#### 1.1. Data type of all columns in the "customers" table

select column\_name,data\_type

from target.INFORMATION\_SCHEMA.COLUMNS

where table\_name='customers';

output:

**Filter** Enter property name or value

| Field name               | Туре    | Mode     | Key | Collation | Default Value |
|--------------------------|---------|----------|-----|-----------|---------------|
| customer_id              | STRING  | NULLABLE | -   | -         | -             |
| customer_unique_id       | STRING  | NULLABLE | -   | -         | -             |
| customer_zip_code_prefix | INTEGER | NULLABLE | -   | -         | -             |
| customer_city            | STRING  | NULLABLE | -   | -         | -             |
| customer_state           | STRING  | NULLABLE | -   | -         | -             |

#### 1.2. Get the time range between which the orders were place

 $select\ min(order\_purchase\_timestamp)\ as\ first\_order,$ 

max(order\_purchase\_timestamp)as last\_order

from `Target.orders`;

output -

### Query results

| JOB IN | IFORMATION      | RESULTS  | CHART          | JSON      | EXECUTION DETAILS | EXEC |
|--------|-----------------|----------|----------------|-----------|-------------------|------|
| Row    | first_order ▼   | (,       | last_order ▼   |           | li.               |      |
| 1      | 2016-09-04 21:1 | 5:19 UTC | 2018-10-17 17: | 30:18 UTC |                   |      |

#### Insights

- 1. The very first\_order was done on 2016-09-04 21:15:19.
- 2. The last order was done on 2018-10-17 17:30:18.

#### 1.3. Count the Cities & States of customers who ordered during the given period

```
select count(distinct customer_city) count_city_cust,
count(distinct customer_state) count_state_cust
from `Target.customers`;
output -
```

| JOB IN | IFORMATION      |    | RESULTS      | CH     | ART | JSO |
|--------|-----------------|----|--------------|--------|-----|-----|
| Row    | count_city_cust | ٠, | count_state_ | cust 🔻 |     |     |
| 1      | 411             | 9  |              | 27     |     |     |

#### Insights

- 1. The very first\_order was done on 2016-09-04 21:15:19.
- 2. The last order was done on 2018-10-17 17:30:18.

#### 2) In-depth Exploration:

2.1) Is there a growing trend in the no. of orders placed over the past years?

```
select extract(year from order_purchase_timestamp) YEAR,
extract(month from order_purchase_timestamp) MONTH,
COUNT(order_id) TOTAL
from `Target.orders`
group by year, month
order by year, month;
output –
```

| Quer   | ry results |           |      |      |                   |                 | ■ SAVE R |
|--------|------------|-----------|------|------|-------------------|-----------------|----------|
| JOB IN | NFORMATION | RESULTS C | HART | JSON | EXECUTION DETAILS | EXECUTION GRAPH |          |
| Row    | YEAR ▼     | MONTH ▼   | TOTA | AL ▼ |                   |                 |          |
| 1      | 2016       |           |      | 4    |                   |                 |          |
| 2      | 2016       | 10        | )    | 324  |                   |                 |          |
| 3      | 2016       | 12        | 2    | 1    |                   |                 |          |
| 4      | 2017       | •         |      | 800  |                   |                 |          |
| 5      | 2017       |           | 2    | 1780 |                   |                 |          |
| 6      | 2017       |           | 3    | 2682 |                   |                 |          |
| 7      | 2017       |           | ļ    | 2404 |                   |                 |          |
| 8      | 2017       |           | 5    | 3700 |                   |                 |          |
| 9      | 2017       |           | 5    | 3245 |                   |                 |          |
| 10     | 2017       | -         | ,    | 4026 |                   |                 |          |
| 11     | 2017       |           | 3    | 4331 |                   |                 |          |
| 12     | 2017       |           | )    | 4285 |                   |                 |          |
| 10     | 2017       | 10        | 1    | 4621 |                   |                 |          |

#### Insights

- 1. The very first\_order was done on 2016-09-04 21:15:19.
- 2. The last order was done on 2018-10-17 17:30:18.

