Kartik Roy (joint with Vivek Mohan Mallick)

Indian Institute of Science Education and Research, Pune

September 18, 2021

- Varieties with a torus action
- *T*-varieties
- Multihomogeneous spaces
- Conclusion and our work

•00

X – a normal variety defined over complex numbers \mathbb{C} of dimension n.

•00

Set up

X – a normal variety defined over complex numbers \mathbb{C} of dimension n.

 $T = (\mathbb{C}^{\star})^k$ — an algebraic torus of dimension k.

Set up

X – a normal variety defined over complex numbers \mathbb{C} of dimension n.

 $T = (\mathbb{C}^*)^k$ – an algebraic torus of dimension k.

We assume that T acts effectively on X. We assume all actions to be linear actions.

Set up

X – a normal variety defined over complex numbers \mathbb{C} of dimension n.

$$T = (\mathbb{C}^*)^k$$
 – an algebraic torus of dimension k .

We assume that T acts effectively on X. We assume all actions to be linear actions.

When
$$k = n$$

Set up

X – a normal variety defined over complex numbers \mathbb{C} of dimension n.

 $T = (\mathbb{C}^*)^k$ – an algebraic torus of dimension k.

We assume that T acts effectively on X. We assume all actions to be linear actions.

When k = n

• Effective action will ensure that *X* is a toric variety which can be described in terms of fans.

Set up

X – a normal variety defined over complex numbers \mathbb{C} of dimension n.

 $T = (\mathbb{C}^*)^k$ – an algebraic torus of dimension k.

We assume that T acts effectively on X. We assume all actions to be linear actions.

When k = n

- Effective action will ensure that *X* is a toric variety which can be described in terms of fans.
- In case $X = \operatorname{Spec} A$ is an affine variety, A admits a grading by \mathbb{Z}^n .

000

Varieties with a torus action

• Let X be an n-dimensional toric variety corresponding to a fan Σ . Assume that $A_{n-1}(X)$ is a free \mathbb{Z} -module.

000

- Let X be an n-dimensional toric variety corresponding to a fan Σ . Assume that $A_{n-1}(X)$ is a free \mathbb{Z} -module.
- Let $\Sigma(1) = \{\rho_1, \dots, \rho_d\}$ be the set of rays in the fan. Each ray ρ corresponds to torus invariant prime Weil divisors D_{ρ} .

000

- Let X be an n-dimensional toric variety corresponding to a fan Σ . Assume that $A_{n-1}(X)$ is a free \mathbb{Z} -module.
- Let $\Sigma(1) = \{\rho_1, \dots, \rho_d\}$ be the set of rays in the fan. Each ray ρ corresponds to torus invariant prime Weil divisors D_{ρ} .
- Consider the polynomial ring $S = \mathbb{C}[X_{\rho_1}, \dots, X_{\rho_d}]$ in d variables.

Cox rings

000

- Let X be an n-dimensional toric variety corresponding to a fan Σ . Assume that $A_{n-1}(X)$ is a free \mathbb{Z} -module.
- Let $\Sigma(1) = \{\rho_1, \dots, \rho_d\}$ be the set of rays in the fan. Each ray ρ corresponds to torus invariant prime Weil divisors D_{ρ} .
- Consider the polynomial ring $S = \mathbb{C}[X_{\rho_1}, \dots, X_{\rho_d}]$ in d variables.
- Define $\deg\prod_{
 ho\in\Sigma(1)}\left(x_
 ho^{k_
 ho}
 ight)$ to be $D=\sum_{
 ho\in\Sigma(1)}k_
 ho D_
 ho\in A_{n-1}(X).$

- Let X be an n-dimensional toric variety corresponding to a fan Σ . Assume that $A_{n-1}(X)$ is a free \mathbb{Z} -module.
- Let $\Sigma(1) = \{\rho_1, \dots, \rho_d\}$ be the set of rays in the fan. Each ray ρ corresponds to torus invariant prime Weil divisors D_{ρ} .
- Consider the polynomial ring $S = \mathbb{C}[X_{\rho_1}, \dots, X_{\rho_d}]$ in d variables.
- ullet Define deg $\prod \left(x_
 ho^{k_
 ho}
 ight)$ to be $D=\sum_{
 ho\in\Sigma(1)}k_
 ho D_
 ho\in A_{n-1}(X).$
- The s.e.s. $0 \to M \to \mathbb{Z}^{|\Sigma(1)|} \to A_{n-1}(X) \to 0$ induces $0 \to G \to (\mathbb{C}^*)^{|\Sigma(1)|} \to T \to 0$, and hence an action of $G = \operatorname{Hom}(A_{n-1}(X), \mathbb{C}^*)$ on Spec S.

