

综合布线三维仿真实训平台系统

答辩人: 申奥

导师: 何教授

院系: 计算机学院

专业: 计算机技术

目录 CONTENTS

- □绪论
- □设计与实现
- □系统关键技术
- □测试与发布
- □总结与展望

口绪论

■ 研究背景

来源于课题组实际科研项目

■ 研究意义

- ✓ 避免危险因素
- ✓ 突破时空约束
- ✓ 节省教育经费
- ✓ 方便内容更新
- ✓ 实现教学考核一体化

■ 需求分析

- ✓ 场景模型的建立
- ✓ 网格简化
- ✓ 碰撞检测
- ✓ 角色漫游
- ✓ UI交互界面
- ✓ 多媒体信息处理
- ✓ C/S结构

- 系统实现
- 3D Studio Max建模技术
- ✓ 多边形建模
- ✓ NURBS曲面建模
- ✓ Surface/Patch建模
- ✓ 复合对象建模

- 系统实现
- 碰撞检测技术
- ✓ 层次包围体技术
- ✓ 空间划分技术

■ 系统实现

- UI交互界面
- ✓ NGUI
- UIRoot
- UICamera
- UIButton
- UISprite
- UILabel

- 系统实现
- UI交互界面
- ✓ 主菜单
- ✓ 三级菜单

- 系统实现
- 角色漫游系统
- ✓ 自动漫游
- ✓ 自由漫游

- 系统实现
- 多媒体信息处理
- ✓ 读取显示文本
- ✓ 播放音频
- ✓ 读取显示图片

- C/S结构
- FTP技术
- ✓ 服务器端
- ✓ FileZilla Server
- ✓ 客户端
- ✓ FtpWebRequest

- 网格简化算法
- 基于内角加权及二次误差测度的边折叠算法
- ✓ 边折叠操作
- 1. 如何选取待折叠边
- 2. 如何确定新顶点

- 网格简化算法
- 基于内角加权及二次误差测度的边折叠算法
- ✓ 二次误差测度
- ✓ 新顶点到原顶点对相关平面距离的平方和

- 网格简化算法
- 基于内角加权及二次误差测度的边折叠算法
- ✓ 内角加权
- $\sigma_i = 2(\cos \alpha_1 + \cos \alpha_2 + \cos \alpha_3 1) \in [0,1]$

- 网格简化算法
- 算法流程

- 网格简化算法
- 算法结果与分析

- 网格简化算法
- 算法结果与分析

Bunny	Time(s)			E _i		
简化率	Original	Optimal	Reduction	Original	Optimal	Ratio
75.00%	0.406	0.093	77.06%	1.116E-7	4.611E-8	0.413
50.00%	0.843	0.141	83.27%	2.682E-7	2.141E-7	0.798
25.00%	1.248	0.171	86.30%	1.385E-6	1.301E-6	0.939
5.00%	1.594	0.203	87.26%	5.249E-5	4.790E-5	0.913
1.00%	1.669	0.249	85.06%	1.301E-3	1.304E-3	1.002

- 网格简化算法
- 算法结果与分析

口测试与发布

■测试

- ✓ 功能测试
- ✓ 性能测试

口测试与发布

■发布

口总结与展望

■总结

- ✓ 论述了研究目的,介绍了虚拟 现实技术、开发平台以及相关 技术。
- 以我院实际科研工程项目"综合布线三维仿真实训平台系统"为原型,论述了系统的设计与实现方案。
- 针对该项目,选择并应用了基于内角加权及二次误差测度的边折叠简化算法,优化了模型存储与渲染效率。

■ 展望

- ✓ 模型优化
- ✓ 代码优化
- ✓ 安全

敬请各位老师批评指正

衷心感谢

