Distribuciones Conjugadas

Gamma-Poisson

Sea una muestra $\mathbf{y}=(y_1,y_2,\dots,y_n)$ obtenida de un modelo Poisson, es decir:

$$Y_i \sim \text{Poisson}(\lambda)$$

Interesa realizar una inferencia sobre el valor de λ

Gamma-Poisson

Sea una muestra $\mathbf{y}=(y_1,y_2,\dots,y_n)$ obtenida de un modelo Poisson, es decir:

$$Y_i \sim \text{Poisson}(\lambda)$$

Interesa realizar una inferencia sobre el valor de λ ¿Cómo asignamos una credibilidad *a priori* para λ ?

$$\lambda \sim \text{Gamma}(s, r)$$

$$p(\lambda \mid s,r) = p(\lambda) = \frac{r^s}{\Gamma(s)} \lambda^{s-1} e^{-r\lambda}$$

 $\operatorname{Gamma}(s,r)$ en R es dgamma(x, shape = s, scale = 1/r)

$$\begin{aligned} Y_i \mid \lambda \sim Po(\lambda) \\ \lambda \sim \operatorname{Gamma}(s, r) \end{aligned}$$

El likelihood es Poisson:

$$p(y_i \mid \lambda) = \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} \to p(\mathbf{y} \mid \lambda) = \prod_i \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} = \frac{\lambda^{\sum_i y_i} e^{-n\lambda}}{\prod_i y_i!}$$

El prior es Gamma:

$$p(\lambda) = \frac{r^s}{\Gamma(s)} \lambda^{s-1} e^{-r\lambda}$$

Interesa hallar $p(\lambda \mid \mathbf{y})$

$$p(\lambda \mid \mathbf{y}) \propto p(\mathbf{y} \mid \lambda)p(\lambda)$$

$$p(\lambda \mid \mathbf{y}) \propto \frac{\lambda^{\sum_i y_i} e^{-n\lambda}}{\prod_i y_i!} \frac{r^s}{\Gamma(s)} \lambda^{s-1} e^{-r\lambda}$$

 $p(\lambda \mid \mathbf{y}) \propto \frac{r^s}{\Gamma(s) \prod_i y_i!} \lambda^{\sum_i y_i + s - 1} e^{-n\lambda - r\lambda}$

$$p(\lambda \mid \mathbf{y}) \propto p(\mathbf{y} \mid \lambda)p(\lambda)$$

- $p(\lambda \mid \mathbf{y}) \propto \frac{\lambda^{\sum_{i} y_{i}} e^{-n\lambda}}{\prod_{i} y_{i}!} \frac{r^{s}}{\Gamma(s)} \lambda^{s-1} e^{-r\lambda}$
- $p(\lambda \mid \mathbf{y}) \propto \frac{r^s}{\Gamma(s) \prod_{z} y_i!} \lambda^{\sum_i y_i + s 1} e^{-n\lambda r\lambda}$ $p(\lambda \mid \mathbf{y}) = KC\lambda^{\sum_i y_i + s - 1} e^{-n\lambda - r\lambda}$

$$p(\lambda \mid \mathbf{y}) \propto p(\mathbf{y} \mid \lambda)p(\lambda)$$

 $p(\lambda \mid \mathbf{y}) \propto \frac{\lambda^{\sum_{i} y_{i}} e^{-n\lambda}}{\prod_{i} y_{i}!} \frac{r^{s}}{\Gamma(s)} \lambda^{s-1} e^{-r\lambda}$

 $p(\lambda \mid \mathbf{y}) \propto \frac{r^s}{\Gamma(s) \prod_i y_i!} \lambda^{\sum_i y_i + s - 1} e^{-n\lambda - r\lambda}$

 $p(\lambda \mid \mathbf{y}) = KC\lambda^{\sum_i y_i + s - 1} e^{-n\lambda - r\lambda}$

