

Proposta de teste de avaliação		
Matemática A		
10.º Ano de escolaridade		
Duração: 90 minutos Data:		

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Na figura, encontra-se o retângulo [ABCD], dividido em oito retângulos iguais.

Sabe-se que
$$\|\overrightarrow{AE}\| = \frac{1}{2} \|\overrightarrow{AN}\|$$

Use as letras da figura para responder às questões seguintes.

1.1. A soma do ponto E com o vetor

$$\overrightarrow{AB} - \frac{1}{2}\overrightarrow{ME} + \overrightarrow{ID}$$

é igual ao:

- (A) vetor \overrightarrow{LA}
- **(B)** vetor \overline{AM}
- (C) ponto L
- **(D)** ponto *C*

- **1.2.** Considerando \overline{AN} como unidade, mostre que $\overline{ME} = \sqrt{5}$.
- 2. Considere, fixado um plano munido de um referencial cartesiano, o paralelogramo [ABCD], da figura, e o vetor \vec{u} de coordenadas (-1,3).

Sabe-se que:

- o ponto A tem coordenadas (0,-2);
- o ponto B tem coordenadas (5,0);
- o ponto C tem coordenadas (2,3).

Determine:

- **2.1.** as coordenadas do ponto D;
- **2.2.** $\left\| -\vec{u} + \overrightarrow{AC} \right\|$
- **2.3.** um vetor \vec{v} de norma 1 com a direção e sentido oposto ao do vetor \vec{u} .

3. Considere, num referencial o.n. xOy, a reta r de equação x = 1.

Em qual das opções seguintes a reta r está representada por uma equação vetorial?

- (A) $(x,y) = (1,0) + k(1,0), k \in \mathbb{R}$ (B) $(x,y) = (0,1) + k(0,1), k \in \mathbb{R}$
- (C) $(x, y) = (1, 0) + k(0, 1), k \in \mathbb{R}$ (D) $(x, y) = (0, 1) + k(1, 0), k \in \mathbb{R}$
- 4. Considere, num referencial o.n. xOy, a família de círculos definida pela condição $x^2 + y^2 - 2kx + 4y \le 0$, com $k \in \mathbb{R}$.
 - **4.1.** Determine os valores de k de modo que o ponto de coordenadas (2,0) não pertença a qualquer círculo desta família.
 - 4.2. Na figura ao lado está representado o círculo de centro no ponto A, obtido para k = 0, e a reta r definida pela equação y = 2x - 1.
 - Mostre que as coordenadas do ponto a) A são (0,-2).
 - b) Defina, por uma condição, a região representada a sombreado, incluindo a sua fronteira.

5. Considere num referencial o.n. xOy, reta r definida pela equação vetorial:

$$(x, y) = (-3, 4) + k(1, -2), k \in \mathbb{R}$$

- Qual das seguintes equações define a reta que passa no ponto de coordenadas (-1,0) e é paralela à reta r?
 - (A) y = 2x 2
- (C) $y = -\frac{1}{2}x \frac{1}{2}$ (D) y = -2x
- 5.2. Determine as coodenadas do ponto de interseção da reta *r* com o eixo *Oy*.

6. Considere, num referencial o.n. xOy, os pontos $A \in B$.

Sabe-se que:

- as coordenadas do ponto A são (-1, 2);
- o ponto $M\left(2,\frac{1}{2}\right)$ é o ponto médio do segmento de reta [AB].

Quais são as coordenadas do ponto B?

(A)
$$(5,-1)$$

(B)
$$\left(3, -\frac{3}{2}\right)$$

(C)
$$(3,3)$$

(D)
$$\left(\frac{1}{2}, \frac{5}{4}\right)$$

- 7. De um cubo [*OPQRSTUV*], sabe-se que:
 - a face [OPQR] está contida no plano xOy;
 - a face [OSVR] está contida no plano xOz;
 - a face [OSTP] está contida no plano yOz;
 - o ponto U tem coordenadas (2, 2, 2).
 - **7.1.** Escreva uma condição que represente:
 - a) o plano que contém a face [RQUV];
 - **b)** a reta TU;
 - c) o segmento de reta [VR].

