SEMAINE 1

ALGÈBRE GÉNÉRALE

EXERCICE 1:

- 1. Soit G un groupe fini, soient x et y deux éléments de G qui commutent. On note $m = \omega(x)$, $n = \omega(y)$ les ordres respectifs des éléments x et y.
 - a. On suppose m et n premiers entre eux. Montrer que $\omega(xy) = mn$.
 - **b.** On ne suppose plus m et n premiers entre eux. A-t-on $\omega(mn) = m \vee n$?
- **2.** Soit G un groupe commutatif fini. Montrer qu'il existe un élément z de G dont l'ordre est l'exposant du groupe G (c'est-à-dire le p.p.c.m. des ordres des éléments de G).
- 3. Soit K un corps (commutatif), soit G un sous-groupe fini du groupe multiplicatif K^* . Montrer que G est cyclique.

Sources : nombreuses (c'est archi-classique), parmi lesquelles Michel DEMAZURE, Cours d'Algèbre, éditions Cassini, ISBN 2-84225-000-1.

1.a. Posons z = xy. On a $z^{mn} = (xy)^{mn} = (x^m)^n (y^n)^m = e$, donc $\omega(z) \mid mn$.

D'autre part, comme $m \wedge n = 1$, il existe deux entiers relatifs u et v tels que um + vn = 1 (relation de Bézout). Alors

$$z^{um} = x^{um}y^{um} = x^{um}y^{1-vn} = (x^m)^u y (y^n)^{-v} = eye = y$$

et, de même, $z^{vn}=x$. Donc x et y appartiennent au sous-groupe < z> engendré par z, mais ce sous-groupe est cyclique d'ordre $\omega(z)$. On en déduit que les ordres de x et de y divisent l'ordre de z, donc leur p.p.c.m. divise aussi l'ordre de z, soit $mn \mid \omega(z)$.

Finalement, $\omega(z) = mn$.

- **b.** Si $m \wedge n \neq 1$, on n'a plus $\omega(xy) = m \vee n$ en général. En effet, dans le groupe $\mathcal{U}_3 = \{1, j, j^2\}$, on a $\omega(j) = \omega(j^2) = 3$, mais $\omega(j) = \omega(1) = 1$.
- **2.** Soit n l'exposant du groupe G. Décomposons n en produit de facteurs premiers : $n = \prod_{i=1}^{\kappa} p_i^{\alpha_i}$.

Alors, pour tout i, il existe dans G un élément x_i d'ordre $p_i^{\alpha_i}$: en effet, il existe au moins un élément y_i de G tel que la p_i -valuation de $\omega(y_i)$ soit α_i , c'est-à-dire $\omega(y_i) = p_i^{\alpha_i} m_i$ avec $m_i \wedge p_i = 1$. Alors $(y_i^{m_i})^{p_i^{\alpha_i}} = e$. L'ordre de l'élément $y_i^{m_i}$ divise $p_i^{\alpha_i}$, donc est de la forme p_i^{β} avec $\beta \leq \alpha_i$; si on avait $\beta < \alpha_i$, alors on aurait $(y_i^{m_i})^{p_i^{\beta}} = y_i^{\beta} m_i = e$, ce qui contredit $\omega(y_i) = p_i^{\alpha_i} m_i$. On a donc bien $\omega(y_i^{m_i}) = p_i^{\alpha_i}$.

En utilisant la question **1.a.**, par une récurrence immédiate sur k, on déduit que l'élément $y = \prod_{i=1}^k y_i^{m_i}$ est d'ordre n.

3. Soit N l'ordre du groupe G, soit n son exposant (cf. ci-dessus), soit z un élément de G d'ordre n. Par le théorème de Lagrange, on a $n \mid N$.

Par ailleurs, le polynôme $P = X^n - 1$ de K[X] admet au plus n racines dans K et, tout élément de G étant racine de P, on a $N \le n$.

En conclusion, n = N, donc G est cyclique (G est engendré par z).

EXERCICE 2:

Soit p un nombre premier, $p \geq 3$.

- 1. Combien y a-t-il de carrés dans le corps $K = \mathbf{Z}/p\mathbf{Z}$?
- 2. Montrer qu'un élément x de $\left(\mathbf{Z}/p\mathbf{Z}\right)^*$ est un carré si et seulement si $x^{\frac{p-1}{2}} = \overline{1}$.
- 3. Quels sont les nombres premiers p pour lesquels $-\overline{1}$ est un carré dans $\mathbf{Z}/p\mathbf{Z}$?
- **4.** En déduire qu'il existe une infinité de nombres premiers de la forme $4k+1, k \in \mathbb{N}$.

