24500 HW1

Bin Yu

January 17, 2025

Question 1

Let X be a Poisson random variable with parameter λ ,

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$
$$E[X] = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!}.$$

Factor out λ from the summation by $k \cdot \frac{\lambda^k}{k!} = \lambda \cdot \frac{\lambda^{k-1}}{(k-1)!}$. Thus,

$$E[X] = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!} = \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = \lambda e^{-\lambda} e^{\lambda} = \lambda.$$

$$E[X] = \lambda.$$

For $E[X^2]$:

$$E[X^2] = \sum_{k=0}^{\infty} k^2 \cdot \frac{\lambda^k e^{-\lambda}}{k!}.$$

We can rewrite $k^2 = k(k-1) + k$, and then split the sum:

$$E[X^2] = \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k e^{-\lambda}}{k!} \ + \ \sum_{k=0}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!}.$$

We have

$$\sum_{k=0}^{\infty} k(k-1) \, \frac{\lambda^k}{k!} = \lambda^2 \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} = \lambda^2 \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = \lambda^2 e^{\lambda}$$

and similarly

$$\sum_{k=0}^{\infty} k \, \frac{\lambda^k}{k!} = \lambda e^{\lambda}.$$

Multiplying by $e^{-\lambda}$ in each case:

$$E[X^2] = \lambda^2 e^{-\lambda} e^{\lambda} + \lambda e^{-\lambda} e^{\lambda} = \lambda^2 + \lambda.$$

$$E[X^2] = \lambda^2 + \lambda.$$

For $E(X^3)$:

$$X^{3} = X(X-1)(X-2) + 3X^{2} - 2X.$$

Taking expectations on both sides:

$$E[X^3] = E[X(X-1)(X-2)] + 3E[X^2] - 2E[X].$$

We have:

$$E[X(X-1)(X-2)] = \sum_{k=0}^{\infty} k(k-1)(k-2) P(X=k).$$

Observe that k(k-1)(k-2) = 0 for k = 0, 1, 2. The sum starts at k = 3:

$$E[X(X-1)(X-2)] = \sum_{k=3}^{\infty} k(k-1)(k-2) \frac{\lambda^k e^{-\lambda}}{k!}.$$

$$E[X(X-1)(X-2)] = e^{-\lambda} \sum_{k=3}^{\infty} \frac{\lambda^k}{(k-3)!} = e^{-\lambda} \lambda^3 \sum_{k=3}^{\infty} \frac{\lambda^{k-3}}{(k-3)!}.$$

Let j = k - 3. Then j goes from 0 to ∞ ,

$$E[X(X-1)(X-2)] = e^{-\lambda} \lambda^3 \sum_{i=0}^{\infty} \frac{\lambda^j}{j!} = e^{-\lambda} \lambda^3 e^{\lambda} = \lambda^3.$$

$$E[X(X-1)(X-2)] = \lambda^3.$$

$$E[X^3] = E[X(X-1)(X-2)] + 3E[X^2] - 2E[X].$$

Substitute the values of each term:

$$E[X^3] = \lambda^3 + 3(\lambda^2 + \lambda) - 2\lambda = \lambda^3 + 3\lambda^2 + 3\lambda - 2\lambda = \lambda^3 + 3\lambda^2 + \lambda.$$

Therefore,

$$E[X^3] = \lambda^3 + 3\lambda^2 + \lambda.$$

For $E(X^4)$:

$$X^4 = X(X-1)(X-2)(X-3) + 6X^3 - 11X^2 + 6X.$$

Taking expectations:

$$E[X^4] = E[X(X-1)(X-2)(X-3)] + 6E[X^3] - 11E[X^2] + 6E[X].$$

$$E[X(X-1)(X-2)(X-3)] = \sum_{k=0}^{\infty} k(k-1)(k-2)(k-3) P(X=k).$$

Since k(k-1)(k-2)(k-3) = 0 for k = 0, 1, 2, 3, the sum starts at k = 4, therefore,

$$E[X(X-1)(X-2)(X-3)] = e^{-\lambda} \sum_{k=4}^{\infty} \frac{\lambda^k}{(k-4)!} = e^{-\lambda} \lambda^4 \sum_{k=4}^{\infty} \frac{\lambda^{k-4}}{(k-4)!}.$$

Let j = k - 4. Then j goes from 0 to ∞ , and

$$E[X(X-1)(X-2)(X-3)] = e^{-\lambda} \lambda^4 \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = e^{-\lambda} \lambda^4 e^{\lambda} = \lambda^4.$$

