0.1 一般可测函数的积分

0.1.1 积分的定义与初等性质

定义 0.1

设 f(x) 是 $E \subset \mathbf{R}^n$ 上的可测函数. 若积分

$$\int_{E} f^{+}(x) dx, \quad \int_{E} f^{-}(x) dx$$

中至少有一个是有限值,则称

$$\int_{E} f(x)dx = \int_{E} f^{+}(x)dx - \int_{E} f^{-}(x)dx$$

为 f(x) 在 E 上的积分; 当上式右端两个积分值皆为有限时, 则称 f(x) 在 E 上是**可积的**, 或称 f(x) 是 E 上的**可积函数**. 在 E 上可积的函数的全体记为 L(E).

定理 0.1

若 f(x) 在 E 上可测, 则 f(x) 在 E 上可积等价于 |f(x)| 在 E 上可积, 且有

$$\left| \int_{E} f(x) \mathrm{d}x \right| \leqslant \int_{E} |f(x)| \mathrm{d}x.$$

证明 由非负可测函数积分的线性性质可知

$$\int_{E} |f(x)| dx = \int_{E} \left[f^{+}(x) + f^{-}(x) \right] dx = \int_{E} f^{+}(x) dx + \int_{E} f^{-}(x) dx$$

成立, 故知在 f(x) 可测的条件下, f(x) 的可积性与 |f(x)| 的可积性是等价的, 且有

$$\left| \int_E f(x) dx \right| = \left| \int_E f^+(x) dx - \int_E f^-(x) dx \right| \leqslant \int_E f^+(x) dx + \int_E f^-(x) dx = \int_E |f(x)| dx.$$

定理 0.2 (积分的基本性质)

- (1) 若 f(x) 是 E 上的有界可测函数, 且 $m(E) < +\infty$, 则 $f \in L(E)$.
- (2) 若 $f \in L(E)$, 则 f(x) 在 E 上是几乎处处有限的.
- (3) 若 $E \in \mathcal{M}$, 且 f(x) = 0, a. e. $x \in E$, 则 $\int_{E} f(x) dx = 0$.
- (4) (i) 若 f(x) 是 E 上的可测函数, $g \in L(E)$, 且 $|f(x)| \leq g(x)$,a.e. $x \in E(g(x)$ 称为 f(x) 的**控制函数**),则 $f \in L(E)$.
 - (ii) 若 $f \in L(E)$, $e \subset E$ 是可测集, 则 $f \in L(e)$.
- (5) 若 $f(x) \leqslant g(x)$,a.e. $x \in E$, 则 $\int_E f(x) d\mu \leqslant \int_E g(x) d\mu$.
- (6) (i) 设 $f \in L(\mathbf{R}^n)$, 则

$$\lim_{N\to\infty}\int_{\{x\in\mathbf{R}^n:|x|\geqslant N\}}|f(x)|\mathrm{d}x=0,$$

或说对任给 $\varepsilon > 0$. 存在 N. 使得

$$\int_{\{x:|x|\geqslant N\}}|f(x)|\mathrm{d}x<\varepsilon.$$

(ii) 若 $f \in L(E)$, 且有 $E_N = \{x \in E : |x| \ge N\}$, 则

$$\lim_{N\to\infty}\int_{E\cap E_N}f(x)\mathrm{d}x=\lim_{N\to\infty}\int_{E_N}f(x)\mathrm{d}x=0.$$

注 (3) 反过来并不成立,例如,
$$f(x) = \begin{cases} 1, & x \in [0,1], \\ -1, & x \in (1,2]. \end{cases}$$

证明

(1) 不妨设 $|f(x)| \leq M$ $(x \in E)$, 由于 |f(x)| 是 E 上的非负可测函数, 故有

$$\int_{E} |f(x)| \mathrm{d}x \leqslant \int_{E} M \mathrm{d}x = Mm(E) < +\infty.$$

因此由定理 0.1可知 $f \in L(E)$.

(2) 由 $f \in L(E)$ 及定理 0.1可知, 非负可测函数 |f(x)| 在 E 上也可积. 从而由定理??可知, |f(x)| 在 E 上几乎处处 有限,即

$$m({x \in E : f(x) = \pm \infty}) = m({x \in E : |f(x)| = +\infty}) = 0.$$

故 f(x) 在 E 上是几乎处处有限的.

(3) 因为 |f(x)| = 0,a. e., $x \in E$, 且 |f(x)| 非负可测, 所以由命题??可得

$$\left| \int_{E} f(x) dx \right| \leqslant \int_{E} |f(x)| dx = 0.$$

故
$$\int_E f(x) \mathrm{d}x = 0.$$

故 $\int_E f(x)dx = 0$. (4) (i) 由非负可测函数的积分性质 (1) 可知

$$\int_E |f(x)| \mathrm{d} x \leqslant \int_E g(x) \mathrm{d} x < +\infty.$$

故 $|f| \in L(E)$, 因此由定理 0.1可知 $f \in L(E)$.

(ii) 若 $f \in L(E), e \subset E$ 是可测集,则非负可测函数的积分性质 (1)(3) 可知

$$\int_{e} |f(x)| \, \mathrm{d}x = \int_{E} |f(x)| \, \chi_{e}(x) \, \mathrm{d}x = \int_{E} |f(x)| \, \chi_{e}(x) \, \mathrm{d}x \leqslant \int_{E} |f(x)| \, \mathrm{d}x < +\infty.$$

故 $|f| \in L(e)$, 因此由定理 0.1可知 $f \in L(e)$

(5) 因为 $f(x) \leq g(x)$,a.e. $x \in E$, 所以 $f^+(x) \leq g^+(x)$, $f^-(x) \geq g^-(x)$,a.e. $x \in E$. 由非负可测函数积分的性质 (1) 可

$$\int_{E} f^{+}(x) d\mu \leqslant \int_{E} g^{+}(x) d\mu, \quad \int_{E} f^{-}(x) d\mu \geqslant \int_{E} g^{-}(x) d\mu$$

从而

$$\int_{E} f(x) d\mu = \int_{E} f^{+}(x) d\mu - \int_{E} f^{-}(x) d\mu \leqslant \int_{E} g^{+}(x) d\mu - \int_{E} g^{-}(x) d\mu = \int_{E} g(x) d\mu$$

故结论成立.

(6) (i) 记 $E_N = \{x \in \mathbb{R}^n : |x| \ge N\}$, 则 $\{|f(x)|\chi_{E_N}(x)\}$ 是非负可积函数渐降列, 且有

$$\lim_{N\to\infty} |f(x)|\chi_{E_N}(x) = 0, \quad x\in\mathbf{R}^n.$$

由此可知

$$\lim_{N\to\infty}\int_{E_N}|f(x)|\mathrm{d}x=\lim_{N\to\infty}\int_{\mathbf{R}^n}|f(x)|\chi_{E_N}(x)\mathrm{d}x\xrightarrow{\text{{\rm \#id}}??}\int_{\mathbf{R}^n}\lim_{N\to\infty}|f(x)|\chi_{E_N}(x)\mathrm{d}x=0.$$

(ii) 由 $f \in L(E)$ 及非负可测函数的积分性质 (1)(3) 可知

$$\int_{\mathbb{R}^n} \left| f(x) \chi_{E_N}(x) \right| \mathrm{d}x = \int_{\mathbb{R}^n} \left| f(x) \right| \chi_{E_N}(x) \, \mathrm{d}x \le \int_{\mathbb{R}^n} \left| f(x) \right| \chi_{E}(x) \, \mathrm{d}x = \int_E \left| f(x) \right| \mathrm{d}x < +\infty.$$

因此 $f \cdot \chi_{E_N} \in L(\mathbb{R}^n)$. 又 $E_N \subset E \cap \{x \in \mathbb{R}^n : |x| \ge N\}$, 故由非负可测函数的积分性质 (3) 及 (i) 可得

$$\lim_{N\to\infty}\int_{E\cap E_N}f(x)\,\mathrm{d}x=\lim_{N\to\infty}\int_{E_N}f(x)\,\mathrm{d}x=\lim_{N\to\infty}\int_{\{x\in\mathbb{R}^n:|x|\geqslant N\}}f(x)\,\chi_{E_N}(x)\,\mathrm{d}x=0.$$

定理 0.3 (积分的线性性质)

若 $f,g \in L(E),C \in \mathbb{R}$, 则

(i)
$$\int_E Cf(x) dx = C \int_E f(x) dx$$
, 进而 $Cf \in L(E)$;

(ii)
$$f+g \in L(E)$$
 且 $\int_E (f(x)+g(x)) dx = \int_E f(x) dx + \int_E g(x) dx$.
(iii) 若 $f \in L(E), g(x)$ 是 E 上的有界可测函数,则 $f \cdot g \in L(E)$.

