

Clustering Algorithms

4/20/2021 DSFA-Atul Gupta 1

Machine Learning Algorithms

Supervised

Unsupervised

Other

Regression

Classification

Clustering

Association Rule Mining

Reinforcement Algorithms

Applications of Clustering...

Applications of Clustering

Customer Segmentation based on CC spending/month

Clustering Algorithms

- Unsupervised Learning: Data Labels are not known
- Properties of dataset decide the clusters
- Popular Clustering Algorithms
 - Centroid Based
 - K-Means
 - Mean-shift
 - EM
 - Density Based Algorithms
 - DBSCAN
 - Hierarchical
 - Agglomerative

K-Means Clustering — How it works...

K-Means Algorithm

- Input:
 - Number of Clusters $K \in \{+ve \ odd \ Integer\}$
 - Dataset: $\{x^1, x^2, x^3, \dots, x^m\}$
 - Each $xi \in \mathbb{R}^d$

```
Randomly Initialize K cluster centers \mu_1, \mu_2, \dots \mu_k
Repeat {
	for i=1 to m:
	calculate distance of xi from k cluster centers
	c^i= index of closest cluster

for j=1 to k:
	calculate mean of all the data points with ci=j
	and assigned to \mu_j
}
```


Cost Function

- $J(c^1, c^2, \dots, cm, \mu^1, \dots, \mu^k)$ = $\frac{1}{m} \sum_{i=1}^m ||x^i - \mu_c^i||^2$
- μ_c^i = Cluster center currently assigned to x^i
- OF: Minimize the Cost function J

Local optima

Dealing with Local Optima: Random initialization

```
For i = 1 to 100 {  Randomly\ initialize\ K-means. \\ Run\ K-means.\ Get\ (c^1,c^2,\ldots,cm,\mu^1,\ldots,\mu^k) \\ Compute\ cost\ function \\ J(c^1,c^2,\ldots,cm,\mu^1,\ldots,\mu^k) \\ \}
```

Pick clustering that gave lowest cost

$$J(c^1, c^2, ..., cm, \mu^1, ..., \mu^k)$$

What should be the 'K'

Elbow Method

Clustering Iris data

K-Means Clustering Example

- Hand written Digit Recognition
- Dataset: 8X8 size Images of 0...9 digits [grayscale]
- Size: 1797 images

Image to Feature Vector Conversion

4/20/2021

Atul Gupta

K-Means Model Training

We will see the Python code for this Problem ...

Bad Clustering with k-Means

DBSCAN

Density-Based Spatial Clustering of Applications with Noise

Data Points

- Core point (A)
- (Density) Reachable point (A, B, and C)

• Outlier (N)

Data Point

- Core point A point p is a core point if at least minPts points are within distance $\varepsilon(\varepsilon)$ is the maximum radius of the neighborhood from p) of it (including p).
- (Density) Reachable point A point q is reachable from p if there is a path $p_1, ..., p_n$ with $p_1 = p$ and $p_n = q$, where each p_{i+1} is directly reachable from p_i and all the points on the path must be core points, with the possible exception of q).
- Outlier All points not reachable from any core point are outliers.

The type of points

minPts = 4. Point A and the other red points are core points, because the area surrounding these points in an ε radius contain at least 4 points (including the point itself).

How clusters are formed

- A cluster then satisfies two properties:
 - All points within the cluster are mutually densityconnected.
 - If a point is density-reachable from any core point of the cluster, it is part of the cluster as well.

DBSCAN Algorithm

```
DBSCAN(D, eps, MinPts) {
 C = 0
 for each point P in dataset D {
       if P is visited
               continue next point
        mark P as visited
       NeighborPts = regionQuery(P, eps)
       if sizeof(NeighborPts) < MinPts</pre>
               mark P as NOISE
        else {
       C = next cluster
       expandCluster(P, NeighborPts, C, eps, MinPts)
 }}
```


DBSCAN Algorithm...

```
expandCluster(P, NeighborPts, C, eps, MinPts) {
 add P to cluster C
 for each point P' in NeighborPts {
   if P' is not visited {
     mark P' as visited
     NeighborPts' = regionQuery(P', eps)
     if sizeof(NeighborPts') >= MinPts
       NeighborPts = NeighborPts joined with NeighborPts'
   if P' is not yet member of any cluster
     add P' to cluster C
```

regionQuery(P, eps)

return all points within P's eps-neighborhood (including P)

DBSCAN

Advantages

- Does not require to specify the number of clusters priory
- Identifies outliers
- Able to find arbitrarily sized and arbitrarily shaped clusters

Drawbacks

- Doesn't perform as good as others when the clusters are of varying density
- This drawback also occurs with very high-dimensional data since again the distance threshold ϵ becomes challenging to estimate

Hierarchical Agglomerative Clustering

- We start bottom-up, i.e. each data point as a single cluster
- Repeat until we reach the root of the tree (or any other stopping criteria)
 - On each iteration we combine two clusters into one.
 - The two clusters to be combined are selected as having minimum average inter-cluster distance.

Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering

- The Distance Measure
 - We will use average linkage which defines the distance between two clusters to be the average distance between data points in the first cluster and data points in the second cluster.

How good is a Clustering?

- McClain—Rao Ratio
 - the ratio of the average Intra-cluster distance (A) to the average inter-cluster distance (B)
- Silhouette coefficient

$$= (B-A) / \max(A, B)$$

- where A = average intra-cluster distance and B is the average inter-cluster distance
- ranges between −1 to +1
- Other measures: Rand index, Jaccard coefficient, Fowlkes and Mallows index and Dunn index

https://scikit-learn.org/stable/modules/clustering.html

courtesy of Scikit Learn

Challenges in Clustering

- Clustering problems with non-numeric attributes
- Identify number of clusters
- Quality of Clusters

Clustering: Summary

- Clustering is one of the most important
 Unsupervised Learning problem
- DBSCAN and its variates are perhaps the most useful clustering algorithms
- Measuring the goodness of clustering is a challenge

Thank You

atul@iiitdmj.ac.in