ESc201: Introduction to Electronics

Logic Gates and Minimization

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

How do we get the chocolate?

Design Flow

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

$$\Rightarrow$$
 f = $\bar{x} \cdot \bar{z} + x \cdot z$

Goal of Simplification

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Goal of simplification is to reduce the complexity of gate circuit. This requires that we minimize the number of gates.

This circuit is simpler not just because it uses 4 gates instead of 5 but also because circuit-2 uses one 2-input and three 3-input gates as compared to five 3-input gates used in circuit-1

Minimization

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$y = \overline{x_1} \cdot x_3 \cdot (\overline{x_2} + x_2) + x_1 \cdot x_3 \cdot (\overline{x_2} + x_2)$$

$$y = x_1 \cdot x_3 + x_1 \cdot x_3$$

$$y = (\overline{x_1} + x_1).x_3$$

$$y = x_3$$

Principle used: x + x = 1

$$f = \overline{x} \cdot \overline{y} + \overline{x} \cdot y + x \cdot \overline{y}$$

Apply the Principle: x + x = 1 to simplify

$$f = x.(y + y) + x.y$$
 $f = x + x.y$

$$f = (\overline{x} + x) \cdot (\overline{x} + \overline{y})$$

$$f = (\overline{x}.\overline{x} + x\overline{x} + \overline{x}.\overline{y} + x.\overline{y})$$

$$f = (\overline{x} + \overline{x}.\overline{y} + x.\overline{y})$$

$$f = (\overline{x} + \overline{y}.(\overline{x} + x))$$

$$f = (\overline{x} + \overline{y})$$

Principle: x + x = 1 and x + x = x

Need a systematic and simpler method

Karnaugh Map (K map) is a popular technique for carrying out simplification

It represents the information in problem in such a way that the two principles become easy to apply

Principle:
$$x + \overline{x} = 1$$
 and $x + x = x$

Representation of Boolean Expressions

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

$$f_1 = \overline{x}. y + x. \overline{y}$$

$$\mathbf{f}_1 = m_1 + m_2$$

$$f_1 = \overline{x}. y + x. \overline{y}$$
 $f_1 = m_1 + m_2$ $f_1 = \sum (1, 2)$

$$f_2 = \sum (0, 2, 3) = ?$$

$$f_2 = \sum (0, 2, 3) = ?$$
 $f_2 = \overline{x} \cdot \overline{y} + x \cdot \overline{y} + x \cdot y$

A minterm is a product that contains all the variables used in a function

Three variable functions

$$f_2 = \sum (1, 4, 7) = ?$$

$$f_2 = x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$$

Product of Sum Terms Representation

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

x	у	Max term
0	0	x + <u>y</u> M0 x + y M1 x + <u>y</u> M2 x + y M3
0	1	x + y M1
1	0	x + y M2
1	1	$\sqrt{x} + \sqrt{y}$ M3

A maxterm is a sum that contains all the variables used in a function

$$\mathbf{f}_1 = (x + y) \cdot (\overline{x} + \overline{y})$$

$$\mathbf{f}_1 = \boldsymbol{M}_0 \cdot \boldsymbol{M}_3$$

$$\mathbf{f}_1 = \prod \left(\boldsymbol{M}_0, \boldsymbol{M}_3 \right)$$

$$f_1 = \Pi(1,5,7) = ?$$

$$f_2 = (x + y + \overline{z}).(\overline{x} + y + \overline{z}).(\overline{x} + \overline{y} + \overline{z})$$

Recall K map

Karnaugh Map (K map) is a popular technique for carrying out simplification

It represents the information in problem in such a way that the two principles become easy to apply

Principle:
$$x + \overline{x} = 1$$
 and $x + x = x$

K-map representation of truth table

X	у	min term
0 0 1	0 1 0	x.y m0 x.y m1 x.y m2 x.y m3
1	1	x.y m3

$$f_2 = \sum (1,2,3)$$

$$f = \overline{x}.\overline{y} + x.y$$

3-variable K-map representation

X	У	Z	min terms	
0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	X. y. z X. y. z	m0 m1 m2 m3 m4 m5 m6

3-variable K-map representation

X	У	Z	min terms	x y z	f	
0	0	0	\overline{x} . \overline{y} . \overline{z} m0	0 0 0	0	
0	0	1	$\overline{x}.\overline{y}.z$ m1	0 0 1	1]
0	1	0	\overline{X} . y. \overline{Z} m2	0 1 0	0	
0	1	1	x.y.z m3	······ 0 · · 1 · · · 1 · ·	1	
1	0	0	x. <u>y</u> .z m4	1 0 0	0	
1	0	1	x.y.z m5	1 0 1	1	
1	1	0	x.y. Z m6	1 1 0	0	
1	1	1	x.y.z m7	1 1 1	1	
			, , , , , , , , , , , , , , , , , , , ,			\

XXZ	00	01	11	10_	
0	m_0	m ₁	m_3	m_2	
1	m_4	m_5	m ₇	m ₆	

XXZ	00	01	11	10
0	0	1	1	0
1	0	1	1	0

What is the function represented by this K map?

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

4-variable K-map representation

W	X	у	Z	min terms	
0	0	0	0	m_0	
0	0	0	1	m ₁	
0	0	1	0	m_2	
Q	Q	1	1	m ₃	
!	!	!	!	<u>'</u>	
1	1	1	0	m ₁₄	
1	1	1	1	m ₁₅	

WX WX	00	01	11	10_
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

WX VZ	00	01	11_	10_
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$f = \overline{w.x.y.z} + \overline{w.x.y.z}$$

Minimization using Kmap

$$f_2 = \sum (2,3)$$

$$f = x.\overline{y} + x.y$$

$$f = x.(\bar{y} + y)$$

$$f = x$$

Combine terms which differ in only one bit position. As a result, whatever is common remains.

$$f = \bar{x}. y + x. y$$

$$f = (\bar{x} + x).y \implies f = y$$

$$\Rightarrow$$
 f = y

$$\Rightarrow f = \overline{y}$$

$$\Rightarrow$$
 f = \bar{x}

$$f_{2} = \sum (1, 2, 3)$$

$$f = x \cdot \overline{y} + x \cdot y + \overline{x} \cdot y$$

$$= x \cdot \overline{y} + x \cdot y + \overline{x} \cdot y + x \cdot y$$

$$= x \cdot (\overline{y} + y) + (\overline{x} + x) \cdot y$$

$$= x + y$$

The idea is to cover all the 1's with as few and as simple terms as possible

3-variable minimization

$$f = x.y.z + y.z + x.z$$

3-variable minimization

$$f = \overline{x.y.z + x.y.z + x.y.z + x.y.z}$$

3-variable minimization

Z

$$f = x + \overline{z}$$

 \mathcal{X}

Can we do this?

Note that each encirclement should represent a single product term. In this case it does not.

f = x.y.z + x.y.z + x.y.z

= x.y + x.z

We do not get a single product term. In general we cannot make groups of 3 terms.

Can we use kmap with the following ordering of variables?

Can we combine these two terms into a single term?

$$f = x.y.z + x.y.z$$

$$= x.(y.z + y.z)$$

Note that no simplification is possible.

These two terms can be combined into a single term but it is not easy to show that on the diagram.

$$f = x.y.z + x.y.z$$

= $x.(y+y).z = x.z$

Kmap requires information to be represented in such a way that it is easy to apply the principle x + x = 1