Fuzzy logic

Dr. Mohammad Nurul Huda
M.Sc. in CSE Program
Neural Network and Fuzzy legic
Sheet-6

1224 logic:

- A way to represent variation or imprecision in logic

- Fuzzy in the real-word sense "partly cloudy" - the
distinctions that people use in decision-making all the
time, but that computers and other advanced technology
haven't been able to handle.

· Crisp legic:

Is this a bowl of oranges ?

Ans: NO

is this a bowl of oranges?

Ans: YES

Answer: {NO, YES}
: { 0, 1}

Thinking Fuzzy logic:

Thinking fuzzy about a bowl of aranges.

fuzzy bowl of apples

Fuzzy bowl of apples (continuend)

(Ø&&&)

Fuzzy boul of applies (continued)

Quest for Excellence Quest for

tracturistics of fuzzinus!

i. Word based, not number based. For instance, hot; not 850

2. Analog (ambiguou), not digital (YES/NO)

3. Nonlinear changeable.

Crisp Values:

orangle 22

orange??

Ans: YES

Ans:

crisp set = { No, YEJ } = {0,1}

Fuzzy Values:

orange 27

Ans: No

orange ??

slightly !

orange 27

some what

orange 17

sort of

orange { }

few

Mostly

YES, Absolutely .

Fuzzy set = { No, slightly, some What, sort of, few, mostly, absolutely }

224 Words:

- Quantification:

all, most, many, the about half, few and no.

- Usuality: Always, frequently, often, occasionally, seldom and never

Certain, lively, uncertain, unlikely, and certainly not. - Likely hood:

Fuzzy words are called linguistic variable.

Inventor of fuzzy logic: Lotfi Zadeh in 1965.

Advantage of fuzzy logic for System Control

- Fewer rules, values and decisions.
- Linguistic variables are used.
- Relation of input and output.
- Simplicity.
- Rapid prototyping.
- Easier to design.
 - Increased Robustness.
 - Simple knowledge representation.
 - FIN rules for great complexity.

Drawbacks: Tunning of membership functions.

- May not scale will to large or complex problems.
- Deals with imprecision and vagueness, but not uncertainty.

A crisp 8:

	Degree of Membership
Member	0
7	0.5-
7.5	
8-	
8.5	0.5
9	0

Traditional Representation of logic (crisp logic):

boolean speed

get the speed

if speed=0

speed is slow

else speed is fast

ly logic Representation:

float speed

get the speed

if speed >= 0.0 and speed < 0.25

speed is slowed

else if speed >= 0.25 and speed < 0.75

speed is slow

speed is slow

speed >= 0.5 and speed < 0.75

else if speed >= 0.5 and speed < 0.75

else speed is fastest

Crisp and fuzzy arithmetic Operations:

('n	fuzzy
Crisp	a = (2, 3, 8)
a=3 $b=2$	b = (-1, 2, 7)
	$(-\frac{10}{2,3,8}) + (-\frac{1}{1,2,7})$
Addition: atb	5+2) 2
3+2=5	=(5-9,5),5+9) $=9$
	= (-4,5,14)
	(-2,3,8)-(-1,2,7)
subtraction: a-b	(-2,3,8) - $(-1,-1,0)$
3-2=1	= (1-9 ,1, 1+9)
3-2-	= (-8, 1, 10)
	$(-2,3,8)\times(-1,2,7)$
Multiplication: axb	(, 2, 2, 1)
3×2=6	= (6-9,6,6+9)
	- 1-3,6,17
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
Division: 3/2 = 1.5	(-2,5,2)/
3/2 - 1 -	$= \frac{(-2,3,8)}{(-7.5,1.5+9)}$ $= \frac{(-7.5,1.5+9)}{(-7.5,10.5)}$
	= (-7.3)

Scanned with CamScanner

Triangular:

Trapezoid:

5-function:

pi - function:

2- function:

Diffirence

 $A \rightarrow B$

$$0.3 \land .8 = MIN(0.3, 0.8) = 0.3$$

 $0.2 \lor .0.6 = MAX(0.2, 0.6) = 0.6$

$$70.9 = 1.0 - 0.9 = 0.1$$

$$70.6 = 1.0 - 0.6 = 0.4$$

$$0.8 > = 0.7$$

 $0.7 > = 0.8$

Fuzzy logic in Multielement sets:

$$A \equiv \begin{pmatrix} 0.8 & 0.2 & 0.7 \end{pmatrix}$$

$$B \equiv \begin{pmatrix} 1 & 0.3 & 0.4 \end{pmatrix}$$

•	And the participation of the same of the s	
Operation		fuzzy logic
AUB		(1.0 0.3 0.7)
ANB		(0.8 0.2 0.4)
BCA		(NO NO YES)
A\B		(0.2 0.8 0.3)
Crisp set:	- 7) (1	$A \equiv \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
$A = \begin{pmatrix} 0.8 \\ B = \end{pmatrix} $	0.2 0.7)	0 = (1 0) $1 crisp set$
`	my ut	(ms) sel

and Fuzzy logic (Rules of inference) set theory is closely related to the truth-finding logical statements called the rules of inference. ⇒ Use rules of implication (A⇒B) y Modus ponens: (Affirmative mode) If the apple is red AND a red apple is a ripe apple Thin the apple is ripe Modus tollens: (Denial mode) If the apple is not ripe a red apple is a ripe apple the apple is not red AND Fuzzy Rule 1: (Midus ponins) the apple is very red a red apple is a ripe apple As Thin the apple is very ripe Fuzzy Rule 2: (compositional rule of inference) As Apple#1 is very ripe And Apple #2 is not quite as ripe as Apple #1 Then Apple #2 is more or less ripe.

As the room temperature is cool Do turn on the heater to High EX:

01914-001470, E-mail: info@uiu ac.bd

logic	NOT
0 0.25	Not(A) 1 0.75 0.5 0.25
1	0

Fu227	logic	AND			
9	0	0.25	0.5	0.75	1.0
0 0.25 0.5	0	0,25	0.25	0.25	0.25
0.5	1	0.25	0.5	0.75	0.75
1.0	1 -	0.25	0.5	0.4	

Fu227	igic	OR			
	0	0.25	0.5	0.75	1.0
A 6		0.25	0.5	0.75	1.0
0	0.25	0.25	0.5	0.75	1.0
0.25	0.5	0.5	0.5	0.75	1.0
0.5		. 0.75	0.75	0.75	1.0
0.75	0.75	(.0	1.0	1.0	
1.0.	1.0				

Example: Fuzzy short

short(x) =
$$\begin{cases} 0 & \text{if } x = 1.9 \text{ m} \\ 1 & \text{if } x = 1.7 \text{ m} \end{cases}$$

$$\frac{1.9-x}{0.2} & \text{otherwise}$$

Tall (2) U short (x): Union:

mplement:

1.8 m

Medium (x) =
$$\begin{cases} 0 & \text{if } x > = 1.70 \text{ or } 2 < 1.70 \\ \frac{1.9 - x}{0.1} & \text{if } x > = 1.80 \text{ and } x < 1.90 \\ \frac{x - 1.70}{0.1} & \text{if } x > = 1.70 \text{ and } x < 1.80 \end{cases}$$

It: Temperature { Freezing, Cool, Warm, Hot} cloud Cover { Sunny, and, Partly, Overcast]

fast will I go if it is 65 F° and 25% cloud cover?

For cloud Cover:

for output speed:

65°F => cool = 0.4, Warm = 0.7 25% Cour => Sunny = 0.8, cloudy = 0.2 14

is sunny and warm, drive fast
it is cloudy and cool, drive slow

sunny and warm = 000 sunny 1 warm

= 0.8 1 0.7

= 0.7

By rule 1, Fast = 0.7 = 70 %.

cloudy and $cool = cloudy \land cool$ $= 0.2 \land 0.4$ = 0.2

By rule 2, slow = 0.2 = 20 /

Defuzzification: (output spred)

(Slow) At 25% centroid, membership is 100%.
(Fast) At 75% centroid, membership is 100%.

funerated speed = Weighted Mean $= (2 \times 25 + 7 \times 75)/(2+7) = 63.8 \text{ mph } Ans.$

Scanned with CamScanner

15