Thus,

$$E[X(X-1)(X-2)(X-3)] = \lambda^4.$$

We already have

$$E[X^3] = \lambda^3 + 3\lambda^2 + \lambda, \quad E[X^2] = \lambda^2 + \lambda, \quad E[X] = \lambda.$$

Substitute each term:

$$E[X^4] = \lambda^4 + 6(\lambda^3 + 3\lambda^2 + \lambda) - 11(\lambda^2 + \lambda) + 6\lambda$$
$$= \lambda^4 + 6\lambda^3 + 18\lambda^2 + 6\lambda - 11\lambda^2 - 11\lambda + 6\lambda$$
$$= \lambda^4 + 6\lambda^3 + 7\lambda^2 + \lambda.$$

Therefore,

$$E[X^4] = \lambda^4 + 6\lambda^3 + 7\lambda^2 + \lambda.$$

In conclusion,

$$E[X] = \lambda, \quad E[X^2] = \lambda^2 + \lambda, \quad E[X^3] = \lambda^3 + 3\lambda^2 + \lambda, \quad E[X^4] = \lambda^4 + 6\lambda^3 + 7\lambda^2 + \lambda.$$

Question 2

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

$$E[X] = \int_0^\infty x f(x) dx = \int_0^\infty x \lambda e^{-\lambda x} dx.$$

Let

$$u = x \implies du = dx, \qquad dv = \lambda e^{-\lambda x} dx \implies v = -e^{-\lambda x}.$$

$$\int_0^\infty x \,\lambda \,e^{-\lambda x} \,dx = \left(x \cdot -e^{-\lambda x}\right)\Big|_0^\infty \,-\, \int_0^\infty \left(-e^{-\lambda x}\right) \,dx.$$

As $x \to \infty$, $x e^{-\lambda x} \to 0$. At x = 0, $x e^{-\lambda x} = 0$.

$$-xe^{-\lambda x}\big|_0^\infty = 0.$$

Therefore,

$$0 - \int_0^\infty \left(-e^{-\lambda x} \right) dx = \int_0^\infty e^{-\lambda x} dx.$$

$$\int_0^\infty e^{-\lambda x} dx = \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_0^\infty = 0 - \left(-\frac{1}{\lambda} \right) = \frac{1}{\lambda}.$$

$$\boxed{E[X] = \frac{1}{\lambda}.}$$

Question 3

A random variable $X \sim \text{Binomial}(n, p)$ satisfies:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, \dots, n.$$

This is the *exact* probability.

When n is large and p is neither too close to 0 nor 1, based on CLT, we can approximate X by a Normal random variable $Y \sim \mathcal{N}(\mu, \sigma^2)$ where

$$\mu = np$$
, $\sigma^2 = np(1-p)$.

To approximate P(X = k), use the continuity correction, i.e.

$$P(X = k) \approx \Phi\left(\frac{k + 0.5 - \mu}{\sigma}\right) - \Phi\left(\frac{k - 0.5 - \mu}{\sigma}\right),$$

where Φ is the CDF of the standard Normal distribution.

When n is large and p is small, that np converge to λ , the Binomial random variable X can be approximated by a Poisson random variable with parameter $\lambda = np$. That is:

$$P(X = k) \approx e^{-\lambda} \frac{\lambda^k}{k!}.$$

(a)
$$n = 7$$
, $p = 0.3$, $k = 3$

Exact Binomial:

$$P_{\text{Bin}}(X=3) = {7 \choose 3} (0.3)^3 (0.7)^4 = 35 \times 0.027 \times 0.2401 \approx 0.226894.$$

Normal Approx. (with continuity):

$$\mu = 2.1, \quad \sigma \approx 1.21.$$

$$z_1 = \frac{3.5 - 2.1}{1.21} \approx 1.157, \quad z_2 = \frac{2.5 - 2.1}{1.21} \approx 0.331.$$

$$P_{\text{Normal}}(X = 3) \approx \Phi(z_1) - \Phi(z_2) = 0.249804.$$

Poisson Approx.:

$$\lambda = np = 2.1, \quad P_{\text{Pois}}(X = 3) = e^{-2.1} \frac{(2.1)^3}{3!}.$$

$$(2.1)^3 = 9.261, \quad 3! = 6, \quad \frac{(2.1)^3}{6} \approx 1.5435, \quad e^{-2.1} \approx 0.12246,$$

thus

$$P_{\text{Pois}}(X=3) \approx 1.5435 \times 0.12246 \approx 0.189011.$$

Comment: Since n is quite small, it doesn't fulfill the condition of using CLT, the Normal approximation is not accurate. Poisson is not accurate (since p is not small enough, which means that it is not a rare case).