Source: Daniel PERRIN, Cours d'Algèbre, éditions Ellipses, ISBN 2-7298-5552-1.

1. Soit $G = \left(\frac{\mathbf{Z}}{p}\mathbf{Z}\right)^*$ le groupe multiplicatif des éléments non nuls du corps $K = \left[\frac{\mathbf{Z}}{p}\mathbf{Z}\right]^*$ L'application $q: x \mapsto x^2$ est un endomorphisme de ce groupe G et $\ker q = \{-\overline{1}, \overline{1}\}$: en effet, $\{-\overline{1}, \overline{1}\} \subset \ker q, -\overline{1} \neq \overline{1} \operatorname{car} p > 2$ et le polynôme $X^2 - \overline{1}$, à coefficients dans le corps K, admet au plus deux racines dans ce corps.

On a donc $|\operatorname{Ker} q| = 2$, d'où $|\operatorname{Im} q| = \frac{|G|}{|\operatorname{Ker} q|} = \frac{p-1}{2}$. En rajoutant l'élément $\overline{0}$ qui est son propre carré, on dénombre $\frac{p+1}{2}$ carrés dans $\mathbf{Z}/p\mathbf{Z}$.

 $\textbf{2.} \text{ Si } x=y^2 \text{ avec } y \in G = \left(\left. \mathbf{Z} \middle/_{p} \mathbf{Z} \right)^*, \text{ alors } \left. x \right.^{\frac{p-1}{2}} = y^{p-1} = \overline{1} \text{ car } |G| = p-1 \text{ (th\'eor\`eme de Lagrange)}.$

Les carrés de G (qui sont au nombre de $\frac{p-1}{2}$ d'après la question $\mathbf{1}$.) sont racines de l'équation (\mathbf{E}) : $x^{\frac{p-1}{2}} - \overline{1} = \overline{0}$; mais cette équation admet au plus $\frac{p-1}{2}$ racines dans le corps K. L'équation (\mathbf{E}) admet donc exactement $\frac{p-1}{2}$ racines dans K qui sont les carrés de $\left(\frac{\mathbf{Z}}{p}\mathbf{Z}\right)^*$.

3. Etant donné que p > 2 (donc $-\overline{1} \neq \overline{1}$ dans $\mathbf{Z}/p\mathbf{Z}$), on a les équivalences

$$-\overline{1}\operatorname{carr\acute{e}}\iff \left(-\overline{1}\right)^{\frac{p-1}{2}}=\overline{1}\iff \left(-1\right)^{\frac{p-1}{2}}=1\iff \frac{p-1}{2}\operatorname{pair}\iff p\equiv 1\operatorname{modulo}4\;.$$

4. Soit $n \in \mathbb{N}^*$, montrons qu'il existe des nombres premiers congrus à 1 modulo 4 qui sont plus grands que n.

Pour cela, posons $A = (n!)^2 + 1$.

Tout diviseur premier p de A vérifie p > n (les nombres premiers p tels que $p \le n$ divisent $(n!)^2 = A - 1$). Soit p un tel diviseur (il en existe au moins un) ; on a $(n!)^2 \equiv -1$ modulo p, donc $-\overline{1}$ est un carré dans $\mathbf{Z}/p\mathbf{Z}$, donc $p \equiv 1$ modulo 4. CQFD

EXERCICE 3:

- 1. Soit A un anneau principal, soit K son corps des fractions. Pour tout polynôme P non nul de A[X], on note c(P) -contenu de P- le pgcd des coefficients du polynôme P (c'est un élément de A défini "à association près", c'est-à-dire à multiplication près par un élément inversible de l'anneau A). Le polynôme P de A[X] est dit **primitif** si c(P) = 1 (ses coefficients sont premiers entre eux dans leur ensemble).
 - **a.** Montrer que le produit de deux polynômes primitifs de A[X] est primitif. Que vaut c(PQ) si P et Q sont deux polynômes non nuls de A[X]?
 - **b.** Soient P et Q deux polynômes de A[X], premiers entre eux dans A[X] (leurs seuls diviseurs communs sont les éléments inversibles de l'anneau A[X], c'est-à-dire...?). Montrer qu'ils sont premiers entre eux dans l'anneau K[X].
- **2.** Soient P et Q deux polynômes de $\mathbb{C}[X,Y] = \mathbb{C}[X][Y]$, premiers entre eux dans $\mathbb{C}[X,Y]$.
 - a. Démontrer l'existence d'un polynôme D non nul de $\mathbb{C}[X]$ et de deux polynômes A et B de $\mathbb{C}[X,Y]$ tels que

$$D(X) = A(X,Y) P(X,Y) + B(X,Y) Q(X,Y)$$
.

