

→ Os números têm valores negativos e positivos. Como representar essa informação (sinal do número) em binário? Por outras palavras, como representar o positivo (+) e o negativo (-)?

Há três formas de o fazer:

- → Representação em sinal e grandeza
- → Representação em complemento para 2
- → Representação em complemento para 1

SD / SD1 - Representação de números com sinal (6)

1

→ Representação em sinal e grandeza

O bit mais à esquerda é o bit de sinal; os restantes bits representam a amplitude do sinal em binário.

$$s A_3 A_2 A_1 A_0$$

Bit de sinal:

0 - positivo

1- negativo

Existem duas representações para o 0:

$$1000 = -0$$

$$0000 = +0$$

Exemplo com 8 bits:

$$+8_{10} = 00001000$$

$$-8_{10} = 10001000$$

Requerem demasiado hardware para a adição e subtracção.

SD / SD1 - Representação de números com sinal (6)

2

Sistemas Digitais / Sistemas Digitais I

6 - Representação de números com sinal

- → Representação em Complemento para 2
 - → Existe apenas um zero
 - → Existe um número negativo a mais do que os números positivos
 - → Se o bit mais à esquerda for 1, o número é negativo; se for 0, o número é positivo
 - → É importante respeitar o número de bits
 - → Gama de representação: 2^{k-1} a +(2^{k-1} 1), em que k é o número de bits

N.°	CP2 (com 4 bits)
0	0000
+1	0001
+2	0010
+3	0011
+4	0100
+5	0101
+6	0110
+7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

SD / SD1 - Representação de números com sinal (6)

2

→ Operação complemento para 2

 $CP2 = 2^k - N$ resultado em binário operando

Exemplo:

Complementar $0011_{(+3)}$ CP2 = $10000 - 0011 = 1101_{(-3)}$

Regra prática:

Avançando do bit mais à direita para a esquerda

- → Até ao primeiro 1 inclusive: mantém o valor
- → Depois do primeiro 1 e até ao final: complementam-se os bits

Exemplo:

01101000 CP2 = 10011000

SD / SD1 - Representação de números com sinal (6)

4

Filipe Moreira ESTiG, IPB

- → Representação em Complemento para 1
 - → Existem dois zeros
 - → Existe o mesmo número de números negativos e positivos
 - → Se o bit mais à esquerda for 1, o número é negativo; se for 0, o número é positivo
 - → É importante respeitar o número de bits
 - ❖ Gama de representação: $(2^{k-1}-1)$ a + $(2^{k-1}-1)$, em que k é o número de bits

N.°	CP2 (com 4 bits)
0	0000
+1	0001
+2	0010
+3	0011
+4	0100
+5	0101
+6	0110
+7	0111
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
0	1111

SD / SD1 - Representação de números com sinal (6)

$$\underbrace{\text{CP1}}_{\text{resultado}} = \underbrace{(2^{k} - 1)}_{\text{em binário}} - N$$

$$CP1 = 1111 - 0011 = 1100_{(-3)}$$

Regra prática:

Complementam-se todos os bits

Exemplo:

01101000

CP1 = 10010111

SD / SD1 - Representação de números com sinal (6)

10

→ Bit de paridade

Usado como indicador da existência de um erro (troca de um bit) num conjunto de bits (palavra).

É o bit mais à esquerda.

→ Paridade par: o bit de paridade será 0 ou 1 de modo a que o número de 1's na palavra seja par.

Exemplos: <u>0</u> 1100101

<u>1</u> 0111000

→ Paridade ímpar: o bit de paridade será 0 ou 1 de modo a que o número de 1's na palavra seja ímpar.

Exemplos: <u>0</u> 1001010

1 0011011

SD / SD1 - Representação de números com sinal (6)

19

Filipe Moreira ESTiG, IPB