# Logarithms and Their Properties Exercise 1: **Single Option Correct Type Questions**

- This section contains 20 multiple choice questions. Each question has four choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct
  - **1.** If  $\log_{10} 2 = 0.3010...$ , the number of digits in the number  $2000^{2000}$  is
    - (a) 6601
- (b) 6602
- (c) 6603
- (d) 6604
- **2.** There exist a positive number  $\lambda$ , such that  $\log_2 x + \log_4 x + \log_8 x = \log_\lambda x$ , for all positive real

If  $\lambda = \sqrt[b]{a}$ , where  $a, b \in N$ , the smallest possible value of (a+b) is equal to

- (a) 12
- (b) 63
- (c) 65
- (d) 75
- **3.** If *a*, *b* and *c* are the three real solutions of the equation

$$x^{\log_{10}^{2} x + \log_{10} x^{3} + 3} = \frac{2}{\sqrt{x+1} - 1} - \frac{1}{\sqrt{x+1} + 1}$$

where, a > b > c, then a, b, c are in

- (a) AP
- (b) GP
- (c) HP
- (d)  $a^{-1} + b^{-1} = c^{-1}$
- **4.** If  $f(n) = \prod_{i=2}^{n-1} \log_i(i+1)$ , the value of  $\sum_{k=1}^{100} f(2^k)$  equals
  - (a) 5010
- (b) 5050
- (c) 5100
- **5.** If  $\log_3 27 \cdot \log_x 7 = \log_{27} x \cdot \log_7 3$ , the least value of x, is (a)  $7^{-3}$ (b)  $3^{-7}$ (c)  $7^3$ (d)  $3^7$
- **6.** If  $x = \log_5(1000)$  and  $y = \log_7(2058)$ , then
  - (a) x > y
- (b) x < y
- (c) x = y
- (d) None of these
- 7. If  $\log_5 120 + (x-3) 2\log_5 (1-5^{x-3})$ 
  - $= -\log_5(0.2 5^{x-4})$ , then x is (a) 1
    - (b) 2
- (d) 4
- **8.** If  $x_n > x_{n-1} > ... > x_2 > x_1 > 1$ , the value of
  - $\log_{x_1}\log_{x_2}\log_{x_3}\ldots\log_{x_n}x_n^{x_{n-1}^{\cdot}} \quad \text{is}$
  - (a) 0

(c) 3

- **9.** If  $\frac{x(y+z-x)}{\log x} = \frac{y(z+x-y)}{\log y} = \frac{z(x+y-z)}{\log z}$ ,

then  $x^y y^x = z^y y^z$  is equal to

- (a)  $z^{x}x^{z}$  (b)  $x^{z}y^{x}$  (c)  $x^{y}y^{z}$  (d)  $x^{x}y^{y}$
- **10.** If  $y = a^{\frac{1}{1 \log_a x}}$  and  $z = a^{\frac{1}{1 \log_a y}}$ , then x is equal to

(a) 
$$a^{\frac{1}{1 + \log_a z}}$$
 (b)  $a^{\frac{1}{2 + \log_a z}}$  (c)  $a^{\frac{1}{1 - \log_a z}}$  (d)  $a^{\frac{1}{2 - \log_a z}}$ 

- **11.** If  $\log_{0.3}(x-1) < \log_{0.09}(x-1)$ , then x lies in the interval
  - (a)  $(-\infty, 1)$
  - (b)(1,2)
  - $(c)(2, \infty)$
  - (d) None of the above
- **12.** The value of  $a^x b^y$  is (where  $x = \sqrt{\log_a b}$  and  $y = \sqrt{\log_b a}$ , a > 0, b > 0 and  $a, b \ne 1$ )
  - (a) 1

- (c) 0
- **13.** If  $x = 1 + \log_a bc$ ,  $y = 1 + \log_b ca$ ,  $z = 1 + \log_c ab$ , then

$$\frac{xyz}{xy + yz + zx}$$
 is equal to

- (a) 0

- **14.** The value of  $a = \int_{a}^{\log_b a} a$ 
  - (a)  $\log_a N$
- (b)  $\log_b N$
- (c)  $\log_N a$
- (d)  $\log_N b$
- **15.** The value of  $49^A + 5^B$ , where  $A = 1 \log_7 2$  and  $B = -\log_5 4$  is
  - (a) 10.5

- (d) 13.5
- **16.** The number of real values of the parameter  $\lambda$  for which  $(\log_{16} x)^2 - \log_{16} x + \log_{16} \lambda = 0$  with real coefficients will have exactly one solution is
  - (a) 1

- **17.** The number of roots of the equation  $x^{\log_x(x+3)^2} = 16$  is
  - (a) 1

- **18.** The point on the graph  $y = \log_2 \log_6 \{2^{\sqrt{(2x+1)}} + 4\}$ , whose  $\gamma$ -coordinate is 1 is
  - (a)(1,1)
- (b)(6,1)
- (c)(8,1)
- (d)(12,1)
- **19.** Given,  $\log 2 = 0.301$  and  $\log 3 = 0.477$ , then the number of digits before decimal in  $3^{12} \times 2^{8}$  is

- (c) 9
- (d) 11
- **20.** The number of solution(s) for the equation  $2\log_x a + \log_{ax} a + 3\log_{a^2x} a = 0$ , is
  - (a) one
- (b) two
- (c) three
- (d) four

# Logarithms and Their Properties Exercise 2:

### **More than One Correct Option Type Questions**

- This section contains 9 multiple choice questions. Each question has four choices (a), (b), (c) and (d) out of which MORE THAN ONE may be correct.
- **21.** If  $x^{(\log_2 x)^2 6\log_2 x + 11} = 64$ , then x is equal to
  - (a) 2
- (b) 4
- (c) 6
- **22.** If  $\log_{\lambda} x \cdot \log_5 \lambda = \log_x 5$ ,  $\lambda \neq 1$ ,  $\lambda > 0$ , then x is equal to

- (b) 5 (c)  $\frac{1}{z}$  (d) None of these
- **23.** If  $S = \{x : \sqrt{\log_x \sqrt{3x}}, \text{ where } \log_3 x > -1\}$ , then
  - (a) *S* is a finite set
- (b)  $S \in \phi$
- (c)  $S \subset (0, \infty)$
- (d) S properly contains  $\left(\frac{1}{3}, \infty\right)$
- **24.** If x satisfies  $\log_2(9^{x-1} + 7) = 2 + \log_2(3^{x-1} + 1)$ , then
  - (a)  $x \in O$
  - (b)  $x \in N$
  - (c)  $x \in \{x \in Q : x < 0\}$
  - (d)  $x \in N_e$  (set of even natural numbers)
- **25.**  $\log_p \log_p \sqrt[p]{\sqrt[p]{p}} \sqrt[p]{\dots \sqrt[p]{p}}$ , p > 0 and  $p \ne 1$  is equal to
  - (a) n
- (b) -n
- (c)  $\frac{1}{x}$
- (d)  $\log_{1/p}(p^n)$

- **26.** If  $\log_a x = \alpha$ ,  $\log_b x = \beta$ ,  $\log_a x = \gamma$  and  $\log_d x = \delta$ ,  $x \neq 1$ and  $a, b, c, d \neq 0, > 1$ , then  $\log_{abcd} x$  equals  $(a) \le \frac{\alpha + \beta + \gamma + \delta}{(b)} \ge \frac{\alpha + \beta + \gamma + \delta}{(b)}$ 
  - $(a) \le \frac{\alpha + \beta + \gamma + \delta}{\alpha + \beta + \beta + \beta}$
- $(c)\,\frac{1}{\alpha^{-1}+\beta^{-1}+\gamma^{-1}+\delta^{-1}}$
- **27.** If  $\log_{10} 5 = a$  and  $\log_{10} 3 = b$ , then
  - (a)  $\log_{10} 8 = 3(1 a)$
- (c)  $\log_{243} 32 = \left(\frac{1-a}{h}\right)$
- **28.** If x is a positive number different from 1, such that  $\log_a x$ ,  $\log_b x$  and  $\log_c x$  are in AP, then
  - (a)  $\log b = \frac{2(\log a)(\log c)}{(\log a + \log c)}$

- **29.** If |a| < |b|, b a < 1 and a, b are the real roots of the equation  $x^2 - |\alpha|x - |\beta| = 0$ , the equation

$$\log_{|b|} \left| \frac{x}{a} \right| - 1 = 0 \text{ has}$$

- (a) one root lying in interval  $(-\infty, a)$
- (b) one root lying in interval  $(b, \infty)$
- (c) one positive root
- (d) one negative root

## Logarithms and Their Properties Exercise 3: **Passage Based Questions**

This section contains 4 passages. Based upon each of the passage 3 multiple choice questions have to be answered. Each of these questions has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

#### Passage I

(Q. Nos. 30 to 32)

Let  $\log_2 N = a_1 + b_1$ ,  $\log_3 N = a_2 + b_2$  and  $\log_5 N = a_3 + b_3$ , where  $a_1, a_2, a_3 \in I$  and  $b_1, b_2, b_3 \in [0, 1)$ .

- **30.** If  $a_1 = 5$  and  $a_2 = 3$ , the number of integral values of N is (c) 48
- **31.** If  $a_1 = 6$ ,  $a_2 = 4$  and  $a_3 = 3$ , the largest integral value of N is
  - (a) 124
- (b) 63
- (c) 624
- (d) 127

- **32.** If  $a_1 = 6$ ,  $a_2 = 4$  and  $a_3 = 3$ , the difference of largest and smallest integral values of N, is
  - (a) 2
- (b) 8
- (c) 14
- (d) 20

#### Passage II

(Q. Nos. 33 to 35)

Let 'S' denotes the antilog of 0.5 to the base 256 and 'K' denotes the number of digits in 6<sup>10</sup> (given

 $\log_{10} 2 = 0.301$ ,  $\log_{10} 3 = 0.477$ ) and G denotes the number of positive integers, which have the characteristic 2, when the base of logarithm is 3.

- **33.** The value of *G* is (b) 24
  - (a) 18
- (c) 30
- (d) 36
- **34.** The value of KG is
  - (a) 72
- (b) 144
- (c) 216
- (d) 288

(c) 2016

#### Passage III

(Q. Nos. 36 to 38)

Suppose 'U' denotes the number of digits in the number  $(60)^{100}$  and 'M' denotes the number of cyphers after decimal, before a significant figure comes in  $(8)^{-296}$ . If the fraction U/M is expressed as rational number in the lowest term as p/q(given  $\log_{10} 2 = 0.301$  and  $\log_{10} 3 = 0.477$ ).

**36.** The value of 
$$p$$
 is

- (a) 1
- (c) 3
- (d) 4
- **37.** The value of q is

- (b) 2
- (c) 3

- (d) 4
- **38.** The equation whose roots are p and q, is

(a) 
$$x^2 - 3x + 2 = 0$$

(b) 
$$x^2 - 5x + 6 = 0$$

(c) 
$$x^2 - 7x + 12 = 0$$

(d) 
$$x^2 - 9x + 20 = 0$$

#### Passage IV (Q. Nos. 39 to 41)

Let G, O, E and L be positive real numbers such that  $\log (G \cdot L) + \log (G \cdot E) = 3, \log (E \cdot L) + \log (E \cdot O) = 4,$  $\log(O \cdot G) + \log(O \cdot L) = 5$  (base of the log is 10).

**39.** If the value of the product (GOEL) is  $\lambda$ , the value of

$$\sqrt{\log \lambda \sqrt{\log \lambda \sqrt{\log \lambda \dots}}} \text{ is }$$
(a) 3 (b) 4
(c) 5 (d) 7

- **40.** If the minimum value of 3G + 2L + 2O + E is  $2^{\lambda}3^{\mu}5^{\nu}$ ,

where  $\lambda, \mu$  and  $\nu$  are whole numbers, the value

$$\sum (\lambda^{\mu} + \mu^{\lambda})$$
 is

(a) 7

- (d) None of these
- **41.** If  $\log \left( \frac{G}{O} \right)$  and  $\log \left( \frac{O}{E} \right)$  are the roots of the equation
- (a)  $x^2 + x = 0$ (c)  $x^2 2x + 3 = 0$

# Logarithms and Their Properties Exercise 4: **Single Integer Answer Type Questions**

- This section contains **10 questions**. The answer to each question is a single digit integer, ranging from 0 to 9 (both inclusive).
- **42.** If  $x, y \in R^+$  and  $\log_{10}(2x) + \log_{10} y = 2$  and  $\log_{10} x^2 - \log_{10}(2y) = 4$  and  $x + y = \frac{m}{2}$ , where m and nare relative prime, the value of  $m - 3n^6$  is
- **43.** A line  $x = \lambda$  intersects the graph of  $y = \log_5 x$  and  $y = \log_5(x + 4)$ . The distance between the points of intersection is 0.5. Given  $\lambda = a + \sqrt{b}$ , where a and b are integers, the value of (a + b) is
- **44.** If the left hand side of the equation  $a(b-c)x^{2} + b(c-a)xy + c(a-b)y^{2} = 0$  is a perfect square, the value of  $\left\{ \frac{\log(a+c) + \log(a-2b+c)}{\log(a-c)} \right\}^{2}, (a,b,c \in \mathbb{R}^{+}, a > c) \text{ is }$
- **45.** Number of integers satisfying the inequality

- **46.** If x > 2 is a solution of the equation  $|\log_{\sqrt{3}} x - 2| + |\log_3 x - 2| = 2$ , then the value of x is
- **47.** Number of integers satisfying the inequality  $\log_2 \sqrt{x} - 2\log_{1/4}^2 x + 1 > 0$ , is
- **48.** The value of b(>0) for which the equation  $2\log_{1/25}(bx + 28) = -\log_5(12 - 4x - x^2)$  has coincident
- **49.** The value of  $\frac{2^{\log_{2^{1/4}} 2} 3^{\log_{2^{7}} 125} 4}{7^{4 \log_{49} 2} 3}$  is
- **50.** If  $x_1$  and  $x_2$  ( $x_2 > x_1$ ) are the integral solutions of the

$$(\log_5 x)^2 + \log_{5x} \left(\frac{5}{x}\right) = 1$$
, the value of  $|x_2 - 4x_1|$  is

**51.** If  $x = \log_{\lambda} a = \log_{a} b = \frac{1}{2} \log_{b} c$  and  $\log_{\lambda} c = nx^{n+1}$ , the value of *n* is

# **Logarithms and Their Properties Exercise 5:**

### **Matching Type Questions**

■ This section contains **3 questions**. Questions 52 to 54 have four statements (A, B, C and D) given in **Column I** and four statements (p, q, r and s) in **Column II**. Any given statement in **Column I** can have correct matching with one or more statement(s) given in **Column II**.

|     | Column I                                   | Column II |                          |
|-----|--------------------------------------------|-----------|--------------------------|
| (A) | $\frac{\log_3 243}{\log_2 \sqrt{32}}$      | (p)       | positive integer         |
| В)  | $\frac{2 \log 6}{(\log 12 + \log 3)}$      | (q)       | negative integer         |
| C)  | $\log_{1/3} \left(\frac{1}{9}\right)^{-2}$ | (r)       | rational but not integer |
| D)  | $\frac{\log_5 16 - \log_5 4}{\log_5 128}$  | (s)       | prime                    |

| (A) | Column I                                                                                                                                                     |     | Column II |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|--|
|     | The expression $\sqrt{\log_{0.5}^2 8}$ has the value equal to                                                                                                | (p) | 1         |  |
| (B) | The value of the expression $(\log_{10} 2)^3 + \log_{10} 8 \cdot \log_{10} 5 + (\log_{10} 5)^3 + 3$ , is                                                     | (q) | 2         |  |
| (C) | Let $N = \log_2 15 \cdot \log_{1/6} 2 \cdot \log_3 \left(\frac{1}{6}\right)$ . The value of $[N]$ is (where $[\cdot]$ denotes the greatest integer function) | (r) | 3         |  |

| Column I                                         |                          | Column II  |     |   |
|--------------------------------------------------|--------------------------|------------|-----|---|
| (D) If $(52.6)^a = \frac{1}{a} - \frac{1}{b}$ is | $(0.00526)^b = 100$ , th | e value of | (s) | 4 |

| 54. | Column I |                                                                                                                                                                                                                         |     | Column II                    |  |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------|--|
| Ä   | (A)      | If $\log_{1/x} \left\{ \frac{2(x-2)}{(x+1)(x-5)} \right\} \ge 1$ , then $x$ can                                                                                                                                         | (p) | $\left[0,\frac{1}{3}\right]$ |  |
|     |          | belongs to                                                                                                                                                                                                              |     | ` <                          |  |
|     | (B)      | If $\log_3 x - \log_3^2 x \le \frac{3}{2} \log_{(1/2\sqrt{2})} 4$ , then x can belongs to                                                                                                                               | (p) | (1, 2]                       |  |
|     | (C)      | If $\log_{1/2}(4-x) \ge \log_{1/2} 2 - \log_{1/2}(x-1)$ , then $x$ belongs to                                                                                                                                           | (r) | [3, 4)                       |  |
|     | (D)      | Let $\alpha$ and $\beta$ are the roots of the quadratic equation $(\lambda^2 - 3\lambda + 4)x^2 - 4(2\lambda - 1)x + 16 = 0$ , if $\alpha$ and $\beta$ satisfy the condition $\beta > 1 > \alpha$ , then $p$ can lie in | (s) | (3, 8)                       |  |

# **Logarithms and Their Properties Exercise 6:** Statement I and II Type Questions

■ **Directions** Question numbers 55 to 60 are Assertion-Reason type questions. Each of these questions contains two statements:

**Statement-1** (Assertion) and **Statement-2** (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below.

- (a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (b) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (c) Statement-1 is true, Statement-2 is false
- (d) Statement-1 is false, Statement-2 is true
- **55. Statement-1**  $\log_{10} x < \log_3 x < \log_e x < \log_2 x$   $(x > 0, x \ne 1)$ .

**Statement-2** If 0 < x < 1, then  $\log_x a > \log_x b \Rightarrow 0 < a < b$ .

**56. Statement-1** The equation  $7^{\log_7(x^3+1)} - x^2 = 1$  has two distinct real roots.

**Statement-2**  $a^{\log_a N} = N$ , where a > 0,  $a \ne 1$  and N > 0.

**57. Statement-1** 
$$\left(\frac{1}{3}\right)^7 < \left(\frac{1}{3}\right)^4$$

$$\Rightarrow 7 \log \left(\frac{1}{3}\right) < 4 \log \left(\frac{1}{3}\right) \Rightarrow 7 < 4$$

**Statement-2** If ax < ay, where a < 0, x, y > 0, then x > y.

**58. Statement-1** The equation  $x^{\log_x(1-x)^2} = 9$  has two distinct real solutions.

**Statement-2**  $a^{\log_a b} = b$ , when a > 0,  $a \ne 1$ , b > 0.

**59. Statement-1** The equation  $(\log x)^2 + \log x^2 - 3 = 0$  has two distinct solutions.

**Statement-2**  $\log x^2 = 2 \log x$ .

**60. Statement-1**  $\log_x 3 \cdot \log_{x/9} 3 = \log_{81}(3)$  has a solution. **Statement-2** Change of base in logarithms is possible.