b. Montrer que le système (S) : $\begin{cases} P(x,y) = 0 \\ Q(x,y) = 0 \end{cases}$ a un nombre fini de solutions dans \mathbb{C}^2 .

Sources:

- Daniel PERRIN, Cours d'Algèbre, Éditions Ellipses, ISBN 2-7298-5552-1;
- FRANCINOU et GIANELLA, Exercices de Mathématiques pour l'Agrégation, Algèbre 1, Éditions Masson, ISBN 2-225-84366-X.
- ENS Lyon/Cachan, épreuve du concours MP*, session 2000.

1.a. Posons $P = \sum_{i=0}^{m} a_i X^i$ et $Q = \sum_{j=0}^{n} b_j X^j$, supposons-les tous les deux primitifs. Si le produit

PQ n'était pas primitif, il existerait un élément irréductible (ou "premier") p de l'anneau A divisant tous les coefficients de PQ, à savoir tous les $c_k = \sum_{i+j=k} a_i b_j$. Comme p ne divise pas tous

les coefficients de A, soit i_0 le plus petit indice i pour lequel p ne divise pas a_i , soit de même $j_0 = \min\{j \in [\![1,n]\!] : b_j \notin pA\}$. On a alors

$$c_{i_0+j_0} = \sum_{i+j=i_0+j_0} a_i b_j = a_{i_0} b_{j_0} + \sum_{i< i_0} a_i b_{i_0+j_0-i} + \sum_{j< j_0} a_{i_0+j_0-j} b_j.$$

L'élément irréductible p divise les deux dernières sommes et divise $c_{i_0+j_0}$, il divise donc aussi le produit $a_{i_0}b_{j_0}$, donc il divise l'un des facteurs, ce qui est absurde.

On a utilisé ici le lemme d'Euclide, valable dans tout anneau principal (ou, plus généralement, factoriel) : si p est irréductible et $p \mid ab$, alors $p \mid a$ ou $p \mid b$.

Il est clair que, si $a \in A$ et $P \in A[X]$, alors c(aP) = a c(P).

Si P et Q sont deux polynômes quelconques, on peut écrire $P = c(P) \cdot P_0$ et $Q = c(Q) \cdot Q_0$, où P_0 et Q0 sont primitifs ; alors P_0Q_0 est primitif et

$$c(PQ) = c(c(P) c(Q) \cdot P_0 Q_0) = c(P)c(Q) c(P_0 Q_0) = c(P)c(Q)$$
.

b. Soient P et Q deux polynômes de A[X], premiers entre eux dans A[X] (leurs seuls diviseurs communs dans A[X] sont les éléments inversibles de l'anneau A). Il s'agit de montrer qu'ils sont premiers entre eux dans K[X], c'est-à-dire que leurs seuls diviseurs communs dans K[X] sont les constantes (éléments de K). Écrivons $P = c(P) \cdot P_0$ et $Q = c(Q) \cdot Q_0$ avec P_0 et Q_0 primitifs. Soit

D un diviseur commun à P et Q dans K[X]: il existe R et S dans K[X] tels que $\begin{cases} P = DR \\ Q = DS \end{cases}$ (*).

On peut écrire $D = \frac{d_1}{d_2}D_0$ avec $d_1 \in A$, $d_2 \in A$ premiers entre eux, et $D_0 \in A[X]$ primitif: pour cela, on réduit au même dénominateur les coefficients de D, ce qui donne $D = \frac{\Delta}{b}$ avec $\Delta \in A[X]$ et $b \in A \setminus \{0\}$, puis $D = \frac{c(\Delta)}{b} D_0$ avec D_0 primitif, et on simplifie éventuellement la fraction $\frac{c(\Delta)}{b}$:

Par exemple, avec $A = \mathbf{Z}$ et $K = \mathbb{Q}$, on a $\frac{6}{7} + \frac{3}{8}X + \frac{15}{4}X^2 = \frac{3}{56}(16 + 7X + 70X^2)$ et le polynôme entre parenthèses est primitif dans $\mathbf{Z}[X]$.

De même, $R = \frac{r_1}{r_2}R_0$ et $S = \frac{s_1}{s_2}S_0$ avec R_0 et S_0 dans A[X], primitifs. Le système (*) se réécrit alors sous la forme d'égalités dans A[X]:

$$\begin{cases} d_2 r_2 c(P) \cdot P_0 = d_1 r_1 D_0 R_0 \\ d_2 s_2 c(Q) \cdot Q_0 = d_1 s_1 D_0 S_0 \end{cases}$$
 (**)

Les polynômes D_0R_0 et D_0S_0 étant primitifs d'après **a.**, en égalant les contenus dans (**), on obtient $\begin{cases} u \, d_2r_2 \, c(P) = d_1r_1 \\ v \, d_2s_2 \, c(Q) = d_1s_1 \end{cases}$, où u et v sont deux éléments inversibles de l'anneau A. En

réinjectant dans (**), cela donne $\begin{cases} P_0 = u D_0 R_0 \\ Q_0 = v D_0 S_0 \end{cases}$, donc le polynôme $D_0 \in A[X]$ divise, dans A[X], les polynômes P_0 et Q_0 ; il divise donc aussi les polynômes $P = c(P) \cdot P_0$ et $Q = c(Q) \cdot Q_0$,

donc D_0 est une constante (inversible dans A) et $D = \frac{d_1}{d_0}D_0$ est une constante (élément de K),

Si P et Q sont deux polynômes de A[X], le lecteur montrera facilement (le plus dur a été fait) l'équivalence entre les assertions :

- $\begin{array}{ll} \text{(i)} & : & P \ et \ Q \ sont \ premiers \ entre \ eux \ dans \ A[X] \ ; \\ \\ \text{(ii)} & : & \begin{cases} c(P) \ \text{et } c(Q) \ sont \ premiers \ entre \ eux \ dans \ A \\ P \ \text{et } Q \ sont \ premiers \ entre \ eux \ dans \ K[X] \end{cases} . \\ \end{array}$
- **2.a.** Appliquons la question **1.b.** avec $A = \mathbb{C}[X]$ et $K = \mathbb{C}(X)$. Les polynômes P et Q, premiers entre eux dans $A[Y] = \mathbb{C}[X,Y]$, sont aussi premiers entre eux dans $K[Y] = \mathbb{C}(X)[Y]$. Comme $K = \mathbb{C}(X)$ est un corps, l'anneau K[Y] est principal et on peut appliquer l'identité de Bézout : il existe des polynômes U et V dans $\mathbb{C}(X)[Y]$ tels que UP + VQ = 1. On peut écrire $U(X,Y) = \sum_{i=0}^{m} U_i(X)Y^i$ et $V(X,Y) = \sum_{j=0}^{n} V_j(X)Y^j$, les U_i et les V_j étant des éléments de $\mathbb{C}(X)$; si on note D(X) le ppcm des dénominateurs de ces fractions rationnelles U_i et V_j , on peut écrire $U(X,Y) = \frac{A(X,Y)}{D(X)}$ et $V(X,Y) = \frac{B(X,Y)}{D(X)}$, où A et B sont des polynômes de $\mathbb{C}[X,Y]$, et on a ainsi

$$A(X,Y)P(X,Y) + B(X,Y)Q(X,Y) = D(X).$$

b. Si le couple $(x,y) \in \mathbb{C}^2$ vérifie le système (S), alors x est racine du polynôme D (il y en a un nombre fini). Les indéterminées X et Y jouant le même rôle, il y a aussi un nombre fini de valeurs possibles de y, donc de couples (x, y).

EXERCICE 4 : Un théorème de Sylow

Soit G un groupe fini, d'ordre $n = p^{\alpha}m$ avec p premier et $p \wedge m = 1$.

On note X l'ensemble des parties de G de cardinal p^{α} , et Y l'ensemble des sous-groupes de G d'ordre p^{α} . Le but du jeu est de montrer que $Y \neq \emptyset$, et plus précisément que le nombre de sous-groupes de G d'ordre p^{α} (les p-Sylow de G) est congru à 1 modulo p.

