# **DBMS PROJECT**

# METRO SYSTEM MANAGEMENT SYSTEM DATABASE



BY:

YASHSVINI KATARE (21CSB0A67)

SAVVY JAIN (21CSB0F15)



## **ACKNOWLEDGEMENT**

- Inspiration and motivation play a key role in the success of any venture. Successful completion of any
  project requires proper guidance and help. We express our gratitude to the following people who
  have made this possible.
- We thank DBMS professors, **Dr. T Ramakrishnudu** Sir and **Dr. RBV Subramanyam** Sir for giving us the opportunity to develop deep into database concepts. Their lessons have been really helpful in learning the fundamental DBMS concepts like relations, E-R diagrams, Structured Query Language, functional dependencies, normalization, indexing, etc. in detail.
- We extend our thanks to the whole **CSE Department and lab faculty** for being so helpful and available whenever we require any kind of guidance..
- We thank the NITW management, Dean Academic and Director NITW, for giving us this
  opportunity to discover this subjects in the course, and enter new avenues in the field of database
  management. We also thank our parents, elders and well-wishers for being there with us and giving
  us all kinds of technical and moral support.

# TABLE OF CONTENTS

| TOPIC | PAGE NO. |
|-------|----------|
|       |          |

| PROBLEM STATEMENT                       | 4     |
|-----------------------------------------|-------|
| ER DIAGRAM                              | 6     |
| RELATIONAL MODEL DIAGRAM                | 7     |
| RELATIONS                               | 8-3 I |
| FUNCTIONAL DEPENDENCY AND NORMALIZATION | 32-37 |
| STANDARD QUERIES                        | 38-43 |

#### **PROBLEM STATEMENT:**

• A Metro System is one which helps us to maintain an organisational data regarding a metro system. Since it is very difficult to maintain a record of data items and this information manually or in file system, we are creating a database for the complete management of resources and tasks of metro system. For main functionalities, we have to maintain many records such as train numbers, train route, departure time, arrival time, train type, fare, passengers, etc. When people travel, some reserve seat (Additional feature for Metro System) for them, we have maintained a record of reservations. To avoid any hassles, we have gathered all the information in a structured manner in our project.

# ASSUMPTIONS OF ER MODEL

- One Tech\_supervisor can handle many complaints at a time raised by passengers on the inconvenience caused while travelling in Metro.
- One Passenger can file many complaints at a time.
- One passenger makes a reservation at a time.
- One Passenger makes a payment at a time either by cash or online
- Each metro has a different route
- We can make many reservations on a Metro.

#### **ER DIAGRAM**



#### **RELATIONAL MODEL**



# **TABLE CREATION**

#### TABLE TECH\_SUPERVISOR

INFO ABOUT TABLE

Tech\_supervisor: The tech\_supervisor relation is the collection of all the tech\_supervisors who manage all the issues related to complaints by passengers and other transactions It contains the information of those Tech\_supervisors. Tech\_id is the primary key here.

- CREATE TABLE TECH\_SUPERVISOR
- •
- TECH\_ID INTEGER,
- EMAIL VARCHAR(50),
- FIRST\_NAME VARCHAR(50),

```
LAST_NAME VARCHAR(50),

COMPLAINT_NO INTEGER,

PHONE_NO INTEGER,

PRIMARY KEY(TECH_ID),

FOREIGN KEY(COMPLAINT_NO) REFERENCES complaint
);

DESC TECH_SUPERVISOR;
```

| Name         | Null? |      | Type          |
|--------------|-------|------|---------------|
|              |       |      |               |
| TECH_ID      | NOT   | NULL | NUMBER (38)   |
| EMAIL        |       |      | VARCHAR2 (50) |
| FIRST_NAME   |       |      | VARCHAR2 (50) |
| LAST_NAME    |       |      | VARCHAR2 (50) |
| COMPLAINT_NO |       |      | NUMBER (38)   |
| PHONE_NO     |       |      | NUMBER (38)   |

