Critical Values of Expanded Dixon Outlier Test *Taken from Verma and Quiroz-Ruiz, Table 2*

	CL	70%	80%	90%	95%	98%	99%	99.5%
n	SL	30%	20%	10%	5%	2%	1%	0.5%
	а	0.30	0.20	0.10	0.05	0.02	0.01	0.005
3		0.6836	0.7808	0.8850	0.9411	0.9763	0.9881	0.9940
ļ		0.4704	0.5603	0.6789	0.7651	0.8457	0.8886	0.9201
;		0.3730	0.4508	0.5578	0.6423	0.7291	0.7819	0.8234
,		0.3173	0.3868	0.4840	0.5624	0.6458	0.6987	0.7437
7		0.2811	0.3444	0.4340	0.5077	0.5864	0.6371	0.6809
3		0.2550	0.3138	0.3979	0.4673	0.5432	0.5914	0.6336
)		0.2361	0.2915	0.3704	0.4363	0.5091	0.5554	0.5952
10		0.2208	0.2735	0.3492	0.4122	0.4813	0.5260	0.5658
1		0.2086	0.2586	0.3312	0.3922	0.4591	0.5028	0.5416
2		0.1983	0.2467	0.3170	0.3755	0.4405	0.4831	0.5208
3		0.1898	0.2366	0.3045	0.3615	0.4250	0.4664	0.5034
14		0.1826	0.2280	0.2938	0.3496	0.4118	0.4517	0.4869
15		0.1764	0.2202	0.2848	0.3389	0.3991	0.4385	0.4739
6		0.1707	0.2137	0.2765	0.3293	0.3883	0.4268	0.4614
17		0.1656	0.2077	0.2691	0.3208	0.3792	0.4166	0.4504
.8		0.1613	0.2023	0.2626	0.3135	0.3711	0.4081	0.4423
9		0.1572	0.1973	0.2564	0.3068	0.3630	0.4002	0.4333
20		0.1535	0.1929	0.2511	0.3005	0.3562	0.3922	0.4247
1		0.1504	0.1890	0.2460	0.2947	0.3495	0.3854	0.4173
22		0.1474	0.1854	0.2415	0.2895	0.3439	0.3789	0.4109
23		0.1446	0.1820	0.2377	0.2851	0.3384	0.3740	0.4051
24		0.1420	0.1790	0.2337	0.2804	0.3328	0.3674	0.3986
2.5		0.1397	0.1761	0.2303	0.2763	0.3287	0.3625	0.3935
26		0.1376	0.1735	0.2269	0.2725	0.3242	0.3583	0.3889
27		0.1376	0.1710	0.2237	0.2686	0.3202	0.3543	0.3843
28		0.1335	0.1687	0.2208	0.2655	0.3163	0.3499	0.3843
29		0.1318	0.1664	0.2182	0.2622	0.3103	0.3460	0.3762
30		0.1310	0.1645	0.2155	0.2594	0.3093	0.3425	0.3702
31		0.1283	0.1624	0.2132	0.2567	0.3060	0.3390	0.3685
32		0.1268	0.1604	0.2110	0.2541	0.3036	0.3357	0.3646
33		0.1255	0.1590	0.2088	0.2513	0.2999	0.3323	0.3610
4		0.1240	0.1571	0.2066	0.2488	0.2973	0.3294	0.3583
35		0.1227	0.1555	0.2045	0.2467	0.2948	0.3266	0.3548
16		0.1215	0.1540	0.2026	0.2445	0.2921	0.3238	0.3522
37		0.1202	0.1525	0.2008	0.2423	0.2898	0.3213	0.3498
8		0.1192	0.1512	0.1993	0.2408	0.2879	0.3187	0.3465
39		0.1181	0.1499	0.1974	0.2383	0.2853	0.3163	0.3443
10		0.1169	0.1484	0.1958	0.2366	0.2836	0.3141	0.3415
1		0.1160	0.1472	0.1944	0.2350	0.2815	0.3124	0.3400
12		0.1153	0.1462	0.1930	0.2334	0.2794	0.3102	0.3377
13		0.1141	0.1449	0.1915	0.2319	0.2778	0.3081	0.3353
14		0.1134	0.1441	0.1902	0.2302	0.2758	0.3061	0.3332
15		0.1124	0.1430	0.1890	0.2288	0.2744	0.3050	0.3325
16		0.1116	0.1418	0.1875	0.2273	0.2726	0.3028	0.3298
+6 47		0.1118	0.1418	0.1865	0.2257	0.2726	0.3009	0.3279
		0.1108	0.1408	0.1850	0.2237	0.2711	0.3009	0.3279
48 49		0.1102	0.1400	0.1839	0.2241	0.2690	0.2991	0.3235
50		0.1087	0.1381	0.1829	0.2216	0.2662	0.2960	0.3225

Critical Values of Expanded Dixon Outlier Test (cont.)

