Model selection

Module 4 considers 3 issues with linear models:

- Model selection (choose between different models fitted to our data)
- Non-linear relationship (between the response variable and independent variables)
- 3) Relationship between common tests (*t*-test, ANOVA, ANCOVA) and multiple linear regression

Setup

Consider the problem of choosing a suitable model given data

$$(y_1, x_1), (y_2, x_2), \dots, (y_n, x_n)$$

where \boldsymbol{x} represents the vector of predictor variables.

not all predictors are informative

We want to find the 'best' subset of predictors for predicting Y.

Selecting predictors

In the process of selecting the smallest 'best-fitting' model, we are confronted with two contradictory criteria:

- Exclusion of important terms clearly leads to an incorrect model, which can lead to misleading conclusions (underspecified model)
- Inclusion of unnecessary terms diminishes the value of the model as a simplification of the data, and also reduces the statistical accuracy of parameter estimates and predictions.

(overspecified model)

Model selection

How do we decide on the best model for our data?

Two parts:

- Choice of procedure
- Choice of criteria

Exhaustive selection:

- search through all subsets of {x1,...,x1k}
- evaluate the models constructed from all subsets
- find the model that optimise our chosen criterion

While exhaustive selection will give good results, it is usually too time consuming. If we have k predictors, then we have 2k possible subsets.

We will consider three commonly used automated methods that will progressively build our optimal subset of predictors:

- forward selection
- backward selection
- Stepwise selection

The forward selection algorithm with P-values

- 1. Begin with the null model. (no predictors, only intercept term)
- 2. For every term not currently included in the model, calculate a P-value for the inclusion of that term.
- 3. If the smallest P-value is less than the threshold p_{in} (usually chosen to be 0.05), add that term to the model.
- 4. Iterate (2), (3) until no further terms are significant.

Example 4.1

The marks data contains the assignment and quiz scores (in percentage) of 339 students in a Statistics course. Suppose we are interested in the following variables:

```
E (response) exam mark
OQ online quiz
A1
A2
A3
A4
A5
A6
```

Fit a multiple linear regression to the data using forward selection.

```
marks <- read.csv("marks.csv")</pre>
                                                        (scope defines the range of models
                                                        to be examined in the search)
(1)
     null \leftarrow lm(E \sim 1, data=marks)
                                                      + A4 + A5 + A6
     scope \leftarrow E \sim OQ + A1 + A2 + A3
(2)
                                                         "F")
     add1(null, scope = scope, test
                                                              1) Start with null model (i.e.
                                                                  with no predictors)
     ## Single term additions
     ##
                                                                  Fit 7 different linear
     ## Model:
                                                                  models, each with an
                                                      (3)
     ## E ~ 1
                                                                  intercept and one
                                     AIC F value
                                                    Pr(>F)
              Df Sum of Sq
                             RSS
     ##
                          21.155 -938.43
     ## <none>
                                                                  predictor
    ## OQ
                   7.1258 14.029 -1075.67 171.175 < 2.2e-16 ***
                                                                  For each model, perform
                   1.0852 20.070 -954.28 18.223 2.558e-05 ***
    ## A1
                                                                  an F-test to compare it
                   1.7407 19.414 -965.54 30.215 7.644e-08 ***
    ## A2
     ## A3
                   4.2472 16.908 -1012.40 84.654 < 2.2e-16 ***
                                                                  with the null model
    ## A4
                   7.1621 13.993 -1076.55 172.492 < 2.2e-16 ***
                                                                  Find the model with the
    ## A5
                   6.9001 14.255 -1070.26 163.129 K 2.2e-16 ***
                                                                  smallest P-value and add
     ## A6
                   9.3016 11.853 -1132.80 264.456 k 2.2e-16 ***
     ## ---
                                 add Ab to our model
                                                                  the corresponding
                      0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    ## Signif. codes:
                                                                  predictor to our model
```

(4) Since OQ, A3, A4, A5, A6 all have p-value $< 2.2 \times 10^{-16}$, we will need to look at the F test statistic instead. A higher F value gives a lower P-value. Hence, A6 is chosen.

```
fs1 \leftarrow update(null, .~. + A6)
add1(fs1, scope = scope, test = "F")
```

```
## Single term additions
##
## Model:
                                                    (3)
## E ~ A6
                                                 Pr(>F)
          Df Sum of Sq
                          RSS
                                  AIC F value
                       11.853 -1132.8
## <none>
               1.12811 10.725 -1164.7 35.3421 6.929e-09 ***
##/ OQ
  A 1
               0.08001 11.773 -1133.1
                                       2.2834
                                                0.13170
   A2
               0.09538 11.758 -1133.5
                                       2.7255
                                                 0.09969
   АЗ
               0.56043 11.293 -1147.2 16.6749 5.550e-05 ***
           1 0.55393 11.299 -1147.0 16.4720 6.146e-05 ***
  Α4
               0.32088 11.532 -1140.1 9.3489
##
  A5
                                                0.00241 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 smallest P-value and
```

- 1) Update our model with A6 included as a predictor.
- 2) Fit 6 different linear models, each with an additional predictor
- 3) For each model, perform an *F*-test to compare it with the null model
- 4) Find the model with the use this model

(4) add OQ to our model

```
fs2 <- update(fs1, .~. + OQ)
add1(fs2, scope = scope, test = "F")
## Single term additions
##
## Model:
## E \sim A6 + OQ
        Df Sum of Sq RSS AIC F value
                                      Pr(>F)
           10.725 -1164.7
## <none>
## A1 1 0.03104 10.694 -1163.7 0.9725 0.324774
## A2 1 0.02419 10.701 -1163.5 0.7573 0.384812
## A3 1 0.33372 10.391 -1173.4 10.7586 0.001147 **
                                                   add A3 to our model
## A4 1 0.18839 10.537 -1168.7 5.9895 0.014904 *
## A5 1 0.09645 10.629 -1165.8 3.0401\0.082150 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
fs3 <- update(fs2, .~. + A3) add1(fs3, scope = scope, test = "F")
```

```
## Single term additions
##, Model:
## E \sim A6 + OQ + A3
                                AIC F value Pr(>F)
         Df Sum of Sq
                         RSS
                      10.391 -1173.4
## <none>
## A1
          1 0.000108 10.391 -1171.4 0.0035 0.9530
         1 0.006228 10.385 -1171.6 0.2003 0.6548
## A2
## A4
         1 0.070882 10.320 -1173.8 2.2939 0.1308
## A5
          1 0.039884 10.351 -1172.7 1.2869 0.2574
```

None of the P-values are below our threshold (0.05). We can stop our algorithm.

This becomes our final model.

Summary(fs3)

```
##
## Call:
## lm(formula = E ~ A6 + OQ + A3, data = stats_marks)
##
## Residuals:
##
                 10 Median 30
       Min
                                         Max
## -0.81856 -0.06018 0.02859 0.09063 0.60694
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
               0.13219
                         0.03273 4.039 6.65e-05 ***
## A6
               0.36301 0.04104 8.845 < 2e-16 ***
               0.20085 \ 0.03726 5.391 1.33e-07 ***
## OQ
               0.14387 | 0.04386 3.280 0.00115 **
## A3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1761 on 335 degrees of freedom
## Multiple R-squared: 0.5088, Adjusted R-squared: 0.5044
## F-statistic: 115.7 on 3 and 335 DF, p-value: < 2.2e-16
```