MATH 327 Notes

Contents

1	Section One	3
		3
	1.2 Functions	3
	1.3 Injective Function	3
	1.4 Súrjective Function	3
	1.5 Bijective Function	3
	1.6 Identity Map	3
	1.7 Composition	4
	••	4
	1.9 Partitions	4
		4
		4
	= 0	4
	1.13 Set Notations	4
	1.14 Dings	5
		5
		5
		כ
		5
		5
		5
	1.20 Ordered Field	6
		6
	1.22 Supremum of Combined Sets	6
	1.23 Infimum	6
		7
	1.25 Archimedean Properties of Real Numbers	7
	1.26 Dense Subsets	7
	1.27 Bounded Set	7
		7
	1.29 Bounded Intervals in \mathbb{R}	7
	1.30 Unbounded Intervals in $\mathbb R$	7
	1.31 Powers	8
	1.32 Absolute Value	8
	1.33 Triangle Inequality	8
	The mange mequanty of the control of	Ĭ
2	Section Two	9
_		9
	2.2 Convergent Sequences	9
		9
	2.4 Convergent and Divergent Theorems	9
		9
	2.0 0940020 1110010111	v
	2.7 Standard Sequences	
	2.8 Monotone Sequences	
	2.9 Subsequences	Ũ
	2.10 Sequentially Compact	U
	2.11 Cauchy Sequences	
	2.12 Completeness	1

5		18 18
4	Section Four 4.1 Series 4.2 Series Theorems 4.3 Series Arithmetic 4.4 Standard Series 4.5 Non-Negative Series 4.6 Absolute Series 4.7 Absolutely Convergent Series 4.8 Conditionally Convergent Series 4.9 Rearrangement of a Series 4.10 Partial Series Test 4.11 Direct Comparison Test 4.12 Limit Comparison Test 4.13 p-Test 4.14 Root Test 4.15 Ratio Test 4.16 Cauchy Condensation Test	
3	3.1 Continuous Functions 3.2 Continuous Functions and Convergence 3.3 Function Arithmetic 3.4 Continuity of Function Arithmetic 3.5 Continuity of Polynomial Functions 3.6 Continuity of Composition of Functions 3.7 Extreme Value Theorem 3.8 Intermediate Value Theorem	13 13 13 13 13 14 14
	2.13 Limit Inferior	12 12

1 Section One

1.1 Sets

• A universal set

• $a \in A$ elements

• $E \subset A$ subset

• E^c set complement

• $E \setminus A$ set difference

• $E_{\lambda} \subset A$ indexed subset, for all λ in the indexing set Λ

• $\bigcap_{\lambda \in \Lambda} E_{\lambda} = \{ a \in A \mid a \in E_{\lambda} \mid \forall \lambda \in \Lambda \}$ intersection of indexed set

• $\bigcup_{\lambda \in \Lambda} E_{\lambda} = \{ a \in A \mid a \in E_{\lambda} \mid \exists \lambda \in \Lambda \}$ union of indexed set

• $A^k = A \times A \times ... \times A = \{(a_1, a_2, ..., a_k) \mid a_1, a_2, ..., a_k \in A\}$ set power

• $A_1 \times A_2 \times ... \times A_k = \{(a_1, a_2, ..., a_k) \mid a_1 \in A_1, a_2 \in A_2, ..., a_k \in A_k\}$ direct product

1.2 Functions

• $f(A) = \{f(a) \mid a \in A\} = \{b \in B \mid \exists a \in A \text{ such that } f(a) = b\}$

1.3 Injective Function

Given a function $f:A\to B$, f is injective if it is one-to-one, that is $\forall x_1,x_2\in A,\ x_1\neq x_2\Rightarrow f(x_1)\neq f(x_2)$

1.4 Surjective Function

Given a function $f: A \to B$, f is surjective if it is onto, that is $\forall y \in B, \exists x \in A, y = f(x)$

1.5 Bijective Function

Given a function $f: A \to B$, f is bijective if it is injective (one-to-one) and surjective (onto)

1.6 Identity Map

 $I_A = Id_A$ is the identity map from $A \to A$

1.7 Composition

If $f:A\to B$ and $g:B\to C$, then the composition of $g\circ f=g(f)=A\to C$

1.8 Invertible Functions

 $f:A\to B$ is invertible if and only if there exists $g:B\to A$ such that $g\circ f=I_A$ and $f\circ g=I_B$

