

ИНТЕГРАЛ ЛЕБЕГА ПО НЕОТРИЦАТЕЛЬНОЙ МЕРЕ

ТЕОРИЯ И ЗАДАЧИ

Учебно-методическое пособие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

ИНТЕГРАЛ ЛЕБЕГА ПО НЕОТРИЦАТЕЛЬНОЙ МЕРЕ. ТЕОРИЯ И ЗАДАЧИ

Учебно-методическое пособие по курсу «Математический анализ» для студентов механико-математического факультета направлений подготовки 01.03.01 – Математика, 02.03.01 – Математика и компьютерные науки, 01.03.03 – Механика и математическое моделирование

Томск 2017 РАССМОТРЕНО И УТВЕРЖДЕНО методической комиссией механикоматематического факультета Протокол № 10 от «26» октября 2017 г.

Председатель МК ММФ О.П. Федорова

Пособие составлено в соответствии с программой дисциплины «Математический анализ» в части изучения темы «Интеграл Лебега» для студентов механико-математического факультета направлений подготовки 01.03.01 — Математика, 02.03.01 — Математика и компьютерные науки, 01.03.03 — Механика и математическое моделирование.

Пособие содержит изложение теоретического подхода к интегралу Лебега по неотрицательной мере, основанного на использовании простых функций, а также множество примеров и задач, предлагаемых для решения на практических занятиях по данной теме.

Для преподавателей, аспирантов, магистрантов и студентов.

СОСТАВИТЕЛИ: Г.В. Сибиряков, Т.В. Емельянова, Е.Г. Лазарева

Глава 1. ЭЛЕМЕНТЫ ОБЩЕЙ ТЕОРИИ МЕРЫ

§1.Алгебры и σ - алгебры множеств

- 1. Определение. Пусть S произвольное множество. Алгеброй подмножеств множества S называется множество Σ некоторых его подмножеств, удовлетворяющее условиям:
- (*) \varnothing , $S \in \Sigma$.
- (**) Если $A,B \in \Sigma$, то $A \cup B$, $A \cap B$, $A \setminus B$, $S \setminus A \in \Sigma$.

Алгебра подмножеств Σ множества S называется σ -алгеброй подмножеств множества S, если выполнено условие:

(***) Если
$$A_k \in \Sigma$$
 для всех $k \in \mathbb{N}, \ \text{mo} \ \bigcup_{k=1}^\infty A_k \in \Sigma \ u \ \bigcap_{k=1}^\infty A_k \in \Sigma.$

Из равенств $A \setminus B = A \cap (S \setminus B), \ A \cap B = S \setminus [(S \setminus A) \cup (S \setminus B)]$ следует, что в условии (**) достаточно оставить $A \cup B$ и $S \setminus A \in \Sigma$, а в условии (*) – только $\varnothing \in \Sigma$ или только $S \in \Sigma$. В условии (***) можно

оставить
$$\bigcup\limits_{k=1}^{\infty}A_{k}\in\Sigma$$
 или $\bigcap\limits_{k=1}^{\infty}A_{k}\in\Sigma$, так как
$$\bigcap\limits_{k=1}^{\infty}A_{k}=S\setminus\Big[\bigcup\limits_{k=1}^{\infty}(S\backslash A_{k})\Big],\ \bigcup\limits_{k=1}^{\infty}A_{k}=S\setminus\Big[\bigcap\limits_{k=1}^{\infty}(S\backslash A_{k})\Big].$$

Кроме того, $A \cup B = A \cup B \cup B \cup \dots$ и $A \cap B = A \cap B \cap B \cap \dots$ Поэтому из (***) следует, что $A \cup B \in \Sigma$ и $A \cap B \in \Sigma$, если $A, B \in \Sigma$. Таким образом, определение σ -алгебры можно сократить:

- 2. Определение. Множество Σ подмножеств множества S называется σ -алгеброй подмножеств множества S, если выполнены условия: (1) $\emptyset \in \Sigma$.
- (2) Если $A \in \Sigma$, то $S \setminus A \in \Sigma$.
- (3) Если $A_k \in \Sigma$ для всех $k \in \mathbb{N}$, то $\bigcup_{k=1}^{\infty} A_k \in \Sigma$.

- 3. Примеры алгебр и σ-алгебр.
- (α) Множество $\{\emptyset,S\}$ наименьшая алгебра (и σ -алгебра) подмножеств множества S.
- (β) Если $A \subset S$, то $\{\emptyset, S, A, S \setminus A\}$ наименьшая алгебра подмножеств множества S, которой принадлежит A. Говорят, что эта алгебра порождена одним множеством A.
- (у) Множество 2^S всех подмножеств множества S есть σ -алгебра подмножеств множества S.
- (δ) Множество $\mathfrak{L}(\mathbb{R}^n)$ всех множеств $A \subset \mathbb{R}^n$, измеримых в смысле Лебега, есть σ -алгебра подмножеств пространства \mathbb{R}^n . Это важнейшая из σ -алгебр.
- 4. Теорема. Пересечение Σ семейства σ -алгебр Σ_i , $i{\in}I$, подмножеств множества S является σ -алгеброй подмножеств в S.

Доказательство. По определению σ -алгебры $\varnothing \in \Sigma_i$ для каждого $i \in I$. Отсюда следует, что $\varnothing \in \Sigma$.

Пусть $A\!\in\!\Sigma$. Тогда $A\!\in\!\Sigma_i$ для каждого $i\!\in\!I$. Значит, $S\!\setminus\! A\!\in\!\Sigma_i$ для каждого $i\!\in\!I$, так как Σ_i – σ -алгебра. Следовательно, $S\!\setminus\! A\!\in\!\Sigma$.

Пусть (A_k) — последовательность множеств, принадлежащих Σ . Тогда для каждого $i\!\in\!I$ все $A_k\!\in\!\Sigma_i$ и, значит, $\bigcup\limits_{k=1}^\infty\!A_k\!\in\!\Sigma_i$, так как Σ_i — о-алгебра. Следовательно, $\bigcup\limits_{k=1}^\infty\!A_k\!\in\!\Sigma$.

Применяя определение 2, заключаем, что Σ – σ -алгебра подмножеств множества S. \square

- 5. Определение. Пусть Δ множество (или семейство) подмножеств множества S. По теореме 4 пересечение $\sigma(\Delta)$ всех σ -алгебр $\Sigma \subset 2^S$, удовлетворяющих условию $\Delta \subset \Sigma$, является σ -алгеброй в S. Говорят, что σ -алгебра $\sigma(\Delta)$ порождена множеством (семейством) Δ подмножеств множества S.
- Отметим, что если Δ_1 и Δ_2 семейства подмножеств множества S и $\Delta_1\!\subset\!\Delta_2,$ то $\sigma(\Delta_1)\!\subset\!\sigma(\Delta_2).$
- 6. Пример. Пусть M метрическое пространство и τ множество всех открытых множеств пространства M. По теореме 4 пересечение $\mathcal{B}(M)$ всех σ -алгебр $\Sigma \subset 2^M$, удовлетворяющих условию $\tau \subset \Sigma$, является σ -алгеброй подмножеств пространства M. Множества $A \in \mathcal{B}(M)$ называются борелевскими множествами пространства M.

§2.Аддитивные и счетно аддитивные функции

- 1. Определение. Пусть Σ алгебра подмножеств множества S. Функция $\mu: \Sigma \to \mathbb{R}$, $\mu: \Sigma \to [0, +\infty]$ или $\mu: \Sigma \to \mathbb{C}$ называется конечно аддитивной (или просто аддитивной), если $\mu(\varnothing) = 0$ и для любых непересекающихся множеств $A, B \in \Sigma$ справедливо равенство $\mu(A \sqcup B) = \mu A + \mu B$. Если функция μ конечно аддитивна, то $\mu(A_1 \sqcup A_2 \sqcup \ldots \sqcup A_m) = \mu A_1 + \mu A_2 + \ldots + \mu A_m$ для любой конечной системы попарно не пересекающихся множеств $A_k \in \Sigma$.
- 2. Определение. Пусть $\Sigma \sigma$ -алгебра подмножеств множества S. Функция $\mu: \Sigma \to \mathbb{R}$, $\mu: \Sigma \to [0, +\infty]$ или $\mu: \Sigma \to \mathbb{C}$ называется счетно аддитивной функцией или мерой, если $\mu(\emptyset) = 0$ и для любой последова-

тельности попарно непересекающихся множеств $A_k \in \Sigma$ справедливо равенство $\mu\Big(\bigsqcup_{k=1}^\infty A_k\Big) = \sum_{k=1}^\infty \mu \, A_k$. Мера μ на Σ называется вещественной, если $\mu \colon \Sigma \to \mathbb{R}$, неотрицательной, если $\mu \colon \Sigma \to [0,+\infty]$, конечной, если $\mu(A) \neq +\infty$ для всех $A \in \Sigma$, и комплексной, если $\mu \colon \Sigma \to \mathbb{C}$. Из условия $\mu(\varnothing) = 0$ следует, что каждая мера является конечно аддитивной функцией.

3. Примеры конкретных мер.

- (α) Для каждого $n \in \mathbb{N}$ мера Лебега $\lambda_n \colon \mathfrak{L}(\mathbb{R}^n) \to [0, +\infty]$, есть неотрицательная мера.
- (β) Пусть $-\infty \le a < b \le +\infty$ и пусть функция $g:(a,b) \to \mathbb{R}$ возрастает. Допустим еще, что она непрерывна слева, т.е.

$$g(t) = g(t-0)$$
 для всех $t \in (a,b)$.

Если $P = [\alpha, \beta)$, где $a < \alpha < \beta < b$, то положим

$$\mathbf{v}_q P = g(\mathbf{\beta}) - g(\mathbf{\alpha}).$$

Повторив построение меры Лебега на $\mathbb R$, мы получим σ -алгебру $\mathscr L(a,b)$ подмножеств интервала (a,b) и новую меру $\mathbf v_g$ на ней. Говорят, что множества $A\in\mathscr L(a,b)$ измеримы в смысле Лебега — Стилтьеса. Мера $\mathbf v_g:\mathscr L(a,b)\to [0,+\infty)$ называется мерой Лебега — Стилтьеса, порожденной функцией $g:(a,b)\to\mathbb R$.

4. Определение. Тройка (S, Σ, μ) , где S – множество, Σ – σ-алгебра подмножеств множества S и μ – мера на Σ , называется пространством с мерой (или измеримым пространством).

Каждому из приведенных выше примеров мер соответствует свое пространство с мерой. Важнейшим из них является пространство $(\mathbb{R}^n, \mathfrak{L}(\mathbb{R}^n), \lambda_n)$ с мерой Лебега.

Отметим простейшие свойства меры на о-алгебре.

- 5. Теорема. Пусть μ неотрицательная мера на σ -алгебре Σ подмножеств множества S. Тогда
- (a) Если $A, B \in \Sigma$ и $A \subset B$, то $\mu A \leqslant \mu B$.
- (b) Ecpu $A,B\in\Sigma$, $A\subset B$ u $\mu B\neq +\infty$, mo $\mu A\neq +\infty$ u $\mu(B\setminus A)=\mu B-\mu A$.
- (c) Если $A\in \Sigma$, все $B_k\in \Sigma$ и $A\subset \bigcup_{k=1}^\infty B_k$, то $\mu A\leqslant \sum\limits_{k=1}^\infty \mu B_k$. В частности, $\mu\Big(\bigcup_{k=1}^\infty B_k\Big)\leqslant \sum\limits_{k=1}^\infty \mu B_k$.

Доказательство. (а) Допустим, что $A,B \in \Sigma$ и $A \subset B$. Тогда $B = A \sqcup (B \backslash A)$ и, значит, $\mu B = \mu A + \mu (B \backslash A)$. Отсюда и из неравенства $\mu(B \backslash A) \geqslant 0$ ясно, что $\mu A \leqslant \mu B$.

- (b) Из соотношений $\mu B = \mu A + \mu (B \setminus A)$ и $\mu B \neq +\infty$ следует, что $\mu A \neq +\infty$. Поэтому $\mu B \mu A = \mu A + \mu (B \setminus A) \mu A = \mu (B \setminus A)$.
- (c) Пусть $A\in \Sigma$, все $B_k\in \Sigma$ и $A\subset \bigcup_{k=1}^\infty B_k$. Множества $A_1=A\cap B_1,\ A_2=A\cap \big(B_2\setminus B_1\big),\ A_3=A\cap \big[B_3\setminus \big(B_2\cup B_1\big)\big],\ldots,$

 $A_k = A \cap \left(B_k \setminus \bigcup_{j=1}^{k-1} B_j\right), \dots$ принадлежат Σ и попарно не пересекаются.

Кроме того, $A=\bigsqcup_{k=1}^{\infty}A_k$. Действительно, $\bigsqcup_{k=1}^{\infty}A_k\subset A$, так как все

 $A_k \subset A$. Обратно, пусть $x \in A$. Тогда $x \in \bigcup_{k=1}^\infty B_k$ и найдется $k \in \mathbb{N}$ такое, что $x \in B_k$, но $x \notin B_l$ при $1 \leqslant l < k$. Тогда $x \in B_k \setminus \bigcup_{j=1}^{k-1} B_j$, значит, $x \in A_k = A \cap \left(B_k \setminus \bigcup_{j=1}^{k-1} B_j\right)$, и поэтому $x \in \bigsqcup_{k=1}^\infty A_k$.

Из равенства $A=\bigsqcup_{k=1}^{\infty}A_k$ и из включений $A_k{\subset}\,B_k$ следует, что

$$\mu A = \sum_{k=1}^{\infty} \mu A_k \leqslant \sum_{k=1}^{\infty} \mu B_k$$
. \square

Следствие. Пусть μ — неотрицательная мера на σ -алгебре Σ . Если $A\in \Sigma,\ B_1,\, B_2,\, \ldots,\, B_m\!\in\! \Sigma$ и $A\subset \bigcup\limits_{k=1}^m B_k,\$ то $\mu A\leqslant \sum\limits_{k=1}^m \mu B_k.$

- 6. Теорема. (О непрерывности меры). Пусть μ произвольная мера на σ -алгебре Σ подмножеств множества S. Тогда:
- (a) Если последовательность множеств $A_k\!\in\!\Sigma,\ k\!\in\!\mathbb{N},$ возрастает, т.е.

$$A_1 \subset A_2 \subset \ldots \subset A_k \subset \ldots, \ \text{mo} \ \mu \Big(\bigcup_{k=1}^{\infty} A_k \Big) = \lim_{k \to \infty} \mu A_k.$$

(b) Если последовательность множеств $A_k\!\in\!\Sigma,\ k\!\in\!\mathbb{N},$ убывает, т.е.

$$A_1 \supset A_2 \supset \ldots \supset A_k \supset \ldots$$
, $u \ \mu A_1 \neq +\infty$, mo $\mu \left(\bigcap_{k=1}^{\infty} A_k \right) = \lim_{k \to \infty} \mu A_k$.

Доказательство. (а) Пусть множества $A_k\!\in\!\Sigma,\ k\!\in\!\mathbb{N},\$ образуют возрастающую последовательность. Обозначим $A=\bigcup_{k=1}^\infty A_k,$ $B_1=A_1,\ B_2=A_2\!\setminus\! A_1,\ B_3=A_3\!\setminus\! A_2,\dots$

Множества B_k , $k\!\in\!\mathbb{N}$, принадлежат Σ , попарно не пересекаются, $A_k=\bigsqcup_{j=1}^k B_j$ для всех $k\!\in\!\mathbb{N}$ и $A=\bigcup_{k=1}^\infty A_k=\bigsqcup_{k=1}^\infty B_k$. Поэтому

$$\mu A = \sum_{k=1}^{\infty} \mu B_k = \lim_{k \to \infty} \sum_{j=1}^{k} \mu B_k = \lim_{k \to \infty} \mu A_k.$$

(b) Пусть теперь $\,\mu(A_1)\neq +\infty\,$ и последовательность множеств $\,A_k\in\Sigma\,,$ $\,k\in\mathbb{N}\,,\,$ убывает. Обозначим $\,A=\bigcap\limits_{k=1}^\infty A_k\,$ и $\,B_k=A_1\!\setminus\! A_k\,$ для всех $\,k\in\mathbb{N}\,.$ Последовательность множеств $\,B_k,\,$ $\,k\in\mathbb{N}\,,\,$ возрастает и

$$A_1 \backslash \bigcup_{k=1}^{\infty} B_k = \bigcap_{k=1}^{\infty} (A_1 \backslash B_k) = \bigcap_{k=1}^{\infty} A_k = A.$$

Применяя только что доказанное утверждение (а), получим

$$\mu\Big(\bigcup_{k=1}^{\infty} B_k\Big) = \lim_{k \to \infty} \mu B_k.$$

Очевидно, все $B_k \subset A_1$. Поэтому $\bigcup_{k=1}^\infty B_k \subset A_1$. Отсюда и из условия $\mu(A_1) \neq +\infty$ следует (по части (b) теоремы 5), что

$$\mu(A_k) = \mu(A_1 \backslash B_k) = \mu A_1 - \mu B_k,$$

$$\mu A = \mu \left(A_1 \backslash \bigcup_{k=1}^{\infty} B_k \right) = \mu A_1 - \mu \left(\bigcup_{k=1}^{\infty} B_k \right).$$

Следовательно,

$$\mu A = \mu A_1 - \mu \left(\bigcup_{k=1}^{\infty} B_k \right) = \mu A_1 - \lim_{k \to \infty} \mu B_k = \lim_{k \to \infty} \left(\mu A_1 - \mu B_k \right) =$$

$$= \lim_{k \to \infty} \mu \left(A_1 \backslash B_k \right) = \lim_{k \to \infty} \mu A_k. \square$$

Замечание. Условие $\mu A_1 \neq +\infty$ в части (b) теоремы 6 существенно: Если $A_k = [k, +\infty) \subset \mathbb{R}$, то все $\lambda_1 A_k = +\infty$, однако $\lambda_1 \Big(\bigcap_{k=1}^\infty A_k \Big) = \lambda_1 (\varnothing) = 0$.

§3.Измеримые функции

В данном разделе всюду, где явно не указано иное, фиксирована о-алгебра Σ подмножеств множества S. Здесь и далее кроме обычных вещественных функций $f:A\to\mathbb{R}$ мы будем рассматривать также функции, допускающие бесконечные значения $-\infty$ и $+\infty$, т.е. функции $f:A\to[-\infty,+\infty]$. Такие функции приходится складывать, перемножать и делить друг на друга. Условимся применять следующие естественные правила действия с символами $\pm\infty$: (известные из теории предела функции) $a\cdot(\pm\infty)=\pm\infty$ при $a\in(0,+\infty]$, $a\cdot(\pm\infty)=\mp\infty$ при $a\in[-\infty,0)$, $a\pm\infty=\pm\infty+a=\pm\infty$ и $\frac{a}{+\infty}=0$ для всех $a\in\mathbb{R}=(-\infty,+\infty)$, и др.

Не имеют смысла выражения:

$$-\infty + \infty$$
, $+\infty + (-\infty)$, $(\pm \infty) \cdot 0$, $0 \cdot (\pm \infty) \cdot \frac{0}{0}$, $\frac{\pm \infty}{+\infty}$, $\frac{\pm \infty}{-\infty}$.

1. Определение. Пусть $A\!\in\!\Sigma$. Отображение $f\!:\!A\!\to\![-\infty,+\infty]$ называется измеримой функцией (точнее, Σ - измеримой функцией), если для каждого $\alpha\!\in\!\mathbb{R}$ $f^{-1}\!\left(\!\left(\alpha\,,\!+\infty\right]\!\right)=\left\{x\!\in\!A\,;\,f(x)\!>\!\alpha\right\}\!\in\!\Sigma$.

Если $A \subset \mathbb{R}$, то множество $f^{-1}((\alpha, +\infty])$ совпадает с проекцией на A части графика f, лежащей выше уровня $y = \alpha$ (см. рис. 1).

Рис. 1

2. Примеры.

- (α) Постоянная функция $C:S \to \mathbb{R}$ измерима относительно любой σалгебры $\Sigma \subset 2^S$.
- (β) Пусть $\chi_A\colon S\to \mathbb{R}$ характеристическая функция (или индикатор) множества $A\in \Sigma$, т.е. $\chi_A(x)=1$ при $x\in A$ и $\chi_A(x)=0$ при $x\in S\setminus A$. (См. рис. 2).

Если $\alpha\geqslant 1$, то $\chi_A^{-1}\big((\alpha,+\infty]\big)=\varnothing$. Если $0\leqslant \alpha<1$, то $\chi_A^{-1}\big((\alpha,+\infty]\big)=A$. Если $\alpha<0$, то $\chi_A^{-1}\big((\alpha,+\infty]\big)=S$. Таким образом, всегда $\chi_A^{-1}\big((\alpha,+\infty]\big)\in\Sigma$. Поэтому функция χ_A Σ - измерима.

Рис. 2

(у) Аналогично легко доказать, что линейная комбинация

$$\beta_1 \chi_{B_1} + \beta_2 \chi_{B_2} + \dots + \beta_m \chi_{B_m}$$

характеристических функций множеств $B_1,B_2,\ldots,B_m\!\in\!\Sigma$ (с коэффициентами $\beta_1,\beta_2,\ldots,\beta_m\in\mathbb{R}$) Σ - измерима.

(б) Пусть $A \in \mathfrak{L}(\mathbb{R})$ и функция $f: A \to [-\infty, +\infty]$ возрастает на A, т.е. $f(x) \leqslant f(y)$ всякий раз, когда $x,y \in A$ и x < y. Тогда она $\mathfrak{L}(\mathbb{R})$ - измерима.

Доказательство. Пусть $\alpha\in\mathbb{R}$. Если $f(x)\leqslant \alpha$ для всех $x\in A$, то $f^{-1}\big((\alpha,+\infty]\big)=\varnothing\in\Sigma$. Если $f(x)>\alpha$ для всех $x\in A$, то также $f^{-1}\big((\alpha,+\infty]\big)=S\in\Sigma$. Пусть теперь существуют $u,v\in A$ такие, что $f(u)\leqslant \alpha< f(v)$. Обозначим $y=\inf\{x\in A\,;\, f(x)>\alpha\}$.

<u>Случай 1</u>. Пусть $y \in A$ и $f(y) > \alpha$. Тогда

$$f^{-1}((\alpha, +\infty]) = A \cap [y, +\infty].(*)$$

Действительно, если $z \in f^{-1}((\alpha, +\infty])$, то $z \in A$, $f(z) > \alpha$ и $z \geqslant y$ по определению числа y; следовательно, $z \in A \cap [y, +\infty]$.

Обратно, если $z \in A \cap [y, +\infty]$, то $z \geqslant y$ и $f(z) \geqslant f(y) > \alpha$; отсюда $z \in f^{-1}((\alpha, +\infty])$. Равенство (*) доказано.

<u>Случай 2</u>. Пусть $y \notin A$ или $f(y) > \alpha$. Тогда

$$f^{-1}((\alpha,+\infty]) = A \cap (y,+\infty).(**)$$

Действительно, если $z \in f^{-1}((\alpha, +\infty])$, то снова $z \geqslant y$ по определению числа y и, значит, z > y, так как $z \in A$, $y \notin A$. Отсюда ясно, что $z \neq y$, и, таким образом, $z \in A \cap (y, +\infty)$.

Обратно, пусть $z \in A \cap (y, +\infty)$. Тогда z > y. По определению числа y найдется $x \in A$ такое, что $y \leqslant x < z$ и $f(x) > \alpha$. Отсюда и из x < z следует, что $f(z) \geqslant f(x) > \alpha$, так что $z \in f^{-1}((\alpha, +\infty])$. Равенство (**) доказано.

Из равенств (*) и (**) следует, что $f^{-1}((a,+\infty]) \in \mathfrak{L}(\mathbb{R})$ и, значит, возрастающая функция $f: A \to [-\infty,+\infty]$ $\mathfrak{L}(\mathbb{R})$ -измерима. \square

3. Теорема. Пусть $A \in \Sigma$ и $f: A \to [-\infty, +\infty]$. Эквивалентны друг другу следующие условия:

$$f$$
 измеримо, т.е. $f^{-1}((\alpha,+\infty]) \in \Sigma$ для каждого $\alpha \in \mathbb{R}$.

(**)
$$f^{-1}([-\infty, lpha)) \in \Sigma$$
 для каждого $lpha \in \mathbb{R}$.

(***)
$$f^{-1}ig([lpha\,,+\infty]ig)\!\in\!\Sigma\,$$
 для каждого $lpha\!\in\!\mathbb{R}\,.$

(****)
$$f^{-1}ig([-\infty,lpha]ig)\!\in\!\Sigma$$
 для каждого $lpha\!\in\!\mathbb{R}$.

Доказательство. (*) \Leftrightarrow (****). Для любого $\alpha \in \mathbb{R}$

$$f^{-1}([-\infty,\alpha]) = \{x \in A; f(x) \leqslant \alpha\} = A \setminus f^{-1}((\alpha,+\infty]).$$

Отсюда ясно, что $f^{-1}((\alpha, +\infty]) \in \Sigma$ тогда и только тогда, когда $f^{-1}([-\infty, \alpha]) \in \Sigma$ и поэтому условия (*) и (****) эквивалентны.

(**)⇔(***). Это следует из равенства

$$f^{-1}([-\infty,\alpha)) = A \setminus f^{-1}([\alpha,+\infty]), \alpha \in \mathbb{R}.$$

(***)⇒(*). Это следует из равенства

$$f^{-1}([\alpha,+\infty]) = \bigcap_{k=1}^{\infty} f^{-1}((\alpha-\frac{1}{k},+\infty]), \ \alpha \in \mathbb{R}.$$

(*)⇒(***). Это следует из равенства

$$f^{-1}\big(\!\big(\alpha\,,+\infty\big]\!\big)=\bigcup_{k=1}^\infty f^{-1}\!\left(\!\!\left[\alpha+\frac{1}{k},+\infty\right]\!\!\right),\;\alpha\!\in\!\mathbb{R}\,.$$

Поскольку (*) \Leftrightarrow (****), (**) \Leftrightarrow (***), (***) \Rightarrow (*) и (*) \Rightarrow (***), то ясно, что все 4 условия равносильны. \square

Следствие. Если $A\!\in\! \Sigma$ и функция $f\!:\! A \to [-\infty, +\infty]$ измерима, то $f^{-1}(-\infty), \, f^{-1}(+\infty)\!\in\! \Sigma$ и $f^{-1}(a)\!\in\! \Sigma$ для любого $a\!\in\! \mathbb{R}$.

Доказательство.

Если
$$a \in \mathbb{R}$$
, то $f^{-1}(a) = f^{-1}([a,+\infty]) \setminus f^{-1}((a,+\infty]) \in \Sigma$ по теореме 3.
$$f^{-1}(+\infty) = A \setminus \bigcup_{k=1}^{\infty} f^{-1}([-\infty,k]) \in \Sigma - \text{аналогично.} \ \Box$$

4. Теорема. Пусть $A\!\in\!\Sigma$ и функции $f_k\!:A\to[-\infty,+\infty],\ k\!\in\!\mathbb{N}$, измеримы. Тогда функции g и $h\!:A\to[-\infty,+\infty],$ $g(x)=\sup_{k\in\mathbb{N}}f_k(x),$ $h(x)=\inf_{k\in\mathbb{N}}f_k(x)$ для всех $x\!\in\!A$, также измеримы.

Доказательство. Это очевидно, так как для каждого $\alpha \in \mathbb{R}$

$$\begin{split} g^{-1}\big((\alpha,+\infty]\big) &= \big\{x \in A\,;\, g(x) > \alpha\big\} = \big\{x \in A\,;\, \sup_{k \in \mathbb{N}} f_k(x) > \alpha\big\} = \\ &= \bigcup_{k=1}^\infty \big\{x \in A\,;\, f_k(x) > \alpha\big\} = \bigcup_{k=1}^\infty f_k^{-1}\big((a,+\infty]\big) \in \Sigma\,, \\ h^{-1}\big([-\infty,\alpha)\big) &= \big\{x \in A\,;\, \inf_{k \in \mathbb{N}} f_k(x) < \alpha\big\} = \bigcup_{k=1}^\infty f_k^{-1}\big([-\infty,\alpha)\big) \in \Sigma\,. \quad \Box \end{split}$$

Следствие 1. Если функции g_1,g_2,\ldots,g_m : $A \to [-\infty,+\infty]$ измеримы, то функции $\max \left(g_1,g_2,\ldots,g_m\right), \ \min \left(g_1,g_2,\ldots,g_m\right)$ также измеримы.

Следствие 2. Если функция $f:A \to [-\infty,+\infty]$ измерима, то функции -f, $f^+ = \max(0,f), \ f^- = \max(0,-f)$ и $|f| = f^+ + f^- = \max(f,-f)$ также измеримы.

Доказательство. Измеримость -f очевидна, так как для $\alpha \in \mathbb{R}$

$$(-f)^{-1}((\alpha, +\infty)) = \{x \in A; (-f)(x) > \alpha\} =$$
$$= \{x \in A; f(x) < \alpha\} = f^{-1}([-\infty, \alpha)) \in \Sigma.$$

Выше отмечено, что постоянные функции измеримы. Применяя этот факт и предыдущее следствие, заключаем, что функции $\max(0,f)$, $\max(0,-f)$, $\max(f,-f)$ также измеримы. \square

Для доказательства измеримости поточечного предела последовательности измеримых функций нам нужно следующее утверждение.

5. Лемма. Пусть все $a_k \in [-\infty, +\infty]$ и $a_k \to a \in [-\infty, +\infty]$ при $k \to \infty$. Тогда

$$a=\sup_{k\in\mathbb{N}}\inf_{j\geqslant k}a_j,\ a=\inf_{k\in\mathbb{N}}\sup_{j\geqslant k}a_j.\ (1)$$

Доказательство. Пусть b — правая часть первого из равенств (1). Допустим, что b < a. Фиксируем $\alpha \in \mathbb{R}$ так, что $b < \alpha < a$. По условию $a_k \to a$ при $k \to \infty$. Значит, существует $N \in \mathbb{N}$ такое, что $a_j > \alpha$ при $j \geqslant N$. Тогда $\inf_{j \geqslant N} a_j \geqslant \alpha$ и, следовательно,

$$b=\sup_{k\in\mathbb{N}}\inf_{j\geqslant k}a_k\geqslant\inf_{j\geqslant N}a_k\geqslant\alpha$$

вопреки предположению, что $b < \alpha < a$.

Допустим, что a < b. Фиксируем α , $a < \alpha < b$. По условию $a_k \to a$ при $k \to \infty$. Значит, существует $N \in \mathbb{N}$ такое, что $a_j < \alpha$ при $j \geqslant N$. Тогда $\inf_{j \geqslant k} a_j \leqslant \alpha_{N+k} < \alpha$ для всех $k \in \mathbb{N}$ и, значит, $b = \sup_{k \in \mathbb{N}} \inf_{j \geqslant k} a_k \leqslant \alpha$ во-

преки предположению, что $a<\alpha< b$. Первое из равенств (1) доказано. Докажем второе. Пусть c — правая часть второго равенства. Допустим, что c>a. Фиксируем β , $a<\beta< c$. По условию $a_k\to a$ при $k\to\infty$. Значит, существует $N\in\mathbb{N}$ такое, что $a_j<\beta$ при $j\geqslant N$. Тогда $\sup_{j\geqslant N}a_j\leqslant\beta$

и, следовательно, $c=\inf_{k\in\mathbb{N}}\sup_{j\geqslant k}a_k\leqslant \inf_{j\geqslant N}a_k\leqslant \beta$

вопреки предположению, что $a < \beta < c$.

Допустим, что c < a. Фиксируем $\beta, c < \beta < a$. По условию $a_k \to a$ при $k \to \infty$. Значит, существует $N \in \mathbb{N}$ такое, что $a_j > \beta$ при $j \geqslant N$. Тогда $\sup_{j \geqslant k} a_j \geqslant \alpha_{N+k} > \beta$ для всех $k \in \mathbb{N}$

и, значит, $c=\inf_{k\in\mathbb{N}}\sup_{j\geqslant k}a_k\geqslant \beta$ вопреки предположению, что $c<\beta< a$.

Второе равенство (1) также доказано.

6. Замечание. Пусть $a_k \in [-\infty, +\infty]$ для всех $k \in \mathbb{N}$. Числа

$$\varliminf_{k\to\infty} a_k = \sup_{k\in\mathbb{N}} \inf_{j\geqslant k} a_j \quad \mathsf{и} \quad \varlimsup_{k\to\infty} a_k = \inf_{k\in\mathbb{N}} \sup_{j\geqslant k} a_j$$

называются нижним и соотв. верхним пределами последовательности (a_k) . Легко доказать, что всегда $-\infty\leqslant \varinjlim_{k\to\infty} a_k\leqslant \varlimsup_{k\to\infty} a_k\leqslant +\infty$.

Действительно, обозначим $\gamma_k = \inf_{j\geqslant k} a_j, \quad \delta_k = \sup_{j\geqslant k} a_j.$ Ясно, что

 $\gamma_k\leqslant \delta_k$ для всех $k\!\in\!\mathbb{N}$, причем последовательность (γ_k) возрастает, а последовательность (δ_k) убывает. Поэтому

$$\varliminf_{k \to \infty} a_k = \sup_{k \in \mathbb{N}} \gamma_k = \lim_{k \to \infty} \gamma_k \leqslant \lim_{k \to \infty} \delta_k = \inf_{k \in \mathbb{N}} \delta_k = \varlimsup_{k \to \infty} a_k.$$

Если существует $\lim_{k\to\infty}a_k=a\!\in\![-\infty,+\infty],$ то по лемме 5

$$\underbrace{\lim_{k \to \infty} a_k} = \underbrace{\lim_{k \to \infty} a_k} = a.$$
(2)

Нетрудно доказать, что верно и обратное: если справедливо равенство (2), то $\lim_{k\to\infty} a_k = a\!\in\![-\infty,+\infty].$

7. Теорема. Пусть $A\!\in\!\Sigma$, функции $f_k\!:\!A\!\to\![-\infty,+\infty],\ k\!\in\!\mathbb{N}$, измеримы, $f\!:\!A\!\to\![-\infty,+\infty]$ и $f(x)=\lim_{k\to\infty}f_k(x)$ для каждого $x\!\in\!A$. Тогда функция f также измерима.

Доказательство. Это простое следствие теоремы 4 и леммы 5.

8. Теорема. (Об измеримости композиции непрерывной функции с измеримым отображением). Пусть $A\!\in\!\Sigma$, функции $f_1,f_2,\ldots,f_n\!:A\to[-\infty,+\infty]$, измеримы, множество $D\subset\mathbb{R}^n$ открыто, функция $\phi\!:D\to\mathbb{R}$ непрерывна и

$$(f_1(x), f_2(x), \dots, f_n(x)) \in D$$
 для каждого $x \in A$.

Тогда функция $h: A \to \mathbb{R}$,

измерима.

$$h(x) = \varphi(f_1(x), f_1(x), \dots, f_n(x))$$
 для всех $x \in A$, (3)

Доказательство. Рассмотрим случай $n\!=\!2$. Пусть $\alpha\!\in\!\mathbb{R}$. Надо доказать, что $h^{-1}\!\left(\!\left(\alpha,+\infty\right]\!\right)\!\in\!\Sigma$. Отметим, что значение $+\infty$ невозможно, так как $\phi\!:\!D\to\mathbb{R}$. Поэтому $h^{-1}\!\left(\!\left(\alpha,+\infty\right]\!\right)\!=h^{-1}\!\left(\!\left(\alpha,+\infty\right)\!\right)\!.$

Рассмотрим множество $G = \varphi^{-1}((\alpha, +\infty)) \subset \mathbb{R}^2$.

Из непрерывности ϕ следует, что G открыто. Пусть

$$G = \bigsqcup_{k=1}^{\infty} P_k, \ P_k = [a_k, b_k) \times [c_k, d_k)$$

- разложение множества G на брусы. Тогда

$$h^{-1}((\alpha, +\infty]) = h^{-1}((\alpha, +\infty)) = \{x \in A : \varphi(f_1(x), f_2(x)) > \alpha\} =$$

$$= \{x \in A : (f_1(x), f_2(x)) \in G\} = \bigcup_{k=1}^{\infty} \{x \in A : (f_1(x), f_2(x)) \in P_k\} =$$

$$\begin{split} &= \bigcup_{k=1}^{\infty} \left(\left\{ x \! \in \! A \, ; \, a_k \! \leqslant \! f_1\!\!\left(x\right) \! < \! b_k \right\} \cap \left\{ x \! \in \! A \, ; \, c_k \! \leqslant \! f_2\!\!\left(x\right) \! < \! d_k \right\} \right) = \\ &= \bigcup_{k=1}^{\infty} \left(f_1^{-1}\!\!\left(\! \left[a_k, b_k \right) \right) \cap f_2^{-1}\!\!\left(\! \left[c_k, d_k \right) \right) \!\right) \! \in \! \Sigma, \end{split}$$

так как по условию функции $f_1,\,f_2\,$ измеримы и, следовательно,

$$f_1^{-1}([a_k,b_k)), f_2^{-1}([c_k,d_k)) \in \Sigma.$$

При $n\!=\!1$ доказательство проще. При $n\!\geqslant\!3$ доказательство аналогично, но формулы будут более громоздкими. \square

Отметим еще несколько простых свойств измеримых функций.

(a) Если $A,B\!\in\!\Sigma$, $B\!\subset\!A$ и функция $f\!:\!A\!\to\![-\infty,+\infty]$ измерима, то ее сужение $f\!\mid_B\!:\!B\!\to\![-\infty,+\infty]$ на множество B измеримо.

Доказательство. Обозначим $g=f|_{B}$. Для любого $\alpha\in\mathbb{R}$ имеем

$$g^{-1}((\alpha, +\infty]) = \{x \in B ; g(x) > \alpha\} = \{x \in B ; f(x) > \alpha\} =$$
$$= B \cap \{x \in A ; f(x) > \alpha\} = B \cap f^{-1}((\alpha, +\infty]) \in \Sigma. \quad \Box$$

(b) Пусть $A=\bigcup\limits_{k=1}^m B_k$ или $A=\bigcup\limits_{k=1}^\infty B_k$, где все $B_k\!\in\!\Sigma$, и пусть $f\!:\!A\to[-\infty,+\infty]$. Если для каждого $k\!\in\!\mathbb{N}$ сужение $g_k=f|_{B_k}$ функции f на множество B_k измеримо, то исходная функция f также измерима.

Доказательство. Пусть
$$A=\bigcup\limits_{k=1}^{\infty}B_k$$
. Для любого $\alpha\in\mathbb{R}$ имеем
$$f^{-1}\big((\alpha\,,+\infty]\big)=\big\{x\!\in\!A\,;\,f(x)\!>\!\alpha\big\}=\bigcup\limits_{k=1}^{\infty}\big\{x\!\in\!B_k\,;\,f(x)\!>\!\alpha\big\}=$$

$$= \bigcup_{k=1}^{\infty} \left\{ x \in B_k ; g_k(x) > \alpha \right\} = \bigcup_{k=1}^{\infty} g_k^{-1} \big(\big(\alpha, +\infty \big] \big) \in \Sigma,$$

так как все сужения $g_k = f|_{B_k}$: $B_k \to \mathbb{R}$ измеримы. \square

(C) Пусть $A\!\in\!\Sigma$, функция $f:A\to[-\infty,+\infty]$ измерима и $a\!\in\!\mathbb{R}$. Тогда функция $af:A\to[-\infty,+\infty]$ также измерима.

