NUSC Technical Report 6885 11 January 1984

Extension of Finitely Conducting Earth-Image-Theory Results To Any Range

Peter R. Bannister
Submarine Electromagnetic Systems Department

4

16

ಣ

-

B

Naval Underwater Systems Center Newport, Rhode Island / New London, Connecticut

CELECTE MAR 1 9 1984

Approved for public release; distribution unlimited.

Preface

This report was prepared under NUSC Project No. A59007, "ELF Propagation RDT&E" (U), Principal Investigator, P. R. Bannister (Code 3411), Navy Program Element No. 11401N and Project No. X0792-SB, Naval Electronic Systems Communications Systems Project Office, D. Dyson (Code FME 110), Program Manager ELF Communications, Dr. B. Kruger (Code PME 110-X1).

The analysis and write up of this report was performed while the author was occupying the Research Chair in Applied Physics at the Naval Postgraduate School, Monterey, CA. The author would especially like to thank Professors Otto Heinz and John Dyer and Dean Bill Tolles for recommending him to occup/inis post and NAVSEA (Code 63%) for sponsoring the Chair.

The Technical Reviewer for this report was Anthony Brunc-

Reviewed and Approved: 11 January 1984

Head, Submarine Electromagnetic Systems Department

The author of this report is located at the New London Laboratory. Naval Underwater Systems Center, New London, Connecticut 06320.

REPORT DOCUMENTA	TION PAGE	BEFORE COMPLETING FORM
1 REPORT NUMBER TR 6885	2. GOVT ACCESSION NO.	1. RECIPIENT'S CATALOG NUMBER
4. TITLE Land Submitter EXTENSION OF FINITELY CONDUCTI THEORY RESULTS TO ANY RANGE		S. TYPE OF REPORT & PERIOD COVERED
		6. PERFORMING ORG. REPORT HUMBER
7 AUTHORIA Peter R. Bannister		8. CONTRACT OR GRANT NUMBERIN
 PERFORMING ORGANIZATION NAME AND ADDRESS Naval Underwater Systems Cente New London Laboratory New London, CT 06320 	er	10. PROGRAM ELEMENT, PROJECT, TABK AREA & WORK UNIT HUMBERS
11 CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE 11 January 1984
		13. HUMBER OF PAGES
14. MONITORING AGENCY NAME & ADCRESS of different from	Controlling Offices	15. SECURITY CLASS. (of this report) UNCLASSIFIED
		156. DECLASSIFICATION / DOWNGRADING SCHEDULE
OISTP BUTTON STATEMENT tof the abstract ensures in Black	M. if different from Reports	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on receive side if necessary and iden	Hify by block numbers	
Electromagnetic Fields	Horizontal Magnetic Vertical Electric D Vertical Magnetic D	ipole
Finitely conducting earth to determine new formulas for the four elementary dipole ante-to-surface, and surface-to-surfon the use of these formulas is $ n^2 \ge 10$). They are valid at a earth case. These formulas reduced	-image-theory techn the electric and ma ennas for the air-t face propagation ca s that the index of any frequency and a	gnetic fields produced by o-air, surface-to-air, airses. The only restriction refraction be large (i.e., t any range for the flat-

DD. FORM 1473

the absorbe carne of M squared Dor = 10)

20. (Cont'd)

(1) the measurement distance is much less than a free-space wavelength, (2) the Sommerfeld numerical distance is small, or (3) the measurement distance is much greater than an earth-skin depth.

In terms of computer time, these new formulas can be evaluated in fractions of a minute compared with hours for the complete numerical evaluation of the exact Sommerfeld integrals.

These formulas are intended to supplement the author's recently derived subsurface-to-subsurface and air-to-air propagation formulas.

TABLE OF CONTENTS

																		1	Page
LIST OF TABLES	• 3	• .		~			•	•		•				•		•	•		ii
GLOSSARY OF SYMBOLS	•				•	• :	*	•				•				•			iii
INTRODUCTION	• :	· •	•				•}	• 4	٠.			•		-				•	1
AIR-TO-AIR PROPAGATION DERIVATION	PRO	OCEI	OUR	E		.•	•					•		•		•		*	2
SURFACE-TO-AIR PROPAGATION	٠		٠.				~ ·	. .			•				٠	•	•	•	10
AIR-TO-SURFACE PROPAGATION			•		•	•		•				•				•	•	•	10
SURFACE-TO-SURFACE PROPAGATION .				~	*	: .	•	• ,			•	•	•				•,	•	10
CONCLUSIONS	~			•		•	. • `	• 1			٠	•		٠		•	•	•	11
REFERENCES	•			÷				- ,	•; •	æ	•	•					•	•	33
APPENDIX - USEFUL APPROXIMATIONS	WHI	EN I	R ₁	>>	i	d		•		•					•				A-1

Accession For NTIS GRA&I DTIC TAB Unannoyneed

LIST OF TABLES

Table		Page
1	Electric-Field Air-to-Air Propagation Formulas ($ n^2 \ge 10$)	. 13
2	Magnetic-Field Air-to-Air Propagation Formulas ($ n^2 \ge 10$)	. 17
3	Electric-Field Air-to-Air Propagation Formulas for σ_1 ,	. 19
4	Magnetic-Field Air-to-Air Propagation Formulas for o₁ → ∞	. 21
5	Electric-Field Surface-to-Air Propagation Formulas $(n^2 \ge 10)$, $[R^2 = o^2 + z^2, \frac{o^2}{1} = \mu^2 + (d + z)^2] \dots$. 23
6	Magnetic-Field Surface-to-Air Propagation Formulas $(n^2 \ge 10)$, $[R^2 = o^2 + z^2, R_1^2 = \rho^2 + (d+z)^2]$. 25
7	Electric-Field Air-to-Surface Propagation Formulas $(n^2 \ge 10)$, $[D^2 = \rho^2 + h^2, D_j^2 = \rho^2 + (1+h)^2] \dots$. 27
8	Magnetic-Field Air-to-Surface Propagation Formulas $(n^2 \ge 10)$, $[D^2 = \sigma^2 + h^2, D_1^2 = \sigma^2 + (d+h)^2]$. 29
9	Surface-to-Surface Propagation Formulas ($ n^2 \ge 10$), $(\rho_i^2 = \mu^2 + d^2, \cos \psi_i = \rho/\rho_i, \sin \psi_i = d/\rho_i)$. 31

GLOSSARY OF SYMBOLS

$$\begin{array}{lll} & \frac{\sin\psi_1 + \Delta F(w)}{\sin\psi_1 + \Delta} = \left(\frac{1+\Gamma_{i1}}{2}\right) + \left(\frac{1-\Gamma_{i1}}{2}\right) F(w) \\ & \frac{\sin^2\psi_1 - \Delta^2 F(w)}{\sin\psi_1 + \Delta} = \left(\frac{1+\Gamma_{i1}}{2}\right) \sin\psi_1 - \left(\frac{1-\Gamma_{i1}}{2}\right) \Delta F(w) = \sin\psi_1 - \Delta A \\ & D & (\rho^2 + h^2)^{1/2} \; (\text{meters}) \\ & D_i & [\rho^2 + (d+h)^2]^{1/2} \; (\text{meters}) \\ & & 2/\gamma_1 \; \text{for} \; [n^2] >> 1, \; \text{complex image depth (meters}) \\ & E_p & \text{Horizontal electric-field component in the ρ direction (volts/meter)} \\ & E_p & \text{Horizontal electric-field component in the ϕ direction (volts/meter)} \\ & E_z & \text{Vertical electric-field component (volts/meter)} \\ & F(w) & \text{Or} \; F(w_0), \; \text{Sommerfold surface-wave attenuation factors} \\ & \text{Height} \; (h \geq 0) \; \text{of transmitting antenna with respect to earth's surface (meters)} \\ & \text{Horizontal electric dipole} \\ & \text{Horizontal magnetic-field component in the ρ direction (amperes/meter)} \\ & \text{Horizontal magnetic-field component in the ϕ direction (amperes/meter)} \\ & \text{Horizontal magnetic-field component (amperes/meter)} \\ & \text{Urrent (amperes)} \\ & J_0(\lambda \rho) \; \text{Bessel function of the first kind, order zero, with argument $\lambda \rho$} \\ & \text{m} & \text{Magnetic dipole moment (ampere-meters}^2) \\ & \text{n} & \gamma_1/\gamma_0, \; \text{index of refraction} \\ & \text{Electric current moment (ampere-meters})} \\ & \text{R}_{n} & [\rho^2 + (z-h)^2]^{1/2} \; (\text{meters}) \\ \end{array}$$

$$R_1 = [\rho^2 + (z + h)^2]^{1/2}$$
 (meters)

$$R_2 = [\rho^2 + (d + z + h)^2]^{1/2}$$
 (meters)

$$R_i = [\rho^2 + (d + z)^2]^{1/2}$$
 (meters)

t Time (seconds)

$$u_{n} = (\lambda^{2} + \gamma_{i}^{2})^{1/2} \text{ (meters}^{-1}) \text{ (air)}$$

$$u_1 = (\lambda^2 + \gamma_1^2)^{1/2}$$
 (meters⁻¹) (earth)

VED Vertical electric dipole

VMD Vertical magnetic dipole

w Or w₀, Sommerfeld numerical distances

Height $(z \ge 0)$ of receiving antenna with respect to earth's surface (meters)

$$\Gamma_{H} = -\frac{\sin \psi_1 - \Delta}{\sin \psi_1 + L}$$
 for $|n^2| >> 1$, Freshel reflection coefficient for vertical polarization

$$\gamma_0$$
 $(-\omega^2 \mu_0 \epsilon_0)^{1/2} = i2\pi/\lambda_0$, upper half-space (air) propagation constant (meters⁻¹)

$$\gamma_1$$
 (1 ω_1^2 , $\sigma_1^2 - \omega^2 \nu_1 \varepsilon_1^2$) 1.'2, lower half-space (earth) propagation constant (meters⁻¹)

$$\Delta \qquad \gamma_0/\gamma_1 = 1/r.$$

$$\delta = \left(\frac{2}{\omega \mu_0 \sigma_1}\right)^{1/2} \left\{ \left(\frac{\omega^2 \epsilon_1^2}{\sigma_1^2} + 1\right)^{1/2} - \frac{\omega \epsilon_1}{\sigma_1} \right\}^{-1/2} \quad \text{skin depth in the water} \\ \text{or earth (meters)}$$

 ϵ_0 = $10^{-9}/36\pi$ farads/meter, permittivity of free space

 ϵ_1 Permittivity of lower half-space (earth) (farads/meter)

Dummy integration variable in the basic Sommerfeld integrals (meters⁻¹)

λ₀ Free-space wavelength (meters)

 ρ $(x^2 + y^2)^{1/2}$, radial distance in a cylindrical coordinate system (meters)

 $o_i = (\rho^2 + d^2)^{1/2}$ (meters)

 σ_1 Conductivity of the lower half-space (earth) (Siemens/meter)

 ϕ tan⁻¹(y/x), azimuth angle in a cylindrical coordinate system

$$\begin{array}{ll} \mu = \mu_0 &= 4\pi \times 10^{-7} \text{ henries/meter, permeability of free space} \\ \psi &= \tan^{-1}(z/\rho) \text{ or } \tan^{-1}(h/\rho), \text{ elevation angle} \\ \psi_1 &= \tan^{-1}\!\left(\!\frac{d+z}{\rho}\!\right) \text{ or } \tan^{-1}\!\left(\!\frac{d+h}{\rho}\!\right) \text{ or } \tan^{-1}\!\left(\!\frac{d}{\rho}\!\right), \text{ elevation angle} \\ \psi_0 &= \tan^{-1}\!\left(\!\frac{z-h}{\rho}\!\right), \text{ elevation angle} \\ \psi_1 &= \tan^{-1}\!\left(\!\frac{z+h}{\rho}\!\right), \text{ elevation angle} \\ \psi_2 &= \tan^{-1}\!\left(\!\frac{d+z+h}{\rho}\!\right), \text{ elevation angle} \end{array}$$

ω 2πf radiass/second, angular frequency

EXTENSION OF FINITELY CONDUCTING EARTH-IMAGE THEORY RESULTS TO ANY RANGE

INTRODUCTION

During the past several years, finitely conducting earth-image theory techniques have proved quite useful in determining the quasi-static fields of antennas located near the earth's surface for both single-layered and multi-layered earths. (For detail references, see Bannister. 1,2) The quasi-static range is defined as that range where the measurement distance is much less than a free-space wavelength.

Physically, the essence of the quasi-static-range finitely conducting earth-image theory technique is to replace the finitely conducting earth by a perfectly conducting earth located at the (complex) depth d/2, where d = $2/\gamma_1$ and $\gamma_1 = \left[i\omega\mu_0(\sigma_1 + i\omega\epsilon_1)\right]^{1/2}$ is the propagation constant in the earth (see figure 1 for the image-theory geometry). Analytically, this corresponds to replacing the algebraic "reflection coefficient," $(u_1 - \lambda)/(u_1 + \lambda)$, in the exact integral expressions with $\exp(-\lambda d)$, where λ is the variable of integration. For antennas located at or above the earth's surface, the general image-theory approximation is valid throughout the quasi-static range. 1,2

Recently 2,4 we have shown, for horizontally polarized sources, that finitely conducting earth-image theory techniques are not limited to the

Figure 1. Image-Theory Geometry

quasi-static range alone. That is, by replacing the horizontally polarized algebraic "reflection coefficient," $(u_1-u_0)/(u_1+u_0)$, with $\exp(-u_0d)$, we demonstrated that finitely conducting earth-image theory techniques can be utilized at any range from the source. Mohsen⁵ has validated and extended these results to include higher-order terms that correspond to multiple images at the same location. Mahmoud and Metwally, 6 employing discrete and discrete-plus-continuous images, have computed satisfactorily the change in the input impedance of a vertical magnetic dipole (VMD) due to the presence of the earth.

