Statistical Theory Cheatsheet

Compiled by Gejun Zhu (zhug3@miamioh.edu) in preparation for the theory comprehensive exam by using William Chen's formula sheet template.

Last Updated August 25, 2015

Probability and Distributions

Section 1 - probability and distributions

Let Y = g(X), where g(x) is a one-to-one differentiable function.

 $f_Y(y) = f_X(g^{-1}(y)) |\frac{dx}{dy}| \text{ for } y \in S_Y$.

If X and Y are independent random variables, then $M_{X+Y}(t) = M_X(t)M_Y(t)$.

If *X* and *Y* are independent random variables, then $\rho(X,Y) = 0$.

If *X* is a discrete random variable, then mgf of *X* is $M_X(t) = \sum P(X = k)e^{kt}$. If $X \sim Gamma(a_1, b)$ and $Y \sim Gamma(a_2, b)$, $X + Y \sim Gamma(a_1 + a_2, b)$ if $X \sim Gamma(a_1, b)$

and *Y* are independent. If $X \sim Gamma(a_1, b)$, then $cX \sim Gamma(a_1, cb)$.

 $X \sim Gamma(a, b)$, if a = 1 then $X \sim exponential(b)$; if b = 2 then $X \sim \chi^2_{(2a)}$.

If $X_i \sim Laplace(\mu, b)$ then $\frac{2\sum_{i=1}^n |X_i - \mu|}{b} \sim \chi^2(2n)$.

If $X \sim Laplace(0, b)$ then |X| Exponential (b^{-1}) .

If $X \sim Exp(\lambda)$ then $X \sim Gamma(1, \lambda)$.

If $X \sim Gamma(k, \theta)$ where k is the shape parameter and θ is a scale parameter, then $E(X) = k\theta$, $var(X) = k\theta^2$; if $X \sim Gamma(\alpha, \beta)$ where α is the shape parameter. β is the rate parameter, then $E(X) = \frac{\alpha}{\beta}$, $var(X) = \frac{\alpha}{\alpha^2}$.

Section 2 - Multivariate Distributions

Covariance: $EX = \mu_1$, $EY = \mu_2$, $Cov(X, Y) = E(XY) - \mu_1\mu_2$,

Correlation coefficient: $\rho = \frac{cov(X,Y)}{\sigma_1\sigma_2}$

 $E(X_2) = E[E(X_2|X_1)],$ $Var(X_2) = E[Var(X_2|X_1)] + Var(E(X_2|X_1)) \ge Var(E(X_2|X_1)).$ Moment generate function: $M = E(e^{tX}), \mu = E(X) = M'(0),$ $\sigma^2 = E(X^2) - (EX)^2 = M''(0) - [M'(0)]^2$

 $Z_n \sim \chi^2(n), M_{Z_n} = (1-2t)^{-\frac{n}{2}}, t < \frac{1}{2}, w_n = \frac{Z_n}{2}$

 $M_{w_n}(t) = E[e^{tw_n}] = E[e^{t\frac{Z_n}{n^2}}] = M_{Z_n}(\frac{t}{n^2}) = (1 - \frac{2t}{n^2})^{-\frac{n}{2}} \text{ for } \frac{t}{n^2} < \frac{1}{2}$

Negative binomial distribution: y = # of failures before the r^{th} success.

 $p(y) = {y+r-1 \choose r-1} p^r (1-p)^y$

Poisson distribution: y = # of successes in a fixed length of time, $p(y) = \frac{\lambda^{x} e^{-\lambda}}{x!}$; Gamma distribution: y = waiting time required until the α^{th} success

 $f(y) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{\frac{-x}{\beta}}$. Special cases: (1) exponential distribution - $\alpha = 1, \beta = \frac{1}{\lambda}$; (2) Chi-square distribution - $\alpha = \frac{r}{2}$, $\beta = 2$.

Statistical Inference

Inequalities - Important Inequalities

Markov's Inequality: u(X) non-negative, E(u(X)) exists, $P[u(X) \ge c] \le \frac{E(u(X))}{c}$ Chebyshev's Inequality: $P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$

Distributions : Some facts

Sample mean: $\bar{X} = \frac{\sum X_i}{n}$, Sample variance: $S^2 = \frac{\sum X_i^2 - n\bar{X}^2}{n-1}$, $E(S^2) = \sigma^2$; another

unbiased estimator for σ^2 in normal distribution is $(\bar{x}^2 - \frac{S^2}{n})$ [also think about

$$\begin{split} E(\bar{X}) &= \mu, \ var(\bar{X}) = \frac{\sigma^2}{n}, \ \bar{X} \sim N(\mu, \sigma^2/n), \ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}, \ \bar{X} \ \& \ S^2 \ \text{are indep.}; \\ \sum a_i X_i \ \text{and} \ \sum b_i X_i \ \text{are indep. iff} \ \sum a_i b_i = 0; \\ \frac{\sum (X_i - \mu)^2}{\sigma^2} &= \frac{(n-1)S^2}{\sigma^2} + \frac{(\bar{X} - \mu)^2}{\sigma^2/n} \end{split}$$

