Predicting response to a Bank telemarketing campaign

Jillian Etheredge

Goal of the model:

Predicting which potential customers will sign up for a term deposit account

- Maximize time efficiency
- Reach more people likely to sign up
- Increase campaign success rates

About the Data:

- UCI's Bank Marketing Data
 - Portugese Bank
 - May 2008- November 2010
- Types of Information in the Data:
 - Client Information
 - Marketing Campaign Data
 - Previous
 - Current
 - Social/Economic Context Data

Interesting Demographic Information

Noticeable trends with signing up:

- 31% of students and 25% of retired customers
- 16% of young adults and 40% of seniors
- 15% of cell phone users vs 5% of landline users
- None with >23 contacts

Comparison of Model Performance

- Catboost Classifier
- ROC AUC: **0.822**
- F1 Macro: **0.66**
- Accuracy: **0.81**

Insights and Recommendations

- Features of highest importance are mostly social/economic context features
- Campaign contacts and education were important features for multiple models

Catboost Feature Importance

Future Improvements

- Add more economic data
- More tuning with Catboost
- Ensemble models
- Create flask app

Questions?

Appendix

Client Data

- Age
- Job
- Marital Status
- Education
- Loan Default
- Housing Loan
- Personal Loan
- Employment *
- Age Group *

Campaign Data

- Contact Method
- Last contact Month
- Last contact Weekday
- Duration of call
- Number of contacts
- Days since last contact from previous campaign
- Number of contacts from previous campaign
- Outcome of previous campaign
- Contact year *
- Contact season *

Social/Economic Data

- Employment variation rate
- Consumer price index
- Consumer confidence index
- 3 month EURO InterBank
 Offer Rate
- Number of employees

* Engineered Feature

Model	ROC AUC	F1 Macro Threshold=0.5	Accuracy
Dummy (Baseline)	0.500	0.47	0.89
Logistic Regression	0.793	0.65	0.79
Catboost	0.822	0.66	0.81
Bernoulli Naive Bayes	0.771	0.63	0.79
Random Forest	0.789	0.68	0.84
Balanced Random Forest	0.792	0.66	0.81
Xgboost	0.790	0.67	0.83

Logistic Regression

Logistic Regression Confusion Matrix

Catboost Classifier

Bernoulli Naïve Bayes

Random Forest Classifier

Random Forest Confusion Matrix

Balanced Random Forest

Balanced Random Forest Confusion Matrix

XGBoost

XGBoost Confusion Matrix

importance

0.005

0.010

0.015

Feature Importance

0.020

0.025

Consumer Price Index

Employment

0.000