Restart Schedules for Ensembles of Problem Instances

Matthew Streeter^I Daniel Golovin^I

Stephen F. Smith²

Carnegie Mellon University

Computer Science Department

²The Robotics Institute

July 24, 2007

Restart schedules

 A Las Vegas algorithm A always returns a correct yes/no answer, but running time depends on random seed.
 Behavior of A on instance x can be represented as a run length distribution (RLD):

• A restart schedule is a sequence $\langle t_1, t_2, ... \rangle$ of integers, meaning "run A for time t_1 ; if it doesn't return an answer then restart and run for time t_2 , ..."

Restarts and heavy tails

- Algorithms based on chronological backtracking often exhibit heavy-tailed RLDs (Gomes et al. 1998)
- Restart schedules can improve performance by orders of magnitude

Previous work

- Luby et al. (1993) considered solving a single instance with unknown RLD, and gave a universal restart schedule with optimal competitive ratio
- Gomes et al. (1998) showed that restart schedules could improve performance of a then state-of-the-art SAT solver
- Kautz et al. (2002) use features to predict RLD
- Ruan et al. (2002) show how to compute optimal schedule when there are k distinct RLDs, but running time is exponential in k
- Gagliolo et al. (2007) used multi-armed bandit solver to select restart schedules online

RLDs vary across instances

- Here are RLDs for two SAT instances created by SatPlan when solving the logistics.d planning benchmark
- Restart helps in both cases
- Optimal schedule for average of two RLDs performs poorly

This talk

- **Goal:** efficiently construct a *single* restart schedule to use in solving a series of problem instances, each with a different RLD
- We consider three settings:
 - Offline: given a set of instances with known RLDs, compute an optimal restart schedule
 - Learning-theoretic: PAC-learn an optimal restart schedule from training instances
 - Online: you are fed an arbitrary sequence of instances, and must solve each instance before moving on to the next

The offline setting

- Given a set of RLDs, want to compute schedule that minimizes E[total CPU time]
- Assume CPU time for any instance capped at B
- We think this problem is NP-hard

Quasi-polynomial time approximation scheme

- Can get α^2 approximation to best schedule in time $O(n(\log_{\alpha} B) B^{\log_{\alpha} \log_{\alpha} B})$
- Uses shortest path formulation (generalization of algorithm from last talk)

```
Instance x_1 Instance x_2

time(A,x<sub>1</sub>) = 10 time(A,x<sub>2</sub>) = 1 w/prob. 1/100

∞ w/prob. 99/100

S = \langle
```

```
Instance x_1 Instance x_2

time(A,x_1) = 10 time(A,x_2) = 1 w/prob. 1/100

\infty w/prob. 99/100

S = \langle 10, \rangle
```

```
Instance x_1 Instance x_2

time(A,x_1) = 10

time(A,x_2) = I w/prob. I/100

w w/prob. 99/100

S = \langle 10, \rangle
```

```
Instance x_1 Instance x_2

time(A,x_1) = 10 time(A,x_2) = 1 w/prob. 1/100

\infty w/prob. 99/100

S = \langle 10, 1, \rangle
```

```
Instance x_1 Instance x_2

time(A,x_1) = 10 time(A,x_2) = I w/prob. I/100

\infty w/prob. 99/100

S = \langle 10, 1, 1, \dots \rangle
```

```
Instance x_1 Instance x_2
time(A,x_1) = 10 time(A,x_2) = 1 \text{ w/prob. } 1/100
\infty \text{ w/prob. } 99/100
S = \langle 10,1,1,1,\dots \rangle
```

 Algorithm: Greedily append run of length t to schedule, where t is chosen to maximize E[#(new instances solved)/t]

Performance

- Gives 4-approximation to optimal schedule (may do better)
- New variant also returns optimal schedule if all instances have same RLD

The learning-theoretic setting

- Draw instances from some distribution.
 Each instance has its own RLD. Want to
 PAC-learn optimal restart schedule (with prob.
 ≥ 1-δ, schedule's expected cost is ≤ € worse than optimal)
- Two questions:
 - how many training instances?
 - how may runs per instance?

How many training instances?

- Need O($(B/\epsilon)^2$ sqrt(B) log δ^{-1}) instances, assuming RLD of each instance is known exactly
- Proof uses shortest path formulation + Hoeffding bounds

- A profile $\langle T_1, T_2, ..., T_k \rangle$ is a non-increasing list of integers
- State of schedule S at time t can be represented as a profile P(S,t)

 Answer: after B runs, can get unbiased estimate of CPU time required by any schedule S

• If each run has time limit B, total CPU time $\leq B^2$

 Answer: after B runs, can get unbiased estimate of CPU time required by any schedule \$

• If each run has time limit B, total CPU time $\leq B^2$

 Can actually perform ith run with time limit B/i. Total time =

The online setting

- World secretly selects sequence of n instances/RLDs
- For i from 1 to n
 - You select schedule S_i to use to solve ith instance
 - As feedback you observe how much time Si takes
- regret = E[your total time] min_(schedules S) (E[S's total time])

The online setting

- World secretly selects sequence of n instances/RLDs
- For i from 1 to n
 - You select schedule S_i to use to solve ith instance
 - As feedback you observe how much time Si takes
- regret = E[your total time] min_(schedules S) (E[S's total time])
- We give a schedule selection strategy whose worst-case regret is o(n), assuming schedules come from a small pool.
- Uses unbiased estimation procedure + technique from Cesa-Bianchi et al. (2005)
- Ongoing work: online version of greedy approx. algorithm

Experimental evaluation

 Ran satz-rand on formulae generated by SatPlan when solving randomly-generated logistics planning benchmarks

Restart schedule	Avg. CPU (s)
Greedy schedule	21.9
Best geometric $\langle \alpha^0, \alpha^1, \alpha^2, \rangle$	23.9
Best uniform (t, t, t,)	33.9
Luby's universal schedule	37.2
No restarts	74. I

Experimental evaluation

 Ran satz-rand on formulae generated by SatPlan when solving randomly-generated logistics planning benchmarks

Restart schedule	Avg. CPU (s)
Greedy schedule (cross-val)	21.9 (22.8)
Best geometric $\langle \alpha^0, \alpha^1, \alpha^2, \rangle$	23.9
Best uniform (t, t, t,)	33.9
Luby's universal schedule	37.2
No restarts	74. I

Generalization: multiple Las Vegas algorithms

• If we have multiple Las Vegas algorithms, can consider restart schedules of the form $\langle (a_1,t_1), (a_2,t_2), ... \rangle$

- Results for all three settings generalize
- With multiple algorithms, it is NP-hard to get a $4-\epsilon$ approximation for any $\epsilon > 0$ (so greedy 4-approx is optimal)