CS145: INTRODUCTION TO DATA MINING

6: Vector Data: Neural Network

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

November 2, 2020

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Neural Network

Introduction

- Connection to Shallow Machine Learning
 Algorithms
- Multi-Layer Feed-Forward Neural Network
- Deep Learning
- Summary

Artificial Neural Networks

• Consider humans:

- Number of neurons ~ 10¹⁰
- Connections per neuron $^{\sim}10^{4-5}$
- Neuron switching time ~.001 second
- Scene recognition time ~.1 second
- 100 inference steps doesn't seem like enough -> parallel computation

Artificial neural networks

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Single Unit: Perceptron

Important Concepts

- Architecture
- Activation function
- Loss function
- Optimization
- Regularization

Architecture

- Decide the network topology:
 - Specify # of units in the *input layer*, # of *hidden layers* (if > 1), # of units in *each hidden layer*, the unit types, connection between layers, and # of units in the *output layer*
- Architecture specifies the function that maps input to output, which contains parameters to be learned

Activation function

- •An activation function $f(\cdot)$ in the output layer can control the nature of the output (e.g., probability value in [0, 1])
- Activation functions bring nonlinearity into hidden layers, which increases the complexity of the model.
- Good activation functions should be differentiable for optimization purpose

Examples of Activation Functions

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Loss Functions

- How good are the outputs compared with the labels (target)?
 - Empirical risk
 - $\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i} l(y^{(i)}, \hat{y}^{(i)})$, where $\hat{y}^{(i)} = f(\mathbf{x}^{(i)}, \mathbf{w})$
 - w: parameters in the model
 - Loss function: difference between actual value and predicted value
 - $l(y, \hat{y})$

Example of Loss Functions

- Squared error
 - $l(y, \hat{y}) = (y \hat{y})^2$
- (Binary) cross entropy loss
 - $\bullet l(y, \hat{y}) = -ylog\hat{y} (1 y)log(1 \hat{y})$
 - $y \in \{0,1\}, \hat{y} \in [0,1]$
- Hinge loss
 - $l(y, \hat{y}) = \max(0, 1 y\hat{y})$
 - $y \in \{-1,1\}, \hat{y} \in (-\infty, +\infty)$

Optimization

- Given a training dataset, minimize the empirical risk
 - Find \mathbf{w} , such that $\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i} l(y^{(i)}, \hat{y}^{(i)})$ is minimized
- •Solution:
 - Stochastic gradient descent + chain rule = backpropagation

Regularization

- Avoid overfitting
- Techniques
 - L2/L1 regularization
 - Dropout
 - Early stopping

•

Neural Network

- Introduction
- Connection to Shallow Machine Learning
 Algorithms
- Multi-Layer Feed-Forward Neural Network
- Deep Learning
- Summary

Perceptron

- Architecture:
 - A single neuron
- Activation function
 - Training: identity function
 - Inference: sign function/step function
- Loss function
 - $l(y, \hat{y}) = \max(0, -y\hat{y})$
- Optimization
 - $\boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{\eta} y^{(i)} \boldsymbol{x}^{(i)}$, for a misclassified training data point $(\boldsymbol{x}^{(i)}, y^{(i)})$, i.e., $y^{(i)} \boldsymbol{w}^T \boldsymbol{x}^{(i)} < 0$
 - η : learning rate

Linear SVM

- Architecture:
 - A single neuron
- Activation function
 - Training: identity function
 - Inference: sign function/step function
- Loss function
 - $l(y, \hat{y}) = \max(0, 1 y\hat{y})$
- Regularization
 - L2, i.e., $\frac{1}{2}\lambda||w||^2$
- Optimization

- $w \leftarrow w \eta \lambda w$, for a confidently correct training data point
- η : learning rate

Perceptron V.S. Linear SVM

• Source:

http://www.charuaggarwal.net/neural.htm

LOSS FUNCTION DISCOURAGES
MARGINALLY CORRECT PREDICTIONS

OPTIMAL SOLUTION FOUND BY SVM

Logistic Regression

- Architecture:
 - A single neuron
- Activation function
 - Sigmoid function
- Loss function
 - $l(y, \hat{y}) = -ylog\hat{y} (1 y)log(1 \hat{y})$
 - Note \hat{y} is the predicted probability of taking class 1
- Optimization
 - $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{\eta}(y^{(i)} \sigma(\mathbf{w}^T \mathbf{x}^{(i)}))\mathbf{x}^{(i)}$, for a training data point $(\mathbf{x}^{(i)}, y^{(i)})$
 - η : learning rate

Question

 How about multivariate logistic regression?

