

Presented by: Soh Han Yu Brian (U2223002H) Ng Yee Shem (U2222651H) Seah Angelo Michael (U2220896J)

Stroke Prevalence

2nd leading cause of death

3rd

leading cause of disability

Sample COLLECTION

Stroke Prevalence

Stroke incidence

Casualty

Stroke prevalence

Sample COLLECTION

What is Stroke?

Stroke

When blood supply to part of the brain is blocked or when blood vessels in the brain burst.

Effects

- Memory loss
- Emotional problem
- Paralysis

Sample COLLECTION

Problem definition CAN WE USE ONE'S LIFESTYLE TO PREDICT IF THEY WILL HAVE A STROKE?

Sample COLLECTION

Brief Overview

Size: 5110

Variables: 11

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0		Yes	Private	Urban	228.69	36.6	formerly smoked	
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	
2	31112	Male	80.0	0		Yes	Private	Rural	105.92	32.5	never smoked	
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	
4	1665	Female	79.0			Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5105	18234	Female	80.0			Yes	Private	Urban	83.75	NaN	never smoked	0
5106	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
5107	19723	Female	35.0	0		Yes	Self-employed	Rural	82.99	30.6	never smoked	0
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	0
5109	44679	Female	44.0	0		Yes	Govt_job	Urban	85.28	26.2	Unknown	0
5110 ro	5110 rows x 12 columns											

PREPARATION

Problem FORMULATION

Attribute information

- 1. id: unique identifier
- 2. **gender:** "Male", "Female" or "Other"
- 3. age: age of the patient
- 4. hypertension: 0 if doesn't have hypertension, 1 if have hypertension
- 5. heart_disease: 0 if doesn't have any heart diseases, 1 if have a heart disease
- 6. ever_married: "No" or "Yes"
- 7. work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
- 8. Residence type: "Rural" or "Urban"
- 9. avg_glucose_level: average glucose level in blood
- 10. bmi: body mass index
- 11. smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
- 12. **stroke**: 1 if the patient had a stroke or 0 if not

Problem FORMULATION

Data Preparation

Gender:

• Male: 2115

• Female: 2991

• Other: **1**

BMI:

• NULL: 201

Rows of data dropped: 202

df.isnull().sum()	
gender age hypertension heart_disease ever_married work_type Residence_type avg_glucose_level bmi smoking_status stroke	0 0 0 0 0 0 0 201 0
dtype: int64	

Statistical DESCRIPTION

Data Preparation

- Statistically significant
- Categorical
- Can be treated as a unique value

Exploratory ANALYSIS

Statistical DESCRIPTION

Data Preparation

DIABETES

PREDIABETES

NORMAL

Value count:

914

1022

2972

Exploratory ANALYSIS

Statistical DESCRIPTION

avg_glucose_level

Analytic VISUALIZATION

BMI

Analytic VISUALIZATION

Age

Analytic VISUALIZATION

avg_glucose_level

Boxplot helps visualise distribution and outliers

Analytic VISUALIZATION

Continuous data vs Stroke (BoxPlot)

Analytic VISUALIZATION

Bivariate Visualisation (categorical data)

Categorical data vs Stroke (Countplot)

Analytic VISUALIZATION

Updated attribute information

- 1. gender: "Male" or "Female"
- 2. age: age of the patient
- 3. hypertension: 0 if doesn't have hypertension, 1 if have hypertension
- 4. heart_disease: 0 if doesn't have any heart diseases, 1 if have a heart disease
- 5. ever married: "No" or "Yes"
- 6. work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
- 7. Residence type: "Rural" or "Urban"
- 8. avg glucose level: average glucose level in blood
- 9. glucose_cat: "Normal","Prediabetes" or "Diabetes" (newly added)
- 10. bmi: body mass index
- 11. smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
- 12. stroke: 1 if the patient had a stroke or 0 if not

Data cleaning and EDA summary

- Our data is very imbalanced
- Non-stroke data far outweighs stroke data
- Unable to employ feature selection as we cant tell which features are helpful

Analytic VISUALIZATION

Model Preparation

Represent categorical string data in integer form

Removed
Residential_type as
it doesn't affect data

```
new df=pd.DataFrame.copy(df)
new df.gender[new df.gender == 'Male'] = 1
new df.gender[new df.gender == 'Female'] = 0
new df.ever married[new df.ever married == 'Yes'] = 1
new df.ever married[new df.ever married == 'No'] = 0
new df.work type[new df.work type == 'children'] = 0
new df.work type[new df.work type == 'Private'] = 1
new df.work type[new df.work type == 'Self-employed'] = 2
new df.work type[new df.work type == 'Govt job'] = 3
new df.work type[new df.work type == 'Never worked'] = 4
new df.Residence type[new df.Residence type -- 'Urban'] = 1
new df Residence type new df.Residence type == 'Runal'] = 0
new df.smoking status[new df.smoking status == 'never smoked'] = 0
new df.smoking status[new df.smoking status == 'formerly smoked'] = 1
new df.smoking status[new df.smoking status == 'smokes'] = 2
new df.smoking status[new df.smoking status == 'Unknown'] = 3
new df.glucose cat[new df.glucose cat == 'Normal'] = 0
new df.glucose cat[new df.glucose cat == 'Prediabetes'] = 1
new df.glucose cat[new df.glucose cat == 'Diabetes'] = 2
```

