ELECTROTECNIA TEÓRICA

LEEC IST

2º Semestre 2021/22 (Período P3)

3° TRABALHO LABORATORIAL

CIRCUITO RLC-SÉRIE

em Regime Forçado Alternado Sinusoidal

Prof. V. Maló Machado Prof. Ma Eduarda Pedro

ELECTROTECNIA TEÓRICA

CIRCUITO RLC – SÉRIE

1. OBJECTIVOS

Neste trabalho realiza-se o estudo do circuito *RLC* série, funcionando em regime forçado alternado sinusoidal, imposto por um gerador de tensão de frequência variável.

Obtém-se assim por via experimental, a curva de ressonância do circuito *RLC* série, em função da frequência.

2. INTRODUÇÃO TEÓRICA

2.1 Circuito RLC série

No caso do circuito RLC série da Fig. 1 tem-se, por aplicação da lei geral da indução, a seguinte expressão que relaciona a tensão instantânea aos terminais do gerador, com as tensões aos terminais da bobina de coeficiente de autoindução L, da resistência R e do condensador C:

$$u_G = u_R + u_L + u_C = Ri + L\frac{di}{dt} + \frac{1}{C}\int i\,dt \tag{1}$$

$$\overline{U}_G = \overline{U}_R + \overline{U}_L + \overline{U}_C = R\overline{I} + j\omega L\overline{I} - j\frac{1}{\omega C}\overline{I}$$
 (2)

À equação (1) de valores instantâneos, corresponde a equação vetorial (2), escrita em termos das amplitudes complexas.

A impedância do circuito, é dada pela expressão (3).

$$\overline{Z} = \frac{\overline{U}_G}{\overline{I}} = Z e^{j\phi} = R + j \left(\omega L - \frac{1}{\omega C}\right)$$
 (3)

2.2 Ressonância do circuito RLC série

Da equação (3) pode retirar-se a expressão do valor eficaz da corrente, como função do valor eficaz da tensão do gerador, e dos restantes parâmetros do circuito:

$$I_{ef} = \frac{U_{Gef}}{\sqrt{R^2 + \left[\omega L - \left(1/\omega C\right)\right]^2}} \tag{4}$$

A corrente exibe um máximo situado na frequência ω_0 que minimiza a impedância do circuito. Para essa frequência o circuito está em ressonância (tensão e corrente do gerador em fase).

$$\omega_0 L = \frac{1}{\omega_0 C} \qquad , \qquad \omega_0 = \frac{1}{\sqrt{LC}} \tag{5}$$

A potência ativa posta em jogo no circuito vale $P=RI_{ef}^2$, sendo o seu máximo atingido precisamente na ressonância

$$P_{\text{max}} = RI_{res}^2 = \frac{U_{Gef}^2}{R} , I_{res} = \frac{U_{Gef}}{R}$$
 (6)

A equação (4) pode ser normalizada dividindo I_{ef} pelo valor de normalização I_0 ,

$$I_0 = \frac{U_{Gef}}{\omega_0 L} = \omega_0 C U_{Gef} = \frac{I_{res}}{Q_0}$$
(7)

$$I_{n} = \frac{I_{ef}}{I_{0}} = \frac{1}{\sqrt{\frac{1}{Q_{0}^{2}} + \left(f_{n} - \frac{1}{f_{n}}\right)^{2}}}$$
(8)

sendo o fator de qualidade Q_0 dado por

$$Q_0 = \omega_0 L / R = 1 / (\omega_0 CR) \tag{9}$$

e $f_n=f/f_0$ a frequência normalizada onde ω_0 e f_0 são respetivamente a frequência angular e a frequência de ressonância.

Fig. 2 – Curvas de ressonância para $Q_0 = 1$ e $Q_0 = 3$.

Mantendo a amplitude da tensão do gerador, mas variando a frequência de zero a infinito, obtém-se para o valor normalizado da corrente um andamento representado na Fig. 2.

De acordo com (8) note-se que o valor máximo da corrente normalizada e igual a Q_0 .

