固体物理学作业

Charles Luo

2025年5月11日

目录

1	第一章习题	3
2	第二章习题	9
3	第三章习题	12

1 第一章习题

习题 1. 在正交直角坐标系中, 若矢量 $\mathbf{R}_n = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$, 其中 \mathbf{i} , \mathbf{j} , \mathbf{k} 为单位矢量, n_i (i = 1, 2, 3) 为整数。问下列情况属于什么点阵?

- (a) 当 n_i 为全奇加全偶时;
- (b) 当 n_i 之和为偶数时。

解答.

(a) 据题意,全奇加全偶应是两个布拉维格子的叠加。

若 n_i (i = 1, 2, 3) 全为偶数,可以提取公因子 2 得到 $\mathbf{R}_n = n'_1(2\mathbf{i}) + n'_2(2\mathbf{j}) + n'_3(2\mathbf{k})$,此时 n'_i (i = 1, 2, 3) 为整数,对应简单立方点阵,格矢长度为 2 个单位长度。

同理可得 n_i (i = 1, 2, 3) 全为奇数时也为简单立方点阵,可由全为偶数时点阵沿 (1, 1, 1) 方向平移移一个单位长度得到。

- 二者的嵌套为体心立方点阵。
- (b) 据题意, $n_1 + n_2 + n_3 = 2k$, $k \in \mathbb{N}$ 。

不妨取 k=1 和 k=2 来猜测,可以得到格点坐标为 $(1,1,0),\cdots,(0,1,1),(2,0,0),\cdots,(0,0,2)$. 为面心立方点阵。

习题 1 的注记.

• (b) 可取 $k_1 = k - n_1, k_2 = k - n_2, k_3 = k - n_1 - n_2$, 得到 $\mathbf{R}_n = (k_2 + k_3)\mathbf{i} + (k_3 + k_1)\mathbf{j} + (k_1 + k_2)\mathbf{k}$.

习题 2. 分别证明:

- (a) 面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角 θ 相等,对 fcc 为 60° ,对 bcc 为 $109^\circ27'$;
- (b) 在金刚石结构中,作任一原子与其四个最近邻原子的连线。证明任意两条线之间夹角 θ 均为 $\arccos\left(-\frac{1}{3}\right)=109^{\circ}27'.$

(a) fcc 三个基矢为
$$\mathbf{a}_{1} = \left(0, \frac{1}{2}, \frac{1}{2}\right), \mathbf{a}_{2} = \left(\frac{1}{2}, 0, \frac{1}{2}\right), \mathbf{a}_{3} = \left(\frac{1}{2}, \frac{1}{2}, 0\right).$$
故 $\cos \theta = \frac{\mathbf{a}_{1} \cdot \mathbf{a}_{2}}{|\mathbf{a}_{1}| |\mathbf{a}_{2}|} = \frac{\mathbf{a}_{2} \cdot \mathbf{a}_{3}}{|\mathbf{a}_{2}| |\mathbf{a}_{3}|} = \frac{\mathbf{a}_{3} \cdot \mathbf{a}_{1}}{|\mathbf{a}_{3}| |\mathbf{a}_{1}|} = \frac{1}{2}, \quad \mathbb{P} \quad \theta = 60^{\circ}.$
bcc 三个基矢为 $\mathbf{a}_{1} = \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \mathbf{a}_{2} = \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \mathbf{a}_{3} = \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right).$
故 $\cos \theta = \frac{\mathbf{a}_{1} \cdot \mathbf{a}_{2}}{|\mathbf{a}_{1}| |\mathbf{a}_{2}|} = \frac{\mathbf{a}_{2} \cdot \mathbf{a}_{3}}{|\mathbf{a}_{2}| |\mathbf{a}_{3}|} = \frac{\mathbf{a}_{3} \cdot \mathbf{a}_{1}}{|\mathbf{a}_{3}| |\mathbf{a}_{1}|} = -\frac{1}{3}, \quad \mathbb{P} \quad \theta = \arccos\left(-\frac{1}{3}\right) = 109^{\circ}27'.$

(b) 金刚石结构中坐标为 $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ 的原子相邻的 4 个原子坐标分别为 (0,0,0), $\left(0, \frac{1}{2}, \frac{1}{2}\right)$, $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$, $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$. 邻边 $\mathbf{l_1} = \left(-\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}\right)$, $\mathbf{l_2} = \left(-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$, $\mathbf{l_3} = \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}\right)$, $\mathbf{l_4} = \left(\frac{1}{4}, \frac{1}{4}, -\frac{1}{4}\right)$.

$$\not\boxtimes \cos\theta = \frac{\mathbf{l_1} \cdot \mathbf{l_2}}{|\mathbf{l_1}| \ |\mathbf{l_2}|} = \frac{\mathbf{l_2} \cdot \mathbf{l_3}}{|\mathbf{l_2}| \ |\mathbf{l_3}|} = \frac{\mathbf{l_3} \cdot \mathbf{l_4}}{|\mathbf{l_3}| \ |\mathbf{l_4}|} = \frac{\mathbf{l_4} \cdot \mathbf{l_1}}{|\mathbf{l_4}| \ |\mathbf{l_1}|} = -\frac{1}{3}, \ \ \ \, \exists \ \theta = \arccos\left(-\frac{1}{3}\right) = 109^\circ 27'.$$

习题 3. 证明在六角晶系中米勒指数为 (hkl) 的晶面族间距为

$$d = \left[\frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2}\right)\right]^{-\frac{1}{2}}.$$

解答. 米勒指数以单胞的三条棱为坐标系.

