

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) **DE 198 05 703 A 1**

(51) Int. Cl.⁶:

A 61 K 7/075

(21) Aktenzeichen: 198 05 703.2
(22) Anmeldetag: 6. 2. 98
(43) Offenlegungstag: 12. 8. 99

(71) Anmelder:

Henkel KGaA, 40589 Düsseldorf, DE

(72) Erfinder:

Kahre, Jörg, Dr., 42799 Leichlingen, DE; Boyxen, Norbert, 47906 Kempen, DE; Kosboth, Celia, 47057 Duisburg, DE; Goebels, Dagmar, 46562 Voerde, DE; Seipel, Werner, 40723 Hilden, DE

(56) Entgegenhaltungen:

DE	1 95 39 846 C1
DE	43 08 794 C1
EP	07 73 018 A1
WO	97 47 284 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Haarnachbehandlungsmittel

(57) Es werden Haarnachbehandlungsmittel vorgeschlagen, enthaltend,
(a) Esterquats,
(b) Alkyl- und/oder Alkenyloligoglykoside,
(c) Partialglyceride und gegebenenfalls
(d) Fettalkohole und/oder
(e) Fettalkoholethoxylate.

Die Zubereitungen verleihen Haaren einen angenehmen Weichgriff und vermeiden die statische Aufladung zwischen den Fasern.

DE 198 05 703 A 1

BEST AVAILABLE COPY

DE 198 05 703 A 1

Beschreibung

Gebiet der Erfindung

- 5 Die Erfindung betrifft Mittel zur Nachbehandlung von Haaren, enthaltend Esterquats, Alk(en)ylglykoside und Partialglyceride sowie die Verwendung der Gemische als Haarbehandlungsmittel.

Stand der Technik

- 10 Durch häufiges Waschen und Shampooieren sowie gestiegene Umwelteinflüsse ist insbesondere langes Haar heutzutage einer besonderen Belastung ausgesetzt. Nachbehandlungsmittel, die pflegende Stoffe enthalten, versuchen hier Abhilfe zu schaffen. Moderne Konditionermittel, Kuren und Spülungen enthalten zu diesem Zweck kationische Tenside, vorzugsweise solche vom Esterquat-Typ, die den Haaren einen angenehmen Weichgriff verleihen und die statische Aufladung zwischen den Fasern herabsetzen, wodurch die Kämmarbeit verminder wird. Obwohl Esterquats bereits über
15 sehr gute anwendungstechnische Eigenschaften verfügen, besteht im Markt doch das Bedürfnis nach einem ständig verbesserten Leistungsprofil. Demzufolge hat die Aufgabe der Erfindung darin bestanden, Haarnachbehandlungsmittel auf Basis von Esterquats zur Verfügung zu stellen, welche sich insbesondere durch verbesserte Griffegenschaften auszeichnen sollten.

20 Beschreibung der Erfindung

Gegenstand der Erfindung sind Haarnachbehandlungsmittel, enthaltend

- 25 (a) Esterquats,
 (b) Alkyl- und/oder Alkenyloligoglykoside,
 (c) Partialglyceride und gegebenenfalls
 (d) Fettalkohole und/oder
 (e) Fettalkoholethoxylate.

- 30 Überraschenderweise wurde gefunden, daß der Zusatz von Mischungen aus Alkyl- und/oder Alkenyloligoglucosiden und Partialglyceriden die Griffegenschaften von Haarnachbehandlungsmitteln, die als kationische Tenside Esterquats enthalten, wesentlich verbessern. In diesem Zusammenhang haben sich insbesondere Mischungen von Alkyloligoglucosiden und Ölsäuremonoglyceriden als wirksam erwiesen, welche unter der Marke Lamesoft® PO 65 im Handel erhältlich sind. Die vorteilhaften Eigenschaften der Zusammensetzungen lassen sich weiter verbessern, wenn Fettalkohole und/
35 Fettalkoholethoxylate mitverwendet werden.

