

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Efficient semi-transparent perovskite solar cells with a novel indium zinc tin oxide top electrode grown by linear facing target sputtering

Yong-Jin Noh^a, Jae-Gyeong Kim^b, Seok-Soon Kim^c, Han-Ki Kim^{b,**}, Seok-In Na^{a,*}

- ^a Professional Graduate School of Flexible and Printable Electronics, LANL-CBNU Engineering Institute Korea, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea
- ^b School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Republic of Korea
- ^c Department of Nano and Chemical Engineering, Kunsan National University, Kunsan, Jeollabuk-do, 753-701, Republic of Korea

HIGHLIGHTS

- High-quality IZTO film is deposited by linear facing target sputtering.
- The effect of thickness of the IZTO film on PeSCs performance was investigated.
- The IZTO-based semi-transparent PeSCs showed high efficiency of 12.85%.

ARTICLEINFO

Keywords: Perovskite solar cell Semi-transparent top electrode Indium zinc tin oxide Linear facing target sputtering Transparent electrode

ABSTRACT

We propose that an indium zinc tin oxide electrode grown by linear facing target sputtering without additional thermal treatment can effectively act as an efficient semi-transparent top electrode for high-performance semi-transparent hybrid perovskite solar cells. The semi-transparent perovskite solar cells using an indium zinc tin oxide electrode as a novel top electrode achieves a power conversion efficiency of 12.85%, similar to that of an opaque electrode-based device of 13.48%. More importantly, by adjusting the perovskite thickness, a power conversion efficiency of 8.306% is obtained at an average visible transmittance of 33.9%, thus well supporting that the indium zinc tin oxide electrode can be considered to be an advanced and efficient semi-transparent top electrode for the fabrication of building integrated photovoltaics with high efficiency and good transparency.

1. Introduction

Organic-inorganic hybrid perovskites have emerged as the promising next-generation materials for the fabrication of highly efficient solar cells because of their excellent properties such as large absorption coefficients, large charge-carrier mobility, bipolar transport properties, and long carrier-recombination lifetime [1–9]. Recently, the power conversion efficiency (PCE) of perovskite solar cells (PeSCs) has achieved performance similar to that of the conventional photovoltaics based on silicon and thin-films [8]. Due to these perovskite's merits and value, the perovskite applications have been extended into the building-integrated photovoltaics (BIPVs), wearable electronics, and tandem solar cells [10–14]. In particular, the BIPV application has been highly attracted because the BIPV can be a major part of solar cell market and thus a transparent electrode essentially required for the top

electrode has been increasingly important as a core material for the semi-transparent PeSCs. However, such semi-transparent electrode researches have not been relatively much studied, compared with the opaque or bottom electrodes. Therefore, development of an efficient semi-transparent electrode for fabricating semi-transparent PeSCs is of great importance for the BIPV application.

Various transparent electrodes, such as thin metal films, metal nanowires, conductive polymers, oxide/metal/oxide electrodes, and transparent conductive oxides (TCOs), have been so far reported and employed as the top electrode for semi-transparent PeSCs [14–27]. Among the various transparent electrodes, the silver-based materials including silver nanowires and silver thin films with metal oxides have been considered to be promising electrode alternatives for fabricating efficient semi-transparent PeSCs because of their advantages such as the solution processability, high conductivity, and high transmittance

E-mail addresses: hankikim@skku.edu (H.-K. Kim), nsi12@jbnu.ac.kr (S.-I. Na).

^{*} Corresponding author.

^{**} Corresponding author.