EEE 318-Control System I Laboratory January2023,Level-3,term-2 Final Project Demonstration

Quadraped Robot Dog

Submitted by-Group 06

Niaz Mohaimin Abtahi

1906169

Kaniz Fatema Zarin
1906172

Abrar Jahin Niloy
1906180

Raihan Amin Rana
1906186

OUTLINE

1. Summary / Abstract

The developed robot is a dog style robot with reversed knee joints.

The robot is controlled by an Arduino UNO microcontroller.

Introduction

The goal of this project was to build a four-legged robot with a simple implementation of dynamic stability.

To control the robot, two things were required. Firstly, end-point control of all feet must be possible. Secondly, to implement dynamic feedback, some way to sense the environment and it's effect on the robot was necessary

Components

Components

Algorithm

Inverse Kinematic

$$\theta_{side} = tan^{-1} \left(\frac{\Delta X}{\Delta Z} \right) - tan^{-1} \left(\frac{L_{hip}}{\sqrt{\Delta X^2 + \Delta Z^2 - L_{hip}^2}} \right)$$
(2.1)

$$\theta_{knee} = cos^{-1} \left(\frac{\Delta Y^2 + \Delta X^2 + \Delta Z^2 - L_{hip}^2 - L_{thigh}^2 - L_{shin}^2}{-2L_{thigh}L_{shin}} \right)$$
(2.2)

$$\theta_{hip} = tan^{-1} \left(\frac{\Delta Y}{\sqrt{\Delta X^2 + \Delta Z^2 - L_{hip}^2}} \right) - cos^{-1} \left(\frac{L_{shin}^2 - L_{thigh}^2 - \Delta Y^2 - \Delta X^2 - \Delta Z^2 + L_{hip}^2}{-2L_{thigh}\sqrt{\Delta Y^2 + \Delta X^2 + \Delta Z^2 - L_{hip}^2}} \right)$$
(2.3)

3D printed parts

Assembled Hardware

Analysis and Evaluation

Novelty

- ☐ Stand and walk smoothly without any jitter
- ☐ Accumulation of different types of Movements
- ☐ Optimum design of legs

Project Management and Cost Analysis

Practical Consideration

- ☐ Enhanced Security
- ☐ Search and Rescue
- ☐ Reduced Risks to Human First responders
- ☐ Efficiency
- ☐ Data collection
- ☐ Emergency Goods supply

Environmental impact and sustainability

- ☐ Materials and Manufacturing
- ☐ Energy efficiency
- ☐ Repairability and upgradability
- ☐ Recycling and disposal
- ☐ Environmental Impact assessment
- ☐ User awareness

Teamwork and Contribution of Each Member

1906180,1906186- They mainly did the software part but also contributed in other areas

1906169,1906172- They mainly did the hardware part but also contributed in other areas

Reference

 https://kth.divaportal.org/smash/get/diva2:1558600/FULLTEXT01.pdf?fbclid=IwAR2pWY-TMeTgTZohiWydAlXFkTV0kUJjY8yQgL23KipKR il7uEqh2dE-5g

• https://www.instructables.com/Nova-Spot-Micro-a-Spot-Mini-Clone/