

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 30 Sep 2020 1 of 23

Sample Information

Patient Name: 黄秀珍 Gender: Female ID No.: J221680116 History No.: 44952285

Age: 47

Ordering Doctor: DOC3064F 陳育民

Ordering REQ.: C21MFJC Signing in Date: 2020/09/29

Path No.: S109-89671 **MP No.:** F20078

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-30378A+B Percentage of tumor cells: 60%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	Page 2
Biomarker Descriptions Relevant Therapy Summary Relevant Therapy Details	2 4 9

Report Highlights

2 Relevant Biomarkers7 Therapies Available115 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	Not detected	NTRK1	Not detected
BRAF	Not detected	NTRK2	Not detected
EGFR	EGFR p.(L858R) c.2573T>G, EGFR p.(T790M) c.2369C>T	NTRK3	Not detected
ERBB2	Not detected	RET	Not detected
KRAS	Not detected	ROS1	Not detected
MET	Not detected		

Tel: 02-2875-7449

Date: 30 Sep 2020 2 of 23

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(L858R) c.2573T>G epidermal growth factor receptor Allele Frequency: 24.29%	osimertinib 1,2 afatinib + cetuximab bevacizumab + erlotinib 2 erlotinib + ramucirumab 2 atezolizumab + bevacizumab + chemotherapy gefitinib + chemotherapy bevacizumab + gefitinib	None	98
IA	EGFR p.(T790M) c.2369C>T epidermal growth factor receptor Allele Frequency: 15.61%	osimertinib ^{1, 2}	None	69

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🛕 Alerts informed by public data sources: 🧿 Contraindicated, 🛡 Resistance

EGFR p.(T790M) c.2369C>T

afatinib, dacomitinib, erlotinib, gefitinib

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources CTNNB1 p.(S33C) c.98C>G

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA	Sequence Varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
CTNNB1	p.(S33C)	c.98C>G	COSM5677	chr3:41266101	15.56%	NM_001904.3	missense	1999
EGFR	p.(T790M)	c.2369C>T	COSM6240	chr7:55249071	15.61%	NM_005228.4	missense	1999
EGFR	p.(L858R)	c.2573T>G	COSM6224	chr7:55259515	24.29%	NM_005228.4	missense	1997

Biomarker Descriptions

CTNNB1 (catenin beta 1)

Background: The CTNNB1 gene encodes catenin beta-1 (β-catenin), an integral component of cadherin-based adherens junctions involved in maintaining adhesion and regulating the growth of epithelial cell layers¹. CTNNB1 binds to the APC protein in the cytoplasm and also interacts with TCF and LEF transcription factors in the nucleus to regulate WNT signaling². Steady state levels of CTNNB1 are regulated by ubiquitin-dependent proteolysis^{3,4,5}.

Alterations and prevalence: Recurrent somatic mutations leading to CTNNB1 activation are common in cancer. The most prevalent alterations include missense mutations in exon 3 at codons S33, S37, T41, and S45 that block phosphorylation by GSK-β and inhibit

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 3 of 23

Biomarker Descriptions (continued)

CTNNB1 degradation^{6,7,8,9}. These activating mutations are observed in diverse solid tumors and have a prevalence of 20-30% in hepatocellular carcinoma, 20% of uterine carcinoma, and 15% of adrenocortical carcinoma^{10,11,12,13,14,15,16}.

<u>Potential relevance:</u> Currently, no therapies have been approved for CTNNB1 aberrations. CTNNB1 alterations in EGFR positive lung cancer have been proposed to promote cancer progression and limit the response to EGFR tyrosine kinase inhibitors¹⁷.

EGFR (epidermal growth factor receptor)

<u>Background:</u> The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the human epidermal growth factor receptor (HER) family. Along with EGFR/ERBB1/HER1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family¹⁸. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival^{19,20}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain of EGFR are observed in approximately 10-20% of lung adenocarcinoma and at higher frequencies in never-smoker, female, and in Asian populations with lung cancer^{15,16,21,22}. The most common mutations occur near the ATP-binding pocket of the kinase domain and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21²³. These mutations constitutively activate the EGFR kinase resulting in downstream signaling and represent 80% of the EGFR mutations observed in lung cancer. A second group of recurrent activating mutations that are less common include E709K, G719X, S768I, L861Q, and short in-frame insertions in exon 20^{24,25,26,27}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations²⁸. Although these variants are common in lung cancer, they are rare in other cancer types. In glioblastoma, recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V^{23,29}. The recurrent focal amplification of the EGFR gene leads to an increase in expression in several cancer types. EGFR is amplified in up to 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{15,16,22,29,30}. Deletion of exons 2-7 encoding the extracellular domain of EGFR (EGFRVIII) results in overexpression of a ligand-independent constitutively active protein which is frequently observed in glioblastoma and has been shown to lead to lung cancer development as well as sensitivity to TKIs^{31,32,33}.

