MA 450: Honors Abstract Algebra Notes

Lecturer: Linquan Ma Transcribed by Josh Park

Fall 2024

Contents

12 Introduction to Rings	2
12.1 Motivation & Definition	2
12.2 Examples of Rings	9
12.3 Properties of Rings	:
12.4 Subrings	4
13 Integral Domains	4
13.1 Definition and Examples	4
13.2 Fields	-
14 Ideals and Factor Rings	6
14.1 Ideals	6
14.2 Factor Rings	7
14.3 Prime Ideals and Maximal Ideals	Ć
15 Ring Homomorphisms	11
15.1 Definition and Examples	11
15.2 Properties of Ring Homomorphisms	

Lecture 32 (11/8)

12 Introduction to Rings

12.1 Motivation & Definition

Definition 12.1 (Ring). A <u>ring</u> R is a set with two binary operations: a + b and $a \cdot b = ab$ such that for all $a, b, c \in R$,

- 1. a + b = b + a
- 2. (a+b)+c=a+(b+c)
- 3. \exists an additive identity 0, a + 0 = a
- 4. \exists an element $-a \in R$ such that a + (-a) = 0
- 5. (ab)c = a(bc)
- $6. \ a(b+c) = ab + ac$

$$(b+c)a = ba + ca$$

So a ring is an abelian group under addition, and also has an associative multiplication that is left and right distributive over addition.

- The multiplication need not be commutative. When it is, we say the ring is commutative.
- A unity (or identity): a nonzero element that is an identity under multiplication.
- <u>unit</u>: a nonzero element of a commutative ring with identity that has a multiplicative inverse.
- In R, $a \mid b$ if $\exists c \in R$ such that b = ac.
- $n \in \mathbb{Z}_{>0}$, $na = \underbrace{a + a + \dots + a}_{\text{n times}}$

12.2 Examples of Rings

Example 12.1. $(\mathbb{Z}, +\times)$ is a commutative ring with identity and units $=\pm 1$

Example 12.2. $(\mathbb{Z}_n, +\times)$ is a commutative ring with identity and units = U(n)

Example 12.3. $(\mathbb{Z}[x], +\times)$ is a commutative ring with identity

Example 12.4. $(\mathbb{M}_2[\mathbb{Z}], +\times)$ is a non-commutative ring with identity

Example 12.5. $(2\mathbb{Z} = \{\text{even integers}\}, +\times)$ is a comm ring without identity

Example 12.6. ({continuous functions on $\mathbb{R}, +\times$ }) is a comm ring with identity f(x) = 1

Example 12.7. ({continuous functions on \mathbb{R} whose graphs pass through $(1, 0), +\times$ }) is a comm ring without identity

Note f(1) = 0, g(1) = 0, f + g, fg

Example 12.8 (Direct sum). Let R_1, R_2, \ldots, R_n be rings. Construct

$$R_1 \oplus R_2 \oplus \cdots \oplus R_n = \{(r_1, r_2, \dots, r_n) \mid r_i \in R_i\}$$

with component-wise addition and multiplication. This ring is called the <u>direct sum</u> of R_1, R_2, \ldots, R_n .

12.3 Properties of Rings

Theorem 12.1 (Rules of Multiplication). For all $a, b, c \in R$,

- 1. $a \cdot 0 = 0 \cdot a = 0$
- 2. a(-b) = (-a)b = -(ab)
- 3. (-a)(-b) = ab
- $4. \ a(b-c) = ab ac$

$$(b-c)a = ba - ca$$

- 5. (-1)a = -a
- 6. (-1)(-1) = 1

Note. Properties 5 and 6 only hold if R has an identity 1

Proof of property 1. Clearly 0+a0=a0=a(0+0)=a0+a0, so by cancellation 0=a0 and similarly 0a=0

Theorem 12.2 (Uniqueness of the Unity and Inverses). If a ring R has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.

Proof. 1, 1' \implies 1=1·1' = 1'

 $a \quad ab = ba = 1$

ac = ca = 1

 $c = c \cdot 1 = c(ab) = (ca)b = 1 \cdot b = b$

Warning. In general, $ab = ac \implies b = c$ (cancellation rule does not hold in general for multiplication).

