Incremental Network Quantization: Towards Lossless CNNs With Low-Precision Weights

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, Yurong Chen

Presented by Zhuangwei Zhuang

South China University of Technology

June 6, 2017

Outline

- > Background
- Motivation
- Proposed Methods
 - Variable-length enconding
 - Incremental quantization strategy
- > Experimental Results
- Conclusions

Background

Background

Huge networks lead to heavy consumption on memory and computational resources.

ResNet-152 has model size of 230 MB, and needs about 11.3
billion FLOPs for a 224×224 image

Difficult to implement deep CNNs on hardware with the limitation of computation and power.

FPGA ARM

Motivation

Motivation

Network quantization

CNN quantization still an open question due to two critical issues:

- Non-negligible accuracy loss for CNN quantization methods
- Increased number of training iterations for ensuring convergence

Proposed Methods

Proposed Methods

Figure. Overview of INQ

Figure. Quantization strategy of INQ

Variable-Length Encoding

Suppose a pre-trained full precision CNN model can be represented by $\{W_l: 1 \le l \le L\}$.

 W_l : weight set of l^{th} layer

L: number of layers

Goal of INQ: Convert 32 floating-point W_l to be low-precision \widehat{W}_l , each entry of \widehat{W}_l is chosen from

$$P_l = \{\pm 2^{n_1}, \cdots, \pm 2^{n_2}, 0\},\$$

where n_1 and n_2 are two integer numbers, and $n_2 \le n_1$.

Variable-Length Encoding

$$P_l = \{\pm 2^{n_1}, \cdots, \pm 2^{n_2}, 0\}$$

 $\triangleright \widehat{W}_l$ is computed by:

$$\widehat{W}_{l}(i,j) = \begin{cases} \beta \operatorname{sgn}\left(\widehat{W}_{l}(i,j)\right) & \text{if } (\alpha + \beta) \leq abs\left(W_{l}(i,j)\right) < 3\beta/2 \\ 0 & \text{otherwise,} \end{cases}$$

Where α and β are two adjacent elements in the sorted P_l , and $0 \le \alpha < \beta$.

Variable-Length Encoding

$$P_l = \{\pm 2^{n_1}, \cdots, \pm 2^{n_2}, 0\}$$

Define bit-width b

1 bit to represent 0, and the remaining bits to represent $\pm 2^n$

 \triangleright n_1 and n_2 are computed by

$$n_1 = \text{floor}(\log_2(4s/3))$$

$$n_2 = n_1 + 1 - 2^{b-1}/2$$

> s is calculated by

$$s = \max(abs(W_l))$$

Incremental Quantization Strategy

Figure. Result illustrations

- Quantization strategy:
 - Weight partition: divide weights in each layers into two disjoint groups
 - Group-wise quantization: quantize weights in first group
 - Retraining: retrain whole network and update weights in second group

Incremental Quantization Strategy

For the l^{th} , weight partition can be defined as

$$A_l^{(1)} \cup A_l^{(2)} = \{W_l(i,j)\}, \text{ and } A_l^{(1)} \cap A_l^{(2)} = \emptyset$$

 $A_l^{(1)}$: first weight group that needs to be quantized

 $A_l^{(2)}$: second weight group that needs to be retrained

> Define binary matrix T₁

$$T_{l}(i,j) = \begin{cases} 0, W_{l}(i,j) \in A_{l}^{(1)} \\ 1, W_{l}(i,j) \in A_{l}^{(2)} \end{cases}$$

Update W_l

$$W_l(i,j) \leftarrow W_l(i,j) - \gamma \frac{\partial E}{\partial (W_l(i,j))} T_l(i,j)$$

Incremental Quantization Strategy

Algorithm. Pseudo Code of INQ

Algorithm 1 Incremental network quantization for lossless CNNs with low-precision weights.

Input: X: the training data, $\{\mathbf{W}_l : 1 \leq l \leq L\}$: the pre-trained full-precision CNN model, $\{\sigma_1, \sigma_2, \cdots, \sigma_N\}$: the accumulated portions of weights quantized at iterative steps

Output: $\{\widehat{\mathbf{W}}_l : 1 \leq l \leq L\}$: the final low-precision model with the weights constrained to be either powers of two or zero

