3. Algorithmes de Model-Checking

Model-Checking de LTL

- Données: Une structure de Kripke M=(Q,T,A, q₀,AP, I) et une formule LTL φ.
- Question : Est-ce que M ⊧ φ?
 - M ⊧ φ ssi t,0 ⊧ φ pour toute trace initiale t de M.

Exercice

M⊧φ?

- φ=FGc
- φ=GFc
- φ=Ga
- $\phi=aU(G(b\lor c))$
- X¬c→XXc

Model-Checking de LTL: principe

- Soit Σ un alphabet. On note Σ^* l'ensemble des mots finis et Σ les mots infinis.
- Modèles de ϕ = mots infinis. Soit $[\![\phi]\!]$ le langage des modèles de la formule : $[\![\phi]\!]$ = $\{t \in (2^{AP})^{\omega} \mid t, 0 \neq \phi\}$
- Soit [M] le langage des traces initiales de M : [M] = {t∈ (2^{AP})^ω| t est une trace initiale de M}
- Le problème du model-checking revient donc à vérifier si : [M]⊆[φ]

Outil : les automates de Büchi

- Définition : Un automate de Büchi est un n-uplet $A=(Q, \Sigma, I, T, F)$ avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini
 - I⊆Q les états initiaux
 - $T\subseteq Q\times \Sigma\times Q$ la relation de transition
 - F⊆Q un ensemble d'états acceptants (ou répétés)

Outil : les automates de Büchi

- Une exécution de A sur un mot infini $w=w_0w_1w_2...$ de Σ^ω est une séquence $r=q_0q_1q_2q_3...$ telle que $q_0\in I$ et $(q_i,w_i,q_{i+1})\in T$, pour tout $i\geq 0$.
- r est acceptante si q_i∈F pour un nombre infini de i.
- w est accepté par A s'il existe une exécution acceptante de A sur w.
- $L(A)=\{w\in \Sigma^{\omega}\mid w \text{ accept\'e par }A\}.$

Automate de Büchi: exemple

Automate de Büchi: exemple

Automates de Büchi nondéterministes

- Les automates de Büchi non déterministes sont plus expressifs que les automates de Büchi déterministes
- Les langages reconnus par un NBA forment les ω-réguliers
- Toute formule de LTL peut être reconnue par un NBA

Les automates de Büchi pour LTL

- Définition : Un automate de Büchi est un n-uplet A=(Q, Σ, I, T, F) avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini $\Sigma = 2^{AP}$
 - I⊆Q les états initiaux
 - $T\subseteq Q\times \Sigma\times Q$ la relation de transition
 - F⊆Q un ensemble d'états acceptants (ou répétés)

Exercice

- Exemple : automate de Büchi reconnaissant p, Xp.
- Construire des automates de Büchi reconnaissant Fp, XXp, Gp, FGp, GFp, pUq, pRq.

Automates de Büchi et LTL

- Les formules de LTL sont moins expressives que les automates de Büchi
- Exemple : «Un instant sur deux,
 l'événement a arrive.» est une propriété
 ω régulière non exprimable en LTL

Automates de Büchi

Théorème: Les automates de Büchi sont clos par union, intersection, et complément.

Théorème : on peut tester le vide d'un automate de Büchi.

Automates de Büchi - Test du vide

- Chercher si un état acceptant est accessible depuis l'état initial
- Chercher si cet état appartient à un cycle

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Transformer M en une menter un L(A_M)=[M] (assomple Büchi!!
 Transfocile de comple Büchi!!
 Transfocile de de de de Büchi!
 Transfocile de
 - Tes $L(A_M)\subseteq L(A_{\varphi})$, i.e., si $L(A_M) \cap L(A_{\omega}) = \emptyset$.

