ML Classifier Model Notes

Naive Bayes Overview

- * Assumes Feature Independence
 - * ***HOW To CHECK?
- * Commonly used for discrete Features
- * Runs Fast
- * Can Update with new Data Easily
- * Strong Bias, Low Variance

Gaussian NB

- * Assumes a normal distribution of data
- * Non-Multinomial Features
- * Good for Small amount of Data
- * Strong Bias

Multinomial NB

- * Multinomial
 - * Good with text data for large documents
 - * Data is count of that sub categorical
- * Bernoulli
 - * Good for Categorical Data and Small Text Documents (Don't words)
 - * Binary Discrete Data

Kmeans

- * Can test if work by using data cluster metric called Gap
- * Good if noise in data
- * Good with text Data
- * Bad if data doesn't seem cluster
- * Works well if enough Data is Available
- * Non-Linear decision boundary
- * Stores a lot of parameters
- * Use miniBacthClassifier if >100k data points
- * Costly computation of distances

RandomForest

- * Robust to outliers and noise
- * Not pessary to apply Data transformation
- * Amount of Data reliant on Complexity of problem
- * Feature Selection Not that important

SVM

- * overview
 - * Work well if have enough data
 - * Good if very large data set
 - * Not good for imbalanced dataset
 - *Doesn't work well on skewed Data

LinearSVM

- * Great if data contains a clear margin
- * Bad if more features that examples\
- * Optimization much faster than kernel use
- * Parameters to tune
 - * Penalty
 - * 'l2' or 'l1' or elasticNet
 - * Try I2 first, then elastic
 - * L1 Ratio
 - * Make Default Range .15 to .7
 - * 'loss'
 - * 'hinge'
 - * Default- linearModel
 - * 'loø
 - * Assigns probability for classification instead of making a decision
 - * Try for imbalanced data
 - * 'modified huber'
 - * Tolerance to outliers
 - * 'squared hinge'
 - * Quadratically penalized hinge
 - * class weight
 - * ONLY for unbalanced Data
 - * Add with dictionary of class labels

<u>NoNLinearSVM</u>

- * Use if couldn't get good features from LinearSVM
- * Slower optimization
- * Parameters
 - * kernel
 - * 'rbf', 'poly', 'sigmoid'
 - * C
 - * Soft margin cost
 - * Higher C means Higher soft margin
 - * gamma
 - * Higher leads to more bias
 - * class_weight
 - * Set for unbalanced data

My Classifier Function Parameters Methods

Naive Bayes

performGaussianNB(X, y, folds=10, impStrategy= 'mean', preprocess=MaxAbsScaler(), priors=None)

- -performs a Guassian NB
- -Data should have a Normal Distribution
- -can preSet Class priors

performMultiNomNB(X, y, binaryData=False, folds=5, impStrategy= 'mean', preprocess=MaxAbsScaler(), aLow=0, aHigh=1, numAlphas=5, fit_prior=False, class_prior=None)

- -performs a MultiNominal NB
- -if Binary Data set binary Data to False
- -Alpha is smoothness paramater tested in crossfold search
 - 0 means no smoothness applied

KNN

performKNN(X, y, impStrategy= 'mean', preprocess=StandardScaler(), folds=5, nLow=1, nHigh=5, nIter=1):

-Knn which tests different amount of neighbor criterion per classifier

Forest

performRandomForest(X, y, folds=5, impStrategy= 'mean', class_weight=None, preprocess=StandardScaler(),

treeNumLow=10, treeNumhigh=11, treeNumLowIter=1)

- Tests different amount of trees per classifier

Linear- SVM

```
performLinearSVM(X, y, impStrategy= 'mean', preprocess=StandardScaler(), folds=5,
penalty='12', loss='hinge,
aLow = 0.0001, aHigh=.1, numAlphas=10, class_weight=None, l1RatLow=0, l1RatHigh=.5,
numL1Ratios=10)
-test different hyparamters L1Ration, and Alphas through Hold out validation, with grid search
  -penlatly 'l2', 'l1', or 'elasticnet'
    -I2 and net lead to sparse data
    -Use when LOOK INTO MORE
  loss
    - 'hinge'- deafult
    - 'log'- logisitic regression
    - 'modified_huber'- good if outliers
    - 'squared hinge'- quadratcillay penalized
  class_weight
    -set if class imbalance
  L1Ration
    -0 to 1
    -percent of L1 versus I2 in model
      -high I1 means nonImportant features in Data
  Alpha
    -regualarization term
```

NonLinear SVM

Model Selection Steps for a Good Classifier

- 1. Try Naive Bayes as very quick results and training
 - a. Use Multinomial, Guasssian, and Bernounlii respectively from Data
 - b. If didn't work means Independence assumption too strong or too much Noise
- 2. Check for Noise/Outliers in Data
 - a. Try RandomForest
 - b. Can try Kmeans
- 3. If Skewed Data
 - a. Try Logistic Regression
- 4. Still didn't work
 - a. SVM- not best for skewed/ Imbalanced Data
 - i. Linear
 - 1. 'l2' then 'elasticnet' penalty
 - 2. Use 'modified huber' loss func if a lot of outliers
 - 3. Adjust Class Weights for imbalanced Data
 - b. Try NonLinear SVm
 - i. Change Class weights for unbalanced
 - ii. Try 'poly' and 'sigmoid kernel'