#### DERIVATIVES OF TRIG FUNCTIONS

# INTRODUCTION TO CALCULUS

#### **OUTLINE**



# WHAT ARE WE AFTER?

We only need to figure out the derivatives of ... and ....

sin(x) and cos(x)



### **GUESS**



### **GUESS**

#### THE DERIVATIVES

#### **THEOREM 3.8**

#### The Derivatives of sin x and cos x

The derivative of the sine function is the cosine and the derivative of the cosine function is the negative sine.

$$\frac{d}{dx}(\sin x) = \cos x$$

3.11

$$\frac{d}{dx}(\cos x) = -\sin x$$

3.12



$$f(x) = \frac{1 - \cos x}{x}$$
1

-4

-3

-2

-1

-2

#### PROOF: PREPARATION

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$$

#### **PROOF**

Apply the definition of the derivative.

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

We also recall the following trigonometric identity for the sine of the sum of two angles:

$$\sin(x+h) = \sin x \cos h + \cos x \sin h.$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \left(\frac{\sin x \cos h - \sin x}{h} + \frac{\cos x \sin h}{h}\right)$$

$$= \lim_{h \to 0} \left(\sin x \left(\frac{\cos h - 1}{h}\right) + \cos x \left(\frac{\sin h}{h}\right)\right)$$

$$= \sin x \cdot 0 + \cos x \cdot 1$$

$$= \cos x$$

#### PROOF

#### **EXERCISE**

**PROOF** 

$$\frac{d}{dx}(\cos x) = -\sin x$$

### SINE FUNCTION AND ITS DERIVATIVE

- At the points where sin(x) has a horizontal tangent, its derivative cos(x) takes on the value zero.
- Where sin(x) is increasing, cos(x) > 0 and where sin(x) is decreasing, cos(x) < 0.



#### COSINE FUNCTION AND ITS DERIVATIVE



#### **EXERCISE ONE**

## Differentiating a Function Containing sin x

• Find the derivative of  $2x^2 \sin(x)$ .

### EXERCISE TWO

### Finding the Derivative of a Function Containing cos x

$$f(x) = \frac{\cos(x)}{x}$$

#### **EXERCISE THREE**

• Find the derivative of sin(x) cos(x).

#### AN APPLICATION TO PHYSICS (VELOCITY)



- A dust moves along a coordinate axis in such a way that its position at time t is given by  $s(t) = 2\cos(t) t$  for  $0 \le t \le 2\pi$ .
- At what times is the dust at rest?

#### AN APPLICATION TO ECONOMY (STOCK PRICE)



- The price of the cryptocurrency dogecoin at time t is given by  $P(t) = t 2\sin(t) + 3$  for  $t \ge 0$ .
- At what time does the dogecoin hit its lowest price?

#### AN APPLICATION TO ECONOMY (STOCK PRICE)



- The price of the cryptocurrency dogecoin at time t is given by  $P(t) = t 2\sin(t) + 3$  for  $t \ge 0$ .
- At what time does the dogecoin hit its lowest price?

## DERIVATIVES OF OTHER TRIGONOMETRIC FUNCTIONS



The power rule



The Sum, Difference, and Constant Multiple Rules



The product rule



The quotient rule

#### **EXAMPLE**

# The Derivative of the Tangent Function

Use which rule?

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{d}{dx}(f(x)) \cdot g(x) - \frac{d}{dx}(g(x)) \cdot f(x)}{(g(x))^2}.$$

#### **EXERCISE ONE**

#### Finding the Equation of a Tangent Line

Find the equation of a line tangent to the graph of  $f(x) = \tan(x)$  at  $x = \frac{\pi}{4}$ .



#### **EXERCISE**

The derivative of the Cotangent Function

$$\cot(x) = \frac{\cos(x)}{\sin(x)} = \frac{1}{\tan(x)}$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{d}{dx}(f(x)) \cdot g(x) - \frac{d}{dx}(g(x)) \cdot f(x)}{(g(x))^2}.$$

#### THEOREM 3.9

#### **Derivatives of** $\tan x$ , $\cot x$ , $\sec x$ , and $\csc x$

The derivatives of the remaining trigonometric functions are as follows:

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x.$$

# DERIVATIVES OF ...

#### **EXERCISE TWO**

#### Finding the Derivative of Trigonometric Functions

■ Find the derivative of  $f(x) = \sec(x) + x \cot(x)$ 

#### **EXERCISE THREE**

## Finding the Derivative of Squares of Trigonometric Functions

• Find the derivative of  $f(x) = \csc^2(x)$ .

