Порядок настройки, работы и описание команд стенда ЭТТ.

1. Общие сведения.

При подключении стенда ЭТТ к ПК в ОС появляется виртуальный СОМ-порт, для ОС Windows 7 требуется установить драйвер Virtual COM Port Driver V1.5.0. Система команд стенда адаптирована для ручного ввода оператором в любом терминале, работающем с СОМ-портами компьютера. Команды требуется передавать в кодировке UTF-8/ASCII латиницей, признак конца команды — символ <CR> (код 0x0D). Настройки параметров СОМ-порта не требуется. Пример настроек терминала **Termite** на рисунке 1.

Рисунок 1.1

После открытия порта стенд сообщает свою версию ПО, системное время, состояние системы, состояние памяти, рисунок 1.2

Рисунок 1.2

2. Настройка параметров управления стенда ЭТТ. Команды настройки.

Система имеет следующие настраиваемые параметры:

Vt – тестирующее напряжение. Это напряжение, которое будет удерживаться на конденсаторах в течение всего времени выполнения теста, за исключением времени проведения измерения токов утечек.

Команда: «Set Vt=<value>», <value> - целое число в вольтах.

Команда: **Set Vt=150**

Ответ: **Ок**

Vm- напряжение измерения. Напряжение, при котором проводится измерение токов утечек.

Команда: **«Set Vm=<***value***>»**, **<***value***> -** целое число в вольтах.

Пример:

Команда: Set Vm=50

Ответ: **О**k

Ve –допустимое отклонение напряжения, подаваемого на конденсаторы, от заданных значений

Vt или Vm. Превышение отклонения прерывает процесс тестирования или измерения.

Команда: «Set Ve=<value>», <value> - целое число в милливольтах.

Пример:

Команда: **Set Ve=500**

Ответ: Ок

Tt – время тестирования, в течение которого стенд будет удерживать тестовое напряжение на конденсаторах и периодически производить измерение токов утечки конденсаторов.

Команда: «Set Tt=<value>», <value> - целое число в часах.

Пример:

Команда: **Set Tt=168**

Ответ: **О**k

Тр – период измерений, через который система периодически проводит измерение токов утечки во время прохождения теста.

Команда: «Set Tp=<value>», <value> - целое число в минутах.

Пример:

Команда: **Set Tt=30**

Ответ: **О**k

Td – время зарядки/разрядки конденсаторов. После коммутации напряжения на конденсаторах стенд ожидает время **Td** до следующих действий. В течение времени **Td** не производится оценка параметра **Ve.**

Команда: «Set Td=<*value*>», <*value*> - целое число в миллисекундах.

Пример:

Команда: Set Td=5000

Ответ: **Ок**

Та – время до начала измерения после времени заряда/разряда конденсаторов **Тd**.

Команда: **«Set Ta=<***value***>»**, **<***value***> -** целое число в миллисекундах.

Пример:

Команда: **Set Ta=100**

Ответ: **О**k

Th - максимальное время установления напряжения **UR** (критерий **Ve**), превышение которого прерывает процесс тестирования или измерения.

Команда: «**Set Th=**<*value*>», <*value*> - целое число в миллисекундах.

Команда: **SetTh=1000**

Ответ: Ок

Кі – коэффициент преобразования (усиления) тока в напряжение В/А.

Команда: «Set Ki=<value>», <value> - целое число.

Пример:

Команда: Set Ki=1000000

Ответ: Ок

Kd – коэффициент преобразования (деления) напряжения UR в VX.

Команда: «Set Kd=<value>», <value> - целое число.

Пример:

Команда: **Set Kd=101**

Ответ: Ок

Кm – количество отсчетов АЦП, по которым проводится усреднение, один отсчет АЦП требует 138 мкС, для подавлении помехи 50 Гц, **Km** следует устанавливать кратным 145 (20 мс).

Команда: «Set Km=<value>», <value> - целое число.

Пример:

Команда: **Set Km=145**

Ответ: **О**k

RTC – значение текущего времени.

Команда: «Set RTC=</r>
YYYY:MM:DD:HH:MM>», <value> - год:месяц:день:часы:минуты.

Пример:

Команда: Set RTC=2023:09:30:12:00

Ответ: **Ок**

Short_I — пороговое значение тока утечки конденсатора, превышение которого отмечается ошибкой в режиме **Проверка** (замыкание).

Команда: «Set Short_I=<value>», <value> - целое число нано Ампер.

Пример:

Команда: Set Short_I=2500

Ответ: Ок

Contact_C – пороговое значение емкости, ниже которого в режиме **Проверка** будет отмечено ошибкой (контактирование).

Команда: «Set Contact_C=<value>», <value> - целое число пико Фарад.

