Service Manual

Electronic Typewriter

KX-R520

INDEX

Sec	tion 1 General Information	
1.1 1.2 1.3	Specifications Name of Functions List of Code Key Function	1-2
Sec	tion 2 Removal and Replacement Procedures	
2.1 2.2	Upper Cover	2-1 2-1
2.3	Main Logic Board	2-1 2-2
2.5 2.6 2.7	Chassis and Platen Carrier Ribbon Holder	2-3
2.8 2.9	Ribbon Feed Motor Daisy Drive Unit	2-3 2-4
2.10 2.11 2.12	Hammer and Hammer Solenoid	2-4
2.13 2.14	Paper Feed Motor	2-5 2-5
2.15	Carrier Cable Winding	2-6
	•	
3.1 3.2	Paper Feed Mechanism	3-1 2-1
3.3	Line Space Detent	3-1
3.4	Paper Release Mechanism	3-2
3.5 3.6	Platen Latches	3-2
3.7	Carrier Spacing	3-3
3.8	Carrier Home Sensor	3-3
3.9 3.10	Ribbon Feed	
3.11	Daisywheel Motor and Character Printing)-4 }-4
3.12	Initializing	3-5
3.13 3.14	Daisy Home Position Adjustment	8-6
0.14	Thiodori Lift Adjustition 1	0-0

Section 4 Electronic Circuit Descriptions and Diagrams

4.1 4.2 4.3 4.4 4.6 4.7 4.8 4.9 4.10 4.11	Principle of Operation Power Supply CPU and Control Circuit Keyboard Matrix Circuit Drive Circuit Logic Board Connection Diagram Explanation of Connectors Component Reference Guide Logic Board Schematic Flow Chart tion 5 Parts Catalog and Lubrication Points	.4-3 .4-4 .4-10 .4-11 .4-14 .4-15 .4-17
1. 2. 3. 4. 5.	Covers Chassis and Platen Carrier Keyboard Power Supply Main Logic Board	.5-2 .5-4 .5-6 .5-8
7.	Packing Materials	

1. General Information

1.1 Specifications

	Print Speed	12 cps
	Print Element	Cassette type Daisywheel (Mono Plastic) 96 characters
	Typing Pitch	10, 12, 15
	Line Spacing	1, 1 1/2, 2
Print Unit	Paper Width	12" (304 mm)
	Writing Line	10" (254 mm)
	Paper Capacity	Original + 1
	Ribbon Cassette	Correctable, Fabric (Option)
	Correction Tape	Lift-off, Cover-up (Option)
Keyboard		45 Alpha/Numeric keys
	Correction Memory	1 line
Memory	Text Memory	2,500 characters
,	Line Formats	1 format
	Battery Backup	5 years (Approx.)
Accu-Spell	Dictionary	86,000 words
	Voltage	120 V ± 10%
Power Requirements	Frequency	60 Hz
	Power Consumption	30 W
Operating Conditions	Temperature	5°C (41°F) to 35°C (95°F)
Operating Conditions	Humidity	20%~80% RH
Dimensions		$16^{13}/_{16}$ " (W) \times 14 $^{3}/_{8}$ " (D) \times 4 $^{3}/_{8}$ " (H) (427 \times 365 \times 112 mm)
Weight		Approx. 11 lbs. (5 kg)

Specifications are subject to change without notice.

1.2 Name of Functions

1.3 List of Code Key Functions

The KX-R520 Electronic Typewriter has many functions for user operations and service operations.

a) User operations

These functions are executed by using the following CODE Key combinations. For more detailed information please refer to the KX-R520 Operating Instructions.

CODE	+	B sets/releases BOLD print
CODE	+	C centers information
CODE	+	H Half spacing
CODE	+	I sets/releases Paragraph Indent
CODE	+	J moves the carriage by 1/60 inch (Micro-Pitch Spacing)
CODE	+	K initialize the Carriage
CODE	+	P sets a Stop Code in a text
CODE	+	R prints information with the last character on each line aligned at the right margin
CODE	+	U sets/releases Continuous Underlining
CODE	+	W sets/releases Word by Word Underlining
CODE	+	X makes correction manually in normal mode
CODE	+	X and X clears a text
CODE	+	Permanent Hyphen
CODE	+	SPACE BAR Permanent Space
CODE	+	TABaligns decimal points at the tab stops
CODE	+	MAR REL clears all tabs
CODE		MAR REL clears all tabs LOCK presets the unit for typing capital letters, lower case numbers, punctuation marks and symbols
CODE	+	LOCKpresets the unit for typing capital letters, lower case numbers, punctuation marks
CODE	+	LOCKpresets the unit for typing capital letters, lower case numbers, punctuation marks and symbols
CODE	+ + +	LOCKpresets the unit for typing capital letters, lower case numbers, punctuation marks and symbols RELOCK moves the carriage to the beginning of the line without line spacing
CODE CODE CODE	+ + + +	LOCK presets the unit for typing capital letters, lower case numbers, punctuation marks and symbols RELOCK moves the carriage to the beginning of the line without line spacing TABSET clears tab stops TEXT instructs the typewriter to start printing document in memory/stops deleting
CODE CODE CODE CODE	+ + + + +	LOCK
CODE CODE CODE CODE CODE	+ + + + + +	LOCK
CODE CODE CODE CODE CODE CODE	+ + + + + + +	LOCK

CODE	+	6	sets single (1) line spacing
CODE	+	7	sets one and a half (1 1/2) line spacing
CODE	+	8	sets double (2) line spacing
CODE	+	9	sets manual/AUTO carriage return mode
CODE	+	0	turns ON/OFF the Accu-Spell
CODE	+	=	sets keyboard KBI
CODE	+	BACK SPACE	sets keyboard KBII
CODE	+	INDEX	moves the paper down 1/2 line
CODE	+	RETURN	insert the paper automatically
CODE	+	QUICK	deletes one line at a time

b) Service operations The following functions are for supporting service and are executed by turning ON the Power Switch while pressing the Key combinations shown below.

SHIFT	+	RELOC	Daisy home position is adjusted
SHIFT	+	TABSET	Check of ROM and RAM
SHIFT	+	QUICK	Test of data printing
SHIFT		ENAGE	Demonstration
SHIFT	+	CODE	Clears all tabs, margins and RAM

2. Removal and Replacement Procedures

For reasons of safety and to avoid possible damage to electronic components, the AC Line Cord must be removed before disassembly.

Main Logic Board

2.1 Upper Cover

- Remove the Platen knob from left side of the Platen.
- Remove 3 screws from beneath the front edge of the Bottom Cover, 2 screws from the middle of the Bottom Cover and 3 screws from the rear.
- 3) Carefully lift and remove the Upper Cover while observing the left side of the Platen shaft.

Replace in the reverse order.

2.2 Keyboard

 Unplug the Keyboard flat cables CN5 and CN6 from the Main Logic Board.

Replace in the reverse order.

2.3 Main Logic Board

- 1) Release the Power Switch and LED Board from the Bottom Cover.
- 2) Unplug the Power Transformer connector CN401 from the Power Switch Board.
- 3) Unplug the Carrier Spacing Motor connector CN2, the Paper Feed Motor connector CN4, the Carrier flat cable CN3 and the Power Switch connector CN1 from the Main Logic Board.
- Remove the 2 ground wire screws from the Chassis.
- 5) Remove the 4 screws (4) and lift out the Main Logic Board with the Power Switch.

Note:

When reinstalling the Main Logic Board, make sure that the FG Plate makes contact with the bottom of the Keyboard Frame to prevent RF interference.

Replace in the reverse order.

- Remove the 2 screws from the Power Transformer.
- Remove the AC Cord and ES Core from the Bottom Cover.
- 3) Remove the Power Transformer with AC Cord.

Replace in the reverse order.

Note:

When replacing the AC Cord, make sure that it is routed as shown in the illustration.

Safety Notice:

When replacing the Power Transformer and AC Cord, please follow the procedure below.

- Carefully strip the lead ends and twist the wires together.
- 2) Fully insert the wire end into the closed end connector (Crimp-ON Type).
- 3) Firmly crimp the connector with appropriate tool.

2.5 Chassis and Platen

- Pull the right Paper Release Lever and remove the Platen by rotating the Platen Latches toward the front of the unit then lift the Platen from the Chassis.
- 2) Remove the 2 screws from the Chassis.
- 3) The Chassis can be removed.

Replace in the reverse order.

Note:

Connectors CN2, CN3, and CN4 must be unplugged before lifting the Chassis. (refer to section 2.3)

2.6 Carrier

- 1) Unplug the flat cable from the Carrier.
- 2) Position the Carrier in front of the left side rear frame opening.
- 3) Remove the screw from the Carrier Cable Hanger.
- 4) Remove the screw from the right side frame.
- 5) Remove the spring from the right Bail Lever Arm.
- Carefully move the Bail Lever Arm from the end of the Carrier Shaft.
- 7) Carefully slide the Carrier Shaft to the right.
- 8) Remove the Carrier.

Replace in the reverse order.

2.7 Ribbon Holder

- Pull the Cam Follower out of the groove in the Drive Cam.
- Slightly slide the Ribbon Holder to the right and remove it upward.

Replace in the reverse order.

2.8 Ribbon Feed Motor

- Unsolder the Motor leads from the Ribbon Feed Motor.
- 2) Remove the 2 screws from the Motor.

Replace in the reverse order.

2.9 Daisy Drive Unit

- Remove the Front Support and the Card Holder by removing the screw.
- 2) Remove the E-ring and the Drive Cam.
- Remove the screw from the Ribbon Sensor Board.
- 4) Remove the screw from the Carrier Board.
- 5) Remove the spring.
- 6) Remove the Clip from the Slide Shaft.
- 7) Remove the Slide Shaft by pulling it to the front.
- 8) Carefully lift off the Daisy Drive Unit, Carrier Board and Ribbon Sensor Board together.

Replace in the reverse order.

2.10 Hammer and Hammer Solenoid

- Remove the E-rings from the Hammer Pivot Shaft.
- Slide the Shaft to the left and remove the Hammer with the plastic washer and spring.
- Remove the 2 screws from the Hammer Solenoid.
- 4) Remove the Solenoid.
- Unsolder the Solenoid leads from the Carrier Board.

Replace in the reverse order.

2.11 Daisywheel Motor

- Remove the E-ring from the Daisywheel Gear Shaft.
- 2) Pull the Daisywheel Gear forward to remove.
- 3) Remove the screw from the Daisywheel Motor.
- 4) Remove the E-ring (B) from the Daisywheel Shaft bushing.
- 5) Remove the Bushing.
- 6) Remove the Motor.
- Unsolder the Motor leads from the Carrier Board.

Replace in the reverse order.

During replacement check the following:

- Make sure that leads match with indicated color as shown in the figure.
- Make sure that the marks on the two Daisywheel Drive Unit Gears are aligned.

2.12 Carrier Spacing Motor

 Remove the 2 screws and disengage the motor from the Cable Drum.

Replace in the reverse order.

Note:

Connector CN2 must be unplugged before removing the motor as in section 2.3.

2.13 Paper Feed Motor

- Remove the 2 E-rings from the Paper Feed Cam Gear and Geneba Gear.
- 2) Remove the Paper Feed Cam Gear.
- 3) Remove the Geneba Gear.
- 4) Remove the Primary Gear by lifting out.
- Remove the 2 screws and pull the Motor downward to remove it.
- 6) Unsolder the Motor leads.

Replace in the reverse order.

Note:

When replacing the Primary Gear and Paper Feed Cam Gear, make sure that the marks on the each Gear are aligned as shown in the illustration.

- Remove the Tension spring from the Tension Arm.
- 2) Remove the Tension Arm from the frame.
- Remove the Cable Gear Shaft screw and the Cable Drum.
- 4) Release the cable ends from the Carrier Cable Hanger.
- 5) Unwind the Carrier Cable.

Replace in the reverse order.

Follow the next step 2.15 for winding the cable on the Drum.

2.15 Carrier Cable Winding

Note:

Use of Carrier Cable Jig No. PJZXXR250M will make cable installation much easier, as illustrated.

 Insert the short end of the cable through the lower hole and back through the upper hole, pulling until the cable stops.

2) Wind the short cable end 3 full turns clockwise around the drum, starting in the first groove and hold while proceeding with Step "3".

 Wind the long cable end 4 full turns counterclockwise around the drum, starting in the first groove from the outside, and hold.

Slide the Carrier Cable Jig onto the drum, as illustrated, with the cable ends through the Jig opening.

Note:

- The cable can be held in place with tape if the Jig is not available.
- Pull the Carrier Cable Jig downward to remove.

3. Mechanical Functions and Adjustments

3.1 Paper Feed Mechanism

The paper feed mechanism, mounted on the Chassis, consists of the Platen, a spring-loaded Paper Release Plate and a floating Paper Pan which has 3 front and 3 rear Feed Rollers. As paper is inserted, it is guided between the rear Feed Rollers and the Platen, where it is gripped and fed as the Platen rotates. The paper can be advanced manually through use of either Platen Knob.

3.2 Paper Feed Motor

Drive for the Platen is provided by a DC Motor, which rotates the Platen through a Primary Gear, Paper Feed Cam Gear and Geneba Gear engaged with the Platen Gear. One complete revolution of the Primary Gear provides 1/2 line space movement to the Platen. As the Motor is energized, it begins to rotate counterclockwise (viewed from the top) and its Gear causes the Primary Gear to rotate clockwise then the Paper Feed Cam Gear turns the Geneba Gear intermediately by Cam movement, which turns the Platen Gear for advancing the Platen. The Home Detecting Lever is activated by Cam rotation and Magnet Shutter mounted on the top of the Home Detecting Lever turns the Reed Switch off. The Motor and Gear continue to turn through momentum until a full revolution has been completed. After rotation is completed, Platen position is maintained by a spring-loaded Detent which is engaged with the Platen Ratchet. The Paper Feed Motor is actuated whenever the Carrier return key is depressed.

3.3 Line Space Detent

After each line space operation, the Detent Lever is fully seated between 2 platen gear teeth by the tension of the spring attached to the Detent shaft to obtain proper line space operation.

3.4 Paper Release Mechanism

The Feed Roller and Paper Pan assembly is held against the Platen by the tension of 2 coil springs attached to a Paper Release Plate.

Pulling the Paper Release Lever forward causes the Paper Release Plate to move downward, increasing the tension on the coil springs and allowing the Feed Rollers to move away from the Platen.

3.5 Platen Latches

The Platen is held securely in place by molded plastic rotary clamps installed on both ends of the platen. The design of the Latches provides secure latching without the need of adjustment, and permits easy Platen removal and replacement.

Note:

Hold the Paper Release Lever vertical when replacing the Platen.