Analytic VISUALIZATION

Model Preparation

Random_state required for our data set

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=42)

X is independent variable and Y is dependent variable

Analytic VISUALIZATION

Model Preparation (SMOTE)

SMOTE helps to make data set 50:50 by using the minority class (non-stroke data)

Binary Classification Tree

Binary Classification with depth of 20 (addresses problem of overfitting)

Algorithmic OPTIMIZATION

Machine **LEARNING**

Analysis for Binary Classification Tree

Used the binary classification tree to predict stroke for the train and test dataset

Information PRESENTATION

Statistical INFERENCE

Random Forest Classification

- Multiple decision trees
 - Does not overfit
- Keep classification accuracy high

Algorithmic OPTIMIZATION

Machine **LEARNING**

Analysis for Random Forest Classification

Used the Random
Forest Classification to
predict stroke for the
train and test dataset

Information PRESENTATION

Statistical INFERENCE

Hyper-parameter Tuning

Randomized Grid Search is a form of hyper-parameter optimization where hyper-parameters are randomly selected so that the search for the best hyper-parameters is less time consuming

Hyperparameters found to be the best:

RandomForestClassifier(criterion='entropy', max_depth=83, max_features=None, max_leaf_nodes=86, n_estimators=150, random_state=0)

Machine **LEARNING**

Analysis for Grid Search

No real improvement on overall model accuracy.

However, True Positive Rate slightly improved compared to previous Random Forest Model

Information PRESENTATION

Statistical INFERENCE

Conclusion

From Random Forest Classification

Goodness of Fit of Model Train Dataset Classification Accuracy : 1.000 True Positive Rate : 1.000 : 0.000 False Negative Rate True Negative Rate : 1.000 False Positive Rate : 0.000 Goodness of Fit of Model Test Dataset Classification Accuracy : 0.925 True Positive Rate : 0.000 False Negative Rate : 1.000 True Negative Rate : 0.977 False Positive Rate : 0.023

Unsuccessful!

Classification accuracy high but true positive rate in test set were low

Dataset had no clear indications on which features could affect stroke

From Grid Search

Goodness of Fit of Model	Train Dataset
Classification Accuracy	: 0.979
True Positive Rate	: 0.968
False Negative Rate	: 0.032
True Negative Rate	: 0.989
False Positive Rate	: 0.011
Goodness of Fit of Model	Test Dataset
Classification Accuracy	: 0.923
True Positive Rate	: 0.019
False Negative Rate	: 0.981
True Negative Rate	: 0.974
Falsa Positiva Rata	. 9 926

CONSIDERATION

Intelligent DECISION

Conclusion

Extreme features still raise the chance that one may get a stroke

However, still difficult to predict accurately

Dataset did not contain preexisting conditions

Ethical CONSIDERATION

Intelligent DECISION

Conclusion

Even we were unable to predict strokes based on one's lifestyle, it should still serve as a reminder of what we should look out for if we want to prevent stroke happening to ourselves.

Acting F.A.S.T. is Key to Stroke Survival

ARMS

Does one arm drift
downward when both
arms are raised?

SPEECH
Is speech slurred or strange when repeating a simple phrase?

TIME

If you see any
of these signs, call
9-1-1 right away.

Ethical CONSIDERATION

Intelligent DECISION

Thank You

Image References:

https://www.nia.nih.gov/health/stroke

https://www.istockphoto.com/vector/human-brain-stroke-illustration-gm1296351 746-389799325

https://www.123rf.com/photo_88598133_concept-of-the-disease-is-a-stroke-life-after-before-and-after-a-strokein-the-form-of-a-silhouette.html?vti=mcg1hmgxnxyofeaqjk-2-14

Please keep this slide for attribution

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**

Additional References:

https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

 $\frac{\text{https://www.who.int/srilanka/news/detail/29-10-2022-world-stroke-day-2022\#:} \sim : text = Stroke\%20 is \%20 the \%20 leading\%20 cause, a \%2 0 stroke\%20 in \%20 the ir \%20 lifetime.$

https://www.cdc.gov/diabetes/basics/getting-tested.html#:~:text=A%20fasting%20blood%20sugar%20level,higher%20indicates%20you%20have%20diabetes

https://medium.com/analytics-vidhya/ways-to-handle-categorical-column-missing-data-its-implementations-15dc4a56893

https://www.mygreatlearning.com/blog/cross-validation/

https://www.pluralsight.com/guides/cleaning-up-data-from-outliers

https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/

https://scikit-learn.org/stable/modules/tree.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://www.geeksforgeeks.org/random-forest-hyperparameter-tuning-in-python/