 $\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$ by CLT, $\frac{\bar{X} - \mu}{s / \sqrt{n}} \sim T_{n-1}$

Order Statistics - Order Statistics $g_k(y_k) = \frac{n!}{(k-1)!(n-k)!} [F(y_k)]^{k-1} [1 - F(y_k)]^{n-k} f(y_k), a < y_k < b; 0$ elsewhere.

Section 4 - Confidence Interval Estimation

Error types: Type I - reject H_0 while H_0 is true, $P_{\theta}(X \in R)$; Type II - fail to reject H_0 while H_0 is false. $\alpha = P(Type\ I\ error)$, $\beta = P(Type\ II\ error)$, $Power = 1 - \beta$. Level of significance: the probability of making type I error - reject H_0 when H_0

<u>Power function</u>: $K(\theta) = P_{\theta}[(X_1, X_2, ..., X_n) \in C|\theta], \theta \in \omega_1$. The power function of a hypothesis test with rejection region R is the function of θ defined by $\beta(\theta) = P_{\theta}(X \in R)$. In other words, the power of a hypothesis test is the probability of rejecting H_0 when H_a is true. Power = $P(X \in R | \theta = \theta_a) = 1 - \beta$. Level of significance : $\alpha = \max_{\theta \in \omega_0} K(\theta)$ or

 $\overline{\alpha = P(Type\ I\ error)} = P(rejecting\ H_0\ when\ H_0\ is\ true) = P(X \in R|\theta = \theta_0)$

Note: $x > \theta \Rightarrow I(x - \theta)$

Section 5 - Consistency and Limiting Distributions

Convergence in Probability: $X_n \stackrel{P}{\to} X$ if for every $\epsilon > 0$, $\overline{\lim_{n\to\infty}P(|X_n-X|\geq \epsilon)}=0 \text{ or } (\lim_{n\to\infty}P(|X_n-X|<\epsilon)=1).$ Degenerate r.v.: $p(x)=1, if\ x=a; p(x)=0,\ if\ x\neq a$ and

F(x) = 0 if x < a; F(x) = 1 if $x \ge a$. We write $X_b \stackrel{P}{\to} a$.

Consistency: The statistic T_n is a consistent estimator for θ iff $T_n \stackrel{P}{\to} \theta$. [find limit of the estimator $E(\hat{\theta}) \to \theta$ and $var(\hat{\theta}) \to 0$

Convergence in Distribution: $X_n \stackrel{D}{\to} X$ iff $\lim_{n \to \infty} F_n(x) = F(x)$. F(x) is said to be the limiting distribution or asymptotic distribution of X;

Limiting distribution: $X_n \to X$ if and only if $\lim_{n\to\infty} F_n(x) = F(x)$ where $F_n(x)$ is the cdf of X_n . F(x) is said to be the limiting distribution of X_n .

Theorem 5.2.10: Suppose X_n has m.g.f. $M_{X_n}(t)$ that exists for $-h \le x \le h$ for all n. Let X has m.g.f. M(t) which exists for $|t| \leq h_1 \leq h$. If

 $\lim_{n\to\infty} M_{X_n}(t) = M(t)$ for $|t| \le h_1$, then $X_n \stackrel{D}{\to} X$.

m.g.f technique: (1). $\lim_{n\to\infty} (1+\frac{b}{n}+\frac{\phi(n)}{n})^{cn} = \lim_{n\to\infty} (1+\frac{b}{n})^{cn} = e^{bc}$ where band *c* are constants and $\lim_{n\to\infty} \phi(n) = 0$. (2). $e^x = 1 + x + \frac{x^2}{2} + ... + \frac{x^m}{m!} + ...$; <u>CLT</u>: $X_1, X_2, ..., X_n \stackrel{iid}{\sim} f(x)$ with mean μ and variance $\sigma^2, y_n = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} z$, where

Section 6 - Maximum Likelihood Estimation

<u>Consistent</u>: If there is a unique solution to the likelihood equation $\frac{\partial}{\partial \theta} L(\theta) = 0$,

then $\hat{\theta} \stackrel{P}{\rightarrow} \theta$ ($\hat{\theta}$ is consistent for θ). Score function: $\frac{\partial ln(f(x;\theta))}{\partial \theta}$;

Fisher Information: $I(\theta) = var(\frac{\partial ln(f(x;\theta))}{\partial \theta}) = -E(\frac{\partial^2 ln(f(x;\theta))}{\partial \theta^2});$

Efficient: y is unbiased for θ , y is efficient for θ iff $var(y) = [nI(\theta)]^{-1}$. In general, $var(y) \ge [nI(\theta)]^{-1}$ where y is unbiased for θ .

