- 1. Что такое единичный симплекс Δ^n в \mathbb{R}^n ?
- (a) $\Delta^n = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1\}.$ (b) $\Delta^n = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, x_i \ge 0, i = 1, \dots, n\}.$ (c) $\Delta^n = \{x \in \mathbb{R}^n : x_i \ge 0, i = 1, \dots, n\}.$
- (d) $\Delta^n = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i \le 1, x_i \ge 0, i = 1, \dots, n\}.$

Ответ: b

2. Даны норма $\|\cdot\|$, выпуклое множество $Q \subseteq \mathbb{R}^n$ и прокс-функция $d(x): Q \to \mathbb{R}$, которая является непрерывно дифференцируемой и 1-сильно выпуклой относительно нормы $\|\cdot\|$. Как выглядит итерация зеркального спуска для функции f?

(a)
$$x_{k+1} = \arg\min_{x \in Q} \left[\langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\gamma} ||x - x_k||^2 \right]$$

(b)
$$x_{k+1} = \arg\min_{x \in Q} \left[\langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\gamma} (d(x) - d(x_k)) \right]$$

(c)
$$x_{k+1} = \arg\min_{x \in Q} \left[\langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\gamma} (d(x) - d(x_k) - \langle \nabla d(x_k), x - x_k \rangle) \right]$$

Ответ: c

- 3. Пусть $d(x): \mathbb{R} \to \mathbb{R}$ прокс функция, V(x,y) соотвествующая ей дивергенция Брегмана. Выберите неверное утверждение.
 - (a) $d(x) = -\log x$, $V(x, y) = \log \frac{y}{x} + \frac{x}{y} 1$
 - (b) $d(x) = \frac{1}{x^2}$, $V(x,y) = \frac{1}{x^2} \frac{3}{y^2} + \frac{2x}{y^3}$
 - (c) $d(x) = x \log x x$, $V(x, y) = x \log \frac{x}{y}$
 - (d) $d(x) = \frac{x^2}{2}$, $V(x,y) = \frac{1}{2}(x-y)^2$
- (a) Из таблицы дивергенций с лекции $V(x,y) = \frac{x}{y} \log \frac{x}{y} 1 = \log \frac{y}{x} + \frac{x}{y} 1$. Утверждение верно
- (b) $V(x,y) = d(x) d(y) \langle \nabla d(y), x y \rangle = \frac{1}{x^2} \frac{1}{y^2} + \frac{2}{y^3}(x y) = \frac{1}{x^2} \frac{3}{y^2} + \frac{2x}{y^3}$ Утверждение верно
 - (c) Из таблицы $V(x,y) = x \log \frac{x}{y} x + y$. Утверждение неверно
 - (d) Из таблицы $V(x,y) = \frac{1}{2}(x-y)^2$. Утверждение верно

Ответ: c

4. Пусть $s_1, s_2, s_3 \in \mathbb{R}^3$ и $S = (s_1 \ s_2 \ s_3)$. В каком случае векторы s_1, s_2, s_3 являются сопряженными относительно некоторой симметричной положительно определенной матрицы A?

(a)
$$S = \begin{pmatrix} 5 & 0 & 10 \\ 2 & -3 & 4 \\ 0 & 2 & 0 \end{pmatrix}$$

(b) $S = \begin{pmatrix} -7 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 2 & 0 \end{pmatrix}$

(b)
$$S = \begin{pmatrix} -7 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 2 & 0 \end{pmatrix}$$

(c)
$$S = \begin{pmatrix} -1 & 0 & 1 \\ 5 & -2 & -3 \\ 0 & 3 & -3 \end{pmatrix}$$

Если векторы сопряженные относительно $A \in \mathbb{S}^n_{++}$, то они линейно независимы, то есть $\det(S) \neq 0$. Этому условию соответсвует только матрица под вариантом b. Ответ: b

- 5. Дана функция $R(x): Q \to \mathbb{R}$. Какой вид имеет проксимальный оператор для R? Выберите неправильное утверждение.
 - (a) $Q=\mathbb{R},\ R(x)=\lambda|x|(\lambda>0):\ \mathrm{prox}_R(x)=\max(|x|-\lambda,0)\cdot\mathrm{sign}(x)$ (b) $Q=\mathbb{R},\ R(x)=\lambda x^2(\lambda>0):\ \mathrm{prox}_R(x)=\frac{x}{2\lambda+1}$

 - (c) $Q = [2\lambda, +\infty), \ R(x) = \lambda \log x (\lambda > 0) : \ \operatorname{prox}_{R}(x) = \frac{x + \sqrt{x^{2} 4\lambda}}{2}$
 - (d) $Q = [0, +\infty), \ R(x) = \begin{cases} 0, & x \in [-1, 1] \\ +\infty, & \text{иначе} \end{cases}$: $\operatorname{prox}_{R}(x) = \min(x, 1)$
 - (а) Верно, обсуждалось на лекции
- (b) $u = \arg\min_{y \in \mathbb{R}} \left\{ \lambda x^2 + \frac{1}{2} (y x)^2 \right\}, \ x u = 2\lambda u, \ u = \frac{x}{2\lambda + 1}$. Утверждение верно (c) $u = \arg\min_{y \in [2\lambda, +\infty)} \left\{ \lambda \log x + \frac{1}{2} (y x)^2 \right\}, \ x u = \frac{\lambda}{u}, \ u^2 xu + \lambda = 0, \ u = \frac{\lambda}{u}$ $\frac{x+\sqrt{x^2-4\lambda}}{2}$. Утверждение верно
- (d) $\operatorname{prox}_{R}(x) = \operatorname{arg\,min}_{y \in [-1,1]} \left\{ \frac{1}{2} (y-x)^{2} \right\} = \pi_{[-1,1]}(x) = \operatorname{sign}(x) \operatorname{min}(|x|, 1)$. Утверждение неверно

Ответ: d

Ответы:

- 1. b
- 2. c
- 3. c
- 4. b
- 5. d