#### SYSTEM OF CIRCLE

## Maths - B

| 1. | The radical cent | er of three circles descr | ibed on the three sides 4 | x-7y+10=0, $x+y-5=0$ and |
|----|------------------|---------------------------|---------------------------|--------------------------|
|    | 7x+4y-15=0 of    | triangle as diameter is   |                           |                          |
|    | 1) (3, 2)        | 2) (1, 2)                 | 3)(0,4)                   | 4) (1, 1)                |

2. The locus of the center of a circle of a which cuts orthogonally the circle  $x^2 + y^2 - 20x + 4 = 0$  and which touches x = 2 is

1)  $y^2 = 16x + 4$ 2)  $x^2 = 16y$ 3)  $x^2 = 16y + 4$ 4)  $y^2 = 16x$ 

3. The coordinates of the center of the circle which intersects circles  $x^2 + y^2 + 4x + 7 = 0$ ,  $2x^2 + 2y^2 + 3x + 5y + 9 = 0$  and  $x^2 + y^2 + y \neq 0$  orthogonally are 1) (-2, 1) 2) (-2,-1) 3) (2, -1) 4) (2, 1)

4. The equation of the circle passing through the point (2a,0) and whose radical axis is  $x = \frac{a}{2}$  with respect to the circle  $x^2 + y^2 = a^2$ , will be

1)  $x^2 + y^2 - 2ax = 0$  2)  $x^2 + y^2 + 2ax = 0$  3)  $x^2 + y^2 + 2ay = 0$  4)  $x^2 + y^2 - 2ay = 0$ 

5. If the lengths of tangents drawn to the circles  $x^2 + y^2 - 8x + 40 = 0$ ,  $5x^2 + 5y^2 - 25x + 80 = 0$ ,  $x^2 + y^2 - 8x + 16y + 160 = 0$  from the point P are equal, then P=

1)  $\left(8, \frac{15}{2}\right)$  2)  $\left(-8, \frac{15}{2}\right)$  3)  $\left(8, \frac{-15}{2}\right)$  4)  $\left(-8, \frac{-15}{2}\right)$ 

6. If A, B, C are the centers of three circles touching externally then the radical center of the circles is 1) the orthocenter 2) the circumcenter 3) the in center 4) the center of  $\Delta ABC$ 

7. You are given  $n(n \ge 3)$  circles having different radical axes and radical centers. The value of n for which the number of radical axes is equal to the number of radical centers is

1) 3 2) 4 3) 5 4) 8

8. If two circles cut a third circle S orthogonally, then the radical axis of the two circles
1) Touches
2) does not meet
3) passes through the center of S 4) none

9.  $r_1, r_2$  are the radii of two non-interesecting circles having A, B as centers. If P is the midpoint of AB then the perpendicular distance of P from their radical axis is

1)  $\frac{r_1^2 + r_2^2}{2AB}$  2)  $\frac{r_1^2 - r_2^2}{2AB}$  3)  $\frac{2AB}{r_1^2 - r_2^2}$  4) none

10. If a circle passes through the point (a, b) and cuts the circle  $x^2 + y^2 = p^2$  orthogonally, then the equation of the locus of its center is

1)  $x^2 + y^2 - 3ax - 4by + (a^2 + b^2 + p^2) = 0$  2)  $2ax + 2by - (a^2 - b^2 + p^2) = 0$ 

3)  $x^2 + y^2 - 2ax - 3by + (a^2 + b^2 + p^2) = 0$  4)  $2ax + 2by - (a^2 + b^2 + p^2) = 0$ 

11. The length of the common chord of the circles  $x^2 + y^2 + ax + by + c = 0$  and  $x^2 + y^2 + bx + ay + c = 0$  is is

