

Fig. 1

Customers Lis	Lot Projects Hew Custin	р н uration Hew RFCSO Laydut Design	
	i.	ist of Projects	
	Project Title	Date	RFQ
6	TE5T1	D1 23 2001	rfq
TESTI			
r	TE5T2	D1. 26. 2001	rtg
TEST2			
r	TEST]	01.27 2001	rfq
lest]			
C	TEST4	01.30.2661	>2
теѕт4			**************************************
r	Test5	01.11 2001	
TesiS			
r .	graziella	D1.31 20D1	
lesting			
C	kesiZa[D1.31 20D1	
и			
	manufacture and a second a second and a second a second and a second and a second and a second and a second a second and a		· · · · · · · · · · · · · · · · · · ·

Fig. 2

Fig. 3

Fig. 4

4. N. S. L.		
20, 17, 17		3 4 3 6 €
5)	GE Power Systems Gil & Ges	
	Nuova Pignone - Upstream	Nelp Contact us

Configuration Results

Project Title TEST1
Configuration Name: motore elettrico

Fig. 5

Fig. 6

GE Power Systems Oil & Gas Ruevo Pignam - Upstrazm • Help: • Contact us	700
New Configuration	<u>√</u> 701
Compression Data Gas State Equation Optimized Nace Application Not Process Gas * Handled Flow * Mass Flow	702
Suction Pressure *	
Compressor Options	
Casing Type Horizontally Split Back-To-Back Pouble Flow Max Peripheral Speed of Impellers Stage Compression Ratios as Percentage of 1st Stage 2º Stage 3º Stage 4º Stage Casing Model and Size 1º Casing Model Optimized 2º Casing Model Optimized 3 º Casing Model Optimized 3	703
Interstage Data Gas Cooler Discharge 55 deg C Max Stage Suction Temperature 120 deg C Interstage Pressure Drop Between 1° & 2° Stages 25 % % Between 3° & 4° Stages 25 % % Interstage Discharge Pressures 1° Stage Dar-abs 2° Stage Dar-abs Dar-abs Dar-abs	704
705 **Manage resource ** Manage of the control of	Fig. 7
Back Thomas C-United Control	

		800	
(%)	GE Power Systems Oil & Gas		
	Nuovo Pignone - Upstream		
ast of Cur	ongers that of Projects How Consignmenton Here <u>RFC\$0</u> Levent Besign	✓ 80	11

Fuel Gas Composition

kaze Fil the above feld to seek the w ozowe" and "reference temperature" I feld plank,	Water Content Reference humidit Reference temperatur Reference pressur Water Water value: If you want moent the relative humidus If you want moent the relative humidus If you want moent the relative humidus	re deg C re bar-abs er %	imaly' baz "iefelence Mani mach waler value bake	802
	Gas Compositi	on		
	Type of Measures Mole	s T		
Component name	Quantity(%) *	Component name	Quantity(%) *
->Select	<u> </u>	->Select	<u> </u>	
->Select	9 00	->Select	3 00	
->Select	₩ 0.0	->Select	0.0	
->Select	<u> </u>	->Select	<u>-</u> 00	> 803
->Select	3 [0 0	->Select	<u>-</u> 00	
->Select	<u> </u>	->Select	<u>~</u> 0.0	
->Select	3 00	->Select	* 0.0	
->Select	<u> </u>	->Select	• 00	
->Select		->Select	▼ 0.0	
->Select	<u>*</u> 00	·		
	Continu	√ 804		

Fig. 8

(中・学・の 自 会 国 の 国 の 国 の 国 国 国 国 国 国 国 国 国 国 国 国 国	900	
22. 12. 24. 13. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		Mar.
VIA 3 GOV	GE Power Systems	(%)
Nuovo Pignone - Upstream F Help F Contact us	Nuovo Pignone - Upstream	

Process Gas Composition

Water Content		
Reference humidity	1 %	
Reference temperature	deg C	> 902
Reference pressure	[bar-abs	
Water	%	\mathcal{L}

Please fill the above felb to insert the mater value. If you want insert the relative humbility of gas compastion use the "relative humbility" box "reference pressure" and "reference temperature". If you want insert the water quantity of gas compastion fill the "water" box. If you don't want insert water value leave all fers below.

