Определение

Если в некоторой точке x_0 $x_0 \notin D(f) \oplus \lim_{x \to x_0} f(x) \neq f(x_0)$, то такая точка называется *точкой устранимого* разрыва

Определение

Если в некоторой точке x_0 не существует $\lim_{x \to x_0} f(x)$, но существуют односторонние пределы $\lim_{x \to x_0 = 0} f(x)$ и $\lim_{x \to x_0 + 0} f(x)$, не равные между собой, то такая точка называется *точкой разрыва первого рода*.

Непрерывность сложной функции

Если функция z = f(y) непрерывна в точке y_0 , а функция $y = \varphi(x)$ непрерывна в точке x_0 , причем $y_0 = \varphi(x_0)$, то в некоторой окрестности точки x_0 определена сложная функция $f(\varphi(x))$, и эта функция непрерывна в точке x_0 .

Доказательство

Пусть задано произвольное число $\varepsilon > 0$. В силу непрерывности функции f в точке y_0 существует число $\rho = \rho(\varepsilon) > 0$ такое, что $U(\rho, y_0) \subset D(f)$ и $\forall y \in U(\rho, y_0) \to f(y) \in U(\varepsilon, z_0)$, где $z_0 = f(y_0)$ В силу непрерывности функции φ в точке x_0 для найденного числа $\rho > 0$ можно указать число $\delta = \delta_\rho = \delta(\varepsilon) > 0$ такое, что $\forall x \in U(\delta, x_0) \Rightarrow \varphi(x) \in U(\rho, y_0)$. Из этих условий следует, что на множестве $U(\delta, x_0)$ определена сложная функция $f(\varphi(x))$, причем $\forall x \in U(\delta, x_0) \Rightarrow f(y) = f(\varphi(x)) \in U(\varepsilon, z_0)$, где $z_0 = f(\varphi(x_0)) = f(y_0)$, т.е. $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in U(\delta, x_0) \Rightarrow f(\varphi(x)) \in U(\varepsilon, \varphi(x_0))$ Это означает, что функция $f(\varphi(x))$ непрерывна в точке x_0 .