Soluzioni del secondo compito in itinere Fondamenti di Elettronica, Ingegneria Informatica, AA 2018-2019 (Tema A)

Dato il circuito in figura, con R1 = 1 k Ω , R2 = 2 k Ω , R3 = 2 k Ω , D1 e D2 diodi ideali con tensione V γ = 1 V, tracciare il grafico V $_0$ vs V $_i$ per -4 V < V $_i$ < +4 V. Identificare i punti di spezzamento e le pendenze dei tratti lineari.

Esercizio 1 – diodi

SOLUZIONE

Quando la tensione V_i è negativa è ragionevole pensare che sia D1 che D2 siano nello stato OFF. Per verificarlo sostituiamo D1 e D2 con circuiti aperti e calcoliamo la tensione del nodo interno X e di V_0 .

$$V_0 = V_i \frac{R_3}{R_1 + R_2 + R_3} = V_i \frac{2}{1 + 2 + 2} = V_i \frac{2}{5}$$

Quindi finchè V_i è < 0 V, D1 è in inversa con una tensione ai suoi capi pari a $V_i - V_i \frac{2}{5} = V_i \frac{3}{5}$. Verifichiamo quale dei due diodi si accende per primo

hp. D1 ON, D2 OFF

Perchè D1 si accenda è necessario che la tensione ai suoi capi superi +1 V, quindi $V_i > 5/3 = 1.667$ V. Ma con $V_i = 1.667$ V e D1 acceso dovrebbe essere $V_0 = 0.667$ V ($V_i - Ia$ caduta ai capi di D1 cioè 1 V). Quindi con D2 OFF la corrente I_{12} in R1 e R2 sarebbe ($V_i - V_0$)/(R1+R2) = $1V/3k\Omega = 0.33$ mA e quindi la tensione al nodo X sarebbe pari a $1.667 - R1*I_{12} = 1.667 - 1*0.33 = 1.337$ e D2 sarebbe acceso, il che contraddice l'ipotesi.

hp. D1 OFF, D2 ON

Quando D1 e D2 sono spenti, la tensione Vx (che coincide con la tensione diretta di D2) è data da

$$V_X = V_i \frac{R_2 + R_3}{R_1 + R_2 + R_3} = V_i \frac{4}{1 + 2 + 2} = V_i \frac{4}{5}$$

Quindi D2 si accende per $V_i > 5/4 = 1.25 \text{ V e } V_0 = V_i \frac{2}{5} = 0.5 \text{ V}$

Per V_i < 1.25 V si ha D1 OFF, D2 OFF e V_o =2/5 V_i

Per $V_i > +1.25$ V D2 si accende. Nell'ipotesi che D1 rimanga OFF, quando il diodo D2 è acceso, la tensione V_X è "clamped", ovvero bloccata al valore della tensione di ginocchio del diodo, ovvero 1 V.

Il partitore resistivo R2-R3 determina la tensione di uscita V₀:

$$V_o = 1 \frac{R_2}{R_2 + R_3} = 1 \frac{2}{4} = 0.5 V$$

In questa situazione la differenza di tensione ai capi di D1 è V_i - 0.5 V. Questa tensione raggiunge 1 V per V_i = 1.5 V. Per quel valore di tensione, D1 si accende e blocca la differenza di tensione tra ingresso e uscita: V_i - V_o = 1 V. Quindi V_o cresce con pendenza unitaria a partire da V_i >1.5 V (condizione per D1 ON e D2 ON).

SIMULAZIONE SPICE

Il circuito può essere simulato utilizzando questo listato .cir:

*20190531 2docompito FDE 1mo esercizio Tema A.cir

Vi Vi 0 DC 0

D1 Vi Vo D

R1 Vi X 1kohm

R2 X Vo 2kohm

D2 X 0 D

R3 Vo 0 2kohm

.model D D (Ron=0.01 Roff=1000MEG Vfwd=1)

.DC Vi 1 +2V 10mV

.backanno

.end

Esercizio 2 – amplificatore a MOSFET

Dato il circuito in figura, dove VDD = 16 V, RI = 5 k Ω , R1 = 430 k Ω , R2 = 560k Ω , RS = 13 k Ω , RD = 23 k Ω , R3 = 220 k Ω , e il transistor MOS ha i seguenti parametri: k_n = 1 mA/V², V_T = 1 V, λ =0.