We have also recently shown^{7,8} that, for small Sommerfeld numerical distances, nearfield and farfield range finitely conducting earth-image theory techniques can also be employed for determining the fields produced by horizontal electric dipole (HED) and horizontal magnetic dipole (HMD) antennas (which are a combination of vertically and horizontally polarized sources.

It is the purpose of this report to extend the use of finitely conducting earth-image theory techniques to any range and to present new formulas for the electric and magnetic fields produced by the four elementary dipole antennas for the air-to-air, surface-to-air, air-to-surface, and surface-to-surface propagation cases. The only restriction on the use of these formulas is that $|\eta^2| \ge 10$, where $n = \gamma_1/\gamma_0$. They are valid at any frequency and at any range for the flat-earth case. These formulas reduce to the author's previously derived results when either (1) the Sommerfeld numerical distance is small, 7,8 (2) the measurement distance is much less than a free-space wavelength, 1,2 or (3) the measurement distance is much greater than an earth-skin depth.

In this report, the four elementary dipole antennas [vertical electric dipole (VED), VMD, HED, and HMD] are situated at height h (h \geq 0) with respect to a cylindrical coordinate system (ρ , ϕ ,z) and are assumed to carry a constant current, I. The axes of the VED and HED (of dipole moment p) are oriented in the z and x directions, respectively, while the axes of the VMD and HMD (of dipole moment m) are oriented in the z and y directions, respectively. The earth, which is assumed to be a homogeneous medium with conductivity σ_1 and dielectric constant ε_1 (= $\varepsilon_1 \varepsilon_0$), occupies the lower half-space (z < 0) and the air occupies the upper half-space (z > 0). The magnetic permeability of the earth is assumed to equal μ_0 , the permeability of free space. Meter-kilogram-second (MKS) units are employed and a suppressed time factor of $\exp(i\omega t)$ is assumed.

AIR-TO-AIR PROPAGATION DERIVATION PROCEDURE

As an example of our derivation procedure, consider an HED source. When h and z are ≥ 0 , the Sommerfeld integral expressions for the HED Hertz vector are 10-12

$$\Pi_{X} = \frac{p}{4\pi i \omega \epsilon_{0}} \left[\frac{e^{-\gamma_{0}R_{0}}}{R_{0}} - \frac{e^{-\gamma_{0}R_{1}}}{R_{1}} + 2 \int_{0}^{\infty} \frac{e^{-u_{0}(z+h)}}{u_{1} + u_{0}} J_{0}(\lambda \rho) \lambda d\lambda \right]$$
(1)

and

$$\Pi_{z} = \frac{p \cos \phi}{4\pi i \omega \epsilon_{0}} \times \frac{\partial}{\partial \rho} \int_{0}^{\infty} \frac{2(u_{1} - u_{0})}{\gamma_{1}^{2} u_{0} + \gamma_{0}^{2} u_{1}} e^{-u_{0}(z+h)} J_{0}(\lambda \rho) \lambda d\lambda , \qquad (2)$$

where

$$R_0^2 = \rho^2 + (z - h)^2,$$

$$R_1^2 = \rho^2 + (z + h)^2,$$

$$u_0^2 = \lambda^2 + \gamma_0^2,$$

$$u_1^2 = \lambda^2 + \gamma_1^2,$$

$$\gamma_0^2 = -\omega^2 \mu_0 \varepsilon_0, \text{ and}$$

$$\gamma_1^2 = i\omega \mu_0 (\sigma_1 + i\omega \varepsilon_1).$$

From equations (1) and (2), utilizing the identity $(u_1 - u_0)(u_1 + u_0) = \gamma_1^2 - \gamma_0^2$, we have

$$\vec{\nabla} \cdot \vec{\mathbf{H}} = \frac{\mathbf{p} \cos \phi}{4\pi \mathbf{i}\omega\varepsilon_0} \times \frac{3}{3\rho} \left[\frac{e^{-\gamma_0 R_0}}{R_0} - \frac{e^{-\gamma_0 R_1}}{R_1} + \int_0^{\infty} \frac{2\gamma_0^2 e^{-u_0(z+h)}}{\gamma_1^2 u_0 + \gamma_0^2 u_1} J_0(\lambda\rho) \lambda d\lambda \right]. \quad (3)$$

For $|n^2| >> 1$, we have shown that 2 4,7,8

$$\frac{u_1 - u_0}{u_1 + u_0} - e^{-u_0 d}$$
 (4)

and

$$1 - \left(\frac{u_1 - u_0}{u_1 + u_0}\right) = \frac{2u_0}{u_1 + u_0} - 1 - e^{-u_0 d}, \qquad (5)$$

where

$$d \sim 2/\gamma_1$$
 . (6)

If we use equations (1) and (5) and Sommerfeld's integral, 11

$$S_{1} = \int_{0}^{\infty} e^{-u_{0}(z+h)} J_{0}(\lambda \rho) \frac{\lambda}{u_{0}} \times d\lambda = \frac{e^{-\gamma_{0}R_{1}}}{R_{1}}$$
 (7)

results in^{2,7,8}

TR 6885

$$\Pi_{X} = \frac{I k}{4\pi i \omega \epsilon_{0}} \left(\frac{e^{-\gamma_{0} R_{0}}}{\kappa_{0}} - \frac{e^{-\gamma_{0} R_{1}}}{R_{1}} + \frac{e^{-\gamma_{0} R_{1}}}{R_{1}} - \frac{e^{-\gamma_{0} R_{2}}}{R_{2}} \right) \\
= \frac{I k}{4\pi i \omega \epsilon_{0}} \left(\frac{e^{-\gamma_{0} R_{0}}}{R_{0}} - \frac{e^{-\gamma_{0} R_{2}}}{R_{2}} \right),$$
(8)

where $R_2^2 = \rho^2 + (d + z + h)^2$. This equation is valid at any range from the source.

Since $\gamma_0^2/\gamma_1^2 = \Delta^2 = 1/n^2$, equation (3) can be rewritten as

$$\vec{\nabla} \cdot \vec{\pi} = \frac{p \cos \phi}{4\pi i \omega \epsilon_0} \times \frac{3}{3\epsilon} \left(\frac{e^{-\gamma_0 R_0}}{R_0} - \frac{e^{-\gamma_0 R_1}}{R_1} + I_{DIV} \right), \tag{9}$$

where

$$I_{DIV} = \int_0^\infty \frac{2\Delta^2 e^{-u_0(z+h)}}{u_0 + \Delta^2 u_1} J_3(\lambda_2)^{\lambda} d\lambda . \qquad (10)$$

Since

$$\frac{1}{u_0 + \Delta^2 u_1} = \frac{1}{u_0} - \left(\frac{1}{u_0} - \frac{1}{u_0 + \Delta^2 u_1}\right) = \frac{1}{u_0} - \frac{\Delta^2 u_1}{u_0 (u_0 + \Delta^2 u_1)}, \quad (11)$$

then, from equations (7) and (11),

$$I_{DIV} = 2\Delta^{2} \left[\frac{e^{-\gamma_{0}R_{1}}}{R_{1}} - \int_{0}^{\infty} \frac{\Delta^{2}u_{1}e^{-u_{0}(z+h)}}{u_{0}(u_{0} + \Delta^{2}u_{1})} J_{0}(\lambda_{P})\lambda d\lambda \right]$$

$$= \left[\begin{array}{c} \text{small So...} \\ \text{merfeld} \\ \text{numerical} \\ \text{distance} \\ \text{term} \end{array} \right] + \left[\begin{array}{c} \text{term to account} \\ \text{for larger} \\ \text{numerical} \\ \text{distances} \end{array} \right]$$

$$(12)$$

Since $|n^2| >> 1$ ($|\Delta^2| << 1$), we can set the function u_1 in the second term of equation (12) equal to γ_1 , the propagation constant in the earth. Therefore,

$$\Delta^2 \mathbf{u}_1 + \Delta^2 \mathbf{\gamma}_1 = \mathbf{\gamma}_0 \Delta \tag{13}$$

and

$$I_{DIV} \sim 2L^{2} \left[\frac{e^{-\gamma_{0}R_{1}}}{R_{1}} - \int_{0}^{\infty} \frac{\gamma_{0}\Delta e^{-u_{0}(z+h)}}{u_{0}(u_{0} + \gamma_{0}\Delta)} J_{0}(\lambda\rho)\lambda\alpha\lambda \right]$$

$$= 2\Delta^{2} \left(\frac{e^{-\gamma_{0}R_{1}}}{R_{1}} - P \right). \tag{14}$$

Since $\left|\gamma_0\Delta\right|<<1,$ the integral P will be of importance only when $\left|\gamma_0R_1\right|>>1.$ Waitl0,13 has shown that, when $\left|n^2\right|>>1$ and $\left|\gamma_0R_1\right|>>1,$

$$P = \left(\frac{\Delta}{\sin\psi_1 + \Delta}\right) [1 - F(w)] \frac{e^{-\gamma_0 R_1}}{R_1}, \qquad (15)$$

where

$$F(w) \sim 1 - i(\pi w)^{1/2} e^{-W} erfz(iw^{1/2})$$
 (16)

is the Sommerfeld surface-wave attenuation function, $\sin \psi_1 = (z + h)/R_1$, and

$$w \sim -\frac{\gamma_0 R_1}{2} (\sin \psi_1 + \Delta)^2 \tag{17}$$

is the Sommerfeld numerical distance. For small numerical distances $F(w) \sim 1$, while for large numerical distances and negative arguments, $F(w) \sim -1/(2w)$.

For $\left|n^2\right| >> 1$, the Fresnel reflection coefficient for vertical polarization reduces to

$$\Gamma_{II} = \frac{\sin \psi_1 - \Delta}{\sin \psi_1 + \Delta} . \tag{18}$$

Since

$$\frac{1-\Gamma_{11}}{2}=\frac{\Delta}{\sin\psi_1+\Delta},\qquad (19)$$

equation (15) can be rewritten as

$$P \sim \left(\frac{1 - \Gamma_{11}}{2}\right) [1 - F(w)] \frac{e^{-\gamma_0 R_1}}{R_1}$$
 (20)

Therefore, from equations (14) and (20),

$$I_{DIV} - \frac{2\Delta^2 e^{-\gamma_0 R_1}}{R_1} \left\{ 1 - \left(\frac{1 - \Gamma_{II}}{2} \right) [1 - F(w)] \right\} = \frac{2\Delta^2 A e^{-\gamma_0 R_1}}{R_1}, \quad (21)$$

where

$$A = 1 - \left(\frac{1 - \Gamma_{II}}{2}\right) [1 - F(w)]$$

$$= \left(\frac{1 + \Gamma_{II}}{2}\right) + \left(\frac{1 - \Gamma_{II}}{2}\right) F(w) = \frac{\sin \psi_1 + \Delta F(w)}{\sin \psi_1 + \Delta}.$$
(22)

Thus, from equations (9) and (21),

$$\vec{\nabla} \cdot \vec{\Pi} = \frac{p \cos \phi}{4\pi i \omega \epsilon_0} \times \frac{\partial}{\partial \rho} \left(\frac{e^{-\gamma_0 R_0}}{R_0} - \frac{e^{-\gamma_0 R_1}}{R_1} + \frac{2\Delta^2 A e^{-\gamma_0 R_1}}{R_1} \right). \tag{23}$$

Another factor that we will encounter in the derivation of the field-strength components is the factor B, which is

$$E = \sin \psi_1 - \Delta A = \left(\frac{1 + \Gamma_{II}}{2}\right) \sin \psi_1 - \left(\frac{1 - \Gamma_{II}}{2}\right) \Delta F(w)$$

$$= \frac{\sin^2 \psi_1 - \Delta^2 F(w)}{\sin \psi_1 + \Delta} . \tag{24}$$

For small numerical distances (i.e., $F(w) \sim 1$), $A \sim 1$, and $B \sim \sin \psi_1 + \Delta$. Furthermore, for $\sin \psi_1 >> |\Delta|$, $A \sim 1$ and $B \sim \sin \psi_1$. When $\sin \psi_1$ is comparable to or less than Δ , the horizontal distance ρ will be much greater than the sum of the transmitting and receiving antenna heights $(z + h)_*$. In the limit as ψ_1 approaches zero, $A \sim F(w_0)$ and $B \sim -\Delta F(w_0)$, where

$$F(w_0) \sim 1 - i(\pi w_0)^{1/2} e^{-w_0} erfc(iw_0^{1/2})$$
 (25)

and

$$w_0 = -\frac{\gamma_0 \rho \Delta^2}{2} . \tag{26}$$

For this case (i.e., $\rho^2 >> (z+h)^2)$, Wait $^{10}, ^{13}$ has shown that F(w) can be replaced by

$$F(w) \sim [1 + \gamma_0 \Delta(z + h)] F(w_0)$$
 (27)

and we can make use of his tabulated results 13 of the function $F(\mathbf{w_0})$.

