Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

04 de maio de 2017

Plano de Aula

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Professor

Formação

Bacharel em Sistemas de Informação Mestre em Representação Conhecimento (IA)

Quem?

Esdras Lins Bispo Junior Recife, Pernambuco.

Professor

- Esdras Lins Bispo Jr.
- bispojr@ufg.br
- Sala 18, 1° Andar (Bloco Novo dos Professores)

Disciplina

- Teoria da Computação
- 15h30-17h10 (Segunda, LSD)
 15h30-17h10 (Quinta, LSD)
- Dúvidas: 17h30 19h00 (Quinta)
 [é necessário confirmação comigo]
- www.facebook.com/groups/teocomp.rej.2017.1/

Metodologia

- Ensino sob Medida (Novak, 2011);
- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios;
- Aplicação de atividades de aquecimento utilizando o Canvas AVA (Ambiente Virtual de Aprendizagem);
- Tempo de Aula: 50 minutos.

Mini-Testes

- MT₁ ⇒ 20% da pontuação total (16 de maio);
- MT₂ ⇒ 20% da pontuação total (13 de junho);
- MT₃ ⇒ 20% da pontuação total (28 de junho);
- $MT_4 \Rightarrow 20\%$ da pontuação total (08 de agosto).

Mini-Testes

- MT₁ ⇒ 20% da pontuação total (16 de maio);
- MT₂ ⇒ 20% da pontuação total (13 de junho);
- MT₃ ⇒ 20% da pontuação total (28 de junho);
- $MT_4 \Rightarrow 20\%$ da pontuação total (08 de agosto).

Exercício de Aquecimento (EA)

Serão propostos EAs, durante toda a disciplina, equivalendo a 10% da pontuação total.

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT₂ (referente ao MT₂).

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT_2 (referente ao MT_2).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

- o SMT₃ (referente ao MT₃), e
- o SMT₄ (referente ao MT₄).

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

• MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

PONT =
$$\left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EA \times 0, 1$$

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

PONT =
$$\left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EA \times 0, 1$$

Previsão de Término das Atividades

06 de setembro de 2016

Como será?

Os alunos que estiverem entre as 10 melhores notas de cada avaliação receberão um distintivo digital.

Como será?

Os alunos que estiverem entre as 10 melhores notas de cada avaliação receberão um distintivo digital.

Quantos distintivos existem?

- Top One
- Top Five
- Top Ten

Obter a 6ª ou até a 10ª melhor nota da turma em uma avaliação.

Obter a 2ª ou até a 5ª melhor nota da turma em uma avaliação.

Obter a melhor nota da turma em uma avaliação.

Pontuação

- Obter um Top One: 12 pontos;
- Obter um Top Five: 6 pontos;
- Obter um Top Ten: 3 pontos.

Pontuação

- Obter um Top One: 12 pontos;
- Obter um Top Five: 6 pontos;
- Obter um Top Ten: 3 pontos.

No final da disciplina...

Os cinco primeiros que obtiverem maior pontuação ganharão medalhas.

Pontuação

- Obter um Top One: 12 pontos;
- Obter um Top Five: 6 pontos;
- Obter um Top Ten: 3 pontos.

No final da disciplina...

Os cinco primeiros que obtiverem maior pontuação ganharão medalhas.

Por que estamos usando distintivos digitais?

• Pode aumentar a motivação dos alunos;

Pontuação

- Obter um Top One: 12 pontos;
- Obter um Top Five: 6 pontos;
- Obter um Top Ten: 3 pontos.

No final da disciplina...

Os cinco primeiros que obtiverem maior pontuação ganharão medalhas.

Por que estamos usando distintivos digitais?

Pode aumentar a motivação dos alunos;
 (Estou pesquisando para saber se isto é verdade...)

Conteúdo do Curso

- Introdução à Teoria da Computação;
- Modelos de Computação;
- Problemas decidíveis;
- Problemas indecidíveis;
- Complexidade de tempo;
- NP-Completude;
- Tópicos Avançados.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Pensamento

Pensamento,

Frase

Os limites do meu conhecimento são os limites do meu mundo.

Quem?

Ludwig Wittgenstein (1889-1951) Filósofo austríaco.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

São interligadas pela pergunta:

Quais são as capacidades e limitações fundamentais dos computadores?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria da Complexidade

O que faz alguns problemas serem computacionalmente difíceis e outros fáceis?

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Portanto são bem restritos para servir de modelo de computadores de propósito geral.

• Modelo mais poderoso que GLCs e AFDs;

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;
- Características importantes:
 - faz tudo o que um computador real pode fazer;
 - existem certos problemas que uma MT não pode resolver.

- Salaminh salah-mês... tranforme as figuras em inglês!

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Construindo uma MT

Construir M_1 que reconheça a linguagem

$$B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}.$$

Descrição de M₁

 $M_1 =$ "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.


```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
x 1 1 0 0 0 # x 1 1 0 0 0 u ...
х 1 1 0 0 0 # x 1 1 0 0 0 u ...
х × 1 0 0 0 # х 1 1 0 0 0 u ...
x x x x x x # x x x x x x <sup>*</sup> ...
                           accept
```


Uma **máquina de Turing** é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- ② Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- lacktriangle Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- \bullet $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{0}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita}
 eq q_{aceita}$

Desafio

• Mostre que a linguagem $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$ não é regular;

Desafio

- Mostre que a linguagem $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$ não é regular;
- Candidaturas até amanhã (03 de maio, 09h30);

Desafio

- Mostre que a linguagem $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$ não é regular;
- Candidaturas até amanhã (03 de maio, 09h30);
- Apresentação e resposta por escrito \rightarrow segunda (10 de maio, 11h30);

Desafio

- Mostre que a linguagem $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$ não é regular;
- Candidaturas até amanhã (03 de maio, 09h30);
- Apresentação e resposta por escrito \rightarrow segunda (10 de maio, 11h30);
- 20 minutos de apresentação.

Desafio

- Mostre que a linguagem $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$ não é regular;
- Candidaturas até amanhã (03 de maio, 09h30);
- Apresentação e resposta por escrito → segunda (10 de maio, 11h30);
- 20 minutos de apresentação.

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

04 de maio de 2017

