ck rings from fluid mech

Subhaneil Lahiri

based on arXiv:0905.3404 [kep-th] with Shiraz Minusila and arXiv:0903.4734 [kep-th] with Jyotivnoy Bhattachaya May 1, 2009

Black rings from fluid mechanics

Subhaneil Lahiri

based on arXiv:0705.3404 [hep-th] with Shiraz Minwalla and arXiv:0903.4734 [hep-th] with Jyotirmoy Bhattacharya

May 1, 2009

Black rings from fluid mechanics

Motivation
Higher dimensional gravity
Higher dimensional gravity

- 1. Why higher D gravity?
- 2. 1/D expansion

2009-05-01

3. perturbation theory. SU(2), SU(infinity).

Motivation Higher dimensional gravity

General relativity makes sense in any # of dimensions. D is a parameter. We vary parameter to understand the theory better: c.f. coupling constants, gauge groups, ... Sometimes we need extra dimensions: string theory, large extra dimensions scenarios, ... is grown the same in D > 47

ligher dimensional gravity

Higher dimensional gravity

General relativity makes sense in any # of dimensions.

D is a parameter.

We vary parameters to understand the theory better: c.f. coupling constants, gauge groups, ...

Sometimes we need extra dimensions: string theory, large extra dimensions scenarios, . . .

Is gravity the same in D > 4?

1/2 Black holes have thermodynamics. Plot phase diagBlack holes have thermodynamics. Plot phase diag

Black holes in four vs. five dimensions

In four dimensions there are horizon topology and black hole uniqueness theorems.

Motivation

Higher dimensional gravity

In five dimensions, we are allowed an $S^1 \times S^2$ horizon as well – the black ring. [Emparan, Reall]

For a range of energies and angular momenta, it is possible to have two black ring and one black hole solutions - violating uniqueness.

2009-05-01

1/3 One possible phase diag. \exists another

Higher dimensions Motivation Higher dimensional gravity

Higher dimensions

For $D \ge 6$: no exact solutions (except Myers-Perry). Approximate solutions for $R_{S^1} \gg R_{S^3}$.

[Emparan et al.]

2009-05-01

2/3 Common features: robust

Higher dimensions Motivation Higher dimensional gravity

Higher dimensions

For $D \ge 6$: no exact solutions (except Myers-Perry). Approximate solutions for $R_{S^1} \gg R_{S^3}$.

[Emparan et al.]

3/3 Positive Yamabe. Not every allowed exists: S^3/Γ

Motivation Higher dimensional gravity

For $D \ge 6$ no exact collisions (except Myern-Perry). Approximate solutions for $R_D \supset R_D$. Other topologies? Globar Spolutions: Solution (except Myern-Perry). Approximate solutions for $R_D \supset R_D$. [Collect Spolutions]

Higher dimensions

For $D \ge 6$: no exact solutions (except Myers-Perry). Approximate solutions for $R_{S^1} \gg R_{S^3}$.

Other topologies?

[Emparan et al.] [Galloway, Schön]

Black rings from fluid mechanics

Motivation

The AdS/CFT correspondence

The AdS/CFT correspondence

2009-05-01

The AdS/CFT correspondence

1. We'll look at deformed version: confining

Gravitational theory \Leftrightarrow Non-gravitational theory

The AdS/CFT correspondence

Low curvature Strong coupling

Deconfinement Black holes

Black rings from fluid mechanics

Motivation

The AdS/CFT correspondence
Black holes and fluid mechanics

ong wavelengths, deconfined plasma described by fluid mechanics.

y input: equation of state, transport coefficients. Also works at strong ling.

Black holes and fluid mechanics

Black holes and fluid mechanics

1/2

- 1. Compute eos, trans, difficult in CFT.
- 2. Once we know them, strong coupling doesn't matter

At long wavelengths, deconfined plasma described by fluid mechanics.

Only input: equation of state, transport coefficients. Also works at strong coupling.

The AdS/CFT correspondence

ng wavelengths, deconfined plasma described by fluid mechanics.
input: equation of state, transport coefficients. Also works at strong
leg.

