Analiza podobieństw i różnic między poszczególnymi odmianami.

Parametry	Alcohol	Malic acid	Ash	Flavonoids	olor intensity	OD280/OD315	
llość	78.000000	78.000000	000000	00 78.000000 178.000000		178.000000	
Średnia	13.000618	2.336348	66517	2.029270	5.058090	2.611685	
Odchylenie standardowe	0.811827	1.117146	74344	0.998859	2.318286	0.709990	
Wartość min	1.030000	0.740000	60000	0.340000	1.280000	1.270000	
l kwartyl	2.362500	1.602500	10000	1.205000	3.220000	1.937500	
lediana (50%)	3.050000	1.865000	60000	2.135000	4.690000	2.780000	
III kwartyl	3.677500	3.082500	57500	2.875000	6.200000	3.170000	
Nartość max	4.830000	5.800000	30000	5.080000	13.000000	4.000000	
Vspółczynnik skośności	0.051047	1.030869	175207	0.025129	0.861248	-0.304690	
Kurtoza	0.862260	0.257348	78576	-0.889365	0.337370	-1.089675	

Analiza na podstawie tabeli:

1. Alcohol

Średnia zawartość alkoholu wynosi 13.00, a zakres wartości to od 11.03 do 14.83. Rozkład jest symetryczny (skośność -0.051, kurtoza -0.862), co sugeruje stabilność

tego parametru w próbkach. Wartość trzeciego kwartyla (13.68) pokazuje, że większość win ma wysoką zawartość alkoholu.

2. Malic acid:

Kwas jabłkowy cechuje się średnią wartością 2.34 i wysoką skośnością dodatnią (1.031), co wskazuje na obecność wartości odstających z wysoką zawartością kwasu. Wartości kwartylowe (25%: 1.60, 75%: 3.08) pokazują dużą różnorodność między próbkami.

3. Ash (Popiół):

Popiół ma średnią 2.37 i zakres od 1.36 do 3.23. Rozkład jest bliski normalnemu (skośność -0.175, kurtoza 1.078), co oznacza, że dane są równomierne i stabilne. Większość próbek mieści się w zakresie między 2.21 (25%) a 2.56 (75%).

4. Flavanoids:

Średnia zawartość flawonoidów wynosi 2.03, a odchylenie standardowe 0.999. Rozkład jest symetryczny (skośność 0.025, kurtoza -0.889), z wartościami minimalnymi (0.34) wpływającymi na różnorodność danych. Wartości 25% (1.21) i 75% (2.88) pokazują znaczną różnicę w zawartości flawonoidów między próbkami.

5. Color intensity:

Parametr charakteryzuje się dużą różnorodnością (zakres od 1.28 do 13.00) z dodatnią skośnością (0.861) i płaską kurtozą (0.337). Średnia wynosi 5.06, co oznacza, że większość win ma umiarkowaną intensywność koloru, jednak niektóre próbki wykazują bardzo wysokie wartości.

6. **OD280/OD315**:

Średnia wynosi 2.61 z lekką ujemną skośnością (-0.305), co wskazuje na równomierne rozłożenie danych z tendencją do niższych wartości. Rozkład ma szeroki zakres od 1.27 do 4.00, a kwartyle (25%: 1.94, 75%: 3.17) pokazują umiarkowaną różnorodność między próbkami.

Analiza na podstawie wykresu:

1. Alkohol:

W1 i W3 mają podobny zakres zawartości alkoholu (~13–14.9%), znacznie szerszy niż W2 (~11–13.4%). W1 i W3 wykazują symetryczny rozkład, natomiast W2 – asymetrię ujemną.

2. Kwas jabłkowy:

W1 cechuje się najmniejszą zmiennością, W3 – największą. W2 i W3 mają podobną tendencję do asymetrii dodatniej, choć u W3 rozkład jest bardziej rozciągnięty. Wartości odstające obecne w W1 i W2.

3. **Popió**ł:

Wszystkie trzy wina mają zbliżony zakres zawartości (~2.0–3.2). W1 i W3 wykazują symetrię, W2 – asymetrię ujemną oraz pojedynczy outlier, co odróżnia je od pozostałych.

4. Flawonoidy:

W1 zawiera znacznie więcej flawonoidów niż W2 i W3. W2 ma większą zmienność niż W1, ale W3 ma najniższe i najbardziej jednorodne wartości. W2 wyróżnia się pojedynczym outlierem (~5.0).

5. Intensywność koloru:

W3 ma najwyższą i najbardziej zróżnicowaną intensywność koloru, W2 – najniższą i

najbardziej jednorodną. W1 zajmuje pozycję pośrednią. Tylko w W2 występują outliery powyżej górnego zakresu.

6. **OD280/OD315**:

W1 i W2 są podobne pod względem wysokiej zawartości fenoli i symetrycznych rozkładów. W3 wyraźnie się wyróżnia niższymi wartościami, asymetrią dodatnią i obecnością outlierów.

