

BERT & Generative Model

Sep 22th 2022/ 7기 김예진

0. 목차

1. After Transformer

- NLP BERT
- · I/0
- Pre-trained
- Fine-tuning

2. Generative Model

- Bayesian
- (Un)Supervised "Learning" AE
- Generative & Discriminative Model
- Models VAE

NLP - BERT

(sentence level) Bidirectional in RNN

NLP - BERT

BERT = Bidirectional Encoder Representation from Transformer!

Key point)

- Bidirectional: 양방향의 정보를 어떻게 학습할까?
- Encoder: 기존 Transformer에서 Encoder

Run)

Task에 무관한 모델 구조를 가진다!

→ Representation도 무관해야 한다!

- pre-trained: Unsupervised
- Fine-tuning: (All param from pre-trained)

Supervised depending on task

유의사항)

- Sentence: 연속된 단어의 나열, sen
- Sequence: 하나 혹은 두 sentence, seq

NLP - BERT

Pre-training

Input = Masked Sen A & Masked Sen B
Output(Task): NSP와 Masked LM

NSP = Next Sentence Prediction
Sentence A와 Sentence B가 연속된 문장인지 분류

→ 맥락을 이해하는 학습 = Encoder?!

 Masked LM: Mask된 내용물 예측

 일부 토큰이 뭔지 모를 때 그 토큰이 뭔지 예측

→ 앞뒤의 토큰을 보고 어떤 토큰인지 보기에 Bidirectional!

NLP - BERT

Bidirectionality & Transformer.Encoder

Self-attention 또한 일종의 Transformer에서 Bidirectionality을 녹여낸 부분이긴 함

NLP - BERT

Bidirectionality & Transformer.Encoder

	Query	Key
	(s)	ОМ
1		升페
	went	갔었어
	to	거기
masking	the	사람
	café	많더라
	L	

Output Softmax **Probabilites** Linear Decoder Add & Norm (타겟 시퀀스 생성) Feed Forward Add & Norm nulti-Head **Encoder-decoder attention** Attention Add & Norm Masked Multi-Head Attention Positional Encoding Output Outputs **Embedding**

Decoder

다만 Decoder에서 하는 Task는 결국 순서대로 들어오는 방식으로 진행…!

NLP - BERT

Bidirectionality & Transformer.Encoder

그래서 Transformer의 Encoder 구조만을 이용해서 Task(NSP, Masked LM) 수행하고 학습

1/0

Token

- Tokenizer: Word Piece

- CLS: seq의 시작에 위치

Aggregate sequence representation For classification

Input = Token + Segment + Position

- SEP: 두 sentence 구분

Cf) Word piece tokenizer:

Merge bigram which most increases the likelihood of the data

→ 자주 등장하는 연속된 token 쌍은 하나의 token으로 사용

1/0

Input = Token + Segment + Position

Segment

- 각 token들이 sen A인지 sen B인지
- CLS와 SEP는 sen A에 포함

1/0

Input = Token + Segment + Position

Position

- Transformer에서 사용하던 positional embedding

Pre-trained

Output(Task): Masked LM와 NSP

Pretrain 과정에서 진행!

약 15% token"Masking" 그리고 예측

→ 앞뒤의 단어를 보고 학습하기에 bidirectional!

그 외에 몇가지 디테일은 Mask LM을 더 찾아보기로

Pre-trained

Pre-training

Output(Task): Masked LM와 NSP

Pretrain 과정에서 진행!

[SEP]로 구분된 두 sen() 연속된 유무 예측 50%는 연속된 것, 50%는 비연속 문장들

→ 맥락을 이해하도록 학습

→ 일부 task들에 대해선 성능 개선!

NLP - BERT

Fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning: 실제로 풀 수 있는 문제들!

→ Classification, QnA, Tagging

sequence-level

Input이 2문장인 경우: (예) 유사한지 분류

Input이 1문장인 경우: (예) 감성 분류!

Fine-tuning

(c) Question Answering Tasks: SQuAD v1.1

Fine-tuning: 실제로 풀 수 있는 문제들!

→ Classification, QnA, Tagging

token-level

두 sen이 들어오는 경우: Question과 Paragraph 쌍을 입력했을 때 답안 작성!

