

Revision History

No.	날짜	버전	내용	작성자
1	2019-04-07	1.0	최초 작성	
2	2020-09-25	1.8	오타 수정 (CRC 결과값 상위 하위)	
3	2020-10-25	1.9	오타 수정	
4	2021-05-06	2.0	현재 드라이버 상태읽기 테이블 오류 수정	

[통신제어 메뉴얼]

차 례

목차

1. 소개

2. ModBus RTU 프로토콜

- 2.1 Read Coil (Func 01-01H)
- 2.2 Read Discretes Input (Func 02-02H)
- 2.3 Read Holding Registers (Func 03-03H)
- 2.4 Read Input Registers (Func 04-04H)
- 2.5 Write Single Coil (Func 05-05H)
- 2.6 Write Single Holding Registers (Func 06-06H)
- 2.7 예외 처리(Exception Response-Error Code)

3. Modbus RTU Mapping Table

- 3.1 출력 IO 상태 및 출력 (Func: 01/05, RW: R/W)
- 3.2 입력 IO 상태 (Func: 02, RW: R)
- 3.3 드라이버 현재 상태 (Func: 04, RW: R)
- 3.4 파라미터 (Func: 03/06, RW: R/W)
- 3.4.1 Control Setting 그룹
- 3.4.2 Command 그룹

4. CRC-16 Calculation

1. 소개

드라이버 통신 프로토콜은 개방형 프로토콜인 Modicon 사의 MODBUS-RTU 방식을 지원합니다. 상세 프로토콜은 http://www.modbus.org/ 를 참조 하십시오.

[통신 설정]

□ Communication Port: RS-485 방식

☐ Baud rate: 9600/19200/38400/115200 bps

□ Data Bit : 8Bit□ Stop Bit : 1Bit□ Parity : None

[통신 주기]

□ 5~10ms

드라이버는 아래와 같이 4 개의 Primary tables 영역을 가지고 있습니다.

Function code	Primary tables	Object type	Type of access	Comments
02 H	Discrete Input	Single bit	Read-Only	드라이버 입력 IO 상태
01 H				
	Coil	Single bit	Read-Write	드라이버 출력 IO 상태 및 출력
05 H				
04 H	Input Registers	16-bit Word	Read-Only	드라이버 상태
03 H				
	Holding Registers	16-bit Word	Read-Write	드라이버 Parameter
06 H				

4개의 Primary tables 영역은 각각의 Function code 로 Read-Write 할 수 있습니다.

Drive 는 브로딩캐스팅을 지원하지 않습니다. (국번 0)

Drive 는 Function: 0x0F(Write Multi Coil), 0x10(Write Multi Registers)을 지원하지 않습니다.

Master/Slave 방식으로서 Master 에 의해서 전송된 모든 Packet 은 Request 가 되고 Slave 에 의해서 전송된 모든 Packet 은 Response 가 된다.

□ Master : PC or 상위제어기

☐ Slave : 드라이버

Note : 상세 파라미터 에서 설명하지 않은 파라미터는 사용자가 임으로 변경하지 마십시오.

2. ModBus RTU 프로토콜

2.1 Read Coil (Func 01-01H)

슬레이브 디바이스 내, 출력 IO(0X 레퍼런스)의 ON/OFF 상태를 읽습니다.

드라이버의 출력 IO 상태를 읽을 때 사용합니다.

Slave Address	Function	Starting Address		No. o	f Points	CRC16	
(국번)	(명령)	(시작번지)		(데이터 개수)		CICIO	
, , _,		Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte

• Request (Master 측)

Slave Address	Function	Byte Count	Data	Data	CR	C16
(국번)	(명령)	(데이터 byte 수)	(데이터)	(데이터)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte

• Response(Slave 측)

Master 측에서 Slave(Address 1)측의 코일 00001(0000) ~ 00010(0009)내 10EA 의 출력상태(ON: 1,OFF:0)를 읽고자 할 경우의 예입니다.

Slave Address	Function	Starting Address		No. o	f Points	CRC16	
(국번)	(명령)	(시작번지)		(데이터 개수)			
, , _,		Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x01	0x00	0x00	0x00	0x0A	0xBC	0x0D

Slave 측의 코일 00008(0007) ~ 00001(0000)번의 값

"ON-ON-OFF-OFF-ON-ON-OFF-ON"이고 00010(0009)~00009(0008)번의 값이 "OFF-ON"일 경우의 예입니다

Slave Address	Function	Byte Count	Data	Data Data		CRC16		
(국번)	(명령)	(데이터 byte 수)	(데이터)	(데이터)	Lo(하위)	Hi(상위)		
0x01	0x01	0x02	0xCD	0x01	0x2C	0xAC		

2.2 Read Discrete Input (Func 02-02H)

슬레이브 디바이스 내, 입력 IO(1X 레퍼런스)의 ON/OFF 상태를 읽습니다. 드라이버의 입력 IO 상태를 읽을 때 사용합니다.