#### 2.2) Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

SELECT EXTRACT(MONTH FROM

 $order\_purchase\_timestamp) MONTH\_WISE\_SALES, COUNT(ORDER\_ID) Total$ 

FROM 'Target.orders'

GROUP BY MONTH\_WISE\_SALES

ORDER BY MONTH\_WISE\_SALES;

#### Output-

### Query results

| JOB IN | IFORMATION      | RESULTS | СН    |
|--------|-----------------|---------|-------|
| Row    | MONTH_WISE_SALE | Total ▼ | - /.  |
| 1      | 1               |         | 8069  |
| 2      | 2               |         | 8508  |
| 3      | 3               |         | 9893  |
| 4      | 4               |         | 9343  |
| 5      | 5               |         | 10573 |
| 6      | 6               |         | 9412  |
| 7      | 7               |         | 10318 |
| 8      | 8               |         | 10843 |
| 9      | 9               |         | 4305  |
| 10     | 10              |         | 4959  |
| 11     | 11              |         | 7544  |
| 12     | 12              |         | 5674  |

#### Insights

- 1. In January and February we have decent number of orders . But in the next 6 months that is from march to august the orders are gone up. Similarly the orders are reduced from sept to dec
- 2. So it is advisable to have good amount of storage in mar-aug season.

# 2.3) During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

# 0-6 hrs: Dawn

#7-12 hrs: Mornings

# 13-18 hrs : Afternoon

# 19-23 hrs: Night

select order\_time,count(order\_id) total

from

(select order\_id,

case

when extract (time from order\_purchase\_timestamp) between "00:00:00" and "05:59:59" then "DAWN" when extract (time from order\_purchase\_timestamp) between "06:00:00" and "11:59:59" then "MORNING" when extract (time from order\_purchase\_timestamp) between "12:00:00" and "17:59:59" then "AFTERNOON" ELSE "NIGHT"

END as order\_time

from `Target.orders`) tbl

group by order\_time;

output-

### Query results

| JOB IN | IFORMATION   | RESULTS | CHART   | JSON |
|--------|--------------|---------|---------|------|
| Row    | order_time ▼ | l.      | total ▼ | 6    |
| 1      | MORNING      |         | 22      | 240  |
| 2      | DAWN         |         | 4       | 740  |
| 3      | AFTERNOON    |         | 38      | 361  |
| 4      | NIGHT        |         | 34      | 100  |

#### Insights

1. The Brazilian customers placed more orders during afternoon.

#### 3.1. Get the month on month no. of orders placed in each state

select customer\_state,extract(year from order\_purchase\_timestamp)year,
extract(month from order\_purchase\_timestamp)month,count(order\_id)month\_wise\_total
from `Target.orders`
inner join Target.customers c
using (customer\_id)

group by customer\_state,year,month order by year,month;



#### Insights

- 1. A total of 654 orders have been received from the state SP alone in February 2017 which is the highest among all the states in a single month.
- 2. Increase the orders in the other state as well by giving discount, buy one get one free, combo Offers.

#### 3.2. How are the customers distributed across all the states?

select customer\_state,count(customer\_id)Total\_customers
from `target.customers`
group by customer\_state
order by Total\_customers desc;
output —

| JOB IN | FORMATION      | RESULTS  | CHART        | JSON EXECUTI |
|--------|----------------|----------|--------------|--------------|
| Row    | customer_state | <b>▼</b> | total_cust ▼ | 6            |
| 1      | SP             |          | 4174         | 16           |
| 2      | RJ             |          | 1285         | 52           |
| 3      | MG             |          | 1163         | 35           |
| 4      | RS             |          | 546          | 56           |
| 5      | PR             |          | 504          | 15           |
| 6      | SC             |          | 363          | 37           |
| 7      | BA             |          | 338          | 30           |
| 8      | DF             |          | 214          | 10           |
| 9      | ES             |          | 203          | 33           |
| 10     | GO             |          | 202          | 20           |
| 11     | PE             |          | 165          | 52           |
| 12     | CE             |          | 133          | 36           |
| 13     | PA             |          | 97           | 75           |

