Ausgabe: 07.11.2023

Abgabe: 13.11.2023

Aufgabe 1

Gegeben sei die folgende zweidimensionale Wahrscheinlichkeitsfunktion

	Υ	0	1	
X				
0		0/32	2/32	
1		1/32	1/32	
2		3/32	7/32	
3		10/32	8/32	

- a) Berechnen Sie die Randwahrscheinlichkeiten für beide Zufallsvariablen.
- b) Ermitteln Sie die Wahrscheinlichkeitsverteilung für die Zufallsvariable X unter der Bedingung Y = 1.
- c) Überprüfen Sie, ob die Zufallsvariablen X und Y stochastisch unabhängig sind.
- d) Berechnen Sie aus den Randverteilungen
 - i. die Erwartungswerte und
 - ii. die Varianzen

für X und Y.

- e) Berechnen Sie für das gegebene Beispiel die Kovarianz Cov(X,Y).
- f) Berechnen Sie den Korrelationskoeffizient ρ_{XY} und treffen Sie eine Aussage über die Stärke des linearen Zusammenhanges zwischen X und Y.

Lösung 1

Aufgabe 2

Während einer Theaterprobe wird eine Russisch-Roulette-Szene geübt. Dazu wird ein Trommelrevolver, der 6 Platzpatronen fasst, mit nur einer Platzpatrone geladen.

a) Mit welcher Verteilung kann die Zufallsvariable

 $X = \{$ die Person überlebt bis einschließlich Abfeuern des x-ten Schusses $\}$

beschrieben werden, wenn nach jedem Versuch die Trommel erneut gedreht wird?

b) Wie wahrscheinlich ist es, mehr als 5 Runden zu überleben?

Ausgabe: 07.11.2023

Abgabe: 13.11.2023

Lösung 2

Aufgabe 3

Die Anzahl *X* der abgesetzten Notebooks in einer beliebigen Woche in einer Filiale der PC-Kette Hypercom lässt sich durch eine Poissionverteilung mit Erwartungswert 4 beschreiben.

- a) Bestimmen Sie für eine beliebige Woche die Wahrscheinlichkeit, dass
 - i. kein Gerät
 - ii. mindestens ein Gerät

verkauft wird.

- b) Wie groß ist die Varianz von X?
- c) Bestimmen Sie für den Zeitraum von zwei Wochen die Wahrscheinlichkeit, dass mehr als sechs aber höchstens acht Geräte verkauft werden.

Lösung 3