DIALOG(R) File 351:Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv.

009936314 **Image available**
WPI Acc No: 1994-204026/ 199425

XRPX Acc No: N94-160702

Image pick-up device for image pick-up equipment - has opening of light shielding layer made narrow for pixels of centre area and made large for pixels of end area NoAbstract

Patent Assignee: MITSUBISHI ELECTRIC CORP (MITQ) Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 6140612 A 19940520 JP 92316197 A 19921028 199425 B

Priority Applications (No Type Date): JP 92316197 A 19921028

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 6140612 A 11 H01L-027/14

Abstract (Basic): JP 6140612 A

Dwq.1/1

Title Terms: IMAGE; PICK-UP; DEVICE; IMAGE; PICK-UP; EQUIPMENT; OPEN; LIGHT; SHIELD; LAYER; MADE; NARROW; PIXEL; CENTRE; AREA; MADE; PIXEL; END;

AREA; NOABSTRACT

Derwent Class: U13; W04

International Patent Class (Main): H01L-027/14

International Patent Class (Additional): H04N-005/335

File Segment: EPI

Manual Codes (EPI/S-X): U13-A02X; W04-M01B5

HEGG PROGELENBLER (USPRO)

BEST AVAILABLE COPY

'S TIGE DEANK (USPTO)

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-140612

(43)公開日 平成6年(1994)5月20日

(51) Int.Cl. ⁵	識別記号 庁内整理番号	FI	技術表示箇所
H01L 27/14			
H 0 4 N 5/335	v		
	7210-4M	H01L 27/14	D

審査請求 未請求 請求項の数5(全11頁)

顧人 000006013 三菱電機株式会社
二苯母墩还式合计
二发电域外以云江
東京都千代田区丸の内二丁目2番3号
明者 川島 光
兵庫県伊丹市瑞原4丁目1番地 三菱電機
株式会社エル・エス・アイ研究所内
明者 西岡 康隆
兵庫県伊丹市瑞原4丁目1番地 三菱電機
株式会社エル・エス・アイ研究所内
明者山脇。正雄
兵庫県伊丹市瑞原4丁目1番地 三菱電機
株式会社エル・エス・アイ研究所内
理人,弁理士 早瀬 憲一

(54) 【発明の名称】 撮像素子及び撮像装置

(57) 【要約】

【目的】 結像レンズの有効径が小さくとも、各絞りに おいて全画面にわたって均一な信号出力を得ることがで きる撮像装置を得る。

【構成】 撮像素子100の各画素3に入射する光を制限する遮光層8を、撮像素子の画素部の中央部分Aの画素に対応する開口部を狭く、画素部の端部Bの画素に対応する開口部を広くし、結像レンズでのケラレによる撮像素子の中央部分と端部への入射光量の不均一を各画素に入射する段階で補正するようにした。

【特許請求の範囲】

【請求項1】 基板上に複数の画素を配置してなる画素 部と、該画素部の各画素に対応した開口部を有する遮光 層とを有する撮像素子において、

上記遮光層は、上記画素部の中央部分の画素に対応する 開口部の開口幅が上記画素部の端部の画素に対応する開 口部の開口幅よりも狭く形成されていることを特徴とす る撮像素子。

【請求項2】 基板上に複数の画素を配置してなる画素 部と、該画素部の各画素に対応して設けられたマイクロ 10 レンズとを有する撮像素子において、

上記画素部の中央部分の画素に対応して設けられたマイクロレンズの曲率が上記画素部の端部の画素に対応して設けられたマイクロレンズの曲率よりも小さいことを特徴とする撮像素子。

【請求項3】 被写体像を結像するための結像レンズ と、該結像レンズにより結像された光像を電気信号に変 換するための撮像素子とを備えた撮像装置において、

上記撮像素子は、基板上に複数の画素を配置してなる画素的と、該画素部の各画素に対応した開口部を有する遮 20 る。 光層とを有するものであり、かつ上記遮光層は、上記画素部の中央部分の画素に対応する開口部の開口幅が上記画素部の端部の画素に対応する開口部の開口幅よりも狭く形成されていることを特徴とする撮像装置。 結婚

【請求項4】 被写体像を結像するための結像レンズ と、該結像レンズにより結像された光像を電気信号に変 換するための撮像素子とを備えた撮像装置において、

上記撮像素子は、基板上に複数の画素を配置してなる画素部と、該画素部の各画素に対応して設けられたマイクロレンズとを有するものであり、かつ、上記画素部の中 30 央部分の画素に対応して設けられたマイクロレンズの曲率が上記画素部の端部の画素に対応して設けられたマイクロレンズの曲率よりも小さいことを特徴とする撮像装置。

【請求項5】 被写体像を結像するための結像レンズ と、該結像レンズにより結像された光像を電気信号に変 換するための撮像素子とを備えた撮像装置において、

結像レンズの絞り値を入力とし、当該絞り値において結像レンズの周辺光のケラレにより生ずる撮像素子の各画素の信号出力の面内不均一を補正するための信号を出力 40 する補正信号発生手段と、

上記撮像素子の出力を上記補正信号発生手段が出力する 信号を用いて補正する信号処理手段とを備えたことを特 徴とする撮像装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明はビデオカメラ,スチルカメラ,監視用カメラ等の撮像装置に関し、特に結像レンズによる光のケラレにより生ずる撮像素子の中央部分と端部での信号出力の不均一を補正できる撮像装置及び

撮像素子に関するものである。

[0002]

【従来の技術】図11はレンズを通して、被写体を撮像素子に結像する様子を示す模式的な光線図である。図において、11は被写体像を結像するための結像レンズ、12は結像面、13は射出瞳面を示し、図中の一点鎖線は光線の軌跡を示す。また、aは射出瞳位置、fはパックフォーカス、rはレンズの有効径、hは像面高、s,t,iはそれぞれ角度を示す。

【0003】また、図12は従来の撮像装置において、図11の結像面12に配置されるIT-CCD撮像素子の構造を示す断面図である。図において、1はn型シリコン基板、2は第1p型層よりなるウェル領域、3は第1n型層よりなる受光部、4は第2n型層よりなるCCDチャネル領域、5は第2p型層よりなるチャネル分離領域、6はシリコン酸化膜よりなるゲート絶縁膜、7はポリシリコン膜よりなるゲート電極、8はCCDへ入射する光を遮るアルミ等からなる遮光膜、9は平坦化層、10はマイクロレンズである。100は撮像素子である。

【0004】図13は撮像素子の複数の画素が配置された画素部全体を示す上面図であり、図において、oは撮像素子の中心であり、一般に、撮像素子はこの中心oが結像レンズの光軸上に位置するように結像面に配置される。またa,b,cは撮像素子のX-X線上の画面位置を示している。またAは撮像素子の中央部分、Bは撮像素子の周辺部分であり、説明の便宜のために区分して示したものである。

【0005】次に動作について説明する。図11において、図示しない被写体からレンズ11に入った光は結像面12で結像する。この時、レンズ中心を通る光線はレンズのF値により入射角tの角度の光束を結像する。F値と人射角tの間には、

 $t = sin^{-1} (1/2F)$

の関係がある。即ち、入射角 t は絞りを開放側にするほど大きくなる。

【0006】結像面12に配置される撮像素子上には、本来、その画面上のいずれの位置においても同様の光束が入るべきであり、このためには、像面高hの撮像素子を用いる場合では、以下のような有効径を備えたレンズが必要となる。

【0007】撮像素子端部を通る主光線は、レンズ中心を通った主光線と射出瞳位置で角度1で交わる。角度1は、

 $i = tan^{-1} (h/a)$

で、また、撮像素子端部を通る主光線と最周辺光線のな す角度 s は、

s≒t

ンズによる光のケラレにより生ずる撮像素子の中央部分で近似できる。従って、パックフォーカスf,射出瞳位と端部での信号出力の不均一を補正できる撮像装置及び 50 置aのレンズで、像面高hの撮像素子を用いる撮像装置

の絞りF時のレンズ必要径rは、

 $r = 2 \times (f \times tan (t + i) + h)$ $= 2 \times [f \times tan \{ sin^{-1} (1/2 F) + tan^{-1} (h/a) \} + h]$