INSERT INTO TECH\_SUPERVISOR VALUES(1,'k@gmail.com','Vinita,'Jain',123,9668710234);
INSERT INTO TECH\_SUPERVISOR VALUES(2,'t@gmail.com','Radha','Gupta',124,9772345634);
INSERT INTO TECH\_SUPERVISOR VALUES(3,'r@gmail.com','Mohan','Reddy',125,9890123234);
INSERT INTO TECH\_SUPERVISOR VALUES(4,'p@gmail.com','Krish','Singh',126,9980345671);
INSERT INTO TECH\_SUPERVISOR VALUES(5,'c@gmail.com','Meenal','Singh',127,773826534);

| TECH_ID EMAIL  | FIRST_NAME | LAST_NAME | COMPLAINT_NO PHONE_NO |
|----------------|------------|-----------|-----------------------|
| 11 k@gmail.com | Kirti      | Jain      | 123 9668710234        |
| 2 t@gmail.com  | Trisha     | Gupta     | 124 9772345634        |
| 3 r@gmail.com  | Rohan      | Reddy     | 125 9890123234        |
| 4 p@gmail.com  | Paul       | Singh     | 126 9980345671        |
| 5 c@gmail.com  | Chetan     | Singh     | 127 773826534         |

#### **TABLE COMPLAINT**

- INFORMATION ABOUT TABLE
- Complaint: The Complaint relation is a record of all complaints filed by the
  passengers boarding the metro for issues like crime, lost items etc. The Complaints
  table also consists about the details of passengers filing those Complaints.

CREATE TABLE COMPLAINT
(

COMPLAINT\_NO INTEGER NOT NULL,
COMPLAINT\_TYPE VARCHAR(50) NOT NULL,
STATION\_ID INTEGER NOT NULL,
NAME VARCHAR(50) NOT NULL,
PHONE\_NO INTEGER NOT NULL,

AADHAR\_CARD INTEGER NOT NULL,
PRIMARY KEY(COMPLAINT\_NO),
FOREIGN KEY(STATION\_ID) REFERENCES STATION,
FOREIGN KEY(AADHAR\_CARD) REFERENCES PASSENGER
);

#### DESC COMPLAINT;

| Name                                                             | Nul               | 1?                           | Туре                                                                                       |
|------------------------------------------------------------------|-------------------|------------------------------|--------------------------------------------------------------------------------------------|
| COMPLAINT_NO COMPLAINT_TYPE STATION_ID NAME PHONE_NO AADHAR_CARD | NOT<br>NOT<br>NOT | NULL<br>NULL<br>NULL<br>NULL | NUMBER (38)<br>VARCHAR2 (50)<br>NUMBER (38)<br>VARCHAR2 (50)<br>NUMBER (38)<br>NUMBER (38) |

- --INSERT INTO COMPLAINT VALUES(123, 'Robbery', 11001, 'Kirti', 9668710234, 11111);
- --INSERT INTO COMPLAINT VALUES(124, 'Hygiene', 11002, 'Trisha', 9772345634, 22222);
- --INSERT INTO COMPLAINT VALUES(125,'Robbery',11001,'Rohan',9890123234,33333);
- --INSERT INTO COMPLAINT VALUES(126, 'Hygiene', 11002, 'Paul', 9980345671, 44444);
- --INSERT INTO COMPLAINT VALUES(127,'LostItems',11003,'Chetan',773826534,55555);

| COMPLAINT_NO COMPLAINT_TYPE | STATION_ID NAME | PHONE_NO AADHAR_CARD |
|-----------------------------|-----------------|----------------------|
| 123 Robbery                 | 11001 Kirti     | 9668710234 11111     |
| 124 Hygiene                 | 11002 Trisha    | 9772345634 22222     |
| 125 Robbery                 | 11001 Rohan     | 9890123234 33333     |
| 126 Hygiene                 | 11002 Paul      | 9980345671 44444     |
| 127 LostItems               | 11003 Chetan    | 773826534 55555      |

#### **TABLE PASSENGER**

The Passengers table is a collection of all Passengers and their details like phone\_no,aadhar card number,and most importantly their start and end stations.

