Prueba final de Análisis Probabilístico de Algoritmos

	Nombre y Apellido:
1.	(1 pt) Respecto a la complejidad de los algoritmos basados en fusiones, la entropía de rachas ${\cal H}$ permite obtener
	A. una cota mínima B. una cota máxima C. una aproximación D. la media.
2.	(1,5 pts) Los tiempos de búsqueda de Linear Probing se degradan más rapidamente que los de Random Probing cuando la tasa de ocupación α es grande. Dar una interpretación intuitiva.
3.	(2 pts) Explicar por qué puede ser útil sesgar los if's de un algoritmo para que sean True (o False) con probabilidad mayor que $1/2$.
4.	(2,5 pts) Consideremos una clase combinatoria $\mathcal A$ que representa funciones como árboles binarios con las siguientes características:
	■ hojas decoradas con los números ${f 0}$, ${f 1}$ o un símbolo de variable x . ■ nodos internos decoradas con los operadores $+$ o \times ,
	■ el tamaño (o talla) igual al número de nodos internos (las hojas tienen talla 0).
	Dar una especificación combinatoria para ${\mathcal A}$. Encontrar la función generatriz $A(z)$.
	[La especificación puede ser recursiva, y utilizar el elemento vacío ${\mathcal E}$ y/o el átomo ${\mathcal Z}$.]
5.	(3 pts) Aplicando fracciones simples obtenemos
	$f(z) = \frac{z+3}{(1-z)\cdot(1-2z)^2} = -\frac{8}{1-2z} + \frac{7}{(1-2z)^2} + \frac{4}{1-z}.$
	Encontrar una fórmula para $a_n = [z^n]f(z)$. Dar un asintótico simple para a_n .