CHAPTER VI

HOMOGENEOUS LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

6.1. Homogeneous linear equations.

A linear differential equation of the form

$$x^{n} \frac{d^{n} y}{dx^{n}} + P_{1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \cdots + P_{n} y = X, \qquad (1)$$

where P_1 , P_2 ,, P_n are constants and X is either a constant or a function of x only is called a homogeneous linear differential equation. This is also known as Euler-Cauchy type of equations.

Equations of this type are solved by transforming them to equations with constant coefficients through a change of the independent variable x to z by the relation

$$x = e^z$$
, that is, $z = \log x$.

When this change is effected, we have

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} = \frac{1}{x} \frac{dy}{dz},$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{1}{x} \frac{dy}{dz} \right) = \frac{1}{x^2} \left(\frac{d^2y}{dz^2} - \frac{dy}{dz} \right),$$

$$\frac{d^3y}{dx^3} = \frac{1}{x^3} \left(\frac{d^3y}{dz^3} - 3 \frac{d^2y}{dz^2} + 2 \frac{dy}{dz} \right),$$

 $\frac{d^{n}y}{dx^{n}} = \frac{1}{x^{n}} \left\{ \frac{d^{n}y}{dz^{n}} - \frac{n(n-1)}{2} \frac{d^{n-1}y}{dz^{n-1}} + \cdots \right\}$

$$\cdots + (-1)^{n-1}(n-1)! \frac{dy}{dz}$$

We use the symbol D' for the differential operator $\frac{d}{dz}$.

Thus
$$D' \equiv \frac{d}{dz}$$
 and $D'' = \frac{d'}{dz'}$. Also $D' \equiv x \frac{d}{dx}$.

Putting this differential operator D' for $\frac{d}{dz}$, we get

$$x \frac{dy}{dx} = D'y,$$

$$x^{2} \frac{d^{2}y}{dx^{2}} = D'(D'-1)y,$$

$$x^{3} \frac{d^{3}y}{dx^{3}} = D'(D'-1)(D'-2)y,$$
...

$$x^n \frac{d^n y}{dx^n} = D'(D'-1)(D'-2)....(D'-n+1)y.$$

Substituting these relations in (1), we get the transformed equation as

where Z is a function of z into which X is transformed by the substitution $x = e^{z}$.

This is an equation with constant coefficients and can be easily solved. If this equation (2) be written in the form

$$f(D') y = Z, (3)$$

where $f(D') \equiv D'(D'-1) : \cdots (D'-n+1) +$

$$P_1 D'(D'-1) \dots (D'-n+2) + \dots + P_n$$

then the complementary function will be given by different functions as determined by the roots of the auxiliary equation f(m) = 0, as in the previous chapter.

The particular integral will be given by

$$\frac{1}{f(D')}Z$$

and can be evaluated by applying the methods discussed in the previous chapter.

6.5. Equations reducible to homogeneous linear form.

The equations of the form

$$(a + bx)^{n} \frac{d^{n}y}{dx^{n}} + P_{1} (a + bx)^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + \cdots$$

$$\cdots + P_{n-1} (a + bx) \frac{dy}{dx} + P_{n}y = X, \qquad \cdots$$
 (1)

where P_1 , P_2 ,, P_n are constants and X is either a constant or a function of x only, can easily be reduced to the homogeneous linear form and hence also to the form of linear equations with constant coefficients. For this purpose, we write a + bx = z, so that

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} = b \frac{dy}{dz},$$

HOMOGENEOUS LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS 139

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(b \frac{dy}{dz} \right) = \frac{d}{dz} \left(b \frac{dy}{dz} \right) \cdot \frac{dz}{dx} = b^2 \frac{d^2 y}{dz^2},$$

$$\frac{d^n y}{dx^n} = b^n \frac{d^n y}{dz^n}.$$

Substituting these in (1), we get the reduced equation as

$$z^{n} \frac{d^{n} y}{dz^{n}} + \frac{P_{1}}{b} z^{n-1} \frac{d^{n-1} y}{dz^{n-1}} + \frac{P_{2}}{b^{2}} z^{n-2} \frac{d^{n-2} y}{dz^{n-2}} + \cdots$$

$$\cdots + \frac{P_{n-1}}{b^{n-1}} z \frac{dy}{dz} + \frac{P_{n}}{b^{n}} y = \frac{1}{b^{n}} Z, \qquad (2)$$

where Z is a function of z into which X is transformed by the substitution $x = \frac{z-a}{b}$.