Example 12.9. In \mathbb{Z}_6 , notice $2 \cdot 3 = 0 = 3 \cdot 0$ but $2 \neq 0$

12.4 Subrings

Definition 12.2 (Subring). A subset $S \subseteq R$ is a subring of R if S is itself a ring with the operations of R

Theorem 12.3 (Subring Test). A nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication.

i.e. if $a, b \in S$ then $a - b \in S$ and $ab \in S$

Example 12.10 (Trivial Subrings). $\{0\}$ and R will always be subrings of any ring R.

Example 12.11. $\{0,2,4\} \subseteq \mathbb{Z}_6$ is a subring

1 is the identity in \mathbb{Z}_6

4 is the identity in $\{0, 2, 4\}$ $(0 \cdot 4 = 0, 2 \cdot 4 = 2, 4 \cdot 4 = 4)$

Example 12.12. $n\mathbb{Z} = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$ is a subring of \mathbb{Z} that does not have any identity (if $n \neq 1$).

Lecture 33 (11/13)

Example 12.13. The set of Gauss integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .

13 Integral Domains

13.1 Definition and Examples

Definition 13.1 (Zero-Divisors). A <u>zero-divisor</u> is a nonzero element x of a commutative ring R such that there is a nonzero element $y \in R$ with xy = 0.

Example 13.1. In $R = \mathbb{Z}_6$, x = 2 is a zero-divisor

Definition 13.2 (Integral Domain). An <u>integral domain</u> is a commutative ring with unity and no zero-divisors.

Thus, in an integral domain, $ab = 0 \implies a = 0$ or b = 0.

Example 13.2. The ring of integers \mathbb{Z} is an integral domain.

Example 13.3. The ring of Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is an integral domain.

Example 13.4. The ring $\mathbb{Z}[x]$ of polynomials with integer coefficients is an integral domain.

Example 13.5. The ring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ is an integral domain.

Example 13.6. The ring \mathbb{Z}_p where p is prime is not an integral domain.

Non-Example 13.1. The ring \mathbb{Z}_n where n is not prime is not an integral domain.

Note. Write n = ab where $1 < a, b < n \implies a, b$ are both zero-divisors in \mathbb{Z}_n .

Non-Example 13.2. The ring $\mathbb{Z} \oplus \mathbb{Z}$ is not an integral domain.

Note. $(1,0) \times (0,1) = (0,0)$

Theorem 13.1 (Cancellation). Let R be an integral domain. If $a \neq 0$, then $ab = ac \implies b = c$

Proof.
$$ab = 0$$
, $a \neq 0 \implies 0 = a^{-1}ab = b$

13.2 Fields

Definition 13.3 (Field). A field is a commutative ring with unity in which every nonzero element is a unit

Fact. Every field is an integral domain.

Examples. \mathbb{C} , \mathbb{R} , \mathbb{Q} , \mathbb{Z}_p

Note (\mathbb{Z}_p) . $1 \le a < p$ then gcd(a, p) = 1; $as + pt = 1 \implies as = 1 \mod p \implies a$ is a unit in \mathbb{Z}_p

Non-Examples. \mathbb{Z} , $\mathbb{Z}[i]$

Theorem 13.2. A finite integral domain is a field.

Proof. $a \in R$ if $a = 1 \implies a^{-1} = 1$

Suppose $a \neq 1$. Consider a, a^2, a^3, \dots

R is finite $\implies \exists i > j \text{ such that } a^i = a^j$

$$a^i = a^j \cdot a^{i-j} \implies a^{i-j} = 1 \implies a \cdot (a^{i-j-1}) = 1 \implies a^{-1} = a^{i-j-1}$$
 exists in R .

Example 13.7. $\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3\}$ is a field with 9 elements.

 $(a+bi)^{-1} = \frac{a-bi}{a^2+b^2}$ need to check if $a,b \in \mathbb{Z}_3$ then $a^2+b^2 \neq 0$ in \mathbb{Z}_3 (unless a=b=0).

 $(1+2i)^{-1}$ in $\mathbb{Z}_3[i]$ is $\frac{1-2i}{1+4} = (1-2i) \cdot 2^{-1} = 2(1+1 \cdot i) = 2+2i$

Example 13.8. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.

$$(a+b\sqrt{2})^{-1} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2-2b^2}$$
$$= \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2} \quad (a^2-2b^2 \neq 0)$$

Definition 13.4 (Characteristic). The <u>characteristic</u> of a ring R is the least positive integer char(R) = n such that $\underbrace{nx}_{\sum^n x} = 0$ for all $x \in R$. If no such integer exists, we say R has characteristic 0.

Examples. char(\mathbb{Z}) = 0, char(\mathbb{Z}_n) = n, char(\mathbb{Z}_2) = 2

Theorem 13.3. Let R be a ring with unity 1. If 1 has infinite order under addition, then char(R) = 0. If 1 has order n under addition, then char(R) = n

Proof.
$$n \cdot 1 = 0 \implies n \cdot x = \sum^n x = x \cdot \sum^n 1 = x \cdot 0 = 0$$

Theorem 13.4. If R is an integral domain, then char(R) is either 0 or prime.

Proof. Suppose $char(R) = n \ge 0 \iff 1$ has finite order n under addition by Thm. If n = st where 1 < s, t < n, then

$$0 = n \cdot 1 = (s \cdot 1)(t \cdot 1)$$

so $s \cdot 1 = 0$ or $t \cdot 1 = 0$. Since char(1) = n, it must be that s = n or t = n. However, s, t < n.

14 Ideals and Factor Rings

14.1 Ideals

Definition 14.1 (Ideal). A subring I of a ring R is called a (two-sided) <u>ideal</u> of R if $\forall r \in R, \forall a \in I$ we have $ra \in I$ and $ar \in I$

- \bullet So a subring of R is an ideal if it "absorbs" elements of R
- An ideal of R is called a proper ideal if $I \neq R$

Theorem 14.1 (Ideal Test). A nonempty subset I of a ring R is an ideal if

- 1. $a b \in I$ whenever $a, b \in I$
- 2. $ra, ar \in I \ \forall a \in I, r \in R$

Example 14.1. For any ring R, $\{0\}$ and R are ideals.

Example 14.2. $n\mathbb{Z}$ is an ideal of \mathbb{Z} for all $n \in \mathbb{Z}$

Example 14.3. $\langle a \rangle := \{ ra \mid r \in R \}$ is an ideal of R for all commutative rings with unity and $a \in R$. This is called the principal ideal generated by a.

Example 14.4. $R = \mathbb{R}[x]$ $I = \langle x \rangle = \{\text{polynomials with constant term } 0\}$

Example 14.5. Let R be a commutative ring with unity, $a_1, a_2, \ldots, a_n \in R$. Then

$$I = \left\{ \sum_{i=1}^{n} r_i a_i \mid r_i \in R \right\}$$

is an ideal of R, called the ideal generated by $a_1, a_2, \ldots, a_n \in R$.

Lecture 34 (11/15)

Example 14.6. $R = \mathbb{Z}[x], I = \langle x, 2 \rangle = \{\text{polynomials with even constant terms}\}$

Non-Example 14.1. Let $R = \{\text{real valued functions in one variable}\}$. Then,

 $S = \{\text{differentiable functions in R}\}\$

is a subring of R but S is NOT an ideal of R.

14.2 Factor Rings

Theorem 14.2 (Existence of Factor Rings). Let R be a ring and let A be a subring of R. Then the set of cosets $\{r + A \mid r \in R\}$ is a ring under the operation

- (s+A) + (t+A) = s+t+A and
- (s+A)(t+A) = st + A

if and only if A is an ideal of R.

Pf sketch. A is an ideal of $R \implies$ addition and multiplication of cosets are <u>well-defined</u> (i.e. do not depend on the choice of representative)

Conversely, if A is not an ideal, then $\exists a \in R, r \in R$ such that $ar \notin A \neq A$.

