INSTRUCTION DIVISION Second Semester 2022- 2023 Course Handout (Part-II)

Date:28/12/2023

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE G641

Course Title : Reaction Engineering Instructors : I SREEDHAR (IC)

Scope & Objective

This course includes basic and advanced topics in Chemical Reaction Engineering. The initial part of the course includes reaction mechanisms, basic reaction kinetics (like rate, concentration, conversion, and selectivity), and ideal reactor configurations. The design of catalytic and other multiphase reactors is elaborated. The characterization of non-ideal reactors and modeling of these, especially with reference to Residence Time Distribution (RTD Models) are dealt with. Thermal and Mass Transfer effects are also explained in multi-phase reactors. The main objective of this course is to give the student a better understanding of Chemical Reaction Engineering of Multi-Phase Non-ideal reactors encountered in Industry from the point of view of design and performance evaluation of such actual reactors. Short projects/assignments and industrial visits shall be planned to imbibe the concepts better.

Learning outcomes:

After studying this course, students will be able to

- Propose suitable kinetic models that best fit the experimental data.
- · Recommend best rector configurations for various homogeneous and heterogeneous reactions
- Understand the working of various reactors (single and multiple) through the lab

Text Books

- **T1** Levenspiel, Octave, *Chemical Reaction Engineering*, Wiley India Pvt. Ltd., New Delhi, 3rd Edition, 2000 (or higher edition if available!).
- **T2** Fogler, H. Scott, *Elements of Chemical Reaction Engineering*, Prentice-Hall of India Pvt. Ltd., New Delhi, 4th Ed., 2006 (or higher edition if available!).

Reference Books

R1 Salmi, Tapio O., Jyri-Pekka M., and Johan P, W., *Chemical Reaction Engineering and Reactor Technology*, CRC Press, Taylor &Francis, New York, 2011 (or higher edition if available!).

Course Plan

Lecture	Learning Objectives	Topics to be covered	Reference
No.			
1-6	Review of chemical kinetics and ideal reactor concepts and ideal reactor designs, conversion, and sizing of ideal reactors including multiple reactors in series or parallel	Review of kinetics and ideal reactors	Chap No. 1-8 of T1 Chap No. 1-3 of T2 Chap No. 1-3 of R1
7-10	Reaction mechanisms, elementary and non-elementary homogeneous reactions, order of reactions	Review of mechanism of reactions, order, and effect on reactor design	Chap No. 1 of T1 Chap No. 7 of T2
10-12	Laboratory reactors, collection, and analysis of rate data	Rate models and rate expressions, Laboratory data analysis and Interpretation	Chap No. 1 of T1 Chap No. 5 of T2
13-19	Multiple reactions – series-parallel and effect on ideal reactor design	Multiple reactions	Chap No. 7-8 of T1 Chap No. 6 of T2 Chap No. 4 of R1

20-21	Temperature and pressure effects on single	Effects of temperature and	Chap No. 9 of T1
	and multiple reactions	pressure	Chap No. 5 of R1
22-24	Catalysis and Catalytic reactors, catalyst	Heterogeneous catalysis	Chap No. 17-19 of T1
	deactivation,	introduction	Chap No. 10 of T2
25-29	Packed bed catalytic reactors and external	Heterogeneous catalysis with	Chap No. 19 of T1
	and internal diffusion, basics of gas-liquid	mass transfer	Chap No. 10-11 of T2
	reactions.		
30-32	Multiphase reactors including gas-solid and	Multiphase catalytic reactors	Chap No. 20-22 of T1
	liquid slurry, bubble columns and fluid bed		Chap No. 12 of T2
	reactors, trickle bed reactors		
33-35	Non-Catalytic systems, fluid-fluid, fluid-	Multi-phase non-catalytic	Chap No. 23-26 of T1
	particle kinetics and reactor design	reactors	
36-41	Tracers, methods of obtaining Residence	Residence time Distribution	Chap No. 11-16 of T1
	time Distribution (RTD), one-dimension	(Macro mixing)	Chap No. 13-14 of T2
	models for flow patterns		Chap No. 6 of R1

Lab experiments:

Lab Name	Experiment Name & Objective	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH	
	and ethyl acetate in a batch reactor @30 °C.	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH	
	and ethyl acetate in a batch reactor @40 °C.	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH	
	and ethyl acetate in a batch reactor @50 °C.	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH	
	and butyl acetate in a batch reactor @30 °C.	
CRE lab	Continuous Stirred Tank Reactor: To study the order and rate constant for the	
	reaction between KOH and ethyl acetate in a CSTR @ 30 °C.	
CRE lab	Plug Flow Reactor: To study the order and rate constant for the reaction between	
	KOH and ethyl acetate in a PFR @ 30 °C.	
CRE lab	RTD study using CSTR	
CRE lab	RTD study using PFR	
CRE Lab	To find conversions using a single and a cascaded CSTR	
CRE Lab	To find conversion of a reaction using GC analysis	
Research lab	Multiphase Reactor	
Research lab	High Pressure Reactor	

Evaluation scheme

EC	Evaluation Component	Duration	Weightage, %	Date, Time	Remarks
1.	Mid Sem Test	90 min	25		10% CB & 15%OB
2.	Comprehensive Exam	180 min	35		15% CB & 20% OB
3.	Assignment & / seminars	-	10	It will be	OB
				announced in class	
4	Quizzes/ class test	-	10	It will be	OB
				announced in class	
5	Lab experiments	-	20		OB

- <u>Chamber consultation hour</u> will be announced in the class.
- The <u>notices</u>, if any, concerning the course, will be displayed on CMS only.
- Make-up for mid & comprehensive may be granted for genuine cases with prior permission of IC.
- Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.