The average network throughput \mathcal{C} is a function of both subcarrier and power allocation variables. The sum rate maximization problem is formulated as follows using the standard Shannon capacity formula, $\mathcal{C}_{n,k,l} = \log_2(1 + \gamma_{n,k,l})$, where $\mathcal{C}_{n,k,l}$ and $\gamma_{n,k,l}$ represent the throughput and SINR of the k^{th} user at n^{th} subcarrier in cell l, respectively:

$$\underset{p_{n,k,l},\alpha_{n,k,l}}{\text{maximize}} \quad \sum_{l=1}^{L} \sum_{k=1}^{K} \sum_{n=1}^{N} \alpha_{n,k,l} \log_2 \left(1 + \frac{p_{n,k,l} h_{n,k,l}}{\sigma^2 + I_{n,l}} \right)$$
(1)

subject to
$$\sum_{n=1}^{N} p_{n,k,l} \le P_{k,\max}, \ \forall k, \forall l$$
 (2)

$$\sum_{k=1}^{K} \alpha_{n,k,l} = 1, \ \forall n, \forall l$$
 (3)

$$\alpha_{n,k,l} \in \{0,1\}, \ \forall n, \forall l, \forall k$$
 (4)

In (1), $I_{n,l} = \sum_{j=1,j\neq l}^L \sum_{k=1}^K \alpha_{n,k,j} p_{n,k,j} g_{n,k,jl}$ represents the cumulative interference at n^{th} subcarrier in cell l from the users in all other cells, $p_{n,k,l}$ denotes the power transmitted by k^{th} user at the n^{th} subcarrier in cell l, $\alpha_{n,k,l}$ represents the allocation of k^{th} user at the n^{th} subcarrier in cell l. Constraint (2) implies that the power spent by k^{th} user on its allocated subcarriers cannot exceed the maximum available power, $P_{k_{\max}}$. For each cell, we collect the power allocation variables $p_{n,k,l}$ in a vector $\mathbf{p}_{n,l} = [p_{n,1,l}, p_{n,2,l},, p_{n,K,l}]$ and then stack all the vectors in a power matrix \mathbf{P}_l of cell l where $\mathbf{P}_l \in \mathbb{R}^{N \times K}$. Constraint (3) restricts the allocation of each subcarrier to only one user. The channel gains $h_{n,k,l}$ and binary allocation variables $\alpha_{n,k,l}$ are stacked up similarly in the matrices \mathbf{H}_l and \mathbf{A}_l , respectively, where \mathbf{A}_l , $\mathbf{H}_l \in \mathbb{R}^{N \times K}$. Moreover, we define $g_{n,k,lj}$ as the interfering gains from the k^{th} user in cell l to cell j, $\forall j \neq l$ at n^{th} subcarrier. We collect these interfering gains into a vector $\mathbf{g}_{n,l,j} = [g_{n,1,lj}, g_{n,2,lj},, g_{n,K,lj}]$ and then stack all the vectors in a matrix $\mathbf{G}_{lj} \in \mathbb{R}^{N \times K}$.

March 19, 2018 DRAFT