1)  $\sqrt{\frac{(a+b)^2 - 8c}{2}}$  2)  $\sqrt{\frac{(a-b)^2 - 8}{2}}$  3)  $\sqrt{\frac{(a-b)^2 + 8c}{2}}$  4)  $\sqrt{\frac{(a+b)^2 + 8c}{2}}$ 

| 12. | $+2x+8=0, x^2+y^2-8x+8=0$                                                                                                                                                                                                                                             |                                                                                                                    |                                       |                                                   |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|--|--|--|--|
|     | and which touches th<br>1) $x^2 + y^2 + 4y = 0$                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                              | 0 3) $x^2 + y^2 + 16y -$              | $8 = 0$ 4) $x^2 + y^2 + 16y - 16 = 0$             |  |  |  |  |
| 13. | 1) $x^2 + y^2 + 4y = 0$ 2) $x^2 + y^2 + 8y + 8 = 0$ , 3) $x^2 + y^2 + 16y - 8 = 0$ , 4) $x^2 + y^2 + 16y - 16 = 0$ , The condition that the two circles which passes through the points $(0, a)$ , $(0, -a)$ and touch the line $y = mx + c$ will cut orthogonally is |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | 1) $c^2 = a^2 (1 + m^2)$                                                                                                                                                                                                                                              | 2) $c^2 = a^2 (2 + m^2)$                                                                                           | $3) c^2 = a^2 (3 + m^2)$              | ) 4) $c^2 = a^2 (4 + m^2)$                        |  |  |  |  |
| 14. | A circle passes through                                                                                                                                                                                                                                               | gh the points (3,4) and co                                                                                         | uts the circle $x^2 + y^2$            | $= a^2$ orthogonally; the locus of its            |  |  |  |  |
|     | centre is a striaght lin 1) 250                                                                                                                                                                                                                                       | ne .If the distance of this 2) 225                                                                                 | striaght line from the 3) 100         | 1) 0.7                                            |  |  |  |  |
| 15. | ,                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                              | · · · · · · · · · · · · · · · · · · · | 4) 25 cut the circle $x^2 + y^2 = a^2$            |  |  |  |  |
| 15. | orthogonally is                                                                                                                                                                                                                                                       | or air energy which today                                                                                          |                                       | cut the choic x + y u                             |  |  |  |  |
|     |                                                                                                                                                                                                                                                                       | $2) y^2 + 4ax + 5a^2 = 0$                                                                                          | 3) $y^2 = 4ax + 5a^2$                 | 4) $y^2 = 4ax - 5a^2$                             |  |  |  |  |
| 16. | The line $2x + 4y = 1$ intersects the circle $x^2 + y^2 = 4$ at A and B. If the equation of the circle on AB                                                                                                                                                          |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | as diameter is $x^2 + y^2 + 2gx + 2 + y + c = 0$ then $10(g + f) =$                                                                                                                                                                                                   |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | 1) -3                                                                                                                                                                                                                                                                 | 2) 4                                                                                                               | 3) 7                                  | 4) 3                                              |  |  |  |  |
| 17. | If the common chord of the circles $x^2 + (y - \lambda)^2 = 16$ and $x^2 + y^2 = 16$ subtend a right angle at the                                                                                                                                                     |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | origin, then $\lambda =$                                                                                                                                                                                                                                              |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | 1) 8                                                                                                                                                                                                                                                                  | 2) $\pm 4\sqrt{2}$                                                                                                 | 3) $4\sqrt{2}$                        | 4) none                                           |  |  |  |  |
| 18. | $x^2 + y^2 + 6x + 8y - 7 = 0$ and a circle passing through (0,0) and touching $y = x$ have a common                                                                                                                                                                   |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | chord. Then that chord always passes through the point                                                                                                                                                                                                                |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | $1)\left(\frac{1}{2},\frac{1}{2}\right)$                                                                                                                                                                                                                              | $2)\left(-\frac{1}{2},-\frac{1}{2}\right)$                                                                         | 3) (1,1)                              | 4) none                                           |  |  |  |  |
| 19. | Equation to a system                                                                                                                                                                                                                                                  | Equation to a system of circles is $2(x^2 + y^2) + \lambda x - (1 + \lambda^2)y - 10 = 0$ . Then number of circles |                                       |                                                   |  |  |  |  |
