Curso de Arduino

Prof Neri Aldoir Neitzke

O que é Arduino

É uma plataforma de computação física com um microcontrolador de placa única com suporte embutido de entrada e saída. Para facilitar o entendimento, podemos até dizer que Arduino é um computador. Nós podemos criar programas para ele que manipulem entradas e saídas. É algo incrível, e você poderá interagir com o meio ambiente e criar o que quiser, basta ter entusiasmo, criatividade e imaginação.

Arduino para todos

É fantástico o fato de você poder criar um projeto envolvendo eletrônica sem precisar dominar eletrônica (não precisa ser engenheiro) nem precisar criar um circuito, isso abre portas a um novo mundo de pessoas criativas e com potencial para desenvolver projetos magníficos e baratos.

Não é preciso começar do zero.

Arduino

Palavra chave = brincar

Isso mesmo, você aprende
brincando, testando, se
deliciando.

Para entender bem

Computador

O que podemos conectar e controlar

Com Arduino é possível conectar qualquer dispositivo que emita dados ou possa ser controlado. Entre eles são: LED's, Displays, interruptores, motores, sensores de Luz, sensores de Temperatura, sensores de Umidade, sensores de Pressão, sensores de distância, sensores para nível de álcool, receptores de GPS, módulos Ethernet etc.

Surgimento

Surgiu na Itália em 2005 com o objetivo de criar um dispositivo prático e simples no controle de entrada e saída de dados.

Característica: Multi-Plataforma

Interagir com o ambiente

Isso é uma das coisas mais fantásticas que o Arduino proporciona: interação com o meio ambiente. Mas como isso é possível ? O Arduino (circuito eletrônico) consegue perceber o que acontece no seu ambiente através de sensores que convertem medidas do mundo real em sinais elétricos)

Lixo Eletrônico (tralhas)

Motores, alto-falantantes, fios, resistores, etc etc.. Tudo isso você pode aproveitar daquela impressora ou daquele gabinete velho de computador que você iria jogar fora e não sabe onde colocar. Aproveitem o lixo eletrônico, basta usar sua imaginação

Arduino: Hardware e Software de fonte aberta

O projeto, fontes e esquemas podem ser usados de forma livre. Você pode criar em casa sua própria placa Arduino baseado no diagrama de circuito do projeto original. Só não pode colocar o nome Arduino, mas pode ser Neriuino, Informaticonino, Nerizonino, videoaulasino ... etcino

Placa Arduino Duemilanove

Versão Anterior, ainda muito usada

Placa Arduino Uno R3

Mais recente e mais popular

Pinos ligados no soquete de Circuito Integrado Usa um Chip Atmega8U2 Vantagens:

- mais barato
- Arduino é exibido no Pc como se fosse qualquer outro dispositivo
- Pode deixar permanente

Desvantagens:

• Difícil de ser clonado

Conheça a placa Uno R3 Pino Analógico Pinos Digitais 0 e 1 de Referência **Entrada RS** Terra - gnd **Pinos Digitais** e saida TX 2 ao 13 **Botão Reset ICSP, Serial** para DIGITAL (PHN-) F programação **USB In-Circuit** Gravação direta na placa **Fonte** Chip externa de Principal alimentação 9V a 12V Pinos Analógicos Power: Terra, entrada 5v e 3.5 v, reset ... 0 a 5

Placa Arduino Uno R3

Pinos Digitais 02 à 13

Pinos Analógicos 01 à 05 **Pinos digitais:** usa-se para entradas e saídas gerais. Alguns comandos são: pinMode(), digitalRead(), e digitalWrite().

Pino 13: Nele tem um LED integrado, você poderá programar para ligar (high) ou desligar (low). Nele já existe um resistor, ou seja, você poderá testar uma aplicação usando o pino 13.

Pinos Analógicos: Recebem valores analógicos (sensores) mas pode ser configurado e utilizado da mesma maneira que os pinos digitais.

