

Abstract + Platform

Sunspots are regions where magnetic field influx suppresses solar convections.

Sunspot data are important because they comprehend the characteristics of the Sun and similar stars, and provide a possible way to classify them.

The project further prove the correspondence between solar magnetic field strength and sunspot number.

It mainly demonstrates the relationship between solar magnetic field strength and sunspot number.

We are going to use Hadoop MapReduce and Hive (both in NYU Peel Cluster) to organize data, and Excel to visualize the Solar Cycle.

Motivation + User Target + Importance

The Sun is the closest star to our Earth. It is one of the main factors why Earth is formed in its own unique way of providing a suitable environment for organisms and even civilizations to exist. It is even set as one of the requirements of finding a twin Earth or new Earth. So, to study the characteristics of the Sun is important, and to examine the polar reversal (solar cycle) of the Sun is crucial. Knowing this trait of the Sun, astronomers can detect similar stars without looking closely at them. They can even detect a "second Earth" through the locality of "a second Sun".

Kepler-186 f

Earth

Goodness + Steps taken to access the goodness of analytic

The goodness of fit of the result of our project is high due to that it is almost an universal acknowledgement to use sunspot number as a way to demonstrate Solar Cycle, and solar magnetic field is the cause of sunspot area.

Here are some related works that are published in authoritative websites

- The Solar Flux and Sunspot Number; A Long Trend Analysis
- On Polar Magnetic Field Reversal in Solar Cycle 21, 22, 23, and 24
- Wikipedia: Solar cycle
- Stanford Solar Center: Solar Eclipse

Data Source: Sunspot Number Data

Source Link:

http://wso.stanford.edu/#MeanField

Original Data Format:

year, month, day, date, sunspot number, standard deviation, number of observations, provisional indicator

Normalized Data Format:

year, month, day, sunspot number

What does it demonstrate:

Sunspot number per day

Source Link:

http://wso.stanford.edu/#MeanField

Original Data Format:

day, month (January - December) / year

Normalized Data Format: year, month, day, number

What does it demonstrate:

Magnetic field strength (if recorded) of the Sun per day

Stanford Mean Solar Magnetic Field (microTesla)

1992

	1992											
	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
day					_			2.0				
01	-97	-6	73	53	7	14	8	39	88	•	19	-16
02	-78	25		25	0	17	17	60	67	•	-5	•
03	-45	72	61	10	-1	23	13	58	43	•	-24	
04	•	8	78	0	21	47		58	-22	•	-41	-39
05	53	28	•	-14	25	52	33	46	-27	•	-57	-38
06				-13	32	17	39	38	-18		-47	
07	•	1.01	27	11	43	-5	21	37	13	4	-47	-20
08	104		19	21	43	-12	18	-4	24	-17		
09	101		-3	1	33	-12	29	-4 -45	19	-17 -40	-29	•
10	125		-3 15	_7	15	-18 -18	39	-45 -44	29	-40 -68	-29 -7	•
10	125	•	15	-/	15	-18	39	-44	29	-08	-7	•
11	145		17		-13	-2		-10	-18	-57	-1	
12	126	7	8		-19	20		-2	-25	-31	-5	-50
13	102		28	-34	-30	20	-55	10	-53	-38	-16	-41
14	54			-61	-44	18	-46	9	-46	-29	-24	-15
15	37			4	-50	6	-16	34	-33	-33	-23	8
16	12			-81	-14	-18	2	14	-30	-14	-19	11
17	-21		-31	-138	25	-13	8	-19	-26	-5	20	
18	-43		-54	-121	•	-19	24	-4	-26	-13	57	6
19	-46			-59	21	12	25	11	-9			-9
20	-20	-33		-42	28	35	-31	-14	-13	-5	•	
										-		
21		•	•	-19	39	23	-56	-12	-22	24	-2	-3
22	-6	-34	•	-9	35	10	-55	-17	-23	34	•	11
23	-16	-75	-50	3	62	-21	-59	-3	-1	66	-9	42
24	0	-64	13	20	88	-50	-55	-6	17	65	•	57
25	-46	-11	40	46	85	-45	-42	1	54	47	•	49
26	-36	75	40	70	50	-36	-26	4	79	20		40
27	-113	58	39	72	-64	-11	-20 -5	25	85	-7	60	•
28	-126	63	55	49	-51	-11	1	55	60	-,	62	·
29	-115	•		42	-27		4		39		55	•
30	-74	•	:	27	-13	17	-1	101	7	-14	11	-59
31	-/4		82	21	-13	17	-1 -5	97	,	22	11	-39
31	•		02		0		-5	31		22		•

