RAD-Seq methods

Non-model species and RAD-sequencing

Alexander Jueterbock

May 2017

RAD-Seq - young and successful NGS methods

(Andrews et al., 2016)

Purpose of RAD-seq

Intro

- Genome-reduction method to fragments adjacent to restriction enzyme recognition sites.
- Increases depth of coverage per locus compared to whole genome sequencing
- High-throughput genotyping of populations (multiplexing using barcoding) at relatively low cost.
- Makes genome-scale population genetic studies possible for non-model species lacking a reference genome.

Reductive *de novo* genome sequencing and SNP identification

- RAD-Seq of the sunflower genome (Illumina)
 - 44.7M reads (PE:40bpx80bp)
- De novo assembly of ca. 15.2 Mb in >42,000 contigs
- Identified >94,000 putative SNPs across six lines

Population genomics and parallel adaptive differentiation in threespine sticklebacks

Reference genome available

Intro

- >45,000 SNPs across 100 individuals ('genotyping by sequencing')
- Consistent signatures of selection between two oceanic and three freshwater populations
- Identified 31 candidate genes of evolutionary significance

Figure: F_{ST} for SNPs in sliding windows across the genome between oceanic and freshwater populations 4日 > 4周 > 4 至 > 4 至 >

Original RAD-Seq protocol

- Developed by (Miller2007; Baird et al., 2008).
- DNA fragments adjacent to restriction enzyme recognition sites

5' GAATTC 3' 3' CTTAAG 5'

EcoRI recognition site

References

Step 1: cut DNA

 Note: Bias in GC content of restriction site samples the genome non-randomly

Step 2: ligate P1 adapter

Amplification primer site

Sequencing primer site (Illumina-specific)

Barcode

Barcoding allows to pool samples

Step 3: Shearing and size selection

RAD-Seq methods

Step 4: Ligation of P2 adapter with 'Y' structure

Step 5: Sequence amplified reads on Illumina

Random shearing of 3'ends helps to detect PCR duplicates

Paired-end sequencing of RAD-tags allows for *de novo* genome sequencing

RAD-Seq methods

Calling SNPs from RAD-tags

Summary statistics (e.g. population differentiation) along sliding windows

Double-digest RAD-seq (Peterson2012)

- within a specific size range
- flanked by two different cutting sites
 - EcoRl recognition site
 - Sbfl recognition site

ddRAD compared to single-digest RAD sequencing

Rapid and 'cheap' protocol (8 hrs hands-on): Doesn't require difficult and high cost of shearing and enzymatic end-repair.

ddRAD compared to single-digest RAD sequencing

2 Lower number of loci but increased coverage and, thus, higher chance to target the same loci in different individuals.

3 Coverage expected to be equal among individuals and highest for fragment lengths targeted by size selection.

4 Combinatorial indexing allows to multiplex more individuals (up to 12 barcodes were affordable for single-digest RAD-Seq).

Combinatorial indexing allows for high multiplexing levels in ddRAD-Seg

 $48 \times 12 = 576$ (multiplexing level)

added first, with ligation of adapters, allows to pool samples added second, with PCR primer, allows to combine multiple pools

Great adjustability of the number of markers makes ddRAD suitable for a broader range of approaches than RAD-Seq

Number of markers adjusted by:

- Cutting frequency of restriction enzymes
- Size selection

How to predict the number of fragments

Based on our own study on Guppy

- Targeted coverage: 20x per individual
- Pooling: 60 individuals
- Sequencing output: 24M reads (12M fragments, minimum for Illumina MiSeq v2 paired-end kits)
- Fragments per individual: 12M/60 = 200,000
- Target: 10,000 fragments (to reach a 20x coverage)

What combination of restriction enzymes to use to obtain the appropriate cutting frequency?

In silico genome digestion

Simulate restriction enzyme digestion with the R package simRAD (Lepais2014)

Based on 10% of the entire genome size

Without reference genome: try, sequence and re-adjust

Recovery of in silico predicted loci

(DaCosta and Sorenson, 2014)

Targeted: 178-328bp, but short restriction fragments (38–178 bp) were carried through the agarose gel size selection step

ezRAD (Toonen2013)

(Andrews et al., 2016)

ezRAD (Toonen2013)

Advantage

non-PCR kits can avoid PCR duplication and bypass any PCR bias.

2bRAD (Wang2012)

- Type IIb restriction endonuclease to excise 36-bp fragments.
- Number of loci customized by base-selective adapters.

Advantages

- Extremely simple and cost-effective: no purification or size selection.
- No biases due to fragment size selection.
- Sequencing either strand of the restriction fragments allows for the use of strand bias as a quality filtering criteria.

Disadvantages

36-bp tags could be too short to be non-ambiguously mapped in highly duplicated genomes. RAD-Seq methods

Restriction/Shearing

RAD-Seq methods

Degenerate base regions detect PCR duplicates in ddRAD ((Tin2014; Schweyen2014))

analysed fragments

Avoid PCR duplicates

- Reduce occurrence by lowering PCR steps
- Avoid PCR duplicates in ezRAD with Illumina PCR-free kits

Shearing introduces bias in coverage

Bias in sequencing depth towards larger fragment sizes

(Davey2013)

Reason: Fragments of <10 kb shear with lower efficiency

Amplification bias in favor of high GC content

Read depths are influenced by GC content and number of PCR cycles, with (A) or without PCR duplicates (B).

