1 Prova das propriedades do delta de Dirac

1.1 Avaliar o $\delta(\alpha(x-x_0))$

Vamos considerar a integral

$$\int_{-\infty}^{\infty} f(x)\delta(\alpha(x-x_0))dx. \tag{1}$$

Substituindo $u = \alpha(x - x_0)$, teremos que $du = \alpha dx$. No caso em que $\alpha > 0$, teremos que a integral irá naturalmente de um valor negativo para um positivo, mas caso α seja menor que zero, a integral irá de um valor positivo para um negativo, invertendo o sentido, onde teremos que alterar o sinal da integral para o resultado ser correto. Logo, separaremos em dois casos:

$$\int_{-\infty}^{\infty} f\left(\frac{u}{\alpha} + x_0\right) \delta(u) \frac{du}{\alpha}, \ \alpha > 0, \tag{2}$$

$$-\int_{-\infty}^{\infty} f\left(\frac{u}{\alpha} + x_0\right) \delta(u) \frac{du}{\alpha}, \ \alpha < 0.$$
 (3)

Estas expressões podem ser unidas em uma caso consideremos o módulo de α e reconheçamos que $\alpha = |\alpha|$ no primeiro caso e $\alpha = -|\alpha|$ no segundo. Assim,

$$\int_{-\infty}^{\infty} f\left(\frac{u}{\alpha} + x_0\right) \delta(u) \frac{du}{|\alpha|}.$$
 (4)

Pela definição de $\delta(u)$:

$$\int_{-\infty}^{\infty} f\left(\frac{u}{\alpha} + x_0\right) \delta(u) \frac{du}{|\alpha|} = \frac{f(x_0)}{|\alpha|}.$$
 (5)

Finalmente,

$$\int_{-\infty}^{\infty} f(x)\delta(\alpha(x-x_0))dx = \frac{f(x_0)}{|\alpha|}.$$
 (6)

1.2 Avaliar o $\delta'(x)$

Vamos considerar a integral

$$\int_{-\infty}^{\infty} f(x) \frac{d\delta(x)}{dx} dx. \tag{7}$$

Integrando por partes, teremos que

$$\int_{-\infty}^{\infty} f(x) \frac{d\delta(x)}{dx} dx = f(x)\delta(x)|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{df(x)}{dx} \delta(x) dx.$$
 (8)

Mas $f(x)\delta(x) = 0$, $\forall x \neq 0$, pela própria definição do delta. Logo,

$$\int_{-\infty}^{\infty} f(x) \frac{d\delta(x)}{dx} dx = -\int_{-\infty}^{\infty} \frac{df(x)}{dx} \delta(x) dx.$$
 (9)

Concluímos então que

$$\int_{-\infty}^{\infty} f(x) \frac{d\delta(x)}{dx} dx = -\frac{df(0)}{dx}.$$
 (10)

1.3 Avaliar o $\delta((x-x_1)(x-x_2))$

Vamos considerar a integral

$$\int_{-\infty}^{\infty} f(x)\delta((x-x_1)(x-x_2))dx. \tag{11}$$

Pelas propriedades da função delta, a integral $\int f(x)\delta(x)dx$ é nula se integrada em um intervalo que não contém o 0, e igual a f(0) caso contrário. Isto pode ser generalizado "trocando" x por uma função real contínua em suas raízes. Assim, a integral (ex $\int f(x)\delta(g(x))dx$) será nula caso integrada em um intervalo que não contém nenhuma raiz do argumento (ex g(x)) da delta (ex $\delta(g(x))$), pois $\delta(\xi) = 0$, $\forall \xi \in \mathbb{R}, \ \xi \neq 0$.

Desta forma, teremos que a integral (11) poderá ser decomposta em

$$\int_{-\infty}^{\infty} f(x)\delta((x-x_1)(x-x_2))dx = \int_{x_1-\epsilon_1}^{x_1+\epsilon_1} f(x)\delta((x-x_1)(x-x_2))dx + \int_{x_2-\epsilon_2}^{x_2+\epsilon_2} f(x)\delta((x-x_1)(x-x_2))dx,$$
(12)

onde ϵ_1 é escolhido de maneira a garantir tanto a continuidade de f em x_1 quanto a existência de apenas esta raiz no intervalo de integração. A mesma coisa pode ser dita para ϵ_2 , f, x_2 .

