První přednáška

NAIL062 Výroková a predikátová logika

 ${\sf Jakub\ Bul\'in\ (KTIML\ MFF\ UK)}$

Zimní semestr 2024

Jak se učit?

Velmi doporučuji tento online minikurz o efektivním učení:

https://www.samford.edu/departments/academic-success-center/how-to-study

Investujte 35 minut nyní, ušetřete mnoho hodin později!

Cesta k jistému úspěchu u zkoušky

- Před přednáškou alespoň zběžně projděte skripta, snažte se pochopit motivaci a smysl definic a hlavních tvrzení.
- Po přednášce skripta podrobně přečtěte, nejasnosti ujasněte.
- Ujistěte se, že umíte pracovat i s formalizmem.
- Věnujte pozornost i cvičení, pomůže vám vše pochopit.
- Studujte průběžně, a průběžně testujte své znalosti.

První přednáška

Program

- úvod do logiky
- neformální představení výrokové a predikátové logiky ("upoutávka")
- syntaxe výrokové logiky
- sémantika výrokové logiky (začátek)

Materiály

Zápisky z přednášky, Kapitola 1 a Sekce 2.1-2.2.4 z Kapitoly 2

Kapitola 1: Úvod do logiky

Co je logika?

Dvě definice:

- soubor principů, které jsou základem uspořádání prvků nějakého systému (např. programu, zařízení, protokolu)
- 2. věda o uvažování prováděném podle striktních pravidel zachovávajících platnost

Co je logika?

Dvě definice:

- soubor principů, které jsou základem uspořádání prvků nějakého systému (např. programu, zařízení, protokolu)
- věda o uvažování prováděném podle striktních pravidel zachovávajících platnost

V informatice obojí: daný systém nejprve formálně popíšeme, a poté o něm formálně uvažujeme (automaticky!), tj. odvozujeme platné inference za použití nějakého dokazovacího systému

Historie a aplikace logiky

Filozofie ightarrow Matematika ightarrow Teoretická informatika ightarrow

Aplikovaná informatika

Historie a aplikace logiky

 $\mathsf{Filozofie} \to \mathsf{Matematika} \to \mathsf{Teoretick\'a} \ \mathsf{informatika} \to$

Aplikovaná informatika

- logic programming
- discrete optimization (SAT solving, scheduling, planning)
- database theory
- verification (software, hardware, protocol)
- automated reasoning and proving
- knowledge-based representation
- artificial intelligence

1.1 Výroková logika

Příklad ze života: Hledání pokladu

Při hledání pokladu jsme narazili na rozcestí dvou chodeb. Víme, že na konci každé chodby je buď poklad, nebo drak, ale ne obojí.

Příklad ze života: Hledání pokladu

Při hledání pokladu jsme narazili na rozcestí dvou chodeb. Víme, že na konci každé chodby je buď poklad, nebo drak, ale ne obojí.

Trpaslík nám řekl, že:

- "Alespoň jedna z těch dvou chodeb vede k pokladu", a že
- "První chodba vede k drakovi."

Příklad ze života: Hledání pokladu

Při hledání pokladu jsme narazili na rozcestí dvou chodeb. Víme, že na konci každé chodby je buď poklad, nebo drak, ale ne obojí.

Trpaslík nám řekl, že:

- "Alespoň jedna z těch dvou chodeb vede k pokladu", a že
- "První chodba vede k drakovi."

Je známo, že trpaslíci buď vždy mluví pravdu, nebo vždy lžou. Kterou cestou se máme vydat?

Výrok je tvrzení, kterému lze přiřadit pravdivostní hodnotu:

pravdivý (True, 1), nebo lživý (False, 0)

Výrok je tvrzení, kterému lze přiřadit pravdivostní hodnotu:

Prvovýroky (atomické výroky, výrokové proměnné) zkombinované pomocí logických spojek a závorek do složených výroků:

Výrok je tvrzení, kterému lze přiřadit pravdivostní hodnotu:

```
pravdivý (True, 1), nebo lživý (False, 0)
```

Prvovýroky (atomické výroky, výrokové proměnné) zkombinované pomocí logických spojek a závorek do složených výroků:

"(Trpaslík lže,) právě když (druhá chodba vede k drakovi.)"

Výrok je tvrzení, kterému lze přiřadit pravdivostní hodnotu:

Prvovýroky (atomické výroky, výrokové proměnné) zkombinované pomocí logických spojek a závorek do složených výroků:

"(Trpaslík lže,) právě když (druhá chodba vede k drakovi.)"

- □ "neplatí X", *negace*
- ↑ "X a Y", konjunkce
- √ "X nebo Y", disjunkce (není exkluzivní)
- → "pokud X, potom Y", implikace (čistě logická)
- → "X, právě když Y", ekvivalence

Volba množiny prvovýroků: bity informace popisující daný systém

Volba množiny prvovýroků: bity informace popisující daný systém

```
p_1 = "Poklad je v první chodbě."
```

 $p_2 =$ "Poklad je ve druhé chodbě."

Volba množiny prvovýroků: bity informace popisující daný systém $p_1 = "Poklad je v první chodbě."$ $p_2 = "Poklad je ve druhé chodbě."$ (Co nejmenší, např. hodnota t = "Trpaslík mluví pravdu." je jednoznačně určená hodnotami $\mathbb{P} = \{p_1, p_2\}.$)

Volba množiny prvovýroků: bity informace popisující daný systém

 $p_1 = "Poklad je v první chodbě."$

 $p_2 = "Poklad je ve druhé chodbě."$

(Co nejmenší, např. hodnota t= "Trpaslík mluví pravdu." je jednoznačně určená hodnotami $\mathbb{P}=\{p_1,p_2\}$.)

- Poklad nebo drak, ale ne obojí: zakódované do volby P (přítomnost draka je absence pokladu)
- "První chodba vede k drakovi." ⇔ ¬p₁
- "Alespoň jedna z chodeb vede k pokladu." ⇔ p₁ ∨ p₂
- Trpaslík buď mluví pravdu, nebo lže:

$$\varphi = (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$$

Volba množiny prvovýroků: bity informace popisující daný systém

 $p_1 = "Poklad je v první chodbě."$

 $p_2 = "Poklad je ve druhé chodbě."$

(Co nejmenší, např. hodnota t= "Trpaslík mluví pravdu." je jednoznačně určená hodnotami $\mathbb{P}=\{p_1,p_2\}$.)

- Poklad nebo drak, ale ne obojí: zakódované do volby P (přítomnost draka je absence pokladu)
- "První chodba vede k drakovi." ⇔ ¬p₁
- "Alespoň jedna z chodeb vede k pokladu." ⇔ p₁ ∨ p₂
- Trpaslík buď mluví pravdu, nebo lže:

$$\varphi = (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$$

Teorie $T = \{\varphi\}$ v jazyce $\mathbb{P} = \{p_1, p_2\}, \varphi$ je axiom T.

Modely a důsledky

Lze určit, kde je poklad? Je p_1 nebo p_2 důsledkem φ resp. T?

"Svět", ve kterém je např. v první chodbě poklad a ve druhé drak, popíšeme pomocí pravdivostního ohodnocení $p_1=1, p_2=0$, neboli modelu v=(1,0) jazyka $\mathbb P$. Celkem máme 4 "světy" a modely:

$$\mathsf{M}_{\mathbb{P}} = \{(0,0), (0,1), (1,0), (1,1)\}.$$

Modely a důsledky

Lze určit, kde je poklad? Je p_1 nebo p_2 důsledkem φ resp. T?

"Svět", ve kterém je např. v první chodbě poklad a ve druhé drak, popíšeme pomocí pravdivostního ohodnocení $p_1=1, p_2=0$, neboli modelu v=(1,0) jazyka $\mathbb P$. Celkem máme 4 "světy" a modely:

$$\mathsf{M}_{\mathbb{P}} = \{(0,0), (0,1), (1,0), (1,1)\}.$$

Je "svět" popsaný modelem v=(1,0) konzistentní s tím, co víme, tj. platí v modelu v výrok φ resp. teorie T? Vyhodnotíme podle stromové struktury φ :

$$v(p_1) = 1, \ v(p_2) = 0, \ v(\neg p_1) = 0, \ v(p_1 \lor p_2) = 1, \ \dots, \ v(\varphi) = 0$$

Modely a důsledky

Lze určit, kde je poklad? Je p_1 nebo p_2 důsledkem φ resp. T?

