南亞塑膠工業股份有限公司 化工一部

2EH廠OXO單元操作條件優化

報告人:王錦良 2019年10月25日

報告摘要

- 一、2012至2017年應用統計軟體及實驗計劃法,進行 2EH製程OXO單元製程優化,降低原料單位用量, 丙烯由602降至597公斤/噸(降低5公斤/噸),合成氣 由456降至431公斤/噸(降低25公斤/噸),年效益 112,723仟元。
- 二、2018年起應用AI演算法利用製程既有大量數據, 建立可靠的製程單元模型,透過模型演算找出較佳 操作條件,進一步降低原料及能源單耗等操作成本, 年效益64,326仟元。
 - (一)OXO單元模型於2019/4/30建置上線完成,丙烯進一步降至595公斤/噸(降低2公斤/噸),合成氣進一步降至427公斤/噸(降低4公斤/噸),年效益31,330仟元。
 - (二)横向展開至2EH製程其他4個單元,於2019/7/31 建置上線完成,年效益32,996仟元。

報告內容

- 一、2EH製程說明
- 二、改善動機
- 三、AI模型開發歷程
- 四、製程調整與效益
- 五、横向展開執行成果
- 六、後續工作

一、2EH製程說明

OXO反應過程中,製程尾氣含有少量的未反應丙烯及合成氣當重組爐燃料,為降低原料耗用量,優先開發OXO單元AI模型優化操作條件,提高原料轉化率及正丁醛選擇率。

二、改善動機

- 1. OXO單元改善重點為提升原料轉化率以降低丙烯及合成氣單位用量與 提升正/異丁醛比例(N/I比)。
- 2. 提升原料轉化率,可能對正丁醛選擇率(N/I比)不利,故需建立N/I比 品質預測模型與丙烯及合成氣單位用量預測模型,找出較佳操作條件。

三、AI模型開發歷程

執行重點

數據收集與前處理

- 1. 收集OXO單元製程數據及人工取樣分析數據。
- 2. 將數據進行前處理,以提高模型準確度。

建立 品質及製程 預測模型 模型1:N/I比品質預測模型

模型2:丙烯單位用量預測模型

模型3:合成氣單位用量預測模型

開發操作條件 指引程式 設定關鍵變數之合理範圍,藉由電腦模擬不同操作條件組合,找出N/I比高且原料單位用量低的較佳操作條件。

模型上線 運用

藉著即時演算,將操作建議值呈現於即時生產管理 系統(RTPMS),提供盤控人員調整參考。

OXO單元模型開發彙總

項目 模型	N/I比品質	丙烯單位用量	合成氣單位用量
	預測模型	預測模型	預測模型
數據前處理	删除異常值	删除異常值	删除異常值
	標準化	標準化	標準化
	時間位移	時間位移	時間位移
演算法	Lasso	Ridge	Ridge
	(套索迴歸)	(脊迴歸)	(脊迴歸)
MAPE (平均絕對誤差)	1. 93%	1. 15%	1.50%
RMSE (均方根誤差)	0. 78	1. 91	1. 29
R ² (決定係數)	0.89	0. 91	0.89
目標	提高N/I比由32/36	降低丙烯單位用量	降低合成氣單位用量
	(提升2EH產量)	由597~593公斤/噸	由431~426公斤/噸

OXO單元所建置的三個模型,分別使用Lasso和Ridge演算法進行建模,各模型之MAPE皆符合10%以內需求。

(一)數據收集與前處理

- 1. 收集2016~2018年製程及人工取樣分析數據(N/I比),經刪除異常值及 開停車期間數據,將80%數據做建模使用,20%數據做驗證使用。
- 2. 製程數據因每個變數的單位數值大小不同,為避免數值大小差異影響模型準確度,以極小極大手法(MinMax scaler)進行標準化,讓數據在同一基準下進行建模,以提高模型準確度。
- 3. 在連續式製程中,當前段的操作條件發生變化時,一段時間後才影響後段製程,故依製程人員經驗將標準化後數據位移半小時。