3.6 Platen Variable Clutch Mechanism

Normally rotational movement of the Platen Knob transmitted directly to the Platen, causes the engaged Platen Gear to turn, limiting Platen movement to 1/2 space (1 tooth) increments. When the left Platen Knob is pushed to the right, the spring loaded Platen Gear is moved to the right, disengaging its clutch teeth from those inside the Platen Coupler, and allowing Platen rotation without turning the Platen Gear. This permits Platen movement in very small increments.

Carrier movement is provided by a stepping motor controlled by the Logic Board. Motor rotation is transmitted via a cable and pulley to the Carrier, changing the rotational motor movement to horizontal Carrier movement. The Carrier Motor is a stepping motor which operates in 7.5° increments for each pulse received. Each 7.5° step of the Motor provides carrier movement of 1/120" to the left or right, requiring the following number of steps, or pulses, per space, depending on pitch:

15 pitch= 1/15" = 8 steps 12 pitch= 1/12" =10 steps 10 pitch= 1/10" =12 steps

3.8 Carrier Home Sensor

The chassis is equipped with a limit Sensor to notify the CPU when the Carrier approaches its home position, the Home Detecting Lever is activated by the Card Holder and the Magnet Shutter mounted on the top of the Home Detecting Lever turns the Reed Switch off, generating the signal and indicating the carrier home position to the CPU.

3.9 Ribbon Feed

Ribbon Feed Drive is provided by a bi-directional DC motor, which also provides Correction Tape Lift and Feed, depending on which direction the motor is initially activated. The home, or starting position of the motor is determined by a magnetic sensor which senses the location of the magnet affixed to the inner surface of the Drive Cam. During a character printing operation, the Motor is energized and turns the Drive Cam in a counterclockwise direction (view from the left), until the magnet passes its sensor (Reed Switch). This one rotational movement of the Cam Feed Gear, which then advances the Ribbon Feed Gear and the Ribbon. A Stop Pawl prevents reverse movement of the Feed Gear.

3.10 Correction Tape Feed

During a correction operation the Motor is energized, turning the Drive Cam in a clockwise direction approximately 180°, until the magnet passes its sensor (Reed Switch), at which time it reverses direction and returns to its home position. The Drive Cam's rotational movement is changed to vertical movement by the Cam Follower in the eccentric groove on the back of the Drive Cam, lifting the Ribbon Holder to its upper position. As the Motor lifts the Holder to its upper position, the tip of the Feed Pawl which pivots on the Slider engages the Feed Gear and continues upward movement causing the Feed Gear to be advanced by one tooth. The Stop Pawl (leaf spring) prevents reverse movement of the Correct Reel.

3.11 Daisywheel Motor and Character Printing

a) Daisywheel Motor

The Daisywheel Stepping Motor is mounted within the Carrier frame, and is controlled by the CPU. When a key is depressed, a signal is generated on the Main Logic Board, energizing the Motor and causing it to rotate to the desired point, step by step. Each step of the motor provides for 3.75° or one character spoke movement of the Daisywheel. The home position of the Motor corresponds to the underscore character on the Daisywheel being positioned at the printing point. In this position, the Impact Hammer must be aligned with the projection at the back of the underscore spoke. Pulling back on the Daisywheel Release Lever pushes down the Lock bar and moves the Motor away from the Platen. The Daisywheel Gear shaft and Pilot pin are disengaged from the Daisywheel, allowing the Daisywheel to the removed. Upon installation of the Daisywheel, pushing the lever forward firmly latches the Motor in the printing position. If the Pilot pin does not engage in the Pilot hole of the Daisywheel, it will re-engage automatically when the Carrier returns to the home position during initialization.

b) Character Printing

Once the Daisywheel has moved to the desired character, the Hammer Solenoid is energized by the CPU, causing the Hammer to move rapidly toward the Daisywheel, driving the character spoke into contact with the Platen. The strength of this impact is determined by the length of time the solenoid is energized, which is automatically controlled by the CPU corresponding to character surface area.

3.12 Initializing

Initialization is automatically performed when the power switch is turned on. When the power switch is turned on, the Carrier moves to the far left, then the Daisywheel Home Latch Lever is pushed inward by the left side frame and the Daisy Gear turns 2 revolutions. While the Daisywheel is turning, the Home Latch Lever catches the Daisywheel's latch point locating the Daisywheel home position and the Pilot Pin on the Daisy Gear engages in the Pilot hole in the Daisywheel. The Carrier then returns to the Carrier home position.

Note:

If the Power Switch is turned off and on quickly, initialization may not be performed.

3.13 Daisy Home Position Adjustment

Each spoke must be directly aligned with the Hammer when its character key is depressed. If necessary or when installing a new motor, adjust as follows.

Important Note:

The Daisywheel Motor must only be adjusted in the "DAISY ADJ" mode with power supplied to the motor. In the "DAISY ADJ" mode the Daisywheel motor will be energized for 2 minutes.

- 1) Install a Daisywheel and latch the motor in printing position.
- 2) Initialize the Daisywheel as in section 3.12.
- 3) Press the SHIFT+RELOC keys and turn on the power at the same time.
- 4) Manually push the Hammer toward the Daisywheel, and observe the underscore spoke locator in relation to the Hammer groove. If the Hammer is not aligned with the underscore spoke, follow the next step.
- 5) Align the Hammer groove with underscore spoke locator by turning the Adjustment screw. After adjusting the position, observe the alignment by repeating steps 2) 3) 4).
- 6) Apply a locking compound to the Adjustment screw to prevent loosening.

3.14 Ribbon Lift Adjustment

The typed character must strike near the upper edge of the Ribbon (See the illustration). Check by typing several characters and observing their position on the Ribbon.

- The tops of capital letters should be 1.5 to 2.0 mm from the upper edge of the Ribbon.
- 2) If the character is not in the proper position, adjust the position by turning the adjustment screw. Turning the screw clockwise will raise the position of the characters on the ribbon and counterclockwise will lower the position.

4. Electronic Circuit Descriptions and Diagrams

Block Diagram

4.1 Principle of Operation

This chapter explains the basic operation of the electronic circuitry for this typewriter.

This typewriter is mainly composed of control, drive, power supply circuits, motors, print hammer, keyboard and sensors. The control circuit is composed of ROM, RAM, Gate Array and CPU. Four drive circuits drive the carrier spacing motor, the daisywheel motor, paper/ribbon feed motors and the hammer solenoid. The power supply circuit supplies necessary voltage for all circuits. The keyboard is composed of 45 character keys and 15 function keys. Two sensors are used for detecting mechanical movement. They are magnetic sensors which are the ribbon feed sensor and the carrier home/paper feed sensor.

4.2 Power Supply

4.2.1 General Description

The 120 volt AC input is stepped down by transformer T1. The stepped down AC passes through the power switch SW401, rectified by diodes D9-D12 then filtered by C17 and C18. The filtered DC passes into the +12 volt and +5 volt regulator circuits.

- +VM ---- Carrier Spacing Motor
- +12 V ---- Daisywheel Motor, DC Motors, Print Hammer, Buzzer
- +5 V -----Logic Circuit

Voltage Condition: At standby condition Note: VM = 19 V at standby condition VM = 13-16 V at printing condition

a) + 12 V Power Supply

The ± 12 V power supply uses a transistor (Q1) and a voltage regulator (IC11). The collector of transistor (Q1) remains at ± 12 V by R18, R16, R26 and IC11.

b) +5 V Power Supply and Reset Circuit

The +5 V power supply contains a voltage regulator IC10, which reduces the voltage from +12 V to +5 V. This is a five pin device which also has built-in short circuit and thermal runaway protection. This device also contains the reset circuit which is provided to initialize the CPU (IC1) and Gate Array (IC2). The reset time is controlled by C1, which is connected to pin 2 of IC10. When the power switch (SW1) is turned on, the voltage at point (A) rises. After the voltage at point (A) rises over about +4.6 V, the reset signal, which is L level, is provided for 30 msec.

Timing Chart

4.3 CPU and Control Circuit

4.3.1 General Description

This block mainly consists of the CPU (IC1), ROM (IC5,6), RAM (IC3), and the Gate Array (IC2). The CPU receives key data from the keyboard through the Gate Array (IC2), processes the input from various sensors and function switches and controls the daisywheel, paper feed, carrier spacing, ribbon feed motors and the hammer solenoid.

4.3.2 CPU

This typewriter is a microprocessor controlled. It is controlled by a HD63B03x CPU "Central Processing Unit" IC1. The CPU has full control over all machine functions. It controls the printer mechanism, keyboard scanning, the display and memory management. The pin names and functions are shown in the following chart.

NAME	FUNCTION						NAME	FUNCTION
Vss	GND		1		64		E	System Clock (1.5 MHz)
XTAL	DECOMMETCE		2		63	→	RD	NC
EXTAL	RESONATOR Input (6 MHz)		3		62	→	WR	WRITE Signal
MP0	CPU Mode Select (+5V)	→	4		61		R/W	Not used
MP1	CPU Mode Select (0V)		5		60		LIR	NC
RES	Reset	→	6		59	\longrightarrow	ВА	NC
STBY	Not used (+5V)		7		58		D0	
NM1	Not used (+5V)	→	8		57	\longleftrightarrow	D1	
P20		-	9		56	\longleftrightarrow	D2	
P21	Carrier Spacing Motor Phase Signal	-	10		55		D3	Data Bua
P22	Phase Signal	-	11		54	\longleftrightarrow	D4	Data Bus
P23			12		53		D5	
P24	Carrier Spacing Enable	+	13		52	\longleftrightarrow	D6	
P25	Print Hammer Solenoid ON Signal	←	14		51	\longleftrightarrow	D7	
P26	BUZZER		15	5	50		A0	
P27	Not Used		16	4	49		A1	
P50	Carrier Home/Paper Feed Sensor		17	4	48	\longrightarrow	A2	
P51	Pull Up (+5 V)		18	4	47	\longrightarrow	АЗ	Addes
P52	Pull Up (+5 V)	\longrightarrow	19	4	46	\longrightarrow	A4	Address Bus
P53	Not used (+5 V)		20	4	45		A5	
P54	Ribbon Feed Sensor		21	4	14	\longrightarrow	A6	
P55	Not Used (+5V)	\rightarrow	22	4	43	\longrightarrow	A7	
P56	Pull Up (+5 V)	\longrightarrow	23	4	42		Vss	GND
P57	Pull Up (+5 V)		24	4	41		A8	
P60			25	4	40	\longrightarrow	A9	
P61	Daisywheel Motor Phase Signal		26	3	39		A10	
P62	Phase Signal	←	27	3	38		A11	Address Due
P63		←	28	3	37	\longrightarrow	A12	Address Bus
P64	Not used	→	29	3	36		A13	
P65	D	-	30	3	35		A14	
P66	Paper Feed Motor/Ribbon Feed Motor Control Signal	+	31	3	34		A15	
P67		-	32	3	33		Vcc	+5V

4.3.3 Memory Map and Expansion Memory

The CPU (IC1) can manage a 64K byte memory area but this typewriter needs a 160K byte memory area to operate. The memory area consists of the following: a 32K byte operating program area, 8K byte RAM area, 96K byte dictionary area, and an I/O area.

The 64K byte management capability of the CPU is expanded by using two 8K byte windows. The expansion memory area consists of a 96K byte dictionary area which is divided into twelve 8K byte blocks, each having its own address code. When the CPU writes one of these address codes into a BANK register, the CPU can access that memory block through the BANK window by means of the expansion memory decode circuit. For example, when the CPU writes "60" (data) into the BANK 1 register, the CPU can access block 1 in IC6 (128K byte ROM) through the BANK 1 window.

The CPU's remaining 48K byte memory area is divided and assigned for 192 byte internal RAM, 4K byte RAM (IC3) area, interface area, and 32K byte operating program area.

The 32K operating program assignment: If the VECT terminal (IC2 Pin 46) is connected to +5 V, the operating program is located in the external ROM (IC5). If the VECT terminal (IC2 Pin 46) is connected to 0 V, the operating program is located in the bottom of the 128K byte ROM (IC6).

Memory Map (64K byte)							
ADDRESS	Used For						
0000 001F	Internal Register CPU (IC1)						
0020 003F	Not used						
0040 00FF	Internal 192 byte RAM CPU (IC1)						
0100 0BFF	Not used						
0C00 0DFF	Gate Array (IC2) Key Scan Register						
0E00 11FF	Gate Array (IC2) Key Matrix Date Input						
1200 15FF	Gate Array (IC2) Output Port						
1600 19FF	Gate Array (IC2) BANK0 Selection Register						
1A00 1DFF	Gate Array (IC2) BANK1 Selection Register						
1E00 2FFF	Not used						
3000 3FFF	4K byte RAM (IC3)						
4000 5FFF	BANK0 (8K byte) Window						
6000 7FFF	BANK1 (8K byte) Window						
8000 FFFF	*32K byte ROM (IC5/IC6) Operating Program Area						

Expansion Memory Map (96K byte)

IC6 Top 96K byte In 128K byte

CODE	NAME
60 H	Dictionary Area 8K byte
62 H	8K byte
	:
74 H	Dictionary Area 8K byte
76 H	8K byte
	60 H 5 62 H 74 H

*Note Program Area is located in IC5 (32K byte ROM) or bottom 32K byte in IC6 (128K byte ROM). The selection is determined by the status of the VECT pin on the Gate Array IC2 Pin 46.

(IC5) ROM	Installed	Not Installed
Program	IC5	IC6 Bottom 32K byte
VECT (IC2) Pin 46	+5 V	0 V

4.3.4 Gate Array

The Gate Array (IC2) is an original LSI which integrates complex circuits into 1 chip IC. Basically the Gate Array consists of 8 circuits. The key scan register, the key scan decoder and the expansion input port are used to sense the key data and slide switch positions. The expansion memory decoder, BANK 0 register and BANK 1 register are used to access expansion memory area (IC6). The expansion output port is a 5 bit output port which is used for the RAM enable signal and shift lock and TEXT LEDs. The interface decoder is used to access other block circuits in the Gate Array.

Gate Array (IC2) Block Diagram

4.3.5 Memory Select

The Gate Array (IC2) has 4 memory select signal outputs for ROM1, 2 and RAM1, 2. This typewriter uses ROM1, 2 and RAM1. The memory select output signal is generated by the expansion memory decoder and the address generator which decode the address signals. When the CPU selects a memory chip, a low (L) active pulse signal is generated by the decoder then read or write is accomplished.

4.3.6 Gate Array Pin Function

The Gate Array pin functions are shown in the following chart.

