Dimensionality Reduction

Vinay Setty

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Dimensionality Reduction

Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise
- Techniques
 - Principle Component Analysis
 - Singular Value Decomposition

Motivation I: Data compression

- Data Mining/Machine Learning algorithms can be trained faster
- Less storage/memory used
- What is dimensionality reduction?

Data redundancy

Digit Example

Another Example

First and Second Principal Components colored by digit

Lower dimensional plane

Motivation 2: Visualization

- It's hard to visualize high dimensional data
 - Dimensionality reduction can improve how we display information in a tractable manner for human consumption
 - Why do we care?
 - Often helps to develop algorithms if we can understand our data better
 - Dimensionality reduction helps us do this, see data in a helpful
 - Good for explaining something to someone if you can "show" it in the data

Visualization Example

Collect a large data set about many facts of a country around the world

						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	`56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

Visualization Example

- ▶ This gives us a 2-dimensional vector
- Reduce 50D to 2D and Plot as a 2D plot
- Typically you don't generally ascribe meaning to the new features
 - e.g. may find horizontal axis corresponds to overall country size/economic activity
- and y axis may be the per-person well being/economic activity
- ▶ So despite having 50 features, there may be two "dimensions" of information, with features associated with each of those dimensions

Country	z_1	z_2
Canada	1.6	1.2
China	1.7	0.3
India	1.6	0.2
Russia	1.4	0.5
Singapore	0.5	1.7
USA	2	1.5

SVD (Singular Value Decomposition)

SVD - Definition

$$\mathbf{A}_{[m \times n]} = \mathbf{U}_{[m \times r]} \Sigma_{[r \times r]} (\mathbf{V}_{[n \times r]})^{\mathsf{T}}$$

- ▶ A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- U: Left singular vectors
 - m x r matrix (m documents, r concepts)
- \triangleright Σ : Singular values
 - r x r diagonal matrix (strength of each 'concept')(r: rank of the matrix A)
- V: Right singular vectors
 - n x r matrix (n terms, r concepts)

SVD

SVD Intuition

$$\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^T$$

σ_i ... scalar

u_i ... vector

v_i ... vector

SVD - Properties

It is always possible to decompose a real matrix A into $A = U \Sigma V^{T}$, where

- \blacktriangleright *U*, Σ , *V*: unique
- ▶ *U*, *V*: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- \triangleright Σ : diagonal
 - Entries (singular values) are positive, and sorted in decreasing order $(\sigma_1 \ge \sigma_2 \ge ... \ge 0)$

Nice proof of uniqueness: http://www.mpi-inf.mpg.de/~bast/ir-seminar-ws04/lecture2.pdf

SVD – Example: Users-to-Movies

• $A = U \Sigma V^T$ - example: Users to Movies

SVD – Example: Users-to-Movies

\blacksquare A = U Σ V^T - example: Users to Movies

Dimensionality Reduction Using SVD

More details

Q: How exactly is dim. reduction done?

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & \mathbf{0} & \mathbf{0} \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & \mathbf{0} & \mathbf{0} \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{4} & \mathbf{4} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{5} & \mathbf{5} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{2} & \mathbf{2} \end{bmatrix} = \begin{bmatrix} \mathbf{0.13} & 0.02 & -0.01 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.55} & 0.09 & -0.04 \\ \mathbf{0.68} & 0.11 & -0.05 \\ 0.15 & -0.59 & \mathbf{0.65} \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & \mathbf{0.32} \end{bmatrix} \times \begin{bmatrix} \mathbf{12.4} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{9.5} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1.3} \end{bmatrix} \times \begin{bmatrix} \mathbf{0.56} & \mathbf{0.59} & \mathbf{0.56} & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & -\mathbf{0.69} & -\mathbf{0.69} \\ 0.40 & -\mathbf{0.80} & 0.40 & 0.09 & 0.09 \end{bmatrix}$$

Dimensionality Reduction Using SVD

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2} \end{bmatrix} = \begin{bmatrix} \mathbf{0}.\mathbf{13} & 0.02 & -0.01 \\ \mathbf{0}.\mathbf{41} & 0.07 & -0.03 \\ \mathbf{0}.\mathbf{55} & 0.09 & -0.04 \\ \mathbf{0}.\mathbf{68} & 0.11 & -0.05 \\ 0.15 & -\mathbf{0}.\mathbf{59} & \mathbf{0}.\mathbf{65} \\ 0.07 & -\mathbf{0}.\mathbf{73} & -\mathbf{0}.\mathbf{67} \\ 0.07 & -\mathbf{0}.\mathbf{29} & \mathbf{0}.\mathbf{32} \end{bmatrix} \times \begin{bmatrix} \mathbf{12.4} & 0 & 0 \\ 0 & \mathbf{9.5} & 0 \\ 0 & 0 & \mathbf{33} \end{bmatrix} \times \begin{bmatrix} \mathbf{0.56} & \mathbf{0.59} & \mathbf{0.56} & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & -\mathbf{0.69} & -\mathbf{0.69} \\ 0.40 & -\mathbf{0.80} & 0.40 & 0.09 & 0.09 \end{bmatrix}$$

