Now Hiring!!

p: The set of time periods for which stoffing slop must be not

bi: me min number of boristas that must be working during period iep

S: the set of all possible schedules a basista com work

as : defines the periods consult by schedule $s \in S$. as:=1 manns the schedule $s \in S$ covers period $i \in P$, and asi = 0 meanns the schedule $s \in S$ does not cover period $i \in P$

Cs: the lost to assign a hardsta to schedule SES

 ξ_s : indicates is schedule SES is full time. $\xi_{s=1}$ means schedule s is full time $s \in S$ means schedule s is fact time.

M: maximum number of bosistas that can be assigned to a part time schedule.

1-1

Decision Variables

75: Number of baristoo assigned to schedule SES

Objective

minimize $\underset{s \in S}{\leq c_{s \cdot \alpha s}}$

Constraints

1) minimum number of barristan working during period EEP

2) Part time schedule limitation

2 Venture Capital

- -> 5 different starting companies
- -> 4 year expenditure for each stownp

	V	2	3	ц	5
Years (Cost (\$million)	6	2	8	10	2
years 2 lost (\$million)	2	Б	9	11	9
Years 3 Cost (\$million)	4	3	10	9	6
Years h lost (\$million)	2	3	4	8	3
(normal) thouseons por NAN	6	٤	12	13	9

-> Braget \$20 million

2 1,2,6 1000 risk

-> 3, 4 high risk

```
-> amt spent hish risk = 40% total amount some Total amount in feaction = 1
```

2-1

Decision Variables

xi -> fraction spent on each company (=1,2,3,4,5

Objective

Maximuse 6x, + 5x2+ 12x3 + 13x4 + 9x5

Subject b

$$6x_{1} + 2x_{2} + 8x_{3} + 10x_{4} + 2x_{5} \leq 20$$
 $2x_{1} + 6x_{2} + 9x_{3} + 11x_{4} + 9x_{5} \leq 20$
 $4x_{1} + 3x_{2} + 10x_{3} + 9x_{4} + 6x_{5} \leq 20$
 $4x_{1} + 3x_{2} + 4x_{3} + 8x_{4} + 3x_{5} \leq 20$

21+ 22+23 + 24+25 = 1

$$873 + 1024 \le 0.4$$
 ($71(+112+713+714+715)$
 $973 + 1124 \le 0.4$ ($71(+112+713+714+715)$
 $1073 + 924 \le 0.4$ ($71(+112+713+714+715)$
 $173 + 824 \le 0.4$ ($71(+112+713+714+715)$
 $173 + 824 \le 0.4$ ($71(+112+713+714+715)$

In General format

S = set of start-up companies [1,2,3,4,5]

+ : Time period [Year 1,2,3,4)

parametero Pi= NPV of cash flow where i Es

By: quailable budget for jET

Ci; : cash expenditues for company i E S in year j E T

DV: xi -> fraction spent on each company i=1,2,3,4,5

Objective max & pi, xi

ies

subject to

$$\begin{cases}
& \text{cij.} & \text{xi} \leq \text{Bj} & \text{Yj} \in T \\
& \text{i.es} \\
& \text{cij.} & \text{xi} \leq \text{0.4} \leq \text{cij.} & \text{xi.} & \text{for } j = 1,7, \dots \text{y} \\
& \text{i.es} & \text{cis.} & \text{i.es} \\
& \text{i.es} & \text{i.es} \\
& \text{0.es} & \text{i.es}
\end{cases}$$

21=0 72=0 73=0.1428 74=0 75=0.857(42 Max NPV= \$9.4285) million dollars

Area	Fraction Minority	Number Stydents
ES	0.2	1200
Þ	0.(400
NS	ტ. 85	1700
s w	0.6	2000
FW	0.9	2 500

-> no school can have more man to lo minority empollment nor less han 80% minority enrollment.

-) 3 schools -> LE, WCE, CC

	ı	Area				
School	capacity	ES	D	NS	s w	£ω
CE	3400	2.7	1.4	2.4	C.(0.5
WCE	31,00	0.5	ช.า	2.9	S, 0	1.9
CC	2000	1.6	2-0	0.1	1.	3 2.2

Objective is to minimize total distance

Sets

School, S = & CE, WCE, CC}

Parameters

dij + distance travelled from area it A to school j ES

ni = number of students in over iEA

mi = feaction of minority strolents in area iEA

cj = capaciny of each school jes

Decision variables

xij = number of students that travel from area i EA to school j'ES

0 bjective

1) Capacity

2) Fraction of Minority Shorents

3) Student Assignment Constraints

us zij >>0 di EA's xje 5

A = Set ob district awas in each city Sets S = set of schools

pasameter

Ya = percentage of minorities (ving in that area

na = students living in that area a E A

bs = capacity of school s ES

das = distance between area a & school &

1 - Low percentage

h = high percentage

K: min students envolved in school SES

DV: Xas -> NUMber of stockents from each erea a EA, assigned to echool sES.

45 -> the local number of students That go to school S

min & & das xas Distance Travelled Objective:

St Zxas = ys Ys ES

E 7as = Na Ya GA

US & DS YS ES

En Va Vas - hys <0 YSES

E Tarlas - Lys > 0 4565

SS >> K YS ES

4-2 °. Optimal objective value

= 4810