Decision Tree

Predictive Modeling II

Auburn University

Pei Xu

Example: Baseball Players' Salaries

Salary is color-coded from low (blue, green) to high (yellow,red)

Example: Baseball Players' Salaries

- The predicted Salary is the number in each leaf node. It is the <u>mean</u> of the response for the observations that fall there
- Note that Salary is measured in 1000s, and logtransformed
- The predicted salary for a player who played in the league for more than 4.5 years and had less than 117.5 hits last year is

$$1000 \times e^{6.00} = 402,834$$

Another way of visualizing the decision tree...

Prediction using a Decision Tree

What values should we use for $\hat{Y}_1, \hat{Y}_2, ..., \hat{Y}_k$?

For region R_{i} , the best prediction is simply the average of all the responses from our training data that fell in region R_{i} .

A Simple Decision Task – Fruit Classification

Tree-based Model

- A machine learning structure which is composed of a sequence of decisions to predict on an input vector of variables X=(X1,X2,...,Xp)
- Tree-based methods involve stratifying or segmenting the predictor space into a number of simple regions.
- The regions are defined using a number of splitting rules.
- Since the set of splitting rules used to segment the predictor space can be summarized in a tree diagram, these approaches are known as decision-tree methods.

The Basic ...

- To build a decision tree, you need a sample of data with an observable "target" (outcome or predictor) variable.
- In general, you have a "training sample with known values of the target. The training sample is used to build the new tree model.
- The model is then applied to future data for which the target has not been observed.
- Decision trees can be applied to both regression and classification problems.
 - Classification trees are used when the target is categorical.
 - Regression trees are used when the target is quantitative.

Overview: Steps to Creating a Decision Tree

- Define a precise criterion: for selecting the variable and separation condition.
 - When the best separation has been found, the process is repeated on each node to increase the discrimination. This continues until...
- 2. There is a reason to stop.
 - The separation of individuals cannot be repeated further.
- 3. Pruning to find a parsimonious tree.

Step 1: Separation Criterion

- CHAID (Chi Square Automatic Interaction Detection)
 - For each independent variable, the group is split and combined with the target variable in a 2 X 2 contingency table.
 - From this table, a chi-square test of independence is calculated. A small p-value indicates significant differences or separation in Target.
 - logworth = -ln(p-value), where p-value is the p-value from the chi-square test for that variable.

Step 1: Separation Criterion

- CHAID (Chi Square Automatic Interaction Detection)
 - In fact, since the p-value for the tests are so small, a function of the p-value, the *logworth*, is used for determining the variable that gives maximum separation.
 - The *logworth* is computed for all the independent variables in the data set and the one with the largest logworth is selected for the first split.
 - CHAID is the simplest algorithm for splitting trees.

Step 2: Stopping

- Stopping Occurs When...
 - Depth of tree has reached a fixed limit, or,
 - Number of leaves has reached a fixed maximum, or,
 - A minimum number is contained in each node, or,
 - Further division of a node creates a child with too few observations, or,
 - Quality of the tree is adequate, or,
 - Quality of tree is no longer increasing significantly.

Step 3: Pruning

- As a general rule, there should be at least 20 to 30 individuals per node.
- Branches that lead to leaves with too few observations should be pruned.
- A good algorithm creates a tree of maximum size, then prunes according to a validation sample.

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if number of instances is less than some userspecified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree
- Subtree raising
 - Replace subtree with most frequently used branch

Simple Prediction Illustration

Predict dot color for each x_1 and x_2 .

Simple Prediction Illustration

Predict dot color for each x_1 and x_2 .

Calculate the *logworth* of every partition on input x_1 .

Calculate the *logworth* of every partition on input x_1 .

Create a partition rule from the best partition across all inputs.

Repeat the process in each subset.

Create a second partition rule.

Create a second partition rule.

Decision Tree Induction

Many Algorithms:

- Hunt's Algorithm (Hunt, 1966)
- ChAID (Kass, 1980)
- CART (Breiman, Friedman, Olshen, & Stone, 1984)
- ID3, C4.5 (Quinlan, 1986, 1993)
- SLIQ (Mehta, Agrawal, Rissanen, 1996)
- SPRINT (Shaffer, Agrawal, Mehta, 1996)

Growing a Classification Tree

- A classification tree is very similar to a regression tree except that we try to make a prediction for a categorical rather than continuous Y.
- For each region (or node) we predict the most common category among the training data within that region.
- There are several possible different criteria to use such as the "gini index" and "logworth" but the easiest one to think about is to minimize the error rate.

Applying a Decision Tree Model

Decision Tree Classification Task

Test Set

Decision Tree Classification Task

Training Set

Ti	id	Attrib1	Attrib2	Attrib3	Class
11	1	No	Small	55K	?
12	2	Yes	Medium	80K	?
13	3	Yes	Large	110K	?
14	4	No	Small	95K	?
15	5	No	Large	67K	?

Test Set

Example of a Decision Tree – Tax Fraud Detection

categorical continuous

	_	_	•	
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting Attributes Refund Yes No NO **MarSt** Single, Divorced Married **TaxInc** NO < 80K> 80K YES NO

Training Data

Model: Decision Tree

Trees as Sets of Rules

If a tax refund is requested, then the person is not cheating on Tax.

. . .

Model: Decision Tree

Example of a Decision Tree – Tax Fraud Detection

categorical continuous

			_	
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Start from the root of tree.

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Test Data

Trees vs. Linear models

Trees vs. Linear Models

- In general, which model is better?
 - If the relationship between the predictors and response is linear, then classical linear models such as linear regression would outperform regression trees
 - On the other hand, if the relationship between the predictors is non-linear, then decision trees would outperform classical approaches

Trees vs. Linear Models

- Regression Models are global, and they do not do a good job of fitting data that has local characteristics.
- Decision tree models are local it is fine for the relationship between variables to be quite different in different leaves.
- Decision tree segment data into boxes, while logistic regression/SVM partition data into classes by drawing lines
 - Global models are weak when there are several very different ways for record to become part of the target class

Trees vs. Linear Model: Classification Example

- Top row: the true decision boundary is linear
 - Left: linear model (good)
 - Right: decision tree

- Bottom row: the true decision boundary is non-linear
 - Left: linear model
 - Right: decision tree (good)

Pros and Cons of Decision Trees

Pros:

- Trees are very easy to explain to people (probably even easier than linear regression)
- Trees can be plotted graphically, and are easily interpreted even by non-expert
- They work fine on both classification and regression problems

Cons:

 Trees don't have the same prediction accuracy as some of the more complicated approaches that we examine in this course

Reference

- Tan, Pang-Ning, Steinbach, Michael, Kumar, Vipin, Karpatne, Anuj.
 "Introduction to Data Mining", (Pearson, 2nd edition, 2018) [chapter 3]
- SAS Institute. Predictive Modeling Slides