

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:				Tec	nológica					
PROYECTO CUF	RRICULAR:		Tecnología en El	ectrónica Industrial		CÓDIGO PLAN DE				
			I. IDENTIF	ICACIÓN DEL ESPACIO A	CADÉMICO					
NOMBRE DEL E	SPACIO ACAI	DÉMICO: SERVICIOS TELE	MÁTICOS							
Código del espacio académico:			24707	Número de créditos académicos:			2			
Distribución h	oras de trabaj	0:	HTD	2	нтс	2	НТА	2		
Tipo de espacio académico:			Asignatura	х	Cátedra					
			NATURA	ALEZA DEL ESPACIO ACA	DÉMICO:					
Obligatorio Básico	х	_	gatorio mentario		Electivo Intrínseco		Electivo Extrínseco			
CARÁCTER DEL ESPACIO ACADÉMICO:										
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:		
			MODALIDAD	DE OFERTA DEL ESPACIO	ACADÉMICO:					
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:		

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

Se recomienda que los estudiantes cuenten con conocimientos en redes de datos, protocolos de Internet (TCP/IP), sistemas operativos, servicios en red (como DNS, DHCP), fundamentos de seguridad informática, y programación básica en lenguajes como Python o JavaScript. También es deseable experiencia en el uso de herramientas de monitoreo de red, virtualización y servicios en la nube.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

Los servicios telemáticos constituyen la base funcional de los sistemas modernos de telecomunicaciones, conectividad empresarial, servicios digitales, IoTy gobierno electrónico. Esta asignatura permite comprender e implementar servicios como correo electrónico, web, transferencia de archivos, mensajería instantánea, voz sobre IP (VoIP), servicios cloud y APIs. En un entorno digital interconectado, es esencial que el estudiante sea capaz de gestionar servicios telemáticos con criterios de eficiencia, interoperabilidad, seguridad, disponibilidad y escalabilidad.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar, implementar y administrar servicios telemáticos modernos aplicados a redes empresariales y plataformas digitales, integrando tecnologías cloud, protocolos abiertos, seguridad y buenas prácticas de administración de servicios.

Objetivos Específicos:

Comprender los principios de funcionamiento de los principales servicios telemáticos.

Implementar servicios de red y plataformas colaborativas utilizando protocolos abiertos.

Aplicar principios de ciberseguridad y criptografía a servicios telemáticos.

Analizar tendencias modernas como servicios en la nube, microservicios, APIs y virtualización.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Formar profesionales capaces de configurar y gestionar servicios telemáticos en entornos reales y virtuales. Promover el pensamiento crítico frente a la calidad, seguridad y escalabilidad de los servicios.

Impulsar la integración de plata formas abiertas, servicios cloud y herramientas colaborativas.

Resultados de Aprendizaje:

Implementa servicios telemáticos como HTTP, FTP, DNS, correo electrónico y VoIP.

Utiliza servidores Linux/Windows y contenedores para desplegar servicios.

Aplica medidas de seguridad (firewall, TLS, autenticación) en los servicios implementados.

Integra APIs y plataformas cloud (AWS, Azure, GCP) para ofrecer servicios escalables.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos de Servicios Telemáticos

Concepto y clasificación.

Modelos cliente-servidor y arquitectura REST.

Protocolos de aplicación (HTTP, SMTP, FTP, DNS, SIP).

2. Servicios Web y Plataformas Colaborativas

Servidores web (Apache, Nginx).

Servicios de correo electrónico (Postfix, Dovecot).

DNS, DHCP, NTP.

Plataformas de mensajería (XMPP, Matrix).

3. Servicios en la Nube

Modelos IaaS, PaaS, SaaS.

Contenedores y orquestación (Docker, Kubernetes).

Plataformas: AWS, Azure, GCP.

Despliegue de microservicios.

4. Seguridad en Servicios Telemáticos

Certificados digitales y TLS.

Autenticación y autorización (OAuth2, LDAP).

Seguridad en APIs (JWT, CORS).

Firewall y segmentación de red.

5. Voz sobre IP y Comunicación en Tiempo Real

Principios de VoIP.

Protocolos SIP, RTP, RTSP.

Asterisk y servicios PBX.

Videoconferencia y WebRTC.

6. Integración de Servicios y Tendencias

APIs REST y GraphQL.

Plataformas de automatización (Ansible, Terraform).

Edge computing y servicios distribuidos.

Evaluación de disponibilidad, latencia y escalabilidad.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Aprendizaje basado en proyectos (ABP), desarrollo de laboratorios prácticos sobre plataformas locales y cloud, simulación de escenarios reales, casos de estudio, talleres colaborativos, exposiciones, y desarrollo de prototipos funcionales. Uso de plataformas como Moodle, GitHub y entornos de virtualización y contenedores.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico..

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con Laboratorios con acceso a servidores, entornos de virtualización (VMware, VirtualBox), contenedores (Docker), acceso a plataformas cloud educativas, routers/firewalls, red LAN, software libre para servicios (Postfix, Asterisk, Apache).

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Visitas a centros de datos, proveedores de servicios telemáticos, empresas TIC y proyectos de infraestructura digital. Participación en semilleros y hackatones de desarrollo de servicios

XI. BIBLIOGRAFÍA

Tanenbaum, A., & Steen, M. (2016). Distributed Systems: Principles and Paradigms. Pearson.

Stallings, W. (2018). Data and Computer Communications. Pearson.

Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures. UC Irvine.

Moy, J. (2020). Linux Server Security. O'Reilly.

Dokumentación oficial: Apache, Nginx, Docker, Kubernetes, Asterisk, OAuth2, REST APIs.

RFCs IETF relevantes (HTTP/2, DNS, SIP, TLS).

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:		
Fecha aprobación por Consejo Curricular:	Número de acta:	