EEL731 Major / 05-05-09 /SCDR

120 minutes, 100 marks

1. Derive, if possible, a canonical lattice realization of the two transfer functions

$$H_2(z)=1+a_1 z^{-1}+a_2 z^{-2}$$
 and $G_2(z)=1+a_1 z^{-1}+b_2 z^{-2}$.

Also give a direct canonic structure which realizes both the transfer functions.[20]

- 2. Derive a canonical lattice realization of the transfer function $H_3(z)=[1+(1/2)z^{-1}+(1/4)z^{-2}+z^{-3}]/[(1/4)+(1/8)z^{-1}+(1/12)z^{-2}+(1/4)z^{-3}].$ [20]
- 3. Given that the causal system with the transfer function $H(z)=[1+2z^{-1}+2z^{-2}+z^{-3}+3z^{-4}]/[1+a_1z^{-1}+a_2z^{-2}+a_3z^{-3}]$ has an impulse response $h(n)=\{h_0,0,(1/2),2,h_4,.....h_{\infty}\}$, find h_0 , h_4 , a_1 , a_2 , a_3 , and h_{∞} . [20]
- 4. To an analog bandpass filter transfer function H(S) having a centre frequency Ω_0 and bandwidth B, if one applies the lowpass to highpass tranformation (i.e. $S=\alpha/s$), what would be the nature and important parameters of the transformed filter ? [10]
- 5. A digital first order lowpass filter has a cutoff frequency ω_c . This is to be transformed to a digital bandstop filter with passband edges at ω_1 and ω_2 where $\omega_1+\omega_2=\pi$ and $\omega_2-\omega_1=\omega_c$. Find the required transformation in the *simplest form*. What would be the rejection frequency of the bandstop filter? [15]
- 6. Derive, from first principles of multiplier extraction approach, a canonical realization of the allpass transfer function $A(z)=(d+z^{-2})/(1+dz^{-2})$.