

Trends and Applications of Computer Vision

Alessandro Zinni, Filippo Momesso, Gabriele Padovani, Thomas De Min

Table of Contents

- Importance of the topic;
- Background on Semi-supervised image classification;
- CIFAR-100 failure cases;
- Cross-domain evaluation;
- Open Set Semi-supervised learning;
- Conclusions & Outlook.

Importance of the topic

- Lots of data required to train a Neural Network;
- Not always feasible to get large quantities of annotated examples;
- Unlabeled data is cheaper and does not require human annotations.

Importance of the Topic

- Exploit latent information contained in unlabeled data;
- Effective training even when few labeled samples are present.

Background

- The dataset is composed of labeled and unlabeled samples;
- Labeled images are usually much less wrt. unlabeled ones;
- Objective:
 - Improve over the baseline trained on only labeled subset;

Background - Common Methods

Pseudo Labeling:

 Treat high-confidence predictions on unlabeled samples as pseudo labels.

Consistency Regularization:

 Force similar outputs to different perturbations of the same sample.

Hybrid Methods:

Combine the methods above.

Methods Recap - Π-Model

Basic consistency regularization method, poor performance related to other approaches.

Methods Recap - FixMatch

Hybrid method, consistency regularization and pseudolabeling.

Methods Recap - ReMixMatch

Hybrid method based on MixMatch.

USB

CONTRIBUTORS 10 FORKS 56 STARS 442 ISSUES 6 OPEN

USB: A Unified Semi-supervised learning Benchmark for CV, NLP, and Audio Classification Paper · Benchmark · Demo · Docs · Issue · Blog · Blog (Chinese) · Video · Video (Chinese)

TABLE I ACCURACIES ON CIFAR-100 WITH 200 AND 400 LABELS.

	Method	200 labels	400 labels
USB	Pseudo-Labeling	$66.84_{\pm 1.20}$	$74.71_{\pm 0.67}$
	Π-model	63.76 ± 0.27	73.51 ± 0.64
	Mean Teacher	64.39 ± 0.38	74.03 ± 0.37
	VAT	68.39 ± 1.37	$78.71_{\pm 0.32}$
	MixMatch	$62.57_{\pm 0.58}$	$73.83_{\pm0.24}$
	ReMixMatch	$79.15_{\pm 1.42}$	$83.20_{\pm 0.59}$
	FixMatch	69.55 ± 0.65	80.52 ± 0.93
	Dash	$69.81_{\pm 1.34}$	$81.10_{\pm 0.42}$
	CRMatch	$70.57_{\pm 1.11}$	81.50 ± 0.26
	FlexMatch	$72.92_{\pm 0.90}$	$82.33_{\pm 0.66}$
	Pseudo-Labeling	66.84	74.05
Ours	Π-Model	64.06	74.33
	VAT	67.95	77.80
	ReMixMatch	72.83	80.76
	FixMatch	69.30	77.17
	FlexMatch	73.32	76.03
Lower Bound	Supervised	$64.37_{\pm 0.07}$	$73.92_{\pm 0.50}$
Upper Bound	Fully Supervised	$91.56_{\pm 0.07}$	

CIFAR-100 Results

- Comparison between USB results and ours;
- Some methods are worse due to insufficient computational power.

CIFAR-100 Failure Cases

- FixMatch fine-tuned for 20 epochs on 400 labeled images and 50000 unlabeled ones:
 - 4 labels per class (0.8%);
- Accuracy **77.17** %:
 - Lower Bound 73.92;
 - Upper Bound 91.56;

CIFAR-100 - Failure Cases

GT: Girl

Pred: Woman

GT: Mouse

Pred: Hamster

GT: Otter

Pred: Seal

GT: Boy

Pred:

Woman

Cross-Domain Evaluation

Rationale:

- Assumption in SSL is that labeled and unlabeled data come from the same distribution (otherwise results might degrade);
- The impact of the domain shift is proportional to the amount of unlabeled data;
- Performance may change depending on the approach.

