Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble

ICML'21

Citation Count: 1

Gaon An, Seungyong Moon, Jang-Hyun Kim, Hyun Oh Song

Seoul National University, Neural Processing Research Center, DeepMetrics

Offline RL

We aim to learn a policy π from the history of trajectories $D = \{s_t, a_t, s_t', r_t\}$ generated by behavioral policy π_{β} s.t. the performance $\pi \geq \pi_{\beta}$ (Which means we want to train an agent's policy π only from the history of trajectories D)

Challenge

- Extrapolation Error
 - Because the agent's policy isn't the same as the behavioral policy. The agent may overestimate unseen $Q^{\pi}(s,a)$, which gives a higher $Q^{\pi}(s,a)$ value than the optimal $Q^{\pi^*}(s,a)$ value.
 - In the offline setting, the policy cannot correct such over-optimistic Q-values.

Solution

- o If we add a regularizer to the equation in order to make the agent (1) underestimate the $Q^{\pi}(s,a)$ value of unseen state-action pair (s,a) or (2) choose the state-action pair that closes to the state-action pair already in the history trajectory D, we can avoid the crazy actions that the agent may do.
- But a trade-off between **Optimality and Conservativeness**.

$$\hat{Q}_{k+1}^{\pi} \leftarrow \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}' \sim \pi_k(\mathbf{a}' | \mathbf{s}')} [\hat{Q}_k^{\pi}(\mathbf{s}', \mathbf{a}')] \right) \right)^2 \right]$$

$$\pi_{k+1} \leftarrow \arg\max_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a} | \mathbf{s})} [\hat{Q}_{k+1}^{\pi}(\mathbf{s}, \mathbf{a})] \right] \text{ s.t. } D(\pi, \pi_{\beta}) \leq \epsilon.$$

Penalize the Q-function with the most pessimistic Q-network of the ensemble Q-network.

Modify the following SAC objective

$$\min_{\phi} E_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim D} \left[\left(Q_{\phi}(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{a}' \sim \pi_{\theta}(\cdot | \mathbf{s}')} \left[Q_{\phi'}(\mathbf{s}', \mathbf{a}') \right] - \beta \log \pi_{\theta}(\mathbf{a}' | \mathbf{s}') \right) \right]^{2} \right]$$

$$\max_{\theta} E_{\mathbf{s} \sim D, \mathbf{a} \sim \pi_{\theta}(\cdot | \mathbf{s})} \left[Q_{\phi}(\mathbf{s}, \mathbf{a}) - \beta \log \pi_{\theta}(\mathbf{a} | \mathbf{s}) \right]$$

To SAC-N

$$\min_{\phi_i} E_{s,a,s'\sim D} \left[\left(Q_{\phi_i}(s,a) - (r(s,a) + \gamma E_{a'\sim \pi_{\theta}(\cdot|s')} \left[\min_{j=1,\ldots,N} Q_{\phi_j'}(s',a') - \beta \log \pi_{\theta}(a'\mid s') \right] \right) \right]$$

$$\max_{\theta} E_{s \sim D, a \sim \pi_{\theta}(\cdot \mid s)} \left[\min_{j=1,...,N} Q_{\phi_j}(s, a) - \beta \log \pi_{\theta}(a \mid s) \right]$$

Where ϕ is the parameters of the Q-network Q_{ϕ} , θ is the parameters of policy network π_{θ} . The subscript j means the j-th network.

And the authors surprisingly found that SAC-N will outperform than the SOTA offline-RL algorithm "CQL" when the number of ensemble is large enough.

Figure 1: Performance of SAC-N on halfcheetah-medium and hopper-medium datasets while varying N, compared to CQL. 'Average Return' denotes the undiscounted return of each policies on evaluation. Results averaged over 4 seeds.

- Obviously, the redundant Q-networks of SAC-N cost lots of computation. The authors aim to reduce the size of the ensemble Q-network while achieving the same performance.
- The authors found that the performance of SAC-N is negatively correlated with the degree to which the input gradients of Q-functions $\nabla_a Q_{\phi_j}(s,a)$ are aligned, which increases with N.
- Note that out-of-distribution state means the probability of the state that appears in the dataset is lower than a given threshold. similarly, Out-of-distribution action means the rare actions given a state in the dataset.

Agent performance -> Variance of Q-value of OOD action -> Diversification of the gradients of the Q-network

Evidence 1

The Q-value predictions for the OOD actions have a higher variance.

Here we define the penalty from the clipping as

$$E_{s \sim D, a \sim \pi(\cdot | s)} \left[\frac{1}{N} \sum_{j=1}^{N} Q_{\phi_j}(s, a) - \min_{j=1, \dots, N} Q_{\phi_j}(s, a) \right]$$

 We also approximate the expected minimum of the realizations following the work of Royston

$$E\left[\min_{j=1,...,N} Q_j(s,a)\right] \approx m(s,a) - \Phi^{-1}\left(\frac{N - \frac{n}{8}}{N - \frac{\pi}{4} + 1}\right) \sigma(s,a)$$

Where we suppose $Q(s, a) \sim N(m(s, a), \sigma(s, a))$ and Φ is the CDF of the standard Gaussian distribution.

Figure 2: (a) and (b) each plots the size of the clip penalty and the standard deviation of the Q-value estimates for in-distribution (behavior) and OOD (random) actions while training SAC-10 on halfcheetah-medium dataset. (c) plots the gap of the clip penalty between the in-distribution and OOD actions while varying N. Results averaged over 4 seeds.

The Q-value predictions for the OOD actions have a higher variance and the size of the penalty and the standard deviation are highly correlated.

Evidence 2

The performance of the learned policy degrades significantly when the Q-functions share a similar local structure.

The minimum cosine similarity between the gradients of the Q-functions is

$$\min_{i=j} \langle \nabla_a Q_{\phi_i}(s,a), \nabla_a Q_{\phi_j}(s,a) \rangle$$

Figure 4: Plot of the minimum cosine similarity between the input gradients of Q-functions and the average return while varying the number of Q-functions.

We can take $\operatorname{Var}(Q_{\phi_j}(s, a+kw_2))$ as the variance of the Q value when we take an action which out of the behavioral policy action a in the direction of w_2 (OOD action). In terms out, the gradients of the Q-network ensemble $\nabla_a Q_{\phi_i}(s, a)$ align when the variance $\operatorname{Var}(Q_{\phi_j}(s, a+kw_2))$ is small. Thus, the penalty of the OOD action would be small.

We use Taylor expansion to expand the Q function $Q_{\phi_j}(s, a + kw_2)$

$$\operatorname{Var}(Q_{\phi_{j}}(s, a + kw_{2})) \approx \operatorname{Var}(Q_{\phi_{j}}(s, a) + k\langle w_{2}, \nabla_{a}Q_{\phi_{j}}(s, a)\rangle)$$

$$= \operatorname{Var}(Q(s, a) + k\langle w_{2}, \nabla_{a}Q_{\phi_{j}}(s, a)\rangle)$$

$$= k^{2}\operatorname{Var}(\langle w_{2}, \nabla_{a}Q_{\phi_{j}}(s, a)\rangle)$$

$$= k^{2}w_{2}^{\mathsf{T}}\operatorname{Var}(\nabla_{a}Q_{\phi_{j}}(s, a))w$$

$$\geq k^{2}w_{\min}^{\mathsf{T}}\operatorname{Var}(\nabla_{a}Q_{\phi_{j}}(s, a))w_{\min}$$

$$= k^{2}\lambda_{\min}$$

Where w_{\min} and λ_{\min} are the smallest eigenvector and eigenvalue for the matrix $\text{Var}(\nabla_a Q_{\phi_i}(s, a))$

However, It's hard to compute the smallest eigenvalue. Thus, the authors decide to maximize the sum of the eigenvalues instead of the smallest eigenvalue.

$$k^2 \lambda_{\min} \le \frac{k^2}{|A|} \sum_{j=1}^{|A|} \lambda_j$$

Since the total variance is equal to the sum of all eigenvalues(reference), derive

$$= \frac{k^2}{|A|} \operatorname{tr}(\operatorname{Var}(\nabla_a Q_{\phi_j}(s, a)))$$

Lemma 1. The total variance of the matrix $\operatorname{Var}\left(\nabla_{\mathbf{a}}Q_{\phi_j}(\mathbf{s},\mathbf{a})\right)$ is equal to $1-\|\bar{q}\|_2^2$, where $\bar{q}=\frac{1}{N}\sum_{j=1}^N \nabla_{\mathbf{a}}Q_{\phi_j}(\mathbf{s},\mathbf{a})$.