	Gas Co		
	Type of Measures	Moles •	
Component name	Quantity(%) *	Component name	Quantity(%) *
->Select	<u> 0 0</u>	->Select -	00 :
->Select	3 00	->Select -	00
->Select	- 00	->Select →	00
->Select	<u> </u>	->Select	> 903
->Select	- 00	->Select	00
->Select	0.0	->Select *	0.0 ;
->Select	<u> </u>	->Select	00
->Select	7 0.0	->Select	<u> </u>
->Select	y 0.0		

5904

Section 904

Fig. 9

Configuration Results

1008 More Data 1009

Layout Composition 1007

Fig. 10

More Data

Driver Data

Description	Overall	\$ \$:
Discharge Pressure:	8.00	bar-abs	
Driver Model:	PGT5		,
Actual Discharge Flow:	34359.2	m3/h	> 1103
Absorbed Power at Driver Shaft:	1363.	kw .	
Power Margin:	15,21	1%	
Electrical Frequency:	50	hz	·

Compression Data

Description	Stage 1	Stage 2	Stage 3	Stage 4)
Molecular Weight:	16.043				1/mole	
Handled Flow: Mass Flow	50				kg/s	
Suction Pressure:	7.00		·	:	bar-abs	
Suction Temperature:	15.00				deg C	
Suction Actual Flow:	37843.5	!	<i>(</i>	,	m3/h	140
Discharge Pressure:	8,00			*	bar_abs	≻ 110₄
Discharge Temperature:	25.87	:	· · · · · · · · · · · · · · · · · · ·		deg C	
Discharge Actual Flow:	34359.2		:		m3/h	
Impeller Number:	1					
Speed:	4024.	1	:		rpm	
Politropic Efficiency:	84.46	:			1%	

	Model	Туре	Size	Impeller Number:	Rating		
Compressor Casing 1	BCL801	BCL	: 800	1	600	:	> 1105
Compressor Casing 2 Compressor Casing 3						:	

Fig. 12

	1300
126) GE Power Systems Gil & Gas Numan Pirmone, Massas an	intact us
New RFC&Q	1301
Plant General data Unit System SI Compression Service Not Specified	1302
Environment Conditions Environmental Design Pressure* Asl	
Design Temperature*	1303
Driver Specifications Driver Type Optimized Model Optimized	
Gas Turbine Data Fuel Type Process Gas Compressor Speed Figure Type Compressor Speed Figure Type Figure	1304
1306	-
File v bolley Somyattee for a block	ye

Fig. 13

GE Power Systems Oil & Ges	Y JAS			1400
Nuovo Pignonz - Upstrzem List Of Customens — List of Projects — Hein C	official ation — New Packs	р меір Lacout Deasun	• Contact us	√ 1401
	New RFC&Q			-
	Compression Data			
Gas State Equation Optimized	*1	Nace Application No	ot 🕶	
9	tage Number Optimized	3		
	_.	Stages		2 · 20
	Optimized 1st	2nd 3rd	4th	
Handled Flow Mass Flow				> 1402
Suction Pressure *				par-abs
Suction Temperature *				degC
<u>Discharge Pressure</u> *		: [par-abs
	Process Gas * All Stages	1403		
	Compressor Options			
	Casing Type	Jot 👻		
Back-To-Bac		es •		
:Double Flow		lot •		> 1404
	al Speed of Impellers * 2	80 m/s		
	Interstage Data			
Gas Cooler Discharge Temperature * 55 c	Max St.	age Suction mperature * 120	deg C	
,	Interstage Pressure Drop	<u> </u>		
Between 1º &		%		> 1405
Between 2º &		%		
<u>Between 3º &</u>		%		
	nen	1406		
				Fig. 14

