Multivariate Continuous Random Variables

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Goal							
Model	interactions	between	multiple	uncertain	continuous	s quantities	5

Notation

Deterministic variables: a, b, x, y

Random variables: \tilde{a} , \tilde{b} , \tilde{x} , \tilde{y}

What is a random variable?

Data scientist:

An uncertain variable described by probabilities estimated from data

Mathematician:

A function mapping outcomes in a probability space to real numbers

Continuous random variables

Continuous random variable

Probability space (Ω, \mathcal{C}, P)

Function $\tilde{a}:\Omega\to\mathbb{R}$

The function \tilde{a} is a valid random variable if for any interval $\mathcal{I} := [a, b] \subseteq \mathbb{R}$, a < b

$$\mathcal{I}^{-1} := \{ \omega \mid \tilde{a}(\omega) \in \mathcal{I} \}$$

is in the collection C, so

$$P(\tilde{a} \in \mathcal{I}) = P(\mathcal{I}^{-1})$$
 is well defined

We describe continuous random variables in terms of the probability that they belong to any interval

What about multiple continuous random variables defined on the same probability space?

Two continuous random variables

Two continuous random variables

$$P\left(\begin{bmatrix} \tilde{a} \\ \tilde{b} \end{bmatrix} \in A \times B\right) := P\left(\left\{\omega \mid \tilde{a}(\omega) \in A \text{ and } \tilde{b}(\omega) \in B\right\}\right)$$
$$= P\left(A^{-1} \cap B^{-1}\right)$$

where

$$A^{-1} := \{ \omega \mid \tilde{a}(\omega) \in A \},\,$$

$$B^{-1} := \left\{ \omega \mid \tilde{b}(\omega) \in B \right\}.$$

Higher dimensions

Let $\tilde{x}:\Omega\to\mathbb{R}^d$ be a d-dimensional vector containing d continuous random variables $\tilde{x}[1],\ \tilde{x}[2],\ \ldots,\ \tilde{x}[d]$

Defined on the same probability space (Ω, \mathcal{C}, P)

For any d Borel sets $X_1, X_2, \ldots, X_d \subseteq \mathbb{R}$, the probability of the event

$$\{\omega \mid \tilde{x}(\omega) \in X_1 \times X_2 \times \cdots \times X_d\} = \bigcap_{i=1}^d \{\omega \mid \tilde{x}[i](\omega) \in X_i\}$$

is well defined

Cumulative distribution function

The cumulative distribution function (cdf) of a random variable \tilde{a} is

$$F_{\tilde{a}}(a) := P(\tilde{a} \leq a)$$

It encodes the probability that \tilde{a} is less than or equal to a

Joint cdf

The joint cdf of \tilde{a} and \tilde{b} is

$$F_{\tilde{a},\tilde{b}}(a,b) := P\left(\tilde{a} \leq a, \tilde{b} \leq b\right)$$

The joint cdf of a d-dimensional vector \tilde{x} is

$$F_{\tilde{x}}(x) := P(\tilde{x}[1] \le x[1], \tilde{x}[2] \le x[2], \dots, \tilde{x}[d] \le x[d])$$

Properties of the joint cdf

$$\lim_{a \to -\infty} F_{\tilde{a}, \tilde{b}}(a, b) = 0$$
 $\lim_{b \to -\infty} F_{\tilde{a}, \tilde{b}}(a, b) = 0$
 $\lim_{a \to \infty, b \to \infty} F_{\tilde{a}, \tilde{b}}(a, b) = 1$

Can $F_{\tilde{a},\tilde{b}}\left(a_1,b_1
ight)>F_{\tilde{a},\tilde{b}}\left(a_2,b_2
ight)$ if $a_2\geq a_1,\ b_2\geq b_1$? No

Triangle lake

Triangle lake

Triangle lake

$$F_{\tilde{a},\tilde{b}}(a,b) = \begin{cases} 0 & \text{if } a < 0 \text{ or } b < 0, \\ 2ab, & \text{if } a \ge 0, b \ge 0, a+b \le 1, \\ 2a+2b-b^2-a^2-1, & \text{if } a \le 1, b \le 1, a+b \ge 1, \\ 2b-b^2, & \text{if } a \ge 1, 0 \le b \le 1, \\ 2a-a^2, & \text{if } 0 \le a \le 1, b \ge 1, \\ 1, & \text{if } a \ge 1, b \ge 1. \end{cases}$$

Computing probabilities

$$P\left(a_{1} < \tilde{a} \leq a_{2}, b_{1} < \tilde{b} \leq b_{2}\right)$$

$$= P\left(\tilde{a} \leq a_{2}, \tilde{b} \leq b_{2}\right) - P\left(\tilde{a} \leq a_{1}, \tilde{b} \leq b_{2}\right)$$

$$- P\left(\tilde{a} \leq a_{2}, \tilde{b} \leq b_{1}\right) + P\left(\tilde{a} \leq a_{1}, \tilde{b} \leq b_{1}\right)$$

$$= F_{\tilde{a},\tilde{b}}\left(a_{2}, b_{2}\right) - F_{\tilde{a},\tilde{b}}\left(a_{1}, b_{2}\right) - F_{\tilde{a},\tilde{b}}\left(a_{2}, b_{1}\right) + F_{\tilde{a},\tilde{b}}\left(a_{1}, b_{1}\right)$$

What have we learned?

How to jointly model multiple continuous quantities

Definition and properties of joint cdf