"Svět", ve kterém je např. v první chodbě poklad a ve druhé drak, popíšeme pomocí pravdivostního ohodnocení $p_1=1, p_2=0$, neboli modelu v=(1,0) jazyka $\mathbb P$. Celkem máme 4 "světy" a modely:

$$\mathsf{M}_{\mathbb{P}} = \{(0,0), (0,1), (1,0), (1,1)\}.$$

Je "svět" popsaný modelem v=(1,0) konzistentní s tím, co víme, tj. platí v modelu v výrok φ resp. teorie T? Vyhodnotíme podle stromové struktury φ :

$$v(p_1) = 1, \ v(p_2) = 0, \ v(\neg p_1) = 0, \ v(p_1 \lor p_2) = 1, \ \dots, \ v(\varphi) = 0$$

Množina modelů výroku φ (resp. modelů teorie T):

$$\mathsf{M}_{\mathbb{P}}(\varphi) = \mathsf{M}_{\mathbb{P}}(T) = \{(0,1)\}.$$

V každém modelu teorie T platí výrok p_2 , neboli p_2 je důsledek T.

Ověřovat všechny modely je nepraktické, pro $|\mathbb{P}|=n$ máme 2^n modelů, a \mathbb{P} může být i nekonečná.

Ověřovat všechny modely je nepraktické, pro $|\mathbb{P}|=n$ máme 2^n modelů, a \mathbb{P} může být i nekonečná.

Dokazovací systém

- důkaz výroku ψ z teorie T je formálně definovaný syntaktický objekt, snadno (mechanicky) ověřitelný
- Ize hledat algoritmicky čistě na základě struktury ψ a axiomů T ("syntaxe"), nemusíme se zabývat modely ("sémantikou").

Ověřovat všechny modely je nepraktické, pro $|\mathbb{P}|=n$ máme 2^n modelů, a \mathbb{P} může být i nekonečná.

Dokazovací systém

- důkaz výroku ψ z teorie T je formálně definovaný syntaktický objekt, snadno (mechanicky) ověřitelný
- Ize hledat algoritmicky čistě na základě struktury ψ a axiomů T ("syntaxe"), nemusíme se zabývat modely ("sémantikou").

Klíčové vlastnosti:

Ověřovat všechny modely je nepraktické, pro $|\mathbb{P}|=n$ máme 2^n modelů, a \mathbb{P} může být i nekonečná.

Dokazovací systém

- důkaz výroku ψ z teorie T je formálně definovaný syntaktický objekt, snadno (mechanicky) ověřitelný
- Ize hledat algoritmicky čistě na základě struktury ψ a axiomů T ("syntaxe"), nemusíme se zabývat modely ("sémantikou").

Klíčové vlastnosti:

- korektnost: pokud existuje důkaz ψ z T, potom ψ platí v T
- úplnost, pokud ψ platí v T, potom existuje důkaz ψ z T

Ověřovat všechny modely je nepraktické, pro $|\mathbb{P}|=n$ máme 2^n modelů, a \mathbb{P} může být i nekonečná.

Dokazovací systém

- důkaz výroku ψ z teorie T je formálně definovaný syntaktický objekt, snadno (mechanicky) ověřitelný
- Ize hledat algoritmicky čistě na základě struktury ψ a axiomů T ("syntaxe"), nemusíme se zabývat modely ("sémantikou").

Klíčové vlastnosti:

- korektnost: pokud existuje důkaz ψ z T, potom ψ platí v T
- úplnost, pokud ψ platí v T, potom existuje důkaz ψ z T

Ukážeme si metodu analytického tabla a rezoluční metodu. Obě dokazují *sporem*: předpokládají platnost T a $\neg \psi$, hledají spor.

- důkaz je strom olabelovaný předpoklady o platnosti výroků
- v kořeni: neplatí dokazovaný výrok ψ (důkaz sporem)
- připojíme platnost axiomů z *T*

- důkaz je strom olabelovaný předpoklady o platnosti výroků
- ullet v kořeni: neplatí dokazovaný výrok ψ (důkaz sporem)
- připojíme platnost axiomů z T
- při konstrukci zjednodušujeme výroky ve vrcholech, invariant:

- důkaz je strom olabelovaný předpoklady o platnosti výroků
- v kořeni: neplatí dokazovaný výrok ψ (důkaz sporem)
- připojíme platnost axiomů z T
- při konstrukci zjednodušujeme výroky ve vrcholech, invariant:

Každý model teorie T, ve kterém neplatí ψ , se musí shodovat s některou z větví tabla.

- důkaz je strom olabelovaný předpoklady o platnosti výroků
- v kořeni: neplatí dokazovaný výrok ψ (důkaz sporem)
- připojíme platnost axiomů z T
- při konstrukci zjednodušujeme výroky ve vrcholech, invariant:

Každý model teorie T, ve kterém neplatí ψ , se musí shodovat s některou z větví tabla.

např.:

True $(\varphi_1 \to \varphi_2)$ zredukujeme rozvětvením na False φ_1 a True φ_2 , False $(\varphi_1 \to \varphi_2)$ zredukujeme připojením True φ_1 a False φ_2 .

- důkaz je strom olabelovaný předpoklady o platnosti výroků
- v kořeni: neplatí dokazovaný výrok ψ (důkaz sporem)
- připojíme platnost axiomů z T
- při konstrukci zjednodušujeme výroky ve vrcholech, invariant:

Každý model teorie T, ve kterém neplatí ψ , se musí shodovat s některou z větví tabla.

např.:

True $(\varphi_1 \to \varphi_2)$ zredukujeme rozvětvením na False φ_1 a True φ_2 , False $(\varphi_1 \to \varphi_2)$ zredukujeme připojením True φ_1 a False φ_2 .

- sporná větev = předpokládá True i False stejného výroku
- $d\mathring{u}kaz = v$ šechny větve sporné (tj. nemůže existovat model T, ve kterém neplatí ψ)

Příklad tablo důkazu

literál p, $\neg p$ klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF ($\psi \sim \psi'$, stejné modely)

```
literál p, \neg p klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF (\psi \sim \psi', stejné modely) např. pro výrok (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))
```

```
literál p, \neg p klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF (\psi \sim \psi', stejné modely) např. pro výrok (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2)) nahradíme \neg (\neg p_1) \sim p_1 a \neg (p_1 \lor p_2) \sim (\neg p_1 \land \neg p_2) (De Morgan)
```

```
literál p, \neg p klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF (\psi \sim \psi', stejné modely) např. pro výrok (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2)) nahradíme \neg (\neg p_1) \sim p_1 a \neg (p_1 \lor p_2) \sim (\neg p_1 \land \neg p_2) (De Morgan) (\neg p_1 \land (p_1 \lor p_2)) \lor (p_1 \land \neg p_1 \land \neg p_2)
```

```
literál p, \neg p klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF (\psi \sim \psi', stejné modely) např. pro výrok (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2)) nahradíme \neg (\neg p_1) \sim p_1 a \neg (p_1 \lor p_2) \sim (\neg p_1 \land \neg p_2) (De Morgan) (\neg p_1 \land (p_1 \lor p_2)) \lor (p_1 \land \neg p_1 \land \neg p_2)
```

a dále opakovaně použijeme distributivitu ∨ vůči ∧:

literál p, ¬p klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF ($\psi \sim \psi'$, stejné modely) např. pro výrok $(\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$ nahradíme $\neg(\neg p_1) \sim p_1$ a $\neg(p_1 \lor p_2) \sim (\neg p_1 \land \neg p_2)$ (De Morgan) $(\neg p_1 \land (p_1 \lor p_2)) \lor (p_1 \land \neg p_1 \land \neg p_2)$ a dále opakovaně použijeme distributivitu ∨ vůči ∧: $(\neg p_1 \lor p_1) \land (\neg p_1 \lor \neg p_1) \land (\neg p_1 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_1) \land$ $(p_1 \lor p_2 \lor \neg p_1) \land (p_1 \lor p_2 \lor \neg p_2)$

literál p, $\neg p$ klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF ($\psi \sim \psi'$, stejné modely) např. pro výrok ($\neg p_1 \wedge (p_1 \vee p_2)$) $\vee (\neg (\neg p_1) \wedge \neg (p_1 \vee p_2)$) nahradíme $\neg (\neg p_1) \sim p_1$ a $\neg (p_1 \vee p_2) \sim (\neg p_1 \wedge \neg p_2)$ (De Morgan)

$$(\neg p_1 \wedge (p_1 \vee p_2)) \vee (p_1 \wedge \neg p_1 \wedge \neg p_2)$$

a dále opakovaně použijeme distributivitu ∨ vůči ∧:

$$(\neg p_1 \lor p_1) \land (\neg p_1 \lor \neg p_1) \land (\neg p_1 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_1) \land (p_1 \lor p_2 \lor \neg p_1) \land (p_1 \lor p_2 \lor \neg p_2)$$

už je CNF, ještě zjednodušíme: odstraníme duplicitní literály, a klauzule obsahující p_i a zároveň $\neg p_i$ (to jsou tautologie)

literál p, $\neg p$ klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF ($\psi \sim \psi'$, stejné modely) např. pro výrok ($\neg p_1 \land (p_1 \lor p_2)$) $\lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$ nahradíme $\neg (\neg p_1) \sim p_1$ a $\neg (p_1 \lor p_2) \sim (\neg p_1 \land \neg p_2)$ (De Morgan)

$$(\neg p_1 \wedge (p_1 \vee p_2)) \vee (p_1 \wedge \neg p_1 \wedge \neg p_2)$$

a dále opakovaně použijeme distributivitu ∨ vůči ∧:

$$(\neg p_1 \lor p_1) \land (\neg p_1 \lor \neg p_1) \land (\neg p_1 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_1) \land$$

$$(p_1 \lor p_2 \lor \neg p_1) \land (p_1 \lor p_2 \lor \neg p_2)$$

už je CNF, ještě zjednodušíme: odstraníme duplicitní literály, a klauzule obsahující p_i a zároveň $\neg p_i$ (to jsou tautologie)

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2)$$

Dk sporem, převeď negaci dokazovaného do CNF a přidej k ${\cal T}$

Dk sporem, převeď negaci dokazovaného do CNF a přidej k T

p₂ platí v T, právě když je následující CNF výrok nesplnitelný:

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2) \wedge \neg p_2$$

Dk sporem, převeď negaci dokazovaného do CNF a přidej k T

p₂ platí v *T*, právě když je následující CNF výrok nesplnitelný:

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2) \wedge \neg p_2$$

množinový zápis: $S = \{ \{ \neg p_1 \}, \{ \neg p_1, \neg p_2 \}, \{ p_1, p_2 \}, \{ \neg p_2 \} \}$

Dk sporem, převeď $rac{ ext{negaci}}{ ext{negaci}}$ dokazovaného do CNF a přidej k T

p₂ platí v T, právě když je následující CNF výrok nesplnitelný:

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2) \wedge \neg p_2$$

množinový zápis: $S = \{ \{ \neg p_1 \}, \{ \neg p_1, \neg p_2 \}, \{ p_1, p_2 \}, \{ \neg p_2 \} \}$

rezoluční pravidlo: je-li $p \in C_1$ a $\neg p \in C_2$, potom rezolventa

$$C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$$

platí v každém modelu, ve kterém platí C_1 i C_2

Dk sporem, převeď negaci dokazovaného do CNF a přidej k *T*p₂ platí v *T*, právě když je následující CNF výrok nesplnitelný:

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2) \wedge \neg p_2$$

množinový zápis: $S = \{ \{ \neg p_1 \}, \{ \neg p_1, \neg p_2 \}, \{ p_1, p_2 \}, \{ \neg p_2 \} \}$

rezoluční pravidlo: je-li $p \in C_1$ a $\neg p \in C_2$, potom rezolventa

$$C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$$

platí v každém modelu, ve kterém platí C_1 i C_2

rezoluční zamítnutí S: posloupnost klauzulí, kde každá je buď z S nebo rezolventa předchozích, poslední je prázdná klauzule \square

Dk sporem, převeď negaci dokazovaného do CNF a přidej k T platí v T, právě když je následující CNF výrok nesplnitelný:

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2) \wedge \neg p_2$$

množinový zápis: $S = \{ \{ \neg p_1 \}, \{ \neg p_1, \neg p_2 \}, \{ p_1, p_2 \}, \{ \neg p_2 \} \}$

rezoluční pravidlo: je-li $p \in C_1$ a $\neg p \in C_2$, potom rezolventa

$$C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$$

platí v každém modelu, ve kterém platí C_1 i C_2

rezoluční zamítnutí S: posloupnost klauzulí, kde každá je buď z S nebo rezolventa předchozích, poslední je prázdná klauzule \square

myšlenka: protože \square nemá žádný model, je i S nesplnitelná

Příklad rezolučního důkazu

rezoluční zamítnutí (3. klauzule je rezolventou 1.&2., 5. je z 3.&4.)

$$\{\neg p_1\}, \{p_1, p_2\}, \{p_2\}, \{\neg p_2\}, \Box$$

Příklad rezolučního důkazu

rezoluční zamítnutí (3. klauzule je rezolventou 1.&2., 5. je z 3.&4.)

$$\{\neg p_1\}, \{p_1, p_2\}, \{p_2\}, \{\neg p_2\}, \Box$$

rezoluční strom (listy klauzule z S, vnitřní vrcholy rezolventy synů)

Najděte vrcholové obarvení následujícího grafu třemi barvami.

Najděte vrcholové obarvení následujícího grafu třemi barvami.

graf: množina vrcholů a množina (libovolně) orientovaných hran

$$\mathcal{G} = \langle V; E \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

Najděte vrcholové obarvení následujícího grafu třemi barvami.

graf: množina vrcholů a množina (libovolně) orientovaných hran

$$\mathcal{G} = \langle V; E \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

jak formalizovat? pro $v \in V$ a $c \in C = \{R, G, B\}$:

$$p_v^c =$$
 "vrchol v má barvu c"

Najděte vrcholové obarvení následujícího grafu třemi barvami.

graf: množina vrcholů a množina (libovolně) orientovaných hran

$$\mathcal{G} = \langle V; E \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

jak formalizovat? pro $v \in V$ a $c \in C = \{R, G, B\}$:

$$p_v^c = "vrchol v má barvu c"$$

$$\mathbb{P} = \{p_v^c \mid c \in C, v \in V\} = \{p_1^R, p_1^G, p_1^B, p_2^R, p_2^G, p_2^B, p_3^R, p_3^G, p_3^B, p_4^R, p_4^G, p_4^B\}$$

Najděte vrcholové obarvení následujícího grafu třemi barvami.

graf: množina vrcholů a množina (libovolně) orientovaných hran

$$\mathcal{G} = \langle V; E \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

jak formalizovat? pro $v \in V$ a $c \in C = \{R, G, B\}$:

$$p_v^c = "vrchol v má barvu c"$$

$$\mathbb{P} = \{ p_v^c \mid c \in C, v \in V \} = \{ p_1^R, p_1^G, p_1^B, p_2^R, p_2^G, p_2^B, p_3^R, p_3^G, p_3^B, p_4^R, p_4^G, p_4^B \}$$
 máme celkem $|\mathsf{M}_{\mathbb{P}}| = 2^{12} = 4096$ modelů jazyka (12-dim. vektorů)

každý vrchol má nejvýše jednu barvu: 4⁴ = 2⁸ = 256 modelů

$$T_1 = \{ (\neg p_v^R \vee \neg p_v^G) \wedge (\neg p_v^R \vee \neg p_v^B) \wedge (\neg p_v^G \vee \neg p_v^B) \mid v \in V \}$$

• každý vrchol má nejvýše jednu barvu: $4^4 = 2^8 = 256$ modelů

$$T_1 = \{ (\neg p_v^R \vee \neg p_v^G) \wedge (\neg p_v^R \vee \neg p_v^B) \wedge (\neg p_v^G \vee \neg p_v^B) \mid v \in V \}$$

a každý vrchol má alespoň jednu barvu: 3⁴ = 81 modelů

$$T_2 = T_1 \cup \{ p_v^R \lor p_v^G \lor p_v^B \mid v \in V \} = T_1 \cup \{ \bigvee_{c \in C} p_v^c \mid v \in V \}$$

každý vrchol má nejvýše jednu barvu: 4⁴ = 2⁸ = 256 modelů

$$T_1 = \{ (\neg p_v^R \vee \neg p_v^G) \wedge (\neg p_v^R \vee \neg p_v^B) \wedge (\neg p_v^G \vee \neg p_v^B) \mid v \in V \}$$

a každý vrchol má alespoň jednu barvu: 3⁴ = 81 modelů

$$T_2 = T_1 \cup \{ p_v^R \lor p_v^G \lor p_v^B \mid v \in V \} = T_1 \cup \{ \bigvee_{c \in C} p_v^c \mid v \in V \}$$

