Strong Converses for High-dimensional Statistical Estimation

Ramji Venkataramanan

University of Cambridge

Oliver Johnson

University of Bristol

Beyond IID 2018

Inference set-up

Want to estimate $\theta \in \mathcal{F}$ from data $\mathbf{Y} = (Y_1, \dots, Y_n)$

Data **Y** generated according to $P_{\theta}(\mathbf{Y})$

How well can we estimate θ as the number of samples grows?

Inference set-up

Want to estimate $\theta \in \mathcal{F}$ from data $\mathbf{Y} = (Y_1, \dots, Y_n)$

Data \mathbf{Y} generated according to $P_{\theta}(\mathbf{Y})$

How well can we estimate θ as the number of samples grows?

Density Estimation [Yu '97]

 \mathcal{F} : smooth densities on [0,1] with bounded second derivative

For $\theta \in \mathcal{F}$, samples Y_1, \ldots, Y_n drawn i.i.d. $\sim \theta$

Measure of performance:

$$d(\theta, \widehat{\theta}) = \int_0^1 \left(\sqrt{\theta(x)} - \sqrt{\widehat{\theta}(x)} \right)^2 dx$$

Compressed sensing

Vector $\theta \in \mathcal{F}$ observed through linear model:

$$\mathbf{y} = \mathbf{A}\,\theta + \text{ noise}$$

 \mathcal{F} : unit norm vectors in \mathbb{R}^n with at most k non-zeros

How well can we estimate θ ?

Measure of performance:

$$\mathsf{M}^*(\mathbf{A}) := \inf_{\widehat{\theta}} \sup_{\theta \in \mathcal{F}} \mathbb{E} \left[\frac{1}{n} \| \widehat{\theta}(\mathbf{y}) - \theta \|^2 \right],$$

Loss function and Risk

Want to estimate $\theta \in \mathcal{F}$ from data $\mathbf{Y} = (Y_1, \dots, Y_n)$

Data \mathbf{Y} generated according to $P_{\theta}(\mathbf{Y})$

Performance of an estimator $\widehat{\theta}$ measured via $d(\theta, \widehat{\theta}(\mathbf{Y}))$

Loss function d is a distance or semi-distance

Risk
$$R(\theta, \hat{\theta}) = \mathbb{E}\left[d(\theta, \hat{\theta})\right]$$

GOAL: Lower bounds on the minimax risk

$$\inf_{\widehat{\theta}} \sup_{\theta \in \mathcal{F}} \mathbb{E} \left[d(\theta, \widehat{\theta}) \right]$$

Standard approach (see Tsybakov 2009)

For any $\psi_n > 0$,

$$\mathbb{P}\left(d(\theta,\widehat{\theta}) \geq \psi_n\right) \leq \frac{1}{\psi_n} \mathbb{E}\left[d(\theta,\widehat{\theta})\right]$$

Standard approach (see Tsybakov 2009)

For any $\psi_n > 0$,

$$\mathbb{P}\left(d(\theta,\widehat{\theta}) \geq \psi_n\right) \leq \frac{1}{\psi_n} \mathbb{E}\left[d(\theta,\widehat{\theta})\right]$$

Hence

$$\sup_{\theta \in \mathcal{F}} \mathbb{E}\left[d(\theta, \widehat{\theta})\right] \geq \psi_n \sup_{\theta \in \mathcal{F}} \mathbb{P}\left(d(\theta, \widehat{\theta}) \geq \psi_n\right)$$

Want to choose ψ_n such that prob. is bounded below by a constant

Packing set

$$\sup_{\theta \in \mathcal{F}} \mathbb{E}\left[d(\theta, \widehat{\theta})\right] \ge \psi_n \sup_{\theta \in \mathcal{F}} \mathbb{P}\left(d(\theta, \widehat{\theta}) \ge \psi_n\right)$$

Construct a packing set $\{\theta_1, \dots, \theta_M\} \subseteq \mathcal{F}$ such that

$$d(\theta_i, \theta_j) \ge d_{\min} = 2\psi_n$$
, for all $i \ne j$

 Existence of packing set can be generally guaranteed via Gilbert-Varshamov bound or the probabilistic method

Packing set

$$\sup_{\theta \in \mathcal{F}} \mathbb{E}\left[d(\theta, \widehat{\theta})\right] \ge \psi_n \sup_{\theta \in \mathcal{F}} \mathbb{P}\left(d(\theta, \widehat{\theta}) \ge \psi_n\right)$$