 $p(\lambda \mid \mathbf{y}) = K^* \lambda^{\sum_i y_i + s - 1} e^{-(n+r)\lambda}$

Para que $\int_0^\infty p(\lambda\mid \mathbf{y})d\lambda=1$, debe ser

Para que $\int_0^\infty p(\lambda \mid \mathbf{y}) d\lambda = 1$, debe ser

Fara que
$$\int_0^{\cdot} p(\lambda \mid \mathbf{y}) d\lambda = 1$$
, debe s

 $K^* = \frac{(n+r)^{\sum_i y_i + s}}{\Gamma(\sum_i y_i + s)}$

Para que $\int_0^\infty p(\lambda \mid \mathbf{y}) d\lambda = 1$, debe ser

$$K^* = \frac{(n+r)^{\sum_i y_i + s}}{\Gamma(\sum_i y_i + s)}$$

Por lo tanto, resulta que la distribución a posteriori es Gamma de parámetros $\sum_i y_i + s$ y n+r

Para que $\int_0^\infty p(\lambda \mid \mathbf{y}) d\lambda = 1$, debe ser

$$K^* = \frac{(n+r)^{\sum_i y_i + s}}{\Gamma(\sum_i y_i + s)}$$

Por lo tanto, resulta que la distribución *a posteriori* es Gamma de parámetros $\sum_i y_i + s$ y n+r

$$p(\lambda \mid \mathbf{y}) = \frac{(n+r)^{\sum_i y_i + s}}{\Gamma(\sum_i y_i + s)} \lambda^{\sum_i y_i + s - 1} e^{-(n+r)\lambda}$$

$$\lambda \mid \mathbf{y} \sim \operatorname{Gamma}(\sum_i y_i + s, n + r)$$

Normal-normal

Sea una muestra $\mathbf{y}=(y_1,y_2,\dots,y_n)$ obtenida de un modelo normal con varianza conocida σ^2 , es decir:

$$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

Interesa realizar una inferencia sobre el valor de μ

Normal-normal

Sea una muestra $\mathbf{y}=(y_1,y_2,\dots,y_n)$ obtenida de un modelo normal con varianza conocida σ^2 , es decir:

$$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

Interesa realizar una inferencia sobre el valor de μ ¿Cómo asignamos una credibilidad *a priori* para μ ?

$$\begin{aligned} y_i \mid \mu \sim \mathcal{N}(\mu, \sigma^2) \\ \mu \sim \mathcal{N}(\theta, \tau^2) \end{aligned}$$

$$y_i \mid \mu \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mu \sim \mathcal{N}(\theta, \tau^2)$$

El likelihood es normal:

$$p(y_i \mid \mu) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} \to$$

$$p(\mathbf{y} \mid \mu) = \left(\frac{1}{2\sigma^2}\right)^{n/2} e^{-\frac{\sum_i (y_i - \mu)^2}{2\sigma^2}} \propto e^{-\frac{(\bar{y} - \mu)^2}{2\sigma^2}}$$

$$p(\mathbf{y} \mid \mu) = \left(\frac{1}{2\pi\sigma}\right)^{n/2} e^{-\frac{\sum_{i}(y_i - \mu)^2}{2\sigma^2}} \propto e^{-\frac{(\bar{y} - \mu)^2}{2\sigma^2/n}}$$

$$\begin{aligned} \boldsymbol{y}_i \mid \boldsymbol{\mu} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2) \\ \boldsymbol{\mu} \sim \mathcal{N}(\boldsymbol{\theta}, \tau^2) \end{aligned}$$

El likelihood es normal:

$$p(y_i \mid \mu) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} \rightarrow p(\mathbf{y} \mid \mu) = \left(\frac{1}{2\pi\sigma}\right)^{n/2} e^{-\frac{\sum_i (y_i - \mu)^2}{2\sigma^2}} \propto e^{-\frac{(\bar{y} - \mu)^2}{2\sigma^2/n}}$$

