# MPViT: Multi-Path Vision Transformer for Dense Prediction

Youngwan Lee<sup>1,2</sup> Jonghee Kim<sup>1</sup> Jeff Willette<sup>2</sup> Sung Ju Hwang<sup>2,3</sup>

<sup>1</sup>Electronics and Telecommunications Research Institute (ETRI), South Korea <sup>2</sup>Korea Advanced Institute of Science and Technology (KAIST), South Korea <sup>3</sup>AITRICS, South Korea

**CVPR 2022** 

2022.04.11 Presenter: Sohee Jeong

# **Contents**

- 1. Vision Transformer
- 2. MPViT (main topic)
  - Motivation
  - Architecture
  - Methods
  - Experiments
  - Discussion

# **Vision Transformer**

# An Image is worth 16x16 words: Transformers for Image Recognition at scale

- Try to adapt pure transformer into vision task
- Patch embedding: divide image by 16x16 patch



# **Vision Transformer**

An Image is worth 16x16 words: Transformers for Image Recognition at scale

• Try to adapt pure transformer into vision task

Patch embedding: divident 16x16 patch

Have the advantar

[Problem 1]

Lack of

image-specific

inductive bias

Patch + Position

Embedding

Extra learnable

[class] embedding

Linear Projection of Flattened Patches

mputational efficier



Embedded

[Problem 2]
High
computational
& memory cost

# **Vision Transformer**

Existing Vision Transformer models focus on efficiency

- By constraining the attention range with fine-grained patches (Swin Transformer)
- Or reducing sequence length with spatial reduction (Pyramid Vision Transformer)



Swin Transformer – Window self-attention





Pyramid Vision Transformer – Spatial reduction attention

**MPViT** Motivation

# Multi-Path Vision Transformer for Dense Prediction (MPViT)

- Dense prediction task: crucial to represent features at multiple scales
- [CoaT] Consider Cross-scale interaction but high computational and memory overhead
- Improve in multi-scale feature representation for ViT architectures

MPViT focus on how to effectively represent multi-scale features with Vision Transformers for dense prediction tasks



**MPViT** Motivation

# CoaT (Co-scale Conv-Attentional Image Transformers)

- [serial block] Enhanced multi-scale image representation: reduce resolution
- [parallel block] Cross-scale interaction: solve single-scale coarse patch embedding problem





CoaT-Lite

CoaT

MPViT Architecture

#### **MPViT Architecture**



# Multi-scale patch embedding (MS-PatchEmbed)



```
# dw
self.dwconv = nn.Conv2d(
    in_ch,
    out_ch,
    kernel_size,
    stride,
    (kernel_size - 1) // 2,
    groups=out_ch,
    bias=False,
)
# pw-linear
self.pwconv = nn.Conv2d(out_ch, out_ch, 1, 1, 0, bias=False)
```

- 3x3 Depth-wise convolutions: less param #, less cost
- All convolution layers are followed by BatchNorm and Hardswish activation
- 2D convolution operation  $F_{k \times k}$  has kernel size k \* k, stride s, padding p
- Input feature map from previous stage  $X_i \in \mathbb{R}^{H_{i-1} \times W_{i-1} \times C_{i-1}}$
- Output feature map of MS-PatchEmbed is  $F_{k \times k}(X_i) \in \mathbb{R}^{H_i \times W_i \times C_i}$ ,

• where 
$$H_i = \left\lfloor \frac{H_{i-1}-k+2p}{s} + 1 \right\rfloor$$
,  $W_i = \left\lfloor \frac{W_{i-1}-k+2p}{s} + 1 \right\rfloor$ 

# **Multi-Path Transformer (MP-Transformer)**

- Each transformer block can be substituted to other transformer methods
- Use Factorized attention method from CoaT (Co-scale Conv-Attentional Image Transformers)



B, N, C = x.shape

#### **Factorized Attention**

$$FactorAtt(Q, K, V) = \frac{Q}{\sqrt{C}}(softmax(K)^{T}V), Q, K, V \in \mathbb{R}^{N \times C}$$

