PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-092583

(43) Date of publication of application: 28.03.2003

(51)Int.Cl.

H04L 12/44

(21)Application number : 2001-284296

(71)Applicant: FUJITSU LTD

(22)Date of filing:

19.09.2001

(72)Inventor: NISHIGAKI YUSUKE

SATO MASAYUKI

(54) PASSIVE OPTICAL NETWORK SYSTEM CAPABLE OF EFFECTIVELY UTILIZING COMMUNICATION BAND

(57)Abstract:

PROBLEM TO BE SOLVED: To effectively utilize a communication band in a passive optical network system.

SOLUTION: The passive light network system has an optical line terminal 1 for transmitting a plurality of kinds of distribution data with an optical signal, a plurality of optical network terminals 2a to 2c for receiving the distribution data with the optical signal, and a light branching device 3 for distributing the distribution data with the optical signal to the optical network terminals 2a to 2c in the state of the optical signal. Each of the plurality of the optical network terminals transmits the reception request of the distribution data desired to receive among the plurality of the kinds of distribution data transmitted by the optical line terminal 1 to the optical line terminal 1 by designating the kind of the distribution data desired to receive. The optical line terminal 1 transmits the kind of the distribution data designated by a reception request transmitted from the plurality of optical network terminal among the plurality of kinds of distribution data to the plurality of optical network terminals 2a to 2c.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-92583

(P2003-92583A)

(43)公開日 平成15年3月28日(2003.3.28)

(51) Int.Cl.7

H04L 12/44

識別記号

200

FΙ

H04L 12/44

テーマコード(参考)

200 5K033

В

審査請求 未請求 請求項の数5 OL (全 20 頁)

(21)出願番号

特願2001-284296(P2001-284296)

(22)出願日

平成13年9月19日(2001.9.19)

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番

1号

(72)発明者 西垣 祐介

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 佐藤 雅之

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(74)代理人 100094514

弁理士 林 恒徳 (外1名)

Fターム(参考) 5K033 CC01 DA15 DB02 DB22

(54) 【発明の名称】 通信帯域を有効利用できる受動光ネットワークシステム

(57)【要約】

【課題】 受動光ネットワークシステムにおいて,通信 帯域の有効利用を図る。

【解決手段】 受動光ネットワークシステムは、光信号により複数種類の配信データを送信する光ライン端末1 と、光信号により配信データを受信する複数の光ネットワーク端末2 a \sim 2 c と、光ライン端末1から送信がれる、光信号による配信データを光信号の状態で複数の光ネットワーク端末2 a \sim 2 c に分配する光分岐装置3とを有する。複数の光ネットワーク端末のそれぞれは、光ライン端末1が送信する複数種類の配信データのうちをでする。では、複数種類の配信データの種類を指定して光ライン端末1に送信する。光ライン端末1は、複数種類の配信データのうち、複数の光ネットワーク端末から送信された受信要求により指定された種類の配信データを複数の光ネットワーク端末2 a \sim 2 c に送信する。

【特許請求の範囲】

【請求項1】 光信号により複数種類の配信データを送 信する光ライン端末と、光信号により配信データを受信 する複数の光ネットワーク端末と、前記光ライン端末か ら送信される, 光信号による配信データを光信号の状態 で前記複数の光ネットワーク端末に分配する光分岐装置 とを備えている受動光ネットワークシステムにおいて, 前記複数の光ネットワーク端末のそれぞれは、前記複数 種類の配信データのうち受信を求める配信データの受信 要求を, 該受信を求める配信データの種類を指定して前 10 記光ライン端末に送信する制御情報送信部と,前記光ラ イン端末から送信される1または2以上の種類の配信デ ータの中から、前記受信を求める配信データを選択して 受信するデータ選択部と、を備え、前記光ライン端末 は、前記複数種類の配信データのうち、送信するように 設定された配信データを光ネットワーク端末に送信する 配信データ送信部と、前記受信要求を受信し、前記受信 要求によって指定された種類の配信データを送信するよ うに前記配信データ送信部を設定する設定部と、を備え ていることを特徴とする受動光ネットワークシステム。

【請求項2】 請求項1において, 前記光ネットワーク 端末の前記制御情報送信部は、受信している配信データ の受信の終了を求める受信終了要求を、該受信の終了を 求める配信データの種類を指定して前記光ライン端末に 送信し、前記光ライン端末の前記設定部は、前記受信終 了要求を受信し, 前記受信終了要求を送信した光ネット ワーク端末以外のいずれの光ネットワーク端末も前記受 信終了要求により指定された種類の配信データを選択し ていない場合には、該指定された種類の配信データにつ いての前記配信データ送信部の設定を解除する,ことを 30 特徴とする受動光ネットワークシステム。

【請求項3】 光信号により複数種類の配信データを送り 信する光ライン端末と、光信号により配信データを受信 する複数の光ネットワーク端末と, 前記光ライン端末か ら送信される, 光信号による配信データを光信号の状態 で前記複数の光ネットワーク端末に分配する光分岐装置 とを備えている受動光ネットワークシステムにおける通 信方法において、前記複数の光ネットワーク端末のそれ ぞれは、前記光ライン端末が送信する前記複数種類の配 信データのうち受信を求める配信データの受信要求を, 該受信を求める配信データの種類を指定して前記光ライ ン端末に送信し、前記光ライン端末は、前記複数種類の 配信データのうち、前記複数の光ネットワーク端末から 送信された前記受信要求により指定された種類の配信デ ータを前記複数の光ネットワーク端末に送信する,こと を特徴とする通信方法。

【請求項4】 受動光ネットワークシステムに設けら れ、配信データを複数の光ネットワーク端末に光信号に より分配する光ライン端末において、複数種類の配信デ ータのうち,送信するように設定された配信データを光 50 T102a~102cに送信される。

ネットワーク端末に送信する配信データ送信部と、前記 複数の光ネットワーク端末の少なくとも1つが前記複数 種類の配信データのうち受信を求める配信データの種類 を指定して送信した受信要求を受信し、該受信要求によ って指定された種類の配信データを送信するように前記 配信データ送信部を設定する設定部と、を備えているこ とを特徴とする光ライン端末。

【請求項5】 受動光ネットワークシステムに設けら れ、光ライン端末から光信号により送信される配信デー タを受信する光ネットワーク端末において, 前記光ライ ン端末が、送信可能な複数種類の配信データのうち、該 光ネットワーク端末が受信を求める配信データを選択し て送信するように、前記光ライン端末を設定するための 受信要求を、該受信を求める配信データの種類を指定し て前記光ライン端末に送信する制御情報送信部と、前記 光ライン端末から送信される1または2以上の種類の配 信データの中から, 前記受信を求める配信データを選択 して受信するデータ選択部と、を備えていることを特徴 とする光ネットワーク端末。

【発明の詳細な説明】

[0001]

20

【発明の属する技術分野】本発明は、受動光ネットワー クシステムおよび受動光ネットワークシステムにおける 通信方法に関する。また、本発明は、受動光ネットワー クシステムにおける光ライン端末および光ネットワーク 端末に関する。

[0002]

【従来の技術】データのブロードキャスト,マルチキャ スト等を行う通信システムの1つとして,受動(パッシ ブ) 光ネットワーク(PON:Passive Optical Networ k) がある。図13は、従来のPONシステムの構成を 示すブロック図である。このPONシステムは、光ライ· ン端末(OLT:Optical Line Terminal)101,3 つの光ネットワーク端末(ONT:Optical Network Te rmination) 102a~102c, 光スプリッタ10 3, および複数の光ファイバリンク104を有する。

【0003】OLT101には、サービスノード200 が接続されている。このサービスノード200は、デー 夕配信サービスを提供するノードであり,たとえばCA TVの番組等のチャネルch1~chnの配信データを OLT101に送信する。

【0004】サービスノード200からOLT101に 送信されたチャネル c h 1 ~ c h n の配信データは、非 同期転送モード(ATM: Asynchronous Transfer Mod e) によるセル (以下「ATMセル」という。) に格納 され、光信号により、光ファイバリンク104および光 スプリッタ103を介してONT102a~102cに 送信される。すなわち、チャネルch1~chnのすべ ての配信データが光ファイバリンク104を介してON

