Chapitre 6 Inéquations linéaires

Table 6.1 – Objectifs. À fin de ce chapitre 6...

	Pour m'entraîner 🚣				
Je dois connaître/savoir faire	6	•	Ö		
inégalités, règles opératoires					
produire des inégalités	1	2			
règles opératoires		3	4, 5		
intervalles de $\mathbb R$					
notation	6	7			
union et intersection d'intervalles		8, 9			
résolution d'inéquations					
résolution d'inéquations linéaires		10, 11, 12	13		
problèmes simples					
application directes	14, 15	16, 17	17 18		
inéquations avec paramètre		19 à 23	24 à 26		
modéliser par des inéquations		28, 29, 30			
résoudre des inéquations de la forme $ ax + b < c$.			31		

6.1 Relation d'ordre dans $\mathbb R$ et opérations

Définition 6.1 Pour tout a et $b \in \mathbb{R}$, a est supérieur à b s.s.i. la différence (a - b) est positive :

$$a \geqslant b \iff (a-b) \geqslant 0$$

à retenir Comparer deux expressions a et b revient à étudier le signe de la différence.

Théorème 6.1 — L'addition. conserve l'ordre :

Pour tout
$$a, b, n \in \mathbb{R}$$
 on a: $(a \ge b) \Rightarrow (a + n \ge b + n)$

Démonstration. Soit $a, b \in \mathbb{R}$ tel que $a \geqslant b$. Pour comparer a + n et b + n on cherchera le *le signe*

de la différence :
$$(a+n)-(b+n)=a+n-b-n=a-b$$

$$(a+n)-(b+n)\geqslant 0$$

$$(a+n)>b+n$$
) $a+n\geqslant b+n$

Théorème 6.2 — la Multiplication. par un nombre positif non nul conserve l'ordre.

Pour tout
$$a, b, p \in \mathbb{R}$$
 on a: $a \ge b$ et $p > 0$ \Rightarrow $pa \ge pb$

La multiplication par un nombre négatif non nul inverse l'ordre.

Pour tout
$$a, b, n \in \mathbb{R}$$
 on a: $a \ge b$ et $n < 0 \implies na \le nb$

Démonstration. Soit $a, b \in \mathbb{R}$ tel que $a \ge b$. Soit n < 0 et p > 0 deux réels.

Comparer pa et pb avec le signe de la différence :

$$pa-pb=p(a-b)$$

$$pa-pb\geqslant 0$$

$$pa-pb\geqslant 0$$

$$pa\geqslant pb$$

$$pa \Rightarrow pb$$

$$pa \Rightarrow pb$$

6.2 Les intervalles

- Exemple 6.1 1. L'ensemble réells x tel que $3 \le x \le 5$ est $I = \{x \in \mathbb{R} \mid 3 \le x \le 5\}$. On le note I = [3; 5].
- 2. L'ensemble des réells x tel que $x \le 4$ est $J = \{x \in \mathbb{R} \mid |x \le 4\}$. On le note $J =]-\infty;4]$

Figure 6.1 – I = [3; 5] et $J =]-\infty; 4]$

6.2 Les intervalles 3

Table 6.2 – Les différentes variantes d'intervalles bornés par a et $b \in \mathbb{R}$

Intervalle	Inégalité	Représentation sur droite graduée	
$x \in [a;b]$	$a \leqslant x \leqslant b$		<i>x</i>
$x \in]a;b[$	a < x < b		→
$x \in [a; b[$	$a \leqslant x < b$		→
$x \in]a;b]$	$a < x \leqslant b$		→

Table 6.3 – Les différentes variantes d'intervalles infinis

Intervalle	Inégalité	Représentation sur droite graduée	
$x \in [a; +\infty[$	$x \geqslant a$		
$x\in]a;+\infty[$	x > a		
$x \in]-\infty;b]$	$x \leqslant b$	b	
$x \in]-\infty; b[$	x < b		

Propriété 6.3 — valeur absolue et intervalles centrés.

 $\mbox{Pour tout } a,r \in \mathbb{R} \quad |x-a| \leqslant r \quad \mbox{signifie} \quad x \in [r-a;r+a]$

R En dehors de cas simples, il sera plus pratique de déterminer l'intervalle centré par résolution d'inéquations simultanées.

Figure 6.2 – |x - a| est l'écart entre x et a.

- Exemple 6.2 1. |x-3| est l'écart entre x et 3. D'où $|x-3| \le 0.1 \iff x \in [2,9;3,1]$
- 2. |x+2| est l'écart entre x et -2. D'où $|x+2| \le 0.1 \iff x \in [-2,1;-1,9]$

6.3 Inéquations simples : vocabulaire

Une **inéquation à une inconnue** est une inégalité dans laquelle apparaît une lettre.

Une solution de l'inéquation est une valeur de l'inconnue pour laquelle l'inégalité est vraie.

- Exemple 6.3 Soit l'inéquation $4x + 7 < x^2$ d'inconnue x.
- 1. x=0 n'est pas solution de l'inéquation car l'égalité $4\times 0+7<0^2$ est
- Exemple 6.4 Soit l'inéquation $7x 12 \ge x^2$ d'inconnue x.

$$7(3) - 12 \ge (3)^2 \text{ est } \dots 7(4) - 12 \ge (4)^2 \text{ est } \dots$$

$$7(5) - 12 \ge (5)^2 \text{ est } \dots 7(10) - 12 \ge (10)^2 \text{ est } \dots$$

..... sont des solutions de l'inéquation.

