2.3.4.5. Алгоритм решения ТЗ методом потенциалов

Метод потенциалов является глубокой модификацией симплексметода решения ЗЛП применительно к транспортной задаче замкнутого типа. Он позволяет, приняв в качестве начального, некоторое допустимое решение, получить оптимальное решение за конечное число итераций.

Потенциал – это число, характеризующее удобство расположения пункта производства или потребления относительно текущего плана и заданной матрицы стоимостей.

Алгоритм решения транспортной задачи методом потенциалов структурно таков.

- 1. Проверка условия баланса (2.35) и, при необходимости, балансировка задачи.
- 2. Предварительный этап, который включает построение начального опорного невырожденного плана и расчёт предварительных потенциалов.
- 3. Итерация, которая включает в себя проверку на оптимальность решения, определение вводимой в базис коммуникации и коммуникации выводимой из него.
 - 4. Корректировка значения целевой функции и матрицы потенциалов.
- 5. Структурная схема данного алгоритма представлена ниже, на рисунке 2.8.

Предварительный этап.

На этом этапе необходимо построить опорный план любым методом. План должен быть невырожденным. Для невырожденного опорного плана следует рассчитать потенциалы пунктов производства и пунктов потребления.

Потенциалы пунктов производства и потребления рассчитываются путём решения системы уравнений, которые решаются последовательно для базисных переменных плана.

$$\begin{cases}
 u_1 = 1, \\
 c_{i,j} = v_j - u_i \mid x_{i,j} > 0.
\end{cases}$$
(2.38, a)

$$\begin{cases} u_{1} = 1, \\ c_{i,j} = v_{j} - u_{i} \mid x_{i,j} > 0. \end{cases}$$

$$\begin{cases} u_{1} = 1, \\ c_{i,j} = v_{j} + u_{i} \mid x_{i,j} > 0. \end{cases}$$
(2.38, 6)

В формулах (2.38) переменная u_i – потенциалы пунктов производства, а v_i – потенциалы пунктов потребления. Всего имеем n + m неизвестных, а в опорном плане обычно n + m - 1 базисных переменных, соответствующих ненулевым коммуникациям.

Балансировка запаци Построение начального Вычисление потенциалов V_i и U_i Пока имеются Коррекция плана Х Коррекция

Рисунок 2.8 – Алгоритм метода потенциалов

Поэтому значение потенциала u_I задаётся принудительно, величина не имеет значения, традиционно это единица или нуль.

Очевидно, что при вырожденном плане уравнений "не хватает". Для приведения начального плана из вырожденного к невырожденному, в план коммуникаций X_0 добавляются так называемые ε -нули, обозначаемые в плане как 0^{ε} и считающиеся условно положительными. При этом, необходимо, чтобы

- из элементов плана нельзя было составлять замкнутые цепочки, и
- обеспечивался в той или иной последовательности обход поворотами на 90° всех элементов плана.

Необходимо добавлять столько є-нулей, сколько необходимо для получения невырожденного плана.

Постановка є-нуля задача несколько нетривиальная, как известная головоломка о ферзях под боем. Вручную задача решается достаточно просто, алгоритмическая же её реализация относится к классу "жадных"

комбинаторных задач, требующая для своего решения временных ресурсов, что является минусом метода при реализации.

После расчёта потенциалов пунктов производства и пунктов потребления, матрица стоимости пересчитывается по одной из нижеследующих формул

$$C_{i,j}^{(0)} = c_{i,j} - (v_j - u_i),$$
 (2.39, a)

$$C_{i,j}^{(0)} = v_j + u_i - c_{i,j}.$$
 (2.39, 6)

Причём, должно быть соответствие индексов a) и δ) между формулами определения потенциалов (2.38).

При таком способе расчётов для базисных элементов в матрице C_0 будут получены нули, что может служить для проверки правильности хода вычислений. Матрицу C_0 и последующие C_i можно трактовать как "разность потенциалов" по аналогии с электрическим полем.

