Лабораторная работа №1: отчет.

Установка и конфигурация операционной системы на виртуальную машину.

Евдокимов Максим Михайлович. Группа - НФИбд-01-20.

Содержание

1	Цел	ь работы	4
2	Зада	ание	5
3	Вып	олнение лабораторной работы	6
	3.1	Пункт 1: создание виртуальной машины	6
	3.2	Пункт 2: Скачивание и настройка носителя	8
	3.3	Пункт 3: Устоновка CentOS	9
	3.4	Пункт 4: Настройка пользоыателя и root	15
	3.5		18
4	Контрольные вопросы		22
	4.1	1. Какую информацию содержит учётная запись пользователя?	22
	4.2	2. Укажите команды терминала и приведите примеры:	22
	4.3	3. Что такое файловая система? Приведите примеры с краткой ха-	
		рактеристикой	23
	4.4	4. Как посмотреть, какие файловые системы подмонтированы в ОС?	24
	4.5	5. Как удалить зависший процесс?	24
5	Выв	оды	26
Сп	Список литературы		

Список иллюстраций

3.1	Начало создания виртуальнои машины	6
3.2	Настройка памяти и процессоров	7
3.3	Настройка виртуального жёсткого диска	7
3.4	Просмотр итога	8
3.5	Указание носителя для виртуальной машины	8
3.6	Выбор языка устоновки	9
3.7	Образ устоновки	10
3.8	Дата и время	10
3.9	Раскладка клавиатуры	11
3.10		12
3.11	, i	12
3.12	Выбор базового окружения	13
3.13	Место устоновки	14
3.14		14
3.15	Настройка сети и узла	15
3.16		16
3.17	1	16
3.18	Создание пользователя	17
3.19	1	18
3.20		19
3.21	Соглашение с лицензией	19
		20
3.23	Устоновка образа доп. гост. ОС	21

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создать и настроить виртуальную машину через VirtualBox.
- 2. Скачать и устоновить образ CentOS.
- 3. Запуск образа диска дополнений гостевой ОС и настроить систему.

3 Выполнение лабораторной работы

3.1 Пункт 1: создание виртуальной машины

Запустив VirtualBox создаёт новую виртуальную машину которую назовём "centos", создав предварительно для него папку в директории пользователя и оставив версию Red Hat так как она рекомендована инструкцией.

Рис. 3.1: Начало создания виртуальной машины

На следующем пункте оставляем всё без изменений так как таких параметров достаточно и при необходимости их можно увеличить.

Рис. 3.2: Настройка памяти и процессоров

Здесь я предоставил виртуальной машине 30 ГБ вместо 20, с запасом и указал "выделения в полном размере".

Рис. 3.3: Настройка виртуального жёсткого диска

Проверив введённые создаю виртуальную машину.

Рис. 3.4: Просмотр итога

3.2 Пункт 2: Скачивание и настройка носителя

Предварительно скачав подходящую версию образа CentOS 7 использую её как носителя, и запускаю виртуальную машину.

Рис. 3.5: Указание носителя для виртуальной машины

3.3 Пункт 3: Устоновка CentOS

Первум шагом при устоновки является выбор языка устоновки. Выберем для удобства русский.

Рис. 3.6: Выбор языка устоновки

Дальше мы видем образ устоновки где идут основные параметры устоновки.

Рис. 3.7: Образ устоновки

В первом разделе "Дата и время" мы проверяем праильно ли был устоновлем часовой пояс, время и дата.

Рис. 3.8: Дата и время

Второй раздел позваляет настроить порядок инициализации языков которые используется на клавиатуре.

Рис. 3.9: Раскладка клавиатуры

В третьем разделе можно выбрать дополнительный язык (к основному английскому), выбираем русский.

Рис. 3.10: Языковая поддержка

Дальше смотрим раздел "источника установки", оставляем ранее утановленный образ диска.

Рис. 3.11: Источник установки (образ CentOS)

В разделе среды выбираем "сервер GUI" так как он нам подходит и также в дополнительных указываем "Средства разработки".

Рис. 3.12: Выбор базового окружения

Дальше выбираем место устоновки наше созданное виртуальное пространство.

Рис. 3.13: Место устоновки

В в следуешем разделе отключаем КDUMP так как он не понадовится.

Рис. 3.14: Убрать КDUMP

И в последнем нужном нам разделе мы включаем ethernet и называем узел

(хост) также как и пользователь.

Рис. 3.15: Настройка сети и узла

3.4 Пункт 4: Настройка пользоыателя и root

На данном этапе начинается сама установка компонентов в это время мы можем настроить root-права и создать первого пользователя.

Рис. 3.16: Процесс устоновки и конфигурации

здесь мы указываем удобный нам пороль для получения root-прав.

Рис. 3.17: root пороль

В этом разделе мы указываем основные параметры для нашего пользователя:

имя, права администратора и пороль.

Рис. 3.18: Создание пользователя

После не большого ожидания завершаем устоновку перезапустив виртуальную машину.

Рис. 3.19: Завершение устоновки

3.5 Пункт 5: Устоновка образа диска доп. гост. ОС

После перезапуска у нас открывается последнее окно, приняв лицензию, мы завершаем устоновку и входим в систему.

Рис. 3.20: Финальная настройка

Здесь мы принимаем лицензию от CentOS.

Рис. 3.21: Соглашение с лицензией

После закрытия ознакомительной части при первом запуске мы выходим из

окна системы и переходим в раздел устройства выше и подключаем образ диска дополнительного гостевого OC.

