DATASCI W207 Applied Machine Learning

Week 13 Live Session Slides

Outline

Introduction to Recurrent Neural Networks (RNNs)

Architecture of RNNs Working of RNNs Limitations of RNNs

Introduction to Transformers

Architecture of Transformers Working of Transformers Types of Transformers

Introduction to Recurrent Neural Networks (RNNs)

The cat sat on the _____.

- a. mat
- b. roof
- c. cushion
- d. chair

Introduction to Recurrent Neural Networks (RNNs)

In the quiet evening, the family shared stories in their cozy living room. Outside, raindrops tapped gently on the windows, creating a soothing melody. Seeking shelter, the cat leapt onto the roof, finding comfort in the gentle rain. The cat sat on the _____, a content observer of the world below.

- a. mat
- b. roof
- c. cushion
- d. chair

Introduction to Recurrent Neural Networks (RNNs): Applications

- Prediction Problems
 - Language Modelling and Generating Text
 - Music Composition
- Machine Translation
 - Speech Recognition
- Generating Image Descriptions
 - Named Entity Recognition
- Sentiment Analysis
- Image Recognition

Architecture of RNNs

Recurrent Neural Network

Feed-Forward Neural Network

Architecture of RNNs: Why RNNs

- No fixed size of neurons in a layer
- Too much computation
- Parameters are not shared

Architecture of RNNs: Why RNNs

- No fixed size of neurons in a layer
- Too much computation
- Parameters are not shared

25000 words in a vocabulary

how [0, 0, 0, ..., 1, 0, 0,...,0]

are [0, 1, 0, 0, 0, ..., 0, ..., 0, ...0]

you [0, 0, 0, 0, 0, ...,0, 1,..0]

42000 words in a vocabulary

[0, 0, 0, .., 1, 0, 0,...,0]

[0, 0, 0, ..., 1, 0, 0, ..., 0]

[0, 0, 0, ..., 1, 0, 0, ..., 0]

Architecture of RNNs: Why RNNs

- No fixed size of neurons in a layer
- Too much computation
- Parameters are not shared

Working of RNNs: Why RNNs

Sarah likes Michael Jackson

Working of RNNs

Working of RNNs

Loss 1 Loss 2 Loss 3 Loss 4 a(1) a(2) a(3) a(0)Sarah likes Michael Jackson

Sarah likes Michael Jackson 1 0 1 1

Total Loss = Loss 1 + Loss 2 + Loss 3 + Loss 4

Limitations RNNs

Transformers

Input Embedding

dog ----

AJ's dog is a cutie

AJ looks like a dog

Positional Encoder

evector that gives context based on position of word in sentence

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\rm model}})$

<u>Attention</u>: What part of the input should we focus?

Decoder

Feed Forward Layer

Neurons = # words in French