NAME	FUNCTION				l		NAME	FUNCTION
KS12	RAM Enable Signal		1		48	←	RSTB	RESET
KS11	NO		2		47	→	P91	Shift Lock LED
KS10	NC	←	3		46	-	VECT	VECTOR
P80			4		45		VDD	+5 V
P81			5		44	\longrightarrow	LCDE	NC
P82	Key Data Input	\rightarrow	6		43		AD15	
P83			7		42	←	AD14	Address Bus
P90B	TEXT LED	-	8		41	←	AD13	
P70		\rightarrow	9		40	\longrightarrow	EA16	
P71			10		39	\longrightarrow	EA17	Expansion Address Bus
P72	Key Data Input		11		38	\longrightarrow	EA15	
P73		\longrightarrow	12	i I	37	-	AD12	Address Bus
KS6		←	13		36		EA14	E-manalan Adalasaa Dua
KS5	-	←	14		35	\longrightarrow	EA13	Expansion Address Bus
KS4		-	15		34	←	AD9	
KS3		←	16		33	←	AD11	Address Bus
KS2	Key Scan Output With Open Drain	←	17		32	←	AD10	
KS1	Diani	←	18		31	→	ROM1	IC6 Chip Select
KS7		←	19		30	\longleftrightarrow	DB0	
KS8		4	20		29	-	DB1	Data Bua
KS9			21		28	← →	DB2	Data Bus
RAM1	IC3 Chip select		22		27	← →	DB3	
ROM2	IC5 Chip Select	←	23		26		RAM2	NC
GND	Ground (0 V)		24		25	←	E	E Clock

4.3.7 Memory Protection Circuit

The circuit prevents writing data to the RAM chips when the Unit is turned on or off and while the memory retention is in the backup mode. When the reset signal (L level) is provided to IC2 (Gate Array), pin 1 (KS12) of IC2 is turned to high impedance from H level. Thus the RAM CE2 terminal becomes L level by R17, and the RAM data can not be accessed by the CPU thus protecting the memory.

When the reset signal becomes H level from L level, the pin 1 of the Gate Array is turned to H level by the software, and the RAM data can be accessed by the CPU.

4.3.8 Memory Backup Circuit

The circuit contains the lithium battery used to back up the text memory and the margin format. In normal condition, the power is supplied to the RAM from the ± 12 V power source to maintain the memory. When the voltage at the cathode of D7 becomes lower than ± 3 V, because of either the power switch or accidental power interruption, the lithium battery starts supplying about ± 3 V 1μ A to the RAM VDD terminals (IC3) through R15 and D5 to maintain the memory.

Voltage Condition: At standby condition

4.4 Keyboard Matrix Circuit

The matrix circuit is composed of a key scan register, a key scan decoder and an 8 bit expansion input port which are located in the Gate Array (IC2), the keyboard and the function switch board. KS1-KS9 are connected to the keyboard switches and KS9-KS11 are connected to the function switches which are composed of 4 slide switches and 4 push switches. When one of the scanning output (KS1-KS9) lines in the scanning decoder is turned from high impedance to Low level, the data of the key which is connected to the selected scanning line, is sent to the CPU through the expansion input port and data bus (D0-D3). The scanning output line (KS1-KS9) which is turned to Low level is determined by data written into the key scan register by the CPU. The CPU then reads the 4 bit key data from P70-P73 (address 0E00) or P80-P83 (address 1000). The CPU can sense all data about every 20 msec. For example, when the CPU reads address 0E00 after writing data "02" to the key scan register and the RETURN key is pushed, the voltages are as shown in the following Schematic.

4.5 Drive Circuit

4.5.1 Print Hammer Drive Circuit

When energized the plunger of the hammer solenoid strikes the print hammer, which in turn impacts a spoke on the daisywheel and prints a character. The amount of impact force is controlled by the software.

Each character on the daisywheel has a different surface area, requiring a different impact for proper print. For example, a capital "W" has a large surface area, requiring a heavier impact to print correctly. A period ".", however, requires much less impact to obtain the same impression. When a "W" is typed it is given a longer impact time than a ".". In this way each character has its own defined impact duration, providing an even impression level.

The print hammer drive circuit mainly consists of Q3, D2 and D8. The CPU (IC1) generates a signal for a specific amount of time. When the P25 of IC1 is turned to H level from L level, Q3 is turned on, activating the hammer solenoid. The current through the hammer solenoid is fixed at about 4 amps.

Schematic Diagram

Voltage Condition: At standby condition

Timing Chart

4.5.2 DC Motor Drive and Sensor Circuit

Paper feed and ribbon feed motors are +12 V bi-directional DC motors, controlled by IC9, which is able to drive two motors at different times. The driving motor (paper feed or ribbon feed) is selected by the signal received from Port 65 and 66 of CPU (IC1) and the direction of motor rotation (index or reverse index) is dependent on the signal received from Port 67 of IC1, as indicated in the truth table.

SW501 (ribbon feed sensor) is used to monitor the position of the drive cam by detecting the position of a magnet mounted on the Gear.

SW502 (paper feed sensor/carrier home sensor) is used to monitor the position of the intermediate gear by a cam mounted on the gear. And also SW502 is used to detect the carrier home position, when the power switch is turned on.

Truth Table

	Input Output					Function		
IN1	IN2	IN3	OUT1	OUT	OUT2	Ribbon Feed Motor Output OUT1, OUT COM	Paper Feed Motor Output OUT2, OUT COM	
0	0	0	0	0	0	Braking	Braking	
0	0	1	0	0	0	Braking	Braking	
0	1	0	OFF	1	0	Open	∩ cw	
0	1	1	OFF	0	1	Open	∩ ccw	
1	0	0	0	1	OFF	∩ cw	Open	
1	0	1	1	0	OFF	∩ ccw	Open	
1	1	0	0	0	0	Braking	Braking	
1	1	1	0	0	0	Braking	Braking	

Timing Chart

Schematic Diagram

4.5.3 Daisywheel Motor and Carrier Spacing Motor Drive Circuit

The daisywheel motor and the carrier spacing motor are four-phase uni-polar PM type stepping motors. The stepping signal of the carrier spacing motor originates at P20, P21, P22 and P23 of IC1. The stepping signal of the daisywheel motor originates at P60, P61, P62 and P63 of IC1. These signals are sent to the transistor array IC8 and IC7.

A step/hold control line, supplied by P24 of IC1 controls the amount of current supplied to the motor while it is stepping or holding. When P24 of IC1 is Low, +VM is supplied through R25, R30 and R31 giving the motor less current while it is holding. When P24 of IC1 is High, +VM is supplied through Q2 ,R30 and R31 giving the motor extra current needed for stepping.

The daisywheel motor drive circuit does not have a voltage control circuit.

Dalsywheel Motor Drive Circuit

Carrier Spacing Motor Drive Circuit

P24 13 L 6 11 R10 R28 R25 P20 S L 6 R28 7 19.5W 2 P20 P21 10 L 11 P15,16 19.5W 3 P22 P23 12 L 31 P22 P23 SPACING MOTOR

Voltage Condition: At standby condition NOTE: VM = 19V At standby condition VM = 13V-16V At printing condition

Timing Chart

4.5.4 Buzzer Circuit

The Buzzer receives a signal (about 2.3 kHz) from Port 26 (Pin 15) of IC1 which turns on or off IC7 (IN Pin 7, OUT Pin 10), driving the buzzer.

The Buzzer is mounted on the Logic Board and sounds under the following circumstances:

- - a) Carrier enters Hot Zone.
 - b) Depressing valid function key.
- - a) Depressing invalid function key.
 - b) Carrier reaches right margin.
- 2) Sound of "C"
 - a) Incorrect spelling is found.