- token # N, channel # C,  $N \gg C$  in general
- transformer encoder # h, layer # L
- Time complexity:  $O(LhNC^2)$
- Space complexity:  $O(LhC^2 + LhNC)$
- Reduce memory & computational cost

```
N×C
Factorized
                                                    Convolutional
Attention
                                                 Relative Position
                                                        Encodina
                               Depthwise Conv*
     Q
                                          Depthwise Conv
                                                H \times W \times C
                    Depthwise Conv*
                                                reshape
Convolutional
Position
Encoding
                  N \times C
                                             Matrix Product

    Hadamard Product

         Input Feature Map
                                             Elementwise Sum
```

Output Feature Map

#### **Global-to-Local Feature Interaction (GLI)**

- CNN: local connectivity each patch is processed by the same weights
- Transformer: capture long-range information, ignore local relationship within each patch
- Learns to interact between local & global features



- At stage i | Convolutional Local Feature  $L_i \in \mathbb{R}^{H_i \times W_i \times C_i}$ , transformer output of path j  $G_{i,j} \in \mathbb{R}^{H_i \times W_i \times C_i}$
- Aggregation of local and global features |  $A_i = Concat([L_i, G_{i.0}, G_{i.1}, ..., G_{i.i}]), A_i \in \mathbb{R}^{H_i \times W_i \times (j+1)C_i}$
- Final feature after 1x1 Convolution  $|X_{i+1} = H(A_i), X_{i+1} \in \mathbb{R}^{H_i \times W_i \times C_{i+1}}$



$$A_i = \text{Concat}([L_i, G_{i,0}, G_{i,1}, ..., G_{i,j}])$$
  
 $X_{i+1} = H(A_i),$ 

# **Model Configuration**

Time complexity:  $O(LhNC^2)$ 

Space complexity:  $O(LhC^2 + LhNC)$ 

Multi-path requires a reduction of C or L

- Reducing C is better than reducing L
- Triple-path structure: MPViT models use paths [2,3,3,3] in each of the 4 stages.

| MPViT       | #Layers      | Channels             | Param. | GFLOPs |
|-------------|--------------|----------------------|--------|--------|
| Tiny (T)    | [1, 2, 4, 1] | [ 64, 96, 176, 216]  | 5.7M   | 1.5    |
| XSmall (XS) | [1, 2, 4, 1] | [ 64, 128, 192, 256] | 10.5M  | 2.9    |
| Small (S)   | [1, 3, 6, 3] | [ 64, 128, 216, 288] | 22.8M  | 4.7    |
| Base (B)    | [1, 3, 8, 3] |                      | 74.8M  | 16.4   |



# ImageNet-1K classification

| Model             | Param.(M) | GFLOPs | Top-1       | Reference |
|-------------------|-----------|--------|-------------|-----------|
| DeiT-T [50]       | 5.7       | 1.3    | 72.2        | ICML21    |
| XCiT-T12/16 [17]  | 7.0       | 1.2    | 77.1        | NeurIPS21 |
| CoaT-Lite T [65]  | 5.7       | 1.6    | 76.6        | ICCV21    |
| MPViT-T           | 5.8       | 1.6    | 78.2 (+1.6) |           |
| ResNet-18 [23]    | 11.7      | 1.8    | 69.8        | CVPR16    |
| PVT-T [58]        | 13.2      | 1.9    | 75.1        | ICCV21    |
| XCiT-T24/16 [17]  | 12.0      | 2.3    | 79.4        | NeurIPS21 |
| CoaT Mi [65]      | 10.0      | 6.8    | 80.8        | ICCV21    |
| CoaT-Lite Mi [65] | 11.0      | 2.0    | 78.9        | ICCV21    |
| MPViT-XS          | 10.5      | 2.9    | 80.9 (+2.0) |           |

