Lecture 10: Basics of Bayesian Hypothesis Testing

Merlise Clyde

October 4, 2022

Hypothesis Testing

Suppose we have univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$

goal is to test $\mathcal{H}_0: \theta = 0$; vs $\mathcal{H}_1: \theta \neq 0$

Frequentist testing - likelihood ratio, Wald, score, UMP, confidence regions, etc

• Need a **test statistic** $T(y^{(n)})$ (and its sampling distribution)

■ **p-value**: Calculate the probability of seeing a dataset/test statistics as extreme or more extreme than the observed data with repeated sampling under the null hypothesis (Fisherian view)

Errors

if p-value is less than a pre-specified α then reject \mathcal{H}_0 in favor of \mathcal{H}_1

- Type I error: falsely concluding in favor of \mathcal{H}_1 when \mathcal{H}_0 is true
- To maintain a Type I error rate of α , then we reject \mathcal{H}_0 in favor of \mathcal{H}_1 when $p < \alpha$

For this to be a valid frequents test the p-value must have a uniform distribution under \mathcal{H}_0

- Type II error: failing to conclude in favor of \mathcal{H}_1 when \mathcal{H}_1 is true
- 1 P(Type II error) is the **power** of the test

Note: we *never* conclude in favor of \mathcal{H}_0 . We are looking for enough evidence to reject \mathcal{H}_0 . But if we fail to reject we do not conclude that it is true!

Bayesian Approach

- 1. Put a prior on θ , $\pi(\theta) = \mathcal{N}(\theta_0, 1/\tau_0^2)$.
- 2. Compute posterior $\theta \mid y^{(n)} \sim \mathcal{N}(\theta_n, 1/\tau_n^2)$ for updated parameters θ_n and τ_n^2 .

Informal

Credible Intervals

- 1. Compute a 95% CI based on the posterior.
- 2. Reject \mathcal{H}_0 if interval does not contain zero.

Tail Areas:

- 1. Compute $Pr(\theta > 0 \mid y^{(n)})$ and $Pr(\theta < 0 \mid y^{(n)})$
- 2. Report minimum of these probabilities as a "Bayesian p-value"

Note: Tail probability is not the same as $Pr(\mathcal{H}_0 \mid y^{(n)})$

Formal Bayesian Hypothesis Testing

Unknowns are \mathcal{H}_0 and \mathcal{H}_1

Put a prior on the actual hypotheses/models, that is, on $\pi(\mathcal{H}_0) = \Pr(\mathcal{H}_0 = \text{True})$ and $\pi(\mathcal{H}_1) = \Pr(\mathcal{H}_1 = \text{True})$.

■ For example, set $\pi(\mathcal{H}_0) = 0.5$ and $\pi(\mathcal{H}_1) = 0.5$, if *a priori*, we believe the two hypotheses are equally likely. Likelihood of the hypotheses

$$\mathcal{L}(\mathcal{H}_i) \propto p(y^{(n)} \mid \mathcal{H}_i)$$

$$p(y^{(n)}\mid \mathcal{H}_0) = \prod_{i=1}^n (2\pi)^{-1/2} \exp{-rac{1}{2}(y_i-0)^2}$$

$$p(y^{(n)} \mid \mathcal{H}_1) = \int_{\Theta} p(y^{(n)} \mid \mathcal{H}_1, heta) p(heta \mid \mathcal{H}_1) \, d heta$$

Bayesian Approach

Priors on parameters under each hypothesis

In our simple normal model, the only unknown parameter is θ

- under \mathcal{H}_0 , $\theta = 0$ with probability 1
- under \mathcal{H}_0 , $\theta \in \mathbb{R}$ Could take $\pi(\theta) = \mathcal{N}(\theta_0, 1/\tau_0^2)$.
- Compute marginal likelihoods for each hypothesis, that is, $\mathcal{L}(\mathcal{H}_0)$ and $\mathcal{L}(\mathcal{H}_1)$.
- Obtain posterior probabilities of \mathcal{H}_0 and \mathcal{H}_1 via Bayes Theorem.