• Request (Master 측)

Slave Address	Function	Starting Address (시작번지)		No. of Points (데이터 개수)		CRC16	
(국번)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte

• Response(Slave 측)

Slave Address	Function	Byte Count	Data	Data	CR	C16
(국번)	(명령)	(데이터 byte 수)	(데이터)	(데이터)	Lo(하위)	Hi(상위)
1Byte	1Byte 1Byte 1Byte		1Byte	1Byte	1Byte	1Byte

Master 측에서 Slave(Address 1)측의 10001(0000)~10010(0009)내 10EA 의 입력상태(ON: 1, OFF: 0)를 읽고자 할 경우의 예입니다.

Slave Address	Function	Starting Address (시작번지)		No. of Points (데이터 개수)		CRC16	
(국번)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x02	0x00	0x00	0x00	0x0A	0xF8	0x0D

Slave 측의 10008(0007) ~ 10001(0000)번의 값이 "ON-ON-OFF-OFF-ON-ON-OFF-ON"이고 10010(0009)~10009(0008)번의 값이 "OFF-ON"일 경우의 예입니다.

Slave Address	Function	Byte Count	Data Data		CR	C16
(국번)	(명령)	(데이터 byte 수)	(데이터)	(데이터)	Lo(하위)	Hi(상위)
0x01 0x02 0x02			0xCD	0x01	0x2C	0xE8

2.3 Read Holding Registers (Func 03-03H)

슬레이브 디바이스 내, Holding Registers(4X 레퍼런스)의 Binary 데이터를 읽을 수 있습니다. 드라이버의 Parameter 값을 읽을 때 사용 합니다.

• Request (Master 측)

Slave Address	Function	Starting Address (시작번지)			f Points 터 개수)	CRC16	
(국번)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte

• Response(Slave 측)

Slave Address	Function	Byte Count	Data(데이터)		Data(데이터)		CRC16			
(국번)	(명령)	(데이터 byte 수)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)		
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte				
	CRC16									

Master 측에서 Slave(Address 1)측의 Holding Register 40001(0000)~40002(0001)내, 2EA 의 값을 읽고자 할 경우의 예입니다.

Slave Address	Function	Starting Address (시작번지)		No. of Points (데이터 개수)		CRC16	
(국년)	(국번) (명령)		Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x03	0x00	0x00	0x00	0x02	0xC4	0x0B

Slave 측의 40001(0000)번의 값이 "555(22B H)"이고 40002(0001)번의 값이 "100(64 H)"일 경우의 예입니다.

Slave Address	Function	Byte Count	Data(Data(데이터)		레이터)	CR	C16
(국번)	(명령)	(데이터 byte 수)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x01 0x03 0x04				0x00	0x64	A8x0	0x68

2.4 Read Input Registers (Func 04-04H)

슬레이브 디바이스 내, Input Registers(3X 레퍼런스)의 Binary 데이터를 읽을 수 있습니다. 드라이버의 상태 값을 읽을 때 사용 합니다.

• Request (Master 측)

Slave Address (국번)	Function	Starting Address (시작번지)		No. of Points (데이터 개수)		CRC16	
(국민)	(국번) (명령)		Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte
		CRC16					

• Response(Slave 측)

Slave Address	Function	Byte Count	Data(Data(데이터)		레이터)	CR	C16
(국번)	(명령)	(데이터 byte 수)	Hi(상위) Lo(하위)		Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte
CRC16								

Master 측에서 Slave(Address 1)측의 Input Register 30001(0000)~30002(0001)내, 2EA 의 값을 읽고자 할 경우의 예입니다.

Slave Address	Function	Starting Address (시작번지)		No. of Points (데이터 개수)		CRC16	
(국번)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x04	0x00	0x00	0x00	0x02	0x71	0xCB

Slave 측의 30001(0000)번의 값이 "10(A H)"이고 30002(0001)번의 값이 "20(14 H)"일 경우의 예입니다.

