

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =120V, I_D =63A $R_{DS(ON)}$ =11.5m Ω , typical (TO-220)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST12N115-TC	VST12N115	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	120	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	63	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100°C)	45	А	
Pulsed Drain Current	I _{DM}	252	A W	
Maximum Power Dissipation	P _D	100		
Derating factor		0.67	W/°C	
Single pulse avalanche energy (Note 4)	E _{AS}	288	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case	Rejc	1.5	°C/W
--------------------------------------	------	-----	------

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25[°]Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	120		-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =120V,V _{GS} =0V	-	-	1	μA		
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.0	4.0	V		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =31.5A	-	11.5	12.5	mΩ		
Forward Transconductance	g FS	$V_{DS}=5V,I_{D}=31.5A$		50	-	S		
Dynamic Characteristics (Note3)								
Input Capacitance	C _{lss}	V 00V/V 0V	-	2230	-	pF		
Output Capacitance	Coss	V_{DS} =60V, V_{GS} =0V, F=1.0MHz	-	170	-	pF		
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz	-	19	-	pF		
Switching Characteristics (Note 3)								
Turn-on Delay Time	t _{d(on)}		-	12	-	nS		
Turn-on Rise Time	t _r	V_{DD} =60V, I_{D} =31.5A	-	9	-	nS		
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω	-	29	-	nS		
Turn-Off Fall Time	t _f		-	7	-	nS		
Total Gate Charge	Qg	\/ -60\/ -21.5A	-	45	-	nC		
Gate-Source Charge	Q _{gs}	$V_{DS}=60V,I_{D}=31.5A,$ $V_{GS}=10V$	-	15	-	nC		
Gate-Drain Charge	Q _{gd}	VGS-10V	-	14.5	-	nC		
Drain-Source Diode Characteristics								
Diode Forward Voltage (Note 2)	V _{SD}	V _{GS} =0V,I _S =31.5A	-	-	1.2	V		
Diode Forward Current	rward Current I _S		-	-	63	Α		
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$, $I_F = 31.5A$	-	55	-	nS		
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	98	-	nC		

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 3. Guaranteed by design, not subject to production
- 4. EAS condition : Tj=25 $^{\circ}\text{C}$,V $_{DD}$ =50 V ,V $_{G}$ =10 V ,L=0.25 mH ,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Gate Charge

Figure 5 Source- Drain Diode Forward

Figure 6 Capacitance vs Vds

Figure 7 Power De-rating

T_J-Junction Temperature (°C) **Figure 9 Current De-rating**

Figure 8 Safe Operation Area

Figure 10 Rdson-Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance