16/04/2029 LEZ 12

OTIME VELOCIZZATO

SUPPONIATO T, E.C.:

SIA INVERE T', t.C.

e cosi via, ora la domanda è: arrivera ad una fine questa sequenza? NO.

MOSTRAND NRL SEGURNTE

TEOREMA 6.7 (NSP. 6) \rightarrow teorema della accelerazione

SIA L DECISO DA CON OLTIME (T, X) = P(1X1), ALLORA

•
$$\forall K \in \mathbb{N} \left[\exists T_{k}', 1 \text{ NASTRO, CHE DECIDE L CON} \right]$$

$$\forall TIME \left(T_{k}', x \right) \leq \frac{\mathcal{L}(|x|)}{k} + |x^{2}| \ \forall x \in \mathbb{S}^{*} \right]$$

• // // Tk A 2 NASTRI // // ((((// // + |x| //

X CAPRE IDEA OF DIM., NUOVO TROPFEMA

TEOREMA 6.6. teorema della compressione

SIA L DECISO DA T, CON dSPACE(T, X) < f(IXI) THEN

YKEN[] TK CHE DECIDE L COM olspace $(\overline{T}_{k}, X) \leq \frac{\ell(|X|)}{|X|} + |X|$

la dimostrazione è molto tecnica, nella pagina dopo è scritta una 'idea della dimostrazione

8 DIKOSTRAZIONE

START TO 6.6

SIA T: T L'INRA R COMPRINERR X MY, COSI CUR:

- UX2 - | ... Xn D --- HSWEEL CRILLE DIY

K SIMBOZI DIX

SIA TI:

ALFAB = E V E

INPUT = X

2008 MIZ & 7

PROC. -> LEGGE K CORNTER, SCRIVE 1 CARATTERE /KI.XX

CANCELLO I K CARDATERI

J

RICOMUCIO FIND ALLA FINE

QUESTO VIEWE USAN IN 6.7. DANO T, T'FA:

(9) COYPRESSIONE

@ FASE 2 -> = A 6.6. (SER DISPRIMIA)

LA ZIP COSTA IN BASE AI MOSTRI:

- I NASTRO = O((X|2) -> × 21P CORPRIS C CARBITRES E POL RETURN INDETRO E RICOTURIO.

· 2 NASTRI = O(1×1) > ULD 2 TESTINE SEUZA FAREGIRI
LUNGHI

DATO L, SR È DECIDIBILE IN STITUS(T, x) = F(1x1), POSSIARO DUNDI SRYPRE FARE MEGLIO, NON SRRUB COECRITTA PSI SUL LOWER BOMO, QUAND PIÙ SUL L'UPPER BOMO.

ED R' QUI CHE ENTRAND IN GLOCO LE CLOSSI DI COMPLESSITA

CLASSE DI COMPLESSITA

DED SET DI LINGUAGGI DECIDIBILI DA MOLIT, UTILIZZANDO

RISORSE NON OFTER LINE FORK

DEF FORMALE)
SET LINGUAGGI

DTIME = { L \(\int \(\oting \) :] CHE DECIDE L & \(\time \) \(\oting \) (TIME(T, \(\int \)) $\in \Theta(f(x))$.

TUTO
MUIUSCOLD F TOF, CALCOLABILE

ALLO = 17000

DSPACE[L(m)] = { // // 11 11 11 11 VX6 [0,1] "SPACE (T, X) EQ(L(X)).

N.B.:

WHY F DRUE ESSER TOTALE E CALCOLABILE?

XCHA CI SERVE COME MISURA HMITE

(L) SE NON E DEFINIO , ALLE VOLTE NON SAPRETO HAI IL HIMITE.

CHASSI COMPLESS. NON, DETERMUIST.

NTIME = { L = {0, 13 . 3 NT CHE ACCEPTA Le txel MTIME (NT, X) $\leq \partial (f(x))$

USPACE = STRISE COSA CON MIMER AL POITO DI MTIME.

CLASSI COMPLEMENTO

CONTIME
$$[f(n)] = \{L \in \{0,1\}^{4} : L \in DITME[f(n)]\}$$

CONTIME $[f(n)] = \{L \in \{0,1\}^{4} : L \in NTIME[f(n)]\}$

(= cosa APPHCABILE CON CODSPACE & CONSPACE

quà verrà scritto solo la parte di TIME, anche con SPACE sono validi questi teoremi. E con le macchine non deterministiche

O & F NOV. A CALCO. => DTIME [f(n)] & NTIME [f(n)]. = × DIPACE e NIPACE.

