SIMATS School of Engineering

Artificial Intelligence

01 0 1 00 011

Computer Science and Engineering

01 0 1 00 011

Saveetha Institute of Medical And Technical Sciences, Chennai.

(PA6/E-1)

INTRODUCTION

- 1. AI problems
- 2. foundation of AI and history of
- 3. Intelligent Agents
- 4 Agents and Environments
 - (a) Agent function
 - (b) Agent Problem
 - (c) Agent Properties
- 5. Concept of Rationality
 - (a) Nature of Environments
 - (b) Properties of Task Environment
- 6. Structure of Agents
 - (a) Simple Reflex Agent
 - (b) Model Based
 - (1) Goal Based
 - (d) Utility Based

(PAGE-2)

- 7. Phroblem Solving Agents
 - (a) Problem formulation
 - (b) Toy problem us Real world
- problem
- (1) Examples: 8-puzzle, 8-queens
- Ep water jug problem.
- 8. Searching for solutions
- 9. Uninformed search strategies
 - (a) BPS
 - (b) DFS
 - (c) Uniform Coct Search
- 10. Search with partial Information
 - (a) Senson less problems
 - problems (b) contingency (c) Exploration Phobleme

(PAGE-3)

I SEARCHING TECHNIQUES

- 1. Informed Search Strategies
 - (a) Best First Search
 - (b) spreedy best first search
 - (c) A** search
 - (d) Heuristie functions
- 2. Local search algorithms and optimization problems.
 - (a) Hell Climbing
 - (b) Simulated Annealing
- (c) Genetic Algorithms with Optimization
- 3. Online search agent
 - (a) Offline search Apont
 - (b) Online Search Agent

(PAGIE-4)

- 4-Constraint satisfaction problem
 - (a) Map coloning
 - (b) Cryptarithmetic
 - (c) Real world CSP 4- Queens.

(PAGE-5)

- 5. Game Playing: Adversarial search
 - (a) Introduction
 - (b) The Tac Toe

 - (c) Minimar algorithm (d) Alpha Beta paoning
- 6. Evaluation functions
- (KNOWLEDGIE & REASONING (PAGE-6)
 - 1. Logical Agents
 - (a) pepresentation and reasoning
 - (b) Two generic function
 - (c) knowledge based Agents
 - 2. Propositional Logic

- (a) Atomic Sentence
- (1) complex sentence
- (c) Extittement and Derivation
- (d) Soundness and completeness
- 3 Reasoning patterns in propositional Logic
 - (a) Proof by deduction.

(PAGIE-8)

- 4. First order Logic
 - (a) Basic Floments
- (b) steps for knowledge Engineering
- (c) Examples Wumpus world
- 5. Inference in first order Logic
 - (a) Universal Quantifier (b) Extential Quantifier
- 6 Propositional ve first order Inference
 - -> Unification & Lifts
 - forward Chaining
 - -> backward chainthy
 - -> Resolution.

IV) LEARNING (PAGE-9)

- 1. Learning from Observation
- (a) Learning Agents (b) Types of Learning
 - 2. Inductive learning
- (a) Definition (b) Examples.
 - 3. Decision Trees
- (a) Definition & Athibutes
- (b) Training Sample & Applications PAGE -10
- 4. Explanation based Learning
- (a) Definition (b) Diagram
- 5. Statistical Learning methods
- (a) Bayes rule
- (b) Examples Candy flavor problem
- 6. Learning with complete data
- (a) lifethood (b) Mar lifethood.

