Počítačové a komunikačné siete

TCP 2 riadenie toku dát Internet Protocol (IP)

Prednáška 7

Opakovanie minulej prednášky

- » TCP
- » Subnetting

Transportná vrstva

Aplikačná vrstva Prezentačná Aplikačná vrstva vrstva Relačná vrstva Transportná vrstva Transportná vrstva Sieťová vrstva Sieťová vrstva Linková vrstva Linková vrstva

Pohľad vrstiev na topoloógiu siete Transportná vrstva

Protokol TCP

TCP segment

pseudohlavička

Niektoré voliteľné položky (options):

<u>kind</u>	length	<u>význam</u>
2	4	MSS
3	3	zväčšenie okna
4	2	povolenie SACK
5	prem.	SACK

Vnáranie stránky do paketov

Aplikácia (Web)

Aplikačná vrstva (HTTP)

Transportná vrstva (TCP)

Sieťová vrstva (IP)

Linková vrstva (Ethernet/WiFi)

Císlo segmentu, číslo potvrdenia

SN: 111

SN:1611

SN: 3111

ACK: 1611 ACK:3111. ACK:4611

Segment number, ACK number

Nadviazanie spojenia Three way handhake

1500 B

Segment number, ACK number

Dĺžka dát:

1500 B

SQN: 111, ACK: X ACK SQN: X, ACK=1611

Dĺžka dát:

1500 B

Dĺžka dát:

1500 B

SQN: 1611, ACK: X ACK SQN: X, ACK=3111 ACK SQN: 3111, ACK: X ACK SQN: X, ACK=4611

Opakovaná správa z predchádzajúceho slajdu

Segment number, ACK number

Čo nás čaká na prednáške

» Kontrola toku dát a zahltenia

Kontrola toku dát

- » Ciel': čo najefektívnejšie preniesť dáta cez sieť bez straty
- » Čo k tomu potrebujem?

Kontrola toku dát

- » Ciel': čo najefektívnejšie preniest' dáta cez siet' bez straty
- » Čo k tomu potrebujem?
 - Informáciu o stave:
 - Vysielača (Okno vysielača)
 - Prijímača (Okno prijímača)
 - Informáciu o stave siete

Protokol TCP – kontrola zahltenia Okno prijímača

- » Určuje, koľko dát môže prijímač prijať
- » vysielač nemusí poslať celé okno
- » prijímač môže meniť veľkosť okna
- » prijímač nemusí čakať na naplnenie okna pred vyslaním ACK
- » kumulované potvrdzovanie
- » test nulového okna
- » potvrdenie ARQ s návratom, selektívne ARQ

Protokol TCP

Protokol TCP – kontrola zahltenia Okno vysielača

- » Kde ho nájdem?
 - Je iba virtuálne
- » Určuje, koľko dát očakávam, že prejde sieťou

Protokol TCP – kontrola zahltenia Stav siete

Riadenie toku dát (flow control)

- zabezpečiť, aby rýchlosť prenosu dát medzi dvoma prepojenými uzlami neviedla k zahlteniu prijímajúceho uzla

Riešenie: väčšinou spätná väzba

Riadenie zahltenia (congestion control)

 zabezpečiť, aby v komunikačnej podsieti (sieti) nevzniklo blokovanie prenosu dát (zníženie celkovej prenosovej kapacity)

Riešenie: prevencia a spätná väzba

Riadenie toku dát a zahltenia /1

zahltenie prijímajúceho uzla => lokálne zahltenie siete => globálne zahltenie siete

<u>Protokol TCP – riadenie toku dát a zahltenia</u>

- problémy
 - kapacita siete
 - kapacita prijímača
- množstvo vysielaných dát určované oknami
 - rwnd okno (dynamické) na strane prijímača (receiver window),
 veľkosť určuje prijímač v priebehu spojenia
 - cwnd okno na strane vysielača (congestion window),
 predchádzanie zahlteniu
 - aktuálne okno = min(rwnd, cwnd) max. počet vyslaných nepotvrdených dát

Riadenie toku dát a zahltenia /4

Klasifikácia prístupov riadenia toku dát a zahltenia bez spätnej so spätnou väzbou väzby implicitná explicitná riadené zdrojom riadené cieľom spätná väzba spätná väzba trvalá reagujúca spätná väzba spätná väzba

Riadenie toku dát a zahltenia /4

Klasifikácia prístupov riadenia toku dát a zahltenia

- algoritmus deravej nádoby (the leaky bucket alg.)
- algoritmus nádoby povolení (the token bucket alg.)

Preventívne metódy

algoritmus deravej nádoby (the leaky bucket alg.) algoritmus nádoby povolení (the token bucket alg.)

princíp:

Preventívne metódy

algoritmus deravej nádoby (the leaky bucket alg.) algoritmus nádoby povolení (the token bucket alg.)

princíp:

Riadenie toku dát a zahltenia /4

Klasifikácia prístupov riadenia toku dát a zahltenia

- algoritmus nádoby povolení (the token bucket alg.)
- stop-and-wait, static window 1. generácia dynamic window, dynamic rate... 2. generácia (end-to-end, hop-by-hop)

napr. choke packets (ICMP – source quench) 4

Protokol TCP - prenos dát

Interaktívne vysielanie

- problém malých IP datagramov (tiny datagrams) Nagle_ov algoritmus
 - TCP spojenie môže mať len jeden vyslaný nepotvrdený segment
 - použitie algoritmu

Neinteraktívne vysielanie

- rýchly vysielač, pomalý prijímač
 - syndróm SWS (Silly Window Syndrom)
 - Clarke_ov algoritmus zabrániť vysielaču posielať "malé" okno

Protokol TCP – riadenie toku dát a zahltenia

- cwnd určuje dynamicky vysielač
 - cwnd = 1, vyšle 1 segment a čaká na potvrdenie
 - cwnd = 2, vyšle 2 segmenty a čaká na potvrdenie
 - cwnd = 4,
 - postupne vysiela 2ⁿ segmentov (pomalý štart)
- prah zvyšovania okna ssthresh (slow start threshold), po prekročení prahu vysoká pravdepodobnosť vzniku zahltenia
- algoritmus pomalého štartu (Slow Start SS) a algoritmus vyhýbania sa zahlteniu (Congestion Avoidance CA)
 - mss, cwnd, ssthresh, rwnd
 - − pomalý štart: cwnd <= ssthresh</p>
 - vyhýbanie sa zahlteniu: cwnd > ssthresh

Protokol TCP - SS a CA

Protokol TCP – algoritmus SS a CA

TCP Tahoe

TCP - riadenie toku dát a zahltenia

```
Ako je limitovaná rýchlosť vysielania ?

rýchlosť (rate) = cwnd / RTT

Ako pozná, že je zahltenie ?

implicitná-, explicitná detekcia
detekcia na základe straty paketu (loss-based detection), napr. TCP Reno, HS-TCP, S-TCP
detekcia na základe oneskorenia paketu (delay-based detection), napr. TCP Vegas, Fast TCP

Aký algoritmus sa použije na riadenie zahltenia ?

aditívny-, multiplikatívny-, iný princíp
napr. AIMD (TCP Reno, HS-TCP), MIMD (Fast TCP),
iné (BIC, CUBIC)
```


Protokol TCP – prenos a zotavenie

• zrýchlený prenos (Fast Retransmition, FRet):

ak počet duplikátov ACK je >=3 – veľká pravdepodobnosť, že segment je stratený a vysielač opakuje prenos segmentu bez čakania na vypršanie časovača

