

INTEGRACIÓN DE FUNCIONES POSITIVAS

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 18) 22.MARZO.2023

Sea (X, \mathcal{A}, μ) un espacio de medida. Queremos medir el área bajo la curva de cualquier función $u: X \to \overline{\mathbb{R}}$.

Comenzaremos con el caso de las funciones simples no-negativas. Si $f \in \mathcal{E}^+$, ¿cómo medimos el área bajo la función f?

Sea $f = \sum_{i=1}^{m} c_i \, \mathbf{1}_{A_i}$, una representación estándar para f, esto es, los $A_i \in \mathcal{A}$ son mesurables

y disjuntos a pares, y $X = \bigcup_{i=1}^{m} A_i$.

Definición

Sea (X, A, μ) espacio de medida, y sea $f \in \mathcal{E}^+(A)$, con representación estándar

$$f = \sum_{i=1}^{m} c_i \mathbf{1}_{A_i}$$
. Definimos la **integral** de f **con respecto de** μ (o la μ -integral de f) por

$$I_{\mu}(f) = \sum_{i=1}^{m} c_i \, \mu(\mathsf{A}_i) \in [\mathsf{o}, +\infty].$$

Lema

Sean
$$f = \sum_{i=1}^m a_i \, \mathbf{1}_{\mathsf{A}_i} \, \mathsf{y} \, f = \sum_{j=1}^n b_j \, \mathbf{1}_{\mathsf{B}_j}$$
 dos representaciones estándar distintas para

$$f \in \mathcal{E}^+(\mathcal{A})$$
. Entonces

$$\sum_{i=1}^m a_i \, \mu(\mathsf{A}_i) = \sum_{i=1}^n b_i \, \mu(\mathsf{B}_j).$$

Prueba: Como $X = \bigcup_i A_i = \bigcup_i B_i$, entonces

$$A_i = \bigcup_{j=1}^n (A_i \cap B_j)$$
, para $i = 1, 2, \dots, m$; $B_j = \bigcup_{j=1}^m (A_i \cap B_j)$, para $j = 1, 2, \dots, n$.

Siendo μ aditiva, tenemos

$$\mu(A_i) = \sum_{i=1}^n \mu(A_i \cap B_j), \text{ para } i = 1, 2, \dots, m; \qquad \mu(B_j) = \sum_{i=1}^m \mu(A_i \cap B_j), \text{ para } j = 1, 2, \dots, n.$$

Por otro lado, los $A_i \cap B_j$ son disjuntos dos a dos. En el caso que $A_i \cap B_j \neq \emptyset$, tome $\mathbf{x} \in A_i \cap B_i$.

Tenemos

$$a_i = a_i \mathbf{1}_{A_i}(\mathbf{x}) = \sum_{k=1}^m a_k \mathbf{1}_{A_k}(\mathbf{x}) = f(\mathbf{x}) = \sum_{\ell=1}^n b_\ell \mathbf{1}_{B_\ell}(\mathbf{x}) = b_j \mathbf{1}_{B_j}(\mathbf{x})$$

$$= b_i.$$

Luego,

$$\sum_{i=1}^{m} a_{i} \mu(A_{i}) = \sum_{i=1}^{m} a_{i} \sum_{j=1}^{n} \mu(A_{i} \cap B_{j}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} \mu(A_{i} \cap B_{j}) = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{j} \mu(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} \mu(A_{i} \cap B_{j}) = \sum_{i=1}^{n} b_{j} \sum_{j=1}^{m} \mu(A_{i} \cap B_{j}) = \sum_{i=1}^{n} b_{j} \mu(B_{j}),$$

y esto muestra que ambos cálculos de $I_{\mu}(f)$ coinciden, por lo que el valor de $I_{\mu}(f)$ está bien definido, e independe de la representación estándar. \Box

Proposición

Sea (X, A, μ) espacio de medida, y sean $f, g \in \mathcal{E}^+(A)$. Valen las siguientes propiedades:

- i) $I_{\mu}(\mathbf{1}_{\mathsf{A}}) = \mu(\mathsf{A}), \, \forall \mathsf{A} \in \mathcal{A}.$
- ii) (homogeneidad positiva) $I_{\mu}(cf) = c I_{\mu}(f)$, $\forall c > 0$.
- iii) (aditividad) $I_{\mu}(f+g) = I_{\mu}(f) + I_{\mu}(g)$.
- iv) (monotonicidad) Si $f \leq g$, entonces $I_{\mu}(f) \leq I_{\mu}(g)$.

Prueba: (i) Si $f=\mathbf{1}_A$, parar $A\in\mathcal{A}$, entonces f tiene representación estándar $f=\mathbf{1}_A=\mathbf{1}\cdot\mathbf{1}_A+\mathbf{0}\cdot\mathbf{1}_{A^c}$. Luego, de la definición de I_μ , tenemos que $I_\mu(f)=\mathbf{1}\,\mu(A)+\mathbf{0}\cdot\mu(A^c)=\mu(A)$.