| ResNet-50 [23]   | 25.6 | 4.1  | 76.1        | CVPR16    |
|------------------|------|------|-------------|-----------|
| PVT-S [58]       | 24.5 | 3.8  | 79.8        | ICCV21    |
| DeiT-S/16 [50]   | 22.1 | 4.6  | 79.9        | ICML21    |
| Swin-T [37]      | 29.0 | 4.5  | 81.3        | ICCV21    |
| CvT-13 [60]      | 20.0 | 4.5  | 81.6        | ICCV21    |
| XCiT-S12/16 [17] | 26.0 | 4.8  | 82.0        | NeurIPS21 |
| Focal-T [67]     | 29.1 | 4.9  | 82.2        | NeurIPS21 |
| CoaT S [65]      | 22.0 | 12.6 | 82.1        | ICCV21    |
| CrossViT-15 [6]  | 28.2 | 6.1  | 82.3        | ICCV21    |
| CvT-21 [60]      | 32.0 | 7.1  | 82.5        | ICCV21    |
| CrossViT-18 [6]  | 43.3 | 9.5  | 82.8        | ICCV21    |
| CoaT-Lite S [65] | 20.0 | 4.0  | 81.9        | ICCV21    |
| MPViT-S          | 22.8 | 4.7  | 83.0 (+1.1) |           |
| ResNeXt-101 [64] | 83.5 | 15.6 | 79.6        | CVPR17    |
| PVT-L [58]       | 61.4 | 9.8  | 81.7        | ICCV21    |
| DeiT-B/16 [50]   | 86.6 | 17.6 | 81.8        | ICML21    |
| XCiT-M24/16 [17] | 84.0 | 16.2 | 82.7        | NeurIPS21 |
| Swin-B [37]      | 88.0 | 15.4 | 83.3        | ICCV21    |
| XCiT-S12/8 [17]  | 26.0 | 18.9 | 83.4        | NeurIPS21 |
| Focal-B [67]     | 89.8 | 16.0 | 83.8        | NeurIPS21 |
| MPViT-B          | 74.8 | 16.4 | 84.3        |           |

