Éléments de compréhension des statistiques

Jeffery P.

Doctorant au Laboratoire des Sciences du Numérique de Nantes (LS2N)

2019

Rappels

Si le vrai écart-type est connu :

$$\sqrt{\mathrm{N}}rac{ar{\mathrm{X}}_{\mathrm{N}}-\mu}{\sigma}\sim\mathcal{N}$$
(0, 1)

▶ Si l'écart-type est inconnu et $N-1 \ge 30$:

$$\sqrt{\mathrm{N}}rac{ar{\mathrm{X}}_{\mathrm{N}}-\mu}{oldsymbol{s}}\sim\mathcal{N}$$
(0, 1)

Rappels: approximation normale

Si N est suffisamment grand on peut écrire l'approximation suivante :

$$\bar{X}_N \sim \mathcal{N}(\mu, (\frac{\sigma}{\sqrt{N}})^2)$$

Où:

$$ar{\mathrm{X}}_{\mathrm{N}} \sim \mathcal{N}(\mu, (rac{\mathrm{s}}{\sqrt{\mathrm{N}}})^2)$$

Et ça, c'est super important!

Problématique en exemple : contexte

« On souhaite savoir si la vraie moyenne μ est différente de 7 » On fait alors une hypothèse que l'on note par convention

$$\mathcal{H}_0$$
: μ = 7

Tout l'enjeu est de savoir si les données sont **contradictoires** à cette hypothèse

 \rightarrow si \mathcal{H}_0 est vraie, alors la moyenne empirique $\bar{\it x}_{\rm N}$ devrait être assez proche de 7

Problématique en exemple : formulation des hypothèses

En fonction de ce qu'on veut tester, on peut formuler 3 types d'hypothèses alternatives que l'on note \mathcal{H}_1 :

Cas 1 : test bilatéral

$$\mathcal{H}_0$$
: $\mu = 7$ contre \mathcal{H}_1 : $\mu \neq 7$

Cas 2 : test unilatéral

$$\mathcal{H}_0$$
: μ = 7 contre \mathcal{H}_1 : μ > 7

Cas 3 : test unilatéral

$$\mathcal{H}_0$$
: $\mu = 7$ contre \mathcal{H}_1 : $\mu < 7$

Problématique en exemple : construction du test pour le cas 1

Cas 1:
$$\mathcal{H}_0: \mu = 7$$
 contre $\mathcal{H}_1: \mu \neq 7$

Étant donné l'hypothèse alternative \mathcal{H}_1 et pour un seuil α donné, on regarde alors si:

$$|\sqrt{N}\frac{\bar{X}_{N}-7}{s}|>z_{(1-\alpha/2)}$$
 ?

- ightharpoonup oui : on rejette \mathcal{H}_0 au profit de \mathcal{H}_1 au seuil α
- ightharpoonup non : on ne peut pas rejeter \mathcal{H}_0 au profit de \mathcal{H}_1 au seuil α

©Jefferv P. 1er avril 2019 6/8 Problématique en exemple : construction du test pour le cas 2

Cas 2:
$$\mathcal{H}_0: \mu = 7$$
 contre $\mathcal{H}_1: \mu > 7$

Étant donné l'hypothèse alternative \mathcal{H}_1 et pour un seuil α donné, on regarde alors si:

$$\sqrt{N}\frac{\bar{X}_N-7}{s}>z_{(1-\alpha)}$$
 ?

- ightharpoonup oui : on rejette \mathcal{H}_0 au profit de \mathcal{H}_1 au seuil α
- ightharpoonup non : on ne peut pas rejeter \mathcal{H}_0 au profit de \mathcal{H}_1 au seuil α

7/8 ©Jefferv P. 1er avril 2019

Problématique en exemple : construction du test pour le cas 3

Cas 3:
$$\mathcal{H}_0: \mu = 7$$
 contre $\mathcal{H}_1: \mu < 7$

Étant donné l'hypothèse alternative \mathcal{H}_1 et pour un seuil α donné, on regarde alors si:

$$\sqrt{\mathrm{N}} rac{ar{\mathrm{X}}_{\mathrm{N}} - 7}{\mathrm{s}} < -z_{(1-lpha)}$$
 ?

- ightharpoonup oui : on rejette \mathcal{H}_0 au profit de \mathcal{H}_1 au seuil α
- \triangleright non : on ne peut pas rejeter \mathcal{H}_0 au profit de \mathcal{H}_1 au seuil α

©Jefferv P. 1er avril 2019 8/8