# Logarithms and Their Properties Exercise 7:

## **Subjective Type Questions**



- **61.** (i) If  $\log_7 12 = a$ ,  $\log_{12} 24 = b$ , then find value of  $\log_{54} 168$  in terms of a and b.
  - (ii) If  $\log_3 4 = a$ ,  $\log_5 3 = b$ , then find the value of  $\log_3 10$  in terms of a and b.
- **62.** If  $\frac{\ln a}{b-c} = \frac{\ln b}{c-a} = \frac{\ln c}{a-b}$ , prove the following.
  - (i) abc = 1
  - (ii)  $a^a \cdot b^b \cdot c^c = 1$
  - (iii)  $a^{b^2+bc+c^2} \cdot b^{c^2+ca+a^2} \cdot c^{a^2+ab+b^2} = 1$
  - (iv)  $a + b + c \ge 3$
  - (v)  $a^a + b^b + c^c \ge 3$
  - (vi)  $a^{b^2+bc+c^2} + b^{c^2+ca+a^2} + c^{a^2+ab+b^2} \ge 3$
- **63.** Prove that  $\log_{10} 2$  lies between  $\frac{1}{3}$  and  $\frac{1}{4}$ .
- **64.** If  $\log 2 = 0.301$  and  $\log 3 = 0.477$ , find the number of integers in
  - (i)  $5^{200}$  (ii)  $6^{20}$
  - (iii) the number of zeroes after the decimal is  $3^{-500}$ .
- **65.** If  $\log 2 = 0.301$  and  $\log 3 = 0.477$ , find the value of  $\log (3.375)$ .
- **66.** Find the least value of  $\log_2 x \log_x (0.125)$  for x > 1.
- **67.** Without using the tables, prove that

$$\frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi} > 2.$$

- **68.** Solve the following equations.
  - (i)  $x^{1 + \log_{10} x} = 10x$
  - (ii)  $\log_2(9+2^x)=3$
  - (iii)  $2 \cdot x^{\log_4 3} + 3^{\log_4 x} = 27$
  - (iv)  $\log_4 \log_3 \log_2 x = 0$

(v) 
$$x^{\frac{\log_{10} x + 5}{3}} = 10^{5 + \log_{10} x}$$

(vi) 
$$\log_3 \left( \log_9 x + \frac{1}{2} + 9^x \right) = 2x$$

(vii) 
$$4^{\log_{10} x+1} - 6^{\log_{10} x} - 2 \cdot 3^{\log_{10} x^2 + 2} = 0$$

(viii) 
$$\frac{\log_{10}(x-3)}{\log_{10}(x^2-21)} = \frac{1}{2}$$

- (ix)  $x^{\log_2 x + 4} = 32$
- (x)  $\log_a x = x$ , where  $a = x^{\log_4 x}$
- (xi)  $\log_{\sqrt{2}\sin x}(1 + \cos x) = 2$

- **69.** Find a rational number, which is 50 times its own logarithm to the base 10.
- **70.** Find the value of the expression

$$\frac{2}{\log_4(2000)^6} + \frac{3}{\log_5(2000)^6}$$

- **71.** Find the value of x satisfying
  - $\log_a \{1 + \log_b \{1 + \log_c (1 + \log_p x)\}\} = 0.$
- **72.** Find the value of  $4^{5 \log_{4\sqrt{2}} (3 \sqrt{6}) 6 \log_{8} (\sqrt{3} \sqrt{2})}$
- **73.** Solve the following inequations.
  - (i)  $\log_{(2x+3)} x^2 < 1$
  - (ii)  $\log_{2x}(x^2 5x + 6) < 1$
  - (iii)  $\log_2(2-x) < \log_{1/2}(x+1)$
  - (iv)  $\log_{x^2}(x+2) < 1$
  - (v)  $3^{\log_3 \sqrt{(x-1)}} < 3^{\log_3 (x-6)} + 3$
  - (vi)  $\log_{1/2}(3x-1)^2 < \log_{1/2}(x+5)^2$
  - (vii)  $\log_{10} x + 2 \le \log_{10}^2 x$
  - (viii)  $\log_{10}(x^2 2x 2) \le 0$
  - (ix)  $\log_x \left( 2x \frac{3}{4} \right) > 2$
  - (x)  $\log_{1/3} x < \log_{1/2} x$
  - (xi)  $\log_{2x+3} x^2 < \log_{2x+3} (2x+3)$
  - (xii)  $\log_2^2 x + 3\log_2 x \ge \frac{5}{2}\log_{4\sqrt{2}} 16$
  - (xiii)  $(x^2 + x + 1)^x < 1$
  - (xiv)  $\log_{(3x^2+1)} 2 < \frac{1}{2}$
  - (xv)  $x^{(\log_{10} x)^2 3\log_{10} x + 1} > 1000$
  - (xvi)  $\log_4 \{14 + \log_6(x^2 64)\} \le 2$
  - (xvii)  $\log_2(9-2^x) \le 10^{\log_{10}(3-x)}$

(xviii) 
$$\log_a \left( \frac{2x+3}{x} \right) \ge 0$$
 for

(a) 
$$a > 1$$
, (b)  $0 < a < 1$ 

- $(xix) 1 + \log_2(x-1) \le \log_{x-1} 4$
- $(xx) \log_{5x+4}(x^2) \le \log_{5x+4}(2x+3)$
- **74.** Solve  $\sqrt{\log_x(ax)^{1/5} + \log_a(ax)^{1/5}}$

$$+\sqrt{\log_a\left(\frac{x}{a}\right)^{1/5} + \log_x\left(\frac{a}{x}\right)^{1/5}} = a.$$

**75.** It is known that x = 9 is root of the equation,

$$\log_{\pi}(x^2 + 15a^2) - \log_{\pi}(a - 2) = \log_{\pi}\frac{8ax}{a - 2}$$

find the other roots of this equation.

**76.** Solve 
$$\log_4(\log_3 x) + \log_{1/4}(\log_{1/3} y) = 0$$
 and  $x^2 + y^2 = \frac{17}{4}$ .

- **77.** Find the real value(s) of x satisfying the equation  $\log_{2x}(4x) + \log_{4x}(16x) = 4.$
- **78.** Find the sum and product of all possible values of *x* which makes the following statement true

$$\log_6 54 + \log_x 16 = \log_{\sqrt{2}} x - \log_{36} \left(\frac{4}{9}\right)$$

**79.** Solve the equation

$$\frac{3}{2}\log_4(x+2)^3 + 3 = \log_4(4-x)^3 + \log_4(x+6)^3.$$

- **80.** Solve  $\log_2 (4^{x+1} + 4) \cdot \log_2 (4^x + 1) = \log_{1/\sqrt{2}} \left( \frac{1}{\sqrt{\rho}} \right)$
- **81.** Solve the system of equations  $2^{\sqrt{x} + \sqrt{y}} = 256$  and  $\log_{10} \sqrt{xy} - \log_{10} \left(\frac{3}{2}\right) = 1.$
- **82.** Solve the system of equations  $\log_2 y = \log_4(xy - 2), \log_9 x^2 + \log_3(x - y) = 1.$

**83.** Find the solution set of the inequality

$$2\log_{1/4}(x+5) > \frac{9}{4}\log_{\frac{1}{3\sqrt{3}}}(9) + \log_{\sqrt{(x+5)}}(2)$$

- **84.** Solve  $\log_3(\sqrt{x} + |\sqrt{x} 1|) = \log_9(4\sqrt{x} 3 + 4|\sqrt{x} 1|)$ .
- **85.** In the inequality

$$(\log_2 x)^4 - \left(\log_{1/2} \frac{x^5}{4}\right)^2 - 20\log_2 x + 148 < 0$$

holds true in (a, b), where  $a, b \in N$ . Find the value of ab(a+b).

**86.** Find the value of x satisfying the equation

$$\sqrt{(\log_3 \sqrt[3]{3x} + \log_x \sqrt[3]{3x}) \cdot \log_3 x^3}$$

$$+\sqrt{\left(\log_3 \sqrt[3]{\left(\frac{x}{3}\right)} + \log_x \sqrt[3]{\left(\frac{3}{x}\right)}\right)\log_3 x^3} = 2$$

**87.** If *P* is the number of natural numbers whose logarithm to the base 10 have the characteristic P and Q is the number of natural numbers reciprocals of whose 3 logarithms to the base 10 have the characteristic -q, show that  $\log_{10} P - \log_{10} Q = p - q + 1$ .

# Logarithms and Their Properties Exercise 8:

### **Questions Asked in Previous 13 Year's Exam**

- This section contains questions asked in IIT-JEE, AIEEE, JEE Main & JEE Advanced from year 2005 to year 2017.
- **88.** Let  $a = \log_3 \log_3 2$  and an integer k satisfying

**6.** Let 
$$a = \log_3 \log_3 2$$
 and an integer  $k$  satisfying

 $1 < 2^{(-k+3^{-a})} < 2$ , then *k* equals to [IIT-JEE 2008, 1.5M]

(a) 0 (c) 2

(b) 1 (d) 3

**89.** Let  $(x_0, y_0)$  be solution of the following equations  $(2x)^{\ln 2} = (3y)^{\ln 3}$  and  $3^{\ln x} = 2^{\ln y}$ , then  $x_0$  is

[IIT-JEE 2011, 3M]

(a)  $\frac{1}{6}$  (b)  $\frac{1}{3}$  (c)  $\frac{1}{2}$ 

(d) 6

90. The value of

$$6 + \log_{3/2} \left( \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \dots}}} \right) is$$

[IIT-JEE 2012, 4M]

- **91.** If  $3^x = 4^{x-1}$ , then *x* equals
- [JEE Advanced 2013, 3M]

(a) 
$$\frac{2\log_3 2}{2\log_3 2 - 1}$$

(b) 
$$\frac{2}{2 - \log_2 3}$$

$$(c)\,\frac{1}{1-\log_4 3}$$

(d) 
$$\frac{2\log_2 3}{2\log_2 3 - 1}$$

# **Chapter Exercises**

1. (c) 2. (d) 3. (b) 4. (b) 5. (a) 6. (a) 7. (a) 8. (b) 9. (a) 10. (c) 11. (c) 12. (c) 13. (b) 14. (b) 15. (c) 16. (b) 17. (b) 18. (d) 19. (c) 20. (b) 21. (a, b, d) 22. (b, c) 23. (c, d) 24. (a, b) 25. (b, d) 26. (a, c) 27. (a, b, c, d) 28. (a, d) 29. (c, d) 30. (b) 31. (d) 32. (a) 33. (a) 34. (b) 35. (d) 36. (b) 37. (c) 38. (b) 39. (b) 40. (a) 41. (d) 42. (9) 43. (6) 44. (4) 45. (3) 46. (9) 47. (3) 48. (4) 49. (7) 50. (1) 51. (2) 52. (A) 
$$\rightarrow$$
 (p, s), (B)  $\rightarrow$  (p), (C)  $\rightarrow$  (q), (D)  $\rightarrow$  (r) 53. (A)  $\rightarrow$  (r), (B)  $\rightarrow$  (s), (C)  $\rightarrow$  (q), (D)  $\rightarrow$  (q) 54. (A)  $\rightarrow$  (q), (B)  $\rightarrow$  (p), (C)  $\rightarrow$  (q, r), (D)  $\rightarrow$  (s)

 $\frac{56. \text{ (d)}}{ab+1} = \frac{57. \text{ (d)}}{(ii)} = \frac{58. \text{ (d)}}{2b} = \frac{59. \text{ (c)}}{60. \text{ (d)}} = \frac{60. \text{ (d)}}{60. \text{ (d)}}$ 

66. 
$$2\sqrt{3}$$
 68. (i) 10,  $\frac{1}{10}$  (ii)  $x \in \phi$ 

(iii) 
$$x = 16$$
 (iv)  $x = 8$  (v)  $\{10^{-5}, 10^{3}\}$ 

(iii) 
$$x = 16$$
 (iv)  $x = 8$  (v)  $\{10^{-5}, 10^{3}\}$   
(vi)  $x = \frac{1}{3}$  (vii)  $x = \frac{1}{100}$  (viii)  $x = 5$  (ix)  $x = 2$  or  $\frac{1}{32}$ 

(x) 
$$x = 2$$
 (xi)  $x = \frac{\pi}{3}$ 

55. (d)

69. 100 70. 
$$\frac{1}{6}$$
 71. 1 72. 9

73. (i)  $x \in \left(-\frac{3}{2}, 3\right) \cup \{-1, 0\}$  (ii)  $x \in \left(0, \frac{1}{2}\right) \cup (1, 2) \cup (3, 6)$  (iii)  $x \in \left(-1, \frac{1 - \sqrt{5}}{2}\right) \cup \left(\frac{1 + \sqrt{5}}{2}, 2\right)$ 

(iv) 
$$x \in (-2, 1) \cup (2, \infty) \sim \{-1, 0\}$$
 (v)  $x > 6$   
(vi)  $x \in (-\infty, -5) \cup (-5, -1) \cup (3, \infty)$ 

$$(vii) x \in (0, 10^{-1}] \cup [10^2, \infty)$$

(viii)
$$x \in [-1, 1 - \sqrt{3}) \cup (1 + \sqrt{3}, 3]$$

(ix) 
$$x \in \left(\frac{3}{8}, \frac{1}{2}\right) \cup \left(1, \frac{3}{2}\right)$$
 (x)  $x \in (0, 1)$ 

$$(xi) x \in \left(-\frac{3}{2}, -1\right) \cup (-1, 3)$$
  $(xii) x \in \left(0, \frac{1}{16}\right] \cup [2, \infty)$ 

(xiii) 
$$x \in (-\infty, -1)$$

(xiv) 
$$x \in (-\infty, -1) \cup (1, \infty)$$

$$(xv) x \in (1000, \infty)$$

(xvi) 
$$x \in [-10, -8) \cup (8, 10]$$

(xvii) 
$$x \in (-\infty, 0]$$

(xviii) (a) 
$$x \in (-\infty, -3] \cup (0, \infty)$$
 (b)  $x \in \left[-3, -\frac{3}{2}\right]$ 

(xix) 
$$x \in (2, 3]$$
 (xx)  $x \in \left(-\frac{3}{5}, -\frac{3}{2}\right) \cup [-1, 0) \cup (0, 3]$ 

74. 
$$x = a^{4/5_{a2}}$$
 75.  $x = 15$  for  $a = 3$ 

76. 
$$x = 2$$
 or  $\frac{1}{2}$ ,  $y = \frac{1}{2}$  or 2

77. 
$$x = 1, 2^{-3/2}$$
 78. Sum =  $\frac{9}{2}$ , Product = 2

79. 
$$x = 2$$
 80.  $x = 0$  81.  $(9, 25)$  and  $(25, 9)$ 

82. 
$$x = 3$$
,  $y = 2$  83.  $x \in (-5, -4) \cup (-3, -1)$ 

84. 
$$x = \frac{25}{64}$$
 85. 3456 86.  $x \in (1, 3]$  88. (b)

# **Solutions**

**1.**  $\log_{10} 2 = 0.3010$ 

Let  $y = 2000^{2000}$ 

 $\log_{10} y = 2000 \log_{10} 2000 = 2000 \times (\log_{10} 2 + 3)$ = 2000 \times 3.3010 = 6602

So, the number of digits in  $2000^{2000} = 6602 + 1 = 6603$ .

