Machine Learning 2013: Project 2 - SVM Report

anufer@student.ethz.ch elmerl@student.ethz.ch nivo@student.ethz.ch

November 24, 2013

Experimental Protocol

Usage:

Download the csv files to /data/....csv (... = training, testing, validation)

Run svm.m

Results are in /data/....out (... = training, testing, validation)

1 Tools

- Matlab (code is in /code/ directory)
- Git / Github Repository ¹

2 Algorithm

For training the Support Vector Machine we used the *symtrain*² function from the Statistics Toolbox of Matlab. And for classification of new data we used *symclassify*³, which is also a function of the Statistics Toolbox.

3 Features

4 Parameters

The support vector machine with the Gaussian Radial Basis Function as kernel, takes 2 parameters: The box constraint C for the soft margin, and a scaling factor σ .

To find the optimal values for these parameters we first used Grid search, to narrow down the range to

 $^{^{1} {\}rm https://github.com/lukaselmer/ethz\text{-}machine\text{-}learning}$

²http://www.mathworks.ch/ch/help/stats/svmtrain.html

³http://www.mathworks.ch/ch/help/stats/svmclassify.html

 $\sigma \in [0.5, 0.6]$ and $C \in [1, 1.2].$

Second, we randomly search in these ranges for the best values which resulted in following values:

- $\bullet \ \sigma = 0.556201641$
- $\bullet \ \ C = 1.316157273$

5 Lessons Learned