Problem 13a.

Prove that for every integer $n \ge 1$, $10^n \equiv (-1)^n \pmod{11}$.

Proof. (by induction):

Let P(n) be the statement " $10^n \equiv (-1)^n \pmod{11} \ \forall n \in \mathbb{Z} \ni n \geq 1$ "

$$P(n) \longrightarrow 10^n \equiv (-1)^n \pmod{11}$$

Basis step: $P(1): 10^1 \stackrel{?}{\equiv} -1^1 \pmod{11}$. True since $11 \mid 10+1$ **Inductive step:** Let $k \in \mathbb{Z} \ni k \ge 1$. Assume $P(k): 10^k \equiv (-1)^k \pmod{11}$ By definition of divisibility, $\exists r \in \mathbb{Z} \ni 11r = 10^k - (-1)^k$ or $11r = 10^k + 1^k$ [**NTS:** $10^{k+1} \equiv (-1)^{k+1} \pmod{11}$ or $11 \mid 10^{k+1} + 1^{k+1}$]

$$11r=10^k-(-1)^k$$

$$11r\cdot 10=10^k\cdot 10-(-1)^k\cdot 10$$
 by algebra
$$110r=10^{k+1}+(-1)^{k+1}\cdot 10$$

$$110r-11^{k+1}-(-1)^{k+1}\cdot 10$$

Let $t = 10^k - r$. $t \in \mathbb{Z}$ since $10^k, -1, r \in \mathbb{Z}$. By substitution, $11t = 10^{k+1} - (-1)^{k+1}$ and by definition of divisibility, $11 \mid (10^{k+1} - (-1)^{k+1})$