Programación Matemática. Relación 7 Curso 2016/17.

Problema 1

Utilice el método de cortes de Gomory para resolver el siguiente problema de programación lineal entera pura.

Problema 2

Utilice el método de ramificación y acotación (Branch&Bound) para resolver el siguiente problema de programación lineal entera mixta.

Problema 3

Resuelve, usando el método de los planos de corte de Gomory, el siguiente problema de programación lineal entera:

Problema 4

Sea el problema de optimización lineal

donde λ es un número real.

- 1. Indica para qué valores de λ la matriz de restricciones es totalmente unimodular.
- 2. Indica para qué valores de λ la base formada por las dos primeras columnas es óptima, e indica, en tal caso, la solución óptima del dual.
- 3. Para $\lambda=1$, resuelve por ramificación y acotación el problema obtenido al imponer que las variables son enteras.
- 4. Para $\lambda = \frac{1}{2}$, resuelve usando cortes de Gomory el problema obtenido al imponer que las variables son enteras y pares.

Problema 5

Resuelve el siguiente problema de programación entera mediante el algoritmo de ramificación y acotación.

1) min
$$x_1 - 2x_2$$

s.a: $x_1 + x_2 \ge 2$
 $-x_1 + x_2 \ge 1$
 $x_1, x_2 \in \mathbb{Z}_+$

2) min
$$3x_1 - 7x_2 - 12x_3$$

s.a: $-3x_1 + 6x_2 + 8x_3 \le 12$
 $6x_1 - 3x_2 + 7x_3 \le 8$
 $2x_1 + 3x_2 + 3x_3 \le 25$
 $x_1, x_2, x_3 \in \mathbb{Z}_+$

Problema 6

Se considera el problema de optimización (P),

$$\max 2\vartheta x_1 + \vartheta x_2 + x_3 - x_4
s.a. 6x_1 + x_2 + 4x_3 + 2x_4 = 6\vartheta
4x_1 + x_2 + 3x_3 + x_4 = 5
x_1, x_2, x_3, x_4 \in \mathbb{Z}_+$$
(P)

donde ϑ es un número real.

- 1. Para $\vartheta=1$, resuelve la relajación continua de (P) e identifica la base B óptima obtenida.
- 2. Determina el conjunto de valores de ϑ para los que la base B del apartado anterior es óptima para la relajación continua de (P).
- 3. Para $\vartheta = 1$, resuelve (P) por ramificación y acotación, indicando en cada etapa la tabla obtenida con el método símplex.

Problema 7

Se considera el problema lineal (P),

donde λ es un número real.

- 1. Resuelve el problema (P) para $\lambda = 0$ e identifica la base óptima.
- 2. Identifica el intervalo de valores de λ para los que la base obtenida en el apartado anterior sigue siendo óptima, e indica, para cada λ en dicho intervalo, una solución óptima del dual de (P).
- 3. Identifica el conjunto de valores de λ para los que, además de la base obtenida en el primer apartado, existe otra base óptima, que debes obtener.
- 4. Para $\lambda = 0$, resuelve (P) si añadimos a (P) la condición de que las variables x_1, x_2, \ldots, x_5 son enteras.

Solución del problema 1

$$max$$
 $x_1 + 3x_2$
 $sa: x_1 + x_2 \ge 1$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2, \ge 0$

	x_1	x_2	x_3	x_4	x_5	LD
x_5	1	1	-1	0	1	1
x_4	1	2	0	1	0	3
z	1	1	-1	0	0	1

	x_1	x_2	x_3	x_4	x_5	LD
x_1	1	1	-1	0	1	1
x_4	0	1	1	1	-1	2
z	0	0	0	0	-1	0

	x_1	x_2	x_3	x_4	LD
x_1	1	1	-1	0	1
x_4	0	1	1	1	2
z	0	2	1	0	-1

	x_1	x_2	x_3	x_4	L_{D}
x_2	1	1	-1	0	1
x_4	-1	0	2	1	1
z	-2	0	3	0	-3

	x_1	x_2	x_3	x_4	LD
x_2	$\frac{1}{2}$	1	0	$\frac{1}{2}$	$\frac{3}{2}$
x_3	$\frac{-1}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$
z	$\frac{-1}{2}$	0	0	$\frac{-3}{2}$	$\frac{-9}{2}$

