Математический анализ 4 семестр

shared with \heartsuit by artem Zholus

Содержание

1	Критерий Лебега интегрируемости по Риману	2
2	Суммируемые функции 2.1 Неотрицательные суммируемые функции	
3	Предельный переход в классе суммируемых функций 3.1 Теорема Лебега о мажорируемой сходимости	

1 Критерий Лебега интегрируемости по Риману

Определение (Колебание на отрезке).

$$\omega(f,c,d) = \sup_{[c,d]} f - \inf_{[c,d]} f = \text{(по лемме из 1го семестра)} = \sup_{x',x'' \in [c,d]} |f(x') - f(x'')|$$

Определение (Колебание функции в точке).

$$\omega(f, x) = \lim_{\delta \to 0} \omega(f, x + \delta, x - \delta)$$

Очевидно, колебание на отрезке неотрицательно, и, если $0 < \delta_1 < \delta_2$ то $\omega(f, x - \delta_1, x + \delta_1) < \omega(f, x - \delta_2, x + \delta_2)$. Поэтому, вышеприведенный предел существует.

Утверждение 1.1. $\omega(f,x)=0 \Leftrightarrow f \in C(x)$

Доказательство. 1. ← Раз функция непрерывна, значит она достигает на отрезке своего sup и inf. Значит, если устремить границы отрезка к одной точке, в пределе получим разность двух одинаковых чисел.

 $2. \Rightarrow \omega(f,x) = 0$ означает, что можно подобрать такую δ -окрестность для x, что она будет сколь угодно малой. Берем формулу $\sup_{x',x''\in[x-\delta,x+\delta]}|f(x')-f(x'')|=0$ фиксируем x''=x (от этого sup разве что уменьшится) и получаем определение непрерывности в x.

Определение. τ : - разбиение отрезка [a,b], если $\tau = \{x_j\}$: $a = x_0 < x_1 < \cdots < x_n = b$

Ведем кусочно-постоянную функию $g(\tau, x) = \omega(f, x_i, x_{i+1})$, при $x \in [x_i, x_{i+1}]$

Утверждение 1.2. $g(\tau_n, x) \xrightarrow[n \to +\infty]{} \omega(f, x)$ почти всюду на отрезке

Доказательство. Очевидно, мы можем подбирать τ_n так, чтобы границы отрезка, содержащего x совпали с границами из определения $\omega(f,x)$. Тогда для неграничных точек получим стремление. Граничных точек на конечном шаге - конечное число, а это значит, что мы не перейдем за границу счетной мощности (danger zone - МАТЛОГИКА), и предел будет почти всюду

Тогда, по теореме Лебега о предельном переходе под знаком интеграла, получаем:

$$\int_{[a,b]} g(\tau_n, x) dx \to \int_{[a,b]} \omega(f, x) dx$$

Левая часть, по лемме из первого семестра равна $\int\limits_{[a,b]}g(au_n,x)dx=\omega(f, au_n).$ Получаем:

$$\lim_{rang\tau_n \to 0} \omega(f, \tau_n) = \int_{[a,b]} \omega(f, x) dx$$

Это наша рабочая формула.

Теорема 1.3 (Критерий Лебега интегрируемости по Риману).

$$f \in \Re(a,b) \Leftrightarrow \lambda\{a : f \notin C(a)\} = 0$$

 \square оказательство. 1. \Rightarrow

Пусть $\omega(f,x)=0$ почти всюду на [a,b]. Тогда $\int\limits_{[a,b]}\omega(f,x)dx=0 \Rightarrow f\in\Re[a,b]$

2. \Leftarrow Пусть $f \in \Re[a,b]$. Тогда, по определению, $\omega(f,\tau_n) \to 0$. Тогда $\int_{[a,b]} \omega(f,x) dx = 0$. Но $\omega(f,x) \geqslant 0$. Значит $\omega(f,x) = 0$ почти всюду на [a,b] (И, по лемме, почти всюду непрерывна).

2

$\mathbf{2}$ Суммируемые функции

2.1Неотрицательные суммируемые функции

Здесь и далее считаем, что мера μ - полная и σ -конечная. Наша задача - распространить интеграл Лебега на более широкую ситуацию. Считаем, что $E \in \mathcal{A}, f : E \xrightarrow{\text{измеримо}} \mathbb{R}, f(x) \geqslant 0$ на E.