With Lemma 1, we can derive

$$= \frac{k^2}{|\mathbf{A}|} (1 - ||\bar{q}||_2^2) = \frac{k^2}{|\mathbf{A}|} (1 - \langle \frac{1}{N} \sum_{i=1}^N q_i, \frac{1}{N} \sum_{j=1}^N q_j \rangle)$$

Let
$$\min_{i=j} \langle \nabla_a Q_{\phi_j}(s,a), \nabla_a Q_{\phi_j}(s,a) \rangle = 1 - \epsilon$$
. With proposition 1, we can derive
$$\leq \frac{1}{|A|} \frac{N-1}{N} k^2 \epsilon = \frac{1}{|A|} \frac{N-1}{N} k^2 (1 - \min_{i=j} \langle \nabla_a Q_{\phi_j}(s,a), \nabla_a Q_{\phi_j}(s,a) \rangle)$$

If $Var(Q_{\phi_j}(s, a+kw_2))$ is small, according to the approximation of the minimum Q-network ensemble is $E[\min_{j=1,...,N}Q_j(s,a)] \approx m(s,a) - \Phi^{-1}(\frac{N-\frac{\pi}{8}}{N-\frac{\pi}{4}+1})\sigma(s,a)$, the action $a+kw_2$ is not sufficiently penalized.

Figure 3: Illustration of the ensemble gradient diversification. The vector $\lambda_i \mathbf{w}_i$ represents the normalized eigenvector \mathbf{w}_i of $\mathrm{Var}(\nabla_{\mathbf{a}} Q_{\phi_i}(\mathbf{s}, \mathbf{a}))$ multiplied by its eigenvalue λ_i .

As a result, we now connect the inner product of the gradients of the Q-network(alignment) and the variance of the OOD action $Var(Q_{\phi_i}(s, a + kw_2))$.

Thus, we aim to enlarge the penalty of OOD action. As a result, we aim to diversify the gradients of the Q-network ensemble $\nabla_a Q_{\phi_i}(s,a)$

$$\min_{\phi} J_{ES}(Q_{\phi}) := \mathcal{E}_{s,a\sim D} \left[\left\langle \frac{1}{N} \sum_{i=1}^{N} \nabla_{a} Q_{\phi_{i}}(s,a), \frac{1}{N} \sum_{j=1}^{N} \nabla_{a} Q_{\phi_{j}}(s,a) \right\rangle \right]$$

Then, we can reformulate the equation

$$\min_{\phi} J_{ES}(Q_{\phi}) := \mathcal{E}_{s,a\sim\mathcal{D}} \left[\frac{1}{N-1} \sum_{1 \leq i=j \leq N} \langle \nabla_{a} Q_{\phi_{i}}(s,a), \nabla_{a} Q_{\phi_{j}}(s,a) \rangle \right]$$

Algorithm

Algorithm 1 Ensemble-Diversified Actor Critic (EDAC)

- 1: Initialize policy parameters θ , Q-function parameters $\{\phi_j\}_{j=1}^N$, target Q-function parameters $\{\phi_j\}_{j=1}^N$, and offline data replay buffer \mathcal{D}
- 2: repeat
- 3: Sample a mini-batch $B = \{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}')\}$ from \mathcal{D}
- 4: Compute target Q-values (shared by all Q-functions):

$$y(r, \mathbf{s}') = r + \gamma \left(\min_{j=1,\dots,N} Q_{\phi'_j}(\mathbf{s}', \mathbf{a}') - \beta \log \pi_{\theta}(\mathbf{a}' \mid \mathbf{s}') \right), \quad \mathbf{a}' \sim \pi_{\theta}(\cdot \mid \mathbf{s}')$$

5: Update each Q-function Q_{ϕ_i} with gradient descent using

$$\nabla_{\phi_{i}} \frac{1}{|B|} \sum_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \in B} \left(\left(Q_{\phi_{i}}(\mathbf{s}, \mathbf{a}) - y(r, \mathbf{s}') \right)^{2} + \frac{\eta}{N-1} \sum_{1 \leq i \neq j \leq N} \mathbf{ES}_{\phi_{i}, \phi_{j}}(\mathbf{s}, \mathbf{a}) \right)$$

6: Update policy with gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{\mathbf{s} \in B} \left(\min_{j=1,\dots,N} Q_{\phi_j} \left(\mathbf{s}, \tilde{\mathbf{a}}_{\theta}(\mathbf{s}) \right) - \beta \log \pi_{\theta} \left(\tilde{\mathbf{a}}_{\theta}(\mathbf{s}) \mid \mathbf{s} \right) \right),$$

where $\tilde{\mathbf{a}}_{\theta}(\mathbf{s})$ is a sample from $\pi_{\theta}(\cdot \mid \mathbf{s})$ which is differentiable w.r.t. θ via the reparametrization trick.