Vamos agora considerar χ como sendo o conjunto $(x_1 - \epsilon_1, x_1 + \epsilon_1)$, e $y \in \chi$. Relembrando a propriedade (6), fica evidente que

$$\int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta((x - x_1)(x - x_2)) dx \le \lim \sup_{y \in \chi} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta((x - x_1)y) dx \tag{13}$$

$$= \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x)\delta((x - x_1)(x_1 - \epsilon_1 - x_2))dx$$
 (14)

$$= \frac{1}{|x_1 - \epsilon_1 - x_2|} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta(x - x_1) dx.$$
 (15)

De maneira análoga para o infimum,

$$\int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x)\delta((x - x_1)(x - x_2))dx \ge \lim \inf_{y \in \chi} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x)\delta((x - x_1)y)dx \tag{16}$$

$$= \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x)\delta((x - x_1)(x_1 + \epsilon_1 - x_2))dx \tag{17}$$

$$= \frac{1}{|x_1 + \epsilon_1 - x_2|} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta(x - x_1) dx.$$
 (18)

Logo, chegamos à conclusão de que

$$\lim \inf_{y \in \chi} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta((x - x_1)y) dx \le \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta((x - x_1)(x - x_2)) \le \lim \sup_{y \in \chi} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta((x - x_1)y) dx,$$

$$(19)$$

$$\frac{1}{|x_1 + \epsilon_1 - x_2|} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta(x - x_1) dx \le \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta((x - x_1)(x - x_2)) \le \frac{1}{|x_1 - \epsilon_1 - x_2|} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta(x - x_1) dx.$$
(20)

Consequentemente, existe um ϵ_1 tal que

$$\frac{1}{|x_1 - x_2|} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta(x - x_1) dx \le \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta((x - x_1)(x - x_2)) \le \frac{1}{|x_1 - x_2|} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x) \delta(x - x_1) dx. \tag{21}$$

Pelo teorema do confronto,

$$\int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x)\delta((x - x_1)(x - x_2)) = \frac{1}{|x_1 - x_2|} \int_{x_1 - \epsilon_1}^{x_1 + \epsilon_1} f(x)\delta(x - x_1)dx.$$
 (22)

Procedendo de maneira análoga para x_2 , teremos que

$$\int_{x_2 - \epsilon_2}^{x_2 + \epsilon_2} f(x)\delta((x - x_1)(x - x_2)) = \frac{1}{|x_2 - x_1|} \int_{x_2 - \epsilon_2}^{x_2 + \epsilon_2} f(x)\delta(x - x_2)dx.$$
 (23)

Retormando (12), concluímos que

$$\int_{-\infty}^{\infty} f(x)\delta((x-x_1)(x-x_2))dx = \frac{1}{|x_1-x_2|} \int_{x_1-\epsilon_1}^{x_1+\epsilon_1} f(x)\delta(x-x_1)dx + \frac{1}{|x_2-x_1|} \int_{x_2-\epsilon_2}^{x_2+\epsilon_2} f(x)\delta(x-x_2)dx
= \frac{1}{|x_1-x_2|} \int_{x_1-\epsilon_1}^{x_1+\epsilon_1} f(x)\delta(x-x_1)dx - \frac{1}{|x_1-x_2|} \int_{x_2-\epsilon_2}^{x_2+\epsilon_2} f(x)\delta(x-x_2)dx
= \frac{1}{|x_1-x_2|} \left(\int_{x_1-\epsilon_1}^{x_1+\epsilon_1} f(x)\delta(x-x_1)dx - \int_{x_2-\epsilon_2}^{x_2+\epsilon_2} f(x)\delta(x-x_2)dx \right).$$
(25)

