# AdapTT: A Type Theory with Functorial Types

Arthur Adjedj<sup>1,2</sup>, Thibaut Benjamin<sup>2</sup> Meven Lennon-Bertrand<sup>2</sup>, Kenji Maillard<sup>3</sup>

<sup>1</sup>ENS Paris Saclay, Gif-sur-Yvette, France <sup>2</sup>University of Cambridge, Cambridge, United Kingdom <sup>3</sup>Gallinette Project Team, Inria, Nantes, France **Observational equality** 

Definitional equality

# Type casts are everywhere

**Gradual Types** 

Subtyping

| Gradual Types<br>(CastCIC[1]) | $\operatorname{cast}_{\Pi(x:A_1).B_1}(f) \\ _{\Pi(x:A_2).B_2}$ | $\Rightarrow$ | $\begin{array}{c} \lambda \ (a_2:A_2) \Rightarrow \\ & \mathrm{let} \ a_1 \coloneqq \mathrm{cast}_{A_2,A_1}(a_2) \ \mathrm{in} \\ & \mathrm{cast}_{B_1[a_1/x],B_2[a_2/x]}(f \ a_1) \end{array}$ |
|-------------------------------|----------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                | $\Rightarrow$ |                                                                                                                                                                                                 |
|                               |                                                                |               |                                                                                                                                                                                                 |

| Gradual Types<br>(CastCIC[1])          | $\operatorname{cast}_{\Pi(x:A_1).B_1}(f) \\ _{\Pi(x:A_2).B_2}$   | $\Rightarrow$ | $\begin{array}{c} \lambda \ (a_2:A_2) \Rightarrow \\ & \mathrm{let} \ a_1 \coloneqq \mathrm{cast}_{A_2,A_1}(a_2) \ \mathrm{in} \\ & \mathrm{cast}_{B_1[a_1/x],B_2[a_2/x]}(f \ a_1) \end{array}$                                                                                                          |
|----------------------------------------|------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Observational Equality $(TT^{obs}[2])$ | $\operatorname*{cast}_{\Pi(x:A_1).B_1}(e,f) \ _{\Pi(x:A_2).B_2}$ | $\Rightarrow$ | $\begin{array}{l} \lambda \ (a_2:A_2) \Rightarrow \\ \\ \operatorname{let} \ a_1 \coloneqq \operatorname{cast}_{A_2,A_1} \big( \operatorname{fst}(e)^{-1}, a_2 \big) \ \operatorname{in} \\ \\ \operatorname{cast}_{B_1[a_1/x],B_2[a_2/x]} \big( \operatorname{snd}(e) \ a_2, f \ a_1 \big) \end{array}$ |
|                                        |                                                                  | $\Rightarrow$ |                                                                                                                                                                                                                                                                                                          |

| Gradual Types<br>(CastCIC[1])          | $\mathop{\rm cast}_{\Pi(x:A_1).B_1}(f)\\ {}_{\Pi(x:A_2).B_2}$ | $\Rightarrow$ | $\begin{array}{c} \lambda \ (a_2:A_2) \Rightarrow \\ & \mathrm{let} \ a_1 \coloneqq \mathrm{cast}_{A_2,A_1}(a_2) \ \mathrm{in} \\ & \mathrm{cast}_{B_1[a_1/x],B_2[a_2/x]}(f \ a_1) \end{array}$                                                                                                   |
|----------------------------------------|---------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Observational Equality $(TT^{obs}[2])$ | $	ext{cast}_{\Pi(x:A_1).B_1}(e,f) \ \Pi(x:A_2).B_2$           | $\Rightarrow$ | $\begin{array}{c} \lambda \ (a_2:A_2) \Rightarrow \\ \\ \operatorname{let} \ a_1 := \operatorname{cast}_{A_2,A_1} \big( \operatorname{fst}(e)^{-1}, a_2 \big) \ \operatorname{in} \\ \\ \operatorname{cast}_{B_1[a_1/x],B_2[a_2/x]} \big( \operatorname{snd}(e) \ a_2, f \ a_1 \big) \end{array}$ |
| Coercive Subtyping $(MLTT_{coe}[3])$   | $\operatorname{coe}_{\Pi x:A_1.B_1}(f) \\ _{\Pi x:A_2.B_2}$   | $\Rightarrow$ | $\begin{array}{c} \lambda \ (a_2:A_2) \Rightarrow \\ & \mathrm{let} \ a_1 \coloneqq \mathrm{coe}_{A_2,A_1} \ a_2 \ \mathrm{in} \\ & \mathrm{coe}_{B_1[a_1/x],B_2[a_2/x]} \ (f \ a_1) \end{array}$                                                                                                 |