Esterquats

- 40 Unter der Bezeichnung "Esterquats" werden im allgemeinen quaternierte Fettsäuretriethanolaminestersalze verstanden. Es handelt sich dabei um bekannte Stoffe, die man nach den einschlägigen Methoden der präparativen organischen Chemie erhalten kann. In diesem Zusammenhang sei auf die Internationale Patentanmeldung WO 91/01295 (Henkel) verwiesen, nach der man Triethanolamin in Gegenwart von unterphosphoriger Säure mit Fettsäuren partiell verestert, Luft durch leitet und anschließend mit Dimethylsulfat oder Ethylenoxid quaterniert. Aus der Deutschen Patentschrift DE-C1 43 08 794 (Henkel) ist überdies ein Verfahren zur Herstellung fester Esterquats bekannt, bei dem man die Quaternierung von Triethanolaminestern in Gegenwart von geeigneten Dispergatoren, vorzugsweise Fettalkoholen, durchführt. Übersichten zu diesem Thema sind beispielsweise von R. Puchta et al. in Tens. Surf. Det., 30, 186 (1993), M. Brock in Tens. Surf. Det. 30, 394 (1993), R. Lagerman et al. in J. Am. Oil. Chem. Soc., 71, 97 (1994) sowie I. Shapiro in Cosm. Toil. 109, 77 (1994) erschienen. Die quaternierten Fettsäuretriethanolaminestersalze folgen der Formel (I).

- 55 in der R^1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 und R^3 unabhängig voneinander für Wasserstoff oder R^1CO , R^4 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine $(\text{CH}_2\text{CH}_2\text{O})_q\text{H}$ -Gruppe, m , n und p in Summe für 0 oder Zahlen von 1 bis 12, q für Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische C_{12/18}-Kokosfettsäuren und insbesondere teilgehärtete C_{16/18}-Talg- bzw. Palmfettsäuren sowie elaidinsäurereiche C_{16/18}-Fettsäureschnitte eingesetzt.
60 Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1.1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1.2 : 1 bis 2.2 : 1, vorzugsweise 1.5 : 1 bis 1.9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestern mit einem durchschnittlichen Veresterungsgrad
65

von 1.5 bis 1.9 dar und leiten sich von technischer C_{16/18}-Talg- bzw. Palmitinsäure (Indexzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quaternierte Fettsäuretriethanolaminestersalze der Formel (I) als besonders vorteilhaft erwiesen, in der R¹CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R² für R¹CO, R³ für Wasserstoff, R⁴ für eine Methylgruppe, m, n und p für 0 und X für Methylsulfat steht. Neben den quaternierten Fettsäuretriethanolaminestersalzen kommen als Esterquats ferner auch quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (II) in Betracht.

in der R¹CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R² für Wasserstoff oder R¹CO, R⁴ und R⁵ unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropylalkylaminen der Formel (III) zu nennen.

in der R¹CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R² für Wasserstoff oder R¹CO, R⁴, R⁶ und R⁷ unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. Hinsichtlich der Auswahl der bevorzugten Fettsäuren und des optimalen Veresterungsgrades gelten die für (I) genannten Beispiele auch für die Esterquats der Formeln (II) und (III). Üblicherweise gelangen die Esterquats in Form 50 bis 90 Gew.-%iger alkoholischer Lösungen in den Handel, die bei Bedarf problemlos mit Wasser verdünnt werden können.

Alkyl- und/oder Alkenyloligoglykoside

Alkyl- und Alkenyloligoglykoside stellen bekannte nichtionische Tenside dar, die der Formel (IV) folgen,

R⁸O-[G]_p (IV)

in der R⁸ für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP-A1 030 12 98 und WO 90/03977 verwiesen. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (IV) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R⁸ kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C₈-C₁₀ (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C₈-C₁₈-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C₁₂-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C_{9/11}-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R⁸ kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C_{12/14}-Kokosalkohol mit einem DP von 1 bis 3.

Partialglyceride

Partialglyceride, also Monoglyceride, Diglyceride und deren technische Gemische können herstellungsbedingt noch geringe Mengen Triglyceride enthalten. Die Partialglyceride folgen vorzugsweise der Formel (V).

(V)

- in der R^9CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen, R^{10} und R^{11} unabhängig voneinander für R^9CO oder OH und die Summe $(m+n+p)$ für 0 oder Zahlen von 1 bis 100, vorzugsweise 5 bis 25 steht, mit der Maßgabe, daß mindestens einer der beiden Reste R^{10} und R^{11}OH bedeutet. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden technische Laurinsäureglyceride, Palmitinsäureglyceride, Stearinsäureglyceride, Isostearinsäureglyceride, Ölsäureglyceride, Behensäureglyceride und/oder Erucasäureglyceride eingesetzt, welche einen Monoglyceridanteil im Bereich von 50 bis 95, vorzugsweise 60 bis 90 Gew.-% aufweisen.