This is an equation of homogeneous form and can be easily solved.

If y = G(z) be the solution of the equation (2), then

y = G(a + bx) is the solution of the equation (1).

If e^t had been substituted for (a + bx), the independent variable thus being changed to t from x, we would get a linear equation with constant coefficients.

~6.6. Illustrative Examples.

Ex. 1. Solve:
$$x^3 \frac{d^3y}{dx^3} - x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 2y = x^3 + 3x$$
.

We first change the independent variable x to z by the substitution $x = e^z$, that is, $z = \log x$ so that $x \frac{d}{dx} = \frac{d}{dz} = D'$, say.

The equation is then reduced to

$$\left\{ D'(D'-1)(D'-2) - D'(D'-1) + 2D'-2 \right\} y = e^{3z} + 3e^{z}$$
or, $(D'^{3} - 4D'^{2} + 5D' - 2)y = e^{3z} + 3e^{z}$
or, $(D'-1)^{2}(D'-2)y = e^{3z} + 3e^{z}$.

Here the auxiliary equation $(m-1)^2(m-2)=0$ has the roots 1, 1, 2.

Thus the complementary function is

$$(C_1 + C_2 z) e^z + C_3 e^{2z} = (C_1 + C_2 \log x) x + C_3 x^2$$

The particular integral is

$$\frac{1}{(D'-1)^{2}(D'-2)} (e^{3z}+3e^{z})$$

$$= \frac{1}{(D'-1)^{2}(D'-2)} e^{3z}+3 \frac{1}{(D'-1)^{2}(D'-2)} e^{z}$$

$$= \frac{1}{4}e^{3z}-3\frac{1}{(D'-1)^{2}}e^{z}$$

$$= \frac{1}{4}e^{3z}-3e^{z}\frac{1}{(D'+1-1)^{2}}1$$

$$= \frac{1}{4}e^{3z}-3e^{z}\frac{1}{D'^{2}}1$$

$$= \frac{1}{4}e^{3z}-3e^{z}\frac{2}{2}=\frac{1}{4}x^{3}-\frac{3}{2}x(\log x)^{2}.$$

Hence the complete solution is

$$y = (C_1 + C_2 \log x) x + C_3 x^2 + \frac{1}{4} x^3 - \frac{3}{2} x (\log x)^2.$$

Ex. 2. Solve:
$$x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10 \left(x + \frac{1}{x}\right)$$
. [C. H. 1991, 1993]

Let us put $x = e^z$, that is, $z = \log x$ so that $x \frac{d}{dx} = \frac{d}{dz} = D'$, say.

Then the given equation becomes

$$\{D'(D'-1)(D'-2)+2D'(D'-1)+2\}y = 10(e^z+e^{-z})$$
or, $(D'+1)(D'^2-2D'+2)y = 10(e^z+e^{-z}).$

The roots of the auxiliary equation $(m+1)(m^2-2m+2)=0$ are -1, $1\pm i$.

Thus the complementary function is

$$C_1 e^{-z} + (C_2 \cos z + C_3 \sin z) e^{z}$$

= $C_1 x^{-1} + \{C_2 \cos (\log x) + C_3 \sin (\log x)\} x$.

The particular integral is

$$\frac{1}{(D'+1)(D'^{2}-2D'+2)} 10(e^{z}+e^{-z})$$

$$= \frac{1}{(D'+1)(D'^{2}-2D'+2)} 10e^{z} + \frac{1}{(D'+1)(D'^{2}-2D'+2)} 10e^{-z}$$

$$= 5e^{z} + \frac{1}{D'+1} 2e^{-z} = 5e^{z} + e^{-z} \frac{1}{D'-1+1} 2$$

$$= 5e^{z} + e^{-z} 2z = 5x + 2x^{-1} \log x.$$

Hence the complete solution is

$$y = x | C_1 \cos(\log x) + C_3 \sin(\log x) + 5 | + x^{-1} (C_1 + 2 \log x).$$

Ex. 3. Solve:
$$(x^2 D^2 - 3xD + 5)y = x^2 \sin(\log x)$$
, where $D = \frac{d}{dx}$.