El prior es normal:

$$p(\mu) = \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(\mu-\theta)^2}{2\tau^2}}$$

$$y_i \mid \mu \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mu \sim \mathcal{N}(\theta, \tau^2)$$

El likelihood es normal:

$$p(y_i \mid \mu) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} \rightarrow p(\mathbf{y} \mid \mu) = \left(\frac{1}{2\pi\sigma}\right)^{n/2} e^{-\frac{\sum_i (y_i - \mu)^2}{2\sigma^2}} \propto e^{-\frac{(\bar{y} - \mu)^2}{2\sigma^2/n}}$$

El prior es normal:

$$p(\mu) = \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(\mu-\theta)^2}{2\tau^2}}$$

Interesa hallar $p(\mu \mid \mathbf{y})$

$$p(\mu \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mu) p(\mu)$$
$$p(\mu \mid \mathbf{y}) \propto e^{-\frac{(\bar{y} - \mu)^2}{2\sigma^2/n}} \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(\mu - \theta)^2}{2\tau^2}}$$

 $\sim e^{-\left[\frac{\bar{y}^2 - 2\bar{y}\mu + \mu^2}{2\sigma^2/n} + \frac{\mu^2 - 2\mu\theta^2 + \theta^2}{2\tau^2}\right]}$

 $\propto e^{\left[\frac{(2\bar{y}\mu-\mu^2)n\tau^2+(-\mu^2+2\mu\theta^2)\sigma^2}{2\sigma^2\tau^2}\right]}$

 $\propto e^{\left[\frac{2\bar{y}\mu-\mu^2}{2\sigma^2/n}+\frac{-\mu^2+2\mu\theta^2}{2\tau^2}\right]}$

 $p(\mu \mid \mathbf{y}) \propto e^{-\frac{(\bar{y}-\mu)^2}{2\sigma^2/n}} e^{-\frac{(\mu-\theta)^2}{2\sigma^2}}$ $\propto e^{-\left[\frac{(\bar{y}-\mu)^2}{2\sigma^2/n} + \frac{(\mu-\theta)^2}{2\sigma^2}\right]}$

$$P(\mu \mid \mathbf{y}) \propto e^{rac{2\mu(\theta\sigma^2 + \bar{y}n\tau^2) - \mu^2(n\tau^2 + \sigma^2)}{2\tau^2\sigma^2}}$$

$$\propto e^{\frac{-\mu^2 + 2\mu \left(\frac{\theta\sigma^2 + \bar{y}n\tau^2}{n\tau^2 + \sigma^2}\right)}{2\tau^2\sigma^2/(n\tau^2 + \sigma^2)}} e^{-\left(\frac{\theta\sigma^2 + \bar{y}n\tau^2}{n\tau^2 + \sigma^2}\right)^2}$$

 $p(\mu \mid \mathbf{y}) = K^* e^{-\frac{\left(\mu - \frac{\theta\sigma^2 + \bar{y}n\tau^2}{n\tau^2 + \sigma^2}\right)^2}{2\tau^2\sigma^2/(n\tau^2 + \sigma^2)}}$

$$\propto e^{-rac{\left(\mu-rac{ heta\sigma^2+ar{y}n au^2}{n au^2+\sigma^2}
ight)^2}{2 au^2\sigma^2/(n au^2+\sigma^2)}}$$

Por lo tanto, resulta que la distribución *a posteriori* es normal de parámetros θ_n y τ_n^2

Por lo tanto, resulta que la distribución *a posteriori* es normal de parámetros θ_n y τ_n^2

$$\mu \mid \mathbf{y} \sim \mathcal{N}\left(\frac{\theta\sigma^2 + \bar{y}n\tau^2}{n\tau^2 + \sigma^2}, \frac{\tau^2\sigma^2}{n\tau^2 + \sigma^2}\right)$$

