

Brian Kent Dato, Inc

What is clustering?

 Grouping data instances

- *Similar* instances together
- No target variable

What is clustering?

 Grouping data instances

- *Similar* instances together
- No target variable

Why cluster?

- Wikipedia:
 - "It is a main task of exploratory data mining, and a common technique for statistical data analysis"
- ok, but why?
 - explore and visualize complex data
 - reduce data scale
 - detect outliers (and other anomalies)
 - deduplicate records
 - segment a market

Today's takeaways

- K-means isn't always a good option
- Density-based clustering is an alternative
 - **DBSCAN** is the most popular form
 - . Level Set Trees are even more powerful
- Demos with scikit-learn, GraphLab Create, and DeBaCL

K-means is the default

- A very simple algorithm
- Lots of resources

- Lots of implementations
- Scales to very large datasets
 - Especially with the Elkan and minibatch implementations

K-means isn't the only answer

How to choose K?

- Sometimes choosing K is impossible.
- Spherical, convex clusters only.

 Premise: data is drawn from a probability density function (PDF).

- Premise: data is drawn from a probability density function (PDF).
- Use the data to estimate the PDF.

 Choose a threshold and get the upper level set.

 Choose a threshold and get the upper level set.

 Find connected components of the upper level set.

 Intersect the data with the connected components.

- Intersect the data with the connected components.
- Assign points to the corresponding cluster.

Pros and cons

- Recovers more complex cluster shapes.
- Don't need to know K.
- Automatically find outliers.
- Requires a distance function.
- Not as scalable as K-means.
- ...
- It's impossible.
 - Can't compute topologically connected components.

DBSCAN leads the pack

- Density-Based Spatial Clustering of Applications with Noise (Ester, et al. 1996)
- Test of Time award at KDD 2014.
- 7,400 citations on Google Scholar.
- Main idea:
 - three types of points: core, boundary, noise
 - connect core points into clusters
 - assign boundary points to clusters

DBSCAN Visualization

http://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Demo: DBSCAN in Scikit-learn

Notebook available at:

https://github.com/papayawarrior/public_talks

DBSCAN in GraphLab Create

- Built on scalable SFrame and SGraph data structures.
- Composite distances for varied feature types.
- Construct a similarity graph directly.
 - Permits a more efficient algorithm.
- Not open source, but free for non-commercial use.

Demo: DBSCAN in GraphLab Create

Notebook available at:

https://github.com/papayawarrior/public_talks

Level Set Trees are better than DBSCAN

- How to choose the density level (i.e.min_neighbors)?
- Changing levels means starting from scratch.
- Level Set Trees (LSTs) describe the entire hierarchy of density-based clusters.
 - Retrieve clusters in different ways without re-computing
 - Each cluster can have a different density level
 - Visualization of high-dim or complex data structure

- Estimate the PDF at each data point.
- Construct a similarity graph on the data.
 - Vertices are data points.
 - Edges represent near neighbors.
- Remove vertices in order of estimated density.
- Compute the connected components at each level.
 - Keep track of components between levels.

• Estimate the density.

- Estimate the density.
- Construct a similarity graph.

Demo: level set trees with DeBaCl

Notebook available at:

https://github.com/papayawarrior/public_talks

LSTs shine with complex data

LSTs shine with complex data

DeBaCl builds level set trees

- DeBaCl: DEnsity-BAsed CLustering
- pip install debacl
- https://github.com/coaxlab/debacl
- Help wanted!

Wrap-up

- K-means isn't always the best option.
- Density-based clustering can be a good alternative.
- DBSCAN is the most popular form.
 - Scikit-learn, GraphLab Create
- Level set trees are even more powerful.
 - DeBaCL
 - Help on DeBaCl is very welcome!

Thanks!

