

T39.00005

Thermodynamic modelling of equilibrium phase transitions in confined fluids

Gunjan Auti*, Soumyadeep Paul, Shohei Chiashi, and Hirofumi Daiguji

APS March Meeting 2024, Minneapolis, MN

7th March 2024

Session T39: Physics of Liquids I

#gunjanauti@thml.t.u-tokyo.ac.jp

Page

Phase

Physical Phases of Matter [1]

Bacterial growth patterns [3]

Murmuration [2]

Fish Schools [2]

Duck or rabbit? [4]

Transitions between **alternate states** have been defined in several contexts ranging from physical properties, ecological processes, and even our thoughts! [3]

References:

[1] T. Hill. Thermodynamics of small systems (1962),

[2] A. Mikhailov and V. Calenbuhr. Spri. Sci. & Busi. Me. (2002)

[3] Ricard Sole. Phase transitions. Prin. Univ. Press (2011)

[4] F. Attneave Sci. Am., (1971)

Phase

Physical Phases of Matter [1]

Bacterial growth patterns [3]

Murmuration [2]

Fish Schools [2]

Duck or rabbit? [4]

Transitions between **alternate states** have been defined in several contexts ranging from physical properties, ecological processes, and even our thoughts! [3]

Collective patterns of organization are referred to as phases and the transitions as phase transitions

> G. Nicolis and I. Prigogine. Exploring complexity an Introduction. (1989)

References:

- [1] T. Hill. Thermodynamics of small systems (1962),
- [2] A. Mikhailov and V. Calenbuhr. Spri. Sci. & Busi. Me. (2002)
- [3] Ricard Sole. Phase transitions. Prin. Univ. Press (2011)
- [4] F. Attneave Sci. Am., (1971)

Page - 5

Orderliness of the system defines the phase of the system

H. Stanley, Phase transition and critical phenomena (1971)

Orderliness of the system defines the phase of the system

H. Stanley, Phase transition and critical phenomena (1971)

Homogenous phase

Orderliness
$$\rightarrow$$
 Entropy (S) $S = -k_B \ln(\omega)$ (Disorder)

$$S = -k_B \ln(\omega)$$

Number of possible microstates

At a given temperature T for a closed system,

$$S_G > S_L > S_S$$

Orderliness of the system defines the phase of the system

H. Stanley, Phase transition and critical phenomena (1971)

Homogenous phase

Orderliness \rightarrow Entropy (S) $\mid S = -k_B \ln(\omega)$ (Disorder)

$$S = -k_B \ln(\omega)$$

Number of possible microstates

At a given temperature T for a closed system,

$$S_G > S_L > S_S$$

Heterogeneity creates anisotropy

S. Jain, J. Comput. Phys., 418 (2020)

Orderliness of the system defines the phase of the system

H. Stanley, Phase transition and critical phenomena (1971)

Homogenous phase

Orderliness \rightarrow Entropy (S) $\mid S = -k_B \ln(\omega)$ (Disorder)

$$S = -k_B \ln(\omega)$$
Number of possible microstates

At a given temperature T for a closed system,

$$S_G > S_L > S_S$$

Heterogeneity creates anisotropy

S. Jain, J. Comput. Phys., 418 (2020)

J. Israelachvili. Intermoelcular and surface forces (1991)

"Local order in a region of nonuniform composition will depend both on the local composition and on the composition of the immediate environment"

> J. Cahn and J. Hilliard, J. Chem. Phys, 28, (1958)

The cubic MOF model

The cubic MOF model

Metal

The cubic MOF model

Ligand

Argon

Metal

Assumptions

- Only Van-der Waals interactions
- Coarse grained model for the ligands
- Potential due to different sources are additive

Statistical Model

Assumption

References:

[1] S. Sircar, A. Myers, J. Chem. Phys. 74 (1970)

[2] A. Martinez, J. Chem. Phys. 126 (2007)

[3] L. Travalloni, Chem. Eng. Sci. 65 (2010)

