المرس الثاني

AF

لزيدة

الحركة التوافقية البسيطة

هي حركة تتكرر بانتظام خلال فترات زمنية متساوية

من أمثلة الحركة الدورية :

الحركة الموحية

الحركة الدورية

- الحركة الاهتزازية
- الحركة الدائرية

الحركة التوافقية البسيطة SHM

هي حركة اهتزازية تتناسب فيها قوة الإرجاع طرديا مع الإزاحة و تعاكسها في اللَّاتجاه بأهمال قُوة الدحتكاك

■ جميع الحركات التوافقية هي حركات اهتزازية لكن ليست جميع الحركات الاهتزازية حركة توافقية

تمثيل الحركة التوافقية بيانيا: تمثل على شكل منحنى جيبي بسيط خصائص الحركة التوافية البسيطة

■ التردد

■ السعة السرعة الزاوية

الزمن الدوري

الزمن الدوري T

هو الزمن الذي يستغرقه الجسم لعمل دورة واحدة كاملة

f التردد

هو عدد الدورات التي يعملها الجسم خلال وحدة الزمن (الثانية الواحدة)

العلاقة بين التردد و الزمن الدوري التردد هو مقلوب الزمن الدوري

$$f = \frac{1}{T}$$
 $T = \frac{1}{f}$

عسم تردده **2 Hz** احسب زمنه الدوري 🔾

- هي أقصى (اكبر) إزاحة للجسم بعيدا عن موضع سكونه (موضع اتزانه) هي نصف المسافة بين أبعد نقطتين يصل إليهما الجسم السعة A

 ω السرعة الزاوية

هي الزاوية التي يمسحها نصف القطر خلال وحدة الزمن

$$\omega = \frac{2\pi}{T} = 2\pi f$$

- م بتحرك حركة توافقية بسيطة وكان زمنه الدوري **0.5 s** , احسب
 - تردد الجسم
 - السرعة الزاوية

معادلة الإزاحة في الحركة التوافقية البسيطة

تتغير الإزاحة في الحركة التوافقية البسيطة بالنسبة للزمن طبقا للمعادلة التالية

- $y = A \sin(\omega t)$
- جسم يتحرك حركة توافقية بسيطة تعطى إزاحته بالعلاقة التالية , $y=20\,sin(10t)$ جسم يتحرك حركة توافقية بسيطة تعطى إزاحته بالعلاقة التالية , احسب بوحدة المتر و الزمن بوحدة الثانية , احسب
 - السعة
 - السرعة الزاوية
 - التردد

■ الزمن الدوري

أهم التطبيقات على الحركة التوافقية البسيطة

حركة النابض

حركة البندول البسيط

حساب الزمن الدوري للنابض

$$T = 2\pi \sqrt{\frac{m}{K}}$$

🝳 اذكر العوامل التي يتوقف عليها الزمن الدوري للنابض

ارسم المنحنيات البيانية الدالة على ما يلى:

- الزمن الدوري للنابض -جذر الكتلة
- 🖸 الزمن الدوري للنابض جذر ثابت النابض

مربع الزمن الدوري للنابض - الكتلة

- 🚨 علق جسم كتلتة **g 200** بنابض ثابت مرونته مرونته ما 100 N/m , سحب النابض, و ترك يتحرك حركة توافقية بسيطة , احسب
 - الزمن الدورى للنابض

حساب الزمن الدوري للبندول

ارسم المندنيات البيانية الدالة على ما يلي:

🝳 الزمن الدوري للبندول - جذر طول البندول

🝳 الزمن الدوري للبندول - الكتلة

المسب الزمن الدورى لبندول بسيط طوله $\mathbf{20}$ cm علما بأن عجلة الجاذبية الأرضية $\mathbf{20}$

- لكى تكون حركة البندول البسيط حركة توافقية بسيطة يجب ان يتوفر شرطين
- 1. في غياب الاحتكاك مع الهواء 2. زاوية اهتزاز البندول لا تزيد عن °10

علل لما يأتى :

و حركة البندول البسيط و حركة النابض حركة توافقية بسيطة

- قوة الإرجاع في النابض تعطى من العلاقة التالية F = -Kx
- قوة إرجاع البندول تعطى من العلاقة التالية $F = -mg \sin\theta$

