实验一: MATLAB 回顾、信号分析及信道模拟

一、实验目的

- 1. 熟悉 MATLAB 开发环境、掌握 MATLAB 基本运算操作;
- 2. 熟悉和了解 MATLAB 图形绘制基本指令;
- 3. 熟悉使用 MATLAB 分析信号频谱的过程;
- 4. 掌握加性白高斯噪声信道模型

二、实验原理

1. MATLAB 矩阵运算

1.1 基本运算符

算符"+"、"-"、"*"、"\"、"\"、"\"、"^"分别实现矩阵的加、减、乘、左除、右除、求幂运算。算符".*"、".\"、".\"、".^"、为别实现"元素对元素"的数组乘、左除、右除、求幂运算。算符"'"、".'"分别实现矩阵的共轭转置、非共轭转置。

1.2 关系运算符

MATLAB 提供了 6 种关系运算符:〈(小于)、〈=(小于或等于)、〉(大于)、〉=(大于或等于)、==(等于)、~=(不等于)。它们的含义不难理解,但要注意其书写方法与数学中的不等式符号不尽相同。

2. 常用的 MATLAB 函数

2.1 随机数产生类

函数名	注释	函数名	注释
randn	产生标准正态随机变量	rand	产生0~1之间的均匀分布随机
			变量
randnperm	产生随机的排序	hist	对矢量自动进行直方图统计

2.2 数学函数类

函数名	注释	函数名	注释
acos(x)	反余弦函数	cos(x)	余弦函数
acot(x)	反余切函数	cot(x)	余切函数
asin(x)	反正弦函数	sin(x)	正弦函数
atan(x)	反正切函数	tan(x)	正切函数
exp(x)	自然指数函数	sqrt(x)	根号函数
log(x)	自然对数函数	floor(x)	向下取整数
log2(x)	以2为底的对数函数	ceil(x)	向上取整数
log10(x)	以 10 为底的对数函数	round(x)	四舍五入函数

2.3 绘图类函数

函数名	注释	函数名	注释
plot	打印图形	xlabel	标注横轴
subplot	打印子图	ylabel	标注纵轴
legend	图的注释	title	图的标题
semilogy	打印图形,纵轴为对数	hold	图是否重叠打印

3. 确知类信号分析--信号的傅里叶变换及其反变换

计算信号的离散傅里叶变换在数字信号处理中有一种高效算法,即快速傅里叶变换FFT, Matlab 中也有专门的工具,下面简要介绍:

fft(x): x 是离散信号,或对模拟信号取样后的离散值。

ifft(x): x 是对信号进行快速傅里叶变换后的离散谱。

源代码一: 利用 fft, fftshift 定义函数 T2F 计算信号的傅立叶变换

function [f,sf]=T2F(t,st)% 该子函数需要两个参数 t 和 st, t—离散时间,st—离散信号

dt=t(2)-t(1);% 时间分辨率 T=t(end);

df=1/T;% 频率分辨率

N=length(st);% 离散傅立叶变换长度

f=-N/2*df:df:N/2*df-df;% 设定频谱区间,注意要关于原点对称,共有 N 个点,包括 0 点,故要减去一个 df

sf=fft(st);

sf=T/N*fftshift(sf);% 信号的频谱与离散傅立叶变换之间的关系,fftshift(x)是将信号的频谱 x 进行移位,与原点对称

源代码二: 利用 ifft, fftshift 定义函数 T2F 计算信号的傅立叶反变换

function [t,st]= F2T (f,sf) % f—离散的频率; sf—信号的频谱

df=f(2)-f(1): % 频率分辨率

Fmx=f(end)-f(1)+df;% 频率区间长度

dt=1/Fmx;%已知频率区间长度时,求时间分辨率,由前面频率分辨率公式 $\triangle f=df=1/T$, T=dt*N,得到 $\triangle f=df=1/(dt*N)$,故 dt=1/(df*N)=1/Fmx,即时间分辨率

N=length(sf);

T=dt*N; % 信号持续时间

t=0:dt:T-dt; % 离散傅立叶反变换,是 T2F 的逆过程

sff=fftshift(sf); % 把对称的频谱进行平移, 平移后同 T2F 中的 sf

st=Fmx*ifft(sff); % 由于 T2F 中求信号频谱在 DFT 基础上乘了一个因子 T/N,反变换求信号时要乘以其倒数即 N/T=1/dt,正好等于 Fmx

4. 连续信道模型

连续信道模型是针对输入为连续信号,输出也为连续信号的情况,常用的连续信道模型包括加性高斯白噪声(AWGN)信道和多径信道(多径信道不要求掌握)。AWGN信道可由如下公式描述:

$$y(t) = x(t) + n(t)$$

$$x(t)$$

$$y(t)$$

$$n(t)$$

其中n(t)是一个高斯过程,在很宽的频带内,可以将n(t)看成是一个白(即功率谱密度是常数)的随机噪声。通常用 AWGN 信道模型来等效一些恒参信道,如卫星通信信道、光纤信道、同轴电缆信道。

```
例: 产生一个(0,1)上均匀分布的白噪声信号 u(n)
clear;% 清除内存中可能保留的 MATLAB 变量
N=500000;% u(n) 的长度
u=rand(1,N);% 调用 rand, 得到均匀分布的随机数 u(n)
u_mean=mean(u);% 求 u(n) 均值
power_u=var(u);% 求 u(n) 方差
subplot(211)
plot(u(1:100));
grid on;%在一个图上分上下两个子图
ylabel('u(n) ');% 给 y 轴加坐标
xlabel('n'); % 给 x 轴加坐标
subplot(212)
hist(u,50);% 对 u(n) 做直方图, 检验其分布,50 是对取值范围[01]均分等分 50 份
grid on;% 网格
ylabel('histogram of u(n) ');
```

