Question:1

Write down each pair of adjacent angles shown in Fig.

Solution:

Adjacent angles are the angles that have a common vertex and a common arm.

Following are the adjacent angles in the given figure:

 $\angle DOC$ and $\angle BOC \angle COB$ and $\angle BOA$

Question:2

In Fig., name all the pairs of adjacent angles.

Solution:

In figure i, the adjacent angles are:

 $\angle EBA$ and $\angle ABC \angle ACB$ and $\angle BCF \angle BAC$ and $\angle CAD$

In figure ii, the adjacent angles are:

∠BAD and ∠DAC

∠BDA and ∠CDA

Question:3

In figure, write down: i each linear pair ii each pair of vertically opposite angles.

Solution:

i Two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays.

 \angle 1 and \angle 3

 \angle 1 and \angle 2

 $\angle 4$ and $\angle 3$

∠4 and ∠2

 \angle 5 and \angle 6

 $\angle 5$ and $\angle 7$

∠6 and ∠8

 $\angle 7$ and $\angle 8$

ii Two angles formed by two intersecting lines having no common arms are called vertically opposite angles.

 $\angle 1$ and $\angle 4$

 $\angle 5$ and $\angle 8$

∠6 and ∠7

Question:4

Are the angles 1 and 2 given in Fig. adjacent angles?

No, because they have no common vertex.

Question:5

Find the complement of each of the following angles:

i 35°

ii 72°

iii 45 $^{\circ}$

iv 85°

Solution:

Two angles are called complementary angles if the sum of those angles is 90° .

Complementary angles of the following angles are:

(i)
$$90\degree - 35\degree = 55\degree$$
 (ii) $90\degree - 72\degree = 18\degree$ (iii) $90\degree - 45\degree = 45\degree$ (iv) $90\degree - 85\degree = 5\degree$

Question:6

Find the supplement of each of the following angles:

i 70°

ii 120°

iii 135°

iv 90°

Solution:

Two angles are called supplementary angles if the sum of those angles is 180°.

Supplementary angles of the following angles are:

```
i 180^{\circ} - 70^{\circ} = 110^{\circ}

ii 180^{\circ} - 120^{\circ} = 60^{\circ}

iii 180^{\circ} - 135^{\circ} = 45^{\circ}

iv 180^{\circ} - 90^{\circ} = 90^{\circ}
```

Question:7

Identify the complementary and supplementary pairs of angles from the following pairs:

i 25°, 65°

ii 120°, 60°

iii 63°, 27°

iv 100°, 80°

Solution:

Since

(i) $25\degree+65\degree=90\degree$, therefore this is complementary pair of angle. (ii) $120\degree+60\degree=180\degree$, therefore this is supplementary pair of angle. (iii) $60\degree$

Therefore, i and iii are the pairs of complementary angles and ii and iv are the pairs of supplementary angles.

Question:8

Can two angles be supplementary, if both of them be

i obtuse?

ii right?

iii acute?

i No, two obtuse angles cannot be supplementary.

ii Yes, two right angles can be supplementary. ($\because \angle 90^\circ + \angle 90^\circ = \angle 180^\circ$)

 $iii\, {
m No},$ two acute angles cannot be supplementary.

Question:9

Name the four pairs of supplementary angles shown in Fig.

Solution:

Following are the supplementary angles:

 $\angle AOC$ and $\angle COB$

∠BOC and ∠DOB

∠BOD and ∠DOA

 $\angle AOC$ and $\angle DOA$

Question:10

In Fig., A, B, C are collinear points and $\angle DBA = \angle EBA$.

i Name two linear pairs

ii Name two pairs of supplementary angles.

Solution:

i Linear pairs:

∠ABD and ∠DBC

∠ABE and ∠EBC

Because every linear pair forms supplementary angles, these angles are:

∠ABD and ∠DBC

 $\angle ABE$ and $\angle EBC$

Question:11

If two supplementary angles have equal measure, what is the measure of each angle?

Let x and y be two supplementary angles that are equal.

 $\angle x = \angle y$

According to the question,

$$\angle x + \angle y = 180^{\circ} \Rightarrow \angle x + \angle x = 180^{\circ} \Rightarrow 2\angle x = 180^{\circ} \Rightarrow \angle x = \frac{180^{\circ}}{2} = 90^{\circ} \therefore \angle x = \angle y = 90^{\circ}$$

Question:12

If the complement of an angle is 28°, then find the supplement of the angle.

Solution:

Let x be the complement of the given angle 28° . $\therefore \angle x + 28^\circ = 90^\circ \Rightarrow \angle x = 90^\circ - 28^\circ = 62^\circ$

$$/x + 28^{\circ} = 90^{\circ} \Rightarrow /x = 90^{\circ} - 28^{\circ} = 62^{\circ}$$

So, supplement of the angle = $180\degree - 62\degree = 118\degree$

In Fig. 19, name each linear pair and each pair of vertically opposite angles:

Solution:

Two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays.

 $\angle 1$ and $\angle 2$

 \angle 2 and \angle 3

 \angle 3 and \angle 4

 $\angle 1$ and $\angle 4$

∠5 and ∠6

 $\angle 6$ and $\angle 7$

∠7 and ∠8

 \angle 8 and \angle 5

 $\angle 9$ and $\angle 10$

 \angle 10 and \angle 11

∠11 and ∠12

 \angle 12 and \angle 9

Two angles formed by two intersecting lines having no common arms are called vertically opposite angles.

 \angle 1 and \angle 3

 $\angle 4$ and $\angle 2$

 \angle 5 and \angle 7

 $\angle 6$ and $\angle 8$

 $\angle 9$ and $\angle 11$

 \angle 10 and \angle 12

Question:14

In Fig., OE is the bisector of $\angle BOD$. If $\angle 1 = 70^{\circ}$, find the magnitudes of $\angle 2$, $\angle 3$ and $\angle 4$.

Solution:

Since OE is the bisector of ∠BOD,

∴ \angle DOE = \angle EOB \angle 2 + \angle 1 + \angle EOB = 180° \angle 4 = \angle 2 = 40° (Vertically opposite analysis) $(Linear\ Pair) \angle 2 + 2 \angle 1 = 180^{\circ} \qquad (\angle 1 = \angle EOB) \Rightarrow \angle 2 = 180^{\circ} - 2 \angle 1 = 180^{\circ} - 2 \times 70^{\circ} = 180 \\ (Vertically\ opposite\ angles) \angle 3 = \angle DOB = \angle 1 + \angle EOB = 70^{\circ} + 70^{\circ} = 140^{\circ} \\ (\angle 3 = \angle DOB) = 2 \angle 1 = 180^{\circ} - 2 \times 70^{\circ} = 180 \\ (\angle 3 = \angle DOB) = 2 \angle 1 = 180^{\circ} - 2 \times 70^{\circ} = 180 \\ (\angle 4 = \angle 180^{\circ} - 2 \times 10^{\circ} = 180^{\circ} - 2 \times 10^{\circ} = 180^{\circ} - 2 \times 10^{\circ} = 180^{\circ} = 180^{$

Question:15

One of the angles forming a linear pair is a right angle. What can you say about its other angle?

Solution:

One angle of a linear pair is the right angle, i.e., 90°.

 \therefore The other angle = 180° $\overline{}$ 90° = 90°

Question:16

One of the angles forming a linear pair is an obtuse angle. What kind of angle is the other?

Solution:

If one of the angles of a linear pair is obtuse, then the other angle should be acute; only then can their sum be 180°.

