Trade-off between classical and quantum circuit size of the attack against CSIDH

Jean-François Biasse¹, Xavier Bonnetain², **Benjamin Pring**¹, André Schrottenloher² and William Youmans¹

18th August 2019

¹University of South Florida ²INRIA Paris

Contributions

Kuperberg's algorithm can be fine-tuned to an attack on CSIDH costing

- A quantum circuit-size of $2^{O(n^{\alpha})}$
- A classical circuit-size of $2^{O(n^{1-\alpha})}$
- Polynomial classical and quantum memory

where $0 < \alpha < \frac{1}{2}$ and n is proportional to the security parameter.

	Quantum	Quantum	Classical	Classical
	gates	memory	gates	memory
Kuperberg [Kupo3]	$2^{O(\sqrt{n})}$	$2^{O(\sqrt{n})}$	poly(n)	poly(n)
Regev [Rego4]	$2^{O(\sqrt{n\log n})}$	poly(n)	$2^{O(\sqrt{n\log n})}$	poly(n)
Kuperberg [Kup13]	$2^{O(\sqrt{n})}$	poly(n)	$2^{O(\sqrt{n})}$	$2^{O(\sqrt{n})}$
Ours	$2^{O(n^{\alpha})}$	poly(n)	$2^{O(n^{1-\alpha})}$	poly(n)

Motivation

Kuperberg's algorithm solves the DHSP \implies break CSIDH

"Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a (K)-bit key (e.g. AES(K))" — NIST PQC Call for Proposals [oST16]

AES- 128	2^{170} /MAXDEPTH quantum gates or 2^{143} classical gates
AES- 192	2^{333} /MAXDEPTH quantum gates or 2^{207} classical gates
AES-256	2^{298} /MAXDEPTH quantum gates or 2^{272} classical gates

Motivation

Model:

AES- 128	2^{170} /MAXDEPTH quantum gates or 2^{143} classical gates
AES- 192	2^{333} /MAXDEPTH quantum gates or 2^{207} classical gates
AES-256	2^{298} /MAXDEPTH quantum gates or 2^{272} classical gates

What if allowed $2^{87.5}$ quantum gates (AES-128) and 2^{143} classical gates?

Research question: how can we trade quantum/classical gates?

Motivation

Model:

AES- 128	2^{170} /MAXDEPTH quantum gates and 2^{143} classical gates
AES-192	2^{333} /MAXDEPTH quantum gates and 2^{207} classical gates
AES-256	2^{298} /MAXDEPTH quantum gates and 2^{272} classical gates

What if allowed $2^{87.5}$ quantum gates (AES-128) and 2^{143} classical gates?

Research question: how can we trade quantum/classical gates?

Super high-level view of CSIDH:

- $E_0 = E(\mathbb{F}_p): y^2 = x^3 + x$ where $p = 4 \cdot l_1 \dots l_n 1$ is prime and l_i are small odd primes.
- $\mathcal{O} \cong \operatorname{End}(E_0)$
- We can define the group $G = Cl(\mathcal{O})$

$$G = \{[\mathfrak{a}] \text{ such that } \mathfrak{a} \text{ is an ideal of } \mathcal{O}\}$$

- where $[\mathfrak{a}] = [\mathfrak{b}] \Leftrightarrow \exists \alpha \neq 0 \in \mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{O}, \ \mathfrak{a} = (\alpha)\mathfrak{b}$
- Induces group action

$$[\mathfrak{a}] * \overline{E_0} \mapsto \overline{E_0/\langle [\mathfrak{a}] \rangle}$$

Fact:

$$[\mathfrak{a}] * ([\mathfrak{b}] * \overline{E_0}) = \overline{E_0/\langle \mathfrak{a}, \mathfrak{b} \rangle} = \overline{E_0/\langle \mathfrak{b}, \mathfrak{a} \rangle} = [\mathfrak{b}] * ([\mathfrak{a}] * \overline{E_0})$$

CSIDH public parameters: $E_0, \mathbb{F}_p, p = l_1, \dots, l_n$

Alice

$$\mathfrak{a}\ni [\mathfrak{a}] \xleftarrow{\,\$\,} \mathsf{Cl}(\mathcal{O})$$

Bob

$$\mathfrak{b}\ni [\mathfrak{b}] \xleftarrow{\$} \mathsf{Cl}(\mathcal{O})$$

CSIDH public parameters: $E_0, \mathbb{F}_p, p = l_1, \dots, l_n$

Alice

$$\mathfrak{a}\ni [\mathfrak{a}] \xleftarrow{\hspace{0.1cm}\$} \text{Cl}(\mathcal{O})$$