(ii) Sea $f = \sum_{i=1}^m a_i \, \mathbf{1}_{\mathsf{A}_i}$ una representación estándar para f .

Entonces
$$cf = c \sum_{i=1}^{m} a_i \mathbf{1}_{A_i} = \sum_{i=1}^{m} ca_i \mathbf{1}_{A_i}$$
. En particular,
$$I_{\mu}(cf) = \sum_{i=1}^{m} ca_i \mu(A_i) = c \sum_{i=1}^{m} a_i \mu(A_i) = c I_{\mu}(f).$$
(iii) Si $f = \sum_{i=1}^{m} a_i \mathbf{1}_{A_i}$ y $g = \sum_{i=1}^{n} b_i \mathbf{1}_{B_i}$, entonces $f + g = \sum_{i=1}^{m} \sum_{j=1}^{n} (a_i + b_j) \mathbf{1}_{A_i \cap B_j}$. Luego,
$$I_{\mu}(f + g) = \sum_{i=1}^{m} \sum_{j=1}^{n} (a_i + b_j) \mu(A_i \cap B_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i \mu(A_i \cap B_j) + \sum_{i=1}^{m} \sum_{j=1}^{n} b_j \mu(A_i \cap B_j)$$

$$= \sum_{i=1}^{m} a_i \sum_{j=1}^{n} \mu(A_i \cap B_j) + \sum_{j=1}^{n} b_j \sum_{j=1}^{m} \mu(A_i \cap B_j) = \sum_{i=1}^{m} a_i \mu(A_i) + \sum_{j=1}^{n} b_j \mu(B_j)$$

$$= I_{\mu}(f) + I_{\mu}(g).$$

(iv) Si $g \ge f$, entonces $g - f \ge$ o, y por lo tanto $g - f \in \mathcal{E}^+(\mathcal{A})$.

Entonces podemos escribir g = f + (g - f), con $f, g - f \in \mathcal{E}^+(A)$. Por la propiedad (iii) anterior, tenemos

$$I_{\mu}(g) = I_{\mu}(f) + \underbrace{I_{\mu}(g-f)}_{>o} \geq I_{\mu}(f).$$

Sea (X, \mathcal{A}, μ) espacio de medida. Queremos ahora extendeer la definición de integral, para el caso de funciones mesurables no-negativas $f \in \mathcal{M}^+(\mathcal{A})$.

Definición

Sea $f \in \mathcal{M}^+(\mathcal{A})$. Definimos la **integral** de f **respecto de** μ por

$$\int f \, d\mu = \sup ig\{ I_{\mu}(u): \ u \leq f, \ u \in \mathcal{E}^+(\mathcal{A}) ig\}.$$

Notaciones:

- $\int f d\mu$, para dejar clara la medida μ , $\int f$ si no hay ambigüedad.
- Cuando se quiere dejar explítica la variable de integración $\int f(x) \, \mu(dx), \qquad \int f(x) \, d\mu(x), \qquad \int \mu(dx) \big(f(x)\big).$

Obs!
$$\int f d\mu \in [0, +\infty]$$
.

Mostramos que este nuevo concepto de integral extiende a $I_{\mu}(f)$.

Lema

Sea (X, A, μ) espacio de medida. Para toda $f \in \mathcal{E}^+(A)$, vale inf $f d\mu = I_{\mu}(f)$.

Prueba: Sea $f \in \mathcal{E}^+(\mathcal{A})$. Como $f \leq f$, entonces f es una de las funciones simples en el conjunto $\{u \in \mathcal{E}^+(\mathcal{A}) : u \leq f\}$. En particular,

$$\int f d\mu = \sup \left\{ I_{\mu}(u): \ u \leq f, \ u \in \mathcal{E}^{+}(\mathcal{A}) \right\} \geq I_{\mu}(f).$$

Por otro lado, si $u \in \mathcal{E}^+(\mathcal{A})$ y $u \leq f$, por la monotonía de I_μ , tenemos que $I_\mu(u) \leq I_\mu(f)$. Tomando el supremo

$$\int f \, \mathrm{d} \mu = \sup \left\{ I_{\mu}(u): \ u \leq f, \ u \in \mathcal{E}^{+}(\mathcal{A}) \right\} \leq I_{\mu}(f).$$

Esto muestra que $\int f \, d\mu = I_{\mu}(f)$. \Box

Proposición

Sea (X, A, μ) espacio de medida, y sean $f, g \in \mathcal{M}^+(A)$. Valen las siguientes propiedades:

- i) $\int \mathbf{1}_{A} d\mu = \mu(A)$, $\forall A \in \mathcal{A}$.
- ii) (homogeneidad positiva) \int cf d μ = c \int f d μ , \forall c > 0.
- iii) (aditividad) $\int (f+g)\,\mathrm{d}\mu = \int f\,\mathrm{d}\mu + \int g\,\mathrm{d}\mu$.
- iv) (monotonicidad) Si $f \leq g$, entonces $\int f \, \mathrm{d} \mu \leq \int g \, \mathrm{d} \mu$.

