CHAPTER 6

Differential Equations

Section 6.1	Slope Fields and Euler's Method	545
Section 6.2	Differential Equations: Growth and Decay	557
Section 6.3	Separation of Variables and the Logistic Equation 5	568
Section 6.4	First-Order Linear Differential Equations	582
Review Exer	rcises	593
Problem Solv	vino 6	502

CHAPTER 6

Differential Equations

Section 6.1 Slope Fields and Euler's Method

1. Differential equation: y' = 4y

Solution:
$$y = Ce^{4x}$$

Check:
$$y' = 4Ce^{4x} = 4y$$

3. Differential equation: $y' = \frac{2xy}{x^2 - y^2}$

Solution:
$$x^2 + y^2 = Cy$$

Check:
$$2x + 2yy' = Cy'$$

$$y' = \frac{-2x}{(2y - C)}$$

$$y' = \frac{-2xy}{2y^2 - Cy}$$

$$=\frac{-2xy}{2y^2-(x^2+y^2)}$$

$$=\frac{-2xy}{y^2-x^2}$$

$$=\frac{2xy}{x^2-y^2}$$

2. Differential Equation: $3y' + 4y = e^{-x}$

$$y = e^{-x}$$

$$y' = -e^{-x}$$

Check:
$$3(-e^{-x}) + 4(e^{-x}) = -3e^{-x} + 4e^{-x} = e^{-x}$$

4. Differential Equation: $\frac{dy}{dx} = \frac{xy}{y^2 - 1}$

Solution:
$$y^2 - 2 \ln y = x^2$$

Check:
$$2yy' - \frac{2}{y}y' = 2x$$

$$\left(y - \frac{1}{y}\right)y' = x$$

$$y' = \frac{x}{y - \frac{1}{y}}$$

$$y' = \frac{xy}{y^2 - 1}$$

5. Differential equation: y'' + y = 0

Solution:
$$y = C_1 \cos x + C_2 \sin x$$

$$y' = -C_1 \sin x + C_2 \cos x$$

$$y'' = -C_1 \cos x - C_2 \sin x$$

$$y'' + y = -C_1 \cos x - C_2 \sin x + C_1 \cos x + C_2 \sin x = 0$$

6. Differential equation: y'' + 2y' + 2y = 0

Solution:
$$y = C_1 e^{-x} \cos x + C_2 e^{-x} \sin x$$

$$y' = -(C_1 + C_2)e^{-x}\sin x + (-C_1 + C_2)e^{-x}\cos x$$

$$y'' = 2 C_1 e^{-x} \sin x - 2C_2 e^{-x} \cos x$$

$$y'' + 2y' + 2y = 2C_1e^{-x}\sin x - 2C_2e^{-x}\cos x +$$

$$2(-(C_1 + C_2)e^{-x}\sin x + (-C_1 + C_2)e^{-x}\cos x) + 2(C_1e^{-x}\cos x + C_2e^{-x}\sin x)$$

$$= (2C_1 - 2C_1 - 2C_2 + 2C_2)e^{-x}\sin x + (-2C_2 - 2C_1 + 2C_2 + 2C_1)e^{-x}\cos x = 0$$

7. Differential Equation: $y'' + y = \tan x$

$$y = -\cos x \ln|\sec x + \tan x|$$

$$y' = (-\cos x) \frac{1}{\sec x + \tan x} (\sec x \cdot \tan x + \sec^2 x) + \sin x \ln|\sec x + \tan x|$$

$$= \frac{(-\cos x)}{\sec x + \tan x} (\sec x)(\tan x + \sec x) + \sin x \ln|\sec x + \tan x|$$

$$= -1 + \sin x \ln|\sec x + \tan x|$$

$$y'' = (\sin x) \frac{1}{\sec x + \tan x} (\sec x \cdot \tan x + \sec^2 x) + \cos x \ln|\sec x + \tan x|$$

$$= (\sin x)(\sec x) + \cos x \ln|\sec x + \tan x|$$

Substituting,

$$y'' + y = (\sin x)(\sec x) + \cos x \ln|\sec x + \tan x| - \cos x \ln|\sec x + \tan x|$$
$$= \tan x.$$

8. $y = \frac{2}{3}(e^{-2x} + e^x)$

$$y' = \frac{2}{3}(-2e^{-2x} + e^x)$$

$$y'' = \frac{2}{3}(4e^{-2x} + e^x)$$

Substituting,
$$y'' + 2y' = \frac{2}{3}(4e^{-2x} + e^x) + 2(\frac{2}{3})(-2e^{-2x} + e^x) = 2e^x$$
.

 $9. y = \sin x \cos x - \cos^2 x$

$$y' = -\sin^2 x + \cos^2 x + 2\cos x \sin x$$

$$= -1 + 2\cos^2 x + \sin 2x$$

Differential Equation:

$$2y + y' = 2(\sin x \cos x - \cos^2 x) + (-1 + 2\cos^2 x + \sin 2x)$$

$$= 2\sin x \cos x - 1 + \sin 2x$$

$$= 2\sin 2x - 1$$

Initial condition:

$$y\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{4}\cos\frac{\pi}{4} - \cos^2\frac{\pi}{4} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} - \left(\frac{\sqrt{2}}{2}\right)^2 = 0$$

10. $y = \frac{1}{2}x^2 - 4\cos x + 2$

$$y' = x + 4 \sin x$$

Differential Equation:

$$y' = x + 4 \sin x$$

Initial condition:

$$y(0) = \frac{1}{2}(0)^2 - 4\cos(0) + 2 = -4 + 2 = -2$$

11. $y = 6e^{-2x^2}$

$$y' = 6e^{-2x^2}(-4x) = -24xe^{-2x^2}$$

Differential Equation:

$$y' = -24xe^{-2x^2} = -4x(6e^{-2x^2}) = -4xy$$

Initial condition:

$$y(0) = 6e^{-2(0)^2} = 6e^0 = 6(1) = 6$$

12.
$$y = e^{-\cos x}$$

$$y' = e^{-\cos x} (\sin x) = \sin x \cdot e^{-\cos x}$$

Differential Equation:

$$y' = \sin x \cdot e^{-\cos x} = \sin x(y) = y \sin x$$

Initial condition:

$$y\left(\frac{\pi}{2}\right) = e^{-\cos(\pi/2)} = e^0 = 1$$

In Exercises 13–18, the differential equation is $y^{(4)} - 16y = 0$.

13.
$$y = 3 \cos x$$

 $y^{(4)} = 3 \cos x$
 $y^{(4)} - 16y = -45 \cos x \neq 0$,

No

15.
$$y = e^{-2x}$$
$$y^{(4)} = 16e^{-2x}$$
$$y^{(4)} - 16y = 16e^{-2x} - 16e^{-2x} = 0,$$
Yes

14.
$$y = 3\cos 2x$$

 $y^{(4)} = 48\cos 2x$
 $y^{(4)} - 16y = 48\cos 2x - 48\cos 2x = 0$,
Yes

16.
$$y = 5 \ln x$$

$$y^{(4)} = -\frac{30}{x^4}$$

$$y^{(4)} - 16y = -\frac{30}{x^4} - 80 \ln x \neq 0,$$

No

17.
$$y = C_1 e^{2x} + C_2 e^{-2x} + C_3 \sin 2x + C_4 \cos 2x$$
$$y^{(4)} = 16C_1 e^{2x} + 16C_2 e^{-2x} + 16C_3 \sin 2x + 16C_4 \cos 2x$$
$$y^{(4)} - 16y = 0,$$
Yes

18.
$$y = 3e^{2x} - 4\sin 2x$$
$$y^{(4)} = 48e^{2x} - 64\sin 2x$$
$$y^{(4)} - 16y = (48e^{2x} - 64\sin 2x) - 16(3e^{2x} - 4\sin 2x) = 0,$$
Yes

In 19–24, the differential equation is $xy' - 2y = x^3e^x$.

19.
$$y = x^2$$
, $y' = 2x$
 $xy' - 2y = x(2x) - 2(x^2) = 0 \neq x^3 e^x$,
No

21.
$$y = x^2(2 + e^x)$$
, $y' = x^2(e^x) + 2x(2 + e^x)$
 $xy' - 2y = x[x^2e^x + 2xe^x + 4x] - 2[x^2e^x + 2x^2] = x^3e^x$,
Yes

20.
$$y = x^2 e^x$$
, $y' = x^2 e^x + 2x e^x = e^x (x^2 + 2x)$
 $xy' - 2y = x(e^x (x^2 + 2x)) - 2(x^2 e^x) = x^3 e^x$,
Yes

22.
$$y = \sin x, y' = \cos x$$

 $xy' - 2y = x(\cos x) - 2(\sin x) \neq x^3 e^x,$
No

- 23. $y = \ln x, y' = \frac{1}{x}$ $xy' - 2y = x\left(\frac{1}{x}\right) - 2\ln x \neq x^3 e^x,$ No
- **25.** $y = Ce^{-x/2}$ passes through (0, 3). $3 = Ce^0 = C \implies C = 3$ Particular solution: $y = 3e^{-x/2}$
- 27. $y^2 = Cx^3$ passes through (4, 4). $16 = C(64) \implies C = \frac{1}{4}$ Particular solution: $y^2 = \frac{1}{4}x^3$ or $4y^2 = x^3$
- **29.** Differential equation: 4yy' x = 0General solution: $4y^2 - x^2 = C$ Particular solutions: C = 0, Two intersecting lines $C = \pm 1$, $C = \pm 4$, Hyperbolas

- **31.** Differential equation: y' + 2y = 0General solution: $y = Ce^{-2x}$ $y' + 2y = C(-2)e^{-2x} + 2(Ce^{-2x}) = 0$ Initial condition: y(0) = 3, $3 = Ce^0 = C$ Particular solution: $y = 3e^{-2x}$
- **33.** Differential equation: y'' + 9y = 0General solution: $y = C_1 \sin 3x + C_2 \cos 3x$ $y' = 3C_1 \cos 3x - 3C_2 \sin 3x$, $y'' = -9C_1 \sin 3x - 9C_2 \cos 3x$ $y'' + 9y = (-9C_1 \sin 3x - 9C_2 \cos 3x)$ $+ 9(C_1 \sin 3x + C_2 \cos 3x) = 0$

- **24.** $y = x^2 e^x 5x^2$, $y' = x^2 e^x + 2xe^x 10x$ $xy' - 2y = x[x^2 e^x + 2xe^x - 10x] - 2[x^2 e^x - 5x^2] = x^3 e^x$, Yes
- **26.** $y(x^2 + y) = C$ passes through (0, 2). $2(0 + 2) = C \implies C = 4$ Particular solution: $y(x^2 + y) = 4$
- **28.** $2x^2 y^2 = C$ passes through (3, 4). $2(9) - 16 = C \implies C = 2$ Particular solution: $2x^2 - y^2 = 2$
- **30.** Differential equation: yy' + x = 0General solution: $x^2 + y^2 = C$ Particular solutions: C = 0, Point C = 1, C = 4, Circles

32. Differential equation: 3x + 2yy' = 0General solution: $3x^2 + 2y^2 = C$ 6x + 4yy' = 0 2(3x + 2yy') = 0 3x + 2yy' = 0Initial condition: y(1) = 3: $3(1)^2 + 2(3)^2$ = 3 + 18 = 21 = C

Initial conditions: $y\left(\frac{\pi}{6}\right) = 2$, $y'\left(\frac{\pi}{6}\right) = 1$ $2 = C_1 \sin\left(\frac{\pi}{2}\right) + C_2 \cos\left(\frac{\pi}{2}\right) \implies C_1 = 2$ $y' = 3C_1 \cos 3x - 3C_2 \sin 3x$

Particular solution: $3x^2 + 2y^2 = 21$

$$1 = 3C_1 \cos\left(\frac{\pi}{2}\right) - 3C_2 \sin\left(\frac{\pi}{2}\right)$$
$$= -3C_2 \implies C_2 = -\frac{1}{3}$$

Particular solution: $y = 2 \sin 3x - \frac{1}{3} \cos 3x$

34. Differential equation:
$$xy'' + y' = 0$$

General solution: $y = C_1 + C_2 \ln x$

$$y' = C_2\left(\frac{1}{x}\right), y'' = -C_2\left(\frac{1}{x^2}\right)$$

$$xy'' + y' = x\left(-C_2\frac{1}{x^2}\right) + C_2\frac{1}{x} = 0$$

Initial conditions:
$$y(2) = 0$$
, $y'(2) = \frac{1}{2}$

$$0 = C_1 + C_2 \ln 2$$

$$y' = \frac{C_2}{x}$$

$$\frac{1}{2} = \frac{C_2}{2} \implies C_2 = 1, \ C_1 = -\ln 2$$

Particular solution: $y = -\ln 2 + \ln x = \ln \frac{x}{2}$

35. Differential equation:
$$x^2y'' - 3xy' + 3y = 0$$

General solution: $y = C_1 x + C_2 x^3$

$$y' = C_1 + 3C_2x^2, y'' = 6C_2x$$

$$x^2y'' - 3xy' + 3y = x^2(6C_2x) - 3x(C_1 + 3C_2x^2) + 3(C_1x + C_2x^3) = 0$$

Initial conditions: y(2) = 0, y'(2) = 4

$$0 = 2C_1 + 8C_2$$

$$y' = C_1 + 3C_2x^2$$

$$4 = C_1 + 12C_2$$

$$\begin{array}{c} C_1 + 4C_2 = 0 \\ C_1 + 12C_2 = 4 \end{array} \} \quad C_2 = \frac{1}{2}, \quad C_1 = -2$$

Particular solution: $y = -2x + \frac{1}{2}x^3$

36. Differential equation:
$$9y'' - 12y' + 4y = 0$$

General solution: $y = e^{2x/3}(C_1 + C_2 x)$

$$y' = \frac{2}{3}e^{2x/3}(C_1 + C_2x) + C_2e^{2x/3} = e^{2x/3}(\frac{2}{3}C_1 + C_2 + \frac{2}{3}C_2x)$$

$$y'' = \frac{2}{3}e^{2x/3}\left(\frac{2}{3}C_1 + C_2 + \frac{2}{3}C_2x\right) + e^{2x/3}\frac{2}{3}C_2 = \frac{2}{3}e^{2x/3}\left(\frac{2}{3}C_1 + 2C_2 + \frac{2}{3}C_2x\right)$$

$$9y'' - 12y' + 4y = 9\left(\frac{2}{3}e^{2x/3}\right)\left(\frac{2}{3}C_1 + 2C_2 + \frac{2}{3}C_2x\right) - 12(e^{2x/3})\left(\frac{2}{3}C_1 + C_2 + \frac{2}{3}C_2x\right) + 4(e^{2x/3})(C_1 + C_2x) = 0$$

Initial conditions: y(0) = 4, y(3) = 0

$$0 = e^2(C_1 + 3C_2)$$

$$4 = (1)(C_1 + 0) \implies C_1 = 4$$

$$0 = e^2(4 + 3C_2) \implies C_2 = -\frac{4}{3}$$

Particular solution: $y = e^{2x/3} \left(4 - \frac{4}{3}x \right)$

37.
$$\frac{dy}{dx} = 3x^2$$

$$y = \int 3x^2 \, dx = x^3 + C$$

38.
$$\frac{dy}{dx} = x^3 - 4x$$

$$y = \int (x^3 - 4x) \, dx = \frac{x^4}{4} - 2x^2 + C$$

39.
$$\frac{dy}{dx} = \frac{x}{1+x^2}$$
$$y = \int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$$
$$(u = 1+x^2, du = 2x dx)$$

41.
$$\frac{dy}{dx} = \frac{x-2}{x} = 1 - \frac{2}{x}$$

$$y = \int \left[1 - \frac{2}{x}\right] dx$$

$$= x - 2\ln|x| + C = x - \ln x^2 + C$$

43.
$$\frac{dy}{dx} = \sin 2x$$
$$y = \int \sin 2x \, dx = -\frac{1}{2} \cos 2x + C$$
$$(u = 2x, du = 2 dx)$$

$$45. \ \frac{dy}{dx} = x\sqrt{x-3}$$

Let $u = \sqrt{x-3}$, then $x = u^2 + 3$ and dx = 2u du.

$$y = \int x\sqrt{x-3} \, dx = \int (u^2+3)(u)(2u) \, du$$
$$= 2\int (u^4+3u^2) \, du = 2\left(\frac{u^5}{5}+u^3\right) + C = \frac{2}{5}(x-3)^{5/2} + 2(x-3)^{3/2} + C$$

46.
$$\frac{dy}{dx} = x\sqrt{5-x}$$
. Let $u = \sqrt{5-x}$, $u^2 = 5-x$, $dx = -2u \ du$.

$$y = \int x\sqrt{5-x} \ dx = \int (5-u^2)u(-2u) \ du$$

$$= \int (-10u^2 + 2u^4) \ du$$

$$= \frac{-10u^3}{3} + \frac{2u^5}{5} + C$$

$$= -\frac{10}{3}(5-x)^{3/2} + \frac{2}{5}(5-x)^{5/2} + C$$

47.
$$\frac{dy}{dx} = xe^{x^2}$$

$$y = \int xe^{x^2} dx = \frac{1}{2}e^{x^2} + C$$

$$(u = x^2, du = 2x dx)$$

40.
$$\frac{dy}{dx} = \frac{e^x}{1 + e^x}$$

 $y = \int \frac{e^x}{1 + e^x} dx = \ln(1 + e^x) + C$

42.
$$\frac{dy}{dx} = x \cos x^2$$

 $y = \int x \cos(x^2) dx = \frac{1}{2} \sin(x^2) + C$
 $(u = x^2, du = 2x dx)$

44.
$$\frac{dy}{dx} = \tan^2 x = \sec^2 x - 1$$

 $y = \int (\sec^2 x - 1) dx = \tan x - x + C$

48.
$$\frac{dy}{dx} = 5e^{-x/2}$$

 $y = \int 5e^{-x/2} dx = 5(-2) \int e^{-x/2} \left(-\frac{1}{2}\right) dx$
 $= -10e^{-x/2} + C$

49.	x	-4	-2	0	2	4	8
	y	2	0	4	4	6	8
	dy/dx	-2	Undef.	0	1/2	<u>2</u> 3	1

51.	х	-4	-2	0	2	4	8
	у	2	0	4	4	6	8
	dy/dx	$-2\sqrt{2}$	-2	0	0	$-2\sqrt{2}$	-8

53.
$$\frac{dy}{dx} = \cos(2x)$$

For $x = \pi$, $\frac{dy}{dx} = 1$. Matches (b).

55.
$$\frac{dy}{dx} = e^{-2x}$$

As $x \to \infty$, $\frac{dy}{dx} \to 0$. Matches (d).

(c) As
$$x \to \infty$$
, $y \to -\infty$
As $x \to -\infty$, $y \to -\infty$

(c) As
$$x \to \infty$$
, $y \to -\infty$
As $x \to -\infty$, $y \to -\infty$

50.	x	-4	-2	0	2	4	8
	y	2	0	4	4	6	8
	dy/dx	-6	-2	-4	-2	-2	0

52.	x	-4	-2	0	2	4	8
	у	2	0	4	4	6	8
	dy/dx	$\sqrt{3}$	0	$-\sqrt{3}$	$-\sqrt{3}$	0	$\sqrt{3}$

54.
$$\frac{dy}{dx} = \frac{1}{2} \sin x$$

For $x = 0$, $\frac{dy}{dx} = 0$. Matches (c).

$$\mathbf{56.} \ \frac{dy}{dx} = \frac{1}{x}$$

For x = 0, $\frac{dy}{dx}$ is undefined (vertical tangent). Matches (a).

(c) As
$$x \to \infty$$
, $y \to \infty$
As $x \to -\infty$, $y \to -\infty$

(c) As
$$x \to \infty$$
, $y \to \infty$
As $x \to -\infty$, $y \to \infty$

61. (a)
$$y' = \frac{1}{x}$$
, $y(1) = 0$

As
$$x \to \infty$$
, $y \to \infty$

[Note: The solution is $y = \ln x$.]

(b)
$$y' = \frac{1}{x}$$
, $y(2) = -1$

As
$$x \to \infty$$
, $y \to \infty$

63.
$$\frac{dy}{dx} = 0.5y, y(0) = 6$$

65.
$$\frac{dy}{dx} = 0.02y(10 - y), y(0) = 2$$

67. Slope field for y' = 0.4y(3 - x) with solution passing through (0, 1).

62. (a)
$$y' = \frac{1}{y}$$
, $y(0) = 1$

As
$$x \to \infty$$
, $y \to \infty$

(b)
$$y' = \frac{1}{y}$$
, $y(1) = 1$

As
$$x \to \infty$$
, $y \to \infty$

64.
$$\frac{dy}{dx} = 2 - y, y(0) = 4$$

66.
$$\frac{dy}{dx} = 0.2x(2 - y), y(0) = 9$$

68. Slope field for $y' = \frac{1}{2}e^{-x/8}\sin\frac{\pi y}{4}$ with solution passing through (0, 2).

69.
$$y' = x + y$$
, $y(0) = 2$, $n = 10$, $h = 0.1$

$$y_1 = y_0 + hF(x_0, y_0) = 2 + (0.1)(0 + 2) = 2.2$$

$$y_2 = y_1 + hF(x_1, y_1) = 2.2 + (0.1)(0.1 + 2.2) = 2.43$$
, etc.

n	0	1	2	3	4	5	6	7	8	9	10
\mathcal{X}_n	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
y_n	2	2.2	2.43	2.693	2.992	3.332	3.715	4.146	4.631	5.174	5.781

70.
$$y' = x + y$$
, $y(0) = 2$, $n = 20$, $h = 0.05$

$$y_1 = y_0 + hF(x_0, y_0) = 2 + (0.05)(0 + 2) = 2.1$$

$$y_2 = y_1 + hF(x_1, y_1) = 2.1 + (0.05)(0.05 + 2.1) = 2.2075$$
, etc.

The table shows the values for $n = 0, 2, 4, \ldots, 20$.

n	0	2	4	6	8	10	12	14	16	18	20
x_n	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
y_n	2	2.208	2.447	2.720	3.032	3.387	3.788	4.240	4.749	5.320	5.960

71.
$$y' = 3x - 2y$$
, $y(0) = 3$, $n = 10$, $h = 0.05$

$$y_1 = y_0 + hF(x_0, y_0) = 3 + (0.05)(3(0) - 2(3)) = 2.7$$

$$y_2 = y_1 + hF(x_1, y_1) = 2.7 + (0.05)(3(0.05) - 2(2.7)) = 2.4375$$
, etc.

n	0	1	2	3	4	5	6	7	8	9	10
\mathcal{X}_n	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
y_n	3	2.7	2.438	2.209	2.010	1.839	1.693	1.569	1.464	1.378	1.308

72.
$$y' = 0.5x(3 - y)$$
, $y(0) = 1$, $n = 5$, $h = 0.4$

$$y_1 = y_0 + hF(x_0, y_0) = 1 + (0.4)(0.5(0)(3 - 1)) = 1$$

$$y_2 = y_1 + hF(x_1, y_1) = 1 + (0.4)(0.5(0.4)(3 - 1)) = 1.16$$
, etc.

n	0	1	2	3	4	5
\mathcal{X}_n	0	0.4	0.8	1.2	1.6	2.0
y_n	1	1	1.16	1.454	1.825	2.201

73.
$$y' = e^{xy}$$
, $y(0) = 1$, $n = 10$, $h = 0.1$

$$y_1 = y_0 + hF(x_0, y_0) = 1 + (0.1)e^{0(1)} = 1.1$$

$$y_2 = y_1 + hF(x_1, y_1) = 1.1 + (0.1)e^{(0.1)(1.1)} \approx 1.2116$$
, etc.

