Topics

- Automata Theory
- Grammars and Languages
- Complexities

Why Automata Theory?

To study abstract computing devices which are closely related to today's computers. A simple example of *finite state machine*:

There are many different kinds of machines.

Another Example

When will this be *on*? Try 100, 1001, 1000, 111, 00, ...

Grammar and Languages

Grammars and languages are closely related to automata theory and are the basis of many important software components like:

- Compilers and interpreters
- Text editors and processors
- Search engines
- System verification components

Complexities

Study the limits of computations. What kinds of problems can be solved with a computer? What kinds of problems can be solved *efficiently*?

Preliminaries

- Alphabets
- Strings
- Languages
- Problems

Alphabets

- An alphabet is a finite set of symbols.
- Usually, use Σ to represent an alphabet.
- Examples:
 - $\Sigma = \{0,1\}$, the set of binary digits.
 - $\Sigma = \{a, b, ..., z\}$, the set of all lower-case letters.
 - $\Sigma = \{(,)\}$, the set of open and close parentheses.

- A string is a finite sequence of symbols from an alphabet.
- Examples:
 - oo11 and 11 are strings from $\Sigma = \{0,1\}$
 - abc and bbb are strings from $\Sigma = \{a, b, ..., z\}$
 - (()(())) and)(() are strings from $\Sigma = \{(,)\}$

- Empty string: ε
- **Length** of string: |0010| = 4, |aa| = 2, $|\epsilon| = 0$
- **Prefix** of string: <u>aaabc</u>, <u>aaabc</u>, <u>aaabc</u>
- **Proper prefix** of string: <u>aaabc</u>, <u>aaab</u>c
- Suffix of string: aaabc, aaabc, aaabc
- Proper suffix of string: aaabc, aaabc
- Substring of string: aaabc, aaabc, aaabc

- **Concatenation**: ω =abd, α =ce, $\omega\alpha$ =abdce
- **Exponentiation**: ω =abd, ω ³=abdabdabd, ω ^o= ϵ
- Reversal: ω =abd, ω ^R = dba
- Σ^k = set of all k-length strings formed by symbols in Σ
- e.g., $\Sigma = \{a,b\}$, $\Sigma^2 = \{ab, ba, aa, bb\}$, $\Sigma^o = \{\epsilon\}$

What is Σ^1 ? Is Σ^1 different from Σ ? How?

• Kleene Closure $\Sigma^* = \Sigma^o \cup \Sigma^1 \cup \Sigma^2 \cup ... = \bigcup_{k \geq o} \Sigma^k$ e.g., $\Sigma = \{a, b\}$, $\Sigma^* = \{\epsilon, a, b, ab, aa, ba, bb, aaa, aab, abb, ... \}$ is the set of all strings formed by a's and b's.

- i.e., Σ^* without the empty string.

Languages

- A language is a set of strings over an alphabet.
- Examples:
 - $\Sigma = \{(,)\}, L_1 = \{(), (,())\}$ is a language over Σ.
 - Σ ={a, b, c, ..., z}, the set L of all legal English words is a language over Σ .
 - The set $\{\varepsilon\}$ is a language over any alphabet.

What is the difference between ϕ and $\{\epsilon\}$?

Languages

- Other Examples:
 - Σ ={0, 1}, L={0ⁿ1ⁿ | n≥1} is a language over Σ consisting of the strings {01, 0011, 000111, ... }
 - Σ ={0, 1}, L = {0ⁱ1^j | j≥i≥0} is a language over Σ consisting of the strings with some o's (possibly none) followed by at least as many 1's.

Problems

- In automata theory, a problem is to decide whether a given string is a member of some particular language.
- This formulation is general enough to capture the difficulty levels of all problems.

Finite Automata (or Finite State Machines)

- This is the simplest kind of machine.
- We will study 3 types of Finite Automata:
 - Deterministic Finite Automata (DFA)
 - Non-deterministic Finite Automata (NFA)
 - Finite Automata with ε -transitions (ε -NFA)

Deterministic Finite Automata (DFA)

• We have seen a simple example before:

There are some <u>states</u> and <u>transitions</u> (edges) between the states. The edge labels tell when we can move from one state to another.

Definition of DFA

- A DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a finite set of <u>states</u>
 - Σ is a finite input <u>alphabet</u>
 - δ is the <u>transition function</u> mapping $Q \times \Sigma$ to Q
 - q_o in Q is the <u>initial state</u> (only one)
 - $F \subseteq Q$ is a set of <u>final states</u> (zero or more)

Definition of DFA

For example:

Q is the set of states: $\{on, off\}$ Σ is the set of input symbols: $\{1\}$ δ is the transitions: off \times 1 \rightarrow on; on \times 1 \rightarrow off q_0 is the initial state: off F is the set of final states (double circle): $\{on\}$

Definition of DFA

Another Example:

What are Q, Σ , δ , q_0 and F in this DFA?

Transition Table

• For the previous example, the DFA is $(Q, \Sigma, \delta, q_o, F)$ where $Q = \{q_o, q_1, q_2\}, \Sigma = \{o,1\}, F = \{q_2\}$ and δ is such that

	Inputs			
States	0	1		
$\rightarrow q_0$	q_1	q_0		
\overline{q}_1	q_2	q_0		
*q ₂	q_1	q_0		

Note that there is <u>one transition only</u> for each input symbol from each state.

Language of a DFA

- Given a DFA M, the language accepted (or recognized) by M is the set of all strings that, starting from the initial state, will reach one of the final states after the whole string is read.
- For example, the language accepted by the previous example is the string that ends with oo

DFA Example

• Consider the DFA M=(Q, Σ , δ ,q_o,F) where Q = {q_o,q₁,q₂,q₃}, Σ = {o,1}, F = {q_o} and δ is:

	Inputs					1	
States	0	1	_	Start -	$-(q_0)$	1	q_1
$\overline{q_0}$	q_2	q_1	OR				0 0
q_1	q_3	q_0				1	
q_2	q_0	q_3			$\left(q_{2}\right)$	1	(q_3)
$\overline{q_3}$	q_1	q_2				1	

We can use a <u>transition table</u> or a <u>transition diagram</u> to specify the transitions. What input can take you to the final state in M?