【0005】ONT102a~102cには、図示しないテレビ、パソコン等のユーザ端末、下位の他の通信ネットワーク等が接続される。これらのユーザ端末、他の通信ネットワーク等からONT102a~102cには、チャネルの受信要求が与えられる。ONT102a~102cは、チャネルch1~chnのうち、受信要求のあったチャネルのATMセルのみを選択し、他のATMセルを廃棄する。そして、ONT102a~102cは、選択されたATMセルをユーザ端末等に送信する。

【0006】たとえば、ONT102aがチャネルch1 およびch3の受信要求を受けている場合には、チャネル $ch1\sim chn$ のうちチャネルch1およびch3の配信データを格納したATMセルのみを選択し、これらのATMセルに格納された配信データをユーザ端末等に送信する。

[0007]

【発明が解決しようとする課題】このように、従来のPONシステムでは、サービスノード200からOLT101に送信されたチャネルch1~chnのすべての配 20信データが光ファイバリンク104および光スプリッタ 103を介してONT102a~102cに送信されていた。

【0008】したがって、いずれのONTも選択しないチャネルの配信データであっても、OLT101から光ファイバリンク104および光スプリッタ103を介してONT102a~102cに送信されていた。このため、光ファイバリンクの通信帯域が無駄に利用されていた。

【0009】そこで、本発明は、PONネットワークシ 30 ステムにおいて、通信帯域の有効利用を図ることを目的とする。

[0010]

【課題を解決するための手段】前記目的を達成するため に、本発明の第1の側面による受動光ネットワークシス テムは、光信号により複数種類の配信データを送信する 光ライン端末と、光信号により配信データを受信する複 数の光ネットワーク端末と、前記光ライン端末から送信 される, 光信号による配信データを光信号の状態で前記 複数の光ネットワーク端末に分配する光分岐装置とを備 40 えている受動光ネットワークシステムにおいて、前記複 数の光ネットワーク端末のそれぞれは、前記複数種類の 配信データのうち受信を求める配信データの受信要求 . を, 該受信を求める配信データの種類を指定して前記光 ライン端末に送信する制御情報送信部と、前記光ライン 端末から送信される1または2以上の種類の配信データ の中から、前記受信を求める配信データを選択して受信 するデータ選択部と、を備え、前記光ライン端末は、前 記複数種類の配信データのうち、送信するように設定さ れた配信データを光ネットワーク端末に送信する配信デ 50

ータ送信部と,前記受信要求を受信し,前記受信要求に よって指定された種類の配信データを送信するように前 記配信データ送信部を設定する設定部と,を備えている ことを特徴とする。

【0011】本発明の第1の側面による通信方法は、光 信号により複数種類の配信データを送信する光ライン端 末と、光信号により配信データを受信する複数の光ネッ トワーク端末と、前記光ライン端末から送信される、光 信号による配信データを光信号の状態で前記複数の光ネ ットワーク端末に分配する光分岐装置とを備えている受 動光ネットワークシステムにおける通信方法において、 前記複数の光ネットワーク端末のそれぞれは、前記光ラ イン端末が送信する前記複数種類の配信データのうち受 信を求める配信データの受信要求を, 該受信を求める配 信データの種類を指定して前記光ライン端末に送信し、 前記光ライン端末は、前記複数種類の配信データのう ち、前記複数の光ネットワーク端末から送信された前記 受信要求により指定された種類の配信データを前記複数 の光ネットワーク端末に送信する、ことを特徴とする。 【0012】本発明の第1の側面によると、光ライン端 末は、光ネットワーク端末から受信要求のあった配信デ ータを光ネットワーク端末に送信する。したがって、受 信要求のない配信データは、光ライン端末から光ネット ワーク端末への送信されない。これにより、光ライン端 末と光ネットワーク端末との間の通信帯域を有効利用す ることができる。また、受信要求のあった配信データに

【0013】好ましくは、前記光ネットワーク端末の前記制御情報送信部は、受信している配信データの受信の終了を求める受信終了要求を、該受信の終了を求める配信データの種類を指定して前記光ライン端末に送信し、前記光ライン端末の前記設定部は、前記受信終了要求を受信し、前記受信終了要求を送信した光ネットワーク端末以外のいずれの光ネットワーク端末も前記受信終了要求により指定された種類の配信データを選択していない場合には、該指定された種類の配信データについての前記配信データ送信部の設定を解除する。

大きな通信帯域を割り当てることができるので、受信要

求のあった配信データの通信速度を向上させることがで

きる。

【0014】これによっても、光ライン端末と光ネット ワーク端末との間の通信帯域を有効利用することがで き、受信要求のあった配信データの通信速度を向上させ ることができる。

【0015】本発明の第2の側面による光ライン端末は、受動光ネットワークシステムに設けられ、配信データを複数の光ネットワーク端末に光信号により分配する光ライン端末において、複数種類の配信データのうち、送信するように設定された配信データを光ネットワーク端末に送信する配信データ送信部と、前記複数の光ネットワーク端末の少なくとも1つが前記複数種類の配信デ

hnのn種類(nは2以上の整数)の配信データがサー ビスノード5からOLT1に供給されている。

ータのうち受信を求める配信データの種類を指定して送 信した受信要求を受信し、該受信要求によって指定され た種類の配信データを送信するように前記配信データ送 信部を設定する設定部と、を備えていることを特徴とす る。

【0016】本発明の第2の側面によっても、前記第1 の側面と同様の作用効果を得ることができる。

【0017】本発明の第3の側面による光ネットワーク 端末は、受動光ネットワークシステムに設けられ、光ラ イン端末から光信号により送信される配信データを受信 10 する光ネットワーク端末において, 前記光ライン端末 が、送信可能な複数種類の配信データのうち、該光ネッ トワーク端末が受信を求める配信データを選択して送信 するように, 前記光ライン端末を設定するための受信要 求を, 該受信を求める配信データの種類を指定して前記 光ライン端末に送信する制御情報送信部と, 前記光ライ ン端末から送信される1または2以上の種類の配信デー タの中から、前記受信を求める配信データを選択して受 信するデータ選択部と、を備えていることを特徴とす

【0018】本発明の第3の側面によっても, 前記第1 の側面と同様の作用効果を得ることができる。

[0019]

【発明の実施の形態】1. 第1の実施の形態 図1は、本発明の第1の実施の形態による受動光ネット ワーク (PON) システムの構成を示すブロック図であ る。このPONシステムは、光ライン端末(OLT:Op tical Line Terminal) 1, 光ネットワーク端末 (ON T: Optical Network Termination) 2 a ~ 2 c, 光ス プリッタ3, および光ファイバリンク4a~4dを有す 30

【0020】ONT2a~2cは、光ネットワークユニ ット (ONU:Optical Network Unit) と呼ばれること もある。これらONT2a~2cのそれぞれには, ユー ザ端末 (テレビ、コンピュータ等), 他の通信ネットワ ーク(たとえばイントラネット)等が1または2以上接 続されている。なお、図1では、一例として3つのON Tを図示しているが、ONTは、それ以外の個数(たと えば2つまたは4つ以上) 設けられてもよい。

【0021】OLT1には、ONT2a~2cに接続さ 40 れたユーザ端末、他の通信ネットワーク等(以下「ユー ザ端末、他の通信ネットワーク等」と単に「ユーザ端 末」という。)にデータ配信サービスを提供するサービ スノード5が接続されている。データ配信サービスによ り提供される配信データとしては、映像データ(たとえ ばケーブルテレビ放送),音楽データ等のコンテンツが ある。サービスノード5は、図1では1つのみ図示して いるが、複数存在していてもよい。たとえばケーブルテ レビならば、ケーブルテレビの放送局の個数分設けられ ることもある。本実施の形態では、チャネルchl~c 50 号との相互変換を行う。

【0022】図1に示すPONシステムでは、サービス ノード5から供給されるnチャネルの配信データのうち ONT2a~2cにより要求されたチャネルの配信デー タが、OLT1から光ファイバリンク4a~4dおよび 光スプリッタ3を介してONT2a~2cに送信され る。そして、ONT2a~2cに送信された配信データ は、ONT2a~2cからユーザ端末等に配信される。

【0023】以下、PONシステムの各構成要素の詳細 について説明する。

【0024】OLT1は、サービスノード5から送信さ れるチャネルch1~chnのうち、ONT2a~2c により要求されたチャネルを選択し、選択したチャネル の配信データを光ファイバリンク4 dに出力するもので ある。

