میان ترم اول جبر خطی ۲۹ مهرماه ۹۸

۱. درونیابی لاگرانژ را معرفی کنید.

۲. قضایای زیر را ثابت کرده و نتیجه بگیرید اگر V و W دو فضای برداری یکریخت باشند $T:V\to W$ پایهای برای یکریخت باشد، $T:V\to W$ پایهای برای W باشد، $T:V\to W$ پایهای برای W است.

 $\{v_1, \dots, v_n\}$ و W دو فضای برداری، $W \to W$ تبدیل خطی و W و V آ. اگر V و نشان دهید $\{T(v_1), \dots, T(v_n)\}$ مولد V باشد، نشان دهید

ب. اگر V و W دو فضای برداری، W برداری، $T:V\to W$ تبدیل خطی یکبهیک و $\{T(v_1),\ldots,T(v_n)\}$ مستقل خطی باشد، نشان دهید $\{v_1,\ldots,v_n\}$ مستقل خطی است.

۳. در هر مورد بررسی کنید که T داده شده تبدیل خطی است یا خیر. اگر هست فضای پوچ، فضای مقادیر، پوچی و رتبه آن را به دست آورید.

$$(i)T_1: \mathbb{R}^{\mathfrak{f}} \to M_{\mathsf{T} \times \mathsf{T}}(\mathbb{R}), \quad (a, b, c, d) \mapsto \begin{bmatrix} a + c & a \\ c & b + d \end{bmatrix}$$

 $(ii)T_{\mathsf{Y}}: \mathbb{R}^{\mathsf{Y}} \to \mathbb{R}; \quad (a,b) \mapsto ab$

 $(iii)T_{\mathbf{Y}}: P_n(\mathbb{R}) \to P_n(\mathbb{R}), \quad f \mapsto f'$

۴. دستگاه معادلات خطی زیر را در نظر بگیرید.

$$\begin{cases} a_1 x + b_1 y + c_1 z = \circ \\ a_1 x + b_1 y + c_1 z = \circ \\ a_1 x + b_2 y + c_2 z = \circ \end{cases}$$

نشان دهید اگر مجموعه $\{(a_1,b_1,c_1),(a_7,b_7,c_7),(a_7,b_7,c_7)\}$ مستقل خطی باشد، تنها جواب دستگاه بالا $x=y=z=\circ$ است.

هرگاه $W \leq V$ را $T: V \to V$ یک تبدیل خطی باشد، $W \leq V$ را $T: V \to V$ را گوییم هرگاه $W \in W$ مینامیم و به $X \in W$ مینامیم و به صورت زیر تعریف میکنیم.

$$T_W: W \to W$$

 $x \mapsto T(x)$

در این صورت به سوالات زیر پاسخ دهید.

 $N(T_W) = N(T) \cap W$. نشان دهید اگر W، T_- پایا باشد،

W=N(T) بنشان دهید اگر $W=R(T)\oplus W$ بنان دهید اگر $V=R(T)\oplus W$ بناهی البعد است.)

 $(.W_1\cap W_7=\{\,\circ\,\}\,$ وييم $W_1+W_7=V\,$ اگر $W_1\oplus W_7=V\,$ و