Potential relevance: Erlotinib³⁴ (2004), afatinib³⁵ (2013), gefitinib³⁶ (2015), osimertinib³⁷ (2015), and dacomitinib³⁸ (2018) are small molecule TKIs that are FDA approved for non-small cell lung cancer (NSCLC) patients with sensitizing exon 19 deletions and exon 21 L858R mutations. Acquired secondary mutations often confer resistance to first line TKI therapy with the T790M amino acid substitution accounting for 50-60% of cases²³. Osimertinib is also indicated for NSCLC patients harboring EGFR T790M mutations whose disease has progressed on or after treatment with a first line TKI. EGFR targeting antibodies including cetuximab³⁹ (2004), panitumumab⁴⁰ (2006), and necitumumab⁴¹ (2016) are also under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, JNJ-61186372⁴², targeting EGFR and MET, and the tyrosine kinase inhibitor⁴³ each received a breakthrough designation from the FDA (2020) for NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy CNVN-202⁴⁴ in combination with the EGFR inhibitor, osimertinib, received a fast track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations. The use of cetuximab in combination with afatinib is currently recommended by the NCCN for patients who have progressed after receiving erlotinib, afatinib, dacomitinib, or gefitinib and chemotherapy⁴⁵.

> Date: 30 Sep 2020 4 of 23

Relevant Therapy Summary

In this cancer type In other cancer

type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

× No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials ³
osimertinib					(III)
bevacizumab + erlotinib	×				(II)
erlotinib + ramucirumab	×				×
afatinib + cetuximab	×		×	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
bevacizumab + gefitinib	×	×	×		×
gefitinib + carboplatin + pemetrexed	×	×	×		×
apatinib + EGFR tyrosine kinase inhibitor	×	×	×	×	● (IV)
bevacizumab + osimertinib, osimertinib	×	×	×	×	● (IV)
EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
icotinib hydrochloride	×	×	×	×	● (IV)
icotinib hydrochloride, chemotherapy	×	×	×	×	(IV)
icotinib hydrochloride, radiation therapy	×	×	×	×	(IV)
bevacizumab, atezolizumab, chemotherapy	×	×	×	×	(III)
durvalumab, chemotherapy	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
pembrolizumab, chemotherapy	×	×	×	×	(III)
D-0316, icotinib hydrochloride	×	×	×	×	(II/III)
anlotinib hydrochloride, icotinib hydrochloride	×	×	×	×	(II)
anlotinib hydrochloride, osimertinib	×	×	×	×	(II)
atezolizumab, chemotherapy	×	×	×	×	(II)
avitinib, AZD-3759	×	×	×	×	(II)
bevacizumab, osimertinib	×	×	×	×	(II)
bintrafusp alfa, chemoradiation therapy, durvalumab	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 30 Sep 2020 5 of 23

Relevant Therapy Summary (continued)

In this cancer type O In other cancer

type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

X No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
chemotherapy, atezolizumab, bevacizumab	×	×	×	×	(II)
chemotherapy, durvalumab	×	×	×	×	(II)
crizotinib + chemotherapy	×	×	×	×	(II)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor + chemotherapy	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor + chemotherapy, EGFR tyrosine kinase inhibitor	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, apatinib	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, radiation therapy	×	×	×	×	(II)
famitinib, HS-10296	×	×	×	×	(II)
nivolumab, ipilimumab	×	×	×	×	(II)
osimertinib, bevacizumab	×	×	×	×	(II)
osimertinib, radiation therapy	×	×	×	×	(II)
osimertinib, ramucirumab	×	×	×	×	(II)
osimertinib, savolitinib	×	×	×	×	(II)
ramucirumab, chemotherapy, cytokine	×	×	×	×	(II)
SH-1028	×	×	×	×	(II)
tyrosine kinase inhibitors, radiation therapy	×	×	×	×	(II)
ASK120067	×	×	×	×	(I/II)
CBT-502, anlotinib hydrochloride	×	×	×	×	(I/II)
DZD-9008	×	×	×	×	(1/11)
EMB01	×	×	×	×	(1/11)
icotinib hydrochloride + chemotherapy	×	×	×	×	(I/II)
KP-673	×	×	×	×	(1/11)
U3-1402	×	×	×	×	(I/II)
AB-928, zimberelimab, chemotherapy	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 30 Sep 2020 6 of 23

