Heat Transfer: Conduction

Unsteady energy conservation equations

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Video overview

Steady state energy conservation equation without sources:

- Steady state 1-D heat conduction without sources
- Steady state 2-D heat conduction without sources

Steady state energy conservation equation with sources:

Steady state 2-D heat conduction with sources

Transient energy conservation equation:

Transient 2-D heat conduction with sources

Transient 3-D energy conservation equation with sources:

3-D conservation equation without advection

Learning goals

Internal energy and specific heat:

- Understand the concept of internal energy and the difference to kinetic and potential energy
- Distinguish between the specific heat at constant temperature and constant pressure

Energy balances:

- Setting up energy balances for different cases
- Development of a differential equation from the energy balance using Taylor series expansion
- Establish necessary boundary conditions
- Solving the differential equation for simple cases

Internal energy and specific heat capacity

Internal energy:

U [J] :

The internal energy of a thermodynamic system is the energy contained within it. It does not include the kinetic energy of motion of the system as a whole, nor the potential energy of the system as a whole due to external force fields.

Examples for the inner energy are: Thermal energy, chemical bonding energy, ...

The internal energy is measured as a difference from a reference zero defined by a standard state. Only the difference between the reference state and the current state is of interest.

Internal energy in heat transfer:

U(T):

We consider here changes of the internal energy solely caused by temperature variations and by phase change processes (melting, evaporation, sublimation).

Internal energy and specific heat capacity

Specific heat capacity:

$$\frac{\partial U}{\partial T} = \rho \frac{\partial u}{\partial T} = \rho c$$

with c being the (mass) specific heat capacity

Specific heat capacity for gases:

Addition of heat at variable volume

- constant pressure
- increasing volume $\Delta V > 0$

Addition of heat at fixed volume

- constant volume
- increasing pressure

Internal energy and specific heat capacity

Specific heat capacity at 298K and 1 bar:

		$c_p\left[\frac{J}{kgK}\right]$	$c_v\left[\frac{J}{kgK}\right]$
Gases:	Air	1005	718
	Helium	5240	3157
	Hydrogen	14300	10142
Liquids:	Water	4220	
	Oil	1800	
Solids:	Iron	447	
	Wood	1380	

Definition of the internal energy for the transient heat conduction

Energy balance:

$$U = m \cdot c_v \cdot T$$

$$U = \rho \cdot c_v \cdot T \cdot dx \cdot dy \cdot \underbrace{dz}_{1}$$

- *U* [J] ▶ Internal energy
- $\rho \left[\frac{\text{kg}}{\text{m}^3} \right] \triangleright \text{Density}$
- $c_v \left[\frac{\mathsf{J}}{\mathsf{kgK}} \right]$ > Specific heat capacity at constant volume

Units - Check:

$$\dot{Q} = \underbrace{\dot{q}''}_{\left[\frac{\dot{W}}{m^2}\right]} \cdot \underbrace{dx \cdot dy}_{\left[m^2\right]} [W] \qquad \Rightarrow \frac{\partial U}{\partial t} \quad \left[\frac{J}{s} = W\right]$$

Energy balance for transient 2-D heat conduction with sources

Change of internal energy:

Considered change in internal energy only due to temperature changes! (c_v and ρ are constant)

Change within the control volume: $\frac{\partial U}{\partial t} = \rho \cdot c_v \cdot dx \cdot dy \cdot 1 \cdot \frac{\partial T}{\partial t}$

Energy balance:

$$\frac{\partial U}{\partial t} = (\dot{Q}_{x,in} - \dot{Q}_{x,out}) + (\dot{Q}_{y,in} - \dot{Q}_{y,out}) + \dot{\Phi}^{\prime\prime\prime} \cdot V$$

The change of the heat flows and the source term are on the right side of the energy balance. (Cause)

The temporal change of the internal energy is on the left side of the energy balance (Effect)

Energy balance for transient 2-D heat conduction with sources

Change of internal energy:

Considered change in internal energy only due to temperature changes! (c_v and ρ are constant)

Change within the control volume: $\frac{\partial U}{\partial t} = \rho \cdot c_v \cdot dx \cdot dy \cdot 1 \cdot \frac{\partial T}{\partial t}$

Energy balance:

$$\frac{\partial U}{\partial t} = (\dot{Q}_{x,in} - \dot{Q}_{x,out}) + (\dot{Q}_{y,in} - \dot{Q}_{y,out}) + \dot{\Phi}^{\prime\prime\prime} \cdot V$$

Definition of all terms results in a diff. equation:

$$\frac{\partial U}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}'''$$

$$\rho \cdot c_v \cdot \frac{\partial T}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}'''$$

$$\Rightarrow \frac{\partial T}{\partial t} = \frac{1}{\rho \cdot c_v} \left[\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}''' \right]$$

3-D transient energy conservation equation with sources

Energy balance:

$$\frac{\partial U}{\partial t} = (\dot{Q}_{x,in} - \dot{Q}_{x,out}) + (\dot{Q}_{y,in} - \dot{Q}_{y,out}) + (\dot{Q}_{z,in} - \dot{Q}_{z,out}) + \dot{\Phi}^{"} \cdot V$$

Resulting 3-D temperature profile:

$$\frac{\partial U}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{\Phi}'''$$

$$\rho \cdot c_v \cdot \frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \lambda \left(\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{T}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{T}}{\partial \mathbf{z}^2} \right) + \dot{\Phi}'''$$

$$\Rightarrow \frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \frac{1}{\rho \cdot c_{v}} \left[\lambda \left(\frac{\partial^{2} \mathbf{T}}{\partial \mathbf{x}^{2}} + \frac{\partial^{2} \mathbf{T}}{\partial \mathbf{y}^{2}} + \frac{\partial^{2} \mathbf{T}}{\partial \mathbf{z}^{2}} \right) + \dot{\Phi}''' \right]$$

Overview of the differential equations of all cases

1-D steady state without sources:

$$0 = -\lambda \cdot A \frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2}$$

2-D steady state with sources (Poisson):

$$0 = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}^{\prime\prime\prime}$$

2-D steady state without sources (Laplace):

$$0 = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

2-D transient with sources:

$$\Rightarrow \frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \frac{1}{\rho \cdot c_v} \left[\lambda \left(\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{T}}{\partial \mathbf{y}^2} \right) + \dot{\Phi}^{\prime\prime\prime} \right]$$

3-D transient with sources (general diff. eq.):

$$\Rightarrow \frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \frac{1}{\rho \cdot c_{v}} \left[\lambda \left(\frac{\partial^{2} \mathbf{T}}{\partial \mathbf{x}^{2}} + \frac{\partial^{2} \mathbf{T}}{\partial \mathbf{y}^{2}} + \frac{\partial^{2} \mathbf{T}}{\partial \mathbf{z}^{2}} \right) + \dot{\Phi}^{\prime\prime\prime} \right]$$

Comprehension questions

What is the steady state temperature profile for a homogeneous, onedimensional, flat wall without heat sources?

Under which conditions does Poisson's equation become Laplace's equation (heat conduction)?