Let us put $x = e^z$ so that $z = \log x$.

Then the given equation reduces to

$$\{D'(D'-1)-3D'+5\}y=e^{2z}\sin z$$
, where $D'=x\frac{d}{dx}=\frac{d}{dz}$

or,
$$(D'^2 - 4D' + 5)y = e^{2z} \sin z$$
.

The roots of the auxiliary equation $m^2 - 4m + 5 = 0$ are $2 \pm i$.

Thus the complementary function is

$$e^{2z}(A\cos z + B\sin z) = x^2 \{A\cos(\log x) + B\sin(\log x)\}.$$

The particular integral is

$$\frac{1}{D'^2 - 4D' + 5} e^{2z} \sin z = e^{2z} \frac{1}{(D' + 2)^2 - 4(D' + 2) + 5} \sin z$$

$$= e^{2z} \frac{1}{D'^2 + 1} \sin z$$

$$= e^{2z} \left(-\frac{z}{2} \cos z \right)$$

$$= -\frac{1}{2} x^2 \log x \cos (\log x).$$

Hence the complete solution is

$$y = x^{2} \{ A \cos(\log x) + B \sin(\log x) - \frac{1}{2} \log x \cos(\log x) \}.$$

Ex. 4. Solve:
$$(x^2 D^2 + 3xD + 1) y = \frac{1}{(1-x)^2}$$
, where $D = \frac{d}{dx}$.
[N.B.H.1988]

Let us put $x = e^z$ so that $z = \log x$.

The given equation then reduces to

$$\{D'(D'-1)+3D'+1\}y=\frac{1}{(1-x)^2}, \text{ where } D'\equiv\frac{d}{dz}$$

or,
$$(D'+1)^2 y = \frac{1}{(1-x)^2}$$
.

Now, the roots of the auxiliary equation are -1, -1.

Thus the complementary function is

$$(C_1 + C_2 z)e^{-z} = (C_1 + C_2 \log x)x^{-1}$$

The particular integral is

$$\frac{1}{(D'+1)^2} (1-x)^{-2} = \frac{1}{D'+1} x^{-1} \int x^{1-1} (1-x)^{-2} dx$$

$$= \frac{1}{D'+1} x^{-1} (1-x)^{-1}$$

$$= x^{-1} \int x^{1-1} x^{-1} (1-x)^{-1} dx$$

$$= x^{-1} \int \frac{1}{x(1-x)} dx$$

$$= x^{-1} \int \left(\frac{1}{x} + \frac{1}{1-x}\right) dx$$

$$= x^{-1} \log \frac{x}{x-1}$$

Hence the complete solution is

$$y = x^{-1} \left(C_1 + C_2 \log x + \log \frac{x}{x-1} \right).$$

Ex. 5. Solve

$$(x^4D^4 + 6x^3D^3 + 9x^2D^2 + 3xD + 1)y = (1 + \log x)^2,$$

where $D \equiv \frac{d}{dx}$.

Let us put $x = e^z$ so that $z = \log x$.

The given equation then reduces to

$$\begin{aligned} \left\{ D'(D'-1)(D'-2)(D'-3) + 6D'(D'-1)(D'-2) \\ + 9D'(D'-1) + 3D' + 1 \right\} y &= (1+z)^2. \end{aligned}$$

Simplifying, we get

$$(D'^2 + 1)^2 y = (1 + z)^2$$
.

Now, the roots of the auxiliary equation are $\pm i$, $\pm i$.

Thus the complementary function is

$$(C_1 + C_2 z) \cos z + (C_3 + C_4 z) \sin z$$

$$= (C_1 + C_2 \log x) \cos (\log x) + (C_3 + C_4 \log x) \sin (\log x).$$

The particular integral is

$$\frac{1}{(D'^2+1)^2}(1+z)^2 = (1+D'^2)^{-2}(1+2z+z^2)$$

$$= (1-2D'^2-\cdots)(1+2z+z^2)$$

$$= 1+2z+z^2-4=z^2+2z-3=(\log x)^2+2\log x-3$$

Hence the complete solution is

$$y = (C_1 + C_2 \log x) \cos (\log x) + (C_3 + C_4 \log x) \sin (\log x) + (\log x)^2 + 2 \log x - 3.$$

Ex. 6. Solve:
$$(1 + 2x)^2 \frac{d^2y}{dx^2} - 6(1 + 2x)\frac{dy}{dx} + 16y = 8(1 + 2x)^2$$
.

