

Przetwórstwo Tworzyw Sztucznych - Projekt

Paweł Tymiński – ID-A0-52

Prowadzący – dr inż. Krzysztof Wilczyński

1. Założenia Projektu

- czas produkcji 1 rok (250 dni roboczych)
- liczba sztuk do wyprodukowania 5 mln
- tworzywo polistyren (PS) (k=2,8)

Objętość wypraski V=5631.30 mm³

Produkt – opakowanie na produkty biurowe

Widok wypraski

2. Obliczenia projektu

a) Czas produkcji: 250 dni roboczych w systemie dwuzmianowym (16h/doba),co daje T=250*16*3600=14400000s

b) Czas cyklu

Na czas cyklu składają się: czas wtrysku (t_w) , czas chłodzenia (t_{ch}) , czas suchy oraz czas przerwy

Czas cyklu wylicza się wg. wzoru:

$$tc = \frac{tw + tch + tcs + tp}{0.9}$$
, gdzie 0,9 to współczynnik bezpieczeństwa

 t_w – czas wtrysku oblicza się wg. wzoru t_w =1*s_{max}, gdzie s_{max} – najwieksza grubość ścianki wypraski, w przypadku tego wyrobu s=1.5mm. Zatem t_w =1,5s

 t_{ch} – czas chłodzenia dany jest wzorem t_{ch} =k*s^2. Dla zadanego wyrobu wartość wyniosła 6,3s.

 t_{cs} – czas suchy = 6s.

t_p-czas przerwy= 1.5s

Dla tego procesu produkcyjnego czas cyklu wynosi $t_c=(6,3+1,5+6+1,5)/0,9=17s$

c) Liczba wyprasek w jednym cyklu wtrysku

N=14 400 000/17=847 058

 $n=5\ 000\ 000/847\ 058 = 5,9 \cong 8$

Zaprojektowanie wypraski

3.1 Układ gniazda wypraski

Gniazdo formy wtryskowej

Wszystkie elementy wypraski muszą być oddalone na odpowiednią odległość, pozwalającą na bezproblemowe rozmieszczenie dodatkowych elementów. Po uwzględnieniu wszystkich założeń projektowych wypraska prezentuje się następująco:

3.2 Długość drogi płynięcia

Długość drogi płynięcia to odległość od punktu wtrysku do najbardziej oddalonego punktu wypraski. Z modelu 3D wynika, iż ta długość wynosi 282mm

3.3 Dobór wtryskarki

Na podstawie danych z programu SolidWorks otrzymuję objętość i powierzchnię rzutu wypraski na płaszczyznę, co pozwala na dobór odpowiedniej wtryskarki.

S = 27797 mm2

V = 70,27 cm3

Zakładam ciśnienie wtrysku p=30 MPa, na tej podstawie obliczam siłę zwarcia formy F=p*S=30 MPa * 27797 mm² ≈ 840 kN

Na podstawie tych danych z katalogu firmy PONAR-Żywiec dobieram wtryskarkę – model UT.90.H

ТҮР			UT.90.H TERMOPLAST
Określenie wielkości wg EUROMAP1			900H-335
ZESPÓŁ WTRYSKOWY			
Średnica ślimaka		mm	30/35/40
Max. teoretyczna objelość wtrysku		cm ¹	123/168/220
Max. masa wtrysku z PS		g	111/151/197
Max. ciśnienie wtrysku		MPa	271 / 199/152
Max. wydajność wtrysku		g/s	91/125/163
Stosunek L/D ślimaka			23/20/20
Max. skok slimaka		mm	175
Prędkość obrotowa ślimaka		or/min	20-448
Max. moment obrotowy ślimaka		Nm	520
Moc grzewcza		kW	8/8/9
Ilość stref grzewczych		szt.	3+dysza
Max. siła docisku dyszy		kN	57
Max. skok dyszy		mm	300
Objętość leja		dcm ³	41
ZESPÓŁ ZAMYKANIA FORMY			
Max, siła zamykania		kN	900
Max, siła otwarcia		kN	80
Max, skok otwarcia		mm	500
Min. wysokość formy		mm	225
Max. prześwit między płytami		mm	725
Prześwit między kolumnami		mm	420 ×420
Wymiary płyty		mm	615 × 615
Max. skok wyrzutnika		mm	125
Max. siła wyrzutnika: wypychanie/cof	anie	kN	33/21
NAPĘD, WYMIARY, MASA			
Ciśsnienie układu hydraulicznego		MPa	17,5
Moc napędu pompy M		kW	18,5
M	2	IcW	22
Pojemność zbiornika oleju		dm	400
Elektryczna moc zainstalowana M	1	kW	26,5\26,5\27,5
м	_	kW	30\30\31
Masa maszyny netto		kg	5050
Wymiary maszyny (dł. x szer. x wys	.)	m	4.51 x 1.4 x 2.02

Specyfikacja wtryskarki

Wtryskarka spełnia zakładane przeze mnie wymagania

4. Zaprojektowanie i dobór elementów formy wtryskowej

Z katalogu FCPK – Bytów wybieram elementy korpusu formy oraz elementy znormalizowane. Dobieram korpus nr. 35 (596x396mm)

Do tego dobieram elementy znormalizowane z katalogu FCPK.

- 5. Lista załączonych rysunków
 - a) Pojedynczy wyrób
 - b) Wypraska
 - c) Forma wtryskowa
 - d) Forma
 - e) Matryca