COMPLETE GUIDE TO SEMICONDUCTOR DEVICES

Kwok K. Ng
AT&T Bell Laboratories
Murray Hill, New Jersey

oblems with

e problems .

es and prices, write

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon
London Madrid Mexico City Milan Montreal New Delhi
San Juan Singapore Sydney Tokyo Toronto

APPENDIX

D4

RESISTIVITY AND MOBILITY

FIGURE D4.1 Resistivity of (a) Si and (b) Ge

D13

PROPERTIES OF METALS AND SILICIDES

TABLE D13.1 Properties of metals.¹

Metals	Melting point (°C)	Resistivity ρ (20°C) ($\mu\Omega$ -cm)	Thermal coef. of $ ho$ (ppm/K)	Density (20°C) (g/cm ³)	Specific heat (J/kg-K)	Thermal conductivity (W/m-K)	Coef. of expan. (µ/K)
Aluminum	660.1	2.67	4500	2.70	917	238	23.5
Antimony	630.5	40.1	5100	6.68	209	23.8	8-11
Barium	729	60 (0°C)		3.5	285		18
Beryllium	1287	3.3	9000	1.848	2052	194	12
Bismuth	271	117	4600	9.80	124.8	9	13.4
Cadmium	320.9	7.3	4300	8.64	233.2	103	31
Calcium	839	3.7	4570	1.54	624	125	22
Cerium	798	85.4	8700	6.75	188	11.9	8
Cesium	28.5	20	4800	1.87	234	36.1	97
Chromium	1860	13.2	2140	7.1	461	91.3	6.5
Cobalt	1492	6.34	6600	8.9	427	96	12.5
Copper	1083.4	1.694	4300	8.96	386.0	397	17.0
Gallium	29.7			5.91	377	41.0	18.3
Germanium	937			5.32	310	56.4	5.75
Gold	1063	2.20	4000	19.3	130	315.5	14.1
Hafnium	2227	32.2	4400	13.1	147	22.9	6.0
Indium	156.4	8.8	5200	7.3	243	80.0	24.8
Iridium	2454	5.1	4500	22.4	130.6	146.5	6.8
Iron	1536	10.1	6500	7.87	456	78.2	12.1
Lead	327.4	20.6	4200	11.68	129.8	34.9	29.0
Lithium	181	9.29	4350	0.534	3517	76.1	56
Magnesium	649	4.2	4250	1.74	1038	155.5	26.0
Manganese	1244	144		7.4	486	7.8	23
Mercury	-38.87	95.9	1000	13.5	138	8.65	61
Molybdenum	2615	5.7	4350	10.2	251	137	5.1
Nickel	1455	6.9	6800	8.9	452	88.5	13.3
Niobium	2467	16.0	2600	8.6	268	54.1	7.2
Osmium	3030	8.8	4100	22.5	130	87.5	4.57
Palladium	1552	10.8	4200	12.0	247	75.5	11.0
Platinum	1769	10.58	3920	21.45	134.4	71.5	9.0

TABLE D13.1 (Continued)

Metals	Melting point (°C)	R
Potassium	63.2	
Radium	700	
Rhenium	3180	
Rhodium	1966	
Rubidium	38.8	
Ruthenium	2310	
Silicon	1412	
Silver	960.8	
Sodium	97.8	
Strontium	770	2
Tantalum	2980	
Tellurium	450	
Thallium	304	
Thorium	1755	
Tin	231.9	
Titanium	1667	
Tungsten	3400	
Uranium	1132	
Vanadium	1902	
Zinc	419.5	
Zirconium	1852	

TABLE D13.2
Properties of silicides

Silicides Resistivity						
J	(μΩ-cm)	•				
CoSi ₂	18-25					
MoSi ₂	80-250					
NiSi ₂	≈ 50					
Pd ₂ Si	30-35					
PtSi	28-35					
TaSi ₂	30-45					
TiSi ₂	14-18					
WSi ₂	30-70					

REFERENCES

- 1. C. Belove, Ed., *Handbo* 1986.
- 2. S. P. Murarka, Silicides j
- 3. G. Georgiou, private cor

Metals	Melting point (°C)	Resistivity ρ (20°C) ($\mu\Omega$ -cm)	Thermal coef. of ρ (ppm/K)	Density (20°C) (g/cm ³)	Specific heat (J/kg-K)	Thermal conductivity (W/m-K)	Coef. of expan.
Potassium Radium	63.2	6.8	5700	0.86	754		(μ/ K)
	700			5	,54	104	83
Rhenium	3180	18.7	4500	21.0	138		
Rhodium	1966	4.7	4400	12.4	243	47.6	6.6
Rubidium	38.8	12.1	4800	1.53	_	149	8.5
Ruthenium	2310	7.7	4100	12.2	356	58.3	9.0
Silicon	1412			2.34	234	116.3	9.6
Silver	960.8	1.63	4100	10.5	729	138.5	7.6
Sodium	97.8	4.7	5500	-	234	425	19.1
Strontium	770	23 (0°C)	3300	0.97	1227	128	71
Tantalum	2980	13.5	3500	2.6	737		100
Tellurium	450	13.3	3300	16.6	142	57.55	6.5
Thallium	304	16.6	5300	6.24	134	3.8	
Thorium	1755	14	5200	11.85	130	45.5	30
Tin	231.9	12.6	4000	11.5	100	49.2	11.2
Titanium	1667	54	4600	7.3	226	73.2	23.5
Tungsten	3400	5.4	3800	4.5	528	21.6	8.9
Uranium	1132		4800	19.3	138	174	4.5
Vanadium	1902	27	3400	19	117	28	4.3
Zinc	419.5	19.6	3900	6.1	498	31.6	8.3
Zirconium		5.96	4200	7.14	394	119.5	31
	1852	44	4400	6.49	289	22.6	5.9

TABLE D13.2 Properties of silicides.2,3

ific

ζ-K)

at

.7

19

15

52

1.8

3.2

!4

38

14

51

27

6.0

17

10

30

‡7

13

0.6

56

9.8 17

138

36

38

51

52

68

30

47

4.4

Thermal

conductivity

(W/m-K)

238

23.8

194

9

103

125

11.9

36.1

91.3

96

397

41.0

56.4

315.5

22.9

80.0

146.5

78.2 34.9

76.1

155.5

7.8

8.65

137

88.5

54.1

87.5

75.5

71.5

Coef. of

expan.

