2-1/
$$J_1$$
 e:= V | (e.e...) | (if rece)
 $V:=b$
 $b:= num$ | bool | prim
prim:= $+1-1 \times 1/1$, $\leq 1 \leq 1 \leq 1/2$...
big slep stemant 2s interp: $e \rightarrow V$
interp (/ 1 0) = $\frac{1}{2}$ 8(1, 1, 0) = $\frac{1}{2}$
math $sn't$ like this!
 $egvational$ theory $a+b=b+a$
 $1+1=2$
 $2+3=2+2+1=4+1=5$

2-21 small-step evaluation

if e == e/ Hen

relian e

O.W. interp e'

2-3/ step: e = e (step (of v ex ex) = ex where v + failse step (if false et ec) = ef Step (p v ...) = S(p, v ...) step v = v step (if exv et et) Congruence = (if (step e) et ef) Nles Step (v ... equ earg ...) = or strehmi (v... (step e) earg ...) rules

2-4/ A context is a "program with a hole". C:= hole (if (e e) if 10 l (if e c e) if7C (if e e c) 143C / (e... C e ...) app C (+ 1 (if (+ 2 B) 3 Y)) -> (app ([+, 1] (ific (appc [+ 2] hole []) 3 4)

2-5/ (if (= 2 2) 3 4) J finding a redex (if 34) (= 22) rederible (if true 3 4) C[e] = plug(c, e) plug: Cxe => e plug & e = e plug (ific C ex ex) e = (if C[e] et et) Plug (AppC (b.) C (a...) e= (b ... C[e] a...)

2-6/ step v = V slep c((if false c+ ef)) = [ef] step ([(if off false et ex)] = ([e+] step <[(P v...)] = <[8(P, v...)] step e = e / Hen step C[e] = C[e']

2-7/ when are two programs "the same?
_
1+1 = 1+1
= (2-1)
two programs que the same as
two programs are the same as +c. eval C[x] = eval C[y]
objection observational equivalence