Black holes and fluid mechanics

Black holes and fluid mechanics

2/2

1. Compute eos, trans, difficult in CFT.

Black holes and fluid mechanics

- 2. Once we know them, strong coupling doesn't matter
- 3. Take data from static. Predict features of non-static

At long wavelengths, deconfined plasma described by fluid mechanics.

Only input: equation of state, transport coefficients. Also works at strong coupling.

The AdS/CFT correspondence

Equation of state: black hole thermodynamics, static case. Transport coefficients: small fluctuations, e.g. $\eta/s = 1/4\pi$. [Son,Starinets]

⇒ universal features of black holes at long wavelengths.

2009-05-01

Outline

Outline

Maintain

Plannabil steep

Relicionist field mechanics

Of Time democrate configurations

Office democrate configurations

Office democrate generalisations

Office democrating generalisations

Office democrating generalisations

Outline

- Motivation
- 2 Plasmaball setup
- 3 Relativistic fluid mechanics
- 4 Three dimensional configurations
- 5 Higher dimensional generalisations
- 6 Summary

Outline

Plasmaballs in confining theories

Plasmaballs in confining theories

-Plasmaballs in confining theories

- 1. Why 1st order
- 2. with gravity dual
- 3. $l_{\rm mfp} \sim R_{\theta}$. Reduce D = d + 2. n 1 angular momenta.

Plasmaballs are a bubbles of deconfined phase, surrounded by confined phase, held together by surface tension.

Focus on theories that come from compactifying conformal theories on a Scherk-Schwarz circle.

Leads to confining theory.

Confined phase

At low temperatures, gravity dual: AdS soliton:

Plasmaball setup

$$\mathrm{d}s^2 = rac{R_{\mathsf{AdS}}^2}{z^2} \left(-\mathrm{d}t^2 + F_{R_{ heta}}(z) \, \mathrm{d} heta^2 + \mathrm{d}ec{x}^2 + rac{1}{F_{R_{ heta}}(z)} \, \mathrm{d}z^2
ight),$$

Scherk-Schwarz AdS

where
$$F_{a}(u)=1-\left(rac{\pi z}{a}
ight)^{4}$$
 and $R_{\mathsf{AdS}}^{2}=\sqrt{\lambda}lpha'$.

[Witten]

Small z: Poincaré AdS₅ with one compact direction.

At $z = R_{\theta}/\pi$, the θ circle contracts: space stops.

$$z=0$$
 $z=\frac{R}{\pi}$

 $ds^2 = \frac{R_{\Delta fS}^2}{r^2} \left(-F_{\beta}(x) dt^2 + d\theta^2 + d\vec{x}^2 + \frac{1}{F_{\gamma}f(x)} dx^2 \right).$

Horizon at $x = \frac{\beta}{\pi}$. Temperature: $T = 1/\beta$.

2009-05-01

1. Double Wick rotation

Deconfined phase

At high temperatures: the black brane:

$$\mathrm{d}s^2 = rac{R_\mathsf{AdS}^2}{z^2} \left(-F_eta(z) \, \mathrm{d}t^2 + \mathrm{d}\theta^2 + \mathrm{d}ec{x}^2 + rac{1}{F_eta(z)} \, \mathrm{d}z^2
ight).$$

Plasmaball setup

Horizon at
$$z = \frac{\beta}{\pi}$$
. Temperature: $\mathcal{T} = 1/\beta$.

2009-05-01

- 1. Conformal.
- 2. Different reference.
- 3. Reduction.

Deconfined phase Plasmaball setup Scherk-Schwarz AdS

Deconfined phase

At high temperatures: the black brane:

$$\mathrm{d}s^2 = \frac{R_{\mathsf{AdS}}^2}{z^2} \left(-F_\beta(z) \, \mathrm{d}t^2 + \mathrm{d}\theta^2 + \mathrm{d}\vec{x}^2 + \frac{1}{F_\beta(z)} \, \mathrm{d}z^2 \right).$$

Horizon at $z = \frac{\beta}{\pi}$. Temperature: $\mathcal{T} = 1/\beta$.