Question:17

One of the angles forming a linear pair is an acute angle. What kind of angle is the other?

Solution

In a linear pair, if one angle is acute, then the other angle should be obtuse. Only then their sum can be 180° .

Question:18

Can two acute angles form a linear pair?

Solution:

No, two acute angles cannot form a linear pair because their sum is always less than 180°.

Question:19

If the supplement of an angle is 65°; then find its complement.

Solution:

Let x be the required angle.

Then, we have:

$$x + 65^{\circ} = 180^{\circ}$$

$$\Rightarrow x = 180^{\circ} - 65^{\circ} = 115^{\circ}$$

The complement of angle x cannot be determined.

Question:20

Find the value of *x* in each of the following figures.

Solution:

Since
$$\angle BOA + \angle BOC = 180^{\circ}$$
 Linearpair
 $\therefore \angle x = 180^{\circ} - \angle BOA = 180^{\circ} - 60^{\circ} = 120^{\circ}$

$$ii$$
 Since $\angle \text{QOP} + \angle \text{QOR} = 180^{\circ}$ (Linear pair) $\therefore 2x + 3x = 180^{\circ} \Rightarrow 5x = 180^{\circ} \Rightarrow x = \frac{180^{\circ}}{5} = 36^{\circ}$

$$iii \\ \text{Since } \angle \text{LOP} + \angle \text{PON} + \angle \text{NOM} = 180^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - \angle \text{LOP} - \angle \text{NOM} \\ \Rightarrow x = 180^{\circ} - 35^{\circ} - 60^{\circ} \\ \Rightarrow x = 180^{\circ} - 95^{\circ} = 85^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - \angle \text{LOP} - \angle \text{NOM} \\ \Rightarrow x = 180^{\circ} - 35^{\circ} - 60^{\circ} \\ \Rightarrow x = 180^{\circ} - 95^{\circ} = 85^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - \angle \text{LOP} - \angle \text{NOM} \\ \Rightarrow x = 180^{\circ} - 35^{\circ} - 60^{\circ} \\ \Rightarrow x = 180^{\circ} - 95^{\circ} = 85^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} - 220^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{\circ} \\ \text{(Linear pair)} : \angle \text{PON} = 180^{$$

$$2x^{\circ} + x^{\circ} + 2x^{\circ} + 3x^{\circ} = 180^{\circ} \Rightarrow 8x = 180 \Rightarrow x = \frac{180}{8} = 22.5^{\circ}$$

$$\stackrel{vi}{3x}^{\circ}=105\,^{\circ}\Rightarrow x=rac{105}{3}=35\,^{\circ}$$

Question:21

In Fig. 22, it being given that $\angle 1 = 65^{\circ}$, find all other angles.

Solution:

Since
$$\angle 1 + \angle 2 = 180^{\circ}$$
 Linearpair $\therefore \angle 2 = 180^{\circ} - 65^{\circ} = 115^{\circ}$

$$\therefore \angle 2 = 180 - 65 = 115$$

 $\angle 2 = \angle 4$ Vertically opposite angles

$$\therefore$$
 $\angle 4 = \angle 2 = 115$ ° and $\angle 3 = 65$ °

Question:22

In Fig., OA and OB are opposite rays:

i If $x = 25^{\circ}$, what is the value of y?

ii If $y = 35^{\circ}$, what is the value of x?

Solution:

$$\angle AOC + \angle BOC = 180^{\circ}$$
 Linearpair $\Rightarrow (2y+5) + 3x = 180^{\circ} \Rightarrow 3x + 2y = 175^{\circ}$

i If $x = 25^{\circ}$ then

$$3 \times 25\,^{\circ} + 2y = 175\,^{\circ} \Rightarrow 75\,^{\circ} + 2y = 175\,^{\circ} \Rightarrow 2y = 175\,^{\circ} - 75\,^{\circ} = 100\,^{\circ} \Rightarrow y = \frac{100\,^{\circ}}{2} = 50\,^{\circ}$$

ii If $y = 35^{\circ}$, then

$$3x + 2 \times 35° = 175° \Rightarrow 3x + 70° = 175° \Rightarrow 3x = 175° - 70° = 105° \Rightarrow x = \frac{105°}{3} = 35°$$

Question:23

In Fig., write all pairs of adjacent angles and all the linear pairs.

Solution:

Adjacent angles:

 $\angle DOA$ and $\angle DOC \angle DOC$ and $\angle BOC$

 $\angle AOD$ and $\angle DOB \angle BOC$ and $\angle AOC$

Linear pairs of angles:

 $\angle AOD$ and $\angle DOB \angle BOC$ and $\angle AOC$

Question:24

In Fig. 25, find $\angle x$. Further find $\angle BOC$, $\angle COD$ and $\angle AOD$.

$$\angle AOD + \angle DOC + \angle COB = 180^{\circ} \left(Linear\ pair\right) \left(x+10\right)^{\circ} + x^{\circ} + \left(x+20\right)^{\circ} = 180^{\circ} 3x + 30^{\circ} = 180^{\circ} 3x = 180^{\circ} - 30^{\circ} 3x = 150^{\circ} x = \frac{150^{\circ}}{3} = 50^{\circ} \\ \angle BOC = x + 20^{\circ} = 50^{\circ} + 20^{\circ} = 70^{\circ} \angle COD = x = 50^{\circ} \angle AOD = x + 10^{\circ} = 50^{\circ} + 10^{\circ} = 60^{\circ}$$

Question:25

How many pairs of adjacent angles are formed when two lines intersect in a point?

If two lines intersect at a point, then four adjacent pairs are formed, and those pairs are linear as well.

Question:26

How many pairs of adjacent angles, in all, can you name in Fig.?

Solution:

There are 10 adjacent pairs in the given figure; they are: \angle EOD and \angle DOC \angle COD and \angle BOC \angle COB and \angle BOA \angle AOB and \angle BOD \angle BOC and \angle COE \angle COD and \angle COA \angle DOE and \angle DOB \angle EOD and \angle DOA \angle EOC and \angle AOC \angle AOB and \angle BOE

Question:27

In Fig., determine the value of x.

Solution:

$$\angle {
m AOB} + \angle {
m BOC} = 180^{\circ}$$
 (Linear pair) $\Rightarrow 3x + 3x = 180^{\circ} \Rightarrow 6x = 180^{\circ} \Rightarrow x = \frac{180^{\circ}}{6} = 30^{\circ}$

Question:28

In Fig., AOC is a line, find x.

$\angle AOB + \angle BOC = 180^{\circ}$

(Linear pair) \Rightarrow 70° + 2x = 180° \Rightarrow 2x = 180° - 70° = 110° \Rightarrow x = $\frac{110°}{2}$ = 55°

Question:29

In Fig., POS is a line, find x.

Solution:

$$\angle QOP + \angle QOR + \angle ROS = 180° \qquad \textit{Anglesonastraightline}$$

$$\Rightarrow 60\degree + 4x + 40\degree = 180\degree \Rightarrow 100\degree + 4x = 180\degree \Rightarrow 4x = 180\degree - 100\degree = 80\degree \Rightarrow x = \frac{80\degree}{4} = 20\degree$$

Question:30

In Fig., lines I_1 and I_2 intersect at O, forming angles as shown in the figure. If $x = 45^{\circ}$, find the values of y, z and u.

Solution:

$$\angle z = \angle x = 45^\circ$$
 (Vertically opposite angles) Now, $\angle x + \angle y = 180^\circ$ (Linear pair) $\Rightarrow \angle y = 180^\circ - 45^\circ = 135^\circ \angle u = \angle y = 135^\circ$ (Vertically opposite angles)

Question:31

In Fig., three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u.

