Zadanie A. Przetestuj liczbę

Limit czasowy: 10 sekund Na ocenę: dostateczną

Dzielniki 1, -1, n, -n liczby n nazywa się dzielnikami trywialnymi, wszystkie pozostałe nazywa się nietrywialnymi. Odczytaj ze standardowego wejścia liczbę całkowitą dodatnią n, a następnie sprawdź, czy suma jej dodatnich dzielników nietrywialnych jest większa od n. Na przykład 12 jest taką liczbą, bo 2+3+4+6>12; 13 nie jest, bo nie ma żadnych nietrywialnych dzielników; natomiast 14 nie jest, bo $2+7\le 14$.

Wejście

Liczba całkowita $n (1 \le n \le 2 \cdot 10^4)$.

Wyjście

Na wyjściu mamy wypisać odpowiedź: tak lub nie.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
24	tak

Zadanie B. Haszowanie uniwersalne

Limit czasowy: 10 sekund

Na ocenę: dobrą, jeśli rozwiązano też zadanie A

Niech U będzie zbiorem łańcuchów nad alfabetem $\{a, b, ..., z, A, B, ..., Z\}$, a m liczbą całkowitą dodatnią. Każdą funkcję h typu $h \colon U \to \{0, 1, ..., m-1\}$ nazywamy haszującą. Rozważmy następującą metodę konstruowania funkcji haszującej:

- 1. Przyjmujemy, że m > 130 jest liczbą pierwszą, a łańcuch x składa się z r+1 bajtów, co zapisujemy jako $x = \langle x_0, x_1, \dots, x_r \rangle$.
- 2. Niech $a = \langle a_0, a_1, \dots, a_r \rangle$ oznacza ciąg elementów wybranych losowo ze zbioru $\{0, 1, \dots, m-1\}$.
- 3. Definiujemy h za pomocą wzoru $h(x) = \sum_{i=0}^{r} a_i x_i \mod m$.

Zadanie polega na wyznaczeniu h(x) dla podanego łańcucha x. Zakładamy, że $m=251, r=6, a=\langle 160, 212, 199, 96, 63, 35, 98 \rangle$.

Wejście

Łańcuch x nad alfabetem $\{a, b, \dots, z, A, B, \dots, Z\}$ składający się z dokładnie 7 znaków.

Wyjście

Liczba równa h(x).

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
Roksana	100

Zadanie C. Drzewo ukorzenione

Limit czasowy: 10 sekund

Na ocenę: bardzo dobrą, jeśli rozwiązano też zadania A i B

Przez drzewo będziemy rozumieli nieskierowany graf spójny nie posiadający cykli. Drzewo ukorzenione jest drzewem, w którym wyróżniono jeden z wierzchołków; ten wyróżniony wierzchołek nazywamy korzeniem. Liściem w drzewie ukorzenionym nazywamy każdy wierzchołek (wyłączając korzeń) o stopniu równym 1. Ścieżkq w drzewie ukorzenionym nazywamy ciąg wierzchołków v_1, v_2, \ldots, v_t (t > 1) o tej własności, że v_1 jest korzeniem oraz wierzchołki v_i i v_{i+1} są połączone krawędzią dla każdego $1 \le i < t$. Ponadto wierzchołek v_i nazywamy rodzicem wierzchołka v_{i+1} . Liczbę wierzchołków minus jeden w najdłuższej ścieżce nazywamy wysokościq drzewa ukorzenionego.

Załóżmy, że każdemu wierzchołkowi drzewa ukorzenionego, n wierzchołkowego, przypisano liczbę ze zbioru $I = \{0, 1, \dots, n-1\}$ w taki sposób, że dwa różne wierzchołki mają przypisane różne liczby. Wówczas n elementowa tablica a może reprezentować drzewo ukorzenione w następujący sposób: jeśli rodzicem wierzchołka o numerze i jest wierzchołek o numerze j, to a[i] = j. Niech korzeniem będzie wierzchołek o numerze k. Ponieważ korzeń nie ma rodzica, przyjmujemy, że a[k] = -1. Dla przykładowego drzewa

odpowiednią tablicą będzie a = [6, 2, 5, 2, 2, -1, 5]. Drzewo to ma 7 wierzchołków, korzeniem jest wierzchołek o numerze 5, liśćmi są wierzchołki: 0, 1, 3 i 4, a jego wysokość wynosi 2.

Napisz program, który na podstawie tablicy a wyznacza wysokość odpowiadającego jej drzewa.

Wejście

Najpierw podajemy n, a potem n kolejnych liczb w tablicy a. Uwaga: pierwsza liczba na wejściu nie jest zatem częścią wejściowej tablicy; to informacja o długości tablicy a.

Wyjście

Liczba całkowita równa wysokości drzewa.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
3	1
1	
-1	
1	