Computer Vision

Class 05

Raquel Frizera Vassallo

2D Homography

Parameter Estimation

Summary

- Homography
- DLT
- Normalized DLT
- Gold Standard Algorithm
- RANSAC
- Automatic computation of H using RANSAC

DLTDirect Linear

Transformation

Parameter Estimation

- 2D homography
- Given a set of (x_i, x_i') , compute $H(x_i'=Hx_i)$
- Estimation will be based on the Direct Linear Transformation Algorithm (DLT)

Number of measurements required

• At least as many independent equations as degrees of freedom required

$$x' = Hx$$

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Number of measurements required

• At least as many independent equations as degrees of freedom required

$$x' = Hx$$

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- 2 independent equations per point
- 8 degrees of freedom

Number of measurements required

• At least as many independent equations as degrees of freedom required

$$x' = Hx$$

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- 2 independent equations per point
- 8 degrees of freedom

We need 4 or more matchings

$$N \times 2 \ge 8 \rightarrow N \ge 4$$

Approximate solutions

- Minimal solution:
 - 4 points yield an exact solution for H.

Approximate solutions

- Minimal solution:
 - 4 points yield an exact solution for *H*.
- More points
 - No exact solution, because measurements are inexact ("noise").
 - Search for "best" according to some cost function.

Gold Standard algorithm

- Cost function that is optimal for some assumptions.
- Computational algorithm that minimizes it is called "Gold Standard" algorithm.
- Other algorithms can then be compared to it.

$$egin{aligned} oldsymbol{x'_i} &= H oldsymbol{x_i} \ oldsymbol{x'_i} &= (x_i', y_i', w_i')^T \ H oldsymbol{x_i} &= egin{bmatrix} h^{1T} oldsymbol{x_i} \ h^{2T} oldsymbol{x_i} \ h^{3T} oldsymbol{x_i} \end{bmatrix} \end{aligned}$$

$$\mathbf{x'_{i}} = H\mathbf{x_{i}}$$

$$\mathbf{x'_{i}} = (x'_{i}, y'_{i}, w'_{i})^{T}$$

$$\mathbf{x'_{i}} = (x'_{i}, y'_{i}, w'_{i})^{T}$$

$$\mathbf{x'_{i}} = \begin{bmatrix} y'_{i}h^{3^{T}}\mathbf{x_{i}} - w'_{i}h^{2^{T}}\mathbf{x_{i}} \\ w'_{i}h^{1^{T}}\mathbf{x_{i}} - x'h^{3^{T}}\mathbf{x_{i}} \\ x'_{i}h^{2^{T}}\mathbf{x_{i}} - y'h^{1^{T}}\mathbf{x_{i}} \end{bmatrix}$$

$$H\mathbf{x_{i}} = \begin{bmatrix} h^{1^{T}}\mathbf{x_{i}} \\ h^{2^{T}}\mathbf{x_{i}} \\ h^{3^{T}}\mathbf{x_{i}} \end{bmatrix}$$

$$\mathbf{x'_{i}} = H\mathbf{x_{i}}$$

$$\mathbf{x'_{i}} = (x'_{i}, y'_{i}, w'_{i})^{T}$$

$$\mathbf{x'_{i}} = (x'_{i}, y'_{i}, w'_{i})^{T}$$

$$H\mathbf{x_{i}} = \begin{bmatrix} h^{1}{}^{T}\mathbf{x_{i}} \\ h^{2}{}^{T}\mathbf{x_{i}} \\ h^{3}{}^{T}\mathbf{x_{i}} \end{bmatrix}$$

$$\begin{bmatrix} 0^{T} & -w'_{i}\mathbf{x_{i}}^{T} & y'_{i}\mathbf{x_{i}}^{T} \\ w'_{i}\mathbf{x_{i}}^{T} & 0^{T} & -x'_{i}\mathbf{x_{i}}^{T} \end{bmatrix}$$

$$\begin{bmatrix} h^{1} \\ h^{2} \\ h^{3} \end{bmatrix} = 0$$

- Equations are linear in $h \to A_i h = 0$
- Only 2 out of 3 are linearly independent (indeed, 2 equations per point)

$$egin{bmatrix} 0^T & -w_i'oldsymbol{x}_i^T & y_i'oldsymbol{x}_i^T \ w_i'oldsymbol{x}_i^T & 0^T & -x_i'oldsymbol{x}_i^T \ -y_i'oldsymbol{x}_i^T & x_i'oldsymbol{x}_i^T & 0^T \end{bmatrix} egin{bmatrix} h^1 \ h^2 \ h^3 \end{bmatrix} = 0$$

