10. Asistivní technologie a robotika v lékařství

Kinematika – základní pojmy a stavba robotických mechanismů

Kinematická dvojice je základní stavební jednotka mechanického systému – dvě tělesa jsou spojena tak, že mezi nimi může docházet k přesně definovanému relativnímu pohybu. Dělí se na:

- Rotační dvojici (kloub): umožňuje vzájemnou rotaci (např. loket).
- Translační dvojici: umožňuje vzájemný lineární pohyb (např. posuvné vedení).

Kinematický řetězec je uspořádání několika kinematických dvojic za sebou:

- Otevřený kinematický řetězec má nespojené konce (např. lidská paže).
- Uzavřený kinematický řetězec má konce spojené (např. nůžkový zvedák).

Stupně volnosti (Degrees of Freedom, DOF) vyjadřují, kolik nezávislých pohybů může systém vykonávat – například volná částice v prostoru má 3 DOF (pohyby podle x, y, z).

Strukturní schéma zobrazuje, jak jsou komponenty propojeny, zatímco **kinematické schéma** upřesňuje typy kinematických dvojic a počet stupňů volnosti celého mechanismu.

Kinematika robotů v homogenní souřadné soustavě

Kinematika robotů popisuje pohyb robotů (změny polohy a orientace) bez ohledu na působící síly.

Pro popis pohybu v prostoru se používají **homogenní transformace** a **transformační matice**.

- **Homogenní transformační matice** (4×4) umožňuje reprezentovat současně rotaci i translaci v 3D prostoru a velmi snadno skládat více dílčích transformací do výsledného pohybu.
- Základní pohyby robota jsou rotace kolem os x, y, z a posuvy podél těchto os.
- **Poloha bodu** je pak reprezentována homogenním vektorem (včetně "projektivní" souřadnice pro snadné operace).

Rychlostní kinematika využívá **jakobiánovou matici** (Jacobian), která převádí rychlosti v kloubech na rychlost koncového efektoru (pracovní části robota). Analogicky lze pomocí derivace Jakobiánu získat i zrychlení bodu.

Přímá a inverzní kinematika, matice pohybu

- **Přímá kinematika**: Na základě zadaných kloubových parametrů (úhlů, posuvů) vypočítá polohu a orientaci koncového efektoru robota pomocí sekvenčního násobení transformačních matic.
- **Inverzní kinematika**: Naopak určuje potřebné hodnoty kloubových parametrů, aby koncový efektor dosáhl požadované polohy/orientace.
 - Řešení je často iterativní, protože rovnice jsou nelineární. Pro řešení se používají např. Newtonovy metody nebo pseudo-inverze Jakobiánu.

Matice inverzního pohybu slouží k převodu souřadnic z koncového efektoru zpět do základního rámce, nebo obecně pro "zpětnou transformaci" při skládání pohybů.

Poloha, rychlost a zrychlení koncového bodu vůči rámu a ostatním tělesům se určují právě transformacemi a aplikací Jakobiánu a jeho derivací. Správné určení těchto hodnot je zásadní pro řízení pohybu i interakci robota s prostředím.

Výpočet Jakobiánu a jeho využití

Jakobián je matice, která vyjadřuje vztah mezi rychlostmi v kloubech robota a rychlostí koncového efektoru v prostoru. Má translační a rotační část (podle typu kloubu).

Při řešení inverzní kinematiky (nalezení kloubových úhlů pro dosažení požadované polohy) hraje klíčovou roli – umožňuje dopočítávat malé změny v úhlech podle aktuální chyby v poloze efektoru.

Dynamika otevřených kinematických řetězců

Dynamika zkoumá síly a momenty působící na jednotlivé části robotického mechanismu v pohybu.

Pro přesné modelování je třeba znát **rozložení hmotnosti** a setrvačné vlastnosti každého článku (členu řetězce).

Potenciální energie je dána polohou článků vůči gravitačnímu poli, **kinetická energie** rychlostí a rotačním pohybem článků.

Lagrangeovy rovnice II. druhu umožňují odvodit pohybové rovnice systému ze znalosti jeho energie (potenciální i kinetické), aniž by bylo nutné explicitně počítat všechny síly a momenty v kloubech.

Výsledkem jsou dynamické rovnice v maticovém tvaru:

$$D(q)\cdot q^{"}+C(q,q^{"})\cdot q^{"}+G(q)=\tau,$$

kde:

- D(q) je matice momentů setrvačnosti,
- C(q, q') je matice odstředivých a Coriolisových sil,
- G(q) je matice gravitačních sil,
- τ je vektor kloubových momentů (akčních zásahů),
- q jsou vektory kloubových úhlů (nebo posuvů).

Paradigmata silového řízení otevřených řetězců, Matlab simulace

Silové řízení znamená, že robot aktivně kontroluje sílu nebo moment působící na okolní prostředí, což je klíčové např. při manipulaci s křehkými předměty.

Impedanční řízení – robot reaguje "pružně" na kontakt, umožňuje změnit trajektorii, když narazí na překážku, čímž snižuje riziko poškození.

Admitanční řízení – robot aktivně upravuje svou polohu podle vnější síly (například víko krabice je zavíráno s definovanou silou).

Tyto strategie lze ověřovat v simulačním prostředí **Matlab/Simulink** – simuluje se model robota, navrhují a ladí se řídicí algoritmy, analyzují se výsledky.

Využití senzorů a aktuátorů v rozhraní člověkstroj

Robotické systémy využívají **senzory** (například snímače síly, momentu, polohy, tlaku) k získávání zpětné vazby o stavu robota i okolí.

Aktuátory (motory, hydraulika, pneumatika) provádějí pohyb na základě pokynů řídicího systému.

Předzpracování a využití signálů

Signály z uživatelských zařízení je potřeba:

- **Filtrování signálu** odstranění šumu a artefaktů pro zvýšení spolehlivosti detekce vstupů.
- Normalizace převedení hodnot do vhodného rozsahu pro další zpracování.

Tyto principy se používají například pro:

- Řízení pohybu invalidního vozíku (joystick, detekce síly, hlasové pokyny)
- Ovládání polohovatelného lůžka (snímače, ovladače, bezpečnostní prvky)
- Ovládání počítačové myši bez použití rukou (kamerové nebo EEG snímače)
- Ovládání externí robotické ruky (např. pomocí pohybových snímačů na jiných částech těla)

Využití embedded systémů

Embedded systémy jsou malé, specializované počítače navržené k plnění jednoho nebo omezeného okruhu úkolů.

Používají se pro:

- Zpracování senzorických dat
- Real-time řízení robotických mechanismů
- Implementaci ovládacích algoritmů
- Spolehlivý provoz v prostředí s omezenými zdroji

Programování a algoritmizace embedded systémů je často silně optimalizovaná na rychlost, odezvu a energetickou nenáročnost.

Alternativní komunikační systémy pro hendikepované

Cílem je umožnit komunikaci a ovládání zařízení osobám s omezenou schopností pohybu nebo řeči.

Příklady technologií:

- **Text-to-speech** převod psaného textu na mluvenou řeč (např. komunikátory pro osoby bez hlasu).
- **Brain-computer interface (BCI)** rozhraní snímající mozkovou aktivitu (EEG), která je převedena na ovládací signály pro počítače, invalidní vozíky nebo jiné pomůcky.
- Ovládání pohybu zařízení pomocí zbytkových pohybů, pohybu očí, dechu nebo jiných bio-signálů.

Alternativní komunikační a asistenční systémy významně zvyšují kvalitu života hendikepovaných osob tím, že rozšiřují jejich možnosti samostatného ovládání prostředí a komunikace s okolím.