Efficiency: The efficiency of an unbiased estimator is given by the ratio $\frac{RCLB}{RRP}$ where $RCLB = [nI(\theta)]^{-1}$.

<u>Relative Efficiency</u>: Relative efficiency of unbiased estimators $\hat{\theta}_1$ to $\hat{\theta}_2$ is $\frac{var(\hat{\theta}_2)}{var(\hat{\theta}_1)}$

If θ_2 is biased, then relative efficiency is $\frac{var(\theta_2) + [bias(\theta_2)]^2}{var(\theta_1)}$ where $bias(\theta_2) = E(\theta_2) - \theta$.

Theorem 6.1.2: Suppose $\hat{\theta}$ is the MLE of θ and $g(\theta)$ is a function of θ . Then MLE of $g(\theta)$ is $g(\hat{\theta}) = g(\hat{\theta})$.

Theorem 6.2.1 (Rao-Cramer Lower Bound): $X_1, X-2, ..., X_n \stackrel{iid}{\sim} f(x;\theta)$ for $\theta \in \Omega$. Let $y = u(X_1, X_2, ..., X_n)$ be a statistic with mean $E(Y) = k(\theta)$. Then

<u>MVUE</u>: $\hat{\theta} = u(X_1, X_2, ..., X_n)$ is a minimum variance unbiased estimator for θ iff $E(\hat{\theta})$ and $var(\hat{\theta})$ is less than or equal to the variance of every other unbiased

<u>Theorem</u>: If $\hat{\theta}$ is asymptotically unbiased for θ and $var(\hat{\theta}) \to 0$ as $n \to \infty$, then

Section 7 - Measure of Quality of Estimators

<u>MVUE</u>: $\hat{\theta} = u(X_1, X_2, ..., X_n)$ is a minimum variance unbiased estimator for θ iff $E(\hat{\theta}) = \theta$ and $var(\hat{\theta})$ is less than or equal to the variance of every other unbiased estimator. Relative efficiency of MVUE to any other unbiased

estimator must be ≥ 1 . MUVE would be consistent if $var(\hat{\theta}) \to 0$ as $n \to \infty$. <u>Sufficient Statistics</u>: Let $X_1, X_2, ..., X_n$ be a random sample from $f(x; \theta)$, $y_1 = u(X_1, X_2, ..., X_n)$ is sufficient for θ iff $\frac{\Pi(f(x_i;\theta))}{g_1(y_1;\theta)} = H(x_1, x_2, ..., x_n)$ where g_1

Factorization Theorem: $y_1 = u(x_1, x_2, ..., x_n)$ is sufficient for θ iff $\prod_{i=1}^{n} f(x_i; \theta) = k_1(u(x_1, x_2, ..., x_n); \theta) k_2(x_1, x_2, ..., x_n)$ where $k_2(x_1, x_2, ..., x_n)$ does not depend on θ .

Theorem 7.3.2: $X_1, X_2, ..., X_n \stackrel{iid}{\sim} f(x; \theta)$. If a sufficient statistic $y_1 = u(X_1, X_2, ..., X_n)$ for θ exists and if an MLE $\hat{\theta}$ exists uniquely, then $\hat{\theta}$ is a function of y_1 .

<u>Theorem</u>: Suppose $y_1 = u(X_1, X_2, ..., X_n)$ is a sufficient statistic for θ . Let $z = u(y_1)$ be a 1-to-1 transformation not involving θ . z is also sufficient for θ . **Rao-Blackwell Theorem**: (1). $y_1 = u_1(x_1, x_2, ..., x_n)$ be sufficient for θ ; (2) $y_2 = u_2(x_1, x_2, ..., x_n)$ be unbiased for θ ; (3). $\phi(y_1) = E(y_2|y_1)$. Then, (1) $\phi(y_1)$ is a statistic; (2) $\phi(y_1)$ is a function of y_1 alone; (3) $\phi(y_1)$ is unbiased for θ ; (4). $\phi(y_1)$ has variance $<\sigma_{y_2}^2$.