Доказательство. Пусть $\alpha \in \mathbb{R}$. Если a > 0, то множество

$$(af)^{-1}((\alpha, +\infty)) = \{x \in A; af(x) > \alpha\} = \{x \in A; f(x) > \alpha/a\}$$
$$= \{x \in A; f(x) > \alpha/a\} \in \Sigma,$$

принадлежит Σ , так как функция $f:A \to [-\infty,+\infty]$ измерима. Если a<0, то по теореме 3

$$(af)^{-1}((\alpha, +\infty)) = \{x \in A ; af(x) > \alpha\} = \{x \in A ; f(x) < \alpha/a\} \in \Sigma$$

При $a \neq 0$ измеримость af доказана.

измеримы.

Функция $0\cdot f$ определена на множестве $A\backslash f^{-1}\{-\infty,+\infty\}\in \Sigma$ и ее измеримость очевидна. \square

(d) Пусть $A \in \Sigma$ и функции $f,g:A \to [-\infty,+\infty]$ измеримы. Тогда функции f+g и f-g, определенные на множествах

$$\operatorname{dom}(f+g) = A \setminus \left(\left[f^{-1}(-\infty) \cap g^{-1}(+\infty) \right] \cup \left[f^{-1}(+\infty) \cap g^{-1}(-\infty) \right] \right),$$

$$\operatorname{dom}(f-g) = A \setminus \left(\left[f^{-1}(-\infty) \cap g^{-1}(-\infty) \right] \cup \left[f^{-1}(+\infty) \cap g^{-1}(+\infty) \right] \right),$$

Доказательство. Множество A можно разбить на 9 множеств:

$$\begin{split} H_1 &= f^{-1}(\mathbb{R}) \cap g^{-1}(\mathbb{R}), \quad H_2 = f^{-1}(\mathbb{R}) \cap g^{-1}(+\infty), \\ H_3 &= f^{-1}(\mathbb{R}) \cap g^{-1}(-\infty), \\ H_4 &= f^{-1}(+\infty) \cap g^{-1}(\mathbb{R}), \quad H_5 = f^{-1}(+\infty) \cap g^{-1}(+\infty), \\ H_6 &= f^{-1}(+\infty) \cap g^{-1}(-\infty), \\ H_7 &= f^{-1}(-\infty) \cap g^{-1}(\mathbb{R}), \quad H_8 = f^{-1}(-\infty) \cap g^{-1}(+\infty), \\ H_9 &= f^{-1}(-\infty) \cap g^{-1}(-\infty). \end{split}$$

Из теоремы 3 следует, что все $H_i\!\in\!\Sigma$. В частности, H_6 и $H_8\!\in\!\Sigma$. Значит, $\mathrm{dom}(f\!+\!g)=A\!\setminus\! \big(H_6\!\cup\! H_8\big)$.

На множестве H_1 функция f+g имеет вид (3), где

$$\varphi \colon \mathbb{R}^2 \to \mathbb{R}, \ \varphi(x,y) = x+y, \ f_1 = f \ \text{if} \ f_2 = g.$$

По теореме 8 функция f+g на множестве H_1 измерима.

На каждом из остальных множеств $H_i, i=2,3,4,5,7,9$, функция f+g постоянна (равна $+\infty$ или $-\infty$) и, значит, измерима.

Применяя свойство (b), заключаем, что функция f+g измерима. Измеримость функции f-g доказывается аналогично. \square

Глава 2. ИНТЕГРИРОВАНИЕ ВЕЩЕСТВЕННЫХ ФУНКЦИЙ ПО НЕОТРИЦАТЕЛЬНОЙ МЕРЕ

В данной главе всюду, где явно не указано иное, фиксировано пространство (S,Σ,μ) с неотрицательной мерой, т.е. заданы множество S, σ -алгебра Σ его подмножеств и мера $\mu:\Sigma\to [0,+\infty]$. Предполагается, что пространство (S,Σ,μ) полно в смысле Лебега, т.е. $A\in\Sigma$ всякий раз, когда $A\subset B,\ B\in\Sigma$ и $\mu B=0$.

Предполагается также, что пространство (S, Σ, μ) не имеет атомов бесконечной меры. Это означает, что в каждом множестве $B \in \Sigma$ с мерой $\mu B = +\infty$ содержится подмножество $A \in \Sigma$ с мерой $0 < \mu A < +\infty$.

При первом чтении можно считать, что $S=\mathbb{R}^n$, σ -алгебра Σ совпадает с σ -алгеброй $\mathbb{L}\left(\mathbb{R}^n\right)$ множеств $A\subset\mathbb{R}^n$, измеримых в смысле Лебега и μ — мера Лебега в \mathbb{R}^n .

§1. Интегрирование простых функций

1. Определение. Измеримая функция $\varphi:S \to \mathbb{R}$ называется простой, если она имеет конечное множество значений

$$\varphi(S) = \{\alpha_1, \alpha_2, \dots, \alpha_m\} \subset \mathbb{R}$$

и для каждого $\alpha_k \neq 0$ множество $A_k = \phi^{-1}\left(\alpha_k\right)$ имеет конечную меру, т.е. $\mu\,A_k < +\infty$. Множество $\phi^{-1}\left(0\right)$ будет иметь ко-

Рис. 1. Простая функция ф

нечную меру только тогда, когда $\mu S < +\infty$.

Если $\alpha_1, \alpha_2, \dots, \alpha_m$ – все ненулевые значения простой функции ϕ , и все эти α_k попарно различны, то (см. рис. 1)

$$\varphi(t) = \sum_{k=1}^{m} \alpha_k \chi_{A_k}(t)$$
 для всех $t \in S(1)$

или, короче,
$$\varphi = \sum_{k=1}^{m} \alpha_k \chi_{A_k}$$
, (1')

где $A_k = \varphi^{-1}(\alpha_k)$ при $k=1,\,2\,,\,\dots\,,\,m$ и для каждого $A\subset S$

$$\chi_A:S o\mathbb{R}\,,\;\;\chi_A(t)\;=\; egin{cases} 1\,,\;\;\; {
m если}\;\;t\in A\,,\ 0,\;\;\;\;{
m если}\;\;t
otin A\,, \end{cases}$$

- характеристическая функция множества $\,A\,.$

Замечание. Из равенства (1) сразу следует, что для каждого $\alpha>0$ $\phi^{-1}\left(\alpha\,,\,+\infty\right)=\left\{t\in S;\phi\left(t\right)>\alpha\right\}\in\Sigma$ и $\mu\left(\phi^{-1}\left(\alpha\,,\,+\infty\right)\right)<\,+\infty\,.$

2. Определение. Пусть задана неотрицательная простая функция (1) и $C \in \Sigma$. Интеграл $\int\limits_C \phi \ d \ \mu$ (от функции ϕ по мере μ и по множеству C)

определяется равенством
$$\int\limits_{C} \varphi \ d\mu = \sum\limits_{k=1}^{m} \alpha_k \cdot \mu \left(C \cap A_k \right).$$
 (2)

Иногда нужно указать переменную, по которой происходит интегрирование. Тогда вместо $\int\limits_{C} \varphi \ d\, \mu \,$ пишут $\int\limits_{C} \varphi \left(t\right) \, d\, \mu \left(t\right), \int\limits_{C} \varphi \left(x\right) \, d\, \mu \left(x\right)$ и т.п.

3. Замечание. Интеграл (2) имеет простой геометрический смысл. А именно, если $S=C=\mathbb{R}\,,\;\;\mu$ — мера Лебега на прямой, функция (1) неотрицательна и все A_k — промежутки конечной меры, то правая часть равенства (2) совпадает с площадью множества

$$\{(x,y) \in \mathbb{R}^2 ; x \in \mathbb{R}, 0 \leqslant y \leqslant \varphi(x)\},$$

именуемого подграфиком функции ф (см. рис.1).

Если $S=C=\mathbb{R}^2,\;\mu$ — мера Лебега на плоскости $\mathbb{R}^2,\;$ функция (1) на \mathbb{R}^2 неотрицательна и все A_k — прямоугольники, то интеграл (2) есть объем подграфика $\left\{(x,y,z)\in\mathbb{R}^3\;;\;(x,y)\in\mathbb{R}^2,\;0\leqslant z\leqslant \phi\left(x,y\right)\right\}$ функции ϕ .

Установим основные свойства интеграла (2) от простой функции $\varphi:S \to [0,+\infty)$.

Первые 4 свойства очевидны.

(a) Bcerda
$$0 \leqslant \int\limits_{C} \varphi \ d\mu < +\infty$$
.

(b) Ecnu
$$B, C \in \Sigma$$
 u $B \subset C$, mo $\int\limits_{B} \varphi \ d\mu \leqslant \int\limits_{C} \varphi \ d\mu$.

(C) Если
$$\mu C=0$$
 или $\phi=0$ на C , то $\int\limits_{C} \phi \ d\,\mu=0$.

- (d) Если $\alpha\geqslant 0$, $\mu C<+\infty$ и $\phi\left(t\right)=\alpha$ для всех $t\in C$, то $\int\limits_{C}\phi\ d\,\mu\ =\ \alpha\cdot\mu C.$
- 4. Теорема. (Счетная аддитивность интеграла). Пусть $\varphi: S \to [0, +\infty)$ простая функция. Отображение $\mu_{\varphi}: \Sigma \to [0, +\infty), \ \mu_{\varphi}(C) = \int\limits_{C} \varphi \ d \ \mu$ для всех $C \in \Sigma$, является неотрицательной мерой на Σ .

Доказательство. Очевидно $\mu_{\mathbf{\phi}}\left(\varnothing\right)=0$. Пусть $C=\bigsqcup_{j\in\mathbb{N}}C_{j}$, где все $C_{j}\in\Sigma$. Нужно доказать равенство $\mu_{\mathbf{\phi}}$ $C=\sum_{j\in\mathbb{N}}\mu_{\mathbf{\phi}}$ C_{j} .

Используем разложение (1) функции φ . Для каждого $k=1,\,2\,,\,\dots\,,\,m$ имеем

$$C \cap A_k = \bigsqcup_{j \in \mathbb{N}} (C_j \cap A_k) \text{ if } \mu(C \cap A_k) = \sum_{j \in \mathbb{N}} \mu(C_j \cap A_k).$$

Поэтому

$$\mu_{\varphi} C = \int_{C} \varphi \ d\mu = \sum_{k=1}^{m} \alpha_{k} \cdot \mu(C \cap A_{k}) = \sum_{k=1}^{m} \alpha_{k} \cdot \sum_{j \in \mathbb{N}} \mu(C_{j} \cap A_{k}).$$

Отсюда по свойству линейности суммы ряда

$$\mu_{\varphi} C = \sum_{k=1}^{m} \alpha_k \cdot \sum_{j \in \mathbb{N}} \mu(C_j \cap A_k) = \sum_{j \in \mathbb{N}} \sum_{k=1}^{m} \alpha_k \cdot \mu(C_j \cap A_k).$$

По определению (2) $\sum\limits_{k=1}^{m} \alpha_k \cdot \mu \left(C_j \cap A_k \right) \; = \; \int\limits_{C_j} \varphi \; d \, \mu \, .$

Следовательно,

$$\mu_{\mathbf{\phi}} C = \sum_{j \in \mathbb{N}} \sum_{k=1}^{m} \alpha_k \cdot \mu(C_j \cap A_k) = \sum_{j \in \mathbb{N}} \int_{C_j} \varphi \, d\mu = \sum_{j \in \mathbb{N}} \mu_{\mathbf{\phi}}(C_j). \quad \Box$$

Из теоремы 4 и из свойства (с) вытекает следующий полезный факт:

5. Следствие. Если $B,C\in\Sigma$, $B\subset C$ и $\phi=0$ на $C\setminus B$, то $\int\limits_{B}\phi\ d\mu=\int\limits_{C}\phi\ d\mu$.

Доказательство. Применяя теорему 4 и свойство (с), имеем

$$\int_{C} \varphi \ d\mu = \int_{C \setminus B} \varphi d\mu + \int_{B} \varphi d\mu = 0 + \int_{B} \varphi \ d\mu = \int_{B} \varphi d\mu . \square$$

6. Теорема. (*). (Линейность интеграла). Пусть $C \in \Sigma$, $\alpha \geqslant 0$ $u \neq 0$, ψ — неотрицательные простые функции. Тогда

$$\int_{C} (\varphi + \psi) d\mu = \int_{C} \varphi d\mu + \int_{C} \psi d\mu, \int_{C} \alpha \varphi d\mu = \alpha \cdot \int_{C} \varphi d\mu. (3)$$

(**). (Монотонность интеграла). Пусть $C \in \Sigma$ и пусть неотрицательные простые функции ϕ , ψ таковы, что $\phi \leqslant \psi$ на множестве C, т.е. $\phi(t) \leqslant \psi(t)$ для всех $t \in C$. Тогда $\int\limits_C \phi \ d\mu \leqslant \int\limits_C \psi \ d\mu$.

Доказательство. Пусть
$$\varphi = \sum\limits_{k=1}^m \alpha_k \ \chi_{A_k} \ , \ \ \psi = \sum\limits_{i=1}^n \beta_i \ \chi_{B_i}$$

— разложения вида (1), т.е. такие, что числа $\alpha_k \in \mathbb{R}$ попарно различны и положительны, множества $A_k \in \Sigma$ непусты и попарно не пересекаются, числа $\beta_i \in \mathbb{R}$ попарно различны и положительны, множества $B_i \in \Sigma$ непусты и попарно не пересекаются. По определению 2

$$\int_{C} \varphi \ d\mu = \sum_{k=1}^{m} \alpha_{k} \cdot \mu(C \cap A_{k}), \int_{C} \psi \ d\mu = \sum_{i=1}^{n} \beta_{i} \cdot \mu(C \cap B_{i}).$$
 (4)

Обозначим
$$E = \begin{pmatrix} m \\ \bigsqcup_{k=1}^m A_k \end{pmatrix} \cup \begin{pmatrix} \bigsqcup_{i=1}^n B_i \end{pmatrix}, \qquad A_0 = E \setminus \begin{pmatrix} m \\ \bigsqcup_{k=1}^m A_k \end{pmatrix},$$

$$B_0 = E \setminus \left(\bigsqcup_{i=1}^n B_i \right)$$
. Ясно, что $E, A_0, B_0 \in \Sigma$, $\varphi(t) = 0$ на A_0 и

 $\psi\left(t
ight)\,=\,0\,$ на B_{0} . Полагая $lpha_{0}\,=\,eta_{0}\,=\,0$, из (4) получим

$$\int_{C} \varphi \ d\mu = \sum_{k=0}^{m} \alpha_{k} \cdot \mu \left(C \cap A_{k} \right), \ \int_{C} \psi \ d\mu = \sum_{i=0}^{n} \beta_{i} \cdot \mu \left(C \cap B_{i} \right).$$
 (5)

Отметим еще, что
$$E = \bigsqcup_{k=0}^{m} A_k = \bigsqcup_{i=0}^{n} B_i$$
. (6)

(*). Докажем равенства (3). Очевидно $C = (C \setminus E) \sqcup (C \cap E)$. На множестве $C \setminus E$ обе функции ϕ и ψ равны 0. По свойству (C)

$$\int_{C\setminus E} (\varphi + \psi) d\mu = 0 = 0 + 0 = \int_{C\setminus E} \varphi d\mu + \int_{C\setminus E} \psi d\mu.$$
 (7)

Из (6) имеем

$$C \cap E = C \cap E \cap E = C \cap \left(\bigsqcup_{k=0}^{m} A_k\right) \cap \left(\bigsqcup_{i=0}^{n} B_i\right) = \bigsqcup_{k=0}^{m} \bigsqcup_{i=0}^{n} D_{ki},$$
 (8)

где $D_{ki} = C \cap A_k \cap B_i$. На каждом множестве D_{ki}

$$\varphi(t) = \alpha_k, \ \psi(t) = \beta_i, \ (\varphi + \psi)(t) = \varphi(t) + \psi(t) = \alpha_k + \beta_i.$$

По свойству (d)

$$\int_{D_{ki}} (\varphi + \psi) d\mu = (\alpha_k + \beta_i) \cdot \mu D_{ki} = \alpha_k \cdot \mu D_{ki} + \beta_i \cdot \mu D_{ki} = \int_{D_{ki}} \varphi d\mu + \int_{D_{ki}} \psi d\mu$$
 (9)

Применяя теорему 4, из равенств (8) и (9) получим

$$\int\limits_{C\,\cap\,E} \left(\mathbf{\varphi} \,+\, \mathbf{\psi} \right) \,d\, \mathbf{\mu} \;\; = \sum\limits_{i,k} \int\limits_{D_{ki}} \left(\mathbf{\varphi} \,+\, \mathbf{\psi} \right) \,d\, \mathbf{\mu} \;\; = \sum\limits_{i,k} \int\limits_{D_{ki}} \mathbf{\varphi} \;d\, \mathbf{\mu} \,+\, \sum\limits_{i,k} \int\limits_{D_{ki}} \mathbf{\psi} \;d\, \mathbf{\mu} \,=\,$$

$$= \int\limits_{C\,\cap\,E} \varphi \ d\,\mu \ + \int\limits_{C\,\cap\,E} \psi \ d\,\mu \, .$$

Отсюда и из (7) следует первое из равенств (3). Второе равенство (3) очевидно.

(**). Допустим теперь, что $\,\phi\left(t\right)\leqslant\,\psi\left(t\right)\,$ для всех $\,t\in C.\,$ Тогда

$$\int\limits_{D_{bi}} \varphi \ d\mu \ \leqslant \ \int\limits_{D_{bi}} \psi \ d\mu$$

для всех k и i . Действительно, если $D_{ki} \neq \varnothing$, то

$$\alpha_k = \varphi(t) \leqslant \psi(t) = \beta_i \text{ ha } D_{ki}$$

так как $\phi \leqslant \psi$ на множестве C, и по свойству (d)

$$\int_{D_{ki}} \varphi \ d\mu = \alpha_k \cdot \mu \left(D_{ki} \right) \leqslant \beta_i \cdot \mu D_{ki} = \int_{D_{ki}} \psi \ d\mu \ . \tag{10}$$

Если же $\,D_{ki} = \varnothing \,,\,\,$ пусто, то обе части неравенства (10) равны $\,0.$

Применяя теорему 4 и соотношения (8) и (10), имеем

$$\int_{C} \varphi \ d\mu = \int_{C \setminus E} \varphi \ d\mu + \int_{C \cap E} \varphi \ d\mu = 0 + \int_{C \cap E} \varphi \ d\mu = \int_{C \cap E} \varphi \ d\mu = 0$$

$$\stackrel{(8)}{=} \sum_{k=0}^{m} \sum_{i=0}^{n} \int_{D_{ki}} \varphi \ d\mu \stackrel{(10)}{\leqslant} \sum_{k=0}^{m} \sum_{i=0}^{n} \int_{D_{ki}} \psi \ d\mu \stackrel{(8)}{=} \sum_{k=0}^{m} \sum_{i=0}^{m} \int_{D_{ki}} \psi \ d\mu \stackrel{(8)}{=} \sum_{i=0}^{m} \int_{$$

$$= \int\limits_{C \, \cap \, E} \psi \; d \, \mu \; = \; 0 \; + \int\limits_{C \, \cap \, E} \psi \; d \, \mu \; = \int\limits_{C \, \setminus \, E} \psi \; d \, \mu \; + \int\limits_{C \, \cap \, E} \psi \; d \, \mu \; = \int\limits_{C} \psi \; d \mu \; .$$

Утверждение (**) также доказано. □

Из утверждения (**) следует еще одно полезное свойство:

(e) Пусть $C\in \Sigma$ и неотрицательные простые функции ϕ , ψ таковы, что $\phi(t)=\psi(t)$ для всех $t\in C$. Тогда $\int\limits_{C}\phi\ d\mu=\int\limits_{C}\psi\ d\mu$.

§2. Интегрирование неотрицательных измеримых функций

1. Определение. Пусть $C \in \Sigma$ и функция $f: C \to [0, +\infty]$ измерима. В этом случае интеграл от функции f по мере μ по множеству C определяется равенством

$$\int_{C} f d\mu = \sup_{0 \le \varphi \le f} \int_{C} \varphi d\mu, \quad (1)$$

где супремум берется по всем простым функциям $\varphi:S\to\mathbb{R}$ таким, что $0\leqslant \varphi(t)\leqslant f(t)$ для всех $t\in C$.

Если
$$B\subset C,\ B\in \Sigma$$
, то по определению $\int\limits_B f\,d\,\mu=\int\limits_C f\big|_B\,d\,\mu$.

Отметим простейшие свойства интеграла (1) от измеримой функции $f:C \to [0\,,+\infty]$.

(a) Bcerda
$$0\leqslant \int\limits_C f\,d\,\mu\leqslant +\infty$$
 .

(b) Если измеримая функция $f:C \to [0\,,+\infty]$ совпадает на множестве C с простой функцией $\psi:S \to [0\,,+\infty]$, то новое определение интеграла от функции $f=\psi$ дает тот же результат, что и прежнее определение, т.е. справедливо равенство

$$\int_{C} f \, d\mu = \int_{C} \Psi \, d\mu, \qquad (2)$$

где левый интеграл понимается в смысле (1), а правый — в смысле определения 2 §1 гл.2.

Доказательство. В случае $f = \psi$ простая функция ψ подчиняется условию $0 \le \psi \le f$ на C и, значит, участвует в супремуме (1). Поэтому

$$\int_{C} f d\mu = \sup_{0 \leq \varphi \leq f} \int_{C} \varphi d\mu \geqslant \int_{C} \psi d\mu. \tag{3}$$

С другой стороны, если простая функция ϕ удовлетворяет неравенству $0\leqslant \phi\leqslant f=\psi$ на C, то по части (**) теоремы 6 §1 справедливо неравенство $\int\limits_C \phi \,d\,\mu\leqslant \int\limits_C \psi\,d\,\mu$.

Переходя здесь к супремуму по всем простым функциям ϕ , удовлетворяющим неравенству $0 \leqslant \phi \leqslant f$ на C, получим обратное неравенство

$$\int_{C} f \, d\mu \leqslant \int_{C} \psi \, d\mu. \tag{4}$$

Из неравенств (3) и (4) вытекает равенство (2). \square

(C) Ecnu
$$B,\ C\in\Sigma$$
 u $B\subset C,\ \mathrm{mo}\int\limits_B f\,d\,\mu\leqslant\int\limits_C f\,d\,\mu$.

Доказательство. Пусть простая функция ϕ участвует в определении интеграла $\int\limits_{B}f\,d\,\mu$, т.е. $0\leqslant\phi(t)\leqslant f(t)$ для всех $t\in B$. Функция

$$\tilde{\varphi}:S \to \mathbb{R}\,,\; \tilde{\varphi}\left(t\right) \;=\; \left(\chi_{B}\varphi\right)\left(t\right) \;=\; \left\{ \begin{array}{ll} \varphi\left(t\right), & \text{если} & t \in B, \\ 0\,, & \text{если} & t \in S \setminus B, \end{array} \right.$$

является простой, удовлетворяет условию $0\leqslant \tilde{\varphi}\leqslant f$ на C, равна 0 на $C\setminus B$. Применяя теорему 4, свойства (c) и (e) из §1, получим

$$\int\limits_{C} \tilde{\phi} \, d\, \mu = \int\limits_{B} \tilde{\phi} \, d\, \mu + \int\limits_{C \setminus B} \tilde{\phi} \, d\, \mu = \int\limits_{B} \tilde{\phi} \, d\, \mu + \int\limits_{C \setminus B} 0 \cdot d\, \mu = \int\limits_{B} \tilde{\phi} \, d\, \mu + 0 = \int\limits_{B} \tilde{\phi} \, d\, \mu = \int\limits_{B} \phi \, d\, \mu.$$

Поскольку $0\leqslant \tilde{\varphi}\leqslant f$ на C, то $\tilde{\varphi}$ участвует в определении интеграла $\int\limits_C f\,d\,\mu$. Поэтому

$$\int\limits_{B} f \ d \ \mu = \sup_{\substack{0 \, \leqslant \, \phi \, \leqslant \, f \\ \text{Ha} \ B}} \int\limits_{B} \phi \ d \ \mu = \sup_{\substack{0 \, \leqslant \, \phi \, \leqslant \, f \\ \text{Ha} \ B}} \int\limits_{B} \tilde{\phi} \ d \ \mu \, \leqslant \sup_{\substack{0 \, \leqslant \, \phi \, \leqslant \, f \\ \text{Ha} \ C}} \int\limits_{C} \phi \ d \ \mu = \int\limits_{C} f \ d \ \mu \ . \ \Box$$

(d) Пусть $C\in \Sigma$, функции $f,g:C o [0,+\infty]$ измеримы и $0\leqslant f\leqslant g$ на C. Тогда $\int\limits_C f\,d\,\mu\leqslant \int\limits_C g\,d\,\mu$.

Доказательство. Это очевидное следствие определения (1).

(e) Если функция $f:C o [0\,,+\infty]$ измерима и $\alpha>0\,,$ то $\int\limits_C \alpha \,f\,d\mu \,=\, \alpha\cdot\int\limits_C f\,d\mu\,.$

Доказательство. Это следует из свойства (d) §1:

$$\alpha \cdot \int\limits_{C} f \ d \ \mu = \alpha \cdot \sup_{0 \leqslant \varphi \leqslant f} \int\limits_{C} \varphi \ d \ \mu = \sup_{0 \leqslant \varphi \leqslant f} \left(\alpha \cdot \int\limits_{C} \varphi \ d \ \mu \right) = \sup_{0 \leqslant \varphi \leqslant f} \int\limits_{C} \alpha \varphi \ d \ \mu =$$

$$= \sup_{0 \leqslant \alpha \phi \leqslant \alpha f} \int\limits_{C} \alpha \phi \ d\mu \ = \sup_{0 \leqslant \psi \leqslant \alpha f} \int\limits_{C} \psi \ d\mu \ = \int\limits_{C} \alpha f \ d\mu. \qquad \Box$$

(f) Если функция
$$f:C o \left[0\,,+\infty
ight]$$
 измерима и $\int\limits_C f\,d\,\mu\,<\,+\infty\,,\,$ то
$$\mu\left\{t\in C\;;\;f(t)=+\infty\right\}\;=\;0\,.$$

Доказательство. Обозначим $B = \left\{ t \in C \; ; \; f(t) = +\infty \right\}$. Допустим, что $\mu \, B > 0$. Так как пространство $\left(S, \, \Sigma \, , \, \mu \right)$ не имеет атомов бесконечной меры, найдется множество $D \in \Sigma$ такое, что $D \subset B$ и $0 < \mu D < +\infty$ (если $0 < \mu B < +\infty$, то положим D = B).

Для простых функций $\varphi_n=n\chi_D$, $n\in\mathbb{N}$, имеем $0\leqslant \varphi_n\leqslant f$ на C , так как $\varphi_n\left(t\right)=0$ при $t\in S\setminus D$ и $f\left(t\right)=+\infty$ при $t\in D$. Следовательно, $\int\limits_C f\,d\,\mu=\sup_{0\leqslant \varphi\leqslant f}\int\limits_C \varphi\,d\,\mu\geqslant \sup_{n\in\mathbb{N}}\int\limits_C \varphi_n\,d\,\mu=\sup_{n\in\mathbb{N}}\left(n\cdot\mu D\right)=+\infty$.

Это противоречит условию, что $\int\limits_C f \ d\, \mu \ < \ +\infty.$ \square

(Q) Если функция $f:C o [0\,,+\infty]$ измерима, $\int\limits_C f\,d\,\mu < +\infty$ и $\alpha>0$, то множество $B_{\alpha}=\left\{t\in C\;;\;f(t)\geqslant\alpha\right\}$ измеримо, $\alpha\cdot\mu\left(B_{\alpha}\right)\,\leqslant\,\int\limits_C f\,d\,\mu$ и, следовательно, $\mu\,B_{\alpha}\,<\,+\infty$.

Доказательство. Измеримость множества B_{α} следует из измеримости функции f . Докажем, что есть последовательность множеств $D_n \in \Sigma$ конечной меры таких, что

$$D_1 \subset D_2 \subset \ldots \subset D_n \subset \ldots$$
, Bec $D_n \subset B_\alpha$ и $\mu B_\alpha = \lim_{n \to \infty} \mu D_n$. (5)

Если $\mu B_{\alpha}<+\infty$, то положим $D_n=B_{\alpha}$ для всех $n\in\mathbb{N}$. Пусть $\mu B_{\alpha}=+\infty$ и $\beta=\sup\big\{\mu\,D\;;\;D\subset B_{\alpha}\,,\;\mu\,D<+\infty\big\}.$ Допустим, что $\beta<+\infty$. Выберем множества $D_n\subset B_{\alpha}$ так, что

$$D_1 \, \subset \, D_2 \, \subset \, \ldots \, \subset \, D_n \, \subset \, \ldots \, \, \mathbf{M} \, \, \beta \, - \, \frac{1}{n} \, < \, \mu D_n \, \, < \, \beta \, .$$

Для множества $D=D_1\cup D_2\cup\dots$ имеем $D\subset B_\alpha$ и $\mu\,D=\beta$. Коль скоро $\beta<+\infty$, то $B_\alpha\setminus D$ все еще имеет меру $\mu\,\big(B_\alpha\setminus D\big)=+\infty$. Поскольку в $\big(S,\Sigma,\mu\big)$ нет атомов бесконечной меры, то существует множество $E\subset B_\alpha\setminus D$ с мерой $0<\mu\,E<+\infty$. Для множества $E\sqcup D$ имеем $E\sqcup D\subset B_\alpha$ и

$$\mu(E \sqcup D) = \mu E + \mu D = \mu E + \beta > \beta$$

вопреки определению числа β .

Таким образом, $\beta=+\infty$ и согласно определению β найдутся множества $D_n\subset B_\alpha$ с мерой $\mu\left(D_n\right)<+\infty$ такие, что $D_1\subset D_2\subset\ldots\subset D_n\subset\ldots$ и $\lim_{n\to\infty}\mu\,D_n=\beta=+\infty=\mu B_\alpha$.

Функции $\varphi_n=\alpha\cdot\chi_{D_n},\ n\in\mathbb{N}$, — простые. Если $t\in C\setminus D_n$, то $\varphi_n(t)=0\leqslant f(t)$. Если $t\in D_n$, то $t\in B_\alpha$ и $\varphi_n(t)=\alpha\leqslant f(t)$. Таким образом, $0\leqslant \varphi_n\leqslant f$ на множестве C и, следовательно, функции φ_n участвуют в определении интеграла $\int\limits_C f\,d\mu$. Поэтому

$$\alpha \cdot \mu \, D_n \ = \ \alpha \cdot \mu \, \big(C \cap D_n \big) \ = \ \smallint_C \phi_n \, d \, \mu \ \leqslant \ \smallint_C f \, d \, \mu \, .$$

Применяя теорему о непрерывности меры (теорема 6 §2 гл.1) и равенство (5), имеем теперь

$$\alpha \cdot \mu B_{\alpha} = \alpha \cdot \lim_{n \to \infty} \mu D_n = \lim_{n \to \infty} (\alpha \cdot \mu D_n) \leqslant \int_C f \, d \, \mu \, . \square$$

(h) Пусть $B,\ C\in \Sigma,\ B\subset C,\$ функция $f:C\to [0\,,+\infty]$ измерима и f=0 на $C\setminus B$. Тогда $\int\limits_B f\,d\mu = \int\limits_C f\,d\mu$.

Доказательство. Если ϕ — простая функция и $0\leqslant \phi\leqslant f$ на C, то $0\leqslant \phi\leqslant f$ на B и $\phi=f=0$ на $C\backslash B$. Применяя следствие 5 §1, получим $\int\limits_{C}\phi\ d\mu=\int\limits_{B}\phi\ d\mu\leqslant \int\limits_{B}f\ d\mu$. Переходя здесь к супремуму по простым функциям ϕ таким, что $0\leqslant \phi\leqslant f$ на C, получим $\int\limits_{C}f\ d\mu\leqslant \int\limits_{B}f\ d\mu$. Обратное неравенство $\int\limits_{B}f\ d\mu\leqslant \int\limits_{C}f\ d\mu$ справедливо по свойству (C).

(i) Если $C\in \Sigma$ и $\mu C=0$, то каждая функция $f:C\to [0\,,+\infty]$ измерима и $\int\limits_C f\,d\,\mu=0$.

Доказательство. Измеримость функции f следует из полноты пространства (S,Σ,μ) в смысле Лебега (любое подмножество множества меры 0 измеримо). Равенство $\int\limits_C f\,d\,\mu=0$ очевидно, так как по свойству (c) §1 $\int\limits_C \phi\,d\,\mu=0$ для каждой простой функции ϕ .

§3. Основные свойства интеграла от неотрицательных измеримых функций

1. Теорема. (Б. Леви о монотонной сходимости). Пусть $C \in \Sigma$, функции $f_n: C \to \left[0\,, +\infty\right]$ измеримы и последовательность $\left(f_n\right)$ возрастает, т.е. $f_1(t) \leqslant f_2(t) \leqslant \ldots \leqslant f_n(t) \leqslant \ldots$ для всех $t \in C$. Тогда функция $f: C \to \left[0\,, +\infty\right]$, действующая по формуле

$$f(t) = \lim_{n \to \infty} f_n(t) = \sup_{n \in \mathbb{N}} f_n(t), \ t \in C, \tag{1}$$

измерима и справедливо равенство

$$\int_{C} f d\mu = \lim_{n \to \infty} \int_{C} f_n d\mu = \sup_{n \in \mathbb{N}} \int_{C} f_n d\mu.$$
 (2)

Доказательство. Измеримость функции f обеспечена теоремой об измеримости супремума последовательности измеримых функций. Вторые равенства в (1) и в (2) очевидны (по теореме Вейерштрасса о пределе монотонной последовательности вещественных чисел).

Обозначим
$$\alpha = \int\limits_C f \ d\,\mu\,, \ \ \alpha_n = \int\limits_C f_n \ d\,\mu\,, \ \ \beta = \lim_{n \to \infty} \alpha_n = \sup_{n \in \mathbb{N}} \alpha_n \ .$$

По свойству (d) §2 имеем $\alpha_1\leqslant\alpha_2\leqslant\ldots\leqslant\alpha_n\leqslant\ldots$ и еще $\alpha_n\leqslant\alpha$. Из последнего неравенства следует, что $\beta\leqslant\alpha$. Нам надо доказать, что $\beta=\alpha$.

Для доказательства обратного неравенства фиксируем число $\delta \in (0,1)$ и простую функцию ϕ такую, что $0\leqslant \phi\leqslant f$ на C. Обозначим $C_n=\left\{t\in C\; ;\; f_n\left(t\right)\geqslant \delta\cdot\phi\left(t\right)\right\}.$

Функции $f_n-\delta\cdot \phi$, $n\in \mathbb{N}$, определены на множестве C и измеримы. Значит, все $C_n\in \Sigma$. Ясно также, что последовательность множеств $\left(C_n\right)$

возрастает. Легко понять, что
$$C = \bigcup_{n=1}^{\infty} C_n$$
 . (3)

Действительно, $C_n \subset C$ для каждого $n \in \mathbb{N}$. Поэтому $\bigcup_{n=1}^\infty C_n \subset C.$

Обратно, пусть $t\in C$. Если $\phi\left(t\right)=0,$ то $t\in C_n$ для всех $n\in\mathbb{N}$ (так как $f_n\geqslant 0$) и поэтому $t\in\bigcup_{n=1}^\infty C_n.$ Пусть $\phi\left(t\right)>0.$ Тогда

$$\lim_{n \to \infty} f_n(t) = f(t) \geqslant \varphi(t) > \delta \varphi(t).$$

Значит, $f_n\left(t\right)>\delta\,\phi\left(t\right)$, т.е. $t\in C_n$ для всех достаточно больших n . Поэтому $t\in\bigcup_{n=1}^\infty C_n$. Равенство (3) доказано.

По теореме 4 §1 отображение $\mu_{\phi}: \Sigma \to [0, +\infty),$ $\mu_{\phi}(A) = \int\limits_A \phi \ d\mu$ для всех $A \in \Sigma$, является мерой. Применяя к этой мере теорему 6 §2 гл.1 о непрерывности меры, получим

$$\int_{C} \varphi \ d\mu = \mu_{\varphi}(C) = \lim_{n \to \infty} \mu_{\varphi}(C_n) = \lim_{n \to \infty} \int_{C_n} \varphi \ d\mu. (4)$$

Кроме того, из свойств (с) и (d) §2 следует, что

$$\alpha_n \ = \ \smallint_C f_n \, d \, \mu \ \geqslant \ \smallint_{C_n} f_n \, d \, \mu \ \geqslant \ \smallint_{C_n} \delta \varphi \, d \, \mu \ = \ \delta \smallint_{C_n} \varphi \, d \, \mu \, .$$

Отсюда и из (4) имеем

$$\beta \ = \ \lim_{n \to \infty} \alpha_n \ \geqslant \ \delta \cdot \lim_{n \to \infty} \ \int\limits_{C_n} \varphi \ d\mu \ = \ \delta \cdot \int\limits_{C} \varphi \ d\mu \, .$$

Переходя здесь к пределу при $\,\delta\!\to\!1\!-\!0\,,\,\,$ получим неравенство $\,\beta\!\geqslant\!\int\limits_C \varphi\,d\,\mu\,.$

Здесь ϕ произвольная простая функция, удовлетворяющая условию $0\leqslant \phi\leqslant f$ на C. Переходя к супремуму по всем таким ϕ , получим неравенство $\beta\geqslant \sup_{0\leqslant \phi\leqslant f}\int\limits_{C}\phi\ d\mu=\int\limits_{C}f\ d\mu=\alpha$.

Ранее мы отметили, что $\,\beta \leqslant \alpha\,.\,$ Следовательно, $\,\beta = \alpha\,,\,$ т.е. верно равенство (2). $\,\Box$

2. Теорема. (Интегрирование суммы неотрицательных измеримых функций). Пусть $C \in \Sigma$ и функции $f, g: C \to [0, +\infty]$ измеримы. Тогда

$$\int_{C} (f+g) d\mu = \int_{C} f d\mu + \int_{C} g d\mu.$$
 (4)

Доказательство. Функция f+g на множестве C также неотрицательна. Множества $f^{-1}(+\infty)$ и $g^{-1}(+\infty)$ согласно следствию теоремы **3** §3 гл.1 измеримы. Функция f+g на множестве $B=f^{-1}(+\infty)\cup g^{-1}(+\infty)$ постоянна (равна $+\infty$) и поэтому измерима. На множестве $C\setminus B$ функция f+g измерима по свойству (d) §3 гл.1. Применяя еще свойство (b) §3 гл.1, заключаем, что функция $f+g:C\to[0,+\infty]$ измерима.

Если один из интегралов правой части равенства (4) равен $+\infty$, то левый интеграл также равен $+\infty$, по свойству (d) §2 и, значит в этом случае равенство (4) верно.

Допустим, что конечны оба интеграла правой части равенства (4). В этом случае нам потребуется следующая лемма

3. Лемма. Пусть функция $f:C o [0\,,+\infty]$ измерима и $\int\limits_C f \ d\,\mu < +\infty$. Тогда существует возрастающая последовательность (ϕ_n) неотрицательных простых функций такая, что

$$f(t) = \lim_{n \to \infty} \varphi_n(t) \text{ для всех } t \in C.$$
 (5)

Доказательство леммы. Для всех $n\in\mathbb{N}$ и k , $1\leqslant k\leqslant n2^n$, обозначим $A_n=\left\{t\in C\;;\;f(t)\geqslant n\right\}$,

$$B_{kn} = f^{-1} \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] = \left\{ t \in C ; \frac{k-1}{2^n} \leqslant f(t) < \frac{k}{2^n} \right\}.$$
 (6)

При фиксированном $n\in\mathbb{N}$ множества A_n и B_{kn} , $k=1,2,\ldots,n\,2^n$, попарно не пересекаются. По свойству (g) §2 из условия $\int\limits_C f\,d\,\mu<+\infty$ следует, что для каждого $\alpha>0$ множество $\left\{t\in C\; ;\; f(t)\geqslant\alpha\right\}$ имеет конечную меру. В частности, таково множество A_n . При k>1 множество (4) также имеет конечную меру, так как содержится во множестве

$$\left\{ t \in C ; f(t) \geqslant \frac{k-1}{2^n} \right\}.$$

Поэтому для каждого $n \in \mathbb{N}$ функция (см. рис. 1)

$$\phi_n = \sum_{k=2}^{n \cdot 2^n} \frac{k-1}{n} \cdot \chi_{B_{kn}} + n \cdot \chi_{A_n}$$
 (7)

является простой. Ясно также, что все $\varphi_n\geqslant 0$ и последовательность (φ_n) возрастает.

Легко понять, что верно и равенство (5). Действительно, пусть $t\in C$. Если $f(t)=+\infty$, то $t\in A_n$ и, значит, $\phi_n(t)=n$ для всех $n\in\mathbb{N}$. Поэтому в данном случае $\lim_{n\to\infty}\phi_n(t)=\lim_{n\to\infty}n=+\infty=f(t)$.

Пусть $f(t)<+\infty$ и $N\in\mathbb{N}$ столь велико, что f(t)< N. По условию $f(t)\geqslant 0.$ Для каждого $n\geqslant N$ тогда $0\leqslant f(t)< n$ и существует

 $i\,,\;1\leqslant i\leqslant n\cdot 2^N$ такое, что $\dfrac{i-1}{2^n}\leqslant f(t)<\dfrac{i}{2^n}.$ Если здесь $i=1\,,$ то $t\in B_{1n}$ и

$$\varphi_n(t) = 0 \leqslant f(t) < \frac{1}{2^n}, \qquad (8)$$

так, что $0 \le f(t) - \varphi_n(t) < \frac{1}{2^n}$. (9)

Пусть 2 $\leqslant~i~\leqslant~n\cdot 2^N.$ В этом случае $t~\in~B_{in}~$ и согласно (7)

$$\varphi_n(t) = \sum_{k=2}^{n \cdot 2^n} \frac{k-1}{n} \cdot \chi_{B_{kn}}(t) + n \cdot \chi_{A_n}(t) = \frac{i-1}{n} \cdot \chi_{B_{in}}(t) = \frac{i-1}{n}.$$

Поэтому из (8) снова следует неравенство (9).

Итак, если $f(t)<+\infty$, то существует $N\in\mathbb{N}$ такое, что для всех $n\geqslant N$ справедливо неравенство (9). Отсюда ясно, что равенство (5) справедливо и в случае $f(t)<+\infty$.

Доказательство теоремы 2 (окончание). Итак, пусть

$$\int\limits_C f \ d\, \mu \ < \ +\infty \ \ \mathbf{M} \ \int\limits_C g \ d\, \mu \ < \ +\infty \, .$$

По лемме 3 существуют возрастающие последовательности (ϕ_n) и (ψ_n) простых функций, такие, что для каждого $t \in C$

$$\lim_{n \to \infty} \varphi_n(t) = f(t) \text{ in } \lim_{n \to \infty} \psi_n(t) = g(t).$$

Тогда последовательность $(\phi_n + \psi_n)$ также возрастает и

$$\lim_{n\to\infty}\left[\,\phi_n\left(t\right)\,+\,\psi_n\left(t\right)\,\right] \;=\; \lim_{n\to\infty}\,\phi_n\left(t\right)\,+\, \lim_{n\to\infty}\,\psi_n\left(t\right) \;=\; f(t)\,+\, g(t)\,.$$
 для всех $t\in C$.

По части (*) теоремы 6 §1 для всех $n\in\mathbb{N}$ справедливы равенства

$$\int_{C} (\varphi_n + \psi_n) d\mu = \int_{C} \varphi_n d\mu + \int_{C} \psi_n d\mu.$$

Переходя здесь к пределу (и применяя при этом теорему 1 о монотонной сходимости) получим искомое равенство (1).

4. Теорема. (О почленном интегрировании функционального ряда из неотрицательных измеримых функций). Пусть $(f_n)-$ последовательность неотрицательных измеримых функций на множестве $C\in \Sigma$. Тогда функция $f:C\to \left[0,+\infty\right]$, действующая по формуле $f(t)=\sum\limits_{n=1}^\infty f_n(t)$ для каждого

$$t\in C,$$
 измерима и справедливо равенство
$$\int\limits_C f\ d\,\mu\ = \int\limits_C \left(\sum_{n=1}^\infty f_n\right) d\,\mu\ = \sum_{n=1}^\infty \int\limits_C f_n\,d\,\mu\,.$$

Доказательство. Обозначим $g_n = \sum\limits_{k=1}^n f_k$, $n \in \mathbb{N}$. Функции g_n измеримы, неотрицательны, образуют возрастающую последовательность и $f(t) = \sum\limits_{n=1}^\infty f_n(t) = \lim_{n \to \infty} g_n(t)$ для каждого $t \in C$.

По теореме 2 функция для всех $n \in \mathbb{N}$ справедливы равенства

$$\int_{C} g_n \ d\mu = \sum_{k=1}^{n} \int_{C} f_k \ d\mu.$$

Применяя еще теорему Б. Леви о монотонной сходимости, получим

$$\int\limits_C f \ d\, \mu \ = \int\limits_C \left(\lim_{n \to \infty} g_n \right) d\, \mu \ =$$

$$\lim_{n \to \infty} \int\limits_C g_n \ d\, \mu \ = \lim_{n \to \infty} \sum_{k=1}^n \int\limits_C f_k \ d\, \mu \ = \sum_{k=1}^\infty \int\limits_C f_k \ d\, \mu \, . \ \square$$

5. Теорема. (О нулевом интеграле). Пусть $C \in \Sigma$. Для измеримой функции $f: C \to [0\,,+\infty]$ равносильны равенства:

(*)
$$\int\limits_C f \ d\mu = 0$$
, (**) $\mu B = 0$, где $B = \{t \in C \ ; \ f(t) > 0\}$.

Доказательство. Пусть $\int\limits_C f \ d\, \mu = 0$. Обозначим

$$B = \{t \in C ; f(t) > 0\}, B_n = \{t \in C ; f(t) > 1/n\}, n \in \mathbb{N}.$$

Тогда $B=\bigcup_{n=1}^\infty B_n$. Согласно свойству (g) §2 μ $B_n<+\infty$ для каждого $n\in\mathbb{N}$. Значит, функции $\phi_n=\frac{1}{n}\ \chi_{B_n},\ n\in\mathbb{N}$, — простые. Очевидно $0\leqslant\phi_n\leqslant f$ на C и поэтому

$$0 = \int_C f d\mu \geqslant \int_C \varphi_n d\mu = \frac{\mu B_n}{n}.$$

Отсюда следует, что $\,\mu\,B_n=0\,$ для всех $n\in\mathbb{N}.$ Следовательно, и $\,\mu\,B=0\,.$

С другой стороны, пусть $\mu B=0$ и ϕ – простая функция такая, что $0\leqslant \phi\leqslant f$ на C. Поскольку f=0 на $C\setminus B$, то и $\phi=0$ на $C\setminus B$. Поэтому $\int\limits_{C\setminus B} \phi\ d\mu=0$. Из равенства $\mu B=0$ согласно свойству 1(c) следует, что $\int\limits_{B} \phi\ d\mu=0$. По части (*) теоремы 6 §1

$$\int_{C} \varphi \, d\mu = \int_{C \setminus B} \varphi \, d\mu + \int_{B} \varphi \, d\mu = 0.$$

Следовательно.

$$\int_{C} f \ d\mu = \sup_{0 \leqslant \varphi \leqslant f} \int_{C} \varphi \ d\mu = 0.$$

6. Теорема (О счетной аддитивности интеграла от неотрицательной измеримой функции). Пусть $C\in \Sigma$ и функция $f:C\to [0\,,+\infty]$ измерима. Если множества $A_n\in \Sigma\,,\,\,n\in \mathbb{N}\,,\,$ попарно не пересекаются, содержатся во множестве $C\in \Sigma$ и $A=\bigsqcup_{n=1}^\infty A_n\,,\,$ то справедливо равенство

$$\int_{A} f d\mu = \sum_{n=1}^{\infty} \int_{A_n} f d\mu.$$
 (*)

Доказательство. Для всех $n \in \mathbb{N}$ введем функции

$$g_n : C \to \begin{bmatrix} 0, +\infty \end{bmatrix}, \quad g_n \left(t \right) \ = \ \begin{cases} f \left(t \right), & \text{если} & t \in A_n \,, \\ 0, & \text{если} & t \in C \setminus A_n \,, \end{cases}$$

и еще одну функцию

$$g_n : C \to \begin{bmatrix} 0, +\infty \end{bmatrix}, \quad g(t) \ = \ \begin{cases} f(t), & \text{если} & t \in A, \\ 0, & \text{если} & t \in C \setminus A. \end{cases}$$

По условию функция f измерима. Отсюда согласно свойствам (a) и (b) § 3 гл.1 следует, что функции g и g_n , $n \in \mathbb{N}$, измеримы. Из равенства $A = \bigsqcup_{n=1}^{\infty} A_n$ следует, что $g(t) = \sum_{n=1}^{\infty} g_n(t)$ для каждого $t \in C$.

Применяя к данному ряду теорему 4, получим $\int\limits_C g \ d\mu = \sum\limits_{n=1}^\infty \int\limits_C g_n \ d\mu$. Из определения функций g и g_n по свойству (h) §2 следует, что

$$\int\limits_{C} g \, d \, \mu \ = \ \int\limits_{A} g \, d \, \mu \ = \ \int\limits_{A} f \, d \, \mu \, , \quad \int\limits_{C} g_n \, d \, \mu \ = \ \int\limits_{A_n} g_n \, d \, \mu \ = \ \int\limits_{A_n} f \, d \, \mu \, .$$

Поэтому предыдущее равенство совпадает с требуемым равенством (*). □

§4. Суммируемые функции

Пусть функция $f:C \to [-\infty,+\infty]$ измерима. По следствию 2 § 3 гл.1 неотрицательные функции $f^+ = \max (0\,,f)$ и $f^- = \max (0\,,-f)$ измеримы и справедливы равенства $f=f^+-f^-,\ |f|=f^++f^-.$ Эти функции применяются для определения интеграла $\int\limits_C f\,d\mu$.

1. Определение. Пусть $C\in \Sigma$ и функция $f:C\to [-\infty\,,\,+\infty]$ измерима. Интегралы

$$\int_C f^+ d\mu, \quad \int_C f^- d\mu, \tag{1}$$

конечные или равные $+\infty$, определены, так как функции f^+ и f^- измеримы и неотрицательны. Если хотя бы один из этих интегралов конечен, то имеет смысл их разность и в этом случае интеграл от функции f по множеству C и по мере μ определяется равенством

$$\int_{C} f \, d\mu = \int_{C} f^{+} \, d\mu - \int_{C} f^{-} \, d\mu \,. \tag{2}$$

Если оба интеграла (1) конечны, то говорят, что функция f на множестве C суммируема (или интегрируема в смысле Лебега) по мере μ . Множество всех функций $f:C \to [-\infty, +\infty]$, суммируемых по мере μ , обозначается символом $L(\mu, C)$.

Замечания. 1) Для неотрицательной измеримой функции новое определение интеграл дает прежний результат.

2) Неотрицательная измеримая функция суммируема на множестве C тогда и только тогда, когда $\int\limits_C f \ d\, \mu \ < \ +\infty$.

Установим основные свойства интеграла от произвольной измеримой функции.

2. Теорема. (Об абсолютной интегрируемости). Для измеримой функции $f: C \to [-\infty, +\infty]$ равносильны условия

$$(*) f \in L(\mu, C),$$
$$(**) |f| \in L(\mu, C).$$

Доказательство. Если $\left| f \right| \in L(\mu,C)$, т.е. $\int\limits_{C} \left| f \right| d\mu < +\infty$, то по свойству (d) §2 $\int\limits_{C} f^{+} d\mu < +\infty$ и $\int\limits_{C} f^{-} d\mu < +\infty$,

так как $0\leqslant f^+\leqslant |f|$ и $0\leqslant f^-\leqslant |f|$. Поэтому интеграл (2) конечен, т.е. $f\in L(\mu,C)$.

Обратно, если $f\in Lig(\mu\,,Cig)$, то интегралы (1) конечны. По теореме 2 §3 имеем

$$\int_{C} |f| d\mu = \int_{C} (f^{+} + f^{-}) d\mu = \int_{C} f^{+} d\mu + \int_{C} f^{-} d\mu < +\infty$$

и, следовательно, $|f| \in L(\mu, C)$. \square

3. Теорема. (Об оценке интеграла). Если функция $f:C o \left[-\infty\,,\,+\infty\right]$ измерима и интеграл (2), конечный или равный $\pm\infty\,,$ существует, то $\left|\int\limits_C f\;d\,\mu\,\right| \,\leqslant\, \int\limits_C \left|f\right|\,d\,\mu\,.$

Доказательство. По условию конечен по крайней мере один из интегралов (1). Поэтому

$$\left| \int_C f d\mu \right| = \left| \int_C f^+ d\mu - \int_C f^- d\mu \right| \le \left| \int_C f^+ d\mu \right| + \left| \int_C f^- d\mu \right| = \int_C |f| d\mu. \square$$

4. Теорема. (О монотонности интеграла). Пусть функции $f,\ g,\ h:C \to [-\infty\,,+\infty]$ измеримы и

$$f(t)\leqslant g(t)\leqslant h(t)$$
 для всех $t\in C$. (*)

Если $g\in L(\mu,C)$, то интегралы $\int\limits_C f\ d\mu$ и $\int\limits_C h\ d\mu$ существуют и справедливы неравенства $-\infty\leqslant\int\limits_C f\ d\mu\leqslant\int\limits_C g\ d\mu\leqslant\int\limits_C h\ d\mu\leqslant+\infty$.

Доказательство. Если $\phi \leqslant \psi$, то

$$\phi^+ = max (0, \phi) \le max (0, \psi) = \psi^+, \phi^- = max (0, -\phi) \ge max (0, -\psi) = \psi^-.$$

Поэтому из неравенств (*) следует, что

$$f^+ \leqslant g^+ \leqslant h^+, \quad f^- \geqslant g^- \geqslant h^-.$$

Из соотношений $f^+\leqslant g^+,\ h^-\leqslant g^-$ и $g\in L(\mu\,,C)$ следует, что

$$\int\limits_{C} f^{+} \, d \, \mu \; \leqslant \; \int\limits_{C} g^{+} \, d \, \mu \; < \, + \infty \, , \quad \int\limits_{C} h^{-} \, d \, \mu \; \leqslant \; \int\limits_{C} g^{-} \, d \, \mu \; < \, + \infty \, .$$

Поэтому интегралы $\int\limits_C f \ d\mu$, $\int\limits_C h \ d\mu$ существуют и по свойству (d) §2.

$$\begin{split} &-\infty \leqslant \int\limits_{C} f d\, \mu = \int\limits_{C} f^{+} \! d\, \mu - \int\limits_{C} f^{-} \! d\, \mu \leqslant \int\limits_{C} g^{+} \! d\, \mu - \int\limits_{C} g^{-} \! d\, \mu = \int\limits_{C} g \, d\, \mu \\ &\int\limits_{C} g \, d\, \mu = \int\limits_{C} g^{+} \! d\, \mu - \int\limits_{C} g^{-} \! d\, \mu \leqslant \int\limits_{C} h^{+} \! d\, \mu - \int\limits_{C} h^{-} \! d\, \mu = \int\limits_{C} h \, d\, \mu \leqslant +\infty \; . \end{split}$$

5. Теорема. (Об интегрировании по подмножеству). Пусть A , $C \in \Sigma$, $A \subset C$ и $f \in L(\mu,C)$. Тогда $f \in L(\mu,A)$.

Доказательство. Из условия $f \in L(\mu\,,C)$ следует, что $\int_C f^+\,d\,\mu \ < +\infty \quad \text{и} \quad \int_C f^-\,d\,\mu \ < +\infty \,. \quad \text{По} \quad \text{свойству} \quad \textbf{(c)} \quad \S2$ $\int_A f^+\,d\,\mu \ \leqslant \ \int_C f^+\,d\,\mu \quad \text{и} \quad \int_A f^-\,d\,\mu \ \leqslant \ \int_C f^-\,d\,\mu \,. \quad \text{Следовательно},$ $\int_A f^+\,d\,\mu \ < +\infty \,\,\text{и} \,\int_A f^+\,d\,\mu \ < +\infty \,\,\text{и} \,\,\text{поэтому} \,\,f \in L(\mu\,,A)\,.\,\Box$

6. Теорема. (О мажоранте). Пусть $C \in \Sigma$, функция $g \in L(\mu,C)$ неотрицательна, функция $f:C \to \left[-\infty,+\infty\right]$ измерима и $\left|f(t)\right| \leqslant g(t)$ для всех $t \in C$. Тогда $f \in L(\mu,C)$ и

$$-\infty < -\int\limits_C g \, d\mu \leqslant \int\limits_C f \, d\mu \leqslant \int\limits_C \left| f \right| d\mu \leqslant \int\limits_C g \, d\mu < +\infty.$$
 (*)

Доказательство. По условию $\left|f\right|\leqslant g$ на множестве C. Следовательно,

$$-g \leqslant -|f| \leqslant f \leqslant |f| \leqslant g \tag{**}$$

на C. По условию еще $g\geqslant 0$ и $g\in L\big(\mu\,,C\big)$. Поэтому $0\leqslant \int\limits_C g\,d\mu\ <+\infty$. Отсюда имеем

$$\int_{C} (-g) d\mu = \int_{C} (-g)^{+} d\mu - \int_{C} (-g)^{-} d\mu = \int_{C} 0 d\mu - \int_{C} g d\mu = -\int_{C} g d\mu$$

и, значит,
$$-\infty < \int\limits_{C} \left(-g \right) d\, \mu \; = \; -\int\limits_{C} g \; d\, \mu \; \leqslant \; 0 \, .$$

Применяя теперь теорему 4 о монотонности интеграла (и неравенства (**)), получим

$$-\, \infty \; < \; -\, \int\limits_{C} g \; d\, \mu \; = \; \int\limits_{C} \left(-g \right) \, d\, \mu \; \leqslant \; \int\limits_{C} f \; d\, \mu \; \leqslant \; \int\limits_{C} \left| \, f \, \right| \; d\, \mu \; \leqslant \; \int\limits_{C} g \; d\, \mu \; .$$

Неравенства (*) доказаны. Из них следует, что $\int\limits_C f \, d\, \mu \in \mathbb{R}$, т.е. $f \in L(\mu\,,C)$. \Box

7. Теорема. (О счетной аддитивности интеграла Лебега). Пусть $C\in \Sigma$ и измеримая функция $f:C\to \left[-\infty\,,\,+\infty\right]$ такова, что существует интеграл $\int\limits_C f\,d\,\mu\,\in\,\left[-\infty\,,\,+\infty\right]$.

Пусть множества $A_k\in \Sigma,\ k\in \mathbb{N}$, попарно не пересекаются, содержатся во множестве C и $A=\bigsqcup_{k=1}^\infty A_k$. Тогда интегралы $\int\limits_A f\ d\,\mu$ и $\int\limits_{A_k} f\ d\,\mu$, $k\in \mathbb{N}$, существуют и справедливо равенство

$$\int_{A} f d\mu = \sum_{k=1}^{\infty} \int_{A_k} f d\mu. \quad (*)$$

Доказательство. По условию хотя бы один из интегралов $\int\limits_C f^+ \, d\, \mu$ и $\int\limits_C f^- \, d\, \mu$ конечен. Допустим для определенности, что $\int\limits_C f^+ \, d\, \mu \, < \, +\infty$.

По свойству (с) §2 тогда

$$\int\limits_A f^+ \, d\, \mu \; \leqslant \; \int\limits_C f^+ \, d\, \mu \; < \; +\infty \; \, {
m M} \; {
m BCC} \; \int\limits_{A_k} f^+ \, d\, \mu \; \leqslant \; \int\limits_C f^+ \, d\, \mu \; < \; +\infty \, .$$

Поэтому в равенстве (*) существуют все интегралы. По теореме 6 §3 имеем

$$\int_{A} f^{-} d\mu = \sum_{k=1}^{\infty} \int_{A_{k}} f^{-} d\mu, \quad \int_{A} f^{+} d\mu = \sum_{k=1}^{\infty} \int_{A_{k}} f^{+} d\mu.$$

Отсюда

$$\int_{A} f \, d\mu = \int_{A} f^{+} \, d\mu - \int_{A} f^{-} \, d\mu = \sum_{k=1}^{\infty} \int_{A_{k}} f^{+} \, d\mu - \sum_{k=1}^{\infty} \int_{A_{k}} f^{-} \, d\mu =$$

$$=\lim_{n\to\infty}\sum_{k=1}^n\int\limits_{A_k}f^+\,d\,\mu-\lim_{n\to\infty}\sum_{k=1}^n\int\limits_{A_k}f^-\,d\,\mu=\lim_{n\to\infty}\left(\sum_{k=1}^n\int\limits_{A_k}f^+\,d\,\mu\right.\\ \left.-\sum_{k=1}^n\int\limits_{A_k}f^-\,d\,\mu\right]=$$

$$=\lim_{n\to\infty}\sum_{k=1}^n\left(\int\limits_{A_k}f^+\,d\,\mu\ -\ \int\limits_{A_k}f^-\,d\,\mu\right)=\lim_{n\to\infty}\sum_{k=1}^n\int\limits_{A_k}f\,d\,\mu=\sum_{k=1}^\infty\int\limits_{A_k}f\,d\,\mu\ .\ \Box$$

Спедствие. Если $f\in L(\mu,C)$, то формула $\mu_f(A)=\int_A f\,d\,\mu$ определяет конечную вещественную меру на σ - алгебре $\Sigma_C=\{A\subset C\;;\;A\in\Sigma\}$ измеримых подмножеств множества C.

8. Теорема. (О линейности интеграла). Пусть $\alpha \in \mathbb{R}$, $C \in \Sigma$, f **U** $g \in L(\mu,C)$, причем f, $g:C \to \mathbb{R}$ (т.е. обе функции всюду на C конечны). Тогда функции αf и f+g также суммируемы и справедливы равенства

$$\int_{C} \alpha \cdot f \ d\mu = \alpha \cdot \int_{C} f \ d\mu, \qquad (3)$$

$$\int_{C} (f+g) \ d\mu = \int_{C} f \ d\mu + \int_{C} g \ d\mu. (4)$$

Доказательство. По свойствам (c) и (d) § 3 гл.1 функции αf и f+g на множестве C измеримы.

Существование интеграла $\int\limits_{C} \alpha \cdot f \ d\,\mu$ и равенство (3) доказываются просто: Если $\alpha>0$, то по определению интеграла от произвольной измеримой функции и по свойству (e) §2

$$\int_{C} \alpha \cdot f \ d\mu = \int_{C} (\alpha \cdot f)^{+} \ d\mu - \int_{C} (\alpha \cdot f)^{-} \ d\mu = \int_{C} \alpha \cdot f^{+} \ d\mu - \int_{C} \alpha \cdot f^{-} \ d\mu =$$

$$= \alpha \cdot \int_{C} f^{+} \ d\mu - \alpha \cdot \int_{C} f^{-} \ d\mu = \alpha \cdot \left(\int_{C} f^{+} \ d\mu - \int_{C} f^{-} \ d\mu \right) = \alpha \cdot \int_{C} f \ d\mu.$$

Если $\alpha < 0$, то

$$(\alpha \cdot f)^{+} = \max(0, \alpha \cdot f) = \max(0, -|\alpha| \cdot f) = |\alpha| \cdot \max(0, -f) = |\alpha| \cdot f^{-},$$

$$(\alpha \cdot f)^{-} = \max(0, -\alpha \cdot f) = \max(0, |\alpha| \cdot f) = |\alpha| \cdot \max(0, f) = |\alpha| \cdot f^{+}.$$

Поэтому снова применяя определение интеграла и свойство (e) §2 имеем

$$\begin{split} &\int\limits_{C}\alpha\cdot f\ d\mu = \int\limits_{C}\left(\alpha\cdot f\right)^{+}d\mu - \int\limits_{C}\left(\alpha\cdot f\right)^{-}d\mu = \int\limits_{C}\left|\alpha\right|\cdot f^{-}d\mu - \int\limits_{C}\left|\alpha\right|\cdot f^{+}d\mu = \\ &= \left|\alpha\right|\cdot\int\limits_{C}f^{-}d\mu - \left|\alpha\right|\cdot\int\limits_{C}f^{+}d\mu = \\ &|\alpha|\cdot\left(\int\limits_{C}f^{-}d\mu - \int\limits_{C}f^{+}d\mu\right) = -|\alpha|\cdot\int\limits_{C}f\ d\mu = \alpha\cdot\int\limits_{C}f\ d\mu \,. \end{split}$$

При $\alpha = 0$ равенство (3) очевидно.

Докажем теперь, что интеграл $\int\limits_{C} \left(f+g\right) d\,\mu\,$ существует и справедливо равенство (4).

По условию f и $g\in L(\mu\,,C)$. Значит, $\int\limits_C \big|f\big|\,d\mu\,<\,+\infty$ и $\int\limits_C \big|g\big|\,d\mu\,<\,+\infty$ по теореме 2. Применяя еще свойство 2(d) и теорему 2 §3, получим

$$\int_{C} \left| f + g \right| d\mu \leqslant \int_{C} \left(\left| f \right| + \left| g \right| \right) d\mu = \int_{C} \left| f \right| d\mu + \int_{C} \left| g \right| d\mu < +\infty.$$

Из этого неравенства по теореме 2 следует, что $f+g\in L(\mu,C)$.

Разобьем множество ${\cal C}$ на подмножества

$$\begin{split} B_1 &= \{t \!\in\! C\,;\, f(t) \!\geqslant\! 0,\, g(t) \!\geqslant\! 0\}, \ B_2 &= \{t \!\in\! C\,;\, f(t) \!<\! 0,\, g(t) \!<\! 0\}, \\ B_3 &= \{t \!\in\! C\,;\, f(t) \!\geqslant\! 0,\, g(t) \!<\! 0,\, (f+g)(t) \!\geqslant\! 0\}, \\ B_4 &= \{t \!\in\! C\,;\, f(t) \!\geqslant\! 0,\, g(t) \!<\! 0,\, (f+g)(t) \!<\! 0\}, \end{split}$$

$$B_5 = \{t \in C; f(t) < 0, g(t) \ge 0, (f+g)(t) \ge 0\},$$

$$B_6 = \{t \in C; f(t) < 0, g(t) \ge 0, (f+g)(t) < 0\}.$$

По теореме 7

$$\int_{C} (f+g) d\mu = \sum_{k=1}^{6} \int_{B_{k}} (f+g) d\mu, \qquad (5)$$

так как $C = \bigsqcup_{k=1}^{6} B_k$. Докажем, что

$$\int_{B_k} (f+g) d\mu = \int_{B_k} f d\mu + \int_{B_k} g d\mu$$
 (6)

для каждого k = 1, 2, ..., 6.

При k=1 это сразу следует из теоремы 2 §3, так как на множестве B_1 функции f и g неотрицательны. Применяя кроме теоремы 2 §3 еще равенство (3) при $\alpha=-1$, получим нужное равенство и при k=2:

$$\int_{B_2} (f+g) d\mu = -\int_{B_2} [(-f) + (-g)] d\mu = -\int_{B_2} (-f) d\mu - \int_{B_2} (-g) d\mu = \int_{B_2} f d\mu + \int_{B_2} g d\mu.$$

Докажем равенство (6) для k=3 . На множестве B_3 справедливы соотношения

$$f \geqslant 0$$
, $g < 0$, $f + g \geqslant 0$, $-g > 0$, $(f + g) + (-g) = f \geqslant 0$.

Применяя теорему 2 §3 к функциям f + g и -g, получим

$$\int_{B_3} f d\mu = \int_{B_3} (f+g) d\mu + \int_{B_3} (-g) d\mu = \int_{B_3} (f+g) d\mu - \int_{B_3} g d\mu.$$
 (7)

Из условия $g\in L(\mu\,,C)$ согласно теореме 5 следует, что $g\in L(\mu\,,B_3)$ и поэтому интеграл $\int\limits_{B_3}g\;d\,\mu$ конечен. Значит, из равенства (7) вытекает равенство

$$\int\limits_{B_3} \left(f \, + \, g \right) \, d \, \mu \; = \; \int\limits_{B_3} f \; d \, \mu \; + \; \int\limits_{B_3} g \; d \, \mu \; .$$

На множестве B_4 имеем

$$f \ge 0$$
, $g < 0$, $f + g < 0$, $-(f + g) > 0$, $[-(f + g)] + f = (-g) > 0$.

Применяя теорему 2 §3 к функциям -(f+g) и f, получим

$$\int\limits_{B_4} \left[- \left(f \, + \, g \right) \right] \, d \, \mu \ + \ \int\limits_{B_4} f \, \, d \, \mu \ = \ \int\limits_{B_4} \left(- \, g \right) \, d \, \mu \ ,$$

откуда следует, что
$$\int\limits_{B_4} \left(f \, + \, g \right) d \, \mu \; = \; \int\limits_{B_4} f \; d \, \mu \; + \; \int\limits_{B_4} g \; d \, \mu \; .$$

Для $k=5\,$ и $k=6\,$ доказательства равенства (6) аналогичны предыдущим двум случаям.

Равенства (6) доказаны. Из этих равенств, из равенства (5) и из аналогичных равенств $\int\limits_{C}^{6} f \, d\, \mu = \sum\limits_{k=1}^{6} \int\limits_{B_k} f \, d\, \mu$, $\int\limits_{C}^{6} g \, d\, \mu = \sum\limits_{k=1B_k}^{6} \int\limits_{B_k} g \, d\, \mu$ следует требуемое равенство (4). \Box

Теорему 8 можно усилить следующим образом.

9. Теорема. Пусть функции $f, g: C \to \mathbb{R}$ измеримы, интегралы $\int_C f \ d\mu$ и $\int_C g \ d\mu$ существуют и принадлежат множеству $\left(-\infty, +\infty\right]$ или оба принадлежат множеству $\left[-\infty, +\infty\right)$. Тогда интеграл $\int_C \left(f+g\right) \ d\mu$ существует, принадлежит тому же множеству и справедливо равенство (4).

Доказательство. Допустим, что
$$\int\limits_C f \ d\,\mu = +\infty$$
 и
$$\int\limits_C g \ d\,\mu \in \left(-\infty, +\infty\right].$$
 Тогда $\int\limits_C f^+ d\,\mu = +\infty, \ \int\limits_C f^- d\,\mu < +\infty, \ \int\limits_C g^- d\,\mu < +\infty.$

Из легко проверяемого неравенства $(f+g)^-\leqslant f^-+g^-$ следует, что интеграл $\int\limits_C (f+g)^- d\mu$ конечен. Поэтому интеграл $\int\limits_C (f+g) d\mu$ существует. Осталось доказать, что он равен $+\infty$. Поскольку $f^+\leqslant (f+g)^++g^-$, то предполагая иное, получим противоречие:

$$+\infty = \int_C f^+ d\mu \leqslant \int_C (f+g)^+ d\mu + \int_C g^- d\mu < +\infty.\square$$

10. Теорема. (Лебега о мажорируемой сходимости). Пусть $C\in \Sigma$, $f_n\in L(\mu\,,C)$ для всех $n\in \mathbb{N},\ f:C\to [-\infty\,,\,+\infty]$ и для всех $t\in C$ существует $\lim_{n\to\infty}f_n\,(t)\in [-\infty\,,\,+\infty]$, причем

$$\lim_{n \to \infty} f_n(t) = f(t). \quad (8)$$

Пусть еще $g \in L(\mu, C)$ и

$$\left|f_{n}\left(t\right)\right|\leqslant g\left(t\right)$$
 для всех $t\in C$ и для всех $n\in\mathbb{N}$. (9)

Тогда $f \in L(\mu, C)$ и справедливо равенство

$$\int_{C} f \ d\mu = \lim_{n \to \infty} \int_{C} f_n \ d\mu. \quad (10)$$

Доказательство. Обозначим

$$h_n'(t)=\inf_{k\,\geqslant\,n}\,f_k\left(t
ight),\ h_n''(t)=\sup_{k\,\geqslant\,n}\,f_k\left(t
ight)$$
 для всех $t\in C.$

Ясно, что последовательность (h'_n) возрастает, последовательность (h''_n) убывает на C и

$$f(t) = \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} h'_n(t) = \lim_{n \to \infty} h''_n(t), \quad (11)$$

$$-g(t) \leqslant h'_n(t) \leqslant f_n(t) \leqslant h''_n(t) \leqslant g(t) \tag{12}$$

для всех $t \in C$ и $n \in \mathbb{N}$.

По теореме 4 о монотонности интеграла из неравенств (12) и из условия $g\in L(\mu\,,C)$ следует, что все h'_n , $h''_n\in L(\mu\,,C)$. Кроме того, из (8) и (9) следует, что $\big|f(t)\big|\leqslant g(t)$ на C. По теореме 6 отсюда следует, что и $f\in L(\mu\,,C)$.

По теореме 8 о линейности интеграла

$$h_n'+g\,,\,\,g-h_n''\in Lig(\mu\,,Cig)$$
 для каждого $n\in\mathbb{N}\,.$

Из неравенств (5) следует, что функции h'_n+g и $g-h''_n$ неотрицательны. Ясно также, что последовательности $\left(h'_n+g\right)$ и $\left(g-h''_n\right)$ возрастают. Для каждого $t\in C$ из (11) имеем

$$\lim_{n \to \infty} \left[h'_n(t) + g(t) \right] = f(t) + g(t),$$

$$\lim_{n \to \infty} \left[g(t) - h''_n(t) \right] = g(t) - f(t).$$

Таким образом, к последовательностям $\left(h_n'+g\right)$ и $\left(g-h_n''\right)$ применима теорема Б. Леви (теорема 1 §3). Применяя эту теорему, получим

$$\begin{split} &\int\limits_{C} \left(f \,+\, g\right) \,d\, \mu \;=\; \lim_{n\,\rightarrow\,\infty} \int\limits_{C} \left(h'_n \,+\, g\right) \,d\, \mu\;,\\ &\int\limits_{C} \left(g \,-\, f\right) \,d\, \mu \;=\; \lim_{n\,\rightarrow\,\infty} \int\limits_{C} \left(g \,-\, h''_n\right) \,d\, \mu\;. \end{split}$$

Отсюда по теореме 8 о линейности интеграла

$$\begin{split} &\int\limits_{C} f \ d\mu \ + \ \int\limits_{C} g \ d\mu \ = \ \lim_{n \to \infty} \ \int\limits_{C} h'_n \ d\mu \ + \ \int\limits_{C} g \ d\mu \ , \\ &\int\limits_{C} g \ d\mu \ - \ \int\limits_{C} f \ d\mu \ = \ \int\limits_{C} g \ d\mu \ - \ \lim_{n \to \infty} \ \int\limits_{C} h''_n \ d\mu \ . \end{split}$$

Из этих равенств и из конечности интеграла $\int\limits_{C} g \ d\, \mu \,$ вытекают равенства

$$\int\limits_{C} f \ d \, \mu \ = \ \lim_{n \, \to \, \infty} \ \int\limits_{C} h'_n \ d \, \mu \ , \ \ \int\limits_{C} f \ d \, \mu \ = \ \lim_{n \, \to \, \infty} \ \int\limits_{C} h''_n \ d \, \mu \ .$$

Кроме того, из неравенств (12) ясно, что

$$\int\limits_C h'_n \ d\mu \ \leqslant \ \int\limits_C f_n \ d\mu \ \leqslant \ \int\limits_C h''_n \ d\mu \ , \ n \in \mathbb{N} \, .$$

Отсюда ясно, что справедливо искомое равенство (10). \square

11. Теорема. Пусть $C\in \Sigma$, $f\in L(\mu\,,C)$. Тогда для каждого $\varepsilon>0$ найдется $\delta>0$ такое, что для любого $A\in \Sigma$, $A\subset C$, $\mu A<\delta$, выполнено:

$$\left| \int_A f \ d\mu \right| < \varepsilon$$
.

Доказательство. Докажем, что

$$\forall \; \epsilon > 0 \;\; \exists \delta > 0 \; : A \in \Sigma \; , \; A \subset C, \;\; \mu A < \delta \;\; => \int_A \left| \; f \; \left| \; d \; \mu < \epsilon. \right| \;$$

Тогда утверждение теоремы будет выполнено, т.к. $\left|\int_A f \ d\mu\right| \leq \int_A \left|f \right| d\mu$ по теореме 3. Предположим обратное:

 $\exists\, \epsilon>0 \ \ \forall \delta>0: \ \exists A\in\Sigma\,, A\subset C, \mu A<\delta\,, \ \int\limits_A \left|\ f\ \right| d\,\mu\geq\epsilon.$ Зафиксируем такое число $\,\epsilon>0\,.$ Для каждого натурального $\,k\,$ положим $\,\delta_k=2^{-k}\,$ и найдем

$$A_k\in\Sigma$$
 , $A_k\subset C$, такие, что $\,\mu A_k<\delta_k,\,\int\limits_{A_k}\mid f\mid d\,\mu\geq \varepsilon$. Пусть $\,B_n=\bigcup\limits_{k=n}^\infty A_k$.

Имеем:
$$B_1\supset B_2\supset...,\ B_n\in\Sigma\ \ \forall n\in\mathbb{N},\ \ \mu B_n\leq\sum\limits_{k=n}^\infty\mu A_k=\sum\limits_{k=n}^\infty2^{-k}=2^{-n+1}$$
 .

По теореме 6 §2 гл.1 о непрерывности меры $~\mu B = \lim_{n \, \to \, \infty} \mu B_n = 0$.

