

Seminar Approximation Algorithms

Approximating Nash Social Welfare under Submodular Valuations through (Un)Matchings

Based on a paper of the same name by Garg, Kulkarni and Kulkarni

Zeno Adrian Weil Supervised by Dr Giovanna Varricchio

10th July 2023 · Algorithms and Complexity (Prof. Dr Martin Hoefer)

Introduction What is the issue?

We need to distribute goods amongst recipients fast, efficient and fairly.

Where is this encountered?

- industrial procurement
- mobile edge computing
- satellites
- water withdrawal

Table of Contents

- 1 Preliminaries
 - Allocations
 - Valuation Functions
 - Maximum Nash Social Welfare Problem

2 RepReMatch

- Naïve Approach
- The Algorithm
- Analysing Phase II
- Analysing Phases I & III

Preliminaries

Allocations

Setting:

- **g**oods: set \mathcal{G} of m items
 - unsharable
 - indivisible
- **recipients**: set \mathcal{A} of *n* agents

Definition (1)

An *allocation* is a tuple $\mathbf{x} = (\mathbf{x}_i)_{i \in \mathcal{A}}$ of bundles $\mathbf{x}_i \subset \mathcal{G}$ such that each item is element of precisely one bundle.

Item *j* is *assigned* to agent *i* if $j \in x_i$.

But how to measure its efficiency and fairness?

Preliminaries

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(\mathcal{S}_1) \leq v_i(\mathcal{S}_2)$ $\forall \mathcal{S}_1 \subset \mathcal{S}_2 \subset \mathcal{G}$
- normalised: $v_i(\emptyset) = 0$
- non-negative: $v_i(S) \ge 0$ $\forall S \subset \mathcal{G}$

Types:

- additive: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(j) \quad \forall \mathcal{S} \subset \mathcal{G}$
- submodular: $v_i(S_1 \mid S_2) := v_i(S_1 \cup S_2) v_i(S_2)$ $\forall S_1, S_2 \subset \mathcal{G} \text{ with } S_1, S_2 \text{ disjoint }$
 - more general (encompasses additivity)
 - diminishing returns

Asymmetric Maximum Nash Social Welfare Problem

Problem (2)

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{G})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \quad \text{with NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathscr{A}}(\mathscr{G})$: all possible allocations
- \bullet η_i : agent weight
- middle ground between efficiency and fairness

Challenge

Algorithm with approximation factor $independent\ from\ m!$

RepReMatch Naïve Approach

What are the low-value items?

Looking into the Future

- sort items by valuation in descending order
 - low-value items on the left

use their valuations for edge weights in early matchings

A 2*n*-approximation is possible ... using SMatch.

This only works for additive valuation functions.

Changing the Past

<u>Under submodular valuation</u>, the set of lowest valuation is approximable only by $\Omega(\sqrt{m/\ln m})$.

We can change the past in three phases:

Phase I Assign enough high-value items temporarily.

Phase II Assign the remaining items definitely.

Phase III Re-assign the items of phase I definitely.

A $2n(\log_2 n + 3)$ -approximation is possible!

The Algorithm

Phase I

- **1** repeat $\lceil \log_2 n \rceil$ + 1 times or until $\mathscr{G} = \emptyset$
 - **T** create bipartite graph $G = (\mathcal{A}, \mathcal{G}, E)$ with edge weights $w(i, j) = \eta_i \log v_i(j)$
 - **2** compute maximum weight matching \mathcal{M}
 - 3 update bundles x_i^{I} according to matching \mathcal{M} and remove assigned items

Phase II

- **2** repeat until $\mathcal{G} = \emptyset$
 - **T** create bipartite graph $G = (\mathcal{A}, \mathcal{G}, E)$ with edge weights $w(i, j) = \eta_i \log(v_i(x_i^{\mathbb{I}} \cup \{j\}))$
 - 2 compute maximum weight matching $\mathcal M$
 - ${\color{red} 3}$ update bundles ${\color{red} x_i^{\mathrm{II}}}$ according to matching ${\color{red} \mathcal{M}}$ and remove assigned items

Phase III

- **3** create bipartite graph $G = (\mathcal{A}, \bigcup_{i \in \mathcal{A}} \mathbf{x}_i^{\mathrm{I}}, E)$ with edge weights $w(i, j) = \eta_i \log (v_i(\mathbf{x}_i^{\mathrm{II}} \cup \{j\}))$
- 4 compute maximum weight matching $\mathcal M$
- **5** create bundles x_i^{III} according to matching \mathcal{M} and previous bundles x_i^{II}

Analysing Phase II

Definition (9)

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in \mathbf{x}_i^*$ assigned to other agents $i' \neq i$ in round r.