الموجات و الصوت

هي انتقال الحركة الاهتزازية عبر جزيئات الوسط

الموجة

■ عندما تتحرك الموجة فإن جزيئات الوسط تهتز في موضعها ولا تنتقل لكن طاقة الموجة تنتقل

الموجات			
موجات كهرومغناطيسية	موجات ميكانيكية		
هي موجات لا تحتاج إلى وسط مادي لكي تنتقل	هي موجات تحتاج إلى وسط مادي لكي تنتقل		
مثال : الضوء - موجات الراديو	مثال : الصوت - موجات الماء		

وتنقسم الموجات الميكانيكية إلى نوعين أساسيين

الموجات الميكانيكية		
موجات مستعرضة	موجات طولية	
هي الموجات التي تكون فيها حركة جزيئات الوسط عمودية علي اتجاه انتشار الموجة	هي الموجات التي تهتز فيها جزيئات الوسط في نفس اتجاه انتشار الموجة	
تتكون من قمم و قیعان	تتكون من تضاغطات و تخلخلات	
مثال : الموجات المائية	مثال : الصوت	

 $V = \lambda f$

خصائص الموجات

- التداخل ■ الانكسار ■ الانعكاس الحيود التراكب

- يمكن حساب سرعة انتشار الموجة باستخدام العلاقة التالية
- موجة صوتية ترددها **200 Hz** و سرعتها **320 m/s** احسب
 - الطول الموجى
- سرعة الموجة ثابتة في الوسط
 بزيادة تردد الموجة يقل طولها الموجي و تظل سرعة الموجة ثابتة

🖸 سرعة الموجة - التردد

ارسم المنحنيات البيانية الدالة على ما يلي:

🖸 التردد - الطول الموجي

🖸 اذكر العوامل التي يتوقف عليها سرعة الموجة ؟

الصوت

هو اضطراب ينتقل في الوسط نتيجة اهتزازه

■ الصوت موجات ميكانيكية طولية تحتاج إلى وسط مادي لكي تنتقل

انعكاس الصوت

هو ارتداد الموجات الصوتية عندما يقابلها سطح عاكس

قوانين انعكاس الصوت

- الشعاع الصوتي الساقط و الشعاع الصوتي المنعكس و العمود المقام من نقطة السقوط
 علي السطح العاكس تقع جميعها في مستوى واحد عمودي علي السطح العاكس
 - زاوية السقوط تساوي زاوية الانعكاس

60°

 $\theta_1 = \theta_2$

من الشكل المقابل , احسب مقدار زاوية الانعكاس

انكسار الصوت

هو التغير في مسار الأشعة الصوتية نتيجة انتقالها بين وسطين مختلفين في الكثافة

علل لما يأتي :

🝳 حدوث انكسار للصوت عند انتقاله بين وسطين مختلفين

حالات انكسار الصوت

ينكسر الشعاع مقتربا من العمود $v_2 < v_1$ إذا كان

ينكسر الشعاع مبتعدا عن العمود $v_2 > v_1$ إذا كان

قانون انكسار الصوت

$$\frac{\sin \Phi}{\sin \theta} = \frac{v_1}{v_2}$$

موجة صوتية سقطت على السطح الفاصل بين الهواء و الماء بزاوية سقوط °13 فانكسرت في الماء بزاوية انكسار °**75** اذا علمت أن سرعة الصوت في الهواء **340 m/s** ، أحسب سرعة الصوت في الماء

■ ينكسر الصوت في الهواء باختلاف درجة الحرارة حيث سرعة انتشار الصوت في الهواء الساخن أكبر من سرعة انتشار الصوت في الهواء البارد

علل لما يأتي :

🝳 حدوث انكسار للصوت في الهواء المحيط بسطح الأرض

🗨 يستطيع الأولاد سماع صوت السيارة من مسافة بعيدة في الليل ولا يستطيعون سماعه في النهار

تراكب الصوت

عبور الموجات نقطة ما (نقطة التراكب) ثم تستعيد كل موجة شكلها و تكمل في الاتجاه الذي تسلكه ■ يحدث التراكب بين موجات من نفس النوع و لا يمكن أن يحدث التراكب بين موجتين مختلفتين في النوع

