

Linear Algebra (MT-1004)

Lecture #31

Diagonalization:

Definition 2

A square matrix A is said to be **diagonalizable** if it is similar to some diagonal matrix; that is, if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal. In this case the matrix P is said to **diagonalize** A.

TABLE 1 Similarity Invariants

Property	Description
Determinant	A and $P^{-1}AP$ have the same determinant.
Invertibility	A is invertible if and only if $P^{-1}AP$ is invertible.
Rank	A and $P^{-1}AP$ have the same rank.
Nullity	A and $P^{-1}AP$ have the same nullity.
Trace	A and $P^{-1}AP$ have the same trace.
Characteristic polynomial	A and $P^{-1}AP$ have the same characteristic polynomial.
Eigenvalues	A and $P^{-1}AP$ have the same eigenvalues.
Eigenspace dimension	If λ is an eigenvalue of A (and hence of $P^{-1}AP$) then the eigenspace of A corresponding to λ and the eigenspace of $P^{-1}AP$ corresponding to λ have the same dimension.

Related Theorems:

Theorem 5.2.1

If *A* is an $n \times n$ matrix, the following statements are equivalent.

- (a) A is diagonalizable.
- (b) A has n linearly independent eigenvectors.

Theorem 5.2.2

- (a) If $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct eigenvalues of a matrix A, and if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are corresponding eigenvectors, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a linearly independent set.
- (b) An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Theorem 5.2.3

If k is a positive integer, λ is an eigenvalue of a matrix A, and \mathbf{x} is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and \mathbf{x} is a corresponding eigenvector.

Theorem 5.2.4

Geometric and Algebraic Multiplicity

If A is a square matrix, then:

- (a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.
- (b) A is diagonalizable if and only if its characteristic polynomial can be expressed as a product of linear factors, and the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity.

A Procedure for Diagonalizing an $n \times n$ Matrix

- **Step 1.** Determine first whether the matrix is actually diagonalizable by searching for *n* linearly independent eigenvectors. One way to do this is to find a basis for each eigenspace and count the total number of vectors obtained. If there is a total of *n* vectors, then the matrix is diagonalizable, and if the total is less than *n*, then it is not.
- Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$ whose column vectors are the *n* basis vectors you obtained in Step 1.
- Step 3. $P^{-1}AP$ will be a diagonal matrix whose successive diagonal entries are the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ that correspond to the successive columns of P.

Ex 7.10: (Diagonalizing a matrix)

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$

Find a matrix P such that $P^{-1}AP$ is diagonal.

Sol: Characteristic equation:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & 1 \\ -1 & \lambda - 3 & -1 \\ 3 & -1 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda + 2)(\lambda - 3) = 0$$

The eigenvalue s: $\lambda_1 = 2$, $\lambda_2 = -2$, $\lambda_3 = 3$

$$\lambda_{1} = 2$$

$$\Rightarrow \lambda_{1} \mathbf{I} - A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 3 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ 0 \\ t \end{bmatrix} \Rightarrow \text{ eigenvector } p_{1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\lambda_2 = -2$$

$$\Rightarrow \lambda_2 \mathbf{I} - A = \begin{bmatrix} -3 & 1 & 1 \\ -1 & -5 & -1 \\ 3 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{4}t \\ -\frac{1}{4}t \\ t \end{bmatrix} \Rightarrow \text{ eigenvector } p_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$

$$\lambda_{3} = 3$$

$$\Rightarrow \lambda_{3} I - A = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 3 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ t \\ t \end{bmatrix} \Rightarrow \text{ eigenvector } p_{3} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$P = [p_{1} \quad p_{2} \quad p_{3}] = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 4 & 1 \end{bmatrix},$$

$$\text{s.t.} P^{-1} A P = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Computing Powers of a Matrix

If A is an nxn matrix and P is an invertible matrix, then

$$(P^{-1}AP)^2 = P^{-1}APP^{-1}AP = P^{-1}AIAP = P^{-1}A^2P$$

More generally, for any positive integer k, $(P^{-1}AP)^k = P^{-1}A^kP$

It follows from this equation that if A is diagonalizable, and $P^{-1}AP = D$ is a diagonal matrix, then $P^{-1}A^kP = (P^{-1}AP)^k = D^k$

Solving this equation for A^k yields $A^k = PD^kP^{-1}$

This last equation expresses the kth power of A in terms of the kth power of the diagonal matrix D. But D^k is easy to compute, for if

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}, \quad \text{then} \quad D^k = \begin{bmatrix} d_1^k & 0 & \cdots & 0 \\ 0 & d_2^k & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n^k \end{bmatrix}$$

Do Question # 1-20 from Ex # 5.2