Parallelizing Strassen's Algorithm

Project 4.1

Zhu Liang

Introduction

Strassen's: divide multiplication into <u>7 sub-multiplications</u>.

• It improves efficiency with a potential recursive approach.

This project:

- Implements Strassen's algorithm in parallel to leverage efficiency.
- Draws on insights from <u>Chou, C. C., Deng, Y. F., Li, G., & Wang, Y. (1995)</u>, **but** applies a **recursive** strategy for efficient data distribution and collection.

Table of Content

- Parallel Implementation
- Result & Analysis
- Summary

Parallelization

Multi Level Master-Slave (Leader-Worker) network

Three Steps:

- 1. Distribute Data
- 2. Local Multiplication
- 3. Collect Result

1. Distribute Data

- Leader <u>assembles</u> M_i^A and M_i^B and sends to its workers.
- Workers receive its M_i^A and M_i^B .
- Repeat until reach the target level.

2. Local Multiplication

All processors run its local multiplication

3. Collect Result

- Workers send results M_i .
- **Leader** receives and assembles into result *C*.
- Repeat until reach the root.

Static Leader-Worker Tree

- Ranks determine a static Leader-Worker relationship.
- Reuse leader as a worker.

Special Case: *root* processor

- A dual role as both sender and receiver, which could lead to deadlock.
- Instead, it performs direct memory copying of the data it requires.

Static Relationship Tree by Rank

Leader Rank	Worker Ranks
0	[0, 1, 2, 3, 4, 5, 6]
1	[7, 8, 9, 10, 11, 12, 13]
2	[14, 15, 16, 17, 18, 19, 20]
3	[21, 22, 23, 24, 25, 26, 27]
4	[28, 29, 30, 31, 32, 33, 34]
5	[35, 36, 37, 38, 39, 40, 41]
6	[42, 43, 44, 45, 46, 47, 48]
•••	•••

• Level-1

- Leader: $\{0\}$
- Workers: $\{0, \rightarrow 6\}$
- Level-2
 - Leaders: $\{0, \rightarrow 6\}$
 - Workers: $\{0, \rightarrow 48\}$
- Level-3
 - Leaders: $\{0, \rightarrow 48\}$
 - Workers: $\{0, \to 342\}$

Results

	Parallel Strassen Algorithm			
(in seconds)	level 1	level 2	level 3	
	(cores = 7)	(cores = 49)	(cores = 343)	
$N=2^8$	0.029430	0.010317	0.040137	
$N=2^{10}$	1.757423	0.284435	0.274502	
$N = 2^{12}$	63.811983	9.049598	2.902417	

Results

Speedup Curve of Strassen Algorithm

We take (P = 7) as the baseline to compare performance

Analysis

Trends

Speedup improves when matrices become larger.

• Computation to Communication Ratio:

• Grows as matrix size N increases, contributing to a more notable speedup.

Future Optimization

• Improve adaptability to support dynamic core allocation beyond the rigid 7^{level} requirement.

Summary

- Successfully implement the 3 levels via a multi-level master-slave network.
- Build a static tree to determine the leader-worker relationship.
- Only necessary data is communicated.
- Scalable to even higher levels of Strassen's Algorithm.

Thanks for your attention!

Appendix: Strassen's Sub-Matrices

M_i^A	M_i^B	M_i	Assignment
$M_1^A = (A_{11} + A_{22})$	$M_1^B = (B_{11} + B_{22})$	$M_1 = M_1^A \times M_1^B$	\rightarrow Worker 1
$M_2^A = (A_{21} + A_{22})$	$M_2^B = B_{11}$	$M_2 = M_2^A \times M_2^B$	\rightarrow Worker 2
$M_3^A = A_{11}$	$M_3^B = (B_{12} - B_{22})$	$M_3 = M_3^A \times M_3^B$	\rightarrow Worker 3
$M_4^A=A_{22}$	$M_4^B = (B_{21} - B_{11})$	$M_4 = M_4^A \times M_4^B$	\rightarrow Worker 4
$M_5^A = (A_{11} + A_{12})$	$M_5^B = B_{22}$	$M_5 = M_5^A \times M_5^B$	\rightarrow Worker 5
$M_6^A = (A_{21} - A_{11})$	$M_6^B = (B_{11} + B_{12})$	$M_6 = M_6^A \times M_6^B$	\rightarrow Worker 6
$M_7^A = (A_{12} - A_{22})$	$M_7^B = (B_{21} + B_{22})$	$M_7 = M_7^A \times M_7^B$	\rightarrow Worker 7