07. Amortized Analysis and Fibonacci Heaps CPSC 535 ~ Spring 2019

Kevin A. Wortman

March 11, 2019

Amortized Efficiency

amortized performance

- amortized efficiency: average of worst-case time over any sequence of operations
- different from (probabalistic) expected efficiency, which is averaged over random choices made by a PRNG
- amortized time bound is a weaker math condition than the same worst-case bound
- ▶ e.g. $\Theta(1)$ amortized vs. $\Theta(1)$ worst-case
- downgrading to an amortized bound may admit upgrades to other aspects of a data structure

Big Idea in Algorithm Design: Work Smart not Hard

Lifecycle of an implemented algorithm:

Phase of Life design and analysis learned by students implemented run and maintained

Frequency of Creation

once, by discoverer and peer reviewers annually, by thousands once per programming language lifetime (decade) millions-billions of times indefinitely

- given the choice, we'd prefer for the ongoing tasks to be easy
- even if that means the one-time phases are complicated
- holy grail: algorithm is tough to conceive and analyze, but easy to understand and implement
- example: universal hashing, open addressing

Amortized Analysis — What to Prove

A splay tree is a kind of binary search tree.

Lemma: the *INSERT*, *SEARCH*, and *DELETE* operations each take $\Theta(\log n)$ amortized time on a splay tree.

Would need to prove:

- ightharpoonup average time/operation = $\Theta(\log n)$
- ▶ or, any sequence of n of these operations takes a grand total of $n \cdot \Theta(\log n) = \Theta(n \log n)$ worst-case time
- any sequence: includes the worst-case for the data structure
- three conventional proof techniques

Aggregate Analysis

- ightharpoonup count total time T(n) for any sequence of n operations
- ightharpoonup each operation takes T(n)/n amortized time
- pro: simple logic; from first principles
- ▶ con: only works when the goal is to prove all operations take the same time (e.g. *INSERT*, *SEARCH*, and *DELETE* are each $\Theta(\log n)$); wouldn't work if one of them is $\Theta(1)$
- con: not much inspiration for difficult analyses

The Accounting Method

- inspired by financial amortization, balanced budgets
- ▶ analyst picks a **cost** for each operation (ex.: *INSERT* costs $4 \cdot \lceil \log_2 n \rceil$ units)
- some operations over-charge and turn a profit that is deposited somewhere in the structure (e.g. in a node)
- other operations under-charge and incur a loss that is withdrawn from prior deposits
- show: never go bankrupt, i.e. withdrawn units always exist
- show: for every operation,

$$(charge) + (withdrawal) \le actual time spent$$

amortized time = charged cost

Accounting Method Pros/Cons

- ▶ pro: possible to prove different amortized efficiency classes for each operation (e.g. one is $\Theta(1)$, another $\Theta(\log n)$)
- pro: cost story helps us reason through analysis
- loss operation = procrastinating, deferring work to later
- profit operation = catching up on deferred work
- con: cost story may overcomplicate things
- con: sometimes awkard to store profits in specific data structure locations

Potential Method

- premise: for data structure D, **potential function** $\Phi(D)$
- (Φ pronounced like "fee")
- potential is stored energy, like a battery
- ightharpoonup amortized time of operation = actual time + change to $\Phi(D)$
- ightharpoonup procrastinating/loss operations decrease $\Phi(D)$
- ightharpoonup catch-up/profit operations increase $\Phi(D)$
- ▶ show: $\Phi(D) \ge 0$ always
- ultimately a less structured way of thinking of the accounting method

Fibonacci Heap Overview

- alternative to a binary heap (as in heapsort)
- pro: faster INSERT and DECREASE-KEY operations (optimal in fact)
- pro: supports additional operations
- con: more complicated to describe, implement, especially analyze
- con: operations have amortized time bounds
- con: much worse constant factors, not in-place
- not currently practical

Mergeable Heap API

```
CREATE-HEAP(): initialize empty heap INSERT(H, x): insert entry x into H MINIMUM(H): return minimum-key entry EXTRACT-MIN(H): remove and return minimum-key entry UNION(H_1, H_2): consume heaps H_1, H_2 and return a new heap with their elements DECREASE-KEY(H, x, k): lower key of x to k DELETE(H, x): remove entry x from x
```

Heap Efficiency Comparison

Operation	Binary Heap (worst-case)	Fib. Heap (amort.)
CREATE-HEAP	$\Theta(1)$	$\Theta(1)$
INSERT	$\Theta(\log n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\log n)$	$O(\log n)$
UNION	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\log n)$	$\Theta(1)$
DELETE	$\Theta(\log n)$	$\Theta(\log n)$

Fibonacci Heap Structure

Overall heap H has

- ➤ a forest of individual k-ary trees (nonbinary); each tree in min-heap-order
- ► *H.min* = pointer to the root with the global minimum key
- ► H.n = number of entries in heap