 T_2 je extenze teorie T_1 neboť každý důsledek T_1 platí i v T_2 , zde dokonce $M_{\mathbb{P}}(T_2) \subseteq M_{\mathbb{P}}(T_1)$

každý vrchol má nejvýše jednu barvu: 4⁴ = 2⁸ = 256 modelů

$$T_1 = \{ (\neg p_v^R \vee \neg p_v^G) \wedge (\neg p_v^R \vee \neg p_v^B) \wedge (\neg p_v^G \vee \neg p_v^B) \mid v \in V \}$$

a každý vrchol má alespoň jednu barvu: 3⁴ = 81 modelů

$$T_{2} = T_{1} \cup \{p_{v}^{R} \lor p_{v}^{G} \lor p_{v}^{B} \mid v \in V\} = T_{1} \cup \{\bigvee_{c \in C} p_{v}^{c} \mid v \in V\}$$

 T_2 je extenze teorie T_1 neboť každý důsledek T_1 platí i v T_2 , zde dokonce $M_{\mathbb{P}}(T_2) \subseteq M_{\mathbb{P}}(T_1)$

nakonec přidáme hranovou podmínku:

$$T_3 = T_2 \cup \{ \bigwedge_{c \in C} (\neg p_u^c \vee \neg p_v^c) \mid (u, v) \in E \}$$

• každý vrchol má nejvýše jednu barvu: $4^4 = 2^8 = 256$ modelů

$$T_1 = \{ (\neg p_v^R \vee \neg p_v^G) \wedge (\neg p_v^R \vee \neg p_v^B) \wedge (\neg p_v^G \vee \neg p_v^B) \mid v \in V \}$$

a každý vrchol má alespoň jednu barvu: 3⁴ = 81 modelů

$$T_2 = T_1 \cup \{ p_v^R \lor p_v^G \lor p_v^B \mid v \in V \} = T_1 \cup \{ \bigvee_{c \in C} p_v^c \mid v \in V \}$$

 T_2 je extenze teorie T_1 neboť každý důsledek T_1 platí i v T_2 , zde dokonce $M_{\mathbb{P}}(T_2) \subseteq M_{\mathbb{P}}(T_1)$

• nakonec přidáme hranovou podmínku:

$$T_3 = T_2 \cup \{ \bigwedge_{c \in C} (\neg p_u^c \lor \neg p_v^c) \mid (u, v) \in E \}$$

Výsledná teorie T_3 je splnitelná (má model), právě když je graf \mathcal{G} 3-obarvitelný.

Všechna obarvení?

 T_3 má 6 modelů: v=(1,0,0,0,1,0,0,0,1,0,1,0) a další získané permutací barev

Všechna obarvení?

 T_3 má 6 modelů: $v=\left(1,0,0,0,1,0,0,0,1,0,1,0\right)$ a další získané permutací barev

Obarvení, ve kterých je vrchol 1 modrý a vrchol 2 zelený?

Odpovídají modelům teorie $T_3 \cup \{p_1^B, p_2^G\}$

Všechna obarvení?

 T_3 má 6 modelů: $v=\left(1,0,0,0,1,0,0,0,1,0,1,0\right)$ a další získané permutací barev

Obarvení, ve kterých je vrchol 1 modrý a vrchol 2 zelený?

Odpovídají modelům teorie $T_3 \cup \{p_1^B, p_2^G\}$

Důkaz, že vrcholy 2 a 4 musí mít stejnou barvu?

Tablo s kořenem False $(p_2^R \wedge p_4^R) \vee (p_2^G \wedge p_4^G) \vee (p_2^B \wedge p_4^B)$

Všechna obarvení?

 T_3 má 6 modelů: $v=\left(1,0,0,0,1,0,0,0,1,0,1,0\right)$ a další získané permutací barev

Obarvení, ve kterých je vrchol 1 modrý a vrchol 2 zelený?

Odpovídají modelům teorie $T_3 \cup \{p_1^B, p_2^G\}$

Důkaz, že vrcholy 2 a 4 musí mít stejnou barvu?

Tablo s kořenem False $(p_2^R \wedge p_4^R) \vee (p_2^G \wedge p_4^G) \vee (p_2^B \wedge p_4^B)$

Nebo rezolucí: přidáme negaci $(p_2^R \wedge p_4^R) \vee (p_2^G \wedge p_4^G) \vee (p_2^B \wedge p_4^B)$, vše převedeme do CNF a zamítneme

1.2 Predikátová logika

Teorie T_3 je poměrně velká, a 'natvrdo' kóduje graf \mathcal{G} .

Teorie T_3 je poměrně velká, a 'natvrdo' kóduje graf \mathcal{G} .

Teorie T_3 je poměrně velká, a 'natvrdo' kóduje graf G.

Obohatit jazyk $\mathbb{P}'=\mathbb{P}\cup\{p_5^R,p_5^G,p_5^B\}$ a vytvořit ještě větší teorii T_3' přidáním axiomů o vrcholu 5 a hranách (2,5),(3,5)?

Teorie T_3 je poměrně velká, a 'natvrdo' kóduje graf G.

Obohatit jazyk $\mathbb{P}' = \mathbb{P} \cup \{p_5^R, p_5^G, p_5^B\}$ a vytvořit ještě větší teorii T_3' přidáním axiomů o vrcholu 5 a hranách (2,5),(3,5)?

A co vlastnosti obecně platné o všech nebo mnoha grafech?

Teorie T_3 je poměrně velká, a 'natvrdo' kóduje graf G.

Obohatit jazyk $\mathbb{P}' = \mathbb{P} \cup \{p_5^R, p_5^G, p_5^B\}$ a vytvořit ještě větší teorii T_3' přidáním axiomů o vrcholu 5 a hranách (2,5),(3,5)?

A co vlastnosti obecně platné o všech nebo mnoha grafech? V predikátové logice můžeme mluvit o vrcholech grafu pomocí proměnných a přirozeně vyjádřit vlastnosti jako:

- "z vrcholu u vede hrana do vrcholu v"
- "vrchol u je zelený"

$$G = \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

$$G' = \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle$$

Modely už nejsou 0–1 vektory, ale struktury, např. naše (orientované) grafy:

$$\begin{split} \mathcal{G} &= \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle \\ \mathcal{G}' &= \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle \end{split}$$

množina vrcholů, a binární relace na této množině

$$\mathcal{G} = \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

$$\mathcal{G}' = \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle$$

- množina vrcholů, a binární relace na této množině
- jazyk specifikuje kolik relací jakých arit má struktura mít, a symboly pro ně

$$\begin{split} \mathcal{G} &= \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle \\ \mathcal{G}' &= \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle \end{split}$$

- množina vrcholů, a binární relace na této množině
- jazyk specifikuje kolik relací jakých arit má struktura mít, a symboly pro ně
- např. jazyk grafů $\mathcal{L} = \langle E \rangle$ (kde E je binární relační symbol)

$$\begin{split} \mathcal{G} &= \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle \\ \mathcal{G}' &= \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle \end{split}$$

- množina vrcholů, a binární relace na této množině
- jazyk specifikuje kolik relací jakých arit má struktura mít, a symboly pro ně
- např. jazyk grafů $\mathcal{L} = \langle E \rangle$ (kde E je binární relační symbol)
- \mathcal{G} a \mathcal{G}' jsou struktury v jazyce \mathcal{L} (\mathcal{L} -struktury)

$$\mathcal{G} = \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

$$\mathcal{G}' = \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle$$

- množina vrcholů, a binární relace na této množině
- jazyk specifikuje kolik relací jakých arit má struktura mít, a symboly pro ně
- např. jazyk grafů $\mathcal{L} = \langle E \rangle$ (kde E je binární relační symbol)
- \mathcal{G} a \mathcal{G}' jsou struktury v jazyce \mathcal{L} (\mathcal{L} -struktury)
- můžeme mít také funkce a konstanty, a symbol = pro rovnost

Syntaxe: místo prvovýroků atomické formule, např. E(x, y), kde x, y jsou proměnné reprezentující vrcholy; stejné logické spojky, ale navíc kvantifikátory:

Syntaxe: místo prvovýroků atomické formule, např. E(x,y), kde x,y jsou proměnné reprezentující vrcholy; stejné logické spojky, ale navíc kvantifikátory:

```
(\forall x) "pro všechny vrcholy x" (\exists y) "existuje vrchol y"
```

Syntaxe: místo prvovýroků atomické formule, např. E(x,y), kde x,y jsou proměnné reprezentující vrcholy; stejné logické spojky, ale navíc kvantifikátory:

```
(\forall x) "pro všechny vrcholy x" (\exists y) "existuje vrchol y"
```

(hrají roli "konjunkce" a "disjunkce" přes všechny prvky)

Syntaxe: místo prvovýroků atomické formule, např. E(x,y), kde x,y jsou proměnné reprezentující vrcholy; stejné logické spojky, ale navíc kvantifikátory:

```
(\forall x) "pro všechny vrcholy x" (\exists y) "existuje vrchol y"
```

(hrají roli "konjunkce" a "disjunkce" přes všechny prvky)

- "V grafu nejsou smyčky": $(\forall x)(\neg E(x,x))$
- "Existuje vrchol výstupního stupně 1":

$$(\exists x)(\exists y)(E(x,y) \land (\forall z)(E(x,z) \rightarrow y = z))$$

Syntaxe: místo prvovýroků atomické formule, např. E(x,y), kde x,y jsou proměnné reprezentující vrcholy; stejné logické spojky, ale navíc kvantifikátory:

```
(\forall x) "pro všechny vrcholy x" (\exists y) "existuje vrchol y"
```

(hrají roli "konjunkce" a "disjunkce" přes všechny prvky)

- "V grafu nejsou smyčky": $(\forall x)(\neg E(x,x))$
- "Existuje vrchol výstupního stupně 1": $(\exists x)(\exists y)(E(x,y) \land (\forall z)(E(x,z) \rightarrow y = z))$

Sémantika: V daném grafu \mathcal{G} a při dosazení vrcholu u za proměnnou x a vrcholu v za proměnnou y vyhodnotíme E(x,y) jako True, právě když $(u,v) \in E^{\mathcal{G}}$.

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

 \mathcal{L}' -struktura: graf s trojicí množin vrcholů

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

 \mathcal{L}' -struktura: graf s trojicí množin vrcholů

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

 \mathcal{L}' -struktura: graf s trojicí množin vrcholů

$$\mathcal{G}_{C} = \langle V^{\mathcal{G}_{C}}; E^{\mathcal{G}_{C}}, R^{\mathcal{G}_{C}}, G^{\mathcal{G}_{C}}, B^{\mathcal{G}_{C}} \rangle$$

$$= \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\}, \{1\}, \{2, 4\}, \{3\} \rangle$$

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

 \mathcal{L}' -struktura: graf s trojicí množin vrcholů

$$\mathcal{G}_C = \langle V^{\mathcal{G}_C}; E^{\mathcal{G}_C}, R^{\mathcal{G}_C}, G^{\mathcal{G}_C}, B^{\mathcal{G}_C} \rangle$$

$$= \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\}, \{1\}, \{2, 4\}, \{3\} \rangle$$

 $\mathcal{G}_{\mathcal{C}}$ je expanze \mathcal{L} -struktury \mathcal{G} do jazyka \mathcal{L}'

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

 \mathcal{L}' -struktura: graf s trojicí množin vrcholů

$$\mathcal{G}_{C} = \langle V^{\mathcal{G}_{C}}; E^{\mathcal{G}_{C}}, R^{\mathcal{G}_{C}}, G^{\mathcal{G}_{C}}, B^{\mathcal{G}_{C}} \rangle
= \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\}, \{1\}, \{2, 4\}, \{3\} \rangle$$

 $\mathcal{G}_{\mathcal{C}}$ je expanze \mathcal{L} -struktury \mathcal{G} do jazyka \mathcal{L}'

Nejvýše jedna barva, alespoň jedna barva, hranová podmínka:

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

 \mathcal{L}' -struktura: graf s trojicí množin vrcholů

$$\mathcal{G}_{C} = \langle V^{\mathcal{G}_{C}}; E^{\mathcal{G}_{C}}, R^{\mathcal{G}_{C}}, G^{\mathcal{G}_{C}}, B^{\mathcal{G}_{C}} \rangle
= \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\}, \{1\}, \{2, 4\}, \{3\} \rangle$$

 $\mathcal{G}_{\mathcal{C}}$ je expanze \mathcal{L} -struktury \mathcal{G} do jazyka \mathcal{L}'

Nejvýše jedna barva, alespoň jedna barva, hranová podmínka:

- $(\forall x)((\neg R(x) \lor \neg G(x)) \land (\neg R(x) \lor \neg B(x)) \land (\neg G(x) \lor \neg B(x)))$
- $(\forall x)(R(x) \vee G(x) \vee B(x))$
- $(\forall x)(\forall y)(E(x,y) \rightarrow ((\neg R(x) \lor \neg R(y)) \land (\neg G(x) \lor \neg G(y)) \land (\neg B(x) \lor \neg B(y))))$

1.3 Další druhy logických systémů

 Predikátová logika, kde proměnné reprezentují jednotlivé vrcholy, je logika prvního řádu (first-order, FO)

- Predikátová logika, kde proměnné reprezentují jednotlivé vrcholy, je logika prvního řádu (first-order, FO)
- Logika druhého řádu (second-order, SO): proměnné i pro množiny vrcholů a n-tic vrcholů (tj. relace, funkce)

- Predikátová logika, kde proměnné reprezentují jednotlivé vrcholy, je logika prvního řádu (first-order, FO)
- Logika druhého řádu (second-order, SO): proměnné i pro množiny vrcholů a n-tic vrcholů (tj. relace, funkce)

- Predikátová logika, kde proměnné reprezentují jednotlivé vrcholy, je logika prvního řádu (first-order, FO)
- Logika druhého řádu (second-order, SO): proměnné i pro množiny vrcholů a n-tic vrcholů (tj. relace, funkce)

$$(\exists S)(\forall x)(\forall y)(E(x,y)\to (S(x)\leftrightarrow \neg S(y)))$$

- Predikátová logika, kde proměnné reprezentují jednotlivé vrcholy, je logika prvního řádu (first-order, FO)
- Logika druhého řádu (second-order, SO): proměnné i pro množiny vrcholů a n-tic vrcholů (tj. relace, funkce)

$$(\exists S)(\forall x)(\forall y)(E(x,y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$$
"Graf je bipartitní."

- Predikátová logika, kde proměnné reprezentují jednotlivé vrcholy, je logika prvního řádu (first-order, FO)
- Logika druhého řádu (second-order, SO): proměnné i pro množiny vrcholů a n-tic vrcholů (tj. relace, funkce)

$$(\exists S)(\forall x)(\forall y)(E(x,y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$$

"Graf je bipartitní."

 A v logice třetího řádu máme i množiny množin (např. v topologii).

Kromě toho lze zobecnit pojem platnosti (pravdy):

temporální logiky (platnost 'vždy', 'někdy v budoucnosti',
 'dokud' apod.) – např. v paralelním programování

Kromě toho lze zobecnit pojem platnosti (pravdy):

- temporální logiky (platnost 'vždy', 'někdy v budoucnosti',
 'dokud' apod.) např. v paralelním programování
- modální logiky ('je možné', 'je nutné') v umělé inteligenci, uvažování autonomních agentů o svém okolí

Kromě toho lze zobecnit pojem platnosti (pravdy):

- temporální logiky (platnost 'vždy', 'někdy v budoucnosti',
 'dokud' apod.) např. v paralelním programování
- modální logiky ('je možné', 'je nutné') v umělé inteligenci, uvažování autonomních agentů o svém okolí
- fuzzy logiky ('je 0.35 pravdivé') v automatických pračkách

Kromě toho lze zobecnit pojem platnosti (pravdy):

- temporální logiky (platnost 'vždy', 'někdy v budoucnosti',
 'dokud' apod.) např. v paralelním programování
- modální logiky ('je možné', 'je nutné') v umělé inteligenci, uvažování autonomních agentů o svém okolí
- fuzzy logiky ('je 0.35 pravdivé') v automatických pračkách
- intuicionistická logika (povoluje jen konstruktivní důkazy, nemá zákon vyloučeného třetího)

1.4 O přednášce

Obsah předmětu

- I. Výroková logika
 - Syntaxe a sémantika
 - Problém SAT
 - Tablo metoda
 - Rezoluční metoda
- II. Predikátová logika
 - Syntaxe a sémantika
 - Tablo metoda v predikátové logice
 - Rezoluční metoda v predikátové logice
 - Aplikace: databáze, Prolog
- III. Pokročilé partie
 - Teorie modelů
 - Nerozhodnutelnost a neúplnost

ČÁST I – VÝROKOVÁ LOGIKA

SÉMANTIKA VÝROKOVÉ LOGIKY

KAPITOLA 2: SYNTAXE A

Syntaxe a sémantika

```
syntaxe dává pravidla pro tvoření korektních formálních výrazů sestávajících ze symbolů, a pro operace s nimi (výrok, důkaz, ...) sémantika popisuje význam syntaktických objektů "v reálném světě" (model, ...)
```

Syntaxe a sémantika

syntaxe dává pravidla pro tvoření korektních formálních výrazů sestávajících ze symbolů, a pro operace s nimi (*výrok*, *důkaz*, ...) sémantika popisuje význam syntaktických objektů "v reálném světě" (*model*, ...)