Проверка условия оптимальности.

Критерий достижения оптимума формулируется по-разному в зависимости от расчётных формул, применяемых на предварительном этапе:

- для случая а) компоненты текущей матрицы C стоимости должны быть неотрицательны;
- для случая б) компоненты матрицы C неположительные.

Поэтому итерационная часть выполняется до достижения неотрицательности, случай (2.39), а, либо до неположительности, случай (2.39), б, содержимого матрицы C_i .

Итерация.

Определяется коммуникация, вводимая в план X. На неё указывает:

- для случая а) camый ompuцameльный компонент текущей матрицы C,
- для случая б) *самый положительный* компонент текущей матрицы C, который обозначим как δ . Этот элемент называется *направляющим*.

Соответствующая этой позиции коммуникация будет вводиться в план, обозначают её символом $\mathbf{0}^+$.

Построение кооректирующей цепочки.

Для определения коммуникации, выводимой из базиса, необходимо **построить** замкнутую цепочку, поворачивающую под углами в 90°. Цепочка в данной задаче играет роль разгрузочного цикла: товар как бы

перемещается в равном количестве по цепочке, где-то прибывая, где-то убывая — закон Ломоносова-Лавуазье для замкнутой модели должен выполняться, ибо опорный план есть решение Т3.

Алгоритм построения замкнутой цепочки

Используется метод вычёркивания, суть которого состоит в следующем.

- 1. Вычеркнуть строки текущего плана X, содержащие менее двух ненулевых элементов. К таковым относятся: собственно коммуникации $x_{i,j}$, коммуникация, вводимая в базис 0^+ и фиктивные коммуникации 0^ε , введённые ранее для обеспечения невырожденности плана.
- 2. Проделать такую же операцию по столбцам, не учитывая вычеркнутые ранее коммуникации
- 3. Выполнять пп. 1 и 2 до тех пор, пока удаётся выполнять вычёркивание.

Оставшиеся элементы образуют замкнутую цепочку.

Индексация цепочки.

Начиная с 0^+ , вводимого в базис, нечётные элементы цепочки отмечаются знаком "—" «минус», а чётные — знаком "+" «плюс». Направление индексации значения не имеет.

Выбор корректирующего элемента.

Из элементов цепочки выбирается минимальный элемент θ . В выборах участвуют и ε -нули 0^{ε} .

Пересчёт текущего значения целевой функции.

Можно, после коррекции плана коммуникаций, в следующем пункте настоящего алгоритма, воспользоваться формулой (2.32), но существует и более простая расчётная рекурсивная формула

$$L = L - |\delta| \cdot \theta \,. \tag{2.40}$$

Коррекция плана коммуникаций.

Построение улучшенного плана коммуникаций осуществляется согласно индексации цепочки: элемент θ прибавляется к элементам, имеющим индекс «плюс» и вычитается из элементов, имеющих знак «минус». Элементы плана X, **не попавшие** в цепочку, **не изменяются**.

Если несколько элементов цепочки, отмеченные знаком «минус» одинаковы и равны θ , то в ходе коррекции план может перестать быть

опорным (базисным). Чтобы этого не произошло *всем обнулившимся* элементам цепочки, кроме одного, присваивается значение 0^{ε} .

Назначение ε -нулей 0^{ε} выполняется произвольно, без какого-нибудь критерия. Вовлечение ε -нулей в цепочке делает возможным их использование в качестве корректирующего элемента, таким образом, распределение ε -нулей в матрице X, по мере выполнения итераций, меняется, и становится возможным восстановление первоначальной конфигурации ε -нулей.

Обнаружение этого факта при машинной реализации проблематично — необходимо "помнить" всю последовательность планов коммуникации. Корректировка конфигурации ε -нулей — тако же нетривиальная задача. Поэтому, при машинной реализации алгоритма метода потенциалов поступают следующим образом: вводят параметр, назначение которого — максимальное число итераций, в течение которых целевая функция L неизменна. Превышение числа итераций вызывает остановку вычислительного процесса и позволяет избежать зацикливания [26].

Пересчёт потенциалов и матрицы стоимостей.

В методе потенциалов матрица стоимостей изменяется синхронно с планом коммуникаций. Пересчитать потенциалы и матрицу стоимостей C можно, в принципе, используя формулы (2.35) и (2.36), так сказать, « в лоб», но существует и следующий алгоритм.

Алгоритм преобразования матрицы С

- 1. Отмечаются нули текущей матрицы C, которые соответствуют базисным элементам нового пересчитанного плана коммуникаций X.
 - 2. Вычёркивается направляющая строка.
- 3. Вычёркиваются столбцы, содержащие вычеркнутые базисные элементы.
- 4. Вычёркиваются строки, содержащие вычеркнутые при вычёркивании столбцов базисные элементы.
- 5. Пункты 3 и 4 повторяются циклически, пока элементы матрицы C, соответствующие базисным, окажутся либо не вычеркнуты ни разу, либо вычеркнуты двухкратно.
- 6. Ко всем элементам вычеркнутых строк необходимо прибавить $|\delta|$, а из всех столбцов вычесть $|\delta|$ (модуль "дельта").

Для контроля необходимо отметить, что элементы матрицы C, соответствующие базисным, должны остаться нулевыми.

На этом итерационную часть можно считать законченной.

Демонстрационный пример.

Используем уже известное нам условие.

	B_1	B_2	B_3	B_4	
A_1	7	8	1	2	160
A_2	4	5	9	8	140
A_3	9	2	3	6	170
	120	50	190	110	

Условие баланса для неё выполнено изначально, как мы установили выше, балансировка не потребовалась. Используем в качестве опорного плана невырожеднный план, построенный нами ранее по методу минимальной стоимости.

Выполним расчёт потенциалов для этого плана, руководствуясь формулой (2.38) и расположением элементов опорного плана.

$$u_1 = 1;$$
 $c_{13} = 1 = v_3 - u_1 = v_3 - 1; v_3 = 2;$
 $c_{33} = 3 = v_3 - u_3 = 2 - u_3; u_3 = -1;$
 $c_{32} = 2 = v_2 - u_3 = v_3 + 1; v_2 = 1;$
 $c_{34} = 6 = v_4 - u_3 = v_4 + 1; v_4 = 5;$
 $c_{24} = 8 = v_4 - u_2 = 5 - u_2; u_2 = -3;$
 $c_{21} = 4 = v_1 - u_2 = v_1 + 3; v_1 = 1.$

Порядок перемещения по опорному плану в ходе расчёта потенциалов следующий $(1, 3) \Rightarrow (3, 3) \Rightarrow (3, 2) \Rightarrow (3, 4) \Rightarrow (2, 4) \Rightarrow (2, 1)$, он показан индексами на опорном плане.

Это не единственно возможный порядок расчёта потенциалов. После (3, 3) он мог быть и таким: $(3, 3) \Rightarrow (3, 4) \Rightarrow (2, 4) \Rightarrow (2, 1), \Rightarrow (3, 2)$. Важно, чтобы на каждом этапе расчётов в уравнении (2.38) присутствовала только одна неизвестная.

Пересчитаем матрицу C в матрицу C_0 , используя формулу (2.39), а.

$$c_{11} = 7 - (1 - 1) = 7;$$
 $c_{21} = 4 - (1 + 3) = 0;$ $c_{31} = 9 - (1 + 1) = 7;$ $c_{12} = 8 - (1 - 1) = 8;$ $c_{22} = 5 - (1 + 3) = 1;$ $c_{32} = 2 - (1 + 1) = 0;$ $c_{13} = 3 - (2 - 1) = 0;$ $c_{23} = 9 - (2 + 3) = 4;$ $c_{33} = 3 - (2 + 1) = 0;$ $c_{14} = 2 - (5 - 1) = -2;$ $c_{24} = 8 - (5 + 3) = 0;$ $c_{34} = 6 - (5 + 1) = 0.$

Порядок пересчёта здесь не существенен. Видно, что среди элементов матрицы C_0 присутствуют отрицательные, поэтому необходимо улучшать текущий план.