1	ı	0	1	2	3	4	5	6	7	8	9	10
λ	\mathfrak{c}_n	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
3	'n	1	1.1	1.212	1.339	1.488	1.670	1.900	2.213	2.684	3.540	5.958

74.
$$y' = \cos x + \sin y$$
, $y(0) = 5$, $n = 10$, $h = 0.1$

$$y_1 = y_0 + hF(x_0, y_0) = 5 + (0.1)(\cos 0 + \sin 5) \approx 5.0041$$

$$y_2 = y_1 + hF(x_1, y_1) = 5.0041 + (0.1)(\cos(0.1) + \sin(5.0041)) \approx 5.0078$$
, etc.

n	0	1	2	3	4	5	6	7	8	9	10
x_n	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
y_n	5	5.004	5.008	5.010	5.010	5.007	4.999	4.985	4.965	4.938	4.903

75.
$$\frac{dy}{dx} = y$$
, $y = 3e^x$, $y(0) = 3$

x	0	0.2	0.4	0.6	0.8	1.0
y(x) (exact)	3	3.6642	4.4755	5.4664	6.6766	8.1548
y(x) $(h = 0.2)$	3	3.6000	4.3200	5.1840	6.2208	7.4650
y(x) $(h = 0.1)$	3	3.6300	4.3923	5.3147	6.4308	7.7812

76.
$$\frac{dy}{dx} = \frac{2x}{y}$$
, $y = \sqrt{2x^2 + 4}$, $y(0) = 2$

x	0	0.2	0.4	0.6	0.8	1.0
y(x) (exact)	2	2.0199	2.0785	2.1726	2.2978	2.4495
y(x) $(h = 0.2)$	2	2.000	2.0400	2.1184	2.2317	2.3751
y(x) $(h = 0.1)$	2	2.0100	2.0595	2.1460	2.2655	2.4131

77.
$$\frac{dy}{dx} = y + \cos x$$
, $y = \frac{1}{2}(\sin x - \cos x + e^x)$, $y(0) = 0$

78. As h increases (from 0.1 to 0.2), the error increases.

x	0	0.2	0.4	0.6	0.8	1.0
y(x) (exact)	0	0.2200	0.4801	0.7807	0.1231	0.5097
y(x) $(h = 0.2)$	0	0.2000	0.4360	0.7074	0.0140	0.3561
y(x) $(h = 0.1)$	0	0.2095	0.4568	0.7418	0.0649	0.4273

79.
$$\frac{dy}{dt} = -\frac{1}{2}(y - 72), \ y(0) = 140, \ h = 0.1$$

(a)	t	0	1	2	3
	Euler	140	112.7	96.4	86.6

(b)
$$y = 72 + 68e^{-t/2}$$
 exact

t	0	1	2	3
Exact	140	113.24	97.016	87.173

80.
$$\frac{dy}{dt} = -\frac{1}{2}(y - 72), \ y(0) = 140, \ h = 0.05$$

(a)	t	0	1	2	3
	Euler	140	112.98	96.7	86.9

(b)
$$y = 72 + 68e^{-t/2}$$
 exact

t 0		1	2	3	
Exact	140	113.24	97.016	87.173	

The approximations are better using h = 0.05.

- **81.** A general solution of order *n* has *n* arbitrary constants while in a particular solution initial conditions are given in order to solve for all these constants.
- **82.** A slope field for the differential equation y' = F(x, y) consists of small line segments at various points (x, y) in the plane. The line segment equals the slope y' = F(x, y) of the solution y at the point (x, y).

85. False. Consider Example 2. $y = x^3$ is a solution to xy' - 3y = 0, but $y = x^3 + 1$ is not a solution.

- 83. Consider y' = F(x, y), $y(x_0) = y_0$. Begin with a point (x_0, y_0) that satisfies the initial condition, $y(x_0) = y_0$. Then using a step size of h, find the point $(x_1, y_1) = (x_0 + h, y_0 + hF(x_0, y_0))$. Continue generating the sequence of points $(x_{n+1}, y_{n+1}) = (x_n + h, y_n + hF(x_n, y_n))$.
- **84.** $y = Ce^{kx}$

$$\frac{dy}{dx} = Cke^{kx}$$

Since dy/dx = 0.07y, we have $Cke^{kx} = 0.07Ce^{kx}$. Thus, k = 0.07.

C cannot be determined.

86. True

- **87.** True
- 88. False. The slope field could represent many different differential equations, such as y' = 2x + 4y.
- **89.** $\frac{dy}{dx} = -2y$, y(0) = 4, $y = 4e^{-2x}$ solution

(a)	x	0	0.2	0.4	0.6	0.8	1.0
	у	4	2.6813	1.7973	1.2048	0.8076	0.5413
	<i>y</i> ₁	4	2.5600	1.6384	1.0486	0.6711	0.4295
	<i>y</i> ₂	4	2.4000	1.4400	0.8640	0.5184	0.3110
	e_1	0	0.1213	0.1589	0.1562	0.1365	0.1118
	e_2	0	0.2813	0.3573	0.3408	0.2892	0.2303
	r		0.4312	0.4447	0.4583	0.4720	0.4855

- (b) If h is halved, then the error is approximately halved $(r \approx 0.5)$.
- (c) When h = 0.05, the errors will again be approximately halved.

90. $\frac{dy}{dx} = x - y$, y(0) = 1, $y = x - 1 + 2e^{-x}$ solution

ı)	x	0	0.2	0.4	0.6	0.8	1.0
	у	1	0.8375	0.7406	0.6976	0.6987	0.7358
	y_1	1	0.8200	0.7122	0.6629	0.6609	0.6974
	<i>y</i> ₂	1	0.8000	0.6800	0.6240	0.6192	0.6554
	e_1	0	0.0175	0.0284	0.0347	0.0378	0.0384
	e_2	0	0.0375	0.0606	0.0736	0.0795	0.0804
	r		0.47	0.47	0.47	0.48	0.48

- (b) If h is halved, then the error is halved $(r \approx 0.5)$.
- (c) When h = 0.05, the error will again be approximately halved.

91. (a)
$$L\frac{dI}{dt} + RI = E(t)$$

$$4\frac{dI}{dt} + 12I = 24$$

$$\frac{dI}{dt} = \frac{1}{4}(24 - 12I) = 6 - 3I$$

(b) As $t \to \infty$, $I \to 2$. That is, $\lim_{t \to \infty} I(t) = 2$. In fact, I = 2 is a solution to the differential equation.

94.
$$f(x) + f''(x) = -xg(x)f'(x),$$

$$2f(x)f'(x) + 2f'(x)f''(x) = -2xg(x)[f'(x)]^{2}$$

$$\frac{d}{dx}[f(x)^{2} + f'(x)^{2}] = -2xg(x)[f'(x)]^{2}$$
For $x < 0$, $-2xg(x)[f'(x)]^{2} \ge 0$
For $x > 0$, $-2xg(x)[f'(x)]^{2} \le 0$

Thus, $f(x)^2 + f'(x)^2$ is increasing for x < 0 and decreasing for x > 0.

 $g(x) \geq 0$

 $f(x)^2 + f'(x)^2$ has a maximum at x = 0. Thus, it is bounded by its value at x = 0, $f(0)^2 + f'(0)^2$. Thus, f(and f') is bounded.

95. Let the vertical line x = k cut the graph of the solution y = f(x) at (k, t).

The tangent line at (k, t) is

$$y - t = f'(k)(x - k)$$

Since y' + p(x)y = q(x), we have

$$y - t = [q(k) - p(k)t](x - k)$$

For any value of t, this line passes through the point $\left(k + \frac{1}{p(k)}, \frac{q(k)}{p(k)}\right)$.

To see this, note that

$$\begin{split} \frac{q(k)}{p(k)} - t &\stackrel{?}{=} [q(k) - p(k)t] \left(k + \frac{1}{p(k)} - k \right) \\ &\stackrel{?}{=} q(k)k - p(k)tk + \frac{q(k)}{p(k)} - t - kq(k) + p(k)kt \\ &= \frac{q(k)}{p(k)} - t. \end{split}$$

Section 6.2 Differential Equations: Growth and Decay

1.
$$\frac{dy}{dx} = x + 2$$

 $y = \int (x + 2) dx = \frac{x^2}{2} + 2x + C$

3.
$$\frac{dy}{dx} = y + 2$$

$$\frac{dy}{y+2} = dx$$

$$\int \frac{1}{y+2} dy = \int dx$$

$$\ln|y+2| = x + C_1$$

$$y+2 = e^{x+C_1} = Ce^x$$

$$y = Ce^x - 2$$

5.
$$y' = \frac{5x}{y}$$
$$yy' = 5x$$
$$\int yy' dx = \int 5x dx$$
$$\int y dy = \int 5x dx$$
$$\frac{1}{2}y^2 = \frac{5}{2}x^2 + C_1$$
$$y^2 - 5x^2 = C$$

$$y' = x(1 + y)$$

$$\frac{y'}{1 + y} = x$$

$$\int \frac{y'}{1 + y} dx = \int x dx$$

$$\int \frac{dy}{1 + y} = \int x dx$$

$$\ln(1 + y) = \frac{x^2}{2} + C_1$$

$$1 + y = e^{(x^2/2) + C_1}$$

$$y = e^{C_1} e^{x^2/2} - 1$$

$$= Ce^{x^2/2} - 1$$

2.
$$\frac{dy}{dx} = 4 - x$$

 $y = \int (4 - x) dx = 4x - \frac{x^2}{2} + C$

4.
$$\frac{dy}{dx} = 4 - y$$

$$\frac{dy}{4 - y} = dx$$

$$\int \frac{-1}{4 - y} dy = \int -dx$$

$$\ln|4 - y| dy = -x + C_1$$

$$4 - y = e^{-x + C_1} = Ce^{-x}$$

$$y = 4 - Ce^{-x}$$

6.
$$y' = \frac{\sqrt{x}}{3y}$$
$$3yy' = \sqrt{x}$$
$$\int 3yy' dx = \int \sqrt{x} dx$$
$$\frac{3y^2}{2} = \frac{2}{3}x^{3/2} + C_1$$
$$9y^2 - 4x^{3/2} = C$$

7.
$$y' = \sqrt{x} y$$

$$\frac{y'}{y} = \sqrt{x}$$

$$\int \frac{y'}{y} dx = \int \sqrt{x} dx$$

$$\int \frac{dy}{y} = \int \sqrt{x} dx$$

$$\ln|y| = \frac{2}{3} x^{3/2} + C_1$$

$$y = e^{(2/3)x^{3/2}} + C_1$$

$$= e^{C_1} e^{(2/3)x^{3/2}}$$

$$= C e^{(2/3)x^{3/2}}$$

9.
$$(1 + x^2)y' - 2xy = 0$$

$$y' = \frac{2xy}{1 + x^2}$$

$$\frac{y'}{y} = \frac{2x}{1 + x^2}$$

$$\int \frac{y'}{y} dx = \int \frac{2x}{1 + x^2} dx$$

$$\int \frac{dy}{y} = \int \frac{2x}{1 + x^2} dx$$

$$\ln|y| = \ln(1 + x^2) + C_1$$

$$\ln|y| = \ln(1 + x^2) + \ln C$$

$$\ln|y| = \ln[C(1 + x^2)]$$

$$y = C(1 + x^2)$$

558

10.
$$xy + y' = 100x$$

$$y' = 100x + xy = x(100 - y)$$

$$\frac{y'}{100 - y} = x$$

$$\int \frac{y'}{100 - y} dx = \int x dx$$

$$\int \frac{1}{100 - y} dy = \int x dx$$

$$-\ln(100 - y) = \frac{x^2}{2} + C_1$$

$$\ln(100 - y) = -\frac{x^2}{2} - C_1$$

$$100 - y = e^{-(x^2/2) - C_1}$$

$$-y = e^{-C_1}e^{-x^2/2} - 100$$

$$y = 100 - Ce^{-x^2/2}$$

$$-\ln(100 - y) = \frac{1}{2} + C_1$$

$$\ln(100 - y) = -\frac{x^2}{2} - C_1$$

$$100 - y = e^{-(x^2/2) - C_1}$$

$$-y = e^{-C_1}e^{-x^2/2} - 100$$

$$y = 100 - Ce^{-x^2/2}$$

12.
$$\frac{dP}{dt} = k(10 - t)$$

$$\int \frac{dP}{dt} dt = \int k(10 - t) dt$$

$$\int dP = -\frac{k}{2}(10 - t)^2 + C$$

$$P = -\frac{k}{2}(10 - t)^2 + C$$

14.
$$\frac{dy}{dx} = kx(L - y)$$

$$\frac{1}{L - y} \frac{dy}{dx} = kx$$

$$\int \frac{1}{L - y} \frac{dy}{dx} dx = \int kx dx$$

$$\int \frac{1}{L - y} dy = \frac{kx^2}{2} + C_1$$

$$-\ln(L - y) = \frac{kx^2}{2} + C_1$$

$$L - y = e^{-(kx^2/2) - C_1}$$

$$-y = -L + e^{-C_1}e^{-kx^2/2}$$

$$y = L - Ce^{-kx^2/2}$$

11.
$$\frac{dQ}{dt} = \frac{k}{t^2}$$

$$\int \frac{dQ}{dt} dt = \int \frac{k}{t^2} dt$$

$$\int dQ = -\frac{k}{t} + C$$

$$Q = -\frac{k}{t} + C$$

13.
$$\frac{dN}{ds} = k(250 - s)$$

$$\int \frac{dN}{ds} ds = \int k(250 - s) ds$$

$$\int dN = -\frac{k}{2}(250 - s)^2 + C$$

$$N = -\frac{k}{2}(250 - s)^2 + C$$

(b)
$$\frac{dy}{dx} = x(6 - y), \quad (0, 0)$$
$$\frac{dy}{y - 6} = -x dx$$
$$\ln|y - 6| = \frac{-x^2}{2} + C$$
$$y - 6 = e^{-x^2/2 + C} = C_1 e^{-x^2/2}$$
$$y = 6 + C_1 e^{-x^2/2}$$
$$(0, 0): 0 = 6 + C_1 \implies C_1 = -6 \implies y = 6 - 6e^{-x^2/2}$$

(b)
$$\frac{dy}{dx} = xy$$
, $\left(0, \frac{1}{2}\right)$
 $\frac{dy}{y} = x dx$
 $\ln|y| = \frac{x^2}{2} + C$
 $y = e^{x^2/2 + C} = C_1 e^{x^2/2}$
 $\left(0, \frac{1}{2}\right)$: $\frac{1}{2} = C_1 e^0 \implies C_1 = \frac{1}{2} \implies y = \frac{1}{2} e^{x^2/2}$

18.
$$\frac{dy}{dt} = -\frac{3}{4}\sqrt{t}$$
, (0, 10)

$$\int dy = \int -\frac{3}{4} \sqrt{t} \, dt$$

$$y = -\frac{1}{2}t^{3/2} + C$$

$$10 = -\frac{1}{2}(0)^{3/2} + C \implies C = 10$$

$$y = -\frac{1}{2}t^{3/2} + 10$$

20.
$$\frac{dy}{dt} = \frac{3}{4}y$$
, (0, 10)

$$\int \frac{dy}{y} = \int \frac{3}{4} \, dt$$

$$\ln y = \frac{3}{4}t + C_1$$

$$y = e^{(3/4)t + C_1}$$
$$= e^{C_1} e^{(3/4)t} = Ce^{3t/4}$$

$$10 = Ce^0 \implies C = 10$$

$$y = 10e^{3t/4}$$

17.
$$\frac{dy}{dt} = \frac{1}{2}t$$
, (0, 10)

$$\int dy = \int \frac{1}{2}t \, dt$$

$$y = \frac{1}{4}t^2 + C$$

$$10 = \frac{1}{4}(0)^2 + C \implies C = 10$$

$$y = \frac{1}{4}t^2 + 10$$

19.
$$\frac{dy}{dt} = -\frac{1}{2}y$$
, (0, 10)

$$\int \frac{dy}{y} = \int -\frac{1}{2} \, dt$$

$$\ln|y| = -\frac{1}{2}t + C_1$$

$$y = e^{-(t/2) + C_1} = e^{C_1} e^{-t/2} = Ce^{-t/2}$$

$$10 = Ce^0 \implies C = 10$$

$$y = 10e^{-t/2}$$

21.
$$\frac{dy}{dx} = ky$$

$$y = Ce^{kx}$$
 (Theorem 5.16)

$$(0,4)$$
: $4 = Ce^0 = C$

$$(3, 10)$$
: $10 = 4e^{3k} \implies k = \frac{1}{3} \ln \left(\frac{5}{2} \right)$

When
$$x = 6$$
, $y = 4e^{1/3 \ln(5/2)(6)} = 4e^{\ln(5/2)^2}$

$$=4\left(\frac{5}{2}\right)^2=25.$$

560

22.
$$\frac{dN}{dt} = kN$$

 $N = Ce^{kt}$ (Theorem 5.16)
 $(0, 250)$: $C = 250$
 $(1, 400)$: $400 = 250e^k \implies k = \ln \frac{400}{250} = \ln \frac{8}{5}$
When $t = 4$, $N = 250e^{4 \ln(8/5)} = 250e^{\ln(8/5)^4}$
 $= 250 \left(\frac{8}{5}\right)^4 = \frac{8192}{5}$.

24.
$$\frac{dP}{dt} = kP$$

$$P = Ce^{kt} \quad \text{(Theorem 5.16)}$$

$$(0, 5000): C = 5000$$

$$(1, 4750): 4750 = 5000e^{k} \implies k = \ln\left(\frac{19}{20}\right)$$
When $t = 5$, $P = 5000e^{\ln(19/20)(5)}$

$$= 5000\left(\frac{19}{20}\right)^{5} \approx 3868.905.$$

23.
$$\frac{dV}{dt} = kV$$

$$V = Ce^{kt} \quad \text{(Theorem 5.16)}$$

$$(0, 20,000): C = 20,000$$

$$(4, 12,500): 12,500 = 20,000e^{4k} \implies k = \frac{1}{4}\ln\left(\frac{5}{8}\right)$$
When $t = 6$, $V = 20,000e^{1/4\ln(5/8)(6)} = 20,000e^{\ln(5/8)^{3/2}}$

$$= 20,000\left(\frac{5}{8}\right)^{3/2} \approx 9882.118.$$

25.
$$y = Ce^{kt}$$
, $\left(0, \frac{1}{2}\right)$, $(5, 5)$

$$C = \frac{1}{2}$$

$$y = \frac{1}{2}e^{kt}$$

$$5 = \frac{1}{2}e^{5k}$$

$$k = \frac{\ln 10}{5}$$

$$y = \frac{1}{2}e^{(\ln 10/5)t} = \frac{1}{2}(10^{t/5}) \text{ or } y \approx \frac{1}{2}e^{0.4605t}$$

26.
$$y = Ce^{kt}$$
, $(0, 4)$, $\left(5, \frac{1}{2}\right)$

$$C = 4$$

$$y = 4e^{kt}$$

$$\frac{1}{2} = 4e^{5k}$$

$$k = \frac{\ln(1/8)}{5} \approx -0.4159$$

$$y = 4e^{-0.4159t}$$

27.
$$y = Ce^{kt}$$
, (1, 1), (5, 5)
 $1 = Ce^k$
 $5 = Ce^{5k}$
 $5Ce^k = Ce^{5k}$
 $5e^k = e^{5k}$
 $5 = e^{4k}$
 $k = \frac{\ln 5}{4} \approx 0.4024$
 $y = Ce^{0.4024t}$
 $1 = Ce^{0.4024}$
 $C \approx 0.6687 \quad (C = 5^{-1/4})$
 $y \approx 0.6687e^{0.4024t}$

28.
$$y = Ce^{kt}, \left(3, \frac{1}{2}\right), (4, 5)$$

$$\frac{1}{2} = Ce^{3k}$$

$$5 = Ce^{4k}$$

$$2Ce^{3k} = \frac{1}{5}Ce^{4k}$$

$$10e^{3k} = e^{4k}$$

$$10 = e^{k}$$

$$k = \ln 10 \approx 2.3026$$

$$y = Ce^{2.3026t}$$

$$5 = Ce^{2.3026(4)}$$

$$C \approx 0.0005$$

$$y = 0.0005e^{2.3026t}$$

29. In the model $y = Ce^{kt}$, C represents the initial value of y (when t = 0). k is the proportionality constant.

31.
$$\frac{dy}{dx} = \frac{1}{2}xy$$

 $\frac{dy}{dx} > 0$ when xy > 0. Quadrants I and III.

33. Since the initial quantity is 10 grams,

$$y = 10e^{kt}.$$

Since the half-life is 1599 years,

$$5 = 10e^{k(1599)}$$

$$k = \frac{1}{1599} \ln \left(\frac{1}{2}\right).$$

Thus, $y = 10e^{[\ln(1/2)/1599]t}$.

When t = 1000, $y = 10e^{[\ln(1/2)/1599](1000)} \approx 6.48 \text{ g}.$

When t = 10,000, $y \approx 0.13$ g.

35. Since the half-life is 1599 years,

$$\frac{1}{2} = 1e^{k(1599)}$$

$$k = \frac{1}{1599} \ln \left(\frac{1}{2}\right).$$

Since there are 0.5 gram after 10,000 years,

$$0.5 = Ce^{[\ln(1/2)/1599](10,000)}$$

$$C \approx 38.158$$
.

Hence, the initial quantity is approximately 38.158 g.

When
$$t = 1000$$
, $y = 38.158e^{[\ln(1/2)/1599](1000)}$
 $\approx 24.74 \text{ g.}$

37. Since the initial quantity is 5 grams, C = 5.

Since the half-life is 5715 years,

$$2.5 = 5e^{k(5715)}$$

$$k = \frac{1}{5715} \ln \left(\frac{1}{2}\right).$$

When t = 1000 years, $y = 5e^{[\ln(1/2)/5715](1000)}$

$$\approx 4.43$$
 g.

When
$$t = 10,000$$
 years, $y = 5e^{[\ln(1/2)/5715](10,000)}$
 $\approx 1.49 \text{ g.}$

30.
$$y' = \frac{dy}{dt} = ky$$

32.
$$\frac{dy}{dx} = \frac{1}{2}x^2y$$

 $\frac{dy}{dx} > 0$ when y > 0. Quadrants I and II.

34. Since the half-life is 1599 years,

$$\frac{1}{2} = 1e^{k(1599)}$$

$$k = \frac{1}{1599} \ln \left(\frac{1}{2}\right).$$

Since there are 1.5 g after 1000 years,

$$1.5 = Ce^{[\ln(1/2)/1599](1000)}$$

$$C \approx 2.314$$
.

Hence, the initial quantity is approximately 2.314 g.

When
$$t = 10,000$$
, $y = 2.314e^{[\ln(1/2)/1599](10,000)}$
 $\approx 0.03 \text{ g.}$

36. Since the half-life is 5715 years,

$$\frac{1}{2} = 1e^{k(5715)}$$

$$k = \frac{1}{5715} \ln \left(\frac{1}{2}\right).$$

Since there are 2 grams after 10,000 years,

$$2 = Ce^{[\ln(1/2)/5715](10,000)}$$

$$C \approx 6.726$$
.

Hence, the initial quantity is approximately 6.726 g.

When
$$t = 1000$$
, $y = 6.726e^{[\ln(1/2)/5715](1000)}$

$$\approx 5.96 \text{ g}.$$

38. Since the half-life is 5715 years,

$$\frac{1}{2} = 1e^{k(5715)}$$

$$k = \frac{1}{5715} \ln\left(\frac{1}{2}\right).$$

Since there are 3.2 grams when t = 1000 years,

$$3.2 = Ce^{[\ln(1/2)/5715](1000)}$$

$$C \approx 3.613$$
.

Thus, the initial quantity is approximately 3.613 g.

When
$$t = 10,000$$
, $y = 3.613e^{[\ln(1/2)/5715](10,000)}$

$$\approx 1.07$$
 g.

$$\frac{1}{2} = 1e^{k(24,100)}$$

$$k = \frac{1}{24,100} \ln\left(\frac{1}{2}\right).$$

Since there are 2.1 grams after 1000 years,

$$2.1 = Ce^{[\ln(1/2)/24,100](1000)}$$

$$C \approx 2.161$$
.

Thus, the initial quantity is approximately 2.161 g.

When
$$t = 10,000$$
, $y = 2.161e^{[\ln(1/2)/24,100](10,000)}$

$$\approx 1.62$$
 g.

41. $y = Ce^{kt}$

$$\frac{1}{2}C = Ce^{k(1599)}$$

$$k = \frac{1}{1599} \ln \left(\frac{1}{2}\right)$$

When t = 100, $y = Ce^{[\ln(1/2)/1599](100)}$

$$\approx 0.9576 \, C$$

Therefore, 95.76% remains after 100 years.

43. Since $A = 1000e^{0.06t}$, the time to double is given by $2000 = 1000e^{0.06t}$ and we have

$$2 = e^{0.06t}$$

$$\ln 2 = 0.06t$$

$$t = \frac{\ln 2}{0.06} \approx 11.55 \text{ years.}$$

Amount after 10 years: $A = 1000e^{(0.06)(10)} \approx 1822.12

45. Since $A = 750e^{rt}$ and A = 1500 when t = 7.75, we have the following.

$$1500 = 750e^{7.75r}$$

$$r = \frac{\ln 2}{7.75} \approx 0.0894 = 8.94\%$$

Amount after 10 years: $A = 750e^{0.0894(10)} \approx 1833.67

40. Since the half-life is 24,100 years,

$$\frac{1}{2} = 1e^{k(24,100)}$$

$$k = \frac{1}{24.100} \ln\left(\frac{1}{2}\right).$$

Since there are 0.4 grams after 10,000 years,

$$0.4 = Ce^{[\ln(1/2)/24,100](10,000)}$$

$$C \approx 0.533$$
.

Thus, the initial quantity is approximately 0.533 g.

When
$$t = 1000$$
, $y = 0.533e^{[\ln(1/2)/24,100](1000)}$

$$\approx 0.52 \text{ g}.$$

42. $y = Ce^{kt}$

$$\frac{1}{2}C = Ce^{k(5715)}$$

$$k = \frac{1}{5715} \ln \left(\frac{1}{2}\right)$$

$$0.15C = Ce^{[\ln(1/2)/5715]t}$$

$$\ln(0.15) = \frac{\ln\left(\frac{1}{2}\right)t}{5715}$$

$$t \approx 15,641.8 \text{ years}$$

44. Since $A = 20,000e^{0.055t}$, the time to double is given by $40,000 = 20,000e^{0.055t}$ and we have

$$2 = e^{0.055t}$$

$$ln 2 = 0.055t$$

$$t = \frac{\ln 2}{0.055} \approx 12.6 \text{ years.}$$

Amount after 10 years: $A = 20,000e^{(0.055)(10)} \approx $34,665.06$

46. Since $A = 10,000e^{rt}$ and A = 20,000 when t = 5, we have the following.

$$20,000 = 10,000e^{5r}$$

$$r = \frac{\ln 2}{5} \approx 0.1386 = 13.86\%$$

Amount after 10 years: $A = 10,000e^{[(\ln 2)/5](10)} = $40,000$

47. Since $A = 500e^{rt}$ and A = 1292.85 when t = 10, we have the following.

$$1292.85 = 500e^{10r}$$

$$r = \frac{\ln(1292.85/500)}{10} \approx 0.0950 = 9.50\%$$

The time to double is given by

$$1000 = 500e^{0.0950t}$$
$$t = \frac{\ln 2}{0.095} \approx 7.30 \text{ years.}$$

49.
$$500,000 = P\left(1 + \frac{0.075}{12}\right)^{(12)(20)}$$

$$P = 500,000\left(1 + \frac{0.075}{12}\right)^{-240}$$

$$\approx $112,087.09$$

51.
$$500,000 = P\left(1 + \frac{0.08}{12}\right)^{(12)(35)}$$

$$P = 500,000\left(1 + \frac{0.08}{12}\right)^{-420}$$

$$= $30,688.87$$

53. (a)
$$2000 = 1000(1 + 0.07)^{t}$$

 $2 = 1.07^{t}$
 $\ln 2 = t \ln 1.07$
 $t = \frac{\ln 2}{\ln 1.07} \approx 10.24 \text{ years}$
(b) $2000 = 1000\left(1 + \frac{0.07}{12}\right)^{12t}$
 $2 = \left(1 + \frac{0.007}{12}\right)^{12t}$
 $\ln 2 = 12t \ln\left(1 + \frac{0.07}{12}\right)$
 $t = \frac{\ln 2}{12 \ln(1 + (0.07/12))} \approx 9.93 \text{ years}$
(c) $2000 = 1000\left(1 + \frac{0.07}{365}\right)^{365t}$
 $2 = \left(1 + \frac{0.07}{365}\right)^{365t}$
 $\ln 2 = 365t \ln\left(1 + \frac{0.07}{365}\right) \approx 9.90 \text{ years}$
 $t = \frac{\ln 2}{365 \ln(1 + (0.07/365))} \approx 9.90 \text{ years}$

48. Since $A = 2000e^{rt}$ and A = 5436.56 when t = 10, we have the following.

$$5436.56 = 2000e^{10r}$$

$$r = \frac{\ln(5436.56/2000)}{10} \approx 0.10 = 10\%$$

The time to double is given by

$$4000 = 2000e^{0.10t}$$
$$t = \frac{\ln 2}{0.10} \approx 6.93 \text{ years.}$$

50.
$$500,000 = P\left(1 + \frac{0.06}{12}\right)^{(12)(40)}$$

$$P = 500,000(1.005)^{-480} \approx $45,631.04$$

52.
$$500,000 = P\left(1 + \frac{0.09}{12}\right)^{(12)(25)}$$

$$P = 500,000\left(1 + \frac{0.09}{12}\right)^{-300}$$

$$\approx $53,143.92$$

(d)
$$2000 = 1000e^{(0.07)t}$$

 $2 = e^{0.07t}$
 $\ln 2 = 0.07t$
 $t = \frac{\ln 2}{0.07} \approx 9.90 \text{ years}$

54. (a)
$$2000 = 1000(1 + 0.6)^t$$

 $2 = 1.06^t$

$$\ln 2 = t \ln 1.06$$

$$t = \frac{\ln 2}{\ln 1.06} \approx 11.90 \text{ years}$$

(b)
$$2000 = 1000 \left(1 + \frac{0.06}{12}\right)^{12t}$$

$$2 = \left(1 + \frac{0.06}{12}\right)^{12t}$$

$$\ln 2 = 12t \ln \left(1 + \frac{0.06}{12} \right)$$

$$t = \frac{1}{12} \frac{\ln 2}{\ln \left(1 + \frac{0.06}{12}\right)} \approx 11.58 \text{ years}$$

(c)
$$2000 = 1000 \left(1 + \frac{0.06}{365}\right)^{365t}$$

$$2 = \left(1 + \frac{0.06}{365}\right)^{3656}$$

$$\ln 2 = 365t \ln \left(1 + \frac{0.06}{365} \right)$$

$$t = \frac{1}{365} \frac{\ln 2}{\ln \left(1 + \frac{0.06}{365}\right)} \approx 11.55 \text{ years}$$

(d)
$$2000 = 1000e^{0.06t}$$

$$2 = e^{0.06t}$$

$$ln 2 = 0.06t$$

$$t = \frac{\ln 2}{0.06} \approx 11.55 \text{ years}$$

56. (a)
$$2000 = 1000(1 + 0.055)^t$$

$$2 = 1.055^t$$

$$ln 2 = t ln 1.055$$

$$t = \frac{\ln 2}{\ln 1.055} \approx 12.95 \text{ years}$$

(b)
$$2000 = 1000 \left(1 + \frac{0.055}{12}\right)^{12t}$$

$$2 = \left(1 + \frac{0.055}{12}\right)^{12t}$$

$$\ln 2 = 12t \ln \left(1 + \frac{0.055}{12} \right)$$

$$t = \frac{1}{12} \frac{\ln 2}{\ln \left(1 + \frac{0.055}{12}\right)} \approx 12.63 \text{ years}$$

55. (a)
$$2000 = 1000(1 + 0.085)^t$$

$$2 = 1.085^t$$

$$\ln 2 = t \ln 1.085$$

$$t = \frac{\ln 2}{\ln 1.085} \approx 8.50 \text{ years}$$

(b)
$$2000 = 1000 \left(1 + \frac{0.085}{12}\right)^{12t}$$

$$2 = \left(1 + \frac{0.085}{12}\right)^{12t}$$

$$\ln 2 = 12t \ln \left(1 + \frac{0.085}{12}\right)$$

$$t = \frac{1}{12} \frac{\ln 2}{\ln \left(1 + \frac{0.085}{12}\right)} \approx 8.18 \text{ years}$$

(c)
$$2000 = 1000 \left(1 + \frac{0.085}{365}\right)^{365t}$$

$$2 = \left(1 + \frac{0.085}{365}\right)^{365t}$$

$$\ln 2 = 365t \ln \left(1 + \frac{0.085}{365} \right)$$

$$t = \frac{1}{365} \frac{\ln 2}{\ln \left(1 + \frac{0.085}{365}\right)} \approx 8.16 \text{ years}$$

(d)
$$2000 = 1000e^{0.085t}$$

$$2 = e^{0.085t}$$

$$ln 2 = 0.085t$$

$$t = \frac{\ln 2}{0.085} \approx 8.15 \text{ years}$$

(c)
$$2000 = 1000 \left(1 + \frac{0.055}{365}\right)^{365t}$$

$$2 = \left(1 + \frac{0.055}{365}\right)^{365t}$$

$$\ln 2 = 365t \ln \left(1 + \frac{0.055}{365} \right)$$

$$t = \frac{1}{365} \frac{\ln 2}{\ln \left(1 + \frac{0.055}{365}\right)} \approx 12.60 \text{ years}$$

(d)
$$2000 = 1000e^{0.055t}$$

$$2 = e^{0.055t}$$

$$ln 2 = 0.055t$$

$$t = \frac{\ln 2}{0.055} \approx 12.60 \text{ years}$$

57. (a)
$$P = Ce^{kt} = Ce^{-0.009t}$$

$$P(1) = 7.7 = Ce^{-0.009(1)}$$

$$C \approx 7.7696$$

$$P = 7.7696e^{-0.009t}$$

(b) For
$$t = 15$$
, $P = 7.7696e^{-0.009(15)} \approx 6.79$ million.

(c) If k < 0, the population is decreasing.

59. (a)
$$P = Ce^{kt} = Ce^{0.026t}$$

 $5.2 = P(1) = Ce^{0.026(1)}$

$$C \approx 5.0665$$

$$P = 5.0665e^{0.026t}$$

- (b) For t = 15, $P = 5.0665e^{0.026(15)} \approx 7.48$ million.
- (c) For k > 0, the population is increasing.
- **61.** (a) $N = 100.1596(1.2455)^t$
 - (b) N = 400 when t = 6.3 hours (graphing utility)

Analytically,

$$400 = 100.1596(1.2455)^t$$

$$1.2455^t = \frac{400}{100.1596} = 3.9936$$

$$t \ln 1.2455 = \ln 3.9936$$

$$t = \frac{\ln 3.9936}{\ln 1.2455} \approx 6.3$$
 hours.

62. (a) Let
$$y = Ce^{kt}$$
.

At time 2:
$$125 = Ce^{k(2)} \implies C = 125e^{-2k}$$

At time 4:
$$350 = Ce^{k(4)} \implies 350 = (125e^{-2k})(e^{4k}) \implies \frac{14}{5} = e^{2k}$$

$$2k = \ln \frac{14}{5}$$

$$k = \frac{1}{2} \ln \frac{14}{5} \approx 0.5148$$

$$C = 125e^{-2k} = 125e^{-2(1/2)\ln(14/5)} = 125\left(\frac{5}{14}\right) = \frac{625}{14} \approx 44.64$$

Approximately 45 bacteria at time 0.

(b)
$$y = \frac{625}{14}e^{(1/2)\ln(14/5)t} \approx 44.64e^{0.5148t}$$

(c) When
$$t = 8$$
, $y = \frac{625}{14}e^{(1/2)\ln(14/5)8} = \frac{625}{14}\left(\frac{14}{5}\right)^4 = 2744$.

(d)
$$25,000 = \frac{625}{14}e^{(1/2)\ln(14/5)t} \implies t \approx 12.29 \text{ hours}$$

58. (a)
$$P = Ce^{kt} = Ce^{0.018t}$$

$$P(1) = 12.7 = Ce^{0.018(1)}$$

$$C \approx 12.4734$$

$$P = 12.4734e^{0.018t}$$

- (b) For t = 15, $P = 12.4734e^{0.018(15)} \approx 16.34$ million.
- (c) For k > 0, the population is increasing.

60. (a)
$$P = Ce^{kt} = Ce^{-0.002t}$$

$$P(1) = 3.6 = Ce^{-0.002(1)}$$

$$C \approx 3.6072$$

$$P = 3.6072e^{-0.002t}$$

- (b) For t = 15, $P = 3.6072e^{-0.002(15)} \approx 3.5$ million.
- (c) For k < 0, the population is decreasing.

63. (a)
$$19 = 30(1 - e^{20k})$$
 $30e^{20k} = 11$

$$k = \frac{\ln(11/30)}{20} \approx -0.0502$$

$$N \approx 30(1 - e^{-0.0502t})$$

(b)
$$25 = 30(1 - e^{-0.0502t})$$

$$e^{-0.0502t} = \frac{1}{6}$$

$$t = \frac{-\ln 6}{-0.0502} \approx 36 \text{ days}$$

65. (a)
$$P_1 = Ce^{kt} = 181e^{kt}$$

$$205 = 181e^{10k} \implies k = \frac{1}{10} \ln \left(\frac{205}{181} \right) \approx 0.01245$$

$$P_1 \approx 181e^{0.01245t} \approx 181(1.01253)^t$$

(b) Using a graphing utility,
$$P_2 \approx 182.3248(1.01091)^t$$

66. (a)
$$R = 941.6088(1.0756)^t$$

$$= 941.6088e^{0.0729t}$$

$$I = 0.14164t^4 - 3.9288t^3 + 36.599t^2 - 120.82t + 417.0$$

According to the model, $R'(t) \approx 68.6e^{0.0729t}$.

67.
$$\beta(I) = 10 \log_{10} \frac{I}{I_0}, I_0 = 10^{-16}$$

(a)
$$\beta(10^{-14}) = 10 \log_{10} \frac{10^{-14}}{10^{-16}} = 20$$
 decibels

(b)
$$\beta(10^{-9}) = 10 \log_{10} \frac{10^{-9}}{10^{-16}} = 70 \text{ decibels}$$

(c)
$$\beta(10^{-6.5}) = 10 \log_{10} \frac{10^{-6.5}}{10^{-16}} = 95$$
 decibels

(d)
$$\beta(10^{-4}) = 10 \log_{10} \frac{10^{-4}}{10^{-16}} = 120$$
 decibels

64. (a)
$$20 = 30(1 - e^{30k})$$

$$30e^{30k} = 10$$

$$k = \frac{\ln(1/3)}{30} = \frac{-\ln 3}{30} \approx -0.0366$$

$$N \approx 30(1 - e^{-0.0366t})$$

(b)
$$25 = 30(1 - e^{-0.0366t})$$

$$e^{-0.0366t} = \frac{1}{6}$$

$$t = \frac{-\ln 6}{-0.0366} \approx 49 \text{ days}$$

The model P_2 fits the data better.

(d) Using the model P_2 ,

$$320 = 182.3248(1.01091)^t$$

$$\frac{320}{182.3248} = (1.01091)^t$$

$$t = \frac{\ln(320/182.3248)}{\ln(1.01091)} \approx 51.8$$
 years, or 2011.

(d)
$$P(t) = \frac{I}{R}$$

68. 93 =
$$10 \log_{10} \frac{I}{10^{-16}} = 10(\log_{10} I + 16)$$

$$-6.7 = \log_{10} I \implies I = 10^{-6.7}$$

$$80 = 10 \log_{10} \frac{I}{10^{-16}} = 10(\log_{10} I + 16)$$

$$-8 = \log_{10} I \implies I = 10^{-8}$$

Percentage decrease:
$$\left(\frac{10^{-6.7} - 10^{-8}}{10^{-6.7}}\right)(100) \approx 95\%$$

69.
$$A(t) = V(t)e^{-0.10t} = 100,000e^{0.8\sqrt{t}}e^{-0.10t} = 100,000e^{0.8\sqrt{t}-0.10t}$$

$$\frac{dA}{dt} = 100,000\left(\frac{0.4}{\sqrt{t}} - 0.10\right)e^{0.8\sqrt{t}-0.10t} = 0 \text{ when } 16.$$

The timber should be harvested in the year 2014, (1998 + 16). **Note:** You could also use a graphing utility to graph A(t) and find the maximum of A(t). Use the viewing rectangle $0 \le x \le 30$ and $0 \le y \le 600,000$.

70.
$$R = \frac{\ln I - \ln I_0}{\ln 10} = \frac{\ln I - 0}{\ln 10}, I = e^{R \ln 10} = 10^R$$

(a) $8.3 = \frac{\ln I - \ln I_0}{\ln 10}$

(b) $2R = \frac{\ln I - \ln I_0}{\ln 10}$

(c) $R = \frac{\ln I - \ln I_0}{\ln 10}$
 $I = 10^{8.3} \approx 199,526,231.5$
 $I = e^{2R \ln 10}$
 $= e^{2R \ln 10}$
 $= (e^{R \ln 10})^2$
 $= (10^R)^2$

Increases by a factor of $e^{2R \ln 10}$ or 10^R .

71. Since
$$\frac{dy}{dt} = k(y - 80)$$

$$\int \frac{1}{y - 80} dy = \int k dt$$

$$\ln(y - 80) = kt + C.$$
When $t = 0$, $y = 1500$. Thus, $C = \ln 1420$.

When $t = 1$, $y = 1120$. Thus,
$$k(1) + \ln 1420 = \ln(1120 - 80)$$

$$k = \ln 1040 - \ln 1420 = \ln \frac{104}{142}.$$
Thus, $y = 1420e^{[\ln(104/142)]t} + 80$.
When $t = 5$, $y \approx 379.2^{\circ}$.

72.
$$\frac{dy}{dt} = k(y - 20)$$

$$y = 20 + Ce^{kt} \quad \text{(See Example 6)}$$

$$160 = 20 + Ce^{k(0)} \implies C = 140$$

$$60 = 20 + 140e^{k(5)}$$

$$\frac{2}{7} = e^{5k}$$

$$k = \frac{1}{5} \ln\left(\frac{2}{7}\right) \approx -0.25055$$

$$30 = 20 + 140e^{(1/5) \ln(2/7)t}$$

$$\frac{1}{14} = e^{\ln(2/7)^{t/s}} = \left(\frac{2}{7}\right)^{t/s}$$

$$\ln\frac{1}{14} = \frac{t}{5} \ln\frac{2}{7}$$

$$t = \frac{5 \ln\frac{1}{14}}{\ln\frac{2}{7}} = \frac{5 \ln 14}{\ln\frac{7}{2}} \approx 10.53 \text{ minutes}$$

It will take 10.53 - 5 = 5.53 minutes longer.