Solution:

$$\angle BOD + \angle DOF + \angle FOA = 180^{\circ}$$
 Linearpair

$$\therefore$$
 \angle FOA = $\angle u$ = $180^{\circ} - 90^{\circ} - 50^{\circ} = 40^{\circ}$

$$\angle {\rm FOA} = \angle x = 40^{\circ} \quad Vertically opposite angles$$

$$\angle {\rm BOD} = \angle z = 90\,^\circ \quad Vertically opposite angles$$

$$\angle {\rm EOC} = \angle y = 50\,^\circ \quad Vertically opposite angles$$

Question:32

In Fig., find the values of x, y and z.

Solution:

 $\angle y = 25^{\circ}$ (Vertically opposite angles) Since $\angle x + \angle y = 180^{\circ}$ (Linear pair) $\therefore \angle x = 180^{\circ} - 25^{\circ} = 155^{\circ} \angle z = \angle x = 155^{\circ}$ (Vertically opposite

In Fig., line n is a transversal to lines l and m. Identify the following:

i Alternate and corresponding angles in Fig. i.

ii Angles alternate to $\angle d$ and $\angle g$ and angles corresponding to angles $\angle f$ and $\angle h$ in Fig. ii.

iii Angle alternate to ∠PQR, angle corresponding to ∠RQF and angle alternate to ∠PQE in Fig. iii.

iv Pairs of interior and exterior angles on the same side of the transversal in Fig. ii.

Solution:

i Figure i

Corresponding angles:

∠EGB and ∠GHD

 \angle HGB and \angle FHD

∠EGA and ∠GHC

∠AGH and ∠CHF

Alternate angles:

∠EGB and ∠CHF

∠HGB and ∠CHG

 \angle EGA and \angle FHD

 $\angle AGH$ and $\angle GHD$

ii Figure ii

Alternate angle to $\angle d$ is $\angle e$.

Alternate angle to $\angle g$ is $\angle b$.

Also,

Corresponding angle to $\angle f$ is $\angle c$.

Corresponding angle to $\angle h$ is $\angle a$.

iii Figure iii

Angle alternate to $\angle PQR$ is $\angle QRA$.

Angle corresponding to $\angle RQF$ is $\angle ARB$.

Angle alternate to $\angle POE$ is $\angle ARB$.

$iv \ {\bf Figure} \ ii$

Pair of interior angles are

∠a and ∠e

 $\angle d$ and $\angle f$

Pair of exterior angles are

 $\angle b$ and $\angle h$

 $\angle c$ and $\angle g$

Question:34

In Fig., AB and CD are parallel lines intersected by a transversal PQ at L and M respectively. If $\angle CMQ = 60^{\circ}$, find all other angles in the figure.

Solution:

 \angle ALM = \angle CMQ = 60°

Corresponding angles

 $\angle \text{LMD} = \angle \text{CMQ} = 60^{\circ}$

Vertically opposite angles

 $\angle ALM = \angle PLB = 60^{\circ}$

Vertically opposite angles

Since

 \angle CMQ + \angle QMD = 180° Linearpair

 \therefore \angle QMD = $180^{\circ} - 60^{\circ} = 120^{\circ}$

 \angle QMD = \angle MLB = 120° Corresponding angles

 \angle QMD = \angle CML = 120° Vertically opposite angles

 \angle MLB = \angle ALP = 120° Vertically opposite angles

Question:35

In Fig., AB and CD are parallel lines intersected by a transversal PQ at L and M respectively. If $\angle LMD = 35^{\circ}$ find $\angle ALM$ and $\angle PLA$.

Solution:

In the given Fig., AB \parallel CD. \angle ALM = \angle LMD = 35° (Alternate interior angles) Since \angle PLA + \angle ALM = 180° (Linear pair) \therefore \angle PLA = 180° - 35° = 145°

Question:36

The line n is transversal to line l and m in Fig. Identify the angle alternate to $\angle 13$, angle corresponding to $\angle 15$, and angle alternate to $\angle 15$.

Solution:

In this given Fig., line $I \parallel m$.

Here,

Alternate angle to $\angle 13$ is $\angle 7$.

Corresponding angle to $\angle 15$ is $\angle 7$.

Alternate angle to $\angle 15$ is $\angle 5$.

Question:37

In Fig., line $I \parallel m$ and n is a transversal. If $\angle 1 = 40^{\circ}$, find all the angles and check that all corresponding angles and alternate angles are equal.

Solution:

In the given figure, $I \parallel m$.

Here,

 $(\text{Linear pair}) :. \ \angle 2 = 180^{\circ} - \angle 1 = 180^{\circ} - 40^{\circ} = 140^{\circ} \angle 5 = \angle 1 = 40^{\circ} \qquad (\text{Corresponding angles}) \angle 3 = \angle 1 = 40^{\circ}$ $\angle 1 + \angle 2 = 180\degree$ (Vertically op

 $\angle 2 = \angle 6 = 140^{\circ}$ (Corresponding angles) $\angle 2 = \angle 4 = 140^{\circ}$ (Vertically opposite angles) $\angle 4 = \angle 8 = 140^{\circ}$ (Corresponding angles) $\angle 8 = \angle 6 = 4$

Thus, $\angle 2 = \angle 8$, $\angle 3 = \angle 5$, $\angle 6 = \angle 4$, $\angle 1 = \angle 7$

Hence, alternate angles are equal.

Question:38

In Fig., line $I \parallel m$ and a transversal n cuts them at P and Q respectively. If $\angle 1 = 75^{\circ}$, find all other angles.

In the given figure, $I \parallel m, n$ is a transversal line and $\angle 1 = 75^{\circ}$.

Thus, we have:

 $\angle 1 + \angle 2 = 180^{\circ} \qquad \text{(Linear pair)} \Rightarrow \angle 2 = 180^{\circ} - \angle 1 = 180^{\circ} - 75^{\circ} = 105^{\circ} \\ \therefore \angle 1 = \angle 5 = 75^{\circ} \qquad \text{(Corresponding angles)} \\ \angle 1 = \angle 3 = 75^{\circ} \qquad \text{(Vertice)}$

Question:39

In Fig., $AB \parallel CD$ and a transversal PQ cuts them at L and M respectively. If $\angle QMD = 100^{\circ}$, find all other angles.

Solution:

In the given figure, AB || CD, PQ is a transversal line and \angle QMD = 100°.

Thus, we have:

Thus,

 $\angle DMQ = \angle BLM = 100^{\circ}$ Corresponding angles $\angle DMQ = \angle CML = 100^{\circ}$ Vertically opposite angles $\angle BLM = \angle PLA = 100^{\circ}$ Vertically opposite angles

Also,

 $\angle CMQ = \angle ALM = 80^{\circ}$ Corresponding angles $\angle CMQ = \angle DML = 80^{\circ}$ Vertically opposite angles $\angle ALM = \angle PLB = 80^{\circ}$ Vertically opposite angles

Question:40

In Fig., $I \parallel m$ and $p \parallel q$. Find the values of x, y, z, t.

Solution:

In the given figure, $I \parallel m$ and $p \parallel q$.

Thus, we have:

In Fig., line $I \mid \mid m$, $\angle 1 = 120^{\circ}$ and $\angle 2 = 100^{\circ}$, find out $\angle 3$ and $\angle 4$.

