Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$	0	$\frac{6k^2(r_1+r_5)+t_1}{(1+2k^2)^2(r_1+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(r_1+r_5)}$	$\frac{6 k^2 (r_1 + r_5) + t_1}{2 (k + 2 k^3)^2 (r_1 + r_5) t_1}$	0	$\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5 \right)}$	$-\frac{1}{\sqrt{2}\;(k^2+2k^4)\;(r_1+r_5)}$	0	$\frac{i}{k(1+2k^2)(r_1+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	${r_{1}^{#1}} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	0	0	0	0
	$\sigma_{0}^{\#1}\dagger$	$\tau_0^{\#1} \uparrow$	$\tau_0^{\#2} \uparrow$	$\sigma_{0}^{\#1}\dagger$

$f_{1^-}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	٤ 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}$ Ik t_1
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{#1} + \alpha^{\beta} k$	$\omega_1^{\#2} + \alpha^{eta}$	$f_1^{\#1} + \alpha^{\beta}$	$\omega_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^\alpha$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + ^{lpha}$

Quadratic (free) Lagrangian density	$-rac{1}{3}t_1\;\omega_{,}^{lpha\prime}\;\omega_{\kappalpha}^{\;\;\;\kappa}-t_1\;\omega_{,}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\;\prime}+f^{lphaeta}\;\tau_{lphaeta}+\omega^{lphaeta\chi}\;\sigma_{lphaeta\chi}^{\;\;\;r_5\partial_{,}}\omega_{\kappa\lambda}^{\;\;\;\kappa}\partial_{,}\omega_{\lambda}^{\;\;lpha}-$	$\frac{2}{3}r_{1}\partial^{\beta}\omega^{\theta\alpha}_{\alpha}\partial_{\beta}\omega^{\alpha\beta}_{\beta} - \frac{2}{3}r_{1}\partial_{\theta}\omega^{\beta}_{\beta}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega^{\beta}\partial_{\kappa}\omega^{\theta\alpha\beta} -$	$r_5\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \beta}\partial_\kappa\omega^{\theta\kappa\lambda} + r_5\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda} - r_5\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \beta}\partial_\kappa\omega^{\kappa\lambda\theta} + 2r_5\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} -$	$\frac{1}{2}t_1\partial^\alpha f_{\theta \kappa}\partial^\kappa f_{\alpha}^{\ \ \theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \ \theta} - \frac{1}{2}t_1\partial^\alpha f^\lambda_{\ \ \kappa}\partial^\kappa f_{\alpha\lambda} + \frac{1}{3}t_1\omega_{\kappa\alpha}^{\ \ \alpha}\partial^\kappa f'_{ ,} +$	$rac{1}{3}t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime}+rac{2}{3}t_1\;\partial^\alpha f_{\;\kappa\alpha}\;\partial^\kappa f'_{\;\;\prime}-rac{1}{3}t_1\;\partial_\kappa f^\lambda_{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime}+2t_1\;\omega_{_{I}\kappa\theta}\;\partial^\kappa f'^{\theta}-$	$rac{1}{3}t_1\;\omega_{,lpha}^{\;\;lpha}\;\partial^{\kappa}f_{\;\;\kappa}^{\;\;\prime}-rac{1}{3}t_1\;\omega_{,\lambda}^{\;\;\lambda}\;\partial^{\kappa}f_{\;\;\kappa}^{\;\;\prime}+rac{1}{2}t_1\;\partial^{lpha}f^{\lambda}_{\;\;\kappa}\;\partial^{\kappa}f_{\;\lambdalpha}^{\;\;\prime}+rac{1}{2}t_1\;\partial_{\kappa}f_{\;\;eta}^{\;\;\lambda}\partial^{\kappa}f_{\;\;\lambda}^{\;\;eta}+$	$\frac{1}{2}t_1\partial_\kappa f^\lambda_{\ \theta}\partial^\kappa f_\lambda^{\ \theta} - \frac{1}{3}t_1\partial^\alpha f^\lambda_{\ \alpha}\partial^\kappa f_{\lambda\kappa} + \frac{2}{3}r_1\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3}r_1\partial_\kappa \omega^{\theta\alpha\beta}\partial^\kappa \omega_{\alpha\beta\theta} +$	$\frac{2}{3}r_{1}\partial^{\beta}\omega_{\alpha}^{\alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-\frac{8}{3}r_{1}\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}+r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\beta\kappa}^{\kappa}-r_{5}\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\kappa}^{\kappa}$
-------------------------------------	--	--	--	--	---	--	--	---

$\omega_{0}^{\#1}$	0	0	0	<i>-t</i> ₁	
$f_{0}^{\#2}$	0	0	0	0	
$f_{0}^{\#1}$	0	0	0	0	
$\omega_{0}^{\#1}$	0	0	0	0	
·	$\omega_{0}^{\#1}\dagger$	$f_0^{\#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1} \dotplus$	

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\sigma_{0}^{\#1} == 0$	1				
$\tau_{0^{+}}^{\#1} == 0$	1				
$\tau_{0+}^{#2} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 \bar{\imath} k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1}{}^{\alpha\beta} + \bar{\imath} k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5				
Total constraints:	17				

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_1} > 0$$
Polarisations: 5
Square mass: $-\frac{t_1}{2r_1} > 0$
Spin: 2
Parity: Odd

?	Quadratic pole	2
?	Pole residue:	$\left -\frac{1}{(r_1 + r_5)t_1^2} > 0 \right $
	Polarisations:	2

Unitarity conditions