

11) Publication number:

0 129 846 **A2**

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: **84107102.0**

(2) Date of filing: 20.06.84

(5) Int. Cl.⁴: **C 07 D 231/38** C 07 D 401/06, C 07 D 405/06 C 07 D 409/06

30 Priority: 23.06.83 US 507317

(3) Date of publication of application: 02.01.85 Bulletin 85/1

Designated Contracting States: AT BE CH DE FR GB IT LI NL SE (1) Applicant: AMERICAN CYANAMID COMPANY 1937 West Main Street P.O. Box 60 Stamford Connecticut 06904(US)

(72) Inventor: Tomcufcik, Andrew Stephen 48 Dearborn Drive Old Tappan New Jersey 07675(US)

(72) Inventor: Dusza, John Paul 24 Convent Road Nanuet New York 10954(US)

Representative: Wächtershäuser, Günter, Dr. Tal 29 D-8000 München 2(DE)

(3-Amino-1H-pyrazol-4-yl)(aryl)methanones.

(3-Amino-1H-pyrazol-4-yl) (aryl)methanones which are new compounds having utility as anxiolytic agents or intermediates for the preparation of anyl and heteroaryl-[7-(aryl and heteroaryi)pyrazolo[1,5-a]pyrimidin-3-y1] methanones which are therapeutic agents described in copending application Ser. No. 506,966, filed June 23, 1983.

j

C

5

- 1 -

TITLE: (3-AMINO-1H-PYRAZOL-4-YL) (ARYL)METHANONES

SUMMARY OF THE INVENTION

This invention relates to new organic compounds which may be represented by the following structural formula:

wherein R_1 is selected from the group consisting of phenyl substituted by one or two of the group selected from halogen, alkyl(C_1 - C_3) and alkoxy(C_1 - C_3); phenyl substituted by one of the group consisting of dialkylamino(C_1 - C_3), methylenedioxy, alkylthio(C_1 - C_3), alkylsulfonyl(C_1 - C_3), substituted arylsulfonyl, amino, alkanoyl(C_1 - C_3)amino, substituted aroylamino, trifluoromethyl and phenyl; pyridinyl; pyridinyl substituted by one or two of the group selected from halogen, alkyl(C_1 - C_3) and alkoxy(C_1 - C_3); thienyl; thienyl substituted by one or two of the group selected from halogen, alkyl(C_1 - C_3) and alkoxy(C_1 - C_3); furanyl; naphthalenyl; and pyrazinyl; and R_2 is selected from the group consisting of hydrogen and alkyl(C_1 - C_3).

DETAILED DESCRIPTION OF THE INVENTION

The compounds of the present invention may be readily prepared as set forth in the following reaction scheme:

25

30

35

In accordance with the above reaction scheme an appropriately substituted acetonitrile (1), where R_1 is as described above is reacted with a dimethylamide dimethylacetal (2) where R_2 is as described above. The resulting exothermic reaction produces a crystalline solid which is recovered by evaporation and dissolved in methylene chloride. This solution is pass d through hydrous magnesium silicate and hexane is added to the refluxing eluate, giving the $[(\alpha\text{-dimethylamino})\text{methylene}]-\beta\text{-oxoarylpropan}-\text{nitrile}$ (3) which is then reacted with aminoguanidine nitrate (4) in the presence of 10N sodium hydroxide and a

5

10

15

20

25

30

lower alkanol at reflux for several hours then evaporated to dryness and crystallized from water, ethanol or other suitable solvent, giving (5). The aminoguanidine nitrate may be replaced by other salts of aminoguanidine, such as the hydrochloride, sulfate, and the like. Alternatively, the aminoguanidine salt-sodium hydroxide combination may be replaced by an equivalent of aminoguanidine bicarbonate or thiosemicarbazide, both reagents resulting in the formation of (5).

The (3-amino-lH-pyrazol-4-yl)(aryl)methanones find utility as intermediates in the preparation of therapeutic aryl and heteroaryl[7-(aryl and heteroaryl)pyrazolo-[1,5-a]pyrimidin-3-yl]methanones which are the subject of the simultaneously filed European Patent Application by the applicant with the title "Aryl and heteroaryl[7-(aryl and heteroaryl]pyrazolo-[1,5-a]pyrimidin-3-yl]-methanones" based on US-Serial No. 506 966 of June 23, 1983.

Such final products are useful as anxiolytic or antiepileptic agents as well as sedative-hypnotic and skeletal muscle relaxant agents. The novel compounds of the instant invention additionally have utility as anxiolytic agents.

The following non-limiting examples illustrate the preparation of the compounds of the present invention.

Example 1

α -[(Dimethylamino)methylene]- β -oxo-2-furanepropanenitrile

A 50 ml portion of dimethylformamide dimethylacetal was added to 25 g of solid β-oxo-2-furanepropanenitrile. This exothermic reaction produced yellow crystals. After one hour the volatiles were removed under reduced pressure and the residue was dissolved in methylene chloride. This solution was passed through a short pad of hydr us magnesium silicate. The eluate was refluxed with the gradual addition of hexane to the point of turbidity. Cooling and filtration gave 35.2 g of the desired compound, mp 117-125°C.

Example 2

<u>α-[(Dimethylamino)methylene]-β-oxo-benzene-</u> propanenitrile

A 100 g portion of β-oxo-benzenepropanenitrile

5 was placed in a 500 ml round-bottom flask and 110 ml of dimethylformamide dimethylacetal was added in one portion. The reaction mixture became warm and a homogeneous dark yellow solution resulted, which then solidified. After cooling to room temperature, hexane was added giving crystals which were recovered by filtration. This material (143.6 g, mp 102-105°C) is suitable for the subsequent reaction without further purification.

An analytical sample of this compound was obtained by dissolution in methylene chloride followed by passage through a short column of hydrous magnesium silicate, concentration of the eluate with the gradual addition of hexane until crystallization occurred, cooling and collection by filtration, mp lll-ll3°C.

15

Following the general procedures of Examples 1 or 2, the following compounds of Examples 3-31, shown in Table I were prepared.

_
Œ
ı
ø
<u>ج</u>
H

Example	Acetonitrile	Compound	MPOC
m 	β-όχο-4-fluorobenzenepropane- nitrile	α-[(dimethylamino)methylene]-β-oxo-4- -fluorobenzenepropanenitrile	142-145
4	β-oxo-(3-trifluoromethy1)benzene- propanenitrile	$\alpha-[$ (dimethylamino)methylene] $-\beta-oxo-3-$ (trifluoromethyl)benzenepropanenitrile	93-96
Ŋ	β-oxo-4-pyridinepropanenitrile	$\alpha-\{$ (dimethylamino)methylene]- $\beta-oxo-4-pyridinepropanenitrile$	127-128
9	<pre>β-oxo-2-thiophenepropanenitrile</pre>	$\alpha - f \; (\text{dimethylamino}) \; \text{methylene} \; - \beta - oxo - 2 - thiophene propanenitrile}$	136-140
7	B-oxo-4-methylbenzenepropane- nitrile	$\alpha-$ [(dimethylamino) methylene] - $\beta-oxo-4-methylbenzenepropanenitrile$	132-135
©	β-oxo-2-pyridinepropanenitrile	$\alpha- \{$ (dimethylamino)methylene] $-\beta-oxo-2-pyridinepropanenitrile$	88-90
o	β-oxo-3-fluorophenylpropanenitrile	α-[(dimethylamino)methylene]-β-oxo-3- fluorophenylpropanenitrile	63-68
10	β-oxo-2-chlorophenylpropanenitrile	$\beta\text{-}oxo\text{-}2\text{-}chlorophenylpropanenitrile} \left \alpha\text{-}[\ (dimethylamino)methylene}\right] - \beta\text{-}oxo\text{-}2\text{-} \right \\ chlorophenylpropanenitrile}$	152-154

TABLE I (continued)

