Computational Imaging Project Bibliographic restitution

Sparsity and patch for image restoration.

Authors:

Mohamed El Baha Emmanuelle Bodji Hervé Silue Paul Coste Quentin Ribaud

Outline

- I Sparsity Theory
- II Paper's contribution
- III Paper's results

Introduction

Hyperspectral imaging contains more information than RGB imaging. It is used in many domains.

Image denoising could be difficult because of

- complex data
- lack of large-scale collection
- several types of sensors, which typically admit different numbers of spectral bands

Introduction

In our case, we want to denoise hyperspectral imaging. It is an inverse problem.

- Inverse problem: start from an observation and we try to reconstruct what we had at the beginning
- Denoising: find x the clean image from y the noisy image which is the observation

noisy image

image

What is Sparsity?

- Sparse means something that is in small number and spreaded out over an area (or distribution)
 - ☐ For example, sparse vectors and matrix are mostly composed of zeros and only a few non-zero valued elements

c1	c2	c3	c4	c5
0	0	0	5	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
3	0	0	0	0
0	0	0	0	0

■ Sparse vectors are lighter → faster computation

Image Representation

→ 3D-Matrix (RGB, hyperspectral, ...)

		165	187	209	58	- 7
	14	125	233	201	98	159
253	144	120	251	41	147	204
67	100	32	241	23	165	30
209	118	124	27	59	2001	79
210	236	105	169	19	218	156
35	178	199	197		14	218
115	104	34	111	19	196	
32	69	231	203	74		

■ Fourier coefficients (Lab 1)

Dictionaries

Dictionaries

For instance, we can reconstruct an image from a dictionary D. For a patch, the following calculation is made

Image Dictionary S: Sparse vector

- S: sparse vector for deciding which vector is used from D.
- D could be a universal basis or Tailored basis

How to use sparse vectors?

Image

noisy one

Objective: minimize the difference between the base image and the

$$\min_{oldsymbol{lpha}_i \in \mathbb{R}^p} rac{1}{2} \lVert \mathbf{y}_i - \mathbf{D}oldsymbol{lpha}_i
Vert^2 + \lambda \lVert oldsymbol{lpha}_i
Vert_1$$

Dictionary

Observation coefficient

Regularization coefficient

S : Sparse vector

The Regularization term allow us to not face an ill-posed problem

Why are we using the L1 norm?

How to find sparse solution

Let's suppose Y = XS where Y and X are known. Typically, Y can be a noisy image

Goal: find S sparse; There are an infinite number of S that satisfies this equation.

☐ Find S that minimize L2 norm

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^N |x_i|^2\right)^{1/2} = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$$

NB : S is not sparse.

How to find sparse solution

Let's suppose Y = XS where Y and X are known.

Goal: find S sparse; There are an infinite number of S that satisfies this equation.

☐ Find S that minimize L0 norm => S will be sparse but it is N-P hard → hard to compute

$$\|x\|_0=\sharp i|x_i
eq 0$$

- How to choose the solution?
- This could be hard if the dimension is high

How to find sparse solution

Let's suppose Y = XS where Y and X are known.

Goal: find S; There are an infinite number of S that satisfies this equation.

Find S that minimize L1 norm => S will be sparse and can be found S in a convex way.

Advantages of sparsity

- Is enforced by the L1 norm
- storage and calculation are faster (since only non null values are stored and used for calculation)
- Only a few terms are needed to modelize the data
- Prevents overfitting

Classical approach

$$\min_{oldsymbol{lpha}_i \in \mathbb{R}^p} rac{1}{2} \|\mathbf{y}_i - \mathbf{D}oldsymbol{lpha}_i\|^2 + \lambda \|oldsymbol{lpha}_i\|_1$$

- yi the patch of noisy image
- D the dictionary
- □ **Q**i the sparse matrix
- \supset λ controls the amount of regularization

- L1 norm to introduce sparsity
- We assume that D is given

Denoised image is obtained by averaging these estimates since each pixel belongs to several patches

Paper approach

With a kind of gradient descent method we obtain:

$$\alpha_i^{(t+1)} = S_\lambda \left[\alpha_i^{(t)} + \eta \mathbf{D}^\top \left(\mathbf{y}_i - \mathbf{D} \alpha_i^{(t)} \right) \right]$$
 (1)

trans(D)(yi – $D\alpha_i$) the direction $\eta > 0$ is a step-size S_{λ} activation function

$$\boldsymbol{\alpha}_i^{(t+1)} = S_{\lambda} \left[\boldsymbol{\alpha}_i^{(t)} + \eta \mathbf{D}^{\top} \left(\mathbf{y}_i - \mathbf{D} \boldsymbol{\alpha}_i^{(t)} \right) \right]$$

A non linear activation function

parameters

$$\mathbf{D} \quad \boldsymbol{\eta} \quad S$$

III - Paper's results

- **Learn-based approach**: Using dictionary.
- ☐ Learn-free approach :No dictionary, Ex: BM3D.

