	PSC QUIZ 2 dt 11-09-2023	
	Name: Roll No.	
Q1	Following free electron model, sketch the <i>E-k</i> diagram for a metal in reduced zone scheme.	
Q2	Derive a relation relating the effective mass and curvature in <i>E-k</i> diagram	
Q3	Explain briefly the velocity saturation effect in Si.	
<u>U</u> 3	Explain briefly the velocity saturation effect in Si.	
Q4	Sketch the electron concentration vs 1/T plot for a n-doped semiconductor.	
	Sermiconadotor.	
Q5	Obtain the Einstein relation relating mobility and diffusion coefficient.	

Q6	Plot the DOS vs Energy for 3D and 2D materials in the same figure.	
	<i>y</i>	
Q7	Calculate the energy, in terms of kT and E_F , at which the difference	
	between the Boltzmann approximation and the Fermi-Dirac function is 5 percent of the Fermi function.	
	5 percent of the Ferrii function.	
Q8	Calculate the position of the Fermi energy level in n-type silicon at T =	
	300 K with respect to the intrinsic Fermi energy level. The doping concentrations are $N_d = 2x10^{17}$ cm ⁻³ and $N_a = 3 \times 10^{16}$ cm ⁻³ .	
	Concentrations are ind - 2x to citi and ind - 3 x to citi .	
Q9	Estimate the intrinsic carrier density for Si when the temperature is	
	doubled from room temperature (300K) to 600 K.	
Q10	The electron density in a Si sample decreases linearly from 10 ¹⁶ to	
	10 ¹⁵ cm ⁻³ over a distance of 10 cm. The area of the sample is 6 cm ²	
	and diffusion constant is 15 cm ² /s. Determine the diffusion current of	
	electron.	