Klíčem k logice je vztah mezi syntaxí a sémantikou:

- sémantické objekty studujeme pomocí syntaxe ('jaké výroky platí v modelu?')
- syntaktické pomocí sémantiky, např. ekvivalence výroků: $\psi \sim \psi'$ právě když $\mathsf{M}_{\mathbb{P}}(\psi) = \mathsf{M}_{\mathbb{P}}(\psi')$

2.1 Syntaxe výrokové logiky

Jazyk

 určený množinou prvovýroků (výrokových proměnných, atomických výroků) – neprázdná, konečná nebo i nekonečná

$$\mathbb{P}_1 = \{p, q, r\}$$

 $\mathbb{P}_2 = \{p_0, p_1, p_2, p_3, \ldots\} = \{p_i \mid i \in \mathbb{N}\}$

(obvykle spočetná, uspořádaná)

Jazyk

 určený množinou prvovýroků (výrokových proměnných, atomických výroků) – neprázdná, konečná nebo i nekonečná

$$\mathbb{P}_1 = \{p, q, r\}$$

$$\mathbb{P}_2 = \{p_0, p_1, p_2, p_3, \ldots\} = \{p_i \mid i \in \mathbb{N}\}$$

(obvykle spočetná, uspořádaná)

- dále do jazyka patří logické symboly:
 - logické spojky $\neg, \land, \lor, \rightarrow, \leftrightarrow$
 - závorky (,)

Výrok (výroková formule) v jazyce $\mathbb P$ je prvek množiny VF $_{\mathbb P}$ definované *induktivně*: VF $_{\mathbb P}$ je nejmenší množina splňující

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in \mathsf{VF}_{\mathbb{P}}$,
- pro každý výrok $\varphi \in \mathsf{VF}_{\mathbb{P}}$ je $(\neg \varphi)$ také prvek $\mathsf{VF}_{\mathbb{P}}$
- pro každé $\varphi, \psi \in \mathsf{VF}_{\mathbb{P}}$ jsou $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, a $(\varphi \leftrightarrow \psi)$ také prvky $\mathsf{VF}_{\mathbb{P}}$.

Výrok (výroková formule) v jazyce $\mathbb P$ je prvek množiny VF $_{\mathbb P}$ definované *induktivně*: VF $_{\mathbb P}$ je nejmenší množina splňující

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in \mathsf{VF}_{\mathbb{P}}$,
- pro každý výrok $\varphi \in \mathsf{VF}_{\mathbb{P}}$ je $(\neg \varphi)$ také prvek $\mathsf{VF}_{\mathbb{P}}$
- pro každé $\varphi, \psi \in \mathsf{VF}_{\mathbb{P}}$ jsou $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, a $(\varphi \leftrightarrow \psi)$ také prvky $\mathsf{VF}_{\mathbb{P}}$.

Výroky jsou nutně konečné řetězce!

Výrok (výroková formule) v jazyce $\mathbb P$ je prvek množiny VF $_{\mathbb P}$ definované *induktivně*: VF $_{\mathbb P}$ je nejmenší množina splňující

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in \mathsf{VF}_{\mathbb{P}}$,
- pro každý výrok $\varphi \in \mathsf{VF}_\mathbb{P}$ je $(\neg \varphi)$ také prvek $\mathsf{VF}_\mathbb{P}$
- pro každé $\varphi, \psi \in \mathsf{VF}_{\mathbb{P}}$ jsou $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, a $(\varphi \leftrightarrow \psi)$ také prvky $\mathsf{VF}_{\mathbb{P}}$.

Výroky jsou nutně konečné řetězce!

 $Var(\varphi)$: množina všech prvovýroků ve φ (vždy konečná)

Výrok (výroková formule) v jazyce $\mathbb P$ je prvek množiny VF $_{\mathbb P}$ definované *induktivně*: VF $_{\mathbb P}$ je nejmenší množina splňující

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in \mathsf{VF}_{\mathbb{P}}$,
- pro každý výrok $\varphi \in \mathsf{VF}_\mathbb{P}$ je $(\neg \varphi)$ také prvek $\mathsf{VF}_\mathbb{P}$
- pro každé $\varphi, \psi \in \mathsf{VF}_{\mathbb{P}}$ jsou $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, a $(\varphi \leftrightarrow \psi)$ také prvky $\mathsf{VF}_{\mathbb{P}}$.

Výroky jsou nutně konečné řetězce!

 $Var(\varphi)$: množina všech prvovýroků ve φ (vždy konečná)

podvýrok: podřetězec, který je sám výrok

Výrok (výroková formule) v jazyce $\mathbb P$ je prvek množiny VF $_{\mathbb P}$ definované *induktivně*: VF $_{\mathbb P}$ je nejmenší množina splňující

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in \mathsf{VF}_{\mathbb{P}}$,
- pro každý výrok $\varphi \in \mathsf{VF}_\mathbb{P}$ je $(\neg \varphi)$ také prvek $\mathsf{VF}_\mathbb{P}$
- pro každé $\varphi, \psi \in \mathsf{VF}_{\mathbb{P}}$ jsou $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, a $(\varphi \leftrightarrow \psi)$ také prvky $\mathsf{VF}_{\mathbb{P}}$.

Výroky jsou nutně konečné řetězce!

 $Var(\varphi)$: množina všech prvovýroků ve φ (vždy konečná)

podvýrok: podřetězec, který je sám výrok

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))), \ \mathsf{Var}(\varphi) = \{p, q, r\}$$

$$\mathsf{podv\acute{y}roky}: \ p, q, (\neg q), (p \lor (\neg q)), r, (p \land q), (r \to (p \land q)), \varphi$$

Výrok (výroková formule) v jazyce $\mathbb P$ je prvek množiny VF $_{\mathbb P}$ definované *induktivně*: VF $_{\mathbb P}$ je nejmenší množina splňující

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in \mathsf{VF}_{\mathbb{P}}$,
- pro každý výrok $\varphi \in \mathsf{VF}_\mathbb{P}$ je $(\neg \varphi)$ také prvek $\mathsf{VF}_\mathbb{P}$
- pro každé $\varphi, \psi \in \mathsf{VF}_{\mathbb{P}}$ jsou $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, a $(\varphi \leftrightarrow \psi)$ také prvky $\mathsf{VF}_{\mathbb{P}}$.

Výroky jsou nutně konečné řetězce!

 $Var(\varphi)$: množina všech prvovýroků ve φ (vždy konečná)

podvýrok: podřetězec, který je sám výrok

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))), \ Var(\varphi) = \{p, q, r\}$$

podvýroky: $p, q, (\neg q), (p \lor (\neg q)), r, (p \land q), (r \to (p \land q)), \varphi$

pravda:
$$\top = (p \lor (\neg p))$$
, spor: $\bot = (p \land (\neg p)) \ (p \in \mathbb{P} \ \text{je pevně daný})$

při zápisu výroků můžeme vynechat některé závorky:

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))) \text{ lze zapsat jako } p \lor \neg q \leftrightarrow (r \to p \land q)$$

při zápisu výroků můžeme vynechat některé závorky:

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))) \text{ lze zapsat jako } p \lor \neg q \leftrightarrow (r \to p \land q)$$

- priorita operátorů: \neg nejvyšší, dále \land a \lor , nakonec \rightarrow a \leftrightarrow
- asociativita \land a \lor : nápis $p \land q \land r$ znamená výrok $(p \land (q \land r))$
- vnější závorky nemusíme psát

při zápisu výroků můžeme vynechat některé závorky:

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))) \text{ lze zapsat jako } p \lor \neg q \leftrightarrow (r \to p \land q)$$

- priorita operátorů: ¬ nejvyšší, dále \land a \lor , nakonec \to a \leftrightarrow
- asociativita \land a \lor : nápis $p \land q \land r$ znamená výrok $(p \land (q \land r))$
- vnější závorky nemusíme psát

Poznámka: v definici jsme mohli místo *infixového* zápisu zvolit prefixový ("polskou notaci"): "každý prvovýrok je výrok, jsou-li φ, ψ výroky, jsou výroky také $\neg \varphi, \land \varphi \psi, \lor \varphi \psi, \rightarrow \varphi \psi, a \leftrightarrow \varphi \psi$ " nebo i postfixový

$$\varphi = \leftrightarrow \lor p \neg q \rightarrow r \land pq$$
$$\varphi = pq \neg \lor rpq \land \rightarrow \leftrightarrow$$

při zápisu výroků můžeme vynechat některé závorky:

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))) \text{ lze zapsat jako } p \lor \neg q \leftrightarrow (r \to p \land q)$$

- ullet priorita operátorů: \neg nejvyšší, dále \wedge a \lor , nakonec \to a \leftrightarrow
- asociativita \land a \lor : nápis $p \land q \land r$ znamená výrok $(p \land (q \land r))$
- vnější závorky nemusíme psát

Poznámka: v definici jsme mohli místo *infixového* zápisu zvolit prefixový ("polskou notaci"): "každý prvovýrok je výrok, jsou-li φ, ψ výroky, jsou výroky také $\neg \varphi, \land \varphi \psi, \lor \varphi \psi, \rightarrow \varphi \psi, a \leftrightarrow \varphi \psi$ " nebo i postfixový

$$\varphi = \leftrightarrow \lor p \neg q \rightarrow r \land pq$$
$$\varphi = pq \neg \lor rpq \land \rightarrow \leftrightarrow$$

Důležitá je jen stromová struktura výroků!

