EigenFace Project

FVE6013 Machine Learning and Pattern Recognition, Inha University

Team: Team #2

Presenter: Jumabek Alikhan

Overview

Task Definition

Nearest Neighbor Face Recognition

EigenFace with Nearest Neighbor Face Recognition

Source Code Link: https://github.com/Jumabek/eigenface

Task

Face Recognition with EigenFace approach:

Use PCA to reduce image dimensionality

Nearest neighbor classifier with L2 distance

Dataset:

Train images: 25 unique subjects. Single image per subject

Test images: 20 pairs of subjects . 2 image per subject

Nearest Neighbor Face Recognition WITHOUT PCA

Steps:

- 1. Read images N,D dimensions
- 2. Define Distance function computes distance between two images
- 3. Obtain genuine and imposter matching scores
- 4. Find the best threshold and calculate performance metrics FAR(FMR) and FRR(FNMR)

Step 1: Read Images

```
def read test images():
    filenames = [f for f in glob.glob(join('images/Test','*.jpg'))]
   filenames = sorted(filenames)
    print("There are {} test images".format(len(filenames)))
    images = [cv2.imread(f,cv2.IMREAD GRAYSCALE) for f in filenames]
    images = np.reshape(images, (len(images),-1))
    labels = [int(ntpath.basename(f)[:5]) for f in filenames]
    return np.array(images),np.array(labels)
def read train images():
    filenames = [f for f in glob.glob(join('images/Train','*.jpg'))]
    filenames = sorted(filenames)
    print("There are {} train images".format(len(filenames)))
    images = [cv2.imread(f,cv2.IMREAD GRAYSCALE) for f in filenames]
    images = np.reshape(images, (len(images),-1))
    labels = [int(ntpath.basename(f)[:5]) for f in filenames]
    return np.array(images),np.array(labels)
```

Step 2: Define Distance Function

L2 distance

Note **a** and **b** are vectors

```
def compute_l2_distance(a,b):
    # Input:
    # a - D dimensional image as a row
    # b - D dimensional image as a row

# Returns `distance` scaler value
    distance = np.sqrt(np.sum((a-b)*(a-b)))
    return distance
```

Step 3: Obtain Matching Scores

Note: In loading phase test images are ordered in specific way

so that every next pair of images belong the same class. Example:

['images/Test/00770_960530_fa.jpg', 'images/Test/00770_960530_fa_a.jpg', 'images/Test/00771_941205_fa.jpg', 'images/Test/00771_941205_fb.jpg']

```
In [9]: # genuine matching scores
        def get genuine scores(X test):
            num test = X test.shape[0]
            # Use pairs of same person to compute the score distribution of
            #genuine matching scores.
            genuine matching scores = [compute l2 distance(X test[i], X test[i+1]) for i in range(0,num test,2)]
            return genuine matching scores
        def get imposter scores(X test):
            num test = X test.shape[0]
            #Use the first image of each person to matching with the first images
            #of others to compute the imposter matching scores
            imposter matching scores = []
            for i in range(0, num test, 2):
                for j in range(i+2, num test, 2):
                    imposter matching scores.append(compute l2 distance(X test[i],X test[j]))
            return imposter matching scores
```

Step 4: Finding threshold and FAR/FRR

- For threshold of 0.99
- Falsing Matching Rate(FMR/FAR)%: 3.68
- False Non-Matching Rate(FNMR/FRR)%: 0


```
def get threshold and performance metrics(genuine scores,imposter scores):
   min error = len(genuine scores) + len(imposter scores)
   min threshold = 0
   #print(len(genuine scores), len(imposter scores))
   all scores = genuine scores + imposter scores
   #print(len(all scores))
   for threshold in all scores:
       # Typel error: rejecting genuine face - FRR
       typel = len([s for s in genuine scores if s >= threshold ])
       # Type2 error: accepting imposter - FAR
       type2 = len([s for s in imposter scores if s < threshold ])
       num errors = type1 + type2
       if num errors < min error:
           min error = num errors
           min threshold = threshold
   FRR = type1/len(genuine scores)
   FAR = type2/len(imposter scores)
   # print(min error, min threshold)
   return min threshold, FAR, FRR
```

That was Nearest Neighbor Face Recognition on Raw Pixels of 128x128 images

Problem is Computational Expense

Next, EigenFace AKA Nearest Neighbor Face Recognition on reduced (PCA) features

Nearest Neighbor Face Recognition WITH PCA

Steps:

- 1. Read images N,D dimensions
- 2. Obtain Projected images from PCA (first need to implement PCA)
- 3. Define Distance function computes distance between two images
- 4. Obtain genuine and imposter matching scores
- 5. Find the best threshold and calculate performance metrics FAR(FMR) and FRR(FNMR)

PCA implementation

Steps:

- 1. Calculate Covariance Matrix
- 2. Find EigenValues/EigenVectors and Sort them in descending order
- 3. Project image into new best 'K' dimensions (aka Principal Components)

Tools:

1. Numpy.linalg.ieg - to compute eigenvalues / eigenvectors

Step 1: Computing Covariance Matrix

```
# find covariance matrix C [p x p]
from sklearn.preprocessing import normalize
num train = X train.shape[0]
mean = np.mean(X train,axis=0) # p
B = X train - mean # n x p
B = normalize(B) # I think normalizing will speed up eigenvector/eigenvalue matrix factorize
C = 1./(\text{num train}-1)*\text{np.dot}(B.T,B) # [p x p]
compute n save eigens(C) # finds, sorts and saves eigen vecor and eigen values
Computed, sorted and saved eigens
# loading saved eigenvectors
eigenvectors = np.load('eigenvectors.npy')
eigenvalues = np.load('eigenvalues.npy')
print('Loaded eigen vectors of shape ', eigenvectors.shape)
```

