Année 2018-2019

Corrigé Examen de Mathématiques tronc commun

Jeudi 6 décembre 2018, durée 2h30

1 Analyse

Exercice 1.

1. Préciser le domaine de définition et calculer la dérivée de la fonction :

$$f: x \mapsto \cos(x^3 + 1)$$

La fonction f est définie sur $\mathbb R$ sa dérivée est définie par $f'(x) = -3x^2\sin(x^3+1)$.

2. Calculer l'intégrale $\int_1^e x^2 \ln(x) dx$.

il suffit de faire une IPP : avec $u: x \mapsto \frac{x^3}{3}$ et $v: x \mapsto \ln(x)$. Ces deux fonctions sont de classe C^1 sur l'intervalle [1;e]. Ensuite, $\int_1^e x^2 \ln(x) \, dx = \left[\frac{x^3}{3} \ln(x)\right]_1^e - \frac{1}{3} \int_1^e x^2 dx = \frac{1}{9}(1+2e^3)$.

3. En effectuant le changement de variable $t = \sqrt{1+x}$, calculer $\int_0^3 \frac{x}{\sqrt{1+x}} dx$

La fonction $x \mapsto \sqrt{1+x}$ est C^1 sur [0;3] et réalise une bijection de [0;3] dans [1;2]. Ensuite, $dt = \frac{1}{2\sqrt{1+x}}dx$. D'où :

$$\int_0^3 \frac{x}{\sqrt{1+x}} dx = 2 \int_1^2 (t^2 - 1) dt = 2 \left[\frac{t^3}{3} - t \right]_1^2 = 2(\frac{8}{3} - 2 - \frac{1}{3} + 1) = \frac{8}{3}$$

4. Déterminer toutes les primitives de la fonction $f: x \mapsto \frac{\ln(x)}{x}$.

C'est de la forme f'f. Les primitives sont donc $x\mapsto \frac{1}{2}\ln^2(x)+k$ où $k\in\mathbb{R}$ une constante.

5. Étudier la convergence des intégrales suivantes :

$$\int_{1}^{+\infty} \frac{1}{t\sqrt{t^2 + 1}} dt; \qquad \int_{2}^{+\infty} \ln(t) dt$$

 $\frac{1}{t\sqrt{t^2+1}}\sim\frac{1}{t^2}, \text{ il s'agit de fonctions positives et } \int_1^{+\infty}\frac{1}{t^2}\,dt \text{ converge. D'où la convergence}$ $\det\int_1^{+\infty}\frac{1}{t\sqrt{t^2+1}}\,dt; \text{ On peut aussi utiliser la majoration } 0\leq\frac{1}{t\sqrt{t^2+1}}\leq\frac{1}{t^2}.$

Une primitive de la fonction $x \mapsto \ln(x)$ est $x \mapsto x \ln(x) - x$. On en déduit que $\int_2^{+\infty} \ln(t) dt$ n'est pas convergente.

6. (a) Effectuer la division euclidienne du polynôme $P(X) = X^3 - 3X^2 + 4X - 3$ par le polynôme $Q(X) = X^2 - 3X + 2$.

Réponse : P(X) = XQ(X) + 2X - 3

- (b) Montrer que 1 et 2 sont racines de Q. Il suffit de vérifier que Q(1) = Q(2) = 0
- (c) Déterminer la décomposition en éléments simples de la fraction rationnelle $\frac{P(X)}{Q(X)}$. $\frac{P(X)}{Q(X)} = X + \frac{1}{X-2} + \frac{1}{X-1}$
- (d) En déduire les primitives sur]2; $+\infty$ [de la fonction $f: x \mapsto \frac{x^3 3x^2 + 4x 3}{x^2 3x + 2}$. Les primitives de f sur]2; $+\infty$ [sont $x \mapsto \frac{x^2}{2} + \ln(x - 2) + \ln(x - 1) + k$.
- 7. Donner le développement limité en 0 à l'ordre 3 de la fonction $g: x \mapsto \frac{\ln(1+x)}{\cos(x)}$.

À l'ordre 3 on a $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$ et $\cos(x) = 1 - \frac{x^2}{2} + o(x^3)$ donc $\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + o(x^3)$. On en déduit que $g(x) = (x - \frac{x^2}{2} + \frac{x^3}{3})(1 + \frac{x^2}{2}) + o(x^3) = x - \frac{x^2}{2} + \frac{5x^3}{6} + o(x^3)$.

Exercice 2.

