Why do Nigerian Scammers Say They are from Nigeria?

Mineria de Datos - ITAM

Carlos Petricioli, Liliana Millán, Amanda Balderas

December 3, 2014

Introducción

Nos referimos al artículo:

Why do Nigerian Scammers Say They are from Nigeria?

 $\begin{array}{c} \text{Cormac Herley} \\ \textit{Microsoft Researh} \end{array}$

Why do Nigerian Scammers Say They are from Nigeria?

ROC

Descipción

- Attackers have false positives too.
 - False positive are targets that are attacked but yield nothing.
- False negatives are viable targets that go un-attacked.
 - Attacks as binary classification decisions.

Descipción

- Attacks are seldom free.
 - Each potential target represents an investment decision to an attacker.
- Victim distribution model.
 - The attacker does not know with certainty that he will succeed unless he tries the attack.
 - Rich does not mean viable.

$$pdf(x|non - viable) = N(0,1)$$

$$pdf(x|viable) = N(\mu, 1)$$

Tabla de variables

Quantity	Symbol
Number of users	N
Number of viable users	M
Victim density	d = M/N
Net gain from viable user	G
Cost of attack	C
True positive rate	t_p
False positive rate	f_p
Number viable users attacked	$d \cdot t_p \cdot N$
Number non-viable users attacked	$(1-d)\cdot f_p\cdot N$

Modelo

- Attack model.
 - -Attack if:

$$P\{viable|x_i\} * G > P\{nonviable|x_i\} * C$$

-Expected return:

$$\mathbb{E}[R] = (d \cdot t_p \cdot G - (1 - d)f_p \cdot C)N$$

• Ability to discriminate between viable and non viable targets.

$$cdf(x|viable)$$
 vs. $cdf(x|nonviable)$.

- Attack everyone, attack at random.
 - Expected return:

$$\mathbb{E}[R] = (d \cdot G - (1 - d) \cdot C) \cdot N$$

Modelo

• Optimal Operating Point.

$$\frac{1-d}{d} + \frac{C}{G}$$

- As slope increases fewer users are attacked.
 - As slope increases not only are fewer total targets attacked, but fewer viable targets are attacked.
- If attacking everyone is not profitable slope must be greater than unity.

$$d > \frac{C}{G+C}$$

Distribuciones

ROC S

Pendiente vs t_p

Planteamiento

Thus, as slope increases not only are fewer total targets attacked, but fewer viable targets are attacked.

Nigerian Scam

¿Por qué los defraudadores dicen que son de Nigeria?

- Quién de ustedes abriría/respondería un correo que tiene en el título algo de Nigeria????
- \rightarrow (seguramente nadie!) ¿por qué?

Oportunidades en densidades de víctimas bajas

- Entrenar un buen clasificador requiere de muchos ejemplos etiquetados.
- Clasificadores con mayor precisión se construyen 'fácilmente' en dónde menos son requeridos (densidades grandes)

¿Cómo funciona?

 El que el correo sea tan obvio para saber que es spam cumple con su objetivo: ocupar muy pocos recursos para disminuir el universo de FP y enfocarse en los posibles TP → los ingenuos.

Utilizar los FP a nuestro favor

- Responder el correo sabiendo que están buscando víctimas
- Construir modelos que respondan automáticamente a estos correos