(b)
$$n = 40, p = 0.4, k = 11$$

Exact Binomial:

$$P_{\text{Bin}}(X = 11) = {40 \choose 11} (0.4)^{11} (0.6)^{29}.$$

 $P_{\text{Bin}}(X = 11) \approx 0.035727.$

Normal Approx. (with continuity):

$$\mu = 16, \quad \sigma = \sqrt{9.6} \approx 3.098.$$

$$z_1 = \frac{11.5 - 16}{3.098} \approx -1.45, \quad z_2 = \frac{10.5 - 16}{3.098} \approx -1.77.$$

$$P_{\text{Normal}}(X = 11) \approx \Phi(z_1) - \Phi(z_2) = 0.035018.$$

Poisson Approx.:

$$\lambda = 16, \quad P_{\text{Pois}}(X = 11) = e^{-16} \frac{16^{11}}{11!}.$$

$$P_{\text{Pois}}(X = 11) \approx 0.049597.$$

Comment: Here n is bigger than 20 and p=0.4 is not too small, so the Normal approximation is quite accurate, its value (≈ 0.035018) is close to the exact Binomial (≈ 0.035727). This is because np=16, it can fulfill the assumption of CLT that $np \to \infty$. The Poisson approximation is not accurate (≈ 0.049597) because p is large here, and $\lambda = 16$ is relatively large, which means that it is not a rare case, and should not be modeled as poisson distribution.

(c)
$$n = 400$$
, $p = 0.0025$, $k = 2$

Exact Binomial:

$$P_{\text{Bin}}(X=2) = {400 \choose 2} (0.0025)^2 (0.9975)^{398}.$$

 $P_{\text{Bin}}(X=2) \approx 0.184170.$

Normal Approx. (with continuity):

$$\mu = 1$$
, $\sigma^2 = 0.9975$, $\sigma \approx 0.9987$. $z_1 = \frac{2.5 - 1}{0.9987} \approx 1.50$, $z_2 = \frac{1.5 - 1}{0.9987} \approx 0.50$.

$$P_{\text{Normal}}(X=2) \approx \Phi(1.50) - \Phi(0.50) = 0.241970.$$

Poisson Approx.:

$$\lambda = 1$$
, $P_{\text{Pois}}(X = 2) = e^{-1} \frac{1^2}{2!} = \frac{e^{-1}}{2} \approx 0.183940$.

Comment: Because n is large and p is very small, means that it is a rare case and $np \to \lambda$. So the Poisson approximation (≈ 0.183940) is accurate and almost matches the exact Binomial (≈ 0.184170). The Normal approximation is not accurate (around 0.241970), since the assumption of CLT that $np \to \infty$ is not satisfied, where np = 1.

Python Approximation

```
Scenario (a): n=7, p=0.3, k=3

Exact Binomial = 0.226894

Normal approximation = 0.249804

Poisson approximation= 0.189011

Scenario (b): n=40, p=0.4, k=11

Exact Binomial = 0.035727

Normal approximation = 0.035018

Poisson approximation= 0.049597

Scenario (c): n=400, p=0.0025, k=2

Exact Binomial = 0.184170

Normal approximation = 0.241970

Poisson approximation= 0.183940
```

Figure 1: Python Approximation

Question 4

(a)

Let X_1, X_2, \ldots, X_n be i.i.d. Bernoulli(p). The likelihood function is:

$$L(p) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i}.$$

the log-likelihood is

$$\ell(p) = \sum_{i=1}^{n} [X_i \ln p + (1 - X_i) \ln(1 - p)].$$

$$\frac{d}{dp} \ell(p) = \frac{d}{dp} \left(\sum_{i=1}^{n} [X_i \ln(p) + (1 - X_i) \ln(1 - p)] \right).$$

$$\frac{d}{dp} \ell(p) = \sum_{i=1}^{n} \left[\frac{X_i}{p} - \frac{1 - X_i}{1 - p} \right].$$

$$\frac{d}{dp} \ell(p) = \sum_{i=1}^{n} \frac{X_i (1 - p) - p(1 - X_i)}{p(1 - p)}.$$

$$\frac{d}{dp}\,\ell(p) = \sum_{i=1}^n \frac{X_i - p}{p(1-p)}.$$

Set the derivative to zero and solve for p.

