König's theorem

قضیه کونیگ

Matching

Maximum matching

Vertex cover

Minimum vertex cover

The relationship between minimum vertex cover and maximum matching

For any graph G=(V, E):

The Cardinality of any vertex cover is equal to or greater than the cardinality of any matching.

Conclusion:

The cardinality of minimum vertex cover is equal to or greater than the cardinality of maximum matching.

König's theorem

In bipartite graphs:

The cardinality of minimum vertex cover is equal to the cardinality of maximum matching

G=(V, E):

Bipartite graph with maximum matching

U = The set of unmatched vertices in **L**

Z =The set of vertices that are either in **U** or are connected to **U** by <u>alternating paths</u>.

$$K = (L \setminus Z) \cup (R \cap Z).$$

We prove that **K** is a vertex cover.

Each e in E is either:

- Belongs to an alternating path.
 So it has a right endpoint in K.
- 2. It is a matching edge. So it has a left endpoint in **K**.
- 3. It is not a matching edge. So it has a left endpoint in **K**.

Each e in E is either:

- Belongs to an alternating path.
 So it has a right endpoint in K.
- 2. It is a matching edge. So it has a left endpoint in **K**.
- 3. It is not a matching edge. So it has a left endpoint in **K**.

So **K** covers every edge.

Now, what is the cardinality of **K**?

$$K = (L \setminus Z) \cup (R \cap Z).$$

Each vertex in **K** is an endpoint to a distinct matching edge.

So the cardinality of **K** is equal to the cardinality of matching.

THE END