Infraestrutura ComputacionalII

Conceitos básicos de Redes de Computadores

Luis C.E. Bona (bona@inf.ufpr.br)

Slides parcialmente baseados no livro:

Computer Networking: A Top Down Approach. Jim Kurose, Keith Ross

Visão geral

- * Neste módulo
 - Conceitos principais de redes de computadores
 - Configuração dos principais serviços de rede em servidores Linux
 - Ferramentas e aplicações de rede
 - Conceitos de Nuvens Computacionais e virtualização

Hoje

- * O que é a Internet (visão top-down)
- Principais tecnologias e meios de conexão
- Noções de protocolos
- * A camada de protocolos da Internet
- * Aplicações: HTTP / DNS / SSH

O que é a Internet

server

wireless laptop

smartphone

- Milhões de dispositivos conectados:
 - hosts
 - executando aplicações de rede

Links de comunicação

 Fibra, cobre, rádio, satélite,

- Comutação de pacotes
 - roteadores e switches

O que é a Internet?

- Internet: "network of networks"
- protocolos
 - TCP, IP, HTTP, Skype, 802.11
- Padrões da Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

O que é a Internet: Visão de Serviço

- Infraestrutura que provê serviços para as aplicações
- Proporcional interfaces de programação para as aplicações
 - Ganchos (hooks) que permite a aplicação se conectar na Internet e enviar e receber dados
 - Diferentes opções de serviços

Protocolos

Protocolos humanos:

 Diversas regras de comportamento para determinadas situações

Protocolos de rede:

- Para máquinas
- Toda a comunicação na Internet é regida por algum protocolo

protocolos definem formatos
e ordem das mensagens
enviadas e recebidas
entre entidades da rede e
ações realizadas na
transmissão e recepção e
mensagens

Olhando mais afundo

- * Borda da rede (folhas):
 - hosts: clientes/servidores
 - Servidores normalmente em datacenters

* Meio físico

- * Núcleo da rede
 - roteadores

Redes de acesso

Q: Como conectar um end host à um roteador da borda?

- Redes de acesso residêncial
- Redes de acesso institucionais
- Redes de acesso móveis

Com o que se preocupar?

- Largura de banda
- Compartilha ou dedicado
- * O que mais?

ADSL

Sobre a TV a cabo

Rede residêncial

Rede corporativa

Rede sem fio

Access point (Base station)

wireless LANs:

802.11 b/g/n/ac (WiFi)

Wireless WAN

• 3G, 4G

Host: Envia *pacotes* de dados

Host:

- * Recebe as mensagens das aplicações
- * Quebra em pedaços, chamados de pacotes, com um determinado número de bits (L)
- * Transmite os pacotes na rede de acessos em uma taxa R
 - Taxa de transmissão do link, ou capacidade, ou largura de banda (bandwidth)

Atraso Tempo para transmistir

De tranmissão = L bits no canal = $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Meio físico

- Guiados e não guiados
- Determinam os limites de comunicação

Meio físico: TP

twisted pair (TP)

- UTP/STP
- Diversas categorias
- Ethernet 100M (CAT 3); 1GB (CAT 5e);
 10GB (CAT 6a)

Meio físico

Cabo coaxial

Fibra ótica

- Grande largura de banda
- Baixa taxa de erro
 - Poucos repetidores
 - Imunidade à Ruído

Meio físico: Rádio

Alguns exemplos:

- LAN (WiFi)
 - 11Mbps, 54 Mbps (2.4GHz / 5 GHz)
- WAN (cellular)
- * Satélite
 - 270 msec atraso ponta-aponta

Núcleo da rede

- Malha de roteadores interconectados
- packet-switching: hosts quebram as mensagens das aplicações em pacotes
 - Encaminham (forward)
 pacotes de um roteador
 para o próximos através
 dos enlaces (links) da
 origem até o destino
 - Cada pacotes transmito na melhor velocidade possível

Packet-switching

Packet Switching

Enfileiramento e perda

Funções principais

routing forwarding routing algorithm local forwarding table header value output link 0100 3 0101 2 0111 2 1001 dest address in arriving packet's header Network Layer 4-23

- Hosts se conectam à Internet via provedores de serviço de Internet (ISPs - Internet Service Providers)
- ISPs precisam se interconectar. Mas como?

Conectar cada ISP com todos os outros

Estrutura da Rede

Mas agora esses ISPs precisam se conecatar

Podemos acrescentar redes regionais

E ainda provedores de conteúdo para com sua rede trazer o conteúdo próximo aos seus usuários (CDNs)

REDE Ipe - RNP

Rede COMEP

- Como observar parte desses caminhos?
- Traceroute / tracepath

"Camadas" de protocolo

Redes are complexas com muitas "partes"

- Meios físicos
- Hosts
- Aplicações
- Protocolos
- Hardware

• ...

Questão:

Como organizar essa complexidade?

