УДК 62-50:519.49

В.М. Григорьев

ФОРМАЛЬНЫЕ ПЕРЕДАТОЧНЫЕ ФУНКЦИИ ДЛЯ ЛИНЕЙНЫХ НЕСТАЦИОНАРНЫХ СИСТЕМ

<u>Актуальность темы</u>. Строгое обоснование понятия передаточной функции для линейной нестационарной системы автоматического управления позволит с единых позиций рассматривать стационарные и нестационарные системы.

Анализ последних исследований.Область применения передаточных функций в теории автоматического управления линейніми стационарными системами чрезвычайно широка. В частности в основе классических частотных методов теории управления лежит аппарат передаточных функций Существенным является тот факт, что множество передаточных функций образует поле. Это позволяет находить передаточные суперпозиций функции ДЛЯ всевозможных систем: паралельного и последовательного соединения, обратной связи. Строгое математическое обоснование передаточных функций базируется на двух альтернативных подходах: преобразовании Лапласа [2] и алгебраической теории полей частных колец операторов свёртки [3]. Оба подхода накладывают определённые ограничения на постранство сигналов, связанные с интегрируемостью.

Постановка задачи. Цель данной работы состоит в введении такого пространства сигналов, которое позволит поставить в соответствие линейной нестационарной системе управления формальную передаточную функцию в виде элемента левого тела частных кольца линейных нестационарных дифференциальных операторов.

Обоснование полученных результатов. Введём пространство сигналов, обеспечивающее существование решения линейного нестационарного дифференциального уравнений с производными в правой части при произвольном входном воздействии из этого пространства.

Рассмотрим множество V подмножеств неотрицательной числовой полуоси Q_+ , содержащих конечное число элементов. Положим, что пустое множество лежит в V. Введем ещё одно множество подмножеств из Q_+ : $W = \{ \ x \ ^l Q_+ \ | \ ^d \ V \ x = Q_+^{l \ \bar{v}} \ (v) \}$, где $^{\bar{v}}$ (v) = $\{ \ y \ ^l \ Q_+ \ | \ y \ ^l \ V \}$. Каждый элемент из W можно интерпретировать как неотрицательную числовую полуось с конечным элементов «выколотых» точек. Определим множество вещественных функций \vec{X} каждый элемент \mathbf{x} из которого обладает следующими свойствами.

- 1.Область △ (x) определения x принадлежит W.
- 2. Функция х непрерывна в области своего определения.
- 3.Производная $p_0 x = \frac{dx(t)}{dt}$ имеет $\triangle (p_0 x)$ $\stackrel{!}{}$ W. Область $\triangle (p_0 x)$ включает те точки из $\triangle (x)$, в которых функция $p_0 x$ существует и конечна.
- 4.В W найдется такое зависящее от x множество w, что w i d (p $_{o}$ ix), i=0, 1, 2 ...

Иными словами функция х бесконечнодифференцируема, за исключением конечного числа точек.

Выделим в \vec{X} произвольное поле функций Q(t), замкнутое относительно дифференцирования. Например, поле дробнорациональных функций. Множество X является линейным пространством над Q(t) со следующими операциями

для t ¼ ⊿ (qx).

Здесь x, y $\sqrt[l]{X}$, q $\sqrt[l]{Q}$ (t). Нулевой элемент Θ пространства X состоит из функций равных нулю в области своего определения.

Введем на X дифференцирование p, полагая $p[x] = [p_0x]$. Элементы из X, бесконечнодифференцируемы и p является линейным оператором на X.

Определим на X действие множества R линейных нестационарных дифференциальных операторов вида \forall r $=\sum_{i=0}^{\infty}q_{i}$ p^{i} , где почти все q_{i} \downarrow Q(t) равны нулю.

Рассмотрим на X дифференциальное уравнение с производными в правой части

$$\sum_{i=0}^{n} a_{i}(t) \mathbf{x}^{(i)}(t) = \sum_{i=0}^{m} b_{i}(t) \mathbf{u}^{(i)}(t) \quad (\mathbf{x}^{(i)} = \mathbf{p}^{i} \mathbf{x}, \, \mathbf{u}^{(i)} = \mathbf{p}^{i} \mathbf{u}),$$

где a_i , b_i ${}^iQ(t)$, a_n i0 или в операторной форме

$$ax = bu$$
 (1)

где
$$a = \sum_{i=0}^{n} a_{i} p^{i}$$
, $b = \sum_{i=0}^{m} b_{i} p^{i}$.

Не теряя общности, положим $a_n = 1$ и докажем существование решения $x \in X$ в уравнении (1) при \forall и $\in X$.

При n = 0 из (1) имеем x = bu и очевидно, что x i X. Пусть n > 0. Рассмотрим уравнение (1) над \vec{X}

$$\vec{a} \ \vec{x} = \vec{b} \ \vec{u} \ , \ (\vec{a} = \sum_{i=0}^{n} a_{i} p_{o}^{i}, \ \vec{b} = \sum_{i=0}^{m} b_{i} p_{o}^{i})$$
 (2)

Предположим, что коэффициенты операторов \vec{a} , \vec{b} и функции \vec{u} бесконечнодифференцируемы за исключением

точек из множества $\{t_1,\,t_2\dots\,t_i,\,t_{i+1}\dots\,t_k\}$, где 0 $t_1 < t_2\dots\,t_i < t_{i+1} < \dots < t_k$. Разобъём полуось Q_+ :

$$Q_+ = \{(t_0, t_1), (t_1, t_2) \dots (t_i, t_{i+1}) \dots (t_i, t_{i+1}) \},$$

где $t_0=0$, и формально обозначим $t_{k+1}=\infty$. При $t_1=0$ первый полуотрезок теряет смысл и мы его не рассматриваем. Возьмём произвольный интервал $(t_i,\,t_{i+1})$. (Строго говоря при $i=0,\,t_1$ i0 мы получим полуотрезок $[t_0,\,t_1)$). Внутри интервала коэффициенты $a_i,\,b_i$ и функция i0, бесконечнодифференцируемы. Зафиксируем точку i1, i2, i3, i3, i4, i4, i5, i6, i7, i7, i8, i8, i9, i9

$$\forall \ a \ i \ R \ a \ i \ O, \ \forall \ b \ i \ R, \ \forall \ u \ i \ X \ \exists \ x \ i \ X : ax = bu \tag{3}$$

$$s_1 r = r_1 s = m \tag{4}$$

$$(rs_1 = sr_1 = m).$$
 (5)

Соотношение (4) дает возможность применения следующей конструкции дробей для получения левого тела частных $\mathbf{R_q}$ кольца \mathbf{R} . Для этого рассмотрим пары ($\mathbf{s_1}$, $\mathbf{r_1}$) из $\mathbf{R_*}$ \in \mathbf{R} . Будем считать, что ($\mathbf{s_1}$, $\mathbf{r_1}$) эквивалентно ($\mathbf{s_2}$, $\mathbf{r_2}$), если в $\mathbf{R_*}$ существуют такие элементы $\mathbf{u_1}$ и $\mathbf{u_2}$, что $\mathbf{u_1r_1} = \mathbf{u_2r_2}$ и $\mathbf{u_1s_1} = \mathbf{u_2s_2}$. Это соотношение симметрично, рефлексивно и транзитивно. Обозначая совокупность пар, эквивалентных паре ($\mathbf{s_1}$, $\mathbf{r_2}$) в виде левой дроби $\mathbf{s_1}$. Определим

$$s_1^{-1}r_1 + s_2^{-1}r_2 = (\bar{s}_1 s_2)^{-1} (\bar{s}_2 r_1 + \bar{s}_1 r_2),$$
 (6)

ISSN 1562-9945 4

$$s_1^{-1}r_1$$
 . $s_2^{-1}r_2 = (\bar{s}_2 s_1)^{-1} (\bar{r}_1 r_2)$,

где \bar{s}_1 , \bar{s}_2 , \bar{s}_2 \bar{s}_3 \bar{s}_4 \bar{R}_* , \bar{r}_1 \bar{s}_4 \bar{r}_4 \bar{s}_5 \bar{s}_5 \bar{s}_6 $\bar{$

Аналогичным образом, на основании соотношения (5) строится правое тело частных, состоящее из дробей rs^{-1} , $r \in R$, $s \in R_*$.

Множество X_0 называется R_* -периодическим, если \forall $x \in X_0$, \exists $r \in R_* \ rx = \Theta$.

Предложение. X_0 является абелевой группой, имеющей структуру левого R -модуля.

Доказательство. Возьмём в X_0 элементы x_1 и x_2 . По определению X_0 : $\exists s_i \ R_* \ s_i x_i = 0$, i = 1, 2. Из (4) следует, что $\exists \ \overline{s}_1$, $\overline{s}_2 \ R_* \ \overline{s}_2 \ s_1 = \overline{s}_1 s_2 = m$. Отсюда $m(x_1 + x_2) = \overline{s}_2 (s_1 x_1) + \overline{s}_1 (s_2 x_2) = \Theta$, т.е. – абелева группа. Рассмотрим далее rx_1 , $r \ R$. Из (4) получаем, что $\exists \ r_3 \ R$, $\exists \ s_3 \ R_* \ s_3 r = r_3 s_1$. Тогда $s_3 (rx_1) = (s_3 r) x_1 = r_3 (s_1 x_1) = \Theta$, т.е $s_3 (rx_1) = \Theta$. **ЧТД**.

Рассмотрим факторгруппу $X/X_0 = \{x + X_0 \mid x \mid X\}$. Сложение в ней определяется как: $(x_1 + X_0) + (x_2 + X_0) = (x_1 + x_2) + X_0$. Нулём в служим группа X_0 . Для любых x_1 и x_2 из $X_1 + X_0 = x_2 + X_0$, если $(x_1 - x_2) \mid X_0$. X/X_0 является R-модулем с умножением $r(x + X_0) = rx + X_0$, $r \mid R_*$.

Лемма. Уравнение $ax = X_0$, имеет в X/X_0 единстенное решение $\mathbf{x} = X_0$.

Доказательство. Так как $aX_0 = X_0$, то $x = X_0$ является решением уравнения. Пусть существует ещё одно решение $\bar{x} = x_1 + X_0$, где $x_1 i X_1$. Тогда $ax + X_0 = X_0$ и, следовательно, $ax_1 = m$, для некоторого $m i X_0$. Так как $\exists s i R_* sm = \theta$, то $sax_1 = \theta$ и поэтому $x_1 i X_0$. ЧТД.

Теорема. Абелева группа X/X_0 имеет структуру левого R_q – модуля с умножением ku, $k \in R_q$, $u \in X/X_0$, определяемым, как решение $x \in X/X_0$ уравнения

$$a x = bu (a i R_*, b i R, k = a^{-1}b).$$
 (7)

Доказательство. Пусть $u = u_1 + X_0$, u_1 ${}^{\downarrow}$ X. Согласно (3), уравнение $ay = bu_1$ разрешимо над X. Возьмём любое решение y_1 и рассмотрим класс эквивалентности $x = y_1 + X_0$. Из (7) получаем $ax - bu = ay_1 - bu_1 + X_0 = X_0$, т.е. ax = bu. Таким образом, решение существует и, в силу леммы, оно единсвенно.

Покажем, что результат умножения kx, k i R_q, x i X/X $_{0}$ не зависит от представления k. Пусть k = $s_{1}^{-1}r_{1}$ = $s_{2}^{-1}r_{2}$. Рассмотрим уравнения

$$s_1 y_1 = r_1 v,$$
 (8)
 $s_2 y_2 = r_2 v, (v, y_1, y_1 \mid X/X_0)$

Согласно определению эквивалентности элементов в R_q , найдутся такие u_1 , u_2 i R, что $u_1s_1=u_2s_2=m$, $u_1r_1=u_2r_2$. Из (8) следует, что u_1s_1 $y_1=u_1r_1v$, u_2s_2 $y_2=u_2r_2v$. Вычитая уравнения друг из друга, получим $m(y_1-y_2)=\Theta$. Используя лемму, имеем $y_1=y_2$. Операция умножения корректна. Покажем, что абелева группа X/X_0 удовлетворяет аксиомам левого R_q -модуля:

- 1. $1x_1 = x_1$
- 2. $(k_1k_2)x_1 = k_1(k_2x_1)$. (9)
- 3. $(k_1 + k_2)x_1 = k_1x_1 + k_2x_1$.
- 4. $k_1(x_1 + x_2) = k_1x_1 + k_1x_2$.

Пусть $k_i = s_i^1 r_i$, $s_i \in R_*$, $r_i \in R$, i = 1, 2, . Докажем выполнения соотношения (9) по пунктам:

- 1.Равенство $1x_1 = x_1$ следует из соотношения (7), в котором **a** = b = 1, $u = x_1$.
 - 2.Согласно (6)

$$k_1k_2 = (\bar{s}_2s_1)^{-1} (\bar{r}_1r_2),$$
 (10)

где

$$\bar{s}_2 r_1 = \bar{r}_1 s_2, (\bar{s}_2 i_1 R_*, \bar{r}_1 i_1 R).$$
 (11)

Результат произведения $y = k_1(k_2x_1)$ является решением у системы $s_1y = r_1z$, $s_2z = r_2x_1$; y, z, x_1 $\stackrel{\iota}{}$ X/X_0 . Обозначим

ISSN 1562-9945 6

$$v = s_1 y = r_1 z, w = s_2 z = r_2 x_1.$$
 (12)

Рассмотрим в (12) равенства $v=r_1z$, $w=s_2z$. Умножим их слева на операторы \bar{s}_2 и \bar{r}_1 , определённые в (11): \bar{s}_2 $v=\bar{s}_2r_1z$, $\bar{r}_1s_2z=\bar{r}_1w$. Из (11) следует, что \bar{s}_2 $v=\bar{r}_1w$. Подставляя v и w из (12), получаем $\bar{s}_2s_1y=\bar{r}_1r_2x_1$. Сравнивая с (10), имеем $y=(k_1k_2)x_1$.

3.Согласно (6)

$$k_1 + k_2 = (\bar{s}_1 s_2)^{-1} (\bar{s}_2 r_1 + \bar{s}_1 r_2),$$
 (13)

где

$$\bar{s}_1 S_2 = \bar{s}_2 S_1, (\bar{s}_1, \bar{s}_2, R_*).$$
 (14)

Соотношение $y=k_1x_1+k_2x_1$ равносильно системе уравнений: $s_1z_1=r_1x_1$, $s_2z_2=r_2x_1$, $y=z_1+z_2$; y, x_1 , z_1 , z_2 $\stackrel{?}{}$ X/X_0 . Запишем: $^{\bar{3}}_{2}s_1z_1=^{\bar{3}}_{2}r_1x_1$, $^{\bar{3}}_{1}s_2z_2=^{\bar{3}}_{1}r_2x_1$, где $^{\bar{3}}_{1}$ и $^{\bar{3}}_{2}$ определены в (14). Складывая последние уравнения и учитывая (14), получаем ($^{\bar{3}}_{1}s_2y$) = ($^{\bar{3}}_{2}r_1+^{\bar{3}}_{1}r_2$) x_1 . Сравнивая с (13), имеем $y=(k_1+k_2)x_1$.

<u>Выводы.</u> Доказанная теорема позволяет поставить в соответствие линейной нестационарной системе ax = bu, a, b $^{\ell}$ R, x, u^{-i} X, формальную передаточную функцию в виде элемента R_{α} тела частных кольца сигналов нестационарных дифференциальных операторов $R: x = ku = a^{-1}$ 1 b, k 1 R_a, x, u 1 X/ X₀. Сложение в теле соответствует паралельному, а умножение последовательному соединениям систем. Формальные передаточные фунции действуют на пространстве сигналов X/X₀, в котором отождествляются функции, разнящиеся друг от друга на функцию, являющуюся линейныого нестационарного некоторого решением дифференциального уравнения.

ЛИТЕРАТУРА

- 1.Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. М.: Наука, 1966. 992 с.
- 2. Диткин В.А., Прудников А.Н. Интегральные преобразования и операционное исчисление. М.: Наука, 1961. 520 с.
- 3. Микусинский Я. Операторное исчисление. М.: Наука, 1956. 380с.
- 4. Кон П. Свободные кольца и их связи. М.: Мир, 1974. 424 с.

Получено 17.08.03.