# 4.4 El producto cruz de dos vectores

Hasta el momento el único producto de vectores considerado ha sido el producto escalar o producto punto. Ahora se define un nuevo producto, llamado *producto cruz* (o *producto vectorial*), que está definido *sólo* en  $\mathbb{R}^3$ .

# Nota histórica

El producto cruz fue definido por Hamilton en uno de una serie de artículos publicados en *Philosophical Magazine* entre 1844 y 1850.

### Definición 4.4.1

#### **Producto cruz**

Sean  $\mathbf{u} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$  y  $\mathbf{v} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$ . Entonces el **producto cruz (cruz vectorial)** de  $\mathbf{u}$  y  $\mathbf{v}$ , denotado por  $\mathbf{u} \times \mathbf{v}$ , es un nuevo vector definido por

$$\mathbf{u} \times \mathbf{v} = (b_1 c_2 - c_1 b_2)\mathbf{i} + (c_1 a_2 - a_1 c_2)\mathbf{j} + (a_1 b_2 - b_1 a_2)\mathbf{k}$$
(4.4.1)

Aquí el producto cruz parece estar definido de manera arbitraria. Es evidente que existen muchas maneras de definir un producto vectorial. ¿Por qué se escogió esta definición? La respuesta a esta pregunta se da en la presente sección demostrando algunas propiedades del producto cruz e ilustrando algunas de sus aplicaciones.

## Nota

Note que el resultado del producto cruz es un vector, mientras que el resultado del producto escalar es un escalar.

# EJEMPLO 4.4.1 Cálculo del producto cruz de dos vectores

Sean  $\mathbf{u} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} \mathbf{y} \mathbf{v} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ . Calcule  $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ .

**SOLUCIÓN** ► Usando la fórmula (4.4.1) se obtiene

$$\mathbf{w} = [(-1)(-4) - (2)(3)]\mathbf{i} + [(2)(2) - (1)(-4)]\mathbf{j} + [(1)(3) - (-1)(2)]\mathbf{k}$$
  
= -2\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}

**Nota.** En este ejemplo,  $\mathbf{u} \cdot \mathbf{w} = (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) \cdot (-2\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}) = -2 - 8 + 10 = 0$ . De manera similar,  $\mathbf{v} \cdot \mathbf{w} = 0$ . Es decir,  $\mathbf{u} \times \mathbf{v}$  es ortogonal tanto a  $\mathbf{u}$  como a  $\mathbf{v}$ . Como se verá en breve, el producto cruz de  $\mathbf{u}$  y  $\mathbf{v}$  es siempre ortogonal a  $\mathbf{u}$  y  $\mathbf{v}$ .

Antes de continuar el estudio de las aplicaciones del producto cruz se observa que existe una forma sencilla de calcular  $\mathbf{u} \times \mathbf{v}$  usando determinantes.

#### Teorema 4.4.1

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$



#### Demostración

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \mathbf{i} \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

= 
$$(b_1c_2 - c_1b_2)\mathbf{i} + (c_1a_2 - a_1c_2)\mathbf{j} + (a_1b_2 - b_1a_2)\mathbf{k}$$

que es igual a  $\mathbf{u} \times \mathbf{v}$  según la definición 4.4.1.

#### Nota

En realidad no se tiene un determinante porque i, j y k no son números. Sin embargo, al usar la notación de determinantes, el teorema 4.4.1 ayuda a recordar cómo calcular un producto cruz.