Resgatando os limites originais de integração, devido às propriedades do delta:

$$\int_{-\infty}^{\infty} f(x)\delta((x-x_1)(x-x_2))dx = \frac{1}{|x_1-x_2|} \left(\int_{x_1-\epsilon_1}^{x_1+\epsilon_1} f(x)\delta(x-x_1)dx - \int_{x_2-\epsilon_2}^{x_2+\epsilon_2} f(x)\delta(x-x_2)dx \right)$$
(27)

$$= \frac{1}{|x_1 - x_2|} \left(\int_{-\infty}^{\infty} f(x)\delta(x - x_1)dx - \int_{-\infty}^{\infty} f(x)\delta(x - x_2)dx \right)$$
 (28)

$$= \frac{1}{|x_1 - x_2|} \int_{-\infty}^{\infty} f(x) \left(\delta(x - x_1) - \delta(x - x_2) \right) dx.$$
 (29)

(30)

Finalmente,

$$\delta((x-x_1)(x-x_2)) = \frac{\delta(x-x_1) - \delta(x-x_2)}{|x_1 - x_2|}.$$
(31)

1.4 Avaliar o $\delta(f)$

Como $f(x_0) = 0$, vamos expandir f(x) em torno deste ponto:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \dots$$
(32)

Porém, $f(x_0) = 0$. Logo,

$$f(x) = (x - x_0)f'(x_0) + \dots$$
(33)

Então, o $\delta(f(x))$ será

$$\delta(f(x)) = \delta((x - x_0)f'(x_0) + \dots). \tag{34}$$

Integrando em todo o espaço, teremos

$$\int_{-\infty}^{\infty} g(x)\delta(f(x))dx = \int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta(f(x))dx,$$
(35)

pois f(x) só é nula em $x = x_0$. Todos os outros valores são irrelevantes para a delta. Substituindo a expansão (34):

$$\int_{-\infty}^{x_0+\epsilon} g(x)\delta(f(x))dx = \int_{-\infty}^{x_0+\epsilon} g(x)\delta((x-x_0)f'(x_0)+\ldots)dx.$$
 (36)

Tomando um limite de ϵ tão pequeno quanto desejado, os termos de ordem n=2 ou superiores em x^n podem ser desprezados. Logo,

$$\int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta((x - x_0)f'(x_0) + \ldots)dx = \int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta((x - x_0)f'(x_0))dx.$$
 (37)

Utilizando as propriedades dos quesitos anteriores para a função Delta:

 $(\int \delta(kx)g(x)dx = |k|^{-1}g(0) = |k|^{-1}\int \delta(x)g(x)dx = \int \delta(x-x_0)g(x)dx = g(x_0)$

$$\int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta((x - x_0)f'(x_0))dx = \frac{1}{|f'(x_0)|} \int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta((x - x_0))dx.$$
 (38)

Temos então que

$$\int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta(f(x))dx = \int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta((x - x_0)f'(x_0))dx, \tag{39}$$

$$= \frac{1}{|f'(x_0)|} \int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x) \delta(x - x_0) dx, \tag{40}$$

$$= \int_{x_0 - \epsilon}^{x_0 + \epsilon} \frac{1}{|f'(x_0)|} g(x) \delta(x - x_0) dx. \tag{41}$$

Como a igualdade

$$\int_{x_0 - \epsilon}^{x_0 + \epsilon} g(x)\delta(f(x))dx = \int_{x_0 - \epsilon}^{x_0 + \epsilon} \frac{1}{|f'(x_0)|} g(x)\delta(x - x_0)dx \tag{42}$$

vale para qualquer g(x) contínua em $x=x_0,$ os integrantes devem ser iguais:

$$g(x)\delta(f(x)) = \frac{1}{|f'(x_0)|}g(x)\delta(x - x_0).$$
(43)

Consequentemente,

$$\delta(f(x)) = \frac{1}{|f'(x_0)|} \delta(x - x_0), \tag{44}$$

independente do valor de g(x).