

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims:

Claim 1 (Cancelled)

Claim 2 (Cancelled)

Claim 3 (Cancelled)

Claim 4 (Cancelled)

Claim 5 (Cancelled)

Claim 6 (Cancelled)

Claim 7 (Cancelled)

Claim 8 (Cancelled)

Claim 9 (Cancelled)

Claim 10 (Cancelled)

Claim 11 (Cancelled)

Claim 12 (Cancelled)

Claim 13 (Cancelled)

Claim 14 (Cancelled)

Claim 15 (Cancelled)

Claim 16 (Cancelled)

Claim 17 (Cancelled)

Claim 18 (Cancelled)

Claim 19 (Original)

A method of signal demodulation for a circuit having a differential transconductance input cell consisting of separate positive and negative channels for receiving positive and negative channels of said input signal $x(t)$ and amplifying said positive and negative channels of said input signal $x(t)$; a first differential mixer for receiving said amplified input signal $x(t)$, and mixing said input signal $x(t)$ with a first mixing signal ϕ_1 , to generate an output signal $\phi_1 x(t)$; a second differential mixer for receiving said signal $\phi_1 x(t)$ as an input, and mixing said signal $\phi_1 x(t)$ with a second mixing signal ϕ_2 , to generate an output signal $\phi_1 \phi_2 x(t)$; a pair of current sources I_a and I_b for providing current to respective ones of said positive and negative

channels of said differential transconductance input cell, to reduce the drawn from said first differential mixer; said current sources I_a and I_b being trimmed in a complementary manner where $I_a=I+\Delta I$, and $I_b=I-\Delta I$; said method comprising the steps of:

- injecting a two-tone signal at said input;
- measuring IM2 at the baseband output of said circuit;
- determining the level of ΔI which minimizes IM2;
- recording the level of ΔI which minimizes IM2; and
- using said recorded level of ΔI during normal operation of said down-converter.

Claim 20 (Currently Amended)

A method of down-converting a differential input signal $x(t)$ comprising the steps of:

- amplifying positive and negative channels of said input signal $x(t)$ using a differential transconductance input cell consisting of separate positive and negative channels;
- mixing said amplified input signal $x(t)$ with a first mixing signal ϕ_1 , to generate an output signal $\phi_1 x(t)$, using a first differential mixer;
- mixing said signal $\phi_1 x(t)$ with a second mixing signal ϕ_2 , to generate an output signal $\phi_1 \phi_2 x(t)$, using a second differential mixer; and
- providing current to respective ones of said positive and negative channels of said differential transconductance input cell, using a pair of current sources I_a and I_b , reducing the current drawn from said first differential mixer; and trimming said current sources I_a and I_b in a complementary manner where $I_a=I+\Delta I$, and $I_b=I-\Delta I$; wherein A4 ΔI can be manipulated to reduce the IM2 and DC offset in the output signal $\phi_1 \phi_2 x(t)$, and wherein matching parameters for said mixers can be relaxed.

Claim 21 (Previously Presented)

A computer readable memory medium for storing software code executable to perform the method steps of claim 19.

Claim 22 (New)

The method of claim 19, including operating a means for manipulating ΔI to reduce the IM2 and DC offset in the output signal $\phi_1 \phi_2 x(t)$, whereby matching parameters for said mixers can be relaxed.

Claim 23 (New)

The method of claim 19, including operating a means for setting a level of ΔI .

Claim 24 (New)

The method of claim 19, wherein the current sources I_a and I_b each include parallel arrays of transistors, and the step of using includes selectively driving the parallel arrays of transistors with a level of ΔI .

Claim 25 (New)

The method of claim 20, wherein ΔI is determined using a two-tone test, ΔI being the current level which minimizes IM2 output at baseband.

Claim 26 (New)

The method of claim 25, wherein the two-tone test includes
injecting a two-tone signal as the input signal $x(t)$;

measuring IM2 of the output signal $\phi_1 \phi_2 x(t)$;

determining the level of ΔI which minimizes IM2;

recording the level of ΔI which minimizes IM2; and

using said recorded level of ΔI during the step of providing current.

Claim 27 (New)

The method of claim 20, wherein the current sources I_a and I_b each include parallel arrays of transistors, and the step of providing current includes selectively driving the parallel arrays of transistors with a level of ΔI .