IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

08.10.2025

Hoy...

Relaciones: órdenes parciales y totales.

Órdenes

Definición

Sea A un conjunto y R una relación sobre A. Entonces, R es un **órden** si R es refleka, antisimétrica y transitiva, es decir:

- a) aRa para todo $a \in A$;
- b) $(aRb \land bRa) \rightarrow a = b \text{ para todos } a, b \in A;$
- c) $(aRB \land bRc) \rightarrow a = c$ para todos $a, b, c \in A$.

Órdenes

Definición

Sea A un conjunto y R una relación sobre A. Entonces, R es un **órden** si R es refleka, antisimétrica y transitiva, es decir:

- a) aRa para todo $a \in A$;
- b) $(aRb \land bRa) \rightarrow a = b \text{ para todos } a, b \in A;$
- c) $(aRB \land bRc) \rightarrow a = c$ para todos $a, b, c \in A$.

Definición

Sea R un orden sobre un conjunto A. Entonces, R es un orden total (o lineal) si aRb \lor bRa para todos a, b \in A.

Órdenes y DAGs

Proposición

Sea G un grafo dirigido acíclico con el conjunto de los vertices V. Entonces, la relación

 $uRv \iff existe \ un \ camino \ dirigido \ de \ v \ a \ u, \qquad u,v \in V$

es un orden sobre V

Órdenes y DAGs

Proposición

Sea G un grafo dirigido acíclico con el conjunto de los vertices V. Entonces, la relación

 $uRv \iff existe \ un \ camino \ dirigido \ de \ v \ a \ u, \qquad u,v \in V$

es un orden sobre V

Ejercicio

Dar un ejemplo de un orden en cual la relación "ser comparable" no es transitiva.

El orden del inclusion

Proposición

Sea A un conjunto. Entonces, \subseteq es un orden sobre $\mathcal{P}(A)$ (que se llama el **orden de inclusión**).

El orden del inclusion

Proposición

Sea A un conjunto. Entonces, \subseteq es un orden sobre $\mathcal{P}(A)$ (que se llama el **orden de inclusión**).

Ejercicio

¿Para que A ese orden es total?

Ejercicio

Retratar el orden de inclusión sobre $\mathcal{P}(\{1,2,3\})$ como un DAG.

iGracias!