Cognitive Algorithms Assignment 1

Part 1 - Linear Algebra Recap

Due on Tuesday, May 2, 2017 10am via ISIS

Task 1 (8 points)

- 1. Compute the scalar product of the following vectors $\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$.
 - \square 3 \Box 5
- 2. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ be two column vectors. Which of the following statements is always true?
 - $\Box \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
 - $\nabla \mathbf{v}^T \cdot \mathbf{w} = \mathbf{w}^T \cdot \mathbf{v}$
 - $\nabla \mathbf{v} \cdot \mathbf{w}^T = \mathbf{w} \cdot \mathbf{v}^T$
- 3. The mapping $f: \mathbb{R}^2 \ni (x,y)^\top \mapsto (x+y,y-x)^\top \in \mathbb{R}^2$ is given by the following matrix:
 - $\Box \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$
- $\square \left(\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right) \qquad \square \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right)$

 \Box 7

- 4. Which property does matrix multiplication *not* have?
 - \triangle Associativity: (AB)C = A(BC)
 - \Box Commutativity: AB = BA
 - \square Distributivity: (A+B)C = AC + BC
- 5. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ two column vectors with $A \cdot \mathbf{v} = \mathbf{w}$. Which of the following statements is always true?
 - $\Box A = \mathbf{w} \cdot \mathbf{v}^{-1}$
- $\square \mathbf{v} = \mathbf{w} \cdot A^{-1}$
- $\mathbf{v} \cdot \mathbf{v} = A^{-1} \cdot \mathbf{w}$

- 6. The rank of the matrix $\begin{pmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{pmatrix}$ is
 - $\boxed{2} 1$

 \square 3

 \Box 4

- 7. For a square $n \times n$ matrix A holds
 - \square rank $A = n \Rightarrow A$ is invertible, but there are invertible A with rank $A \neq n$
 - \Box A is invertible \Rightarrow rank A = n, but there are A with rank A = n, which are not invertible.
 - \square rank $A = n \Leftrightarrow A$ is invertible

8. Which of the following matrices is orthogonal:

$$\square \, \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \qquad \qquad \square \, \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) \qquad \qquad \square \, \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right)$$

Task 2 (3 points)

We consider two functions f and g which transform an input vector $\mathbf{x} = (x_1, \dots, x_d)^{\top} \in \mathbb{R}^d$ into a scalar: $f(\mathbf{x}) = \mathbf{u}^{\top} \mathbf{x}$, $\mathbf{u} = (u_1, \dots, u_d)^{\top} \in \mathbb{R}^d$ and $g(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$.

1. Compute the partial derivative of f and g with respect to one entry x_i $(j \in \{1, 2, ..., d\})$

(a)
$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \mathbf{u}$$

(b)
$$\frac{\partial g(\mathbf{x})}{\partial x_j} = {}^{2xj}$$

2. Compute the gradient $\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_d}\right)^{\top}$ for f and g.

(a)
$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_d}\right)^{\top} = \text{(u1,u2,...ud)}$$

(b)
$$\nabla g(\mathbf{x}) = \left(\frac{\partial g(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial g(\mathbf{x})}{\partial x_d}\right)^{\top} = \text{(x1,x2,...,xd)}$$

Task 3 (4 points)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ Eigenvectors of A corresponding to Eigenvalues $\lambda, \mu \in \mathbb{R}$, with $\lambda \neq \mu$. (Recall the definition of Eigenvectors: $A\mathbf{v} = \lambda \mathbf{v}$ and $A\mathbf{w} = \mu \mathbf{w}$)

Show: \mathbf{v} and \mathbf{w} are orthogonal, i.e. $\mathbf{v}^{\top}\mathbf{w} = 0$.

Hint: $\lambda \mathbf{v}^{\top} \mathbf{w} = \dots$

$$\lambda v'w = (\lambda v)'w = (Av)'w = (Av)'w = (v'A')w$$

because of A is a symmetric matrix, A = A'

We can get $\lambda v'w = (v'A)w$

$$\mu v'w = (Aw)v'$$

we can get $\lambda v'w = \mu v'w$, so v'w = 0

shows the v and w are orthogonal

v' means the transpose of v