Binôme 2:

COMPTE RENDU - TP N°1 Prise en main de TRIPOLI et DRAGON

Date

10/10/2014

Nom du répertoire :

TRIPOLI

Document de référence : Manuel Utilisateur TRIPOLI4

Travaillez dans un dossier « tripoli »

1/ Prise en main du jdd A - expérience GODIVA (boule critique - 94%wtU235)

Consignes

La commande de lancement de TRIPOLI est un alias : « tripoli »

L'argument « -c <bib_path_file> » spécifie la bibliothèque de données nucléaires à utiliser :

- <bib_path_file> = t4path.jef2 ⇒ utilisation de la bibliothèque européenne JEF2
- <bib path file> = t4path.endl ⇒ utilisation de la bibliothèque japonaise ENDL
- <bib_path_file> = t4path.endfb6 ⇒ utilisation de la bibliothèque américaine B6

L'argument « -s <autopModel> » spécifie le modèle d'autoprotection à utiliser :

- < autopModel > = NJOY ⇒ utilisation de sections sans tables de probabilités
- < autopModel > = TABPROB \Rightarrow utilisation de sections avec tables de probabilités

L'argument « -d <jddFile >» spécifie le nom du fichier de jdd à calculer : <jddFile>

Exécutez le calcul TRIPOLI avec les options suivantes :

- Bibliothèque : JEF2
- Autoprotection : Tables de Probabilités

<u>Questions</u>	<u>Réponses</u>
Quel est le Keff obtenu avec l'estimateur KSTEP ?	
Quel est l'écart statistique associé?	
Indiquez la réactivité de cette configuration et son incertitude à 1 σ	

Consignes

Pour connaître la durée réelle d'exécution d'un processus, une méthode simple est de précéder l'appel au processus par la commande « **time** ». Par exemple :

« time tripoli -c <...> -s <...> -d <...>

Le nombre d'histoires d'un code stochastique est représentatif du nombre de particules dont la « vie » sera simulée : de la naissance par une fission à la mort par une absorption. Le nombre d'histoires est spécifié dans

Binôme 2:

COMPTE RENDU - TP N°1 Prise en main de TRIPOLI et DRAGON

Date

10/10/2014

2

Nom du répertoire :

les « paramètres de simulation » (voir slide 18)

Chronométrez le jdd avec 1 000 000 d'histoires (1000 batch de 1000 histoires).

Chronométrez le jdd avec 4 000 000 d'histoires.

Chronométrez le jdd avec 100 000 d'histoires.

<u>Questions</u>	<u>Réponses</u>
Comparez les temps d'exécution obtenus	
Comparez les écarts statistiques obtenus	
Combien faudrait-il d'histoires pour avoir un écart statistique de 5 pcm ?	

2/ Etude du Cas

Consignes

Les densités atomiques sont données dans la « définition des compositions » du jdd (voir slide 18). Leur unité est 10²⁴at/cm³.

L'enrichissement isotopique ou atomique en U235 est défini par :

$$E_{isot} = \frac{[U235]}{[U235] + [U238] + [U234]}$$

$$E_{isot} = \frac{[U235]}{[U235] + [U238] + [U234]}$$
 L'enrichissement massique en U235 est défini par :
$$E_{wt} = \frac{M_{vol}^{U235}}{M_{vol}^{U235} + M_{vol}^{U238}} = \frac{235[U235]}{235[U235] + 238[U238] + 234[U234]}$$

On note:

$$M_{vol}^{U} = M_{vol}^{U235} + M_{vol}^{U238} + M_{vol}^{U234}$$

Rappel:

Laplacien géométrique en géométrie sphérique :

$$B_g^2 = \left(\frac{\pi}{R_{sph\`ere}}\right)^2$$

Laplacien matière:

$$B_m^2 = \frac{\nu \Sigma_f - \Sigma_a}{D}$$

Où:

- D est le coefficient de diffusion dans le cadre de cette approximation, on peut écrire $D \approx \frac{1}{3\Sigma}$
- Σ_a est la section macroscopique d'absorption, c'est notablement : $\Sigma_a = \Sigma_{tot} \Sigma_d$

Binôme 2:

COMPTE RENDU - TP N°1 Prise en main de TRIPOLI et DRAGON

Date

10/10/2014

Nom du répertoire :

<u>Questions</u>	<u>Réponses</u>
Que vaut l' <u>enrichissement isotopique</u> en U235 de la sphère du cas A?	
Que vaut l' <u>enrichissement massique</u> en U235 de la sphère du cas A?	

