Technische Universität München

BGCE Project: CAD – Integrated Topology Optimization

BGCE Final Milestone Meeting

S. Joshi, J.C. Medina, F. Menhorn, S. Reiz, B. Rüth, E. Wannerberg, A. Yurova March 1, 2016

Motivation

Current Design Process:

- Iterative and redundant
- Time consuming

Motivation

Current Design Process:

- Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Focus:

Convert optimized geometry to lightweight and scalable CAD formats

Contents

- 1. Product Presentation
- 2. Product Presentation
- 3. Product Presentation
- 4. Overview: Workflow
- 5. Topology optimization
 - 5.1 Internal structure
 - 5.2 User view
- 6. Surface Extraction
 - 6.1 Dual Contouring
 - 6.2 Projection and Parametrization

How hard is it to design a lamp?

Problem:

 The Engineer designer pendulum

Desired:

⇒ One click optimization

How hard is it to design a lamp?

Problem:

 The Engineer designer pendulum

 Top-Opt algorithms are a one way street

Desired:

⇒ One click optimization

⇒ A full circle optimization process

How hard is it to design a lamp?

Problem:

 The Engineer designer pendulum

- Top-Opt algorithms are a one way street
- Exotic input file types

Desired:

⇒ One click optimization

⇒ A full circle optimization process

⇒ Standardized input files

What they get

- One-step solution process
- Full 3-D optimization via Finite Elements
- Production-ready output geometry

DEMO

Features

Fully integrated design process

- CAD to CAD
- Turnkey
- Standardized I/O

Features

Fully integrated design process

- CAD to CAD
- Turnkey
- Standardized I/O

Control to the user

- Resolution
- Smoothness
- Localized Optimization

Features

Fully integrated design process

- CAD to CAD
- Turnkey
- Standardized I/O

Control to the user

- Resolution
- Smoothness
- Localized Optimization

100% open source

What the user sees

CAD design including specification of loads and fixtures

Voxelized topology

Optimized topology

Surface extraction

Fit B-Spline surface

Contents

- 1. Product Presentation
- 2. Product Presentation
- 3. Product Presentation
- 4. Overview: Workflow
- 5. Topology optimization
 - 5.1 Internal structure
 - 5.2 User view
- 6. Surface Extraction
 - 6.1 Dual Contouring
 - 6.2 Projection and Parametrization

Status

Last milestone

- Manual voxelization using CVMLCPP
- √ "Hard coded" script for ToPy input
- Topology optimized geometry using ToPy
- Recognition of boundary conditions

Today

- √ Voxelization with OpenCascade
- Extraction of loads, fixtures and active elements through colouring
- ✓ Automatic "one click" pipeline to surface reconstruction

But what does the user see?

But what does the user see?

Contents

- 1. Product Presentation
- 2. Product Presentation
- 3. Product Presentation
- 4. Overview: Workflow
- 5. Topology optimization
 - 5.1 Internal structure
 - 5.2 User view
- 6. Surface Extraction
 - 6.1 Dual Contouring
 - 6.2 Projection and Parametrization

Status

Last milestone

① Surface reconstruction with the VTK Toolbox

Today

- Extraction of voxel data from Topy
- √ 3D Dual Contouring implementation
- Coarsening and non-manifold edge treatment
- Projection of datapoints onto quads and respective parametrization
- Uniterface to NURBS

From Voxel to Mesh Geometry

- Extract isosurface from voxel information
- Algorithms: Marching Cubes, Dual Contouring, Extended Models
- Problems with VTK's Marching Cube implementation

Figure: From [4],[5]

Dual Contouring

- Python implementation Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting algorithms

Dual Contouring

- Python implementation Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting algorithms

Dual Contouring — Problems

- Non–manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring — Problems

- Non-manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring — Input

- Interface between Topology Optimization and Surface Extraction
- Special implementation to use voxel data from ToPy as input

Demo

Projection and Parametrization

- Points from finer grid are projected to quads of the coarser grid
- Parameters u and v are found for each quad
- This information is needed for the algorithms in the last part of the pipeline