Statistical Model

*

Assumption

Grand Canonical Ensemble ($\mu_{ads} VT$)

$$\mathcal{Z}_{ads} = \sum_{N=0}^{\infty} \left(\mathbb{Z}_{k,N} \cdot \mathbb{Z}_{u,N} \right) e^{\mu_{ads}N/k_BT}$$
 Grand partition function function

References:

[1] S. Sircar, A. Myers, J. Chem. Phys. 74 (1970)

[2] A. Martinez, J. Chem. Phys. 126 (2007)

[3] L. Travalloni, Chem. Eng. Sci. 65 (2010)

Statistical Model

Assumption

Grand Canonical Ensemble ($\mu_{ads} VT$)

$$\mathbb{Z}_{u,N} = \frac{1}{V^N} \int_{V} e^{-(u_{aa}(\boldsymbol{q}) + u_{ma}(\boldsymbol{q}))/k_B T} d\boldsymbol{q}$$

References:

[1] S. Sircar, A. Myers, J. Chem. Phys. 74 (1970)

[2] A. Martinez, J. Chem. Phys. 126 (2007)

[3] L. Travalloni, Chem. Eng. Sci. 65 (2010)

Statistical Model

Assumption

Grand Canonical Ensemble ($\mu_{ads} VT$)

$$\mathcal{Z}_{ads} = \sum_{N=0}^{\infty} \left(\mathbb{Z}_{k,N} \cdot \mathbb{Z}_{u,N} \right) e^{\mu_{ads}N/k_BT}$$
 Grand partition function function

$$\mathbb{Z}_{u,N} = \frac{1}{V^N} \int_{V} e^{-(u_{aa}(q) + u_{ma}(q))/k_B T} dq$$
adsorbate-adsorbate interaction
MOF-adsorbate interaction

References:

[1] S. Sircar, A. Myers, J. Chem. Phys. 74 (1970)

[2] A. Martinez, J. Chem. Phys. 126 (2007)

[3] L. Travalloni, Chem. Eng. Sci. 65 (2010)

Statistical Model

.....

$$f_i \equiv \exp\left[-\frac{U_{ma}({\bm q}_i)}{k_BT}\right] - 1$$
 and
$$\phi \equiv \int_V f_i dq_i$$

Grand Canonical Ensemble ($\mu_{ads} VT$)

$$\mathbb{Z}_{u,N} = \frac{1}{V^N} \int_{V} e^{-(u_{aa}(q) + u_{ma}(q))/k_B T} dq$$
adsorbate-adsorbate interaction
MOF-adsorbate interaction

References:

[1] S. Sircar, A. Myers, J. Chem. Phys. 74 (1970)

[2] A. Martinez, J. Chem. Phys. 126 (2007)

[3] L. Travalloni, Chem. Eng. Sci. 65 (2010)

Statistical Model

Assumption

$$f_i \equiv \exp\left[-\frac{U_{ma}(\boldsymbol{q}_i)}{k_BT}\right] - 1$$
 Taking a first-order approximation,
$$\phi \equiv \int_V f_i dq_i$$

$$\nabla \boldsymbol{q} = \int_V f_i dq_i$$

$$\nabla \boldsymbol{q} = \int_V f_i dq_i$$
 Taking a first-order approximation,
$$\nabla \boldsymbol{q} = \frac{u_{aa}(\boldsymbol{q})}{k_BT} d\boldsymbol{q} + N \int_V \phi e^{-\frac{u_{aa}(\boldsymbol{q})}{k_BT}} d\boldsymbol{q}$$

Grand Canonical Ensemble ($\mu_{ads} VT$)

$$\mathbb{Z}_{u,N} = \frac{1}{V^N} \int_{V} e^{-(u_{aa}(q) + u_{ma}(q))/k_B T} dq$$
adsorbate-adsorbate interaction
MOF-adsorbate interaction

$$\mathbb{Z}_{u,N} \approx \int_{V} e^{-\frac{u_{aa}(q)}{k_{B}T}} dq + N \int_{V} \phi e^{-\frac{u_{aa}(q)}{k_{B}T}} dq$$

References:

[1] S. Sircar, A. Myers, J. Chem. Phys. 74 (1970)

[2] A. Martinez, J. Chem. Phys. 126 (2007)

[3] L. Travalloni, Chem. Eng. Sci. 65 (2010)

Statistical Model

Assumption

$$\mu_{ads} = \mu_{bulk}^{[1-4]}$$

$$f_i \equiv \exp\left[-\frac{U_{ma}(\boldsymbol{q}_i)}{k_BT}\right] - 1$$
 and
$$\phi \equiv \int_V f_i dq_i$$

Grand Canonical Ensemble ($\mu_{ads} VT$)

$$\mathcal{Z}_{ads} = \sum_{N=0}^{\infty} \left(\mathbb{Z}_{k,N} \cdot \mathbb{Z}_{u,N} \right) e^{\mu_{ads}N/k_BT}$$
 Grand partition function function

$$\mathbb{Z}_{u,N} = \frac{1}{V^N} \int_{V} e^{-(u_{aa}(q) + u_{ma}(q))/k_B T} dq$$
adsorbate-adsorbate interaction
MOF-adsorbate interaction

$$f_i \equiv \exp\left[-\frac{U_{ma}(\boldsymbol{q}_i)}{k_BT}\right] - 1$$
 Taking a first-order approximation,
$$\phi \equiv \int_V f_i dq_i$$

$$\mathbb{Z}_{u,N} \approx \int_V e^{-\frac{u_{aa}(\boldsymbol{q})}{k_BT}} d\boldsymbol{q} + N \int_V \phi e^{-\frac{u_{aa}(\boldsymbol{q})}{k_BT}} d\boldsymbol{q}$$

Mean-field approximation

$$Z_{ads} \approx Z_{bulk}(1 + \langle N \rangle_{bulk} \phi)$$

References:

[1] S. Sircar, A. Myers, J. Chem. Phys. 74 (1970)

[2] A. Martinez, J. Chem. Phys. 126 (2007)

[3] L. Travalloni, Chem. Eng. Sci. 65 (2010)

Statistical Model

Statistical Model

Adsorption isotherms (Benchmarking)

$$\mathcal{E}_m = 120 K$$

--- T= 90 K

T = 100 K

T= 110 K

T= 120 K

Statistical Model

Statistical Model

Adsorption isotherms (Benchmarking)

$$\sigma_m=$$
 2.8 Å

$$\mathcal{E}_m = 120 K$$

Statistical Model

GCMC Simulations

Statistical Model

$$\varepsilon_m = 120 K$$

-- T= 90 K

- T = 100 K

--- T= 110 K

--- T=120 K

Statistical Model

GCMC Simulations

) age | 26

Statistical Model

Corrected assumption

Statistical Model

Corrected assumption

Statistical Model

Corrected assumption

$$\mu^{ex} = -k_B T \ln \left\langle \exp \left(\frac{-u_{ma}(q_i)}{k_B T} \right) \right\rangle [2]$$

⁹age | 29

Statistical Model

Corrected assumption

$$\mu^{ex} = -k_B T \ln \left\langle \exp \left(\frac{-u_{ma}(q_i)}{k_B T} \right) \right\rangle [2]$$

Grand Canonical Ensemble ($\mu_{ads} VT$)

$$\mathcal{Z}_{ads} = \sum_{N=0}^{\infty} \left(\mathbb{Z}_{k,N} \cdot \mathbb{Z}_{u,N} \right) e^{\mu_{ads}N/k_BT}$$
 Grand partition function function

$$\mathbb{Z}_{u,N} = \frac{1}{V^N} \int_{V} e^{-(u_{aa}(q) + u_{ma}(q))/k_B T} dq$$
adsorbate-adsorbate interaction
MOF-adsorbate interaction

Taking a first-order approximation,

$$\mathbb{Z}_{u,N} \approx \int_{V} e^{-\frac{u_{aa}(\boldsymbol{q})}{k_{B}T}} d\boldsymbol{q} + N \int_{V} \phi e^{-\frac{u_{aa}(\boldsymbol{q})}{k_{B}T}} d\boldsymbol{q}$$

Mean-field approximation

$$Z_{ads} \approx Z_{bulk} (1 + \langle N^{\mu_{ads}} \rangle_{bulk} \phi)$$

[1] T. Hill, Nano Letters 1 (5), 2001[2] B. Widom, J. Chem. Phys. 39, 1963

Benchmarking

$$\emptyset = \left(\frac{\partial E}{\partial N}\right)$$

function

For example,

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} \quad p = \left(\frac{\partial F}{\partial V}\right)_{N,T}$$

function

For example,

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} \quad p = \left(\frac{\partial F}{\partial V}\right)_{N,T}$$

Differential Thermodynamic Functions

$$E = E(\mathbf{r})$$

$$\emptyset = \left(\frac{\partial E(\mathbf{r})}{\partial N}\right)$$

$$\mu(\mathbf{r}) = \left(\frac{\partial F(\mathbf{r})}{\partial N}\right)_{V,T} \qquad p(\mathbf{r}) = \left(\frac{\partial F(\mathbf{r})}{\partial V}\right)_{N,T}$$

$$p(\mathbf{r}) = \left(\frac{\partial F(\mathbf{r})}{\partial V}\right)_{N,T}$$

Chemical potential distribution

Pressure distribution

function

For example,

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} \quad p = \left(\frac{\partial F}{\partial V}\right)_{N,T}$$

Differential Thermodynamic Functions

$$E = E(r)$$

$$\emptyset = \left(\frac{\partial E(\mathbf{r})}{\partial N}\right)$$

$$\mu(\mathbf{r}) = \left(\frac{\partial F(\mathbf{r})}{\partial N}\right)_{V,T}$$

Chemical potential distribution

$$\mu(\mathbf{r}) = \left(\frac{\partial F(\mathbf{r})}{\partial N}\right)_{V,T} \qquad p(\mathbf{r}) = \left(\frac{\partial F(\mathbf{r})}{\partial V}\right)_{N,T} \qquad \hat{\mu} = \left(\frac{\partial \bar{F}}{\partial N}\right)_{V,T} = \frac{\bar{F}}{N} \qquad \hat{p} = \left(\frac{\partial \bar{F}}{\partial V}\right)_{N,T} = \frac{\bar{F}}{V}$$

Pressure distribution

Integral Thermodynamic Functions

$$\bar{E} = \frac{1}{V} \int_{V} E(\mathbf{r}) dV$$

$$\widehat{\emptyset} = \left(\frac{\partial \overline{E}}{\partial N}\right) = \frac{\overline{E}}{N}$$

$$\hat{\mu} = \left(\frac{\partial \bar{F}}{\partial N}\right)_{VT} = \frac{\bar{F}}{N}$$

Integral chemical potential

$$\hat{p} = \left(\frac{\partial \bar{F}}{\partial V}\right)_{N,T} = \frac{\bar{F}}{V}$$

Integral pressure

Reference: [1] T. Hill, Thermodynamics of small systems

Page | 3!

Phase diagram

Phase diagram for argon in a model MOF with a = 24 Å, $\sigma_{\rm m}$ = 5 Å, $\epsilon_{\rm m}$ = 120 K

Phase diagram

Phase diagram for argon in a model MOF with a = 24 Å, $\sigma_{\rm m}$ = 5 Å, $\epsilon_{\rm m}$ = 120 K

Comparison with the bulk argon

Comparison with the bulk argon

Effect of pore size

- No coexistence region
- ~ Bulk above critical point
- Second-order phase change

Effect of pore size

- No coexistence region
- ~ Bulk above critical point
- Second-order phase change

ADD ARXIV LINK HERE

JST, CREST Grant No. JPMJCR17I3

