Московский физико-технический институт

Лабораторная работа 5.1.1

Фотоэффект

группа Б05-007 Статкевич Екатерина

Цель работы

Исследовать зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, что позволяет вычислить величину постоянной Планка.

Теоретическое введение

Фотоэффект — явление испускания электронов фотокатодом, облучаемым светом, Это явление хорошо объясняется фотонной теорией света. Взаимодействие монохроматического света с веществом можно описывать как взаимодействие с веществом частиц, называемых фотонами, которые обладают энергией $\hbar\omega$ и импульсом $\hbar\omega/c$. При столкновении фотона с электроном фотокатода энергия отона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением

$$\hbar\omega = E_{max} + W \tag{1}$$

Рис. 1: Зависимость фототока от напряжения на аноде фотоэлемента

Здесь E_{max} — максимальная кинетическая энергия электрона после выхода из фотокатода, W — работа выхода электрона из катода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывен — он простирается от нуля до E_{max} .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подается задерживающий (V<0) или ускоряющий (V>0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения: все испущенные электроны попадают на анод.

При задерживающих потенциалах на

анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода. Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V_0 очевидным соотношением $E_{max}=eV_0$. Тогда примет вид, называемый уравнением Эйнштейна:

$$eV_0 = \hbar\omega - W \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить, какова функциональная зависимость I(V). Расчет для простейшей геометрии — плоский катод, освещаемый светом, и параллельный ему анод — приводит к зависимости

$$\sqrt{I} \propto V_0 - V \tag{3}$$

т. е. корень квадратный из фототока линейно зависит от запирающего напряжения. Эта зависимость хорошо описывает экспериментальные данные.

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света ω , лежащих в видимой области спектра.

С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания V_0 при разных частотах света и строится зависимость $V_0(\omega)$, которая, как это следует из , должна иметь вид

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{4}$$

Потенциал запирания V_0 для любого катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{5}$$

Как показывает формула, угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества, однако, зависит величина фототока, работа выхода W и форма кривой I(V). Все это определяет выбор пригодных для опыта катодов.

Рис. 2: Зависимость запирающего потенциала от частоты света

Ход работы

Подготовка

Градуировка монохроматора

Сначала выполним градуировку монохроматора. Проведем серию измерений для линий спектра неона, снимая зависимость длины волны света от параметра θ барабана монохроматора. Результаты занесем в Таблицу и построим График зависимости, профитировав функцию $\lambda(\theta)$ многочленом второй степени в силу нелинейности.

λ ,	5331	5341	5401	5852	5882	5945	5975	6030
θ , °	1804	1806	1848	2108	2128	2154	2170	2196
λ ,	6074	6096	6143	6164	6217	6267	6305	6334
θ , °	2216	2226	2246	2256	2278	2292	2322	2336
λ ,	6383	6402	6507	6533	6599	6678	6717	6929
θ , °	2344	2348	2386	2398	2420	2446	2458	2536
λ ,	7032							
θ , °	2548							

Таблица 1: Измерения для градуировки монохроматора

Исследование зависимости фототока от величины запирающего потенциала

Для первой выбранной длины волны ($\theta=2464^\circ$) проведем измерения во всем спектре возможных напряжений, а для остальных — лишь при достаточно малых значениях тока и напряжения (т.е. вблизи потенциала запирания, где искомая зависимость описывается формулой. Согласно этой формуле , построим графики зависимости в координатах $\sqrt{I}(V)$ и аппроксимируем линейные участки прямой.

Щель на фотоэлементе: $0.65~\mathrm{mm}~\Theta = 2464^{\circ}$

V, V	6.327	5.846	5.357	4.830	4.368	3.504	2.805	2.165
$I * 10^3$	497	487	473	449	414	297	158	94
V, V	1.715	1.276	0.952	0.738	0.571	0.449	0.346	0.078
$I * 10^{3}$	63	34	18	11	5	2	-3	-7
V, V	-0.113	-0.234	-0.542	-1.059	-1.910	-2.990		
$I * 10^{3}$	-9	-11	-12	-14	-15	-17		

Таблица 2: Измерения для градуировки монохроматора

Теперь проведем 5 серий измерений зависимости фототока от напряжения для разных длин волн падающего света, изменяя на монохроматоре параметр θ и переводя его в длину волны с помощью градуировки. Ток приведен в безразмерных единицах в силу работы установки.

	$V * 10^3, V * 10^3$	1				l			
Ì	$I * 10^{3}$	-10	-9	3	18	35	71	134	198

Таблица 3: $\Theta=2548^\circ$

$V * 10^3, V * 10^3$	1485	1070	687	366	23	-183	-421
$I * 10^3$	174	98	49	24	3	-6	-10

Таблица 4: $\Theta=2348^\circ$

			'					
	$V * 10^3, V * 10^3$	-407	-180	18	201	507	985	1490
ĺ	$I * 10^{3}$	-8	-2	12	23	50	105	167

Таблица 5: $\Theta=2278^\circ$

$V * 10^3, V * 10^3$	1490	1023	590	257	23	-145	-422
$I * 10^{3}$	132	83	45	19	7	0	-10

Таблица 6: $\Theta=2108^\circ$

$V * 10^3, V * 10^3$	-422	-147	97	315	829	1413
$I * 10^3$	-8	3	11	20	46	78

Таблица 7: $\Theta=1804^\circ$

Экстраполируя прямую к нулю, получим значения потенциала запирания для каждой серии измерения (длины волны). Результаты сведем в Таблицу.

Таблица 8: Зависимость запирающего напряжения от частоты

λ, \mathring{A}	7032	6402	6217	5852	5331
ω ,	2.67	2.93	3.02	3.21	3.52
V_0 , V	0.45	0.67	0.65	0.77	0.79

Из наклона прямой согласно получаем значение постоянной Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e}\hbar \approx (0,99 \pm 0,21)10^{-34}$$
 (6)

В пределах погрешности это согласуется с табличным значением $\hbar=1,05410^{-34}$. Нетрудно также оценить красную границу спектра:

$$\Lambda_k = \frac{2\pi c}{\omega} = (9, 9 \pm 3, 4) * 10^3 \mathring{A}$$

И найти работу выхода

$$W = \hbar\omega = 1.03 \pm 0.34$$

Вывод

Таким образом, в ходе выполнения работы мы убедились в явлении фотоэффекта и с помощью уравнения Эйнштейна измерили постоянную Планка, а также оценили красную границу спектра и работу выхода для нашей установки. Результаты вполне согласуются с табличными.