

Business Intelligence

Vert. Prof. Dr. Aikaterini Nakou

Was ist Business Intelligence?

Definition: Business Intelligence (BI) bezeichnet Prozesse, Technologien und Werkzeuge zur Sammlung, Speicherung, Analyse und Bereitstellung von Daten, um bessere geschäftliche Entscheidungen zu treffen.

- Datengetriebene Entscheidungsfindung: BI ermöglicht es Unternehmen, auf Grundlage gesammelter Daten fundierte Entscheidungen zu treffen.
- Synonyme Begriffe: Datenanalyse, Entscheidungsunterstützungssysteme, Data-Driven Management.

BUSINESS INTELLIGENCE

Komponenten eines BI-Systems

Ein BI-System besteht aus mehreren Schichten und Komponenten:

1. Datenquellen: Interne und externe Quellen (ERP-Systeme, CRM, Social Media, Marktberichte etc.).

2. Datenintegration:

- ETL-Prozess (Extract, Transform, Load): Extraktion der Daten aus verschiedenen Quellen, Transformation in ein einheitliches Format und Laden ins Data Warehouse.
- 3. Data Warehouse (DWH): Zentraler Speicher für alle integrierten Daten, der die Grundlage für BI-Analysen bildet.

Komponenten eines BI-Systems

4. Datenanalyse und Reporting:

- OLAP (Online Analytical Processing): Mehrdimensionale Analyse von Daten, häufig zur Untersuchung von KPIs.
- Data Mining: Entdeckung von Mustern und Zusammenhängen.
- Berichte und Dashboards: Visualisierung der Ergebnisse.

5. Präsentationsschicht:

• Benutzeroberflächen für den Zugriff auf Berichte und Dashboards, meist angepasst an die verschiedenen Zielgruppen (Management, Fachabteilungen).

Target market redefinition

BI-Prozesse im Detail

1. Datenextraktion:

- Extrahieren von Daten aus verschiedenen operativen Systemen (ERP, CRM, Buchhaltung, Logistik usw.).
- Herausforderung: Datenqualität und konsistenz sicherstellen.

2. Datenbereinigung und -transformation:

- Bereinigen von Datenfehlern, Duplikaten und Inkonsistenzen.
- Transformation der Daten in ein einheitliches Format, damit sie analysiert werden können.

Prescriptive analytics

Supply chain adjustments

Target market redefinition

BI-Prozesse im Detail

3. Datenintegration:

- Zusammenführen von Daten aus verschiedenen Quellen und Formaten.
- Hier kommt oft das Data Warehouse ins Spiel, um eine zentrale Quelle für alle analysierten Daten zu bieten.

4. Datenanalyse:

 Methoden wie OLAP, Data Mining, und statistische Analysen werden verwendet, um Einsichten zu gewinnen.

Predictive analytics

Prescriptive analytics

Social media

BI-Prozesse im Detail

5. Berichtserstellung und Dashboards:

- Visualisierung der Analyseergebnisse in Form von Berichten, Diagrammen und interaktiven Dashboards.
- Wichtig: Anpassung der Berichte an die Bedürfnisse der Zielgruppe (z.B. Managementberichte vs. operative Berichte).

6. Entscheidungsfindung:

Action Plan

Tools in der BI

BI-Tools:

- Power BI (Microsoft): Visualisierung und Self-Service-BI.
- Tableau: Starke Visualisierungsfähigkeiten und einfache Bedienung.
- Qlik Sense: Data Discovery und interaktive Dashboards.
- SAS: Starke analytische Fähigkeiten für komplexe Datenanalyse.
- **SAP BusinessObjects**: Unternehmensweite BI-Lösungen mit integriertem Reporting

Herausforderungen und Trends in Business Intelligence

Herausforderungen:

- **Datenqualität**: Schlechte Datenqualität kann zu falschen Analysen und Entscheidungen führen.
- **Datenschutz und Sicherheit**: Datenschutzvorschriften (z.B. DSGVO) müssen bei der Nutzung von BI beachtet werden.
- Komplexität: Integration und Verwaltung großer, unstrukturierter Datenmengen kann anspruchsvoll sein.

Herausforderungen und Trends in Business Intelligence

Trends:

- Self-Service-BI: Benutzer außerhalb der IT-Abteilungen haben direkten Zugriff auf BI-Tools und können eigenständig Analysen durchführen.
- KI und Machine Learning in BI:
 Automatisierte Mustererkennung und prädiktive Analysen werden durch den Einsatz von KI und Machine Learning weiter vorangetrieben.
- Cloud-BI: Zunehmender Einsatz von Cloud-basierten BI-Lösungen, die skalierbar und kosteneffizient sind.

ETL-Prozess

ETL steht für Extract, Transform,
Load und ist ein wesentlicher
Bestandteil jeder
Datenverarbeitungs- und
Analysepipeline. Besonders in der
Business Intelligence (BI) ermöglicht
der ETL-Prozess die Umwandlung
von Rohdaten in nützliche
Informationen, die Unternehmen
helfen, fundierte Entscheidungen zu
treffen.

ETL-Prozess im Detail

Extract (Datenextraktion)

- Ziel: Die Extraktion von Daten aus verschiedenen Quellen.
- Herausforderungen:
 - Unterschiedliche Datenformate (CSV, JSON, XML, Datenbanken)
 - Unterschiedliche Struktur und Schema (relationale vs. nicht-relationale Daten)
 - Verteilte Quellen (lokal, cloudbasiert)
- Methoden der Datenextraktion:
 - **Vollständige Extraktion**: Alle Daten werden aus einer Quelle extrahiert. Vorteilhaft bei kleineren Datenmengen.
 - Inkrementelle Extraktion: Nur neue oder geänderte Daten werden extrahiert. Diese Methode reduziert die Belastung von Netzwerken und Quellsystemen.

ETL-Prozess im Detail

Transform (Datenumwandlung)

- Ziel: Bereinigung und Anreicherung der extrahierten Daten für die Analyse.
- Schritte der Transformation:
 - Datenbereinigung: Duplikate, Inkonsistenzen oder fehlerhafte Daten werden entfernt.
 - **Datenanreicherung**: Zusätzliche Informationen werden hinzugefügt, z.B. durch Berechnungen oder externe Quellen.
 - Datenaggregation: Zusammenfassen von Daten auf ein höheres Abstraktionslevel (z.B. Summen, Mittelwerte).
 - **Datenformatierung**: Daten werden in ein einheitliches Format gebracht, um Kompatibilität mit dem Zielsystem sicherzustellen.
 - **Normierung und Denormalisierung**: Strukturelle Änderungen, um die Daten effizient für Abfragen im Data Warehouse aufzubereiten.

ETL-Prozess im Detail

Load (Datenladen)

• Ziel: Die transformierten Daten werden in das Zielsystem geladen.

Arten des Ladens:

- **Vollständige Ladung**: Alle Daten werden in das Zielsystem geladen, was für kleinere Systeme geeignet ist, aber bei großen Datenmengen ineffizient sein kann.
- Inkrementelles Laden: Nur geänderte oder neue Daten werden geladen. Diese Methode ist effizienter und belastet das System weniger.

Ladeverfahren:

- **Batch Processing**: Große Datenmengen werden in regelmäßigen Abständen in das Zielsystem geladen (z.B. nächtliche Batch-Ladungen).
- Real-time Processing: Daten werden in Echtzeit oder nahezu in Echtzeit in das Zielsystem geladen (besonders bei modernen BI-Anwendungen wichtig, die schnelle Analysen erfordern).

Datenanalyse

Die Datenanalyse oder Datenauswertung beschreibt den Prozess der Gewinnung von wertvollen Informationen aus Rohdaten.

- Verwendung von statistischen Methoden für die Analyse von bereits bestehenden Daten
- Ergebnisse der Analyse werden in Form von Zahlen, Fakten, Metriken oder Datenvisualisierungen (z.B. Diagramme, Tabellen) veranschaulicht und zur Weiterverwendung bereitgestellt
- Basis für die Entscheidungsfindung bei Unternehmen
 - Planung von zukünftigen Unternehmensschritten
 - Bewertung von bereits getätigten Entscheidungen
 - Minimierung von Risiken