Completeness: Suppose $Z \sim h(z; \theta)$, a member of a family of p.d.f's (p.m.f's): $\{h(z;\theta), \theta \in \Omega\}$. If $E(u(z)) = 0, \forall \theta \in \Omega$ implies that u(z) = 0 except on a set of points that has probability 0 for each $h(z;\theta)$, $\theta \in \Omega$, then the family $\{h(z;\theta), \theta \in \Omega\}$ is called a complete family of density (mass) functions. Lehmann and Scheffe (MVUE): Let $Y_1 = u_1(X_1, X_2, ..., X_n)$ be sufficient for θ and $\{g_1(y_1,\theta):\theta\in\Omega\}$ be a complete family of densities (or p.m.f's). If there is a function if Y_1 which is unbiased for θ , then this function of Y_1 is the unique MVUE for θ .

Find MVUE: (1) Find a sufficient statistic t; (2) show that the family of distributions of t is complete [shortcut - theorem 7.5.2]; (3) Find a crude unbiased estimator; (4) evaluate

Exponential Family: $f(x;\theta) = exp\{p(\theta)k(x) + \delta(x) + q(x)\}$ where $\delta(x)$ dose not depend on θ , $p(\theta)$ is nontrivial continuous, $k'(x) \neq 0$.

 $X_1, X_2, ..., X_n \stackrel{iid}{\sim} f(x; \theta)$, a regular case of exponential class with $y_1 = \sum k(x_i)$. Then, (1) $g_1(y_1;\theta) = R(y_1)exp\{p(\theta)y_1 + nq(\theta)\};$ (2) $E(y_1) = -n\frac{q'(\theta)}{p'(\theta)};$ (3) $var(y_1) = n \frac{1}{[n'(\theta)]^3} \{ p''(\theta) q'(\theta) - q''(\theta) p'(\theta) \}$

Theorem 7.5.2: $X_1, X_2, ..., X_n \stackrel{iid}{\sim} f(x; \theta)$, a regular case of exponential class with $\Omega = \{\theta : \gamma < \theta < \delta\}$, $y_1 = \sum k(x_i)$ is sufficient for θ and the family $\{g_1(y_1; \theta) : \gamma < \theta < \delta\}$ is complete.

Theorem 7.4.1: $X_1, X_2, ..., X_n$, a random sample from $f(x; \theta)$, $y_1 = u_1(X_1, X_2, ..., X_n)$ complete sufficient for θ and $E(\phi(y_1)) = \alpha(\theta)$, then $\phi(y_1)$ is unique MVUE for $\alpha(\theta)$.

unique MVUE = sufficient + complete (Theorem 7.5.2) + unbiased

Section 8 Most powerful tests

Neyman-Pearson Theorem: A **best critical region** of size α for testing $\overline{H_0: \theta = \theta' \text{ v.s } H_1: \theta = \theta''}$ (both simple) is such that

(1) $\frac{L(\theta'; x_1, x_2, ..., x_n)}{L(\theta''; x_1, x_2, ..., x_n)} \le k$ for each $(x_1, x_2, ..., x_n) \in C$ (2) $\frac{L(\theta'; x_1, x_2, ..., x_n)}{L(\theta''; x_1, x_2, ..., x_n)} \ge k$ for each $(x_1, x_2, ..., x_n) \in C^c$

(3) $P((x_1, x_2, ..., x_n) \in C; H_0) = \alpha$

Uniformly Most Powerful Test: C is a uniformly most powerful critical region of size α if C is a best critical region of size α for testing H_0 against **each** simple hypothesis in H_1 . Because the critical region C defines a test that is most powerful against each simple alternative H_1 , this is a uniformly most powerful test, and C is a uniformly most powerful critical region of size α . <u>Likelihood Ratio Test</u>: Let (1) $L(\hat{\omega})$ denote the maximum of the likelihood function with respect to θ when θ is in the null parameter space ω . (2) $L(\hat{\Omega})$

$$\lambda = \frac{L(\hat{\omega})}{L(\hat{\Omega})} = \frac{L(\hat{\theta}_0|x)}{L(\hat{\theta}|x)}$$

denote the maximum of the likelihood function with respect to θ when θ is in

the entire parameter space Ω . Then, the likelihood ratio is the quotient:

p.s: MLE estimated μ and σ^2 for normal distribution: $\hat{\mu} = \bar{x}$, $\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$; $\hat{\mu} = (n+m)^{-1} \{ \sum x_i + \sum y_i \}, \hat{\sigma}^2 = (n+m)^{-1} \{ \sum (x_i - \bar{x})^2 + \sum (y_i - \bar{y})^2 \}.$ Neyman-Pearson Lamma: If a critical value is chosen so that $P_{\theta_0}(\Lambda \le c) = \alpha$, then the test with decision rule

Reject $\theta = \theta_0$ in favor of $\theta = \theta_1$ when $\Lambda \leq c$

is a uniformly most powerful test of size α .