Bob

$$\mathfrak{b}\ni [\mathfrak{b}] \xleftarrow{\$} \mathsf{Cl}(\mathcal{O})$$

$$[\mathfrak{a}] * \overline{E_0}$$

$$[\mathfrak{b}]*\overline{E_0}$$

$$\begin{array}{c|c} \textbf{CSIDH public parameters: } E_0, \mathbb{F}_p, p = l_1, \dots, l_n \\ \hline \textbf{Alice} & \textbf{Bob} \\ \mathfrak{a} \ni [\mathfrak{a}] \overset{\$}{\longleftarrow} \text{Cl}(\mathcal{O}) & \mathfrak{b} \ni [\mathfrak{b}] \overset{\$}{\longleftarrow} \text{Cl}(\mathcal{O}) \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline & & \\$$

$$[\mathfrak{a}]*\left([\mathfrak{b}]*\overline{E_0}\right)=\overline{E_0/\langle\mathfrak{a},\mathfrak{b}\rangle}=\overline{E_0/\langle\mathfrak{b},\mathfrak{a}\rangle}=[\mathfrak{b}]*\left([\mathfrak{a}]*\overline{E_0}\right)$$

Problem: Given $\overline{E_0}$ and $\overline{E_1}=[\mathfrak{s}]*\overline{E_0}$ and $\mathcal{O}\cong \operatorname{End}(E_i)$, find $[\mathfrak{s}]$.

Hidden shift formulation: define $f_0, f_1 : \mathsf{Cl}(\mathcal{O}) \to \mathbb{F}_p$

$$f_0([\mathfrak{r}]) \mapsto [\mathfrak{r}] * \overline{E_0}$$

 $f_1([\mathfrak{r}]) \mapsto [\mathfrak{r}] * \overline{E_1}$

then equivalently want to find $[\mathfrak{a}]$ such that for all $[\mathfrak{r}]\in \text{Cl}(\mathcal{O})$

$$f_1([\mathfrak{r}]) = f_0([\mathfrak{r}][\mathfrak{a}])$$

Problem: Given $\overline{E_0}$ and $\overline{E_1}=[\mathfrak{s}]*\overline{E_0}$ and $\mathcal{O}\cong \operatorname{End}(E_i)$, find $[\mathfrak{s}]$.

Hidden shift formulation: define $f_0, f_1: \mathsf{Cl}(\mathcal{O}) o \mathbb{F}_p$

$$f_0([\mathfrak{r}]) \mapsto [\mathfrak{r}] * \overline{E_0}$$

 $f_1([\mathfrak{r}]) \mapsto [\mathfrak{r}] * \overline{E_1}$

then equivalently want to find $[\mathfrak{a}]$ such that for all $[\mathfrak{r}]\in \text{Cl}(\mathcal{O})$

$$\begin{split} [\mathfrak{r}][\mathfrak{s}]*\overline{E_0} = [\mathfrak{r}]*\overline{E_1} = f_1([\mathfrak{r}]) = f_0([\mathfrak{r}][\mathfrak{a}]) = [\mathfrak{r}\mathfrak{a}]*\overline{E_0} = [\mathfrak{r}][\mathfrak{a}]*\overline{E_0} \\ & \qquad \qquad \downarrow \\ [\mathfrak{a}] = [\mathfrak{s}] \end{split}$$

Problem: Given $\overline{E_0}$ and $\overline{E_1}=[\mathfrak{s}]*\overline{E_0}$ and $\mathcal{O}\cong \operatorname{End}(E_i)$, find $[\mathfrak{s}]$.

Dihedral Hidden Subgroup formulation: Solution by Jao et al. [CJS14]:

$$\mathsf{Cl}(\mathcal{O})\cong A=\underbrace{\mathbb{Z}_{d_1} imes\cdots imes\mathbb{Z}_{d_k}\cong\mathbb{Z}_N}_{\mathsf{Assume that class group is cyclic}}$$

Define $f: \mathbb{Z}_2 \rtimes A \to \mathbb{F}_p$ by

$$f(x, \vec{y}) \mapsto \begin{cases} [\mathfrak{a}_{\vec{y}}] * \overline{E_1} & \text{if } x = 0 \\ [\mathfrak{a}_{\vec{y}}] * \overline{E_0} & \text{if } x = 1 \end{cases}$$

$$f(0, \vec{y}) = = f(1, \vec{y} + \vec{s})$$

where $[\mathfrak{s}] = [\mathfrak{a}_{\vec{s}}].$

Problem: Given $\overline{E_0}$ and $\overline{E_1}=[\mathfrak{s}]*\overline{E_0}$ and $\mathcal{O}\cong \operatorname{End}(E_i)$, find $[\mathfrak{s}]$.

