Singular Value Decomsition

Hakbae Lee

The Department of Applied Statistics, Yonsei University

Matrices

Definition of Matrix

Define an $m \times n$ matrix **A**

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij}) = \begin{pmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \vdots \\ \mathbf{R}_m \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \dots & \mathbf{C}_n \end{pmatrix}$$

where

$$\mathbf{R}_i = i$$
-th 1 × n row vector, $i = 1, ..., m$

$$\mathbf{C}_i = j$$
-th $m \times 1$ column vector, $j = 1, \dots, n$

Each symmetric matrix $\mathbf{A}(p \times p)$ can be written as

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^T = \sum_{j=1}^{\rho} \lambda_j \gamma_j \gamma_j^T$$

where

$$\boldsymbol{\Lambda} = \operatorname{diag}\{\lambda_1, \dots, \lambda_p\} = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_p \end{array} \right) : \boldsymbol{p} \times \boldsymbol{p}$$

where

$$\Gamma = (\gamma_1, \gamma_2, \dots, \gamma_p) : p \times p$$

where is an orthogonal matrix consisting of the eigenvectors γ_j of **A**.

Let **A** be $p \times p$ symmetric matrix of rank r, $(r \leq p)$. Then there exists $p \times p$ orthogonal matrix Γ so that $\Gamma^T \Gamma = \mathbf{I}_p$ and

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^T = \mathbf{\Gamma} \begin{pmatrix} \mathbf{\Lambda}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \mathbf{\Gamma}^T = \mathbf{\Gamma}_1 \mathbf{\Lambda}_1 \mathbf{\Gamma}_1^T$$

where letting $\delta_i = i$ -th eigenvalue, i = 1, ..., r

$$\Gamma = (\Gamma_1, \Gamma_0) : \Gamma_1 : p \times r, \Gamma_0 : p \times (p-r)$$

$$\mathbf{\Lambda}_1 = \operatorname{diag}\{\lambda_1, \dots, \lambda_r\} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_r \end{pmatrix} : r \times r.$$

$$\begin{split} \Gamma_1^T \Gamma_1 &= \mathbf{I}_r, \ \Gamma_1^T \Gamma_0 = \mathbf{0}, \ \Gamma_1^T \Gamma_0 = \mathbf{0} \text{ and} \\ \mathbf{A}^2 &= \mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T \\ &= (\Gamma_1 \boldsymbol{\Lambda}_1 \boldsymbol{\Gamma}_1^T)^T \boldsymbol{\Gamma}_1 \boldsymbol{\Lambda}_1 \boldsymbol{\Gamma}_1^T = \boldsymbol{\Gamma}_1 \boldsymbol{\Lambda}_1 \boldsymbol{\Gamma}_1^T \boldsymbol{\Gamma}_1 \boldsymbol{\Lambda}_1 \boldsymbol{\Gamma}_1^T \\ &= \boldsymbol{\Gamma}_1 \boldsymbol{\Lambda}_1^2 \boldsymbol{\Gamma}_1^T. \end{split}$$

Let γ_i be *i*-th $p \times 1$ column vector of Γ . Then

$$\gamma_i^T \gamma_j = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j. \end{cases}$$

Thus

$$\mathbf{A} = \mathbf{\Gamma}_{1} \mathbf{\Lambda}_{1} \mathbf{\Gamma}_{1}^{T} = \sum_{i=1}^{r} \lambda_{i} \gamma_{i} \gamma_{i}^{T}$$

$$\mathbf{A}^{T} \mathbf{A} = \mathbf{\Gamma}_{1} \mathbf{\Lambda}_{1}^{2} \mathbf{\Gamma}_{1}^{T} = \sum_{i=1}^{r} \lambda_{i}^{2} \gamma_{i} \gamma_{i}^{T}$$

$$\mathbf{A} \mathbf{A}^{T} = \mathbf{\Gamma}_{1} \mathbf{\Lambda}_{1}^{2} \mathbf{\Gamma}_{1}^{T} = \sum_{i=1}^{r} \lambda_{i}^{2} \gamma_{i} \gamma_{i}^{T}$$

$$\gamma_{k}^{T} \mathbf{A} = \lambda_{k} \gamma_{k}^{T} \gamma_{k} \gamma_{k}^{T} = \lambda_{k} \gamma_{k}^{T}$$

$$\mathbf{A} \gamma_{k} = \lambda_{k} \gamma_{k} \gamma_{k}^{T} \gamma_{k} = \lambda_{k} \gamma_{k}.$$