Пример:

Команда: Set Contact_C=100

Ответ: **О**k

Посмотреть настройки стенда можно с помощью команды «Read settings», рисунок 2.1.

Рисунок 2.1

3. Режимы работы стенда ЭТТ.

С программной точки зрения стенд может находиться в одном из следующих состояний:

- 1) **Ожидание** режим готовности к тестированию, при этом напряжение **UR** = 0 B, конденсаторы подключены к разряжающим ключам.
- 2) Тестирование основной рабочий режим стенда ЭТТ, напряжение UR = Vt с допуском Ve, конденсаторы подключены к заряжающим ключам, идет отсчет времени Tt, с периодом Tp производится переход в режим Измерение для измерения токов утечки конденсаторов на напряжении Vm с последующим возвратом в режим Тестирование. Режим активируется командой оператора или автоматически при подаче питания на стенд, если перед снятием питания стенд находился в этом режиме.
- 3) Пауза прерывание режима тестирования, напряжение **UR** = 0 В, конденсаторы подключены к разряжающим ключам. Режим может быть активирован командой оператора или из режима **Измерение** по причине невозможности удерживать напряжение **UR** = **Vm**.
- 4) **Измерение** режим измерения токов утечки конденсаторов. Напряжение **UR** = **Vm** с допуском **Ve**, конденсаторы измеряемой линии подключены к заряжающим ключам, остальные линии отсоединены сигналом **OPTO**. Стенд производит последовательное измерение всех линий матрицы с 1-й по 16-ю. Режим может быть активирован командой оператора или из режима **Тестирование** как периодический процесс с периодом **Tp**.
- 5) **Проверка** режим проверки замыкания и контактирования испытуемых конденсаторов, выполняемый по отдельной команде и при запуске режима **Тестирования**, при этом проверяется:
 - а) способность стенда установить **UR** = **Vm** с допуском **Ve** с выдачей соответствующего сообщения

- **б)** последовательное измерение токов всех конденсаторов на пороговое значение **Short_I,** с выдачей карты результатов проверки
- **в)** последовательная оценка ёмкости всех конденсаторов на пороговое значение **Contact_C**, с выдачей карты результатов проверки
- 6) **Стоп** режим, в который стенд переходит из режима **Тестирование**. Напряжение **UR** = 0 В, конденсаторы подключены к разряжающим ключам. В памяти стенда хранятся данные измерений токов утечки, выполненные за время тестирования.
- 7) Ошибка режим, в который переходит стенд при невозможности установить UR = Vt или UR = Vm с допуском Ve из режимов Тестирование или Измерение соответственно еще до подачи напряжения на конденсаторы. Напряжение UR = 0 В, конденсаторы подключены к разряжающим ключам.

Посмотреть текущий режим стенда можно с помощью команды «Read status», рисунок 3.1.

Рисунок 3.1

4. Команды управления стендом ЭТТ.

Команда «Start». Команда запускает процесс тестирования или продолжает тестирование из режима **Пауза**, при этом выполняется следующая последовательность действий:

• **UR** устанавливается равным **Vt,** если за время **Th** напряжение **UR** не попало в допуск **Ve** – процесс прерывается и стенд переходит в режим **Ошибка**, сообщая:

****** Fail set High Voltage ********

• Конденсаторы первой линии подключаются к заряжающим ключам, через время **Td** измеряются токи утечек конденсаторов на превышение параметра **Short_I**, а так же проверяется, что напряжение **UR** = **Vt** с допуском **Ve** (после перестройки схемы генератора напряжения <**UR**> - событие невозможно). Если условие **UR** = **Vt** нарушено, стенд производит измерение токов, с целью определить ряд, в котором усилитель тока зашкален, выдается сообщение с указанием проблемной линии и ряда и стенд переходит в режим, в котором находился до команды «**Start**», сообщая:

Далее **UR** устанавливается равным 0 В, а конденсаторы разряжаются в течение времени **Td.** После чего конденсаторы подключаются к заряжающим ключам, а **UR** линейно растет

до величины около 20 В в течение 20 мс, одновременно измеряется ток через конденсаторы, для диагностики контактирования.

Затем процедура повторяется для остальных 15-ти линий и выдается результат диагностики замыкания и контактирования.