Aadhar\_card is the primary key here.

CREATE TABLE PASSENGER
(
NAME VARCHAR(50) NOT NULL,
PHONE\_NO INTEGER NOT NULL,
START\_STATION VARCHAR(50) NOT NULL,
END\_STATION VARCHAR(50) NOT NULL,
PAYMENT\_ID INTEGER NOT NULL,
AADHAR\_CARD INTEGER NOT NULL,
R\_ID INTEGER NOT NULL,

PRIMARY KEY(AADHAR\_CARD),
FOREIGN KEY(PAYMENT\_ID) REFERENCES PAYMENT,
FOREIGN KEY(R\_ID) REFERENCES RESERVATION
);
desc PASSENGER;

| Name          | Null? |      | Type          |
|---------------|-------|------|---------------|
|               |       |      |               |
| NAME          | NOT   | NULL | VARCHAR2 (50) |
| PHONE_NO      | NOT   | NULL | NUMBER (38)   |
| START_STATION | NOT   | NULL | VARCHAR2 (50) |
| END_STATION   | NOT   | NULL | VARCHAR2 (50) |
| PAYMENT_ID    | NOT   | NULL | NUMBER (38)   |
| AADHAR_CARD   | NOT   | NULL | NUMBER (38)   |
| R_ID          | NOT   | NULL | NUMBER (38)   |
|               |       |      |               |

-- INSERT INTO PASSENGER

VALUES('Kirti',9668710234,'Secunderabad','BharatNagar',12345,11111,1);

- --INSERT INTO PASSENGER VALUES('Trisha',9772345634,'Erragadda','Begumpet',13456,22222,2);
- --INSERT INTO PASSENGER VALUES('Rohan',9890123234,'Paradise','Begumpet',14567,33333,3);
- -- INSERT INTO PASSENGER

VALUES('Paul',9980345671,'Secunderabad','Madhapur',15678,44444,4);

-- INSERT INTO PASSENGER

VALUES('Chetan',773826534,'BharatNagar','Kukatpally',16789,55555,5);

#### SELECT \* FROM PASSENGER;

| NAME            | PHONE_NO                 | START_STATION             | END_STATION             |  |
|-----------------|--------------------------|---------------------------|-------------------------|--|
| Kirti<br>Trisha | 9668710234<br>9772345634 | Secunderabad<br>Erragadda | BharatNagar<br>Begumpet |  |
| Rohan<br>Paul   | 9890123234               | •                         | Begumpet<br>Madhapur    |  |
| Chetan          |                          | BharatNagar               | Kukatpally              |  |

| PAYMENT_ID | AADHAR_CARD | R_ID |
|------------|-------------|------|
| <br>       |             |      |
| 12345      | 11111       | 1    |
| 13456      | 22222       | 2    |
| 14567      | 33333       | 3    |
| 15678      | 44444       | 4    |
| 16789      | 55555       | 5    |
|            |             |      |

#### **TABLE PAYMENT**

Payment: The Payment table is a record of the fare involved in travelling from one station to another and also the type of payment (cash,online), etc

Payment\_id is the primary key here.

CREATE TABLE PAYMENT
(
PAYMENT\_ID INTEGER NOT NULL,
START\_STATION VARCHAR(50),
END\_STATION VARCHAR(50),
TOTAL\_AMOUNT INTEGER,

TYPE\_OF\_PAYMENT VARCHAR(50),
PRIMARY KEY(PAYMENT\_ID),
FOREIGN KEY(START\_STATION,END\_STATION) REFERENCES FARE
);

Desc PAYMENT;

| Name                                                              | Nul | 1?   | Туре                                                              |
|-------------------------------------------------------------------|-----|------|-------------------------------------------------------------------|
| PAYMENT_ID START_STATION END_STATION TOTAL_AMOUNT TYPE_OF_PAYMENT | NOT | NULL | NUMBER (38) VARCHAR2 (50) VARCHAR2 (50) NUMBER (38) VARCHAR2 (50) |

```
--INSERT INTO PAYMENT VALUES(12345, 'Secunderabad', 'BharatNagar', 70, 'Cash');
```

- --INSERT INTO PAYMENT VALUES(13456, 'Erragadda', 'Begumpet', 80, 'Cash');
- --INSERT INTO PAYMENT VALUES(14567, 'Paradise', 'Begumpet', 90, 'Online');
- --INSERT INTO PAYMENT VALUES(15678,'Secunderabad','Madhapur',100,'Cash');
- --INSERT INTO PAYMENT VALUES(16789, 'BharatNagar', 'Kukatpally', 110, 'Online');

| r 70 Cash  |
|------------|
|            |
| 80 Cash    |
| 90 Online  |
| 100 Cash   |
| 110 Online |
|            |

#### **TABLE FARE**

```
CREATE TABLE FARE
(

DISTANCE INTEGER NOT NULL,

START_STATION VARCHAR(50) NOT NULL,

END_STATION VARCHAR(50) NOT NULL,

PRIMARY KEY(START_STATION,END_STATION)
);
```

#### INFORMATION ABOUT TABLE:

Fare is a weak entity table here. It contains the distances and start, end stations and keeps track of the distance according to which the passengers pay.

#### Desc FARE;

| Name          | Nul | 1?   | Type          |
|---------------|-----|------|---------------|
|               |     |      |               |
| DISTANCE      | NOT | NULL | NUMBER (38)   |
| START_STATION | NOT | NULL | VARCHAR2 (50) |
| END_STATION   | NOT | NULL | VARCHAR2 (50) |
|               |     |      |               |

```
--INSERT INTO FARE VALUES(30,'Secunderabad','BharatNagar');
--INSERT INTO FARE VALUES(45,'Erragadda','Begumpet');
--INSERT INTO FARE VALUES(50,'Paradise','Begumpet');
--INSERT INTO FARE VALUES(55,'Secunderabad','Madhapur');
--INSERT INTO FARE VALUES(65,'BharatNagar','Kukatpally');
```

| DISTANCE | START_STATION | END_STATION |
|----------|---------------|-------------|
| 30       | Secunderabad  | BharatNagar |
| 45       | Erragadda     | Begumpet    |
| 50       | Paradise      | Begumpet    |
| 55       | Secunderabad  | Madhapur    |
| 65       | BharatNagar   | Kukatpally  |
|          |               |             |
|          |               |             |

#### TABLE STATION

```
(
STATION_ID INTEGER NOT NULL,
ROUTE_ID INTEGER NOT NULL,
STATION_NAMEVARCHAR(50) NOT NULL,
PRIMARY KEY(STATION_ID),
FOREIGN KEY(ROUTE_ID) REFERENCES ROUTES
);
```

#### TABLE INFORMATION:

The station table maintains the stations id s and the routes along which metro travels. Station\_id is the primary key here.

## Desc STATION;

| Name         | Null? |      | Туре          |
|--------------|-------|------|---------------|
|              |       |      |               |
| STATION_ID   | NOT   | NULL | NUMBER (38)   |
| ROUTE_ID     | NOT   | NULL | NUMBER (38)   |
| STATION_NAME | NOT   | NULL | VARCHAR2 (50) |
|              |       |      |               |

INSERT INTO station VALUES(11001,1,'S1');
INSERT INTO STATION VALUES(11002,2,'S2');
INSERT INTO STATION VALUES(11003,3,'S3');
INSERT INTO STATION VALUES(11004,4,'S4');
INSERT INTO STATION VALUES(11005,5,'S5');
SELECT \* FROM STATION;

| STATION_ID | ROUTE_ID | STATION_NAME |
|------------|----------|--------------|
| 11001      | 1        | S1           |
| 11002      | 2        | 52           |
| 11003      | 3        | 53           |
| 11004      | 4        | S4           |
| 11005      | 5        | S5           |
|            |          |              |