Pour cela, on fait opérer G sur X par translation à gauche : si $g \in G$ et $E \in X$, on pose

$$g \cdot E = gE = \{ga \; ; \; a \in E\} \; .$$

- 1. Soit $E \in X$. Montrer que son stabilisateur $S_E = \{g \in G \mid g \cdot E = E\}$ est de cardinal au plus égal à
- **2.** Soit $E \in X$. Montrer que le cardinal du stabilisateur S_E est égal à p^{α} si et seulement si E est une classe à droite modulo un sous-groupe d'ordre p^{α} (c'est-à-dire $E = H \cdot x$ avec $x \in G$ et $H \in Y$).
- **3.** Montrer que |X| est congru à m|Y| modulo p.
- **4.** Montrer que |X| est congru à m modulo p.
- 5. Conclure.

Source: Daniel PERRIN, Cours d'Algèbre, éditions Ellipses, ISBN 2-7298-5552-1.

- 1. Les translations étant des permutations de G, si $E \in X$, on a bien $g \cdot E \in X$, c'est-à-dire $|g \cdot E| = |E| = p^{\alpha}$. De plus, avec $E \in X$, les égalités $e \cdot E = E$ et $(gh) \cdot E = g \cdot (h \cdot E)$ sont immédiates, on a donc bien une action du groupe G sur l'ensemble X.
 - Soit $E \in X$, soit $a \in E$ donné ; si $g \in \mathcal{S}_E$, alors $ga \in g \cdot E = E$, donc $g \in Ea^{-1}$. On a donc $\mathcal{S}_E \subset Ea^{-1}$, où a est un élément quelconque de E, d'où $|\mathcal{S}_E| \leq |Ea^{-1}| = |E| = p^{\alpha}$.
 - Rappelons que le stabilisateur S_E d'un élément E de X est un sous-groupe de G (vérification immédiate).
- **2.** Si E = Hx avec $H \in Y$, alors

$$g \in \mathcal{S}_E \iff gE = E \iff gHx = Hx \iff gH = H$$

- mais, H étant un sous-groupe, cette dernière condition équivaut à $g \in H$. On a alors $\mathcal{S}_E = H$, d'où $|\mathcal{S}_E| = p^{\alpha}$.
- Si $|\mathcal{S}_E| = p^{\alpha}$, alors \mathcal{S}_E est un sous-groupe d'ordre p^{α} , posons $H = \mathcal{S}_E \in Y$. Si on se donne $a \in E$, on a $H \subset Ea^{-1}$ d'après la question $\mathbf{1}$, d'où $H = Ea^{-1}$ (égalité des cardinaux), donc E = Ha: E est une classe à droite modulo a.
- 3. Les éléments de X de la forme Hx avec $H \in Y$ et $x \in G$ sont au nombre de m|Y|: chaque sous-groupe d'ordre p^{α} , s'il en existe, définit m classes à droite distinctes et deux sous-groupes distincts ne peuvent engendrer une même classe à droite (supposons $H_1x_1 = H_2x_2$, alors $x_1 = ex_1 \in H_2x_2$, donc $x_1x_2^{-1} \in H_2$ puis $x_2x_1^{-1} = (x_1x_2^{-1})^{-1} \in H_2$ et enfin $H_1 = H_2x_2x_1^{-1} = H_2$).
 - Les autres éléments E de X ont un stabilisateur \mathcal{S}_E dont le cardinal est strictement inférieur à p^{α} , mais divise $p^{\alpha}m$ (car les stabilisateurs sont des sous-groupes de G), donc $|\mathcal{S}_E|$ est de la forme p^kd , avec $0 \le k \le \alpha 1$ et $d \mid m$. Ils ont donc une orbite dont le cardinal (qui est l'indice du stabilisateur), $[G:\mathcal{S}_E] = p^{\alpha-k}\frac{m}{d}$, est multiple de p.
 - Les orbites de X sous l'action de G par translation à gauche étant deux à deux disjointes, on déduit $|X| \equiv m|Y|$ modulo p.
- 4. Le cardinal de X ne dépend que de l'ordre du groupe G et non de sa structure : c'est le nombre de parties à p^{α} éléments d'un ensemble à $n=p^{\alpha}m$ éléments. On peut donc supposer ici que $G=\mathbf{Z} \bigm/_{n}\mathbf{Z}$. Dans ce cas, G, cyclique d'ordre $p^{\alpha}m$, admet un unique sous-groupe d'ordre p^{α} , donc |Y|=1 et $|X|\equiv m$ modulo p.
 - Cette question est d'ordre purement combinatoire : il s'agit de prouver que, pour p premier, $\alpha \in \mathbb{N}$ et $m \wedge p = 1$, on a $C_{p^{\alpha}m}^{p^{\alpha}} \equiv m$ modulo p. Si quelqu'un a une démonstration élémentaire de ce résultat, je suis preneur...
- 5. On a $m|Y| \equiv m$ modulo p d'après les questions 3. et 4. Comme m et p sont premiers entre eux, on peut simplifier cette congruence : il reste $|Y| \equiv 1$ modulo p, ce que l'on voulait prouver et, en particulier, $|Y| \neq 0$.

