Practice Problems 21: Washer and Shell methods, Length of a plane curve

- **1**. Find the volume of the solid generated by revolving the region bounded by the the curves $y = x^2$ and $x = y^2$ about the y-axis.
- 2. Let S denote the solid hemisphere $x^2 + y^2 + z^2 \le 4$, $y \ge 0$ and C denote the cone generated by revolving the line $\sqrt{3}y = x$ around the y-axis. Find the volume of the portion of S that lies inside C.
- 3. Consider the region R in the plane bounded by $y = \sin x, y = 0$ and $x = \frac{\pi}{2}$. Using washer method, find the volume of the solid generated by revolving R about the y-axis.
- 4. Let R be the region bounded by $y = 6\cos x$, $y = e^x$, x = 0 and $x = \frac{\pi}{6}$. Using washer method, evaluate the volume of the solid generated by revolving R around the line y = 7
- 5. Let R be the region enclosed by $y = e^{x^2}$, x = 1, x = 0 and y = 0. The region R is revolved about the y-axis. Find the volume of the solid generated.
- 6. Find the volume of the solid generated by revolving the region bounded by $(y-2)^2 = 4-x$ and x=0 about the x-axis.
- 7. A cylindrical hole of radius $\sqrt{3}$ is drilled through the center of the solid sphere of radius 2. Compute the volume of the remaining solid using the Shell Method.
- 8. Let R be the region bounded by $y = 2\sqrt{x-1}$ and y = x-1. Find the volume of the solid generated by revolving R about the line x = 7 using
 - (a) the Washer Method
 - (b) the Shell Method.
- **9.** Let C denote the circular disc of radius b centered at (a,0) where 0 < b < a. Find the volume of the torus that is generated by revolving C around the y-axis using
 - (a) the Washer Method
 - (b) the Shell Method.
- 10. Find the lengths of the following curves.
 - (a) $y = \frac{2}{3}(x^2 + 1)^{\frac{3}{2}}, x \in [1, 5]$
 - (b) $x(t) = 3\sin(2t) 6t$ and $y(t) = 6\sin^2 t$, $0 \le t \le \frac{\pi}{2}$
 - (c) $r = \sin^2(\frac{\theta}{2}), \ 0 \le \theta \le \pi.$
- Let $f:[0,\infty)\to\mathbb{R}$ be differentiable and increasing function such that f(0)=1. Let s(x) denote the length of the curve y=f(x) from the point (0,1) to $(x,f(x)),\ x>0$. Suppose s(x)=2x for all $x\in[0,\infty)$. Evaluate f(x).
- 12. Consider the curve $r = e^{-\theta}$, $\theta \in [0, \infty)$. Sketch the curve and show that $\int_0^\infty \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta = \sqrt{2}$.
- 13. Consider the curve $r = \frac{1}{1+\theta}$, $\theta \in [0, \infty)$. Sketch the curve and show that $\int_0^\infty \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta$ does not exist.