注 不妨假定 f , g 都是实值函数 (即处处有限) 的原因:(i) 假设结论对处处有限的函数成立. 若 f 不是处处有限的函数,则由 $f \in L(E)$ 及可积函数的基本性质 (ii)可知, 令 $E_1 = \{x \in E : |f(x)| = +∞\}$,则 $m(E_1) = 0$,再令 $E_2 = E \setminus E_1$,则由假设可知

$$\int_{E_2} Cf(x) \, \mathrm{d}x = C \int_{E_2} f(x) \, \mathrm{d}x. \tag{1}$$

由非负可测函数积分线性性质及定理??(3) 可得

$$\int_{E} Cf(x) dx = \int_{E} (Cf(x))^{+} dx - \int_{E} (Cf(x))^{-} dx$$

$$= \int_{E} (Cf(x))^{+} \chi_{E_{1} \cup E_{2}}(x) dx - \int_{E} (Cf(x))^{-} \chi_{E_{1} \cup E_{2}}(x) dx$$

$$= \int_{E} (Cf(x))^{+} \chi_{E_{1}}(x) dx + \int_{E} (Cf(x))^{+} \chi_{E_{2}}(x) dx - \int_{E} (Cf(x))^{-} \chi_{E_{1}}(x) dx - \int_{E} (Cf(x))^{-} \chi_{E_{2}}(x) dx$$

$$= \int_{E_{1}} (Cf(x))^{+} dx + \int_{E_{2}} (Cf(x))^{+} dx - \int_{E_{1}} (Cf(x))^{-} dx - \int_{E_{2}} (Cf(x))^{-} dx$$

$$= \int_{E_{2}} (Cf(x))^{+} dx - \int_{E_{2}} (Cf(x))^{-} dx \stackrel{(1) \neq 0}{=} \int_{E_{2}} Cf(x) dx$$

$$= C \int_{E_{2}} f(x) dx = C \int_{E_{2}} f^{+}(x) dx - C \int_{E_{2}} f^{-}(x) dx$$

$$= C \left(\int_{E_{1}} f^{+}(x) dx + \int_{E_{2}} f^{+}(x) dx - \int_{E_{1}} f^{-}(x) dx - \int_{E_{2}} f^{-}(x) dx \right)$$

$$= C \left(\int_{E} f^{+}(x) \chi_{E_{1} \cup E_{2}}(x) dx - \int_{E} f^{-}(x) \chi_{E_{1} \cup E_{2}}(x) dx \right)$$

$$= C \left(\int_{E} f^{+}(x) \chi_{E_{1} \cup E_{2}}(x) dx - \int_{E} f^{-}(x) \chi_{E_{1} \cup E_{2}}(x) dx \right)$$

$$= C \left(\int_{E} f^{+}(x) dx - \int_{E} f^{-}(x) dx - \int_{E} f^{-}(x) dx \right)$$

$$= C \left(\int_{E} f^{+}(x) dx - \int_{E} f^{-}(x) dx - \int_{E} f^{-}(x) dx \right)$$

故对一般情况结论也成立.

(ii) 由 (i) 同理可证.

证明 不妨假定 f,g 都是实值函数 (即处处有限).

(i) 由公式

$$f^{+}(x) = \frac{|f(x)| + f(x)}{2}, \quad f^{-}(x) = \frac{|f(x)| - f(x)}{2}$$
 (2)

立即可知: 当 $C \ge 0$ 时, $(Cf)^+ = Cf^+$, $(Cf)^- = Cf^-$. 根据积分定义以及非负可测函数积分的线性性质,可得

$$\int_{E} Cf(x) dx = \int_{E} Cf^{+}(x) dx - \int_{E} Cf^{-}(x) dx$$

$$= C\left(\int_{E} f^{+}(x) dx - \int_{E} f^{-}(x) dx\right) = C\int_{E} f(x) dx.$$

当 C = -1 时, 由(2)式可知 $(-f)^+ = f^-, (-f)^- = f^+$. 同理可得

$$\int_{E} (-f(x)) \, \mathrm{d}x = \int_{E} f^{-}(x) \, \mathrm{d}x - \int_{E} f^{+}(x) \, \mathrm{d}x = -\int_{E} f(x) \, \mathrm{d}x.$$

当 C < 0 时, 由(2)式可知 Cf(x) = -|C|f(x). 由上述结论可得

$$\int_E Cf(x) dx = \int_E -|C|f(x) dx = -\int_E |C|f(x) dx$$
$$= -|C| \int_E f(x) dx = C \int_E f(x) dx.$$

综上可得

$$\int_{E} |Cf(x)| \, \mathrm{d}x = |C| \int_{E} |f(x)| \, \mathrm{d}x < +\infty, \forall C \in \mathbb{R}.$$

故 $Cf(x) \in L(E)$.

(ii) 首先, 由于有 $|f(x) + g(x)| \le |f(x)| + |g(x)|$, 故可知 $f + g \in L(E)$. 其次, 注意到

$$(f+g)^+ - (f+g)^- = f+g = f^+ - f^- + g^+ - g^-,$$

进而

$$(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+,$$

从而由非负可测函数积分的线性性质得

$$\int_{E} (f+g)^{+}(x) dx + \int_{E} f^{-}(x) dx + \int_{E} g^{-}(x) dx = \int_{E} (f+g)^{-}(x) dx + \int_{E} f^{+}(x) dx + \int_{E} g^{+}(x) dx.$$

因为式中每项积分值都是有限的, 所以可移项且得到

$$\int_{E} (f(x) + g(x)) dx = \int_{E} f(x) dx + \int_{E} g(x) dx.$$

(iii) 注意到

$$|f(x) \cdot g(x)| \le |f(x)| \cdot \sup_{x \in E} |g(x)|, \quad x \in E.$$

由 g 在 E 上有界, 故 $\sup_{x \in E} |g(x)| \in \mathbb{R}$. 从而由 (i) 可得 $|f(x)| \cdot \sup_{x \in E} |g(x)| \in L(E)$, 于是再由定理 0.2(4)(i) 可知 $f \cdot g \in L(E)$.

推论 0.1

若 $f \in L(E)$, 且 f(x) = g(x),a. e. $x \in E$, 则

$$\int_{E} f(x) \, \mathrm{d}x = \int_{E} g(x) \, \mathrm{d}x.$$

\$

笔记 这个推论表明: 改变可测函数在零测集上的值, 不会影响它的可积性与积分值.

