ECEN 5613 Spring 2019

Embedded System Design Lab #1 Signoff Sheet - Part 1 Elements

Week #1 1/14/2019

You will need to obtain the signature of your TA on the following items in order to receive credit.

The Part 1 Elements of Lab #1 should be completed and signed off by Friday, Jan. 25, 2019 in order to give you time to complete the Part 2 Elements upon receipt of your parts kit. Both signoffs are due by Friday, Feb. 8, 2019. You need to submit both of your signoff sheets and other required elements by 11:59pm Saturday, Feb. 9, 2019. Labs completed after the signature due date or submitted after the submission due date will usually receive grade reductions, but there is leniency on Lab #1.

Print your name below and then demonstrate your working hardware/firmware in order to obtain the necessary signatures. All items must be completed to get a signature, but partial credit is given for incomplete labs. Receiving a signature on this signoff sheet does not mean that your work is eligible for any particular grade; it merely indicates that you have completed the work at an acceptable level.

	Student Name:	RUSHI	JAMES	MACI	NAN	_			
	Checklist				(a)				*
	data memory Student asser	, using break mbly progran	cpoints, single n works corre	e stepping, ectly	uses /over	cluding chang rlay option, etc l WinSim, logi	:.)	* ,	\$
	Student Answer	s to Lab Qu	<u>estions</u>						
	1. How many I (Show how y Code Size?	ou arrived a	t your answer	The	code be	ire? gins in th aut line of h which is	ne mernor f the code 56 bytes	ny space e ende of space	at oxocooh at in the
Plane	label, Show	clude the in	structions ex	execute fo ecuted fro culations	r X=0x20 om the beg	and Y=0x0A? ginning until y	? Assume an loou reach the ng your signo	l1.0592 MH ENDLOOP ff.	z
clissega Hvis	Execution Ti	me? 1.8 1, there only second	re 6stat	es in on e 11.059	e cycle 2 m cycle	3.	——————————————————————————————————————		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
calculation	n. l so, for 1	22/6 Cyclus	, we need	1.83878	<i>Ms)</i> .	de	ita	7	2/14
Look on backside	Instructor/TA C	Comments:	0 0 0			TA signatur	e and date	<i>></i>	
	FOR INSTRUCT	OR USE ON		Not olicable	Poor/Not Complete	Meets Requirements	Exceeds Requirements	Outstanding	
	SPLD code Assembly Language Required Elements fu	inctionality	ac .						

Ħ

Comments:

Overall Demo Quality

Student understanding and skills

> 8051 asm portion IDE/simulator used in + vell-commented code

NOTE: This submission sheet should be the top/first sheet of your submission.

Calculation for Problem-2:

- -> for every 6 states, there one 12 oscillator cycles.
 - . For 122 states, we need: the following oscillator vycles:

= 122 x 12 = 244 cycles.

-> Mow, every second there are 11.0592M cycles and so for 244 cycles to execute, we will need the following time:

= 244 = 22.0630787 Msec.

ar of balling the

ECEN 5613 Spring 2019

Embedded System Design Lab #1 Signoff Sheet - Part 2 Elements

Week #1

Print your name below, answer the questions, and then demonstrate your working hardware in order to obtain the necessary signatures. All items must be completed to get a signature.

Student Name: RUSHI JAMES MACWAN										
Checklist Schematic of acceptable quality, Student name on board in permanent ink Pins and signals labeled, decoupling capacitors, and two 28-pin wire wrap sockers present on board: Mounting hardware present (e.g. standoffs or an enclosure) Power switch and LED, voltage regulator functional, power jack present Power-on Reset (RC) and Run-time Reset (pushbutton), 8051 bypass cap is present RS-232 connector mounted, 74LS373 transparent latch wired Logic outputs correct (e.g. SPLD generation of /READ and /CSPERIPH: view SPLD code) Student displays good knowledge of oscilloscope Peak to peak noise measured across processor VCC and GND is < 800mV Oscillator functional (check for correct ALE/XTAL2 signals after power on-off cycles) ARM development board functional, student can demonstrate the basic software.										
Student Answers to Lab Questions										
What voltage is present at the regulator input? Use a digital multimeter										
What voltage is present at the regulator output? Use a digital multimeter. 5.00 V										
. What peak to peak noise is present across the processor VCC and GND? Use an oscilloscope.	What peak to peak noise is present across the processor VCC and GND? Use an oscilloscope.									
Measured value at processor package pins on top side of board: 40 w V (34 Dm V)										
Measured value at wire wrap socket pins on bottom side of board: Zhany (250 mm) # After programming spld. How long is the processor held in reset after the run-time reset pushbutton is released. Use an oscilloscope and try to measure the time between the release of the pushbutton and the time when noise from ALE is observed on the RST signal.										
Measured value: 130.4 msec										
. What frequency is present at the ALE pin? Use an oscilloscope. 1. \$45 M H3										
nstructor/TA Comments: D D D TA signature and date										
Not Poor/Not Meets Exceeds OR INSTRUCTOR USE ONLY Applicable Complete Requirements Requirements Dutstanding										
chematics, SPLD code ardware physical implementation equired Elements functionality gn-off done without excessive retries udent understanding and skills										
erail Defrito Quality										
omments: B/z: All HW functional. Just needs schem & msp demo										
+ Screenshots look good										

Submission Sheet

Instructions: Print your name below and sign the honor code pledge. Separate the signoff and submission sheets from the rest of the lab and turn in a scan (or clear picture) of these signed forms, the items in the checklist below, and the answers to any applicable lab questions in order to receive credit for your work. No cover sheet please. Submit all items electronically via Desire2Learn to reduce paper usage. D2L is https://learn.colorado.edu.

In addition to the items listed on the signoff checklist, be sure to review the lab for additional requirements for submission, including:

- Scan of signed and dated Part 1 signoff sheet as the top sheet (No cover sheet please)
- Scan of signed and dated Part 2 signoff sheet as the second sheet
- Scan of submission sheet with signed honor code pledge as the third sheet
- PDF of complete and accurate schematic of acceptable quality (all components shown).
- Fully, neatly, and clearly commented assembly code.

Make copies of your code, SPLD code, and schematic files and save them as an archive.

Student Name: RUSHI JAMES MACWAN

Honor Code Pledge: "On my honor, as a University of Colorado student, I have neither given nor received unauthorized assistance on this work. I have clearly acknowledged work that is not my own."

Student Signature: / wstu 3	Student Signature:	Rushi J. Macwar.	
-----------------------------	--------------------	------------------	--

1. How much power is dissipated in the regulator, assuming a load current of 300mA? Assume that the regulator is drawing the max quiescent current shown in the data sheet (use the correct data sheet for the regulator you have on your board). Neatly show all your work,

Total power dissipated = 0.767936 Watts

Calculation:

1) Power divipated due to aniercent current: P = V. I = (7.48V) x (3.2mA) = 23.936 mWatts 2) Power dissipated in stepping down the voltage using the load current: P= (7.48-5.00) x (300 mA) = 744 m Watts .. Ptotal = Pi+Pz

Calculated value: Ptotal = 0.767936Walts

I used the MC7805ACTG Voltage regulator and the "typical" quiescent current value is 3.2 m A which I used for calculating P, above. **Comments:**

NOTE: This submission sheet should be the third sheet of your submission.