Chapters 9.3-9

Riccardo Miccini¹ Eren Can ¹

¹Technical University of Denmark Digital Communication

November 22, 2016

Modulation Schemes not Requiring Coherent References

In this section, now we consider two modulation schemes that you do not need to require the acquisition of a local reference signal in phase coherence with the received carrier.

Differential Phase-Shift Keying (DPSK)

- The implementation of a such a scheme presupposes two things;
 - 1 The unknown phase perturbation on the signal varies slowly that the phase is constant from one signalling interval to next.
 - The phase during a given signalling interval bears a known relationship to the phase during the preceding signalling interval bears a known relationship to the phase during the preceding signalling interval.

Table 9.3 Differential Encoding Example	e
---	---

Message sequence:		1	0	0	1	1	1	0	0	0
Encoded sequence:	1	1	0	1	1	1	1	0	1	0
Reference digit:	1									
Transmitted phase:	0	0	π	0	0	0	0	π	0	π

Differential Encoding Message Sequence

- An arbitrary reference binary digit is being selected as an initial digit of the sequence
- For each digit , the present digit used as a reference
- 0 in the message sequence is encoded as a transition from state of reference digit to the opposite state in the encoded message sequence
- 1 encoded as no change of state

Figure 9.16 Block diagram of a DPSK modulator.

Figure for Differential Encoding Message Sequence

Table 9.4 Truth Table for the Equivalence Operation

Input 1 (Message)	Input 2 (Reference)	Output
0	0	1
0	1	0
1	0	0
1	1	1

Differential Encoding Message Sequence

- After the reference bit and plus the first encoded bit, signal input become $S_1 = A\cos(\omega_c)t$ and $R_1 = A*\cos(w_c)*t$
- Than the output correlator is; $v_1 = \int_0^T A^2 \cos^2(\omega_c t) dt$ which eventually become $\frac{1}{2}A^2T$
- The optimum detector for binary will become $l = x_k x_k 1 + y_k y_k 1$
- Without a loss of of generality, we can choose $\theta = 0$; we found outputs at t = 0 to be:
 - $x_0 = \frac{AT}{2} + n_1$ and $y_0 = n_3$ and where $n_1 = \int_{-T}^0 n(t) \cos^2(\omega_c t) dt$
 - $n_3 = \int_{-T}^0 n(t) \sin^2(\omega_c t) dt$. Similarly, at the time t = T, the outputs are ; $x_1 = \frac{AT}{2} + n_2$ and $y_1 = n_4$
 - $n_2 = \int_0^T n(t) \cos^2(\omega_c t) dt$
 - $n_4 = \int_0^T n(t) \sin^2(\omega_c t) dt$

Important Figure for Differential Encoding

Figure 9.18
Optimum receiver for binary differential phase-shift keying.

If $\ell > 0$, the receiver chooses the signal sequence

$$s_1(t) = \begin{cases} A\cos(\omega_c t + \theta), & -T \le t < 0\\ A\cos(\omega_c t + \theta), & 0 \le t < T \end{cases}$$
(9.95)

as having been sent. If $\ell < 0$, the receiver chooses the signal sequence

$$s_2(t) = \begin{cases} A\cos(\omega_c t + \theta), & -T \le t < 0\\ -A\cos(\omega_c t + \theta), & 0 \le t < T \end{cases}$$
(9.96)

- It follows as $n_1, n_2, n_3 and n_4$ are uncorrelated and zero-mean Gaussian random variables with variances $\frac{N_0T}{4}$ and they are independent.
- Expression for Probability error $P_E = Pr[(\frac{AT}{2} + n_1)(\frac{AT}{2} + n_2) + n_3n_4 < 0]$
- We can define new gaussian random variables such as:

$$\omega_1 = \frac{n_1}{2} + \frac{n_2}{2}$$

$$\omega_2 = \frac{n_1}{2} - \frac{n_2}{2}$$

$$\omega_3 = \frac{n_3}{2} + \frac{n_4}{2}$$

$$\omega_4 = \frac{n_3}{2} - \frac{n_4}{2}$$

- Probability can be written in terms of Gaussian variables: $P_E = Pr[(\frac{AT}{2} + \omega_1)^2 + (\omega_3)^2 < (\omega_2^2 + \omega_4^2)]$
- Gaussian variables will also let us define the Ricean random variables. Ricean random variable will become: $R_1 = \sqrt{(\frac{AT}{2} + \omega_1)^2 + \omega_3^2}$
- Also Rayleigh random variable will become $R_2 = \sqrt{\frac{\omega_2^2}{\omega_4^2}}$
- If we also define the bit energy E_b as $A^2 \frac{A^2 T}{2}$ will give; $P_E = \frac{1}{2} e^{(\frac{-E_b}{N_0})}$ for the optimum DPSK receiver.
- \blacksquare At the large values $\frac{-E_b}{N_0}$ values of ; $P_E = Q[\sqrt{\frac{-E_b}{N_0}}] = Q[\sqrt{z}]$

■ Following result obtained by using the asymptotic approximation; $P_E = \frac{e^(-E_b/N_0)}{2\sqrt{\pi\frac{E_b}{N_0}}}$

Comparison of Digital Modulation Systems

- Bit error probabilities are compared in Figure 9.22 for the modulation schemes that considered in this chapter. Note that the curve for antipodal binary PAM is identical to BPSK
- Also bit error probability of antipodal PAM becomes worse the larger M. Curves move more to the right as M gets larger

Important figure for Chapter 9

Figure 9.22
Error probabilities for several binary digital signaling schemes.

- Non-coherent binary FSK and PAM with M=4 have almost identical performance at large signal-to-noise ratios.
- In addition to cost and complexity implementation, there are many other considerations in choosing one type of digital data system over another.
- Some channels, where the channel gain, phase or when both are in effect,we use a noncoherent system may be dictated because of impossibility of establishing a coherent reference at the receiver under such conditions. They will be referred as "fading".

Multipath Interference (1)

- Additive Gaussian noise is not sufficient to accurately model the transmission channel
- Other sources of degradation:
 - bandwidth limiting by the channel
 - impulse noise (lightnings, switching)
 - RF interference from other transmitters
 - multipath interference from signal reflections and scattering

Multipath Interference (2)

- Two-way multipath model: $y(t) = s_d(t) + \beta s_d(t \tau_m) + n(t)$
 - n(t) Gaussian noise component
 - $s_d(t)$ Signal from the direct path
 - β Gain of secondary path component
 - au_m Time delay of secondary path component
- lacktriangle For binary phase-shift keying signals: $s_d(t) Ad(t)\cos(\omega_c t)$
 - d(t) Data stream (sequence of ± 1 rectangular pulses) of width T
 - ω_c Carrier frequency

Multipath Interference (3)

- Input of the integrator at the receiving end: $x(t) = LP\{2y(t)\cos(\omega_c t)\} = Ad(t) + \beta Ad(t \tau_m)\cos(\omega_c \tau_m) + n_c(t)$
- Two scenarios:
 - $au_m/T\cong 0$ The original and reflected signals are almost congruent, so $\omega_c au_m$ is uniformly distributed in $[-\pi,\pi]$. When many reflection components are considered, the envelope of the signal assumes a Rayleigh or Ricean distribution
 - $0< au_m/T\le 1$ Adjacent bits in the original and reflected signals overlap; inter-symbol interference appears

Multipath Interference - second scenario (1)