Since the factor A (equation (22)) is different from unity only when (1) the angle ψ_1 is very small and (2) the Sommerfeld attenuation function F(w) is different from unity, A is only a farfield surface-wave term. Therefore, we can discard all derivatives of A that are not farfield terms. For example, when $|n^2| >> 1$ and $|\Delta \sin \psi_1| << 1$,

$$\frac{\partial}{\partial \rho} \left(\frac{Ae^{-\gamma} e^{R_1}}{R_1} \right) = -A(1 + \gamma_0 R_1) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} + \frac{e^{-\gamma_0 R_1}}{R_1} \times \frac{\partial A}{\partial \rho}$$

$$- -A(1 + \gamma_0 R_1) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2}$$

$$- -(1 + \gamma_0 R_1 A) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} . \tag{28}$$

Therefore, from equations (23) and (28),

$$\vec{\nabla} \cdot \vec{\Pi} \sim -\frac{r \cos \phi}{4\pi i \omega \epsilon_0} \left[(1 + \gamma_0 R_0) \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} - (1 + \gamma_0 R_1) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} + \frac{2 \cos \psi_1 e^{-\gamma_0 R_1}}{n^2 R_1^2} - (1 + \gamma_0 R_1 A) \right],$$
(29)

which is identical to equation (39) of Bannister.9

From equation (11), utilizing the identity $(u_1 - u_0)(u_1 + u_0) = \gamma_1^2 - \gamma_0^2$, we have

$$\frac{u_1 - u_0}{\gamma_1^2 u_0 + \gamma_0^2 u_1} = \frac{1}{u_0 (u_1 + u_0)} - \frac{\Delta^2}{u_0 (u_0 + \Delta^2 u_1)}.$$
 (30)

Therefore, equation (2) reduces to

$$\Pi_{z} = \frac{p \cos \phi}{4\pi i \omega \epsilon_{0}} \times \frac{\partial}{\partial \rho} \left[\frac{2e^{-u_{0}(z+h)}}{u_{0}(u_{1}+u_{0})} J_{0}(\lambda \rho) \lambda d\lambda - 2\Delta^{2} \int_{0}^{\infty} \frac{e^{-u_{0}(z+h)}}{u_{0}(u_{0}+\Delta^{2}u_{1})} J_{0}(\lambda \rho) \lambda d\lambda \right]$$
(31)

Equation (31) is equivalent to

$$\Pi_{Z} = \frac{p \cos \phi}{4\pi i \omega \epsilon_{0}} \times \frac{\partial}{\partial \rho} (I_{21} - I_{22}) , \qquad (32)$$

where

$$I_{21} = \int_0^\infty \left(\frac{2u_0}{u_1 + u_0}\right) e^{-u_0(z+h)} J_0(\lambda \rho) \frac{\lambda}{u_0^2} d\lambda$$
 (33)

 $\quad \text{and} \quad$

$$I_{22} = 2\Delta^2 \int_0^\infty \frac{e^{-u_0(z+h)}}{u_0(u_0 + \Delta^2 u_1)} J_0(\lambda c) \lambda d\lambda . \qquad (34)$$

Since

$$\frac{\partial I_{21}}{\partial \rho} = -\int_{0}^{\infty} \left(\frac{2u_0}{u_1 + u_0} \right) e^{-u_0(z+h)} J_1(\lambda \rho) \frac{\lambda^2}{u_0^2} d\lambda$$
 (35)

and

$$\frac{2u_0}{u_1 + u_0} - 1 - e^{-u_0 d} , \qquad (5)$$

then,

$$\frac{\partial I_{21}}{\partial c} = -\int_0^\infty \left(1 - e^{-u_0 d}\right) e^{-u_0 (z+h)} J_1(\lambda_h) \frac{\lambda^2}{u_0^2} d\lambda . \qquad (36)$$

Bannister^{7,8} has shown that

$$\frac{\partial I_{21}}{\partial \rho} = -\frac{1}{\rho} \left[\sin \psi_2 e^{-\gamma_0 R_2} - (\sin \psi_1 - \gamma_0 d) e^{-\gamma_0 R_1} \right], \qquad (37)$$

which, after some manipulation, can also be expressed [utilizing equation (A-8)] as

$$\frac{\partial I_{21}}{\partial \rho} = \frac{\cos \psi_2 e^{-\gamma_0 R_2}}{R_2 + d + z + h} - \frac{(1 + \gamma_0 d) \cos \psi_1 e^{-\gamma_0 R_1}}{R_1 + z + h},$$
 (38)

where $\sin \psi_1 = (z + h)/R_1$, $\cos \psi_1 = \rho/R_1$, $\sin \psi_2 = (d + z + h)/R_2$, and $\cos \psi_2 = \rho/R_2$.

If we follow the same procedure as in the derivation of $\vec{V} \cdot \vec{\Pi}$, equation (34) reduces to

$$I_{22} - 2\Delta^{2} \int_{0}^{\infty} \frac{e^{-u_{0}(z+h)}}{u_{0}(u_{0} + \gamma_{0}\Delta)} J_{0}(\lambda \rho) \lambda d\lambda$$

$$= \frac{2\Delta^{2}P}{\gamma_{0}\Delta} = \frac{2P}{\gamma_{1}} = dP$$
(39)

and, retaining only terms in 1/R, we have

$$-\frac{\partial I_{22}}{\partial \rho} = \gamma_0 dP \cos \psi_1 = \gamma_0 d \cos \psi_1 \left(\frac{1 - \Gamma_{ii}}{2}\right) [1 - F(w)] \frac{e^{-\gamma_0 R_1}}{R_1}. \tag{40}$$

Therefore, from equations (22), (32), (37), and (40),

$$\Pi_{z} \sim -\frac{p \cos \phi}{4\pi i \omega \epsilon_{0} \rho} \left[\sin \psi_{2} e^{-\gamma_{0} R_{2}} - \sin \psi_{1} e^{-\gamma_{0} R_{1}} + \gamma_{0} d e^{-\gamma_{0} R_{1}} (\sin^{2} \psi_{1} + A \cos^{2} \psi_{1}) \right].$$
(41)

Since we have now derived expressions for the HED Hertz vector [equations (8), (29), and (41)], the fields in air can be obtained from

$$\vec{E} = -\gamma_0^2 \vec{\Pi} + \vec{\nabla} (\vec{\nabla} \cdot \vec{\Pi})$$

$$\vec{\Pi} = i\omega \epsilon_0 (\vec{\nabla} \cdot \vec{\Pi}) .$$
(42)

If we follow the same procedure as outlined above, we also can obtain suitable expressions for the HMD, VED, and VMD Hertz vectors. The resulting HED, HMD, VED, and VMD field-component expressions for the air-to-air propagation case are presented in tables 1 and 2.* They are strictly valid for $\left|n^2\right| >> 1$. However, for most cases, the requirement that $\left|n^2\right| \geq 10$ is sufficient.

These formulas reduce to the author's previously derived results when either (1) the Sommerfeld numerical distance is small, 7 , 8 (2) the measurement distance is much less than a free-space wavelength, 1 , 2 or (3) the measurement distance is much greater than an earth-skin depth. 9 When $\sigma_{1} \rightarrow \infty$, $d \rightarrow 0$, $\Delta \rightarrow 0$,

It should be noted that the VED E_z and H_{φ} and HMD E_z field-component expressions presented in tables 1 and 2 were first derived by Norton. 14,15 Also, all VMD components, as well as the HED and HMD H_z components, are identical to the author's previously derived results. 2,7,8 For the sake of convenience, we have tabulated them in this report. In these tables (tables 1 through 4), $\sin \psi_0 = (z - h)/R_0$, $\cos \psi_0 = \rho/R_0$, $\sin \psi_1 = (z + h)/R_1$, $\cos \psi_1 = \rho/R_1$, $\sin \psi_2 = (d + z + h)/R_2$, and $\cos \psi_2 = \rho/R_2$.

^{*}All tables have been placed together at the end of this report.

SURFACE-TO-AIR PROPAGATION

The HED, HMD, VED, and VMD field-component expressions for the surface-to-air propagation case (h = 0, z \geq 0) can be obtained from the air-to-air propagation equations (tables 1 and 2) simply by setting h = 0. The resulting equations are presented in tables 5 and 6. In these tables, $R^2 = \rho^2 + z^2$, $R_1^2 = \rho^2 + (d+z)^2$, $\sin \phi = z/R$, $\cos \phi = \rho/R$, $\sin \phi = (d+z)/R$, and $\cos \phi = \rho/R$. These formulas are strictly valid for $|n^2| > 1$. However, for most cases, the requirement that $|n^2| > 10$ is sufficient.

Image-theory expressions for the subsurface-to-air propagation case can be obtained from the surface-to-air propagation equations (tables 5 and 6) simply by multiplying each expression by $\exp(\gamma_1 h)$. (All VED components must also be multiplied by $1/n^2$ to satisfy the boundary conditions.) The resulting formulas will be valid for $|n^2| >> 1$ and $|R^2| >> 1$.

AIR-TO-SURFACE PROPAGATION

The HED, HMD, VED, and VMD field-component expressions for the air-to-surface propagation case (h \geq 0, z = 0) can be obtained from the air-to-air propagation equations (tables 1 and 2) simply by setting z = 0. The resulting equations are presented in tables 7 and 8. In these tables $D^2 = \rho^2 + h^2$, $D_1^2 = \rho^2 + (d + h)^2$, $\sin \psi = h/D$, $\cos \psi = \rho/D$, $\sin \psi_1 = (d + h)/D_1$, and $\cos \psi_1 = \rho/D_1$. These formulas are strictly valid for $|n^2| > 1$. However, for most cases, the requirement that $|n^2| > 10$ is sufficient.

Image-theory expressions for the air-to-subsurface propagation case can be obtained from the air-to-surface propagation equations (tables 7 and 8) simply by multiplying each expression by $\exp(\gamma_1 z)$. (All E_z components must also be multiplied by $1/n^2$ to satisfy the boundary conditions.) The resulting equations will be valid for $|n^2| >> 1$ and $|n^2| >> |z|^2$.

SURFACE-TO-SURFACE PROPAGATION

The (simple form) HED, HMD, VED, and VMD field-component expressions for the surface-to-surface propagation case can be obtained from the air-to-air propagation equations (tables 1 and 2) simply by setting both z and h equal to zero. The resulting equations are listed in table 9. In these tables, $\rho_1^2 = \rho^2 + d^2$, $\sin\psi_1 = d/\rho_1$, and $\cos\psi_1 = \rho/\rho_1$. These formulas are strictly valid for $|n^2| > 1$. However, for most cases, the requirement that $|n^2| \ge 10$ is sufficient.

It should be noted that the VMD H_ρ (and, by reciprocity, the HMD H_z) image-theory expressions for the surface-to-surface propagation case are only valid when $\rho >> \delta$, where δ is the earth-skin depth. When this condition is not satisfied, other formulas should be utilized for these two field components (for example, see table 9 of Bannister¹⁶).

Image-theory expressions for the subsurface-to-subsurface propagation case can be obtained from the surface-to-surface propagation equations (table 9) simply by multiplying each expression by $\exp[\gamma_1(z+h)]$. (The "ED E_ρ and H_φ and the HED and HMD E_z components must be multiplied by $1/n^2$, while the VED E_z component must be multiplied by $1/n^4$, to satisfy the boundary conditions.) The resulting equations will be valid for $|n^2| >> 1$ and $|\rho|^2 >> 1$ and $|\rho|^2 >> 1$. It should be noted, however, that more accurate formulas are available for the subsurface-to-subsurface propagation case when $|n|^2 >> 1.16,17$

CONCLUSIONS

In this report, we have extended the use of finitely conducting earthimage theory techniques to any range and have derived formulas for the electric and magnetic fields produced by the four elementary dipole antennas for the air-to-air, surface-to-air, air-to-surface, and surface-to-surface propagation cases. The only restriction on the use of these formulas is that $|\mathbf{n}^2| \geq 10$. They are valid at any frequency and at any range for the flatearth case. These formulas reduce to the author's previously derived results when either (1) the Sommerfeld numerical distance is small, (2) the measurement distance is much less than a free-space wavelength, or (3) the measurement distance is much greater than an earth-skin depth.

The results presented in this report can be extended to a multilayered earth simply by letting $d = (2/\gamma_1)Q$, where 0 is the familiar plane-wave correction factor employed to account for the presence of stratification in the earth. For a homogeneous ground, the argument of the numerical distance w_0 is always between 0 and -90, resulting in the transverse magnetic (TM) surface-wave fields varying as $1/\rho^2$ as $\rho \to \infty$. For a stratified ground, the argument of w_0 can be positive, resulting in the TM surface-vave fields varying as $1/\sqrt{\rho}$. 13

It should be noted that the two media can be inverted and the air replaced by the earth's crust (of conductivity σ_2 and dielectric constant ϵ_2). The same equations (tables I through 9) can be utilized as long as $|n_2^2|=|\gamma_1^2/\gamma_2^2|\geq 10$ simply by replacing $i\omega\epsilon_0$ by $\sigma_2+i\omega\epsilon_2$.

These formulas are intended to supplement the author's recently derived 1,16 subsurface-to-subsurface and air-to-air propagation formulas. In terms of computer time, the formulas presented in these three reports can be evaluated in fractions of a minute compared with hours for the complete numerical evaluation of the exact Sommerfeld integrals.