5. 基带信号波形生成和其功率谱密度

5.1. 波形生成

要画出完整的波形,每一个码元要采 n 个样,如果一个 N 个码元的 0、1 序列 x,要画出它的矩形脉冲波形,可以用如下方法完成。

```
例: 产生一个 N 码元,每码元采样 n 个的 0、1 序列.
N=10000; % 二进制序列的长度
dsource =(sign(rand(1,N)-0.5+eps)+1)/2; % 生成 N 码元的 0、1 序列
n=10; % 每周期采样数为 10
temp1=ones(1,n);% 表示 1 码
temp0=zeros(1,n);% 表示 0 码
new_dsource=[];
for i=1:length(dsource)
    if dsource(i)==0
    new_dsource=[new_dsource temp0];
    else
    new_dsource=[new_dsource temp1];
    end
end
```

T=0.10; % 每码元周期

t=0:T/n:T/n*(length(new_dsource)-1); % 时间轴, new_dsource 序号从 1 开始 到 (length(new_dsource), 而 t 是从 0 开始, 故要减去 1

plot(t, new_dsource)

axis([min(t)-0.01, max(t)+0.01, min(new_dsource)-0.01, max(new_dsource)+0.01]) 5.2. 信号的功率谱密度

信号 f(t) 的功率谱密度为: $P(w) = \lim_{T \to \infty} \frac{\left|F_T(w)\right|^2}{T}$, 因此可以用如下方法求解信号的功

例: 求叠加了高斯噪声的余弦信号的功率谱密度。

clear all

率谱密度。

t = 0:0.001:0.6; % 时域信号的时间范围

x = 0.4*cos(2*pi*50*t); % 余弦信号

y = x + randn(size(t)); % 余弦信号+噪声

subplot (2, 1, 1):

plot(t(1:100), y(1:100));

title('0均值的随机信号')

xlabel('时间(秒)')

Nf=length(t);

Y = fft(y, Nf);% 求有限长(余弦+噪声)信号的傅里叶变换

Pyy=abs(Y). 2/Nf; % 求傅里叶变换模平方的均值

f = 1000*(0: (Nf-1)/2)/Nf;%得到频率轴,1000=1/dt,频率区间长度,见第二章定义,这里只画出了正半轴,注意区间长度

subplot (2, 1, 2);

plot(f, Pyy(1:((Nf-1)/2+1)));% 注意区间长度

title('信号的功率谱密度');

xlabel('频率(Hz)')

三、实验内容

- 1. 采用图形保持,在同一坐标上的 $0 \le x \le 2\pi$ 区间内,绘制曲线 $y_1 = 2e^{-0.5x}$ 和 $y_2 = \cos(4\pi x)$,并给图形添加图形标注。
- 2. 产生一个均值为 0,方差为 0. 1,服从高斯分布的白噪声信号 u(n),画出信号波形及该序列的柱状图。
- 3. 求信号 $x(t) = 0.4\sin(100\pi t) + 0.4\sin(640\pi t)$ 叠加均值为 0,方差为 1 的高斯噪声信号 u(n) 后所得信号的时域波形图及频谱。(注:时间取[0, 0. 6],采样点数 N = 1024。)
- 4. 调制信号为 $m(t) = 0.1\cos(15\pi t) + 1.5\sin(25\pi t) + 0.5\cos(40\pi t)$,利用 AM 方式调制,载波为 $c(t) = \cos(250\pi t)$,直流分量为A = 3,假如不考虑解调器,接收端输入信噪比为

10dB,请分别画出经过 AWGN 信道前后的已调信号的时域波形图及频谱;假设接收信号经过理想带通滤波器后进入解调器,此时解调器输入信噪比为 10dB,那么此时理想带通滤波器带宽应为多少?对应的噪声功率为多少?请求出对应的噪声功率,并分别画出经过 AWGN 信道前后的已调信号的时域波形图及频谱。(注 1: 时间取[0,0.6],采样点数 N=1024。注 2: 在实验分析中说明噪声信号的产生过程。注 3: 有关解调器输入信噪比的详细说明请参考《matlab 实验参考资料》p36。)

四、实验要求

1. 每次完成实验后按要求完成实验报告,实验报告格式如下:

一、	实验目的	
_,	实验内容	
三、	实验程序	(标明代码注释)
四、	实验结果	(图形添加标题)
五、	实验分析	(分析现象及原因)

- 2. 实验报告满分 5 分,最终实验成绩根据报告内容进行评定,请注意逾期提交报告或报告格式不符合要求都将影响最终实验成绩。
- 3. 请于 <mark>11 月 12 日晚 12: 00</mark> 前提交实验报告至邮箱: zy2002424@buaa.edu.cn, 命名格式为: "学号+姓名+第 X 次实验报告"。