Lagrangeův interpolační polynom

• Zadání:

Máme zadané diskrétní funkční hodnoty nějaké funkce f v několika bodech x_0, \ldots, x_n . Těmito hodnotami chceme proložit polynom L(x), který bude samozřejmě stupně nejvýše n.

Například pro 1 bod to bude konstantní funkce, pro 2 body přímka (nebo konstantní funkce, pokud budou funkční hodnoty v obou bodech stejné), pro 3 body parabola (případně přímka nebo konstantní funkce), atd.

• Příklad:

Zkusme proložit jednoduchý Lagrangeův interpolační polynom body zadanými dle tabulky

i	0	1	2	3
x_i	-4	-1	0	2
$f(x_i)$	-28	-16	-36	-40

Máme 4 body, hledáme tedy polynom stupně nejvýše 3. Postup je následující.

- Zkonstruujeme čtyři pomocné polynomy třetího stupně, z nichž každý se bude v jednom z bodů x_i rovnat zadané funkční hodnotě $f(x_i)$ a v ostatních třech bodech bude roven nule.
- Polynomy sečteme. Tím dostaneme polynom který je opět 3. stupně a má požadované vlastnosti, tedy prochází všemi čtyřmi body.

Sestavíme první pomocný polynom $l_0(x)$ výše uvedených vlastností. Body x_1, x_2, x_3 , ve kterých má být nulový, budou jeho kořeny, a tedy jeho tvar bude

$$l_0(x) = \boxed{?} \times (x - x_1)(x - x_2)(x - x_3),$$

kde ? určíme z požadavku, aby se polynom v bodu x_0 rovnal hodnotě $f(x_0)$, tedy

$$l_0(x_0) = ? \times (x_0 - x_1)(x_0 - x_2)(x_0 - x_3) \stackrel{!}{=} f(x_0),$$

a proto

$$\boxed{?} = \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)},$$

takže první pomocný polynom bude

$$l_0(x) = \frac{f(x_0)(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}.$$

Podobně zkonstruujeme ostatní pomocné polynomy:

$$l_1(x) = \frac{f(x_1) (x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)},$$

$$l_2(x) = \frac{f(x_2) (x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)},$$

$$l_3(x) = \frac{f(x_3) (x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}.$$

Hledaný Lagrangeův interpolační polynom je pak jejich součtem

$$L(x) = l_0(x) + l_1(x) + l_2(x) + l_3(x).$$

Pro konkrétní hodnoty dané v tabulce máme pomocné polynomy

$$l_0(x) = \frac{-28(x - (-1))(x - 0)(x - 2)}{(-4 - (-1))(-4 - 0)(-4 - 2)} = \frac{7}{18}x(x + 1)(x - 2)$$

$$l_1(x) = \frac{-16(x - (-4))(x - 0)(x - 2)}{(-1 - (-4))(-1 - 0)(-1 - 2)} = -\frac{16}{9}x(x + 4)(x - 2)$$

$$l_2(x) = \frac{-36(x - (-4))(x - (-1))(x - 2)}{(0 - (-4))(0 - (-1))(0 - 2)} = \frac{9}{2}(x + 4)(x + 1)(x - 2)$$

$$l_3(x) = \frac{-40(x - (-4))(x - (-1))(x - 0)}{(2 - (-4))(2 - (-1))(2 - 0)} = -\frac{10}{9}x(x + 4)(x + 1)$$

a Lagrangeův polynom

$$L(x) = 2x^3 + 4x^2 - 18x - 36 = 2(x+3)(x-3)(x+2)$$

jejichž průběh si můžete prohlédnout na následujícím obrázku.

• Obecný tvar:

Jak jsme viděli výše, Lagrangeův interpolační polynom n-tého stupně lze obecně zapsat jako

$$L_n(x) = \sum_{i=0}^n f(x_i) \Gamma_i(x),$$

kde

$$\Gamma_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}.$$

Lagrangeův polynom lze také zapsat jako (viz přednášky)

$$L_n(x) = \sum_{i=0}^n f(x_i) \frac{\omega_n(x)}{(x - x_i) \,\omega'_n(x_i)},$$

kde jsme označili

$$\omega_n(x) = \prod_{i=0}^n (x - x_i) = (x - x_0)(x - x_1) \dots (x - x_n).$$

Snadno lze ověřit, že derivace funkce $\omega_n(x)$ v bodu x_i , tedy $\omega_n'(x_i)$ je dána vztahem

$$\omega'_n(x_i) = (x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n),$$

tedy v podstatě odpovídá funkční hodnotě $\omega_n(x_i)$ s vynecháním jednoho členu.