となる。

【0008】ところで、従来の撮像装置では、撮像装置 の小型、軽量化のため結像レンズ径を小さくする要望が あり、サイズ (像面高h) の同じ撮像素子を用い、結像 レンズ径のみを小さくするような場合には、F値を閉放 側として使用する際にレンズ11の有効径が上述の必要 径を満足していないものとなる。

【0009】即ち、このような撮像装置では、絞りを、 レンズの有効径と撮像素子の像面高で決まる所定のF値 よりも非開放側として使用する際は、撮像素子の画面上 のいずれの位置においても同様の光束が入射するが、絞 りを、レンズの有効径と撮像素子の像面高で決まる所定 のF値よりもさらに開放側にしたときにはレンズ周辺部 で生ずる光のケラレが撮像素子に結像される光束の光量 に影響を及ぼし、損像素子の端部に結像される光束の光 量が低下する。

【0010】一方、図12に示すように、従来の撮像装 置に用いられる撮像素子では、素子中央部Aの画素と素 子端部Bの画素は、マイクロレンズ10の形状,遮光層 8の開口幅を含めて同一の構造を有し、各画素に対し入 射する光束が同様のものであれば各画素からは均一の信 号出力が得られる。しかし、上述したように従来の撮像 装置では、撮像素子上に被写体を結像するために使用す るレンズの有効径が小さいので、レンズの絞りを開放側 にしていくと、撮像素子端部側からその入射光量が低下 し、素子中央部の画素に比して素子端部の画素の信号出 力は低くなる。図14はこの様子を示す図であり、縦軸 は各下値の信号出力を画面中央値で規格化した値を、横 軸は画面の位置を示す。図14中の画面位置a.b.c はそれぞれ図13において、oを中心とし、oa,o b. o c を半径とする同心円上の位置を示す。

[0011]

【発明が解決しようとする課題】従来の提像装置では、 上述のように、撮像素子上に被写体を結像するための結 像レンズの有効径が必要径を満足していないため、絞り を開放側にしていくと、結像レンズの端部で生じる光の ケラレにより、撮像素子の中央部の画素と端部の画素と 40 の信号出力の不均一が生じ、画面の周囲が中央部分に比 して暗くなるという問題点があった。

【0012】この発明は上記のような問題点を解消する ためになされたもので、撮像素子上に被写体を結像する ためのレンズの有効径が小さい場合でも、各紋り時に、 全画面にわたって均一な信号出力を得ることができる撮 像装置を得ることを目的とする。

[0013]

【課題を解決するための手段】この発明に係る撮像素子

素部の各画素に対応した開口部を有する遮光層とを有す るものにおいて、上記遮光層が、上記画素部の中央部分 の画素に対応する開口部の開口幅が上記画素部の端部の 画素に対応する開口部の開口幅よりも狭く形成されたも のである。

【0014】また、この発明に係る撮像素子は、基板上 10 に複数の画素を配置してなる画素部と、該画素部の各画 素に対応して設けられたマイクロレンズとを有するもの において、上記画素部の中央部分の画素に対応して設け られたマイクロレンズの曲率が上記画素部の端部の画素 に対応して設けられたマイクロレンズの曲率よりも小さ いものである。

【0015】また、この発明に係る撮像装置は、被写体 像を結像するための結像レンズと、該結像レンズにより 結像された光像を電気信号に変換するための撮像素子と を備えたものにおいて、上記撮像素子を、基板上に複数 の画素を配置してなる画素部と、該画素部の各画素に対 20 応した開口部を有する遮光層とを有するものとし、かつ 上記遮光層を、上記画素部の中央部分の画素に対応する 開口部の開口幅が上記画素部の端部の画素に対応する開 口部の開口幅よりも狭く形成されたものとしたものであ る。

【0016】また、この発明に係る撮像装置は、被写体 像を結像するための結像レンズと、該結像レンズにより 結像された光像を電気信号に変換するための撮像素子と を備えたものにおいて、上記撮像素子を、基板上に複数 30 の画素を配置してなる画素部と、該画素部の各画素に対 応して設けられたマイクロレンズとを有するものとし、 かつ、上記画素部の中央部分の画素に対応して設けられ たマイクロレンズの曲率を上記画素部の端部の画素に対 応して設けられたマイクロレンズの曲率よりも小さくし たものである。

