BMA 4

Aufgabe 4: Beweismechanik

a) Vor.:

 $A := \{x \in \mathbb{R} : |x - 1| \ge 2\},\$

 $B := \{x \in \mathbb{R} : (x \le 2) \land (x^2 - 1 < 0)\}$

Beh.: $A \subset \mathbb{R} \setminus B$

Proof

 $Z.z \ \forall a \in A : a \in \mathbb{R} \setminus B$

Gegeben $a \in A$, d.h. $a \in \mathbb{R}$ und $|a-1| \ge 2$, zu zeigen $a \in \mathbb{R} \setminus B$.

Also zu zeigen $a \in \mathbb{R}$ und $a \notin B$

 $a \in \mathbb{R}$ gegeben, noch zu zeigen $a \notin B$. Da $|a-1| \ge 2$ gegeben, gilt:

Fall 1: $a - 1 \ge 2$, also $a \ge 3$.

Wir führen einen Beweis durch Widerspruch und nehmen dazu an, $a \in B$. Dann gilt insbesondere $(a \le 2) \land (a^2 - 1 < 0)$, also insbesondere $a \le 2$, was im Widerspruch zu $a \ge 3$ steht. Also ist unsere Annahme falsch, dass $a \in B$, folglich gilt $a \notin B$.

Fall 2: $-(a-1) \ge 2$, also $-a+1 \ge 2$, also $a \le -1$, also $-a \ge -(-1) = 1$

$$a \le -1$$

$$a^2 \ge -a \ge 1$$

$$da_{-a} \ge 1$$

$$a^2 - 1 \ge 0$$

Wir führen einen Beweis durch Widerspruch und nehmen dazu an, dass $a \in B$. Dann gilt insbesondere $(a \le 2) \land (a^2 - 1 < 0)$, also insbesondere $a^2 - 1 < 0$, was in einem Widerspruch zu $a^2 - 1 \ge 0$ steht. Also war die Annahme falsch, dass $a \in B$ und daraus folgt, dass $a \notin B$ gilt.

b) Vor.: X eine Menge und $A,B\subset X$ zwei Teilmengen von X. Beh.:

$$X \setminus (A \setminus B) = (X \setminus A) \cup B$$

Proof

Zu zeigen $X \setminus (A \setminus B) \subset (X \setminus A) \cup B$ und $X \setminus (A \setminus B) \supset (X \setminus A) \cup B$

'C': zu zeigen $\forall x \in X \setminus (A \setminus B) : x \in (X \setminus A) \cup B$, sei $x \in X \setminus (A \setminus B)$ gegeben, also $x \in X$ und $x \notin A \setminus B$, zu zeigen $x \in (X \setminus A) \cup B$, also zu zeigen $x \in (X \setminus A) \vee x \in B$, also

zu zeigen $(x \in X \land x \notin A) \lor x \in B$.

$$x \notin \{a \in X : a \in A \land a \notin B\} \mid \text{Def.}$$

$$\neg (x \in \{a \in X : a \in A \land a \notin B\}) \mid \text{Def.}$$

$$\neg (x \in A \land x \notin B) \mid \text{De Morgan}$$

$$x \notin A \lor x \in B$$

$$(wahr \land x \notin A) \lor x \in B$$

Und da $x \in X$ gegeben gilt: $(x \in X \land x \notin A) \lor x \in B$, was zu zeigen war

'
⊃' Also zu zeigen $\forall x \in (X \setminus A) \cup B : x \in X \setminus (A \setminus B)$. Sei

$$x \in (X \setminus A) \cup B \tag{1}$$

gegeben, zu zeigen $x \in X \setminus (A \setminus B)$.

Aus $X \setminus A \subset X$ und $B \subset X$ folgt $x \in X$. Aus (1) folgt:

$$x \in X \setminus A \vee x \in B \mid \text{Def.}$$

$$(x \in X \wedge x \notin A) \vee x \in B \mid \text{Distributivit\"at}$$

$$(x \in X \vee x \in B) \wedge (x \notin A \vee x \in B) \mid \text{Da } B \subset X$$

$$(x \in X) \wedge (x \notin A \vee x \in B) \mid \text{De Morgan}$$

$$(x \in X) \wedge (\neg (x \in A \wedge x \notin B)) \mid \text{Definition}$$

$$(x \in X) \wedge (\neg (x \in \{a \in A \wedge a \notin B\}))$$

$$(x \in X) \wedge x \notin \{a \in A \wedge a \notin B\}) \mid \text{Definition}$$

$$(x \in X) \wedge (x \notin A \setminus B) \mid \text{Definition}$$

$$x \in X \setminus (A \setminus B)$$