完美保密

哈尔滨工业大学 张宇 2024春

目录

- 1. 完美保密定义
- 2. 一次一密加密 (The One-Time Pad)
- 3. 完美保密的局限性
- 4. 香农定理

回顾加密词法

密钥 明文 密文

- \blacksquare key $k \in \mathcal{K}$, plaintext (or message) $m \in \mathcal{M}$, ciphertext $c \in \mathcal{C}$
- **Key-generation** algorithm $k \leftarrow \mathsf{Gen}$ 密钥生成算法
- **Encryption** algorithm $c:=\mathsf{Enc}_k(m)$ 加密算法
- $lacksymbol{ iny}$ **Decryption** algorithm $m:=\mathsf{Dec}_k(c)$ 解密算法
- Encryption scheme: $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ 加密方案
- Basic correctness requirement: $Dec_k(Enc_k(m)) = m$ 基本正确性要求

完美保密定义

- □直觉: 一个加密方案是安全的,那么敌手在获得密文后, 密文应该对敌手猜测明文没有任何帮助。
- □换句话说,根据密文来猜测答案和不知道密文猜测答案对故手来说是一样的。从概率的角度看,在获得密文后的某个明文后验似然 (posteriori likehood) 与该明文被发送的先验概率 (priori probability) 没有差别。

Definition 1

 Π over \mathcal{M} is **perfectly secret** if for every probability distribution over \mathcal{M} , $\forall m \in \mathcal{M}$ and $\forall c \in \mathcal{C}$ for which $\Pr[C = c] > 0$:

$$\Pr[M=m|C=c] = \Pr[M=m].$$

比特异或加密

Is the below scheme perfectly secret?

For $\mathcal{M} = \mathcal{K} = \{0, 1\}$, $\operatorname{Enc}_k(m) = m \oplus k$.

XORing one bit is perfectly secret.

Let Pr[M=1] = p and Pr[M=0] = 1-p. Let us consider a case that M=1 and C=1.

$$= \frac{\Pr[K = 1 \oplus 1] \cdot p}{\Pr[C = 1 | M = 1] \cdot \Pr[M = 1] + \Pr[C = 1 | M = 0] \cdot \Pr[M = 0]} \begin{cases} \text{ β} & \text{ β} \\ \text{ α} & \text{ α} \\ \text{ β} \end{cases}$$

$$= \frac{1/2 \cdot p}{1/2 \cdot p + 1/2 \cdot (1 - p)} = p = \Pr[M = 1]$$

We can do the same for other cases.

Note that
$$\Pr[M = 1 | C = 1] \neq \Pr[M = 1, C = 1] = \Pr[C = 1 | M = 1] \cdot \Pr[M = 1] = 1/2 \cdot p$$
.

注意:加

密事件逻

等价定义

在完美保密中,密文出现概率独立于明文的某个量。

Lemma 2

 Π over \mathcal{M} is perfectly secret \iff for every probability distribution over \mathcal{M} , $\forall m \in \mathcal{M}$ and $\forall c \in \mathcal{C}$:

$$\Pr[C = c | M = m] = \Pr[C = c].$$

不可区分性 (indistiguishability): 任意明文被加密,某密文出现的概率相同,即给定2个明文与1个密文,不足以区分出是哪个明文加密得到了密文。

Lemma 3

 Π over \mathcal{M} is perfectly secret \iff for every probability distribution over \mathcal{M} , $\forall m_0, m_1 \in \mathcal{M}$ and $\forall c \in \mathcal{C}$:

$$\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1].$$

一次一密(One Time Pad)

- $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0, 1\}^{\ell}$.
- Gen chooses a k randomly with probability exactly $2^{-\ell}$.
- $c := \operatorname{Enc}_k(m) = k \oplus m.$
- $m := \mathsf{Dec}_k(c) = k \oplus c.$

Theorem 4

The one-time pad encryption scheme is perfectly-secret.

Proof.

$$\Pr[C = c | M = m] = \Pr[M \oplus K = c | M = m]$$
$$= \Pr[m \oplus K = c] = \Pr[K = m \oplus c] = 2^{-\ell}.$$

Then Lemma 3: $\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1].$

完美保密局限性

□密钥与明文一张长,难以存储和共享

Theorem 5

Let Π be perfectly-secret over \mathcal{M} , and let \mathcal{K} be determined by Gen. Then $|\mathcal{K}| \geq |\mathcal{M}|$.

