COMP30120

Evaluation in Machine Learning Part 1

Derek Greene

School of Computer Science and Informatics Autumn 2015

Overview

- Part 1
 - Objectives of Evaluation
 - A/B Testing
 - Basic Statistics Reminder
 - Statistical Significance
 - Student's t-test
 - Tests for proportions
- Part 2
 - Evaluation Measures
 - Overfitting
 - Experimental Setup

Objectives of Evaluation

Q. Is machine learning algorithm A better than algorithm B?

Supervised Learning

- Does classifier A have better accuracy than B on a given dataset?
- Does classifier A have better accuracy across many different datasets?
- What is the difference in generalisation performance on new data not seen in training?

Unsupervised Learning

- Does clustering algorithm X provide more useful or interpretable results than algorithm Y?
- Q. Is the difference between the results statistically significant?

A / B Testing

- Example: Amazon Shopping Cart Recommendations
 - Add an item to your shopping cart at a website, most sites then show cart to the user.
 - At Amazon, Greg Linden suggested showing the user recommendations based on cart items instead.
 - What are the possible effects of this website change?
 - ✓ Pro: cross-sell more items (increase average basket size)
 - X Con: distract people from checking out (reduce conversion)
 - Evaluation: Simple user experiment was run, change was wildly successful.

http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html

Simple Controlled Experiments

- Randomly split traffic between two or more versions e.g. (A) Control, (B) Treatment
- 2. Collect and analyse metrics of interest

Basic Statistics Reminder

- Let (x_1, x_2, \dots, x_n) be the values of some variable (data) X, for a sample of size n.
- The arithmetic mean of the data X is calculated as: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Measures of dispersion characterise how spread out the distribution of the sample is - i.e. how variable the data are.
- The variance is the arithmetic mean of the squared deviations from the sample mean.

$$var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}$$

 The standard deviation is the square-root of the variance.

$$\sigma(X) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}}$$

Hypothesis Testing

• For statistical significance, the most important relationship is between the difference (delta) and sample size *n*.

$$n \propto \frac{1}{\Delta^2}$$

Inverse square relationship

- The smaller the difference, the more data required to test the hypothesis.
- In the past, getting enough data to test a hypothesis was the problem.
- Now we often (but not always) have to deal with an overabundance of data.

Example: Statistical Significance

- Have cases of two different treatment for broken wrists. Two groups:
 - 1. Control: Plaster Cast
 - 2. Treatment: Surgery (Pins) + Cast
- Want to test for difference in proportions.
 Is there a significant difference between the control and the treatment?

	Control	Treatment
Size	50	50
Cured	10	20

Contingency Table

- Difference between two groups is statistically significant (p ≥ 0.04).
- If only 18/50 patients in treatment group had been cured (instead of 20/50), this difference would not be significant.
- Small sample size has a substantial impact on significance here.
- Good News: Significant effects do not always require big data

Example: Statistical Significance

- Report on deaths after surgery surveyed over one week in 2011.
- Is there a significant difference between death rates in UK and Ireland?

	UK	Ireland
Cohort	10630	856
Died	378	55

3.56% 6.43%

- Difference between two groups is statistically significant.
- If only 41/856 patients in Ireland had died (instead of 55/856), difference would not be significant. Difference could be due to chance.
- Small sample size has a substantial impact on significance here.

Mortality after surgery in Europe

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493988/

Hypothesis Testing

• The goal of hypothesis testing is to formally examine two opposing hypotheses H_0 and H_A . These two hypotheses are mutually exclusive, so one is true to the exclusion of the other.

Definitions

- Null Hypothesis H₀: States the assumption to be tested.
 e.g. There is no difference between the performance of two machine learning algorithms.
- p-Value: The probability of obtaining a result equal to or "more extreme" than what was actually observed, assuming that the hypothesis H₀ is true.
- Type I error: Rejecting H₀ when it is in fact true.
 i.e. "false alarm" detecting a difference, when none exists.
- Type II error: Failing to reject H_0 when it is in fact false. i.e. concluding there is no difference, when there is.
- *Power of a test*: The potential of a statistical test to correctly reject a false null hypothesis H_0 (i.e. not commit a Type II error).

Type I and Type II Errors

- Type I error: Rejecting H₀ when it is in fact true.
 i.e. "false alarm" detecting a difference, when none exists.
- *Type II error*: Failing to reject H_0 when it is in fact false. i.e. concluding there is no difference, when there is.

Statistical Test Result

		H ₀ Rejected	Ho Not Rejected
Real World	There is a real difference	Correct A Hit	Type II Error Missed a real difference
Ä	There is in fact no difference	Type I Error False alarm	Correct Right to be sceptical of H_A

Two Tail vs One Tail

Before testing, we need to decide if we are interested in a *one-tailed* or a *two-tailed* statistical test.

