Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1	(currently amended) A method of efficiently transmitting media information
2		associated with two or more concurrent calls carried in a packet-switched network, the
3		method comprising the computer-implemented steps of:
4		aggregating two or more media packets from the two or more concurrent calls
5		originating from one or more source end points into an aggregated media
6		payload;
7		re-packetizing the aggregated media payload using a single aggregated header to form
8		an aggregated media packet;
9		forwarding the aggregated media packet to a next hop in the packet-switched network
10		in response to either one of
11		(a) a timer reaching a non-zero maximum allowed delay time value, or
12		(b) the aggregated media packet containing a specified number of Real-Time
13		Protocol segments, wherein the specified number is variable according
14		to user input.
1	2.	(original) The method of Claim 1, further comprising de-aggregating the aggregated
2		media payload for one or more destination endpoints by separating the aggregated
3		media payload to result in creating and sending restored copies of the two or more
4		media packets, wherein each media packet corresponds to one of the two or more
5		concurrent calls

1	3.	(original) The method of Claim 1, wherein aggregating the two of more media packet
2		comprises compressing one or more headers of each media packet.
1	4.	(original) The method of Claim 1, wherein the two or more media packets are Real-
2		Time Protocol (RTP) packets.
1 ,	5.	(original) The method of Claim 4, wherein the step of aggregating two or more media
2		packets further comprises the steps of:
3		compressing an IP header and a UDP header of each RTP packet to form a
4		corresponding uncompressed RTP segment; and
5		encapsulating the two or more uncompressed RTP segments with the single
6		aggregated header.
1	6.	(original) The method of Claim 4, wherein the step of aggregating two or more media
2		packets further comprises the steps of:
3		compressing an IP header, a UDP header, and an RTP header of each RTP packet to
4		form a corresponding compressed RTP segment; and
5		encapsulating the two or more compressed RTP segments with the single aggregated
6		header.
1	7.	(currently amended) The method of Claim 1, wherein the step of aggregating the two
2		or more media packets further comprises forming the aggregated media payload
3		according to an aggregation protocol that has a reduced sensitivity to media packet
4		loss for aggregating the two or more media packets.

- 8. (original) The method of Claim 7, wherein the aggregation protocol comprises
- 2 forming the aggregated media payload based on an aggregated media packet format
- 3 for each aggregated media packet wherein the aggregated media packet format
- 4 comprises a version field indicating a version of the aggregation protocol.
- 1 9. (original) The method of Claim 7, wherein the aggregation protocol comprises
- 2 forming the aggregated media payload based on an aggregated media packet format
- for each aggregated media packet wherein the aggregated media packet format
- 4 comprises a placeholder field that reserves packet space for future use.
- 1 10. (original) The method of Claim 7, wherein the aggregation protocol comprises
- 2 forming the aggregated media payload based on an aggregated media packet format
- 3 for each aggregated media packet wherein the aggregated media packet format
- 4 comprises a sequence number field that is incremented for each aggregated media
- 5 packet and is used to detect media packet loss.
- 1 11. (original) The method of Claim 7, wherein the aggregation protocol comprises
- 2 forming the aggregated media payload based on an aggregated media packet format
- 3 for each aggregated media packet wherein the aggregated media packet format
- 4 comprises a trunk ID field that uniquely identifies a corresponding trunk.
- 1 12. (original) The method of Claim 7, wherein the aggregation protocol further comprises
- 2 forming the aggregated media payload based on an uncompressed Real-Time Protocol
- 3 segment format for each uncompressed Real-Time Protocol segment of the two or

4		more media packets that comprises a context ID field indicating a session context ID
5		for the uncompressed Real-Time Protocol segment.
1	13.	(original) The method of Claim 7, wherein the aggregation protocol further comprises
2		forming the aggregated media payload based on an uncompressed Real-Time Protocol
3		segment format for each uncompressed Real-Time Protocol segment of the two or
4		more media packets that comprises a compression bit indicating whether the
5		uncompressed Real-Time Protocol segment is uncompressed.
1	14.	(original) The method of Claim 7, wherein the aggregation protocol further comprises
2		forming the aggregated media payload based on an uncompressed Real-Time Protocol
3		segment format for each uncompressed Real-Time Protocol segment of the two or
4		more media packets that comprises a placeholder field for future use.
1	15.	(currently amended) The method of Claim 7, A method of efficiently transmitting
2		media information associated with two or more concurrent calls carried in a packet-
3		switched network, the method comprising the computer-implemented steps of:
4		aggregating, according to an aggregation protocol, two or more media packets from
5		the two or more concurrent calls originating from one or more source end
6		points into an aggregated media payload;
7		re-packetizing the aggregated media payload using a single aggregated header to form
8		an aggregated media packet;
9		forwarding the aggregated media packet to a next hop in the packet-switched network;
10		wherein the aggregation protocol further comprises forming the aggregated media
11		payload based on an uncompressed Real-Time Protocol segment format for
12		each uncompressed Real-Time Protocol segment of the two or more media