	Acetonitrile	Compound	MPOC
β-oxo-3-furanylp	propanenitrile	$\alpha-[(dimethylamino)methylene]-\beta-oxo-3-furanylpropanenitrile$	98-103
8-oxo-3,4,5-trim propanenitrile	methoxyphenyl-	$\alpha-[(dimethylamino)methylene]-\beta-oxo-3,4,5-trimethoxyphenylpropanenitrile$	138-140
β-oxo-3,4-dimetho nitrile	hoxyphenylpropane-	α-[(dimethylamino)methylene]-β-oxo- 3,4-dimethoxyphenylpropanenitrile	glassy
β-oxo-3-methylphe	henylpropanenitrile	$\alpha - \left\{ \text{ (dimethylamino)methylene]} - \beta - oxo-3-methylphenylpropanenitrile}$	74-80
β-oxo-3,5-dimethoxyphenylpropane- nitrile	kyphenylpropane∽	$\alpha - [\ (\text{dimethylamino}) \text{methylene}] - \beta - \text{oxo-} 3, 5 - \text{dimethoxyphenylpropanenitrile}$	125-127
8-oxo-4-chloropher	henylpropanenitrile	$\alpha - [\ (\text{dimethylamino}) \text{methylene}] - \beta - \text{oxo-} 4 - \text{chlorophenylpropanenitrile}$	118-121
β-oxo-4-methoxyphenylpropane- nitrile	enylpropane-	<pre>α-[(dimethylamino)methylene]-β-oxo-4- methoxyphenylpropanenitrile</pre>	128-130
β-oxo-2-fluorophe nitrile	phenylpropane-	α -[(dimethylamino)methylene]- β -oxo-2-fluorophenylpropanenitrile	62-74

TABLE I (continued)

5	Ex.	Acetonitrile	Compound'	MPOC
		ACE CONTEXTIE	Compound	MPC
	19	β-oxo-3-methoxy- phenylpropane- nitrile	α-[(dimethylamino)methyl- ene]-β-oxo-3-methoxyphen- ylpropanenitrile	Syrup
10	20	<pre>β-oxo-[4-(tri- fluoromethyl)- phenyl]propane- nitrile</pre>	<pre>α-[(dimethylamino)methyl- ene]-β-οxο-[4-(trifluoro- methyl)phenyl]propane- nitrile</pre>	122-123
	21	β-oxo-3-chloro- phenylpropane- nitrile	α -[(dimethylamino)methyl- ene]- β -oxo-3-chlorophenyl- propanenitrile	Syrup
15	22	β-oxo-2,5-di- chlorophenylpro- panenitrile	<pre>a-[(dimethylamino)methyl- ene]-β-oxo-2,5-dichloro- phenylpropanenitrile</pre>	140-143
	23	β-oxo-2-methyl- phenylpropane- nitrile	<pre>α-[(dimethylamino)methyl- ene]-β-oxo-2-methylphenyl- propanenitrile</pre>	82-84
20	24	β-oxo-[4-(dimeth- ylamino)phenyl]- propanenitrile	<pre>α-[(dimethylamino)methyl- ene]-β-οxο-[4-(dimethyl- amino)phenyl]propane- nitrile</pre>	208-210
25	25	β-oxo-2-methoxy- phenylpropane- nitrile	α-[(dimethylamino)methyl- ene]-β-oxo-2-methoxyphen- ylpropanenitrile	105-115
	26	β-oxo-[3,4-(meth- ylenedioxy)phen- yl]propanenitrile	<pre>α-[(dimethylamino)methyl- ene]-β-οxο-[3,4-(methyl- enedioxy)phenyl]propane- nitrile</pre>	118-124
30	27	β-oxo-4-ethoxy- phenylpropane- nitrile	<pre>α-[(dimethylamino)methyl- ene]-β-oxo-4-ethoxyphen- ylpropanenitrile</pre>	110-115
	28	β-oxo-4-ethylphen- ylpropanenitrile	<pre>a-[(dimethylamino)methyl- ene]-β-oxo-4-ethylphenyl- propanenitrile</pre>	48-54
		<u> </u>	<u></u>	

TABLE I (continued)

5	Ex.	Acetonitrile	Compound	MPOC
	29	β-oxo-2-naphtha- lenylpropane- nitrile	α-[(dimethylamino)methyl- ene]-β-oxo-2-naphthalenyl- propanenitrile	115-118
10	30	β-oxo-5-methyl-2- thienylpropane- nitrile	<pre>a-[(dimethylamino)methyl- ene]-β-oxo-5-methyl-2- thienylpropanenitrile</pre>	152-153
	31	β-oxo-2-thienyl- propanenitrile	<pre>a-[(dimethylamino)methyl- ene]-β-oxo-2-thienylpro- panenitrile</pre>	118-120

