

ACEnano knowledge infrastructure to support data collection, methods optimisation and knowledge sharing in the area of physicochemical characterisation of nanomaterials

Thomas Exner, Edelweiss Connect (Switzerland)

NanoSafety Cluster week

09 October 2019, Copenhagen, Denmark

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

A tiered approach

ACEnano (Horizon 2020; Project number 720952) aims to introduce confidence, adaptability and clarity into nanomaterial risk assessment by developing a widely implementable and robust tiered approach to nanomaterials physicochemical characterisation.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 720952

www.acenano-project.eu

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

ACEnano will introduce **confidence**, **adaptability and clarity into nanomaterial risk assessment** by developing a widely implementable and robust tiered approach to nanomaterials physicochemical characterisation

Main outcome: ACENANO TOOLBOX, available online and comprising:

- Analytical innovation in non-existent or poorly developed techniques
- Optimisation in existing techniques/instrumentation
- Benchmarking/standardisation in well developed techniques
- Three layer training model: core cohort of experts from the consortium, community training events, and online training tools
- **Decision tree** to guide users (specially SMEs) through selection of the most appropriate methods to address their needs in risk assessment

Knowledge warehousing

Knowledge warehousing

Protocols

- Access and sharing of methods
- Collection of metadata on the experimental procedure
- Tracking details on the steps performed
- Linked the method with the result
- Comparison of the experimental design
- Searchable and easy to filter database

Data

- Selection and use any of the methods added in the protocols database
- Create and save the full workflow applied
- Support intra- and inter-laboratory reproducibility goal
- Document all steps performed on a sample from the identification to the final characterisation results
- Storage and sharing of data

Why did we decide on a new concept?

ACEnano tasks are:

- 1. Develop new and optimize existing characterization methods
- 2. Round robin testing for interlaboratory testing
- 3. Standardization of methods

Solution: Covering exact details as computer-readable metadata able to show even small differences in form of a questionnaire.

Sample preparation protocol			
Part 1: General information	Protocol name and description		
	Contacts		
	Technique and Endpoints		
Part 2: Steps	Multiple actions and action parameters		
→ Preview protocol, Make more changes & Submit protocol			

Data treatment protocol		
Part 1: General information	Protocol name and description	
	Contacts	
	Technique and Endpoints	
Part 2: Steps	Steps and algorithm used	
→ Preview protocol, Make more changes & Submit protocol		

Measurement protocol		
Part 1: General information	Protocol name and description	
	Contacts	
	Technique and Endpoints	
Part 2: Equipment	Instrument settings	
	Type of datasets produced	
	Measurement quality parameters	
Part 3: Steps	Protocol steps	
→ Preview protocol, Make more changes & Submit protocol		

art 2: Equipment			
Equipment			
ease describe the equipment used ay introduce artefacts in the final re		nt. Be sure to provid	de details on any instrument settings th
Name:*	Model:		Instrument type:
	Common instrument makes ar	nd models.	
Software:	Software version:		
Limit of detection upper:	Limit of detection lower:		Limit of detection unit:
What is the largest value of the endpoint that can measured? If there are no definite detection limits please mention the particle or medium properties that limits the detectability as a function of size.	pe What is the lowest value of the measured?	e endpoint that can be	
Instrument settings and parameters (optionalist instrument settings and parameters that might give units of these settings.		ccuracy, or are of importanc	ce for reproducing the experiment. Where applicable, als
Setting	Value Unit	☐ delete	
Setting	Value Unit	delete	

Possible datasets			
State the type and units of ear	ach of the axes of raw data that can be pr	roduced by your instrument that are pertinent to the	ne
Axe:*	Units:	□ Delete	
+ Add another axe			
Measurement quali	ty parameters		
State parameters that are me also their units if applicable.	easured by the instrument that give an inc	dication of the accuracy or validity of the endpoint	. State
Parameter:*	Common setting:	Units:	
+ Add another quality parameter			
Continue to next step			

Data

Data upload process:

- Select the technique used in the analysis and which endpoints were measured.
- Select which sample preparation protocol was used.
- Select the measurement protocol.
- Select which data treatment protocol was used.
- Provide details such as analysis name, description, and contact information.
- Provide description of the sample that was used in the measurement.
- Upload raw and processed data files.

