

Teoria dos Grafos

Cliques e Conjuntos Independentes

versão 1.2

Prof. DSc. Fabiano Oliveira fabiano.oliveira@ime.uerj.br

Def.: C ⊆ V(G) é uma clique de um grafo simples G se
 G[C] é um grafo completo.

Exemplos de Cliques:

```
{a} (não-maximal)
{a, b} (maximal)
{c, b} (não-maximal)
{b, d, g} (maximal)
{b, c, d} (não-maximal)
{b, c, d, f} (máxima)
{c, d, e, f} (máxima)
```

- Def.: S ⊆ V(G) é um conjunto independente de um grafo simples G se G[S] é um grafo vazio.
- A cardinalidade do conjunto independente máximo de G é denotado por α(G).

Exemplos de Conjuntos Independentes:

{b} (não-maximal) {b, e, h} (maximal) {a, c, g, h} (máximo)

$$\alpha(G) = 4$$

- Se S é um conjunto independente de G, V
 (G) S é uma cobertura. Portanto,
 α(G) = n |Cobertura Mínima de G|
- Se S é um conjunto independente de G, S é uma clique de G^C. Portanto,
 α(G) = |Clique Máxima de G^C|, e |Clique Máxima de G| = α(G^C)

 Se S é o conjunto de vértices que possui uma determinada cor numa coloração própria de G, então S é um conjunto independente de G. Portanto, α(G) ≥ Γ n / χ(G) 1

Exercícios

1. Quantas cliques existem em um: P_n? Um C_n? R_n (abaixo)? Um K_n? E quantas destas são maximais? E quantas são máximas?

- 2. Mostre que um grafo pode ter um número exponencial de cliques máximas em função de n.
- Mostre que um grafo pode ter um número exponencial de conjuntos independentes em função de n.