Exploration with Limited Memory: Streaming Algorithms for Coin Tossing, Noisy Comparisons, and Multi-Armed Bandits

Sepehr Assadi, Chen Wang Rutgers University

Abstract

- Finding the most biased coin by tossing -- a classical exploration problem in computer science and machine learning.
- \triangleright Assuming a gap parameter Δ , elimination-based algorithms have provided solution with $O(\frac{n}{\Lambda^2})$ coin tosses which matches the lower bound.
- > However, these algorithms inherently require storing all the coins, which is not memory-efficient.
- > We studied the sample-space trade-off under the streaming coin tossing mode: the algorithm can only toss an incoming or stored coin.
- ➤ We designed an algorithm which only stores **a single extra coin**, which means the sample-space trade-off does not exist.
- \succ En route to the one-coin algorithm, we also proposed preliminary memory-efficient algorithms with $O(\log(n))$, $O(\log\log(n))$ and $O(\log*(n))$ stored coins.
- Extensions of our main algorithm includes finding the k most biased coins and other exploration problems. E.g.. Finding top-k elements using noisy comparisons; Finding an ε -best arm in stochastic multi-armed bandits.

Background

Goal: Find the most biased coin (denote as coin*) with high constant probability by tossing each coin several times.

Parameters:

- n The number of coins;
- Δ The gap between the most and second-most biased coins

A good algorithm should:

- ✓ Return the most biased coin w.h.p. (correctness)
- ✓ Use small number of tosses (sample complexity)
- ✓ Store small number of coins (space complexity)

A Naïve Algorithm:

- Toss each coin $O(\frac{\log(n)}{\Lambda^2})$ times
- Sample complexity $O(\frac{n}{\Lambda^2}\log(n))$
- Space complexity: 1 coin

Median Elimination Algorithm (Even-Dar et al., 2006):

- Round 1: toss each coin $O(\frac{1}{\Lambda^2})$ times
- Round 2+: eliminate ½ of the coins; increase 1.5x coin tosses
- Sample complexity $O(\frac{n}{\Lambda^2})$
- Space complexity: $\Omega(n)$ coins

Any sample-space trade-off?

-- streaming model: To toss a past coin, must have stored it.

Our Contribution

Main Theorem (Assadi and Wang, 2020)

There exists a streaming algorithm that given n coins arriving in a stream with the gap parameter Δ and confidence parameter δ , finds the most biased coin with probability at least $1-\delta$ using $O(\frac{n}{\Delta^2} \cdot \log{(1/\delta)})$ coin tosses and a memory of a single coin.

- No sample-space trade-off!
- □ Preliminary : $O(\log(n))$, $O(\log\log(n))$ and $O(\log*(n))$ coins memory algorithms.
- \square Additional result: Top-k coin exploration with O(k) coin memory.
- ☐ Additional results: Noisy comparisons and Multi-Armed Bandits.

Preliminary Algorithms

The $O(\log(n))$ -Coin memory Algorithm:

- Multiple levels: 4-coin memory per level
- Level 1: toss each coin $\frac{30}{\Lambda^2}$ times; send the most biased to the level 2.
- Level 2+: increase the number of tosses by 1.5x
- ✓ Correctness: Probability of losing coin* exponentially decreases.
- ✓ Sample complexity: i-th level: $\frac{30}{\Lambda^2}$ · $(1.5)^{i-1}$ · $\frac{n}{2^{i-1}}$, overall $O(\frac{n}{\Lambda^2})$.
- ✓ Space Complexity: $O(\log(n))$ levels; each level 4 coins.

The $O(\log\log(n))$ and $O(\log*(n))$ Coin Algorithms:

- $O(\log\log(n))$ memory: stopping at the $\log\log(n)$ level
- $O(\log * (n))$ memory: aggressive selections of coins (iterative logarithm factor) and increments of coin tosses (tower factor) (cf. [Agarwal et al., 2017])

Main Algorithm - One Coin Suffices

Idea:

- ☐ Pick only one coin to store, name as *King*.
- \square Worst case $\Theta(n)$ coins challenge the King give the King privilege: only be dethroned if lost multiple levels of challenge.
- ☐ Bound the sample complexity: limit the tosses of the King by budget.

Algorithm GAME-OF-COINS:

- For each arriving coin give the King a budget of $O(\frac{1}{\Lambda^2})$.
- To challenge the *King*, toss both coins $\frac{30}{\Lambda^2} \cdot (3)^{i-1}$ times at level *i*;
- A King is defeated only if it exhausts all its budget.

Analysis:

- ✓ Sample Complexity: At most $2n \cdot O(\frac{1}{\Lambda^2})$ budgets $\rightarrow O(\frac{n}{\Lambda^2})$ coin tosses.
- ✓ Space Complexity: Only store 1 coin.
- ✓ Correctness:
 - 1. The coin* can exhaust the budget of other King (soundness)
 - 2. If coin* as the $King \rightarrow budget$ sufficient in expectation.
 - 3. Control the variance:
 - a) The budget behaves like random walks (but with flexible length).
 - b) The challenging rule \rightarrow budget distribution sub-exponential.
 - c) Beating the union bound by Bernstein inequality (completeness).

Extensions of the Algorithm

Algorithm for top-k coins:

- Main technical contribution -- a delayed challenging rule & a potential function argument.
- Avoid eliminating any top-k coin -- use a buffer to swap defeated coins (correctness).
- Number of coins eventually decreases -- bounded sample complexity.

Noisy Comparisons and ε -PAC Multi-Armed Bandit (MAB):

- Noisy comparison O(k) space algorithm for finding top-k elements.
- No gap guarantee -- a $O(\log * (n))$ space algorithm. Most recently, an extension to a 2-arm algorithm.

Extensions and open problems:

- The instance-sensitive sample complexity: $H_2 := O(\sum_{i>1} \frac{1}{\Delta_i^2} \log \log(\frac{1}{\Delta_i}))$.
- Single-pass: achievable with random arrival of coins and a value $O(H_2)$.
- Single-pass with lower bounds; arbitrary stream with $O(\log(\frac{1}{\Delta_2}))$ passes [Jin et al., 2021].
- Open: tight number of passes to achieve $O(H_2)$ sample complexity.

References

Assadi S, Wang C. Exploration with Limited Memory: Streaming Algorithms for Coin Tossing, Noisy Comparisons, and Multi-Armed Bandits. The 52nd Annual ACM

Symposium on Theory of Computing (STOC) 2020

Even-Dar E, Mannor S, Mansour Y. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of Machine

Agarwal A, Agarwal S, Assadi S, Khanna S. Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In Conference on Learning Theory (COLT) 2017 Jun 18

Jin T, Huang K, Tang J, Xiao X. Optimal Streaming Algorithms for Multi-Armed Bandits. In International Conference on Machine Learning (ICML) 2021 Jul 1