【0017】また、この発明に係る撮像装置は、被写体 像を結像するための結像レンズと、該結像レンズにより 結像された光像を電気信号に変換するための撮像素子と を備えたものにおいて、結像レンズの絞り値を入力と し、当該絞り値において結像レンズの周辺光のケラレに より生ずる撮像森子の各画森の信号出力の面内不均一を 補正するための信号を出力する補正信号発生手段と、上 記撮像素子の出力を上記補正信号発生手段が出力する信 号を用いて補正する信号処理手段とを備えたものであ る。

[0018]

【作用】この発明における撮像素子は、画素部の中央部 分の画素に対応する開口部の開口幅が画素部の端部の画 素に対応する開口部の開口幅よりも狭く形成された遮光 は、基板上に複数の画素を配置してなる画素部と、該画 50 層を備えた構成とした、又は、画素部の中央部分の画素

5

に対応して設けられたマイクロレンズの曲率を囲素部の 端部の画素に対応して設けられたマイクロレンズの曲率 よりも小さくしたので、画素部端部に入射する光の量が 画素部中央部に入射する光の量よりも少ない場合に、画 素部の端部の画素の出力レベルと画素部の中央部分の画 素の出力レベルを均一なものとできる。従ってこれを撮 像装置の結像レンズにより結像された光像を電気信号に 変換するための素子として用いた場合には、結像レンズ のケラレにより画面の周囲が中央部分に比して暗くなる 現象を抑制することができる。

【0019】また、この発明における撮像装置は、結像 レンズにより結像された光像を電気信号に変換するため の撮像素子を、基板上に複数の画素を配置してなる画素 部と、該画素部の各画素に対応した開口部を有する遮光 層とを有するものとし、かつ上記遮光層を、上記画素部 の中央部分の画素に対応する開口部の開口幅が上記画素 部の端部の画素に対応する開口部の開口幅よりも狭く形 成されたものとしたので、結像レンズでのケラレによる 撮像素子の中央部分と端部への入射光量の不均一を各画 素に入射する段階で補正することができ、画面の周囲が 20 中央部分に比して暗くなる現象を抑制することができ る。

【0020】また、この発明における撮像装置は、結像 レンズにより結像された光像を電気信号に変換するため の撮像素子を、基板上に複数の画素を配置してなる画素 部と、該画素部の各画素に対応して設けられたマイクロ レンズとを有するものとし、かつ、上記画素部の中央部 分の画素に対応して設けられたマイクロレンズの曲率を 上記画素部の端部の画素に対応して設けられたマイクロ レンズの曲率よりも小さくしたので、結像レンズでのケ 30 ラレによる撮像素子の中央部分と端部への入射光量の不 均一を各画素に入射する段階で補正することができ、画 面の周囲が中央部分に比して暗くなる現象を抑制するこ とができる。

【0021】また、この発明における撮像装置は、結像 レンズの絞り値を入力とし、当該絞り値において結像レ ンズの周辺光のケラレにより生ずる撮像素子の各画素の 信号出力の面内不均一を補正するための信号を出力する 補正信号発生手段と、上記摄像素子の出力を上記補正信 号発生手段が出力する信号を用いて補正する信号処理手 40 段とを備えた構成としたので、各紋り時に、全画面にわ たって均一な信号出力を得ることができる。

[0022]

【実施例】以下、この発明の実施例を図について説明す

実施例1. 図1は本発明の第1の実施例による摄像装置 に用いる撮像素子を模式的に示す断面図であり、図にお いて、図12と同一符号は同一又は相当部分である。本 実施例に用いる撮像素子の構造は基本的には図12の従 例では遮光膜8の開口幅w1, w2 は素子中央部Aでは 狭く、素子端部Bでは広く形成されている。なお、図1 では図面を簡単にするため、CCDチャネル領域、ゲー ト電極等を省略している。

6

【0023】また、図2はIT-CCD撮像素子の一画 素に対して光が入射する様子を示す図である。図におい て、20は画素に対応して設けられたマイクロレンズ1 0のある一点に入射する光束である。マイクロレンズ1 0は入射する光を屈折し、本来遮光膜で遮られて受光部 3に入らない光を集光し、実効的な開口率の向上を図る ものである。

【0024】図2の矢印20に示すように、実際の入射 光は、主光線からこの主光線に対し結像レンズの絞りに よって変化する角度 t をもつ最周辺光線までの光束で構 成され、遮光膜8の幅により図に示すようなケラレが生 じる。この関係を示したものが図3である。図3におい て、横軸は遮光膜8の開口のサイズを、縦軸は各F値に おける信号出力を開口サイズが大きいときの信号出力で 規格化したものを示す。

【0025】図に示すように、絞りをF4→F1.8と 開放側にするに従い、開口幅の変化が信号出力に及ぼす 影響が大きくなる。即ち遮光膜の開口幅を小さくするこ とによる出力の低下は、絞りを開放側にするほど大きく なる。このような関係はマイクロレンズの形状、材料、 平坦化層の膜厚等によって一義的に決まる。

【0026】図1に示す本実施例の撮像素子は、この関 係を用いて結像レンズの絞りによるケラレを補正するも のであり、遮光膜の開口幅を、素子中央部から端部側に 向けて徐々に大きくなるように変化させている。具体的 には、例えば図13に示す画面位置aに相当する撮像素 子の画素の開口幅が図3に示す開口幅a、図13に示す 画面位置bに相当する撮像素子の画素の開口幅が図3に 示す開口幅 b、図13に示す画面位置 c に相当する摄像 素子の画素の開口幅が図3に示す開口幅cとなるように 変化させている。

【0027】このように本実施例においては、結像レン ズの絞りに依存したケラレによる撮像出力の不均一を補 正するよう撮像素子内の遮光の幅を素子中央部と素子端 部で異ならせたので、各F値において均一な信号出力を 得ることができる。

【0028】実施例2. 図4は本発明の第2の実施例に よる撮像装置に用いる撮像素子を模式的に示す断面図で あり、図において、図12と同一符号は同一又は相当部 分である。本実施例に用いる撮像素子の構造は基本的に は図12の従来の撮像素子と同じであるが、図に示すよ うに、本実施例では、素子中央部Aの画素と素子端部B の画素に設けられたマイクロレンズとでその形状を異な るものとしている。なお、図4では図1と同様、図面を 簡単にするため、CCDチャネル領域、ゲート電極等を 来の撮像素子と同じであるが、図に示すように、本実施 50 省略している。本実施例による撮像素子は、撮像装置の

レンズによるケラレをマイクロレンズのケラレを利用し て補正するものである。

【0029】図5は一定のF値における、異なる曲率を 有するマイクロレンズのそれぞれについての遮光膜の開 口幅と集光率の関係を示すグラフ図である。図に示すよ うに、例えば開口幅Xにおいてみると、一定の絞りでは 曲率の小さい(曲率半径の大きい)マイクロレンズほど ケラレが大きくなることがわかる。

【0030】また、図6は開口幅が一定のときの、各F 値におけるマイクロレンズの曲率と信号出力との関係を 10 示すグラフ図である。図において、横軸はマイクロレン ズの曲率を、縦軸は各F値における信号出力を曲率が大 きいときの信号出力で規格化したものを示す。図に示す ように、絞りをF4→F1.8と開放側にするに従い、 曲率の変化が信号出力に及ぼす影響が大きくなる。即ち マイクロレンズの曲率を小さくすることによる出力の低 下は、絞りを開放側にするほど大きくなる。このような 関係は遮光膜の開口幅、平坦化層の膜厚等によって一義 的に決まる。

【0031】図4に示す本実施例の撮像素子は、この関 20 係を用いて結像レンズの絞りによるケラレを補正するも のであり、マイクロレンズの曲率を、素子中央部から端 部側に向けて徐々に大きくなるように変化させている。 具体的には、例えば図13に示す画面位置aに相当する 撮像素子の画素のマイクロレンズの曲率が図6に示す曲 率a、図13に示す画面位置bに相当する撮像素子の画 素のマイクロレンズの曲率が図6に示す曲率b、図13 に示す画面位置 c に相当する撮像素子の画素のマイクロ レンズの曲率が図6に示す曲率cとなるように変化させ ている。

