Elemente de teoria funcțiilor de mai multe variabile complexe. Aplicații în studiul inelului de germeni de funcții olomorfe

Mihai-Sorin Stupariu

Sem. al II-lea, 2013-2014

Formula integrală a lui Cauchy (cazul unei variabile)

Teoremă (formula integrală Cauchy-Pompeiu) Fie $\Omega \subset \mathbb{C}$ deschis și mărginit și cu frontiera $\partial \Omega$ reuniune finită de curbe Jordan de clasă \mathcal{C}^1 . Fie $f \in \mathcal{C}^1(\bar{\Omega})$. Pentru orice $z \in \Omega$ are loc egalitatea

$$f(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\Omega} \frac{\partial f}{\partial \bar{\zeta}} \frac{d\zeta \wedge d\bar{\zeta}}{\zeta - z}.$$

Corolar. Dacă f este olomorfă, atunci pentru orice $z \in \Omega$

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

▶ f olomorfă $\Leftrightarrow f$ analitică.

- ▶ f olomorfă $\Leftrightarrow f$ analitică.
- Principiul de identitate / principiul prelungirii analitice.

- ▶ f olomorfă $\Leftrightarrow f$ analitică.
- Principiul de identitate / principiul prelungirii analitice.
- Principiul de maxim.

- ▶ f olomorfă $\Leftrightarrow f$ analitică.
- Principiul de identitate / principiul prelungirii analitice.
- Principiul de maxim.
- ▶ Propoziție (Lema lui Poincaré pentru operatorul $\bar{\partial}$) Fie Ω ca în ipotezele de la Teorema lui Cauchy și fie $g \in C^{\infty}(\bar{\Omega})$. Funcția $f : \Omega \to \mathbb{C}$ dată de, pentru $z \in \Omega$ de

$$f(z) = \frac{1}{2\pi i} \int_{\Omega} \frac{g(\zeta)}{\zeta - z} d\zeta \wedge d\overline{\zeta}$$

este bine definită, \mathcal{C}^{∞} pe Ω și verifică egalitatea

$$\frac{\partial f}{\partial \bar{z}} = g.$$

Formula lui Cauchy.

- Formula lui Cauchy.
- f olomorfă $\Leftrightarrow f$ analitică.

- Formula lui Cauchy.
- ▶ f olomorfă $\Leftrightarrow f$ analitică.
- Principiul de identitate / principiul prelungirii analitice.

- Formula lui Cauchy.
- ▶ f olomorfă $\Leftrightarrow f$ analitică.
- Principiul de identitate / principiul prelungirii analitice.
- Principiul de maxim.

- Formula lui Cauchy.
- ▶ f olomorfă $\Leftrightarrow f$ analitică.
- Principiul de identitate / principiul prelungirii analitice.
- Principiul de maxim.
- Lema lui Poincaré pentru operatorul $\bar{\partial}$.

- Formula lui Cauchy.
- ▶ f olomorfă $\Leftrightarrow f$ analitică.
- Principiul de identitate / principiul prelungirii analitice.
- Principiul de maxim.
- Lema lui Poincaré pentru operatorul $\bar{\partial}$.
- Diferențe: Teorema lui Hartogs.

Cadru de lucru şi convenţii:

- Cadru de lucru şi convenţii:
 - $ightharpoonup \mathbb{C}^n$, coordonate $z=(z_1,z_2,\ldots,z_n)$
 - se notează $z'=(z_1,\ldots,z_{n-1})$

- ► Cadru de lucru și convenții:
 - $ightharpoonup \mathbb{C}^n$, coordonate $z=(z_1,z_2,\ldots,z_n)$
 - se notează $z' = (z_1, \ldots, z_{n-1})$
 - se lucrează în jurul lui 0

- Cadru de lucru şi convenţii:
 - $ightharpoonup \mathbb{C}^n$, coordonate $z=(z_1,z_2,\ldots,z_n)$
 - se notează $z'=(z_1,\ldots,z_{n-1})$
 - se lucrează în jurul lui 0
- ▶ **Lemă** Fie f olomorfă în jurul originii, $f \not\equiv 0$. Există o alegere a sistemului de coordonate z_1, z_2, \ldots, z_n astfel ca f să nu fie identic nulă pe axa $z_n = 0$. În particular, pentru această alegere a sistemului de coordonate, există un $s \geq 0$ astfel ca $f(0, z_n)/z_n^s$ să aibă limită finită, nenulă, pentru $z_n \to 0$.

- Cadru de lucru şi convenţii:
 - $ightharpoonup \mathbb{C}^n$, coordonate $z=(z_1,z_2,\ldots,z_n)$
 - se notează $z'=(z_1,\ldots,z_{n-1})$
 - se lucrează în jurul lui 0
- ▶ **Lemă** Fie f olomorfă în jurul originii, $f \not\equiv 0$. Există o alegere a sistemului de coordonate z_1, z_2, \ldots, z_n astfel ca f să nu fie identic nulă pe axa $z_n = 0$. În particular, pentru această alegere a sistemului de coordonate, există un $s \geq 0$ astfel ca $f(0, z_n)/z_n^s$ să aibă limită finită, nenulă, pentru $z_n \to 0$.
- ▶ (Idee de demonstrație: Există o mulțime densă de vectori v pentru care funcția $t \mapsto f(tv)$ să nu fie identic nulă; se alege un sistem de coordonate pentru care un astfel de v este egal cu $(0,0,\ldots,1)$.)