4.7 Explanation of Connectors CN1 Power Switch Connector

Pin No.	Signal Name	Color of Lead	
1	AC16 V	White	For Electric Circuit
2	AC16 V	Red	For Electric Circuit

CN2 Carrier Spacing Motor Connector

Pin No.	Signal Name	Description of Signal	Direction
1	SCR	Carrier Spacing Motor Power Supply	Out
2	CRA	Phase A for Carrier Spacing Motor Drive	Out
3	CRB	Phase B for Carrier Spacing Motor Drive	Out
4	CRA	Phase A for Carrier Spacing Motor Drive	Out
5	CRB	Phase B for Carrier Spacing Motor Drive	Out

CN3 Carrier Connector

Pin No.	Signal Name	Description of Signal	Direction
1	GND	Ground	
2	RBS	Ribbon Sensor	In
3	HSE		Out
4	HSE	Hammer Solenoid Enable	
5	+ 12 V	1401/	Out
6	+ 12 V	+12 V	
7	DSA	Phase A for Daisywheel Motor Drive	Out
8	RBP	Phase (+) of Ribbon Feed Motor	Out
9	DSB	Phase B for Daisywheel Motor Drive	Out
10	RBN	Phase () of Ribbon Feed Motor	Out
11	DSA	Phase A for Daisywheel Motor Drive	Out
12	DSB	Phase B for Daisywheel Motor Drive	Out

CN4 Sensor Connector

Pin No.	Signal Name	Description of Signal	Direction
1	LFN	Phase () of Paper Feed Motor	Out
2	LFP	Phase (+) of Paper Feed Motor	Out
3	GND	Ground	
4	LFS	LF/Carrier Sensor	In

CN5 Keyboard Connector 1

Pin No.	Signal Name	Description of Signal	Direction
1	KS9		
2	KS8	Key Strobe	Out
3	KS7		
4	GND	Ground	
5	KS1		
6	KS2		
7	KS3	Key Strobe	Out
8	KS4	,	Jui
9	KS5		
10	KS6		

CN6 Keyboard Connector 2

Pin No.	Signal Name	Description of Signal	Direction
1	P80		
2	P81		
3	P82	Key Data	In
4	P83		
5	GND	Ground	
6	LED	Shift Lock LED	Out
7	P70		
8	P71		
9	P72	Key Data	in
10	P73		

CN401 Power Transformer Connector

Pin No.	Signal Name	Color of Lead	
1	AC16 V	Red	For Electric Circuit
2	AC16 V	Red	For Electric Circuit

CN402 Power Switch Connector

Pin No.	Signal Name	Color of Lead	
1	AC16 V	White	For Electric Circuit
2	N. C.		Not connected
3	AC16 V	Red	For Electric Circuit

CN500 Carrier Connector

Pin No.	Signal Name	Description of Signal	Direction
1	GND	Ground	ln
2	RBS	Ribbon Sensor	
3	HSE	Hammer Coloneid Enoble	Out
4	HSE	Hammer Solenoid Enable	
5	+12 V	. 40 V	Out
6	+ 12 V	+12 V	
7	DSA	Phase A for Daisywheel Motor Drive	Out
8	RBP	Phase (+) of Ribbon Feed Motor	Out
9	DSB	Phase B for Dalsywheel Motor Drive	Out
10	RBN	Phase (-) of Ribbon Feed Motor	Out
11	DSA	Phase A for Daisywheel Motor Drive	Out
12	DSB	Phase B for Daisywheel Motor Drive	Out

4.8 Component Reference Guide

4.9 Logic Board Schematic

4.10 Flow Chart

5. Parts Catalog and Lubrication Points

NOTES: 1. Important safety notice.

Components identified by \triangle mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

- 2. The S mark is for service standard parts and may differ from production parts.
- 3. The * mark designates parts available during the production period only.

1. Covers

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
1-1	PJKF35T	Upper Cover	1	
1-2	PJKE73Z	AC Cord Cover	1	
1-3	PJKK53W	Front Cover	1	
1-4	PJKE72Z	Paper Stand	1	
1-5	PJKK9016Z	Hard Cover	1	
1-6	PJYMR520M	Bottom Cover Assembly	1	
1-7	XTW3+10S	Screw 3 × 10 mm	4	
1-8	XTW3+14SFZ	Screw 3 × 14 mm	8	
1-9	PJUS94Y	FG Plate	1	
1-10	XTW26+6F	Screw 2.6 × 6 mm	1	
1-11	PJGP171Z	Control Panel	1	1
1-12	PJDS7055Z	FG Spring	1	

2. Chassis and Platen

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
2-1	PJZRR520M	Platen Assembly	1	
2-2	PJBN20Z	Platen Knob (L)	i	
2-3	PJUB65Z	Paper Release Lever		
2-4	PJDJ08261RZ	Platen Bushing (R)	1	
2-5	PJZR2XR250M	Bail Roller Kit		
2-6			2	
	PJZH1XR310M	Paper Pan Assembly	1 1	
2-7	PJDR37Z	Feed Roller	6	
2-8	PJDS7018Z	Spring, Bail Lever	2	
2-9	PJUB64Z	Bail Lever (L)	1	
2-10	PJDF955Z	Bail Shaft	1	
2-11	PJUB61Z	Bail Lever (R)	1	
2-12	PJUL77Z	Paper Release Plate	1	
2-13	PJDS5108Z	Spring, Paper Release	2	
2-14	PJDF552Z	Carrier Shaft	1	
2-15	PJZHR520M	Paper Feed Motor Bracket Assembly	1 1	
2-16	PJVSFR1Z	Reed Switch (SW502)	1 1	
2-17	PJHE028Z	Magnet	1	
2-18	PJHR9109Z	Magnet Holder	1.	
2-10	PJDG50161Z		1	
		Paper Feed Cam Gear	1	1
2-20	PJMC68Z	Magnetic Shutter]	
2-21	PJHR549Z	Home Detecting Lever	1	
2-22	PJDS7016Z	Spring, Home Detecting Lever	1	
2-23	PJDS7015Z	Spring, Detent	1	
2-24	PJDE91Z	Detent, Lever	1	1
2-25	PJWQ3R520M	Paper Feed Motor Assembly	1	
2-26	PJJS437Z	Paper Feed Motor Lead	1	
2-27	PJJQ83Y	Carrier Spacing Motor	1 1	
2-28	PJHG947Z	Mount Rubber, Rear	2	
2-29	PJHG932Z	Mount Rubber, Front	2 2	
2-30	PJZXXR250M	Gear Cup (Jig)	1	
2-31	PJDD3191Z	Drum Gear	1	
2-32	PJHE5040Z	Drum Gear Shaft	1	
2-33	PJDZ25Z	Carrier Cable	1 4	
2-34	PJUL78Z	Cable Hanger		
2-35	PJDR35Z	Tension Pulley		
2-36	PJDY137Z	Tension Pulley Shaft		İ
2-37	PJUL76Z	Tension Arm		
2-38			1	
	PJDS5164Z	Tension Spring]	1
2-39	PJHR551Z	Cable Holder	1	
2-40	PJJE109Z	Flat Cable	1 1	1
2-41	PJHR533Z	Guide, Paper Feed	1	
2-42	PJUP228Y-C	L.F. Sensor Bare PCB	1	
2-43	PJDG50162Z	Geneba Gear	1	
2-44	PJDG50160Z	Primary Gear	1	
2-45	XUC7FY	E-ring	2]
2-46	XTS3+8F	Screw 3×8 mm	1	
2-47	XUC2FY	E-ring	4	
2-48	PJHE5057Z	Screw 3×12 mm	2	1
2-49	XTW3+6L	Screw 3×6 mm	2	
2-50	XTS3+13F	Screw 3×13 mm	1	
2-51	XTN3+6F	Screw 3×6 mm	3	
2-52	XTW3+U6L	Screw 3×6 mm	1	
2-53	XTW3+5L	Screw 3×5 mm	1	1
2-54	XYN3 + C4	Screw 3×4 mm	2	I