20 Fettalkohole und Fettalkoholethoxylate

Unter Fettalkoholen bzw. Fettalkoholethoxylaten sind primäre aliphatische Alkohole sowie deren Ethylenoxidaddukte zu verstehen, die der Formel (VI) folgen,

- in der R^{12} für einen aliphatischen, linearen oder verzweigten Kohlenwasserstoffrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen und z für 0 oder Zahlen von 1 bis 20 steht. Typische Beispiele für geeignete Fettalkohole sind Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, 30 Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z. B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettalkohol. Als Fettalkoholethoxylate können die Anlagerungsprodukte von 1 bis 20, vorzugsweise 2 bis 10 Mol Ethylenoxid an die oben genannten primären Alkohole eingesetzt werden, wobei diese herstellungsbedingt sowohl eine eingegrenzte wie konventionell breite Homologenverteilung aufweisen können. Bevorzugt ist der Einsatz von Kokosfettalkoholethoxylaten mit 1 bis 5 Mol Ethylenoxid.

40 Haarnachbehandlungsmittel

In einer bevorzugten Ausführungsform der Erfindung enthalten die Haarnachbehandlungsmittel

- 45 (a) 0,1 bis 10, vorzugsweise 1 bis 3 Gew.-% Esterquats,
- (b) 0,1 bis 10, vorzugsweise 1 bis 5 Gew.-% Alkyl- und/oder Alkenyloligoglykoside,
- (c) 0,1 bis 10, vorzugsweise 1 bis 5 Gew.-% Partialglyceride,
- (d) 0 bis 10, vorzugsweise 1 bis 5 Gew.-% Fettalkohole und
- (e) 0 bis 10, vorzugsweise 1 bis 5 Gew.-% Fettalkoholethoxylate,

50 mit der Maßgabe, daß sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.

Gewerbliche Anwendbarkeit

55 Die erfindungsgemäßen Zubereitungen verleihen Haaren einen angenehmen Weichgriff und vermindern die statische Aufladung. Ein weiterer Gegenstand der Erfindung betrifft daher die Verwendung von Mischungen, enthaltend

- 60 (a) Esterquats,
- (b) Alkyl- und/oder Alkenyloligoglykoside,
- (c) Partialglyceride und gegebenenfalls
- (d) Fettalkohole und/oder
- (e) Fettalkoholethoxylate

65 zur Herstellung von Haarnachbehandlungsmitteln.

Die erfundungsgemäßen Zubereitungen, wie beispielsweise Haarkonditioner, Haarspülungen, Haarkuren und dergleichen können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Stabilisatoren, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, biogene Wirkstoffe, Antischuppenmittel, Filmbildner, Konservierungsmittel, Hydrotrope, Solubilisatoren, UV-Lichtschutzfilter, Parfümöl, Farbstoffe und dergleichen enthalten.

Typische Beispiele für geeignete milde, d. h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.

Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C₆-C₂₂-Fettsäuren mit linearen C₆-C₂₂-Fettalkoholen, Ester von verzweigten C₆-C₁₃-Carbonsäuren mit linearen C₆-C₂₂-Fettalkoholen, Ester von linearen C₆-C₂₂-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z. B. Propylenglycol, Dimierdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C₆-C₁₀-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C₆-C₁₈-Fettsäuren, Ester von C₆-C₁₀-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoësäure, Ester von C₂-C₁₂-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare C₆-C₂₂-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoësäure mit linearen und/oder verzweigten C₆-C₂₂-Alkoholen (z. B. Finsolv® TN), Dialkylether, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconole und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht.

Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:

- (1) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
- (2) C_{12/18}-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
- (3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
- (4) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
- (5) Polyol- und insbesondere Polyglycerinester, wie z. B. Polyglycerinpolyricinoleat, Polyglycerinpoly-12-hydroxystearat oder Polyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
- (6) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
- (7) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C_{6/22}-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipentaerythrit, Zuckerkohole (z. B. Sorbit), Alkylglucoside (z. B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucoside (z. B. Cellulose);
- (8) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate;
- (9) Wollwachsalkohole;
- (10) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
- (11) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 11 65 574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin sowie
- (12) Polyalkylenglycole.

Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C_{12/18}-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE-PS 20 24 051 als Rückfettungsmittel für kosmetische Zubereitungen bekannt.

Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinat, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinat, beispielsweise das Kokosacylarninopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C_{8/18}-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO₃H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkylaminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugt

ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacrylaminopropionat und das C_{12/18}-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.

Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.

Als Perlglanzwachse kommen beispielsweise in Frage: Alkylen glycolester, speziell Ethylenglycoldistearat; Fettsäure-alkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettkoholen mit 6 bis 22 Kohlenstoffatomen, 10 speziell langketige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettkohole, Fettketone, Fettaldehyde, Fetteether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.

15 Als Konsistenzgeber kommen in erster Linie Fettkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxyethylcellulose und Hydroxyethylcellulose, ferner höhernmolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z. B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.

Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z. B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinyl-imidazol-Polymere, wie z. B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z. B. Amidomethicone, Copolymere der Adipinsäure und 30 Dimethylaminohydroxypropyl diethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z. B. beschrieben in der FR-A 2252840 sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z. B. Dibrombutan mit Bisdiakylaminen, wie z. B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z. B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z. B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.

Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Croton-säure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren. Acrylamidopropyltrimethylammoniumchlorid/Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert. Butylaminoethylethylmethacrylat/2-Hydroxypropylmethacrylat Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat Copolymere, Vinylpyrrolidon/Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.

Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicione sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Typische Beispiele für Fette sind Glyceride, als Wachs kommen u. a. Bienenwachs, Carnaubawachs, Candelillawachs, Montanwachs, Paraffinwachs oder Mikrowachs gegebenenfalls in Kombination mit hydrophilen Wachsen, z. B. Cetylstearylalkohol oder Partialglyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren, wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzen extrakte und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon Vinylacetat Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose Derivate, 55 Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen. Als Quellmittel für wässrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen.

Unter UV-Lichtschutzfiltern sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen:

- 60 – 3-Benzylidencampher und dessen Derivate, z. B. 3-(4-Methylbenzyliden)campher;
- 4-Aminobenzoësäurederivate, vorzugsweise 4-(Dimethylamino)benzoësäure-2-ethylhexylester, 4-(Dimethylamino)benzoësäure-2-octylester und 4-(Dimethylamino)benzoësäureamylester;
- Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäureisopentylester,
- 65 2-Cyano-3-phenyl-zimtsäure-2-ethylhexylester (Octocrylene);
- Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomomethylester;
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-me-

thylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon:

- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
- Triazinderivate, wie z. B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1,-hexyloxy)-1,3,5-triazin und Octyltriazon.
- Propan-1,3-dione, wie z. B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion.

Als wasserlösliche Substanzen kommen in Frage:

- 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylanimonium-, Alkanolammonium- und Glucammoniumsalze;
- Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze;
- Sulfonsäurederivate des 3-Benzylidencampthers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-Oxo-3-bornyliden)sulfonsäure und deren Salze.

Als typische UV A Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion oder 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion. Die UV-A und UV-B Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Pigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage, wie beispielsweise Titandioxid, Zinkoxid, Eisenoxid, Aluminiumoxid, Ceroxid, Zirkoniumoxid, Silicate (Talk), Bariumsulfat und Zinkstearat. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine Ellipse oder in sonstiger Weise von der sphärischen Gestalt abweichende Formen besitzen. Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Superoxid-Dismutase, Tocopherole (Vitamin E) und Ascorbinsäure (Vitamin C). Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P. Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.

Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Typische Beispiele sind

- Glycerin;
- Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylen-glycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1000 Dalton;
- technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
- Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylopropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
- Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
- Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
- Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
- Aminozucker, wie beispielsweise Glucamin.

Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure.

Als Parfümöl seien genannt die Extrakte von Blüten (Lavendel, Rosen, Jasmin, Neroli), Stengeln und Blättern (Gegranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamom, Costus, Iris, Calamus), Hölzern (Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opopanax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Moschus, Zibet und Castoreum. Als synthetische bzw. halbsynthetische Parfümöl kommen Ambroxan, Eugenol, Isoeugenol, Citronellal, Hydroxycitronellal, Geraniol, Citronellol, Geranylacetat, Citral, Ionon und Methylionon in Betracht.

Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsmeinschaft, Verlag Chemie, Weinheim, 1984, S. 81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% – bezogen auf die Mittel – betragen. Die Herstellung der Mittel kann durch übliche Kalt- oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.

Beispiele

Die folgenden Haarnachbehandlungsmittel wurden im Halbseitentest untersucht. Die Beurteilung von Griff, Glanz und Kämmbarkeit erfolgte subjektiv durch ein Panel von 6 geschulten Testern, die die Eigenschaften auf einer Skala von (+) = befriedigend bis (+++) = sehr gut bewerteten. Die Angaben stellen die Mittelwerte von drei Meßreihen dar. Die Zubereitungen 1 und 2 sind erfahrungsgemäß, die Mittel V1 und V2 dienen zum Vergleich.