Strom výroku

 $\mathsf{Tree}(\varphi)$ je zakořeněný uspořádaný strom, definovaný induktivně:

- $\varphi = p \in \mathbb{P}$: jediný vrchol, s labelem p
- $\varphi = (\neg \varphi')$: kořen s labelem \neg , jediný syn je kořen Tree (φ') .
- $\varphi = (\varphi' \square \varphi'')$ pro $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: kořen s labelem \square a dvěma syny: levý syn je kořen Tree (φ') , pravý Tree (φ'') .

 $\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$ rekonstrukce φ průchodem stromu, podvýroky odpovídají podstromům

Tree(φ) je jednoznačně určený!

Teorie

Teorie v jazyce \mathbb{P} je libovolná množina výroků $T \subseteq \mathsf{VF}_{\mathbb{P}}$. Výrokům $\varphi \in T$ říkáme také axiomy.

$$T=\emptyset$$
 a $T=\mathsf{VF}_{\mathbb{P}}$ nad libovolným jazykem,
$$T=\{p\wedge q, q\to (p\vee r)\} \text{ v jazyce } \mathbb{P}=\{p,q,r\}$$

$$T=\{p_0\}\cup \{p_i\to p_{i+1}\mid i\in\mathbb{N}\} \text{ nad } \textit{nekonečným } \mathbb{P}=\{p_i\mid i\in\mathbb{N}\}$$

Teorie

Teorie v jazyce \mathbb{P} je libovolná množina výroků $T \subseteq VF_{\mathbb{P}}$. Výrokům $\varphi \in T$ říkáme také axiomy.

$$T=\emptyset$$
 a $T=\mathsf{VF}_{\mathbb{P}}$ nad libovolným jazykem,
$$T=\{p\wedge q, q \to (p\vee r)\} \text{ v jazyce } \mathbb{P}=\{p,q,r\}$$

$$T=\{p_0\}\cup \{p_i\to p_{i+1}\mid i\in\mathbb{N}\} \text{ nad } \textit{nekonečným} \ \mathbb{P}=\{p_i\mid i\in\mathbb{N}\}$$

Poznámka: *Konečnou* teorii by bylo možné (byť ne praktické!) nahradit jediným výrokem: konjunkcí všech axiomů.

Připouštíme ale i *nekonečné teorie*; hodí se např. pro popis systému v (diskrétním) čase $t=0,1,2,\ldots$

2.2 Sémantika výrokové logiky

pravdivostní ohodnocení výrokových proměnných jednoznačně určuje pravdivostní hodnotu výroku (vyhodnoť od listů ke kořeni)

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

pravdivostní ohodnocení výrokových proměnných jednoznačně určuje pravdivostní hodnotu výroku (vyhodnoť od listů ke kořeni)

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

(a)
$$\varphi$$
 platí při ohodnocení $p = 0, q = 0, r = 0$

pravdivostní ohodnocení výrokových proměnných jednoznačně určuje pravdivostní hodnotu výroku (vyhodnoť od listů ke kořeni)

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

(a) φ platí při ohodnocení p = 0, q = 0, r = 0

pravdivostní ohodnocení výrokových proměnných jednoznačně určuje pravdivostní hodnotu výroku (vyhodnoť od listů ke kořeni)

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

(a) φ platí při ohodnocení p = 0, q = 0, r = 0

(b) φ neplatí při ohodnocení p = 1, q = 0, r = 1

pravdivostní ohodnocení výrokových proměnných jednoznačně určuje pravdivostní hodnotu výroku (vyhodnoť od listů ke kořeni)

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

(a) φ platí při ohodnocení p = 0, q = 0, r = 0

(b) φ neplatí při ohodnocení p = 1, q = 0, r = 1

Sémantika logických spojek

p	q	$ \neg p $	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Sémantika logických spojek

p	q	$ \neg p $	$p \wedge q$	$p \lor q$	p o q	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

$$\begin{array}{ll} \frac{0}{1} \frac{1}{0} & f_{\neg}(x) = 1 - x \\ \frac{0}{0} \frac{1}{0} \frac{1}{0} & f_{\wedge}(x, y) = \min(x, y) \\ \frac{0}{1} \frac{0}{0} \frac{1}{1} & f_{\vee}(x, y) = \max(x, y) \\ \frac{0}{0} \frac{1}{1} \frac{1}{1} & f_{\rightarrow}(x, y) \\ \frac{0}{0} \frac{1}{1} \frac{1}{0} & f_{\leftrightarrow}(x, y) \\ \frac{0}{1} \frac{1}{0} \frac{1}{1} & f_{\leftrightarrow}(x, y) \end{array}$$

Výroky a booleovské funkce

sémantika logických spojek je daná booleovskými funkcemi, každý výrok určuje *složenou* booleovskou funkci, tzv. pravdivostní funkci

Výroky a booleovské funkce

sémantika logických spojek je daná booleovskými funkcemi, každý výrok určuje *složenou* booleovskou funkci, tzv. pravdivostní funkci

např.
$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$
 v jazyce $\mathbb{P}' = \{p, q, r, s\}$

$$f_{\varphi,\mathbb{P}'}(x_0,x_1,x_2,x_3) = f_{\leftrightarrow}(f_{\lor}(x_0,f_{\lnot}(x_1)),f_{\rightarrow}(x_2,f_{\land}(x_0,x_1)))$$

pravdivostní hodnota φ při ohodnocení p = 1, q = 0, r = 1, s = 1:

$$egin{aligned} f_{arphi,\mathbb{P}'}(1,0,1,1) &= f_{\leftrightarrow}(f_{\lor}(1,f_{\lnot}(0)),f_{\rightarrow}(1,f_{\land}(1,0))) \ &= f_{\leftrightarrow}(f_{\lor}(1,1),f_{\rightarrow}(1,0)) \ &= f_{\leftrightarrow}(1,0) \ &= 0 \end{aligned}$$

Pravdivostní funkce formálně

Pravdivostní funkce výroku φ v konečném jazyce $\mathbb P$ je funkce $f_{\varphi,\mathbb P}\colon\{0,1\}^{|\mathbb P|}\to\{0,1\}$ definovaná induktivně:

- je-li φ *i*-tý prvovýrok z \mathbb{P} : $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=x_i$
- je-li $\varphi = (\neg \varphi')$: $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1}) = f_{\neg}(f_{\varphi',\mathbb{P}}(x_0,\ldots,x_{n-1}))$
- je-li $(\varphi' \square \varphi'')$ kde $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: $f_{\varphi, \mathbb{P}}(x_0, \ldots, x_{n-1}) = f_{\square}(f_{\varphi', \mathbb{P}}(x_0, \ldots, x_{n-1}), f_{\varphi'', \mathbb{P}}(x_0, \ldots, x_{n-1}))$

Pravdivostní funkce formálně

Pravdivostní funkce výroku φ v konečném jazyce $\mathbb P$ je funkce $f_{\varphi,\mathbb P}\colon\{0,1\}^{|\mathbb P|}\to\{0,1\}$ definovaná induktivně:

- je-li φ *i*-tý prvovýrok z \mathbb{P} : $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=x_i$
- je-li $\varphi = (\neg \varphi')$: $f_{\varphi, \mathbb{P}}(x_0, \dots, x_{n-1}) = f_{\neg}(f_{\varphi', \mathbb{P}}(x_0, \dots, x_{n-1}))$
- je-li $(\varphi' \square \varphi'')$ kde $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: $f_{\varphi, \mathbb{P}}(x_0, \ldots, x_{n-1}) = f_{\square}(f_{\varphi', \mathbb{P}}(x_0, \ldots, x_{n-1}), f_{\varphi'', \mathbb{P}}(x_0, \ldots, x_{n-1}))$

Poznámka: Pravdivostní funkce $f_{\varphi,\mathbb{P}}$ závisí pouze na proměnných odpovídajících prvovýrokům z $Var(\varphi) \subseteq \mathbb{P}$.