13 packets that comprises a Real-Time Protocol header extension bit indicating 14 whether a Real-Time Protocol header extension appears in the uncompressed 15 Real-Time Protocol segment. 1 16. (original) The method of Claim 7, wherein the aggregation protocol further comprises 2 forming the aggregated media payload based on an uncompressed Real-Time Protocol 3 segment format for each uncompressed Real-Time Protocol segment of the two or 4 more media packets that includes a full length field containing a length of a Real-5 Time Protocol packet that corresponds to the uncompressed Real-Time Protocol 6 segment. 1 17. (original) The method of Claim 7, wherein the aggregation protocol further comprises 2 forming the aggregated media payload based on an uncompressed Real-Time Protocol 3 segment format for each uncompressed Real-Time Protocol segment of the two or 4 more media packets that comprises a Real-Time Protocol payload and a Real-Time 5 Protocol header corresponding to a Real-Time Protocol packet that in turn 6 corresponds to the uncompressed Real-Time Protocol segment. 1 18. (original) The method of Claim 7, wherein the aggregation protocol further comprises 2 forming the aggregated media payload based on an uncompressed Real-Time Protocol 3 segment format for each uncompressed Real-Time Protocol segment of the two or 4 more media packets that comprises a padding field that aligns an end of the 5 uncompressed Real-Time Protocol segment with a next four-byte boundary. 1 19. (original) The method of Claim 7, wherein the aggregation protocol further comprises 2 forming the aggregated media payload based on a compressed Real-Time Protocol

	3		segment format for each compressed Real-Time Protocol segment of the two or more
	4		media packets that comprises a context ID field indicating a session context ID for the
	5		compressed Real-Time Protocol segment.
	1	20.	(original) The method of Claim 7, wherein the aggregation protocol further comprises
	2		forming the aggregated media payload based on a compressed Real-Time Protocol
	3	se i	segment format for each compressed Real-Time Protocol segment of the two or more
	4		media packets that comprises a compression bit indicating whether the Real-Time
	5		Protocol segment is compressed.
	1	21.	(currently amended) The method of Claim 7, A method of efficiently transmitting
	2		media information associated with two or more concurrent calls carried in a packet-
	3		switched network, the method comprising the computer-implemented steps of:
	4		aggregating, according to an aggregation protocol, two or more media packets from
	5		the two or more concurrent calls originating from one or more source end
	6		points into an aggregated media payload;
	7		re-packetizing the aggregated media payload using a single aggregated header to form
	8		an aggregated media packet;
	9		forwarding the aggregated media packet to a next hop in the packet-switched network;
1	0		wherein the aggregation protocol further comprises forming the aggregated media
]	1		payload based on a compressed Real-Time Protocol segment format for each
1	2		compressed Real-Time Protocol segment of the two or more media packets
1	.3		that comprises a Real-Time Protocol header extension bit indicating whether a
1	4		Real-Time Protocol header extension appears in the compressed Real-Time
1	5		Protocol segment.

1 22. (original) The method of Claim 7, wherein the aggregation protocol further comprises

2 forming the aggregated media payload based on a compressed Real-Time Protocol

3 segment format for each compressed Real-Time Protocol segment of the two or more

- 4 media packets that comprises a Real-Time Protocol header marker bit.
- 1 23. (original) The method of Claim 7, wherein the aggregation protocol further comprises
- 2 forming the aggregated media payload based on a compressed Real-Time Protocol
- 3 segment format for each compressed Real-Time Protocol segment of the two or more
- 4 media packets that comprises a length field containing a length of a Real-Time
- 5 Protocol payload of a Real-Time Protocol packet of the compressed Real-Time
- 6 Protocol segment.
- 1 24. (original) The method of Claim 7, wherein the aggregation protocol further comprises
- 2 forming the aggregated media payload based on a compressed Real-Time Protocol
- 3 segment format for each compressed Real-Time Protocol segment of the two or more
- 4 media packets that comprises a sequence number field carrying a Real-Time Protocol
- 5 header sequence number.
- 1 25. (original) The method of Claim 7, wherein the aggregation protocol further comprises
- 2 forming the aggregated media payload based on a compressed Real-Time Protocol
- 3 segment format for each compressed Real-Time Protocol segment wherein the
- 4 compressed Real-Time Protocol segment format comprises a timestamp field carrying
- 5 a Real-Time Protocol header timestamp.