正点阵的一族晶面 (hkl) 垂直于倒格矢 $\mathbf{K_h} = h\mathbf{b_1} + k\mathbf{b_2} + l\mathbf{b_3}$,晶面间距 $\frac{2\pi}{|\mathbf{K_h}|}$.

在六角晶系中
$$\mathbf{a} = (a, 0, 0), \mathbf{b} = \left(-\frac{1}{2}a, \frac{\sqrt{3}}{2}a, 0\right), \mathbf{c} = (0, 0, c).$$

求倒点阵基矢:

$$\mathbf{b_1} = 2\pi \frac{\mathbf{a_2} \times \mathbf{a_3}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = \frac{2\pi}{a} \left(1, \frac{\sqrt{3}}{3}, 0 \right).$$

$$\mathbf{b_2} = 2\pi \frac{\mathbf{a_3} \times \mathbf{a_1}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = \frac{2\pi}{a} \left(0, \frac{2\sqrt{3}}{3}, 0 \right).$$

$$\mathbf{b_3} = 2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = \frac{2\pi}{c} \, (0, 0, 1).$$

倒格矢
$$\mathbf{K_h} = \left(\frac{2\pi}{a}h, \frac{2\sqrt{3}\pi}{3a}h + \frac{4\sqrt{3}\pi}{3a}k, \frac{2\pi}{c}l\right)$$
, 故 $d = \frac{2\pi}{|\mathbf{K_h}|} = \left[\frac{4}{3}\left(\frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2}\right)\right]^{-\frac{1}{2}}$.

习题 4. 证明底心正交点阵的倒点阵仍为底心正交点阵。

解答. 底心正交阵基矢
$$\mathbf{a_1} = (a,0,0), \mathbf{a_2} = \left(\frac{a}{2}, \frac{b}{2}, 0\right), \mathbf{a_3} = (0,0,c).$$

倒点阵基矢:

$$\mathbf{b_1} = 2\pi \frac{\mathbf{a_2} \times \mathbf{a_3}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = 2\pi \left(\frac{1}{a}, -\frac{1}{b}, 0\right).$$

$$\mathbf{b_2} = 2\pi \frac{\mathbf{a_3} \times \mathbf{a_1}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = 2\pi \left(0, \frac{2\pi}{b}, 0\right).$$

$$\mathbf{b_3} = 2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = 2\pi \left(0, 0, \frac{1}{c}\right).$$

倒点阵仍为底心正交阵,底面边长为 $\frac{4\pi}{a}$ 和 $\frac{4\pi}{b}$, 高为 $\frac{2\pi}{c}$.

习题 5. 试证明具有四面体对称性的晶体,其介电常量为一标量介电常量:

$$\boldsymbol{\varepsilon}_{\alpha\beta} = \varepsilon_0 \delta_{\alpha\beta}.$$

解答. 根据电动力学有

$$\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}, \; \boldsymbol{\varepsilon} = egin{pmatrix} arepsilon_{11} & arepsilon_{12} & arepsilon_{13} \ arepsilon_{21} & arepsilon_{22} & arepsilon_{23} \ arepsilon_{31} & arepsilon_{32} & arepsilon_{33} \end{pmatrix}.$$

四面体对称性包括三个四重反演轴,绕 $\mathbf{x},\mathbf{y},\mathbf{z}$ 轴旋转的操作分别记为 $\mathbf{A}_x,\mathbf{A}_y,\mathbf{A}_z$,反演操作记为 \mathbf{I} .

$$\mathbf{A}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \mathbf{A}_{y} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \mathbf{A}_{z} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{I} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

由题意,应有 $(\mathbf{IA}_x) \varepsilon (\mathbf{IA}_x)^T = \varepsilon$. 即

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix}$$

可得 $\varepsilon_{13} = \varepsilon_{12} = 0$, $\varepsilon_{21} = -\varepsilon_{31}$, $\varepsilon_{32} = -\varepsilon_{23}$, $\varepsilon_{22} = \varepsilon_{33}$.

利用 $(\mathbf{IA}_y) \varepsilon (\mathbf{IA}_y)^T = \varepsilon$ 及 $(\mathbf{IA}_z) \varepsilon (\mathbf{IA}_z)^T = \varepsilon$ 可知 $\varepsilon_{\alpha\beta} = \varepsilon_0 \delta_{\alpha\beta}$.