Solution:

In the given figure, $\angle 1 = 120^{\circ}$ and $\angle 2 = 100^{\circ}$.

Since $I \parallel m$, so

 $\angle 2 = \angle 5 = 100^{\circ}$ (Alternate interior angles) $\angle 5 + \angle 3 = 180^{\circ}$ (Linear pair) $\Rightarrow \angle 3 = 180^{\circ} - \angle 5 = 180^{\circ} - 100^{\circ} = 80^{\circ}$

Also,

 $\angle 1 + \angle 6 = 180^{\circ} \qquad \text{(Linear pair)} \Rightarrow \angle 6 = 180^{\circ} - \angle 1 = 180^{\circ} - 120^{\circ} = 60^{\circ}$

We know that the sum of all the angles of triangle is 180°.

 $\therefore \angle 6 + \angle 3 + \angle 4 = 180^{\circ} \Rightarrow 60^{\circ} + 80^{\circ} + \angle 4 = 180^{\circ} \Rightarrow 140^{\circ} + \angle 4 = 180^{\circ} \Rightarrow \angle 4 = 180^{\circ} - 140^{\circ} = 40^{\circ}$

Question:42

In Fig., line $I \parallel m$. Find the values of a, b, c, d. Give reasons.

Solution:

In the given figure, line $I \parallel m$.

Thus, we have

 $\angle a = 110^\circ \qquad \text{(Vertically opposite angles)} \\ \angle b = \angle a = 110^\circ \qquad \text{(Corresponding angles)} \\ \angle d = 85^\circ \qquad \text{(Vertically opposite angles)} \\ \angle c = \angle d = 85^\circ$

Question:43

In Fig., AB \parallel CD and \angle 1 and \angle 2 are in the ratio 3 : 2. Determine all angles from 1 to 8.

Solution:

In the given figure, $AB \parallel CD$ and t is a transversal line.

Now, let: $\angle 1 = 3x \angle 2 = 2x$

Thus, we have:

 $\text{(Linear pair)} \therefore 3x + 2x = 180\degree \Rightarrow 5x = 180\degree \Rightarrow x = \frac{180\degree}{5} = 36\degree \text{ Thus,} \angle 1 = 3 \times 36\degree = 108° \angle 2 = 2 \times 36\degree = 72\degree$ $\angle 1 + \angle 2 = 180^{\circ}$

(Corresponding angles) $\angle 1 = \angle 3 = 108^{\circ}$ (Vertically opposite angles) $\angle 5 = \angle 7 = 108^{\circ}$ (Vertically opposite angles) $\angle 2 = \angle 6 = 100^{\circ}$ $\angle 1 = \angle 5 = 108^{\circ}$

Question:44

In Fig., I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1$, $\angle 2$ and $\angle 3$.

Solution:

In the given figure, $I \parallel m \parallel n$ and p is a transversal line.

Thus, we have:

$$\angle 4 + 60^\circ = 180^\circ \qquad \text{(Linear pair)} \Rightarrow \angle 4 = 180^\circ - 60^\circ = 120^\circ \angle 4 = \angle 1 = 120^\circ \qquad \text{(Corresponding angles)} \angle 1 = \angle 2 = 120^\circ \qquad \text{(Corresponding angles)}$$

Question:45

In Fig., if $I \parallel m \parallel n$ and $\angle 1 = 60^{\circ}$, find $\angle 2$.

Solution:

In the given figure, $I \parallel m \parallel n$ and $\angle 1 = 60^{\circ}$.

Thus, we have:

 $(Corresponding\ angle)\ Now, \angle 3 + \angle 4 = 180^{\circ} \quad (Linear\ pair) \angle 4 = 180^{\circ} - \angle 3 = 180^{\circ} - 60^{\circ} = 120^{\circ} \angle 2 = \angle 4 = 120^{\circ} \quad (Alternate\ interval of the control of the cont$ $\angle 3 = \angle 1 = 60^{\circ}$

Question:46

In Fig., if $AB \parallel CD$ and $CD \parallel EF$, find $\angle ACE$.

Solution:

In the given figure, $AB \parallel CD$ and $CD \parallel EF$.

Extend line CE to E'.

Thus, we have: $\angle BAC = \angle ACD = 70^{\circ}$

(Alternate angles) Now, $\angle 3 + \angle \text{CEF} = 180^{\circ}$

(Linear pair) $\Rightarrow \angle 3 = 180^{\circ} - \angle \text{CEF} = 180^{\circ} - 130^{\circ} = 50^{\circ} \text{ Since } C$

Question:47

In Fig., if $I \parallel m, n \parallel p$ and $\angle 1 = 85^{\circ}$, find $\angle 2$.

Solution:

In the given figure, I || m, n || p and $\angle 1 = 85^{\circ}$.

Now, let $\angle 4$ be the adjacent angle of $\angle 2$.

Thus, we have:

 $\angle 3 = \angle 1 = 85^{\circ}$ (Corresponding angles)

 $\begin{array}{ll} \angle 3 + \angle 2 = 180° & Sum o finterior angles on the same side of the transversal \\ \therefore \angle 2 = 180° - \angle 3 = 180° - 85° = 95° \end{array}$

Question:48

In Fig., a transversal n cuts two lines l and m. If $\angle 1 = 70^{\circ}$ and $\angle 7 = 80^{\circ}$, is $l \parallel m$?

Solution:

We know that if the alternate exterior angles of two lines are equal, then the lines are parallel.

In the given figure, $\angle 1 \ \mathrm{and} \ \angle 7$ are alternate exterior angles, but they are not equal.

$$\angle 1 \neq \angle 770^{\circ} \neq 80^{\circ}$$

Therefore, lines I and m are not parallel.

Question:49

In Fig., a transversal n cuts two lines l and m such that $\angle 2 = 65^{\circ}$ and $\angle 8 = 65^{\circ}$. Are the lines parallel?

Solution:

 $\angle 2 = \angle 3 = 65^{\circ}$ Verticallyopposite angles

 $\angle 8 = \angle 6 = 65^{\circ}$ Vertically opposite angles

∴ ∠3 = ∠6

 $\Rightarrow \textit{I} \mid\mid \textit{m} \\ Two lines are parallel if the alternate angles formed with the transversal are equal$

Question:50

In Fig., show that AB \parallel EF.

Solution:

Extend line CE to E'.

 $\angle BAC = 57^{\circ} = 22^{\circ} + 35^{\circ} = \angle ACE + \angle ECD \therefore AB || CD Here, \angle E'EF + \angle FEC = 180^{\circ} \quad (Linear \ pair) \Rightarrow \angle E'EF = 180^{\circ} - \angle FEC = 180^{\circ} - 145^{\circ} = 35^{\circ}$

Question:51

In Fig., AB \parallel CD. Find the values of x, y, z.

Solution:

 $\angle z = 125\,^\circ \qquad \quad Corresponding angles$

$$\angle x + \angle y = 180\,^\circ$$
 (Sum of adjacent interior angles is $180\,^\circ$) $55\,^\circ + \angle y = 180\,^\circ \Rightarrow \angle y = 180\,^\circ - 55\,^\circ = 125\,^\circ$

Question:52

In Fig., find out $\angle PXR$, if PQ || RS.

Draw a line parallel to PQ passing through X.

Here,

$$\angle PQX = \angle PXF = 70^{\circ}$$
 and $\angle SRX = \angle RXF = 50^{\circ}$ Alternate interior angles

∵ PQ || RS || XF

$$\therefore \angle PXR = \angle PXF + \angle FXR = 70\degree + 50\degree = 120\degree$$

Question:53

In Fig., we have

 $i \angle MLY = 2 \angle LMQ$, find $\angle LMQ$.