【0025】図2は、OLT1の詳細な構成を示すブロ ック図である。OLT1は、スイッチ11、チャネル設 定装置12, およびPONインタフェース装置(以下 「PON-IF装置」という。) 13を備えている。

【0026】スイッチ11は、サービスノード5、チャ ネル設定装置12,およびPON-IF装置13に接続 されている。 PON-IF装置13は、一方をスイッチ 11に接続され、他方を光ファイバリンク4 dに接続さ れている。スイッチ11とPON-IF装置13との 間、および、スイッチ11とチャネル設定装置12との 間は、電気信号によりデータの送受信が行われる。

【0027】スイッチ11は、サービスノード5から供 給されるチャネルch1~chnの配信データのうち、 チャネル設定装置12により指定されたチャネルの配信 データをATMセルに格納し、PON-IF装置13に 出力する。また、スイッチ11は、ONT2a~2cか らPON-IF装置13を介して送信されてきたATM セルのデータ(後述するチャネル設定要求等)を, AT Mセルのヘッダ部の情報(たとえば仮想チャネル識別 子)に基づいて、チャネル設定装置12に与え、また は、PON-IF装置13を介してONT2a~2cに 送信する。

【0028】チャネル設定装置12は、ONT2a~2 cから与えられる制御情報であるチャネル設定要求(後 述) およびチャネル設定解除要求(後述)に基づいて, チャネルch1~chnの配信データのうち, 要求され たチャネルの配信データがPON-IF装置13に与え られるようにスイッチ11の設定および設定解除を行 う。このチャネル設定装置12の処理の詳細および保持 するデータについては、後に詳述する。

【0029】PON-IF装置13は、スイッチ11と の間で送受信される電気信号と、光ファイバリンク4 d (およびONT2a~2d) との間で送受信される光信

【0030】また、PON-IF装置13は、フレーム を終端する機能を有し、スイッチ11から与えられるA TMセルを所定のフレームに格納して送信する一方、光 ファイバリンク 4 dから入力されるフレームをATMセ ルに分解して、フレームに含まれるATMセルをスイッ チ11に出力する。所定のフレームとしては、たとえば STM-1 (Synchronous Transport Module Level 1) による155.52Mbpsのフレーム等が用いられる。

【0031】さらに、光ファイバリンク4 dが1本によ 内を異なる波長の光により送受信される場合に、PON - IF装置13は、受信した光から、送信信号の反射波 等を除去し、受信信号のみを抽出する光波長分離機能も 有する。

【0032】図1に戻って、光スプリッタ3は、OLT 1から光ファイバリンク4dを介して送信されてきた光 信号を光ファイバリンク4a~4cに分配(マルチキャ ストまたはブロードキャスト) するとともに、ONT2 a~2cから光ファイバリンク4a~4cを介してそれ ぞれ送信されてきた光信号を光ファイバリンク4 d に集 20 約するものである。

【0033】光ファイバリンク4a~4dは、OLT1 からONT2a~2cに向かうもの(下り)とONT2 a~2cからOLT1に向かうもの(上り)とが同一の 光ファイバ(1本の光ファイバ)により構成されてもよ いし、下りと上りとが異なる光ファイバ(2本の光ファ イバ)により構成されてよい。

【0034】同様にして、光スプリッタ3も、下り用の ものと上り用のものとの2つにより構成されてもよい し,両者が同一の1本の光ファイバにより構成されても よい。また、この光スプリッタ3は、ツリー状に複数個 設けられてもよい。

【0035】ONT2a~2cは, 一方を光ファイバリ ンク4a~4cにそれぞれ接続されるとともに、他方を 1または2以上のユーザ端末に接続されている。

【0036】ONT2a~2cは、OLT1から送信さ れた配信データのうち、自己に接続されたユーザ端末が 要求しているチャネルの配信データのみを選択し、選択 したチャネルの配信データを、自己に接続されたユーザ 端末に出力する。また, ONT 2 a ~ 2 c は, ユーザ端 40 末からのデータ(チャネル設定要求等)をOLT1に送 信する。 the second of the second of the

【0037】ONT2a~2cはともに同じ構成を有す るので、以下では、ONT2aを代表として、ONTの 詳細を説明する。

【0038】図3は、ONT2aの詳細な構成を示すブ ロック図である。ONT2aは、PONインタフェース 装置 (PON-IF装置) 21, ATM多重/多重分離 装置22, ならびに, 2つのユーザインタフェース部

(以下「ユーザIF装置」という。) 23および24を 50 れる。

備えている。ユーザIF装置は、図2では一例として2 つのみを図示しているが、ONT2aに接続されるユー ザ端末の個数分(すなわち1または2以上)設けること ができる。

【0039】PON-IF装置21は、一方を光ファイ バリンク4aに接続され、他方をATM多重/多重分離 装置22に接続されている。ユーザIF装置23は、一 方をATM多重/多重分離装置22に接続され、他方を ユーザ端末(「ユーザ端末A」とする。)に接続されて り構成され、送信信号と受信信号とが1本の光ファイバ 10 いる。ユーザ I F 装置 2 4 は、一方を A T M 多重/多重 分離装置22に接続され、他方をユーザ端末(「ユーザ 端末B」とする。)に接続されている。

> 【0040】PON-IF装置21は、図2に示すOL T1のPON-IF装置13と同じ機能を有し、光ファ イバリンク4aからの光信号のフレームを電気信号のA TMセルに変換して, 該電信信号をATM多重/多重分 離装置22に与えるとともに、ATM多重/多重分離装 置22から与えられる電気信号のATMセルをフレーム に格納し、光信号として光ファイバリンク4a (OLT 1) に送信する。

【0041】ATM多重/多重分離装置22は、PON - IF装置21から与えられるATMセルを多重分離 (すなわちATMセル単位に分割) し、ユーザ端末Aお よびBから要求されているチャネルの配信データを格納 したATMセルのみを選択する。

【0042】たとえば、チャネルchi、chi、ch k, およびchm(i, j, k, mは1~nのいずれか の値)の4チャネルの配信データがOLT1からPON - I F装置21を介してATM多重/多重分離装置22 に送信されている場合において、ユーザ端末Aがチャネ ルchiを要求し、ユーザ端末Bがチャネルchkを要 求しているとき、ATM多重/多重分離装置22は、チ ヤネルchiおよびchkの配信データを格納したAT Mセルのみを選択して、他のチャネルのATMセルを廃 棄する。

【0043】そして,ATM多重/多重分離装置22 は、選択されたATMセルを、ユーザIF装置23およ び24に振り分ける。上記例では、ユーザ端末Aに接続 されたユーザIF装置23にチャネルchiのATMセ ルを与え、ユーザ端末Bに接続されたユーザ IF装置2 4にチャネルchkのATMセルを与える。

【0044】もちろん、端末AおよびBが同じチャネル chiを要求する場合には、ATM多重/多重分離装置 22は、チャネルchiのATMセルのみを選択し、双 方のユーザ I F装置 2 3 および 2 4 に同じチャネル c h iのATMセルを与えることとなる。また、1つのユー ザ端末が複数のチャネルを要求する場合には、1つのユ ーザIF装置23または24に対して複数のチャネルの ATMセルがATM多重/多重分離装置22から与えら

【0045】一方、ATM多重/多重分離装置22は、ユーザ I F 装置23 および24 からATMセルにより与えられたデータ(チャネル設定要求等)を多重化し、P ON-I F 装置21 に与える。

【0046】このような処理を行うために、ATM多重 /多重分離装置22は、図示を省略するが、ユーザIF 装置23および24から与えられるATMセルを多重化してPON-IF装置21に出力する多重部、PON-IF装置21から与えられるATMセルを多重分離(すなわちATMセル単位に分割)し、ユーザ端末Aおよび 10 Bから要求されているチャネルの配信データを格納したATMセルのみを選択してユーザIF装置23または24に出力する多重分離部、ならびにこれらの多重部および多重分離装置を制御する制御部を有する。

【0047】多重部および多重分離部は、高速な処理を行うためにハードウェア回路により構成されていることが好ましい。制御部は、CPUまたはマイクロコンピュータと、これらCPUまたはマイクロコンピュータにより実行されるプログラムとにより構成されてもよいし、ハードディスク回路により構成されていてもよい。また、制御部は、処理に必要なデータ、プログラム等を記憶する記憶装置(半導体メモリ、ハードディスク等)を有する。

