Федеральное государственное автономное образовательное учреждение высшего образования

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информационных технологий Кафедра «Инфокогнитивные технологии»

Направление подготовки/ специальность: Разработка и интеграция бизнес-приложений

ОТЧЕТ

по проектной практике

Студент: Обеднин Ярослав Андреевич; Г	руппа: 241-362	
Студент: Яковлев Артур Олегович; Группа: 241-362		
Место прохождения практики: Московск «Инфокогнитивные технологии»	ий Политех, кафедра	
Отчет принят с оценкой	_ Дата	
Руковолитель практики: Кулибаба Ирина	Викторовна	

ОГЛАВЛЕНИЕ

Оглавление

1. ВВЕДЕНИЕ	2
2. ОРГАНИЗАЦИЯ	
3. ЗАДАНИЯ	
3.1 Описание заданий	
3.2 Описание достигнутых результатов по проектной практике	
4. ИНДИВИДУАЛЬНЫЕ ПЛАНЫ УЧАСТНИКОВ	11
4.4 Обеднин Ярослав Андреевич	11
5. САЙТ	12
6. ЗАКЛЮЧЕНИЕ	13
7. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	14

1. ВВЕДЕНИЕ

В условиях стремительной цифровизации образовательных процессов возрастает необходимость модернизации инструментов, обеспечивающих эффективное взаимодействие между студентами, кураторами проектов и университетскими структурами. В рамках проекта «Совершенствование цифровой инфраструктуры для проектной деятельности» была выдвинута идея создания интегрированной системы, которая решит ключевые проблемы организации проектной деятельности в Московском Политехе.

Актуальность проекта обусловлена ростом числа студентов, ежегодно поступающих в университет, и необходимостью сопоставления их навыков с требованиями действующих проектов. Однако текущая цифровая инфраструктура столкнулась с рядом ограничений: функция выбора проекта и подачи заявок не интегрирована в обновлённый интерфейс, а кураторы проектов лишены современного личного кабинета, что снижает оперативность и удобство работы с системой. Эти пробелы приводят к трудностям в сопоставлении потребностей сторон, увеличению нагрузки на административный аппарат и снижению вовлечённости студентов в проектную деятельность.

Цель проекта — модернизировать цифровую инфраструктуру проектной деятельности университета, расширив функциональные возможности сервисов и обеспечив их соответствие современным требованиям. Для достижения этой цели были поставлены задачи: анализ текущего состояния системы, разработка решений для интеграции новых функций, проектирование интерфейсов, включая личный кабинет кураторов, а также регулярное взаимодействие с заказчиком для согласования доработок.

Ключевым этапом реализации стало взаимодействие с сотрудниками университета, позволившее выявить приоритетные направления улучшений. Так, отсутствие обновлённого интерфейса кураторов проектов было признано одной из главных проблем, что легло в основу разработки нового дизайна личного кабинета. Апробация проекта проводилась в форме еженедельной отчетности перед

заказчиком — Центром проектной деятельности Московского Политеха, что обеспечило прозрачность процесса и оперативную обратную связь.

Проект направлен на создание единой цифровой экосистемы, где студенты смогут легко находить проекты, соответствующие их интересам и компетенциям, а кураторы — управлять командами и мониторить прогресс. Решение этих задач станет важным шагом в повышении эффективности проектной деятельности и укреплении позиций Московского Политеха как инновационного образовательного центра.

2. ОРГАНИЗАЦИЯ

Заказчиком проекта выступает Факультет информационных технологий Московского Политехнического университета — современное образовательное подразделение, ориентированное на подготовку высококвалифицированных специалистов в области ІТ и цифровых технологий. Факультет активно внедряет инновационные методы обучения и разрабатывает цифровую образовательную среду, направленную на повышение эффективности учебного процесса, включая проектную деятельность.

Структура факультета включает профильные кафедры (программная инженерия, информационная безопасность, обработка данных и другие), исследовательские лаборатории, проектные команды и административные службы. Каждое из этих звеньев отвечает за определённые направления деятельности: от разработки и реализации образовательных программ до участия в научных и технологических инициативах. Особое внимание уделяется практической подготовке студентов, включая проектную деятельность, которая позволяет формировать навыки, востребованные в реальной ІТ-индустрии.

Ключевыми направлениями деятельности факультета являются:

Образование на уровнях бакалавриата, магистратуры и аспирантуры по специализациям, связанным с цифровыми технологиями.

Развитие исследовательских и инновационных проектов, включая создание цифровых сервисов для образовательных и административных нужд университета.

Внедрение современных инструментов и платформ для оптимизации учебного процесса, в том числе автоматизации рутинных задач.

Проект «Совершенствование цифровой инфраструктуры для проектной деятельности» стал логичным шагом в рамках общей стратегии цифровизации, проводимой факультетом. Его реализация направлена на решение актуальных проблем студентов и преподавателей, связанных с организацией проектной деятельности. В условиях динамичного изменения потребностей сторон (студентов, кураторов проектов и университетских структур) существующая цифровая инфраструктура оказалась недостаточно гибкой. Проблемы включают:

Отсутствие интеграции функции выбора проекта и подачи заявок в обновлённый интерфейс.

Устаревший дизайн личных кабинетов кураторов проектов, что снижает удобство взаимодействия.

Недостаточная прозрачность и эффективность процессов сопоставления навыков студентов с требованиями проектов.

3. ЗАДАНИЯ

Проектная практика студентов курса, обучающихся первого ПО направлениям, связанным c информационными технологиями И кибербезопасностью, — это ключевой этап учебного процесса, направленный на развитие практических навыков, умение работать с инструментами версионного контроля, создавать цифровые продукты и взаимодействовать с профессиональной средой. Практика рассчитана на 72 академических часа и включает как базовые задачи, необходимые всем участникам, так и вариативные задания, позволяющие адаптировать обучение под индивидуальные цели и уровень подготовки.

Задание построено на модульной структуре: обязательная часть охватывает настройку репозиториев, работу с Markdown, создание статических сайтов и взаимодействие с партнёрами, а вариативная часть открывает возможности для реализации индивидуальных проектов или глубокого изучения технологий. Это

обеспечивает баланс между стандартами обучения и свободой творчества, формируя у студентов навыки, востребованные в реальной IT-индустрии.

3.1 Описание заданий

- 1. Настройка Git-репозитория:
- Создать групповой или личный репозиторий на GitHub или GitVerse на основе предоставленного шаблона.
- Освоить базовые команды Git: клонирование, коммит, пуш, создание веток.
- Регулярно фиксировать изменения с осмысленными сообщениями к коммитам.
- 2. Написание документов в Markdown:
- Оформить все материалы проекта (описание, журнал прогресса и др.) в формате Markdown.
- Изучить синтаксис Markdown и подготовить необходимые документы.
- 3. Создание статического веб-сайта:

Сайт можно создать с помощью HTML и CSS (базовый уровень) или генератора статических сайтов, такого как Hugo (рекомендуется).

Сайт должен включать:

- Домашнюю страницу с аннотацией проекта.
- Страницу «О проекте» с описанием.
- Страницу «Участники» с вкладом каждого студента.
- Страницу «Журнал» с 3 постами о прогрессе.
- Страницу «Ресурсы» со ссылками на партнёров и материалы.

Дизайн и контент должны быть уникальными (минимум 50% оригинальности).

Добавить графические материалы (фото, схемы, диаграммы, видео).

- 4. Взаимодействие с организацией-партнёром:
- Участвовать в профильных мероприятиях.
- Подготовить отчёт в Markdown: описание опыта, знаний и связи с проектом.

• Добавить отчёт в репозиторий.

Стажировки и взаимодействие учитываются при оценке.

- 5. Вариативная часть задания:
- 5.1 Кафедральное индивидуальное задание:
- Выполнить задачи базовой части.
- Реализовать индивидуальное задание по теме, согласованной с ответственным за практику.
- Интегрировать результаты в репозиторий и сайт.
- 5.2 Практическая реализация технологии:
- Выбрать технологию из списка (или альтернативного источника, согласованного с ответственным).
- Согласовать тему и стек технологий внутри команды.
- Провести исследование: изучить реализацию и воспроизвести её.
- Создать техническое руководство в Markdown с пошаговыми инструкциями.
- Примерами кода.
- Диаграммами, схемами (3–10 штук).
- Модифицировать проект (творческий этап).
- Создать видеопрезентацию (цель, задачи, демонстрация).
- Задокументировать проект в репозитории и разместить его на сайте.
- Подготовить финальный отчёт с хронологией этапов.

6. Итоговый отчёт:

Составить отчёт по шаблону в папке reports (файлы: Отчёт.docx, report.docx). Сформировать PDF-версию отчёта.

Разместить оба файла в репозитории и загрузить их в СДО (LMS).

Описать этапы работы в хронологическом порядке.

Включить индивидуальные планы участников.

Форматирование и инструменты:

Управление версиями: Git.

Документация: Markdown.

Статический сайт: HTML/CSS или Hugo.

Платформы: GitHub/GitVerse.

Графика: диаграммы, схемы, иллюстрации.

3.2 Описание достигнутых результатов по проектной практике

Первым шагом в реализации проекта стало создание структуры для командной разработки. Мы организовали групповой репозиторий на GitHub, что позволило обеспечить прозрачность процесса и синхронизировать работу участников. Каждое изменение сопровождалось комментариями к коммитам, что облегчило отслеживание прогресса и упростило дальнейшую интеграцию кода.

Для повышения читаемости текстовых материалов проекта мы выбрали формат Markdown. Он оказался удобным как для написания технической документации, так и для оформления пользовательских сообщений и описаний разделов. Весь контент — от описания функционала бота до отчётов по этапам работы — был оформлен с использованием этого стандарта.

В рамках проекта была разработана подробная документация, охватывающая ключевые аспекты реализации. Для её оформления был выбран формат Markdown , который обеспечил структурированность, читаемость и универсальность текстовых материалов. Этот формат стал основным для внутренней документации, включая:

Описание функционала бота : детализация команд, логика обработки запросов, интерактивные элементы (кнопки, меню).

Технические аспекты: выбор стека технологий (Node.js, Telegraf, Markdown для контента), архитектура бота (модульная организация кода, обработка callback-запросов, навигация между разделами).

Инструкции по установке и запуску: пошаговое руководство для настройки среды (установка Node.js, настройка переменных окружения через .env, запуск бота).

Отчёты по взаимодействию с партнёрами: описание встреч, обратной связи от заказчика, согласование требований к функционалу и дизайну.

Документация также включала примеры кода (например, реализацию navigationHandler.js), схемы логики бота и ссылки на внешние ресурсы (прототипы интерфейсов в Figma, официальные страницы университета).

В рамках проекта было разработано статическое веб-приложение с использованием Hugo, генератора статических сайтов.

Сайт состоит из следующих страниц:

Главная (index.md) — главная страница с кратким описанием проекта.

О проекте (about.md) — страница «О проекте» включающая: цель, актуальность, задачи, проблематика.

Участники (participants.md) — информация о вкладе каждого студента.

Журнал (journal.md) — хронология ключевых событий и решений.

Ресурсы (resources.md) — ссылки на используемые инструменты, прототипы и материалы.

Технологии и особенности

- Markdown использовался для написания контента, что обеспечило единообразие с документацией бота.
- HTML/CSS применялись для оформления дизайна, с акцентом на читаемость и адаптивность.
- Hugo автоматизировал сборку сайта, позволяя сосредоточиться на содержании.
- Гибкая структура позволяла легко добавлять новые разделы и обновлять существующие.

Сайт стал важным элементом презентации проекта, позволяющим визуализировать результаты работы и демонстрировать их широкой аудитории. Его разработка дала возможность глубже погрузиться в тематику проекта, структурировать информацию и представить её в виде легко воспринимаемого и доступного контента. Использование Нидо позволило автоматизировать часть

процесса сборки сайта, сохранив при этом высокую степень контроля над дизайном и содержанием.

После завершения сайта была реализована его «интерактивная версия» — Telegram-бот, написанный на платформе Node.js с использованием библиотеки Telegraf. Бот обеспечивал динамическое взаимодействие с пользователями, позволяя получать информацию о проекте в удобной форме.

Основные функции бота включали:

- Отображение главного меню.
- Навигацию по разделам: "О проекте", "Участники", "Журнал прогресса", "Ресурсы".
- Вывод информации о цели, актуальности, задачах и проблематике проекта.
- Представление информации о вкладе каждого участника.
- Описание этапов работы и диаграммы Ганта.
- Ссылки на внешние ресурсы и прототипы.
- Интерактивные элементы: случайные интересные факты, кнопки навигации, переходы в подменю.

Также была реализована логика обработки нажатий на кнопки и переходов между разделами, что сделало интерфейс бота удобным и интуитивно понятным для пользователя.

Реализация сопровождалась настройкой среды (установка Node.js, настройка .env-файла, использование библиотеки telegraf/Markup для создания интерфейса). Все этапы были задокументированы в формате Markdown, а финальный отчёт включал описание вклада каждого участника и технических решений.

Финальный отчёт, составленный на основе шаблона, стал завершающим этапом реализации проекта и стал ключевым документом, отражающим весь цикл работ, вклад участников и технические решения.

Отчёт был разработан в формате Word (DOCX) и сопровождался PDFверсией, что обеспечило универсальность и удобство для дальнейшего хранения и использования.