# **Object Detection and Instance Segmentation**

• IN1K pretrain, COCO dataset

|                     |             |           |        | Mask R        | -CNN 3      | × schedu | ıle + MS      |               |        | Retina        | Net 3×        | schedule | e + MS   |          |
|---------------------|-------------|-----------|--------|---------------|-------------|----------|---------------|---------------|--------|---------------|---------------|----------|----------|----------|
| Backbone            | Params. (M) | GFLOPs    | $AP^b$ | $AP_{50}^{b}$ | $AP_{75}^b$ | $AP^m$   | $AP_{50}^{m}$ | $AP_{75}^{m}$ | $AP^b$ | $AP_{50}^{b}$ | $AP_{75}^{b}$ | $AP_S^b$ | $AP_M^b$ | $AP_L^b$ |
| XCiT-T12/16 [17]    | 26          | 200       | 42.7   | 64.3          | 46.4        | 38.5     | 61.2          | 41.1          | -      | -             | -             | -        | -        | -        |
| XCiT-T12/8 [17]     | 26          | 266       | 44.5   | 66.4          | 48.8        | 40.4     | 63.5          | 43.3          | -      | -             | -             | -        | -        | -        |
| MPViT-T             | 28 (17)     | 216 (196) | 44.8   | 66.9          | 49.2        | 41.0     | 64.2          | 44.1          | 44.4   | 65.5          | 47.4          | 29.9     | 48.3     | 56.1     |
| PVT-T [58]          | 33 (23)     | 240 (221) | 39.8   | 62.2          | 43.0        | 37.4     | 59.3          | 39.9          | 39.4   | 59.8          | 42.0          | 25.5     | 42.0     | 52.1     |
| CoaT Mini [65]      | 30          | 307       | 46.5   | 67.9          | 50.7        | 41.8     | 65.3          | 44.8          | -      | -             | -             | -        | -        | -        |
| CoaT-Lite Mini [65] | 31          | 210       | 42.9   | 64.7          | 46.7        | 38.9     | 61.6          | 41.7          | -      | -             | -             | -        | -        | -        |
| MPViT-XS            | 30 (20)     | 231 (211) | 46.6   | 68.5          | 51.1        | 42.3     | 65.8          | 45.8          | 46.1   | 67.4          | 49.3          | 31.4     | 50.2     | 58.4     |
| PVT-S [58]          | 44 (34)     | 305 (226) | 43.0   | 65.3          | 46.9        | 39.9     | 62.5          | 42.8          | 42.2   | 62.7          | 45.0          | 26.2     | 45.2     | 57.2     |
| XCiT-S12/16 [17]    | 44          | 285       | 45.3   | 67.1          | 49.5        | 40.8     | 64.0          | 43.8          | -      | -             | -             | -        | -        | -        |
| Swin-T [37]         | 48 (39)     | 267 (245) | 46.0   | 68.1          | 50.3        | 41.6     | 65.1          | 44.9          | 45.0   | 65.9          | 48.4          | 29.7     | 48.9     | 58.1     |
| XCiT-S12/8 [17]     | 43          | 550       | 47.0   | 68.9          | 51.7        | 42.3     | 66.0          | 45.4          | -      | -             | -             | -        | -        | -        |
| Focal-T [67]        | 49 (39)     | 291 (265) | 47.2   | 69.4          | 51.9        | 42.7     | 66.5          | 45.9          | 45.5   | 66.3          | 48.8          | 31.2     | 49.2     | 58.7     |
| CoaT S [65]         | 42          | 423       | 49.0   | 70.2          | 53.8        | 43.7     | 67.5          | 47.1          | -      | -             | -             | -        | -        | -        |
| CoaT-Lite S [65]    | 40          | 249       | 45.7   | 67.1          | 49.8        | 41.1     | 64.1          | 44.0          | -      | -             | -             | -        | -        | -        |
| MPViT-S             | 43 (32)     | 268 (248) | 48.4   | 70.5          | 52.6        | 43.9     | 67.6          | 47.5          | 47.6   | 68.7          | 51.3          | 32.1     | 51.9     | 61.2     |
| PVT-M [58]          | 64 (54)     | 392 (283) | 44.2   | 66.0          | 48.2        | 40.5     | 63.1          | 43.5          | 43.2   | 63.8          | 46.1          | 27.3     | 46.3     | 59.9     |
| PVT-L [58]          | 81 (71)     | 494 (345) | 44.5   | 66.0          | 48.3        | 40.7     | 63.4          | 43.7          | 43.4   | 63.6          | 46.1          | 26.1     | 46.0     | 59.5     |
| XCiT-M24/16 [17]    | 101         | 523       | 46.7   | 68.2          | 51.1        | 42.0     | 65.5          | 44.9          | -      | -             | -             | -        | -        | -        |
| XCiT-S24/8 [17]     | 65          | 892       | 48.1   | 69.5          | 53.0        | 43.0     | 66.5          | 46.1          | -      | -             | -             | -        | -        | -        |
| XCiT-M24/8 [17]     | 99          | 1448      | 48.5   | 70.3          | 53.4        | 43.7     | 67.5          | 46.9          | -      | -             | -             | -        | -        | -        |
| Swin-S [37]         | 69 (60)     | 359 (335) | 48.5   | 70.2          | 53.5        | 43.3     | 67.3          | 46.6          | 46.4   | 67.0          | 50.1          | 31.0     | 50.1     | 60.3     |
| Swin-B [37]         | 107 (98)    | 496 (477) | 48.5   | 69.8          | 53.2        | 43.4     | 66.8          | 49.6          | 45.8   | 66.4          | 49.1          | 29.9     | 49.4     | 60.3     |
| Focal-S [67]        | 71 (62)     | 401 (367) | 48.8   | 70.5          | 53.6        | 43.8     | 67.7          | 47.2          | 47.3   | 67.8          | 51.0          | 31.6     | 50.9     | 61.1     |
| Focal-B [67]        | 110 (101)   | 533 (514) | 49.0   | 70.1          | 53.6        | 43.7     | 67.6          | 47.0          | 46.9   | 67.8          | 50.3          | 31.9     | 50.3     | 61.5     |
| MPViT-B             | 95 (85)     | 503 (482) | 49.5   | 70.9          | 54.0        | 44.5     | 68.3          | 48.3          | 48.3   | 69.5          | 51.9          | 32.3     | 52.2     | 62.3     |

