Grafoak eta zuhaitzak

Irakasgaia: Matematika Diskretua Titulazioa: Informatikaren Ingeniaritzako Gradua Informatika fakultatea Donostia

1

1.1. Sarrera

Grafo teoriaren sorrera: 1736. Euler. Königsberg-eko zazpi zubien problema: 7 zubiren bidez komunikatutako 4 zonalde. Zubi bakoitzetik behin pasata hasierako puntura itzuli.

Helburua: Elkarren artean erlazionatuta dauden objektu kopuru finitua duten egoerak eredutzea.

Aplikazioak informatikan: sareen diseinua, zirkuitu integratuen diseinua, etab.

GRAFOAK eta ZUHAITZAK

1. Grafoak

- 1.1. Sarrera.
- 1.2. Definizioak.
- 1.3. Erpinen graduak.
- 1.4. Ibilaldiak grafoetan.
- 1.5. Grafoei lotutako matrizeak.
- 1.6. Azpigrafoak, grafo osagarria.
- 1.7. Grafo isomorfismoa.
- 1.8. Kate eta zirkuitu eulertarrak.
- 1.9. Bide eta ziklo hamiltondarrak.

2. Zuhaitzak

- 2.1. Sarrera.
- 2.2. Definizioak eta propietateak.
- 2.3. Errodun zuhaitzak.

2

$1.2\ Definizioak$

Grafo zuzendua: G = (V, E) bikotea, non

- V multzo finitu ez hutsa erpin multzoa den.
- $E \subseteq V \times V$ ertz multzoa den (erpin bikote ordenatuak).

(a, b) ertza emanik:

- ertza a eta b erpinekin intzidentea.
- a eta b erpinak albokoak dira.
- a erpina ertzaren jatorria da.
- b erpina ertzaren amaiera da.
- Baldin a = b orduan (a, a) begizta da.

Erpin bakartua: ertz intzidenterik ez duena.

3

- 4

Definizioak

Grafo ez zuzendua: ertzak erpin bikote ez ordenatuak dira. Ertzen noranzkoa ez da kontuan hartzen, $(a,b) \in E \Rightarrow (b,a) \in E$.

Ertz ez zuzendua: $\{a,b\} = \{(a,b),(b,a)\}.$

Begizta: $\{a, a\} = (a, a)$

Izan bedi G = (V, E) grafo zuzendua, dagokion grafo ez zuzendua: ertzen norantza kontuan hartu gabe G-tik lortutako grafoa (ertz bakoitza behin bakarrik).

G = (V, E) multigrafo: existitzen badira $a, b \in V$, $a \neq b$ bi erpin, beren artean ertz bat baino gehiago dutelarik.

Anizkoiztasuna: (a, b) $(\{a, b\})$ moduko ertz kopurua.

k-grafoa: *k* anizkoiztasuna baino handiagoa duen ertzik ez dago. Kontrakorik esaten ez bada, grafoa sinplea da, ez multigrafoa.

5

Erpinen graduak

Teorema

Izan bedi m ertz duen G = (V, E) grafo ez zuzendua.

$$\sum_{x \in V} d(x) = 2m$$

Korolarioa

G = (V, E) grafo ez zuzendua izanik, gradu bakoitiko erpin kopurua beti bikoitia da.

G = (V, E) grafo ez zuzendu erregularra: erpin guztiek gradu bera dute. k-erregularra: erpin guztiek k gradua dute.

1.3. Erpinen graduak

• G = (V, E) grafo zuzendua eta $a \in V$ erpina. a-ren graduerdiak:

$$d^+(a) = \#\{b \mid (a,b) \in E\}$$
: jatorria a-n (irteera gr.). $d^-(a) = \#\{b \mid (b,a) \in E\}$: amaiera a-n (sarrera gr.). a-ren gradua: $d(a) = d^+(a) + d^-(a)$.

