Listu 7.

- 1. Sean G un grupo y X un conjunto no vacío. Pruebe que G actúa sobre X si, y sólo si existe una función ψ de $G\times X$ en X tal que para cada $g,h\in G$ y para cada $x\in X$
 - $a) (gh) \cdot x = g \cdot (h \cdot x);$
 - $b) e \cdot x = x;$
 - $c) g \cdot X = X,$

donde, por notación, $g \cdot x := \psi(g, x)$ y $g \cdot X = \{g \cdot x \mid x \in X\}.$

Dem:

 \Rightarrow) Suporga que Gactúa sobre \overline{X} , entonces existe un homomorfismo $\forall: G \to S_{\overline{X}}$ Defina $\forall: G \times \overline{X} \to \overline{X}$ como:

$$\forall g \in G \ y \ \chi \in \overline{X}, \ \forall (g,\chi) := g \cdot \chi = \varphi(g)(\chi) = \varphi_g(\chi)$$

Claramente Yestú bien definida Veamos que:

a) Sean g, he G y x \(\overline{X}, entonces:

$$(gh) \cdot x = Q(gh)(x)$$
, como Q es homomortismo:

$$= \varphi(g) \circ \varphi(h)(x)$$

$$= \mathcal{Q}(g) \left(\mathcal{Q}(h)(\chi) \right)$$

$$= \varphi(q)(h \cdot x)$$

$$= g \cdot (h \cdot x)$$

b) Sea xe X:

$$e \cdot x = \ell(e)(x)$$
, como $\ell(e) = i d_{\overline{X}}$, entonces:
= $i d(x)$

$$=\chi$$

c) Seu ge G. Entonces:

$$q.\overline{X} = \{q.x | x \in \overline{X} \}$$

=
$$\{ \ell_5(x) \mid x \in \overline{X} \}$$
, como $\ell_5 \in S_{\overline{X}}$, entonces es biyección

€) Suponga que 3 4: 6 x X → X tal que se cumple lo anterior. y ge 6, seu 45:

X -> X dava como:

$$\forall \chi \in X, \varrho_g(\chi) = \Psi(g,\chi) := g. \chi$$

Claramente, ly estúbien definida. Sea ahora l: G -> Sx dada como: l(g) = ly l g e G

Vecmos que l'esté bien desinide. Seu geh y considere l(g) = lg. Probare-mos que le ESZ.

il ly es injective

Seun $x, y \in \overline{X}$ m (y(x) = (g(y), entonces)

$$\Rightarrow g \cdot x = g \cdot y \text{ aplicando } (g')$$

$$\Rightarrow \forall g \cdot (g \cdot x) = \forall g' (g \cdot x)$$

$$\Rightarrow g' \cdot (g \cdot x) = g' (g \cdot x)$$

$$\Rightarrow (g'y) \cdot x = (g'y) \cdot y$$

$$\Rightarrow x = y \pmod{b}$$
.

ii) les er suprayective.

Sea XE X. Como g. X = X, 3 y E X M

$$g \cdot \gamma = \chi$$

$$\Rightarrow \Psi(g, \gamma) = \chi$$

$$\Rightarrow \Psi(g, \gamma) = \chi$$

Por il y ii), $\ell_g \in S_{\mathbb{X}}$. Claramente si $g = g' \Rightarrow \ell_g = \ell_{g'} \Rightarrow \ell(g) = \ell(g')$ Luego, ℓ estú bien detin; du. Probaremos que es homomortismo.

Sean g, he G, entonces:

$$\forall x \in \overline{X}, \ \Psi(gh)(x) = (gh) \cdot x, \ por \ \alpha$$

$$= g \cdot (h \cdot x)$$

$$= \Psi(g)(h \cdot x)$$

$$= \Psi(g)(\Psi(h)(x))$$

$$= \Psi(g) \circ \Psi(h)(\chi)$$

por tunto: $\Psi(gh) = \Psi(g) \circ \Psi(h)$. As: Ψ es un homomortismo de h en $S_{\overline{X}}$. Por tunto, h actúa sobre \overline{X} .

4.0.U.

2. Pruebe que la relación $\sigma \cdot k = \sigma(k)$ para cada $\sigma \in S_n$ y para $k \in \{1, \ldots, n\}$, determina una acción de S_n en el conjunto $\{1, \ldots, n\}$.

Dem:

Seu Y: Sn x Jn -> Jn duda como:

Veamos que la relación anterior determina una acción de Sn sobre Jn. En etecto:

a) Sean o, TreSny KEJn, entonces:

$$= \circ \circ (\bot \cdot \mathsf{K})$$

$$= \circ \circ (\bot \cdot \mathsf{K})$$

$$= \circ \circ (\bot \cdot \mathsf{K})$$

b) Sea id = Sny KE Jn, enlonces:

$$= K$$

$$= \chi q^{2}(K)$$

c) Sea or Sn, como or es biyectivu:

$$\overline{J}_{n} = \{ \sigma(K) | K \in \overline{J}_{n} \}$$

$$= \sigma \circ \overline{J}_{n}$$

Por al-c) Sn actua sobre Jn.

9.0.d

- 3. Sean $H,\,K$ subgrupos de un grupo G. Pruebe lo siguiente:
 - a) $hKh^{-1} \cong K$, para cada $h \in H$;
 - b) Sea $X=\{L\mid L< G\}$. La relación $h\cdot L=hLh^{-1}$ para cada $h\in H$ y para cada $L\in X$, determina una acción de H en X. Calcule las órbitas y estabilizadores. ¿Cuántos elementos tienen las órbitas? ¿Cuántos puntos fijos tiene?

```
Dem:
De a):
   Sea heH. Considere J: K-> hKh dada como:
                     A Kek, J(K) = HKh;
   Claramente d'estú bien definida. Veamos que es :somortismo:
   i) Sean K. K2 ∈ K m & (K, ) = } (K2):
                    f(K1) = f(K2) => hK, h = hK2h-1
                                => K, = K2
  Jea hKhiEhKhi ] KEKM
                        J(K) = hKh
  Sean K, Kz & K. Entonces:
                       J(K, K2) = hK, K, h '
                              = (hK,h')(hK_2h')
                              = 7(K')7(K<sup>3</sup>)
 Por il-iii) fes isomortismo Asi K & hKh-
De b):
   Veamos que la relución determina una acción.
  ir) Sean h,h, Et! Veamos que:
        \forall L \in \overline{X}, (hh.) \cdot L = hh. L(hh.)^{-1}
                             =h(h, 2h, 1)h^{-1}
                             = h. (h. L h. ) pues h. L h. e X
                             =h\cdot(h\cdot\lambda)
  V) Sea e EH y 2 E X entonces:
```

e. L = e Le = e Le = L

vi) Sea he H. Veumos que:

$$h \cdot \overline{X} = \{ h 2 h' \mid \lambda \in \overline{X} \}$$

Por iv - vi) Hactáu sobre X.

Veumos lus órbitus. Seu C lu órbitu de H en X con representante 2 ∈ X. Enton ces:

$$C_{z} = \{ M \in \overline{X} \mid M = h \cdot L \text{ para algun } h \in H \}$$

$$= \{ M \in \overline{X} \mid M = h \cdot L h^{-1} \text{ para algun } h \in H \}$$

$$= \{ h \cdot L h^{-1} \mid h \in H \}$$

S: $H \subseteq 2$, entonces hLh' = L (field de probar). Entonces $C_2 = \{L\} = \sum_{i=1}^{n} L \in \mathbb{X}^{H}$. De estu Jorma:

$$H_{\lambda} = \{ h \in H \mid \lambda \cdot L = L \} = H$$

9.e.d.

4. Sea G un grupo y N un subgrupo normal abeliano. Pruebe que G/N actúa sobre N por conjugación.

Dem:

Y ge (detinimos la acción:

(Ny)·n = gng', V neN.

Veamos que está bien detinida. Sea ye (ny neN, como NaG, gng eN, as: (Ng).

Sean ahoru g, gz e (m Ng, = Ngz, entonces] me N m g, gi = m => g, = mgz.
asi, s: ne N:

$$(Ng_{1}) \cdot n = g_{1} \cdot ng_{1}^{-1} = mg_{1} \cdot ng_{2}^{-1} \cdot m^{-1}$$

Como N es abeliano:

=
$$m \cdot m^{1} \cdot g_{2} \cdot ng_{2}^{1}$$
, purs $g_{2} \cdot ng_{2}^{1} \in \mathbb{N}$.
= $g_{2} \cdot ng_{2}^{-1}$
= $(Ng_{2}) \cdot n$

Asi, la relación $Y(Ng,n) = Ng \cdot n$ está bien definida. Veamos quo:

a) Sean y, y2 e G y n ∈ N. Entonces:

$$(N_{g_1} N_{g_2}) \cdot n = (N_{g_1} g_2) \cdot n$$

$$= g_1 g_2 n g_2 g_3$$

$$= g_1 (N_{g_2} \cdot n) g_3$$

$$= N_{g_1} \cdot (N_{g_2} \cdot n)$$

b) Sea ee GyneN, entonces:

- n

c) Sea ge G. Entonces:

$$N_g \cdot N = g N \dot{g}'$$
, como $N \triangleleft G$:
$$= N$$

Por al-cl, 6/N actúa sobre N por conjugación.

