UNPUBLISHED RESULTS BY AIDAN SCHOFIELD¹

AIDAN SCHOFIELD

Let X be a smooth projective curve over a field k of genus g. Let $\mathcal{F} \in \text{coh}(X)$ be such that Supp $\mathcal{F} = X$. Put

$$\mathcal{F}^{\perp} = \{ \mathcal{E} \in \operatorname{Qch}(X) \mid \operatorname{Hom}_X(\mathcal{F}, \mathcal{E}) = \operatorname{Ext}^1(\mathcal{F}, \mathcal{E}) = 0 \}$$

It is easy to see that \mathcal{F}^{\perp} is an abelian subcategory of Qch(X) closed under direct sums. So it is particular a Grothendieck category.

Proposition 0.1. The inclusion $\mathcal{F}^{\perp} \subset Qch(X)$ has a left adjoint.

Proof. Let $\mathcal{U} \in Qch(X)$. We must construct $\mathcal{U}' \in \mathcal{F}^{\perp}$ such that

(0.1)
$$\operatorname{Hom}_{X}(\mathcal{U}, \mathcal{E}) = \operatorname{Hom}_{X}(\mathcal{U}', \mathcal{E})$$

for all $\mathcal{E} \in \mathcal{F}^{\perp}$.

We will first show that there exists a morphism $\mathcal{U} \to \mathcal{U}'$ inducing an isomorphism after applying $\operatorname{Hom}_X(-,\mathcal{E}), \ \mathcal{E} \in \mathcal{F}^{\perp}$ and satisfying either of the following two properties

- (1) $\operatorname{Hom}_X(\mathcal{F}, \mathcal{U}') = 0;$
- (2) $\operatorname{Ext}_X^1(\mathcal{F}, \mathcal{U}') = 0$

This is sufficient since we may then construct a series of maps

$$\mathcal{U} \to \mathcal{U}_0 \to \mathcal{U}_1 \to \mathcal{U}_2 \to$$

such that all maps induce isomorphisms after applying $\operatorname{Hom}_X(-,\mathcal{E})$ and such that $\operatorname{Hom}_X(\mathcal{F},\mathcal{U}_{2k})=0$, $\operatorname{Ext}^1_X(\mathcal{F},\mathcal{U}_{2k+1})=0$. We then take $\mathcal{U}'=\lim_n \mathcal{U}_n$.

To satisfy (1) we construct a series of maps

$$\mathcal{U} \to \mathcal{U}_0 \to \mathcal{U}_1 \to \mathcal{U}_2 \to$$

such that

$$\mathcal{U}_{k+1} = \operatorname{coker}(\operatorname{Hom}(\mathcal{F}, \mathcal{U}_k) \otimes_k \mathcal{F} \to \mathcal{U}_k)$$

and take $\mathcal{U}' = \underline{\lim}_k \mathcal{U}_k$.

To satisfy (2) we construct a series of maps

$$\mathcal{U} \to \mathcal{U}_0 \to \mathcal{U}_1 \to \mathcal{U}_2 \to$$

such that \mathcal{U}_{k+1} is the universal extension

$$0 \to \mathcal{U}_k \to \mathcal{U}_{k+1} \to \mathcal{F}^{\operatorname{Ext}^1_X(\mathcal{F},\mathcal{U}_k)} \to 0$$

and take $\mathcal{U}' = \lim_{k} \mathcal{U}_k$.

Below we denote the left adjoint to $\mathcal{F}^{\perp} \to \operatorname{Qch}(X)$ by L. Let $p \in X$. There exists an epimorphism $\phi : \mathcal{F} \to \mathcal{O}_p$. Put $\mathcal{F}' = \ker \phi$, $\mathcal{P} \stackrel{\text{def}}{=} L(\mathcal{F}')$.

¹Notes by Michel Van den Bergh

Proposition 0.2. The object \mathcal{P} is a small projective generator for the category \mathcal{F}^{\perp} . If $\mathcal{E} \in \mathcal{F}^{\perp}$ then $\operatorname{Hom}_X(\mathcal{P}, \mathcal{E})$ is finite dimensional if and only if \mathcal{E} is coherent.

Proof. If $\mathcal{E} \in \mathcal{F}^{\perp}$ we have $\operatorname{Hom}_X(\mathcal{O}_p, \mathcal{E}) = 0$ and hence $\operatorname{Ext}^1_X(\mathcal{O}_p, -)$ is an exact fuctor on \mathcal{F}^{\perp} . Thus for $\mathcal{E} \in \mathcal{F}^{\perp}$

(0.2)
$$\operatorname{Ext}_{X}^{1}(\mathcal{O}_{p},\mathcal{E}) = \operatorname{Hom}_{X}(\mathcal{F}',\mathcal{E}) = \operatorname{Hom}_{X}(L(\mathcal{F}'),\mathcal{E}) = \operatorname{Hom}_{X}(\mathcal{P},\mathcal{F})$$

Thus \mathcal{P} is a projective object in \mathcal{F}^{\perp} . It is small since (0.2) shows that $\operatorname{Hom}_X(\mathcal{P}, -)$ commutes with direct sums. Furthermore we find $\mathcal{P}^{\perp} \cap \mathcal{F}^{\perp} = (\mathcal{F} \oplus \mathcal{O}_p)^{\perp}$ and since $\mathcal{F} \oplus \mathcal{O}_p$ is a compact generator of $D(\operatorname{Qch}(X))$ we deduce $= (\mathcal{F} \oplus \mathcal{O}_p)^{\perp} = 0$. This implies that \mathcal{P} is a generator for \mathcal{F}^{\perp} .

It is clear from (0.2) that if \mathcal{E} is coherent then $\operatorname{Hom}_X(\mathcal{P},\mathcal{E})$ is finite dimensional. We will now prove the converse. Assume $\mathcal{E} \in \mathcal{F}^{\perp}$ and $s = \dim \operatorname{Ext}_X^1(\mathcal{O}_p,\mathcal{E}) < \infty$. Assume that \mathcal{E} is not coherent. If $\mathcal{E}' \subset \mathcal{E}$ is a coherent subobject then we claim that the maximal submodule of \mathcal{E}/\mathcal{E}' supported in p has finite length. Assume this is not the case. Then we can construct an infinite chain

$$\mathcal{E}' = \mathcal{E}'_0 \subsetneq \mathcal{E}'_1 \subsetneq \mathcal{E}'_2 \subsetneq \cdots \subset \mathcal{E}$$

of coherent submodules such that $\mathcal{E}'_{i+1}/\mathcal{E}'_i$ has support in p. We then have that $\deg \mathcal{E}'_i$ is unbounded whereas its $\operatorname{rk} \mathcal{E}'_i$ is constant. Put $(r,d)=(\operatorname{rk} \mathcal{F}, \deg \mathcal{F})$ and $(r',d'_i)=(\operatorname{rk} \mathcal{E}'_i, \deg \mathcal{E}'_i)$. A straightforward computation using the Rieman-Roch theorem shows

$$\chi(\mathcal{F}, \mathcal{E}'_i) = \dim \operatorname{Hom}_X(\mathcal{F}, \mathcal{E}'_i) - \dim \operatorname{Ext}_X^1(\mathcal{F}, \mathcal{E}'_i) = rr'(1-g) + rd'_i - dr'$$

Since $\operatorname{Hom}_X(\mathcal{F}, \mathcal{E}'_i) = 0$ we have $\chi(\mathcal{F}, \mathcal{E}'_i) \leq 0$. On the other hand since d'_i is unbounded we may assume $\chi(\mathcal{F}, \mathcal{E}'_i) > 0$ which is a contradition.

We now construct a chain of coherent subobjects

$$0 = \mathcal{E}_0'' \subsetneq \mathcal{E}_1'' \subsetneq \mathcal{E}_2'' \subsetneq \cdots \subset \mathcal{E}$$

such that $\operatorname{rk} \mathcal{E}_{i+1}'' > \operatorname{rk} \mathcal{E}_i''$ and such that $\mathcal{E}/\mathcal{E}_i''$ has no subobject supported in p. This is possible by the previous discussion. This chain cannot stop since \mathcal{E} is not coherent. Put $r_i'' = \operatorname{rk} \mathcal{E}_i'' = \dim \operatorname{Ext}_X^1(\mathcal{O}_p, \mathcal{E}_i'')$. Then it is clear that for all i we have $r_i'' < r_{i+1}'' \le s$, which is impossible.