73. False. If
$$y = Ce^{kt}$$
, $y' = Cke^{kt} \neq \text{constant}$.

Section 6.3 Separation of Variables and the Logistic Equation

1.
$$\frac{dy}{dx} = \frac{x}{y}$$

$$\int y \, dy = \int x \, dx$$

$$\frac{y^2}{2} = \frac{x^2}{2} + C_1$$

$$y^2 - x^2 = C$$

568

3.
$$\frac{dr}{ds} = 0.05r$$

$$\int \frac{dr}{r} = \int 0.05 \, ds$$

$$\ln|r| = 0.05s + C_1$$

$$r = e^{0.05s + C_1} = Ce^{0.05s}$$

5.
$$(2 + x)y' = 3y$$

$$\int \frac{dy}{y} = \int \frac{3}{2 + x} dx$$

$$\ln|y| = 3 \ln|2 + x| + \ln C = \ln|C(2 + x)^3|$$

$$y = C(x + 2)^3$$

7.
$$yy' = \sin x$$

$$\int y \, dy = \int \sin x \, dx$$

$$\frac{y^2}{2} = -\cos x + C_1$$

$$y^2 = -2\cos x + C$$

9.
$$\sqrt{1 - 4x^2} y' = x$$

$$dy = \frac{x}{\sqrt{1 - 4x^2}} dx$$

$$\int dy = \int \frac{x}{\sqrt{1 - 4x^2}} dx$$

$$= -\frac{1}{8} \int (1 - 4x^2)^{-1/2} (-8x dx)$$

$$y = -\frac{1}{4} (1 - 4x^2)^{1/2} + C$$

2.
$$\frac{dy}{dx} = \frac{x^2 + 2}{3y^2}$$
$$\int 3y^2 \, dy = \int (x^2 + 2) \, dx$$
$$y^3 = \frac{x^3}{3} + 2x + C$$

4.
$$\frac{dr}{ds} = 0.05s$$

$$\int dr = \int 0.05s \, ds$$

$$r = 0.025s^2 + C$$

6.
$$xy' = y$$

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\ln y = \ln x + \ln C = \ln Cx$$

$$y = Cx$$

8.
$$y \frac{dy}{dx} = 6 \cos \pi x$$
$$\int y \, dy = \int 6 \cos \pi x \, dx$$
$$\frac{y^2}{2} = \frac{6}{\pi} \sin \pi x + C_1$$
$$y^2 = \frac{12}{\pi} \sin \pi x + C$$

10.
$$\sqrt{x^2 - 9} \frac{dy}{dx} = 5x$$

$$\int dy = \int \frac{5x}{\sqrt{x^2 - 9}} dx$$

$$y = 5(x^2 - 9)^{1/2} + C$$

11.
$$y \ln x - xy' = 0$$

$$\int \frac{dy}{y} = \int \frac{\ln x}{x} dx \ \left(u = \ln x, du = \frac{dx}{x} \right)$$

$$\ln|y| = \frac{1}{2} (\ln x)^2 + C_1$$

$$y = e^{(1/2)(\ln x)^2 + C_1} = Ce^{(\ln x)^2/2}$$

13.
$$yy' - e^x = 0$$

$$\int y \, dy = \int e^x \, dx$$

$$\frac{y^2}{2} = e^x + C_1$$

$$y^2 = 2e^x + C$$

Initial condition: y(0) = 4, 16 = 2 + C, C = 14Particular solution: $y^2 = 2e^x + 14$

15.
$$y(x + 1) + y' = 0$$

$$\int \frac{dy}{y} = -\int (x + 1) dx$$

$$\ln|y| = -\frac{(x + 1)^2}{2} + C_1$$

$$y = Ce^{-(x+1)^2/2}$$

Initial condition: y(-2) = 1, $1 = Ce^{-1/2}$, $C = e^{1/2}$ Particular solution: $y = e^{[1 - (x+1)^2]/2} = e^{-(x^2 + 2x)/2}$

17.
$$y(1 + x^2)y' = x(1 + y^2)$$

$$\frac{y}{1 + y^2} dy = \frac{x}{1 + x^2} dx$$

$$\frac{1}{2} \ln(1 + y^2) = \frac{1}{2} \ln(1 + x^2) + C_1$$

$$\ln(1 + y^2) = \ln(1 + x^2) + \ln C = \ln[C(1 + x^2)]$$

$$1 + y^2 = C(1 + x^2)$$

$$y(0) = \sqrt{3}: 1 + 3 = C \implies C = 4$$

$$1 + y^2 = 4(1 + x^2)$$

$$y^2 = 3 + 4x^2$$

12.
$$4y \frac{dy}{dx} = 3e^{x}$$

$$\int 4y \, dy = \int 3e^{x} \, dx$$

$$2y^{2} = 3e^{x} + C$$

14.
$$\sqrt{x} + \sqrt{y} y' = 0$$

$$\int y^{1/2} dy = -\int x^{1/2} dx$$

$$\frac{2}{3} y^{3/2} = -\frac{2}{3} x^{3/2} + C_1$$

$$y^{3/2} + x^{3/2} = C$$
Initial condition: $y(1) = 4$,
$$(4)^{3/2} + (1)^{3/2} = 8 + 1 = 9 = C$$

Particular solution: $y^{3/2} + x^{3/2} = 9$

16.
$$2xy' - \ln x^2 = 0$$
$$2x \frac{dy}{dx} = 2 \ln x$$
$$\int dy = \int \frac{\ln x}{x} dx$$
$$y = \frac{(\ln x)^2}{2} + C$$
$$y(1) = 2: 2 = C$$
$$y = \frac{1}{2} (\ln x)^2 + 2$$

18.
$$y\sqrt{1-x^2}\frac{dy}{dx} = x\sqrt{1-y^2}$$

$$\int (1-y^2)^{-1/2}y \, dy = \int (1-x^2)^{-1/2}x \, dx$$

$$-(1-y^2)^{1/2} = -(1-x^2)^{1/2} + C$$

$$y(0) = 1: \qquad 0 = -1 + C \implies C = 1$$

$$\sqrt{1-y^2} = \sqrt{1-x^2} - 1$$

$$19. \quad \frac{du}{dv} = uv \sin v^2$$

$$\int \frac{du}{u} = \int v \sin v^2 \, dv$$

$$\ln|u| = -\frac{1}{2}\cos v^2 + C_1$$

$$u = Ce^{-(\cos v^2)/2}$$

Initial condition: u(0) = 1, $C = \frac{1}{e^{-1/2}} = e^{1/2}$

Particular solution: $u = e^{(1-\cos v^2)/2}$

21.
$$dP - kP dt = 0$$

$$\int \frac{dP}{P} = k \int dt$$

$$\ln|P| = kt + C_1$$

$$P = Ce^{kt}$$

Initial condition: $P(0) = P_0$, $P_0 = Ce^0 = C$

Particular solution: $P = P_0 e^{kt}$

23.
$$\frac{dy}{dx} = \frac{-9x}{16y}$$

$$\int 16y \, dy = -\int 9x \, dx$$

$$8y^2 = \frac{-9}{2}x^2 + C$$

Initial condition: y(1) = 1, $8 = -\frac{9}{2} + C$, $C = \frac{25}{2}$

Particular solution:

$$8y^2 = \frac{-9}{2}x^2 + \frac{25}{2}$$

$$16y^2 + 9x^2 = 25$$

25.
$$m = \frac{dy}{dx} = \frac{0-y}{(x+2)-x} = -\frac{y}{2}$$

$$\int \frac{dy}{y} = \int -\frac{1}{2} dx$$

$$\ln|y| = -\frac{1}{2}x + C_1$$

$$y = Ce^{-x/2}$$

$$20. \qquad \frac{dr}{ds} = e^{r-2s}$$

$$\int e^{-r} dr = \int e^{-2s} \, ds$$

$$-e^{-r} = -\frac{1}{2}e^{-2s} + C$$

$$r(0) = 0$$
: $-1 = -\frac{1}{2} + C \implies C = -\frac{1}{2}$

$$-e^{-r} = -\frac{1}{2}e^{-2s} - \frac{1}{2}$$

$$e^{-r} = \frac{1}{2}e^{-2s} + \frac{1}{2}$$

$$-r = \ln\left(\frac{1}{2}e^{-2s} + \frac{1}{2}\right) = \ln\left(\frac{1 + e^{-2s}}{2}\right)$$

$$r = \ln\left(\frac{2}{1 + e^{-2s}}\right)$$

22.
$$dT + k(T - 70) dt = 0$$

$$\int \frac{dT}{T - 70} = -k \int dt$$

$$\ln(T - 70) = -k_t + C_1$$

$$T - 70 = Ce^{-kt}$$

Initial condition: T(0) = 140;

$$140 - 70 = 70 = Ce^0 = C$$

Particular solution: $T - 70 = 70e^{-kt}$, $T = 70(1 + e^{-kt})$

24.
$$\frac{dy}{dx} = \frac{2y}{3x}$$

$$\int \frac{3}{y} \, dy = \int \frac{2}{x} \, dx$$

$$\ln y^3 = \ln x^2 + \ln C$$

$$y^3 = Cx^2$$

Initial condition: y(8) = 2, $2^3 = C(8^2)$, $C = \frac{1}{8}$

Particular solution: $8y^3 = x^2$, $y = \frac{1}{2}x^{2/3}$

26.
$$m = \frac{dy}{dx} = \frac{y-0}{x-0} = \frac{y}{x}$$

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

 $\ln y = \ln x + C_1 = \ln x + \ln C = \ln Cx$

$$y = Cx$$

27.
$$f(x, y) = x^3 - 4xy^2 + y^3$$

 $f(tx, ty) = t^3x^3 - 4txt^2y^2 + t^3y^3$
 $= t^3(x^3 - 4xy^2 + y^3)$

Homogeneous of degree 3

29.
$$f(x, y) = \frac{x^2 y^2}{\sqrt{x^2 + y^2}}$$
$$f(tx, ty) = \frac{t^4 x^2 y^2}{\sqrt{t^2 x^2 + t^2 y^2}} = t^3 \frac{x^2 y^2}{\sqrt{x^2 + y^2}}$$

Homogeneous of degree 3

31.
$$f(x, y) = 2 \ln xy$$

 $f(tx, ty) = 2 \ln[txty]$
 $= 2 \ln[t^2xy] = 2(\ln t^2 + \ln xy)$

Not homogeneous

33.
$$f(x, y) = 2 \ln \frac{x}{y}$$
$$f(tx, ty) = 2 \ln \frac{tx}{ty} = 2 \ln \frac{x}{y}$$

Homogeneous degree 0

35.
$$y' = \frac{x+y}{2x}, \ y = vx$$

$$v + x \frac{dv}{dx} = \frac{x+vx}{2x}$$

$$x \frac{dv}{dx} = \frac{1+v}{2} - v = \frac{1-v}{2}$$

$$2 \int \frac{dv}{1-v} = \int \frac{dx}{x}$$

$$-\ln(1-v)^2 = \ln|x| + \ln C = \ln|Cx|$$

$$\frac{1}{(1-v)^2} = |Cx|$$

$$\frac{1}{[1-(y/x)]^2} = |Cx|$$

$$\frac{x^2}{(x-y)^2} = |Cx|$$

$$|x| = C(x-y)^2$$

28.
$$f(x, y) = x^3 + 3x^2y^2 - 2y^2$$

 $f(tx, ty) = t^3x^3 + 3t^4x^2y^2 - 2t^2y^2$
Not homogeneous

30.
$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
$$f(tx, ty) = \frac{tx ty}{\sqrt{t^2 x^2 + t^2 y^2}}$$
$$= \frac{t^2 xy}{t\sqrt{x^2 + y^2}} = t \frac{xy}{\sqrt{x^2 + y^2}}$$

Homogeneous of degree 1

32.
$$f(x, y) = \tan(x + y)$$
$$f(tx, ty) = \tan(tx + ty) = \tan[t(x + y)]$$
Not homogeneous

34.
$$f(x, y) = \tan \frac{y}{x}$$

 $f(tx, ty) = \tan \frac{ty}{tx} = \tan \frac{y}{x}$
Homogeneous of degree 0

36.
$$y' = \frac{(x^3 + y^3)}{xy^2}$$

$$xy^2 dy = (x^3 + y^3) dx$$

$$y = vx, \quad dy = x dv + v dx$$

$$x(vx)^2(x dv + v dx) = (x^3 + (vx)^3) dx$$

$$x^4 v^2 dv + x^3 v^3 dx = x^3 dx + v^3 x^3 dx$$

$$xv^2 dv = dx$$

$$\int v^2 dv = \int \frac{1}{x} dx$$

$$\frac{v^3}{3} = \ln|x| + C$$

$$\left(\frac{y}{x}\right)^3 = 3\ln|x| + C$$

$$v^3 = 3x^3 \ln|x| + Cx^3$$

37.
$$y' = \frac{x - y}{x + y}, y = vx$$

$$v + x \frac{dv}{dx} = \frac{x - xv}{x + xv}$$

$$v dx + x dv = \frac{1 - v}{1 + v} dx$$

$$x dv = \left(\frac{1 - v}{1 + v} - v\right) dx = \frac{1 - 2v - v^2}{1 + v} dx$$

$$\int \frac{v + 1}{v^2 + 2v - 1} dv = -\int \frac{dx}{x}$$

$$\frac{1}{2} \ln|v^2 + 2v - 1| = -\ln|x| + \ln C_1 = \ln\left|\frac{C_1}{x}\right|$$

$$|v^2 + 2v - 1| = \frac{C}{x^2}$$

$$\left|\frac{y^2}{x^2} + 2\frac{y}{x} - 1\right| = \frac{C}{x^2}$$

$$|y^2 + 2xy - x^2| = C$$

39.
$$y' = \frac{xy}{x^2 - y^2}, y = vx$$

$$v + x \frac{dv}{dx} = \frac{x^2v}{x^2 - x^2v^2}$$

$$v dx + x dv = \frac{v}{1 - v^2} dx$$

$$x dv = \left(\frac{v}{1 - v^2} - v\right) dx = \left(\frac{v^3}{1 - v^2}\right) dx$$

$$\int \frac{1 - v^2}{v^3} dv = \int \frac{dx}{x}$$

$$-\frac{1}{2v^2} - \ln|v| = \ln|x| + \ln C_1 = \ln|C_1x|$$

$$\frac{-1}{2v^2} = \ln|C_1xv|$$

$$\frac{-x^2}{2y^2} = \ln|C_1y|$$

$$y = Ce^{-x^2/2y^2}$$

41.
$$x \, dy - (2xe^{-y/x} + y) \, dx = 0, y = vx$$

$$x(v \, dx + x \, dv) - (2xe^{-v} + vx) \, dx = 0$$

$$\int e^{v} \, dv = \int \frac{2}{x} \, dx$$

$$e^{v} = \ln C_{1}x^{2}$$

$$e^{y/x} = \ln C_{1} + \ln x^{2}$$

$$e^{y/x} = C + \ln x^{2}$$

Initial condition: y(1) = 0, 1 = CParticular solution: $e^{y/x} = 1 + \ln x^2$

38.
$$y' = \frac{x^2 + y^2}{2xy}, y = vx$$

$$v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2x^2 v}$$

$$2v \, dx + 2x \, dv = \frac{1 + v^2}{v} dx$$

$$\int \frac{2v}{v^2 - 1} \, dv = -\int \frac{dx}{x}$$

$$\ln(v^2 - 1) = -\ln x + \ln C = \ln \frac{C}{x}$$

$$v^2 - 1 = \frac{C}{x}$$

$$\frac{y^2}{x^2} - 1 = \frac{C}{x}$$

$$y^2 - x^2 = Cx$$

40.
$$y' = \frac{2x + 3y}{x}, y = vx$$

$$v + x \frac{dv}{dx} = \frac{2x + 3vx}{x} = 2 + 3v$$

$$x \frac{dv}{dx} = 2 + 2v \implies \int \frac{dv}{1 + v} = 2 \int \frac{dx}{x}$$

$$\ln|1 + v| = \ln x^2 + \ln C = \ln x^2 C$$

$$1 + v = x^2 C$$

$$1 + \frac{y}{x} = x^2 C$$

$$\frac{y}{x} = x^2 C - 1$$

$$y = Cx^3 - x$$

Particular solution: $x = e^{\sin(y/x)}$

42.
$$-y^{2} dx + x(x + y) dy = 0, y = vx$$

$$-x^{2} v^{2} dx + (x^{2} + x^{2}v)(v dx + x dv) = 0$$

$$\int \frac{1+v}{v} dv = -\int \frac{dx}{x}$$

$$v + \ln v = -\ln x + \ln C_{1} = \ln \frac{C_{1}}{x}$$

$$v = \ln \frac{C_{1}}{xv}$$

$$\frac{C_{1}}{vx} = e^{v}$$

$$\frac{C_{1}}{y} = e^{y/x}$$

$$y = Ce^{-y/x}$$

Initial condition: $y(1) = 1, 1 = Ce^{-1} \implies C = e$

Particular solution: $y = e^{1-y/x}$

44.
$$(2x^{2} + y^{2}) dx + xy dy = 0$$

Let $y = vx$, $dy = x dv + v dx$.
 $(2x^{2} + v^{2}x^{2}) dx + x(vx)(x dv + v dx) = 0$
 $(2x^{2} + 2x^{2}v^{2}) dx + x^{3}v dv = 0$
 $(2 + 2v^{2}) dx = -xv dv$

$$\frac{-2}{x} dx = \frac{v}{1 + v^{2}} dv$$

$$-2 \ln x = \frac{1}{2} \ln(1 + v^{2}) + C_{1}$$

$$\ln x^{-2} = \ln(1 + v^{2})^{1/2} + \ln C$$

$$x^{-2} = C(1 + v^{2})^{1/2}$$

$$\frac{1}{x^{2}} = C\left(1 + \frac{y^{2}}{x^{2}}\right)^{1/2} = \frac{C}{x}(x^{2} + y^{2})^{1/2}$$

$$y(1) = 0: 1 = C(1 + 0) \implies C = 1$$

$$\frac{1}{x} = \sqrt{x^{2} + y^{2}}$$

$$1 = x\sqrt{x^{2} + y^{2}}$$

43.
$$\left(x \sec \frac{y}{x} + y\right) dx - x dy = 0, y = vx$$

$$(x \sec v + xv) dx - x(v dx + x dv) = 0$$

$$(\sec v + v) dx = v dx + x dv$$

$$\int \cos v dv = \int \frac{dx}{x}$$

$$\sin v = \ln x + \ln C_1$$

$$x = Ce^{\sin v}$$

$$= Ce^{\sin(y/x)}$$
Initial condition: $y(1) = 0, 1 = Ce^0 = C$

$$45. \frac{dy}{dx} = x$$

$$v \, dx.$$

$$0(x \, dv + v \, dx) = 0$$

$$dv = 0$$

$$v^2)^{1/2} + \ln C$$

$$v^2)^{1/2} = \frac{C}{x}(x^2 + y^2)^{1/2}$$

$$y = \int x \, dx = \frac{1}{2}x^2 + C$$

$$y^2)^{1/2}$$

$$y^2)^{1/2}$$

$$y^2 \Rightarrow C = 1$$

$$46. \ \frac{dy}{dx} = -\frac{x}{y}$$

$$y \, dy = -x \, dx$$

$$\frac{y^2}{2} = \frac{-x^2}{2} + C_1$$

$$y^2 + x^2 = C$$

48.
$$\frac{dy}{dx} = 0.25x(4 - y)$$

$$\frac{dy}{4 - y} = 0.25x dx$$

$$\int \frac{dy}{y - 4} = \int -0.25x dx = -\frac{1}{4} \int x dx$$

$$\ln|y - 4| = -\frac{1}{8}x^2 + C_1$$

$$y - 4 = e^{C_1 - (1/8)x^2} = Ce^{-(1/8)x^2}$$

$$\int \frac{dy}{4 - y} = \int dx$$

$$\ln|4 - y| = -x + C_1$$

$$|4 - y| = -x + C_1$$
$$4 - y = e^{-x + C_1}$$

$$y = 4 + Ce^{-x}$$

49. (a) Euler's Method gives $y(1) \approx 0.1602$.

 $v = 4 + Ce^{-(1/8)x^2}$

(b)
$$\frac{dy}{dx} = -6xy$$
$$\int \frac{dy}{y} = \int -6x$$
$$\ln|y| = -3x^2 + C_1$$
$$y = Ce^{-3x^2}$$
$$y(0) = 5 \implies C = 5$$

 $y = 5e^{-3x^2}$

(c) At
$$x = 1$$
, $y = 5e^{-3(1)} \approx 0.2489$.

Error: $0.2489 - 0.1602 \approx 0.0887$

50. (a) Euler's Method gives
$$y(1) \approx 0.2622$$
.

(b)
$$\frac{dy}{dx} = -6xy^2$$

$$\int \frac{dy}{y^2} = \int -6x \, dx$$

$$\frac{-1}{y} = -3x^2 + C_1$$

$$y = \frac{1}{3x^2 + C}$$

$$3 = \frac{1}{C} \implies C = \frac{1}{3}$$

$$y = \frac{1}{3x^2 + \frac{1}{3}} = \frac{3}{9x^2 + 1}$$

(c) At
$$x = 1$$
, $y = \frac{3}{9(1) + 1} = \frac{3}{10} = 0.3$.

Error: 0.3 - 0.2622 = 0.0378

51. (a) Euler's Method gives $y(2) \approx 3.0318$.

(b)
$$\frac{dy}{dx} = \frac{2x+12}{3y^2-4}$$

$$\int (3y^2-4) \, dy = \int (2x+12) \, dx$$

$$y^3-4y=x^2+12x+C$$

$$y(1) = 2: \ 2^3-4(2) = 1+12+C \implies C = -13$$

$$y^3-4y=x^2+12x-13$$

(c) For
$$x = 2$$
,

$$y^{3} - 4y = 2^{2} + 12(2) - 13 = 15$$

$$y^{3} - 4y - 15 = 0$$

$$(y - 3)(y^{2} + 3y + 5) = 0 \implies y = 3.$$

Error: 3.0318 - 3 = 0.0318

53.
$$\frac{dy}{dt} = ky, \quad y = Ce^{kt}$$

$$y(0) = y_0 = C \quad \text{initial amount}$$

$$\frac{y_0}{2} = y_0 e^{k(1599)}$$

$$k = \frac{1}{1599} \ln\left(\frac{1}{2}\right)$$

$$y = Ce^{[\ln(1/2)/1599]t}$$

When t = 25, y = 0.989C or 98.9%.

55.
$$\frac{dy}{dx} = k(y - 4)$$

The direction field satisfies (dy/dx) = 0 along y = 4; but not along y = 0. Matches (a).

$$57. \frac{dy}{dx} = ky(y-4)$$

The direction field satisfies (dy/dx) = 0 along y = 0 and y = 4. Matches (c).

52. (a) Euler's Method gives $y(1.5) \approx 1.7270$.

(b)
$$\frac{dy}{dx} = 2x(1 + y^2)$$

$$\int \frac{dy}{1 + y^2} = \int 2x \, dx$$

$$\arctan y = x^2 + C$$

$$\arctan(0) = 1^2 + C \implies C = -1$$

$$\arctan(y) = x^2 - 1$$

$$y = \tan(x^2 - 1)$$
(c) At $x = 1.5$, $y = \tan(1.5^2 - 1) \approx 3.0096$.