Disegnare il circuito equivalente per piccolo segnale e ricavare l'espressione del guadagno con RI=0, $R3 = \infty$

Calcolare:

- 1) i valori DC di VGSQ, VDSQ, IDQ
- il valore massimo RDmax della resistenza di drain che mantiene il transistor in saturazione
- 3) il valore della transconduttanza gm
- 4) il valore del guadagno $A_V = vo/vg$ con RI=0. R3 = ∞
- 5) il valore della resistenza di ingresso Rin e della resistenza di uscita Rout (RD inclusa, R3 esclusa)
- 6) il valore del guadagno AvR = vo/vi con RI e R3
- 7) il valore del guadagno A_{VRsenza} nel caso si rimuova il condensatore C2
- 8) che vantaggio comporta rimuovere il condensatore C2?

SOLUZIONE

1) Calcolo V_G

$$V_G = V_{DD} \frac{R_1}{R_1 + R_2} = 16 \frac{430}{430 + 560} = 16 \frac{430}{990} = 6.95 V$$

imposto il calcolo di V_{GS}:

$$V_{GS} = V_G - V_S = 6.95 - \frac{1}{2}k_n R_S (V_{GS} - V_T)^2$$

$$V_{GS} = V_G - V_S = 6.95 - \frac{1}{2}1 \times 13(V_{GS} - 1)^2$$

$$V_{GS} = 6.95 - 6.5(V_{GS} - 1)^2$$

$$V_{GS} = 6.95 - 6.5V_{GS}^2 - 6.5 + 13V_{GS}$$
$$0 = 0.45 - 6.5V_{GS}^2 + 12V_{GS}$$
$$0 = 6.5V_{GS}^2 - 12V_{GS} - 0.45$$

che fornisce V_{GS} = -0.036 (impossibile) e V_{GS} =1.88 V ovvero V_{OV} = V_{GS} - V_T =0.88 V quindi I_{DQ} è data da :

$$I_{DQ} = \frac{1}{2}k_n V_{OV}^2 = 0.5 \times 1 \times 0.88^2 = 387 \ \mu A$$

e V_{DSQ}

$$V_{DSQ} = V_{DD} - I_{DQ}(R_D + R_S) = 16 - 0.387(36) = 16 - 13.93 = 2.068 V$$

dato che 2.068 V = $V_{DSQ} > V_{OV} = 0.88$ V il transistor si trova in saturazione. Per portarlo al limite della saturazione deve essere $V_{DS} = V_{OV}$, quindi

$$V_{DSsat} = 0.88 V = V_{DD} - I_{DQ}(R_D) - I_{DQ}(R_S) = 16 - 0.387(13) - 0.387(R_D) = 0.88 V$$

$$16 - 5.031 - 0.88 = 0.387(R_D) = 10.089 V$$

2) Calcolo del valore massimo della resistenza di drain

$$R_{Dmax} = \frac{10.089}{0.387} = 26 \, k\Omega$$

RISULTATI DELLA SIMULAZIONE SPICE DEL PUNTO OPERATIVO

--- Operating Point ---

7.03599	voltage
6.94949	voltage
5.06661	voltage
16	voltage
0.00038974	device_current
0	device_current
-1.97938e-012	device_current
-0.00038974	device_current
1.61616e-005	device_current
0.000389739	device_current
1.61616e-005	device_current
0.000389739	<pre>device_current</pre>
-0.000405901	<pre>device_current</pre>
	6.94949 5.06661 16 0.00038974 0 -1.97938e-012 -0.00038974 1.61616e-005 0.000389739 1.61616e-005 0.000389739

