

四年二班 付家源

口算对战机 (1)

设计意图

原理

应用学科领域

设计意图

为什么我要制作这款《口算对战机》

在平时数学考试中,我经常出现计算 马虎导致算错数的情况,归结原因还是计 算能力不过关。另外检查错题的能力也不 够强,算式很难检查出错误。

于是我就想怎样可以提升基础计算能力。做 题固然是一种比较有效的方法,父母为了让我有 做题的动力,还经常陪着我一起做,比谁做的又 快又好。但是始终没找到一个更加公平、有趣又 轻松的方法。

直到有一天我看到的爸爸买的一台怀旧游戏机,就是这个样子的。

我问爸爸为什么不用手机玩游戏,爸爸回答说这种按钮对战起来更痛快、更有乐趣!

我问爸爸有没有能做算术题的游戏, 答案是没有。于是我想,自己做一套可 不可行呢?爸爸很支持我,说可以帮我 筹备材料,和我一起制作。

就这样,我和爸爸达成了共识,一起制作一套类似《街头霸王》一样具备对战性质的《口算对战机》。

设计意图

我们总结出了《口算对战机》所具备的特点

01

趣味性

把枯燥的做题 过程改造成有 趣的对战 02

便携性

机器支持使用 2节18650充 电电池,随时 随地可用 03

易操作

每人只有两个 按钮,用来判 断对错,操作 简单 04

低成本

所有元件加在 一起仅有几十 元钱

原理

《口算对战机》是怎么运行的

机器的使用方法

参照一般对战游戏的模式,分为1P 玩家和2P玩家,由机器随机出题,题目 是加减法等式,等式可能正确也可能错 误,由1P和2P抢答判断对错,答对加1 分,答错则为对方加1分,率先获得5分 的玩家获胜。

技术原理

硬件采用比较流行的电子积木——Arduino开发板。外接一个LCD显示屏和4个按钮,每人操作两个按钮分别表示判断题的对"√"和"×"。

项目的难点主要有以下几个:

- 1、设备接线的电路;
- 2、程序的编写;
- 3、外壳制作。

电路图

应用的学科

《口算对战机》制作涉及的学科领域

涉及哪些学科

项目中涉及的学科包括:

- 1、物理(电路图、端子接线、焊接)
- 2、软件编程 (C++编程、二维码与网页制作)
- 3、单片机知识(元器件的使用、软硬件交互)
- 4、图形图像技术 (屏幕图像绘制)
- 5、英语(Arduino官网英文资料文档的阅读)
- 6、数学 (等式的构造与变换, 屏幕绘图)

《口算对战机》的制作过程

材料清单(合计成本52元)

名称	数量	价格	图例
Arduino UNO 开发板	1个	20元	
UNO配套2.4寸 TFT液晶屏	1个	20元	
ABS防水接线盒	1个	5元	
10K 欧姆电阻	4个	0.2元	

名称	数量	价格	图例
船型开关	1个	0.3元	
绝缘热缩管	0.5米	0.3元	
30#卡式按键	4个	3.2元	
18650电池盒	1个	2元	
普通电线	1米	1元	

程序编写

```
sksdzj | Arduino 1.8.16
 00 B B B
116 void setup()
1170{
118 Serial.begin(9600);
119 pinMode(10, INPUT);
120 pinMode(11, INPUT);
121 pinMode(12, INPUT);
122 pinMode(13, INPUT);
123 lcd.Init_LCD();
124 //Serial.println(lcd.Read_ID(), HEX);
125 lcd.Fill_Screen(BLACK);
126 lcd.Set_Rotation(3);//水平方向
127 randomSeed(analogRead(13));
128 lcd.Set_Text_Mode(0);
129 lcd.Set Text Back colour(BLACK);
130 showFirstScreen();
131 //countDown();//倒计时三秒
132 }
133 void showFirstScreen() {
134 int y = 0;
135  for (int x = 0; x < sizeof(gImage_1); x++) {
136    int n = gImage_1[x];
      int b1 = n \& 0xFF; //1bit;
138   int b2 = (n >> 8) & 0xFF; //2bit;
       int b3 = (n >> 16) & 0xFF; //3bit;
       int b4 = (n >> 24) & 0xFF; //4bit;
       int b5 = (n >> 32) & 0xFF; //5bit;
       int b6 = (n >> 40) & 0xFF; //6bit;
       int b7 = (n >> 48) & 0xFF; //7bit;
       int b8 = (n >> 56) & 0xFF; //8bit;
        lcd.Draw_Pixe(x % 8 + b1, x * 8 / 236, b1);
        lcd.Draw_Pixe(x % 8 + b2, x * 8 / 236, b2);
        lcd.Draw Pixe(x % 8 + b3, x * 8 / 236, b3);
        lcd.Draw_Pixe(x % 8 + b4, x * 8 / 236, b4);
        lcd.Draw Pixe(x % 8 + b5, x * 8 / 236, b5);
```

难点1: 生成有一定干扰性的错题。

难点2: 使用库函数进行对号、错号、笑脸的绘制。

难点3: 由于屏幕没有汉字字库,显示中文还受到硬

件内存限制,中文图片采用单色取模绘制,一个bit

位对应一个像素点。

16个函数,525行代码,编译后的hex烧写文件67KB,项目使用了24170字节,占用了(74%)程序存储空间。最大为32256字节。全局变量使用了1773字节,(86%)的动态内存,余留275字节局部变量。最大为2048字节。

过程中遇到的问题

- 1、屏幕占用了过多的IO口,导致原本要加的 蜂鸣器和开始按钮没有可用IO口。
- 2、图片取模生成的数组无法显示,原因是 Arduino的内存限制,只能采用单色模式。
- 3、一开始采用纸质外壳,但是硬度太差,后 改用ABS防水盒。
- 4、外壳按钮相对容易固定,但是屏幕比较难。 目前使用尼龙柱支撑的方式。
- 5、每个按钮两个引脚,一共八个引脚,导致明线接驳触点较多,后使用热缩管解决。

THANKS

四年二班 付家源