Example 32

5

10

20

25

30

35

α-[(1-Dimethylamino)ethylidene]-β-oxo-phenylpropanenitrile

A solution of 14.5 grams of benzoylacetonitrile in 100 ml of chloroform was cooled to -10°C and stirred as a solution of 13.3 g of N,N-dimethylacetamide dimethylacetal in 20 ml of chloroform was added dropwise during 15 minutes. The reaction temperature was not allowed to exceed -5°C. Stirring was continued at -5° to -10°C for two hours The resultant reaction mixture was after addition ended. dissolved in 150 ml of benzene and the solution passed through a layer of hydrous magnesium silicate. Evaporation of the filtrate in air left a yellow residue which was purified by recrystallization from a mixture of benzene and low 15 boiling petroleum ether; yield, 5.8 g, mp 105°-106°C.

Example 33

(3-Amino-lH-pyrazol-4-yl) (2-furanyl)methanone

A reaction mixture comprising 19.0 g of α -[(dimethylamino) methylene] $-\beta$ -oxo-2-furanepropanenitrile, 16.1 g of aminoguanidine nitrate, 250 ml of ethanol and 11.0 ml of 10N sodium hydroxide was refluxed for 6 hours and then evaporated to dryness. Water was added to the crude residue and the precipitated solid was collected, giving 17.0 g of the desired product, mp 153-155°C.

Example 34

(3-Amino-lH-pyrazol-4-yl) phenylmethanone

A reaction mixture comprising 73.36 g of α -[(dimethylamino) methylene] - \(\begin{align*} \text{-8-oxo-2-benzenepropanenitrile.} \) 63.45 g of aminoquanidine nitrate, 500 ml of ethanol and 36.6 ml of 10N sodium hydroxide was refluxed for 10 hours and then cooled. The resulting precipitate was collected and washed with water, giving 17.1 g of the desired product, mp 177-179°C.

When the aminoguanidine nitrate-10N sodium hydroxide combination was replaced by an equivalent of aminoguanidine bicarbonate, the identical product was obtained as shown by its melting point, elemental analysis

and infrared and nuclear magnetic resonance absorption spectra. A similar result was obtained when an equivalent of thiosemicarbazide replaced the aminoguanidine nitrate- 10N sodium hydroxide combination.

Following the general procedures of Examples 33 and 34, employing the compounds of Examples 1-32 and the appropriate guanidine derivatives, the products of Examples 35-64, given in Table II, were prepared.

TABLE II

Example	Starting Material of Example	Product	MP ^O C
35	m	(3-amino-lH-pyrazol-4-yl) (4- fluorophenyl)methanone	172-175
36	4	(3-amino-lH-pyrazol-4-yl) [3- (trifluoromethyl)phenyl]methanone	134-136
37	ហ	(3-amino-1 <u>H</u> -pyrazol-4-yl) (4- pyridinyl)methanone	275-277
38	vo	(3-amino-1 <u>H</u> -pyrazol-4-yl)(2- thienyl)methanone	144-145
39	32	(3-amino-5-methyl-lH-pyrazol-4- yl) phenylmethanone	179-180
40	۲ .	(3-amino-l <u>H</u> -pyrazol-4-yl) (4- methylphenyl)methanone	177-179
41	∞	(3-amino-1 <u>H</u> -pyrazol-4-yl)(2- pyridinyl)methanone	118-120
42	6	(3-amino-1 <u>H</u> -pyrazol-4-yl)(3- fluorophenyl)methanone	188-189

TABLE II (continued)