Calcolo del modello per piccolo segnale

3)
$$g_m = k_n(V_{GS}-V_T) = 1*V_{OV} = 0.88 \text{ mS}$$

4)
$$A_V = -g_m R_D = -0.88*23 = -20.24$$

5)
$$R_{in} = R_1//R_2 = R_1R_2/(R_1+R_2) = (430*560)/(990) = 243 \text{ k}\Omega$$

 $R_{out} = R_D = 23 \text{ k}\Omega$

6) Calcolo del guadagno complessivo, inclusa sorgente e carico

$$A_{VR} = A_V \frac{R_{in}}{R_I + R_{in}} \frac{R_3}{R_3 + R_{out}} = -20.24 \frac{243}{5 + 243} \frac{220}{220 + 23}$$
$$= -20.24 \frac{243}{5 + 243} \frac{220}{220 + 23} - 20.24 \times 0.976 \times 0.905 = -17.878$$

Simulazione SPICE

Analisi del guadagno v_0/v_i con $R_1 = 0$ e $R_3 = \infty$. Il valore del guadagno a centro banda simulato è 20.3.

Simulazione SPICE con $R_1 = 5k\Omega$ e $R_3 = 220$ k Ω . Il valore simulato del guadagno è 18.01.

Av con Rs = $-g_mR_D/(1 + g_mR_S) = -0.88x23/(1+0.88x13) = -20.24/12.44 = -1.627 \text{ V/V}$ Avr con Rs = $-1.627 \times 0.976 \times 0.905 = -1.437 \text{ V/V}$. La simulazione SPICE fornisce -1.443 V/V

Esercizio 1 - Tema B

VGSQ	VDSQ	IDQ	RDmax	gm	Av	Rin	Rout	AVR	AVsenza/ AVRsenza
1.88 V	2.068 V	0.387 mA	26kΩ	0.88 mS	-20.24	243 kΩ	23 kΩ	-17.878	-1.627 -1.437

Esercizio 3 – amplificatore a MOSFET

Dato il circuito in figura, sia Kn = 0.5 mA/V² e V_{Tn} = 1 V, λ =0. Disegnare il circuito equivalente per piccolo segnale. calcolare:

- 1) i valori DC di VGSQ, VDSQ, IDQ
- 3) il valore della transconduttanza gm
- 4) il valore del guadagno $A_V = vo/vi$ con RI=0, R3 = ∞
- 5) il valore della resistenza di ingresso Rin vista da Vs (senza RI) e della resistenza di uscita Rout vista da VD (RD inclusa, R3 esclusa)
- 6) il valore del guadagno AVR = vo/vi con RI e R3

Calcolo del punto a riposo

a) Calcolo il valore di V_G

$$V_G = V_{DD} \frac{R_1}{R_1 + R_2} = 10 \frac{0.75}{1.1 + 0.75} = 10 \frac{0.75}{1.85} = 4.05 V$$

imposto il calcolo di V_{GS}:

$$V_{GS} = V_G - V_S = 4.05 - \frac{1}{2}k_n R_S (V_{GS} - V_T)^2$$

$$V_{GS} = V_G - V_S = 4.05 - \frac{1}{2}0.5 \times 11(V_{GS} - 1)^2$$

$$V_{GS} = 4.05 - 2.75 \times (V_{GS}^2 + 1 - 2V_{GS})$$

$$V_{GS} = 4.05 - 2.75V_{GS}^2 - 2.75 + 5.5V_{GS}$$

$$V_{GS} = 4.05 - 2.75V_{GS}^2 - 2.75 + 5.5V_{GS}$$

$$0 = 1.3 - 2.75V_{GS}^2 + 4.5V_{GS}$$

$$0 = 2.75V_{GS}^2 - 4.5V_{GS} - 1.3$$

 $V_{GS} = -0.25 \text{ V (impossibile)}$; $V_{GS} = 1.89 \text{ V}$; $V_{OV} = 0.89 \text{ V}$.

