Data structures and algorithms

Part 11

Searching, mainly via Hash tables

Petr Felkel

Topics

Searching

Hashing

- Hash function
- Resolving collisions
 - Hashing with chaining
 - Open addressing
 - Linear Probing
 - Double hashing

Dictionary

Many applications require:

- dynamic set
- with operations: Search, Insert, Delete
- = dictionary

Ex. Table of symbols in a compiler

identifier	type	address
sum	int	0xFFFDC09

associative

address search

Searching

Comparing the keys

 $\Omega(\log n)$

- Found when key of data item = searched key
- Ex: Sequential search, BST,...

Indexing by the key (direct access)

 $\Theta(1)$

- -The key value is the memory address of the item
- keys scope ~ indices scope

Hashing

on average $\Theta(1)$

The item address is computed using the key

Hashing

= tradeoff between the speed and the memory usage

- ∞ time– sequential search
- ∞ memory direct access(indexing by the key)
- few memory and few time:
 - Hash table
 - table size influences the search time

Hashing

Constant expected time of operations search and insert!!!

Tradeoff:

- Operation time ~ key length
- Hashing is not suitable for operations
 select a subset and sort

Hashing

Hashing applicable when |K| << |U|

- **K** Set of really used keys
- U Universe of keys -- all possible (thinkable) keys, even if unused

hashing

- 1. Compute hash function h(k) (h(k)) produces item address based on the key value
- 2. Resolving collisions

h(31) collision: index 1 is already occupied

1. Compute hash function h(k)

Hash function h(k)

```
Maps set of keys K_j \in U into the interval of addresses A = \langle a_{min}, a_{max} \rangle, usually into \langle 0, M-1 \rangle
```

```
Synonyms: k_1 \neq k_2, h(k_1) = h(k_2)
= collision!!
```

Hash function h(k)

Depends very strongly on key properties and the memory representation of the keys Ideally:

- simple calculation -- fast
- approximates well a random distribution
- exploits uniformly address space in memory
- generates minimum number of collisions
- Therefore: It uses all components of a key

Examples of h(k) for different key types

- Real (float) values
- integers
- bit strings
- strings

```
Real values from <0, 1>
- multiplicative: h(k,M) = round( k * M )

(does not separate the clusters of similar values )

M = table size
```

For w-bit integers

- multiplicative: (M is a prime)
 - $h(k,M) = round(k/2^w * M)$
- modular:
 - h(k,M) = k % M
- combined:
 - $h(k,M) = round(c * k) % M, c \in <0,1>$
 - h(k,M) = (int)(0.616161 * (float) k) % M
 - h(k,M) = (16161 * (unsigned) k) % M

Fast but depends a lot on keys representation:

```
h(k) = k & (M-1) for M = 2^x (not a prime),
 & = bit product
```

For strings:

```
int hash( char *k, int M )
{
  int h = 0, a = 127;
  for(; *k != 0; k++)
     h = ( a * h + *k ) % M;
  return h;
}
```

Horner scheme:

$$k_2 * a^2 + k_1 * a^1 + k_0 * a^0 =$$
 $((k_2 * a) + k_1) * a + k_0$

For strings: (pseudo-) randomized

```
int hash( char *k, int M )
{ int h = 0, a = 31415; b = 27183;
  for(; *k != 0; k++, a = a*b % (M-1) )
      h = ( a * h + *k ) % M;
  return h;
}
```

Universal hash function

- collision probability = 1/M
- different random constants applied to different positions in the string

Hash function h(k) - flaws

Frequent flaw: h(k) returns often the same value

- wrong type conversion
- works but generates many similar addresses
- therefore it produces many collisions
- => the application is extremely slow

2. Collision resolving

a) Chaining 1/5

 $h(k) = k \mod 3$

sequence: 1, 5, 21, 10, 7

heads link

lists of synonyms

a) Chaining 2/5

```
private:
  link* heads; int N,M; [Sedgewick]
public:
  init( int maxN ) // initialization
   N=0;
                        // No.nodes
   M = maxN / 5; // table size
   heads = new link[M]; // table with pointers
   for( int i = 0; i < M; i++ )
      heads[i] = null;
```

a) Chaining 3/5

```
Item search( Key k )
  return searchList( heads[hash(k, M)], k );
void insert( Item item )
                                  // insert at front
  int i = hash( item.key(), M );
  heads[i] = new node( item, heads[i] );
  N++;
```

a) Chaining 4/5

synonyms chain has ideally length

$$\alpha = n/m$$
, $\alpha > 1$ (load factor)

(n = no of elems, m = table size, m < n)