(PAGE-11)

- 8. Neural Networks
- (a) Neurons
- (b) Typical neutrons with activation functions.
- (c) Types of NN

(PAOIE-12)

- 9. kernel machines
- 10. Reinforcement Learning
- Y) SEARCH ENGINE OPTIMIZATION (PASE 13)
- 1. Different Search Engine
- 2. Evaluating search Engine
 - Measures for search engine
- Measuring user happiness 3. Search Techniques
 - -> Phrace Searching
 - -> wildcard cearching
 - -> Boolean searching

(PAOIE-14)

- 4. Search Engine Optimization
- 5. Website Domain

(PAOIE-15)

- 6. Design and Laypout
- 7. Keyboard Optimization
- 8. Meta tag Optimization

(PAGE-16)

- 9. Title Tag Optimization
- 10. Anchor tag Optimization
- 11. XHTML Verification for websites =

SEARCH US GAMES

Search	Games
* NO adversory	* Adversaby
y solution-	* solution
path from start->goal	is strategy
* Exur path planning scheduling activities	checkers.

TIC TAC TOE PROBLEM

Ly needs to satisfy set of constrainsts.

- The consists of houghts and crosses (on) Xs and Os
- > 3x3 grid play
- The 3 constantive mores than the player who owns the move will won.

GAME PLAYING

MINI-MAX ALGORITHM

perfect play
for cetimological
environments
with perfect
Differmation

encose move with highest

Man - position: largest successor

example: Man win

Nax

Remin

1 19

Vaniables

- 2 player gen
- -> player 1 !- Min- Highest score
- -> player 2 :- Man- lowest score

properties

• performs a complete depth

first exploration of the game tree 3

optimal

Time complexity.

(pd)0

space companity = 0 (bd)

. B is branching factor b is Depth of tree.

ALPHA BETA PRUNING (Q-B)

- Ly needs to satisfy set of constraints
- similar like Min Man
- -> Reduce computation time.
- -- cuts of branches in game tree.

parameters:

OAlpha! - Mark value

Deeta: Min value

4 00

. Heret optimal value acheived.

un used nodes are delited

(Pruning)

EVALUATION FUNCTIONS

- order the terminal states
- + computation must not take
- -> For non-terminal states.

 -> evaluation function.

 should strongly correlated

Ideal function:

returns the utility of the position.

In practice: Typically weighter unear sum of feathful

---+(2)275W +(2)171W=(2) LONG
(2) n7nW+

example! chess game

fi(s)= (num white aueens- num)
black aueens) etc.,

REAL TIME APPLICATIONS
Giarres

Clayle Agents

Multi Agent Games

rempleseen

→pubg

+ Subway surfers

Proposibinal dogsic Declationive statements which either True /false. Atomic Jentences Single Powpos: jimal Symbols True = a ways true, False = always false Complen Sentences Negation -If Sisa Sentence, 78 is a Sentence ComJunction - If s, and S2 are Sentences, SINS2 is a Sentence DisJunchm -IfS, and S2 are Sentences SI VS2 is a Sentence Implication -If S, and S2 are Sentences. SI => 52 is a Sentrence

Biandifimal

- If S, and S2 are Ventences,

SI So is a Sentence

Wumpus World Sentences Alet Pij be true if there is a Pit in Ei, i] A Let Bij be true if there is a breeze in [i,i] Start: 7P1,1 7 B1,1 B2, 1 Pits Cause breezes in adjacent Squares" B1,1 (=> (P1,2 VP2,1) 12,1 (=> (P1,1 VP2,2 VP3,1) Entailment & Derivation Entzilment: KB/29 No Logically Possible Tmein world Where Q is false, every Rossiste word Den Varim: KBI-9

Valid Doference

Steps

Soundness: If kB 1-9 then kB 1=9 Inference Produces only real entailments Completeness: If RB = 9 then RB -9 Inference Produces all Portai ments Reasoning Patterns in Propositional logic Infevence! Rules Moders POPENS Reasoning SI=>S2 gundsi. Patrems derive S2 And -Eliminehim SIASZ, deriver, De morgan shaw 7 (AVB) = 7 AM78 7 (ANB)= 7AV74 AND & UMINATION Moders Ponens 大字B,《 X AB B