54.
$$\frac{dy}{dt} = ky, y = Ce^{kt}$$

Initial conditions:
$$y(0) = 20$$
, $y(1) = 16$

$$20 = Ce^{0} = C$$

$$16 = 20e^{k}$$

$$k = \ln \frac{4}{5}$$

Particular solution: $y = 20e^{t \ln(4/5)}$

When 75% has been changed:

$$5 = 20e^{t \ln(4/5)}$$

$$\frac{1}{4} = e^{t \ln(4/5)}$$

$$t = \frac{\ln(1/4)}{\ln(4/5)} \approx 6.2 \text{ hr}$$

56.
$$\frac{dy}{dx} = k(x-4)$$

The direction field satisfies (dy/dx) = 0 along x = 4: Matches (b).

$$58. \ \frac{dy}{dx} = ky^2$$

The direction field satisfies (dy/dx) = 0 along y = 0, and grows more positive as y increases. Matches (d).

$$\frac{dw}{dt} = k(1200 - w)$$

$$\int \frac{dw}{1200 - w} = \int k \, dt$$

$$\ln|1200 - w| = -kt + C_1$$

$$1200 - w = e^{-kt + C_1} = Ce^{-kt}$$

$$w = 1200 - Ce^{-kt}$$

$$w(0) = 60 = 1200 - C \implies C = 1200 - 60 = 1140$$

$$w = 1200 - 1140e^{-kt}$$

(b)
$$k = 0.8$$
: $t = 1.31$ years

$$k = 0.9$$
: $t = 1.16$ years

$$k = 1.0$$
: $t = 1.05$ years

(c) Maximum weight: 1200 pounds

$$\lim_{t \to \infty} w = 1200$$

$$w = 1200 - Ce^{-kt}, k = 1$$

$$w = 1200 - Ce^{-t}$$

$$w(0) = w_0 = 1200 - C \implies C = 1200 - w_0$$

$$w = 1200 - (1200 - w_0)e^{-t}$$

61. Given family (circles):
$$x^2 + y^2 = C$$

$$2x + 2yy' = 0$$

$$y' = -\frac{x}{y}$$

Orthogonal trajectory (lines): $y' = \frac{y}{x}$

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\ln|y| = \ln|x| + \ln K$$

$$y = Kx$$

62. Given family (hyperbolas):
$$x^2 - 2y^2 = C$$

$$2x - 4yy' = 0$$

$$y' = \frac{x}{2y}$$

Orthogonal trajectory:
$$y' = \frac{-2y}{x}$$

$$\int \frac{dy}{y} = -\int \frac{2}{x} \, dx$$

$$\ln y = -2 \ln x + \ln k$$

$$y = kx^{-2} = \frac{k}{x^2}$$

63. Given family (parabolas): $x^2 = Cy$

$$2x = Cy'$$

$$y' = \frac{2x}{C} = \frac{2x}{x^2/y} = \frac{2y}{x}$$

Orthogonal trajectory (ellipses):

$$y' = -\frac{x}{2y}$$

$$2\int y\,dy = -\int x\,dx$$

$$y^2 = -\frac{x^2}{2} + K_1$$

$$x^2 + 2y^2 = K$$

65. Given family: $y^2 = Cx^3$

$$2yy' = 3Cx^2$$

$$y' = \frac{3Cx^2}{2y} = \frac{3x^2}{2y} \left(\frac{y^2}{x^3}\right) = \frac{3y}{2x}$$

Orthogonal trajectory (ellipses):

$$y' = -\frac{2x}{3y}$$

$$3\int y\,dy = -2\int x\,dx$$

$$\frac{3y^2}{2} = -x^2 + K_1$$

$$3y^2 + 2x^2 = K$$

67. $y = \frac{12}{1 + e^{-x}}$

Since y(0) = 6, it matches (c) or (d).

Since (d) approaches its horizontal asymptote slower than (c), it matches (d).

69.
$$y = \frac{12}{1 + \frac{1}{2}e^{-x}}$$

Since $y(0) = \frac{12}{\left(\frac{3}{2}\right)} = 8$, it matches (b).

64. Given family (parabolas): $y^2 = 2Cx$

$$2yy' = 2C$$

$$y' = \frac{C}{v} = \frac{y^2}{2x} \left(\frac{1}{v}\right) = \frac{y}{2x}$$

Orthogonal trajectory (ellipse):

$$y' = -\frac{2x}{y}$$

$$\int y \, dy = -\int 2x \, dx$$

$$\frac{y^2}{2} = -x^2 + K_1$$

$$2x^2 + y^2 = K$$

66. Given family (exponential functions): $y = Ce^x$

$$y' = Ce^x = y$$

Orthogonal trajectory (parabolas):

$$y' = -\frac{1}{y}$$

$$\int y \, dy = -\int dx$$

$$\frac{y^2}{2} = -x + K_1$$

$$y^2 = -2x + K$$

68.
$$y = \frac{12}{1 + 3e^{-x}}$$

Since
$$y(0) = \frac{12}{4} = 3$$
, it matches (a).

70.
$$y = \frac{12}{1 + e^{-2x}}$$

Since y(0) = 6, it matches (c) or (d).

Since y approaches L = 12 faster for (c), it matches (c).

(a)
$$k = 0.75$$

(b)
$$L = 1500$$

(c)
$$P(0) = \frac{1500}{1 + 24} = 60$$

(d)
$$750 = \frac{1500}{1 + 24e^{-0.75t}}$$

$$1 + 24e^{-0.75t} = 2$$

$$e^{-0.75t} = \frac{1}{24}$$

$$-0.75t = \ln\left(\frac{1}{24}\right) = -\ln 24$$

$$t = \frac{\ln 24}{0.75} \approx 4.2374$$

(e)
$$\frac{dP}{dt} = 0.75P\left(1 - \frac{P}{1500}\right)$$
, $P(0) = 60$

73.
$$\frac{dP}{dt} = 3P\left(1 - \frac{P}{100}\right)$$

(a)
$$k = 3$$

(b)
$$L = 100$$

74.
$$\frac{dP}{dt} = 0.1P - 0.0004P^2 = 0.1P(1 - 0.004P)$$

$$=0.1P\bigg(1-\frac{P}{250}\bigg)$$

(a)
$$k = 0.1 = \frac{1}{10}$$

(b)
$$L = 250$$

(d)
$$P = \frac{250}{2} = 125$$
. (Same argument as in Exercise 73)

72.
$$P(t) = \frac{5000}{1 + 39e^{-0.2t}}$$

(a)
$$k = 0.2$$

(b)
$$L = 5000$$

(c)
$$P(0) = \frac{5000}{1+39} = 125$$

(d)
$$2500 = \frac{5000}{1 + 39e^{-0.2t}}$$

$$1 + 39e^{-0.2t} = 2$$

$$e^{-0.2t} = \frac{1}{39}$$

$$-0.2t = \ln\left(\frac{1}{39}\right) = -\ln 39$$

$$t = \frac{\ln 39}{0.2} \approx 18.3178$$

(e)
$$\frac{dP}{dt} = 0.2P \left(1 - \frac{P}{5000}\right)$$
, $P(0) = 125$

(d)
$$\frac{d^2P}{dt^2} = 3P' \left(1 - \frac{P}{100} \right) + 3P \left(\frac{-P'}{100} \right)$$
$$= 3 \left[3P \left(1 - \frac{P}{100} \right) \right] \left(1 - \frac{P}{100} \right) - \frac{3P}{100} \left[3P \left(1 - \frac{P}{100} \right) \right]$$
$$= 9P \left(1 - \frac{P}{100} \right) \left(1 - \frac{P}{100} - \frac{P}{100} \right)$$

$$= 9P\left(1 - \frac{P}{100}\right)\left(1 - \frac{2P}{100}\right)$$

$$\frac{d^2P}{dt^2} = 0 \text{ for } P = 50, \text{ and by the first Derivative Test, this}$$

$$dt^2$$
 5 of T 50, and by the first Bernall is a maximum. (Note: $P = 50 = \frac{L}{2} = \frac{100}{2}$)

75.
$$\frac{dy}{dt} = y\left(1 - \frac{y}{40}\right), \quad y(0) = 8$$

$$k = 1, L = 40$$

$$y = \frac{L}{1 + be^{-kt}} = \frac{40}{1 + be^{-t}}$$

$$y(0) = 8$$
: $8 = \frac{40}{1+h} \implies b = 4$

Solution:
$$y = \frac{40}{1 + 4e^{-t}}$$

76.
$$\frac{dy}{dt} = 1.2y \left(1 - \frac{y}{8}\right), \quad y(0) = 5$$

$$k = 1.2, L = 8$$

$$y = \frac{L}{1 + be^{-kt}} = \frac{8}{1 + be^{-1.2t}}$$

$$y(0) = 5: 5 = \frac{8}{1 + b} \implies 1 + b = \frac{8}{5} \implies b = \frac{3}{5}$$
Solution: $y = \frac{8}{1 + \frac{3}{5}e^{-1.2t}}$

78.
$$\frac{dy}{dt} = \frac{3y}{20} - \frac{y^2}{1600} = \frac{3}{20}y\left(1 - \frac{y}{240}\right); \quad y(0) = 15$$

$$k = \frac{3}{20}, \ L = 240$$

$$y = \frac{L}{1 + be^{-kt}} = \frac{240}{1 + be^{(-3/20)t}}$$

$$y(0) = 15: \ 15 = \frac{240}{1 + b} \implies b = 15$$
Solution: $y = \frac{240}{1 + 15e^{(-3/20)t}}$

79. (a)
$$y = \frac{L}{1 + be^{-kt}}$$
, $L = 200$, $y(0) = 25$

$$25 = \frac{200}{1 + b} \implies b = 7$$

$$39 = \frac{200}{1 + 7e^{-k(2)}}$$

$$1 + 7e^{-2k} = \frac{200}{39}$$

$$e^{-2k} = \frac{23}{39}$$

$$k = -\frac{1}{2} \ln\left(\frac{23}{39}\right) = \frac{1}{2} \ln\left(\frac{39}{23}\right) \approx 0.2640$$

$$y = \frac{200}{1 + 7e^{-0.2640t}}$$

(b) For t = 5, $y \approx 70$ panthers.

77.
$$\frac{dy}{dt} = \frac{4y}{5} - \frac{y^2}{150} = \frac{4}{5}y\left(1 - \frac{y}{120}\right), \quad y(0) = 8$$

$$k = \frac{4}{5} = 0.8, \ L = 120$$

$$y = \frac{L}{1 + be^{-kt}} = \frac{120}{1 + be^{-0.8t}}$$

$$y(0) = 8: \ 8 = \frac{120}{1 + b} \implies b = 14$$
Solution:
$$y = \frac{120}{1 + 14e^{-0.8t}}$$

(c)
$$100 = \frac{200}{1 + 7e^{-0.264t}}$$

$$1 + 7e^{-0.264t} = 2$$

$$-0.264t = \ln\left(\frac{1}{7}\right)$$

$$t \approx 7.37 \text{ years}$$
(d) $\frac{dy}{dt} = ky\left(1 - \frac{y}{L}\right) = 0.264y\left(1 - \frac{y}{200}\right), \quad y(0) = 25$
Using Euler's Method, $y \approx 220.5$ when $t = 6$.

(e) y is increasing most rapidly where y = 200/2 = 100,

corresponds to $t \approx 7.37$ years.

80. (a)
$$y = \frac{L}{1 + be^{-kt}}$$
, $L = 10$, $y(0) = 1$

$$1 = \frac{10}{1+b} \implies b = 9$$

$$2 = \frac{10}{1 + 9e^{-2k}}$$

$$1 + 9e^{-2k} = 5$$

$$e^{-2k} = \frac{4}{9}$$

$$k = -\frac{1}{2}\ln\left(\frac{4}{9}\right) = \frac{1}{2}\ln\left(\frac{9}{4}\right) = \ln\left(\frac{3}{2}\right) \approx 0.405476$$

$$y = \frac{10}{1 + 9e^{-0.40547t}}$$

Note:
$$y = \frac{10}{1 + 9e^{-t\ln(3/2)}} = \frac{10}{1 + 9\left(\frac{3}{2}\right)^{-t}} = \frac{10}{1 + 9\left(\frac{2}{3}\right)^t}$$

(b) For t = 5, $y \approx 4.58$ grams.

(c)
$$8 = \frac{10}{1 + 9e^{-t\ln(3/2)}} \Rightarrow 72e^{-t\ln(3/2)} = 2$$

$$\Rightarrow \left(\frac{3}{2}\right)^t = 36$$

$$\implies t \approx 8.84 \text{ hours}$$

(d)
$$\frac{dy}{dt} = \ln\left(\frac{3}{2}\right)y\left(1 - \frac{y}{10}\right)$$

$$\approx 0.40547y \left(1 - \frac{y}{10}\right)$$

t	0	1	2	3	4	5
Exact	1.0	1.4286	2.0	2.7273	3.6	4.5763
Euler	1.0	1.3649	1.8428	2.4523	3.2028	4.0855

For t = 5, Euler's Method gives $y \approx 4.09$ grams.

- (e) The weight is increasing most rapidly when y = 10/2 = 5, corresponding to $t \approx 5.42$ hours.
- **82.** M(x, y) dx + N(x, y) dy = 0, where M and N are homogeneous functions of the same degree. See Example 7a.

81. A differential equation can be solved by separation of variables if it can be written in the form

$$M(x) + N(y)\frac{dy}{dx} = 0.$$

To solve a separable equation, rewrite as,

$$M(x) dx = -N(y) dy$$

and integrate both sides.

83. Two families of curves are mutually orthogonal if each curve in the first family intersects each curve in the second family at right angles.

84. (a)
$$\frac{dv}{dt} = k(W - v)$$

$$\int \frac{dv}{W - v} = \int k \, dt$$

$$-\ln|W - v| = kt + C_1$$

$$v = W - Ce^{-kt}$$

Initial conditions:

$$W = 20$$
, $v = 0$ when $t = 0$, and $v = 5$ when $t = 1$. $C = 20$, $k = -\ln(3/4)$

Particular solution:

$$v = 20(1 - e^{\ln(3/4)t}) = 20\left(1 - \left(\frac{3}{4}\right)^{t}\right)$$
or
$$v \approx 20(1 - e^{-0.2877t})$$
(b)
$$s = \int 20(1 - e^{-0.2877t}) dt$$

$$\approx 20[t + 3.4761e^{-0.2877t}] + C$$
Since $s(0) = 0$, $C \approx -69.5$ and we have $s \approx 20t + 69.5(e^{-0.2877t} - 1)$.

86. True

$$\frac{dy}{dx} = (x - 2)(y + 1)$$

88. True

$$x^{2} + y^{2} = 2Cy x^{2} + y^{2} = 2Kx$$

$$\frac{dy}{dx} = \frac{x}{C - y} \frac{dy}{dx} = \frac{K - x}{y}$$

$$\frac{x}{C - y} \cdot \frac{K - x}{y} = \frac{Kx - x^{2}}{Cy - y^{2}}$$

$$= \frac{2Kx - 2x^{2}}{2Cy - 2y^{2}}$$

$$= \frac{x^{2} + y^{2} - 2x^{2}}{x^{2} + y^{2} - 2y^{2}}$$

$$= \frac{y^{2} - x^{2}}{x^{2} - y^{2}}$$

$$= -1$$

85. False. $\frac{dy}{dx} = \frac{x}{y}$ is separable, but y = 0 is not a solution.

87. False

$$f(tx, ty) = t^2x^2 + t^2xy + 2$$

$$\neq t^2f(x, y)$$

89.
$$y = \frac{1}{1 + be^{-kt}}$$
$$y' = \frac{-1}{(1 + be^{-kt})^2} (-bke^{-kt})$$
$$= \frac{k}{(1 + be^{-kt})} \cdot \frac{be^{-kt}}{(1 + be^{-kt})}$$
$$= \frac{k}{(1 + be^{-kt})} \cdot \frac{1 + be^{-kt} - 1}{(1 + be^{-kt})}$$
$$= \frac{k}{(1 + be^{-kt})} \cdot \left(1 - \frac{1}{1 + be^{-kt}}\right)$$
$$= ky(1 - y)$$

90.
$$fg' + gf' = f'g'$$
 Product Rule $(f - f')g' + gf' = 0$ $g' + \frac{f'}{f - f'}g = 0$ Need $f - f' = e^{x^2} - 2xe^{x^2} = (1 - 2x)e^{x^2} \neq 0$, so avoid $x = \frac{1}{2}$.
$$\frac{g'}{g} = \frac{f'}{f' - f} = \frac{2xe^{x^2}}{(2x - 1)e^{x^2}} = 1 + \frac{1}{2x - 1}$$

$$\ln|g(x)| = x + \frac{1}{2}\ln|2x - 1| + C_1$$

$$g(x) = Ce^x|2x - 1|^{1/2}$$

Hence there exists g and interval (a, b), as long as $\frac{1}{2} \notin (a, b)$.

Section 6.4 **First-Order Linear Differential Equations**

1.
$$x^3y' + xy = e^x + 1$$

$$y' + \frac{1}{x^2}y = \frac{1}{x^3}(e^x + 1)$$

Linear

$$3. y' + y \cos x = xy^2$$

Not linear, because of the xy^2 -term.

5.
$$\frac{dy}{dx} + \left(\frac{1}{x}\right)y = 3x + 4$$
Integrating factor: $e^{\int (1/x) dx} = e^{\ln x} = x$
 $xy = \int x(3x + 4) dx = x^3 + 2x^2 + C$
 $y = x^2 + 2x + \frac{C}{x}$

7.
$$y - y = 10$$

Integrating factor: $e^{\int -1 dx} = e^{-x}$

$$e^{-x}y' - e^{-x}y = 10e^{-x}$$

 $ye^{-x} = \int 10e^{-x} dx = -10e^{-x} + C$
 $y = -10 + Ce^{x}$

2.
$$2xy - y' \ln x = y$$
$$(\ln x)y' + (1 - 2x)y = 0$$
$$y' + \frac{(1 - 2x)}{\ln x}y = 0$$

Linear

4.
$$\frac{1 - y'}{y} = 3x$$
$$1 - y' = 3xy$$
$$y' + 3xy = 1$$
Linear

6.
$$\frac{dy}{dx} + \frac{2}{x}y = 3x + 2$$

Integrating factor: $e^{\int 2/x \, dx} = e^{\ln x^2} = x^2$

 $x^2y = \int x^2(3x+2) dx = \frac{3}{4}x^4 + \frac{2x^3}{3} + C$

$$y = \frac{3}{4}x^2 + \frac{2}{3}x + \frac{C}{x^2}$$

8.
$$y' + 2xy = 4x$$

Integrating factor: $e^{\int 2x \, dx} = e^{x^2}$

$$ye^{x^2} = \int 4xe^{x^2} dx = 2e^{x^2} + C$$

 $y = 2 + Ce^{-x^2}$

9.
$$(y + 1) \cos x \, dx = dy$$

 $y' = (y + 1) \cos x = y \cos x + \cos x$
 $y' - (\cos x)y = \cos x$
Integrating factor: $e^{\int -\cos x \, dx} = e^{-\sin x}$
 $y'e^{-\sin x} - (\cos x)e^{-\sin x}y = (\cos x)e^{-\sin x}$

$$(\cos x)e^{-\sin x} = (\cos x)e^{-\sin x} dx$$
$$= -e^{-\sin x} + C$$
$$y = -1 + Ce^{\sin x}$$

11.
$$(x-1)y' + y = x^2 - 1$$

 $y' + \left(\frac{1}{x-1}\right)y = x + 1$
Integrating factor: $e^{\int [1/(x-1)] dx} = e^{\ln|x-1|} = x - 1$
 $y(x-1) = \int (x^2 - 1) dx = \frac{1}{3}x^3 - x + C_1$
 $y = \frac{x^3 - 3x + C}{3(x-1)}$

13.
$$y' - 3x^2y = e^{x^3}$$

Integrating factor: $e^{-\int 3x^2 dx} = e^{-x^3}$
 $ye^{-x^3} = \int e^{x^3}e^{-x^3} dx = \int dx = x + C$
 $y = (x + C)e^{x^3}$

10.
$$[(y-1)\sin x] dx - dy = 0$$

$$y' - (\sin x)y = -\sin x$$
Integrating factor:
$$e^{\int -\sin x dx} = e^{\cos x}$$

$$ye^{\cos x} = \int -\sin x e^{\cos x} dx = e^{\cos x} + C$$

$$y = 1 + Ce^{-\cos x}$$

12.
$$y' + 3y = e^{3x}$$

Integrating factor: $e^{\int 3 dx} = e^{3x}$
 $ye^{3x} = \int e^{3x}e^{3x}dx = \int e^{6x}dx = \frac{1}{6}e^{6x} + C$
 $y = \frac{1}{6}e^{3x} + Ce^{-3x}$

14.
$$y' - y = \cos x$$

Integrating factor: $e^{\int -1 dx} = e^{-x}$
 $ye^{-x} = \int e^{-x} \cos x \, dx$
 $= \frac{1}{2}e^{-x}(-\cos x + \sin x) + C$
 $y = \frac{1}{2}(\sin x - \cos x) + Ce^x$

(b)
$$\frac{dy}{dx} = e^x - y$$

 $\frac{dy}{dx} + y = e^x$ Integrating factor: $e^{\int dx} = e^x$
 $e^x y' + e^x y = e^{2x}$
 $(ye^x) = \int e^{2x} dx$
 $ye^x = \frac{1}{2}e^{2x} + C$
 $y(0) = 1 \implies 1 = \frac{1}{2} + C \implies C = \frac{1}{2}$
 $ye^x = \frac{1}{2}e^{2x} + \frac{1}{2}$
 $y = \frac{1}{2}e^x + \frac{1}{2}e^{-x} = \frac{1}{2}(e^x + e^{-x})$

17.
$$y'\cos^2 x + y - 1 = 0$$

$$y' + (\sec^2 x)y = \sec^2 x$$

Integrating factor: $e^{\int \sec^2 x \, dx} = e^{\tan x}$

$$ye^{\tan x} = \int \sec^2 x e^{\tan x} dx = e^{\tan x} + C$$
$$y = 1 + Ce^{-\tan x}$$

