Fundamental Mechanics: Quiz 10

15 November 2016

Name: Taylor Larrechea

Total:

3.5 / 5

Formulae:

$$\Delta s = r\Delta \theta$$
 $\omega = \frac{d\theta}{dt}$ $\alpha = \frac{d\omega}{dt}$ $v_t = \omega r$ $a_t = \alpha r$ $g = 9.80 \,\mathrm{m/s^2}$ $\sigma = \frac{\sum x_i m_i}{r^2}$ $\sigma = \frac{\sum x_i m_i}{r^2}$

$$x_{\rm cm} = rac{\sum x_i m_i}{\sum m_j}$$
 $y_{\rm cm} = rac{\sum y_i m_i}{\sum m_j}$ $I = \sum m_i r_i^2$ $au = rF \sin \phi$

$$I = \sum m_i r_i^2 \qquad \tau = rF$$

A disk with radius R can rotate about an axle through its center. Three ropes are attached to various points on the disk and pull as indicated. The magnitudes of the tensions are: $T_1 = 100 \,\mathrm{N}, T_2 = 150 \,\mathrm{N}, \text{ and } T_3 = 80 \,\mathrm{N}.$ The angle between $\overline{\mathbf{T}}_2$ and the horizontal is 45°. Rank the torques (about the center of the disk) in order of increasing magnitude.

$$T_1 = c F \sin 90$$

 $T_2 = \frac{1}{2} c F \sin 45^\circ$
 $T_3 = \frac{77}{3} (-1)$

