Universidade do Minho

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA

Redes de Computadores

RELATÓRIO DO TRABALHO PRÁTICO 2 PROTOCOLO IP

GRUPO 1

Adriana Meireles A82582

Nuno Silva A78156

Shahzod Yusupov A82617

March 22, 2020

Parte I

Captura de Tráfego IP

1) Prepare uma topologia CORE para verificar o comportamento do traceroute. Ligue um host (pc) h1 a um router r2; o router r2 a um router r3, que por sua vez, se liga a um host (servidor) s4. (Note que pode não existir conectividade IP imediata entre h1 e s4 até que o routing estabilize). Ajuste o nome dos equipamentos atribuídos por defeito para a topologia do enunciado.

a.Active o wireshark ou o tcpdump no pc h1. Numa shell de h1, execute o comando traceroute -I para o endereço IP do host s4.

b. Registe e analise o tráfego ICMP enviado por h1 e o tráfego ICMP recebido como resposta. Comente os resultados face ao comportamento esperado

Após fazer o comando "traceroute –I 10.0.2.10" a partir do host h1, são-nos dados 3 tempos (cada um correspondente a um pacote que tem TTL igual aos outros dois) de cada vez que são enviados 3 novos pacotes para o host h4. No início de cada linha temos o endereço de cada router sendo que o último endereço que aparece corresponde ao host h4. O host h1 tenta comunicar com o host servidor(h4) enviando pacotes com TTL=1, TTL=2 e TTL=3, sequencialmente. Os pactotes com TTL=1 e TTL=2 não chegam até ao h4 sendo descartados no router r2 e r3, respetivamente. O ICMP envia uma mesagem de erro(102 Time-To-Live Exceeded(Time to Live Exceeded in Transit)).

ilter:	ip.src == 10.0.0	.20 ip.dst == 10.0.0.	20	▼ Expression	. Clear Apply
lo.	Time	Source	Destination	Protocol Le	ength Info
10	29 626.375219	10.0.0.20	10.0.2.10	ICMP	74 Echo (ping) request id=0x0083, seq=1/256, ttl=1
10	31 626.375243	10.0.0.20	10.0.2.10	ICMP	74 Echo (ping) request id=0x0083, seq=2/512, ttl=1
	32 626.375249		10.0.0.20	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
10	33 626.375254	10.0.0.20	10.0.2.10	ICMP	74 Echo (ping) request id=0x0083, seq=3/768, ttl=1
	34 626.375258		10.0.0.20	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	35 626.375263		10.0.2.10	ICMP	74 Echo (ping) request id=0x0083, seq=4/1024, ttl=2
	36 626.375292		10.0.0.20	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	37 626.375298	1	10.0.2.10	ICMP	74 Echo (ping) request id=0x0083, seq=5/1280, ttl=2
	38 626.375309		10.0.0.20	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	39 626.375313		10.0.2.10	ICMP	74 Echo (ping) request id=0x0083, seq=6/1536, ttl=2
	40 626.375323		10.0.0.20	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
			6 bits), 102 byte		
					0:00:00 aa:00:00 (00:00:00:aa:00:00)
					0.0.20 (10.0.0.20)
V	ersion: 4				
н	eader length	: 20 bytes			
▶ D	ifferentiated	d Services Field:	0xc0 (DSCP 0x30:	Class Selector	r 6; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
T	otal Length:	88			
I	dentification	n: 0x0531 (1329)			
▶ F	lags: 0x00				
F	ragment offse	et: 0			
T.	ime to live:	64			
P	rotocol: ICM	P (1)			
► H	eader checks	um: 0x60a0 [corre	ct]		
S	ource: 10.0.0	0.1 (10.0.0.1)			
		10.0.0.20 (10.0.0			

c. Qual deve ser o valor inicial mínimo do campo TTL para alcançar o destino s4? Verifique na prática que a sua resposta está correta.

Cada router no percurso até ao destino deve decrementar de 1 o TTL de cada datagrama recebido. Se o TTL atinge o valor 0, o router descarta o datagrama e devolve uma mensagem de controlo ICMP (Internet Control Message Protocol) ao host de origem, indicando que o TTL foi excedido (Time to Live Exceeded(Time to Live Exceeded in Transit)). Assim, como nesta topologia são necessários 3 saltos até ao host servidor (s4), passando por 2 routers(r2 e r3), o TTL mínimo deverá ser 3.

d.Qual o valor médio do tempo de ida-e-volta (Round-Trip Time) obtido?

Atentando o primeiro screenshot e fazendo a média dos últimos 3 tempos obtidos, o valor médio do tempo de ida-e-volta é de ((0.031+0.015+0.015)/3)=0.0203 ms.

- 2) Pretende-se agora usar o traceroute na sua máquina nativa, e gerar de datagramas IP de diferentes tamanhos.
 - a. Qual é o endereço IP da interface ativa do seu computador?

O endereço IP da interface ativa do computador usado é 192.168.100.215 e é indicado pelo campo *source*.

b. Qual é o valor do campo protocolo? O que identifica?

O valor do protocolo é 1, que identifica o protocolo ICMP.

c. Quantos bytes tem o cabeçalho IP(v4)? Quantos bytes tem o campo de dados (payload) do datagrama? Como se calcula o tamanho do payload?

O cabeçalho IP(v4) tem 20 bytes reservados para o cabeçalho. O campo de dados terá tantos bytes quantos forem a diferença entre o número total de bytes do datagrama e o cabeçalho do datagrama. Portanto, para o payload estão reservados (156-20=) 136 bytes.

d.O datagrama IP foi fragmentado? Justifique.

O datagrama não foi fragmentado. Esta conclusão deve-se ao facto de no cabeçalho da primeira mensagem ICMP no indicador "flags" existir a flag "Fragment offset" que nos indica a posição de um fragmento relativamente aos outros que devidamente agrupados constituem um datagrama.

Neste caso o "Fragment offset" está a 0, pelo que se conclui que se existirem mais fragmentos, este é o primeiro. Para além disso, temos a flag "More Fragments" que nos indica se há ou não mais fragmentos para além do atual. Tendo a flag valor 1, existem mais fragmentos, tendo-a 0, não existem. Neste caso o valor é 0(não existem), e sendo o primeiro fragmento e não havendo mais, o fragmento é, na verdade, o datagrama original.

e. Ordene os pacotes capturados de acordo com o endereço IP fonte (e.g.,selecionando o cabeçalho da coluna Source), e analise a sequência de tráfego ICMP gerado a partir do endereço IP atribuído à interface da sua máquina. Para a sequência de mensagens ICMP enviadas pelo seu computador, indique que campos do cabeçalho IP variam de pacote para pacote.

Os campos que variam de pacote para pacote são o campo de identificação do datagrama e o TTL.

f. Observa algum padrão nos valores do campo de Identificação do datagrama IP e TTL?

Relativamente ao campo de identificação é incrementado 1, o TTL tem o seguinte padrão: 1, 2, 3, 255.

g. Ordene o tráfego capturado por endereço destino e encontre a série de respostas ICMP TTL exceeded enviadas ao seu computador. Qual é o valor do campo TTL? Esse valor permanece constante para todas as mensagens de resposta ICMP TTL exceeded enviados ao seu host? Porquê?

O valor do campo TTL é constante dependendo da source:

- Se a source for qw.sa.di.uminho.pt, o valor do TTL é 64;
- Se a source for cisco.di.uminho.pt, o valor do TTL é 254;