Slave Address	Function	Byte Count	Data(Data(데이터)		레이터)	CR	C16	
(국번)	(명령)	(데이터 byte 수)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)	
0x01	0x01 0x04 0x04				0x00	0x14	0xDB	0x89	
	CRC16								

2.5 Write Single Coil (Func 05-05H)

슬레이브 디바이스 내, 출력 IO(0X 레퍼런스)의 ON/OFF 데이터를 씁니다. 드라이버 출력 IO 에 On/Off 값을 쓸 때 사용 합니다.

• Request (Master 측)

Slave Address (국번)	Function	Starting Address (시작번지)		Data (데이터)		CRC16	
(국민)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte

• Response(Slave 측)

Slave Address	Function	Byte Count	Data(Data(데이터)		레이터)	CR	C16
(국번)	(명령)	(데이터 byte 수)	Hi(상위) Lo(하위)		Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte 1Byte 1Byte				1Byte	1Byte	1Byte	1Byte
	CRC16							

Master 측에서 Slave(Address 1)측의 코일 00001(0000) 을 ON 으로 설정 할 경우의 예입니다.

• Request (Master 측)

Slave Address (국번)	Function (명령)	Starting Address (시작번지)			ata 이터)	CRC16	
		Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x05	0x00	0x00	0xFF	0x00	0x8C	0x3A

• Response(Slave 측)

Slave Address (국번)	Function (명령)	Starting Address (시작번지)		Data (데이터)		CRC16	
		Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x05	0x00	0x00	0xFF	0x00	0x8C	0x3A

Master 측에서 Slave(Address 1)측의 코일 00001(0000)을 OFF 으로 설정 할 경우의 예입니다.

• Request (Master 측)

Slave Address	Function	Starting Address (시작번지)		Data (데이터)		CRC16	
(국번)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x05	0x00	0x00	0x00	0x00	0xCD	0xCA

• Response(Slave 측)

Slave Address	Function (명령)	Starting Address (시작번지)			ata 이터)	CRC16	
(국번)		Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x05	0x00	0x00	0x00	0x00	0xCD	0xCA

2.6 Write Single Holding Registers (Func 06-06H)

슬레이브 디바이스 내, 단일 Holding Registers(4X 레퍼런스)의 Binary 데이터를 씁니다. 드라이버 Parameter 에 값을 쓸 때 사용 합니다.

• Request (Master 측)

Slave Address	Function	Starting Address (시작번지)		Data (데이터)		CRC16	
(국번)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte
CRC16							

• Response(Slave 측)

Slave Address	Function	_	j Address \†번지)		ata 이터)	CR	C16
(국번)	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte
CRC16							

Master 측에서 Slave(Address 1)측의 Holding Register 40001(0000)에 "10(A H)"을 쓰고자 할 경우의 예입니다.

• Request (Master 측)

Slave Address	Function (명령)	(시작번지)		Data (데이터)		CRC16	
(국번)		Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x06	0x00	0x00	0x00	0x0A	0x09	0xCD

• Response(Slave 측)

	Function	_	j Address †번지)	Data (데이터)		CRC16	
	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x06	0x00	0x00	0x00	0x0A	0x09	0xCD

2.7 예외 처리(Exception Response-Error Code)

통신에러가 발생한 경우, 수신한 명령(Function)의 최상의 비트를 세트(1) 후, 응답 명령을 보내고 해당 Exception Code 를 전송합니다.

Slave Address	Function	Exception Code	CR	C16
(국번)	(명령)	Exception Code	Lo(하위)	Hi(상위)
1Byte 1Byte		1Byte	1Byte	1Byte
	CRC16			

• ILLEGAL FUNCTION (Exception Code: 01 H):

지원하지 않는 명령일 경우.

• ILLEGAL DATA ADDRESS (Exception Code: 02 H):

요청한 데이터의 시작번지가 장치에서 전송할 수 있는 번지와 불일치할 경우.

• ILLRGAL DATA VALUE (Exception Code: 03 H):

요청한 데이터의 개수가 장치에서 전송할 수 있는 개수와 불일치할 경우.

• SLAVE DEVICE FAILURE (Exception Code: 04 H):

요청 받은 명령을 정상적으로 처리하지 못할 경우.

Master 측에서 Slave(Address 1)측의 존재하지 않는 코일 01001(03E8 H)의 출력 상태(ON: 1, OFF: 0)를 읽고자 할 경우의 예입니다.

