Oplossingen Oefeningen Grondslagen 1: Propositielogica: Semantiek II

Oefening 20

- a) Het vak Grondslagen van de Informatica I heette vroeger Formele Methoden.
 - b = "veel blokwerk"
 - s = "slechte assistent"
 - m = "moeilijk vak"
 - p = "plezant"
 - (a) Als Formele Methoden veel blokwerk is, of een slechte assistent heeft, dan is het een moeilijk vak. $\varphi_1 = (b \lor s) \to m$
 - (b) Als Formele Methoden plezant is, heeft het geen slechte assistent. $\varphi_2 = p \to \neg s$
 - (c) Als Formele Methoden veel blokwerk is, of als het geen slechte assistent heeft, dan is het een plezant vak. $\varphi_3 = (b \vee \neg s) \rightarrow p$
 - (d) Formele Methoden is plezant enkel en alleen als er veel blokwerk aan is. Bovendien doet de assistent het fantastisch. $\varphi_4 = (p \leftrightarrow b) \land \neg s$

b	s	m	p	φ_1	φ_2	φ_3	φ_4
0	0	0	0	1	1	0	-
0	0	0	1	1	1 1 1	1	0
$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	1	0	1 1 1	1	0	-
0	0	$\begin{array}{c c} 1 \\ 0 \end{array}$	1	1	1	1	0
0	1	0	0	1 0	-	-	-
0	1 1	0	1		-	-	-
0	1	1	0	1	1	1	0
0	1	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	1	0 1 1 0	0	-	-
1	0	0	0	0	-	-	-
1	0	0	1	0	-	-	-
1	0	1 1	0	1	1 1	0	-
1	0	1	1	1 1 0	1	1	1
1	1	0	0	0	-	-	-
0 0 0 0 1 1 1 1 1 1 1	1	0	1	0	-	-	-
1	1	1	0	1 1	1	0	-
1	1	1	1	1	0	-	

Oftewel, Formele Methoden vergt veel blokwerk, heeft geen slechte assistent, is moeilijk en is plezant.

- b) \bullet i = "je bist"
 - u = "je was gebuisd"
 - t = "je ging veel naar TD"
 - (a) Als je bist, dan was je gebuisd: $\varphi_1 = i \to u$

- (b) Als je gebuisd was, dan ging je niet veel naar TD: $\varphi_2 = u \to \neg t$
- (c) Als je bist of gebuisd was, dan ging je naar TD: $\varphi_3 = (i \lor u) \to t$
- (d) Als je niet bist, dan ging je veel naar TD: $\varphi_4 = \neg i \rightarrow t$

i	u	t	φ_1	φ_2	φ_3	φ_4
0	0	0	1	1	1	0
0	0	1	1	1	1	1
0	1	0	1	1	0	-
0	1	1	1	0	-	-
1	0	0	0	-	-	-
1	0	1	0	-	-	-
1	1	0	1	1	0	-
1	1	1	1	0	-	-

Conclusie: V(i) = 0, V(u) = 0, V(t) = 1

Oftewel: Je bist niet, je was niet gebuisd, je ging veel naar TD.

Oefening 21

a) $\varphi = ((p \to q) \land (q \to p)) \leftrightarrow (p \leftrightarrow q) \Rightarrow$ Tautologie

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$	$(p \to q) \land (q \to p)$	φ
0	0	1	1	1	1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	1	1	1	1	1

b) $\varphi = (((p \land q) \lor (r \land s)) \land \neg r) \Rightarrow$ Noch tautologie, noch contradictie

p	q	r	s	$p \wedge q$	$r \wedge s$	$\neg r$	$(p \land q) \lor (r \land s)$	φ
0	0	0	0	0	0	1	0	0
0	0	0	1	0	0	1	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	1	0	1	0
0	1	0	0	0	0	1	0	0
0	1	0	1	0	0	1	0	0
0	1	1	0	0	0	0	0	0
0	1	1	1	0	1	0	1	0
1	0	0	0	0	0	1	0	0
1	0	0	1	0	0	1	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	1	0	1	0
1	1	0	0	1	0	1	1	1
1	1	0	1	1	0	1	1	1
1	1	1	0	1	0	0	1	0
1	1	1	1	1	1	0	1	0

c) $\varphi = (p \land \neg p) \land r \Rightarrow \text{Contradictie}$

p	r	$\neg p$	$p \land \neg p$	φ
0	0	1	0	0
0	1	1	0	0
1	0	0	0	0
1	1	0	0	0

Oefening 22

a) $p \wedge q$ en $p \rightarrow q \Rightarrow$ Niet equivalent

p	q	$p \wedge q$	$p \rightarrow q$
0	0	0	1
0	1	0	1
1	0	0	0
1	1	1	1

b) $p \to (q \to r)$ en $(p \to q) \to (p \to r) \Rightarrow$ Equivalent

p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \to (p \to r)$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	1	1
1	1	0	0	0	1	0	0
1	1	1	1	1	1	1	1

