Question 1:

1. Consider the given Graph, Construct Adjacency Matrix and Adjacency List.

Adjacency Matrix:

It is Undirected Weighted Graph. Adjacency Matrix for the Graph is as Follows:

	0	1	2	3	4	5	6	7	8
0	0	4	8	8	8	8	8	8	8
1	4	0	8	8	8	8	8	11	8
2	8	8	0	7	8	4	8	8	2
3	8	8	7	0	9	14	8	8	8
4	8	8	8	9	0	10	8	8	8
5	8	8	4	14	10	0	2	8	8
6	8	8	8	8	8	2	0	1	6
7	8	11	8	8	8	8	1	0	7
8	8	8	2	8	8	8	6	7	0

Adjacency List:

It is Undirected Weighted Graph. *Adjacency List* for the Graph is as Follows:

Adjacency List Vertices \rightarrow \rightarrow $3 \rightarrow$ \rightarrow \rightarrow 4 | → 5 | → \rightarrow

2. Apply Kruskal's Algorithm on the above graph to find the MST.

		ve graph to find the M31.
Edge	Cost	Spanning Forest
(6, 7)	1	0 1 2 3 4 5 6 7 8
(2, 8)	2	0 1 2 3 4 5 6 7
(5, 6)	2	0 1 2 3 4 5 6 7
(0, 1)	4	0 1 2 3 4 5 6 7
(2, 5)	4	0 1 2 3 4
(6, 8)	6	Reject
(7, 8)	7	Reject
(2, 3)	7	0 1 2 3 4
(0, 7)	8	2 3 4 8 5 6 7 0 1
(1, 2)	8	Reject
(3, 4)	9	8 5 6 7 0 1
(4, 5)	10	Reject
(1, 7)	11	Reject
(3, 5)	14	Reject

<u>Final MST:</u>

Question 2:

The graph contains the 6 nodes. The adjacency matrix for directed graph is given below:

The value 0 means no edge from node to same node and ∞ mean no edge.

	Α	В	С	D	Е	F
Α	0	1	2	8	3	8
В	4	0	8	5	8	6
С	8	6	0	8	9	10
D	11	8	14	0	14	14
E	8	15	8	16	0	8
F	16	8	19	8	20	0

1. Draw directed graph from the resultant adjacency matrix.

Directed Graph:

2. Apply DFS and BFS on the given graph starting from node **0** (Assuming Node 0 is A).

Depth First Search: A B D C E F

DFS Spanning Tree:

Breadth First Search: A B C E D F

BFS Spanning Tree:

