International Rectifier

IRLML6402

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching

$V_{DSS} = -20V$ $R_{DS(on)} = 0.065\Omega$

Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-2.2	A
I _{DM}	Pulsed Drain Current ①	-22	
P _D @T _A = 25°C	Power Dissipation	1.3	- w
P _D @T _A = 70°C	Power Dissipation	0.8	VV
	Linear Derating Factor	0.01	W/°C
E _{AS}	Single Pulse Avalanche Energy®	11	mJ
V _{GS}	Gate-to-Source Voltage	± 12	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

IRLML6402

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.009		V/°C	Reference to 25°C, I _D = -1mA ②
B	Static Drain-to-Source On-Resistance		0.050	0.065		V _{GS} = -4.5V, I _D = -3.7A ②
R _{DS(on)}	Statio Brain to Godice Off Hosiotarioe		0.080	0.135	Ω	V _{GS} = -2.5V, I _D = -3.1A ②
V _{GS(th)}	Gate Threshold Voltage	-0.40	-0.55	-1.2	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9 _{fs}	Forward Transconductance	6.0			S	V _{DS} = -10V, I _D = -3.7A ②
I	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -20V, V_{GS} = 0V$
I _{DSS}	Diali-to-Source Leakage Guilent			-25	μA	$V_{DS} = -20V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
IGSS	Gate-to-Source Reverse Leakage			100	IIA I	V _{GS} = 12V
Qg	Total Gate Charge		8.0	12		I _D = -3.7A
Q _{gs}	Gate-to-Source Charge		1.2	1.8	nC	$V_{DS} = -10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.8	4.2		V _{GS} = -5.0V ②
t _{d(on)}	Turn-On Delay Time		350			$V_{DD} = -10V$
t _r	Rise Time		48		ns	$I_D = -3.7A$
t _{d(off)}	Turn-Off Delay Time		588		115	$R_G = 89\Omega$
t _f	Fall Time	_	381			$R_D = 2.7\Omega$
C _{iss}	Input Capacitance		633			V _{GS} = 0V
Coss	Output Capacitance		145		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		110			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.3	A	showing the
I _{SM}	Pulsed Source Current			00	^	integral reverse
	(Body Diode) ①			-22		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.0A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		29	43	ns	$T_J = 25^{\circ}C, I_F = -1.0A$
Q _{rr}	Reverse RecoveryCharge		11	17	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

^{**} For recommended footprint and soldering techniques refer to application note #AN-994.

IRLML6402

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

International IOR Rectifier

IRLML6402

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIM	ETERS	INCHES		
STIVIBOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

Recommended Footprint

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONIS ARE SHOWN IN MILLIMETERS [INCHES].
 3. CONTROLLING DIMENSION: MILLIMETERS [INCHES].
 3. CONTROLLING DIMENSION: MILLIMETER.
 \$\(\times\) DATIME H. SIL COLTED AT THE MICLD PARTING LINE.
 \$\(\times\) DATIME AND B TO BE DETERMINED AT DATIME PLANE H.
 \$\(\times\) DATIME AND B TO BE DETERMINED AT DATIME PLANE H. DIMENSIONS DADE STARE MEASURED AT DATIME PLANE H. DIMENSIONS DADE STARE MEASURED AT DATIME PLANE H. DIMENSIONS DANE STARE SHALL NOT EXCEED 0.25 MM [0.010 NICH] PER SIDE.
 \$\(\times\) DATIMENSION IL IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.
 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23 / TO-236AB) Part Marking Information

Micro3 / SOT-23 Package Marking

PART NUMBER CODE REFERENCE:

A = IRLML2402 B = IRLML2803 C = IRLML2402 D = IRLML5103 E = IRLML6402 F = IRLML6401 G = IRLML2502 H = IRLML5203

Note: A line above the work week (as shown here) indicates Lead-free

W= (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8	1	1
2009	9		1
2010	0	24	X
		25	Υ
		26	Z

W = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	E		
2006	F		
2007	G		
2008	Н		
2009	J	7	7
2010	K	50	X
		51	Υ
		52	Z

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Micro3[™](SOT-23/TO-263AB) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 12/2011