EXERCICE 5:

Soient A et B deux polynômes non nuls de $\mathbb{C}[X]$, d'écriture factorisée

$$A = a \prod_{i=1}^{m} (X - \alpha_i)$$
 ; $B = b \prod_{j=1}^{n} (X - \beta_j)$.

On appelle **résultant** des polynômes A et B le nombre

$$\operatorname{Res}(A, B) = a^n b^m \prod_{\substack{1 \le i \le m \\ 1 \le j \le n}} (\alpha_i - \beta_j) .$$

Si A = 0 ou B = 0, on pose Res(A, B) = 0.

1. On suppose $B \neq 0$, soit R le reste de la division euclidienne de A par B. Montrer que

$$\operatorname{Res}(A, B) = (-1)^{mn} b^{m - \deg(R)} \operatorname{Res}(B, R).$$

- **2.** Que vaut Res(A, A')? Dans quel cas est-il nul?
- **3.** Ecrire une condition nécessaire et suffisante pour que le polynôme $A = X^5 + pX + q$ (avec p et q réels) admette trois racines réelles distinctes.

Source : Jean-Pierre ESCOFIER, Théorie de Galois, éditions Masson, ISBN 2-225-82948-9.

1. Notons d'abord que $\operatorname{Res}(A,B) = (-1)^{mn} \operatorname{Res}(B,A) = (-1)^{\operatorname{deg}(A) \cdot \operatorname{deg}(B)} \operatorname{Res}(B,A)$, puis que $\operatorname{Res}(B,A) = b^m \ a^n \prod_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} (\beta_j - \alpha_i) = b^{\operatorname{deg}(A)} \cdot \prod_{j=1}^n A(\beta_j)$. Or, de A = BQ + R, on déduit

que $A(\beta_j) = R(\beta_j)$ pour tout $j \in [1, n]$, donc

$$\operatorname{Res}(A,B) = (-1)^{mn} \operatorname{Res}(B,A)$$

$$= (-1)^{mn} b^{\operatorname{deg}(A)} \cdot \prod_{j=1}^{n} A(\beta_j)$$

$$= (-1)^{mn} b^{\operatorname{deg}(A)} \cdot \prod_{j=1}^{n} R(\beta_j)$$

$$= (-1)^{mn} b^{\operatorname{deg}(A) - \operatorname{deg}(R)} \cdot \left[b^{\operatorname{deg}(R)} \cdot \prod_{j=1}^{n} R(\beta_j) \right]$$

$$= (-1)^{mn} b^{\operatorname{deg}(A) - \operatorname{deg}(R)} \cdot \operatorname{Res}(B,R).$$

Le résultant de deux polynômes peut ainsi se calculer par l'algorithme d'Euclide ; c'est l'algorithme le plus efficace.

Remarque. Si $B = \lambda$ (constant), alors $Res(A, B) = \lambda^m = \lambda^{\deg(A)}$.

2. On a vu $\operatorname{Res}(A, B) = (-1)^{\operatorname{deg}(A) \cdot \operatorname{deg}(B)} \operatorname{Res}(B, A) = a^{\operatorname{deg}(B)} \prod_{i=1}^{m} B(\alpha_i)$, où les α_i sont les racines de A. Ainsi,

$$\operatorname{Res}(A, A') = a^{m-1} \cdot \prod_{i=1}^{m} A'(\alpha_i) .$$

Or,
$$A' = a \cdot \sum_{i=1}^{m} \left(\prod_{j \neq i} (X - \alpha_j) \right)$$
 et, pour tout $i \in [1, m]$, $A'(\alpha_i) = a \cdot \prod_{j \neq i} (\alpha_i - \alpha_j)$, donc

$$\operatorname{Res}(A, A') = a^{2m-1} \prod_{i=1}^{m} \left(\prod_{j \neq i} (\alpha_i - \alpha_j) \right) = (-1)^{\frac{m(m-1)}{2}} a^{2m-1} \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Le résultant de A et A' (aussi appelé **discriminant** du polynôme A) est nul si et seulement si A admet une racine double, c'est-à-dire si et seulement si $A \wedge A' \neq 1$.

