

Aux colleurs

Merci aux collègues qui ont accepté de coller cette année en MPI et en MPI*. Les colles sont une composante importante de la préparation aux concours. Il s'agit de vérifier pendant la colle que les étudiants connaissent précisément les résultats de cours, et en même temps de leur apporter éventuellement un éclairage nouveau pour les faire progresser dans leur compréhension des raisonnements qu'ils doivent maîtriser.

Je vous remercie d'interroger systématiquement les étudiants sur un « exercice ou résultat classique », qu'ils auront préparé, puis de proposer un ou deux exercices en privilégiant les raisonnements très classiques aux astuces. Si l'exercice préparé est long, il pourra être tronqué.

Un rapide compte-rendu ainsi que les notes me seront transmises, de préférence par mail, ou alors dans mon casier.

Le programme officiel de la classe, identique aux MP/MP*, est disponible sur le site :

http://mpi.lamartin.fr

61 Fonctions usuelles

Révisions de première année :

- Fonctions puissances, positions relatives.
- Exponentielles, logarithmes, propriétés, graphes.
- Trigonométrie hyperbolique. Seule formule au programme : $\operatorname{ch}^2 x \operatorname{sh}^2 x = 1$.
- Trigonométrie circulaire. Utilisation du cercle trigonométrique.
- Trigonométrie circulaire réciproque. Définitions, dérivées, graphes.

62 Calcul asymptotique

Révisions de première année :

Petit o, grand O, équivalent, DL etc.

51 Suites numériques

Révisions de première année :

Récurrences.

Convergence, caractère borné, divergence. Opérations sur les suites convergentes. Limite par encadrement, convergence monotone, théorème des suites adjacentes.

Suites remarquables.

Suites récurrentes, plan d'étude, intervalle stable. Cas des fonctions contractantes. ($Pas\ d'étude\ trop\ compliquée\ avec\ f\ décroissante.$)

52 Séries numériques

Convergence absolue par comparaison du terme général au t.g. d'une série de référence.

Séries de Riemann, séries géométrique, série exponentielle.

Importance du lien suite-série.

Technique de comparaison somme/intégrale.

Méthode d'éclatement (développement asymptotique de u_n et étude des termes qui apparaissent).

Produit de Cauchy de deux séries numériques.

Règle de d'Alembert. (On n'utilise qu'exceptionnellement cette astuce pour étudier la convergence d'une série numérique.)

Remarque. La sommation des relations de comparaison sera traitée plus tard dans l'année.

Exercices et résultats classiques à connaître

61.1

Montrer que, pour tout x > 0:

$$\operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} = \frac{\pi}{2}$$

Et pour x < 0?

61.2

Pour $y \in \mathbb{R}$ fixé, résoudre l'équation, d'inconnue $x \in \mathbb{R}_+$:

$$\operatorname{ch} x = y$$

62.1

Soit $(u_n)_n$ une suite réelle décroissante telle que :

$$u_{n+1} + u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$

Déterminer un équivalent simple de u_n .

62.2

(a) Former le développement limité à l'ordre 3 en 0 de :

$$\tan x = \frac{\sin x}{\cos x}$$

(b) Prolonger ce développement limité à l'ordre 5 en exploitant :

$$\tan(\operatorname{Arctan} x) = x$$

(c) Prolonger ce développement limité à l'ordre 7 en exploitant :

$$\tan'(x) = 1 + \tan^2(x)$$

51.1

Étudier la suite définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sin u_n & \forall n \in \mathbb{N} \end{cases}$$

51.2

Étudier $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par :

$$\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \frac{1}{2}\cos u_n & \forall n \in \mathbb{N} \end{cases}$$

51.3

On considère une suite réelle $(u_n)_n$, et on note $v_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ la moyenne arithmétique de ses premiers termes.

- (a) On suppose que $u_n \xrightarrow[n \to +\infty]{} 0$. Démontrer que la suite $(v_n)_n$ converge vers 0.
- (b) On suppose que $u_n \xrightarrow[n \to +\infty]{} \ell$. Démontrer que la suite $(v_n)_{n \in \mathbb{N}}$ est convergente et déterminer sa limite.
- (c) Que penser de la réciproque?

51.4

(a) Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique réel $x_n \in I_n = \left[n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right]$ tel que :

$$\tan x_n = x_n$$

(b) Montrer qu'il existe des réels a, b, c, d que l'on déterminera tels que :

$$x_n \underset{n \to +\infty}{=} a n + b + \frac{c}{n} + \frac{d}{n^2} + o\left(\frac{1}{n^2}\right)$$

52.1

On considère la suite $(u_n)_n$ définie par

$$\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$

En utilisant le lien suite-série, montrer que $(u_n)_n$ converge.

On note traditionnellement γ sa limite, appelée **constante d'Euler**, et on a donc établi :

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

52.2

Pour $n \in \mathbb{N}^*$, on pose $\sigma_n = \sum_{k=0}^n \sin k$.

- (a) Montrer que $(\sigma_n)_{n\geqslant 1}$ est bornée.
- (b) En déduire que la série $\sum_{k\geqslant 1} \frac{\sin k}{k}$ converge.

52.3

Déterminer la nature de la série de terme général :

$$u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

52.4

Étudier la série numérique $\sum u_n$ lorsque :

(a)
$$u_n = \frac{1}{n^2 \ln n}$$

(d)
$$u_n = \frac{1}{n \ln n}$$

(g)
$$u_n = \frac{1}{n^{\alpha} \ln^{\beta} n}$$

(b)
$$u_n = \frac{\ln n}{n^2}$$

(e)
$$u_n = \frac{1}{n \ln^2 n}$$

(c)
$$u_n = \frac{1}{\sqrt{n} \ln n}$$

(f)
$$u_n = \frac{1}{n\sqrt{\ln n}}$$

Exercices du CCINP à travailler

0.5

GNP 43

Soit $x_0 \in \mathbb{R}$.

On définit la suite (u_n) par $u_0 = x_0$ et, $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

- 1. (a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .
 - (b) Montrer que (u_n) converge et déterminer sa limite.
- 2. Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que : $\forall x \in \mathbb{R}$, $h(x) = h(\operatorname{Arctan} x)$.

0.6

GNP 55

Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que :

$$\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$$

- 1. (a) Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.
 - (b) Déterminer, en le justifiant, la dimension de E.
- 2. Dans cette question, on considère la suite de E définie par : $u_0 = 1$ et $u_1 = 1$. Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n.

Indication: discuter suivant les valeurs de a.

0.7

GNP 46

On considère la série : $\sum_{n \ge 1} \cos \left(\pi \sqrt{n^2 + n + 1} \right).$

1. Prouver que, au voisinage de $+\infty$:

$$\pi\sqrt{n^2 + n + 1} = n\pi + \frac{\pi}{2} + \alpha \frac{\pi}{n} + O\left(\frac{1}{n^2}\right)$$

où α est un réel que l'on déterminera.

- 2. En déduire que $\sum_{n\geqslant 1}\cos\left(\pi\sqrt{n^2+n+1}\right)$ converge.
- 3. $\sum_{n\geqslant 1}\cos\left(\pi\sqrt{n^2+n+1}\right)$ converge-t-elle absolument?

0.8

GNP 8.1

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante positive de limite nulle.
 - (a) Démontrer que la série $\sum (-1)^k u_k$ est convergente.

Indication: on pourra considérer $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ avec $S_n = \sum_{k=0}^n (-1)^k u_k$.

(b) Donner une majoration de la valeur absolue du reste de la série $\sum (-1)^k u_k$.