(μ/K)

23.5 8-11

18

12

13.4

31 22

8

97

6.5

12.5

17.0 18.3

5.75

14.1

6.0

24.8

6.8 12.1

29.0

56

26.0 23

61

Silicides	Resistivity (μΩ-cm)	Formation temp. (°C)	Å of Si per Å of metal	Å of silicide per Å of meta	
CoSi ₂	18-25	> 550	3.64	3.52	
MoSi ₂ NiSi ₂	80–250 ≈ 50	> 600	2.56	2.59	
Pd,Si	≈ 30 30–35	750 > 400	3.65	3.63	
PtŠi	28-35	600-800	0.68 1.32	≈ 1.69	
TaSi ₂	30–45	> 600	2.21	1.97 2.40	
risi ₂ Vsi,	14-18	> 700	2.27	2.51	
	30–70	> 600	2.53	2.58	

REFERENCES

- 1. C. Belove, Ed., Handbook of modern electronics and electrical engineering, Wiley, New York,
- 2. S. P. Murarka, Silicides for VLSI applications, Academic Press, New York, 1983.
- 3. G. Georgiou, private communications.

SEMICONDUCTOR INTEGRATED CIRCUIT PROCESSING TECHNOLOGY

W. R. RUNYAN
Retired, formerly with Texas Instruments
K. E. BEAN
Texas Instruments

Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn
Sydney • Singapore • Tokyo • Madrid • San Juan

FIGURE 8.34

Resistivity versus impurity concentration for silicon. From data in S.M. Sze and J.C. Irving, Solid State Electronics 11, p. 599, 1968; W.R. Thurber et al., J. Electrochem. Soc. 127, p. 1807, 1980; and L.C. Linares and S.S. Li, J. Electrochem. Soc. 128. p. 601, 1981.

8.5.3 Determination of N_0

When the N_{ne} of Eq. 8.76 is known—for example,

$$N_{ne} \cong N_{\text{net}} = |N_0 \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) - N_B|$$
 8.79

the sheet resistance can be calculated as a function of N_0 and N_B by using Eqs. 8.76 and 8.79, providing the mobility as a function of N_{nc} is known (see, for example, references 1 and 2 in Table 8.3 for data). By having made such calculations, curves such as those shown in Fig. 8.35 can be plotted for the range of values of interest and then N_0 read from them (79, 80). References 79 and 80 both have a selection of curves for error and Gaussian function distributions in silicon. However, reference 79 has used more recent electrical data. The Hall constant of the diffused layer can be measured, and, by using an analogous set of curves, the surface concentration can

8.5.4 Ju Measur

irface

es for

MICROELECTRONIC DEVICES

Edward S. Yang

Department of Electrical Engineering Columbia University

Harman, , Ronald A. Rohrer, n G. Truxal,

ITS

Engineers and

d Circuits

ircuits.

cuits, and Systems

olifier Theory Applications

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Caracas Colorado Springs Hamburg Lisbon London Madrid Mexico Milan Montreal New Delhi Oklahoma City Panama Paris San Juan São Paulo Singapore Sydney Tokyo Toronto The resistance of the bar is defined by

$$R \equiv \rho \, \frac{L}{A} \equiv \frac{V}{I_n} \tag{2-9}$$

where ρ is the resistivity. Substituting Eq. (2-8) into Eq. (2-9) and solving for ρ , we

$$\frac{1}{\rho} = \sigma = q\mu_n n \tag{2-10}$$

where σ is the conductivity. By analogy, the hole drift current can be written as

$$I_p = qAp\mu_p \mathscr{E} \tag{2-11}$$

The overall resistivity of a semiconductor including the effects of electrons and (2-11)

$$\frac{1}{\rho} = q\mu_n n + q\mu_p p \tag{2-12}$$

The resistivity of a semiconductor is an important parameter in device design. Figure 2-8 shows the relationship between the impurity concentration and resistivity for both n- and p-type silicon and GaAs at room temperature. The deviation from linearity in these curves is caused by the nonlinear mobility effect.

CARRIER DIFFUSION 2-3

Diffusion is a phenomenon that occurs frequently in our daily experience, for example, the propagation of flower fragrance or the tinting of a cup of hot water

FIGURE 2-8 Resistivity vs. impurity concentration in Si and GaAs at 300 K. (After Sze [1].)

by adding a tea bag. I give rise to our sense water can produce th chemical molecules.

Let us consider red ink in a glass of not disturbed. We wil ink droplet contains a molecules move arou: they experience collisi random movements, I of the ink droplet and number of molecules at the center of the c color. This may be see color-pigment concen It has a peak density molecules migrate av half-width increases. I red ink to become a t pigments is related to tendency to move from physics of particle diffi the liquid, the molecul requires that moveme uniformity remains un is the same throughout results from nonunifor

Similarly, in a se their movement from