Construct a packing set $\{\theta_1,\ldots,\theta_M\}\subseteq\mathcal{F}$ such that

$$d(\theta_i, \theta_j) \ge d_{\min} = 2\psi_n$$
, for all $i \ne j$

- Existence of packing set can be generally guaranteed via Gilbert-Varshamov bound or the probabilistic method
- ▶ Idea: Any estimator $\widehat{\theta}$ defines an M-ary hypothesis test between $\{\theta_1, \dots, \theta_M\}$

$$\widehat{i} = \underset{1 \leq j \leq M}{\operatorname{arg \, min}} \ d(\theta_j, \widehat{\theta})$$

Channel coding interpretation

- ▶ Channel $P_{\mathbf{Y}|\theta} := P_{\theta}(\mathbf{Y})$
- ▶ Codebook $\{\theta_1, \ldots, \theta_M\}$
- 'Transmitted' codeword $\theta = \theta_i$
- ▶ Channel output $\mathbf{Y} = (Y_1, \dots, Y_n)$
- Minimum-distance decoder Distance measured via $d(\cdot, \cdot)$ Decode codeword that is closest to $\widehat{\theta}(\mathbf{Y})$.

Probability of decoding error

Minimum distance between codewords is $d_{\min} = 2\psi_n \Rightarrow$ Decoder makes error only if $d(\theta_i, \widehat{\theta}) \geq \frac{d_{\min}}{2} = \psi_n \Rightarrow$

$$\mathbb{P}\left(\widehat{i} \neq i \mid \theta_i \text{ true codeword}\right) \leq \mathbb{P}\left(d(\theta_i, \widehat{\theta}) \geq \psi_n\right)$$

Probability of decoding error

Minimum distance between codewords is $d_{min} = 2\psi_n \Rightarrow$

Decoder makes error only if $d(\theta_i, \widehat{\theta}) \geq \frac{d_{\min}}{2} = \psi_n \Rightarrow$

$$\mathbb{P}\left(\widehat{i} \neq i \mid \theta_i \text{ true codeword}\right) \leq \mathbb{P}\left(d(\theta_i, \widehat{\theta}\,) \geq \psi_n\right)$$

Therefore

$$arepsilon_M := rac{1}{M} \sum_{i=1}^M \mathbb{P}\left(\widehat{i}
eq i \mid heta_i ext{ true codeword}
ight) \leq \sup_{ heta \in \mathcal{F}} \mathbb{P}\left(d(heta, \widehat{ heta}) \geq \psi_n
ight)$$

Probability of decoding error

Minimum distance between codewords is $d_{\min} = 2\psi_n \Rightarrow$

Decoder makes error only if $d(\theta_i, \widehat{\theta}) \geq \frac{d_{\min}}{2} = \psi_n \Rightarrow$

$$\mathbb{P}\left(\widehat{i} \neq i \mid \theta_i \text{ true codeword}\right) \leq \mathbb{P}\left(d(\theta_i, \widehat{\theta}) \geq \psi_n\right)$$

Therefore

$$arepsilon_M := rac{1}{M} \sum_{i=1}^M \mathbb{P}\left(\widehat{i}
eq i \mid heta_i ext{ true codeword}
ight) \leq \sup_{ heta \in \mathcal{F}} \mathbb{P}\left(d(heta, \widehat{ heta}) \geq \psi_n
ight)$$

Plugging into our risk lower bound,

$$\sup_{\boldsymbol{\theta} \in \mathcal{F}} \mathbb{E}\left[d(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}})\right] \geq \psi_n \sup_{\boldsymbol{\theta} \in \mathcal{F}} \mathbb{P}\left(d(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}\,) \geq \psi_n\right) \geq \psi_n \, \varepsilon_{M}$$

Risk Lower Bound

$$\sup_{\theta \in \mathcal{F}} \mathbb{E}\left[d(\theta, \widehat{\theta})\right] \geq \psi_{n} \varepsilon_{M}$$

 $arepsilon_{\it M}$ is average error probability of codebook with $d_{
m min}=2\psi_{\it n}$

Risk Lower Bound

$$\sup_{\theta \in \mathcal{F}} \mathbb{E}\left[d(\theta, \widehat{\theta})\right] \ge \psi_n \varepsilon_M$$