NLP - BERT

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER Fine-tuning: 실제로 풀 수 있는 문제들!

→ Classification, QnA, Tagging

Token-level

한 sen이 들어오는 경우:

각각의 token마다 응답(ex. 형태소)를 예측

NLP - BERT

<BERT 활용 모델> 중고 거래 데이터 BERT 동네 생활 데이터 분류 모델

동네 생활 데이터 통계 (학습 데이터에 사용)

<u>Aa</u> Name	# 데이터 수	○ 분류
동네 관련 이야기	7290	동네생활
중고거래 관련 신고	143	딴 이야기
중고거래 게시글	495	딴 이야기
기타(너무 짧은 글, 업체 홍보 글, 기능 문의 글, 제안, 등등)	395	딴 이야기

당근마켓에서 게시물들에 대한 분류 문제를 해결!

데이터 전처리부터 데이터셋 구축, 모델 구현 등 좋은 구현 예시

[동네이야기] 안녕하세요^^ 어버이 날을 맞아 부모님과 맛난 식사를 하고 싶은데 마땅히 생각나는 맛 (노출범 <mark>위2단계)</mark> - 제주 제주시 삼도1동 (14)	동네이야기 score: 1.0 버전: 20190418
[동네이야기] 이 꽃이름 궁금해요 (<mark>노출범위2단계)</mark> - 제주 제주시 삼양동 (13)	동네이야기 score: 0.802 버전: 20190418
[동네이야기] 제주도청 운영시간 아세요? 여권만들러 가야하는데 ㅠㅠ (노 <mark>출범위2단계)</mark> - (9)	동네이야기 score: 1.0 버전: 20190418
[동네이야기] 운중동 청골송어집 문닫았나요? 전화가 없는번호라고 나오네요 혹시아시는분~ (노 <mark>출범위인점동네)</mark> - 경기도 성남시 분당구 서현동 (5)	동네이야기 score: 1.0 버전: 20190418
[동네이야기] 중학생 졸업사진을 찍으려고 하는데요 혹시 케릭터 의상 대여할수 있는곳좀 알려주세요~ (노출범위2단계) - 경기도 용인시 수지구 상현동 (15)	동네이야기 score: 0.979 버전: 20190418

통계학이란

통계학이란

3. Sampling

4. Estimate

5. How? Optimization!

. 모집단과 관련된 것

Bayesian

Parameter is not a constant value but a "Random Variable"!

 $X|\theta \sim f(x|\theta)$: conditional pdf of X given $\Theta = \theta$

 $\Theta \sim h(\theta)$: Prior pdf of $\Theta \leftarrow \mathbf{HEO}$ 없어서 과거의 경험 혹은 주관에 따른 "사전 정보"의 역할

X': Random sample from $f(x|\theta)$

x': observation of X'

Bayesian

Parameter is not a constant value but a "Random Variable"!

$$g_1(x,\theta) = f(x|\theta)h(\theta)$$
: Joint pdf of X and Θ

 $g_2(x) = \int g_1(x, \theta) d\theta$: Marginal pdf of X, "Evidence"

Conditional pdf of Θ given X' = x'

"Posterior":
$$k(\theta|x) = \frac{g_1(x,\theta)}{g_2(x)} = \frac{f(x|\theta)h(\theta)}{g_2(x)} \leftarrow \text{II LOI USUMLY IN COURTY IN COURTY$$

그럼 파라미터는 어떻게 "추정"? Bayes estimate, loss function, risk function…

Bayesian

Prior & Posterior

결국 우리가 파라미터에 대해 모르거나, 경험적으로 알고 있는 정보가 있을 때(prior)

데이터를 보고 파라미터의 값 분포를 업데이트 해본다(posterior)!

Conjugate family of distribution

이론적으로, Prior 분포에 따라서 posterior의 분포가 어느정도 결정된다!

	Distribution		
$f(x \theta)$	Poisson	Binomial	Normal
h(heta)	Gamma	Beta	Normal
$k(\theta x)$	Gamma	Beta	Normal

Supervised vs Unsupervised "Learning"

Supervised: Classification, Regression, Object Detection, ...