No.	Time	Source	Destination	Protocol	Length Info				_
	3 1.049820	marco.uminho.pt	DESKTOP-VAS6B12.loc.		170 Echo (ping) reply		equest in 2)		
	5 1.099968	gw.sa.di.uminho.pt			198 Time-to-live exceed				
	7 1.150098	cisco.di.uminho.pt	DESKTOP-VAS6B12.loc_		70 Time-to-live exceed				
	9 1.200103	marco.uminho.pt	DESKTOP-VAS6B12.loc.		170 Echo (ping) reply				_
	12 1.972573	marco.uminho.pt	DESKTOP-VAS6B12.loc.		170 Echo (ping) reply		equest in 11)		
	14 2.023550				198 Time-to-live exceed				
	16 2.073729	cisco.di.uminho.pt	DESKTOP-VAS6B12.loc_ DESKTOP-VAS6B12.loc_		70 Time-to-live exceed		1 ' 47		
	18 2.124761 22 3.550903	marco.uminho.pt marco.uminho.pt	DESKTOP-VAS6B12.1oc DESKTOP-VAS6B12.1oc		170 Echo (ping) reply				
	25 3.601761	gw.sa.di.uminho.pt			170 Echo (ping) reply 198 Time-to-live exceed		equest in 21)		
	27 3.652417	cisco.di.uminho.pt			70 Time-to-live exceed				
	29 3.702561	marco.uminho.pt	DESKTOP-VAS6B12.loc.		170 Echo (ping) reply		aquest in 20)		
	31 4,474430	marco.uminho.pt	DESKTOP-VAS6B12.loc.		170 Echo (ping) reply				
	33 4.525366	gw.sa.di.uminho.pt			198 Time-to-live exceed		equese in so)		
>	Differentiated 5 Total Length: 56	der Length: 20 bytes (Services Field: 0xc0 (5	(5) (DSCP: CS6, ECN: Not-EC	СТ)					
	Identification:	0xb582 (46466)							
_ ~	Flags: 0x0000								
		= Reserved bit							
		= Don't fragme = More fragmen							
		= more tragmen 0 0000 = Fragment off							
	Time to live: 25		Sec. 0						
	Protocol: ICMP								
		0x0b7c [validation d	disabledl						
		status: Unverifiedl							
		.uminho.pt (193.136.1	19.254)						
		KTOD_VASAR12 local /1							

- 3) Pretende-se agora analisar a fragmentação de pacotes IP. Reponha a ordem do tráfego capturado usando a coluna do tempo de captura. Observe o tráfego depois do tamanho de pacote ter sido definido para 3531 bytes.
- a. Localize a primeira mensagem ICMP. Porque é que houve necessidade de fragmentar o pacote inicial?

Houve uma necessidade de fragmentação do pacote porque era demasiado grande para circular na rede em questão (o tamanho do pacote foi alterado para 3531 bytes). O tamanho máximo do pacote permitido nesta rede é de 1500 bytes.

b. Imprima o primeiro fragmento do datagrama IP segmentado. Que informação no cabeçalho indica que o datagrama foi fragmentado? Que informação no cabeçalho IP indica que se trata do primeiro fragmento? Qual é o tamanho deste datagrama IP?

A flag "More Fragments" indica-nos se existem mais fragmentos ou não. Esta flag tem o valor de 1, logo existem mais fragmentos. Para além disso temos a flag "Fragment Offset" que nos indica a que parte do pacote corresponde este fragmento, isto é, quando o pacote for reagrupado, a disposição dos fragmentos irá ficar ordenada pela ordem crescente da flag "Fragment offset". A mesma está a 0, logo é o primeiro pacote. O indicador "Total Lenght" mostra-nos o tamanho total do pacote, sendo que temos que lhe tirar o comprimento do "Header" que é de 20 bytes. Logo, o tamanho deste datagrama é de 1480 bytes.

c. Imprima o segundo fragmento do datagrama IP original. Que informação do cabeçalho IP indica que não se trata do 1º fragmento? Há mais fragmentos? O que nos permite afirmar isso?

Como foi mencionado anteriormente, é possível observar que um fragmento é o primeiro quando o offset tem o valor 0 e o more fragments a 1. Neste caso, o valor da flag "Fragment Offset" é 185(e,portanto,diferente de 0) quer dizer que este fragmento não é o primeiro. Podemos afirmar também que existem mais fragmentos devido ao "More Fragments" encontrar-se a 1.

d. Quantos fragmentos foram criados a partir do datagrama original? Como se detecta o último fragmento correspondente ao datagrama original?

Foram criados 3 fragmentos, contando os anteriormente analisados, mais o fragmento que se deteta em forma de mensagem ICMP. Note-se que todos estes fragmentos têm um número de identificação igual(0x4367) que nos mostra que pertencem todos ao mesmo datagrama. É de esperar que a flag "Fragment Offset" deste fragmento seja(185+185=) 370,como se pode verificar na imagem que se encontra em cima. Resta-nos olhar para a flag "More Fragments" que está a zero. Daqui se conclui que não existem mais fragmentos do datagrama original.

e. Indique, resumindo, os campos que mudam no cabeçalho IP entre os diferentes fragmentos, e explique a forma como essa informação permite reconstruir o datagrama original.

