```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from statsmodels.sandbox.stats.multicomp import multipletests
%matplotlib inline
```

Читаем данные

```
In [2]: data = pd.read_excel('memantine.xls', sheet_name=1)
In [3]: | #список белков в исследовании
        proteins_list = data.columns[1:-4]
In [4]: # Число наблюдений в каждой подгруппе
        data['class'].value_counts()
Out[4]: c-CS-m
                  150
        c-SC-m
                  150
        t-CS-m
                  135
        c-SC-s
                  135
        c-CS-s
                  135
        t-SC-m
                  135
        t-SC-s
                  135
        t-CS-s
                  105
        Name: class, dtype: int64
In [5]: data['class_gen'] = data['class'].apply(lambda x: x[2:])
In [6]: #число здоровых и трисомных мышей
        data['Genotype'].value_counts()
Out[6]: Control
                   570
        Ts65Dn
                   510
        Name: Genotype, dtype: int64
```

Посмотрим на средние и медианы в группах

```
In [7]: data.groupby(['Genotype', 'class'])[proteins_list].mean()
Out[7]:
                         DYRK1A_N ITSN1_N BDNF_N NR1_N NR2A_N pAKT_N pBRAF_N pCAMKII_N pCREB_N pELK_N ... SHH_N
          Genotype class
            Control
                    c-
CS-
                           0.182211
                                                                                         2.916187
                                                                                                  0.198484 1.492318 ... 0.226911 0.1568
                           0.596748  0.772395  0.342315  2.417809  4.280077  0.212423
                                                                               0.168356
                                                                                         2.935576
                                                                                                  0.208439 1.686844 ... 0.214818 0.1446
                    CS-s
                     SC-
                           0.273203 \quad 0.436361 \quad 0.290946 \quad 2.145633 \quad 3.459416 \quad 0.241253 \quad 0.189547
                                                                                         4.736327
                                                                                                  0.208149 1.278566 ... 0.224470 0.1692
                           0.184975
                                                                                         3.361288
                                                                                                  0.214949 1.327714 ... 0.241853 0.156
                    SC-s
            Ts65Dn t-CS-
                           0.619294 \quad 0.797007 \quad 0.312732 \quad 2.196541 \quad 3.565960 \quad 0.213621
                                                                               0.173956
                                                                                         3.121801
                                                                                                  0.203395 1.563905 ... 0.216934 0.150!
                      m
                   t-CS-
                           0.525735  0.759556  0.305460  2.184606  3.514839  0.214466
                                                                              0.164795
                                                                                         2.488902
                                                                                                  0.210041 1.518302 ... 0.222144 0.1508
                   t-SC-
                           0.329861 \quad 0.566783 \quad 0.321063 \quad 2.379446 \quad 4.056223 \quad 0.269131
                                                                                                  0.231789 1.381516 ... 0.230667 0.1536
                                                                                         4.277257
                      m
                   t-SC-
                           4 176555
                                                                                                  0.227165 1.204840 ... 0.234828 0.1746
```

8 rows × 77 columns

```
In [8]: data.groupby(['Genotype', 'class'])[proteins_list].median()
```

Out[8]:

		DYRK1A_N	ITSN1_N	BDNF_N	NR1_N	NR2A_N	pAKT_N	pBRAF_N	pCAMKII_N	pCREB_N	pELK_N	 SHH_N	BAD
Genotype	class												
Control	c- CS- m	0.472297	0.640591	0.333664	2.391115	4.258744	0.227052	0.182671	2.698185	0.198426	1.489857	 0.228732	0.149 ⁻
	c- CS-s	0.414939	0.612273	0.340390	2.393446	4.168781	0.208671	0.174440	2.795285	0.206734	1.470238	 0.216270	0.1408
	c- SC- m	0.275085	0.437696	0.291883	2.124527	3.359592	0.234453	0.183598	4.671556	0.207211	1.256820	 0.214774	0.1590
	c- SC-s	0.274443	0.454752	0.314812	2.442128	3.878765	0.234393	0.185532	3.235436	0.212318	1.279603	 0.236464	0.1517
Ts65Dn	t-CS- m	0.613747	0.786627	0.317112	2.217863	3.572717	0.213226	0.173021	2.371592	0.204358	1.553389	 0.218807	0.1452
	t-CS- s	0.474926	0.732011	0.295108	2.147198	3.558131	0.208735	0.163033	2.322522	0.206376	1.471846	 0.219722	0.148
	t-SC- m	0.324465	0.567582	0.318074	2.406845	4.029405	0.262364	0.198871	4.325740	0.234054	1.369267	 0.226149	0.1486
	t-SC- s	0.347893	0.551938	0.322757	2.248275	3.418932	0.245555	0.187351	3.777065	0.230500	1.222532	 0.233932	0.170

8 rows × 77 columns

```
In [9]: classes = list(data['class_gen'].unique())
classes
Out[9]: ['CS-m', 'SC-m', 'CS-s', 'SC-s']
```

Нужные методы

```
In [10]: # ΜΠΓ
         def multiTest(p_values, method='bonferroni'):
              #вычисление скорректированных p-value
             corrected_p_values = np.apply_along_axis(lambda x: multipletests(x, method=method)[1],
   axis=0, arr=p_values.values[:,1:])
              #вычисление решений по скорректированных p-value
              corrected_rejections = np.apply_along_axis(lambda x: multipletests(x, method=method)[0],
              axis=0, arr=p values.values[:,1:])
              #coxpaняем скорректированные p-value в датафрейм
              corrected_p_values_df = pd.DataFrame(corrected_p_values,
              columns=p_values.columns[1:].values+'_corrected')
              #coxpaняем решения по скорректированным p-value в датафрейм
              corrected rejections df = pd.DataFrame(corrected rejections,
              columns=p_values.columns[1:].values+'_reject')
              #добавляем финальное решение - хотя бы в одной группе отвергается нулевая - есть различие
              corrected_rejections_df['final_reject'] = corrected_rejections_df.max(axis=1)
              #собираем в итоговый датафрейм скорректированные p-value и решения по ним
              multi_test_result = pd.concat([p_values, corrected_p_values_df, corrected_rejections_df], axis=1)
              return multi test result
```

Дисперсионный анализ

Out[12]:

	protein	CS-m	SC-m	CS-s	SC-s	CS- m_corrected	SC- m_corrected	CS- s_corrected	SC- s_corrected	CS- m_reject	SC- m_reject	CS- s_reject	s
0	DYRK1A_N	9.79967e- 15	1.32279e- 12	0.182102	7.34137e-15	7.54574e-13	1.01855e-10	1	5.65285e-13	True	True	False	_
1	ITSN1_N	8.09194e- 12	8.48281e- 38	0.801073	6.00338e-16	6.23079e-10	6.53176e-36	1	4.6226e-14	True	True	False	
2	BDNF_N	7.63624e- 06	1.60787e- 11	4.67483e- 08	0.0517823	0.00058799	1.23806e-09	3.59962e-06	1	True	True	True	
3	NR1_N	1.18628e- 05	5.20036e- 12	1.55253e- 07	0.000603815	0.000913439	4.00428e-10	1.19544e-05	0.0464938	True	True	True	
4	NR2A_N	8.94094e- 11	1.33548e- 10	7.21666e- 11	0.0028397	6.88452e-09	1.02832e-08	5.55683e-09	0.218657	True	True	True	

Попарное сравнение критерием Стьюдента

Алгоритм првоерки следующий:

- Выбирается один белок
- Выбирается одна подгруппа
- Формируется две выборки: выборка экспрессий выбранного белка среди трисомных мышей этой подгруппы и выборка экспрессий выбранного белка среди здоровых мышей этой подгруппы
- Для выделеных выборок проводится тест на равенство дисперсий
- Для выделеных выборок проводит тест Стьюдента на равенство средних в двух независимых выборках с учётом результата теста на равенство дисперсий

```
In [13]: from scipy.stats import ttest_ind
from scipy.stats import bartlett
from scipy.stats import kruskal

#t-тест на равенство средних, возвращает - отклонять ли нулевую гипотезу о равенствед
def ttest(a, b, p_val=0.05):
# Проверяем равенство дисперсий
barlett_result = bartlett(a, b)
variance_is_equal = barlett_result[1]>=0.05
#тест на равенство средних
ttest_result = ttest_ind(a, b, equal_var=variance_is_equal, nan_policy = 'omit')
reject = ttest_result[1]<p_val
return ttest_result[1]
```

```
In [14]: # делим на контрольных и трисомных
         trisom data = data.loc[data['Genotype']=='Ts65Dn']
         control_data = data.loc[data['Genotype']=='Control']
         #проводим тестирование
         ttest_result = pd.DataFrame(columns=classes, index=proteins_list)
         #одна подгруппа
         for cl in classes:
             #один белок
             for protein in proteins_list:
                 control protein class = control data.loc[(control data['class'].apply(lambda x: x[2:])) == cl, protein]
                 trisom_protein_class = trisom_data.loc[(trisom_data['class'].apply(lambda x: x[2:]))==cl, protein]
                 t_test_pval = ttest(control_protein_class, trisom_protein_class)
                  # сохранение результатов t-теста
                 ttest_result.loc[protein, cl] = t_test_pval
         ttest_result = ttest_result.reset_index().rename({'index':'protein'}, axis=1)
In [15]: ttest result corrected = multiTest(ttest result)
In [16]: ttest_result_corrected.head()
Out[16]:
```

	protein	CS-m	SC-m	CS-s	SC-s	CS- m_corrected	SC- m_corrected	CS- s_corrected	SC- s_corrected	CS- m_reject	SC- m_reject	CS- s_reject	s
0	DYRK1A_N	2.14343e- 14	7.32464e- 12	0.137414	1.86567e-14	1.65044e-12	5.63997e-10	1	1.43657e-12	True	True	False	_
1	ITSN1_N	1.48895e- 11	8.48281e- 38	0.779849	1.43452e-15	1.14649e-09	6.53176e-36	1	1.10458e-13	True	True	False	
2	BDNF_N	7.63624e- 06	1.60787e- 11	1.97333e- 08	0.0525825	0.00058799	1.23806e-09	1.51946e-06	1	True	True	True	
3	NR1_N	1.4414e- 05	5.20036e- 12	5.8263e- 08	0.000603815	0.00110988	4.00428e-10	4.48625e-06	0.0464938	True	True	True	
4	NR2A_N	8.94094e- 11	2.43489e- 10	8.56083e- 12	0.0028397	6.88452e-09	1.87486e-08	6.59184e-10	0.218657	True	True	True	

Выводы

```
In [17]: summary(f_test_result_corrected)
```

```
Количество белков, экспрессия которых отличается хотя бы в одной подгруппе: 71
Количество белков, экспрессия которых не отличается ни в одной подгруппе: 6
```

Количество генов с различающейся экспрессией по подгруппам:

CS-m_reject 42 SC-m_reject 50 CS-s_reject SC-s_reject 25

dtype: int64

Тёмный - есть различие в экспрессии Светлый - нет различия в экспрессии

41


```
In [18]: summary(ttest_result_corrected)
```

Количество белков, экспрессия которых отличается хотя бы в одной подгруппе: 73 Количество белков, экспрессия которых не отличается ни в одной подгруппе: 4

Количество генов с различающейся экспрессией по подгруппам:

CS-m_reject 42 SC-m_reject 50 27

CS-s_reject SC-s_reject dtype: int64

Тёмный - есть различие в экспрессии Светлый - нет различия в экспрессии

41

Ответ

Да:

- по 71 белкам экспрессия хотя бы в одной подгруппе различается
- по 6 белкам экспрессия ни в одной подгруппе не различается