|     | belonging to the syste                                                                                                                                                                                                                                                | em that are <mark>orthog</mark> onal to                                                                            | $x^2 + y^2 + 4x + 6y + 3$             | 3 = 0 is                                          |  |  |  |  |
|     | 1) 2                                                                                                                                                                                                                                                                  | 2) 1                                                                                                               | 3) 0                                  | 4) none                                           |  |  |  |  |
| 20. | The length of tangents from $(\alpha, \beta)$ to both circles $x^2 + y^2 - 4x - 5 = 0$ and                                                                                                                                                                            |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | $x^2 + y^2 + 6x - 2y + 6 = 0$ are equal then                                                                                                                                                                                                                          |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | 1) $2\alpha + 10\beta + 11 = 0$                                                                                                                                                                                                                                       | 2) $2\alpha - 10\beta + 11 = 0$                                                                                    | 3) $10\alpha - 2\beta + 11 =$         | $= 0 	 4) 10\alpha + 2\beta + 11 = 0$             |  |  |  |  |
| 21. | $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and O is the origin. The length of the common chord of circles drawn or                                                                                                                                                         |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | OP and OQ as diameter is                                                                                                                                                                                                                                              |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | 1) $PQ(x_1y_2 - x_2y_1)$                                                                                                                                                                                                                                              | $2) \frac{x_1 y_2 - x_2 y_1}{PQ}$                                                                                  | $3) \frac{PQ}{x_1 y_2 - x_2 y_1}$     | 4) none<br>$2ax + 2by + \lambda (ax - by) = 0$ is |  |  |  |  |
| 22. | The equation to the ra                                                                                                                                                                                                                                                | adical axis of the system                                                                                          | of circles $x^2 + y^2 - 2$            | $(2ax + 2by + \lambda (ax - by)) = 0 is$          |  |  |  |  |
|     | 1) ax + by = 0                                                                                                                                                                                                                                                        | $2) \ ax - by = 0$                                                                                                 | $3) \lambda (ax + by) = 0$            | 4) none                                           |  |  |  |  |
| 23. | The radical centre of                                                                                                                                                                                                                                                 | the circles $x^2 + y^2 + a_r x$                                                                                    | $+b_r y + c = 0, r = 1, 2, 3$         | 3 is                                              |  |  |  |  |
|     | 1) (a,b)                                                                                                                                                                                                                                                              | 2) (b,a)                                                                                                           | 3) (0,0)                              |                                                   |  |  |  |  |
| 24. | The circle orthogonal to the three circles $x^2 + y^2 a_i x + b_i y + c = 0$ ( $i = 1, 2, 3$ ) is                                                                                                                                                                     |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | 1) $x^2 + y^2 - b_i x - a_i y - c = 0$ 2) $x^2 + y^2 = c$                                                                                                                                                                                                             |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | $3)  x^2 + y^2 = a_i + b_i$                                                                                                                                                                                                                                           |                                                                                                                    | 4) $x^2 + y^2 = c^2$                  |                                                   |  |  |  |  |
| 25. | The common chord of $x^2 + y^2 - 4x - 4y = 0$ and $x^2 + y^2 = 16$ subtends at the origin an angle equal to                                                                                                                                                           |                                                                                                                    |                                       |                                                   |  |  |  |  |
|     | 1) $\frac{\pi}{6}$                                                                                                                                                                                                                                                    | 2) $\frac{\pi}{4}$                                                                                                 | 3) $\frac{\pi}{2}$                    | 4) $\frac{\pi}{2}$                                |  |  |  |  |
|     | ´ 6                                                                                                                                                                                                                                                                   | ´ 4                                                                                                                | ´ 3                                   | ^ 2                                               |  |  |  |  |

