HW #3: Due Feb. 23, 2015 (Include Problem 6 from HW2)

Problem 1 (5 pts):

Which are valid wavefront coefficients for 10_{th} order wavefront aberration of a rotational symmetric optical system?

- a. W555
- **b.** W₅₅₁
- **C.** W372
- **d.** W₁₉₃
- **e.** W464
- **f.** W₆₄₂
- **q.** W₇₃₀
- **h.** W822
- i. W821
- **j.** W₉₁₁

Problem 2 (15 pts):

Assume an F/3 system is used for a wavelength of 0.5 μ m, with a wavefront defined as $W_{351} = 2 \mu$ m.

- a. Write the expression for wavefront aberration.
- **b.** Derive the expression for tangential ray aberration (ε_y) .
- c. What is the value of ray aberration at the edge of the field, and at $y_p=1$?

Problem 3 (40 pts):

Assume an optical system having a spherical aberration W_{040} is used for a wavelength λ . Also, assume defocus W_{020} exists.

- **a.** Write the general expression for wavefront aberration.
- **b.** Plot wavefront aberration for (F/#)=3, $\lambda=0.5~\mu m$, $W_{040}=2~\mu m$ and $W_{020}=0$, -1, -2, and -3 μm .
- **c.** Derive the expression for tangential ray aberration (εy).
- **d.** Plot ϵ y for (F/#)=3, $\lambda=0.5~\mu m$, $W_{040}=2~\mu m$ and $W_{020}=0$, -1, -2, and -3 μm .

Problem 4 (20 pts):

For an F/10, λ = 0.5 µm wavelength, the following ray fan plots were obtained of various field angles.

Among the aberrations listed below, what is the wavefront coefficient present and what is its value?

Problem 5 (20 pts):

According to Load Rayleigh, wave aberration of $\lambda/4$ in peak-to-valley has a negligible effect on imaging quality (Rayleigh criteria). Using the criteria, obtain tolerance of defocus (maximum allowable amount of defocus) +-dz for a perfect optical system. Assume $\lambda=0.5~\mu m$, and (F/#) = 10.