7.2. Mostre que o plano mediador de [OU] é definido pela equação:

$$x + y + z - 3 = 0$$

7.3. Determine a equação reduzida da superfície esférica que passa em todos os vértices do cubo.

FIM

Cotações

	Item																
	Cotação (em pontos)																
1.1.	1.2.	2.1.	2.2.	2.3.	3.	4.1.	4.2.a)	4.2.b)	5.1.	5.2.	6.	7.1.a)	7.1.b)	7.1.c).	7.2.	7.3.	Total
10	12	12	12	14	10	14	12	12	10	12	10	12	12	12	12	12	200

Proposta de resolução

1.

1.1.
$$\overrightarrow{AB} - \frac{1}{2}\overrightarrow{ME} + \overrightarrow{ID} =$$

$$= \overrightarrow{AB} + \overrightarrow{EI} + \overrightarrow{ID} =$$

$$= \overrightarrow{AB} + \overrightarrow{ED} = \overrightarrow{AB} + \overrightarrow{BM} =$$

$$= \overrightarrow{AM} = \overrightarrow{EC}$$

Logo, $E + \overrightarrow{EC} = C$.

Resposta: (D)

1.2.
$$\|\overrightarrow{ME}\|^2 = \|\overrightarrow{MK}\|^2 + \|\overrightarrow{KE}\|^2$$

Considerando $\|\overrightarrow{AN}\| = \overline{AN} = 1$, vem

$$\|\overrightarrow{AE}\| = \frac{1}{2} \|\overrightarrow{AN}\| = \frac{1}{2} \times 1 = \frac{1}{2}$$

$$\|\overrightarrow{MK}\| = \|-2\overrightarrow{AE}\| = 2\|\overrightarrow{AE}\| = \|\overrightarrow{AN}\| = 1$$

$$\|\overrightarrow{KE}\| = \|-2\overrightarrow{AN}\| = 2\|\overrightarrow{AN}\| = 2 \times 1 = 2$$

Tem-se:

$$\|\overline{ME}\|^2 = 1^2 + 2^2 \Leftrightarrow \|\overline{ME}\|^2 = 5 \Leftrightarrow$$

 $\Leftrightarrow \|\overline{ME}\| = \sqrt{5}$
 $\|\overline{ME}\| > 0$

Logo,
$$\|\overrightarrow{ME}\| = \sqrt{5}$$
.

2.

2.1. Por exemplo:

$$D = A + \overline{AD} = A + \overline{BC}$$

$$\overline{BC} = C - B = (2,3) - (5,0) = (-3,3)$$
Logo, $D = (0,-2) + (-3,3) = (-3,1)$

2.2.
$$\overrightarrow{AC} = C - A = (2,3) - (0,-2) = (2,5)$$

$$\| -\overrightarrow{u} + \overrightarrow{AC} \| = \| -(-1,3) + (2,5) \| =$$

$$= \| (1,-3) + (2,5) \| = \| (3,2) \| =$$

$$= \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$$

2.3.
$$\vec{v} = k \vec{u}$$
, $k \in \mathbb{R}^-$

$$\vec{v} = k(-1,3) = (-k,3k)$$

$$\|\vec{v}\| = 1 \Leftrightarrow \|(-k, 3k)\| = 1 \Leftrightarrow$$

$$\Leftrightarrow \sqrt{(-k)^2 + (3k)^2} = 1 \Leftrightarrow \sqrt{k^2 + 9k^2} = 1 \Leftrightarrow$$

$$\Leftrightarrow 10k^2 = 1 \Leftrightarrow k^2 = \frac{1}{10} \Leftrightarrow k = \pm \frac{1}{\sqrt{10}} \Leftrightarrow k = \pm \frac{\sqrt{10}}{10}$$

Como
$$k \in \mathbb{R}^-$$
, $k = -\frac{\sqrt{10}}{10}$.

