logic precept 2

Warmup: Deducing

Exercise 2.5 ($\wedge E$, $\wedge I$, $\vee I$, MP, MT, DN)

$$\begin{split} P &\to \neg Q, Q \;\vdash\; \neg P \\ \neg \neg P \;\vdash\; \neg \neg P \land (P \lor Q) \\ \neg (P \land Q) &\to R, \neg R \;\vdash\; P \\ \neg P &\to \neg Q, Q \;\vdash\; P \end{split}$$

$$P \vdash \neg \neg (P \lor Q)$$

New proof rules

We will work in blocks. The first block leads to problem A1.

$$P \to Q \vdash P \to (Q \lor R)$$

$$(P \vee Q) \to R \vdash P \to R$$

$$P \to Q \vdash (R \to P) \to (R \to Q)$$

$$P \to Q \vdash (Q \to R) \to (P \to R)$$

(A1)
$$P \rightarrow (Q \rightarrow R) \vdash Q \rightarrow (P \rightarrow R)$$

The second block leads to A2. The focus is on the "contrapositive maneuver".

$$P \to Q \vdash \neg Q \to \neg P$$

$$\vdash P \to (P \lor Q)$$

$$\neg (P \lor Q) \vdash \neg P$$

$$\vdash (P \land Q) \rightarrow P$$

(A2)
$$\neg P \vdash \neg (P \land Q)$$

The third block leads to A3 and A4.

$$P \, \vdash \, (P \to Q) \to Q$$

(A3)
$$P \vdash (P \rightarrow \neg P) \rightarrow \neg P$$

(A4)
$$Q \vdash \neg(Q \rightarrow \neg Q)$$

The fourth block leads to problem B1.

$$P \lor Q \vdash Q \lor P$$

$$P \lor (Q \land R) \vdash (P \land Q) \lor (P \land R)$$

(B1)
$$P \wedge (Q \vee R) \vdash (P \wedge Q) \vee (P \wedge R)$$

The fifth block leads to problem B2.

$$P, \neg P \vdash Q$$

(B2)
$$P \lor Q, \neg P \vdash Q$$

Evaluating proofs

Exercise Which of the following proofs with CP is correct? If a proof is not correct, explain what is wrong with it, and say whether there is a simple fix, or whether it is fatally flawed.

\mathbf{De}	\mathbf{ps}	Line	Formula	Justification
	1	(1)	$P \wedge Q$	A
	1	(2)	P	$1 \wedge E$
	1	(3)	Q	$2 \wedge E$
		(4)	$P \to Q$	2,3 CP
		()	•	,
De	\mathbf{ps}	()	Formula	Justification
De	ps 1	()	·	Justification A
De	$\frac{\mathbf{ps}}{1}$	Line	·	Justification A A

Exercise Explain what is wrong with the following "proof".

\mathbf{Deps}	Line	Formula	Justification
1	(1)	$P \lor Q$	A
2	(2)	P	A
3	(3)	Q	A
2,3	(4)	$P \wedge Q$	$2,3 \wedge I$
2,3	(5)	P	$4 \wedge \mathrm{E}$
1	(6)	P	$1,2,2,3,5 \ \lor \mathrm{E}$

Additional practice problems

$$\neg P \vee \neg Q \dashv \vdash \neg (P \wedge Q)$$

$$P \to (P \to Q) \vdash P \to Q$$

$$(P \lor Q) \to R \vdash P \to R$$

$$P \to (Q \to R), P \to Q \vdash P \to R$$

$$P \to (Q \to R) \vdash (P \to Q) \to (P \to R)$$

$$(P \to Q) \to P \vdash (P \to Q) \to Q$$

$$(P \to Q) \to P \vdash \neg P \to P$$

$$(P \to R) \land (Q \to R) \vdash (P \lor Q) \to R$$

$$P \lor (Q \lor R) \dashv \vdash (P \lor Q) \lor R$$

$$P \wedge (Q \vee R) \dashv \vdash (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) \ \dashv \vdash \ (P \vee Q) \wedge (P \vee R)$$

$$\neg P \lor Q \ \# \ P \to Q$$

$$\neg (P \to Q) \dashv \vdash P \land \neg Q$$

$$\vdash (P \to Q) \lor (Q \to P)$$

$$P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$$

 $\vdash ((P \to Q) \to P) \to P$ (Hint: One possibility is to first prove $\vdash P \lor \neg P$, and then argue by cases. The first case is easy if you remember "positive paradox". For the second case, remember "negative paradox", i.e. that $\neg P$ implies $P \to Q$.)

$$P \to (Q \lor R) \vdash \neg R \to (\neg Q \to \neg P)$$

$$P \to \neg P \ \dashv \vdash \ \neg P$$

$$(P \to Q) \to Q \vdash (Q \to P) \to P$$

$$(P \to Q) \to R \, \vdash \, (P \to R) \to R$$

$$(P \to R) \to R \dashv P \lor R$$
 (Hint: derive $\neg P \to R$ from the sentence on the left.)

$$(P \to Q) \to P + P$$
 (Hint: assume $\neg P$ and derive $P \to Q$.)