习题 6. 若 AB_3 的立方结构如图所示,设 A 原子的散射因子为 $f_A(\mathbf{K}_{hkl})$,B 原子的散射因子 $f_B(\mathbf{K}_{hkl})$.

- (a) 求其几何结构因子 $F(\mathbf{K}_{hkl}) = ?$
- (b) 找出 (hkl) 衍射面的 X 射线衍射强度分别在什么情况下有

$$I\left(\mathbf{K}_{hkl}\right) \propto egin{cases} \left|f_A(\mathbf{K}_{hkl}) + 3f_B(\mathbf{K}_{hkl})
ight|^2 \ \left|f_A(\mathbf{K}_{hkl}) - f_B(\mathbf{K}_{hkl})
ight|^2 \end{cases}$$

(c) 设 $f_A(\mathbf{K}_{hkl}) = f_B(\mathbf{K}_{hkl})$, 问衍射面指数中哪些反射消失? 试举出五种最简单的。

解答.

- (a) 取原子坐标 A (0,0,0), B $\left(\frac{1}{2},\frac{1}{2},0\right)$, $\left(\frac{1}{2},0,\frac{1}{2}\right)$, $\left(0,\frac{1}{2},\frac{1}{2}\right)$. $F(hkl) = \sum_{i} f_{j} e^{-2\pi i(hr_{j1}+kr_{j2}+lr_{j3})} = f_{A} + f_{B}\left(e^{-\pi i(h+k)} + e^{-\pi i(k+l)} + e^{-\pi i(h+l)}\right).$
- (b) 当 (h+k), (h+l), (k+l) 均为偶数时, $F(hkl) = f_A + 3f_B$, $I(\mathbf{K}_{hkl}) \propto |f_A(\mathbf{K}_{hkl}) + 3f_B(\mathbf{K}_{hkl})|^2$. 当 (h+k), (h+l), (k+l) 两奇一偶时, $F(hkl) = f_A - f_B$, $I(\mathbf{K}_{hkl}) \propto |f_A(\mathbf{K}_{hkl}) - f_B(\mathbf{K}_{hkl})|^2$.
- (c) 消光条件 F(hkl) = 0, 据此可得 (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1).

习题 7. 在某立方晶系的铜 $\mathbf{K}_{\alpha}X$ 射线粉末相中,观察到的衍射角 θ_i 有下列关系:

 $\sin \theta_1 : \sin \theta_2 : \sin \theta_3 : \sin \theta_4 : \sin \theta_5 : \sin \theta_6 : \sin \theta_7 : \sin \theta_8$

$$=\sqrt{3}:\sqrt{4}:\sqrt{8}:\sqrt{11}:\sqrt{12}:\sqrt{16}:\sqrt{19}:\sqrt{20}.$$

- (a) 试确定对应于这些衍射角的晶面的衍射面指数;
- (b) 问该立方晶体时简单立方、面心立方还是体心立方?

(a) 晶面间距 $d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$,布拉格反射定律 $2d_{hkl}\sin\theta = n\lambda$,

可得
$$\sin \theta \propto \sqrt{(nh)^2 + (nk)^2 + (nl)^2}$$
.

故衍射面指数 (1,1,1), (2,0,0), (2,2,0), (1,1,3), (2,2,2), (4,0,0), (3,3,1), (4,2,1).

(b) 简单立方允许所有 (hkl) 值,没有消光.

体心立方要求 (h+k+l) 为偶数.

面心立方则要求 h, k, l 全奇或全偶.

故该立方晶体是面心立方。

习题 8. X 射线衍射的线宽。

假定一个有限大小的晶体,点阵节点由 $R_l = \sum_{i=1}^3 l_i \mathbf{a}_i$ 确定,其中 l_i 取整数 $0,1,2,\cdots,N_i-1$,每个结点处有全同的点散射中心。散射振幅可写为

$$u_{\mathbf{k}\to\mathbf{k}'} = c \sum_{l=0}^{N_i-1} e^{-i(\mathbf{k}'-\mathbf{k}) \cdot \sum_{i=1}^{3} l_i \mathbf{a}_i}.$$

- (a) 证明散射强度 $I = |u|^2 = u^* u = c^2 \prod_{i=1}^3 \frac{\sin^2 \frac{1}{2} N_i \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}{\sin^2 \frac{1}{2} \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}, \ \Delta k = k' k;$
- (b) 当 $\Delta \mathbf{k} \cdot \mathbf{a}_i = 2\pi h_i$ (h_i 为整数) 时,出现衍射极大值,函数 $\sin^2 \frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i)$ 的第一个零点定义了 X 射线衍射的线宽 Δ_i ,证明 $\Delta_i = \frac{2\pi}{N_i}$;
- (c) 对于一个无限大的晶体, $N_i \to \infty$, 证明 $I = c^2 N^2 \delta_{\mathbf{k}' \mathbf{k}, \mathbf{K}_h}$.