Dihedral Hidden Subgroup formulation: Solution by Jao et al. [CJS14]:

$$\mathsf{Cl}(\mathcal{O})\cong A=\underbrace{\mathbb{Z}_{d_1} imes\cdots imes\mathbb{Z}_{d_k}\cong\mathbb{Z}_N}_{\mathsf{Assume that class group is cyclic}}$$

Define $f: \mathbb{Z}_2 \rtimes A \to \mathbb{F}_p$ by

$$f(x, \vec{y}) \mapsto \begin{cases} [\mathfrak{a}_{\vec{y}}] * \overline{E_1} & \text{if } x = 0 \\ [\mathfrak{a}_{\vec{y}}] * \overline{E_0} & \text{if } x = 1 \end{cases}$$

$$f(0,\vec{y}) = [\mathfrak{a}_{\vec{y}}] * \overline{E}_1 = [\mathfrak{a}_{\vec{y}}] * \left([\mathfrak{s}] * \overline{E}_0 \right) = [\mathfrak{a}_{\vec{y}}] [\mathfrak{s}] * \overline{E}_0 = f(1,\vec{y} + \vec{s})$$

where $[\mathfrak{s}] = [\mathfrak{a}_{\vec{s}}].$

From hereon in we assume $A \cong \mathbb{Z}_N$ and $N = 2^n$ for simplicity.

 $f: \mathbb{Z}_2 \rtimes \mathbb{Z}_N$ is constant and unique on all **cosets** of the form

$$(0,x)\cdot H = \{(0,x),(1,x+s)\}\subset \mathbb{Z}_2\rtimes \mathbb{Z}_N\cong D_N$$

for $x \in \mathbb{Z}_N$ where

$$H = \{(0,0), (1,s)\} \le \mathbb{Z}_2 \rtimes \mathbb{Z}_N \cong D_N$$

From hereon in we assume $A \cong \mathbb{Z}_N$ and $N = 2^n$ for simplicity.

 $f: \mathbb{Z}_2 \rtimes \mathbb{Z}_N$ is constant and unique on all **cosets** of the form

$$(0,x)\cdot H = \{(0,x),(1,x+s)\}\subset \mathbb{Z}_2\rtimes \mathbb{Z}_N\cong D_N$$

for $x \in \mathbb{Z}_N$ where

$$H = \{(0,0), (1,s)\} \le \mathbb{Z}_2 \rtimes \mathbb{Z}_N \cong D_N$$

Definition (Hidden Subgroup Problem)

Let G be a group and $f:G\longrightarrow X$ for some finite set X such that

$$f(aH) = f(bH)$$

for some unknown $H \leq G$ if and only if aH = bH.

Given G and f, the Hidden Subgroup Problem (HSP) is to find H.

Kuperberg to the rescue

Definition (Hidden Subgroup Problem)

Let G be a group and $f:G\longrightarrow X$ for some finite set X such that

$$f(aH) = f(bH)$$

for some unknown $H \leq G$ if and only if aH = bH.

Given G and f, the Hidden Subgroup Problem (HSP) is to find H.

Theorem (Kuperberg's algorithm [Kupo3])

There exists a quantum algorithm that solves the HSP for D_N requiring $2^{O(\sqrt{\log N})}$ time and space.

Theorem (Kuperberg's algorithm [Rego4])

There exists a quantum algorithm that solves the HSP for D_N requiring $2^{O(\sqrt{\log N \log \log_N})}$ time and poly(n) space.

Let $H \leq D_N$ and $f: D_N \longrightarrow R$ for R some finite set such that

$$f(0,x) = f(1,s+x)$$

for all $x \in \mathbb{Z}_N$ where we wish to find $s \in \mathbb{Z}_N$.

By Ettinger-Høyer¹ this reduces to finding the subgroup

$$H = \{(0,0), (1,s)\}$$

Aim is to recover the least significant bit of s_0 of s.