#### Insights

1.SP RJ and MG are the top three states in terms of number of orders

#### 4.1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only

with cte as

(select extract(year from order\_purchase\_timestamp)year,sum(payment\_value)cost

from `Target.payments`

inner join`Target.orders`

using (order\_id)

where extract(month from order\_purchase\_timestamp) between 01 and 08

group by year

order by year),

#### cte1 as

(select year,cost,lead(cost) over(order by year)next\_cost,(((lead(cost) over(order by year)-cost)/cost)\*100)change\_in\_percentage from cte)

select round(change\_in\_percentage) Percentage

from cte1

limit 1;

output-



#### Insights

1. There has been approximately 137% change in cost of orders in the year 2018 compared to 2017. For comparison only jan-aug months have been included from both the years

#### 4.2. Calculate the Total & Average value of order price for each state

select customer\_state,round(sum(price),2)total\_value,round(avg(price),2)avg\_value

from `Target.customers`

inner join 'Target.orders' o

using(customer\_id)

inner join 'Target.order\_items' oi

on o.order\_id=oi.order\_id

group by customer\_state

order by total\_value desc,avg\_value desc;

#### output -

### Query results

| JOB IN | FORMATION      | RESULTS  | CHART         | JSON      | EXECUTIO |
|--------|----------------|----------|---------------|-----------|----------|
| Row    | customer_state | <b>▼</b> | total_value ▼ | avg_value | · /      |
| 1      | SP             |          | 5202955.05    |           | 109.65   |
| 2      | RJ             |          | 1824092.67    |           | 125.12   |
| 3      | MG             |          | 1585308.03    |           | 120.75   |
| 4      | RS             |          | 750304.02     |           | 120.34   |
| 5      | PR             |          | 683083.76     |           | 119.0    |
| 6      | SC             |          | 520553.34     |           | 124.65   |
| 7      | BA             |          | 511349.99     |           | 134.6    |
| 8      | DF             |          | 302603 94     |           | 125 77   |

#### Insights

- 1. SP, RJ and MG are top three states in terms of total value.
- 2. PB, AL and AC are top three states in terms of average value of an order.

#### 4.3. Calculate the Total & Average value of order freight for each state.

#### select

customer\_state,round(sum(freight\_value),2)total\_freight\_value,round(avg(freight\_value),2)avg\_value
from `Target.customers`
inner join `Target.orders` o
using (customer\_id)
inner join `Target.order\_items` oi
on o.order\_id=oi.order\_id
group by customer\_state

output -

order by total\_freight\_value desc,avg\_value;

| JOB IN | FORMATION RESULT | CHART J             | JSON EXECUTION DETA |
|--------|------------------|---------------------|---------------------|
| Row    | customer_state ▼ | total_freight_value | avg_value ▼         |
| 1      | SP               | 718723.07           | 15.15               |
| 2      | RJ               | 305589.31           | 20.96               |
| 3      | MG               | 270853.46           | 20.63               |
| 4      | RS               | 135522.74           | 21.74               |
| 5      | PR               | 117851.68           | 20.53               |
| 6      | BA               | 100156.68           | 26.36               |
| 7      | SC               | 89660.26            | 21.47               |
| 8      | PE               | 59449.66            | 32.92               |
| 9      | GO               | 53114.98            | 22.77               |
| 10     | DF               | 50625.5             | 21.04               |
| 11     | F9               | 107616              | 22.06               |

#### Insights

- 1. SP, RJ, MG are having more freight value because the orders from these states are also more.
- 2. RR, PB, RO are having more average freight value than all other states.

