SAÜ BİLGİSAYAR VE BİLİŞİM BİLİMLERİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ ÖDEV SINAVI

İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR.

- 1. $y' = 2xy^2 + 6xy + 4x$ denkleminin bir özel çözümü $y_1 = -1$ olduğuna göre genel çözümünü bulunuz.
- 2. $y = xy' \sin y'$ denkleminin genel ve varsa tekil çözümlerini elde ediniz.
- 3. (x-1)y''-xy'+y=0 denkleminin bir özel çözümü $y_1=e^x$ olduğuna göre genel çözümünü mertebe düşürme yöntemi ile bulunuz.
- 4. $y''' + y'' = 1 + x^2 + 3e^{-x}$ denklemin genel çözümünü elde ediniz.

Süre: 90 dk BAŞARILAR DİLERİM

Prof. Dr. Şevket GÜR

- 1. Ödevin sisteme son yükleme saatini geçirmeyiniz.
- 2. Cevaplarınız mutlaka kendi el yazınız ile olmalıdır.
- 3. İsimsiz dosyalar, adınızın yazılmadığı sayfalar, yatay veya ters yüklenmiş sayfalar DİKKATE ALINMAYACAKTIR.

CEVAP ANAHTARI

1. $y' = 2xy^2 + 6xy + 4x$ denkleminin bir özel çözümü $y_1 = -1$ olduğuna göre genel çözümünü bulunuz.

Denklem Riccati denklemi olup $y=-1+\frac{1}{u}$ dönüşümü ile lineer hale gelir. $y'=\frac{-u'}{u^2}$ olup denklem, u'+2xu=-2x şeklinde lineer denkleme dönüşür. $\lambda=e^{\int 2xdx}=e^{x^2}$ integral çarpanıdır. $e^{x^2}\left(u'+2xu\right)=-2xe^{x^2} \quad \text{den} \quad \left(e^{x^2}u\right)=-2xe^{x^2} \Rightarrow u=-1+ce^{-x^2} \quad \text{elde edilir. Böylece bu değer}$ $y=-1+\frac{1}{u}$ de yerine yazılırsa $y=\frac{2-ce^{-x^2}}{ce^{-x^2}-1}$ elde edilmiş olur.

2. $y = xy' - \sin y'$ denkleminin genel ve varsa tekil çözümlerini elde ediniz.

y' = p olmak üzere denklem $y = xp - \sin p$ şeklinde Clairaut tipinde bir denklemdir. x e göre

türev alınacak olursa $p = p + x \frac{dp}{dx} - \cos p \frac{dp}{dx}$ olup buradan $\frac{dp}{dx}(x - \cos p) = 0$ elde edilir. Bu

son eşitlikten ise $\frac{dp}{dx} = 0$ \vee $x - \cos p = 0$ olduğu kolaylıkla görülebilir. Dolayısıyla,

$$\frac{dp}{dx} = 0 \Rightarrow p = c \Rightarrow y = cx - \sin c \text{ genel çözümü elde edilir. Diğer yandan} \begin{cases} x - \cos p = 0 \\ y = xp - \sin p \end{cases}$$

arasından ise $y = x \arccos x - \sqrt{1 - x^2}$ aykırı çözümü bulunur.

3. (x-1)y''-xy'+y=0 denkleminin bir özel çözümü $y_1=e^x$ olduğuna göre genel çözümünü mertebe düşürme yöntemi ile bulunuz.

 $y=e^xu$, $y'=e^x\left(u+u'\right)$, $y''=e^x\left(u''+2u'+u\right)$ türevleri yerlerine yazılırsa (x-1)u''+(x-2)u'=0 denklemi elde edilir. u'=v denirse u''=v' olup denklem, (x-1)v'+(x-2)v=0 şeklinde birinci basamaktan denkleme indirgenmiş olur. Değişkenlerine ayrılabilen bu denklem $\frac{dv}{v}+\frac{x-2}{x-1}dx=0$ şeklinde yazılabildiğinden integral yardımıyla $\ln|v|+x-\ln|x-1|=\ln c_1$ elde edilir. Buradan $v=c_1(x-1)e^{-x}$ olup u'=v ile integral yardımıyla $u=c_1\left(-xe^{-x}\right)+c_2$ elde edilir. Böylece $y=e^xu$ dan $y=c_1x+c_2e^x$ genel çözümü bulunur.

4. $y''' + y'' = 1 + x^2 + 3e^{-x}$ denklemin genel çözümünü elde ediniz.

Önce homojen kısma ait çözümü bulalım. y"+ y" = 0 denklemine ait karakteristik denklem $r^3+r^2=0$ olup $r_1=r_2=0$, $r_3=-1$ kökleri yardımıyla $y_h=c_1+c_2x+c_3e^{-x}$ elde edilir. Şimdi homojen olmayan kısma ait çözümü belirsiz katsayılar metodu ile bulalım. Özel çözüm $y_p=x^2\left(Ax^2+Bx+C\right)+Dxe^{-x}$ şeklinde seçilmelidir. İki kök 0 olduğundan ilk terim x^2 ile, bir kök -1 olduğundan ikinci terim x ile çarpılmıştır. Türevler alınıp denklemde yerlerine

yazıldığında $A = \frac{1}{12}, B = \frac{-1}{3}, C = \frac{3}{2}, D = 3$ olarak elde edilir. Böylece $y_p = \frac{1}{12}x^4 - \frac{1}{3}x^3 + \frac{3}{2}x^2 + 3xe^{-x}$

olup genel çözüm $y_g = y_h + y_p$ ile

 $y_g = c_1 + c_2 x + c_3 e^{-x} + \frac{1}{12} x^4 - \frac{1}{3} x^3 + \frac{3}{2} x^2 + 3x e^{-x}$ şeklinde elde edilmiş olur.