Data Source: Solar Corona Data

Source Link:

http://wso.stanford.edu/#MeanField

Original Data Format: day, month (January - December) / year

Normalized Data Format: year, month, day, number

What does it demonstrate: Solar coronal index change

			Fill-Disk Fe Emission (530.3 nm)							Units=10**16 W/s			
										0ct			
1	16.04	14.26	14.23	13.62	12.18	9.58	8.45	8.48	8.79	8.36	8.88	10.6	
2			14.33		12.06			9.18	9.00	8.91	8.33		
3	16.99	12.76	14.26	13.28	11.63	9.94	8.81	9.17	8.93	9.17	8.49	9.8	
4	17.90	13.02	14.12	12.97	11.19	9.98	8.86	10.10	8.79	9.03	8.13	9.6	
5	17.22	12.74	14.25	12.62	10.94	9.75	9.51	10.36	8.55	8.85	8.43	9.4	
6	16.18	12.82	14.32	12.38	10.41	10.20	11.20	10.15	8.75	9.03	8.33	9.6	
7	15.46	12.87	13.88	12.11	11.19	11.12	11.57	10.95	8.41	9.18	8.31	10.2	
8	14.96	13.25	13.86	11.45	11.55	9.91	11.63	11.16	8.47	9.38	8.22	9.4	
9	14.92	14.08	13.77	11.86	12.00	11.21	10.66	9.92	8.43	8.86	9.49	9.5	
10	14.78	14.64	13.92	11.53	12.43	11.86	11.44	10.38	8.69	8.57	8.50	9.0	
11	14.02	13.64	13.81	11.53	12.98	11.32	11.41	10.36	9.03	8.44	9.71	10.2	
12	13.34	12.66	13.40	12.08	12.83	11.63	11.41	10.17	8.63	8.59	8.66	10.6	
13	12.98	12.85	12.65	12.68	13.65	12.06	10.93	10.89	8.26	8.42	8.81	10.6	
14	12.71	13.01	12.80	12.77	14.02	11.56	10.65	11.28	8.55	8.21	8.94	11.2	
15	11.93	12.81	13.00	13.08	14.30	11.24	10.30	10.26	8.59	8.28	8.91	11.1	
16	11.98	12.24	13.68	13.26	13.22	10.50	10.38	9.84	9.04	7.99	8.91	9.6	
17	11.60	11.66	13.91	13.77	14.07	10.49	9.97	9.42	9.64	7.89	9.21	12.0	
18	12.00	12.02	14.26	14.11	13.51	10.47	10.14	9.10	9.49	7.80	9.69	11.8	
19	11.98	12.76	13.79	15.23	13.83	10.54	10.08	9.61	9.32	7.79	9.31	11.3	
20	11.93	13.22	14.65	14.49	13.45	10.21	9.08	8.40	9.53	7.65	9.11	11.2	

CORONAL TNDEX OF SOLAR ACTIVITY

1992

Design Diagram

Code Challenge

MapReduce Formatting

Concatenation of files

output_all_mag.txt

1992,1,1,-97

1992,1,10,125

1992,1,11,145 1992,1,12,126 1992,1,13,102 1992,1,14,54

1992, 1, 15, 37

1992,1,16,12

1992,1,17,-21

1992,1,18,-43

1992,1,19,-46

1992,1,2,-78 1992,1,20,-20

1992,1,21,.

1992,1,22,-6

1992,1,24,0 1992,1,25,-46

1992,1,23,-16

1992,1,26,-36

1992,1,27,-113

1992,1,28,-126

1992,1,29,-115 1992,1,3,-45

1992.1.30.-74

1992,1,31,.

1992, 1, 5, 53

1992,1,4,.

1992,1,6,.

1992,1,7,. 1992,1,8,104

Visualization Sunspot Number

Cycle 23 Max: 341 Cycle 23 Min: 0

Cycle 23 Avg: 58.104

Cycle 24 Max: 353

Cycle 24 Min: 0

Cycle 24 Avg: 84.153

Cycle 25 Max: 220

Cycle 25 Min: 0

Cycle 25 Avg: 44.799

Visualization: Luminosity

Visualization: Solar Magnetic Field Strength

Obstacle

Missing year data (1985 - 1992; 2008 to 2021) for constructing correct sunspot number and luminosity trend for Cycle 23, 24, 25

Fail to predict future since Cycle 24 is anomalous as it had way less number of solar influx (and we still don't know why)

Summary

Solar Cycle happens every 10-11 years

There exists a positive relationship between sunspot number and solar magnetic field strength, and a negative relationship between sunspot number and solar luminosity (i.e. coronal index)

Specifically, the stronger the magnetic field force, the weaker the solar influx, therefore the more possible that there is a sunspot (or "cool region") present

Since the number of solar influx has a negative relationship with the sunspot number while having a positive relationship with the luminosity, we may also deduce that the greater the sunspot number, the "darker" the Sun's surface (the weaker the Sun's luminosity)

SOLAR MINIMUM

SOLAR **MAXIMUM**

Acknowledgement

We'd like to express our greatest gratitude to Professor Malavet for her teaching of Big Data tools and giving us this opportunity to work on our interest, and NYU HPC Peel platform administrators for providing us a convenient way for data analysis.

We would also like to thank Royal Observatory of Belgium for publishing sunspot number data. The Wilcox Solar Observatory for solar magnetic field data, and National Centers for Environmental Information for solar coronal index data.

Reference

- The Solar Flux and Sunspot Number; A Long Trend Analysis
- On Polar Magnetic Field Reversal in Solar Cycle 21, 22, 23, and 24
- Wikipedia: Solar cycle
- Stanford Solar Center: Solar Eclipse
- Sunspot Number Data
- Solar Magnetic Field Data
- Solar Coronal Index Data