Définition 6.2 Résoudre une équation dans $\mathbb R$ c'est trouver toutes les valeurs réelles des inconnues qui rendent l'inégalité vraie.

Définition 6.3 Deux inéquations sont dites **équivalentes** (symbole \iff) si elles ont le même ensemble de solutions c.à.d elles sont vraies pour les mêmes valeurs de l'inconnue.

- Exemple 6.5 1. Les inéquations 2x > 1 et 2x 1 > 0 d'inconnue x sont équivalentes.
- 2. Les inéquations $x \le 2$ et $x^2 \le 4$ ne sont pas équivalentes. En effet x = -3 et x = -4 sont des solutions de $x \le 2$ mais pas des solutions de $x^2 \le 4$.

Théorème 6.4 — admis, propriétés des inéquations.

- ajouter aux 2 membres d'une inéquation une même expression donne une inéquation équivalente. $A > B \iff A + C > B + C$
- multiplier les 2 membres d'une inéquation par une même expression positive non nulle donne une inéquation équivalente. Si (P > 0) alors $A \le B \iff PA \le PB$
- multiplier les 2 membres d'une inéquation par une même expression négative non nulle donne une inéquation équivalente à condition de changer le sens du signe de l'inéquation Si (N < 0) alors $A < B \iff NA > NB$

6.4 Exercices 5

6.4 Exercices

6.4.1 Exercices : propriétés des inégalités

Exercice 1 Traduire les expressions suivantes par une inégalité :

- Exemple 6.6 « Pizza TropBien fait au moins $210 \in$ de profits en vendant x pizza à midi. En moyenne, une pizza se vend à $6 \in$ et coûte $2.3 \in$ diminué de $0.02 \in$ par pizza vendue à fabriquer. » Écrire une inégalité vérifiée par x.

solution.
$$x$$
nbr pizzas vendues $\times \underbrace{(6 - (2.3 - 0.02x))}_{\text{profit par pizza}} \geqslant 210$, ce qui s'écrit $x(3.7 + 0.02x) \geqslant 210$.

Exercice 2 Écrire une inégalité vérifiée par x dans les cas suivants :

- 1. Helga a 54 points au premier test Piz, et *x* points au second, sans valider le module. Pour valider, un élève doit avoir un total d'au moins 120 points sur 2 tests......

- 4. Arnold achète x cupcakes à $1.5 \in$ pièce avec une partie de ses $18 \in$
- 6. Un enclos est de 108 m^2 accueuille x cochons. La loi impose d'avoir au minimum 12m^2 d'espace par cochon dans un enclos.

Exercice 3 — concepts. Complétez par < ou >, \geqslant et \leqslant et choisir la(les) bonnes réponses.

- 1. a < b $x \le y$ a > 1 $x \ge -2$ $\Rightarrow a b \dots 0 \Rightarrow y x \dots 0 \Rightarrow a 1 \dots 0 \Rightarrow x \dots \ge 0$
- 2. **propriété nº 1** Si (A) (une expression positive) (B) (une expression négative) est ajoutée ou soustraite des deux membres d'une inégalité, le sens de l'inégalité reste inchangé.

- 3. propriété n° 2 Si les deux membres d'une inégalité sont multipliés ou divisés par (A) (une (B) (une expression négative) le sens de l'inégalité reste inchangé. expression positive)
- 4. propriété n° 3 Si les deux membres d'une inégalité sont multipliés ou divisés par (A) (une expression positive) (B) (une expression négative) le sens de l'inégalité est inversé.

5.
$$x < y$$
 $-4x > 20$ $\times x + 2 + \dots + 2$ $\Rightarrow x + 2 + \dots + 5$

$$3x - 1 < 3$$

$$\Rightarrow 3x \dots 4$$

6.
$$x < 5$$
 $x \le -5$ $\Rightarrow x - 3 \dots 2$ $\Rightarrow 3x \dots \dots$

$$x \leqslant -5$$

$$\Rightarrow 3x \dots \dots$$

$$x \geqslant -2$$

$$\Rightarrow -3x \dots \qquad \qquad \downarrow \dots$$

7.
$$-3x \geqslant -3y$$
 $x \leqslant -2$ $\Rightarrow -12x \dots -12y$ $\Rightarrow -x \dots$

$$a < 2b$$

$$\Rightarrow ac > 2bc$$
 $\times c, (c \dots 0)$

8.
$$4x - 3 > 2y - 3$$

$$\Rightarrow 4x \dots 2y$$

$$\Rightarrow 2x \dots y$$

$$x - 2y > x$$

$$\Rightarrow -2y \dots 0$$

$$x - 2y > x$$

$$\Rightarrow -2y \dots 0$$

$$x < y$$

$$\Rightarrow -\frac{2}{3}x \dots -\frac{2}{3}y$$

$$\Rightarrow -\frac{2}{3}x + 1 \dots -\frac{2}{3}y + 1$$

Si A et B sont deux affirmations. Pour **réfuter** l'implication « Si A alors B », il faut produire un **contre-exemple** pour lequel A est VRAIE et B est FAUSSE.

