Laplace Transform of Derivatives

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Laplace transform of derivatives

Ex. Evaluate
$$\mathcal{L}[f'(t)]$$
 $dv = e^{-st} dv = f'(t)$ $dv = e^{-st} dv = e^{-st} dv$

Laplace transform of a derivative

$$\mathcal{L}[f^{(n)}(t)] = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$

Final value theorem

Ex. Proof the final value theorem.

$$egin{align*} igwedge \ \lim_{t o\infty}y(t) = \lim_{s o 0}[sY(s)] \ igwedge \ egin{align*} igwedge \ igwed \ igwedge \ igwedge \ igwedge \ igwedge \ igwedge \ igwed \ igwedge \ igwedge \ igwedge \ igwedge \ igwedge \ igwed$$

$$\int \{f'(t)\} = sF(s) - f(o)$$

$$\int \{g'(t)\} = sY(s) - g(o)$$

$$\int \{g'(t)\} = g'(t)$$

$$\int \{g'(t)\}$$

Initial value theorem

Ex. Proof the initial value theorem.

$$egin{aligned} last igveet \ \lim_{t o 0} y(t) = \lim_{s o \infty} [sY(s)] \ igveet \end{aligned}$$

$$\int [f'(t)] = sF(s) - f(0)$$

$$\int [y'(t)] = sY(s) - y(0)$$

$$\int_{0}^{\infty} y'(t) e^{-st} dt = sY(s) - y(0)$$

$$\int_{0}^{\infty} y'(t) e^{-st} dt = \lim_{s \to \infty} sY(s) - y(0)$$

$$y(0) = \lim_{s \to \infty} sY(s)$$

$$fin y(t) = \lim_{s \to \infty} sY(s)$$

$$fin y(t) = \lim_{s \to \infty} sY(s)$$