- Let X be an n-dimensional toric variety corresponding to a fan Σ . Assume that $A_{n-1}(X)$ is a free \mathbb{Z} -module.
- Let $\Sigma(1) = \{\rho_1, \dots, \rho_d\}$ be the set of rays in the fan. Each ray ρ corresponds to torus invariant prime Weil divisors D_{ρ} .
- Consider the polynomial ring $S = \mathbb{C}[X_{\rho_1}, \dots, X_{\rho_d}]$ in d variables.
- ullet Define deg $\prod \left(x_
 ho^{k_
 ho}
 ight)$ to be $D=\sum_{
 ho\in\Sigma(1)}k_
 ho D_
 ho\in A_{n-1}(X).$
- The s.e.s. $0 \to M \to \mathbb{Z}^{|\Sigma(1)|} \to A_{n-1}(X) \to 0$ induces $0 \to G \to (\mathbb{C}^*)^{|\Sigma(1)|} \to T \to 0$, and hence an action of $G = \operatorname{Hom}(A_{n-1}(X), \mathbb{C}^*)$ on Spec S.

000

Let $Z \subset X = X_{\Sigma}$ be the subvariety defined by the ideal

$$B = \left\langle \prod_{
ho
otin \sigma(1)} \mathsf{x}_{
ho} \colon \sigma \in \mathsf{\Sigma} \right
angle.$$

Then, the set $\mathbb{C}^{\Sigma(1)} \setminus Z$ is invariant under G and

000

Let $Z \subset X = X_{\Sigma}$ be the subvariety defined by the ideal

$$B = \left\langle \prod_{
ho
otin \sigma(1)} \mathsf{x}_{
ho} \colon \sigma \in \mathsf{\Sigma} \right
angle.$$

Then, the set $\mathbb{C}^{\Sigma(1)} \setminus Z$ is invariant under G and

• X is naturally isomorphic to the categorical quotient of $\mathbb{C}^{\Sigma(1)} \setminus Z$ by G.

000

Let $Z \subset X = X_{\Sigma}$ be the subvariety defined by the ideal

$$B = \left\langle \prod_{\rho \notin \sigma(1)} \mathsf{x}_{\rho} \colon \sigma \in \mathsf{\Sigma} \right
angle.$$

Then, the set $\mathbb{C}^{\Sigma(1)} \setminus Z$ is invariant under G and

- X is naturally isomorphic to the categorical quotient of $\mathbb{C}^{\Sigma(1)} \setminus Z$ by G.
- X is the geometric quotient of $\mathbb{C}^{\Sigma(1)} \setminus Z$ by G if and only if X is simplicial.

Let $Z \subset X = X_{\Sigma}$ be the subvariety defined by the ideal

$$B = \left\langle \prod_{\rho \notin \sigma(1)} x_{\rho} \colon \sigma \in \Sigma \right\rangle.$$

Then, the set $\mathbb{C}^{\Sigma(1)} \setminus Z$ is invariant under G and

- X is naturally isomorphic to the categorical quotient of $\mathbb{C}^{\Sigma(1)}\setminus Z$ by G.
- X is the geometric quotient of $\mathbb{C}^{\Sigma(1)} \setminus Z$ by G if and only if X is simplicial.

 $(Graded \ S\text{-}modules) \longrightarrow (Quasi\text{-}coherent \ \mathcal{O}_X\text{-}modules); \quad F \mapsto \widetilde{F}$

This functor is exact and essentially surjective when X is simplicial.

Definition (*T*-varieties)

A (complex) T-variety is a normal n-dimensional variety X (over \mathbb{C}) with an effective action of a torus $T = (\mathbb{C}^*)^k$ (of course, $k \leq n$).