Tabelle 1

Haarnachbehandlungsmittel im Halbseitentest

	Zusammensetzung / Performance	1	2	V1	V2
5	Distearoylethyl Hydroxyethylmonium Methosulfate (and) Cetearyl Alcohol	1,4	1,4	-	1,4
10	Trimethyl Hexadecyl Ammoniumchloride	-	-	4,0	-
15	Cetearyl Alcohol (and) Ceteareth-20	-	2,5	4,0	-
20	Cetearyl Alcohol	2,5	-	-	2,1
25	Glyceryl Stearate	-	-	-	0,5
30	Hydrogenated Palm Glycerides	0,5	0,5	0,5	-
35	Coco Glucosides	1,5	1,5	-	2,0
40	Dicaprylyl Ether	-	1,0	-	1,0
45	Coco Glucoside (and) Glyceryl Oleate	5,0	5,0	-	-
50	Wasser	ad 100			
55	<i>Griff nasses Haar</i>	+++	+++	+	+
60	<i>Kämmbarkeit nasses Haar</i>	++	+	+	+
65	<i>Griff trockenes Haar</i>	+++	+	+	+
70	<i>Glanz trockenes Haar</i>	+	+++	+	+

Patentansprüche

- 35 1. Haarnachbehandlungsmittel, enthaltend
 (a) Esterquats,
 (b) Alkyl- und/oder Alkenyloligoglykoside,
 (c) Partialglyceride und gegebenenfalls
 (d) Fettalkohole und/oder
 (e) Fettalkoholethoxylate.

40 2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß sie Esterquats der Formel (I) enthalten,

50 in der R^1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 und R^3 unabhängig voneinander für Wasserstoff oder R^1CO , R^4 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine $(\text{CH}_2\text{CH}_2\text{O})_q\text{H}$ -Gruppe, m , n und p in Summe für 0 oder Zahlen von 1 bis 12, q für Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

55 3. Mittel nach Anspruch 1 dadurch gekennzeichnet, daß sie Esterquats der Formel (II) enthalten,

65 in der R^1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 für Wasserstoff oder R^1CO , R^4 und R^5 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

70 4. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß sie Esterquats der Formel (III) enthalten,

(III)

5

in dem R^1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 für Wasserstoff oder R^1CO , R^4 , R^6 und R^7 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. 10

5. Mittel nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie Alkyl- und Alkenyloligoglykoside der Formel (IV) enthalten.

15

in der R^8 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht.

6. Mittel nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß sie Partialglyceride der Formel (V) enthalten. 20

(V)

25

in der R^9CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R^{10} und R^{11} unabhängig voneinander für R^1CO oder OH und die Summe ($m+n+p$) für 0 oder Zahlen von 1 bis 100 steht, mit der Maßgabe, daß mindestens einer der beiden Reste R^{10} und $R^{11}OH$ bedeutet. 30

7. Mittel nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß sie Alkyloligoglucoside und Ölsäuremonoglyceride enthalten.

8. Mittel nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß sie Fettalkohole und/oder Fettalkoholethoxylate der Formel (VI) enthalten. 35

35

in der R^{12} für einen aliphatischen, linearen oder verzweigten Kohlenwasserstoffrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen und z für 0 oder Zahlen von 1 bis 20 steht.

9. Mittel nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß sie 40

- (a) 0,1 bis 10 Gew.-% Esterquats,
- (b) 0,1 bis 10 Gew.-% Alkyl- und/oder Alkenyloligoglykoside,
- (c) 0,1 bis 10 Gew.-% Partialglyceride,
- (d) 0 bis 10 Gew.-% Fettalkohole und
- (e) 0 bis 10 Gew.-% Fettalkoholethoxylate. 45

enthalten, mit der Maßgabe, daß sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.

10. Verwendung von Mischungen, enthaltend

- (a) Esterquats,
- (b) Alkyl- und/oder Alkenyloligoglykoside,
- (c) Partialglyceride und gegebenenfalls
- (d) Fettalkohole und/oder
- (e) Fettalkoholethoxylate 50

zur Herstellung von Haarnachbehandlungsmitteln. 55

55

60

65

BEST AVAILABLE COPY

- Leerseite -