【0048】ユーザIF装置23および24は、ATM多重/多重分離装置22との間で送受信されるATMセルと、ユーザ端末AおよびBとの間で送受信されるデータ形式(フォーマット)との間の相互変換を行う。ユーザ端末AまたはBがATMセルを送受信する端末であるならば、ユーザIF装置23および24は、それぞれ、ユーザ端末AおよびBとの間でATMセルをそのまま入30出力する。また、ユーザ端末AまたはBが、たとえばIPパケットを送受信する端末であるならば、ATMセルをIPパケットに変換する機能を有する。

【0049】次に、このような構成を有するPONシステムにおけるチャネル設定の処理およびチャネル設定解除の処理について説明する。

【0050】図4は、第1の実施の形態によるチャネル設定の処理の流れを示すシーケンス図である。図3に示すONT2aを例として説明する。

【0051】ユーザ端末AまたはB(以下「AまたはB」を「A(B)」と記す。)のユーザが、チャネルch1~chnのうちのあるチャネル(「チャネルchx」とする。)の受信を要求する場合に、この受信要求は、チャネル設定要求として、ユーザ端末A(B)からONT2aに送信される。このチャネル設定要求には、受信を要求するチャネルを示す情報(たとえばチャネル番号等であり、以下「チャネル識別情報」という。)が含まれている。

【0052】ONT2aのユーザIF装置23または2 4(以下「23または24」を「23(24)」と記 す。)が、ユーザ端末A(B)からチャネル設定要求を受信すると(ステップS1)、ユーザIF装置23(24)は、このチャネル設定要求をATMセルによりATM多重/多重分離装置22に出力する。このATMセルのヘッダ部の仮想チャネル識別子(VCI:Virtual Channel Identifier)には、このATMセルをOLT1のチャネル設定装置12に送信するための所定の識別子が使用される。また、このATMセルのペイロード部には、チャネル識別情報を含んだチャネル設定要求が格納される。

【0053】このATMセルは、ATM多重/多重分離 装置22からPON-IF装置21を介してOLT1に 送信される(ステップS2)。

【0054】チャネル設定要求を格納したATMセルは、そのヘッダ部のVCIに従って、OLT1のPON-IF装置13およびスイッチ11を介してチャネル設定装置12に与えられる。

【0055】チャネル設定装置12は、チャネル設定要求を受信すると、このチャネル設定要求に含まれるチャネル識別情報が示すチャネル chxの設定を開始する。すなわち、チャネル設定装置12は、まず、保持されたチャネル設定テーブルにおけるチャネル chxの設定値の論理和演算(OR演算)を行う(ステップS3)。

【0056】図5は、チャネル設定装置12が保持するチャネル設定テーブルの一例を示している。チャネル設定テーブルは、ONT2a~2cが、現在どのチャネルを選択し、ユーザ端末に供給しているかを示すテーブルである。

【0057】このテーブルの縦方向には、PONシステムに設けられたONTの一覧が設けられ、横方向には、各ONTがチャネルch1~chnのいずれを選択しているかを示す欄が設けられる。各ONTにより選択されているチャネルの欄には論理値"1"が設定され、選択されていないチャネルの欄には論理値"0"が設定される。図5に示す例では、ONT2aは少なくともチャネルch1を、ONT2bは少なくともチャネルch2を、それぞれ選択している。

【0058】ONT2a~2cの少なくとも1つにより 40 選択されているチャネルの配信データは、そのチャネル を選択しているONTだけでなく、それ以外のONTに も、送信されている。これは、光スプリッタ3が、OL T1からの光信号を、3つの光ファイバリンク4a~4 cに分配(複製)するからである。たとえば、チャネル ch1の配信データがONT2aにのみ選択されている 場合であっても、この配信データは、光スプリッタ3に よって、ONT2bおよび2cにも配信されている。

【0059】論理和演算は、このチャネル設定テーブルのチャネルchxの全論理値の論理和を求めることによ 50 り行われる。たとえばチャネルchxがチャネルch1 である場合には、チャネル設定テーブルにおける c h 1 の欄の3つの論理値"1", "0" および"0"の論理 和が求められ、演算結果は1+0+0=1となる。ま た, チャネル c h x がチャネル c h 2 である場合には, 演算結果は0+1+1=1となる。チャネルchnの論 理和の演算結果は0となる。

【0060】論理和演算の結果が1であるチャネルは、 少なくとも1つのONTによりすでに選択されているチ ャネルであるので、このチャネルの配信データは、全O NTにすでに送信されていることとなる。一方, 論理和 10 演算の結果が0であるチャネルは、いずれのONTにも 選択されていないチャネルであるので、このチャネルの 配信データはOLT1からONTに送信されていないこ ととなる。

【0061】図4に戻って、チャネル設定要求があった チャネルchxの論理和演算の結果が0である場合には (ステップS4でNO), チャネル chxは、ONT2a~2cのいずれにも送信されていないチャネルという ことになる。したがって、この場合に、チャネル設定装 置12は、チャネルchxの配信データをONT2a~ 20 2 c に配信するように、スイッチ11を設定する(ステ ップS5)。これにより、チャネルchxの配信データ は、サービスノード5から、スイッチ11、PON-I F装置13, 光ファイバリンク4d, 光スプリッタ3, および光ファイバリンク4a~4dを介して、ONT2 a~2cに配信される。

【0062】スイッチ11の設定後、チャネル設定装置 12は、チャネルchxがONT2aにより選択された ことを示すために、チャネル設定テーブルにおけるON T2aのチャネルchxの欄に論理値"1"を設定する (ステップS6)。以後の論理和演算には、この設定さ れた論理値が使用される。なお、このステップS6の処 理は、ステップS5の前に行われてもよい。

【0063】続いて、チャネル設定装置12は、チャネ ル設定完了通知をスイッチ11およびPON-IF装置 を介してONT2a(および2b、2c)に送信する (ステップS7)。この通知もATMセルに格納され る。このATMセルのヘッダ部のVCIには、このAT MセルがONT2a (ATM多重/多重分離装置22

(制御部)) に宛てられたものであることを示す所定の 40 照)の論理値を"O"に設定する(ステップS14)。 識別子が使用される。また、このATMセルのペイロー ド部には、チャネル設定完了通知が格納される。この通 知には、設定を完了したチャネルのチャネル識別情報が 含まれてもよい。

【0064】送信されたチャネル設定完了通知は、ON T2aのPON-IF装置21を介してATM多重/多 重分離装置22に受信される。

【0065】ONT2aのATM多重/多重分離装置2 2(制御部)は、ATMセルのヘッダ部のVCIによ り、チャネル設定完了通知を含むATMセルを識別す

る。そして、ATM多重/多重分離装置22は、チャネ ル設定完了通知を受信することにより、チャネル c h x を選択するように自らを設定する。これにより、チャネ ルchxの配信データの選択(受信)が開始される(ス テップS8)。選択されたチャネル c h x の配信データ は、ユーザ I F装置23 (24) を介してユーザ端末A (B) に送信される。

12

【0066】一方,ステップS4において,論理和演算 結果が1である場合には(ステップS4でYES),チ ヤネルchxの配信データは、すでにOLT1からON T2a~2cに送信されていることとなる。すなわち, スイッチ11は、チャネルchxの配信データをONT 2 a ~ 2 c 側に送信するように設定されている。したが って、この場合に、チャネル設定装置12は、スイッチ 11の設定を行うことなく、ステップS6およびS7の 処理を実行する。

【0067】一方、選択しているチャネルの配信データ の選択を停止する場合には、以下に示すチャネル設定解 除の処理が行われる。

【0068】図6は、第1の実施の形態によるチャネル 設定解除の処理の流れを示すシーケンス図である。チャ ·ネル設定処理(図4)の場合と同様に,ONT2aを例 として説明する。

【0069】ONT2aが、ユーザ端末A(B)から、 受信中のチャネル c h x の配信データの受信終了要求 (すなわちチャネル設定解除要求)を受信すると(ステ ップS11), ユーザIF装置23(24)は, このチ ャネル設定解除要求をATMセルのペイロード部に格納 し、ATM多重/多重分離装置22に与える。このAT Mセルは、ATM多重/多重分離装置22からPON-IF装置21を介してOLT1に送信される(ステップ S12)。このチャネル設定解除要求には、解除を要求。 するチャネル識別情報が含まれている。