По теореме 5 §3 $\int_B |f| d\mu = 0$. Теперь рассмотрим меру $\mu_{|f|}$ на сигмаалгебре Σ , которую можно определить вследствие теоремы 6 §3 равенством $\mu_{|f|}A = \int_A |f| d\mu \quad \forall A \in \Sigma$. По теореме о непрерывности меры $\mu_{|f|}B = \lim_{n \to \infty} \mu_{|f|}B_n = 0 = \lim_{n \to \infty} \int_{B_n} |f| d\mu$. Однако по построению $A_n \subset B_n$, поэтому по свойству (c) §2 получаем:

$$\int_{B_n} |f| d\mu \ge \int_{A_n} |f| d\mu \ge \varepsilon,$$

где число $\, \epsilon > 0 \,$ зафиксировано. Полученное противоречие доказывает теорему. \Box

Замечание. Свойство, доказанное в теореме 11, называется абсолютной непрерывностью интеграла.

§5. Понятие «почти всюду»

- 1. Определение. Пусть (S, Σ, μ) пространство с мерой, $C \in \Sigma$. Утверждение $P(t), t \in C$, верно почти всюду на C (или почти для всех $t \in C$), если существует множество $N \in \Sigma$, $\mu N = 0$, такое, что $\{t \in C : P(t) \text{ не верно}\} \subset N$.
- 2. Определение. Пусть $C\in \Sigma,\ f,g:C\to [-\infty\,;+\infty]$. Функции f и g называются эквивалентными, если f(t)=g(t) почти для всех $t\in C$. Обозначение: $f\sim g$.
- 3. Лемма. Пусть $C \in \Sigma, \ f,g:C \to [-\infty;+\infty], \ f \sim g$. Тогда функция f измерима в том и только в том случае, когда g измерима.

Доказательство. Пусть $N_0=\{t\in C: f(t)\neq g(t)\}$. Так как $f\sim g$, то $N_0\subset N$, $\mu N=0$. Допустим, f измерима. Докажем измеримость функции g (см. гл. 1, §3). Возьмем $\alpha\in\mathbb{R}$. Рассмотрим

$$g^{-1}(\alpha; +\infty] = \{t \in C : g(t) > \alpha\}.$$

Сравним это множество с множеством $f^{-1}(\alpha; +\infty]$. Пусть

 $N_1=\{t\in C:g(t)>\alpha,\,f(t)\leq\alpha\}\,,\,\,N_2=\{t\in C:g(t)\leq\alpha,\,f(t)>\alpha\}\,.$ Тогда $g^{-1}(\alpha\,;+\infty]=\Big(f^{-1}(\alpha\,;+\infty]\sqcup N_1\Big)\setminus N_2$ (докажите равенство этих множеств самостоятельно!).

Так как пространство полно в смысле Лебега,

$$N_1,\,N_2\subset N,\,\mu N=0\,,\,{
m to}\,\,\,N_1,\,N_2\in\Sigma,\,\,\,\mu N_1=\mu N_2=0\,.$$

Так как f измерима, то $f^{-1}(\alpha;+\infty] \in \Sigma$. Поэтому $g^{-1}(\alpha;+\infty] \in \Sigma$, функция g измерима.

Обратное утверждение доказывается заменой g на f. \square

4. Лемма. Пусть $C\in \Sigma,\ f,g:C\to [-\infty\,;+\infty]$ — измеримые функции, $f\sim g$. Если один из интегралов $\int\limits_C g\ d\,\mu\,,\int\limits_C f\ d\,\mu$ определен, то определен и второй, причем для любого $A\subset C,\,A\in \Sigma\,,$

$$\int_A g \, d\mu = \int_A f \, d\mu \ .$$

Доказательство. Пусть, например, $\int\limits_C f \ d\,\mu$ определен, $\int\limits_C f^+ d\,\mu < +\infty$. Обозначим

$$C_1 = \{t \in C : g(t) > 0, f(t) \le 0\}, C_2 = \{t \in C : g(t) \le 0, f(t) > 0\}.$$

Тогда по определению $g^+ = \max \left(0 \,,\, g\right), \ f^+ = \max \left(0 \,,\, f\right)$ имеем: $\{t: g^+(t)>0\} = \{t: g(t)>0\} = \left(\{t: f(t)>0\} \sqcup C_1\right) \backslash C_2 = \left(\{t: f^+(t)>0\} \sqcup C_1\right) \backslash C_2,$

 $C_1,\,C_2\subset N_0=\{t\in C: f(t)\neq g(t)\}\subset N\;,\;\mu N=0\;,$ следовательно, в силу полноты меры $\;\mu,\;\mu C_1=\mu C_2=0\;.$ Получаем:

$$\int_{C} g^{+} d\mu = \int_{C \cup C_{1}} f^{+} d\mu - \int_{C_{2}} f^{+} d\mu = \int_{C} f^{+} d\mu < +\infty, \quad (1)$$

следовательно, $\int\limits_{C}g\ d\,\mu$ тоже определен.

Рассмотрим $\int\limits_A g \ d\,\mu = \int\limits_A g^+ \ d\,\mu - \int\limits_A g^- \ d\,\mu$. Аналогично (1) имеем:

$$\int_{A} g^{+} d\mu = \int_{A} f^{+} d\mu, \quad \int_{A} g^{-} d\mu = \int_{A} f^{-} d\mu,$$

то есть $\int\limits_A g \; d\, \mu = \int\limits_A f \; d\, \mu$, что и требовалось доказать. $\ \square$

5. Замечание. Лемма 4 означает, что интеграл Лебега «не различает» эквивалентные функции.

Если же функции f и g не эквивалентны, то интегралы по множеству $A_1 = \{t \in C: g(t) > f(t)\}$ или $A_2 = \{t \in C: g(t) < f(t)\}$ от функций f и g обязательно будут отличаться. Действительно, мера одного из этих множеств положительна (иначе $f \sim g$). Допустим, $\mu A_1 > 0$. Тогда по теореме 5 § 3 (о нулевом интеграле) $\int\limits_{A_1} (g-f) \ d\, \mu \neq 0$, так как

$$g-f\,:\,A_1\, o \left[0\,,\,+\infty
ight].$$
 Значит, $\int\limits_{A_1}g\,d\,\mu
eq \int\limits_{A_1}f\,d\,\mu\,$.

6. Замечание. Для любой функции $f \in L(\mu, C)$ существует эквивалентная ей функция $g \in L(\mu, C)$, не принимающая бесконечных значений.

Действительно, если $\int_C f^+ d\,\mu < +\infty$, $\int_C f^- d\,\mu < +\infty$, то по свойству (f) §2 $\qquad \mu \left\{ t \in C \; ; \; f^+ \left(t \right) = +\infty \right\} = 0 \; , \quad \mu \left\{ t \in C \; ; \; f^- \left(t \right) = +\infty \right\} = 0 \; .$ Заменим значения функции $\qquad f \qquad$ на этих множествах, например, нулевыми значениями. Получим эквивалентную $\qquad f \qquad$ функцию $\qquad g:C \rightarrow (-\infty\; ; +\infty) \; .$ При этом $\qquad g \in L(\mu\, , C)$ по лемме 4.

В заключение сформулируем усиленную теорему Лебега о мажорируемой сходимости (см. теорему 10 § 4), используя понятие «почти всюду».

7. Теорема. (Лебега о мажорируемой сходимости). Пусть $C \in \Sigma$, $f_n \in L(\mu,C)$ для всех $n \in \mathbb{N}$, $f:C \to [-\infty,+\infty]$ и почти для всех $t \in C$ существует $\lim_{n \to \infty} f_n(t) \in [-\infty,+\infty]$, причем

$$\lim_{n\to\infty}f_{n}\left(t
ight)=f\left(t
ight)$$
 почти для всех $t\in C$

Пусть еще $g \in L(\mu, C)$ и

$$\left|f_{n}\left(t\right)
ight|\leqslant\ g\left(t
ight)$$
 почти для всех $t\in C$ и для всех $n\in\mathbb{N}$.

Тогда $f \in L(\mu, C)$ и справедливо равенство

$$\int_{C} f d\mu = \lim_{n \to \infty} \int_{C} f_n d\mu.$$

ЗАДАЧИ И УПРАЖНЕНИЯ

Задачи к главе 1

§1. Алгебры и σ - алгебры множеств

- **1*.** Пусть множество Σ подмножеств множества S таково, что $\varnothing, S \in \Sigma$ и из $A, B \in \Sigma$ следует $A \backslash B \in \Sigma$. Доказать, что тогда Σ является алгеброй подмножеств множества S.
- **2.** Доказать, что для непустого семейства Σ подмножеств множества S равносильны следующие три условия:
- (*) Семейство Σ есть алгебра подмножеств множества S.
- (**) Если A и $B \in \Sigma$, то $S \setminus A \in \Sigma$ и $A \cap B \in \Sigma$.
- (***) Если A и $B \in \Sigma$, то $S \setminus A \in \Sigma$ и $A \cup B \in \Sigma$.
- **3.** Доказать, что в определении σ -алгебры условие (3) можно заменить условием "если $A_k \in \Sigma$ для всех $k \in \mathbb{N}$, то $\bigcap_{k=1}^\infty A_k \in \Sigma$ ".
- **4.** Нижним и соотв. верхним пределами последовательности множеств $A_n,\ n\!\in\!\mathbb{N}$, называются множества

$$\underline{\lim}_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k, \ \overline{\lim}_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k. (*)$$

- (a) Пусть все множества A_n принадлежат σ -алгебре Σ . Доказать, что тогда множества (*) также принадлежат Σ .
- (b) Доказать, что всегда

$$\bigcap_{n=1}^{\infty} A_n \subset \underline{\lim}_{n \to \infty} A_n \subset \overline{\lim}_{n \to \infty} A_n \subset \bigcup_{n=1}^{\infty} A_n. (**)$$

(c) Пусть последовательность множеств $B_n,\,n\!\in\!\mathbb{N}$, возрастает, то есть $B_n\!\subset\!B_{n+1}\,\,\forall n\!\in\!\mathbb{N}$, а последовательность множеств $C_n,\,n\!\in\!\mathbb{N}$, убыва-

ет, то есть $\,C_{n+1}\!\subset\!C_n\,\,\forall n\!\in\!\mathbb{N}\,.$ Доказать, что тогда справедливы равенства

$$\underline{\lim_{n\to\infty}}B_n=\overline{\lim_{n\to\infty}}B_n=\bigcup_{n=1}^\infty B_n,\ \underline{\lim_{n\to\infty}}C_n=\overline{\lim_{n\to\infty}}C_n=\bigcap_{n=1}^\infty C_n.$$

- (d) Найти $\varinjlim_{n\to\infty}A_n$ и $\varlimsup_{n\to\infty}A_n$, если $A_n=\left((-1)^n,+\infty\right)$ для каждого $n\in\mathbb{N}$.
- (e)* Найти множества $A_n \subset \mathbb{R}$, $n \in \mathbb{N}$, такие, что все четыре множества (**) попарно различны.
- (f) Пусть b a > 1 и

$$A_n = [a - 1/n, b - 1/n], B_n = (a - 1/n, b - 1/n)$$

для каждого $n \in \mathbb{N}$. Доказать, что тогда

$$\underline{\lim_{n\to\infty}}A_n=\underline{\lim_{n\to\infty}}B_n=\overline{\lim_{n\to\infty}}A_n=\overline{\lim_{n\to\infty}}B_n=[a,b).$$

- **5.** Пусть множество S бесконечно и множество $A \subset S$ принадлежит Σ тогда и только тогда, когда само A или его дополнение $S \setminus A$ конечно. Доказать, что Σ алгебра подмножеств множества S. Является ли семейство Σ σ -алгеброй?
- **6.** Пусть Σ σ -алгебра подмножеств в S и A \subset S. Доказать, что $\Sigma_A = \{A \cap B \; ; \; B \in \Sigma\}$ σ -алгебра подмножеств множества A.
- **7*.** Пусть $f:S \to T$ и Σ σ -алгебра подмножеств в S. Доказать, что множество $\Theta = \left\{ B \subset T \; ; \; f^{-1}(B) \in \Sigma \right\}$ является σ -алгеброй подмножеств множества T.
- **8*.** Пусть $f:S \to T$ и Θ σ -алгебра подмножеств множества T. Доказать, что множество $\Sigma = \left\{ f^{-1}(B) \; ; \; B \in \Theta \right\}$ является σ -алгеброй подмножеств множества S.

9*. Пусть $\Sigma = \{\emptyset, A, S \backslash A, S\}$ — σ -алгебра из 4-х подмножеств множества S. Перечислить все элементы σ -алгебры $\Sigma \times \Sigma$. Используйте опрелеление:

Определение. Пусть Σ – σ -алгебра подмножеств множества S и Θ – σ -алгебра подмножеств множества T. Обозначим через Δ множество всех произведений $A \times B$, где $A \in \Sigma$ и $B \in \Theta$. Наименьшая σ -алгебра $\sigma(\Delta)$ подмножеств множества $S \times T$, порожденная множеством Δ , обозначается $\Sigma \times \Theta$ и называется (декартовым или прямым) произведением исходных σ -алгебр Σ и Θ (см. определение 1.5).

§2. Аддитивные и счетно-аддитивные функции

- **10.** Пусть Σ алгебра подмножеств множества S и функция $\mu: \Sigma \to \mathbb{R}$ аддитивна. Доказать что тогда для любых множеств A и $B \in \Sigma$ справедливо равенство $\mu A + \mu B = \mu(A \cup B) + \mu(A \cap B)$.
- **11.** Доказать, что линейная комбинация аддитивных вещественных функций (соотв. вещественных мер) на σ -алгебре Σ является аддитивной функцией (соотв. мерой) на Σ . Верно ли аналогичное утверждение для неотрицательных мер?
- **12.** Пусть Σ алгебра подмножеств множества S и функция $\mu: \Sigma \to [0, +\infty]$ аддитивна. Доказать утверждения
- (a) Если $A, B \in \Sigma$ и $A \subset B$, то $\mu A \leqslant \mu B$.
- (b) Если $A, B \in \Sigma$ и $\mu(A \cap B) < +\infty$, то $\mu(A \cup B) = \mu A + \mu B \mu(A \cap B)$.
- (c) Если $A, B \in \Sigma$ и $\mu(A \triangle B) = 0$, то $\mu A = \mu B$.
- (d) Если $A\subset\bigcup_{k=1}^n B_k$, где $A\in\Sigma$ и все $B_k\in\Sigma$, то $\mu A\leqslant\sum_{k=1}^n \mu B_k$.

- (e) Если $\bigsqcup_{k=1}^\infty A_k \subset B$, где $B \in \Sigma$ и все $A_k \in \Sigma$, то $\sum_{k=1}^\infty \mu A_k \leqslant \mu B$.
- **13*.** Пусть Σ алгебра подмножеств множества S. Доказать, что аддитивная функция $\mu: \Sigma \to [0, +\infty]$ счетно аддитивна тогда и только тогда, когда выполнено условие:

Если
$$A\!\in\!\Sigma$$
, все $B_k\!\in\!\Sigma$ и $A\!\subset\!\bigcup_{k=1}^\infty\!B_k$, то $\mu A\!\leqslant\!\sum_{k=1}^\infty\!\mu B_k$.

- **14.** Пусть S произвольное множество. Для каждого $A \subset S$ положим pA = n, если множество A конечно и состоит из n элементов, и $pA = +\infty$, если множество A бесконечно. Является ли отображение $p: 2^S \to [0, +\infty]$ мерой?
- **15.** Пусть Σ σ -алгебра подмножеств множества S и $x_0 \in S$. Для каждого $A \in \Sigma$ положим $\delta A = 1$, если $x_0 \in A$, и $\delta A = 0$, если $x_0 \notin A$. Проверьте, что отображение $\delta: \Sigma \to [0, +\infty)$ является мерой. Данная мера δ называется мерой Дирака, сосредоточенной в точке x_0 .
- **16.** Пусть $a=(a_k)\subset [0,+\infty)$. Для любого множества $A\subset \mathbb{N}$ положим $\mu_a(A)=\sum\limits_{k\in A}a_k$. Является ли мерой $\mu_a:2^\mathbb{N}\to [0,+\infty]$?
- **17.** Пусть $a=(a_k)\subset \mathbb{R}$ и ряд $a_1+a_2+\dots$ абсолютно сходится. Полагая $\mu_a(A)=\sum\limits_{k\in A}a_k$, где $A\subset \mathbb{N}$, получим $\mu_a\colon 2^\mathbb{N}\to \mathbb{R}$. Является ли мерой μ_a ?
- **18.** Пусть $a_k\!\in\![0,+\infty)$ и $z_k\!\in\!\mathbb{R}^n$ для всех $k\!\in\!\mathbb{N}$. Доказать, что формула $\mathbf{v}A \,=\, \lambda A + \, \Sigma\,\big\{a_k\ ; \, z_k\!\in\!A\big\}, \, A\!\in\!\mathfrak{L}\big(\mathbb{R}^n\big),$

определяет неотрицательную меру v на σ -алгебре $\mathfrak{L}(\mathbb{R}^n)$.

- **19.** Привести примеры множеств, принадлежащих σ -алгебре $\mathscr{B}(\mathbb{R}^n)$. Является ли канторово множество $C \subset [0,1]$ борелевским?
- **20.** Доказать: замкнутые множества являются борелевскими, т.е. принадлежат σ -алгебре $\mathscr{B}(M)$. Привести другие примеры борелевских множеств.
- **21.** Доказать, что для любого множества $A \in \mathfrak{L}(\mathbb{R}^n)$ найдется множество $B \in \mathscr{B}(\mathbb{R}^n)$ такое, что $B \subset A$, причем мера Лебега $\lambda_n(A \backslash B) = 0$.
- **22*.** Доказать, что для любого $n \in \mathbb{N}$ существует множество $D \in \mathfrak{L}(\mathbb{R}^n) \backslash \mathscr{B}(\mathbb{R}^n)$.

§3. Измеримые функции

В следующих задачах фиксирована произвольная σ -алгебра Σ подмножеств множества S и $A \subset S$.

- **23.** Доказать: если отображение $f:A \to [-\infty;+\infty]$ измеримо, то множества $f^{-1}(\alpha;\beta), f^{-1}[\alpha;\beta], f^{-1}\{\alpha\}, f^{-1}\{-\infty\}, f^{-1}\{+\infty\}$ измеримы $\forall \alpha, \beta \in \mathbb{R}, \alpha < \beta$.
- **24.** Следует ли из измеримости отображения f^3 измеримость $f: A \to [-\infty; +\infty]$?
- **25*.** Следует ли из измеримости отображения f^2 измеримость $f: A \to [-\infty; +\infty]$?
- **26.** Следует ли из измеримости отображения |f| измеримость $f: A \to [-\infty; +\infty]$?
- **27.** Доказать, что измеримость функции $f: A \to \mathbb{R}$ равносильна каждому из 4-х условий:

- (i) $f^{-1}((\alpha,\beta)) \in \Sigma$ для любого $(\alpha,\beta) \subset \mathbb{R}$;
- (ii) $f^{-1}([\alpha,\beta)) \in \Sigma$ для любого $[\alpha,\beta) \in \mathbb{R}$;
- (iii) $f^{-1}([\alpha,\beta]) \in \Sigma$ для любого $[\alpha,\beta] \in \mathbb{R}$;
- (iv) $f^{-1}((\alpha,\beta]) \in \Sigma$ для любого $(\alpha,\beta] \in \mathbb{R}$.
- **28.** Доказать, что утверждение предыдущей задачи остается верным для $f: A \to (-\infty, +\infty]$, но не справедливо в случае $f: A \to [-\infty, +\infty]$.
- **29*.** Найти все функции $f:S\to\mathbb{R}$, Σ измеримые относительно σ -алгебры $\Sigma=\{\varnothing,A,S\backslash A,S\}.$
- **30***. Пусть функция $f: A \to [-\infty, +\infty]$ является Σ измеримой. Доказать, что $f^{-1}(B) \in \Sigma$ для любого $B \in \mathscr{B}(\mathbb{R})$.
- **31.** Пусть функции $f,g:A \to [-\infty,+\infty]$ измеримы. Доказать, что $\{x \in A: f(x) < g(x)\}, \ \{x \in A: f(x) = g(x)\} \in \Sigma.$
- **32.** Доказать, что композиция $f = \sin \circ \chi_A : S \to \mathbb{R}$ измерима тогда и только тогда, когда $A \in \Sigma$.
- **33*.** Пусть функция $f:A \to [0,1)$ Σ измерима. Для каждого $x \in A$ число f(x) запишем в 10-й системе счисления

$$f(x) = 0, \xi_1 \xi_2 \xi_3 \dots \xi_k \dots$$

и определим g(x) по правилу

$$g(x) = 0, \xi_1 0 \xi_2 0 0 \xi_3 0 0 0 \xi_4 0 0 0 0 \dots \xi_k \underbrace{0 0 \dots 0}_{k} \xi_{k+1} \dots$$

Доказать, что функция $g:A \to [0,1)$ Σ - измерима.

