Characteristics Of Enols and Enolates

from chapter(s) _____ in the recommended text

A. Introduction

B. Enols Form Under Acidic Conditions

Mechanism Of Formation

protonation enol.

enol form

enol

enol form

Deuterium Exchange

deuterons.

deuterated carbonyl

deuterated product

O-deuterated carbonyl

O-deuterated enol

C-deuterated ketone

O-deuterated carbonyl

enol form

dideuterated ketone

tautomerism;

Enols Of 1,2- And 1,3-Dicarbonyl Compounds enol form

10⁶: 1. enol

reason: Enolization of 1,3-cyclohexanedione forms conjugation between carbonyl and C=C which is stabilized by resonance, while the acetone does not have resonance effect.

reason: Compared to acetone, one carbonyl group in the 2,3-butanedione acts as electron withdrawing group that enhances acidity of α -H.

$$0 \downarrow 0 \downarrow 0 \downarrow 0 \downarrow 0$$

Enols Of Other Carbonyl Compounds

$$H_2O$$

enol

Keto-Enol Tautomers Of Other Compound Types

keto

C. Enolates Form Under Basic Conditions

Mechanism Of Formation

enolate enol

Resonance Structures Of Enolates

more more

It is not easy *N*-anions.

D. Effects Of Enolization

Racemization

optically active

achiral

optically active

can racemize

Double Bond Migration

Migration

enol

keto

keto

enol

fructose