Example	Starting Material of Example	Product	MPOC
43	10	(3-amino-1 <u>H</u> -pyrazol-4-yl)(2- chlorophenyl)methanone	glassy solid
44	11	(3-amino-1H-pyrazol-4-yl)(3- furanyl)methanone	211-215
45	12	(3-amino-1H-pyrazol-4-yl) (3,4,5- trimethoxyphenyl)methanone	199-201
97	13	(3-amino-lH-pyrazol-4-yl) (3,4- dimethoxyphenyl)methanone	108-109
47	14	(3-amino- $1\underline{H}$ -pyrazol-4-yl) (3-methylphenyl)methanone	137-139
48	15	(3-amino-1H-pyrazol-4-yl) (3,5- dimethoxyphenyl)methanone	91-92
67	16	(3-amino-1 <u>H</u> -pyrazol-4-yl) (4- chlorophenyl)methanone	235-237
20	17	(3-amino-1 <u>H</u> -pyrazol-4-yl) (4- methoxyphenyl)methanone	172-174
51	18	(3-amino-1H-pyrazol-4-yl)(2- fluorophenyl)methanone	glassy

TABLE II (continued)

5				
	Ex.	Starting Material of Example	Product	MPoC
•	52	19	(3-amino-l <u>H</u> -pyrazol-4-yl)- (3-methoxyphenyl)methanone	96-98
10	53	20.	(3-amino-lH-pyrazol-4-yl)- [4-(trifluoromethyl)phen- yl)methanone	172-174
	54	21	(3-amino-lH-pyrazol-4-yl)- (3-chlorophenyl)methanone	229-230
15	55	22	(3-amino-lH-pyrazol-4-yl)- (2,5-dichlorophenyl)metha- none	Syrup
	56	23	(3-amino-l <u>H</u> -pyrazol-4-yl)- (2-methylphenyl)methanone	Glass
20	57	24	(3-amino-l <u>H</u> -pyrazol-4-yl)- [4-(dimethylamino)phenyl]- methanone	240-243
	58	25 [.]	(3-amino-l <u>H</u> -pyrazol-4-yl)- (2-methoxyphenyl)methanone	Glass
25	59	26	(3-amino-l <u>H</u> -pyrazol-4-yl)- [3,4-(methylenedioxy)phen- yl]methanone	228-230
	60	27	(3-amino-l <u>H</u> -pyrazol-4-yl)- (4-ethoxyphenyl)methanone	155-156
	61	28	(3-amino-l <u>H</u> -pyrazol-4-yl)- (4-ethylphenyl)methanone	108-109

35

30

TABLE II (continued)

כ	
_	

Ex.	Starting Material of Example	Product	MPoC
62	29	(3-amino-lH-pyrazol-4-yl)- (2-naphthalenyl)methanone	215-217
63	30	(3-amino-lH-pyrazol-4-yl)- (5-methyl-2-thienyl)metha- none	165-166
64	31	(3-amino-l <u>H</u> -pyrazol-4-yl)- (2-thienyl)methanone	181-183

30 -

We claim:

A compound of the formula:

wherein R_1 is phenyl substituted by one or two of halogen, $alkyl(C_1-C_3)$ or $alkoxy(C_1-C_3)$; phenyl substituted by one of dialkylamino(C_1-C_3), methylenedioxy, $alkylthio(C_1-C_3)$, $alkylsulfonyl(C_1-C_3)$, substituted arylsulfonyl, amino, $alkoxyl(C_1-C_3)$ amino, substituted aroylamino, trifluoromethyl or phenyl; pyridinyl; pyridinyl substituted by one or two of halogen, $alkyl(C_1-C_3)$ or $alkoxy(C_1-C_3)$; thienyl; thienyl substituted by one or two of halogen, $alkyl(C_1-C_3)$ or $alkoxy(C_1-C_3)$; furanyl; naphthalenyl; or pyrazinyl; and R_2 is hydrogen or $alkyl(C_1-C_3)$.