• Установив на всех линиях напряжение **UR** = **Vt**, запускается таймер процесса тестирования и таймер измерений, и стенд переходит в состояние **Тестирование**, сообщая:

**************** Test started *************

• Во время тестирования проводится постоянный мониторинг напряжения **UR**, если обнаруживается отклонение выше допустимого, все конденсаторы подключаются к разряжающим ключам, и запускается процедура диагностики, описанная выше, для поиска причин ошибки, сообщая:

****** Detected unstable High Voltage *******

• С периодом **Тр** происходит переход в режим **Измерение**, по окончанию которого данные измерений сохраняются во флеш-память и выводятся в терминал, затем происходит возвращение в режим **Тестирование** с сообщением:

**************** Test continued ************

По окончании времени тестирования Tt происходит переход в режим Стоп с сообщением:

*************** Test finished************

Пример:

Рисунок 4.1

Команда «Pause». Команда вызывает прерывание режима тестирования с возможностью продолжить командой «Start», напряжение UR устанавливается в 0 В, конденсаторы подключаются к разряжающим ключам, останавливается таймер процесса тестирования и таймер измерений, сообщая:

******	Test	paused	******

Рисунок 4.2

Команда «**Stop**». Команда останавливает режима тестирования, напряжение **UR** устанавливается в 0 В, конденсаторы подключаются к разряжающим ключам, выдается сообщение:

************* Test finished ***********

Пример:

Рисунок 4.3

Команда «Measure». Команда запускает процесс измерения токов утечек, при этом выполняется следующая последовательность действий:

- Напряжение UR устанавливается равным 0 В, конденсаторы подключаются к разряжающим ключам, через время Td все линии отключаются от разряжающих ключей сигналом OPTO, через время Ta запускается процедура калибровки нуля усилителей тока.
- **UR** устанавливается равным **Vm**, если за время **Th** напряжение **UR** не попало в допуск **Ve** процесс измерения прерывается и стенд переходит в режим **Ошибка**, сообщая:
- Конденсаторы первой линии подключаются к заряжающим ключам, остальные линии к разряжающим, через время **Td** проверяется, что напряжение **UR** = **Vm** с допуском **Ve**. Если

****** Failset High Voltage ***********

условие нарушено, стенд производит измерение токов, с целью определить ряд, в котором усилитель тока зашкален, выдает сообщение с указанием проблемной линии и ряда и переходит в режим **Пауза**, если на момент получения команды стенд находился в режиме **Тестирование**, сообщая:

****************** CHANEL fail ***************

Если **UR** = **Vm** с допуском **Ve**, разряжающие ключи отключаются сигналом **OPTO**, через время **Ta** производится измерение токов утечек.

• Далее процедура повторяется для всех остальных линий, по окончании измерений данные обрамляются сообщениями:

• Если стенд на момент получения команды находился в режиме **Тестирование**, то после измерений стенд возвращается из режима **Измерение** в режим **Тестирование**

************** Test continued **********

Рисунок 4.4

Рисунок 4.5

Команда «**Read data**». Выводит последовательно все данные измерений, сохраненные в памяти. Память измерений стирается при подаче команды «**Start**», при этом, если данные ни разу не вычитывались командой «**Read data**», команда «**Start**» будет игнорироваться.

Рисунок 4.6

Команда «Check». Команда запускает процесс проверки генератора **<UR>,** замыкания и контактирования, при этом выполняется следующая последовательность действий:

 UR устанавливается равным Vt, если за время Th напряжение UR не попало в допуск Ve – процесс прерывается и стенд переходит в режим Ошибка, сообщая:

******* Fail set High Voltage ***********

• Конденсаторы первой линии подключаются к заряжающим ключам, через время **Td** измеряются токи утечек конденсаторов на превышение параметра **Short_I**, а так же проверяется, что напряжение **UR** = **Vt** с допуском **Ve** (после перестройки схемы генератора напряжения <**UR**> - событие невозможно). Если условие **UR** = **Vt** нарушено, стенд производит измерение токов, с целью определить ряд, в котором усилитель тока зашкален, выдается сообщение с указанием проблемной линии и ряда и стенд переходит в режим, в котором находился до команды «**Start**», сообщая:

Далее **UR** устанавливается равным 0 В, а конденсаторы разряжаются в течение времени **Td.** После чего конденсаторы подключаются к заряжающим ключам, а **UR** линейно растет до величины около 20 В в течение 20 мс, одновременно измеряется ток через конденсаторы, для диагностики контактирования.

Затем процедура повторяется для остальных 15-ти линий и выдается результат диагностики замыкания и контактирования.

• Если стенд на момент получения команды находился в режиме **Тестирование**, то после проверки стенд возвращается в режим **Тестирование**

************ Test continued **********

5. Обновление прошивки.

Подключить USB-кабель к порту ST_Link, запустить «STM32_ST-LINK_Utilit» и загрузить файл прошивки «CAP_TESTER_STM32L152RCT6.hex»

Рисунок 5.1

Рисунок 5.2

Рисунок 5.3

Далее нажать Ctrl-P и «Start»

Рисунок 5.4

Рисунок 5.5

После обновления прошивки произвести повторную настройку стенда.