# **Object Detection and Instance Segmentation**

• IN1K pretrain, COCO dataset

|                     |             |           |        | Mask R        | R-CNN 3     | × schedi | ıle + MS    |             | RetinaNet 3× schedule + MS |             |             |          |          |          |
|---------------------|-------------|-----------|--------|---------------|-------------|----------|-------------|-------------|----------------------------|-------------|-------------|----------|----------|----------|
| Backbone            | Params. (M) | GFLOPs    | $AP^b$ | $AP_{50}^{b}$ | $AP_{75}^b$ | $AP^m$   | $AP_{50}^m$ | $AP_{75}^m$ | $AP^b$                     | $AP_{50}^b$ | $AP_{75}^b$ | $AP_S^b$ | $AP_M^b$ | $AP_L^b$ |
| XCiT-T12/16 [17]    | 26          | 200       | 42.7   | 64.3          | 46.4        | 38.5     | 61.2        | 41.1        | -                          | -           | -           | -        | -        | -        |
| XCiT-T12/8 [17]     | 26          | 266       | 44.5   | 66.4          | 48.8        | 40.4     | 63.5        | 43.3        | -                          | -           | -           | -        | -        | -        |
| MPViT-T             | 28 (17)     | 216 (196) | 44.8   | 66.9          | 49.2        | 41.0     | 64.2        | 44.1        | 44.4                       | 65.5        | 47.4        | 29.9     | 48.3     | 56.1     |
| PVT-T [58]          | 33 (23)     | 240 (221) | 39.8   | 62.2          | 43.0        | 37.4     | 59.3        | 39.9        | 39.4                       | 59.8        | 42.0        | 25.5     | 42.0     | 52.1     |
| CoaT Mini [65]      | 30          | 307       | 46.5   | 67.9          | 50.7        | 41.8     | 65.3        | 44.8        | -                          | -           | -           | -        | -        | -        |
| CoaT-Lite Mini [65] | 31          | 210       | 42.9   | 64.7          | 46.7        | 38.9     | 61.6        | 41.7        | -                          | -           | -           | -        | -        | -        |
| MPViT-XS            | 30 (20)     | 231 (211) | 46.6   | 68.5          | 51.1        | 42.3     | 65.8        | 45.8        | 46.1                       | 67.4        | 49.3        | 31.4     | 50.2     | 58.4     |
| PVT-S [58]          | 44 (34)     | 305 (226) | 43.0   | 65.3          | 46.9        | 39.9     | 62.5        | 42.8        | 42.2                       | 62.7        | 45.0        | 26.2     | 45.2     | 57.2     |
| XCiT-S12/16 [17]    | 44          | 285       | 45.3   | 67.1          | 49.5        | 40.8     | 64.0        | 43.8        | -                          | -           | -           | -        | -        | -        |
| Swin-T [37]         | 48 (39)     | 267 (245) | 46.0   | 68.1          | 50.3        | 41.6     | 65.1        | 44.9        | 45.0                       | 65.9        | 48.4        | 29.7     | 48.9     | 58.1     |
| XCiT-S12/8 [17]     | 43          | 550       | 47.0   | 68.9          | 51.7        | 42.3     | 66.0        | 45.4        | -                          | -           | -           | -        | -        | -        |
| Focal-T [67]        | 49 (39)     | 291 (265) | 47.2   | 69.4          | 51.9        | 42.7     | 66.5        | 45.9        | 45.5                       | 66.3        | 48.8        | 31.2     | 49.2     | 58.7     |
| CoaT S [65]         | 42          | 423       | 49.0   | 70.2          | 53.8        | 43.7     | 67.5        | 47.1        | -                          | -           | -           | -        | -        | -        |
| CoaT-Lite S [65]    | 40          | 249       | 45.7   | 67.1          | 49.8        | 41.1     | 64.1        | 44.0        | -                          | -           | -           | -        | -        | -        |
| MPViT-S             | 43 (32)     | 268 (248) | 48.4   | 70.5          | 52.6        | 43.9     | 67.6        | 47.5        | 47.6                       | 68.7        | 51.3        | 32.1     | 51.9     | 61.2     |
| PVT-M [58]          | 64 (54)     | 392 (283) | 44.2   | 66.0          | 48.2        | 40.5     | 63.1        | 43.5        | 43.2                       | 63.8        | 46.1        | 27.3     | 46.3     | 59.9     |
| PVT-L [58]          | 81 (71)     | 494 (345) | 44.5   | 66.0          | 48.3        | 40.7     | 63.4        | 43.7        | 43.4                       | 63.6        | 46.1        | 26.1     | 46.0     | 59.5     |
| XCiT-M24/16 [17]    | 101         | 523       | 46.7   | 68.2          | 51.1        | 42.0     | 65.5        | 44.9        | -                          | -           | -           | -        | -        | -        |
| XCiT-S24/8 [17]     | 65          | 892       | 48.1   | 69.5          | 53.0        | 43.0     | 66.5        | 46.1        | -                          | -           | -           | -        | -        | -        |
| XCiT-M24/8 [17]     | 99          | 1448      | 48.5   | 70.3          | 53.4        | 43.7     | 67.5        | 46.9        | -                          | -           | -           | -        | -        | -        |
| Swin-S [37]         | 69 (60)     | 359 (335) | 48.5   | 70.2          | 53.5        | 43.3     | 67.3        | 46.6        | 46.4                       | 67.0        | 50.1        | 31.0     | 50.1     | 60.3     |
| Swin-B [37]         | 107 (98)    | 496 (477) | 48.5   | 69.8          | 53.2        | 43.4     | 66.8        | 49.6        | 45.8                       | 66.4        | 49.1        | 29.9     | 49.4     | 60.3     |
| Focal-S [67]        | 71 (62)     | 401 (367) | 48.8   | 70.5          | 53.6        | 43.8     | 67.7        | 47.2        | 47.3                       | 67.8        | 51.0        | 31.6     | 50.9     | 61.1     |
| Focal-B [67]        | 110 (101)   | 533 (514) | 49.0   | 70.1          | 53.6        | 43.7     | 67.6        | 47.0        | 46.9                       | 67.8        | 50.3        | 31.9     | 50.3     | 61.5     |
| MPViT-B             | 95 (85)     | 503 (482) | 49.5   | 70.9          | 54.0        | 44.5     | 68.3        | 48.3        | 48.3                       | 69.5        | 51.9        | 32.3     | 52.2     | 62.3     |