Data: $D = \{(x, y) | x \in X, y \in Y\}$

Model: $y = \mathcal{M}_{\theta}(x)$

→Mapping!

올바르게 mapping하도록 학습

Whale!

In Out

Supervised vs Unsupervised "Learning"

Unsupervised: Clustering, Feature learning, Density Estimation ...

Data: $D = \{x \mid x \in X\}$

Model: Data structure!

L2 norm : $||x - \hat{x}||^2$

Auto Encoder

Cf) Auto Encoder(AE)

Encoder: 더 찾은 차원의 벡터로 표현하는 방법을 학습!

- → Feature Learning, Dimensionality Reduction
- → How? CNN, FC, ···

Decoder: 압축된 정보를 원본으로 복원 생성!

- → Generate…? NO!
- → How? TransposeCNN, FC, ···

L2 norm : $||x - \hat{x}||^2$

Output: Reconstructed data

Input: data

YONSEI Data Science Lab | DSL

Encoder as a feature extractor!

Encoder can "represent" raw data containing data structure information!

L2 norm : $\|x - \hat{x}\|^2$

Ex) Feature Extractor or initial value!

→ Feature Learning, Dimensionality Reduction

How? CNN FC CNN + Classifier(Softmax Classifier, SVD etc)

Decoder: 24-1 34-2 Encoder + Classifier(Softmax Classifier, SVD etc)

Feature Learning, Dimensionality Reduction

DIT cannot come "navy"

BUT, cannot **sample** "new" data.

WHY?

관련 Task: Semantic segmentation → U-net

Discriminative vs Generative "Model"

Discriminative: Learn P(y|x)

레이블들 간의 확률을 계산하는 모델이며 사진에 대한 확률이 아니다!

그렇기에 이상한 이미지가 들어온다면, 분류하지 못할 수 있다.

Discriminative vs Generative "Model" Generative: Learn P(x)

등장하지 않을 사진은 낮은 확률을 가지는 분포를 계산하는 모델! 게다가, 분포를 안다면 X의 sampling도 가능하지 않을까?

→ 확률분포로 표현해야 샘플링이 가능!

Models-VAE

- 1. Latent feature를 잘 표현해본다
- 2. Given Latent feature, X가 등장할 확률을 구해보자!

 $X \sim p_{\theta}(x|z)$

 $Z \sim p_{\theta}(z)$

Prior=사전정보 없는데…?

그렇다면 Gaussian 분포를 따른다고 해보자!

$$P(x|z) = P(z|x)$$
(conditional)
Generative Model

Prior over latent feature

(Unconditional)
Generative Model

Models-VAE

- 1. Latent feature를 잘 표현해본다
- 2. Given Latent feature, X가 등장할 확률을 구해보자!

 $X \sim p_{\theta}(x|z)$

 $Z \sim p_{\theta}(z)$

Conjugate family

Prior를 Gaussian가정 해봤으니,

Posterior도 Gaussian을 따른다고 해보자!

Mean : $\mu_{x|z}$

Covariance: $\Sigma_{x|z}$

Models-VAE

- 1. Latent feature를 잘 표현해본다
- 2. Given Latent feature, X가 등장할 확률을 구해보자!

(conditional) Generative Model = Decoder

Discriminative model = Encoder(proxy)

 $X \sim p_{\theta}(x|z)$

$$Z \sim p_{\theta}(z)$$

$$Z \sim q_{\phi}(z|\mathbf{x})$$

(conditional)
Generative Model

Encoder

Models-VAE

$$p_{\theta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$

$$ightharpoonup$$
 Approximate $p_{\theta}(x) \cong \frac{p_{\theta}(x|Z)p(z)}{q_{\phi}(Z|X)}$

Models-VAE

$$p_{\theta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$

이것만 계산해서 알아내면 된다!

Models-VAE

Estimate까진 가능!

Decoder

그런데 어떻게 optimize?