**2.** :  $\lambda > 0$  and  $\lambda \neq 1$  and x > 0

 $\log_2 x + \log_4 x + \log_8 x = \log_\lambda x$ 

 $\Rightarrow \log_2 x + \frac{1}{2}\log_2 x + \frac{1}{3}\log_2 x = \log_\lambda x$ 

 $\Rightarrow \frac{11}{6}\log_2 x = \log_\lambda x$ 

 $\Rightarrow \frac{11}{6\log_x 2} = \frac{11}{\log_x \lambda}$ 

 $\Rightarrow$   $11 \log_x \lambda - 6 \log_x 2 = 0$ 

 $\Rightarrow \qquad \log_x \left( \frac{\lambda^{11}}{2^6} \right) = 0 \Rightarrow \frac{\lambda^{11}}{2^6} = 1$ 

 $\Rightarrow \qquad \qquad \lambda^{11} = 2^6 \Rightarrow \quad \lambda = 2^{6/11}$ 

 $\Rightarrow \qquad \qquad \lambda = (2^6)^{1/11} \qquad \qquad \dots (i)$ 

Given that,  $\lambda = \sqrt[b]{a}$  and  $a, b \in N$ 

$$\Rightarrow \qquad \qquad \lambda = a^{\frac{1}{b}} \qquad \qquad ...(ii)$$

From Eqs. (i) and (ii), we get

$$a = 2^6$$
 and  $b = 11$ 

 $\Rightarrow$  a+b=64+11=75

3. 
$$x^{\log_{10}^2 x + \log_{10} x^3 + 3} = \frac{2}{\frac{1}{\sqrt{x+1} - 1} - \frac{1}{\sqrt{x+1} + 1}}$$

Given, a, b and c are real solution Eq. (i) and a > b > c and for Eq. (i) to be defined x > 0,  $x > -1 \implies x > 0$  from Eq. (i),

$$x^{\log_{10}^2 x + 3\log_{10} x + 3} = \frac{2x}{2}$$

On taking logarithm both sides on base 10, then

$$(\log_{10}^2 x + 3\log_{10} x + 3)\log_{10} x = \log_{10} x$$

$$\Rightarrow (\log_{10}^2 x + 3\log_{10} x + 2)\log_{10} x = 0$$

$$\Rightarrow (\log_{10} x + 1)(\log_{10} x + 2)\log_{10} x = 0$$

$$\log_{10} x = -2, -1, 0$$

$$\therefore \qquad x = 10^{-2}, 10^{-1}, 10^{0}$$

$$x = \frac{1}{100}, \frac{1}{10}, 1$$

So, a,b,c can take values  $a=1, b=\frac{1}{10}, c=\frac{1}{100}$   $(\because a>b>c)$ 

$$\therefore$$
  $a, b, c \in GP$ 

4. 
$$f(n) = \prod_{i=0}^{n-1} \frac{\log(i+1)}{\log(i)} = \frac{\log(n)}{\log(2)} = \log_2 n$$

 $f(2^k) = k$ 

Then, 
$$\sum_{k=1}^{100} f(2^k) = \sum_{k=1}^{100} k = \frac{100 \cdot (100 + 1)}{2} = 5050$$

**5.**  $\log_3 27 \cdot \log_x 7 = \log_{27} x \cdot \log_7 3$  ... (i)

Eq. (i) valid for x > 0,  $x \ne 1$ On solving Eq. (i),

$$\log_3(3^3) \cdot \log_x 7 = \frac{1}{3} \log_3 x \cdot \log_7 7$$

 $\Rightarrow \qquad 9 \cdot \log_x 7 = \log_7 x$ 

$$\Rightarrow \qquad 9 = (\log_7 x)^2$$

$$\Rightarrow \qquad \log_7 x = \pm 3$$

$$\Rightarrow x = 7^3 \text{ or } x = 7^{-3}$$

Then, the least value of x is  $\frac{1}{7^3}$  i.e.,  $7^{-3}$ 

**6.** : 
$$x = \log_5(5^3 \times 8) = 3 + \log_5 8$$

$$\Rightarrow x - 3 = \log_5 8 \qquad \dots (i)$$

and 
$$y = \log_7(7^3 \times 6) = 3 + \log_7 6$$

$$\Rightarrow$$
  $y-3 = \log_7 6$  ...(ii)

$$\therefore$$
 8 > 6 and 7 > 5

$$\Rightarrow$$
 log8 > log6 and log7 > log5

or 
$$(\log 8)(\log 7) > (\log 6)(\log 5)$$

$$\Rightarrow \log_5 8 > \log_7 6$$

$$\Rightarrow$$
  $x-3>y-3$  [from Eqs. (i) and (ii)]

$$\therefore$$
  $x > y$ 

7. : 
$$\log_5 120 + (x-3) - 2\log_5 (1-5^{x-3}) = -\log_5 (0.2-5^{x-4})$$

$$\Rightarrow \log_5(5 \times 24) + (x - 3)$$

$$= \log_5(1 - 5^{x-3})^2 - \log_5\left(\frac{1 - 5^{x-3}}{5}\right)$$

$$\Rightarrow$$
 1 + log<sub>5</sub>24 + (x - 3) = log<sub>5</sub> {5 · (1 - 5<sup>x - 3</sup>)}

$$\Rightarrow 1 + \log_5(24 \cdot 5^{x-3}) = 1 + \log_5(1 - 5^{x-3})$$

$$\Rightarrow 24 \cdot 5^{x-3} = 1 - 5^{x-3}$$

$$\Rightarrow$$
  $25 \cdot 5^{x-3} = 1$ 

$$\Rightarrow$$
  $5^{x-1} = 5^0$ 

$$\therefore \qquad x-1=0 \implies x=1$$

**8.** Given, 
$$x_n > x_{n-1} > \cdots > x_2 > x_1 > 1$$

**9.** Let 
$$\frac{x(y+z-x)}{\log x} = \frac{y(z+x-y)}{\log y} = \frac{z(x+y-z)}{\log z} = \frac{1}{n}$$

Then, 
$$\log x = nx(y + z - x)$$
 ...(i)

$$\log y = ny(z + x - y) \qquad \dots (ii)$$

and 
$$\log z = nz(x + y - z)$$
 ...(iii)

$$\therefore y \log x + x \log y = y \log z + z \log y$$

$$= z \log x + x \log z$$

$$\Rightarrow \log(x^{y} \cdot y^{x}) = \log(y^{z} \cdot z^{y}) = \log(x^{z} \cdot z^{x})$$

$$\Rightarrow x^{y} \cdot y^{x} = y^{z} \cdot z^{y} = z^{x} \cdot x^{z}$$

**10.** 
$$y = a^{\frac{1}{1 - \log_a x}}$$

$$\Rightarrow \log_a y = \frac{1}{1 - \log_a x} \qquad ...(i)$$

and 
$$z = a^{\frac{1}{1 - \log_a 3}}$$

or 
$$\log_a z = \frac{1}{1 - \log_a y} \qquad \dots (ii)$$

From Eqs. (i) and (ii), we get

$$\log_a z = \frac{1}{1 - \left(\frac{1}{1 - \log_a x}\right)} = 1 - \frac{1}{\log_a x}$$

$$\Rightarrow \frac{1}{\log_a x} = (1 - \log_a z) \Rightarrow \log_a x = \frac{1}{(1 - \log_a z)}$$

$$\therefore \qquad x = a^{\frac{1}{1 - \log_a z}}$$

**11.** 
$$\log_{0.3}(x-1) < \log_{0.09}(x-1)$$
 ...(i)

Eq. (i) defined for 
$$x > 1$$
, ...(ii)

$$\Rightarrow \log_{0.3}(x-1) - \log_{(0.3)^2}(x-1) < 0$$

$$\Rightarrow \log_{0.3}(x-1) - \frac{1}{2}\log_{0.3}(x-1) < 0$$

$$\Rightarrow \frac{1}{2}\log_{0.3}(x-1) < 0$$

$$\Rightarrow \qquad \log_{0.3}(x-1) < 0$$

$$\Rightarrow \qquad (x-1) > (0.3)^0$$

[: base of log is lie in 
$$(0, 1)$$
]  
 $\Rightarrow x > 2$  ...(iii)

From Eqs. (ii) and (iii), we get

$$x > 2 \implies x \in (2, \infty)$$

**12.** 
$$\therefore a^{x} = a^{\sqrt{\log_{a} b}}$$

$$= a^{\sqrt{\log_{a} b} \cdot \sqrt{\log_{a} b} \sqrt{\log_{b} a}} = a^{\log_{a} b \sqrt{\log_{b} a}} = b^{\sqrt{\log_{b} a}} = b^{y}$$

$$\therefore a^{x} - b^{y} = 0$$

**13.** : 
$$x = 1 + \log_a bc = \log_a a + \log_a bc = \log_a (abc)$$

$$\therefore \frac{1}{x} = \log_{abc} a \qquad \dots (i)$$

Similarly, 
$$\frac{1}{y} = \log_{abc} b$$
 ...(ii)

and 
$$\frac{1}{z} = \log_{abc} c$$
 ...(iii)

On adding Eqs. (i), (ii) and (iii), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \log_{abc} abc = 1$$

$$\Rightarrow \frac{xy + yz + zx}{xyz} = 1 \text{ or } \frac{xyz}{xy + yz + zx} = 1$$

14. 
$$a \frac{\log_b(\log_b N)}{\log_b a} = a^{\log_a(\log_b N)} = \log_b N$$

$$a = a^{\log_b a} = a^{\log_a(\log_b N)} = \log_b N$$

**15.** 
$$49^A + 5^B = ?$$

$$A = 1 - \log_7 2$$
$$A = \log_7 7 - \log_7 2$$

$$A = \log_7 7 - \log_7 2$$

$$A = \log_7 \frac{7}{2} \implies 7^A = \frac{7}{2} \implies 49^A = \frac{49}{4}$$

and 
$$B = -\log_5 4 = \log_5 \frac{1}{4} \implies 5^B = \frac{1}{4}$$

$$\therefore 49^A + 5^B = \frac{49}{4} + \frac{1}{4} = \frac{50}{4} = 125$$

**16.** 
$$(\log_{16} x)^2 - \log_{16} x + \log_{16} \lambda = 0$$

Eq. (i) defined for 
$$x > 0$$
,  $\lambda > 0 \left( \log_{16} x - \frac{1}{2} \right)^2 - \frac{1}{4} + \log_{16} \lambda = 0$ 

For exactly one solution,

$$\log_{16} x - \frac{1}{2} = 0$$

$$-\frac{1}{4} + \log_{16} \lambda = 0 \implies \log_{16} \lambda = \frac{1}{4}$$

or 
$$\lambda = (16)^{1/4} = 2$$

17. 
$$x^{\log_x(x+3)^2} = 16$$
 ...(i)

From Eq. (i), 
$$x > 0$$
 and  $x \ne 1$  ... (ii)

By Eq. (i), 
$$(x+3)^2 = 16$$

$$\Rightarrow$$
  $x+3=\pm 4$ 

$$\Rightarrow$$
  $x=1 \text{ or } x=-7$ 

From Eq. (ii), no values of *x* satisfy Eq. (i).

- $\therefore$  Number of values of x satisfy Eq. (i)
- $\therefore$  Number of roots = 0

**18.** Given, 
$$y = \log_2 \log_6(2^{\sqrt{2x+1}} + 4)$$

From Eq. (i) to be defined,

$$2x + 1 > 0 \implies x > -\frac{1}{2}$$
 ... (i.

We find value of x for which y = 1

$$\therefore 1 = \log_2 \log_6 (2^{\sqrt{2x+1}} + 4)$$

$$\Rightarrow \log_6(2^{\sqrt{2x+1}} + 4) = 2$$

$$\Rightarrow \qquad 2^{\sqrt{2x+1}} + 4 = 36$$

$$\Rightarrow \qquad 2^{\sqrt{2x+1}} = 32 = 2^5 \quad \Rightarrow \sqrt{2x+1} = 5$$

$$\Rightarrow$$
  $2x + 1 = 25 \Rightarrow x = 12$ 

So, required point is (12, 1).

**19.** Given that,  $\log 2 = 0.301$ 

$$\log 3 = 0.477$$

Let 
$$y = 3^{12} \times 2^8$$

$$\log y = 12\log 3 + 8\log 2$$

$$= 12 \times (0.477) + 8(0.301) = 8.132$$

So, number of digits before decimal in  $3^{12} \times 2^8 = 8 + 1 = 9$ 

**20.** Given, equation 
$$2 \log_x a + \log_{ax} a + 3 \log_{a^2 x} a = 0$$
 ...(i)

$$\Rightarrow \frac{2}{\log_a x} + \frac{1}{1 + \log_a x} + \frac{3}{2 + \log_a x} = 0 \qquad ...(ii)$$

Let 
$$\log_a x =$$

Then, Eq. (ii),

$$\frac{2}{t} + \frac{1}{1+t} + \frac{3}{2+t} = 0 \implies 6t^2 + 11t + 4 = 0$$

$$\Rightarrow \qquad t = -\frac{4}{3} \text{ or } -\frac{1}{2}$$

So, 
$$x = a^{-4/3}$$
 or  $x = a^{-1/2}$ 

Two value of *x* possible for which Eq. (i) is defined and satisfy.

#### **21.** Decimal on x > 0 and $x \ne 1$ .

Taking logarithm on both sides on base 2, we get

$$\{(\log_2 x)^2 - 6\log_2 x + 11\}\log_2 x = 6$$

Let 
$$\log_2 x = t$$
  
∴  $t^3 - 6t^2 + 11t - 6 = 0$   
⇒  $(t - 1)(t - 2)(t - 3) = 0 \Rightarrow t = 1, 2, 3$   
⇒  $\log_2 x = 1, 2, 3$   
⇒  $x = 2, 2^2, 2^3$ 

**22.** 
$$\log_{\lambda} x \cdot \log_5 \lambda = \log_x 5$$
 ...(i)

$$\lambda \neq 1, \lambda > 0 \text{ and } x > 0, x \neq 1$$
  
 $\Rightarrow \log_5 x = \log_x 5 \Rightarrow (\log_5 x)^2 = 1$   
 $\Rightarrow \log_5 x = \pm 1 \Rightarrow x = 5^1 \text{ and } 5^{-1}$ 

$$\therefore \qquad x = 5 \quad \text{and} \quad \frac{1}{5}$$

#### **23.** $S = \{x : \sqrt{\log_x \sqrt{3x}} : \log_3 x > -1\}$

$$\log_3 x > -1$$

$$x > \frac{1}{3} \qquad \dots (i)$$

Let 
$$y = \sqrt{\log_x \sqrt{3x}}, x \neq 1$$

To be defined 
$$y, 3x > 0 \implies x > 0$$
 ...(ii)

and  $\log_x \sqrt{3x} \ge 0$ 

From Eqs. (i) and (iii),

for 
$$x \in \left(\frac{1}{3}, 1\right) \Rightarrow \sqrt{3}x \le 1$$
  
 $\Rightarrow 3x \le 1 \Rightarrow x \le \frac{1}{2}$ 

No solution for this case.

Now, for x > 1, from Eq. (iii),  $\sqrt{3x} \ge 1 \implies x \ge \frac{1}{3}$ 

$$\therefore$$
  $x > 1$ 

#### 24. Given equation,

$$\log_2(9^{x-1} + 7) = 2 + \log_2(3^{x-1} + 1)$$

$$\Rightarrow \log_2 \frac{\{3^{2(x-1)} + 7\}}{3^{(x-1)} + 1} = 2$$

$$\Rightarrow 3^{2(x-1)} + 7 = 4 \cdot \{3^{(x-1)} + 1\}$$

$$\Rightarrow \{3^{(x-1)}\}^2 - 4 \cdot 3^{(x-1)} + 3 = 0$$

$$\Rightarrow (3^{x-1} - 3)(3^{x-1} - 1) = 0$$

$$\Rightarrow x - 1 = 1 \text{ or } x - 1 = 0$$

$$\Rightarrow x = 2 \text{ or } x = 1$$

**25.** 
$$y = \log_p \log_p (\sqrt[p]{p \cdots p / p}) \qquad [p > 0, p \neq 1]$$

$$= \log_{p} \left\{ \log_{p} (\sqrt[p]{\cdots \sqrt[p]{p}})^{\frac{1}{p}} \right\} = \log_{p} \left\{ \frac{1}{p} \log_{p} (\sqrt[p]{\sqrt[p]{\cdots \sqrt[p]{p}}}) \right\}$$

$$= \log_{p} \left\{ \frac{1}{p} \cdot \frac{1}{p} \log_{p} (\sqrt[p]{\sqrt[p]{\cdots \sqrt[p]{p}}}) \right\}$$

$$= \log_{p} \left( \frac{1}{p} \cdot \frac{1}{p} \log_{p} (\sqrt[p]{\sqrt[p]{\cdots \sqrt[p]{p}}}) \right\}$$

$$= \log_{p} \left( \frac{1}{p} \cdot \frac{1}{p} \log_{p} (\sqrt[p]{\sqrt[p]{\cdots \sqrt[p]{p}}}) \right\}$$

**26.** 
$$\log_a x = \alpha$$
,  $\log_b x = \beta$ ,  $\log_c x = \gamma$ ,  $\log_d x = \delta$ 

$$\log_x a = \alpha^{-1}$$

$$\log_x b = \beta^{-1}$$

$$\log_x c = \gamma^{-1}$$

$$\dots$$

$$\Rightarrow \log_x c = \gamma^{-1} \qquad \dots(iii)$$

$$\Rightarrow \log_x d = \delta^{-1} \qquad \dots (iv)$$

On adding Eqs. (i), (ii), (iii) and (iv), we get

$$\log_x(abcd) = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} \qquad \dots(v)$$

$$\therefore \log_{abcd} x = \frac{1}{a^{-1} + \beta^{-1} + \gamma^{-1} + \delta^{-1}}$$

For  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ 

$$AM \ge HM \Rightarrow \frac{\alpha + \beta + \gamma + \delta}{4} \ge \frac{4}{\alpha^{-1} + \beta^{-1} + \gamma^{-1} + \delta^{-1}}$$

or 
$$\frac{1}{\alpha^{-1} + \beta^{-1} + \gamma^{-1} + \delta^{-1}} \le \frac{\alpha + \beta + \gamma + \delta}{16}$$

$$\log_{abcd} x \le \frac{\alpha + \beta + \gamma + \delta}{16}$$
 [from Eq. (v)]

**27.** : 
$$\log_{10} 5 = a$$
 and  $\log_{10} 3 = b$ 

$$\log_{10} 3 = u \text{ and } \log_{10} 3 = v$$

$$\log_{10} 2 = \log_{10} \left(\frac{10}{5}\right) = 1 - a \qquad ...(ii)$$

Option (a)

...(iii)

$$\log_{10} 8 = 3 \log_{10} 2 = 3 (1 - a)$$
 [from Eq. (ii)]

Option (b) 
$$\log_{40} 15 = \frac{\log_{10} 15}{\log_{10} 40} = \frac{\log_{10} (5 \times 3)}{\log_{10} (2^3 \times 5)}$$
  

$$= \frac{\log_{10} 5 + \log_{10} 3}{\log_{10} 2^3 + \log_{10} 5}$$

$$= \frac{a+b}{3(1-a)+a} = \frac{(a+b)}{(3-2a)}$$

Option (c) 
$$\log_{243} 32 = \log_{3^5} 2^5 = \frac{5}{5} \log_5 2 = \frac{\log_{10} 2}{\log_{10} 2}$$
  
=  $\frac{1-a}{a}$  [from Eqs. (i) and (ii)]

Hence, all options are correct.

#### **28.** : x > 0 and $x \ne 1$

Given,  $\log_a x$ ,  $\log_b x$  and  $\log_c x$  are in AP.

$$\Rightarrow$$
  $2\log_b x = \log_a x + \log_c x$ 

$$\Rightarrow \frac{2\log x}{\log b} = \frac{\log x}{\log a} + \frac{\log x}{\log c}$$

$$\Rightarrow \frac{2}{\log b} = \frac{1}{\log a} + \frac{1}{\log c}$$

$$\Rightarrow \log b = \frac{2(\log a)(\log c)}{(\log a + \log c)}$$

Also, 
$$\frac{\log b}{\log a} = \frac{2\log c}{\log a + \log c}$$

$$\Rightarrow \qquad \log_a b = \frac{\log c^2}{\log(ac)} = \log_{(ac)} c^2$$

$$c^2 = (ac)^{\log_a b}$$

#### **29.** |a| < |b|, b - a < 1

$$a, b \in x^2 - |a| |x - |\beta| = 0$$
 ...(i)

So, 
$$\begin{array}{c} a+b=|\alpha| \\ ab=-|\beta| \end{array} \qquad ... (ii)$$

Given equation, 
$$\log_{|b|} \left| \frac{x}{a} \right| - 1 = 0$$
,  $\log_{|b|} \left| \frac{x}{a} \right| = 1$ 

$$\Rightarrow \qquad \left|\frac{x}{a}\right| = |b|^1$$

$$\Rightarrow |x| = |ab|$$

$$\Rightarrow |x| = |\beta|$$
 [from Eq. (ii)]  
 
$$\therefore x = \pm \beta$$

#### **Sol.** (Q. Nos. 30 to 32)

$$\therefore \qquad \log_2 N = a_1 + b_1$$

$$\Rightarrow b_1 = \log_2 N - a_1$$

Given, 
$$0 \le b_1 < 1 \Longrightarrow 0 \le \log_2 N - a_1 < 1$$

$$\Rightarrow \qquad a_1 \le \log_2 N < 1 + a_1$$

$$\Rightarrow$$
  $2^{a_1} \le N < 2^{1+a_1}$  ...(i)

Similarly, 
$$3^{a_2} \le N 3^{1+a_2}$$
 ...(ii)

and 
$$5^{a_3} \le N < 5^{1+a_3}$$
 ...(iii)

#### **30.** Here, $a_1 = 5$ and $a_2 = 3$ , then from Eqs. (i) and (ii),

$$2^5 \le N < 2^6$$
 and  $3^3 \le N < 3^4$ 

 $\therefore$  Common values of *N* are 32, 33, 34, ..., 63

Number of integral values of *N* are 32.