Camadas (layers)

camadas: cada camada implementa um serviço

- Através de suas funções internas
- Confiando nos serviços proporcionados pelas camadas inferiores

Pilha de protocolos da Internet

- Aplicação
 - FTP, SMTP, HTTP
- * *Transporte:* process-process
 - TCP, UDP
- * Rede: roteamento
 - IP, roteamento
- Enlace: Interface com outras redes
 - Ethernet, 802.11 (WiFi), PPP
- * Físico: Bits no "fio"

application transport network link physical

Camada de Aplicação

- Infinidade de aplicações que se comunicam utilizando um determinado protocolo pela rede
- * HTTP, Whatsapp, Torrent, DNS, HTTP, Webservices, Rsync, SSH, NFS, Skype, SMTP, SIP
- * Abstração para o programador: sockets
- Vamos chamar de processos as aplicações executando nos hosts

Sockets

 Sockets operam usando os serviços da camada de transporte

Endereçando "processos"

- Todo host tem um endereço IP
- Mas um único host pode abrigar diferente processos
- Conceito de porta (port) resolve esse problema

Endereçando "processos"

- Alguns serviços da rede tem portas padrões para operar
 - SSH 22
 - HTTP 80
 - TELNET 23
 - FTP 21
 - DNS 53
 - IMAP2 143 / IMAPS 993
- IANA (Internet Assigned Numbers Authority)

Sockets

 Sockets operam a cima da camada de transporte

Sockets

- A camada de transporte oferece dois serviços básico
- * UDP e TCP

HTTP

- Um dos protocolos mais populares
- * Porta default 80
- Servidor: apache, nginx, ...
- Cliente: Navegadores web, mas pode ser linha de comando (wget)

HTTP

- Uma página web é composta de objetos
- Objetos podem ser HTML, arquivos, imagens, etc
- Um arquivo base (index) que referencias vários outros objetos
- Cada objeto possui uma identificação (URL)
- hostname{:port}/path¶meters
- Mensagens de requisição (request) e resposta (response)

HTTP request

```
GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n
```


HTTP response

```
GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n
```


HTTP

- Como é um protocolo em ASCII, você pode ser um "cliente"
- * TELNET

DNS

- Necessidade de ter nomes para os "hosts"
- Na Internet inicial: /etc/hosts
- Domain Name System
 - É uma aplicação, parte da filosofia da Internet
 - Banco de dados distribuídos

DNS, organização

DNS

- Top-level domain (TLD) servers
 - Responsáveis pelos dominios de países, e outros como com, org, net, edu
- Authoritative DNS
 - Organizações que possuem seus próprios servidores DNS
- DNS local
 - Normalmente o chamado "default name server"

DNS, exemplo

root DNS server

DNS: cache

- Como garantir escalabilidade?
 - Diminuindo o número de requisições
- Introduzir um tempo de vida para cada resposta (TTL)
- Quanto deve ser esse tempo?

DNS Dinâmico

- Existem serviços gratuitos e pagos na rede que oferecem serviços de DNS dinâmico
- Este serviço permite que você registre um nome e oferecem uma interface para atualização do IP
- * A dificuldade é o fato do IP ser dinâmico
 - Ainda existem outras quanto ao Firewall, IPv4 ou IPv6. Mas isso veremos depois...

SSH

- Serviço de rede seguro sobre uma rede insegura
- Principal serviço é de "login" remoto (secure shell) (substituto do telnet)
- Mas pode prover muitos outros serviços
 - Sistema de arquivo remoto
 - Tunelamento de portas
 - Base para VPNs
 - FTP seguro

SSH

- Vários métodos de autenticação
- O principal é por senha ou por chaves públicas e privadas
- Entretanto senha pode ser considerado um modo bastante vulnerável, já que sua senha pode ser capturada ou "advinhada"

SSH - Chaves Assimétricas

SSH - Chaves Assimétricas

SSH

- Autenticação via chaves
 - Cliente envia identificação para servidor SSH
 - Servidor busca a chave do usuário e cria um desafio (criptografa uma mensagem)
 - O Cliente vence o desafio usando sua chave privada

SSH

- Na prática
 - No host (seu computador) de onde se deseja fazer o acesso
 - · ssh-keygen -t rsa
 - * você vai entrar uma passphrase
 - * será gerado o par em /home/user/.ssh/
 - No host que será acessado
 - Copiar a chave pública para dentro do arquivo .ssh/authorized_keys

Se você cuida de um servidor exposto na Internet é uma boa ideia desabilitar o acesso por passwrod

SSH FS

- Disponibilizar arquivos remotos localmente
- Na prática
 - No host (seu computador) de onde se deseja fazer o acesso
 - sshfs conta@host:caminho ponto_montagem
 - Ao terminar
 - · fuserumount -u ponto_montagem
- Também pode usar ssftp e comandos scp

SSH - Outros truques

- Algumas ferramentas fazem o tunelamento "automático" através do ssh
 - VNC
 - X11
 - Sockets5 proxy
 - Rsync

