

1

Introducción y conceptos generales de Lenguajes de Programación

UNRN

Universidad Nacional de **Río Negro**

Ing. Pablo E. Argañaras parganaras@unrn.edu.ar

Variables y Valores de Verdad

El contenido de una proposición se representa mediante una variable proposicional que se nombra con letras minúsculas a partir de la letra "p", por convención, y si fuera necesario se usan subíndices como " p_1 , p_2 , p_3 , p_4 , ..., p_n ".

3

Universidad Nacior de **Río Negro** 3

Lógica Proposicional

Variables y Valores de Verdad

Revisando la proposición "Si tengo dinero y paso por Mamuschka entonces me compro unos chocolates" podemos asignar variables proposicionales como:

p: tengo dinero

a: paso por Mamuschka

r: me compro unos chocolates

4

Variables y Valores de Verdad

Las proposiciones en lógica proposicional son siempre enunciativas o aseverativas, y son verdaderas o falsas.

Una proposición formalizada por p podrá tomar el valor

Verdadero - Falso

1-0

5

5

Lógica Proposicional

Variables y Valores de Verdad

Representando gráficamente p con tabla quedaría:

р	р
٧	1
F	0

Para dos variables p y q la tabla quedaría:

p	q	p	q
٧	٧	1	1
٧	F	1	0
F	٧	0	1
F	F	0	0

UNRN Universidad Nacional de Río Negro

6

Variables y Valores de Verdad

En general, dado un número n de proposiciones, el número de combinaciones posibles de sus valores de verdad sería 2ⁿ.

Así para n=3 habría 2³=8 combinaciones, para n=4 habría 2⁴=16 combinaciones, y así siguiendo.

7

7

Lógica Proposicional

Variables y Valores de Verdad

¿Cómo completar las tablas de verdad?

Se listan las diferentes variables que intervienen y sus valores de verdad se intercalan según las potencias de 2, iniciando en la potencia 0 para la variable de más a la derecha, y así siguiendo hacia la izquierda con potencia 1, 2, 3, etc.

2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
16	8	4	2	1
р	q	r	S	t
٧	٧	٧	٧	٧
٧	٧	٧	٧	F
٧	٧	٧	F	٧
٧	٧	٧	F	F
٧	٧	F	٧	٧
٧	٧	F	٧	F
٧	٧	F	F	٧
٧	٧	F	F	F
٧	F	٧	٧	٧
٧	F	٧	٧	F
٧	F	٧	F	٧
V	F	V	F	F

Variables y Valores de Verdad

Podemos construir la tabla de verdad para la variable p como:

p: El mes en curso es febrero

р	р
٧	1
F	0

9

9

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Los símbolos lógicos como conectivas u operadores de un cálculo, establecen conexiones lógicas entre las proposiciones y se comportan como funciones u operadores en las matemáticas.

Conectivas y sus interpretaciones Semánticas

Negación: conectiva monádica que toma como argumento una proposición y arroja como valor lo contrario de la proposición. Se expresa mediante el signo ~ ó ¬ y se usa prefija a la variable proposicional a la que se aplica, por ejemplo: ~p ó ¬p.

11

11

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Negación: evidentemente simboliza al "no" o a cualquier forma de negación del lenguaje natural. Opera invirtiendo el valor de verdad del argumento. Si la proposición p es verdadera, entonces ~p ó ¬p es falsa, y al revés.

٧

F

F

0

1

1

Conectivas y sus interpretaciones Semánticas

Conjunción: es una conectiva diádica que dadas dos proposiciones **p** y **q** se pueden unir en conjunción mediante "**y**" o cualquier otra forma de conjunción del lenguaje natural.

13

13

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Conjunción: Se expresa mediante el signo Λ y se coloca de forma infija entre las dos variables proposicionales que conecta, como p Λ q. La conjunción de dos proposiciones atómicas es verdadera cuando cada proposición componente es verdadera.