- Equations are linear in $h \to A_i h = 0$
- Only 2 out of 3 are linearly independent (indeed, 2 equations per point)

$$\begin{bmatrix}
0^T & -w_i' \mathbf{x}_i^T & y_i' \mathbf{x}_i^T \\
w_i' \mathbf{x}_i^T & 0^T & -x_i' \mathbf{x}_i^T \\
y_i' \mathbf{x}_i^T & x_i' \mathbf{x}_i^T & 0^T
\end{bmatrix}
\begin{bmatrix}
h^1 \\
h^2 \\
h^3
\end{bmatrix} = 0
\begin{bmatrix}
0^T & -w_i' \mathbf{x}_i^T & y_i' \mathbf{x}_i^T \\
w_i' \mathbf{x}_i^T & 0^T & -x_i' \mathbf{x}_i^T
\end{bmatrix}
\begin{bmatrix}
h^1 \\
h^2 \\
h^3
\end{bmatrix} = 0$$

(only drop third row if $w_i'\neq 0$)

- Equations are linear in $h \to A_i h = 0$
- Only 2 out of 3 are linearly independent (indeed, 2 equations per point)

$$\begin{bmatrix}
0^T & -w_i' \boldsymbol{x}_i^T & y_i' \boldsymbol{x}_i^T \\ w_i' \boldsymbol{x}_i^T & 0^T & -x_i' \boldsymbol{x}_i^T \\ -y_i' \boldsymbol{x}_i^T & x_i' \boldsymbol{x}_i^T & 0^T
\end{bmatrix}
\begin{bmatrix}
h^1 \\ h^2 \\ h^3
\end{bmatrix} = 0
\begin{bmatrix}
0^T & -w_i' \boldsymbol{x}_i^T & y_i' \boldsymbol{x}_i^T \\ w_i' \boldsymbol{x}_i^T & 0^T & -x_i' \boldsymbol{x}_i^T
\end{bmatrix}
\begin{bmatrix}
h^1 \\ h^2 \\ h^3
\end{bmatrix} = 0$$

(only drop third row if $w_i \neq 0$)

- Holds for any homogeneous representation, e.g. $(x_i', y_i', 1)$
- Thus holds for image points

• Solving for *H*

$$Ah = 0 \qquad \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} h = 0$$

size A is 8x9 or 12x9, but rank 8

- Trivial solution is $h=0_9^T$ is not interesting
- 1-D null-space yields solution of interest pick for example the one with: ||h||=1

- Over-determined solution
- No exact solution because of inexact measurement, i.e. "noise".
- Find approximate solution:
 - Additional constraint needed to avoid 0, e.g. ||h||=1
 - Since Ah=0 is not possible, so minimize ||Ah||

- Over-determined solution
- No exact solution because of inexact measurement, i.e. "noise".
- Find approximate solution:
 - Additional constraint needed to avoid 0, e.g. ||h||=1
 - Since Ah=0 is not possible, so minimize ||Ah||
- The solution is the eigenvector of A^TA with the least eigenvalue.
 - That is equivalent to the singular vector corresponding to the smallest singular value of A.

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

(i) For each correspondence $x_i \leftrightarrow x_i$ ' compute A_i . Usually only two first rows needed.

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

- (i) For each correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i$ ' compute A_i . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices A_i into a single 2nx9 matrix A

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

- (i) For each correspondence $x_i \leftrightarrow x_i$ ' compute A_i . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices A_i into a single 2nx9 matrix A
- (iii) Obtain SVD of A. Solution for h is last column of V

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

- (i) For each correspondence $x_i \leftrightarrow x_i$ ' compute A_i . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices A_i into a single 2nx9 matrix A
- (iii) Obtain SVD of A. Solution for h is last column of V
- (iv) Determine H from h

Some Details in the DLT

Inhomogeneous solution

• Since h can only be computed up to scale, pick $h_j=1$, e.g. $h_9=1$, and solve for 8-vector

$$\begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i x_i' & y_i x_i' \end{bmatrix} \tilde{h} = \begin{bmatrix} -w_i y_i' \\ w_i x_i' \end{bmatrix}$$

- Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points).