1	26.	(original) The method of Claim 7, wherein the aggregation protocol further comprises
2		forming the aggregated media payload based on a compressed Real-Time Protocol
3		segment format for each compressed Real-Time Protocol segment of the two or more
4		media packets that comprises a Real-Time Protocol payload of a Real-Time Protocol
5		packet that corresponds to the compressed Real-Time Protocol segment.
1	27.	(original) The method of Claim 7, wherein the aggregation protocol further comprises
2		forming the aggregated media payload based on a compressed Real-Time Protocol
3		segment format for each compressed Real-Time Protocol segment of the two or more
4		media packets that comprises a padding field that aligns an end of the compressed
5		Real-Time Protocol segment with a next boundary.
1	28.	(original) The method of Claim 1, wherein the two or more media packets are received while traversing a common sub-route.
1	29.	(canceled)
1	30.	(canceled)
1	31.	(currently amended) The method of Claim 1, A method of efficiently transmitting
2		media information associated with two or more concurrent calls carried in a packet-
3		switched network, the method comprising the computer-implemented steps of:
4		aggregating two or more media packets from the two or more concurrent calls
5		originating from one or more source end points into an aggregated media
6		payload;

7		re-packetizing the aggregated media payload using a single aggregated header to form
8		an aggregated media packet;
9		forwarding the aggregated media packet to a next hop in the packet-switched network
10		further comprising transmitting the aggregated media packet when a non-zero
11		maximum allowed delay time value is reached.
1.	32.	(currently amended) The method of Claim 1, further comprising:
2		using a the maximum allowed delay time value for transmitting forwarding the
3		aggregated media packet;
4		starting a count down for the maximum allowed delay time value when a first media
5		packet arrives for aggregation; and
6		aggregating subsequent media packets that arrive before the maximum allowed delay
7		time value is reached.
1	33.	(currently amended) An apparatus for transmitting media information associated with
2		two or more concurrent calls carried in a packet-switched network, the apparatus
3		comprising:
4		means for aggregating two or more media packets from one or more source endpoints
5		into an aggregated media payload;
6		means for re-packetizing the aggregated media payload using a single aggregated
7		header to form an aggregated media packet; and
8		means for forwarding the aggregated media packet to a next hop in the packet-
9		switched network in response to either one of
10		(a) a timer reaching a non-zero maximum allowed delay time value, or

11		(b) the aggregated media packet containing a specified number of Real-Time
12		Protocol segments, wherein the specified number is variable according
13		to user input.
1	34.	(currently amended) An apparatus for transmitting media information associated with
2		two or more concurrent calls carried in a packet-switched network, the apparatus
3		comprising:
4		one or more processors coupled to an aggregator for aggregating two or more media
5		packets into an aggregated media packet;
6		a memory accessible to the one or more processors; and
7		one or more sequences of instructions stored in the memory which, when executed by
8		the one or more processors, cause the one or more processors to carry out the
9		steps of:
10		aggregating two or more media packets from one or more source endpoints
11		into an aggregated media payload; and
12		re-packetizing the aggregated media payload using a single aggregated header
13		to form the aggregated media packet; and
14		forwarding the aggregated media packet to a next hop in the packet-switched
15		network in response to either one of
16		(a) a timer reaching a non-zero maximum allowed delay time value, or
17		(b) the aggregated media packet containing a specified number of Real-
18		Time Protocol segments, wherein the specified number is
19		variable according to user input.

1	35.	(currently amended) A computer-readable medium comprising one or more sequences of
2		instructions for efficiently transmitting media information associated with two or more
3		concurrent calls carried in a packet-switched network, which the sequences of
4		instructions, when executed by one or more processors, cause the one or more
5		processors to carry out the steps of:
6		aggregating two or more media packets from the two or more concurrent calls
7		originating from one or more source end points into an aggregated media
8		payload;
9		re-packetizing the aggregated media payload using a single aggregated header to form an
10		aggregated media packet;
11		forwarding the aggregated media packet to a next hop in the packet-switched network in
12		response to either one of
13		(a) a timer reaching a non-zero maximum allowed delay time value, or
14		(b) the aggregated media packet containing a specified number of Real-Time
15		Protocol segments, wherein the specified number is variable according to
16		user input.