NAV-ORTHO	CALCUL ORTHODROMIQUE	V1.6- 11/21
A. Charbonnel	FORMULES & ERREURS DU CALCUL ORTHODROMIQUE	1/3

A : point d'arrivée - D : point de départ - V :Vertex

DISTANCE ORTHODROMIQUE

$$d = \cos^{-1}(\sin \varphi_A.\sin \varphi_D + \cos \varphi_A.\cos \varphi_D.\cos g).$$

Ou $g = G_A - G_D$

Attention d est donné en degrés et non en milles

ANGLE DE ROUTE INITIAL ORTHODROMIQUE

$$Ad = \cos^{-1} \left(\frac{\sin \varphi_A - \sin \varphi_D \cdot \cos d}{\sin d \cdot \cos \varphi_D} \right)$$

COORDONNÉES DU VERTEX

$$|\varphi_V| = \cos^{-1}(\cos\varphi_D \cdot \sin Ad)$$

$$G_V = G_D + \frac{g}{|g|} \cdot \cos^{-1}\left(\frac{\tan\varphi_D}{\tan\varphi_V}\right)$$

Si Ad < 90°
$$\phi_v$$
 est Nord Si Ad \geq 90° ϕ_v est Sud

Cette formule donne toujours le vertex qui se situe sur l'avant de votre route, et non pas le vertex le plus proche.

ROUTE FOND INITIALE LOXODROMIQUE

$$\mathbf{R}\mathbf{f} = \mathbf{V} + \mathbf{\alpha}$$

Si g < 0 : V = Ad
Si g
$$\geq$$
 0 : V = 360 - Ad

$$\alpha = \frac{di}{120} \cdot \sin V \cdot \tan \varphi_D$$

Distance = $di = vf \times t$

PARCOURS MIXTE

Pour trouver la longitudes des points V1 et V2 limitant l'orthodromie en dessous d'une latitude φ max $= \varphi_{v1} = \varphi_{v2}$, il suffit de reprendre la formule donnant la longitude du vertex et d'y rentrer comme point de départ le point V1 puis V2.

Illustration 2: Route mixte orthodromique

$$G_{V1} = G_D + \frac{g}{|g|} \cos^{-1} \left(\frac{\tan \varphi_D}{\tan \varphi_{V1}} \right)$$

$$G_{V2} = G_A - \frac{g}{|g|} \cdot \cos^{-1} \left(\frac{\tan \varphi_A}{\tan \varphi_{V2}} \right)$$

$$m_1 = |60 \cdot atan(\cos \varphi_v \cdot \tan g_1)|$$

$$m_2 = |60 \cdot (G_{v2} - G_{v1}) \cdot \cos \varphi_v|$$

$$m_3 = |60 \cdot atan(\cos \varphi_v \cdot \tan g_2)|$$

m1 : distance entre le point de départ D et V1

m2: distance entre V1 et V2 m3: distance entre V2 et A

NAV-ORTHO	CALCUL ORTHODROMIQUE	V1.6- 11/21
A. Charbonnel	FORMULES & ERREURS DU CALCUL ORTHODROMIQUE	2/3

LES ERREURS DANS LES CALCULS D'ORTHODROMIE

a) Signes des angles de latitude/longitude

Latitude NORD: + Longitude OUEST: +
Latitude SUD: - Longitude EST: -

- REVÉRIFIER les signes dans vos calculs
- FAIRE un croquis des positions par rapport à l'équateur/méridien de Greenwich ou antiméridien => visualiser les position N/S W/E

b) Différence de longitude : partir dans le bon sens (le plus court)

Illustration 3 : Trajets orthodromiques AB

Pour aller de D à A, on peut soit prendre le trajet jaune trait plein, soit le rouge (trait discontinu).

L'orthodromie en <u>navigation</u> est l**e chemin le plus court** entre deux points.

Si on applique bêtement les formules ($g = G_A - G_D$) on peut se retrouver à prendre le chemin le plus long (en trait plein) entre D et A au lieu de prendre le plus court (en trait discontinu) ; ce « problème » peut se rencontrer quand l'on se trouve autour du méridien de Greenwich ou de l'antiméridien

<u>Par exemple :</u>

si $G_D = 150$ °E, $G_A = 150$ °W,

Si on applique bêtement la formule $g=G_A$ - G_D , on obtient $g=300^\circ$ (trajet rouge sur , alors que la différence de longitude entre A et D est de 60° (le complément à 360°)

Illustration 4 : Différences de longitudes

c) Utilisation des formules d'orthodromie

Préférer retenir les formule sous la forme cos ou tan que arcos ou actan $\cos(x) = \cos(-x)$ Donc $\cos \phi_v = \sin Ad \cdot \cos \phi_D$ ne donne pas le signe de ϕ_v

$$\cos \phi_{\nu} = \sin Ad \cdot \cos \phi_{D}$$
 or $\cos \phi_{\nu} = \cos (-\phi_{\nu})$

donc le passage par cos^{-1 t} (arcos) ne permet d'avoir le signe de φ_v

les conditions sont :

- Si Ad<90°, φv est Nord
- Si Ad > 90, φv est Sud

NAV-ORTHO	CALCUL ORTHODROMIQUE	V1.6- 11/21
A. Charbonnel	FORMULES & ERREURS DU CALCUL ORTHODROMIQUE	3/3

d) conclusion

- 1. Faire un croquis pour visualiser les point s de départs et arrivés par rapport à l'équateur et au méridien de Greenwich ou antiméridien
- 2. Retenir et visualiser les conditions sous lesquelles les latitudes sont N/S et les longitudes E/W

SOURCES

Crédit graphique

Illustration	Source	
Illustration 1: Route orthodromique	MM. Baudu & Hayot – Diaporama « Orthodromie » - ENMM Marseille – sept 2009	
Illustration 3 : Trajets orthodromiques AB	d'après image consultée le 04/11/2016 : https://earthquake.usgs.gov/learn/glossary/images/greatcircle_thumb.gif	
Illustration 4 : Différences de longitudes	d'après page consultée le 04/11/2016 https://earthquake.usgs.gov/learn/glossary/images/greatcircle_thumb.gif	