【0070】チャネル設定解除要求が格納されたATM セルは、所定のVCIに従って、OLT1のPON-I F装置13およびスイッチ11を介してチャネル設定装 置12に与えられる。チャネル設定装置12は、チャネ ル設定解除要求に含まれるチャネル識別情報が示すチャ ネルchxについて、チャネル設定テーブル(図5参

【0071】続いて、チャネル設定装置12は、チャネ ル設定テーブルの論理値を整数とみなして、チャネル c・ hxの設定値を足し算し、その合計値を求める(ステッ プS15)。たとえば、図5に示す例では、チャネルc h1の合計値は1であり、チャネルch2の合計値は2 となる。

【0072】次に、チャネル設定装置12は、合計値が 0であるかどうかを判定する(ステップS16)。合計 値が0であるチャネルは、いずれのONTにも選択され 50 ていないチャネルである。合計値が 0 以外であるチャネ

ルは、少なくとも1つのONTにより選択されているチ ャネルである。したがって、合計値が0かどうかを判定 することにより、チャネルの設定解除を行うことができ るかどうかを判断することができる。

【0073】チャネルchxの合計値が0である場合に は(ステップS16でYES), いずれのONTもチャ ネルchxを選択していないで、チャネル設定装置12 は、スイッチ11のチャネルchxの設定を解除する (ステップS17)。これにより、チャネル chxの配 信データは、スイッチ11からPON-IF装置13に 10 出力されず、その結果、ONT2a~2cに送信されな

【0074】したがって、いずれのONTによっても要 求されないチャネルの配信データは、OLTからONT に送信されない。これにより、OLT1とONT2a~ 2 c との間の通信帯域を有効利用することができる。

【0075】一方、ステップS16において合計値が0 でない場合には(ステップS16でNO),他のONT がそのチャネルchxを選択していることを意味する。 したがって、この場合には、チャネル設定装置12はス 20 イッチ11の設定を維持する。

【0076】ステップS17の処理の後、または、ステ ップS16においてNOの場合には、チャネル設定装置 12は、チャネル設定解除完了通知をONT2aに送信 する(ステップS18)。

【0077】チャネル設定解除完了通知の受信後、ON T2aのATM多重/多重分離装置22 (制御部) は, チャネルchxの選択を停止する(ステップS13)。 なお, このステップS13の処理は, チャネル設定解除 要求の送信(ステップS12)後であって、チャネル設 30 定解除完了通知の受信前に行われてもよい。

【0078】なお、第1の実施の形態によるチャネル設 定の処理およびチャネル設定解除の処理は,ONT2a を例に説明したが、ONT2bおよび2cでも同じ処理 が行われる。

【0079】このように、本実施の形態によると、チャ ネルch1~chnのすべての配信データがOLT1か らONT2a~2cに送信されるのではなく、チャネル 設定要求(すなわち受信要求)のあったチャネルの配信 データのみが送信される。また、チャネル設定解除要求 40 があったチャネルの配信データの送信が停止される。し たがって、OLT1とONT2a~2cとの間の通信帯 域を有効利用することができるとともに, 必要な配信デ ータに大きな通信帯域を割り当てることができるので、 必要な配信データを高速に送信することができる。

【0080】2. 第2の実施の形態

OLT1がチャネルの選択状況を示す情報をONT2a ~2cに提供することもできる。

【0081】第2の実施の形態によるPONシステムの

はその説明を省略する。また、OLT1の構成も図2に 示すものと同じであり、ONT2a~2cの構成も図3 に示すものと同じであるので、ここではその説明を省略 する。

【0082】図7は、第2の実施の形態によるチャネル 設定の処理の流れを示すシーケンス図である。図1およ び図3に示すONT2aを例として説明する。

【0083】本実施の形態では、OLT1のチャネル設 定装置12が、チャネル選択テーブルを保持し、このチ ャネル選択テーブルに基づいて、ONT2a~2cにチ ャネルの選択状況を示す情報(以下「OLTチャネル選 択情報」という。)を定期的(たとえば数ミリ秒間隔, 数秒間隔等)に送信する(ステップS21)。

【0084】図8は、チャネル設定装置12が保持する チャネル選択テーブルの一例を示している。チャネル選 択テーブルは、チャネルch1~chnのそれぞれがい ずれのONTにも選択されていない状態 (あるONTに より一旦チャネルが選択されても、その後、そのチャネ ルの選択がすべてのONTから解除された状態を含 む。) において、各チャネルを最初に選択したONTを 示すテーブルである。

【0085】チャネル選択テーブルにおいて、論理値 "1"が設定されている欄に対応するONTが、その欄 に対応するチャネルを最初に選択したONTである。論 理値"1"が設定されているチャネルにおいて、論理値 "0"が設定されている欄に対応するONTは,その欄 に対応するチャネルを選択している場合もあるし、選択 していない場合もある。論理値がすべて"0"であるチ ャネルは、いずれのONTにも選択されていないチャネ ルである。

【0086】図8に示すテーブルの例は、チャネルch 1がいずれのONTにも選択されていない状態におい て,ONT2aがチャネルch1を最初に選択したこと を示している。同様にして、チャネルch2およびch iは、ONT2bが最初に選択したことを示している。 チャネルchnは、いずれのONTも選択していないこ とを示している。

【0087】図9は、OLTチャネル選択情報の一例を 示している。OLTチャネル選択情報は、チャネルch $1 \sim c h n$ のそれぞれを最初に選択したONTの識別情 報を配列したものである。このOLTチャネル選択情報 は、チャネル選択テーブルにおいて論理値"1"が設定 されているONTを抽出することにより作成される。た だし、いずれのONTにも選択されていないチャネルの 欄(図9ではチャネルchnの欄)には,ONTの識別 情報として取り得ない値(たとえばNull値)が格納

【0088】このOLTチャネル選択情報は、ATMセ ルのペイロード部に格納され,ONT2a~2cに送信 全体構成は、図1に示すものと同じであるので、ここで 50 される。このATMセルのヘッダ部のVCIには、この

ATMセルがONT2a~2cの各ATM多重/多重分 離装置22に受信されるための所定の識別子が使用され

【0089】図7に戻って、ONT2aのATM多重/ 多重分離装置22 (制御部) は、OLT1から送信され るOLTチャネル選択情報を内部の記憶装置(半導体メ モリ,ハードディスク等)に記憶し、新たなOLTチャ ネル選択情報が送信されるごとに、新たなチャネル選択 情報によって、これまで記憶していたOLTチャネル選 択情報を更新する(ステップS22)。

【0090】次に、ONT2aのATM多重/多重分離 装置22は、ユーザ I F装置23 (24) からチャネル 設定要求を受信したかどうかを判定する (ステップS2 3)。チャネル設定要求は、第1の実施の形態と同様 に、チャネル識別情報を含んでいる。ATM多重/多重 分離装置22がユーザIF装置23(24)からチャネ ル設定要求を受信していない場合には(ステップS23 でNO),処理はステップS22に戻り、新たなOLT チャネル選択情報が受信されたときは、OLTチャネル 選択情報の更新処理が行われる。

【0091】一方, ATM多重/多重分離装置22がユ ーザIF装置23 (24) からチャネル設定要求を受信 した場合には(ステップS23でYES), OLTチャ ネル選択情報に基づいて,受信されたチャネル設定要求 が示すチャネル (チャネル c h x とする。) がいずれか のONTにより選択(設定)されているかどうかを判断 する(ステップS24)。この判断は、OLTチャネル 選択情報におけるチャネルchxの欄がNull値でな いかどうかをチェックすることにより行われる。

り選択されている場合(すなわちチャネルchxの欄が Null値でない場合)には(ステップS24でYE S), チャネルchxの配信データは、OLT1からO NT2a~2cにすでに送信されていることとなる。し たがって、この場合に、ATM多重/多重分離装置22 は、チャネル設定要求をOLT1に送信することなく、 チャネルchxを選択するように自己を設定する。これ により、チャネル c h x の配信データの選択が、ATM 多重/多重分離装置22により開始される (ステップS 28).