Inhomogeneous solution

• Since h can only be computed up to scale, pick $h_i=1$, e.g. $h_0=1$, and solve for 8-vector

$$\begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i x_i' & y_i x_i' \end{bmatrix} \tilde{h} = \begin{bmatrix} -w_i y_i' \\ w_i x_i' \end{bmatrix}$$

- Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points).
- However, if h_9 =0 this approach fails. Also gets poor results if h_9 close to zero.

Therefore, not recommended.

- Note $h_9 = H_{33} = 0$ if origin is mapped to infinity.

Inhomogeneous solution

• Since h can only be computed up to scale, pick $h_i=1$, e.g. $h_9=1$, and solve for 8-vector

$$\begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i x_i' & y_i x_i' \end{bmatrix} \tilde{h} = \begin{bmatrix} -w_i y_i' \\ w_i x_i' \end{bmatrix}$$

- Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points).
- However, if h_9 =0 this approach fails. Also gets poor results if h_9 close to zero.

Therefore, not recommended.

- Note $h_9 = H_{33} = 0$ if origin is mapped to infinity.

Example:

When the horizon passes by the image center (0,0), that means the image center lies on the infinity!

$$m{l}_{\infty}^T H m{x}_0 = egin{bmatrix} 0 & 0 & 1 \end{bmatrix} H egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} = 0$$

Three collinear points out of 4. **PROBLEM!!!**

Three collinear points out of 4. PROBLEM!!!
$$x_1$$
 x_2 x_3 x_4 x_2 x_3 x_4 x_4 x_2 x_3 x_4 x_3 x_4 x_4 x_5 x_6 $x_$

Constraints:
$$\mathbf{x}_{i}$$
, \mathbf{x}_{l} , $\mathbf{x}_{i} = 0$ $i = 1,2,3,4$
Define: $H^{*} = \mathbf{x}_{4}$, \mathbf{l}^{T}
Then, $H^{*} \mathbf{x}_{i} = \mathbf{x}_{4}$, $(\mathbf{l}^{T} \mathbf{x}_{i}) = 0$, $i = 1,2,3$
 $H^{*} \mathbf{x}_{4} = \mathbf{x}_{4}$, $(\mathbf{l}^{T} \mathbf{x}_{4}) = k\mathbf{x}_{4}$,

Three collinear points out of 4.

PROBLEM!!!

Constraints:
$$x_i' \times Hx_i = 0$$
 $i = 1,2,3,4$

Define: $H^* = x_4' l^T$

Then,
$$H^* x_i = x_4$$
, $(l^T x_i) = 0$, $i = 1,2,3$
 $H^* x_4 = x_4$, $(l^T x_4) = kx_4$,

Case A: If H^* is unique solution, then no homography mapping $x_i \rightarrow x_i$ exist \rightarrow every homography must preserve collinearity.

 H^* is rank-1 matrix and thus not a homography (rank-3)!

Three collinear points out of 4.

PROBLEM!!!

Constraints:
$$\mathbf{x_i}' \times H\mathbf{x_i} = 0$$
 $i = 1,2,3,4$

Define: $H^* = x_4' l^T$

Then,
$$H^* \boldsymbol{x}_i = \boldsymbol{x}_4$$
, $(\boldsymbol{l}^T \boldsymbol{x}_i) = 0$, $i = 1,2,3$
 $H^* \boldsymbol{x}_4 = \boldsymbol{x}_4$, $(\boldsymbol{l}^T \boldsymbol{x}_4) = k \boldsymbol{x}_4$,

Case A: If H^* is unique solution, then no homography mapping $x_i \rightarrow x_i$ exist \rightarrow every homography must preserve collinearity.

Case B: If there is a solution H, then also $\alpha H^* + \beta H \rightarrow$ many solutions

 H^* is rank-1 matrix and thus not a homography (rank-3)!

Solutions from lines and points

2D homographies from 2D lines

$$l'_i = H^T l_i \quad Ah = 0$$

Minimum of 4 lines

Solutions from lines and points

2D homographies from 2D lines

$$\mathbf{l'}_i = H^T \mathbf{l}_i \quad Ah = 0$$

Minimum of 4 lines

But can also be determined by:

- 3 general points and 1 line or
- 3 general lines and 1 point.

