

CSE322 Minimization of finite Automaton & REGULAR LANGUAGES

Lecture #5

Definitions

Definition 3.10 Two states q_1 and q_2 are equivalent (denoted by $q_1 \equiv q_2$) if both $\delta(q_1, x)$ and $\delta(q_2, x)$ are final states, or both of them are nonfinal states for all $x \in \Sigma^*$.

As it is difficult to construct $\delta(q_1, x)$ and $\delta(q_2, x)$ for all $x \in \Sigma^*$ (there are an infinite number of strings in Σ^*), we give one more definition.

Definition 3.11 Two states q_1 and q_2 are k-equivalent ($k \ge 0$) if both $\delta(q_1, x)$ and $\delta(q_2, x)$ are final states or both nonfinal states for all strings x of length k or less. In particular, any two final states are 0-equivalent and any two nonfinal states are also 0-equivalent.

Properties

We mention some of the properties of these relations.

Property 1 The relations we have defined, i.e. equivalence and k-equivalence, are equivalence relations, i.e. they are reflexive, symmetric and transitive.

Property 2 By Theorem 2.1, these induce partitions of Q. These partitions can be denoted by π and π_k , respectively. The elements of π_k are k-equivalence classes.

Property 3 If q_1 and q_2 are k-equivalent for all $k \ge 0$, then they are equivalent.

Property 4 If q_1 and q_2 are (k + 1)-equivalent, then they are k-equivalent.

Property 5 $\pi_n = \pi_{n+1}$ for some n. (π_n denotes the set of equivalence classes under n-equivalence.)

Construction of Minimum Automaton

- **Step 1** (Construction of π_0). By definition of 0-equivalence, $\pi_0 = \{Q_1^0, Q_2^0\}$ where Q_1^0 is the set of all final states and $Q_2^0 = Q Q_1^0$.
- **Step 2** (Construction of π_{k+1} from π_k). Let Q_i^k be any subset in π_k . If q_1 and q_2 are in Q_i^k , they are (k+1)-equivalent provided $\delta(q_1, a)$ and $\delta(q_2, a)$ are k-equivalent. Find out whether $\delta(q_1, a)$ and $\delta(q_2, a)$ are in the same equivalence class in π_k for every $a \in \Sigma$. If so, q_1 and q_2 are (k+1)-equivalent. In this way, Q_i^k is further divided into (k+1)-equivalence classes. Repeat this for every Q_i^k in π_k to get all the elements of π_{k+1} .
- **Step 3** Construct π_n for $n = 1, 2, \ldots$ until $\pi_n = \pi_{n+1}$.
- **Step 4** (Construction of minimum automaton). For the required minimum state automaton, the states are the equivalence classes obtained in step 3, i.e. the elements of π_n . The state table is obtained by replacing a state q by the corresponding equivalence class [q].

Problem

Construct a minimum state automaton equivalent to finite automaton

State/Σ	0	1
$\rightarrow q_0$	91	q_5
q_1	q_6	q_2
$(\overline{q_2})$	q_0	q_2
$\overset{\smile}{q_3}$	q_2	q_{6}
q_4	q_7	q_5
9 5	q_2	q_{6}
q_8	q_6	q_4
q_7	q_6	q_2

By applying step 1, we get

$$Q_1^0 = F = \{q_2\}, \qquad Q_2^0 = Q - Q_1^0$$

So,

$$\pi_0 = \{ \{q_2\}, \{q_0, q_1, q_3, q_4, q_5, q_6, q_7\} \}$$

$$\pi_1 = \{\{q_2\}, \{q_0, q_4, q_6\}, \{q_1, q_7\}, \{q_3, q_5\}\}$$

$$\pi_3 = \{\{q_2\}, \{q_0, q_4\}, \{q_6\}, \{q_1, q_7\}, \{q_3, q_5\}\}$$

Solution

Construct the minimum state automaton equivalent to the transition diagram given by Fig. 3.14.

State/Σ	а	b
$\rightarrow q_0$	q_1	90
q_1	q_0	q_2
q_2	q_3	q_1
$\overline{(q_3)}$	q_3	q_0
94	q_3	ģ 5
q_5	q_6	q_4
q_6	q_5	q_6
q_7	q_6	q_3

$$\pi_0 = \{ \{q_3\}, \{q_0, q_1, q_2, q_4, q_5, q_6, q_7\} \}$$

$$\pi_1 = \{\{q_3\}, \{q_0, q_1, q_5, q_6\}, \{q_2, q_4\}, \{q_7\}\}$$

$$\pi_2 = \{\{q_3\}, \{q_0, q_6\}, \{q_1, q_5\}, \{q_2, q_4\}, \{q_7\}\}\}$$

$$\pi_3 = \{\{q_3\}, \{q_0, q_6\}, \{q_1, q_5\}, \{q_2, q_4\}, \{q_7\}\}\}$$

State/Σ	а	b
[q ₀ , q ₆]	[q ₁ , q ₅]	[90, 96]
[q ₁ , q ₅]	$[q_0, q_6]$	$[q_2, q_4]$
$[q_2, q_4]$	$[q_3]$	$[q_1, q_5]$
[q ₃]	[q 3]	$[q_0, q_6]$
[q ₇]	$[q_0, q_6]$	$[q_3]$

Minimize the given automata 🗓

EXAMPLE 3.21

Construct a minimum state automaton equivalent to a DFA whose transition table is defined by Table 3.30.

TABLE 3.30 DFA of Example 3.21

State	а	b
$ ightarrow q_0$	91	q_2
q_1	94	q_3
q_2	94	q_3
q_2 q_3	q_5	q_6
$\overline{(q_4)}$	q_7	q_6
Q 4) Q 5	q_3 .	q_6
q 6	q_{6}	96
q_7	q_4	q_6

Regular Languages

Definition: L

A language is regular if there is

FA such that

Observation:

All languages accepted by FAs form the family of regular languages

Examples of regular languages:

$$\{abba\} \qquad \{\lambda, ab, abba\}$$

$$\{awa: w \in \{a,b\}*\} \quad \{a^nb: n \geq 0\}$$

$$\{all \ strings \ with \ prefix \ \} \qquad ab$$

$$\{all \ strings \ without \ substring \ \} \qquad 001$$

There exist automata that accept these Languages (see previous slides).

There exist languages which are not Regular:

$$L = \{a^n b^n : n \ge 0\}$$

There is no FA that accepts such a language

(we will prove this later in the class)