Case Study 3 - Deregulation of the Intrastate Trucking Industry Fall 2020 - STAT 214 - Project 2

Nursima Donuk

11/20/2020

Summary:

Consider the problem of modeling the price charged for motor transport service (e.g., trucking) in Florida. In the early 1980s, several states removed regulatory constraints on the rate charged for intrastate trucking services. (Florida was the first state to embark on a deregulation policy on July 1, 1980.) Prior to this time, the state determined price schedules for motor transport service with review and approval by the Public Service Commission. Once approved, individual carriers were not allowed to deviate from these official rates. The objective of the regression analysis is twofold: (1) assess the impact of deregulation on the prices charged for motor transport service in the state of Florida, and (2) estimate a model of the supply price for predicting future prices.

```
# Install development version from GitHub
# install.packages("devtools")
# devtools::install_github("rsquaredacademy/olsrr")
library(olsrr)
library(tidyverse)
```

Getting Familiar with the Data

```
load("TRUCKING.Rdata")
head(TRUCKING)
                                                    MARKET
##
     PRICEPTM DISTANCE WEIGHT PCTLOAD
                                          ORIGIN
                                                               DEREG
                                                                      CARRIER PRODUCT
## 1
        19942
                   3.60
                          7.50
                                   32.6 MIA
                                                  LARGE
                                                            YES
                                                                      В
                                                                                    100
## 2
       112162
                   0.25
                          7.50
                                   32.6 MIA
                                                  LARGE
                                                            YES
                                                                     В
                                                                                    100
## 3
        72973
                   0.25
                         15.00
                                   65.2 MIA
                                                  LARGE
                                                            YES
                                                                      В
                                                                                    100
## 4
        41892
                         24.00
                                  100.0 MIA
                                                  LARGE
                   0.25
                                                            YES
                                                                      В
                                                                                    100
## 5
        23519
                   2.60
                          7.50
                                   32.6 MIA
                                                  LARGE
                                                            YES
                                                                      В
                                                                                    100
## 6
        58221
                   1.50
                          0.25
                                    1.1 MIA
                                                  SMALL
                                                            YES
                                                                      В
                                                                                    100
     LNPRICE
## 1 9.9006
## 2 11.6277
## 3 11.1978
## 4 10.6428
## 5 10.0656
## 6 10.9720
str(TRUCKING)
                     134 obs. of 10 variables:
   'data.frame':
                     19942 112162 72973 41892 23519 ...
```

\$ DISTANCE: num 3.6 0.25 0.25 0.25 2.6 1.5 4.8 4.8 6 3 ...

```
7.5 7.5 15 24 7.5 0.25 0.25 7.5 24 0.25 ...
##
##
   $ PCTLOAD : num
                   32.6 32.6 65.2 100 32.6 1.1 1.1 32.6 100 1.1
                                         ","MIA
                                                    ": 2 2 2 2 2 2 2 2 2 1 ...
##
   $ ORIGIN
             : Factor w/ 2 levels "JAX
             : Factor w/ 2 levels "LARGE
                                         ", "SMALL
                                                      1 1 1 1 1 2 1 1 2 2 ...
##
   $ MARKET
                                         ","YES
                                                      2 2 2 2 2 2 2 2 2 2 . . .
##
     DEREG
             : Factor w/ 2 levels "NO
##
   $ CARRIER : Factor w/ 1 level "B
                                        ": 1 1 1 1 1 1 1 1 1 1 . . .
   $ PRODUCT : num
                   $ LNPRICE: num 9.9 11.6 11.2 10.6 10.1 ...
```

We see that the data has 10 variables and 134 observations. One of the 10 variables is CARRIER which is the same throughout the entire data-set. Then we have PRICEPTM and LNPRICE which are variations of the dependent variable.

Therefore we have 6 independent variables to consider:

- DISTANCE Miles traveled (in hundreds)
- WEIGHT Weight of product shipped (in 1,000 pounds)
- PCTLOAD Percent of truck load capacity
- ORIGIN City of origin (JAX or MIA)
- MARKET Size of market destination (LARGE or SMALL)
- DEREG Deregulation in effect (YES or NO)

Plots

Step-wise Regression

##

We see that we have 6 independent variables and using all 6 of them to build a curvilinear model will require a large amount of terms, which will lead to a small degrees of freedom. So we will apply step-wise regression to choose the most relevant independent variables to the dependent variable.

```
#The plot method shows the panel of fit criteria for best subset regression methods.
model<- lm(LNPRICE ~ DISTANCE + WEIGHT + PCTLOAD + ORIGIN + MARKET + DEREG, data = TRUCKING)
k <-ols step both p(model, details = T)</pre>
## Stepwise Selection Method
##
## Candidate Terms:
##
## 1. DISTANCE
## 2. WEIGHT
## 3. PCTLOAD
## 4. ORIGIN
## 5. MARKET
## 6. DEREG
## We are selecting variables based on p value...
##
##
## Stepwise Selection: Step 1
##
## - DISTANCE added
##
##
                           Model Summary
##
## R
                                       RMSE
                           0.545
                                                          0.692
## R-Squared
                           0.297
                                       Coef. Var
                                                          6.547
## Adj. R-Squared
                           0.292
                                       MSE
                                                          0.480
## Pred R-Squared
                           0.273
                                       MAE
                                                          0.547
##
   _____
##
   RMSE: Root Mean Square Error
   MSE: Mean Square Error
##
##
   MAE: Mean Absolute Error
##
```

ANOVA

	Sum of Squares	DF	Mean	Square		Sig.		
Regression Residual Total	26.731 63.296	1 132		26.731	55.745	0.0000		
model	Beta 	Std. Error 	St 	.d. Beta 	t 	Sig	lower	upper
(Intercept)	11.424 -0.289	0.128 0.039		-0.545	88.984 -7.466	0.000	11.170 -0.366	11.678 -0.213
Stepwise Sele	ction: Ste	ep 2						
- DEREG added	l							
		Model Summa	•					
R		0.781			0.518			
-		0.610						
Adj. R-Square								
Pred R-Square					0.410			
RMSE: Root M MSE: Mean Sq		e Error						
MAE: Mean Ab	_							
	solute Err	ror ANO	VA					
	solute Err	ror	VA 					
	solute Err	ror ANO		Square	F	 Sig.		
	Sum of Squares 54.879	ANO		27.440	F 102.27	Sig.		
	Sum of Squares 54.879 35.148	DF 2 131						
	Sum of Squares 54.879	DF 2		27.440				
	Sum of Squares 54.879 35.148	DF 2 131		27.440				
Regression	Sum of Squares 54.879 35.148	DF 2 131	Mean	27.440	102.27			
Regression	Sum of Squares 54.879 35.148 90.027	DF 2 131 133	Mean 	27.440	102.27		lower	 upp
Regression Residual Total model	Sum of Squares 54.879 35.148 90.027	DF 2 131 133	Mean Param	27.440 0.268	102.27	0.0000		
Regression Residual Total	Sum of Squares 54.879 35.148 90.027 Beta	DF2 131 133	Mean Param or	27.440 0.268	102.27	0.0000 Sig	11.721	12.1

