

TILDE, FINDING a AND 6

ASSUME	R(N)	APPROACHES	a N ^b
--------	------	------------	------------------

	-	
N	R(N)	FINDING & MATHEMATICALLY
500	0.08 sec	R(8000) = a80006
1000	0.70 sec	R(4000) = a4000 =
2000	1. 22 sec	$\frac{43.62}{5.15} = \left(\frac{8000}{4000}\right)^{6}$
4000	5.15 Sec	$8.47 = 2^{b} \rightarrow b = 3.08$
8000	42 62 500	8.4+= Z -> b = 3.00

FINDING 6 BY APPROXIMATION THE THE LARGEST 2 ENTRIES. NOTE THAT WHEN N	FINDING a $R(N) \approx a N^{b}$ $43.62 = a(8000)^{3}$ $43.62 = a(8 \times 10^{3})^{3}$	So $\alpha \approx 0.085 \times 10^{-1}$ OR $\alpha \approx 8.5 \times 10^{-11}$ R(N) ~ (8.5×10^{-11}) N ³
DOUBLES, 43.62 ≈ 5.15(9) R(N) ABOUT 9× BIGGER. THUS, b ≈ 3.	$A \approx \frac{43.62}{512} \cdot 10^{9}$ $512\frac{00.08}{142.62} \cdot \frac{226}{512}$ $\frac{40.96}{2.66}$	

SUMMATIONS

SUM	FORMULA	Θ	~
1+2+3++N	N(N+1)/2	N ²	$\frac{1}{2}N^2$
1 + 2 + 3 + ··· + N 1 + 2 + 4 + 8 + ··· + N	2N-1	2	2 N
1+3+5+ + N	N ²	N ²	N ²
1+ 4+9+16+	N(N+1)(2N+1)	N ₃	$\frac{1}{3}N^3$

HASHMAPS