#### **TABLE ROUTES**

```
CREATE TABLE ROUTES

(

ARR_TIME TIMESTAMP(0) NOT NULL,

DEPART_TIME TIMESTAMP(0) NOT NULL,

ROUTE_ID INTEGER NOT NULL,

METRO_ID INTEGER NOT NULL,

PRIMARY KEY(ROUTE_ID),

FOREIGN KEY(METRO_ID) REFERENCES METRO
);
```

#### TABLE INFORMATION:

The routes table maintains the collection of metros ,their ids and arrival times and departure times.

R\_id is the primary key.

DESC ROUTES;

| Name        | Null? |      | Type         |
|-------------|-------|------|--------------|
|             |       |      |              |
| ARR_TIME    | NOT   | NULL | TIMESTAMP(0) |
| DEPART_TIME | NOT   | NULL | TIMESTAMP(0) |
| ROUTE_ID    | NOT   | NULL | NUMBER (38)  |
| METRO_ID    | NOT   | NULL | NUMBER (38)  |

#### **ROUTES**

```
--INSERT INTO ROUTES VALUES('01-01-20 11:08:54','01-01-20 11:10:54',1,1122);
--INSERT INTO ROUTES VALUES('01-01-20 06:02:34','01-01-20 06:08:36',2,1133);
--INSERT INTO ROUTES VALUES('01-01-20 10:15:20','01-01-20 10:22:54',3,1144);
--INSERT INTO ROUTES VALUES('01-01-20 04:10:54','01-01-20 04:11:54',4,1155);
--INSERT INTO ROUTES VALUES('01-01-20 07:05:54','01-01-20 07:10:54',5,1166);
```

| ARR_TIME                   | DEPART_TIME            | ROUTE_ID        | METRO_ID |
|----------------------------|------------------------|-----------------|----------|
| 01-01-20 11:08:54.00000000 | 0 AM 01-01-20 11:10:54 | .000000000 AM 1 | 1122     |
| 01-01-20 6:02:34.000000000 | AM 01-01-20 6:08:36.0  | 000000000 AM 2  | 1133     |
| 01-01-20 10:15:20.00000000 | 0 AM 01-01-20 10:22:54 | .000000000 AM 3 | 1144     |
| 01-01-20 4:10:54.000000000 | AM 01-01-20 4:11:54.0  | 000000000 AM 4  | 1155     |
| 01-01-20 7:05:54.000000000 | AM 01-01-20 7:10:54.0  | 000000000 AM 5  | 1166     |

## **TABLE RESERVATION**

```
CREATE TABLE RESERVATION

(
R_ID INTEGER NOT NULL,

TYPE_OF_RESER VARCHAR(50) NOT NULL,

PRIMARY KEY(R_ID)
);
```

#### TABLE INFORMATION:

The reservation table maintains the reservations like Handicapped, Maternity along with their reservation ids.

DESC RESERVATION;

| Name          | Null?    | Type          |  |
|---------------|----------|---------------|--|
| R_ID          |          | NUMBER (38)   |  |
| TYPE_OF_RESER | NOT NULL | VARCHAR2 (50) |  |

```
--INSERT INTO RESERVATION VALUES(1,'Maternity');
--INSERT INTO RESERVATION VALUES(2,'Maternity');
--INSERT INTO RESERVATION VALUES(3,'Handicapped');
--INSERT INTO RESERVATION VALUES(4,'Handicapped');
--INSERT INTO RESERVATION VALUES(5,'Handicapped');
SELECT * FROM RESERVATION;
```