- The perpendicular ditance from the point (1,2) to the radical axis of the circles  $x^2 + y^2 + 6x 46 = 0$ 26. and  $x^2 + y^2 - 2x - 6y - 6 = 0$  is
- If the locus of the centre of the circle which cuts the circles  $x^2 + y^2 + 4x 2y 4 = 0$  and 27.  $x^{2} + y^{2} - 4x - 6y - 3 = 0$  orthogonally is lx + my + n = 0 then l + m + n = 0
- The slope of radical axes of the circles  $x^2 + y^2 + 3x + 4y 5 = 0$  and  $x^2 + y^2 5x + 5y 6 = 0$  is 28.
- $x^{2} + y^{2} + 2gx + 2fy + c = 0$  and  $2x^{2} + 2y^{2} + 3x + 8y + 2c = 0$ If the radical axis of the circles 29. touches the circle  $x^2 + y^2 + 2x + 2y + 1 = 0$  then f =
- If p in the radical centre of the three circles 30.

$$(x-1)^2 + (y-2)^2 = 225, (x-4)^2 + (y-1)^2 = 225, (x-5)^2 + (y-4)^2 = 225$$
 then  $p_x + p_y$  is

# KEY JA

| 1-10  | 2 | 4 | 2 | 1 | 3 | 3 | 3  | 3 | 2 | 4 |
|-------|---|---|---|---|---|---|----|---|---|---|
| 11-20 | 1 | 3 | 2 | 2 | 1 | 1 | 2  | 1 | 1 | 3 |
| 21-30 | 2 | 2 | 3 | 2 | 4 | 2 | 11 | 8 | 2 | 6 |

### **SOLUTIONS**

Since the radical centre of the three circles described on the sides of a triangle as diameters is the 1. orthocentre of the triangle.

Radical centre = orthocentre

Orthocentre is the P.I of 4x - 7y + 10 = 0 and 7x + 4y - 15 = 0

Orthocentre =(1,2)

Radiacal centre =(1.2)

Let the circle be 2.

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 (i

It cuts the circle  $x^2 + y^2 - 20x + 4 = 0$  orthogonally.

$$\therefore 2(-10g + 0 \times f) = c + 4$$

$$\Rightarrow -20g = c + 4 \tag{i}$$

 $\Rightarrow -20g = c + 4$  (ii) Circle (i) touches the line x = 2, i.e.x + 0y - 2 = 0

$$\left| \frac{-g + 0 - 2}{\sqrt{1^2 + 0^2}} \right| = \sqrt{g^2 + f^2 - c}$$

$$\Rightarrow (g+2)^2 = g^2 + f^2 - c$$

$$\Rightarrow 4g + 4 = f^2 - c \tag{iii}$$

Eliminating c from (ii) and (iii), we get

$$-16g + 4 = f^2 + 4 \Rightarrow f^2 + 16g = 0$$

Hence ,the locus of (-g, -f) is  $y^2 - 16x = 0$ .

3. The required point is the radical centre of the given circles.

### 4. Verify the options

Let 
$$s = x^2 + y^2 - 2ax = 0$$

$$s^1 \equiv x^2 + y^2 - a^2 = 0$$

R.A"s in 
$$s - s^1 = 0$$

$$x^2 + y^2 - 2ax - x^2 - y^2 + a^2 = 0$$

$$-2ax + a^2 = 0$$

$$2ax = a^2$$

$$2x = a$$

$$x = \frac{a}{2}$$

5. Given circles are 
$$x^2 + y^2 - 8x + 40 = 0 \rightarrow (1), x^2 + y^2 - 5x + 16 = 0 \rightarrow (2)$$

$$x^2 + y^2 - 8x + 16y + 160 = 0 \rightarrow (3)$$

Radical axis of (1) and (2) is 
$$3x - 24 = 0 \Rightarrow x = 8$$

Radical axis of (1) and (3) is 
$$16y + 120 = 0 \Rightarrow y = -15/2$$
. Required point  $p = (8, -15/2)$ .

6. Let p be the radical centre of the circles.



Let  $p_1, p_2, p_3$  be the points of contact of the circles as shown in the figures

Now  $pp_1$  is perpendicular to  $\overline{AB,PP_2}$  is perpendicular to  $\overline{BC,PP_3}$  is

Perpendicular to  $\overline{CA}$ . Also, p is the radical centre  $\Rightarrow PP_1 = PP_2 = PP_3$ .

