1

AULA 6 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2, 3 \\ T_{2}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + T_{2}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + n, \text{se } n > 3 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2, 3 \\ 2 \times T_{3}\left(\frac{n}{4}\right) + n, \text{se } n \text{ é múltiplo de 4} \end{cases}$$

$$T_{3}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + T_{3}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + n, \text{caso contrário}$$

Deve utilizar **aritmética inteira**: n/4 é igual a $\left\lfloor \frac{n}{4} \right\rfloor$ e (n+3)/4 é igual a $\left\lceil \frac{n}{4} \right\rceil$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo.

T1(n) tem ordem de complexidade $O(\log_4 n) \rightarrow \text{Logarítmica}$

T2(n) tem ordem de complexidade $O(n^{\frac{1}{2}})$ \rightarrow Aproximação linear

T3(n) tem ordem de complexidade $O(n^{\frac{1}{2}}) \rightarrow$ Aproximação linear

Nome: Gonçalo Aguiar

- Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico.
- Desenvolvimento telescópico:

Sendo C(n) o número de chamadas recursivas de T1(n):

$$C(n) = \begin{cases} 0, \text{ se } n = 0 \\ C\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + 1, \text{ se } n > 0 \end{cases}$$

$$C(n)=C(n/4) + 1$$

$$C(n)=C(n/4^2)+1+1$$

$$C(n)=C(n/4^3)+1+1+1$$

$$C(n)=C(n/4^4)+1+1+1+1$$

$$C(n)=C(n/4^k)+k$$

Como
$$n/4^k = 1 \rightarrow k = \log_4 n \log_9$$
,

$$C(n) = 1 + \log_4 n \rightarrow O(\log n)$$

n	T ₁ (n)	Nº de Chamadas Recursivas	$T_2(n)$	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	1	0	1	0	1
1	1	2	1	1	1	1
2	2	2	2	1	2	1
3	3	2	3	1	3	1
4	5	3	6	3	6	2
5	6	3	8	3	8	3
6	7	3	9	3	9	3
7	8	3	10	3	10	3
8	10	3	12	3	12	2
9	11	3	14	3	14	3
10	12	3	15	3	15	3
11	13	3	16	3	16	3
12	15	3	18	3	18	2
13	16	3	22	5	22	4
14	17	3	23	5	23	4
15	18	3	24	5	24	4
16	21	4	28	7	28	3
17	22	4	31	7	31	6
18	23	4	32	7	32	6
19	24	4	33	7	33	6
20	26	4	36	7	36	4
21	27	4	38	7	38	7
22	28	4	39	7	39	7
23	29	4	40	7	40	7
24	31	4	42	7	42	4
25	32	4	44	7	44	7
26	33	4	45	7	45	7
27	34	4	46	7	46	7
28	36	4	48	7	48	4

Nome: Gonçalo Aguiar

- Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₂(n). Considere o caso particular n = 4^k e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.
- Desenvolvimento telescópico: Sendo C(n) o número de chamadas recursivas de T2(n):

$$C(n) = \begin{cases} 1, \text{se } n = 0, 1, 2, 3 \\ C\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + C\left(\left\lceil \frac{n}{4} \right\rceil\right) + 2, \text{se } n > 3 \end{cases}$$

$$C(n) = 2^{1}C(n/4) + 2$$

$$C(n) = 2^{2}C(n/4^{2}) + 4 + 2$$

$$C(n) = 2^{3}C(n/4^{3}) + 8 + 4 + 2$$

$$C(n) = 2^{k}C(n/4^{k}) + 2^{k+1} - 2$$

Como $n/4^k = 1 \rightarrow k = \log_4 n \log_5$,

$$C(n) = 2^k + 2^{k+1} - 2 = 2^k(1+2) - 2 = 2^k * 3 - 2 = 3 * 2^{\log_4(n)} - 2 = 3\sqrt{n} - 2 = O(n^{\frac{1}{2}})$$

• Confirmação do resultado através do Teorema Mestre:

$$C(n) = 2C(n/4) + 2 = a(n/b) + f(n)$$

a=2

b=4

f(n) = 2 ou seja f(n) = constante, logo d = 0.

