# Introduction to inference

## Population vs. Sample

- Population is set of entities with some common feature.
- Sample is a representative subset of the population. It must be chosen according to:
  - Unbiasedness: same probability
  - Representativeness: same proportion
  - Dimension

• Random sample: All elements of the population have the same probability of being chosen.

### Population Probability Distribution

• Population probability distribution is the list of values and corresponding probabilities that a population can have.

| X  | abs. freq. | Pr(x)      |
|----|------------|------------|
| 5  | 1          | 1/5        |
| 7  | 2          | 2/5        |
| 8  | 1          | 1/5        |
| 12 | 1          | 1/5        |
|    | N=5        | $\sum = 1$ |

• From the population probability distribution we can compute parameters, such as mean  $\mu$  and standard deviation  $\sigma$ .

### Normal Distribution

• The normal distribution is a continuous probability distribution with two parameters:  $\mu$  and  $\sigma$ .



• The standard normal population can be used to compute the probability of a given interval for any  $\mu$  and  $\sigma$ .

### Standard Normal Distribution

• The standard normal distribution is a normal distribution with  $\mu = 0$  and  $\sigma = 1$ .

• Normal distributions can be **transformed** to the standard normal distribution by the formula:

$$Z = \frac{x - \mu}{\sigma}$$

where *x* is the score from the original distribution

#### Standard Normal Distribution

• The probabilities associated to the standard normal distribution are tabulated. (more about this later on)



$$Pr(4 \le X \le 5) = ?$$



$$Pr(-2.5 \le Z \le -1.25) = 9.94\%$$

## Sampling distributions

- A sample  $x_1$ , ...,  $x_n$  is a representative subset of the population.
- Each element  $x_i$  is a random variable. Thus, each  $x_i$  has the same probability distribution of the population.
- The sample mean  $\bar{x}$  changes according to the sample.
- Then,  $\bar{x}$  is also a random variable and it has a probability distribution.

• Consider all samples of 3 elements (there are  $\binom{5}{3}$ = 10 possible samples) and compute the sample mean for each one.

| $ar{x}$ | abs. freq. | $Pr(\bar{x})$ |
|---------|------------|---------------|
| 6.(3)   | 1          | 1/10          |
| 6.(6)   | 2          | 2/10          |
| 7.(3)   | 1          | 1/10          |
| 8       | 2          | 2/10          |
| 8.(3)   | 1          | 1/10          |
| 8.(6)   | 1          | 1/10          |
| 9       | 2          | 2/10          |
|         | N=10       | $\sum = 1$    |

• Mean of the sampling distribution of means  $(\mu_{\bar{x}})$  is equal to  $\mu$ :

$$\mu_{\bar{x}} = \mu$$

• Standard deviation of the sampling distribution of means  $(\sigma_{\bar{x}})$  is equal to  $\sigma$ , divided by the root square of sample size (n):

$$\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$$

Note: there is a correction of  $\sigma_{\bar{x}}$  for large samples

• If a given population follows a normal distribution with mean  $\mu$  and standard deviation  $\sigma$ , then the sampling distribution of means also follows a normal distribution with the following parameters:

$$\mu_{\bar{x}} = \mu$$
 and  $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ 

Example: The time of user connection to my blog follows a normal distribution with a mean of 6 minutes and a standard deviation of 4 minutes. In a random sample of 25 user connections, which is the probability that they take between 4 and 5 minutes, in average?

$$\mu_{\bar{x}} = \mu = 6$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{4}{5}$$



$$\Pr(4 \le \bar{x} \le 5) = ?$$

Example: The time of user connection to my blog follows a normal distribution with a mean of 6 minutes and a standard deviation of 4 minutes. In a random sample of 25 user connections, which is the probability that they take between 4 and 5 minutes, in average?

$$\mu_{\bar{x}} = \mu = 6$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{4}{5}$$



Pr 
$$(-2.5 \le Z \le -1.25) = 9.94\%$$

• If a given population with **unknown distribution** with mean  $\mu$  and standard deviation  $\sigma$ , then the sampling distribution of means, for **increasing** n, also follows a normal distribution with the following parameters:

$$\mu_{\bar{x}} = \mu$$
 and  $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ 

Also known as the Central Limit Theorem

Example: The time of user connection to my blog follows an unknown distribution with a mean of 6 minutes and a standard deviation of 4 minutes. In a random sample of **36** user connections, which is the probability that they take between 4 and 5 minutes, in average?

$$\mu_{\bar{x}} = \mu = 6$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{4}{6}$$



$$\Pr\left(4 \le \bar{x} \le 5\right) = 6.55\%$$