Proof By Deduckm 5-2 stire, P-bit, B-Breeze Knowledge Rule: S1: B2 (P2 VP23 VP12 VP2) Observation S2: 7B22 Inferences SI, BI eliminetim 3: (B2, => (P22 V P23 V P12 VP32)) ((P28 V P23 V P12 V P32)=) B2 53, And Ellminehim S4: ((P2 VP23 VP12 VP22)=)B22) S5: (7B22=) 7(P2,VP23VP21) S2, S6, MP Sb: 7 (P2, VP23 VP12 VP32) Sh, Derovogen Law S7:7P21 7P23 17P2 17P32 REAL-TIME APPLICATIONS OUT DOOR CAMES CRICKER GOOD MATCH FOUT BALL Climate COMPUTED BAKWES BALL Condian Willy Ran MASCH CANCRURA

Hypothesis space H: Set of all classification rules hi, we allow Training pata D. set of Instances labeled with Target Jeature

F00 D	Chat	Fast	Price	Bar	BigTIP
Gireat	Yes	443	normal	no	yes
Great	no	403	normal	no	Yes
Mediocre	Yes	no	Mgh	no	no
Great	Yes	Yes	noma	Yes	Yes

Decision Tree:

* Input -> Set of attributes

· output - returns a decision.

Escinny over Erein 2

+ Each Node Test as attribute

* Each branch corresponds to an attribute value.

(9)

* Each Assign classification.

Training Example:

P	Day outle		ok	ok Temp		Humidity		wind		Tent	
D1 D2 D3		sunny		Hot		high		weak		No	
		sumy		Hot		high		String		ND	
		Overca	St	HOF		high		weak		405	
		Rain		mild		high		Weak		Yes	
05		Rain		C001		Normal		weak		yes:	
Db		Rain		C001		Vorma	S	two		NO.	
D7	b	vercast	R	(00)		Vostnaj	S	Eron		123	
DS	Ę	sunny	1	mild		high	U	Jeak		VO	
09	S	unn		C001		vosmaj	U	veak	q	les	
DIO	1	Rain	١	mild	N	iormal	U	vear	0	les	
DII	S	unny	۲	miid	N	ormal	8	Fuel	y	es	
)12	6)	rereast	ľY	nso	h	Jgh	st	לע מוב	و	les	
013	OV	revease	ŀ.	OT	h	Dima)	W	car	4	es	
14	R	lain	m	ild	W	gh	st	الد ما	^	VO	
TE .	0	ericina	1.						Parameter year		

-x The Decision tree to represent learned target functions:

target functions:

* Each internal node tests as attribute
it outlook 2 sunny and humidity 2 normal

it outlook = overcast

it outlook = rain and wind = weak.

TyPes:

Input = balaab lab

Pattern = xxbalxxxx ab

output ! toue

1) Boolean Searching

2) Subject Searching

3) phoase seasoling

* TINTRODUCTION TO SEARCH ENGINE OPTIMIZATION. *

Different Search Engine:

- 1) A search engine is a web-based tool that enables users to locate informa--tion on the world wide web.
- 2) Popular examples of search engines are Google, Yahoo!, and MSN Search

- 3) Yahoo was founded by Jerry Yang
- 4) Google was founded by > Larry Page

Uses of SE:

- * SE utilize automated software applications that travel alog web, follow like Page to Page.
- * SE search their own databases when a user enters in a search to find related document Types of SE:
- 1) Crawler based Search Engines use "spider"
- 2) search dioectories or indexes human estas
- 3) Hybrid Search Engines [Both coawler & sanch] 10) Meta Search Engines [via the WWW.]

Evaluating, Seasch, Engine:

Measures for a search engine:

- * How fast does it index
 - -> Number of documents/hour
 - -> Average document size
- * How fast does it search
 - -) Latency as a function of Index Size
- * Expensiveness of query language
 - -> Ability to express complex informa--tion needs
 - -> speed on complex quesies

Measuring User happiness:

- * Issue: who is the user we are toying to make happy?
 - -> Depends on the setting
- * Web Engine: Uses finds what they want and return to engine
 - -) can measure rate of return users.