Table 1. Electric-Field Air

Dipole Type	Eρ	
VED	$\begin{split} &\frac{p}{4\pi i\omega \varepsilon_0} \left\{ (3+3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 \kappa_0}}{R_0^3} \right. \\ &+ \left. (3+3\gamma_0 R_1 + \Gamma_{i_1} \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^3} \right. \\ &- \frac{2}{n^2} (3+3\gamma_0 R_1 + \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{\varepsilon^{-\gamma_0 R_1}}{R_1^3} \\ &+ \gamma_0^2 \left[\frac{\cos \psi_2 e^{-\gamma_0 R_2}}{R_2 + d + z + h} - \frac{\cos \psi_1 e^{-\gamma_0 R_1}}{R_1 + z + h} (1+\gamma_0 d) \right] \\ &+ 2\Delta \left[1 - \left(\frac{1-\Gamma_{ii}}{2} \right) F(w) \right] \cos \psi_1 \gamma_0^2 R_1^2 \frac{e^{-\gamma_0 R_1}}{R_1^3} \right] \end{split}$	
VMC	O	$-\frac{\mathrm{i}\omega\mu_0^{\frac{1}{2}}}{4\pi}\bigg[($ $-(1+\gamma_0)$

c-Field Air-to-Air Propagation Formulas $(|n^2| \ge 10)$

E	E _z
	$\begin{split} &-\frac{p}{4\pi i\omega \varepsilon_0} \bigg\{ [(1-3\sin^2\psi_0)(1+\gamma_0R_0)+\gamma_0^2R_0^2\cos^2\psi_0] \frac{e^{-\gamma_0R_0}}{R_0^3} \\ &+[(1-3\sin^2\psi_1)(1+\gamma_0R_1)+\Gamma_{ii}\gamma_0^2R_1^2\cos^2\psi_1] \frac{e^{-\gamma_0R_1}}{R_1^3} \\ &+(1-\Gamma_{ii})F(w)\cos^2\psi_1(\gamma_0^2R_1^2)\frac{e^{-\gamma_0R_1}}{R_1^3} \bigg\} \end{split}$
$-\frac{i\omega\mu_0m}{4\pi} \left[(1+\gamma_0R_0)\cos\psi_0 \frac{e^{-\gamma_0R_0}}{R_0^2} - (1+\gamma_0R_2)\cos\psi_2 \frac{e^{-\gamma_0R_2}}{R_2^2} \right]$	0

Table 1. (Cont'd) Electric-F.

Dipole Type	E _p	
HED	$\begin{split} &\frac{p \cos \phi}{4\pi i \omega c_0} \left[\left[(3 \cos^2 \psi_0 - 1)(1 + \gamma_0 R_0) - \gamma_0^2 R_0^2 \sin^2 \psi_0 \right] \frac{e^{-\gamma_0 R_0}}{R_0^3} \\ &- \left[(3 \cos^2 \psi_1 - 1)(1 + \gamma_0 R_1) - \Gamma_{tt} \gamma_0^2 R_1^2 \sin^2 \psi_1 \right] \frac{e^{-\gamma_0 R_1}}{R_1^3} \\ &+ \frac{2e^{-\gamma_0 R_1}}{n^2 R_1^3} \left[\left[(3 \cos^2 \psi_1 - 1)(1 + \gamma_0 R_1) \right] - \frac{2R_1^2}{d^2} \left[1 - \frac{R_1}{R_2} e^{-\gamma_0 (R_2 - R_1)} \right] \\ &+ n^2 \gamma_0^2 R_1^2 \left[\sin \psi_1 + \left(\frac{1 - \Gamma_{tt}}{2} \right) \Delta F(w) \right] \right] \end{split}$	$\frac{p \sin \phi}{4\pi i \omega \epsilon_0}$ $- (1 + \gamma)$ $\frac{2e^{-\gamma_0 R}}{\pi^2 R_1^3}$
1940	$-\frac{i\omega\mu_{0}m\cos\phi}{4\pi}\left[(1+\gamma_{0}R_{0})\sin\psi_{0}\frac{e^{-\gamma_{0}R_{0}}}{R_{0}^{2}}\right]$ $+(1+\Gamma_{H}\gamma_{0}R_{1})\sin\psi_{1}\frac{e^{-\gamma_{0}R_{1}}}{R_{1}^{2}}-d\left(\frac{1-\Gamma_{H}}{2}\right)F(w)\gamma_{0}^{2}R_{1}^{2}\frac{e^{-\gamma_{0}R_{1}}}{R_{1}^{3}}$ $+\frac{e^{-\gamma_{0}R_{2}}}{R_{2}(R_{2}+d+z+h)}-\frac{(1+\gamma_{0}d)e^{-\gamma_{0}R_{1}}}{R_{1}(R_{1}+z+h)}$	$\frac{i\omega\mu_0^m \sin}{4\pi} + (1 + \gamma_0)$ $-\frac{\epsilon}{R_2(R_2)}$

Electric-Field Air-to-Air Propagation Formulas $(|n^2| \ge 10)$

E∳	E ₂
$\begin{split} &\frac{p \sin \phi}{4\pi i \omega \varepsilon_0} \left[(1 + \gamma_0 R_0 + \gamma_0^2 R_0^2) \frac{e^{-\gamma_0 R_0}}{R_0^3} \right. \\ &- (1 + \gamma_0 R_1 + \gamma_0^2 R_1^2) \frac{e^{-\gamma_0 R_1}}{R_1^3} \\ &+ \frac{2e^{-\gamma_0 R_1}}{n^2 R_1^3} \left\{ (1 + \gamma_0 R_1 A) + \frac{2R_1^2}{d^2} \left[1 - \frac{R_1}{R_2} e^{-\gamma_0 (R_2 - R_1)} \right] \right\} \end{split}$	$\begin{split} &\frac{p \cos \phi}{4\pi i\omega \epsilon_0} \left[(3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^3} \right. \\ &- (3 + 3\gamma_0 R_1 + \Gamma_{11} \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^3} \\ &+ \frac{2}{n^2} (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^3} \\ &- \gamma_0^2 \left[\frac{\cos \psi_2 e^{-\gamma_0 R_2}}{R_2 + d + z + h} - \frac{\cos \psi_1 e^{-\gamma_0 R_1}}{R_1 + z + h} (1 + \gamma_0 d) \right] \\ &- 2\Delta \left[1 - \left(\frac{1 - \Gamma_{11}}{2} \right) F(w) \right] \cos \psi_1 (\gamma_0^2 R_1^2) \frac{e^{-\gamma_0 R_1}}{R_1^3} \end{split}$
$\frac{i\omega\mu_0^{m} \sin \phi}{4\pi} \left[(1 + \gamma_0 R_0) \sin \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} + (1 + \gamma_0 R_2) \sin \psi_2 \frac{e^{-\gamma_0 R_2}}{R_2^2} - \frac{e^{-\gamma_0 R_2}}{R_2(R_2 + d + z + h)} + \frac{(1 + \gamma_0 dA) e^{-\gamma_0 R_1}}{R_1(R_1 + z + h)} \right]$	$\frac{i\omega\mu_{0}m\cos\phi}{4\pi}\left[(1+\gamma_{0}R_{0})\cos\psi_{0}\frac{e^{-\gamma_{0}R_{0}}}{R_{0}^{2}}+(1+\Gamma_{H}\gamma_{0}R_{1})\cos\psi_{1}\frac{e^{-\gamma_{0}R_{1}}}{R_{1}^{2}}+(1-\Gamma_{H})F(w)\cos\psi_{1}(\gamma_{0}R_{1})\frac{e^{-\gamma_{0}R_{1}}}{R_{1}^{2}}\right]$

Table 2. Magnetic-Field

Dipole Type	Н _р	
VED	0	$\frac{p}{4\pi} \left[(1 + \gamma_0 R_0) \cos + (1 - \Gamma_{ij}) F(w) \cos \right]$
VMD	$\frac{m}{4\pi} \left[(3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^3} - (3 + 3\gamma_0 R_2 + \gamma_0^2 R_2^2) \sin \psi_2 \cos \psi_2 \frac{e^{-\gamma_0 R_2}}{R_2^3} \right]$	
	$ \frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 R_2) \sin \psi_2 \frac{e^{-\gamma_0 R_2}}{R_2^2} - (1 + \gamma_0 R_0) \sin \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} - \frac{e^{-\gamma_0 R_2}}{R_2(R_2 + d + z + h)} + \frac{(1 + \gamma_0 dA) e^{-\gamma_0 R_1}}{R_1(R_1 + z + h)} \right] $	$-\frac{p \cos \phi}{4\pi} \left[(1 + \gamma_0) - (1 + \Gamma_{11} \gamma_0 R_1) \sin \frac{e^{-\gamma_0 R_2}}{R_2 (R_2 + d + z + q)} \right]$
i H O	$\frac{\mathbf{m} \sin \phi}{4\pi} \left\{ [(2 + 2\gamma_0 R_0) - \sin^2 \psi_0 (3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2)] \frac{e^{-\gamma_0 R_0}}{R_0^3} + [(2 + 2\gamma_0 R_2 + \gamma_0^2 R_2^2) - \sin^2 \psi_2 (3 + 3\gamma_0 R_2 + \gamma_0^2 R_2^2)] \frac{e^{-\gamma_0 R_2}}{R_2^3} - [(2 + 2\gamma_0 R_1 + \gamma_0^2 R_1^2) - \sin^2 \psi_1 (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2)] \frac{e^{-\gamma_0 R_1}}{R_1^3} + [(2 + 2\gamma_0 R_1 A) - \sin^2 \psi_1 (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2)] \frac{e^{-\gamma_0 R_1}}{R_1^3} \right\}$	$-\frac{m \cos \phi}{4\pi} \left\{ (1 + \gamma_0) + (\Gamma_{ij} + (1 - \Gamma_{ij})) F \right\}$

, statement

c-Field Air-to-Air Propagation Formulas $(|n^2| \ge 10)$

н	H _z
$ \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \end{array} \\ \begin{array}{c} & \\ & \\ & \end{array} \\ \begin{array}{c} & \\ & \\ & \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\$	0
О	$-\frac{m}{4\pi} \left\{ \left[(1 + \gamma_0 R_0 + \gamma_0^2 R_0^2) - \sin^2 \psi_0 (3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \right] \frac{e^{-\gamma_0 R_0}}{R_0^3} \right.$ $- \left[(1 + \gamma_0 R_2 + \gamma_0^2 R_2^2) - \sin^2 \psi_2 (3 + 3\gamma_0 R_2 + \gamma_0^2 R_2^2) \right] \frac{e^{-\gamma_0 R_2}}{R_2^3} \right\}$
$\frac{e^{-\gamma_0 R_0}}{R_1^2} \sin \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2}$ $\frac{e^{-\gamma_0 R_1}}{R_1^2} \sin \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} + \frac{\gamma_0^2 R_1^2 d}{R_1^3} \left(\frac{1 - \Gamma_{II}}{2}\right) F(w) e^{-\gamma_0 R_1}$ $\frac{e^{-\gamma_0 R_2}}{4 + z + h} + \frac{(1 + \gamma_0 d)}{R_1(R_1 + z + h)} e^{-\gamma_0 R_1}$	$\frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 \tilde{\kappa}_0) \cos \phi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} - (1 + \gamma_0 R_2) \cos \phi_2 \frac{e^{-\gamma_0 R_2}}{R_2^2} \right]$
$ \frac{\Phi}{\left\{(1 + \gamma_0 R_0 + \gamma_0^2 R_0^2) \frac{e^{-\gamma_0 R_0}}{R_0^3} + (1 + \gamma_0 R_2) \frac{e^{-\gamma_0 R_2}}{R_2^3} \right\}} \\ \left\{(1 - \Gamma_{H})F(w)\right\} \gamma_0^2 R_1^2 \frac{e^{-\gamma_0 R_1}}{R_1^3} $	$\frac{m \sin \phi}{4\pi} \left[(3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^3} + (3 + 3\gamma_0 R_2 + \gamma_0^2 R_2^2) \sin \psi_2 \cos \psi_2 \frac{e^{-\gamma_0 R_2}}{R_2^3} \right]$

17/ Reverse Bla

2

(

Table 3. Electric-Field

Dipole Type	E _p	
VED	$\frac{p}{4\pi i \omega \varepsilon_0} \left[(3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^3} + (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^3} \right]$	
VMD	O	
HED	$ \frac{p \cos \phi}{4\pi i \omega \epsilon_0} \left[\left[(2 + 2\gamma_0 R_0) - \sin^2 \psi_0 (3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \right] \frac{e^{-\gamma_0 R_0}}{R_0^3} \right] \\ - \left[(2 + 2\gamma_0 R_1) - \sin^2 \psi_1 (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \right] \frac{e^{-\gamma_0 R_1}}{R_1^3} \right\} $	
HMG	$-\frac{i\omega\mu_0 m \cos \phi}{4\pi} \left[(1 + \gamma_0 R_0) \sin \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} + (1 + \gamma_0 R_1) \sin \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} \right]$	

