Corso di Algebra per Ingegneria

Lezione 18: Esercizi

- (1) Utilizzando il teorema fondamentale di omomorfismo per insiemi scrivere la funzione $f: n \in \mathbb{Z} \mapsto n^2 \in \mathbb{Z}$ come composizione di una funzione iniettiva e di una suriettiva.
- (2) Trovare, se possibile, un insieme a e una relazione di equivalenza su a tale che a/\sim non sia una partizione di a.
- (3) Scrivere tutte le partizioni dell'insieme {0,1,2};
- (4) Scriviamo $\mathbb{Z} = p \cup d$ dove p è l'insieme dei numeri interi pari e d è quello dei numeri interi dispari. Trovare una funzione f tale che $\mathbb{Z}/Kerf = \{p, d\}$.
- (5) Trovare, se possibile, due diverse relazioni di equivalenza \sim_1 e \sim_2 tali che $\mathbb{Z}/\sim_1 = \{p,d\} = \mathbb{Z}/\sim_2$ con le notazioni dell'esercizio precedente.
- (6) Quante relazioni di equivalenza è possibile definire su $P(\emptyset)$?
- (7) Siano a,b,c,d insiemi a due a due distinti. Determinare tutte le relazioni di equivalenza \sim dell'insieme $\{a,b,c,d\}$ tali che $[a]_{\sim}=[b]_{\sim}=[c]_{\sim}$ e tutte quelle tali che $[a]_{\sim}=[b]_{\sim}$.
- (8) Sia $a = \{n \in \mathbb{N} \mid n \le 7\}$. Determinare tutte le relazioni di equivalenza $\rho = (a \times a, g)$ tali che $0\rho 7$, $(1,4) \in g$, $\{3,4,5,7\} \in [2]_{\rho}$ e $0\rho 6$.