Dominant phase above transition temperature, $\mathcal{T}_{\mathrm{c}}=\frac{1}{R_{\theta}}.$

The equation of state of the dual plasma can be found from this gravity solution.

$$\mathcal{P} = \frac{\alpha}{\mathcal{T}_c} \left(\mathcal{T}^4 - \mathcal{T}_c^4 \right).$$

Black rings from fluid mechanics

Plasmaball setup

Properties of plasmaballs

Plasmaball solutions

2009-05-01

- 1. Vertical Hawking AdS
- 2. Horizontal Hawking flat
- 3. between flat and AdS. C < 0.
- 4. Only $\sigma(\mathcal{T}_c)$. Ignore temp dep

Plasmaball setup Properties of plasmaballs

Plasmaball solutions

Plasmaball solutions

On the bulk side, deep interior looks like black brane. Far from the plasmaball, it looks like the AdS soliton. There is a domain wall that interpolates between the two.

Boundary

AdS soliton Black brane AdS soliton

In the limit of infinitely large radius, a numerical domain wall solution has been found. The surface tension and thickness can be computed from this solution.

[Aharony, Minwalla, Wiseman]

Topology

The Scherk-Schwarz circle does not contract in the black brane region but does contract in the AdS soliton region.

Plasmaball setup Properties of plasmaballs

Horizon topology: fibre circle over the plasmaball, contracting at surfaces.

Fluid mechanics

The equation of notion we $\nabla_{\mu} T^{\mu} = 0$. The dynamical input is in specifying T^{μ} .

For long wavelengths, we need only go up to one derivation terms: $T^{\mu} = T^{\mu}_{\mu h h h} T^{\mu}_{\mu h h h} T^{\mu}_{\mu h h}$ Cellificates depend on T. Determined from state black bases.

Cellificates depend on T^{μ}_{μ} Determined from state black bases. This is preprinted based down at suffered, which is the state of t

Fluid mechanics

Benefit of fluid pic. Know deriv exp in gravity. Surf, puzzle solved centuries ago

- 1. equilibrium -¿ dissipative =0
- 2. rest frame temp

The equations of motion are $\nabla_{\mu}T^{\mu\nu}=0$. The dynamical input is in specifying $T^{\mu\nu}$.

Relativistic fluid mechanics

For long wavelengths, we need only go up to one derivative terms: $T^{\mu\nu} = T^{\mu\nu}_{\rm perfect} + T^{\mu\nu}_{\rm dissipative}$.

Coefficients depend on \mathcal{T} . Determined from static black brane.

This approximation breaks down at surfaces – but at scales \gg surface thickness we can replace these regions with a δ -function localised surface tension.

Black rings from fluid mechanics 2009-05-01 Three dimensional configurations Solutions

Rigid rotation: $(u^{\epsilon}, u^{\epsilon}, u^{\phi}) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-u^{\epsilon}}}$

Three dimensional configurations

1/4

1. $\theta, \eta = 0$ - rotation + boost.

Three dimensional configurations

2. press grad - temp grad.

Rigid rotation: $(u^t, u^r, u^\phi) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

Black rings from fluid mechanics

Three dimensional configurations

Solutions

Three dimensional configurations

2/4

- 1. $\theta, \eta = 0$ rotation + boost.
- 2. press grad temp grad.
- 3. extra term in q

Three dimensional configurations

Rigid rotation: $(u^i, u^i, u^a) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient. We find $T_{\rm dissipative}^{\rm dissipative} \propto \vec{\nabla}(T/\gamma)$.

Three dimensional configurations

Rigid rotation: $(u^t, u^r, u^\phi) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

Three dimensional configurations Solutions

We find
$$T_{
m dissipative}^{\mu
u} \propto \vec{
abla}(\mathcal{T}/\gamma)$$
.

- 1. $\theta, \eta = 0$ rotation + boost.
- 2. press grad temp grad.
- 3. extra term in q

Three dimensional configurations

Rigid rotation: $(u^i,u^i,u^i)=\gamma(1,0,\Omega)$, where $\gamma=\frac{1}{\sqrt{1-u^i}}$. Contripietal force provided by pressure gradient.

We find $T_{\rm descipations}^{\rm acc} \propto \bar{\nabla}(T/\gamma)$.

Interior: e.o.m. $\nabla_{\mu}T_{\rm prefers}^{\rm acc} \propto \bar{\nabla}(T/\gamma)=0$.