Primeiro Exemplo

```
const int ledPin = 13; //variável do tipo inteiro com valor 13
void setup() //funçao ou método que executado toda vez
 pinMode(ledPin,OUTPUT);
void loop()
 digitalWrite(ledPin,HIGH); //acende a luz (envia corrente)
 delay(1000); //espera 2 segundos
 digitalWrite(ledPin,LOW); //apaga a luz (não envia corrente)
 delay(1000); //espera 2 segundos
```

Linguagem

```
const int ledPin = 13; //variável do tipo inteiro com valor 13
void setup() //funçao ou método que executado toda vez
 pinMode(ledPin,OUTPUT);
void loop()
 digitalWrite(ledPin,HIGH); //acende a luz (envia corrente)
 delay(1000); //espera 2 segundos
 digitalWrite(ledPin,LOW); //apaga a luz (não envia corrente)
 delay(1000); //espera 2 segundos
```

LED - Light Emitting Diode

Diodo Emissor de Luz, usado muito para sinalizadores, carros, semáforo, painéis (avião), informações de ligado, desligado, processando (piscando)

LED - Light Emitting Diode

LED

LED - Light Emitting Diode

Para funcionar deverá estar polarizado (Negativo e positivo)

LED — E a voltagem ?

A maioria dos LED'S encontrados possui uma tensão direta entre 1,5 e 3,5 V, variando conforme suas características, por exemplo: os de cores vermelhas apresentam tensão direta menor do que os verdes e Amarelos.

Videoaulas Neri - www.informaticon.com.br

LED — E a Corrente?

Normalmente os LED'S apresentam uma corrente máxima direta entre 40mA e 50 mA (mas com apenas 5 mA, por exemplo a luminosidade já é bem perceptível), nunca ultrapasse o valor máximo pois uma corrente maior do que o LED pode suportar, irá sobreaquecer e poderá queimá-lo (eu já queimei muitos). A luminosidade do LED é diretamente proporcional à corrente do mesmo, portanto, quanto maior a corrente, mais intensa a luz é emitida (mas sempre com tal corrente dentro do máximo permitido). Embora a corrente máxima (supondo em torno de 40 mA), ocasione luminosidade também máxima, isso não quer dizer que o LED não acenda com correntes menores. O componente começa a emitir luz com corrente de uns poucos milliampères.

Resistor

Videoaulas Neri - www.informaticon.com.br

Resistor

Provoca resistência a uma corrente elétrica, diminuindo voltagem.

O valor da resistência é medido em OHM e seu símbolo é o Ômega Grego

 Ω

```
\Omega, k\Omega ou M\Omega comparando com a informática Byte, Kilobyte, Megabyte 1 ohm = 1 byte 1.000 ohm = 1 k \rightarrow 1.000 Bytes = 1 k 1.000.000 ohm = 1.000 k \Omega = 1 M \Omega \rightarrow 1.000.000 Bytes = 1.000 K = 1 Megabyte
```


Resistor - Cálculo

R = (VF - VL) / CML

R = Resistor Necessário

VF = Voltagem Fornecida (Pilha, Bateria, USB)

VL = Voltagem do Led

CML = Corrente Máxima do Led

Exemplo.: Para um LED de 5mm e que necessita 2V e trabalha com corrente de 35 milliampères, qual é o resistor necessário ?

Resistor - Cálculo

Exemplo.: Para um LED de 5mm e que necessita 2V e trabalha com corrente de 35 milliampères, qual é o resistor necessário ? Vamos aplicar a fórmula: R = (VF – VL) / CML

R = (5-2) / 0.035 = 85 ohm (mais próximo é o 100 ohm)

Resistor

Videoaulas Neri - www.informaticon.com.br

Resistor - softwares

Motores

Motor de Corrente Contínua (motor CC)

Velocidade variável e você pode controlar a velocidade

Transistor

Considerado o principal responsável pela revolução da <u>eletrônica</u> na <u>década de 1960</u>

O transistor é considerado uma das maiores invenções da história moderna, tendo tornado possível a revolução dos <u>computadores</u> e equipamentos eletrônicos.

Amplificador de corrente (sinal elétrico mais forte ou mais fraco) podendo então Regular a Tensão, Amplificador de sinal (exemplo do Microfone, aparelhos auditivos) Chave eletrônica..

Resumindo: você poderá controlar componentes que Exigem mais tensão ou corrente que o Arduino Consegue prover.

Transistor

Eu estou usando o TIP 120

Base: é a parte que controla a passagem da corrente

Coletor: é nele que "entra" a corrente a ser controlada.

Emissor: é onde sai a corrente que foi controlada.

Diodo

Retificação de corrente

