Online Gradient Descent for Online Portfolio Optimization with Transaction Costs

Martino Nicoló Bernasconi de Luca Supervisor: Francesco Trovó Co-supervisors: Marcello Restelli, Edoardo Vittori

Table of contents

- 1. Context
- 2. Problem Formulation
- 3. State of the Art
- 4. Proposed Solution
- 5. Experiments
- 6. Conclusions
- 7. Appendix

Context

Online Portfolio Optimization

Online Portfolio Optimization

- Modern Portfolio Optimization:
 - Statistical assumptions on the stock dynamics
 - Backward looking
- Online Portfolio Optimization:
 - Adversarial (no assumptions on the distribution)
 - From Online Learning field

- Regret: $R_T = \sum_{t=1}^T f_t(x_t) \inf_{e \in \mathcal{E}} \sum_{t=1}^T f_t(x_{e,t})$
 - No regret: $R_T = o(T)$ for any sequence f_1, f_2, \ldots
- Per-round Computational Complexity

- Regret: $R_T = \sum_{t=1}^{T} f_t(x_t) \inf_{e \in \mathcal{E}} \sum_{t=1}^{T} f_t(x_{e,t})$
 - No regret: $R_T = o(T)$ for any sequence $f_1, f_2, ...$
- · Per-round Computational Complexity

4

Problem Formulation

From Online Learning to Portfolio

- $\mathbf{x}_t \in \Delta_{N-1}$ is the portfolio allocation
- $\mathbf{y}_t = \left(\frac{p_{t,1}}{p_{t-1,1}}, \dots, \frac{p_{t,N}}{p_{t-1,N}} \right)$ are the returns of the stocks
- $f_t(\mathbf{x}) = -\log(\langle \mathbf{x}, \mathbf{y}_t \rangle)$ is the loss
- + \mathcal{E} plays $\mathbf{x}_t = \mathbf{x}$ at each turn (Constant Rebalancing Portfolios).
 - $\mathbf{x}^* = \underset{\mathbf{x} \in \Delta_{N-1}}{\operatorname{arg}} \inf \sum_{t=1}^{N} f_t(\mathbf{x})$ is the Best Constant Rebalancing Portfolio

From Online Learning to Portfolio

- $\mathbf{x}_t \in \Delta_{N-1}$ is the portfolio allocation
- $\mathbf{y}_t = \left(rac{p_{t,1}}{p_{t-1,1}}, \dots, rac{p_{t,N}}{p_{t-1,N}}
 ight)$ are the returns of the stocks
- $f_t(\mathbf{x}) = -\log(\langle \mathbf{x}, \mathbf{y}_t \rangle)$ is the loss
- + \mathcal{E} plays $\mathbf{x}_t = \mathbf{x}$ at each turn (Constant Rebalancing Portfolios).
 - $\mathbf{x}^* = \underset{\mathbf{x} \in \Delta_{N-1}}{\operatorname{arg inf}} \sum_{t=1}^{N} f_t(\mathbf{x})$ is the Best Constant Rebalancing Portfolio

Regret in Online Portfolio Optimization

$$R_T = log(W_T(\boldsymbol{x}^*, \dots, \boldsymbol{x}^*)/W_T(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T)),$$

where
$$W_T(\mathbf{x}_1, \dots, \mathbf{x}_T) = \prod_{t=1}^T \langle \mathbf{x}_t, \mathbf{y}_t \rangle$$
 is the wealth

5

From Online Learning to Portfolio

- $\mathbf{x}_t \in \Delta_{N-1}$ is the portfolio allocation
- $\mathbf{y}_t = \left(rac{p_{t,1}}{p_{t-1,1}}, \dots, rac{p_{t,N}}{p_{t-1,N}}
 ight)$ are the returns of the stocks
- $f_t(\mathbf{x}) = -\log(\langle \mathbf{x}, \mathbf{y}_t \rangle)$ is the loss
- + \mathcal{E} plays $\mathbf{x}_t = \mathbf{x}$ at each turn (Constant Rebalancing Portfolios).
 - $\mathbf{x}^* = \underset{\mathbf{x} \in \Delta_{N-1}}{\operatorname{arg inf}} \sum_{t=1}^{N} f_t(\mathbf{x})$ is the Best Constant Rebalancing Portfolio

Regret in Online Portfolio Optimization

$$R_T = \log(W_T(\mathbf{x}^*, \dots, \mathbf{x}^*)/W_T(\mathbf{x}_1, \dots, \mathbf{x}_T)),$$

where
$$W_T(\mathbf{x}_1, \dots, \mathbf{x}_T) = \prod_{t=1}^T \langle \mathbf{x}_t, \mathbf{y}_t \rangle$$
 is the wealth

