Alternative Lösungen Zettel 3

Jendrik Stelzner

13. Mai 2016

Zusammenfassung

Wir geben alternative Lösungen für Zettel 3, Aufgaben 3, Teile (v) und (vi), in Form kommutativer Diagramme.

1 Hilfsaussagen

Wir nennen hier explizit einige Aussagen die wir im Folgenden nutzen werden.

Lemma 1. Es seien V und W zwei K-Vektorräume, und es sei $B=(b_i)_{i\in I}$ eine Basis von V. Sind $f,g\colon V\to W$ linear mit $f(b_i)=g(b_i)$ für alle $i\in I$, so ist bereits f=g.

Lemma 2. Es sei V ein endlichdimensionaler K-Vektorraum und $\mathcal{B}=(b_1,\ldots,b_n)$ eine Basis von V. Dann gibt es genau eine lineare Abbildung $\Phi_{\mathcal{B}}\colon V\to K^n$ mit $\Phi_{\mathcal{B}}(b_i)=e_i$ für alle $1\leq i\leq n$, wobei (e_1,\ldots,e_n) die Standardbasis des K^n bezeichnet. Außerdem ist $\Phi_{\mathcal{B}}$ ein Isomorphismus.

Lemma 3. Es seien V und W zwei endlichdimensionale K-Vektorräume. Es sei $\mathcal{B}=(b_1,\ldots,b_n)$ eine Basis von V und $\mathcal{C}=(c_1,\ldots,c_m)$ eine Basis von W. Ist $f\colon V\to W$ eine lineare Abbildung, so gilt:

1. Es gibt eine eindeutige Matrix $A \in M(m \times n, K)$, so dass das folgende Diagram kommutiert:

$$\begin{array}{ccc} V & \stackrel{f}{\longrightarrow} W \\ & & & \downarrow^{\Phi_{\mathcal{C}}} \\ K^n & \stackrel{A\cdot}{\longrightarrow} K^m \end{array}$$

(Hier bezeichnet $A \cdot$ die Multiplikation mit A von links.)

2. Es gilt $A = M_{\mathcal{C} \longleftarrow \mathcal{B}}(f)$, d.h. A ist die darstellende Matrix von f bezüglich der Basen \mathcal{B} und \mathcal{C} .

2 Setup

Wir erinnern an Notationen, die wir im Folgenden nutzen werden: Es seien V und W zwei endlichdimensionale $\mathbb R$ -Vektorräume. Es seien

$$\iota_V \colon V \to V_{\mathbb{C}}, \quad v \mapsto v = v + i \cdot 0$$

und $\iota_W\colon W\to W_{\mathbb C}$ die kanonischen Inklusionen. (Hier nutzen wir bereits die Identifikation von V mit dem reellen Untervektorraum $\iota_V(V)\subseteq V_{\mathbb C}$.) Es sei $\mathcal B=(b_1,\dots,b_n)$ eine $\mathbb R$ -Basis von V und $\mathcal C=(c_1,\dots,c_m)$ eine $\mathbb R$ -Basis von W. Dann ist $\mathcal B$ eine $\mathbb C$ -Basis von $V_{\mathbb C}$ und $\mathcal C$ eine $\mathbb C$ -Basis von $W_{\mathbb C}$. (Hier nutzen wir die Identifikation von V mit dem reellen Untervektorraum $\iota(V)\subseteq V_{\mathbb C}$. Ohne diese Identifikation müssten wir hier sagen, dass

$$\iota_V(\mathcal{B}) = (\iota_V(b_1), \dots, \iota_V(b_n)) = ((b_1, 0), \dots, (b_n, 0))$$

eine \mathbb{C} -Basis von $V_{\mathbb{C}}$ ist, und dass

$$\iota_W(\mathcal{C}) = (\iota_W(c_1), \dots, \iota_W(c_m)) = ((c_1, 0), \dots, (c_m, 0))$$

eine \mathbb{C} -Basis von $W_{\mathbb{C}}$ ist.)

3 Alternative Lösung zu (v)

Es sei $f\colon V\to W$ eine $\mathbb R$ -lineare Abbildung, und $f_{\mathbb C}\colon V_{\mathbb C}\to W_{\mathbb C}$ die induzierte $\mathbb C$ -lineare Abbildung. Die Abbildung $f_{\mathbb C}$ bringt also das folgende Diagram von $\mathbb C$ -Vektorräumen zum kommutieren, und ist eindeutig mit dieser Eigenschaft:

$$\begin{array}{ccc} V & \stackrel{f}{\longrightarrow} W \\ \iota_V \downarrow & & \downarrow \iota_W \\ V_{\mathbb{C}} & \stackrel{f_{\mathbb{C}}}{\longrightarrow} W_{\mathbb{C}} \end{array}$$

Es sei $A := M_{\mathcal{C} \longleftarrow \mathcal{B}}(f) \in M(m \times n, \mathbb{R})$ die darstellende Matrix von f bezüglich der \mathbb{R} -Basen \mathcal{B} von V und \mathcal{C} von W. Es bringt also A das folgende Diagram zum kommutieren, und ist die eindeutige $(m \times n)$ -Matrix über \mathbb{R} mit dieser Eigenschaft:

$$\begin{array}{ccc} V & \stackrel{f}{\longrightarrow} W \\ & & & \downarrow^{\Phi^{\mathbb{R}}_{\mathcal{B}}} \\ \mathbb{R}^n & \stackrel{A\cdot}{\longrightarrow} \mathbb{R}^m \end{array}$$

Dabei bezeichnen $\Phi^{\mathbb{R}}_{\mathcal{B}}\colon V\to \mathbb{R}^n$ und $\Phi^{\mathbb{R}}_{\mathcal{C}}\colon W\to \mathbb{R}^m$ die eindeutigen \mathbb{R} -linearen Isomorphismen mit

$$\Phi_{\mathcal{B}}^{\mathbb{R}}(b_j) = e_j \text{ für alle } 1 \leq j \leq n \quad \text{und} \quad \Phi_{\mathcal{C}}^{\mathbb{R}}(c_i) = e_i \text{ für alle } 1 \leq i \leq m.$$

Es gilt zu zeigen, dass $A=\mathrm{M}_{\mathcal{C}\longleftarrow\mathcal{B}}(f_{\mathbb{C}})$. Dies bedeutet gerade, dass das folgende Diagram kommutieren soll:

$$V_{\mathbb{C}} \xrightarrow{f_{\mathbb{C}}} W_{\mathbb{C}}$$

$$\Phi_{\mathcal{B}}^{\mathbb{C}} \downarrow \qquad \qquad \downarrow \Phi_{\mathcal{C}}^{\mathbb{C}}$$

$$\mathbb{C}^{n} \xrightarrow{A} \mathbb{C}^{m}$$

Dabei bezeichnen $\Phi_{\mathcal{B}}^{\mathbb{C}} \colon V_{\mathbb{C}} \to \mathbb{C}^n$ und $\Phi_{\mathcal{C}}^{\mathbb{C}} \colon W \to \mathbb{C}^m$ die eindeutigen \mathbb{C} -linearen Isomorphismen mit

$$\Phi_{\mathcal{B}}^{\mathbb{C}}(b_j) = e_j \text{ für alle } 1 \leq j \leq n \quad \text{und} \quad \Phi_{\mathcal{C}}^{\mathbb{C}}(c_i) = e_i \text{ für alle } 1 \leq i \leq m.$$