Problema 1

Dobbiano verificare che 7 (PNG) e (7P) V (7G) abbiano le stesse tabelle di verital

P	Q	77	76	PNQ	-(PNG)	(P)V(7G)	
F	F	V	V	F	V	V	
F	V	V	F	F	V	V	
V	F	F	V	F	V	V	
V	V	(F	\ F	LV	F	F	
		an	cstu	Le st	Le stesse taballe		
essere				omesso	26	verstal	

Problema 2:

Usramo lo stesso modo del problema 1

P	9	76	17P	P=>Q	79 => 7P			
F	F	V	V	V	V			
1=	V	=	V	V	V			
V	F	V	F	F	F			
V	V	F	=	V	l v			
		Le stress tobally						

Problema 3

Dingramma

XE(ANB) VIAnc

	XEA	XEB	X C	x & Buc	XEANB	XGANC	X-An(Buc)	X-(ANB) (PANC)
*=qualsiasi	F	*	*	*	F	F	F	F
valore	V	T-	F	1=	F	<u></u>	F	F
	V	F	V	V	<u>_</u>	V	V	V
	V	٧	F	\vee	V	F	V	V
	V	V	V	V	V			
					7			
				bre, Ge	دورو د مره	SSC	le stes	SC

Problema 4

Richiamo che se x è un numero naturale allera X+1 è un numero naturale.

Supposiamo che n sia un numero naturale con la proprieta se m è qualsiasi altro numero neturale allera

NZNH apper CZI CSSER FALSE

Ma questa el una contraddrerone

=> Non esiste un numero naturale prin granda
di tutti.

Problema 5:

Usiamo il Principo di Induzione

 $P(N): \sum_{k=1}^{N} (2k-1) = N^2$

P(1): 2 (2k-1) = 1 = 12 Verm

 $P(N) \Rightarrow P(N+1): \sum_{K=1}^{N+1} (2K-1) = [2(N+1)-1] + \sum_{K=1}^{N} (2K-1)$ $= 2N+1 + N^{2}$

= (N+1) 2 che e l'affermatione
P(N+1).

Guesto completa la dimestratione per industrone

Problema 6a: Le funzione invettiva hanno la proprieta di concellatione

 $\begin{array}{ccc}
\gamma(x_1) &= \gamma(x_2) & \Rightarrow & \gamma(x_1) &= \gamma(x_2) \\
\chi_1 &= \chi_2
\end{array}$

 $f: X \rightarrow Y, \quad g: Y \rightarrow Z \quad \text{invertible}$ $h(x_1) = g(f(x_1)) \quad \text{implies the}$ $h(x_1) = h(x_2) \quad () \quad g(f(x_1)) = g(f(x_2))$ $() \quad f(x_1) = f(x_2)$ $() \quad f(x_1) = f(x_2)$ $() \quad f(x_1) = f(x_2)$

= h è inicthine

Problema 65: $f: X \rightarrow Y$, $g: Y \rightarrow Z$ surrethive $h: X \rightarrow Z$, h(x) = g(f(x))

h e' surrettiva

Sia z un elemente di Z. Allora per la surrettiva di 9, existe y E Y tali che 9(y) = Z.

Allo stesso mida, per la suriettivita! di f, asiste x ex tati che

f(x)=9

=> h(x)= 9(f(x))= 5

Problem (c: Brunivoca = inrettina + suriettina

:. 6 a + 6b => 6c

 $\{1, 2, 3, 4, 5\} = \{1, 3, 5\} \cup \{2, 4\}$

Sin f; {1,2,3,4,54 → {1,2,3,4;54 tali che

X disport → f(x) disport.

Allora f: A -> A è una permutazione (molto Formalmente, la restritione di f a una funzione A -> A è una permutatione di A)

Proche A ha 3 elements, il numero } 3! di tali permutazione e 6.

Attentione: f:B > B è anche una permutation.

permutazione (B) = 1! = 2

Per la regula del producto en seno (6)(2) = 12 tali permutazione in totale,

Il dragramma ad albert

f: A -> A

F(1)=5 f(3)=3 f(5)=1 f: A > A

f: B > B

A n B = d

Alekerminah

dar sno;

valor;

Su A o B

f, B -> B