G = (V, E) grafo ez zuzendua eta a ∈ V erpina.
a erpinaren gradua: d(a) = a-rekin intzidenteak diren ertzen kopurua. (Erpinean {a, a} begizta badago, bi ertz intzidentetzat hartuko ditugu). a erpina zintzilikatua: d(a) = 1. a erpina bakartua: d(a) = 0.

6

1.4 Ibilaldiak grafoetan

G = (V, E) grafo ez zuzendua eta $x, y \in V$ erpinak izanik G-ko x - y ibilaldia: honelako sekuentzia finitua

$$x = x_0, e_1, x_1, e_2, x_2, e_3, \cdots, e_{p-1}, x_{p-1}, e_p, x_p = y$$

- x_0, x_1, \cdots, x_p erpinak;
- e_1, \dots, e_p ertzak. $e_i = \{x_{i-1}, x_i\}$

Ibilaldiaren luzera: ertz kopurua, p.

- Baldin p = 0 orduan x = y: Ibilaldi nabaria.
- Baldin x = y eta $p \ge 1$: Ibilaldi itxia.
- Baldin $x \neq y$: Ibilaldi irekia.

7

Ibilaldiak grafoetan

Izan bedi G = (V, E) grafo ez zuzenduko x - y ibilaldia:

• Katea: Ertz errepikaturik ez dago.

• Zirkuitua: Kate itxia (x = y).

• Bidea: Erpin errepikaturik ez dago.

• Zikloa: Bide itxia (x = y).

Akordioa: Zirkuituetan gutxienez ertz bat. Zikloetan gutxienez 3 ertz desberdin.

Grafo zuzenduetan: ibilaldi zuzenduak, kate zuzenduak, bide zuzenduak, etab.

9

Ibilaldiak grafoetan

G = (V, E) grafo ez zuzendua izanik, V-ren gaineko erlazio hau baliokidetasun erlazioa da.

xRy baldin eta soilik baldin x - y ibilaldia badago

Baliokidetasun klaseak: V_1, \dots, V_q G-ren osagaiak: $G_1 = (V_1, E_1), \dots, G_q = (V_q, E_q)$ non $i = 1, \dots, q$, eta E_i diren V_i baliokidetasun klase bakoitzeko erpinei intzidente diren ertz guztiek osatutako multzoak.

G-ren osagai kopurua: $\kappa(G)$. G konektatua baldin eta soilik baldin $\kappa(G) = 1$.

Ibilaldiak grafoetan

Teorema.

Izan bedi G = (V, E) grafo ez zuzendua eta $x, y \in V$ bi erpin, $x \neq y$. x - y ibilaldia existitzen da baldin eta soilik baldin x - y bidea existitzen bada.

G = (V, E) grafo ez zuzendua konektatua: $x, y \in V$ edozein bi erpinetarako $x \neq y$ izanik, x - y bidea baldin badago beti.

Grafo zuzendu konektatua: Dagokion grafo ez zuzendua konektatua bada.

Grafo ez konektatua: kontrako kasuan.

10

1.5 Grafoei lotutako matrizeak

Izan bedi G = (V, E) begizta gabeko grafo ez zuzendua, $V = \{x_1, \dots, x_n\}$.

Albokotasun matrizea: $n \times n$ tamainako $A = (a_{ij})$ matrizea

$$a_{ij} = \begin{cases} 1 & \text{baldin } x_i, x_j \text{ albokoak} \\ 0 & \text{baldin } x_i, x_j \text{ ez albokoak} \end{cases}$$

A simetrikoa da. Diagonal nagusian: 0-ak.

$$d(x_i) = \sum_{j=1}^n a_{ij} = \sum_{j=1}^n a_{ji}$$

Teorema

Izan bitez G = (V, E) begiztarik gabeko grafo ez zuzendua, $V = \{x_1, \dots, x_n\}$ eta A dagokion albokotasun matrizea. A^p matrizeko (i, j) elementua: p luzerako $x_i - x_i$ ibilaldi kopurua.

1.6 Azpigrafoak. Grafo osagarria

Izan bedi G = (V, E) grafoa (zuzendua edo ez) $G_1 = (V_1, E_1)$ grafoa G-ren azpigrafo da baldin

- $\emptyset \neq V_1 \subseteq V$
- $E_1 \subseteq E$ (E_1 -eko ertz bakoitza V_1 -eko erpinekin intzidentea da).

Baldin $V_1 = V$ orduan G_1 grafoa G-ren azpigrafo sortzailea da. (G-k m ertz badu: 2^m azpigrafo sortzaile posible dago).

G = (V, E) grafoa emanik (zuzendua edo ez); $\emptyset \neq U \subseteq V$. U erpin azpimultzoak induzitutako G-ren azpigrafoa (< U >):

- Erpin multzoa: *U*
- Ertz multzoa: $E \cap (U \times U)$ (*U*-ko erpinekin intzidente diren *E*-ko ertzak).

13

Azpigrafoak. Grafo osagarria

Izan bedi G = (V, E) begizta gabeko grafo ez zuzendua, $V = \{x_1, \dots, x_n\}.$

• G-ren osagarria: $\overline{G} = (V, \overline{E})$ begizta gabeko grafoa, non G-ko erpinak dauden eta \overline{E} : K_n grafoan dauden eta E-n ez dauden ertzak.

Baldin $G = K_n$ orduan \overline{G} : grafo nulua (n erpin, 0 ertz).

G = (V, E) zatibiko grafoa: grafo ez zuzendua, begizta gabea, non

- Existitzen dira $V_1,\,V_2$ non $V_1\cup V_2=V$, $V_1\cap V_2=\emptyset$
- G-ko $\{x,y\}$ ertz bakoitza: $x \in V_1$ eta $y \in V_2$.

Horretaz gain, $(\forall x \in V_1, \forall y \in V_2) \exists \{x,y\}$ ertza, orduan G zatibiko grafo osotua. V_1 -ek n_1 erpin badu eta V_2 -k n_2 , $G = K_{n_1,n_2}$.

Azpigrafoak. Grafo osagarria

G = (V, E) (zuzendua edo ez).

- $x \in V$ erpina kenduz gero, $G x = (V_1, E_1)$
 - $V_1 = V \{x\}$
 - *E*₁: *x* erpinari intzidente diren ertzak ezik, *E*-ko gainontzeko ertz guztiak.

 $(G - x \text{ grafoa } V_1\text{-ek induzitutako azpigrafoa da}).$

- $e \in E$ ertza kenduz gero, $G e = (V_1, E_1)$
 - $V_1 = V$
 - $E_1 = E \{e\}$

 $V = \{x_1, \dots, x_n\}$ erpin multzoa izanik.

• V-ren gaineko grafo osotua (K_n): erpinen arteko ertz guztiak dituen begizta gabeko grafo ez zuzendua, hau da,

$$(\forall x, y \in V)$$
 $x \neq y \implies \{x, y\}$ ertza existitzen da

14

1.7 Grafo isomorfismoa

 $G_1=(V_1,E_1)$, $G_2=(V_2,E_2)$ grafo ez zuzenduak emanik, $f:V_1\longrightarrow V_2$ funtzioa grafo isomorfismoa da baldin

- f bijektiboa.
- $(\forall x, y \in V_1)$ $\{x, y\} \in E_1 \iff \{f(x), f(y)\} \in E_2$, hau da, erpinen arteko albokotasunak mantentzen baditu.

 G_1 eta G_2 isomorfoak. $G_1 \cong G_2$.

Isomorfia erlazioa grafoen multzoaren gaineko baliokidetasun erlazioa da.

 G_1 eta G_2 isomorfoak: funtsean berdinak. Erpinen izenean eta grafoak marrazteko moduan desberdintzen dira soilik; erpin kopuru bera, ertz kopuru bera, gradu bereko erpin kopuru bera, ziklo kopuru bera, etab.

1.8 Kate eta zirkuitu eulertarrak

Izan bedi G = (V, E) grafo ez zuzendua, erpin bakarturik gabea.

