24 Septembre 2019

Г	
	Augun dogument autorisé
L	Aucuit document autorise

Nom et Groupe: _

Question	Points	Note
Formalisation de contraintes	5	
Algèbre relationnelle	7	
Total:	12	

Considérons le schéma de base de données suivant:

- AGENCE (Id_Agence, Nom, Ville)
- CLIENT (Id_Client, Nom, Prenom, Ville)
- COMPTE (Num_Compte, Id_Agence, Id_Client, Solde)
- EMPRUNT (<u>Id_Emprunt</u>, Id_Agence, Id_Client, Montant, Date_Emprunt) où
- Une AGENCE est décrite par son Identifiant Id_Agence , son nom Nom , sa Ville.
- Un CLIENT est décrit par son Identifiant Id_Client, son Nom, son Prenom et sa Ville.
- Un COMPTE est décrit par son Numero Num_Compte, l'identifiant Id_Agence de l'agence auquel il est rattaché, l'identifiant Id_Client du client à qui il appartient et son Solde.
- Une EMPRUNT est décrit par son Identifiant *Id_Emprunt*, l'identifiant *Id_Client* du client qui emprunte, le *Montant* emprunté et la date de l'emprunt *Date_Emprunt*.
 Remarque: la date donne le jour de l'emprunt, il peut bien sur y avoir plusieurs emprunts le même jour.

Pour chaque relation, le ou les attributs soulignés constituent une clé.

Question 1: Formalisation de contraintes

Formaliser en logique du première ordre les contraintes qui suivent.

On utilisera pour cela des quantifications du type suivant: $\forall t \in r, \exists t \in r \text{ où } r$ désigne une relation .

(a) 1 point Chaque client est identifié de manière unique par son identifiant Id-Client.

Solution: $\forall c_1, c_2 \in CLIENT \ (c_1.Id_Client = c_2.Id_Client \Rightarrow c_1 = c_2)$

(b)	1 point	Tout compte doit	appartenir à	un client décrit	dans la table	CLIENT.
` '		1	1 1			

Solution: $\forall c_1 \in COMPTE \ \exists k_1 \in CLIENT \ c_1.Id_Client = k_1.Id_Client$

(c) 1 point Il ne peut y avoir d'emprunt d'un client à une agence que si ce client a un compte dans cette agence.

Solution: $\forall e_1 \in EMPRUNT \ \exists c_1 \in COMPTE \ c_1.Id_Client = e_1.Id_Client \land c_1.Id_Agence = e_1.Id_Agence$

(d) 1 point Dans une même agence, il n'y a pas deux comptes de même numéro.

Solution:

$$\forall c_1, c_2 \in COMPTE \\ ((c_1.Id_Agence = c_2.Id_Agence) \land (c_1.Num_Compte = c_2.Num_Compte)) \Rightarrow \\ (c_1 = c_2)$$

(e) 1 point Les identifiants des emprunts respectent l'ordre chronologique.

Solution:

$$\forall e1, e_2 \in EMPRUNT \\ ((e_1.Date_Emprunt < t_2.Date_Emprunt) \Rightarrow \\ (e_1.Id_Emprunt < e_2.Id_Emprunt))$$

	n 2: Algèbre relationnelle
(a)	1 point Identifiants des agences qui n'ont aucun compte de solde négatif.
	Solution: $\Pi_{Id_Agence}(AGENCE) - \Pi_{Id_Agence}(\sigma_{Solde<0}(EMPRUNT))$
	1 point Identifiants des clients qui ont emprunté aux deux agences d'identifiant 1 et 2 .
	Solution: $\Pi_{Id_Client}(\sigma_{Id_Agence=1}(EMPRUNT)) \cap \Pi_{Id_Client}(\sigma_{Id_Agence=2}(EMPRUNT))$
(c)	1 point Identifiants des clients qui ont un compte dans toutes les agences.
	Solution: $CTA = \Pi_{Id_Client,Id_Agence}(COMPTE) \div \Pi_{Id_Agence}(AGENCE)$
(d)	1 point Noms et prénoms des clients qui ont un compte dans toutes les agences
	Solution: $\Pi_{Nom,Prenom}(CTA\bowtie CLIENT)$

(e) 1 point Identifiants des clients ayant un compte dans une agence qui n'est pas située dans leur ville.

Solution:

$$Pi_{Id_Client}[\sigma_{Ville \neq Ville_Agence}(\Pi_{Id_Client,Ville}(CLIENT) \bowtie COMPTE \\ \bowtie \delta_{Ville \leftarrow Ville_Agence}\Pi_{Id_Agence,Ville}(AGENCE))]$$

(f) 1 point Identifiants et Noms des agences n'ayant que des clients de leur ville.

Solution:

Identifiants des agences ayant un client hors de leur ville:

$$\begin{split} ACDV &= Pi_{Id_Agence}[\sigma_{Ville \neq Ville_Agence}(\\ &\Pi_{Id_Client,Ville}(CLIENT) \bowtie COMPTE\\ &\bowtie \delta_{Ville \leftarrow Ville_Agence}\Pi_{Id_Agence,Ville}(AGENCE))] \end{split}$$

Réponse à la question :

$$\Pi_{Id_Agence,Nom}[(\Pi_{Id_Agence}(AGENCE) - ACDV) \bowtie AGENCE]$$

(g) 1 point Noms des clients ayant des comptes dans plusieurs agences.

Solution: On commence par chercher leur identifiant:

$$\begin{split} IKPA &= \Pi_{Id_Client}(\\ &\sigma_{Id_Agence \neq Id_Agence_2}[\Pi_{Id_Agence,Id_Client}(COMPTE))\\ &\bowtie \delta_{Id_Agence \leftarrow Id_Agence_2}\Pi_{Id_Agence,Id_Client}(COMPTE)]) \end{split}$$

On en déduit leur nom : $\Pi_{Nom}(CLIENT \bowtie IKPA)$