(a) 对散射振幅分析,
$$u_{\mathbf{k}\to\mathbf{k}'} = c\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-i(\mathbf{k}'-\mathbf{k})\cdot\sum\limits_{i=1}^3 l_i\mathbf{a}_i} = c\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-il_1(\Delta\mathbf{k}\cdot\mathbf{a}_1)}\cdot\mathrm{e}^{-il_2(\Delta\mathbf{k}\cdot\mathbf{a}_2)}\cdot\mathrm{e}^{-il_3(\Delta\mathbf{k}\cdot\mathbf{a}_3)}.$$

写成连乘形式
$$u_{\mathbf{k} o \mathbf{k}'} = c \prod_{i=1}^3 \sum_{l_i=0}^{N_i-1} \mathrm{e}^{-i l_i (\Delta \mathbf{k} \cdot \mathbf{a}_i)}.$$

$$\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-il_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} = \frac{1-\mathrm{e}^{-iN_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}}{1-\mathrm{e}^{-i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}} = \frac{\mathrm{e}^{-i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} \left(\mathrm{e}^{i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} - \mathrm{e}^{-i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\right)}{\mathrm{e}^{-i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)} \left(\mathrm{e}^{i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)} - \mathrm{e}^{-i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\right)}.$$

曲欧拉公式可化简为
$$\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-il_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} = \frac{\mathrm{e}^{-i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\sin\frac{1}{2}N_i\left(\Delta\mathbf{k}\cdot\mathbf{a}_i\right)}{\mathrm{e}^{-i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\sin\frac{1}{2}\left(\Delta\mathbf{k}\cdot\mathbf{a}_i\right)}.$$

故
$$I = |u|^2 = u^* u = c^2 \prod_{i=1}^3 \frac{\sin^2 \frac{1}{2} N_i \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}{\sin^2 \frac{1}{2} \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}, \ \Delta k = k' - k.$$

- (b) 函数 $\sin^2 \frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i)$ 的第一个零点出现在: $\frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i) = \pi \implies \Delta \mathbf{k} \cdot \mathbf{a}_i = \frac{2\pi}{N_i}$. 即 $\Delta_i = \frac{2\pi}{N_i}$.
- (c) 当 $N_i \to \infty$ 时,每个求和式 $\sum_{l_i=0}^{N_i-1} \mathrm{e}^{(-il_i(\Delta \mathbf{k} \cdot \mathbf{a}_i))}$ 转换为 δ 函数。因此,散射强度 I 表现为 δ 函数的形式:

$$I = c^2 N^2 \delta_{\mathbf{k}' - \mathbf{k}, \mathbf{K}_h}$$

其中 \mathbf{K}_h 是倒格矢,满足布拉格条件。

习题 8 的注记.

• (c) 不是很理解。

2 第二章习题

习题 9. 导出 NaCl 型离子晶体中排斥势指数的下列关系式:

$$n = 1 + \frac{4\pi\varepsilon_0 \times 18Br_0^4}{\alpha e^2}$$
 (SI 单位)

其中 r_0 为近邻离子间距, α 为以 r_0 为单位的马德隆常数,B 为体积弹性模量。已知 NaCl 晶体的 $B=2.4\times 10^{10} \mathrm{N/m^2}, r_0=2.81 \mathring{A}$,求 NaCl 的 n=?

解答. $\alpha = 1.747558, \varepsilon = 8.854 \times 10^{-12}$. 代入公式有

$$n = 1 + \frac{4\pi\varepsilon_0 \times 18Br_0^4}{\alpha e^2} = 1 + \frac{4\pi \times 8.854 \times 10^{-12} \times 18 \times 2.4 \times 10^{10} \times \left(2.81 \times 10^{-10}\right)^4}{1.747588 \times (1.60219 \times 10^{-19})} = 7.78$$

习题 9 的注记. 见书 P63,P64。

设晶体有
$$N$$
 个元胞,晶体内能 $U=N\left(-\frac{A_1}{r}+\frac{A_n}{r}\right), A_1=\frac{\alpha e^2}{4\pi\varepsilon_0}, A_n=6b, V=2Nr^3.$

由平衡位置能量极小有
$$\frac{\mathrm{d}U(r)}{\mathrm{d}r} = N\left(\frac{\alpha e^2}{4\pi\varepsilon_0 r^2} - \frac{6nb}{r^{n+1}}\right) = 0$$
, 即 $6b = \frac{\alpha e^2 r_0^{n-1}}{4n\pi\varepsilon_0}$.

代回内能公式有
$$U = N \frac{\alpha e^2}{4\pi\varepsilon_0} \left(-\frac{1}{r} + \frac{r_0^{n-1}}{nr^n} \right)$$
.

体积弹性模量
$$B = V \frac{\mathrm{d}^2 U}{\mathrm{d}V^2}\Big|_{r_0} = \frac{1}{18Nr_0} \frac{\mathrm{d}^2}{\mathrm{d}r^2}\Big|_{r_0} = \frac{(n-1)\alpha e^2}{4\pi\varepsilon_0 \times 18r_0^4}$$

晶体结合能
$$W = -U(r_0) = \frac{1}{4\pi\varepsilon} \frac{N\alpha e^2}{r_0} \left(1 - \frac{1}{n}\right).$$

习题 10. 带 $\pm e$ 电荷的两种离子相间排成一维晶格,设 N 为元胞数, $\frac{A_n}{r_0^n}$ 为排斥势, r_0 为正负离子间距。求证,当 N 很大时有:

- (a) 马德隆常数 $\alpha = 2 \ln 2$;
- (b) 结合能 $W = \frac{Ne^2 2 \ln 2}{4\pi\varepsilon_0 r_0} \left(1 \frac{1}{n}\right);$
- (c) 当压缩晶格时 $r \to r_0 (1-\delta)$,且 $\delta \ll 1$,则需做功 $\frac{1}{2} (2Nr_0) B\delta^2$,其中线弹模

$$B = \frac{(n-1)N2\ln 2}{8\pi\varepsilon_0 r_0^2}e^2$$

(a) 取一个电子分析,其静电势能 $u=2 imes \left(-\frac{e^2}{4\pi\varepsilon_0}\sum_{i=1}^\infty \frac{(-)^i}{ir_0}\right)$.

而
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-)^{n-1}}{n} x$$
, 取 $x = 1$ 得 $\alpha = 2 \ln 2$.

(b) 内能还需考虑排斥势能,在单电子分析上乘元胞数 N。

同习题 9 注记,此时
$$\alpha = 2 \ln 2$$
,可得 $W = \frac{Ne^2 2 \ln 2}{4\pi \varepsilon_0 r_0} \left(1 - \frac{1}{n}\right)$.

(c) 将内能函数展开,一次项由于平衡位置能量极小为零,故在 $\delta \to 0$ 时仅需考虑二次项变化。

$$U(r) \approx U(r_0) + \frac{1}{2} \cdot \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} \Big|_{r=r_0} (r - r_0)^2 = \frac{\alpha N e^2 (n-1)}{8\pi \varepsilon_0 r_0^3} (r - r_0)^2.$$

做功等于内能增量
$$W = U(r_0(1-\delta)) - U(r_0) = \frac{\alpha N e^2(n-1)}{8\pi\varepsilon_0 r_0^3} r_0^2 \delta^2 = \frac{1}{2} (2Nr_0) B \delta^2.$$

故
$$B = \frac{(n-1) N2 \ln 2}{8\pi\varepsilon_0 r_0^2} e^2$$
.

习题 11. 量子固体。

在量子固体中,起主导作用的排斥能是原子的零点振动能,考虑晶态 ⁴He 的一个粗略一维模型,即每个氦原子局限在一段长为 L 的线段上,每段内的基态波函数取为半波长为 L 的自由粒子波函数。

- (a) 试求每个粒子的零点振动能;
- (b) 推导维持该线段不发生膨胀所需力的表达式;
- (c) 在平衡时,动能所引起的膨胀倾向被范德瓦耳斯相互作用所平衡,假定最近邻间的范德瓦耳斯能为 $U(L)=1.6L^{-6}10^{-79}J$,其中 L 以 m 为单位,求 L 的平衡值。

解答.

(a) 波长
$$\lambda = 2L$$
, 有 $p = \frac{h}{\lambda} = \frac{h}{2L}$, $T = \frac{p^2}{2m} = \frac{h^2}{8mL^2}$.

(b) 记 U(L) 为吸引势,总能量 $E(L) = U(L) + T(L) = U(L) + \frac{h^2}{8mL^2}$.

平衡位置有
$$\frac{\mathrm{d}E(L)}{\mathrm{d}L} = \frac{\mathrm{d}U(L)}{\mathrm{d}L} - \frac{h^2}{4mL^3} = 0.$$

故不发生膨胀所需力为 $F(L) = -\frac{\mathrm{d}U(L)}{\mathrm{d}L} = -\frac{h^2}{4mL^3}$.

(c) 平衡位置有
$$\frac{\mathrm{d}E(L)}{\mathrm{d}L} = \frac{\mathrm{d}U(L)}{\mathrm{d}L} - \frac{h^2}{4mL^3} = 0$$
,代入 $U(L) = 1.6L^{-6}10^{-79}J$ 得

$$L = \left(\frac{4m \times 9.6 \times 10^{-79}}{h^2}\right)^{\frac{1}{4}} = \left(\frac{4 \times 1.67 \times 10^{-27} \times 9.6 \times 10^{-79}}{6.626 \times 10^{-34}}\right)^{\frac{1}{4}} = 4.918 \times 10^{-10} \text{m} = 4.918 \mathring{A}.$$

习题 11 的注记.

