1120212364, 孙宇皓

Problem 1

假设线性空间 V 的子空间 W_1 是由一组基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 张成的,那么,线性空间 V 必然是由更多的基张成的。不失一般性,我们取张成 V 的基为 $\alpha_1,\alpha_2,\cdots,\alpha_n$, $\beta_1,\beta_2,\cdots,\beta_m$ 那么我们将 W_2 构造为由基 $\beta_1,\beta_2,\cdots,\beta_m$ 张成的空间,从而 $V=W_1+W_2$ 。此时, $\dim(W_1)=n$, $\dim(W_2)=m$, $\dim(V)=m+n$,利用子空间的维度公式:

$$\dim(W_1 \cap W_2) + \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2)$$

可知 $\dim(W_1+W_2)=0$,这意味着 W_1 与 W_2 两个子空间的交中只有零向量,从而, $V=W_1+W_2$ 是 W_1 和 W_2 两个子空间的直和。

Problem 2

因为 A 是实对称矩阵,所以设 A 合同到一个矩阵 Λ ,有 $A=P^T\Lambda P$ 成立, P 是正交矩阵, Λ 的对角元是 A 的本征值。 从而,

$$x^TAx = x^TP^T\Lambda Px = (Px)^T\Lambda (Px)$$

P 矩阵代表正交变换, 而正交变换是保长度的, 因此 $(Px)^T(Px)=1$, 下面证明这一点

$$(Px)^T(Px) = x^T P^T P x = x^T I x = x^T x = 1$$

记 $y=Px,y=[y_1,y_2,\cdots,y_n]^T$,那么 $y^Ty=1$

$$x^TAx = y^T\Lambda y = \sum_{i=1}^n \lambda_i y_i^2$$

在 $\sum_i y_i^2=1$ 的约束条件下,显然,若 λ_i 是最大特征值, $y_i=1,y_{j\neq i}=0$ 时, x^TAx 取到最大值。因此, $\max x^TAx$ 是 A 的最大特征值,而 $\min x^TAx$ 是 A 的最小特征值。