Soutien CPI A1

- Séance 1 -

Valentin Bahier

24/09/2020

Exercice 1 (Manipuler les fractions)

Mettre sous forme de fractions irréductibles les expressions suivantes :

$$1) \ a = \frac{2}{11} + \frac{7}{11}$$

8)
$$h = \frac{5}{2} \times \left(-\frac{7}{9}\right)$$

15)
$$o = \left(\frac{2}{9}\right)^{-4}$$

$$2) \ b = \frac{1}{3} + \frac{4}{9} - \frac{1}{6}$$

9)
$$i = \left(-\frac{11}{65}\right) \times \left(-\frac{13}{4}\right)$$

1)
$$a = \frac{2}{11} + \frac{7}{11}$$
 8) $h = \frac{5}{2} \times \left(-\frac{7}{9}\right)$ 15) $o = \left(\frac{2}{9}\right)^{-4}$
2) $b = \frac{1}{3} + \frac{4}{9} - \frac{1}{6}$ 9) $i = \left(-\frac{11}{65}\right) \times \left(-\frac{13}{4}\right)$ 16) $p = \left(-\frac{2}{49}\right)^2 \times \left(\frac{3}{7}\right)^{-3}$
3) $c = \frac{13}{35} + \frac{22}{5}$ 10) $j = 4 - 3 \times \frac{7}{2}$ 17) $q = \frac{(4^5)^3}{2^{29}}$
4) $d = -\frac{8}{21} + \frac{17}{12}$ 11) $k = \frac{\frac{3}{8}}{\frac{9}{7}}$ 18) $r = \frac{(-6)^3 \times (-5)^5}{1500^2}$
5) $e = -4 + \frac{2}{3}$ 12) $\ell = \frac{-\frac{5}{2}}{6}$ 19) $s = \frac{(-3)^{-2}}{(-5)^{-3}}$
6) $f = \frac{5}{6} - \frac{3}{10}$ 13) $m = \frac{(-3)^5}{162}$ 20) $t = \frac{10^5 \times 2^{-2}}{0.05^2}$
7) $g = \frac{2}{3} \times \frac{6}{43}$ 14) $n = \left(\frac{5}{3}\right)^3 \times \left(\frac{3}{7}\right)^2$

$$3) \ c = \frac{13}{35} + \frac{22}{5}$$

10)
$$j = 4 - 3 \times \frac{7}{2}$$

17)
$$q = \frac{(4^5)^3}{2^{29}}$$

4)
$$d = -\frac{8}{21} + \frac{17}{12}$$

11)
$$k = \frac{\frac{3}{8}}{\frac{9}{7}}$$

18)
$$r = \frac{(-6)^3 \times (-5)^5}{1500^2}$$

$$5) e = -4 + \frac{2}{3}$$

12)
$$\ell = \frac{\frac{-5}{2}}{6}$$

19)
$$s = \frac{(-3)^{-2}}{(-5)^{-3}}$$

$$6) \ f = \frac{5}{6} - \frac{3}{10}$$

13)
$$m = \frac{(-3)^5}{162}$$

$$20) \ t = \frac{10^5 \times 2^{-2}}{0.05^2}$$

7)
$$g = \frac{2}{3} \times \frac{6}{43}$$

$$14) \ n = \left(\frac{5}{3}\right)^3 \times \left(\frac{3}{7}\right)^2$$

Exercice 2 (Jeux de hasard)

Donner les résultats sous forme de fractions irréductibles.

- 1. On lance 5 dés équilibrés à 6 faces. Quelle est la probabilité que les 5 dés aient des scores deux à deux distincts?
- 2. On pioche 3 cartes d'un jeu classique de 32 cartes. Quelle est la probabilité d'avoir
 - un brelan (trois cartes de même rang)?
 - au moins un As?
 - exactement un As?
 - exactement deux As?

Exercice 3 (Résistances en dérivation)

Considérons deux résistances R et R' disposées en parallèle.

- 1) Exprimer la résistance équivalente R_{eq} en fonction de R et R'.
- 2) Supposons que R' vaille le carré de R. Montrer qu'alors

$$R_{eq} = R - 1 + \frac{1}{R+1}.$$

3) <u>Application numérique</u>: Calculer R_{eq} pour $R=0.4~\Omega$ et $R'=0.16~\Omega$. On donnera le résultat sous forme de fraction irréductible.

Exercice 4 (Encore des résistances...)

Considérons deux résistances R_1 et R_2 disposées en série :

- 1) Donner l'expression de la résistance équivalente, notée $R_{eq,1}$.
- 2) On ajoute une troisième résistance R_3 , placée en dérivation des deux résistances précédentes :

Donner la nouvelle résistance équivalente, notée $R_{eq,2}$.

3) Déterminer les valeurs possibles de R_3 de sorte à réduire la deuxième résistance équivalente d'au moins la moitié par rapport à la première, c'est-à-dire telles que

$$R_{eq,2} \le \frac{R_{eq,1}}{2}.$$

4) <u>Application numérique</u> : Calculer $R_{eq,1}$ et $R_{eq,2}$ pour $\begin{cases} R_1 = 0.35 \ \Omega \\ R_2 = 0.55 \ \Omega \\ R_3 = 3.5 \ \Omega \end{cases}$.

La condition de la question 3) est-elle satisfaite pour ces valeurs?