(二)建立品質及製程預測模型 模型1:N/I比品質預測模型

- 1. OXO單元製程變數多達150個,過去篩選重要變數大多依照操作經驗, 缺乏資料科學基礎。
- 2. 利用Lasso演算法計算出的模型係數判斷變數對N/I比的影響程度, 將模型係數為0之變數剔除,篩選出81個變數作為後續建模依據。

演算法	Lasso (套索迴歸)	Ridge (脊迴歸)	SVM (支援向量機)	XGBoost (極限梯度提升)
模型類別	線性	線性	非線性	非線性
MAPE (平均絕對誤差)	18. 2%	19. 6%	26. 7%	23. 1%
RMSE (均方根誤差)	2. 38	2. 51	2. 74	2. 69
R ² (決定係數)	0. 55	0. 48	0. 32	0. 41

- 1. 以4種演算法進行建模,MAPE均高達18%以上,無法符合10%以內需求。
- 2. 進一步與製程人員檢討,認為應是數據時間位移半小時與實際 狀況不符,造成模型準確度不足。

- 1. 將操作變數(150個)進行時間位移,分別延後1、1.5、2及2.5小時四個時段,整合為600個變數對N/I比預測,以梯度提升迴歸(GBR)演算法建立模型,找出較適當的位移時間。
- 2. 根據模型特性可排列出變數重要性,顯示回收氣流量位移兩小時重要性較高,其餘變數依其重要性進行對應的時間位移。
- 3. 依前述方式重新進行變數篩選,篩選出72個變數作為後續建模依據。

演算法	Lasso (套索迴歸)	Ridge (脊迴歸)	SVM (支援向量機)	XGBoost (極限梯度提升)
模型類別	線性	線性	非線性	非線性
MAPE (平均絕對誤差)	1. 93%	1. 96%	2. 78%	2. 39%
RMSE (均方根誤差)	0. 78	0.79	1.04	0. 85
R ² (決定係數)	0.89	0.82	0. 73	0. 78

再次進行建模,經評估 Lasso模型MAPE 1.93%與RMSE 0.78最低, R² 0.89最高,故選定Lasso模型進行驗證。

採用2019年1、2月的人工取樣分析數據(共84筆)進行Lasso模型驗證,MAPE為1.85%,與建模時誤差1.93%相當。

模型2:丙烯單位用量預測模型

- 1. 此模型同樣以GBR手法計算位移時間,各變數依其重要性進行 對應的時間位移。
- 2. 第一階段利用Lasso迴歸演算法篩選變數,製程預測模型變數由 150\83個(品質預測模型為72個)。
- 3. 第二階段依化工製程原理檢討,選定59個變數,作為建模的依據。

模型2:丙烯單位用量預測模型(續)

	丙烯單位用量建模結果							
演算法	Lasso (套索迴歸)	Ridge (脊迴歸)	SVM (支援向量機)	XGBoost (極限梯度提升)				
模型類別	線性	線性	非線性	非線性				
MAPE (平均絕對誤差)	1.50%	1. 15%	1.84%	1. 26%				
RMSE (均方根誤差)	2. 04	1. 91	2. 15	1. 97				
R ² (決定係數)	0. 88	0. 91	0.87	0. 90				

經評估 Ridge 模型MAPE 1.15%與RMSE 1.91最低, R² 0.91最高, 故選定Ridge模型進行驗證。

模型2:丙烯單位用量預測模型(續)

丙烯單位用量模型驗證結果

採用2019年1、2月的數據(共4,263筆)進行Ridge模型驗證, MAPE為1.09%,與建模時誤差1.15%相當。

模型3:合成氣單位用量預測模型

	合成氣單位用量建模結果						
演算法	Lasso (套索迴歸)	Ridge (脊迴歸)	SVM (支援向量機)	XGBoost (極限梯度提升)			
模型類別	線性	線性	非線性	非線性			
MAPE (平均絕對誤差)	1. 95%	1.50%	2. 39%	1.64%			
RMSE (均方根誤差)	2. 32	1. 29	2. 48	2. 33			
R ² (決定係數)	0. 82	0.89	0.73	0.84			

- 1. 合成氣單位用量預測模型比照丙烯單位用量預測模型之作法,各變數依其重要性進行對應的時間位移,並篩選出59個變數。
- 2. 經評估Ridge模型MAPE 1.50%及RMSE 1.29最低, R² 0.89最高, 故選定Ridge模型進行驗證。