Parametry najlepiej różnicujące odmiany:

- **Flawonoidy (Flavanoids)**: Silnie różnicują wszystkie trzy odmiany, szczególnie odmianę 1 (najwyższe wartości) od odmiany 3 (najniższe wartości).
- **OD280/OD315**: Podobnie jak flawonoidy, dobrze różnicuje odmiany, z najwyższymi wartościami dla odmiany 1.
- Kwas jabłkowy (Malic acid): Odmiana 3 ma wyraźnie wyższe wartości niż pozostałe dwie.
- Intensywność koloru (Color intensity): Odmiana 3 ma najwyższe wartości, odmiana 1 średnie, a odmiana 2 najniższe.
- Alkohol (Alcohol): Odmiana 1 ma najwyższe wartości, odmiana 2 najniższe.
- Analiza zależności między parametrami win

1.Związki między parametrami — cały zbiór danych

Na podstawie macierzy korelacji (r_table) oraz wykresu cieplnego (heatmapy), możemy zaobserwować **silne i średnie zależności liniowe** pomiędzy niektórymi parametrami:

		Cultivar	Alcohol	Malic acid	Ash	Flavanoids
	Cultivar	1.000000	-0.328222	0.437776	-0.049643	-0.847498
	Alcohol	-0.328222	1.000000	0.094397	0.211545	0.236815
	Malic acid	0.437776	0.094397	1.000000	0.164045	-0.411007
	Ash	-0.049643	0.211545	0.164045	1.000000	0.115077
	Flavanoids	-0.847498	0.236815	-0.411007	0.115077	1.000000
	Color intensity	0.265668	0.546364	0.248985	0.258887	-0.172379
	OD280/OD315	-0.788230	0.072343	-0.368710	0.003911	0.787194
		Color int	tensity O	0280/OD315		
	Cultivar	0.	. 265668	-0.788230		
	Alcohol	0.	.546364	0.072343		
Malic acid		0.	. 248985	-0.368710		
	Ash	0.	. 258887	0.003911		
Flavanoids Color intensity		-0.	.172379	0.787194		
		1.	.000000	-0.428815		
	OD280/OD315	-0.	.428815	1.000000		

• Najsilniejsze dodatnie korelacje:

- Flavanoids i OD280/OD315: **r = 0.79**
 - → Im więcej flawonoidów, tym wyższy stosunek absorpcji UV logiczne, bo flawonoidy pochłaniają promieniowanie UV.
- o Flavanoids i Total phenols: **r ≈ 0.86**
 - → Flawonoidy są podgrupą związków fenolowych to silna biologiczna zależność.
- o Color intensity i Hue: **r ≈ 0.52**
 - → Im intensywniejszy kolor, tym wyższe nasycenie barwy.

Słabe lub brak korelacji:

- Alcohol i Flavanoids: brak silnej zależności (r ≈ 0.44)
- Ash i Color intensity: bardzo niska korelacja

• Ujemne korelacje:

- Flawonoidy i kwas jabłkowy
- OD280/OD315 i kwas jabłkowy
- Flawonoidy i intensywność koloru (słaba)

Widzimy więc, że **nie wszystkie parametry są ze sobą liniowo powiązane** — sugeruje to złożoną strukturę chemiczną win, gdzie niektóre właściwości są od siebie względnie niezależne.

2. Związki dla poszczególnych odmian winogron

Na wykresie pairplot (z podziałem na odmiany Cultivar kolorem i kształtem punktów), możemy wyciągnąć następujące wnioski:

• Trendy korelacyjne różnią się między odmianami:

- Dla jednej odmiany np. Flavanoids i OD280/OD315 tworzą bardzo zwartą liniową strukturę, dla innej – bardziej rozproszoną chmurę punktów.
- Dla niektórych parametrów np. Color intensity vs Hue, rozrzuty punktów znacząco się różnią między odmianami.
- Warianty odmian wykazują różnice w zależnościach:
 - Dla jednej odmiany Alcohol może mieć silny związek z Proline, dla innej praktycznie żaden.
 - Te zmiany trendów między odmianami pokazują, że warto analizować korelacje nie tylko globalnie, ale także w ramach każdej klasy.

3. Wnioski końcowe:

- 1. **Niektóre parametry silnie ze sobą korelują (np. flawonoidy i związki fenolowe)** te relacje są spójne i mają wyraźne biologiczne uzasadnienie.
- 2. Trendy korelacyjne mogą różnić się istotnie między odmianami winogron, dlatego analizy korelacji powinno się prowadzić również osobno dla każdej klasy.
- 3. **Nie wszystkie parametry są powiązane liniowo**, co oznacza, że do pełnej analizy przydałaby się też analiza nieliniowa lub PCA.
- Część parametrów dobrze rozróżnia odmiany win (np. Flavanoids, Color intensity, OD280/OD315) — można je potencjalnie wykorzystać jako cechy w klasyfikacji.