Three dimensional configurations

Rigid rotation: $(u^t, u^r, u^\phi) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

Three dimensional configurations Solutions

We find
$$T_{
m dissipative}^{\mu
u} \propto ec{
abla}(\mathcal{T}/\gamma).$$

Interior: e.o.m.
$$abla_{\mu} T^{\mu\nu}_{\mathrm{perfect}} \propto \vec{\nabla} (\mathcal{T}/\gamma) = 0.$$

4/4

- 1. $\theta, \eta = 0$ rotation + boost.
- 2. press grad temp grad.
- 3. extra term in q
- 4. inner / outer.
- 5. 2 param.

Rigid rotation: $(u^t, u^t, u^o) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-u^2}}$. Centripotal force provided by pressure gradient.

faces: $P = \pm 4$. Relates (T/γ) to Ω and position of surface.

Three dimensional configurations

Rigid rotation: $(u^t, u^r, u^{\phi}) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

We find
$$T_{
m dissipative}^{\mu
u} \propto ec{
abla}(\mathcal{T}/\gamma).$$

Interior: e.o.m.
$$\nabla_{\mu} T^{\mu\nu}_{\mathrm{perfect}} \propto \vec{\nabla} (\mathcal{T}/\gamma) = 0.$$

Surfaces: $\mathcal{P} = \pm \frac{\sigma}{r}$. Relates (\mathcal{T}/γ) to Ω and position of surface.

2009-05-01

1/2

Solutions

714110115

We find two types of solution:

Three dimensional configurations Solutions

 B^2 $S^1 \times B^1$

Solutions

We find two types of solution:

2009-05-01

2009-05-01

dynamics

We compute the thermodynamic properties of the whole solution with

 $E = \int d^2x \left(T^H\right),$ $L = \int d^2x \left(r^2T^{4\phi}\right),$ $S = \int d^2x \left(\gamma s\right).$ Three dimensional configurations

Thermodynamics

Thermodynamics

We compute the thermodynamic properties of the whole solution with

$$E = \int \mathrm{d}^2 x \left(T^{tt} \right),$$
 $L = \int \mathrm{d}^2 x \left(r^2 T^{t\phi} \right),$ $S = \int \mathrm{d}^2 x \left(\gamma s \right).$

2/2

2009-05-01

- 1. include KE. Different to ${\mathcal E}$
- 2. Different to \mathcal{T}
- 3. Identify with Hawking temp. const on horizon.
- 4. redshift glueballs

Thermodynamics

odynamic properties of the whole solution with $E = \int d^2x \left(T^B\right),$ $L = \int d^2x \left(r^2T^{bb}\right),$ $S = \int d^2x \left(r^3\right).$ overall temperature and angular velocity via $dE = T dS + \Omega M.$

 $T = \frac{T}{\gamma} \,, \qquad \Omega \mbox{ as before} \,. \label{eq:T}$

Three dimensional configurations

Thermodynamics

Thermodynamics

We compute the thermodynamic properties of the whole solution with

$$E = \int d^2x \left(T^{tt}\right),$$

$$L = \int d^2x \left(r^2 T^{t\phi}\right),$$

$$S = \int d^2x \left(\gamma s\right).$$

Then we compute an overall temperature and angular velocity via

$$dE = TdS + \Omega dL$$

we find

$$T=rac{\mathcal{T}}{\gamma}\,,\qquad \Omega$$
 as before .

Black rings from fluid mechanics

Three dimensional configurations

Thermodynamics

Phase diagram

1/2

2009-05-01

- 1. approx break down at ext
- 2. c.f. flat

Phase diagram Three dimensional configurations Thermodynamics

Phase diagram

Black rings from fluid mechanics

Three dimensional configurations

Thermodynamics

Phase diagram

2/2

2009-05-01

1. approx break down at ext

Phase diagram

- 2. c.f. flat
- 3. upper bound on L
- 4. Precise and rigorous for SSAdS. Qualitative for flat.
- 5. Left, easy. Right hard.