Relevant Therapy Summary (continued)

In this cancer type O In other cancer

type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

X No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
alisertib, osimertinib	×	×	×	×	(I)
CK-101	×	×	×	×	(I)
FCN-411	×	×	×	×	(1)
genolimzumab, fruquintinib	×	×	×	×	(1)
JNJ-61186372, lazertinib	×	×	×	×	(1)
lazertinib, JNJ-61186372	×	×	×	×	(1)
nazartinib, trametinib	×	×	×	×	(1)
neratinib, palbociclib, everolimus, trametinib	×	×	×	×	(1)
niraparib, osimertinib	×	×	×	×	(1)
osimertinib, necitumumab	×	×	×	×	(1)
pirotinib	×	×	×	×	(1)
telisotuzumab vedotin, osimertinib	×	×	×	×	(1)
TNO-155	×	×	×	×	(1)
TP-0903	×	×	×	×	(1)
TQB 3804	×	×	×	×	(1)
TY-9591	×	×	×	×	(1)
tyrosine kinase inhibitors, tyrosine kinase inhibitors + chemotherapy	×	×	×	×	(I)

EGFR p.(T790M) c.2369C>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib					(IV)
gefitinib	×	×	0	×	×
anlotinib hydrochloride, osimertinib	×	×	×	×	(IV)
apatinib + EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)

^{*} Most advanced phase (IV, III, II/II, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 30 Sep 2020 7 of 23

Relevant Therapy Summary (continued)

In this cancer type O In other cancer type

In this cancer type and O Contraindicated other cancer types

A Both for use and contraindicated

X No evidence

EGFR p.(1790)	vi) c.23696>1	(continuea)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
icotinib hydrochloride, radiation therapy	×	×	×	×	(IV)
bevacizumab, atezolizumab, chemotherapy	×	×	×	×	(III)
durvalumab, chemotherapy	×	×	×	×	(III)
icotinib hydrochloride, chemotherapy	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
sintilimab, bevacizumab (Innovent Biologics), chemotherapy	×	×	×	×	(III)
toripalimab, chemotherapy	×	×	×	×	(III)
apatinib, chemotherapy	×	×	×	×	(II)
avitinib	×	×	×	×	(II)
bevacizumab, osimertinib	×	×	×	×	(II)
D-0316	×	×	×	×	(II)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor + chemotherapy	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor + chemotherapy, EGFR tyrosine kinase inhibitor	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, apatinib	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, radiation therapy	×	×	×	×	(II)
famitinib, HS-10296	×	×	×	×	(II)
icotinib hydrochloride	×	×	×	×	(II)
KN046	×	×	×	×	(II)
nivolumab, ipilimumab	×	×	×	×	(II)
osimertinib, radiation therapy	×	×	×	×	(II)
ramucirumab, chemotherapy, cytokine	×	×	×	×	(II)
SH-1028	×	×	×	×	(II)
tyrosine kinase inhibitors, radiation therapy	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 30 Sep 2020 8 of 23

Relevant Therapy Summary (continued)

In this cancer type O In other cancer

type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

X No evidence

EGFR p.(T790M) c.2369C>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ASK120067	×	×	×	×	(I/II)
DZD-9008	×	×	×	×	(/)
EMB01	×	×	×	×	(/)
icotinib hydrochloride + chemotherapy	×	×	×	×	(/)
KP-673	×	×	×	×	(1/11)
U3-1402	×	×	×	×	(1/II)
alisertib, osimertinib	×	×	×	×	(1)
APG-1252, osimertinib	×	×	×	×	(I)
CK-101	×	×	×	×	(I)
ES-072	×	×	×	×	(I)
FCN-411	×	×	×	×	(I)
JNJ-61186372	×	×	×	×	(I)
lazertinib, JNJ-61186372	×	×	×	×	(I)
nazartinib, trametinib	×	×	×	×	(I)
neratinib, palbociclib, everolimus, trametinib	×	×	×	×	(I)
osimertinib, necitumumab	×	×	×	×	(1)
pirotinib	×	×	×	×	(1)
TP-0903	×	×	×	×	(I)
TQB 3804	×	×	×	×	(1)
TQB3456	×	×	×	×	(I)
TY-9591	×	×	×	×	(I)
tyrosine kinase inhibitors, tyrosine kinase inhibitors + chemotherapy	×	×	×	×	● (I)
YK-029A	×	×	×	×	(I)
YZJ-0318	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 30 Sep 2020 9 of 23