模型3:合成氣單位用量預測模型(續)

合成氣單位用量模型驗證結果

同樣採用Ridge模型,並以2019年1、2月的數據(共4,263筆)進行驗證,MAPE為1.35%,與建模時誤差1.50%相當。

(三)開發操作條件指引程式

1. 開發流程說明

開發操作條件指引程式

- 1. 為找出N/I比高且原料單位用量低的操作條件,須進一步以Python 程式語言開發操作條件指引程式。
- 2. 從3個模型篩選出27個共同可控變數,再選出8個可控關鍵變數, 設定變數可操作範圍,藉由電腦模擬不同操作條件組合後,自動 帶入預測模型計算,找出較佳操作條件建議值。

2. 篩選可控關鍵變數

項次	N/I比 模型係數	丙烯 模型係數	合成氣 模型係數	TAG編號	中文說明
1	0. 3731	0. 7438	0. 5621	PIC-249-5B.PV	R249壓力(第一反應槽)
2	0. 2831	-0.1998	-0.1102	TIC-250-1.PV	R250溫度
3	0.0229	0. 3897	0. 4287	FIC-245-1.OP	C245觸媒萃取塔出料閥開度
4	0.0830	0.0719	0.0832	FFI-234-2.PV	觸媒回流比
5	-0.0223	0.0169	0.0132	PIC-263-1.PV	R250壓力(第二反應槽)
6	0.0108	-0. 0166	-0. 0143	LIC-250-1.PV	R250液位
7	0.0132	0.0116	0.0110	TIC-249-7.PV	R249溫度
8	-0.0128	-0.0147	-0.0112	FIC-234-1.OP	V265觸媒接收槽回流閥開度
9	0.0035	0.0049	0.0038	TIC-220-1.PV	C203進料溫
10	-0.0044	-0.0037	-0.0023	FIC-235-1.PV	除霧器下洗量
•					
26	0.0003	0.0005	0.0003	FIC-234-1.PV	含觸媒丁醛回流量
27	0.0003	0.0003	-0.0002	LIC-245-2.PV	C245液位

- 1. 從驗證完成之3個預測模型中,找出同時影響N/I比與丙烯及合成氣單位用量之27個可控變數。
- 2. 檢視模型係數,排前8名可控變數影響程度較高,且為避免一次調整 過多變數影響製程穩定度,檢討後選前8名作為關鍵變數上線調整。

3. 設定合理操作區間及預測目標值

	Jon 141 4xx 由L	何	条件設定		
	控制變數		操作範圍	調整間距	操作點
1	R250壓力(第二反應槽)	Kg/cm ² g	10.4 ~ 11.2	0.2	5個
2	R250溫度	${\mathbb C}$	70.0 ~ 73.0	0.3	11個
3	C245觸媒萃取塔出料閥開度	%	8.0 ~ 12.0	1.0	5個
4	R250液位	%	78.0 ~ 83.0	1.0	6個
5	R249壓力(第一反應槽)	Kg/cm ² g	11.0 ~ 12.0	0.2	6個
6	V265觸媒接收槽回流閥開度	%	10.0 ~ 75.0	5. 0	14個
7	R249溫度	${\mathbb C}$	70.0 ~ 73.0	0.3	11個
8	觸媒回流比	-	3.8 ~ 4.6	0.2	5個
目	N/I比	_	極大化(望大)		
標値	丙烯單位用量	公斤/噸	極小化(望小)		
值	合成氣單位用量	公斤/噸			

- 1. 設定8個可控關鍵變數操作範圍及調整區間,共有762萬種操作條件組合。
- 2. 設定3個模型之目標值,N/I比為極大化(望大),丙烯及合成氣單位用量為極小化(望小)。

4. 找出較佳操作條件

	模型名稱		N/I比	丙烯 單位用量 (公斤/噸)	合成氣 單位用量 (公斤/噸)	模型計算 較佳條件
項次	控制變數	單位		調整方向		
1	R250壓力(第二反應槽)	Kg/cm ² g				10.6
2	R250溫度	${\mathbb C}$				71. 2
3	C245觸媒萃取塔出料閥開度	%				8.0
4	R250液位	%				83.0
5	R249壓力(第一反應槽)	Kg/cm ² g				11.0
6	V265觸媒接收槽回流閥開度	%				75. 0
7	R249溫度	$^{\circ}$			<u> </u>	70. 9
8	觸媒回流比	-				3.8
9	目標值	-	36	593	426	_

- 1. 程式自動將762萬種操作組合帶入3個預測模型中計算,並取得一組 N/I比最高且丙烯及合成氣單位用量最低的操作條件。
- 2. 導入製程調整前需進行變更管理(MOC),並檢討其合理性及適用性, 避免造成製程異常。

(四)模型上線運用

伺服器運算平台

實際 製程變數

- 1. R249反應槽溫度
- 2. R250反應槽壓力
- 3. R249 CO分壓
- 83. R250合成氣入料

AI模型

- 1.N/I比品質 預測模型
- 2.丙烯單位 用量模型
- 3.合成氣單位 用量模型

自動計算 操作建議值

例如R250溫度、 R249壓力及 其他製程變數 等操作建議值。 操作建議值 呈現RTPMS

呈現操作建議值 供盤控人員調整 參考。

- 1. 將實際製程變數傳至AI模型,可自動計算出操作建議值, 並呈現至即時生產管理系統(RTPMS)。
- 2. 盤控人員參考模型計算出的操作建議值進行評估並調整。

(四)模型上線運用(續)

將預測模型操作建議值呈現於RTPMS畫面,即時提供盤控人員調整參考, 後續規劃呈現於DCS畫面上。

四、製程調整與效益

(一)經篩選影響N/I比及原料單位用量最大的操作變數共8個, 為驗證模型演算建議較佳操作條件的可靠度要上線調整, 為避免一次調整過多變數影響製程穩定,分兩階段調整。

代號	操作變數	單位	調整前	較佳操作 條件	調整規劃
\mathbf{X}_1	R250壓力(第二反應槽)	kg/cm ² g	10.8	10.6	
\mathbf{X}_2	R250溫度	${\mathbb C}$	70.8	71. 2	第一階段
X_3	C245觸媒萃取塔出料閥開度	%	10.0	8.0	(4/1~4/18)
X_4	R250液位	%	80.8	83. 0	
X_5	R249壓力(第一反應槽)	kg/cm ² g	11.3	11.0	
X_6	V265觸媒接收槽回流閥開度	%	25. 0	75. 0	第二階段
X ₇	R249溫度	${\mathbb C}$	71.3	70. 9	(4/18~4/30)
X_8	觸媒回流比	_	4. 2	3.8	

(二)調整前後比較

代號	可控關鍵變數	單位	調整後 (A)	目標 (B)	調整前 (C)	比目標 (A比B)	比調整前 (A比C)
\mathbf{X}_{1}	R250壓力 (第二反應槽)	kg/cm ² g	10.6	10.6	10.8	1	-0.2
X_2	R250溫度	$^{\circ}$	71. 2	71.2	70.8	1	0.4
X ₃	C245觸媒萃取塔 出料閥開度	%	8. 0	8. 0	10.0	_	-2.0
X_4	R250液位	%	83. 0	83. 0	80.8	-	2. 2
X ₅	R249壓力 (第一反應槽)	kg/cm ² g	11. 0	11.0	11.3	_	-0.3
X_6	V265觸媒接收槽 回流閥開度	%	75. 0	75. 0	25. 0	1	50. 0
X ₇	R249溫度	$^{\circ}$	70.9	70.9	71. 3	-	-0.4
X ₈	觸媒回流比	_	3.8	3.8	4. 2		-0.4
Y ₁	N/I比	_	34. 7	36. 0	32. 0	-1.3	2.7
\mathbf{Y}_2	丙烯單位用量	公斤/噸	595. 0	593. 0	597. 0	-2.0	2.0
Y ₃	合成氣單位用量	公斤/噸	427. 0	426. 0	431.0	-1.0	4.0

(三)調整成效-N/I比趨勢圖

- 1. 第一階段調整後N/I比由32.0上升至33.1。
- 2. 第二階段調整後N/I比由33.1上升至34.7。
- 3. 正丁醛選擇率(N/I比)提升,2EH產量增加460噸/年, 年效益4,481仟元。