Prozessschritte der Datenanalyse

- Einlesen: Die Daten in das richtige Format (z.B. CVS) bringen, um sie analysieren zu können.
- Explorieren: Die Daten reinigen, prüfen und kennenlernen, fehlende Daten ersetzen.
- **Modellieren:** Die Formel (Funktion) finden, die die Daten möglichst gut erklärt. Meist müssen mehrere Modelle verglichen werden.
- Validieren: Herausfinden, ob das gewählte Modell auch neue Daten erklären kann (Validierungsstichprobe).
- Bewerten: Bestimmen, ob die Ergebnisse der Datenanalyse relevant sind.
- **Zusammenfassen:** Die Methode und die Ergebnisse so zusammenfassen, dass sie verwertbar und reproduzierbar sind.

Methoden der Datenanalyse

Was ist R und warum R für Business Intelligence?

Warum R für BI?

- **Vielfalt an Paketen**: Es gibt eine Vielzahl von R-Paketen (z. B. dplyr, plotly, shiny), die speziell für Datenanalyse und Visualisierung entwickelt wurden.
- **Einfache Datenintegration**: R kann mit verschiedenen Datenquellen wie SQL-Datenbanken, Excel, und CSV-Dateien arbeiten.
- **Visualisierung**: R bietet umfangreiche Tools für die Erstellung von Business-Intelligence-Dashboards und interaktiven Berichten.
- **Automatisierung**: BI-Prozesse wie Datenbereinigung und -transformation können in R automatisiert werden.

Grundlegende R-Konzepte und Syntax

Datentypen und Strukturen

Vektoren: Die einfachste Datenstruktur in R. Frstellen eines Vektors:

```
5 #Vektoren
6
7 zahlen <- c(1, 2, 3, 4, 5)
8 namen <- c("Anna", "Ben", "Chris")
```

Matrizen: Zweidimensionale Anordnung von Werten (nur numerische Daten).

```
#Matrizen

11

12 matrix_data <- matrix(1:6, nrow=2, ncol=3)
```

• Datenrahmen (Data Frames): Äquivalent zu Tabellen in SQL oder Excel.

```
# Data Frames

16

17 daten <- data.frame(Name=c("Anna", "Ben"), Alter=c(25, 30), Beruf=c("Informatiker", "Analyst"))

18
```


Grundlegende R-Konzepte und Syntax

Kontrollstrukturen

If-Else Bedingung:

```
19  # If-Else Bedingung:
20
21  if (Alter > 30) {
22    print("Über 30")
23  } else {
24    print("Unter 30")
25  }
```

For-Schleifen:

```
29 # For-Schleifen:
30
31 * for (i in 1:5) {
32    print(i)
33 * }
```

Funktionen:

```
# Funktionen
37
38 - addiere <- function(a, b) {
    return(a + b)
40 - }
41    ergebnis <- addiere(5, 10)</pre>
```

Pakete installieren und laden:

```
# Pakete installieren

45
46 install.packages("dplyr")

47
48
49 #lade notwendige Paketen
50 library(dplyr)
51
```


Datenimport und -manipulation

CSV-Dateien einlesen:

```
#lade die Daten

55

56 supermarket_sales <- read.csv2("supermarket_sales.csv", header = TRUE, sep= ",", dec=".")

57
```

Datenübersicht:

```
head(supermarket_sales) # Zeigt die ersten 6 Zeilen
str(supermarket_sales) # Zeigt die Struktur des Datenrahmens
summary(supermarket_sales) # Zusammenfassung der Daten
```


ETL-Prozess

Extract: Daten aus unterschiedlichen Quellsystemen wie Datenbanken, Cloud-Diensten, APIs, Excel-Dateien usw. extrahieren.

Transform: Daten bereinigen, anreichern, normalisieren, filtern, aggregieren und formatieren, sodass sie für analytische Zwecke geeignet sind.

Load: Die transformierten Daten in ein Zielsystem laden, üblicherweise in ein Data Warehouse oder eine Datenbank.

Extraktion von Daten:

Datenextraktion ist der erste Schritt im ETL-Prozess. R bietet mehrere Möglichkeiten, Daten aus verschiedenen Quellen zu extrahieren:

Extraktion aus CSV-Dateien

R bietet die Funktion read.csv(), um Daten aus CSV-Dateien zu extrahieren:

```
data <- read.csv("pfad zur datei.csv")</pre>
```

Extraktion aus JSON

Das jsonlite Paket wird verwendet, um JSON-Daten zu lesen:

```
library(jsonlite)
data <- fromJSON("pfad_zur_datei.json")</pre>
```


Extraktion von Daten:

Datenbankanbindung

Mit DBI und RMySQL (oder anderen DB-Treibern) können Daten aus Datenbanken extrahiert werden:

```
library(DBI)
con <- dbConnect(RMySQL::MySQL(), dbname = "datenbank_name", host = "host",
user = "user", password = "password")
data <- dbGetQuery(con, "SELECT * FROM tabelle")</pre>
```

Web-Datenextraktion (APIs)

Mit httr können wir REST-APIs ansprechen:

```
library(httr)
response <- GET("https://api.example.com/data")
data <- content(response, as = "text")</pre>
```


Extraktion von Daten - Beispiel:

In dieser Vorlesung werden wir detailliert erläutern, wie wir Daten aus zwei verschiedenen Quellen extrahieren:

CSV-Datei: Enthält Produktionskosten-Daten (productionscosts.csv)

SQLite-Datenbank: Enthält Verkaufsdaten (sales.sqlite)

Anschließend werden wir diese beiden Datensätze zusammenführen (mergen), um eine einheitliche Datenbasis für die Transformation und Analyse zu erstellen.

Extraktion von Daten aus der CSV-Datei:

Wir beginnen mit dem Einlesen der Produktionskosten-Daten aus der CSV-Datei. Dazu verwenden wir die Funktion read.csv()

```
# Einlesen der Produktionskosten-Daten aus der CSV-Datei
production_costs_data <- read.csv("productioncosts.csv", header = TRUE, sep= ",", dec=".")
# Einen Blick auf die ersten Zeilen des CSV-Datensatzes werfen
head(production_costs_data)</pre>
```


Extraktion von Daten aus der SQLite-Datenbank:

Wir extrahieren die Verkaufsdaten aus der SQLite-Datenbank. Dafür verwenden wir das Paket RSQLite, die speziell für den Zugriff auf SQLite-Datenbanken in R entwickelt wurden.

1. Verbindung zur SQLite-Datenbank herstellen

```
# Verbindung zur 5QLite-Datenbank herstellen
con <- dbConnect(SQLite(), dbname = "sales_database.sqlite")</pre>
```

2. Extraktion der Verkaufsdaten

```
# Extrahieren der Verkaufsdaten aus der Datenbanktabelle 'sales' sales_data <- dbReadTable(con, "sales")
```

3. Schließen der Verbindung zur Datenbank

```
# Schließen der Verbindung zur Datenbank dbDisconnect(con)
```


Zusammenführen (Merging) der Daten aus CSV und SQLite-Datenbank:

Wir führen die Daten aus den beiden Quellen (productionscosts.csv und sales_database.sqlite) zusammen, um eine einheitliche Datentabelle zu erstellen. Hierfür verwenden wir die dplyr-Funktion left_join().

```
# Zusammenführen der Produktionskosten- und Verkaufsdaten
merged_data <- production_costs_data %>%
   left_join(sales_data, by = c("Date", "Country"))
# Überprüfen der ersten Zeilen der zusammengeführten Daten
head(merged_data)
```

Erklärung:

- left_join(): Wir verwenden left_join(), um sicherzustellen, dass alle Zeilen aus den Produktionskosten-Daten (productionscosts.csv) erhalten bleiben, selbst wenn es keine übereinstimmenden Zeilen in den Verkaufsdaten (sales.sqlite) gibt.
- Die Verknüpfung erfolgt auf Basis der gemeinsamen Spalten Date und Country.

Daten-Transformation:

Die Transformation von Daten ist der Prozess, durch den Rohdaten in ein nützliches Format für die Datenanalyse umgewandelt werden. Dies umfasst:

- Datenbereinigung: Entfernen oder Korrigieren fehlerhafter Daten.
- **Umformung**: Anpassen der Datenstruktur, um sie besser analysieren zu können.
- **Filterung**: Auswahl nur relevante Informationen für unsere Analyse.
- Erstellung neuer Features: Berechnung neuer Kennzahlen aus den vorhandenen Daten.