Рис. 3.22: Подключение доп. гост. ОС

И устанавливаем его. дождавшись завершения установки перезапускаем виртуальную машину и среда готова к использованию.

Рис. 3.23: Устоновка образа доп. гост. ОС

4 Контрольные вопросы

4.1 1. Какую информацию содержит учётная запись пользователя?

Все важные данные о пользователя в систему, хранятся в файлах "/etc/passwd", так в учётной записи хранится в первую очередь ID пользователя (где 0 это с гоотправами и в системе CentOS 1-999 обычные пользователи), логин, пороль, идентификаторе группы, идентификаторе пользователя, начальный каталог и регистрационная оболочка. Если детально расмотреть структуру хранящихся данных то у нас получится такая строка данных: "User ID": "Password": "UID": "GID": "User Info": "Home Dir": "Shell".

4.2 2. Укажите команды терминала и приведите примеры:

– для получения справки по команде; Для этого можно использовать команду "man", данная команда может предоставить инструкцию или справку по использованию команды или программы. Если нужна краткая информация можно применить команду "whatis".

– для перемещения по файловой системе; Чтобы перемещаться нужно знать где ты и куда можешь пойти для этого есть команда "ls" позволяющая просмотреть содержание нынешней папки, а также комадна "ll" позволяющая просмотреть начинку директории. И самая главная команда "cd" - меняет текущий каталог на указанный, при пустом вводе перемещает на уровень выше в древе каталога.

- для просмотра содержимого каталога; Как я указал выше для этого есть команда "ls" позволяющая просмотреть содержание нынешней папки, а также комадна "ll" позволяющая просмотреть начинку директории.
- для определения объёма каталога; В большенстве систем на linux можно использовать команду "sudo du" (особенно утилита du) она выведит занимаемое котологом место на диске.
- для создания / удаления каталогов / файлов; Стандартная команда для создание каталога или директории (файлов) "mkdir", а также команды для взаимодействия с ними: "ср" основная задача копирование и дублирование, "mv" перемещение и переиминовывание, "rm" удаление папок и файлов. Также есть команда "cat" показывает что содержит файл или стандартный ввод, а также "ln" создающая фактически ссылку как в windows ярлыки.
- для задания определённых прав на файл / каталог; фЕдинственная универсальная команда помимо задания прав при создании файла это "chmod".
- для просмотра истории команд. Для этого есть стандартная команда "history", так помимо опций указав число после команды она выведет именно столько последних команд.

4.3 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Одно из определений гласит "Файловая система связывает носитель информации (хранилище) с прикладным программным обеспечением, организуя доступ к конкретным файлам при помощи функционала взаимодействия программ АРІ". Тоесть файловая система это набор драйверов встроенных в систему которая при обращение программы к файлу по его имени (адресу) предостовляет информацию, касающуюся типа носителя, на котором записан файл, и структуры хранения данных. Получается на деле драйверы ФС оптимизируют запись и считывание отдельных частей файлов для ускоренной обработки запросов.

Так на система типа Linux можно увидеть много разных ФС: Ext2, Ext3, Ext4, JFS, ReiserFS, XFS, Btrfs, ZFS и т.д. А например на Windows в основном используется NTFS для внутрених файлов и FAT32 (или NTFS) для флешек и внешних насителей есть и другие, но они не так важны и универсальны. И на Android особенно более современных стоит Ext4 - внутренняя и FAT32 - внешняя.

NTFS (файловая система новой технологии) - стандарт был реализован в Windows NT в 1995 году, и по сей день является основным в Windows. Система NTFS имеет допустимый предел размера файлов до 16 гигабайт и размер диска (памяти) до 16 Эксабайт, а также Использование метод «прозрачного шифрования» (Encryption File System) разделяя доступ к файлом для разных пользователей и приложений.

4.4 4. Как посмотреть, какие файловые системы подмонтированы в ОС?

На большинстве современных систем можно легко и быстро определить это в свойствах диска. Но на разных системах Linux есть свои способы это проверить через настройки системы или команды. Так например эту информацию можно получить через утилиту Gnome Диски.

4.5 5. Как удалить зависший процесс?

В windows быстрее всего это сделать через диспечер задач или консоль (Win+R; cmd; tasklist; Taskkill "процесс"). В сестемах Linux есть несколько команд для этого с разной степень серьёзности: "SIGINT" - оправляет приложение команду правильного безопасного завершения, "SIGQUIT" - отличается от предыдущей возможностью проигнорировать сигнал и созданием dump-памяти, "SIGHUP" - сообщает процессу о разрыве соединения с терминалом (в основном связана с

неполадками интернета), "SIGTERM" - немедленное завершение процесса проводимого самим процессом или дочерними, "SIGKILL" - зевершение процесса через ядро не мгновенное; и команды для убийства: "kill" - и тут многое зависит от опции если её нет то используется одна из выше указанных, если стоит "-TERM" то пытается принудительно или настойчиво закрыть процесс, и если это не помагает то испольуем "-KILL" что направляет все силы на уничтожение процесса.

5 Выводы

В результате выполнения работы мы ознакомились с основными этапами установки виртуальных машин и их настроек, а также создали виртуальную среду для выполнения последующих лабораторных работ.

Список литературы

- 1. Официальный сайт VirtualBox
- 2. Официальный сайт CentOS
- 3. Источник скачивание CentOS
- 4. Материал для выполнения лабораторной