Wine Classifier Premium or Subprime

Ordinary chemical test results to predict quality.

Value Proposition

- Get from barrel to bottle faster
- Improve cash flow

Which Metric?

Assumptions

- Niche vintner customer base
- Purchase based on Sales Forecast

	Actual results	Subprime	True Negative True Subprime	False Positive False Premium	Potential \$ Loss
-		Premium	False Negative False Subprime	True Positive True Premium	
	Predicted Re		d Results		

Wine Classification

Count

20% Premium

80% Subprime

Rating

- Alcohol
- Sulphates
- pH
- Density
- Total Sulphur Dioxide
- Free Sulphur Dioxide
- Chlorides
- Residual Sugar
- Volatile Acidity
- Fixed Acidity

- Data acquisition postgreSQL
- Analysis
 Python, Numpy, Pandas, sklearn
- Visualizations Seaborn, Matplotlib, Tableau
- Precursor Application
 Flask

- 3 Models
 - K Nearest Neighbors
 - Random Forest
 - Logistic Regression
- Optimization & Component Analysis
- Evaluate & select best fit

Which model is best fit?

Random Forest Reliability

Out of Sample Results

Tuning the Threshold

Feature Importances in RF Model

Link to Demonstration

Welcome to the Wine Classifier

The vinter's "Verification Venue"

You can enter your wine's chemical analysis to predict quality class!

Click here to enter your wine specs!

Have fun!

Take Away

• Data Science can be applied to wine classification

Recommend Random Forest

Custom tune threshold

Prototype Flask Application

Appendix

Citation:

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

The Chemical Characteristics

Table 1. The physicochemical data statistics

Attribute (units)	Min	Max	Mean
fixed acidity $(g(tartaric acid)/dm^3)$	3.8	14.2	6.9
volatile acidity $(g(acetic acid)/dm^3)$	0.1	1.1	0.3
citric acid (g/dm^3)	0.0	1.0	0.3
residual sugar (g/dm^3)	0.6	65.8	6.4
chlorides $(g(sodium chloride)/dm^3)$	0.01	0.35	0.05
free sulfur dioxide (mg/dm^3)	2	260	35
total sulfur dioxide (mg/dm^3)	9	260	138
density (g/cm^3)	0.987	1.039	0.994
pH	2.7	3.8	3.1
sulphates $(g(potassium sulphate)/dm^3)$	0.2	1.1	0.5
alcohol (% vol.)	8.0	14.2	10.4