

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

Prova Escrita de Matemática A

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Prova 635/2.a Fase

14 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.

2015

VERSÃO 1

— Página em branco ———	

Indique de forma legível a versão da prova.

Utilize apenas caneta ou esferográfica de tinta azul ou preta, exceto nas respostas que impliquem construções, desenhos ou outras representações, que podem ser, primeiramente, elaborados a lápis e, a seguir, passados a tinta

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

– Página em branco ––––	

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Área de um polígono regular: Semiperimetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Área lateral de um cone: $\pi rg(r - raio da base; g - geratriz)$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume da pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume do cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume da esfera: $\frac{4}{3}\pi r^3$ (r-raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

 $tg(a+b) = \frac{tga + tgb}{1 - tga tgb}$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right) \quad (k \in \{0, \dots, n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

——— Página em branco ————	

GRUPO I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. A tabela de distribuição de probabilidades de uma certa variável aleatória $\, X \,$ é

x_i	1	2	3
$P(X=x_i)$	а	2 a	0,4

(a designa um número real)

Qual é o valor médio desta variável aleatória?

(A) 2,1

- **(B)** 2,2
- (C) 2,3
- **(D)** 2,4

2. Um saco contém nove bolas indistinguíveis ao tato, numeradas de 1 a 9. As bolas numeradas de 1 a 5 são pretas e as restantes são brancas.

Retira-se, ao acaso, uma bola do saco e observa-se a sua cor e o seu número.

Considere os seguintes acontecimentos, associados a esta experiência aleatória:

A: «a bola retirada é preta»

B: «o número da bola retirada é um número par»

Qual é o valor da probabilidade condicionada P(A|B) ?

(A) $\frac{2}{5}$

- (B) $\frac{1}{2}$ (C) $\frac{3}{5}$
- (D) $\frac{3}{4}$

3. Para certos valores de a e de b (a > 1 e b > 1), tem-se $\log_b a = \frac{1}{3}$

Qual é, para esses valores de a e de b, o valor de $\log_a(a^2b)$?

- (A) $\frac{2}{3}$
- (B) $\frac{5}{3}$
- (C) 2
- **(D)** 5

4. Para um certo número real k, é contínua em $\mathbb R$ a função f definida por

$$f(x) = \begin{cases} 2 + e^{x+k} & \text{se } x \le 0\\ \frac{2x + \ln(x+1)}{x} & \text{se } x > 0 \end{cases}$$

Qual é o valor de k?

- **(A)** 0
- **(B)** 1
- (C) ln2
- **(D)** ln 3
- **5.** Seja f a função, de domínio \mathbb{R} , definida por $f(x) = 3 \operatorname{sen}^2(x)$

Qual das expressões seguintes define a função f'', segunda derivada de f?

- (A) $6 \operatorname{sen}(2x) \cos(x)$
- **(B)** $6 \operatorname{sen}(x) \cos(2x)$
- (C) $6\cos(2x)$
- (D) $6 \operatorname{sen}(2x)$
- **6.** Na Figura 1, está representado, no plano complexo, um triângulo equilátero [OAB]

Sabe-se que:

- ullet o ponto O é a origem do referencial;
- ullet o ponto A pertence ao eixo real e tem abcissa igual a 1
- \bullet o ponto $\,B\,$ pertence ao quarto quadrante e é a imagem geométrica de um complexo $z\,$

Qual das afirmações seguintes é verdadeira?

(B)
$$z = cis \frac{11\pi}{6}$$

(C)
$$z = \sqrt{3} \cos \frac{5\pi}{3}$$

(D)
$$z = cis \frac{5\pi}{3}$$

Figura 1

7. Considere, num referencial $\ o.n. \ xOy$, a circunferência definida pela equação

$$x^2 + (y-1)^2 = 2$$

Esta circunferência intersecta o eixo Ox em dois pontos. Destes pontos, seja A o que tem abcissa positiva.

Seja $\,r\,$ a reta tangente à circunferência no ponto $\,A\,$

Qual é a equação reduzida da reta r?

- **(A)** y = x + 1
- **(B)** y = x 1
- (C) y = 2x + 2
- **(D)** y = 2x 2
- 8. Qual das expressões seguintes é termo geral de uma sucessão monótona e limitada?
 - **(A)** $(-1)^n$
 - **(B)** $(-1)^n$. n
 - (C) $-\frac{1}{n}$
 - **(D)** $1 + n^2$

– Página em branco ––––	

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Em \mathbb{C} , conjunto dos números complexos, seja $z_1 = \frac{-1+i}{\sqrt{2}\operatorname{cis}\frac{\pi}{12}}$

Determine os números complexos z que são solução da equação $z^4 = \overline{z_1}$, sem utilizar a calculadora.

Apresente esses números na forma trigonométrica.

2. Um cubo encontra-se em movimento oscilatório provocado pela força elástica exercida por uma mola.

A Figura 2 esquematiza esta situação. Nesta figura, os pontos O e A são pontos fixos. O ponto P representa o centro do cubo e desloca-se sobre a semirreta $\dot{O}A$

Figura 2

Admita que não existe qualquer resistência ao movimento.