Relevant Therapy Details

Current FDA Information

FDA information is current as of 2020-05-26. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2019-12-19 Variant class: EGFR L858R mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for

- the first-line treatment of patients with metastatic NSCLC whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of patients with metastatic EGFR T790M mutation-positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208065s013lbl.pdf

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2019-12-19 Variant class: EGFR T790M mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for

- the first-line treatment of patients with metastatic NSCLC whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of patients with metastatic EGFR T790M mutation-positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208065s013lbl.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 10 of 23

Current NCCN Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

NCCN information is current as of 2020-05-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(L858R) c.2573T>G

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; EGFR sensitizing mutation discovered prior to first-line systemic therapy (First-line therapy) (Preferred)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

afatinib + cetuximab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Non-Small Cell Lung Cancer; Progression on erlotinib, afatinib, dacomitinib, gefitinib, chemotherapy, or osimertinib; Systemic multiple lesions (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; Progression on erlotinib +/- (ramucirumab or bevacizumab), afatinib, gefitinib, or dacomitinib; Asymptomatic or symptomatic with brain metastases or isolated lesions (Subsequent therapy)

Tel: 02-2875-7449

Date: 30 Sep 2020 11 of 23

EGFR p.(L858R) c.2573T>G (continued)

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Sensitizing EGFR mutation discovered prior to or during first-line systemic therapy (First-line therapy) (Other Recommended)
- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Progression on erlotinib +/(ramucirumab or bevacizumab), afatinib, gefitinib, or dacomitinib; Asymptomatic or symptomatic with brain metastases or
 isolated lesions (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Non-Small Cell Lung Cancer; Leptomeningeal and spine metastases (Not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2020]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; Sensitizing EGFR mutation discovered during first-line systemic therapy; Interrupt or complete planned systemic therapy, including maintenance therapy (First-line therapy) (Preferred)
- Progression on osimertinib; Advanced or metastatic disease; Asymptomatic or symptomatic with brain or isolated lesions (Subsequent therapy)

Tel: 02-2875-7449

Date: 30 Sep 2020 12 of 23

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; Sensitizing EGFR mutation discovered prior to or during first-line systemic therapy (First-line therapy) (Useful in Certain Circumstances)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Tel: 02-2875-7449

Date: 30 Sep 2020 13 of 23

EGFR p.(L858R) c.2573T>G (continued)

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Tel: 02-2875-7449

Date: 30 Sep 2020 14 of 23

EGFR p.(L858R) c.2573T>G (continued)

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Other criteria: CD274 overexpression

Summary:

NCCN Guidelines® include the following supporting statement(s):

"A small study suggests that single-agent pembrolizumab is not effective as first-line therapy in patients with metastatic NSCLC and EGFR mutations, even those with PD-L1 levels more than 50%."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Progression on erlotinib
 +/- (ramucirumab or bevacizumab), afatinib, gefitinib, or dacomitinib; Asymptomatic or symptomatic brain metastases
 (Subsequent therapy)
- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Squamous Cell Carcinoma; Progression on erlotinib +/- (ramucirumab or bevacizumab), afatinib, gefitinib, or dacomitinib; Systemic multiple lesions; If not previously given (Subsequent therapy)

Tel: 02-2875-7449

Date: 30 Sep 2020 15 of 23

EGFR p.(T790M) c.2369C>T (continued)

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Non-Small Cell Lung Cancer; Brain metastases; Use agents active against primary tumor (Not specified)
- Non-Small Cell Lung Cancer; Leptomeningeal and spine metastases (Not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2020]

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Other criteria: CD274 overexpression

Summary:

NCCN Guidelines® include the following supporting statement(s):

"A small study suggests that single-agent pembrolizumab is not effective as first-line therapy in patients with metastatic NSCLC and EGFR mutations, even those with PD-L1 levels more than 50%."

Tel: 02-2875-7449

Date: 30 Sep 2020 16 of 23

EGFR p.(T790M) c.2369C>T (continued)

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

" Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."
- "EGFR p.Thr790Met (T790M) is a mutation associated with acquired resistance to EGFR TKI therapy and has been reported in about 60% of patients with disease progression after initial response to erlotinib, gefitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."
- "EGFR p.Thr790Met (T790M) is a mutation associated with acquired resistance to EGFR TKI therapy and has been reported in about 60% of patients with disease progression after initial response to erlotinib, gefitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."
- "EGFR p.Thr790Met (T790M) is a mutation associated with acquired resistance to EGFR TKI therapy and has been reported in about 60% of patients with disease progression after initial response to erlotinib, gefitinib, or afatinib."