Equivalent to 4 general points

Solutions from lines and points

2D homographies from 2D lines

$$\mathbf{l'}_i = H^T \mathbf{l}_i \quad Ah = 0$$

Minimum of 4 lines

But can also be determined by:

- 3 general points and 1 line or
- 3 general lines and 1 point.

Equivalent to 4 general points

Mixed configurations that do not work. For example:

- two points and two lines = four concurrent lines = four collinear points.

Improving DLT Normalized DLT

- Algebraic distance
- Geometric distance
- Reprojection error

Algebraic distance

DLT minimizes
$$||Ah|| \longrightarrow e = Ah \longrightarrow$$
 residual vector $e_i \longrightarrow$ partial error vector for each $(x_i \leftrightarrow x_i')$ algebraic error vector

Algebraic distance

DLT minimizes
$$||Ah|| \longrightarrow e = Ah \longrightarrow$$
 residual vector $e_i \longrightarrow$ partial error vector for each $(x_i \leftrightarrow x_i')$ algebraic error vector

$$d_{alg}(\boldsymbol{x}'_i, H\boldsymbol{x}_i)^2 = \|e_i\|^2 = \left\| \begin{bmatrix} 0^T & -w_i'\boldsymbol{x}_i^T & -y_i'\boldsymbol{x}_i^T \\ -w_i'\boldsymbol{x}_i^T & 0^T & -x_i'\boldsymbol{x}_i^T \end{bmatrix} h \right\|^2 \quad algebraic \ distance$$

$$d_{alg}(\boldsymbol{x}_1, \boldsymbol{x}_2)^2 = a_1^2 + a_2^2 \text{ where } \boldsymbol{a} = (a_1, a_2, a_3)^T = \boldsymbol{x}_1 \times \boldsymbol{x}_2$$

Algebraic distance

DLT minimizes
$$||Ah|| \longrightarrow e = Ah \longrightarrow$$
 residual vector $e_i \longrightarrow$ partial error vector for each $(x_i \leftrightarrow x_i')$ algebraic error vector

$$egin{aligned} d_{alg}(oldsymbol{x'_i}, Holdsymbol{x_i})^2 &= \|e_i\|^2 = \left\|egin{bmatrix} 0^T & -w_i'oldsymbol{x}_i^T & -y_i'oldsymbol{x}_i^T & -y_i'oldsymbol{x}_i^T \ -w_i'oldsymbol{x}_i^T & 0^T & -x_i'oldsymbol{x}_i^T \end{bmatrix} h
ight\|^2 & algebraic \ distance \ d_{alg}(oldsymbol{x_1}, oldsymbol{x_2})^2 &= a_1^2 + a_2^2 \ ext{where} & oldsymbol{a} = (a_1, a_2, a_3)^T = oldsymbol{x_1} imes oldsymbol{x_2} \end{aligned}$$

$$\sum_{i} d_{alg}(\mathbf{x}'_{i}, H\mathbf{x}_{i})^{2} = \sum_{i} \|e_{i}\|^{2} = \|Ah\|^{2} = \|e\|^{2}$$

Not geometrically/statistically meaningful, but given good normalization it works fine, has an unique solution and is very fast (use for initialization)

Geometric distance

x measured coordinates

 \hat{x} estimated coordinates

 \bar{x} true coordinates

d(.,.) Euclidean distance (in image)

2 options: Consider 1 image

Consider 2 images

Ex: Homography between calibration pattern and its image.

Geometric distance

- x measured coordinates
- \hat{x} estimated coordinates
- \bar{x} true coordinates
- d(.,.) Euclidean distance (in image)

Error in just one image

Geometric distance

x measured coordinates

 \hat{x} estimated coordinates

 \bar{x} true coordinates

d(.,.) Euclidean distance (in image)

Symmetric transfer error Error in both images

$$\hat{H} = \underset{H}{\operatorname{argmin}} \sum_{i} d(\boldsymbol{x}_{i}, H^{-1}\boldsymbol{x}_{i})^{2} + d(\boldsymbol{x}_{i}, H\boldsymbol{x}_{i})^{2}$$
Transfer error in the first in the second image

Transfer error in the second image

Reprojection error

Minimizing the cost function involves determining the homography and a set of correspondences $\to \hat{H}, \hat{x}_i, \hat{x}_i'$

$$(\hat{H}, \hat{\boldsymbol{x}_i}, \hat{\boldsymbol{x}'_i}) = \underset{\hat{H}, \hat{\boldsymbol{x}_i}, \hat{\boldsymbol{x}'_i}}{argmin} \sum_{i} d(\boldsymbol{x}_i, \hat{\boldsymbol{x}_i})^2 + d(\boldsymbol{x}'_i, \hat{\boldsymbol{x}'_i})^2 \text{ subject to } \hat{\boldsymbol{x}'_i} = \hat{H} \hat{\boldsymbol{x}_i}$$

e.g. Estimate a point on the world plane \hat{X}_i from $x_i \Leftrightarrow x_i$ which is then reprojected to the estimated perfectly matched correspondence $\hat{x}_i \Leftrightarrow \hat{x}_i$

 $\hat{m{X}}_i$

Symmetric transfer error X Reprojection error

$$d(x, H^{-1}x')^2 + d(x', Hx)^2$$

$$d(x, \hat{x})^2 + d(x', \hat{x'})^2$$

Statistical cost function and Maximum Likelihood Estimation

- Optimal estimate of $H \to \text{need a noise model}$.
- Assume zero-mean isotropic Gaussian noise (assume outliers removed).
- Defining the pdf of the noise and the MLE of the homography results on minimizing the geometric error.
- Error in one image.

Maximum Likelihood Estimate

$$\sum_{i} d(\boldsymbol{x'_i}, H\bar{\boldsymbol{x}_i})^2$$

Statistical cost function and Maximum Likelihood Estimation

- Optimal estimate of $H \to \text{need a noise model}$.
- Assume zero-mean isotropic Gaussian noise (assume outliers removed).
- Defining the pdf of the noise and the MLE of the homography results on minimizing the reprojection error.
- Error in both images.

Maximum Likelihood Estimate

$$\sum_{i} d(\boldsymbol{x}_{i}, \hat{\boldsymbol{x}}_{i})^{2} + d(\boldsymbol{x}_{i}, \hat{\boldsymbol{x}}_{i})^{2}$$

- Are the properties and performance of the DLT algorithm invariant to transformations?
- Will result change?
- For which algorithms? For which transformations?

x' = Hx

- Are the properties and performance of the DLT algorithm invariant to transformations?
- Will result change?
- For which algorithms? For which transformations?

- Are the properties and performance of the DLT algorithm invariant to transformations?
- Will result change?
- For which algorithms? For which transformations?

- Are the properties and performance of the DLT algorithm invariant to transformations?
- Will result change?
- For which algorithms? For which transformations?

$$? \\ H = T'^{-1}\tilde{H}T$$

- Are the properties and performance of the DLT algorithm invariant to transformations?
- Will result change?
- For which algorithms? For which transformations?

$$? \\ H = T'^{-1}\tilde{H}T$$

Non-invariance of DLT

- DLT is not invariant to similarity transformations on the image.
- Results depend on the coordinate frame in which points are expressed.
- Some coordinate systems are in some way better than others for computing a 2D homography.
- Data normalization is an essential step in the DLT algorithm. It **MUST NOT** be considered optional.

Normalizing transformations

- Algorithms with initial normalization step will be invariant to arbitrary choices of scale and coordinate origin
- What is a good choice of coordinates?
 - Translate centroid to origin.
 - Scale to a $\sqrt{2}$ average distance to the origin. This means that the average point is equal to $(1,1,1)^T$.
 - This transformation is applied independently on both images.

Importance of normalization

$$\begin{bmatrix} 0 & 0 & 0 & -\boldsymbol{x'_i} & -\boldsymbol{y'_i} & -1 & \boldsymbol{y'_i}\boldsymbol{x_i} & \boldsymbol{y'_i}\boldsymbol{y_i} & \boldsymbol{y'_i} \\ \boldsymbol{x_i} & \boldsymbol{y_i} & 1 & 0 & 0 & 0 & -\boldsymbol{x'_i}\boldsymbol{x_i} & -\boldsymbol{x'_i}\boldsymbol{y_i} & -\boldsymbol{x'_i} \end{bmatrix} \begin{bmatrix} h^1 \\ h^2 \\ h^3 \end{bmatrix} = 0$$

$$\sim 10^2 \sim 10^2 \ 1 \sim 10^2 \ \sim 10^2 \ 1 \sim 10^4 \ \sim 10^4 \ \sim 10^4$$

orders of magnitude difference!