Итерация 1.

Направляющий элемент наибольший отрицательный $c_{1,4}=-2$. Отмечаем в плане X_0 соответствующий элемент как $\mathbf{0}^+$, строим замкнутую цепочку и индексируем её.

	7	8	$\bar{0}$	-2	x_{l}				160	0+	
$C_0 =$	$\overline{0}$	1	4	$\bar{0}$		$X_0 =$	120			20	<i>X</i> ₃
	7	$\bar{0}$	$\bar{0}$	0	<i>X</i> ₃			50	30 ⁺	90-	
		\times_4	x_2		_		\times_{I}	\times_2			

Порядок вычёркивания показан крестиками с номерами, вычеркнутые строки и столбцы выделены фоном. Видно, что "белые" элементы образуют цепочку, и больше вычёркиваний произвести не удастся.

Выполняем индексацию от 0^+ хоть влево, хоть вниз, и выбираем элемент для коррекции $\theta = \min\{160,90\} = 90$. Текущее значение функции цели при этом станет, согласно (2.40)

$$L = 1530 - |-2| \times 90 = 1350.$$

Соответствующий этой функции план X_I , полученный после коррекции, показан ниже. Пересчитаем матрицу C. Обозначим «крышками» сверху нули, соответствующие базисным элементам нового плана (важно!!!). Порядок вычёркивания будем обозначать крестиком с цифрой — номером вычёркивания, а вычеркнутые строки и столбцы обозначать фоном.

Прибавляем $|\delta|=2$ к вычеркнутым строкам и вычитаем от вычеркнутых столбцов. Очевидно, что, в ходе этой операции, дважды вычеркнутые и ни разу не вычеркнутые элементы останутся неизменными.

	9	8	0	0
$C_I =$	0	- 1	2	0
	9	0	0	2

			70	90
$X_I =$	120			20
		50	120	

Так как среди элементов матрицы C_I имеются отрицательные числа, то решение не закончено.

Итерация 2.

Направляющий элемент в C_I имеет координаты (2,2). Помещаем $\mathbf{0}^+$ в соответствующую позицию плана X_I и приступаем к вычёркиванию. Получающаяся при этом цепочка имеет вид неправильной восьмёрки, проход по которой показан стрелками.

Индексация позволяет выбрать направляющий элемент $\theta = \min\{50,70,20\} = 20$. Целевая функция при этом составит

$$L = 1350 - |-1| \times 20 = 1330$$

а соответствующий скорректированный план X_2 показан ниже. Пересчитаем теперь матрицу C_1 , предварительно отметив базисные элементы плана X_2 в C_1 .

Вычеркнем 2-ю строку и 1-й столбец, вычитая и прибавляя I, получим матрицу C_2 , которая с соответствующим планом X_2 показана ниже.

	8	8	0	0
$C_2 =$	0	0	3	1
	8	0	0	2

			50	110
$X_2 =$	120	20		
		30	140	

Полученный план совместно со значением целевой функции, есть оптимальное решение транспортной задачи. Сравнив полученный результат с опорным планом, построенным по методу Фогеля, заметим, что оба решения полностью совпадают.

2.3.3.6. Алгоритм решения ТЗ венгерским методом [17, 25]

Данный метод был предложен в 1931 г. Р. Эгервари, венгром по национальности, и 1953 г. подвёргся модификации Г. Куном. В честь родины авторов получил своё наименование. Точнее, этим названием

обозначается группа методов. Задача представляется общепринятой замкнутой моделью (2.32) – (2.34).

Метод базируется на ряде определений.

