Interrogation sur les équations différentielles.

Jeudi 14 décembre 2023, de 7h45 à 8h45.

L'usage de calculatrices est interdit

Exercice 1

- 1°) a) Déterminer des réels a,b,c tels que : $\forall x>0, \ \frac{2}{x(1+x^2)}=\frac{a}{x}+\frac{bx+c}{x^2+1}.$
 - b) Résoudre sur \mathbb{R}_+^* l'équation différentielle (E_1) suivante :

$$(E_1)$$
: $(x+x^3)y'(x) + 2y(x) = 3x + x^3$.

Indication: On pourra remarquer qu'il y a une solution évidente de (E_1) .

 2°) En déduire les solutions sur \mathbb{R}_{+}^{*} de l'équation différentielle (E_{2}) suivante :

$$(E_1)$$
: $(x+x^3)y''(x) + 2y'(x) = 3x + x^3$

Exercice 2

On veut résoudre sur $\mathbb R$ l'équation différentielle suivante :

(E):
$$(1+x^2)^2y''(x) + (2x-2)(1+x^2)y'(x) + 5y(x) = 0.$$

1°) Soit y une fonction deux fois dérivable sur \mathbb{R} , à valeurs dans \mathbb{R} . On définit la fonction z sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ par :

$$\forall t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad z(t) = y(\tan t).$$

- a) Justifier que z est deux fois dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Calculer z' et z''.
- b) Montrer l'équivalence suivante :

$$y$$
 solution de (E) sur $\mathbb{R} \iff z$ solution de (F) sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

où (F) est l'équation différentielle suivante : z''(t) - 2z'(t) + 5z(t) = 0.

- ${\bf 2}^{\circ})$ Déterminer les solutions réelles de (F) sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[.$
- 3°) En déduire les solutions réelles de (E) sur \mathbb{R} .