Die Zukunft unseres Sonnensystems

Wo liegen die Grenzen der Vorhersagbarkeit?

Referent: Leander Riefel / Betreuende Lehrkraft: Herr Weber / Hauptfach: Physik / Nebenfach: Informatik

Gliederung

- Grundlagen
- Chaos
- Simulation
- Vorhersagen
- Weitere Zukunftsaussichten
- Fazit

Grundlagen Unser Sonnensystem

- 8 Planeten
- 5 Zwergplaneten
- 300+ Monde
- ca. 4000 Kometen
- ca. 1,4 Millionen Asteroiden

Weitere Zukunftsaussichten

Vorhersagen

Grundlagen

Newtonsches Gravitationsgesetz

$$F = G \frac{m_1 m_2}{r^2}$$

$$\vec{F} = G \frac{m_1 m_2}{|\vec{r}|^2} \hat{r} \rightarrow \vec{F} = G \frac{m_1 m_2}{|\vec{r}|^3} \vec{r}$$

$$\overrightarrow{F_{12}} = -\overrightarrow{F_{21}}$$

Vorhersagen Weitere Zukunftsaussichten

Grundlagen Keplersche Gesetze

Planeten bewegen sich auf Ellipsen (die Sonne in einem Brennpunkt).

Vorhersagen

- Fahrstrahl überstreicht in gleichen Zeiten gleiche Flächen.
- $P^2 \propto a^3$ Bahnperiode *P* und große Halbachse *a*

- Beispiel: Erde-Mond / Sonne-Erde
- Kann Analytisch gelöst werden:

$$M = E - e * \sin(E)$$

$$\tan\left(\frac{T}{2}\right) = \sqrt{\frac{1+e}{1-e}} * \tan\left(\frac{E}{2}\right)$$

$$r = \frac{a(1 - e^2)}{1 + e * \cos(T)}$$

Abb. 1: Zusammenhänge der Kepler-Gleichung

Vorhersagen Weitere Fazit
Zukunftsaussichten

Grundlagen

Analytisches vs. Numerisches Lösen

Analytisches Lösen

- Geschlossene Formel
- Exakte Lösung
- Niedriger Rechenaufwand
- Stabile Systeme » keine wachsenden Fehler

Numerisches Lösen

- Schrittweise Integration
- Näherung

Vorhersagen

- Hoher Rechenaufwand
- Instabil » Fehler wachsen mit jedem Schritt

Hier Simulation eines 2-Körper-Systems

- Muss für " $n_{K\"{o}rper} > 2$ " numerisch gelöst werden
 - Ausnahmen wurden von unteranderem Euler oder Lagrange gefunden
- Beispiel: Sonne-Erde-Mond
- Allgemein nicht-periodisch und chaotisch
- · Sehr hoher Rechenaufwand

Abb. 2: Asteroidengürtel & Positionen

$$\overrightarrow{F(t)} = G \frac{m_i m_j}{\left|\overrightarrow{r_{ji}}\right|^3} \overrightarrow{r_{ji}}$$

$$\vec{F} = m * \vec{a}$$

Vorhersagen

$$\vec{F} = m * \vec{a}$$

$$\overrightarrow{a_i} = G \frac{m_j}{\left|\overrightarrow{r_{ji}}\right|^3} \overrightarrow{r_{ji}}$$

$$\vec{F} = m * \vec{a} \qquad \qquad \vec{F} = m * \vec{a}, \qquad * \frac{1}{m_i}$$

$$\overrightarrow{F(t)} = G \frac{m_i m_j}{\left| \overrightarrow{r_{ji}} \right|^3} \overrightarrow{r_{ji}} \qquad \overrightarrow{F} = m * \vec{a}, \qquad * \frac{1}{m_i}$$

$$\overrightarrow{a_i} = G \frac{m_j}{\left|\overrightarrow{r_{ii}}\right|^3} \overrightarrow{r_{ji}}$$

Vorhersagen

$$\overrightarrow{a_i(t)} = G \sum_{i \neq j} m_i \frac{r_{ji}(t)}{\|r_{ji}(t)\|^3}$$

$$\overrightarrow{a_i(t)} = G \sum_{i \neq j} m_i \frac{r_{ji}(t)}{\|r_{ji}(t)\|^3}$$

$$Y_o = \begin{pmatrix} m \\ r \\ v \end{pmatrix} \qquad f(Y) = \begin{pmatrix} \dot{m} \\ \dot{r} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 \\ v \\ a \end{pmatrix}$$

$$\overrightarrow{a_i(t)} = G \sum_{i \neq j} m_i \frac{r_{ji}(t)}{\|r_{ji}(t)\|^3}$$

$$Y_o = \begin{pmatrix} m \\ r \\ v \end{pmatrix} \qquad f(Y) = \begin{pmatrix} \dot{m} \\ \dot{r} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 \\ v \\ a \end{pmatrix}$$

Weitere Zukunftsaussichten

Vorhersagen

$$\overrightarrow{a_i(t)} = G \sum_{i \neq j} m_i \frac{r_{ji}(t)}{\|r_{ji}(t)\|^3}$$

$$Y_o = \begin{pmatrix} m \\ r \\ v \end{pmatrix} \qquad f(Y) = \begin{pmatrix} \dot{m} \\ \dot{r} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 \\ v \\ a \end{pmatrix} \qquad Y_{t+\Delta t} = \begin{pmatrix} m \\ r \\ v \end{pmatrix} = \int_t^{t+\Delta t} f(Y) dY$$

Vorhersagen

$$\overrightarrow{a_i(t)} = G \sum_{i \neq j} m_i \frac{r_{ji}(t)}{\left\|r_{ji}(t)\right\|^3}$$

$$Y_o = \begin{pmatrix} m \\ r \\ v \end{pmatrix} \qquad f(Y) = \begin{pmatrix} \dot{m} \\ \dot{r} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 \\ v \\ a \end{pmatrix} \qquad Y_{t+\Delta t} = \begin{pmatrix} m \\ r \\ v \end{pmatrix} = \int_t^{t+\Delta t} f(Y) dY$$
Durch numerisches Integrieren

Vorhersagen

Grundlagen Chaos Simulation Vorhersagen Weitere Fazit
Zukunftsaussichten

Chaos

Sensitive Abhängigkeit von den Anfangsbedingungen

"Schmetterlingseffekt"

- Kleine Fehler in den Anfangsbedingungen wachsen exponentiell
- Beschreibt Langzeitverhalten in dynamisches System
- Im Allgemeinen nicht Periodisch
- Trotzdem noch Deterministisch
 - Gedankenexperiment: Laplacescher Dämon

Chaos

Beispiel chaotisches System: Lorenz Attraktor

Grundlagen Chaos Simulation Vorhersagen Weitere Fazit
Zukunftsaussichten

Chaos In unserem Sonnensystem

- Ebenfalls n-Körper-System
 - Sonne, Planeten, Asteroiden und Kometen, Einflüsse außerhalb des Sonnensystems
 - Besonderheit: Ein Körper wesentlich größer als alle anderen » Sonne
- Lyapunov-Zeit von ≈ 5 Myr
 - Nach wenigen Lyapunov-Zeiten verschwinden genaue Vorhersagbarkeiten
- Vorhersagen mithilfe von Simulationen

Grundlagen Chaos Simulation Vorhersagen Weitere Fazit

Zukunftsaussichten

```
1 G = 6.6743e-11 # Gravitationskonstante in m<sup>3</sup> kg<sup>2</sup>-1 s<sup>2</sup>-2
 2 AU_to_m = 1.496e11 # Astronomische Einheit in Meter
    AUday_to_ms = AU_to_m / 86400 # AU/Tag in m/s
    with open("solar_system.json", "r") as f:
         data = json.load(f)
     labels = [
         "Sun",
         "Mercury",
        "Venus",
         "Earth",
         "Mars",
         "Jupiter",
        "Saturn",
        "Uranus",
        "Neptune",
        "Pluto",
         "36 Atalante",
19
20 \text{ rows} = []
    for name in labels:
        if name in data:
             body = data[name]
             mass = body["mass"]
            pos = body["position"]
             vel = body["velocity"]
             row = [mass, pos["x"], pos["y"], pos["z"], vel["vx"], vel["vy"], vel["vz"]]
             rows.append(row)
29 # [mass, x, y, z, vx, vy, vz]
 30 bodies = np.array(rows, dtype=np.float64)
 31 bodies[:, 1:4] *= AU_to_m
 32 bodies[:, 4:7] *= AUday_to_ms
```

```
sim_steps = 0 # Anzahl der bisher berechneten Schritte
   sim_time = {0: 0} # Zeit in Sekunden
   paused = False # Pause-Status
   display_index = 0 # Angezeigter History-Eintrag
   slider_active = False # Slider-Aktivität
   max_trail_length = 1e4 # Maximale Länge der Trails
   # History zur Speicherung der Zustände (für Slider und Trails)
   history = [[bodies[i, 1:4].copy()] for i in range(bodies.shape[0])]
   # Plot Setup (angepasster unterer Rand für Slider/Buttons)
   fig = plt.figure(figsize=(25, 25), dpi=100)
13 ax = fig.add_subplot(111, projection="3d")
   plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1)
16 ax.set xlim(-axis limit, axis limit)
17 ax.set_ylim(-axis_limit, axis_limit)
18 ax.set_zlim(-axis_limit, axis_limit)
   ax.set_box_aspect((1, 1, 1))
   # Planeten (Punkte) und Trails (Linien) zeichnen
   planets = [ax.plot([], [], [], "o", color=f"C{i}", markersize=10, alpha=0.8, label=labels[i])[0] for i in range(bodies.shape[0])]
   trails = [ax.plot([], [], [], "-", color=f"C{i}", alpha=0.3, linewidth=1)[0] for i in range(bodies.shape[0])]
24
25 # Zeitanzeige (als Text im Plot)
26 time text = ax.text2D(0.05, 0.95, "", transform=ax.transAxes)
28 # Legende
29 ax.legend(loc="upper right")
```

```
def update(frame):
       global bodies, sim_steps, display_index
       bodies_new, corrected_dt = rkdp45(bodies, dt)
       bodies[:] = bodies_new
       sim steps += 1
       sim time[sim steps] = sim time.get(sim steps - 1, 0) + corrected dt
6
7
       for i in range(bodies.shape[0]):
           history[i].append(bodies[i, 1:4].copy())
9
11
       # Update Slider-Bereich dynamisch
12
       slider.valmax = sim_steps
       slider.ax.set xlim(slider.valmin, slider.valmax)
13
14
15
       # Automatische Slider-Bewegung nur wenn nicht pausiert
       if not paused and not slider_active:
16
17
           display_index = sim_steps
            slider.set_val(display_index)
18
19
       update_display(display_index)
       return planets + trails + [time_text]
21
22
23
   ani = FuncAnimation(fig, update, interval=0, cache frame data=False)
25 plt.show()
```

```
2 def rkdp45(bodies, dt):
        # c-Werte (Zeitanteile)
        c2, c3, c4, c5, c6, c7 = 1 / 5, 3 / 10, 4 / 5, 8 / 9, 1.0, 1.0
        # Butcher-Tabellen-Koeffizienten:
        a21 = 1 / 5
        a31, a32 = 3 / 40, 9 / 40
        a41, a42, a43 = 44 / 45, -56 / 15, 32 / 9
        a51, a52, a53, a54 = 19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729
        a61, a62, a63, a64, a65 = 9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656
        a71, a72, a73, a74, a75, a76 = 35 / 384, 0.0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84
        # Koeffizienten für 5. Ordnung (5th-Order Lösung):
        b1, b2, b3, b4, b5, b6 = 35 / 384, 0.0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84
        # b7 = 0.0 implizit
        # Koeffizienten für die 4. Ordnung (eingebettete Lösung):
        b1s, b2s, b3s, b4s, b5s, b6s, b7s = 5179 / 57600, 0.0, 7571 / 16695, 393 / 640, -92097 / 339200, 187 / 2100, 1 / 40
        k1 = acceleration(bodies)
        k2 = acceleration(bodies + dt * (a21 * k1))
        k3 = acceleration(bodies + dt * (a31 * k1 + a32 * k2))
        k4 = acceleration(bodies + dt * (a41 * k1 + a42 * k2 + a43 * k3))
        k5 = acceleration(bodies + dt * (a51 * k1 + a52 * k2 + a53 * k3 + a54 * k4))
        k6 = acceleration(bodies + dt * (a61 * k1 + a62 * k2 + a63 * k3 + a64 * k4 + a65 * k5))
        k7 = acceleration(bodies + dt * (a71 * k1 + a72 * k2 + a73 * k3 + a74 * k4 + a75 * k5 + a76 * k6))
        v5 = bodies + dt * (b1 * k1 + b2 * k2 + b3 * k3 + b4 * k4 + b5 * k5 + b6 * k6)
        y4 = bodies + dt * (b1s * k1 + b2s * k2 + b3s * k3 + b4s * k4 + b5s * k5 + b6s * k6 + b7s * k7)
        error = np.linalg.norm(y5 - y4)
        print("dt:", dt, "error:", error)
        if error > tolerance:
            dt = 0.99 * dt * (tolerance / error) ** 0.01
            return rkdp45(bodies, dt)
        return y5, dt
```

Simulation

Hier Simulation vom Sonnensystem und ggf. abstrakten 3-Körper-System zeigen

en Zukunftsaussichten

Fazit

Simulation Symplektische Integratoren

- Basieren auf Hamiltonschen Systemen
- Erhalten möglichst gut Energie und Phasenraumvolumen über lange Zeit
- Beispiele: Yoshida, Verlet, WHFast

Weitere Zukunftsaussichten

Vorhersagen

```
...
    anb.njit(fastmath=True, parallel=True)
    def verlet(bodies, dt):
        for i in range(bodies.shape[0]):
            # Calculate acceleration for current position
            ai = np.zeros(3)
            for j in range(bodies.shape[0]):
                if i == j:
 8
                    continue
                r = bodies[j, 1:4] - bodies[i, 1:4]
                dist = np.sqrt(np.sum(r * r) + 1e-12)
                ai += G * bodies[j, 0] * r / (dist * dist * dist)
            # First kick
            bodies[i, 4:7] += 0.5 * dt * ai
            # Drift
            bodies[i, 1:4] += dt * bodies[i, 4:7]
            # Recalculate acceleration for new position
            ai2 = np.zeros(3)
            for j in range(bodies.shape[0]):
                if i == j:
                    continue
                r = bodies[j, 1:4] - bodies[i, 1:4]
 24
                dist = np.sqrt(np.sum(r * r) + 1e-12)
                ai2 += G * bodies[j, 0] * r / (dist * dist * dist)
            # Second kick
            bodies[i, 4:7] += 0.5 * dt * ai2
        return bodies, dt
```

Vorhersagen

Vorhersagen

Vorhersagen

- Laskar 2008
 - Statistische Wahrscheinlichkeiten für Instabilitäten
 - Einfluss von relativistischen Effekten
 - 1001 Durchführen
- Laskar 2012
 - Erklärt historischen Kontext
 - Zusammenfassung früherer Studien und deren Aussagen

Weitere Fazit Zukunftsaussichten

Vorhersagen

- Brown & Rein 2020
 - Öffentlicher Datensatz zu 96 Durchführungen
 - Volle N-Körper-Integration mit Open-Source-Tools
- Brown & Rein 2022
 - 2880 Durchführungen mit Open-Source Code
 - Untersuchung von "stellare fly-bys"
 - Auswirkung von veränderter Bahn Neptuns auf innere Planeten

Vorhersagen Weitere Fazit Zukunftsaussichten

Vorhersagen Innere & Äußere Planeten

Gyr interval. As it was mentioned before, (Laskar, 1990, 1994), there is practically no diffusion for the outer planet system that behaves nearly as a quasiperiodic and regular system. On the opposite, there is a significant diffusion of the eccentricities and inclinations of the inner planets. The statistics on the maximum values reached by the ec-

Vorhersagen Innere & Äußere Planeten

Grundlagen Chaos Simulation Vorhersagen Zukunftsaussichten Fazit

Vorhersagen Merkur

 $e \gtrsim 0.8 \rightarrow Gefahr \ Kollision \ mit \ Venus$ $e \gtrsim 0.95 \rightarrow Gefahr \ Kollision \ mit \ Sonne$ $e > 1 \rightarrow Rauswurf$

Abb. 3: Laskar Diagramme der inneren Planeten

Grundlagen Chaos Simulation Vorhersagen Weitere Fazit
Zukunftsaussichten

Vorhersagen Merkur

Vorhersagen Newton vs. Relativität

Newtonsche Mechanik

e_{m0}	500	1000	1500	2000	3000	4000	5000
0.35	130	341	478	558	692	763	812
0.40	75	249	373	449	589	684	747
0.50	24	118	226	306	442	552	640
0.60	16	76	169	238	364	476	564
0.70	14	67	150	218	343	454	541
0.80	12	63	141	209	331	442	531
0.90	12	61	138	202	325	441	530

Allgemeine Relativitätstheorie

e_{m0}	500	1000	1500	2000	3000	4000	5000
0.35	25	75	128	165	280	366	427
0.40	4	21	38	52	113	180	243
0.50	0	0	0	0	6	19	33
0.60	0	0	0	0	0	6	10
0.70	0	0	0	0	0	6	10
0.80	0	0	0	0	0	2	8
0.90	0	0	0	0	0	0	2

Abb. 4: Laskar Diagramme – Vergleich Newton vs. GR

Vorhersagen Säkulare Resonanzen

Grundlagen Chaos Simulation Vorhersagen Weitere Fazit
Zukunftsaussichten

Abb. 3: Laskar Diagramme der inneren Planeten

Grundlagen Chaos Simulation Vorhersagen Zukunftsaussichten Fazit

Vorhersagen Auf einen Blick

- Chaotische Effekte setzen nach ≈ 50-100 Myr ein
- Kollision Merkurs ≈ 1% nach 5 Gyr
 - Ohne relativistische Effekte ≈ 60%
 - Hauptsächlich durch Merkur-Jupiter-Resonanz
- Kollision Mars-Erde sehr unwahrscheinlich
 - < 0,2%
- Einfluss von anderen Sternen nicht zu vernachlässigen
 - Geringe Chance eines "stellar fly-bys" in 5 Gyr

Weitere Zukunftsaussichten

Vorhersagen

Weitere Zukunftsaussichten

Tod der Sonne – Sonne als Roter Riese

- Wasserstoffbrennende Phase endet in ≈ 5 (±0,5)
 Gyr
 - Vollständige Verbrauch von Wasserstoffatomen
 - Maximum von vielen Simulationen
- Anstieg des Radius auf ≈ 0,75 AE
 - Entspricht der Umlaufbahn von Venus
- Verliert über Sonnenwinde ca. 28% ihrer Masse

Graduelle Erwärmung

Abb. 5: Lebenszyklus der Sonne

Planetarer Nebel

Weitere Zukunftsaussichten

Asteroiden und Kometen

- Lyapunov-Zeiten von 100 100.000 Jahren
- Für die Erde gefährliche Objekte früh genug erkannt
- Kollisionen mit Planeten können Simulationen verfälschen
- Einschlaghäufigkeiten
 - " $d_{Objekt} \ge 1km$ " ca. alle 0,5 Myr
 - " $d_{Objekt} \approx 5km$ " ca. alle 20 Myr
 - " $d_{Objekt} \approx 10 km$ " ca. alle 100 Myr

Abb. 2: Asteroidengürtel & Positionen

Wo liegen die Grenzen der Vorhersagbarkeit?

Weitere Fazit
Zukunftsaussichten

Fazit

Nächste ≈ 100 Millionen Jahre

- Quasiperiodische Planetenbahnen
 - Keine Kollisionen & Auswürfe
- Kleine Unsicherheiten von Asteroiden & Kometen
 - Allerdings > 96% aller NEAs bereits bekannt
 - Ablenkbar und Berechenbar
- Hohe Vorhersagbarkeit in naher Zukunft

100 Millionen – 5 Milliarden Jahre

- Chaotische Effekte
 - Nur noch statistische Aussagen möglich
 - 0,38mm Änderung
 -> völlig andere Bahnen nach
 - -> völlig andere Bahnen nach ≈ 200 Myr
- Unvorhersagbare Sterneneinflüsse
- Lebenszyklus der Sonne sicher bekannt
- Vorhersagbarkeit nimmt mit der Zeit stark ab

Quellen

- https://doi.org/10.48550/arXiv.2012.05177
- https://doi.org/10.48550/arXiv.0802.3371
- https://doi.org/10.48550/arXiv.1209.5996
- https://doi.org/10.48550/arXiv.1705.00527
- https://doi.org/10.48550/arXiv.1506.01084
- https://zenodo.org/records/4299102
- https://doi.org/10.1051/0004-6361/202140989
- https://orbital-mechanics.space/
- https://rebound.readthedocs.io/en/latest/integrators/#whfast
- https://eyes.nasa.gov/apps/solar-system/
- https://science.nasa.gov/solar-system/
- https://ssd.jpl.nasa.gov/horizons/app.html

Quellen

- https://en.wikipedia.org/wiki/Ergodicity
- https://en.wikipedia.org/wiki/Two-body_problem
- https://en.wikipedia.org/wiki/Three-body_problem
- https://en.wikipedia.org/wiki/Liouville%E2%80%93Arnold_theorem
- https://en.wikipedia.org/wiki/Orbital_resonance
- https://en.wikipedia.org/wiki/Stability_of_the_Solar_System
- https://en.wikipedia.org/wiki/Lagrange_point
- https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
- https://en.wikipedia.org/wiki/Orbital_period
- https://en.wikipedia.org/wiki/Lyapunov_time
- https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method
- https://en.wikipedia.org/wiki/Bessel_function
- https://en.wikipedia.org/wiki/Kepler%27s_equation
- https://en.wikipedia.org/wiki/Ellipse
- https://en.wikipedia.org/wiki/Orbit_equation
- https://en.wikipedia.org/wiki/Newton%27s_method
- https://en.wikipedia.org/wiki/Hamiltonian_mechanics
- https://en.wikipedia.org/wiki/Verlet_integration
- https://en.wikipedia.org/wiki/Numerical_integration
- https://en.wikipedia.org/wiki/Periodic_function

Quellen

- Abb. 1: https://commons.wikimedia.org/wiki/File:Kepler%27s_equation_scheme_German.svg
- Abb. 2: https://www.spektrum.de/news/asteroidenguertel-um-sonne-gesteinsbrocken-zwischen-jupiter-und-mars/982787
- Abb. 3 & 4: https://doi.org/10.48550/arXiv.0802.3371
- Abb. 5: https://www.studysmarter.de/schule/physik/astronomie/sonne/