▶ Polinom Weierstrass de grad s în z_n: este un polinom de forma

$$P(z',z_n)=z_n^s+a_1(z')z_n^{s-1}+\ldots+a_s(z')=\sum_{k=0}^s a_k(z')z_n^{s-k},$$

▶ Polinom Weierstrass de grad s în z_n: este un polinom de forma

$$P(z',z_n) = z_n^s + a_1(z')z_n^{s-1} + \ldots + a_s(z') = \sum_{k=0}^s a_k(z')z_n^{s-k},$$

$$ightharpoonup a_0(z') \equiv 1; \ a_1(0) = 0, \ldots, a_s(0) = 0;$$

▶ Polinom Weierstrass de grad s în z_n: este un polinom de forma

$$P(z',z_n)=z_n^s+a_1(z')z_n^{s-1}+\ldots+a_s(z')=\sum_{k=0}^s a_k(z')z_n^{s-k},$$

- $a_0(z') \equiv 1$; $a_1(0) = 0, \ldots, a_s(0) = 0$;
- ▶ $a_1(z'), \ldots, a_s(z')$ sunt olomorfe pe o vecinătate $|z'| \le r'$ a originii din \mathbb{C}^{n-1} .

▶ Polinom Weierstrass de grad s în z_n: este un polinom de forma

$$P(z',z_n)=z_n^s+a_1(z')z_n^{s-1}+\ldots+a_s(z')=\sum_{k=0}^s a_k(z')z_n^{s-k},$$

- $a_0(z') \equiv 1$; $a_1(0) = 0, \ldots, a_s(0) = 0$;
- ▶ $a_1(z'), \ldots, a_s(z')$ sunt olomorfe pe o vecinătate $|z'| \le r'$ a originii din \mathbb{C}^{n-1} .
- ▶ **De fapt:** Un polinom Weierstrass de grad s în z_n este un polinom $P(z', z_n) \in \mathcal{O}_{n-1}[z_n]$, de grad s, având coeficientul lui z_n^s egal cu 1 și astfel ca $P(0, z_n) = z_n^s$.

Teorema de pregătire a lui Weierstrass

Teoremă Fie f olomorfă într-o vecinătate a lui 0, astfel ca $f(0,z_n)/z_n^s$ să aibă limită finită, nenulă, pentru $z_n \to 0$. Există un polinom Weierstrass $P(z',z_n)$ de grad s în z_n și o funcție olomorfă u inversabilă pe o vecinătate o originii astfel ca

$$f(z) = P(z', z_n)u(z). \tag{1}$$

 $\hat{\it l}$ n plus, reprezentarea (1) este unică.

"Zerourile unei funcții olomorfe într-o vecinătate a originii, sunt date, pentru majoritatea sistemelor de coordonate, de zerourile unui polinom Weierstrass."

Teorema de împărțire a lui Weierstrass

Teoremă Fie $P(z',z_n)$ un polinom Weierstrass fixat, de grad s în z_n . Pentru orice funcție olomorfă mărginită f pe $\Delta = \Delta(r',r_n)$ există q,R olomorfe pe Δ , cu $R(z',z_n)$ polinom Weierstrass de grad $\leq s-1$ în z_n astfel ca

$$f(z) = P(z', z_n)q(z) + R(z', z_n)$$
 (2)

 $\sin\sup_{\Delta}|q|\leq C\sup_{\Delta}|f|$, $\sup_{\Delta}|R|\leq C\sup_{\Delta}|f|$, unde C este o constantă independentă de f. În plus, reprezentarea (2) este unică.

Fie X o varietate complexă, \mathcal{O}_X fasciculul structural (fasciculul de germeni de funcții olomorfe).

- Fie X o varietate complexă, \mathcal{O}_X fasciculul structural (fasciculul de germeni de funcții olomorfe).
- ▶ Fie $x \in X$ arbitrar, fixat; fie $\mathcal{O}_{X,x}$ inelul local al germenilor de funcții olomorfe în x.

- Fie X o varietate complexă, \mathcal{O}_X fasciculul structural (fasciculul de germeni de funcții olomorfe).
- Fie x ∈ X arbitrar, fixat; fie O_{X,x} inelul local al germenilor de funcții olomorfe în x.
- ▶ **Propoziție** Inelul $\mathcal{O}_{X,x}$ este domeniu de integritate.

- Fie X o varietate complexă, \mathcal{O}_X fasciculul structural (fasciculul de germeni de funcții olomorfe).
- Fie x ∈ X arbitrar, fixat; fie O_{X,x} inelul local al germenilor de funcții olomorfe în x.
- **Propoziție** Inelul $\mathcal{O}_{X,x}$ este domeniu de integritate.
- ▶ **Teoremă** Inelul $\mathcal{O}_{X,x}$ este Noetherian.

- Fie X o varietate complexă, \mathcal{O}_X fasciculul structural (fasciculul de germeni de funcții olomorfe).
- Fie x ∈ X arbitrar, fixat; fie O_{X,x} inelul local al germenilor de funcții olomorfe în x.
- ▶ **Propoziție** Inelul $\mathcal{O}_{X,x}$ este domeniu de integritate.
- ▶ **Teoremă** Inelul $\mathcal{O}_{X,x}$ este Noetherian.
- ▶ **Teoremă** Inelul $\mathcal{O}_{X,x}$ este factorial.