 $arepsilon_{M}$ is average error probability of codebook with $d_{\min}=2\psi_{n}$

Fano's inequality is a standard way to lower bound ε_M :

$$\varepsilon_M \geq 1 - \frac{\log 2 + \frac{1}{M} \sum_{i=1}^M D(P_{\mathbf{Y}|\theta_i} || \overline{P}_{\mathbf{Y}})}{\log M}, \quad \text{ where } \ \overline{P}_{\mathbf{Y}} = \frac{1}{M} \sum_{i=1}^M P_{\mathbf{Y}|\theta_i}$$

If we show that $\frac{1}{M} \sum_{i=1}^{M} D(P_{\mathbf{Y}|\theta_i} || \overline{P}_{\mathbf{Y}}) \leq \alpha \log M$, then

$$\varepsilon_M \ge 1 - \alpha - \frac{1}{\log M} > 0,$$

Ibragimov and Khasminskii, Estimation of infinite dimensional parameter in Gaussian white noise. 1977

Improving on Fano

```
Generalized versions of Fano: [Birgé '05], [Sason-Verdú '18]
Other converse techniques:
Sphere-packing bound: [Shannon-Gallager-Berlekamp '67]
Based on information spectrum: [Wolfowitz '68], [Verdú-Han '94]
Based on general f-divergences: [Guntuboyina '11]
Based on binary hypothesis testing:
[Hayashi, Nagaoka '03]
[Polyanskiy, Poor, Verdú '10] ("Meta-converse")
[Vazquez-Vilar, Tauste Campo, Guillén i Fàbregas, Martinez '16]
```

Improving on Fano

```
Generalized versions of Fano: [Birgé '05], [Sason-Verdú '18]
Other converse techniques:
Sphere-packing bound: [Shannon-Gallager-Berlekamp '67]
Based on information spectrum: [Wolfowitz '68], [Verdú-Han '94]
Based on general f-divergences: [Guntuboyina '11]
Based on binary hypothesis testing:
[Hayashi, Nagaoka '03]
[Polyanskiy, Poor, Verdú '10] ("Meta-converse")
[Vazquez-Vilar, Tauste Campo, Guillén i Fàbregas, Martinez '16]
```

$$\sup_{\theta \in \mathcal{F}} \mathbb{E}\left[d(\theta, \widehat{\theta})\right] \geq \psi_n \varepsilon_M$$

$$\varepsilon_M = \frac{1}{M} \sum_{i=1}^M \mathbb{P}\left(\widehat{i} \neq i \mid \theta_i \text{ true codeword}\right)$$

What we want is a lower bound for ε_M that:

- is computable for wide range of statistical problems
- with existing packing sets
- shows $\varepsilon_M o 1$ as M grows (strong converse)

Obtaining a tighter lower bound

- Channel $P_{\mathbf{Y}|\theta}$
- Codebook $\{\theta_1, \ldots, \theta_M\}$ (equally likely codewords)
- Average error probability ε_{M}

A channel decoder defines a hypothesis test to distinguish between:

$$H_0: (\theta, \mathbf{Y}) \sim Q = P_{\theta} Q_{\mathbf{Y}}$$

 $H_1: (\theta, \mathbf{Y}) \sim P = P_{\theta} P_{\mathbf{Y}|\theta}$

Does the data look like it came from the true generating model ?

Obtaining a tighter lower bound

- Channel $P_{\mathbf{Y}|\theta}$
- Codebook $\{\theta_1, \dots, \theta_M\}$ (equally likely codewords)
- Average error probability ε_{M}

A channel decoder defines a hypothesis test to distinguish between:

$$H_0: (\theta, \mathbf{Y}) \sim Q = P_{\theta}Q_{\mathbf{Y}}$$

 $H_1: (\theta, \mathbf{Y}) \sim P = P_{\theta}P_{\mathbf{Y}|\theta}$

Does the data look like it came from the true generating model ?

For the channel decoder based test [Polyanskiy, Poor, Verdú '10]:

$$Q[T=1]=\frac{1}{M}, \qquad P[T=0]=\varepsilon_M$$

Obtaining a tighter lower bound

- Channel $P_{\mathbf{Y}|\theta}$
- Codebook $\{\theta_1, \dots, \theta_M\}$ (equally likely codewords)
- Average error probability ε_M

A channel decoder defines a hypothesis test to distinguish between:

$$H_0: (\theta, \mathbf{Y}) \sim Q = P_{\theta} Q_{\mathbf{Y}}$$

 $H_1: (\theta, \mathbf{Y}) \sim P = P_{\theta} P_{\mathbf{Y}|\theta}$

Does the data look like it came from the true generating model ?

