Topics in Computer Graphics Chap 2: Introductory Material spring, 2014

University of Seoul School of Computer Science Minho Kim

Table of contents

Points and Vectors

Affine Maps

Constructing Affine Maps

Points and Vectors

Affine Maps

Constructing Affine Maps

Affine Space

- Coordinate-free or coordinate-independent methods
 - → "affine geometry"
- Distinction between points and vectors
 - Points are elements of 3D Euclidean (or point) space \mathbb{E}^3 .
 - → A.k.a. "affine space"
 - Vectors are elements of 3D linear (or vector) space \mathbb{R}^3 .
- Operations
 - Vector + vector $\in \mathbb{R}^3$
 - ▶ Point + vector $\in \mathbb{E}^3$
 - Point + point not allowed

Barycenteric Combinations

- A.k.a. affine combinations
- ▶ In general, a linear combination of points

$$\sum_{j=0}^{n} \alpha_j \mathbf{b}_j, \quad \mathbf{b}_j \in \mathbb{E}^3$$

is not allowed. (Why?)

▶ But allowed/defined when $\sum_{i=0}^{n} \alpha_i = 1$.

$$\sum_{j=0}^{n} \alpha_j \mathbf{b}_j, \quad \mathbf{b}_j \in \mathbb{E}^3, \sum_{j=0}^{n} \alpha_j = 1.$$

(Why?)

$$\sum_{i=0}^{n} \alpha_j \mathbf{b}_j = \mathbf{b}_0 + \sum_{i=1}^{n} \alpha_j (\mathbf{b}_j - \mathbf{b}_0)$$

- $\mathbf{b}_0 \in \mathbb{E}^3 \text{ and } \mathbf{b}_i \mathbf{b}_0 \in \mathbb{R}^3$
- Examples: centroid of a triangle, midpoint of a line, etc.

Convex Combinations

$$\sum_{j=0}^{n} \alpha_{j} \mathbf{b}_{j}, \quad \mathbf{b}_{j} \in \mathbb{E}^{3}, \sum_{j=0}^{n} \alpha_{j} = 1, \alpha_{j} \ge 0 \ \forall j.$$

- A convex combination of points is always inside of the convex hull of those points.
- For any two points in the set, the straight line connecting them is also contained in the set.
- Affine maps preserve convexity.

Other Combinations

• What if the sum of coefficients is 0? For $\mathbf{p}_j \in \mathbb{E}^3$,

$$\sum_{j=0}^{n} \sigma_j \mathbf{p}_j \in \mathbb{R}^3.$$

For any form $\mathbf{a} = \sum \beta_j \mathbf{b}_j$, if \mathbf{a} is supposed to be a point, we must be able to split the sum into three groups:

$$\mathbf{a} = \sum_{\sum \beta_j = 1} \beta_j \mathbf{b}_j + \sum_{\sum \beta_j = 0} \beta_j \mathbf{b}_j + \sum_{\text{remaining } \beta s} \beta_j \mathbf{b}_j$$

- \mathbf{b}_j s in $\sum_{\sum \beta_i=1} \beta_j \mathbf{b}_j$ are points (mandotary)
- \mathbf{b}_j s in $\sum_{\sum \beta_i=0}^{n} \beta_j \mathbf{b}_j$ are either points or vectors (optional)
- \mathbf{b}_{j} s in $\sum_{\text{remaining } \beta s}^{-1} \beta_{j} \mathbf{b}_{j}$ are vectors (optional)

Points and Vectors

Affine Maps

Constructing Affine Maps

Affine Maps

Definition

A map Φ that maps \mathbb{E}^3 into itself is called an affine map if it leaves barycentric combinations invariant.

- A.k.a. affine transformation
- If

$$\mathbf{x} = \sum \alpha_j \mathbf{a}_j, \quad \sum \alpha_j = 1, \mathbf{x}, \mathbf{a}_j \in \mathbb{E}^3,$$

and Φ is an affine map, then also

$$\Phi \mathbf{x} = \Phi \left(\sum \alpha_j \mathbf{a}_j \right) = \sum \alpha_j \Phi \mathbf{a}_j, \quad \Phi \mathbf{x}, \Phi \mathbf{a}_j \in \mathbb{E}^3.$$

Example: The midpoint of two points will be mapped to the midpoint of the affine image of the points.

Affine Maps (cont'd)

Any affine map is of the form

$$\Phi \mathbf{x} = A\mathbf{x} + \mathbf{v}, \quad A \in \mathbb{R}^{3\times 3}, \mathbf{v} \in \mathbb{R}^3.$$

- Proof: Show that the form preserves a barycentric combination.
- The inverse is true as well: Every map of the form above represents an affine map.

Affine Maps (cont'd)

- Examples: The identity, translation, scaling, rotation, shear, parallel projection
- What is the different from the linear transformations?
 - → "translation" added
- Euclidean maps (a.k.a. rigid body motions)
 - Characterized by orthonormal matrices A ($A^TA = I$)
 - Leaves lengths and angles unchanged
 - Rotations or translations.
- Affine maps can be composed.
- Every affine map can be composed of translations, rotations, shears, and scalings.
- Rank of A: dimension of the image
- An affine map from \mathbb{E}^2 (\mathbb{E}^3) to \mathbb{E}^2 (\mathbb{E}^3) is uniquely determined by a nondegenerate triangle (tetrahedron) and its image.
- Affine maps of vectors \rightarrow Same as the linear map A:

$$\Phi(\mathbf{w}) = A\mathbf{w}, \quad \mathbf{w} \in \mathbb{R}^3.$$

Points and Vectors

Affine Maps

Constructing Affine Maps

Norm Ellipse

- 1. An ellipse with center at the origin is given by a quadratic form $\mathbf{x}^T A \mathbf{x} = 1$. where A is a symmetric matrix with two nonnegative eigenvalues. (Why?)
- 2. We're given a 2D point set $\mathbf{p}_1, \dots, \mathbf{p}_L$ whose centroid is located at the origin.: $\sum_{j=1}^{L} \mathbf{p}_j = \mathbf{0}$.
- 3. If a point \mathbf{p}_i were on the ellipse defined by A, then all points would satisfy $\mathbf{p}_i^T A \mathbf{p}_i = 1, \quad i = 1, \dots, L$.
- 4. Define $\mathbf{P} := [\mathbf{p}_1 \quad \dots \quad \mathbf{p}_L] \in \mathbb{R}^{2 \times L}$.
- 5. Then $\mathbf{P}^T A \mathbf{P} = I \in \mathbb{R}^{L \times L}$
- 6. $\mathbf{PP}^T A \mathbf{PP}^T = \mathbf{PP}^T$
- 7. Defining $B:=\mathbf{P}\mathbf{P}^T\in\mathbb{R}^{2\times 2}$ and assuming it is invertible, $A=B^{-1}$.

Norm Ellipse (cont'd)

- An ellipse is uniquely defined by the points in an affinely invariant way. → "norm ellipse"
 - The axes of the ellipse defined by A represent the distribution of the points.
 - ► The axes are given by the eigenvectors of A.
 - The lengths of the axes are determined by the corresponding eigenvalues.
 - Application: image registration

Points and Vectors

Affine Maps

Constructing Affine Maps

- Example #1: C[a, b]: the set of all real-valued continous functions defined over the interval [a, b] of the real axis
 - By defining

$$(\alpha f + \beta g)(t) = \alpha f(t) + \beta g(t),$$

- C[a, b] forms a *linear space* over the reals.
- $f_1, \ldots, f_n \in C[a, b]$ are linearly independent if $\sum c_i f_i = 0$ for all $t \in [a, b]$ implies $c_1 = \cdots = c_n = 0$.
- Example #2: $C^k[a, b]$: the set of all real-valued functions defined over [a, b] that are k-times continuously differentiable.

Function Spaces (cont'd)

- **Example** #3: \mathcal{P}^n : the set of all polynomials of degree n.
 - ▶ The dimension of \mathcal{P}^n is n+1. (Why?)
 - A basis of \mathcal{P}^n is the monomials $\{1, t, t^2, \dots, t^n\}$. (Why?)
- Example #4: Piecewise linear functions
 - Forms a linear function space.
 - Basis: hat functions $H_i(t)$
 - \rightarrow any pecewise linear function f with $f(t_j) = f_j$ can always be written as

$$f(t) = \sum_{j=0}^{n} f_j H_j(t).$$

- Linear operators
 - Assigns a function Af to a given function f $A: C[a, b] \rightarrow C[a, b]$
 - $A(\alpha f + \beta g) = \alpha A f + \beta A g, \quad \alpha, \beta \in \mathbb{R}.$
 - Example: detivative operator