Change the world with a data revolution

GIVITA

CGM을 활용한 시계열 데이터 분석

from classical to ML-based approach

Background

glucose

- 시계열(Time series): 일정한 간격으로 배치된 데이터의 수열(sequence). 각 샘플은 시간적인 순서를 가짐.
- 사례: 항공사 월별 승객 수, 연간 제품 판매량, KOSPI 기업 주가, 설비 진동 센서 값, 그리고 CGM 데이터

timestamp		
2022-06-01 06:55:00	119.0	
2022-06-01 07:00:00	122.0	
2022-06-01 07:05:00	125.0	
2022-06-01 07:10:00	128.0	
2022-06-01 07:15:00	129.0	
2022-06-01 07:00:00 2022-06-01 07:05:00 2022-06-01 07:10:00	122.0 125.0 128.0	

Background

- 활용
 - forecasting(예측) (≠prediction)
- detection(탐지), diagnosis(진단)

Background

- 정상성(Stationary) vs 비정상성(Non-stationary)
- stationary : 시계열 데이터가 관측된 시간에 대해서 독립일 때(ex: white noise)
- Non-stationary : Stationary 판별기준을 만족하지 않을 때(ex: trend, seasonality를 포함하는 시계열)
- 판별기준 : 평균 $(E(X_t) = \mu)$, 분산 $(Var(X_t) = \sigma)$, 공분산 $(Cov(X_{t+h}, X_t) = \gamma(h))$

Modeling Procedure

■ 예측모델 개발 절차

5

Preprocessing/Transformation

- 결측 치(Missing values) 처리: Forward/ Backward fill, Linear/ Cubic interpolation
- 스무딩(Smoothing): 노이즈 제거
- 리샘플링(Resampling): 측정 주기 조정
- 변환(Transformation): 차분(Differencing), 로그(Log) 변환, 정규화(Normalization)

	glucose	glucose_ewm	glucose_10min
timestamp	원본	스무딩	리샘플링
2022-06-01 06:55:00	119.0	119.000000	NaN
2022-06-01 07:00:00	122.0	121.500000	123.5
2022-06-01 07:05:00	125.0	124.322581	NaN
2022-06-01 07:10:00	128.0	127.269231	128.5
2022-06-01 07:15:00	129.0	128.654289	NaN
2022-06-11 04:30:00	129.0	129.246638	129.5
2022-06-11 04:35:00	130.0	129.849328	NaN
2022-06-11 04:40:00	130.0	129.969866	130.0
2022-06-11 04:45:00	130.0	129.993973	NaN
2022-06-11 04:50:00	130.0	129.998795	130.0

Preparation

- 데이터 셋 준비 : 총 2,760 샘플(2022-06-01 07:20 ~ 06-10 21:15)
- 학습용 2,735 샘플 (2022-06-01 07:20 ~ 06-10 19:10)
- 시험용 25 샘플 (2022-06-10 19:15 ~ 06-10 21:15)

	timestamp	glucose(t)
0	2022-06-01 07:20:00	129.0
1	2022-06-01 07:25:00	130.0
2	2022-06-01 07:30:00	128.0
3	2022-06-01 07:35:00	127.0
4	2022-06-01 07:40:00	124.0

	timestamp	glucose(t)
2755	2022-06-10 20:55:00	125.0
2756	2022-06-10 21:00:00	115.0
2757	2022-06-10 21:05:00	115.0
2758	2022-06-10 21:10:00	118.0
2759	2022-06-10 21:15:00	124.0

• • •

• • •

Train: classical method

ARIMA(p, d=1, q) $\Delta \hat{y}_t = c + a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + \cdots + a_p \Delta y_{t-p} + \cdots$ $\theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q}$

ARIMA (Auto-Regressive Integrated Moving Average)

- step 1 : 최적의 p, d, q 조합 찾기
- step 2 : 해당 p, d, q로 모델 학습

Step 2

Single-step forecasting

- 사용모델 : Xgboost

- 주요 파라미터: n_estimators 1000, learning_rate 0.05

Multi-step forecasting

- recursive method: 예측 결과를 다음 스텝의 입력으로 사용

Multi-step forecasting

- recursive method : 피처 추가

Conclusion

- 향후계획
- 임상 데이터 셋 구축(multivariate)

Conclusion

- 향후계획
- 모델 개발, 개념 검증
- BM 구체화

Change the world with a data revolution

THANK YOU

Global No.1 Health Data Tech Company SEP 2022