c) $((p \lor \neg p) \to q) \to ((p \lor \neg p) \to r)$ en $q \to r$ Waar (i) = $(p \lor \neg p) \to q$ en (ii) = $(p \lor \neg p) \to r \Rightarrow$ Equivalent

p	q	r	$\neg p$	$p \vee \neg p$	(<i>i</i>)	(ii)	$(i) \rightarrow (ii)$	$q \rightarrow r$
0	0	0	1	1	0	0	1	1
0	0	1	1	1	0	1	1	1
0	1	0	1	1	1	0	0	0
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1	1
1	0	1	0	1	0	1	1	1
1	1	0	0	1	1	0	0	0
1	1	1	0	1	1	1	1	1

Oefening 23

- NOR
 - 1. Toon aan dat $p \downarrow q \Leftrightarrow \neg (p \lor q)$

p	q	$p \downarrow q$	$\neg (p \lor q)$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

2.
$$- \neg \alpha \Leftrightarrow \alpha \downarrow \alpha$$

$$- \alpha \lor \beta \Leftrightarrow (\alpha \downarrow \beta) \downarrow (\alpha \downarrow \beta)$$

$$- \alpha \land \beta \Leftrightarrow (\alpha \downarrow \alpha) \downarrow (\beta \downarrow \beta)$$

$$- \alpha \to \beta \Leftrightarrow ((\alpha \downarrow \alpha) \downarrow \beta) \downarrow ((\alpha \downarrow \alpha) \downarrow \beta)$$

- NAND
- Toon aan dat $p \uparrow q \Leftrightarrow \neg(p \land q)$

p	q	$p \uparrow q$	$\neg(p \land q)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

•
$$- \neg \alpha \Leftrightarrow \alpha \uparrow \alpha$$

 $- \alpha \lor \beta \Leftrightarrow (\alpha \uparrow \alpha) \uparrow (\beta \uparrow \beta)$

$$-\alpha \wedge \beta \Leftrightarrow (\alpha \uparrow \beta) \uparrow (\alpha \uparrow \beta)$$

$$-\alpha \to \beta \Leftrightarrow ((\alpha \uparrow \alpha) \uparrow (\alpha \uparrow \alpha)) \uparrow (\beta \uparrow \beta)$$

 $\bullet\,$ De wetten van de Morgan voor \uparrow en \downarrow

$$\neg(\alpha \uparrow \beta) \Leftrightarrow \neg\alpha \downarrow \neg\beta$$

α	β	$\neg(\alpha \uparrow \beta)$	$\neg \alpha \downarrow \neg \beta$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

$$\neg(\alpha \downarrow \beta) \Leftrightarrow \neg\alpha \uparrow \neg\beta$$

α	β	$\neg(\alpha \downarrow \beta)$	$\neg \alpha \uparrow \neg \beta$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Oefening 24

a) Syntactische opsomming van de modellen: $(\neg p \wedge \neg q) \vee (\neg p \wedge q) \vee (p \wedge q)$

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

b) Syntactische opsomming van de modellen: $(\neg p \wedge \neg q) \vee (p \wedge q)$

p	q	$p \wedge q$	$p \leftrightarrow q$	$((p \leftrightarrow q) \lor (p \land q))$
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	1	1

Oefening 25

$$\neg(\neg(p \land q) \lor r) \lor (\neg p \land q) \Leftrightarrow \neg((\neg p \lor \neg q) \lor r) \lor (\neg p \land q)$$

$$\Leftrightarrow (\neg(\neg p \lor \neg q) \land \neg r) \lor (\neg p \land q)$$

$$\Leftrightarrow ((\neg \neg p \land \neg \neg q) \land \neg r) \lor (\neg p \land q)$$

$$\Leftrightarrow (p \land q \land \neg r) \lor (\neg p \land q)$$

Disjunctieve normaalvorm met behulp van een syntactische opsomming van de modellen:

p	q	r	$p \wedge q$	$\neg(p \land q)$	$(\neg(p \land q) \lor r)$	$\neg(\neg(p \land q) \lor r)$	$(\neg p \land q)$	$\neg(\neg(p \land q) \lor r) \lor (\neg p \land q)$
0	0	0	0	1	1	0	0	0
0	0	1	0	1	1	0	0	0
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	1	1
1	0	0	0	1	1	0	0	0
1	0	1	0	1	1	0	0	0
1	1	0	1	0	0	1	0	1
1	1	1	1	0	1	0	0	0