Определение. $e \subset E$ называется допустимым для f если:

- 1. $\mu(e) < +\infty$
- $2. \, f$ ограничена на e

Утверждение 2.1. Непустые допустимые множества существуют.

Доказательство. Пусть $E_n = E(n < f(x) \leqslant n+1)$. Понятно, что $E = \bigcup E_n$. По σ -конечности $X = \bigcup X_m$, причем X_m - конечномерны. Тогда $E = \bigcup_{n,m} E_n X_m$ - допустимые множества. Если они все пустые, то E, тоже пусто. Значит среди них хотя бы ожно непустое.

Определение (Несобственный интеграл Лебега).

$$\int_{E} f d\mu \stackrel{\text{def}}{=} \sup_{e-\text{допустимо}} \int_{e} f d\mu$$

Определение (Неотрицательная суммируемая функция). Неотрицательная функция f называется суммируемой на множестве E, если $\int\limits_{E}fd\mu<+\infty$

Очевидно, если $\mu E<+\infty,\ f(x)\geqslant 0,$ то $\int\limits_E f d\mu=\sup\limits_{e\subset E}\int\limits_e f d\mu.$ Проверим аддитивность и линейность.

Теорема 2.2 (σ -аддитивность несобственного интеграла Лебега). Пусть $E = \bigcup_n E_n$ - дизъюнктны. Тогда $\int\limits_E f = \sum\limits_n \int\limits_E f$

Докажем в два этапа. сначала конечную аддитивность, потом σ -аддитивность

1. Пусть $E=E_1\cup E_2$.Пусть $e_1\in E_1,\,e_2\in E_2$ - допустимые. И любое допустимое для E множество $e=e_1\cup e_2$. Для определенного интеграла мы знаем, что $\int\limits_e f=\int\limits_{e_1} f+\int\limits_{e_2} f\leqslant \int\limits_{E_1} f+\int\limits_{E_2} f$

Переходя к sup по e получаем $\int\limits_{E} f \leqslant \int\limits_{E_{1}} f + \int\limits_{E_{2}} f$ В обратную сторону. Считаем, что f - суммируема (иначе все тривиально). По определению sup, $\forall \varepsilon >$

$$\int\limits_{E_1} f + \int\limits_{E_1} f - 2\varepsilon < \int\limits_{e_1} f + \int\limits_{e_2} f = \int\limits_{e} f \leqslant \int\limits_{E} f.$$
 Устремив $\varepsilon \to 0$ получим
$$\int\limits_{E_1} f + \int\limits_{E_2} f \leqslant \int\limits_{E} f.$$
 Значит
$$\int\limits_{E_1} f + \int\limits_{E_2} f = \int\limits_{E} f$$

2. Итак, пусть $e = \bigcup_{n=1}^{+\infty} e_n$. Очевидно $\int\limits_{e_n} f \leqslant \int\limits_{E_n} f$ и $\int\limits_{e} f = \sum\limits_{n} \int\limits_{e_n} f$. Значит $\int\limits_{E} f \leqslant \sum\limits_{n} \int\limits_{E_n} f$. Обратно. $\forall \varepsilon > 0 \,\exists e_n \subset E_n :$

 $\int\limits_{E_n}^{\varepsilon} f - \frac{\varepsilon}{2^n} < \int\limits_{e_n}^{\varepsilon} f.$ Сложим первые p неравенств: $\sum_{1}^{p} \int\limits_{E_n}^{\varepsilon} f - \varepsilon \sum_{1}^{p} \frac{1}{2^n} < \sum_{1}^{p} \int\limits_{e_n}^{\varepsilon} f \leqslant \int\limits_{E}^{\varepsilon} f.$ Устремляя $p \to +\infty$,

получаем $\sum_{n=1}^{+\infty} \int_{E} f - \varepsilon \leqslant \int_{E} f$. Теперь устремим $\varepsilon \to 0$ и получим обратное неравенство.

Теорема 2.3 (Линейность несобственного интеграла Лебега).