### A common core

Exponential in a Cartesian Closed Category:

$$\mathbb{C}^{\mathrm{op}} \times \mathbb{C} \to \mathbb{C}$$

$$(A, B) \mapsto B^{A}$$

$$(f, g) \mapsto h \mapsto x \mapsto g \text{ (eval } (h, f(x)))$$

### A common core

Exponential in a Cartesian Closed Category:

$$\mathbb{C}^{\mathrm{op}} \times \mathbb{C} \to \mathbb{C}$$

$$(A, B) \mapsto B^{A}$$

$$(f, g) \mapsto h \mapsto x \mapsto g \text{ (eval } (h, f(x)))$$

### These theories exhibit functorial properties of $\Pi$ !

This functorial property acts over many forms of type casts (propositional equality, definitional equality, subtyping)

# **Objectives**

- Construct a framework to describe type casts over  $\Pi$  using its functorial property
- Other type formers exist (Id,  $\Sigma$ , W, ...), and user can create new ones: Inductive types
  - Casts should compute over arbitrary inductive types.
  - How to exhibit their functoriality?

# **Functors? in my Set?**

Where do we start from? Categories with Families (CwF) The big picture:

- A category Ctx of contexts, morphisms are substitutions
- A functor  $T: Ctx^{op} \to Fam$  i.e:
  - $ightharpoonup Ty: Ctx^{op} 
    ightarrow Set$
  - $ightharpoonup \operatorname{Tm}: \int_{\operatorname{Ctx}^{\operatorname{op}}} \operatorname{Ty} o \operatorname{\mathbf{Set}}$
- Variables, context extensions, ...

What should we change to have functors between types?

# Functors? in my Set?

### Types now form a category:

- A category Ctx of contexts, morphisms are substitutions
- A functor  $T: Ctx^{op} \to Cat /\!\!/ Set$  i.e:
  - $ightharpoonup Ty: Ctx^{op} 
    ightharpoonup Cat$
  - $ightharpoonup \operatorname{Tm}: \int_{\operatorname{Ctx}^{\operatorname{op}}} \operatorname{Ty} 
    ightharpoonup \operatorname{Set}$

### Adapters[4]:

$$\operatorname{Ad}(\Gamma,A,B)=\operatorname{Hom}_{\operatorname{Ty}(\Gamma)}(A,B)$$

$$\Gamma: \operatorname{Ctx} \ A, B: \operatorname{Ty}(\Gamma) \ t: A$$
  $a: \operatorname{Ad}(\Gamma, A, B)$   $t\langle a \rangle: \operatorname{Tm}(\Gamma, B)$ 

# Type formers as natural transformations

Data of a type former:

- A presheaf  $D: Ctx^{op} \to Cat$  = "input data"
- A natural transformation  $C:D\Rightarrow \mathsf{Ty}$ 
  - On objects: the type former
  - On morphisms: structural coercion

# Type formers as natural transformations

### Data of a type former:

- A presheaf  $D: Ctx^{op} \to Cat$  = "input data"
- A natural transformation  $C:D\Rightarrow \mathsf{Ty}$ 
  - On objects: the type former
  - On morphisms: structural coercion

