

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

پردازشهای مورفولوژی

Morphological Image Processing

عملگرهای پایه

ه عملگر گسترش (dilate) برای گسترش مجموعه
$$A$$
 توسط B به $A \oplus B = \left\{ z \, \middle| \, (\widehat{B})_z \cap A \neq \emptyset \right\}$

• عملگر سایش (erode) برای فرسایش مجموعه A توسط B به $A \ominus B = \{z | (B)_z \subseteq A\}$

• عملگر باز (opening) برای حذف جزئیات کوچک و هموار کردن
$$A \circ B = (A \ominus B) \oplus B$$
 همیط نواحی تعریف شده است:

عملگر بسته

عملگرهای باز و بسته

عملگرهای باز و بسته

$$((A \circ B) \oplus B) \ominus B = (A \circ B) \cdot B$$

$$(A \circ B) \oplus B$$

$$(A \ominus B) \oplus B = A \circ B$$

عملگر Hit-or-Miss

• عملگر Hit-or-Miss یک پردازش مورفولوژی برای تشخیص شکل یک ناحیه است و از آن برای استخراج الگویی در تصویر استفاده میشود

• تفاوت این عملگر با عملگر سایش آن است که پیکسلهای سیاه نیز اهمیت پیدا می کنند

• به طور مثال، Hit-or-Miss با پنجره زیر یعنی ۵ عدد ۱ و اطراف آنها ۴ عدد صفر باشد

0	1	0
1	1	1
0	1	0

عملگر Hit-or-Miss

• عملگر Hit-or-Miss یک پردازش مورفولوژی برای تشخیص شکل یک ناحیه است و از آن برای استخراج $(A \circledast B) = (A \ominus X) \cap (A^c \ominus (W - X))$

$$(A \circledast B) = (A \ominus B_1) \cap (A^c \ominus B_2)$$

عنصر ساختاری Hit-or-Miss

0	1	0
1	0	1
0	1	0

0	0	0		
0	1	0		
0	0	0		
B_2				

0	1	0		
1	-1	1		
0	1	0		
\overline{B}				

0	0	0	0	0	0	0	0
0	255	255	255	0	0	0	255
0	255	255	255	0	0	0	0
0	255	255	255	0	255	0	0
0	0	255	0	0	0	0	0
0	0	255	0	0	255	255	0
0	255	0	255	0	0	255	0
0	255	255	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	255	0	0	0	0	0
0	0	0	0	0	0	0	0

تشخيص گوشهها

-1	-1	0
-1	1	1
0	1	0

0	1	0
-1	1	1
-1	-1	0

0	1	0
1	1	-1
0	-1	-1

0	-1	-1
1	1	-1
0	1	0

استخراج مرز

مرز مجموعه A را با $\beta(A)$ نمایش می دهیم که از طریق رابطه زیر قابل محاسبه است \bullet

$$\beta(A) = A \text{ and } (A \ominus B)^c$$

$$\beta(A) = A xor (A \ominus B)$$

$$\beta(A) = A xor (A \oplus B)$$

1	1	1	0	1	0
1	1	1	1	1	1
1	1	1	0	1	0

استخراج مرز

1	1	1		
1	1	1		
1	1	1		
B_1				

0	1	0
1	1	1
0	1	0
B_2		

 $A\ xor\ (A \bigoplus B_1)$ $A\ xor\ (A \bigoplus B_2)$ $A\ xor\ (A \bigoplus B_1)$ $A\ xor\ (A \bigoplus B_2)$

• اسکلت ناحیه A با نماد S(A) نشان داده می شود و به معنای باریک کردن الگو به نحوی است که شکل کلی الگو از بین نرود

- اگر Z یک نقطه از S(A) و $S(D)_z$ نیز بزرگترین دایره درون ناحیه A به مرکز S(A) باشد، نمی توان دایره بزرگتری (نه لزوما به مرکز $S(D)_z$ که $S(D)_z$ را شامل شده و درون $S(D)_z$ باشد
 - دایره $(D)_z$ مرز ناحیه A را حداقل در دو نقطه لمس می کند

• رابطه اسكلت ناحيه A:

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$

$$A \ominus kB = ((A \ominus B) \ominus B) \ominus \cdots)$$

$$K = max\{k | (A \ominus kB) \neq \emptyset\}$$

$$A = \bigcup_{k=0}^{K} S_k(A) \oplus kB$$