Exemple 6.7 L'implication « Si a > b alors $ac^2 > bc^2$ est fausse. Prenons a = 2, b = 1 et c = 0. On vérifie : a > b est VRAIE (2 > 1), et $ac^2 > bc^2$ est FAUSSE (0 > 0)

Exercice 4 Les implications suivantes sont fausses. Donner un contre-exemple pour chacune en proposant des valeurs judicieuse pour a, b et $c \in \mathbb{R}$.

- 1. Si a < b alors $ac \leq bc$.
- 2. Si a > 0 alors $ab \leq b$.
- 3. Si $a \leq 0$ alors $ab \leq 0$.
- 4. Si $a^2 > 0$ alors a > 0.

- 5. Si $a^2 \geqslant a$ alors $a \geqslant 0$.
- 6. Si $a \ge 0$ alors $a^2 \ge a$.
- 7. Si $a \geqslant b$ alors $\frac{a}{b} \geqslant 1$.
- 8. Si a < 1 alors $a^2 < a$.

Exercice 5 Dire si l'implication est vraie ou fausse. Si fausse, proposer un contre exemple.

- 1. Si $1 < x \le 5$ alors $2 < 2x \le 10$.
- 2. Si $-5 < x \ge 2$ alors $-2 < -x \ge 5$
- 3. Si x > 1 alors $x^2 > x$.
- 4. Si x(x+1) > 0 alors x > 0.

- 5. Si x(x+1) > 5 alors x > 5.
- 6. Si x < 3 et y < 2 alors xy < 6.
- 7. Si x < 3 et y < 2 alors x + y < 5.
- 8. Si $ac^2 > bc^2$ alors a > b.

6.4.2 Exercices: Intervalles

Exercice 6 Compléter par \in ou \notin .

$$-5 \dots [0; +\infty[; 3 \dots]2; 3]; 3 \dots]3; 4]; 3 \dots]-\infty; 4[; 3 \dots]-\infty; 3[; 0 \dots]-\infty; 0]; -3,1 \dots [-4; -3]; \frac{17}{4} \dots]4; 5[; -5 \dots]-4; +\infty[; \frac{1}{4} \dots \left[\frac{1}{3}; \frac{1}{2}\right]; -\frac{4}{5} \dots [-5; -4]; 0,3 \dots \left[\frac{1}{3}; 1\right[; -\frac{1}{3}; 1]; -\frac{1}{4} \dots [-5; -4]; 0,3 \dots [-5; -4]$$

Exercice 7 Compléter le tableau suivant :

Intervalle	Inégalité(s)	Représentation sur droite réelle	Phrase
$x \in [-3; 5]$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	x < 3		
			Intervalle de 4 à 6, fermé en 4 et ouvert en 6.
$x \in [2; +\infty[$			
	$-3 < x \leqslant -1$		
			Intervalle de $-\infty$ à 5, fermé en 5.
	$-3 \leqslant x \leqslant -1$		
	$5 \geqslant x > 1$		
	$x \geqslant -\frac{3}{4}$		
	-4 > x > -7		
	$5 \geqslant x > -3$	───	

■ Exemple 6.8 — Intersection et unions d'intervalles.

1.
$$A =]-\infty; 1]$$
 et $B =]0; +\infty[$.

$$A \cap B =]0;1]$$

$$A \cup B =]-\infty; +\infty[$$

$$A \cap B = [1; 2]$$

$$A \cup B = [-3; 5]$$

3.
$$A = [-3; 1]$$
 et $B = [2; 5]$.

$$A \cap B = \emptyset$$

$$A \cup B =]-3; 1[\cup [2; 5]$$

L'intersection d'intervalles est un intervalle. L'union n'est pas nécéssairement un intervalle.

Exercice 8 Pour chaque cas déterminez les ensembles $A \cap B$ et $A \cup B$

1.
$$A = [-10; 2]$$
 et $B = [-5; 3]$.

$$A \cap B = \dots$$

$$A \cup B = \dots$$

2.
$$A =]-\infty; 2[$$
 et $B = [0; 5[$.

$$A \cap B = \dots$$

$$A \cup B = \dots$$

3.
$$A = [3; +\infty[\text{ et } B =]-\infty; 6[.$$

$$A \cap B = \dots$$

$$A \cup B = \dots$$

4.
$$A =]-\infty; -2[$$
 et $B =]-4; 3[$.

$$A \cap B = \dots$$

$$A \cup B = \dots$$

5.
$$A = [-4; 2]$$
 et $B = [2; 5]$.

$$A \cap B = \dots$$

$$A \cup B = \dots$$

6.
$$A = [-4; 2]$$
 et $B = [2; 5]$.

$$A \cap B = \dots$$

$$A \cup B = \dots$$

Exercice 9 — entrainement. Déterminez les ensembles ci-dessous.