Os únicos campos que se alteram no cabeçalho IP, entre os diferentes fragmentos são as flags "Fragment Offset" e "More Fragments". A "Fragment Offset" permitenos identificar a posição do fragmento no datagrama original e a "More Fragments" permite-nos concluir se há ou não mais fragmentos a veicular na rede. Desta forma, os equipamentos conseguem reconstituir o pacote original. Neste caso, irá agrupar os pacotes pela ordem crescente do valor da flag "Fragment Offset", isto é, 0 -> 185 -> 370.

Parte II

Endereçamento e Encaminhamento IP

- 1) Atenda aos endereços IP atribuídos automaticamente pelo CORE aos diversos equipamentos da topologia.
- a. Indique que endereços IP e máscaras de rede foram atribuídos pelo CORE a cada equipamento. Para simplificar, pode incluir uma imagem que ilustre de forma clara a topologia definida e o endereçamento usado

A foto acima mostra os vários endereços IP e a respetiva máscara(255.255.255.0, em notação CIDR,/24) atribuídos pelo CORE a cada equipamento.

b. Tratam-se de endereços públicos ou privados? Porquê?

Tratam- se de endereços privados porque não são vistos pela rede global e também porque pertencem à classe A que está definida entre os endereços 10.0.0.0 e 10.255.255.255

c. Porque razão não é atribuído um endereço IP aos switches?

Um switch (ou comutador) é um equipamento activo que funciona normalmente na camada 2 do modelo OSI e tem como principal funcionalidade a interligação de equipamentos de uma rede.

Numa primeira fase (antes do switch saber quem tem ligado a ele), quando um switch recebe informação numa determinada porta, transmite esse mesma informação por todas as outras portas, exceto por aquela que recebeu essa informação. Os switches registam o endereço MAC dos dispositivos que estão ligados a cada porta do equipamento. Sempre que um equipamento envia uma frame (trama), o switch analisa o endereço MAC de destino e comuta a frame para a porta onde se encontra a máquina de destino. Desta forma, não existe necessidade de atribuir um endereço IP ao switch, pois este apenas decide para onde vão os pacotes após ter sido realizada a análise ao endereço MAC de cada equipamento ligado a si.

d. Usando o comando ping certifique-se que existe conectividade IP entre os laptops dos vários departamentos e o servidor do departamento C (basta certificar-se da conectividade de um laptop por departamento).

Do servidor S1 para o PCa1(Departamento A)

Do servidor S1 para o PCb3(Departamento B)

Do servidor S1 para o PCc1(Departamento C)

Como podemos observar, existe sempre conetividade entre os PC's de cada departamento e o Servidor S1. Verificámos isso com o envio de pacotes por cada ping feito para o servidor que os recebe e envia uma mensagem de volta para o respetivo PC, por exemplo, do número do pacote recebido, do tempo de ida e volta, do TTL..Se não houvesse conetividade IP entre os equipamentos ser-nos-ia devolvida uma mensagem do género "Reply from <endereço do servidor>:Destination host unreachable." por cada pacote.

e. Verifique se existe conectividade IP do router de acesso Rext para o servidor S1

(Por equívoco apagámos a primeira topologia CORE da rede local da empresa, por isso, tivemos de reconstruir. Portanto, alguns dados são diferentes)

Como podemos observar, também existe conetividade entre o router de acesso, Rext, e o servidor S1 do departamento C, pelas razões que foram mencionadas na alíena anterior.

Nota:Para responder às questões a partir daqui foi utilizado o Modelo Core da alínea anterior 1E

- 2) Para o router e um laptop do departamento A:
- a. Execute o comando "netstat -rn" por forma a poder consultar a tabela de encaminhamento unicast (IPv4). Inclua no seu relatório as tabelas de encaminhamento obtidas; interprete as várias entradas de cada tabela. Se necessário, consulte o manual respetivo "man netstat".

Figure 1: Tabela de encaminhamento laptop A

Figure 2: Tabela de encaminhamento router A

Nas tabelas unicast (IPv4) obtidas, retiramos alguma informação relativa à rota que o pacote terá de fazer. A coluna "Destination" indica a sub-rede de destino, a "Gateway" indica por que equipamento terá de passar o pacote e a "Genmask" o tipo de máscara usada.

Como se pode observar na tabela do laptop, vemos que tem duas entradas. A linha 0.0.0.0 é o endereço default que se usa quando não é conhecido o destino de um pacote. A outra linha que tem a destination 10.0.0.0 é usado quando o laptop pretende mandar um pacote para a própria rede.