4

##

‡									
:			Model Su	•					
	R		0.781			0.518			
	R-Squared				. Var				
	Adj. R-Squared	l	0.604	MSE		0.268			
	Pred R-Squared					0.410			
	RMSE: Root Me MSE: Mean Squ MAE: Mean Abs	ean Square ware Error	Error						
				ANOVA					
		Sum of							
					Square	F	Sig.		
	Regression				27.440	102.27	0.0000		
	Residual								
	Total	90.027	133						
					meter Estim	ates			
	model	Beta	Std.	Error	Std. Beta				uppe
	(Intercept)					110.303			12.1
	DISTANCE			0.029	-0.578	-10.568	0.000	-0.364	-0.2
	DEREGYES	-0.918		0.090	-0.560	-10.243	0.000	-1.096	-0.7
	Stepwise Selec	ction: Step	р 3						
	UPTOUR - 11-2	,							
	- WEIGHT added	1							
			Model Su	mmary					
	 R		 0.894	RMSE		0.373			
	R-Squared		0.799		. Var	3.525			
	Adj. R-Squared	l	0.795	MSE	-	0.139			
	Pred R-Squared	l	0.784	MAE		0.282			
	RMSE: Root Me MSE: Mean Squ	_	Error						
	MAE: Mean Abs		or						
				A 37077A					
				ANOVA					
		Sum of							
		Squares			Square 	F	Sig.		
	Regression					172.541	0.0000		

Total	18.071 90.027	130 133		0.139				
:			Para	neter Estin	nates			
:	 Reta	Std.			t	 Sig	lower	
(Intercept)			0.084		146.573			
	-0.291					0.000		
DEREGYES WEIGHT	-0.954		0.065			0.000		
WEIGHI	-0.041 		0.004	-0.43 <i>1</i>	-11.003		-0.040	-0.03
: ·		Model Su	ımmary					
: : R	 _	0.894	RMSE	 _	0.373			
R-Squared		0.799	Coef		3.525			
Adj. R-Squared		0.795	MSE		0.139			
Pred R-Squared		0.784	MAE		0.282			
MAE: Mean Abs			ANOVA					
MAE: Mean Abs	uare Error solute Erro	or	ANOVA					
MAE: Mean Abs	uare Error solute Erro Sum of Squares	or DI		-	F	 Sig.		
MAE: Mean Abs	solute Error Sum of Squares 71.956	DF	F Mean					
MAE: Mean Abs	Sum of Squares 71.956 18.071	DF	F Mean					
MAE: Mean Abs	solute Error Sum of Squares 71.956	DF	F Mean	23.985				
MAE: Mean Abs	Sum of Squares 71.956 18.071	DF	F Mean	23.985				
MAE: Mean Abs	Sum of Squares 71.956 18.071	DF	Mean 3 3	23.985	172.541			
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027	DF	F Mean 3) 3 Para	23.985 0.139	172.541		lower	 uppe
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027	DF 3 130 133 Std.	F Mean 3) 3 Para	23.985 0.139	172.541	0.0000		
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291	DF 3 130 133 Std.	F Mean 3) 3 Para Error 0.084 0.021	23.985 0.139 neter Estin	172.541 nates t 146.573 -13.910	0.0000 Sig 0.000 0.000	12.111 -0.333	12.44
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291 -0.954	DF 130 133 Std.	Paras Paras Error 0.084 0.021	23.985 0.139 meter Estin Std. Beta -0.549 -0.582	172.541 nates t 146.573 -13.910 -14.765	0.0000 Sig 0.000 0.000 0.000	12.111 -0.333 -1.082	12.44 -0.28
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291 -0.954 -0.041	DF 33 130 133 Std.	Paras Paras Error 0.084 0.021 0.065 0.004	23.985 0.139 meter Estin Std. Beta -0.549 -0.582 -0.437	172.541 nates t 146.573 -13.910 -14.765	0.0000 Sig 0.000 0.000 0.000	12.111 -0.333 -1.082	12.44 -0.29 -0.89
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291 -0.954 -0.041	DF 33 130 133 Std.	Paras Paras Error 0.084 0.021 0.065 0.004	23.985 0.139 meter Estin Std. Beta -0.549 -0.582 -0.437	172.541 nates t 146.573 -13.910 -14.765	0.0000 Sig 0.000 0.000 0.000	12.111 -0.333 -1.082	12.44 -0.28
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291 -0.954 -0.041	DF 33 130 133 Std.	Paras Paras Error 0.084 0.021 0.065 0.004	23.985 0.139 meter Estin Std. Beta -0.549 -0.582 -0.437	172.541 nates t 146.573 -13.910 -14.765	0.0000 Sig 0.000 0.000 0.000	12.111 -0.333 -1.082	12.44 -0.28
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291 -0.954 -0.041	DF 33 130 133 Std.	Paras Paras Error 0.084 0.021 0.065 0.004	23.985 0.139 meter Estin Std. Beta -0.549 -0.582 -0.437	172.541 nates t 146.573 -13.910 -14.765	0.0000 Sig 0.000 0.000 0.000	12.111 -0.333 -1.082	12.44 -0.28
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291 -0.954 -0.041	DF 3 130 133 Std.	Paras Paras Error 0.084 0.021 0.065 0.004	23.985 0.139 meter Estin Std. Beta -0.549 -0.582 -0.437	172.541 nates t 146.573 -13.910 -14.765	0.0000 Sig 0.000 0.000 0.000	12.111 -0.333 -1.082	12.44 -0.25 -0.82
MAE: Mean Abs	Sum of Squares 71.956 18.071 90.027 Beta 12.276 -0.291 -0.954 -0.041	DF 3 130 133 Std.	Paras Paras Error 0.084 0.021 0.065 0.004	23.985 0.139 meter Estin Std. Beta -0.549 -0.582 -0.437	172.541 nates t 146.573 -13.910 -14.765	0.0000 Sig 0.000 0.000 0.000	12.111 -0.333 -1.082	12.44 -0.25 -0.82

#								
 # R			RMSE		0.339			
# R-Squared	0.	835	Coef	. Var	3.204			
# Adj. R-Squared					0.115			
# Pred R-Squared #					0.262			
# RMSE: Root Me # MSE: Mean Squ # MAE: Mean Abs #	an Square Er are Error							
# #			NOVA					
#	Sum of							
# #	Squares	DF 	Mean 	Square 	F 	Sig.		
# Regression					163.786	0.0000		
‡ Residual ‡ Total	90.027	133						
‡ ‡								
‡				meter Esti	mates			
	Beta	Std.	Error	Std. Bet				upper
<pre># # (Intercept)</pre>	12.157					2 0.000		12.314
# DISTANCE				-0.56	7 -15.74	2 0.000	-0.339	-0.263
# DEREGYES	-0.989		0.059	-0.60	3 -16.73	0.000 0.000	-1.106	-0.872
# WEIGHT	-0.041		0.003	-0.44	0 -12.26	0.000	-0.047	-0.034
# ORIGINMIA			0.059	0.19	2 5.33	0.000	0.199	0.433
* #								
‡ ‡								
‡ •	Мо	del Sum	mary					
‡ ‡ R	0.	914	RMSE		0.339	•		
# R-Squared	0.	835	Coef	. Var	3.204			
‡ Adj. R-Squared		830	MSE		0.115			
Pred R-Squared		821	MAE		0.262			
# RMSE: Root Me # MSE: Mean Squ # MAE: Mean Abs	an Square En are Error							
# #		A	AVOVA					
# #	Sum of							
‡	Squares			Square	F	Sig.		
: : Regression : Residual		4			163.786	0.0000		
# Total	90.027	129 133		0.115				
#								

