Лабораторная работа 2.2.1.

Герасименко Д.В.

1 курс ФРКТ, группа Б01-104

Аннотация

Тема:

Получение и измерение вакуума

Цели работы:

- 1) Измерение объёмов форвакуумной и высоковакуумной частей установки
- 2) Достижение высокого вакуума в $\sim 10^{-5}$
- 3) Определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума

Необходимое оборудование:

Вакуумная установка с манометрами: масляными, термопарными и ионизационными

Теория

По степени разрежения вакуумные установки принято делить на три класса: низковакуумные — до 10^{-2} $^{\circ}$ 10^3 торр; высоковакуумные — 10^{-4} — 10^{-7} торр; установки сверхвысокого вакуума — 10^{-8} — 10^{-11} торр.

Метод и экпериментальная установка

Метод

Метод откачки состоит из двух фаз: фазы с форвакуумным насосом (откачивание до $\sim 10^{-2}$ торр) и фазы совместного откачивания форвакуумного насоса и диффузионного (до $\sim 10^{-5}$ торр).

Экспериментальная установка

Плотности веществ: масло $\rho_m=940$ кг· см $^{-3}$; ртуть $\rho_{hg}=13550$ кг· м $^{-3}$ Параметры трубки: $d_{kap}=0,8$ см; $L=(10,8\pm0,1)$ см

Схема экспериментальной установки выглядит следующим образом:

Рис. 1. Вакуумная установка.

Форвакуумный насос

Действие насоса ясно из изображенных на рис. 2 последовательных положений пластин при вращении ротора по часовой стрелке. В положении «а» газ из откачиваемого объема поступает в пространство между пластиной «А» и линией соприкосновения корпуса и рото- ра. По мере вращения это пространство увеличивается (рис. 2 б), пока вход в него не перекроет другая пластина «Б» (рис. 2 в). После того как пластина «А» пройдет выходное отверстие и линию соприкосно- вения (рис. 2 г), лопасть «Б» будет сжимать следующую порцию газа и вытеснять его через клапан в атмосферу.

Рис. 2. Схема работы форвакуумного насоса.

Диффузионный насос

Откачивающее действие диффузионного насоса состоит в следующем: попавшие в струю молекулы газа увлекаются ею и уже не возвращаются назад; на их месте образуется пустота, которая немедленно заполняется следующими порциями газа, увеличивая степень разрежения газа в окрестности струи.

Пары масла выходят за счет подогрева масла спиралью, по которой пущен переменный ток. Диффузионный насос, используемый в нашей установке (см. рис. 1), имеет две ступени и соответственно два сопла. Одно сопло вертикальное (первая ступень), второе сопло горизонтальное (вторая ступень). Легколетучие фракции масла,

испаряясь, поступают в первую ступень, обогащая ее легколетучей фракцией масла. По этой причине плотность струи первой ступени выше и эта ступень начинает откачивать при более высоком давлении в форвакуумной части установки. Вторая ступень обогощается малолетучими фракциями. Плотность струи второй ступени меньше, но меньше и давление насыщенных паров масла в этой ступени. Соответственно в откачиваемый объем поступает меньше паров масла и его удается откачать до более высокого вакуума, чем если бы мы работали только с одной ступенью.

Термопарный манометр

Чувствительным элементом манометра является платино-платинородиевая термопара, спаянная с никелевой нитью накала и заключенная в стеклянный баллон. По нити накала НН пропускается ток постоянной величины.

рис.3. Схема устройства термопарного манометра

Для установки тока служит потенциометр R — «Рег. тока накала», расположенный па передней панели вакуумметра. Термопара ТТ присоединяется к милливольтметру1, показания которого определяются температурой нити накала и зависят от отдачи тепла в окружающее пространство.

Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвек- тивными потоками газа внутри лампы и теплоизлучением нити (инфракрасное тепловое излучение)

Ионизационный манометр

Схема ионизационного манометра изображена на рисунке 4. Он представляет собой трех-

электродную лампу. Электроны испускаются накаленным катодом и увлекаются электрическим полем к аноду, имеющему вид редкой спирали. Проскакивая за ее витки, электроны замедляются полем коллектора и возвращаются к катоду, а от него вновь увлекаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и кол- лектором. На своем пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притягиваются полем коллектора и определяют его ток.

Ионный ток в цепи коллектора пропорционален плотности газа и поэтому может служить мерой давления.

Накаленный катод ионизационного манометра перегорает, если давление в системе превышает $1 \cdot 103$ торр. Поэтому включать иони- зационный манометр можно, только убедившись по термопарному манометру, что давление в системе не превышает 103 торр

puc.3. Схема устройства термопарного манометра

Процесс откачки

Производиттельность насоса определяется скоростью откачки /. В нашем случае основное уравнение процесса откачки принимает вид:

$$-VdP = (PW - Q_n - Q_d - Q_t) dt (1)$$

При достижении предельного вакуума реализуется случай:

$$\frac{dP}{dt} = 0\tag{2}$$

Из этого находим:

$$W = \frac{\sum Q_i}{P} \tag{3}$$

Проинтегрировав уравнение (1) получим экспоненциальную зависимость давления откачки от времени, с помощью которой найдем производтительеность насоса:

$$P = P_0 e^{-\frac{W}{V}t} + P_{pr} \tag{4}$$

Закон сложения пропускных способностей аналогичен закону сложения проводимостейЗ. При последовательном соединении элементов:

$$\frac{1}{W} = \frac{1}{W_n} + \sum \frac{1}{C_i} \tag{5}$$

где C_i - пропускные способноси частей системы, а W_n - скорость собственной откачки насоса.