Calcolo I_{DQ:}

$$I_{DQ} = \frac{1}{2}k_nV_{OV}^2 = 0.25 \times 0.89^2 = 198 \,\mu A$$

Calcolo V_{DS}

$$V_{DSO} = V_{DD} - I_{DO}(R_D + R_S) = 10 - 0.198(34) = 10 - 6.732 = 3.268 V > V_{OV}$$

Il transistor si trova in saturazione.

Simulazione SPICE – punto di lavoro

--- Operating Point ---

<pre>V(vg):</pre>	V(vd):	5.47011	voltage
V(vdd): 10 voltage V(vo): 2.73505e-011 voltage V(n001): 0.1 voltage V(vi): 0.1 voltage Id(M1): 0.000196952 device_current Ig(M1): 0 device_current Ib(M1): -3.31364e-012 device_current Is(M1): -0.000196952 device_current Is(M1): -0.000196952 device_current I(C2): 4.05405e-016 device_current I(C1): 2.06647e-016 device_current I(C3): -5.47011e-016 device_current I(R2): 5.40541e-006 device_current I(R4): 0.000196952 device_current I(R1): 5.40541e-006 device_current I(R1): 5.40541e-006 device_current I(R3): 5.47011e-016 device_current I(R3): 5.47011e-016 device_current I(R3): 5.47011e-016 device_current I(R4): 0.000196952 device_current I(Vdd): -0.000202357 device_current	V(vg):	4.05405	voltage
V(vo): 2.73505e-011 voltage V(n001): 0.1 voltage V(vi): 0.1 voltage Id(M1): 0.000196952 device_current Ig(M1): 0 device_current Is(M1): -3.31364e-012 device_current Is(M1): -0.000196952 device_current I(C2): 4.05405e-016 device_current I(C1): 2.06647e-016 device_current I(C3): -5.47011e-016 device_current I(R2): 5.40541e-006 device_current I(R4): 0.000196952 device_current I(R1): 5.40541e-006 device_current I(R1): 5.40541e-006 device_current I(R3): 5.47011e-016 device_current I(R3): 5.47011e-016 device_current I(R3): 5.47011e-016 device_current I(R4): 0.000196952 device_current I(Vdd): -0.000202357 device_current	V(vs):	2.16647	voltage
V(n001): 0.1 voltage V(vi): 0.1 voltage Id(M1): 0.000196952 device_current Ig(M1): 0 device_current Ib(M1): -3.31364e-012 device_current Is(M1): -0.000196952 device_current I(C2): 4.05405e-016 device_current I(C1): 2.06647e-016 device_current I(C3): -5.47011e-016 device_current I(R2): 5.40541e-006 device_current I(R4): 0.000196952 device_current I(R1): 5.40541e-006 device_current I(R3): 5.47011e-016 device_current I(R3): 5.47011e-016 device_current I(Rd): 0.000196952 device_current I(Vdd): -0.000202357 device_current	V(vdd):	10	voltage
V(vi): 0.1 voltage Id(M1): 0.000196952 device_current Ig(M1): 0 device_current Ib(M1): -3.31364e-012 device_current Is(M1): -0.000196952 device_current I(C2): 4.05405e-016 device_current I(C1): 2.06647e-016 device_current I(C3): -5.47011e-016 device_current I(R2): 5.40541e-006 device_current I(R4): 0.000196952 device_current I(R1): 5.40541e-006 device_current I(R3): 5.47011e-016 device_current I(Rd): 0.000196952 device_current I(Rd): 0.000196952 device_current I(Vdd): -0.000202357 device_current	V(vo):	2.73505e-011	voltage
Id (M1): 0.000196952 device_current Ig (M1): 0 device_current Ib (M1): -3.31364e-012 device_current Is (M1): -0.000196952 device_current I (C2): 4.05405e-016 device_current I (C1): 2.06647e-016 device_current I (C3): -5.47011e-016 device_current I (R2): 5.40541e-006 device_current I (R4): 0.000196952 device_current I (R1): 5.40541e-006 device_current I (R3): 5.47011e-016 device_current I (R3): 5.47011e-016 device_current I (Rd): 0.000196952 device_current I (Vdd): -0.000202357 device_current	V(n001):	0.1	voltage
<pre>Ig(M1):</pre>	V(vi):	0.1	voltage
Ib (M1): -3.31364e-012 device_current Is (M1): -0.000196952 device_current I(C2): 4.05405e-016 device_current I(C1): 2.06647e-016 device_current I(C3): -5.47011e-016 device_current I(R2): 5.40541e-006 device_current I(R4): 0.000196952 device_current I(R1): 2.06654e-016 device_current I(R3): 5.47011e-016 device_current I(R3): 5.47011e-016 device_current I(Rd): 0.000196952 device_current I(Vdd): -0.000202357 device_current	<pre>Id(M1):</pre>	0.000196952	device current
<pre>Is (M1):</pre>	Ig(M1):	0	device current
<pre>I(C2):</pre>	Ib(M1):	-3.31364e-012	device_current
<pre>I(C1):</pre>	Is(M1):	-0.000196952	device_current
<pre>I(C3):</pre>	I(C2):	4.05405e-016	device current
<pre>I(R2):</pre>	I(C1):	2.06647e-016	device_current
<pre>I(R4):</pre>	I(C3):	-5.47011e-016	device_current
<pre>I(Ri):</pre>	I(R2):	5.40541e-006	device_current
<pre>I(R1):</pre>	I(R4):	0.000196952	device current
<pre>I(R3):</pre>	I(Ri):	2.06654e-016	device_current
<pre>I(Rd):</pre>	I(R1):	5.40541e-006	device_current
I(Vdd): -0.000202357 device_current	I(R3):	5.47011e-016	<pre>device_current</pre>
	I(Rd):	0.000196952	<pre>device_current</pre>
I(Vi): 2.06662e-016 device_current	I(Vdd):	-0.000202357	device_current
	I(Vi):	2.06662e-016	device_current