##

	model	Beta	S+4	Error	Std. Beta	t	Sig	lower	uppe
							 pig		
((Intercept)	12.157		0.079		153.202	0.000	12.000	12.31
	DISTANCE			0.019	-0.567	-15.742	0.000	-0.339	-0.26
DER	REGYES	-0.989		0.059	-0.603	-16.738	0.000	-1.106	-0.87
	WEIGHT	-0.041		0.003	-0.440	-12.261	0.000	-0.047	-0.03
ORIG	FINMIA	0.316		0.059	0.192	5.330	0.000	0.199	0.43
				_					
No m	ore variab	les to be a	.dded/re	moved.					
F:	1 M-1-1 O								
	ıl Model Ou 	_							
		N	odel Su	mm o rii					
			Su	шшату					
		C	.914	RMSE		0.339			
ĸ	_			10101					
R R-Sa	mared	C	. 835	Coef	. Var	3.204			
R-Sq	_		.835		. Var	3.204 0.115			
R-Sq Adj. Pred RMS MSE	R-Squared R-Squared R-Squared R RE: Root Me RE: Mean Squ	an Square E	.830 .821 	Coef MSE MAE	. Var	3.204 0.115 0.262			
R-Sq Adj. Pred RMS MSE MAE	R-Squared R-Squared R-Squared R RE: Root Me RE: Mean Squ	o O an Square E	.830 .821 	MSE MAE	. Var	0.115			
R-Sq Adj. Pred RMS MSE MAE	R-Squared R-Squared R-Squared R RE: Root Me RE: Mean Squ	an Square E	.830 .821 	MSE	. Var	0.115			
R-Sq Adj. Pred RMS MSE MAE	R-Squared R-Squared R-Squared R RE: Root Me RE: Mean Squ	an Square E	.830 .821 	MSE MAE	. Var	0.115			
R-Sq Adj. Pred RMS MSE MAE	R-Squared R-Squared E: Root Me C: Mean Squ	an Square E are Error olute Error	.830 .821 rror	MSE MAE 	. Var	0.115	 Sig.		
R-Sq Adj. Pred RMS MSE MAE	R-Squared R-Squared R-Squared E: Root Me Mean Squ Mean Abs	an Square E are Error olute Error Sum of Squares	.830 .821 	MSE MAE ANOVA Mean	Square	0.115 0.262 			
R-Sq Adj. Pred RMS MSE MAE	R-Squared R-Squared E: Root Me E: Mean Squ C: Mean Abs	an Square Eare Error olute Error Sum of Squares	.830 .821 rror DF	MSE MAE ANOVA Mean	Square 18.804	0.115 0.262	Sig. 0.0000		
R-Sq Adj. Pred RMS MSE MAE	R-Squared R-Squared E: Root Me E: Mean Squ C: Mean Abs	an Square Eare Error olute Error Sum of Squares 75.217 14.810	.830 .821 	MSE MAE ANOVA Mean	Square	0.115 0.262 			
R-Sq Adj. Pred RMS MAE Regr Resi Tota	R-Squared R-Squared E: Root Me E: Mean Squ C: Mean Abs	an Square Eare Error olute Error Sum of Squares	.830 .821 rror DF	MSE MAE ANOVA Mean	Square 18.804	0.115 0.262 			
R-Sq Adj. Pred RMS MAE Regr Resi Tota	R-Squared R-Squared E: Root Me E: Mean Squ C: Mean Abs	an Square Eare Error olute Error Sum of Squares 75.217 14.810	.830 .821 	MSE MAE ANOVA Mean	Square 18.804	0.115 0.262 			
R-Sq Adj. Pred RMS MAE Regr Resi Tota	R-Squared R-Squared E: Root Me E: Mean Squ C: Mean Abs	an Square Eare Error olute Error Sum of Squares 75.217 14.810	.830 .821 	MSE MAE ANOVA Mean	Square 	0.115 0.262 			
R-Sq Adj. Pred RMS MAE Regr Resi Tota	R-Squared R-Squared E: Root Me E: Mean Squ C: Mean Abs	an Square Eare Error olute Error Sum of Squares 75.217 14.810	.830 .821 	MSE MAE ANOVA Mean	Square 18.804	0.115 0.262 			
R-Sq Adj. Pred RMS MAE Regr Resi Tota	R-Squared R-Squared E: Root Me E: Mean Squ C: Mean Abs	an Square E are Error olute Error Sum of Squares 75.217 14.810 90.027	.830 .821 	MSE MAE ANOVA Mean	Square 18.804 0.115 meter Estim	0.115 0.262 	0.0000	lower	uppe
R-Sq Adj. Pred RMS MAE	R-Squared R-Squa	an Square Eare Error olute Error Sum of Squares 75.217 14.810 90.027	.830 .821 	MSE MAE ANOVA Mean	Square 18.804 0.115 meter Estim	0.115 0.262 		lower	uppe
R-Sq Adj. Pred RMS MAE Regr Resi Tota 	R-Squared Residen	an Square Eare Error olute Error Sum of Squares 75.217 14.810 90.027	.830 .821 	MSE MAE ANOVA Mean	Square 18.804 0.115 meter Estim	0.115 0.262 	0.0000 Sig	lower 12.000	
R-Sq Adj. Pred RMS MAE Regr Resi Tota 	R-Squared Residen	an Square E are Error olute Error Sum of Squares	.830 .821 	MSE MAE ANOVA Mean Para Error	Square 18.804 0.115 meter Estim Std. Beta	0.115 0.262 	Sig 2 0.000		12.31
R-Sq Adj. Pred RMS MAE Regr Resi Tota 	R-Squared R-Squa	an Square E are Error olute Error Sum of Squares	.830 .821 	MSE MAE ANOVA Mean Para Error 0.079	Square 18.804 0.115 meter Estim	0.115 0.262 	Sig 2 0.000 2 0.000	12.000	12.31 -0.26
R-Sq Adj. Pred RMS MAE Regr Resi Tota 	R-Squared R-Squared R-Squared R-Squared R-Squared R-Squared R-Squared RE: Root Me RE: Mean Squ RE: Mean Abs Ression Ression Redual Ression Model Ression Cintercept DISTANCE REGYES	Sum of Squares	.830 .821 	MSE MAE ANOVA Mean Para Error 0.079 0.019	Square 18.804 0.115 meter Estim Std. Beta	0.115 0.262 	Sig 2 0.000 2 0.000 3 0.000	12.000 -0.339	12.31 -0.26 -0.87

We can observe that the model with 4 independent variables provides us the best predictors.

• DISTANCE Miles traveled (in hundreds)

- WEIGHT Weight of product shipped (in 1,000 pounds)
- ORIGIN City of origin (JAX or MIA)
- DEREG Deregulation in effect (YES or NO)

Distance and weight are quantitative variables while origin and deregulation is qualitative.

```
x_1 = \text{Distance shipped} x_2 = \text{Weight of product} x_3 = \left\{ \begin{array}{ll} 1 & \text{if deregulation in effect} \\ 0 & \text{if not} \end{array} \right. x_4 = \left\{ \begin{array}{ll} 1 & \text{if originate in Miami} \\ 0 & \text{if originate in Jacksonville} \end{array} \right.
```

Building the First Models

Renaming variables

X4MIA

X1:X2

X3YES

:X4MIA

```
Y <- TRUCKING$LNPRICE

X1 <- TRUCKING$DISTANCE

X2 <- TRUCKING$WEIGHT

X3 <- TRUCKING$DEREG

X4 <- TRUCKING$ORIGIN
```