1.
$$\int_{E} \alpha f = \alpha \int_{E} f$$
, $\alpha > 0$

2.
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

Доказательство. Первое свойство следует непосредственно из определения. Докажем второе. Итак, пусть $E_n = E(n < f + g \leqslant n + 1)$. Тогда, очевидно, $E = \bigcup_n E_n$. По σ -конечности можно написать $X = \bigcup_n X_n$. От X_n мы хотим дизъюнктности, поэтому, если они не таковы, то проделаем следующий трюк: $X = X_1 \cup (X_2 \setminus X_1) \cup \cdots \cup (X_n \setminus \bigcup_1^{n-1} X_j) \cup \ldots$ Теперь E можно разбить как $E = \bigcup_n E_n X_m$ - эти множества

 $X = X_1 \cup (X_2 \setminus X_1) \cup \cdots \cup (X_n \setminus \bigcup_1 X_j) \cup \ldots$ Теперь E можно разбить как $E = \bigcup_{n,m} E_n X_m$ - эти множества дизъюнктны и допустимы для f + g. Далее по σ -аддитивности пишем: $\int_E (f + g) = \sum_n \int_{A_n} (f + g) = ($ по линейности определенного интеграла $) = \sum_n \int_{A_n} f + \sum_n \int_{A_n} g = ($ по σ -аддитивности несобственного $) = \int_E f + \int_E g$

Утверждение 2.4. $Ecnu \ 0 \leqslant f \leqslant g, \ mo \int\limits_E f \leqslant \int\limits_E g$

 $\ \ \, \mathcal{A}$ оказательство. $0\leqslant g-f$ - по арифметике измеримости, эта функция суммируема. Раз она неотрицательна, интеграл от нее тоже.

$$0\leqslant \int\limits_{E}g-f=\int\limits_{E}g-\int\limits_{E}f\,\Rightarrow\int\limits_{E}f\leqslant \int\limits_{E}g$$

2.2 Суммируемые функции произвольного знака

Определение.

$$f^{+}(x) = \begin{cases} 0 & , f(x) < 0 \\ f(x) & , f(x) \geqslant 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} -f(x) & , f(x) < 0 \\ 0 & , f(x) \geqslant 0 \end{cases}$$

Заметим, что $f = f^+ - f^-$, $|f| = f^+ + f^-$. f^+ и f^- - неотрицательные суммируемые функции (если f - измерима).

Определение. f называется суммируемой на E, если одновременно f^+ и f^- - суммируемы.

$$\int_{E} f \stackrel{\text{def}}{=} \int_{E} f^{+} - \int_{E} f^{-}$$

Утверждение 2.5. f - суммируема $\Leftrightarrow |f|$ - суммируема.

Доказательство. f - суммируема тогда и только тогда когда f^+ и f^- - суммируемы. |f| - суммируема тогда и только тогда, когда f^+ и f^- - суммируемы.

Аналогом суммируемости функций служит абсолютная сходимость.

Проверим σ -аддитивность и линейность для случая функции произвольного знака:

Теорема 2.6 (Аддитивность в случае произвольного знака). Пусть $E = \bigcup_n E_n$ - дизъюнктные, тогда $\int_E f = \sum_n \int_{E_n} f$

Доказательство.
$$\int_E f^+ = \sum_n \int_{E_n} f^+$$
, то же для f^- . Тогда $\int_E f = \int_E f^+ - \int_E f^- = \sum_n \int_{E_n} f^+ - \sum_n \int_{E_n} f^- = \sum_n (\int_E f^+ - \int_E f^-) = \sum_n \int_{E_n} f$

Теорема 2.7 (Линейность в случае произвольного знака).

1.
$$\int_{E} \alpha f = \alpha \int_{E} f, \ \alpha \in \mathbb{R}$$

2.
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

Доказательство. Пункт 1 очевиден, не будем на нем останавливаться. Докажем пункт 2:

$$\int\limits_E f + \int\limits_E g = (\int\limits_E f^+ + \int\limits_E g^+) - (\int\limits_E f^- + \int\limits_E g^-) = \int\limits_E (f^+ + g^+) - \int\limits_E (f^- + g^-) = (*) = \int\limits_E (f + g)^+ - \int\limits_E (f + g)^- = \int\limits_E (f + g)^-$$

Проверим переход (*). Для этого нужно, чтобы выполнялось $(f^+ + g^+) = (f + g)^+$ - в общем случае, это неправда. Поэтому нужно рассмотреть много случаев:

1.
$$f \geqslant 0, g \geqslant 0 \Rightarrow$$
 пусть $E_1 = E(f \geqslant 0, g \geqslant 0)$

2.
$$f \leqslant 0, g \leqslant 0 \Rightarrow$$
 пусть $E_2 = E(f \leqslant 0, g \leqslant 0)$