علل لما يأتى:

يمكن أن نسمع صوت شخص بوضوح على الرغم من تقاطع صوته مع أصوات أخرى

التداخل في الصوت

هو حدوث تراكب بين مجموعة من الموجات لها نفس التردد و من نفس النوع

ينقسم التداخل إلى نوعين

تداخل هدام	تداخل بناء
يحدث عند التقاء تضاغط من الموجة الأولي مع تخلخل من الموجة الثانية أو العكس	يحدث عند التقاء التضاغط من الموجة الأولي مع التضاغط من الموجة الثانية أو عند التقاء التخلخل من الموجة الأولي مع التخلخل من الموجة الثانية
 الموجات تلغي بعضها البعض ينتج عنه حدوث انعدام للصوت يكون الموجات غير متفقة في الطور 	 الموجات تدعم بعضها البعض ينتج عنه حدوث تقوية للصوت يكون فيه الموجتان متفقتين في الطور

حيود الصوت

ظاهرة انحناء الموجات حول حافة حادة أو عند نفاذها من فتحة صغيرة بالنسبة لطولها الموجي

علل لما يأتى :

🚨 تستطيع سماع الصوت على الرغم من اصطدامه بحاجز

- يزداد انحناء الموجات كلما كان اتساع الفتحة أصغر
- يستخدم **حوض الموجات** في دراسة ظاهرة **حيود الصوت**

الموجات الموقوفة

موجات تنشا من تراكب قطارين من الموجات متماثلين في التردد الموجات الموقوفة و السعة لكنهما يسيران في اتجاهين متعاكسين

تتكون الموجة الموقوفة من عقد و بطون

هو موضع في الموجة الموقوفة تكون فيه السعة أصغر ما يمكن (منعدمة)

العقدة

علل لما يأتي :

🝳 تسمية الموجات الموقوفة (الساكنة) بهذا الدسم

λ الطول الموجي للموجة الموقوفة

هي مثلي المسافة بين عقدتين متتاليتن او مثلي المسافة بين بطنين متتالين

الأهتزاز المستعرض للأوتار

علل لما يأتي :

🝳 تتكون موجات موقوفة في الاوتار المهتزة

الموجات الموقوفة و الالات الموسيقية

🖓 عندما يهتز وتر على صورة قطاعات تتكون نغمات مختلفة وهي :

$$n = 1$$

$$n = 2$$

النغمة التوافقية الثانية

$$n = 3$$

حساب طول الوتر

$$L = \frac{n}{2} \lambda$$

- 🝳 اهتز وتر طوله 120 cm كما بالشكل الموضح عندما كان تردده
 - الطول الموجى

سرعة انتشار الموجة

حساب تردد النغمة الأساسية للوتر

$$f_0 = \frac{1}{2 L} \sqrt{\frac{T}{\mu}}$$

اذكر العوامل التي يتوقف عليها كل من ::

🖸 تردد النغمة الأساسية لوتر

الوتر

ارسم المنحنيات البيانية الدالة على ما يلي:

تردد النغمة الأساسية – جذر
 كتلة وحدة الأطوال

العلاقة بين تردد النغمة الأساسية و النغمات التوافقية

🝳 تردد النغمة الأساسية - طول 🛛 تردد النغمة الأساسية - جذر

$$f_1 = 2 f_0$$

$$f_2 = 3 f_0$$

- وتر طوله ${f m}$ وكتلة وحدة الاطوال له ${f 10^{-3} Kg/m}$ مشدود بقوة شد مقدارها ${f 00}$ احسب ${f Q}$
 - تردد نغمته الأساسية

- تردد النغمة التوافقية الأولى و الثانية
- يمكن حساب كتلة وحدة الأطوال للوتر كما يلي

$$\mu = \frac{m}{L}$$

حساب سرعة الموجة

$$\mathbf{v} = \sqrt{\frac{\mathbf{T}}{\mu}}$$

- وتر طوله ${
 m 0.4~m}$ وكتلته ${
 m 2} \times {
 m 10^{-3} Kg}$ مشدود بقوة شد مقدارها ${
 m 0.4~m}$
 - كتلة وحدة الأطوال للوتر
 - تردد نغمته الأساسية
 - تردد النغمة التوافقية الأولى و الثانية
 - سرعة الموجة في الوتر