- 1. $[2; 5] \cap [3; 6]$
- **2.** $]-\infty;3] \cap [-7;10]$
- 3. $[-5; 2] \cup [0; 5]$ 4. $[-2; 0] \cap [4; 5]$

6.4.3 Exercices : résolution d'inéquations linéaires

Exemple 6.9 Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

Exercice 10 Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

 (I_1) x+1<9 $|(I_{10})| 14 - 6x \ge -10$ (I_2) x-4>3 $(I_{11}) -\frac{6}{7}x - 1,2 < 3,6$ $(I_{12}) \frac{3}{2}x - 1 > 4$ $(I_3) -6x \ge 30$ $(I_4) -3x \leq -2$

■ Exemple 6.10 — Encadrements. Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

Exercice 11 Résoudre dans $\mathbb R$ les inéquations suivantes d'inconnue x:

$$(I_1) -3 < x - 4 < 7$$

$$(I_2) 4 < 5x - 4 \le 5$$

$$(I_3) -6 \le 3 + x < 4$$

$$(I_4) 2 \le 2x < 10$$

$$(I_5) -1 \le -x < 3$$

$$(I_6) -3 \le 1 - x < 4$$

$$(I_7) -3 \le 2x - 1 < 1$$

$$(I_8) 8 < -2 + 3x < 16$$

$$(I_9) 4 < 2x - 1 \le 10$$

■ Exemple 6.11 Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$6x - 6 \geqslant 3x + 2$$

$$\Leftrightarrow 3x \geqslant 8$$

$$\Leftrightarrow \frac{3}{3}x \geqslant \frac{8}{3}$$

$$\Leftrightarrow x \geqslant \frac{8}{3}$$

$$\Leftrightarrow x \geqslant \frac{8}{3}$$

$$\Leftrightarrow -15 < -18$$

Exercice 12 Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$(I_1) \ 3x > 2x + 1$$
 $(I_3) \ x + 5 < 10x$ $(I_5) \ 1 - 7x \le 7 + x$ $(I_2) \ 12x \le 8x + 128$ $(I_4) \ 3x + 1 \ge 3(x + 2)$ $(I_6) \ 5(x - 1) > 4(2x - 1)$

Exemple 6.12 Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$\begin{array}{l} \text{Exemple 6.12 R\'esoudre dans } \mathbb{R} \text{ les in\'equations suivantes d'inconnue } x: \\ \frac{5x+9}{4} \geqslant \frac{5x+2}{6} \\ \Leftrightarrow \frac{(5x+9)}{4} \geqslant \frac{(5x+2)}{6} \\ \Leftrightarrow \frac{12(5x+9)}{4} \geqslant \frac{12(5x+2)}{6} \\ \Leftrightarrow 3(5x+9) \geqslant 2(5x+2) \\ \Leftrightarrow 3(5x+9) \geqslant 2(5x+2) \\ \Leftrightarrow 15x+27 \geqslant 10x+4 \\ \Leftrightarrow 5x \geqslant -23 \\ \Leftrightarrow x \geqslant \frac{-23}{5} \\ \\ \mathcal{S} = \left[\frac{-23}{5}; +\infty \right[\end{array}$$

Exercice 13 Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x

$$(I_1) \ \frac{3x-2}{2} > \frac{x-1}{3} \qquad \qquad \Big| \ (I_2) \ \frac{2x-5}{3} < \frac{6x-1}{4} \qquad \qquad \Big| \ (I_3) \ \frac{3x-1}{4} - 1 \geqslant 0$$

6.4.4 Exercices : problèmes simples

Exercice 14

Sachant que $\frac{2(2x-3)}{3}$ est positif, déterminer les valeurs possibles de x.

Exercice 15 — bis.

Sachant que $\frac{1-2x}{5}$ n'est pas inférieur à 3x+2. Déterminer les valeurs possibles de x.

Exercice 16

Déterminer les entiers négatifs non nuls solutions de l'inéquation 3x + 6 > -3.

Exercice 17 — bis.

Déterminer les entiers positifs non nuls solutions de l'inéquation 3x - 5 > 5x - 13.

Exercice 18

La plus petite solution entière de l'inéquation 4(x-3)+5<6(x-2)+1, inconnue x, est aussi solution de l'équation 4x - ax = 3. Déterminer la valeur de a.

Exercice 19

3 est une solution de l'inéquation $mx^2 - 5x + 3m - 1 \le 0$, inconnue x. Déterminer une inéquation vérifiée par m est en déduire les valeurs possibles de m.

6.4 Exercices 11

Exercice 20 — bis.

-2 est une solution de l'inéquation $x^3 + 3mx \ge 1 - 2m$, inconnue x. Déterminer une inéquation vérifiée par m est en déduire les valeurs possibles de m.

Exercice 21

Soit l'équation 5x = m - 11, inconnue x. Sachant que la solution pour x est positive non nulle, déterminer les valeurs possibles du paramètre m.

Exercice 22 — bis.

Soit l'équation 5x - 2m = -x + 5, inconnue x. Sachant que la solution pour x est supérieure ou égale à 1, déterminer les valeurs possibles de m

Exercice 23 — bis.

Soit l'équation (1-m)x = 1-2x, inconnue x. Sachant que la solution pour x est un nombre strictement négatif, déterminer les valeurs possibles pour m.

Exercice 24

Soit l'inéquation $2x - a \ge 0$, inconnue x. Sachant que x = 1, x = 2 et x = 3 sont des solutions entières, déterminer les valeurs possibles pour a.

Exercice 25

Soit l'inéquation (a-3)x > a-3, inconnue x. Sachant que l'ensemble des solutions est $\mathscr{S} =]-\infty; 1[$, déterminer la valeur de a.

Exercice 26

Soit l'inéquation $\frac{ax-5}{6} - \frac{2-ax}{4} > 0$, inconnue x. Sachant que l'ensemble des solutions est $\mathscr{S} =]1; +\infty[$, déterminer les valeurs possibles de a.

Exercice 27 — communiquer.

Pour chaque inéquation, proposer une valeur solution qui n'appartient pas à $\mathscr S$ et déterminer les erreurs dans la résolution proposée.

$$\begin{array}{c} 3x > 5x \\ \Rightarrow \frac{3x}{x} > \frac{5x}{x} \\ \Rightarrow 3 > 5 \end{array} \begin{array}{c} \text{diviser par } x \\ \Leftrightarrow \frac{ax}{ax} \geqslant \frac{1}{a} \\ \Rightarrow x \geqslant \frac{1}{a} \end{array} \begin{array}{c} \text{diviser par } a \\ \Leftrightarrow \frac{x}{x} \geqslant 10x \\ \Rightarrow \frac{1}{10} \geqslant x \\ \Rightarrow \frac{1}{10} \Rightarrow x \\ \Rightarrow \frac{1}{10$$

Exercice 28

Un test comportant 20 questions. Dans ce test, une bonne réponse rapporte 10 points, et 5 points sont enlevés pour une réponse incorrecte ou incomplète, et il faut au moins 80 points pour être reçu.

On note x le nombre de bonne réponse. Donner une inéquation vérifiée par x si le candidat est reçu et en déduire la valeur minimale.

Exercice 29

Un groupe de x enfants se partage les mêmes jouets. Si chaque enfants reçoit 4 jouets, il en restera 27. Si chaque enfant en prend 5, il n'en aura pas assez.

Ecrire une inéquation en x et déterminer les valeurs possibles de x.

Exercice 30 Le tarif du parking A est $2.5 \in$ par heure de stationnement. Le tarif du parking B est de $3 \in$ la première heure, puis $2 \in$ les suivantes.

- 1. Pour une durée de parking de 3 h, quelle formule est la plus avantageuse?
- 2. Pour une durée de parking de x h, le parking B est le plus avantageux. Donner une inéquation vérifiée par x et en déduire la valeur minimale de x.
- **Exemple 6.13** Valeur absolue. Résoudre dans $\mathbb R$ les inéquations suivantes, inconnue x:

$$|2x-3|\leqslant 0.5$$

$$|x+2|\leqslant 1 \qquad \Longleftrightarrow -0.5\leqslant 2x-3\leqslant 0.5$$

$$\iff -1\leqslant x+2\leqslant 1 \qquad \Longleftrightarrow 3-0,5\leqslant 2x\leqslant 3+0,5 \qquad \Rightarrow 3-0,5\leqslant 2x\leqslant 3,5 \qquad \Rightarrow 2,5\leqslant 2x\leqslant 3,5$$

$$\mathscr{S}=[-3;-1] \qquad \Longleftrightarrow 1,25\leqslant x\leqslant 1,75 \qquad & \checkmark \frac{1}{2} \qquad \mathscr{S}=\varnothing$$

$$|x+3|>6 \qquad |2x|\geqslant 10 \qquad |x+3|\geqslant -3 \qquad \Rightarrow x+3>6 \text{ ou } x+3<-6 \qquad \Longleftrightarrow 2x\geqslant 10 \text{ ou } 2x\leqslant -10 \qquad \text{toujours vraie}$$

$$\iff x>3 \text{ ou } x<-9 \qquad \Longleftrightarrow x\geqslant 5 \text{ ou } x\leqslant -5$$

$$\mathscr{S}=[-\infty;-9]\cup]3;+\infty[\qquad \mathscr{S}=[-\infty;5]\cup [5;+\infty[$$

Exercice 31 Résoudre dans \mathbb{R} les inéquations suivantes, inconnue x:

$$\begin{aligned} (I_1) & |x+6| > 7 \\ (I_2) & |x+3| < 4 \\ (I_3) & |6x| < 12 \end{aligned} \qquad \begin{aligned} (I_4) & |x+5| < -2 \\ (I_5) & \left| \frac{-1}{4}x \right| > 12 \\ (I_6) & |3x-5| > 10 \end{aligned} \qquad \begin{aligned} (I_7) & |5x+3| < 1 \\ (I_8) & |1+2x| \geqslant -1 \\ (I_9) & |2x-5| < 7 \end{aligned}$$

6.5 Exercices : solutions et éléments de réponse

solution de l'exercice 2.

a) $x = \text{note au test}, x \in \mathbb{N}. x \text{ vérifie } 54 + x < 120.$

b) $x = \text{nombre de semaines}, x \in \mathbb{N}. x \text{ vérifie } 65 + 45x \geqslant 310.$

d) $x = \text{nombre de cupcakes}, x \in \mathbb{N}. x \text{ vérifie } 18 \ge 1.5x. \text{ MB/b//b/b}$

e) x =longueur du trajet en km, $x \in \mathbb{R}$. x vérifie $71 \ge 3x + 5$.