(Davey2013)

Mean sheared fragment GC content (%)

Modifications of PCR enrichment can help (see (Puritz2014b; Benjamini and

Speed, 2012))

Sequencing depth bias in favor of loci with high GC content

■ Combined with a GC-rich recognition sequence, this can result in an overrepresentation of GC-rich portions of the genome

Amplification and, thus, depth decreases with fragment length

(DaCosta and Sorenson, 2014)

- Affects ddRAD more than RAD-seq (each locus different fragment lengths) or 2bRAD (all loci same fragment length)
- Bias reduced by precise size selection (Pippin Prep instrument) (DaCosta and Sorenson, 2014).

STACKS (Puritz2014)

Stacks: Building and Genotyping Loci *De Novo* From Short-Read Sequences

Julian M. Catchen,* Angel Amores,[†] Paul Hohenlohe,* William Cresko,* and John H. Postlethwait^{*,1}
*Center for Ecology and Evolutionary Biology and [†]Institute of Neuroscience, University of Oregon, Eugene,
Oregon 97403

STACKS - basic pipeline for RAD-Seq

STACKS - software pipleine to build loci from RADseq reads and use them for population genomics and phylogeographic analyses.

(Catchen et al., 2013)

STACKS - Ustacks de novo assembly step 1

- Only exact matches are assembled
- Secondary reads are set aside
- The minimum stack depth parameter controls the number of raw reads required to form an initial stack

STACKS - Ustacks de novo assembly step 2

- Stacks with few nucleotide differences are merged.
- Repetitive sequences with many alleles are excluded

STACKS - Ustacks de novo assembly step 3

- Alignment of secondary reads (those not indcluded in stacks) against stacks.
- Alleles are discriminated from sequencing errors by their frequency.

STACKS - populations or genotypes pipeline

DDocent (Puritz2014)

PeerJ

dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms

Jonathan B. Puritz, Christopher M. Hollenbeck and John R. Gold Marine Genomics Laboratory, Harte Research Institute, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA

DDocent (Puritz2014)

Uses stand-alone software packages to perform

- quality trimming
- adapter removal
- *de novo* assembly of RAD loci
- read mapping
- SNP and InDel calling
- data filtering.

Identifies more SNPs at a higher coverage than STACKS, due to

- simulatneous use of forward and reverse reads during alignment to reference instead of clustering
- quality trimming instead of removing entire reads

AftrRAD

Molecular Ecology Resources (2015) 15, 1163-1171

doi: 10.1111/1755-0998.12378

AftrRAD: a pipeline for accurate and efficient *de novo* assembly of RADseq data

MICHAEL G. SOVIC,*† ANTHONY C. FRIES* and H. LISLE GIBBS*†

*Department of Evolution, Ecology, and Organismal Biology, Aronoff Laboratory, The Ohio State University, 318 W. 12th Ave, Columbus, OH 43210, USA, (Ohio Biodiversity Conservation Partnership, Aronoff Laboratory, The Ohio State University, 318 W. 12th Ave, Columbus, OH 43210, USA

Bioinformatics Advance Access published March 20, 2014

BIOINFORMATICS ORIGINAL PAPER

2014, pages 1-6 doi:10.1093/bioinformatics/btu121

Phylogenetics

Advance Access publication March 5, 2014

PyRAD: assembly of de novo RADseq loci for phylogenetic analyses

Deren A. R. Faton 1,2

¹Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St. Chicago, IL 60637, USA and ²Botany Department, Field Museum of Natural History, 1400 S. Lake Shore Dr. Chicago, IL 60605, USA

Associate Editor: David Posada

- Degraded DNA interfers with cutted DNA in methods with enzyme-unspecific adaptors
- Higher amount of starting DNA can reduce number of PCR cycles and thus minimize PCR duplicates.
- RADseq libraries are low-diversity libraries as they all start with the same cutting site and can cause problems in cluster generation for Illumina sequencing.
 - Solution: Reduce cluster density and spike-in PhiX control or use dark-cycling.

RAD-Seq methods

References

- Andrews, KR, JM Good, MR Miller, G Luikart, and PA Hohenlohe (2016). "Harnessing the power of RADseq for ecological and evolutionary genomics". In: Nat Rev Genet advance on 2, pp. 81–92.
- Baird, NA, PD Etter, TS Atwood, MC Currey, AL Shiver, ZA Lewis, et al. (2008). "Rapid SNP discovery and genetic mapping using sequenced RAD markers". In: PLoS One 3.10.
- Benjamini, Y and TP Speed (2012). "Summarizing and correcting the GC content bias in high-throughput sequencing". In: Nucleic Acids Res. 40.10.
 - Catchen, J. PA Hohenlohe, S Bassham, A Amores, and WA Cresko (2013). "Stacks: An analysis tool set for population genomics". In: Mol. Ecol. 22.11, pp. 3124–3140.