# CS 471: Introduction to Al

Module 6 Part II: Machine Learning

#### **Linear Regression**

https://scikit-learn.org/stable/modules/generated/sklearn.linear

model.LinearRegression.html

https://scikit-learn.org/stable/auto\_examples/linear\_model/plot

ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py

### **Linear Regression**

What is regression?

- A univariate linear function (a straight line) with input x and output y has the form  $y = w_1x + w_0$ , where  $w_0$  and  $w_1$  are real-valued coefficients to be learned.
- We use the letter w because we think of the coefficients as weights.



X-axis: Height (inches)



Data points of price versus floor space of houses, along with the linear function model that minimizes squared-error loss: y = 0.232x+ 246.

### Multivariable Linear Regression

We can easily extend to multivariable linear regression problems, in which each example  $x_j$  is an n-element vector.

$$h_{\mathbf{w}}(\mathbf{x}_j) = w_0 + w_1 x_{j,1} + \dots + w_n x_{j,n} = w_0 + \sum_i w_i x_{j,i}$$
.

|        | . 50.10.1 55               |                    |                  |                        | Labei         |  |
|--------|----------------------------|--------------------|------------------|------------------------|---------------|--|
|        | Size ( feet <sup>2</sup> ) | Number of bedrooms | Number of floors | age of home<br>(years) | Price(\$1000) |  |
| A data | 2104                       | 5                  | 1                | 45                     | 460           |  |
|        | 1416                       | 3                  | 2                | 40                     | 232           |  |
|        | 1534                       | 2                  | 2                | 30                     | 315           |  |
|        |                            | •••                |                  |                        |               |  |
|        |                            |                    |                  |                        |               |  |

**Features** 

What is the value of n? Write the equation?

### **Linear Regression**



X-axis: Height (inches)



**Tumor Size** 

- Data points of two classes: earthquakes (which are of interest to seismologists) and nuclear explosions (which are of interest to arms control experts).
- $x_1$  and  $x_2$  refers to body and surface wave magnitudes computed from the seismic signal.





Given a new data point, how do you find the class/output/label?



Given a new data point, how do you find the class/output/label?

Passing the output of a linear function through the threshold function creates a linear classifier

- Given these training data, the task of classification is to learn a hypothesis h that will take new  $(x_1,x_2)$  points and return either 0 for earthquakes or 1 for explosions.
- Goal is to find the decision boundary that separates the two classes.



#### Problems with a Hard Threshold

• Here we cannot do either of those things because the gradient is zero almost everywhere in weight space, and at z = 0 the gradient is undefined.



#### Problems with a Hard Threshold

 The linear classifier gives a confident prediction of 1 or 0, even for examples that are very close to the boundary;

it would be better if it could classify some examples as a clear 0 or 1, and others as unclear

borderline cases.



- These issues can be resolved by softening the threshold function, approximating the hard threshold with a continuous, differentiable function.
- Logistic (also called sigmoid) function:

$$g(z) = \frac{1}{1 + e^{-z}}$$



The output, being a number between 0 and 1, can be interpreted as a probability of belonging to the class labeled 1.

Hypothesis forms a soft boundary in the input space and gives a probability of 0.5 for any input at the center of the boundary region, and approaches 0 or 1 as we move away from the boundary.



Linear classifier with a hard threshold = Passing the output of a linear function through the threshold function

Logistic Regression = Passing the output of a linear function through the sigmoid or logistic function

# **THANK YOU!**

- To fit a line, we have to find the values of the weights  $\langle w_0, w_1 \rangle$  that minimize the loss.
- Common to use the squared-error loss function, L<sub>2</sub>, summed over all the training examples:





How to find  $w_1$  and  $w_0$  to minimize loss function (actual - predicted)<sup>2</sup>?

#### Option 1:

Take the partial derivative of the loss function with respect to each weight and equate them to zero.

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0 \text{ and } \frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0.$$

These equations have a unique solution:

$$w_1 = \frac{N(\sum x_j y_j) - (\sum x_j)(\sum y_j)}{N(\sum x_j^2) - (\sum x_j)^2}; \ w_0 = (\sum y_j - w_1(\sum x_j))/N.$$

#### **Gradient Descent**

In many cases, we may not solve the equation partial derivatives = 0.

#### Option 2

- Search through a continuous weight space by incrementally modifying the parameters: gradient descent
- Choose any starting point in weight space: compute an estimate of the gradient and move a small amount in the steepest downhill direction, repeating until we converge on a point in weight space with (local) minimum loss.

w ← any point in the parameter space while not converged do

for each  $w_i$  in w do

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

Parameter  $\alpha$ , is called the step size, also called the learning rate.

- Solutions we have seen for linear regression
  - Setting the gradient to zero to compute the weights
  - Gradient descent in the weight space



Can we apply the same techniques for a classification problem?