La définition exacte du discriminant du polynôme A est $D(A) = \frac{1}{a} (-1)^{\frac{m(m-1)}{2}} \operatorname{Res}(A, A')$.

3. On a $\operatorname{Res}(A, A') = \prod_{i < j} (\alpha_i - \alpha_j)^2$, où les α_i $(1 \le i \le 5)$ sont les racines de A.

D'autre part, $A'=5X^4+p$, le reste de la division euclidienne de A par A' est $R=\frac{4}{5}pX+q$, celui de la division de A' par R est une constante λ que l'on détermine en posant $X=-\frac{5q}{4p}$ dans l'identité $A'=RQ+\lambda$ donc $\lambda=A'\left(-\frac{5q}{4p}\right)=\frac{3125q^4+256p^5}{256p^4}$. Finalement,

$$\operatorname{Res}(A,A') = 5^4 \operatorname{Res}(A',R) = 5^4 \left(\frac{4p}{5}\right)^4 \operatorname{Res}(R,\lambda) = 5^4 \left(\frac{4p}{5}\right)^4 \lambda^{\deg(R)} = 256p^5 + 3125q^4.$$

On en déduit déjà que A admet une racine double si et seulement si

$$256 p^5 + 3125 q^4 = 0.$$

Par ailleurs,

• si A admet cinq racines réelles (non nécessairement distinctes), alors

Res
$$(A, A') = \prod_{i < j} (\alpha_i - \alpha_j)^2 \ge 0$$
;

• si A admet une racine réelle a et deux couples (b, \overline{b}) , (c, \overline{c}) de racines conjuguées, alors

$$\operatorname{Res}(A,A') = (b-a)^2 (\overline{b}-a)^2 (c-a)^2 (\overline{c}-a)^2 (\overline{b}-b)^2 (c-b)^2 (\overline{c}-b)^2 (\overline{c}-\overline{b})^2 (\overline{c}-\overline{b})^2 (\overline{c}-\overline{c})^2$$

$$= 16 \left(\operatorname{Im} b \right)^2 (\operatorname{Im} c)^2 |b-a|^4 |c-a|^4 |c-b|^4 |\overline{c}-b|^4 \ge 0 \ .$$

• si A admet trois racines réelles a, b, c et un couple (d, \overline{d}) de racines conjuguées, alors

$$\operatorname{Res}(A, A') = (b-a)^2 (c-a)^2 (d-a)^2 (\overline{d}-a)^2 (c-b)^2 (d-b)^2 (\overline{d}-b)^2 (d-c)^2 (\overline{d}-c)^2 (\overline{d}-d)^2$$

$$= -4 (\operatorname{Im} d)^2 (b-a)^2 (c-a)^2 (d-a)^2 |d-a|^4 |d-b|^4 |d-c|^4 \le 0,$$

l'inégalité étant stricte lorsque les racines réelles a, b, c sont distinctes.

La condition recherchée est donc

$$256 p^5 + 3125 q^4 < 0.$$

EXERCICE 6:

Dans cet exercice, on admet que, pour tout p premier, le groupe multiplicatif $\left(\mathbf{Z}/p\mathbf{Z} \right)^*$ des éléments non nuls du corps $\mathbf{Z}/p\mathbf{Z}$ est cyclique (cf. exercice 1).

Soit n un entier, $n \geq 2$. On dira que n vérifie la propriété (**F**) si, pour tout entier relatif a, a^n est congru à a modulo n.

1. Montrer le **petit théorème de Fermat** : tout nombre premier p vérifie la propriété (F).

On appelle nombre de Carmichael tout entier n composé vérifiant la propriété (F).

- **2.** Soit n un entier sans facteur carré, $n \geq 2$. Soit m un entier $(m \geq 2)$ tel que, pour tout diviseur premier p de n, p-1 divise m-1. Montrer que a^m est congru à a modulo n pour tout entier relatif a.
- **3.** Soit $n = p^2 m$ avec p premier et $m \in \mathbb{N}^*$; vérifier $(1 + p m)^n \equiv 1$ modulo n.
- **4.** Montrer qu'un entier $n \geq 2$ vérifie la propriété (**F**) si et seulement si n est sans facteur carré et p-1 divise n-1 pour tout diviseur premier p de n.

