Inspiracja – symulowany samochód autonomiczny

pythonprogramming.net

Tor, scenariusze

- PNG 1920x1080, kanały RGB
- skala 22 piksele = 1 m
- szerokość toru i margines od innych elementów 3-4 m
- pętla jednokierunkowa, możliwe skrzyżowania

- scenariusz = sekwencja manewrów
- manewr jako element treningu pokonywania typowego fragmentu topologii
- manewr = obszar startowy + cel
- obszar startowy musi obejmować fragment toru, może obejmować trawnik
- cel zawsze "z przodu"
- CSV, 1 scenariusz, maks. 8 manewrów

Kodowanie kolorów

- Trawnik ma kolor 200,200,255
- Preferowana gradacja na łukach
- Kanał G koduje istotność zalecanego kierunku i prędkości jazdy

Organizacja kodu

- Kontrakty dla środowiska symulacyjnego i uczącego ustanowione w klasach bazowych
 - TurtlesimEnvBase
 - DqnBase
- Przykładowa implementacja środowiska 1-agentowego
 - TurtlesimEnvSingle
- Ucząc, sprawdzić wpływ wybranych parametrów na rozwiązanie
 - * nie zmieniać
 - > nie zwiększać
 - < nie zmniejszać
- Uzupełnić brakujące fragmenty kodu:
 - # TODO STUDENCI

```
• • •
```

```
class TurtleAgent: # struktura ze stałymi i bieżącymi
                       # route, sec_id, seq, color_api, g
   pass
class TurtlesimEnvBase(metaclass=abc.ABCMeta):
   # określa parametry symulacji (poniższy zestaw i warto
   def init (self):
       # parametry czujnika wizyjnego i interakcji z symu
       self.GRID RES = 5
                                # liczba komórek s
       self.CAM RES = 200
                                     # dł. boku siatki
       self.SEC PER STEP = 1.0 #*okres dyskretyza
       self.WAIT AFTER MOVE = .01 # oczekiwanie po s
       # parametry oceny sytuacyjnej
                                       #>wzmocnienie nagr
       self.SPEED RWRD RATE = 0.5
                                       #<wzmocnienie kary
       self.SPEED RVRS RATE = -10.0
       self.SPEED FINE RATE = -10.0
                                       #<wzmocnienie kary
       self.DIST RWRD RATE = 2.0
                                       #>wzmocnienie nagr
       self.OUT OF TRACK FINE = -10
                                       #<ryczałtowa kara
       self.COLLISION_DIST = 1.5
                                      #*odległość wykryc
                                       # tryb wykrywania
       self.DETECT COLLISION = False
                                       # maksymalna liczb
       self.MAX STEPS = 20
       self.PI BY = 6
                                       #*dzielnik zakresu
    uzupełnić setup() i reset()
```

class TurtlesimEnvSingle(TurtlesimEnvBase):

uzupełnić step()

```
def __init__(self):
    super().__init__()
def step(self,actions,realtime=False):...
```

Świadomość sytuacyjna (klasa bazowa)

get_map(tname)

Symulacja kroku sterowania (klasa pochodna)

step(actions, realtime)
action[0] - wartość przesunięcia/prędkości do przodu [m]
action[1] - wartość skrętu w lewo [rad]

Składniki nagrody:

- kara proporcjonalna do przekroczenia prędkości
- nagroda proporcjonalna do przemieszczenia w zalecanym kierunku ruchu $^{\prime}$ $^{\prime}$ $^{\prime}$ * f_a
- kara proporcjonalna do jazdy pod prąd
- nagroda za zbliżanie się do celu, $f_d(t+1) f_d(t)$
- kara za wypadnięcie z trasy

Uczenie się ze wzmocnieniem w dyskretnej przestrzeni stanów

 $Q(\mathbf{s}, a)$ – ocena akcji a w stanie \mathbf{s} $r(\mathbf{s}, a)$ – nagroda za akcję a w stanie \mathbf{s} f – funkcja stanu obiektu, $\mathbf{s}' = f(\mathbf{s}, a)$ $\max Q(\mathbf{s}', a')$ – najlepsza z ocen

 α – szybkość uczenia

 γ – dyskonto (uwzględnianie przyszłych nagród)

Funkcja Q ocenia każde możliwe sterowanie w każdym możliwym stanie. Jeśli stanów i sterowań jest mało, można (i należy) przechowywać jej wartości w tablicy.

Jeśli przestrzeń stanów jest ciągła, zakładamy że Q nie jest tabelą, ale funkcją określonej klasy (np. definiowaną przez sieć głęboką) i poszukujemy jej parametrów.

Uczenie się ze wzmocnieniem w ciągłej przestrzeni stanów = poszukiwanie $Q(\mathbf{s}, a)$

DqnSingle.train_main()

Strojenie (ulepszanie) funkcji $Q(\mathbf{s}, a)$ Powtarzaj:

- zrób kilka kroków, dodaj do historii
- wylosuj próbkę kroków z historii
- wyznacz $\max_{a'} Q(\mathbf{s'}, a')$ dla każdego kroku z próbki
- wyznacz nowe pożądane wartości $Q(\mathbf{s},a)$
- doucz sieć na wybranej próbce