The Complete Second Order Model

```
model1 \leftarrow lm(Y \sim X1 + X2 + X1*X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3*X4 + X1*X3 + X1*X4 + X1*X3*X4 + X2*X4 + X1*X3*X4 + X
summary(model1)
##
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 +
                       X4 + X3 * X4 + X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 +
                       X2 * X4 + X2 * X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 *
##
                       X2 * X3 * X4 + I(X1^2) * X3 + I(X1^2) * X4 + I(X1^2) * X3 *
##
##
                       X4 + I(X2^2) * X3 + I(X2^2) * X4 + I(X2^2) * X3 * X4
##
## Residuals:
##
                         Min
                                                           1Q
                                                                          Median
                                                                                                                        3Q
## -0.56178 -0.11493 0.01701 0.13499 0.53106
##
## Coefficients:
##
                                                                                                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                                                                                              12.5158767  0.9544115  13.114  < 2e-16 ***
                                                                                                                                                                                        -1.225
                                                                                                                                                                                                                     0.22324
## X1
                                                                                                              -0.8991875 0.7340996
## X2
                                                                                                                 0.0242073 0.0288603
                                                                                                                                                                                              0.839
                                                                                                                                                                                                                     0.40341
## I(X1^2)
                                                                                                                 0.1514393 0.1345553
                                                                                                                                                                                              1.125
                                                                                                                                                                                                                     0.26284
## I(X2^2)
                                                                                                              -0.0001020 0.0007696 -0.133
                                                                                                                                                                                                                     0.89479
## X3YES
                                                                                                              -1.1264341 1.4910477 -0.755
                                                                                                                                                                                                                     0.45158
```

0.2761451 0.9633225

0.287

-0.0207090 0.0067322 -3.076 0.00265 **

0.4969434 1.5029026 0.331 0.74153

0.77491

```
## X1:X3YES
                                 0.4819536 1.1588221
                                                        0.416
                                                               0.67829
## X1:X4MIA
                                 0.0695520 0.7388206
                                                        0.094
                                                               0.92517
## X2:X3YES
                                -0.0948579 0.0447667 -2.119
                                                               0.03635 *
## X2:X4MIA
                                                      -1.491
                                -0.0526100
                                            0.0352796
                                                               0.13876
## I(X1^2):X3YES
                                -0.1167119
                                           0.2191804
                                                      -0.532
                                                               0.59546
## I(X1^2):X4MIA
                                -0.0727509 0.1350954 -0.539
                                                               0.59131
## I(X2^2):X3YES
                                0.0004377 0.0011854
                                                        0.369
                                                               0.71262
## I(X2^2):X4MIA
                                 0.0001108 0.0010677
                                                        0.104
                                                               0.91751
## X1:X3YES
               :X4MIA
                                -0.5402672 1.1644024 -0.464
                                                               0.64357
## X2:X3YES
                :X4MIA
                                 0.0682541
                                           0.0522034
                                                        1.307
                                                               0.19378
## X1:X2:X3YES
                                 0.0220705 0.0107754
                                                        2.048
                                                               0.04292 *
## X1:X2:X4MIA
                                 0.0235483 0.0070932
                                                        3.320
                                                               0.00122 **
## I(X1^2):X3YES
                                 0.1342074 0.2198421
                                                        0.610
                                                               0.54281
                     :X4MIA
## I(X2^2):X3YES
                     :X4MIA
                                -0.0002761 0.0015707 -0.176
                                                               0.86079
                                -0.0269349 0.0112668 -2.391 0.01852 *
## X1:X2:X3YES
                  :X4MIA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2358 on 110 degrees of freedom
## Multiple R-squared: 0.932, Adjusted R-squared: 0.9178
## F-statistic: 65.59 on 23 and 110 DF, p-value: < 2.2e-16
```

Taking out Squared Terms

We will create another model, that is the same as the above except that it does not have the squared terms.

```
model2 <- lm(Y ~ X1 + X2 + X1*X2 +X3 + X4 + X3*X4 + X1*X3 + X1*X4 + X1*X3*X4 + X2*X3 + X2*X4 + X2*X3*X4 summary(model2)
```

```
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + X3 + X4 + X3 * X4 + X1 *
##
       X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 * X3 *
       X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4)
##
## Residuals:
        Min
                  1Q
                       Median
                                             Max
## -0.84999 -0.18273 0.01177 0.17947
                                        0.77398
##
## Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                11.472100
                                            0.348461 32.922
                                                                <2e-16 ***
## X1
                                -0.077415
                                            0.118534 -0.653
                                                                0.5150
## X2
                                0.021123
                                            0.025459
                                                       0.830
                                                                0.4084
## X3YES
                                -0.331415
                                            0.555697 -0.596
                                                                0.5521
## X4MIA
                                0.882581
                                            0.376595
                                                       2.344
                                                                0.0208 *
                                            0.008957 -2.304
## X1:X2
                               -0.020639
                                                                0.0230 *
## X3YES
             :X4MIA
                                -0.424913
                                            0.592346 -0.717
                                                                0.4746
## X1:X3YES
                                            0.196829 -0.800
                                                                0.4253
                                -0.157470
## X1:X4MIA
                                -0.237177
                                            0.124228 -1.909
                                                                0.0587
## X2:X3YES
                                            0.041064 -2.011
                                -0.082562
                                                                0.0467 *
## X2:X4MIA
                                            0.028362 -1.982
                                -0.056221
                                                                0.0498 *
## X1:X3YES
                                                       0.744
                :X4MIA
                                0.152258
                                            0.204769
                                                                0.4586
## X2:X3YES
                :X4MIA
                                0.071941
                                            0.044639
                                                       1.612
                                                                0.1097
## X1:X2:X3YES
                                0.021777
                                            0.014480
                                                       1.504
                                                                0.1353
## X1:X2:X4MIA
                                0.023977
                                            0.009459
                                                       2.535
                                                                0.0126 *
```

```
## X1:X2:X3YES
                                      :X4MIA
                                                              -0.025949 0.015136 -1.714
                                                                                                                          0.0891 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3212 on 118 degrees of freedom
## Multiple R-squared: 0.8647, Adjusted R-squared: 0.8476
## F-statistic: 50.3 on 15 and 118 DF, p-value: < 2.2e-16
Keep the Squared Terms and Remove Interaction Between Qualitative and Quantitative
model3 \leftarrow lm(Y \sim X1 + X2 + X1*X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3*X4)
summary(model3)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 +
##
              X4 + X3 * X4
##
## Residuals:
##
                Min
                                    1Q
                                             Median
                                                                         3Q
## -0.71405 -0.17870 0.03056 0.20084 0.83521
##
## Coefficients:
##
                                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                                  12.8751219  0.1274209  101.044  < 2e-16 ***
                                                  -0.7746834  0.0642515  -12.057  < 2e-16 ***
## X1
## X2
                                                  ## I(X1^2)
                                                    0.0751044 0.0096511
                                                                                                   7.782 2.32e-12 ***
## I(X2^2)
                                                    0.0001066 0.0004468
                                                                                                   0.239 0.811865
                                                   -0.9776064 0.0717005 -13.635 < 2e-16 ***
## X3YES
## X4MIA
                                                    0.0226420 0.0798112
                                                                                                   0.284 0.777114
## X1:X2
                                                    0.0005142 0.0017966
                                                                                                   0.286 0.775208
## X3YES
                          :X4MIA
                                                    0.0308881 0.0987742
                                                                                                   0.313 0.755019
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2822 on 125 degrees of freedom
## Multiple R-squared: 0.8894, Adjusted R-squared: 0.8823
## F-statistic: 125.7 on 8 and 125 DF, p-value: < 2.2e-16
Only Remove Squared Interactions
model4 \leftarrow lm(Y \sim X1 + X2 + X1*X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3*X4 + X1*X3 + X1*X4 + X1*X3*X4 + X2*X4 + X1*X3*X4 + X
summary(model4)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 +
              X4 + X3 * X4 + X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 +
##
              X2 * X4 + X2 * X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 *
              X2 * X3 * X4)
##
##
## Residuals:
##
                Min
                                    1Q
                                              Median
                                                                         3Q
                                                                                         Max
## -0.59556 -0.10610 0.01649 0.11986 0.55701
##
```

```
## Coefficients:
##
                                 Estimate Std. Error t value Pr(>|t|)
                                1.208e+01
                                            2.587e-01
## (Intercept)
                                                       46.712 < 2e-16 ***
## X1
                               -5.530e-01
                                            9.648e-02
                                                       -5.731 8.02e-08 ***
## X2
                                1.889e-02
                                            2.120e-02
                                                        0.891 0.374766
## I(X1^2)
                                8.738e-02
                                            8.274e-03
                                                       10.560 < 2e-16 ***
## I(X2^2)
                                8.196e-05
                                            3.735e-04
                                                        0.219 0.826705
## X3YES
                               -3.852e-01
                                            4.001e-01
                                                       -0.963 0.337705
## X4MIA
                                7.604e-01
                                            2.714e-01
                                                        2.802 0.005952 **
## X1:X2
                               -2.041e-02
                                            6.487e-03
                                                       -3.146 0.002101 **
## X3YES
             :X4MIA
                               -3.529e-01
                                            4.266e-01
                                                       -0.827 0.409765
## X1:X3YES
                               -1.316e-01
                                            1.417e-01
                                                       -0.929 0.355058
## X1:X4MIA
                               -3.337e-01
                                            8.995e-02
                                                       -3.710 0.000320 ***
## X2:X3YES
                               -8.258e-02
                                            2.956e-02
                                                       -2.793 0.006104 **
## X2:X4MIA
                                -4.830e-02
                                            2.049e-02
                                                       -2.357 0.020096 *
## X1:X3YES
                :X4MIA
                                1.821e-01
                                            1.475e-01
                                                        1.235 0.219378
## X2:X3YES
                :X4MIA
                                5.936e-02
                                            3.217e-02
                                                        1.845 0.067524
## X1:X2:X3YES
                                2.136e-02
                                            1.043e-02
                                                        2.048 0.042807 *
## X1:X2:X4MIA
                                2.319e-02
                                            6.846e-03
                                                        3.388 0.000963 ***
## X1:X2:X3YES
                   :X4MIA
                                -2.600e-02
                                            1.090e-02
                                                       -2.386 0.018628 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2312 on 116 degrees of freedom
## Multiple R-squared: 0.9311, Adjusted R-squared: 0.921
## F-statistic: 92.21 on 17 and 116 DF, p-value: < 2.2e-16
```