- 1: Initialize $\mathbf{A}_{l}^{(1)} \leftarrow \emptyset$, $\mathbf{A}_{l}^{(2)} \leftarrow \{\mathbf{W}_{l}(i,j)\}$, $\mathbf{T}_{l} \leftarrow \mathbf{1}$, for $1 \leq l \leq L$
- 2: **for** n = 1, 2, ..., N **do**
- 3: Reset the base learning rate and the learning policy
- 4: According to σ_n , perform layer-wise weight partition and update $\mathbf{A}_l^{(1)}$, $\mathbf{A}_l^{(2)}$ and \mathbf{T}_l
- 5: Based on $\mathbf{A}_{l}^{(1)}$, determine \mathbf{P}_{l} layer-wisely
- 6: Quantize the weights in $\mathbf{A}_{l}^{(1)}$ by Equation (4) layer-wisely
- 7: Calculate feed-forward loss, and update weights in $\{A_l^{(2)}: 1 \le l \le L\}$ by Equation (8)
- 8: end for

Experimental Results

Results on ImageNet

Table. Converting full-precision models to 5-bit versions

Network	Bit-width	Top-1 error	Top-5 error	Decrease in top-1/top-5 error
AlexNet ref	32	42.76%	19.77%	
AlexNet	5	42.61%	19.54%	0.15%/0.23%
VGG-16 ref	32	31.46%	11.35%	
VGG-16	5	29.18%	9.70%	2.28%/1.65%
GoogleNet ref	32	31.11%	10.97%	
GoogleNet	5	30.98%	$\boldsymbol{10.72\%}$	0.13%/0.25%
ResNet-18 ref	32	31.73%	11.31%	
ResNet-18	5	31.02%	$\boldsymbol{10.90\%}$	0.71%/0.41%
ResNet-50 ref	32	26.78%	8.76%	
ResNet-50	5	25.19%	7.55%	1.59%/1.21%

Analysis of Weight Partition Strategies

- Random partition: all weights have equal probability to fall into the two groups
- Pruning-inspired partition: weights with larger absolute values have more probability to be quantized

Table. Comparison of different weight partition strategies on ResNet-18

Strategy	Bit-width	Top-1 error	Top-5 error
Random partition	5	32.11%	11.73%
Pruning-inspired partition	5	31.02%	$\boldsymbol{10.90\%}$

Trade-Off Between Bit-Width and Accuracy

Table. Exploration on bit-width on ResNet-18

Model	Bit-width	Top-1 error	Top-5 error
ResNet-18 ref	32	31.73%	11.31%
INQ	5	31.02%	10.90%
INQ	4	31.11%	10.99%
INQ	3	31.92%	11.64%
INQ	2 (ternary)	33.98%	12.87%

Table. Comparison of the proposed ternary model and the baselines on ResNet-18

Method	Bit-width	Top-1 error	Top-5 error
BWN(Rastegari et al., 2016)	1	39.20%	17.00%
TWN(Li & Liu, 2016)	2 (ternary)	38.20%	15.80%
INQ (ours)	2 (ternary)	33.98%	12.87%

Low-Bit Deep Compression

Table. Comparison of INQ+DNS, and deep compression method on AlexNet. Conv: Convolutional layer, FC: Fully connected layer, P: Pruning, Q: Quantization, H: Huffman coding

Method	Bit-width(Conv/FC)	Compression ratio	Decrease in top-1/top5 error
Han et al. (2016) (P+Q)	8/5	27×	0.00%/0.03%
Han et al. (2016) (P+Q+H)	8/5	$35 \times$	0.00%/0.03%
Han et al. (2016) (P+Q+H)	8/4	-	-0.01%/0.00%
Our method (P+Q)	5/5	$53 \times$	0.08%/0.03%
Han et al. (2016) (P+Q+H)	4/2	-	-1.99%/-2.60%
Our method (P+Q)	4/4	71 ×	-0.52%/-0.20%
Our method (P+Q)	3/3	$89 \times$	-1.47%/-0.96%

Conclusions

Conclusions

Contributions

- Present INQ to convert any pre-trained full-precision CNN model into a lossless low-precision version
- The quantized models with 5/4/3/2 bits achieve comparable accuracy against their full-precision baselines

Future work

- Extend incremental idea from low-precision weights to lowprecision activations and low-precision gradients.
- Implement the proposed low-precision models on hardware platforms

Q & A

References

- [1] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards lossless cnns with low-precision weights. *In ICLR*, 2017.
- [2] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. *In NIPS*, 2016.
- [3] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient neural networks. *In NIPS*, 2015.
- [4] Song Han, Jeff Pool, John Tran, and William J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. *In ICLR*, 2016.
- [5] Fengfu Li and Bin Liu. Ternary weight networks. *arXiv preprint arXiv:* 1605.04711v1, 2016
- [6] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. *arXiv preprint arXiv: 1603.05279v4*, 2016.