SPH3U 7.4 Nuclear Fission

1. Mass-energy equivalence

Mass-energy equation:	E=mc2 (Einstein).
c	5peed of 1:5ht, 3.0y108 m/s.
Law of conservation of mass-energy:	Mass can transform into energy, and energy into mass. The total mass-energy in a closed system is conserved.

Particle	Mass (kg)	Mass (u)	A
proton	1.672 6014 x 10 ⁻²⁷	1.007 276	υ
neutron	1.674 920 x 10 ⁻²⁷	1.008 665	N
electron	9.109 56 x 10 ⁻³¹	0.000 549	e

Atomic mass unit (u):	u=1.66x10-27 kg.
Mega- electron volt:	NeV=1.602 x10 13 J.

Determine the mass defect and binding energy of a lithium-7 nucleus, given that its actual

atomic mass is 7.016 00 u, and using the particle mass table above.

$$\frac{3 \text{ Li} : 3 \text{ p}^{2} + 4 \text{ n}^{2} + 3 \text{ e}^{2}}{4 \text{ n}^{2} + 3 \text{ e}^{2}} = 3 (1.007276) + 4(1.668665) + 3(0.000549) = 7.658135.$$

$$\Delta M = 7.058135 - 3.01600 = 0.042135 \text{ u}.$$

$$E = \Delta M c^{2} = (0.042135)(3.6 \times 10^{8})^{2} (1.66 \times 10^{-2})^{2} + \frac{1}{2} \text{ m}.$$

$$= (6.29 \times 10^{-12} \text{ J}.$$

$$= (6.29 \times 10^{-12})(\frac{1 \text{ MeV}}{1.602 \times 10^{-12}}) = 3.9 \text{ MeV}.$$


```
Other nuclear fuels: Plutoniu-239, Thoriu-232, Uraniu-233.
```

What is the energy yield of the following fission reaction? Use the given masses below.

Homework: page 341: #1-4