Teoría de Autómatas y Lenguajes Formales

Práctica 1: Latex y expresiones regurales

Alberto Estrada Gomez

31 de octubre de 2022

1. Actividad 1

Find the power set R^3 of R = (1, 1), (1, 2), (2, 3), (3, 4). Check your answer with the script powerrelation.m and write a LATEX document with the solution step by step.n

Powerrrelation(['1','1'],['1','2'],['2','3'],['3','4'],3) ans = [1,1] = 11 [1,2] = 12 [1,3] = 13 [1,4] = 14

2. Actividad 2

2.1. Expresiones regulares

Las expresiones regulares (\mathcal{R}) son un método de representación de lenguajes. Aunque su potencia expresiva es limitada, haciendo que sólo los lenguajes regulares puedan representarse con ellas, tienen la virtud de una gran sencillez en su formulación.

Definición 2.1 (*Aplicación* \mathcal{L}). La aplicación \mathcal{L} establece una relación formal entre las expresiones regulares y los lenguajes que éstos representan, definiéndose como sigue:

$$\mathcal{L}: \mathcal{R} \to 2^{\Sigma^*}$$
$$r \to \mathcal{L}(r)$$

- a) $\mathcal{L}(\emptyset) = \emptyset$
- b) $\mathcal{L}(a) = \{a\} \, \forall a \in \Sigma$
- c) Si $\alpha, \beta \in \mathcal{R}$ entonces $\mathcal{L}((\alpha\beta)) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
- d) Si $\alpha, \beta \in \mathcal{R}$ entonces $\mathcal{L}((\alpha + \beta)) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$
- e) Si $\alpha \in \mathcal{R}$ entonces $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$

2.2. Propiedades de las expresiones regulares

Proposición 1. Si α, β, γ son expresiones regulares entonces se cumple:

$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma \tag{1}$$

Demostración. Usando las reglas de la definición 2.1 tenemos que:

$$\mathcal{L}(((\alpha+\beta)\gamma)) = \mathcal{L}((\alpha+\beta))\mathcal{L}(\gamma) = (\mathcal{L}(\alpha)\cup\mathcal{L}(\beta))\mathcal{L}(\gamma) = \mathcal{L}(\alpha)\mathcal{L}(\gamma)\cup\mathcal{L}(\beta)\mathcal{L}(\gamma) = \mathcal{L}(\alpha)\mathcal{L}(\gamma)\cup\mathcal{L}(\gamma)\cup\mathcal{L}(\gamma)\cup\mathcal{L}(\gamma)\cup\mathcal{L}(\gamma) = \mathcal{L}(\alpha)\mathcal{L}(\gamma)\cup\mathcal{L}(\gamma)\cup\mathcal{L}(\gamma)\cup\mathcal{L}(\gamma) = \mathcal{L}(\alpha)\mathcal{L}(\gamma)\cup\mathcal{$$

Ejemplo 2.1. Consideremos $L = \{w \in \{a,b\}^* : w \text{ no termina en } ab\}$. Un expresión regular que genera L es:

Solucion: (a + b)*bbb* + (a + b)*aaa*