Choosing a model at $(\alpha = 0.01)$

We can observe that all models resulted in a small p-value from the global F-test. Meaning they all are statistically useful for predicting trucking price. We will one by one compare the models.

Model 1 vs Model 2: We can observe that Model 1 has a higher adjusted R squared and more statistically significant terms. We will conduct a partial F-test to see if the full model is statistically a better better predictor than the reduced model (Model 2).

```
H_0: \beta_4 = \beta_5 = \beta_{18} = \beta_{19} = \beta_{20} = \beta_{21} = \beta_{22} = \beta_{23} = 0
```

 H_a : At least one of the quadratic β 's in Model 1 differs from 0

anova (model1, model2)

```
## Analysis of Variance Table
##
## Model 1: Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3 * X4 +
       X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 *
##
##
       X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4 +
       I(X1^2) * X3 + I(X1^2) * X4 + I(X1^2) * X3 * X4 + I(X2^2) *
##
       X3 + I(X2^2) * X4 + I(X2^2) * X3 * X4
  Model 2: Y ~ X1 + X2 + X1 * X2 + X3 + X4 + X3 * X4 + X1 * X3 + X1 * X4 +
##
       X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 * X3 * X4 + X1 * X2 *
##
       X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4
##
##
     Res.Df
                RSS Df Sum of Sq
                                            Pr(>F)
## 1
        110
             6.1186
## 2
        118 12.1764 -8
                        -6.0578 13.613 1.465e-13 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The small p-value suggests that we can reject the null hypothesis. Concluding that the quadratic terms in Model 1 are statistically significant.

Model 1 vs Model 3: We can see that the adjusted R squared of Model 3 is even lower than Model 2's. We will conduct a partial F-test to see if the reduced model is statistically worse than Model 1 (complete second order model).

$$H_0: \beta_9 = \beta_{10} = \beta_{11} = \beta_{12} = \beta_{13} = \beta_{14} = \beta_{15} = \beta_{16} = \beta_{17} = \beta_{18} = \beta_{19} = \beta_{20} = \beta_{21} = \beta_{22} = \beta_{23} = 0$$

 H_a : At least one of the QNxQL interaction β 's in Model 1 differs from 0

anova (model1, model3)

```
## Analysis of Variance Table
##
## Model 1: Y ~ X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3 * X4 +
##
       X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 *
       X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4 +
##
##
       I(X1^2) * X3 + I(X1^2) * X4 + I(X1^2) * X3 * X4 + I(X2^2) *
##
       X3 + I(X2^2) * X4 + I(X2^2) * X3 * X4
## Model 2: Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3 * X4
     Res.Df
               RSS Df Sum of Sq
##
                                      F
                                           Pr(>F)
## 1
        110 6.1186
        125 9.9548 -15
                         -3.8361 4.5977 9.838e-07 ***
## 2
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The small p-value suggests that the QNxQL interation terms are significant and at least one of the coefficients differ from 0. Therefore we will continue with Model 1.

Model 1 vs Model 4: We can observe that Model 4 has a significant amount of more statistically significant terms. Also Model 4 has a higher adjusted R squared value. Conducting a partial F-test will show which model is statistically significant aside from the observations.

$$H_0: \beta_{18} = \beta_{19} = \beta_{20} = \beta_{21} = \beta_{22} = \beta_{23} = 0$$

 H_a : At least one of the qualitative-quadratic interaction β 's in Model 1 differs from 0

anova (model1, model4)

```
## Analysis of Variance Table
##
## Model 1: Y ~ X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3 * X4 +
##
      X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 *
      X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4 +
##
##
      I(X1^2) * X3 + I(X1^2) * X4 + I(X1^2) * X3 * X4 + I(X2^2) *
      X3 + I(X2^2) * X4 + I(X2^2) * X3 * X4
##
  X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 *
##
      X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4
##
##
    Res.Df
             RSS Df Sum of Sq
                                 F Pr(>F)
## 1
       110 6.1186
## 2
       116 6.2030 -6 -0.084382 0.2528 0.9572
```

The large p-value suggests that we fail to reject the null hypothesis and therefore we choose Model 4 to be the better predictor.