Relativamente à tabela de endereçamento do router possui as redes que são possíveis atingir e os respetivos gateways. No caso da gateway ser 0.0.0.0, se o endereço destino estiver incluido na rede 10.0.0.0 e se não existissem mais indicações de destinos, então o pacote iria seguir um caminho aleatório.

b. Diga, justificando, se está a ser usado encaminhamento estático ou dinâmico (sugestão: analise que processos estão a correr em cada sistema).

No router, o encaminhamento que está a ser usado é dinâmico pois permite ao pacote seguir caminhos diferentes quando não é lhe é possível fazer a rota prevista. Podemos fundamentar isto na coluna "*CMD*" que nos diz que o router inclui o protocolo *ospfd*. Para o caso do laptop, concluímos que o encaminhamento é estático pois não é utilizado nenhum protocolo.

```
root@PCa1:/tmp/pycore.53971/PCa1.conf
root@PCa1:/tmp/pycore.53971/PCa1.conf# netstat -rn
Kernel IP routing table
                                                             MSS Window
Destination
                 Gateway
                                                    Flags
                                                                          irtt Iface
                 10.0.0.1
                                   0.0.0.0
                                                    UG
                                                                              0 eth0
0.0.0.0
7.0.0.0.0
10.0.0.0
root@PCa1:/tmp/pycore.53971/PCa1.conf# ps -A
IIME CMD
                                   255,255,255,0
                                                                              0 eth0
                00:00:00
                          vnoded
     pts/9
                00:00:00 bash
      pts/10
                00:00:00 bash
                00:00:00 bash
                00:00:00 ps
 oot@PCa1:/tmp/pycore.53971/PCa1.conf#
```

Figure 3: Processos do laptop

Figure 4: Processos do router

c. Admita que, por questões administrativas, a rota por defeito (0.0.0.0 ou default) deve ser retirada definitivamente da tabela de encaminhamento do servidor S1 localizado no departamento C. Use o comando "route delete" para o efeito. Que implicações tem esta medida para os utilizadores da empresa que acedem ao servidor. Justifique.

Ao eliminarmos o endereço de destino 0.0.0.0, o default, estamos a cortar a possibilidade do servidor S1 se conectar com outros equipamentos fora da rede do departamento C, podendo apenas conectar-se aos laptops do departamento em questão. Neste cenário, os utilizadores ao usarem o comando ping para ver se existe conexão, por exemplo, com PCb2, a mensagem que aparece é *Network unreachable*, isto é, "Impossível atingir a rede".

Figure 5: Tabela de Encaminhamento do Servidor S1

d. Adicione as rotas estáticas necessárias para restaurar a conectividade para o servidor S1, por forma a contornar a restrição imposta na alínea c). Utilize para o efeito o comando "route add" e registe os comandos que usou.

Figure 6: Adicionar Rota - Departamentos B,A e Router de Acesso(por esta ordem)

O comando usado para retomar a conexão foi: route add -net 10.0.X.o netmask 255.255.255.0 gw 10.0.5.1 . Devido a este comando são criadas rotas entre o servidor e os diversos departamentos e o servidor e router de acesso.

e. Teste a nova política de encaminhamento garantindo que o servidor está novamente acessível, utilizando para o efeito o comando "ping". Registe a nova tabela de encaminhamento do servidor.

Figure 7: Departamento A e B

Como podemos observar na figura 7, a conectividade foi reestabelecida, pois aplicando o comando ping do servidor S1 para laptops do departamento A e B, verificamos que existe envio de packets do S1.

Figure 8: Tabela de Encaminhamento

Parte III

Definição de Sub-redes

1) Considere que dispõe apenas do endereço de rede IP 172.XX.48.0/20, em que XX é o decimal correspondendo ao seu número de grupo (PLXX). Defina um novo esquema de endereçamento para as redes dos departamentos (mantendo a rede de acesso e core inalteradas) e atribua endereços às interfaces dos vários sistemas envolvidos. Deve justificar as opções usadas.

O nosso IP da rede é 172.31.48.0/20 e dado que a máscara é 20 quer dizer que os endereços possíveis estão entre 172.31.48.0 e 172.31.63.255. Como existem 3 departamentos, para representar as 3 redes são necessários 3 bits, $2^3 - 2 = 6 > 3$, (é subtraído 2, devido a 000 e 111 estarem reservados). Pela razão referida anteriormente, usar 2 bits foi excluído pois $2^2 - 2 = 2 < 3$.

