Homework 7

Astronomers use several different units to measure brightnesses: fluxes per unit wavelength (F_{λ}) , fluxes per unit frequency (F_{ν}) , and magnitudes, both integrated and per unit wavelength and frequency (m = -2.5logF). Since magnitudes are logarithmic units, differences in magnitude correspond to ratios in fluxes.

- A Jansky is a unit used to measure flux density, most often in the radio; one Jansky is 10-26Wm-2Hz-1 (note that this is an F_{ν} quantity). How bright is Vega at 5500 in Janskys, using the fact that the flux density of Vega at 5500 is 3.6 x 10-9ergs/cm2/sec/ (note that this is an F_{λ} quantity)?
- 2 If a star has a flux density of 3.6×10 -9ergs/cm²/sec/ at 8500 , how bright is it in Janskys?
- 3 If a star has a flux density of 7.2×10 -14ergs/cm2/sec/ at 5500 , how much fainter is it than Vega in magnitudes?