SUPPORT VECTOR REGRESSION API SUMMARY

AVANI NARVEKAR J042

Support Vector Regression (SVR) uses the same principle as SVM, but for regression problems.

sklearn.svm.SVR

```
class sklearn.svm.SVR(*, kernel='rbf', degree=3, gamma='scale',
coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True,
cache_size=200, verbose=False, max_iter=- 1)
```

PARAMETERS:

- kernel:{'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'}, default='rbf'
- degree:int, default=3
- gamma:{'scale', 'auto'} or float, default='scale'
 - if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma,
 - o if 'auto', uses 1 / n_features.
- coef0:float, default=0.0
- tol:float, default=1e-3
- C:float, default=1.0
- epsilon:float, default=0.1
- shrinking:bool, default=True
- cache size:float, default=200
- verbose:bool, default=False
- max iterint, default=-1

ATTRIBUTES:

- class_weight_ndarray of shape (n_classes,)
- coef_:ndarray of shape (1, n_features)
- dual_coef_:ndarray of shape (1, n_SV)
- fit_status_:int
- intercept ndarray of shape (1,)
- n support :ndarray of shape (n classes,), dtype=int32
- shape_fit_:tuple of int of shape (n_dimensions_of_X,)
- support :ndarray of shape (n SV,)
- support_vectors_:ndarray of shape (n_SV, n_features)