实验十五 非平衡电桥测量铂电阻的温度系数

物理学院 田睿轩 1900011602

一、数据处理

1. 非平衡电桥测量结果

$$R_0 = 100.1\Omega$$
 $I_0 = 4.004mA$

T(°C)	0.1	21.8	41.4	54.6	69.8	84.1	99.7
$U_{out}(mV)$	0	16.67	31.75	41.87	53.36	64.18	76.05

图 1 U_{out} - T关系图

2. 计算铂电阻温度系数A₁及其不确定度

$$U_{out} = \frac{I_0}{2} R_0 A_1 \triangle T \quad \Rightarrow \quad A_1 = \frac{2k}{I_0 R_0}$$

由拟合数据可知,图线斜率k为 $0.763 \times 10^{-3} (V/^{\circ}C)$,由此计算得铂电阻温度系数 $A_1 = 3.81 \times 10^{-3} ^{\circ}C^{-1}$

温度系数的不确定度
$$\sigma_{A_1}=A_1\sqrt{\left(rac{\sigma_{k,total}}{k}
ight)^2+\left(rac{\sigma_{I_0}}{I_0}
ight)^2+\left(rac{\sigma_{R_0}}{R_0}
ight)^2}$$
,其中, $\sigma_{k,total}=$

$$\sqrt{\sigma_{k,fit}^2 + \sigma_{k,U}^2}$$
, $\sigma_{k,U} = \frac{e_U/\sqrt{3}}{\sqrt{\sum_{i=1}^n (T_i - \bar{T})^2}}$, 代入数据,得 $\sigma_{A_1} = 1.21 \times 10^{-4}$ ° C^{-1}

二、思考题

1. 实验中有哪些因素会引起输出-输入非线性误差?对测量的影响有多大?本实验采取了什么措施,用以改善非平衡电桥的线性?

实验中, $U_{out} = I_1 R_T - I_2 R_P$ 这一非线性表达式被近似为 $U_{out} = \frac{I_0}{2} (R_T - R_P)$ 这一线性表达式,但实际中除了0°C这一点外,其余温度处 I_1 和 I_2 并不严格等于 $\frac{I_0}{2}$,这会带来非线性误差。此外,若考虑导线电阻和接触电阻,也会使线性表达式不再成立。若不进行修正,对测量结果的影响还是比较大的。本实验通过取 $R_1 = R_2$,且 $R_1 \gg R_T$, $R_2 \gg R_P$,采用电阻的三线接法,并用最小二乘法对结果拟合来改善其线性。

2. 处理数据时,如果发现 $U_{out} - T$ 拟合直线截距不为零,是何原因?是否会影响测温精度?

截距不为零一方面是因为实验开始调节 R_0 时冰水混合物温度很难达到0°C,故 0°C的输出电压 U_{out} 并不为 0,另一方面是因为 U_{out} 与T并不完全呈线性关系(至少实验数据中不完全呈线性关系)。这会给测温精度带来一定的不确定度。

三、分析与讨论

1. 比较铂电阻温度系数的测量结果与理论值,并分析

实验中铂电阻温度系数的测量值为 $A_1=3.81\times 10^{-3}\,^{\circ}C^{-1}$,而理论值 $A_1=3.85\times 10^{-3}\,^{\circ}C^{-1}$ 。测量值比理论值偏小,推测可能是由于温度增长使得 I_1 和 I_2 并不严格等于 $\frac{I_0}{2}$,线性表达式不再严格成立。