1

k-Field Air-to-Air Propagation Formulas for $\sigma_1 + \infty$

E	E _Z
0	$-\frac{p}{4\pi i\omega \varepsilon_{0}} \left\{ [(1+\gamma_{0}R_{0}+\gamma_{0}^{2}R_{0}^{2})-\sin^{2}\psi_{0}(3+3\gamma_{0}R_{0}) + \gamma_{0}^{2}R_{0}^{2})] \frac{e^{-\gamma_{0}R_{0}}}{R_{0}^{3}} + [(1+\gamma_{0}R_{1}+\gamma_{0}^{2}R_{1}^{2}) - \sin^{2}\psi_{1}(3+3\gamma_{0}R_{1}+\gamma_{0}^{2}R_{1}^{2})] \frac{e^{-\gamma_{0}R_{1}}}{R_{1}^{3}} \right\}$
$-\frac{i\omega\mu_0^m}{4\pi} \left[(1 + \gamma_0^2 R_0^2) \cos \psi_0 \frac{e^{-\gamma_0^2 R_0^2}}{R_0^2} - (1 + \gamma_0^2 R_1^2) \cos \psi_1 \frac{e^{-\gamma_0^2 R_1^2}}{R_1^2} \right]$	0
$\frac{p \sin \phi}{4\pi i \omega \epsilon_0} \left[(1 + \gamma_0 R_0 + \gamma_0^2 R_0^2) \frac{e^{-\gamma_0 R_0}}{R_0^3} - (1 + \gamma_0 R_1 + \gamma_0^2 R_1^2) \frac{e^{-\gamma_0 R_1}}{R_1^3} \right]$	$\frac{p \cos \phi}{4\pi i \omega \varepsilon_0} \left[(3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^3} - (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^3} \right]$
$\frac{i\omega u_0 m \sin \phi}{4\pi} \left[(1 + \gamma_0 R_0) \sin \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} + (1 + \gamma_0 R_1) \sin \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} \right]$	$\frac{i\omega\mu_0 m \cos \phi}{4\pi} \left[(1 + \gamma_0 R_0) \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} + (1 + \gamma_0 R_1) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} \right]$

19/20 Reverse Blank

2___

Table 4. Magnetic-Fi

Dipole Type	H _o	
VED	0	<u>р</u> 4π + ;
VMD	$\frac{\mathbf{m}}{4\pi} \left[(3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^3} - (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^3} \right]$	
HED	$-\frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 R_0) \sin \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} - (1 + \gamma_0 R_1) \sin \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} \right]$	_ I - (
HMD	$\frac{a \sin \phi}{4\pi} \left\{ \left[(2 + 2\gamma_0 R_0) - \sin^2 \psi_0 (3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \right] \frac{e^{-\gamma_0 R_0}}{R_0^3} + \left[(2 + 2\gamma_0 R_1) - \sin^2 \psi_1 (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \right] \frac{e^{-\gamma_0 R_1}}{R_1^3} \right\}$	_ =

.

-

metic-Field Air-to-Air Propagation Formulas for $\sigma_1 + \infty$

Нф	H _Z
$\frac{p}{4\pi} \left[(1 + \gamma_0 R_0) \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} + (1 + \gamma_0 R_1) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} \right]$	0
C	$-\frac{m}{4\pi} \left\{ \left[(1 + \gamma_0 R_0 + \gamma_0^2 R_0^2) - \sin^2 \psi_0 (3 + 3\gamma_0 R_0 + \frac{e^{-\gamma_0 R_0}}{R_0^3} \right] - \left[(1 + \gamma_0 R_1 + \gamma_0^2 R_1^2) - \sin^2 \psi_1 (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \right] \frac{e^{-\gamma_0 R_1}}{R_1^3} \right\}$
$-\frac{p \cos \phi}{4\pi} \left[(1 + \gamma_0 R_0) \sin \psi_0 \frac{e^{-\gamma_0 R}}{R_0^2} - (1 + \gamma_0 R_1) \sin \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} \right]$	$\frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 R_0) \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^2} - (1 + \gamma_0 R_1) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2} \right]$
$-\frac{m \cos \phi}{4\pi} \left[(1 + \gamma_0 R_0 + \gamma_0^2 R_0^2) \frac{e^{-\gamma_0 R_0}}{R_0^3} + (1 + \gamma_0 R_1 + \gamma_0 R_1^2) \frac{e^{-\gamma_0 R_1}}{R_1^3} \right]$	$\frac{m \sin \phi}{4\pi} \left[(3 + 3\gamma_0 R_0 + \gamma_0^2 R_0^2) \sin \psi_0 \cos \psi_0 \frac{e^{-\gamma_0 R_0}}{R_0^3} + (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) \sin \psi_1 \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^3} \right]$

21/22 Reverse Blank

Table 5. Electric-Field Surface-to-Air Propagat

Dipole Type	E _o	
VED	$\frac{p \cos \psi e^{-\gamma_0 R}}{2\pi i \omega \epsilon_0 R^3} \left[(3 + 3\gamma_0 R) \sin \psi + \gamma_0^2 R^2 B - \Delta \gamma_0 R \right] \times \left[\frac{R^3 e^{+\gamma_0 R}}{d} \left[\frac{(1 + \gamma_0 d) e^{-\gamma_0 R}}{R(R + z)} - \frac{e^{-\gamma_0 R} i}{R_i (R_i + u + z)} \right] - \gamma_0 R \right]$	
VMD	ο	$-\frac{i\omega\mu_0}{4\pi}$ $-(1 +$
HED	$\frac{p \cos \phi e^{-\gamma_0 R}}{2\pi (\sigma_1 + i\omega \varepsilon_1) R^3} \left\{ (3 \cos^2 \psi - 1) (1 + \gamma_0 R) - \frac{2R^2}{d^2} \left[1 - \frac{R}{R_i} e^{-\gamma_0 (R_i - R)} \right] + n\gamma_0^2 R^2 (\sin \psi - B) \right\}$	$\frac{p \sin \theta}{2\pi (\sigma_1 + \frac{2R^2}{d^2} \left[1 \right]}$
1 94 D	$ \frac{\gamma_{1} m \cos \phi e^{-\gamma_{0} R}}{2\pi (\sigma_{1} + i\omega \varepsilon_{1}) R^{3}} \left\{ -\gamma_{1} R \sin \psi - \gamma_{0}^{2} R^{2} n B + \frac{R^{3} e^{+\gamma_{0} R}}{d} \left[\frac{(1 + \gamma_{0} d) e^{-\gamma_{0} R}}{R(R + z)} - \frac{e^{-\gamma_{0} R_{i}}}{R_{i} (R_{i} + d + z)} \right] \right\} $	$\frac{i\omega\mu_0 m \sin 4\pi}{4\pi} + (1 + \gamma) + \frac{(1 + \gamma)}{R(1 + \gamma)}$

THE PARTY OF THE P

bo-Air Propagation Formulas ($|n^2| \ge 10$), $[R^2 = \rho^2 + z^2, R_i^2 = \rho^2 + (d + z)^2]$

E∳	Ez
О	$-\frac{pe^{-\gamma_0 R}}{2\pi i\omega \epsilon R^3}[(1-3\sin^2\psi)(1+\gamma_0 R)+\gamma_0^2 R^2 A\cos^2\psi]$
$-\frac{i\omega\mu_0}{4\pi}\left[(1+\gamma_0R)\cos\psi\frac{e^{-\gamma_0R}}{R^2}\right]$ $-(1+\gamma_0R_i)\cos\psi_i\frac{e^{-\gamma_0R_i}}{R_i^2}$	o
$\frac{p \sin \phi e^{-\gamma_0 R}}{2\pi (\sigma_1 + i\omega \varepsilon_1) R^3} \left\{ (1 + \gamma_0 RA) + \frac{2R^2}{d^2} \left[1 - \frac{R}{R_i} e^{-\gamma_0 (R_i - R)} \right] \right\}$	$\frac{\gamma_{1}p \cos \phi \cos \psi e^{-\gamma_{0}R}}{2\pi(\sigma_{1} + i\omega\epsilon_{1})R^{2}} \left[\gamma_{0}RA + \left\{ \frac{R^{3}e^{+\gamma_{0}R}}{d} \right\} \right]$ $\times \left[\frac{(1 + \gamma_{0}d)e^{-\gamma_{0}R}}{R(R + z)} - \frac{e^{-\gamma_{0}R}i}{R_{1}(R_{1} + d + z)} \right] - \gamma_{0}R \right]$
$\frac{i\omega\mu_{0}m \sin \phi}{4\pi} \left[(1 + \gamma_{0}R)\sin \psi \frac{e^{-\gamma_{0}R}}{R^{2}} + (1 + \gamma_{0}R_{1})\sin \psi_{1} \frac{e^{-\gamma_{0}R_{1}}}{R_{1}^{2}} + \frac{(1 + \gamma_{0}dA)e^{-\gamma_{0}R}}{R(R + z)} - \frac{e^{-\gamma_{0}R_{1}}}{R_{1}(R_{1} + d + z)} \right]$	$\frac{\gamma_1^2 m \cos \phi \cos \phi e^{-\gamma_0 R}}{2\pi (c_1 + i\omega \epsilon_1) R^2} (1 + \gamma_0 RA)$

23/24 Reverse Blank

2

Table 6. Magnetic-Field Surface-to-Air Propagation Fo

Dipole Type	Н _р	
VED	0	$\frac{p \cos \psi e^{-\gamma_0 R}}{2\pi R^2} (1$
VMD	$\frac{m}{4\pi} \left[(3 + 3\gamma_0 R + \gamma_0^2 R^2) \sin \psi \cos \psi \frac{e^{-\gamma_0 R}}{R^3} - (3 + 3\gamma_0 R_i + \gamma_0^2 R_i^2) \sin \psi_i \cos \psi_i \frac{e^{-\gamma_0 R_i}}{R_i^3} \right]$	
HED	$ \frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 R_i) \sin \psi_i \frac{e^{-\gamma_0 R_i}}{R_i^2} - (1 + \gamma_0 R) \sin \psi_i \frac{e^{-\gamma_0 R}}{R^2} + \frac{(1 + \gamma_0 dA) e^{-\gamma_0 R}}{R(R + z)} - \frac{e^{-\gamma_0 R_i}}{R_i (R_i + d + z)} \right] $	$-\frac{p \cos \phi e^{-\gamma_0 R}}{2\pi \gamma_1 R^3} + \left[\frac{(1+\gamma_0 d)e^{-\gamma}}{R(R+z)}\right]$
HMD	$\frac{\min \phi}{4\pi} \left\{ \frac{2e^{-\gamma_0 R}}{R^3} [2 + \gamma_0 R(1 + A) - \sin^2 \psi(3 + 3\gamma_0 R + \gamma_0^2 R^2)] \right.$ $+ \left. \left[(2 + 2\gamma_0 R_i + \gamma_0^2 R_i^2) - \sin^2 \psi_i (3 + 3\gamma_0 R_i + \gamma_0^2 R_i^2) \right] \frac{e^{-\gamma_0 R_i}}{R_i^3}$ $- \left[(2 + 2\gamma_0 R + \gamma_0^2 R^2) - \sin^2 \psi(3 + 3\gamma_0 R + \gamma_0^2 R^2) \right] \frac{e^{-\gamma_0 R}}{R^3} \right\}$	$-\frac{m\cos\phi}{4\pi}\left[(1+\frac{1}{4\pi}+\frac{1}{4\pi}R_{i})\frac{e^{-\gamma}}{F}\right]$

£.

to-Air Propagation Formulas ($|n^2| \ge 10$), $[R^2 = \rho^2 + z^2, R_1^2 = \rho^2 + (d + z)^2]$

н _ф	H _z
$\frac{p \cos \psi e^{-\gamma_0 R}}{2\pi R^2} (1 + \gamma_0 RA)$	0
Э	$-\frac{m}{4\pi} \left\{ \left[(1 + \gamma_0 R + \gamma_0^2 R^2) - \sin^2 \psi (3 + 3\gamma_0 R + \gamma_0^2 R^2) \frac{e^{-\gamma_0 R}}{R^3} \right] - \left[(1 + \gamma_0 R_i + \gamma_0^2 R_i^2) - \sin^2 \psi_i (3 + 3\gamma_0 R_i + \gamma_0^2 R_i^2) \right] \frac{e^{-\gamma_0 R_i}}{R_i^3} \right\}$
$-\frac{p \cos \phi e^{-\gamma_0 R}}{2\pi \gamma_1 R^3} \left\{ \gamma_0^2 R^2 A + \left[\frac{(1 + \gamma_0 d) e^{-\gamma_0 R}}{R(R + z)} - \frac{e^{-\gamma_0 R_i}}{R_i (R_i + d + z)} \right] \right\}$	$\frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 R) \cos \psi \frac{e^{-\gamma_0 R}}{R^2} - (1 + \gamma_0 R_i) \cos \psi_1 \frac{e^{-\gamma_0 R_i}}{R_i^2} \right]$
$-\frac{m \cos \phi}{4\pi} \left[(1 + \gamma_0 R + 2A\gamma_0^2 R^2) \frac{e^{-\gamma_0 R}}{R^3} + (1 + \gamma_0 R_i) \frac{e^{-\gamma_0 R_i}}{R_i^3} \right]$	$\frac{m \sin \phi}{4\pi} \left[(3 + 3\gamma_0 R + \gamma_0^2 R^2) \sin \psi \cos \psi \frac{e^{-\gamma_0 R}}{R^3} + (3 + 3\gamma_0 R_i + \gamma_0^2 R_i^2) \sin \psi_i \cos \psi_i \frac{e^{-\gamma_0 R_i}}{R_i^3} \right]$

