TD 1 – Arbres de poids minimum

Questions de cours : Arbre/Forêt

Considérons un graphe connexe sans cycle (donc 1-graphe).

On appelle forêt un graphe dont chaque composante connexe est un arbre.

Soit G un graphe comptant au moins $n \ge 2$ sommets. Montrer que les propriétés suivantes sont équivalentes pour que G soit un arbre :

- G est connexe et sans cycle.
- G est sans cycle et compte n-1 arêtes.
- G est connexe et compte n-1 arêtes.
- G est sans cycle et en ajoutant une arête quelconque on crée un cycle.
- G est connexe et si on supprime une arête quelconque, il n'est plus connexe.
- Tout couple de sommets de G distincts est relié par une chaîne unique.

Exercice 1 (Arbres)

- Combien d'arbres différents existe-t-il avec 5 sommets ? avec 6 sommets ? avec 7 sommets ?
- Combien d'arbre couvrants différents les graphes suivants possèdent-ils ?

Exercice 2 (Algorithme de PRIM)

Soit G = (V, E) un graphe connexe et $w : E \to IR^+$ une fonction de poids. On suppose que G est codé par listes de voisins : à chaque sommet v de G est associée la pile Vois(v) des voisins de V. L'ensemble des sommets de V est $\{x_1, \ldots, x_n\}$.

Nous nous intéressons au graphe suivant :

- a. Selon vous, quelles arêtes appartiennent sûrement à l'arbre recouvrant minimal?
- b. Retrouvez l'arbre maximal de coût minimal par les deux algorithmes de PRIM et de KRUSKAL.
- c. b. Soit d un entier positif non nul. L'hypercube Q_d est le graphe dont l'ensemble des sommets est l'ensemble des d-uplets (x_1, \ldots, x_d) de 0 et de 1, deux d-uplets étant adjacents s'ils diffèrent sur une seule entrée.
 - Dessiner Q_d , pour $d = 1, \ldots, 4$.
 - Pour d quelconque, déterminer le nombre de sommets et d'arêtes de Q_d .

- On considère la fonction de poids p définie sur les arêtes de Q_d qui vérifie p(e) = i lorsque i est l'indice de la coordonnée qui diffère entre les extrémités de e. Déterminer un arbre couvrant de poids minimum de Q3.
- Tester le deuxième algorithme sur le graphe $Q3 \setminus \{111\}$, pondéré comme dans la question précédente.
- d. Comparer sa complexité avec celle de l'algorithme de Kruskal.

Exercice 4 (Réseau à expansion minimale - Arbre recouvrant de coût minimal)

Une banque Toulousaine, Midi Pyrénées, est en train de mettre en place un réseau pour connecter ses sept agences au siège central à Toulouse. Les sept villes dans lesquelles les agences sont localisées et la matrice des coûts sont indiqués dans le tableau 1 (les coûts sont calculés en fonction des offres des opérateurs et sont proportionnels aux distances entre les agences).

- 1. Trouver une solution en construisant l'arbre maximal à coût minimal.
- 2. Le trafic généré par chaque branche (proportionnel à la population de la ville) est indiqué, en terme de messages/min, dans la table 2. Pas plus de 20 messages/min, ne peuvent être envoyés sur chaque lien. Proposer une méthode qui permet de trouver l'arbre recouvrant de coût minimal en tenant compte de ces contraintes.

	1	2	3	4	5	6	7	8
	T	В	A	A	C	F	R	T
	O	L	L	U	A	O	O	A
	L	A	В	\mathbf{C}	H	I	D	R
	O	\mathbf{G}	I	H	O	X	\mathbf{E}	В
	\mathbf{U}	N			R		${\bf Z}$	\mathbf{E}
	\mathbf{S}	\mathbf{A}			\mathbf{S}			\mathbf{S}
	\mathbf{E}	\mathbf{C}						
1 TOULOUSE	-	2	52	13	45	15	58	59
2 BLAGNAC	2	-	52	14	43	16	58	62
3 ALBI	52	52	-	60	85	42	23	55
4 AUCH	13	14	60	-	50	18	72	50
5 CAHORS	45	43	85	50	-	59	81	95
6 FOIX	15	16	42	18	59	-	55	41
7 RODEZ	58	58	23	72	81	55	-	78
8 TARBES	59	62	55	50	95	41	78	-

Figure 1: Matrice des coûts

	Population	Trafic (messages/min)		
1 TOULOUSE	443 103	30		
2 BLAGNAC	20 586	14		
3 ALBI	47 800	12		
4 AUCH	21 838	13		
5 CAHORS	23 128	6		
6 FOIX	9 109	7		
7 RODEZ	23 707	6		
8 TARBES	46 275	6		

Figure 2: Messages générés