#### **31.** Here, $a_1 = 6$ , $a_2 = 4$ and $a_3 = 3$ , then from Eqs. (i), (ii) and (iii),

$$2^6 \le N < 2^7, 3^4 \le N < 3^5$$
 and  $5^3 \le N < 5^4$ 

- ⇒ 64, 65, 66, ..., 127, 81, 82, 83,..., 242 and 125, 126, ..., 624
- ∴ Largest common value = 127
- **32.** Here,  $a_1 = 6$ ,  $a_2 = 4$  and  $a_3 = 3$

From question number 31, we get

64, 65, 66,..., 127; 81, 82, 83, ..., 242 and 125, 126, ..., 624

: Largest common value = 127

and smallest common value = 125

:. Difference = 127 - 125 = 2

#### **Sol.** (Q. Nos. 33 to 35)

 $\log x \neq 0$ 

 $\therefore x \neq 1$ 

S =Antilog of (0.5) to the base 256

$$\Rightarrow \log_{256} S = 0.5$$

$$S = (256)^{0.5} = (2^8)^{1/2}$$

$$S=2^4$$

$$S = 16$$
 ...(i)

$$K =$$
Number of digits in  $6^{10}$ 

$$\log_{10} 2 = 0.301$$
,  $\log_{10} 3 = 0.477$ 

Let 
$$\alpha = 6^{10}$$

$$\log \alpha = 10 \log_{10} 6 = 10(0.301 + 0.477)$$
$$= 10(0.778)$$

$$\log(6^{10}) = 7.78$$

So, 
$$x = 7 + 1, x = 8$$

Number of positive integers which have characteristic 2, when the base of logarithm is 3

$$=3^{2+1}-3^2=18$$

$$G = 18$$

**33.** The value of 
$$G = 18$$

**34.** The value of 
$$KG = 8 \times 18 = 144$$

**35.** The value of 
$$SKG = 16 \times 8 \times 18 = 16 \times 144 = 2304$$

#### **Sol.** (Q. Nos. 36 to 38)

$$U =$$
Number of digits in  $(60)^{100}$ 

Let 
$$\alpha = (60)^{100}$$

$$\log_{10} \alpha = 100 \log_{10} 60 = 100(1 + \log_{10} 2 + \log_{10} 3)$$

$$=100(1.778)$$

$$\log_{10}\alpha = 177.8$$

So, 
$$U = 177 + 1 \Rightarrow U = 178$$
 ...(i)

M = Number of cyphers after decimal, before a significant figure comes in (8)<sup>-296</sup>

Let 
$$\beta = (8)^{-296}$$

$$\log_{10}\beta = (-296)\log_{10}8 = (-296)\times 3\log_{10}2$$

$$\log_{10}\beta = (-296) \times 3 \times (0.301)$$

$$=-267.288 = -267 - 0.288$$

$$=-267-1+(1-0.288)=-268+0.712$$

$$\log_{10}\beta = \overline{268.712}$$

$$M = 268 - 1 = 267$$

$$\frac{U}{M} = \frac{178}{267}$$

According to the question,

$$\frac{U}{M} = \frac{U}{M}$$

So, 
$$p = 2$$
 and  $q = 3$ 

**36.** The value of 
$$p = 2$$
.

**37.** The value of 
$$q = 3$$
.

**38.** The equation whose roots are p and q is 
$$x^2 - 5x + 6 = 0$$
.

#### **Sol.** (Q. Nos. 39 to 41)

According to question, G, O, E, L > 0 and are real numbers.

$$\log_{10}(G \cdot L) + \log_{10}(G \cdot E) = 3 \Longrightarrow \log_{10}G^2LE = 3$$

$$\Rightarrow \qquad G^2 LE = 10^3 \qquad \dots (i)$$

and 
$$\log_{10} E \cdot L + \log_{10} E \cdot O = 4$$

$$\Rightarrow \log_{10} E^2 \cdot L \cdot O = 4$$

$$\Rightarrow E^2 \cdot L \cdot O = 10^4 \qquad ...(ii)$$

and 
$$\log_{10}(O \cdot G) + \log_{10}(O \cdot L) = 5$$

$$\Rightarrow \log_{10} O^2 GL = 5 \Rightarrow O^2 GL = 10^5 \qquad ...(iii)$$

From Eqs. (i), (ii) and (iii), we get

$$G^3O^3E^3L^3 = 10^{12}$$
$$GOEL = 10^4$$

$$\lambda = 10^4$$

$$y = \sqrt{\log \lambda \sqrt{\log \lambda \sqrt{\log \lambda \cdots}}} = (\log \lambda)^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots}$$
$$= (\log \lambda)^{\frac{1/2}{1 - 1/2}} = (\log \lambda)$$
$$= \log 10^4 = 4 \log 10 = 4$$

#### **40.** Minimum of $3G + 2L + 2O + E = 2^{\lambda} 3^{\mu} 5^{\nu}$

where  $\lambda, \mu, \nu \in W$ 

Apply AM  $\geq$  GM for 3G, 2L, 2O, E

$$\frac{3G + 2L + 2O + E}{8} \ge \sqrt[8]{G^3 \times L^2 \times O^2 \times E}$$

So, 
$$8 \times \sqrt[8]{G^3 L^2 O^2 E} = 2^{\lambda} 3^{\mu} 5^{\nu}$$
 ...(v)

(equality hold, if G = L = O = E)

From Eqs. (i) and (iii) of Q. 10, we get

$$G^3L^2O^2E = 10^8$$

From Eq. (v), 
$$8 \times (10^8)^{1/8} = 2^{\lambda} 3^{\mu} 5^{\nu}$$

$$8 \times 10 = 2^{\lambda} 3^{\mu} 5^{\upsilon}$$

$$2^4 \times 5^1 = 2^{\lambda} 3^{\mu} 5^{\nu}$$

$$\lambda = 4, \upsilon = 1, \mu = 0$$
  
$$\Sigma(\lambda^{\mu} + \mu^{\lambda}) = (4^{0} + 0^{4}) + (0^{1} + 1^{0}) + (1^{4} + 4^{1})$$

$$= (1+0) + (0+1) + 1 + 4 = 7$$

**41.** 
$$\log_{10}\left(\frac{G}{O}\right) + \log_{10}\left(\frac{O}{F}\right) = \log_{10}\left(\frac{G}{F}\right) = \log_{10}1 = 0$$

[divide Eq. (iv) and Eq. (ii) of Q. 39]  

$$P = \log_{10} \frac{G}{O} \cdot \log_{10} \frac{O}{E} = \log \left(\frac{1}{10}\right) \log(10) = -1$$

[by dividing Eq. (i) by Eq. (ii) and dividing Eq. (iii) by Eq. (iv) in

$$= x^{2} - 0 \cdot x + (-1) = 0 = x^{2} - 1$$

**42.** 
$$\log_{10}(2x) + \log_{10} y = 2 \implies 2xy = 10^2$$
 ...(i)

and 
$$\log_{10} x^2 - \log_{10} 2y = 4$$

$$\Rightarrow \frac{x^2}{2y} = 10^4 \qquad \dots (ii)$$

From Eqs. (i) and (ii), 
$$x^3 = 10^6 \implies x = 100$$

From Eq. (i), 
$$y = \frac{1}{2}$$

$$\therefore$$
  $x + y = 100 + \frac{1}{2} = \frac{201}{2} = \frac{m}{n}$  (given)

$$\therefore \qquad m = 201 \text{ and } n = 201$$

$$\Rightarrow m - 3n^6 = 201 - 3(2)^6 = 201 - 192 = 9$$

#### **43.** Solving, $x = \lambda$ and $y = \log_5 x$ , we get

$$A \equiv (\lambda, \log_5 \lambda), \lambda > 0$$

 $A \equiv (\lambda, \log_5 \lambda), \lambda > 0$ and solving  $x = \lambda$  and  $y = \log_5(x + 4)$ , we get

$$B \equiv {\lambda, \log_5(\lambda + 4)}, \lambda > -4$$

Given, AB = 0.5

$$\Rightarrow \log_5(\lambda + 4) - \log_5 \lambda = 0.5$$

$$\Rightarrow \log_5(\lambda + 4) - \log_5 \lambda = 0.5$$

$$\Rightarrow \frac{\lambda + 4}{\lambda} = (5)^{1/2} = \sqrt{5}$$

$$\lambda = \frac{4}{\sqrt{5} - 1} = 4 \frac{(\sqrt{5} + 1)}{4}$$
$$= 1 + \sqrt{5} = a + \sqrt{b}$$

[given]

[from Eq. (ii)]

$$u - 1$$
 and

Then, 
$$a+b=1+5=6$$

**44.** : 
$$a(b-c)x^2 + b(c-a)xy + c(a-b)y^2 = b, y \neq 0$$
 ...(i)

$$a(b-c)\left(\frac{x}{y}\right)^2 + b(c-a)\left(\frac{x}{y}\right) + c(a-b) = 0$$

Let 
$$\frac{x}{y} = X$$

$$\Rightarrow a(b-c)X^2 + b(c-a)X + c(a-b) = 0$$

$$a(b-c)+b(c-a)+c(a-b)=0$$

:. Roots are equal.

$$\therefore 1 \times 1 = \frac{c(a-b)}{a(b-c)}$$

$$\Rightarrow \qquad b = \frac{2ac}{a+c}$$

Now, 
$$\log(a+c) + \log(a-2b+c)$$
  
=  $\log\{(a+c)^2 - 2b(a+c)\}$   
=  $\log\{(a+c)^2 - 4ac\}$ 

$$\Rightarrow \frac{\log(a-c)^2 = 2\log(a-c)}{\log(a+c) + \log(a-2b+c)} = 2$$

$$\therefore \left\{ \frac{\log(a+c) + \log(a-2b+c)}{\log(a-c)} \right\}^2 = 4$$

#### **45.** According to the question, $x \in I$

Given equation, 
$$\left(\frac{1}{3}\right)^{\frac{|x+2|}{2-|x|}} > 9 \quad [x \neq \pm 2]$$
 ...(i)

$$\Rightarrow \qquad 3^{\frac{|x+2|}{2-|x|}} > 3^2 \Rightarrow -\frac{|x+2|}{2-|x|} > 2$$



Case I If 
$$x < -2$$
,  $-\frac{x-2+2x+4}{-x-2} > 0$ 



$$\frac{x+2}{-(x+2)} > 0 \implies -1 > 0$$

which is not possible.

*Case* II -2 < x < 0, then Eq. (ii)

$$\Rightarrow \frac{x+2+2x+4}{-x-2} > 0 \Rightarrow \frac{3x+6}{-(x+2)} > 0$$
$$\frac{-3(x+2)}{(x+2)} > 0 - 3 > 0$$

which is not possible.

*Case* III when x > 0

From Eq. (ii),

$$\frac{x+2-2x+4}{x-2} > 0 \implies \frac{-x+6}{x-2} > 0$$

$$\frac{x-6}{x-2} < 0$$

So, the integer values of x = 3, 4, 5

So, the number of integer values of x is 3.

#### **46.** x > 2

$$\begin{split} |\log_{\sqrt{3}} x - 2| + |\log_3 x - 2| &= 2 \\ |2 \log_3 x - 2| + |\log_3 x - 2| &= 2 \\ 2 |\log_3 x - 1| + |\log_3 x - 2| &= 2 \\ \log_3 x &= y \end{split} \qquad ...(i)$$



Case I y < 1, then x < 3

Eq. (ii) becomes -2y + 2 - y + 2 = 2

Then, Eq. (i)  $\Rightarrow 2|y-1| + |y-2| = 2$ 

$$-3y = -2, y = \frac{2}{3}$$

$$\log_3 x = \frac{2}{3}$$
$$x = 3^{2/3}$$

which is less than 2, so not acceptable.

1 < y < 2, then 3 < x < 9From Eq. (ii), 2(y-1)-(y-2)=2

⇒ 
$$y = 2$$
  
⇒  $\log_3 x = 2$   
∴  $x = 3^2 = 9$  [impossible]

 $y \ge 2$ , then  $x \ge 9$ Case III

From Eq. (ii), 2(y-1) + (y-2) = 2

$$\begin{array}{ccc}
\therefore & y = 2 \log_3 x = 2 \\
\therefore & x = 9
\end{array}$$

[acceptable]

47. Given equation is

...(ii)

...(ii)

[from Eq. (i)]

$$\log_2 \sqrt{x} - 2 \log_{1/4}^2 x + 1 > 0$$
 ...(i)

Eq. (i) 
$$\Rightarrow \frac{1}{2} \log_2 x - \frac{2}{(-2)^2} \log_2^2 x + 1 > 0$$

$$\Rightarrow \qquad \frac{1}{2}\log_2 x - \frac{1}{2}\log_2^2 x + 1 > 0$$

$$(\log_2 x)^2 - (\log_2 x) - 2 < 0$$

$$\Rightarrow (\log_2 x - 2) (\log_2 x + 1) < 0$$

$$\Rightarrow -1 < \log_2 x < 2$$

$$\Rightarrow 2^{-1} < x < 2$$

$$\frac{1}{2} < x < 4$$

$$x \in I$$
, so  $x = 1, 2, 3$ 

So, number of integer value of x is 3.

**48.** Given that, b > 0

$$2 \log_{1/25} (bx + 28) = -\log_5 (12 - 4x - x^2) \qquad \dots (i)$$

$$\frac{2}{(-2)} \log_5 (bx + 28) = -\log_5 (12 - 4x - x^2)$$

$$\Rightarrow bx + 28 = 12 - 4x - x^2$$

and 
$$bx + 28 > 0$$

and 
$$12 - 4x - x^2 > 0$$

and 
$$12-4x-x>0$$

$$\Rightarrow$$
  $x^2 + (4+b) x + 16 = 0$  ...(ii)

and 
$$x > \frac{-28}{b}$$
 and  $-6 < x < 2$ 

Since, Eq. (i) has coincident roots, so discriminant Eq. (ii) is zero.

$$(4+b)^2 - 64 = 0$$

$$b + 4 = \pm 8$$
  
 $b = 4$  or  $b = -12$ 

$$h > 0$$
 so  $h = 4$ 

for this value 
$$x > -7$$
 and  $-6 < x < 2$ 

**49.** 
$$\frac{2^{\log_{1/4} 2} - 3^{\log_{27} 125} - 4}{7^{4 \log_{49} 2} - 3} = \frac{2^{4 \log_{2} 2} - 3^{\log_{3} 3} 5^{3} - 4}{7^{4 \log_{7} 2} 2^{1}}$$

$$= \frac{2^4 - 5 - 4}{7^{2 \log_7 2} - 3} = \frac{16 - 9}{2^2 - 3} = 7$$

**50.** 
$$(\log_5 x)^2 + \log_{5x} \left(\frac{5}{x}\right) = 1, x > 0, x \neq \frac{1}{5}$$

$$\Rightarrow (\log_5 x)^2 + \frac{\log_5 \left(\frac{5}{x}\right)}{\log_5 (5x)} = 1 \Rightarrow (\log_5 x)^2 + \frac{1 - \log_5 x}{1 + \log_5 x} = 1$$

Let  $\log_5 x = t$ , then

$$t^{2} + \frac{1-t}{1+t} = 1$$

$$\Rightarrow \qquad t^{3} + t^{2} - 2t = 0$$

$$\Rightarrow \qquad t(t+2)(t-1) = 0 \Rightarrow t = -2, 0, 1$$

$$\Rightarrow \qquad \qquad x = 5^{-2}, 5^{0}, 5^{1}$$

$$\Rightarrow \qquad \qquad x = \frac{1}{25}, 1, 5$$

$$x_{1}, x_{2} \in I$$

$$\therefore \qquad \qquad x_{1} = 1, x_{2} = 5$$

$$\therefore \qquad |x_{2} - 4x_{1}| = |5 - 4| = 1$$

51. Given, 
$$x = \log_{\lambda} a = \log_{a} b = \frac{1}{2} \log_{b} c$$
 and  $\log_{\lambda} c = nx^{n+1}$ 

$$x = \log_{\lambda} a = \log_{a} b = \log_{b} \sqrt{c} \text{ and } \log_{\lambda} c = nx^{n+1} \qquad \dots (i)$$
From Eq. (i),  $\log_{\lambda} a \times \log_{a} b + \log_{b} \sqrt{c} = x^{3}$ 

$$\log_{\lambda} \sqrt{c} = x^{3}, \frac{1}{2} \log_{\lambda} c = x^{3}$$

$$\log_{\lambda} c = 2x^{3}$$

 $\log_{\lambda} c = nx^{n+1}$ 

$$\Rightarrow n = 5$$
**52.** (A)  $\frac{\log_3 243}{\log_2 \sqrt{32}} = \frac{\log_3 3^5}{-\frac{1}{2} \log_2 2^5} = \frac{5 \times 2}{5} = 2 \text{ (p,s)}$ 

Compare with

(B) 
$$\frac{2 \log 6}{\log 12 + \log 3} = \frac{2 \log 6}{\log 36} = \frac{2 \log 6}{2 \log 6} = 1$$
 (p)

(C) 
$$\log_{1/3} \left(\frac{1}{9}\right)^{-2} = -\log_3 3^4 = -4 (q)$$

(D) 
$$\frac{\log_5 16 - \log_5 4}{\log_5 128} = \frac{\log_5 \left(\frac{16}{4}\right)}{\log_5 \left(2\right)^7} = \frac{\log_5 \left(2\right)^2}{\log_5 \left(2\right)^7} = \frac{2}{7} (r)$$

**53.** (A) 
$$\sqrt{\log_{(0.5)^2}^2 8} = \sqrt{\log_{1/2}^2 8} = \sqrt{(\log_{2^{-1}} 2^3)^2}$$
$$= \sqrt{\left(\frac{3}{-1} \log_2 2\right)^2} = \sqrt{(-3)^2} = \sqrt{9} = 3 \text{ (r)}$$

(B) 
$$(\log_{10} 2)^3 + \log_{10} 8 \cdot \log_{10} 5 + (\log_{10} 5)^3$$
  
 $= (\log_{10} 2)^3 + 3 \log_{10} 2 \log_{10} 5 + (\log_{10} 5)^3$   
 $= (\log_{10} 2)^3 + 3 \cdot \log_{10} 2 \cdot \log_{10} 5 \cdot (\log_{10} 2 + \log_{10} 5)$   
 $+ (\log_{10} 5)^3$   
[::  $\log_{10} 2 + \log_{10} 5 = \log_{10} 10 = 1$ ]

= 
$$(\log_{10} 2 + \log_{10} 5)^3 = (\log_{10} 10)^3 = (1)^3 = 1$$
  
 $3 + (\log_{10} 2)^3 + \log_{10} 8 \cdot \log_{10} 5 + (\log_{10} 5)^3$   
=  $3 + 1 = 4$  (s)

(C) 
$$N = \log_2 15 \cdot \log_{1/6} 2 \cdot \log_3 \frac{1}{6}$$
  
 $= \log_2 15 \left( -\log_6 2 \right) \left( -\log_3 6 \right)$   
 $= \frac{\log 15}{\log 2} \times \frac{\log 2}{\log 6} \times \frac{\log 6}{\log 3} = \log_3 15$ 

$$9 < 15 < 27$$

$$2 < \log_3 15 < 3$$
So,  $[N] = 2 \text{ (q)}$ 
(D)  $(52.6)^a = (0.00526)^b = 100$ 

$$(52.6)^a = 100 \text{ and } (0.00526)^b = 100$$

$$52.6 = 10^a$$

$$(52.6)^b \times 10^{-4b} = 10^2$$

$$(52.6)^{b} = 10^{2+4b}$$

$$\Rightarrow 52.6 = 10^{\left(\frac{2+4b}{b}\right)} \dots (i$$

...(i)

From Eqs. (i) and (ii), we get

$$\Rightarrow \frac{a \quad b}{\frac{1}{a} - \frac{1}{b} = 2 \text{ (q)}$$

**54.** (A) Given that, 
$$\log_{1/x} \frac{2(x-2)}{(x+1)(x-5)} \ge 1$$
 ...(i

for log to be defined 
$$\frac{(x-2)}{(x+1)(x-5)} > 0$$
,

then 
$$x \in (-1, 2) \cup (5, \infty)$$

Let 
$$x > 0$$
 and  $x \ne 1$   
So,  $x \in (0, 1) \cup (1, 2) \cup (5, \infty)$   
Case I  $x \in (0, 1)$  ...(ii

.. By Eq. (i), 
$$\log_{\frac{1}{x}} \frac{2(x-2)}{(x+1)(x-5)} \ge 1$$

$$\Rightarrow \frac{2(x-2)}{(x+1)(x-5)} \ge \frac{1}{x}$$

$$\Rightarrow \frac{2(x-2)}{(x+1)(x-5)} - \frac{1}{x} \ge 0$$

$$\Rightarrow \frac{2x(x-2) - (x+1)(x+5)}{x(x+1)(x-5)} \ge 0$$

$$\Rightarrow \frac{2x^2 - 4x - x^2 + 4x + 5}{x(x+1)(x-5)} \ge 0$$

$$\Rightarrow \frac{x^2 + 5}{x(x+1)(x-5)} \ge 0$$

$$\Rightarrow x(x+1)(x-5) > 0$$

$$\Rightarrow \qquad x \in (-1, 0) \cup (5, \infty)$$

But by Eq. (ii),  $x \in (0, 1)$ 

So, no solution for this case.

Case II Let 
$$x \in (1, 2) \cup (5, \infty)$$
 ...(iii)
$$\frac{1}{x} < 1$$
Eq. (i)  $\Rightarrow \log_{\frac{1}{x}} \frac{2(x-2)}{(x+1)(x-5)} \ge 1$ 

$$\frac{2(x-2)}{(x+1)(x-5)} \le \frac{1}{x}$$

$$\Rightarrow \frac{2(x-2)}{(x+1)(x-5)} - \frac{1}{x} \le 0$$

$$\Rightarrow \frac{x^2 + 5}{x(x+1)(x-5)} \le 0 \qquad \text{[by case I]}$$

$$\Rightarrow x(x+1)(x-5) < 0$$

Eq. (iii), 
$$x \in (1, 2) \cup (5, \infty)$$

 $x \in (-\infty, -1) \cup (0, 5)$ 

From Eqs. (iii) and (iv),  $x \in (1, 2]$  (q)

(B) 
$$\log_3 x - \log_3^2 x \le \frac{3}{2} \log_{\frac{1}{2\sqrt{2}}} 4$$
 ...(i)

defined, when x > 0

$$\log_3 x - \log_3^2 x \ge \frac{3}{2} \times \left(\frac{-2}{3}\right) \times 2 \times 1$$

$$\Rightarrow \qquad \log_3 x - \log_3^2 x + 2 \le 0$$

$$\Rightarrow \qquad \log_3^2 x - \log_3 x - 2 \ge 0$$

$$\Rightarrow \qquad (\log_3 x - 2) (\log_3 x + 1) \ge 0$$

$$\Rightarrow \qquad \log_3 x \le -1$$
or
$$\log_3 x \ge 2$$

$$\Rightarrow \qquad x \le \frac{1}{3} \text{ or } x \ge 9$$

From Eq. (i), x > 0

So, 
$$x \in \left(0, \frac{1}{3}\right] \cup [9, \infty) (p)$$

(C) 
$$\log_{\frac{1}{2}}(4-x) \ge \log_{\frac{1}{2}} 2 - \log_{\frac{1}{2}}(x-1)$$
 ...(i)  

$$\Rightarrow \log_{\frac{1}{2}} \frac{(4-x)(x-1)}{2} \ge 0$$

$$\Rightarrow -\frac{(x-4)(x-1)}{2} \le 1$$

$$\Rightarrow (x-4)(x-1) \ge -2$$

$$\Rightarrow x^2 - 5x + 4 + 2 \ge 0$$

$$\Rightarrow x^2 - 5x + 6 \ge 0$$

$$(x-3)(x-2) \ge 0$$

$$x \le 2 \text{ or } x \ge 3$$
 ...(ii)

From Eq. (i) to be defined, 
$$4 - x > 0$$
 and  $x - 1 > 0$   
 $x < 4$  and  $x > 1$ 

From Eqs. (ii) and (iii),

$$x \in (1, 2] \cup [3, 4) (q, r)$$

(D) Given equation is

$$(\lambda^{2} - 3\lambda + 4) x^{2} - 4(2\lambda - 1) x + 16 = 0 \qquad \dots (i)$$

$$\lambda^{2} - 3\lambda + 4 = \lambda^{2} - 3\lambda + \left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2} + 4 = \left(\lambda - \frac{3}{2}\right)^{2} + \frac{7}{4}$$

So, 
$$\lambda^2 - 3\lambda + 4 > 0, \forall \lambda \in R$$



D > 0

Let  $f(x) = (\lambda^2 - 3\lambda + 4) x^2 = 4(2\lambda - 1) x + 16$ 

$$f(1) < 0 \text{ by graph of } f(x)$$

$$\lambda^2 - 11\lambda + 24 < 0$$

$$(\lambda - 3) (\lambda - 8) < 0$$

$$3 < \lambda < 8$$
...(iii)

From Eqs. (ii) and (iii), we get

$$3 < \lambda < 8 \implies \lambda \in (3, 8)$$
 (s)

#### **55.** If 0 < a < b

...(iv)

...(i)

...(iii)

**Statement-1** If x > 1 $\log_{x} a < \log_{x} b$ 

 $\therefore$  Statement-2 If 0 < x < 1

 $\log_x a > \log_x b$ 

∴ Statement-2 is true, also

then  $\log_x 10 > \log_x 3 > \log_x e > \log_x 2$ 

$$\Rightarrow \frac{1}{\log_x 10} < \frac{1}{\log_x 3} < \frac{1}{\log_x e} < \frac{1}{\log_x 2}$$

 $\Rightarrow \log_{10} x < \log_3 x < \log_e x < \log_2 x$ 

and for

We get,  $\log_{10} x > \log_3 x > \log_e x > \log_2 x$ 

It is clear that for

 $x > 0, x \neq 1$ 

Statement-1 is false.

**56. Statement-1** 
$$7^{\log_7(x^3+1)} - x^2 = 1$$
 ...(i)  $x^3 + 1 - x^2 = 1$  for this  $x^3 + 1 > 0$   $\Rightarrow x^3 - x^2 = 0$   $\Rightarrow x^3 > -1$   $\Rightarrow x > -1$ 

x = 0 (repeated) or x = 1

Thus, Eq. (i) has 2 repeated roots.

 $\therefore$  Statement-1 is false.

**Statement-2**  $a^{\log_a N} = N$ , a > 0,  $a \ne 1$  and N > 0which is true.



$$\log_e \left(\frac{1}{3}\right)^7 < \log_e \left(\frac{1}{3}\right)^4$$
$$7 \log_e \frac{1}{3} < 4 \log_e \frac{1}{3}$$

 $\log_e \frac{1}{3} < 0$ Now, [:: 2 < e < 3]

So,

Statement-1 is false. ...(i)

**Statement-2** ax < ay

a < 0, x > 0, y > 0and

Eq. (i) divide by a, we get x > y

Statement-2 is true.

**58.** Statement-1 
$$x^{\log_x (1-x)^2} = 9$$

$$(1-x)^2 = 9$$
 Eq. (i) is defined, if 
$$x \neq 1, x > 0$$

$$1 - x = \pm 3$$

$$x = -2 \text{ or } 4$$

$$x = 4$$

[acceptable]

∴ Eq. (i) has only one solution.

Statement-1 is false.

**Statement-2**  $a^{\log_a b} = b$ , where a > 0,  $a \ne 1$ , b > 0

**59. Statement-1** 
$$(\log x)^2 + \log x^2 - 3 = 0$$
 ...(i)

$$\Rightarrow \qquad (\log x)^2 + 2\log x - 3 = 0$$

$$\Rightarrow \qquad (\log x + 3)(\log x - 1) = 0$$

$$\Rightarrow$$
  $\log x = -3 \text{ or } \log x = 1$ 

$$\Rightarrow \qquad x = 10^{-3} \text{ or } x = 10$$

Eq. (i) is defined for x > 0.

So, Eq. (i) has 2 distinct solutions.

**Statement-2**  $\log x^2 \neq 2 \log x$ 

- : LHS has domain  $x \in R$  and RHS has domain  $x \in (0, \infty)$
- ∴ Statement-2 is false.

#### 60. Statement-1

$$\log_x 3 \cdot \log_{x/9} 3 = \log_{81} 3 \qquad ...(i$$

Eq. (i) holds, if x > 0,  $x \ne 1$ ,  $x \ne 9$ 

By Eq. (i), 
$$\frac{1}{\log_3 x} \cdot \frac{1}{(\log_3 x + 2)} = \frac{1}{4}$$

$$(\log_3 x)^2 + 2\log_3 x - 4 = 0$$

$$(\log_3 x)^2 + 2\log_3 x + 4 = 8$$

$$(\log_3 x + 2)^2 = 8$$

$$\log_3 x + 2 = \pm 2\sqrt{2}$$

$$\log_3 x = 2\left(-1 \pm \sqrt{2}\right)$$

 $x = 3^{2(-1 \pm \sqrt{2})}$ 

Two values of x satisfying Eq. (i)

So, Statement-1 is false.

Statement-2 Change of bases in logarithm is possible.

∴ Statement-2 is true.

**61.** (i) 
$$: a = \log_7 12 = \frac{\log 12}{\log 7} = \frac{2 \log 2 + \log 3}{\log 7}$$

$$a = \frac{2 + \log_2 3}{2} \qquad \dots (i)$$

 $b = \log_{12} 24 = \frac{\log 24}{\log 12} = \frac{3 \log 2 + \log 3}{2 \log 2 + \log 3}$ and

$$\frac{3 + \log_2 3}{2 + \log_2 3}$$
 ...(ii)

Let  $\log_2 3 = \lambda$  and  $\log_2 7 = \mu$ 

From Eq. (i), 
$$a = \frac{2 + \lambda}{\mu}$$

and from Eq. (ii),  $b = \frac{3 + \lambda}{2 + \lambda}$ , we get

$$\lambda = \frac{3 - 2b}{b - 1} \text{ and } \mu = \frac{1}{a(b - 1)}$$

$$\log_{54} 168 = \frac{\log 168}{\log 54} = \frac{\log (2^3 \times 3 \times 7)}{\log (3^3 \times 2)}$$

$$= \frac{3 \log 2 + \log 3 + \log 7}{3 \log 3 + \log 2}$$

$$\frac{3 + \log_2 3 + \log_2 7}{3 \log_2 3 + 1} = \frac{3 + \lambda + \mu}{3\lambda + 1}$$

$$= \frac{3 + \frac{3 - 2b}{b - 1} + \frac{1}{a(b - 1)}}{\frac{3(3 - 2b)}{b - 1} + 1}$$

$$=\frac{(ab+1)}{a(8-5b)}$$

(ii) : 
$$a = \log_3 4$$
 and  $b = \log_5 3$ 

$$\therefore \qquad ab = \log_5 4 \qquad \qquad \dots (i)$$

Now, 
$$\log_3 10 = \frac{\log_5 10}{\log_5 3} = \frac{2 \log_5 10}{2 \log_5 3}$$
  

$$= \frac{\log_5 (100)}{2b} = \frac{\log_5 (4 \times 25)}{2b}$$

$$= \frac{\log_5 4 + 2}{2b} = \frac{ab + 2}{2b}$$
 [from Eq. (i)

**62.** 
$$\because \frac{\ln a}{b-c} = \frac{\ln b}{c-a} = \frac{\ln c}{a-b}$$
 [by using law of proportion]

(i) 
$$\therefore \frac{\ln a}{b-c} = \frac{\ln b}{c-a} = \frac{\ln c}{a-b}$$
$$= \frac{\ln a + \ln b + \ln c}{b-c+c-a+a-b} = \frac{\ln (abc)}{0}$$

$$\Rightarrow \ln(abc) = 0 \Rightarrow abc = 1$$

(ii) 
$$\frac{\ln a}{b-c} + \frac{\ln b}{c-a} + \frac{\ln c}{a-b} = \frac{a \ln a + b \ln b + c \ln c}{a(b-c) + b(c-a) + c(a-b)}$$
$$= \frac{\ln a^a + \ln b^b + \ln c^c}{0} = \frac{\ln (a^a \cdot b^b \cdot c^c)}{0}$$

$$\Rightarrow \ln(a^a b^b c^c) = 0$$

$$\Rightarrow a^a b^b c^c = 1$$

(iii) 
$$\frac{\ln a}{b-c} = \frac{\ln b}{c-a} = \frac{\ln c}{a-b}$$

$$[(b^2 + bc + c^2) \ln a + (c^2 + ca + a^2) \ln b]$$

$$= \frac{(a^2 + ab + b^2) \ln c]}{[(b^2 + bc + c^2) (b-c) + (c^2 + ca + a^2) (c-a)]}$$

$$+ (a^2 + ab + b^2) (a-b)]$$

$$= \frac{\ln a^{b^2 + bc + c^2} + \ln b^{c^2 + ca + a^2} + \ln c^{a^2 + ab + b^2}}{(b^3 - c^3) + (c^3 - a^3) + (a^3 - b^3)}$$

$$= \frac{\ln (a^{b^2 + bc + c^2} \cdot b^{c^2 + ca + a^2} \cdot c^{a^2 + ab + b^2})}{0}$$

$$\Rightarrow \ln (a^{b^2 + bc + c^2} \cdot b^{c^2 + ca + a^2} \cdot c^{a^2 + ab + b^2}) = 0$$

$$\therefore a^{b^2 + bc + c^2} \cdot b^{c^2 + ca + a^2} \cdot c^{a^2 + ab + b^2} = 1$$

(iv) ::  $AM \ge GM$ 

$$\therefore \frac{a+b+c}{3} \ge (abc)^{1/3} = (1)^{1/3} = 1 \qquad \text{[from Eq. (i)]}$$

$$\therefore \frac{a+b+c}{3} \ge 1 \implies a+b+c \ge 3$$

(v) ::  $AM \ge GN$ 

$$\Rightarrow \frac{a^a + b^b + c^c}{3} \ge (a^a \cdot b^b \cdot c^c)^{1/3}$$

$$= (1)^{1/3} = 1 \qquad [from Eq. (ii)]$$

$$\Rightarrow \frac{a^a + b^b + c^c}{3} \ge 1 \Rightarrow a^a + b^b + c^c \ge 3$$

(vi) :: AM 
$$\ge$$
 GM  $\frac{a^{b^2 + bc + c^2} + b^{c^2 + ca + a^2} + c^{a^2 + ab + b^2}}{3}$ 

$$\geq (a^{b^2 + bc + c^2} \cdot b^{c^2 + ca + a^2} \cdot c^{a^2 + ab + b^2})^{1/3}$$

$$= (1)^{1/3} \qquad [from Eq. (iii)]$$

$$= 1$$

$$\Rightarrow \frac{a^{b^2 + bc + c^2} + b^{c^2 + ca + a^2} + c^{a^2 + ab + b^2}}{3} \geq 1$$

$$\Rightarrow a^{b^2 + bc + c^2} + b^{c^2 + ca + a^2} + c^{a^2 + ab + b^2} \geq 3$$

**63.** To prove  $\log_{10} 2$  lies between  $\frac{1}{3}$  and  $\frac{1}{4}$ 

$$2^{12} = 4096$$

1000 < 4096 < 10000

$$10^3 < 2^{12} < 10^4$$

Taking logarithm to the base 10,

$$\log_{10} 10^3 < \log_{10} 2^{12} < \log_{10} 10^4$$

$$3 < 12 \log_{10} 2 < 4 \Longrightarrow \frac{1}{4} < \log_{10} 2 < \frac{1}{3}$$

**64.**  $\log 2 = 0.301$ 

$$\log 3 = 0.477$$

(i) Let 
$$\alpha = 5^{200}$$

log 
$$\alpha = 200$$
 log  $5 = 200$  (log  $10 - \log 2$ ) =  $200$  (1 - 0.301)  
=  $200 \times 0.699 = 139.8$ 

So, number of integers in  $5^{200} = 139 + 1 = 140$ .