Consignes

Créez 5 jdd différents avec les noms et les enrichissements massiques E_{wt} suivants :

Nom du fichier	E _{wt}
hmf001.05	5%
hmf001.10	10%
hmf001.20	20%
hmf001.50	50%
hmf001.90	90%

Calculez ces 5 jdd avec Tripoli.

Questions

Quel est le Keff obtenu pour chaque enrichissement ?

<u>Réponses</u>

Nom du fichier	E _{wt}	Keff
hmf001.05	5%	
hmf001.10	10%	
hmf001.20	20%	
hmf001.50	50%	
hmf001.90	90%	

Consignes

Le rayon de la sphère est donné dans la « **définition de la géométrie**» du jdd (voir slide 18). L'unité de distance en vigueur dans Tripoli est le cm.

Pour chaque enrichissement, recherchez le rayon R_{crit} de la sphère permettant d'obtenir la criticité.

Questions

Indiquez **l'enrichissement isotopique** et **le rayon critique** pour les 5 enrichissements massiques considérés.

<u>Réponses</u>

Nom du fichier	E _{wt}	E_{isot}	R _{crit} (cm)
hmf001.05	5%		
hmf001.10	10%		
hmf001.20	20%		
hmf001.50	50%		
hmf001.90	90%		

Binôme 2:

COMPTE RENDU - TP N°1 Prise en main de TRIPOLI et DRAGON

Date

10/10/2014

Nom du répertoire :	TRIPOL	l et DRAGON	
Tracez R _{crit} en fonction de l'e isotopique (un tableur : libreofficecal			
Ecrivez l'équation du transpos sphérique (invariance selon l'approximation monocinétion (voir slide 8)	$\overrightarrow{\varOmega}$) dans le cadre de		
Intégrez cette équation sur l apparaitre le courant neutro	-		
Appliquez l'approximation d $\vec{J}(\vec{r}) = -\frac{1}{3\Sigma_{tot}}.\overrightarrow{grad}\phi(\vec{r})$	e la diffusion.		
Quelle est la forme du flux s équation ?	solution de cette		
En introduisant le flux soluti l'équation la notion de lapla notion de laplacien matière	cien géométrique et la		
Calculez R _{crit} en fonction des macroscopiques	sections efficaces		
(indiquez le raisonnement s	uivi)		

	Binôme 1 :	COMPTE RENDU - TP N°1		Date		
	Binôme 2 :	Prise en main de		10/10/2014		
Nom	du ráportoiro :	TRIPOI	I et DRAGON			
Non	n du répertoire :					
		-				
_	igeant la contributio posez les différentes					
-	copiques en fonctio					
• La s	ection microscopiqu	ue totale de l'U238				
		ue de capture de l'U238				
	ection microscopiquection microscopique	ue de fission de l'U235				
		par fission de l'U235				
	nrichissement isotop					
	R _{crit} théorique en for					
	issement isotopique cédemment.	e sur le même graphe				
Sachant						
		Valeur (barns)				
	101,0	10.0				
	,,,,,	1.50				
	- 03	2.40 D.12				
	$\sigma_{c,U8}$	J.12				
	on Super-Bonus à fa rez les valeurs de se		Section	Valeur JEF	(2 (harns)	
•		i-dessus avec les valeurs	σ _{tot,U}	Valeui JEF	2 (Dailis)	
de JEF2	consultables avec l'	outil JANIS (google).	$\sigma_{f,U5}$			
Qu'en p	ensez vous ?		υ_{U5}			
			$\sigma_{c,U8}$			

5

Binôme 2:

COMPTE RENDU - TP N°1 Prise en main de TRIPOLI et DRAGON

Date

10/10/2014

Nom du répertoire :

3/ Etude du cas Homogène Infini

Consignes

Par défaut dans Tripoli, la condition limite à la surface de la géométrie est du vide.

