COMP2310/COMP6310 Systems, Networks, & Concurrency

Convener: Prof John Taylor

Course Update

- Quiz 1 (5%) Week 6 in labs
 - Cover all material in lectures and labs weeks 1-5
 - 30 minutes
 - Closed book
 - Lab will continue after the quiz

Today

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

Review of Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- **P = 2**^p : Page size (bytes)

Components of the virtual address (VA)

- TLBI: TLB index
- TLBT: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number
- CO: Byte offset within cache line
- CI: Cache index
- CT: Cache tag

Simple Memory System Example

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

1. Simple Memory System TLB

- 16 entries
- 4-way associative
- Memory accesses are 1-byte words (not 4-bytes)

Set	Tag	PPN	Valid									
0	03	_	0	09	0D	1	00	_	0	07	02	1
1	03	2D	1	02	_	0	04	_	0	0A	_	0
2	02	_	0	08	_	0	06	-	0	03	_	0
3	07	_	0	03	0D	1	0A	34	1	02	_	0

2. Simple Memory System Page Table

Only show first 16 entries (out of 256)

VPN	PPN	Valid
00	28	1
01	-	0
02	33	1
03	02	1
04	_	0
05	16	1
06	_	0
07	_	0

VPN	PPN	Valid
08	13	1
09	17	1
0 A	09	1
ОВ	_	0
OC	1	0
0D	2D	1
0E	11	1
OF	0D	1

3. Simple Memory System Cache

- 16 lines, 4-byte block size
- Physically addressed
- Direct mapped

Idx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	ı	-	1	1
2	1B	1	00	02	04	08
3	36	0	_	_	_	-
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	-	_	_	_
7	16	1	11	C2	DF	03

Idx	Tag	Valid	В0	B1	B2	В3
8	24	1	3A	00	51	89
9	2D	0	ı	_	1	_
Α	2D	1	93	15	DA	3B
В	0B	0	-	_	_	_
С	12	0	-	_	_	_
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	_	_	_	_

Address Translation Example #1

Virtual Address: 0x03D4

Physical Address

Address Translation Example #2

Virtual Address: 0x0020

Physical Address

Today

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping

Intel Core i7 Memory System

Processor package Core x4 Instruction **MMU Registers** fetch (addr translation) L1 d-cache L1 d-TLB L1 i-TLB L1 i-cache 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way 32 KB, 8-way L2 unified cache L2 unified TLB 256 KB, 8-way 512 entries, 4-way

Review of Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- **P = 2**^p : Page size (bytes)

Components of the virtual address (VA)

- TLBI: TLB index
- TLBT: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number
- CO: Byte offset within cache line
- CI: Cache index
- CT: Cache tag

End-to-end Core i7 Address Translation

Core i7 Level 1-3 Page Table Entries

63	62	52	51 12	11	9	8		6	5	4	3	2	1	0
XD	Unused	ı	Page table physical base address	Unused		G	PS		Α	CD	WT	U/S	R/W	P=1
Available for OS (page table location on disk)									P=0					

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

CD: Cache Disable bit controls whether caching is enabled or disabled

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

G: Global Page Bit is used to indicate that a page is global.

If P=0, Page table physical base address: 40 most significant bits of physical page table address (forces page tables to be 4KB aligned)

Core i7 Level 4 Page Table Entries

63	62 52	51 12	11 9	8	7	6	5	4	3	2	1	0
XD	Unused	Page physical base address	Unused	G		D	Α	CD	WT	U/S	R/W	P=1
Available for OS (page location on disk)									P=0			

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

Core i7 Page Table Translation

Cute Trick for Speeding Up L1 Access

Observation

- Bits that determine CI identical in virtual and physical address
- Can index into cache while address translation taking place
- Generally we hit in TLB, so PPN bits (CT bits) available next
- "Virtually indexed, physically tagged"
- Cache carefully sized to make this possible

Virtual Address Space of a Linux Process

Linux Organizes VM as Collection of "Areas"

Linux Page Fault Handling

Segmentation fault:

accessing a non-existing page

Normal page fault

Protection exception:

e.g., violating permission by writing to a read-only page (Linux reports as Segmentation fault)

Today

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping

Memory Mapping

- VM areas initialized by associating them with disk objects.
 - Process is known as memory mapping.
- Area can be backed by (i.e., get its initial values from) :
 - Regular file on disk (e.g., an executable object file)
 - Initial page bytes come from a section of a file
 - Anonymous file (e.g., nothing)
 - First fault will allocate a physical page full of 0's (demand-zero page)
 - Once the page is written to (dirtied), it is like any other page
- Dirty pages are copied back and forth between memory and a special swap file.

Sharing Revisited: Shared Objects

Process 1 maps the shared object.

Sharing Revisited: Shared Objects

- Process 2 maps the shared object.
- Notice how the virtual addresses can be different.

Sharing Revisited: Private Copy-on-write (COW) Objects

- Two processes mapping a private copy-on-write (COW) object.
- Area flagged as private copy-onwrite
- PTEs in private areas are flagged as read-only

Sharing Revisited: Private Copy-on-write (COW) Objects

- Instruction writing to private page triggers protection fault.
- Handler creates new R/W page.
- Instruction restarts upon handler return.
- Copying deferred as long as possible!

The fork Function Revisited

- VM and memory mapping explain how fork provides private address space for each process.
- To create virtual address for a new process
 - Create exact copies of current mm_struct, vm_area_struct, and page tables.
 - Flag each page in both processes as read-only
 - Flag each vm area struct in both processes as private COW
- On return, each process has exact copy of virtual memory
- Subsequent writes create new pages using COW mechanism.

The execve Function Revisited

- To load and run a new program a . out in the current process using execve:
- Free vm_area_struct's and page tables for old areas
- Create vm_area_struct's and page tables for new areas
 - Programs and initialized data backed by object files.
 - .bss and stack backed by anonymous files.
- Set PC to entry point in . text
 - Linux will fault in code and data pages as needed.

User-Level Memory Mapping

- Map len bytes starting at offset offset of the file specified by file description fd, preferably at address start
 - start: may be 0 for "pick an address"
 - prot: PROT_READ, PROT_WRITE, ...
 - flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...
- Return a pointer to start of mapped area (may not be start)

User-Level Memory Mapping

Example: Using mmap to Copy Files

Copying a file to stdout without transferring data to user space.

```
#include "csapp.h"
void mmapcopy(int fd, int size)
    /* Ptr to memory mapped area
*/
    char *bufp;
    bufp = Mmap(NULL, size,
                PROT READ.
                MAP PRIVATE,
                fd. 0):
    Write(1, bufp, size);
    return:
                        mmapcopy.c
```

```
/* mmapcopy driver */
int main(int argc, char **argv)
    struct stat stat:
    int fd;
    /* Check for required cmd line arg
*/
    if (argc != 2) {
        printf("usage: %s
<filename>\n".
               argv[0]):
       exit(0):
    }
    /* Copy input file to stdout */
    fd = Open(argv[1], O_RDONLY, 0);
    Fstat(fd, &stat);
    mmapcopy(fd, stat.st_size);
    exit(0):
                             mmapcopy.c
```