Sabe-se que a distância, em metros, do ponto P ao ponto O é dada por

$$d(t) = 1 + \frac{1}{2}\operatorname{sen}\left(\pi t + \frac{\pi}{6}\right)$$

A variável t designa o tempo, medido em segundos, que decorre desde o instante em que foi iniciada a contagem do tempo $(t \in [0, +\infty[)$.

Resolva os itens 2.1. e 2.2. sem recorrer à calculadora.

2.1. No instante em que se iniciou a contagem do tempo, o ponto P coincidia com o ponto A

Durante os primeiros três segundos do movimento, o ponto $\,P\,$ passou pelo ponto $\,A\,$ mais do que uma vez.

Determine os instantes, diferentes do inicial, em que tal aconteceu.

Apresente os valores exatos das soluções, em segundos.

2.2. Justifique, recorrendo ao teorema de Bolzano, que houve, pelo menos, um instante, entre os três segundos e os quatro segundos após o início da contagem do tempo, em que a distância do ponto P ao ponto O foi igual a 1,1 metros.

3. Seja f a função, de domínio \mathbb{R} , definida por $f(x) = \begin{cases} 1 + xe^x & \text{se } x \leq 3 \\ \ln(x-3) - \ln(x) & \text{se } x > 3 \end{cases}$

Resolva os itens 3.1., 3.2. e 3.3., recorrendo a métodos analíticos, sem utilizar a calculadora.

- **3.1.** Estude a função f quanto à existência de assíntotas horizontais do seu gráfico.
- **3.2.** Resolva, em $]-\infty,3]$, a condição f(x)-2x>1

Apresente o conjunto solução, usando a notação de intervalos de números reais.

- **3.3.** Determine a equação reduzida da reta tangente ao gráfico da função f no ponto de abcissa 4
- **4.** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que:
 - *f* tem derivada finita em todos os pontos do seu domínio;
 - f'(0) > 0
 - f''(x) < 0, para qualquer $x \in]-\infty, 0[$

Nenhum dos gráficos a seguir apresentados é o gráfico da função f

Gráfico A Gráfico B Gráfico C

Elabore uma composição na qual apresente, para cada um dos gráficos, uma razão pela qual esse gráfico não pode ser o gráfico da função f

5. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos $\left(A\subset\Omega\text{ e }B\subset\Omega\right)$, com $P(A)\neq0$

Prove que $P(A \cup \overline{B}) - 1 + P(B) = P(A) \times P(B|A)$

- **6.** Na Figura 3, está representado, num referencial o.n. Oxyz, o poliedro [NOPQRSTUV] que se pode decompor num cubo e numa pirâmide quadrangular regular. Sabe-se que:
 - o vértice P pertence ao eixo Ox
 - o vértice *N* pertence ao eixo *Oy*
 - o vértice T pertence ao eixo Oz
 - o vértice R tem coordenadas (2, 2, 2)
 - o plano PQV é definido pela equação 6x + z 12 = 0
 - **6.1.** Determine as coordenadas do ponto $\,V\,$
 - **6.2.** Escreva uma equação cartesiana do plano que passa no ponto P e é perpendicular à reta $\ensuremath{\mathit{OR}}$

Figura 3

U

6.3. Seja A um ponto pertencente ao plano QRS

Sabe-se que:

- ullet o ponto A tem cota igual ao cubo da abcissa;
- os vetores \overrightarrow{OA} e \overrightarrow{TQ} são perpendiculares.

Determine a abcissa do ponto A, recorrendo à calculadora gráfica.

Na sua resposta:

- · equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora e que lhe permite(m) resolver a equação, devidamente identificado(s) (sugere-se a utilização da janela de visualização em que $x \in [-4, 4]$ e $y \in [-2, 7]$);
- ullet apresente a abcissa do ponto A arredondada às centésimas.
- **6.4.** Dispõe-se de sete cores diferentes, das quais uma é branca e outra é azul, para colorir as nove faces do poliedro $\lceil NOPQRSTUV \rceil$. Cada face vai ser colorida com uma única cor.

Considere a experiência aleatória que consiste em colorir, ao acaso, as nove faces do poliedro, podendo cada face ser colorida por qualquer uma das sete cores.

Determine a probabilidade de, no final da experiência, o poliedro ficar com exatamente duas faces brancas, ambas triangulares, exatamente duas faces azuis, ambas quadradas, e as restantes faces coloridas com cores todas diferentes.

Apresente o resultado na forma de dízima, arredondado às décimas de milésima.

FIM

COTAÇÕES

GRUPO I

1. a 8 (8 × 5 pontos)	40 pontos	
_		40 pontos
GRUPO II		
1	15 pontos	
1	15 portos	
2.		
2.1	10 pontos	
2.2.	15 pontos	
3.		
3.1	15 pontos	
3.2.	15 pontos	
3.3.	15 pontos	
4.	15 pontos	
4.	15 pontos	
5	15 pontos	
	,	
6.		
6.1	5 pontos	
6.2.	10 pontos	
6.3.	15 pontos	
6.4.	15 pontos	
		160 pontos
TOTAL		200 pontos