Como
$$2 > 4^0 \rightarrow a > b^d$$
 então $O(n^{\log_b a}) = O(n^{\log_4 2}) = O(n^{\frac{1}{2}})$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Neste caso posso generalizar a ordem de complexidade que obtive para todo o "n" visto que, ao contrário da função T3(n), nesta função temos apenas um ramo que conta o número de chamadas recursivas e por isso não há valores de "n" em que sejam feitas mais ou menos chamadas recursivas logo o número de chamadas recursivas depende apenas desse ramo.

• Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_3(n)$.

Sendo C(n) o número de chamadas recursivas de T3(n):

$$C(n) = \begin{cases} 1, \text{se } n = 0, 1, 2, 3 \\ C\left(\frac{n}{4}\right) + 1, \text{se } n \text{ \'e m\'ultiplo de 4} \\ C\left(\left|\frac{n}{4}\right|\right) + C\left(\left|\frac{n}{4}\right|\right) + 2, \text{caso contr\'ario} \end{cases}$$

- Considere o caso particular $n = 4^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.
- Desenvolvimento telescópico: Sendo C(n) o número de chamadas recursivas de T3(n):

$$C(n) = \begin{cases} 1, \text{se } n = 0, 1, 2, 3 \\ C\left(\frac{n}{4}\right) + 1, \text{se } n \text{ \'e m\'ultiplo de 4} \end{cases}$$

$$C\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + C\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + 2, \text{caso contr\'ario}$$

$$C(n) = C(n/4) + 1$$

$$C(n) = C(n/4^{2}) + 1 + 1$$

$$C(n) = C(n/4^{3}) + 1 + 1 + 1$$

$$C(n) = C(n/4^{k}) + k$$

$$Como n/4^{k} = 1 \rightarrow k = log_{4} n logo,$$

$$C(n) = 1 + \log_4 n = 1 + \log_4 n = O(\log n)$$

• Confirmação do resultado através do Teorema Mestre:

$$C(n) = C(n/4) + 1 = a(n/b) + f(n)$$

$$a = 1$$

$$b = 4$$

$$f(n) = 1 \text{ ou seja } f(n) = \text{constante, logo d} = 0.$$

$$Como 1 = 4^0 \implies a = b^d \text{ então } O(n^d \log n) = O(n^0 \log n) = O(\log n)$$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Neste caso não posso generalizar a ordem de complexidade que obtive para todo o "n" uma vez que a ordem de complexidade obtida se aplica apenas quando o "n" é múltiplo de 4 e este caso ocorre menos vezes do que o caso em que o "n" não é múltiplo de 4. Outra razão pela qual não posso generalizar é o facto de que se o fizesse estaria a considerar apenas os casos do algoritmo em que são feitas menos chamadas recursivas, ou seja, estaria a considerar os melhores casos.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

De acordo com a questões anteriores a ordem de complexidade da função T3(n) quando o n é múltiplo de 4 é igual à ordem de complexidade da função T1(n) (= $O(\log n)$). No entanto, como a função T3(n) se comporta da mesma forma relativamente ao número de chamadas recursivas que a função T2(n) quando o n não é múltiplo de 4 e este caso ocorre a maior parte das vezes conclui-se que a ordem de complexidade da T3(n) é $O(n^{\frac{1}{2}})$.

Conclui-se, então, que apesar das funções T2(n) e T3(n) terem a mesma ordem de complexidade a função T3(n) consegue ser mais eficiente visto que poupa operações sempre que o "n" é múltiplo de 4.

NOME: GONÇALO AGUIAR Nº MEC:98266

8

Nome: Gonçalo Aguiar