Practice Problems 21: Hints/Solutions

- 1. Solving $y^2 = \sqrt{y}$ implies that y = 0 or y = 1. The required volume is $\int_0^1 \pi \left[(\sqrt{y})^2 (y^2)^2 \right] dy$. See Figure 1.
- 2. The volume of the portion of S that lies outside C, evaluated by the Washer Method, is $\int_0^1 \pi (4 y^2 3y^2) dy = \frac{8\pi}{3}$. The required volume is $\frac{16\pi}{3} \frac{8\pi}{3}$. See Figure 2.
- 3. The required volume $V=V_1-V_2$ where $V_1=\pi\int_0^1(\frac{\pi}{2})^2dy$ and $V_2=\pi\int_0^1(\sin^{-1}y)^2dy$. The substitution $t=\sin^{-1}y$ gives that $V_2=\pi\int_0^{\frac{\pi}{2}}t^2\cos tdt$ which can be evaluated using integration by parts. See Figure 3.
- 4. For $x \in [0, \frac{\pi}{6}]$, $7 > 6 \cos x \ge 6 \cos \frac{\pi}{6} = 6 \frac{\sqrt{3}}{2} > e > e^{\frac{\pi}{6}} \ge e^x$. Therefore the required volume is $\int_0^{\frac{\pi}{6}} \pi \left[(7 e^x)^2 (7 6 \cos x)^2 \right] dx$. See Figure 4.
- 5. By the Shell Method, the required volume is $\int_0^1 2\pi x e^{x^2} dx = \pi \int_0^1 e^u du$.
- 6. The graph intersects the y-axis at (0,0) and (0,4). The volume, determined by the Shell Method, is $\int_0^4 2\pi y (4-(y-2)^2) dy$. See Figure 5.
- 7. The required volume, determined by the Shell Method, is $\int_{\sqrt{3}}^{2} 2\pi x^2 y dx = 4\pi \int_{\sqrt{3}}^{2} x \sqrt{4 x^2} dx = \frac{4\pi}{3}$. See Figure 6.
- 8. (a) See Figure 7. The volume is $\pi \int_0^4 \left\{ \left[7 (\frac{y^2}{4} + 1)\right]^2 \left[7 (y+1)\right]^2 \right\} dy$.
 - (b) See Figure 8. The volume is $\int_1^5 2\pi (7-x) \left[(2\sqrt{x-1} (x-1)) \right] dx$.
- 9. (a) See Figure 9. Note that the disc is bounded by the curves $x = a + \sqrt{b^2 y^2}$ and $x = a \sqrt{b^2 y^2}$. The volume of the torus, evaluated by the Washer Method, is $\pi \int_{-b}^{b} \left((a + \sqrt{b^2 y^2})^2 (a \sqrt{b^2 y^2})^2 \right) dy = 4a\pi \int_{-b}^{b} \sqrt{b^2 y^2} dy$. The last integral is the area of the semicircle of radius b. Therefore the volume is $2\pi^2 ab^2$.
 - (b) See Figure 10. The volume of the torus is same as the volume of the torus generated by revolving the circular disc $x^2+y^2 \leq b^2$ about the line x=a. Using the Shell Method, we find that the volume is $\int_{-b}^{b} 2\pi (a-x)(2\sqrt{b^2-x^2})dx = 4\pi \left[\int_{-b}^{b} a\sqrt{b^2-x^2}dx \int_{-b}^{b} x(\sqrt{b^2-x^2})dx\right] = 4\pi a \int_{-b}^{b} \sqrt{b^2-x^2}dx$.
- 10. (a) The length of the curve is $\int_1^5 \sqrt{1 + f'(x)^2} dx = \int_1^5 (2x^2 + 1) dx$.
 - (b) Since $x'(t) = -12\sin^2 t$ and $y'(t) = 12\sin t \cos t$, the length of the curve is $\int_0^{\frac{\pi}{2}} \sqrt{(-12\sin^2 t)^2 + (12\sin t \cos t)^2} = \int_0^{\frac{\pi}{2}} 12\sin t dt = 12.$
 - (c) The required length is $\int_0^{\pi} \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta = \int_0^{\pi} \sqrt{\sin^4 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} \cos^2 \frac{\theta}{2}} d\theta$ $= \int_0^{\pi} \sqrt{\sin^2 \frac{\theta}{2}} d\theta = \int_0^{\pi} |\sin \frac{\theta}{2}| d\theta = 2.$
- 11. s(x) = 2x implies that $\int_0^x \sqrt{1 + (f'(t))^2} dt = 2x$. By the first FTC, $f(x) = \sqrt{3}x + f(0)$.
- 12. See Figure 11. Note that $\int_0^\infty \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta = \int_0^\infty \sqrt{2}e^{-\theta} d\theta = \sqrt{2}e^{-\theta}$
- 13. See Figure 12. Observe that $\int_0^\infty \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta = \int_0^\infty \sqrt{\frac{1}{(1+\theta)^2} + \frac{1}{(1+\theta)^4}} d\theta = \int_1^\infty \sqrt{\frac{1}{t^2} + \frac{1}{t^4}} dt$ which does not exist.