Source: Michel DEMAZURE, Cours d'Algèbre, éditions Cassini, ISBN 2-84225-000-1.

1. Si $a \in \mathbf{Z}$ n'est pas multiple de p, alors sa classe de congruence modulo p (notons-la \overline{a}) est un élément du groupe multiplicatif $\left(\mathbf{Z} \middle/ p \mathbf{Z} \right)^*$ d'ordre p-1, donc $\overline{a}^{p-1} = \overline{1}$, c'est-à-dire $a^{p-1} \equiv 1$ modulo p, d'où $a^p \equiv a$ modulo p.

Si a est multiple de p, on a évidemment $a^p \equiv a \equiv 0$ modulo p.

2. Il faut montrer que $n \mid a^m - a$; mais, par hypothèse, n est le produit de ses facteurs premiers, qui sont deux à deux premiers entre eux. Il suffit donc de prouver que tout diviseur premier p de n divise $a^m - a$ (n est le p.p.c.m. de ses diviseurs premiers).

Soit donc p un diviseur premier de n.

 \triangleright si a est multiple de p, $a^m - a$ est multiple de p (évident)

⊳ si a n'est pas multiple de p, on a $a^{p-1} \equiv 1 \mod p$ d'après la question 1. Comme m-1 = (p-1)k avec k entier naturel, $a^{m-1} = (a^{p-1})^k$ est aussi congru à 1 modulo p, donc $a^m \equiv a \mod p$. Le lecteur en déduira par exemple que $a^{13} \equiv a \mod 35$ pour tout entier relatif a, et donc $a^{12} \equiv 1 \mod 35$ pour tout entier a premier avec 35. L'exposant du groupe $\left(\begin{array}{c} \mathbf{Z} \\ 35 \\ \mathbf{Z} \end{array} \right)^*$, d'ordre $\varphi(35) = 24$, des éléments inversibles de l'anneau $\left(\begin{array}{c} \mathbf{Z} \\ 35 \\ \mathbf{Z} \end{array} \right)^*$ est 12, puisqu'on peut voir qu'il existe des éléments d'ordre 12 exactement, par exemple la classe de 2.

3. Si $n = p^2 m$, alors

$$(1+pm)^n = 1 + npm + \sum_{k=2}^n C_n^k (pm)^k$$
.

Chaque terme de cette dernière somme est divisible par p^2m^2 donc a fortiori par $n=p^2m$, donc $(1+pm)^n\equiv 1$ modulo n.

- **4.** Supposons n sans facteur carré tel que $\forall p \in \mathcal{P}_n \quad p-1 \mid n-1 \quad (\mathcal{P}_n : \text{support premier de } n)$. Alors n vérifie la propriété (\mathbf{F}) d'après la question **2.**
 - Soit n vérifiant la propriété (F).

Alors n est sans facteur carré : par l'absurde, si on avait $n=p^2m$ avec p premier, l'entier $a=1+p\,m$ vérifierait $a^n\equiv 1$ modulo n d'après la question ${\bf 3.}$, ce qui contredit $a^n\equiv a$ modulo n.

Ecrivons $n=p_1\dots p_m$ (produit de nombres premiers distincts). Pour tout $i\in [\![1,m]\!]$, soit a_i un entier dont la classe modulo p_i est un générateur du groupe cyclique $\left(\begin{array}{c} \mathbf{Z} \Big/ p_i \mathbf{Z} \right)^*$. D'après le théorème chinois, il existe un entier a tel que $a\equiv a_i$ modulo p_i pour tout i. Par hypothèse, $a^n\equiv a$ modulo n; comme $a\wedge n=1$ (a n'est divisible par aucun des p_i), on peut "simplifier cette congruence par a" et $a^{n-1}\equiv 1$ modulo n d'où, a fortiori, $a^{n-1}\equiv 1$ modulo p_i pour tout i, donc $a_i^{n-1}\equiv 1$ modulo p_i .

Cela implique que n-1 est multiple de l'ordre de a_i modulo p_i , c'est-à-dire $p_i-1\mid n-1$, ce qu'il fallait démontrer.