#### 5.1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

```
select order_id,date_diff(order_delivered_customer_date,
order_purchase_timestamp,day)time_to_deliver,
date_diff(order_delivered_customer_date,
order_estimated_delivery_date,day)diff_estimated_delivery
from `Target.orders`;
output —
```

| JOB IN | IFORMATION    | RESULTS CH        | ART JSON                  | EXEC |
|--------|---------------|-------------------|---------------------------|------|
| Row    | order_id ▼    | time_to_deliver ▼ | diff_estimated_delivery ▼ | 1.   |
| 1      | 1950d777989f6 | 30                |                           | 12   |
| 2      | 2c45c33d2f9cb | 30                | -:                        | 28   |
| 3      | 65d1e226dfaeb | 35                | -                         | 16   |
| 4      | 635c894d068a  | 30                |                           | -1   |
| 5      | 3b97562c3aee  | 32                |                           | 0    |
| 6      | 68f47f50f04c4 | 29                |                           | -1   |
| 7      | 276e9ec344d3  | 43                |                           | 4    |
| 8      | 54e1a3c2b97fb | 40                |                           | 4    |
| 9      | fd04fa4105ee8 | 37                |                           | 1    |
| 10     | 302bb8109d09  | 33                |                           | 5    |
| 11     | 66057d37308e  | 38                |                           | 6    |
|        |               |                   |                           |      |

#### Insights

1. SP, RJ, MG are having more freight value because the orders from these states are also more. 2. RR, PB, RO are having more average freight value than all other states.

#### 5.2. Find out the top 5 states with the highest & lowest average freight value

#### Top 5 Highest avg freight value states

select customer\_state,avg\_freight

from

(select customer\_state,round(avg(freight\_value),2)avg\_freight,dense\_rank()

over(order by round(avg(freight\_value),2) desc)rnk

from `Target.customers`

inner join 'Target.orders' o

using (customer\_id)

inner join `Target.order\_items` oi

```
on o.order_id=oi.order_id
group by customer_state
order by rnk)tbl
limit 5;
output –
```

| JOB INFORMATION |                | RESULTS  | CHART         | JSON |
|-----------------|----------------|----------|---------------|------|
| Row             | customer_state | <b>▼</b> | avg_freight ▼ | 6    |
| 1               | RR             |          | 42.           | 98   |
| 2               | РВ             |          | 42.           | 72   |
| 3               | RO             |          | 41.           | 07   |
| 4               | AC             |          | 40.           | 07   |
| 5               | PI             |          | 39.           | 15   |

#### Insights

- 1. SP, RJ, MG are having more freight value because the orders from these states are also more.
- 2. RR, PB, RO are having more average freight value than all other states.

#### Top 5 lowest avg freight value states

```
select customer_state,avg_freight

from

(select customer_state,round(avg(freight_value),2)avg_freight,dense_rank()

over(order by round(avg(freight_value),2))rnk

from `Target.customers`

inner join `Target.orders` o

using (customer_id)

inner join `Target.order_items` oi

on o.order_id=oi.order_id
```

group by customer\_state order by rnk)tbl limit 5

output -

# Query results

| JOB IN | IFORMATION     | RESULTS  | CHART       | JSON     |
|--------|----------------|----------|-------------|----------|
| Row    | customer_state | <b>~</b> | avg_freight | <b>▼</b> |
| 1      | SP             |          |             | 15.15    |
| 2      | PR             |          |             | 20.53    |
| 3      | MG             |          |             | 20.63    |
| 4      | RJ             |          |             | 20.96    |
| 5      | DF             |          |             | 21.04    |

#### Insights

1. SP, PR, MG, RJ, DF are having lowest avg freight charges compared to other states.

#### 5.3 Find out the top 5 states with the highest & lowest average delivery time

Top\_5\_highest\_avg\_delivery\_time

select customer\_state,avg\_delivery\_time

from

(select

customer\_state,round(avg(date\_diff(order\_delivered\_customer\_date,order\_purchase\_timestamp,day)),2)avg\_delivery\_t ime,

dense\_rank() over(order by

round(avg(date\_diff(order\_delivered\_customer\_date,order\_purchase\_timestamp,day)),2)desc )rnk

from `Target.customers`

inner join 'Target.orders' o

using (customer\_id)

inner join `Target.order\_items` oi

on o.order\_id=oi.order\_id

group by customer\_state
order by rnk)tbl
limit 5;
output-

# Query results

| JOB IN | IFORMATION     | RESULTS  | CHART         | JSON            | Е |
|--------|----------------|----------|---------------|-----------------|---|
| Row    | customer_state | <b>▼</b> | Highest_avg_d | lelivery_time 🔻 |   |
| 1      | RR             |          |               | 27.83           |   |
| 2      | AP             |          |               | 27.75           |   |
| 3      | AM             |          |               | 25.96           |   |
| 4      | AL             |          |               | 23.99           |   |
| 5      | PA             |          |               | 23.3            |   |