Течение через трубу

Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}} \cdot \frac{P_2 - P_1}{l} \tag{6}$$

Тогда пропускная способность трубы:

$$C = (dVdt) = \frac{4r^3}{3L} \sqrt{\frac{2\pi RT}{\mu}}$$
 (7)

Выполнение и обработка результатов

Определение форвакуумной и высоковакуумной частей установки

- 1) Откроем все краны установки и впустим атмосферный воздух через краны ${\rm K}_1$ и ${\rm K}_2.$
- 2) Закроем объём воздуха между кранами K_5 и K_6 . Включим форвакуумный насос и после установления давления $\sim 10^{-2}$ торр отсоединим высоковакуумную часть от установки, перекрыв кран 3.
- 3) Закроем кран 4 и откроем кран 5. Измерим давление ранее запертого воздуха с помощью маслянистого манометра. Найдем объем форвакуумной части установки V_{fv} .
- 4) Проведем те же манипуляции, не закрывая доступ воздуха к высоковакуной части установки. Найдя общий объёем установки и зная объём форвакуумной части найдем их разность и получим объём высоковакуумной части V_{vv} .

Формула для вычисления объема частей установки:

$$P_0 \cdot V_0 = P_{fv} \cdot V_{fv}; \ P_{fv} = \frac{\rho_{oil}}{\rho_{hg}} \cdot \rho_{hg} \ g \ \Delta h_{fv}$$
 (8)

Аналогично для всего объема установки. Проведем измерения получим Начальное давление: $P_0 = 756$;

Начальный объём: $V_0 = (50, 1 \pm 0, 1)$ см³

Достигнутое при откачивании давление: $P_{vac} = 2 \cdot 10^{-2}$ мм рт ст;

Перепад уровней масла в форвакуумной части: $\Delta h_{fv} = (268 \pm 1)$ мм

Установившееся в форвакуумной части давление: $P_{fv}=(18,4\pm0,2)$ торр = $(2432 \pm 5) \, \Pi a$

Объем форвакуумной части сосуда: $V_{fv} = (2058 \pm 5)$ см ³

Перепад уровней масла сосуде: $\Delta h_{fv} = (172 \pm 1)$ мм

Установившееся давление: $P_{sum} = (11, 9 \pm 0, 2)$ торр $= (1578 \pm 5)$ Па

Суммарный объём частей сосуда: $V_{sum}=(3182\pm 5)$ см 3 Объемы высоковакуумной части сосуда: $V_{vv}=(1124\pm 5)$ см 3

Получение высокого вакуума и измерение скорости откачки

- 1) Откачаем установку форвакуумным насосом и включим термопары. Нагреем масло до кипения
- 2) Не выключая форвакуумного насоса, включим диффузионный насос при давлении $\sim 10^{-2}$ торр.
- 3) Включим ионизационный манометр и запишем предельное достигнутое давление.
- 4) Зафиксируем зависимость давления от времени откачки и занесем данные в таблицы

Таблица 2. Измерение давления при улучшении вакуума														
t, c	20	25	30	35	40		50	55	60	65	70	80	90	95
Р, 10^-5 торр	24	28	33	37	41	45	48	52	55	60	63	71	78	82
ln((P - Ppr)/Po)	14,96498	14,81083	14,64652	14,53211	14,42946	14,33637	14,27183	14,19179	14,1357	14,04868	13,99989	13,88035	13,78632	13,73631
t, c	20	25	30	35	40	45	50	55	60	70	80	90	100	105
Р, 10^-5 торр	18	22	25	29	33	37	40	44	47	55	62	69	75	80
ln((P - Ppr)/Po)	15,25266	15,05199	14,92415	14,77573	14,64652	14,53211	14,45415	14,35884	14,29288	14,1357	14,01589	13,90892	13,82554	13,761
t, c	25	30	35	40	45	50	55	60	65	70	80	90	100	
Р, 10^-5 торр	25	29	33	36	41	44	48	52	56	59	67	74	82	
ln((P - Ppr)/Po)	14,92415	14,77573	14,64652	14,55951	14,42946	14,35884	14,27183	14,19179	14,11768	14,06549	13,93834	13,83896	13,73631	