Fig. 15

RFC&Q Summary Data Project Title: TEST1 1602 RFC&Q Name: gra 1602 General Data Compression Service Not Specified Driver Type: Optimized OGT Direct Coupling: Not Compression Data Compression Data Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 Handled Flow:	Nuovo Pignone - Upstreem				, H	tρ	Centact	us
General Data Compression Service	<u> </u>							
Compression Service Driver Type: Optimized Driver Model: OGT Direct Coupling: Not Compression Data Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 Handled Flow: Mass Flow 1 Suction Pressure: 1 Suction Temperature: 1 Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 kg/s deg C				EST1	1602			
Driver Type: Optimized Driver Model: OGT Direct Coupling: Not Compression Data Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 Handled Flow: Mass Flow 1 kg/s Suction Pressure: 1 bar-abs Suction Temperature: 1 deg C			General	Data				
Driver Model: OGT Direct Coupling: Not Compression Data Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 Handled Flow: 1 kg/s Mass Flow 1 bar-abs Suction Pressure: 1 deg C	Compress	sion Service	**** * *	Not Specifi	 ed			
Driver Model: OGT Direct Coupling: Not Compression Data Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 Handled Flow: Mass Flow 1 kg/s Suction Pressure: 1 bar-abs Suction Temperature: 1 deg C	Driver Ty	pe:	************	Optimized	,		<u> </u>	× 1603
Direct Coupling: Compression Data Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 Handled Flow: Mass Flow 1 kg/s Suction Pressure: 1 bar-abs Suction Temperature: 1 deg C							•	1000
Description Optimized Stage 1 Stage 2 Stage 3 Stage 4 Handled Flow: Mass Flow 1 kg/s Suction Pressure: 1 bar-abs Suction Temperature: 1 deg C	Direct Co	upling:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Not			:	
Handled Flow: Mass Flow Suction Pressure: Suction Temperature: 1 kg/s		C	ompress	ion Data				
Mass Flow Suction Pressure: 1 Suction Temperature: 1 deg C	Description	Optimized	Stage	1 Stage 2	Stage 3	Stage 4		—
Suction Pressure: 1 bar-abs Suction Temperature: 1 deg C		1			•		kg/s	• :
Suction Temperature: 1 deg C	: :	1	<u> </u>				bar-abs	-
· · · · · · · · · · · · · · · · · · ·	: :		ļ: .	· · / · · · · · · · · · · · · · · · · · · ·	<u></u>	<u>.</u>	dea C	Ţi.
Discharge Pressure: 1 bar-abs	suction temperatur	··· · · · · · · ·			<u> </u>	·	: * - ·	:
	Discharge Pressure	: 1		:		1	bar-abs	
				<u></u>		_~ 160	. 7	

Fig. 16

Fig. 17

	RFC&Q	Summar	/ Data			
	_	t Title: TEST1 Name: gra	<u></u>	02		
		General Data	_			
Compres	sion Service		Specified		~~;	
Driver Ty	pe:	Optir	mizeđ	********* *	····.	1803
Driver Me		OGT				1003
Direct Co		Not				
		mpression Da	ıta			
Description	Optimized	Stage 1 St	age 2 Stage	3 Stage	•	
Handled Flow: Mass Flow	: 1				kg/s	
Suction Pressure:	1		1	*	bar-abs	>
Suction Temperatu	re: 1		. [deg C	
Discharge Pressure	: 1			; Ì	bar-abs	
<u></u>			1806			

Fig. 18

Fig. 19

GE Power Systems		D 3		2000
Nuovo Pignena - Upstrau	Community Access	→ Help	F Contact us	
ustamers List of Project		erification		
Project Name: TEST1 RFC&Q Name: gra				2
n out raine, gra	Plant	t General data		> 20
1	Jnit System: SI Com	noression Service: Not Specified		
	Environ	ment Conditions		
	Enviromental Design Pr	ressure: Asl 0 m		> 20
		eg C Relative Humidity* 0	%	
<u>Design Temperat</u>	Tie. lo loc	-9 - Relative Humidity - 10	1.0	
	Driver	Specifications		
	Driver Type: Opti	mized Model: Optimized		
Gas Turbin	e Data			
Fuel Type P	rocess Gas 🔻	Electrical Frequency 50	cps	
Fuel Mole Weight	1/male			> 20
Fuel Low Heat Value 15	00 kJ/kg			
• Fuel Gas		**************************************		
2005	Compressor Spe	rpm rpm		
		2006		
		~ 2000		

Fig. 20

GE Power Oil & Gas	A A A A A				11 Jan (1986)	2	2100
Nuova Pign Liet of Castropiets Liet	oos - Upstream of Projects Here Conflorer	Alle Bort S	1 14	elo • s	Contact us		2101
	Î	iew RFC&Q					
Project Name: RFC&Q Name: 9							
	J	Compression Data					
<u>Gas State</u>	<u> Equation</u> : Optimized			lication: Not			
	<u>Stage I</u>	<u>Number</u> : Optimized					
			Stages	***************************************			
	Ор	timized 1st	<u>2nd</u>	3rd	<u>4th</u>		
Handled Flow:	Mass Flow		35		[kg/s	3	
Suction Pr	ressure * [1		60		bar	abt	2402
<u>Suction Tem</u>	,		55	Г	deg	ic (> 2103
<u> Discharge F</u>	Pressure * [1		100		bar	-abs	
CONTRACTOR STATE	Process Gas *	All s	Stages 💆		2104	ل	
		essor Options					
	C Honzontally Split:	asıng Type [Not					
	Back-To-Back	Yes			1	> 2105	
	Double Flow	Not			(2100	
	Max Peripheral Speed of Impellers	280	m/s				
	Inte	erstage Data					
Gas Cooler Discharge Temperature*	deg C	<u>Max Stage</u> <u>Tem</u>	Suction perature	120 deg C	 :		
	Intersta	ge Pressure Drop			Į		
	Between 1° & 2° Stages	:	1%		1	> 2106	
	Between 2° & 3° Stages	2.5	1%				
	Between 3° & 4° Stages	2.5	%				
		next 2	107		ı	Fig. 2	1

Gack

CRISTOR ACTION AND ACTION ACTION AND ACTION ACTION AND ACTION ACTION AND ACTION A

Project Title: TEST1 2202

General Data

Compression Service	Not Specified	
Driver Type:	Optimized	0000
Driver Model:	OGT	~···; > 2203
Direct Coupling:	Not	

Compression Data

Description	Optimized	} ~				,)
Handled Flow: Mass Flow	1		35	İ		kg/s	:	
Suction Pressure:	1		60	•		bar-abs		> 2204
Suction Temperature:	1		55	!	<u> </u>	deg C	:	
Discharge Pressure:	1		100	[bar-abs	: _))

Fig. 22

		2300
GE Power Systems Oil & Ces Nuova Pignone - Upstream 4 Customers Lest of Properte	Help	Contact us
	New Layout	
	Project Data	> 230
Project Name	Configuration	
Driver	D riv er Specifications	
	Compressor Casings	
	Туре	Impeller Rating
Compressor Casing 1	I	┌
Compressor Casing 2	7	厂图
Compressor Casing 3		
	2305	

Fig. 23

980000000	CONTRACTOR OF S OF ARRY WATER AND AND A		A COURT TOWN IS	eger	' '	- / :	-	,,,,,
(36)	GE Power Systems 0.18 Gas							
	Naova Pigaone Upstream				→ Hsip	t Cos	táct us	
	stofCustencia ListofPac⊯eta	New Carriages	aka jeru K	C 14	era Disease			

Compressor Checklist

	Final User :			
	Country:	GEPS List 🔀	State: GEPS List	
!	Number of Trains t flow indicated in data	o be quoted (each handli sheets)	ng 100% of the 1 *	
	Unit Location	Indoor 🗳		
	Date Required for	Response		
1 Dallana	. / A	ataum a 1000)		
	(According to Inc			
€ Ex-Wo		ົ <u>E.C.A.</u> ົ F.O.B.	Port of Shipment	
C C&F		C.I.F.	Port of Destination.	
€ D.D.U		C.I.F.	Place of Shipment:	
v 0.0.0) .		Place of Shipfiletic.	
2. Type of	Installation	On-Shore	3	
3. Forcast	ed year of installat	tion	-	
4. Compre	ssion Train Basepla	ate		
← Multi	point Baseplate	ŗ	Three-Points Single Lift Baseplate	
5. Gas Tu	ırbine Combustio	n System		
	D Combustor	•	C DLE	
	ter Injection		Steam Injection	
6. Turbin	e Inlet System			
€ Inc			€ Not Included	
7. Turbin	e Exhaust Syster	n		
® lnc	cluded		← Not Included	
8. Batter	y & Battery Char	ger System		
C Inc			Not Included	
9. Compr	essor Seals			
@ pr	v Gas		ر <u>۱۵۱</u>	
10. Antis	urge Controls, In	strumentation & Valv	es	
C Inclue	ded		Not Included	
11. Test				
C Eull	Load/Speed/Press	ure String Test	ASME PTC10 Class 1 Stru	na Test
- ASI	ME PTC10 Class 3 F	erformance Test for	No Load/Full Speed/Press	ure String Test
Cor	<u>moressor</u> D Gas Turbine No L	oad Mechanical Running	-	
□ Tes	st .			
12. <u>Date</u>	Required for Res	ponse (mm.dd.yyyy)		

(B)	GE Power Systems	digenios del				
	Uni & Gas Nuova Fignona - Upstream			Heip	Contact u	8
		1000	E STOLET			

