	Uitech
Name:	A
Roll No.:	A Spanie (V Exercising and Explana)
Invigilator's Signature :	•••••

CS/B.Tech(OLD)/SEM-1/M-101/2010-11 2010-11

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) Degree of homogeneity of $ax^2 + 2hxy + by^2$ is
 - a) 2

b) 1

c) 0

- d) none of these.
- ii) If u + v = x, uv = y then $\frac{\partial (x, y)}{\partial (u, v)}$ is
 - a) u-v

b) uv

c) u + v

d) $\frac{u}{v}$.

1151 [Turn over

a) 1

b) 0

c) 2

d) x + y.

iv) The sequence $\{(-1)^n\}$ is

- a) convergent
- b) oscillatory
- c) divergent
- d) none of these.

v) The series $\sum r^n$ is divergent if

- a) |r| > 1
- b) r > 1

c) $r \ge 1$

d) r > 0.

vi) If $y = 5x^{100} + 3$, then y_{100} is equal to

a) 100!

b) 500

c) 0

d) none of these.

vii) If $y = \sin 2x + \cos 2x$, then $(y_n)_0$ is equal to

- a) $(-1)^n 2^n$
- b) 2^{n}

c) 0

d) none of these.

- viii) The value of x which makes the vector xi + 2j + 8k and 2i + 3j k perpenicular is
 - a) 0

b) - 1

c) 1

- d) 2.
- ix) If $\overset{\varnothing}{\alpha}$. $\left(\overset{\varnothing}{\beta} \propto \overset{\varnothing}{\gamma} \right) = 0$, then the vectors $\overset{\varnothing}{\alpha}$, $\overset{\varnothing}{\beta}$, $\overset{\varnothing}{\gamma}$ are
 - a) coplaner
- b) independent
- c) collinear
- d) none of these.
- x) If the radius of the sphere

$$K(x^2 + y^2 + z^2) + x + 2y - 2z = 0$$
, is 1, then $K =$

a) ± 2

b) $\pm \frac{2}{3}$

c) $\pm \frac{3}{2}$

- d) ± 1.
- xi) The maximum value of the directional derivative of

$$d = 2xz - y^2$$
 at the point (1, 3, 2) is

a) $\sqrt{14}$

b) $2\sqrt{14}$

c) $2\sqrt{7}$

d) $3\sqrt{7}$.

CS/B.Tech(OLD)/SEM-1/M-101/2010-11

xii) The value of

a) $\frac{b^2 a^3}{24}$

b) $\frac{b^2 a^4}{24}$

c) $\frac{b^4 a^3}{24}$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. If $W = \psi (2x - 3y, 3y - 4z, 4z - 2x)$, prove that

$$\frac{1}{2}\frac{\partial W}{\partial x} + \frac{1}{3}\frac{\partial W}{\partial u} + \frac{1}{4}\frac{\partial W}{\partial z} = 0.$$

- 3. Test the convergence of the series $\sum \frac{1}{\sqrt{n}} \sin \frac{1}{n}$.
- 4. $\overset{\varnothing}{\alpha}$, $\overset{\varnothing}{\beta}$, $\overset{\varnothing}{\gamma}$ are three vectors satisfying the conditions

$$\overset{\bigcirc}{\alpha}$$
 + $\overset{\bigcirc}{\beta}$ + $\overset{\bigcirc}{\gamma}$ = $\overset{\bigcirc}{0}$.

If
$$\begin{vmatrix} \emptyset \\ \alpha \end{vmatrix} = 3$$
, $\begin{vmatrix} \emptyset \\ \beta \end{vmatrix} = 4$, $\begin{vmatrix} \emptyset \\ \gamma \end{vmatrix} = 5$, show that

$$\overset{\bigcirc}{\alpha}$$
 $\overset{\bigcirc}{\beta}$ $\overset{\bigcirc}{\beta}$ $\overset{\bigcirc}{\beta}$ $\overset{\bigcirc}{\beta}$ $\overset{\bigcirc}{\gamma}$ $\overset{\bigcirc}{\gamma}$ $\overset{\bigcirc}{\gamma}$ $\overset{\bigcirc}{\gamma}$ $\overset{\bigcirc}{\alpha}$ $=-25$.

- 5. Show that curl (grad f) = 0, where $f = x^2y + 2xy + z^2$.
- 6. Show that the pair of lines whose direction ratio are given by $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 0$ and 2l m + 2n = 0 are perpendicular.

1151

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) A function f(x) is defined by

$$f(x) = x \sin \frac{1}{x} \qquad \text{if } x \neq 0$$
$$= 0 \qquad \text{if } x = 0.$$

Prove that $f\left(x\right)$ is continuous but not differentiable at origin.

b) A variable plane is at a constant distance p from origin and meets co-ordinate axes in A, B and C. The planes are drawn through A, B and C and parallel to co-ordinate axes.

Show that locus of their point of intersection shall be

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2} .$$

c) Show that the series $\sum_{n=1}^{\infty} \left(\frac{n}{3^n} + \frac{1}{n^3} \right)$ is convergent.

5 + 5 + 5

8. a) Evaluate $VVVz^2 dx dy dz$ over the region defined by $z \ge 0$,

$$x^2 + y^2 + z^2 \le a^2$$
.

CS/B.Tech(OLD)/SEM-1/M-101/2010-11

c) Use L'Hospital rule to evaluate $\lim_{x \neq 0} \frac{e^x + \sin x - 1}{\log (1 + x)}$.

$$6 + 4 + 5$$

- 9. a) If $v = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then prove that $\cos v$ is a homogeneous function fo degree $\frac{1}{2}$ and hence prove that $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} + \frac{1}{2} \cot v = 0.$
 - b) If $y = \tan^{-1} x$, show that $(1 + x^{2}) y_{n+1} + 2nxy_{n} + n (n-1) y_{n-1} = 0.$ Hence find $(y_{n})_{0}$.
- 10. a) State Rolle's theorem. Verify Rolle's theorem for $f(x) = \sin x \cos x$; $0 \le x \le \pi/2$ (if possible) and hence find the value of c.
 - b) Use Mean value theorem prove that,

$$\frac{\pi}{6} + \frac{\sqrt{3}}{15} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}$$
.

c) Find, by the method of double integration, the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

$$5 + 5 + 5$$

- 11. a) A particle moves on the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where t denotes time. Find the components of velocity and acceleration at time t = 1 in the direction $\hat{i} 3\hat{j} + 2\hat{k}$.
 - b) Show that

$$\overset{\frown}{A} = (6xy + z^3) \hat{i} + (3x^2 - z) \hat{j} + (3xz^2 - y) \hat{k}$$
 is irrotational. Find the scalar functions ϕ such that $\overset{\frown}{A} = \overset{\frown}{\Box} \phi$.

c) Show that the series $\frac{2}{1^2} - \frac{3}{2^2} + \frac{4}{3^2} - \frac{5}{4^2} + \dots$ is conditionally covergent. 5+5+5