 $\sim \mathcal{N}\left(\theta_n, \tau_n^2\right)$

$$\begin{aligned} y_i \mid \mu &\sim \mathcal{N}(\mu, \sigma^2) \\ \mu &\sim \mathcal{N}(\theta, \tau^2) \\ \mu \mid \mathbf{y} &\sim \mathcal{N}(\theta_n, \tau_n^2) \end{aligned}$$

¿Parámetros desconocidos en la verosimilitud?

$$\begin{aligned} y_i \mid \mu \sim \mathcal{N}(\mu, \sigma^2) \\ \mu \sim \mathcal{N}(\theta, \tau^2) \\ \mu \mid \mathbf{y} \sim \mathcal{N}(\theta_n, \tau_n^2) \end{aligned}$$

¿Parámetros desconocidos en la verosimilitud?

¿Dimensión y característica del espacio de parámetros?

$$y_i \mid \mu \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mu \sim \mathcal{N}(\theta, \tau^2)$$
$$\mu \mid \mathbf{y} \sim \mathcal{N}(\theta_n, \tau_n^2)$$

¿Parámetros desconocidos en la verosimilitud? ¿Dimensión y característica del espacio de parámetros? ¿Constantes de ajuste del *prior*?

$$\begin{aligned} y_i \mid \mu &\sim \mathcal{N}(\mu, \sigma^2) \\ \mu &\sim \mathcal{N}(\theta, \tau^2) \\ \mu \mid \mathbf{y} &\sim \mathcal{N}(\theta_n, \tau_n^2) \end{aligned}$$

¿Parámetros desconocidos en la verosimilitud? ¿Dimensión y característica del espacio de parámetros? ¿Constantes de ajuste del *prior*? ¿Forma del *posterior*?

$$\begin{aligned} y_i \mid \mu &\sim \mathcal{N}(\mu, \sigma^2) \\ \mu &\sim \mathcal{N}(\theta, \tau^2) \\ \mu \mid \mathbf{y} &\sim \mathcal{N}(\theta_n, \tau_n^2) \end{aligned}$$

¿Parámetros desconocidos en la verosimilitud? ¿Dimensión y característica del espacio de parámetros?

¿Constantes de ajuste del *prior*? ; Forma del *posterior*?

¿Qué son θ_n y τ_n^2 ?

¿Parámetros de la verosimilitud?

Otro modo de verlo

¿Puedo representar los datos en el gráfico de la izquierda?						
No, es el mundo de los parámetros						

¿Puedo representar los datos en el gráfico de la izquierda?	
No, es el mundo de los parámetros	

¿Qué representan los valores marcados con ×?

Posibles valores de μ que podrían esperarse *a priori*.

		1

¿Puedo representar los datos en el gráfico de la izquierda?

No, es el mundo de los parámetros

 $\theta \vee \tau^2$

Posibles valores de u que podrían esperarse a prior

¿Qué representan los valores marcados con \times ?

Posibles valores de μ que podrían esperarse *a priori*.

¿Media y varianza de la normal de la izquierda?

¿Puedo representar los datos en el gráfico de la izquierda?

No, es el mundo de los parámetros

¿Qué representan los valores marcados con ×?

Posibles valores de μ que podrían esperarse *a priori*.

¡Media y varianza de la normal de la izquierda?

¿Media y varianza de la normal de la izquierda?
$$\theta \vee \tau^2$$

¿Media y varianza de las normales de la derecha?

$$\mu$$
 y σ^2

¿Qué estamos viendo?

A posteriori (luego de observar los datos)... ¿qué ocurre con la plausibilidad de los valores de μ ?

¿Media y varianza de la normal de la izquierda?

 μ y σ^2

¿ Media y varianza de las normales de la derecha?

 θ_n y τ_n^2

$$\mathbb{E}[p(\mu \mid \mathbf{y})] = \theta_n = \frac{\theta \sigma^2 + \bar{y}n\tau^2}{n\tau^2 + \sigma^2}$$

$$\mathbb{E}[p(\mu \mid \mathbf{y})] = \theta \frac{\sigma^2}{n\tau^2 + \sigma^2} + \bar{y} \frac{n\tau^2}{n\tau^2 + \sigma^2}$$

$$\mathbb{E}[p(\mu \mid \mathbf{y})] = \theta_n = \frac{\theta \sigma^2 + \bar{y}n\tau^2}{n\tau^2 + \sigma^2}$$

$$\mathbb{E}[p(\mu \mid \mathbf{y})] = \theta \frac{\sigma^2}{n\tau^2 + \sigma^2} + \bar{y} \frac{n\tau^2}{n\tau^2 + \sigma^2}$$

Representa un balance (promedio ponderado o combinación convexa) entre la media muestral y la media esperada a priori.

$$V[p(\mu \mid \mathbf{y})] = \tau_n^2 = \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2}$$
$$V[p(\mu \mid \mathbf{y})] = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}$$
$$\frac{1}{V[p(\mu \mid \mathbf{y})]} = \frac{n}{\sigma^2} + \frac{1}{\tau^2}$$

$$V[p(\mu \mid \mathbf{y})] = \tau_n^2 = \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2}$$
$$V[p(\mu \mid \mathbf{y})] = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}$$
$$\frac{1}{V[p(\mu \mid \mathbf{y})]} = \frac{n}{\sigma^2} + \frac{1}{\tau^2}$$

La precisión *a posteriori* es la suma de las precisiones del *prior* y la muestra.

Distribución predictiva a posteriori

$$p(\tilde{y} \mid \mathbf{y}) = \int p(\tilde{y} \mid \mu) p(\mu \mid \mathbf{y}) d\mu$$

El integrando es el producto de dos normales: una normal bivariada. Por lo tanto toda la integral es una distribución marginal de una normal: otra normal. Demostración poco formal...

A posteriori vale

$$\begin{array}{rcl} y & = & (y-\mu) + \mu \\ y - \mu \mid \mu & \sim & \mathcal{N}(0, \sigma^2) \\ \mu \mid \mathbf{y} & \sim & \mathcal{N}(\theta_n, \tau_n^2) \end{array}$$

Resulta

$$p(\tilde{y}\mid\mathbf{y}) = \mathcal{N}(\mu_n, \sigma^2 + \tau_n^2)$$

$\emph{posteriori}$ respecto a una observación nueva $ilde{y}$.

La varianza predictiva $\sigma^2 + \tau_n^2$ es una medida de la incertidumbre a

La varianza predictiva $\sigma^2 + \tau_n^2$ es una medida de la incertidumbre a

La varianza predictiva $\sigma^2+\tau_n^2$ es una medida de la incertidumbre a posteriori respecto a una observación nueva \tilde{y} .

La incertidumbre en \tilde{y} proviene de la variabilidad debida al azar (σ) y de la variabilidad debida al desconocimiento de μ (τ_n) En otras palabras, si supiéramos que $\mu=2$, toda la variabilidad provendría de σ , ¡pero no sabemos cuánto vale μ ! Puede ser 2 o

1.98 o 1.43... Por lo que hay una componente adicional de varianza.

¿Cómo obtenemos una observación nueva si sabemos que $\mu=2$ (sabiendo que $\sigma=1.2$)?

¿Cómo obtenemos una observación nueva si sabemos que $\mu=2$ (sabiendo que $\sigma=1.2$)?

Directamente tomamos una muestra \tilde{y} de $\mathcal{N}\left(\mu=2,\sigma^2=1.2^2\right)$

 $y_new <- rnorm(1, mean = 2, sd = 1.2)$

¿Cómo obtenemos una observación nueva si sabemos que $\mu=2$ (sabiendo que $\sigma=1.2$)?

