FRACTOGRAPHY OF HYDROGEN-CHARGED X70 PIPELINE STEELS UNDER QUASI-STATIC TENSION

Jubica, Laura De Pue, Lisa Claeys, Wim De Waele, Stijn Hertelé, Tom Depover, Kim Verbeken

Energy transition

- ★ European Hydrogen Backbone (EHB) initiative
- ★ Hydrogen infrastructure
- ★ Repurposing pipelines

Focus area

Banded MS - Base Metals

UNIVERSITY

<u>Heterogeneous MS – Girth Weld</u>

Weld metal - Heat affected zone (HAZ) - Base metal

Other microstructural details

- ★ Ferrite grain size rank: BM1 < BM2 also BM4 < BM3
- ★ Pearlite fraction rank: BM1 < BM2 also BM4 < BM3
- ★ Inclusion types : oxides, sulphides, carbides
- ★ Hardness range BM : 205 225 HV10 Hardness range WM : 182 - 241 HV10
- ★ Cold bent no appreciable effect

Hydrogen content until saturation

Estimation of hydrogen content until saturation

Material	ВМ1	ВМ2	вмз	BM4	
H [wppm]	1,19 ± 0,09	1,25 ± 0,15	1,24 ± 0,14	1,63 ± 0,18	
Material	aterial LW_WM LW_HAZ		GW_WM	GW_HAZ	
H [wppm]	1,00 ± 0,11	1,41 ± 0,34	0,95 ± 0,14	0,81 ± 0,21	

- Charging conditions: 0.8mA /cm² in 0.5M H₂SO₄ + 1g/l thiourea
- Sample geometry: 3 x 6 x 8 mm

Diffusivity: BM1 = BM4 < BM3 < BM2 < Welds

Breakthrough time

BM Base material
LW_WM Longitudinal weld - weld metal
GW WM Girth weld - weld metal

Devanathan-Stachurski permeation method

Hydrogen diffusivity [m²/s]

12

Quasi-static ex-situ tensile test

Tensile test: Constant strain rate of 0.00025/s until rupture

Fracture surface

Mechanical characteristics Hydrogen embrittlement indices EI = 100%[1-(X_{hydrogen}/X_{air})] Force displacement curves

Fractography prioritization

Dart chart

- → 8 sections for materials
- → 3 subsections for stress conditions
- → Inner circle air tested (reference)
- → Outer circle hydrogen charged
- ightarrow number of samples analysed
- → Different features categorized

HC Hydrogen charged SRB Smooth round bar R6/R2 Radii 6mm/2mm BM Base material LW_WM Longitudinal weld - weld metal
LW_HAZ Longitudinal weld - heat affected zone
GW_WM Girth weld - weld metal
GW_HAZ Girth weld - heat affected zone

Ductile microvoid coalescence

- → Dimples in all materials air and hydrogen charged
- → Dimple size smaller in weld metal
- → Inclusions as void initiation sites

Delamination: BM1

Micro Splits: BM2

- → Delamination and Splits/Micro Splits: Separation within a material
- → Delamination : across the sample
- → Splits/Micro Splits: distributed in the sample

SRB

R2

Visual Ranking: D&S

Ranking scale

- 0 no delaminations or splits
- 1 few splits (<10)
- 2 many splits (>=10)
- 3 delaminations
- 4 delaminations and splits

→ Air/Hydrogen : BM1 & BM4 BM2 & BM3 Welds

HC Hydrogen charged SRB Smooth round bar R6/R2 Radii 6mm/2mm BM Base material LW_WM Longitudinal weld - weld metal D&S
LW_HAZ Longitudinal weld - heat affected zone
GW_WM Girth weld - weld metal
GW_HAZ Girth weld - heat affected zone

D&S Delamination & (micro)splits

Hard bands lead to delaminations & splits

- BM1: dispersed bands; BM2: uniformly distributed bands
- Deformation gradient
- Stress relaxation
- Other contributing factors: inclusions

Fisheye shape influenced by anisotropy

Weld metal

Mainly circular

Visual Ranking: Fisheyes & QC areas

Ranking scale

- 0 no QC areas
- 1 few small QC areas (<5)
- 2 many small QC areas (>=5)
- 3 1 big QC area (diam. > +-

1mm) + small QC areas

4 >1 big QC area + many small

QC areas

- → Air : no fisheyes/ QC areas
- → Hydrogen : common for all

QC Quasi-cleavage

HC Hydrogen charged SRB Smooth round bar R6/R2 Radii 6mm/2mm BM Base material **LW_WM** Longitudinal weld - weld metal