Insert I(n) =
$$t_{hash} + t_{link} = O(1)$$
 outcome
Search $Q(n) = t_{hash} + t_{search}$ on average $t_{hash} + t_{c} * n/(2m) = O(n)$ $O(1 + \alpha)$
Delete $D(n) = t_{hash} + t_{search} + t_{link} = O(n)$ $O(1 + \alpha)$

for small α (and big m) it is close to O(1) !!! for big α (and small m) m-times faster than sequential search

Highly improbable

a) Chaining 5/5

Practical use:

```
choose m = n/5 \dots n/10 =  load factor \alpha = 5 \dots 10
```

- sequential search in the chain is fast
- not many unused table slots

Pros & cons:

- + exact value of *n* needs not to be known in advance
- needs dynamic memory allocation
- needs additional memory for chain (list) pointers

b) Open-address hashing

The approximate number of elements is known No additional pointers

=> Use 1D array

Hash function h(k) is tied with collision resolving

- 1. linear probing
- 2. double hashing

b) Open-address hashing

 $h(k) = k \mod 5$ $(h(k) = k \mod m, m \text{ is array size})$ sequence: 1, 5, 21, 10, 7 **Problem:** 0 5 collision - 1 already occurrence.

- collision 1 already occupies the space for 21
- 1. linear probing
- 2. double hashing

Note: 1 and 21 are synonyms. The position is often occupied by a key which is not a synonym. Collision does not distinguish between synonyms and non-synonyms.

2

Probing

= check what is in the table at the position given by the hash function

- search hit = key found
- search miss = empty position, key not found
- else = position occupied by another key,
 continue searching

b) Open-address hashing

Methods of collision resolving

b1) Linear probing

b2) Double hashing

```
h(k) = [(k \mod 5) + i] \mod 5 = (k + i) \mod 5
  sequence: 1, 5, 21, 10, 7
         5
                             collision!
                             => 1. linear probing
     2
        21
                             move forward
                             by one position (i++=>i=1)
```

$$h(k) = (k + i) \mod 5$$

sequence: 1, 5, 21, 10, 7

- 1. collision with 5 move on
- 2. collision with 1 move on
 - 3. collision with 21 move on Inserted 3 positions further in the table (i = 3)

$$h(k) = (k + i) \mod 5$$

sequence: 1, 5, 21, 10, 7
0 5
1 1
2 21
3 10

- 1. collision with 21 (i++)
- 2. collision with 10 (i++)
 Inserted 3 positions further
 in the table (i = 2)

$$h(k) = (k + i) \mod 5$$

sequence: 1, 5, 21, 10, 7

```
private:
  Item *st; int N,M; [Sedgewick]
  Item nullItem;
public:
  init( int maxN ) // initialization
                         // Number of stored items
    N=0;
    M = 2*maxN;
                         // load factor < 1/2</pre>
    st = new Item[M];
    for( int i = 0; i < M; i++ )
       st[i] = nullItem;
```

```
void insert( Item item )
  int i = hash( item.key(), M );
 while( !st[i].null() )
      i = (i+1) % M; // Linear probing
  st[i] = item;
 N++;
```

```
Item search( Key k )
  int i = hash(k, M);
 while( !st[i].null() ) { // !cluster end
                           // sentinel
     if( k == st[i].key() )
          return st[i];
     else
          i = (i+1) % M; // Linear probing
     return nullItem;
```

b) Open-address hashing

Methods of collision resolving

b1) Linear probing

b2) Double hashing

Hash function $h(k) = [h_1(k) + i.h_2(k)] \mod m$

$$h_1(k) = k \mod m$$
 // initial position
 $h_2(k) = 1 + (k \mod m')$ // offset

Both depend on $k \implies k$

m = prime number or m = power of 2m' = slightly less m' = odd

Each key has different probe sequence

If d = greatest common divisor => search 1/d slots only

Ex: k = 123456, m = 701, m' = 700 $h_1(k) = 80$, $h_2(k) = 257$ Starts at 80, and every 257 % 701

$$h(k) = k \mod 5$$

sequence: 1, 5, 20, 25, 18
 $0 \quad 5$
 $1 \quad 1$
 $2 \quad => 2$. double hashing

 $h(k) = [(k \mod 5) + i.h_2(k)] \mod 5, h_2(k) = 1 + k \mod 3$ sequence: 1, 5, 20, 25, 18

collision,

$$h_2(20) = 1 + 20 \mod 3 = 3$$
,
store 20 at position

0 + 3

 $h(k) = [(k \mod 5) + i.h_2(k)] \mod 5, \ h_2(k) = 1 + k \mod 3$ sequence: 1, 5, 20, 25, 18

collision,

$$h_2(25) = 1 + 25 \mod 3 = 2$$
, store 25 at position

$$0 + 2$$

 $h(k) = [(k \mod 5) + i.h_2(k)] \mod 5, h_2(k) = 1 + k \mod 3$ 1, 5, 20, 25, **18** sequence: 5 collision, $h_2(18) = 1 + 18 \mod 3 =$ 2 **25** 20 store 18 at position 3 + 1 = 4