1. Суммарной невязкой плана называют величину, определяемую выражением

$$\Delta = \sum_{i=1}^{m} a_i + \sum_{j=1}^{n} b_j - 2 \cdot \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i,j}.$$
 (2.40)

2. Величины

$$\delta_{j} = b_{j} - \sum_{i=1}^{m} x_{i,j}$$

$$\delta_{i} = a_{i} - \sum_{i=1}^{m} x_{i,j}$$
(2.41)

И

$$\delta_i = a_i - \sum_{i=1}^m x_{i,j} \tag{2.42}$$

называют, соответственно, невязками по столбиам и невязками по строкам. Поддаётся выводу и следующее выражение

$$\Delta = \sum_{i=1}^{m} \delta_i + \sum_{j=1}^{n} \delta_j. \tag{2.43}$$

- 3. Столбцы и строки матрицы C, отмеченные в ходе работы алгоритма символом «плюс» называются выделенными.
- 4. Нулевой элемент матрицы C ($c_{i,j} = 0$), для которого в плане Xсуществует коммуникация ($x_{i,j} \ge 0$), называется существенным нулём матрицы C.

Алгоритм венгерского метода

Граф-схема алгоритма представлена на рисунке 2.8. Структурно алгоритм состоит из следующих пунктов.

- 1. Предварительный этап.
- 2. Проверка оптимальности полученного плана.
- 3. Итерационная часть.

В свою очередь, итерационная часть состоит из трёх этапов, которым предшествует этап разметки:

- 1-й этап поисковый;
- 2-й этап построение цепочки и коррекция плана;

• 3-й этап – выполнение эквивалентных преобразований матрицы С. Итерация, после разметки, начинается первым этапом, а оканчивается вторым, причём в процессе одной и той же итерации первый и третий

этапы могут многократно повторяться.

Рисунок 2.9 – Алгоритм венгерского метода

Предварительный этап.

Состоит в построении начального плана X_0 и определении его невязок.

- В каждом столбце матрицы C отыскивается минимальный элемент, который затем вычитается из всех элементов этого столбца. В результате, матрица C преобразуется в матрицу C.
- Проделав аналогичную операцию над строками в матрице C, получим матрицу C_0 .
- Для нулевых элементов матрицы C_0 , перемещаясь по столбцам сверху вниз и слева направо, заполним план X_0 . Порядок определения коммуникаций, коррекции векторов производства и потребления рассмотрен нами ранее при построении начальных опорных планов.
- Вычисляется суммарная невязка (2.40) полученного плана.

Заметим, что невязки по столбцам (2.41) и строкам (2.42) получаются автоматически в ходе построения начального плана, а суммарную невязку проще получить, используя (2.43).

В отличие от опорных планов метода потенциалов, планы венгерского метода таковыми не являются (смотри свойства опорных планов).

Проверка условия окончания.

Если суммарная невязка Δ текущего плана X равна нулю, то полученный план является оптимальным. Необходимо рассчитать целевую функцию (2.32).

ИТЕРАЦИОННАЯ ЧАСТЬ АЛГОРИТМА.

Разметка

Разметка текущей матрицы C выполняется в начале итерации и сохраняется до её конца с теми изменениями, которые вносятся в неё по мере выполнения алгоритма.

- Выделить знаком «плюс» j-е столбцы матрицы C, обладающие нулевой невязкой $\delta_i = 0$.
- Выделить чертой сверху существенные нули матрицы С.

Этап 1 – этап поиска.

 $\it Область \ noucka$: невыделенная часть матрицы $\it C-$ невыделенные столбцы и строки.

Цель поиска: найти в невыделенной части матрицы C нуль, стоящий в строке, которой в плане X соответствует положительная невязка $\delta_i \ge 0$.

Поисковый этап заканчивается одним из случаев:

- если все нули матрицы C находятся в выделенной части, то необходимо перейти к этапу 3 эквивалентных преобразований матрицы C;
- поиск завершился успешно, найден ноль в строке с положительной невязкой. В этом случае далее выполняется этап 2 построение цепочки и коррекция плана коммуникаций.