Prueba: (i) Si $f = \mathbf{1}_A$, entonces f es una función simple non-negativa, y del lema anterior tenemos que $\int f d\mu = I_{\mu}(f) = \mu(A)$, cuando $A \in \mathcal{A}$.

(ii) Si c=0, entonces $\int cf \, d\mu = \int O \, d\mu = O = O \cdot \int f \, d\mu$. Consideremos el caso c>0. Observe que si $u \in \mathcal{E}^+(\mathcal{A})$ y $u \leq cf$, entonces $\frac{1}{c}u \leq f$, y haciendo $v=\frac{1}{c}u$, tenemos que $v \in \mathcal{E}^+(\mathcal{A})$, y $v \in f$.

Entonces, la homogeneidad se sigue de la propiedad de homogeneidad positiva de las integrales I_{μ} :

$$\begin{split} \int cf \, d\mu &= \sup \left\{ I_{\mu}(u): \ u \in \mathcal{E}^{+}(\mathcal{A}), \ u \leq cf \right\} \\ &= \sup \left\{ I_{\mu}(u): \ u \in \mathcal{E}^{+}(\mathcal{A}), \ \frac{1}{c}u \leq f \right\} \\ &= \sup \left\{ I_{\mu}(cv): \ v \in \mathcal{E}^{+}(\mathcal{A}), \ v \leq f \right\} \\ &= c \sup \left\{ I_{\mu}(v): \ v \in \mathcal{E}^{+}(\mathcal{A}), \ v \leq f \right\} \\ &= c \int f \, d\mu. \end{split}$$

(iii) Se sigue de la propiedad de aditividad de las integrales I_{μ} :

$$\begin{split} \int f \, d\mu + \int g \, d\mu &= \sup \left\{ I_{\mu}(u) : \ u \in \mathcal{E}^{+}(\mathcal{A}), \ u \leq f \right\} + \sup \left\{ I_{\mu}(v) : \ v \in \mathcal{E}^{+}(\mathcal{A}), \ v \leq g \right\} \\ &= \sup \left\{ I_{\mu}(u) + I_{\mu}(v) : \ u, v \in \mathcal{E}^{+}(\mathcal{A}), \ u \leq f, \ v \leq g \right\} \\ &= \sup \left\{ I_{\mu}(u+v) : \ u, v \in \mathcal{E}^{+}(\mathcal{A}), \ u+v \leq f+g \right\} = \int (f+g) \, d\mu. \end{split}$$

(iv) Sean $f, g \in \mathcal{M}^+(\mathcal{A})$, con $f \leq g$. Entonces, toda función simple $u \in \mathcal{E}^+(\mathcal{A})$ que satisface $u \leq f$, también satisface $u \leq g$.

Esto implica que

$$\big\{I_{\mu}(u):\ u\leq f,\ u\in\mathcal{E}^+(\mathcal{A})\big\}\subseteq \big\{I_{\mu}(u):\ u\leq g,\ u\in\mathcal{E}^+(\mathcal{A})\big\}.$$

Tomando supremos sobre estos conjuntos,

$$\int f\, d\mu = \sup \left\{ I_{\mu}(\textbf{\textit{u}}): \ \textbf{\textit{u}} \leq f, \ \textbf{\textit{u}} \in \mathcal{E}^{+}(\mathcal{A}) \right\} \leq \sup \left\{ I_{\mu}(\textbf{\textit{u}}): \ \textbf{\textit{u}} \leq \textbf{\textit{g}}, \ \textbf{\textit{u}} \in \mathcal{E}^{+}(\mathcal{A}) \right\} = \int \textbf{\textit{g}} \ d\mu. \ \ _{\square}$$

Teorema (Teorema de Beppo Levi)

Sea (X, \mathcal{A}, μ) espacio de medida. Para una secuencia no-decreciente de funciones mesurables positivas $\{f_n\}_{n\geq 1}\subseteq \mathcal{M}^+(\mathcal{A})$, con $f_1\leq f_2\leq f_3\leq \ldots$. Entonces, el límite $f=\lim_n f_n=\sup_n f_n\in \mathcal{M}^+(\mathcal{A})$. Además,

$$\int (\sup_{n} f_{n}) d\mu = \int f d\mu = \sup_{n} \int f_{n} d\mu.$$

Equivalentemente,

$$\int (\lim_n f_n) d\mu = \int f d\mu = \lim_n \int f_n d\mu.$$

Prueba: Ya vimos que el supremo de funciones mesurables no-negativas $f_n \in \mathcal{M}^+(\mathcal{A})$, es de nuevo mesurable no-negativa. Entonces $\sup_n f_n \in \mathcal{M}^+(\mathcal{A})$.

