$1^{\grave{e}re}\ ST_2S: \mathbf{DS}_{2}$ numéro 4

Exercice 1 Différents conditionnements pour des médicaments (11 points)

Trois médicaments sont proposés sous différents conditionnements :

Le premier médicament M_1 est proposé en ampoules (A), en comprimés (C) ou en gélules (G).

Le deuxième médicament M_2 est proposé en ampoules (A) ou en comprimés (C). Le troisième médicament M_3 est proposé en comprimés (C) ou en gélules (G).

Une personne achète d'abord M_1 puis M_2 puis M_3 en laissant le hasard décider du conditionnement.

On note dans l'ordre les choix respectifs pour M_1 , M_2 et M_3 . Par exemple le choix CAG signifie que :

- M_1 est sous forme de Comprimés;
- M_2 est sous forme d'Ampoules;
- M_3 est sous forme de Gélules.

Partie A

1) (2 points)

Donner les 12 choix possibles. On pourra s'aider d'un arbre.

Les 12 choix possibles sont: AAC, AAG, ACC, ACG, CAC; CAG, CCC; CCG, GAC, GAG, GCC; GCG.

2) (5 points)

Donner les choix correspondants aux événements suivants :

- E_1 : « Les trois médicaments sont délivrés sous forme de comprimés»;
- E₂: « Deux médicaments exactement sont délivrés sous forme de comprimés»;
- E_3 : « Les trois médicaments sont délivrés sous trois conditionnements différents»;
- E_4 : « M_1 est délivré sous forme de comprimés et M_2 sous forme de gélules»;
- E_5 : « M_1 est délivré sous forme de comprimés ou M_3 sous forme de gélules» ;

Solution:

- Le choix correspondant à l'événement E_1 est : CCC.
- Les choix correspondants à l'événement E_2 sont : ACC, CAC, CCG et GCC.
- Les choix correspondants à l'événement E_3 sont : ACG, CAG et GAC.
- Aucun choix ne correspond à l'événement E_4 .
- Les choix correspondants à l'événement E_5 sont : CAC, CAG, CCC, CCG, AAG, ACG, GAG, GCG.

Partie B

On suppose que tous les choix sont équiprobables. On donnera les résultats sous forme de fractions irréductibles.

1) (1 point)

Calculer la probabilité $P(E_1)$ de l'événement E_1 .

Solution:

$$P(E_1) = \frac{1}{12}$$

2) (1 point)

Montrer que
$$P(E_2) = \frac{1}{3}$$
.

Solution:
$$P(E_2) = \frac{4}{12} = \frac{1}{3}$$
.

3) (2 points)

Calculer de même $P(E_3)$; $P(E_4)$; $P(E_5)$.

Solution:

$$P(E_3) = \frac{3}{12} = \frac{1}{4}$$

$$P(E_4) = \frac{0}{12} = 0$$

$$P(E_5) = \frac{8}{12} = \frac{2}{3}$$

Exercice 2 Voiture et télévision chez les BRICS (9 points)

Dans un pays des BRICS 1 , une enquête a été réalisée auprès d'un échantillon de 5000 familles ne possédant pas plus d'une voiture et pas plus d'un téléviseur.

Lors de cette enquête, 65~% des familles déclarent posséder un téléviseur et 40~% déclarent ne pas posséder de voiture; parmi celles-ci 60~% ne possèdent pas de télévision.

1) (1 point)

Justifier que 1200 familles de l'échantillon ne possèdent ni voiture, ni téléviseur.

Solution:

$$\frac{40}{100} \times 5000 = 2000$$

2000 personnes ne possèdent pas de voiture.

$$\frac{60}{100} \times 2000 = 1200$$

Donc 1200 personnes ne possèdent ni voiture, ni télévision.

2) (3 points)

Compléter le tableau suivant :

	Nombre de	Nombre de	
	familles ayant	familles n'ayant	Total
	un téléviseur	pas de téléviseur	
Nombre de familles			
ayant une voiture			
Nombre de familles			
n'ayant pas de voiture			
Total			5000

Solution:

	Nombre de	Nombre de	
	familles ayant	familles n'ayant	Total
	un téléviseur	pas de téléviseur	
	un televiseur	pas de televiseur	
Nombre de familles	2450	550	300
ayant une voiture			
Nombre de familles	800	1200	2000
n'ayant pas de voiture			
Total	_ 3250	1750	5000
TUVAL	- 5250	1190	5000

^{1.} Brésil, Russie, Inde, Chine, Afrique du Sud-

3) (3 points)

On choisit une famille au hasard parmi cet échantillon. On pourra noter :

- T: l'événement «la famille choisie possède un téléviseur» et \bar{T} son événement contraire.
- V: l'événement «la famille choisie possède une voiture» et \bar{V} son événement contraire.
- (a) (1 point) Déterminer la probabilité que la famille choisie possède une voiture.

Solution:

$$P(V) = \frac{3000}{5000} = \frac{3}{5} = 0.6$$

La probabilité que la famille choisie possède une voiture est 0,6.

(b) (1 point) Déterminer la probabilité que la famille choisie possède une voiture et un téléviseur.

Solution:

$$P(V \cap T) = \frac{2450}{5000} = \frac{49}{100} = 0.49$$

La probabilité que la famille choisie possède une voiture et un téléviseur est 0,49.

(c) (1 point) Déterminer la probabilité que la famille choisie possède une voiture ou un téléviseur.

Solution:

$$P(V \cup T) = P(V) + P(T) - P(V \cap T)$$

$$P(V \cup T) = \frac{3250}{5000} + \frac{3000}{5000} - \frac{2450}{5000}$$

$$P(V \cup T) = \frac{3800}{5000}$$

$$P(V \cup T) = \frac{19}{25}$$

$$P(V \cup T) = 0.76$$

La probabilité que la famille choisie possède une voiture ou un téléviseur est 0,76.

4) (2 points)

On choisit une famille au hasard parmi celles qui ne possèdent pas de voiture. Déterminer la probabilité que la famille choisie n'ait pas de télévision.

Solution:

$$\frac{1200}{2000} = \frac{3}{5} = 0.6$$

La probabilité qu'une famille choisie au hasard parmi celles qui ne possèdent pas de voiture, n'ait pas de télévision est 0,6.