Fondamenti di Automatica

Corso di laurea in Ingegneria Informatica, AA 2023/2024

Esercitazione del 05/03/2024

Prof. Fredy Ruiz

Responsabile delle esercitazioni: Mattia Alborghetti

Esercizio 1

Si consideri il seguente sistema:

$$\begin{cases} \dot{x}_1(t) = 2x_1(t) + 3x_2(t) (1 + \alpha x_2(t)) + u(t), & \alpha \in \mathbf{R} \\ \dot{x}_2(t) = -x_1(t) + x_2(t) \\ y(t) = x_1(t) + 3u(t) \end{cases}$$

- 1.1. Classificare il sistema (in particolare per $\alpha=0$ e $\alpha\neq0)$
- 1.2. Scrivere il sistema in forma di stato per $\alpha=0$

Esercizio 2

Si consideri il seguente sistema elettrico

- 2.1. Derivare (e classificare) il modello in forma di stato
- 2.2. Determinare il movimento forzato dello stato e dell'uscita per $u(t) = 1 \,\forall t$
- 2.3. Cosa succede se $x(0) = x_0 \neq 0$ e $u(t) = 1 \forall t$?
- 2.4. Cosa succede se x(0) = 1 e $u(t) = 1 \forall t$?

Esercizio 3

Si consideri il seguente sistema meccanico:

Per ipotesi, la forza di attrito $F_a(t) = \alpha \dot{s}(t)$ (attrito viscoso, proporzionale alla velocità)

- 3.1. Derivare (e classificare) il modello in forma di stato
- 3.2. Posto $\alpha=3$ e m=1, calcolare il movimento libero dello stato e dell'uscita con condizione iniziale generica $x(0)=[x_{10},x_{20}]^T$
- 3.3. Determinare il movimento forzato dello stato e dell'uscita per $u(t) = \bar{u} \, \forall t$
- 3.4. Determinare la risposta complessiva del sistema (stato e uscita) per $u(t) = \bar{u} \ \forall t \ e \ x(0) = [x_{10}, x_{20}]^T$

Esercizio 4

Si consideri il seguente sistema:

$$\begin{cases} \dot{x}_1(t) = x_1(t) - 2x_2(t) + u(t) \\ \dot{x}_2(t) = 4x_1(t) - 5x_2(t) \\ y(t) = x_1(t) - x_2(t) \end{cases}$$

- 4.1. Classificare il sistema
- 4.2. Determinare il movimento libero associato al generico stato iniziale $x(0) = [x_{10}, x_{20}]^T$
- 4.3. Studiare la risposta libera quando lo stato iniziale appartiene a uno degli autovettori
- 4.4. Determinare la risposta libera per $x(0) = [2, 1]^T$