【0032】これにより、本実施例ではレンズ絞りが開 放状態に近づいた時の、結像レンズによるケラレにより 生ずる撮像素子の中央部と端部での信号出力の不均一 が、マイクロレンズのケラレで補正され、出力の均一性 の向上を図ることができ、上記第1の実施例と同様の効 果が得られる。

【0033】次に本実施例の撮像素子の製造方法につい て説明する。図7(a)~(f) は本実施例の固体撮像素子 の製造方法を示す断面模式図であり、図において、14 は基板、3は受光部、9は平坦化層、15はマイクロレ 40 ンズ材料、16はフォトレジスト、17はマスクであ る。なお、各図中、右側は撮像素子の受光エリア端部 を、また左側は撮像素子の受光エリア中央部をそれぞれ 示している。

【0034】まず、図7(a) に示すように固体撮像素子 の作り込まれた基板14上に平坦化層9,マイクロレン ズ材料15,及びフォトレジスト16を順次塗布する。 そして、写真製版の手法を用いて、図7(b) に示すよう に、マイクロレンズの元パターン16 aを形成する。こ のパターン16aは受光エリア中央から外側にいくに従 50 3上に被写体を結像するための結像レンズ、72は結像

い、同心円状にパターン面積が大きくなるように形成す

【0035】ここで使用するフォトレジスト16として はマイクロレンズ材料15の感光波長に対しマスクとな る吸収を有すること、マイクロレンズ材料15はフォト レジスト16の現像に対し耐性があること、等の条件か ら、例えばマイクロレンズ材料15として遠紫外線に感 光するアクリル系ポジレジスト(東京応化製〇EBR-1000, ODUR-1013等) を、フォトレジスト 16としてフェノール系のg線ポジ型レジスト(東京応 化製OFPR-800, JSR製PFR-3000等) を使用するのが有効である。

【0036】次に、このマイクロレンズの元パターン1 6 a をマスクにして、マイクロレンズ材料 1 5 をドライ エッチングなどの手法を用いて加工し、元パターンを写 しとり、マイクロレンズパターン15 aを形成する。統 いて、図7(c) に示すように、この上から元パターン1 6 a の外周部分の一部に光が当たるようにマスク17を かけて露光する。これにより、元パターン16 aの一部 を図7(d) に示すように取り除く。この取り除く面積 は、受光エリア中央から外側にいくに従い小さくなるよ うにする。このようにして形成されたレジストパターン 16bをマスクにして、マイクロレンズパターン15a を遠紫外光を用いて露光し、その後、レジストパターン 16 bを取り除く。この時、マイクロレンズパターン1 5 a のうちレジストパターン16 b のあった部分はこれ がマスクとなるため、光に感光しないが、パターン16 bのなかった部分(図7(e)の斜線部分)は感光し、ポ リマーの分子量が低下する。

【0037】この後、図7(f) に示すように基板を加熱 して、材料15を熱フローさせてマイクロレンズ10を 形成する。この時、分了量の低下した部分は軟化度が大 きくなるので、結果として中央部では薄いレンズが、周 辺では厚いレンズが形成され、図4に示すような撮像素 子を作製することができる。

【0038】実施例3.次に、本発明の第3の実施例に ついて説明する。レンズの絞りを変えると、同心円状に 光強度が変化することは前述の通りであるが、これを図 示すると、図8のようになる。横軸はイメージセンサの 感光部の座標、縦軸は入射する光強度分布あるいはそれ に比例する信号出力を示している。絞りを開くと、図で 示すように、画面周辺部の信号出力が減少する。この減 少の度合いはイメージセンサの光学的構造と撮像に用い るレンズによって一義的に決まる。本実施例はこの関係 を用いて信号出力を補正回路を用いて均一化するもので ある。