A l'aide du manuel, introduisez une condition limite de réflexion en surface de la sphère dans de nouveaux fichiers (suffixe « _refl »)

Questions	<u>Réponses</u>
Quel est le Kinf obtenu pour chaque enrichissement ?	
	Nom du fichier E _{wt} Kinf
	hmf001.05_refl 5%
	hmf001.10_refl 10%
	hmf001.20_refl 20%
	hmf001.50_refl 50%
	hmf001.90_refl 90%
Recherchez enrichissement massique conduisant à	
un Kinf égal à 1.	
Quelle est la valeur de l'enrichissement massique ?	
Quelle est la valeur du laplacien matière ?	
Exprimez le Kinf en fonction des sections	
macroscopiques.	
For warming on the Market of t	
En reprenant l'équation du transport, exprimez le lien entre le Keff et le Kinf en faisant apparaître le	
laplacien géométrique et l'aire de migration	
(rapport du coefficient de diffusion sur la section	
d'absorption)	
a absorption,	

Binôme 2:

COMPTE RENDU - TP N°1 Prise en main de TRIPOLI et DRAGON

Date

10/10/2014

Nom du répertoire :

Pour chaque enrichissement, calculez l'aire de migration de la sphère critique.
Concluez.

Nom du fichier	E _{wt}	Aire de migration
hmf001.05	5%	
hmf001.10	10%	
hmf001.20	20%	
hmf001.50	50%	
hmf001.90	90%	

DRAGON

Document de référence : Manuel Utilisateur DRAGON-VERSION4

Travaillez dans un dossier « dragon »

1/ Prise en main du jdd A - expérience GODIVA (boule critique - 94%wtU235)

Consignes

La commande de lancement de DRAGON est un alias : « ./dragon.sh <jddFile> », où « <jddFile >» spécifie le nom du fichier de jdd à calculer qui doit être impérativement contenu dans un dossier nommé « data » dans le répertoire courant.

Lancer le jdd

Consignes

Pour chaque enrichissement massique parmi 5%, 10%, 20%, 50% et 90%, calculer un problème identique à celui modélisé sous TRIPOLI au cours des étapes précédentes avec la condition de <u>VIDE</u> (même géométrie et même composition).

Binôme 2:

COMPTE RENDU - TP N°1
Prise en main de
TRIPOLI et DRAGON

Date

10/10/2014

Nom du répertoire :

Questions Réponses

Quels sont les Keff obtenus ? Quels sont les Kinf obtenus ? Comment interprétez-vous les écarts obtenus avec TRIPOLI ?

Nom du fichier	E _{wt}	Keff		
		TRIPOLI	DRAGON	
hmf001.05	5%			
hmf001.10	10%			
hmf001.20	20%			
hmf001.50	50%			
hmf001.90	90%			

Nom du fichier	E _{wt}	Kinf	
		TRIPOLI	DRAGON
hmf001.05	5%		
hmf001.10	10%		
hmf001.20	20%		
hmf001.50	50%		
hmf001.90	90%		

A l'aide du manuel, introduisez une condition limite de réflexion en surface de la sphère.

Pour chaque enrichissement massique parmi 5%, 10%, 20%, 50% et 90%, calculer un problème identique à celui modélisé sous TRIPOLI au cours des étapes précédentes avec la condition de <u>REFLEXION</u> (même géométrie et même composition).

Questions Réponses

Quels sont les Kinf obtenus ? Comment interprétez-vous les écarts obtenus avec TRIPOLI ?

Nom du fichier	E _{wt}	Kinf			
		TRIPOLI	DRAGON	DRAGON	
		REFL.	VIDE	REFL.	
hmf001.05_refl	5%				
hmf001.10_refl	10%				
hmf001.20_refl	20%				
hmf001.50_refl	50%				
hmf001.90_refl	90%				

COMPTE RENDU - TP N°1 Prise en main de TRIPOLI et DRAGON

Date

10/10/2014

Nom du répertoire :

Binôme 2:

Question Super-Bonus à faire chez soi :

Expliquez quel est l'impact des fuites neutroniques sur l'énergie moyenne des neutrons dans la boule ?

Avec l'aide de l'outil JANIS, commentez l'évolution du nombre de neutrons émis par fission de l'U235 avec l'énergie moyenne des neutrons dans le spectre rapide ?

Concluez.