证明 \diamondsuit $E_1 = \{x \in E : f(x) \neq g(x)\}, E_2 = E \setminus E_1, m(E_1) = 0, 则$

$$\int_{E} f(x) dx = \int_{E} f^{+}(x) dx - \int_{E} f^{-}(x) dx \xrightarrow{\frac{\pi \pi \pi \pi \pi}{2}} \int_{E} f^{+}(x) \chi_{E}(x) dx - \int_{E} f^{-}(x) \chi_{E}(x) dx$$

$$= \int_{E} f^{+}(x) \chi_{E_{1} \cup E_{2}}(x) dx - \int_{E} f^{-}(x) \chi_{E_{1} \cup E_{2}}(x) dx$$

$$= \int_{E} f^{+}(x) \left[\chi_{E_{1}}(x) + \chi_{E_{2}}(x) \right] dx - \int_{E} f^{-}(x) \left[\chi_{E_{1}}(x) + \chi_{E_{2}}(x) \right] dx$$

$$= \int_{E} f^{+}(x) \chi_{E_{1}}(x) dx + \int_{E} f^{+}(x) \chi_{E_{2}}(x) dx - \int_{E} f^{-}(x) \chi_{E_{1}}(x) dx - \int_{E} f^{-}(x) \chi_{E_{2}}(x) dx$$

$$\frac{\pi \pi \pi^{27}(3)}{2\pi^{27}(5)(1)} \int_{E_{1}} f^{+}(x) dx + \int_{E_{2}} f^{+}(x) dx - \int_{E_{1}} f^{-}(x) dx - \int_{E_{2}} f^{-}(x) dx$$

$$\frac{\pi \pi^{27}(5)(1)}{2\pi^{27}(5)(1)} \int_{E_{2}} f^{+}(x) dx - \int_{E_{2}} f^{-}(x) dx - \int_{E_{2}} g^{-}(x) dx$$

$$\frac{\pi \pi^{27}(5)(1)}{2\pi^{27}(5)(1)} \int_{E_{1}} g^{+}(x) dx + \int_{E_{2}} g^{+}(x) dx - \int_{E_{1}} g^{-}(x) dx - \int_{E_{2}} g^{-}(x) dx$$

$$\frac{\pi \pi^{27}(5)(1)}{2\pi^{27}(5)(1)} \int_{E_{1}} g^{+}(x) \chi_{E_{1}}(x) dx + \int_{E_{2}} g^{+}(x) \chi_{E_{2}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{1}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{1}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{2}}(x) dx$$

$$\frac{\pi \pi^{27}(5)(1)}{2\pi^{27}(5)(1)} \int_{E_{1}} g^{+}(x) \chi_{E_{1}}(x) dx + \int_{E_{2}} g^{+}(x) \chi_{E_{2}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{1}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{2}}(x) dx$$

$$\frac{\pi \pi^{27}(5)(1)}{2\pi^{27}(5)(1)} \int_{E_{1}} g^{+}(x) \chi_{E_{1}}(x) dx + \int_{E_{2}} g^{+}(x) \chi_{E_{2}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{1}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{2}}(x) dx$$

$$\frac{\pi \pi^{27}(5)(1)}{2\pi^{27}(5)(1)} \int_{E_{1}} g^{+}(x) \chi_{E_{1}}(x) dx + \int_{E_{2}} g^{+}(x) \chi_{E_{2}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{1}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{E_{2}}(x) dx$$

$$\frac{\pi \pi^{27}(5)(1)}{2\pi^{27}(5)(1)} \int_{E_{1}} g^{+}(x) \chi_{E_{1}}(x) dx + \int_{E_{2}} g^{+}(x) \chi_{E_{2}}(x) dx - \int_{E_{2}} g^{-}(x) \chi_{$$

例题 0.1 设 f(x) 是 [0,1] 上的可测函数, 且有

$$\int_{[0,1]} |f(x)| \ln(1+|f(x)|) \, \mathrm{d}x < +\infty,$$

则 $f \in L([0,1])$.

证明 为了阐明 $f \in L([0,1])$,自然想到去寻求可积的控制函数. 题设告诉我们 $|f(x)|\ln(1+|f(x)|)$ 是 [0,1] 上的可积函数, 难道它能控制 |f(x)| 吗? 显然, 这只是在 $\ln(1+|f(x)|) \ge 1$ 或 $|f(x)| \ge e-1$ 时才行. 但注意到 |f(x)| < e-1 时,由于区间 [0,1] 的测度是有限的,故常数 e-1 本身就是控制函数. 也就是说,可在不同的定义区域寻求不同的控制函数.

为此,作点集

$$E_1 = \{x \in [0, 1] : |f(x)| \le e\}, \quad E_2 = [0, 1] \setminus E_1,$$

则我们有

$$|f(x)| \leq e, \quad x \in E_1;$$

$$|f(x)| \le |f(x)| \ln(1 + |f(x)|), \quad x \in E_2.$$

这就是说 $f \in L(E_1)$ 且 $f \in L(E_2)$, 从而

$$f \in L(E_1 \cup E_2) = L([0, 1]).$$

定理 0.4

设 $f \in L(E), f_n \in L(E) (n \in \mathbb{N})$. 若有

$$\lim_{x \to \infty} f_n(x) = f(x) \ (x \in E), \quad f_n(x) \le f_{n+1}(x) \ (n \in \mathbb{N}, x \in E),$$

则

$$\lim_{n\to\infty}\int_E f_n(x)\,\mathrm{d}x = \int_E f(x)\,\mathrm{d}x.$$

证明 令 $F_n(x) = f(x) - f_n(x) (n \in \mathbb{N}, x \in E)$, 则 $\{F_n(x)\}$ 是 E 上非负渐降收敛于 0 的可积函数列, 从而由非负渐降函数列积分定理可知

$$0 = \lim_{n \to \infty} \int_E F_n(x) dx = \lim_{n \to \infty} \left(\int_E f(x) dx - \int_E f_n(x) dx \right) = \int_E f(x) dx - \lim_{n \to \infty} \int_E f_n(x) dx,$$

即得所证.

命题 0.1

设 $g \in L(E), f_n \in L(E) (n \in \mathbb{N})$. 若 $f_n(x) \geq g(x)$,a. e. $x \in E$, 则

$$\int_{E} \underline{\lim}_{n \to \infty} f_n(x) \, \mathrm{d}x \leqslant \underline{\lim}_{n \to \infty} \int_{E} f_n(x) \, \mathrm{d}x.$$

证明 根据 Fatou 引理, 我们有

$$\int_{E} \underline{\lim}_{n \to \infty} \left[f_n(x) - g(x) \right] dx \leqslant \underline{\lim}_{n \to \infty} \left(\int_{E} \left[f_n(x) - g(x) \right] dx \right)$$

$$\iff \int_{E} \underline{\lim}_{n \to \infty} f_n(x) dx - \int_{E} g_n(x) dx \leqslant \underline{\lim}_{n \to \infty} \int_{E} f_n(x) dx - \int_{E} g_n(x) dx$$

$$\iff \int_{E} \underline{\lim}_{n \to \infty} f_n(x) dx \leqslant \underline{\lim}_{n \to \infty} \int_{E} f_n(x) dx.$$

证毕.

定理 0.5 (Jensen 不等式)

设w(x)是 $E \subset \mathbf{R}$ 上的正值可测函数,且

$$\int_{E} w(x) \, \mathrm{d}x = 1;$$

 $\varphi(x)$ 是区间 I = [a, b] 上的 (下) 凸函数; f(x) 在 E 上可测, 且值域 $R(f) \subset I$. 若 $fw \in L(E)$, 则

$$\varphi\left(\int_{E} f(x)w(x) dx\right) \leqslant \int_{E} \varphi(f(x))w(x) dx.$$

注 因为 $\varphi(x)$ 在 [a,b] 上下凸, 所以由定理 6.7可知 $\varphi \in C([a,b)]$. 从而由定理??可知 $\varphi(f(x))$ 在 E 上也可测. 证明 注意到 $a \leq f(x) \leq b$, 我们有

$$a = \int_E aw(x) \, \mathrm{d}x \leqslant y_0 = \int_E f(x)w(x) \, \mathrm{d}x \leqslant \int_E bw(x) \, \mathrm{d}x = b.$$

故 $y_0 \in [a, b]$.

(i) 设 $y_0 \in (a, b)$, 由 $\varphi(x)$ 之 (下) 凸性可知有

$$\varphi(y) \geqslant \varphi(y_0) + k(y - y_0), \quad y \in [a, b].$$

(其中由定理 6.7及下凸函数的切线放缩可知 $k = \varphi'_+(y_0)$) 以 f(x) 代 y 得

$$\varphi(f(x)) \geqslant \varphi(y_0) + k(f(x) - y_0)$$
, a. e. $x \in E$.

在上式两端乘以w(x),并在E上作积分,则

$$\int_{E} \varphi(f(x))w(x) \, \mathrm{d}x \geqslant \int_{E} \varphi(y_0)w(x) \, \mathrm{d}x + k \int_{E} (f(x) - y_0)w(x) \, \mathrm{d}x$$

$$= \varphi(y_0) + k \left(\int_{E} f(x)w(x) \, \mathrm{d}x - y_0 \right)$$

$$= \varphi(y_0) = \varphi\left(\int_{E} f(x)w(x) \, \mathrm{d}x \right).$$

(ii) 若 $y_0 = b($ 或 a), 易知此时有

$$\int_{E} (b - f(x))w(x) \, \mathrm{d}x = 0,$$

由非负可测函数积分的性质 (5)(i) 可知 f(x) = b,a. e. $x \in E$,从而

$$\int_{E} \varphi(f(x))w(x) dx = \int_{E} \varphi(b)w(x) dx = \varphi(b) \int_{E} w(x) dx = \varphi(b) = \varphi\left(\int_{E} f(x)w(x) dx\right).$$

证毕.

设 $E \subset \mathbf{R}$, 且 m(E) = 1, f(x) 在 E 上正值可积, 且记 $A = \int_{E} f(x) dx$, 则

$$\sqrt{1+A^2} \leqslant \int_E \sqrt{1+f^2(x)} \, \mathrm{d}x \leqslant 1+A.$$

实际上, 考查 $\varphi(x) = (1+x^2)^{1/2}$, 易知 $\varphi(x)$ 是 (下) 凸函数. 根据 Jensen 不等式 ($w(x) \equiv 1$), 有 $\left(A^2 \leqslant \int_{\mathbb{R}} f^2(x) \, \mathrm{d}x\right)$.

$$\sqrt{1+A^2} \leqslant \left(1 + \int_E f^2(x) \, \mathrm{d}x\right)^{1/2} = \left(\int_E (1+f^2(x)) \, \mathrm{d}x\right)^{1/2}$$
$$\leqslant \int_E \sqrt{1+f^2(x)} \, \mathrm{d}x \leqslant \int_E (1+f(x)) \, \mathrm{d}x = 1+A.$$

定理 0.6 (积分对定义域的可数可加性)

设 $E_k \in \mathcal{M}(k=1,2,\cdots), E_i \cap E_j = \emptyset (i \neq j)$. 若 f(x) 在 $E = \bigcup_{k=1}^{\infty} E_k$ 上可积,则

$$\int_{E} f(x) dx = \sum_{k=1}^{\infty} \int_{E_k} f(x) dx.$$

证明 根据 $f \in L(E)$ 以及非负可测函数积分的可数可加性, 我们有

$$\sum_{k=1}^{\infty} \int_{E_k} f^{\pm}(x) \, \mathrm{d}x = \int_E f^{\pm}(x) \, \mathrm{d}x \leqslant \int_E |f(x)| \, \mathrm{d}x < +\infty.$$

从而可知

$$\sum_{k=1}^{\infty} \int_{E_k} f(x) \, \mathrm{d}x = \sum_{k=1}^{\infty} \left(\int_{E_k} f^+(x) \, \mathrm{d}x - \int_{E_k} f^-(x) \, \mathrm{d}x \right) = \int_E f^+(x) \, \mathrm{d}x - \int_E f^-(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

定理 0.7 (可积函数几乎处处为零的一种判别法)

设函数 $f(x) \in L([a,b])$. 若对任意的 $c \in [a,b]$, 有

$$\int_{[a,c]} f(x) \, \mathrm{d}x = 0,$$

则 f(x) = 0,a. e. $x \in [a, b]$.

证明 若结论不成立, 则存在 $E \subset [a,b]$, m(E) > 0 且 f(x) 在 E 上的值不等于零. 不妨假定在 E 上 f(x) > 0. 由定理??, 可作闭集 $F,F \subset E$, 且 m(F) > 0, 并令 $G = (a,b) \setminus F$, 则 G 为开集. 于是由开集构造定理可知, $G = \bigcup_{n=1}^{\infty} (a_n,b_n)$, 其中 $\{(a_n,b_n)\}$ 为开集 G 的构成区间. 由积分对定义域的可数可加性, 我们有

$$\int_G f(x) dx + \int_E f(x) dx = \int_a^b f(x) dx = 0.$$

因为 $\int_{F} f(x) dx > 0$, 所以

$$\sum_{n>1} \int_{[a_n,b_n]} f(x) \, \mathrm{d}x = \int_G f(x) \, \mathrm{d}x = -\int_F f(x) \, \mathrm{d}x > 0 \neq 0,$$

从而存在 n_0 ,使得

$$\int_{[a_{n_0},b_{n_0}]} f(x) \, \mathrm{d}x \neq 0.$$

又由积分对定义域的可数可加性可知

$$\int_{[a,b_{n_0}]} f(x) \, \mathrm{d}x = \int_{[a,a_{n_0}] \cup [a_{n_0},b_{n_0}]} f(x) \, \mathrm{d}x = \int_{[a,a_{n_0}]} f(x) \, \mathrm{d}x + \int_{[a_{n_0},b_{n_0}]} f(x) \, \mathrm{d}x.$$

于是

$$\int_{[a,b_{n_0}]} f(x) \, \mathrm{d}x - \int_{[a,a_{n_0}]} f(x) \, \mathrm{d}x = \int_{[a_{n_0},b_{n_0}]} f(x) \, \mathrm{d}x \neq 0 \Rightarrow \int_{[a,b_{n_0}]} f(x) \, \mathrm{d}x \neq \int_{[a,a_{n_0}]} f(x) \, \mathrm{d}x.$$

由此可知

$$\int_{[a,a_{n_0}]} f(x) dx \neq 0 \quad \text{if} \quad \int_{[a,b_{n_0}]} f(x) dx \neq 0.$$

这与假设矛盾. □

命题 0.2

设 g(x) 是 E 上的可测函数. 若对任意的 $f \in L(E)$, 都有 $fg \in L(E)$, 则除一个零测集 Z 外, g(x) 是 $E \setminus Z$ 上的有界函数.

注 比较命题??.

证明 如果结论不成立,那么一定存在自然数子列 $\{k_i\}$,使得

$$m(\{x \in E : k_i \le |g(x)| < k_{i+1}\}) = m(E_i) > 0 \quad (i = 1, 2, \dots).$$

现在作函数

$$f(x) = \begin{cases} \frac{\text{sign}g(x)}{i^{1+(1/2)}m(E_i)}, & x \in E_i, \\ 0, & x \notin E_i \end{cases}$$
 $(i = 1, 2, \cdots).$

因为

$$\int_{E} |f(x)| dx = \sum_{i=1}^{\infty} \int_{E_{i}} |f(x)| dx$$

$$= \sum_{i=1}^{\infty} \frac{1}{i^{1+(1/2)} m(E_{i})} m(E_{i}) < +\infty,$$

所以 $f \in L^1(E)$, 但我们有

$$\int_E f(x)g(x)\,\mathrm{d}x \geqslant \sum_{i=1}^\infty \frac{k_i}{i^{1+(1/2)}m(E_i)} m(E_i) = +\infty,$$

这说明 $fg \notin L(E)$, 矛盾.