· A function is invertible if and only if it is bijective

1.9 Partitions

A partition of A is a family of disjoint subsets of A such that their union is A

If E_{λ} is an indexed family of partitions of A

•
$$\bigcup_{\lambda \in \Lambda} E_{\lambda} = A$$

• $E_{\lambda} \cap E_{\mu} = \emptyset$ when $\lambda \neq \mu$

1.10 Relations

A relation R from set A to set B is a subset of $A \times B$

- If $(a,b) \in R$, where R is a relation from some set A to some set B, we can write $a \sim b$
- A relation R on a set A is a subset of $A \times A$

1.11 Equivalence Relations

An equivalence relation is a relation that has the properties

- Reflexive: $\forall a \in A, \ a \sim a$
- Symmetric: $\forall a, b \in A, \ a \sim b \Leftrightarrow b \sim a$
- Transitive: $\forall a, b, c \in A, (a \sim b \land b \sim C) \Rightarrow a \sim c$

1.12 Equivalence Classes

Given an equivalence relation on A and $a \in A$, the equivalence class of a is $[a] = \{b \in A \mid a \sim b\}$

- Equivalence classes in A form a partition of A
- There is a 1-to-1 correspondence between equivalence relations and partitions

1.13 Set Notations

- \mathbb{Z}^+ : set of positive integers 1, 2, 3, ...
- \mathbb{Z} : set of integers 0, 1, 2, -1, -2, ...
- \mathbb{N} : set of natural numbers 0, 1, 2, ...
- \mathbb{Q} : set of rational numbers $\frac{1}{2},1,0,-\frac{3}{4},\frac{m\in\mathbb{Z}}{n\neq 0\in\mathbb{Z}},\dots$
- \mathbb{R} : set of real numbers $\pi, \sqrt{2}, e, 0, -1, 2, ...$

1.14 Rings

A ring is a nonempty set R that can undergo two operations, usually written as addition and multiplication

- · Additive operations satisfy the following axioms
 - 1. Closed under addition: if $a \in R$ and $b \in R$, then $a + b \in R$
 - 2. Associative: a + (b + c) = (a + b) + c
 - 3. Commutative: a + b = b + c
 - 4. Additive identity: there is one 0_R in R such that $a + 0_R = a$ for all a
 - 5. Additive inverse: there is one x in R such that $a + x = 0_R$
- Multiplicative operations satisfy the following axioms
 - 6. Closed under multiplication: if $a \in R$ and $b \in R$, then $ab \in R$
 - 7. Associative: a(bc) = (ab)c
 - 8. Distributive: a(b+c) = ab + ac and (a+b)c = ac + bc

Multiplicative operations are not necessarily commutative, i.e. $ab \neq ba$

Multiplicative operations do not necessarily have a multiplicative identity, i.e. $a1_R = 1_R a = a$ for all a

1.15 Commutative Rings

A commutative ring is a ring R in which multiplication is commutative, i.e. ab = ba

1.16 Ring With Identity

A ring with identity is a ring R that contains one multiplicative identity, i.e. $a1_R = 1_R a = a$ for all a

1.17 Fields

A field is a commutative ring with identity where all non-zero elements are have multiplicative inverses

- i.e. \mathbb{C} , \mathbb{R} , \mathbb{Q} , \mathbb{Z}_p
- · All fields are integral domains

1.18 Order

An order on a set S is a less-than relation, denoted as <, that satisfies the following properties

- If $x, y \in S$, then precisely one of x < y, x = y, or y < x is true
- If $x, y, z \in S$ and x < y and y < z, then x < z

1.19 Ordered Set

An ordered set is a set S with an order on S

- $y > x \Leftrightarrow x < y$
- $x \le y \Leftrightarrow x < y \text{ or } x = y$
- $x \ge y \Leftrightarrow x > y \text{ or } x = y$

 $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ are examples of ordered sets

1.20 Ordered Field

An ordered field is a field F with an order that satisfies the following properties

- If y < z, then x + y < x + z
- If x > 0 and y > 0, then xy > 0
- Given $x \neq 0$, x is positive if and only if x > 0
- Given $x \neq 0$, x is negative if and only if x < 0

The following are true in every ordered field

- x > 0 if and only if -x < 0
- If x > 0 and y < z, then xy < xz
- If x < 0 and y < z, then xy > xz
- If $x \neq 0$, then $x^2 > 0$
- If 0 < x < y, then $0 < \frac{1}{y} < \frac{1}{x}$

Q is an example of an ordered field

1.21 Supremum

If S is an ordered set, the subset E of S is bounded above if there exists an upper bound $\alpha \in S$ such that $x \leq \alpha$ for all elements $x \in E$. The element α is the least upper bound of E if

- α is an upper bound of E
- If $\beta \in S$ and $\beta < \alpha$, then there exists $x \in E$ such that $x > \beta$

The supremum is unique, denoted as $\sup(E)$

1.22 Supremum of Combined Sets

If A, B are bounded above then $A + B = \{a + b \mid a \in A, b \in B\}$

- A + B is bounded above
- $\sup(A+B) = \sup(A) + \sup(B)$

1.23 Infimum

If S is an ordered set, the subset E of S is bounded below if there exists a lower bound $\alpha \in S$ such that $\alpha \leq x$ for all elements $x \in E$. The element α is the greatest lower bound of E if

- α is a lower bound of E
- If $\beta \in S$ and $\beta > \alpha$, then there exists $x \in E$ such that $x < \beta$

The infimum is unique, denoted as $\inf(E)$

•
$$\inf(E) = -\sup(-E)$$

1.24 Set of Real Numbers R

There exists a unique ordered field \mathbb{R} such that

- \mathbb{R} extends \mathbb{Q} as an ordered field
- Any non-empty subset of $\mathbb R$ which is bounded above has a least upper bound in $\mathbb R$

1.25 Archimedean Properties of Real Numbers

- If $x, y \in \mathbb{R}$ and x > 0, then there exists $n \in \mathbb{N}$ such that nx > y
- If $\varepsilon \in \mathbb{R}$ and $\varepsilon > 0$, then there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \varepsilon$

1.26 Dense Subsets

A subset $E \subset \mathbb{R}$ is dense in \mathbb{R} if for every $x,y \in \mathbb{R}$ with x < y, there exists $z \in E$ such that x < z < y

• i.e. ℚ

1.27 Bounded Set

A set $E \subset S$ is bounded if it is bounded both above and below

1.28 Intervals in \mathbb{R}

A subset $I \subset \mathbb{R}$ is an interval if I has the property that if $x, y \in I$ and x < z < y, then $z \in I$

1.29 Bounded Intervals in \mathbb{R}

For $a, b \in \mathbb{R}$ and $a \leq b$

- Closed interval
 - $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- · Open interval

$$-(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

- · Half open / half closed
 - $[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$
 - $-(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$

If I is a bounded interval and $a = \inf(I)$ and $b = \sup(I)$, then $(a, b) \subset I \subset [a, b]$

1.30 Unbounded Intervals in \mathbb{R}

- $[a, \infty) = \{x \in \mathbb{R} \mid x \ge a\}$
- $(a, \infty) = \{x \in \mathbb{R} \mid x > a\}$
- $(-\infty, b] = \{x \in \mathbb{R} \mid x \le b\}$
- $(-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$
- $(-\infty, \infty) = \{x \in \mathbb{R}\}$

1.31 Powers

If c > 0 and $n \in \mathbb{N}$ then

- $c^n = c \times c \times ... \times c$
- $c^{-n} = \frac{1}{c^n}$
- $c^0 = 1$
- $c^{\frac{1}{n}} = x$ where x is the unique positive number such that $x^n = c$

Additional theorems

- If $n \in \mathbb{N}$ and c > 0 then there exists a unique x > 0 such that $x^n = c$
 - More information on this theorem can be found in Rudin 1.21
- $\{r\in\mathbb{Q}\mid r>0, r^2<2\}$ does not have a least upper bound in \mathbb{Q}

1.32 Absolute Value

For $c \in \mathbb{R}$, define

$$|c| = \begin{cases} c & \text{if } c \ge 0\\ -c & \text{if } c < 0 \end{cases}$$

