

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Cálculo Vetorial e Equações Diferenciais

22 de Outubro de 2017

Parte A

(1) Calcule a integral de linha, onde C é a curva dada:

a) $\int_C x^2 dx + y^2 dy$, onde C consiste no arco do círculo $x^2 + y^2 = 4$ de (2,0) a (0,2), seguido pelo segmento de reta de (0,2) a (4,3).

b) $\int_C (x+y^2)dy$, onde C é a curva dada abaixo, com vértices (1,1), (-1,1), (-1,-1) e (1,-1):

c) $\int_C (x-y)dx + e^{x+y}dy$, C é a fronteira do triângulo de vértices (0,0), (0,1) e (1,2).

(2) Determine se F é um campo conservativo ou não. Em caso positivo, encontre uma função ϕ tal que $F = \nabla \phi$ e determine seu domínio.

a)
$$F(x, y, z) = \langle x, y, z \rangle$$

b)
$$F(x,y) = \langle e^x \cos y, e^x \sin y \rangle$$

c)
$$F(x,y) = \langle ye^x + \sin y, e^x + x \cos y \rangle$$

d)
$$F(x,y,z) = \frac{x}{(x^2 + y^2 + z^2)^2} \overrightarrow{i} + \frac{y}{(x^2 + y^2 + z^2)^2} \overrightarrow{j} + \frac{z}{(x^2 + y^2 + z^2)^2} \overrightarrow{k}$$

(3) Calcule a integral $\int_C F \cdot dr$, onde:

a)
$$F(x,y) = \langle e^y + ye^x, xe^y + e^x \rangle$$
 e $C: r(t) = \langle \operatorname{sen}(\frac{\pi t}{2}), \ln t \rangle$, $1 \le t \le 2$.

b)
$$F(x,y) = \langle 2xy, x^2 + \cos y \rangle$$
 e $C: r(t) = \langle t, t \cos(\frac{t}{3}) \rangle$, $0 \le t \le \pi$.

Gabarito

(1) a)
$$\frac{83}{3}$$
.

b) 4.

c)
$$e - e^2 + \frac{e^3}{3} + \frac{1}{6}$$
.

(2) a) Conservativo:
$$\phi(x,y,z) = \frac{x^2 + y^2 + z^2}{2} + k, \ \phi : \mathbb{R}^3 \to \mathbb{R}.$$

b) Não é conservativo.

c) Conservativo: $\phi(x,y) = ye^x + x \operatorname{sen} y + k, \ \phi : \mathbb{R}^2 \to \mathbb{R}.$

d Conservativo: $\phi(x,y,z) = \frac{-1}{2(x^2+y^2+z^2)} + k$, $\phi: \mathbb{R}^3 - \{(0,0,0)\} \to \mathbb{R}$. (3) a) $\ln 2 - 1$.

b)
$$\frac{\pi^3}{2} + 1$$
.