UE 41702, TME 1

- 1. Modèle neuronal de type Intègre-et-Tire
- 2. Modèle de récepteur AMPA
- 3. Neurone Intègre-et-Tire avec synapses
- 4. Codage de l'information spatiale par une population de cellules de lieu

IPython + matplotlib

- 1. Lancer le terminal dans le répertoire qui contient les scripts de TD
- 2. Dans le terminal lancer ipython : ipython --pylab
- 3. Ouvrir ex_lif.py dans un éditeur de texte
- 4. Lancer le script sous ipython : In [1]: run ex lif.py

ex_lif.py

compléter la ligne 39 avec la solution numérique de l'ED de LIF selon la méthode d'Euler

ex_lif.py

compléter la ligne 39 avec la solution numérique de l'ED de LIF selon la méthode d'Euler

ex_lif_theor.py

Calcul du taux de décharge théorique :

- Compléter le script (ligne 56) avec le calcul théorique fait en TD
- Représenter le résultat sur le même graphique
- Changer le pas de temps à 1ms. Pourquoi la différence dans le résultat?

ex_lif_theor.py

Calcul du taux de décharge théorique :

- Compléter le script (ligne 56) avec le calcul théorique fait en TD
- Représenter le résultat sur le même graphique
- Changer le pas de temps à 1ms. Pourquoi la différence dans le résultat?

Modèle de récepteur AMPA

Modèle de récepteur AMPA

ex_ampa_syn.py

 Compléter le script (ligne 40) avec le modèle du récepteur étudié en TD

Modèle de récepteur AMPA

ex_ampa_syn.py

 Compléter le script (ligne 40) avec le modèle du récepteur étudié en TD

ex_lif_ampa.py

 Compléter le script (lignes 51-55) avec le modèle du récepteur et du courant AMPA

ex_lif_ampa.py

 Compléter le script (lignes 51-55) avec le modèle du récepteur et du courant AMPA

lif_ampa2.py

lif_train.py

- On peut simplifier le modèle si l'on suppose que l'augmentation de p_{ouvert} est instantanée et suivie par la décroissance exponentielle.
- Cela nous permet de modéliser facilement la réponse du neurone LIF à un train des PA.

lif_train_fa.py

- On peut estimer numériquement la fonction d'activation de neurone LIF (la fréquence de sortie en fonction de la fréquence d'entrée)
- Le calcul analytique de cette fonction est difficile

Codage de l'information spatiale par une population de cellules de lieu

Codage par le taux de décharge : cellules de lieu dans l'hippocampe

 Cellule de lieu : un neurone pyramidal dans l'aire CA1-CA3 de l'hippocampe

place_cell.py

- Elle s'active quand le rat se trouve dans une position spécifique de l'environnement
- Pour modéliser une cellule de lieu on utilise le modèle de neurone à taux de décharge

$$r_i = A \cdot e^{-\frac{(x-x_i)^2}{2\sigma^2}} \cdot e^{-\frac{(y-y_i)^2}{2\sigma^2}}$$

où (x_i, y_i) est la position préférée de la cellule et A est le taux de décharge maximal (en Hz)

 la description par taux de décharge est plus simple que le modèle à PA

- On suppose qu'un animal (un rat ou une souris) se déplace dans un environnement rectangulaire
- On suppose qu'une centaine de cellules de lieu décharge près de leurs positions préférées, qui sont distribuées uniformément dans l'environnement
- L'enregistrement de l'activité d'une seule cellule n'est pas suffisant pour déterminer la position de l'animal
- Par contre, l'activité de toute la population peut nous fournir une estimation de la position
- L'activité des cellules de lieu est un exemple d'une représentation neuronale de la notion abstraite de lieu

ex_pop_coding.py

ex_pop_coding.py

- Modifier le script afin d'estimer la position de l'animal à partir de l'activité des cellules de lieu
- 2. Calculer également l'erreur de cette estimation (par la distance Euclidienne entre celle ci et la vraie position) et représenter graphiquement l'évolution de cette erreur en fonction de temps. Conclusion ?