• Request (Master 측)

Slave Address (국번)	Function	Starting Address (시작번지)		No. of Points (데이터 개수)		CRC16	
	(명령)	Hi(상위)	Lo(하위)	Hi(상위)	Lo(하위)	Lo(하위)	Hi(상위)
0x01	0x06	0x03	0xE8	0x00	0x01	0x7D	0xBA

• Response(Slave 측)

Slave Address	Function	Everation Code		C16
(국번)	(명령)	Exception Code	Hi(상위)	Lo(하위)
0x01	0x01 0x81		0xC1	0x91
	CRC16			

3. Modbus RTU Mapping Table

3.1 출력 IO 상태 및 출력 (Func: 01/05, RW: R/W)

드라이버의 출력 IO 상태를 읽거나, 쓰는 영역입니다.

Address	Name	설정 범위	단위	설명
00001(0000)	FAULT	0:OFF, 1:ON	-	OUT 1 출력상태 및 출력
00002(0001)	OUT 2	0:OFF, 1:ON	-	OUT 2 출력상태 및 출력
00003(0002)	OUT 3	0:OFF, 1:ON	-	OUT 3 출력상태 및 출력
00004(0003)	Reserved	-	-	
00005(0004)	Reserved	-	-	
00016(0015)	Reserved	-	-	

3.2 입력 IO 상태 (Func: 02, RW: R)

드라이버의 입력 IO 상태를 읽는 영역입니다.

Address	Name	설정 범위	단위	설명
10001(0000)	SV_ON	0:OFF, 1:ON	-	IN 1 입력상태
10002(0001)	FORWARD_REVERSE	0:OFF, 1:ON	-	IN 2 입력상태
10003(0002)	BREAK	0:OFF, 1:ON	-	IN 3 입력상태
10004(0003)	ALM_RST	0:OFF, 1:ON	-	IN 4 입력상태
10005(0004)	Reserved	-	-	-
10006(0005)	Reserved	-	-	-
10007(0006)	Reserved	-	-	-
10008(0007)	Reserved	-	-	-
10009(0008)	Reserved	-	-	-

3.3 드라이버 현재 상태 (Func: 04, RW: R)

드라이버의 현재 상태를 읽는 영역입니다.

Address	Name	설정 범위	단위	설명
30001(0000)	드라이버 상태		-	표 1 참고
30002(0001)	드라이버 알람		-	표 1 참고
30003(0002)	지령속도		rpm	
30004(0003)	현재속도		rpm	
30005(0004)	-	-	-	-
30006(0005)	-	-	-	-
30007(0006)	외부볼륨	-	-	-
30008(0007)	온도	-	°C	-
30009(0008)	전압	-	V	-
30010(0009)	명령	=	=	표 3 참고
30011(0010)	-	=	=	-
30020(0019)	-	-	-	-

표 1) 드라이버 상태

Bit	Name	설명
Bit 0	BRK	모터브레이크
Bit 1	FRE	모터 프리
Bit 2	ALM	알람상태
Bit 3	EMG	비상정지
Bit 4	DEC	감속중
Bit 5	ACC	가속중
Bit 6	DIR	0 : CW, 1 : CCW
Bit 7	RUN	0 : STOP, 1 : RUN

표 3) 명령 LIST

명령	설명
0	None
1	운전 시작
2	운전 정지
3	비상 정지
4	알람 리셋

2) 드라이버 알람

알람번호	설명
0	알람 없음
1	Under Voltage (저전압 검출 시)
2	Over Current (과전류 검출 시)
3	Feedback Loss (홀센서 이상 시)
4	Over Load (과부하 지속 시)
5	Parameter Error (파라미터에러)
6	Over Voltage (과전압 검출 시)
7	Over temperature (과 온도 검출 시)
8	Over Speed (모터 발진 검출 시)
9	Stall (모터 구속 검출 시)
10	Current Sensor Error (전류센서 오류 검출 시)

3.4 파라미터 (Func: 03/06, RW: R/W)

드라이버의 파라미터를 읽고 쓰는 영역 입니다.

파라미터의 자세한 설명은 User Manual 의 상세 파라미터를 참조 하십시오.