### Examples:

| Type Constructor         | List                                 | Π                                                                                         |
|--------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|
| Presheaf $D(\Gamma)$     | $\mathrm{Ty}(\Gamma)$                | $(A: Ty^{\mathrm{op}}(-)) \times \mathrm{Ty}(- {\triangleright} A))$                      |
| $C(\Gamma)$ on objects   | $A\mapsto \mathrm{List}_{\Gamma}(A)$ | $(A,B) \mapsto \Pi A.B$                                                                   |
| $C(\Gamma)$ on morphisms | $(f,t)\mapsto \mathrm{map}\ f\ t$    | $((f,g),t) \mapsto \lambda \ (a_2:A_2) \Rightarrow$ let $a_1 := f(a_2)$ in $g(a_2,t a_1)$ |

# Type formers as natural transform

### Data of a type former:

- A presheaf  $D: Ctx^{op} \to Cat$  = input data
- A natural transformation  $C:D\Rightarrow \mathsf{Ty}$ 
  - On objects = the applied type former.
  - ► On morphisms = a coercion between instances of the type former.

Very general! *Too* general...

### We want:

- A syntactic presentation of type formers
- That explicits the variance data
- Powerful enough to encode usual type formers  $(\Pi, \Sigma, \mathrm{Id}, \mathrm{W})$

### 1-Yoneda to the rescue?

Data of a type former:

- A presheaf  $D: Ctx^{op} \to Cat$  = input data
- A natural transformation  $C:D\Rightarrow \mathsf{Ty}$ 
  - On objects = the applied type former.
  - ► On morphisms = a coercion between instances of the type former.

**Theorem**:  $\mathrm{Ty}(\Gamma)$  is in bijection with  $\mathrm{Sub}(-,\Gamma) \Rightarrow \mathrm{Ob} \circ \mathrm{Ty}$ .

As such, any  $F: \mathrm{Ty}(\Gamma)$  gives rise to a type-former!

### 1-Yoneda to the rescue?

### Data of a type former:

- A presheaf  $D: Ctx^{op} \to Cat$  = input data
- A natural transformation  $C:D\Rightarrow \mathsf{Ty}$ 
  - On objects = the applied type former.
  - ▶ On morphisms = a coercion between instances of the type former.

**Theorem**:  $\mathrm{Ty}(\Gamma)$  is in bijection with  $\mathrm{Sub}(-,\Gamma) \Rightarrow \mathrm{Ob} \circ \mathrm{Ty}$ .

As such, any  $F: \mathrm{Ty}(\Gamma)$  gives rise to a type-former ! Nice, but...

- Can't capture interesting examples  $(\Pi, \Sigma, ...)$
- Just a bijection, what about our adapters?

# **Type variables**

What we want for  $\Pi$ :

$$\Gamma_{\!\Pi} := (X : \mathsf{Ty}^-) \rhd (Y : (X.\mathsf{Ty}^+))$$

# Type variables

What we want for  $\Pi$ :

$$\Gamma_{\!\Pi} := (X : \mathsf{Ty}^-) \triangleright (Y : (X.\mathsf{Ty}^+))$$

A type variable in  $\Gamma$ :

- Binds a telescope  $\Theta : \operatorname{Tel}(\Gamma)$
- Has a direction

# **Type variables**

What we want for  $\Pi$ :

$$\Gamma_{\!\Pi} := (X : \mathsf{Ty}^-) \triangleright (Y : (X.\mathsf{Ty}^+))$$

A type variable in  $\Gamma$ :

- Binds a telescope  $\Theta$  :  $Tel(\Gamma)$
- Has a direction

Works great for others:

$$\operatorname{Id}:\Gamma_{\operatorname{Id}}:=(X:\operatorname{\mathsf{Ty}}^+)\triangleright X$$

$$\Sigma: \Gamma_{\!\!\Sigma} := (X: \mathsf{Ty}^+) \rhd (Y: (X.\mathsf{Ty}^+))$$

# Contexts as 2-categorical objects

Substitutions map type variables to types.