Chamam-se pontos de meia potência os pontos das curvas de ressonância em que a potência ativa é metade da potência máxima P_{max} (6) o que é equivalente à corrente ser $1/\sqrt{2}$ da corrente máxima. Largura de banda é o intervalo de valores de frequência em que a potência ativa e a corrente são maiores ou iguais aos respetivos valores observados nos pontos de meia potência. Para valores normalizados, de (8) a largura de banda Δf_n vem dada por

$$I_{n} = \frac{Q_{0}}{\sqrt{2}} \implies f_{n} - \frac{1}{f_{n}} = \pm \frac{1}{Q_{0}} \implies f_{n1} = -\frac{1}{2Q_{0}} + \sqrt{\frac{1}{4Q_{0}^{2}} + 1} \quad e \quad f_{n2} = \frac{1}{2Q_{0}} + \sqrt{\frac{1}{4Q_{0}^{2}} + 1}$$

$$\Delta f_{n} = f_{n1} - f_{n1} = \frac{1}{Q_{0}}$$

$$(10)$$

2.3 Capacidade distribuída

Para se ter em conta a resistência e capacidade distribuídas ao longo da bobine, R_L e C_d , respetivamente, podemos supor a bobina equivalente à malha L, R_L , C_d , representada na Fig. 3.

Fig. 3

A análise do circuito da Fig. 3 conduz à seguinte expressão para a impedância

$$\overline{Z} = R_s + \frac{1}{j\omega C} + \frac{(R_L + j\omega L)(1/j\omega C_d)}{R_L + j\omega L + (1/j\omega C_d)}$$
(11)

Supondo $R_L << \omega L$ poderá provar-se que a nova frequência de ressonância vem dada por:

$$1/\omega^2 = L(C + C_d) \tag{12}$$

ou ainda, atendendo a que $\omega = 2\pi f$:

$$1/f^2 = 4\pi^2 L(C + C_d) \quad . \tag{13}$$

Num gráfico com o eixo das ordenadas graduado proporcionalmente a $1/f^2$, e o eixo das abcissas graduado proporcionalmente aos valores da capacidade C que conduzem à ressonância, obtemos uma reta cujo coeficiente angular nos permite calcular L e cuja intersecção com o eixo das abcissas nos dá C_d .

3. <u>DIMENSIONAMENTO</u>

O dimensionamento deve ser entregue na aula de laboratório, antes da realização do trabalho, sem o que o mesmo não poderá ser realizado!

- 3.1 Verifique que o fator de qualidade Q_0 (9) num circuito RLC série é a sobretensão de U_{Lef} (valor eficaz da tensão u_L) ou U_{Cef} (valor eficaz da tensão u_C) em relação à tensão aplicada U_{Gef} na situação de ressonância.
- 3.2 Considere o circuito RLC-série, com frequência de ressonância $f_0 = 60$ kHz e admita que o valor estimado do coeficiente de autoindução da bobina é L = 3,0 mH.
 - a) Determine o valor da capacidade C tal que o circuito esteja em ressonância à frequência f_0 indicada.
 - b) Trace duas curvas da corrente normalizada, I_n , em função da frequência normalizada, f_n , recorrendo à eq. (8), com $20 \, \text{kHz} \le f \le 90 \, \text{kHz}$, para $R = R_S = 100 \, \Omega$ e $R = R_S = 400 \, \Omega$.

Estas curvas podem ser obtidas recorrendo a um programa computacional ou podem ser traçadas na folha quadriculada **R 3.2 b**), apresentada em anexo. Note que o gráfico tem de ser feito à escala para que possa registar nele os pontos experimentais obtidos no laboratório. Para cada um dos valores de $R=R_S$, determine as frequências das situações de meia potência f_1 e f_2 , marque-as (após normalização) nas curvas traçadas e determine, para cada caso, a largura de banda em valores absolutos Δf . Verifique (10).

