online retail

problem statement

The transactions made by a UK-based, registered, non-store online retailer between

December 1, 2010, and December 9, 2011, are all included in the transnational data set

known as online retail. The company primarily offers one-of-a-kind gifts for every

occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and

select the ideal group of clients for the business to target.

In [3]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

DATA COLLECTION

In [4]: s=pd.read_csv(r"C:\Users\mouni\Downloads\OnlineRetail1.csv")
s

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Cou
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Uı King
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Uı King
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Uı King
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Uı King
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Uı King
•••			***		•••		***	
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fr
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fra
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fra
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fra
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fra
541909	rows × 8 co	lumns						
4								

data cleaning

In [5]: s.head(100)

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01 - 12 - 2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
•••								
95	536378	22352	LUNCH BOX WITH CUTLERY RETROSPOT	6	01-12-2010 09:37	2.55	14688.0	United Kingdom
96	536378	21212	PACK OF 72 RETROSPOT CAKE CASES	120	01-12 - 2010 09:37	0.42	14688.0	United Kingdom
97	536378	21975	PACK OF 60 DINOSAUR CAKE CASES	24	01-12 - 2010 09:37	0.55	14688.0	United Kingdom
98	536378	21977	PACK OF 60 PINK PAISLEY CAKE CASES	24	01-12-2010 09:37	0.55	14688.0	United Kingdom
99	536378	84991	60 TEATIME FAIRY CAKE CASES	24	01-12-2010 09:37	0.55	14688.0	United Kingdom
400	_	•						

100 rows × 8 columns

In [6]: s.tail()

Out[6]:

541904 581587	22613	PACK OF 20 SPACEBOY	40				_
		NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fra
541905 581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fre
541906 581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fra
541907 581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fre
541908 581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fre

In [7]: | s['Description'].value_counts()

Out[7]: Description

WHITE HANGING HEART T-LIGHT HOLDER	2369
REGENCY CAKESTAND 3 TIER	2200
JUMBO BAG RED RETROSPOT	2159
PARTY BUNTING	1727
LUNCH BAG RED RETROSPOT	1638
amazon sales	1
sold as set/6 by dotcom	1
damages/dotcom?	1
historic computer difference?se	1
Show Samples	1
Name: count, Length: 4219, dtype: int64	1

```
In [8]: plt.scatter(s["CustomerID"],s["Quantity"])
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[8]: Text(0, 0.5, 'Quantity')

In [9]: s.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	object
5	UnitPrice	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object
dtype	es: float64(2)), int64(1), objec	ct(5)
memor	ry usage: 33.1	L+ MB	

```
In [10]: | s.isnull().sum()
Out[10]: InvoiceNo
                              0
         StockCode
                              0
         Description
                           1454
         Quantity
                              0
         InvoiceDate
                              0
         UnitPrice
                              0
         CustomerID
                         135080
         Country
                              0
         dtype: int64
In [11]: | s.fillna(method='ffill',inplace=True)
In [12]: s.isnull().sum()
Out[12]: InvoiceNo
                         0
         StockCode
         Description
                         0
         Quantity
                         0
         InvoiceDate
                         0
         UnitPrice
                         0
         CustomerID
                         0
         Country
                         0
         dtype: int64
In [13]: from sklearn.cluster import KMeans
In [14]:
         km=KMeans()
Out[14]:
          ▼ KMeans
          KMeahs()
In [15]:
         y_pred=km.fit_predict(s[["CustomerID","Quantity"]])
         y_pred
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
Out[15]: array([2, 2, 2, ..., 3, 3, 3])
```

In [16]: s["cluster"]=y_pred
s.head()

Out[16]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	С
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4									

```
In [17]: s1=s[s.cluster==0]
    s2=s[s.cluster==1]
    s3=s[s.cluster==2]
    plt.scatter(s1["InvoiceNo"],s1["Quantity"],color="red")
    plt.scatter(s2["InvoiceNo"],s2["Quantity"],color="green")
    plt.scatter(s3["InvoiceNo"],s3["Quantity"],color="blue")
    plt.xlabel("InvoiceNo")
    plt.ylabel("Quantity")
```

Out[17]: Text(0, 0.5, 'Quantity')

In [18]: from sklearn.preprocessing import MinMaxScaler

```
In [19]: scaler=MinMaxScaler()
    scaler.fit(s[["Quantity"]])
    s["Quantity"]=scaler.transform(s[["Quantity"]])
    s.head()
```

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	c
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	

```
In [20]: scaler.fit(s[["CustomerID"]])
    s["CustomerID"]=scaler.transform(s[["CustomerID"]])
    s.head()
```

Out[20]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	c
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom	_
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	

kmean cluster

```
In [21]: km=KMeans()
```

C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
earn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi
ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
suppress the warning
warnings.warn(

```
Out[22]: array([1, 1, 1, ..., 3, 3, 3])
```

```
In [23]: s["New Cluster"]=y_pred
s.head()
```

Out[23]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country o
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4								

```
In [28]: s1=s[s["New Cluster"]==0]
    s2=s[s["New Cluster"]==1]
    s3=s[s["New Cluster"]==2]
    plt.scatter(s1["CustomerID"],s1["Quantity"],color="red")
    plt.scatter(s2["CustomerID"],s2["Quantity"],color="green")
    plt.scatter(s3["CustomerID"],s3["Quantity"],color="blue")
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[28]: Text(0, 0.5, 'Quantity')


```
In [30]: s1=s[s["New Cluster"]==0]
    s2=s[s["New Cluster"]==1]
    s3=s[s["New Cluster"]==2]
    plt.scatter(s1["CustomerID"],s1["Quantity"],color="red")
    plt.scatter(s2["CustomerID"],s2["Quantity"],color="green")
    plt.scatter(s3["CustomerID"],s3["Quantity"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",nplt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[30]: Text(0, 0.5, 'Quantity')


```
In [37]: k_rng=range(1,10)
sse=[]
```

```
In [39]: for k in k rng:
             km=KMeans(n_clusters=k)
             km.fit(s[["CustomerID","Quantity"]])
             sse.append(km.inertia )
         #km.inertia_ will give you the value of sum of square error
         print(sse)
         plt.plot(k_rng,sse)
         plt.xlabel("K")
         plt.ylabel("Sum of Squared Error")
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
```

[46374.84553398371, 11336.065305485055, 4915.844333336665, 2723.51910518956 4, 1695.1451771972916, 1178.5718587781669, 902.5218165498411, 688.9201989697 517, 528.8093107707914]

CONCLUSION

For the given dataset we use K-means Clustering and done the grouping based on the given data. In the $\,$

above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is

low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

In []: