

CIRCUIT FOR DRIVING GATE OF POWER MOSFETFIELD OF THE INVENTION

5 The present invention relates to a circuit for driving a gate of a power metal-oxide semiconductor field effect transistor (MOSFET) in a digital audio amplifier, and more particularly, to a circuit for driving a gate of a power MOSFET using a higher
10 voltage than a gate controller which controls the gate of the power MOSFET.

BACKGROUND OF THE INVENTION

15 FIG. 1 is a drawing illustrating a conventional circuit for driving a gate of a power metal-oxide semiconductor field effect transistor (MOSFET) in a digital audio amplifier. Referring to FIG. 1, a first power source voltage V_{DD} , that is, a positive power source voltage, is applied to a source of a power PMOSFET transistor PM and a second power source voltage V_{SS} , that is, a negative power source voltage, is applied to a source of a power NMOSFET transistor NM. A gate controller 11 uses a third power source
20 voltage V_{CC} , which is lower than the first power source voltage V_{DD} , and a fourth power source voltage V_{EE} , which is lower than the second power source voltage V_{SS} .
25

In a conventional circuit for driving a gate 13, 30 capacitors C_1 and C_2 are generally used to maintain a voltage difference between the gate controller 11 and the power MOSFET transistors PM and NM, and to transmit an output signal of the gate controller 11 to

the power MOSFET transistors PM and NM. In addition, resistances R_1 and R_2 are further included to charge and discharge the capacitors C_1 and C_2 .

FIGS. 2A through 2C illustrate voltages of main nodes V_{GC} , V_{GP} , and V_{GN} of the circuit of FIG. 1 when a duty-cycle is very small.

The conventional circuit for driving the gate 13 does not have a problem in operating when the duty-cycle of the output signal V_{GC} of the gate controller 10 is in a range of about 50%. However, when the duty-cycle of the output signal V_{GC} of the gate controller 11 is beyond 50%, an on resistance is decreased in one of the power MOSFET transistors PM and NM, while the on resistance is increased in the 15 other of the power MOSFET transistors PM and NM. That is, as shown in FIG. 2B, an amplitude of a gate signal V_{GP} of the power PMOSFET transistor PM is equal to an amplitude of the output signal V_{GC} of the gate controller 11, that is, $V_{CC} - V_{EE}$. However, the gate 20 signal V_{GP} goes only a little down from a source potential V_{DD} , drops slightly and thus, an effective gate voltage, which may turn the power PMOSFET transistor PM on, becomes small. Therefore, the power PMOSFET transistor PM is not turned on, or even if it 25 is turned on, the power PMOSFET transistor PM has large resistance.

On the contrary, when the duty-cycle is very large, the power NMOSFET transistor NM is not turned on, or even if it is turned on, the power NMOSFET 30 transistor NM has large resistance. That is, operation of the conventional circuit for driving the gate depends on the frequency and duty-cycle of the output signal of the gate controller 11, and when the

duty-cycle is very small or large, the power MOSFET transistors cannot safely nor effectively operate.

SUMMARY OF THE INVENTION

5

To solve the above and other problems, the present invention provides a circuit for driving a gate, which safely and effectively drives power MOSFET transistors irrespective of a frequency and duty-
10 cycle of a gate controller, especially when the power MOSFET transistors use a higher voltage than the gate controller.

According to an aspect of the present invention, there is provided
15 a circuit for driving a gate of a power MOSFET in a digital audio amplifier, which includes a power PMOSFET transistor in which a first power source voltage is applied to a source and an output terminal is connected to a drain; a power NMOSFET transistor in
20 which the output terminal is connected to a drain and a second power source voltage is applied to a source; a gate controller which uses a third power source voltage which is lower than the first power source voltage and a fourth power source voltage which is
25 lower than the second power source voltage, and controls gates of the power PMOSFET and NMOSFET transistors; and an output filter which is connected to the output terminal and has an inductor and a capacitor, the circuit comprising: a first resistance
30 connected between the first power source voltage and the gate of the power PMOSFET transistor; a second resistance connected between the second power source voltage and the gate of the power NMOSFET transistor;

a first capacitor connected between an output terminal of the gate controller and the gate of the power PMOSFET transistor; a second capacitor connected between the output terminal of the gate controller and the gate of the power NMOSFET transistor; a first diode connected between the output terminal of the gate controller and the gate of the power PMOSFET transistor; and a second diode connected between the output terminal of the gate controller and the gate of the power NMOSFET transistor.

According to another aspect of the present invention, there is provided a circuit for driving a gate of a power MOSFET in a digital audio amplifier, which includes a power PMOSFET transistor in which a first power source voltage is applied to a source and an output terminal is connected to a drain; a power NMOSFET transistor in which the output terminal is connected to a drain and a second power source voltage is applied to a source; a gate controller which uses a third power source voltage lower than the first power source voltage and a fourth power source voltage lower than the second power source voltage, and controls gates of the power PMOSFET and NMOSFET transistors; and an output filter which is connected to the output terminal and has an inductor and a capacitor, the circuit comprising: a first resistance connected between the first power source voltage and the gate of the power PMOSFET transistor; a second resistance connected between the second power source voltage and the gate of the power NMOSFET transistor; a first capacitor connected between the output terminal of the gate controller and the gate of the power PMOSFET transistor; a second capacitor connected between the output terminal of the gate controller and the gate of the power NMOSFET transistor; a first diode connected between the output terminal of the gate controller and the gate of the power PMOSFET transistor; and a second diode connected between the output terminal of the gate controller and the gate of the power NMOSFET transistor.

output terminal of the gate controller and the gate of the power NMOSFET transistor; a first diode, one end of which is connected to the first power source voltage; a second diode, one end of which is connected 5 to the other end of the first diode and other end of which is connected to the gate of the power PMOSFET transistor; a third diode, one end of which is connected to the second power source voltage and other end of which is connected to the gate of the power 10 PMOSFET transistor; and a fourth diode, one end of which is connected to other end of the third diode and other end of which is connected to the gate of the power NMOSFET transistor.

According to still another aspect of the present 15 invention, there is provided a circuit for driving a gate of a power MOSFET in a digital audio amplifier, which includes a power PMOSFET transistor in which a first power source voltage is applied to a source and an output terminal is connected to a drain; a power 20 NMOSFET transistor in which the output terminal is connected to a drain and a second power source voltage is applied to a source; a gate controller which uses a third power source voltage which is lower than the first power source voltage and a fourth power source 25 voltage which is lower than the second power source voltage, and controls gates of the power PMOSFET and NMOSFET transistors; and an output filter which is connected to the output terminal and has an inductor and a capacitor, the circuit comprising: a first 30 resistance connected between the first power source voltage and the gate of the power PMOSFET transistor; a second resistance connected between the second power source voltage and the gate of the power NMOSFET

transistor; a first capacitor, one end of which is connected the output terminal of the gate controller; a second capacitor, one end of which is connected to the output terminal of the gate controller; a first 5 diode, one end of which is connected to the first power source voltage and other end of which is connected to the gate of the power PMOSFET transistor; a second diode, one end of which is connected to other end of the first capacitor and other end of which is 10 connected to the gate of the power PMOSFET transistor; a third diode, one end of which is connected to the second power source voltage and other end of which is connected to the gate of the power NMOSFET transistor; and a fourth diode, one end of which is connected to 15 other end of the second capacitor and other end of which is connected to the gate of the power NMOSFET transistor.

The circuit for driving the gate according to the another or still another aspect of the present 20 invention may further comprise a current source which is connected to the gates of the power PMOSFET and NMOSFET transistors and the output terminal of the gate controller.

Accordingly, the circuit for driving the gate 25 according to present invention has an advantage in that the circuit safely and effectively transmits the output signal of the gate controller irrespective of the frequency and duty-cycle of the output signal when transmitting the output signal of the gate controller 30 to the power MOSFET transistor using a higher power source voltage than the gate controller.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a drawing illustrating a conventional circuit for driving a gate of a power metal-oxide semiconductor field effect transistor (MOSFET) in a 5 digital audio amplifier;

FIGS. 2A through 2C illustrate voltages of main nodes V_{Gc} , V_{Gp} , and V_{GN} of the circuit of FIG. 1 when a duty-cycle is very small;

FIG. 3 is a drawing illustrating a circuit for 10 driving a gate of a power MOSFET in a digital audio amplifier, according to a first embodiment of the present invention;

FIG. 4 is a drawing illustrating a circuit for 15 driving a gate of a power MOSFET in a digital audio amplifier, according to a second embodiment of the present invention;

FIG. 5 is a drawing illustrating a circuit for 20 driving a gate of a power MOSFET in a digital audio amplifier, according to a third embodiment of the present invention;

FIG. 6 is a drawing illustrating a circuit for driving a gate of a power MOSFET in a digital audio amplifier, according to a fourth embodiment of the present invention; and

25 FIG. 7 is a drawing illustrating a circuit for driving a gate of a power MOSFET in a digital audio amplifier, according to a fifth embodiment of the present invention.

30 **DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS**

The present invention will now be described more fully with reference to accompanying drawings in which

exemplary embodiments of the present invention are shown. To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the 5 figures.

FIG. 3 is a drawing illustrating a circuit for driving a gate of a power MOSFET in a digital audio amplifier, according to a first embodiment of the present invention.

10 Referring to FIG. 3, a first power source voltage V_{DD} , that is, a positive power source voltage, is applied to a source of a power PMOSFET transistor PM_1 and a second power source voltage V_{SS} , that is, a negative power source voltage, is applied to a source 15 of a power NMOSFET transistor NM_1 . A gate controller 31 uses a third power source voltage V_{CC} , which is lower than the first power source voltage V_{DD} and a fourth power source voltage V_{EE} , which is lower than the second power source voltage V_{SS} . A filter 35, 20 which is formed of an inductor L and a capacitor C , is connected to an output terminal V_D , that is, a connecting point between the power PMOSFET transistor PM_1 and the power NMOSFET transistor NM_1 , and an output terminal V_{OUT} of the filter 35 is connected to a 25 speaker 37.

A circuit for driving a gate 33 comprises a first resistance R_1 , which is connected between the first power source voltage V_{DD} and a gate of the power PMOSFET transistor PM_1 , a second resistance R_2 , which 30 is connected between the second power source voltage V_{SS} and a gate of the power NMOSFET transistor NM_1 , a first capacitor C_1 , which is connected between an output terminal of a gate controller 31 and the gate

of the power PMOSFET transistor PM_1 , a second capacitor C_2 , which is connected between the output terminal of the gate controller 31 and the gate of the power NMOSFET transistor NM_1 , a first diode D_1 , which 5 is connected between the output terminal of the gate controller 31 and the gate of the power PMOSFET transistor PM_1 , and a second diode D_2 , which is connected between the output terminal of the gate controller 31 and the gate of the power NMOSFET 10 transistor NM_1 .

The first and second diodes D_1 and D_2 may be general diodes, but they are preferably zener diodes.

Specifically, the diodes D_1 and D_2 are connected to the capacitors C_1 and C_2 in parallel in order to 15 prevent the capacitors C_1 and C_2 from being overcharged. Typically, while the capacitors C_1 and C_2 compensate for voltage differences between the gate controller 31 and the power MOSFET transistors PM_1 and NM_1 , the capacitors C_1 and C_2 transmit a signal component intact. 20 Therefore, a voltage corresponding to a difference between the first power source voltage V_{DD} and the third power source voltage V_{CC} is charged in the capacitor C_1 , which is connected between the gate controller 31 and the power PMOSFET transistor PM_1 , 25 and a voltage corresponding to a difference between the second power source voltage V_{SS} and the fourth power source voltage V_{EE} is charged in the capacitor C_2 , which is connected between the gate controller 31 and the power NMOSFET transistor NM_1 .

30 In the circuit of FIG. 3, a desired voltage can be charged in the capacitors C_1 and C_2 by adjusting a breakdown voltage of the zener diodes D_1 and D_2 . Moreover, unlike the conventional circuit of FIG. 1,

the capacitors C_1 and C_2 are charged and discharged only through the resistances R_1 and R_2 in the circuit of FIG. 3, and thus, the circuit is able to sufficiently reduce an operating current and safely 5 operate irrespective of a duty-cycle by increasing values of the resistances R_1 and R_2 .

FIG. 4 is a drawing illustrating a circuit for driving a gate of a power MOSFET in a digital audio amplifier, according to a second embodiment of the 10 present invention.

Referring to FIG. 4, a circuit for driving a gate 43 comprises a first resistance R_1 , which is connected between a first power source voltage V_{DD} and a gate of a power PMOSFET transistor PM_1 , a second resistance R_2 , 15 which is connected between a second power source voltage V_{SS} and a gate of the power NMOSFET transistor NM_1 , a first capacitor C_1 , which is connected between an output terminal of a gate controller 31 and the gate of the power PMOSFET transistor PM_1 , a second capacitor C_2 , which is connected between the output 20 terminal of the gate controller 31 and the gate of the power NMOSFET transistor NM_1 , a first diode D_1 , one end of which is connected to the first power source voltage V_{DD} , a second diode D_2 , one end of which is 25 connected to the other end of the first diode D_1 and other end of which is connected to the gate of the power PMOSFET transistor PM_1 , a third diode D_3 , one end of which is connected to the second power source voltage V_{SS} , and a fourth diode D_4 , one end of which is 30 connected to other end of the third diode D_3 and other end of which is connected to the gate of the power NMOSFET transistor NM_1 .

The first through fourth diodes D_1 , D_2 , D_3 , and D_4

may be general diodes, but they are preferably zener diodes.

As illustrated in FIG. 4, although the power source voltages V_{DD} and V_{SS} which are applied to the power MOSFET transistors PM_1 and NM_1 are changed, the circuit for driving the gate 43 constantly maintains gate-source voltages of the power MOSFET transistors PM_1 and NM_1 by zener diodes D_1 and D_3 . However, when the power MOSFET transistors PM_1 and NM_1 are turned off, another diodes D_2 and D_4 are used in order to prevent the capacitors C_1 and C_2 to be discharged through the zener diodes D_1 and D_3 . In this case, general diodes may be used, but when zener diodes are used, there is an advantage in limiting the gate-source voltages of the power MOSFET transistors PM_1 and NM_1 . In addition, a trade-off between voltages applied to the power MOSFET transistors PM_1 and NM_1 and currents charged and discharged in the capacitors C_1 and C_2 is possible by adjusting a breakdown voltage of the diodes D_2 and D_4 .

FIG. 5 is a drawing illustrating a circuit for driving a gate of a power MOSFET in a digital audio amplifier, according to a third embodiment of the present invention.

Referring to FIG. 5, a circuit for driving a gate 53 comprises a first resistance R_1 , which is connected between a first power source voltage V_{DD} and a gate of a power PMOSFET transistor PM_1 , a second resistance R_2 , which is connected between a second power source voltage V_{SS} and a gate of a power NMOSFET transistor NM_1 , a first capacitor C_1 , one end of which is connected to an output terminal of a gate controller 31, a second capacitor C_2 , one end of which is

connected to the output terminal of the gate controller 31, a first diode D_1 , one of which is connected to the first power source voltage V_{DD} and other end of which is connected to the gate of the 5 power PMOSFET transistor PM_1 , a second diode D_2 , one end of which is connected to the other end of the first capacitor C_1 and other end of which is connected to the gate of the power PMOSFET transistor PM_1 , a third diode D_3 , one end of which is connected to the 10 second power source voltage V_{SS} and other end of which is connected to the gate of the power NMOSFET transistor NM_1 , and a fourth diode D_4 , one end of which is connected to the other end of the second capacitor C_2 , and other end of which is connected to 15 the gate of the power NMOSFET transistor NM_1 .

The first through fourth diodes D_1 , D_2 , D_3 , and D_4 may be general diodes, but they are preferably zener diodes.

More particularly, when the power MOSFET 20 transistors PM_1 and NM_1 are turned off, the circuit for driving the gate 53 prevents a gate voltage from going beyond a scope of the power source voltages V_{DD} and V_{SS} by connecting the zener diodes D_2 and D_4 , which prevent the charged capacitors C_1 and C_2 from being 25 discharged, to the capacitors C_1 and C_2 in series. Therefore, an overvoltage is not applied to the power MOSFET transistors PM_1 and NM_1 .

Meanwhile, a breakdown occurs in a turned-off power MOSFET transistor among the power MOSFET 30 transistors PM_1 and NM_1 when adjusting the breakdown voltage of the zener diodes D_2 and D_4 , which block the discharge of the capacitors C_1 and C_2 .

Resistances R_1 and R_2 of FIGS. 4 and 5 are not

essential elements in a switching operation and play a supplementary role of turning the power MOSFET transistors PM₁ and NM₁ off by charging the capacitors C₁ and C₂ when the gate controller 31 does not operate.

5 FIG. 6 is a drawing illustrating a circuit for driving a gate of a power MOSFET in a digital audio amplifier, according to a fourth embodiment of the present invention.

10 Referring to FIG. 6, a circuit for driving a gate 63 further comprises a current source 631, compared to the second embodiment of the present invention.

15 The current source 631 comprises a resistance R₃, one end of which is connected to an output terminal of a gate controller 31, a NPN bipolar transistor Q₁, an emitter of which is connected to other end of the resistance R₃, a base of which is connected to a grounding voltage G_{ND}, and a collector of which is connected to a gate of a power PMOSFET transistor PM₁, and a PNP bipolar transistor Q₂, an emitter of which is 20 connected to the other end of the resistance R₃, a base of which is connected to a grounding voltage G_{ND}, and a collector of which is connected to a gate of a power NMOSFET transistor NM₁.

25 More specifically, when one of the power MOSFET transistors PM₁ and NM₁ is turned on, a capacitor connected to the turned-on power MOSFET transistor PM₁ or NM₁ is charged or discharged through the resistance or zener diode, and then, if a switching frequency of the gate controller 31 is slow, the turned-on power 30 MOSFET transistor PM₁ or NM₁ is turned off. However, as shown in FIG. 6, if currents through the resistance and the zener diode are compensated by the current source 631, the gate voltage is maintained constant.

At this time, only one of the two bipolar transistors Q_1 and Q_2 , which is connected to the turned-on power MOSFET transistor PM_1 or NM_1 , is turned on and generates current and the other is turned off. The 5 current is determined by adjusting a value of R_3 , and the gate-source voltage of the turned-on power MOSFET transistor PM_1 or NM_1 is determined by multiplying the resistance R_1 or R_2 and the current.

FIG. 7 is a drawing illustrating a circuit for 10 driving a gate of a power MOSFET in a digital audio amplifier, according to a fifth embodiment of the present invention.

Referring to FIG. 7, a circuit for driving a gate 73 further comprises a current source 731, compared to 15 the third embodiment of the present invention. The current source 731 has the same structure with the current source 631. The circuit for driving the gate 73, like the circuit for driving the gate 63, prevents the power MOSFET transistors PM_1 and NM_1 from being 20 turned off by the current source 731 when the frequency of the output signal of the gate controller 31 is slow.

In the current sources 631 and 731 of FIGS. 6 and 7, an NMOSFET transistor may be used instead of 25 the NPN polar transistor Q_1 and a PMOSFET transistor may also be used instead of the PNP bipolar transistor Q_2 . In the case of the PMOSFET transistor, a source is connected to the other end of the resistance R_3 , a gate is connected to a grounding voltage V_{ss} , and a 30 drain is connected to the gate of the power PMOSFET transistor PM_1 . In the case of the NMOSFET transistor, a source is connected to the other end of the resistance R_3 and a gate is connected to the grounding

voltage V_{SS} , and a drain is connected to the gate of the power NMOSFET transistor NM_1 .

While the present invention has been particularly shown and described with reference to exemplary 5 embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the accompanying claims.

10 As described above, a circuit for driving a gate according to the present invention has an advantage in that the circuit safely and effectively transmits an output signal of a gate controller irrespective of a frequency and duty-cycle of the output signal of, when 15 transmitting the output signal of the gate controller to the power MOSFET transistor using a higher power source voltage than the gate controller. Therefore, the circuit is suitable for a case where the duty-cycle of the output signal of the gate controller 20 dramatically changes and the frequency is irregular.