Paul Gustafson Texas A&M University - Math 641 Instructor - Fran Narcowich

HW 9

1 Finish the proof of the Projection Theorem: If for every $f \in \mathcal{H}$ there is a $p \in V$ such that $||p - f|| = \min_{v \in V} ||v - f||$ the V is closed.

Proof. Let $(f_n) \subset V$ with $f_n \to f$. Suppose $f \notin V$. Let p be the projection of f to V. Then $||f_n - f|| \ge ||f - p|| > 0$ for all n. Letting $n \to \infty$, we get $0 \ge ||f - p|| > 0$, a contradiction.

2 If $L: \mathcal{H} \to \mathcal{H}$ is a bounded linear transformation, then $\overline{R(L)} = N(L^*)^{\perp}$.

Proof. Suppose $(Lv_n)_n \subset R(L)$ with $Lv_n \to w$. Then if $u \in N(L^*)$ we have $\langle u, Lv_n \rangle = \langle Lu, v_n \rangle = 0$. Letting $n \to \infty$, we have $\langle u, w \rangle = 0$. Hence, $\overline{R(L)} \subset N(L^*)^{\perp}$.

For the reverse inclusion, suppose $v \in N(L^*)^{\perp}$. Let P be the orthogonal projection operator mapping onto $\overline{R(L)}$. Let $u = v - Pv \in \overline{R(L)}^{\perp}$. Hence, $0 = \langle LL^*u, u \rangle = ||L^*u||$, so $L^*u = 0$. Moreover $v, Pv \in N(L^*)^{\perp}$, so $u \in N(L^*)^{\perp}$. Thus u = 0, so $v \in \overline{R(L)}$.

3 Let \mathcal{H} be a Hilbert space of functions that are defined on [0,1]. In addition, suppose that $\mathcal{H} \subset C[0,1]$, with $||f||_{C[0,1]} \leq K||f||_H$ for all $f \in \mathcal{H}$. (The Sobolev space H^1 has this property.)

- a. Show that the point-evaluation functional $\phi_x(f) = f(x)$ is a bounded linear functional on \mathcal{H} .
- b. Let x be fixed. Show that there is a kernel $k(x,y) \in \mathcal{H}$ such that

$$\phi_x(f) = f(x) = \langle f, k(x, \cdot) \rangle$$

(The kernel k(x, y) is called a reproducing kernel and \mathcal{H} is called a reproducing kernel Hilbert space.)

- c. For x,z fixed, show that $k(z,x) = \langle k(z,\cdot), k(x,\cdot) \rangle$. In addition, let $(x_j)_{j=1}^n$ be any finite set of distinct points in [0,1]. Show that the matrix $G_{jk} = k(x_k,x_j)$ is positive semidefinite; that is $\sum_{j,k} c_k \overline{c_j} k(x_k,x_j) \geq 0$.
- d. Suppose the matrix G is positive definite and therefore invertible. Let $f \in \mathcal{H}$. Show that there are unique coefficients $(c_j)_{j=1}^n$ such that $s(x) = \sum_{j=1}^n k(x_j, x)c_j$ interpolates f at the x_j 's.

Proof. For (a), we have $|\phi_x(f)| \leq ||f||_{C[0,1]} \leq K||f||_{\mathcal{H}}$.

(b) follows from (a) and the Riesz Representation Theorem.

For (c), we have $k(z,x) = \phi_x(k(z,\cdot)) = \langle k(z,\cdot), k(x,cdot) \rangle$. For the other part, we have

$$\sum_{j,k} c_k \overline{c_j} k(x_k, x_j) = \sum_{j,k} c_k \overline{c_j} \langle k(x_k, \cdot), k(x_j, cdot) \rangle$$

$$= \sum_{j,k} \langle c_k k(x_k, \cdot), c_j k(x_j, cdot) \rangle$$

$$= \left\langle \sum_k c_k k(x_k, \cdot), \sum_j c_j k(x_j, cdot) \right\rangle$$

$$> 0.$$

For (d), let $v = (f(x_1), f(x_2), \dots, f(x_n))$. A coefficient vector c interpolates f at the x_j 's iff it is the solution to the matrix equation cG = v. This has a unique solution since G is invertible.

4 Consider the finite rank (degenerate) kernel $k(x,y)=\phi_1(x)\overline{\psi_1}(y)+\phi_2(x)\overline{\psi_2}(y)$, where $\phi_1=2x-1,\phi_2=x^2,\psi_1=1,\psi_2=4x-3$. Let $Ku=\int_0^1 k(x,y)u(y)dy$. Assume that $L:=I-\lambda K$ has closed range.

a. For what values of λ does the integral equation

$$u(x) - \lambda \int_0^1 k(x, y)u(y)dy = f(x)$$

have a solution for all $f \in L^2[0,1]$.

- b. For these values, find the solution $u = (I \lambda K)^{-1}F$ i.e., find the resolvent.
- c. For the values of λ for which the equation does not have a solution for all f, find a condition on f that guarantees a solution exists. Will the solution be unique?

Proof. For (a), we have $u-\lambda \sum_i \langle u, \psi_i \rangle \phi_i = f$. Hence $\langle u, \psi_j \rangle - \sum_i \langle u, \psi_i \rangle \langle \phi_i, \psi_j \rangle = \langle f, \psi_j \rangle$. Hence $\sum_i (\delta_{ij} - \lambda \langle \phi_i, \psi_j \rangle) \langle u, \psi_i \rangle = \langle f, \psi_j \rangle$. Using the alternative value for ϕ_2 , the determinant of $\delta_{ij} - \lambda \langle \phi_j, \psi_j \rangle$ is 1. Thus, we can find solutions for all λ .

For (b), the solution is given by $\langle u, \psi_1 \rangle = \langle f, \psi_1 \rangle + \lambda/3 \langle f, \psi_2 \rangle$ and $\langle u, \psi_2 \rangle = \langle f, \psi_2 \rangle$.

5 Let $S = \{(a_j) \in \ell^2 : \sum_j (1+j^2)|a_j|^2 \le 1\}$. Show that S is a compact subset of ℓ^2 .

Proof. It suffices to show that S is closed and totally bounded. To see that S is closed, suppose $(a^{(n)}) \subset S$ with $a^{(n)} \to a$ in ℓ^2 . Suppose $a \notin S$. Then

 $\sum_{j=1}^{N} (1+j^2)|a_j|^2 > 1+\epsilon$ for some N and some $\epsilon > 0$. But then we have

$$\epsilon \le \sum_{j=1}^{N} (1+j^2)|a_j|^2 - \sum_{j=1}^{\infty} (1+j)^2 |a_j^{(n)}|^2$$
$$\le \sum_{j=1}^{N} (1+j^2)(|a_j|^2 - |a_j^{(n)}|^2) \to 0$$

as $n \to \infty$, a contradiction. Hence S is closed.

To see that S is totally bounded, let $\epsilon > 0$. We have $\sum_{j=N}^{\infty} |a_j|^2 \le N^{-2} \sum_{j=N}^{\infty} (1+j^2) |a_j|^2 \le N^{-2} \operatorname{for}(a_j) \in \ell^2$. Pick N such that $N^{-2} < \epsilon$. Note that $||a|| \le 1$ for all $a \in S$. Recall that $B_1(\ell_2^N)$ is totally bounded. The rest of S is within ϵ of $B_1(\ell_2^N)$, so S is totally bounded.