[题 10-1]图题 10-1 所示,555 构成的施密特触发器,当输入信号为图示周期性心电波形时,试画出经施密特触发器整形后的输出电压波形。

图题 10-1

经施密特触发器整形后的输出电压波形如图 T9.4 (a) 示。

图 T10-1 (a)

[题 10-2] 一过压监视电路如图题 10-2 所示,试说明当监视电压 v_x 超过一定值时,发光二极管 D 将发出闪烁的信号。

提示: 当晶体管 T饱和时, 555 的管脚 1端可认为处于地电位。

图题 10-2

图题 9.8 所示电路中,若 1 端接地,则 555 定时器构成一个多谐振荡器。但现在定时器的 1 端通过三极管 T 接地,而管子的状态由监视电压 v_x 决定。当 v_x 未超限时,稳压管 D_Z

截止,三极管 T 也截止,定时器的 1 端相当于开路,振荡器不工作,发光二极管 D 不闪烁;当 ν_x 超限时,稳压管 D_z 击穿,随之三极管 T 饱和导通,定时器的 1 端相当于接地,振荡器正常工作,在输出端得到脉冲信号,发光二极管 D 闪烁报警。

[**题 10-3**]图题 10-3 所示电路是由 555 构成的锯齿波发生器,三极管 T 和电阻 R_1 、 R_2 、 R_e 构成恒流源电路,给定时电容 C 充电,当触发输入端输入负脉冲后,画出触发脉冲、电容电压 V_C 及 555 输出端 vo 的电压波形,并计算电容 C 的充电时间。

图题 10-3

画出触发脉冲 $V_{\rm I}$ 、电容电压 $V_{\rm C}$ 及 555 输出端 vo 的电压波形如图 T9.9 所示。

计算电容 C 的充电时间:

充电电流:
$$I_{\rm E} = \frac{(rac{R_1}{R_1 + R_2} V_{\rm CC} - 0.7)}{R_{\rm e}}$$
 充电时间: $t_{\rm po} = rac{rac{2}{3} V_{\rm CC} C}{I_{\rm E}}$

[10-4] 题图 10-4 是一个简易电子琴电路。当琴键 $S_1 \sim S_n$ 均未按下时,三极管 T 接近饱和

导通, v_E 约为 0 V,使 555 定时器组成的振荡器停振; 当按下不同琴键时,因 $R_1 \sim R_n$ 阻值不等,扬声器发出不同的声音,三极管的电流放大系数 $\beta=150$ 。试计算按下琴键 S_1 时扬声器发出声音的频率。

[解] 当 S_1 按下时,可以认为 R_1 中流过电流近似等于 R_B 中流过电流,三极管基极电流 I_B 可忽略, $I_{R1} \approx I_{RB}$,因此 R_1 上电压

$$V_{R1} \approx \frac{R_1}{R_1 + R_B} V_{CC} = 4V$$

设 T 为锗管,导通时发射结电压 \approx 0.2V,则 $R_{\rm E}$ 上电压 $V_{\rm RE} = V_{\rm R1} - V_{\rm EB} \approx$ 4V,则 $V_{\rm E} = V_{\rm CC} - V_{\rm RE} = 8$ V

$$T = (R' + R'')C \ln \frac{Vcc - V_{T-}}{Vcc - V_{T+}} + R''C \ln \frac{0 - V_{T+}}{0 - V_{T-}}$$

$$V_{T-} = \frac{1}{2}V_E = 4V$$
 , $V_{T+} = V_E = 8V$

其中

$$T = (10+10) \times 10^{3} \times 0.1 \times 10^{-6} \ln \frac{12-8/2}{12-8} + 10^{4} \times 0.1 \times 10^{-6} \ln \frac{-8}{-8/2} = 2.1 ms$$
$$f = \frac{1}{T} \approx 476 Hz$$

题图 10-4

[10-5] 由 555 定时器组成的脉冲电路及参数如图 10-5 (a) 所示。已知 v_1 的电压波形 如题 10-5 (b) 所示。试对应 v_1 画出图中 v_{O1} 、 v_{O2} 的波形;

[10-6] 题图 10-5 为由一个 555 定时器和一个 4 位二进制加法计数器组成的可调计数式定时器原理示意图。试解答下列问题:

- (1) 电路中 555 定时器接成何种电路?
- (2) 若计数器的初态 $Q_4Q_3Q_2Q_1=0000$,当开关 S 接通后大约经过多少时间发光二极管 D 变亮(设电位器的滑片接在 R_2 的中间)。

[10-7] 题图 10-7 示出了 555 定时器构成的施密特触发器用作光控路灯开关的电路,分析其工作原理。

[10-8] 题图 10-8 是用两个 555 定时器接成的延时报警器。当开关 S 断开后,经过一定的 延迟时间后,扬声器开始发声。如果在延迟时间内开关 S 重新闭合,扬声器不会发出声音。 在图中给定参数下,试求延迟时间的具体数值和扬声器发出声音的频率。图中 G1 是 CMOS 反相器,输出的高、低电平分别为 V_{OH} =12 V, V_{OL} \approx 0 V。

图 10-8 中左边一个 555 定时器接成了施密特触发器,右边一个 555 定时器接成 了多谐振荡器。当开关 S 断开后电容 C 充电,充至 $V_{T+}=2/3V_{CC}$ 时,反相器 G1 输出高电平, 多谐振荡器开始振荡。故延迟时间为

$$t_d = RC \ln \frac{Vcc}{Vcc - V_{T+}} = 1 \times 10^6 \times 10 \times 10^{-6} \ln \frac{12}{12 - 8} \approx 11s$$

扬声器发声频率为

$f = 1/(R_1 + 2R_2)C \ln 2 = 1/15 \times 10^3 \times 0.01 \times 10^{-6} \ln 2 \approx 9.62kHz$

[10-9] 题图 10-9 所示电路是由两个 555 定时器构成的频率可调而脉宽不变的方波发生器。试说明其工作原理;确定频率变化的范围和输出脉宽;解释二极管 D 在电路中的作用。

解: 1.工作原理:

第一级 555 定时器构成多谐振荡器,第二级构成单稳态触发器,第一级的输出脉冲信号作为第二级电路的输入触发信号,使第二级输出 V_0 的频率与多谐振荡器输出信号的频率相同,所以调节可变电阻 R_1 ,就可以改变 V_0 的频率。但 V_0 的脉宽是由单稳的参数决定的,因单稳的参数不变,所以 V_0 的脉宽不变。于是,就可以得到频率可调而脉宽不变的脉冲波了。

2. 确定频率变化的范围和输出脉宽:

$$V_0$$
的频率变化范围为:
$$\frac{1}{0.7(R_1+R_2+2R_3)C_1} \sim \frac{1}{0.7(R_2+2R_3)C_1}$$

输出脉宽:

$$t_{po}=1.1R_5 C_3$$

- 3. 二极管 D 在电路中的作用:
- 二极管 D 在电路中起限幅作用,避免过大的电压加于单稳的输入端,以保护定时器的安全。

[10-10] 题图 10-10 为一心律失常报警电路,图中 v_1 是经过放大后的心电信号,其幅值 v_{lm} =4 V_o

- (1) 对应 v₁分别画出图中 v₀₁、v₀₂、v₀三点的电压波形;
- (2) 说明电路的组成及工作原理。

解: (1) 对应 v_I 分别画出图题 9.3 中 v_{o1} 、 v_{o2} 、 v_o 三点的电压波形如图 T9.3 (a) 示。

(2) 电路的组成及工作原理:

第一级 555 定时器构成施密特触发器,将心律信号整形为脉冲信号;第二级 555 定时器构成可重复触发的单稳态触发器,也称为失落脉冲捡出电路。当心律正常时, $V_{\rm ol}$ 的频率较高,周期较短,使得 $V_{\rm c}$ 不能充电至 $\frac{2}{3}V_{\rm CC}$,所以 $V_{\rm o2}$ 始终为高电平, $V_{\rm o}$ 始终为低电平,发光二极管 $D_{\rm l}$ 亮, $D_{\rm 2}$ 不亮,表示心律正常;当心律异常时,脉冲间隔拉大, $V_{\rm ol}$ 的的周期加长,可使 $V_{\rm c}$ 充电至 $\frac{2}{3}V_{\rm CC}$, $V_{\rm o2}$ 变为低电平, $V_{\rm o}$ 变为高电平,发光二极管 $D_{\rm 2}$ 亮, $D_{\rm l}$ 不亮,表示心律失常。

[10-11] 题图 10-11 是救护车扬声器发声电路。在图中给定的电路参数下,设 V_{CC} =12 V 时,555 定时器输出的高、低电平分别为 11 V 和 0.2 V,输出电阻小于 100Ω,试计算扬声器发出的高、低音的持续时间。

题图 10-11

[解] 图 P6.32 中两个 555 定时器均接成了多谐振荡器。

(1) v_{Ol} 的高电平持续时间为 $t_{\text{H}} = (R_1 + R_2) C_1 \ln 2 = 160 \times 10^3 \times 10 \times 10^{-6} \times 0.69 \text{s} = 1.1 \text{s}$

这时 v_{OI} =11V。由图 A6.32 可以用叠加定理计算出,加到右边 555 定时器 5 脚上的电压 v_{CO} =8.8V。因此, v_{T} =8.8V、 v_{T} =4.4V。振荡器的振荡周期,亦即扬声器声音的周期为

$$T_{1} = (R_{4} + R_{5})C_{2} \ln \frac{V_{CC} - V_{T-}}{V_{CC} - V_{T+}} + R_{5}C_{2} \ln 2$$

$$= \left(110 \times 10^{3} \times 0.01 \times 10^{-6} \ln \frac{12 - 4.4}{12 - 8.8} + 100 \times 10^{3} \times 0.01 \times 10^{-6} \times 0.69\right)s$$

$$= 1.63 \times 10^{-3}s$$

$$f_{1} = \frac{1}{T_{1}} = 611Hz$$

(2) v_{01} 的低电平持续时间为

$$t_L = R_2 C_1 \ln 2 = 150 \times 10^3 \times 10 \times 10^{-6} \times 0.69 = 1.04 \text{s}$$

这时 $v_{\text{Ol}}=0.2\text{V}$,由图 A6.32 可以算出,加到右边一个 555 定时器 5 脚上的电压 $v_{\text{Co}}=6\text{V}$,故 $v_{\text{T+}}=6\text{V}$ 、 $v_{\text{T}}=3\text{V}$ 。振荡周期为

$$\begin{split} T_2 = & \left(110 \times 10^3 \times 0.01 \times 10^{-6} \ln \frac{12 - 3}{12 - 6} + 100 \times 10^3 \times 0.01 \times 10^{-6} \times 0.69\right) s \\ f_2 = & \frac{1}{T_2} = 876 Hz \end{split}$$

至此可知,高音频率为876Hz,持续时间1.04s。低音频率为611Hz,持续时间1.1s。

[10-12] 在题图 10-12(a)所示的施密特触发器电路中,已知 R_1 =10 k Ω , R_2 =30 k Ω 。 G_1 和 G_2 为 CMOS 反相器, V_{DD} =15 V。

- (1) 试计算电路的正向阈值电压 V_{T+} 、负向阈值电压 V_{T-} 和回差电压 $\triangle V_{T}$ 。
- (2) 若将题图 10-12(b) 给出的电压信号加到题图 10-12(a) 电路的输入端,试画出输出电压的波形。