For d>0 we have $|c|\leq d$ if and only if $-d\leq c\leq d$

- If $x, y \in \mathbb{R}$, |x y| is the distance between x and y
- $E \in \mathbb{R}$ is bounded if and only if there exists K such that $|x| \leq K$ for all $x \in E$

1.33 Triangle Inequality

If $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$

• In a triangle, the sum of lengths of two sides is greater than or equal to the length of the remaining side

Section Two

2.1 Sequences

A sequence in \mathbb{R} is a map $f: \mathbb{N} \to \mathbb{R}$, denoted as (a_n) where $a_n = f(n)$ for $n \in \mathbb{N}$

2.2 Convergent Sequences

A sequence (a_n) converges to a point $a\in\mathbb{R}$ if given $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that $|a_n-a|<\varepsilon$ for all $n \geq N$

- a is the limit of (a_n)

 - $a = \lim_{n \to \infty} a_n$ $a_n \to a \text{ as } n \to \infty$
- Examples of convergent sequences
 - $-a_n = \frac{1}{n}$
 - $-a_n=(-1)^n\frac{1}{n^2}$

2.3 Divergent Sequences

A sequence (a_n) diverges if it is not convergent

- Examples of divergent sequences
 - $-a_n=2^n$
 - $-a_n=(-1)^n$

2.4 Convergent and Divergent Theorems

- If (a_n) converges, then its limit is unique
- If (a_n) converges, then it is bounded
 - The set $\{a_n \mid n \in \mathbb{N}\}$ is bounded
- If $a_n \to a$, then $|a_n| \to |a|$
 - $||a_n| |a|| \le |a_n a|$
- If $a_n \to a$ and $b_n \to b$, then
 - $-a_n+b_n\to a+b$
 - $a_nb_n \to ab$

 - $-\frac{b_n}{a_n} \to \frac{b}{a}$ when $a \neq 0$
- If $a_n \to a$ and $p(x) = c_0 + c_1 x + ... + c_d x^d$ is a polynomial, then $p(a_n) \to p(a)$

2.5 Squeeze Theorem

If $a_n,b_n,c_n\in\mathbb{R}$ such that $a_n\leq b_n\leq c_n$ for all n and $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=a$, then $\lim_{n\to\infty}b_n=a$

2.6 Dense Subsets and Sequences

A set $S \subset \mathbb{R}$ is dense in \mathbb{R} if and only if every $x \in \mathbb{R}$ is the limit of a sequence in S

Every real number is the limit of a sequence of rational numbers

2.7 Standard Sequences

- For any c>0, $c^{\frac{1}{n}}\to 1$ as $n\to\infty$
- $n^{\frac{1}{n}} \to 1$ as $n \to \infty$
- For $p>0,\, \frac{1}{n^p}\to 0$ as $n\to\infty$
- If |x| < 1, then $x^n \to 0$ as $n \to \infty$

2.8 Monotone Sequences

A sequence (a_n) is monotonic if it is monotone increasing and monotone decreasing

A sequence (a_n) is monotone increasing if it is increasing such that $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$

A sequence (a_n) is monotone decreasing if it is decreasing such that $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$

- A sequence is monotone increasing and decreasing if and only if it is a constant sequence
- · A monotone sequence converges if and only if it is bounded
- A bounded monotone increasing sequence converges to its supremum
- A bounded monotone decreasing sequence converges to its infimum

2.9 Subsequences

If $(a_n)_{n\in\mathbb{N}}$ is a sequence, and $n_1< n_2<\dots$ is a strictly increasing sequence of natural numbers, then the sequence $(a_{n_k})_{k\in\mathbb{N}}=a_{n_1},a_{n_2},\dots$ is a subsequence of $(a_n)_{n\in\mathbb{N}}$

- If $a_n \to a$, then every subsequence of (a_n) converges to a
- · A sequence is a subsequence of itself
- A subsequence must be infinite
- Every sequence has a monotone subsequence
- Every bounded sequence of real numbers has a convergent subsequence
 - Every bounded sequence of real numbers has a bounded monotone subsequence
 - Every bounded monotone subsequence is convergent

2.10 Sequentially Compact

A subset $S \subset \mathbb{R}$ is sequentially compact if every sequence $s_n \in S$ has a subsequence that converges to a point in S