Building More Models

Drop Terms Containing X4 from Model 4

```
model5 \leftarrow lm(Y \sim X1 + X2 + X1*X2 + I(X1^2) + I(X2^2) + X3 + X1*X3 + X2*X3 + X1*X2*X3)
summary(model5)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 +
      X1 * X3 + X2 * X3 + X1 * X2 * X3)
##
## Residuals:
##
      Min
                               3Q
               1Q Median
                                      Max
  -0.6398 -0.1766 0.0191 0.1435
                                  0.6524
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   -0.8347011 0.0534069 -15.629
                                                  < 2e-16 ***
## X1
                                          -3.139
## X2
                   -0.0380653 0.0121254
                                                  0.00212 **
## I(X1^2)
                    0.0830077 0.0070383
                                          11.794 < 2e-16 ***
## I(X2^2)
                    0.0001873 0.0003943
                                           0.475 0.63552
## X3YES
                   -0.7866917 0.1366532
                                          -5.757 6.34e-08 ***
## X1:X2
                    0.0018214 0.0021559
                                           0.845 0.39982
                                           0.766 0.44509
## X1:X3YES
                    0.0323006 0.0421641
## X2:X3YES
                   -0.0190077 0.0110158
                                          -1.725 0.08693 .
## X1:X2:X3YES
                   -0.0033701 0.0032005
                                          -1.053
                                                 0.29439
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2495 on 124 degrees of freedom
## Multiple R-squared: 0.9142, Adjusted R-squared: 0.908
## F-statistic: 146.9 on 9 and 124 DF, p-value: < 2.2e-16
Drop Terms Containing X3 from Model 4
model6 \leftarrow lm(Y \sim X1 + X2 + X1*X2 + I(X1^2) + I(X2^2) + X4 + X1*X4 + X2*X4 + X1*X2*X4)
summary(model6)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X4 +
      X1 * X4 + X2 * X4 + X1 * X2 * X4)
##
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -1.10610 -0.41914 -0.09361 0.45041 1.32088
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   11.5555587 0.4866063 23.747
## X1
                   -0.5037576 0.1922962 -2.620
                                                   0.0099 **
```

```
## X2
                   0.0081068 0.0424667
                                        0.191
                                                0.8489
                                       4.808 4.34e-06 ***
## I(X1^2)
                   0.0922534 0.0191887
## I(X2^2)
                   0.0001259 0.0008889
                                       0.142
                                                0.8876
## X4MIA
                   0.8780703 0.4966336
                                        1.768
                                                0.0795
## X1:X2
                  -0.0194064 0.0122038
                                       -1.590
                                                0.1143
                  -0.3836006 0.1708012 -2.246
## X1:X4MIA
                                                0.0265 *
## X2:X4MIA
                  -0.0515772 0.0378926 -1.361
                                                0.1759
## X1:X2:X4MIA
                   0.0210225 0.0128192
                                       1.640
                                                0.1036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.557 on 124 degrees of freedom
## Multiple R-squared: 0.5726, Adjusted R-squared: 0.5416
## F-statistic: 18.46 on 9 and 124 DF, p-value: < 2.2e-16
Drop all Qualitative-Qualitative Interactions
model7 \leftarrow lm(Y \sim X1 + X2 + X1*X2 + I(X1^2) + I(X2^2) + X3 + X4 + X1*X3 + X1*X4+ X2*X3 + X2*X4 + X1*X2*X
summary(model7)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 +
      X4 + X1 * X3 + X1 * X4 + X2 * X3 + X2 * X4 + X1 * X2 * X3 +
##
##
      X1 * X2 * X4)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 30
                                         Max
## -0.52773 -0.14083 -0.00927 0.14134 0.58708
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  -0.5979770 0.0842487 -7.098 9.64e-11 ***
## X1
## X2
                  -0.0059761 0.0185722 -0.322 0.748182
## I(X1^2)
                   0.0857500 0.0083444 10.276 < 2e-16 ***
                                       0.376 0.707262
## I(X2^2)
                   0.0001420 0.0003773
## X3YES
                  -0.7818945  0.1290013  -6.061  1.61e-08 ***
## X4MIA
                   0.6768020 0.2103468
                                       3.218 0.001663 **
## X1:X2
                  ## X1:X3YES
                  0.0399004 0.0399904
                                       0.998 0.320409
## X1:X4MIA
                  ## X2:X3YES
                  -0.0209445 0.0104470 -2.005 0.047232 *
## X2:X4MIA
                  -0.0261968 0.0160964 -1.627 0.106256
## X1:X2:X3YES
                  -0.0033175 0.0030303 -1.095 0.275811
## X1:X2:X4MIA
                   0.0129784 0.0054379
                                       2.387 0.018565 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2355 on 120 degrees of freedom
## Multiple R-squared: 0.926, Adjusted R-squared: 0.918
## F-statistic: 115.6 on 13 and 120 DF, p-value: < 2.2e-16
```

Choosing the Final Model at $(\alpha = 0.01)$

Model 4 vs Model 5: We can observe that the adjusted R squared in both models is high. Conducting a partial F-test to compare these models results in the following output:

$$H_0: \beta_7 = \beta_8 = \beta_{10} = \beta_{11} = \beta_{13} = \beta_{14} = \beta_{16} = \beta_{17} = 0$$

 H_a : At least one of the origin β 's in Model 4 differs from 0

anova(model4, model5)

```
## Analysis of Variance Table
##
## Model 1: Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3 * X4 +
       X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 *
##
       X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4
##
## Model 2: Y ~ X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X1 * X3 + X2 *
##
       X3 + X1 * X2 * X3
##
     Res.Df
              RSS Df Sum of Sq
                                    F Pr(>F)
## 1
        116 6.203
## 2
        124 7.722 -8
                        -1.519 3.5507 0.00103 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The small p-value (< .01) means that we reject the null hypothesis and we conclude that origin terms are statistically significant. Therefore, we continue testing with Model 4.

Model 4 vs Model 6: It can be observed that the adjusted R squared value for Model 6 is significantly lower than Model 4's. We can conduct a partial F-test to find out if Model 4 is statistically a better predictor than Model 6.

$$H_0: \beta_6 = \beta_8 = \beta_9 = \beta_{11} = \beta_{12} = \beta_{14} = \beta_{15} = \beta_{17} = 0$$

 H_a : At least one of the deregulation β 's in Model 4 differs from 0

anova(model4, model6)

```
## Analysis of Variance Table
##
## Model 1: Y ~ X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3 * X4 +
##
       X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 *
       X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4
##
## Model 2: Y ~ X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X4 + X1 * X4 + X2 *
##
       X4 + X1 * X2 * X4
     Res.Df
              RSS Df Sum of Sq
                                    F
                                         Pr(>F)
##
## 1
        116 6.203
## 2
        124 38.476 -8
                      -32.273 75.441 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The small p-value resulting from this test leads us to reject the null hypothesis. Concluding that Model 4 is a statistically better predictor for trucking price.

Model 4 vs Model 7: We can see that the adjusted R squared values for these models do not differ significantly. Conducting a partial F-test results in:

$$H_0 = \beta_8 = \beta_{11} = \beta_{14} = \beta_{17} = 0$$

anova (model4, model7)

```
## Analysis of Variance Table
## Model 1: Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X3 * X4 +
##
      X1 * X3 + X1 * X4 + X1 * X3 * X4 + X2 * X3 + X2 * X4 + X2 *
##
      X3 * X4 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X3 * X4
## Model 2: Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 + X4 + X1 * X3 +
##
       X1 * X4 + X2 * X3 + X2 * X4 + X1 * X2 * X3 + X1 * X2 * X4
##
    Res.Df
               RSS Df Sum of Sq
                                     F Pr(>F)
## 1
        116 6.2030
## 2
        120 6.6577 -4 -0.45465 2.1256 0.082 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

It can be observed that the p-value is > .01, meaning we fail to reject the null hypothesis that all QLxQL interaction terms are 0. Leading us to choose Model 7 as our final model.

Impact of Deregulation

Now that we have chosen our model, let us observe the impact of deregulation on trucking price.

summary(model7)