Résoudre sur $\mathbb R$ les équations différentielles suivantes :

1. $y' + y = e^{-x}$

Les solutions de l'équation homogène sont $x \mapsto Ce^{-x}$, où $C \in \mathbb{R}$. Ensuite, on chercher une solution particulières sous la forme $P(x)e^{-x}$ où P est un polynôme de degré 1 ou alors il suffit de remarquer que $x \mapsto xe^{-x}$ est solution de l'équation. Les solutions générales sont donc $x \mapsto Ce^{-x} + xe^{-x}$.

2. y'' - 2y' + 5y = 0.

On résout d'abord l'équation caractéristique $\lambda^2 - 2\lambda + 5 = 0$ qui admet pour racines 1 + 2i et 1 - 2i. Les solutions de l'équations sont donc $x \mapsto C_1 e^x \cos(2x) + C_2 e^x \sin(2x)$ où C_1, c_2 sont des constantes réelles.

Exercice 3.

On considère l'équation différentielle :

$$(E_1): (1+x)y''(x) - 2y'(x) + (1-x)y(x) = (1+x)^3 e^x; x \in]-1; +\infty[$$

1. Déterminer les solutions de l'équation différentielle suivante :

$$(E_2): (1+x)y'(x) + 2xy(x) = (1+x)^3; x \in]-1; +\infty[$$

Comme on travaille sur l'intervalle $]-1;+\infty[$ l'équation est équivalente à :

$$y'(x) + \frac{2x}{1+x}y(x) = (1+x)^2$$

On résout d'abord l'équation homogène : une primitive de la fonction $x\mapsto \frac{2x}{1+x}$ est la fonction $x\mapsto 2x-2\ln(1+x)$. Les solutions de l'équation homogène sont donc $x\mapsto C_1e^{-2x}(1+x)^2$. Ensuite, soit on remarque que $x\mapsto \frac{1}{2}(1+x)^2$ est solution particulière, soit on applique la méthode de la variation de constante. Les solutions générales sont $x\mapsto C_1e^{-2x}(1+x)^2+\frac{1}{2}(1+x)^2$.

- 2. Soit y une solution de (E_1) et z définie par $y(x) = z(x)e^x$. Montrer que y est solution de (E_1) si et seulement si z' est solution d'une équation différentielle à déterminer. $y'(x) = z'(x)e^x + y(x)$ et $y''(x) = z''(x)e^x + 2z'(x)e^+y(x)$. En injectant dans l'équation E_1 on trouve que z' est solution de l'équation E_2 .
- 3. En déduire les solutions de (E_1) .

Il suffit de calculer les primitives de $C_1e^{-2x}(1+x)^2+\frac{1}{2}(1+x)^2$. On calcule l'intégrale alors $\int_C^x C_1e^{-2t}(1+t)^2+\frac{1}{2}(1+t)^2dt$ où $C\in\mathbb{R}$. D'abord, $\int_C^x \frac{1}{2}(1+t)^2dt=\frac{1}{6}(1+x)^3-\frac{1}{6}(1+C)^3$. Ensuite,

$$\int_{C}^{x} C_{1}e^{-2t}(1+t)^{2}dt = C_{1}\left(\left[-\frac{1}{2}e^{-2t}(1+t)^{2}\right]_{C}^{x} + \int_{C}^{x} e^{-2t}(1+t)\right)$$

$$= C_{1}\left(\left[-\frac{1}{2}e^{-2t}(1+t)^{2}\right]_{C}^{x} + \left[-\frac{1}{2}e^{-2t}(1+t)\right]_{C}^{x} + \frac{1}{2}\int_{C}^{x} e^{-2t}dt\right)$$

$$= C_{1}\left(\left[-\frac{1}{2}e^{-2t}(1+t)^{2}\right]_{C}^{x} + \left[-\frac{1}{2}e^{-2t}(1+t)\right]_{C}^{x} + \left[-\frac{1}{4}e^{-2t}\right]_{C}^{x}\right)$$

Enfin on additionne toutes les constantes ensemble et en multipliant par e^x , les solutions de E_1 sont $x \mapsto \frac{e^x}{6}(1+x)^3 + C_1e^{-x}\left(-\frac{5}{4} - \frac{3}{2}x - \frac{1}{2}t^2\right) + C_2e^x$ ou encore

$$x \mapsto \frac{e^x}{6}(1+x)^3 + C_1'e^{-x}(2x^2 + 6x + 5) + C_2e^x$$

2 Algèbre

Exercice 4.

1. Résoudre dans \mathbb{C} l'équation :

$$z^2 - (2+3i)z - 5 + i = 0$$

Les solutions seront exprimées sous forme algébrique.