Calcolo dei parametri per piccolo segnale

$$g_m = \sqrt{2k_n I_D} = \sqrt{2 \times 0.5 \times 0.198} = 0.444 \, mS$$

Altra forma

$$g_m = k_n V_{OV} = 0.5 \times 0.89 = 0.445 \, mS$$

Si tratta di un amplficatore a gate comune; calcolo il guadagno senza R_I e R₃:

$$A_V = g_m R_D = 0.444 \times 23 = 10.212$$

Calcolo il guadagno con R₁ e R₃:

$$R_L = R_D / / R_3 = (23x50) / 73 = 15,75 \text{ k}\Omega$$

 $R_{TH} = R_S / / R_I = (11x1) / 12 = 0.92$

 $R_S/(R_I+R_S) = 11/12=0.92$

$$A_{VR} = \frac{g_m R_L}{1 + g_m R_{TH}} \frac{R_S}{R_I + R_S} = \frac{0.444 \times 15.75}{1 + 0.444 \times 0.92} \times \frac{11}{12}$$

$$A_{VR} = \frac{g_m R_L}{1 + g_m R_{TH}} \frac{R_S}{R_I + R_S} = \frac{6.993}{1.408} \times 0.92 = 4.57$$

Simulazione SPICE di A $_{V}$ con R $_{I}$ = 0 e R $_{3}$ = ∞ . Il valore a centro banda è 10.203

Simulazione SPICE di A_{VR} con R_I e R₃: il valore a centro banda è 4.555

Senza r_0 , $R_{in}=1/g_m//R_s$; $1/g_m=1/0.444=2.25$ k Ω ; $2.25k\Omega//11k\Omega=(2.25x11x10^6)/13.25x10^3=1.87$ k Ω ; Rout = $R_D=23$ k Ω .

