11210IPT553000 Deep Learning in Biomedical Optical Imaging

Week4
Improving Deep Neural Networks
Hyperparameter Tuning, Regularization and Optimization

Instructor: Hung-Wen Chen @NTHU, Fall 2023 2023/10/02 SPONSORED BY

Outline of Today's Lecture

• Practical aspects of Deep Learning (Course 2 Week 1)

• Lab Practice: Hyperparameter Tuning

More Activation Functions

Activation Function

Maxout

- The Maxout activation is a generalization of the ReLU and the leaky ReLU functions.
- It is a learnable activation function.
- It is a piecewise linear function that returns the maximum of the inputs, designed to be used in conjunction with the dropout regularization technique.
- But, it doubles the no. of parameter for each return, so there is a trade-off.

Maxout

Activation Function

Maxout

Activation Function

I-V relationship of ion channels

Ohmic vs Rectifying Channels

Practical aspects of Deep Learning

Applied ML is a highly iterative process

Hyperparameters

layers

hidden units

learning rates

activation functions

Idea Code Experiment

• • •

Train/dev/test sets

Hold-out Cross-Validation

K-fold Cross-Validation

Proportion

Small dataset (100, 1000, or <10,000)

Train/dev/test sets

Mismatched train/test distribution

Training set: Cat pictures from webpages

(high-resolution & professional photos)

Dev/test sets:
Cat pictures from
users using your app

(blurry and low-resolution photos taken by cell phone)

Make sure Dev set and Test set come from the same distribution

Not having a test set might be okay. (Only dev set.)

Setting Up Your ML Application

Bias and variance

high bias underfitting

"Just right"

high variance overfitting

Setting Up Your ML Application

Bias and Variance

Cat classification

Train set erro	er: 1%	15%	15%	0.5%
Dev set error:	11%	16%	30%	1%
	low bias	high bias	high bias	low bias
	high variance	low variance	high variance	low variance

underfitting

Human error (Bayes error): ~0%

overfitting

Overfitting

Which Trendline is Better?

Overfitting

Which Trendline is Better?

TRAINING VS VALIDATION DATA

Avoid memorization

Training data

Core dataset for the model to learn on

Validation data

 New data for model to see if it truly understands (can generalize)

Overfitting

- When model performs well on the training data, but not the validation data (evidence of memorization)
- Ideally the accuracy and loss should be similar between both datasets

Setting Up Your ML Application

Basic "recipe" for machine learning

How does regularization prevent overfitting?

$$Y = b + \sum w_i x_i$$

λ: regularization parameter

$$L = \sum_{n} \left(\hat{y}^n - \left(b + \sum_{i} w_i x_i \right) \right)^2 + \lambda \sum_{i} (w_i)^2$$

$$+\lambda\sum_{n}(w_{i})^{2}$$

Why smooth functions are preferred?

$$+w_i\Delta x_i$$

$$+\Delta x_i$$

If some noises corrupt input x_i when testing, a smoother function be less influenced

$$Y = b + \sum w_i x_i$$

How does regularization prevent overfitting?

L2 regularization:
$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

New loss function:
$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2$$

Gradient:
$$\frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w$$

update:
$$w^{t+1} \to w^t - \alpha \frac{\partial L'}{\partial w} = w^t - \alpha \left(\frac{\partial L}{\partial w} + \lambda w^t \right)$$
$$= (1 - \alpha \lambda) w^t - \alpha \frac{\partial L}{\partial w}$$

Weight Decay

How does regularization prevent overfitting?

L1 regularization:
$$\|\theta\|_1 = |w_1| + |w_2| + ...$$

Update:
$$w^{t+1} \to w^t - \alpha \frac{\partial L'}{\partial w} = w^t - \alpha \left(\frac{\partial L}{\partial w} + \lambda sgn(w^t) \right)$$

$$= w^t - \alpha \frac{\partial L}{\partial w} - \alpha \lambda sgn(w^t) \quad \text{always opposite}$$

$$L2: (1 - \alpha \lambda) w^t - \alpha \frac{\partial L}{\partial w}$$

How does regularization prevent overfitting?