Daten-Transformation - Datenbereinigung:

Umgang mit fehlenden Werten

Zunächst überprüfen wir, ob in den Daten fehlende Werte vorhanden sind, und entscheiden dann, wie wir diese behandeln.

```
31 # Überprüfung auf fehlende Werte in jedem Feld des zusammengeführten Datensatzes
```

32 colsums(is.na(merged_data))

Daten-Transformation - Datenbereinigung:

Umgang mit fehlenden Werten

Es gibt eine Vielzahl von Möglichkeiten, wie fehlende Werte je nach Art des Problems und der Daten unterstellt werden können:

- Ersetzen mit Durchschnittswerten: Besonders n\u00fctzlich bei numerischen Daten.
- Löschen von Zeilen: Wenn nur wenige Zeilen betroffen sind, kann es sinnvoll sein, diese zu entfernen.
- Vorherige/nachfolgende Werte verwenden:
 Insbesondere bei Zeitreihendaten, wo man die Lücken durch den vorherigen oder nachfolgenden Wert schließen kann.

Daten-Transformation - Umformung:

Datumsumwandlung

Die korrekte Formatierung von Datumsangaben ist entscheidend, insbesondere wenn wir später Zeitreihenanalysen durchführen wollen.

```
# Umwandlung der Date-Spalte in das Datumsformat
merged_data$Date <- as.Date(merged_data$Date, format = "%Y-%m-%d")</pre>
```


Daten-Transformation - Filterung:

Filterung nach einem bestimmten Jahr

Wenn wir Daten nur für ein bestimmtes Jahr analysieren möchten, beispielsweise das Jahr 2020, verwenden wir folgende Syntax:

```
# Filterung der Daten für das Jahr 2020
filtered_data_2020 <- merged_data %>%
   filter(Year == 2020)

# Anzeige der gefilterten Daten
head(filtered data 2020)
```

Filterung für einen bestimmten Land

Wir können auch ein bestimmte Land auswählen, z. B. alle Daten aus Deutschland:

```
# Filterung der Daten für Germany
filtered_data_germany <- merged_data %>%
filter(Country == "Germany")
```


Daten-Transformation - Filterung:

Filterung nach hohem Verkaufsumsatz

Wir möchten nur Datensätze betrachten, bei denen der Verkaufsumsatz (Sales_Revenue) höher als 10000 ist:

```
# Filterung der Daten für Verkaufsumsatz größer als 1000
high_revenue_data <- merged_data %>%
filter(Sales_Revenue > 10000)
```

Kombinierte Filterung

In der Praxis müssen oft mehrere Filterkriterien gleichzeitig angewendet werden.

```
# Kombinierte Filterung: Daten aus Deutschland und Verkaufsumsatz größer als 10000
filtered_combined <- merged_data %>%
  filter(Country == "Germany" & Sales_Revenue > 10000)
```


Daten-Transformation - Erstellung neuer Features:

Berechnung des Gewinns

Der Gewinn kann als Differenz zwischen Sales_Revenue und Production_Costs berechnet werden:

```
# Berechnung des Gewinns
merged_data$Profit <- merged_data$Sales_Revenue - merged_data$Production_Costs</pre>
```

Beschwerdequote

Die Beschwerdequote zeigt an, wie viele Beschwerden pro aktivem Benutzer geöffnet wurden:

```
# Berechnung der Beschwerdequote
merged_data$Complaint_Rate <- merged_data$Opened_Complaints / merged_data$Active_Users</pre>
```


Datenladen:

SQLite-Datenbank

```
# Verbindung zur SQLite-Datenbank herstellen (oder erstellen, falls nicht vorhanden)
output <- "output.sqlite"
con <- dbConnect(SQLite(), dbname = output)

# Daten in die Datenbank schreiben (überschreiben, falls die Tabelle bereits existiert)
dbWriteTable(con, "merged_data", merged_data, overwrite = TRUE, row.names = FALSE)

# Schließen der Verbindung zur Datenbank
dbDisconnect(con)</pre>
```

CSV-Datei

```
# Definieren des Pfades zur CSV-Datei
csv_file_path <- "merged_data.csv"

# Daten in eine CSV-Datei schreiben
write.csv(merged_data, file = csv_file_path, row.names = FALSE)
```


Datenvisualisierung

Bei der Datenvisualisierung geht es darum:

- Informationen in Form von Zahlen und Daten mit Hilfe von grafischen Mitteln aufzubereiten
- um rasch und mit wenig Vorkenntnissen Muster, Trends, Beziehungen und Ausreißer erkennbar zu machen.