р	q	рлф
V	٧	V
٧	F	F
F	٧	F
F	F	F

р	q	рлq
1	1	1
1	0	0
0	1	0
0	0	0

Universidad Nacional de **Río Negro**

Conectivas y sus interpretaciones Semánticas

Disyunción: es una conectiva diádica que dadas dos proposiciones cualesquiera **p** y **q** se pueden unir mediante disyunción "o" y puede ser Exclusiva o Inclusiva.

15

15

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Disyunción: Exclusiva es aquella donde si se verifica una alternativa la otra no se da. Se simboliza con el signo \mathbf{v} y se coloca de forma infija entre las dos variables proposicionales que conecta, como $\mathbf{p} \mathbf{v} \mathbf{q}$.

Conectivas y sus interpretaciones Semánticas

Disyunción: Inclusiva es aquella donde se puede dar una u otra de las alternativas, o ambas a la vez. Se simboliza con el signo v que se coloca de forma infija entre las dos variables proposicionales que conecta, como p v q.

Universidad Nacional de **Río Negro**

17

17

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Disyunción: La disyunción de dos proposiciones atómicas es falsa cuando cada proposición componente es falsa.

р	q	pvq
٧	٧	V
٧	F	V
F	٧	٧
F	F	F

р	q	pvq
1	1	1
1	0	1
0	1	1
0	0	0

Universidad Nacional de **Río Negro**

Conectivas y sus interpretaciones Semánticas

Condicional: el condicional "si…entonces" es también una conectiva para formalizar la estructura deductiva entre dos premisas, así se pueden relacionar \mathbf{p} y \mathbf{q} condicionalmente como "si \mathbf{p} entonces \mathbf{q} ", y se puede simbolizar con \rightarrow como $\mathbf{p} \rightarrow \mathbf{q}$.

19

19

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Condicional: La primera parte del condicional \mathbf{p} se llama antecedente y la última parte \mathbf{q} se llama consecuente. En esta conectiva hay que tener en cuenta el orden de colocación de las variables, porque la fórmula $\mathbf{p} \rightarrow \mathbf{q}$ no es igual que $\mathbf{q} \rightarrow \mathbf{p}$ y produce un resultado completamente distinto.

20

Analicemos en qué casos es verdadero el ejemplo "si llueve entonces me mojo":

- Su antecedente y su consecuente son verdaderos.
- Su antecedente es falso, pero su consecuente es verdadero.
- Su antecedente y consecuente son falsos.
- El único caso en que el condicional es Falso, es cuando el antecedente es verdadero y el consecuente es falso. Es decir, "si llueve" en ningún caso dejaría de verificarse que "me mojo".

Universidad Nacional de **Río Negro**

21

21

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Condicional: es falso cuando el antecedente es verdadero y el consecuente es falso.

р	q	p → q
٧	٧	V
٧	F	F
F	٧	٧
F	F	V

р	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Universidad Nacional de **Río Negro**

Conectivas y sus interpretaciones Semánticas

Bicondicional: el bicondicional expresa la condición suficiente y necesaria como "si y sólo si" simbolizado mediante \leftrightarrow como $p \leftrightarrow q$.

El bicondicional es la conjunción del condicional con su inverso, o sea, de $p \rightarrow q$ y de $q \rightarrow p$.

Universidad Nacional de **Río Negro**

23

23

Lógica Proposicional

Conectivas y sus interpretaciones Semánticas

Bicondicional: es verdadero sólo cuando sus proposiciones atómicas tienen el mismo valor de verdad.

р	q	p ↔ q
٧	٧	V
٧	F	F
F	٧	F
F	F	V

р	q	p ↔ q
1	1	1
1	0	0
0	1	0
0	0	1

Conectivas y sus interpretaciones Semánticas

Bicondicional: como conjunción del condicional con su inverso:

р	q	$p \rightarrow q$	q → p	$(p \rightarrow q) \land (q \rightarrow p)$	p ↔ q
٧	٧	V	V	V	V
٧	F	F	V	F	F
F	٧	V	F	F	F
F	F	V	V	V	V

UNRN

Universidad Nacional de **Río Negro**

25

25

Gracias por su atención

UNRN

Universidad Nacional de **Río Negro**

parganaras@unrn.edu.ar pbritos@unrn.edu.ar