ALC473 – Álgebra Linear Computacional

Primeiro Período - 2023

Prof. Sagrilo

20/04/2023

Conforme reunião hoje com os representantes da Turma: Amanda, Nick, Rayssa e Mateus, a seguir seguem os detalhes da primeira nota/avaliação da disciplina.

Nota P1

A nota P1 (primeira avaliação) será composta de duas parcelas P1 = 0.70P1A + 0.30P1B. P1A – é a nota obtida pelo aluno na prova escrita a ser realizada no dia **09/05/2023** P1B – é a nota obtida pelo aluno nos trabalhos de implementação computacional (descritos abaixo).

Trabalhos Computacionais

Nesta primeira etapa da disciplina serão enviadas aos alunos 03 listas com atividades de implementação computacional (duas já foram disponibilizadas). Para a composição da P1B os alunos deverão entregar, no mínimo, 02 relatórios/trabalhos (contendo, no mínimo, Introdução, Listagem do código, Exemplo resolvido pelo código) referentes à duas destas atividades de implementação computacional. Dentre estes dois trabalhos, obrigatoriamente um deles deverá contemplar todas as atividades computacionais relacionadas à solução de sistemas de lineares (reproduzida mais adiante como Task_01). O outro trabalho é de livre escolha entre a Task_02 e Task_03 (a ser disponibilizada).

O "exemplo resolvido", tanto para a Task_01 quanto para a Task_02, deverá ser com a matriz **A** e os vetores **B'**s contidos em arquivos anexados a este documento.

Entrega: até a hora do início da prova.

TASK 01

Parte 1

Prepare um programa/código computacional (na linguagem de sua preferência) para efetuar a solução de um sistema linear de equações **AX** = **B** onde o usuário possa escolher entre os métodos:

- 1. Decomposição LU (ICOD =1); (não há necessidade de programar Pivotamento)
- 2. Decomposição de Cholesky (ICOD =2)

Faça este programa de forma que possam ser resolvidos vários vetores **B** sem que haja necessidade de decomposição da matriz **A** para cada novo vetor independente.

Parte 2

De modo semelhante ao exercício anterior, prepare um código computacional considerando os seguintes métodos para solução de um sistema de equações lineares:

- 3. Procedimento iterativo Jacobi (ICOD =3) e
- 4. Procedimento iterativo Gauss-Seidel (ICOD =4).

Observações (para as duas partes):

- 1. A matriz **A** e o(s) vetor(es) **B** deverão ser lidos a partir de arquivos de dados no formato (ASCII) (*.txt;*.dat)
- Sugestão: não use rotinas prontas disponíveis na literatura/internet. Desenvolva as suas próprias rotinas para que esta atividade de programação se torne um aprendizado em métodos numéricos;
- Tente desenvolver os códigos visando um armazenamento mínimo de dados na memória do computador (por exemplo, não deve ser criada uma nova matriz similar à matriz A para a solução do sistema e equações);
- 4. Programe a emissão de "warnings" para possíveis erros de uso dos programas;
- 5. Além do(s) vetor(es) solução, como saída dos códigos, informe dados que sejam relevantes para o usuário;

TASK 02

Prepare um programa computacional (na linguagem de sua preferência) para calcular os autovalores e auto-vetores (possíveis) de uma matriz **A** pelos métodos:

- 1. Método da Potência (ICOD =1);
- 2. Método de Jacobi (ICOD =2)

Além disto, quando for requisitado pelo usuário e a técnica de solução permitir (caso contrário deve ser emitido um "warning"), que também seja efetuado o cálculo o determinante de **A.**

Obs.: A matriz A deverá ser lida de um arquivo ASCII (.txt ou .dat)