Definition (*T*-varieties)

A (complex) T-variety is a normal n-dimensional variety X (over $\mathbb C$) with an effective action of a torus $T=(\mathbb C^\star)^k$ (of course, $k\leq n$).

The number n - k is called the complexity of the T-variety. Complexity 0 T-varieties are just toric varieties.

Definition (*T*-varieties)

A (complex) T-variety is a normal n-dimensional variety X (over $\mathbb C$) with an effective action of a torus $T=(\mathbb C^\star)^k$ (of course, $k\leq n$).

The number n-k is called the complexity of the T-variety. Complexity 0 T-varieties are just toric varieties. Like a toric variety, T-varieties can also be described combinatorially.

(Reference: Altmann, Hausen, Süss, 2008). The description of a *T*-variety has two parts: (1) a non-combinatorial part involving an n - k-dimensional semi-projective variety Y, that is projective over an affine scheme and (2) a fan of "polyhedral divisor"s on Y.

- (Reference: Altmann, Hausen, Süss, 2008). The description of a *T*-variety has two parts: (1) a non-combinatorial part involving an n k-dimensional semi-projective variety Y, that is projective over an affine scheme and (2) a fan of "polyhedral divisor"s on Y.
- A polyhedral divisor is a formal combination of prime divisors of Y with coefficients being polyhedra having a fixed tail-cone σ . These correspond to affine T-varieties (Altmann, Hausen, 2006).

- (Reference: Altmann, Hausen, Süss, 2008). The description of a *T*-variety has two parts: (1) a non-combinatorial part involving an n k-dimensional semi-projective variety Y, that is projective over an affine scheme and (2) a fan of "polyhedral divisor"s on Y.
- A polyhedral divisor is a formal combination of prime divisors of Y with coefficients being polyhedra having a fixed tail-cone σ . These correspond to affine T-varieties (Altmann, Hausen, 2006).
- There is a notion of a face of a polyhedral divisor obtained by taking faces of the constituent polyhedras which correspond to open embeddings.

- (Reference: Altmann, Hausen, Süss, 2008). The description of a *T*-variety has two parts: (1) a non-combinatorial part involving an n k-dimensional semi-projective variety Y, that is projective over an affine scheme and (2) a fan of "polyhedral divisor"s on Y.
- A polyhedral divisor is a formal combination of prime divisors of Y with coefficients being polyhedra having a fixed tail-cone σ . These correspond to affine T-varieties (Altmann, Hausen, 2006).
- There is a notion of a face of a polyhedral divisor obtained by taking faces of the constituent polyhedras which correspond to open embeddings.
- This allows one to generalize the usual notion of a fan of cones to that of a fan of polyhedral divisors.

Definition (Brenner, Schröer, 2003)

Definition (Brenner, Schröer, 2003)

Suppose D is a f.g. abelian group and $S = \bigoplus_{d \in D} S_d$ be a D-graded ring.

• *S* is *periodic* if the degrees of the homogeneous units form a subgroup of finite index.

Definition (Brenner, Schröer, 2003)

- *S* is *periodic* if the degrees of the homogeneous units form a subgroup of finite index.
- An element $f \in S$ is relevant if it is homogeneous and S_f is periodic. Let $D_f = \langle \deg a | a$ is homogeneous and divides $f \rangle$

Definition

This is a generalization of the construction of Proj of a \mathbb{N} -graded ring.

Definition (Brenner, Schröer, 2003)

- *S* is *periodic* if the degrees of the homogeneous units form a subgroup of finite index.
- An element $f \in S$ is relevant if it is homogeneous and S_f is periodic. Let $D_f = \langle \deg a | a$ is homogeneous and divides $f \rangle$
- $S_{(f)}$ is the degree zero part of S_f and let $D_+(f) = \operatorname{Spec} S_{(f)} \subset \operatorname{Quot}(S)$,

Definition (Brenner, Schröer, 2003)

- *S* is *periodic* if the degrees of the homogeneous units form a subgroup of finite index.
- An element $f \in S$ is relevant if it is homogeneous and S_f is periodic. Let $D_f = \langle \deg a | a$ is homogeneous and divides $f \rangle$
- $S_{(f)}$ is the degree zero part of S_f and let $D_+(f) = \operatorname{Spec} S_{(f)} \subset \operatorname{Quot}(S)$,
- Define Proj $S = \bigcup_{f \in S \text{ relevant}} \operatorname{Spec} S_{(f)} \subset \operatorname{Quot}(S)$, which by construction is a scheme.

Coherent sheaves and line bundles

Theorem (Mallick,)

Let D be a finitely generated free abelian group, $S = \bigoplus_{d \in D} S_d$ be a D-graded ring and $Proj\ S$ be the corresponding multihomogeneous space. One can define shifted modules $\mathcal{O}_X(d)$ as usual. Further we have $\Gamma(X,\mathcal{O}_X(d)) \cong A_d$ and $\mathcal{O}_X(d)$ is a reflexive sheaf.

Moreover, if d is such that $d \in D_f$ for every relevant element $f \in A$, then $\mathcal{O}_X(d)$ is a line bundle.

Coherent sheaves and line bundles

Theorem (Mallick,)

Let D be a finitely generated free abelian group, $S = \bigoplus_{d \in D} S_d$ be a D-graded ring and $Proj\ S$ be the corresponding multihomogeneous space. One can define shifted modules $\mathcal{O}_X(d)$ as usual. Further we have $\Gamma(X,\mathcal{O}_X(d)) \cong A_d$ and $\mathcal{O}_X(d)$ is a reflexive sheaf.

Moreover, if d is such that $d \in D_f$ for every relevant element $f \in A$, then $\mathcal{O}_X(d)$ is a line bundle.

Remark

This recovers a similar theorem on weighted projective spaces.

• Let $M \cong \mathbb{Z}^d$ be a lattice and A be an M-graded ring with pointed weighted cone.

- Let $M \cong \mathbb{Z}^d$ be a lattice and A be an M-graded ring with pointed weighted cone.
- Assume that $A_0 \cong \mathbb{C}$ and A be a finitely generated A_0 -algebra.

- Let $M \cong \mathbb{Z}^d$ be a lattice and A be an M-graded ring with pointed weighted cone.
- Assume that $A_0 \cong \mathbb{C}$ and A be a finitely generated A_0 -algebra.
- Then Spec A is a T-variety with an effective $(\mathbb{C}^*)^d$ action.

- Let $M \cong \mathbb{Z}^d$ be a lattice and A be an M-graded ring with pointed weighted cone.
- Assume that $A_0 \cong \mathbb{C}$ and A be a finitely generated A_0 -algebra.
- Then Spec A is a T-variety with an effective $(\mathbb{C}^*)^d$ action.
- Let this T-variety be described by (Y, \mathcal{D}) .

Relation between T-varieties and MHS

- Let $M \cong \mathbb{Z}^d$ be a lattice and A be an M-graded ring with pointed weighted cone.
- Assume that $A_0 \cong \mathbb{C}$ and A be a finitely generated A_0 -algebra.
- Then Spec A is a T-variety with an effective $(\mathbb{C}^*)^d$ action.
- Let this T-variety be described by (Y, \mathcal{D}) .

Theorem (Mallick,)

There is a birational morphism $\varphi \colon Y \longrightarrow \operatorname{Proj} A$. Furthermore, \mathcal{D} can be described in terms of the shifted modules over $\operatorname{Proj} A$.

- Let $M \cong \mathbb{Z}^d$ be a lattice and A be an M-graded ring with pointed weighted cone.
- Assume that $A_0 \cong \mathbb{C}$ and A be a finitely generated A_0 -algebra.
- Then Spec A is a T-variety with an effective $(\mathbb{C}^*)^d$ action.
- Let this T-variety be described by (Y, \mathcal{D}) .

Theorem (Mallick,)

There is a birational morphism $\varphi \colon Y \longrightarrow \operatorname{Proj} A$. Furthermore, \mathcal{D} can be described in terms of the shifted modules over $\operatorname{Proj} A$.

Remark

These in turn are birational to the Perling's construction of tProj(A).