#### Insights

1. RR, AP, AM, AL and PA are top 5 states in terms of taking more avg delivery time.

#### Top\_5\_lowest\_avg\_delivery\_time

 $select\ customer\_state, avg\_delivery\_time$ 

from

(select

customer\_state,round(avg(date\_diff(order\_delivered\_customer\_date,order\_purchase\_timestamp,day)),2)avg\_delivery\_t ime,

dense\_rank() over(order by

round(avg(date\_diff(order\_delivered\_customer\_date,order\_purchase\_timestamp,day)),2)asc )rnk

from `Target.customers`

inner join 'Target.orders' o

using (customer\_id)

inner join `Target.order\_items` oi
on o.order\_id=oi.order\_id
group by customer\_state
order by rnk)tbl
limit 5;
output —

# Query results

| JOB IN | IFORMATION     | RESULTS  | CHART         | JSON           | EXE |
|--------|----------------|----------|---------------|----------------|-----|
| Row    | customer_state | <b>▼</b> | Lowest_avg_de | elivery_time 🔻 |     |
| 1      | SP             |          |               | 8.26           |     |
| 2      | PR             |          |               | 11.48          |     |
| 3      | MG             |          |               | 11.52          |     |
| 4      | DF             |          |               | 12.5           |     |
| 5      | SC             |          |               | 14.52          |     |

#### Insights

1. SP, PR, MG, DF and SC are top 5 states in terms of taking less avg delivery time.

5.4 Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery top\_5\_fastest delivery states

select customer\_state, difference

from

(select

customer\_state,round(avg(date\_diff(order\_delivered\_customer\_date,order\_estimated\_delivery\_date,day)),2)difference, dense\_rank() over(order by

round(avg(date\_diff(order\_delivered\_customer\_date,order\_estimated\_delivery\_date,day)),2) asc)rnk

from `Target.customers`
inner join `Target.orders` o
using(customer\_id)
inner join `Target.order\_items` oi
on o.order\_id=oi.order\_id
group by customer\_state
order by difference ) tbl
limit 5;

#### output-

# Query results

| JOB IN | IFORMATION     | RESULTS  | CHART        | JSON |
|--------|----------------|----------|--------------|------|
| Row    | customer_state | <b>▼</b> | difference ▼ | 6    |
| 1      | AC             |          | -20.         | 01   |
| 2      | RO             |          | -19.         | 08   |
| 3      | AM             |          | -18.         | 98   |
| 4      | AP             |          | -17.         | 44   |
| 5      | RR             |          | -17.         | 43   |

#### Insights

1. Ac, RO, AM, AP, RR are the states where the order delivery is really fast as compared to the estimated date of delivery.

#### top\_5\_slowest delivery states

select customer\_state,difference

from

(select

```
customer_state,round(avg(date_diff(order_delivered_customer_date,order_estimated_delivery_date,day)),2)difference, dense_rank() over(order by round(avg(date_diff(order_delivered_customer_date,order_estimated_delivery_date,day)),2) desc)rnk from `Target.customers`) inner join `Target.orders` o using(customer_id) inner join `Target.order_items` oi on o.order_id=oi.order_id group by customer_state
```

output -

| JOB INFORMATION |                | RESULTS  | CHART        | JSON      |
|-----------------|----------------|----------|--------------|-----------|
| Row             | customer_state | <b>▼</b> | difference ▼ | <i>[.</i> |
| 1               | AL             |          | -7.          | 98        |
| 2               | MA             |          | -9.          | .11       |
| 3               | SE             |          | -9.          | .17       |
| 4               | ES             |          | -9.          | .77       |
| 5               | BA             |          | -10.         | .12       |

#### Insights

1. AL, MA, SE, ES, BA are the states where the order delivery is slow among all the states as compared to the estimated date of delivery.