- c) Para o caso $R_S = 100 \ \Omega$, $Ug_{ef} = 1 \ V$ e tomando C o valor determinado em a), calcule os valores eficazes e desfasagens da corrente i e das tensões no condensador, u_C , na bobina, u_L , e na resistência, u_R , para a frequência de ressonância, f_0 , bem como para as frequências f_1 e f_2 . Preencha a tabela **R3.2** com os valores obtidos.
- d) Para as condições da alínea anterior e para cada uma dessas três frequências trace os correspondentes diagramas vetoriais de tensão.
- 3.3 Demonstre as expressões (11) e (12).

4. ESQUEMA DE LIGAÇÕES E LISTA DE MATERIAL

GER - Oscilador/Gerador de funções Beckman Industrial FG 2A.

f - Frequencímetro Beckman Industrial VC 10A.

C - Caixa de condensadores calibrados LIONMOUNT tipo CD1C.

L - Caixa de indutância calibradas LIONMOUNT tipo LD2.

 R_s - Caixa de resistências calibradas LLOYD 0-1111 Ω.

OSC - Osciloscópio Digital tektronix. TDS 200.
 Ta - Transformador de adaptação (N₁/N₂ = 50/7)

NOTA: O material a utilizar pode variar de bancada para bancada.

5. <u>CONDUÇÃO DO TRABALHO</u>

Monte o circuito representado na Fig. 4. Selecione na caixa de indutâncias L =4,0 mH. Antes de ligar os aparelhos, colocar:

Oscilador: FREQUENCY RANGE: 100 kHz

OUTPUT: MAIN AMPLITUDE: Mínimo

FUNCTION: SINUSOIDAL

Ligar os aparelhos por esta ordem:

- O frequencímetro.
- O osciloscópio
- O oscilador.
- Atuar no botão de amplitude do oscilador até se obter U_{Gef} = 1 V.

5.1 Em todos os ensaios manter $U_{Gef} = 1 \text{ V}$.

Com R_S = 100 Ω , para frequências f entre 60 kHz e 90 kHz com intervalos de 10 kHz, obtenha experimentalmente os valores da capacidade, C_{exp} , que conduzem à ressonância. Registe os valores de f, U_{Gef} , U_{Ref} e C_{exp} na tabela **R6.1**.

5.2 Em todos os ensaios manter $U_{Gef} = 1 \text{ V}$.

Para $R_S = 100 \Omega$ ou $R_S = 400 \Omega$, com $f = f_0 = 60$ kHz, ajuste o valor de C de modo a obter a ressonância, mantendo depois constante o valor de C.

- a) Para o caso $R_S = 100 \Omega$ e para as frequências f_0 , f_1 e f_2 previstas no dimensionamento em 3.2-b) para este caso, registe na tabela **R6.2** os valores de f, U_{Gef} e U_{Ref} , bem como o intervalo de tempo Δt entre dois máximos consecutivos de u_G e u_R (usando os cursores de tempo do osciloscópio).
- b) Para $R_S = 100~\Omega$ e $R_S = 400~\Omega$, variando a frequência (com f entre 20 kHz e 90 kHz e intervalos de 10 kHz) registe nas tabelas **R6.3-a**) para $R_S = 100~\Omega$ e **R6.3-b**) para $R_S = 400~\Omega$ os valores de f, U_{Gef} e U_{Ref} .

Quando terminar desligue os aparelhos pela ordem inversa. Primeiro desligue o gerador e no fim o frequencímetro.

6. RELATÓRIO

- 6.1 Com base nos valores de f e C_{exp} da tabela **R5.1** obtenha por regressão linear (ver nota) os valores experimentais de L e C_d e registe-os na tabela **R6.1**. No gráfico **R6.1** represente os pontos experimentais, bem como a reta obtida por regressão linear. Neste gráfico o eixo das ordenadas corresponde à grandeza $1/f^2$ e o eixo das abcissas à grandeza C_{exp} .
- 6.2 A partir dos resultados de 5.2 a), para a resistência R_s =100 Ω , calcule: o valor eficaz da corrente, I_{ef} , a sua desfasagem, α_I . Registe esses valores na tabela **R6.2**. Indique o valor eficaz máximo da corrente I_{res} e calcule o fator de qualidade Q_0 (9), tendo em conta o valor de L obtido em 6.1, e da corrente de normalização I_0 (7) para R_s =100 Ω e R_s =400 Ω .
- 6.3 A partir dos resultados de 5.2 b), calcule: o valor eficaz da corrente, I_{ef} , bem como os valores normalizados da corrente, I_n , e da frequência, f_n . Registe esses valores nas tabelas **R6.3-a**) e **R6.3-b**). Marque sobre as curvas obtidas em 3.2 b) do dimensionamento os pontos experimentais (f_n, I_n) .