(三)調整成效-丙烯單位用量趨勢圖

丙烯單位用量

- 1. 第一階段調整後丙烯單位用量由597. 0降至595. 8公斤/噸。
- 2. 第二階段調整後丙烯單位用量由595.8降至595.0公斤/噸。
- 3. 合計丙烯單位用量由597. 0降至595. 0公斤/噸,年效益14,689仟元。

(三)調整成效-合成氣單位用量趨勢圖

合成氣單位用量

- 1. 第一階段調整後合成氣單位用量由431.0降至428.7公斤/噸。
- 2. 第二階段調整後合成氣單位用量由428.7降至427.0公斤/噸。
- 3. 合計合成氣單位用量由431. 0降至427. 0公斤/噸,年效益12,160仟元。

OXO單元提升N/I比及降低原料單位用量合計年效益31,330仟元。

五、横向展開執行成果

(一)横向展開之動機

單位用量

5公斤/噸

2EH製程分為5個單元,將OXO單元應用數據處理及演算法之經驗 横向展開至其他4個單元,針對各單元降低原料單耗、能耗等改善 目標,分別建立品質及製程預測模型,找出較佳操作條件。

0.10噸/時

(二)2EH製程各單元模型建置成果

單元	模型	變數	演算法	MAPE	完成日	
	N/I比品質 預測模型	72個	Lasso	1. 93%		
OXO反應	丙烯單位用量 預測模型	59個	Ridge	1.15%	2019/4/30	
	合成氣單位用量 預測模型	59個	Ridge	1. 50%		
正/異丁醛 分離	正丁醛純度 預測模型	20個	Ridge	0. 9%	2019/5/25	
縮合反應	正丁醛單位用量 預測模型	14個	XGBoost	1.5%	2019/6/25	
氫化反應	反應槽熱點溫度 預測模型	19個	Ridge	0. 6%	2019/7/10	
純化	2EH中重質物含量 預測模型	18個	Ridge	4. 7%	2019/7/31	

(三)2EH製程其他4個單元AI執行成效

單元類型	正/異丁醛分離	縮合反應	氫化反應	純化		
操作調整	1. 回流量由 95 \ 87噸/時 2. 塔底溫度由 94. 7 \ 94. 0℃ 3. 回流温度由 50 / 52℃	1.正丁醛預熱 溫度由114 113℃ 2.觸媒氫氧化鈉 用量由220 210 kg/hr	1. 輕質物塔中 2EH回煉量由 1,000/1,200 kg/hr 2. 重質物塔中 2EH回煉量由 650/700 kg/hr	1. 回流量由18. 2 /18. 8噸/時 2. 回流溫度由 99/99. 5℃		
改善成效	1. 正丁醛純度 99.6%/99.7% 2. 降低蒸汽用量 0.55噸/時	1. 正丁醛/EPA 單位用量由 1. 208 \ 1. 199 噸/噸 2. 降低蒸汽用量 0. 10噸/時	1. 降低副產物 發生10 kg/hr 2. 降低用電量 28度/時	2EHB/C發生量 降低,增加2EH 產量216噸/年		
年效益 (仟元)	4, 644	18, 477	3, 107	6, 768		
合計	32, 996					

六、後續工作

- (一)OXO單元雖透過模型找出較佳操作條件,但丙烯及合成氣單位用量與N/I比仍未達目標,安排定檢進行反應槽反應效率提升改善(提升攪拌機轉速),12月開車後收集數據及修正模型,預定2020年3月進行後續調整。
- (二)OXO單元操作建議值已上線至即時生產管理系統(RTPMS), 目前僅供盤控人員作調整參考,未來目標直接顯示至DCS 並做自動控制,其他4個單元亦比照OXO單元之作法。
- (三)SG製程優化後,合成氣產量達13.9噸/時(103.8%),為進一步增加合成氣產量降低生產成本,比照2EH製程將SG製程分為5個單元,分別建立品質及製程預測模型,目標增加合成氣產量0.8噸/時及降低蒸汽用量0.5噸/時,年效益37,723仟元,預定2020年9月建置上線完成。

報告完舉 恭請指導