 $ii \angle XLM = (2x - 10)^{\circ}$ and $\angle LMQ = x + 30^{\circ}$, find x.

 $iii \angle XLM = \angle PML$, find $\angle ALY$

 $iv \angle ALY = (2x - 15)^{\circ}$, and $\angle LMQ = (x + 40)^{\circ}$, find x

Solution:

$$\angle \text{LMQ} = \angle \text{ALY} \qquad \text{(Corresponding angles)} : \angle \text{MLY} + \angle \text{ALY} = 180^{\circ} \qquad \text{(Linear pair)} \quad \Rightarrow 2\angle \text{ALY} + \angle \text{ALY} = 180^{\circ} \Rightarrow 3\angle \text{ALY} = 180^{\circ} \Rightarrow \angle \text{ALY} = 180^{\circ} \Rightarrow 2\angle \text{ALY} = 180^$$

Question:54

In Fig., $DE \parallel BC$. Find the values of x and y.

Solution:

 $\angle ABC = \angle DAB$ Alternate interior angles

 $\therefore x = 40^{\circ}$

 $\angle ACB = \angle EAC$ Alternate interior angles $\therefore y = 55^{\circ}$

Question:55

In Fig., line AC || line DE and \angle ABD = 32°. Find out the angles x and y if \angle E = 122°.

Solution:

 $\angle \text{BDE} = \angle \text{ABD} = 32^\circ \qquad \text{(Alternate interior angles)} \Rightarrow \angle \text{BDE} + y = 180^\circ \quad \text{(Linear pair)} \\ \Rightarrow 32^\circ + y = 180^\circ \Rightarrow y = 180^\circ - 32^\circ = 148^\circ$

 $\angle ABE = \angle E = 122° \qquad \text{(Alternate interior angle)} \\ \angle ABD + \angle DBE = 122°32° + x = 122° x = 122° - 32° = 90°$

Question:56

In Fig., side BC of \triangle ABC has been produced to D and CE || BA. If \angle ABC = 65°, \angle BAC = 55°, find \angle ACE, \angle ECD and \angle ACD.

Solution:

 \angle ABC = \angle ECD = 55° Correspondingangles \angle BAC = \angle ACE = 65° Alternate interior angles Now, \angle ACD = \angle ACE + \angle ECD ⇒ \angle ACD = 55° + 65° = 120°

Question:57

In Fig., line $CA \perp AB \parallel$ line CR and line $PR \parallel$ line BD. Find $\angle x$, $\angle y$ and $\angle z$.

Solution:

Since CA \perp AB, $\therefore \angle x = 90^{\circ}$

We know that the sum of all the angles of triangle is 180° .

In \triangle APQ, \angle QAP + \angle APQ + \angle PQA = 180° \Rightarrow 90° + \angle APQ + 20° = 180° \Rightarrow 110° + \angle APQ = 180° \Rightarrow \angle APQ = 180° - 110° = 70° \angle PBC = \angle APQ = 70° Corresponding angles Since \angle PRC + \angle z = 180° (Linear pair)

 $\therefore \angle z = 180^{\circ} - 70^{\circ} = 110^{\circ}$ [$\angle APQ = \angle PRC$ (Alternate interior angles)]

Question:58

In Fig., $PQ \parallel RS$. Find the value of x.

 $\angle RCD + \angle RCB = 180^{\circ} \text{ (Linear pair)} \Rightarrow \angle RCB = 180^{\circ} - 130^{\circ} = 50^{\circ} \text{ In } \triangle ABC, \angle BAC + \angle ABC + \angle BCA = 180^{\circ} \text{ (Angle sum property)} \Rightarrow \angle BAC = 180^{\circ} \text{ (Angle sum property)}$

Question:59

In Fig., AB || CD and AE || CF; \angle FCG = 90° and \angle BAC = 120°. Find the values of x, y and z.

Solution:

 \angle BAC = \angle ACG = 120° Alternate interior angle ∴ \angle ACF + \angle FCG = 120°

 \Rightarrow \angle ACF = 120° - 90° = 30°

∠DCA + ACG = 180° Linear pair

 $\Rightarrow x = 180^{\circ} - 120^{\circ} = 60^{\circ}$

BAC + BAE + EAC = 360°

 $CAE = 360^{\circ} - 120^{\circ} - 60^{\circ} + 30^{\circ} = 150^{\circ}$ (BAE = DCF)

Question:60

In Fig., AB \parallel CD and AC \parallel BD. Find the values of x, y, z.

Solution:

i Since AC || BD and CD || AB, ABCD is a parallelogram.

CAB + ACD = 180° Sum of adjacent angles of a parallelogram

 \therefore ACD = 180° - 65° = 115°

CAD = CDB = 65° Opposite angles of a parallelogram

ACD = DBA = 115° Opposite angles of a parallelogram

ii Here,

AC || BD and CD || AB

DAC = $x = 40^{\circ}$ Alternate interior angle DAB = $y = 35^{\circ}$ Alternate interior angle

Question:61

In Fig., state which lines are parallel and why?

Solution:

Let F be the point of intersection of line CD and the line passing through point E.

Since ACD and CDE are alternate and equal angles, so

ACD = 100° = CDE

 $\therefore \mathsf{AC} \parallel \mathsf{EF}$

Question:62

In Fig. 87, the corresponding arms of \angle ABC and \angle DEF are parallel. If \angle ABC = 75°, find \angle DEF.

Solution:

Construction: Let G be the point of intersection of lines BC and DE.

- ∵ AB || DE and BC || EF
- : Corresponding angles

The sum of an angle and one third of its supplementary angle is 90° . The measure of the angle is a 135° b 120° c 60° d 45° Solution: Let the required angle be x . Now, supplementary of the required angle = $180^{\circ} - x$ Then,
Hence, the correct answer is option d.
Question:64 If angles of a linear pair are equal, then the measure of each angle is a 30° b 45° c 60° d 90° Solution: Let the required angle be x
Now, Sum of linear pair angles = 180° $\Rightarrow x + x = 180^{\circ}$
$\Rightarrow x + x = 160$ $\Rightarrow 2x = 180^{\circ}$ $\Rightarrow x = 90^{\circ}$ Hence, the correct answer is option d.
Question:65 Two complemntary angles are in the ratio 2 : 3. The measure of the larger angle is a 60° b 54° c 66° d 48° Solution: Let the angles be $2x$ and $3x$. Now, $2x + 3x = 90^{\circ}$ $\Rightarrow 5x = 90^{\circ}$ $\Rightarrow x = 18^{\circ}$ \therefore Larger angle = $3x = 3 \times 18^{\circ} = 54^{\circ}$ Hence, the correct answer is option b.
Question:66 An angle is thrice its supplement. The measure of the angle is a 120° b 105°
c 135° d 150° Solution: Let the required angle be x. Then,
Hence, the correct answer is option c.
Question:67 In Fig. 88 PR is a straight line and ∠PQS : ∠SQR = 7 : 5. The measure of ∠SQR is a 60° b c d 75°

Let the measures of the angle \angle PQS and \angle SQR be 7x and 5x.

Now,
$$\angle PQS + \angle SQR = 180^{\circ}$$

Linear pair angles

$$\Rightarrow$$
 7x + 5x = 180°

$$\Rightarrow 12x = 180^{\circ}$$

$$\Rightarrow x = 15^{\circ}$$

$$\therefore \angle SQR = 5x = 5 \times 15^{\circ} = 75^{\circ}$$

Hence, the correct answer is option d.