25/26 Reverse Blank

Table 7. Electric-Field Air-to-Surface Propagatio

Dipole Type	E _o	
VED	$-\frac{\gamma_{1}p \cos \psi e^{-\gamma_{0}D}}{2\pi(\sigma_{1} + i\omega\epsilon_{1})D^{2}} \left\{ \gamma_{0}DA + \frac{\sin \psi}{\gamma_{1}D} (3 + 3\gamma_{0}D + \gamma_{0}^{2}D^{2}) + \frac{D^{3}e^{+\gamma_{0}D}}{d} \left[\frac{(1 + \gamma_{0}d)e^{-\gamma_{0}D}}{D(D + h)} - \frac{e^{-\gamma_{0}D_{i}}}{D_{i}(D_{i} + d + h)} \right] - \gamma_{0}D \right\}$	
VMD	O	$-\frac{i\omega\mu_0^m}{4\pi}\left[(1+\gamma_0^2)\right]$ $-(1+\gamma_0^2)\cos^2\theta$
HED	$\frac{p \cos \phi e^{-\gamma_0 D}}{2\pi (\sigma_1 + i\omega \varepsilon_1) D^3} \left\{ (3 \cos^2 \psi - 1) (1 + \gamma_0 D) - \frac{2D^2}{d^2} \left[1 - \frac{D}{D_i} e^{-\gamma_0 (D_i - D)} \right] + n\gamma_0^2 R^2 (\sin \psi - B) \right\}$	$\frac{p \sin \phi e^{-\gamma_0 D}}{2\pi(\sigma_1 + i\omega\epsilon_1)D^3}$ $-\frac{2D^2}{d^2} \left[1 - \frac{D}{D_i} e^{-\frac{D}{2}}\right]$
₩Ф	$ \frac{\gamma_{1} = \cos \phi e^{-\gamma_{0} D}}{2\pi (\sigma_{1} + i\omega \varepsilon_{1}) D^{3}} \left\{ \gamma_{0}^{2} D^{2} A + \frac{D^{3} e^{+\gamma_{0} D}}{d} \left[\frac{(1 + \gamma_{0} d) e^{-\gamma_{0} D}}{D(D + h)} - \frac{e^{-\gamma_{0} D_{i}}}{D_{i} (D_{i} + d + h)} \right] \right\} $	$\frac{i\omega\mu_0^m \sin\phi}{4\pi} \left[(1 - (1 + \gamma_0^D)\sin\phi + \frac{(1 + \gamma_0^D)\sin\phi}{D(D + h)} \right]$

を受けるとは、「はは、「はは、「は、」というというない。 またれていると、「ないないななから、」となって、人間というと、

rface Propagation Formulas $((n^2) \ge 10)$, $(D^2 = c^2 + h^2)$, $D_1^2 = c^2 + (d + h)^2$

- *	L.
O	$-\frac{pe^{-\gamma_0 D}}{2\pi i \omega \epsilon_0 D^3} [(1 - 3 \sin^2 \psi)(1 + \gamma_0 D) + \gamma_0^2 D^2 A \cos^2 \psi]$
$-\frac{i\omega\mu_{0}^{m}}{4\pi}\left[(1+\gamma_{0}^{D})\cos\psi\frac{e^{-\gamma_{0}^{D}}}{D^{2}}\right]$ $-(1+\gamma_{0}^{D})\cos\psi_{i}\frac{e^{-\gamma_{0}^{D}}}{D_{i}^{2}}$	0
$\frac{p \sin \phi e^{-\gamma_0 D}}{2\pi (\sigma_1 + i\omega \epsilon_1) D^3} \left\{ (1 + \gamma_0 DA) - \frac{2D^2}{d^2} \left[1 - \frac{D}{D_i} e^{-\gamma_0 (D_i - D)} \right] \right\}$	$-\frac{p \cos \phi \cos \psi e^{-\gamma_0 D}}{2\pi i \omega \epsilon_0 D^3} \left[(3 + 3\gamma_0 D) \sin \psi + \gamma_0^2 D^2 B - \Delta \gamma_0 D \left[\frac{D e^{+\gamma_0 D}}{d} \left[\frac{(1 + \gamma_0 d) e^{-\gamma_0 D}}{D(D + h)} - \frac{e^{-\gamma_0 D} i}{D_i (D_i + d + h)} \right] - \gamma_0 D \right] \right]$
$\frac{i\omega\mu_{0}^{m} \sin \phi}{4\pi} \left[(1 + \gamma_{0}D_{i})\sin \psi_{i} \frac{e^{-\gamma_{0}D_{i}}}{D_{i}^{2}} - (1 + \gamma_{0}D)\sin \psi \frac{e^{-\gamma_{0}D}}{D^{2}} + \frac{(1 + \gamma_{0}dA)e^{-\gamma_{0}D}}{D(D + h)} - \frac{e^{-\gamma_{0}D_{i}}}{D_{i}(D_{i} + d + h)} \right]$	iωμ ₀ m cos φ cos ψe ^{-Υ₀D} 2πD ² (1 + Υ ₀ DA)

Table 8. Magnetic-Field Air-to-Surface Propaga

Dipole Type	Н _р	
VED	O	$\frac{p \cos \psi e^{-\gamma_0 D}}{2\pi D^2} (1 - \frac{1}{2\pi D^2})$
VMD	$-\frac{m}{4\pi} \left[(3 + 3\gamma_0 D + \gamma_0^2 D^2) \sin \psi \cos \psi \frac{e^{-\gamma_0 D}}{D^3} + (3 + 3\gamma_0 D_i + \gamma_0^2 D_i^2) \sin \psi_i \cos \psi_i \frac{e^{-\gamma_0 D_i}}{D_i^3} \right]$	
HED	$ \frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 D) \sin \psi \frac{e^{-\gamma_0 D}}{D^2} + (1 + \gamma_0 D_i) \sin \psi_i \frac{e^{-\gamma_0 D_i}}{D_i^2} + \frac{(1 + \gamma_0 dA) e^{-\gamma_0 D}}{D(D + h)} - \frac{e^{-\gamma_0 D_i}}{D_i(D_i + d + h)} \right] $	$-\frac{p \cos \phi e^{-\gamma_0 D}}{2\pi \gamma_1 D^3} \begin{cases} 1 & \text{if } x = 1 \\ -\gamma_1 D \sin \psi - \gamma_1 \end{bmatrix}$
HMD	$\frac{m \sin \phi}{4\pi} \left\{ \frac{2e^{-\gamma_0 D}}{D^3} [2 + \gamma_0 D(1 + A) - \sin^2 \phi (3 + 3\gamma_0 D + \gamma_0^2 D^2)] \right.$ $+ \left. \left[(2 + 2\gamma_0 D_i + \gamma_0^2 D_i^2) - \sin^2 \phi_i (3 + 3\gamma_0 D_i + \gamma_0^2 D_i^2)] \frac{e^{-\gamma_0 D_i}}{D_i^3} \right.$ $- \left. \left[(2 + 2\gamma_0 D + \gamma_0^2 D^2) - \sin^2 \phi (3 + 3\gamma_0 D + \gamma_0^2 D^2)] \frac{e^{-\gamma_0 D}}{D^3} \right. \right\}$	$-\frac{m\cos\phi}{4\pi}\bigg[(1+\gamma$

re Propagation Formulas ($|n^2| \ge 10$), $[D^2 = \rho^2 + h^2, D_1^2 = \rho^2 + (d + h)^2]$

Н _ф	H _Z
$\frac{e^{-\gamma_0 D}}{D^2} (1 + \gamma_0 DA)$	0
O	$-\frac{m}{4\pi} \left\{ \left[(1 + \gamma_0 D + \gamma_0^2 D^2) - \sin^2 \psi (3 + 3\gamma_0 D + \gamma_0^2 D^2) \right] \frac{e^{-\gamma_0 D}}{D^3} \right.$ $- \left[(1 + \gamma_0 D_i + \gamma_0^2 D_i^2) - \sin^2 \psi_i (3 + 3\gamma_0 D_i + \gamma_0^2 D_i^2) \right] \frac{e^{-\gamma_0 D_i}}{D_i^3} \right\}$
$\frac{\oint e^{-\gamma_0 D} \left\{ D^3 e^{+\gamma_0 D} \left[\frac{(1 + \gamma_0 d) e^{-\gamma_0 D}}{D(D + h)} - \frac{e^{-\gamma_0 D_i}}{D_i (D + d + h)} \right]}{\exp \left\{ -\gamma_0 D^2 B \right\}}$ $\lim \psi - \gamma_0^2 D^2 nB$	$\frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 D) \cos \psi \frac{e^{-\gamma_0 D}}{D^2} - (1 + \gamma_0 D_i) \cos \psi_i \frac{e^{-\gamma_0 D_i}}{D_i^2} \right]$
$\Phi \left[(1 + \gamma_0 D + 2A\gamma_0^2 D^2) \frac{e^{-\gamma_0 D}}{D^3} + (1 + \gamma_0 D_i) \frac{e^{-\gamma_0 D_i}}{D_i^3} \right]$	$-\frac{m \sin \phi}{4\pi} \left[(3 + 3\gamma_0 D + \gamma_0^2 D^2) \sin \psi \cos \psi \frac{e^{-\gamma_0 D}}{D^3} - (3 + 3\gamma_0 D_i^2 + \gamma_0^2 D_i^2) \sin \psi_i \cos \psi_i \frac{e^{-\gamma_0 D_i}}{D_i^3} \right]$

Table 9. Surface-to-Surface Propagat:

Dipole Type	E _p	£∳	E ₂
VED	$-\frac{\gamma_{1}pe^{-\gamma_{0}\rho}}{2\pi(\sigma_{1}+i\omega\varepsilon_{1})\rho^{2}}\left[\frac{\rho}{\rho_{1}}e^{-\gamma_{0}(\rho_{1}-\rho)}+\gamma_{0}\rho F(w_{0})\right]$	O	$-\frac{pe^{-Y_0^p}}{2\pi i\omega c_0^{-3}}[1+\gamma_0^p+\gamma_0^2p^2$
VMD	O	$-\frac{i\omega\mu_0 m}{4\pi} \left[(1 + \gamma_0 \rho) \frac{e^{-\gamma_0 \rho}}{\rho^2} - (1 + \gamma_0 \rho_1) \cos \psi_1 \frac{e^{-\gamma_0 \rho_1}}{\rho_1^2} \right]$	0
1	$\frac{p \cos \phi e^{-\gamma_0 \rho}}{2\pi (\sigma_1 + i\omega c_1)\rho^3} \left\{ 2(1 + \gamma_0 \rho) + \gamma_0^2 \rho^2 F(w_0) - \frac{2\rho^2}{d^2} \left[1 - \frac{\rho}{\rho_1} e^{-\gamma_0 (\rho_1 - \rho)} \right] \right\}$	$\frac{p \sin \phi e^{-\gamma_0 \rho}}{2\pi (\sigma_1 + i\omega \varepsilon_1) \rho^3} \left[1 + \gamma_0 \rho F(w_0) \right] + \frac{2\rho^2}{d^2} \left[1 - \frac{\rho}{\rho_i} e^{-\gamma_0 (\rho_i - \rho)} \right]$	$\frac{\gamma_1 p \cos \phi e^{-\gamma_0 \rho}}{2\pi (\sigma_1 + i\omega \varepsilon_1) \rho^2} \left[\frac{\rho}{\rho_i} e^{-\gamma_0 (\rho_i)} + \gamma_0 \rho F(w_0) \right]$
1949	$\frac{\gamma_{1}^{m} \cos \phi e^{-\gamma_{0}^{\rho}} \int_{\rho_{1}}^{\rho} e^{-\gamma_{0}(\rho_{1}^{-\rho})} \\ + \gamma_{0}^{\rho} + \gamma_{0}^{2\rho^{2}F(w_{0})}$	$\frac{\gamma_1 \mathbf{w} \sin \phi e^{-\gamma_0 \rho}}{2\pi (\sigma_1 + i \mathbf{w} \epsilon_1) \rho^3} \left[\gamma_0 \rho F(\mathbf{w}_0) + \frac{\rho}{\rho_i} \left[1 + \left(\frac{\rho}{\rho} \right)^2 (1 + \gamma_0 \rho_i) \right] e^{-\gamma_0 (\rho_i - \rho)} \right]$	$\frac{\gamma_1^{2} \cos \phi e^{-\gamma_0 \rho}}{2\pi(\sigma_1 + i\omega \varepsilon_1)\rho^2} [1 + \gamma_0 \rho F(u)]$

不是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们

Propagation Formulas ($|n^2| \ge 10$), $(\rho_i^2 = \rho^2 + d^2$, $\cos \psi_i = \rho/\rho_i$, $\sin \psi_i = d/\rho_i$)