$$\frac{1}{p(1-p)} \sum_{i=1}^{n} (X_i - p) = 0.$$

Since $p(1-p) \neq 0$ for $p \in (0,1)$,

$$\sum_{i=1}^{n} (X_i - p) = 0$$

$$\sum_{i=1}^{n} X_i - np = 0$$

$$p = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Therefore,

$$\widehat{p}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

(b)

Since each X_i is Bernoulli(p),

$$E[X_i] = p, \quad Var(X_i) = p(1-p).$$

$$E[\widehat{p}_{\mathrm{MLE}}] = E\Big[\frac{1}{n}\sum X_i\Big] = \frac{1}{n} \cdot n \cdot E[X_i] = p,$$

$$\operatorname{Var}(\widehat{p}_{\mathrm{MLE}}) = \operatorname{Var}\Big(\frac{1}{n}\sum X_i\Big) = \frac{1}{n^2}\,n\,p(1-p) = \frac{p(1-p)}{n}.$$

For MSE:

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = E[((\hat{\theta} - E[\hat{\theta}]) + (E[\hat{\theta}] - \theta))^2]$$
$$(\hat{\theta} - \theta)^2 = (\hat{\theta} - E[\hat{\theta}])^2 + (E[\hat{\theta}] - \theta)^2 + 2(\hat{\theta} - E[\hat{\theta}])(E[\hat{\theta}] - \theta).$$

$$\mathrm{MSE}(\hat{\theta}) \ = \ E \left[(\hat{\theta} - E[\hat{\theta}])^2 \right] \ + \ E \left[(E[\hat{\theta}] - \theta)^2 \right] \ + \ 2 \, E \left[(\hat{\theta} - E[\hat{\theta}]) \left(E[\hat{\theta}] - \theta \right) \right].$$

Since:

$$E[(E[\hat{\theta}] - \theta)^2] = (E[\hat{\theta}] - \theta)^2.$$

and,

$$E\left[(\hat{\theta}-E[\hat{\theta}])\left(E[\hat{\theta}]-\theta\right)\right] \ = \ \left(E[\hat{\theta}]-\theta\right)E\left[\hat{\theta}-E[\hat{\theta}]\right] \ = \ \left(E[\hat{\theta}]-\theta\right)\left(E[\hat{\theta}]-E[\hat{\theta}]\right) \ = \ 0.$$

$$MSE(\hat{\theta}) = E[(\hat{\theta} - E[\hat{\theta}])^2] + (E[\hat{\theta}] - \theta)^2.$$

Since $E[(\hat{\theta} - E[\hat{\theta}])^2] = Var(\hat{\theta})$, and $E[\hat{\theta}] - \theta$ is $Bias(\hat{\theta})$:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + (Bias(\hat{\theta}))^2$$

Therefore,

$$MSE(\widehat{p}_{MLE}) = E[(\widehat{p}_{MLE} - p)^2] = Var(\widehat{p}_{MLE}) + (Bias)^2.$$

Since \hat{p}_{MLE} is unbiased, bias = 0,

$$MSE(\widehat{p}_{MLE}) = \frac{p(1-p)}{n}.$$

(c)

By the Central Limit Theorem:

$$\widehat{p}_{\text{MLE}} \approx N\left(p, \frac{p(1-p)}{n}\right)$$
 for large n .

or

$$\sqrt{n} \left(\widehat{p}_{\text{MLE}} - p \right) \approx N(0, p(1-p)).$$

(d)

From the asymptotic theory (or the Central Limit Theorem), we know:

$$\widehat{p}_{\text{MLE}} \approx \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$
 for large n .