Question:68

The sum of an angle and half of its complementary angle is 75°. The measure of the angle is

- a 40°
- b 50°
- c 60°
- d 80°

Solution:

Let the required angle be x.

Now, complementary of the required angle = $90^{\circ} - x$

Then,

Hence, the correct answer is option $\ensuremath{\mathtt{c}}.$

Question:69

∠A is an obtuse angle. The measure of ∠A and twice its supplementary differ by 30°. Then ∠A can be

- a 150°
- b 110°
- c 140°
- d 120°

Solution:

Supplementary of $\angle A = 180^{\circ} - \angle A$

Now,

$$\angle A + 30^{\circ} = 2(180^{\circ} - \angle A)$$

$$\Rightarrow \angle A + 30^{\circ} = 360^{\circ} - 2\angle A$$

$$\Rightarrow$$
 3 \angle A = 360° - 30°

$$\Rightarrow$$
 3 \angle A = 330°

$$\Rightarrow \angle A = 110^{\circ}$$

Hence, the correct answer is option b.

Question:70

An angle is double of its supplement. The measure of the angle is

- a **60°**
- b 120°
- c 40°
- d **80°**

Solution:

Let the required angle be x.

Now, supplementary of the required angle = $180^{\circ} - x$

Then,

Hence, the correct answer is option b.

Question:71

The measure of an angle which is its own complement is

- a 30°
- b 60°

c 90°

 $d45^{\circ}$

Solution:

Let the required angle be x.

Now, complementary of the required angle = $90^{\circ} - x$

Then,

Hence, the correct answer is option d.

Question:72

Two supplementary angles are in the ratio 3:2. The smaller angle measures

a 108°

b 81°

c 72°

d 68°

Solution:

Let the angles be 3x and 2x.

Now, $3x + 2x = 180^{\circ}$

 \Rightarrow 5 $x = 180^{\circ}$

 $\Rightarrow x = 36^{\circ}$

 \therefore Smaller angle = $2x = 2 \times 36^{\circ} = 72^{\circ}$

Hence, the correct answer is option c.

Question:73

In Fig. 89, the value of x is

a 75

b 65

c 45

d **55**

Solution:

∠AOC and ∠BOC = 180°

∵ Linear pair angles

 \Rightarrow 44°+ (2x+6)° = 180°

 \Rightarrow $(2x + 6)^{\circ} = 136^{\circ}$

 $\Rightarrow 2x + 6 = 136$

 \Rightarrow 2x = 130

 $\Rightarrow x = 65$

Hence, the correct answer is option b.

Question:74

In Fig. 90, AOB is a straight line and the ray OC stands on it. The value of \boldsymbol{x} is

a 16

b 26

c 36

d 46

C $(2x+15)^{\circ}$ $(3x+35)^{\circ}$

Solution:

$$\angle AOC + \angle BOC = 180^{\circ}$$

∵ Linear pair angles

$$\Rightarrow (2x + 15)^{\circ} + (3x + 35)^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $(5x + 50)^{\circ} = 180^{\circ}$

$$\Rightarrow 5x + 50 = 180$$

$$\Rightarrow$$
 5 x = 130

 $\Rightarrow x = 26$

Hence, the correct answer is option $\ensuremath{\mathsf{b}}.$

Question:75

In Fig. 91, AOB is a straight line and 4x = 5y. The value of x is

a 100

b 105

c 110

Solution:

$$\angle AOC + \angle BOC = 180^{\circ}$$

:: Linear pair angles

$$\Rightarrow y^{\circ} + x^{\circ} = 180^{\circ}$$

$$\Rightarrow y + x = 180$$

Hence, the correct answer is option a.

Question:76

In Fig. 92, AOB is a straight line such that $\angle AOC = (3x + 10)^{\circ}$, $\angle COD = 50^{\circ}$ and $\angle BOD = (x - 8)^{\circ}$. The value of x is

a 32

b 36

c 42

d 52

Solution:

$$\angle AOC + \angle COD + \angle BOD = 180^{\circ}$$

AOB is a straight line

$$\Rightarrow (3x + 10)^{\circ} + 50^{\circ} + (x - 8)^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 3x + 10 + 50 + x - 8 = 180

$$\Rightarrow 4x + 52 = 180$$

$$\Rightarrow 4x = 128$$

$$\Rightarrow x = 32$$

Hence, the correct answer is option a.

Question:77

In Fig. 93, if AOC is a straight line, then x =

a 42°

b 52°

c 142°

d 38°

Solution:

$$\angle AOD + \angle DOB + \angle BOC = 180^{\circ}$$

∵ AOC is a straight line

$$\Rightarrow 38^{\circ} + x + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow x + 128^{\circ} = 180^{\circ}$$

$$\Rightarrow x = 52^{\circ}$$

Hence, the correct answer is option b.

Question:78

In Fig. 94, if \angle AOC is a straight line, then the value of x is

a 15

b 18

c 20

Solution:

$$\angle AOD + \angle DOB + \angle BOC = 180^{\circ}$$

AOC is a straight line

$$\Rightarrow$$
 2 x° + 90° + 3 x° = 180°

$$\Rightarrow 5x^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 5 $x = 90$

$$\Rightarrow x = 18$$

Hence, the correct answer is option b.

Question:79

In Fig. 95, if AB, CD and EF are straight lines, then x =

a 5

b 10

c 20

Solution:

Let all the lines intersect at O.

$$\angle COF = \angle DOE = 4x^{\circ}$$

Vertically opposite angles

$$\angle AOC + \angle COF + \angle BOF = 180^{\circ}$$

AOB is a straight line

$$\Rightarrow$$
 2 x° + 4 x° + 3 x° = 180°

$$\Rightarrow$$
 9 x° = 180°

$$\Rightarrow$$
 9 x = 180

$$\Rightarrow x = 20$$

Hence, the correct answer is option $\ensuremath{\text{c}}.$

Question:80

In Fig. 96, if AB, CD and EF are straight lines, then x + y + z =

- a 180
- b 203
- c 213
- d 134

$$\angle DAE + \angle BAD + \angle BAF = 180^{\circ}$$

EAF is a straight line

$$\Rightarrow 3x^{\circ} + 49^{\circ} + 62^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 3 x° + 111° = 180°

$$\Rightarrow$$
 3 x° = 69°

$$\Rightarrow$$
 3 x = 69

$$\Rightarrow x = 23$$

Now,
$$\angle CAE + \angle CAF = 180^{\circ}$$

∵ EAF is a straight line

$$\Rightarrow z^{\circ} + y^{\circ} = 180^{\circ}$$

$$\Rightarrow z + y = 180$$

Now,
$$x + y + z = 23 + 180 = 203$$

Hence, the correct answer is option b.

Question:81

In Fig. 97, if AB is parallel to CD, then the value of \angle BPE is

- a 106°
- b 76°
- c 74°

Solution:

Since, AB \parallel CD

Alternate interior angles

$$\Rightarrow (3x + 34)^{\circ} = (5x - 14)^{\circ}$$

$$\Rightarrow 3x + 34 = 5x - 14$$

$$\Rightarrow$$
 48 = 2 x

$$\Rightarrow x = 24$$

$$\therefore \angle BPQ = (3 \times 24 + 34)^{\circ} = 106^{\circ}$$

$$\angle BPQ + \angle BPE = 180^{\circ}$$

$$\Rightarrow \angle BPE = 74^{\circ}$$

Hence, the correct answer is option $\ensuremath{\text{c}}.$

Question:82

In Fig. 98, if AB is parallel to CO and EF is a transversal, then x =

- a 19
- b 29
- c 39
- d 49

Let the line EF intersect AB and CD at P and Q respectively.