	Н _О	Нф	Hz
+ Y ² 0 ² F(W ₀)]	0	$\frac{pe^{-Y_0\rho}}{2\pi\rho^2}[1+Y_0\rho F(w_0)]$	0
	$-\frac{\sin \psi_{i} \cos \psi_{i} e^{-\gamma_{0} \rho_{i}}}{4\pi \rho_{1}^{3}} (3 + 3\gamma_{0} \rho_{i} + \gamma_{0}^{2} \rho_{i}^{2})$	0	$-\frac{\mathbf{a}}{4\pi} \left[(1 + \gamma_0 \rho + \gamma_0^2 \rho^2) \frac{e^{-\gamma_0 \rho}}{\rho^3} - (1 + \gamma_0 \rho_1 + \gamma_0^2 \rho_1^2) \frac{e^{-\gamma_0 \rho_1}}{\rho_1^3} \right]$
_ e ^{-Υ} ο(ρ _i -ρ)	$\frac{p \sin \phi e^{-\gamma_0 \rho}}{2\pi \gamma_1 \rho^3} \left[\gamma_0 \rho F(w_0) + \frac{\rho}{\rho_1} \left[1 + \left(\frac{\rho}{\rho_1} \right)^2 (1 + \gamma_0 \rho_1) \right] e^{-\gamma_0 (\rho_1 - \rho)} \right]$	$-\frac{p \cos \phi e^{-Y_0 \rho}}{2\pi Y_1 \rho^3} \left[\frac{\rho}{\rho_1} e^{-Y_0 (\rho_1 - \rho)} + Y_0 \rho + Y_0^2 \rho^2 F(w_0) \right]$	$\frac{p \sin \phi}{4\pi} \left[(1 + \gamma_0 \rho) \frac{e^{-\gamma_0 \rho}}{\rho^2} - (1 + \gamma_0 \rho_1) \cos \phi_1 \frac{e^{-\gamma_0 \rho_1}}{\rho_1^2} \right]$
	$\frac{m \sin \phi}{4\pi} \left[[2 + 2\gamma_0 \rho F(w_0) - \gamma_0^2 \rho^2] \frac{e^{-\gamma_0 \rho}}{\rho^3} + [(2 - 3 \sin^2 \psi_1)(1 + \gamma_0 \rho_1) + \gamma_0^2 \rho_1^2] \frac{e^{-\gamma_0 \rho}}{\rho_1^3} \right]$		$\frac{m \sin \phi \sin \phi_{i} \cos \phi_{i}}{4\pi \rho_{i}^{3}} (3 + 3\gamma_{0}\rho_{i} + \gamma_{0}^{2}\rho_{i}^{2})e^{-\gamma}$

Reverse

REFERENCES

- 1. P. R. Bannister, "Summary of Image-Theory Expressions for the Quasi-Static Fields of Antennas At or Above the Earth's Surface," Proceedings IEEE, vol. 67, no. 7, 1979, pp. 1001-1008.
- 2. P. R. Bannister et al., Quasi-Static Electromagnetic Fields, NUSC Scientific and Engineering Studies, Naval Underwater Systems Center, New London, CT, 1980, 515 pp.
- 3. J. R. Wait and K. P. Spies, "On the Image Representation of the Quasi-Static Fields of a Line Current Source Above the Ground," <u>Canadian Journal</u> of Physics, vol. 47, no. 23, 1969, pp. 2731-2733.
- 4. P. R. Bannister, "Extension of Quasi-Static Range Finitely Conducting Earth-Image Theory Techniques to Other Ranges," IEEE Transactions on Antennas and Propagation, vol. AP-26, no. 3, 1978, pp. 507-508.
- 5. A. Mohsen, "Earth Conductivity Effect on the Field of a Long Horizental Antenna," IEEE 1980 International Symposium Digest, Antennas and Propagation, vol. 2, 80 CH1557-8AP, 2-6 June. Quebec, Canada, 1980, pp. 440-443.
- 6. S. F. Mahmoud and A. D. Metwally, "New Image Represer ation for Dipoles Near to a Dissipative Earth, Part It Discrete Images; Part II: Discrete Plus Continuous Images," <u>Radio Science</u>, vol. 16, no. 12, 1981, pp. 1271-1283.
- P. R. Bannister, Image Theory EM Fields of Horizontal Dipole Antennas in Presence of Conducting Half-Space, NUSC Technical Report 6511, Naval Underwater Systems Center, New London, CT, 18 September 1981.
- 8. P. R. Bannister, "The Image-Theory Llectronagnetic Fields of a Horizontal Electric Dipole in the Presence of a Conducting Half-Space," Radio Science, vol. 17, no. 5, 1982, pp. 1095-1102.
- 9. P. R. Bannister, An Extension of Norton's Farfield Elementary Dipole Equations to the Quasi-Nearfield Range, NUSC Technical Report 6883, Naval Urderwater Systems Center, New London, CT (to be published).
- 10. J. R. Wait, "The Electromagnetic Fields of a Horizontal Dipole in the Presence of a Conducting Half-Space," <u>Canadian Journal of Physics</u>, vol. 39, 1961, pp. 1017-1028.
- 11. A. Sommerfeld, "On the Propagation of Waves in Wireless Telegraphy," Annalen der Physik, vol. 81, no. 25, 1926, pp. 1135-1153.
- 12. A. Baños, Dipole Radiation in the Presence of a Conducting Half-Space, Pergamon Press, NY, 1966, 245 pp.

- 13. J. R. Wait, <u>Electromagnetic Waves in Stratified Media</u>, Pergamon Press, NY, 1970.
- 14. K. A. Norton, "The Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere," Proceedings IRE, vol. 25, no. 9, 1937, pp. 1203-1236.
- 15. K. A. Norton, The Polarization of Downcoming Ionospheric Radio Waves, FCC Report 60047, National Bureau of Standards, Boulder, CO, 1942.
- 16. P. R. Bannister, New Formulas for HED, HMD, VED, and VMD Subsurface-to-Subsurface Propagation, NUSC Technical Report 6881, Naval Underwater Systems Center, New London, CT (to be published).
- 17. P. R. Bannister and R. L. Dube, "Simple Expressions for Horizontal Electric Dipole Quasi-Static Range Subsurface-to-Subsurface and Subsurface-to-Air Propagation," Radio Science, vol. 13, no. 3, 1978, pp. 501-507.

USEFUL APPROXIMATIONS WHEN $R_1 >> |d|$

$$\frac{R_1}{R_2} \sim 1 - \frac{d^2}{2R_1^2} \left(1 + \frac{2R_1 \sin \psi_1}{d} - 3 \sin^2 \psi_1 \right)$$
 (A-1)

$$\left(\frac{R_1}{R_2}\right)^3 \sim 1 - \frac{3d^2}{2R_1^2} \left(1 + \frac{2R_1 \sin \psi_1}{d} - 5 \sin^2 \psi_1\right) \tag{A-3}$$

$$\left(\frac{R_1}{R_2}\right)^4 \sim 1 - \frac{2d^2}{R_1^2} \left(1 + \frac{2R_1 \sin \psi_1}{d} - 6 \sin^2 \psi_1\right) \tag{A-4}$$

$$\left(\frac{R_1}{R_2}\right)^5 \sim 1 - \frac{5d^2}{2R_1^2} \left(1 + \frac{2R_1 \sin \psi_1}{d} - 7 \sin^2 \psi_1\right) \tag{A-5}$$

and

$$e^{-\gamma_0(R_2-R_1)} \sim 1 - \gamma_0 R_1 d \left(\frac{\sin \psi_1}{R_1} + \frac{d \cos^2 \psi_1}{2R_1^2} \right) + \frac{\gamma_0^2 R_1^2 d^2 \sin^2 \psi_1}{2R_1^2}$$
 (A-6)

For $|\gamma_1(z + h)| >> 1$ (i.e., $|2(R_1/d)\sin \psi_1| >> 1$),

$$\left(\frac{R_1}{R_2}\right)^X \approx 1 - \frac{xd \sin \psi_1}{R_1} \tag{A-7}$$

and

-

$$e^{-\gamma_0(R_2-R_1)} \sim 1 - \gamma_0 R_1 \left(\frac{d \sin \psi_1}{R_1}\right)$$
 (A-8)

Some other useful approximations are

$$\frac{\cos \psi_2 e^{-\gamma_0 R_2}}{R_2 + d + z + h} - \frac{(1 + \gamma_0 d)\cos \psi_1 e^{-\gamma_0 R_1}}{R_1 + z + h} - d \cos \psi_1 (1 + \gamma_0 R_1) \frac{e^{-\gamma_0 R_1}}{R_1^2}$$
 (A-9)

$$-\left[\frac{e^{-\gamma_0 R_2}}{R_2(R_2+d+z+h)} - \frac{(1+\gamma_0 d)e^{-\gamma_0 R_1}}{R_1(R_1+z+h)}\right] - d(1+\gamma_0 R_1)^{\frac{e^{-\gamma_0 R_1}}{R_1^3}}$$
(A-10)

$$-\left[\frac{e^{-\gamma_0 R_2}}{R_2(R_2+d+z+h)} - \frac{(1+\gamma_0 dA)e^{-\gamma_0 R_1}}{R_1(R_1+z+h)}\right] \sim d(1+\gamma_0 R_1 A) \frac{e^{-\gamma_0 R_1}}{R_1^3}$$
(A-11)

$$\frac{2R_{1}^{2}}{d^{2}}\left[1 - \frac{R_{1}}{R_{2}} e^{-\gamma_{0}(R_{2}-R_{1})}\right] \sim (1 + \gamma_{1}R_{1} \sin \psi_{1})(1 + \gamma_{0}R_{1})$$

$$- \sin^{2} \psi_{1}(3 + 3\gamma_{0}R_{1} + \gamma_{0}^{2}R_{1}^{2})$$
(A-1?)

$$(1 + \gamma_0 R_2) \sin \psi_2 \frac{e^{-\gamma_0 R_2}}{R_2^2} - (1 + \gamma_0 R_1) \sin \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2}$$

$$- \frac{de^{-\gamma_0 R_1}}{R_2^3} [(1 + \gamma_0 R_1) - \sin^2 \psi_1 (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2)]$$
(A-13)

and

$$(1 + \gamma_0 R_2) \cos \varphi_2 \frac{e^{-\gamma_0 R_2}}{R_2^2} - (1 + \gamma_0 R_1) \cos \psi_1 \frac{e^{-\gamma_0 R_1}}{R_1^2}$$

$$- \frac{d \sin \psi_1 \cos \psi_1 e^{-\gamma_0 R_1}}{R_1^3} (3 + 3\gamma_0 R_1 + \gamma_0^2 R_1^2) ,$$
(A-14)

where

$$R_1^2 = \rho^2 + (z + h)^2$$
,
 $R_2^2 = \rho^2 + (d + z + h)^2$,
 $\sin \psi_1 = (z + h)/R_1$,
 $\cos \psi_1 = \rho/R_1$,
 $\sin \psi_2 = (d + z + h)/R_2$, and
 $\cos \psi_2 = \rho/R_2$.

INITIAL DISTRIBUTION LIST

Addressee	No. of Copies
DAR PA DTIC	3 15
ONR (Code 425GG (J. Heacock), 428IO (R. G. Joiner))	2
ASN (T. P. Quinn (for C ³), H. Hull (Rm SE 779)	2 3
NRL (Library, Dr. J. R. Davis (Code 7550), Dr. Frank Kelly)	3
NOSC (Library, R. A. Pappart, D.G. Morfitt, J. A. Ferguson,	
J. Bickel, F. P. Snyder, C. F. Ramstedt, P. Hansen,	
K. Grauer, W. Hart)	10
NAVELECSYSCOM (PME 110-11 (Dr. G. Brunhart), PME 110-X1	_
(Dr. Bodo Kruger), PME 110)	3
NAVAL SURFACE WEAPONS CENTER, WHITE OAK LAB. (J. J. Holmes,	
P. Wessel, K. Bishop, R. Brown, J. Cunningham,	7
B. DeSavage, Library)	7
DWTNSRDC ANNA (W. Andahazy, F. E. Baker, P. Field, D. Everstine,	c
B. Hood, D. Nixon)	6
NAVPGSCOL, MONTEREY (O. Heinz, P. Moose, A. Ochadlik,	c
M. Thomas, W. M. Tolles, Library)	6 . 5
NCSC (K. R. Allen, R. H. Clark, M. J. Wynn, M. Cooper, E. Moritz,	, 5
Library) DIRECTOR DESENSE NUCLEAR ACENCY RAME DOST RAME	3
DIRECTOR, DEFENSE NUCLEAR AGENCY, RAAE, DDST, RAEV R&D Assoicates, P.O. Box 9695, Marina gel Rey, CA 90291	J
(C. GREIFINGER, P. Greifinger)	2
Pacific-Sierra Research Corp., 1456 Cloverfield Boulevard,	۷
Santa Monica, CA 90404 (E. C. Field)	ì
Johns Hopkins University, Applied Physics Laboratory, Laurel, MD	1
20810 (L. Hart, J. Giannini, H. Ko, I Sugai)	4
University of California, Scripps Institute of Oceanography	7
(C. S. Cox (Code A-030), H. G. Booker, J. Filloux, P. Young)	5
Lockheed Palo Alto Research Laboratory (W. Imhof, J. B. Reagan,	v
E. E. Gaines, R. C. Gunton, R. E. Meyerott)	5
University of Texas, Geomagnetics and Electrical Geoscience	-
Laboratory (F. X. Bostick, Jr.)	1
COMMANDER, AIR FORCE GEOPHYSICS LABORATORY (J. Aarons)	1
COMMANDER, ROME AIR DEVELOPMENT CENTER (J. P. Turtle,	
J. E. Rasmussen, W. I. Klemetti, P. A. Kossey,	
E. F. Altschuler)	5
Applied Science Assoicates, Inc., (Dr. Gary S. Brown)	
105 E. Chatham St., Apex, NC 27502	1
Computer Sciences Corp., Falls Church, VA 22046 (D. Blumberg,	
Senator R. Mellenberg, R. Heppe, F. L. Eisenbarth)	4
MIT Lincoln Labs. (M. L. Burrows, D. P. White, D. K. Willim,	
S. L. Bernstein, I. Richer)	5
Electromagnetic Sciences Lab. SRI International, Menlo Park, CA	
94015 (Dr. Pavid M. Bubenik)	1
Communications Research Centre (Dr. John S. Belrose)	
P.O. Box 11490, Station "H" Shirley Bay, Ottawa, Ontario,	,
Canada K2H8S2	I
Dr. Joseph P. deBettencourt, 18 Sterling St., West Newton,	1
MA 02165 Dr. Marty Abromavage, IITRE, Div. E., 10W 35th St., Chicago,	i
IL 60616	1
12 00010	i