On quantum algorithms for noncommutative hidden subgroups, Advances in Applied Mathematics volume 25 **3** (2000), 239–251

¹Ettinger, Mark and Høyer, Peter,

Let $H \leq D_N$ and $f: D_N \longrightarrow R$ for R some finite set such that

$$f(0,x) = f(1,s+x)$$

for all $x \in \mathbb{Z}_N$ where we wish to find $s \in \mathbb{Z}_N$.

Least significant bit is $s_0 = 0$:

$$f': D_{N/2} \longrightarrow R$$
 where $f'(a,b) \mapsto f(a,2b)$

is constant on

$$(0,x) \cdot H' = \{(0,x), (s/2+x)\}\$$

for $x \in \mathbb{Z}_{N/2}$ and secret $s \in \mathbb{Z}_N$.

Let $H \leq D_N$ and $f: D_N \longrightarrow R$ for R some finite set such that

$$f(0,x) = f(1,s+x)$$

for all $x \in \mathbb{Z}_N$ where we wish to find $s \in \mathbb{Z}_N$.

Least significant bit is $s_0 = 1$:

$$f'': D_{N/2} \longrightarrow R$$
 where $f''(a,b) \mapsto f(a,2b+1)$

is constant on

$$(0,x) \cdot H'' = \{(0,x), ((s-1)/2 + x)\}\$$

for $x \in \mathbb{Z}_{N/2}$ and secret $s \in \mathbb{Z}_N$.

We possess a quantum oracle \mathcal{O}_f that implements (where $b \in \{0,1\}$ and $x \in \{0,1\}^n$)

$$\mathcal{O}_f \ket{b} \ket{x} \ket{0^r} \mapsto \ket{b} \ket{x} \ket{f(b,x)}$$

we can use this to produce quantum states of the form

$$|\psi_k^{s,N}\rangle := \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i k s/N} |1\rangle \right)$$

where $k \stackrel{\$}{\leftarrow} \{0, 1, \dots, N-1\}$ is known.

The aim is to create a state of the form

$$|\psi_{2^{n-1}}^{s,N}\rangle$$

which allows us to recover the least significant bit of s.

Recovery of least significant bit of s:

$$|\psi_{2^{n-1}}^{s,N}\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2i\pi 2^{n-1}s/N} |1\rangle \right)$$
$$= \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\pi s} |1\rangle \right)$$
$$= \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\pi s_0} |1\rangle \right)$$

as

$$e^{i\pi s} = e^{i\pi(s_0 + s_1 2^1 + \dots + s_{n-1} 2^{n-1})} = e^{i\pi s_0} \cdot \prod_{i=1}^{n-1} \left(e^{i\pi s_i} \right)^{2^i} = e^{i\pi s_0} \cdot \prod_{i=1}^{n-1} 1 = e^{i\pi s_0}$$

$$\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \stackrel{H}{\mapsto} |0\rangle \qquad \qquad \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \stackrel{H}{\mapsto} |1\rangle$$

12

 $|0\rangle |0^n\rangle |0^r\rangle$

$$\begin{array}{l} |0\rangle \left|0^{n}\right\rangle \left|0^{r}\right\rangle \\ \stackrel{H^{\otimes n+1}}{\longmapsto} \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\left|0\right\rangle + \left|1\right\rangle \Big) \left|x\right\rangle \left|0^{r}\right\rangle \end{array}$$

$$\begin{array}{l} |0\rangle \, |0^{n}\rangle \, |0^{r}\rangle \\ \stackrel{H^{\otimes n+1}}{\mapsto} \, \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\, |0\rangle \, |x\rangle \, |0^{r}\rangle + |1\rangle \, |x+s \bmod N\rangle \, |0^{r}\rangle \, \Big) \end{array}$$

$$\begin{aligned} &|0\rangle \, |0^{n}\rangle \, |0^{r}\rangle \\ &\stackrel{H^{\otimes n+1}}{\mapsto} \, \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\, |0\rangle \, |x\rangle \, |0^{r}\rangle \, + |1\rangle \, |x+s \bmod N\rangle \, |0^{r}\rangle \, \Big) \\ &\stackrel{\mathcal{O}_{f}}{\mapsto} \, \, \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\, |0\rangle \, |x\rangle \, |f(0,x)\rangle \, + |1\rangle \, |x+s \bmod N\rangle \, |f(1,x+s)\rangle \, \Big) \end{aligned}$$