	Data req.	training	inference	adapt. to new data	complex noise
learning-free	no req.	no training	slow	easy	poor
learning-based	clean data	slow	fast	complicated	good perf.

Table 1: Comparison between learning-free and learning-based approaches

III - Paper's results

- □ Dataset: ICVL that consists of 204 images of size 1392 × 1300 with 31 bands.
- Evaluation metrics:
 - MPSNR (Mean Peak Signal-to-Noise Ratio) which is the classical PSNR metric averaged across bands.

$$PSNR = 10 \cdot \log_{10} \left(\frac{MAX_I^2}{MSE} \right)$$
 MAX_I is the maximum possible pixel value of the image

- MSSIM (Mean Structural Similarity Index Measurement), which is based on the SSIM metric.
 - SSIM is in [0, 1]. 1 indicates perfect structural similarity and 0 indicates no structural similarity

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

- μ_x the average of x;
- μ_y the average of y;
- σ_x^2 the variance of x;
- σ_y^2 the variance of y;
- σ_{xy} the covariance of x and y;
- $c_1 = (k_1 L)^2$, $c_2 = (k_2 L)^2$ two variables to stabilize the division with weak denominator;
- L the dynamic range of the pixel-values (typically this is $2^{\#bits\ per\ pixel}-1$);
- $k_1 = 0.01$ and $k_2 = 0.03$ by default.

III - Paper's results

					_		_	-				
	σ	Metrics	Noisy	BM3D	BM4D	GLF	LLRT	NGMeet	SMDS	QRNN3D	T3SC	T3SC-SSL
	5	MPSNR	34.47	46.17	48.85	51.25	51.86	52.74	50.91	48.80	52.62	51.42
		MSSIM	0.7618	0.9843	0.9916	0.9949	0.9951	0.9960	0.9944	0.9918	0.9959	0.9952
	25	MPSNR	21.44	37.86	39.89	43.16	43.43	<u>44.74</u>	42.83	44.20	45.38	44.73
i.i.d Gaussian noise with	23	MSSIM	0.1548	0.9269	0.9510	0.9695	0.9746	0.9796	0.9700	0.9782	0.9825	0.9805
fixed σ per band	50	MPSNR	16.03	34.22	34.22	39.26	39.69	41.08	39.25	41.67	42.16	41.62
·		MSSIM	0.0502	0.8654	0.8654	0.9197	0.9504	0.9602	0.9382	0.9655	0.9677	0.9646
	100	MPSNR	10.85	30.43	32.47	34.79	36.39	37.55	35.64	37.19	38.99	38.50
	100	MSSIM	0.0144	0.7557	0.8155	0.7982	0.9182	0.9311	0.8815	0.9140	0.9439	<u>0.9394</u>
	[0-15]	MPSNR	33.89	45.81	45.35	50.57	48.50	41.67	48.23	52.07	53.31	51.26
Causaian maias with	[0-13]	MSSIM	0.6386	0.9767	0.9735	0.9948	0.9899	0.9078	0.9900	0.9957	0.9967	0.9955
Gaussian noise with	[0-55]	MPSNR	23.36	39.06	38.43	44.22	41.13	32.94	41.76	47.13	48.64	46.82
different σ for each	[0-33]	MSSIM	0.2601	0.9231	0.9074	0.9818	0.9580	0.7565	0.9620	0.9884	0.9911	0.9882
band.	[0-95]	MPSNR	19.06	36.17	35.55	41.43	38.44	29.40	38.94	43.98	46.30	44.75
	[0-93]	MSSIM	0.1614	0.8760	0.8540	0.9674	0.9354	0.6609	0.9357	0.9753	0.9859	0.9822
Noise with correlated σ		MPSNR	28.85	42.73	42.13	47.05	45.76	38.06	45.98	48.90	49.89	48.78
across band	Corr.	MSSIM	0.4740	0.9599	0.9070	0.9881	0.9824	0.8536	0.9835	0.9911	0.9923	<u>0.9911</u>
	Strip.	MPSNR	21.20	34.88	37.70	42.06	39.38	39.78	41.98	44.60	44.74	43.80
Stripes noise	Suip.	MSSIM	0.1508	0.8641	0.9198	0.9628	0.9258	0.9333	0.9655	0.9806	0.9805	0.9773

Table 2 : Denoising performance on ICVL

Conclusion

THANK YOU FOR YOUR ATTENTION

Slides

III - Our implementation

■ Normalize data => gradient descent method is speed and efficient.

Different types of synthetic noise for models evaluation

Noise patterns	Explanation				
i.i.d Gaussian noise with known variance	Same noise on all bands.				
Gaussian noise with unknown band-dependent variance	different standard deviation for each band, which is uniformly drawn in a fixed interval				
Noise with spectrally correlated variance	Gaussian noise with standard deviation varying continuously across bands				
Stripes noise	we applied additive stripes noise to 33% of bands				