# **Semantic Segmentation**

| Backbone         | Params. | <b>GFLOPs</b> | mIoU |
|------------------|---------|---------------|------|
| Swin-T [37]      | 59M     | 945           | 44.5 |
| Focal-T [67]     | 62M     | 998           | 45.8 |
| XCiT-S12/16 [17] | 54M     | 966           | 45.9 |
| XCiT-S12/8 [17]  | 53M     | 1237          | 46.6 |
| MPViT-S          | 52M     | 943           | 48.3 |
| XCiT-S24/16 [17] | 76M     | 1053          | 46.9 |
| Swin-S [37]      | 81M     | 1038          | 47.6 |
| XCiT-M24/16 [17] | 112M    | 1213          | 47.6 |
| Focal-S [67]     | 85M     | 1130          | 48.0 |
| Swin-B [37]      | 121M    | 1841          | 48.1 |
| XCiT-S24/8 [17]  | 74M     | 1587          | 48.1 |
| XCiT-M24/8 [17]  | 110M    | 2161          | 48.4 |
| Focal-B [67]     | 126M    | 1354          | 49.0 |
| MPViT-B          | 105M    | 1186          | 50.3 |

- IN1K pretrain MPViT + UperNet
- ADE20k dataset

# Ablation study

#### Exploring path dimension

| Path       | Spec                                       | Param. | GFLOPs | Memory | img/sec | Top-1      | APbox            | AP <sup>mask</sup> |
|------------|--------------------------------------------|--------|--------|--------|---------|------------|------------------|--------------------|
| Single     | [1,1,1,1]P_[2,2,2,2]L_[64, 128, 320, 512]C | 11.0M  | 1.9    | 9216   | 1195    | 78.9       | 40.2             | 37.3               |
| (a) Dual   | [2,2,2,2]P_[1,2,4,1]L_[64, 128, 256, 320]C | 10.9M  | 2.6    | 6054   | 945     | 80.7+1.8   | 42.6+2.4         | 39.1+1.8           |
| (b) Triple | [2,3,3,3]P_[1,1,2,1]L_[64, 128, 256, 320]C | 10.8M  | 2.3    | 6000   | 1080    | 79.8 + 0.9 | 41.4+1.2         | 38.0+0.7           |
| (c) Triple | [2,3,3,3]P_[1,2,4,1]L_[64, 128, 192, 256]C | 10.1M  | 2.7    | 5954   | 803     | 80.5 + 1.6 | <b>43.0</b> +2.8 | <b>39.4</b> +2.1   |
| (d) Quad   | [2,4,4,4]P_[1,2,4,1]L_[64, 96, 176, 224]C  | 10.5M  | 2.6    | 5990   | 709     | 80.5 + 1.6 | 42.4+2.2         | 38.8+1.5           |

Table 5. **Exploring the path dimension.** Spec means [#path\_per\_stage]P, [#layer\_per\_stage]L and [dimension\_per\_stage]C. We measure inference throughput and peak GPU memory usage on V100 GPU with batch size of 256. Note that the single-path is CoaT-Lite Mini [65].