Die gängigsten grafischen Hilfsmittel für Datenvisualisierung sind u.a. **Diagramme, Graphen, Karten, Tabellen**, **Infografiken** und **Dashboards**.

Warum Datenvisualisierung

- Menschen sind in der Lage, extrem schnell aus komplexen visuellen Szenen wichtige Informationen herauszulesen
- Im Gegensatz zu verbalen Informationen, verarbeitet der Gehirn visuelle Informationen parallel
- Der Mensch erlernt visuelle Informationen schneller und erinnert sich an diese besser als verbale.

Arten der Datenvisualisierung

- Visualisierungen, die die Exploration der Daten bzw. die Verifikation der Datenanalyse dienen
- Visualisierungen, die die Präsentationen der Daten dienen → "Storytelling" mit Daten

Please approve the hire of 2 FTEs

to backfill those who quit in the past year

Ticket volume over time

Data source: XYZ Dashboard, as of 12/31/2014 | A detailed analysis on tickets processed per person and time to resolve issues was undertaken to inform this request and can be provided if needed.

Prinzipien der Datenvisualisierung

- Den Kontext verstehen
- Auswahl der geeignete visuelle Darstellung
- Beseitigung der Unordnung
- Richten der Aufmerksamkeit dorthin, wo es gewollt ist
- Richtige Designing
- Storytelling

Kontext verstehen

Frage1: Welche Geschichte möchten Sie erzählen?

Frage 2: Was ist Ihre Zielgruppe?

Frage 3: Möchten Sie bestimmte Trends analysieren?

Frage 4: Soll die Zusammensetzung von Daten präsentiert werden?

Frage 5: Sollen Daten miteinander verglichen werden?

Frage 6: Ist ein bestimmter Zeitrahmen zu betrachten?

Auswahl der geeignete visuelle Darstellung

91%

Simple text

	Α	В	C
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29%	26%

Category 6 11% 25% 49%

Table

	Α	В	C
Category 1	15%	22%	42%
Category 2			20%
Category 3		17%	
Category 4			26%
Category 5	55%		58%
Category 6	11%	25%	49%

Heatmap

FIGURE 2.1 The visuals I use most

Line

Slopegraph

Vertical bar

Horizontal bar

Stacked vertical bar

Stacked horizontal bar

Waterfall

Square area

Auswahl der geeignete visuelle Darstellung

Children with a "Traditional" Stay-at-Home Mother

% of children with a married stay-at-home mother with a working husband

20%

of children had a **traditional stay-at-home mom** in 2012, compared to 41% in 1970

- Kognitive Belastung ist die geistige Anstrengung, die erforderlich ist, um neue Informationen zu lernen.
- Als Designer von Informationen müssen wir wie wir die Gehirnleistung unseres Publikums nutzen und nicht ausnutzen!

Gestaltprinzipien der visuellen Wahrnehmung:

- Nähe
- Ähnlichkeit
- Einschluss
- Abgeschlossenheit
- Kontinuität
- Verbindung

Ähnlichkeit

Einschluss

Abgeschlossenheit

Kontinuität

Verbindung

Sehen und Gedächtnis → präattentive Attribute → Lenkung der Aufmerksamkeit des Publikums, wo wir sie haben möchten!

Präattentive Attribute

- Farbe
- •Größe
- Position

Präattentives Attribute: Farbe

Präattentives Attribute: Farbe

Präattentives Attribute:Farbe

Präattentives Attribute: Position

Richtige Designe

Folge das Sprichwort der Produktdesign:

Die Form folgt der Funktion

Also überlegen was unser Publikum mit den Daten machen soll (Funktion) und dann eine Visualisierung (Form) erstellen!

Richtige Designe

Zugänglichkeit der Informationen!

Please approve the hire of 2 FTEs

to backfill those who quit in the past year

Ticket volume over time