Accubacy:

- * Given a query an engine classifies each doc as "Relavent" or "Isrelavent".
- * Accuracy of an engine: the fraction of these classifications that is correct.

Search Techniques:

- * Phoase searching
 - o Instead of -> American English
- American English
- * Truncation * Instead of
- * Machine
- · Machine? for machine, machinery.

wildcard search:

- * If you want both
 - Woman
 - -Women

- wom*n

Boolean Seasching:

* Boolean Search is query technique that utilize Boolean Logic to connect individual Keywood within single que

"Phonetics" "Phonology"

"Phonetics" "Phonology"

Phonetics' Phonology

Real Time Application:

Search Yahoo

* REBSITE DESIGN - CAYOUT AND THEYHORD OPTIMIZATION *

DESIGN AND LAYOUT

what type of information goes on a web site

- * contact information (phone No, email)
- * Business hours
- * Background information about your business
- * product / service information

The URL 15 composed of 3 posts

- -> The protocol * http://
- -> The domain name * www. hispanicbusine.com
- -> The pathname + Imagazine
- -> A web page is written in a special code called HTML"

HTML - Hyper - text markup language

Most sources today offer Both domain

and web Hosting: exe for which goda day com

L* www register com

Free domain with annual purchase	Standard Web Hasting \$9.96mo Wannual	Hasting	Hosting
Disk space (GB)	7	15	30
Monthly Data transfer (GB)	150	400	500
FTP Accounts	3	6	15
E-mailboxes	50	100	200
Directory pointers	20	40	50

(Keywords optimization

- * A keyword is a term that is used to match with the query a person enters into a search engine to find specific information.
- * Such phrases may be called Search phrases, Keyword phrases, query phrases or just keywords.

keyword x trequency

*This is calculated as how often does a keyword appear in a website title or description. * Since on some engines if you repeat a word too many-times, you are be penalized for "spanning" or keyword stuffing.

Keyword weight

It refers to the number of Keywords appearing on your webpage comparred to the total number of words appearing on that same

Keyword proximity

* It refers to the placement of Keywoords on a coeb page in relation to each other or, in some cases, in relation to other words.

Keyword prominence

* It is a measure of how early or high up on a page, the Keywords are found.

Metatags

There are two important metagas:

- Meta description tags - Meta Keyword tags
- * For Google, adding the descript-900 meta tag does not result in a boost in the search Engine results

What Do the Metatags Look like

- * I meta name = "keywords"
- * content = "KEYWORD1 KEYWORD2 KEYWORD KEYPHRASE 1 etc. about 30 to 40 unique words >
- * Emeta name = "description"
- * contents "An accurate, Keywoord-rich description about 150 characters's

- 1. zig-zag Layout
- 2. F Layout
- 3. Full-screen photo
- 4. Grid layout
- 5. one-column layout Play Store

SEO- SEARCH ENGINE OPTIMIZATION

PROPERTIES OF SEO

the A "t" before a word in a search cof! locali for documents which contain the word.

The before a count of! execute that word from Search

Planing words blo I made usil seach for phrase blo the quoter

* Using the "ou" blu Beauth plane us!

Examples

+ Blue 2 sesults nontain word black & word blue

-> "Black Bleve" - The clocuent will be retained would blue would blue

-> Black Blue - The result contain the phease

black blue Cplaced Black - The esset contain to tem

ADVANTAGIES

* Easy to Equel #

DISADVANTACIES

Too many website leads

WEBSITE DOMAIN

-> A website is a communication catton tool that allows
people to share information

bushers visibilety and

-> A web site is one of the most cost effective forms of advertising

- Beocheuse
- · New attent
- Case rece 102 fo. Sleets HOSTING

URL COMON PARTS

- * The Protocol
 - · heep://
- * The demain name
- * www. amazon. eom
 - * The Path name
 · /magazine