172.31.0011 | XXX | 0.0

000	Reservada	
001	Livre	
010	Livre	Departamento A
011	Livre	
100	Livre	
101	Livre	Departamento B
110	Livre	Departamento C
111	Reservada	

Como se pode observar na tabela em cima, como são usados 3 bits, existem 8 opções possíveis para endereços para as sub-redes. No entanto, como as possibilidades 000 e 111 ficam reservadas, ficamos cingidos a 6 endereços possíveis. Deste modo foi atríbuida, de forma aleatória, uma das possibilidades a cada departamento.

IP host por departamento							
Departamento	IP	IP-Inicio	IP-Fim				
A	172.31.52.0/23	172.31.52.1	172.31.53.254				
В	172.31.56.0/23	172.31.56.1	172.31.57.254				
С	172.31.58.0/23	172.31.58.1	172.31.58.254				

Com o auxílio da tabela dos IP's de host para cada departamento, foram atribuídos IP's(sem ser com tudo zeros ou tudo uns) que estão dentro dos intervalos possíveis de cada departamento.

Endereços atribuídos a cada dispositivo									
Dep. A	IP atribuido	Dep. B	IP atribuido	Dep. C	IP atribuido				
Pca1	172.31.52.2/23	Pcb1	172.31.56.20/23	Pcc1	172.31.58.25/23				
Pca2	172.31.52.3/23	Pcb2	172.31.56.31/23	Pcc2	172.31.58.40/23				
Pca3	172.31.52.4/23	Pcb3	172.31.56.47/23	Pcc3	172.31.58.111/23				
R1	172.31.52.1/23	R2	172.31.56.1/23	R3	172.31.58.1/23				
				S1	172.31.58.5/23				

2) Qual a máscara de rede que usou (em formato decimal)? Quantos hostsIP pode interligar em cada departamento? Justifique.

Como reservamos 3 bits para fazer sub-netting, a nossa máscara passa de /20 para /23 ficando o seu valor decimal 255.255.254.0, sobrando 9 bits para podermos alterar. O nuúmero de host é dado por 2^9-2 (1 reservado para broadcasting e outro para comunicar com todos os dispositivos), ficando com 510 hosts IP .

3) Garanta e verifique que conectividade IP entre as várias redes locais da organização MIEI-RC é mantida. Explique como procedeu.

Na tabela está representado os novos endereços endereços atribuidos a cada interface. Para garantir a conectividade usamos o comando ping de um laptop do departamento A para um laptop dos departamentos B e C. De seguida, usamos o mesmo comando para um laptop do departamento B para um laptop do departamento C e por fim usamos o comando ping do router exterior para o servidor S1. Tudo o que foi mencionado, pode ser comprovado nas imagens que se encontram em baixo.

Figure 9: Equipamentos e Departamentos com novos IP's

Figure 10: Ping de um laptop do DepA para um laptop do Depb e DepC

Figure 11: Ping de um laptop do DepB para um laptop do DepC

Figure 12: Ping do router exterior para o servidor S1

Conclusão

Na primeira parte do trabalho, foi feita uma análise ao protocolo de IPv4. De modo a concretizar isso, foi construída uma topologia Core para estudar o comportamento e explorar o tráfego ICMP enviado e ICMP recebido através da análise de datagramas. Também foi feita a análise de casos mais específicos, onde foi necessária uma fragmentação de pacotes IP devido à sua grande dimensão. Aqui foram analisadas as flags "fragment offset" e "more fragments", a posição de um fragmento relativamente a outros e se havia mais fragmentos para além do atual.

Por outro lado, na segunda parte do trabalho, houve um foco no funcionamento do processo de endereçamento e encaminhamento IP. Após a construção da topologia com os vários departamentos e respetivos equipamentos, permitiu nos analisar a conectividade entre os equipamentos de cada departamento(com as rotas, tipo de encaminhamento: estático ou dinâmico). Em suma, vimos o funcionamento do encaminhamento entre redes diferentes de 3 departamentos, adquirindo conhecimentos essenciais em torno da divisão de sub-netting . Estes casos teóricos, podem facilmente ser aplicados na prática e em infra-estruturas a que nos ligamos diariamente.