Using HMMER versus BLAST to find homologs

Gloria I. Giraldo-Calderón October 2013

- How to find HMMER and BLAST?
- 2. What can you use HMMER for?
- 3. How HMMER works?
- 4. How can you cite HMMER in your paper?

- 1. How to find HMMER and BLAST?
- 2. What can you use HMMER for?
- 3. How HMMER works?

4. How can you cite HMMER in your paper?

1. How to find HMMER and BLAST?

- 1. How to find HMMER and BLAST?
- 2. What can you use HMMER for?
- 3. How HMMER works?
- 4. How can you cite HMMER in your paper?

2. What can you use HMMER for?

- To search sequence databases for homologs of protein sequences using either:
 - multiple sequence alignments (MSA) of a sequence family (very powerful!) or
 - single query sequences (not recommended!)

2. What can you use HMMER for?

Compared to other database search tools (and sequence alignment tools), based on older scoring methodology, HMMER aims to be significantly:

- more accurate
- more able to detect remote homologs (because of the strength of its underlying probability models)
- as fast as BLAST!

2. What can you use HMMER for?

- Nucleotide-nucleotide searches (blastn) are <u>not</u> the best method for finding homologous protein coding regions in other organisms.
- That task is better accomplished by performing proteinprotein searches (blastp) or by translated BLAST searches (tblastn, tblastx and blastx).
- This is because of the codon degeneracy, the greater information available in amino acid sequence, and the more sophisticated algorithm and scoring matrix used in protein-protein BLAST.

NCBI/BLAST/help

- 1. How to find HMMER and BLAST?
- 2. What can you use HMMER for?
- 3. How HMMER works?
- 4. How can you cite HMMER in your paper?

HMMER makes a **profile** of the query that assigns a position-specific scoring system for:

- substitutions
- insertions
- deletions

The profiles are probabilistic models called "profile hidden Markov models" (profile HMMs).

1st step: copy the sample file provided in the front page of this tutorial.

Home » Help » Tutorials » Using HMMER versus BLAST to find homologs

Using HMMER versus BLAST to find homologs

Submitted by ggiraldo on Tue, 2013-02-05 21:10

To follow this tutorial you can use your sequences of interest or download a sample file following this link.

If you want to discuss any issues raised in this tutorial then please contact the help desk.

Download: VectorBase_Using_HMMER_versus_BLAST_to_find_homologs_2013.pdf

Supplementary files: Gene family amino acid sequences Ag.txt

2nd step: construct a <u>ClustalW</u> MSA @ VectorBase. <u>https://www.vectorbase.org/clustalw</u> (Tools tab).

ClustalW

3rd step: using the MSA build a profile HMM and search with this profile against a sequence database using **hmmsearch**.

HMMER

Results

Job

```
Compute Time 2 seconds

Download Raw Results
```

Jump To Datase Aedes-aegypti-Liverpool_PEPTIDES_AaegL1.4.fa

```
Culex-quinquefasciatus-Johannesburg_PEPTIDES_CpipJ1.3.fa
```

Remember to cite the gene set version that you use in your paper.

```
# target sequence database: /vectorbase/dbs/Aedes-aegypti-Liverpool_PEPTIDES_AaegL1.4.fa
# sequence reporting threshold: E-value <= 0.01
# domain reporting threshold: E-value <= 0.03
# domain inclusion threshold: E-value <= 0.03</pre>
```

sequence reporting threshold:

```
Query: sequence [M=376]
```

```
Scores for complete sequences (score includes all domains):
```

E-value ≤ 0.01

Return to Top

<u>Aedes</u> output

Query: sequence [M=376] Scores for complete sequences (score includes all domains): --- full sequence ------ best 1 domain ----#dom-E-value score bias E-value score bias Sequence Description exp N 7.3e-175 581.0 AAEL006498-RA long wavelength sensitive opsin 13.7 8e-175 580.9 9.5 1.0 1.2e-174 580.3 1.3e-174 580.1 8.9 1.0 AAEL006259-RA long wavelength sensitive opsin 12.8 2.3e-169 562.9 15.2 562.8 10.5 1.0 AAEL006484-RA long wavelength sensitive opsin 2.5e-169 3.1e-167 555.9 15.1 3.5e-167 555.7 10.5 1.0 AAEL005625-RA long wavelength sensitive opsin 3.8e-167 555.6 15.3 4.3e-167 1.0 AAEL005621-RA long wavelength sensitive opsin 555.4 10.6 1.4e-157 524.1 1.8e-157 523.7 AAEL007389-RA long wavelength sensitive opsin 7.4 10.7 1.0 1.7e-146 487.6 2e-146 487.4 1.0 AAEL009615-RA ultraviolet wavelength sensitive 7.1 4.9 2.2e-143 477.4 5.7 2.7e-143 477.1 4.0 1.0 AAEL003035-RA short wavelength sensitive opsin 2e-131 438.0 22.5 3.3e-131 437.3 1.3 AAEL005373-RA pteropsin protein coding superco 15.6 1.9e-110 369.0 6.9 2.4e-110 368.7 4.8 1.1 AAEL005322-RA unknown wavelength sensitive ops 6.3e-40 136.9 14.7 2.6e-32 111.8 AAEL004396-RA GPCR Octopamine/Tyramine Family 6.6 1e-38 132.9 11.8 7.4e-30 103.8 2.2 AAEL005834-RA GPCR Dopamine Family protein cod 5.4 2.7e-38 131.5 3.2e-29 AAEL017181-RA GPCR Muscarinic Acetylcholine Fa 9.7 101.7 2.0