7: Update target networks with $\phi'_i \leftarrow \rho \phi'_i + (1 - \rho)\phi_i$

Lemma 1. The total variance of the matrix $\operatorname{Var}\left(\nabla_{\mathbf{a}}Q_{\phi_j}(\mathbf{s},\mathbf{a})\right)$ is equal to $1-\|\bar{q}\|_2^2$, where $\bar{q}=\frac{1}{N}\sum_{j=1}^N \nabla_{\mathbf{a}}Q_{\phi_j}(\mathbf{s},\mathbf{a})$.

Proposition 1. Suppose $Q_{\phi_j}(\mathbf{s}, \mathbf{a}) = Q(\mathbf{s}, \mathbf{a})$ and $Q_{\phi_j}(\mathbf{s}, \cdot)$ is locally linear in the neighborhood of \mathbf{a} for all $j \in [N]$. Let λ_{\min} and \mathbf{w}_{\min} be the smallest eigenvalue and the corresponding normalized eigenvector of the matrix $\operatorname{Var}\left(\nabla_{\mathbf{a}}Q_{\phi_j}(\mathbf{s}, \mathbf{a})\right)$ and $\epsilon > 0$ be the value such that $\min_{i \neq j} \left\langle \nabla_{\mathbf{a}}Q_{\phi_i}(\mathbf{s}, \mathbf{a}), \nabla_{\mathbf{a}}Q_{\phi_j}(\mathbf{s}, \mathbf{a}) \right\rangle = 1 - \epsilon$. Then, the variance of the Q-values for an OOD action in the neighborhood along the direction of \mathbf{w}_{\min} is upper-bounded as follows:

$$\operatorname{Var}\left(Q_{\phi_j}(\mathbf{s}, \mathbf{a} + k\mathbf{w}_{\min})\right) \leq \frac{1}{|\mathcal{A}|} \frac{N-1}{N} k^2 \epsilon,$$

where |A| is the action space dimension.

Proof Sketch

Then, since the smallest eigenvalue is hard to compute, we compute the sum of the all eigenvalues of the covariance matrix $Var(\nabla_a Q_{\phi_i}(s, a))$

$$\lambda_{\min} \leq \frac{1}{|A|} \sum_{j=1}^{|A|} \lambda_j$$

Since the total variance is equal to the sum of all eigenvalues, we can derive

$$= \frac{1}{|A|} \operatorname{tr}(\operatorname{Var}(\nabla_a Q_{\phi_j}(s, a)))$$

Let $q_j = \nabla_a Q_{\phi_j}(s,a)$ be the normalized gradients of Q-network, and $\bar{q} = \frac{1}{N} \sum_j$

$$= \frac{1}{|\mathbf{A}|} \operatorname{tr}(\frac{1}{N} \sum_{j} (q_j - \bar{q})(q_j - \bar{q})^{\mathsf{T}})$$

$$= \frac{1}{|\mathbf{A}|} \frac{1}{N} \sum_{j} \operatorname{tr}((q_j - \bar{q})(q_j - \bar{q})^{\mathsf{T}})$$

$$= \frac{1}{|A|} \frac{1}{N} \sum_{j} \operatorname{tr}((q_{j} - \bar{q})^{\mathsf{T}}(q_{j} - \bar{q}))$$

$$= \frac{1}{|A|} \frac{1}{N} \sum_{j} \operatorname{tr}((q_{j} - \bar{q})^{\mathsf{T}}(q_{j} - \bar{q}))$$

$$= \frac{1}{|A|N} \sum_{j} (q_{j}^{\mathsf{T}} q_{j} + \bar{q}^{\mathsf{T}} \bar{q} - 2q_{j}^{\mathsf{T}} \bar{q})$$

$$= \frac{1}{|A|} (1 + \bar{q}^{\mathsf{T}} \bar{q} - 2(\frac{1}{N} \sum_{j} q_{j}^{\mathsf{T}}) \bar{q})$$

$$= \frac{1}{|A|} (1 - ||\bar{q}||_{2}^{2})$$

$$= \frac{1}{|A|} (1 - \langle \frac{1}{N} \sum_{j=1}^{N} q_{i}, \frac{1}{N} \sum_{j=1}^{N} q_{j} \rangle)$$

$$= \frac{1}{|\mathbf{A}|} (1 - (\frac{1}{N^2} (\sum_{j=1}^N \langle q_j, q_j \rangle + \sum_{1 \le i = j \le N} \langle q_i, q_j \rangle)))$$

