アカデミックスカラロボット制御 RTC

VS_ASR_RTC

解説マニュアル

(第1.0.1版)

埼玉大学 設計工学研究室 2015 年 11 月 2 日

【改版履歴】

日付	版番号	改版ページ	改版内容
2015.10.31	1.0	全ページ	新規作成
2015.11.2	1.0.1	pp.13-14	「6. ソースコード,ライブラリの引用・
			参照箇所」追加,雑多な修正
2015.11.6	1.1.0	pp.4-6, p.11,	OpenRTM-aist C++ 1.1.1-RELEASE へバ
		p.13, p.15	ージョンアップ,RTC の仕様を詳細化,
			RT System Editor上での外観,および接
			続例の追加,雑多な修正

【目次】

Ç	欠版履歴】	1
1.	はじめに	3
	1.1 概略	3
	1.2 本書を読むに当たって	3
	1.3 関連文書	. 3
	1.4 関連リンク	. 3
	1.5 動作環境	. 4
	1.6 開発環境	. 4
	1.7 ライセンス	. 4
2.	RTC の仕様	. 5
	2.1 データポート	. 5
	2.1.1 InPort	. 5
	2.1.2 OutPort	. 5
	2.2 サービスポート	. 5
	2.2.1 プロバイダ	. 5
	2.2.2 コンシューマ	. 5
	2.3 コンフィギュレーション	. 5
	2.4 RT System Editor 上での外観	. 6
	2.5 RTC の接続例	. 6
3.	ロボットアーム共通 I/F(SI 単位系準拠 第 1.0 版)コマンド一覧	7
	3.1 低・中レベル共通インタフェース	7
	3.2 中レベルモーションコマンドインタフェース	7
4.	RTC の作成手順	. 9
5.	操作手順	14
6.	ソースコード, ライブラリの引用・参照箇所	14

1. はじめに

1.1 概略

本書では、ヴイストン株式会社製アカデミックスカラロボット制御RTCであるVS_ASR_RTCの詳細について述べる.

1.2 本書を読むに当たって

本書はRTミドルウエアに関する基礎知識を有した利用者を対象としている.

1.3 関連文書

本書に関連する文書を以下に示す.

No.	文書名	発行元	版数	備考
1	ロボットアーム制御 機能共通インタフェ ース仕様書	JARA,埼玉大学 設計工学研究室	SI 単位系準 拠 1.0 版	NEDO で規定されたロボットアーム制御機能共通インタフェースの仕様を拡張したもの.

1.4 関連リンク

本書に関連するリンクを以下に示す.

No.	リンク名	著作元	URL
1	CP2110 評価キット	Silicon Labs,	http://jp.silabs.com/products/interface/
1	012110 評価ペット	Inc.	Pages/CP2110EK.aspx
9	アカデミック スカ	ヴイストン株式	https://www.vstone.co.jp/products/scara
2	ラロボット	会社	<u>robot/download.html</u>

1.5 動作環境

OS	Windows7 SP1
RTミドルウエア	OpenRTM-aist-1.1.1-RELEASE
ランタイムライブラリ	Visual C++ 2010 ランタイム

1.6 開発環境

os	Windows7 SP1
RTミドルウエア	OpenRTM-aist-1.1.1-RELEASE
RTCBuilder	OpenRTP 1.1.0-RC5
開発言語	C++
コンパイラ	Visual C++ 2010 Professional

1.7 ライセンス

本書,並びに本RTCは,MITライセンスのもとに提供される.

2. RTC の仕様

2.1 データポート

2.1.1 InPort

ポート名	データ型	データ長	説明
-	-	-	InPort なし

2.1.2 OutPort

ポート名	データ型	データ長	説明
-	-	-	OutPort なし

2.2 サービスポート

2.2.1 プロバイダ

ポート名	インタフェース型	説明
ManipulatorCommon	JARA_ARM::Manipulator	低・中レベル共通コマンドイン
Interface_Common	CommonInterface_Common	タフェース
ManipulatorCommon	JARA_ARM::Manipulator	中レベル・モーションコマンド
Interface_Middle	CommonInterface_Middle	共通インタフェース

2.2.2 コンシューマ

ポート名	インタフェース型	説明
-	-	コンシューマなし

2.3 コンフィギュレーション

名称	データ型	デフォルト値	説明
servoNum	int	5	ロボットの軸数(5:ハンドタイプ, 3:ペンタイプ)

2.4 RT System Editor 上での外観

 $\boxtimes 2.4.1$ VS_ASR_RTC

2.5 RTC の接続例

1) ScaraRobotControlRTC に接続

図 2.5.1 ScaraRobotControlRTC に接続した VS_ASR_RTC

3. ロボットアーム共通 I/F (SI 単位系準拠 第 1.0 版) コマンド一覧

3.1 低・中レベル共通インタフェース

No.	コマンド名	対応状況	説明
C1	clearAlarms	×	戻り値は NOT_IMPLEMENTED
C2	getActiveAlarm	×	戻り値は NOT_IMPLEMENTED
С3	${\tt getFeedbackPosJoint}$	0	
C4	getManipInfo	0	
C5	getSoftLimitJoint	0	RTC 内部で値を保持.
C6	getState	×	戻り値は NOT_IMPLEMENTED
C7	servoOFF	0	
C8	servoON	0	
С9	setSoftLimitJoint	0	RTC 内部に値を保持.

3.2 中レベルモーションコマンドインタフェース

No.	コマンド名	対応状況	説明
M1	closeGripper	0	
M2	getBaseOffset	0	
M3	getFeedbackPosCartesian	0	
M4	getMaxSpeedCartesian	×	戻り値は NOT_IMPLEMENTED
M5	getMaxSpeedJoint	×	戻り値は NOT_IMPLEMENTED
M6	getMinAccelTimeCartesian	×	戻り値は NOT_IMPLEMENTED
M7	getMinAccelTimeJoint	×	戻り値は NOT_IMPLEMENTED
M8	getSoftLimitCartesian	0	RTC 内部で値を保持.
M9	moveGripper	0	
M10	moveLinearCartesianAbs	0	指令値はリミット値 (Cartesian) によってチ
			ェックされる.
M11	moveLinearCartesianRel	0	指令値はリミット値 (Cartesian) によってチ
			ェックされる.
M12	movePTPCartesianAbs	0	指令値はリミット値 (Cartesian) によってチ
			ェックされる.

No.	コマンド名	対応状況	説明
M13	movePTPCartesianRel	0	指令値はリミット値 (Cartesian) によってチ
			ェックされる.
M14	movePTPJointAbs	0	指令値はリミット値 (Joint) によってチェッ
			クされる.
M15	movePTPJointRel	0	指令値はリミット値 (Joint) によってチェッ
			クされる .
M16	openGripper	0	
M17	pause	×	戻り値は NOT_IMPLEMENTED
M18	resume	×	戻り値は NOT_IMPLEMENTED
M19	stop	×	戻り値は NOT_IMPLEMENTED
M20	setAccelTimeCartesian	×	戻り値は NOT_IMPLEMENTED
M21	setAccelTimeJoint	×	戻り値は NOT_IMPLEMENTED
M22	setBaseOffset	0	RTC 内部で値を保持.
M23	setControlPointOffset	×	戻り値は NOT_IMPLEMENTED
M24	setMaxSpeedCartesian	×	戻り値は NOT_IMPLEMENTED
M25	setMaxSpeedJoint	×	戻り値は NOT_IMPLEMENTED
M26	setMinAccelTimeCartesian	×	戻り値は NOT_IMPLEMENTED
M27	setMinAccelTimeJoint	×	戻り値は NOT_IMPLEMENTED
M28	setSoftLimitCartesian	0	RTC 内部で値を保持.
M29	setSpeedCartesian	0	
M30	setSpeedJoint	0	
M31	moveCircularCartesianAbs	×	戻り値は NOT_IMPLEMENTED
M32	moveCircularCartesianRel	×	戻り値は NOT_IMPLEMENTED
M33	setHome	0	RTC 内部で値を保持.
M34	getHome	0	RTC 内部で値を保持.
M35	goHome	0	原点復帰位置はリミット値 (Joint) によって
			チェックされる.

4. RTC の作成手順

RTC の一部に Silicon Labs 社から提供されるファイルを利用しているため、それらのファイルを除いたソースコードとバイナリファイルのみを公開している。そのため、本 RTC を改良するためには以下の手順に従ってソリューションファイルを生成し、インクルードファイルを追加する必要がある。

1) 以下の URL にアクセスし、CP2110 ソフトウェアのインストーラをダウンロードする.

http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx

図 4.1 CP2110 ソフトウェアのインストーラのダウンロード

2) 任意のフォルダにダウンロードしたファイル"CP2110_4_Windows.exe"を実行し、CP2110 ソフトウェアをインストールする.

図 4.2 CP2110 ソフトウェアのインストール

- 3) インストールで展開されたヘッダファイル, ライブラリファイルに対してパスを通す.
 - 3.1) 「コンピュータ」を右クリックし、「プロパティ」を選択する.
 - 3.2) 左側に表示されるメニューから「システムの詳細設定」を選択する.
 - 3.3) 「環境変数」を選択する.
 - 3.4) 「システム環境変数」のうち、「Path」を選択し、「編集」を選択する.
 - 3.5) 「変数値」の末尾にインストールで展開されたヘッダファイル, ライブラリファイルがあるディレクトリのパスを追加する. インストール時のディレクトリが既定であれば, 以下の 2 箇所を追加すれば良い.

;C:\forage Silabs\forage MCU\forage CP2110_4_SDK\forage Library\forage Windows\forage C:\forage Silabs\forage MCU\forage CP2110_4_SDK\forage Library\forage Windows\forage x86

図 4.3 環境変数の設定

3.6) 「OK」を選択してウィンドウを閉じる.

図 4.4 Cmake によるソリューションのビルド

- 5) 生成された sln ファイルからプロジェクトを開く.
- 6) ツールバーにおいて、「Debug」モードから「Release」モードへ切り替える.

図 4.5 「Debug」モードと「Release」モードの切り替え

7) ソリューションエクスプローラーにおいて、プロジェクト「vs_asr_rtc」を右クリックし、「プロパティ」を選択する.

図 4.6 vs_asr_rtc のプロパティページ (設定後)

- 8) 「構成プロパティ」,「VC+ ディレクトリ」の順に選択する.
- 9) 「インクルードディレクトリ」を選択し、選択した際に表示される「▼」を選択し、さらに「編集」 を選択する.

- 10) 「フォルダ」のアイコンを選択して新しい行を追加し、追加した際に表示される「...」のアイコンを選択する.
- 11) インクルードディレクトリを指定する. インストール時のディレクトリが既定であれば,以下に示すパスを追加すれば良い.

C:\Silabs\MCU\CP2110_4_SDK\Library\Windows

- 12) 「フォルダーの選択」、「OK」の順に選択する.
- 13) 「ライブラリディレクトリ」を選択し、選択した際に表示される「▼」を選択し、さらに「編集」を選択する.「フォルダ」のアイコンを選択して新しい行を追加し、追加した際に表示される「…」のアイコンを選択する.
- 14) ライブラリディレクトリを指定する. インストール時のディレクトリが既定であれば,以下に示すパスを追加すれば良い.

C:\Silabs\MCU\CP2110_4_SDK\Library\Windows\x86

- 15) 「フォルダーの選択」,「OK」の順に選択する.
- 16) 「OK」を選択し、 vs_asr_rtc のプロパティページを閉じる.
- 17) ソリューションのビルドを行う. メニューにおいて,「ビルド」,「ソリューションのビルド」の順に 選択する.
- - · VS_ASR_RTC.dll
 - VS_ASR_RTC.exp
 - · VS_ASR_RTC.lib
 - ・ VS_ASR_RTCComp.exe (実行ファイル)
 - VS_ASR_RTCComp.exp
 - · VS_ASR_RTCComp.lib
- 19) 実行ファイルが生成されたディレクトリに対し、次に示す3つのファイルを追加する.
 - rtc.conf
 - · SLABHIDDevice.dll
 - · SLABHIDtoUART.dll

[&]quot;rtc.conf"は以下に示すディレクトリに存在する.

..\{\text{YRTC}\{\text{VS}_ASR_RTC}\{\text{\text{src}}\}\}

"SLABHIDDevice.dll"および" SLABHIDtoUART.dll"はインストール時のディレクトリが既定であれば、以下に示すディレクトリに存在する.

