Bias-variance tradeoff

UATX Statistical Learning

Bias-variance decomposition

Let $\hat{f}(x)$ be a noisy estimate of some function f(x), evaluated at some point x. Define the mean-squared error of the estimate as

$$MSE(\hat{f}, f) = E\{[f(x) - \hat{f}(x)]^2\}.$$

Prove that $MSE(f, \hat{f}) = B^2 + v$, where

$$B = \mathbb{E}\{\hat{f}(x)\} - f(x) \quad \text{and} \quad V = \text{var}\{\hat{f}(x)\}.$$

A simple example

Some people refer to the above decomposition as the *bias–variance trade-off*. Why a tradeoff? Here's a simple example to convey the intuition.

Suppose we observe $x_1, ..., x_n$ from some distribution F, and want to estimate f(0), the value of the probability density function at o. Let h be a small positive number, called the *bandwidth*, and define the quantity

$$\pi_h = P\left(-\frac{h}{2} < X < \frac{h}{2}\right) = \int_{-h/2}^{h/2} f(x) dx.$$

Clearly $\pi_h \approx hf(0)$.

- (A) Let Y be the number of observations in a sample of size n that fall within the interval (-h/2, h/2). What is the distribution of Y? What are its mean and variance in terms of n and π_h ? Propose a simple estimator $\hat{f}(0)$ involving Y.
- (B) Suppose we expand f(x) in a second-order Taylor series about 0:

$$f(x) \approx f(0) + xf'(0) + \frac{x^2}{2}f''(0)$$
.

Use this in the above expression for π_h , together with the biasvariance decomposition, to show that

$$MSE\{\hat{f}(0), f(0)\} \approx Ah^4 + \frac{B}{nh}$$

for constants A and B that you should (approximately) specify. What happens to the bias and variance when you make h small? When you make h big?

(C) Use this result to derive an expression for the bandwidth that minimizes mean-squared error, as a function of *n*. You can approximate any constants that appear, but make sure you get the right functional dependence on the sample size.