Ondes électromagnétiques

I - Définition

Une onde électromagnétique est la propagation de deux grandeurs vibratoires : un vecteur champ électrique \vec{E} et un vecteur champ magnétique \vec{B} qui sont toujours en phase et perpendiculaires entre eux.

II - Propriétés

Célérité des ondes électromagnétiques

Toutes les ondes électromagnétiques ont la même célérité dans le vide :

$$\boxed{c_0 = 3 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}}$$

Période temporelle

La fréquence f d'une onde électromagnétique est **indépendante du mileu de propagation**. La période est donc :

Longueur d'onde ou période spatiale

La longueur d'onde est la distance entre deux maximas d'intensité du champ électrique et du champ magnétique.

 $\lambda = c \cdot T = \frac{c}{f}$

La longueur d'onde dépend du milieu de propagation!

III - Classifications

Spectre des ondes électromagnétiques

Il est possible de classer les ondes électromagnétiques en fonction de leur fréquence (ou de leur longueur d'onde).

Spectre des ondes lumineuses

Les ondes lumineuses font partie des ondes électromagnétiques.

Spectre des ondes radios

IV - Structures

Représentation

Une onde électromagnétique est un onde progressive transversale.

Les champs \vec{E} et \vec{B} sont toujours **perpendiculaires** entre eux. Leurs intensités varient toujours en phase tels que :

Porientation du champ électrique \vec{E} donne la **polarisation** de l'onde é

L'orientation du champ électrique \vec{E} donne la **polarisation** de l'onde électromagnétique : polarisation linéaire (une seule direction), polarisation elliptique (tourne au fur et mesure de la propagation)

D. THERINCOURT 3/4 Lycée Roland Garros

Puissance transportée

La puissance transportée par unité de surface par une onde électromagnétique dans le vide est donnée par la relation :

$$P = \frac{E^2}{Z_0} \quad (W \cdot m^{-2})$$

- E est l'intensité efficace du champ électrique en $V \cdot m^{-1}$
- Z₀ est l'impédance du vide telle que :

$$Z_0 = \sqrt{rac{\mu_0}{arepsilon_0}} = 120\pi pprox 377~\Omega$$

Intensité du champ électrique d'un liaison hertzienne

L'intensité d'un champ électrique capté par une antenne (récepteur) placée suffisamment loin de l'émetteur est donnée par la relation :

•
$$P_0$$
 est la puissance d'émission de la source en W.

- d est la distance entre la source et l'antenne.
- α est une constante dépendant de l'antenne.