f) $x = \text{nbr de cochons}, \frac{108}{x} \geqslant 12.$

solution de l'exercice 10.

$$(I_1) \mathscr{S} =]-\infty, 8[$$

$$(I_2) \mathscr{S} =]7, \infty[$$

$$(I_3)$$
 $\mathscr{S} =]-\infty, -5]$

$$(I_4) \mathscr{S} = \left\lceil \frac{2}{3}, \infty \right\rceil$$

$$(I_5) \mathscr{S} =]-8, \infty[$$

$$(I_6) \mathscr{S} =]-\infty, -5[$$

$$(I_7) \mathscr{S} =]9, \infty[$$

$$\left| (I_8) \mathscr{S} = \right] - \infty, -\frac{5}{8} \left[\right|$$

$$(I_9) \mathscr{S} =]0, \infty[$$

$$[(I_{10}) \mathscr{S} =]-\infty, 4]$$

$$(I_{11}) \mathscr{S} = \left] -\frac{28}{5}, \infty \right[$$

$$I_{12}$$
 $\mathscr{S} = \frac{1}{3} \frac{10}{3}, \infty$

solution de l'exercice 11.

$$(I_1) \mathscr{S} =]1,11[$$

$$(I_2) \mathscr{S} = \left[\frac{8}{5}, \frac{9}{5} \right]$$

$$(I_3)$$
 $\mathscr{S} = [-9, 1[$

$$(I_4) \mathscr{S} = [1, 5[$$

$$(I_5)$$
 $\mathscr{S} =]-3,1]$
 (I_6) $\mathscr{S} =]-3,4]$

$$(I_6) \mathscr{S} =]-3,4]$$

$$(I_7) \mathscr{S} = [-1, 1]$$

$$(I_8) \mathcal{S} = \begin{bmatrix} 10\\3\\6 \end{bmatrix}$$

$$(I_9) \mathcal{S} = \begin{bmatrix} \frac{5}{2}, \frac{11}{2} \end{bmatrix}$$

$$(I_9)$$
 $\mathscr{S} = \left[\frac{5}{2}, \frac{11}{2}\right]$

solution de l'exercice 12.

$$(I_1)$$
 $\mathscr{S} =]1, \infty[$

$$(I_2)$$
 $\mathscr{S} =]-\infty, 32]$

$$(I_4) \mathscr{S} = \emptyset$$

solution de l'exercice 13.

$$(I_1) \mathscr{S} = \left[\frac{2}{5}, \infty \right[$$

$$\left| (I_2) \ \mathscr{S} = \right| -\infty, -\frac{17}{10} \left| \right|$$

$$(I_3) \mathscr{S} = \left\lceil \frac{5}{3}, \infty \right\rceil$$

solution de l'exercice 14. On a $x > \frac{3}{2}$.

solution de l'exercice 15.

solution de l'exercice 16.

La résolution dans \mathbb{R} de l'inéquation 3x + 6 > -3 est $\mathscr{S} =]-3; +\infty[$. Les solutions entières négatives sont -2 et -1.

solution de l'exercice 17.

La résolution dans \mathbb{R} est $\mathscr{S} =]-\infty; 4[$. Les solutiosns entières positives sont 1, 2 et 3.

solution de l'exercice 18.

La résolution dans \mathbb{R} de 4(x-3)+5<6(x-2)+1 est $\mathscr{S}=\left\lfloor \frac{1}{2};+\infty\right\rfloor$. La plus petite solution entière de est x=1.

1 est solution de
$$4x - ax = 3$$
, donc a vérifie $4(1) - a(1) = 3$, d'où $a = 1$.

solution de l'exercice 19.

3 est solution, donc
$$m$$
 vérifie $m(3)^2 - 5(3) + 3m - 1 \ge 0$, donc $6m - 16 \ge 0$. $m \ge \frac{8}{3}$.

solution de l'exercice 20.

$$-2$$
 est solution, donc m vérifie $(-2)^3 + 3m(-2) \geqslant 1 - 2m$, d'où $8 - 6m \geqslant 1 - 2m$. $m \geqslant \frac{7}{4}$.

solution de l'exercice 21.

La solution
$$x = \frac{m-11}{5}$$
 est strictement positive. Donc m vérifie $\frac{m-11}{5} > 0$. $m > 11$.

solution de l'exercice 22.

La solution
$$x = \frac{2m+5}{6}$$
 est supérieure ou égale à 1. Donc m vérifie $\frac{2m+5}{6} \geqslant 1$. $m \geqslant \frac{1}{2}$.

solution de l'exercice 23.

La solution
$$x = \frac{1}{3-m}$$
 est strictement négative. Donc m vérifie $\frac{1}{3-m} < 0$. Il faut $3-m < 0$. $\therefore m > 3$.

solution de l'exercice 24.

a vérifie simultanément les inéquations $2-a\geqslant 0$ et $4-a\geqslant 0$ et $6-a\geqslant 0$. Il faut donc $a\leqslant 2$.