【0093】その後、チャネルchxの配信データは、 ATM多重/多重分離装置22からチャネル設定要求を 送信したユーザ I F装置23 (24) に与えられ、ユー ザ端末A(B)に送信される。

【0094】なお、たとえば、ユーザ端末Aからチャネ ルchxのチャネル設定要求がONT2aに与えられ、 ONT2a (ATM多重/多重分離装置22) がチャネ ルchxをすでに選択している状態において、ユーザ端 末Bからチャネルchxのチャネル設定要求がONT2 aに与えられた場合には,ONT2aのATM多重/多 50 は,ONT2aがチャネルch1に関して監視対象のO

重分離装置22は、チャネル設定要求をOLT1の送信 することなく, すでに選択しているチャネル c h x の配 信データをユーザ端末Aに加えてユーザ端末Bに送信す る。

【0095】一方、チャネルchxがいずれのONTに も選択されていない場合(すなわちチャネルchxの欄 がNull値である場合)には(ステップS24でN O), ATM多重/多重分離装置22は, 第1の実施の 形態と同様にして、チャネルchxの設定要求をOLT 1に送信する(ステップS25)。

【0096】OLT1のチャネル設定装置12は、第1 の実施の形態のステップS5の処理と同様にして、スイ ッチ11を設定する(ステップS26)。続いて、チャ ネル設定装置12は、第1の実施の形態のステップS7 の処理と同様にして、チャネル設定完了通知をONT 2 aに送信する(ステップS27)。なお、チャネル設定 装置12は、チャネル選択テーブル (図8参照) の更新 を行わない。

【0097】ONT2aのATM多重/多重分離装置2 2 (制御部) は、チャネル設定完了通知の受信後、チャ ネルchxの配信データを選択するように自己の設定し て,チャネルchxの配信データの選択を開始する (ス テップS28)。なお、ステップS28の処理は、ステ ップS25の処理後、ステップS27の処理前に行われ

【0098】このように第2の実施の形態によると、0 NT2a(2b,2c)がチャネル設定要求を送信すべ きかどうかを判断し、チャネル設定が必要な場合にのみ チャネル設定要求をOLT1に送信する。したがって、 OLT1が論理和演算等のチャネル設定を行うかどうか を判断する必要がなくなり, OLT1の処理負荷が軽減 される。

【0099】図10は、第2の実施の形態によるチャネ ル設定解除の処理の流れを示すシーケンス図である。

【0100】ONT2aのATM多重/多重分離装置2 2が、ユーザ端末A(B)から、これまで選択していた チャネル c h x のチャネル設定解除要求を受信すると (ステップS31でYES), チャネル設定解除要求を OLT1に送信する(ステップS32)。このチャネル 40 設定解除要求は、第1の実施の形態と同じものである。

【0101】OLT1のチャネル設定装置12は、チャ ネル c h x のチャネル設定解除要求を受信すると、チャー ネル設定解除要求を送信したONT2aが、チャネルc hxに関して監視対象のONTであるかどうかを判断す る(ステップS33)。チャネルchxに関して監視対 象のONTとは、チャネル選択テーブル (図8参照) に おけるチャネルchxの欄に論理値"1"が設定されて いるONTである。チャネル選択テーブルにおいて、た とえばチャネルchxがチャネルch1である場合に

NTとなる。

【0102】ONT2aがチャネルchxに関して監視対象のONTである場合に(ステップS34でYES),チャネル設定装置12は,チャネルchxの設定を解除する旨を示すチャネル設定解除情報を,チャネル設定解除要求を送信したONT2a以外のONT(ここではONT2bおよび2c)に送信する(ステップS34)。なお,このチャネル設定解除情報は光スプリッタ3によりONT2aにも送信されるが,ONT2aはこの情報を選択することなく廃棄する。このチャネル設定 10解除情報には,チャネル設定を解除するチャネルの識別情報(チャネル番号等)が含まれ,また,この情報を格納するATMセルのヘッグ部には,ONT2bおよび2cの各ATM多重/多重分離装置が受信するための所定の識別情報が含まれている。

【0103】ONT2a以外のONT2bおよび2cの各ATM多重/多重分離装置22は、チャネル設定解除情報を受信すると、チャネル設定解除情報に含まれるチャネル識別情報が示すチャネルchxを選択しているかどうかを判断する(ステップS35)。

【0104】ONT2bまたは2cの各ATM多重/多重分離装置22は、自己がチャネルchxを選択している場合には(ステップS35でYES)、チャネル設定解除情報の受信から一定時間T1(たとえば数ミリ秒、数十ミリ秒)内に、チャネルchxのチャネル設定要求(チャネル識別情報を含む。)をOLT1に送信する(ステップS36)。

【0105】一方、自己がチャネルchxを選択していない場合には(ステップS35でNO)、ONT2bまたは2cの各ATM多重/多重分離装置22は、チャネ 30ル設定要求を送信しない。このように監視対象のONTをあらかじめ定めておくことにより、OLT1は、チャネル設定解除要求を受信した場合に、チャネル設定解除情報を常に送信する必要がなくなる。

【0106】OLT1のチャネル設定装置12は、チャ きる。 ネル設定解除情報の送信から一定時間T2(>T1)内 に、チャネル設定解除情報により指定したチャネルch 第3の実施 xのチャネル設定要求を受信すると(ステップS37で 択し、また YES)、チャネル設定要求を送信したONT2bまた は2cがチャネルchxに関して監視対象のONTとな 40 のである。 るように、チャネル選択テーブルを更新する(ステップ 【0114 S38)。また、チャネル設定装置12はスイッチ11 トワークミ の設定を維持する。その結果、チャネルchxの配信デ のと同じで のと同じで のと同じて

【0107】なお、OLT1のチャネル設定装置12が複数のONT(たとえばONT2bおよび2c)から同時に、スイッチS36によるチャネル設定要求を受信した場合には、チャネル設定装置12にあらかじめ設定されたONTの優先順位に従って、優先順位の高いONTが監視対象のONTに決定される。たとえば、ONT2

a, 2b, 2cの順に優先順位が定められている場合には, ONT2bが監視対象のONTとされる。

【0108】一方,一定時間T2内にチャネルchxのチャネル設定要求を受信しなかった場合には(ステップS37でNO),チャネル設定装置12は,ONT2bおよび2cがともにチャネルchxを選択していないものとみなして,スイッチ11のチャネルchxの設定を解除する。これにより,チャネルchxの配信データは,OLT1からONT2a~2cに送信されない。

【0109】スイッチ11の設定解除(ステップS40)の後、ステップS34においてONT2aがチャネルchxについて監視対象のONTでない場合(ステップS34でNO)、または、チャネル選択テーブルの更新(ステップS38)後、スイッチ設定装置12は、チャネル設定解除完了通知をONT2aに送信する(ステップS41)。

【0110】ONT2aのATM多重/多重分離装置22(制御部)は、チャネル設定解除完了通知の受信後、チャネルchxの選択を停止する(ステップS41)。なお、ステップS41のチャネルの選択の停止処理は、チャネル設定解除要求送信(ステップS32)後であって、チャネル設定完了通知の受信前に行われてもよい。【0111】なお、第2の実施の形態によるチャネル設定の処理およびチャネル設定解除の処理は、ONT2aを例に説明したが、ONT2bおよび2cでも同じ処理が行われる。

【0112】このように第2の実施の形態によっても,チャネル $ch1\sim chn$ のすべての配信データがOLT1からONT $2a\sim 2c$ に送信されるのではなく,チャネル設定要求(すなわち受信要求)のあったチャネルの配信データのみが送信される。したがって,OLT1とONT $2a\sim 2c$ との間の通信帯域を有効利用することができるとともに,必要な配信データに大きな帯域を割り当てることができるので,高速な通信を行うことができる。

【0113】3. 第3の実施の形態

第3の実施の形態は、あるONTが新たなチャネルを選択し、または、チャネルの選択を停止する場合に、他のONTからチャネルの選択状況を示す情報を受信するものである。

【0114】第3の実施の形態においても、PONネットワークシステムの全体構成、OLT1の構成、およびONT2a~2cの構成は第1の実施の形態におけるものと同じであるので、ここではその説明を省略する。

【0115】図11は、第3の実施の形態によるチャネル設定の処理の流れを示すシーケンス図である。図3に示すONT2aがチャネルの設定を行う場合を例として説明する。

れたONTの優先順位に従って、優先順位の高いONT 【0116】ONT2aの多重/多重分離装置22がユが監視対象のONTに決定される。たとえば、ONT2 50 一ザ端末A(B)からユーザ IF 装置 23 (24)を介