Remark 1

Let Γ be an orthogonal matrix so that $\Gamma^T\Gamma=I$. Then

$$det(\Gamma) = |\Gamma| = 1.$$

Remark 2

Let **A** be $p \times p$ symmetric matrix of full rank. Then, by the Spectral Decomposition,

$$\det(\mathbf{A}) = |\mathbf{A}| = |\mathbf{\Gamma}||\mathbf{\Lambda}||\mathbf{\Gamma}^T|$$

$$= |\mathbf{\Lambda}| = \begin{vmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_p \end{vmatrix} = \prod_{i=1}^p \lambda_i$$

Remark 3

Let **A** be $p \times p$ symmetric matrix of full rank. Then, by the Spectral Decomposition,

$$\mathbf{A}^{\alpha} = (\mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^{T})(\mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^{T}) \dots (\mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^{T}) = \mathbf{\Gamma} \mathbf{\Lambda}^{\alpha} \mathbf{\Gamma}^{T}$$
 for some $\alpha \in \mathbb{R}$ In particular, a covariance matrix $\mathbf{\Sigma}$ can be written by

$$\Sigma - \Gamma \Lambda \Gamma^T - \sum_{i}^{T} \lambda_{i} \gamma_{i} \gamma_{i}^{T}$$

$$\Sigma = \Gamma \Lambda \Gamma^T = \sum_{i=1}^r \lambda_i \gamma_i \gamma_i^T$$

then

$$\Sigma^{-1} = \Gamma \Lambda^{-1} \Gamma^{T} = \sum_{i=1}^{r} \lambda_{i}^{-1} \gamma_{i} \gamma_{i}^{T}$$

$$\boldsymbol{\Sigma}^{-1/2} = \boldsymbol{\Gamma} \boldsymbol{\Lambda}^{-1/2} \boldsymbol{\Gamma}^T = \sum_{i=1}^r \lambda_i^{-1/2} \gamma_i \gamma_i^T$$

Singular value Decomposition: General-version

 Any arbitrary matrix A(n × p) with rank r can be decomposed as

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Delta}^T = \sum_{j=1}^r \lambda_j \gamma_j \delta_j^T$$

where $\Gamma(n \times r)$ and $\Delta(p \times r)$.

- Both Γ and Δ are column orthogonal, i.e., $\Gamma^T \Gamma = \Delta^T \Delta = I_r$ and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_r), \ \lambda_i > 0$.
- The values $\lambda_1, \dots, \lambda_r$ are the non-zero eigenvalues of the matrices $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$.
- Γ and Δ consist of the corresponding r eigenvectors of theses matrices.

Singular Value Decomposition: General-version

Thus

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Delta}^T = \sum_{j=1}^r \lambda_j \gamma_j \delta_j^T$$

$$\mathbf{A}^T \mathbf{A} = \mathbf{\Delta} \mathbf{\Lambda}^2 \mathbf{\Delta}^T = \sum_{j=1}^r \lambda_j^2 \delta_j \delta_j^T$$

$$\mathbf{A} \mathbf{A}^T = \mathbf{\Gamma} \mathbf{\Lambda}^2 \mathbf{\Gamma}^T = \sum_{j=1}^r \lambda_j^2 \gamma_j \gamma_j^T$$

$$\gamma_k^T \mathbf{A} = \gamma_k^T \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Delta}^T = \lambda_k \delta_k^T$$

$$\mathbf{A} \delta_k = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Delta}^T \delta_k = \lambda_k \gamma_k.$$

Singular Value Decomposition: General-version

G-inverse (Generalized inverse) matrix A-

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Delta}^T = \sum_{j=1}^r \lambda_j \gamma_j \delta_j^T$$

Define

$$\mathbf{A}^{-} = \mathbf{\Delta} \mathbf{\Lambda}^{-1} \mathbf{\Gamma}^{T} = \sum_{j=1}^{r} \lambda_{j}^{-1} \delta_{j} \gamma_{j}^{T}$$

Then

$$\mathbf{A}\mathbf{A}^{-}\mathbf{A} = \mathbf{\Gamma}\mathbf{\Lambda}\mathbf{\Delta}^{T}\mathbf{\Delta}\mathbf{\Lambda}^{-1}\mathbf{\Gamma}^{T}\mathbf{\Gamma}\mathbf{\Lambda}\mathbf{\Delta}^{T} = \mathbf{\Gamma}\mathbf{\Lambda}\mathbf{\Delta}^{T} = \sum_{j=1}^{r} \lambda_{j}\gamma_{j}\delta_{j}^{T} = \mathbf{A}$$

Singular value Decomposition: Another-version

 Any arbitrary matrix A(n × p) with rank r can be decomposed as

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Delta}^T = \sum_{j=1}^r \lambda_j^{1/2} \gamma_j \delta_j^T$$

where $\Gamma(n \times r)$ and $\Delta(p \times r)$.

- Both Γ and Δ are column orthogonal, i.e., $\Gamma^T \Gamma = \Delta^T \Delta = I_r$ and $\Lambda = \operatorname{diag}\left(\lambda_1^{1/2}, \dots, \lambda_r^{1/2}\right), \ \lambda_j^{1/2} > 0.$
- The values $\lambda_1, \dots, \lambda_r$ are the non-zero eigenvalues of the matrices $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$.
- Γ and Δ consist of the corresponding r eigenvectors of theses matrices.

Quadratic Forms

• A quadratic form Q(x) is defined to be

$$Q(x) = x^T \mathbf{A} x = \sum_{i=1}^{p} \sum_{j=1}^{p} a_{ij} x_i x_j$$

for a symmetric matrix $\mathbf{A}(p \times p)$ and a vector $x \in \mathbb{R}^p$

$$Q(x) > 0$$
 for all $x \neq 0$: Positive definite $Q(x) \geq 0$ for all $x \neq 0$: Positive semidefinite

- A is called positive definite(semidefinite) if the corresponding quadratic form Q(⋅) is positive definite(semidefinite).
- Notation: $\mathbf{A} > 0 (\geq 0)$

Quadratic Forms

Proposition 1

If **A** is symmetric and $Q(x) = x^T \mathbf{A} x$ is the corresponding quadratic form, then there exists a transformation $y = \mathbf{\Gamma}^T x$ such that

$$Q(x) = x^T \mathbf{A} x = \sum_{i=1}^{\rho} \lambda_i y_i^2$$

where λ_i 's are the eigenvalues of **A**.

Proposition 2

 $\mathbf{A} > 0$ if and only of all $\lambda_i > 0$, $i = 1, \dots, p$

Corollary 1

If A > 0, then A^{-1} exists and |A| > 0.

Quadratic Forms

Proposition 3

- If **A** and **B** are symmetric and **B** > 0, then the maximum of $\frac{x^T \mathbf{A} x}{x^T \mathbf{B} x}$ is given by the largest eigenvalues of $\mathbf{B}^{-1} \mathbf{A}$.
- More generally,

$$\max \frac{x^T \mathbf{A} x}{x^T \mathbf{B} x} = \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_p = \min \frac{x^T \mathbf{A} x}{x^T \mathbf{B} x}$$

where $\lambda_1, \ldots, \lambda_p$ denote the eigenvalues of $\mathbf{B}^{-1}\mathbf{A}$.

- The vector which maximizes(minimizes) $\frac{x^T \mathbf{A}x}{x^T \mathbf{B}x}$ is the eigenvector of $\mathbf{B}^{-1} \mathbf{A}$ which corresponds to the largest(smallest) eigenvalue of $\mathbf{B}^{-1} \mathbf{A}$.
- If $x^T \mathbf{B} x = 1$, then

$$\max x^T \mathbf{A} x = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p = \min x^T \mathbf{A} x$$

Partitioned Matrices

Note

Let $\mathbf{A}(n \times p)$ and $\mathbf{B}(p \times n)$ be any two matrices and $n \ge p$. Then

$$egin{array}{c|c} -\lambda \mathbf{I}_n & -\mathbf{A} \\ \mathbf{B} & \mathbf{I}_p \end{array} = (-\lambda)^{n-p} |\mathbf{B}\mathbf{A} - \lambda \mathbf{I}_n| = |\mathbf{A}\mathbf{B} - \lambda \mathbf{I}_n|$$

Proposition 4

For $\mathbf{A}(n \times p)$ and $\mathbf{B}(p \times n)$, the non-zero eigenvalues of \mathbf{AB} and \mathbf{BA} are the same and have the same multiplicity. If x is an eigenvector of \mathbf{AB} for an eigenvalues $\lambda \neq 0$, then $y = \mathbf{B}x$ is an eigenvector of \mathbf{BA} .

Corollary 2

For $\mathbf{A}(n \times p)$, $\mathbf{B}(q \times n)$, $a(p \times 1)$ and $b(q \times 1)$,

$$\text{rank}(\textbf{A}ab\textbf{B}) \leq 1$$

The non-zero eigenvalue, if it exists, equals $b^T \mathbf{B} \mathbf{A} a$ with eigenvector $\mathbf{A} a$

Geometrical Aspects

Note

- x₁, x₂,..., x_k are mutually orthogonal if and only if x_i^Tx_j = 0 for all i, j.
- In that case, $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k)$ has rank k, and $\mathbf{X}^T \mathbf{X}$ is a diagonal matrix with $\mathbf{x}_i^T \mathbf{x}_i$ in the i-th diagonal position.
- Let's consider bivariate data (x_i, y_i) , i = 1, ..., n, and let $\tilde{x}_i = x_i \bar{\mathbf{x}}$ and $\tilde{y}_i = y_i \bar{\mathbf{y}}$. Then the correlation between \mathbf{x} and \mathbf{y} is

$$\frac{\sum_{i=1}^{n}(x_i-\bar{\mathbf{x}}_i)(y_i-\bar{\mathbf{y}}_i)}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{\mathbf{x}}_i)^2\sum_{i=1}^{n}(y_i-\bar{\mathbf{x}}_i)^2}}=\frac{\tilde{\mathbf{x}}^T\tilde{\mathbf{y}}}{||\tilde{\mathbf{x}}||||\tilde{\mathbf{y}}||}=\cos(\theta)$$

where θ is the angle between the deviation vectors $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}.$

Geometrical Aspects

Rotations

For two dimensions, the clockwise rotation can be expressed:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \mathbf{\Gamma} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{\Gamma} \mathbf{x}$$

the counter-clockwise rotation can be expressed

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \mathbf{\Gamma}^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{\Gamma}^T \mathbf{x}$$

Definition

Consider an $n \times p$ matrix **X**.

$$\mathcal{C}(\mathbf{X}) = \{x \in \mathbb{R}^n | \exists a \in \mathbb{R}^p \text{ so that } \mathbf{X}a = x\} \subseteq \mathbb{R}^n$$

$$= \text{ the } \mathbf{column(range) space of } \mathbf{X}$$

$$\mathcal{N}(\mathbf{X}) = \{y \in \mathbb{R}^p | \mathbf{X}y = 0\} \subseteq \mathbb{R}^p$$

$$= \text{ the } \mathbf{null space of } \mathbf{X}$$

$$\mathcal{R}(\mathbf{X}) = \{z \in \mathbb{R}^p | \exists b \in \mathbb{R}^n \text{ so that } \mathbf{X}^T b = z\} \subseteq \mathbb{R}^p$$

$$= \text{ the } \mathbf{row space of } \mathbf{X}$$

$$= \mathcal{C}(\mathbf{X}^T) = \text{the } \mathbf{column space of } \mathbf{X}^T$$

