

Fundamentals of Pandas and Polars in scientific applications

•••

Igor Zubrycki, Lidia Lipińska-Zubrycka

Gliwice, 30.08.2024

Project partially funded by The National Centre for Research and Development, grant number LIDER/50/0203/L-11/19/NCBR/2020.

About us

Lidia Lipińska-Zubrycka

- Scientist / bioinformatician
- University of Warsaw

Igor Zubrycki

- Scientist / Machine learning specialist
- Lodz University of Technology
- R&D Machine Learning team manager

Scripts and link to Google Colab

Let's visit: https://github.com/AdoHaha/PyConPL24_Pandas_Polars

Dataset 1: Breast cancer data

The results show data obtained from a breast tumor biopsy along with the diagnosis: malignant or benign form of cancer.

Features:

- 1. ID number
- 2. Diagnosis (M = malignant (pl. złośliwy), B = benign (pl. łagodny))

Ten real-valued features are computed for each cell nucleus:

- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- symmetry
- fractal dimension ("coastline approximation" 1)

Dataset 1: Breast cancer dataset (Pandas)

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	conca\ points_meε
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.1471
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.0701
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.1279
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.1052
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.1043
		***	***			***				
564	926424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.1389
565	926682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.0979
566	926954	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.0530
567	927241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.1520
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.0000
569 rows × 33 columns										

- 1. Do we see differences between patients with benign and malignant forms of cancer based on the experimental data obtained?
- 2. Which of the determined parameters best describes the form of the cancer?

Dataset 2: Pneumatic robot dataset (Polars)

time	weight	gas_flow	pressure	laser	angle	angle_vel
f64	f64	f64	f64	f64	f64	f64
0.0	-0.253109	0.0	-0.968333	67.863029	0.036505	0.0
0.005	-0.253109	0.0	-0.968333	67.863029	0.036505	0.0
0.01	-0.253109	0.0	-1.4229	67.863029	0.036505	0.0
0.015	-0.253109	0.0	-1.486328	67.863029	0.036505	0.0
0.02	-0.253109	0.0	-1.528613	67.863029	0.036505	0.0

Bonus Dataset for Pandas: RNA tails

Real dataset from my work.

More details about ai after notebook 1.

Let's start with "Intro_Pandas"

	read_ID	chr	start_R1	stop_R1	strand_R1	gene_start	gene_stop	gene	coord_R2	cigar	
0	A01330:100:HJ2G7DRX2:1:1101:10059:25551:TTGAGT	1	3845085	3845186	*	3844742	3846645	SPAC4H3.10c	3844743	14S76M	A ⁻
1	A01330:100:HJ2G7DRX2:1:1101:11080:2268:CGTCCC	1	3845085	3845186		3844742	3846645	SPAC4H3.10c	3844745	13S77M	A
2	A01330:100:HJ2G7DRX2:1:1101:11442:27007:TGGTAG	- 1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844798	23S65M2S	
3	A01330:100:HJ2G7DRX2:1:1101:12138:28588:CGGAAA	1	3845085	3845186		3844742	3846645	SPAC4H3.10c	3844743	21S69M	A
4	A01330:100:HJ2G7DRX2:1:1101:12156:29215:ATTCCC	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844803	16S74M	
5	A01330:100:HJ2G7DRX2:1:1101:12165:29293:TCAACA	1	3845085	3845186		3844742	3846645	SPAC4H3.10c	3844779	15S75M	A
6	A01330:100:HJ2G7DRX2:1:1101:12319:21605:GATGAT	- 1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844784	17S71M2S	Т
7	A01330:100:HJ2G7DRX2:1:1101:12472:28604:CGGAAA	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844743	21S69M	A
8	A01330:100:HJ2G7DRX2:1:1101:1298:28917:CCTTTT	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	0	*	
9	A01330:100:HJ2G7DRX2:1:1101:13376:30827:GCTATT	1	3845085	3845186		3844742	3846645	SPAC4H3.10c	0	*	

Dataset 2: RNA tails

Dataset 2: RNA tails

Dataset 2: RNA tails

20 columns:

'read_ID', 'chr', 'start_R1', 'stop_R1', 'strand_R1', 'gene_start', 'gene_stop', 'gene', 'coord_R2', 'cigar', 'seq_R2', 'RNA_type', 'tail_fromcigar', 'tail_LENcigar', 'tail_fromGREP', 'tail_from', 'tail_type', 'stop_R2', 'distance_to_TES', 'tail'

	read_ID	chr	start_R1	stop_R1	strand_R1	gene_start	gene_stop	gene	coord_R2	cigar	
0	A01330:100:HJ2G7DRX2:1:1101:10059:25551:TTGAGT	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844743	14S76M	A ⁻
1	A01330:100:HJ2G7DRX2:1:1101:11080:2268:CGTCCC	1	3845085	3845186		3844742	3846645	SPAC4H3.10c	3844745	13S77M	A
2	A01330:100:HJ2G7DRX2:1:1101:11442:27007:TGGTAG	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844798	23S65M2S	
3	A01330:100:HJ2G7DRX2:1:1101:12138:28588:CGGAAA	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844743	21S69M	A
4	A01330:100:HJ2G7DRX2:1:1101:12156:29215:ATTCCC	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844803	16S74M	
5	A01330:100:HJ2G7DRX2:1:1101:12165:29293:TCAACA	1	3845085	3845186		3844742	3846645	SPAC4H3.10c	3844779	15S75M	A
6	A01330:100:HJ2G7DRX2:1:1101:12319:21605:GATGAT	- 1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844784	17S71M2S	Т
7	A01330:100:HJ2G7DRX2:1:1101:12472:28604:CGGAAA	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	3844743	21S69M	Δ
8	A01330:100:HJ2G7DRX2:1:1101:1298:28917:CCTTTT	1	3845085	3845186	•	3844742	3846645	SPAC4H3.10c	0	*	
9	A01330:100:HJ2G7DRX2:1:1101:13376:30827:GCTATT	1	3845085	3845186	-	3844742	3846645	SPAC4H3.10c	0	*	