してチャネルchxのチャネル設定要求を受信すると(ステップS51でYES),ONT2aの多重/多重分離装置22(制御部)は、チャネルchxの選択を開始する情報(チャネル選択開始情報)を他のONT2b および2cに送信する(ステップS52)。

【0117】このチャネル選択開始情報には、送信元であるONT2a、選択を開始するチャネルchxのチャネル識別情報、および選択の開始を示す情報が含まれる。これらの情報はATMセルのペイロード部に格納され、ATMセルのヘッダ部には、ONT2bおよび2c 10がこのチャネル選択開始情報を受信するための所定の識別情報が含まれる。また、このチャネル選択開始情報は、制御情報を送信するATMセルにより光ファイバ4a~4dおよびOLT1を介して送信されてもよいし、光ファイバ4a~4dとは異なる、図示しない他の通信回線を介して送信されてもよい。

【0118】チャネル選択開始情報の送信元のONT2 a以外のONT2bおよび2cがチャネル選択開始情報 を受信すると、ONT2bおよび2cの各ATM多重/ 多重分離装置22は、自己が選択しているチャネルの情 20 報(以下「ONTチャネル選択情報」という。)を送信 元のONT2aに送信する(ステップS53)。このO NTチャネル選択情報も光ファイバ4a~4dおよびO LT1を介して送信されてもよいし、図示しない他の通 信回線を介して送信されてもよい。

【0119】ONT2aのATM多重/多重分離装置2 2は、ONTチャネル選択情報を受信すると、ONTチャネル選択情報にチャネルchxが含まれているかどうか、すなわち、チャネルchxがすでに設定され、他のONTにより選択されているかどうかを判断する(ステ 30ップS 5 4)。

【0120】チャネルchxがすでに他のONTにより選択されている場合には(ステップS54でYES),そのチャネルchxの配信データは、ONT2aにもOLT1から送信されている。したがって、この場合には、ONT2aのATM多重/多重分離装置22は、自己の設定を変更することによって、チャネルchxの配信データの選択を開始する(ステップS58)。

【0121】一方,チャネルchxが他のONT2bおよび2cにより選択されていない場合(すなわちONT 40チャネル選択情報にチャネルchxが含まれていない場合)には(ステップS54でNO),ONT2aのATM9重/9重分離装置22は,チャネルchxのチャネル設定要求をOLT1に送信する(ステップS55)。

【0122】OLT1のチャネル設定装置12は,このチャネル設定要求に従ってスイッチ11を設定し(スイッチS56),チャネル設定完了通知をONT2aに送信する(ステップS57)。これにより、チャネルchxの配信データがOLT1からONT2a(および2b,2c)に送信される。

【0123】ONT2aのATM多重/多重分離装置22は、OLT1からのチャネル設定完了通知の受信後、チャネルchxの配信データの選択を開始する(ステップS58)。その後、ONT2aのATM多重/多重分離装置22は、チャネルchxの識別情報を含んだチャネル選択完了通知を他のONT2bおよび2cに送信する(ステップS59)。このチャネル選択完了通知も、光ファイバ4a~4dおよびOLT1を介して送信されてもよいし、図示しない他の通信回線を介して送信されてもよいし、図示しない他の通信回線を介して送信されてもよい。

【0124】このように第3の実施の形態によると、ONT2a(2b, 2c)がチャネル設定要求を送信すべきかどうかを判断し、チャネル設定が必要な場合にのみチャネル設定要求をOLT1に送信する。したがって、OLT1が論理和演算等のチャネル設定を行うかどうかを判断する必要がなくなり、OLT1の処理負荷が軽減される。また、ONTチャネル選択情報を、OLT1ではなくONT間で通知するので、OLT1の処理負荷がさらに軽減される。

【0125】図12は、第3の実施の形態によるチャネル設定解除の処理の流れを示すシーケンス図である。ONT2aがチャネル設定解除を行う場合を例にして説明する。

【0126】ONT2aが、そのユーザ端末A(B)からチャネルchxのチャネル設定解除要求を受信した場合に(ステップS61でYES)、ONT2aのATM多重/多重分離装置22は、チャネル設定解除要求に含まれるチャネルchxを停止する情報(チャネル選択停止情報)を他のONT2bおよび2cに送信する(ステップS62)。

【0127】他のONT2bおよび2cがチャネル選択停止情報を受信すると、これらのONT2bおよび2cのATM多重/多重分離装置22は、それぞれ自己のONTチャネル選択情報をONT2aに送信する(ステップS63)。

【0128】ONT 2a のATM多重/多重分離装置 2 2は,他のONT 2b および 2c から送信されたONT チャネル選択情報に基づいて,チャネル c h x が他のONT 2b または 2c により選択されているかどうかを判断する(ステップ S 64)。

【0129】チャネルchxが他のONT2bまたは2 この少なくとも一方により選択されている場合には(ス テップS64でYES),チャネル設定解除要求をOL T1に送信することなく,自己のチャネルchxの設定 を解除して,チャネルchxの配信データの選択を停止 する(ステップS68)。

【0130】一方, チャネルchxが他のONT2bおよび2cの双方により選択されていない場合には(ステップS64でNO), ONT2aのATM多重/多重分50 雕装置22は, チャネルchxのチャネル設定解除要求

をOLT1に送信する(ステップS65)。これにより、OLT1のスイッチ設定装置12は、スイッチ11のチャネルchxの設定を解除する。その結果、チャネルchxの配信データは、OLT1からONT2a~2 cに送信されなくなる。その後、スイッチ設定装置12は、ONT2aにチャネルchxのチャネル設定解除完了通知を送信する(ステップS67)。

【0131】ONT2aのATM多重/多重分離装置2 2は、チャネル設定解除完了通知の受信後、チャネルchxの配信データの選択を停止する。停止後、ONT2 aは、他のONT2bおよび2cにチャネル選択停止完 了情報を送信する(ステップS69)。

【0132】なお,第3の実施の形態によるチャネル設定の処理およびチャネル設定解除の処理は,ONT2aを例に説明したが,ONT2bおよび2cでも同じ処理が行われる。

【0134】(付記1) 光信号により複数種類の配信 データを送信する光ライン端末と, 光信号により配信デ ータを受信する複数の光ネットワーク端末と, 前記光ラ イン端末から送信される, 光信号による配信データを光 信号の状態で前記複数の光ネットワーク端末に分配する 光分岐装置とを備えている受動光ネットワークシステム において、前記複数の光ネットワーク端末のそれぞれ は、前記複数種類の配信データのうち受信を求める配信 データの受信要求を,該受信を求める配信データの種類 を指定して前記光ライン端末に送信する制御情報送信部 と、前記光ライン端末から送信される1または2以上の 種類の配信データの中から、前記受信を求める配信デー タを選択して受信するデータ選択部と, を備え, 前記光 ライン端末は、前記複数種類の配信データのうち、送信 するように設定された配信データを前記複数の光ネット ワーク端末に送信する配信データ送信部と、前記受信要 求を受信し、前記受信要求によって指定された種類の配 信データを送信するように前記配信データ送信部を設定 する設定部と、を備えていることを特徴とする受動光ネ ットワークシステム。

【0135】(付記2) 付記1において,前記光ライン端末の前記設定部は,前記配信データ送信部が,前記受信要求により指定された種類の配信データを送信するようにすでに設定されているかどうかを確認し,設定されていない場合に,前記配信データ送信部を設定する,

ことを特徴とする受動光ネットワークシステム。

【0136】(付記3) 付記1において,前記光ネットワーク端末の前記制御情報送信部は,受信している配信データの受信の終了を求める受信終了要求を,該受信の終了を求める配信データの種類を指定して前記光ライン端末に送信し,前記光ライン端末の前記設定部は,前記受信終了要求を受信し,前記受信終了要求を送信した光ネットワーク端末以外のいずれの光ネットワーク端末も前記受信終了要求により指定された種類の配信データを選択していない場合には,該指定された種類の配信データについての前記配信データ送信部の設定を解除する,ことを特徴とする受動光ネットワークシステム。

【0137】(付記4) 付記1において,前記光ライン端末の前記設定部は,前記複数の光ネットワーク端末のそれぞれが選択している配信データの種類を示す種類選択データを各光ネットワーク端末に通知し,前記光ネットワーク端末の前記制御情報送信部は,受信を求める配信データの種類が,前記通知に含まれていない場合に,前記受信要求を前記光ライン端末に送信する,ことを特徴とする受動光ネットワークシステム。

【0138】(付記5) 付記1において、前記光ネッ トワーク端末の前記制御情報送信部は、受信している配 信データの受信の終了を求める受信終了要求を、該受信 の終了を求める配信データの種類を指定して前記光ライ ン端末に送信し、前記光ライン端末の前記設定部は、前 記受信終了要求を送信した光ネットワーク端末が, 該受 信終了要求により指定された種類の配信情報をいずれの 光ネットワーク端末も選択していない状態において最初 に選択した、監視対象となる光ネットワーク端末である 場合には、該指定された種類の配信データの送信停止を 他の光ネットワーク端末に通知し、通知後所定の時間内 に,該種類の配信データの受信要求を他の光ネットワー ク端末から受信しないときは、該種類の配信データにつ いての前記配信データ送信部の設定を解除し、受信した ときは、該種類の配信データについての前記配信データ 送信部の設定を維持し、前記受信要求を送信した光ネッ トワーク端末を新たな監視対象の光ネットワーク端末と する,ことを特徴とする受動光ネットワークシステム。 【0139】(付記6) 付記5において, 前記光ライ ン端末の前記設定部は,前記所定の時間内に, 2以上の 光ネットワーク端末から前記受信要求を同時に受信した 場合には、あらかじめ設定された優先順位に従って優先 順位の高い光ネットワーク端末を新たな監視対象の光ネ ットワーク端末とする,ことを特徴とする受動光ネット ワークシステム。

【0140】(付記7) 付記1において,前記光ネットワーク端末の前記制御情報送信部は,受信を求める配信データの種類を他の光ネットワーク端末に通知し,他の光ネットワーク端末から送信された,該他の光ネット50 ワーク端末が受信している配信データの種類の中に,前

24 ータを選択して受信するデータ選択部と, を備えている

記受信を求める配信データの種類がない場合には、前記 受信要求を送信し、かつ、他の光ネットワーク端末から 前記通知を受信した場合には,自己の受信している配信 データの種類を該他の光ネットワーク端末に送信する. ことを特徴とする受動光ネットワークシステム。

【0141】(付記8) 光信号により複数種類の配信 データを送信する光ライン端末と、光信号により配信デ ータを受信する複数の光ネットワーク端末と, 前記光ラ イン端末から送信される、光信号による配信データを光 信号の状態で前記複数の光ネットワーク端末に分配する 10 光分岐装置とを備えている受動光ネットワークシステム における通信方法において、前記複数の光ネットワーク 端末のそれぞれは、前記光ライン端末が送信する前記複 数種類の配信データのうち受信を求める配信データの受 信要求を, 該受信を求める配信データの種類を指定して 前記光ライン端末に送信し、前記光ライン端末は、前記 複数種類の配信データのうち、前記複数の光ネットワー ク端末から送信された前記受信要求により指定された種 類の配信データを前記複数の光ネットワーク端末に送信 する、ことを特徴とする通信方法。

【0142】(付記9) 受動光ネットワークシステム に設けられ, 配信データを複数の光ネットワーク端末に 光信号により分配する光ライン端末において、複数種類 の配信データのうち, 送信するように設定された配信デ ータを光ネットワーク端末に送信する配信データ送信部 と, 前記複数の光ネットワーク端末の少なくとも1つが 前記複数種類の配信データのうち受信を求める配信デー タの種類を指定して送信した受信要求を受信し、該受信 要求によって指定された種類の配信データを送信するよ うに前記配信データ送信部を設定する設定部と、を備え 30 ていることを特徴とする光ライン端末。

【0143】(付記10) 光信号により複数種類の配 信データを光分岐装置を介して複数の光ネットワーク端 末に分配する光ライン端末が行う通信方法において、前 記複数の光ネットワーク端末の少なくとも1つが前記複 数種類の配信データのうち受信を求める配信データの種 類を指定して送信した受信要求を受信し、前記複数種類 の配信データのうち, 前記受信要求により指定された種 類の配信データを前記複数の光ネットワーク端末に送信 する,ことを特徴とする通信方法。

【0144】(付記11) 受動光ネットワークシステ ムに設けられ、光ライン端末から光信号により送信され る配信データを受信する光ネットワーク端末において, 前記光ライン端末が、送信可能な複数種類の配信データ のうち、該光ネットワーク端末が受信を求める配信デー タを選択して送信するように, 前記光ライン端末を設定 するための受信要求を, 該受信を求める配信データの種 類を指定して前記光ライン端末に送信する制御情報送信 部と、前記光ライン端末から送信される1または2以上 の種類の配信データの中から、前記受信を求める配信デ 50 2 a ~ 2 c 光ネットワーク端末 (ONT)

ことを特徴とする光ネットワーク端末。

【0145】 (付記12) 受動光ネットワークシステ ムに設けられ、光ライン端末から光信号により送信され る配信データを受信する光ネットワーク端末が行う通信 方法において、前記光ライン端末が、送信可能な複数種 類の配信データのうち,該光ネットワーク端末が受信を 求める配信データを選択して送信するように、前記光ラ イン端末を設定するための受信要求を、該受信を求める 配信データの種類を指定して前記光ライン端末に送信 し、前記光ライン端末から送信される1または2以上の 種類の配信データの中から,前記受信を求める配信デー タを選択して受信する,ことを特徴とする通信方法。

[0146]

【発明の効果】本発明によると、光ライン端末と光ネッ トワーク端末との間の通信帯域を有効利用することがで きる。また、受信要求のあった配信データに大きな通信 帯域を割り当てることができるので,受信要求のあった 配信データの通信速度を向上させることができる。

20 【図面の簡単な説明】

【図1】本発明の第1の実施の形態による受動光ネット ワークシステムの全体構成を示すブロック図である。

【図2】本発明の第1の実施の形態による光ライン端末 の詳細な構成を示すブロック図である。

【図3】本発明の第1の実施の形態による光ネットワー ク端末の詳細な構成を示すブロック図である。

【図4】本発明の第1の実施の形態によるチャネル設定 の処理の流れを示すシーケンス図である。

【図5】チャネル設定テーブルの一例を示す。

【図6】本発明の第1の実施の形態によるチャネル設定 解除の処理の流れを示すシーケンス図である。

【図7】本発明の第2の実施の形態によるチャネル設定 の処理の流れを示すシーケンス図である。

【図8】チャネル選択テーブルの一例を示す。

【図9】OLTチャネル選択情報の一例を示す。

【図10】本発明の第2の実施の形態によるチャネル設 定解除処理の流れを示すシーケンス図である。

【図11】本発明の第3の実施の形態によるチャネル設 定の処理の流れを示すシーケンス図である。

【図12】本発明の第3の実施の形態によるチャネル設 40 定解除処理の流れを示すシーケンス図である。

【図13】従来の受動光ネットワークシステムの全体構 成を示すブロック図である。

【符号の説明】

- 光ライン端末(OLT)
- 11 スイッチ
- 12 チャネル設定装置
- 13, 21 PONインタフェース装置 (PON-IF 装置)

22 ATM多重/多重分離装置

4 a ~ 4 d 光ファイバリンク

23 ユーザインタフェース装置 (ユーザ I F装置)

【図1】

【図2】

【図5】

ナヤヤル政ルリーブル						
	ch1	ch2		ohl		chn
ONT2a	1	0		0		0
ONT2b	0	1		1		0
ONT20	0	1		0		0

【図8】

チャネル選択テーブル

	ch1	ch2	• • •	chi	 chn
ONT2s	1	0	•••	0	 ٥
ОМТ2Ь	0	1		1	 0
ONT26	0	0		0	 0

【図3】

			و م	
	ONT 23	222		•
ユーザ端末Α ◀	ユーザド 装置		21	4a
	24	ATM 多量/多量分離装置	PON-IF 装置	OLT
ユーザ橋末B ◀──	ユーザ正 装置		•	
** ** *				* ** ± * 4**

【図9】

OLTチャネル選択情報

ch1	oh2	chi	chn		
ONT28	ОИТ2Ь	 ОНТ2Ь		Null	

【図4】

【図13】

【図6】

【図7】

【図10】

【図11】

【図12】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.