- Four equally likely cases; total probability of error is: $P_E = \frac{1}{4}[P(E|++) + P(E|-+) + P(E|+-) + P(E|--)]$
- Noise on the integrator integrator out is Gaussian-distributed with $\mu=0$ and $\omega_n^2=N_0T$
- Due to the symmetric nature of the overlapping bits and Gaussian probability density function, only two cases need to be computed
 - $P(E|++) = P(E|--) = Q\left[\sqrt{\frac{2E_b}{N_0}}(1+\delta)\right]$ ■ $P(E|+-) = P(E|-+) = Q\left[\sqrt{\frac{2E_b}{N_0}}\left((1+\delta) - \frac{2\delta\tau_m}{T}\right)\right]$
- After substituting the cases above into the matching ones: $P_E = \frac{1}{2}Q\left[\sqrt{2z_0}(1+\delta)\right] + \frac{1}{2}Q\left[\sqrt{2z_0}\left((1+\delta) \frac{2\delta\tau_m}{T}\right)\right]$

Multipath Interference - second scenario (2)

• Overal probability of error changes with $z_0 = \frac{E_b}{N_0} = \frac{A^2 T}{2N_0}$

Equalization

- Equalization is used in telecommunication to reverse the signal degradation caused by multipath propagation and bandwidth limitations
- Simplest form of equalization consists in an inverse filter -Tapped-delay-line filter
- Two ways of determining the filter coefficients:
 - zero-forcing
 - mean-square error

Equalization by Zero Forcing

Impulse response of equalized output: $n_{1}(mT) = \sum_{i=1}^{N} o_{i} n_{i}((m-n)T) \Rightarrow 0$

$$p_{eq}(mT) = \sum_{n=-N}^{N} \alpha_n p_c((m-n)T) \Rightarrow [P_{eq}] = [P_c][A]$$

- Equalization filter coefficient matrix: $[A]_{opt} = [P_c]^{-1}[P_{eq}]$
- \blacksquare Multiplying by $[P_{eq}]$ corresponds to picking the middle column of matrix $[P_c]^{-1}$

Equalization by Minimum Mean-Squared Error (1)

Obtain filter coefficients that minimize the difference between the output of the equalizer and the actual output:

$$\varepsilon = E\left\{ [z(t) - d(t)]^{2} \right\} = minimum$$

- $\mathbf{z}(t)$ is the equalizer output response (incl. noise):
 - $z(t) = \sum_{n=-N}^{N} \alpha_n p_c((m-n)T)$
- lack d(t) is the desired response

Equalization by Minimum Mean-Squared Error (2)

ullet ε is concave and can be minimized by derivation:

$$\frac{\delta\varepsilon}{\delta\alpha_m} = 0 = 2E\left\{ [z(t) - d(t)] \frac{\delta z(t)}{\delta\alpha_m} \right\}$$

- Substituting z(t) gives the following conditions (in terms of cross-correlation): $R_{yz}(m\Delta) = R_{yd}(m\Delta) = 0$
 - $R_{yz}(\tau) = E[y(t)z(t+\tau)]$
 - $R_{yd}(\tau) = E[y(t)d(t+\tau)]$
- In terms of matrices: $[R_{yy}][A]_{opt} = [R_{yd}]$
- Solving for the filter taps: $[A]_{opt} = [R_{yy}]^{-1}[R_{yd}]$

Tap Weight Ajustment (LMS Algorithm) (1)

- How to obtain d(t)
 - Periodically send known data sequence used for weight adjustment
 - 2 Use method 1 for first guess and then use detected data (decision-directed mode)
- Apply gradient descent to initial weight values ($[A]^{(0)}$):

$$[A]^{(k+1)} = [A]^{(k)} + \frac{1}{2}\mu[-\nabla\varepsilon^{(k)}]$$

k iteration of weights calculation

 $\nabla \varepsilon$ slope of error surface

 μ size of the step

Tap Weight Ajustment (LMS Algorithm) (2)

- Alternative approach (Least-Mean-Square): $\alpha_m^{(k+1)} = \alpha_m^{(k)} \mu y [(k-m)\Delta] \epsilon(k\Delta)$
- \bullet $\epsilon(k\Delta)$ is the error given by $y_{eq}(k\Delta) d(k\Delta)$
 - $y_{eq}(k\Delta)$ equalization filter output $d(k\Delta)$ data sequence used for training