

Mata Kuliah	••	Sistem Basis Data
Bobot Sks	:	3 sks
Dosen Pengembang	:	Cian Ramadhona Hassolthine, S.Kom., M.Kom
Tutor	:	Anita Ratnasari, S.Kom, M.Kom
Capaian Pembelajaran	:	Mahasiswa dapat memodelkan data dengan
Mata Kuliah		menggunakan konsep EER (3)
Kompetentsi Akhir Di	:	Mahasiswa dapat memodelkan data <i>Hierarcy</i> dan
Setiap Tahap (Sub-		Lattice, Pemodelan dengan Kategori dan Higher Degree
Cpmk)		Relationship
Minggu Perkuliahan	:	Sesi 13
Online Ke-		

Hierarcy dan Lattice

Hierarcy

Satu subclass hanya berpartisipasi pada satu class/subclass relationship (satu sub class hanya memiliki satu super class saja)

Contoh:

VEHICLE dengan TRUCK dan CAR

Lattice

Satu subclass dapat berpastisipasi pada lebih dari satu class/subclass relationship

Contoh:

Seorang Engineering Manager, haruslah seorang Engineer dan juga seorang Manajer. Mengandung konsep multiple inheritance.

Pemodelan dengan Kategori

Perbedaan Category dengan Lattice

- Engineering_Manager harus ada pada semua superclass: Manager, Engineer,
 Salaried_Employee
- Owner harus ada pada salah satu dari ketiga superclasses
- Engineering_Manager: mewarisi semua attribute dari superclasses
 Owner mewatisi attribute tertentu saja, tergantung dari superclass-nya

Partial Category

Partial category: dapat berpartisipasi ataupun tidak pada relationship

Total Category

Figure 4.9 Total and partial categories. (a) Partial category ACCOUNT_HOLDER that is a subset of the union of two entity types COMPANY and PERSON. (b)

Total category PROPERTY and a similar generalization.

Harus merupakan salah satu superclasses

Contoh: A building and a lot must be a member of PROPERTY. Dapat direpresentasikan sebagai generalization (d), khususnya jika kemiripannya banyak.

Higher Degree Relationship

Dua skema dibawah ini bermakna beda

Ternary relationship type:

Menghubungkan 3 entity types

Tiga binary relationship type:

CAN_SUPPLY, USES, SUPPLIES

Higher degree relationship tampak kompleks, bagaimana menyederhanakannya?

Opsi 1

Higher degree relationship sebagai weak entity

 Merepresentasikan Higher degree relationship sebagai weak entity type yang berhubungan ke owner entity types

• Mengandung binary (identifying) relationship

Opsi 2

Higher degree relationship sebagai identifying relationship type

 Sebuah ternary relationship type dengan sebuah weak entity type dan dua buah owner entity type

REFERENSI/DAFTAR PUSTAKA

- Juman, Kundang K. Teknik Pencarian Fakta Dalam Perancangan Sistem Informasi, 2012
- 2. Elmasri & Navathe. Fundamental of Database Systems, 5thEdition, Chapter 4, 2007
- 3. Bertalya. MODEL EER (Enhanced Entity Relationship). 2008
- 4. Korth, H & Mc Graw Hill. Database System Concept, 4th edition. New York