Summary

Code

- pricer for European options
 - Black-Scholes as a baseline
 - tested antithetic variate

Experiments

- Effect of Number of Simulations
- ► Effect of Granularity
- Effect of Antithetic Paths

Number of simulations

Reduction in standard error

Number of simulations

Convergence towards Black-Scholes (call)

Number of simulations

Convergence towards Black-Scholes (put)

Variation with Granularity

No effect on standard error

Antithetic Variate

Principle

for every sampling session of Brownian motion, the antithetic path (should occur with equal probability) is also considered under the estimate

```
original: \{\epsilon_1, \epsilon_2, \cdots, \epsilon_M\}
antithetic: \{-\epsilon_1, -\epsilon_2, \cdots, -\epsilon_M\}
```

do note that this will only invert the effect of the volatility term and not the one corresponding to the drift of the stock

Advantage

- lesser number of samples needed to gain a certain amount of usable paths
- reduces the variance of the estimate

Effect of Antithetic Paths

Lower variance for lesser simulation

observation tapers off for large number of simulations

Call

Effect of Antithetic Paths

Lower variance for lesser simulation

observation tapers off for large number of simulations

Put

Conclusion

- Closed form solutions are only available for relatively simple derivatives
- Complicated derivatives can only be bounded by closed form approaches
 - Monte Carlo pricing can be applied with ease
 - simply the expectation of the discounted value of the derivative
 - some examples being:
 - Up and Out, Down and Out, Asian, American

Issues/Aspects

- Variance reduction
 - explored one solution (Antithetic Paths) but several other variants target this issue
- Compute
 - not really an issue these days