• rýchle zotavenie (Fast Recovery, FRec):

nezačína sa pri prenose s cwnd=1

Protokol TCP – algoritmus SS a CA

TCP Reno

Protokol TCP – algoritmus SS a CA

TCP Tahoe

TCP Reno

Modifikácia veľkosti okna

- Základné prístupy
 - znižovanie, zvyšovanie veľkosti okna
- Aditívny, multiplikatívny prístup

$$x(t+1) = a_i + b_i *x(t)$$
, ak $y(t) = 0$ (nie je zahltenie)
 $x(t+1) = a_d + b_d *x(t)$, ak $y(t) = 1$ (je zahltenie)

Modifikácia veľkosti okna

$$x(t+1) = a_i + b_i *x(t)$$
, ak $y(t) = 0$ (nie je zahltenie)
 $x(t+1) = a_d + b_d *x(t)$, ak $y(t) = 1$ (je zahltenie)

• AIAD (Additive Increase, Additive Decrease) $a_i > 0$, $a_d < 0$, $b_i = 1$, $b_d = 1$

- MIMD (Multiplicative Increase, Multiplicative Decrease) $a_i = 0$, $a_d = 0$, $b_i > 1$, $0 < b_d < 1$
- MIAD (Multiplicative Increase, Additive Decrease) $a_i = 0$, $a_d < 0$, $b_i > 1$, $b_d = 1$
- AIMD (Additive Increase, Multiplicative Decrease) $a_i > 0$, $a_d = 0$, $b_i = 1$, $0 < b_d < 1$

Porovnanie prístupov MIAD a AIMD

Niektoré varianty TCP

TCP Tahoe

- detekcia straty (len na základe časovača RTO)
- pomalý štart SS, vyhýbanie sa zahlteniu CA, zrýchlený prenos FRet

TCP Reno

- detekcia straty (na základe časovača RTO a duplicitných potvrdení)
- pomalý štart SS, vyhýbanie sa zahlteniu CA, zrýchlený prenos FRet, rýchle zotavenie FRec
- AIMD AI: $w \leftarrow w + 1/w$ MD: $w \leftarrow w \frac{1}{2}*w$

TCP Vegas

- detekcia oneskorenia
- modifikácia pomalého štartu (expon. zvýšenie cwnd len počas každého 2. RTT)
- AIAD

očakávana a skutočná rýchlosť vysielania

Protokol TCP - ECN

explicitné riadenie zahltenia

ECE - ECN-Echo

CWR Congestion Window Reduced
NS F Nance Sum

TCP rozšírenia

zväčšenie okna (window)

• spresnenie merania RTT

• selektívne potvrdzovanie

• reakcia na zahltenie, okno cwnd

Zhrnutie prednášky

» TCP − congestion control

Čo nás čaká na budúcej prednáške

» HTTP

» Subnetting (IP adresovanie)

DCCP (Datagram Congestion Control Protocol)

- nespoľahlivý tok datagramov
- spoľahlivé nadväzovanie a ukončenie spojenia
- spol'ahlivé dohadovanie volieb, zahŕňa aj vol'bu riadiaceho mechanizmu zahltenia
- spôsob prenosu potvrdení ACK závisí od mechanizmu riadenia zahltenia
- výber modulárneho mechanizmu riadenia zahltenia
 - CCID2, TCP-like congestion control (RFC 4341)
 - CCID3, TCP-Friendly Rate Control, TFRC (RFC 4342)
 - CCID4, TCP-Friendly Rate Control for Small Packets, TFRC-SP (RFC 4828)
- explicitné riadenia zahltenia (ECN)
- vhodné napr. pre streaming video

Riadenie toku dát a zahltenia /3

Príčiny zahltenia na rôznych vrstvách

spojová (dátová) vrstva

- potvrdzovanie
- riadenie toku
- správa vyrovnávacích pamätí prijímača

• • • • • •

sieťová vrstva

- správa vyrovnávacích pamätí
- zničenie paketov
- životnosť paketov
- smerovacie algoritmy

transportná vrstva
potvrdzovanie
správa vyrovnávacích pamätí
určovanie host-host oneskorenia
(,,timeout_u" cez siet')