<u>Culex</u> output

Query:		sequence [M=379]			outp	σαιραί				
Scores for complete sequences (score includes all domains):										
	full sequence best 1 domain				n	-#do	m-			
	E-value	score	bias	E-value	score	bias	exp	N	Sequence	Description
	9e-172	571.0	16.0	1e-171	570.9	11.1	1.0	1	CPIJ011571-RA	long wavelength sensitive opsin
	3.7e-171	569.0	17.0	4.1e-171	568.9	11.8	1.0	1	CPIJ012052-RA	long wavelength sensitive opsin
	6e-169	561.7	17.4	6.6e-169	561.6	12.1	1.0	1	CPIJ011574-RA	long wavelength sensitive opsin
	6e-169	561.7	17.4	6.6e-169	561.6	12.1	1.0	1	CPIJ011576-RA	long wavelength sensitive opsin
	2.8e-167	556.3	17.0	3.3e-167	556.0	11.8	1.0	1	CPIJ011573-RA	long wavelength sensitive opsin
	6.6e-164	545.2	13.4	8e-164	544.9	9.3	1.0	1	CPIJ004067-RA	opsin (long wavelength sensitive
	1.6e-163	543.9	21.1	1.7e-163	543.8	14.6	1.0	1	CPIJ020021-RA	long wavelength sensitive opsin
	8e-150	498.8	7.3	9.3e-150	498.6	5.1	1.0	1	CPIJ009246-RA	ultraviolet wavelength sensitive
	2.4e-149	497.3	8.3	2.8e-149	497.0	5.7	1.0	1	CPIJ013408-RA	short wavelength sensitive opsir
	1e-148	495.1	9.2	1.2e-148	494.9	6.4	1.0	1	CPIJ005000-RA	short wavelength sensitive opsir
	5.1e-144	479.7	19.1	2e-142	474.4	13.2	2.0	1	CPIJ013056-RA	long wavelength sensitive opsin
	3.2e-117	391.5	7.1	4.5e-117	391.0	4.9	1.2	1	CPIJ014334-RA	pteropsin protein_coding superco
	1.5e-107	359.7	6.0	2.3e-107	359.0	4.1	1.2	1	CPIJ011419-RA	unknown wavelength sensitive ops
	6.2e-39	133.8	30.0	4.1e-24	85.0	8.5	3.7	3	CPIJ005574-RA	sulfakinin receptor protein_codi
	1.2e-36	126.3	11.1	1.6e-27	96.3	2.9	2.2	2	CPIJ008330-RA	conserved hypothetical protein p
	2.9e-36	125.0	14.5	4e-36	124.6	10.1	1.1	1	CPIJ018504-RA	neuropeptide Y receptor protein_

You could use other MSA software such as the ones available at EBI http://www.ebi.ac.uk/Tools/msa/

Clustal Omega: CLUSTAL O(1.1.0) multiple sequence alignment

Kalign: Kalign (2.0) alignment in ClustalW format

MAFFT: CLUSTAL format alignment by MAFFT L-INS-1 (v6.850b)

MUSCLE: MUSCLE (3.8) multiple sequence alignment

<u>Note</u>: You will have to select "Clustal" as the "output format" and replace the alignment output file headers with the "ClustalW2" header:

CLUSTAL 2.1 multiple sequence alignment

HMMER

You just need to change the header (as shown by the arrow).

HMMER

- 1. How to find HMMER and BLAST?
- 2. What can you use HMMER for?
- 3. How HMMER works?
- 4. How can you cite HMMER in your paper?

4. How you can cite HMMER in your paper?

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research. Web Server Issue 39:W29-W37.

How to search for more information or help?

E-mail us at info@vectorbase.org

or go to HMMER home page and download the user manual: http://hmmer.janelia.org