Solución del problema 2

Región factible y línea de nivel correspondiente al valor objetivo z = 4.75

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	LD
x_8	1	0	-1	0	0	0	0	1	0	1
x_4	1	0	0	1	0	0	0	0	0	5
x_5	1	$\frac{4}{5}$	0	0	1	0	0	0	0	$\frac{29}{5}$
x_9	1	$\frac{-4}{5}$	0	0	0	-1	0	0	1	$\frac{1}{5}$
x_7	1	8	0	0	0	0	1	0	0	26
\overline{z}	2	$\frac{-4}{5}$	-1	0	0	-1	0	0	0	<u>6</u> 5

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	LD
x_8	0	$\frac{4}{5}$	-1	0	0	1	0	1	-1	$\frac{4}{5}$
x_4	0	$\frac{4}{5}$	0	1	0	1	0	0	-1	$\frac{24}{5}$
x_5	0	$\frac{8}{5}$	0	0	1	1	0	0	-1	$\frac{28}{5}$
x_1	1	$\frac{-4}{5}$	0	0	0	-1	0	0	1	$\frac{1}{5}$
x_7	0	$\frac{44}{5}$	0	0	0	1	1	0	-1	$\frac{129}{5}$
z	0	$\frac{4}{5}$	-1	0	0	1	0	0	-2	$\frac{4}{5}$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	LD
x_6	0	$\frac{4}{5}$	-1	0	0	1	0	1	-1	$\frac{4}{5}$
x_4	0	0	1	1	0	0	0	-1	0	4
x_5	0	$\frac{4}{5}$	1	0	1	0	0	-1	0	$\frac{24}{5}$
x_1	1	0	-1	0	0	0	0	1	0	1
x_7	0	8	1	0	0	0	1	-1	0	25
z	0	0	0	0	0	0	0	-1	-1	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_6	0	$\frac{4}{5}$	-1	0	0	1	0	$\frac{4}{5}$
x_4	0	0	1	1	0	0	0	4
x_5	0	$\frac{4}{5}$	1	0	1	0	0	$\frac{24}{5}$
x_1	1	0	-1	0	0	0	0	1
x_7	0	8	1	0	0	0	1	25
z	0	2	1	0	0	0	0	-1

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$_{ m LD}$
x_2	0	1	$\frac{-5}{4}$	0	0	$\frac{5}{4}$	0	1
x_4	0	0	1	1	0	0	0	4
x_5	0	0	2	0	1	-1	0	4
x_1	1	0	-1	0	0	0	0	1
x_7	0	0	11	0	0	-10	1	17
z	0	0	$\frac{7}{2}$	0	0	$\frac{-5}{2}$	0	-3

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_2	0	1	0	0	0	$\frac{5}{44}$	$\frac{5}{44}$	$\frac{129}{44}$
x_4	0	0	0	1	0	$\frac{10}{11}$	$\frac{-1}{11}$	$\frac{27}{11}$
x_5	0	0	0	0	1	$\frac{9}{11}$	$\frac{-2}{11}$	$\frac{10}{11}$
x_1	1	0	0	0	0	$\frac{-10}{11}$	$\frac{1}{11}$	$\frac{28}{11}$
x_3	0	0	1	0	0	$\frac{-10}{11}$	$\frac{1}{11}$	$\frac{17}{11}$
z	0	0	0	0	0	$\frac{15}{22}$	$\frac{-7}{22}$	$\frac{-185}{22}$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_2	0	1	0	0	$\frac{-5}{36}$	0	$\frac{5}{36}$	$\frac{101}{36}$
x_4	0	0	0	1	$\frac{-10}{9}$	0	$\frac{1}{9}$	$ \begin{array}{r} \frac{101}{36} \\ \frac{13}{9} \\ \frac{10}{9} \\ \frac{32}{9} \\ \frac{23}{9} \end{array} $
x_6	0	0	0	0	$\frac{11}{9}$	1	$\frac{-2}{9}$	$\frac{10}{9}$
x_1	1	0	0	0	$\frac{10}{9}$	0	$\frac{-1}{9}$	$\frac{32}{9}$
x_3	0	0	1	0	$\frac{10}{9}$	0	$\frac{-1}{9}$	$\frac{23}{9}$
z	0	0	0	0	$\frac{-5}{6}$	0	$\frac{-1}{6}$	$\frac{-55}{6}$

Aplicando el método de ramificación y acotación salen los cortes

Región factible y línea de nivel correspondiente al valor objetivo z = 4.75

Solución del problema 3

	x_1	x_2	x_3	L_{D}
x_3	3	2	1	7
z	3	2	0	0

	x_1	x_2	x_3	$_{ m LD}$
x_1	1	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{7}{3}$
z	0	0	-1	-7

	x_1	x_2	LD
x_1	1	$\frac{2}{3}$	$\frac{7}{3}$
z	0	$\frac{-1}{3}$	$\frac{-14}{3}$