34*. Пусть функция $f:A \to [0,1)$ Σ - измерима. Для каждого $x \in A$ число f(x) запишем в 8-й системе счисления

$$f(x) = (0, \xi_1 \xi_2 \xi_3 ... \xi_k ...)_8 = \sum_{k=1}^{\infty} \frac{\xi_k}{8^k}$$

(без 7 в периоде) и положим

$$g(x) = (0, \xi_1 \xi_2 \xi_3 ... \xi_k ...)_{10} = \sum_{k=1}^{\infty} \frac{\xi_k}{10^k}$$

(цифры те же, но дробь понимается в 10-й системе счисления). Доказать, что функция $g: A \to [0,1)$ также Σ - измерима.

- **35.** Пусть $A \in \Sigma$, $f_k : A \to (-\infty; +\infty) \ \forall k \in \mathbb{N}$ измеримые отображения. Доказать, что измеримо множество $B = \{x \in A, \exists \lim_{k \to \infty} f_k(x) = f(x)\}$ и отображение $f : B \to (-\infty; +\infty)$.
- **36.** Пусть $f,g:A\to [-\infty;+\infty]$ измеримые отображения. Как задать отображения, являющиеся 1) суммой, 2) разностью, 3) произведением, 4) частным f и g? Будут ли измеримы получившиеся отображения?
- **37.** Измерима ли функция Дирихле $\mathscr{D}: \mathbb{R} \to \mathbb{R}, \mathscr{D}(x) = \begin{cases} 0, x \in \mathbb{Q}, \\ 1, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ по мере Лебега (то есть $\mathfrak{L}(\mathbb{R})$ измерима)?
- 38. Измерима ли функция Римана

$$\mathscr{R}:\mathbb{R} \to \mathbb{R},\, \mathscr{R}(x) = egin{cases} 1/q,\, x = p/q \in \mathbb{Q},\, p/q - \text{несократимая дробь,} \\ 0,\, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

по мере Лебега?

- **39.** Пусть функция $f: \mathbb{R} \to \mathbb{R}$ измерима на каждом счетном множестве $A \subset \mathbb{R}$. Верно ли, что тогда функция $f \ \mathfrak{L}(\mathbb{R})$ измерима?
- **40.** Доказать, что любая вещественная функция, заданная на множестве Кантора, измерима по мере Лебега.

- **41.** Доказать, что функция $\chi_A \cdot \sin: \mathbb{R} \to \mathbb{R}$ измерима тогда и только тогда, когда $A \in \mathfrak{L}(\mathbb{R})$.
- **42.** Пусть $f: \mathbb{R} \to \mathbb{R}$, причем f(x) = x, если $x \in A$, и f(x) = -x, если $x \in \mathbb{R} \setminus A$. Доказать, что функция f измерима тогда и только тогда, когда $A \in \mathfrak{L}(\mathbb{R})$.
- 43. Построить графики функций

$$g(x)=\inf\left\{f_k(x),\,k\in\mathbb{N}\right\},\,h(x)=\sup\left\{f_k(x),\,k\in\mathbb{N}\right\},\,$$
 где:

a)
$$f_k(x) = k \cdot x$$
, b) $f_k(x) = x^k$, c) $f_k(x) = \frac{1}{k + x^2}$, d) $f_k(x) = \frac{1}{1 + kx^2}$.

- **44.** Пусть $f, g: A \to [-\infty; +\infty]$ измеримые отображения. Как задать отображения, являющиеся **a)** суммой, **b)** разностью, **c)** произведением, **d)** частным f и g? Будут ли измеримы получившиеся отображения?
- **45.** Измерима ли функция $\frac{1}{\mathscr{D}}(\mathscr{D} \phi$ ункция Дирихле, см. задачу **37**), если при делении на 0 она принимает значение $+\infty$?
- **46.** Измерима ли функция $\frac{1}{\mathscr{R}}$, (\mathscr{R} функция Римана, см. задачу **38**), если при делении на 0 она принимает значение $+\infty$?
- **47.** Докажите: если $f:[a;b] \to \mathbb{R}$ $\mathfrak{L}(\mathbb{R})$ измерима и дифференцируема на отрезке [a;b] , то $f':[a;b] \to \mathbb{R}$ $\mathfrak{L}(\mathbb{R})$ измерима.

ЗАДАЧИ К ГЛАВЕ 2 §1. Интегрирование простых функций

В следующих задачах под множеством S понимается область определения функции, под σ -алгеброй Σ – семейство всех измеримых по Лебегу подмножеств S, в качестве меры рассматриваем меру Лебега λ_n .

48. Какие из функций $f_k:\mathbb{R} \to \mathbb{R}$, указанных ниже, являются простыми? Построить графики данных функций. Найти значение $\int_{\mathbb{R}} f_k \ d\lambda_1$, если

функция
$$f_k: \mathbb{R} \to \mathbb{R}$$
 простая. $f_1(x) = \left[\frac{5}{1+x^2}\right], \quad f_2(x) = \left[1+x^2\right],$ $f_3(x) = \left[1+\sin x\right], \quad f_4(x) = \left[\sin^2 x\right], \quad f_5(x) = \left[\frac{10\sin x}{x}\right].$ Здесь $[x] = \max\{n \in \mathbb{Z}, n \le x\}$ — целая часть числа x .

- 49. Является ли простой функция Дирихле?
- 50. Является ли простой функция Римана?
- **51.** Какие из функций $g_k:(0;+\infty)\to\mathbb{R}$, указанных ниже, являются простыми? Построить графики данных функций. Найти значение $\int \ g_k\ d\lambda_1\ ,$ если функция $\ g_k:(0;+\infty)\to\mathbb{R}$ простая.

$$\begin{split} &g_1(x) = \mathrm{sign}(\sin x), \ g_2(x) = \mathrm{sign}(\sin(1/x)), \ g_3(x) = \mathrm{sign}(1 - (1/x)) \ , \\ &g_4 = g_1 \cdot \chi_{(0;N]}, \quad g_5 = g_2 \cdot \chi_{(0;N]}, \quad g_6 = g_1 \cdot \chi_{(0;N]}, \ N \in \mathbb{N} \ . \end{split}$$

$$3$$
десь $sign(x) = \begin{cases} -1, \ \text{если} \ x < 0, \\ 0, \ \text{если} \ x = 0, \ -$ знак числа x . $1, \ \text{если} \ x > 0.$

- **52.** Пусть $N \in \mathbb{N}$. Какие из функций $f_k \big|_{(0;N]}$ для функций из задачи 1 являются простыми? Для таких функций найти значение интеграла $\int\limits_{(0;N]} f_k \ d\lambda_1 \ .$
- **53.** Какие из следующих функций $h_k: \mathbb{R}^2 \to \mathbb{R}$ являются простыми? Найти значение $\int\limits_{\mathbb{R}^2} h_k \ d\lambda_2$ для таких функций. (Считать известной меру круга радиуса r на плоскости, см. [2], стр. 21, задача 132.) $h_1(x,y) = \left[\frac{5}{x^2+y^2+1}\right], h_2(x,y) = \left[1+x^2+y^2\right],$ $h_3(x,y) = \left[(\cos x)^2 + (\cos y)^2\right], \ h_4(x,y) = \left[\cos^2(x+y)\right],$ $h_5(x,y) = \left[\frac{5}{1+x^2+y^2}\right], \ h_6(x,y) = \left[\frac{5\sin(x^2+y^2)}{x^2+y^2}\right], h_6(0,0) = 5,$ $h_7(x,y) = \mathrm{sign}\left(\cos x \sin y\right), \ h_8(x,y) = \mathrm{sign}\left(\frac{2xy}{x^2+y^2+1}\right).$

§2. Интегрирование неотрицательных измеримых функций

- **54.** Построить график функции $v:\mathbb{R} \to \mathbb{R}, \ v=\sum_{k=1}^\infty \frac{1}{k} \cdot \chi_{[k-1;k)}$. Найти интеграл Лебега $\int_{\mathbb{R}} v \ d\lambda_1$.
- **55.** Построить график функции $w:\mathbb{R} \to \mathbb{R}, \ w=\sum_{k=1}^\infty \frac{1}{2^k} \cdot \chi_{[k-1,k)}$. Найти интеграл Лебега $\int_\mathbb{R} w \, d\lambda_1$.

56. Построить график функции $f:(0;1) \to [0;2], f(x) = \mathrm{sign} \bigg[\sin \frac{1}{x} \bigg] + 1$.

57. Построить график функции $f:[0;1] \times [0;1] \to [0;1], f(x,y) = xy$.

Оценить значение интеграла Лебега $\int\limits_{[0;1]\times[0;1]}f\,d\lambda_2$.

- **58.** Докажите неравенство ($\int\limits_{C}f(x)dx$ другое обозначение для $\int\limits_{C}f\,d\lambda_{1}$):
- 1) $\int_{[-1:2]} x^2 dx \le 3.25$
- $2) \int_{[0;1]} 2^x dx \le 1.71$
- 3) $\int_{[0:1]} arctgx \ dx \le 1.5$
- 4) $\int_{[-1:1]} x^4 dx \le 1.0625$

§3. Основные свойства интеграла от неотрицательных измеримых функций

59. По лемме 3 §3 главы 2 построить несколько первых членов возрастающей последовательности простых функций, сходящейся к функции

$$f: \mathbb{R} o \left[0\,, +\infty\right], f(x) = rac{1}{1+x^2}\,.$$
 Оценить значение $\int\limits_{\mathbb{R}} f \,d\lambda_1$.

60. Построить возрастающую последовательность простых функций, сходящуюся к функции $f:\mathbb{R} \to \left[0\,,+\infty\right], f(x) = |x|$. Выполнены ли условия леммы 3 §3 главы 2 в этом случае? Чему равен $\int_{\mathbb{R}} f \, d\lambda_1$?

61. Построить несколько первых членов возрастающей последовательности простых функций, сходящейся к функции

$$f:\mathbb{R} \to [0,+\infty], f(x) = \frac{1}{|x|}, f(0) = +\infty$$
 . Оценить значение $\int_{\mathbb{R}} f \, d\lambda_1$.

62. Построить несколько первых членов возрастающей последовательности простых функций, сходящейся к функции

$$f: \mathbb{R} \to [0, +\infty], f(x) = \frac{4}{x^2}$$
 . Оценить значение $\int_{\mathbb{R}} f \, d\lambda_1$.

- **63***. Сформулировать и доказать аналог леммы о приближении $\mathfrak{L}(\mathbb{R})$ измеримой функции $f\colon C \to [0\,,+\,\infty]$ простыми функциями при $\int\limits_C f\,d\,\lambda_1 = +\infty.$
- **64.** Описать меру, порожденную функцией $v:\mathbb{R} \to \mathbb{R}, \ v = \sum_{k=1}^\infty \frac{1}{k} \cdot \chi_{[k-1;k)}$, на $\mathfrak{L}(\mathbb{R})$, т.е. μ_v . Найти меры брусов, интервалов и отрезков.
- **65.** Описать меру, порожденную функцией $w:\mathbb{R} \to \mathbb{R}, \ \ w = \sum_{k=1}^\infty \frac{1}{2^k} \cdot \chi_{[k-1;k)}$, на $\mathfrak{L}(\mathbb{R})$, т.е. μ_w . Найти меры брусов, интервалов и отрезков.
- **66.** Какие множества из σ -алгебры $\mathfrak{L}(\mathbb{R})$ будут иметь бесконечную меру μ_f , если $f:\mathbb{R} \to [0\,,+\infty], f(x) = |x|$?
- **67.** Какие множества из σ -алгебры $\mathfrak{L}(\mathbb{R})$ будут иметь бесконечную меру μ_f , если $f:\mathbb{R} \to \left[0\,,+\infty\right], f(x) = \frac{1}{\mid x \mid}, f(0) = +\infty\,?$
- **68**. Какие множества из σ -алгебры $\mathfrak{L}(\mathbb{R})$ будут иметь бесконечную меру μ_f , если $f: \mathbb{R} \to [0, +\infty], f(x) = \frac{1}{1+x^2}$?

69.
$$f:[0;1] \to \mathbb{R}, f(x) = \begin{cases} x^2, x \in \mathbf{C} \\ \frac{1}{2^n}, x \in \mathbf{K_{n-1}} \setminus \mathbf{K_n} \end{cases}$$
, **С** – канторово множество, **K**_n

— компакт на n-ом шаге построения **C.** Найти $\int\limits_{[0;1]}f\ d\lambda_1$

§4. Суммируемые функции

- **70.** Являются ли суммируемыми по мере Лебега функции $f,g,h:\mathbb{R} \to \mathbb{R}, f(x) = \sin x, g(x) = 1/x (g(0) = 0), h(x) = 1/(1+x^2)$?
- 71. Являются ли суммируемыми по мере Лебега функции

$$u, v : \mathbb{R} \to \mathbb{R}, \ u(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} \chi_{[k-1;k)}, \ v(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \chi_{[k-1;k)}?$$

- **72.** Являются ли суммируемыми по мере Лебега функции $f_1, g_1, h_1: (1; +\infty) \to \mathbb{R}, \ f_1(x) = 1/x, \ g_1(x) = 1/(x^2), h_1(x) = 1/\sqrt{x}?$
- **73.** Являются ли суммируемыми по мере Лебега функции $u_1, v_1: (1; +\infty) \to \mathbb{R}, \ u_1(x) = \sin x / (x^2), v_1(x) = \sin x / x?$
- 74. Являются ли суммируемыми по мере Лебега на (0;1) функции

$$f_2, g_2, h_2: (0;1) \to \mathbb{R}, \ f_2(x) = 1/x, g_2(x) = 1/(x^2), h_2(x) = 1/\sqrt{x}$$
?

§5. Понятие «почти всюду»

75. Какие из данных функций эквивалентны нулевой функции относительно σ -алгебры $\mathfrak{L}(\mathbb{R})$?

1)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 0, x \in \mathbb{Q}, \\ 1, x \notin \mathbb{Q} \end{cases}$$

2)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 3, x \in \mathbb{Z}, \\ 0, x \notin \mathbb{Z} \end{cases}$$

3)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} \pi, x \in \mathbb{C}, \\ 0, x \notin \mathbb{C} \end{cases}$$
, С – множество Кантора.

4)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 0, x \in A, \\ 0.5, x \notin A \end{cases}$$
 rate $A = \{x \in \mathbb{R}, \sin x = 0\}$

5)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 1 - \operatorname{sign}(\sin^2 x)$$

6)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 1 - \operatorname{sign}(\cos x)$$

7)
$$f:[1;+\infty) \to \mathbb{R}, f(x) = \left[\frac{1}{x}\right].$$

8)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \sin^2 x \cdot \chi_{\mathbb{C}}(x)$$
, С – множество Кантора.

76. Разбейте данные функции по классам эквивалентных функций:

1)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} \sqrt[3]{\pi}, x \in \mathbb{Q}, \\ 1, x \notin \mathbb{Q} \end{cases}$$

2)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 1 - \operatorname{sign}(\sin^2 x)$$

3)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 3.2, x \in \mathbb{Z}, \\ 0, x \notin \mathbb{Z} \end{cases}$$

4)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} \pi, x \in \mathbb{C}, \\ 1, x \notin \mathbb{C} \end{cases}$$
, С – множество Кантора.

5)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 0, x \in A, \\ 1, x \notin A \end{cases}$$
 rate $A = \{x \in \mathbb{R}, \cos x = 0\}$

6)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x \cdot \chi_{\mathbf{C}}(x)$$
, С – множество Кантора.

7)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} [x], x \in \mathbb{Q}, \\ 1, x \notin \mathbb{Q} \end{cases}$$
, $[x]$ — целая часть числа \mathbf{x} .

8)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} x^2, x \in \mathbb{Z}, \\ 1, x \notin \mathbb{Z} \end{cases}$$

77. Докажите, что

1)
$$\int \sin x \, dx = \int \sin x \cdot \chi_{\mathbf{C}}\left(x\right) dx$$
, С – множество Кантора. $[0;\pi]$

2)
$$\int_{[0;1]} 3^x dx = \int_{(0;1)} 3^x \cdot \chi_{\mathbb{Q}}(x) dx$$

78. Вычислите интегралы по множеству [-1; 1] от функций, перечисленных в задаче 76.

ЛИТЕРАТУРА

- 1. Дьяченко М. И., Ульянов П. Л. Мера и интеграл. М.: Факториал-пресс, 2002. 158 с.
- 2. Oчан IО. C. Сборник задач по математическому анализу. М.: Просвещение, 1981. 269 с.
- 3. $Py\partial uh\ V$. Основы математического анализа. СПб. [и др.] : Лань , 2004. 319 с.
- 4. Садовничий В.А. Теория операторов. М.: Дрофа, 2001. 381 с.
- 5. Сибиряков Г. В., Лазарева Е. Г., Мартынов Ю. А. Мера Лебега-1. Теория и задачи. Томск: Издательский Дом Томского государственного университета, 2016. 73 с.
- 6. Сибиряков Г. В., Лазарева Е. Г., Мартынов Ю. А. Мера Лебега-2. Теория и задачи. Томск: Издательский Дом Томского государственного университета, 2016. 90 с.
- 7. Ульянов П. Л., Бахвалов А. Н., Дьяченко М. И. и др. Действительный анализ в задачах. М.: Физматлит, 2005. 416 с.

ОГЛАВЛЕНИЕ

Глава 1. ЭЛЕМЕНТЫ ОБЩЕЙ ТЕОРИИ МЕРЫ	
§1. Алгебры и σ - алгебры множеств	3
§2. Аддитивные и счетно аддитивные функции	5
§3. Измеримые функции	10
Глава 2. ИНТЕГРИРОВАНИЕ ВЕЩЕСТВЕННЫХ ФУНКЦИЙ ПО НЕОТРИЦАТЕЛЬНОЙ МЕРЕ	
§1. Интегрирование простых функций	22
§2. Интегрирование неотрицательных измеримых функций	28
§3. Основные свойства интеграла от неотрицательных измеримых функций	34
§4. Суммируемые функции	42
§5. Понятие «почти всюду»	55
ЗАДАЧИ И УПРАЖНЕНИЯ	
Задачи к главе 1	59
Задачи к главе 2	67
Литература	74

Издание подготовлено в авторской редакции
Отпечатано на участке цифровой печати
Издательского Дома Томского государственного университета
Заказ № 2830 от «10» ноября 2017 г. Тираж 50 экз.