- One-tailed: We decide in advance of looking at the data that one mean value will be larger than the other.
 e.g. "Did a generic drug work better than a brand name drug?"
- Two-tailed: We have no strong belief on whether the sample mean is likely to be higher or lower than the mean in the null hypothesis.
 - e.g. "Did a generic drug work <u>better than or</u> worse than a brand name drug?"

P-Value Testing

General Approach for Testing

- 1. <u>Calculate</u> a test statistic on the sample data that is relevant to the hypothesis being examined.
- 2. Convert the result to a *p*-value by comparing its value to the distribution of test statistics under the null hypothesis.
- 3. <u>Decide</u>, for a specific level of significance, if we should reject or not reject the null hypothesis, based on the *p*-value:

$$p \le \alpha \implies \text{reject } H_0 \text{ at level } \alpha$$
 "Is it low enough $p > \alpha \implies \text{do not reject } H_0 \text{ at level } \alpha$ to be significant?"

- The actual p-value threshold (α) depends on the problem, but 0.05 or 0.01 are often chosen "by default".
- The choice controls the Type I Error rate: "How serious is it to believe that something is true when it is in fact false?"

Student's t-Test

- William Sealy Gosset an English statistician who was employed as a chemist by Arthur Guinness & Son in Dublin.
- Wrote papers in his spare time under the pen name "Student".
- Most noteworthy achievement is called Student's t-test (1908), designed to compare small samples from quality control experiments in brewing.
- → Are the means of two groups statistically different from each other?

Student's t-Test

Comparing scores for 2 teams. Is Team A <u>better than</u> Team B?

Team A	Team B
23	26
12	15
14	17
54	57
34	45
12	15
9	12
9	18
18	9
21	24

	Team A	Team B
Ν	10	10
Mean	20.600	23.800
Std Dev	14.017	15.455
Variance	196.489	238.844

Test statistic	t = -0.4850
P-Value	P(T≤t) one tail = 0.317

- For a given *t*-statistic value you can look up the confidence.
- There is a 31.7% chance that this difference is due to chance (according to this test).
- Difference between Team A and Team B is unlikely to be statistically significant.

Student's t-Test

 More observations and/or greater difference more likely to give statistical significance.

Team A	Team B
23	29
12	20
14	17
23	26
34	45
12	15
9	12
9	18
18	9
21	24
12	15
12	15
14	17
33	36
34	45
12	15
9	12
9	18
18	21
12	15

	Team A	Team B
N	20	20
Mean	17.000	21.200
Std Dev	8.423	10.288
Variance	70.947	105.853

Test statistic	t = -1.413
P-Value	P(T≤t) one tail = 0.083

→ There is now a 8.3% chance that this difference is due to chance (according to this test).

Paired t-Tests

- Scores can be paired. e.g. Compare results achieved against the same teams: Team A v Team C & Team B v Team C
- Interested in the differences between each pair of scores.
- With paired data statistical significance can be determined using fewer observations.

Team A	Team B	Delta
23	26	-3
12	15	-3
14	17	-3
54	57	-3
34	45	-11
12	15	-3
9	12	-3
9	18	-9
18	9	9
21	24	-3

	Team A	Team B
N	10	10
Mean	20.600	23.800
Std Dev	14.017	15.455
Variance	196.489	238.844

Test statistic	t = -1.945
P-Value	P(T≤t) one tail = 0.042

→ Lower P-value. We can now say with 95% confidence that Team B are better than Team A.

Student's t-Test: Formulae

- How are t-statistics calculated?
- Two unpaired samples, A and B:

$$t = \frac{\overline{X}_A - \overline{X}_B}{\sqrt{\frac{var(A)}{n_A} + \frac{var(B)}{n_B}}}$$

Notation:

 \overline{X}_A Mean of sample A \overline{X}_B Mean of sample B var(A) Variance of sample A var(B) Variance of sample B n_A Number of observations in A n_B Number of observations in B

- What about paired data?
- Two paired samples, A and B:

$$t = \frac{\overline{X}_D \times \sqrt{n}}{\sigma_D}$$

Notation:

D Difference in pairs in A and B

 \overline{X}_D Mean of differences D

 σ_D Standard Dev of differences B

n Number of observations

Example: Unpaired t-Test

Is Team A better than Team B, based on unpaired results?