#### 6.1 Find the month on month no. of orders placed using different payment types

select extract(year from order\_purchase\_timestamp)year,extract(month from order\_purchase\_timestamp)month,
payment\_type,count(order\_id)Total
from `Target.orders`

inner join `Target.payments`
using(order\_id)
group by year,month,payment\_type
order by year,month;
output-

# Query results

| JOB IN | NFORMATION | RESULTS C | HART JSON      | EXECUTION DETAILS E. |
|--------|------------|-----------|----------------|----------------------|
| Row    | year ▼     | month ▼   | payment_type ▼ | Total ▼              |
| 1      | 2016       | 9         | credit_card    | 3                    |
| 2      | 2016       | 10        | credit_card    | 254                  |
| 3      | 2016       | 10        | voucher        | 23                   |
| 4      | 2016       | 10        | debit_card     | 2                    |
| 5      | 2016       | 10        | UPI            | 63                   |
| 6      | 2016       | 12        | credit_card    | 1                    |
| 7      | 2017       | 1         | voucher        | 61                   |
| 8      | 2017       | 1         | UPI            | 197                  |
| 9      | 2017       | 1         | credit_card    | 583                  |
| 10     | 2017       | 1         | debit_card     | 9                    |
| 11     | 2017       | 2         | orodit oard    | 1256                 |

#### Insights

- 1. From the data provided we can see that we have only 3 months(9,10,12) data in the year 2016.
- 2. Multiple payment options voucher, credit card, UPI, Debit card were used for making the payments.

#### 6.2 Find the no. of orders placed on the basis of the payment installments that have been paid.

select payment\_installments,count( order\_id)total from `Target.payments` where payment\_installments >0 and payment\_value>0 group by payment\_installments; output -

| INF | FORMATION           | RESULTS | CHA   | ART JSC |
|-----|---------------------|---------|-------|---------|
| 1.  | payment_installment | total ▼ | - /-  |         |
|     | 1                   |         | 52537 |         |
| 2   | 2                   |         | 12413 |         |
|     | 3                   |         | 10461 |         |
|     | 4                   |         | 7098  |         |
| 5   | 5                   |         | 5239  |         |
|     | 6                   |         | 3920  |         |
| ,   | 7                   |         | 1626  |         |
|     | 8                   |         | 4268  |         |
|     | 9                   |         | 644   |         |
| )   | 10                  |         | 5328  |         |
|     | 11                  |         | 22    |         |

#### Insights

1. The output includes data about the no of installments and amount that is paid

#### Here are key recommendations:

- 1. Seasonal Inventory Planning
- Increase storage capacity from March to August to handle higher order volumes
- Implement dynamic inventory management for seasonal fluctuations
- Plan for reduced storage needs from September to December
- Maintain adequate stock levels in January-February for decent order volumes
- 2. Regional Focus
- Prioritize SP, RJ, and MG states which show highest sales performance
- Introduce promotional campaigns in lower-performing states
- Consider establishing distribution centers in high-volume states
- Target marketing efforts in states with potential for growth
- 3. Delivery System Improvements

- Address delivery delays in AL, MA, SE, ES, and BA states
- Study and replicate efficient delivery systems from SP, PR, MG, DF, and SC
- 4. Growth Areas
- Target expansion in states showing potential but lower volumes
- Develop strategies for states with high average order values (PB, AL, AC)
- Consider local partnerships in underserved regions
- Implement customer retention programs in high-performing states
- 5. Data Analytics Enhancement
  - Continue monitoring ordering patterns and trends
  - Track delivery performance metrics
  - Analyze payment preferences and installment patterns
  - Monitor regional performance variations

#### 6..Infrastructure Development

- Strengthen logistics in states with delivery challenges
- Improve warehousing capabilities in high-volume region
- s Develop better last-mile delivery solutions
- Enhance tracking and monitoring systems