Math Background

Z. Jerry Shi
Department of Computer Science and Engineering
University of Connecticut

Special Topics

Quiz

There are two containers.

Their capacities are 11 gallons and 7 gallons.

How can you use the two containers to measure 5 gallons water?

Is it hard?

Prime numbers

- An integer that is greater than 1 and whose only positive divisors are 1 and itself
- Numbers that are not prime are composites
- 1 is neither a prime nor a composite

Every number > 1 can be written as a product of prime numbers, and there is only one way.

$$12 = 2^2 \times 3$$

$$15 = 3 \times 5$$

Unique factorization of integers (fundamental theorem of number theory)

Question

- How many positive divisors does 72 have?
 - Including 1 and 72

Factorization

Given n, find all its prime factors.

For example:

135066410865995223349603216278805969938881475605667027 524485143851526510604859533833940287150571909441798207 282164471551373680419703964191743046496589274256239341 020864383202110372958725762358509643110564073501508187 510676594629205563685529475213500852879416377328533906 109750544334999811150056977236890927563

Is it hard?

Factorization - 2

- Factorization is a hard problem!
 - More formally, intractable problem
- Best algorithm for b bits numbers: $\exp((c + o(1))b^{1/3}\log^{2/3}b)$
- The largest number factored was RSA-768 (768-bit long) in 2009
 - Hundreds of computers over 2 years
- Factoring 1024-bit numbers is about 1,000 harder

Onewayness:

Given (large) prime numbers, it is easy to find their product. Given a (large) product, it is hard to find its factors.

How many prime numbers?

- There are infinite number of prime numbers.
 - The largest is $2^{74,207,281}$ -1 (as of Jan 2016)
- The number of prime numbers $\leq x$ is about $x / \ln(x)$.
 - So the probability of randomly chosen number is prime is $1 / \ln(x)$.
- The prime numbers become sparse.
- Twin prime: both p and p+2 are prime.
 - The difference is 2 (and the gap is 1).

• Yitang Zhang proved in 2013 that there are infinitely many gaps that do not exceed by 7×10^7 . The gap was reduced to 246 in 2015.

Find prime numbers

Given n, find all prime numbers $\leq n$.

The sieve of Eratosthenes

- List all the numbers from 1 to n
- Start from 2, delete all multiples of prime numbers $-2, 3, 5, ..., \sqrt{n}$
- All remaining numbers are prime

When n is large, the process takes loooooong time

Primality test

Given a positive number *n*, is *n* prime?

Note that the problem is different from factorization.

Primality test in practice

Fermat primality test (we are going to learn in a moment)

Miller-Rabin and Solovay-Strassen primality test

AKS test runs in polynomial time (still slow in practice)

Greatest common divisor (GCD)

• The GCD of two or more non-zero integers is the largest positive integer that divide all the integers

Example:

$$gcd(3,9) = 3$$

$$\gcd(2^{20} \cdot 3^{50}, 2^{10} \cdot 3^5 \cdot 7) = 2^{10} \cdot 3^5$$

$$\gcd(5,7)=1$$

$$gcd(221, 403) =$$

Is it hard?

Find gcd: Euclidean Algorithm

Suppose $N > D \ge 0$

Let
$$i = 0$$
, $N_0 = N$, $D_0 = D$.

- 1. Find $N_i = D_i \cdot q_i + r_i$ (Quotient-Remainder Theorem) $0 \le r_i < D_i$
- 2. If $r_i = 0$, return D_i
- 3. $N_{i+1} = D_i$, $D_{i+1} = r_i$
- 4. Increment *i* and goto Step 1

The algorithm works because $gcd(N_i, D_i) = gcd(N_{i+1}, D_{i+1})$

Coprime

- If two integers do not have any common positive factor other than 1, they are relatively prime, mutually prime, or coprime
 - -x and y are co-prime if and only if gcd(x, y) = 1
 - 1 is considered to be relatively prime to all numbers

Example

5 and 21

6 and 25

Modular Arithmetic

Quotient-Remainder Theorem

Given any integer n and an integer m > 0, there exist unique integers q and r such that

$$n = q \cdot m + r$$
 and $0 \le r < m$

$$r = n \mod m$$

Properties of modular arithmetic:

 $(x+y) \mod m = ((x \mod m) + (y \mod m)) \mod m$.

 $(x - y) \mod m = ((x \mod m) - (y \mod m)) \mod m$.