# R\_ID TYPE\_OF\_RESER 1 Handicapped 2 Maternity 3 Handicapped 4 Handicapped 5 Handicapped

#### **FUNCTIONAL DEPENDENCIES AND NORMALISATION**

#### 1)Tech supervisor:

PRIMARY KEY:tech\_id

F.D :tech\_id->R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

#### 2)Complaint:

PRIMARY KEY: Complaint no

F.D: Complaint\_no - > R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

# 3)Passenger:

PRIMARY KEY: Aadhar\_card

F.D : Aadhar\_card - > R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As, all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

# 4)Payment:

PRIMARY KEY: Payment\_id

F.D :Payment\_id - > R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As, all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

## 5)Fare:

PRIMARY KEY:ticket\_id

F.D :ticket\_id - > R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As, all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

# 6)Station:

PRIMARY KEY:Station\_id

F.D :Station\_id - > R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As, all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

## 7)Reservation:

PRIMARY KEY: r\_id

F.D: r\_id - >R

As there are no multivalued dependencies, it is in 1NF.

- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As, all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

## 8)Routes:

PRIMARY KEY: route\_id

F.D: route\_id - >R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As, all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

## 9)Metro:

PRIMARY KEY: seat\_no

F.D: seat\_no - >R

- As there are no multivalued dependencies, it is in 1NF.
- Here, there is no partial dependency as there is no non-prime attribute depending on the proper subset of a candidate key so it is in 2NF.
- As, all the functional dependencies have determinants as super keys it is both in 3NF and BCNF.
- Therefore, the table is in BCNF.

#### **QUERIES**

1. Find the complaints of a station\_id inputted from user;

SELECT COMPLAINT\_TYPE

FROM COMPLAINT

WHERE STATION\_ID='&STATION\_ID';



2. Find the start station where the end station starts with B and person paying in cash

SELECT START\_STATION

FROM PAYMENT

WHERE END\_STATION LIKE 'B%' AND TYPE\_OF\_PAYMENT='Cash';

3. Find minimum wait time of a metro train

SELECT MIN(DEPART\_TIME-ARR\_TIME) AS WAIT\_TIME FROM ROUTES;



4. Find the email\_id of the Tech\_supervisor filing the complaint entered by the user.

SELECT EMAIL, FIRST\_NAME

FROM TECH\_SUPERVISOR

WHERE COMPLAINT\_NO='&COMPLAINT\_NO';

| EMAIL       | FIRST_NAME |
|-------------|------------|
|             |            |
| p@gmail.com | Krish      |

5. Find the Payment\_ID's of those Passengers who are boarding from station 11001.

SELECT COMPLAINT.NAME, PAYMENT\_ID

FROM COMPLAINT, PASSENGER

WHERE STATION\_ID=11001 AND

COMPLAINT.AADHAR\_CARD=PASSENGER.AADHAR\_CARD;

| NAME  | PAYMENT_ID |
|-------|------------|
|       |            |
| Kirti | 12345      |
| Rohan | 14567      |

6. Find the TECH\_SUPERVISORS solving Hygiene issue.

SELECT TECH\_SUPERVISOR.FIRST\_NAME

FROM TECH\_SUPERVISOR,COMPLAINT

WHERE COMPLAINT.COMPLAINT\_TYPE='Hygiene'

AND TECH\_SUPERVISOR.COMPLAINT\_NO=COMPLAINT.COMPLAINT\_NO;

7. Find the Metros and their arrival time which are arriving before 8 AM

SELECT METRO\_NAME,ROUTES.ARR\_TIME

from METRO, ROUTES

WHERE ROUTES.ARR\_TIME<('01-01-20 8:00:00') AND METRO.METRO\_ID=ROUTES.METRO\_ID;

| METRO_NAME | ARR_TIME                      |
|------------|-------------------------------|
| MM2        | 01-01-20 6:02:34.000000000 AM |
| MM4        | 01-01-20 4:10:54.000000000 AM |
| MM5        | 01-01-20 7:05:54.000000000 AM |
|            |                               |

# **THANK YOU**

Happy Travelling...