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M]
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- II. Réduire la formule
 - . Forme normale négative
 - II. Réduire les connecteurs temporels
- III.Construire un graphe
- IV. Transformation en automate de Büchi

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- II. Réduire la formule
 - 1. Forme normale négative
 - Réduire les connecteurs temporels
- III. Transformation en automate de Büchi généralisé

Automates de Büchi généralisés

- Définition : Un automate de Büchi généralisé est un n-uplet A=(Q, Σ, I, T, F) avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini
 - I⊆Q les états initiaux
 - $T\subseteq Q\times \Sigma\times Q$ la relation de transition
 - F={F₁,F₂,...,F_k}⊆2^Q un ensemble d'ensemble d'états acceptants (ou répétés)

Automates de Büchi généralisés

- Une exécution de A sur un mot infini $w=w_0w_1w_2...$ de Σ^ω est une séquence $r=q_0q_1q_2q_3...$ telle que $q_0\in I$ et $(q_i,w_i,q_{i+1})\in T$, pour tout $i\geq 0$.
- r est acceptante si pour tout $\mathcal{F} \in F$, $q_i \in \mathcal{F}$ pour un nombre infini de i.
- w est accepté par A s'il existe une exécution acceptante de A sur w.
- $L(A)=\{w\in \Sigma^{\omega} \mid w \text{ accept\'e par } A\}.$

Automates de Büchi généralisés : exemple

GFp∧GFq:

Automates de Büchi généralisés avec condition sur les transitions

- Définition : Un automate de Büchi généralisé avec condition sur les transitions est un n-uplet A=(Q, Σ, I, T, F) avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini
 - I⊆Q les états initiaux
 - $T \subseteq Q \times \Sigma \times Q$ la relation de transition
 - T={T₁,T₂,...,T_k}⊆2^T un ensemble d'ensemble de transitions acceptantes (ou répétées)

Automates de Büchi généralisés avec condition sur les transitions - exemple

GFp \land GFq: Σ_q 0 Σ_p

Des ABG aux AB

Théorème : Tout automate de Büchi généralisé A peut être transformé en un automate de Büchi A' tel que L(A)=L(A')

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- II. Réduire la formule
 - 1. Forme normale négative
 - Réduire les connecteurs temporels
- III. Transformation en automate de Büchi généralisé

Forme normale négative

- ¬¬p=p
- $\neg(\phi_1 \lor \phi_2) = \neg \phi_1 \land \neg \phi_2$
- $\neg(\phi_1 \land \phi_2) = \neg \phi_1 \lor \neg \phi_2$
- $\bullet \neg (X\phi) = X(\neg \phi)$
- $\bullet \neg (\phi_1 \cup \phi_2) = \neg \phi_1 R \neg \phi_2$
- $\bullet \neg (\phi_1 R \phi_2) = \neg \phi_1 U \neg \phi_2$

Exercice

 Transformer G(p→Fq) en forme normale négative

Réduire les connecteurs temporels

- Idée: Un état de notre graphe va représenter l'ensemble des propositions atomiques vérifiées au prochain instant de la séquence, et l'ensemble des sousformules qu'il «promet» de vérifier à l'état suivant.
- Pour cela, on ne veut que des propositions atomiques (ou négations), et des sousformules commençant par X (next).

Réduire les connecteurs temporels

- Un ensemble Z de formules en forme normale négative est réduit si
 - 1. pour tout $z \in \mathbb{Z}$, z est de la forme p, $\neg p$ ou X(z')
 - 2. il est cohérent : $\bot \notin Z$, $\{p, \neg p\} \not\subseteq Z$, pour tout $p \in AP$.

Réduire les connecteurs temporels

- On utilise les équivalences suivantes :
 - $\phi U \phi' \equiv \phi' \lor (\phi \land X(\phi U \phi'))$
 - $\phi R \phi' \equiv (\phi \wedge \phi') \vee (\phi' \wedge X(\phi R \phi'))$

Construction du graphe de réduction

Exemple de réduction d'une formule

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- II. Réduire la formule
 - 1. Forme normale négative
 - Réduire les connecteurs temporels
- III. Transformation en automate de Büchi généralisé

Exemple (suite)

Exemple (fin)

$$T_{pUq} = \{(1,3)(3,3),(3,4),(4,4)\}$$

$$T_{\neg r \cup s} = \{(1,2),(2,2),(2,4),(1,4),(4,4)\}$$