Consider an $n \times p$ matrix **X** with rank(**X**) = r

Spaces by Singular Value Decomposition: General-version

$$\mathbf{X} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Delta}^T = \sum_{j=1}^r \lambda_j \gamma_j \delta_j^T$$

$$\mathcal{C}(\mathbf{X}) = \{\gamma_1, \gamma_2, \dots, \gamma_r\}$$

$$\mathcal{N}(\mathbf{X}) = \{\delta_{r+1}, \delta_{r+2}, \dots, \delta_p\}$$

$$\mathcal{R}(\mathbf{X}) = \{\delta_1, \delta_2, \dots, \delta_r\}$$

Note 1: Let X be $n \times p$ matrix. Then

$$\mathcal{N}(\mathbf{X}) = \mathcal{C}(\mathbf{X}^T)^{\perp} = \mathcal{R}(\mathbf{X})^{\perp}$$

 $\mathcal{N}(\mathbf{X})^{\perp} = \mathcal{C}(\mathbf{X}^T) = \mathcal{R}(\mathbf{X})$

Note 2: Let X be $n \times p$ matrix. Then

$$C(\mathbf{X}^T\mathbf{X}) = C(\mathbf{X}^T) = \mathcal{R}(\mathbf{X})$$

Note 3: Let X be $n \times p$ matrix. Then

- $\dim(\mathcal{C}(\mathbf{X})) = \dim(\mathcal{R}(\mathbf{X})) = \operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{X}^T) = \operatorname{rank}(\mathbf{X}^T\mathbf{X}) = r \leq \min(n, p)$
- X^TX has full rank (is nonsingular) if and only if X has full column rank (X has linearly independent columns).

Example: arbitrary 3×4 matrix A

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 5 & 1 \\ 2 & 2 & 10 & 6 \\ 3 & 4 & 15 & 1 \end{pmatrix} = \sum_{i=1}^{3} \lambda_{i} \gamma_{i} \delta_{i}^{T} = \lambda_{1} \gamma_{1} \delta_{1}^{T} + \lambda_{2} \gamma_{2} \delta_{2}^{T} + \lambda_{3} \gamma_{3} \delta_{3}^{T}$$

$$= 20.15 \begin{pmatrix} -0.274 \\ -0.568 \\ -0.776 \end{pmatrix} (-0.186, -0.238, -0.927, -0.221)$$

$$+4.40 \begin{pmatrix} -0.072 \\ 0.817 \\ -0.572 \end{pmatrix} (-0.035, -0.182, -0.177, 0.967)$$

$$+0.69 \begin{pmatrix} -0.959 \\ 0.101 \\ 0.265 \end{pmatrix} (0.053, -0.954, 0.265, -0.129)$$

Example: arbitrary 3×4 matrix A

The eigenvalues and eigenvectors by Singular Value Decomposition are given by

$$\lambda_{1} = 20.15 \qquad \lambda_{2} = 4.40 \qquad \lambda_{3} = 0.69$$

$$\gamma_{1} = \begin{pmatrix} -0.274 \\ -0.568 \\ -0.776 \end{pmatrix} \qquad \gamma_{2} = \begin{pmatrix} -0.072 \\ 0.817 \\ -0.572 \end{pmatrix} \qquad \gamma_{3} = \begin{pmatrix} -0.959 \\ 0.101 \\ 0.265 \end{pmatrix}$$

$$\delta_{1} = \begin{pmatrix} -0.186 \\ -0.238 \\ -0.927 \\ -0.221 \end{pmatrix} \qquad \delta_{2} = \begin{pmatrix} -0.035 \\ -0.182 \\ -0.177 \\ 0.967 \end{pmatrix} \qquad \delta_{3} = \begin{pmatrix} 0.053 \\ -0.954 \\ 0.265 \\ -0.129 \end{pmatrix}$$