Dimensionality Reduction Using SVD

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.13 & 0.02 & 0.0 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix}$$

$$\begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0.59 & 0.56 & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\ 0.40 & -0.80 & 0.40 & 0.09 & 0.09 \\ 0.40 & -0.80 & 0.40 & 0.09 \\ 0.40 & -0.80 & 0.40 & 0.09 \\ 0.40 & -0.80 & 0.40 & 0.09 \\ 0.40 & -0.80 & 0.40 & 0.09 \\ 0.40 & -0.80 & 0.40 & 0.09 \\ 0.40 & -0$$

Relation to Eigenvectors

- SVD gives us:
 - $\blacksquare A = U \Sigma V^T$
- Eigen-decomposition:
 - $A = X \Lambda X^T$
 - A is symmetric
 - U, V, X are orthonormal ($U^TU=I$),
 - \blacksquare Λ , Σ are diagonal
- Now let's calculate:
 - $AA^{T} = U\Sigma V^{T}(U\Sigma V^{T})^{T} = U\Sigma V^{T}(V\Sigma^{T}U^{T}) = U\Sigma\Sigma^{T}U^{T}$

Shows how to compute SVD using eigenvalue decomposition!

Principal Component Analysis (PCA)

PCA - Problem Formulation

- ▶ PCA is the most commonly used dimensionality reduction
- Say we have a 2D data set which we wish to reduce to ID

PCA Goal

- The goal is to find a single line (or plane in higher dimensions) onto which to project the input data
- How to find this line/plane?
 - The distance between each point and the projected version should be small (blue lines below are short)
 - PCA tries to find a lower dimensional surface so the sum of squares onto that surface is minimized

Minimize projection error:

PCA tries to find the surface (a straight line in this case) which has the minimum projection error

General Case

- ▶ Given M X N Matrix (M rows with N-dimensions) the goal is to find M X K matrix which is a Kdimensional vector for each data point
- Find a set of vectors which we project the data onto the linear subspace spanned by that set of vectors
 - We can define a point in a plane with K dimensional vectors

PCA Algorithm

- Before applying PCS it is essential to do preprocessing
- Step 1: Preprocessing:
 - Mean normalization: Replace each xji with xj μj, subtract the mean from the value, so we re-scale the mean to be 0
 - Feature scaling (depending on data): If features have very different scales, normalize them by xji is set to (xj μj) / sj Where sj is some measure of the range, so could be max min or standard deviation

PCA Algorithm

- Step 2: Covariane matrix
 - Compute the covariance matrix

$$\Sigma = \frac{1}{n} \sum_{i=1}^{m} (x^i) \times (x^i)^T$$

- This is an [M x M] matrix
- ▶ Remember that xⁱ is a [M x I] vector

PCA Algorithm

Step 3:

- Compute SVD
- [U,S,V] = svd(sigma)
- Could also use Eigen value decomposition
- ▶ U matrix is also an [n x n] matrix
- to reduce a system from n-dimensions to k-dimensions
- Just take the first k-vectors from U (first k columns)

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

PCA Transformatiom

- Next we need to find some way to change X (which is n dimensional) to z (which is k dimensional)
- (reduce the dimensionality)
- ▶ Take first k columns of the u matrix and stack in columns
- ▶ n x k matrix call this U_{reduced}
- We calculate z as follows
- $z = (U_{reduced})^T * X$
- So [k x n] * [n x l]
 - Generates a matrix which is
 - k* I

How to measure quality of PCA?

Reconstruction from Compressed Representation (decompress)

Reconstruction Error

- ▶ Given the reduced data in K dimensions (U_{reduce})
 - \blacktriangleright Xapprox = U_{reduce} . Z

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01 \tag{1\%}$$

How to choose K?

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01 \tag{1\%}$$

- Ratio between averaged squared projection error with total variation in data
 - Want ratio to be small means we retain 99% of the variance
- If it's small (0) then this is because the numerator is small
 - The numerator is small when $xi = x_{approx}i$

Advice for applying PCA

- Given 10000 dimensional feature vector
 - ▶ E.g, 100x100 pixel images
 - This would slow down machine learning algorithms
- ▶ Reduce it to a lower dimensional vector
 - Apply PCA to x vectors
 - Take the reduced dimensionality data set and feed to a learning algorithm

Literature

- Appendix B in Tan, Steinbach and Kumar
- For additional reading about SVD Chapter 11 in Mining Massive Datasets
 - Some slides were also borrowed from mmds.org