XCHE? {TDETE} < {NT}

OYF TOT & CALCOL. => DTUR [1(M)] CDSPACE[f(M)]

VT -> LSPACE(T,X) < OLTIME(T,X) (X6.1)

SIA LEDTIME[f(m)] =>] TORCINEL e VX olTIME(T,X) & O(f(m)).

IMPLICA CHE DISPACE E O(f(m)) => LE DSPACE[f(m)]

 $\forall f$ for , colcolabile \longrightarrow DSPDCE $[f(m)] \subseteq DTIME [20(I(m))]$

DALLA 6.1.

VIE DSPACE[[(n)]=> 7 T CHER DER. R V X OLSPACE(T, X) GO([(n)

1/ + MSFORW CON 2 ly2

STANTE (T, X) ≤ 2 COSTANTE $= [1+ \log(151+1)]$ S. SPACE(T, X) $= [1Q \cdot 2]$ COSTANTE $= [1+ \log(151+1)]$ S. SPACE(T, X) $= [1Q \cdot 2]$

(G) HF. TUT. CALCOL. DTIME [L(N)] = COOTIME [L(N)]
WHX? COSTRUZIONE

· YLE DTIME (f(m)) =>] T DECIDE. Le DTIME (T,x) & O(L(m))

PROTICOTENTE

Of TIME
$$(T, \times) = d$$
 copying $(T, \times) = d$ time $(T, \times) + 1$

queste propietà, di per se, non bastano ad evitare strane relazioni che intercorrono tra classi di complessità. Come detto all'inizio, per ogni macchina T esiste una macchina T' che decide lo stesso linguaggio, ma in tempo minore. Quindi possiamo formulare il seguente teorema.

TEOREMA 6.12

SIBW F, g, TUT E CALCOLABIM, e $F(n) \in O(y(n))$.

AHORA

- $DTIME[f(n)] \subseteq DTIME[g(n)]$
- $NTIME[f(n)] \subseteq NTIME[g(n)]$

STESSA COSA-CON DSPACE NSPACE

quindi, se io decidessi che L appa. a DSPACE[g(n)], ci sarà sempre la POSSIBILITÀ che una altro tizio dimostri che L può stare anche in f(n) (cioè di migliorarlo.

NON CI DANNO QUINOI UNA PRECISA MISURA DI DOUE L

AH, MA ALMEND.

CON F(n) MORTO + PICCOLD OI g(n) $\left[f(n) \in 2^{g(n)}\right]$ VALE SEMPRE LA 6. W. W 7 NOP.

GAPTHEORY 613

3 una F: N -> N, ror, COLCOLABILE, E.C.

 $DTIME[2^{f(n)}] \subseteq DTIME[f(n)]$

QUINDO, SOMO AUSIEM UUN MIGNORI, ANZI PEGGORI.

E MO? CI DIUTERAMO NEW tooz, DOVE 6.13. NON VALE.

DEF

F: N > N E TIME-CONSTRUCTBLE SE:

- . F ror e calco.
- · IT FORK COU INDUT M IN UNARIO.

 WRITE IN NO F(M) IN UNARIO.

e ∀n∈ R olTIME (TF, M) ∈ O(f(M))

SPACIZ - CONSTRUCTBLE = TIME - COUST. MA 20 2007.

TUTTE LE F. REGLARI, ANCHE LE ESPONEUZIALI (2 F(m)) SOMO TIME O SPACE - CONSTRUCTBLE.

PA QUI SI SUSSEGUONO I TEOREMI DI GERRACINA

TRORGHA DI GRRARCHIA SPOSIBLE

SIAW $f,g: f \in SPACE-CONSTRUCTBLE \land \lim_{n \to x_0} \frac{f(n)}{g(n)} = 0$ ALLORA $DSPACE[f(n)] \subset DPSACE[g(n)]$ $G(n) \subset PSACE[f(n)] \subset PSACE[g(n)]$

TEORERA DI GERARCHIA TEMPORALE

SIAW Fig, FTIME- WUTR.

$$\lim_{n \to n_0} \frac{g(n) * log(g(n))}{f(n)} = 0$$

 $DTIME(g(n)) \subset DTIME(f(n))$