Since, AB || CD

 \therefore \angle BPQ + \angle PQD = 180° Angles on the same side of a transversal line are supplementary

$$\Rightarrow (7x - 12)^{\circ} + (4x + 17)^{\circ} = 180^{\circ}$$

$$\Rightarrow 7x - 12 + 4x + 17 = 180$$

$$\Rightarrow 11x + 5 = 180$$

$$\Rightarrow 11x = 175$$

⇒
$$x = 15.90$$

Disclaimer: No option is correct.

Question:83

In Fig. 99, AB || CD and EF is a transversal intersecting ABand CO at Pand Q respectively. The measure of ∠DPQ is

a 100°

b 80°

c 110°

d 70°

Solution:

$$\angle BQF = \angle AQP = (4x)^{\circ}$$

Vertically opposite angles

Since, AB || CD

 $\therefore \angle AQP + \angle CPQ = 180^{\circ}$

Angles on the same side of a transversal line are supplementary

$$\Rightarrow$$
 $(4x)^{\circ} + (5x)^{\circ} = 180^{\circ}$

$$\Rightarrow 9x = 180$$

$$\Rightarrow x = 20$$

$$\therefore \angle BQF = 4 \times 20^{\circ} = 80^{\circ}$$

Now, $\angle BQF = \angle DPQ = 80^{\circ}$

Corresponding angles

Hence, the correct answer is option b.

Question:84

In Fig. 100, AB || CO and EF is a transversal intersecting AB and CD at P and Q respective. The measure of ∠OOP is

a 65

b 25

c 115

 $\angle BPE = \angle APQ = (5x - 10)^{\circ}$ Vertically opposite angles

Since, AB || CD

∴ ∠APQ + ∠CQP = 180° Angles on the same side of a transversal line are supplementary

$$\Rightarrow (5x - 10)^{\circ} + (3x - 10)^{\circ} = 180^{\circ}$$

 $\Rightarrow 8x - 20 = 180$

 \Rightarrow 8x = 200

 $\Rightarrow x = 25$

 $\therefore \angle BPE = (5 \times 25 - 10)^{\circ} = 115^{\circ}$

Now, \angle BPE = \angle DQP = 115° Corresponding angles

Hence, the correct answer is option c.

Question:85

In Fig. 101, AB \parallel CD and EF is a transversal. The value of y-x is

a 30

b 35

c 95

d 25

Solution:

Since, AB \parallel CD

 $\therefore \angle BPQ = \angle DQF$ Corresponding angles

$$\Rightarrow (5x - 20)^{\circ} = (3x + 40)^{\circ}$$

$$\Rightarrow 5x - 20 = 3x + 40$$

$$\Rightarrow 2x = 60$$

$$\Rightarrow x = 30$$

$$\therefore \angle BPQ = (5 \times 30 - 20)^{\circ} = 130^{\circ}$$

Now, ∠APE = ∠BPQ Vertically opposite angles

 $\Rightarrow 2y^{\circ} = 130^{\circ}$

 $\Rightarrow y = 65$

y - x = 65 - 30 = 35

Hence, the correct answer is option b.

Question:86

In Fig. 102, AB || CD || EF, \angle ABG = 110°, \angle GCO = 100° and \angle BGC = x°. The value of x is

a 35

b 50

c 30

d 40

Since, AB \parallel EG

∴ ∠ABG + ∠EGB = 180° Angles on the same side of a transversal line are supplementary

⇒ 110° + ∠EGB = 180°

 $\Rightarrow \angle EGB = 70^{\circ}$

Again, CD \parallel GF

∴ ∠DCG + ∠FGC = 180° Angles on the same side of a transversal line are supplementary

 \Rightarrow 100° + \angle FGC = 180°

 $\Rightarrow \angle FGC = 80^{\circ}$

Now, \angle EGB + \angle BGC + \angle FGC = 180°

 \Rightarrow 70° + x° + 80° = 180°

 \Rightarrow 150°+ x° = 180°

 $\Rightarrow x^{\circ} = 30^{\circ}$

 $\Rightarrow x = 30$

Hence, the correct answer is option $\ensuremath{\text{c}}.$

Question:87

In Fig. 103, PO || RS and \angle PAB = 60° and \angle ACS = 100°. Then, \angle BAC =

a 40°

b 60°

c 80°

Solution:

Since, PQ || RS

∴ $\angle PAC = \angle ACS = 100^{\circ}$ Corresponding angles

Now, $\angle PAC = 100^{\circ}$

 $\Rightarrow \angle PAB + \angle BAC = 100^{\circ}$

 \Rightarrow 60° + \angle BAC = 100°

 $\Rightarrow \angle BAC = 40^{\circ}$

Hence, the correct answer is option a.

Question:88

In Fig. 104, AB || CO, \angle OAB = 150° and \angle OCO = 120°. Then, \angle AOC =

a 80°

b 90°

c 70°

d 100°

Solution:

Construction: Draw a line OE from the point O parallel to AB and CD

Since, AB || OE

∴ ∠BAO + ∠AOE = 180° Angles on the same side of a transversal line are supplementary

 \Rightarrow 150° + \angle AOE = 180°

 $\Rightarrow \angle AOE = 30^{\circ}$

Again, CD || OE

 $\therefore \angle DCO + \angle COE = 180^{\circ}$ Angles on the same side of a transversal line are supplementary

⇒ 120° + ∠COE = 180°

⇒ ∠COE = 60°

Now, $\angle AOC = \angle AOE + \angle COE$

= 30° + 60°

= 90°

Hence, the correct answer is option b.

Question:89

In Fig. 105, if AOB and COD are straight lines. Then, x + y =

a 120

b 140

c 100

Solution:

$$\angle AOD + \angle BOD = 180^{\circ}$$
 Linear pair angles

$$\Rightarrow (7x - 20)^{\circ} + 3x^{\circ} = 180^{\circ}$$

$$\Rightarrow 7x - 20 + 3x = 180$$

$$\Rightarrow 10x = 200$$

$$\Rightarrow x = 20$$

$$\therefore \angle AOD = (7 \times 20 - 20)^{\circ} = 120^{\circ}$$

$$Now \angle AOD = \angle BOC = 120^{\circ}$$

Vertically opposite angles

∴ y = 120

Now,
$$x + y = 20 + 120$$

= 140

Hence, the correct answer is option b.

Question:90

In Fig. 106, the value of x is

a 22

b 20

c 21

d 24

$$(8x-41)^{\circ} + (3x)^{\circ} + (3x+10)^{\circ} + (4x-5)^{\circ} = 360^{\circ}$$

 $\Rightarrow 8x-41+3x+3x+10+4x-5=360$

$$\Rightarrow 18x - 36 = 360$$

$$\Rightarrow 18x = 396$$

$$\Rightarrow x = 22$$

Hence, the correct answer is option a.