$$\begin{split} &|0\rangle\,|0^{n}\rangle\,|0^{r}\rangle \\ &\stackrel{H^{\otimes n+1}}{\mapsto}\,\frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}\frac{1}{\sqrt{2}}\Big(\,|0\rangle\,|x\rangle\,|0^{r}\rangle\,+\,|1\rangle\,|x+s\bmod N\rangle\,|0^{r}\rangle\,\Big) \\ &\stackrel{\mathcal{O}_{f}}{\mapsto}\,\,\frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}\frac{1}{\sqrt{2}}\Big(\,|0\rangle\,|x\rangle\,|y_{x}\rangle\,+\,|1\rangle\,|x+s\bmod N\rangle\,|y_{x}\rangle\,\Big) \end{split}$$

$$\begin{split} &|0\rangle\,|0^{n}\rangle\,|0^{r}\rangle \\ &\stackrel{H^{\otimes n+1}}{\longmapsto}\,\frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}\frac{1}{\sqrt{2}}\Big(\,|0\rangle\,|x\rangle\,|0^{r}\rangle\,+\,|1\rangle\,|x+s\bmod N\rangle\,|0^{r}\rangle\,\Big) \\ &\stackrel{\mathcal{O}_{f}}{\longmapsto}\,\,\frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}\frac{1}{\sqrt{2}}\Big(\,|0\rangle\,|x\rangle\,|y_{x}\rangle\,+\,|1\rangle\,|x+s\bmod N\rangle\,|y_{x}\rangle\,\Big) \end{split}$$

Measure
$$\stackrel{|y_x\rangle}{\mapsto} \frac{1}{\sqrt{2}} \left(|0\rangle |x\rangle + |1\rangle |x+s \bmod N\rangle \right) |y_x\rangle$$

for $y_x \stackrel{\$}{\leftarrow} \mathbb{Z}_n$

$$\begin{split} & |0\rangle \, |0^n\rangle \, |0^r\rangle \\ & \stackrel{H^{\otimes n+1}}{\mapsto} \, \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\, |0\rangle \, |x\rangle \, |0^r\rangle \, + |1\rangle \, |x+s \bmod N\rangle \, |0^r\rangle \, \Big) \\ & \stackrel{\mathcal{O}_f}{\mapsto} \, \, \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\, |0\rangle \, |x\rangle \, |y_x\rangle \, + |1\rangle \, |x+s \bmod N\rangle \, |y_x\rangle \, \Big) \end{split}$$

Measure
$$\stackrel{|y_x\rangle}{\mapsto} \frac{1}{\sqrt{2}} \left(|0\rangle |x\rangle + |1\rangle |x+s \bmod N\rangle \right)$$

for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_n$

$$\begin{split} &|0\rangle\,|0^{n}\rangle\,|0^{r}\rangle \\ &\stackrel{H^{\otimes n+1}}{\mapsto} \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\,|0\rangle\,|x\rangle\,|0^{r}\rangle + |1\rangle\,|x + s \bmod N\rangle\,|0^{r}\rangle\,\Big) \\ &\stackrel{\mathcal{O}_{f}}{\mapsto} \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \Big(\,|0\rangle\,|x\rangle\,|y_{x}\rangle + |1\rangle\,|x + s \bmod N\rangle\,|y_{x}\rangle\,\Big) \\ &\stackrel{\text{Measure}}{\mapsto} \frac{|y_{x}\rangle}{\sqrt{2}} \Big(\,|0\rangle\,|x\rangle + |1\rangle\,|x + s \bmod N\rangle\,\Big) & \qquad \qquad \text{for } x \stackrel{\$}{\leftarrow} \mathbb{Z}_{n} \\ &\stackrel{\text{QFT}}{\mapsto} \frac{1}{\sqrt{2}} \Big(\,\sum_{k=0}^{N-1} e^{2\pi i x k/N}\,|0\rangle\,|k\rangle + \sum_{k=0}^{N-1} e^{2\pi i (x + s) k/N}\,|1\rangle\,|k\rangle\,\Big) \end{split}$$

$$|0\rangle |0^n\rangle |0^r\rangle$$

$$\stackrel{H^{\otimes n+1}}{\mapsto} \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \left(|0\rangle |x\rangle |0^r\rangle + |1\rangle |x+s \bmod N\rangle |0^r\rangle \right)$$

