

Atomistic modelling of oxygen solute hardening in titanium alloys.

Tigany Zarrouk, Tony Paxton and Dave Rugg

Research Council

Email: tigany.zarrouk@kcl.ac.uk

Department of Physics, King's College London, Strand, London WC2R 2LS, UK

Screw dislocations control plasticity in titanium.

- Solute-hardening is not well understood on an atomistic scale.
- Ab initio quantum mechanics is too computationally expensive.
- Tight-binding approximation is quantum mechanical yet less expensive.

We have made a tight-binding model for titanium with which we can investigate atomistic mechanisms for

oxygen solute-hardening.

Tight-binding models need parameters.

- ◆ Overlaps between atomic orbitals of atoms are parameters.
- This titanium model is d-orbital only.
- Ab initio Density Functional Theory (DFT) calculations and empirical quantities are fitted to.
- Particle swarm algorithm used for fitting.
- Validation achieved by comparison of:
 - > Lattice wave dispersion (phonons). >Generalised stacking fault energy surfaces.
 - Dislocation core structure.
- Dissolution/vacancy formation energies.

Results of Fitting

Quantity	Units	TB model	Target
\mathbf{a}_{α}	[bohr]	5.52	5.57
c/a	ratio	1.571	1.587
C ₁₁	[GPa]	175.3	176.1
C ₃₃	[GPa]	195.5	190.5
C ₄₄	[GPa]	59.6	50.8
C ₁₂	[GPa]	70.2	86.9
C ₁₃	[GPa]	67.5	68.3

Method

- Create dislocation in cell.
- Put oxygen into different sites (octahedral) near core.
- · Relax cell to see how the core structure changes.

Dislocation Core Structure

Differential Displacement maps of screw dislocation core upon relaxation in tight-binding (TB) and Density Functional Theory (DFT / ab initio).

- Arrows denote out-of-plane displacements.
- ◆ An arrow joining two columns corresponds to displacement by a full Burger's vector. Position of elastic centre of dislocation core is marked by the red square.
- ◆ Good agreement between model and DFT thus validating model.

Validation Tests

Generalised Stacking Fault Energies

Gamma surfaces are plots of the excess energy of a faulted lattice, compared to an unfaulted one, with respect to fault vector.

- Minima show areas where stable stacking faults occur.
- * These predict possible dislocation dissociations in the model.

Predicted Splitting: Pseudopotential: 1/3[2-1-13] + 4/18[1-102] + 4/18[42-62] + 4/18[2-1-13] TB: 1/3[2-1-13] + 4/18[1-102] + 4/18[42-62] + 4/18[2-1-13]

Applications:

- Alloy design.
- Stress-corrosion cracking.
- Electrochemistry.

References:

- [1] Ghazisaeidi, (2012), Core structure of a screw dislocation in Ti from density functional theory and classical potentials
- [2] Stassis, D. Arch, B. (1979), Lattice Dynamics of hcp Ti.
- [3] Rodney, Ventelon (2016), Ab initio modelling of dislocation core properties in metals and semiconductors [4] Ready (2019), Stacking faults and the y-surface on $\{1-101\}$ pyramidal planes in α -titanium.