KOMUTATIVNA ALGEBRA, 2019/20

4. DN/4nd HW: 7.4.2020 Rok za oddajo/ Deadline: 23:59, 31.3.2020

(1) Naj bo S multiplikativna podmnožica v kolobarju R.

Pokaži, da je $\sqrt(S^{-1}I) = S^{-1}\sqrt{I}$ za vsak ideal $I \lhd R$.

Pokaži, da je ann $(S^{-1}M) = S^{-1}(\operatorname{ann} M)$ za poljuben končno generiran R-modul. (Opomba: ann $M \triangleleft R$ in ann $(S^{-1}M) \triangleleft S^{-1}M$.)

- (2) Naj bol(M)dolžina modula. Pokaži, da je $l(X \otimes Y) \leq l(X) l(Y).$ Upoštevamo $\infty \cdot 0 = 0.$
- (1) Let S be multiplicatively closed subset of a ring R and N be R-modules. We extend scalars with $\phi: R \to S$.

Show that $\sqrt(S^{-1}I) = S^{-1}\sqrt{I}$ for every ideal $I \lhd R$.

Show that $\operatorname{ann}(S^{-1}M) = S^{-1}(\operatorname{ann} M)$ for every finitely generated R-module. (Remark: $\operatorname{ann} M \lhd R$ in $\operatorname{ann}(S^{-1}M) \lhd S^{-1}M$.)

(2) Let l(M) be the length of a module. Show that $l(X \otimes Y) \leq l(X)l(Y)$. We identify $\infty \cdot 0 = 0$.