الشحنات و القوى الكهربائية

- تتكون الذرة من جسيمات موجبة الشحنة تسمى بروتونات و جسيمات سالبة الشحنة تسمى الكترونات و جسيمات متعادلة الشحنة تسمى نيوترونات
 - الشحنات المتشابهة تتنافر و الشحنات المختلفة تتجاذب
 - تشحن الأجسام نتيجة فقد أو اكتساب الألكترونات

علل لما يأتي :

الذرة متعادلة كهربيا

ماذا يحدث في كل من الحالات التالية:

عندما يفقد الجسم الكترونات

عندما يكتسب الجسم الكترونات

يمكن حساب شحنة الأجسام بالعلاقة التالية

q = N e N

. إذا فقد الجسم الكترونات

إذا اكتسب الجسم الكترونات

جسم فقد $10^3 ext{×}$ الكترون احسب شحنة الجسم $ext{$}$

- يجب أن يكون عدد الألكترونات N المفقودة أو المكتسبة عددا صحيحا لأن شحنة الألكترون لا تتجزأ
 - أقل شحنة يمكن أن تتواجد على سطح جسم هي شحنة الالكترون و تساوي 1.6×10⁻¹⁹ C
 - شحنة الجسم تساوى مضاعفات عددية صحيحة لشحنة الإلكترون

علل لما يأتى :

10.5 e لا يمكن وجود شحنة تعادل **□**

طرق الشحن الكهربي

هو انتقال الألكترونات من جسم إلى آخر بالاحتكاك بين الجسمين الشحن بالدلك (الاحتكاك)

الشحن بالتوصيل (التلامس

هو انتقال الألكترونات من جسم مشحون إلى جسم آخر بالتلامس المباشر

الشحن بالتأثير (الحث)

هو تحرك الألكترونات إلى جزء من الجسم بسبب الشحنة الكهربية لجسم آخر لا ىلامسە

أمثلة على الشحن بالدلك

- عند تدليك ساق من المطاط بالفراء فإن الألكترونات تنتقل من الفراء إلى المطاط, وبالتالي تصبح شحنة المطاط سالبة لأنها تكتسب الكترونات و شحنة الفراء موجبة لأنها تفقد الكترونات
- كذلك عند تدليك الزجاج بالحرير تنتقل الألكترونات من الزجاج إلى الحرير عند التدليك , و يصبح الزجاج موجب الشحنة و الحرير سالب الشحنة

قانون بقاء الشحنة

الشحنات لا تفني ولا تستحدث من العدم ولكن تنتقل من مادة إلى أخرى (الشحنات الكهربية محفوظة)

الكشاف الكهربي (الألكتروسكوب) من أداة تستخدم في الكشف عن الشحنات الكهربية المرابية الكهربية المرابية المرابية

ماذا يحدث في كل من الحالات التالية مع التفسير:

🝳 لورقتي الكشاف الكهربي عندما يلمس قرص الكشاف جسما مشحونا

التفريغ الكهربي (التأريض)

فقدان الكهرباء الساكنة الناتج عن انتقال الشحنات الكهربية بعيدا عن الجسم

علل لما يأتي :

- تجهز ناقلة النفط بسلسلة معدنية تتدلى من الخلف
- يرتدى فنيو الدوائر الكهربية أربطة حول معصمهم تتصل بسلك متصلا بالأرض

قانون كولوم

القوة الكهربية بين جسمين مشحونين مهمل حجمهما بالنسبة للمسافة الفاصلة بينهما تتناسب طرديا مع حاصل ضرب الشحنتين و عكسيا مع مربع المسافة الفاصلة بينهما

قانون كولوم

$$\mathbf{F} = \mathbf{K} \; \frac{q_1 q_2}{d^2}$$

🚨 اذكر العوامل التي يتوقف عليها القوة الكهربية (الكهروستاتيكية) بين شحنتين ؟

ارسم المندنيات البيانية الدالة على ما يلي:

◘ من الشكل المقابل احسب ، القوة المتبادلة بين الشحنتين مقدارا ونوعها

• من الشكل المقابل احسب ، القوة المتبادلة بين الشحنتين مقدارا ونوعها

التيار الكهربي و مصادر الجهد

التيار الكهربي

هو سريان الشحنات الكهربية عبر الموصلات

هي كمية الشحنة الكهربية المارة عبر مقطع موصل خلال وحدة الزمن (الثانية الواحدة) شدة التيار الكهربي ا

 $I = \frac{q}{t}$

- وحدة قياس شدة التيار هي **الامبير** و يستخدم جهاز **الأميتر** في قياس شدة التيار الكهربي
 - 🝳 اذكر العوامل التي يتوقف عليها شدة التيار الكهربي ؟

الأمبير

هو شدة التيار المارة عبر مقطع موصل عندما تمر شحنة مقدارها 1 C خلال وحدة الزمن (الثانية الواحدة)

- اذا كانت كمية الشحنة الكهربية المارة عبر مقطع موصل تساوي **180 C** خلال زمن قدره **دقيقة واحدة** ، أحسب شدة التيار الكهربي المار
 - 🖸 مصباح کهربي يمر به تيار شدته **A 1.6** خلال زمن **ثانية واحدة** ، أحسب
 - كمية الشحنة المارة

■ عدد الألكترونات المارة ، علما بأن شحنة الألكترون **C 1.6 X 10**

علل لما يأتي :

🝳 عندما تسري الشحنات الكهربية في سلك ما يكون محصلة شحنة السلك في أي لحظة تساوي صفر

 $V = \frac{E}{q}$

- يقاس فرق الجهد بوحدة **الفولت** و تكافئ **J/C** و يستخدم جهاز **الفولتميتر** في قياس فرق الجهد الكهربي
 - 🚨 ماهي العوامل التي يتوقف عليها فرق الجهد الكهربي ؟

هو فرق الجهد بين نقطتين يلزم بذل شغل مقداره لـ 1 لنقل وحدة الشحنات الكهربية 1C بين النقطتين

الفولت

- 🝳 احسب فرق الجهد بين نقطتين , يلزم بذل شغل مقداره **لا 125** لنقل شحنة مقدارها **5C** بينهما
- 🖸 تيار شدته **5A** يمر في سلك خلال زمن **دقيقة واحدة** , حيث فرق الجهد بين طرفي السلك **12V** ، احسب
 - كمية الشحنة المارة في السلك
 - الشغل المبذول (الطاقة) اللازمة لنقل تلك الشحنة في السلك

هي التي تمدنا بالطاقة اللازمة لتحريك الشحنات الكهربية في الدائرة هي التي تحافظ على استمرار فرق الجهد بين طرفي الدائرة

مصادر الجهد

علل لما يأتى :

يتطلب استمرار التيار وجود مصدر للجهد (بطارية)

من أمثلة مصادر الجهد :

■ الأعمدة الجافة • الأعمدة السائلة • المولدات

- في البطارية (العمود الجاف) تتحول الطاقة الناتجة من التفاعل الكيميائي داخل العمود إلى طاقة كهربية
 - في المولدات تتحول الطاقة الميكانيكية (الحركية) إلى طاقة كهربية

■ الشحنات هي التي تتحرك عبر الموصل و ليست القوة الدافعة الكهربية ، أي أن القوة الدافعة لا تتحرك و لكن الشحنات هي التي (تسري) تتحرك في الدائرة

التيار الكهربي و الدوائر الكهربية

المقاومة الكهربية و قانون أوم

المقاومة الكهربية R

هي الإعاقة التي تواجهها الألكترونات (الشحنات) عند مرورها في الموصل

■ تنشأ المقامة الكهربية للموصل بسبب تصادم الألكترونات مع بعضها البعض و مع ذرات الفلز المار بها

العوامل التي يتوقف عليها مقاومة الموصل (المقاومة الكهربية)

■ طول الموصل (L)

■ مساحة مقطع الموصل (A)

تتناسب المقاومة الكهربية عكسيا مع مساحة مقطع الموصل ، بزيادة مساحة مقطع الموصل تقل مقاومته