$$= \frac{1}{|\mathbf{A}|} (1 - (\frac{1}{N^2} (\sum_{j=1}^N \langle q_j, q_j \rangle + \sum_{1 \le i = j \le N} \langle q_i, q_j \rangle)))$$
Let $\min_{i=j} \langle \nabla_a Q_{\phi_j}(s, a), \nabla_a Q_{\phi_j}(s, a) \rangle = 1 - \epsilon$

$$\leq \frac{1}{|\mathbf{A}|} (1 - (N + N(N - 1)(1 - \epsilon)))$$

$$= \frac{1}{|\mathbf{A}|} \frac{N - 1}{N} \epsilon$$

Thus,

$$\operatorname{Var}(\nabla_{a} Q_{\phi_{j}}(s, a + k w_{\min}))$$

$$= k^{2} w_{\min}^{\mathsf{T}} \operatorname{Var}(\nabla_{a} Q_{\phi_{j}}(s, a)) w_{\min}$$

$$= k^{2} \lambda_{\min} \leq \frac{1}{|A|} (1 - \langle \frac{1}{N} \sum_{i=1}^{N} q_{i}, \frac{1}{N} \sum_{j=1}^{N} q_{j} \rangle)$$

$$\leq \frac{1}{|A|} \frac{N-1}{N} k^{2} \epsilon = \frac{1}{|A|} \frac{N-1}{N} k^{2} (1 - \min_{i=j} \langle \nabla_{a} Q_{\phi_{j}}(s, a), \nabla_{a} Q_{\phi_{j}}(s, a) \rangle)$$

Thus, instead of maximize the smallest eigenvalue $\max_{\phi} k^2 \lambda_{\min}$, minimizing the cosine similarity of the gradients of the Q-networks is cheaper

$$\min_{\phi} \mathbf{E}_{s,a\sim D} \left[\frac{1}{N-1} \sum_{1\leq i=j\leq N} \langle \nabla_a Q_{\phi_j}(s,a), \nabla_a Q_{\phi_j}(s,a) \rangle \right]$$

Experiment

D4RL Dataset

- expert: a fully trained online expert
- medium: a suboptimal policy with approximately
 1/3 the performance of the expert
- medium-expert: a mixture of medium and expert policies
- medium-replay: the replay buffer of a policy trained up to the performance of the medium agent
- full-replay: the final replay buffer of the expert policy

Half-Cheetah

Ant

• 1M transitions

Table 1: Normalized average returns on D4RL Gym tasks, averaged over 4 random seeds. CQL (Paper) denotes the results reported in the original paper.

Task Name	ВС	SAC	REM	CQL (Paper)	CQL (Reproduced)	SAC-N (Ours)	EDAC (Ours)
halfcheetah-random	2.2±0.0	29.7 ± 1.4	-0.8 ± 1.1	35.4	31.3±3.5	28.0±0.9	28.4±1.0
halfcheetah-medium	43.2 ± 0.6	55.2 ± 27.8	-0.8 ± 1.3	44.4	46.9 ± 0.4	67.5 ± 1.2	65.9 ± 0.6
halfcheetah-expert	91.8±1.5	-0.8 ± 1.8	4.1 ± 5.7	104.8	97.3 ± 1.1	105.2 ± 2.6	106.8 ± 3.4
halfcheetah-medium-expert	44.0 ± 1.6	28.4 ± 19.4	0.7 ± 3.7	62.4	95.0 ± 1.4	107.1 ± 2.0	106.3 ± 1.9
halfcheetah-medium-replay	37.6 ± 2.1	0.8 ± 1.0	6.6 ± 11.0	46.2	45.3 ± 0.3	63.9 ± 0.8	61.3 ± 1.9
halfcheetah-full-replay	62.9 ± 0.8	86.8 ± 1.0	27.8 ± 35.4	-	76.9 ± 0.9	84.5 ± 1.2	84.6 ± 0.9
hopper-random	3.7±0.6	9.9±1.5	3.4±2.2	10.8	5.3±0.6	31.3±0.0	25.3±10.4
hopper-medium	54.1±3.8	$0.8 {\pm} 0.0$	0.7 ± 0.0	86.6	61.9 ± 6.4	100.3 ± 0.3	101.6 ± 0.6
hopper-expert	107.7 ± 9.7	0.7 ± 0.0	$0.8 {\pm} 0.0$	109.9	106.5 ± 9.1	110.3 ± 0.3	110.1 ± 0.1
hopper-medium-expert	53.9 ± 4.7	0.7 ± 0.0	$0.8 {\pm} 0.0$	111.0	96.9 ± 15.1	110.1 ± 0.3	110.7 ± 0.1
hopper-medium-replay	16.6 ± 4.8	7.4 ± 0.5	27.5 ± 15.2	48.6	86.3 ± 7.3	$101.8 {\pm} 0.5$	101.0 ± 0.5
hopper-full-replay	19.9±12.9	41.1 ± 17.9	19.7 ± 24.6	-	101.9 ± 0.6	102.9 ± 0.3	$105.4 {\pm} 0.7$
walker2d-random	1.3±0.1	0.9±0.8	6.9±8.3	7.0	5.4±1.7	21.7±0.0	16.6±7.0
walker2d-medium	70.9 ± 11.0	-0.3 ± 0.2	0.2 ± 0.7	74.5	79.5 ± 3.2	87.9 ± 0.2	92.5 ± 0.8
walker2d-expert	108.7 ± 0.2	0.7 ± 0.3	1.0 ± 2.3	121.6	109.3 ± 0.1	107.4 ± 2.4	115.1 ± 1.9
walker2d-medium-expert	90.1 ± 13.2	1.9 ± 3.9	-0.1 ± 0.0	98.7	109.1 ± 0.2	116.7 ± 0.4	114.7 ± 0.9
walker2d-medium-replay	20.3 ± 9.8	-0.4 ± 0.3	12.5 ± 6.2	32.6	76.8 ± 10.0	78.7 ± 0.7	87.1 ± 2.3
walker2d-full-replay	68.8 ± 17.7	27.9 ± 47.3	-0.2 ± 0.3	-	94.2 ± 1.9	94.6±0.5	99.8 \pm 0.7
Average	49.9	16.2	6.2	-	73.7	84.5	85.2