By the Weak Law of Large Numbers (WLLN), $\hat{p} \to p$ in probability. Moreover, the Central Limit Theorem shows:

$$\sqrt{n} \frac{\widehat{p} - p}{\sqrt{p(1-p)}} \rightarrow N(0,1) \text{ (as } n \to \infty).$$

However, we do not know p in practice. Under Slutsky's theorem, since $\widehat{p} \to p$, we can replace p by \widehat{p} in the denominator,

$$\sqrt{n} \frac{\widehat{p} - p}{\sqrt{\widehat{p}(1 - \widehat{p})}} \rightarrow N(0, 1) \text{ (as } n \to \infty).$$

$$P\left(-z_{1-\alpha/2} \leq \sqrt{n} \frac{\widehat{p} - p}{\sqrt{\widehat{p}(1-\widehat{p})}} \leq z_{1-\alpha/2}\right) \approx 1 - \alpha.$$

$$-z_{1-\alpha/2} \leq \sqrt{n} \frac{\widehat{p} - p}{\sqrt{\widehat{p}(1-\widehat{p})}} \leq z_{1-\alpha/2}$$

$$\widehat{p} - z_{1-\alpha/2} \sqrt{\frac{\widehat{p}\left(1-\widehat{p}\right)}{n}} \leq p \leq \widehat{p} + z_{1-\alpha/2} \sqrt{\frac{\widehat{p}\left(1-\widehat{p}\right)}{n}}$$

Therefore, the Wald $(1 - \alpha)$ -level confidence interval for p is:

$$\left[\widehat{p}-z_{1-\alpha/2}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\;,\;\widehat{p}+z_{1-\alpha/2}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\;\right].$$

For 95% CI, $z_{0.975} \approx 1.96$. The 95% CI is given by:

$$\left[\widehat{p} - 1.96\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} , \widehat{p} + 1.96\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right].$$

(e)

Starting from:

$$\widehat{p} - z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}} \leq p \leq \widehat{p} + z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$
$$|\widehat{p} - p| \leq z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}},$$

denote $z = z_{1-\alpha/2}$. Squaring both sides:

$$(\hat{p} - p)^2 = z^2 \frac{p(1-p)}{n}.$$

$$\hat{p}^2 - 2\hat{p}p + p^2 = \frac{z^2}{n}p - \frac{z^2}{n}p^2$$

$$p^2 + \frac{z^2}{n}p^2 - 2\hat{p}p - \frac{z^2}{n}p + \hat{p}^2 = 0.$$

$$(1 + \frac{z^2}{n})p^2 - (2\hat{p} + \frac{z^2}{n})p + \hat{p}^2 = 0.$$

let

$$a = 1 + \frac{z^2}{n}, \quad b = -\left(2\hat{p} + \frac{z^2}{n}\right), \quad c = \hat{p}^2.$$

The general solution of $a p^2 + b p + c = 0$ is

$$p = \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}.$$

Substitute a,b,c:

$$p = \frac{\left(2\,\hat{p} + \frac{z^2}{n}\right) \pm \sqrt{\left(2\,\hat{p} + \frac{z^2}{n}\right)^2 - 4\left(1 + \frac{z^2}{n}\right)\,\hat{p}^2}}{2\left(1 + \frac{z^2}{n}\right)}.$$

$$p = \frac{\left(2\,\hat{p} + \frac{2z^2}{2n}\right) \pm \sqrt{\left(2\,\hat{p} + \frac{2z^2}{2n}\right)^2 - 4\left(1 + \frac{z^2}{n}\right)\,\hat{p}^2}}{2\left(1 + \frac{z^2}{n}\right)}.$$

$$p = \frac{2\left(\,\hat{p} + \frac{z^2}{2n}\right) \pm 2\sqrt{\left(\,\hat{p} + \frac{z^2}{2n}\right)^2 - \left(1 + \frac{z^2}{n}\right)\,\hat{p}^2}}{2\left(1 + \frac{z^2}{2n}\right)}.$$

$$p = \frac{\left(\hat{p} + \frac{z^2}{2n}\right) \pm \sqrt{\hat{p}^2 + \frac{z^2}{n}\hat{p} + (\frac{z^2}{2n})^2 - \hat{p}^2 - \frac{z^2}{n}\hat{p}^2}}{\left(1 + \frac{z^2}{n}\right)}.$$

$$p = \frac{\hat{p} + \frac{z^2}{2n} \pm \sqrt{\frac{z^2}{n}(\hat{p} - \hat{p}^2) + (\frac{z^2}{2n})^2}}{\left(1 + \frac{z^2}{n}\right)}.$$

$$p = \frac{\hat{p} + \frac{z^2}{2n} \pm z\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z^2}{4n^2}}}{1 + \frac{z^2}{n}}.$$

For 95% CI, the $z_{0.975} \approx 1.96$, the CI is given by:

$$\left[\frac{\hat{p} + \frac{(1.96)^2}{2n} - 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{(1.96)^2}{4n^2}}}{1 + \frac{(1.96)^2}{n}}\right], \frac{\hat{p} + \frac{(1.96)^2}{2n} + 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{(1.96)^2}{4n^2}}}{1 + \frac{(1.96)^2}{n}}\right]$$