【0039】図9は信号出力の補正を行う回路構成の一 例を示したものである。図において、73はイメージセ ンサ(撮像素子)である。また71はイメージセンサ7

レンズ内に組み込まれている絞り、74はイメージセン サ73からの信号出力に対しサンプルホールド, 相関処 理等の処理を行なう前置信号処理回路、75は前置信号 処理回路74からのアナログ信号をディジタル信号に変 換するA/D変換器である。79は後述するような補正 のための情報が記憶されたROMである。78は例えば マイクロコンピュータ等のコントローラであり、絞り7 2から絞り値に関する情報を受けて、該絞り値に応じた 補正のための情報をROM79より読み出し、読み出し た情報に基づいて補正信号を生成するものである。76 10 はA/D変換器75からのディジタル信号をコントロー ラ78からの補正信号を用いて補正をかける補正回路、 77は補正回路76で補正された信号に対し、増幅、同 期信号付加等の処理を行なう信号処理回路である。

【0040】次に動作について説明する。被写体からの 光束は、結像レンズ71によりイメージセンサ(撮像素 子)73上に結像される。このとき絞り72は被写体の 明るさに応じて調整される。絞り72を開放側にすると 結像レンズ71の端部における光のケラレにより、イメ ージセンサの画面端部の入射光量が画面中央部の入射光 20 量より少なくなる。イメージセンサ73の出力は前置信 号処理回路74及びA/D変換器75を通してディジタ ル信号とされるが、この信号は絞りに依存して画面中央 部と画面端部とで不均一なものとなっている。一方、絞 り72の絞り値に関する情報はコントローラ78に伝え られる。コントローラ78は絞り値に関する情報をもと に、ROM79から予め記憶された当該絞り値に対応す る補正に関する情報を読み出し、この読み出した補正に 関する情報に基づいて補正信号を発生させる。補正回路 76はコントローラ78からの補正信号を用いて、A/ D変換器75からのディジタル信号を処理し、入射光量 の不均一性を補正する。補正係数としては、周辺部を強 調する、あるいは中心部を低下させる、または両者を同 時に行うものが考えられる。補正された信号は信号処理 回路 7 7 を通して外部に読み出される。このような補正 を行うことにより、カメラ(撮像装置)の出力としては 画面全域にわたって均一のものが得られるようになる。

【0041】コントローラが出力する補正係数として は、絞り設定値に対するイメージセンサトの空間分布を 1画素ずつROMに記憶しておくことも考えられるが、 この場合は非常に多くのデータをROMに蓄えておく必 要があり実用的ではない。そこで、カメラに使用するレ ンズとイメージセンサが決まれば、一義的に補正係数が 決まるため、補正係数を絞りのデータから発生できるよ う近似曲線を求めておき、その係数をROMに記憶させ るようにすればROMの容量を節約することができる。

【0042】ROMに記憶させる内容として、具体的に は、例えば、各下値における撮像素子中央部から撮像素 子端部までの信号出力の変化を近似曲線として求めたそ

該ケラレの生じ始める位置から撮像素子端部までの信号 出力の変化を近似曲線として求めたその係数等が考えら れる。

【0043】このように、本実施例では、撮像時の絞り 値に応じて、結像レンズのケラレによる入射光量の不均 一性を補正できるような補正信号を発生し、この補正信 号により撮像素子の出力信号を処理する構成としたの で、画面全域にわたって均一な出力が得られる撮像装置 を実現できる。

【0044】実施例4.上記第3の実施例ではディジタ ル処理で信号出力を均一化するものを示したが、アナロ グでも同様な処理が可能である。図10はアナログ処理 で信号出力を均一化する本発明の第4の実施例による撮 像装置の構成を示すプロック図である。図において、図 9と同一符号は同一または相当部分であり、81はコン トローラから発生したディジタルの補正係数に応じてケ ラレと逆の特性の信号を発生させる補正信号発生回路、 82は前置信号処理回路74を経たイメージセンサ73 の出力信号と補正信号発生回路81により発生された補 正信号を掛け算する合成回路である。