 $(x y) \mod m = ((x \mod m) (y \mod m)) \mod m.$

Notation Properties of modular arithmetic

Instead of writing mod everywhere, we can write like this:

$$a = x^3 + y - z \pmod{m}$$

or formally,

$$a \equiv x^3 + y - z \pmod{m}$$

Example

$$7^{12} + 5^3 = 2^{12} + 0^3 \pmod{5}$$

 $a \equiv b \pmod{m}$: a and b are congruent modulo mWhen divided by m, a and b have the same remainder. a - b is a multiple of m.

Fermat's Little Theorem (FLT)

 $a^p \equiv a \pmod{p}$ for every prime p and every integer a.

If this is not true for some a, p is not prime.

We can use FLT for primarily test, but there are better algorithms.

Modular exponentiation

Compute the following:

2⁶⁵ mod 11

2¹²³⁴⁵⁶⁷⁸⁹¹²³⁴⁵⁶⁷⁸⁹ mod 11

Is it hard?

Group

- A group is defined as a set of elements G and an operation O such that
 - Closure
 - If a and b are in G, $c = a \bigcirc b$ is also in G.
 - Associativity
 - $(a \bigcirc b) \bigcirc c = a \bigcirc (b \bigcirc c)$.
 - Identity element e
 - $a \bigcirc e = a$.
 - Inverse element
 - Any a, there exists b such that a \bigcirc b = e.
- If the operation in a group is also commutative, the group is an abelian group

$$a \bigcirc b = b \bigcirc a$$
.

Group Example

Integers and addition form a group

Integers and multiplication is not a group

https://www.youtube.com/watch?v=qvx9TnK85bw&list=PLi01XoE8jYoi3Sgnn GorR_XOW3IcK-TP6&index=10

Residue classes modulo m

- A set of numbers $Z_m = \{0, 1, 2, ..., m-1\}$ is called residue classes modulo m
 - All remainders of integers modulo m
 - Can also be denoted as Z(m) or Z/mZ
- Z_m and addition (+) form an abelian group
 - $-a + b \pmod{m}$ is between 0 and m 1
 - -(a+b)+c=a+(b+c)
 - a + 0 = a
 - Any a, the additive inverse of a is m a
 - $a + (m a) = 0 \pmod{m}$
 - a + b = b + a

Multiplication

Let $Z_m \setminus \{0\}$ denote Z_m excluding 0

Do $Z_m \setminus \{0\}$ and * (multiplication) form a group?

Example of Multiplicative Group

$$Z_5 \setminus \{0\} = \{1, 2, 3, 4\}$$

Let a and b are the numbers in the set.

$$a \cdot b$$
 is also in the set
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 $a \cdot 1 = 1 \cdot a$
 $1 \cdot 1 = 1, \quad 2 \cdot 3 = 1, \quad 4 \cdot 4 = 1$

Example of Multiplicative Group

$$Z_6 \setminus \{0\} = \{1, 2, 3, 4, 5\}$$

Let a and b are the numbers in the set.

```
a \cdot b is also in the set

a \cdot (b \cdot c) = (a \cdot b) \cdot c

a \cdot 1 = 1 \cdot a

1 \cdot 1 = 1,

2 \cdot ? = 1 3 \cdot ? = 1 4 \cdot ? = 1
```

Group and multiplication

Let $Z_m \setminus \{0\}$ denote Z_m excluding 0

Do $Z_m \setminus \{0\}$ and * form a group?

If *m* is prime, yes.

If *m* is not prime, no.

 Z_m^* is Z_m with elements that are not coprime to m removed 0 is removed

 Z_m^* and * form a group

Example of Multiplicative Group

$$Z_8$$
* = {1, 3, 5, 7}

$$Z_5 \setminus \{0\} = \{1, 2, 3, 4\}$$

Multiplication table in groups. Also called Cayley table.

Division

$$Z_8$$
* = {1, 3, 5, 7}

$$\frac{5}{3} = 5 \times 3^{-1} = 5 \times 3 = 7$$

Is it hard?

Find the inverse: Euclidean Algorithm

We use Euclidean algorithm to find gcd.

We can use it to find the inverse (extended Euclidean algorithm)

Given a and n, use Euclidean algorithm to find gcd(a, n).

If a and n are coprime, find x and k so that

$$a \cdot x + k \cdot n = 1$$

x is the inverse of a mod n because $a \cdot x \equiv 1 \pmod{n}$.

Note: the first term is $a \cdot x$, not $-a \cdot x$

If a and n are not coprime, gcd (a, n). a does not have an inverse.

Example: use Euclidean algorithm to find the inverse

Example: a = 31, n = 72. Find the inverse of $a \mod n$.

