Отчет по лабораторной работе №7

Эффективность рекламы

Горбунова Ярослава Михайловна

Содержание

1	Цель работы	5
2	Задание 2.1 Постановка задачи. Эффективность рекламы (Вариант 23)	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	10
5	Выводы	13
6	Список литературы	14

List of Tables

List of Figures

3.1	рис.1: График решения уравнения модели Мальтуса	8
3.2	рис.2: График логистической кривой	9
4.1	рис.3: Код программы для построения графиков модели	10
4.2	рис.4: График распространения рекламы для первого случая	11
4.3	рис.5: График распространения рекламы для второго случая	11
4.4	рис.6: График изменения скорости распространения рекламы для	
	второго случая	12
4 5	пис 7. График распространения рекламы для третьего случая	12

1 Цель работы

- 1. Изучить задачу об эффективности рекламы
- 2. Построить графики распространения рекламы для трёх случаев
- 3. Для случая 2 определить, в какой момент времени скорость распространения рекламы будет иметь максимальное значение

2 Задание

2.1 Постановка задачи. Эффективность рекламы (Вариант 23)

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\begin{aligned} &1. \ \frac{dn}{dt} = (0.51 + 0.000099n(t))(N - n(t)) \\ &2. \ \frac{dn}{dt} = (0.000019 + 0.99n(t))(N - n(t)) \\ &3. \ \frac{dn}{dt} = (0.99t + 0.3cos(4t)n(t))(N - n(t)) \end{aligned}$$

При этом объем аудитории N=945, в начальный момент о товаре знает 13 человек. Для случая 2 определите, в какой момент времени скорость распространения рекламы будет иметь максимальное значение [2].

3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным [1].

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент временит из числа потенциальных покупателей знает лишь покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что dn/dt - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит

от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$dn/dt = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t)) \tag{1}$$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис.1):

Figure 3.1: рис.1: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой (рис.2):

Figure 3.2: рис.2: График логистической кривой

4 Выполнение лабораторной работы

Выполнение работы будем проводить, используя OpenModelica.

Напишем программу для построения графиков распространения рекламы (рис.3).

```
1 model lab07
    parameter Real N = 945;
 4
     parameter Real n_0 = 13;
 5
 6
    Real n1(start = n_0);
 7
    Real n2(start = n_0);
 8
     Real n3(start = n_0);
 9
10 equation
11
12
     // 1 случай
     der(n1) = (0.51 + 0.000099*n1)*(N - n1);
13
14
15
     // 2 случай
     der(n2) = (0.000019 + 0.99*n2)*(N - n2);
16
17
18
     // 3 случай
19
     der(n3) = (0.99*time + 0.3*cos(4*time)*n3)*(N - n3);
20
21 end lab07;
```

Figure 4.1: рис.3: Код программы для построения графиков модели

Смоделируем график распространения рекламы для первого случая (рис.4).

Figure 4.2: рис.4: График распространения рекламы для первого случая

Смоделируем график распространения рекламы и график изменения скорости распространения рекламы для второго случая (рис.5-6).

Figure 4.3: рис.5: График распространения рекламы для второго случая

Figure 4.4: рис.6: График изменения скорости распространения рекламы для второго случая

Скорость распространения рекламы будет иметь максимальное значение сразу после начала рекламной кампании.

Смоделируем график распространения рекламы для третьего случая (рис.7).

Figure 4.5: рис.7: График распространения рекламы для третьего случая

5 Выводы

- 1. Изучена задача об эффективности рекламы
- 2. Построены графики распространения рекламы для трёх случаев
- 3. Для случая 2 определено, в какой момент времени скорость распространения рекламы будет иметь максимальное значение

6 Список литературы

- 1. Методические материалы курса
- 2. Задания к лабораторной работе N^{o} 7 (по вариантам)