

Table des matières

01

02

03

Contexte et objectifs

Méthode classique

Méthode hybride

04

05

06

Méthodes VAE

Résultats & analyses

Démonstration & Conclusion

Ol Contexte et objectifs

Présentation du contexte et des objectifs du projet

01 - Contexte et objectifs

La restauration d'images anciennes

Dans quel but?

Image bruitée

Image restaurée

Image dégradée

Image restaurée

01 - Contexte et objectifs

Étapes de la restauration d'images

Image originale

Image après restauration

Image après colorisation

Image après post-traitement

02 Méthode classique

Explications

02 - Méthode classique

Méthode d'inpainting par diffusion

Image originale

Masque binaire

Image restaurée

Explications

Modèle U-Net

4 encodeurs

1 bottleneck

4 décodeurs

Entraînement du modèle

Dataset

(4000 images)

Images redimensionnées en taille 256x256 pixels et transformées en niveaux de gris.

Dataset altéré

Dataset(s) utilisé(s) : Pascal VOC 2012, Dating Historical Color Images

Vérité de terrain

Résultats de l'entraînement

Entraînement sur 10 époques

Entraînement sur 25 époques

Les masques obtenus

Image en entrée

Masque généré par le modèle

Image après seuillage à 10%

Image après seuillage à 50%

Ajout de l'érosion

Masque avant érosion

Masque après érosion

O4 Méthodes VAE

Explications

Le dataset

Domaine X

Images réelles, càd qui n'ont subi aucune dégradation synthétique et/ou naturelle = 17125 images

Dataset(s) utilisé(s) : Pascal VOC 2012, Dating Historical Color Images

Domaine Y

Images synthétiques avec du bruit et des dégradations artificielles = 17125 images

Domaine Z

Images anciennes avec des dégradations naturelles = 2914 images

Dataset(s) utilisé(s) : Bibliothèque nationale de France, Gallica, DHCI 13

Le modèle "simple"

Le modèle "U-Net"

Le modèle "ResBlocks"

Les points communs

Le but?

- -> Minimiser la perte totale :
- Perte de reconstruction (Erreur quadratique moyenne ou l'entropie croisée binaire)
- Perte perceptuelle (VGG19 ImageNet / 14M d'images)
- Perte SSIM
- Perte divergence KL
- -> Pour éviter des cas de sur apprentissage et sous apprentissage :
 - Introduction d'un facteur **Beta** (cas de sur apprentissage) lié à la perte de divergence KL
 - Plusieurs stratégies d'annealing pour calculer Beta : Linéaire, Cyclique,
 - Pour pondérer la perte de reconstruction, introduction d'**Alpha** = min(1., exp(-Beta))
- -> Pondération d'entraînement propre à chaque domaine

O5 Résultats & analyses

Présentation des résultats & analyses

Les métriques

PSNR (Peak Signal to Noise Ratio) en dB

SSIM (Structural SIMilarity) : Mesure la similarité de structure entre deux images (luminosité, contraste, corrélation)

BRISQUE

(Blind/Referenceless Image Spatial Quality Evaluator)

Meilleure qualité < > Qualité réduite

Valeur BRISQUE de référence

Résultats - méthode classique

PSNR: 18.52 dB **SSIM**: 0.867

BRISQUE de référence : 13.64

BRISQUE: 4.27

PSNR: 21.47 dB **SSIM**: 0.821

BRISQUE de référence : 1.86

BRISQUE: 4.40

PSNR: 23.76 dB **SSIM**: 0.888

BRISQUE de référence: 13.73

BRISQUE: 14.81

Résultats - méthode hybride

Batch Size: 16 /

25 époques

Résultats - méthode hybride

PSNR: 18.61 dB **SSIM**: 0.870

BRISQUE de référence : 13.64

BRISQUE: 8.17

PSNR: 23.61 dB **SSIM**: 0.890

BRISQUE de référence : 1.86

BRISQUE: 4.07

PSNR: 23.85 dB **SSIM**: 0.890

BRISQUE de référence : 13.73

BRISQUE: 16.22

Résultats - méthodes VAE

Batch Size : 32 / Dimension du vecteur latent : 512 / Pondération privilégiant le domaine Z (0.6)

Modèle "U-Net"

Modèle "ResNet"

Résultats - méthodes VAE et analyse globale

PSNR: 8.02 dB SSIM: 0.306 BRISQUE de référence: 13.64 BRISQUE: 120.41

PSNR

20 - 30 dB

PSNR: 13.14 dB SSIM: 0.841 BRISQUE de référence: 13.64 BRISQUE: 45.13

SSIM

0.8 - 0.95

Meilleure méthode : Hybride

PSNR: 16.32 dB SSIM: 0.903 BRISQUE de référence: 13.64 BRISQUE: 46.05

BRISQUE

< | > à 25% du BRISQUE de référence!

O6 Conclusion

Démonstration, perspectives possibles et conclusion

Améliorations & modifications possibles

Concernant notre méthode - classique :

- Utilisation de techniques de segmentations plus avancés
- Utilisation de techniques de binarisation local (Gatos, Kim) cf travaux de Thibault LELORE (IMT Atlantique)

Concernant la méthode - hybride :

- Amélioration des dégradations synthétiques
- Utilisation de modèles comme ScratchNet et/ou PatchNet

Image originale

Masque obtenu

Image restaurée

Concernant la méthode - VAE :

- Amélioration des dégradations synthétiques
- Ajout de plus d'images anciennes (domaine Z)
- Augmenter les paramètres, notamment le batch size et la dimension du vecteur latent -> Beaucoup de ressources matériels!
- Trouver un juste équilibre pour les images dégradées synthétiquement entre le bruit et les dégradations afin d'éviter les risques de sur débruitage ou de sur réparation.
- Séparation du VAE multi-domaines en VAEs pour des tâches spécifiques (génération de masques binaires, reconstruction) ->

Perte d'autonomie

26

Améliorations & modifications possibles

Concernant la restauration d'images anciennes - général :

Image restaurée

Image colorisée

Image post-traitée (embellir les visages, enlever le fond, etc...)

Démonstration

Conclusion

Références

- Télécom Physique Strasbourg. (n.d.). Image Restoration. Disponible à : https://images.icube.unistra.fr/index.php/Fichier:2-Restauration.pdf
- Veluchamy, M., & Subramani, B. (2019). Image contrast and color enhancement using adaptive gamma correction and histogram equalization. *Optik International Journal for Light and Electron Optics*, 183, 329–337. Disponible à: https://doi.org/10.1016/j.ijleo.2019.02.054
- Wan, Z., et al. (2020). Bringing old photos back to life. *arXiv preprint*, arXiv:2004.09484. Work conducted during an internship at Microsoft Research Asia. Disponible à: https://arxiv.org/abs/2004.09484
- Patel, N. (2020). **Demystifying Deep Image Prior**. Disponible à : https://towardsdatascience.com/demystifying-deep-image-prior-7076e777e5ba
- Zhou, T., Isola, P., Zhu, J.-Y., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. *arXiv preprint*. Disponible à : https://arxiv.org/pdf/1611.07004
- Stolk, T., Bijl, P., & Meester, R. (2019). Image restoration using Pix2Pix. Disponible à : https://medium.com/@28group28/image-restoration-using-pix2Pix-83d07d09fe8e
- Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep Image Prior. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (CVPR) (pp. 9446–9454). Disponible à : https://sites.skoltech.ru/app/data/uploads/sites/25/2018/04/deep_image_prior.pdf
- Zhang, S., et al. (2022). Pik-Fix: Restoring and colorizing old photos. Disponible à: https://www.researchgate.net/publication/360383689 Pik-Fix

 Restoring and Colorizing Old Photo
- Liu, P., et al. (2018). Multi-Level Wavelet-CNN for image restoration. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (CVPR) Workshops. Disponible à: https://openaccess.thecvf.com/content_cvpr_2018 workshops/papers/w13/Liu Multi-Level Wavelet-CNN for CVPR_2018 paper.pdf
- Ardizzone, H. D. E., & Mazzola, G. (2010). Multidirectional scratch detection and restoration in digitized old images. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*. Disponible à : https://jivp-eurasipjournals.springeropen.com/counter/pdf/10.1155/2010/680429.pdf
- Shkurat, O., Hu, M., & Kasner, M. (2024). Grayscale image colorization method based on the U-Net network. *Modern Education and Computer Science*. Disponible à : https://mecs-press.net/ijigsp/ijigsp-v16-n2/IJIGSP-V16-N2-6.pdf
- O. Ronneberger, P.Fischer et T. Brox. (2015). "U-Net: Convolutional Networks for Biomedical Image Segmentation". Disponible: http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a