Definition (10)

The set of optimal and attainable items is defined as

$$\overline{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} & \text{in round } r = 0, \\ \overline{\boldsymbol{x}}_{i,0}^{\star} \setminus \mathcal{L}_{i,1} & \text{in round } r = 1, \\ \overline{\boldsymbol{x}}_{i,r-1}^{\star} \setminus (\mathcal{L}_{i,r} \cup \{\boldsymbol{a}_{i}^{r-1}\}) & \text{in round } r = 2, \dots, \tau_{i}^{\mathrm{II}}. \end{cases}$$

⇒ What is the valuation of the remaining items?

Analysing Phase II – Valuation of Unassigned Items (1/4)

 $\forall r > 2$

Lemma (11)

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge v_i(\overline{x}_{i,1}^*) - \sum_{r'=1}^{r-1} |\mathscr{L}_{i,r'+1}| \cdot v_i(a_i^{r'} \mid a_i^1, \dots, a_i^{r'-1}) - v_i(a_i^1, \dots, a_i^{r-1})$$

 $\boldsymbol{x}_i^{\mathrm{II}} = \{a_i^1, \dots, a_i^{\tau_i^{\mathrm{II}}}\}$

Proof

definition of marginal valuation

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) = v_i(\overline{x}_{i,r}^* \cup \{a_i^1, \dots, a_i^{r-1}\}) - v_i(a_i^1, \dots, a_i^{r-1})$$

 \Rightarrow We need a lower bound on $v_i(\bar{x}_{i,r}^* \cup \{a_i^1, \dots, a_i^{r-1}\})$!

Analysing Phase II – Valuation of Unassigned Items (2/4)

Lemma (11)

$$v_{i}(\bar{\boldsymbol{x}}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq v_{i}(\bar{\boldsymbol{x}}_{i,1}^{*}) - \sum_{r'=1}^{r-1} |\mathcal{L}_{i,r'+1}| \cdot v_{i}(a_{i}^{r'} \mid a_{i}^{1}, \dots, a_{i}^{r'-1}) - v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) \qquad \forall r \geq 2$$

Proof

- $\bar{\mathbf{x}}_{i,r}^* = \bar{\mathbf{x}}_{i,r-1}^* \setminus (\mathcal{L}_{i,r} \cup \{a_i^{r-1}\}) \implies (\bar{\mathbf{x}}_{i,r}^* \cup \{a_i^{r-1}\}) \supset (\bar{\mathbf{x}}_{i,r-1}^* \setminus \mathcal{L}_{i,r})$
 - item a_i^{r-1} perhaps not element of $\overline{x}_{i,r-1}^*$

■ diminishing returns
$$\implies v_i(\mathcal{S}_1 \mid \mathcal{S}_2 \cup \mathcal{S}_3) \le v_i(\mathcal{S}_1 \mid \mathcal{S}_2)$$

$$\begin{aligned} v_{i}(\overline{\mathbf{x}}_{i,r}^{*} \cup \{a_{i}^{1}, \dots, a_{i}^{r-1}\}) &\geq v_{i}(\overline{\mathbf{x}}_{i,r-1}^{*} \setminus \mathcal{L}_{i,r} \cup \{a_{i}^{1}, \dots, a_{i}^{r-2}\}) \\ &= v_{i}(\overline{\mathbf{x}}_{i,r-1}^{*} \cup \{a_{i}^{1}, \dots, a_{i}^{r-2}\}) - v_{i}(\mathcal{L}_{i,r} \mid \overline{\mathbf{x}}_{i,r-1}^{*} \setminus \mathcal{L}_{i,r} \cup \{a_{i}^{1}, \dots, a_{i}^{r-2}\}) \\ &\geq v_{i}(\overline{\mathbf{x}}_{i,r-1}^{*} \cup \{a_{i}^{1}, \dots, a_{i}^{r-2}\}) - v_{i}(\mathcal{L}_{i,r} \mid a_{i}^{1}, \dots, a_{i}^{r-2}) \end{aligned}$$

Analysing Phase II – Valuation of Unassigned Items (3/4)