نوع المادة

تتغير مقاومة الموصل بتغير نوع مادته , مثلا مقاومة سلك مصنوع من الحديد تختلف عن مقاومة سلك مصنوع من النحاس

درجة الحرارة

تتغير مقاومة الموصل بتغير درجة حرارته

علل لما يأتى:

- تزداد مقاومة الموصل بزيادة طوله
- مقاومة الاسلاك الطويلة أكبر من مقاومة الاسلاك القصيرة
 - 🖸 تقل مقاومة السلك بزيادة مساحة مقطعه
- مقاومة الاسلاك السميكة أقل من مقاومة الاسلاك الرفيعة
 - تزداد مقاومة الموصل بزيادة درجة حرارته

حساب المقاومة الكهربائية لموصل

المقاومة النوعية	المقاومة	وجه المقارنة
		الوحدة
		العوامل التي تتوقف عليها
		تميز نوع المادة

 $R = \rho \frac{L}{A}$

احسب مقاومة سلك طوله 500m مساحة مقطعة $0.3~mm^2$ مصنوع من سبيكة مقاومتها النوعية $3.3 \times 10^{-7}\,\Omega.m$

■ تعتبر **الأوم** وِحدة قياس المقاومة الكهربية و يستخدم جهاز **الأوميتر** في قياس المقاومة الكهربية

من الممكن أن تصبح مقاومة المواد صفرا في درجات الحرارة المنخفضة جدا وعندها تسمى هذه المواد بالمواد فائقة التوصيل

قانون أوم

فرق الجهد بين طرفي مقاومة ثابته يتناسب طرديا مع شدة التيار المارة فيه عند ثبات درجة الحرارة

V = IR

علل لما يأتي :

يراعي عند اجراء تجربة قانون اوم عمليا استخدام تيار ضعيف ، و فتح الدائرة بسرعة

هناك مقاومات تحقق قانون أوم تسمى مقاومات أومية و مقاومات لا تحقق قانون أوم تسمى مقاومات لا أومية

ال**أوم** هو مقاومة موصل يمر فيه تيار كهربي شدته 1A عندما يكون فرق الجهد بين طرفيه 1 V

ومساحة مقطعة $0.001 \mathrm{m}^2$ في دائرة كهربية , إذا كان فرق الجهد بين طرفيه $\mathbf{2m}$ موصل طوله عندما كانت شدة التيار المارة فيه $\mathbf{4A}$, احسب

مقاومة الموصل

المقاومة النوعية

- تیار مستمر شدته $oldsymbol{\Delta}$ یسری فی موصل مقاومته $oldsymbol{\Omega}$ احسب $oldsymbol{\Omega}$
 - فرق الجهد بین طرفی الموصل
- كمية الشحنة الكهربية التي تمر عبر مقطع الموصل خلال **4 دقائق**
 - مقدار الشغل الذي تبذله الشحنة الكهربية

التيار الكهربي و الدوائر الكهربية

القدرة الكهربية

هي الشغل المبذول خلال وحدة الزمن (1 s)

القدرة الميكانيكية

هي معدل تحول الطاقة الكهربية إلى أي نوع من الطاقات (حرارية – ضوئية – ميكانيكية)

القدرة الكهربية P

 $\mathbf{P} = \frac{\mathbf{E}}{\mathbf{t}}$

هي حاصل ضرب شدة التيار في فرق الجهد الكهربي

القدرة الكهربية P

P = IV

- 🝳 اذكر العوامل التي يتوقف عليها القدرة الكهربية ؟
- تختلف إضاءة مصباحين بالرغم من أنهما يعملان بنفس فرق الجهد و ذلك بسبب اختلاف القدرة الكهربائية للمصباحين