3.4.1 Control Setting 그룹

Address	Name	설정 범위	구분	설명	
40001(0000)	모터용량	200~2000		[W]	
40002(0001)	모터극수	2~30		[극수]	
40003(0002)	엔코더펄스	0~9999		[PULSE]	
40004(0003)	회전방향	0/1		1: 현재방향의 반대로 기동	
40005(0004)	정격속도	0~19999		[RPM]	
40006(0005)	PWM모드	0/1		0:구형파, 1:정현파	
40007(0006)	제어모드	0/1		0: Closed, 1: Open	
40008(0007)	입력전압	6~60		[V]	
40009(0008)	저전압	6~60		[V]	
40010(0009)	과전압	6~60		[V]	
40011(0010)	전류제한	50~250		[%]	
40012(0011)	속도지령스케일	0~5000		[mV]	
40013(0012)	=	-			
40014(0013)	과부하시간	0~9999		[SEC]	
40015(0014)	속도제한	0~9999		[RPM]	
40016(0015)	제로클램프	0~5000		[mV]	
40017(0016)	속도지령옵셋	0~5000		[mV]	
40018(0017)	-	-			
40019(0018)	과열온도	0~100		[°C]	
40020(0019)	-	-			
40021(0020)	CW 진상각	0~90		[degree]	
40022(0021)	CCW 진상각	0~90		[degree]	
40023(0022)	내부속도	0~19999			
40024(0023)	위치제어	0/1		0: 위치제어 안함, 1: 위치제어 사용	
40025(0024)	가속시간	1~150		1: 0.08초	
40026(0025)	감속시간	1~150		1: 0.08초	
40027(0026)	EMB 지연시간	0~100		1: 0.08초	
40028(0027)	=	-			
40029(0028)	2상한/4상한	0/1		0: 2상한 제어, 1: 4상한 제어	
40030(0029)	모터 정지 타입	0~3		0: 감속-프리, 1: 프리,	
40031(0030)	속도 P 이득	0~9999			
40032(0031)	속도 I 이득	0~9999			
40033(0032)	전류 P 이득	0~9999			
40034(0033)	전류 I 이득	0~9999			
40035(0034)	위치 P 이득	0~9999			
40036(0035)	모터종류지정	0/1			
40037(0036)	통신제어	0/1		0: IO 제어, 1: 통신 제어(RS485)	
40038(0037)	드라이버 주소	0~99		MODBUS Slave 주소	
40039(0038)	통신속도	0~3		0:9600, 1:19200, 2:38400, 3:115200	
40040(0039)	-	-			

3.4.2 Command 그룹

Address	Name	설정 범위	Unit	설명
40121(0120)	40121(0120) 명령		=	표 3 참고
40122(0121)	40122(0121) 지령속도		rpm	note 1

Note 1:

- 1. 지령속도 값 +- 부호로 모터 회전 방향이 바뀝니다. 예) -1000, 1000
- ※ 파라미터의 수정과 관련하여 다음과 같이 구분함.

구 분	내 용
А	SERVO ON 상태에서 파라미터 수정가능
В	SERVO OFF 상태에서 파라미터 수정가능
С	파라미터 설정 후 전원 off 후 재시작 시 적용
D	사용자가 설정금지

※ 통신 속도

구 분	내 용	
0 9600bps		
1	19200bps	
2	38400bps	
3	115200bps	

4. CRC-16 Calculation

int Crc16Table[256] = {

0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,

```
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
  0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
  0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
  0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
  0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
  0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
  0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
  0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
  0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
  0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
  0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
  0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
  0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
  0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
unsigned short uiCRC16(unsigned char *buf, int len)
  unsigned short CRC = 0xFFFF;
  int I,tmp;
  for(i=0; i<len; i++)
     tmp = CRC ^ (0x00ff & buf[i]);
     CRC = (CRC>>8) ^ Crc16Table[tmp & 0xff];
  return CRC;
```

● ModBus RTU 프로토콜 예

*16 진수로 표기 120 -> 0x78

ID = 1	Byte-0	Byte-1	Byte-2	Byte-3	Byte-4	Byte-5	Byte-6	Byte-7
SERVO ON	01	06	00	78	00	01	C8	13
SERVO OFF	01	06	00	78	00	00	09	D3
BRAKE ON	01	06	00	78	01	01	C9	83
BRAKE OFF	01	06	00	78	01	00	08	43
알람 RESET	01	06	00	78	02	01	C9	73
EMB ON	01	06	00	78	03	01	C8	E3
EMB OFF	01	06	00	78	03	00	09	23
0rpm	01	06	00	79	00	00	58	13
1000rpm	01	06	00	79	03	E8	58	AD
2000rpm	01	06	00	79	07	D0	5B	BF
3000rpm	01	06	00	79	OB	В8	5F	51
-1000rpm	01	06	00	79	FC	18	19	19
-2000rpm	01	06	00	79	F8	30	1B	C7
-3000rpm	01	06	00	79	F4	48	1E	E5
통신모드	01	06	00	17	00	01	F8	02
IO 모드	01	06	00	17	00	00	39	CE