• (a) 基态波函数满足一维无限深势阱条件: $\Psi_0(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi x}{L}\right)$, 动能算符 $\hat{T} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$. 零点振动能为动能期望值

$$E_T = \langle \Psi_0 | \hat{T} | \Psi_0 \rangle = \frac{\hbar^2}{2m} \int_0^L \left| \frac{d\Psi_0}{dx} \right|^2 dx = \frac{\hbar^2 \pi^2}{2mL^2} \cdot \frac{1}{L} \int_0^L \sin^2 \left(\frac{\pi x}{L} \right) dx = \frac{\hbar^2 \pi^2}{4mL^2}.$$

3 第三章习题

习题 12. 在单原子组成的一维点阵中,假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且 $\beta_1 > \beta_2$ 。试证明在这样的系统中,格波仍存在着声频支和光频支,其格波色散关系为

$$\omega^{2} = \frac{\beta_{1} + \beta_{2}}{m} \left\{ 1 \pm \left[1 - \frac{4\beta_{1}\beta_{2}\sin^{2}\frac{qa}{2}}{(\beta_{1} + \beta_{2})} \right]^{\frac{1}{2}} \right\}.$$

解答. 和一维双原子链振动类似,一个周期内有两个不同原子,A 原子左侧力常数为 β_1 ,右侧力常数为 β_2 ,B 原子左侧力常数为 β_2 ,右侧力常数为 β_1 。

不妨记第 n 个 A 原子的位移为 u_n ,第 n 个 B 原子位移为 v_n ,写出 A、B 原子的动力学 (运动) 方程:

$$m\ddot{u}_n = \beta_1(v_{n-1} - u_n) + \beta_2(v_n - u_n)$$

$$m\ddot{v}_n = \beta_1(u_{n+1} - v_n) + \beta_2(u_n - v_n)$$

将格波试探解 $u_n = Ae^{i(qna-\omega t)}, v_n = Be^{i(qna-\omega t)}$ 代入运动方程有

$$-m\omega^2 A = \beta_1 (Be^{-iqa} - A) + \beta_2 (B - A)$$

$$-m\omega^2 B = \beta_1 (Ae^{iqa} - B) + \beta_2 (A - B)$$

写成矩阵形式,有

$$\begin{bmatrix} m\omega^2 - \beta_1 - \beta_2 & \beta_1 e^{-iqa} + \beta_2 \\ \beta_1 e^{iqa} + \beta_2 & m\omega^2 - \beta_1 - \beta_2 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

有解的条件为系数矩阵行列式为零,即

$$\begin{vmatrix} m\omega^2 - \beta_1 - \beta_2 & \beta_1 e^{-iqa} + \beta_2 \\ \beta_1 e^{iqa} + \beta_2 & m\omega^2 - \beta_1 - \beta_2 \end{vmatrix} = 0$$

化简得到

$$\[m\omega^{2} - (\beta_{1} + \beta_{2})\]^{2} - \left(\beta_{1}^{2} + 2\beta_{1}\beta_{2}\cos qa + \beta_{2}^{2}\right) = 0$$

即

$$[m\omega^2 - (\beta_1 + \beta_2)]^2 = (\beta_1 + \beta_2)^2 - 4\beta_1\beta_2 \sin^2 \frac{qa}{2}$$

故可得到格波色散关系为

$$\omega^{2} = \frac{\beta_{1} + \beta_{2}}{m} \left\{ 1 \pm \left[1 - \frac{4\beta_{1}\beta_{2}\sin^{2}\frac{qa}{2}}{(\beta_{1} + \beta_{2})} \right]^{\frac{1}{2}} \right\}$$

其中光学支取 + 号, 声学支取 - 号。

习题 12 的注记. 得到运动方程前的分析:

$$V(u_n) = \frac{1}{2}(u_n - v_{n-1})^2 + \frac{1}{2}(v_n - u_n)^2$$
$$f(u_n) = -\frac{\partial V(u_n)}{\partial u_n} = \beta_1(v_{n-1} - u_n) + \beta_2(v_n - u_n)$$

声学支、光学支的分析:

• 长波极限 $qa = \pi$ 时,光学支声子的色散关系近似为

$$\omega_{+}(q) = \sqrt{\frac{2(\beta_1 + \beta_2)}{m}} \left[1 - \frac{1}{8} \frac{\beta_1 \beta_2}{(\beta_1 + \beta_2)^2} q^2 a^2 \right]$$

• 长波极限 $qa = \pi$ 时,声学支声子的色散关系退化为连续介质下的声波

$$\omega_{-}(q) = \sqrt{\frac{\beta_1 \beta_2 / (\beta_1 + \beta_2)}{2m}} aq = c_s q$$

声速为

$$c_s = \sqrt{\frac{[\beta_1 \beta_2/(beta_1 + \beta_2)]a}{2m/a}} = \sqrt{\frac{B}{\rho}}$$

由此得到线弹性模量 $B = \frac{\beta_1 \beta_2}{\beta_1 + \beta_2} a$,质量密度为 $\rho = \frac{2m}{a}$.