146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q=2 on the left and the lasso regularizer q = 1 on the right, in which the optimum value for the parameter vector w is denoted by w*. The lasso gives a sparse solution in which $w_1^* = 0$.

L2:
$$(1-\alpha\lambda)w^t - \alpha \frac{\partial L}{\partial w}$$

L2 regularization

L2 regularization:
$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

L1 regularization

L1 regularization:
$$\|\theta\|_1 = |w_1| + |w_2| + ...$$

Regularizing Your Neural Network

How does regularization prevent overfitting?

$$\lambda \uparrow$$

$$W^{[l]}\downarrow$$

$$z^{[1](i)} = W^{[l]}a^{[l-1]} + b^{[l]}$$

Every layer becomes ~linear

Dropout Regularization

Weight Decay

Synaptic density

Our brain prunes out the useless links between neurons

Weight Decay is doing the same thing to Machines' brain to improve the performance

Rethinking the Brain, Families and Work Institute, Rima Shore, 1997.

Regularizing your neural network

Dropout regularization

A simple way to prevent neural network from overfitting Randomly set some neurons to zero in the forward pass

Dropout regularization

Making predictions at test time

Note: No dropout at test time

Regularizing your neural network

Dropout regularization

Dropout is a kind of ensemble

Understanding dropout

Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights.

Data Augmentation

Other regularization methods

Data augmentation

4

4

DATA AUGMENTATION

IMAGE FLIPPING

Horizontal Flip

Vertical Flip

ROTATION

ZOOMING

WIDTH AND HEIGHT **SHIFTING**

HOMOGRAPHY

BRIGHTNESS

CHANNEL SHIFTING

Other Regularization Methods

Data augmentation

Data Augmentation

Do augmentation reflect variation in real world?

Data augmentation

Do augmentation keep the label the same?

Data augmentation

Other augmentation methods

Rotate + Flip

Rotate + Crop + Color Noise

Early Stopping

Other Regularization Methods

Early stopping

- Optimize cost function J(w,b)
- Reduce bias
 - Gradient descent
 - RMSprop, Adam,
- Reduce overfitting
- Reduce variance
 - Regularization
 - Getting more data
- Orthogonalization

Early Stopping

Model Checkpoint

Setting up your optimization problem

0

Normalizing Inputs

Normalizing Inputs

Normalizing training sets to speed up training

X

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X^{(i)}$$

$$\sigma^2 = rac{1}{m} \sum_{i=1}^m (X^{(i)})^2$$

Normalizing Inputs

Why normalize inputs?

Weight Initialization

Vanishing/exploding gradients

$$g(Z) = Z$$

$$\hat{Y} = W^{[L]}W^{[L-1]}W^{[L-2]}\cdots W^{[3]}W^{[2]}W^{[1]}X$$

$$w^{[l]} = \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix} > I$$

$$\hat{y} = W^{[L]} 1.5^{L-1} x$$

$$1.5^L$$
 exploding gradients

$$w^{[l]} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} < 1$$

$$\hat{y} = W^{[L]} 0.5^{L-1} x_1$$

$$0.5^L$$
 vanishing gradients

Initialization

Weight Initialization (6-layer MLP)

Exp1. $(\mu = 0, std = 0.01)$

Exp2. $(\mu = 0, std = 1)$

Exp3. ($\mu = 0$, std = 0.05)

Xavier initialization + tanh

Xavier initialization + ReLU

Weight Initialization

Unlike with convex optimization, it matters where you start!

- Initialize with zero: get stuck at the big saddle point.
- Initialize with constant values: difficult to break symmetries.
- Initialize with very large values: off on the great plateaus. Small gradients, slow convergence.

Zero initialization Random initialization He initialization (ReLU) Xavier initialization (tanh)

$$W^{[l]} \sim \mathcal{N}(\mu=0, \sigma^2=rac{1}{n^{[l-1]}})$$
 $b^{[l]}=0$

Use small random values:

 E.g. zero mean Gaussian noise with constant variance

Next Lecture

• Optimization algorithms (Course 2 Week 2)

• Hyperparameter Tuning (Course 2 Week 3)

• ML Strategy (1) (Course 3 Week 1)

• ML Strategy (2) (Course 3 Week 2)

Next: Lab Practice

Hyperparameter Tuning

