學號:R08725021 系級: 資管碩一 姓名:王鼎元

1. (0.5%) 請比較你實作的generative model、logistic regression 的準確率,何者較佳? 下表為兩個模型在 Kaggle 上的準確率:

	Public scores	Private scores
Generative model	0.81695	0.81390
Logistic regression	0.73461	0.72352

由上表可知,在沒有特徵標準化的情形下 Generative model 表好較好。

2. (0.5%) 請實作特徵標準化(feature normalization)並討論其對於你的模型準確率的影響

下表為在 epoch = 1000 · batch size = 64 · optimizer = Adam 的模型下 · Logistic regres sion 在資料處理不同的情形下 · 在 Kaggle 上的準確率 :

	Public scores	Private scores
Original data	0.76474	0.76280
Normalized data	0.85515	0.85026

由上表可知·特徵標準化後會讓模型更容易收斂·並且不會出現 model 運算時 overflow 的風險。

3. (1%) 請說明你實作的best model, 其訓練方式和準確率為何?

我的 best model 使用 scikit-learn 的 SVC 模組來實作 SVM·kernel = RBF·利用 cross validation 所得到的 validation error 來 tune 參數 γ · 下表為在 Kaggle 上的準確率:

	Public scores	Private scores
SVM(gamma=0.2, C=1)	0.85909	0.85542

4. (3%) Refer to math problem

https://hackmd.io/0fDimgO7RaSCPpD_minSGQ?both

1. Likelihard: L(0) = The EP(Xn/ch) - The Jth.
Likelihood: $L(\theta) = \prod_{n=1}^{\infty} \prod_{k=1}^{\infty} \left[P(X_n C_k) - \pi_k \right]^{\frac{1}{2}} $ $Log - Likelihood: L(\theta) = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} t_{nk} \cdot \left[Log P(X_n C_k) + Log \pi_k \right]$ $Log range = m_1 r_n r_n$
Lagrange multiplier: L(X,X) = \(\frac{\times}{\times} \) \(\times \) top \(\lagrange \) \(\frac{\times}{\times} \) \(\frac{\times}{\times
$\frac{\partial}{\partial x_{i}} \mathcal{L}(x_{i} x) = \frac{1}{\pi_{i}} \sum_{n=1}^{N} t_{nk} + \lambda = 0$
The toke Nk > Nk = Nk
$\Rightarrow \frac{\partial}{\partial x} \mathcal{L}(x, \lambda) = \sum_{k \neq 1}^{k} \lambda_k - 1$
$=\underbrace{\sum_{i=1}^{k}-N_{k}}_{i}-1=-\frac{N}{\lambda}-1=0$
$\Rightarrow \lambda = -\lambda$
=> Tk = Nk N X
A CONTRACTOR OF THE PROPERTY O

ک .	2 log (det I) = 1 2 (det E) Det I 2623 (det E) by Jacobi's formula
	-> by Jacobi's formula
	= 2 (det Z) = Zij, Zis matiix of no factor
	→ 2 log (der E) - 1 Êij
	= ej ders sei
2	= ej E ei *

3. Likelihood:
$$L(X_n \mid \omega, \Sigma) = \prod_{n=1}^{N} \int_{X_n} (X_n \mid \omega, \Sigma)$$
 $\Rightarrow l_{\alpha y} - likelihood:$
 $L(X_n \mid \omega, \Sigma) = l_{\alpha y} \prod_{n=1}^{N} \int_{X_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = l_{\alpha y} \prod_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = l_{\alpha y} \prod_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = l_{\alpha y} \prod_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = l_{\alpha y} \prod_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = l_{\alpha y} \prod_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{n=1}^{N} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n} \sum_{x_n} (X_n \mid \omega, \Sigma)$
 $\Rightarrow L(X_n \mid \omega, \Sigma) = \sum_{x_n$