- The higher-order derivatives of sin(x) and cos(x) follow a repeating pattern.
- By following the pattern, we can find any higher-order derivative of sin(x) and cos(x).

#### HIGHER-ORDER DERIVATIVES

#### **EXAMPLE ONE**

#### Finding Higher-Order Derivatives of $y = \sin(x)$

- Find the first four derivatives of  $y = \sin(x)$
- $y = \sin(x)$
- $\frac{dy}{dx} = \frac{d}{dx}\sin(x) = \cos(x)$
- $\frac{d^2y}{dx^2} = \frac{d}{dx}\cos(x) = -\sin(x)$
- $\frac{d^3y}{dx^3} = \frac{d}{dx}(-\sin(x)) = -\cos(x)$
- $\frac{d^4y}{dx^4} = \frac{d}{dx}(-\cos(x)) = \sin(x)$
- • •



#### **ANALYSIS**

Once we recognize the pattern of derivatives, we can find any higher-order derivative by determining the **step** in the pattern to which it corresponds.



#### **ANALYSIS**

$$\frac{d}{dx}\sin(x) = \frac{d^5}{dx^5}\sin(x) = \frac{d^9}{dx^9}\sin(x) = \dots = \cos(x)$$

$$\frac{d^2}{dx^2}\sin(x) = \frac{d^6}{dx^6}\sin(x) = \frac{d^{10}}{dx^{10}}\sin(x) = \dots = -\sin(x)$$

$$\frac{d^3}{dx^3}\sin(x) = \frac{d^7}{dx^7}\sin(x) = \frac{d^{11}}{dx^{11}}\sin(x) = \dots = -\cos(x)$$

$$\frac{d^4}{dx^4}\sin(x) = \frac{d^8}{dx^8}\sin(x) = \frac{d^{12}}{dx^{12}}\sin(x) = \dots = \sin(x)$$
 • 3, 7,



#### **EXERCISE ONE**



### Using the Pattern for Higher-Order Derivatives of sin(x).

Find  $\frac{d^{2019}}{dx^{2019}}\sin(x)$ .

#### **EXAMPLE TWO**

#### Finding Higher-Order Derivatives of y = cos(x).

$$y = \cos(x)$$

$$\frac{dy}{dx} = \frac{d}{dx}\cos(x) = -\sin(x)$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}(-\sin(x)) = -\cos(x)$$

$$\frac{d^3y}{dx^3} = \frac{d}{dx}(-\cos(x)) = \sin(x)$$

• . . .



#### **ANALYSIS**

$$\frac{d}{dx}\cos(\mathbf{x}) = \frac{d^5}{dx^5}\cos(\mathbf{x}) = \frac{d^9}{dx^9}\cos(\mathbf{x}) = \dots = -\sin(x)$$

$$\frac{d^2}{dx^2}\cos(x) = \frac{d^6}{dx^6}\cos(x) = \frac{d^{10}}{dx^{10}}\cos(x) = \dots = -\cos(x)$$

$$\frac{d^3}{dx^3}\cos(x) = \frac{d^7}{dx^7}\cos(x) = \frac{d^{11}}{dx^{11}}\cos(x) = \dots = \sin(x)$$

$$\frac{d^4}{dx^4}\cos(x) = \frac{d^8}{dx^8}\cos(x) = \frac{d^{12}}{dx^{12}}\cos(x) = \dots = \cos(x) \qquad \bullet \quad 2, 6,$$



#### **EXERCISE TWO**



### Using the Pattern for Higher-Order Derivatives of cos(x).

■ Find  $\frac{d^{1984}}{dx^{1984}}\cos(x)$ .

### ANOTHER WAY TO PROVE: Remember that $\frac{d}{dx}\sin(x) = \cos(x)$ .

$$\frac{d^2}{dx^2}\sin(x) = \frac{d^6}{dx^6}\sin(x) = \frac{d^{10}}{dx^{10}}\sin(x) = \dots$$
=  $-\sin(x)$ 

$$\frac{d}{dx}\cos(x) = \frac{d^5}{dx^5}\cos(x) = \frac{d^9}{dx^9}\cos(x) = \cdots$$
$$= -\sin(x)$$

#### **EXERCISE**

#### **An Application to Acceleration**

- A particle moves along a coordinate axis in such a way that its position at time t is given by  $s(t) = 2 + \cos(t)$ .
- Find  $v(\frac{\pi}{4})$  and  $a(\frac{\pi}{4})$ .
- Compare these values and decide whether the particle is speeding up or slowing down.