习题 13. 具有两维正方点阵的某简单晶格,设原子质量为 m,晶格常量为 a,最近邻原子间相互作用的恢复力常数为 β ,假定原子垂直于点阵平面作横振动,试证明此二维系统的格波色散关系为 $m\omega^2 = 2\beta \left[2 - \cos\left(q_x a\right) - \cos\left(q_y a\right)\right].$

解答. 取原点处原子 (u) 分析,受到周围四个原子 $(u_{10}, u_{01}, u_{-10}, u_{0-1})$ 的作用,其运动方程为

$$m\ddot{u} = \beta(u_{10} + u_{01} + u_{-10} + u_{0-1} - u)$$

将格波试探解 $u_{mn} = Ae^{iq_x ma + iq_y na - i\omega t}$ 代入运动方程有

$$-m\omega^{2}A = \beta(e^{q_{x}a} + e^{q_{y}a} + e^{-q_{x}a} + e^{-q_{y}a} - 4)A$$

第 13 页 (共 17页)

化简得到

$$m\omega^2 = 2\beta \left[2 - \cos(q_x a) - \cos(q_y a)\right]$$

习题 14. 求:

- (a) 一维单原子链振动的声子态密度 $\rho(\omega)$, 并作图;
- (b) 一维双原子链振动的声子态密度 $\rho(\omega)$, 并作图;

解答.

(a) 对于一维单原子链振动,由书 P72 可知色散关系为 $\omega(q)=2\sqrt{\frac{\beta}{m}}\left|\sin\left(\frac{1}{2}qa\right)\right|$. 代入约化声子态密度表达式

$$\rho(\omega) = \frac{1}{N} \sum_{q} \delta \left[\omega - \omega(q) \right] = \frac{a}{2\pi} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \mathrm{d}q \delta \left[\omega - \omega(q) \right]$$

记
$$\omega_m = 2\sqrt{\frac{\beta}{m}}$$
 有

$$\rho(\omega) = \frac{a}{\pi} \left| \frac{\mathrm{d}q}{\mathrm{d}\omega(q)} \right|_{\omega} = \frac{2}{\pi} \frac{1}{\sqrt{\omega_m^2 - \omega^2}}$$

图 1: 一维单原子链振动的声子态密度

(b) 对于一维双原子链振动,由书 P78-79 可知色散关系为

$$\omega_{\pm}^{2}(q) = \beta \frac{m_2 + m_1}{m_2 m_1} \left\{ 1 \pm \left[1 - \frac{4m_2 m_1}{(m_2 + m_1)^2} \sin^2 \frac{1}{2} q a \right]^{\frac{1}{2}} \right\}$$

为得到声子态密度 $\rho(\omega) = \frac{a}{\pi} \left| \frac{\mathrm{d}q}{\mathrm{d}\omega(q)} \right|_{\omega}$,不妨记 $\mu = \frac{m_1 m_2}{m_1 + m_2}$,对色散关系两边求导有

$$2\omega d\omega = \frac{\frac{\beta^2 a}{m_1 m_2} \sin qa dq}{\frac{\beta}{\mu} - \omega^2}$$

得到

$$\frac{\mathrm{d}q}{\mathrm{d}\omega} = \frac{\frac{2m_1m_2}{\beta^2a}\omega\left(\frac{\beta}{\mu} - \omega^2\right)}{\sin aa}$$

由于 $\rho(\omega)$ 是 ω 的函数, 应反解色散关系将 $q(\omega)$ 代入上式,

$$\sin qa = \frac{m_1 m_2 \omega}{2\beta^2} \sqrt{\left(\frac{2\beta}{m_1} - \omega^2\right) \left(\frac{2\beta}{m_2} - \omega^2\right) \left(\frac{2\beta}{\mu} - \omega^2\right)}$$
$$\rho(\omega) = \frac{4}{\pi} \frac{\left|\frac{\beta}{\mu} - \omega^2\right|}{\sqrt{\left(\frac{2\beta}{m_1} - \omega^2\right) \left(\frac{2\beta}{m_2} - \omega^2\right) \left(\frac{2\beta}{\mu} - \omega^2\right)}}$$

图 2: 一维双原子链振动的声子态密度

习题 15. 设某三维晶体光频支声子的某支色散关系为 $\omega(q) = \omega_0 - Aq^2$, 试证明其声子态密度为

$$\rho(\omega) = \begin{cases} \frac{V}{4\pi^2 A^{\frac{3}{2}}} (\omega_0 - \omega)^{\frac{1}{2}}, & \omega_{min} < \omega < \omega_0 \\ 0, & \omega > \omega_0 \\ 0, & \omega < \omega_{min} \end{cases}$$

式中 $\omega_{min} = \omega_0 - A \left(\frac{6\pi^2 N}{V}\right)^{\frac{2}{3}}$, N 为晶体的元胞数。

