Muestre que la función
$$f(x,y) = \frac{y(\cos y - 1)}{x^3 + y^3}$$
 no tiene limite cuando (x,y) tiende a $(0,0)$

Troy 1 $y = 0$

Troy $y = 0$

$$f(x,0) = \frac{x(\cos x - 1)}{x^5 + 6^3} = \frac{x(1 - 1)}{x^5} = \frac{x}{x^5} = 0$$

Troy $y = x$

$$f(x,x) = \frac{x(\cos x - 1)}{x^3 + x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{x^3 + x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$

$$f(x,x) = \frac{x(\cos x - 1)}{2x^3} = \frac{x(\cos x - 1)}{2x^3}$$