Министерство образования и науки Российской Федерации Государственное общеобразовательное учреждение высшего профессионального образования Южно-Уральский государственный университет (НИУ) Факультет «Компьютерные технологии, управление и радиоэлектроника (ПС)» Кафедра «Системы управления»

РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ НА ЯЗЫКЕ СИ Пояснительная записка

к курсовой работе по дисциплине «Программирование на языках высокого уровня» КТУР-161101.2015.334.05 ПЗ

Ст	удент гј	руппы КТУР-334
		Осипов И.О.
"	"	
Ста	арший і	преподователь
		<u> —</u> Чернецкий В.О.
"	,,	

СОДЕРЖАНИЕ

В	ЗЕДІ	ЕНИЕ	4					
1	1 ПРОСТЫЕ ЗАДАЧИ 5							
	1.1	Задача 1	5					
	1.2	Задача 2	7					
	1.3	Задача 3	9					
	1.4	Задача 4	0					
	1.5	Задача 5	.1					
	1.6	Задача 6	.2					
	1.7	Задача 7	.3					
2	СЛ	1 АРАДАЧА	4					
	2.1	Условие	4					
	2.2	Формализация	4					
	2.3	Блок схема	4					
	2.4	Код программы	4					
	2.5	Результат работы программы	4					
	2.6	Инструкция пользователя	4					
3	АКЛІ	ОЧЕНИЕ 1	.4					
C]	СПИСОК ЛИТЕРАТУРЫ 14							

Изм.	Лист	докум.	Подп.	Дата

1 ПРОСТЫЕ ЗАДАЧИ

1.1 Задача 1

1.1.1 Условие

Вычислить объем усеченного конуса по формуле $V=\frac{h\pi}{3}(r_1^2+r_1r_2+r_1^2)$, где r_1,r_2 – радиусы оснований, а h – высота в см.

1.1.2 Формализация

Введем с клавиатуры геометрические размеры усеченного конуса: высоту h, радиусы верхнего и нижнего оснований r_1 и r_2 . Если все параметры конуса неотрицательны, то можно вычислить объем конуса по формуле $V=\frac{h\pi}{3}(r_1^2+r_1^2+r_1^2)$. В случае, если хотя бы один параметр конуса меньше 0, то такой конус не существует и нужно вывести ошибку и завершить программу.

1.1.3 Блок схема

Блок схема программы, описанной в предыдущем пункте представлена на рисунке 1.

Рисунок 1 – Блок-схема задачи 1

Изм.	Лист	докум.	Подп.	Дата

КТУР-	-161101	.2015.35	34.05	ΠЗ

1.1.4 Код программы

Листинг 1: Задача 1

```
/// Вычислить объем усеченного конуса по формуле
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main()
   double h, r1, r2;
   printf("input_height_");
   scanf("%lf",&h);
   if (h < 0) { // Проверка положительности высоты конуса
      printf("Error: \( \_h = 0 \) ;
     return 0;
   }
   printf("inputuradiusesu");
   scanf("%lf",&r1, &r2);
   if ((r1 < 0) | | (r2 < 0))  {// Проверка положительности радиусов осн
      ований конуса
      printf("Error: □radius □< □0");</pre>
      return 0;
   }
   printf("volume_{\sqcup}of_{\sqcup}com_{\sqcup}is_{\sqcup}\%f_{\sqcup}", h * M_PI * (r1 * r1 + r1 * r2 + r2)
       * r2) / 3.);
   getch();
   return 0;
}
```

1.1.5 Результат работы программы

Результат работы программы представлен на рисунке 2.

1.1.6 Инструкция пользователя

Для запуска программы необходимо запустить исполняемый файл task1.exe из папки проекта и следуя инструкциям на экране ввести данные, после этого программа выведет результат расчета.

Изм.	Лист	докум.	Подп.	Дата

input height 12.67 input radiuses 23.876 12.65 volume of truncated con is 13694.124766

Рисунок 2 – Окно и результат работы программы 1

- 1.2 Задача 2
- 1.2.1 Условие

Вычислить
$$x = \left(\frac{(a+b)^2c}{m-n}\right)^2$$
.

1.2.2 Формализация

После ввода с клавиатуры операндов формулы a,b,c,m,n и проверки неравенства 0 знаменателя, можно вычислить формулу $x=\left(\frac{(a+b)^2}{m-n}\right)^2$ и вывести результат на экран. Если знаменатель равен 0, то следует вывести ошибку и завершить работу.

1.2.3 Блок схема

Блок-схема программы, описанной выше представлена на рисунке 3.

Рисунок 3 – Блок-схема задачи 2

	·			
Изм.	Лист	докум.	Подп.	Дата

КТУР-	-161101	.2015	.334.	05	ΠЗ

1.2.4 Код программы

Листинг 2: Задача 2

```
/**
   вычислить формулу x = (((a+b)*c)/(m-n))^2
**/
#include <stdio.h>
#include <stdlib.h>
int main()
double a,b,c,m,n;
double x;
printf("input

a

");
scanf("%lf",&a);
printf("inputubu");
scanf("%lf",&b);
printf("inputucu");
scanf("%lf",&c);
printf("inputumu");
scanf("%lf",&n);
printf("inputunu");
scanf("%lf",&n);
if (m != n) { //Проверка для исключения деления на 0
x = ((a + b) * c) / (m - n);
printf("x_{\sqcup}is_{\sqcup}%f", x * x);
}
else printf("error: umu=un!!!");
return 0;
}
```

				·
Изм	Лист	докум.	Подп.	Дата

1.2.5 Результат работы программы

Результат работы программы представлен на рисунке

- 1.2.6 Инструкция пользователя
- 1.3 Задача 3
- 1.3.1 Условие

Найти все пары двузначных натуральных чисел, таких, что значение произведения чисел не меняется, если поменять местами цифры каждого из сомножителей.

1.3.2 Формализация

Для нахождения всех таких чисел будем перебирать каждый из множителей от 10 до 99. Для каждого варианта каждого изз множителей, сдлаем его копию, с измененным порядком цифр. Затем сравним произведение полученных копий с произведением исходных множителей. Если произведения равны, то выведем пару множителей на экран.

- 1.3.3 Блок схема
- 1.3.4 Код программы

Листинг 3: Задача 3

```
/**

* Найти все пары двухзначных натуральных чисел, таких,

* что значение произведенения чисел не изменится, если поменять м
естами

* цифры каждого из сомножителей

*/

#include <stdio.h>
#include <stdlib.h>

int main()

{
int a,b,ka,kb;
for (a = 10;a < 100; a++)
for (b = 10; b < 100; b++) {
ka = (a / 10) + 10 * (a % 10);
```

Изм.	Лист	докум.	Подп.	Дата

```
kb = (b / 10) + 10 * (b % 10);
if (ka * ka == a * b) printf("%du%du\n", a, b);
}
return 0;
}
1.3.5 Результат работы программы
```

Результат работы программы представлен на рисунке

- 1.3.6 Инструкция пользователя
- 1.4 Задача 4
- 1.4.1 Условие

Протабулировать функцию $y=\frac{\sin(x)+\cos^2(x)}{\sin(x^2)-3\lg(\frac{x}{5})}$ на интервале $2\leq x\leq 11$ с шагом h=1.

- 1.4.2 Формализация
- 1.4.3 Блок схема
- 1.4.4 Код программы

Листинг 4: Задача 4

Изм.	Лист	докум.	Подп.	Дата

```
printf("y(%d)u=u%fu\n", i, f(i));
return 0;
}

1.4.5 Результат работы программы
Результат работы программы представлен на рисунке
1.4.6 Инструкция пользователя
1.5 Задача 5
1.5.1 Условие
1.5.2 Формализация
1.5.3 Блок схема
1.5.4 Код программы
```

Листинг 5: Задача 5

```
/**
* Протабулировать функцию
* y = (\sin(x) + \cos^2(x))/(\sin(x^2) - 3 * \tan(x/5));
* на интервале 2..11 с шагом 1.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double f(double x) {
return (\sin(x) + \cos(x) * \cos(x)) / (\sin(x * x) - 3. * \tan(x / x))
   5.));
}
int main() {
   int i;
   for (i = 2; i < 12; i++)</pre>
       printf("y(%d)_{\square}=_{\square}%f_{\square}\n", i, f(i));
   return 0;
}
```

- 1.5.5 Результат работы программы
- 1.5.6 Инструкция пользователя
- 1.6 Задача 6
- 1.6.1 Условие
- 1.6.2 Формализация
- 1.6.3 Блок схема
- 1.6.4 Код программы

Листинг 6: Задача 3

```
* Найти все пары двухзначных натуральных чисел, таких,
* что значение произведенения чисел не изменится, если поменять м
   естами
* цифры каждого из сомножителей
*/
#include <stdio.h>
#include <stdlib.h>
int main()
int a,b,ka,kb;
for (a = 10; a < 100; a++)
for (b = 10; b < 100; b++) {
ka = (a / 10) + 10 * (a % 10);
kb = (b / 10) + 10 * (b % 10);
if (ka * ka == a * b) printf(\frac{d_{\parallel}}{d_{\parallel}}, a, b);
}
return 0;
```

- 1.6.5 Результат работы программы
- 1.6.6 Инструкция пользователя
- 1.7 Задача 7
- 1.7.1 Условие
- 1.7.2 Формализация
- 1.7.3 Блок схема
- 1.7.4 Код программы

```
* Найти все пары двухзначных натуральных чисел, таких,
* что значение произведенения чисел не изменится, если поменять м
   естами
* цифры каждого из сомножителей
*/
#include <stdio.h>
#include <stdlib.h>
int main()
int a,b,ka,kb;
for (a = 10; a < 100; a++)
for (b = 10; b < 100; b++) {
ka = (a / 10) + 10 * (a % 10);
kb = (b / 10) + 10 * (b % 10);
if (ka * ka == a * b) printf(\frac{d_{\parallel}}{d_{\parallel}}, a, b);
}
return 0;
```

- 1.7.5 Результат работы программы
- 1.7.6 Инструкция пользователя

Изм.	Лист	докум.	Подп.	Дат

2 СЛОЖНАЯ ЗАДАЧА

2.1 Условие

Обратить заданную матрицу методом окаймления. Результат обращения проверить на корректность, умножив на заданную матрицу.

- 2.2 Формализация
- 2.3 Блок схема
- 2.4 Код программы
- 2.5 Результат работы программы
- 2.6 Инструкция пользователя

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

Изм.	Лист	докум.	Подп.	Дата