定理 0.8 (积分的绝对连续性)

若 $f \in L(E)$, 则对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 E 中子集 e 的测度 $m(e) < \delta$ 时, 有

$$\left| \int_{e} f(x) \, \mathrm{d}x \right| \leqslant \int_{e} |f(x)| \, \mathrm{d}x < \varepsilon.$$

证明 不妨假定 $f(x) \ge 0$, 否则用 |f(x)| 代替 f(x). 根据简单函数逼近定理可知, 存在非负简单可测函数渐升列 $\{\varphi_n(x)\}$, 使得 $\lim_{x\to\infty} \varphi_n(x) = f(x)$. 再由 Beppo Levi 非负渐升列积分定理可得

$$\lim_{n \to \infty} \int_{E} \left(f(x) - \varphi_{n}(x) \right) dx = \int_{E} \left(f(x) - \lim_{n \to \infty} \varphi_{n}(x) \right) dx = \int_{E} f(x) dx - \int_{E} \lim_{n \to \infty} \varphi_{n}(x) dx = 0.$$

于是对于任给的 $\varepsilon > 0$, 存在可测简单函数 $\varphi(x), 0 \leqslant \varphi(x) \leqslant f(x)(x \in E)$, 使得

$$\int_{E} (f(x) - \varphi(x)) \, \mathrm{d}x = \int_{E} f(x) \, \mathrm{d}x - \int_{E} \varphi(x) \, \mathrm{d}x < \frac{\varepsilon}{2}.$$

现在设 $\varphi(x) \leq M$,取 $\delta = \varepsilon/(2M)$,则当 $e \subset E$,且 $m(e) < \delta$ 时,就有

$$\int_{e} f(x) dx = \int_{e} f(x) dx - \int_{e} \varphi(x) dx + \int_{e} \varphi(x) dx$$

$$\leq \int_{E} (f(x) - \varphi(x)) dx + \int_{e} \varphi(x) dx$$

$$< \frac{\varepsilon}{2} + Mm(e) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

推论 0.2

设 $f \in L(E)(E \subset \mathbf{R})$, 且

$$0 < A = \int_{E} f(x) \, \mathrm{d}x < +\infty,$$

则存在E中可测子集e,使得

$$\int_{e} f(x) \, \mathrm{d}x = \frac{A}{3}.$$

证明 设 $E_t = E \cap (-\infty, t), t \in \mathbf{R}$, 并记

$$g(t) = \int_{E_{\star}} f(x) \, \mathrm{d}x,$$

则由积分的绝对连续性可知,对任给的 $\varepsilon>0$,存在 $\delta>0$,只要 $|\Delta t|<\delta$,由积分对定义域的可数可加性,就有

$$|g(t+\Delta t)-g(t)| = \left|\int_{E\cap[t,t+\Delta t)} f(x) \, \mathrm{d}x\right| \leqslant \int_{E\cap[t,t+\Delta t)} |f(x)| \, \mathrm{d}x \leqslant \int_{[t,t+\Delta t)} |f(x)| \, \mathrm{d}x < \varepsilon.$$

这说明 $g \in C(\mathbf{R})$. 因为 g(x) 是递增函数, 且有

$$\lim_{t \to -\infty} g(t) = g(-\infty) = \int_{\varnothing} f(x) dx = 0, \quad \lim_{t \to +\infty} g(t) = g(+\infty) = A,$$

而 0 < A/3 < A, 所以根据连续函数介值定理可知, 存在 $t_0:-\infty < t_0 < +\infty$, 使得 $g(t_0) = A/3$:

$$g(t_0) = \int_{E \cap (-\infty, t_0)} f(x) dx = \frac{A}{3}.$$

令 $e = E \cap (-\infty, t_0)$, 即得所证.

定理 0.9 (积分变量的平移变换定理)

若 $f \in L(\mathbf{R}^n)$, 则对任意的 $y_0 \in \mathbf{R}^n$, $f(x + y_0) \in L(\mathbf{R}^n)$, 有

$$\int_{\mathbf{R}^n} f(x + y_0) \, \mathrm{d}x = \int_{\mathbf{R}^n} f(x) \, \mathrm{d}x.$$

证明 只需考虑 $f(x) \ge 0$ 的情形. 首先看 f(x) 是非负可测简单函数的情形:

$$f(x) = \sum_{i=1}^{k} c_i \chi_{E_i}(x), \quad x \in \mathbf{R}^n.$$

显然有

$$f(x+y_0) = \sum_{i=1}^k c_i \chi_{E_i}(x+y_0) = \sum_{i=1}^k c_i \chi_{E_i-\{y_0\}}(x),$$

它仍是非负可测简单函数. 注意到 $E-\{y_0\}=E+\{-y_0\}$, 故由外测度的平移不变性知

$$\int_{\mathbf{R}^n} f(x+y_0) \, \mathrm{d}x = \sum_{i=1}^k c_i m(E_i - \{y_0\}) = \sum_{i=1}^k c_i m(E_i) = \int_{\mathbf{R}^n} f(x) \, \mathrm{d}x.$$

其次, 考虑一般非负可测函数 f(x). 此时根据简单函数逼近定理可知, 存在非负可测简单函数渐升列 $\{\varphi_k(x)\}$, 使得 $\lim_{k\to\infty}\varphi_k(x)=f(x)$, $x\in \mathbb{R}^n$. 显然, $\{\varphi_k(x+y_0)\}$ 仍为渐升列, 且有

$$\lim_{k \to \infty} \varphi_k(x + y_0) = f(x + y_0), \quad x \in \mathbf{R}^n.$$

从而先前的讨论及 Beppo Levi 非负渐升列积分定理可得

$$\int_{\mathbf{R}^n} f(x+y_0) dx = \lim_{k \to \infty} \int_{\mathbf{R}^n} \varphi_k(x+y_0) dx = \lim_{k \to \infty} \int_{\mathbf{R}^n} \varphi_k(x) dx = \int_{\mathbf{R}^n} f(x) dx.$$

例题 0.2 设 $f \in L([0, +\infty))$, 则

$$\lim_{n \to \infty} f(x+n) = 0, \quad \text{a. e. } x \in \mathbf{R}.$$

证明 因为 f(x+n) = f(x+1+(n-1)), 所以只需考查 [0,1] 中的点即可. 为证此, 又只需指出级数 $\sum_{n=1}^{\infty} |f(x+n)|$ 在

[0,1] 上几乎处处收敛即可. 应用积分的手段, 由于

$$\int_{[0,1]} \sum_{n=1}^{\infty} |f(x+n)| \, \mathrm{d}x = \sum_{n=1}^{\infty} \int_{[0,1]} |f(x+n)| \, \mathrm{d}x$$
$$= \sum_{n=1}^{\infty} \int_{[n,n+1]} |f(x)| \, \mathrm{d}x = \int_{[1,\infty)} |f(x)| \, \mathrm{d}x < +\infty,$$

可知 $\sum_{n=1}^{\infty} |f(x+n)|$ 作为 x 的函数是在 [0,1] 上可积的, 因而是几乎处处有限的, 即级数是几乎处处收敛的.

命题 0.3

设 $I \subset \mathbf{R}$ 是区间, $f \in L(I)$, $a \neq 0$, 记 $J = \{x/a : x \in I\}$, $g(x) = f(ax)(x \in J)$, 则 $g \in L(J)$, 且有

$$\int_{I} f(x) dx = |a| \int_{J} g(x) dx.$$

注 这只是积分变量替换的一个特殊情形.

$$\int_{\mathbf{R}^n} f(ax) \, \mathrm{d}x = \frac{1}{|a|^n} \int_{\mathbf{R}^n} f(x) \, \mathrm{d}x.$$

证明 (i) 若 $f(x) = \chi_E(x)$, E 是 I 中的可测集, 则 $a^{-1}E \subset J$. 由于 $\chi_E(ax) = \chi_{a^{-1}E}(x)$, 故有

$$\int_{J} g(x) dx = \frac{1}{|a|} m(E) = \frac{1}{|a|} \int_{I} f(x) dx.$$

由此可知当 f(x) 是简单可测函数时, 结论也真.