Initial condition: y(0) = 5, C = 4

Particular solution: $y = 1 + 4e^{-\tan x}$

19.
$$y' + y \tan x = \sec x + \cos x$$

Integrating factor: $e^{\int \tan x \, dx} = e^{\ln |\sec x|} = \sec x$

$$y \sec x = \int \sec x (\sec x + \cos x) dx = \tan x + x + C$$

$$y = \sin x + x \cos x + C \cos x$$

Initial condition: y(0) = 1, 1 = C

Particular solution: $y = \sin x + (x + 1)\cos x$

(b)
$$y' + \frac{1}{x}y = \sin x^2$$
, $P(x) = \frac{1}{x}$, $Q(x) = \sin x^2$

$$u(x) = e^{\int (1/x) dx} = e^{\ln x} = x$$

$$y'x + y = x\sin x^2$$

$$yx = \int x \sin x^2 dx = -\frac{1}{2} \cos x^2 + C$$

$$y = \frac{1}{x} \left[-\frac{1}{2} \cos x^2 + C \right]$$

$$0 = \frac{1}{\sqrt{\pi}} \left[-\frac{1}{2} \cos \pi + C \right] \Longrightarrow C = -\frac{1}{2}$$

$$y = \frac{1}{x} \left[-\frac{1}{2} \cos x^2 - \frac{1}{2} \right]$$

18.
$$x^3y' + 2y = e^{1/x^2}$$

$$y' + \left(\frac{2}{x^3}\right)y = \frac{1}{x^3}e^{1/x^2}$$

Integrating factor: $e^{\int (2/x^3) dx} = e^{-(1/x^2)}$

$$ye^{-1/x^2} = \int \frac{1}{x^3} dx = -\frac{1}{2x^2} + C_1$$

$$y = e^{1/x^2} \left(\frac{Cx^2 - 1}{2x^2} \right)$$

Initial condition: y(1) = e, C = 3

Particular solution: $y = e^{1/x^2} \left(\frac{3x^2 - 1}{2x^2} \right)$

20.
$$y' + y \sec x = \sec x$$

Integrating factor: $e^{\int \sec x \, dx} = e^{\ln|\sec x + \tan x|} = \sec x + \tan x$

$$y(\sec x + \tan x) = \int (\sec x + \tan x) \sec x \, dx$$
$$= \sec x + \tan x + C$$

$$y = 1 + \frac{C}{\sec x + \tan x}$$

Initial condition: $y(0) = 4, 4 = 1 + \frac{C}{1+0}, C = 3$

Particular solution:

$$y = 1 + \frac{3}{\sec x + \tan x} = 1 + \frac{3\cos x}{1 + \sin x}$$

21.
$$y' + \left(\frac{1}{x}\right)y = 0$$

Integrating factor: $e^{\int (1/x) dx} = e^{\ln|x|} = x$

Separation of variables:

$$\frac{dy}{dx} = -\frac{y}{x}$$

$$\int \frac{1}{y} dy = \int -\frac{1}{x} dx$$

$$\ln y = -\ln x + \ln C$$

$$\ln xy = \ln C$$

Initial condition: y(2) = 2, C = 4

Particular solution: xy = 4

xy = C

23.
$$x \, dy = (x + y + 2) \, dx$$

$$\frac{dy}{dx} = \frac{x + y + 2}{x} = \frac{y}{x} + 1 + \frac{2}{x}$$

$$\frac{dy}{dx} - \frac{1}{x}y = 1 + \frac{2}{x} \qquad \text{Linear}$$

$$u(x) = e^{\int -(1/x) \, dx} = \frac{1}{x}$$

$$y = x \int \left(1 + \frac{2}{x}\right) \frac{1}{x} \, dx = x \int \left(\frac{1}{x} + \frac{2}{x^2}\right) \, dx$$

$$= x \left[\ln|x| + \frac{-2}{x} + C\right]$$

$$= -2 + x \ln|x| + Cx$$

$$y(1) = 10 = -2 + C \implies C = 12$$

$$y = -2 + x \ln|x| + 12x$$

25.
$$y' + 3x^2y = x^2y^3$$

 $n = 3, Q = x^2, P = 3x^2$
 $y^{-2}e^{\int (-2)3x^2 dx} = \int (-2)x^2e^{\int (-2)3x^2 dx} dx$
 $y^{-2}e^{-2x^3} = -\int 2x^2e^{-2x^3} dx$
 $y^{-2}e^{-2x^3} = \frac{1}{3}e^{-2x^3} + C$
 $y^{-2} = \frac{1}{3} + Ce^{2x^3}$
 $\frac{1}{y^2} = Ce^{2x^3} + \frac{1}{3}$

22.
$$y' + (2x - 1)y = 0$$

Integrating factor: $e^{\int (2x-1) dx} = e^{x^2-x}$

$$ye^{x^2-x} = C$$
$$y = Ce^{x-x^2}$$

Separation of variables:

$$\int \frac{1}{y} dy = \int (1 - 2x) dx$$

$$\ln y + \ln C_1 = x - x^2$$

$$yC_1 = e^{x - x^2}$$

$$y = Ce^{x - x^2}$$

Initial condition: y(1) = 2, 2 = C

Particular solution: $y = 2e^{x-x^2}$

24.
$$2xy' - y = x^3 - x$$

$$\frac{dy}{dx} - \frac{1}{2x}y = \frac{x^2}{2} - \frac{1}{2}$$
 Linear

$$u(x) = e^{\int -(1/2x) dx} = \frac{1}{x^{1/2}}$$

$$y = x^{1/2} \int \left(\frac{x^2}{2} - \frac{1}{2}\right) \frac{1}{x^{1/2}} dx = x^{1/2} \int \left(\frac{x^{3/2}}{2} - \frac{x^{-1/2}}{2}\right) dx$$
$$= x^{1/2} \left[\frac{x^{5/2}}{5} - x^{1/2} + C\right]$$
$$= \frac{x^3}{5} - x + C\sqrt{x}$$

$$y(4) = 2 = \frac{64}{5} - 4 + 2C \implies C = -\frac{17}{5}$$

$$y = \frac{x^3}{5} - x - \frac{17}{5}\sqrt{x}$$

26.
$$y' + xy = xy^{-1}$$

$$n = -1$$
, $Q = x$, $P = x$, $e^{\int 2x \, dx} = e^{x^2}$

$$y^2 e^{x^2} = \int 2x e^{x^2} dx = e^{x^2} + C$$

$$y^2 = 1 + Ce^{-x^2}$$

27.
$$y' + \left(\frac{1}{x}\right)y = xy^2$$

 $n = 2, Q = x, P = x^{-1}$
 $e^{\int -(1/x) dx} = e^{-\ln|x|} = x^{-1}$
 $y^{-1}x^{-1} = \int -x(x^{-1}) dx = -x + C$
 $\frac{1}{y} = -x^2 + Cx$
 $y = \frac{1}{Cx - x^2}$

29.
$$y' - y = e^x \sqrt[3]{y}$$
, $n = \frac{1}{3}$, $Q = e^x$, $P = -1$

$$e^{\int -(2/3) dx} = e^{-(2/3)x}$$

$$y^{2/3}e^{-(2/3)x} = \int \frac{2}{3}e^x e^{-(2/3)x} dx = \int \frac{2}{3}e^{(1/3)x} dx$$

$$y^{2/3}e^{-(2/3)x} = 2e^{(1/3)x} + C$$

$$y^{2/3} = 2e^x + Ce^{2x/3}$$

28.
$$y' + \left(\frac{1}{x}\right)y = x\sqrt{y}$$

 $n = \frac{1}{2}, Q = x, P = x^{-1}$
 $e^{(1/2)(1/x) dx} = e^{(1/2) \ln x} = \sqrt{x}$
 $y^{1/2}x^{1/2} = \int \frac{1}{2}x^{1/2}(x) dx$
 $= \frac{1}{5}x^{5/2} + C_1 = \frac{x^{5/2} + C}{5}$
 $y = \frac{(x^{5/2} + C)^2}{25x}$

30.
$$yy' - 2y^2 = e^x$$

 $y' - 2y = e^x y^{-1}$
 $n = -1, Q = e^x, P = -2$
 $e^{\int 2(-2) dx} = e^{-4x}$
 $y^2 e^{-4x} = \int 2e^{-4x} e^x dx = -\frac{2}{3}e^{-3x} + C$
 $y^2 = -\frac{2}{3}e^x + Ce^{4x}$

(b)
$$\frac{dy}{dx} - \frac{1}{x}y = x^2$$

Integrating factor: $e^{-1/x} dx = e^{-\ln x} = \frac{1}{x}$

$$\frac{1}{x}y' - \frac{1}{x^2}y = x$$

$$\left(\frac{1}{x}y\right) = \int x dx = \frac{x^2}{2} + C$$

$$y = \frac{x^3}{2} + Cx$$

$$(-2, 4): 4 = \frac{-8}{2} - 2C \implies C = -4 \implies y = \frac{x^3}{2} - 4x = \frac{1}{2}x(x^2 - 8)$$

$$(2, 8): 8 = \frac{8}{2} + 2C \implies C = 2 \implies y = \frac{x^3}{2} + 2x = \frac{1}{2}x(x^2 + 4)$$

(b)
$$y' + 4x^3y = x^3$$

Integrating factor: $e^{\int 4x^3 dx} = e^{x^4}$

$$y'e^{x^4} + 4x^3ye^{x^4} = x^3e^{x^4}$$

$$ye^{x^4} = \int x^3 e^{x^4} dx = \frac{1}{4} e^{x^4} + C$$
$$y = \frac{1}{4} + Ce^{-x^4}$$

$$\left(0, \frac{7}{2}\right)$$
: $\frac{7}{2} = \frac{1}{4} + C \Longrightarrow C = \frac{13}{4} \Longrightarrow y = \frac{1}{4} + \frac{13}{4}e^{-x^4}$

$$\left(0, -\frac{1}{2}\right): -\frac{1}{2} = \frac{1}{4} + C \Longrightarrow C = -\frac{3}{4} \Longrightarrow y = \frac{1}{4} - \frac{3}{4}e^{-x^4}$$

(b)
$$y' + (\cot x)y = 2$$

Integrating factor: $e^{\int \cot x \, dx} = e^{\ln|\sin x|} = \sin x$

 $y'\sin x + (\cos x)y = 2\sin x$

$$y \sin x = \int 2 \sin x \, dx = -2 \cos x + C$$
$$y = -2 \cot x + C \csc x$$

(1, 1):
$$1 = -2 \cot 1 + C \csc 1 \Rightarrow C = \frac{1 + 2 \cot 1}{\csc 1} = \sin 1 + 2 \cos 1$$

 $y = -2 \cot x + (\sin 1 + 2 \cos 1) \csc x$

$$(3, -1): -1 = -2 \cot 3 + C \csc 3 \Rightarrow C = \frac{2 \cot 3 - 1}{\csc 3} = 2 \cos 3 - \sin 3$$
$$y = -2 \cot x + (2 \cos 3 - \sin 3) \csc x$$

(b)
$$y' + 2xy = xy^2$$

Bernoulli equation, n=2 letting $z=y^{1-2}=y^{-1}$, you obtain $e^{-2x dx}=e^{-x^2}$ and $\int (-1)xe^{-x^2}dx=\frac{1}{2}e^{-x^2}$. The solution is:

$$y^{-1}e^{-x^2} = \frac{1}{2}e^{-x^2} + C$$

$$\frac{1}{v} = \frac{1}{2} + Ce^{x^2} = \frac{1 + 2Ce^{x^2}}{2}$$

$$y = \frac{2}{1 + 2Ce^{x^2}}$$

$$(0,3): 3 = \frac{2}{1+2C} \implies 1+2C = \frac{2}{3} \implies C = -\frac{1}{6}$$

$$y = \frac{2}{1 - (e^{x^2/3})} = \frac{6}{3 - e^{x^2}}$$

$$(0,1)$$
: $1 = \frac{2}{1+2C} \implies 1+2C=2 \implies C=\frac{1}{2}$

$$y = \frac{2}{1 + e^{x^2}}$$

35.
$$\frac{dP}{dt} = kP + N, N \text{ constant}$$

$$\frac{dP}{kP+N} = dt$$

$$\int \frac{1}{kP+N} dP = \int dt$$

$$\frac{1}{kP+N} \ln(kP+N) = t + C_1$$

$$\ln(kP + N) = kt + C_2$$

$$kP + N = e^{kt + C_2}$$

$$C_3 e^{kt} - N$$

$$P = \frac{C_3 e^{kt} - N}{k}$$

$$P = Ce^{kt} - \frac{N}{k}$$

When
$$t = 0$$
: $P = P_0$

$$P_0 = C - \frac{N}{k} \implies C = P_0 + \frac{N}{k}$$

$$P = \left(P_0 + \frac{N}{k}\right)e^{kt} - \frac{N}{k}$$

37. (a)
$$A = \frac{P}{r}(e^{rt} - 1)$$

$$A = \frac{100,000}{0.06} (e^{0.06(5)} - 1) \approx 583,098.01$$

(b)
$$A = \frac{250,000}{0.05} (e^{0.05(10)} - 1) \approx 3,243,606.35$$

39. (a)
$$\frac{dQ}{dt} = q - kQ$$
, q constant

(b)
$$Q' + kQ = q$$

Let P(t) = k, Q(t) = q, then the integrating factor is $u(t) = e^{kt}$.

$$Q = e^{-kt} \int q e^{kt} dt = e^{-kt} \left(\frac{q}{k} e^{kt} + C \right) = \frac{q}{k} + C e^{-kt}$$

When
$$t = 0$$
: $Q = Q_0$

$$Q_0 = \frac{q}{k} + C \implies C = Q_0 - \frac{q}{k}$$

$$Q = \frac{q}{l} + \left(Q_0 - \frac{q}{l}\right)e^{-kt}$$

(c)
$$\lim_{t \to \infty} Q = \frac{q}{k}$$

$$\frac{dA}{dt} = rA + P$$

$$\frac{dA}{rA + P} = dt$$

$$\int \frac{dA}{rA + P} = \int dt$$

$$\frac{1}{r}\ln(rA + P) = t + C_1$$

$$\ln(rA + P) = rt + C_2$$

$$rA + P = e^{rt + C_2}$$

$$A = \frac{C_3 e^{rt} - P}{r}$$

$$A = Ce^{rt} - \frac{P}{r}$$

When
$$t = 0$$
: $A = 0$

$$0 = C - \frac{P}{r} \implies C = \frac{P}{r}$$

$$A = \frac{P}{r}(e^{rt} - 1)$$

38.
$$800,000 = \frac{75,000}{0.08} (e^{0.08t} - 1)$$

$$1.853333333 = e^{0.08t}$$

$$t = \frac{\ln(1.85333333)}{0.08} \approx 7.71 \text{ years}$$

40. (a)
$$\frac{dN}{dt} = k(40 - N)$$

(b)
$$N' + kN = 40k$$

Integrating factor: e^{kt}

$$Ne^{kt} = \int 40ke^{kt} dt = 40e^{kt} + C$$

$$N = 40 + Ce^{-kt}$$

(c) For
$$t = 1, N = 10$$
:

$$10 = 40 + Ce^{-k} \implies -30 = Ce^{-k}$$

For
$$t = 20$$
, $N = 19$:

$$19 = 40 + Ce^{-20k} \implies -21 = Ce^{-20k}$$

$$\frac{30}{21} = \frac{e^{-k}}{e^{-20k}} = e^{19k}$$

$$\ln\left(\frac{10}{7}\right) = 19k \implies k = \frac{1}{19}\ln\left(\frac{10}{7}\right) \approx 0.0188$$

$$-30 = Ce^{-k} \implies C = -30e^k \approx -30.5685$$

$$N = 40 - 30.5685e^{-0.0188t}$$

41. Let Q be the number of pounds of concentrate in the solution at any time t. Since the number of gallons of solution in the tank at any time t is $v_0 + (r_1 - r_2)t$ and since the tank loses r_2 gallons of solution per minute, it must lose concentrate at the rate

$$\left[\frac{Q}{v_0 + (r_1 - r_2)t}\right] r_2.$$

The solution gains concentrate at the rate r_1q_1 . Therefore, the net rate of change is

$$\frac{dQ}{dt} = q_1 r_1 - \left[\frac{Q}{v_0 + (r_1 - r_2)t} \right] r_2 \quad \text{or} \quad \frac{dQ}{dt} + \frac{r_2 Q}{v_0 + (r_1 - r_2)t} = q_1 r_1.$$

42. From Exercise 41, and using $r_1 = r_2 = r$,

$$\frac{dQ}{dt} + \frac{rQ}{v_0} = q_1 r.$$

43. (a) $Q' + \frac{r^2Q}{v_0 + (r_1 - r_2)t} = q_1r_1$

$$Q(0) = q_0, q_0 = 25, q_1 = 0, v_0 = 200,$$

$$r_1 = 10, \ r_2 = 10, Q' + \frac{1}{20}Q = 0$$

$$\int \frac{1}{Q} dQ = \int -\frac{1}{20} dt$$

$$\ln Q = -\frac{1}{20}t + \ln C_1$$

$$O = Ce^{-(1/20)t}$$

Initial condition: Q(0) = 25, C = 25

Particular solution: $Q = 25e^{-(1/20)t}$

44. (a) $Q' + \frac{r^2Q}{v_0 + (r_1 - r_2)t} = q_1 r_1$

$$Q(0) = q_0 = 25, q_1 = 0.04, v_0 = 200,$$

$$r_1 = 10, \ r_2 = 10, \ Q' + \frac{1}{20}Q = 0.4$$

Integrating factor: $e^{1/20t}$

$$Qe^{-1/20t} = \int 0.4e^{(1/20)t}dt = 8e^{1/20t} + C$$

$$Q = 8 + Ce^{(-1/2)t}$$

$$Q = (0) = 25 = 8 + C \implies C = 17$$

$$O = 8 + 17e^{(-1/20t)}$$

(b) $15 = 25e^{-(1/20)t}$

$$\ln\left(\frac{3}{5}\right) = -\frac{1}{20}t$$

$$t = -20 \ln \left(\frac{3}{5}\right) \approx 10.2 \text{ min}$$

(c) $\lim_{t \to \infty} 25e^{-(1/20)t} = 0$

(b) $15 = 8 + 17e^{(-1/20)t}$

$$7 = 17e^{-1/20t}$$

$$\ln\left(\frac{7}{17}\right) = -\frac{1}{20}t \implies t = -20\ln\left(\frac{7}{17}\right) \approx 17.75 \text{ min}$$

(c)
$$\lim_{t \to \infty} Q(t) = 8$$
 lbs

45. (a) The volume of the solution in the tank is given by $v_0 + (r_1 - r_2)t$. Therefore, 100 + (5 - 3)t = 200 or t = 50 minutes.

(b)
$$Q' + \frac{r_2 Q}{v_0 + (r_1 - r_2)t} = q_1 r_1$$

$$Q(0) = q_0, q_0 = 0, q_1 = 0.5, v_0 = 100, r_1 = 5, r_2 = 3, Q' + \frac{3}{100 + 2t}Q = 2.5$$

Integrating factor: $e^{\int [3/(100+2t)] dt} = (50 + t)^{3/2}$

$$Q(50+t)^{3/2} = \int 2.5(50+t)^{3/2} dt = (50+t)^{5/2} + C$$

$$Q = (50 + t) + C(50 + t)^{-3/2}$$

Initial condition: Q(0) = 0, $0 = 50 + C(50^{-3/2})$, $C = -50^{5/2}$

Particular solution: $Q = (50 + t) - 50^{-5/2}(50 + t)^{-3/2}$

$$Q(50) = 100 - 50^{5/2}(100)^{-3/2} = 100 - \frac{25}{\sqrt{2}} \approx 82.32 \text{ lbs}$$

46. (a) The volume of the solution is given by $v_0 + (r_1 - r_2)t = 100 + (5 - 3)t = 200 \implies t = 50$ minutes.

(b)
$$Q' + \frac{r_2 Q}{v_0 + (r_1 - r_2)t} = q_1 r_1$$

$$Q(0) = q_0 = 0, q_1 = 1, v_0 = 100, r_1 = 5, r_2 = 3$$

$$Q' + \frac{3Q}{100 + 2t} = 5$$

Integrating factor is $(50 + t)^{3/2}$, as in #43.

$$Q(50+t)^{3/2} = \int 5(50+t)^{3/2} dt = 2(50+t)^{5/2} + C$$

$$Q = 2(50 + t) + C(50 + t)^{-3/2}$$

$$Q(0) = 0: 0 = 100 + C(50)^{-3/2} \implies C = -100(50)^{3/2} = -2(50)^{5/2}$$

$$Q = 2(50 + t) - 2(50)^{5/2}(50 + t)^{-3/2}$$

When t = 50, $Q = 200 - 2(50)^{5/2}(100)^{-3/2} \approx 164.64$ lbs (double the answer to #43)

47. From Example 6,

$$\frac{dv}{dt} + \frac{kv}{m} = g$$

$$v = \frac{mg}{k}(1 - e^{-kt/m}),$$
 Solution

$$g = -32$$
, $mg = -8$, $v(5) = -101$, $m = \frac{-8}{g} = \frac{1}{4}$ implies that $-101 = \frac{-8}{k}(1 - e^{-5k/(1/4)})$.

Using a graphing utility, $k \approx 0.050165$, and

$$v = -159.47(1 - e^{-0.2007t})$$

As $t \rightarrow \infty$, $v \rightarrow -159.47$ ft/sec. The graph of v is shown below.

48. $s(t) = \int v(t) dt$

$$= \int -159.47(1 - e^{-0.2007t}) dt$$

$$= -159.47t - 794.57e^{-0.2007t} + C$$

$$s(0) = 5000 = -794.57 + C \implies C = 5794.57$$

$$s(t) = -159.47t - 794.57e^{-0.2007t} + 5794.57$$

The graph of s(t) is shown below.

s(t) = 0 when $t \approx 36.33$ sec.

49.
$$L\frac{dI}{dt} + RI = E_0, I' + \frac{R}{L}I = \frac{E_0}{L}$$

Integrating factor: $e^{\int (R/L) dt} = e^{Rt/L}$

$$I e^{Rt/L} = \int \frac{E_0}{L} e^{Rt/L} dt = \frac{E_0}{R} e^{Rt/L} + C$$
$$I = \frac{E_0}{R} + C e^{-Rt/L}$$

50.
$$I(0) = 0, E_0 = 120 \text{ volts}, R = 600 \text{ ohms}, L = 4 \text{ henrys}$$

$$I = \frac{E_0}{R} + Ce^{-Rt/L}$$

$$(0) = \frac{120}{600} + C \implies C = -\frac{1}{5}$$

$$I = \frac{1}{5} - \frac{1}{5} e^{-150t}$$

$$\lim_{t \to \infty} I = \frac{1}{5} \operatorname{amp}$$

$$(0.90)\frac{1}{5} = 0.18 = \frac{1}{5}(1 - e^{-150t})$$

$$0.9 = 1 - e^{-150t}$$

$$e^{-150t} = 0.1$$

$$-150t = \ln(0.1)$$

$$t = \frac{\ln(0.1)}{-150} \approx 0.0154 \text{ sec}$$

51.
$$\frac{dy}{dx} + P(x)y = Q(x)$$

Standard form

$$u(x) = e^{\int P(x) dx}$$

Integrating factor

52.
$$y' + P(x)y = O(x)y^n$$
 Standard form

Let $z = y^{1-n}$ $(n \neq 0, 1)$. Multiplying by $(1 - n)y^{-n}$ produces

$$(1-n)y^{-n}y' + (1-n)P(x)y^{1-n} = (1-n)Q(x)$$

$$z' + (1 - n)P(x)z = (1 - n)Q(x).$$

Linear

53.
$$y' - 2x = 0$$

$$\int dy = \int 2x \, dx$$
$$y = x^2 + C$$

Matches c.

54.
$$y' - 2y = 0$$

$$\int \frac{dy}{y} = \int 2 \, dx$$

$$ln y = 2x + C_1$$

$$y = Ce^{2x}$$

Matches d.

55.
$$y' - 2xy = 0$$

$$\int \frac{dy}{y} = \int 2x \, dx$$

$$\ln y = x^2 + C_1$$

$$y = Ce^{x^2}$$

Matches a.

56.
$$y' - 2xy = x$$

$$\int \frac{dy}{2y+1} = \int x \, dx$$

$$\frac{1}{2}\ln(2y+1) = \frac{1}{2}x^2 + C_1$$

$$2y + 1 = C_2 e^{x^2}$$

$$y = -\frac{1}{2} + Ce^{x^2}$$

Matches b.

57.
$$e^{2x+y} dx - e^{x-y} dy = 0$$

Separation of variables:

$$e^{2x} e^{y} dx = e^{x} e^{-y} dy$$

$$\int e^{x} dx = \int e^{-2y} dy$$

$$e^{x} = -\frac{1}{2} e^{-2y} + C_{1}$$

$$2e^{x} + e^{-2y} = C$$

59.
$$(y \cos x - \cos x) dx + dy = 0$$

Separation of variables:

$$\int \cos x \, dx = \int \frac{-1}{y - 1} \, dy$$
$$\sin x = -\ln(y - 1) + \ln C$$
$$\ln(y - 1) = -\sin x + \ln C$$
$$y = Ce^{-\sin x} + 1$$

61.
$$(3y^2 + 4xy) dx + (2xy + x^2) dy = 0$$

Homogeneous: y = vx, dy = v dx + x dv

$$(3v^2x^2 + 4vx^2) dx + (2vx^2 + x^2)(v dx + x dv) = 0$$

$$\int \frac{5}{x} dx + \int \left(\frac{2v+1}{v^2+v}\right) dv = 0$$

$$\ln x^5 + \ln|v^2+v| = \ln C$$

$$x^5(v^2+v) = C$$

$$x^3v^2 + x^4v = C$$

63.
$$(2y - e^x) dx + x dy = 0$$

Linear:
$$y' + \left(\frac{2}{r}\right)y = \frac{1}{r}e^x$$

Integrating factor: $e^{\int (2/x) dx} = e^{\ln x^2} = x^2$

$$yx^{2} = \int x^{2} \frac{1}{x} e^{x} dx = e^{x}(x - 1) + C$$
$$y = \frac{e^{x}}{x^{2}}(x - 1) + \frac{C}{x^{2}}$$

58.
$$(x + 1) dx - (y^2 + 2y) dy = 0$$

Separation of variables:

$$\int (x+1) dx = \int (y^2 + 2y) dy$$
$$\frac{1}{2}x^2 + x = \frac{1}{3}y^3 + y^2 + C_1$$
$$3x^2 + 6x - 2y^3 - 6y^2 = C$$

60.
$$y' = 2x\sqrt{1-y^2}$$

Separation of variables:

$$\int \frac{1}{\sqrt{1 - y^2}} dy = \int 2x dx$$

$$\arcsin y = x^2 + C$$

$$y = \sin(x^2 + C)$$

62.
$$(x + y) dx - x dy = 0$$

Linear:
$$y' - \frac{1}{x}y = 1$$

Integrating factor: $e^{\int -(1/x) dx} = e^{\ln|x^{-1}|} = \frac{1}{x}$

$$y\frac{1}{x} = \int \frac{1}{x} dx = \ln|x| + C$$
$$y = x(\ln|x| + C)$$

64.
$$(y^2 + xy) dx - x^2 dy = 0$$

Homogeneous: y = vx, dy = v dx + x dv

$$(v^2x^2 + vx^2) dx - x^2(v dx + x dv) = 0$$

$$v^2 dx - x dv = 0$$

$$\int \frac{1}{x} dx = \int \frac{1}{v^2} dv$$

$$\ln x = -\frac{1}{v} + C$$

$$y = \frac{x}{C - \ln|x|}$$

65.
$$(x^2y^4 - 1) dx + x^3y^3 dy = 0$$

 $y' + \left(\frac{1}{x}\right)y = x^{-3}y^{-3}$

Bernoulli:
$$n = -3$$
, $Q = x^{-3}$, $P = x^{-1}$,

$$e^{\int (4/x) dx} = e^{\ln x^4} = x^4$$
$$y^4 x^4 = \int 4(x^{-3})(x^4) dx = 2x^2 + C$$

$$x^4y^4 - 2x^2 = C$$

67.
$$3(y - 4x^2) dx = -x dy$$

$$x \frac{dy}{dx} = -3y + 12x^2$$

$$y' + \frac{3}{x}y = 12x$$

Integrating factor:
$$e^{\int (3/x) dx} = e^{3 \ln x} = x^3$$

$$y'x^{3} + \frac{3}{x}x^{3}y = 12x(x^{3}) = 12x^{4}$$
$$yx^{3} = \int 12x^{4} dx = \frac{12}{5}x^{5} + C$$
$$y = \frac{12}{5}x^{2} + \frac{C}{x^{3}}$$

69. False. The equation contains
$$\sqrt{y}$$
.

Review Exercises for Chapter 6

1.
$$y = x^3$$
, $y' = 3x^2$
 $x^2y' + 3y = x^2[3x^2] + 3[x^3] = 3(x^4 + x^3) \neq 6x^3$

Not a solution

3.
$$\frac{dy}{dx} = 2x^2 + 5$$

$$y = \int (2x^2 + 5) dx = \frac{2x^3}{3} + 5x + C$$

5.
$$\frac{dy}{dx} = \cos 2x$$
$$y = \int \cos 2x \, dx = \frac{1}{2} \sin 2x + C$$

66.
$$y dx + (3x + 4y) dy = 0$$

Homogeneous:
$$x = vy$$
, $dx = v dy + y dv$

$$y(v \, dy + y \, dv) + (3vy + 4y) \, dy = 0$$

$$\int \frac{1}{v+1} \, dv = \int -\frac{4}{y} \, dy$$

$$\ln|v+1| = -\ln y^4 + \ln C$$

$$y^4(v+1) = C$$

$$y^3(x+y) = C$$

68.
$$x dx + (y + e^y)(x^2 + 1) dy = 0$$

Separation of variables:

$$\int \frac{x}{x^2 + 1} dx = \int -(y + e^y) dy$$
$$\frac{1}{2} \ln(x^2 + 1) = -\frac{1}{2} y^2 - e^y + C_1$$

$$\ln(x^2 + 1) + y^2 + 2e^y = C$$

70. True.
$$y' + (x - e^x)y = 0$$
 is linear.

2.
$$y = 2 \sin 2x$$

 $y' = 4 \cos 2x$
 $y'' = -8 \sin 2x$
 $y''' = -16 \cos 2x$
 $y''' - 8y = -16 \cos 2x - 8(2 \sin 2x) \neq 0$

4.
$$\frac{dy}{dx} = x^3 - 2x$$

 $y = \int (x^3 - 2x) dx = \frac{x^4}{4} - x^2 + C$

Not a solution

6.
$$\frac{dy}{dx} = 2\sin x$$
$$y = \int 2\sin x \, dx = -2\cos x + C$$

$$7. \ \frac{dy}{dx} = 2x\sqrt{x-7}$$

$$y = \int 2x \sqrt{x - 7} \, dx$$

Let u = x - 7, du = dx, x = u + 7:

$$y = \int 2(u+7)u^{1/2} du$$

$$= \frac{4}{5}u^{5/2} + \frac{28}{3}u^{3/2} + C$$

$$= \frac{4}{5}(x-7)^{5/2} + \frac{28}{3}(x-7)^{3/2} + C$$

$$= \frac{4}{15}(x-7)^{3/2}(3x+14) + C$$

$$9. \frac{dy}{dx} = \frac{2x}{y}$$

x	-4	-2	0	2	4	8
у	2	0	4	4	6	8
dy/dx	-4	Undef.	0	1	4/3	2

11.
$$y' = -x - 2$$
, $(-1, 1)$

13.
$$y' = \frac{1}{4}x^2 - \frac{1}{3}x$$
, (0, 3)

15.
$$y' = \frac{xy}{x^2 + 4}$$
, (0, 1)

8.
$$\frac{dy}{dx} = 3e^{-x/3}$$

$$y = \int 3e^{-x/3} dx = -9e^{-x/3} + C$$

10.	$\frac{dy}{dx}$	=	x sin	$\left(\frac{\pi y}{4}\right)$
-----	-----------------	---	-------	--------------------------------

x	-4	-2	0	2	4	8
y	2	0	4	4	6	8
dy/dx	-4	0	0	0	-4	0

12.
$$y' = 2x^2 - x$$
, $(0, 2)$

14. y' = y + 3x, (2, 1)

16. $y' = \frac{y}{x^2 + 1}$, (0, -2)

17.
$$\frac{dy}{dx} = 6 - x$$

$$y = \int (6 - x) dx = 6x - \frac{x^2}{2} + C$$

19.
$$\frac{dy}{dx} = (3+y)^2$$

$$\int (3+y)^{-2} dy = \int dx$$

$$-(3+y)^{-1} = x + C$$

$$3+y = \frac{-1}{x+C}$$

$$y = -3 - \frac{1}{x+C}$$

21.
$$(2 + x)y' - xy = 0$$

 $(2 + x)\frac{dy}{dx} = xy$
 $\frac{1}{y}dy = \frac{x}{2 + x}dx$
 $\frac{1}{y}dy = \left(1 - \frac{2}{2 + x}\right)dx$
 $\ln|y| = x - 2\ln|2 + x| + C_1$
 $y = Ce^x(2 + x)^{-2} = \frac{Ce^x}{(2 + x)^2}$

23.
$$y = Ce^{kt}$$

$$\left(0, \frac{3}{4}\right): \frac{3}{4} = C$$

$$(5, 5): \quad 5 = \frac{3}{4}e^{k(5)}$$

$$\frac{20}{3} = e^{5k}$$

$$k = \frac{1}{5}\ln\left(\frac{20}{3}\right)$$

$$y = \frac{3}{4}e^{\left[\ln(20/3)/5\right]t} \approx \frac{3}{4}e^{0.379t}$$

18.
$$\frac{dy}{dx} = y + 6$$

$$\int \frac{dy}{y+6} = \int dx$$

$$\ln|y+6| = x + C_1$$

$$|y+6| = e^{x+C_1} = Ce^x$$

$$y = -6 + Ce^x$$

20.
$$\frac{dy}{dx} = 4\sqrt{y}$$

$$\int y^{-1/2} dy = \int 4 dx$$

$$2y^{1/2} = 4x + C_1$$

$$y^{1/2} = 2x + C \qquad \left(C = \frac{C_1}{2}\right)$$

$$y = (2x + C)^2$$

22.
$$xy' - (x + 1)y = 0$$

$$x \frac{dy}{dx} = (x + 1)y$$

$$\int \frac{dy}{y} = \int \frac{x + 1}{x} dx$$

$$\ln|y| = x + \ln|x| + C_1$$

$$y = Cxe^x$$

24.
$$y = Ce^{kt}$$

$$\left(2, \frac{3}{2}\right): \frac{3}{2} = Ce^{2k} \implies C = \frac{3}{2}e^{-2k}$$

$$(4, 5): 5 = Ce^{4k} = \left(\frac{3}{2}e^{-2k}\right)e^{4k} = \frac{3}{2}e^{2k}$$

$$\frac{10}{3} = e^{2k} \implies k = \frac{1}{2}\ln\left(\frac{10}{3}\right)$$
Hence, $C = \frac{3}{2}e^{-2(1/2)\ln(10/3)} = \frac{3}{2}\left(\frac{3}{10}\right) = \frac{9}{20}$.
Finally, $y = \frac{9}{20}e^{1/2\ln(10/3)t}$.

25.
$$y = Ce^{kt}$$

$$(0,5)$$
: $C=5$

$$\left(5, \frac{1}{6}\right): \frac{1}{6} = 5e^{5k}$$

$$k = \frac{1}{5} \ln \left(\frac{1}{30} \right) = \frac{-\ln 30}{5}$$

$$y = 5e^{[-t \ln 30]/5} \approx 5e^{-0.680t}$$

27.
$$\frac{dP}{dh} = kp$$
, $P(0) = 30$

$$P(h) = 30e^{kh}$$

$$P(18,000) = 30e^{18,000k} = 15$$

$$k = \frac{\ln(1/2)}{18,000} = \frac{-\ln 2}{18,000}$$

$$P(h) = 30e^{-(h \ln 2)/18,000}$$

$$P(35,000) = 30e^{-(35,000 \ln 2)/18,000} \approx 7.79 \text{ inches}$$

26.
$$y = Ce^{kt}$$

$$(1,9): 9 = Ce^k \implies C = 9e^{-k}$$

$$(6, 2)$$
: $2 = Ce^{6k} \implies 2 = (9e^{-k})e^{6k} = 9e^{5k}$

$$k = \frac{1}{5} \ln \left(\frac{2}{9} \right) \approx -0.3008$$

Hence,
$$C = 9e^{-1/5 \ln(2/9)} = 9\left(\frac{2}{9}\right)^{-1/5} \approx 12.15864.$$

Finally, $y \approx 12.1586e^{-0.3008t}$.

28.
$$y = Ce^{kt} = 5e^{kt}$$

$$2.5 = 5e^{k(1599)}$$

$$k = \frac{1}{1599} \ln \left(\frac{1}{2} \right) \approx -0.000433$$

When t = 600, $y = 5e^{-0.000433(600)} \approx 3.86$ g.

29.
$$S = Ce^{k/t}$$

(a)
$$S = 5$$
 when $t = 1$

$$5 = Ce^k$$

$$\lim_{t\to\infty} Ce^{k/t} = C = 30$$

$$5 = 30e$$

$$k = \ln \frac{1}{6} \approx -1.7918$$

$$S = 30(\frac{1}{6}) \approx 30e^{-1.7918/t}$$

(b) When t = 5, $S \approx 20.9646$ which is 20,965 units.

30. $S = 25(1 - e^{kt})$

(a)
$$4 = 25(1 - e^{k(1)}) \implies 1 - e^k = \frac{4}{25} \implies e^k = \frac{21}{25} \implies k = \ln\left(\frac{21}{25}\right) \approx -0.1744$$

(b) 25,000 units
$$(\lim_{t \to \infty} S = 25)$$

(c) When
$$t = 5$$
, $S \approx 14.545$ which is 14,545 units.

31.
$$P = Ce^{0.015t}$$

$$2C = Ce^{0.015t}$$

$$2 = e^{0.015t}$$

$$\ln 2 = 0.015t$$

$$t = \frac{\ln 2}{0.015} \approx 46.21 \text{ years}$$

32. (a)
$$\frac{dy}{ds} = -0.012y, s > 50$$

$$\frac{-1}{0.012} \int \frac{dy}{y} = \int ds$$

$$\frac{-1}{0.012} \ln y = s + C_1$$

$$y = Ce^{-0.012s}$$
When $s = 50, y = 28 = Ce^{-0.012(50)} \implies C = 28e^{0.6}$

 $y = 28e^{0.6 - 0.012s}, s > 50.$

33.
$$\frac{dy}{dx} = \frac{x^2 + 3}{x}$$

$$\int dy = \int \left(x + \frac{3}{x}\right) dx$$

$$y = \frac{x^2}{2} + 3\ln|x| + C$$

35.
$$y' - 2xy = 0$$

$$\frac{dy}{dx} = 2xy$$

$$\int \frac{1}{y} dy = \int 2x dx$$

$$\ln|y| = x^2 + C_1$$

$$e^{x^2 + C_1} = y$$

$$y = Ce^{x^2}$$

Speed(s)	50	55	60	65	70
Miles per Gallon (y)	28	26.4	24.8	23.4	22.0

34.
$$\frac{dy}{dx} = \frac{e^{-2x}}{1 + e^{-2x}}$$

$$\int dy = \int \frac{e^{-2x}}{1 + e^{-2x}} dx = -\frac{1}{2} \int \frac{-2e^{-2x}}{1 + e^{-2x}} dx$$

$$y = -\frac{1}{2} \ln(1 + e^{-2x}) + C$$

36.
$$y' - e^{y} \sin x = 0$$

$$\frac{dy}{dx} = e^{y} \sin x$$

$$\int e^{-y} dy = \int \sin x dx$$

$$-e^{-y} = -\cos x + C_{1}$$

$$e^{y} = \frac{1}{\cos x + C} \qquad (C = -C_{1})$$

$$y = \ln \left| \frac{1}{\cos x + C} \right| = -\ln |\cos x + C|$$

37.
$$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$$
 (homogeneous differential equation)
$$(x^2 + y^2) dx - 2xy dy = 0$$
Let $y = vx$, $dy = x dv + v dx$.
$$(x^2 + v^2x^2) dx - 2x(vx)(x dv + v dx) = 0$$

$$(x^2 + v^2x^2 - 2x^2v^2) dx - 2x^3v dv = 0$$

$$(x^2 - x^2v^2) dx = 2x^3v dv$$

$$(1 - v^2) dx = 2xv dv$$

$$\int \frac{dx}{x} = \int \frac{2v}{1 - v^2} dv$$

$$\ln|x| = -\ln|1 - v^2| + C_1 = -\ln|1 - v^2| + \ln C$$

$$x = \frac{C}{1 - v^2} = \frac{C}{1 - (y/x)^2} = \frac{Cx^2}{x^2 - y^2}$$

$$1 = \frac{Cx}{x^2 - y^2} \text{ or } C_1 = \frac{x}{x^2 - y^2}$$

38.
$$\frac{dy}{dx} = \frac{3(x+y)}{x}$$
 (homogeneous differential equation)

$$3(x+y)\,dx-x\,dy=0$$

Let
$$y = vx$$
, $dy = x dv + v dx$.

$$3(x + vx) dx - x(x dv + v dx) = 0$$

$$(3x + 2vx) dx - x^2 dv = 0$$

$$(3 + 2v) dx = x dv$$

$$\int \frac{1}{x} \, dx = \int \frac{1}{3 + 2v} \, dv$$

$$\ln|x| = \frac{1}{2}\ln|3 + 2\nu| + C_1 = \ln(3 + 2\nu)^{1/2} + \ln C_2$$

$$x = C_2(3 + 2v)^{1/2}$$

$$x^2 = C(3+2v) = C\left(3+2\left(\frac{y}{x}\right)\right)$$

$$x^3 = C(3x + 2y) = 3Cx + 2Cy$$

$$y = \frac{x^3 - 3Cx}{2C}$$

39.
$$y = C_1 x + C_2 x^3$$

$$y' = C_1 + 3C_2x^2$$

$$y'' = 6C_2 x$$

$$x^2y'' - 3xy' + 3y = x^2(6C_2x) - 3x(C_1 + 3C_2x^2) + 3(C_1x + C_2x^3)$$

$$= 6C_2x^3 - 3C_1x - 9C_2x^3 + 3C_1x + 3C_2x^3 = 0$$

$$x = 2, y = 0$$
: $0 = 2C_1 + 8C_2 \implies C_1 = -4C_2$

$$x = 2, y' = 4$$
: $4 = C_1 + 12C_2$

$$4 = (-4C_2) + 12C_2 = 8C_2 \implies C_2 = \frac{1}{2}, C_1 = -2$$

$$y = -2x + \frac{1}{2}x^3$$

40.
$$\frac{dv}{dt} = kv - 9.8$$

(a)
$$\int \frac{dv}{kv - 9.8} = \int dt$$

$$\frac{1}{k}\ln|kv - 9.8| = t + C_1$$

$$\ln|kv - 9.8| = kt + C_2$$

$$kv - 9.8 = e^{kt + C_2} = C_3 e^{kt}$$

$$v = \frac{1}{k} \left[9.8 + C_3 e^{kt} \right]$$

At
$$t = 0$$
, $v_0 = \frac{1}{k}(9.8 + C_3) \implies C_3 = kv_0 - 9.8$

$$v = \frac{1}{k} [9.8 + (kv_0 - 9.8)e^{kt}].$$

Note that k < 0 since the object is moving downward.

(b)
$$\lim_{t \to \infty} v(t) = \frac{9.8}{k}$$

(c)
$$s(t) = \int \frac{1}{k} [9.8 + (kv_0 - 9.8)e^{kt}] dt$$

$$= \frac{1}{k} \left[9.8t + \frac{1}{k} (kv_0 - 9.8)e^{kt} \right] + C$$

$$= \frac{9.8t}{k} + \frac{1}{k^2}(kv_0 - 9.8)e^{kt} + C$$

$$s(0) = \frac{1}{k^2}(kv_0 - 9.8) + C \implies C = s_0 - \frac{1}{k^2}(kv_0 - 9.8)$$

$$s(t) = \frac{9.8t}{k} + \frac{1}{k^2}(k\nu_0 - 9.8)e^{kt} + s_0 - \frac{1}{k^2}(k\nu_0 - 9.8)$$

$$= \frac{9.8t}{k} + \frac{1}{k^2}(kv_0 - 9.8)(e^{kt} - 1) + s_0$$

41.
$$\frac{dy}{dx} = \frac{-4x}{y}$$

$$\int y \, dy = \int -4x \, dx$$

$$\frac{y^2}{2} = -2x^2 + C_1$$

$$4x^2 + y^2 = C$$
 ellipses

$$\frac{y^{2}}{2} = -2x^{2} + C_{1}$$

$$4x^{2} + y^{2} = C$$
ellipses
$$\frac{1}{2} \ln|2y - 3| = -x + C_{2}$$

$$|2y - 3| = C_{2}e^{-2x}$$

$$2y = 3 + C_{2}$$

$$y = \frac{3}{2} + Ce^{-2x}$$

(a)
$$k = 0.55$$

(b) $L = 7200$
(c) $P(0) = \frac{7200}{1 + 44} = 160$
(d) $3600 = \frac{7200}{1 + 44e^{-0.55t}}$
 $1 + 44e^{-0.55t} = 2$
 $e^{-0.55t} = \frac{1}{44}$
 $t = \frac{-1}{0.55} \ln\left(\frac{1}{44}\right) \approx 6.88 \text{ yrs.}$
(e) $\frac{dP}{dt} = 0.55P\left(1 - \frac{P}{7200}\right)$

43. $P(t) = \frac{7200}{1 + 44e^{-0.55t}}$

45. (a)
$$L = 20,400, y(0) = 1200, y(1) = 2000$$

$$y = \frac{20,400}{1 + be^{-kt}}$$

$$y(0) = 1200 = \frac{20,400}{1 + b} \implies b = 16$$

$$y(1) = 2000 = \frac{20,400}{1 + 16e^{-k}}$$

$$16e^{-k} = \frac{46}{5}$$

$$k = -\ln\frac{23}{40} = \ln\frac{40}{23} \approx 0.553$$

$$y = \frac{20,400}{1 + 16e^{-0.553t}}$$
(b) $y(8) \approx 17,118$ trout

(c) $10,000 = \frac{20,400}{1 + 16e^{-0.553t}} \implies t \approx 4.94 \text{ yrs.}$

42.
$$\frac{dy}{dx} = 3 - 2y$$

$$\int \frac{dy}{2y - 3} = \int -dx$$

$$\frac{1}{2} \ln|2y - 3| = -x + C_1$$

$$\ln|2y - 3| = -2x + 2C_1$$

$$|2y - 3| = C_2 e^{-2x}$$

$$2y = 3 + C_2 e^{-2x}$$

$$y = \frac{3}{2} + C e^{-2x}$$

44.
$$P(t) = \frac{4800}{1 + 14e^{-0.15t}}$$

(a)
$$k = 0.15$$

(b)
$$L = 4800$$

(c)
$$P(0) = \frac{4800}{1+14} = 320$$

(d)
$$2400 = \frac{4800}{1 + 14e^{-0.15t}}$$
$$14e^{-0.15t} = 1$$
$$t = -\frac{1}{0.15} \ln\left(\frac{1}{14}\right) \approx 17.59 \text{ yrs.}$$

(e)
$$\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{4800}\right)$$

46.
$$\frac{dy}{dt} = 0.553y \left(1 - \frac{y}{20.400}\right), \ y(0) = 1200$$

Use Euler's method with h = 1.

t	0	2	4	6	8
Exact	1200	3241	7414	12,915	17,117
Euler	1200	2743	5853	10,869	16,170

Euler's method gives $y(8) \approx 16,170$ trout.