解答. 根据三维声子态密度

$$\rho(\omega) = \sum_{q} \delta[\omega - \omega(q)] = \frac{V}{(2\pi)^3} \int d^3q \delta[\omega - \omega(q)] = \frac{V}{(2\pi)^3} \iint \frac{dS_\omega}{|\nabla \omega(q)|}$$

而 $\omega(q) = \omega_0 - Aq^2$,等频率面为球面, $\iint dS_\omega = 4\pi q^2, \, \nabla \omega(q) = \frac{d\omega(q)}{dq} = -2Aq.$

$$\rho(\omega) = \frac{V}{2\pi^2} q^2 \frac{1}{2Aq} = \frac{V}{4\pi^2 A} q = \frac{V}{4\pi^2 A^{\frac{3}{2}}} (\omega_0 - \omega)^{\frac{1}{2}}$$

由声子态密度守恒,

$$N = \int_{\omega_{min}}^{\omega_0} \rho(\omega) d\omega = \frac{V}{4\pi^2 A^{\frac{3}{2}}} \left(\frac{2}{3}\right) \left(\omega_0 - \omega_{min}\right)^{\frac{3}{2}}$$

解得

$$\omega_{min} = \omega_0 - A \left(\frac{6\pi^2 N}{V}\right)^{\frac{2}{3}}$$

习题 16. 设 d 维简单晶格中,声子色散关系 $\omega(\Pi)$ 与 q^{μ} 成正比,试证明

- (a) 声子杰密度 $\rho = B\omega^{\frac{d}{\mu}-1}$;
- (b) 比热容 $C_V = CT^{\frac{d}{\mu}}$ 。 B、 C 为常量。

解答.

(a) 设 $\omega(q) = Aq^{\mu}$, 由约化声子态密度定义式有

$$\rho(\omega) = \frac{1}{N} \sum_{q} \delta[\omega - \omega(q)] = \frac{\Omega}{(2\pi)^d} \int d^q q \delta[\omega - \omega(q)] \propto q^{d-1} \left| \frac{dq}{d\omega(q)} \right|$$

故有

$$\rho(\omega) \propto \frac{q^{d-1}}{q^{\mu-1}} \propto q^{d-\mu} \propto \omega^{\frac{d}{\mu}-1}$$

即

$$\rho = B\omega^{\frac{d}{\mu} - 1}$$

(b) 内能为

$$U = \int_0^{\omega_D} \frac{\hbar \omega}{e^{\hbar \omega/(K_B T)} - 1} B \omega^{\frac{d}{\mu} - 1} d\omega = \frac{B(k_B T)^{\frac{d}{\mu} + 1}}{\hbar^{\frac{d}{\mu}}} \int_0^{\omega_D} \frac{\left(\frac{\hbar \omega}{k_B T}\right)^{\frac{d}{\mu}} d\left(\frac{\hbar \omega}{k_B T}\right)}{e^{\hbar \omega/(K_B T)} - 1}$$

令 $x = \frac{\hbar \omega}{k_B T}$, 故当 $T \to 0$ 时, $x \to \infty$, 此时积分项近似为常数, 故有

$$U \propto T^{\frac{d}{\mu}+1} \Longrightarrow C_V = \left(\frac{\partial U}{\partial T}\right)_V = CT^{\frac{d}{\mu}}$$

习题 17. 求在一维单原子链中, $\omega > \omega_m$ (截止频率) 声子模式的阻尼系数 α 与 ω 的关系。

解答.

习题 18. 格林艾森常数。

- (a) 证明频率为 ω 的声子模式的自由能为 $k_BT \ln \left[2 \sinh \left(\frac{\hbar \omega}{2k_BT} \right) \right]$;
- (b) 如果 Δ 是体积的相对变化量,则晶体的自由能密度可以写为

$$F(\Delta, T) = \frac{1}{2}B\Delta^2 + k_B T \sum_{q} \ln \left\{ 2 \sinh \left[\frac{\hbar \omega(\mathbf{q})}{2k_B T} \right] \right\}$$

其中 B 为体积弹性模量。假定 $\omega(\Pi)$ 与体积关系为 $\frac{\mathrm{d}\omega(\mathbf{q})}{\omega(\mathbf{q})}=-\gamma\Delta$, γ 为格林艾森常数,且与模 \mathbf{q} 无关。证明当 $B\Delta=\gamma\sum_{q}\frac{1}{2}\hbar\omega(\mathbf{q})\coth\left[\frac{\hbar\omega(\mathbf{q})}{2k_{B}T}\right]$ 时,F 对 Δ 为极小。利用内能密度的定义,证明 Δ 可近似表达为 $\Delta=\frac{\gamma U(T)}{B}$ 。

(c) 根据德拜模型证明 $\gamma = -\frac{\partial \ln \theta_D}{\partial \ln V}$, 其中 $\theta_D = \frac{\hbar \omega_D}{k_B}$ 。