```
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 +
       X4 + X1 * X3 + X1 * X4 + X2 * X3 + X2 * X4 + X1 * X2 * X3 +
##
##
      X1 * X2 * X4)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
##
  -0.52773 -0.14083 -0.00927 0.14134 0.58708
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                    12.1914422  0.2158264  56.487  < 2e-16 ***
## (Intercept)
## X1
                    -0.5979770 0.0842487
                                           -7.098 9.64e-11 ***
## X2
                    -0.0059761 0.0185722
                                          -0.322 0.748182
## I(X1^2)
                     0.0857500
                               0.0083444
                                           10.276 < 2e-16 ***
## I(X2^2)
                     0.0001420 0.0003773
                                            0.376 0.707262
## X3YES
                    -0.7818945   0.1290013   -6.061   1.61e-08 ***
## X4MIA
                     0.6768020 0.2103468
                                           3.218 0.001663 **
## X1:X2
                    -0.0107837 0.0053020 -2.034 0.044168 *
## X1:X3YES
                     0.0399004 0.0399904
                                           0.998 0.320409
## X1:X4MIA
                    -0.2746418 0.0726651
                                          -3.780 0.000246 ***
## X2:X3YES
                    -0.0209445 0.0104470
                                           -2.005 0.047232 *
## X2:X4MIA
                    -0.0261968 0.0160964
                                          -1.627 0.106256
## X1:X2:X3YES
                    -0.0033175 0.0030303
                                          -1.095 0.275811
## X1:X2:X4MIA
                     0.0129784 0.0054379
                                            2.387 0.018565 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2355 on 120 degrees of freedom
```

```
## Multiple R-squared: 0.926, Adjusted R-squared: 0.918  
## F-statistic: 115.6 on 13 and 120 DF, p-value: < 2.2e-16  
\hat{y}=12.192-.598x_1-.00598x_2-.01078x_1x_2+.086x_1^2+.00014x_2^2 \\ +.677x_4-.275x_1x_4-.026x_2x_4+.013x_1x_2x_4-.782x_3 \\ +.0399x_1x_3-.021x_2x_3-.0033x_1x_2x_3
```

A good way to assess the impact of deregulation is to hold all but one independent variable fixed. Suppose weight of shipment is 15,000 pounds and consider only shipments originating from Jacksonville ($x_2 = 15$ and $x_4 = 0$). Substituting these values into the prediction equation results in:

$$\hat{y} = 12.192 - .598x_1 - .00598(15) - .01078x_1(15) + .086x_1^2 + .00014(15)^2$$

$$+ .677(0) - .275x_1(0) - .026(15)(0) + .013x_1(15)(0) - .782x_3$$

$$+ .0399x_1x_3 - .021(15)x_3 - .0033x_1(15)x_3$$

$$= 12.192 - .760x_1 + .086x_1^2 - 1.097x_3 - .0096x_1x_3$$

To see the impact of deregulation now we will plug in $x_3 = 1$ (deregulated) and $x_3 = 0$ (regulated), shown below:

Regulated
$$(x_3 = 0)$$
: $\hat{y} = 12.192 - .760x_1 + .086x_1^2 - 1.097(0) - .0096x_1(0)$

$$= 12.192 - .760x_1 + .086x_1^2$$
Deregulation $(x_3 = 1)$: $\hat{y} = 12.192 - .760x_1 + .086x_1^2 - 1.097(1) - .0096x_1(1)$

$$= 11.037 - .7696x_1 + .086x_1^2$$

We can see that the y-intercept for the regulated prices is larger than the y-intercept for the deregulated prices. The equations have the same curvature but the shift parameter differs.

```
reg <- function(x) {
   yint<- 12.134
   shift <- 0.76*x
   curve <- 0.086*x*x
   return(yint-shift+curve)
}
dereg <- function(x) {
   yint<- 11.037
   shift <- 0.7696*x
   curve <- 0.086*x*x
   return(yint-shift+curve)
}</pre>
```

Plotting

```
summary(TRUCKING$DISTANCE)
                               Mean 3rd Qu.
      Min. 1st Qu.
                    Median
                                                Max.
##
     0.250
             1.875
                      3.000
                              2.931
                                       3.600
                                               6.000
x \leftarrow seq(0.25, 6, 0.25)
plot(x, reg(x),
     main = "Plot of PREDICT vs DISTANCE",
     ylab = "Predicted LN(PRICE)",
     xlab = "DISTANCE",
     ylim = range(9:12),
     type = "o",
     pch = "o",
     col = "darkmagenta")
points(x, dereg(x), col = "darkgreen", pch = "+")
lines(x, dereg(x), col = "darkgreen")
legend("topright", c("regulated", "deregulated"),
       fill = c("darkmagenta", "darkgreen"))
```

Plot of PREDICT vs DISTANCE

The graph clearly shows the impact of deregulation on the prices charged when the carrier leaves from Jacksonville with a cargo of 15,000 pounds. As expected from economic theory, the curve for the regulated prices lies above the curve for deregulated prices.

Follow-up Questions

1) In the Plot, give an expression (in terms of the estimated β 's from Model 7) for the difference between the predicted regulated price and predicted deregulated price for any fixed value of mileage.

Regulated - Deregulated:

```
(12.192 - .760x_1 + .086x_1^2) - (11.037 - .7696x_1 + .086x_1^2)
= 1.155 - 0.0096x_1
\text{diff} \leftarrow \text{function}(\mathbf{x}) \ \{ \\ \text{yint} \leftarrow 1.155 \\ \text{slope} \leftarrow (0.0096*\mathbf{x}) \\ \text{return}(\text{yint-slope}) \ \}
\text{plot}(\mathbf{x}, \text{ diff}(\mathbf{x}), \\ \text{main} = \text{"Difference for Regulated and Deregulated Trucking Prices",} \\ \text{ylab} = \text{"Difference",} \\ \text{xlab} = \text{"DISTANE/MILES",} \\ \text{col} = \text{"blue",} \\ \text{type} = \text{"o",} \\ \text{pch} = \text{"*"})
```

Difference for Regulated and Deregulated Trucking Prices

2) Demonstrate the impact of deregulation on price charged using the estimated β 's from Model 7 in a fashion similar to the case study, but now hold origin fixed at Miami and weight fixed at 10,000 pounds.

Plugging in $x_2 = 10$ and $x_4 = 1$ we get:

$$\hat{y} = 12.192 - .598x_1 - .00598(10) - .01078x_1(10) + .086x_1^2 + .00014(10)^2 + .677(1) - .275x_1(1) - .026(10)(1) + .013x_1(10)(1) - .782x_3 + .0399x_1x_3$$

$$-.021(10)x_3 - .0033x_1(10)x_3$$
$$= 12.5632 - .8508x_1 + .086x_1^2 - .992x_3 + .0069x_1x_3$$

To see the impact of deregulation now we will plug in $x_3 = 1$ (deregulated) and $x_3 = 0$ (regulated), shown below:

Regulated
$$(x_3 = 0)$$
: $\hat{y} = 12.5632 - .8508x_1 + .086x_1^2 - .992(0) + .0069x_1(0)$

$$= 12.5632 - .8508x_1 + .086x_1^2$$
Deregulation $(x_3 = 1)$: $\hat{y} = 12.5632 - .8508x_1 + .086x_1^2 - .992(1) + .0069x_1(1)$

$$= 11.5712 - .8439x_1 + .086x_1^2$$

We can see that the y-intercept for the regulated prices is larger than the y-intercept for the deregulated prices. The equations have the same curvature but the shift parameter differs.

