Oppgavesett 1

Oppgave 1

a) Det er gitt et sett med basisvektorer $\{\vec{p_1}, \vec{p_2}\}$ som utspenner planet. Vinkelen fra $\vec{p_1}$ til $\vec{p_2}$ er 30° og deres lengder er henholdsvis 1 og 2. Finn den duale basis og benytt den til å dekomponere en vektor \vec{r} med lengden 1 i basisen $\{\vec{p_1}, \vec{p_2}\}$. Vinkelen fra $\vec{p_2}$ til \vec{r} er 30° .

b) Løs det samme problemet i den ortonormale basisen $\{\vec{q}_1, \vec{q}_2\}$.

Oppgave 2

Projeksjonsoperatoren P defineres som $P(\vec{r})\vec{x} = <\vec{x}, \vec{r} > \vec{r}$, hvor \vec{r} er enhetsvektor i retningen vektoren \vec{x} skal projiseres ned på.

- a) Vis at operatoren er lineær, det vil si at $P(\vec{r})(a\vec{x} + b\vec{y}) = aP(\vec{r})\vec{x} + bP(\vec{r})\vec{y}$.
- b) Finn matriserepresentasjonen i den generelle basisen $\{\vec{p_1}, \vec{p_2}\}$. Hva blir matriserepresentasjonen når basisvektoren $\vec{p_1}, \vec{p_2}$ og vektoren \vec{r} er gitt som i oppgave 1a)?
- c) Finn matriserepresentasjonen i den ortonormale basisen $\{\vec{q}_1, \vec{q}_2\}$.
- d) Velg $\vec{r} = \vec{q}_1$ og finn matriserepresentasjonen av operatoren i den ortonormale basisen $\{\vec{q}_1, \vec{q}_2\}$.