- Reducing C is better than reducing L for both performance and memory
- Triple-path structure

# Ablation study

| Path                           | Param. | GFLOPs | Top-1 | AP <sup>b</sup> /AP <sup>m</sup> |
|--------------------------------|--------|--------|-------|----------------------------------|
| Single (CoaT-Lite Mini)        | 11.01M | 1.99   | 78.9  | 40.2 / 37.3                      |
| + Triple (p=[3,5,7], parallel) | 10.18M | 2.78   | 80.3  | 41.7 / 38.4                      |
| + Triple (p=[3,3,3], series)   | 10.15M | 2.67   | 80.5  | 43.0 / 39.4                      |
| + GLI (Sum)                    | 10.13M | 2.82   | 80.3  | 43.0 / 39.5                      |
| + GLI (Concat.)                | 10.57M | 2.97   | 80.8  | 43.3 / 39.7                      |

Multi-Scale Embedding

GLI aggregation method

#### **Multi-Scale Embedding**

• better to use three convolution layers in series - for performance, model size, and FLOPs

### **GLI** aggregation method

- Concatenation shows improvement on both classification and detection tasks
- Summing naively mixes the features, but concatenation preserves them

2. MPViT Discussion

#### Qualitative Analysis – Attention maps



Figure 4. **Attention maps** generated by CoaT-Lite and MPViT at stage4. MPViT has a triple-path structure with patches of various sizes (e.g.,  $3 \times 3$ ,  $5 \times 5$ ,  $7 \times 7$ ), leading to fine and coarse features.

| Path       | Spec                                       | Param. | GFLOPs | Memory | img/sec | Top-1      | APbox            | AP <sup>mask</sup> |
|------------|--------------------------------------------|--------|--------|--------|---------|------------|------------------|--------------------|
| Single     | [1,1,1,1]P_[2,2,2,2]L_[64, 128, 320, 512]C | 11.0M  | 1.9    | 9216   | 1195    | 78.9       | 40.2             | 37.3               |
| (a) Dual   | [2,2,2,2]P_[1,2,4,1]L_[64, 128, 256, 320]C | 10.9M  | 2.6    | 6054   | 945     | 80.7+1.8   | 42.6+2.4         | 39.1+1.8           |
| (b) Triple | [2,3,3,3]P_[1,1,2,1]L_[64, 128, 256, 320]C | 10.8M  | 2.3    | 6000   | 1080    | 79.8 + 0.9 | 41.4 + 1.2       | 38.0+0.7           |
| (c) Triple | [2,3,3,3]P_[1,2,4,1]L_[64, 128, 192, 256]C | 10.1M  | 2.7    | 5954   | 803     | 80.5 + 1.6 | <b>43.0</b> +2.8 | <b>39.4</b> +2.1   |
| (d) Quad   | [2,4,4,4]P_[1,2,4,1]L_[64, 96, 176, 224]C  | 10.5M  | 2.6    | 5990   | 709     | 80.5 + 1.6 | 42.4+2.2         | 38.8+1.5           |

- Visualize attention maps for each path
- Attention maps from CoaT-Lite and path-1 have similar patch sizes and show similar attention maps
- Path-1: fine patches, small objects, low-level representation
- Path-3: larger patches, object centric, high-level representation

2. MPViT Discussion

# Qualitative Analysis – Attention maps



- Three paths act in a complementary manner, which is beneficial for dense prediction tasks
- Difficult to capture all objects with a single path

2. MPViT Discussion

### Qualitative Analysis - Failure cases



Figure 7. **Attention Maps of failure cases on ImageNet** *validation* **images.** The input image and corresponding attention maps from each path are illustrated. In the rightmost column, we show the ground truth labels and predicted labels colored with red and blue, respectively.

#### References

- MPViT: <a href="https://arxiv.org/pdf/2112.11010.pdf">https://arxiv.org/pdf/2112.11010.pdf</a>
- MPViT code:

https://github.com/youngwanLEE/MPViT/blob/e2d86e6c465abc4847e601f8a401bdd16 92836f7/mpvit.py#L128

- CoaT: <a href="https://arxiv.org/pdf/2104.06399.pdf">https://arxiv.org/pdf/2104.06399.pdf</a>
- SwinT: <a href="https://arxiv.org/abs/2103.14030">https://arxiv.org/abs/2103.14030</a>
- Pyramid Vision Transformer: <a href="https://arxiv.org/abs/2102.12122">https://arxiv.org/abs/2102.12122</a>
- XCiT: https://arxiv.org/abs/2106.09681

Thank you