O relatório tem que ser entregue no final da aula de laboratório e consiste no preenchimento da ficha apresentada em Anexo.

Nota: Regressão Linear

Considere que foram realizados n ensaios experimentais e que se registaram os valores x_i e y_i de duas grandezas diferentes. Admita que a relação existente entre essas duas grandezas pode ser aproximada por uma reta, y = mx + b, sendo m o declive e b a ordenada na origem. A partir do método dos mínimos quadrados obtém-se:

$$m = \frac{n\sum_{i=1}^{n} (x_{i}y_{i}) - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} (x_{i})^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} ; b = \overline{y} - m\overline{x}$$

sendo $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ e $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ os valores médios das duas grandezas medidas.

REFERÊNCIAS

J. A. Brandão Faria, 'Electromagnetic Foundations of Electrical Engineering', Wiley, 2008.
Cap. 7, Secção 7.2.3.

I.S.T., Fevereiro de 2022

ANEXO

RELATÓRIO DO 3º TRABALHO LABORATORIAL

R 3.2 c):

Tabela R3.2: cálculo das amplitudes complexas $(\overline{X} = \sqrt{2} X_{ef} e^{j\alpha_X})$:

	I _{ef} [mA]	α _I [°]	$U_{Cef}\left[V ight]$	α _C [°]	$U_{Lef}\left[V ight]$	α _L [°]	$U_{Ref}\left[V ight]$	α_R [°]
f_0								
f_I								
f_2								

R 5.1 e R 6.1:

Tabela R6.1: valores medidos em 5.1 e calculados em R 6.1:

f [kHz]	U _{Gef} [V]	U_{Ref} [V]	C_{exp} [nF]	<i>L</i> [mH]	C_d [pF]

R 5.2a) e R 6.2:

Tabela R6.2: Valores medidos em 5.2 a) e calculados em 6.2, para $R_S=100~\Omega$:

	f[kHz]	$U_{Gef}\left[V ight]$	$U_{Ref}[V]$	$\Delta t [ms]$	I _{ef} [mA]	α _I [°]
f_0						
f_I						
f_2						

Т	71	C.	, .	1		7
V	'alor	eticaz	máximo	da	corrente,	1 200=
•	ui oi	CIICUL	11102111110	uu	COLL CITEC,	- /es

Valor de Q_0 = Valor de I_0 (7)= I_{res}/Q_0 =

Valores para R_s =400 Ω :

Valor eficaz máximo da corrente, *Ires*=

Valor de Q_0 = Valor de I_0 (7)= I_{res}/Q_0 =

R 5.2 b) e R 6.3:

Tabela R6.3-a): valores medidos em 5.2 b) e calculados em 6.3, para $R_S=100~\Omega$:

f[kHz]	$U_{Gef}\left[V ight]$	$U_{Ref}\left[V ight]$	I _{ef} [mA]	I_n	f_n

Tabela R6.3-b): valores medidos em 5.2 b) e calculados em 6.3, para $R_S=400~\Omega$:

f[kHz]	U _{Gef} [V]	$U_{Ref}\left[V ight]$	Ief [mA]	I_n	f_n
		_			

Comentários:		

Número	Nome	Auto-Aval. [%]

R 3.2 b): Representação gráfica de $I_n(f_n)$:

R 6.1: Representação gráfica dos pontos experimentais $(C_{exp}, 1/f^2)$ e da reta obtida por regressão linear:

