**UNIT** 

# 18 라즈베리 파이 블루투스

### 로봇SW 교육원

최상훈(shchoi82@gmail.com)

- 블루투스 모듈 제어
- 블루투스 동글 제어

### **Bluetooth Module**

- Bluetooth Slave UART Board
  - UART**인터페이스용 블루투스모듈**
  - slave/device mode





### <라즈베리 파이 B+의 P1 헤더 핀 GPIO 배치도>

|               | <b>5V</b><br>Power | <b>5V</b><br>Power      | Ground               | GPIO14<br>UARTO_TXD | GPIO15<br>UARTO_RXD | GPIO18<br>PCM_CLK | Ground         | GP1023 | GP1024       | Ground              | GP1025                 | GPIO8<br>SPIO_CEO_N | GPIO7<br>SPIO_CE1_N | ID_SC<br>12C ID EEPROM | Ground               | GP1012 | Ground | GP1016 | GPI020 | GP1021       |             |
|---------------|--------------------|-------------------------|----------------------|---------------------|---------------------|-------------------|----------------|--------|--------------|---------------------|------------------------|---------------------|---------------------|------------------------|----------------------|--------|--------|--------|--------|--------------|-------------|
| Pi Model B/B+ | 1 2                | 8                       | (c)                  | 7 8                 | (a)                 | 11 12             | 13<br>14<br>14 | 15 16  | 17 18        | <b>@</b>            | 21 22                  | 23 24               | (S)                 | 27 28                  | <b>8</b><br><b>8</b> | 31 32  | 33 34  | 35 36  | 37 38  | <b>39</b> 40 | Pi Model B+ |
|               | 3V3<br>Power       | <b>GP102</b><br>SDA112C | <b>GPIO3</b> SCL112C | GP104               | Ground              | GP1017            | GPI027         | GP1022 | 3V3<br>Power | GPIO10<br>SPI0_MOSI | <b>GPIO9</b> SPIO_MISO | GPIO11<br>SPI0_SCLK | Ground              | ID_SD                  | GPI05                | GP106  | GP1013 | GP1019 | GP1026 | Ground       |             |

- 라즈베리파이 GPIO 라이브러리
- GPIO Interface library for the Raspberry Pi
- http://wiringpi.com/



• 라즈베리 파이 업데이트 및 업그레이드

```
$ sudo apt-get update
```

\$ sudo apt-get upgrade

• wiringpPi 라이브러리 다운로드

```
$ sudo apt-get install git-core
```

```
$ git clone git://git.drogon.net/wiringPi
```

• wiringpPi 라이브러리 빌드 및 설치

```
$ cd wiringPi
```

\$ ./build

# 실습 1: wiringPi 라이브러리 설치(2/3)

7

#### • 설치 확인

```
$ gpio -v
```

```
pi@raspberrypi-robotcode77 ~ $ gpio -v
gpio version: 2.25
Copyright (c) 2012-2015 Gordon Henderson
This is free software with ABSOLUTELY NO WARRANTY.
For details type: gpio -warranty

Raspberry Pi Details:
   Type: Model B+, Revision: 1.2, Memory: 512MB, Maker: Sony
pi@raspberrypi-robotcode77 ~ $
```

#### • GPIO **핀 정보 확인**

\$ gpio readall

| BCM      | wPi      | Name               |          |        |            | lus<br>ical |     | Mode     | Name               | WPi        | BCM          |
|----------|----------|--------------------|----------|--------|------------|-------------|-----|----------|--------------------|------------|--------------|
|          | <br>     |                    | ⊦<br>I   | +<br>I | +<br>  4   | +           |     | <br>     | <br>               | +<br>I     | +<br>!       |
| 2        | 8        | 3.3v<br>SDA.1      | IN       | 1      | 3          | 2<br>  4    |     |          | 5v<br>5V           | ĺ          | İ            |
| 2        | 9        |                    | IN       |        | 5          | 6           |     |          | 0V                 | <b>!</b>   | <b>!</b>     |
| 4        | 7        | SCL.1              |          |        | 7          | 8           | 4   | LALTO    |                    | 1 4 5      | 1 44         |
| 4        | , ,      | GPI0. 7            | IN       | ¦ '    | . '!       |             |     | ALTO     | TXD                | 15         | ¦ 14<br>¦ 15 |
| 17       |          | 0V                 | TAI      | ۱      | 9          | 10<br>12    |     | ALTO     | RXD                | 16         |              |
| 17       | 0        | GPIO. 0            | IN       | 0      | 11<br>13   |             | 0   | IN       | GPIO. 1            | 1          | 18           |
| 27<br>22 | 2        | GPIO. 2            | IN       | 0      |            | 14<br>16    | اما | I<br>TNI | 0V                 | ۱,         | 1 22         |
| 22       | 3        | GPIO. 3            | IN       | 0      | 15<br>17   | :           | 0   | IN       | GPIO. 4            | ¦ 4<br>¦ 5 | 23<br>24     |
| 10       | 12       | 3.3v               | TN       | ۱ ۵    |            | 18          | 0   | IN       | GPIO. 5            | i          | i 24         |
| 10       | 12       | MOSI               | IN       | 0      | 19         | 20          | ١   | TN       | 0V                 | ļ _        | i<br>I ac    |
| 9<br>11  | 13       | MISO               | IN       | 0      | 21         |             | 0   | IN       | GPIO. 6            | 6          | 25<br>8      |
| 11       | 14       | SCLK               | IN       | 0      | 23         | 24          |     | IN       | CE0                | 10         |              |
| ^        | 20       | ΟV .               | i<br>TNI |        | 25         | 26          |     | IN       | CE1                | 11         | 7            |
| 0        | 30       | SDA.0              | IN       | 1      | 27         | 28          | 1   | IN       | SCL.0              | ¦ 31       | 1            |
| 5        | 21       | GPI0.21            | IN       |        | 29         | 30          | ,   | TN       | 0V                 | 1 20       | i<br>  12    |
| 6        | 22       | GPI0.22            | IN       | i I    | 31         | 32          | 0   | IN       | GPI0.26            | 26         | 12           |
| 13<br>19 | 23       | GPI0.23            | IN       | 0      | 33  <br>35 | 34          | اما | TNI      | 0V                 | 1 27       | 16           |
| 26       | 24<br>25 | GPI0.24<br>GPI0.25 | IN<br>IN | 0      | 35         | 36<br>38    | 0   | IN<br>IN | GPI0.27<br>GPI0.28 | 27<br>28   | 16<br>20     |
| 20       | 25       | -                  | I TIN    | ן ש    |            | •           |     |          |                    |            | :            |
|          | i<br>    | 0v                 | i<br>L   | i<br>  | 39         | 40          | 0   | IN       | GPI0.29            | 29         | 21           |
| BCM      | wPi      | Name               | Mode     | v      | Phys       | ical        | V   | Mode     | Name               | wPi        | BCM          |

# 실습 2: Bluetooth 모듈 설정(1/12)

9

- wiringPi 라이브리러를 이용한 시리얼 통신
- 구성
  - Bluetooth Slave UART Board



To\_라즈베리파이\_블루투스\_v4.3.3

# 실습 2: Bluetooth 모듈 설정(2/12)

10

- /boot/cmdline.txt 파일 수정
  - console, kgdboc 의 ttyAMA0 부분 삭제
  - \_ 변경 전

dwc\_otg.lpm\_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200
console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline
rootwait

- 변경후

dwc\_otg.lpm\_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4
elevator=deadline rootwait

\$ sudo vim /boot/cmdline.txt

```
pi@raspberrypi-robotcode77: ~/gpio

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

"/boot/cmdline.txt" 1 line --100%--

1,1

All
```

- /etc/inittab 파일 수정
  - 변경 전

T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

- 변경후

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

\$ sudo vim /etc/inittab

```
##T3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3

#Spawn a getty on Raspberry Pi serial line
#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

"/etc/inittab" 72 lines --93%--

67,1

Bot
```

- 재부팅
  - sudo reboot
- · SSH 재접속
- minicom 설치
  - \$ sudo apt-get install minicom
- Bluetooth 접속
  - \$ minicom -b 9600 -o -D /dev/ttyAMA0

- minicom 실행화면
  - \$ minicom -b 9600 -o -D /dev/ttyAMA0



- 테스트
  - AT **키보드 입력후** OK 확인



# 실습 2: Bluetooth 모듈 설정(7/12)

15

#### • 명령어 종류

| Command    | Description                                                                                       |
|------------|---------------------------------------------------------------------------------------------------|
| AT         | Bluetooth module 테스트                                                                              |
| AT+VERSION | 모듈 버젼 확인                                                                                          |
| AT+NAME0 름 | Bluetooth ID( <b>이름</b> ) 설정(최대 20자)                                                              |
| AT+PINnnnn | 핀번호(nnnn) 설정                                                                                      |
| AT+BAUDn   | baud rate(n) 설정 2: 2400bps 3: 4800bps 4: 9600bps 5: 19200bps 6: 38400bps 7: 57600bps 8: 115200bps |

#### • 기본설정 상태

Baud rate: 9600

- PIN: 1234

- 명령어 입력방법
  - 클립보드를 이용해 붙여넣음
  - Ctrl + c
  - Shift + Insert 또는 마우스 우클릭
- · 예)
  - 1. AT+VERSION 클립보드에 복사 (Ctrl+c)
  - 2. 터미널 창에서 Shift + Insert 또는 마우스 우클릭





- 이름 변경
  - AT+NAMEshchoi-bt

```
pi@raspberrypi-robotcode77: ~/gpio

OKOKlinvorV1.80Ksetname
```

- ・ baud rate **변경** 
  - AT+BAUD8
  - minicom 재접속 필요

- minicom 종료
  - Ctrl + a 입력
  - z 입력



- q **입력**
- · Yes확인 후 Enter



- minicom 실행 \$ minicom -b 115200 -o -D /dev/ttyAMA0
- Pin 번호변경
  - AT+PIN5216

```
pi@raspberrypi-robotcode77; ~/gpio

OKsetPIN
```

· minicom 종료

안드로이드 bluetooth 기기 등록





- 안드로이드 bluetooth 터미널 앱 설치
  - blueterm 설치



- 연결(페어링)



- 안드로이드에서 RaspberryPi로 데이터 전송
  - uartEx1.c

```
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <wiringPi.h>
#include <wiringSerial.h>
#define EXIT SUCC 0
#define EXIT FAIL 1
int main()
    int fd;
    int data;
    setbuf(stdout, NULL);
    if(wiringPiSetupGpio() == -1){
        fprintf(stdout, "Unable to start wiringPi : %s\n", strerror(errno));
        return EXIT FAIL;
    // 시리얼 통신 초기화 및 속도 설정
    if((fd = serialOpen("/dev/ttyAMA0", 115200)) < 0)</pre>
        fprintf(stderr, "Unable to open serial device : %s\n", strerror(errno));
        return EXIT FAIL;
```

```
printf("\nRaspberry Pi UART daemon start\n");
serialPuts(fd, "Here I'm the Raspberry Pi.\r\n");  // to serial
serialPuts(fd, "Write a message.\r\n");  // to serial

while(1) {
    data = serialGetchar(fd);  // from serial
    printf("%c",data);
}
return EXIT_SUCC;
}
```

#### • 컴파일

```
$ gcc -Wall -W -lwiringPi uartEx1.c -o uartEx1
```

#### • 실행

```
$ sudo ./uartEx1
```

# 실습 4: Bluetooth 통신(3/4)



< Raspberry Pi >



# 실습 4: Bluetooth 통신(4/4)

- 통신 테스트
  - 안드로이드의 터미널에 텍스트를 입력하면
  - RaspberryPi의 터미널창 그대로 출력됨





< Raspberry Pi >

- RaspberryPi에서 안드로이드로 데이터 전송
  - uartEx2.c

```
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <wiringPi.h>
#include <wiringSerial.h>
#define EXIT SUCC 0
#define EXIT FAIL 1
int main()
    int fd;
    int data;
    setbuf(stdout, NULL);
    setbuf(stdin, NULL);
    if(wiringPiSetupGpio() == -1){
        fprintf(stdout, "Unable to start wiringPi: %s\n", strerror(errno));
        return EXIT FAIL;
    // 시리얼 통신 초기화 및 속도 설정
    if((fd = serialOpen("/dev/ttyAMA0", 115200)) < 0)</pre>
        fprintf(stderr, "Unable to open serial device: %s\n", strerror(errno));
        return EXIT FAIL;
```

```
printf("\nRaspberry Pi UART daemon start\n");
serialPuts(fd, "Here I'm the Raspberry Pi.\r\n");  // to serial
serialPuts(fd, "Write a message.\r\n");  // to serial

while(1){
    if((data = fgetc(stdin)) == EOF){
        printf("EOF\n");
        break;
    }
    if(data == '\n'){
        serialPutchar(fd, '\r');  // to serial
    }
    serialPutchar(fd, data);  // to serial
}
return EXIT_SUCC;
}
```

#### • 컴파일

```
$ gcc -Wall -W -lwiringPi uartEx2.c -o uartEx2
```

#### • 실행

```
$ sudo ./uartEx2
```

# 실습 5: Bluetooth 통신 (3/4)



< Raspberry Pi >



# 실습 5: Bluetooth 통신 (4/4)

- 통신 테스트
  - RaspberryPi의 터미널에 텍스트 입력하면
  - 안드로이드 터미널창에 그대로 출력됨

```
pi@raspberrypi-robotcode77 ~/gpio $ sudo ./uartEx2 sudo: unable to resolve host raspberrypi-robotcode77

Raspberry Pi UART daemon start hi I'am pi. test ok bye. EOF pi@raspberrypi-robotcode77 ~/gpio $
```

< Raspberry Pi >



- Bluetooth 통신을 통한 Raspberry Pi GPIO 제어하기
  - 메뉴출력



- Raspberry Pi GPIO 제어
  - GPIO에 연결된 LED를 ON





- Raspberry Pi GPIO MO
  - GPIO에 연결된 LED를 OFF





- Raspberry Pi GPIO 제어
  - GPIO에 연결된 Swtich 상태 모니터링





### 미션 2: Swtich 모니터링

- Raspberry Pi GPIO **제어** 
  - GPIO에 연결된 Swtich 상태 모니터링

```
pi@raspberrypi-robotcode77 ~/gpio $ sudo ./uartEx4 sudo: unable to resolve host raspberrypi-robotcode77 Raspberry Pi UART daemon start SW:--____-
```

```
connected: shchoi-bt
BlueTerm
Here I'm the Raspberry Pi.
Push Switch Button!
SW:-- --
```

- Raspberry Pi GPIO 제어
  - GPIO에 연결된 Swtich 상태 모니터링

```
pi@raspberrypi-robotcode77: ~/gpio $ sudo ./uartEx4 sudo: unable to resolve host raspberrypi-robotcode77

Raspberry Pi UART daemon start SW:------
```

```
connected: shchoi-bt
BlueTerm
Here I'm the Raspberry Pi.
Push Switch Button!
SW:----
```

# **Bluetooth Dongle**

## 로봇SW 교육원

최상훈(shchoi82@gmail.com)

- Bluetooth Dongle
  - Bluetooth CSR 4.0 Harmony





### • 블루투스 동글 연결



• 블루투스 동글 연결 확인

\$ lsusb

Bus 001 Device 005: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode)

```
pi@shchoi82 ~ $ lsusb
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 005: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth
Dongle (HCI mode)
Bus 001 Device 004: ID 0bda:8176 Realtek Semiconductor Corp. RTL8188CUS
802.11n WLAN Adapter
pi@shchoi82 ~ $
```

- bluez bluez-util mincom 설치
  - \$ sudo apt-get install bluez bluez-utils minicom

```
pi@shchoi82: ~
printer-driver-qutenprint (5.2.9-1) 설정하는 중입니다 ...
No Gutenprint PPD files to update.
[ ok ] Reloading Common Unix Printing System: cupsd.
printer-driver-m2300w (0.51-7) 설정하는 중입니다 ...
printer-driver-min12xxw (0.0.9-6) 설정하는 중입니다 ...
printer-driver-pnm2ppa (1.13-4) 설정하는 중입니다 ...
printer-driver-postscript-hp (3.12.6-3.1+deb7u1) 설정하는 중입니
다 ...
printer-driver-ptouch (1.3-4) 설정하는 중입니다 ...
printer-driver-pxljr (1.3+repack0-2) 설정하는 중입니다 ...
printer-driver-sag-gdi (0.1-3) 설정하는 중입니다 ...
printer-driver-splix (2.0.0+svn306-2) 설정하는 중입니다 ...
python-renderpm (2.5-1.1) 설정하는 중입니다 .
python-reportlab-accel (2.5-1.1) 설정하는 중입니다 ...
sane-utils (1.0.22-7.4) 설정하는 중입니다 ...
Adding saned group and user...
사용자 saned을(를) scanner 그룹에 등록 중
saned disabled; edit /etc/default/saned
mscompress (0.3-4) 설정하는 중입니다 ...
menu에 대한 트리거를 처리하는 중입니다 ...
pi@shchoi82 ~ $
```

• 블루투스 장치 정보 확인

\$ hciconfig -a

```
- 0
pi@shchoi82: ~
pi@shchoi82 ~ $ hciconfig -a
hci0:
       Type: BR/EDR Bus: USB
        BD Address: 00:15:83:D1:21:16 ACL MTU: 310:10 SCO MTU: 64:8
        UP RUNNING PSCAN
        RX bytes:2057 acl:0 sco:0 events:81 errors:0
        TX bytes:1314 acl:0 sco:0 commands:81 errors:0
        Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87
        Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
        Link policy: RSWITCH HOLD SNIFF PARK
        Link mode: SLAVE ACCEPT
        Name: 'shchoi82-0'
        Class: 0x420100
        Service Classes: Networking, Telephony
        Device Class: Computer, Uncategorized
        HCI Version: 4.0 (0x6) Revision: 0x22bb
        LMP Version: 4.0 (0x6) Subversion: 0x22bb
        Manufacturer: Cambridge Silicon Radio (10)
pi@shchoi82 ~ $
```

• 블루투스 MAC 주소 확인

\$ hcitool dev

```
pi@shchoi82 ~ $ hcitool dev
Devices:
    hci0     00:15:83:D1:21:16
pi@shchoi82 ~ $ |
```

• 블루투스 동작 확인

\$ /etc/init.d/bluetooth status

```
pi@shchoi82: ~ $ /etc/init.d/bluetooth status

[ ok ] bluetooth is running.
pi@shchoi82 ~ $ ...
```

• Name 변경

\$ sudo nano /etc/machine-info

### PRETTY\_HOSTNAME=bluetooth 0|=

```
GNU nano 2.2.6 File: /etc/machine-info

PRETTY_HOSTNAME=bt-00

AG Get Hel^O WriteOu^R Read Fi^Y Prev Pa^K Cut Tex^C Cur Pos AX Exit ^J Justify^W Where I^V Next Pa^U UnCut T^T To Spell
```

Name 변경

\$ sudo service bluetooth restart

```
- - X
pi@robotcode: ~
pi@robotcode ~ $ sudo service bluetooth restart
[ ok ] Stopping bluetooth: rfcomm /usr/sbin/bluetoothd.
[ ok ] Starting bluetooth: bluetoothd rfcomm.
pi@robotcode ~ $ hciconfig -a
hci0: Type: BR/EDR Bus: USB
        BD Address: 00:15:83:D1:21:16 ACL MTU: 310:10 SCO MTU: 64:8
        UP RUNNING PSCAN
        RX bytes:6582 acl:0 sco:0 events:270 errors:0
        TX bytes:5071 acl:0 sco:0 commands:270 errors:0
        Features: 0xff 0xff 0xff 0xfe 0xdb 0xff 0x5b 0x87
        Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
        Link policy: RSWITCH HOLD SNIFF PARK
       Link mode: SLAVE ACCEPT
        Name: 'bt-00'
        Class: 0x400100
        Service Classes: Telephony
        Device Class: Computer, Uncategorized
        HCI Version: 4.0 (0x6) Revision: 0x22bb
        LMP Version: 4.0 (0x6) Subversion: 0x22bb
        Manufacturer: Cambridge Silicon Radio (10)
pi@robotcode ~ 💲
```

Bluez PNAT 플러그인 비활성화

\$ sudo nano /etc/bluetooth/main.conf

DisablePlugins = pnat

```
_ 0
pi@shchoi82: ~
 GNU nano 2.2.6
                  File: /etc/bluetooth/main.conf
                                                  Modified
[General]
# List of plugins that should not be loaded on bluetoothd startup
#DisablePlugins = network.input
DisablePlugins = pnat
# Default adaper name
# %h - substituted for hostname
# %d - substituted for adapter id
Name = h-d
# Default device class. Only the major and minor device class bi$
# considered.
Class = 0x000100
# How long to stay in discoverable mode before going back to non$
# The value is in seconds. Default is 180, i.e. 3 minutes.
Cur Pos
         ^J Justify Where I V Next Pa UnCut T T To Spell
^X Exit
```

# 실습2-8: 블루투스 동글 설정

47

### • 재부팅

\$ sudo reboot

PSCAN ISCAN 활성화

\$ sudo hciconfig hci0 piscan

```
- 0
pi@shchoi82: ~
pi@shchoi82 ~ $ sudo hciconfig hci0 piscan
pi@shchoi82 ~ $ hciconfig -a
hci0: Type: BR/EDR Bus: USB
      BD Address: 00:15:83:D1:21:16 ACL MTU: 310:10 SCO MTU: 64:8
       UP RUNNING PSCAN ISCAN
       RX bytes:424/ aci:0 sco:0 events:111 errors:0
       TX bytes:3860 acl:0 sco:0 commands:111 errors:0
       Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87
       Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
       Link policy: RSWITCH HOLD SNIFF PARK
       Link mode: SLAVE ACCEPT
       Name: 'bt-00'
       Class: 0x400100
       Service Classes: Telephony
       Device Class: Computer, Uncategorized
       HCI Version: 4.0 (0x6) Revision: 0x22bb
       LMP Version: 4.0 (0x6) Subversion: 0x22bb
       Manufacturer: Cambridge Silicon Radio (10)
pi@shchoi82 ~ $
```

• bluez-simple-agent 실행

\$ sudo bluez-simple-agent hci0

```
pi@robotcode ~ $ sudo bluez-simple-agent hci0
Agent registered
```

- 안드로이드
  - 블루투스 기기 검색



#### • 안드로이드

#### \_ 등록



```
pi@robotcode ~ $ sudo bluez-simple-agent hci0
Agent registered
RequestConfirmation (/org/bluez/2838/hci0/dev_98_D6_F7_78_90_35, 605615)
Confirm passkey (yes/no):
```

```
pi@robotcode ~ $ sudo bluez-simple-agent hci0
Agent registered
RequestConfirmation (/org/bluez/2838/hci0/dev_98_D6_F7_78_90_35, 605615)
Confirm passkey (yes/no): yes
```

• Ctrl + c **빠져나옴** 

```
pi@robotcode ~ $ sudo bluez-simple-agent hci0
Agent registered
RequestConfirmation (/org/bluez/2838/hci0/dev_98_D6_F7_78_90_35, 605615)
Confirm passkey (yes/no): yes
Traceback (most recent call last):
   File "/usr/bin/bluez-simple-agent", line 127, in <module>
        mainloop.run()
KeyboardInterrupt
^Cpi@robotcode ~ $
```

• 등록된 장치 목록 확인

\$ sudo bluez-test-device list

```
pi@robotcode: ~

pi@robotcode ~ $ sudo bluez-test-device list
98:D6:F7:78:90:35 ChoiSanghoon의 G Pro
pi@robotcode ~ $
```

- 참고
  - 한번 등록되면 재부팅 후에도 정보가 남아있음
  - 등록된 장치 삭제

\$ sudo bluez-test-device remove [MAC주소]

## 실습4-1: 블루투스 연결

- PSCAN ISCAN 활성화
  - \$ sudo hciconfig hci0 piscan
- Serial Port 프로토콜 추가
  - \$ sdptool add sp
- · rfcomm 리스닝 시작
  - \$ sudo rfcomm listen hci0

```
pi@robotcode ~ $ sudo hciconfig hci0 piscan
pi@robotcode ~ $ sdptool add sp
Serial Port service registered
pi@robotcode ~ $ sudo rfcomm listen hci0
Waiting for connection on channel 1
```

Bluetooth terminal 연결







18\_라즈베리파이\_블루투스\_v4.3.3

Bluetooth terminal 연결



```
pi@robotcode ~ $ sudo hciconfig hci0 piscan
pi@robotcode ~ $ sdptool add sp
Serial Port service registered
pi@robotcode ~ $ sudo rfcomm listen hci0
Waiting for connection on channel 1
Connection from 98:D6:F7:78:90:35 to /dev/rfcomm0
Press CTRL-C for hangup
```

## 실습4-4: 블루투스 연결

#### • 새로운 터미널 오픈



- RaspberryPi**에서 안드로이드로 데이터 전송** 
  - uartEx3.c

```
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <wiringPi.h>
#include <wiringSerial.h>
#define EXIT SUCC 0
#define EXIT FAIL 1
int main()
   int fd;
   int data;
   int i;
   setbuf(stdout, NULL);
    if(wiringPiSetupGpio() == -1){
        fprintf(stdout, "Unable to start wiringPi: %s\n", strerror(errno));
       return EXIT FAIL;
    // 시리얼 통신 초기화 및 속도 설정
    for(i = 10 ; i > 0 ; i--){
        if((fd = serialOpen("/dev/rfcomm0", 115200)) < 0)</pre>
           printf("블루투스 연결을 기다립니다...[%d] status : %s\r", i, strerror(errno));
            sleep(1);
```

```
if(fd < 0){
   fprintf(stderr, "\n%s\n", strerror(errno));
   return EXIT FAIL;
printf("\nRaspberry Pi UART daemon start\n");
serialPuts(fd, "Here I'm the Raspberry Pi.\r\n"); // to serial
                                      // to serial
serialPuts(fd, "Write a message.\r\n");
while(1){
   if(serialDataAvail(fd) == -1){
       fprintf(stderr, "%s\n", strerror(errno));
       return EXIT FAIL;
                                 // from serial
   data = serialGetchar(fd);
   if(data == -1)
       continue;
   printf("%c", data);
return EXIT SUCC;
```

### • 컴파일

```
$ gcc -Wall -W -lwiringPi uartEx3.c -o uartEx3
```

### • 실행

```
$ sudo ./uartEx3
```

## 실습4-7: 안드로이드 -> Pi

```
pi@robotcode: ~

pi@robotcode ~ $ sudo ./uartEx3

Raspberry Pi UART daemon start
```

< Raspberry Pi >



- 통신 테스트
  - 안드로이드의 터미널에 텍스트를 입력하면
  - RaspberryPi의 터미널창 그대로 출력됨

```
□ (8) □ (1) □ (2) □ (3) □ (8% □ 00:01)
6 4 =
                          connected: shchoi-bi
Here I'm the Raspberry Pi.
Write a message.
                  t
                           j k l
                    9
                           n m
            X
                    V
           ₽
```



< Raspberry Pi >

- RaspberryPi에서 안드로이드로 데이터 전송
  - uartEx4.c

```
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <wiringPi.h>
#include <wiringSerial.h>
#define EXIT SUCC 0
#define EXIT FAIL 1
int main()
   int fd;
   int data;
   setbuf(stdout, NULL);
    setbuf(stdin, NULL);
   if(wiringPiSetupGpio() == -1){
        fprintf(stdout, "Unable to start wiringPi: %s\n", strerror(errno));
       return EXIT FAIL;
    // 시리얼 통신 초기화 및 속도 설정
    if((fd = serialOpen("/dev/ttyAMA0", 115200)) < 0)</pre>
       fprintf(stderr, "Unable to open serial device: %s\n", strerror(errno));
       return EXIT FAIL;
```

```
printf("\nRaspberry Pi UART daemon start\n");
serialPuts(fd, "Here I'm the Raspberry Pi.\r\n");  // to serial
serialPuts(fd, "Write a message.\r\n");  // to serial

while(1){
    if((data = fgetc(stdin)) == EOF){
        printf("EOF\n");
        break;
    }
    if(data == '\n'){
        serialPutchar(fd, '\r');  // to serial
    }
    serialPutchar(fd, data);  // to serial
}
return EXIT_SUCC;
}
```

### • 컴파일

```
$ gcc -Wall -W -lwiringPi uartEx4.c -o uartEx4
```

### • 실행

```
$ sudo ./uartEx4
```

## 실습 5-3 : Pi -> 안드로이드



< Raspberry Pi >



- 통신 테스트
  - RaspberryPi의 터미널에 텍스트 입력하면
  - 안드로이드 터미널창에 그대로 출력됨

< Raspberry Pi >



- Bluetooth 통신을 통한 Raspberry Pi GPIO 제어하기
  - 메뉴출력



## 미션 1-2: LED 제어

- Raspberry Pi GPIO 제어 GPIO에 연결된 LED를 ON
- ☑ 캡처화면 저장 중... connected: shchoi-bt Here I'm the Raspberry Pi. <Select Menu> 0 : LED OFF 1 : LED ON LED ON t u i 6 1 Y 0 P g h j k l d f 클립보드에 복사되었습니다. × 가 👛 🌣

- Raspberry Pi GPIO MO
  - GPIO에 연결된 LED를 OFF



- Raspberry Pi GPIO MO
  - GPIO에 연결된 Swtich 상태 모니터링



## 미션 2-2: Swtich 모니터링

- Raspberry Pi GPIO MO
  - GPIO에 연결된 Swtich 상태 모니터링

```
pi@raspberrypi-robotcode77 ~/gpio $ sudo ./uartEx4 sudo: unable to resolve host raspberrypi-robotcode77 Raspberry Pi UART daemon start SW:--_____
```

```
connected: shchoi-bt
BlueTerm
Here I'm the Raspberry Pi.
Push Switch Button!
SW:-- --
```

## 미션 2-3: Swtich 모니터링

- Raspberry Pi GPIO **제어** 
  - GPIO에 연결된 Swtich 상태 모니터링

```
pi@raspberrypi-robotcode77 ~/gpio $ sudo ./uartEx4 sudo: unable to resolve host raspberrypi-robotcode77

Raspberry Pi UART daemon start SW:-----
```



 현재 작업 디렉토리의 파일 목록을 안드로이드 터미널 화면에 출력하시 오.

• 부팅시 자동 설정

\$ nano /home/pi/autobluetooth.sh

```
_ O X
pi@robotcode: ~
  GNU nano 2.2.6
                   File: /home/pi/autobluetooth.sl
                                                  #!/bin/bash
#!/bin/bash
                                                  hciconfig hci0 piscan
hciconfig hci0 piscan
                                                  sdptool add sp
sdptool add sp
while ((1))
                                                  while ((1))
                                                  do
       rfcomm listen hci0
                                                            rfcomm listen hci0
done
                                                  done
exit 0
                       [ Wrote 12 lines ]
^G Get Help^O WriteOut^R Read Fil^Y Prev Pag^K Cut
                                                  exit 0
           ^J Justify ^W Where Is ^V Next Pag ^U UnC
  Exit
```

- ※ 53 slide 참고
- 실행 권한 설정

```
$ chmod +x /home/pi/autobluetooth.sh
```

- 부팅시 자동 설정
  - /etc/rc.local **파일에 추가**

\$ sudo nano /etc/rc.local

```
pi@robotcode: ~
 GNU nano 2.2.6
                      File: /etc/rc.local
                                                     Modified
# bits.
 By default this script does nothing.
# Print the IP address
IP=$ (hostname -I) || true
if [ "$ IP" ]; then
 printf "My IP address is %s\n" "$ IP"
 블루투스 초기화(SP, piscan, listen)
                                     /home/pi/autobluetooth.sh&
/home/pi/autobluetooth.sh&
 자동으로 실행할 프로그램명 지정
                                     /home/pi/autoexec
/home/pi/autoexec
exit 0
^G Get Help^O WriteOut^R Read Fil^Y Prev Pag^K Cut Text^C Cur Pos
          ^J Justify ^W Where Is^V Next Pag^U UnCut Te^T To Spell
   Exit
```

루투스 v4.3.3

 미션1에서 작성한 프로그램이 부팅 시 자동으로 실행될 수 있도록 설정 하시오. 라즈베리파이 minicom 실행

\$ minicom -D /dev/rfcomm0



안드로이드 bluetooth terminal 앱에서 키보드 입력