```
regm <- function(x) {
   yint<- 12.5632
   shift <- 0.8508*x
   curve <- 0.086*x*x
   return(yint-shift+curve)
}
deregm <- function(x) {
   yint<- 11.5712
   shift <- 0.8439*x
   curve <- 0.086*x*x
   return(yint-shift+curve)
}</pre>
```

Plotting:

```
plot(x, regm(x),
    main = "Plot of PREDICT vs DISTANCE",
    ylab = "Predicted LN(PRICE)",
    xlab = "DISTANCE",
    ylim = range(9:13),
    type = "o",
    pch = "o",
    col = "darkmagenta")

points(x, deregm(x), col = "darkgreen", pch = "+")
lines(x, deregm(x), col = "darkgreen")
legend("topright", c("regulated", "deregulated"),
    fill = c("darkmagenta", "darkgreen"))
```

Plot of PREDICT vs DISTANCE

The graph clearly shows the impact of deregulation on the prices charged when the carrier leaves from Miami with a cargo of 10,000 pounds. As expected from economic theory, the curve for the regulated prices lies above the curve for deregulated prices.

3) The data file TRUCKING4 contains data on trucking prices for four Florida carriers (A, B, C, and D). These carriers are identified by the variable CAR-RIER. (Note: Carrier B is the carrier analyzed in the case study.) Using Model 7 as a base model, add terms that allow for different response curves for the four carriers. Conduct the appropriate test to determine if the curves differ.

```
load("TRUCKING4.Rdata")
head (TRUCKING4)
     PRICEPTM DISTANCE WEIGHT PCTLOAD
                                            ORIGIN
                                                      MARKET
                                                                 DEREG
                                                                        CARRIER PRODUCT
##
## 1
        31344
                   3.60
                           3.00
                                    12.5 MIA
                                                   LARGE
                                                             YES
                                                                       Α
                                                                                      100
## 2
       225676
                   0.25
                           0.75
                                     3.1 MIA
                                                   LARGE
                                                             YES
                                                                       A
                                                                                      100
## 3
       172973
                   0.25
                           3.00
                                    12.5 MIA
                                                   LARGE
                                                             YES
                                                                                      100
                                                                       Α
                           0.25
## 4
        47167
                   2.60
                                     1.0 MIA
                                                   LARGE
                                                             YES
                                                                                      100
                                                                       Α
        30795
                                                   LARGE
                                                                                      100
## 5
                   2.60
                          15.00
                                    62.5 MIA
                                                             YES
                                                                       Α
                                    12.5 MIA
                                                   SMALL
                                                                                      100
## 6
        51126
                   1.50
                           3.00
                                                             YES
                                                                       Α
##
     LNPRICE
## 1 10.3528
## 2 12.3269
## 3 12.0609
## 4 10.7615
## 5 10.3351
## 6 10.8421
str(TRUCKING4)
```

448 obs. of 10 variables: \$ PRICEPTM: num 31344 225676 172973 47167 30795 ...

'data.frame':

```
## $ DISTANCE: num 3.6 0.25 0.25 2.6 2.6 1.5 4.8 1.8 3.4 3.4 ...
## $ WEIGHT : num 3 0.75 3 0.25 15 3 15 15 7.5 24 ...
## $ PCTLOAD : num 12.5 3.1 12.5 1 62.5 12.5 62.5 62.5 31.3 100 ...
## $ ORIGIN : Factor w/ 2 levels "JAX
                                                                                                                   ","MIA
                                                                                                                                                ": 2 2 2 2 2 2 2 2 1 1 ...
                                                                                                                   ","SMALL
                                                                                                                                                ": 1 1 1 1 1 2 1 2 1 1 ...
## $ MARKET : Factor w/ 2 levels "LARGE
## $ DEREG : Factor w/ 2 levels "NO
                                                                                                                   ","YES
                                                                                                                                                ": 2 2 2 2 2 2 2 2 2 2 . . .
                                                                                                                                                ",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ CARRIER : Factor w/ 4 levels "A
                                                                                                                   ","B
## $ PRODUCT : num 100 100 100 100 100 100 100 100 100 ...
## $ LNPRICE : num 10.4 12.3 12.1 10.8 10.3 ...
Original Model 7 (Without Carrier Terms):
                                             \hat{y} = 12.192 - .598x_1 - .00598x_2 - .01078x_1x_2 + .086x_1^2 + .00014x_2^2
                                                          +.677x_4 - .275x_1x_4 - .026x_2x_4 + .013x_1x_2x_4 - .782x_3
                                                                            +.0399x_1x_3 - .021x_2x_3 - .0033x_1x_2x_3
Adding in x_5, x_6, x_7 for Carrier:
                                                                                       x_5 = \begin{cases} 1 & \text{if Carrier B} \\ 0 & \text{if not} \end{cases}
                                                                                       x_6 = \begin{cases} 1 & \text{if Carrier C} \\ 0 & \text{if not} \end{cases}
                                                                                       x_7 = \begin{cases} 1 & \text{if Carrier D} \\ 0 & \text{if not} \end{cases}
Y <- TRUCKING4$LNPRICE
X1 <- TRUCKING4$DISTANCE
X2 <- TRUCKING4$WEIGHT
X3 <- TRUCKING4$DEREG
X4 <- TRUCKING4$ORIGIN
X5 <- TRUCKING4$CARRIER
model8 \leftarrow lm(Y \sim X1 + X2 + X1*X2 + I(X1^2) + I(X2^2) + X3 + X4 + X5 + X1*X3 + X1*X4 + X1*X5 + X2*X3 + X1*X4 + X1*X5 +
summary(model8)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X1 * X2 + I(X1^2) + I(X2^2) + X3 +
                  X4 + X5 + X1 * X3 + X1 * X4 + X1 * X5 + X2 * X3 + X2 * X4 +
##
                  X2 * X5 + X1 * X2 * X3 + X1 * X2 * X4 + X1 * X2 * X5)
##
## Residuals:
##
                                               1Q
                                                         Median
                                                                                              3Q
```

Estimate Std. Error t value Pr(>|t|)

12.5184657 0.1884266 66.437 < 2e-16 ***

-0.80936 -0.27121 0.01164 0.25445 1.10827

##

##

Coefficients:

(Intercept)

```
## X1
               -0.6812502  0.0753746  -9.038  < 2e-16 ***
## X2
               -0.0301213 0.0169919 -1.773 0.077003 .
## I(X1^2)
               0.0851642 0.0078286 10.879 < 2e-16 ***
## I(X2^2)
               0.0002683 0.0003202
                                 0.838 0.402579
## X3YES
               ## X4MIA
               0.6113791 0.1654084
                                 3.696 0.000248 ***
## X5B
              -0.4475470 0.1452336 -3.082 0.002194 **
## X5C
               ## X5D
               ## X1:X2
               -0.0007936 0.0051284 -0.155 0.877096
## X1:X3YES
               0.0437210 0.0416025
                                 1.051 0.293895
## X1:X4MIA
               ## X1:X5B
                0.0512131 0.0459311 1.115 0.265485
## X1:X5C
                0.0606455 0.0497078 1.220 0.223131
## X1:X5D
                0.0825943 0.0587831 1.405 0.160737
## X2:X3YES
                0.0030368 0.0109045
                                 0.278 0.780772
## X2:X4MIA
               -0.0266516  0.0137604  -1.937  0.053433 .
## X2:X5B
                0.0050117 0.0121126 0.414 0.679259
## X2:X5C
                ## X2:X5D
                0.0355065 0.0153800
                                 2.309 0.021447 *
## X1:X2:X3YES
               ## X1:X2:X4MIA
                0.0090046 0.0046210
                                 1.949 0.052001 .
               -0.0057077 0.0037031 -1.541 0.123986
## X1:X2:X5B
## X1:X2:X5C
               ## X1:X2:X5D
               -0.0109979 0.0047146 -2.333 0.020131 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3638 on 422 degrees of freedom
## Multiple R-squared: 0.7426, Adjusted R-squared: 0.7273
## F-statistic: 48.69 on 25 and 422 DF, p-value: < 2.2e-16
```

The End