Además, si $f,g\in\mathcal{M}^+(\mathcal{A})$, con $f\leq g$, entonces por monotonicidad, $\int f\,d\mu\leq\int g\,d\mu.$

Afirmamos que sup $\int f_n d\mu \leq \int (\sup_n f_n) d\mu$.

En efecto, para toda $k \ge 1$, se tiene que $f_k \le \sup_n f_n$. Por monotonicidad, entonces $\int f_k \le \int (\sup_n f_n)$. Tomando el supremo sobre todas las $k \ge 1$, vale

$$\sup_n \int f_n \, d\mu \leq \int (\sup_n f_n) \, d\mu.$$

Afirmamos ahora que si $u \in \mathcal{E}^+(\mathcal{A})$, con $u \leq f$, entonces $I_{\mu}(f) \leq \sup_n \int f_n \, d\mu$.

Sea $u \in \mathcal{E}^+(\mathcal{A})$, con $u \leq f$, y sea $\alpha \in (0,1)$. Entonces, si $f = \sup_n f_n$,

$$\forall \mathbf{x} \in X, \ \exists N = N(\mathbf{x}, \alpha) \in \mathbb{N}, \ \text{tal que } \alpha \ u(\mathbf{x}) \leq f_n(\mathbf{x}), \ \forall n \geq N.$$

Para cada $n \ge 1$, tomamos el conjunto $B_n = \{\mathbf{x} \in X : \alpha', u(\mathbf{x}) \le f_n(x)\}$. Los B_n son mesurables, ya que $B_n = \{\frac{f_n}{u} \ge \alpha\}$. Además, forman una secuencia creciente,

$$B_1 \subseteq B_2 \subseteq B_3 \subseteq \dots$$
 con $B_n \nearrow X$.

Consideremos la función mesurable $\mathbf{1}_{B_n}$. Como $\alpha u \leq f_n$, entonces $\alpha u \mathbf{1}_{B_n} \leq f \mathbf{1}_{B_n}$.

Si $u=\sum_{i=1}^{m}c_{i}$ $\mathbf{1}_{\mathsf{A}_{i}}$ es una representación para f, con $\mathsf{A}_{i}\in\mathcal{A}$, entonces

$$\alpha \, \mathbf{u} \, \mathbf{1}_{\mathsf{B}_n} = \sum_{i=1}^m \alpha \, \mathsf{c}_i \, \mathbf{1}_{\mathsf{A}_i} \, \mathbf{1}_{\mathsf{B}_n} = \sum_{i=1}^m \alpha \, \mathsf{c}_i \, \mathbf{1}_{\mathsf{A}_i \cap \mathsf{B}_n},$$

de modo que

$$\sum_{i=1}^m \alpha \, \mathsf{c}_i \, \mu(\mathsf{A}_i \cap \mathsf{B}_n) \leq \mathsf{I}_\mu \big(\alpha \, \mathsf{u} \, \mathbf{1}_{\mathsf{B}_n} \big) = \int \alpha \, \mathsf{u} \, \mathbf{1}_{\mathsf{B}_n} \, \mathsf{d}\mu \leq \int f_n \, \mathbf{1}_{\mathsf{B}_n} \, \mathsf{d}\mu \leq \int f_n \, \mathsf{d}\mu \leq \sup_n \int f_n \, \mathsf{d}\mu.$$

Como esto vale para todo $n \ge 1$, y los $B_n \nearrow X$, tomando el límite cuando $n \to \infty$, tenemos que α u $\mathbf{1}_{B_n} \to \alpha$ u $\mathbf{1}_X = \alpha$ u, y portanto

$$I_{\mu}(\alpha \mathbf{u}) = I_{\mu}(\alpha \mathbf{u} \mathbf{1}_{X}) \leq \sup_{n} \int f_{n} d\mu.$$

Finalmente, en el estimado anterior, tomando el supremo sobre todas las funciones $u \in \mathcal{E}^+(\mathcal{A})$, tales que

$$\int f = \sup \left\{ I_{\mu}(u): \, f \in ^+(\mathcal{A}), \; u \leq f
ight\} \sup_{n} \int f_{n} \, \mathrm{d} \mu.$$

Esto muestra que $\int (\sup_n f_n) d\mu \leq \sup_n \int f_n d\mu$.

Así,
$$\int (\sup_n f_n) d\mu = \sup_n \int f_n d\mu$$
.