이어서 자세한 식을 드리지만, 이번 시간에서는 그 개념과 통계적인 해석만을 가져봅시다.

$$p_{\theta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$

$$\rightarrow$$
 Approximate $p_{\theta}(x) \cong \frac{p_{\theta}(x|Z)p(z)}{p_{\theta}(x|Z)}$

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

$$= E_z[\log p_{\theta}(x|z)] - E_z \left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_z \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

Data Reconstruction

Divergence btw samples from Encoder & samples from prior Divergence btw

Encoder & counterpart

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)} [\log p_{\theta}(x|z)] - D_{KL} \left(q_{\phi}(z|x), p(z) \right)$$
Gap btw ELBo & Evidence

Evidence Lower Bound: ELBo

Models-VAE

$$p_{\theta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$

Decoder는 z를 주면 $p_{\theta}(x|z)$ 를 계산해줌!

$$= E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

Data Reconstruction

Divergence btw samples from Encoder

& samples from prior

Divergence btw

Encoder & counterpart

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Encoder로 sample z를 생성 후 평균값 취하기!

$$= E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

Data Reconstruction

Divergence btw samples from Encoder & samples from prior Divergence btw

Encoder & counterpart

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

 $q_{\phi}(z|x)$ 가 diagonal covariance p(z)가 std Normal 분포라면 closed form

Models-VAE

$$p_{\theta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$

$$ightharpoonup$$
 Approximate $p_{\theta}(x) \cong \frac{p_{\theta}(x|Z)p(z)}{q_{\phi}(Z|X)}$

Models-VAE

Sampling(생성) 법

- 1. Prior of z(Gaussian)으로 표본 생성 : $p_{\theta}(z)$
- 2. Decoder로 posterior의 Parameter 계산: $\mu_{x|z}$, $\Sigma_{x|z}$
- 3. Posterior 분포로 샘플링: $p_{\theta}(x|z)$

 $Z \sim p_{\theta}(z)$

그렇지만,,, 좋은 퀄리티의 sample이 아니었다!(blurred…) 게다가 Evidence 자체가 아닌, "lower bound"를 maximize를 한 것

Models-VAE

Sampling(생성) 법

- $1. \quad ext{Prior of } z(ext{Gaussian})$ 으로 표본 생성 $: p_{ heta}(z)$ 그 런 데 \dots
- 2. Decoder로 posterior의 Parameter 계산: $\mu_{x|z}$, $\Sigma_{x|z}$
- 과 의 확률을 계산해야 sampling을 할 수 있는건가?

$$p_{\theta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

 $Z \sim p_{\theta}(z)$

Models-VAE

Sampling(생성) 법

- 1. Prior of z(Gaussian)으로 표본 생성 : $p_{\theta}(z)$
- 2. Decoder로 posterior의 Parameter 개타유쥬에!
- 3. Posterior 분포로 샘플링: $p_{\theta}(x|z)$

$$p_{\theta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

Z

$$Z \sim p_{\theta}(z)$$

Reference

고러대학교 산업경영공학부 DSBA 연구실 https://www.youtube.com/watch?v=lwtexRHoWG0

https://github.com/pilsung-kang/Text-Analytics

https://www.youtube.com/watch?v=MN_ISncZBs

https://medium.com/daangn/딥러닝으로-동네생활-게시글-필터링하기-263cfe4bc58d

Stanford CS224N: https://www.youtube.com/watch?v=knTc-NQSjKA

이기복 교수님 "통계적 머신러닝" 강의안

강승호 교수님 "이론통계학(I)" 강의안

임종호 교수님 "수리통계학(2) 강의

5기 한영웅님 AutoEncoder 세션 자료

Appendix

왜 $q_{\phi}(z|x)$ 가 diagonal covariance이고 p(z)가 std Normal 분포라면 closed form인지

$$-D_{KL}(q_{\phi}(z|x), p(z)) = \int_{Z} q_{\phi}(z|x) \log \frac{p(z)}{q_{\phi}(z|x)} dz$$

$$= \int_{Z} N(z; \mu_{z|x}, \Sigma_{z|x}) \log \frac{N(z; 0, I)}{N(z; \mu_{z|x}, \Sigma_{z|x})} dz$$

$$= \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log \left(\left(\Sigma_{z|x} \right)_{j}^{2} \right) - \left(\mu_{z|x} \right)_{j}^{2} - \left(\Sigma_{z|x} \right)_{j}^{2} \right)$$