Finite automata and formal languages Assignment 2

DIT323 (Finite automata and formal languages) at Gothenburg University

Sebastian Pålsson

Last updated: February 09, 2024

1

Let $\Sigma = \{0, 1\}$

Let $R = (0 + 01^*)^* (\varepsilon + 1) 1 (\varepsilon + 0 + 1)^*$

Let's construct a NFA for R:

1. Construct a NFA for $(0 + 01^*)^*$

2. Add $(\varepsilon + 1)1$ to the NFA

3. Add $(\varepsilon + 0 + 1)^*$ to the NFA

The NFA for R is the thus following:

1. DIT084

2

The regular expression is: $R = 1(1+01)^+$

- The "1" in the beginning makes it so that the string must start with a 1.
- The "+" makes it so $|w| \geq 2$
- (1+01) makes it so it always ends with a 1 and two zeroes never appear after one another.

3

Let the following table represent the NFA:

State	ε	a	b
$\rightarrow s_0$	Ø	s_1	$\{s_0,s_2\}$
s_1	s_2	s_4	s_3
s_2	Ø	$\{s_1,s_4\}$	s_3
s_3	s_5	$\{s_4,s_5\}$	Ø
s_4	s_3	Ø	s_5
*s ₅	Ø	s_5	s_5

We then define the following DFA by subset construction:

State	a	b
$\rightarrow s_0$	$\{s_1,s_2\}$	$\{s_0,s_2\}$
$\{s_1,s_2\}$	$\{s_1, s_2, s_3, s_4, s_5\}$	$\{s_3,s_5\}$
$\{s_0,s_2\}$	$\{s_1, s_2, s_3, s_4, s_5\}$	$\{s_0, s_2, s_3, s_5\}$
$*\{s_1, s_2, s_3, s_4, s_5\}$	$\{s_1, s_2, s_3, s_4, s_5\}$	$\{s_3,s_5\}$
$*\{s_3,s_5\}$	$\{s_3,s_4,s_5\}$	$\{s_5\}$
$\{s_0, s_2, s_3, s_5\}$	$\{s_0,s_1,s_2,s_3,s_4,s_5\}$	$\{s_0, s_2, s_3, s_5\}$
$*\{s_{3}, s_{4}, s_{5}\}$	$\{s_3,s_4,s_5\}$	s_5
*s ₅	s_5	s_5
$\left\{s_0, s_1, s_2, s_3, s_4, s_5\right\}$	$\{s_1, s_2, s_3, s_4, s_5\}$	$\{s_0, s_2, s_3, s_5\}$

3. DIT084

4

Transition diagram for the NFA:

Let's define the following equations for the NFA:

$$\begin{split} q_0 &= \varepsilon + q_0 a \\ q_1 &= q_0 b + q_2 b \\ q_2 &= q_0 c + q_1 c \\ q_3 &= q_1 b + q_3 c \\ q_4 &= q_3 a + q_4 b + q_2 c \end{split} \tag{1}$$

The goal is to find the regular expression for the final state, q_4 .

For q_0 we have:

$$\begin{aligned} q_0 &= \varepsilon + q_0 a \\ &= \varepsilon a^* \qquad \text{(Arden's lemma)} \end{aligned} \tag{2}$$

For q_1 we have:

$$\begin{aligned} q_1 &= q_0b + q_2b \\ &= q_0b + (q_0c + q_1c)b & \text{(Substitute } q_2) \\ &= q_0b + q_0cb + q_1cb \\ &= (q_0b + q_0cb)(cb)^* & \text{(Arden's lemma)} \end{aligned}$$

For q_2 we have:

$$\begin{split} q_2 &= q_0 c + q_1 c \\ &= q_0 c + (q_0 b + q_0 c b)(c b)^* c \qquad \text{(Substitute } q_1\text{)} \end{split} \tag{4}$$

4. DIT084

For q_3 we have:

$$q_3 = q_1 b + q_3 c$$

= $q_1 b c^*$ [5]

Now we solve q_4 :

$$\begin{aligned} q_4 &= q_3 a + q_4 b + q_2 c \\ &= (q_3 a + q_2 c) b^* & \text{(Arden's lemma)} \\ &= ((q_1 b c^*) a + (q_0 c + (q_0 b + q_0 c b)(c b)^* c) c) b^* & \text{(Substitute } q_3 \text{ and } q_2) \\ &= (q_1 b c^* a + q_0 c c + q_0 b (c b)^* c c + q_0 c b (c b)^* c c) b^* & \text{(Simplify)} \\ &= (((q_0 b + q_0 c b)(c b)^*) b c^* a + q_0 c c + q_0 b (c b)^* c c + q_0 c b (c b)^* c c) b^* & \text{(Substitute } q_1) [6] \\ &= (q_0 b (c b)^* b c^* a + q_0 c b (c b)^* b c^* a + q_0 c c + q_0 b (c b)^* c c + q_0 c b (c b)^* c c) b^* & \text{(Simplify)} \\ &= (\varepsilon a^* b (c b)^* b c^* a + \varepsilon a^* c b (c b)^* b c^* a + \varepsilon a^* c c + \varepsilon a^* b (c b)^* c c + \varepsilon a^* c b (c b)^* c c) b^* & \text{(Substitute } q_0) \\ &= (a^* b (c b)^* b c^* a + a^* c b (c b)^* b c^* a + a^* c c + a^* b (c b)^* c c + a^* c b (c b)^* c c) b^* & \text{(Remove } \varepsilon) \\ &= a^* (b (c b)^* b c^* a + c b (c b)^* b c^* a + c c + b (c b)^* c c + c b (c b)^* c c) b^* & \text{(Simplify)} \end{aligned}$$