Contrôle Intermédiaire Théorie de la programmation 3^{ème} année Cycle commun

Durée: 2H.

Tous Documents Interdits

EXERCICE 1: (5 pts) X O

1. Comparer les langages dénotés par les expressions régulières suivantes:

$$E_1 = (0 \cup 1)^* 010(0 \cup 1)^*$$

$$E_2 = (1 \cup 0^+11)^*$$

2. Comparer les langages dénotés par E1 et E3

$$E_3 = (1 \cup 0^+11)^* 010(0*1*)^*$$

EXERCICE 2: (3 pts) \gtrsim

Donner les grammaires générant les langages définis ci-dessous:

- $L_1 = \{a^{2n} b a^{3m}, m, n \ge 0\}$ $L_2 = \{a^{2n} b a^{3n} n \ge 0\}$

 - $L_3 = \{a^{2n} a^{3n} n \ge 0\}$

EXERCICE 3: $(4pts) \times O$

Soit L le langage suivant $\{a^n b^m d^k, n < m+k \text{ ou } n \ge 2m+k \}$

- 1. Donnez une grammaire G qui engendre L
- 2. Montrer que L(G) = L.

EXERCICE 4: (6 pts)

Soit A l'automate suivant :

1. Construire l'automate B qui reconnait le simple et déterministe L(A) (Donnez toutes les étapes)

2. Construire la grammaire régulière droite engendrant L(A)

3. Montrer que pour tout automate d'états finis A, il existe une grammaire régulière droite G < X, V, P, S > telle que <math>L(A) = L(G) (Justifier).

EXERCICE 5: (2 pts) \(\septimes \quad \text{Q}

Ce raisonnement vous semble t'il correcte (Justifier)?

- 1. Le langage L_1 dénoté par $E_1 = a^*$. b^* est rationnel
- 2. $L_2 = \{a^n, b^p/n + p \text{ est pair}\}\$ est inclus dans L_1 .
- 3. Or tout sous-ensemble d'un langage rationnel est rationnel
- 4. L₂ est donc rationnel.