Name: Kevin Guillen Student ID: 1747199

Math 117 - SS2 - Mastery Problems 1 - July 30, 2021

Disclaimer: Sorry if I took too much abstract algebra properties as granted. A lot of this stuff popped up in 134 and 111b, so I solved it from what I remember from there and what's in Dummit and Foote's Abstract Algebra

3a)
$$\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$$
. Let $f \in \mathbb{F}[x]$, where $f(x) = x^2 + x + 1$. Show f is irreducible.

Proof. First we will begin by showing \mathbb{F} is a field, more generally that $\mathbb{Z}/p\mathbb{Z}$ is a field where p is a prime integer. We know from class that for any integer n, $\mathbb{Z}/n\mathbb{Z}$ will be a commutative ring. All we need to show now is that, when n is prime, every non-zero element in it will have multiplicative inverses.

By definition a prime number, p, will share no common divisors except 1 with another integer $n \ (n \neq p)$. Thus take any non-zero element $n \in \mathbb{Z}/p\mathbb{Z}$. n represents a congruence class of elements which are by definition not multiples of p. Thus, $\gcd(n,p) = 1$.

From here we know from elementary number theory that there exists $u, v \in \mathbb{Z}$ such that

$$u \cdot n + v \cdot p = 1.$$

Bringing this into $\mathbb{Z}/p\mathbb{Z}$ we have

$$\overline{u}\cdot\overline{n}+\overline{0}\equiv\overline{1}$$

 $\overline{u}\cdot\overline{n}\equiv\overline{1}$

That means for any non-zero $n \in \mathbb{Z}/p\mathbb{Z}$, where p is prime, that there exists a $u \in \mathbb{Z}/p\mathbb{Z}$ such that $\overline{u} \cdot \overline{n} = 1$. Which means that every non-zero element has a multiplicative inverse. Thus satisfying the criteria to be a field.

We know that since \mathbb{F} is a field, $f \in \mathbb{F}[x]$ will have a factor of degree one if and only if f has a root in \mathbb{F} . In other words $a \in \mathbb{F}$, f(a) = 0

A quick proof of this is as follows. If f(x) has a factor of degree one, and because \mathbb{F} is a field, we can assume the factor to be a monic. Meaning for $a \in \mathbb{F}$ it will have the form (x-a), but f(a)=0. The converse direction is as follows, assuming f(a)=0. We can use the division algorithm in $\mathbb{F}[x]$ to get f(x)=q(x)(x-a)+r. But we assumed f(a)=0 that means r must be 0, therefore f(x) will have (x-a) as a factor. It follows from here that any polynomial of degree 2 or 3 in $\mathbb{F}[x]$ will be reducible if and only if it has a root in \mathbb{F} . Since a polynomial of degree 2 or 3 is reducible if and only if it has at least 1 linear factor.

Finally, we know the elements of $\mathbb{Z}/2\mathbb{Z}$ are $\{\overline{0},\overline{1}\}$. Plugging this into $f(x)=x^2+x+1$ we get

$$f(0) = 0 + 0 + 1 \equiv \overline{1}$$

$$f(1) = 1 + 1 + 1 \equiv 3 \equiv \overline{1}$$

We see neither are 0, thus f cannot be reducible, meaning it is irreducible.

3b) Following the setup of part (a) let $(x^2+x+1) = \operatorname{Span}\{x^2+x+1\}$. Show that $\dim_{\mathbb{F}}(\mathbb{F}[x]/(x^2+x+1)) = 2$ and $|F[x]/(x^2+x+1)| = 4$

Proof. By definition the span of vectors is just the set of all linear combination of said vectors. Since our only choices are $\overline{1}, \overline{0} \in \mathbb{Z}/2\mathbb{Z}$ then the set is simply f. First we will show $|F[x]/(x^2+x+1)|=4$. We know that the complete set of representatives of the congruence classes of $\mathbb{F}[x]$ modulo f will be of degree < 2, since $\deg(f) = 2$. Since these polynomials are restricted to their degree being less than 2 and their coefficients being in $\mathbb{Z}/2\mathbb{Z}$ this becomes an easy counting problem. $F[x]/(x^2+x+1)=\{ax+b:\ a,b\in\mathbb{Z}/2\mathbb{Z}\}$. As stated before there are only 2 elements in \mathbb{F} , thus there are only $2\cdot 2=4$ possible polynomials to choose from in this set of representatives. Hence, $|F[x]/(x^2+x+1)|=4$.

From class, we know that the dimension of a finite dimensional vector space is the number of elements in a basis of said vector space. We also know from class that any basis of a finite dimensional vector space will be of the same dimension. So all we need to show is 2 vectors in $F[x]/(x^2 + x + 1)$ that can be a basis to show the dimension is 2.

 $F[x]/(x^2 + x + 1) = \{0, 1, x, x + 1\}$. Let the basis $U = \{x, 1\}$ we can see for $a, b \in \mathbb{F}$,

$$x + 1 = 1 \cdot (x) + 1 \cdot (1)$$
$$x = 1 \cdot (x) + 0 \cdot (1)$$
$$1 = 0 \cdot (x) + 1 \cdot (1)$$
$$0 = 0 \cdot (x) + 0 \cdot (1)$$

We can see |U|=2. Restating as before we know the number of elements in any bass of a finite dimensional vector space is the same as in any other basis, thus $\dim_{\mathbb{F}}(\mathbb{F}[x]/(x^2+x+1))=2$

3c) Show $E = F[x]/(x^2 + x + 1)$ forms a field with precisely four elements and of characteristic 2.

Proof. We already saw that E contains only 4 elements since the polynomials are restricted to degree less than 2 and coefficients in $\mathbb{Z}/2\mathbb{Z}$ meaning $E = \{ax + b : a, b \in \mathbb{Z}/2\mathbb{Z}\}$ which means there are 4 representatives.

To show it is a field though we will prove something more general in that if \mathbb{F} is a field and $f(x) \in \mathbb{F}[x]$ irreducible then $\mathbb{F}[x]/f(x)$ is a field. We already know from abstract algebra that this does indeed form a commutative ring. All that is left is to show it has multiplicative inverses.

First we let $p(x) \in \mathbb{F}[x]$ with $p(x) + (f(x)) \neq 0 + (f(x))$. Meaning $f(x) \nmid p(x)$. Now we need to show there exists $u(x) \in \mathbb{F}[x]$ such that $p(x)u(x) \equiv 1 \mod f(x)$. We know though that f(x) is irreducible and because p(x) is not a multiple of f(x) it means that every common divisor of f(x) and f(x) must be of degree 0. Meaning the constant polynomial 1 is the greatest common divisor of both f(x) and f(x). We know by polynomial division with remainder that there exists polynomials f(x) we have f(x) such that

$$u(x) \cdot p(x) + v(x) \cdot f(x) = 1.$$

Implying that $u(x)p(x) \equiv 1 \mod f(x)$, meaning p(x) + (f(x)) is invertible in $\mathbb{F}[x]/(f(x))$ as desired. Thus, $F[x]/(x^2 + x + 1)$ does indeed form a field. We know that since this is a field and thereby a ring that the characteristic is simply the minimum number of times we must take the multiplicative identity in a sum to get the additive identity. Since the coefficients are restricted to $\mathbb{Z}/2\mathbb{Z}$ this is simply

$$\overline{1}+\overline{1}=\overline{2}\equiv\overline{0}$$

Thus the characteristic is 2.