 $\therefore$  p is the incentre of  $\triangle ABC$ 

7. Number of radical axes from n circle is  $nC_2$ . Number of radical centres from n circles is  $nC_3$ 

$$nC_2 = nC_3 \Rightarrow n = 2 + 3 = 5$$

- 8. The centre of the circles s = 0 which cuts two given circles orthogonally lies on the radical axis of the given circles. Hence the R.A. through the centre of S = 0.
- 9. Let A,B be the centre and  $r_1$ ,  $r_2$  be the radi of the circles  $x^2 + y^2 + 2\lambda_1 x + c = 0$  and  $x^2 + y^2 + 2\lambda_2 x + c = 0$  respectively.

$$\therefore A(-\lambda_1, 0)B(-\lambda_2, 0). \ r_1^2 = \lambda_1^2 - c, r_2^2 = \lambda_2^2 - c. \text{ Midpoint of } \overline{AB} \text{ is } p\left(\frac{-\lambda_1 - \lambda_2}{2}, 0\right)$$

Distance from p to the R.A. 
$$x = 0$$
 is  $\left| \frac{-\lambda_1 - \lambda_2}{2} \right| = \frac{\lambda_1 + \lambda_2}{2}$ ,  $AB = \lambda_1 - \lambda_2$ 

Perpendicual distance from p to the  $=\frac{\lambda_1 + \lambda_2}{2} = \frac{(\lambda_1 + \lambda_2)(\lambda_1 - \lambda_2)}{2(\lambda_1 - \lambda_2)} = \frac{\lambda_1^2 - \lambda_2^2}{2AB} = \frac{r_1^2 - r_2^2}{2AB}$ 

10. Equation of a point circle with centre (a,b) is  $(x-a)^2 + (y-b)^2 = 0$  i.e.

$$x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = 0$$
. Given circle is  $x^{2} + y^{2} - p^{2} = 0$ 

Locus of the centre is radical axis is  $s - s^1 = 0 \Rightarrow 2ax + 2by - p^2 - a^2 - b^2 = 0$ 

11. Common chord is  $(a-b)x+(b-a)y=0 \Rightarrow x-y=0$ 

$$C = (-a/2, -b/2)$$

$$BC = \frac{b-a}{2\sqrt{2}}, AC = \sqrt{\frac{a^2 + b^2 - 4c}{4}}$$

$$AB^{2} = AC^{2} - BC^{2} = \frac{a^{2} + b^{2} - 4c}{4} - \frac{(b-a)^{2}}{8} = \frac{a^{2} + b^{2} - 8c + 2ab}{8} = \frac{(a+b)^{2} - 8c}{8}$$

$$AB = \frac{\sqrt{(a+b)^2 - 8c}}{2\sqrt{2}}$$
 :: Length of common chord =  $\sqrt{\frac{(a+b)^2 - 8c}{2}}$ 

12. Let the required circle be  $s = x^2 + y^2 + 2gx + 2fy + c = 0$ 

S=0 cuts  $x^2 + y^2 + 2x + 8 = 0$  and  $x^2 + y^2 - 8x + 8 = 0$  orthogonally

$$\therefore 2g(1) = c + 8$$
 and  $2g(-4) = c + 8 \Rightarrow g = 0, c = -8$ 

S = 0 touches 
$$x - y + 4 = 0 \Rightarrow \sqrt{g^2 + f^2 - c} = \frac{\left| -g + f + 4 \right|}{\sqrt{2}} \Rightarrow \sqrt{f^2 + 8} = \frac{\left| f + 4 \right|}{\sqrt{2}}$$

$$\Rightarrow 2(f^2 + 8) = (f + 4)^2 \Rightarrow 2f^2 + 16 = f^2 + 8f + 16 = f^2 +$$

 $\therefore$  Required circle equation is  $x^2 + y^2 + 16y - 8 = 0$ .

13. Let  $x^2 + y^2 + 2gx + 2fy + k = 0 \rightarrow (1)$  be the circle passing through (0,a), (0,-a) and touching the line y = mx + c.

(1) passes through 
$$(0,a) \Rightarrow 0 + a^2 + 0 + 2fa + k = 0 \Rightarrow a^2 + 2af + k = 0 \rightarrow (2)$$

(1) passes through 
$$(0,-a) \Rightarrow 0 + a^2 + 0 - 2fa + k = 0 \Rightarrow a^2 - 2af + k = 0 \rightarrow (3)$$

$$(2)-(3) \Rightarrow 4af = 0 \Rightarrow f = 0; (2) \Rightarrow a^2 + k = 0 \Rightarrow k = -a^2$$