الواط هو قدرة الة تستهلك طاقة مقدارها لـ 1 خلال وحدة الزمن

- 🗨 استخدم جهاز کهربی یعمل علی فرق جهد **220V** و یمر فیه تیار کهربی شدته **5A** احسب
 - مقاومة الجهاز
 - القدرة الكهربية للجهاز

$$\mathbf{E}_{(J)} = \mathbf{P}_{(W)} \mathbf{t}_{(s)}$$

كذلك من الممكن حساب الطاقة بوحدة **الكيلو واط ساعة** لأنها الوحدة المناسبة للأستخدام في المنازل

$$E_{(KW.h)} = P_{(KW)} t_{(h)}$$

يمكن حساب تكلفة الاستهلاك , باستخدام القانون التالي

- 🚨 استخدم جهاز کهربي يعمل علي فرق جهد **220V** و يمر فيه تيار کهربي شدته **5A** ، احسب کلا مما يلي
 - القدرة الكهربية للجهاز
 - الطاقة المستهلكة بوحدة الجول إذا استخد الجهاز لمدة **6 ساعات**
 - الطاقة المستهلكة بالكيلو واط ساعة إذا استخدم الجهاز لمدة **6 ساعات**
 - سعر تكلفة الاستخدام إذا كان سعر الكيلو واط ساعة **فلسين**

الدوائر الكهربية

هي أي مسار مغلق يمكن أن تسري فيه الشحنات الكهربية

الدائرة الكهربية

 عندما تكون الدائرة الكهربية مفتوحة لا يمر التيار الكهربي ، و عندما تكون الدائرة الكهربية مغلقة يمر التيار الكهربي

تستخدم بعض الرموز لرسم الدائرة الكهربية كما يلي

+ -	العمود الجاف
+ -	البطارية
	سلك مهمل المقاومة
	مقاومة ثابتة
-_\\	مقاومة متغيرة (ريوستات)
— (A)—	الاميتر
	الفولتميتر
K	مفتاح مغلق
K	مفتاح مفتوح

رسم الدائرة الكهربية البسيطة

توصيل المقاومات على التوالي

خواص توصيل المقاومات على التوالى

- المقاومة المكافئة تساوي مجموع المقاومات
 - المقاومة المكافئة أكبر من أكبر مقاومة
 - شدة التيار المارة في المقاومات متساوية
- يتوزع فرق الجهد الكلي V_{eq} على المقاومات بصورة **طردية**, بمعني المقاومة الأكبر يكون جهدها أكبر

VαR

إذا انقطع التيار عن أحد المقاومات ينقطع عن باقى المقاومات

علل لما يأتي :

🝳 يصعب التعرف على المصابيح المحترقة إذا كانت متصلة على التوالي

عن حديد التديد حال التد

قوانين توصيل المقاومات علي التوالي

$$R_{eq} = R_1 + R_2 + R_3$$
 $I_{eq} = I_1 = I_2 = I_3 =$
 $V_{eq} = V_1 + V_2 + V_3$

 R_{eq} المقاومة المكافئة lacktree

- شدة التيار المارة في كل مقاومة
- فرق الجهد بين طرفي كل مقاومة

توصيل المقاومات على التوازي

خواص توصيل المقاومات على التوازي

- · مقلوب المقاومة المكافئة يساوى مجموع مقلوب المقاومات
 - المقاومة المكافئة أصغر من أصغر مقاومة
 - فرق الجهد ثابتا على المقاومات كلها
- شدة التيار تتوزع علي المقاومات بصورة عكسية , بمعني المقاومة الكبريمر فيها أقل تيار

$$\int \alpha \frac{1}{R}$$

■ إذا انقطع التيار عن أحد المقاومات لا ينقطع عن باقى المقاومات

علل لما يأتي :

🝳 توصل الأجهزة والمصابيح الكهربية في المنازل على التوازي وليس التوالي

قوانين توصيل المقاومات علي التوازي

$$rac{1}{R_{
m eq}} = rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3}$$

$$I_{
m eq} = I_1 + I_2 + I_3$$

$$\dot{V}_{
m eq} = V_1 = V_2 = V_3 = \dot{v}_1$$

R_{eq} المقاومة المكافئة •

- فرق الجهد بين طرفي كل مقاومة
- شدة التيار المارة في كل مقاومة

علل لما يأتي :

🝳 إضافة مسارات ذات مقاومات كبيرة في دوائر المنازل الكهربية

هي دوائر توصل فيها مجموعة المقاومات بشبكة واحدة و تحتوي على نوعين من التوصيل (توالي و توازي معا)

الدوائر المركبة