- 采用反证法证明,假设密钥数量比明文数量少 $|\mathcal{K}| < |\mathcal{M}|$,则不可能实现完美保密。
- 将从一个密文c解密得到的所有明文集合,表示为 $\mathcal{M}(c) \stackrel{\mathrm{def}}{=} \{\hat{m} | \hat{m} = \mathsf{Dec}_k(c) \text{ for some } \hat{k} \in \mathcal{K} \}$ 。
- 对于一个密钥k,最多有个一个明文m使得 $m = \mathsf{Dec}_k(c)$ 。这是因为如果有多个明文的话,就根本不是一个加密方案。
- 因此,从一个密文解密出来的明文数量不会超过密钥数量,也就不超过明文总数: $|\mathcal{M}(c)| \leq |\mathcal{K}| < |\mathcal{M}|$.
- 那么,一定存在一个明文m'是无法由c解密出来的,即 $\Pr[M=m'|C=c]=0 \neq \Pr[M=m']$ 。 因此,不是完美保密。

二次加密:案例

□双方通信,每个传递方向应使用不同密钥

Only used once for the same key, otherwise

$$c \oplus c' = (m \oplus k) \oplus (m' \oplus k) = m \oplus m'.$$

Learn m from $m \oplus m'$ due to the redundancy of language.

MS-PPTP (Win NT)

Improvement: use two keys for C-to-S and S-to-C separately.

香农定理

□更具可操作性的完美保密定义

Theorem 6

For $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$, Π is perfectly secret \iff

- **11** Every $k \in \mathcal{K}$ is chosen with probability $1/|\mathcal{K}|$ by Gen.
- 2 $\forall m \in \mathcal{M} \text{ and } \forall c \in \mathcal{C}, \exists \text{ unique } k \in \mathcal{K}: c := \operatorname{Enc}_k(m).$

Proof.

 \Leftarrow : $\Pr[C = c | M = m] = 1/|\mathcal{K}|$, use Lemma 3.

 \Rightarrow (2): At least one k, otherwise $\Pr[C = c | M = m] = 0$;

at most one k, because $\{\operatorname{Enc}_k(m)\}_{k\in\mathcal{K}}=\mathcal{C}$ and $|\mathcal{K}|=|\mathcal{C}|$.

 \Rightarrow (1): k_i is such that $\operatorname{Enc}_{k_i}(m_i) = c$.

$$Pr[M = m_i] = Pr[M = m_i | C = c]$$

$$= (Pr[C = c | M = m_i] \cdot Pr[M = m_i]) / Pr[C = c]$$

$$= (Pr[K = k_i] \cdot Pr[M = m_i]) / Pr[C = c],$$

so
$$\Pr[K = k_i] = \Pr[C = c] = 1/|\mathcal{K}|.$$

香农定理应用

Is the below scheme perfectly secret?

Let $\mathcal{M}=\mathcal{C}=\mathcal{K}=\{0,1,2,\ldots,255\}$ $\operatorname{Enc}_k(m)=m+k \mod 256$ $\operatorname{Dec}_k(c)=c-k \mod 256$

- □是, 理由如下:
 - □满足明文空间、密文空间、密钥空间一样规模
 - □满足条件1:密钥是等概率随机产生的
 - □满足条件2:对于任意明文和密文对,存在唯一的密钥 使得该明文加密成该密文。

课上练习

Which in the below schemes are perfectly secret?

- $\blacksquare \operatorname{Enc}_{k,k'}(m) = \operatorname{OTP}_k(m) \| \operatorname{OTP}_{k'}(m)$
- $\blacksquare \operatorname{Enc}_k(m) = reverse(\operatorname{OTP}_k(m))$
- $\blacksquare \ \mathsf{Enc}_k(m) = \mathsf{OTP}_k(m) \| k$
- $\blacksquare \mathsf{Enc}_k(m) = \mathsf{OTP}_k(m) \| \mathsf{OTP}_k(m)$
- \blacksquare $\operatorname{Enc}_k(m) = \operatorname{OTP}_{0^n}(m)$
- $\blacksquare \operatorname{Enc}_k(m) = \operatorname{OTP}_k(m) \| LSB(m)$

本节小结

信息论意义上的安全——完美保密。完美保密的安全在信息 论上是无需前提假设的,但其存在实践上的局限性,是完美 中的不完美。

- □完美保密 = 完美不可区分
 - □知道密文对猜测明文没有帮助
 - □给定明文对推测密文没有帮助
 - □任意明文加密成某个密文的概率是相同的
- □完美保密是可实现的:一次一密
- □香农定理 (可操作的完美保密)