(ii) 对 $f \in L(I)$, 设简单可测函数列 $\{\varphi_n(x)\}$, 使得 $\varphi_n(x) \to f(x)(n \to \infty, x \in I)$, 且 $|\varphi_n(x)| \leqslant |f(x)|(n = 1, 2, \dots, x \in I)$, 则令 $\psi_n(x) = \varphi_n(ax)(x \in J, n = 1, 2, \dots), \psi_n(x) \to g(x)(n \to \infty, x \in J)$, 我们有

$$|a| \int_J g(x) \, \mathrm{d}x = |a| \lim_{n \to \infty} \int_J \psi_n(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_I \varphi_n(x) \, \mathrm{d}x = \int_I f(x) \, \mathrm{d}x.$$

0.1.2 控制收敛定理

定理 0.10 (控制收敛定理)

设 $f_k \in L(E)(k = 1, 2, \dots)$, 且有

$$\lim_{k \to \infty} f_k(x) = f(x), \quad \text{a. e. } x \in E.$$
(3)

若存在E上的可积函数F(x),使得

$$|f_k(x)| \le F(x)$$
, a. e. $x \in E \ (k = 1, 2, \dots)$,

则

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

(通常称 F(x) 为函数列 $\{f_k(x)\}$ 的控制函数.)

证明 显然, 由推论??可知 f(x) 是 E 上的可测函数, 且由 $|f_k(x)| \le F(x)$ (a. e. $x \in E$) 及(3)式可知 $|f(x)| \le F(x)$, a. e. $x \in E$. 因此, 由积分的基本性质 (4)(i)可知 f(x) 也是 E 上的可积函数. 作函数列

$$g_k(x) = |f_k(x) - f(x)| \quad (k = 1, 2, \dots),$$

则 $g_k \in L(E)$, 且 $0 \le g_k(x) \le 2F(x)$, a. e. $x \in E(k=1,2,\cdots)$. 注意到 $\lim_{k \to \infty} g_k(x) = 0$, 显然 $\lim_{k \to +\infty} g_k(x)$ 在 E 上也可积.

根据 Fatou 引理, 我们有

$$\int_{E} \lim_{k \to \infty} (2F(x) - g_k(x)) \, \mathrm{d}x \leqslant \lim_{k \to \infty} \int_{E} (2F(x) - g_k(x)) \, \mathrm{d}x.$$

因为 F(x), $\lim_{n\to\infty} g_n(x)$ 以及每个 $g_k(x)$ 都是可积的, 所以由积分的线性性质可得

$$\int_{E} 2F(x) dx - \int_{E} \lim_{k \to \infty} g_{k}(x) dx \leqslant \int_{E} 2F(x) dx - \overline{\lim}_{k \to \infty} \int_{E} g_{k}(x) dx.$$

消去 $\int_E 2F(x) dx$, 并注意到 $\lim_{k \to \infty} g_k(x) = 0$,a. e. $x \in E$, 可得

$$\overline{\lim}_{k\to\infty} \int_E g_k(x) \, \mathrm{d}x = 0.$$

又由积分的线性性质及定理 0.1可知 $(k = 1, 2, \cdots)$

$$\left| \int_{E} f_{k}(x) \, \mathrm{d}x - \int_{E} f(x) \, \mathrm{d}x \right| = \left| \int_{E} (f_{k}(x) - f(x)) \, \mathrm{d}x \right| \leqslant \int_{E} g_{k}(x) \, \mathrm{d}x$$

$$\overline{\lim}_{k\to\infty}\left|\int_E f_k(x)\,\mathrm{d}x - \int_E f(x)\,\mathrm{d}x\right| \leqslant \overline{\lim}_{k\to\infty}\int_E g_k(x)\,\mathrm{d}x = 0.$$

于是

$$\lim_{k \to \infty} \left| \int_E f_k(x) \, \mathrm{d}x - \int_E f(x) \, \mathrm{d}x \right| = \overline{\lim_{k \to \infty}} \left| \int_E f_k(x) \, \mathrm{d}x - \int_E f(x) \, \mathrm{d}x \right| = 0,$$

从而 $\lim_{k \to \infty} \left[\int_E f_k(x) \, \mathrm{d}x - \int_E f(x) \, \mathrm{d}x \right] = 0$. 因此 $\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x$.

注 注意 (i) 在上述定理的推演中, 实际上证明了更强的结论:

$$\lim_{k \to \infty} \int_E |f_k(x) - f(x)| \, \mathrm{d}x = 0. \tag{4}$$

今后, 我们将称式(4)为 $f_k(x)$ 在 E 上依 L^1 的意义收敛于 f(x). 一般来说, $\lim_{k\to\infty}\int_E f_k(x)\,\mathrm{d}x=\int_E f(x)\,\mathrm{d}x$ 不能推出(4)成立 (在非负情形有例外).

此外, 当式(4)成立时, 也不一定有

$$\lim_{k \to \infty} f_k(x) = f(x), \quad \text{a. e. } x \in E.$$

不过可以得出 $f_k(x)$ 在 E 上依测度收敛于 f(x) 的结论. 实际上, 因为对任意的 $\sigma > 0$, 记

$$E_k(\sigma) = \{ x \in E : |f_k(x) - f(x)| > \sigma \},$$

就有

$$\sigma m(E_k(\sigma)) = \int_{E_k(\sigma)} \sigma \, \mathrm{d}x \le \int_{E_k(\sigma)} |f_k(x) - f(x)| \, \mathrm{d}x$$
$$\le \int_E |f_k(x) - f(x)| \, \mathrm{d}x \to 0 \quad (k \to \infty),$$

所以 $m(E_k(\sigma)) \to 0 (k \to \infty)$.

由此, 进一步又可知, 存在子列 $\{f_{k_i}(x)\}$, 使得

$$\lim_{i \to \infty} f_{k_i}(x) = f(x), \quad \text{a. e. } x \in E.$$

(ii) 上述控制收敛定理的一个特例是有界收敛定理:

设 $\{f_k(x)\}$ 是 E 上的可测函数列,m(E) < +∞, 且对 $x \in E$ 有

$$\lim_{k\to\infty} f_k(x) = f(x), \quad |f_k(x)| \leqslant M \quad (k=1,2,\cdots),$$

则 $f \in L(E)$, 且

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

为阐明这一点,只需注意常数函数 M 就是 E 上的控制函数.

例题 **0.3** 设 $f_n \in C^{(1)}((a,b))(n=1,2,\cdots)$, 且有

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \lim_{n \to \infty} f'_n(x) = F(x), \quad x \in (a, b).$$

若 f'(x), F(x) 在 (a,b) 上连续, 则 f'(x) = F(x), $x \in (a,b)$.

证明 只需指出在 (a,b) 的一个稠密子集上有 f'(x) = F(x) 即可. 为此, 任取 (a,b) 中的子区间 [c,d], 且记

$$E_n = \{ x \in [c, d] : |f'_k(x) - F(x)| \le 1, k \ge n \},\,$$

易知每个 E_n 皆闭集,且 $[c,d] = \bigcup_{n=1}^{\infty} E_n$. 从而根据 Baire 定理 (定理 1.23) 可知,存在 n_0 以及区间 [c',d'],使得 $E_{n_0} \supset [c',d']$. 由于

$$|f'_k(x) - F(x)| \le 1$$
 $(k \ge n_0), x \in [c', d'],$

故知 $k \ge n_0$ 时, $\{f'_k(x)\}$ 在 [c',d'] 上一致有界. 这样,由等式

$$\int_{[c',x]} f'_k(t) dt = f_k(x) - f_k(c'), \quad c' < x < d'$$

可知(有界收敛定理)

$$\int_{[c',x]} F(t) dt = f(x) - f(c'), \quad c' < x < d'.$$

在等式两端对 x 求导可得

$$F(x) = f'(x), \quad c' < x < d',$$

即得所证.