3. $f \geqslant 0, \ g \leqslant 0 \Rightarrow$ тут нужно различить два подслучая:

(a)
$$f+g \geqslant 0 \Rightarrow \text{пусть } E_3 = E(f \geqslant 0, g \leqslant 0, f+g \geqslant 0)$$

(b)
$$f + q < 0 \Rightarrow \text{пусть } E_4 = E(f \ge 0, q \le 0, f + q < 0)$$

4. $f\leqslant 0,\ g\geqslant 0\Rightarrow$ аналогично, два подслучая:

(a)
$$f + g \ge 0 \Rightarrow \text{пусть } E_5 = E(f \le 0, g \ge 0, f + g \ge 0)$$

(b)
$$f + q < 0 \Rightarrow \text{пусть } E_6 = E(f \le 0, q \ge 0, f + q < 0)$$

Очевидно, эти множества дизъюнктны (на 0 забъем) и можно написать: $\int\limits_E f = \sum\limits_{1}^6 \int\limits_{E_j} f$. Дальше идет нудный разбор случаев, я потом напишу **TODO**

3 Предельный переход в классе суммируемых функций

3.1 Теорема Лебега о мажорируемой сходимости

Теорема 3.1 (Теорема Лебега о мажорируемой сходимости). Пусть $f_n \Rightarrow f$ на E, $|f_n| \leqslant \phi$ на E, ϕ - суммируема. Тогда:

1. f - суммируема

2.
$$\int_E f_n \to \int_E f$$

Следует иметь ввиду, что в условии теоремы достаточно требовать выполнения свойств почти всюду.

Теорема 3.2. Пусть f - суммируема на E. Тогда $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall E' \subset E \Rightarrow \mu E' < \delta \Rightarrow |\int\limits_{E'} f| < \varepsilon$

 \mathcal{A} оказательство. По определению, можно написать $\forall \varepsilon > 0 \; \exists e : \int\limits_{E \setminus e} |f| < \varepsilon$. Так как e - допустимо, f - ограничена на e и $E = (E \setminus e) \cup e$. Возьмем любое $E' \subset E$, тогда $E' = E'(E \setminus e) \cup E'e$.

$$\left| \int_{E'} f \right| \leqslant \left| \int_{E'(E \setminus e)} f \right| + \left| \int_{E'e} f \right| \leqslant \varepsilon + \left| \int_{E'e} f \right|$$

Мы считаем, что $|f(x)| \leq M$. Заметим, что выбор E' не накладывал никаких ограничений на M. Тогда:

$$\int_{E'e} |f| \leqslant M\mu E'e \leqslant M\mu E'$$

Поэтому δ мы можем выбрать как $\delta=\frac{\varepsilon}{M}$. И получится, что $\mu E'\leqslant\delta\Rightarrow\left|\int\limits_{E'}f\right|\leqslant2\varepsilon$

Доказательство теоремы Лебега. По теореме Рисса $f_{n_k} \to f$ почти всюду, причем $|f_{n_k}(x)| \leqslant \phi(x)$, занчит $|f(x)| \leqslant \phi(x) \Rightarrow f$ — суммируема. Рассмотрим $\left|\int\limits_E f_n - \int\limits_E f\right| \leqslant \int\limits_E |f_n - f|$. Так как ϕ - суммируема, $\forall \varepsilon > 0 \ \exists e$ (допустимое для ϕ) : $\int\limits_E \phi \leqslant \varepsilon$

$$\int_{E} |f_n - f| = \int_{E \setminus e} |f_n - f| + \int_{e} |f_n - f| \leqslant 2\varepsilon + \int_{e} |f_n - f|$$

Пусть $|\phi|\leqslant M\Rightarrow |f_n-f|\leqslant 2M$. Так же мы знаем, что $\int\limits_e|f_n-f|\xrightarrow[n\to+\infty]{}0$. Значит, начиная с некоторого N_0 , $\int\limits_e|f_n-f|<\varepsilon$. Следовательно, начиная с N_0 , $\int\limits_E|f_n-f|\leqslant 3\varepsilon$

3.2 Теорема Леви

Теорема 3.3 (Теорема Леви). Пусть $f_n(x) \leqslant 0$, $f_n(x) \leqslant f_{n+1}(x)$, $f(x) = \lim_{n \to +\infty} f_n(x)$ на E. Тогда $\int_E f_n \to \int_E f$ Доказательство.