[解]

$$V_{T+} = \left(1 + \frac{R_1}{R_2}\right) V_{TH} = \left(1 + \frac{10}{30}\right) \times \frac{15}{2} V = 10V$$

$$V_{T-} = \left(1 - \frac{R_1}{R_2}\right) V_{TH} = \left(1 - \frac{10}{30}\right) \times \frac{15}{2} V = 5V$$

$$\Delta V_T = V_{T+} - V_{T-} = 5V$$
(2) 见图 A6.2。

[10-13] 在题图 10-13 施密特触发器电路中,若 G_1 和 G_2 为 74LS 系列与非门和反相器,它们的阈值电压 V_{TH} =1.1 V, R_1 =1 k Ω ,二极管的导通压降 V_D =0.7 V,试计算电路的正向阈值电压 V_{T+} 、负向阈值电压 V_{T-} 和回差电压 $\triangle V_{T}$ 。

[10-14] 题图 10-14 是用 TTL 门电路接成的微分型单稳态触发器,其中 R_d 阻值足够大,保证稳态时 v_A 为高电平;R 的阻值很小,保证稳态时 v_{12} 为低电平。试分析该电路在给定触发信号 v_1 作用下的工作过程;画出 v_A 、 v_{01} 、 v_{12} 和 v_0 的电压波形; C_d 的电容量很小,它与 R_d 组成微分电路。

[解]
$$v_I = 0$$
, $\overline{v}_O = 1$, $v_O = 0$ 。
$$v_I' = \frac{R_2}{R_1 + R_2} (v_I - V_D)$$

 $\upsilon_{\rm I}$ 增加, $\upsilon_{\rm I}$ ´也增加,当 $\upsilon_{\rm I}$ = V_{T^+} 时, $\upsilon_{\rm I}$ ´= V_{TH} =1.1V,即

$$V_{TH} = \frac{R_2}{R_1 + R_2} (V_{T+} - V_D)$$

$$V_{T+} = \frac{R_1 + R_2}{R_2} V_{TH} + V_D = \frac{1+2}{2} \times 1.1 + 0.7 = 2.35 V$$

所以

$$(2)$$
 $v_I=1$, $\overline{v}_o=0$, $v_o=1$
$$v_I$$
 減小,D 截止, v_I $^\prime\approx v_O=1$,当 $v_I=V_{T^-}=V_{TH}$ 时, $\overline{v}_O=1$, $v_O=0$ 所以

$$\Delta V_T = \frac{R_1}{R_2} V_{TH} + V_D = \frac{1}{2} \times 1.1 + 0.7 = 1.25V$$

[10-15] 在题图 10-15 中,若 G_1 、 G_2 为 TTL 门电路,它们的 V_{OH} =3.2 V, V_{OL} =0 V, V_{TH} =1.3 V,R=0.3 kΩ,C=0.01 μF,试求电路输出负脉冲的宽度 t_w 。

解: 因为 R=0.3k Ω ,由 TTL 门电路输入负载特性知,稳态时 $v_{12}\approx0.3$ V。电路各点波形及幅值如图 A6.10 所示。电路输出负脉冲的宽度 t_w 即由 $V_{\rm IH}$ (t_0 时刻)下降到 $V_{\rm TH}$ (t_1 时刻)所需时间。

根据电路暂态三要素法 其中

$$v_{I2}(t) = v_{I2}(\infty) + [v_{I2}(0+) - v_{I2}(\infty)]e^{-\frac{t}{\tau}}$$

$$v_{12}(\infty) = 0V$$
, $v_{12}(0+) = V_{IH} = 0.3 + (3.2 - 0) = 3.5V$, $τ = RC = 300 \times 10^{-8} = 3 \mu s$

$$t_W = RC \ln \frac{v_{12}(0_+)}{V_{TH}} = 3 \times \ln \frac{3.5}{1.3} \approx 3 \mu s$$
∴

[10-16] 在题图 10-16 电路中,已知 CMOS 集成施密特触发器的电源电压 V_{DD} =15 V, V_{T+} =9 V, V_{T-} =4 V。试问:

- (1) 为了得到占空比 q=50%的输出脉冲, R_1 与 R_2 的比值应取多少?
- (2) 若给定 R_1 =3 kΩ, R_2 =8.2 kΩ,电路的振荡频率为多少?输出脉冲的占空比是多少? **[解]** (1)q=50%,则 t_1/t_2 =1,即

$$\frac{R_2C\ln\frac{V_{DD}-V_{T-}}{V_{DD}-V_{T+}}}{R_1C\ln\frac{V_{T+}}{V_{T-}}} = 1 \qquad \therefore \quad \frac{R_1}{R_2} = \frac{\ln\frac{11}{6}}{\ln\frac{9}{4}} \approx \frac{3}{4}$$

$$T = t_1 + t_2 = R_2C\ln\frac{V_{DD}-V_{T-}}{V_{DD}-V_{T-}} + R_1C\ln\frac{V_{T+}}{V_{T-}}$$

$$= 8.2 \times 10^3 \times 0.05 \times 10^{-6} \ln\frac{11}{6} + 3 \times 10^3 \times 0.05 \times 10^{-6} \ln\frac{9}{4} \approx 0.37 ms$$

$$f = 1/T \approx 2.7 \text{ k Hz}, \qquad q = t_1/T \approx 0.67$$

[10-18] 题图 10-17 是用 COMS 反相器组成的对称式多谐振荡器。若 $R_{\text{F1}} = R_{\text{F2}} = 10$ kΩ, $C_1 = C_2 = 0.01$ μF, $R_{\text{P1}} = R_{\text{P2}} = 33$ kΩ,试求电路的振荡频率,并画出 ν_{I1} 、 ν_{o1} 、 ν_{I2} 、 ν_{o2} 各点的电压波形。

[解] 在 R_{P1} 、 R_{P2} 足够大的条件下,反相器的输入电流可以忽略不计,在电路参数对称的情况下,电容的充电时间和放电时间相等,据此画出的各点电压波形如图 A6.14(a)所示。图 A6.14(b) 是电容充、放电的等效电路。由等效电路求得振荡周期为

$$T = 2R_F C \ln 3 = 2 \times 10 \times 10^3 \times 10^8 \times 1.1 \text{s} = 2.2 \times 10^{-4} \text{s}$$

 $f = \frac{1}{T} = 4.55$ kHz,

故得振荡频率为

[10-18] 题图 10-18 是用 555 定时器组成的开机延时电路。若给定 C =25 μF, R =91 kΩ, $V_{\rm cc}$ =12 V,试计算常闭开关 S 断开以后经过多长的延迟时间 $v_{\rm o}$ 才跳变为高电平。

[解] 延迟时间等于从 S 断开瞬间到电阻 R 上的电压降至 $V_{T-}=\frac{1}{3}V_{CC}$ 的时间,即 $T_D=RC\ln\frac{0-V_{CC}}{0-\frac{1}{3}V_{CC}}=RC\ln 3=1.1\times 91\times 10^3\times 25\times 10^{-6}=2.5s$

[10-20] 在使用题图 10-19 由 555 定时器组成的单稳态触发器电路时对触发脉冲的宽度有无限制? 当输入脉冲的低电平持续时间过长时,电路应作何修改?

[解] 对输入触发脉冲宽度有限制,负脉冲宽度应小于单稳态触发器的暂态时间 Tw,当输入低电平时间过长时,可在输入端加一微分电路,将宽脉冲变为尖脉冲如图 A6.26 所示,以 v_1 ′做为单稳态电路触发器脉冲。

[10-21] 由 555 定时器、3-8 线译码器 74LS138 和 4 位二进制加法器 74LS161 组成的电路如题图 10-20 所示。

- 1. 试问 555 定时器组成的是什么功能电路? 计算 vol 输出信号的周期;
 - 2. 试问 74LS161 组成什么功能电路? 列出其状态转换图;
 - 3. 用逻辑表达式表示 $L 与 Q_3 、 Q_2 、 Q_1 、 Q_0$ 的关系。
 - 4. 画出图中 v_{ol} 、 Q_3 、 Q_2 、 Q_1 、 Q_0 及L的波形。

题图 10-20