Each node x has

- x.parent = parent node (NIL if root)
- x.child = pointer to an arbitrary child
- \triangleright x.left, x.right = pointers to siblings
- (siblings are in circular, unsorted, doubly-linked lists)
- ➤ *x.degree* = # children
- x.mark = boolean, true iff x has lost a child since the last time x was assigned a new parent (manages procrastination)

Potential Function and Degree Bound

For analysis purposes, we define the potential function

$$\Phi(H) = t(H) + 2 \cdot m(H)$$

where

- \blacktriangleright t(H) = # trees in root list
- ightharpoonup m(H) = # marked nodes

Claim: If Fibonacci heap H has n nodes, then the maximum degree (# children) of any node, written D(n), is

$$D(n) = O(\log n).$$

CREATE-HEAP

- 1: function CREATE-HEAP
- 2: H.min = NIL
- 3: H.n = 0
- 4: **return** *H*
- 5: end function

Takes $\Theta(1)$ time; t(H) = m(H) = 0, so $\Phi(H) = 0$; no profit or loss.

INSERT Pseudocode

15: end function

Just create node, initialize node, insert into root list, update *H.min*

```
1: function INSERT(H,x)
2:
      x.degree = 0
3: x.parent = x.child = NIL
4.
      x.mark = false
5:
      if H.min == NIL then
6:
          H.min = x
7:
          x.left = x.right = NIL
8.
      else
          insert x into root list as H.min's right sibling
9:
10:
          if x.key < H.min.key then
             H.min = x
11:
          end if
12:
13:
      end if
      H.n++
14:
```

INSERT Analysis

Actual time steps are $\Theta(1)$. Let H be heap before INSERT, and H' after; then

$$t(H') = t(H) + 1$$
 (one tree created)
 $m(H') = m(H)$ (no marking)
 $\implies \Phi(H') = \Phi(H) + 1$

 \therefore INSERT takes O(1) + 1 = O(1) amortized time.

MINIMUM

Just follow the *H.min* pointer.

O(1) actual time.

No new trees, no new marked nodes, so O(1) amortized time.

UNION

```
1: function UNION(H_1, H_2)
        if H_1.n == 0 then
 2:
 3:
            return H<sub>2</sub>
 4:
        else if H_2.n == 0 then
 5:
            return H<sub>1</sub>
 6:
        else
 7:
            H = \text{new heap object}
 8:
            H.min = min(H_1.min, H_2.min)
 9:
            H.n = H_1.n + H_2.n
            concatenate root lists of H_1, H_2 into one linked list
10:
            return H
11:
        end if
12:
13: end function
```

O(1) actual time; trees and marked nodes move around, but their number is unchanged, so no change to Φ ; O(1) amortized time.

So Far So Good

So far all operations have been simple, and either potential-neutral (CREATE-HEAP, MINIMUM), or increased potential (INSERT)

Indeed, n INSERTs creates a glorified n-element linked list.

... need to expect remaining operations to be more complicated, decrease potential, decrease length of root list.

EXTRACT-MIN

Follow *H.min* pointer; promote all children to roots; remove from root list; CONSOLIDATE to shorten root list and find new *H.min*.

```
1: function EXTRACT-MIN(H)
 2:
       z = H.min
3:
       for each child c of z do
          insert c into H's root list
4.
5:
          c.parent = NIL
6.
       end for
7:
       delete z from root list
       if H.n == 1 then
8.
          H.min = NIL

    b heap just became empty

9:
10:
       else
          CONSOLIDATE(H)
11:
                                  ▷ compact root list, recompute H.min
       end if
12:
13:
       H.n - -
14:
       return z
15: end function
```

Zooming in to CONSOLIDATE

Before moving on, observe EXTRACT-MIN takes, aside from CONSOLIDATE, $\Theta(\text{degree}(H.min))$ time; claimed this is $\Theta(\log n)$

Contract for CONSOLIDATE:

1: function CONSOLIDATE(H)

Require: H.min invalid and H.n == #nodes + 1

Ensure: H.min valid and $\#trees \in O(\log n)$

2: end function

CONSOLIDATE Pseudocode

- 1: **function** CONSOLIDATE(*H*)
- 2: A = UNIQUE-DEGREE-ARRAY(H)
- 3: ARRAY-TO-ROOT-LIST(H, A)
- 4: free A
- 5: RECOMPUTE-MIN(H)
- 6: end function

Clearly $\Theta(1)$ time except for the three subroutines.