- Zirkuitu eulertarra: *G* grafoko ertz guztietatik behin eta bakarrik behin igarotzen den zirkuitua.
- Kate eulertarra: *G* grafoko ertz guztietatik behin eta bakarrik behin igarotzen den kate irekia.

Grafo eulertarra: zirkuitu eulertarra badu.

Teorema

Izan bedi G = (V, E) grafo ez zuzendua, erpin bakarturik gabea. G eulertarra da baldin eta soilik baldin G konektatua bada eta G-ko erpin guztien gradua bikoitia bada.

17

1.9 Bide eta ziklo hamiltondarrak

G = (V, E) grafo ez zuzendua. Erpin kopurua $= n \ge 3$.

- Ziklo hamiltondarra: erpin guztiak dituen zikloa.
- Bide hamiltondarra: erpin guztiak dituen bide irekia.

Ziklo hamiltondar bati ertz bat kentzean bide hamiltondarra lortzen da.

Grafo hamiltondarra: ziklo hamiltondarra duen grafoa.

Kate eta zirkuitu eulertarrak

Korolarioa

G = (V, E) ez zuzendua eta erpin bakartu gabea. G-k kate eulertarra du baldin eta soilik baldin konektatua bada eta zehazki gradu bakoitiko bi erpin baditu.

Teorema

G=(V,E) grafo zuzendua, erpin bakartu gabea. G-k zirkuitu eulertar zuzendua du baldin eta soilik baldin konektatua bada eta edozein $x \in V$ erpinerako $d^+(x) = d^-(x)$ kotetzen bada.

(Zirkuitu eulertar zuzendua: *G*-ko ertz bakoitzetik behin bakarrik pasatzen den zirkuitu zuzendua).

18

Bide eta ziklo hamiltondarrak

- G grafoa hamiltondarra bada, orduan G konektatua da eta $x \in V$ erpin guztiek $d(x) \ge 2$ gradua dute.
- Baldin $a \in V$ eta d(a) = 2 orduan a erpinarekin intzidenteak diren bi ertzak ziklo hamiltondarrean daude.
- Baldin a ∈ V eta d(a) > 2 orduan ziklo hamiltondarra eraikitzeko, behin a erpinetik pasa garela ez ditugu a-ra intzidente diren eta erabili ez ditugun ertzak kontuan izango.
- *G*-rentzat ziklo hamiltondarra eraikitze-prozesuan erpin guztiak ez dituen ziklo bat ezin daiteke itxi.

Bide eta ziklo hamiltondarrak

Grafo hamiltondarra karakterizatzeko ez dago beharrezkoa eta nahikoa den baldintzarik.

Teorema

Izan bedi G = (V, E) begizta gabeko grafo ez zuzendua n erpinekoa. Baldin

$$\forall x, y \in V \quad (x \neq y) \quad d(x) + d(y) \geq n - 1$$

orduan G-k bide hamiltondarra du.

Korolarioa

Izan bedi G = (V, E) begizta gabeko grafo ez zuzendua, n erpin dituena. Baldin

$$\forall x \in V, \quad d(x) \geq \frac{n-1}{2}$$

orduan G-k badu bide hamiltondarra.

21

Bide eta ziklo hamiltondarrak

Teorema

Baldin G = (V, E) hamiltondarra, orduan edozein $V' \subset V$ azpimultzorentzat, $\emptyset \neq V' \neq V$,

$$\kappa(G-V') \leq |V'|$$

 $(G - V' = (V_1, E_1)$ non $V_1 = V - V'$ eta E_1 multzoan V'-ko erpinekin intzidente diren ertzak ezik gainontzeko Eko ertz guztiak daude).

Bide eta ziklo hamiltondarrak

Teorema.

Izan bedi G = (V, E) begizta gabeko grafo ez zuzendua, $n \ge 3$ erpinekoa. Baldin

$$\forall x, y \in V \quad (x, y \ ez \ albokoak) \quad d(x) + d(y) \ge n$$

orduan G hamiltondarra da.