Step1: Covariance matrix original and after 100 PC projection

Covariance Matrix visualization

For original image convariance Matrix

For new image with 100 PCs

```
I: n_components=100
X_train_projected = pca(eigenvectors,X_train,n_components=n_components)
C = find_covariance_matrix(X_train_projected)
C = C*C
C = normalize_to_image_range(C,increase_whiteness=n_components)
cv2.imwrite('Cov-for-{}PCs.png'.format(n_components),C)
I: True
```


Step2: Computing EigenValues/EigenVectors from Covariance Matrices

```
# saving eigenvectors in sorted fashion only once
def compute_n_save_eigens(C):
    orig_eigenvalues, orig_eigenvectors = np.linalg.eig(C)
    eigenvectors = np.real(orig_eigenvectors)
    eigenvalues = np.real(orig_eigenvalues)

# we need descending order, remember higher eigenvalue means more important dimension
    indices = np.flip(np.argsort(eigenvalues))
    eigenvectors = eigenvectors[:,indices] # note, sorting column because x[:,i] columns col
    eigenvalues = eigenvalues[indices]

# saving matrices, because computing was a bit time consuming
    np.save('eigenvectors.npy',eigenvectors)
    np.save('eigenvalues.npy',eigenvalues)
    print("Computed,sorted and saved eigens")
```

Step 2: visualizing eigenfaces

Visualizing EigenFaces

```
def normalize_to_image_range(x,increase_whiteness=1):
    x *= 255./np.max(x)*increase_whiteness
    x = np.minimum(255,x)
    return x
```

PCA with n_components = 100

```
num_eigenfaces_to_visualize = 100
sz = (128,128)
# eigenvectors [D x D] where D = 128*128
for i in range(num_eigenfaces_to_visualize):
    eigenface = eigenvectors[:,i] # [D x 1]
    filename= 'images/visualizations/eigenface_{0:05}.png'.format(i)
    eigenface = eigenface.reshape(sz) #[128 x 128]
    eigenface = normalize_to_image_range(eigenface)
    cv2.imwrite(filename,eigenface)
```

Step 2: visualize 10 best eigenfaces

Step 2: Visualize 20-30th best eigenfaces

Step 2: Visualize 90-100th eigenfaces

Step3: PCA projection

Results

Metric interpretations

- False Matching Rate 1%: **1** out of 100 imposter face **unlocks your phone**
- False Non-Matching Rate 90%: Out of 100 attempts 90 times you cannot unlock your phone

Numbe r of Compo nents	Thresh old distanc e	False Matchi ng Rate(F MR/FA R) %	False Non-M atching Rate (FNMR /FRR) %	imgs/s ec
10	.33	0.00	50	
23	0.65	3.16	10.0	
24	0.65	3.16	10.0	
100	.68	3.68	5.0	
500	.70	3.68	0	
1000	.72	3.68	0	
2000	.74	3.68	0	
5000	0.77	2.63	0.00	
Withou t pca 128*12 8	.99	3.68	0	

Results

Metric intereprations

- False Matching Rate 1%: **1** out of 100 imposter face **unlocks your phone**
- False Non-Matching Rate 90%: Out of 100 attempts 90 times you cannot unlock your phone

Number of Components	Threshold distance	False Matching Rate(FMR/FAR) %	False Non-Matching Rate (FNMR/FRR) %	Imgs/sec
10	0.31	0.00	35.0	160,000
22	0.39	0.53	30.0	160,000
24	0.53	2.63	10.0	160,000
100	0.53	2.63	10.0	160,000
500	0.52	2.11	10.0	130,000
1000	0.54	2.11	10.0	120,000
2000	0.56	2.11	10.0	97,000
5000	0.58	1.58	10.0	65,000
Without pca	0.74	1.58	20.00	29,000

Visualizing Thresholds

Practical Considerations

- Type 2(FAR/FMR)
 error is more severe
 than Typel
 (FRR/FNMR)
 (Biometrics-ICE7058,
 Huan Van Nguyen,
 Ph.D.)
- So lets set Type 2
 error to small as
 possible by
 penalizing 10x more

Number of Components	Threshold distance	False Matching Rate(FMR/FAR) %	False Non-Matching Rate (FNMR/FRR) %
10	0.31	.0	35.0
22	0.36	.0	50
24	0.36	.0	50
100	0.37	.0	50
500	0.39	.0	45
1000	0.42	.0	40
2000	0.45	.0	40.0
5000	0.49	.0	35.0
128*128=16384	0.61	.0	35.0
W/O PCA 128*128	0.66	.0	35.00

Visualizing Thresholds: Type 2 error 10x penalty

Conclusion

EigenFace is Effective - reduces computation by reducing dimension

Visualizing Eigenfaces could help us determine number of PCs to keep

PCA sometimes can improve performance by removing noisy pixels

Lessons

Covariance Matrix tells a lot about data feature space

Best feature representation results in Covariance Matrix that only consists elements in the diagonal

Each PC is a vector of **D** dimensions where **D** is the dimension of the features in original data