(f)

Visualize the Wilson's method, to plot

$$(\hat{p}_{\text{MLE}} - p)^2$$
 and $R^2 p (1 - p)$

Where,

- \hat{p}_{MLE} is a chosen sample proportion (e.g. 0.5 or 0.3),
- R^2 is a constant equals to $\frac{z^2}{n}$

Below are three examples of such plots:

Figure 2: Comparison of $(\hat{p}_{\text{MLE}} - p)^2$ (red) and $R^2 p(1 - p)$ (blue), here with n = 20, z = 1.96, and (for example) $\hat{p}_{\text{MLE}} = 0.5$.

In Figure 2, the red curve is $(\hat{p}_{\text{MLE}} - p)^2$ with $\hat{p}_{\text{MLE}} = 0.5$, which has its minimum at p = 0.5. The blue dashed curve is $R^2 p(1-p)$ with $R^2 = \frac{z^2}{n}$. The intersection points between these curves are the p_{left} and p_{right} that solve

$$(\hat{p}_{\text{MLE}} - p)^2 = z^2 \frac{p(1-p)}{n}.$$

Figure 3: Comparison for n = 50, z = 1.96, $\hat{p}_{\text{MLE}} = 0.5$.

Figure 3 repeats the idea but for n = 50, z = 1.96. Notice the peak of the blue curve $(R^2 p(1-p))$ is lower because the factor $R^2 = \frac{(1.96)^2}{50}$ is smaller than $\frac{(1.96)^2}{20}$; Therefore, as n increases, the resulting interval becomes smaller.

Figure 4: Comparison for n=20, but z=2.576 for 99% CI.

Finally, Figure 4 shows the same n=20 but with z=2.576 (approximately for a 99% confidence level). The dashed curve is taller (since $R^2=\frac{(2.576)^2}{20}$ is larger than $\frac{(1.96)^2}{20}$). As a result, as 1-a increases, the intersection points are farther away from $\hat{p}_{\text{MLE}}=0.5$, giving a wider interval.

Interpretation of p_{left} and p_{right} : They are the left and right bounds of the Wilson interval. In each figure, a larger n or smaller z (correspond to smaller 1-a) reduces the peak of the blue curve and yields an interval closer

to \hat{p}_{MLE} (smaller), whereas a larger z (correspond to larger 1-a) or smaller n raises that curve and yields a wider range of p.

Another property of left and right bounds is that as we can see from the graph above, they are never negative.

(g)

Case 1: $\hat{p}_{\text{MLE}} = 0.5$

Figure 5: $\hat{p}_{MLE} = 0.5$

In Figure 5, the minimum of $(\hat{p}_{\text{MLE}} - p)^2$ is at p = 0.5, exactly matching \hat{p}_{MLE} . The two curves meet at points symmetrically around 0.5, giving a symmetric interval that $\hat{p}_{\text{MLE}} - p_{\text{left}} = p_{\text{right}} - \hat{p}_{\text{MLE}}$.

Case 2: $\hat{p}_{\text{MLE}} = 0.75$

Figure 6: $\hat{p}_{\text{MLE}} = 0.75$

Here, in Figure 6, the red curve $(\hat{p}_{\text{MLE}} - p)^2$ attains its minimum at p = 0.75. The left intersection point with the

blue curve will be further away from 0.75 than the right intersection, reflecting an asymmetry. (i.e. $\hat{p}_{\text{MLE}} - p_{\text{left}}$ is bigger than $p_{\text{right}} - \hat{p}_{\text{MLE}}$)

Case 3: $\hat{p}_{\text{MLE}} = 0.25$

Figure 7: $\hat{p}_{\text{MLE}} = 0.25$

In Figure 7, we see the red curve's minimum occurs at p=0.25. The intersection on the right side is farther from 0.25 than the left intersection (i.e. $\hat{p}_{\text{MLE}} - p_{\text{left}}$ is smaller than $p_{\text{right}} - \hat{p}_{\text{MLE}}$).

Interpretation:

If \hat{p}_{MLE} is not at 0.5, the interval is often not symmetric about \hat{p}_{MLE} . This is reasonable with the skewness of the binomial distribution in these cases, and its error distribution should be skewed as well.