

A generic diffusion-based approach for 3D human pose prediction in the wild

Saeed Saadatnejad, Ali Rasekh, Mohammadreza Mofayezi, Yasamin Medghalchi, Sara Rajabzadeh, Taylor Mordan, Alexandre Alahi

Overview

Task: Predicting a sequence of future 3D poses of a person given a sequence of past observed ones

Challenge: Predict accurately in noisy observation (partial occlusion, whole frame missing or inaccurate observations)

Approach: All missing elements are treated as noise and denoised with our conditional diffusion model by simultaneously:

- 1) predicting poses for the future frame
- 2) repairing the noisy observations

Related work

- Deterministic models [1,2]: not diverse
- Stochastic models [3,4,5]: not accurate
- Noisy observations in the real-world [6]
- not perfect because of not modeling the noise

Approach

partial occlusion (first column), missing whole frame (second column), or inaccurate observations (third column)

Generic framework

References

1] Mao et al, History repeats itself: Human motion prediction via motion attention, ECCV'20 Ma et al, Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction, CVPR'22 Salzman et al, Motron: Multimodal Probabilistic Human Motion Forecasting, CVPR'22 1] Mao et al, Generating Smooth Pose Sequences for Diverse Human Motion Prediction, ICCV'21 [5] Ma et al, Multi-Objective Diverse Human Motion Prediction With Knowledge Distillation, CVPR'22 [6] Cui et al, Towards Accurate 3D Human Motion Prediction From Incomplete Observations, CVPR'21

Improve any existing predictor in a black box manner in two steps:

- 1) pre-processing to repair the observations and
- 2) postprocessing to refine the predicted poses.

Method

Results

Observation

		Hun	HumanEva-I [53]				
Model	ADE \	FDE \	MMADE ↓	MMFDE \	ADE \	FDE \	
Pose-Knows [58]	461	560	522	569	269	296	
MT-VAE [61]	457	595	716	883	345	403	
HP-GAN [6]	858	867	847	858	772	749	
BoM [7]	448	533	514	544	271	279	
GMVAE [19]	461	555	524	566	305	345	
DeLiGAN [22]	483	534	520	545	306	322	
DSF [62]	493	592	550	599	273	290	
DLow [63]	425	518	495	531	251	268	
Motron [52]	375	488					
Multi-Objective [35]	414	516			228	236	
GSPS [40]	389	496	476	525	233	244	
STARS [60]	358	445	442	471	217	241	
TCD (ours)	356	396	463	445	199	215	

	Model	80ms	320ms	560ms	720ms	880ms	1000ms
	Zero-Vel	84.9	138.2	169.9	184.2	193.7	198.2
Noisy	HRI [39]	65.2	104.5	130.0	141.6	151.1	157.1
Observation	PGBIG [36]	67.0	107.1	132.1	143.5	152.9	158.8
	TCD (ours)	11.2	51.3	75.4	85.4	95.4	104.5
	Pre(ours) + Zero-Vel	24.1	76.3	107.6	121.7	131.7	136.7
Repaired	Pre(ours) + HRI [39]	11.4	48.6	78.3	92.7	105.0	112.8
Observation	Pre(ours) + PGBIG [36]	11.1	47.9	77.2	91.7	103.5	110.8
	Pre(ours) + TCD (ours)	10.8	49.9	74.4	84.9	95.1	104.2
	ITD 50 05 [41]	100	<i>507</i>	70.6	02.6	1050	110 1
Dorfoot	LTD-50-25 [41]	12.2	50.7	79.6	93.6	105.2	112.4
Perfect	HRI [39]	10.4	47.1	77.3	91.8	104.1	112.1

on	LTD-50-25 [41] HRI [39] PGBIG [36] TCD (ours)	12.2 10.4 10.3 9.9	50.7 47.1 46.6 48.8	79.6 77.3 76.3 73.7	93.6 91.8 90.9 84.0	105.2 104.1 102.6 94.3	112.4 112.1 110.0 103.3	
ssed n	HRI [39] + TCD (ours) PGBIG [36] + TCD (ours)	10.3 10.2	47.3 46.1	72.9 72.4	83.8 83.6	94.0 93.9	102.9 102.8	

Source code

github.com/vita-epfl/DePOSit