3. Carrier

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
3-1	PJZUXR340M	Ribbon Holder Assembly	1	
3-2	PJDS7005Y	Reel Tension Spring	i	
3-3	PJDG5071Z	Correct Reel Gear	2	
3-4	PJDJ08271RZ	Bushing, Carrier (L)	1	
3-5			1 -	
	PJHR548Z	Stop Pawl, Tape Feed	1	
3-6	PJDG5637X	Ribbon Feed Gear	1	
3-7	PJDS5107Z	Spring, Adjust	2	
3-8	PJMD2012Z	Holder, Cam Follower	1	1
3-9	PJDS3150Z	Spring, Cam Follower	1	
3-10	PJDY135Z	Cam Follower	1	
3-11	PJHG711Z	Rubber, Cam Follower	1	+
3-12	PJWQ1XR335M	Daisywheel Motor Assembly	4	
3-13	PJDJ03051FZ	Wheel Shaft Bushing		
3-14	PJHR9103Z	Latch Lever		
3-15	PJDS7019Z			
		Initialize Lever Spring	1	
3-16	PJZG1XR340M	Daisywheel Gear Assembly	1	
3-17	PJDF553Z	Slide Shaft, Carrier	1	
3-18	PJDS9076Z	Clip	1	
3-19	PJMU48Y	Sub Carrier Frame	1	
3-20	PJDS4200Z	Spring	1 1	
3-21	PJFP29Z	Hammer Solenoid	1	
3-22	PJBD17Z	Daisywheel Release Lever	4	
3-23	PJDY132W	Hammer Shaft		
3-24	PJDS7008X			
	P1D57000X	Spring, Hammer		
3-25	PJDE92Z	Hammer		
3-26	PJZCXR340M	Card Holder Assembly	1	
3-27	PJDY134Z	Shaft, Cam Gear	1	
3-28	PJHR9110Z	Feed Pawl, Ribbon	1	
3-29	PJHR9017Y	Slider, Feed Pawl	1	
3-30	PJZG2R440M	Cam Assembly	1	
3-31	PJMU51Z	Front Support	1	
3-32	PJWQ2XR335M	Ribbon Feed Motor Assembly	1	:
3-33	PJMU49Z	Carrier Frame	1 1	
3-34	PJDJ08251RZ	Bushing, Carrier (R)		
3-35	PJHS951Z	Oil Felt		1
3-36	PJDS4042Z	Spring, Lock Lever (L)		
3-37	PJZFXR340M		1	
3-38	PJJS430Z	Lock Bar Assembly		
		Carrier Connector (CN500)	1 1	
3-39	PJHR9102Z	Rear Slider	1	
3-40	PJJE68Z	Sensor Lead	1	
3-41	PJVSFR1Z	Reed Switch (SW501)	1	
3-42	XWC3B	Washer	1	
3-43	PJNW310Z	Plastic Washer	1	
3-44	PJDS4043Z	Spring, Lock Lever (R)	1	
3-45	PJUP228Y-A	Carrier Bare PCB	1 1	
3-46	PJUP228Y-B	Ribbon Sensor Bare PCB	i	
3-50	XUCR4FY	E-ring	1	
3-51	XUC2FY	E-ring	4	
3-52	XTW3+U12L	Screw 3×12 mm	1 '	
3-53	XTN3+6F		1	
		Screw 3×6 mm	4	
3-54	XYN3+C4	Screw 3×4 mm	2	
3-55	XTN26 + 12F	Screw 2.6×12 mm	1	
3-56	XTN26 + 8G	Screw 2.6×8 mm	1	
3-57	XTN2 + 4F	Screw 2×4 mm	1	
3-58	XWG25	Washer	1 1	

4. Keyboard

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
4-1	PJSHX216Z	Keyboard Complete	1	
4-2	PJUL54Z	Key Top Support (S)	1]
4-3	PJUL52Z	Key Top Support (L)	1	
4-4	PJUL53Z	Key Top Support (M)	1	
4-5	PJHG953Z	Rubber, Contact	1	
4-6	PJVDU21VLD39	Keyboard LED	1	
4-7	PJHR565Z	Keyboard Sheet	1	
4-8	PJUP250Z	Keyboard FPC	1	
4-9	PJMD2013Z	Keyboard Frame	1	
4-10	PJJE104Z	Lead Wire (3P)	1	
4-11	LN242RP	LED (D401,D402)	2	
4-12	PJUP247Z	LED Bare PCB	1	
4-13	PJDS5124Z	Key Spring	58	
4-14	PJDS5171Z	Space Key Spring	2	
4-15	PJDS5144Z	Return Key Spring	1	

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
4-25	PJBZ6078Y	Key Top, MAR REL	1	
4-26	PJBZ6079Y	Key Top, 1!	1	
4-27	PJBZ6080Y	Key Top, 2 @	1	
4-28	PJBZ6081Y	Key Top, 3 #	1	
4-29	PJBZ6082Y	Key Top, 4 \$	1	
4-30	PJBZ6083Y	Key Top, 5 %	1	
4-31	PJBZ6084Y	Key Top, 6 ¢	1	
4-32	PJBZ6085Y	Key Top, 7 &	1	
4-33	PJBZ6086Y	Key Top, 8 *		
4-34	PJBZ6087Y	Key Top, 9 (1 1	
4-35	PJBZ6088Y	Key Top, 0)		
4-36	PJBZ6089Y	Key Top, — –		
4-37	PJBZ6090Y	Key Top, = +	1	
4-38	PJBZ6091Y			
		Key Top, BACK SPACE		
4-39	PJBZ6772Z	Key Top, TEXT PRINT	1	
4-40	PJBZ6645Y-1	Key Top, TAB D TAB	1	
4-41	PJBZ9047Y	Key Top, Q	1	
4-42	PJBZ6474Y-1	Key Top, W XX XX	1	
4 -4 3	PJBZ9049Y	Key Top, E	1	
4-44	PJBZ6646Y-1	Key Top, P RMF	1	
4 -4 5	PJBZ9053Y	Key Top, T	1	
4-46	PJBZ9054Y	Key Top, Y	1	
4-47	PJBZ6475Y-1	Key Top, U XX XX	1	
4-48	PJBZ6647Y-1	Key Top, I P INDENT	l i	
4-49	PJBZ9060Y	Key Top, O	i	
4-50	PJBZ6648Y-1	Key Top, P STOP		
4-51	PJBZ6113Y	Key Top, 1/2 1/4 β ç		
4-52	PJBZ6114Y	Key Top, £ £ " ^		
4-53	PJBZ6649Y-1	Key Top, X TEXT CLR		
4-54	PJBZ6694Z-1	Key Top, LOCK CAPS	1 1	
4-55	PJBZ9072Y	Key Top, A		
4-56		Key Top, A		
	PJBZ9073Y	Key Top, S	1 1	
4-57	PJBZ9075Y	Key Top, D	1	
4-58	PJBZ9076Y	Key Top, F	1	
4-59	PJBZ9077Y	Key Top, G	1	
4-60	PJBZ6654Y-1	Key Top, H HALF SP	1	
4-61	PJBZ6655Y-1	Key Top, J MICRO SP	1	
4-62	PJBZ9082Y	Key Top, K	1	
4-63	PJBZ9083Y	Key Top, L	1	1
4-64	PJBZ9084Y	Key Top, ; :	1	
4-65	PJBZ6099Y	Key Top, ' "	1	
4-66	PJBZ7775Y	Key Top, RETURN	1	
4-67	PJBZ7556Y	Key Top, SHIFT	1	
4-68	PJBZ9094Y	Key Top, Z	1	
4-69	PJBZ9096Y	Key Top, X	1	
4-70	PJBZ6658Y-1	Key Top, C CENTER	1	
4-71	PJBZ9099Y	Key Top, V	i	
4-72	PJBZ6659Y-1	Key Top, B BOLD	1	
4-73	PJBZ9102Y	Key Top, N	1 1	
4-74	PJBZ9103Y	Key Top, M		
4-75	PJBZ6101Y	Key Top, , , i		
4-76	PJBZ6102Y	Key Top, , , ; Key Top, ¿		
4-77	PJBZ6103Y	Key Top, / ? ~	1	
4-77 4-78	PJBZ7560Y	Key Top, 7 ? Key Top, SHIFT		1
1-76 1-79			1	
	PJBZ6773Z	Key Top, TAB SET TAB CLR		-
1-80 1-84	PJBZ7563Y-3	Key Top, CODE	1	
1-81	PJBZ6774Z	Key Top, RELOC EXP	1	
1-82	PJBZ7565Y	Key Top, SPACE	1	
1-83	PJBZ6775Z	Key Top, QUICK ERASE LINE	1	
1-84	PJBZ6662Y-1	Key Top, INDEX REV. INDEX	1	