47.
$$y' - y = 8$$

 $P(x) = -1, \ Q(x) = 8$
 $u(x) = e^{\int -dx} = e^{-x}$
 $y = \frac{1}{e^{-x}} \int 8e^{-x} dx$
 $= e^x [-8e^{-x} + C]$
 $= -8 + Ce^x$

48.
$$e^{x}y' + 4e^{x}y = 1$$

 $y' + 4y = e^{-x}$
 $P(x) = 4$, $Q(x) = e^{-x}$
 $u(x) = e^{\int 4 dx} = e^{4x}$
 $y = \frac{1}{e^{4x}} \int e^{-x}e^{4x} dx$
 $= e^{-4x} \left[\frac{1}{3}e^{3x} + C \right]$
 $= \frac{1}{3}e^{-x} + Ce^{-4x}$

$$4y' = e^{x/y} + y$$

$$y' - \frac{1}{4}y = \frac{1}{4}e^{x/4}$$

$$P(x) = -\frac{1}{4}, \ Q(x) = \frac{1}{4}e^{x/4}$$

$$u(x) = e^{\int -(1/4) \ dx} = e^{-(1/4)x}$$

$$y = \frac{1}{e^{-(1/4)x}} \int \frac{1}{4}e^{x/4}e^{-(1/4)x} \ dx$$

$$= e^{(1/4)x} \left[\frac{1}{4}x + C \right]$$

$$= \frac{1}{4}xe^{x/4} + Ce^{x/4}$$

50.
$$\frac{dy}{dx} - \frac{5y}{x^2} = \frac{1}{x^2}$$

$$P(x) = -\frac{5}{x^2}, \ Q(x) = \frac{1}{x^2}$$

$$u(x) = e^{\int -(5/x^2)dx} = e^{5/x}$$

$$y = \frac{1}{e^{5/x}} \int \frac{1}{x^2} e^{5/x} dx$$

$$= \frac{1}{e^{5/x}} \left[-\frac{1}{5} e^{5/x} + C \right]$$

$$= -\frac{1}{5} + Ce^{-5/x}$$

52.
$$(x + 3)y' + 2y = 2(x + 3)^2$$

$$\frac{dy}{dx} + \frac{2}{x + 3}y = 2(x + 3)$$

$$P(x) = \frac{2}{x + 3}, \ Q(x) = 2(x + 3)$$

$$u(x) = e^{\int (2/x + 3) dx} = e^{2\ln(x + 3)} = (x + 3)^2$$

$$y = \frac{1}{(x + 3)^2} \int 2(x + 3)(x + 3)^2 dx$$

$$= \frac{1}{(x + 3)^2} \left[\frac{(x + 3)^4}{2} + C \right]$$

$$= \frac{(x + 3)^2}{2} + \frac{C}{(x + 3)^2}$$

54.
$$dy = (y \tan x + 2e^x) dx$$

$$\frac{dy}{dx} - (\tan x)y = 2e^x$$
Integrating factor: $e^{-\int \tan x dx} = e^{\ln|\cos x|} = \cos x$

$$y \cos x = \int 2e^x \cos x dx = e^x(\cos x + \sin x) + C$$

$$y = e^x(1 + \tan x) + C \sec x$$

51.
$$(x-2)y' + y = 1$$

$$\frac{dy}{dx} + \frac{1}{x-2}y = \frac{1}{x-2}$$

$$P(x) = \frac{1}{x-2}, \ Q(x) = \frac{1}{x-2}$$

$$u(x) = e^{\int (1/x-2) dx} = e^{\ln|x-2|} = x-2$$

$$y = \frac{1}{x-2} \int \left(\frac{1}{x-2}\right)(x-2) dx$$

$$= \frac{1}{x-2} [x+c]$$

53.
$$(3y + \sin 2x) dx - dy = 0$$

 $y' - 3y = \sin 2x$
Integrating factor: $e^{\int -3 dx} = e^{-3x}$
 $ye^{-3x} = \int e^{-3x} \sin 2x dx$
 $= \frac{1}{13}e^{-3x}(-3\sin 2x - 2\cos 2x) + C$
 $y = -\frac{1}{13}(3\sin 2x + 2\cos 2x) + Ce^{3x}$

55.
$$y' + 5y = e^{5x}$$

Integrating factor: $e^{\int 5 dx} = e^{5x}$
 $ye^{5x} = \int e^{10x} dx = \frac{1}{10}e^{10x} + C$
 $y = \frac{1}{10}e^{5x} + Ce^{-5x}$

$$\mathbf{56.} \ y' - \left(\frac{a}{x}\right) y = b x^3$$

Integrating factor: $e^{-\int (a/x) dx} = e^{-a \ln x} = x^{-a}$

$$yx^{-a} = \int bx^3(x^{-a}) dx = \frac{b}{4-a}x^{4-a} + C$$

$$y = \frac{bx^4}{4-a} + Cx^a$$

58.
$$y' + 2xy = xy^2$$
 Bernoulli equation
 $n = 2$, let $z = y^{1-2} = y^{-1}$, $z' = -y^{-2}y'$.
 $(-y^{-2})y' + 2xy(-y^{-2}) = -x$
 $z' - 2xz = -x$ Linear equation
 $u(x) = e^{\int -2x dx} = e^{-x^2}$
 $z = \frac{1}{e^{-x^2}} \int (-x)e^{-x^2} dx = e^{x^2} \left[\frac{1}{2}e^{-x^2} + C \right]$
 $\frac{1}{y} = \frac{1}{2} + Ce^{x^2}$
 $y = \frac{1}{\frac{1}{2} + Ce^{x^2}} = \frac{2}{1 + C_1 e^{x^2}}$

60.
$$xy' + y = xy^2$$

 $y' + \frac{1}{x}y = y^2$ Bernoulli Equation
 $n = 2$, let $z = y^{1-2} = y^{-1}$, $z' = -y^{-2}y'$.
 $-y^{-2}y' + \frac{1}{x}y(-y^{-2}) = y^2(-y^{-2})$
 $z' - \frac{1}{x}z = -1$ Linear equation

57.
$$y' + y = xy^2$$
 Bernoulli equation
 $n = 2$, let $z = y^{1-2} = y^{-1}$, $z' = -y^{-2}y'$.
 $(-y^{-2})y' + (-y^{-2})y = -x$
 $z' - z = -x$ Linear equation
 $u(x) = e^{\int -dx} = e^{-x}$
 $z = \frac{1}{e^{-x}} \int -xe^{-x} dx = e^x[xe^{-x} + e^{-x} + C]$
 $y^{-1} = x + 1 + Ce^x$
 $y = \frac{1}{x + 1 + Ce^x}$

59.
$$y' + \frac{1}{x}y = \frac{y^3}{x^2}$$
 Bernoulli equation
$$n = 3, \text{ let } z = y^{1-3} = y^{-2}, \ z' = -2y^{-3}y'.$$

$$(-2y^{-3})y' + \frac{1}{x}y(-2y^{-3}) = \frac{-2}{x^2}$$

$$z' - \frac{2}{x}z = \frac{-2}{x^2} \quad \text{Linear equation}$$

$$u(x) = e^{\int -(2/x) dx} = e^{-2\ln x} = x^{-2}$$

$$z = \frac{1}{x^{-2}} \int \frac{-2}{x^2} (x^{-2}) dx = x^2 \left[\frac{2x^{-3}}{3} + C \right]$$

$$\frac{1}{y^2} = \frac{2}{3x} + Cx^2$$

$$u(x) = e^{\int -(1/x) dx} = \frac{1}{x}$$

$$z = x \int -\frac{1}{x} dx = -x [\ln|x| + C]$$

$$\frac{1}{y} = -x \ln x + Cx$$

$$y = \frac{1}{Cx - x \ln x}$$

61. Answers will vary. Sample Answer:
$$(x^2 + 3y^2) dx - 2xy dy = 0$$

Solution: Let y = vx, dy = x dv + v dx.

$$(x^{2} + 3v^{2}x^{2}) dx - 2x(vx)(x dv + v dx) = 0$$

$$(x^{2} + v^{2}x^{2}) dx - 2x^{3}v dv = 0$$

$$(1 + v^{2}) dx = 2 xv dv$$

$$\int \frac{dx}{x} = \int \frac{2v}{1 + v^{2}} dv$$

$$\ln|x| = \ln|1 + v^{2}| + C_{1}$$

$$x = C(1 + v^{2}) = C\left(1 + \frac{y^{2}}{x^{2}}\right)$$

$$x^{3} = C(x^{2} + v^{2})$$

- **62.** Answers will vary.
- 63. Answers will vary.

Sample Answer:
$$x^3y' + 2x^2y = 1$$

$$y' + \frac{2}{x}y = \frac{1}{x^3}$$

$$u(x) = e^{\int (2/x) dx} = x^2$$

$$y = \frac{1}{r^2} \int \frac{1}{r^3} (x^2) \, dx = \frac{1}{r^2} [\ln|x| + C]$$

1. (a)
$$\frac{dy}{dt} = y^{1.01}$$

$$\int y^{-1.01} dy = \int dt$$
$$\frac{y^{-0.01}}{-0.01} = t + C_1$$

$$\frac{1}{y^{0.01}} = -0.01t + C$$

$$y^{0.01} = \frac{1}{C - 0.01t}$$

$$y = \frac{1}{(C - 0.01t)^{100}}$$

$$y(0) = 1$$
: $1 = \frac{1}{C^{100}} \implies C = 1$

Hence,
$$y = \frac{1}{(1 - 0.01t)^{100}}$$
.

For
$$T = 100$$
, $\lim_{t \to T^-} y = \infty$.

2. Since
$$\frac{dy}{dt} = k(y - 20)$$
,

$$\int \frac{1}{y - 20} \, dy = \int k \, dt$$

$$\ln|y - 20| = kt + C$$

$$y=Ce^{kt}+20.$$

When t = 0, y = 72. Therefore, C = 52.

When
$$t = 1$$
, $y = 48$. Therefore, $48 = 52e^k + 20$, $e^k = \frac{28}{52} = \frac{7}{13}$, and $k = \ln \frac{7}{13}$. Thus, $y = 52e^{[\ln(7/13)]t} + 20$.

When
$$t = 5$$
, $y = 52e^{5 \ln(7/13)} + 20 \approx 22.35^{\circ}$.

64. Answers will vary.

(b)
$$\int y^{-(1+\varepsilon)} dy = \int k dt$$

$$\frac{y^{-\varepsilon}}{-\varepsilon} = kt + C_1$$

$$y^{-\varepsilon} = -\varepsilon kt + C$$

$$y = \frac{1}{(C - \varepsilon kt)^{1/\varepsilon}}$$

$$y(0) = y_0 = \frac{1}{C^{1/\varepsilon}} \implies C^{1/\varepsilon} = \frac{1}{y_0} \implies C = \left(\frac{1}{y_0}\right)^{\varepsilon}$$

Hence,
$$y = \frac{1}{\left(\frac{1}{y_0^{\varepsilon}} - \varepsilon kt\right)^{1/\varepsilon}}$$
.

For
$$t \to \frac{1}{v_o \varepsilon_E k}$$
, $y \to \infty$.

3. (a)
$$\frac{dS}{dt} = k_1 S(L - S)$$

$$S = \frac{L}{1 + Ce^{-kt}}$$
 is a solution because

$$\frac{dS}{dt} = -L(1 + Ce^{-kt})^{-2}(-Cke^{-kt})$$

$$= \frac{LC ke^{-kt}}{(1 + Ce^{-kt})^2}$$

$$= \left(\frac{k}{L}\right)\frac{L}{1 + Ce^{-kt}} \cdot \frac{C Le^{-kt}}{1 + Ce^{-kt}}$$

$$= \left(\frac{k}{L}\right)\frac{L}{1 + Ce^{-kt}} \cdot \left(L - \frac{L}{1 + Ce^{-kt}}\right)$$

$$= k_1 S(L - S), \text{ where } k_1 = \frac{k}{L}.$$

$$L = 100$$
. Also, $S = 10$ when $t = 0 \implies C = 9$. And, $S = 20$ when $t = 1 \implies k = -\ln \frac{4}{9}$.

Particular Solution:
$$s = \frac{100}{1 + 9e^{\ln(4/9)t}}$$
$$= \frac{100}{1 + 9e^{-0.8109t}}$$

4. (a)
$$\frac{dy}{dt} = k \ln\left(\frac{L}{y}\right) y$$

$$\frac{dy}{y[\ln L - \ln y]} = k dt$$

$$\ln\left[\ln L - \ln y\right] = -kt + C_1$$

$$\ln\frac{L}{y} = Ce^{-kt}$$

$$\frac{L}{y} = e^{Ce^{-kt}}$$

(c) As $t \to \infty$, $y \to L$, the carrying capacity.

(b)
$$\frac{dS}{dt} = k_1 S(100 - S)$$
$$\frac{d^2S}{dt^2} = k_1 \left[S\left(-\frac{dS}{dt}\right) + (100 - S)\frac{dS}{dt} \right]$$
$$= k_1 (100 - 2S)\frac{dS}{dt}$$
$$= 0 \text{ when } S = 50 \text{ or } \frac{dS}{dt} = 0.$$

Choosing S = 50, we have:

$$50 = \frac{100}{1 + 9e^{\ln(4/9)t}}$$
$$2 = 1 + 9e^{\ln(4/9)t}$$

$$\frac{\ln(1/9)}{\ln(4/9)} = t$$

 $t \approx 2.7$ months (This is the inflection point.)

(e) Sales will decrease toward the line S = L.

(d)
$$y_0 = 500 = 5000e^{-C} \implies e^C = 10 \implies C = \ln 10$$

$$\begin{aligned} \frac{dy}{dt} &= k \ln\left(\frac{L}{y}\right) y \\ \frac{d^2y}{dt^2} &= k \ln\left(\frac{L}{y}\right) \frac{dy}{dt} + k y \frac{1}{(L/y)} \left(\frac{-L}{y^2}\right) \frac{dy}{dt} \\ &= k \frac{dy}{dt} \left[\ln\left(\frac{L}{y}\right) - 1\right] \end{aligned}$$

$$= k^2 \ln\left(\frac{L}{y}\right) y \left[\ln\left(\frac{L}{y}\right) - 1\right]$$
Hence, $\frac{d^2y}{dt^2} = 0$ when $\ln\left(\frac{L}{y}\right) = 1 \implies \frac{L}{y} = e \implies y = \frac{L}{e}$.

$$y = \frac{L}{e} = \frac{5000}{e} \approx 1839.4$$
 and $t \approx 41.7$.

The graph is concave upward on (0, 41.7) and downward on $(41.7, \infty)$.

5. Let
$$u = \frac{1}{2} k \left(t - \frac{\ln b}{k} \right)$$
.

1 + tanh
$$u = 1 + \frac{e^4 - e^{-u}}{e^u + e^{-u}} = \frac{2}{1 + e^{-2u}}$$

$$e^{-2u} = e^{-k(t - (\ln b/k))} = e^{\ln b}e^{-kt} = be^{-kt}$$

Finally,

604

$$\begin{split} \frac{1}{2}L\bigg[1 + \tanh\bigg(\frac{1}{2}\,k\bigg(t - \frac{\ln b}{k}\bigg)\bigg)\bigg] &= \frac{L}{2}[1 + \tanh u] \\ &= \frac{L}{2}\frac{2}{1 + be^{-kt}} \\ &= \frac{L}{1 + be^{-kt}}. \end{split}$$

The graph of the logistics function is just a shift of the graph of the hyperbolic tangent, as shown in Section 5.10.

6.
$$k = \left(\frac{1}{12}\right)^2 \pi$$

$$g = 32$$

$$x^2 + (y - 6)^2 = 36$$
 Equation of tank

$$x^2 = 36 - (y - 6)^2 = 12y - y^2$$

$$A(h) = (12h - h^2)\pi$$
 Area of

cross section

$$A(h) \frac{dh}{dt} = -k\sqrt{2gh}$$

$$(12h - h^2)\pi \frac{dh}{dt} = -\frac{1}{144}\pi\sqrt{64h}$$

$$(12h - h^2) \frac{dh}{dt} = -\frac{1}{18} h^{1/2}$$

$$\int (18h^{3/2} - 216h^{1/2}) \, dh = \int dt$$

$$\frac{36}{5}h^{5/2} - 144h^{3/2} = t + C$$

$$\frac{h^{3/2}}{5}(36h - 720) = t + C$$

When
$$h = 6$$
, $t = 0$ and $C = \frac{6^{3/2}}{5}(-504) \approx -1481.45$.

The tank is completely drained when

 $h = 0 \implies t = 1481.45$ seconds ≈ 24 minutes and 41 seconds.

7. (a)
$$A(h) \frac{dh}{dt} = -k\sqrt{2gh}$$

$$\pi r^2 \frac{dh}{dt} = -k\sqrt{64h}$$

$$h^{-1/2} dh = \frac{-8k}{\pi r^2} dt = -C dt, \quad C = \frac{8k}{\pi r^2}$$

$$2\sqrt{h} = -Ct + C_1$$

$$2\sqrt{18} = C_1$$
 (at $t = 0, h = 18$)

Hence,
$$2\sqrt{h} = -Ct + 6\sqrt{2}$$
.

At
$$t = 30(60) = 1800$$
, $h = 12$:

$$2\sqrt{12} = -1800 C + 6\sqrt{2}$$

$$\frac{6\sqrt{2} - 4\sqrt{3}}{1800} = C \approx 0.000865$$

Hence,
$$2\sqrt{h} = -0.000865t + 6\sqrt{2}$$
.

$$h = 0 \implies t = \frac{6\sqrt{2}}{0.000865} \approx 9809.1 \text{ seconds (2 hr,}$$

43 min, 29 sec)

(b)
$$t = 3600 \sec \implies 2\sqrt{h} = -0.000865(3600) + 6\sqrt{2}$$

$$\implies h \approx 7.21 \text{ feet}$$

8.
$$A(h) \frac{dh}{dt} = -k\sqrt{2gh}$$

$$\pi 64 \frac{dh}{dt} = \frac{-\pi}{36} 8\sqrt{h}$$

$$\int h^{-1/2} dh = \int \frac{-1}{288} dt$$

$$2\sqrt{h} = \frac{-t}{288} + C$$

$$h = 20: 2\sqrt{20} = C = 4\sqrt{5}$$

$$2\sqrt{h} = \frac{-t}{288} + 4\sqrt{5}$$

$$h = 0 \implies t = 4\sqrt{5}(288) \approx 2575.95 \text{ sec}$$

9. Let the radio receiver be located at $(x_0, 0)$. The tangent line to $y = x - x^2$ joins (-1, 1) and $(x_0, 0)$.

(a) If (x, y) is the point of tangency on $y = x - x^2$, then

$$1 - 2x = \frac{y - 1}{x + 1} = \frac{x - x^2 - 1}{x + 1}$$

$$x - 2x^2 + 1 - 2x = x - x^2 - 1$$

$$x^2 + 2x - 2 = 0$$

$$x = \left(\frac{-2 \pm \sqrt{4 + 8}}{2}\right) = -1 + \sqrt{3}$$

$$y = x - x^2 = 3\sqrt{3} - 5.$$
Then
$$\frac{1 - 0}{-1 - x_0} = \frac{1 - 3\sqrt{3} + 5}{-1 + 1 - \sqrt{3}} = \frac{6 - 3\sqrt{3}}{-\sqrt{3}}$$

$$\sqrt{3} = (1 + x_0)(6 - 3\sqrt{3})$$

$$= 6 - 3\sqrt{3} + x_0(6 - 3\sqrt{3})$$

$$x_0 = \frac{4\sqrt{3} - 6}{6 - 3\sqrt{3}} \approx 1.155.$$

There is a vertical asymptote at $h = \frac{1}{4}$, which is the height of the mountain.

(b) Now let the transmitter be located at (-1, h).

$$1 - 2x = \frac{y - h}{x + 1} = \frac{x - x^2 - h}{x + 1}$$

$$x - 2x^2 + 1 - 2x = x - x^2 - h$$

$$x^2 + 2x - h - 1 = 0$$

$$x = \frac{\left(-2 \pm \sqrt{4 + 4(h + 1)}\right)}{2}$$

$$= -1 + \sqrt{2 + h}$$

$$y = x - x^2$$

$$= 3\sqrt{2 + h} - h - 4$$
Then,
$$\frac{h - 0}{-1 - x_0} = \frac{h - \left(3\sqrt{2 + h} - h - 4\right)}{-1 - \left(-1 + \sqrt{2 + h}\right)}$$

$$= \frac{2h + 4 - 3\sqrt{2 + h}}{-\sqrt{2 + h}}$$

$$\frac{x_0 + 1}{h} = \frac{\sqrt{2 + h}}{2h + 4 - 3\sqrt{2 + h}} - 1.$$

10.
$$\frac{ds}{dt} = 3.5 - 0.019s$$

(a)
$$\int \frac{-ds}{3.5 - 0.019s} = -\int dt$$
$$\frac{1}{0.019} \ln|3.5 - 0.019s| = -t + C_1$$
$$\ln|3.5 - 0.019s| = -0.019t + C_2$$
$$3.5 - 0.019s = C_3 e^{-0.019t}$$
$$-0.019s = 3.5 - C_3 e^{-0.019t}$$
$$s = 184.21 - C e^{-0.019t}$$

- (c) As $t \to \infty$, $Ce^{-0.019t} \to 0$, and $s \to 184.21$.
- 12. From Exercise 39, we have $C = C_0 e^{-Rt/V}$.
 - (a) For V = 2, R = 0.5, and $C_0 = 0.6$, we have $C = 0.6e^{-0.25t}$.

(b) For V=2, R=1.5, and $C_0=0.6$, we have $C=0.6e^{-0.75t}$.

11. (a)
$$\int \frac{dC}{C} = \int -\frac{R}{V} dt$$

$$\ln|C| = -\frac{R}{V}t + K_1$$

$$C = Ke^{-Rt/V}$$

Since $C = C_0$ when t = 0, it follows that $K = C_0$ and the function is $C = C_0 e^{-Rt/V}$.

(b) Finally, as $t \rightarrow \infty$, we have

$$\lim_{t\to\infty} C = \lim_{t\to\infty} C_0 e^{-Rt/V} = 0.$$

13. (a)
$$\int \frac{1}{Q - RC} dC = \int \frac{1}{V} dt$$

$$-\frac{1}{R} \ln|Q - RC| = \frac{t}{V} + K_1$$

$$Q - RC = e^{-R[(t/V) + K_1]}$$

$$C = \frac{1}{R} (Q - e^{-R[(t/V) + K_1]})$$

$$= \frac{1}{R} (Q - Ke^{-Rt/V})$$

Since C = 0 when t = 0, it follows that K = Q and we have $C = \frac{Q}{R}(1 - e^{-Rt/V})$.

(b) As $t \to \infty$, the limit of C is Q/R.