Analisi Dati COVID-19 in Italia

Questo notebook analizza i dati aggiornati dalla Protezione Civile sul numero di contagi di **Covid-19** sulla suddivisione in province, in Italia.

È possibile:

- Visualizzare i dati cumulativi giornalieri sul totale dei contagi in Italia
- Visualizzare i dati cumulativi giornalieri sul totale dei contagi in una specifica Provincia
- · In aggiornamento...

Import delle librerie, impostazioni

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import urllib.request, json
from io import StringIO
import matplotlib.dates as mdates

%matplotlib inline
plt.rcParams["figure.figsize"] = [20, 7]

pd.set_option('display.max_columns', None) # show all columns
#pd.set_option('display.max_rows', None) # show all rows
```

Lettura dai raw della Protezione Civile del file .csv, prima ispezione

In [2]:

```
with urllib.request.urlopen("https://raw.githubusercontent.com/pcm-dpc/COVID-19/
master/dati-province/dpc-covid19-ita-province.csv") as url:
    res = url.read().decode()

ts = StringIO(res)
df = pd.read_csv(ts)

odf = df # keep a copy
df.head()
```

Out[2]:

	data	stato	codice_regione	denominazione_regione	codice_provincia	denominazione_
0	2020- 02-24 18:00:00	ITA	13	Abruzzo	69	
1	2020- 02-24 18:00:00	ITA	13	Abruzzo	66	
2	2020- 02-24 18:00:00	ITA	13	Abruzzo	68	
3	2020- 02-24 18:00:00	ITA	13	Abruzzo	67	
4	2020- 02-24 18:00:00	ITA	13	Abruzzo	979	definizione/aggic

Drop colonne inutilizzate

In [3]:

```
df = odf.drop(['stato', 'codice_regione', 'codice_provincia', 'denominazione_pro
vincia', 'lat', 'long'], axis=1)
```

Trasformazione della colonna 'data' (string -> datetime)

In [4]:

```
df['data'] = pd.to_datetime(df.data)
df = df.sort_values('data')
```

Funzione di Plot

In [5]:

```
def plotCum(X, Y, legend):
    fig, ax = plt.subplots()
    ax.plot(Y, X)
    ax.set_xticks(Y)
    plt.xticks(rotation=60)

plt.legend(legend)
    plt.grid()
    plt.show()
```

Plot della provincia

In [6]:

```
my_provincia = 'CT'

df_mp = df[df['sigla_provincia']==my_provincia] # data frame my-provincia

legend = ['Totale Casi in provincia di: ' + my_provincia]

X = df_mp['totale_casi']
Y = df_mp['data']

plotCum(X, Y, legend)
```


Plot Nazionale

In [7]:

```
df_n = df.groupby(['data']) # data frame nazione

legend = ['Totale Nazione']
X = df_n['totale_casi'].sum() # sum all province
Y = df['data'].unique()

plotCum(X, Y, legend)
```