Таблица 1. Изменение давления при ухудшении вакуума														
t, c	2	3	4	5	6	7	8	9	10	12	14	16	20	25
Р, 10^-5 торр	76	71	60	47	37	30	24	20	16	13	10	9	7	6
ln((P - Ppr)/Po)	13,8123	13,88035	14,04868	14,29288	14,53211	14,74183	14,96498	15,1473	15,37044	15,57808	15,84045	15,94581	16,19713	16,35128
t, c	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Р, 10^-5 торр	76	68	56	43	34	27	22	18	16	13	12	10	9	8
ln((P - Ppr)/Po)	13,8123	13,92352	14,11768	14,38183	14,61667	14,84719	15,05199	15,25266	15,37044	15,57808	15,65813	15,84045	15,94581	16,06359
t, c	1	2	3	4	5	6	7	8	9	10	12	14	15	
Р, 10^-5 торр	79	75	71	60	47	37	30	24	20	16	13	11	10	
ln((P - Ppr)/Po)	13,77358	13,82554	13,88035	14,04868	14,29288	14,53211	14,74183	14,96498	15,1473	15,37044	15,57808	15,74514	15,84045	

Обработаем данные графиков по методу наименьших квадратов и найдем значение производительности системы W. Результаты занесем в таблицу.

$P_{pr}, 10^{-5} \text{ ropp}$	$k_{down}, 10^{-5} \cdot c^{-1}$	$k_{up}, 10^{-6} \cdot c^{-1}$
6,3	$0,12 \pm 0,01$	$-(0.15\pm0,01)$
5,8	$0,17 \pm 0,01$	$-(0,17\pm0,01)$
6,2	$0,16 \pm 0,01$	$-(0,15\pm0,01)$

Табл. 3. Угловые коэффициенты прямых зависимостей

Давление, 10^{-5} торр	$\frac{W}{V_{vv}}, c^{-1}$	W, л/с	σ_W , л/с
6,3	$0,12 \pm 0,01$	0,135	0,011
5,8	$0,17 \pm 0,01$	0,191	0,016
6,2	$0,16 \pm 0,01$	0,179	0,015

Табл. 4. Производительность откачки при ухудшении вакуума

Давление, 10 ⁻⁵ торр	$\frac{W}{V_{vv}}$, 10^{-1} c ⁻¹	W, л/с	σ_W , л/с
6,3	$0,15 \pm 0,01$	0,017	0,001
5,8	$0,17 \pm 0,01$	0,019	0,002
6,2	$0,15 \pm 0,01$	0,017	0,001

Табл. 5. Производительность откачки при улучшении вакуума

Оценка величины потока, поступающего из насоса назад в откачиваемую сиситему

При закрытии крана 3 единственные потоки в высоковакуумной части - потоки десорбции с поверхности и через течи (Q_d и Q_t соответственно). Поэтому из основного уравнения, описывающего процесс откачки получим:

$$V_{vv} dP = (Q_d + Q_t) dt (9)$$

Оценка производительности насоса с помощью искусственной течи

Зафиксируем предельное значение давления, после чего откроем кран 6, введя таким образом искусственную течь в систему. Измерим установившееся давление в форвакуумной части установки. Данные о капилярной трубке:

$$d_{kap} = 0.8 \text{ cm} ; \quad L = (10.8 \pm 0.1) \text{ cm}$$

Установившееся и предельное давления:

$$P_{pr} = (5, 1 \pm 0, 1) \cdot 10^{-5} \text{ ropp} ; \quad P^{'} = (1, 1 \pm 0, 1) \cdot 10^{-4} \text{ ropp}$$

Тогда количество газа, протекающего через капилляр:

$$\frac{d(PV)}{dt} = \frac{4}{3} r^3 \sqrt{\frac{2\pi R T}{\mu}} \cdot \frac{P'}{L} \tag{10}$$

При закрытом и открытом кране 6 реализуются следующее пропускное распределение:

$$P_{pr} W = Q_1; \ P' W = Q_1 + \frac{d(PV)}{dt}$$
 (11)

Исключая натекание Q_1 , получим значение производительности:

$$W = \frac{P'}{P' - P_{pr}} \cdot \frac{4r^3}{3L} \sqrt{\frac{2\pi R T}{\mu}} \approx \frac{4r^3}{3L} \sqrt{\frac{2\pi R T}{\mu}} = 0,018 \ l/c$$
 (12)

Соответственно погрешность которой можно оценить как: $\varepsilon_W = \sqrt{\varepsilon_L^2 + 2 \cdot \varepsilon_P} = 14\%$ Откуда получаем значение производительности:

$$W = (0.018 \pm 0.003) \text{ } \pi/\text{c}$$

Что входит в интервал значений производительности, полученных путем исследования улучшения вакуума.

Вывод и обсуждение результатов работы

 $1)\ {
m C}$ достаточной точностью были определены объёмы всех частей вакуумной установки:

$$V_{fv} = (2058 \pm 5) \ {
m cm}^{\ 3} \ ; \ V_{vv} = (1124 \pm 5) \ {
m cm}^{\ 3}$$

- 2) Было найдено значение производительности насоса 2мя способами: с помощью установления искусственной течи и по изменению состояния вакуума. Значения, полученные обоими способам совпадают в пределах погрешности друг друга.
 - 3) Подтвержден линейный характер зависимостей ln(P)(t).
- 4) Наибольшая достигнутая погрешность составляет 14%, что для данной лабораторной работы можно считать успехом.