(ii) 
$$\alpha = 6^{20}$$

$$\therefore \log \alpha = 20 \log 6 = 20 (\log 2 + \log 3)$$
$$= 20 (0.310 + 0.477)$$
$$= 20 \times 0.778 = 15.560$$

So, number of integers in  $6^{20} = 15 + 1 = 16$ 

(iii) Let 
$$\alpha = 3^{-500}$$

log 
$$\alpha = -500 \log 3 = -500 \times (0.477) = -238.5$$
  
= -239 + 0.5 = 239.5

So, number of zeroes after the decimal in

$$3^{-500} = 239 - 1 = 238$$

**65.** Given that,  $\log_{10} 2 = 0.301$ 

and 
$$\log_{10} 3 = 0.477$$
  
 $\log 3.375 = \log(3375) - \log 10^3 = \log 5^3 \times 3^3 - 3 \log 5 \times 3^3 = 3 \log 5 + 3 \log 3 - 3 \log 5 - 3 \log 2$   
 $= 3 (0.477) - 3 (0.301) = 3 (0.176)$   
 $= 0.528$ 

**66.** Let 
$$P = \log_2 x - \log_x (0.125) = \log_2 x - \log_x \left(\frac{1}{8}\right)$$

$$= \log_2 x + 3 \log_x 2$$
∴  $AM \ge GM$ 

$$\Rightarrow \frac{\log_2 x + 3 \log_x 2}{2} \ge \sqrt{(\log_2 x)(3 \log_x 2)} = \sqrt{3}$$
∴ 
$$\frac{P}{2} \ge \sqrt{3}$$

 $\therefore$  Least value of  $\log_2 x - \log_x (0.125)$  is  $2\sqrt{3}$ .

**67.** Let 
$$y = \frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi} = \log_\pi 3 + \log_\pi 4$$
$$= \log_\pi 12$$

Now.  $12 > \pi^2$ 

$$\log_{\pi} 12 > \log_{\pi} \pi^2 \quad \therefore \quad y > 2$$

**68.** (i) 
$$\therefore x^{1 + \log_{10} x} = 10x$$

$$\Rightarrow x \cdot x^{\log_{10} x} = 10x$$

$$\Rightarrow x [x^{\log_{10} x} - 10] = 0$$

$$x \neq 0, \text{ so } x^{\log_{10} x} - 10 = 0$$

$$\Rightarrow x^{\log_{10} x} = 10$$

$$\Rightarrow \qquad \log_{10} x = \log_x 10$$

$$\Rightarrow \qquad (\log_{10} x)^2 = 1$$

$$\Rightarrow \qquad \log_{10} x = \pm 1$$

$$\Rightarrow \qquad \qquad x = 10^{\pm 1}$$

$$\Rightarrow \qquad x = 10 \text{ or } \frac{1}{10} \qquad [\because x > 0]$$

(ii) 
$$\log_2 (9 + 2^x) = 3$$
  
 $\Rightarrow 9 + 2^x = 8$   
 $\Rightarrow 2^x = -1$ 

which is not possible, so  $x \in \phi$ .

(iii) 
$$2 \cdot x^{\log_4 3} + 3^{\log_4 x} = 27$$

$$2 \cdot 3^{\log_4 x} + 3^{\log_4 x} = 27$$

$$3^{\log_4 (x+1)} = 3^3$$

$$\log_4 (x+1) = 3$$

$$\log_4 x = 2$$

$$x = 16$$

(iv) 
$$\log_4 \log_3 \log_2 x = 0$$
 ...(i)  
Defined for  $x > 0$ ,  $\log_2 x > 0$  and  $\log_3 \log_2 x > 0$   
 $\Rightarrow x > 0, x > 1, x > 3$ 

$$\therefore x > 3$$

$$\log_3 \log_2 x = 1$$

$$\log_2 x = 3, x = 8$$

which satisfy Eq. (i).

(v) 
$$x^{\frac{\log_{10} x + 5}{3}} = 10^{5 + \log_{10} x}$$

Defined for x > 0

Let 
$$\log_{10} x = y$$

$$\Rightarrow x = 10^{y}$$
By Eq. (i), 
$$10^{y\left(\frac{y+5}{3}\right)} = 10^{5+y}$$

$$\Rightarrow y^{2} + 5y = 15 + 3y$$

$$\Rightarrow y^{2} + 2y - 15 = 0$$

$$\Rightarrow (y+5)(y-3) = 0$$

$$\Rightarrow y = -5 \text{ or } y = 3$$

$$\Rightarrow x = \frac{1}{10^{5}} \text{ or } x = 10^{3}$$

(vi) 
$$\log_3 \left( \log_9 x + \frac{1}{2} + 9^x \right) = 2x$$

Defined for x > 0,

*:*.

$$\log_9 x + \frac{1}{2} + 9^x = 9^x$$
$$\log_9 x = -\frac{1}{2} \implies x = 9^{-\frac{1}{2}}$$

$$\Rightarrow \qquad x = 3$$

$$\therefore \qquad x = \frac{1}{3}$$

(vii) 
$$4^{\log_{10} x + 1} - 6^{\log_{10} x} - 2 \cdot 3^{\log_{10} x^2 + 2} = 0$$
 ...(i)  

$$\Rightarrow 2^{2 \log_{10} x + 2} - (2 \times 3)^{\log_{10} x} - 2 \cdot 3^{2 \log_{10} x + 2} = 0$$

 $x = \{10^{-5}, 10^{3}\}$ 

Let  $\log_{10} x = \lambda$ , then

$$2^{2\lambda + 2} - (2 \times 3)^{\lambda} - 2 \cdot 3^{2\lambda + 2} = 0$$

$$\Rightarrow \qquad 2^{2} - \left(\frac{3}{2}\right)^{\lambda} - 2 \cdot 3^{2} \cdot \left(\frac{3}{2}\right)^{2\lambda} = 0$$

Let 
$$\left(\frac{3}{2}\right)^{\lambda} = \mu$$

$$\therefore 18\mu^2 + \mu - 4 = 0$$

$$\Rightarrow 18\mu^2 + 9\mu - 8\mu - 4 = 0$$

$$\Rightarrow 9\mu (2\mu + 1) - 4(2\mu + 1) = 0$$

$$\therefore \qquad \mu = -\frac{1}{2}, \mu = \frac{4}{9}$$

$$\therefore \qquad \mu = \frac{4}{9}$$

$$\therefore \qquad \mu = \frac{4}{9}$$

Hence, 
$$x = 10^{\lambda} = 10^{-2} \frac{1}{100}$$

(viii) 
$$\frac{\log_{10}(x-3)}{\log_{10}(x^2-21)} = \frac{1}{2}$$

...(i)

is defined for x > 1 and  $x^2 > 21$ .

$$\therefore \qquad x > \sqrt{21}$$

$$\Rightarrow \qquad 2 \log_{10} (x - 3) = \log_{10} (x^2 - 21)$$

$$\Rightarrow \qquad \log_{10} (x - 3)^2 = \log_{10} (x^2 - 21)$$

$$\Rightarrow \qquad (x - 3)^2 = x^2 - 21$$

$$x^2 - 6x + 9 = x^2 - 21$$

$$\therefore \qquad x = 5$$
satisfy Eq. (i), hence  $x = 5$ .

satisfy Eq. (i), hence x = 5.

(ix) 
$$x^{\log_2 x + 4} = 32$$

Defined for x > 0,

$$\log_2 x + 4 = \log_x 2$$

$$\log_2 x + 4 = \frac{5}{\log_2 x}$$

$$(\log_2 x)^2 + 4 \log_2 x - 5 = 0$$

$$(\log_2 x + 5) (\log_2 x - 1) = 0$$

$$\Rightarrow \qquad \log_2 x = -5 \text{ or } \log_2 x = 1$$

$$\Rightarrow \qquad \qquad x = 2^{-5} \text{ or } x = 2^1$$

$$\therefore \qquad \qquad x = \frac{1}{32} \text{ or } x = 2$$

which satisfy Eq. (i).

(x) 
$$\log_a x = x$$
 and  $a = x^{\log_4 x}$ 

Defined for x > 0

From Eq. (i), 
$$x = a^x$$

$$a^{x} = x, a = x^{1/x}$$
From Eq. (ii), 
$$x^{\frac{1}{x}} = x^{\log_4 x}$$

$$\Rightarrow \frac{1}{x} = \log_4 x$$

$$\Rightarrow x = \log_x 4 \Rightarrow x^x = 4$$

$$\therefore x = 2$$

(xi) 
$$\log_{\sqrt{2} \sin x} (1 + \cos x) = 2$$
  
Defined for  $1 + \cos x > 0$ ,  $\sqrt{2} \sin x > 0$   
and  $\sqrt{2} \sin x \neq 1$ , then

$$1 + \cos x = 2\sin^2 x$$
$$1 + \cos x = 2 - 2\cos^2 x$$

...(i)

$$2 \cos^{2} x + \cos x - 1 = 0$$

$$(2 \cos x - 1) (\cos x + 1) = 0$$

$$1 + \cos x \neq 0$$
So,
$$\cos x = \frac{1}{2}$$

 $x = \frac{\pi}{2}$ , Eq. (i) is defined for that value of x.

**69.** Let rational number be x, then

$$x = 50 \log_{10} x \implies 2x = 100 \cdot \log_{10} x$$

...(i)

Taking logarithm to the base 10, then

$$\log_{10} 2 + \log_{10} x = 2 + \log_{10} (\log_{10} x)$$
Let 
$$\log_{10} x = \lambda$$

$$\therefore \qquad \log_{10} 2 + \lambda = 2 + \log_{10} (\lambda)$$

$$\Rightarrow \qquad \log_{10} \left(\frac{\lambda}{2}\right) = \lambda - 2$$

which is true for  $\lambda = 2$ .

*:*.

**70.** Let 
$$y = \frac{2}{\log_4 (2000)^6} + \frac{3}{\log_5 (2000)^6}$$
  

$$= 2 \log_{(2000)^6} 4 + 3 \log_{(2000)^6} 5$$

$$= \log_{(2000)^6} 4^2 + \log_{(2000)^6} 5^3$$

$$= \log_{(2000)^6} (4^2 \times 5^3)$$

$$= \frac{1}{6} \log_{2000} 2000 = \frac{1}{6}$$

71. 
$$\log_a \left[ 1 + \log_b \left\{ 1 + \log_c \left( 1 + \log_p x \right) \right\} \right] = 0$$

$$\Rightarrow \quad 1 + \log_b \left\{ 1 + \log_c \left( 1 + \log_p x \right) \right\} = 1$$

$$\Rightarrow \quad \log_b \left\{ 1 + \log_c \left( 1 + \log_p x \right) \right\} = 0$$

$$\Rightarrow \quad 1 + \log_c \left( 1 + \log_p x \right) = 1$$

$$\Rightarrow \quad \log_c \left( 1 + \log_p x \right) = 0$$

$$\Rightarrow \quad 1 + \log_p x = 1$$

$$\Rightarrow \quad \log_p x = 0$$

$$\Rightarrow \quad x = p^0$$

$$\Rightarrow \quad x = 1$$

Eq. (i) is satisfied for this value of x.

72. 
$$: 5 \log_{4\sqrt{2}} (3 - \sqrt{6}) - 6 \log_8 (\sqrt{3} - \sqrt{2})$$

$$= 5 \log_{2^{5/2}} (3 - \sqrt{6}) - 6 \log_{2^3} (\sqrt{3} - \sqrt{2})$$

$$= 5 \times \frac{1}{5/2} \log_2 (3 - \sqrt{6}) - 6 \times \frac{1}{3} \log_2 (\sqrt{3} - \sqrt{2})$$

$$= \log_2 (3 - \sqrt{6})^2 - \log_2 (\sqrt{3} - \sqrt{2})^2$$

$$= \log_2 \left( \frac{3 - \sqrt{6}}{\sqrt{3} - \sqrt{2}} \right)^2 = \log_2 \left( \frac{\sqrt{3} (\sqrt{3} - \sqrt{2})}{(\sqrt{3} - \sqrt{2})} \right)^2 = \log_2 3$$

$$: = 4^{5 \log_4 \sqrt{2}} (3 - \sqrt{6}) - 6 \log_8 (\sqrt{3} - \sqrt{2})$$

$$= 4^{\log_2 3} = 2^{2 \log_2 3} = 2^{\log_2 9} = 9$$

**73.** (i) 
$$\log_{2x+3} x^2 < 1$$
 ...(i)   
Case I  $0 < 2x + 3 < 1$ , i.e.  $-\frac{3}{2} < x < -1$    
Eq. (i),  $x^2 > 2x + 3$ 

$$x^{2} - 2x - 3 > 0$$

$$(x - 3)(x + 1) > 0$$

$$x < -1 \text{ or } x > 3$$

$$x \in \left[-\frac{3}{2}, -1\right]$$
 ...(ii)

**Case II** 2x + 3 > 1

$$(x-3)(x+1) < 0-1 < x < 3$$
  
 $\Rightarrow x \in (-1,3]$  ...(iii)  
Eq. (i),  $x \neq 0$  ...(iv)

Eq. (i), 
$$x \neq 0$$
  
Eqs. (ii), (iii) and (iv),  $x \in \left(-\frac{3}{2}, 3\right) \cup \{-1, 0\}$ 

(ii) 
$$\log_{2x} (x^2 - 5x + 6) < 1$$

For Eq. (i) to be defined 2x > 0 and  $2x \ne 1$ 

So, 
$$x > 0$$
 and  $x \ne \frac{1}{2}$   
and  $x^2 - 5x + 6 > 0 \Rightarrow x < 2$  or  $x > 3$ 

Case 1 
$$0 < 2x < 1 \Rightarrow 0 < x < \frac{1}{2}$$
 ...(iii

From Eq. (i), 
$$\log_{2x} (x^2 - 5x + 6) < 1$$
  
 $x^2 - 5x + 6 < 2x$   
 $x^2 - 7x + 5 > 0$ 

$$(x-6)(x-1) > 0$$
  
  $x < 1 \text{ or } x > 6$  ...(iv)

From Eqs. (iii), (iv) and (ii)

$$x \in \left(0, \frac{1}{2}\right) \qquad \dots (A)$$

Case II 
$$2x > 1 \Rightarrow x > \frac{1}{2}$$
 ...(v)

From Eq. (i),  $\log_{2x} (x^2 - 5x + 6) < 1$ 

$$\Rightarrow x^2 - 5x + 6 < 2x$$

$$\Rightarrow x^2 - 7x + 6 < 0$$

$$\Rightarrow 1 < x < 6$$

From Eqs. (ii), (v) and (vi),

$$x \in (1, 2) \cup (3, 6)$$
 ...(B)

From Eqs. (A) and (B),  $x \in \left(0, \frac{1}{2}\right) \cup (1, 2) \cup (3, 6)$ 

(iii) 
$$\log_2 (2 - x) < \log_{1/2} (x + 1)$$
 ...(i)

From Eq. (i) to be defined  $2 - x > 0 \implies x < 2$ 

and 
$$x+1>0 \Rightarrow x>-1$$
  
So,  $x \in (-1,2)$  ...(ii)

Now, from Eq. (i),  $\log_2 (2 - x) + \log_2 (x + 1) < 0$ 

$$(2-x)(x+1) < 1$$

$$(x-2)(x+1) + 1 > 0$$

$$x^{2} - x - 2 + 1 > 0$$

$$x^{2} - x - 1 > 0$$

$$\Rightarrow \qquad x < \frac{1 - \sqrt{5}}{2}$$
or
$$x > \frac{1 + \sqrt{5}}{2} \qquad \dots(iii)$$

From Eqs. (ii) and (iii),

$$x \in \left(-1, \frac{1-\sqrt{5}}{2}\right) \cup \left(\frac{1+\sqrt{5}}{2}, 2\right)$$

(iv) 
$$\log_{x^2} (x+2) < 1$$

From Eq. (i) to be defined, 
$$x + 2 > 0 \Rightarrow x > -2$$
 and  $x \in R, x \neq 0 \text{ and } x \neq 1$  ...(A)

Case I 
$$x \in (-1, 1) \sim \{0\}$$
 ...(ii)

Eq. (i), 
$$(x + 2) > x^2$$

$$x^2 - x - 2 < 0$$

$$(x-2)(x+1) < 0$$

$$x - 1 < x < 2$$
 ...(iii)

...(i)

From Eqs. (ii), (iii) and (A),

$$x \in (-1, 0) \cup (0, 1)$$
 ...(B)

Case II 
$$x \in (-\infty, -1) \cup (1, \infty)$$
 ...(iv)

Eq. (i),  $x + 2 < x^2$ 

$$x^2 - x - 2 > 0$$

$$x < -1 \text{ or } x > 2$$
 ...(v)

From Eqs. (iv), (v) and (A),

$$x \in (-2, -1) \cup (2, \infty)$$
 ...(C)

From Eqs. (B) and (C)

$$x \in (-2, 1) \cup (2, \infty) \sim \{-1, 0\}$$

(v) 
$$3^{\log_3 \sqrt{x-1}} < 3^{\log_3 (x-6)} + 3$$
 ...(i)

From Eq. (i) to be defined

$$x - 1 > 0 \implies x > 1$$
 ...(ii)

and 
$$x-6>0 \implies x>6$$
 ...(iii)

From Eqs. (ii) and (iii), 
$$x > 6$$
 ...(iv)

Eq. (i),  $\sqrt{x-1} - (x-6) - 3 < 0$ 

$$\sqrt{x-1} - x + 3 < 0$$

$$\sqrt{x-1} < (x-3)x-1 < (x-3)^2$$

$$x^2 + 9 - 6x - x + 1 > 0$$

$$x^2 - 7x + 10 > 0$$

$$(x-5)(x-2) > 0$$

$$x < 2 \text{ or } x > 5$$
 ...(v)

From Eqs. (iv) and (v), x > 6

(vi) 
$$\log_{1/2} (3x - 1)^2 < \log_{1/2} (x + 5)^2$$
 ...(i)

From Eq. (i) to be defined 
$$x \neq \frac{1}{3}$$
,  $x \neq -5$  ...(ii)

Eq. (i),  $(3x-1)^2 > (x+5)^2$ 

$$(3x-1-x-5)(3x-1+x+5) > 0$$

$$(2x-6)(4x+4) > 0$$

$$(x-3)(x+1) > 0$$

$$x < -1 \text{ or } x > 3$$
 ...(iii)

From Eqs. (ii) and (iii),

$$x \in (-\infty, -5) \cup (-5, -1) \cup (3, \infty)$$

(vii) 
$$\log_{10} x + 2 \le \log_{10}^2 x$$
 ...(i)

From Eq. (i), 
$$x > 0$$
 ...(ii)

$$\log_{10}^2 x + \log_{10} x - 2 \ge 0$$

$$(10_{10} x - 2) (\log_{10} x + 1) \ge 0$$

$$\log_{10} x \le -1 \text{ or } \log_{10} x \ge 2$$

$$x \le \frac{1}{10}$$
 or  $x \ge 100$  ...(iii)

From Eqs. (ii) and (iii),

$$x \in \left(0, \frac{1}{10}\right] \cup [100, \infty)$$

r 
$$x \in (0, 10^{-1}] \cup [10^2, \infty)$$

(viii) 
$$\log_{10} (x^2 - 2x - 2) \le 0$$

From Eq. (i), 
$$x^2 - 2x - 2 > 0$$

$$x^2 - 2x + 1 - 3 > 0$$

$$(x-1)^2 - (\sqrt{3})^2 > 0$$

$$[x - (1 + \sqrt{3})][x - (1 - \sqrt{3})] > 0$$

$$x \in (-\infty, 1 - \sqrt{3}) \cup (1 + \sqrt{3}, \infty)$$

$$x^2 - 2x - 2 \le 1$$

$$x^2 - 2x - 3 \le 0$$

$$(x-3)(x+1) \le 0$$

$$-1 \le x \le 3$$
 ...(iii)

From Eqs. (ii) and (iii), we get

$$x \in [-1, 1 - \sqrt{3}) \cup (1 + \sqrt{3}, 3]$$

(ix) 
$$\log_x \left(2x - \frac{3}{4}\right) > 2$$
 ...(i)

From Eq. (i) to be defined x > 0,  $x \ne 1$ ,  $2x - \frac{3}{4} > 0$ 

$$x > 0, x \ne 1, x > \frac{3}{8}$$
 ...(ii)

From Eq. (i), 
$$\log_x \left( 2x - \frac{3}{4} \right) > 2$$

**Case I** 
$$0 < x < 1$$
  $2x - \frac{3}{4} < x^2$ 

$$8x - 3 - 4x^2 < 0$$

$$4x^2 - 8x + 3 > 0$$

$$4x^2 - 6x - 2x + 3 > 0$$

$$(2x-1)(2x-3) > 0$$

$$1)(2x-3)>0$$
 $1 3$ 

$$x < \frac{1}{2}$$
 or  $x > \frac{3}{2}$  ...(iv)

From Eqs. (ii), (iii) and (iv),

$$x \in \left(\frac{3}{8}, \frac{1}{2}\right) \qquad \dots (v)$$

Case II 
$$x > 1$$
 ...(vi)

Eq. (i) 
$$\Rightarrow$$
  $2x - \frac{3}{4} > x^2$ 

$$8x - 3 > 4x^2$$

$$4x^2 - 8x + 3 < 0$$

$$\frac{1}{2} < x < \frac{3}{2} \qquad \qquad ...(vii)$$
 From Eqs. (ii), (vi) and (vii), we get 
$$x \in \left(1, \frac{3}{2}\right) \qquad \qquad ...(viii)$$
 From Eqs. (v) and (viii), we get 
$$x \in \left(\frac{3}{8}, \frac{1}{2}\right) \cup \left(1, \frac{3}{2}\right)$$
 (x)  $\log_{1/3} x < \log_{1/2} x (x > 0)$  
$$\Rightarrow \qquad \log_3 x > \log_2 x$$
 
$$\Rightarrow \qquad \frac{\log x}{\log 3} - \frac{\log x}{\log 2} > 0$$
 
$$\log x \left(\frac{\log 3 - \log 2}{\log 2 \log 3}\right) < 0$$
 
$$\Rightarrow \qquad \log x < 0 \Rightarrow x < 1$$
 So, 
$$x \in (0, 1)$$
 (xi)  $\log_{2x+3} x^2 < \log_{2x+3} (2x+3)$  ...(i) From Eq. (i) to be defined, 
$$2x + 3 > 0$$
 
$$x > -\frac{3}{2}$$
 
$$2x + 3 \neq 1$$
 
$$x \neq -1$$
 
$$x \in R - \{0\}$$
 ...(A) From Eq. (i),  $\log_{2x+3} x^2 < 1$  ...(ii) 
$$Case\ I \quad 0 < 2x + 3 < 1 \Rightarrow -\frac{3}{2} < x < -1$$
 ...(iii) From Eq. (ii),  $\log_{2x+3} x^2 < 1$  ...(iii) 
$$From\ Eq.\ (ii), \log_{2x+3} x^2 < 1$$
 ...(iv) 
$$\Rightarrow \qquad x^2 > 2x + 3 \Rightarrow x^2 - 2x - 3 > 0$$
 
$$\Rightarrow \qquad (x - 3)(x + 1) > 0$$
 
$$\Rightarrow \qquad x < -1 \text{ or } x > 3$$
 ...(iv) 
$$From\ Eqs.\ (A),\ (iii)\ and\ (iv),\ x \in \left(-\frac{3}{2}, -1\right)$$
 ...(B) 
$$Case\ II\ \ If\ 2x + 3 > 1 \Rightarrow x > -1$$
 ...(v) 
$$\log_{2x+3} x^2 < 1$$
 ...(v) 
$$\log_{2x+3} x^2 < 1$$
 ...(v) 
$$So,\ Eqs.\ (A),\ (v)\ and\ (vi),\ x \in (-1,3)$$
 From Eqs. (B) and (C), 
$$x \in \left(-\frac{3}{2}, -1\right) \cup (-1,3)$$
 (xii)  $\log_2^2 x + 3 \log_2 x \ge \frac{5}{2} \log_{4\sqrt{2}} 16$  ...(i)

 $\log_2^2 x + 3 \log_2 x - \frac{5}{2} \times \frac{2}{5} \log_2 16 \ge 0$ 

 $\log_2^2 x + 3 \log_2 x - 4 \ge 0$ 

 $(\log_2 x + 4) (\log_2 x - 1) \ge 0$ 

So,

...(vii)

Then,

٠.

 $\Rightarrow$ 

(xvi)

...(i)

$$\log_2 x \le -4 \text{ or } \log_2 x \ge 1 \implies x \le \frac{1}{16}$$
or  $x \ge 2$  ...(ii)
From Eq. (i),  $x > 0$  ...(iii)
From Eqs. (ii) and (iii),  $x \in \left[0, \frac{1}{16}\right] \in [2, \infty)$ 
(xiii)  $\because (x^2 + x + 1)^x < 1$ 

Taking logarithm on both sides, then  $x \log (x^2 + x + 1) < 0$ 

$$\because x^2 + x + 1 > 0, \forall x \in R$$
Case I If  $x > 0$  ...(i)
Then,  $\log (x^2 + x + 1) < 0$ 

$$\therefore x^2 + x + 1 < 1$$

$$\Rightarrow x(x + 1) < 0$$

$$\Rightarrow -1 < x < 0$$
From Eqs. (i) and (ii),  $x \in \emptyset$ 
Case II If  $x < 0$  ...(ii)
From Eqs. (i) and (ii),  $x \in \emptyset$ 
Case II. If  $x < 0$  ...(iii)
From Eqs. (ii) and (iv), we get
$$x \in (-\infty, -1) \cup (0, \infty)$$
 ...(iv)
From Eqs. (iii) and (iv), we get
$$x \in (-\infty, -1)$$

$$(xiv) \log_{(3x^2 + 1)} 2 < \frac{1}{2}$$

$$2 < (3x^2 + 1)^{1/2}$$

$$(3x^2 + 1) \forall x \in R)$$

$$4 < 3x^2 + 1$$

$$3x^2 > 3$$

$$x^2 > 1$$

$$x < -1 \text{ or } x > 1$$

$$\Rightarrow x \in (-\infty, -1) \cup (1, \infty)$$
(xv)  $x^{(\log_{10} x)^2 - 3\log_{10} x + 1} > 1000$ 
From Eq. (i) to be defined,  $x > 0$  and  $x \ne 1$ 
Let  $\log_{10} x = y \Rightarrow x = 10^y$ 
From Eq. (i),  $10^{y}(y^2 - 3y + 1) > 10^3$ 

$$\Rightarrow y^3 - 3y^2 + y - 3 > 0$$

$$\Rightarrow y^2(y - 3) + 1(y - 3) > 0$$

$$\Rightarrow (y - 3)(y^2 + 1) > 0$$

$$\Rightarrow x > 1\log_{10} x > 3$$

$$\Rightarrow (y - 3)(y^2 + 1) > 0$$

$$\Rightarrow x > 1\log_{10} x > 3$$

$$\Rightarrow x > 1000$$

$$\Rightarrow x \in (10000, \infty)$$
(xvi)  $\log_4 \{14 + \log_6(x^2 - 64)\} \le 2$  ...(i)

 $14 + \log_6(x^2 - 64) \le 16$ 

 $\log_6(x^2 - 64) \le 2$ 

$$x^{2} - 64 \le 36$$
  
 $x^{2} \le 100$   
 $-10 \le x \le 10$  ...(ii)

...(iii)

...(iii)

...(i)

...(iv)

From Eq. (i),  $x^2 - 64 > 0$ 

$$\Rightarrow$$
  $x < -8 \text{ or } x > 8$ 

From Eqs. (ii) and (iii),

$$x \in [-10, -8) \cup (8, 10]$$

(xvii) 
$$\log_2 (9-2^x) \le 10^{\log_{10} (3-x)}$$
 ...(i)

From Eq. (i) to be defined,

$$9 - 2^x > 0 \implies 9 > 2^x$$

$$\Rightarrow \qquad \qquad 2^x < 9 \ \Rightarrow \ x < \log_2 9$$

$$3 - x > 0 \implies x < 3$$

Then,

From Eq. (i),  $\log_2 (9 - 2^x) \le 3 - x$ 

$$\Rightarrow \qquad \qquad 9 - 2^x \le 2^{3 - x}$$

$$\Rightarrow \qquad 9 - 2^x - 8 \cdot 2^{-x} \le 0$$

$$\Rightarrow$$
  $(2^x)^2 - 92^x + 8 \ge 0$ 

$$\Rightarrow \qquad (2^x - 8)(2^x - 1) \ge 0$$

$$\Rightarrow \qquad \qquad 2^x \le 1 \text{ or } 2^x \ge 8$$

$$\Rightarrow$$
  $x \le 0 \text{ or } x \ge 3$ 

From Eqs. (ii) and (iii),  $x \le 0 \Rightarrow x \in (-\infty, 0]$ 

(xviii) 
$$\log_a \left( \frac{2x+3}{x} \right) \ge 0$$

From inequation (a), a > 1

By Eq. (i), 
$$\frac{2x+3}{} > 0$$

$$\Rightarrow \left[ \frac{x - \left(-\frac{3}{2}\right)}{x - 0} \right] > 0$$

$$\Rightarrow \qquad x < -\frac{3}{2} \text{ or } x > 0 \qquad \dots \text{(ii)}$$

From Eq. (i), 
$$\log_a \left(2 + \frac{3}{x}\right) \ge 0$$
$$2 + \frac{3}{x} \ge 1$$
$$\frac{3 + x}{x} \ge 0$$
$$\frac{x - (-3)}{x - 0} \ge 0$$

$$x \le -3 \text{ or } x \ge 0$$
 ...(iii)

From Eqs. (ii) and (iii),

 $\Rightarrow$ 

$$x \le -3 \text{ or } x > 0$$
  
$$x \in (-\infty, -3] \cup (0, \infty)$$

From inequation in (b), 0 < a < 1

From Eq. (i), 
$$\frac{2x+3}{x} \le 1$$

$$\Rightarrow \frac{x+3}{x} \le 0$$

$$\Rightarrow -3 \le x \le 0$$

$$\Rightarrow x \in [-3, 0] \qquad \dots(v)$$

From Eqs. (ii) and (v), we get 
$$x \in \left[-3, -\frac{3}{2}\right]$$

(xix) 
$$1 + \log_2(x - 1) \le \log_{(x-1)} 4$$
 ...(i)

From Eq. (i) to be defined, 
$$x - 1 > 0 \Rightarrow x > 1$$

and 
$$x-1 \neq 1 \Rightarrow x \neq 2$$
 ...(ii)

By Eq. (i), 
$$1 + \log_2(x - 1) \le 2 \log_{(x - 1)} 2$$
  
Let  $\log_2(x - 1) = \lambda$ , then

$$1 + \lambda \le \frac{2}{\lambda}$$

$$\Rightarrow \frac{\lambda^2 + \lambda - 2}{\lambda} \le 0$$

$$\Rightarrow \frac{(\lambda + 2)(\lambda - 1)}{\lambda} \le 0$$

$$(\lambda + 2)(\lambda - 1) \le 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

$$\Rightarrow \lambda \le -2 \text{ or } 0 < \lambda \le 1$$

$$\Rightarrow \log_2(x-1) \le -2$$

or 
$$0 < \log_2 (x - 1) \le 1$$
  
 $\Rightarrow x - 1 \le 2^{-2} \text{ or } 2^0 < x - 1 \le 2^1$ 

$$\Rightarrow$$
  $x-1 \le 2^{-2} \text{ or } 2^{0} < x-1 \le 2^{1}$ 

$$\Rightarrow \qquad x \le \frac{5}{4} \text{ or } 2 < x \le 3 \qquad \dots \text{(iii)}$$

From Eqs. (ii) and (iii), we get

$$x \in (2, 3]$$

(xx) 
$$\log_{5x+4} x^2 \le \log_{5x+4} (2x+3)$$
 ...(i)

From Eq. (i) to be defined,  $5x + 4 > 0 \Rightarrow$ 

$$5x + 4 \neq 1 \implies x \neq -\frac{3}{5}$$

$$2x + 3 > 0 \Longrightarrow x > -\frac{3}{2}$$

and 
$$x \in (-\infty, \infty) - \{0\}$$
  

$$\Rightarrow x \in \left(-\frac{4}{5}, -\frac{3}{5}\right) \cup \left(-\frac{3}{5}, 0\right) \cup (0, \infty)$$

From Eq. (i), 
$$\log_{5x+4} x^2 \le \log_{5x+4} (2x+3)$$

$$\log_{5x+4} \frac{x^2}{2x+3} \le 0 \qquad ...(iii)$$

$$\log_{5x+4} \frac{1}{2x+3} \ge 0 \qquad \dots (1)$$

Case I 
$$0 < 5x + 4 < 1$$
  
 $\Rightarrow -\frac{4}{5} < x < -\frac{3}{5}$  ...(iv)

From Eq. (iii), 
$$\frac{x^2}{2x+3} \ge 1$$

$$\frac{x^2 - 2x - 3}{2x + 3} \ge 0$$



From Eqs. (ii), (iv) and (v), 
$$x \in \phi$$
 ...(vi)

Case II 
$$5x + 4 > 1 \implies x > -\frac{3}{5}$$
 ...(vii)

From Eq. (iii),  $\frac{x^2}{2x+3} \le 1$ 

$$\left[ \frac{(x-3)(x+1)}{\left\{ x - \left(-\frac{3}{2}\right) \right\}} \right] \le 0$$

$$\Rightarrow x < -\frac{3}{2} \text{ or } x \in [-1, 3]$$
 ...(viii)

From Eqs. (ii), (vii) and (viii),

$$x \in \left(-\frac{3}{5}, -\frac{3}{2}\right) \cup [-1, 0) \cup (0, 3]$$
 ...(ix)

From Eqs. (vi) and (ix), we get

$$x \in \left(-\frac{3}{5}, -\frac{3}{2}\right) \cup [-1, 0) \cup (0, 3]$$

#### 74. Given equation is

For example of the equation is 
$$\sqrt{\log_x (ax)^{1/5} + \log_a (ax)^{1/5}} + \sqrt{\log_a \left(\frac{x}{a}\right)^{1/5}} + \log_x \left(\frac{a}{x}\right)^{1/5} = a \quad ...(i)$$

$$\frac{1}{\sqrt{5}} \sqrt{1 + \log_x a + 1 + \log_a x}$$

$$+ \frac{1}{\sqrt{5}} \sqrt{\log_a x - 1 + \log_x a - 1} = a$$

$$\sqrt{\log_a x + \frac{1}{\log_a x} + 2} + \sqrt{\log_a x + \frac{1}{\log_a x} - 2} = \sqrt{5}a$$

$$\left| \sqrt{\log_a x} \right| + \frac{1}{\sqrt{|\log_a x|}} \right| + \left| \sqrt{\log_a x} \right| - \frac{1}{\sqrt{|\log_a x|}} \right| = \sqrt{5}a \quad ...(ii)$$
Let 
$$\sqrt{|\log_a x|} = y \qquad [y \ge 0]$$

$$\left| y + \frac{1}{y} \right| + \left| y - \frac{1}{y} \right| = \sqrt{5}a \qquad ...(iii)$$

$$Case I \ x \ge a > 1 \text{ Eq. (iii)} \Rightarrow y + \frac{1}{y} + y - \frac{1}{y} = \sqrt{5}a$$

$$\Rightarrow \qquad 2y = \sqrt{5}a$$

$$2\sqrt{|\log_a x|} = \sqrt{5}a$$

 $\sqrt{|\log_a x|} = \frac{\sqrt{5}}{2}a$ 

$$\log_a x = \frac{5}{4}a^2$$

$$x = a^{\frac{5}{4}a^2}$$

$$x = \sqrt{5}a$$

$$y = \frac{2}{\sqrt{5}a}$$

$$\sqrt{|\log_a x|} = \frac{2}{\sqrt{5}a}$$

$$\log_a x = \frac{4}{5a^2}$$

$$x = a^{4/5a^2}$$

#### 75. Given equation,

$$\log_{\pi} (x^2 + 15a^2) - \log_{\pi} (a - 2) = \log_{\pi} \frac{8ax}{a - 2}$$

Eq. (i) is defined, if 
$$a-2>0 \Rightarrow a>2$$
 ...(ii) 
$$\frac{8ax}{a-2}>0$$

By Eq. (ii),

So, 
$$ax > 0$$
, then  $x > 0$ 

Eq. (i) for 
$$x = 9, a > 0$$
  

$$\log_{\pi} \frac{(x^2 + 15a^2)}{(a - 2)} = \log_{\pi} \frac{8ax}{a - 2}$$

$$x^2 + 15a^2 = 8ax \qquad ...(iii)$$

$$(x - 3a)(x - 5a) = 0$$

$$x = 3a \text{ and } x = 5a$$

$$x = 3a$$
 and  $x = 5a$   
 $a = 3$   $x = 9$  and  $x = 15$ 

For 
$$a = 3$$
,  $x = 9$  and  $x = 15$   
 $\Rightarrow x = 15$  for  $a = 3$ 

#### 76. Given that,

$$\log_4(\log_3 x) + \log_{1/4}(\log_{1/3} y) = 0$$

$$\Rightarrow \frac{1}{2}\log_2\log_3 x - \frac{1}{2}\log_2(-\log_3 y) = 0$$

$$\Rightarrow \frac{1}{2}\left[\log_2\left(\frac{\log_3 x}{-\log_3 y}\right)\right] = 0$$

$$\Rightarrow -\frac{\log_3 x}{\log_3 y} = 1$$

$$\Rightarrow \log_3 x = -\log_3 y$$

$$\Rightarrow \log_3 x = \log_3\left(\frac{1}{y}\right)$$

$$\Rightarrow x = \frac{1}{y} \qquad ...(ii)$$
Also, given that, 
$$x^2 + y^2 = \frac{17}{4}$$

Also, given that, 
$$x^2 + y^2 = \frac{17}{4}$$
  
 $x^2 + \frac{1}{x^2} = \frac{17}{4}$ 

$$\left(x + \frac{1}{x}\right)^2 = \frac{17}{4} + 2$$

$$x + \frac{1}{x} = \frac{5}{2}$$
 [by Eq. (i)  $x > 0, y > 0$ ]
$$x + \frac{1}{x} = 2 + \frac{1}{2}$$

$$\therefore \qquad x = 2 \text{ or } \frac{1}{2}$$

For these values of x,  $y = \frac{1}{2}$  or 2 [by Eq. (ii)]

**77.** 
$$\log_{2x} 4x + \log_{4x} 16x = 4$$
 ...(i)

From Eq. (i) is defined for x > 0,  $x \ne \frac{1}{2}$ ,  $x \ne \frac{1}{4}$  ...(ii)

$$\Rightarrow \frac{\log 4x}{\log 2x} + \frac{\log 16x}{\log 4x} = 4$$

$$\Rightarrow \frac{2 \log 2 + \log x}{\log 2 + \log x} + \frac{4 \log 2 + \log x}{2 \log 2 + \log x} = 4$$

On dividing by log 2, then

$$\frac{2 + \log_2 x}{1 + \log_2 x} + \frac{4 + \log_2 x}{2 + \log_2 x} = 4$$

Let  $\log_2 x = \lambda$ , then

$$(2 + \lambda)^2 + (1 + \lambda)(4 + \lambda) = 4(1 + \lambda)(2 + \lambda)$$

$$\Rightarrow \qquad 2\lambda^2 + 9\lambda + 8 = 4\lambda^2 + 12\lambda + 8$$

$$\Rightarrow \qquad 2\lambda^2 + 3\lambda = 0$$

$$\lambda = 0, \, \lambda = -\frac{3}{2}$$

$$\Rightarrow \qquad \log_2 x = 0, \log_2 x = -\frac{3}{2}$$

$$\therefore x = 2^0, x = 2^{-3/2}$$

or 
$$x = 1, x = 2^{-3/2}$$

#### 78. Given equation,

$$\log_6 54 + \log_x 16 = \log_{\sqrt{2}} x - \log_{36} \frac{4}{9}$$
 ...(i)

Eq. (i) holds, if x > 0,  $x \ne 1$ 

From Eq. (i),

$$1 + \log_6 9 + 4 \log_x 2 = 2 \log_2 x - \log_6 \frac{2}{3}$$

$$\Rightarrow 1 + \log_6 9 + \log_6 \frac{2}{3} + 4 \log_x 2 - 2 \log_2 x = 0$$

$$\Rightarrow \qquad 2 + 4 \log_x 2 - 2 \log_2 x = 0$$

$$\Rightarrow \qquad (\log_2 x)^2 - \log_2 x - 2 = 0$$

$$\Rightarrow \log_2 x = 2 \text{ or } \log_2 x = -1$$

$$\Rightarrow \qquad x = 4 \text{ or } x = \frac{1}{2}$$

Sum of the values of x satisfy Eq. (i) =  $4 + \frac{1}{2} = \frac{9}{2}$ 

Product of the values of x satisfy Eq. (i) =  $4 \times \frac{1}{2} = 2$ 

**79.** Let 
$$\frac{3}{2}\log_4(x+2)^3 + 3 = \log_4(4-x)^3 + \log_4(x+6)^3$$
 ...(i) Eq. (i) holds, if  $4-x>0$  and  $x+0>0, x+2>0$ 

i.e., 
$$-2 < x < 4$$
 ...(ii)

From Ec

$$\frac{3}{2} \times 2 \times \frac{1}{2} \log_2 |(x+2)| + 3 = \frac{1}{2} \times 3 \log_2 (4-x)$$

$$+\frac{1}{2}\times 3\log_2\left(x+6\right)$$

$$\Rightarrow \log_2(x+2) + 2 = \log_2(4-x) + \log_2(x+6)$$

$$\Rightarrow \log_2 \{4(x+2)\} = \log_2 \{(4-x)(x+6)\}$$

$$\Rightarrow \qquad 4(x+2) = (4-x)(x+6)$$

$$4x + 8 = -x^2 - 2x + 24$$

$$x^2 + 6x - 16 = 0$$

$$(x+8)(x-2)=0$$

$$x = -8, x = 2$$

From Eqs. (ii) and (iii), we get x = 2

**80.** 
$$\log_2(4^{x+1} + 4) \cdot \log_2(4^x + 1) = \log_{1/\sqrt{2}}\left(\frac{1}{\sqrt{8}}\right)$$

Eq. (i) defined, for  $4^x + 1 > 0$  which is true for all  $x \in R$ .

$$\log_2 \left[ 4(4^x + 1) \right] \cdot \log_2 (4^x + 1) = \log_{\sqrt{2}} \sqrt{8} = 3$$

$$[2 + \log_2 (4^x + 1)] \log_2 (4^x + 1) = 3$$

Let 
$$\log_2(4^x + 1) = y$$

$$\therefore \qquad (y+2) \ y=3$$

$$y^2 + 2y - 3 = 0$$

$$(y+3)(y-1)=0$$

$$y = 1$$
 or  $y = -$ 

$$\log_2(4^x + 1) = 1$$
 or  $\log_2(4^x + 1) = -3$ 

$$4^{x} + 1 = 2$$
 or  $4^{x} + 1 = \frac{1}{8}$ 

$$4^{x} = 1$$
 or  $4^{x} = \frac{1}{2} - 1$ 

$$x = 0$$
 or  $4^x = -\frac{7}{8}$  which is not possible.

$$r = 0$$

**81.** 
$$2^{\sqrt{x} + \sqrt{y}} = 256$$

$$\Rightarrow \qquad 2^{\sqrt{x} + \sqrt{y}} = 2^8$$

$$\Rightarrow \qquad \sqrt{x} + \sqrt{y} = 8$$

Also, given that, 
$$\log_{10} \sqrt{xy} - \log_{10} \frac{3}{2} = 1$$
 ...(ii)

which is defined, xy > 0

So, Eq. (ii) 
$$\Rightarrow \log_{10} \sqrt{xy} = \log_{10} \left(10 \times \frac{3}{2}\right)$$

$$\sqrt{xy} = 15$$

$$\Rightarrow xy = 225 \qquad ...(iii)$$

From Eq. (i), 
$$x + y + 2\sqrt{xy} = 64$$

$$x + y = 64 - 30$$

$$x + y = 34$$

From Eq. (iii), 
$$xy = 225$$

After solving, we get x = 9 or x = 25, then y = 25 or y = 9

Hence, solutions are (9, 25) and (25, 9).

**82.** Given, 
$$\log_2 y = \log_4 (xy - 2)$$
 ...(i)

Eq. (i) defined for 
$$y > 0$$
 and  $xy - 2 > 0$  ...(ii)

$$y > 0$$
 ...(iii)

From Eqs. (ii) and (iii)  $\Rightarrow y > 0, x > 0$ By Eq. (i),

$$y^2 - xy + 2 = 0$$
 ...(iv)

$$y(x-y) = 2 \qquad \dots(v)$$

Also given that,

$$\log_9 x^2 + \log_3 (x - y) = 1$$
 ...(vi)

which is defined for  $x \in R - \{0\}$  and x - y > 0

By Eq. (vi), 
$$x(x-y) = 3 \Rightarrow x^2 - xy = 3$$

By Eq. (vi), 
$$x(x-y) = 3 \Rightarrow x^2 - xy = 3$$
 ...(vii)

$$x(x-y) = 3 \qquad ...(viii)$$

Form Eqs. (iv) and (vii), 
$$y^3 + 2 = x^2 - 3$$
  
 $x^2 - y^2 = 5$  ...(ix)

On dividing Eq. (v) by Eq. (viii).

$$\frac{y}{x} = \frac{2}{3} \implies y = \frac{2x}{3} \qquad \dots(x)$$

From Eqs. (ix) and (x).

$$x = 3$$
 and  $y = 2$ 

#### 83. Given that,

$$2 \log_{1/4} (x+5) > \frac{9}{4} \log_{1/3\sqrt{3}} 9 + \log_{\sqrt{x+5}} 2$$
 ...(i)

By Eq. (i),  $x + 5 > 0 \implies x > -5$ 

$$x + 5 \neq 1 \implies x \neq -4$$

So, 
$$x \in (-5, -4) \cup (-4, \infty)$$
 ...(ii)

Now, by Eq. (i)

$$\frac{2}{-2}\log_2(x+5) - \frac{9}{4} \times \left(\frac{-2}{3}\right)\log_3 9 - 2\log_{x+5} 2 > 0$$

$$-\log_2(x+5) + 3 - 2\log_{x+5} 2 > 0$$

$$-\log_2(x+5) + 3 - 2\log_{x+5} 2 > 0$$

$$-\log_2(x+5) - \frac{2}{\log_2(x+5)} + 3 > 0 \qquad ...(iii)$$

Now, let  $\log_2(x + 5) = y$ , then Eq. (iii) becomes

$$-y - \frac{2}{y} + 3 > 0$$

$$\Rightarrow \frac{-y^2 + 3y - 2}{y} > 0$$

$$\Rightarrow \frac{y^2 - 3y + 2}{y} < 0$$

$$\Rightarrow \frac{(y-2)(y-1)}{y} < 0$$

$$\Rightarrow$$
  $y < 0 \text{ or } 1 < y < 2$ 

$$\Rightarrow \log_2(x+5) < 0 \text{ or } 1 < \log_2(x+5) < 2$$

$$\Rightarrow x+5 < 1 \text{ or } 2 < x+5 < 4$$

$$\Rightarrow$$
  $x < -4$  ...(iv)

or 
$$-3 < x < -1$$
 ...(v)

From Eqs. (ii), (iv) and (v),

$$x \in (-5, -4) \cup (-3, -1)$$

$$x \in (-5, -4) \cup (-3, -1)$$
**84.**  $\log_3(\sqrt{x} + |\sqrt{x} - 1|) = \log_9(4\sqrt{x} - 3 + 4|\sqrt{x} - 1|)$  ...(i)

From Eq. (i) is defined, if  $x \ge 0$ 

then 
$$\log_3 (\sqrt{x} + |\sqrt{x} - 1|) = \log_{3^2} (4\sqrt{x} - 3 + 4|\sqrt{x} - 1|)$$

$$\Rightarrow 2(\sqrt{x} + |\sqrt{x} - 1|) = 4\sqrt{x} - 3 + 4|\sqrt{x} - 1|$$

$$\Rightarrow \qquad 3 - 2\sqrt{x} = 2|\sqrt{x} - 1|$$

On squaring both sides, then

ng both sides, then
$$9 + 4x - 12\sqrt{x} = 4x + 4 - 4\sqrt{x}$$

$$8\sqrt{x} =$$

$$x = \frac{25}{6}$$

**85.** 
$$(\log_2 x)^4 - \left(\log_{1/2} \frac{x^5}{4}\right)^2 - 20 \log_2 x + 148 < 0$$

From Eq. (i), x > 0

$$\Rightarrow (\log_2 x)^4 - (5\log_2 x - 2)^2 - 20\log_2 x + 148 < 0 \qquad \dots (i)$$

$$(\log_2 x)^4 - 25\log_2^2 x - 4 + 20\log_x x - 20\log_2 x + 148 < 0$$

$$(\log_2 x)^4 - 25\log_2^2 x + 144 < 0$$

$${(\log_2 x)^2 - 16} {(\log_2 x)^2 - 9} < 0$$

$$9 < (\log_2 x)^2 < 16$$

$$3 < \log_2 x < 4$$
 or  $-4 < \log_2 x < -3$ 

$$4 < \log_2 x < -3$$

$$8 < x < 16$$
 ...(ii)

 $3 < \log_2 x < 4$  or  $-4 < \log_2 x < -3$  8 < x < 16  $\frac{1}{2} < x < \frac{1}{2}$ ...(iii)

According to the question in Eq. (i) holds, for  $x \in (a, b)$ 

where  $a, b \in N$ So, from Eq. (ii), a = 8, b = 16

$$ab (a + b) = 8 \times 16(8 + 16)$$
$$= 144 \times 24 = 3456$$

**86.** 
$$\sqrt{(\log_3 \sqrt[3]{3x}) + (\log_x \sqrt[3]{3x}) \log_3 x^3}$$

$$+ \sqrt{\left(\log_3 \sqrt[3]{\frac{x}{3}} + \log_x \sqrt[3]{\frac{3}{x}}\right) \log_3 x^3} = 2 \qquad ...(i)$$

Eq. (i) is defined for x > 0,  $x \ne 1$ 

From Eq. (i), 
$$\sqrt{\frac{1}{3}} (1 + \log_3 x + 1 + \log_x 3) 3 \log_3 x$$

$$+ \sqrt{\frac{1}{3} (\log_3 x - 1 + \log_x 3 - 1) 3 \log_3 x}$$

$$= 2\sqrt{\log_3 x + \frac{1}{\log_3 x} + 2} + \sqrt{\log_3 x + \frac{1}{\log_3 x} - 2}$$

$$= 2\sqrt{\log_3 x}$$

$$\Rightarrow \sqrt{|\log_3 x|} + \frac{1}{\sqrt{|\log_3 x|}} + \left| \sqrt{|\log_3 x|} - \frac{1}{\sqrt{|\log_3 x|}} \right| = 2\sqrt{|\log_x 3|}$$
...(ii)

Case I If 
$$x \ge 3$$
,  $\sqrt{\log_3 x} - \frac{1}{\sqrt{\log_3 x}} > 0$   
$$2\sqrt{\log_3 x} = 2\sqrt{\log_x 3}$$

$$(\log_3 x)^2 = 1 \Rightarrow x = 3 \text{ or } \frac{1}{3}, \text{ so } x = 3$$

**Case II** If 
$$1 < x < 3$$
,  $\frac{2}{\sqrt{\log_3 x}} = 2\sqrt{\log_x 3}$ 

$$\Rightarrow \log_3 x \cdot \log_x 3 = 1$$

$$\Rightarrow 1 = 1$$

which is true, for all  $x \in (1, 3]$ .

So, 
$$x \in (1, 3]$$

- **87.**  $P = \text{Number of natural numbers, whose logarithms to the base$ 10 have characteristic p.
  - Let 'x' represent the natural number, i.e.

$$x = \lambda \times 10^p \left[\lambda = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \dots\right]$$

So, P = Number of natural numbers which have (p + 1) digits $=9 \cdot 10^p - 1 + 1 = 9 \cdot 10^p$ 

Q = Number of natural numbers which have (q) digits.

$$Q = 9 \cdot 10^{q-1} - 1 + 1 = 9 \cdot 10^{q-1}$$

So, 
$$\log_{10} P - \log_{10} Q = \log_{10}(9 \cdot 10^p) - \log_{10}(9 \cdot 10^{q-1})$$
  
=  $(\log_{10} 9 + p) - (\log_{10} 9 + q - 1)$   
=  $p - q + 1$ 

**88.** : 
$$a = \log_3 \log_3 2$$

$$\Rightarrow$$
  $3^a = \log_3 2$ 

$$\therefore \qquad 3^{-a} = \log_2 3$$

Now, 
$$1 < 2^{-k + 3^{-a}} < 2^1$$

$$\Rightarrow$$
  $2^0 < 2^{-k+3^{-a}} < 2^1$ 

$$0 < -k + 3^{-a} < 1$$

$$\Rightarrow$$
 0 < -k +  $\log_2 3$  < 1

$$\Rightarrow \qquad 0 > k - \log_2 3 > -1$$

$$\Rightarrow \qquad \log_2 3 - 1 < k < \log_2 3$$

$$k=1$$

**89.** : 
$$(2x)^{\ln 2} = (3y)^{\ln 3}$$

Taking  $\log$  with base e on both sides, then

$$\ln 2 (\ln 2 + \ln x) = \ln 3 (\ln 3 + \ln y)$$
 ...(i)  
d  $3^{\ln x} = 2^{\ln y}$ 

and

Taking  $\log$  with base e on both sides, then

$$\ln x \cdot \ln 3 = \ln y \cdot \ln 2 \qquad ...(ii)$$

From Eqs. (i) and (ii), we get

$$\ln 2 (\ln 2 + \ln x) = \ln 3 \left( \ln 3 + \frac{\ln x \cdot \ln 3}{\ln 2} \right)$$

$$\Rightarrow \ln x \left( \frac{(\ln 3)^2}{\ln 2} - \ln 2 \right) = -((\ln 3)^2 - (\ln 2)^2)$$

$$\therefore \qquad \ln x = -\ln 2 = \ln \left(\frac{1}{2}\right)$$

$$x = \frac{1}{2}$$

$$\therefore \qquad x_0 = \frac{1}{2}$$

**90.** Let 
$$S = \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \dots \infty}}}$$

$$S = \frac{1}{3\sqrt{2}} \sqrt{4 - S}$$

or 
$$(3\sqrt{2} S)^2 = 4 - S$$
  
 $\Rightarrow 18S^2 + S - 4 = 0$ 

$$\Rightarrow \qquad (9S - 4)(2S + 1) = 0$$

$$\therefore \qquad 9S - 4 = 0 \qquad [\because 2S + 1 \neq 0]$$

or 
$$S = \frac{4}{9} = \left(\frac{3}{2}\right)^{-1}$$

$$\Rightarrow \qquad \log_{3/2} S = -2 \Rightarrow 6 + \log_{3/2} S = 6 - 2 = 4$$

Hence,

$$6 + \log_{3/2} \left( \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \dots}}} \right) = 4$$

**91.** 
$$(3/4)^x = 1/4$$

Taking log with base 2

$$\Rightarrow x(\log_2 3 - 2) = -2$$

$$\therefore x = \frac{2}{2 - \log_2 3} = \frac{1}{1 - \log_4 3} \implies (b, c)$$

and taking log with base 3

$$\Rightarrow x(1 - \log_3 4) = -2\log_3 2$$

$$\therefore \qquad \qquad x = \frac{2\log_3 2}{2\log_3 2 - 1}$$