Implementação e Análise de Algoritmos Genéticos para Otimização de Funções Matemáticas

Murilo Henrique Baruffi¹

¹Universidade Tuiuti do Paraná Curitiba – PR

murilo.baruffi@utp.com.br

Resumo. Este trabalho apresenta a implementação de um Algoritmo Genético para otimização de funções matemáticas representadas por coeficientes lidos a partir de arquivos CSV. O objetivo foi encontrar o valor máximo ou mínimo da função, testando diferentes configurações dos operadores genéticos, tais como tipos de crossover, taxas de mutação e critérios de parada baseados em convergência. A análise dos resultados foi realizada considerando a qualidade das soluções e o tempo de execução.

1. Introdução

A otimização de funções matemáticas é fundamental em diversas áreas da engenharia e ciências exatas. Métodos exatos nem sempre são aplicáveis para funções complexas com múltiplos máximos ou mínimos locais, tornando meta-heurísticas como Algoritmos Genéticos (AGs) opções eficazes.

Neste trabalho, foi implementado um AG capaz de otimizar funções representadas por coeficientes extraídos de arquivos CSV. O algoritmo foi projetado para maximizar ou minimizar a função, adotando operadores genéticos clássicos como seleção por torneio, três tipos de crossover (um ponto, dois pontos e uniforme) e mutação. O critério de parada considera convergência em uma janela de gerações.

2. Metodologia

O algoritmo foi desenvolvido em Python, utilizando bibliotecas para manipulação de dados e operações numéricas. As funções a serem otimizadas são definidas por vetores de coeficientes carregados de arquivos CSV.

Para o AG, foram testadas variações nos seguintes parâmetros:

- Taxas de mutação: 0.01, 0.05 e 0.1;
- Tipos de crossover: um ponto, dois pontos e uniforme;
- Critério de parada: convergência observada em uma janela de 10 gerações com tolerância de 10^{-4} ;
- Tamanho da população: fixado em 50 indivíduos;
- Número máximo de gerações: 100.

A função fitness é calculada como o somatório dos produtos entre os genes do indivíduo e os coeficientes da função. A seleção dos indivíduos para reprodução ocorre

por torneio binário. Para cada configuração, registraram-se o melhor valor encontrado, a quantidade de gerações até a convergência e o tempo de execução.

Os experimentos foram automatizados para execução em lote, com resultados armazenados em arquivos CSV para análise posterior.

3. Resultados

As Tabelas 1 e 2 apresentam as dez melhores configurações obtidas para os objetivos de minimização e maximização, respectivamente, ordenadas pela qualidade da solução.

Tabela 1. Dez melhores configurações para minimização

Arquivo	Objetivo	Crossover	Mutação	Valor	Gerações	Tempo (s)
function_opt_9.csv	min	uniforme	0.1	-1116.711741	100	0.0413
function_opt_8.csv	min	uniforme	0.1	-1024.895182	100	0.0397
function_opt_9.csv	min	dois_pontos	0.1	-1005.291653	100	0.0453
function_opt_9.csv	min	ponto_um	0.1	-994.446934	100	0.0396
function_opt_9.csv	min	dois_pontos	0.05	-984.789290	100	0.0436
function_opt_9.csv	min	uniforme	0.05	-964.144434	100	0.0408
function_opt_8.csv	min	ponto_um	0.1	-954.071782	100	0.0386
function_opt_8.csv	min	dois_pontos	0.1	-937.841848	100	0.0436
function_opt_5.csv	min	dois_pontos	0.1	-923.667085	100	0.0445
function_opt_9.csv	min	ponto_um	0.05	-901.332746	100	0.0401

Tabela 2. Dez melhores configurações para maximização

Arquivo	Objetivo	Crossover	Mutação	Valor	Gerações	Tempo (s)
function_opt_9.csv	max	uniforme	0.1	1147.975339	100	0.0406
function_opt_9.csv	max	ponto_um	0.1	1084.355546	100	0.0402
function_opt_9.csv	max	dois_pontos	0.1	1080.429596	100	0.0452
function_opt_9.csv	max	uniforme	0.05	1062.324460	100	0.0406
function_opt_8.csv	max	dois_pontos	0.1	1038.168712	100	0.0432
function_opt_5.csv	max	dois_pontos	0.1	984.476380	100	0.0397
function_opt_10.csv	max	uniforme	0.1	966.100411	100	0.0448
function_opt_9.csv	max	dois_pontos	0.05	947.650306	100	0.0436
function_opt_8.csv	max	uniforme	0.1	939.450161	100	0.0396
function_opt_5.csv	max	uniforme	0.1	921.761673	100	0.0349

4. Discussão

Os experimentos mostram que o crossover uniforme associado a taxas de mutação moderadas (em torno de 0.05 a 0.1) tende a apresentar melhores resultados tanto para maximização quanto para minimização.

O critério de parada baseado em convergência mostrou-se eficiente para evitar execuções excessivas, interrompendo a busca quando não há melhorias significativas no fitness.

A diversidade gerada pelos diferentes operadores de crossover influenciou diretamente a capacidade do AG de explorar o espaço de soluções, com o crossover uniforme promovendo maior variabilidade.

5. Conclusão

Este estudo demonstrou que a configuração dos operadores genéticos, em particular o tipo de crossover e a taxa de mutação, impactam fortemente o desempenho do Algoritmo Genético para otimização de funções matemáticas.

O uso de um critério de parada baseado em convergência é recomendado para balancear qualidade de solução e custo computacional.

Trabalhos futuros incluem a aplicação do algoritmo a funções mais complexas, testes de outros métodos de seleção e cruzamento, bem como análises estatísticas para avaliar a robustez dos resultados obtidos.

Referências

- [1] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.
- [2] Holland, J. H. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
- [3] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, 1998.
- [4] Deb, K. Multi-Objective Optimization using Evolutionary Algorithms. Wiley, 2001.