LW_HAZ Longitudinal weld - heat affected zone

GW_WM Girth weld - weld metal

GW_HAZ Girth weld - heat affected zone

Inclusions cause fisheyes in H charged samples

- → Oxides, carbides, sulphides inclusions distributed in the matrix
- → Fisheye: Pupil

Gas pores form pineapple slice in HAZ

- → Weld flaw on fusion line
- → Bigger initiation spots like gas pores
- → Similar morphology as fisheye
- → Pineapple slice
 = Weld flaw + quasicleavage fracture

HAZ: Heat affected zone

Brittle faceted fracture in welds

- → Transgranular/faceted region on fracture surface
- → Change in fracture mode

Learnings from fractography

- → Heterogeneous materials
- → Prominent features : dimples, delamination, splits, fisheyes, quasi-cleavage regions, pineapple slices, faceted areas
- → Sensitive spots : hard bands, inclusions and ferrite pearlite interfaces, weld flaws

Performance: hydrogen embrittlement indices

Thank you for your attention!

Jubica Doctoral student

SUSTAINABLE MATERIALS SCIENCE jubica.jubica@ugent.be

<u>Miscellaneous</u>

Orientation

LD : Longitudinal Direction Rolling direction

TD : Transverse Direction
Diameter

ND : Normal Direction Thickness

Banded MS - Base Metals

<u>Heterogeneous MS – Longitudinal Weld</u>

Weld metal - Heat affected zone (HAZ) - Base metal

Other microstructural details

Ferrite grain size (µm) BM1		BM2	ВМ3	BM4	
Inner	4,3 ± 0,3	7,1 ± 0,9	5,9 ± 0,3	4,6 ± 0,1	
Middle	5,5 ± 0,0	8,3 ± 1,9	7,2 ± 0,3	5,5 ± 0,3	
Outer	5,1 ± 0,4	6,2 ± 0,0	5,9 ± 0,3	4,7 ± 0,2	

*Pearlite fraction (%) BM1		BM2	вм3	BM4	
Inner	7,3 ± 0,3	20,2 ± 3,5	18,9 ± 0,8	6,5 ± 1,5	
Middle	13,3 ± 4,2	22,9 ± 1,7	22,3 ± 4,7	10,4 ± 1,3	
Outer	11,8 ± 1,9	20,0 ± 1,0	19,6 ± 1,7	8,1 ± 0,6	

*Pearlite fraction (%) can also contain M/A constituents

BM1 < BM2 also BM4 < BM3

★ Pearlite fraction rank

BM1 < BM2 also BM4 < BM3

- ★ Inclusion types : oxides, sulphides, carbides
- ★ Hardness range BM : Hardness range WM :
- ★ Cold bent no appreciable effect

<u>Inclusions – Types in Base Metals</u>

Quasi-static ex-situ tensile test

Electrochemical hydrogen charging: 18h at 0.8mA/cm² in 0.5M H₂SO₄ + 1g/l thiourea

Mechanical characteristics Hydrogen embrittlement indices EI = 100%[1-(X_{hydrogen}/X_{air})] Force displacement curves

<u>Hardness - slight variation in Base Metals</u>

Hardness map - Welds

Selection of samples for fractography

Chemistry

	С	N	Al	Si	Р	S	Ca	Ti
BM1	0.089	0.006	0.035	0.430	0.016	0.002	0.003	0.004
BM2/BMA	0.117	0.003	0.036	0.312	0.020	0.002	0.002	0.013
вм3	0.118	0.003	0.035	0.314	0.021	0.002	0.002	0.013
BM4	0.086	0.005	0.036	0.429	0.015	0.002	0.004	0.004
вмв	0.107	0.008	0.041	0.293	0.021	0.002	0.008	0.002
LW	0.090	0.005	0.020	0.320	0.019	0.003	0.001	0.009
GW	0.080	0.002	0.004	0.556	0.008	0.006	0.001	0.032
GWB	0.112	0.024	0.003	0.282	0.020	0.009	0.001	0.014
	V	Cr	Mn	Ni	Cu	Nb	Мо	Fe
BM1	0.090	0.036	1.701	0.050	0.029	0.049	0.005	97.412
BM2/BMA	0.004	0.112	1.527	0.047	0.033	0.042	0.020	97.683
вм3	0.004	0.113	1.546	0.047	0.034	0.044	0.020	97.647
BM4	0.091	0.036	1.684	0.050	0.029	0.047	0.005	97.431
вмв	0.010	0.022	1.606	0.037	0.019	0.076	0.243	97.465
LW	0.005	0.029	1.573	0.046	0.038	0.026	0.185	97.528
GW	0.002	0.021	1.318	0.705	0.073	0.009	0.007	97.084
GWB	0.014	0.014	0.791	0.030	0.030	0.016	0.387	98.144