Question:91

In Fig. 107, if AOBand COD are straight lines, then

a
$$x = 29$$
, $y = 100$

b
$$x = 110, y = 29$$

$$C x = 29, y = 110$$

d
$$x = 39$$
, $y = 110$

Solution:

$$\angle AOD + \angle BOD = 180^{\circ}$$
 Linear pair angles

$$\Rightarrow y^{\circ} + 70^{\circ} = 180^{\circ}$$

$$\Rightarrow y^{\circ} = 110^{\circ}$$

$$\Rightarrow y = 110$$

Now,
$$\angle AOC = \angle BOD = 70^{\circ}$$
 Vertically opposite angles

Now,
$$\angle AOC + \angle COE + \angle EOB + \angle BOD + \angle AOD = 360^{\circ}$$
 Complete angle

$$\Rightarrow$$
 70° + 28° + (3x - 5)° + 70° + 110° = 360°

$$\Rightarrow$$
 $(3x)^{\circ} + 273^{\circ} = 360^{\circ}$

$$\Rightarrow$$
 3 $x = 87$

$$\Rightarrow x = 29$$

Hence, the correct answer is option $\ensuremath{\text{c}}.$

Question:92

In Fig. 108, if AB \parallel CD then the value of x is

- a **87**
- b 93
- c 147
- d 141

Solution:

Construction: Draw a line PQ parallel to AB which is also parallel to CD

 \angle FCD + Reflex \angle FCD = 360°

Complete angle

 $\Rightarrow \angle FCD + 273^{\circ} = 360^{\circ}$

 $\Rightarrow \angle FCD = 87^{\circ}$ Since, PQ || CD

 $\therefore \angle QFC + \angle FCD = 180^{\circ}$

Angles on the same side of a transversal line are supplementary

 $\Rightarrow \angle QFC + 87^{\circ} = 180^{\circ}$

 $\Rightarrow \angle QFC = 93^{\circ}$

Now, $\angle ABF = \angle BFQ$

Corresponding angles

 $= \angle BFC + \angle QFC$

= 54° + 93°

= 147°

 $\therefore x^{\circ} = 147^{\circ}$

 $\Rightarrow x = 147$

Hence, the correct answer is option $\ensuremath{\text{c}}.$

Question:93

In Fig. 109, if AB \parallel CD then the value of x is

a 34

b 124

c 24

d 158

Solution:

Construction: Draw a line PQ parallel to AB which is also parallel to CD

 $\angle QEC + \angle ECD = 180^{\circ}$

Angles on the same side of a transversal line are supplementary

 $\Rightarrow \angle QEC + 56^{\circ} = 180^{\circ}$

⇒ ∠QEC = 124°

Now, $\angle BEQ + \angle QEC = \angle BEC$

 $\Rightarrow \angle BEQ + 124^{\circ} = 158^{\circ}$

 $\Rightarrow \angle BEQ = 34^{\circ}$

Now, $\angle ABE = \angle BEQ = 34^{\circ}$

Corresponding angles

 $\therefore x^{\circ} = 34^{\circ}$

 $\Rightarrow x = 34$

Hence, the correct answer is option a.

Question:94

In Fig. 110, if AB \parallel CD. The value of x is

a 122

b 238

c 58

d 119

Solution:

Construction: Draw a line PQ parallel to AB which is also parallel to CD

Since, PQ || CD

 \therefore \angle EFC = \angle FEQ = 37°

Alternate angles

Now, $\angle AEQ + \angle FEQ = \angle AEF$

 \Rightarrow \angle AEQ + 37° = 95°

 $\Rightarrow \angle AEQ = 58^{\circ}$

Since, PQ \parallel AB

∴∠EAB + ∠AEQ = 180°

Angles on the same side of a transversal line are supplementary

 \Rightarrow \angle EAB + 58° = 180°

⇒ ∠EAB = 122°

 \angle EAB + Reflex \angle EAB = 360°

Complete angle

 $\therefore 122^{\circ} + (2x)^{\circ} = 360^{\circ}$

 $\Rightarrow 2x = 238$

 $\Rightarrow x = 119$

Hence, the correct answer is option d.

Question:95

In Fig. 111, if AB || CO then x =

a 154

b 139

c 144

d 164

Solution:

Construction: Draw a line PQ parallel to AB which is also parallel to CD $\,$

Since, PQ \parallel AB

 $\therefore \angle AME + \angle QEM = 180^{\circ}$

Angles on the same side of a transversal line are supplementary

 \Rightarrow 139° + \angle QEM = 180°

 $\Rightarrow \angle QEM = 41^{\circ}$

Now, $\angle QEM + \angle DEQ = \angle MED$

 \Rightarrow 41° + \angle DEQ = 67°

 $\Rightarrow \angle DEQ = 26^{\circ}$

Now, $\angle PED + \angle DEQ = 180^{\circ}$ Linear Pair angles

 $\Rightarrow \angle PED + 26^{\circ} = 180^{\circ}$

 $\Rightarrow \angle PED = 154^{\circ}$

Since, PQ || AB

 $\therefore x^{\circ} = \angle PED$

Corresponding angles

 $\Rightarrow x^{\circ} = 154^{\circ}$

 $\Rightarrow x = 154$

Hence, the correct answer is option a.

Question:96

In Fig. 112, if AB \parallel CD, then x =

a 32

b 42

c 52

d 31

Solution:

Construction: Draw a line PQ parallel to AB which is also parallel to CD

∠CDP + Reflex∠CDP = 360°

Complete angle

∴∠CDP + 249° = 360°

⇒ ∠CDP = 111°

Since, PQ || AB

∴ ∠BAP = ∠APQ

Alternate angles

⇒ ∠BAP = 28°

Now, $\angle APQ + \angle QPD = \angle APD$

 \Rightarrow 28° + \angle QPD = (2x + 13)°

 $\Rightarrow \angle QPD = (2x + 13)^{\circ} - 28^{\circ}$

Since, PQ \parallel CD

 $\therefore \angle QPD + \angle CDP = 180^{\circ}$

Angles on the same side of a transversal line are supplementary

 $\Rightarrow (2x + 13)^{\circ} - 28^{\circ} + 111^{\circ} = 180^{\circ}$

 \Rightarrow 2x + 13 - 28 + 111 = 180

 \Rightarrow 2x = 84

 $\Rightarrow x = 42$

Hence, the correct answer is option b.

Question:97

In Fig. 113 if AC \parallel OF and AB \parallel CE, then

a x = 145, y = 223

cx = 135, y = 233

b x = 223, y = 145

d x = 233, y = 135

Construction: Produce FD towards D to the point M

 \angle DCA + Reflex \angle DCA = 360°

Complete angle

 $\therefore \angle DCA + (y + 15)^{\circ} = 360^{\circ}$

$$\Rightarrow \angle DCA = 345^{\circ} - y^{\circ}$$

Now,

 $\angle MDC = \angle EDF = 58^{\circ}$

Vertically Opposite angles

Since, MF || AC

 $\therefore \angle MDC + \angle QPD = 180^{\circ}$

Angles on the same side of a transversal line are supplementary

 \Rightarrow 58° + 345° - y° = 180°

 $\Rightarrow y = 223$

 $\therefore \angle DCA = 345^{\circ} - 223^{\circ} = 122^{\circ}$

Again, ∠BAC + Reflex∠BAC = 360°

Complete angle

 $\therefore \angle BAC + (2x + 12)^{\circ} = 360^{\circ}$

 $\Rightarrow \angle DCA = 348^{\circ} - (2x)^{\circ}$

Since, AB \parallel CD

 $\therefore \angle DCA + \angle DCA = 180^{\circ}$

Angles on the same side of a transversal line are supplementary

 \Rightarrow 348° - (2x)° + 122° = 180°

 \Rightarrow $(2x)^{\circ} = 290^{\circ}$

 $\Rightarrow x = 145$

Hence, the correct answer is option a.

Typesetting math: 60%