For the channel decoder based test [Polyanskiy, Poor, Verdú '10]:

$$Q[T=1]=\frac{1}{M}, \qquad P[T=0]=\varepsilon_M$$

For any randomized hypothesis test $\,T\,$ and $\,\gamma>0$, we have

$$P[T=1] - \gamma Q[T=1] \le P\left[\frac{\mathrm{d}P}{\mathrm{d}Q} > \gamma\right].$$

Hence, in our case, for any $\gamma > 0$

$$\frac{1}{\textit{M}} \geq \frac{1}{\gamma} \left(1 - \varepsilon_{\textit{M}} - P_{\theta \textbf{Y}} \left[\frac{\mathsf{d}P_{\textbf{Y}|\theta}}{\mathsf{d}Q_{\textbf{Y}}} > \gamma \right] \right)$$

- ▶ Can bound $P_{\theta \mathbf{Y}} \left[\frac{\mathrm{d} P_{\mathbf{Y} \mid \theta}}{\mathrm{d} Q_{\mathbf{Y}}} > \gamma \right]$ in terms of Rényi divergences using Markov inequality type argument
- ightharpoonup Can optimize over γ to deduce . . .

Theorem

For any $\lambda > 0$, and any distribution $Q_{\mathbf{Y}}$ over \mathcal{Y} (satisfying mild absolute continuity condition),

$$arepsilon_M \geq 1 - rac{(1+\lambda)}{(\lambda M)^{rac{\lambda}{1+\lambda}}} \left[\sum_{i=1}^M rac{1}{M} \exp\left(\lambda \left. rac{D_{1+\lambda}(P_{\mathbf{Y}| heta_i} || Q_{\mathbf{Y}})
ight)}{Q_{\mathbf{Y}}}
ight]^{rac{1}{1+\lambda}}.$$

Here $D_{1+\lambda}(P_{\mathbf{Y}|\theta_i}||Q_{\mathbf{Y}})$ is the Rényi divergence of order $(1+\lambda)$:

$$D_{1+\lambda}(P_{\mathbf{Y}|\theta_i}||Q_{\mathbf{Y}}) := \frac{1}{\lambda} \log \left(\int_{\mathcal{Y}} \left(\frac{dP_{\mathbf{Y}|\theta_i}}{dQ_{\mathbf{Y}}} \right)^{1+\lambda} dQ_{\mathbf{Y}} \right).$$

Theorem

For any $\lambda > 0$, and any distribution $Q_{\mathbf{Y}}$ over \mathcal{Y} (satisfying mild absolute continuity condition),

$$arepsilon_M \geq 1 - rac{(1+\lambda)}{(\lambda M)^{rac{\lambda}{1+\lambda}}} \left[\sum_{i=1}^M rac{1}{M} \exp\left(\lambda \left. rac{D_{1+\lambda}(P_{\mathbf{Y}| heta_i} || Q_{\mathbf{Y}})
ight)}{Q_{\mathbf{Y}}}
ight]^{rac{1}{1+\lambda}}.$$

Here $D_{1+\lambda}(P_{\mathbf{Y}|\theta_i}||Q_{\mathbf{Y}})$ is the Rényi divergence of order $(1+\lambda)$:

$$\frac{\textit{\textbf{D}}_{\mathbf{1}+\lambda}(\textit{\textbf{P}}_{\mathbf{Y}|\theta_i}||\textit{\textbf{Q}}_{\mathbf{Y}}) := \frac{1}{\lambda}\log\left(\int_{\mathcal{Y}}\left(\frac{d\textit{\textbf{P}}_{\mathbf{Y}|\theta_i}}{d\textit{\textbf{Q}}_{\mathbf{Y}}}\right)^{1+\lambda}d\textit{\textbf{Q}}_{\mathbf{Y}}\right).$$

- ▶ Pick a good Q_Y , compute lower bound for ε_M via upper bound for Rényi divergence, e.g., [Sason-Verdú '16]
- ▶ Have free choice of λ , often $\lambda = 1$ works well enough

Improved risk lower bounds

$$\sup_{\theta \in \mathcal{F}} \mathbb{E}\left[d(\theta, \widehat{\theta})\right] \geq \psi_n \varepsilon_M$$

In paper we use the result to study three illustrative examples:

- 1. Compressed sensing
- 2. Density estimation problem
- 3. Active learning of a binary classifier...see paper.