VGSQ	VDSQ	IDQ	gm	Av	Rin	Rout	AVR
1.89 V	3.268 V	0.198 mA	0.444 mS	10.212	1.87 kΩ	23 kΩ	4.57

Esercizio 4 Nel circuito in figura (sotto) il transistor NMOS ha VT= 1 V, λ = 1/50

- 4.1 Imporre $V_{DS} = 2 V$ e trovare il valore di k_n
- 4.2 Trovare ro
- 4.3 Qual'è il guadagno di tensione Av = v_o/v_i ?
- 4.4 Quanto diventano V_{DSn} e il guadagno Avn se I diventa 1 mA?

Soluzione (identica per Tema A e Tema B)

- 1) $V_{DS} = V_{GS} = 2 \text{ V}$, $V_{OV} = 2-1 = 1$. Trascuro λ . $I_D = 0.5 \text{ mA} = (1/2)k_nV_{OV}^2 = 0.5k_n$, $k_n = 1 \text{ mA/V}^2$. prova : $I_D = \frac{1}{2}k_n (V_{GS} V_T)^2 = 0.5 * 1 * (2-1)^2 \text{ mA} = 0.5 \text{ mA}$
- 2) r_0 = (1/λ + V_{DS})/I_D = (50+2)/(0.5x10⁻³)=104 kΩ (sono 100 kΩ se si usa la formula approssimata r_0 = 1/(λI_D)).
- 3) per calcolare il guadagno in tensione è necessario considerare il modello per piccolo segnale; il generatore di corrente viene sostituito da un circuito aperto, i condensatori da cortocircuiti.

Calcolo $g_m = k_n(V_{GS}-V_T) = 1*1 = 1 \text{ mS}$

Definiamo R'_L = r_0 //R_L= 104//10 = 1040/114 = 9.12 k Ω

$$v_0 = (i_{in} - g_m v_{gs})R'_L$$

$$i_{in} = (v_{gs} - v_o)/R_G$$

$$v_0 = (v_{gs}/R_G - v_o/R_G - g_m v_{gs})R'_L$$

raccolgo vo e vgs:

$$v_0 (1 + R'_L/R_G) = v_{gs} (R'_L/R_G - g_m R'_L)$$

quindi

$$A_V = v_0/v_{gs} = (R'_L/R_G - g_m R'_L)/(1 + R'_L/R_G)$$

$$A_V = V_0/V_{gs} = (9.12k\Omega/10M\Omega - 1*9.12)/(1 + 9.12k\Omega/10M\Omega)$$

dato che $9.12k\Omega/10M\Omega < 1/1000$ risulta trascurabile, e il guadagno diventa - $9.12 \text{ V/V} = -\text{ gmR}'_{\text{L}}$

4) mantenendo k_n = 1 mA/V², dato che I_D = ½ $k_nV_{OV}^2$ perchè I_D diventi 1 mA deve essere V_{OV}^2 = 2 I_D/k_n = 2 V_D^2 , quindi V_{OV} = 1.4142 V_D^2 = V_D^2 = V_D^2 = V_D^2 = 2.4142 V_D^2

 r_o diventa circa metà del valore iniziale, ovvero 50 k Ω .

 $R'_{L}=r_{o}/R_{L}=50//10=500/60=8.33 \text{ k}\Omega$

 $g_m = (2k_nI_D)^{1/2} = 1.4142 \text{ mS}$

$$A_V = -g_m R'_L = -1.4142*8.33 = -11.78 \text{ V/V}$$

kn	rO	gm	Av	gm	VDSn	Avn
1 mA/V ²	104 kΩ	1 mS	9.12	1.4142 mS r _o =50 kΩ	2.4142	-11.78

Il circuito utilizzato per la simulazione SPICE è mostrato nel seguito.

Con una corrente di 500 μ A, dopo aver imposto $k_n = 1 \text{mA/V}^2$ e $\lambda = 0$ si ottiene $V_{DS} = V_{GS} = 2V$.

```
--- Operating Point ---
```

V(d):	2	voltage
V(g):	2	voltage
V(vdd):	10	voltage
V(vo):	2e-012	voltage
V(vgs):	0	voltage
Id(M1):	0.0005	device current
Ig(M1):	0	device current
Ib(M1):	-2.01e-012	device current
Is(M1):	-0.0005	device current
I(C2):	2e-016	device current
I(C1):	-2e-016	device current
I(I1):	0.0005	device current
I(R1):	2e-016	device current
I(Rg):	1.99784e-016	device current
I(Vgs):	2e-016	device current
I(Vdd):	-0.0005	device current

Il guadagno a centro banda corrispondente (con λ =0.02) vale -9.29 V/V (rispetto a 9.12 V calcolati analiticamente).