Taken from Verma and Quiroz-Ruiz, Table 2

	CL	70%	80%	90%	95%	98%	99%	99.5%
n	SL	30%	20%	10%	5%	2%	1%	0.5%
	а	0.30	0.20	0.10	0.05	0.02	0.01	0.005
51		0.1079	0.1374	0.1819	0.2206	0.2651	0.2941	0.3204
52		0.1071	0.1365	0.1808	0.2191	0.2632	0.2927	0.3191
53		0.1067	0.1357	0.1797	0.2182	0.2620	0.2920	0.3177
54		0.1060	0.1349	0.1788	0.2169	0.2606	0.2899	0.3163
55		0.1052	0.1340	0.1777	0.2160	0.2595	0.2880	0.3140
5.6		0.1047	0.1224	0.1768	0.2145	0.2582	0.2873	0.3136
56			0.1334					
57		0.1041	0.1326	0.1759	0.2135	0.2570	0.2859	0.3118
58		0.1036	0.1320	0.1752	0.2126	0.2555	0.2845	0.3098
59		0.1030	0.1312	0.1741	0.2116	0.2545	0.2828	0.3089
60		0.1024	0.1304	0.1733	0.2106	0.2531	0.2816	0.3075
61		0.1019	0.1299	0.1726	0.2095	0.2522	0.2812	0.3071
62		0.1014	0.1294	0.1717	0.2085	0.2510	0.2792	0.3061
63		0.1009	0.1286	0.1707	0.2075	0.2500	0.2784	0.3041
64		0.1004	0.1281	0.1703	0.2070	0.2493	0.2775	0.3031
65		0.1000	0.1275	0.1694	0.2057	0.2480	0.2766	0.3025
66		0.0997	0.1272	0.1689	0.2053	0.2472	0.2754	0.3006
								0.3006
67		0.0991	0.1264	0.1679	0.2045	0.2466	0.2742	
68		0.0987	0.1260	0.1674	0.2037	0.2457	0.2735	0.2990
69		0.0982	0.1254	0.1667	0.2030	0.2445	0.2724	0.2983
70		0.0979	0.1249	0.1660	0.2020	0.2436	0.2714	0.2968
71		0.0974	0.1243	0.1652	0.2013	0.2429	0.2709	0.2959
72		0.0970	0.1238	0.1648	0.2005	0.2420	0.2696	0.2946
73		0.0967	0.1234	0.1641	0.1996	0.2409	0.2682	0.2934
74		0.0961	0.1228	0.1635	0.1990	0.2402	0.2677	0.2932
75		0.0960	0.1225	0.1631	0.1984	0.2398	0.2667	0.2922
76		0.0955	0.1221	0.1626	0.1980	0.2387	0.2662	0.2912
77		0.0952	0.1221	0.1620	0.1973	0.2382	0.2656	0.2912
78		0.0948	0.1212	0.1613	0.1964	0.2372	0.2646	0.2897
79		0.0943	0.1205	0.1605	0.1955	0.2365	0.2637	0.2885
80		0.0939	0.1201	0.1601	0.1950	0.2360	0.2633	0.2876
81		0.0937	0.1198	0.1596	0.1943	0.2349	0.2621	0.2870
82		0.0935	0.1195	0.1594	0.1940	0.2345	0.2614	0.2859
83		0.0930	0.1189	0.1586	0.1934	0.2337	0.2608	0.2852
84		0.0928	0.1187	0.1583	0.1927	0.2330	0.2599	0.2844
85		0.0925	0.1182	0.1576	0.1922	0.2322	0.2588	0.2836
86		0.0921	0.1178	0.1573	0.1918	0.2319	0.2584	0.2832
87		0.0918	0.1174	0.1567	0.1909	0.2309	0.2573	0.2818
88		0.0918	0.1174	0.1563	0.1906	0.2304	0.2573	0.2813
89				0.1557	0.1899			0.2811
89 90		0.0913 0.0910	0.1167 0.1165	0.1554	0.1899	0.2298 0.2294	0.2566 0.2558	0.2808
91		0.0906	0.1160	0.1547	0.1887	0.2285	0.2548	0.2790
92		0.0903	0.1156	0.1544	0.1885	0.2279	0.2543	0.2788
93		0.0902	0.1154	0.1540	0.1881	0.2272	0.2539	0.2784
94		0.0899	0.1151	0.1537	0.1876	0.2272	0.2535	0.2775
95		0.0896	0.1147	0.1532	0.1869	0.2259	0.2524	0.2766
96		0.0894	0.1144	0.1528	0.1865	0.2257	0.2521	0.2764
97		0.0892	0.1141	0.1524	0.1860	0.2251	0.2512	0.2755
98		0.0890	0.1138	0.1521	0.1856	0.2247	0.2513	0.2751
99		0.0887	0.1134	0.1516	0.1851	0.2240	0.2499	0.2738
100		0.0885	0.1131	0.1512	0.1846	0.2234	0.2498	0.2737

CL: Confidence level (%); SL: Significance level (%); α : Significance level. Headers for commonly used CL or SL or α are given in bold face (e.g., for RM applications). The mean values of the standard error of the mean (\overline{x}_{se}) for these critical values (\overline{x}) are (respective % errors are also reported in parentheses): ~0.00011 (for α = 0.30, 0.09%); ~0.00011 (for α = 0.20, 0.07%); ~0.00009 (for α = 0.10, 0.041%); ~0.00008 (for α = 0.05, 0.029%); ~0.00007 (for α = 0.02, 0.020%); ~0.000043 (for α = 0.01, 0.012%); and ~0.000028 (for α = 0.005, 0.007%).