

눈빛만 봐도 알 수 있잖아~ CLIP model을 활용한 감정 인식

Team | SO ⇒ TA 19기 박세훈 배지원 정하연

CONTENTS

프로젝트 소개

- 주제 선정
- 진행 과정

연구 방법

- 데이터 소개
- 전처리
- 아키텍쳐

튜닝 시도

- Small dataset
- Ray Tune
- Loss and Accuracy
- Test result

Appendix

- 제언

01. 주제 선정

- 프로젝트 목표: 학습에 사용되지 않은 복잡하고 미묘한 감정에 대한 zero-shot learning
- Fine-tuning CLIP Model
- 프로젝트 선정 배경:
 - 심리 상담자, 혹은 face ID 사용자의 정확한 심리 분석
 - 다양한 감정으로 레이블된 표정 데이터셋 부족
 - Classification 과제를 위한 멀티모달 모델 파인튜닝: 텍스트 ↔ 레이블 ↔ 이미지 매핑을 통하여 텍스트 간 유사도를 이미지 피쳐 간 유사도로 확장할 수 있는 모델 기대

02. 프로젝트 진행 과정

데이터 Augmentation

- 7가지 감정 레이블의 얼굴 표정 이미지 데이터 수집
- 배치당 감정별 이미지 개수 균형 맞춤

모델 구조 파인튜닝 • Embedding 모델의 레이어 깊이 추가 시도

모델 파라미터 파인튜닝

- Ray Tune를 이용한 파라미터 튜닝
- learning_rate, logit_scale, embedding_size, 모델 가중치 초기화 여부 등

01. 데이터 소개

- 35,887개의 흑백 이미지
- 7개의 감정 클래스(화남, 혐오, 두려움, 행복, 슬픔, 놀람, 중립)

AffectNet(Affect-in-the-Wild Database, 2017)

- 1,000,000개의 이미지
- 8개의 감정 클래스
 (화남, 혐오, 두려움, 행복, 슬픔, 놀람, 중립, 경멸)

03. Model Architecture

(2) Create dataset classifier from label text

배치 사이즈

01. Small dataset

1. 256개의 이미지로 구성된 small dataset 정의

```
# 라벨 기반 샘플링을 위한 Sampler 정의
class LabelSampler(Sampler):
   def __init__(self, dataset):
       self.dataset = dataset
       self.labels = [sample[1] for sample in dataset] # Assuming dataset returns (data, label)
       self.label_to_indices = {label: [] for label in set(self.labels)}
       for idx, label in enumerate(self.labels):
           self.label_to_indices[label].append(idx)
   def __iter__(self):
       indices = []
       for label in self.label_to_indices:
           indices.extend(self.label_to_indices[label])
       random.shuffle(indices)
       return iter(indices)
   def __len__(self):
       return len(self.dataset)
```

2. BabySitting model

train, validation loss가 정상적으로 줄어드는지

```
Epoch 2/100, Train Loss: 2.2000, Train Accuracy: 0.1836, Validation Loss: 2.4803, Validation Accuracy: 0.171
Epoch 3/100, Train Loss: 2.1243, Train Accuracy: 0.2109, Validation Loss: 2.4794, Validation Accuracy: 0.1523
Fooch 4/100, Train Loss: 2.0474, Train Accuracy: 0.2266, Validation Loss: 2.4589, Validation Accuracy: 0.144
Epoch 5/100, Train Loss: 1.9482, Train Accuracy: 0.2344, Validation Loss: 2.5306, Validation Accuracy: 0.1758
Epoch 6/100, Train Loss: 1.8832, Train Accuracy: 0.2539, Validation Loss: 2.4391, Validation Accuracy: 0.1836
Epoch 7/100, Train Loss: 1.8194, Train Accuracy: 0.2812, Validation Loss: 2.5958, Validation Accuracy: 0.1562
Epoch 8/100, Train Loss: 1.8132, Train Accuracy: 0.2695, Validation Loss: 2.6259, Validation Accuracy: 0.1836
Epoch 9/100, Train Loss: 1.9023, Train Accuracy: 0.2773, Validation Loss: 2.4313, Validation Accuracy: 0.160
Epoch 10/100, Train Loss: 1.9544, Train Accuracy: 0.2383, Validation Loss: 2.2946, Validation Accuracy: 0.2148
Epoch 11/100, Train Loss: 1.8016, Train Accuracy: 0.2812, Validation Loss: 2.3049, Validation Accuracy: 0.1953
Epoch 12/100, Train Loss: 1.7070, Train Accuracy: 0.2734, Validation Loss: 2.3304, Validation Accuracy: 0
Epoch 13/100, Train Loss: 1.7140, Train Accuracy: 0.2695, Validation Loss: 2.3845, Validation Accuracy: 0.2148
Epoch 14/100, Train Loss: 1.6799, Train Accuracy: 0.2695, Validation Loss: 2.4482, Validation Accuracy: 0.1953
Epoch 15/100, Train Loss: 1.6662, Train Accuracy: 0.2812, Validation Loss: 2.4303, Validation Accuracy: 0.1914
Epoch 16/100, Train Loss: 1.6552, Train Accuracy: 0.2812, Validation Loss: 2.4408, Validation Accuracy: 0.1836
Epoch 17/100, Train Loss: 1.6070, Train Accuracy: 0.2969, Validation Loss: 2.4305, Validation Accuracy: 0.1914
Epoch 18/100, Train Loss: 1.7519, Train Accuracy: 0.2930, Validation Loss: 2.4551, Validation Accuracy: 0.1992
Epoch 19/100, Train Loss: 1.6445, Train Accuracy: 0.2969, Validation Loss: 2.4667, Validation Accuracy:
Epoch 20/100, Train Loss: 1.6099, Train Accuracy: 0.2891, Validation Loss: 2.4501, Validation Accuracy: 0.2109
Epoch 21/100, Train Loss: 1.6086, Train Accuracy: 0.2891, Validation Loss: 2.4802, Validation Accuracy: 0.1914
 Epoch 22/100, Train Loss: 1.5713, Train Accuracy: 0.3203, Validation Loss: 2.4648, Validation Accuracy: 0.1914
Epoch 23/100, Train Loss: 1.6903, Train Accuracy: 0.2812, Validation Loss: 2.4957, Validation Accuracy: 0.1875
Epoch 24/100, Train Loss: 1.5985, Train Accuracy: 0.3008, Validation Loss: 2.5040, Validation Accuracy: 0.1992
Epoch 25/100, Train Loss: 1.5420, Train Accuracy: 0.3203, Validation Loss: 2.4536, Validation Accuracy: 0.1914
Epoch 26/100, Train Loss: 1.6779, Train Accuracy: 0.2891, Validation Loss: 2.4943, Validation Accuracy: 0.2109
Epoch 27/100, Train Loss: 1.6667, Train Accuracy: 0.2695, Validation Loss: 2.5046, Validation Accuracy: 0.1719
```

```
small_train_dataset = create_small_dataset(train_dataset, 256)
small_val_dataset = create_small_dataset(val_dataset, 256)
small_test_dataset = create_small_dataset(test_dataset, 256)

batch_size = 7 # 고유한 라벨의 수
small_train_loader = sampler_loader(small_train_dataset, batch_size=batch_size)
small_val_loader = sampler_loader(small_val_dataset, batch_size=batch_size)
small_test_loader = sampler_loader(small_test_dataset, batch_size=batch_size)
```


02. Hyperparameter Tuning

3. Learning rate, logit_scale, embedding_size에 대해 최적 하이퍼파라미터 조합

Ray Tune은 딥러닝 모델의 하이퍼파라미터 튜닝을 자동화 · 병렬화할 수 있는 라이브러리로, 다양한 최적화 알고리즘을 제공하여 최적의 모델 설정을 빠르게 탐색 가능. 이를 통해 실험 과정을 간소화하고 모델 성능을 효과적으로 향상할 것으로 기대

Trial status: 10 ERROR

Current time: 2024-08-24 12:14:37. Total running time: 30s

Logical resource usage: 0/12 CPUs, 0/1 GPUs (0.0/1.0 accelerator type:A100)

Trial name statusal_projection_dim	logit_scale	lr
train_cifar_5bc46_00000 ERROR 128	0.807396	1.47407e-05
train_cifar_5bc46_00001 ERROR 128	1.33589	0.000539544
train_cifar_5bc46_00002 ERROR 128	0.940801	1.44959e-05
train_cifar_5bc46_00003 ERROR 7	0.365229	1.17869e-05
train_cifar_5bc46_00004 ERROR 7	1.80003	7.4061e-05
train_cifar_5bc46_00005 ERROR 7	0.960642	2.5974e-05
train_cifar_5bc46_00006 ERROR 128	0.955036	8.67599e-05
train_cifar_5bc46_00007 ERROR 7	0.950397	5.07361e-05
train_cifar_5bc46_00008 ERROR 128	0.827466	0.000111792
train_cifar_5bc46_00009 ERROR 7	1.60116	2.65117e-05

02. Hyperparameter Tuning

3. Learning rate, logit_scale, embedding_size에 대해 최적 하이퍼파라미터 조합

탐색

직접 구현!!

Accuracy

Learning rate

Logit_scale

Embedding_size

03. Loss and Accuracy

4. Parameter 조합 별 학습 결과

⇒ 학습이 제대로 진행되지 않음 ... SO = TA

04. Test results

KOTE Dataset에서 분류된 44개의 정서 label 중,

학습에 사용한 7가지 감정을 제외한 label 별 이미지 dataset 구축하고자 함

₩ :"당황하는"

"한심한"

[발] :"비장한"

※ KOTE 감정 레이블: ['불평/불만', '환영/호의', '감동/감탄', '지긋지긋', '고마움', '슬픔', '화남/분노', '존경', '기대감', '우쭐댐/무시함', '안타까움/실망', '비장함', '의심/불신', '뿌듯함', '편안/쾌적', '신기함/관심', '아껴주는', '부끄러움', '공포/무서움', '절망', '한심함', '역겨움/징그러움', '짜증', '어이없음', '없음', '패배/자기혐오', '귀찮음', '힘듦/지침', '즐거움/신남', '깨달음', '죄책감', '증오/혐오', '흐뭇함(귀여움/예쁨)', '당황/난처', '경악', '부담/안_내킴', '서러움', '재미없음', '불쌍함/연민', '놀람', '행복', '불안/걱정', '기쁨', '안심/신뢰']