Title optimization:-

\$ AN ATMITTLE tog is put inside the head tog

* This is the one place on meptage where your keywords must pe bresent

* lorrect use of keywords in the little every page of your website is extremely important to Google - Porticularly for the homepage

Designing the title of a web Page!

title shouldn't consist of more 9 words or 60 characters about * use keywords at very beggining the title

> DO not include your company name in titles unless your company name is very well known

Best Practices for creating Titles:

* use more specific variations to your Primary keyword Phrase on your specific Product, service, or content page.

* Make sure the "<title >" tag is first element in the shead > section of your page - This make it easier for Google to find the Page

Anchors oPtimization:-

* Use descriptive anchor text for all your text links most search engines consider anchor text of incoming links when ranting pages Here is an example:

ca href = "other page. htm title="Anchortitle" > Anchor Text clas

* Anchor Text < la>

=> Some of Important points to rote about Owchow ;-

=> The Anchor plays a very important role in the Titles: and is seen by most of search engines

=> The Anchor title should have on appropriate keywords

=) Anchor title helps the site visitors using a balloon, and duplaying written text.

Anchors verification for website:

=> Another example of an anchor could be as follows:

La href="other rage.htm" title="Anchor Titles" cim g src="im age. git" alt= "keywords"/><la>

=> In this lage, - Anchor Text has been replaced by an image.

=> So, while using an image in place of on anchor text, it should be theired that you have but alt tag property.

XHTML validation

=> validation is a method of verifying that we have mad no syntax or rules violations on our web Pages

=> This step is important, as it herps ensure that our websites display Phopeny and consistently to our visitors example:-

C! DOCTYPE HIM! PUBLIC" - 1143C! DIDWIM! 1.0 monsitional I FR"

earth : 11 more rest ord Ist per 11 DSD / spent - porsiti -oral.dtds>

Markup validation service cheek the mark-up charmer with the mark-up charmer with the documents

validate by URI validate file 11000 souide Direct IP

validate by URI

validate a document online:

Address:

More options

· Check

Real Time Application:

search

Electronics Mobiles MiniTV Deals

FUTURE OF AI

Artificial Intelligence future !-

→ A PWC report estimates that AI will Contribute \$15.7 trillian to global econo -my by 2030

1 Health care:

- -> AI robote would be employed.
- -> To perform complex surgeries.
- High degree of precision.

2. Autonomous Vehicles:

- -) Autonomous Mehicles are equipped with multiple Sensols.
- -> like Carneras, radars and lidar.
- -> Al is projected to have a valuation of 4 127 billion by 2025.

3. Security and Defence

- Al avie often embedded into weapons and Surveillance Systems.
- -) Securing the bodies of the country can be delegated to AI robots, vav's etc.

4. Manufacturing:

- -> All optimizes manufacturing Supply Chains
- -> Helping companies anticipate market changes.
- -> future process would be able to inspect, improve, and quality check
- -> No need of any human intervention.

5. Education

- -> The future of classroom is digital
- -> It will be redefined from comfort of homes "
- -> Personalized according to every students with AD systems.

6 Entutainment!

- -) OTT's like Aha, Amazon prime etc auc increasing user base.
- -) In future, AI will be predicting a content of to your mood and display content

7. Workplace:

- -> Businesses are using AI
- -) To embance productivity of their employed
- -> One example is chatbot.

8. Banking and finance:

- -) AI is best way for banking
- -) It brings facility of advanced data analytics to combat fradulent transactions.
- -> Improve compliance.
- * The ways in which AI can be implemented in different industries are left only to one's imagination
- * There is one thing that is for some which is:
- The future would be an exciting time to live in."

01 0 1 00 011

0101

Saveetha Nagar, Thandalam, Chennai - 602 105, TamilNadu, India