【0045】次に動作について説明する。被写体からの 光束は、結像レンズ71によりイメージセンサ(撮像素 子)73上に結像される。このとき絞り72は被写体の 明るさに応じて調整される。絞り72を開放側にすると 結像レンズ71の端部における光のケラレにより、イメ ージセンサの画面端部の入射光量が画面中央部の入射光 量より少なくなる。このため、前置信号処理回路74を 経たイメージセンサ73からの信号出力は図中の信号波 形Aに示すようにその画面中央部と画面端部とで不均一 なものとなる。一方、被写体の明るさに応じて調整され る絞り72の情報はコントローラ78に伝えられ、絞り 72の情報をもとにROM79から補正に関する情報が コントローラ78に読み出される。補正信号発生回路8 1はコントローラ78から与えられる補正係数に応じ て、図中の信号波形Bに示すような、ケラレと逆の特性 の信号を発生させる。そして、前置信号処理回路74で 得られる信号波形Aと、補正信号発生回路81で得られ る信号波形 B を、合成回路 8 2 で掛け算することによ り、Cで示されるような画面全域にわたって均一な出力 信号を得ることができる。

【0046】このように、本実施例においても、上記第 3の実施例と同様、撮像時の絞り値に応じて、結像レン ズのケラレによる入射光量の不均一性を補正できるよう な補正信号を発生し、この補正信号により撮像素子の出 力信号を処理する構成としたので、画面全域にわたって 均一な出力が得られる撮像装置を実現できる。

[0047]

【発明の効果】以上のように、この発明によれば、撮像 素子の各画素に入射する光を制限する遮光層の開口幅を の係数、又は各F値におけるケラレの生じ始める位置と 50 撮像素子の中央部で狭く撮像素子の端部で広くして、又

【0048】また、この発明によれば、結像レンズの絞り値を入力とし、当該絞り値において結像レンズの周辺光のケラレにより生ずる撮像素子の各画素の信号出力の面内不均一を補正するための信号を出力する補正信号発生手段が出力する信号を用いて補正する信号処理手段とを備えた構成としたので、各絞り時に、全画面にわたって均一な信号出力を得ることができる効果があり、また、これにより結像レンズ系の周辺光のケラレによる信号出力の不均一を生ずることなく、同じサイズの撮像素子を用いる場合の結像レンズの有効径を小さくすることを可能とでき、撮像装置の小型、軽量化が図れる効果がある。

【図面の簡単な説明】

【図1】この発明の第1の実施例による撮像装置に用いられる撮像素子を示す断面構造図である。

【図2】撮像素子に入射する光の遮光膜によるケラレの 様子を示す図である。

【図3】 遮光膜の開口幅の変化による信号出力の変化と F値との関係を説明するための図である。

【図4】この発明の第2の実施例による撮像装置に用い 30 られる撮像素子を示す断面構造図である。

【図5】 遮光膜の開口幅の変化による集光率の変化とマイクロレンズの曲率との関係を説明するための図である。

【図 6】マイクロレンズの曲率のの変化による信号出かの変化とF値との関係を説明するための図である。

【図7】この発明の第2の実施例による撮像装置に用いられる撮像素子の製造方法を示す断面工程図である。

【図8】各絞りにおける各画面位置での信号出力または 光強度を示す図である。 12 【図9】この発明の第3の実施例による撮像装置の構成 を示すプロック図である。

【図10】この発明の第4の実施例による撮像装置の構成を示すプロック図である。

【図11】被写体をレンズにより結像する様子を示す模式的な光線図である。

【図12】従来の撮像装置に用いられる撮像素子の構造 を示す断面図である。

【図13】撮像素子の画面位置を示すための図である。

10 【図14】従来の撮像装置におけるF値と信号出力との 関係を示す図である。

【符号の説明】

- 1 基板
- 2 ウェル
- 3 受光部
- 4 CCDチャネル
- 5 チャネル分離
- 6 ゲート絶縁膜
- 7 ゲート電極
- 8 遮光層
 - 9 平坦化層
 - 10 マイクロレンズ
 - 11 レンズ
- 12 結像面
- 13 射出瞳面
- 14 基板
- 15 マイクロレンズ材料
- 16 g線ポジ型レジスト
- 17 マスク
- 71 撮像用レンズ
- 72 絞り
- 73 イメージセンサ
- 74 前置信号処理回路
- 75 A/D変換器
- 76 補正回路
- 77 信号処理回路
- 78 コントローラ
- 79 ROM
- 81 補正信号発生冋路
- 40 82 合成回路

[図14]

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

UIS PAGE BLANK