Team A	Team B
23	26
12	15
14	17
54	57
34	45
12	15
9	12
9	18
18	9
21	24

	Team A	Team B
N	10	10
Mean	20.600	23.800
Std Dev	14.017	15.455
Variance	196.489	238.844

$$t = \frac{\overline{X}_A - \overline{X}_B}{\sqrt{\frac{var(A)}{n_A} + \frac{var(B)}{n_B}}}$$

$$t = \frac{20.6 - 23.8}{\sqrt{\frac{196.489}{10} + \frac{238.844}{10}}}$$

Apply a one-tailed-test

Test statistic	t = -0.4850
P-Value	P(T≤t) one tail = 0.317

$$t = -0.4850$$

Example: Paired t-Test

Is Team A better than Team B, based on paired results?

Team A	Team B	Delta
23	26	-3
12	15	-3
14	17	-3
54	57	-3
34	45	-11
12	15	-3
9	12	-3
9	18	-9
18	9	9
21	24	-3

$$t = \frac{\overline{X}_D \times \sqrt{n}}{\sigma_D}$$

Look at the mean and standard deviation of the differences (deltas)

$$t = \frac{-3.2 \times \sqrt{10}}{5.2} = -1.946$$

Observations (n)	10
Mean of differences (deltas)	-3.2
Std Dev of differences (deltas)	5.20

Test statistic	t = -1.946
P-Value	P(T≤t) = 0.084

 Paired t-tests are often used for comparing classifiers if multiple test sets are available, and also in cross validation experiments.

Testing - Implementations

 Many libraries and packages are available for hypothesis testing e.g. SciPy for Python, Apache Commons Math for Java

Standard t-tests (two tail):

```
>>> from scipy import stats
>>> a = [23,12,14,23,34,12,9,9,18,21,12,12,14,33,34,12,9,9,18,12]
>>> b = [29,20,17,26,45,15,12,18,9,24,15,15,17,36,45,15,12,18,21,15]
>>> t, pvalue = stats.ttest_ind(a,b)
>>> print "The t-statistic is %.3f and the p-value is %.3f." % (t,pvalue)
The t-statistic is -1.413 and the p-value is 0.166.
```

Paired t-tests (two tail):

```
>>> from scipy import stats
>>> a = [23, 12, 14, 54, 34, 12, 9, 9, 18, 21]
>>> b = [26, 15, 17, 57, 45, 15, 12, 18, 9, 24]
>>> t, pvalue = stats.ttest_rel(a,b)
>>> print "The paired t-statistic is %.3f and the p-value is %.3f." % (t,pvalue)
The paired t-statistic is -1.945 and the p-value is 0.084.
```

Difference in Proportions

- A *t*-test is sometimes used to analyse differences in proportions e.g. comparison of conversion rates in A/B testing.
- Requires a number of assumptions about the population which are usually not true.

	Control	Treatment
Samples	n ₁	n ₂
Conversions	C1	C 2

$$p = \frac{c1 + c2}{n1 + n2} \qquad p_1 = \frac{c_1}{n_1} \qquad p_2 = \frac{c_2}{n_2}$$

$$t \text{ statistic} = \frac{\text{ Difference in proportions}}{\text{Standard error}} \qquad \qquad t = \frac{p_1 - p_2}{\sqrt{p(1-p) \times (\frac{1}{n_1} + \frac{1}{n_2})}}$$

http://stattrek.com/hypothesis-test/difference-in-proportions.aspx

McNemar's Test

- Measure for comparing <u>paired proportions</u>.
 e.g. Which is better, classifier C2 or C3?
- Applied to 2x2 contingency tables.
- Test captures two key differences:

 n_{01} : number misclassified by 1st but not 2nd classifier.

 n_{10} : number misclassified by 2^{nd} but not 1^{st} classifier.

C1	C2	C3
<	~	×
<	<	<
<	<	×
<	<	<
<	~	×
×	<	×
×	~	~
×	×	×
×	×	~
×	×	~

Contingency for C2 v C1

3		2	
	n_{00}		n_{01}
0		5	
	n_{10}		n_{11}

McNemar C2 v C1

$$\chi^2 = 1/2 = 0.5$$

$$\chi^2 = \frac{(|n_{01} - n_{10}| - 1)^2}{n_{01} + n_{10}}$$

Note: For test to be applicable require $(n_{01}+n_{10}) > 10$

Contingency for C3 v C1

1		2	
	n_{00}		n_{01}
4		3	
	n_{10}		n_{11}

McNemar C3 v C1

$$\chi^2 = 1/6 = 0.1666$$

 \rightarrow $\chi^2 > 3.84$ required for statistical significance at 95%. So neither classifier significantly better!

Summary

- Objectives of Evaluation
- A/B Testing
- Hypothesis Testing
 - Student's t-test
 - t-Test for paired data
 - Differences in proportions
 - McNemar's test for proportions
- Next: Evaluation measures and setup for classification