贝叶斯理论导读

SYSU_CIS@lindayong

有监督学习

N个样本点构成的数据集,其中第i个样本表示为 (x_i, y_i) 。

 x_i : 第 i 个样本的特征值 y_i : 第 i 个样本的标签

Living area (feet 2)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	:	i i

缺一张表 示数据集 的图片

1. 构建模型

$$\widehat{y}_i = f(x_i; \boldsymbol{\theta})$$

给定模型的参数 θ ,对于某个特征 值 x_i ,模型的预测结果为 y_i 。

Living area (feet ²)	#bedrooms	Price (1000\$s)	
2104	3	400	
1600	3	330	
2400	3	369	$\widehat{y}_i = \theta_1 x_{i1} + \theta_2 x_{i2}$
1416	2	232	yı 01x11 1 02x12
3000	4	540	
<u>:</u>	:	:	

1. 构建模型

$$\widehat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\theta})$$

给定模型的参数 θ ,对于某个特征 值 x_i ,模型的预测结果为 y_i 。

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- > 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \hat{y}_i; \boldsymbol{\theta})$$

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \operatorname{loss}(\boldsymbol{\theta})$

1. 构建模型

$$\widehat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\theta})$$

给定模型的参数 θ ,对于某个特征 值 x_i ,模型的预测结果为 y_i 。

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \theta)$
- > 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \widehat{y}_i; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} loss(\boldsymbol{\theta})$

3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

1. 构建模型

$$\widehat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\theta})$$

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- ▶ 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \hat{y_i}; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \operatorname{loss}(\boldsymbol{\theta})$

3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

对于其他预测结果 y_i^* 靠谱程度的衡量:

如果 y_i 存在 , $loss(y_i, y_i^*; \boldsymbol{\theta})$

贝叶斯模型

1. 构建模型

$$\widehat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\theta})$$

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- ▶ 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \hat{y_i}; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

概率

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \operatorname{loss}(\boldsymbol{\theta})$

3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

1. 构建模型

贝叶斯模型

1. 构建模型

$$\widehat{y}_i = f(x_i; \boldsymbol{\theta})$$

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- ▶ 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \hat{y_i}; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

概率

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} loss(\boldsymbol{\theta})$

3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

1. 构建模型

$$p(y_i^*|\mathbf{x}_i;\boldsymbol{\theta})$$

2. 训练模型

> 2.2 数据集的似然函数

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i|\boldsymbol{x}_i;\boldsymbol{\theta})$$

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} - p(\mathcal{D}|\boldsymbol{\theta})$

贝叶斯模型

1. 构建模型

$$\widehat{y}_i = f(x_i; \boldsymbol{\theta})$$

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- ▶ 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \widehat{y_i}; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

概率

- \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \operatorname{loss}(\boldsymbol{\theta})$
- 3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

1. 构建模型

$$p(y_i^*|\mathbf{x}_i;\boldsymbol{\theta})$$

- 2. 训练模型
 - > 2.2 数据集的似然函数

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i|x_i;\boldsymbol{\theta})$$
 贝叶斯公式

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) * p(\theta)$$

 \triangleright 2.3 训练目标 $\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} - p(\mathcal{D}|\boldsymbol{\theta})$

贝叶斯模型

1. 构建模型

$$\widehat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\theta})$$

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- ▶ 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \widehat{y_i}; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

概率

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \operatorname{loss}(\boldsymbol{\theta})$

3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

1. 构建模型

$$p(y_i^*|\mathbf{x}_i;\boldsymbol{\theta})$$

- 2. 训练模型
 - ho 2.2 参数的后验分布 $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) * p(\theta)$
 - \triangleright 2.3 训练目标 $\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathcal{D})$

3. 模型预测

点估计

贝叶斯估计

$$\widehat{y}_i = \arg\max_{y_i^*} p(y_i^* | \boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

$$p(y_i^*|\mathbf{x}_i;\mathcal{D}) = \int p(y_i^*|\mathbf{x}_i;\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D})d\boldsymbol{\theta}$$

贝叶斯模型

1. 构建模型

$$\widehat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\theta})$$

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- ▶ 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \widehat{y_i}; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

概率

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \operatorname{loss}(\boldsymbol{\theta})$

3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

1. 构建模型

判别模型 $p(y_i^*|x_i; \boldsymbol{\theta})$

生成模型 $p(y_i^*|x_i;\boldsymbol{\theta}) \propto p(x_i|y_i^*;\boldsymbol{\phi}) p(y_i^*;\boldsymbol{\psi})$

$$p(y_i^* = 猫 | \mathbf{x}_i) = p(\mathbf{x}_i | y_i^* = 猫) * p(y_i^* = 猫)$$
 $p(y_i^* = 熊猫 | \mathbf{x}_i) = p(\mathbf{x}_i | y_i^* = 熊猫) * p(y_i^* = 熊猫)$
 $p(y_i^* = 猫 | \mathbf{x}_i) > p(y_i^* = 熊猫 | \mathbf{x}_i) ? \hat{y_i} = 貓 : \hat{y_i} = 熊猫$

贝叶斯模型

1. 构建模型

$$\widehat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\theta})$$

2. 训练模型

- \triangleright 2.1 样本的损失函数 $loss(y_i, \hat{y_i}; \boldsymbol{\theta})$
- ▶ 2.2 数据集的损失函数

$$loss(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss(y_i, \widehat{y_i}; \boldsymbol{\theta}) + reg(\boldsymbol{\theta})$$

概率

 \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \operatorname{loss}(\boldsymbol{\theta})$

3. 模型预测

$$\widehat{y}_i = f(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}})$$

1. 构建模型

判别模型 $p(y_i^*|x_i; \boldsymbol{\theta})$

生成模型 $p(y_i^*|x_i;\boldsymbol{\theta}) \propto p(x_i|y_i^*;\boldsymbol{\phi}) p(y_i^*;\boldsymbol{\psi})$

- 2. 训练模型
 - ho 2.2 参数的后验分布 $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) * p(\theta)$
 - \triangleright 2.3 训练目标 $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathcal{D})$
- 3. 模型预测:贝叶斯估计

$$p(y_i^*|\mathbf{x}_i;\mathcal{D}) = \int p(y_i^*|\mathbf{x}_i;\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D})d\boldsymbol{\theta}$$

Thank you!