MA 69204 Statistical Software Lab

Assignment No. 1

(a) Generation of a random sample from an exponential distribution

$$f(x) = \frac{1}{\sigma} Exp\left\{-\left(\frac{x-\theta}{\sigma}\right)\right\}, x > \theta, \sigma > 0.$$

Use Probability Integral Transform for generation. Apply a Chi-square test to justify the sample.

(b) Generation of a random sample from a Cauchy Distribution

The density function is

$$f(x) = \frac{\sigma}{(\pi \{\sigma^2 + (x - \mu)^2\}}, \quad x, \mu \in \mathbb{R}, \sigma > 0.$$

Use Probability Integral Transform for generation. Further apply Chi-square test to justify the sample.

(c) Generation of a random sample from a Double Exponential (Laplace) Distribution

The density function is

$$f(x) = \frac{1}{2\sigma} \operatorname{Exp} \left\{ -\frac{|x-\mu|}{\sigma} \right\}, \quad x, \mu \in \mathbb{R}, \sigma > 0.$$

Algorithm: Generate U_1 and $U_2 \sim U(0,1)$. If $U_1 \le 0.5, X = \ln U_2$, else, $X = -\ln U_2$.

Apply a Chi-square test to justify the sample.

(d) Generation of a Right Trapezoidal Distribution

The density function is:

$$f(x) = \begin{cases} a + 2(1 - a)x, & 0 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}.$$

Algorithm: Generate $U_1 \sim U(0,1)$. If $U_1 \le a$, generate $U_2 \sim U(0,1)$ and $X = U_2$.

If
$$U_1 > a$$
, generate $U_2, U_3 \sim U(0, 1)$ and $X = max(U_2, U_3)$.

Apply a Chi-square test to justify the sample.

(e) Two Algorithms for Generation of Standard Normal Variables

Algorithm 1: Generate $U_1, U_2 \sim U(0, 1)$. Define

$$X_1 = (-2 \ln U_1)^{\frac{1}{2}} \cos(2\pi U_2) \text{ and } X_2 = (-2 \ln U_2)^{\frac{1}{2}} \sin(2\pi U_2).$$

Then $X_1, X_2 \sim N(0, 1)$.

Algorithm 2:

Step I: Generate $U_1, U_2 \sim U(0, 1)$ and let $V_i = 2U_i - 1, i = 1, 2, W = V_1^2 + V_2^2$.

If W > 1, go to Step I, else go to Step II.

Step II: Let
$$Y = \left(-\frac{2 \ln W}{W}\right)^{\frac{1}{2}}$$
, and $X_1 = V_1 Y_1 X_2 = V_2 Y_1$. Then $X_1, X_2 \sim N(0, 1)$.

Remark: To generate $N(\mu, \sigma^2)$, transform N(0, 1) variable X by $\sigma X + \mu$.

(f) Two Algorithms for Generation of Gamma Random Variables

Gamma (α, β) density:

$$f(\mathbf{x}) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} Exp\left\{-\frac{x}{\beta}\right\} x^{\alpha-1}, x > 0, \alpha > 0, \beta > 0.$$

To generate Gamma $(\alpha, 1)$

Algorithm 1: For $0 < \alpha < 1$; let $b = 1 + \frac{\alpha}{e}$.

Step I: Generate $U_1 \sim U(0, 1)$ and let $P = bU_1$. If P > 1, go to Step III, else go to Step II.

Step II: Let $Y = P^{\frac{1}{\alpha}}$ and generate $U_2 \sim U(0,1)$. If $U_2 \le e^{-Y}$, return X = Y, otherwise go back to Step I.

Step III: Let $Y = -\ln\left(\frac{b-P}{\alpha}\right)$ and generate $U_2 \sim U(0,1)$. If $U_2 \leq Y^{\alpha-1}$, return X = Y, otherwise go back to Step I.

Algorithm 2: For $\alpha > 1$; let $a = (2\alpha - 1)^{-\frac{1}{2}}$, $b = \alpha - \ln 4$, $q = \alpha + \frac{1}{a}$, $\theta = 4.5$ and $d = 1 + \ln \theta$

Step I: Generate U_1 , $U_2 \sim U(0, 1)$.

Step II: Let $V = a \ln \frac{U_1}{1 - U_1}$, $Y = \alpha e^V$, $Z = U_1^2 U_2$ and W = b + qV - Y.

Step III: If $W + d - \theta Z \ge 0$, return X = Y, otherwise go to Step IV.

Step IV: If $W \ge \ln Z$, return X = Y, otherwise go back to Step I.

Remark: If $X \sim Gamma(\alpha, 1)$, then $\beta X \sim Gamma(\alpha, \beta)$.

Generate 1000 random variates using each algorithm and apply Chi-square test for goodness of fit in each case. For calculating probabilities related to normal and gamma distributions in applying goodness of fit test, use numerical integration (Simpson's one-third rule etc.).