Directamente tomamos una muestra \tilde{y} de $\mathcal{N}\left(\mu=2,\sigma^2=1.2^2\right)$

```
y_new <- rnorm(1, mean = 2, sd = 1.2)
```

Pero en estadística bayesiana μ tiene una distribución de probabilidad (por ejemplo $\mathcal{N}\left(\theta_n=2,\tau_n^2=1.8^2\right)$), ¿cómo hacemos la simulación?

¿Cómo obtenemos una observación nueva si sabemos que $\mu=2$ (sabiendo que $\sigma=1.2$)?

Directamente tomamos una muestra \tilde{y} de $\mathcal{N}\left(\mu=2,\sigma^2=1.2^2\right)$

```
y_new <- rnorm(1, mean = 2, sd = 1.2)</pre>
```

Pero en estadística bayesiana μ tiene una distribución de probabilidad (por ejemplo $\mathcal{N}\left(\theta_n=2,\tau_n^2=1.8^2\right)$), ¿cómo hacemos la simulación?

- 1. Tomamos una muestra $\mu^{(s)}$ de la distribución de μ
- 2. Obtenemos \tilde{y} a partir de $\mathcal{N}(\mu=\mu^{(s)},\sigma^2=1.2^2)$

¿Cómo obtenemos una observación nueva si sabemos que $\mu=2$ (sabiendo que $\sigma=1.2$)?

Directamente tomamos una muestra \tilde{y} de $\mathcal{N}\left(\mu=2,\sigma^2=1.2^2\right)$

```
y_new <- rnorm(1, mean = 2, sd = 1.2)</pre>
```

Pero en estadística bayesiana μ tiene una distribución de probabilidad (por ejemplo $\mathcal{N}\left(\theta_n=2,\tau_n^2=1.8^2\right)$), ¿cómo hacemos la simulación?

- 1. Tomamos una muestra $\mu^{(s)}$ de la distribución de μ
- 2. Obtenemos \tilde{y} a partir de $\mathcal{N}(\mu=\mu^{(s)},\sigma^2=1.2^2)$

```
mu_s <- rnorm(1, mean = 2, sd = 1.8)
y_new <- rnorm(1, mean = mu_s, sd = 1.2)</pre>
```

¿Cómo obtenemos una observación nueva si sabemos que $\mu=2$ (sabiendo que $\sigma=1.2$)?

Directamente tomamos una muestra \tilde{y} de $\mathcal{N}\left(\mu=2,\sigma^2=1.2^2\right)$

```
y_new <- rnorm(1, mean = 2, sd = 1.2)
```

Pero en estadística bayesiana μ tiene una distribución de probabilidad (por ejemplo $\mathcal{N}\left(\theta_n=2,\tau_n^2=1.8^2\right)$), ¿cómo hacemos la simulación?

- 1. Tomamos una muestra $\mu^{(s)}$ de la distribución de μ
- 2. Obtenemos \tilde{y} a partir de $\mathcal{N}(\mu = \mu^{(s)}, \sigma^2 = 1.2^2)$

```
mu_s <- rnorm(1, mean = 2, sd = 1.8)
y_new <- rnorm(1, mean = mu_s, sd = 1.2)</pre>
```

¿Qué va a pasar en cada caso si construimos la distribución de \tilde{y} ?

La distribución predictiva contiene la variabilidad inherente al fenómeno en estudio (σ) y la incertidumbre en el parámetro μ .

Normal – normal-gamma-inversa

Sea una muestra $\mathbf{y}=(y_1,y_2,\ldots,y_n)$ obtenida de un modelo normal con varianza desconocida σ^2 , es decir:

$$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

E interesa realizar una inferencia sobre el valor de μ y el valor de σ

Normal – normal-gamma-inversa

Sea una muestra $\mathbf{y}=(y_1,y_2,\dots,y_n)$ obtenida de un modelo normal con varianza desconocida σ^2 , es decir:

$$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

E interesa realizar una inferencia sobre el valor de μ y el valor de σ ¿Cómo asignamos una credibilidad *a priori* para μ y σ ? ¡Con una distribución en dos dimensiones!