定理 0.11 (依测度收敛型控制收敛定理)

设 $f_k \in L(\mathbb{R}^n)(k=1,2,\cdots)$, 且 $f_k(x)$ 在 \mathbb{R}^n 上依测度收敛于 f(x). 若存在 $F \in L(\mathbb{R}^n)$, 使得

$$|f_k(x)| \le F(x)$$
 $(k = 1, 2, \dots; a. e. x \in \mathbb{R}^n),$

则 $f \in L(\mathbb{R}^n)$, 且有

$$\lim_{k\to\infty}\int_{\mathbb{R}^n}f_k(x)\mathrm{d}x=\int_{\mathbb{R}^n}f(x)\mathrm{d}x.$$

证明 (下述证法虽繁, 但习之也不无益处.)设 ε 是任意给定的正数, 则只需指出存在 K, 使得 k > K 时, 有

$$\int_{\mathbb{D}^n} |f_k(x) - f(x)| \mathrm{d}x < \varepsilon.$$

首先, 由题设知, 存在 $\{f_{ki}(x)\}$, 使得

$$\lim_{i \to \infty} f_{k_i}(x) = f(x), \quad \text{a. e. } x \in \mathbb{R}^n,$$

从而在 $|f_{k_i}(x)| \leq F(x)$ 中令 $i \to \infty$, 即知 $f \in L(\mathbb{R}^n)$, 且 $|f(x)| \leq F(x)$, a. e. $x \in \mathbb{R}^n$.

其次, 把 \mathbb{R}^n 分解如下:

(i) 由 $F \in L(\mathbb{R}^n)$ 可知, 存在 N, 使得

$$\int_{\{x:|x|\geqslant N\}} F(x) \mathrm{d}x < \frac{\varepsilon}{6}.$$

自然同时对一切 $k = 1, 2, \dots$, 也有

$$\int_{\{x:|x|\geqslant N\}} |f_k(x) - f(x)| \mathrm{d}x \le 2 \int_{\{x:|x|\leqslant N\}} F(x) \mathrm{d}x < \frac{\varepsilon}{3}.$$

(ii) 由 F(x) 的积分绝对连续性可知, 存在 $\delta > 0$, 使得当 $m(e) < \delta$ 时, 有

$$\int_{\mathcal{E}} F(x) \mathrm{d}x < \frac{\varepsilon}{6}.$$

自然,同时对一切 $k=1,2,\dots$,也有

$$\int_e |f_k(x) - f(x)| \mathrm{d} x \leq 2 \int_e F(x) \mathrm{d} x < \frac{\varepsilon}{3}.$$

(iii) 再看 B=B(0,N), 记 m(B)=l. 由 $f_k(x)$ 依测度收敛于 f(x) 可知, 对 $\varepsilon/(3l)$ 以及 δ ,(记 $E_k=\{x\in B:$ $|f_k(x) - f(x)| > \varepsilon/(3l)$ }) 必存在 K, 当 $k \ge K$ 时, 有 $m(E_k) < \delta$.

(iv) 对 $k \ge K$ 作分解

$$\begin{split} \int_{\mathbb{R}^n} |f_k(x) - f(x)| \mathrm{d}x &= \int_{\{x: |x| \geqslant N\}} |f_k(x) - f(x)| \mathrm{d}x + \int_B |f_k(x) - f(x)| \mathrm{d}x \\ &< \frac{\varepsilon}{3} + \int_{E_k} |f_k(x) - f(x)| \mathrm{d}x + \int_{B \setminus E_k} |f_k(x) - f(x)| \mathrm{d}x \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \int_{B \setminus E_k} \frac{\varepsilon}{3l} \mathrm{d}x \leqslant \frac{2\varepsilon}{3} + \frac{\varepsilon}{3l} \int_B \mathrm{d}x = \varepsilon. \end{split}$$

 $\dot{\mathbf{L}}$ 对于 E 上依测度收敛于 $f \in L(E)$ 的非负可积函数列 $\{f_k(x)\}$, 若有

$$\lim_{k \to \infty} \int_E f_k(x) dx = \int_E f(x) dx,$$

则

$$\lim_{k \to \infty} \int_E |f_k(x) - f(x)| \mathrm{d}x = 0.$$

记 $m_k(x) = \min_{x \in E} \{f_k(x), f(x)\}, M_k(x) = \max_{x \in E} \{f_k(x), f(x)\}, 则对 \sigma > 0$,由于 $\{x \in E : f(x) - m_k(x) > \sigma\} \subset \{x \in E : |f_k(x) - f(x)| > \sigma\}$,故知 $m_k(x)$ 在 E 上依测度收敛于 f(x). 再注意到 $0 \le m_k(x) \le f(x)(x \in E)$,可得

$$\lim_{k \to \infty} \int_E m_k(x) dx = \int_E f(x) dx.$$

又因为 $M_k(x) = f(x) + f_k(x) - m_k(x)(x \in E)$, 所以有

$$\int_{E} M_{k}(x) dx = \int_{E} f(x) dx + \int_{E} f_{k}(x) dx - \int_{E} m_{k}(x) dx$$

$$\rightarrow \int_{E} f(x) dx \quad (k \rightarrow \infty).$$

最后, 根据 $|f_k(x) - f(x)| = M_k(x) - m_k(x)$, 我们有

$$\lim_{k \to \infty} \int_{E} |f_k(x) - f(x)| dx = \lim_{k \to \infty} \int_{E} M_k(x) dx - \lim_{k \to \infty} \int_{E} m_k(x) dx = 0.$$

例题 **0.4**
$$\int_{[0,1]} \frac{x \sin x}{1 + (nx)^{\alpha}} dx = o\left(\frac{1}{n}\right) (n \to \infty, \alpha > 1).$$

$$\int_{[0,1]} \frac{nx \sin x}{1 + (nx)^{\alpha}} \mathrm{d}x \to 0 \, (n \to \infty).$$

令

$$g(x) = 1 + (nx)^{\alpha} - nx^{3/2}$$
 $(g(0) = 1, g(1) = 1 + n^{\alpha} - n),$

易知, 在 $1 < \alpha \le 3/2$ 且 n 充分大时, g(x) 在 [0,1] 中有极值点, 从而在 n 充分大时, 不难得出

$$0 < \frac{nx\sin x}{1 + (nx)^{\alpha}} \leqslant \frac{1}{\sqrt{x}} \quad (x \in [0, 1]).$$

根据控制收敛定理即得所证. 例题
$$0.5 \int_{[a,+\infty)} \frac{x \mathrm{e}^{-n^2 x^2}}{1+x^2} \mathrm{d}x = o\left(\frac{1}{n^2}\right) (n \to \infty, a > 0).$$
 证明 只需指出

$$I = \lim_{n \to \infty} \int_{[a,\infty)} \frac{n^2 x e^{-n^2 x^2}}{1 + x^2} dx = 0$$

即可. 令 u = nx, 则

$$I = \int_{[na,+\infty)} \frac{u e^{-u^2}}{1 + u^2/n^2} du = \int_{[0,\infty)} \chi_{[na,+\infty)}(u) \frac{u e^{-u^2}}{1 + u^2/n^2} du.$$

注意到

$$\lim_{n \to \infty} \chi_{[na, +\infty)}(u)(1 + u^2/n^2)^{-1} u e^{-u^2} = 0,$$

$$0 \leqslant \chi_{[na,+\infty)}(u)(1+u^2/n^2)^{-1}ue^{-u^2} \leqslant ue^{-u^2} \quad (0 \leqslant u < +\infty),$$

以及 ue^{-u^2} 在 $[0,+\infty)$ 上可积, 故根据控制收敛定理即得所证.

