Electronic Devices Student's name: Student's ID:

Lecture attending: ☐ Online ☐ Offline (Please tick the appropriate box)

Quiz 6.1 Deadline: June 1, 2020

Question 1

 $V_{CC}=12~V,~R_1=3.3~K\Omega,~R_2=22~K\Omega,~R_E=820~\Omega,~R_C=4.7K\Omega$ and $\beta=100.$ (Neglect r_o)

- a. Calculate the quiescent point of transistor Q (I_{CO} and V_{CEO}).
- b. Sketch the AC small-signal equivalent circuit.
- c. Find input impedance R_{in} and output impedance R_{o} .
- d. Find the voltage gain $A_v = v_0/v_s$.
- e. If the input signal (v_s) has the internal resistance $R_s = 1 \text{ K}\Omega$. Repeat question (d).

Question 2

 $V_{CC} = 12 \text{ V}$, $R_b = 10 \text{K}\Omega$, $R_S = 1 \text{K}\Omega$, $R_L = 1 \text{K}\Omega$, early voltage $V_A = 50 \text{V}$, and $\beta = 100$.

- a. Calculate the quiescent point of transistor Q (I_{CQ} and V_{CEQ}).
- b. Sketch the AC small-signal equivalent circuit.
- c. Calculate input impedance R_{in}.
- d. Calculate output impedance R_o
- **e.** Find the voltage gain $A_v = v_0/v_s$.
- f. Explain the role of this kind of circuit.

Electronic Devices Student's name: Student's ID:

Lecture attending: ☐ Online ☐ Offline (Please tick the appropriate box)