DqnSingle.replay_memory=
$$[(s, a, r, s'), ...]$$

$$Q(\mathbf{s}, a) = r(\mathbf{s}, a) + \gamma \max_{a'} Q(\mathbf{s}', a')$$

$$Q(\mathbf{s}, a) \coloneqq (1 - \alpha)Q(\mathbf{s}, a) + \alpha \left[r(\mathbf{s}, a) + \gamma \max_{a'} Q(\mathbf{s'}, a') \right]$$

Dwie sieci – doraźna i docelowa

Strojenie (ulepszanie) funkcji $Q(\mathbf{s}, a)$ Powtarzaj:

- zrób kilka kroków, dodaj do historii
- wylosuj próbkę kroków z historii
- wyznacz $\max_{a'} Q(\mathbf{s'}, a')$ dla każdego kroku z próbki
- wyznacz nowe pożądane wartości $Q(\mathbf{s},a)$
- doucz sieć na wybranej próbce

$$Q(\mathbf{s}, a) = r(\mathbf{s}, a) + \gamma \max_{a'} Q(\mathbf{s}', a')$$

$$Q(\mathbf{s}, a) = r(\mathbf{s}, a) + \gamma \max_{a'} Q(\mathbf{s}', a')$$

action[0] - wartość przesunięcia do przodu [m]
action[1] - wartość skrętu w lewo [rad]

DqnSingle. ctl2act()

8@5x5

$ct_{12act()}$ prędkość\skręt -0,1 rad 0 0,1 rad c = 0,2 m/s c[0] c[1] c[2] dowiska 0,4 m/s c[3] c[4] c[5]

W etapie 3:

- uzupełnij kod w klasach środowiska
- wytrenuj sieć na własnej planszy
- popraw wyniki, zmieniając co najmniej 2 parametry klas i co najmniej 1 parametr lub strukturę sieci neuronowej

DqnSingle.make_model()

http://alexlenail.me/NN-SVG/LeNet.html

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

https://pythonprogramming.net/reinforcement-learning-self-driving-autonomous-cars-carla-python/?completed=/reinforcement-learning-agent-self-driving-autonomous-cars-carla-python/

6

7

Jak przygotować i przekazać wyniki etapu 3

W katalogu projektu:

- pełna implementacja klas środowiska i uczenia DQN
- plansza i scenariusz
- model lub modele godne pokazania, w formacie tf
- skrypt w Pythonie symulujący zachowanie agenta, np. play_single_handout.py

W uzgodnieniu z prowadzącym:

- zawartość katalogu projektowego
 ALBO
- obraz maszyny wirtualnej
 ALBO
- obraz Dockera

Wersja wieloagentowa środowiska

Uzupełnia klasę bazową:

- liczniki kroków indywidualne dla agentów
- step() przesuwa wybrane agenty
- wykrywanie kolizji

å

zwraca słownik sytuacji poruszonych agentów

泰

-0

```
agent1;2;18;22.54545455;9.045454545;13.59090909;16.8
agent1;2;16.13636364;20.68181818;17;21.54545455;25.0
agent1;2;15.95454545;20.5;33.5;38.04545455;22.772727
agent1;2;38.5;43.04545455;40.77272727;45.31818182;49
agent1;2;45.13636364;49.68181818;28.09090909;32.6363
agent1;2;40.95454545;45.5;9.227272727;13.77272727;33
```

```
> scene = {dict: 12} {'agent1_4_0':
  > 1 'agent1 4 0' = {tuple: 4} ((arra
  > 1 'agent1 1 0' = {tuple: 4} ((arra
  > 1 'agent1 2 1' = {tuple: 4} ((arra
  > 1 'agent1 3 0' = {tuple: 4} ((arra
  > 1 'agent1 2 0' = {tuple: 4} ((arra
  'agent1 1 1' = {tuple: 4} ((arra
     \equiv 0 = {ndarray: (5, 5)} [[0.
          = 1 = {ndarray: (5, 5)} [[0.
       > = 2 = {ndarray: (5, 5)} [[1.
       > = 3 = {ndarray: (5, 5)} [[ 4.4
          4 = {ndarray: (5, 5)} [[1.
            5 = \{ndarray: (5, 5)\} [[1.
            6 = \{ndarray: (5, 5)\} [[1. ]
          or len = {int} 7
       1 = {float64} 0.6723305908
```

Wersja wieloagentowa klasy uczącej

Uzupełnia klasę jednoagentową:

- wejście sieci 5x5x10 (+inni)
- pętla treningowa zorientowana na kroki symulacji
- wykrywanie i selektywne odradzanie agentów zatrzymanych przez środowisko
- douczanie z bieżących ruchów wszystkich agentów

Jak uczyć:

- model bezkolizyjny (tylko pokonanie trasy)
- douczanie z wykrywaniem kolizji

```
scene = {dict: 12} {'agent1 4 0':
> = 'agent1 4 0' = {tuple: 4} ((arra
> 1 'agent1 1 0' = {tuple: 4} ((arra
> 1 | 'agent1 2 1' = {tuple: 4} ((arra
'agent1 3 0' = {tuple: 4} ((arra
> 1 'agent1 2 0' = {tuple: 4} ((arra
'agent1 11' = {tuple: 4} ((arra
  \equiv 0 = {ndarray: (5, 5)} [[0.
       = 1 = {ndarray: (5, 5)} [[0.
       2 = {ndarray: (5, 5)} [[1.
     > = 3 = {ndarray: (5, 5)} [[ 4.4
        4 = {ndarray: (5, 5)} [[1.
           = {ndarray: (5, 5)} [[1.
          len = {int} 7
     1 = {float64} 0.6723305908
```