A condition of isomorphism

• Let $M \cong \mathbb{Z}^k$ be a lattice. Let $A = \bigoplus_{u \in M} A_u$ be an integral, affine, M-graded \mathbb{C} -algebra and $X = \operatorname{Spec} A$ be the corresponding affine variety. Let $\omega = \operatorname{the} \operatorname{cone} \operatorname{generated} \operatorname{by} \{u \in M \mid A_u \neq 0\}.$

- Let $M \cong \mathbb{Z}^k$ be a lattice. Let $A = \bigoplus_{u \in M} A_u$ be an integral, affine, M-graded \mathbb{C} -algebra and $X = \operatorname{Spec} A$ be the corresponding affine variety. Let $\omega = \operatorname{the} \operatorname{cone} \operatorname{generated} \operatorname{by} \{u \in M \mid A_u \neq 0\}.$
- For $x \in X$, let $\omega(x) = \text{ the cone gen by } \{u \in M \mid \exists f \in A_u, f(x) \neq 0\}.$

- Let $M \cong \mathbb{Z}^k$ be a lattice. Let $A = \bigoplus_{u \in M} A_u$ be an integral, affine, M-graded \mathbb{C} -algebra and $X = \operatorname{Spec} A$ be the corresponding affine variety. Let $\omega = \operatorname{the cone} \operatorname{generated} \operatorname{by} \{u \in M \mid A_u \neq 0\}.$
- For $x \in X$, let $\omega(x) = \text{ the cone gen by } \{u \in M \mid \exists f \in A_u, f(x) \neq 0\}.$
- The GIT cone associated to an $u \in \omega \cap M$ is $\lambda(u) = \bigcap_{x \in X : u \in \omega(x)} \omega(x)$.

- Let $M \cong \mathbb{Z}^k$ be a lattice. Let $A = \bigoplus_{u \in M} A_u$ be an integral, affine, M-graded \mathbb{C} -algebra and $X = \operatorname{Spec} A$ be the corresponding affine variety. Let $\omega = \operatorname{the cone} \operatorname{generated} \operatorname{by} \{ u \in M \mid A_u \neq 0 \}.$
- For $x \in X$, let $\omega(x) = \text{ the cone gen by } \{u \in M \mid \exists f \in A_u, f(x) \neq 0\}.$
- The GIT cone associated to an $u \in \omega \cap M$ is $\lambda(u) = \bigcap_{x \in X; u \in \omega(x)} \omega(x)$.

Proposition (Mallick,)

If ω is a GIT cone, then Y is projective and the birational map between Y and Proj A is an isomorphism.

- Let $M \cong \mathbb{Z}^k$ be a lattice. Let $A = \bigoplus_{u \in M} A_u$ be an integral, affine, M-graded \mathbb{C} -algebra and $X = \operatorname{Spec} A$ be the corresponding affine variety. Let $\omega = \operatorname{the cone} \operatorname{generated} \operatorname{by} \{u \in M \mid A_u \neq 0\}.$
- For $x \in X$, let $\omega(x) = \text{ the cone gen by } \{u \in M \mid \exists f \in A_u, f(x) \neq 0\}.$
- The GIT cone associated to an $u \in \omega \cap M$ is $\lambda(u) = \bigcap_{x \in X; u \in \omega(x)} \omega(x)$.

Proposition (Mallick,)

If ω is a GIT cone, then Y is projective and the birational map between Y and Proj A is an isomorphism.

Remark

Example: products of weighted projective spaces.

References

Polyhedral divisors and algebraic torus actions.

Math. Ann., 334(3):557-607, 2006.

Klaus Altmann, Jürgen Hausen, and Hendrik Süss. Gluing affine torus actions via divisorial fans.

Transform. Groups, 13(2):215-242, 2008.

Holger Brenner and Stefan Schröer.

Ample families, multihomogeneous spectra, and algebraization of formal schemes.

Pacific J. Math., 208(2):209–230, 2003.

David A. Cox.

The homogeneous coordinate ring of a toric variety.

J. Algebraic Geom., 4(1):17-50, 1995.

Markus Perling.

Toric varieties as spectra of homogeneous prime ideals.

Geom. Dedicata, 127:121-129, 2007.

