Máquina Virtual MV Prof. Celso Maciel da Costa

Definição da Máquina Virtual MV

A MV é uma máquina que possui uma memória de 320 palavras, um registrador (PC) que aponta para a próxima instrução a ser executada e quatro registradores (a0, a1, a2 e a3) usados para armazenamento de dados e execução das instruções. A máquina possui as instruções apresentadas na tabela a seguir. A primeira coluna apresenta o mnemônico da instrução, a segunda a função que é executada, a terceira o código de operação (em decimal), a quarta o número de operandos e a última a descrição da instrução.

Instrução	Função	Código	Número de Operandos	Descrição
add	a0 = a1 + a2	00	3	Realiza a soma dos valores de dois registradores armazenando o resultado em um outro registrador
sub	a0 = a1 - a2	01	3	Realiza a subtração dos valores de dois registradores armazenando o resultado em um outro registrador
mul	a0 = a1 * a2	03	3	Realiza a multiplicação dos valores de dois registradores armazenando o resultado em um outro registrador
div	a0 = a1 / a2	03	3	Realiza a divisão dos valores de dois registradores armazenando o resultado em um outro registrador
mv	ao = mem[op]	04	2	Realiza a atribuição do valor de uma posição de memória em um registrador
st	mem[op] = a0	05	2	Realiza a atribuição do valor de um registrador em uma posição de memória
jmp	jmp op	06	1	PC recebe o valor op que segue a instrução
jeq	jeq a0 a1 op	07	3	if (a0 == a1) PC = op;
jgt	jgq a0 a1 op	08	3	if (a0) > 0) PC = op;

jlt	jlq a0 a1 op	09	3	if $(a0 < 0)$ PC = op;
W	Print [op]	10	1	Print Word
r	Read [op]	11	1	Read Word
stp	Stop machine	12	0	Fim de execução

Observação: - [op] significa o conteúdo da posição de memória op - qualquer registrador pode ser utilizado nas operações

Definição dos dados

```
Ex.
val1 word 10 // Primeira posição de memória (valor 10)
val2 word 20 // Segunda posição de memória (valor 20)
result word 0 // Terceira posição de memória (valor 0)
```

Exemplo de programa que soma dois números

```
val1: .word 10 // Primeira posição de memória (valor 10) val2: .word 20 // Segunda posição de memória (valor 20) result: .word 0 // Espaço para armazenar o resultado

// Carregar valores da memória para os registradores mv a2 val1 // Carrega o valor de val1 para a2 mv a3 val2 // Carrega o valor de val2 para a3

// Executa a soma add a0 a2 a3 // a0 = a2 + a3 (resultado da soma)

// Armazena o resultado na memória St a0 result // Salva a4 no endereço de result w result

// Finaliza o programa STP
```

Trabalho:

T1: Implementar a máquina virtual MV.

T2: Implementar o montador de duas passagens para a MV. O código gerado pelo montador deverá ser executado pela MV. O montador deverá identificar os seguintes erros: símbolo não definido, símbolo redefinido e instrução inválida.

T3: implementar um ligador de dois passos.

Entrega/demonstração do trabalho

Os trabalhos devem ser escritos na linguagem C e são individuais. As datas de entrega/demonstração são as seguintes:

T1: 24/abril/2025 T2: 26/junho/2025 T3: 26/junho/2025

OBS: Trabalhos que não compilam ou que não executam não serão avaliados. A nota será zero.