Homework-1.

1. Let $f: U \to \mathbb{R}^m$ be differentiable at $a \in U \subseteq \mathbb{R}^n$.

Prove that fire $x \in \mathbb{R}^n$, $Df(a)(x) = \lim_{t \to 0} [f(a+tx)-f(a)]$.

2. Identify $M_n(R) = \text{vector space of all nxn matrices}$ with entries in R, with R^n . Then $GL_n(R) = \text{group of nxn invertible matrices in } M_n(R)$, is an open subset of $M_n(R)$. Prove that $i : GL_n(R) \to GL_n(R)$, $i(x) = x^1$ is differentiable at all points of $GL_n(R)$.

3. Let $U \subseteq \mathbb{R}^n$, $f: U \to \mathbb{R}^n$ be C^r $(r \ge 1)$ and assume f is a C^1 -diffeomosphism (onto its image). Prove that f is a C^r -diffeomosphism.

4. $U, V \subseteq \mathbb{R}^n$ be open , $f: U \rightarrow V$ a smooth bijection (smooth $\equiv \mathbb{C}^{\infty}$). Then f is a smooth diffeomosphism if and only if f is a \mathbb{C}^1 -local diffeomosphism at all $p \in U$.

5. Given an example to show that C'\(\varphi\) C'\(\varphi\) in general.

6. $f:\mathbb{R} \to \mathbb{R}$ be given by $f(\alpha) = \frac{\gamma}{2} + \alpha^2 \sin \frac{1}{\alpha}$, $\gamma \neq 0$, f(0) = 0, has non-vanishing desirative at $\gamma = 0$, but f is NoT a diffeomorphism in any neighbour hood of $\gamma = 0$.