Aufgabe 1 (Frühjahr 1996). Sei G eine Gruppe und U eine Untergruppe. Zeigen Sie, daß folgende Aussagen äquivalent sind:

- (a) Für alle $g \in G$ gilt: gU = Ug.
- (b) Die Menge der Rechtsnebenklassen und die Menge der Linksnebenklassen von G nach U stimmen überein: $G/U = U \backslash G$.
- (c) "Die Definition" $gU \circ hU := ghU$ definiert eine Verknüpfung auf den Linksnebenklassen, das heißt, eine Abbildung $G/U \times G/U \to G/U$.

Aufgabe 2. Sei G Gruppe, deren Ordnung eine Primzahl p ist. man zeige, daß G keine Untergruppe hat außer $\{e\}$ und G. Außerdem ist G zyklisch und für alle $e \neq x \in G$ gilt $G = \langle x \rangle = \{e, x, \dots, x^{p-1}\}$.

Aufgabe 3. Sei G eine Gruppe und Z(G) ihr Zentrum. Man zeige: Wenn es $x \in G$ gibt mit $G = \langle Z(G) \cup \{x\} \rangle$, dann ist G abelsch.

Aufgabe 4 (Frühjahr 1994). Eine Operation einer Gruppe G auf einer Menge X heißt treu, falls zu jedem vom Einselement verschiedenen Element g aus G ein $x \in X$ existiert mit $gx \neq x$.

Sei G eine Gruppe der Ordnung 15, die auf einer Menge treu und transitiv operiert. Man beweise, daß X aus genau 15 Elementen besteht.

Gilt die entsprechende Aussage auch, wenn man 15 durch 12 ersetzt?

Aufgabe 5 (Herbst 1981). Sei G eine Gruppe der Ordnung 55, M eine Menge von 39 Elementen. Man zeige, daß jede Operation von G auf M mindestens einen Fixpunkt hat.

Aufgabe 6 (??). Eine Gruppe G operiere auf einer Menge X. Man zeige: Ist |X| kleiner als der kleinste Primteiler von |G|, so ist die Operation trivial.

Aufgabe 7 (Herbst 1988). Es sei p eine Primzahl und G eine Gruppe der Ordnung p^n mit $n \ge 2$. Sei C(g) der Zentralisator eines Elements $g \in G$. Zeigen Sie:

$$|C(q)| > p$$
.