Bayesian Approach - Decisions

Loss function for hypothesis testing

- $\hat{\mathcal{H}}$ is the chosen hypothesis
- \mathcal{H}_{true} is the true hypothesis, \mathcal{H} for short

Two types of errors:

- Type I error: $\hat{\mathcal{H}} = 1$ and $\mathcal{H} = 0$
- Type II error: $\hat{\mathcal{H}} = 0$ and $\mathcal{H} = 1$

Loss function:

$$L(\hat{\mathcal{H}},\mathcal{H}) = w_{\scriptscriptstyle 1}\, \mathtt{1}(\hat{\mathcal{H}} = \mathtt{1},\mathcal{H} = \mathtt{0}) + w_{\scriptscriptstyle 2}\, \mathtt{1}(\hat{\mathcal{H}} = \mathtt{0},\mathcal{H} = \mathtt{1})$$

- w_1 weights how bad making a Type I error
- w_2 weights h

Loss Function Functions and Decisions

Relative weights

$$L(\hat{\mathcal{H}},\mathcal{H})=\,{ exttt{1}}(\hat{\mathcal{H}}={ exttt{1}},\mathcal{H}={ exttt{0}})+w\,{ exttt{1}}(\hat{\mathcal{H}}={ exttt{0}},\mathcal{H}={ exttt{1}})$$

• Special case w = 1

$$L(\hat{\mathcal{H}},\mathcal{H})={\scriptscriptstyle \mathtt{I}}(\hat{\mathcal{H}}
eq\mathcal{H})$$

- known as 0-1 loss (most common)
- Bayes Risk (Posterior Expected Loss)

$$\mathsf{E}_{\mathcal{H}|y^{(n)}}[L(\hat{\mathcal{H}},\mathcal{H})] = \mathtt{1}(\hat{\mathcal{H}} = \mathtt{1})\pi(\mathcal{H}_\mathrm{o} \mid y^{(n)}) + \mathtt{1}(\hat{\mathcal{H}} = \mathrm{o})\pi(\mathcal{H}_\mathrm{1} \mid y^{(n)})$$

 Minimize loss by picking hypothesis with the highest posterior probability

Bayesian hypothesis testing

Using Bayes theorem,

$$\pi(\mathcal{H}_1 \mid Y) = rac{p(y^{(n)} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)}{p(y^{(n)} \mid \mathcal{H}_0)\pi(\mathcal{H}_0) + p(y^{(n)} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)},$$

where $p(y^{(n)} \mid \mathcal{H}_0)$ and $p(y^{(n)} \mid \mathcal{H}_1)$ are the marginal likelihoods hypotheses.

■ If for example we set $\pi(\mathcal{H}_0) = 0.5$ and $\pi(\mathcal{H}_1) = 0.5$ a priori, then

$$egin{split} \pi(\mathcal{H}_1 \mid Y) &= rac{0.5 p(y^{(n)} \mid \mathcal{H}_1)}{0.5 p(y^{(n)} \mid \mathcal{H}_0) + 0.5 p(y^{(n)} \mid \mathcal{H}_1)} \ &= rac{p(y^{(n)} \mid \mathcal{H}_1)}{p(y^{(n)} \mid \mathcal{H}_0) + p(y^{(n)} \mid \mathcal{H}_1)} = rac{1}{rac{p(y^{(n)} \mid \mathcal{H}_0)}{p(y^{(n)} \mid \mathcal{H}_1)} + 1}. \end{split}$$

■ The ratio $\frac{p(y^{(n)}|\mathcal{H}_0)}{p(y^{(n)}|\mathcal{H}_1)}$ is known as the **Bayes factor** in favor of \mathcal{H}_0 , and often written as \mathcal{BF}_{01} . Similarly, we can compute \mathcal{BF}_{10} .