Centre of (1) is (-g, -f), radius of (1) is  $\sqrt{g^2 + f^2 - k}$ 

(1) touches 
$$y = mx + c \Rightarrow \left| \frac{-mg + f + c}{\sqrt{1 + m^2}} \right| = \sqrt{g^2 + f^2 - k} \Rightarrow \frac{\left| -mg + c \right|}{\sqrt{1 + m^2}} = \sqrt{g^2 - k}$$

$$\Rightarrow (-mg+c)^2 = (g^2-k)(1+m^2) \Rightarrow m^2g^2 - 2mgc + c^2 = g^2 + g^2m^2 - k - km^2$$

$$\Rightarrow g^2 + 2gmc - c^2 + a^2 + a^2m^2 = 0$$

Let  $g_{1,g_2}$  be the roots of this equation .Then  $g_1g_2 = -c^2 + a^2 + a^2m^2$ .

The two circles cut orthogonally  $\Rightarrow 2g_1g_2 + 0 = -2a^2 \Rightarrow g_1g_2 = -a^2 \Rightarrow -c^2 + a^2 + a^2m^2 = -a^2$ 

$$\Rightarrow c^2 = 2a^2 + a^2m^2 \Rightarrow c^2 = a^2(2+m^2)$$
.  $\therefore$  The required condition is  $c^2 = a^2(2+m^2)$ .

14. Let 
$$s = x^2 + y^2 + 2gx + 2fy + c = 0$$

$$s^1 \equiv x^2 + y^2 - a^2 = 0$$

s = 0 and  $s^1 = 0$  cuts orthogonally  $c = a^2$ 

S=0 passes through (3,4)

$$9 + 16 + 6g + 8f + c = 0$$

$$6g + 8f + a^2 + 25 = 0$$
 (:  $c = a^2$ )

The locus of centre (-g, -f) is

$$6(-x)+8(-y)+a^2+25=0$$

$$6x + 8y - a^2 - 25 = 0 \rightarrow (1)$$

The distance from origin to (1) is 25
$$\frac{\left|-a^2 - 25\right|}{\sqrt{76 + 64}} = 25 \Rightarrow a^2 + 25 = 250 = a^2 = 225$$

Let  $p(x_1, y_1)$  be the point in the locus. 15.

The equation of a circle with centre  $(x_1, y_1)$  is  $x^2 + y^2 - 2x_1x - 2y_1y + k = 0 \rightarrow (1)$ 

Radius of (1) is 
$$\sqrt{x_1^2 + y_1^2 - k}$$

If (1) touches the line 
$$x = 2a$$
 then  $|x_1 - 2a| = \sqrt{x_1^2 + y_1^2 - k} \Rightarrow (x_1 - 2a)^2 = x_1^2 + y_1^2 - k$ 

If (1) cuts 
$$x^2 + y^2 = a^2$$
 orthogonally then  $0 + 0 = k - a^2 \Rightarrow k = a^2$ 

The equation to the locus of p is  $y^2 + 4ax = 5a^2$ 

16. Let 
$$s \equiv x^2 + y^2 - 4 = 0$$

And 
$$L = 2x + 4y = 1$$

Equation of a circle having AB as diameter is



$$S + \lambda L = 0$$

$$S + \lambda L = 0$$
  
$$x^{2} + y^{2} - 4 + \lambda (2x + 4y - 1) = 0 \qquad \rightarrow (i)$$

$$x^2 + y^2 + 2\lambda x + 4\lambda y - 4 - \lambda = 0$$

centre 
$$(c) = (-\lambda, -2\lambda)$$

Since centre  $(-\lambda, -2\lambda)$  lies on line 2x + 4y = 1

$$2(-\lambda)+4(-2\lambda)=1$$

$$-2\lambda - 8\lambda = 1$$

$$\lambda = -\frac{1}{10}$$

Sub 
$$\lambda = -\frac{1}{10}$$
 in eq (i)

