Скаларно произведение в геометричното пространство

Работим в геометричното пространство.

Определение 1 *Ъгъл между ненулевите вектори и и v* е ъгълът между произволни техни представители с общо начало. Означава се с $\sphericalangle(u,v)$.

(Дефиницията е коректна, тоест не зависи от това коя точка е взета за начало на представителите.)

Пример 1 При $u \neq 0$ имаме $\langle (u, u) = 0, \langle (u, -u) = \pi.$

Пример 2 При $u \neq 0$, $v \neq 0$ имаме $\sphericalangle(v, u) = \sphericalangle(u, v)$.

Оттук нататък считаме, че е фиксирана единична отсечка за измерване на дължини.

Определение 2 Скаларно произведение на векторите u u v е числото $\langle u, v \rangle \in \mathbb{R}$, дефинирано по следния начин:

- а) Ако u = 0 или v = 0, то $\langle u, v \rangle = 0$.
- б) Ако $u \neq 0$ и $v \neq 0$, то $\langle u, v \rangle = |u||v|\cos \sphericalangle(u, v)$.

Забележка 1 Срещат се и други означения за скаларното произведение. Например uv, u.v, (u, v).

Забележка 2 Ако u=0 или v=0, то (u,v) не е дефиниран. Но тъй като дължината на нулевия вектор е 0, то в тоя случай $(u,v)=0=|u||v|\cos\varphi$ каквото и да е φ . Следователно, ако се уговорим да считаме, че нулевият вектор и другите вектори сключват произволен ъгъл, то тогава $(u,v)=|u||v|\cos (u,v)$ за всички вектори u и v.

Пример 3 При $u \neq 0$ имаме $\langle u, u \rangle = |u| |u| \cos \sphericalangle (u, u) = |u| |u| \cos 0 = |u|^2$, а също и при u = 0 имаме $\langle u, u \rangle = 0 = |u|^2$.

Теорема 1 (критерий за перпендикулярност на вектори)

Ненулевите вектори и и v са перпендикулярни $\Leftrightarrow \langle u, v \rangle = 0$.

Забележка 3 Ако приемем, че нулевият вектор е перпендикулярен на всеки вектор (което е в унисон с приемането, че сключва произволен ъгъл с всеки вектор — щом сключва произволен ъгъл значи сключва и прав ъгъл), то горната теорема е вярна и без изискването u и v да са ненулеви.

Твърдение 1 Нека $u\ u\ v\ ca\ вектори.$ Тогава $\langle u,v\rangle = \frac{1}{2}\,(|u|^2 + |v|^2 - |v-u|^2).$

Теорема 2 Скаларното произведение има следните (основни) свойства:

1.
$$\langle v, u \rangle = \langle u, v \rangle$$
 (симетричност)

2.
$$\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$$
 (адитивност по първия аргумент)

3.
$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$
 за $\lambda \in \mathbb{R}$ (хомогенност по първия аргумент)

$$4. \langle u, u \rangle > 0$$
 за $u \neq 0$ (положителност)

Забележка 4 За u = 0 имаме $\langle u, u \rangle = 0$.

Забележка 5 Свойствата 2. и 3. в горната теорема заедно са еквивалентни на свойството

$$\langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle$$
 (линейност по първия аргумент)

Забележка 6 Поради симетричността на скаларното произведение, то е адитивно, хомогенно и линейно и по втория си аргумент.

Следствие 1 Скаларното произведение на вектори в геометричното пространство е скаларно произведение в смисъла от курса по алгебра и следователно векторите в геометричното пространство образуват 3-мерно евклидово линейно пространство в смисъла от курса по алгебра.

Забележка 7 Всичко направено по-горе важи и в геометричната равнина (а и върху геометрична права), като в Следствие 1 пространството е 2-мерно (а за права е 1-мерно).