Je-li výrok v nekonečném jazyce \mathbb{P} , můžeme se omezit na jazyk ${\sf Var}(\varphi)$ (který je konečný) a uvažovat pravdivostní funkci nad ním.

Modely

Pravdivostní ohodnocení reprezentuje 'reálný svět' (systém) v námi zvoleném 'formálním světě', proto mu také říkáme model

 $^{^{1}}$ Formálně ztotožňujeme $\{0,1\}^{\mathbb{P}}$ s $\{0,1\}^{|\mathbb{P}|}$, množina \mathbb{P} je uspořádaná.

Modely

Pravdivostní ohodnocení reprezentuje 'reálný svět' (systém) v námi zvoleném 'formálním světě', proto mu také říkáme model

Model jazyka \mathbb{P} : libovolné pravdivostní ohodnocení $v: \mathbb{P} \to \{0,1\}$ Množina všech modelů: $M_{\mathbb{P}} = \{v \mid v: \mathbb{P} \to \{0,1\}\} = \{0,1\}^{\mathbb{P}}$

 $^{^1 \}text{Formálně ztotožňujeme } \{0,1\}^{\mathbb{P}}$ s $\{0,1\}^{|\mathbb{P}|}$, množina \mathbb{P} je uspořádaná.

Modely

Pravdivostní ohodnocení reprezentuje 'reálný svět' (systém) v námi zvoleném 'formálním světě', proto mu také říkáme model

```
Model jazyka \mathbb{P}: libovolné pravdivostní ohodnocení v \colon \mathbb{P} \to \{0,1\}
Množina všech modelů: \mathbb{M}_{\mathbb{P}} = \{v \mid v \colon \mathbb{P} \to \{0,1\}\} = \{0,1\}^{\mathbb{P}}
```

```
\mathbb{P} = \{p, q, r\}, \text{ ohodnocení } p \text{ je pravda, } q \text{ nepravda, a } r \text{ pravda:} formálně \mathbf{v} = \{(p, 1), (q, 0), (r, 1)\} ale píšeme<sup>1</sup> jen \mathbf{v} = (1, 0, 1) \mathsf{M}_{\mathbb{P}} = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), \\ (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}
```

 $^{^1}$ Formálně ztotožňujeme $\{0,1\}^{\mathbb{P}}$ s $\{0,1\}^{|\mathbb{P}|}$, množina \mathbb{P} je uspořádaná.

výrok platí v modelu, pokud je jeho pravdivostní hodnota rovna 1

výrok platí v modelu, pokud je jeho pravdivostní hodnota rovna 1

Výrok φ v jazyce \mathbb{P} , model $v \in M_{\mathbb{P}}$. Pokud $f_{\varphi,\mathbb{P}}(v) = 1$, potom říkáme, že φ platí v modelu v, v je modelem φ , a píšeme $v \models \varphi$.

výrok platí v modelu, pokud je jeho pravdivostní hodnota rovna 1

Výrok φ v jazyce \mathbb{P} , model $v \in M_{\mathbb{P}}$. Pokud $f_{\varphi,\mathbb{P}}(v) = 1$, potom říkáme, že φ platí v modelu v, v je modelem φ , a píšeme $v \models \varphi$.

Množina všech modelů resp. $nemodelů \varphi$:

$$\frac{\mathsf{M}_{\mathbb{P}}(\varphi)}{\mathsf{M}_{\mathbb{P}}(\varphi)} = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[1]$$
$$\overline{\mathsf{M}_{\mathbb{P}}(\varphi)} = M_{\mathbb{P}} \setminus M_{\mathbb{P}}(\varphi) = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \not\models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[0]$$

výrok platí v modelu, pokud je jeho pravdivostní hodnota rovna 1

Výrok φ v jazyce \mathbb{P} , model $v \in M_{\mathbb{P}}$. Pokud $f_{\varphi,\mathbb{P}}(v) = 1$, potom říkáme, že φ platí v modelu v, v je modelem φ , a píšeme $v \models \varphi$.

Množina všech modelů resp. $nemodelů \varphi$:

$$\frac{\mathsf{M}_{\mathbb{P}}(\varphi)}{\mathsf{M}_{\mathbb{P}}(\varphi)} = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[1]$$
$$\overline{\mathsf{M}_{\mathbb{P}}(\varphi)} = M_{\mathbb{P}} \setminus M_{\mathbb{P}}(\varphi) = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \not\models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[0]$$

Je-li jazyk zřejmý z kontextu, můžeme vynechat, ale jinak ne!

$$\begin{split} \mathsf{M}_{\{p,q\}}(p \to q) &= \{(0,0),(0,1),(1,1)\} \\ \mathsf{M}_{\{p,q,r\}}(p \to q) &= \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,1,0),(1,1,1)\} \end{split}$$

Platnost teorie, model teorie

Teorie T platí v modelu v, pokud každý axiom $\varphi \in T$ platí ve v. Podobně jako pro výrok: v je modelem T, $v \models T$, $v \in M_{\mathbb{P}}(T)$.

Platnost teorie, model teorie

Teorie T platí v modelu v, pokud každý axiom $\varphi \in T$ platí ve v. Podobně jako pro výrok: v je modelem T, $v \models T$, $v \in M_{\mathbb{P}}(T)$.

Někdy píšeme $M_{\mathbb{P}}(T,\varphi)$ místo $M_{\mathbb{P}}(T \cup \{\varphi\})$, $M_{\mathbb{P}}(\varphi_1,\varphi_2,\ldots,\varphi_n)$ místo $M_{\mathbb{P}}(\{\varphi_1,\varphi_2,\ldots,\varphi_n\})$.

- $\bullet \ \mathsf{M}_{\mathbb{P}}(T,\varphi) = \mathsf{M}_{\mathbb{P}}(T) \cap \mathsf{M}_{\mathbb{P}}(\varphi)$
- $M_{\mathbb{P}}(T) = \bigcap_{\varphi \in T} M_{\mathbb{P}}(\varphi)$
- $\blacksquare \ \mathsf{M}_{\mathbb{P}}(\varphi_1) \supseteq \mathsf{M}_{\mathbb{P}}(\varphi_1, \varphi_2) \supseteq \cdots \supseteq \mathsf{M}_{\mathbb{P}}(\varphi_1, \varphi_2, \ldots, \varphi_n)$

Platnost teorie, model teorie

Teorie T platí v modelu v, pokud každý axiom $\varphi \in T$ platí ve v. Podobně jako pro výrok: v je modelem T, $v \models T$, $v \in M_{\mathbb{P}}(T)$.

Někdy píšeme $M_{\mathbb{P}}(T,\varphi)$ místo $M_{\mathbb{P}}(T \cup \{\varphi\})$, $M_{\mathbb{P}}(\varphi_1,\varphi_2,\ldots,\varphi_n)$ místo $M_{\mathbb{P}}(\{\varphi_1,\varphi_2,\ldots,\varphi_n\})$.

- $\bullet \ \mathsf{M}_{\mathbb{P}}(T,\varphi) = \mathsf{M}_{\mathbb{P}}(T) \cap \mathsf{M}_{\mathbb{P}}(\varphi)$
- $M_{\mathbb{P}}(T) = \bigcap_{\varphi \in T} M_{\mathbb{P}}(\varphi)$
- $\blacksquare \ \mathsf{M}_{\mathbb{P}}(\varphi_1) \supseteq \mathsf{M}_{\mathbb{P}}(\varphi_1, \varphi_2) \supseteq \cdots \supseteq \mathsf{M}_{\mathbb{P}}(\varphi_1, \varphi_2, \ldots, \varphi_n)$

Najděme modely
$$T = \{p \lor q \lor r, q \to r, \neg r\}$$
 (v jazyce $\mathbb{P} = \{p, q, r\}$):
$$\mathsf{M}_{\mathbb{P}}(\neg r) = \{(0,0,0), (0,1,0), (1,0,0), (1,1,0)\}$$

$$\mathsf{M}_{\mathbb{P}}(\neg r, q \to r) = \{(0,0,0), (1,0,0)\}$$

$$\mathsf{M}_{\mathbb{P}}(T) = \{(1,0,0)\}$$