Bayes factors

- Bayes factor: is a ratio of marginal likelihoods and it provides a weight of evidence in the data in favor of one model over another.
- It is often used as an alternative to the frequentist p-value.
- **Rule of thumb**: $\mathcal{BF}_{01} > 10$ is strong evidence for \mathcal{H}_0 ; $\mathcal{BF}_{01} > 100$ is decisive evidence for \mathcal{H}_0 .
- Notice that for our example,

$$\pi(\mathcal{H}_1 \mid Y) = rac{1}{rac{p(y^{(n)}|\mathcal{H}_0)}{p(y^{(n)}|\mathcal{H}_1)} + 1} = rac{1}{\mathcal{BF}_{01} + 1}$$

the higher the value of \mathcal{BF}_{01} , that is, the weight of evidence in the data in favor of \mathcal{H}_0 , the lower the marginal posterior probability that \mathcal{H}_1 is true.

■ That is, here, as $\mathcal{BF}_{01} \uparrow$, $\pi(\mathcal{H}_1 \mid Y) \downarrow$.

Bayes factors

■ Let's look at another way to think of Bayes factors. First, recall that

$$\pi(\mathcal{H}_1 \mid Y) = rac{p(y^{(n)} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)}{p(y^{(n)} \mid \mathcal{H}_0)\pi(\mathcal{H}_0) + p(y^{(n)} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)},$$

so that

$$\frac{\pi(\mathcal{H}_0|Y)}{\pi(\mathcal{H}_1|Y)} = \frac{p(y^{(n)}|\mathcal{H}_0)\pi(\mathcal{H}_0)}{p(y^{(n)}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(y^{(n)}|\mathcal{H}_1)\pi(\mathcal{H}_1)} \div \frac{p(y^{(n)}|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(y^{(n)}\mathcal{H}_0)\pi(\mathcal{H}_0) + p(y^{(n)}|\mathcal{H}_1)\pi(\mathcal{H}_1)}$$

$$= \frac{p(y^{(n)}|\mathcal{H}_0)\pi(\mathcal{H}_0)}{p(y^{(n)}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(y^{(n)}|\mathcal{H}_1)\pi(\mathcal{H}_1)} \times \frac{p(y^{(n)}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(y^{(n)}|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(y^{(n)}|\mathcal{H}_1)\pi(\mathcal{H}_1)}$$

$$\therefore \underbrace{rac{\pi(\mathcal{H}_0 \mid Y)}{\pi(\mathcal{H}_1 \mid Y)}}_{ ext{posterior odds}} = \underbrace{rac{\pi(\mathcal{H}_0)}{\pi(\mathcal{H}_1)}}_{ ext{prior odds}} imes \underbrace{rac{p(y^{(n)} \mid \mathcal{H}_0)}{p(y^{(n)} \mid \mathcal{H}_1)}}_{ ext{Bayes factor } \mathcal{BF}_{01}}$$

 Therefore, the Bayes factor can be thought of as the factor by which our prior odds change (towards the posterior odds) in the light of the data.

Likelihoods & Evidence

Maximized Likelihood

p-value = 0.05

Marginal Likelihoods & Evidence

Maximized Likelihood

 $BF_{10} = 1.73$

Candidate's Formula (Besag 1989)

Alternative expression for Bayes Factor

$$rac{p(y^{(n)}\mid \mathcal{H}_{\scriptscriptstyle 1})}{p(y^{(n)}\mid \mathcal{H}_{\scriptscriptstyle 0})} = rac{\pi_{ heta}(0\mid \mathcal{H}_{\scriptscriptstyle 1})}{\pi_{ heta}(0\mid y^{(n)}, \mathcal{H}_{\scriptscriptstyle 1})}$$

- \blacksquare ratio of the prior to posterior densities for θ evaluated at zero
- Savage-Dickey Ratio

Prior

Plots were based on a $\theta \mid \mathcal{H}_1 \sim N(0, 1)$

- centered at value for θ under \mathcal{H}_0 (goes back to Jeffreys)
- "unit information prior" equivalent to a prior sample size is 1
- What happens if $n \to \infty$?
- What happens of $\tau_0 \rightarrow 0$?

Precision

- $au_0 = 1/1000$
- Posterior Probability of \mathcal{H}_0 = 0.9361
- As $\tau_0 \to 0$ the posterior probability of \mathcal{H}_1 goes to 0!

Bartlett's Paradox - the paradox is that a seemingly non-informative prior for θ is very informative about \mathcal{H} !

