Feuille d'Exercices nº 1 : STATISTIQUES SIMPLES

Exercice 1.1 : Compléments de cours

Pour définir la variance, on avait choisi de calculer la moyenne des carrées des écarts par rapport à la moyenne; le résultat suivant donne une bonne raison de faire ce choix.

Prouver que la fonction $g: t \mapsto \frac{1}{n} \sum_{i=1}^{p} n_i (x_i - t)^2$ admet un minimum atteint en $t = \bar{x}$ (la moyenne de la série) et ce minimum vaut V (la variance de la série).

Exercice 1.2: Questions d'application

- 1) Donner deux séries listées de même médiane mais de moyennes "très" différentes.
- 2) Donner deux séries listées de même moyenne mais de médianes "très" différentes.
- 3) Comparer la moyenne et la médiane des séries suivantes :

 $(x_i) = 9, 9, 9, 10, 19, 19, 19$ et $(y_i) = 0, 0, 0, 10, 11, 11, 11$ d'un côté;

 $(z_i) = 0, 0, 0, 0, 20, 20, 20$ et $(t_i) = 0, 0, 0, 15, 15, 15, 15$ d'un autre côté.

4) Compléter les tableaux suivants et déterminer la médiane de chacune des trois séries suivantes :

x_i	2	3	4	5
n_i	20	30	35	15
N:				

x_i	2	3	4	5
n_i	52	28	15	5
Ni				

x_i	2	3	4	5
n_i	12	13	22	53
Ni				

Que peut-on remarquer?

5) Utiliser un changement de variable convenable pour donner "à la main" la variance de la série (x) = (2000, 2001, 2002, 2003, 2004, 2005, 2006).

Exercice 1.3: Caractère quantitatif discret

Les 35 étudiants d'une classe ont obtenu les notes suivantes à un contrôle donné

- 1	9	11	8	5	15	9	14
	7	11	5	6	8	6	10
:	4	11	8	8	7	13	4
	13	5	5	6	4	10	5
	7	11	4	6	9	7	4

1) Dresser et compléter le tableau de groupement par valeurs suivant :

	i=1	i=2	i=3	i=4	i=5	i=6	i=7	i=8	i=9	i=10	i=11	Sommes
x_i												*
ni												
Ni												*
$n_i x_i$												
$n_i x_i^2$												

- 2) Donner la médiane de la série.
- 3)
- a) Si la plus haute note passe à 18, la médiane change-t-elle?
- b) On a oublié de noter une question aux 5 étudiants qui ont 4. Si leur note passe à 6, la médiane change-t-elle?

- c) On relève toutes les notes de 3 points(on augmente chaque note de trois points). Quelle est alors la médiane?
 - d) L'un des étudiants qui a obtenu 7 est exclu de la série. Que devient la médiane?
 - 4) Déterminer l'écart interquartile de la série initiale.
 - 5) Déterminer la moyenne et l'écart-type de cette série.

Exercice 1.4: Taux de cholestérol: caractère quantitatif continu

Le taux de cholestérol X est observé chez 220 personnes. L'unité de X est le en g/l (en gramme par litre de sang). On relève les résultats suivants :

Taux	[1,6;1,8[[1,8;2[[2;2,2[[2,2;2,4[[2,4;2,6[
Effectif	68	59	45	30	18

- 1) Faire un changement de variable convenable puis compléter le tableau statistique précédent(en rajoutant 6 lignes associées respectivement aux x_i , y_i , $n_i y_i$, $n_i y_i$, $n_i y_i$, fréquences f_i , fréquences cumulées F_i , où x_i est le centre de la i ème classe et où $y_i = \frac{(x_i - a_i)^2}{b^2}$ avec a et b à choisir).

 2) Représenter l'histogramme des fréquences cumulées croissantes de cette série statistique puis le
- polygone correspondant.
- 3) Déterminer le mode, la moyenne \bar{x} et l'écart-type σ de cette série. Déterminer la médiane, les quartiles, l'écart interquartile et la dispersion à l'intérieur de l'intervalle interquartile.
- 4) Déterminer approximativement le pourcentage de personnes dont le taux de cholestérol est supérieur à 2.3 g/l.
- 5) On appelle diagramme de Tukey ou diagramme en boite ou boîte à moustaches ou encore boîte à pattes un diagramme comme ci-dessous sur lequel sont indiquées les caractéristiques suivantes : minimum, premier quartile, médiane, troisième quartile et maximum.

La boîte à moustaches, une traduction de « Box & Whiskers Plot », fut inventée en 1977 par le statisticien américain John Wilder Tukey (1915-2000) pour représenter schématiquement une distribution ou d'en comparer plusieurs entre elles.

Tracer la boite à moustache associée aux données de la statistique du taux de cholestérol.

Exercice 1.5: Sous-populations

Soit X un caractère défini sur une population d'effectif N tel que $\forall w \in \Omega \ 0 \le X(w) \le 1$. Soient Ω_1 et Ω_2 2 sous-populations d'effectifs N_1 et N_2 telles que $\Omega = \Omega_1 \cup \Omega_2$ et $\Omega_1 \cap \Omega_2 = \emptyset$.

- Soient $X_1 = X_{|\Omega_1}$ et $X_2 = X_{|\Omega_2}$. 1) Montrer que : $\bar{X} = \frac{N_1 X_1 + N_2 X_2}{N_1 + N_2}$ et $V(X) = \frac{N_1 V(X_1) + N_2 V(X_2)}{N_1 + N_2} + \frac{N_1}{N} (\bar{X_1} \bar{X})^2 + \frac{N_2}{N} (\bar{X_2} \bar{X})^2$.
 - 2) Montrer que $0 \le \vec{X}_1 \le 1$ et $0 \le \vec{X}_2 \le 1$, $|\vec{X}_2 \vec{X}_1| \le 1$ et $|\vec{X} \vec{X}_1| \le \frac{N_2}{N}$.
 - 3) Montrer que $0 \le V(X_1) \le 1$ et $0 \le V(X_2) \le 1$, $|V(X_2) V(X_1)| \le 1$.
- 4) Montrer que $V(X) V(X_1) = \frac{N_2(V(X_2) V(X_1))}{N} + \frac{N_1}{N} (\bar{X}_1 \bar{X})^2 + \frac{N_2}{N} (\bar{X}_2 \bar{X})^2$.