- A comprehensive tabular data and metadata environment
- Supports annotation, organisation and storage of primary data and metadata
- Provides domain data types (e.g. understand chemical's SMILES)
- Facilitates the analysis, visualisation and sharing of data
- Provides interactive exploration of the data via web-based tools
- Implements the FAIR data principles of Findability, Accessibility, Interoperability and Reusability.
- Allows the upload of data directly onto a secure, cloud-based platform
- Provides harmonised and interoperable access to different knowledge sources including publicly available databases
- Provides a rich application programming interface (API)
- Helps creating a culture of data sharing by making sharing easy
- Replace manual error-prone, time consuming and costly processes with lean data solutions and processing workflows

Use case: Nanoparticle Tracking Analysis (NTA)

Step 1. Addition of protocols

Step 2. Creation of data workflow

Step 3. Transfer of data to EdelweissData

- Selection of the dataset(s)
- Preparation of data file compatible with EdelweissData technology (reading the original csv file, extracting relevant information, collecting metadata, creating the final csv summary data)
- Automatic transfer (upload) of data
- Data visualisation

Step 4. Data analysis

Example of summary file:

https://dataexplorer.edelweiss.douglasc onnect.com/?dataset=1180f560-leef-48d7-8fd5-f9f8bfec4446

Use case: Nanoparticle Tracking Analysis (NTA)

Study

report

Step 4. Data analysis

- Selection of dataset(s) to be analysed: data API
- Use the data API url (e.g. in JupyterLab or Google Colaboratory tools): extraction of relevant data, analysis, plotting, etc.
- Generation of a study report

Size

Surface Area

Analysis and comparison of multiple datasets (intra- or inter-laboratory comparison studies)

Summary

Highlights

- ACEnano knowledge infrastructure (KI) supports the activities related to data collection and method optimisation in the area of physicochemical characterisation of nanomaterials.
- The KI provides a central place to access harmonised and standardised methods and data, supporting the implementation of Findable, Accessible, Interoperable and Reusable (FAIR) data principles, the reproducibility and documentation process towards the goal of generating reference resources for nanomaterials risk assessment.
- A public version of the data warehouse is being integrated in the NanoCommons data ecosystem. By semantic annotation and linking, this guarantees harmonisation and interoperability with other data sources of the EU NanoSafety Cluster.
- The protocols section facilitates access and sharing of methodology applied in nanosafety, starting with nanomaterials characterisation protocols developed or optimised within the ACEnano project.
- The experimental datasets of nanomaterials characterisation is stored together with relevant metadata pertaining to sample preparation, measurement, and the data treatment. The resulting measured value and its metadata will give as complete information as possible so that possibilities of future use of the measured value is maximised.
- The data warehouse is offering long-term storage in a re-usable format of data produced by the ACEnano project or provided by the nanosafety community.
- The development of the KI is supported by ACEnano (EU Horizon 2020 NMBP project no. 720952), while its availability to a wider community is assured by the activities in NanoCommons (Horizon 2020 INFRAIA project no. 731032).

Documentation and training materials

- User manual: https://github.com/NanoCommons/tutorials/tree/master/ACEnano manuals
- Poster summarising the KI's features: https://acenano.douglasconnect.com/dissemination/event/152/euronanoforum-2019/
- Contact and user support: acenano@edelweissconnect.com

Next training session

- Information and hands-on sessions organised during the 'EU NanoSafety Cluster Week' (10 October 2019, Copenhagen, Denmark)
- Demo session during the 'OpenTox Euro' Conference (29-31 October 2019, Basel, Switzerland)

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

Geert Cornelis and Jani Tuoriniemi Swedish University of Agricultural Sciences, Uppsala

Lucian Farcal, Maja Brajnik, Ian Steeter Edelweiss Connect GmbH

Egon Willighagen Department of Bioinformatics - BiGCaT Maastricht University

Thank you for your attention!