In each case, get improved bounds with $\varepsilon_M \to 1$ (strong converse), essentially for free.

Application: Compressed Sensing

$$\mathbf{y} = \mathbf{A} \, \theta + \mathbf{w}, \qquad \mathbf{w} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

 \mathcal{F}_k : unit norm vectors θ in \mathbb{R}^n with at most k non-zeros Want to lower bound

$$\mathsf{M}^*(\mathbf{A}) := \inf_{\widehat{\theta}} \sup_{\theta \in \mathcal{F}_{\nu}} \mathbb{E} \left[\frac{1}{n} \| \widehat{\theta}(\mathbf{y}) - \theta \|^2 \right],$$

Packing set (see [Candès-Davenport '13])

Packing set of vectors $\{\theta_1, \dots, \theta_M\} \in \mathbb{R}^n$ with:

- $\|\theta_i\|^2 = 1$ for all i
- $\|\theta_i \theta_j\|^2 \ge \frac{1}{2} \text{ for } i \ne j$
- $|| \frac{1}{M} \sum_{i=1}^{M} \theta_i \theta_i^T \frac{1}{n} \mathbf{I} ||_{\text{op}} \leq \frac{\beta}{n} \text{ for some small } \beta > 0$

Packing set (see [Candès-Davenport '13])

Packing set of vectors $\{\theta_1, \dots, \theta_M\} \in \mathbb{R}^n$ with:

- $\|\theta_i\|^2 = 1$ for all i
- $\|\theta_i \theta_j\|^2 \ge \frac{1}{2} \text{ for } i \ne j$
- $\| \frac{1}{M} \sum_{i=1}^{M} \theta_i \theta_i^T \frac{1}{n} \mathbf{I} \|_{\text{op}} \leq \frac{\beta}{n} \text{ for some small } \beta > 0$
- ▶ Size of packing set $M = \left(\frac{n}{k}\right)^{k/4} = \exp\left(\frac{k}{4}\log\left(\frac{n}{k}\right)\right)$

Packing set (see [Candès-Davenport '13])

Packing set of vectors $\{\theta_1, \dots, \theta_M\} \in \mathbb{R}^n$ with:

- $\|\theta_i\|^2 = 1$ for all i
- $\|\theta_i \theta_j\|^2 \ge \frac{1}{2} \text{ for } i \ne j$
- $\| \frac{1}{M} \sum_{i=1}^{M} \theta_i \theta_i^T \frac{1}{n} \mathbf{I} \|_{\text{op}} \leq \frac{\beta}{n} \text{ for some small } \beta > 0$
- ▶ Size of packing set $M = \left(\frac{n}{k}\right)^{k/4} = \exp\left(\frac{k}{4}\log\left(\frac{n}{k}\right)\right)$

Computing the Renyi Divergence

$$arepsilon_M \geq 1 - rac{(1+\lambda)}{(\lambda M)^{rac{\lambda}{1+\lambda}}} \left[\sum_{i=1}^M rac{1}{M} \exp\left(\lambda rac{D_{1+\lambda}(P_{\mathbf{Y}| heta_i}\|Q_{\mathbf{Y}})
ight)}{Q_{\mathbf{Y}}} \right]^{rac{1}{1+\lambda}}$$

Since
$$\mathbf{y} = \mathbf{A} \, \theta + \mathbf{w}$$
, $P_{\mathbf{Y}|\theta_i} \sim \mathcal{N}(\mathbf{A}\theta_i, \, \sigma^2 \mathbf{I})$
Choose $Q_{\mathbf{Y}} \sim \mathcal{N}(\mathbf{0}, \, \sigma^2 \mathbf{I})$

Computing the Renyi Divergence

$$arepsilon_{M} \geq 1 - rac{(1+\lambda)}{(\lambda M)^{rac{\lambda}{1+\lambda}}} \left[\sum_{i=1}^{M} rac{1}{M} \exp\left(\lambda \frac{D_{1+\lambda}(P_{\mathbf{Y}|\theta_{i}} || Q_{\mathbf{Y}})}{Q_{\mathbf{Y}}}\right) \right]^{rac{1}{1+\lambda}}$$

Since
$$\mathbf{y} = \mathbf{A} \, \theta + \mathbf{w}$$
, $P_{\mathbf{Y}|\theta_i} \sim \mathcal{N}(\mathbf{A}\theta_i, \sigma^2 \mathbf{I})$
Choose $Q_{\mathbf{Y}} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Then

$$D_{1+\lambda}(P_{\mathbf{Y}|\theta_i}\|Q_{\mathbf{Y}}) = \frac{(1+\lambda)}{2\sigma^2}\|\mathbf{A}\theta_i\|^2$$

Computing the Renyi Divergence

$$arepsilon_{M} \geq 1 - rac{(1+\lambda)}{(\lambda M)^{rac{\lambda}{1+\lambda}}} \left[\sum_{i=1}^{M} rac{1}{M} \exp\left(\lambda \frac{D_{1+\lambda}(P_{\mathbf{Y}|\theta_{i}} || Q_{\mathbf{Y}})}{Q_{\mathbf{Y}}}\right) \right]^{rac{1}{1+\lambda}}$$

Since
$$\mathbf{y} = \mathbf{A} \, \theta + \mathbf{w}$$
, $P_{\mathbf{Y}|\theta_i} \sim \mathcal{N}(\mathbf{A}\theta_i, \sigma^2 \mathbf{I})$
Choose $Q_{\mathbf{Y}} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Then

$$D_{1+\lambda}(P_{\mathbf{Y}|\theta_i}||Q_{\mathbf{Y}}) = \frac{(1+\lambda)}{2\sigma^2} ||\mathbf{A}\theta_i||^2$$

We use a subset \mathcal{P} of the Candès-Davenport packing set with $M' = \frac{M}{\log M}$ elements such that

$$\max_{\theta_i \in \mathcal{P}} \|\mathbf{A}\theta_i\|^2 \leq \frac{\|\mathbf{A}\|_F^2}{n} (1+\delta) \quad \text{for some small } \delta > 0$$

Proposition:

For any $\lambda > 0$, $\Delta \in (0,1)$, and $M = (n/k)^{k/4}$, we have

$$arepsilon_{m{M}} \geq 1 - (1 + \lambda) \left(rac{(\log M) M^{-\Delta}}{\lambda}
ight)^{\lambda/(1 + \lambda)},$$

Proposition:

For any $\lambda > 0$, $\Delta \in (0,1)$, and $M = (n/k)^{k/4}$, we have

$$arepsilon_{m{M}} \geq 1 - (1 + \lambda) \left(rac{(\log M) M^{-\Delta}}{\lambda}
ight)^{\lambda/(1+\lambda)},$$

and

$$\begin{split} \mathsf{M}^*(\mathbf{A}) &= \inf_{\widehat{\theta}} \sup_{\theta \in \mathcal{F}_k} \mathbb{E} \left[\frac{1}{n} \| \widehat{\theta}(\mathbf{y}) - \theta \|^2 \right] \\ &\geq \frac{\sigma^2}{4 \|\mathbf{A}\|_F^2} \left(\frac{k}{4} \log \frac{n}{k} - 1 \right) \frac{(1 - \Delta)}{(1 + \lambda)} \varepsilon_{\mathbf{M}}, \end{split}$$

For large n we have

$$\mathsf{M}^*(\mathbf{A}) \geq rac{\sigma^2}{4\|\mathbf{A}\|_F^2} \left(rac{k}{4}\lograc{n}{k}
ight) (1-o(1)).$$

 Improvement of factor close to 8 over Fano argument of Candès-Davenport, which gave

$$\mathsf{M}^*(\mathbf{A}) \geq \frac{\sigma^2}{32\|\mathbf{A}\|_F^2(1+\beta)} \left(\frac{k}{4}\log\frac{n}{k} - 2\right).$$

► MSE of same order achievable with A that satisfies RIP ⇒ improvement beyond constant factors not possible

Density estimation

▶ Consider \mathcal{F} , set of probability densities θ on [0,1] such that

$$a_0 \le \theta \le a_1$$
 and $|\theta''(x)| \le a_2$

- We are given (Y_1, \ldots, Y_n) generated IID from θ .
- ▶ Wish to estimate density with $\widehat{\theta}_n = \widehat{\theta}_n(Y_1, \dots, Y_n)$.
- Measure performance by squared Hellinger distance

$$d(\theta,\widehat{\theta}_n) = \int_0^1 \left(\sqrt{\theta(x)} - \sqrt{\widehat{\theta}_n(x)}\right)^2 dx.$$

Wish to obtain lower bound on minimax risk $\inf_{\widehat{\theta}_n} \sup_{\theta \in \mathcal{F}} \mathbb{E} d(\theta, \widehat{\theta}_n)$

Packing set (see Yu '97)

Packing set consists of densities that are small perturbations of uniform density on $\left[0,1\right]$

Fix a smooth, bounded g(x) with

$$\int_0^1 g(x) dx = 0 \quad \text{ and } \quad \int_0^1 (g(x))^2 \, dx = a.$$

- ▶ Partition [0,1] into m subintervals of length 1/m
- ▶ Perturb uniform density in each subinterval by small amount proportional to rescaled version of *g*
- ▶ That is, for some *c* define

$$g_j(x) = \frac{c}{m^2} g(mx-j) \mathbb{I}\left(\frac{j}{m} \le x < \frac{j+1}{m}\right), \quad \text{for } j = 0, \dots, m-1.$$

Packing set (contd.)

▶ Hypercube class of 2^m densities

$$\left\{ f_{\tau}(y) = 1 + \sum_{j=0}^{m-1} \tau_{j} g_{j}(y) : \tau = (\tau_{1}, \dots, \tau_{m}) \in \{\pm 1\}^{m} \right\}$$

(In subinterval j, perturb uniform by either g_j or $-g_j$)

▶ Bandwidth parameter *m* chosen later to optimize lower bound

Packing set (contd.)

▶ Hypercube class of 2^m densities

$$\left\{ f_{\tau}(y) = 1 + \sum_{j=0}^{m-1} \tau_{j} g_{j}(y) : \tau = (\tau_{1}, \dots, \tau_{m}) \in \{\pm 1\}^{m} \right\}$$

(In subinterval j, perturb uniform by either g_j or $-g_j$)

▶ Bandwidth parameter *m* chosen later to optimize lower bound

Pick packing set corresponding to well-separated sequences in $\{-1,1\}^m$ (guaranteed by Gilbert-Varshamov)

- ▶ $A \subseteq \{-1,1\}^m$ whose elements have pairwise Hamming distance $\geq m/3$
- ▶ Size of $A \ge \exp(c_0 m)$, where $c_0 \simeq 0.082$
- ▶ Resulting packing set $\{f_{\tau}: \tau \in \mathcal{A}\}$ has minimum squared Hellinger distance $d_{\min} = ac^2/(3m^4)$ (see Bin Yu)

Using main theorem

For Q_Y uniform and $\lambda=1$ in main theorem, Rènyi term is

$$\left[\sum_{\boldsymbol{\tau}\in A}\frac{1}{M}\int_{[0,1]^n}f_{\boldsymbol{\tau}}^n(\mathbf{y})^2d\mathbf{y}\right]^{\frac{1}{2}}\leq \exp\left(\frac{c^2an}{2m^4}\right).$$

Proposition:

With $m = n^{1/5}/\nu$ for any positive constant $\nu < (c_0/(c^2a))^{1/5}$, the minimax risk satisfies

$$\inf_{\widehat{\theta}_n} \sup_{\theta \in \mathcal{F}} \mathbb{E} d(\widehat{\theta}_n, \theta) \ge \frac{c^2 a \nu^4}{6} n^{-4/5} \varepsilon_M,$$

where

$$arepsilon_M \geq 1 - 2 \exp\left(rac{-n^{1/5}}{2
u} \left(c_0 -
u^5 c^2 a\right)
ight).$$

▶ Bin Yu method uses same packing set + Fano, but gives ε_M bounded away from zero, not converging to 1

Summary

Lower bounds on minimax risk: packing set + lower bound on ε_{M}

- Computable via bounding Rényi divergence, gives strong converse
- Other example in paper: active learning of binary classifier
- Improvements over main theorem possible (Baraud arxiv:1807.05410)

Further work:

- Can this method give improved minimax rates, rather than just improved constants?
- Extend results to work with global metric entropy features [Yang-Barron '99], [Guntuboyina '11]

Paper in *Electronic Journal of Statistics* (OA), 2018 doi: 10.1214/18-EJS1419

https://arxiv.org/abs/1706.04410

