Question number	Scheme	Marks
7 (a)	$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$	M1
	$\overrightarrow{BC} = -(15\mathbf{i} - 6\mathbf{j}) + 8\mathbf{i} + \mathbf{j} = -7\mathbf{i} + 7\mathbf{j}$	A1 [2]
(b)	$\left \overrightarrow{BC} \right = \sqrt{98} = \left(7\sqrt{2} \right)$	B1
	Unit vector is $\frac{1}{\sqrt{98}} \left(-7\mathbf{i} + 7\mathbf{j} \right)$ oe	B1 [2]
(c)	$(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}) \ \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j}$	B1
	$\Rightarrow \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})$	M1
	$\Rightarrow \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})$	M1
	Conclusion: \overline{MN} and \overline{MC} are parallel oe (and have same point of origin (M)) hence they are collinear.	A1 [4]
	ALT 1	
	$(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}) \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} \text{ or } \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j}$	
	$\Rightarrow \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})$	{B1}
	$\Rightarrow \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j}) \text{ or}$	{M1}
	$\Rightarrow \overrightarrow{NC} = -(5\mathbf{i} - 2\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$	{M1}
	Conclusion: \overrightarrow{MN} and \overrightarrow{NC} are parallel oe (and share the same point (N)) hence they are collinear.	() ()
	ALT 2	{A1} [4]
	$(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}) \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} \text{ or } \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j}$	
	$\Rightarrow \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})$	{B1}
	$\Rightarrow \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$	{ M 1}
	Conclusion: \overrightarrow{MC} and \overrightarrow{NC} are parallel oe(and share the same point	
	(C)) hence they are collinear.	{ M 1}
		{A1} [4]
	Tota	al 8 marks

```
(a)
   M1
                      \overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}
                      \overrightarrow{BC} = -7\mathbf{i} + 7\mathbf{j}
   A1
   (b)
                      \sqrt{98} oe
   B1
   B1
                      \frac{1}{\sqrt{98}}\left(-7\mathbf{i}+7\mathbf{j}\right) oe
   (c)
   B1
                      \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} (may be implied by \overrightarrow{MN})
                      \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})
   M1
   M1
                      \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})
                     Correct conclusion from correct working e.g. \overrightarrow{MC} = 4\overrightarrow{MN}
   A1
ALT 1
   B1
                      \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} or \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j} (may be implied by \overrightarrow{MN} or \overrightarrow{NC})
   M1
                      \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})
                      \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j}) \text{ or } -(5\mathbf{i} - 2\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})
   M1
   A1
                     Correct conclusion from correct working e.g. \overrightarrow{NC} = 3\overrightarrow{MN}
ALT 2
   B1
                      \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j} (may be implied by \overrightarrow{NC})
   M1
                      \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} = (4\mathbf{i} + 4\mathbf{j})
   M1
   A1
                      \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})
                     Correct conclusion from correct working e.g. \overrightarrow{NC} = \frac{3}{4}\overrightarrow{MC}
                     For part c: Send any geometrical solutions to review
```