Cross-Domain Evaluation - Setting

- Dataset: Adaptiope;
- Three domains:
 - Product;
 - Real World;
 - Synthetic;
- We use:
 - Labeled data -> "Product" domain;
 - Unlabeled data -> "Real World" domain.

Cross-Domain Evaluation - Setting

- Approaches: Pi-Model, FixMatch and ReMixMatch.
- Base Model: ViT Small pre-trained on Imagenet-1k.
- Training: fine-tuning for 20 epochs on 615 labeled images and 12300 unlabeled images:
 - 5 labels per class (5%);

Cross-Domain Evaluation

TABLE II RESULTS IN CROSS-DOMAIN EVALUATION

- Pi-Model suffers the domain shift: Probably learns only the unlabeled data distribution;
- FixMatch is not able to improve over the baseline by exploiting unlabeled data;

Method	Accuracy
П-Model	64.30
FixMatch	78.78
ReMixMatch	87.24
Supervised (LB)	78.17
Fully Supervised (UB)	93.01

Distribution Alignment

- Objective: Make unlabeled data useful to improve the performance;
- Idea: Align the output probability distribution of the unlabeled samples with the labeled ones.

Cross-Domain Evaluation

TABLE II RESULTS IN CROSS-DOMAIN EVALUATION

- Distribution alignment lead to improved performance only in Fixmatch;
- Pi-Model still does not manage to generalize to the test set.

Method	Accuracy
Π-Model	64.30
FixMatch	78.78
ReMixMatch	87.24
Π-Model+DA	64.23
FixMatch+DA	81.17
Supervised (LB)	78.17
Fully Supervised (UB)	93.01

Cross-Domain Evaluation

- ReMixMatch beats all the other methods without any modification;
- Correctly exploits the unlabeled data;
- Not affected by the domain shift.

Why ReMixMatch?

Why does ReMixMatch not suffer from domain shift?

 Already uses distribution alignment to align pseudo-labels.

 Mixup augmentation produces augmented images belonging to both domains.

IMPROVE UNSUPERVISED DOMAIN ADAPTATION WITH MIXUP TRAINING

Shen Yan^{†*}, Huan Song[‡], Nanxiang Li[‡], Lincan Zou[‡], Liu Ren[‡]

Adaptiope Failure Cases

Open Set Semi-Supervised Learning

Setting:

 Unlabeled dataset populated with samples out of distribution (outliers).

Objective:

 Make sure outliers do not affect the learning dynamics.

Open Set Evaluation - Setting

- **Dataset**: CIFAR-100;
- Unlabeled data: from all classes;
- Labeled data: 80 classes out of 100, 4 labels per class;
- Approach: FixMatch.

Open Set Evaluation - Results

- **80 classes closed set:** 77.56% accuracy;
- 80 classes open set (+20 classes): 78.41% accuracy;
- Why these results?
 - Initial idea: the threshold in fixmatch rules out outliers during unsupervised loss computation;
 - **Investigation**: 80% of the outliers where assigned to a class with more than 95% of confidence;
 - So we decided to inspect the predicted classes on the outliers.

Open Set Evaluation - Results

Actual	Predicted
Squirrel	Hamster (90%)
Worm	Snake (94%)
Whale	Dolphin (84%)
Tiger	Leopard (97%)
Willow Tree	Oak Tree (68%)

- The predicted classes are very similar to the actual ones;
- Hence meaningful information could have been extracted anyway;
- This is probably dataset dependant (trees: oak, maple, palm, pine, and willow).

Other open challenges

Continual Learning in SSL setting

 Update model incrementally with no access to previous data.

Class imbalanced SSL

 Relaxes the assumption of balanced class distribution.

Conclusion

We deepened our understanding on Semi-Supervised Learning by:

- Studying several SSL approaches.
- Experimenting with Unified Semi-supervised Benchmark codebase.
- Analyzing current challenges on SSL, such as Domain Shift and Open Set SSL.

Thanks for your attention