Autre approche $2x - a \ge 0 \iff x \ge \frac{a}{2}$. 1, 2 et 3 sont des solutions entières, donc a doit vérifier **simultanément** les inéquations $1 \ge \frac{a}{2}$ et $2 \ge \frac{a}{2}$ et $3 \ge \frac{a}{2}$.

Il faut
$$a \le 6$$
 et $a \le 4$ et $a \le 2$. $\therefore a \le 2$.

solution de l'exercice 25.

$$(a-3)x > a-3$$

$$\iff x > \frac{a-3}{a-3} = 1$$
Si $a-3 > 0$

et
$$(a-3)x > a-3$$
 . \Rightarrow $x < \frac{a-3}{a-3} = 1$ Si $a-3 < 0$

Il faut donc a-3 < 0, a < 3.

solution de l'exercice 26.

$$\frac{(ax-5)}{6} - \frac{(2-ax)}{4} > 0$$

$$\frac{12(ax-5)}{6} - \frac{12(2-ax)}{4} > 0$$
 $\times 12$

$$2(ax - 5) - 3(2 - ax) > 0$$

$$2ax + 3ax - 10 - 6 > 0$$

$$5ax - 16 > 0$$

$$ax > \frac{16}{5}$$

$$x > \frac{16}{5a}$$

$$x < \frac{16}{5a}$$

$$x < \frac{16}{5a}$$
Si $a > 0$

Comme $\mathscr{S} =]1; +\infty[$, donc a > 0 et $\frac{16}{5a} = 1$. $\therefore a = \frac{16}{5}$.

solution de l'exercice 28.

x= nombre de réponses correctes. Il faut $10x-5(20-x)\geqslant 80$. Ce qui donne $15x\geqslant 180$, d'où x=12.

solution de l'exercice 29.

$$4x + 27 =$$
nombre total de jouets $< 5x$. Donc $x > 27$.

solution de l'exercice 30.

x = durée de parking en heures

- 1. Pour x = 3, $A = 2.5 \times 3 = 7.5 e$, et B = 3 + 2(3 1) = 7 e.
- 2. À partir de la question 1, on peut poser que :

Tarif A
$$A(x) = 2.5x$$

Tarif B
$$B(x) = 3 + 2(x - 1)$$

On cherche x > 0 tel que A(x) > B(x), donc 2.5x > 3 + 2(x - 1), 0.5x > 1, x > 2. Le parking Best le plus avantageux à partir de 2h.

solution de l'exercice 31.

$$(I_1) \mathscr{S} =]-\infty, -13[\cup]1, \infty[$$

$$(I_{-}) \quad \mathscr{Q} =]_{-}7 \quad 1[$$

$$(I_3) \mathscr{S} =]-2, 2[$$

$$|(I_4)| \mathscr{S} = \emptyset$$

$$(I_5) \mathcal{S} =]-\infty, -48[\cup]48, \infty[$$

$$\begin{aligned} &(I_1) \ \mathscr{S} =]-\infty, -13[\ \cup\]1, \infty[\\ &(I_2) \ \mathscr{S} =]-7, 1[\\ &(I_3) \ \mathscr{S} =]-2, 2[\end{aligned} \qquad \begin{aligned} &(I_4) \ \mathscr{S} = \emptyset \\ &(I_5) \ \mathscr{S} =]-\infty, -48[\ \cup\]48, \infty[\\ &(I_6) \ \mathscr{S} = \Big]-\infty, -\frac{5}{3}\Big[\ \cup\]5, \infty[\end{aligned} \qquad \begin{aligned} &(I_7) \ \mathscr{S} = \Big]-\frac{4}{5}, -\frac{2}{5}\Big[\\ &(I_8) \ \mathscr{S} = \mathbb{R} \\ &(I_9) \ \mathscr{S} =]-1, 6[\end{aligned}$$

$$(I_7)$$
 $\mathscr{S} = \left[-\frac{4}{5}, -\frac{2}{5} \right]$

$$(I_8) \mathscr{S} = \mathbb{R}$$

$$(I_9) \mathscr{S} =]-1, 6[$$

6.6 Club maths : systèmes d'inéquations

lacktriangle Exemple 6.14 — Inéquations simultanées. Résoudre dans $\mathbb R$ les systèmes d'inéquations suivantes :

Exercice 32

Résoudre dans $\mathbb R$ les systèmes d'inéquations suivantes :

Exercice 33

Déterminer les **entiers positifs** solutions des systèmes suivants :

$$(S_1) \begin{cases} 2(x+2)+1 > -3 \\ -1+2x < 8 - \frac{x}{4} \end{cases} \qquad (S_2) \begin{cases} 2x-1 < x+1 \\ x+8 > 4x-1 \end{cases} \qquad (S_3) \begin{cases} 2x-1 \geqslant 5 \\ \frac{x+10}{2} < 7 \end{cases}$$

Exercice 34

Pour chaque figure, préciser les inéquations vérifiées par x pour que le triangle soit constructible, puis déterminer l'ensemble des solutions.

Exercice 35

Soit un triangle de côtés 4a+5, 2a-1 et 20-a, avec a un entier. Déterminer les valeurs possibles du périmètre de ce triangle.