INITIAL DISTRIBUTION LIST (Cont'd)

Addressee	No. of Copies
Mr. Larry Ball, U.S. Dept. of Energy NURE Project Office, P.O. Box 2567, Grand Junction, CO 81502	1
STATE DEPARTMENT ACDA MA-AT, Rm. 5499, Washington, DC 20451	_
(ADM T. Davies, R. Booth, N. Carrera) GTE Sylvania, (R. Row, D. Boots, D. Esten) 189 B. St.	3
Needham, MA 02194	3
HARVARD UNIVERSITY, Gordon McKay Lab. (Prof. R. W. P. King, Prof. T. T. Wu)	2
University of Rhode Island, Dept. of Electrical Engineering	
(Prof. C. Polk) University of Nebraska, Electrical Engineering Dept.,	1
(Prof. E. Bahar)	1
University of Toronto, EE Dept. (Prof. Keith Balmain)	1
NOAA/ERL (Dr. Donald E. Barrick)	1
University of Colorado, EE Dept. (Prof. Peter Beckmann) Geophysical Observatory, Physics & Eng. Lab. DSIR Christchurch,	1
New Zealand (Dr. Richard Barr)	1
General Electric Co., (C. Zierdt, A. Steinmayer) 3198 Chestnut	2
St., Philadelphia, PA 19101 University of Arizona, Elec. Eng. Dept., B dg. 20	۷
(Prof. J. W. Wait) Tuscon, AZ 85721	l
U.S. NAVAL ACADEMY, Dept. of Applied Science (Dr. Frank L. Chi)	1
Stanford University, Radioscience Laboratory (Dr. Anthon,	
Fraser-Smith), Durand Bldg., Rm. 205 Stanford University, Stanford Electronics Laboratory	1
(Prof. Bob Helliwell)	1
Colorado School of Mines, Department of Geophysics	1
(Prof. A. Kaufman) Prof. George V. Keller, Chairman, Group Seven, Inc., Irongate II,	l
Executive Plaza, 777 So. Wadsworth Blvd., Lakewood,	
CO 80226	1
NOAA, Pacific Marine Environ, Lab. (Dr. Jim Larsen)	1
MIT, Dept. of Earth/Planetary Sciences, Bldg. 54-314	
(Prof. Gene Simmons)	1
Colorado School of Mines (Dr. C. Stoyer) University of Victoria, (Prof. J. Weaver) Victoria, B.C.	1
V8W 2Y2 Canada	ו
Mr. Donald Clark, c/o Naval Security Group Command, 3801 Nebraska	1
Ave., NW, Washington, DC 20390]
Prof. R. L. Dube, 13 Fairview Rd., Wilbraham, MA 01095	1
U.S. Geological Survey, Rm. 1244 (Dr. Frank C. Frischknecht) Denver, CO 80225	1
Mr. Larry Ginsberg, Mitre Corp., 1820 Dolly Madison Bldg.	•
McLean, VA 22102	1
Dr. Robert Morgan, Rt. 1, Box 187, Cedaredge, CO 81413	1
Mr. A. D. Watt, Rt. 1, Box 183 1/2, Degaredge, CO 81413	1
Dr. E. L. Maxwell, Atmospheric Sciences Dept., Colorado State	1
University, Fort Collins, CO	i
Mr. Al Morrison, Purvis Systems, 3530 Camino Del Rio North, Suite 200, San Diego, CA 92108	3

Addressee	No. of Copies
NDRE, Division for Electronics (Dr. Trygve Larsen)	1
P.O. Box 25, Kjeller, Norway Belden Corp., Technical Research Center (Mr. Douglas O'Brien)	1
Geneva, Illinois	1
University of Pennsylvania (Dr. Ralph Showers) Moore School of Elec. Eng., Philadelphia, PA 19174	1
University of Houston, Director, Dept of Elec. Eng. (Prog. Liang C. Shen)	ı
The University of Connecticut, Physics Dept., (Prof. O. R. Gilliam), Storrs, CT 06268	1
Dr. David J. Thomson, Defence Research Establishment Pacific,	1
F.M.O., Victoria, B.C., Canada Dr. Robert Hansen, Box 215, Tarzana, CA 91356	1
The University of Kansas, Remote Sensing Laboratory (Prof. R. K. Moore) Center for Research, Inc., Lawrence,	·
Kansas OT/ITS U.S. Dept. of Commerce (Dr. David A. Hill), Boulder, CO]
Office of Telecommunications, Inst. for Telecommunications	•
Services (Dr. Douglas D. Crombie, Director), Boulder, CO University of Colorado, Dept. of Electrical Eng.	1
(Prof. David C. Chang)	1
Dr. K. P. Spies, ITS/NTIA, U.S. Dept. of Commerce The University of Connecticut, Dept. of Electrical Eng. & Computer Sci., Storrs, CT (Prof. Clarence Schultz,	1
Prof. Manmond A. Melehy)	2
Dr. Richard G. Geyer, 670 S. Estes St., Lakewood, CO	1
University of California, Lawrence Livermore Lab.,	2
(R. J. Lytle, E. K. Miller, R. J. King) Kings College, Radiophysics Group (Prof. D. Llanwyn-Jones)	3
Strand, London WC2R 2LS, England	1
Istituto di Electtrotechnica, Facotta di Ingegneria	
(Prof. Giorgio Tacconi) Viale Combiaso 6, 16145 Genova,	1
Italy Universite des Sciences de Lille (Prof. R. Gabillard)	•
B. P. 36-59650 Villeneuve D'Ascq, Lille, France	1
Arthur D. Little, Inc., (Dr. A. G. Emslie, Dr., R. L. Lagace,	1
K&D Div., Acorn Park, Cambridge, MA 02140 University of Colorado, Dept. of Electrical Eng.	1
(Prof. S. W. Maley)	1
University of Washington, EE Dept. (Prof. A. Ishimaru) Seattle	1
Dr. Svante Westerland, kiruna Geofysiska Institute	3
S981 O1 Kiruna 1, Sweden Dr. Harry C. Koons, The Aerospace Corp., P.O. Box 92957,	1
Los Angeles, CA 90009	1
Dr. Albert Essmann, Hoogewinkel 46, 23 Kiel 1, West Germany	1
Glenn S. Smith, School of Elec. Eng. Georgia Tech. Atlanta, GA	1
Dr. T. Lee, CIRES, Campus Box 449, University of Colorado	!
Dr. Jack Williams, RCA Camden, Mail Stop 1-2, Camden, NJ 08102 Dr. Joseph Czika, Science Applications, Inc., 840 Westpark Dr.	i
McLean, VA 22161	7
Mr. Arnie Farstad, 390 So. 69th St., Boulder, CO 80303	1

INITIAL DISTRIBUTION LIST (Cont'd)

to the control of the control	
Addressee	A 1
	No. of Copies
NATO SACLANT ASW CENTER (Library)	_
0303, Branch of Electromagnetism and soomanation	1
NUMA, Pasitic Maine Environ Lab (Dm. 18-11-11)	1
University of Texas at Dallas, Geosciences Division,	1
/ * · · · · · · · · · · · · · · · · · ·	
University of Wisconsin Lawis C. Wooke Hell D.	1
Geology and Geophysics (Dr. C. S. Clay)	
myone national laboratory Rida 12 /b., +	7
	7
THE CHIVELDILY OF MANIFORN FLAC Eng Donk In a	ī
Mr. Jerry Pucillo, Analytical Systems, Engineering Corp.,	7
Ur. Misac N. Nahighian Newmont Evalence	1
Dr. Fred Raab, Pohemus, P.O. Box 298, ts.ax Junction, VT 05452 Dr. Louis H. Rorden President Days les	1
Dr. Louis H. Rorden, President, Devilco, Inc., 404 Tasman Dr.	1
Sunnyvale, CA 94086	
Dr. Eivind Trane NDPE P.O. Pow Dr. GOOD W	7
Dr. Eivind Trane, NDRE, P.O. Rox 25, 2007 Kjeller, Norway	7
RCA David Sarnoff Research Center (K. Powers, J. Zennel, L. Stetz, H. Staras)	
University of Illinois Assessment	4
University of Illinois, Aeronomy Laboratory (Prof. C. F. Sechrist) Dr. Cullen M. Crain, Pand Corp. Santa	j
Dr. Cullen M. Crain, Rand Corp., Santa Luica, CA Radioastrony isches Instagute des Manuel Corp.	i
Radioastrono isches Institute der Universität Bonn (Dr. H. Volland) 5300 Bonn Franco	·
(Dr. H. Volland), 5300 Bonn-Endenich, Auf dem Hilgel 71 West Germany	
Dr. John P. Wikswo, Jr., P.C. Box 120062 Acklen Station,	1
Nashville	
Mr. Lars Brock-Nannestad, DDRB Osterbrogades Kaserne,	7
2100 CVopenhagen O, Denmark	
Institut de Physique du Globo (De Gdana (D.	7
Institut de Physique du Globe (Dr. Edonard Selzer) 11 Quai St., Bernard, Tour 24 Paris Ve, France	
	7
Elektrophysikaliscnes Institut (Dr. Herbvert Konig) Technische	
Raytheon Company (Dr. Mario Grossi) Portsmouth, RI	}
NISC, Code COW (Mr. M. A. Koontz) Wasnington, DC	7
Polytechnic Institute of Grooklyn (Prof. Leo Felsen)	1
NONA/FRI (itc. Fami 5 Cooperally 9 Fire Leo Felsen)	}
NOMA/EPL (Ur. Earl E. Gossard) R45X7, Boulder, CO 80302 Dr. George H. Hagn. Ski. Washington, Board P. 1980	j
Dr. George H. Hagn, SrI-Washington, Rosslyn Plaza, Arlington, VA NOAA/ERL (Dr. C. Gordon Little) R45	ì
	j
Guddard Space Flight Ctr. (Dr. S. J. Durrani) Code 800.1	1
NTIA/ITS, U.S. Dept. of Commerce (Dr. A. D. Spaulding) Stanford University Floo From Stanford University Floor From From From From From From From F	}
Stanford University, Elec. Eng. Dept. (Dr. O. G. Villard, Jr.) Dr. D. Middleton, 127 East 91st St. New York, NY Joseph	1
Dr. D. Middleton, 127 East 91st St., New York, NY 10028	1
University of California, Elec. Eng. & Computer Sci. Dept.,	1
California Inst. of Technology, Jet Propulsion Lab.,	1
(Dr. Yahya Rahmat-Samii)	
· · · · · · · · · · · · · · · · · · ·	1

INITIAL DISTRIBUTION LIST (Cont'd)

Addressee	No. of Copi
Raytheon Service Co. (Dr. M. Soyda) Mt. Laurel, NJ 08054 MITRE M/S W761 (Dr. W. Foster) McLean, VA	1
Max-Planck-Institut fur Aeromomie (Prof. P. Stubbe) 3400 Katlenburg-Lindau 3 FRG	1
University of Otago, Physics Dent. (Prof. R. L. Dowden) Dunedin, New Zealand	1
University of Leicester, Physics Dept. (Prof. T. B. Jones)	,
Leicester, England Naval Weapons Center, China Lake, Code 3814 (Dr. R. J. Dinger)	1
Dr. Claudia D. Tesche, Lutech, Inc., P.O. Box 1263, Berkeley National Aeronautical Est., National Research Council, Flight	1
Research Lab., (Dr. C. D. Harwick) Ottawa, K1AOR6, Canada Colorado Research and Prediction Laboratory, Inc.	1
(Dr. R. H. Doherty, Dr. J. R. Johler) Boulder, CO	2
University of Alberta, Physics Dept. (Prof. R. P. Singh) Edmonton, Alberta, Canada	1
ARF Products Inc., (Mr. Larry Stolarczyk), Raton, NM NAVSEA, Code 63R]
Rockwell Int'l Space Transportation Division, (Dr. David G. Aviv), Mail Stop AA-81, 12214 Lakewood Blvd.,	
Downey, CA 90241	1
Arizona State University, School of Engineering, Dept. of Electrical and Computer Engineering,	
(Prof. Constantine A. Balanis), Tempe, AZ 85287 University of Massachusetts, Dept. of Electrical and Computer	1
Engineering, (Prof. Robert E. McIntosh), Amherst, MA 01003	1
Cairo University, Faculty of Engineering Electronics & Comm. Dept (Dr. Samir F. Mahmond), Giza, Egypt	,