

Course > Unit 10... > Proble... > 4. A si...

4. A simple Markov chain

Problem Set due May 29, 2020 05:29 IST

Problem 4. A simple Markov chain

10 points possible (ungraded)

Consider a Markov chain $\{X_0, X_1, \ldots\}$, specified by the following transition probability graph.

1.
$$\mathbf{P}\left(X_{2}=2\mid X_{0}=1
ight)=egin{equation} ext{Answer: 0.44} \end{aligned}$$

2. Find the steady-state probabilities π_1 , π_2 , and π_3 associated with states 1, 2, and 3, respectively.

$$\pi_1 = \begin{bmatrix} \pi_1 \end{bmatrix}$$
 Answer: 0.11111

$$\pi_2=$$
 Answer: 0.22222

$$\pi_3 =$$
 Answer: 0.66667

3. For $n=1,2,\ldots$, let $Y_n=X_n-X_{n-1}$. Thus, $Y_n=1$ indicates that the nth transition was to the right, $Y_n=0$ indicates that it was a self-transition, and $Y_n=-1$ indicates that it was a transition to the left.

$$\lim_{n o\infty}\mathbf{P}\left(Y_n=1
ight)=$$
 Answer: 0.11111

4. Is the sequence Y_1, Y_2, \ldots a Markov chain?

Select an option **Answer:** No

5. Given that the nth transition was a transition to the right ($Y_n=1$), find (approximately) the probability that the state at time n-1 was state 1 (i.e., $X_{n-1}=1$). Assume that n is large.

Answer: 0.4

6. Suppose that $X_0=1$. Let T be the first **positive** time index n at which the state is equal to 1.

 $\mathbf{E}\left[T
ight]= egin{array}{cccc} \mathsf{Answer:}\,9 \end{array}$

7. Does the sequence X_1, X_2, X_3, \ldots converge in probability to a constant?

Select an option > Answer: No

8. Let $Z_n = \max\{X_1,\ldots,X_n\}$. Does the sequence Z_1,Z_2,Z_3,\ldots converge in probability to a constant?

Select an option **→ Answer:** Yes

Solution:

1. There are only two paths that go from state 1 to state 2 in two transitions: 1 o 1 o 2 and 1 o 2 o 2. The desired two-step transition probability is therefore

$$egin{array}{lll} r_{12} \left(2
ight) &=& p_{11} \cdot p_{12} + p_{12} \cdot p_{22} \ &=& 0.6 \cdot 0.4 + 0.4 \cdot 0.5 \ &=& 0.44. \end{array}$$

2. We write down the local balance equations of a birth-death process and the normalization equation:

$$egin{array}{lll} \pi_1 p_{12} &=& \pi_2 p_{21} \ & \pi_2 p_{23} &=& \pi_3 p_{32} \ & \pi_1 + \pi_2 + \pi_3 &=& 1. \end{array}$$

Solving this system of equations yields the following steady-state probabilities:

$$\pi_1 = 1/9$$
 $\pi_2 = 2/9$
 $\pi_3 = 6/9$.

3. Using the total probability theorem and the convergence to steady-state probabilities, we have

$$egin{aligned} \lim_{n o \infty} \mathbf{P} \left(Y_n = 1
ight) &= \lim_{n o \infty} \sum_{i=1}^3 \mathbf{P} \left(X_{n-1} = i
ight) \mathbf{P} \left(Y_n = 1 \mid X_{n-1} = i
ight) \ &= \sum_{i=1}^3 \pi_i \cdot \mathbf{P} \left(Y_1 = 1 \mid X_0 = i
ight) \ &= \pi_1 p_{12} + \pi_2 p_{23} \ &= 1/9. \end{aligned}$$

4. Note that $Y_1=1$, $Y_2=1$, and $Y_3=0$ implies that $X_3=3$. On the other hand, $Y_1=-1$, $Y_2=-1$, and $Y_3=0$ implies that $X_3=1$. Thus,

$$egin{aligned} \mathbf{P}\left(Y_4=1\mid Y_1=1,Y_2=1,Y_3=0
ight) &= 0 \
eq & \mathbf{P}\left(Y_4=1\mid Y_1=-1,Y_2=-1,Y_3=0
ight) &= p_{12}=0.4, \end{aligned}$$

even though $Y_3=0$ in both cases. Hence, the Markov property is violated.

5. Using Bayes' rule and the convergence to steady-state probabilities, we have

$$\lim_{n o \infty} \mathbf{P}\left(X_{n-1} = 1 \mid Y_n = 1
ight) \; = \; \lim_{n o \infty} rac{\mathbf{P}\left(X_{n-1} = 1
ight)\mathbf{P}\left(Y_n = 1 \mid X_{n-1} = 1
ight)}{\sum_{i=1}^{3} \mathbf{P}\left(X_{n-1} = i
ight)\mathbf{P}\left(Y_n = 1 \mid X_{n-1} = 1
ight)}$$

$$egin{array}{ll} &=& rac{\pi_1 p_{12}}{\pi_1 p_{12} + \pi_2 p_{23}} \ &=& 2/5. \end{array}$$

Hence, for large n, the desired probability is approximately 2/5.

6. We are looking for the mean recurrence time of state 1. In order to calculate it, we first calculate the mean first passage times to state 1 by solving the following system of equations:

$$t_2 = 1 + p_{22}t_2 + p_{23}t_3$$

 $t_3 = 1 + p_{32}t_2 + p_{33}t_3$.

Solving the system of equations yields $t_2=20$ and $t_3=30$. Hence, the mean recurrence time of state 1 is $t_1^*={\bf E}\left[T\right]=1+p_{12}t_2=9$.

- 7. Even in steady state, X_n has positive probability of being equal to any of the three possible states. Hence the sequence $\{X_n\}$ does not converge in probability to a constant.
- 8. The sequence $\{Z_n\}$ converges to 3 in probability. Here is an intuitive explanation. For the original Markov chain, states $\{1,2,3\}$ form a single recurrent class. Therefore, the Markov chain will eventually visit state 3 at some time n^* , at which point $Z_{n^*}=3$ and $Z_n=3$ for all $n>n^*$.

Submit

You have used 0 of 4 attempts

1 Answers are displayed within the problem

Discussion

Show all posts

Hide Discussion

by recent activity >

Topic: Unit 10: Markov chains:Problem Set 10 / 4. A simple Markov chain

There are no posts in this topic yet.

×

© All Rights Reserved