El modelo es

$$\begin{aligned} Y_i \mid \mu, \sigma^2 &\sim \mathcal{N}(\mu, \sigma^2) \\ \mu, \sigma^2 &\sim \mathcal{N}GI(\theta, \tau, \alpha, \beta) \end{aligned}$$

 μ y σ^2 tienen **distribución conjunta** normal-gamma-inversa:

$$p(\mu, \sigma^2 \mid \theta, \tau, \alpha, \beta) = \frac{\sqrt{\tau}}{\sqrt{2\pi\sigma^2}} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{\sigma^2}\right)^{\alpha+1} e^{-\frac{2\beta+\tau(\mu-\theta)^2}{2\sigma^2}}$$

Si anticipamos que la normal-gamma-inversa es conjugada de la normal (para los parámetros μ y σ^2), ¿qué podemos decir de la distribución *a posteriori* (conjunta) de μ y σ^2

Efectivamente, se puede probar que:

$$\boldsymbol{\mu}, \sigma^2 \mid \mathbf{y} \sim \mathcal{N}GI(\boldsymbol{\theta}_n, \boldsymbol{\tau}_n, \boldsymbol{\alpha}_n, \boldsymbol{\beta}_n)$$

con

$$\begin{cases} \theta_n = \frac{\tau\theta + n\bar{y}}{\tau + n} \\ \tau_n = \tau + n \\ \alpha_n = \alpha + \frac{n}{2} \\ \beta_n = \beta + \frac{1}{2} \sum_i (y_i - \bar{y})^2 + \frac{n\tau}{\tau + n} \frac{(\bar{y} - \theta)^2}{2} \end{cases}$$

¿Parámetros desconocidos en la verosimilitud? ¿Dimensión del espacio de parámetros? ¿Constantes de ajuste del *prior*? ¿Forma del *posterior*?

Reflexionemos...

$$\begin{aligned} Y_i \mid \mu &\sim \mathcal{N}(\mu, \sigma^2) \\ \mu &\sim \mathcal{N}(\theta, \tau^2) \\ \mu \mid \mathbf{y} &\sim \mathcal{N}(\theta_n, \tau_n^2) \end{aligned}$$

¿Parámetros desconocidos en la verosimilitud? ¿Dimensión y característica del espacio de parámetros? ¿Constantes de ajuste del prior? ¿Forma del posterior? ¿Qué son θ_n y τ_n^2 ?

¿Puedo representar los datos en el gráfico de la izquierda?
No, es el mundo de los parámetros

¿Puedo representar los datos en el gráfico de la izquierda? No, es el mundo de los parámetros

Posibles valores de μ y σ^2 que podrían esperarse *a priori*.

¿Qué representan los valores marcados con ×?

¿Puedo representar los datos en el gráfico de la izquierda?

No, es el mundo de los parámetros

Posibles valores de μ y σ^2 que podrían esperarse *a priori*.

¿Qué representan los valores marcados con \times ?

j Qué le da forma a la distribución de la izquierda?

$$\theta$$
, τ , α \vee β

¿Puedo representar los datos en el gráfico de la izquierda?

No, es el mundo de los parámetros

¿Qué representan los valores marcados con \times ? Posibles valores de μ y σ^2 que podrían esperarse *a priori*.

¿Qué le da forma a la distribución de la izquierda?

 θ , τ , $\alpha \vee \beta$

¿Media y varianza de las normales de la derecha?

$$\mu$$
 y σ^2

¿Qué estamos viendo?

A posteriori (luego de observar los datos)... ¿qué ocurre con la plausibilidad de los valores de μ y σ^2 ?

¿Parámetros de la distribución de la izquierda?

 θ_n , τ_n , α_n y β_n

¿Parámetros de la distribución de la izquierda?

¿Media y varianza de las normales de la derecha?

$$\theta_n$$
, τ_n , α_n y β_n

 μ y σ^2