• [a, b] is sequentially compact

2.11 Cauchy Sequences

A sequence (a_n) of real numbers is Cauchy if for every ε there exists $N\in\mathbb{N}$ such that $|a_n-a_m|<\varepsilon$ for all $n,m\geq N$

- · Every convergent sequence is a Cauchy sequence
- · Every Cauchy sequence is bounded
- A sequence of real numbers converges in \mathbb{R} if and only if it is Cauchy

2.12 Completeness

A set $S \subset \mathbb{R}$ is complete if every Cauchy sequence in S converges to a point in S

- Completeness of $\mathbb R$ is equivalent to the least upper bound property of $\mathbb R$
- $\mathbb R$ is complete since every Cauchy sequence in $\mathbb R$ converges to a point in $\mathbb R$
- $\mathbb Q$ is incomplete since there are Cauchy sequences in $\mathbb Q$ that converge to a point in $\mathbb R$
- [a, b] is complete
- [a, b) is incomplete
- $[a, \infty)$ is complete

2.13 Limit Inferior

Let (x_n) be a bounded sequence in \mathbb{R} . For $n \in \mathbb{N}$, let

$$\ell_n = \inf_{i \ge n} x_i = \inf\{x_i \mid i \ge n\}$$
$$\lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} \ell_n = \sup \ell_n$$

- Let $S_n=\{x_i\mid i\geq n\}$ and $S_{n+1}=\{x_i\mid i\geq n+1\}$. Since $S_{n+1}\subset S_n$, the infimum of S_n might not be in S_{n+1} such that $\ell_n\leq \ell_{n+1}$
- ℓ_n is monotone increasing

2.14 Limit Superior

Let (x_n) be a bounded sequence in \mathbb{R} . For $n \in \mathbb{N}$, let

$$u_n = \sup_{i \ge n} x_i = \sup\{x_i \mid i \ge n\}$$
$$\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} u_n = \inf u_n$$

- Let $S_n=\{x_i\mid i\geq n\}$ and $S_{n+1}=\{x_i\mid i\geq n+1\}$. Since $S_{n+1}\subset S_n$, the supremum of S_n might not be in S_{n+1} such that $u_n\geq u_{n+1}$
- u_n is monotone decreasing

2.15 Convergence and Limit Superior/Inferior

- $\lim_{n \to \infty} \inf x_n \le \lim_{n \to \infty} \sup x_n$
- $\lim_{n\to\infty}\inf x_n=\lim_{n\to\infty}\sup x_n$ if and only if (x_n) converges
 - If (x_n) converges, then $\lim_{n\to\infty}x_n=\lim_{n\to\infty}\inf x_n=\lim_{n\to\infty}\sup x_n$

2.16 Conventions for $+\infty$

For a subset $E \subset \mathbb{R}$, $\sup E = \infty$ if and only if E is not bounded above

For a sequence $x_n \in \mathbb{R}$, $\lim_{n \to \infty} x_n = \infty$ if and only if for all $K \in \mathbb{R}$, there exists $N \in \mathbb{N}$ such that $x_n \geq K$ for all $n \geq N$

- (x_n) is said to diverge to ∞
- Given increasing sequence (x_n) , either (x_n) is convergent or $\lim_{n\to\infty}(x_n)=\infty$

2.17 Conventions for $-\infty$

For a subset $E \subset \mathbb{R}$, $\inf E = -\infty$ if and only if E is not bounded below

For a sequence $x_n \in \mathbb{R}$, $\lim_{n \to \infty} x_n = -\infty$ if and only if for all $K \in \mathbb{R}$, there exists $N \in \mathbb{N}$ such that $x_n \leq K$ for all $n \geq N$

- (x_n) is said to diverge to $-\infty$
- Given decreasing sequence (x_n) , either (x_n) is convergent or $\lim_{n\to\infty}(x_n)=-\infty$

2.18 Infinity and Limit Superior/Inferior

- $\lim_{n\to\infty}\sup x_n=\infty$ if and only if (x_n) is not bounded above
- $\lim_{n\to\infty}\inf x_n=\infty$ if and only if $\lim_{n\to\infty}x_n=\infty$

3 Section Three

3.1 Continuous Functions

A function $f:D\to\mathbb{R}$ is continuous at a point $x_0\in D$ if for all $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-f(x_0)|<\varepsilon$ for all $x\in D$ where $|x-x_0|<\delta$

3.2 Continuous Functions and Convergence

A function $f:D\to\mathbb{R}$ is continuous at a point $x_0\in D$ if and only if $f(x_n)\to f(x_0)$ for all sequences $x_n\in D$ where $x_n\to x_0$

3.3 Function Arithmetic

Given functions $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$

- The sum $f+g:D\to\mathbb{R}$ is defined by (f+g)(x)=f(x)+g(x) for all $x\in D$
- The product $fg:D\to\mathbb{R}$ is defined by (fg)(x)=f(x)g(x) for all $x\in D$
- The quotient $\frac{f}{g}:D\to\mathbb{R}$ is defined by $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ for all $x\in D$, given that $g(x)\neq 0$ for all $x\in D$

3.4 Continuity of Function Arithmetic

Given functions $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$ continuous at the point $x_0\in D$

- f + g is continuous at x_0
- fg is continuous at x_0
- $\frac{f}{a}$ is continuous at x_0 when $g(x) \neq 0$ for all $x \in D$

3.5 Continuity of Polynomial Functions

Every polynomial is continuous. Given polynomials p and q

- p + q is continuous on the domain
- pq is continuous on the domain
- $\frac{p}{q}$ is continuous on D, where $D = \{x \in \mathbb{R} \mid g(x) \neq 0\}$

3.6 Continuity of Composition of Functions

Let $f:D\to\mathbb{R}$ and $g:U\to\mathbb{R}$ with $f(D)\subset U$. If f is continuous at the point $x_0\in D$ and g is continuous at the point $f(x_0)\in U$, then $g\circ f:D\to\mathbb{R}$ is continuous at x_0

3.7 Extreme Value Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous, then there exists $\alpha,\beta\in[a,b]$ such that $f(\alpha)=\sup(f([a,b]))$ and $f(\beta)=\inf(f([a,b]))$

3.8 Intermediate Value Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous and c lies between f(a) and f(b), then there exists $\alpha\in(a,b)$ such that $f(\alpha)=c$

Alternately, if I is an interval and $f: I \to \mathbb{R}$ is continuous, then f(I) is an interval

3.9 Uniform Continuity

 $f:D\to\mathbb{R}$ is uniformly continuous if for every $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-f(\tilde{x})|<\varepsilon$ whenever $x,\tilde{x}\in D$ and $|x-\tilde{x}|<\delta$

• If $f:[a,b] \to \mathbb{R}$ is continuous, then f is uniformly continuous

3.10 Unifying Theorem

For a function $f: D \to \mathbb{R}$, the following are equivalent

- *f* is uniformly continuous
- For all sequences $u_n, v_n \in D$, if $u_n v_n \to 0$, then $f(u_n) f(v_n) \to 0$

4 Section Four

4.1 Series

A series is an infinite sum of the terms of a sequence $S = \sum_{n=1}^{\infty} a_n$

4.2 Series Theorems

Let S_n be the n^{th} partial sum $S_n = \sum_{i=1}^n a_i$

- If the sequence (S_n) converges, then S converges to $\lim_{n\to\infty}S_n$
- If S converges, then a_i converges to 0
- S converges if and only if (S_n) is a Cauchy sequence

4.3 Series Arithmetic

Given the series $A = \sum_{n=1}^{\infty} a_n$ and $B = \sum_{n=1}^{\infty} b_n$

•
$$A + B = \sum_{n=1}^{\infty} (a_n + b_n)$$

•
$$cA = \sum_{n=1}^{\infty} (ca_n)$$

4.4 Standard Series

For $x \in \mathbb{R}$, the series $\sum_{n=0}^{\infty} x^n$ converges to $\frac{1}{1-x}$ if |x| < 1 and diverges to infinity if $|x| \ge 1$

4.5 Non-Negative Series

A series $S=\sum_{n=1}^{\infty}a_n$ is non-negative if $a_n\geq 0$ for all $n\in\mathbb{R}$

- If S is a non-negative series, then (S_n) is monotonically increasing
- S converges if and only if (S_n) is bounded above