Limitations: No transaction costs

Adding Trading Costs

Regret in Online Portfolio Optimization with Transaction Costs

$$R_T^C = \underbrace{\log(W_T(\mathbf{x}^*, \dots, \mathbf{x}^*)/W_T(\mathbf{x}_1, \dots, \mathbf{x}_T))}_{R_T: \text{ standard regret}} + \underbrace{\gamma \sum_{t=1}^{I} ||\mathbf{x}_t - \mathbf{x}_{t-1}||_1}_{C_T: \text{ transaction costs}}$$

where γ is the transaction rate

 γ is the proportional transaction rate for buying and selling stocks

State of the Art

State of the Art Algorithms

- · Online Portfolio Optimization:
 - Online Newton Step (ONS) [Agarwal et al. (2006)]
 - · Universal Portfolios (UP) [Cover and Ordentlich (1996)]
- · Online Portfolio Optimization with Transaction Costs:
 - Online Lazy Updates (OLU) [Das et al. (2013)]
- Heuristics:
 - · Passive Aggressive Mean Reversion (PAMR) [Li et al. (2012)]
 - · Online Moving Average Reversion (OLMAR) [Li et al. (2015)]

Proposed Solution

Online Gradient Descent

Algorithm 1 OGD in Online Portfolio Optimization with Transaction Costs

Require: learning rate sequence $\{\eta_1, \ldots, \eta_T\}$

- 1: Set $\mathbf{x}_1 \leftarrow \frac{1}{N}\mathbf{1}$
- 2: **for** $t \in \{1, ..., T\}$ **do**
- 3: $\mathbf{Z}_{t+1} \leftarrow \mathbf{X}_t + \eta_t \frac{\mathbf{y}_t}{\langle \mathbf{y}_t, \mathbf{x}_t \rangle}$
- 4: Select Portfolio $\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \Delta_{N-1}}{\mathsf{arg}} \inf ||\mathbf{z}_t \mathbf{x}||_2^2$
- 5: Observe y_{t+1} from the market
- 6: Get wealth $\log(\langle y_{t+1}, x_{t+1} \rangle) \gamma ||x_{t+1} x_t||_1$
- 7: end for

Regret [Zinkevich (2003)]

$$R_T \leq \left(\frac{1}{K} + \frac{NK\epsilon_u^2}{\epsilon_l^2}\right)\sqrt{T}$$

Total Regret (this work)

$$R_T^C \le \left[\frac{1}{K} + \frac{NK\epsilon_u}{\epsilon_l} \left(\frac{\epsilon_u}{\epsilon_l} + 2\gamma\right)\right] \sqrt{T}$$

Theoretical and Computational Comparison

Comparison of the theoretical guarantees and computational complexity among the selected algorithms

	OGD	UP	ONS	OLU
R⊤	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$	$\mathcal{O}(\log T)$	$\mathcal{O}(\sqrt{T})$
R_T^C	$\mathcal{O}(\sqrt{T})$	-	-	$\mathcal{O}(T)^1$
Complexity	$\Theta(N)$	$\Theta(T^N)$	$\Theta(N^2)$	$\Theta(N)$

^{^1}Assuming $\gamma = const.$, if $\gamma \propto \sqrt{T}$ then $R_T^{\rm C} = \mathcal{O}(\sqrt{T})$

Experiments

Experimental Setting

Datasets						
Name	Market	Year Span	Days	Assets		
NYSE(O)	New York Stock Exchange	1962 - 1984	5651	36		
TSE	Toronto Stock Exchange	1994 - 1998	1258	88		
SP500	Standard Poor's 500	1998 - 2003	1276	25		

Performance Metrics:

Sample for 100 times, 5 randomly drawn assets

· Average Annual Percentage Yield (APY) defined as

$$A(W_T) = W_T^{250/T} - 1$$

- Normalized per round transaction costs $\frac{\mathsf{C}_t(\mathfrak{U})}{\gamma t}$

Results on the NYSE(O) dataset

Results on the NYSE(O) dataset

Conclusions

Conclusions and Future Work

Contributions:

- · OGD in online portfolio optimization
- · Analysis of the total regret of OGD
- · Experimental campaign on real data

Future Works:

- Develop cost aware algorithms (work in progress)
- Generalize the regret analysis to other online learning algorithms

References

- Agarwal, A., Hazan, E., Kale, S., and Schapire, R. (2006). Algorithms for portfolio management based on the newton method. In *ICML*.
- Cover, T. and Ordentlich, E. (1996). Universal portfolios with side information. *IEEE Transactions on Information Theory*, 42(2):348–363.
- Das, P., Johnson, N., and Banerjee, A. (2013). Online lazy updates for portfolio selection with transaction costs. In *AAAI*, pages 202–208.
- Li, B., Hoi, S., Sahoo, D., and Liu, Z. (2015). Moving average reversion strategy for on-line portfolio selection. *ARTIF INTELL*, 222:104–123.
- Li, B., Zhao, P., Hoi, S., and Gopalkrishnan, V. (2012). Pamr: Passive aggressive mean reversion strategy for portfolio selection. *MACH LEARN*, 87(2):221–258.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of the 20th international conference on machine learning (icml-03)*, pages 928–936.

Appendix

Results on the SP500 dataset (proportional transaction costs)

Results on the TSE dataset

Results on the SP500 dataset

Comparison of Algorithms (single run of NYSE(O))