Step 1:

Dividend	Divisor	Remainder							
72	31	10	72	=	31	*	2	+	10
31	10	1	31	=	10	*	3	+	1
gcd(31, 72) = 1 (they are coprime)									

Step 2:
$$72 - 32 * 2 = 10$$

 $31 - 10 * 3 = 1$
 $31 - (72 - 31 * 2) * 3 = 1$
 $31 - 72 * 3 + 31 * 2 * 3 = 1$
 $31 * 7 + 72 * (-3) = 1$

Therefore, 7 is the inverse of 31.

Fermat's Little Theorem (FLT) and the inverse

 $a^p \equiv a \pmod{p}$ for every prime p and every integer a

- If $a \neq 0$, $a^{p-1} \equiv 1 \pmod{p}$
 - Divide both sides by a
- a^{p-2} is the inverse of a in \mathbb{Z}_p

$$a^{p-1} = a \cdot a^{p-2} = 1 \pmod{p}$$

 $\therefore a^{-1} = a^{p-2}$

Finite group

- A group is called finite if it has a finite number of elements
- The number of elements is the order of the group
 - Denoted as |G|
- In group (G, \cdot) , the order of an element a is t if

$$\underbrace{a \cdot a \cdot \cdots \cdot a}_{t} = \mathbf{1}$$

assuming 1 is the identity element

Cyclic group

- A cyclic group is a group all of whose elements can be generated from a single element
 - The element is called a primitive element, or a generator
- If the operation is addition, each element is a multiple of the generator
- If the operation is multiplication, each element is a power of the generator

• A cyclic group is abelian (commutative)

One line proof:

$$x + y = ag + bg = (a + b)g = (b + a)g = y + x$$

Example: Cyclic group

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 and + $0 = 6 * 5, 1 = 5 * 5, 2 = 4 * 5, 3 = 3 * 5, 4 = 2 * 5, 5 = 1 * 5$ 5 is a generator. 2, 3, and 4 are not.

Multiplicative group of Z_5 , excluding 0, is cyclic

$$2^0 = 1$$
 $2^1 = 2$ $2^2 = 4$ $2^3 = 3$

Multiplicative group of \mathbb{Z}_8^* is not cyclic (see the multiplication table)

Example: Cyclic group

$$Z_9^* = \{1, 2, 4, 5, 7, 8\}$$

* 1 2 4 5 7 8

1 1 2 4 5 7 8

2 2 4 8 1 5 7

4 4 8 7 2 1 5

5 5 1 2 7 8 4

7 7 5 1 8 4 2

8 7 5 4 2 1

6 elements. 2 is a generator.

Not every element in a cyclic group is a generator.

For example, 4 is not a generator $4^0 = 1$, $4^1 = 4$, $4^2 = 7$, $4^3 = 1$.

Powers of 2:

exponents: 0 1 2 3 4 5 6

results: 1 2 4 8 7 5 1

 Z_9 * = <2>

Discreet Logarithm Problem (DLP)

Suppose G is a multiplicative cyclic group and a generator g of G. Given an element h of G, find x such that

$$g^{x} = h$$

DLP is a hard problem if the group is chosen carefully.

Commonly used groups: \mathbb{Z}_p^* where p is a large safe prime. Example: p is 1024 bits, and (p-1)/2 is also prime

Onewayness: easy from x to h, hard from h to x.

n-th root

- Find the n^{th} root of $c \mod n$
- It is hard if the factors of n is unknown

For example: $\sqrt{c} \pmod{n}$

Is \sqrt{c} (mod 2⁶⁴) hard?

Number of elements in a group

• How many elements are in the following group?

 Z_p^* where p is prime.

 \mathbb{Z}_m

Euler's totient function (1)

- If $0 < x \le n$, and x is relatively prime to n, x is a totative of n x and n do not a common divisor that is larger than 1
- Euler's totient function $\varphi(n)$ is the number of totatives of n

$$\varphi(1) = 1$$
, $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(4) = 2$, $\varphi(5) = 4$, $\varphi(6) = 2$, ...

 $\varphi(24) = 8$ The set of totatives is $\{1, 5, 7, 11, 13, 17, 19, 23\}$.

