Connor Johnson

CS 1675

Assignment 7

1. The restricted tree appears to be better because it has a lower error on the test set. We should always try to backprune the tree because it is possible that the tree is overfit and will perform poorly on test data.

MinLeafSize = 2

NumSplits/ParentSize	5	10	20
5	0.2271	0.2271	0.2314
15	0.2358	0.2795	0.2314
25	0.2576	0.2576	0.2404
50	0.2664	0.2838	0.2620

MinLeafSize = 4

NumSplits/ParentSize	5	10	20
5	0.2314	0.2314	0.2314
15	0.2795	0.2795	0.2314
25	0.2445	0.2445	0.2489
50	0.2576	0.2489	0.2358

The tests show that the error is lowered when the number of splits and parent size is lower. Changing the minimum leaf size slightly raised the error, but also cause the error to vary less among changing the parameters. Changing the splitcriterion variable never had any effect on the error on the test set.

2.
$$P(A|B,C) = \frac{P(A,B,C)}{P(B,C)} \qquad P(J=F|A=F) P(N=F|B=F,E=F) \times P(A|B,C) P(C) = \frac{P(A|B,C)P(C)}{P(B|C)P(C)} \qquad b) 0.999 \times 0.998 \times 0.999 \times 0.9$$