

Основы профессиональной деятельности (ну наконец, последняя!)

Клименков С.В. 2016-2017 уч. год v.1.45.09 от 31.05.2022

Контроллеры ввода-вывода

1

Интерфейсы

- Определяет конкретные детали обмена
 - Частота, набор каналов передачи, способ кодирования, команды, представления данных, набор данных и последовательность,
- Аппаратная и/или программная реализация
- Нуждаются в точной спецификации и/или стандартизации
 - Стороны обмена должны однозначно интерпретировать детали обмена

Уровни стандартизации интерфейсов

- Логическое подключение
- Физические параметры сигналов
- Конструктивные особенности

Сопряжение устройств с ЭВМ

2. Контроллеры ↔ ВУ

Адреса

Типичная схема программноуправляемого контроллера

Диаграммы ввода-вывода

Отступление-напоминание: триггеры

Контр. передачи параллельного асинхронного интерфейса

Цикл вывода контроллера

Вывод	строки си	мволов на устройство
	005 WORD WORD WORD	
ORG BEGIN		; ввод передаваемого байта в (ADDR); аккумулятор ENDO; Если стоп-символ, то окончание вывода A1; Запись данных в регистр A1; с одновременной установкой A2
SPIN:	ROR BCS BR	### #################################

Контр. приема параллельного асинхронного интерфейса

Цикл ввода контроллера

Вывод	строки сим	иволов на устройство
ORG	005	
ADDR:	WORD	\$BUF ; Адрес начала буфера
BUF:	WORD	10 DUP(?) ; десять слов для хранения символов
MASK:	WORD	00FF ; маска для очистки старшего байта
ORG	030	
BEGIN	:	
SPIN:	IN	A2 ; Цикл проверки приема данных
	ROR	; в регистре А1 (Ждем "1" в А2)
	BCS	IN ; Если "1" — можно вводить символ
	BR	SPIN ; Если "0" - продолжаем ждать
IN:	IN	A1 ; ввод передаваемого байта
	AND	MASK ; очистка битов 8-15
	BEQ	ENDO ; Если стоп-символ, то окончание ввода
	VOM	(ADDR); аккумулятор
	BR	SPIN ; К следующему символу
ENDO:	• • •	; окончание ввода
	HLT	

Для юных хакеров: здесь можно выполнить buffer-overflow атаку

Синхронные последовательные интерфейсы

2

1111

Отступление: счетчик

T		D ₃
• [[Q

Циклический счетчик				
8	4	2	1	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Отступление: сдвиговый регистр

Отступление: счетчик

Циклический счетчик				
8	4	2	1	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Контроллер передачи синхронного последовательного интерфейса

Контр. приема синхронного последовательного интерфейса

Отступление: последовательный vs параллельный

- Параллельная обмен
 - Быстрее (при одинаковых условиях)
 - Дороже, больше аппаратных ресурсов
 - Менее помехозащитен
 - Дальность передачи меньше
- Последовательный обмен
 - (все наоборот =))

Отступление: синхронный vs

• Синхронная передача данных

Асинхронные последовательная передача

3

Асинхронный последовательный ввод-вывод

- Хочется сделать каналов передачи еще меньше.
 - В идеале 1-2 "провода"
 - Как бы избавиться от линии синхроимпульсов?
- Что будет, если поместить два разных тактовых генератора одинаковой частоты в приемник и передатчик информации?

Фазовый сдвиг

Деление частоты

Отступление: счетчик по модулю 10

Имеет 10 устойчивых состояний!

Формат кадра асинхронного обмена

 Пример параметров настройки последовательного асинхронного порта 9600,8,n,1

Контр. передачи асинхронного последовательного интерфейса

Надежный прием: выбор правильного момента

Контр. приема асинхронного последовательного интерфейса

Контроллеры прерываний

4

Организация прерываний

- Вектор прерываний позволяет перейти к программе обработки прерывания.
 - Транслируется в адрес программы обработки
 - Содержит новый регистр состояния в состоянии прерывания
 - Состояние программы сохраняются в стеке
 - Специальная команда возврата (RTI)
- Как учесть приоритет прерываний?
 - В БЭВМ порядок обработки
 - В современных ЭВМ диспетчеры прерываний

Логика обработки и приоритет

ПРП — ПРедоставление Прерывания. Может быть входной и выходной.

Схема инициации прерывания в контроллере