$$x^{2} + y^{2} - 4 - \frac{1}{10}(2x + 4y - 1) = 0$$

$$x^{2} + y^{2} - 4 - \frac{2}{10}x - \frac{4}{10}y + \frac{1}{10} = 0$$

$$x^{2} + y^{2} - \frac{2}{10}x - \frac{4}{10}y - \frac{39}{10} = 0$$

Compare  $x^2 + y^2 + 2gx + 2fy + c = 0$ 

Hence 
$$g = -\frac{1}{10}$$
,  $f = -\frac{2}{10}$ ,  $c = -\frac{39}{10}$ 

Now 
$$10(g+f)=10\left(-\frac{1}{10}-\frac{2}{10}\right)==-3$$

17. Equation to common chord of 
$$x^2 + y^2 - 2\lambda y + \lambda^2 - 160 = 0$$
 .....(1) and  $x^2 + y^2 - 16 = 0$  .....(2)

is 
$$S - S' = 0 \Rightarrow 2\lambda y - \lambda^2 = 0 \Rightarrow y = \frac{\lambda}{2}$$

Hemogenising (2) with (3) we have

$$x^2 + y^2 = 16\left(\frac{2y}{\lambda}\right)^2$$
 .....(4)

The pair of lines are  $\perp \Leftrightarrow coeft.of \ x^2 + coeft.of \ y^2 = 0$ 

$$\Rightarrow 1 + 1 - 16 \left( \frac{4}{\lambda^2} \right) = 0 \Rightarrow 2\lambda^2 = 64 \Rightarrow \lambda = \pm 4\sqrt{2}$$

18. Equation to the point circle of (0,0) is 
$$x^2 + y^2 = 0$$
.

Equation to the tangent is x - y = 0

:. Any circle passing (0,0) and touching 
$$x - y = 0$$
 is  $x^2 + y^2 + \lambda(x - y) = 0$  .....(1)

Given circle is 
$$x^2 + y^2 + 6x + 8y - 7 = 0$$
 .....(2)

Common chord of (1) and (2) is 
$$6x + 8y - 7 - \lambda(x - y) = 0$$
 .....(3)

Line (3) always passes through the points of intersection of the lines

$$6x + 8y - 7 = 0$$
 and  $x - y = 0 \Rightarrow i.e.$  point  $\left(\frac{1}{2}, \frac{1}{2}\right)$ 

19. Circles are orthogonal 
$$\Leftrightarrow \frac{\lambda}{2}(2) - \left(\frac{1+\lambda^2}{2}\right)(3) = \frac{-10}{2} + 3$$

$$\Leftrightarrow$$
  $3\lambda^2 - 2\lambda - 1 = 0 \Rightarrow (3\lambda + 1)(\lambda - 1) = 0 \quad \lambda = \frac{-1}{3}, \quad 1 \Rightarrow \lambda \text{ has two values}$ 

20. Let 
$$s = x^2 + y^2 - 4x - 5 = 0$$

$$s^1 \equiv x^2 + y^2 + 6x - 2y + 6 = 0$$

Equation of R.A.'s is 
$$s - s^1 = 0$$

$$x^2 + y^2 - 4x - 5 - x^2 - y^2 - 6x + 2y - 6 = 0$$

$$-10x + 2y - 11 = 0$$

$$10x - 2y + 11 = 0$$

Since the point  $(\alpha, \beta)$  lies on R.A 10x - 2y + 11 = 0

$$10\alpha - 2\beta + 11 = 0$$

21. 
$$O(0,0), p(x_1,y_1), Q(x_2,y_2)$$

Let OR lie the common chord.

From the diagram



Area of  $\triangle OPR = \frac{1}{2} \times PQ \times OR$ 

$$\frac{1}{2} \left| x_1 y_2 - x_2 y_1 \right| = \frac{1}{2} \times PQ \times OR$$

$$OR = \frac{x_1 y_2 - x_2 y_1}{PQ}$$

22. 
$$x^2 + y^2 - 2ax + 2by + \lambda (ax - by) = 0$$

This is in the form  $s + \lambda L = 0$ 

R.A.'s in 
$$L = ax - by = 0$$
.