 $h(k) = [(k \mod 5) + i.h_2(k)] \mod 5, \ h_2(k) = 1 + k \mod 3$ sequence: 1, 5, 20, 25, 18

- o 5
 i = 0
 i = 0
- 2 25 i = 0 3 20 i = 1
- 4 18 i = 1

Linear probing x Double hashing

$$h(k) = (k + i) \bmod 5$$

 $h(k) = (k + i) \mod 5$ $h(k) = [(k \mod 5) + i.h_2(k)] \mod 5,$ $h_2(k) = 1 + k \mod 3$

0	5	i = 0
1	1	i = 0
2	21	i = 1
3	10	i = 3!
4	7	i = 2

long clusters

mixed probe sequences

```
void insert( Item item )
 Key k = item.key();
 int i = hash(k, M),
     j = hashTwo( k, M ); // Double Hashing!
 while( !st[i].null() )
     i = (i+j) % M; //Double Hashing
 st[i] = item; N++;
```

```
Item search( Key k )
  int i = hash(k, M),
      j = hashTwo( k, M ); // Double Hashing
 while( !st[i].null() )
     if(k == st[i].key())
          return st[i];
     else
          i = (i+j) % M; // Double Hashing
  return nullItem;
```

Double hashing - example

b2) Double hashing $h(k) = [h_1(k) + i.h_2(k)] \mod m$

Input	h ₁ (k)= k %11	<i>h</i> ₂ (<i>k</i>)= 1+ <i>k</i> %10	i	h(k)
1	1	2	0	1
25	3	6	0	3
23	1	4	0,1	1,5
45	1	6	0,1	1,7
102	3	3	0,1	3,6
20	9	1	0	9

$$h_1(k) = k \% 11$$

 $h_2(k) = 1 + (k \% 10)$

Item removal (delete)

Item 'x' removal x replaced by null null breaks cluster(s) !!!

=> do not leave the hole after delete

Unreachable cluster parts

Correction different for linear probing and double hashing

b1) in linear probing

=> reinsert the items after x (to the first null = to cluster end)

b2) in double hashing

=> fill the hole up by a special sentinel skipped by search, replaced by insert

Item removal (delete)

b1) in linear probing

=> reinsert the items behined the cluster break (to the null)

=> avoid simple move of cluster tail

it can make other keys not accessible!!!

Linear-probing Item Removal

```
// do not leave the hole - can break a cluster
void remove( Item item )
{ Key k = item.key();
  int i = hash(k, M), j;
 while(!st[i].null())// find item to remove
      if( item.key() == st[i].key() ) break;
      else i = (i+1) % M;
 if( st[i].null() ) return; // not found
  st[i] = nullItem; N--;  //delete,reinsert
  for(j = i+1; !st[j].null(); j=(j+1)%M, N--)
     Item v = st[j]; st[j] = nullItem;
     insert(v); //reinsert elements after deleted
```

Item removal (delete)

b2) Double hashing $h(k) = [h_1(k) + i.h_2(k)] \mod m$

null – breaks paths to 23 and 102 Sentinel is correct

Double-hashing Item Removal

```
// Double Hashing - overlapping search sequences
      - fill up the hole by sentinel
// - skipped by search, replaced by insert
void remove( Item item )
{ Key k = item.key();
  int i = hash(k, M), j = hashTwo(k, M);
 while( !st[i].null() ) // find item to remove
     if( item.key() == st[i].key() ) break;
     else i = (i+j) % M;
 if( st[i].null() ) return; // not found
  st[i] = sentinelItem; N--; // "delete" = replace
```

b) Open-addressing hashing

```
\alpha = load factor of the table
```

$$\alpha = n/m, \alpha \in \langle 0,1 \rangle$$

n = number of items in the table

m = *table size,* m>n

b) Open-addressing hashing

Average number of probes [Sedgewick]

Linear probing:

Search hits 0.5 (1 + 1 / (1 - α)) found

Search misses 0.5 (1 + 1 / (1 - α)²) not found

Double hashing:

Search hits $(1/\alpha) \ln (1/(1-\alpha)) + (1/\alpha)$

Search misses 1 / (1 - α)

 α = n/m, $\alpha \in \langle 0,1 \rangle$

b) Expected number of tests

Linear probing:

load factor α	1/2	2/3	3/4	9/10
Search hit	1.5	2.0	3.0	5.5
Search miss	2.5	5.0	8.5	55.5

Double hashing:

load factor α	1/2	2/3	3/4	9/10
Search hit	1.4	1.6	1.8	2.6
Search miss	1.5	2.0	3.0	5.5

Table can be more loaded before the effectivity starts decaying. Same effectivity can be achieved with smaller table.

References

[Cormen]

Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 12, McGraw Hill, 1990