7. 显示偏好

显示偏好:从选择来推断偏好(或收入、价格等)。

以下讨论基于严格凸的良性偏好。

直接显示偏好: 若选择 X 时,Y 可以被选择,则 X 被直接显示偏好于 Y,记作 $X \succ_D Y$ 。

间接显示偏好:若 $Y \succ_D Z$, 再结合偏好的传递性,有X被间接显示偏好于Z, 记作 $X \succ_I Z$ 。

【例】某学生只购买披萨和书。当披萨价格为 3, 书的价格为 10 时, 他消费 30 披萨和 3 本书; 当披萨价格为 2.9, 书涨价到 11 且收入不变时, 试问他的状况。

收入 $m = 30 \cdot 3 + 3 \cdot 10 = 120$;

原预算线: $3x_1 + 10x_2 = 120$; 新预算线 2.9x + 11y = 120; 均经过 (30,3)。

在新预算线的左边不可能比(30,3)优,因为(30,3)被显示偏好为这些点。

他的状况至少和原来一样好。若基于严格凸的良性偏好,则一定更好。

【例】证明:消费者认为等额的总额税(收入税)比从量税更好。

假定商品 1 为需要征税的商品, 商品 2 为一般计价物。

原始预算方程: $p_1x_1 + p_2x_2 = m$, 设这时候的最优选择为 (x_1^*, x_2^*) 。

若征收从量税,则 $(p_1+t)x_1+p_2x_2=m$,设这时候的最优选择为 $(\hat{x_1},\hat{x_2})$ 。

若征收总额税,则 $p_1x_1 + p_2x_2 = m - T$,设这时候的最优选择为 $(\tilde{x_1}, \tilde{x_2})$ 。

因为等额,即 $t\hat{x_1} = T$ 。

因 $(\hat{x_1}, \hat{x_2})$ 满足 $p_1x_1 + p_2x_2 = m - T$,而在该条预算线下,消费者选择了 $(\tilde{x_1}, \tilde{x_2})$,故总额税对消费者说更好(不劣)。

【例】**先征后退** 先以从量税征收,从而抑制需求;再将所有的税收返还民众。相应对消费者的影响:

$$(p_1+t)x_1+p_2x_2=m+T$$

假设此时的最优选择为 (x_1',x_2') ,正常情况下的最优选择为 (x_1^*,x_2^*) 。同时由于全部返还,故 $tx_1'=T$ 。此时, (x_1',x_2') 满足 $p_1x_1+p_2x_2=m$;而在没征税的情况下,最优选择是 (x_1^*,x_2^*) ,并未选择 (x_1',x_2') ,故消费者的状况更劣了。

同时,由于 $x_1' \leq x_1^*$,需求被抑制。

【例】电力定价:增加高峰时期用电价,但是给予适当补贴,使得能够达到原来的用电量而总价保持不变。

$$(p_1+t)x_1+p_2x_2=m+T$$

假设此时的最优选择为 (x_1',x_2') ,正常情况下的最优选择为 (x_1^*,x_2^*) 。同时由于给予补贴,故 $tx_1^*=T$ 。此时, (x_1^*,x_2^*) 满足 $(p_1+t)x_1+p_2x_2=m+T$ 。在补贴的情况下,最优选择是 (x_1',x_2') ,并未选择 (x_1^*,x_2^*) ,故消费者的状况更优了。

同时,由于 $x_1' \leq x_1^*$,需求被抑制。

显示偏好的弱公理: 如果 $X \succ_D Y$ 且 X 与 Y 不同,则不可能有 $Y \succ_D X$ 。

显示偏好的强公理: 若 $X \succ_D Y$ 或 $X \succ_I Y$, 则不可能 $Y \succ_D X$ 或 $Y \succ_I X$ 。

【例】某人第一次去超市,价格 $(p_1,p_2)=(4,1)$,带回商品 $(x_1,x_2)=(10,20)$;第二次去超市,价格 $(p_1',p_2')=(10,40)$,带回商品 $(x_1',x_2')=(4,14)$;第三次去超市,价格 (p_1'',p_2'') ,带回商品 $(x_1'',x_2'')=(20,10)$ 。假设具有严格凸的良性偏好。请问 p_1'',p_2'' 应该满足什么关系特征?

解答 建立以下列联表。

	(10, 20)	(4, 14)	(20, 10)
(4,1)	60	30	90
(10, 40)	900	600	600
$(p_1^{\prime\prime},p_2^{\prime\prime})$	$10p_1'' + 20p_2''$	$4p_1^{\prime\prime}+14p_2^{\prime\prime}$	$20p_1''+10p_2''$

根据第一行,有 $(10,20) \succ_D (4,14)$;

根据第二行,有 $(4,14) \succ_D (20,10)$;

故 $(10,20) \succ_I (20,10)$ 。

根据显示偏好的弱公理 & 强公理, 有

$$10p_1'' + 20p_2'' > 20p_1'' + 10p_2'' \ 4p_1'' + 14p_2'' > 20p_1'' + 10p_2''$$

(否则选择另两种更优)

解不等式即得答案。