

Hoofdstuk 1 – Inleiding en basisbegrippen Discrete wiskunde

dr. ir. Cedric De Boom IDLab - imec

Wat is discrete wiskunde?

VS

1,3473624324423785627334257236483424 234782396573284634210387472639102463 343758578467323493756543676124836750 3745325683274896975435899039747364...

Wat is discrete wiskunde?

Discreet = "afzonderlijk" of "niet verbonden"

Een stap meer of minder heeft betekenis, iets daartussen niet

- Het tellen van objecten
- Het oplossen van logische problemen (waar of vals)
- Het rekenen met gehele getallen
- Het bestuderen van discrete structuren (met eindig of telbaar aantal elementen)
- Het oplossen van recursies
- ...

Toepassingen van discrete wiskunde

- Elektronica
- Communicatie
- Cryptografie
- Codeertheorie
- Muziek
- Hardware design
- Signaalverwerking
- Parallel en gedistribueerd rekenen
- Beeldverwerking
- Ontwerp en analyse van algoritmen
- Generatie van random getallen
- Foutopsporing en anomaliedetectie
- ..

Een korte geschiedenis

- Natuurlijke getallen: origine van de wiskunde
- **Babyloniërs** (3000 vC): 60-tallig talstelsel
- Aristoteles (400 vC): logica
- Euclides (300 vC): getaltheorie, axiomatische opbouw
- Al-Khwarizmi (9e eeuw): cijfer 0
- **Fermat** (17e eeuw): $x^n + y^n = z^n$ (n > 2) heeft geen oplossingen ("bewijs in kantlijn")
- Euler (18e eeuw): grafen, priemgetallen, ...
- Leibniz (18e eeuw): logica
- Laplace (18e eeuw): combinatieleer
- Gauss (19e eeuw): oplossen vergelijkingen
- ...
- 20e eeuw: opkomst elektronica en computer

Discrete vs. numerieke wiskunde

Numerieke wiskunde

= de studie van algoritmes voor het oplossen van problemen in de *continue* wiskunde

Bijvoorbeeld:

- Integratietechnieken
- Het oplossen van differentiaalvergelijkingen
- Het oplossen van vergelijkingen en stelsels
- Interpolatie en regressie
- •

Natuurlijke getallen

Definitie en notatie

$$\mathbb{N} = \{0,1,2,3,4,...\}$$

$$\mathbb{N}_0 = \{1,2,3,4,...\}$$

Het feit of 0 een natuurlijk getal is, is een afspraak

- Gesloten onder + en ×
- Niet gesloten onder en /
- Bezit een natuurlijke ordening <
 - Elk getal uit N bezit een opvolger
 - Is dus ideaal voor het beschrijven van rijen, iteratie en recursie: van groot belang voor informatica!

Gehele getallen

Definitie en notatie

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

- \mathbb{Z} is een **ring**: gesloten onder +, \times én (zie bijlage A in de cursus)
- Niet gesloten onder /
- Geen "inductie-eigenschap" meer (zoals bij ℕ)

Groep

Een **groep** is een niet-ledige verzameling g met een binaire operator \oplus waarvoor geldt:

• g is **gesloten** onder \oplus

$$\forall a, b \in \mathcal{G}: a \oplus b \in \mathcal{G}$$

• ⊕ is associatief

$$\forall a, b, c \in \mathcal{G}: (a \oplus b) \oplus c = a \oplus (b \oplus c)$$

• Er is een uniek eenheidselement voor \oplus

$$\exists e \in \mathcal{G}: \forall a \in \mathcal{G}: a \oplus e = a = e \oplus a$$

Elk element heeft een invers voor ⊕

$$\forall a \in \mathcal{G}: \exists b \in \mathcal{G}: a \oplus b = e = b \oplus a$$

Commutatieve of Abelse groep

Een **commutatieve** of **Abelse groep** is een groep (\mathcal{G}, \oplus) waarvoor bijkomend geldt:

• \oplus is commutatief

$$\forall a, b \in \mathcal{G}: a \oplus b = b \oplus a$$

Ring

Een **ring** is een verzameling \mathcal{R} met twee binaire operatoren \oplus en \odot waarvoor geldt:

- \mathcal{R} is **gesloten** onder \oplus
- ⊕ is commutatief
- Er is een uniek eenheidselement voor ⊕
- Elk element heeft een invers voor ⊕
- \mathcal{R} is **gesloten** onder \odot
- ⊙ is associatief
- ⊙ is distributief t.o.v. ⊕

$$\forall a, b, c \in \mathcal{R}: a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$$

Uitbreidingen van ringen

Een **commutatieve ring** is een ring $(\mathcal{R}, \oplus, \odot)$ waarvoor bijkomstig geldt:

• ⊙ is commutatief

Een **ring met eenheidselement** is een ring $(\mathcal{R}, \oplus, \odot)$ waarvoor bijkomstig geldt:

• Er is een uniek eenheidselement voor ⊙

$$\exists \mathbf{1} \in \mathcal{R} : \forall a \in \mathcal{R} : a \odot \mathbf{1} = a = \mathbf{1} \odot a$$

Rationale getallen

Definitie en notatie

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0 \right\}$$

- Q is een veld: gesloten onder +, ×, en / (zie bijlage A in de cursus)
- **Dichte ordening**: tussen elke twee rationale getallen x en y ligt een ander getal $\frac{x+y}{2}$ Geen unieke opvolger meer

Veld

Een **veld** is een commutatieve ring met eenheidselement $(\mathcal{V}, \oplus, \odot)$ met bijkomende eigenschap:

• Elk element $\neq 0$ heeft een **invers element** voor \odot

$$\forall a \in \mathcal{V} : \exists b \in \mathcal{V} : a \odot b = \mathbf{1} = b \odot a$$

Reële getallen

Definitie en notatie

 \mathbb{R} = alle punten op een (geijkte) lijn: de reële getallenas

Voorbeeld: $\sqrt{2}$ en π zijn reële getallen, maar geen rationale getallen:

irrationale getallen: $\mathbb{R}\setminus\mathbb{Q}$

Eigenschappen

• ℝ is een **veld**: gesloten onder +, ×, − en / (zie bijlage A in de cursus)

Bewijs: $\sqrt{2}$ is irrationaal

Bewijs uit het ongerijmde

Stel dat $\sqrt{2}$ rationaal is, dan moet dit leiden tot een contradictie of logische fout

 $\sqrt{2}$ is rationaal $\Leftrightarrow \sqrt{2} = \frac{a}{b} \mod a$, $b \in \mathbb{Z}$ en a, b onderling ondeelbaar

$$\Rightarrow 2 = \frac{a^2}{b^2}$$

$$\Rightarrow 2b^2 = a^2$$

$$\Rightarrow a^2$$
 is even

$$\Rightarrow a$$
 is even

$$\Rightarrow a = 2c, c \in \mathbb{Z}$$

$$\Rightarrow a^2 = 4c^2$$

$$\Rightarrow 4c^2 = 2b^2$$

$$\Rightarrow 2c^2 = b^2$$

 \Rightarrow b is even, wat niet een contradictie is met "a, b onderling ondeelbaar"

Complexe getallen

Definitie en notatie

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R}, i^2 = -1 \}$$

- C is een veld
- Alle veeltermvergelijkingen in 1 onbekende kunnen nu opgelost worden
- Complexe getallen zijn niet meer te ordenen op één lijn
 - Kunnen wel gevisualiseerd worden in een vlak

Gehele getallen modulo n

Definitie en notatie

$$\mathbb{Z}_n = \{0, 1, 2, 3, ..., n-1\}, n \in \mathbb{N}, n > 2$$

- + en \times verloopt zoals in \mathbb{Z} ,
 maar de einduitkomst wordt vervangen door de rest bij deling door n"modulo n"
- In dat geval is \mathbb{Z}_n gesloten onder + en \times \mathbb{Z}_n is een commutatieve ring met eenheidselement

Optellings- en vermenigvuldigingstabel voor Z₈

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6 7	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	0 1 2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	4 5	6

×	0	1	$ \begin{array}{c} 2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 2 \\ 4 \\ 6 \end{array} $	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Optellings- en vermenigvuldigingstabel voor Z₈

+	0	1	2	$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 0 \\ 1 \\ 2 \\ \end{array} $	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0 0 0 0 0 0 0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

"nuldelers"

Optellings- en vermenigvuldigingstabel voor Z₂

- Belangrijk voor computertoepassingen (binair)
- + komt overeen met een logische XOR-operatie
- x komt overeen met een logische AND-operatie

De modulo-operator in programmeertalen

Bijna alle programmeertalen ondersteunen een modulo-operatie Het gebruikte symbool is meestal %

Let op voor **verschillen!**

elementen van \mathbb{Z}	 -4	-3	-2	-1	0	1	2	3	4	
modulo 3 (wiskundig)	 2	0	1	2	0	1	2	0	1	
%-operator in C++	 -1	0	-2	-1	0	1	2	0	1	
%-operator in Python	 2	0	1	2	0	1	2	0	1	