В ходе поиска невыделенная часть матрицы C просматривается по столбцам сверху вниз а столбцы — слева направо ("По-китайски").

Пусть среди элементов найден ноль. Его отмечают апострофом (штрихом) и анализируют невязку по строке δ_i .

Если невязка δ_i положительна, то этот ноль со штрихом является искомым, а поиск заканчивается успешно.

Если невязка δ_i нулевая, то текущая стока выделяется знаком «плюс», и просматривается по местам её пересечения с выделенными столбцами. Если в месте пересечения стоит существенный нуль, то его обозначают звёздочкой (*), а знак выделения над столбцом уничтожают, обводя кружком или заключая в скобки. Столбец становится невыделенным и делается доступным для поиска. Поиск далее продолжают по этому столбцу со снятым выделением.

Этап 2 – этап построения цепочки и коррекции плана.

Цепочка *не замкнута*, так как существуют невязки, которые, в замкнутой модели, фактически означают наличие неудовлетворённого спроса и не вывезенного товара. За счёт последних и будет пополняться план коммуникаций.

- 1. Цепочка составляется из нулей со штрихом (0) и нулей со звёздочками (0), содержит нечётное число элементов, и, в принципе, может состоять и из одного нуля со штрихом.
- 2. Цепочка начинается от последнего найденного нуля со штрихом 0' к нулю со звездой 0^* по столбцу, далее, по направлению под 90° к предыдущему, по строке к нулю со штрихом и так далее. На нечётных местах цепочки будут стоять нули со штрихом, а на чётных нули со звёздами. Цепочка начинается в строке с положительной невязкой и заканчивается в столбце с положительной невязкой нулём со штрихом.
 - 3. Выбирается корректирующий элемент

$$\theta = \min \left\{ S_i^{HAYAJA}, S_j^{KOHIIA}, x_{i,j}^* \right\}, \tag{2.44}$$

где $\delta_i^{\it HAЧAЛA}$ — невязка строки начала цепочки; $\delta_j^{\it KOHUA}$ — невязка столбца конца цепочки; $x_{i,j}^*$ — элементы, стоящие на чётных местах цепочки.

4. После выбора θ текущий план преобразуется по алгоритму:

$$\mathbf{x}_{i,j} = \begin{cases} \mathbf{x}_{i,j}, & \text{не входит в цепочку,} \\ \mathbf{x}_{i,j}^{\nabla} + \mathbf{\theta}, & \text{нечётный элемент цепочки,} \\ \mathbf{x}_{i,j}^{*} - \mathbf{\theta}, & \text{чётный элемент цепочки.} \end{cases}$$
 (2.45)

5. Рассчитываются Δ , δ_j и δ_j по соответствующим формулам, удобным рассчитывающему (2.40) – (2.43).

Этап 3 – этап эквивалентного преобразования матрицы С.

- 1. Среди невыделенных элементов матрицы C выбирается минимальный положительный (а другой и быть не может, но так в первоисточнике) элемент h > 0. Этот элемент называется корректирующим.
- 2. Корректирующий элемент вычитается от невыделенных строк матрицы ${\it C}$.
- 3. Корректирующий элемент прибавляется к выделенным столбцам матрицы C.

При этом, очевидно, выделенные однократно (сиречь, стоящие в выделенной строке либо в выделенном столбце) элементы не изменятся, двукратно выделенные — увеличатся на величину h, а в невыделенной части матрицы появится хотя бы один нуль, который, в дальнейшем, буде обработан алгоритмом поиска на 1-м этапе.

Замечания по методу Эгервари.

- 1. В ходе работы алгоритма не используются опорные планы, поэтому зацикливание при машинной реализации не возникает.
- 2. По величине суммарной невязки Δ можно грубо (наихудший из возможных ход решения) оценить число итераций до получения оптимального решения:

$$N_{OCT} \le \frac{\Delta}{2}$$
.

При получения последней формулы учтено, что при записи в план коммуникаций некоторого числа κ суммарная невязка текущего плана Δ уменьшается на величину, равную $2 \times \kappa$.