4. ИНДИВИДУАЛЬНЫЕ ПЛАНЫ УЧАСТНИКОВ

4.4 Обеднин Ярослав Андреевич

Задача	Время, ч
Создание группового репозитория.	2
Заполнение репозитория по шаблону.	
Освоение Git.	4
Изучение синтаксиса Markdown	4
Изучение HUGO	5
Взаимодействие с организацией-	5
партнером «Робостанция»	
Создание видеопрезентации проекта	3.5
Написание документации сайта в	7
формате Markdown	
Написание руководства по созданию	7
проекта в формате Markdown	
Настройка и изучение статического	9
веб-сайта	
Заполнение сайта	8
Проведение исследования технологии	5
Заполнение бота, его разделов и	5
функций	
Написание финального отчёта	9

Итого данный студент затратил 73,5 часов на вклад в проект.

5. САЙТ

Сайт "Совершенствование цифровой инфраструктуры для проектной деятельности" — это многостраничный веб-ресурс, созданный с использованием генератора статических сайтов Hugo . Он служит платформой для представления идей по модернизации цифровой среды, поддерживающей проектную деятельность в Московском политехническом университете. На сайте размещена информация о ключевых направлениях развития цифровой инфраструктуры, примерах успешных решений, а также предложениях по внедрению новых инструментов и технологий.

Дизайн сайта выполнен в минималистичном стиле с использованием сдержанных цветов, что обеспечивает высокую читаемость и эстетическую гармонию. Интерфейс ориентирован на удобство пользователя: чёткая структура, логическое расположение элементов и современные шрифты позволяют легко находить нужную информацию.

Страницы:

Главная

Предназначена для краткого представления проекта. Здесь описывается его суть, цель и перечисляются основные разделы. Страница служит стартовой точкой для навигации по сайту.

Опроекте

Содержит подробную информацию о целях, задачах и реализации проекта. Описываются ключевые функции, преимущества, а также возможные направления развития. Эта страница помогает лучше понять концепцию и значение проекта.

Участники

Представляет команду, участвовавшую в разработке. Здесь можно найти информацию о ролях каждого участника, их вкладе в проект и используемых технологиях.

Журнал

Отражает историю развития проекта. Публикуются заметки о важных этапах реализации, ключевых решениях и достигнутых результатах. Каждый блок

содержит описание этапа с возможностью раскрытия дополнительной информации.

Ресурсы

Содержит ссылки на полезные материалы, прототипы, внешние источники и партнёров проекта. Все ссылки снабжены анимацией: при наведении мыши элементы страницы реагируют, добавляя интерактивности.

6. ЗАКЛЮЧЕНИЕ

В ходе выполнения проекта наша команда реализовала комплексные решения по модернизации цифровой инфраструктуры проектной деятельности Московского Политеха. Были разработаны два ключевых компонента: Telegramбот на Node.js и статический сайт на Hugo, которые вместе обеспечивают удобный доступ к информации о проектах, их участникам и ресурсам. На практике были освоены технологии, такие как версионный контроль через Git, создание интерактивных Telegram-интерфейсов с использованием библиотеки Telegraf, а также генерация статических сайтов с применением Markdown и HTML/CSS.

Теlegram-бот предоставляет пользователям структурированную информацию о проекте, включая цели, актуальность, участников, этапы работы и ссылки на внешние ресурсы. Его функционал включает навигацию по разделам, отображение случайных интересных фактов и интеграцию с внешними ссылками.

Сайт, созданный с использованием генератора статических страниц, стал визуальной и информационной основой проекта. Он включает пять страниц: «Главная», «О проекте», «Участники», «Журнал прогресса», «Ресурсы».

Все участники проекта внесли вклад в код, структуру, интерфейс и документацию, благодаря чему результат является не только работоспособным, но и понятным для сторонних пользователей и разработчиков

Ценность проекта для заказчика заключается в следующем:

- Повышение эффективности взаимодействия между студентами, кураторами и проектными командами благодаря структурированному представлению информации.
- Упрощение процесса выбора проектов за счёт интеграции механизмов подбора студентов по навыкам и актуализации интерфейсов личных кабинетов.
- Демонстрация технической реализуемости решения, которое может быть масштабировано и интегрировано в существующие системы университета.
- Создание инструмента для презентации проектной деятельности , который может использоваться как образцовый материал для дальнейших инициатив.

7. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. GitHub Docs. Работа с репозиториями, ветками и Pull Request [Электронный ресурс]. URL: https://docs.github.com/ru
- 2. Что такое Git: объяснение на схемах [Электронный ресурс]. URL: https://skillbox.ru/media/code/chto_takoe_git_obyasnyaem_na_skhemakh/
- 3. Введение в Git. Бесплатный онлайн-курс [Электронный ресурс]. URL: https://ru.hexlet.io/courses/intro_to_git
- 4. Руководство по синтаксису Markdown [Электронный ресурс]. URL: https://ru.hexlet.io/lesson_filters/markdown
- 5. Генерация статических сайтов с Hugo URL: https://habr.com/ru/articles/700640/