推论 0.3 (逐项积分定理)

设 $f_k \in L(E)(k = 1, 2, \dots)$. 若有

$$\sum_{k=1}^{\infty} \int_{E} |f_k(x)| \mathrm{d}x < +\infty,$$

则 $\sum_{k=1}^{\infty} f_k(x)$ 在 E 上几乎处处收敛; 若记其和函数为 f(x), 则 $f \in L(E)$, 且有

$$\sum_{k=1}^{\infty} \int_{E} f_k(x) dx = \int_{E} f(x) dx.$$

证明 作函数 $F(x) = \sum_{k=1}^{\infty} |f_k(x)|$, 由非负可测函数的逐项积分定理可知

$$\int_{E} F(x) dx = \sum_{k=1}^{\infty} \int_{E} |f_{k}(x)| dx < +\infty,$$

即 $F \in L(E)$, 从而 F(x) 在 E 上是几乎处处有限的. 这说明级数 $\sum_{k=1}^{\infty} f_k(x)$ 在 E 上几乎处处收敛. 记其和函数为 f(x). 由于

$$|f(x)| \le \sum_{k=1}^{\infty} |f_k(x)| = F(x),$$
 a. e. $x \in E$,

故 $f \in L(E)$.

现在令
$$g_m(x) = \sum_{k=1}^m f_k(x)(m=1,2,\cdots), 则$$

$$|g_m(x)| \le \sum_{k=1}^m |f_k(x)| \le F(x) \quad (m = 1, 2, \cdots).$$

于是由控制收敛定理可得

$$\int_{E} f(x)dx = \int_{E} \lim_{m \to \infty} g_m(x)dx = \lim_{m \to \infty} \int_{E} g_m(x)dx = \lim_{m \to \infty} \int_{E} \sum_{k=1}^{m} f_k(x)dx = \sum_{k=1}^{\infty} \int_{E} f_k(x)dx.$$

定理 0.12 (积分号下求导)

设 f(x,y) 是定义在 $E \times (a,b)$ 上的函数, 它作为 x 的函数在 E 上是可积的, 作为 y 的函数在 (a,b) 上是可微的. 若存在 $F \in L(E)$, 使得

$$\left| \frac{\mathrm{d}}{\mathrm{d}y} f(x, y) \right| \leqslant F(x), \quad (x, y) \in E \times (a, b),$$

则

$$\frac{\mathrm{d}}{\mathrm{d}y} \int_{E} f(x, y) \mathrm{d}x = \int_{E} \frac{\mathrm{d}}{\mathrm{d}y} f(x, y) \mathrm{d}x.$$

证明 任意取定 $y \in (a,b)$ 以及 $h_k \to 0 (k \to \infty)$, 我们有

$$\lim_{k \to \infty} \frac{f(x, y + h_k) - f(x, y)}{h_k} = \frac{\mathrm{d}}{\mathrm{d}y} f(x, y), \quad x \in E,$$

而且当 k 充分大时, 下式成立 (可从微分中值定理考查):

$$\left|\frac{f(x,y+h_k)-f(x,y)}{h_k}\right|\leqslant F(x),\quad x\in E.$$

从而由控制收敛定理可得

$$\frac{\mathrm{d}}{\mathrm{d}y}\int_{E}f(x,y)\mathrm{d}x=\lim_{k\to\infty}\int_{E}\frac{f(x,y+h_{k})-f(x,y)}{h_{k}}\mathrm{d}x=\lim_{k\to\infty}\frac{\int_{E}f\left(x,y+h_{k}\right)\mathrm{d}x-\int_{E}f\left(x,y\right)\mathrm{d}x}{h_{k}}=\int_{E}\frac{\mathrm{d}}{\mathrm{d}y}f(x,y)\mathrm{d}x.$$

例题 0.6 设 f(x), $f_n(x)(n \in \mathbb{N})$ 在 \mathbb{R} 上实值可积. 若对 \mathbb{R} 中任一可测集 E, 有

$$\lim_{n \to \infty} \int_E f_n(x) dx = \int_E f(x) dx,$$

则 $\underline{\lim}_{n\to\infty} f_n(x) \leqslant f(x) \leqslant \overline{\lim}_{n\to\infty} f_n(x)$,a. e. $x \in \mathbb{R}$. (由此可知, 若存在子列 $\{f_{n_k}(x)\}$: $\lim_{k\to\infty} f_{n_k}(x) = g(x)$,a. e. $x \in \mathbb{R}$, 则 f(x) = g(x),a. e. $x \in \mathbb{R}$.)

证明 作 $g_n(x) = \sup_{k \ge n} \{ f_k(x) \}$, 且令

$$p(x) = \lim_{n \to \infty} g_n(x) = \overline{\lim}_{n \to \infty} f_n(x),$$

则只需指出在 $E(m(E) < +\infty)$ 上, 有 $f(x) \leq p(x)$, a. e. $x \in E$ 即可.

(i) 作点集 $P = \{x \in E : p(x) = -\infty\}, P_n = \{x \in E : g_n(x) < 0\} (n \in \mathbb{N}), 由 g_n(x)$ 递减收敛于 p(x), 故 $P = \bigcup_{n=1}^{\infty} P_n$. 又对任意的闭集 $F \subset P_n$, 均有

$$\int_{F} f(x) dx = \lim_{k \to \infty} \int_{F} f_{k}(x) dx \leqslant \lim_{k \to \infty} \int_{F} g_{k}(x) dx = \int_{F} p(x) dx,$$

从而可知 $f(x) \leq p(x)$,a. e. $x \in P_n$, 自然有 $f(x) \leq p(x)$,a. e. $x \in P$. 注意到 $p(x) = -\infty (x \in P)$, 故 m(P) = 0.

- (ii) 若 $p(x) = +\infty$, 则易知 f(x) ≤ p(x).
- (iii) 若 $-\infty < p(x) < +\infty$, 则令 $Q_m = \{x \in \mathbb{R} : -m \leqslant p(x) \leqslant m\}$, 我们有 $\mathbb{R} = \bigcup_{m=1}^{\infty} Q_m$. 易知只需考查 $Q_m \perp f(x)$ 与 p(x) 的大小.

作点集 $S_n = \{Q_m: g_n(x) - p(x) < 1\}$, 则 $Q_m = \bigcup_{n=1}^{\infty} S_n$. 由此又只需指出 $f(x) \leqslant p(x)(x \in S_n)$. 因为函数 $p(x), g_n(x), g_{n+1}(x), \cdots$ 均一致有界, 所以得到

$$\lim_{n\to\infty} \int_{F} g_k(x) dx = \int_{F} p(x) dx \quad (F \subset S_n).$$

注意到

$$\int_{F} f(x)dx = \lim_{k \to \infty} \int_{F} f_{k}(x)dx \leqslant \lim_{k \to \infty} \int_{F} g_{k}(x)dx$$
$$= \int_{F} p(x)dx \quad (F \in S_{n}).$$

故得 $f(x) \leq p(x)$, a. e. $x \in S_n$. 当然, 此结论在 \mathbb{R} 上也真.

(iv) 对于前一不等式, 只需注意

$$\underline{\lim_{n \to \infty}} f_n(x) = -\overline{\lim_{n \to \infty}} (-f_n(x)).$$

注 设 $f_n(x)=\mathrm{e}^{-nx}-2\mathrm{e}^{-2nx}(n\in\mathbb{N}),$ 则 $f_n\in L([0,+\infty))(n\in\mathbb{N}),$ 但逐项积分等式不真:

$$\int_{[0,+\infty)} \sum_{n=1}^{\infty} f_n(x) \mathrm{d}x \neq \sum_{n=1}^{\infty} \int_{[0,+\infty)} f_n(x) \mathrm{d}x.$$