Logo,
$$\vec{v} = \left(\frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10}\right)$$
.

3. A reta r passa no ponto de coordenadas (1,0) – tem abcissa x=1 – e tem a direção do vetor de coordenadas (0,1) – paralela ao eixo Oy.

Resposta: (C)

4.

$$2^2 + 0^2 - 2k \times 2 + 4 \times 0 \le 0 \Leftrightarrow 4 - 4k \le 0 \Leftrightarrow -4k \le -4 \Leftrightarrow k \ge 1$$

O ponto de coordenadas (2,0) não pertence à família de círculos se $k \in]-\infty$, 1[.

4.2. a)
$$k = 0$$

$$x^{2} + y^{2} + 4y \le 0 \Leftrightarrow x^{2} + (y^{2} + 4y + 4) - 4 \le 0 \Leftrightarrow$$

$$\Leftrightarrow x^2 + (y+2)^2 \le 4$$

Logo,
$$A(0,-2)$$
.

b)
$$x^2 + (y+2)^2 \le 4 \land x \ge 0 \land y \le 2x-1$$

5.

5.1.
$$m = \frac{-2}{1} = -2$$

O ponto (-1, 0) pertence à reta.

$$y = mx + b$$

$$0 = -2 \times (-1) + b \Leftrightarrow 0 = 2 + b \Leftrightarrow b = -2$$

A equação da reta pedida é y = -2x - 2.

Resposta: (B)

5.2. No eixo Oy, x = 0

$$(0, y) = (-3, 4) + k(1, -2), k \in \mathbb{R} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} 0 = -3 + k \\ y = 4 - 2k \end{cases} \Leftrightarrow \begin{cases} k = 3 \\ y = 4 - 2 \times 3 \end{cases} \Leftrightarrow \begin{cases} k = 3 \\ y = -2 \end{cases}$$

A reta r interseta o eixo Oy no ponto de coordenadas (0, -2).

 $6. \qquad B(x_B, y_B)$

$$\left(\frac{-1+x_B}{2}, \frac{2+y_B}{2}\right) = \left(2, \frac{1}{2}\right)$$

$$\frac{-1+x_B}{2} = 2 \wedge \frac{2+y_B}{2} = \frac{1}{2} \Leftrightarrow$$

$$\Leftrightarrow x_R = 4 + 1 \land y_R = 1 - 2 \Leftrightarrow$$

$$\Leftrightarrow x_R = 5 \land y_R = -1$$

Logo,
$$B(5,-1)$$
.

Resposta: (A)

7.

7.1. a)
$$x = 2$$

b)
$$y = 2 \land z = 2$$

c)
$$x = 2 \land y = 0 \land 0 \le z \le 2$$

7.2. O(0, 0, 0)

$$x^{2} + y^{2} + z^{2} = (x - 2)^{2} + (y - 2)^{2} + (z - 2)^{2} \Leftrightarrow$$

$$\Leftrightarrow x^{2} + y^{2} + z^{2} = x^{2} - 4x + 4 + y^{2} - 4y + 4 + z^{2} - 4z + 4 \Leftrightarrow$$

$$\Leftrightarrow 4x + 4y + 4z - 12 = 0 \Leftrightarrow x + y + z - 3 = 0$$

O plano mediador de [OU] é definido por x+y+z-3=0

7.3. A superfície esférica tem centro em C, ponto médio de [OU], e raio igual a $\frac{OU}{2}$.

$$C = \left(\frac{2+0}{2}, \frac{2+0}{2}, \frac{2+0}{2}\right) = (1, 1, 1)$$

$$\overline{OU} = \sqrt{2^2 + 2^2 + 2^2} = \sqrt{2^2 \times 3} = 2\sqrt{3}$$

Logo,
$$r = \frac{2\sqrt{3}}{2} = \sqrt{3}$$
.

A equação reduzida da superfície esférica é $(x-1)^2 + (y-1)^2 + (z-1)^2 = 3$.