Предположив, что за каждую итерацию план коммуникаций помещается единица товара, придём к обсуждаемой формуле.

Демонстрационный пример. Решить транспортную задачу:

		B_I	B_2	B_3	B_n	
	A_I	7	8	1	2	160
	A_2	4	5	9	8	140
	A_3	9	2	3	6	170
,		120	50	190	110	

Задача сбалансирована, модель замкнутая.

Предварительный этап.

Минимальные элементы в столбцах матрицы C показаны фоном. Их вычитание позволяет получить матрицу C.

	3	6	0	0		3	6	0	0
C' =	0	3	8	6	$C' = C_0 =$	0	3	8	6
	5	0	2	4		5	0	2	4

Так как в каждой строчке есть по минимальному элементу — нулю (серый фон), то матрицы C и C_0 совпадут.

Для данной матрицы C_0 по её нулям строим начальный план X_0 , показанный ниже справа.

Суммарная невязка этого плана, согласно (2.43) составляет

$$\Delta = 30 + 110 + 20 + 120 = 280$$

поэтому итерационная часть алгоритма неизбежна.

1-я итерация.

Все почти нули матрицы существенные, обозначим их как $\bar{0}$. Выделим также 1-й и 2-й столбцы как имеющие нулевые невязки.

1-й этап Поиск

Отмечаем первый встреченный невыделенный нуль с координатами (1,3) штрихом. Его невязка по строке – нулевая, поэтому строка отмечается плюсом. На этой строке нет существенных нулей, стоящих в выделенных столбиах.

В невыделенной части матрицы (серая) нет нулей, поэтому этап поиска закончился неудачей, необходимо осуществлять эквивалентные преобразования матрицы C_0 .

3-й этап.

В невыделенной (серой) части матрицы минимальный элемент h=2. Прибавим и отнимем его согласно разметке. Получим матрицу C_1 , отметим, что вся индексация переносится. В её невыделенной части образовался нуль, снова переходим к этапу поиска.

Поиск.

Отмечаем штрихом нуль с координатами (3, 3). Его построчная невязка $\delta_j = 120$ — положительна, следовательно, этап поиска завершился успешно. Можно строить цепочку.

2-й этап.

Цепочка состоит из одного элемента. Выберем элемент коррекции:

$$\theta = \min \{30, 120\} = 30.$$

Скорректируем план и невязки:

$$\Delta = \Delta - 2 \times \theta = 280 - 60 = 220$$
.

Невязка положительна, решение не закончено. План X_1 представлен ниже

2-я итерация.

Размечем матрицу C_{l} и приступаем к поиску.

1-й этап, поисковый.

Выделим штрихом нуль с координатами (1, 4). Он стоит в строке с нулевой невязкой, поэтому строку выделяем плюсом. Просматриваем её пересечения с выделенными столбцами.

На пересечении с выделенным столбцом — существенный нуль, отмечаем его звёздочкой, снимаем выделение столбца, заключая его в скобки. Продолжаем поиск в третьем столбце, отмечаем нуль (3, 3) штрихом. Его невязка положительна, этот ноль — искомый, этап поиска закончился удачно.

2-й этап.

Цепочка из элементов матрицы C_I есть последовательность $(3,3) \Rightarrow (1,3) \Rightarrow (1,4)$ выделена в матрице серым. Выберем корректирующий элемент: невязка строки начала – 90, невязка столбца конца цепочки – 110, $X(\bar{0}^*) = 160$.

$$\theta = \min \{90, 110, 160\} = 90.$$

Выполним изменение элементов, соответствующих цепочке в плане X_1 , преобразуя его в X_2 .

Суммарная невязка этого плана составит

$$\Delta = 220 - 2 \times 90 = 40$$
.

Необходимо провести очередную итерацию.

					δ_i
			70	90	0
$X_2 =$	120				0 20
		50	120		0
δ_{j}	0	0	0	20	