23. 
$$x^2 + y^2 + a_r x + b_r y + c = 0, r = 1,2,3$$

Verify the options (3)

Let 0(0,0)

$$s_{11} = 0 + 0 + 0 + 0 + c = c$$

$$s_{11}^1 = 0 + 0 + 0 + 0 + c = c$$

$$s_{11}^{11} = 0 + 0 + 0 + 0 + c = c$$

$$\therefore \ \, \overline{|s_{11}|} = \overline{|s_{11}|} = \overline{|s_{11}|}$$

24. Verify the options and check them orthogonal condition 
$$2g g^1 + 2f f^1 = c + c^1$$



The equation of the common chord of the circles  $x^2 + y^2 - 4x - 4y = 0$  and  $x^2 + y^2 = 16$  is x + y = 4

Which meets  $x^2 + y^2 = 16$  at A(4,0) and B(0,4). Obviously  $OA \perp OB$ . Hence the common chord AB makes a right angle at the centre of circle  $x^2 + y^2 = 16$ .

26. 
$$s = x^2 + y^2 + 6x - 46 = 0$$

$$s^1 = x^2 + y^2 - 2x - 6y - 6 = 0$$

R.A"s is 
$$s - s^1 = 0$$

$$x^{2} + v^{2} + 6x - 46 - x^{2} - v^{2} + 2x + 6v + 6 = 0$$

$$8x + 6y - 40 = 0 \Rightarrow 4x + 3y - 20 = 0$$

The perpendicular distance from (1,2) to R.A. 4x + 3y - 20 = 0

$$\frac{\left|ax_1 + by_1 + c\right|}{\sqrt{a^2 + b^2}} = \frac{\left|4 + 6 - 20\right|}{\sqrt{16 + 9}} = \frac{10}{5} = 2$$

27. 
$$s = x^2 + y^2 + 4x - 2y - 4 = 0$$

$$s^1 = x^2 + y^2 - 4x - 6y - 3 = 0$$

Locus of the centre of the circle is R.A."s of s = 0 and  $s^1 = 0$  R.A."s is  $s - s^1 = 0$ 

$$x^{2} + y^{2} + 4x - 2y - 4 - x^{2} - y^{2} + 4x + 6y = 3 = 0$$

$$8x + 4y - 1 = 0$$

$$compare lx + my + n = 0$$

Here 
$$l = 8, m = 4, n = -1$$

*Now* 
$$l + m + n = 8 + 4 - 1 = 11$$

28. 
$$s = x^2 + y^2 + 3x + 4y - 5 = 0$$

$$s^1 = x^2 + y^2 - 5x + 5y - 6 = 0$$

R.A's is 
$$s - s^1 = 0$$

$$x^{2} + y^{2} + 3x + 4y - 5 - x^{2} - y^{2} + 5x - 5y + 6 = 0$$

$$8x - y + 1 = 0$$

$$Slope = \frac{-a}{b} = \frac{-8}{-1} = 8$$

$$s = x^2 + y^2 = 2gx + 2fy + c = 0$$

29. 
$$s^1 = x^2 + y^2 + \frac{3}{2}x + 4y + c = 0$$

$$R.A.'s is s - s^1 = 0$$

$$x^{2} + y^{2} + 2gx + 2fy + c - x^{2}y^{2} - \frac{3}{2}x - 4y - c = 0$$

$$\left(2g-\frac{3}{2}\right)x+\left(2f-4\right)y=0$$

$$(4g-3)x+4(f-2)y=0 \rightarrow (1)$$

This line touches the circle  $x^2 + y^2 + 2x + 2y + 1 = 0 \rightarrow (2)$ 

$$centre(c) = (-1, -1), radicals(r) = \sqrt{1 + 1 - 1} = 1$$

radius(r) = The perpendicular distance from centre (-1,-1) to eq (1)

$$1 = \frac{\left| (-1)(49-3) + (-1)4(f-2) \right|}{\sqrt{(4g-3)^2 + 16(f-2)^2}}$$

$$8(4g-3)(f-2)=0$$

$$g = \frac{3}{4}(or)f = 2$$

30. centers of given cricles are

Let 
$$A(1,2)$$
,  $B(4,1)$   $C(5,4)$  and  $r_1 = r_2 = r_3 = 15$ 

if  $r_1 = r_2 = r_3$  then radical center is circumcentre of  $\Delta^l ABC$ 

Find the circumcentre

$$\therefore p(3,3)$$

$$p_{r} + p_{v} = 3 + 3 = 6$$