# **Contexts as 2-categorical objects**

Substitutions map type variables to types.

Types are related through adapters collected into transformations.

Ctx becomes a **2-Category**.



### 2-Yoneda is useful

### Data of a type former:

- A presheaf  $D: \mathrm{Ctx}^\mathrm{op} \to \mathbf{Cat}$  = input data
- A natural transformation  $C:D\Rightarrow \mathsf{Ty}$ 
  - On objects = the applied type former.
  - ► On morphisms = a coercion between instances of the type former.

**Theorem**:  $\mathrm{Ty}(\Gamma)$  is isomorphic to  $\mathrm{Sub}(-,\Gamma) \Rightarrow \mathrm{Ty}$ .

### 2-Yoneda is useful

Data of a type former:

- A presheaf  $D: \mathrm{Ctx^{op}} \to \mathbf{Cat}$  = input data
- A natural transformation  $C:D\Rightarrow \mathsf{Ty}$ 
  - On objects = the applied type former.
  - ► On morphisms = a coercion between instances of the type former.

**Theorem**:  $\mathrm{Ty}(\Gamma)$  is isomorphic to  $\mathrm{Sub}(-,\Gamma) \Rightarrow \mathrm{Ty}$ .

As such, any  $F: \mathrm{Ty}(\Gamma)$  gives rise to a **functorial** type-former!

# **Example:** $\Pi$



### **Example:** $\Pi$



# **Example:** $\Pi$



# A quick summary

- A category Ctx of contexts, 1-cells are substitutions
- A functor  $T: Ctx^{op} \to Fam$  i.e:
  - $ightharpoonup \operatorname{Ty}:\operatorname{Ctx}^{\operatorname{op}} 
    ightarrow \operatorname{\mathbf{Set}}$
  - $ightharpoonup \operatorname{Tm}: \int_{\operatorname{Ctx}^{\operatorname{op}}} \operatorname{Ty} 
    ightharpoonup \operatorname{Set}$
- Term variables,

context extensions, ...

# A quick summary

- A 2-category Ctx of contexts, 1-cells are substitutions, 2-cells are pop[transformations]
- A 2-functor  $T: Ctx^{op} \to Cat /\!\!/ Set$  i.e:
  - $ightharpoonup Ty: Ctx^{op} 
    ightharpoonup Cat$
  - $ightharpoonup \operatorname{Tm}: \int_{\operatorname{Ctx}^{\operatorname{op}}} \operatorname{Ty} o \operatorname{\mathbf{Set}}$
- Term variables, type variables, context extensions, ...



### What we want:

- Encode (non-mutual, non-nested) inductive types with parameters and indices
- Embed these types into our class of models
- Action of substitution and transformation over constructors

### What we have:

- Contexts
- Type variables
- Telescopes



A **simple** inductive type Ind is:

• A list  $\vec{C}$  of constructors

A constructor is:

- A telescope  $\Theta_{\mathrm{norec}}: \mathrm{Tel}_+(\varepsilon)$  of non-recursive arguments
- A list of recursive arguments

A recursive argument  $(a_1:A_1) \to ... \to (a_n:A_n) \to \operatorname{Ind}$  is:

• A telescope  $\Theta_{\mathrm{rec}} \coloneqq \varepsilon \triangleright A_1 \trianglerighteq \dots \trianglerighteq A_n : \mathrm{Tel}_-(\Gamma \trianglerighteq \Theta_{\mathrm{norec}})$  of arity



A parametrised inductive type Ind is:

- A context  $\Gamma$  of **parameters**
- A list  $\vec{C}$  of constructors

A constructor is:

- A telescope  $\Theta_{norec}: Tel(\Gamma)$  of non-recursive arguments
- A list of recursive arguments

A recursive argument  $(a_1:A_1) \to \dots \to (a_n:A_n) \to \operatorname{Ind} \vec{P}$  is:

• A telescope  $\Theta_{\mathrm{rec}} \coloneqq \varepsilon \triangleright A_1 \trianglerighteq \dots \trianglerighteq A_n : \mathrm{Tel}_-(\Gamma \trianglerighteq \Theta_{\mathrm{norec}})$  of arity



A parametrised, indexed inductive type Ind is:

- A context  $\Gamma$  of **parameters**
- A telescope  $\Theta_I : \operatorname{Tel}_+(\Gamma)$  of **indices**
- A list  $\vec{C}$  of constructors

### A constructor is:

- A telescope  $\Theta_{norec}: Tel(\Gamma)$  of non-recursive arguments
- A list of recursive arguments
- An instantiation  $\Theta_I$  of **indices** in  $\Gamma \triangleright \Theta_{\text{norec}}$

A recursive argument  $(a_1:A_1)\to ... \to (a_n:A_n)\to \operatorname{Ind}\ \vec{P}\ \vec{I}$  is:

- A telescope  $\Theta_{\mathrm{rec}} \coloneqq \varepsilon \triangleright A_1 \trianglerighteq \dots \trianglerighteq A_n : \mathrm{Tel}_-(\Gamma \trianglerighteq \Theta_{\mathrm{norec}})$  of arity
- An instantiation  $\Theta_I$  of **indices** in  $\Gamma \triangleright \Theta_{\text{norec}} \triangleright \Theta_{\text{rec}}$



### **Example: Bounded W-types**

• Parameters:

$$\Gamma_{\!\operatorname{Ind}} := (A : \mathsf{Ty}^+) \trianglerighteq (B : (A.\mathsf{Ty}^-)$$

- Indices :  $\Theta_I := (n : \mathbb{N})$
- Constructor:
  - Non-recursive fields:

$$\Theta_{\text{norec}} := (n : \mathbb{N}) \triangleright (a : A)$$

- Recursive field:
  - Telescope  $\Theta_{\text{rec}} := (b : B \ a)$
  - Index instantiation : n
- Index instantiation : n+1

```
data BW (A : \mathcal{U}) (B : A \rightarrow \mathcal{U}) : \mathbb{N} \rightarrow \mathcal{U} where sup : (n : \mathbb{N})
\rightarrow (a : A)
\rightarrow ((b : B a) \rightarrow BW A B n)
\rightarrow BW A B (n+1)
```

### What's done so far



- Type former ✓
- Constructors
- Action of substitution ✓
- Action of transformations ✓
- Construction of the recursor
- Fusion laws/recursors on adapters X

### Conclusion

Takeaway: Functoriality of type formers structures type casts

### Done **√**:

- Type theory that exhibit functorial properties of type formers
- Formalised in Agda as a QIIT

### WIP 1:

- Theory of signatures with subtyping
- More models of 2-CwFs

### Future work X:

- Add inv/equivariance
- Links between 2-CwFs and other existing models (e.g comprehension categories)

# **Bibliography**

- [1] M. Lennon-Bertrand, K. Maillard, N. Tabareau, and É. Tanter, "Gradualizing the Calculus of Inductive Constructions," *ACM Transactions on Programming Languages and Systems*, vol. 44, no. 2, Apr. 2022, doi: 10.1145/3495528.
- [2] L. Pujet and N. Tabareau, "Observational Equality: Now for Good," *Proc. ACM Program. Lang.*, vol. 6, no. POPL, 2022, doi: 10.1145/3498693.
- [3] T. Laurent, M. Lennon-Bertrand, and K. Maillard, "Definitional Functoriality for Dependent (Sub)Types," in *33rd European Symposium on Programming, ESOP 2024*, S. Weirich, Ed., in Lecture Notes in Computer Science, vol. 14576. Springer, 2024, pp. 302–331. doi: 10.1007/978-3-031-57262-3\_13.
- [4] C. McBride and F. Nordvall Forsberg, "Functorial Adapters," in 27th International Conference on Types for Proofs and Programs, 2021.