9.0.U

5. Sean G un grupo y $a \in G$ el cual tiene exactamente dos conjugados. Pruebe que G tiene un subgrupo propio normal $\neq \langle e \rangle$.

Dem:

- 6. Sea G un grupo actuando sobre un conjunto X el cual tiene al menos dos elementos, y la acción es transitiva, es decir, se cumple que para cada $x,y\in X$ existe $g\in G$ tal que $g\cdot x=y$. Pruebe lo siguiente
 - a) Para cada $x \in X$, $G \cdot x = X$;
 - b) Todos los estabilizadores G_x ($x \in X$) son conjugados, es decir, si $x, y \in X$ entonces existe $g \in G$ tal que $G_x = gG_yg^{-1}$;
 - c) Si G tiene la propiedad: $\{g \in G \mid g \cdot x = x, \ \forall x \in X\} = \langle e \rangle$, y N es un subgrupo normal de G tal que está contenido en G_x para algún $x \in X$, entonces $N = \langle e \rangle$;
 - d) $[G:G_x]=[G:G_y]$ para cada $x,y\in X;$
 - e) Supóngase que $|X| = [G:G_x]$ para cada $x \in X$. Si G es finito entonces |X| divide a |G|.

Dem:

De a):

Seu $x \in \overline{X}$. Claramente $G \cdot x = \{g \cdot x \mid y \in G\} \subseteq \overline{X}$. Seu $y \in \overline{X}$, como la acción estronsitiva, $f \in G$ on $g \cdot x = y \Rightarrow y \in G \cdot x$. As: $G \cdot x = \overline{X}$.

De b):

Sean x, y \(\overline{X} \), los estabilizadores de x y y están dados por:

$$G_x = \{g \in G \mid g \cdot x = x\} \quad y \quad G_y = \{g \in G \mid g \cdot y = y\}$$

por ser la acción transitiva, 3 ge 6 m x=g·y Veamos que

$$g_{,\epsilon} G_{x} \Leftrightarrow g_{,\cdot} X = X \Leftrightarrow g_{,\cdot} (g_{,\cdot} y) = g_{,\cdot} y \Leftrightarrow (g_{,g} | y) = g_{,\cdot} y \Leftrightarrow (g_{,g} | y) = y$$

 $\Leftrightarrow g_{,g} G_{,g} \in G_{,g} \Leftrightarrow g_{,\epsilon} G_{,g} G_{,g}$

Portunto, Gx = gGyg'

Do C):

Como $N = G_X$, $\gamma G_X = \{g \in G \mid g : x = x\} = \{g \in G \mid g : x = x\} = \{e\}$ enfonces $N = \{e\}$

De d):

Como [G:Gx] = |G:x| y [G:Gy] = |G:y|, y |G:x| = $|\overline{X}|$ = |G:y|, entonces [G:Gx] = [G:Gy], $\forall x,y \in \overline{X}$.

De e):

Por la ecuación de cluse:

Vermos que
$$X^G = \emptyset$$
. Suponya que no, $\exists x \in X^G$, como $x \in X^G$:

 $g \cdot x = x$, $\forall g \in G$.

Como $X \neq X$ for h.p. $\exists g \in G$ or $Y \neq X$. Por h.p. $\exists g \in G$ or $Y = g \cdot x$ for $Y = g \cdot x$ fo

g.o.U.

- 7. Sean G un grupo finito y H un subgrupo de G tal que $|H|=p^n$ con p número primo y $n\geq 0$. Sea X el conjunto de clases laterales izquierdas de H en G. Pruebe lo siguiente:
 - $a)\ H$ actúa sobre X por translación izquierda;
 - b) $[N_G(H):H] \equiv [G:H] \mod p;$
 - c) Si p divide a [G:H], entonces $N_G(H) \neq H$.

Todo lo anterior se hizo en clase.