5. Power Supply

* To the Main Logic Board

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
5-1	PJJA121Z	AC Cord (120V)	1	IA.
5-2	EST2011B	Power Switch	1	
5-3	PJJE639Z	Power Switch Lead	1	
5-4	PJLT5U9	Power Transformer (120V)	1	ı.A.
5-5	PJJN8Z	ES Core	1	
5-6	PJJT68Z	Closed End Connector	2	\triangle
5-7	XTW3 + 12S	Screw 3×12 mm	2	
5-8	PJJP43Z	Connector, Power Transformer (CN401)	1	
5-9	PJUP289V-B	Power Switch Bare PCB	1	
5-10	PJJP52Z	Connector, Power Switch (CN402)	1	

6. Main Logic Board

(Parts side view)

Note: JM4, JM5, JM7 and JM10 are installed.

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
	Integra	ted Circuit, Transistors and Diodes		
IC1	PJVIHD63B3XP	IC	1	
IC2	PJVIM7032H	IC	1	
IC3	PJVIM6364MA	IC RAM	1	
IC5	PJWI1R520M	IC ROM	1	Type A
IC6	PJWI2R520M	IC ROM	1	Type A
IC6	PJWIR520M	IC ROM	1	Type B
IC7	PJVIBA12003	IC	1	,
IC8	PJVIM54532P	ic	1	
IC9	PJVITA7288P	ic	li	
IC10	PJVIL78LR05C	IC	1	
		IC	1	
IC11	PJVIM5236L			
D2	MA2240LF	Diode (Zener)	1	
D3,4	PJVD05AZ24	Diode (Zener)	2	
D5-7	PJVD1S2076	Diode	3	
D8	PJVD1N4003	Diode	1	
D9-12	PJVDRL203F	Diode	4	
D16	PJVD05AZ12	Diode (Zener)	1	
Q1	2SA1470S	Transistor	1	
Q2	2SB909MQR	Transistor	1	İ
Q3	2SK1059	Transistor	l i	
Qo	2011009	Tansistor		
		Resistors		
R1-5	ERD25FJ101	100 1/4W Carbon	5	S
R8	ERD25FJ221	220 1/4W Carbon	1	S
R9	ERD25FJ331	330 1/4W Carbon	1	S
R10,11	ERD25FJ561	560 1/4W Carbon	2	S
R12-14	ERD25FJ152	1.5K 1/4W Carbon	3	S S S S S
R15	ERD25FJ122	1.2K 1/4W Carbon	1	S
			1	
R16	ERO25TKD1001			s
R17,32	ERD25FJ222	2.2K 1/4W Carbon	2	3
R18	ERO25TKD8871	8.87K 1/4W Metal	1	
R19,36	ERD25FJ472	4.7K 1/4W Carbon	2	S
R20,22-24	ERD25FJ103	10K 1/4W Carbon	4	S
R25	ERG2SJ121S	120 2W Metal	1	
R26	ERD25FJ153	15K 1/4W Carbon	1	S
R28,33	ERD25FJ223	22K 1/4W Carbon	2	S
R30,31	ERX2SJ8R2S	8.2 2W Metal	2	1
R34,35	ERD25FJ102	1K 1/4W Carbon	2	S
RA1	EXBP88472K	Resistor Array (4.7K×8)	1	
RA2	EXBP88103K	Resistor Array (10K×8)	1	
<u> </u>		Capacitors		
C4	ECEA4LI IDoo	0.33 50V Electrolytic	1	
C1	ECEA1HUR33			1
C2	ECEA0JU102	1000 6.3V Electrolytic	1	
C3	ECKD1H102KB	1000P 50V Ceramic	1	SSS
C4-8,12	ECKD1H103ZF	0.01 50V Ceramic	6	S
C13,14	ECFD1E104ZF	0.1 25V Semi-Conductor	2	S
C16	ECEA1CSS472	4700 16V Electrolytic	1	
C17,18	ECEA1ESS332	3300 25V Electrolytic	2	
	ECFD1E104ZF	0.1 25V Semi-Conductor	2	S

* This model has two types of ROM combinations. The following chart demonstrates combinations of Type A and Type B.

	IC5	IC6	JM1
Type A	PJWI1R520M	PJWI2R520M	None
Type B	None	PJWIR520M	Yes

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks		
Other Parts						
BAT	BR2325-1HC	Lithium Battery	1			
BUZ	EFB-RD22C41	Buzzer	1			
CN1	PJJP195Z	Connector, Power Switch	1			
CN2	PJJP95Z	Connector, SP. Motor	1			
CN3	PJJS419Z	Connector, Carrier	1			
CN4	PJJP123Z	Connector, LF. Motor	1			
CN5,6	PJJS227Z	Connector, Keyboard	2			
F1	XBA1C30NU100	Fuse 125V 3A	1 1	<u> </u>		
GP1,2	PJJP283Z	Ground Wire Pin	2			
L2	PJLQ7Z	ES Bead	1			
PB1	PJWPR520M	Main PCB Complete	1	*		
X1	PJVCST6.00MG	X'Tal	1			
6-1	XTB3+8J	Screw 3×8 mm (for Transistor)	1			
6-2	XTW3 + 8S	Screw 3×8 mm (for Heat Sink)	2			
6-3	XWC3B	Washer	2			
6-4	PJJT192Z	Ground Wire (GP1, Long)	1			
6-5	PJJT193Z	Ground Wire (GP2, Short)	1			

CAUTION:

The lithium battery is a critical component (type No. BR2325-1HC). Please observe proper polarity and exact location when replacing it.

7. Packing Materials

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
P1	PJQX6029Z	Instruction Book	1	
P2	PJPG744Z	Carton Box	1 1	
P3	PJPN292X	Pad (L)	1	
P4	PJPN293Z	Pad (R)	1	
P5	PJPE193Z	Plastic Bag	1	