Korolarioa

G = (V, E) begizta gabeko grafo ez zuzendua, $n \ge 3$ erpinekoa. Baldin

$$\forall x \in V \quad d(x) \ge \frac{n}{2}$$

orduan G hamiltondarra da.

22

2. Zuhaitzak

2.1 Sarrera. 2.2 Definizioak

- Hastapenak: Kirchhoff (1847). Cayley (1857).
- Aplikazioak: Datu egiturak, sailkapen teknikak, kodifikazio teoria, optimizazio problemak...

Izan bedi T = (V, E) begizta gabeko grafo ez zuzendua.

- Zuhaitza da baldin konektatua bada eta ziklorik ez badu.
- Basoa da baldin grafoaren osagai bakoitza zuhaitza bada.
- Grafo konektatu baten zuhaitz sortzaile esaten zaio zuhaitza den azpigrafo sortzaile orori.

Zuhaitzak 2.2 Propietateak

Teorema

T zuhaitzaren edozein bi erpin a eta b, $a \neq b$ emanik, a - b bide bat eta bakarra dago erpin hauen artean.

Ondorioz, T zuhaitzari ertz bat kenduz deskonektatu egiten da eta zuhaitz diren bi osagai konektatu sortuko dira.

Teorema

G grafo ez zuzendua izanik, G konektatua da baldin eta soilik baldin zuhaitz sortzailea badu.

Teorema

T zuhaitzak n erpin eta m ertz baditu, orduan n = m + 1.

25

2.3 Errodun zuhaitzak

Izan bedi T grafoa.

- *T* zuhaitz zuzendua: zuhaitz ez zuzendu bateko ertzei noranzkoa emanaz lortzen den grafo zuzendua.
- T errodun zuhaitza: r erpina badago, erro deitua, 0 sarrera gradua duena $(d^-(r) = 0)$, eta beste x erpin guztien sarrera gradua 1 bada $(d^-(x) = 1)$.

Zuhaitz errodunetarako terminologia:

- Hostoa: 0 irteera gradua duten v erpinak: $d^+(v) = 0$.
- Gainontzekoak barne erpinak dira.
- v erpina zuhaitzaren / mailan dago, baldin r errotik v erpinerako bidearen luzera / bada. Hostoen mailarik handienari zuhaitzaren altuera esaten zaio.
- Zuhaitz errodunak (v_1, v_2) ertza badu, v_1 erpina v_2 -ren ama da; v_2 erpina v_1 -en alaba.
- Baldin v_1 -etik v_2 -rako bide zuzendua badago, v_1 erpina v_2 ren arbasoa da eta v_2 erpina v_1 en ondorengoa.

Zuhaitzak

2.2 Propietateak

Teorema

T zuhaitzak $n \ge 2$ erpin baditu, orduan gutxienez 2 erpin zintzilikatu (bat gradukoak) ditu.

Teorema

Izan bedi G = (V, E) begizta gabeko grafo ez zuzendua, n erpin eta m ertz dituena. Honakoak baliokideak dira.

- i) G zuhaitza da.
- ii) G grafoak ez du ziklorik eta n = m + 1.
- iii) G konektatua da eta n = m + 1.

26

Errodun zuhaitzak

Izan bitez T = (V, E) zuhaitz erroduna, $p \in \mathbb{Z}^+$ $(p \ge 1)$.

- T zuhaitz p-tarra: $d^+(x) \le p$ edozein $x \in V$ -rako, hau da, barne erpin bakoitzak gehienez p alaba baditu.
- T zuhaitz p-tar osotua: $d^+(x) = 0$ edo $d^+(x) = p$ edozein $x \in V$, hau da, barne erpin bakoitzak zehazki p alaba baditu.

Teorema

Izan bedi T = (V, E) zuhaitz p-tar osotua, n erpin dituena, hauetatik h hostoak eta i barne erpinak izanik. Honako erlazioak betetzen dira.

- $n = p \cdot i + 1$
- $h = (p-1) \cdot i + 1$