Figure 5: Minimum number of Q-ensembles (N) required to achieve the performance reported in Table 1. M-E denotes medium-expert. We omit the results of medium-replay and full-replay as SAC-N already works well with a small number of ensembles (less than or equal to 5). For more details of the experiment, please refer to Appendix C.

Table 3: Computational costs of each method.

	Runtime (s/epoch)	GPU Mem. (GB)
SAC	21.4	1.3
CQL	38.2	1.4
SAC-500	44.1	5.1
EDAC	30.8	1.8

Table 2: Normalized average returns on D4RL Adroit tasks, averaged over 4 random seeds.

Task Name	ВС	SAC	REM	CQL (Paper)	CQL (Reproduced)	SAC-N (Ours)	EDAC (Ours)
pen-human	25.8±8.8	4.3 ± 3.8	5.4 ± 4.3	55.8	35.2 ± 6.6	9.5 ± 1.1	52.1±8.6
hammer-human	3.1 ± 3.2	$0.2 {\pm} 0.0$	0.3 ± 0.0	2.1	0.6 ± 0.5	0.3 ± 0.0	0.8 ± 0.4
door-human	2.8 ± 0.7	-0.3 ± 0.0	-0.3 ± 0.0	9.1	1.2 ± 1.8	-0.3 ± 0.0	$10.7{\pm}6.8$
relocate-human	0.0 ± 0.0	-0.3 ± 0.0	-0.3 ± 0.0	0.35	0.0 ± 0.0	-0.1 ± 0.1	0.1 ± 0.1
pen-cloned	38.3±11.9	-0.8±3.2	-1.0±0.1	40.3	27.2±11.3	64.1±8.7	68.2±7.3
hammer-cloned	0.7 ± 0.3	0.1 ± 0.1	-0.3 ± 0.0	5.7	1.4 ± 2.1	0.2 ± 0.2	0.3 ± 0.0
door-cloned	0.0 ± 0.0	-0.3 ± 0.1	-0.3 ± 0.0	3.5	2.4 ± 2.4	-0.3 ± 0.0	9.6±8.3
relocate-cloned	0.1 ± 0.0	-0.1 ± 0.1	-0.2 ± 0.2	-0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0

Figure 6: Histograms of the distances between the actions from each methods (EDAC, SAC-N, CQL, SAC-2, and a random policy) and the actions from the dataset. For more details of the experiment, please refer to Appendix C.

Conclusion

- SAC-N can be efficiently leveraged to construct an uncertainty-based offline RL method that outperforms previous methods on various datasets.
- we proposed Ensemble-Diversifying Actor-Critic (EDAC) that effectively reduces the required number of ensemble networks for quantifying and penalizing the epistemic uncertainty.