UNIQUE-DEGREE-ARRAY Pseudocode

```
1: function UNIQUE-DEGREE-ARRAY(H)
Ensure: returns A[0..D(H.n)] where A[d] = \text{only root w/ degree } d
       A[0..D(H.n)] = \text{new array of node pointers, all NIL}
       for each root node r in H do
3:
                                                           \triangleright move r into A
4:
                                 parent node that needs to move into A
           p = r
           while A[p.degree] \neq NIL do \triangleright another node in the way
5:
6:
               c = A[p.degree]
                                                   \triangleright p, c have same degree
               A[p.degree] = NIL \triangleright we will link them into one tree
7:
               if p.key > c.key then
8.
g.
                  swap(p, c)
                                           \triangleright ensure c should be p's child
               end if
10.
11.
               make c a child of p, incrementing p.degree
12:
               c.mark = false
13:
           end while
14.
       end for
       return A
15:
16: end function
```

UNIQUE-DEGREE-ARRAY Analysis

Create A: O(D(n)) time

for loop — aggregate analysis

- # iterations = length of root list before CONSOLIDATE = t(H) + D(n) - 1
- each iteration of inner while loop links two roots into one. decrementing # roots
- \blacktriangleright # roots at end of CONSOLIDATE \leq size of A = D(n) + 1
- total time in all while iterations is

$$(t(H) + D(n) - 1) - (D(n) + 1) = t(H) - 2$$

 $\blacktriangleright \implies$ total time in **for** loop is

$$(t(H) + D(n) - 1) + (t(H) - 2) \le 2 \cdot t(H) + D(n)$$

total for UNIQUE-DEGREE-ARRAY is O(t(H) + D(n))

ARRAY-TO-ROOT-LIST

```
    function ARRAY-TO-ROOT-LIST(H, A)
    clear H's root list to empty
    for index i of A do
    if A[i] ≠ NIL then
    insert A[i] into H's root list
    end if
    end for
    end function

O(D(n)) time
```

RECOMPUTE-MIN

```
1: function RECOMPUTE-MIN(H)
      H.min = NIL
 2:
      for node r in H's root list do
3:
 4:
          if H.min == NIL then
             H.min = A[i]
5:
         else if H.min.key > r.key then
6:
             H.min = r
7:
          end if
8:
      end for
9.
10: end function
O(D(n)) time
```

CONSOLIDATE Worst-Case Analysis

- 1: function CONSOLIDATE(H)
- 2: $A = \text{UNIQUE-DEGREE-ARRAY}(H) \Rightarrow O(D(n) + t(H))$
- 3: ARRAY-TO-ROOT-LIST(H, A) $\triangleright O(D(n))$
- 5: RECOMPUTE-MIN(H) $\triangleright O(D(n))$
- 6: end function

Time spent is

$$O(D(n)+t(H)+D(n)+1+D(n)) = O(3\cdot D(n)+t(H)) = O(\log n+t(H)).$$

Want this to be $O(\log n)$; the t(H) overage can be withdrawn from the potential function.

CONSOLIDATE Amortized Analysis

Recall potential function

$$\Phi(H) = t(H) + 2 \cdot m(H)$$

Let H' be H after EXTRACT-MIN

EXTRACT-MIN does not mark any nodes, so m(H') = m(H).

$$\#$$
 roots decreases: $t(H') = D(n) + 1 \le t(H)$

$$\Phi(H') = t(H') + 2 \cdot m(H') = (D(n) + 1) + 2 \cdot m(H)$$

$$\Phi(H) - \Phi(H') = t(H) - (D(n) + 1)$$

Amortized cost of EXTRACT-MIN

$$= \Delta \Phi = O(t(H) + D(n)) - O(t(H) - D(n) - 1) = O(2 \cdot D(n)) = O(\log n)$$

Where did that time come from? Accounting Perspective

- ightharpoonup potential function's t(H) term over-charges INSERT and under-charges EXTRACT-MIN
- when $t(H) = O(\log n)$, EXTRACT-MIN takes $O(\log n)$ worst-case time
- ▶ first log n roots are "clean", remaining $t(H) \log n$ are "mess"
- ightharpoonup deposit O(1) time when INSERTing a messy root
- withdraw those deposits in CONSOLIDATE
- ▶ 1 deposit pays for making 1 messy root a child of a clean parent
- ightharpoonup (recall that link operation takes O(1) time)
- hard to use accounting method directly because the identity of the clean nodes changes during CONSOLIDATE based on heap-order

DELETE

- 1: function DELETE(H, x)
- 2: DECREASE-KEY $(H, x, -\infty)$
- 3: EXTRACT-MIN(H)
- 4: end function

Know EXTRACT-MIN is $O(\log n)$ amortized time.

Claim: DECREASE-KEY is O(1) amortized time.

 \implies DELETE is $O(\log n)$ amortized time.

DECREASE-KEY Sketch

DECREASE-KEY(H, x, k)

- ightharpoonup update x.key = k
- ▶ if x is a root, or heap-order maintained, done
- else cut x
 - make x a root, no longer a child of parent p
 - update H.min if x is new minimum
 - mark p; but if p was already marked, recursively cut p
- \triangleright O(1) time not counting recursive cuts
- recursive cuts are paid for by withdrawing potential

Heap Efficiency Comparison

Operation	Binary Heap (worst-case)	Fib. Heap (amort.)
CREATE-HEAP	$\Theta(1)$	Θ(1)
INSERT	$\Theta(\log n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\log n)$	$O(\log n)$
UNION	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\log n)$	$\Theta(1)$
DELETE	$\Theta(\log n)$	$\Theta(\log n)$