Exercice 36

La solution entière du système $\begin{cases} 2x > 3x - 3 \\ 3x - a > -61 \end{cases}$ d'inconnue x est 2. Déterminer les valeurs possibles de a.

Exercice 37

Déterminer les solutions entières du système $\begin{cases} 2(x+2) > x+5 \\ 3(x-2) + 8 \geqslant 2x \end{cases}$ d'inconnue x. Exercice 38 $\begin{cases} x+5 > 2a \\ x+a < 3b \end{cases}$ d'inconnue x est $\mathscr{S} =]-9; 10[$. Déterminer les valeurs de a et bvaleurs de a et b.

Exercice 39

x > 4 ou $x \leqslant 3$

L'ensemble solution du système $\begin{cases} 2x+2>4(x-2) & \text{d'inconnue } x \text{ est } \mathscr{S}=]-\infty; 5[\text{. Déterminer } x+a<1] \end{cases}$ les valeurs possibles de a.

■ Exemple 6.15 — Disjonctions. Résoudre dans $\mathbb R$ les inéquations suivantes :

$$\mathcal{S} =]-\infty; 3] \cup]4; +\infty[$$

$$x \le 3$$

$$x > 4$$

$$x \leq 3 \qquad x > 1$$

x > 1 ou $x \leq 3$

Exercice 40 Mêmes consignes

$$(I_1)$$
 $x \le -3$ ou $x \ge 1$ (I_2) $x < 4$ ou $x > 8$ (I_3) $-2x > 10$ ou $4x > 16$ (I_4) $-3x + 1 > 10$ ou $2x + 1 > 11$ (I_5) $x + 5 \le -4$ ou $x + 5 \ge 4$ (I_6) $15 > 4x - 1$ ou $1 < 4x - 15$

19

6.6.1 Club maths : solutions et éléments de réponse

solution de l'exercice 32.

$$(I_1)$$
 $\mathcal{S} =]-\infty, -3[$

$$(I_3) \mathcal{S} = \{1\}$$

$$(I_4) \mathcal{S} = \emptyset$$

$$(I_5) \mathscr{S} = \emptyset$$

$$(I_2)$$
 $\mathscr{S} = \emptyset$

$$(I_4) \mathscr{S} = \emptyset$$

$$(I_5) \mathscr{S} = \emptyset$$

$$(I_6) \mathscr{S} = [-2, 1[$$

solution de l'exercice 33.

$$(I_1) \mathscr{S} =]-4, 4[$$

$$|(I_2) \mathcal{S} =]-\infty, 2[$$

$$|(I_3) \mathcal{S} = [3, 4[$$

solution de l'exercice 37.

solution de l'exercice 3

$$\begin{cases} x+5 > 2a \\ x+a < 3b \end{cases} \iff \begin{cases} x > 2a-5 \\ x < 3b-a \end{cases}$$
 Il faut
$$\begin{cases} 2a-5=-9 \\ 3b-a=10 \end{cases}$$
 , $a=-2$ et $b=\frac{8}{3}$.

solution de l'exercice 39.
$$\begin{cases} 2x+2>4(x-2) \\ x+a<1 \end{cases} \iff \begin{cases} 5>x \\ x<1-a \end{cases}$$
. Ceci est équivalent à $x<5$ si $1-a\geqslant 5$. $\therefore a\leqslant -4$.

solution de l'exercice 36.

solution de l'exercice 34.

solution de l'exercice 35.

Inégalité triangulaire,
$$a$$
 doit vérifier
$$\begin{cases} 4a+5+2a-1>20-a \\ 4a+5+20-a>2a-1 \end{cases} \iff \begin{cases} 7a>16 \\ a>-24 \\ 3a<14 \end{cases}$$

$$\begin{cases} a>\frac{16}{7}\\ a>-24 \end{cases} \text{ . Les seuls entiers qui verifient ce systèmes sont } a=3 \text{ et } a=4.$$

$$\begin{cases} a<\frac{14}{3}\\ \text{Le périmètre } \mathscr{P}=24+5a \text{ vaut soit } 44 \text{ soit } 39. \end{cases}$$

solution de l'exercice 40.

$$(I_1)$$
 $\mathscr{S} =]-\infty, -3] \cup [1, \infty[$

$$(I_3)$$
 $\mathscr{S} =]-\infty, -5[\cup]4, \infty[$

$$(I_1) \ \mathscr{S} =]-\infty, -3] \cup [1, \infty[\qquad \quad \Big| \ (I_3) \ \mathscr{S} =]-\infty, -5[\ \cup \]4, \infty[\qquad \quad \Big| \ (I_5) \ \mathscr{S} =]-\infty, -9] \cup [-1, \infty[$$

$$(I_2)$$
 $\mathscr{S} =]-\infty, 4[\cup]8, \infty[$

$$(I_4) \mathscr{S} =]-\infty, -3[\cup]5, \infty[$$

$$(I_2) \ \mathscr{S} =]-\infty, 4[\ \cup\]8, \infty[\qquad \qquad |\ (I_4) \ \mathscr{S} =]-\infty, -3[\ \cup\]5, \infty[\qquad \qquad |\ (I_6) \ \mathscr{S} =]-\infty, 4[\ \cup\]4, \infty[$$