"计算机组织结构"作业 05

1. 虚拟内存的大小是否等于主存的容量加上磁盘的容量? 为什么?

不等于 1、虚拟内存的最大空间与系统寻址位数相关

- 2、虚拟内存借助磁盘实现,磁盘、主存中也会有一部分给页表和 0S 等。通常来说虚拟内存大小会远小于主存加磁盘容量之和。
- 2. 在使用了快表(TLB)和 cache 的情况下,CPU 读写一个数据,需要访问多少次主存?(需要假设各种情况的概率)

设快表命中率为 P_t , cache 的命中率为 P_c , 虚页载入的命中率为 P_v 在题设条件下,对于一个数据,访问主存有两种情况:

- 1、快表没有命中
- 2、Cache 没有命中

则读写一个数据,访问主存次数的期望为: $1-P_t+1-P_cP_v = 2-P_t-P_cP_v$

3. 假设一个分页虚拟存储系统的虚拟地址为 40 位,物理地址为 36 位,页大小为 16KB,按字节编址。若页表中的有效位、存储保护位、修改位、使用位共占 4 位,磁 盘地址不在页表中。则该存储系统中每个程序的页表大小为多少? (说明: 1. 假设每 个程序都能使用全部的虚拟内存: 2. 页表项的长度必须为字节的整数倍)

由于页大小为 16KB,按字节编址,则页内偏移地址需要 14 位表示 又由于也表中有效位、存储保护位、修改位、使用位占 4 位 则物理地址中有 22 位来定位到具体的物理页,页表项中有效位共有 22+4=26 位 因为页表项长度必须是 8 的整数倍,则页表项为 32 位 因为虚拟地址一共 40 位,定位到虚拟页需要 26 位,因此页表有 2²⁶ 项 页表总大小为 2²⁶ * 4B = 2^{8MB} = 256MB

4. 假设一个计算机系统中有一个 TLB 和一个 L1 data cache。该系统按字节编址,虚拟 地址 16 位,物理地址 12 位;页大小为 128B, TLB 为 4-路组相连,共有 16 个页表 项; L1 data cache 采用直接映射方式,块大小为 4B,共 16 行。在系统运行的某一时刻,TLB、页表和 L1 data cache 中的部分内容如下图所示(16 进制表示):

组	标	页	有	标	页	有	标	页	有	标	页	有
号	记	框	效	记	框	效	记	框	效	记	框	效
			位			位			位			位
0	05	_	0	09	1D	1	00	08	1	07	10	1
1	13	1C	1	02	17	1	04		0	OA	_	0
2	02	09	1	08	_	0	06	_	0	03	11	1
3	07		0	63	12	1	OA	18	1	72		0

TLB 的内容

虚页号	页框号	有效位
000	08	1
001	03	1
002	14	1
003	02	1
004	_	0

005	16	1
006	_	0
007	07	1
800	13	1
009	17	1
00A	09	1
00B	_	0
00C	19	1
00D	_	0
00E	11	1
00F	OD	1

页表的前 16 行内容

行索引	标记	有效位	字节 3	字节 2	字节 1	字节 0
0	19	1	12	56	С9	AC
1	_	0	_	_	_	_
2	1B	1	03	45	12	CD
3	_	0	_	_	_	_
4	32	1	23	34	C2	2A
5	OD	1	46	67	23	3D
6	_	0	_	_	_	_
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9	_	0	_	_	_	
A	2D	1	43	62	23	C3
В	_	0	_	_	_	
С	12	1	76	83	21	35
D	16	1	А3	F4	23	11
Е	33	1	2D	4A	45	55
F		0		_	_	_

L1 data cache 的内容

请问:

(1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号的哪几位表示 TLB 标记?哪几位表示 TLB 组号?

一共有 16 位表示虚拟地址,因为按字节编址且一个页大小为 128 字节则需要 7 位来定位到页中具体的字节,即页内偏移用 7 位表示还剩下 9 位来定位到虚拟页表

由于 TLB 是四路组关联,需要 2 位来定位到组,剩下 9-2=7 位表示标记

综上: 虚拟地址前9位表示虚拟页号

后7位表示页内偏移量

1-7 位表示 TLB 标记

8-9 位表示 TLB 组号

(2) 物理地址中哪几位表示物理页号?哪几位表示页内偏移量?在访问 cache 时,物理地址如何划分成标记字段、行号字段和块内地址字段?

一共有 12 位表示物理地址,同上,需要 7 位定位到页中具体的字节 剩下 5 位定位到物理页表

由于 cache 直接映射,块大小为 4B, 共 16 行

需要2位定位到块中字节,4位进行行映射,剩下6位标记位

综上:前5位表示虚拟页号

后7位表示页内偏移量

前6位标记

7-10 位行号

11-12 位块内地址字段

(3) CPU 从地址 067AH 中取出的值为多少?请对取值过程进行说明。

由题 H表示前面的数以 16 进制表示

用二进制表示为: 0000 0110 0111 1010 该地址为虚拟地址 根据第一题结论分解: 0000 0110 0 为虚拟页号 111 1010 表示页内偏移量 对应 TLB 中,标记位为(03)0000 011,在第 0 组 由于 0 组缺失页,到主存页表中调取虚拟页号为 0 0000 1100(00C)的页得到对应的页框号为 19 由于物理页表地址用 5 位表示,19 转化为 1 1001 加上页偏移量,即物理地址为 1100 1111 1010

根据第二题结论,该物理地址表示标记位 110011(33) 行号 1110(E) 行内地址为 10 (2)

查找 cache 中标记位为 33 的行,有效位为 1,行内第二个字节数据为 4A 综上:取出的值为 4A

[缪晓伟, 121250101; 陆一飞, 121250094; 贾俊腾, 111130046; 李任我行, 131250212; 王梦麟, 141250140]