Electric Motor Checklist

	Final User :	1			
	Country:	GEPS List 🕶	State:	GEPS List ▼	
	Number of Trains to be flow indicated in datashed	e quoted (each handling : ets)	100% of the	1 🔻	
	Unit Location	Indoor 💌			
	Date Required for Res	ponse			
1. Delive	ry (According to Incote	rms 1990)			
€ Ex-1	_	C.A.			
C F.A.		F.O.B.	Port of	Shipment:	
€ ca	_	C.I.F.	Port of	Dastination:	
Ć p.p			Place	of Shipment:	
		10-0141			
2. Type o	of Installation	On-Shore *			
3. Forca	sted year of installation	1			
€ Se	ression Train Baseplate eparate Multipoint Baseplat impressor	e for Driver and CC	ommon Mul	tipoints Baseplate	
5. Gas '	Turbine Combustion S	iystem			
Œ S	STD Combustor		C DLE		
	Vater Injection		C Stear	n Injection	
6. Turb	ine Inlet System				
€ 1	Included		€ Not I	ncluded	
7. Turb	nine Exhaust System				
	Included		€ Not I	ncluded	
8. <u>Batt</u>	ery & Battery Charge	r System	_		
C	Included		Not I	ncluded	
9. Com	pressor Seals				
Œ.	Dry Gas		<u>د ۱۰۱</u>		
18. An	tisurge Controls, Inst	rumentation & Valve	s		
C Inc				ncluded	
	-				
11. Te	st				
G.	Full Load/Speed/Pressur	e String Test	I ASM	E PTC10 Class 1	String Test
	ASME PTC10 Class 3 Per	rformance Test for	Γ No L	oad/Full Speed/Pr	ressure String Test
,	<u>Compressor</u> STD Gas Turbine No Loa	id Mechanical Running			
, .	Test				
12. <u>D</u> a	ite Required for Resp	onse (mm.dd.yyyy)			

(F)	GE Power Systems Oil & Gas	
	Nuova Pigaana - Upstrasm	→ Help → Contact us
	ements that of Property	tow Combinations for MCCO Layers Compa

Turbocompassor Chacklist

			Che	ECKHST	
Fin	al Oser :				
	untry:	ICEDS	List *	State: GEPS List *	3
	uncry: mber of Trains to	•		,	.i
flow	indicated in datas	sheets)	- (Back rightening	100% of the 11 3	
Uni	It Location		=		
Dei	te Required for F	lesponse			
l. Delivery (A	ccording to Inco	oterms 199	0)		
Ex-Works	, <i>(</i>	F.C.A.			
C F.A.S.	C	F.O.B.		Port of Shipment:	
C C&F	c	C.1.F		Port of Destination:	
C D.D.U.				Place of Shipment:	
2. Type of Ins	stallation		On-Share *		
3. Forcasted	year of installat	sus			
4 Compressi	en Train Basepla	te			
	e Multipoint Basep		erand ro	Common Multipoints Baseplate	Э
5. Gas Turbi	ne Combustion	System			
€ STD C	ombustor			C DLE	
○ Water	Injection			C Steam Injection	
6. Turbine I	nlet System				•
	ed			○ Not Included	
					•
	xhaust System	1			
Include	ed			← Not Included	
8. <u>Battery &</u>	Battery Charq	er System	1		
C Includ	ed				
9. Compress	or Seals				
€ Dry G				<u> </u>	
	 je Controls, Ins	itrumenta	tion & Valves		
C Included				Not Included	
11. Test					
	ad/Speed/Pressu			ASME PTC10 Class 1	String Test
ASME F	PTC10 Class 3 Pe	erformance	Test for	No Load/Full Speed/F	Pressure String Test
STD G. Test	as Turbine No Lo	ad Mechani	ical Running		
12. Date Rec	quired for Resp	onse (mn	n.dd.yyyy)		
12. Date Rec	quired for Resp	onse (mn	n.dd.yyyy)		

Nuovo Pign Gustgmen z List	one - Upstream of Projects Hear Configu	r Help tallog Hare PICA to Account to their Send RFQ		inntact us
		roject Title: TEST1 \rightarrow 2802		
	To: Subject:	daniele.badiani@np.ge.com		
	From Address:	stefano.lanfred:@np.ge.com	:	
	From Name:	Stefano Lanfred	!	
		Message:		> 2803
				2000
			(s) +	
			8) 	
)
	View CHK	View DSH		
	04	2805		

Fig. 28

Fig. 29

Fig. 33

Fig. 34

Fig. 35