$$\stackrel{\mathcal{O}_f}{\mapsto} \quad \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \left(\left. |0\rangle \left| x \right\rangle \left| y_x \right\rangle + \left| 1 \right\rangle \left| x + s \bmod N \right\rangle \left| y_x \right\rangle \right)$$

$$\stackrel{\text{Measure}}{\mapsto} \frac{1}{\sqrt{2}} \left(|0\rangle |x\rangle + |1\rangle |x + s \mod N \rangle \right)$$

for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_n$

$$\stackrel{\mathsf{QFT}}{\mapsto} \quad \frac{1}{\sqrt{2}} \Big(\sum_{k=0}^{N-1} e^{2\pi i x k/N} \left| 0 \right\rangle \left| k \right\rangle + \sum_{k=0}^{N-1} e^{2\pi i (x+s)k/N} \left| 1 \right\rangle \left| k \right\rangle \Big)$$

 $\stackrel{|k\rangle}{\mapsto} \frac{1}{\sqrt{2}} \left(e^{2\pi i x k/N} |0\rangle |k\rangle + e^{2\pi i x k/N} e^{2\pi i s k/N} |1\rangle |k\rangle \right) \qquad \text{for } k \iff \mathbb{Z}_n$

$$|0\rangle |0^n\rangle |0^r\rangle$$

$$\stackrel{H^{\otimes n+1}}{\mapsto} \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \left(|0\rangle |x\rangle |0^r\rangle + |1\rangle |x+s \bmod N\rangle |0^r\rangle \right)$$

$$\stackrel{\mathcal{O}_f}{\mapsto} \quad \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{1}{\sqrt{2}} \left(|0\rangle |x\rangle |y_x\rangle + |1\rangle |x + s \bmod N\rangle |y_x\rangle \right)$$

$$\stackrel{|y_x\rangle}{\mapsto} \frac{1}{\sqrt{2}} \left(|0\rangle |x\rangle + |1\rangle |x + s \bmod N\rangle \right)$$

for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_n$

$$\stackrel{\mathsf{QFT}}{\mapsto} \quad \frac{1}{\sqrt{2}} \Big(\sum_{k=0}^{N-1} e^{2\pi i x k/N} \left| 0 \right\rangle \left| k \right\rangle + \sum_{k=0}^{N-1} e^{2\pi i (x+s)k/N} \left| 1 \right\rangle \left| k \right\rangle \Big)$$

 $\stackrel{\text{Measure}}{\mapsto} \frac{1}{\sqrt{2}} \Big(\ket{0} + e^{2\pi i k s/N} \ket{1} \Big) \qquad = \qquad \ket{\psi_k^{s,N}} \qquad \text{ for known } k \ \stackrel{\$}{\leftarrow} \mathbb{Z}_n$

Kuperberg strategy: Combine states to cancel least-significant bits

• Given $|\psi_{k_1}^{s,N}\rangle$ and $|\psi_{k_2}^{s,N}\rangle$ where we know k_1 and k_2

$$|\psi_{k_1}^{s,N}\rangle \otimes |\psi_{k_2}^{s,N}\rangle = |00\rangle + e^{2\pi i k_1 s/N} |10\rangle + e^{2\pi i k_2 s/N} |10\rangle + e^{2\pi i (k_1 + k_2) s/N} |11\rangle$$

• Measurement conditioned on the parity then collapses this state to

 $|\psi_{k_2+k_1}^{s,N}\rangle$ or $|\psi_{k_2-k_1}^{s,N}\rangle$

ullet We use the states $|\psi_{k_2-k_1}^{s,N}\rangle$ to cancel out the least significant bits

Drawback: We need to generate and store $2^{O(\sqrt{n})}$ states.

Regev's variant

Regev's strategy: Combine states in stages and use exhaustive search • Given l+4 states of the form $|\psi_{k_1}^{s,N}\rangle,\ldots,|\psi_{k_{l+4}}^{s,N}\rangle$, create the state

$$\frac{1}{2^{(l+4)/2}} \sum_{\vec{b} \in \{0,1\}^{l+4}} e^{2\pi i \cdot \langle \vec{b}, \vec{k} \rangle \cdot s/N} |\vec{b}\rangle |\langle \vec{b}, \vec{k} \rangle \mod 2^l \rangle$$

where $\vec{k}=(k_1,\ldots,k_{l+4})\in(\mathbb{Z}_N)^{l+4}$ are known and $\langle\vec{b},\vec{y}\rangle=\sum\limits_{i=1}^nb_jy_j$.

