Notes on the SDP relaxation of k-means

The SDP relaxation of k-means

Iguchi et al. formulated a semidefinite progmming approach to k-means as follows²:

$$\arg\max_{Z}-\mathrm{Tr}(D_{2}Z)$$
 s.t.
$$\mathrm{Tr}(Z)=k$$

$$Ze=e$$

$$Z\geq0\text{ element-wise}$$

$$Z\text{ is positive semidefinite}$$

Where

- $\begin{array}{ll} \bullet & D_2 = [d_{ij}] = [||x_i x_j||^2] \\ \bullet & x_1, ..., x_n \in \mathbb{R}^q \\ \end{array}$
- The number of clusters, k, is known

•
$$e = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^q$$

Note that without the SDP relaxation, we have a rigid structure for Z where $z_{ij} = \begin{cases} n_k^{-1} & x_i, x_j \text{ in same cluster } k \\ 0 & \text{else} \end{cases}$

Equating the trace formulation of k-means to kernel k-means

We can see that the data matrix $X = \begin{bmatrix} x_1^{\top} \\ \vdots \\ x^{\top} \end{bmatrix}$ is not explicitly in the objective, although squared Euclidean

distances are. We can rewrite this as a kernel formulation by noting that $D_2 = \kappa(B)$ where B is a kernel matrix:

$$-\operatorname{Tr}(D_2 Z) = -\operatorname{Tr}(\kappa(B) Z)$$

$$= -\operatorname{Tr}((be^{\top} - 2B + eb^{\top}) Z)$$

$$= 2\operatorname{Tr}(BZ) - \operatorname{Tr}(be^{\top}Z) - \operatorname{Tr}(eb^{\top}Z)$$

$$= 2\operatorname{Tr}(BZ) - \operatorname{Tr}(be^{\top}) - \operatorname{Tr}(Zeb^{\top})$$

$$= 2\operatorname{Tr}(BZ) - \operatorname{Tr}(be^{\top}) - \operatorname{Tr}(eb^{\top})$$

$$= 2\operatorname{Tr}(BZ) - 2\operatorname{Tr}(be^{\top})$$

$$= 2\operatorname{Tr}(BZ) - 2\operatorname{Tr}(B)$$

¹https://arxiv.org/abs/1505.04778

²the notation is slightly different here

... where $b = \operatorname{diag}(B)$, the vector of diagonal entries of B. Note that if we think of B as a weight matrix for an undirected graph, $\operatorname{Tr}(B) = 0$. Similarly, if we impose that the diagonal entries of B are equal to 1 (e.g., B is a correlation matrix), then $\operatorname{diag}(B) = n$. Either way, $\operatorname{Tr}(B)$ does not depend on Z, so we can ignore it in the objective, and we can see that $\operatorname{arg} \max_{Z} \operatorname{Tr}(D_2 Z) = \operatorname{arg} \max_{Z} \operatorname{Tr}(BZ)$, which is just the typical kernel formulation of k-means:

$$\arg\max_{Z} \text{Tr}(BZ)$$
 s.t.
$$\text{Tr}(Z) = k$$

$$z_{ij} = \begin{cases} n_k^{-1} & x_i, x_j \text{ in same cluster } k \\ 0 & \text{else} \end{cases}$$

Similarly, we can go from a kernel formulation of k-means to one based on squared Euclidean distances by noting that $D_2 = \tau(B)$. For simplicity of notation, we will rewrite $\arg \max_x f(x) = \arg \max_x 2f(x)$.

$$\begin{aligned} & 2\text{Tr}(BZ) = 2\text{Tr}(\tau(D_2)Z) \\ & = \text{Tr}(-PD_2PZ) \\ & = -\text{Tr}((I - n^{-1}ee^\top)D_2(I - n^{-1}ee^\top)Z) \\ & = -\text{Tr}((D_2 - n^{-1}D_2ee^\top - n^{-1}ee^\top D_2 + n^{-2}ee^\top ee^\top D_2)Z) \\ & = -\text{Tr}(D_2Z) + n^{-1}\text{Tr}(D_2ee^\top Z) + n^{-1}\text{Tr}(ee^\top D_2Z) - n^{-2}\text{Tr}(ee^\top D_2Z) \\ & = -\text{Tr}(D_2Z) + 2n^{-1}\text{Tr}(D_2ee^\top) - n^{-2}\text{Tr}(D_2ee^\top) \end{aligned}$$

Since the second and third terms do not depend on Z, we can discard them, and we get $\arg \max_{Z} \operatorname{Tr}(BZ) = \arg \max_{Z} -\operatorname{Tr}(D_{2}Z)$.

Equating the SDP relaxation of k-means to the SDP relaxation of ratio cut

The ratio cut objective is:

$$\arg\min_{Z}\mathrm{Tr}(LZ)$$

where L is the combinatorial graph Laplacian and Z has the same structure as before. If we relax the optimization problem by not enforcing Z to have this structure, we can see that:

$$\arg\min_{Z} \operatorname{Tr}(LZ) = \arg\max_{Z} \operatorname{Tr}(L^{\dagger}Z)$$

where L^{\dagger} is the generalized inverse of L. Since L^{\dagger} is positive semidefinite, it can be thought of as a kernel matrix, and we can apply the $\tau(\cdot)$ transformation to it to obtain D_2 . In this case, D_2 is the expected commute time of the graph that generated L.

The argmin and argmax equivalence is not true in general if we force Z to have the structure that we want. It also is not true if we apply the SDP constraints (namely $Z \ge 0$ element-wise). One question of interest is under what conditions can we equate the two objectives under the SDP constraints.

³We can rewrite $\text{Tr}(D_2 e e^{\top}) = \sum_{i,j} d_{ij}^2 = 2 \sum_{i < j} d_{ij}$