General Overview of the Code for Homogeneous Reconstruction

The purpose of this document is to provide a general overview of the code developed for homogeneous reconstruction, based on the hierarchical optimization framework (as described in Chapter 3 of my thesis). For clarity, only the main functions and files are presented here.

- The main function, named gd_importance_sampling_3d, implements the
 hierarchical optimization algorithm. It is located in the file
 gradient_descent_importance_sampling.py within the
 learning_algorithms folder. This function supports two types of volume
 representations: a voxel-based representation in the Fourier domain, and a Gaussian Mixture
 Model (GMM) representation. Further details on how to use this function are provided in its
 documentation.
- The mains folder contains various Python scripts demonstrating the usage of the
 aforementioned function. It is divided into two subfolders: real_data and
 synthetic_data, which include scripts for testing the method on real and synthetic
 datasets, respectively.
- The file <code>generate_data.py</code> in the <code>data_generation</code> folder provides functionality to generate simulated data based on ground truth objects. It rotates the 3d object in a set of random orientations, translate them, apply a convolution to simulate anisotropy of resolution then add a random gaussian noise.
- The volume_representation folder includes Python code that defines volume representation classes. The Fourier_pixel_representation class (in the file pixel_representation.py) corresponds to the voxel-based representation, while the GMM_representation class (in GMM_representation.py) implements the Gaussian Mixture Model representation.
- The file metrics_to_compare_2_images.py (in the metrics_and_visualization folder) implements various metrics to compare two images. These include SSIM, FSC, cone-shaped FSC, and Dice coefficient.
- The file classes_with_parameters.py defines classes that store the hyperparameters associated with different parts of the pipeline. The ParametersMainAlg class contains the hyperparameters related to the main function gd_importance_sampling_3d. The ParametersDataGeneration class holds the parameters for synthetic data generation. The ParametersGMM class defines parameters specific to the GMM-based volume representation.