

Academic year 2024-2025 (Even Sem)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Date: June 2025	Improvement Test- Scheme &	Maximum Marks: 10 + 50					
Solution							
Course Code: CD343AI	Sem: 4 th UG	Duration: 120 Minutes					
Design and Analysis of Algorithms							
(Common to CS/CD/CY/IS/AIML)							

SCHEME AND SOLUTION

S.No	Part A	M	BT	CO
1.1	. Problem Domain (1 mark)		1	2
	Backtracking: Used for constraint satisfaction problems (e.g., N-Queens,			
	Sudoku) where any feasible solution is acceptable.			
	Branch and Bound: Used for optimization problems (e.g., Travelling Salesman,			
	Knapsack) where the optimal solution is required.			
	2. Pruning Strategy (1 mark)			
	Backtracking: Prunes paths based on constraint violation (infeasibility).			
	Branch and Bound: Prunes paths using bound values to eliminate non-promising			
	options.			
1.2	Codeword for each character: 1 mark	02	2	3
	a-0000 b-0001 c-001 d-010 e-011 f-1			
	Encoding for the ground (dead): 1 months 0100110000010			
1.3	Encoding for the word 'dead': 1 mark 0100110000010	02	1	1
1.3	Promising Node (1 mark): A promising node in a state space tree is a node that has the potential to lead to a feasible or optimal solution. It satisfies the	02	1	1
	problem's constraints (in backtracking) or has a bound better than the current			
	best (in branch and bound).			
	oest (in oranen ana ooana).			
	Non-Promising Node (1 mark): A non-promising node is a node that cannot			
	lead to a feasible or optimal solution. It is pruned or excluded from further			
	exploration to save computation time.			
1.4	Definition: 1 mark	02	1	1
	The assignment problem is to assign n tasks to n agents such that:			
	- Each task is assigned to one agent.			
	- Each agent is assigned one task.			
	- The total cost/time is minimized.			
	Design Techniques (at least 2): 1 mark			
	1. Exhaustive Search – tries all possible assignments (inefficient for large n).			
	2. Backtracking – eliminates infeasible solutions based on constraints.			
	 3. Branch and Bound – uses cost bounds to prune suboptimal solutions. 4. Hungarian Algorithm – a polynomial-time optimal solution method. 			
1.5	overlapping	01	1	2
1.6	Best-First Search.	01	1	2
1.0	Explanation (optional): Best-First Search selects the next node to explore based	01	1	
	on the lowest cost-bound value, ensuring that the most promising (potentially			
	optimal) node is explored first.			
	- F			l

Academic year 2024-2025 (Even Sem)

				Part B	}						
1	Solution: $(4+2) = 6$ marks (showing all the steps + Conclusion) Algorithm: 4 marks (with complete header – i/p, o/p, functionality details)							10	3	5	
	Maximum Profit: 44 Items Included: {Item 3, Item 4}										
	i/item w=0 w=1 w=2 w=3 w=4 w=5										
	0	0	0	0	0	0	0				
	1	0	0	12	12	12	12				
	2	0	10	12	22	22	22				
	3	0	10	12	29	39	41				
	4	0	10	15	29	39	44				
2	Solution: (4 + 2) = 6 marks (showing all the steps + Conclusion) Algorithm: 4 marks (with complete header – i/p, o/p, functionality details) Node: Distance: Path P: 0: P Q: 1: P→Q R: 2: P→Q→R S: 5: P→Q→S T: 7: P→T U: 3: P→Q→R→U							10	3	2	
3	Solution: (4 + 2) = 6 marks (showing all the steps + Conclusion) Algorithm: 4 marks (with complete header – i/p, o/p, functionality details) Edge: Weight 1-4:1 1-2:2 2-3:3 1-5:4 2-6:7 Total cost = 17							10	3	3	
4	Solution: (4 + 2) = 6 marks (showing all the steps + Conclusion) Algorithm: 4 marks (with complete header – i/p, o/p, functionality details)							10	2	4	

Academic year 2024-2025 (Even Sem)