Neural Network

- Introduction
- Connection to Shallow Machine Learning
 Algorithms
- Multi-Layer Feed-Forward Neural Network
- Deep Learning
- Summary

A Multi-Layer Feed-Forward Neural Network

Output vector

Output layer

Hidden layer

Input layer

Input vector: x

$$o = g(W^{(2)}h + b^{(2)})$$

Nonlinear transformation, e.g. sigmoid transformation

How A Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
 - The number of hidden layers is arbitrary
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a math point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any continuous function

Learning by Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the loss function between the network's prediction and the actual target value, say mean squared error
 - Stochastic gradient descent + chain rule
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"

Example

• Loss function: $E = \frac{1}{2}||\mathbf{y} - \widehat{\mathbf{y}}||^2$

Gradient for Layer 3 (Last Layer)

- ullet Stochastic gradient for $W_{ij}^{(3)}$ and $b_i^{(3)}$
 - Recall:

•
$$E = \frac{1}{2} ||y - x^{(3)}||^2 = \frac{1}{2} \sum_{i} (y_i - x_i^{(3)})^2$$

•
$$x_i^{(3)} = f^{(3)}(z_i^{(3)})$$

•
$$z_i^{(3)} = \sum_j W_{ij}^{(3)} x_j^{(2)} + b_i^{(3)}$$

•
$$\frac{\partial E}{\partial b_i^{(3)}} = \frac{\partial E}{\partial x_i^{(3)}} \frac{\partial x_i^{(3)}}{\partial z_i^{(3)}} \frac{\partial z_i^{(3)}}{\partial b_i^{(3)}} = -(y_i - x_i^{(3)}) f'^{(3)} \left(z_i^{(3)} \right)$$

Gradient for Layer 2

- ullet Stochastic gradient for $W_{ij}^{(2)}$ and $b_i^{(2)}$
 - Recall:

•
$$E = \frac{1}{2} ||y - x^{(3)}||^2 = \frac{1}{2} \sum_i (y_i - x_i^{(3)})^2$$
; $x_i^{(3)} = f^{(3)}(z_i^{(3)})$; $z_i^{(3)} = \sum_j W_{ij}^{(3)} x_j^{(2)} + b_i^{(3)}$

•
$$x_j^{(2)} = f^{(2)}(z_j^{(2)}); \ z_j^{(2)} = \sum_k W_{jk}^{(2)} x_k^{(1)} + b_j^{(2)}$$

•
$$\frac{\partial E}{\partial W_{jk}^{(2)}} = \sum_{i} \frac{\partial E}{\partial x_{i}^{(3)}} \frac{\partial x_{i}^{(3)}}{\partial z_{i}^{(3)}} \frac{\partial z_{i}^{(3)}}{\partial x_{j}^{(2)}} \frac{\partial x_{j}^{(2)}}{\partial z_{j}^{(2)}} \frac{\partial z_{j}^{(2)}}{\partial W_{jk}^{(2)}}$$

$$= \sum_{i} -(y_{i} - x_{i}^{(3)}) f'^{(3)} \left(z_{i}^{(3)}\right) w_{ij}^{(3)} f'^{(2)} \left(z_{j}^{(2)}\right) x_{k}^{(1)}$$

Gradient for Layer 1

•Stochastic gradient for $W_{ks}^{(1)}$

$$\bullet \frac{\partial E}{\partial W_{ks}^{(1)}} = \sum_{j} \delta_{j}^{(2)} W_{jk}^{(2)} f'^{(1)} \left(z_{k}^{(1)} \right) x_{s}^{(0)}$$

Question

What would be a general formula for

$$W_{kj}^{(l)}$$
 ?

- $k \rightarrow j \rightarrow i$
- layer l-1 -> layer l -> layer l+1

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of hyper-parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Strength

- High tolerance to noisy data
- Successful on an array of real-world data, e.g., hand-written letters
- Algorithms are inherently parallel
- Techniques have recently been developed for the extraction of rules from trained neural networks
- Deep neural network is powerful

Digits Recognition Example

Obtain sequence of digits by segmentation

Recognition (our focus)

Digits Recognition Example

The architecture of the used neural network

• What each neurons are doing?

32

Neural Network

- Introduction
- Connection to Shallow Machine Learning Algorithms
- Multi-Layer Feed-Forward Neural Network
- Deep Learning*
- Summary

Towards Deep Learning

Deep neural network

Popular Deep NNs

- Deep layers and parameter sharing
 - Convolutional Neural Network
 - Applications to: Images, NLP, Graph
 - Recurrent Neural Network
 - Applications to: Sequence data

Convolutional Neural Network

 The LeNet Architecture (By Yann LeCun et al.)

Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Convolution

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

*

1	0	1
0	1	0
1	0	1

Filter

Input

Convolution operator: weighted sum where weights are from filter matrix

1 _{×1}	1 _{×0}	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Effects of Different Filters

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	4

Source: https://en.wikipedia.org/wiki/Kernel_(image_p rocessing)

Pooling

Rectified Feature Map

Source: http://cs231n.github.io/convolutional-networks/

Recurrent Neural Network

Model sequential information

 x_t : input vector at time t s_t : hidden state at time t o_t : output vector at time t

$$s_t = f(Ws_{t-1} + Ux_t)$$
$$o_t = g(Vs_t)$$

Application of Machine Translation

Seq2Seq model

Neural Network

- Introduction
- Connection to Shallow Machine Learning
 Algorithms
- Multi-Layer Feed-Forward Neural Network
- Deep Learning
- Summary

Summary

- Neural Network
 - Architecture; activation function; loss function; backpropagation
- Existing shallow machine learning algorithms can be represented in NN
- Multilayer feedforward NN
- Deep learning

Further References

•3Blue1Brown NN series:

```
https://www.youtube.com/watch?v=aircAruv
nKk&list=PLZHQObOWTQDNU6R1 67000Dx
ZCJB-3pi
```

- Deep Learning
 - http://neuralnetworksanddeeplearning.com/
 - http://www.deeplearningbook.org/
 - http://www.charuaggarwal.net/neural.htm
 - http://d2l.ai/index.html