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 30 Sep 2020 17 of 23

EGFR p.(T790M) c.2369C>T (continued)

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."
- "EGFR p.Thr790Met (T790M) is a mutation associated with acquired resistance to EGFR TKI therapy and has been reported in about 60% of patients with disease progression after initial response to erlotinib, gefitinib, or afatinib."

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 18 of 23

Current EMA Information

EMA information is current as of 2020-05-26. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR p.(L858R) c.2573T>G

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-03-11 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdf

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-02-25 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/cyramza-epar-product-information_en.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-02-25 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-02-25 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

gefitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2019-05-28 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/iressa-epar-product-information_en.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 19 of 23

Current ESMO Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

ESMO information is current as of 2020-05-01. For the most up-to-date information, search www.esmo.org.

EGFR p.(L858R) c.2573T>G

atezolizumab + bevacizumab + carboplatin + paclitaxel

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

- Metastatic Non-Squamous; Magnitude of Clinical Benefit Scale Score version 1.1 score: 3 (First-line therapy)
- Metastatic; PS 0-1; Without contraindications to immunotherapy after targeted therapies have been exploited (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced stage; ESMO-Magnitude of Clinical Benefit Scale Version 1.1 Score: 4 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Advanced stage (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

Tel: 02-2875-7449

Date: 30 Sep 2020 20 of 23

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: || / B

Population segment (Line of therapy):

Stage IV; ESMO-Magnitude of Clinical Benefit Scale Version 1.1 Score: 3 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: II / B

Population segment (Line of therapy):

Stage IV; ESMO-Magnitude of Clinical Benefit Scale Version 1.1 Score: 3 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: II / B

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

 Stage IV; Resistance to first-/second generation EGFR TKI; If not received previously; ESMO-Magnitude of Clinical Benefit Scale Version 1.1 Score: 4 (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 21 of 23

	Date. 30 Sep 2020	210123
Signatures		
Testing Personnel:		
Laboratory Supervisor:		
Pathologist:		

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 22 of 23

References

- Valenta et al. The many faces and functions of β-catenin. EMBO J. 2012 Jun 13;31(12):2714-36. PMID: 22617422
- 2. Korinek et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997 Mar 21;275(5307):1784-7. PMID: 9065401
- 3. Aberle et al. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997 Jul 1;16(13):3797-804. PMID: 9233789
- 4. Winston et al. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999 Feb 1;13(3):270-83. PMID: 9990852
- 5. Kitagawa et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J. 1999 May 4;18(9):2401-10. PMID: 10228155
- Liu et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002 Mar 22;108(6):837-47.
 PMID: 11955436
- 7. Miyoshi et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998 Jun 15;58(12):2524-7. PMID: 9635572
- 8. Gao et al. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget. 2018 Jan 12;9(4):5492-5508. PMID: 29435196
- 9. Morin et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997 Mar 21;275(5307):1787-90. PMID: 9065402
- 10. Schulze et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015 May;47(5):505-511. PMID: 25822088
- 11. Ahn et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014 Dec;60(6):1972-82. PMID: 24798001
- 12. Harding et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2018 Oct 29. PMID: 30373752
- 13. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 14. Soumerai et al. Clinical Utility of Prospective Molecular Characterization in Advanced Endometrial Cancer. Clin. Cancer Res. 2018 Dec 1;24(23):5939-5947. PMID: 30068706
- 15. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 16. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 17. Blakely et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 2017 Dec;49(12):1693-1704. PMID: 29106415
- 18. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 20. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 21. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 22. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 23. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 24. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 23 of 23

References (continued)

- Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 26. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 27. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 28. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 29. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 30. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 31. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 32. Ji et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 2006 May 16;103(20):7817-22. PMID: 16672372
- 33. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 34. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 35. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdf
- 36. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206995s003lbl.pdf
- 37. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208065s013lbl.pdf
- 38. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211288s000lbl.pdf
- 39. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf
- 40. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf
- 41. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125547s000lbl.pdf
- 42. https://www.jnj.com/janssen-announces-u-s-fda-breakthrough-therapy-designation-granted-for-jnj-6372-for-the-treatment-of-non-small-cell-lung-cancer
- 43. https://www.takeda.com/newsroom/newsreleases/2020/takeda-announces-u.s.-fda-breakthrough-therapy-designation-for-mobocertinib-tak-788-for-the-treatment-of-nsclc-patients-with-egfr-exon-20-insertion-mutations/
- 44. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 45. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 4.2020]