Then

$$(a+A)(r+A) = ar + A \neq A$$

but

$$(a+A)(r+A) = (0+A)(r+A) = 0 \cdot r + A = 0 + a = A \quad (\Rightarrow \Leftarrow)$$

Example 14.7. $n\mathbb{Z}$ ideal of \mathbb{Z} .

$$\mathbb{Z}/n\mathbb{Z} = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \cdots, (n-1) + n\mathbb{Z}\} \cong \mathbb{Z}$$
$$(k + n\mathbb{Z}) + (\ell + n\mathbb{Z}) = k + \ell + n\mathbb{Z}$$
$$= (k + \ell) \bmod n + n\mathbb{Z}$$
$$(k + n\mathbb{Z}) \cdot (\ell + n\mathbb{Z}) = k\ell + n\mathbb{Z}$$

Example 14.8. $2\mathbb{Z}/6\mathbb{Z} = \{0 + 6\mathbb{Z}, 2 + 6\mathbb{Z}, 4 + 6\mathbb{Z}\}$

Note. In general,

$$m \mid n \implies m\mathbb{Z}/n\mathbb{Z} = \left\{0 + n\mathbb{Z}, m + n\mathbb{Z}, 2m + n\mathbb{Z}, \cdots, m\left(\frac{n}{m} - 1\right) + n\mathbb{Z}\right\}$$

Example 14.9. $R = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \mid a_i \in n\mathbb{Z} \right\}, \quad I = \{\text{matrices in } R \text{ with even entries} \}$

Exercise. Let
$$R/I = \left\{ \begin{pmatrix} r_1 & r_2 \\ r_3 & r_4 \end{pmatrix} + I \mid r_i \in \{0,1\} \right\}$$
. Prove $R/I \cong M_2\{\mathbb{Z}_2\}$.

Example 14.10 (\bigstar) . $\mathbb{Z}[i]$ and $\langle 2-i \rangle$

$$\mathbb{Z}[i]/\langle 2-i\rangle = \{0+\langle 2-i\rangle, \quad 1+\langle 2-i\rangle, \quad 2+\langle 2-i\rangle, \quad 3+\langle 2-i\rangle, \quad 4+\langle 2-i\rangle\}$$

$$5 = (2-i)(2+i) \implies 5 \in \langle 2-i\rangle$$

$$\implies 5+\langle 2-i\rangle = 0+\langle 2-i\rangle$$

$$i = 2-(2-i) \implies i+\langle 2-i\rangle = 2+\langle 2-i\rangle$$

$$\implies 2i+\langle 2-i\rangle = 4+\langle 2-i\rangle$$

$$\cdots \text{ etc } \cdots$$

$$\mathbb{Z}[i]/\langle 2-i\rangle \stackrel{\cong}{\to} \mathbb{Z}_5$$

$$a+\langle 2-i\rangle \mapsto a \mod 5$$

$$i+\langle 2-i\rangle \mapsto 2 \mod 5$$

$$a+bi = \max_{\text{mod } (2-i)} (a \mod 5) + 2b = (a+2b) \mod 5$$

Example 14.11.
$$\mathbb{R}[x]$$
 and $\langle x^2 + 1 \rangle$

$$\mathbb{R}[x] = \{g(x) + \langle x^2 + 1 \rangle \mid g(x) \in \mathbb{R}[x]\}$$

$$= \{ax + b + \langle x^2 + 1 \rangle \mid a, b \in \mathbb{R}\} \cong \mathbb{C}$$

$$\implies \mathbb{R} / \langle x^2 + 1 \rangle \cong \mathbb{C}$$

$$\mathbb{R} \to \mathbb{R}$$

$$x + \langle x^2 + 1 \rangle \mapsto i$$

$$(x + \langle x^2 + 1 \rangle)^2 = x^2 + \langle x^2 + 1 \rangle = -1 + \langle x^2 + 1 \rangle$$

Lecture 35

14.3 Prime Ideals and Maximal Ideals

Definition 14.2 (Prime Ideal, Maximal Ideal). A <u>prime ideal</u> P of a commutative ring R is a proper ideal of R such that if $a, b \in R$ and $ab \in P$, then $a \in P$ or $b \in P$.

A <u>maximal ideal</u> of a commutative ring R is a proper ideal A of R such that if B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.

Example 14.12. $n\mathbb{Z} \subseteq \mathbb{Z}$ is a prime ideal $\iff n = 0$ or n prime.

Note. n=0, if $a,b\in\mathbb{Z}$ such that ab=0, then a=0 or b=0 \checkmark n prime, if $a,b\in\mathbb{Z}$, $n\mid ab$ then $n\mid a$ or $n\mid b$ \checkmark

Moreover, $n\mathbb{Z} \subseteq \mathbb{Z}$ is a maximal ideal $\iff n$ prime.

Example 14.13. $\langle 2 \rangle, \langle 3 \rangle$ are maximal ideals of \mathbb{Z}_{36} . More generally, if $n = \prod_{i=1}^r p_i^{k_i}, \ k_i \neq 0$, then $\langle p_i \rangle$ are maximal ideals of \mathbb{Z}_n

Example 14.14. $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{R}[x]$

Proof. Let B be an ideal containing $\langle x^2 + 1 \rangle$ and $B \neq \langle x^2 + 1 \rangle$.

$$\Longrightarrow \exists f(x) \in B \text{ such that } f(x) \notin \langle x^2 + 1 \rangle$$

$$\implies f(x) = (x^2 + 1) \cdot q(x) + r(x)$$
 with $r(x) \neq 0$ and $\deg r(x) < 2$.

$$\implies (ax + b) \cdot x - (x^2 + 1) \cdot a = bx - a \in B$$

$$\implies (ax + b) \cdot b - (bx - a) \cdot a = bx - a \in B$$

Since
$$r(x) \neq 0$$
 and $a^2 + b^2 \neq 0 \implies 1 \in B \implies B = \mathbb{R}[x]$

Example 14.15. $\langle x^2 + 1 \rangle$ is not a prime ideal in $\mathbb{Z}_2[x]$

Note. $(x+1)(x+1) = x^2 + 2x + 1 = x^2 + 1$ (since $2x \equiv 0 \pmod{2}$), but $x+1 \notin \langle x^2 + 1 \rangle$

Theorem 14.3. Let R be a commutative ring with unity, let A be an ideal of R. Then R/A is an integral domain $\iff A$ is prime

Proof. R/A = integral domain

$$\iff$$
 $(a+A)(b+A)=0+A$ implies $a+A=0+A$ or $b+A=0+A$

- $\iff ab + A = 0 + A \text{ implies } a \in A \text{ or } b \in A$
- $\iff ab \in A \text{ implies } a \in A \text{ or } b \in A$
- $\iff A = \text{prime}$

Theorem 14.4. Let R be a commutative ring with unity and let A be an ideal of R. Then, R/A is a field $\iff A$ is a maximal ideal

Proof. (\Longrightarrow) Suppose R/A= field. Let $B\supsetneqq A$ be an ideal $(B\ne A)$. Then $\exists b\in B$ such that $b\not\in A$

$$\implies b + A \neq 0 + A \text{ in } R / A$$

$$\implies \exists c \text{ such that } (b+A)(c+A) = bc + A = 1 + A \text{ in } R / A$$

$$\implies bc - 1 = a \in A$$

$$\implies bc - a \in B \implies B = R \implies A = \text{maximal}$$

 (\longleftarrow) Conversely, suppose A = maximal.

For any $b + A \neq 0 + A \in R / A$ (i.e. $b \notin A$)

Consider $B = \{rb + a \mid r \in R, a \in A\}$ (check B is an ideal and $B \supseteq A, B \neq A$)

$$\implies B = R \implies \exists r \in A \text{ such that } rb + a = 1 \text{ for some } a \in A$$

$$\implies (r+A)(b+A) = (1+A)$$

 $\implies (b+A)$ is invertible in R/A

$$\implies R/A = \text{field}$$

Corollary. Let R be a commutative ring with unity. Then all maximal ideals are prime.

Example 14.16. $4\mathbb{Z} \subseteq 2\mathbb{Z} = R$ maximal but not prime $(2 \cdot 2 = 4 \in 4\mathbb{Z})$ but $2 \notin 4\mathbb{Z}$

Example 14.17. $\langle x \rangle$ is a prime ideal in $\mathbb{Z}[x]$. $\mathbb{Z}[x]/\langle x \rangle \cong \mathbb{Z}$ is an integral domain but not a field, so $\langle x \rangle$ is not maximal.

$$\langle x \rangle \subsetneq \underbrace{\langle x, 2 \rangle}_{\text{maximal}} \subsetneq \mathbb{Z}[x] \qquad \frac{\mathbb{Z}[x]}{\langle x, 2 \rangle} \cong \mathbb{Z}_2$$

Lecture 36

15 Ring Homomorphisms

15.1 Definition and Examples

Definition 15.1 (Ring Homomorphism, Ring Isomorphism). A <u>ring homomorphism</u> $\phi: R \to S$ is a map that preserves the two operations:

- 1. $\phi(a+b) = \phi(a) + \phi(b)$
- 2. $\phi(ab) = \phi(a)\phi(b)$

A bijective ring homomorphism is called a ring isomorphism.