 $\varphi(p) = p - 1$ if p is prime

Euler's totient function (2)

Suppose n > 1, and the standard factored form of n is

$$n = p_1^{k_1} p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$$

$$\varphi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_r} \right)$$
$$= n \sum_{i=1}^r \left(1 - \frac{1}{p_i} \right)$$

Totient function example

$$\varphi(9) = \varphi(3^2) = 9\left(1 - \frac{1}{3}\right) = 6$$

$$\varphi(10) = \varphi(2 \times 5) = 10\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{5}\right) = 4$$

$$\varphi(100) = \varphi(2^2 \times 5^2) = 100\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{5}\right) = 40$$

Example: product of two prime numbers

If p and q are prime, and n = pq,

$$\varphi(n) = n\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = (p - 1)(q - 1)$$

Check:

Among pq - 1 numbers, these are not totatives:

$$p, 2p, 3p, ..., (q-1)p$$

$$q, 2q, 3q, ..., (p-1)q$$

Therefore,
$$\varphi(n) = (pq - 1) - (p - 1 + q - 1) = (p - 1)(q - 1)$$

Computing Euler's totient function

- If *n* 's factors are known, it is easy to compute $\varphi(n)$
 - Otherwise, it is hard
- The two problems are equivalent

Carmichael's totient function conjecture:

For every positive integer n, there exists a positive integer m such that $\varphi(m) = \varphi(n)$ and $m \neq n$.

Euler's theorem

• If n is a positive integer and a is coprime to n, then

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

- A generalization of Fermat's little theorem
 - $-a^p \equiv a \pmod{p}$ for every prime p and every integer a
 - $\text{ If } a \neq 0, a^{p-1} \equiv 1 \pmod{p}$
- Further generalized by Carmichael's theorem
 - The exponent is smaller (than $\varphi(n)$)

Find the inverse - 3

Given Z_n^* , how to find the mupltiplicative inverse of an element a.

If you know $\varphi(n)$,

$$a^{\varphi(n)} = 1 \mod n$$
 (Euler's theorem)
 $a \cdot a^{\varphi(n)-1} = 1 \mod n$
 $a^{-1} = a^{\varphi(n)-1} \mod n$

Special case:
$$n$$
 is prime, $\varphi(n) = n - 1$.

$$a^{-1} = a^{n-2} \mod n$$

Summary of problems

Can you identify the hard problems?

- Primality test
- Multiplication
- Exponentiation
- Factorization
- Find GCD
- Find modular inverse
- Discreet logarithm problem (DLP)
- Euler's totient function
- n-th root

Field

- A field has addition, subtraction, multiplication and division
 - Allow division, but not division by zero
- A field has the following elements:
 - -F, +, -, *, /, 0, 1
 - There are two groups in a field
 - F, +, -, 0
 - $F^*=F\setminus\{0\}$, *, /, 1 The multiplicative group of the field.

Finite field (Galois field)

- A filed with finitely many elements
 - The number of elements in a field is the order of the field
- If p is prime, $Z_p = \{0, 1, \dots p-1\}$ is a finite field
 - Also denoted as F_p or GF(p)
- For every prime number p and positive integer n, there exists a finite field with p^n elements
- The order of a field can be represented as p^n , where p is prime
 - p is called the characteristic of the field
 - Called a prime field if n = 1
 - Called a binary field if p = 2
- Any two finite fields with the same number of elements are isomorphic

Multiplicative group in a finite field is cyclic

- The multiplicative group of a finite field is a cyclic group
- There are $\varphi(q-1)$ generators for a group of size q
 - $\varphi(x)$ is the Euler's totient function

Links

• V. Shoup. A Computational Introduction to Number Theory and Algebra. https://shoup.net/ntb/ntb-v2.pdf

Évariste Galois

- Many myths surround Galois and his work
 - Trying to solve equations
 - General solution to quadratic equation was found many years ago
 - Solution also found for cubic and quartic equations
 - But how about quintic equations?
 - Submitted the paper to Grand Prize of the Paris Academy (1830)
 - Paper was rejected
 - Niels Henrik Abel proved quintic equations have no general solution (1826)
 - Extended the paper and ...
 - Submitted to Fourier. Unfortunately, Fourier died and the paper was lost
 - Submitted to Cauchy, but Cauchy lost it
 - That year's Prize was awarded to Abel and Carl Jacobi
 - Tried a year later
 - Nobody understood it
 - Three papers were published in 1830
 - Galois theory
 - Died on May 31, 1832 at the age of 20

Ring

Add multiplication operation (•) on an abelian group with addition

- The abelian group is a ring if
 - Multiplication is closed
 - a b is also an element in the set
 - Multiplication is commutative

•
$$a \cdot b = b \cdot a$$

Multiplication associative

•
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

- There is a multiplication identity 1

•
$$a • 1 = 1 • a = a$$

The distributive property is satisfied

•
$$(a + b) \cdot c = (a \cdot c) + (b \cdot c)$$

•
$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Examples of ring

- Integers Z
- Real number R
- Complex numbers C
- Z_m is a ring
 - Z_m is a finite ring