The effect of normalization (simulation): 5 point (crosses) were used to compute a 2D Homography. The homography H is the identity mapping. 100 trials were made adding 0.1 pixel Gaussian noise to the points. The result H was applied to a further point. (a) result without normalization and (b) with normalization.

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

• Normalize points $\tilde{x}_i = T x_i$, $\tilde{x}_i = T'x_i$

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

- Normalize points $\tilde{x}_i = T x_i$, $\tilde{x}_i = T'x_i$
- Apply DLT algorithm to $\tilde{x}_i \leftrightarrow \tilde{x}_i$ '

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

- Normalize points $\tilde{x}_i = T x_i$, $\tilde{x}_i = T'x_i$
- Apply DLT algorithm to $\tilde{x}_i \leftrightarrow \tilde{x}_i$ '
- Denormalize solution $H = T'^{-1}\tilde{H}T$

Normalized DLT

Iterative minimization methods

Required to minimize geometric error:		Therefore, careful implementation required:	
(i)	Often slower than DLT	(i)	Cost function
(ii)	Require initialization	(ii)	Parameterization (minimal or not)
(iii)	No guaranteed convergence, local minima	(iii)	Function specification(cost \leftrightarrow parameters)
(iv)	Stopping criterion required	(iv)	Initialization
		(v)	Iterations

Parametrization

- Parameters should cover complete space and allow efficient estimation of cost.
- Minimal or over-parameterized? e.g. 8 or 9
 - Minimal often more complex, also cost surface.
 - Sometimes stuck in local minimum.
 - Good algorithms can deal with over-parameterization.
- Parametrization can also be used to restrict transformation to particular class.

Function specifications

- Measurement vector $X \in \mathbb{R}^N$ with covariance Σ
- (i) Set of parameters represented by vector $P \in \mathbb{R}^{M}$
- (ii) Mapping $f: \mathbb{R}^{M} \to \mathbb{R}^{N}$
- (iii) Cost function to be minimized

The goal is to find a set of parameters P such that f(P) = X or failing that, to bring f(P) as close to X as possible

Error in one image

- Points in the first image without error.
- Measurements \rightarrow point in the second image.
- Find *H* that minimizes the cost function.

$$\sum_{i} d(\boldsymbol{x}_{i}^{\prime}, H\bar{\boldsymbol{x}}_{i})^{2}$$

$$f: h \to (H\bar{\boldsymbol{x}}_{1}, H\bar{\boldsymbol{x}}_{2}, \dots, H\bar{\boldsymbol{x}}_{n})$$

$$\|\boldsymbol{X} - f(h)\|$$

Error in one image

- Points in the first image without error.
- Measurements \rightarrow point in the second image.
- Find *H* that minimizes the cost function.

Symmetric transfer error

- Measurements \rightarrow points in both images.
- Find H that minimizes the cost function.

$$\sum_{i} d(\boldsymbol{x}_{i}^{\prime}, H\bar{\boldsymbol{x}}_{i})^{2}$$

$$f: h \to (H\boldsymbol{x}_{1}, H\boldsymbol{x}_{2}, \dots, H\boldsymbol{x}_{n})$$

$$\|\boldsymbol{X} - f(h)\|$$

$$\sum_{i} d(\boldsymbol{x}_{i}, H^{-1}\boldsymbol{x}_{i}^{\prime})^{2} + d(\boldsymbol{x}_{i}^{\prime}, H\boldsymbol{x}_{i})^{2}$$

$$f: h \to (H^{-1}\boldsymbol{x}_{1}^{\prime}, \dots, H^{-1}\boldsymbol{x}_{n}^{\prime}, H\boldsymbol{x}_{1}, \dots, H\boldsymbol{x}_{n})$$

$$\|\boldsymbol{X} - f(h)\|$$

Error in one image

- Points in the first image without error.
- Measurements \rightarrow point in the second image.
- Find *H* that minimizes the cost function.

Symmetric transfer error

- Measurements \rightarrow points in both images.
- Find *H* that minimizes the cost function.

Reprojection error

• Find H and points that minimizes the cost function.

$$\sum_{i} d(\boldsymbol{x'_i}, H\bar{\boldsymbol{x}_i})^2$$
 $f: h \to (H\boldsymbol{x}_1, H\boldsymbol{x}_2, \dots, H\boldsymbol{x}_n)$
 $\|\boldsymbol{X} - f(h)\|$

$$\sum_{i} d(\boldsymbol{x}_{i}, H^{-1}\boldsymbol{x}_{i}^{\prime})^{2} + d(\boldsymbol{x}_{i}^{\prime}, H\boldsymbol{x}_{i})^{2}$$

$$f: h \to (H^{-1}\boldsymbol{x}_{1}^{\prime}, \dots, H^{-1}\boldsymbol{x}_{n}^{\prime}, H\boldsymbol{x}_{1}, \dots, H\boldsymbol{x}_{n})$$

$$\|\boldsymbol{X} - f(h)\|$$

$$\sum_{i} d(\boldsymbol{x}_{i}, \hat{\boldsymbol{x}}_{i})^{2} + d(\boldsymbol{x}_{i}, \hat{\boldsymbol{x}}_{i})^{2}$$

$$f: (h, \hat{\boldsymbol{x}}_{1}, \dots, \hat{\boldsymbol{x}}_{n}) \rightarrow (\hat{\boldsymbol{x}}_{1}, \hat{\boldsymbol{x}}_{1}, \dots, \hat{\boldsymbol{x}}_{n}, \hat{\boldsymbol{x}}_{n})$$

$$\|\boldsymbol{X} - f(h)\|$$

Initialization

- Typically, use linear solution
- If outliers, use robust algorithm

Iteration methods

- Most popular:
 - Newton's method
 - Levenberg-Marquardt

Gold Standard algorithm

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \longleftrightarrow x_i'\}$, determine the Maximum Likelyhood Estimation of H (this also implies computing optimal $\hat{x}_i' = \hat{H}\hat{x}_i$)

Gold Standard algorithm

<u>Objective</u>

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \longleftrightarrow x_i'\}$, determine the Maximum Likelyhood Estimation of H (this also implies computing optimal $\hat{x}_i' = \hat{H}\hat{x}_i$)

Algorithm

(i) Initialization: compute an initial estimate using normalized DLT or RANSAC

Gold Standard algorithm

<u>Objective</u>

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \longleftrightarrow x_i'\}$, determine the Maximum Likelyhood Estimation of H (this also implies computing optimal $\hat{x}_i' = \hat{H}\hat{x}_i$)

Algorithm

- (i) Initialization: compute an initial estimate using normalized DLT or RANSAC
- (ii) Geometric minimization of Gold Standard error:
 - compute initial estimate for optimal $\{\hat{x}_i\}$ from $\{x_i\}$
 - minimize cost $\Sigma d(\boldsymbol{x}_i, \hat{\boldsymbol{x}}_i)^2 + d(\boldsymbol{x}_i', \hat{\boldsymbol{x}}_i')^2$ over $\{\hat{H}, \hat{\boldsymbol{x}}_1, \hat{\boldsymbol{x}}_2, \hat{\boldsymbol{x}}_3, ..., \hat{\boldsymbol{x}}_n\}$
 - if many points, use sparse method

RANSAC RANdom Sample Consensus

Robust estimation

• What if set of matches contains gross outliers?

Objective

Robust fit of model to data set S which contains outliers

<u>Objective</u>

Robust fit of model to data set S which contains outliers

Algorithm

(i) Randomly select a sample of s data points from S and instantiate the model from this subset.

Objective

Robust fit of model to data set S which contains outliers

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.

Objective

Robust fit of model to data set S which contains outliers

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- (iii) If the subset of S_i is greater than some threshold T, re-estimate the model using all the points in S_i and terminate

Objective

Robust fit of model to data set S which contains outliers

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- (iii) If the subset of S_i is greater than some threshold T, re-estimate the model using all the points in S_i and terminate
- (iv) If the size of S_i is less than T, select a new subset and repeat the above.

Objective

Robust fit of model to data set S which contains outliers

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- (iii) If the subset of S_i is greater than some threshold T, re-estimate the model using all the points in S_i and terminate
- (iv) If the size of S_i is less than T, select a new subset and repeat the above.
- (v) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i

Distance threshold

Choose t so probability for inlier is α (e.g. 0.95)

- Often empirically.
- Zero-mean Gaussian noise σ then the square of the point distance d_{\perp}^2 follows a X_m^2 distribution with m = codimension of model.