Lemma (11)

$$v_{i}(\bar{\boldsymbol{x}}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \ge v_{i}(\bar{\boldsymbol{x}}_{i,1}^{*}) - \sum_{r'=1}^{r-1} |\mathcal{L}_{i,r'+1}| \cdot v_{i}(a_{i}^{r'} \mid a_{i}^{1}, \dots, a_{i}^{r'-1}) - v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) \qquad \forall r \ge 2$$

Proof

apply inequality recursively

$$v_{i}(\overline{x}_{i,r}^{*} \cup \{a_{i}^{1}, \dots, a_{i}^{r-1}\}) \geq v_{i}(\overline{x}_{i,r-1}^{*} \cup \{a_{i}^{1}, \dots, a_{i}^{r-2}\}) - v_{i}(\mathcal{L}_{i,r} \mid a_{i}^{1}, \dots, a_{i}^{r-2})$$

$$\geq v_{i}(\overline{x}_{i,1}^{*}) - \sum_{r'=1}^{r-1} v_{i}(\mathcal{L}_{i,r'+1} \mid a_{i}^{1}, \dots, a_{i}^{r'-2})$$

 \Rightarrow We need an upper bound on $v_i(\mathcal{L}_{i,r'+1} \mid a_i^1, ..., a_i^{r'-2})!$

Analysing Phase II – Valuation of Unassigned Items (4/4)

Lemma (11)

$$v_{l}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \ge v_{l}(\overline{x}_{i,1}^{*}) - \sum_{r'=1}^{r-1} |\mathcal{L}_{l,r'+1}| \cdot v_{l}(a_{i}^{r'} \mid a_{i}^{1}, \dots, a_{i}^{r'-1}) - v_{l}(a_{i}^{1}, \dots, a_{i}^{r-1}) \qquad \forall r \ge 2$$

Proof

- diminishing returns $\implies v_i(\mathcal{S}) \leq \sum_{j \in \mathcal{S}} v_i(j)$ for all \mathcal{S}
- item $a_i^{r'}$ assigned before any item $j \in \mathcal{L}_{i,r'+1} \implies v_i(a_i^{r'} \mid a_i^1, \dots, a_i^{r'-1}) \ge v_i(j \mid a_i^1, \dots, a_i^{r'-1})$

$$v_{i}(\mathcal{L}_{i,r'+1} \mid a_{i}^{1}, \dots, a_{i}^{r'-2}) \leq \sum_{j \in \mathcal{L}_{i,r'+1}} v_{i}(j \mid a_{i}^{1}, \dots, a_{i}^{r'-2})$$

$$\leq |\mathcal{L}_{i,r'+1}| \cdot v_{i}(a_{i}^{r'} \mid a_{i}^{1}, \dots, a_{i}^{r'-1})$$

Analysing Phase II – Valuation of Assigned Items

Lemma (13)

$$v_i(a_i^1,\ldots,a_i^{\tau_i^{\text{II}}}) \geq v_i(\overline{x}_{i,1}^*)/n$$

Proof

Left as exercise to the listeners.

Hint:
$$|\mathcal{L}_{i,r}| \leq n-1$$

RepReMatch Analysing Phases I & III

Reminder

Phase I Temporary assignments. Valuations of single items as edge weights.

Phase III Items of phase I released. Valuations of items and bundles from phase II as edge weights.

Phase I reserves 'high-value' items. But what qualifies as 'high-value'?

Definition (14)

Let $\mathbf{x}_i^* = \{o_i^1, o_i^2, \dots\}$ be an optimal bundle. An item $j \in \mathcal{G}$ is *outstanding* if $v_i(j) \ge v_i(o_i^1)$.

⇒ Are enough outstanding items reserved?

Analysing Phases I & III - todo

Lemma (15)

Each agent can be matched with an outstanding item in phase III.

Sketch Proof

- number of agents not matched with an outstanding item in phase II halved with each round of phase I
 - induction on number of rounds in phase I
- $\lceil \log_2 n \rceil$ + 1 rounds in phase I are enough

Base Case: In round 1 of phase I, either

- $\geq n/2$ many agents matched with an outstanding item
- < n/2 many agents matched with an outstanding item
 - > n/2 many items o_i^1 assigned to someone else
 - > n/2 many agents matched upon release in phase III

RepReMatch The Approximation Factor

Theorem (16)

The approximation factor is $2n(\log_2 n + 3)$.