Let us put $1 + 2x = e^z$ in the given equation so that $z = \log(1 + 2x)$.

Then we have
$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} = \frac{1}{1+2x} \cdot 2\frac{dy}{dz}$$
.

and

$$\frac{d^2y}{dx^2} = \frac{2}{1+2x} \frac{d^2y}{dz^2} \cdot \frac{2}{1+2x} - \frac{4}{(1+2x)^2} \frac{dy}{dz}$$
$$= \frac{4}{(1+2x)^2} \left(\frac{d^2y}{dz^2} - \frac{dy}{dz} \right).$$

Therefore
$$(1 + 2x) \frac{dy}{dx} = 2 \frac{dy}{dz}$$
 and $(1 + 2x)^2 \frac{d^2y}{dx^2} = 4 \left(\frac{d^2y}{dz^2} - \frac{dy}{dz} \right)$

Substituting these in the given equation, we get

or,
$$\frac{4\left(\frac{d^{2}y}{dz^{2}} - \frac{dy}{dz}\right) - 12\frac{dy}{dz} + 16y = 8e^{2z}}{dz^{2}}$$

or,
$$(D'-2)^2y=2e^{2z}$$
.

The roots of the auxiliary equation are 2, 2.

Thus the complementary function is

$$(C_1 + C_2 z) e^{2z} = \{C_1 + C_2 \log (1 + 2x)\} (1 + 2x)^2.$$

The particular integral is

$$\frac{1}{(D'-2)^2} 2e^{2z} = e^{2z} \frac{1}{(D'+2-2)^2} 2 = e^{2z} \frac{1}{D'^2} 2$$
$$= e^{2z} z^2 = (1+2x)^2 \left\{ \log (1+2x) \right\}^2.$$

Hence the complete solution is

$$y = \left[C_1 + C_2 \log (1 + 2x) + \left\{ \log (1 + 2x) \right\}^2 \right] (1 + 2x)^2.$$

Examples VI

Solve the following equations:

1.
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 2 \log x$$
.

$$2. x^{2} \frac{d^{3}y}{dx^{3}} - 2 \frac{dy}{dx} = 0.$$

3.
$$x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \frac{1}{x}$$

4.
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$$
.

5.
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$
. [C. H. 1989]

6.
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 20y = (x+1)^2$$
.

-7.
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$$
.

8.
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$$
.

$$\int_{0}^{2} x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} - 3y = x^{2} \log x.$$

10.
$$(x^2D^2 - xD + 4)y = \cos(\log x) + x \sin(\log x), D \equiv \frac{d}{dx}$$

11.
$$\left\{x^2D^2 - (2m-1)xD + (m^2 + n^2)\right\}y = n^2x^m \log x$$

12.
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x + \sin x$$
.

13.
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$

• 14.
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^{2x}$$
.

(a)
$$(x^2D^2 + xD - 1)y = x^m$$
.
(b) $(x^2D^2 - 3xD + 4)y = x^m$.

16.
$$(x^3D^3 + xD - 1)y = x^2$$
.

[V. H. 1997]

17.
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + y = \frac{\log x \cdot \sin(\log x) + 1}{x}$$
.

18.
$$x^3 \frac{d^3y}{dx^3} - x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 2y = x^3 + 3x$$
.

19.
$$(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 8y = 0$$
.

$$(x+a)^2 \frac{d^2y}{dx^2} - 4(x+a) \frac{dy}{dx} + 6y = x.$$
 [C. H. 1995]

(21.)
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4 \cos \log (1+x)$$
.

$$+ 22. (3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2) \frac{dy}{dx} - 3y = x^2 + x + 1.$$

23.
$$(2x-1)^3 \frac{d^3y}{dx^3} + (2x-1)\frac{dy}{dx} - 2y = 0$$
.

24. $2x^2y\frac{d^2y}{dx^2} + 4y^2 = x^2\left(\frac{dy}{dx}\right)^2 + 2xy\frac{dy}{dx}$ after making it homogeneous by the substitution $y = z^2$.