Examples.

- $\phi: \mathbb{Z} \to \mathbb{Z}_n, k \mapsto k \mod n$
- $\phi: \mathbb{C} \to \mathbb{C}, a+bi \mapsto a-bi$ (isomorphism)
- $\phi: \mathbb{R}[x] \to \mathbb{R}, \ f(x) \mapsto f(a)$ where $a \in \mathbb{R}$ Check that $\phi(f(x) + g(x)) = \phi(f(x)) + \phi(g(x))$ and $\phi(f(x)g(x)) = \phi(f(x))\phi(g(x))$

Example 15.1. $\phi: \mathbb{Z}_4 \to \mathbb{Z}_{10}, x \mapsto 5x$

(!!!)
$$\phi(x+y) = 5(x+y \mod 4) \mod 10$$

= $5x + 5y = \phi(x) + \phi(y)$
(\bigstar) $\phi(xy) = 5xy \mod 10$
= $5x5y \mod 10 = \phi(x)\phi(y)$

Example 15.2. Determine all ring homomorphisms $\mathbb{Z}_{12} \mapsto \mathbb{Z}_{30}$

Group homomorphisms: $x \mapsto ax$ where $|a| \mid \gcd(12,30) = 6$ (i.e., |a| = 1, 2, 3, or 6)

$$\implies a = 0, 15, 10, 20, 5, 25$$

Ring homomorphisms: $a = \phi(1) = \phi(1 \cdot 1) = \phi(1)\phi(1) = a^2 \mod 30$

$$\implies a \equiv a^2 \mod 30$$

$$\implies a \neq 5, \ a \neq 20 \ (\phi(xy) = axy = a^2xy = axay = \phi(x)\phi(y) \ \text{mod} \ 30)$$

Thus there are 4 ring homomorphisms:

$$x \mapsto 0x \mod 30$$
 $x \mapsto 15x \mod 30$ $x \mapsto 10x \mod 30$ $x \mapsto 25x \mod 30$

Example 15.3. R commutative ring, char(R) = p > 0

$$\phi: R \to R, x \mapsto x^p$$

$$\phi(xy) = (xy)^p = x^p y^p = \phi(x)\phi(y)$$

$$\phi(x+y) = (x+y)^p = x^p + y^p + \sum_{i=1}^{p-1} \binom{p}{i} x^i y^{p-i} = x^p + y^p = \phi(x) + \phi(y)$$

$$p \text{ divides } \binom{p}{i}$$

15.2 Properties of Ring Homomorphisms

Theorem 15.1 (Properties of Ring Homomorphisms). Let $\phi: R \to S$ be a ring homomorphism. Then

- 1. $\phi(nr) = n\phi(r), \ \phi(r^n) = \phi(r)^n \quad \forall r \in R, n \in \mathbb{Z}_{>0}$
- 2. A is a subring of $R \implies \phi(A) = \{\phi(a) \mid a \in A\}$ is a subring of S
- 3. A ideal and ϕ onto $S \implies \phi(A)$ ideal of S
- 4. $\phi^{-1}(B) = \{r \in R \mid \phi(r) \in B\}$ is an ideal of R
- 5. If R commutative, then $\phi(R)$ commutative
- 6. If R has a unity 1, $S \neq \{0\}$, and ϕ is onto, then $\phi(1)$ is the unity of S.
- 7. ϕ is an isomorphism $\iff \phi$ is onto and $\ker \phi = \{r \in \mathbb{R} \mid \phi(r) = 0\} = \{0\}.$
- 8. If ϕ is an isomorphism from R onto S, then ϕ^{-1} is an isomorphism from S onto R.