4.6 Absolute Series

If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ also converges

4.7 Absolutely Convergent Series

A series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent

- · If a series is absolutely convergent, then it is convergent
- · All rearrangements of an absolutely convergent series converges to the same sum

4.8 Conditionally Convergent Series

A series is conditionally convergent if it converges but not absolutely

- If a series converges conditionally, then the positive terms converge to ∞ and the negative terms converge to $-\infty$
- A conditionally convergent series can be rearranged to converge to any value in $[-\infty,\infty]$
- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent

4.9 Rearrangement of a Series

A rearrangement of a series $\sum_{n=1}^{\infty} a_n$ is a bijection $\sigma: \mathbb{N} \to \mathbb{N}$

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = a_{\sigma(1)} + a_{\sigma(2)} + \dots$$

4.10 Partial Series Test

A series $\sum_{n=1}^{\infty}a_n$ converges if and only if $\sum_{n=k}^{\infty}a_n$ converges, where $k\geq 1$

4.11 Direct Comparison Test

If $0 \le a_n \le b_n$ for all $n \in \mathbb{R}$, then

- If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges
- If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges

4.12 Limit Comparison Test

Let $\rho = \lim_{n \to \infty} \frac{a_n}{b_n}$ and $a_n, b_n \ge 0$ for all $n \in \mathbb{N}$

- If ρ is finite and positive, then $\sum_{n=1}^{\infty}a_k$ converges if and only if $\sum_{n=1}^{\infty}b_k$ converges
- If $\rho=0$ and $\sum_{n=1}^{\infty}b_k$ converges, then $\sum_{n=1}^{\infty}a_k$ converges
- If $ho=\infty$ and $\sum_{k=1}^\infty b_k$ diverges, then $\sum_{k=1}^\infty a_k$ diverges

4.13 p-Test

• If p > 1, then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges

• If $p \le 1$, then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges

4.14 Root Test

Let $r = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}$

- If r < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely
- If r > 1, then $\sum_{n=1}^{\infty} a_n$ diverges
- If r=1, then the root test is inconclusive

4.15 Ratio Test

• If $\lim_{n\to\infty}\sup\left|\frac{a_{n+1}}{a_n}\right|<1$, then $\sum_{n=1}^\infty a_n$ converges absolutely

• If $\lim_{n\to\infty}\inf\left|\frac{a_{n+1}}{a_n}\right|>1$, then $\sum_{n=1}^\infty a_n$ diverges

4.16 Cauchy Condensation Test

If (a_n) decreases to 0, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges

4.17 Alternating Series Test

If (a_n) decreases to 0, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges

- Even partial sums S_{2n} increase and converge to $\sum_{n=1}^{\infty} -a_n$
- Odd partial sums S_{2n+1} decrease and converge to $\sum_{n=1}^{\infty} a_n$

5 Appendix

5.1 Rings

Ring	Properties				
\mathbb{R}	infinite	commutative	has identity	field	
\mathbb{Q}	infinite	commutative	has identity	field	
\mathbb{E}	infinite	commutative	no identity	not field	
${\mathbb Z}$	infinite	commutative	has identity	not field	
\mathbb{Z}_n	finite	commutative	has identity	not field	
\mathbb{Z}_p	finite	commutative	has identity	field	
\mathbb{C}	infinite	commutative	has identity	field	
$\mathbb{Q}(\sqrt{2})$	infinite	commutative	has identity	field	
$\mathbb{Z}_3[i]$	finite	commutative	has identity	field	
$M_2(\mathbb{Z})$	infinite	not commutative	has identity	not field	
$M_2(\mathbb{E})$	infinite	not commutative	no identity	not field	
$M_2(\mathbb{Z}_n)$	finite	not commutative	has identity	not field	
$M_2(\mathbb{Z}_p)$	finite	not commutative	has identity	not field	
$\left\{ \begin{pmatrix} 0 & r \\ 0 & 0 \end{pmatrix} \mid r \in \mathbb{Z}_n \right\}$	finite	commutative	no identity	not field	

 $[\]overline{\mathbb{E}}$ denotes the ring containing all integers divisible by 2, i.e. -2, 0, 4