Computation Niche model simulation code

List of Functions

© 2018, Richard J.Carter

Function Name	Used In	Description
	CN – computation niche	•
	novel – unconstrained	
	multi-state computation niche	
calcInputDistributionv5.m	CN, novel	Determine the cumulative input received at a
calcinputbisti ibutionvs.iii	GIV, HOVEI	automata's incoming edges
checkDuplicates.m	novel	Sometimes the minimisation algorithm can
encendupiteates.iii	novei	leave duplicate transitions in a finite state
		automata. This simply removes any
		duplicate transitions.
checkInteraction.m	novel	Check whether the interaction of two
checkinter action.in	Hover	automata generates a valid automaton
checkIsomorphic.m	novel	Check that a newly produced automata is
checkisomorphic.m	Hover	isomorphic
checkLanguageCoverage.m	novel	Checks that a newly produced automata
encekbanguagecoverage.m	Hover	(T _c) can read the same language as the T _a
		automata that produced it.
checkMachineDim.m	novel	Count the number of states in an automata
CHECKI-Idelline Dilli.lli	novei	(machine)
checkNullTypes.m	novel	Housekeeping function
checkStronglyConnected.m	novel	Checks that an automata is strongly
encenou ongry donnected.m	Hover	connected (part of validating that it is an
		epsilon-machine)
checkUnifilarity.m	novel	Checks that an automata is unifilar i.e. there
	333,732	are no duplicate transitions per state of an
		automata
checkWaitingList.m	novel	Part of the Hopcroft minimisation
0		algorithm implementation in MATLAB
compareLists.m	novel	Used by the 'findLists.m' function.
composeMachinesRevised.m	CN, novel	Performs composition of two automata.
convertL2D.m	CN, novel	Converts an automata list to a digraph. The
	,	digraph is used to calculate the structural
		complexity of an automata.
convertList2Y.m	CN, novel	Converts an automata description from the
		list format (e.g. [1 1 1]) to an outgoing
		probability distribution (e.g. [1 0])
convertPartition2List.m	novel	Part of the Hopcroft minimisation
		algorithm. Converts partitioned
		equivalence classes to conventional
		automata representation as a list.
convertPopCell2Matrix.m	novel	Converts the 'popDynamics' cell array to a
		T x Z matrix where Z is the number of
		iterations of the simulation

createSigmaSet.m	CN, novel	Creates four binary vectors each of length
ci cate signiase t.iii	GIV, HOVEI	T . Each vector represents a symbol pair
		'0 0','0 1','1 0','1 1' and each entry in the
		vector with a '1' represents that the
		automata type Ti has a transition of that
findList.m	CN, novel	type. Searches the list of all automata types (T)
IIIIdList.III	CIV, HOVEI	
C. ID. W. C.		currently in the population. Returns a '0' if
	ī	not found, or '1' otherwise.
findPartitionSet.m	novel	Part of the Hopcroft minimisation
N. G.	ī	algorithm.
getNextState.m	novel	Called by the stateTransition.m function.
initCNv2.m	CN, novel	Initialise the membrane network.
initialiseCY.m	CN, novel	Initialise the output range of each
		membrane automata.
inverseList.m	novel	Part of the Hopcroft minimisation
		algorithm.
minList.m	novel	The Hopcroft minimisation algorithm that
		also incorporates the necessary validation
		checks to ensure that the resulting, minimal
		automaton is an epsilon-machine.
nkCheck.m	novel	Part of the tests for a valid epsilon-
		machine.
performCompositionRevised.m	novel	Performs the interaction of two automata
		and the subsequent minimisation of the
		resultant automata.
produceMachinev5_unconstrained.m	novel	Produce machines without any constraint.
		Used by the open-ended multi-state
		population simulations.
produceMachinev5.m	CN, novel	Produce machines but do not allow new
		automata types to be introduced.
pruneTc.m	novel	Remove unreachable states from a newly
•		produced automata.
rebuildCNv5.m	novel	Re-construct the membrane network as a
		new automata type has been generated.
reLabel.m	novel	The minimisation algorithm can remove
		transitions and states and so the remaining
		states/transitions need to be relabelled.
seedAutomata.mat	CN, novel	The MATLAB data file containing the
securiationiaa.mac	G1.) 110 ° G1	interaction network for the seed
		population.
setActive.m	CN, novel	Determine which membrane automata are
	511, 110101	activated on this time-step.
stateTransition.m	CN, novel	As a multi-state membrane automata is
Saco Handidonini	GII, HOVEI	activated it transitions to a different state.
updateCNv5_unconstrained.m	novel	Update the membrane network e.g. add
apaacedivo_unconstraineu.in	110161	new membrane automata nodes, update
		edge weightings
updateCNv5.m	CN nevel	
updateCNV5.m	CN, novel	Update the membrane network e.g. update
		edge weightings only