

Пусть заданы два множества D и G комплексных чисел. Если каждому множестве D задана функция w = f(z) комплексного переменного z (рис. 2.1).

Рис. 2.1. Отображение множества D на множество G

Таким образом, задание функции комплексного переменного f(z) с областью определения D и областью значений G есть отображение множества D на множество G: $f:D \to G$. Точка $w \in G$ называется образом точки z, точка $z \in D$ — прообразом при отображении $z \in D$ — при отображении $z \in D$ — прообразом при отображении $z \in D$ — при отобрахении $z \in D$ — прообразом при отобрахении $z \in D$ — прообразом при отобрахении $z \in D$ — при отобрахении $z \in D$ — прообразом при отобрахении $z \in D$ — при отобрахении $z \in D$ — при отобрахени $z \in D$ — при отобрахени $z \in D$ — при отобрахении $z \in D$ — пр

Если записать числа z и w в алгебраической форме: z = x + iy, w = u + iv, то получаем, что $u=\mathrm{Re}\,f(z)$ — действительная часть функции f(z), $v=\mathrm{Im}\,f(z)$ мнимая часть функции f(z). При этом u = u(x,y) и v = v(x,y) – две функции

Если каждому $z \in D$ соответствует несколько разных значений w, то функция w = f(z) называется многозначной (рис. 2.2.).

Рис. 2.2. Многозначная функция w = f(z)

2.2. Множества на комплексной плоскости

1. Множество точек z, удаленных от заданной точки z₀ на расстояние, меньшее чем заданное число є, называется є-окрестностью точки z₀ (рис. 2.3).

2. Множество точек z, удовлетворяющих неравенству $0 < |z-z_0| < \varepsilon$, образует $проколотую окрестность точки <math>z_0$ (рис. 2.4).

Рис. 2.3. Окрестность точки zo: $O_{\varepsilon}(z_0) = \{z : |z - z_0| < \varepsilon\}$

Рис. 2.4. Проколотая окрестность ТОЧКИ $z_0: 0 < |z - z_0| < \varepsilon$

9. Множество называется связным, если любые две его точки можно соединить непрерывной кривой, все точки которой принадлежат множеству (рис. 2.9). Рис. 2.9. а – связное множество, б – несвязное множество 10. Открытое связное множество называется областью. Область с присоединенной границей, называется замкнутой областью: $\overline{D} = D \cup \Gamma$, где Γ (гамма) — граница области D (рис. 2.10). W=計以=以X

Рис. 2.10. Замкнутая область D

11. Если область *D* ограничена замкнутой не самопересекающейся линией *Г*, то такая область называется односеязной (рис. 2.11).

12. Если область D ограничена двумя замкнутыми и не самопересекающимися линиями Γ_1 и Γ_2 , то такая область называется двусвязной (рис. 2.12).

13. Пусть Γ_1 — внешняя линия, а Γ_2 — внутренняя. Область является двусвязной и в том случае, если Γ_2 вырождается в точку или в дугу непрерывной линии (рис. 2.13).

0

Рис. 2.11. Односвязная область

Рис. 2.12. Двусвязная область

Рис. 2.13. Четырехсвязная область