Quando la corrente passa a 1 mA, la tensione di drain aumenta a 2.4142 V come calcolato:

--- Operating Point ---

```
V(d):
                2.41421
                               voltage
V(g):
                2.41421
                               voltage
V(vdd):
                10
                               voltage
V(vo):
                2.41421e-012
                               voltage
V(vgs):
                0
                               voltage
Id(M1):
                0.001
                               device current
Iq(M1):
                0
                               device current
Ib(M1):
                -2.42421e-012 device current
Is(M1):
                -0.001
                               device current
I(C2):
                2.41421e-016
                               device current
I(C1):
                -2.41421e-016 device current
I(I1):
                0.001
                               device current
I(R1):
                2.41421e-016
                               device curren
```

mentre il guadagno a centro banda diventa 12.14 V/V (analiticamente è stato calcolato 11.78 V/V approssimando il valore di r_o.

Esercizio 5 (facoltativo). Dopo aver rimosso R3 e C3 dall' amplificatore dell'esercizio 2,e il generatore Vi e Ri dell'esercizio 3, connettere l'uscita dell'amplificatore (esercizio 2) all'ingresso dell'amplificatore (esercizio 3). Mantenere il carico R3 dell'amplificatore (esercizio 3) e la resistenza RI all'ingresso dell'amplificatore (esercizio 2). Calcolare il guadagno in tensione complessivo.

Il guadagno in tensione è il prodotto dei due guadagni, che vanno però calcolati tenendo conto dell'effetto di carico del secondo amplificatore sul primo.

Il primo amplificatore ha come carico R_D in parallelo alla resistenza di ingresso del secondo amplificatore, che vale (si veda sopra – esercizio 3) $R_{in2}=1/g_{m2}//R_s$; $1/g_{m2}=1/0.444=2.25~k\Omega$; $2.25k\Omega//11k\Omega=(2.25x11x10^6)/13.25x10^3=1.87~k\Omega$; $R_{D1}//R_{in2}=23k\Omega//1.87k\Omega=(23x1.87)/24.87=1.73k\Omega$; quindi A_{V1} vale

$$A_{V1} = -g_{m1}(R_D||R_{in2})\frac{R_{in1}}{R_{I1} + R_{in1}} = -0.88(1.73)\frac{243}{5 + 243} = -1.5224 \times 0.9798 = -1.4916 \, V/V$$

Dato che abbiamo inserito gli effetti di carico nel primo amplificatore (common source), non dobbiamo tenerne conto nel calcolo del guadagno in tensione del secondo (common gate).

Il guadagno del secondo amplificatore sarà quindi (con $R_{D2}||R_3 = (23\times50)/73) = 15.75 \text{ k}\Omega$

$$A_{V2} = g_{m2}(R_{D2}||R_3) = 0.444 \times 15.75 = 6.993 \frac{V}{V}$$

Il guadagno complessivo sarà quindi

$$A_{V1}A_{V2} = -1.4916 \times 6.993 = -10.43 V / V$$

Il circuito in figura rappresenta la configurazione usata per la simulazione SPICE.

Il rapporto v_{01}/v_i simulato (che corrisponde al guadagno in tensione del primo stadio in queste condizioni di carico è -1.496 V/V (valore analitico -1.4916)

Il rapporto v_0/v_{01} rappresenta il guadagno del secondo stadio. La simulazione SPICE fornisce 6.991 V/V rispetto al valore 6.993 V/V calcolato analiticamente. Il guadagno complessivo è dato da v_0/v_i = -10.46 V/V (-10.43 analitico).