Three dimensional configurations

Thermodynamics

1. not full list. just ones we can imagine as fluids

2009-05-01

1/3

Higher dimensional generalisations Six dimensional gravity

Topologies in six dimensions

$$S^4$$

$$S^3 \times S^1$$

 $S^2 \times S^2$

$$S^2 \times T^2$$

2/3

2009-05-01

- 1. not full list. just ones we can imagine as fluids
- 2. cylindrical coords. Suppress ϕ

Topologies in six dimensions

Topologies in six dimensions

$$S^2 \times T^2$$
 \downarrow $B^1 \times T^2$

3/3

2009-05-01

- 1. not full list. just ones we can imagine as fluids
- 2. cylindrical coords. Suppress ϕ

Topologies in six dimensions

Topologies in six dimensions

Solving equations of motion

Again: rigid rotation $(u^t, u^r, u^{\phi}, u^z) = \gamma(1, 0, \Omega, 0)$.

Again:
$$\frac{T}{\gamma} = T = \text{constant}$$
.

Now: surface satisfies $\mathcal{P} = \sigma K^{\mu}_{\mu}$.

Ordinary balls

Increase Ω , $\mathcal{P}(0) \rightarrow 0$

2009-05-01

Black rings from fluid mechanics

Higher dimensional generalisations

Solutions in six dimensions
Pinched balls

Pinched balls

- 1. Emparan, Myers, wavy BH.
- 2. Increase Ω , $h(0) \rightarrow 0$

2009-05-01

0.6

0.8

Black rings from fluid mechanics Higher dimensional generalisations Solutions in six dimensions -Rings

2009-05-01

Higher dimensional generalisations Solutions in six dimensions

Phase diagram

1/3

2009-05-01

 $1. \ \ compare \ with \ proposals$

Phase diagram

[Bhardwaj,Bhattacharya]

Black rings from fluid mechanics

Higher dimensional generalisations

Solutions in six dimensions

Phase diagram

2/3

2009-05-01

- 1. compare with proposals
- 2. not good

Phase diagram

Phase diagram

[Bhardwaj,Bhattacharya]

Higher dimensional generalisations Solutions in six dimensions

Black rings from fluid mechanics

Higher dimensional generalisations

Solutions in six dimensions

Phase diagram

Phase diagram

3/3

2009-05-01

- 1. compare with proposals
- 2. not good
- 3. good. Myers-Perry continues past wavy BH

[Bhardwaj,Bhattacharya]

Higher dimensional generalisations Solutions in six dimensions

Topologies in seven dimensions

1/2

2009-05-01

1. again not full list

$$S^4 \times S^1$$

$$S^3 \times T^2$$

$$S^3 \times S^2$$

$$S^2 \times S^2 \times S^1$$

$$S^2 \times T^3$$

Topologies in seven dimensions

Topologies in seven dimensions

2/2

2009-05-01

- 1. again not full list
- 2. Ball, ring, torus.
- 3. hollow exist?.

$$S^4 \times S^1$$
 \downarrow
 $B^3 \times S^1$

$$S^{3} \times S^{2} \qquad S^{2} \times S^{2} \times S^{1} \qquad S^{2} \times T^{3} \qquad S^{2$$

For ring,
$$B^3 imes S^1$$
, take $\epsilon = \frac{R_{B^3}}{R_{c^1}}$ small.

For 'torus',
$$B^2 \times T^2$$
, take $\epsilon = \frac{R_{B^2}}{R_{T^2}}$ small.

Expand in
$$\epsilon$$
. At $\mathcal{O}(\epsilon^0)$ – just a tube.

Similar to black-fold construction of Emparan et al.

Higher dimensional generalisations Seven dimensional gravity

whole new topology

2009-05-01

Torus

Higher dimensional generalisations Seven dimensional gravity

Black rings from fluid mechanics

Summary

Summary

Summary

We can get height to some problems in classical gravity from floid mechanics in AdS/CFT.

In the dimensions—— qualitative agreement with flat space gravity.

In six dimensions—proposal for phase diagram.

Its waves dimensions—— ma topology.

Feature: manufacial volutions for D = T, phase diagram.

Grappy-Laffamma vs. Pictase-Rayleigh.

[Existential et al.]

Summary

We can get insight to some problems in classical gravity from fluid mechanics in AdS/CFT.

Summary

In five dimensions – qualitative agreement with flat space gravity.

In six dimensions – proposal for phase diagram.

In seven dimensions - new topology.

Future: numerical solutions for D = 7, phase diagram.

Gregory-Laflamme vs. Plateau-Rayleigh.

[Caldarelli et al.]

