Statistics

ALaRI Exam 25 June 2012

• Duration: 1 hour and 30 minutes

• Open book exam

• Solve all exercises

Problem 1

1. Let X and Y be two Bernoulli distributed random variables with parameter p and let their joint probability mass function defined as

	Y = 0	Y=1
X = 0	P_{00}	P_{01}
X = 1	P_{10}	P_{11}

Table 1: Joint probability mass function

- (a) Compute the marginal mass function of X and Y as a function of P_{ij} . Write explicitly the relation between the P_{ij} probabilities and p in this general case.
- (b) Prove that $P_{01} = P_{10}$.
- (c) What are the values of P_{00} , P_{01} , P_{10} and P_{11} as a function of p if X and Y are independent?
- (d) We remove now the independence assumption an replace it with the assumption that Cov(X,Y) = 0. Show that in this case X and Y are independent, i.e. the probabilities P_{ij} are the same as those calculated in (c). Hint: Compute the covariance as a function of the unknown probabilities. Use the information derived in (a) and (b).

You have just proved that for two Bernoulli distributed random variables with equal success parameter p

$$Cov(X,Y) = 0 \Leftrightarrow X$$
 and Y are independent.

Problem 2

- 1. Let X and Y two uncorrelated random variables, each having expectation μ and variance σ^2 . Show that X + Y is uncorrelated with X Y.
- 2. The joint probability function of X and Y, p(x, y), is given by

	Y=1	Y=2	Y = 3
X = 1	p(1,1) = 0	p(1,2) = 0.1	$p(1,3) = \beta$
X=2	$p(2,1) = \alpha$	p(2,2) = 0	p(2,3) = 0.3
X = 3	p(3,1) = 0.1	p(3,2) = 0.1	p(3,3) = 0

Table 2: Joint probability mass function

As a function of the parameters α and β :

- (a) compute the marginal probabilities mass functions of X and Y.
- (b) Compute the expected values of X and Y.
- (c) Compute the covariance between X and Y.
- (d) For which values of α and β are X and Y uncorrelated?

Problem 3

Let X an exponential distributed random variable with density function given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0, \ \lambda > 0 \\ 0 & \text{otherwise} \end{cases}.$$

and $Y = X^3$.

- 1. Compute the density function of Y.
- 2. Compute E(Y) using the previously derived density.

Problem 4

Let X_1, \ldots, X_n be a random sample from a population distributed according to the geometric distribution:

$$p(x) = (1-p)^{x-1}p, \ x = 1, 2, 3, \dots$$

- 1. Which kind of experiment is described by the geometric distribution?
- 2. Compute the maximum likelihood estimator of the parameter p for a random sample of size n.