Problem Statement

Predictive Study using the Breast cancer diagnostic dataset

Importing libraries

In [1]:

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
```

In [2]:

df=pd.read_csv(r"C:\Users\shaha\OneDrive\Desktop\Excel\Breast Cancer Prediction.csv")
df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn		
0	842302	М	17.99	10.38	122.80	1001.0			
1	842517	М	20.57	17.77	132.90	1326.0			
2	84300903	М	19.69	21.25	130.00	1203.0			
3	84348301	М	11.42	20.38	77.58	386.1			
4	84358402	М	20.29	14.34	135.10	1297.0			
564	926424	М	21.56	22.39	142.00	1479.0			
565	926682	М	20.13	28.25	131.20	1261.0			
566	926954	М	16.60	28.08	108.30	858.1			
567	927241	М	20.60	29.33	140.10	1265.0			
568	92751	В	7.76	24.54	47.92	181.0			
569 rows × 32 columns									

In [3]:

df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 32 columns

In [4]:

df.tail()

Out[4]:

	Ia	alagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smootnnes
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	М	16.60	28.08	108.30	858.1	
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	

5 rows × 32 columns

→

In [5]:

df.shape

Out[5]:

(569, 32)

In [6]:

df.describe()

Out[6]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_		
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.0		
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.0		
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.0		
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.0		
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.0		
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.0		
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.1		
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.1		
8 rows × 31 columns								
4						•		

In [7]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	fractal_dimension_worst	569 non-null	float64

dtypes: float64(30), int64(1), object(1)

memory usage: 142.4+ KB

In [9]:

```
df.columns
```

Out[9]:

In [10]:

```
df.isnull().sum()
```

Out[10]:

```
id
                            0
                            0
diagnosis
radius_mean
                            0
texture_mean
                            0
perimeter_mean
                            0
                            0
area mean
                            0
smoothness_mean
                            0
compactness_mean
concavity_mean
                            0
concave points_mean
                            0
symmetry_mean
                            0
fractal dimension mean
                            0
                            0
radius_se
                            0
texture se
                            0
perimeter_se
area se
                            0
                            0
smoothness se
compactness_se
                            0
concavity se
                            0
                            0
concave points_se
symmetry se
                            0
fractal_dimension_se
                            0
radius_worst
                            0
texture worst
                            0
perimeter worst
                            0
                            0
area_worst
smoothness_worst
                            0
                            0
compactness_worst
concavity_worst
                            0
                            0
concave points worst
symmetry_worst
                            0
                            0
fractal dimension worst
dtype: int64
```

```
In [11]:
df['id'].value_counts()
Out[11]:
id
842302
           1
90250
901315
           1
9013579
           1
9013594
           1
873885
           1
873843
           1
           1
873701
873593
           1
92751
Name: count, Length: 569, dtype: int64
In [14]:
df['radius_mean'].value_counts()
Out[14]:
radius_mean
12.34
         4
11.71
         3
12.46
         3
13.05
         3
10.26
         3
12.23
         1
14.45
         1
19.18
         1
18.08
         1
7.76
Name: count, Length: 456, dtype: int64
In [15]:
from sklearn.cluster import KMeans
km=KMeans()
km
Out[15]:
▼ KMeans
```

KMeans()

In [17]:

```
y_predicted=km.fit_predict(df[["id","radius_mean"]])
y_predicted
```

C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
warnings.warn(

Out[17]:

```
array([1, 1, 5, 5, 5, 1, 1, 5, 1, 5, 1, 5, 1, 1, 5, 5, 1, 5, 1, 3, 3, 3,
    3, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    5, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
                     3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 5, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 7, 3, 3, 7, 3, 3, 3, 3, 3, 3, 0,
    3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1,
    1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 0, 1,
    3, 1, 3, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
    1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
    1, 1, 1, 1, 1, 0, 1, 1,
                     1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
    1, 3, 1, 3, 3, 1, 3, 2, 2, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 1,
    3, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
    0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                                           1,
                                             1, 0,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 0, 1, 3, 3, 3, 1, 6, 3, 3, 1, 1, 3, 3, 3, 3, 3, 6, 6,
    3, 6, 6, 3, 3, 3, 3, 1, 3, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0,
```

In [19]:

```
df["cluster"]=y_predicted
df.head()
```

Out[19]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	
5 rows × 33 columns							
4							•

In [20]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["id"],df1["radius_mean"],color="pink")
plt.scatter(df2["id"],df2["radius_mean"],color="indigo")
plt.scatter(df3["id"],df3["radius_mean"],color="purple")
plt.xlabel("id")
plt.ylabel("radius")
```

Out[20]:

Text(0, 0.5, 'radius')

In [22]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["radius_mean"]])
df["radius_mean"]=scaler.transform(df[["radius_mean"]])
df.head()
```

Out[22]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	0.521037	10.38	122.80	1001.0	
1	842517	М	0.643144	17.77	132.90	1326.0	
2	84300903	М	0.601496	21.25	130.00	1203.0	
3	84348301	М	0.210090	20.38	77.58	386.1	
4	84358402	М	0.629893	14.34	135.10	1297.0	

5 rows × 33 columns

→

In [26]:

```
scaler.fit(df[["id"]])
df["id"]=scaler.transform(df[["id"]])
df.head()
```

Out[26]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness
0	0.000915	М	0.521037	10.38	122.80	1001.0	
1	0.000915	М	0.643144	17.77	132.90	1326.0	(
2	0.092495	М	0.601496	21.25	130.00	1203.0	(
3	0.092547	М	0.210090	20.38	77.58	386.1	(
4	0.092559	М	0.629893	14.34	135.10	1297.0	(
_	00						

5 rows × 33 columns

1

In [27]:

km=KMeans()

In [29]:

```
y_predicted=km.fit_predict(df[["id","radius_mean"]])
y_predicted
```

C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
warnings.warn(

Out[29]:

```
array([3, 3, 3, 1, 3, 1, 3, 7, 7, 1, 0, 0, 3, 0, 7, 7, 7, 0, 3, 7, 7, 4,
       0, 3, 0, 0, 7, 3, 0, 0, 3, 1, 0, 3, 0, 0, 7, 7, 0, 7, 7, 1, 3, 7,
       7, 3, 4, 7, 1, 7, 1, 7, 1, 3, 0, 1, 3, 0, 7, 4, 4, 4, 7, 4, 7, 0,
       4, 1, 4, 7, 3, 4, 0, 7, 1, 0, 7, 3, 3, 7, 1, 7, 6, 3, 1, 3, 7, 3,
       1, 7, 7, 0, 7, 7, 0, 3, 1, 4, 1, 7, 7, 4, 1, 4, 4, 7, 1, 1, 6, 1,
       4, 1, 7, 4, 4, 1, 4, 0, 0, 3, 1, 3, 6, 7, 7, 7, 7, 3, 0, 3, 1, 0,
       0, 0, 3, 7, 1, 1, 0, 1, 4, 0, 1, 7, 1, 1, 1, 0, 7, 7, 2, 2, 4, 1,
       7, 1, 3, 0, 1, 1, 1, 3, 3, 1, 6, 0, 1, 0, 0, 0, 1, 7, 0, 1, 1, 4,
       4, 0, 7, 7, 6, 3, 0, 1, 0, 4, 3, 1, 1, 1, 7, 7, 4, 1, 0, 7, 7, 3,
       3, 7, 1, 0, 6, 7, 1, 0, 4, 0, 7, 0, 5, 1, 6, 5, 7, 7, 1, 4, 3, 3,
       7, 7, 4, 0, 7, 7, 4, 0, 7, 7, 0, 1, 1, 3, 4, 7, 6, 3, 7, 0, 7, 1,
       1, 7, 3, 4, 7, 7, 1, 1, 3, 1, 3, 0, 3, 7, 3, 0, 0, 0, 3, 0, 0, 0,
       0, 3, 4, 7, 7, 1, 7, 1, 3, 4, 3, 1, 1, 3, 7, 7, 3, 1, 3, 0, 7, 1,
       1, 7, 1, 1, 7, 0, 7, 1, 7, 7, 1, 1, 7, 4, 3, 1, 3, 4, 1, 1, 7, 4,
       7, 7, 1, 7, 7, 1, 4, 1, 1, 3, 4, 1, 4, 3, 7, 3, 1, 7, 7, 1, 0, 0,
       0, 7, 1, 1, 1, 0, 7, 3, 4, 6, 7, 4, 1, 3, 1, 4, 1, 0, 1, 1, 1, 0,
       6, 0, 1, 1, 7, 7, 4, 2, 2, 7, 7, 0, 7, 3, 3, 1, 3, 6, 0, 0, 3, 3,
       7, 0, 4, 7, 7, 1, 1, 1, 1, 1, 7, 7, 1, 7, 1, 3, 4, 4, 0, 3, 1, 7,
       7, 7, 1, 1, 3, 1, 7, 7, 1, 1, 0, 7, 3, 1, 1, 1, 4, 0, 0, 1, 4, 0,
       7, 1, 1, 7, 1, 7, 4, 4, 4, 1, 1, 7, 0, 1, 3, 3, 0, 7, 7, 7, 7,
       1, 0, 7, 4, 3, 1, 3, 0, 7, 5, 1, 3, 1, 7, 1, 7, 1, 7, 7, 4, 5, 5,
       7, 2, 2, 7, 7, 4, 0, 1, 4, 1, 0, 1, 1, 7, 7, 7, 1, 0, 1, 7, 7, 7,
       0, 1, 7, 3, 1, 0, 1, 3, 3, 1, 7, 0, 1, 1, 3, 3, 0, 7, 1, 6, 4, 4,
       1, 1, 0, 0, 1, 0, 7, 7, 0, 1, 3, 3, 7, 7, 4, 6, 1, 7, 4, 4, 7, 1,
       7, 1, 1, 1, 7, 3, 1, 3, 7, 1, 4, 4, 1, 7, 0, 7, 7, 7, 4, 4, 4, 1,
       1, 1, 7, 4, 7, 4, 4, 4, 7, 1, 7, 1, 0, 3, 3, 3, 0, 3, 4])
```

In [31]:

```
df["New Cluster"]=y_predicted
df.head()
```

Out[31]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness
0	0.000915	М	0.521037	10.38	122.80	1001.0	
1	0.000915	М	0.643144	17.77	132.90	1326.0	(
2	0.092495	М	0.601496	21.25	130.00	1203.0	(
3	0.092547	М	0.210090	20.38	77.58	386.1	1
4	0.092559	М	0.629893	14.34	135.10	1297.0	1
5 rows × 34 columns							
4							•

In [33]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["id"],df1["radius_mean"],color="indigo")
plt.scatter(df2["id"],df2["radius_mean"],color="orange")
plt.scatter(df3["id"],df3["radius_mean"],color="pink")
plt.xlabel("id")
plt.ylabel("radius_mean")
```

Out[33]:

Text(0, 0.5, 'radius_mean')

In [34]:

```
km.cluster_centers_
```

Out[34]:

In [35]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["id"],df1["radius_mean"],color="indigo")
plt.scatter(df2["id"],df2["radius_mean"],color="orange")
plt.scatter(df3["id"],df3["radius_mean"],color="pink")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="black",marker="+")
plt.xlabel("id")
plt.ylabel("radius_mean")
```

Out[35]:

Text(0, 0.5, 'radius_mean')

In [36]:

```
k_rng=range(1,10)
sse=[]
```

In [38]:

```
for k in k_rng:
   km=KMeans(n_clusters=k)
   km.fit(df[["id","radius_mean"]])
    sse.append(km.inertia_)
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
[26.490617520909876, 15.59142504847003, 6.011422276021483, 3.7289426736473
175, 2.9732459507608073, 2.3793176933559246, 1.8403134359778621, 1.5003376
921115434, 1.2881933684794757]
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n init` explicit
ly to suppress the warning
  warnings.warn(
```

Out[38]:

Text(0, 0.5, 'Sum of Squared Error')

Conclusion ¶

Form the given Breast Canceer dataset we can use multiple models, for that models we get different types of accuracies but that accuracies is not goog so, that is why we will take it as a clustering and done with K-Means clustering

In []: