## ГУАП

### КАФЕДРА № 42

| ОТЧЕТ<br>ЗАЩИЩЕН С ОЦЕНКОЙ                              |                                 |                                      |
|---------------------------------------------------------|---------------------------------|--------------------------------------|
| ПРЕПОДАВАТЕЛЬ                                           |                                 |                                      |
| канд. техн. наук, доцент должность, уч. степень, звание | подпись, дата                   | А.В. Аграновский инициалы, фамилия   |
|                                                         |                                 |                                      |
| ОТЧЕТ О                                                 | ЛАБОРАТОРНОЙ РАБО               | OTE №2                               |
| ИССЛЕДОВАНИЕ ПО                                         | ЭЛУПРОВОДНИКОВОГ<br>ТРАНЗИСТОРА | О БИПОЛЯРНОГО                        |
| по курсу: ЭЛЕ                                           | ЕКТРОНИКА И СХЕМО               | ТЕХНИКА                              |
|                                                         |                                 |                                      |
| РАБОТУ ВЫПОЛНИЛ                                         |                                 |                                      |
| СТУДЕНТ ГР. № 4329                                      | подпись, дата                   | Д.С. Шаповалова<br>инициалы, фамилия |

## Содержание

| 1. Цель работы:                                     | 3 |
|-----------------------------------------------------|---|
| 2. Задание:                                         | 3 |
| 3. Электронная модель экспериментальной установки:  | 3 |
| 4. Таблица с результатами практических исследований | 4 |
| 5. Входная и семейство выходных ВАХ транзистора     | 5 |
| 6 Bribonii.                                         | 6 |

### 1. Цель работы:

Изучение и практическое исследование работы и характеристик полупроводникового биполярного транзистора.

#### 2. Задание:

- 1. Исследование входной ВАХ биполярного транзистора
- 2. Исследование выходной ВАХ биполярного транзистора

### 3. Электронная модель экспериментальной установки:



Рисунок 1.1 – Схема исследования входной ВАХ транзистора



Рисунок 1.2 – Схема исследования выходной ВАХ транзистора

## 4. Таблица с результатами практических исследований

Таблица  $1 - U_{K9} = 10 \text{ B}$ 

| U <sub>БЭ</sub> , | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9  | 1.0  | 1.1  | 1.2  | 1.3  | 1.4  | 1.5  |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| В                 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| Iь,               | 0   | 0   | 0   | 0   | 1.2 | 2.9 | 5.8 | 9.5 | 13.8 | 18.9 | 24.8 | 31.4 | 38.6 | 46.4 | 54.7 |
| мА                |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |

Таблица  $2 - U_{K\Im} = 50 \text{ B}$ 

| U <sub>БЭ</sub> ,<br>В | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9  | 1.0  | 1.1  | 1.2  | 1.3  | 1.4  | 1.5  |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| I <sub>Б</sub> ,<br>мА | 0   | 0   | 0   | 0   | 1.2 | 2.8 | 5.3 | 8.0 | 11.0 | 14.2 | 17.8 | 21.8 | 26.2 | 31.0 | 36.1 |

Таблица  $3 - I_{\text{Б}} = 6 \text{ мA}$ 

| Uкэ,                | 0,05 | 0,1  | 0,2  | 0,5  | 1,0  | 2,0  | 4,0  | 6,0  | 8,0  | 10   |
|---------------------|------|------|------|------|------|------|------|------|------|------|
| В                   |      |      |      |      |      |      |      |      |      |      |
| I <sub>K</sub> , MA | 1.9  | 10.8 | 30.5 | 53.4 | 56.0 | 57.0 | 59.0 | 61.1 | 63.1 | 65.1 |

Таблица  $4 - I_{\text{Б}} = 12 \text{ мA}$ 

| Uкэ,                | 0,05 | 0,1  | 0,2  | 0,5   | 1,0   | 2,0   | 4,0   | 6,0   | 8,0   | 10    |
|---------------------|------|------|------|-------|-------|-------|-------|-------|-------|-------|
| В                   |      |      |      |       |       |       |       |       |       |       |
| I <sub>K</sub> , MA | 5.6  | 24.0 | 67.9 | 179.7 | 203.5 | 207.4 | 214.8 | 222.2 | 229.6 | 236.9 |

Таблица  $5 - I_B = 24 \text{ мA}$ 

| U <sub>КЭ</sub> ,<br>В | 0,05 | 0,1  | 0,2  | 0,5   | 1,0   | 2,0   | 4,0   | 6,0   | 8,0   | 10    |
|------------------------|------|------|------|-------|-------|-------|-------|-------|-------|-------|
| I <sub>K</sub> , мА    | 6.4  | 30.0 | 82.2 | 250.3 | 438.0 | 453.8 | 470.1 | 486.3 | 502.6 | 518.8 |

# 5. Входная и семейство выходных ВАХ транзистора



Рисунок 2.1 – График входной ВАХ транзистора



Рисунок 2.2 – График семейства выходных ВАХ транзистора

#### 6. Выводы:

В данной работе я подробно рассмотрела принцип работы полупроводникового биполярного транзистора, исследовала его входные и выходные вольтамперные характеристики (BAX) и проанализировала ключевые закономерности их формирования. В ходе выполнения лабораторной работы я построила схемы входной и выходной ВАХ в программе Місго-Сар и провела измерение тока базы  $I_{\rm b}$  при различных  $U_{\rm b9}$  и  $U_{\rm k9}$ , а также тока коллектора  $I_{\rm k}$ , при различных  $U_{\rm k9}$  и  $I_{\rm b}$ .

Анализ входной ВАХ показал, что при напряжении  $U_{E9}$  до 0.4 В переход между базой и эмиттером остаётся закрытым, и ток практически не протекает. Это происходит изза наличия потенциального барьера, препятствующего движению носителей заряда. При увеличении м $U_{E9}$  выше 0.4 В барьер преодолевается, переход между эмиттером и базой открывается, через него начинает проходить дрейфовый ток. В этом режиме наблюдается почти линейная зависимость тока базы  $I_{E}$  от напряжения  $U_{E9}$ . При дальнейшем увеличении напряжения  $U_{K9}$  уменьшается ток базы, поскольку часть дырок уходит в коллектор.

Семейство выходных ВАХ (при силе тока коллектора  $I_K$  в 6 мА, 12 мА и 24 мА) демонстрируют характерное резкое возрастание тока коллектора  $I_K$  при увеличении напряжения  $U_{K9}$ . Происходящее обусловлено тем, что дырки, покидающие эмиттер, постепенно начинают проникать в цепь базы, так как напряжение на коллекторе незначительно и поэтому коллекторный переход включен в прямом направлении. По мере увеличения напряжения  $U_{K9}$ , дырки поступают из базы в коллектор. На этом участке коллекторный переход закрывается, крутизна характеристик уменьшается, они идут практически параллельно оси абсцисс. Положение каждой из выходных характеристик зависит, главным образом, от значения тока базы.

Таким образом, в ходе лабораторной работы были изучены особенности формирования входных и выходных характеристик биполярного транзистора, а также получены практические навыки работы с программой Micro-Cap для моделирования электронных схем. Данный опыт может быть полезен для дальнейшего изучения работы транзисторов и их применения в электронике.