Dus $(\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$

Oefening 26

- a) Met behulp van inductie op k.
 - Basisstap: Stel f is een unfaire functie op $\{0,1\}$, dan zijn er 4 mogelijkheden:

$$-f_1(x) = 1 - x$$

$$- f_2(x) = x$$

$$- f_3(x) = 0$$

$$- f_4(x) = 1$$

Die respectievelijk overeen komen met de formules

$$-\varphi_1 = \neg p$$

$$-\varphi_2=p$$

$$-\varphi_3 = p \wedge \neg p$$

$$- \varphi_4 = p \vee \neg p$$

• Inductiestap: Zij f een k-plaatsige functie op $\{0,1\}$ Neem dan

$$g(x_1, ..., x_{k-1}) = f(0, x_1, ..., x_{k-1})$$
(1)

$$h(x_1, ..., x_{k-1}) = f(1, x_1, ..., x_{k-1})$$
(2)

(3)

g en h zijn (k-1)-plaatsige functie op $\{0,1\}$. Dus bestaan er - door inductie - formules voor φ_g en φ_h voor g en h. Als formule voor f, neem f $\varphi_f = (q_0 \to \varphi_h) \land (\neg q_0 \to \varphi_g)$. Dan is opnieuw $w(\varphi_f) = f$, waar q_0 voor de propositieletter voor de eerste parameter staat.

- b) Eerst bewijzen we dat h(0,0) = 1 en h(1,1) = 0 uit het ongerijmde.
 - (a) Stel h(1,1) = 1, dan kunnen we nooit een NOT maken. NOT : n(x) = 1 - x en n is een combinatie van h's. Bijvoorbeeld: n(x) = h(h(x, h(x, x)), x)Maar als h(1,1) = 1, dan hebben we op ieder niveau in gelijk welke combinatie van h's een 1 die er uit zal komen. Met andere woorden, de n(1) = 1, wat een contradictie is.
 - (b) Op een analoge manier kan onmogelijk h(0,0) = 0 zijn.

Nu we weten dat h(0,0) = 1 en h(1,1) = 0, dan rest er ons nog h(0,1) en h(1,0) onder de loep te nemen. Dit geeft ons vier combinaties.

(a) •
$$h_1(0,0) = 1$$

•
$$h_1(0,1) = 1 \leftarrow$$

•
$$h_1(1,0) = 1 \leftarrow$$

•
$$h_1(1,1)=0$$

- (b) $h_2(0,0) = 1$
 - $h_2(0,1) = 0$ \leftarrow
 - $h_2(1,0) = 1$ \leftarrow
 - $h_2(1,1)=0$
- (c) $h_3(0,0) = 1$
 - $h_3(0,1) = 1$ \leftarrow
 - $h_3(1,0) = 0$ \leftarrow
 - $h_3(1,1)=0$
- (d) $h_4(0,0) = 1$
 - $h_4(0,1) = 0$ \leftarrow
 - $h_4(1,0) = 0$ \leftarrow
 - $h_4(1,1)=0$

Merk op dat $h_2(x,y) = 1 - y$, h_2 heeft slechts de kracht van \neg . Merk ook op dat $h_3(x,y) = 1 - x$ dus h_3 heeft ook slechts de kracht van \neg . Omdat de \neg niet functioneel volledig is, zijn bijgevolg h_2 en h_3 ook niet functioneel volledig en worden ze dus buiten beschouwing gelaten (h kan onmogelijk h_2 of h_3 zijn).

 h_1 komt overeen met h_{\uparrow} , want $h_1(x,y) = h_{\uparrow}(x,y) = 0$ desda x+y=2

 h_4 komt overeen met h_{\downarrow} , want $h_4(x,y) = h_{\downarrow}(x,y) = 1$ desda x + y = 0

We hebben dus aangetoond dat $h=h_{\uparrow}$ of $h=h_{\downarrow}$

Oefening 27

a) Uit deze waarheidstabel lezen we dat $\{p \land q\} \models p \rightarrow q$ vermits elk model van $p \land q$ ook een model is voor $p \rightarrow q$.

p	q	$p \wedge q$	$p \rightarrow q$
0	0	0	1
0	1	0	1
1	0	0	0
1	1	1	1

b) $\{p \to (q \to r)\} \models ((p \to q) \to (p \to r))$ is zeker geldig gevolg, want beide formules zijn equivalent (identieke kolom in de waarheidstabel).

p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \to (p \to r)$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	1	0	0
1	1	1	1	1	1	1	1

c) Geen geldig gevolg want V(p) = 0, V(q) = 0 is een model voor $\{\neg p, q \to p\}$, maar niet voor q. We hebben dus een tegenvoorbeeld gevonden. Met andere woorden: $\{\neg p, q \to p\} \not\models q$

p	q	$\neg p$	$q \rightarrow p$	q
0	0	1	1	0
0	1	1	0	1
1	0	0	1	0
1	1	0	1	1