ullet Use l+4 states with known $ec{k}=(k_1,\ldots,k_{l+4})\in\mathbb{Z}_N)^{l+4}$ to obtain

$$\frac{1}{\sqrt{m}} \sum_{i=1}^{m} e^{2\pi i \cdot \langle \vec{B}_j, \vec{k} \rangle \cdot s/N} |\vec{B}_j \rangle$$

where $\langle \vec{B_j}, \vec{k} \rangle = z \mod 2^l$ and do a classical search to find $\vec{B_1}, \dots, \vec{B_m}$.

ullet If $m\in[2,32]$, perform a projective measurement on the subspace spanned by $ec{B}_1$ and $ec{B}_2$ to obtain the state (with constant probability)_{5/20}

Regev's variant

Regev's strategy: Combine states in stages and use exhaustive search

ullet Use l+4 states with known $ec{k}=(k_1,\ldots,k_{l+4})\in\mathbb{Z}_N)^{l+4}$ to obtain

$$\frac{1}{\sqrt{m}} \sum_{j=1}^{m} e^{2\pi i \cdot \langle \vec{B}_j, \vec{k} \rangle \cdot s/N} |\vec{B}_j\rangle$$

where $\langle \vec{B}_j, \vec{k} \rangle = z \mod 2^l$ and do a classical search to find $\vec{B}_1, \dots, \vec{B}_m$.

• If $m \in [2,32]$, perform a projective measurement on the subspace spanned by $\vec{B_1}$ and $\vec{B_2}$ to obtain the state (with constant probability)

$$e^{2\pi i \langle \vec{B}_1, \vec{y} \rangle \cdot s} |\vec{B}_1\rangle + e^{2\pi i \langle \vec{B}_1, \vec{y} \rangle \cdot s} |\vec{B}_1\rangle$$

Relabelling (we know $ec{B}_1$ and $ec{B}_2$) and discarding qubits then gives us

$$|0\rangle + 2^{2\pi i \cdot \langle \vec{B}_2 - \vec{B}_1, \vec{k} \rangle \cdot s/N} |1\rangle$$

 $\langle ec{B}_i, ec{k}
angle mod 2^l = z$ implies that the l least significant bits are zeroed. 15/20

Regev's variant framework

- $n \approx k \times l$
- # calls to \mathcal{O}_f is $l^{O(k)}$

Regev's variant framework

- $n \approx k \times l$
- ullet # calls to \mathcal{O}_f is $l^{O(k)}$

Our adaptation

Basic idea: $n = k \times l$ and

- Calls to \mathcal{O}_f : $2^{\tilde{O}(k)}$
- Other quantum gates: $2^{\tilde{O}(k)}$
- Classical effort: $2^{O(l)}$
- Use heuristic oracle assumptions from ${\cal O}_f$ from (Biasse-Iezzi-Jacobson 2018)

Suppose $k \approx n^{\alpha}$ and $l \approx n^{1-\alpha}$ for $0 < \alpha < 1/2$:

- Quantum circuit: $2^{O(n^{\alpha})}$
- Classical circuit: $2^{O(n^{1-\alpha})}$

What about fault tolerance?

Quantum state is idle whilst classical-circuit with cost $2^{O(l)}$ executes

Logical quantum circuit

Quantum circuit with error-correction

- Potential disparity between cost of U_E and I_E
- Classical gates cheaper than quantum gates
- Classical search is embarassingly parallel

Conclusions and open problems

Contributions

Demonstrated how we trade quantum gates for classical gates to produce an attack on CSIDH with a quantum circuit-size of $2^{O(n^{\alpha})}$, where $0<\alpha<1/2$.

Open problems

- 1. Remove heuristics on the class group from (Biasse-Iezzi-Jacobson 2018) for evaluation of \mathcal{O}_f
- 2. Concrete gate counts (in various models)

References i

- Andrew Childs, David Jao, and Vladimir Soukharev, <u>Constructing</u> elliptic curve isogenies in quantum subexponential time, Journal of Mathematical Cryptology **8** (2014), no. 1, 1–29.
- Greg Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden subgroup problem, 2003.
- Greg Kuperberg, Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem, 2013.
- National Institute of Standards and Technology., <u>Submission</u> requirements and evaluation criteria for the post-quantum cryptography standardization process., 2016.
- Oded Regev, A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space, 2004.