系級:機械四 姓名:鄭承昀 學號:B03502106

一、資料結構的實作

1. 三種資料型態

I. Double Linked List:

Double linked list 是將每一份資料分別儲存在一個 node 中,跟 Single linked list 的差別在於每一個 node 都擁有兩個 pointer,分別指向他前面和後面的 node。也正是因為有兩個 pointer,期解決了 Single linked list 在 pop_back 的速度問題(O(n)變 O(1))。但是在 find 方面,因為要從頭開始找,較花時間(O(n))。

II. Array

將資料存在一連續記憶體中,當記憶體大小不夠時能重新拿取一個較大的連續記憶體,並將原本的資料複製過去。因為是連續存取的關係,array 支援 random access。再刪除資料時,array 必須做平移後續資料的動作(O(n))。

III. Binary Search Tree

BST 一樣是將每一份資料分別存在不同的 node 中,每一個 node 都擁有兩個 pointer,分別指向其右邊的子 node 和左邊的子 node。另外,在儲存資料時有一規則,左邊的子 node 的值小於 等於其 parent 的值,相反的右邊子 node 的值大於其 parent 的值。正因為這個特性,BST 在搜尋時只需要 O(logn),且其資料已 經經過排序。但是在 insert 方面卻必須花 log(n)的時間,比較慢。

2. 使用程式實現

I. Double Linked List

分別使用兩個 class(DList 和 DListNode)。DListNode 裏面包含了_data 用來存取資料,兩個 pointer _next 和_prev 分別指向其前後的 node。而 DList 裡面包含一個 DListNode 作為_head,還有其他會使用到的 function。另外,為了使用 iterator,加入了一個dummy node,當作整個 list 的 end。

II. Array

其中包含了三個 data member,_data 為正在使用的連續記憶體,_size 為存進的資料數,_capacity 則代表現在使用的記憶體做多可儲存的量。每當記憶體空間不夠時,就會重新要一組記憶體,其大小為_capacity*2。另外,array 的 iterator 多了+和+=,可提供 random access 的功能。

III. Binary Search Tree

使用兩個 class(BSTree 和 BSTreeNode)。BSTreeNode 中除了儲存資料外,還包含了三的 pointer 分別指向_parent,_left,

_right,其中的_parent 的功能為方便 iterator 中++及一的撰寫。 而在 BSTree 中包含兩個 data member,分別為_root 和_size。 _root 為整個 BST 中的 root,在沒有任何資料時依然存在。而_size 則負責記錄總共有多少筆資料。

3. 實作優缺點

Double Linked List

加入_prev 使得在 push_back 時只需花 O(1)的時間,而加入 dummy node 則方便 iterator 的處理。

II. Array

其優點在於其記憶體大小可以隨需求做改變,在這次實作中 只有當空間不夠時才會將記憶體空間變大,在資料被刪除後,並 部會因為不需要這麼多記憶體而減少記憶體空間,可會發生浪費 記憶體的情況。

III. Binary Search Tree

其中我加入了_parent,這個在實作過程中比較好操作,可以快速知道每一個 node 之間的關係。但是在當資料數擴大的時候,parent 就會多占用較多記憶體空間,也會使執行速度變慢。

二、實驗比較

1. 實驗設計

Insert 和 sort 的比較。先 random 產生 50000 個資料和 100000 比資料,再進行排列,分別記錄其執行時間和記憶體使用量。

2. 實驗預期

- I. 在 insert 方面,List 和 array 都是 O(1),而 BST 則為 O(logn)。 所以 List 和 array 應該時間相近,BST 最慢。
- II. 在 sort 方面,BST 因為已經算是排列好了,所以應該是做快的。 而 array 使用的 quicksort(O(nlogn))應該會比 list 使用得 bubblesort(O(n^2))快。

而在記憶體使用量上則應該為 BST>List>Array,因為 BST 含有四個 data member,List 三個。

3. 結果比較和討論

I. 在執行時間上

50000

	insert	Sort
Dlist	0 second	23.04 second
Array	0.01 second 0.01 second	
BST	0.02 second	0 second

100000

	insert	Sort
Dlist	0 second	91.58 second
Array	0.02 second 0.02 secon	
BST	0.05 second	0 second

跟預期的一樣,在 insert 時 BST 最慢,Dlist 跟 array 差不多。而在 sort 時則是 BST 最快,而 Bubblesort 跟 quicksort 的差異極大。

Ⅱ. 在記憶體使用上

50000

Dlist	2.988M
Array	2.863M
BST	2.945M

100000

Dlist	6.004M
Array	5.875M
BST	6.012M

這裡跟預期的也差不多 BST 多了一點,而 array 最少。