 $(dimension+codimension=dimension\ space)$

Codimension	Model	t^{2}
1	$_{ m l,F}$	$3.84 \sigma^2$
2	$_{\mathrm{H,P}}$	$5.99 \sigma^2$
3	${ m T}$	$7.81 \sigma^2$

How many samples?

Choose N so that, with probability p, at least one random sample is free from outliers. e.g. p=0.99. Suppose e is the propability that any selected point is an outlier, then at least N selections (each of s points) are require so that $(1-(1-e)^s)^N=1-p$.

Sample size	Proportion of Outliers e						
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

$$N = \frac{\log(1-p)}{\log(1-(1-e)^s)}$$

Acceptable consensus set?

• Typically, terminate when the consensus set is similar to the expected number of inliers

$$T = (1 - e)n$$

- Adaptively determining the number of samples:
 - e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
 - $N=\infty$, sample count =0
 - While $N > sample_count$ repeat
 - Choose a sample and count the number of inliers
 - Set e=1-(number of inliers)/(total number of points)
 - Recompute N from e, usually with p = 0.99
 - Increment the sample_count by 1

$$N = log(1 - p)/log(1 - (1 - e)^s)$$

Robust Algorithm

• Use RANSAC to maximize the number of inliers

Robust Algorithm

• Use RANSAC to maximize the number of inliers

Bad matches \rightarrow outliers

<u>Objective</u>

Compute homography between two images

Objective

Compute homography between two images

Algorithm

(i) Interest points: Compute interest points in each image

Objective

Compute homography between two images

- (i) Interest points: Compute interest points in each image
- (ii) Putative correspondences: Compute a set of interest point matches based on some similarity measure

Objective

Compute homography between two images

Algorithm

- (i) Interest points: Compute interest points in each image
- (ii) Putative correspondences: Compute a set of interest point matches based on some similarity measure
- (iii) RANSAC robust estimation: Repeat for N samples
 - (a) Select 4 correspondences and compute H
 - (b) Calculate the distance d_i for each putative match
 - (c) Compute the number of inliers consistent with H ($d_i < t$)

Choose H with most inliers

Objective

Compute homography between two images

Algorithm

- (i) Interest points: Compute interest points in each image
- (ii) Putative correspondences: Compute a set of interest point matches based on some similarity measure
- (iii) RANSAC robust estimation: Repeat for N samples
 - (a) Select 4 correspondences and compute H
 - (b) Calculate the distance d_i for each putative match
 - (c) Compute the number of inliers consistent with H ($d_i < t$)

Choose H with most inliers

(vii) Optimal estimation: re-estimate H from all inliers by minimizing ML cost function with Levenberg-Marquardt

Objective

Compute homography between two images

Algorithm

- (i) Interest points: Compute interest points in each image
- (ii) Putative correspondences: Compute a set of interest point matches based on some similarity measure
- (iii) RANSAC robust estimation: Repeat for N samples
 - (a) Select 4 correspondences and compute H
 - (b) Calculate the distance d_i for each putative match
 - (c) Compute the number of inliers consistent with H ($d_i < t$)

Choose H with most inliers

- (vii) Optimal estimation: re-estimate H from all inliers by minimizing ML cost function with Levenberg-Marquardt
- (viii) Guided matching: Determine more matches using prediction by computed H

Optionally iterate last two steps until convergence

Example

Image 1

Image $2 \to \text{Image } 1$

Image 2

Image 1 \rightarrow Image 2

Determine putative correspondences

- Compare interest points using similarity measure:
 - SAD, SSD, ZNCC on small neighborhood
- If motion is limited, only consider interest points with similar coordinates
- More advanced approaches exist, based on invariance...
 - SIFT
 - SURF
 - others

Example: robust computation

Interest points (500/image)

Putative correspondences (268) Outliers (117)

Inliers (151) Final inliers (262)

Credits

- Richard Hartley and Andrew Zisserman. Multiple View
 Geometry in Computer Vision. Cambridge,
 ISBN 0521623049
- Based on slides from Marc Pollefeys https://www.cs.unc.edu/~marc/mvg/slides.html