C:\Silabs\MCU\CP2110_4_SDK\Library\Windows\x86

5. 操作手順

- (1) ネーミングサービスを起動する.
- (2) プロバイダ側 RTC である本 RTC (VS_ASR_RTC), およびコンシューマ側 RTC (ScaraRobotControlRTC) の exe ファイルを実行する.
- (3) 本RTC のコンフィギュレーションにロボットの軸数を設定する.
- (4) RT Syetem Editor を用いて RTC のサービスポート (ManipulatorCommon Interface_Common, ManipulatorCommonInterface_Middle) をそれぞれ接続する.
- (5) プロバイダ側 RTC, コンシューマ側 RTC の順で Activate する.

6. ソースコード、ライブラリの引用・参照箇所

VS_ASR_RTC を作成するに当たって引用したソースコード,ライブラリを以下に示す.なお,「scaraSample_GetMotorAxis.cpp」の引用については、ヴイストン株式会社様より許可を頂いている.

■ 新たに作成したソースコード内で引用・参照

「useSilabs.cpp」

From: \[\scaraSample_GetMotorAxis.cpp \] \(\left(\frac{\text{https://www.vstone.co.jp/products/scara_robot/download/s}}{\text{caraSample GetMotorAxis.cpp}} \)

- · int RSTorqueOnOff(HID_UART_DEVICE dev, short sMode ,BYTE id,int num)
- · int RSGetAngle(HID_UART_DEVICE dev ,BYTE id,short *getParam)
- · int RSMove(HID_UART_DEVICE dev , short *sPoss, unsigned short sTime ,BYTE id,int num)
- $\cdot \quad \text{int ReadLocalEcho(HID_UART_DEVICE dev ,unsigned char *sendbuf,DWORD data_len)} \\ \lceil \text{useSilabs.h} \rfloor$

From: \[\scaraSample_GetMotorAxis.cpp \] \(\left(\frac{\text{https://www.vstone.co.jp/products/scara robot/download/s}{\text{caraSample GetMotorAxis.cpp}} \) \(\left(\frac{\text{https://www.vstone.co.jp/products/scara robot/download/s}{\text{caraSample GetMotorAxis.cpp}} \)

- · #define VID (0x10C4)
- · #define PID (0xEA80)
- · #define AXISLEN A (80.0)
- · #define AXISLEN_B (80.0)

「VS_ASR_RTC」

From: \[\scaraSample_GetMotorAxis.cpp \] \(\left(\frac{\text{https://www.vstone.co.jp/products/scara_robot/download/s}}{\text{caraSample_GetMotorAxis.cpp}} \)

- · int servoNum = 0;
- DWORD numDevice=0;
- · HID_UART_DEVICE dev=0;
- HidUart_GetNumDevices(&numDevice,VID,PID);
- · if(numDevice==0) return;
- if(HidUart_Open(&dev,0,VID,PID)!=HID_UART_SUCCESS){};
- HidUart_Close(dev);
- ソースコード・ライブラリそのものを引用・参照
- · 「SLABCP2110.h」 (http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx)
- · 「SLABHIDtoUART.h」 (http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx)
- · 「CP2114_Common.h」 (http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx)
- · 「SLABHIDtoUART.LIB」 (http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx)
- · 「winmm.LIB」 (http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx)
- ・ 「ManipulatorCommonInterface_DataTypes.idl」(「ロボットアーム制御機能共通インタフェース 仕様書_20120224.pdf」 http://openrtm.org/openrtm/sites/default/files/RobotArm_Interface1.0.zip) 7.1 ManipulatorCommonInterface_DataTypes.idl (p.19)
- ・ 「ManipulatorCommonInterface_Common.idl」(「ロボットアーム制御機能共通インタフェース仕 様書_20120224.pdf」 http://openrtm.org/openrtm/sites/default/files/RobotArm_Interface1.0.zip,) 7.2 ManipulatorCommonInterface Common.idl(pp.20-21)
- ・ 「ManipulatorCommonInterface_MiddleLevel.idl」(「ロボットアーム制御機能共通インタフェース 仕様書_20120224.pdf」 http://openrtm.org/openrtm/sites/default/files/RobotArm_Interface1.0.zi
 p)
 - 7.3 ManipulatorCommonInterface_MiddleLevel.idl (pp.21-22))
- DLLファイル等
- · 「SLABHIDDevice.dll」 (http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx)
- · 「SLABHIDtoUART.dll」 (http://jp.silabs.com/products/interface/Pages/CP2110EK.aspx)
- その他

None