Les solutions sont -1 + i et 3 + 2i.

2. Calculer le déterminant suivant : $\begin{vmatrix} 1 & 5 & 1 \\ 0 & 1 & 0 \\ 1 & 7 & 2 \end{vmatrix}$

Il suffit de développer suivant la deuxième ligne. Le déterminant vaut 1.

3. Effectuer les produits matriciels suivants quand ils sont bien définis : AB et CB où

$$A = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}; \qquad B = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}; \qquad C = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Le produit CB n'est pas défini et $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

4. Résoudre le système linéaire suivant en utilisant la méthode de pivot de Gauss :

$$\begin{cases} x + y + 2z = -1 \\ 2x - y + 2z = -4 \\ 4x + y + 4z = -2 \end{cases}$$

La matrice augmentée est :

$$\begin{bmatrix}
1 & 1 & 2 & -1 \\
2 & -1 & 2 & -4 \\
4 & 1 & 4 & -2
\end{bmatrix}$$

On effectue d'abord les opérations $L_2 \leftarrow L_2 - 2L_1$ et $L_3 \leftarrow L_3 - 4L_1$, on obtient donc

$$\left[\begin{array}{ccc|c}
1 & 1 & 2 & -1 \\
0 & -3 & -2 & -2 \\
0 & -3 & -4 & 2
\end{array}\right]$$

On effectue alors $L_3 \leftarrow L_3 - L_1$:

$$\left[\begin{array}{ccc|c}
1 & 1 & 2 & -1 \\
0 & -3 & -2 & -2 \\
0 & 0 & -2 & 4
\end{array}\right]$$

On résout ensuite le système triangulaire. On obtient une unique solution

$$\left[\begin{array}{c}1\\2\\-2\end{array}\right]$$

Exercice 5.

Pour chaque matrice M_j ci-dessous (j = 1, 2)

1. déterminer si M_i est diagonalisable ou non (justifier).

La matrice M_2 n'est pas diagonalisable sinon elle serait semblable à la matrice identité. Le polynôme caractéristique de M_1 est $\chi_{M_1}(x) = \begin{vmatrix} x+3 & 2 & 2 \\ -2 & x-1 & -2 \\ -3 & -3 & x-2 \end{vmatrix}$. En effectuant $L_1 \leftarrow L_1 + L_2 + L_3$, on obtient : $\begin{vmatrix} x-2 & x-2 & x-2 \\ -2 & x-1 & -2 \\ -3 & -3 & x-2 \end{vmatrix} = (x-2)\begin{vmatrix} 1 & 1 & 1 \\ -2 & x-1 & -2 \\ -3 & -3 & x-2 \end{vmatrix}$. Puis $C_2 \leftarrow C_2 - C_1$ et $C_3 \leftarrow C_3 - C_1$ et donc $\chi_{M_1}(x) = (x-2)\begin{vmatrix} 1 & 0 & 0 \\ -2 & x+1 & 0 \\ -3 & 0 & x+1 \end{vmatrix} = (x-2)(x+1)^2$.

Les sous-espaces propres associés sont les ensembles $E_{-1} = Ker(M_1 + I_3)$ et $E_2 = Ker(M_1 - I_3)$ $2I_3$. Ensuite, E_2 est forcément de dimension 1 car l'ordre de multiplicité de 2 est égal à 1. En résolvant $(M_1 + I_3)X = 0$ on trouve l'équation x + y + z = 0 qui est l'équation d'un plan. Donc E_{-1} est de dimension 2 et la matrice M_1 est diagonalisable.

2. Si M_j est diagonalisable, donner une matrice diagonale D_j et une matrice inversible P_j telles que $M_j = P_j D_j P_j^{-1}$

$$M_1 = \begin{pmatrix} -3 & -2 & -2 \\ 2 & 1 & 2 \\ 3 & 3 & 2 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

Il suffit maintenant de déterminer une base de vecteur propre. En résolvant $(M_1+I_3)X=0$, on trouve que le sous-espace caractéristique E_2 associé à la valeur propre 2 est donc la droite vectorielle engendrée par le vecteur (2, -2, -3). Le sous-espace propre E_{-1} est engendré par les vecteurs $u_1 = (1, -1, 0)$ et $u_2 = (1, 0, -1)$. On pose alors $D_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ alors

$$M_1 = P_1 D_1 P_1^{-1}$$

$$\mathbf{où}\ P = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & -2 \\ 0 & -1 & -3 \end{pmatrix}.$$