25.
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 12y = 12$$
, satisfying $y(1) = 0$, $y'(1) = 0$.

Answers

1.
$$y = x (C_1 + C_2 \log x) + 2 \log x + 4$$
.

2.
$$y = C_1 x^3 + C_2 + C_3 \log x$$
.

3.
$$y = (C_1 + C_2 \log x) x + C_3 x^{-1} + \frac{1}{4} x^{-1} \log x$$
.

4.
$$y = C_1 x^{-1} + C_2 x^4 + \frac{1}{5} x^4 \log x^4$$

5.
$$y = (C_1 + C_2 \log x) x^2 + x^2 (\log x)^2$$
.

6.
$$y = C_1 x^{-5} + C_2 x^4 - \frac{1}{14} x^2 - \frac{1}{9} x - \frac{1}{20}$$

7.
$$y = x \{ C_1 \cos(\log x) + C_2 \sin(\log x) \} + x \log x$$
.

8.
$$y = C_1 \cos(\log x) + C_2 \sin(\log x) + \frac{\log x}{4} \{ \sin(\log x) - \log x \cos(\log x) \}.$$

9.
$$y = C_1 x^3 + C_2 x^{-1} - \frac{1}{3} x^2 \left(\log x + \frac{2}{3} \right)$$

10.
$$y = x \{ C_1 \cos(\sqrt{3} \log x) + C_2 \sin(\sqrt{3} \log x) \}$$

 $+ \frac{1}{13} \{ 3 \cos(\log x) - 2 \sin(\log x) \} + \frac{1}{2} x \sin(\log x) .$

11.
$$y = x^m \{ C_1 \cos(n \log x) + C_2 \sin(n \log x) \} + x^m \log x$$
.

12.
$$y = C_1 x^{-1} + C_2 x^{-2} + \frac{1}{6} x - x^{-2} \sin x$$
.

13.
$$y = C_1 x^{-1} + C_2 x^{-2} + \frac{1}{x^2} e^x$$
.

14.
$$y = C_1 x + C_2 x^{-1} + \frac{1}{8} (2 - x^{-1}) e^{2x}$$

15. (a)
$$y = C_1 x + C_2 x^{-1} + \frac{x^m}{m^2 - 1}$$
.

(b)
$$y = x^{2} (C_{1} + C_{2} \log x) + \frac{x^{m}}{(m-2)^{2}}$$

16.
$$y = \{C_1 + C_2 \log x + C_3 (\log x)^2\} x + x^2$$
.

17.
$$y = x^2 (C_1 x^{\sqrt{3}} + C_2 x^{-\sqrt{3}}) + \frac{1}{6x} + \frac{\log x}{61x} \{ 5 \sin (\log x) \}$$

+
$$6\cos(\log x)$$
 + $\frac{2}{3721x}$ { $27\sin(\log x)$ + $191\cos(\log x)$ }

18.
$$y = (A + B \log x) x + Cx^2 + \frac{1}{4}x^3 - \frac{3}{2}x (\log x)^2$$
.

19.
$$y = (5 + 2x)^2 \{ A (5 + 2x)^{\sqrt{2}} + B (5 + 2x)^{-\sqrt{2}} \}.$$

20.
$$y = C_1(x+a)^3 + C_2(x+a)^2 + \frac{1}{2}(x+a) - \frac{1}{6}a$$
.

21.
$$y = C_1 \cos \{\log (1+x)\} + C_2 \sin \{\log (1+x)\}$$

$$+ 2 \log (1 + x) \sin \{ \log (1 + x) \}.$$

22.
$$y = C_1 (3x + 2)^{-1} + C_2 (3x + 2)^{\frac{1}{3}} + \frac{1}{405} (3x + 2)^2 - \frac{1}{108} (3x + 2) - \frac{7}{27}$$

23.
$$y = A(2x-1) + B(2x-1)\cosh\left\{\frac{\sqrt{3}}{2}\log(2x-1) + C\right\}$$
.
24. $y = (A+B\log x)^2 = 2$

24.
$$y = (A + B \log x)^2 \cdot x^2$$
.

25.
$$y = -1 + \frac{1}{7}(3x^{-4} + 4x^{3})$$