Problema di programmazione convessa

- ▶ funzioni convesse vs. insiemi convessi
- minimi locali e globali
- problema di programmazione convessa

rif. Fi 1.1

Funzioni convesse vs. insiemi convessi

Teorema

Sia

$$X = \{x \in \mathbb{R}^n : g_i(x) \le 0, i = 1, \dots, m\}.$$

Se per ogni $i \in \{i, ..., m\}$ le funzioni $g_i : \mathbb{R}^n \to \mathbb{R}$ sono convesse, allora l'insieme X è convesso.

Dimostrazione

Ovviamente $X = \bigcap_{i=1}^n X_i$, con $X_i = \{x \in \mathbb{R}^n : g_i(x) \leq 0\}$. Quindi basta dimostrare che ciascuno degli X_i è convesso.

Infatti, per qualsiasi $x,y\in X_i$ consideriamo una generica combinazione convessa $z=\lambda x+(1-\lambda)y$, $\lambda\in[0,1]$. Essendo g_i convessa, $g_i(x)\leq 0, g_i(y)\leq 0$, risulta:

$$g_i(z) \le \lambda g(x) + (1 - \lambda)g(y) \le 0$$

Quindi, $z \in X_i$.

Minimi locali e globali

 \hat{x} si dice punto di $\emph{minimo locale}$ di f su X se esiste $\epsilon>0$ tale che $f(\hat{x})\leq f(x)$ per ogni $x\in X$ per cui $||x-\hat{x}||\leq \epsilon.$

 \hat{x} si dice punto di *minimo globale* se $f(\hat{x}) \leq f(x)$, $\forall x \in X$

Programmazione convessa

Definizione

Un problema $\min f(x): x \in X \subseteq \mathbb{R}^n$ si dice di *programmazione* convessa se X è convesso e f(x) è convessa su X.

Teorema

In un problema di programmazione convessa ogni punto di minimo locale è anche di minimo globale.

Dimostrazione

Sia \hat{x} un punto di minimo locale di f su X. Allora,

$$\exists \epsilon > 0 \text{ t.c. } f(\hat{x}) \leq f(z), \text{ per ogni } z \in I_{\epsilon}(\hat{x}) = \{x \in X : ||x - \hat{x}|| \leq \epsilon\}$$

dimostriamo che $f(\hat{x}) \leq f(y)$ per un generico $y \in X$. Sia $z = \lambda \hat{x} + (1-\lambda)y$, e scegliamo $\lambda \simeq 1$ in modo che $z \in I_{\epsilon}(\hat{x})$ e, quindi, $f(\hat{x}) \leq f(z)$.

Dimostrazione (continua)

Per l'ipotesi di convessità, si ha:

$$f(\hat{x}) \le f(z) = f(\lambda \hat{x} + (1 - \lambda)y) \le \lambda f(\hat{x}) + (1 - \lambda)f(y)$$

ovvero:

$$(1 - \lambda)f(\hat{x}) \le (1 - \lambda)f(y)$$

dividendo per $(1 - \lambda)$ (che è > 0) si ottiene $f(\hat{x}) \le f(y)$

Esercizio

Esercizio Mostrare che un problema $\min f(x): x \in X \subseteq \mathbb{R}^n$ in cui f è convessa in \mathbb{R}^n ed X non è convesso ammette punti di minimo locale