The compound according to Claim 1, (3-amino-1H-pyrazol-4-yl)(2-furanyl)methanone; (3-amino-1H-pyrazol-4-yl)(4-chlorophenyl)methanone; (3-amino-lH-pyrazol-4yl)(4-fluorophenyl)methanone; (3-amino-lH-pyrazol-4-yl)-(4-methoxyphenyl)methanone; (3-amino-1H-pyrazol-4-yl)[3-(trifluoromethyl)phenyl]methanone; (3-amino-1H-pyrazol-4yl)(4-pyridinyl)methanone; (3-amino-1H-pyrazol-4-yl)-(2-thienyl)methanone; (3-amino-5-methyl-lH-pyrazol-4-yl)phenylmethanone; (3-amino-1H-pyrazol-4-yl)(4-methylphenyl)methanone; (3-amino-lH-pyrazol-4-yl)(2-pyridinyl)methanone; (3-amino-1H-pyrazol-4-yl)(3-fluorophenyl)methanone; (3-amino-lH-pyrazol-4-yl)(3-furanyl)methanone; (3amino-1H-pyrazol-4-y1)(3,4,5-trimethoxypheny1)methanone;(3-amino-1H-pyrazol-4-y1)(3,4-dimethoxyphenyl)methanone; (3-amino-1H-pyrazol-4-y1)(3-methylphenyl)methanone; (3amino-lH-pyrazol-4-yl)(3,5-dimethoxyphenyl)methanone; or (3-amino-1H-pyrazol-4-yl)(2-fluorophenyl)methanone.

3. A process of preparing a compound of the formula:

$$R_1 - C = \begin{bmatrix} H \\ I \\ N \\ N \\ N \\ N \\ NH_2 \end{bmatrix}$$

wherein R_1 is phenyl substituted by one or two of halogen, alkyl(C_1 - C_3) or alkoxy(C_1 - C_3); phenyl substituted by one of dialkylamino(C_1 - C_3), methylenedioxy, alkylthio(C_1 - C_3), alkylsulfonyl(C_1 - C_3), substituted arylsulfonyl, amino, alkanoyl(C_1 - C_3)amino, substituted aroylamino, trifluoromethyl or phenyl; pyridinyl; pyridinyl substituted by one or two of halogen, alkyl(C_1 - C_3) or alkoxy(C_1 - C_3); thienyl; thienyl substituted by one or two of halogen, alkyl(C_1 - C_3) or alkoxy(C_1 - C_3); furanyl; naphthalenyl; or pyrazinyl; and R_2 is hydrogen or alkyl(C_1 - C_3) which comprises reacting an appropriately substituted acetonitrile of the formula

(where R₁ is as described above) with an N,N-dimethylamide dimethylacetal producing, after an exothermic reaction, a crystalline solid, recovering said crystalline solid, dissolving in methylene chloride, passing through hydrous magnesium silicate, adding hexane to the refluxing eluate, precipitating an [(c-dimethylamino)methylene]-

- β -oxoarylpropanenitrile of the formula R_1 -C-C-C-N(CH₃)₂,

reacting with aminoguanidine salt in a lower alkanol solution of 10N sodium hydroxide at reflux for 6-10 hours, giving the desired product.

CLAIM FOR AUSTRIA

1. A process f preparing a compound of the formula:

wherein R_1 is phenyl substituted by one or two of halogen, alkyl(C_1 - C_3) or alkoxy(C_1 - C_3); phenyl substituted by one of dialkylamino(C_1 - C_3), methylenedioxy, alkylthio(C_1 - C_3), alkylsulfonyl(C_1 - C_3), substituted arylsulfonyl, amino, alkanoyl(C_1 - C_3)amino, substituted aroylamino, trifluoromethyl or phenyl; pyridinyl; pyridinyl substituted by one or two of halogen, alkyl(C_1 - C_3) or alkoxy(C_1 - C_3); thienyl; thienyl substituted by one or two of halogen, alkyl(C_1 - C_3) or alkoxy(C_1 - C_3); furanyl; naphthalenyl; or pyrazinyl; and R_2 is hydrogen or alkyl(C_1 - C_3) which comprises reacting an appropriately substituted acetonitrile of the formula

(where R₁ is as described above) with an N,N-dimethylamide dimethylacetal producing, after an exothermic reaction, a crystalline solid, recovering said crystalline solid, dissolving in methylene chloride, passing through hydrous magnesium silicate, adding hexane to the refluxing eluate, precipitating an [(c-dimethylamino)methylene]-

- β -oxoarylpropanenitrile of the formula R_1 -C-C=C-N(CH₃)₂,

reacting with aminoguanidine salt in a lower alkanol solution of 10N sodium hydr xide at reflux for 6-10 hours, giving the desired product.