CS 5720 Design and Analysis of Algorithms Homework #1

Raja Kantheti

September 12, 2024

Problem 1

Determine the order of growth $\Theta(\cdot)$ for each of the following functions:

(a)
$$(n^2+1)^{10}$$

Dominant term: $(n^2)^{10} = n^{20}$ Order of growth: $\Theta(n^{20})$

(b)
$$\sqrt{10n^2 + 7n + 3}$$

Dominant term: $\sqrt{10n^2} = n\sqrt{10} \approx n$ Order of growth: $\Theta(n)$

(c)
$$2n\log((n+2)^2) + (n+2)^2\log(n/2)$$

First term analysis:

$$2n \log((n+2)^2) = 2n \cdot 2 \log(n+2)$$

= $4n \log(n+2)$

Dominant term: $4n \log n$

Second term analysis:

$$(n+2)^2 \log(n/2) = (n^2 + 4n + 4) \log(n/2)$$

 $\approx n^2 \log n$

Dominant term: $n^2 \log n$

Overall dominant term: $n^2 \log n$ Order of growth: $\Theta(n^2 \log n)$

(d)
$$2^{n+1} + 3^{n-1}$$

Dominant term: $2^{n+1} \approx 2^n$ and $3^{n-1} \approx 3^n$

Since 3^n grows faster than 2^n ,

Order of growth: $\Theta(3^n)$

(e)
$$|\log_2 n|$$

Order of growth: $\Theta(\log n)$

Problem 2

Prove the following assertions by using the definitions of the notations involved, or disprove them by giving a specific counterexample.

(a) If
$$t(n) \in O(g(n))$$
, then $g(n) \in \Omega(t(n))$.

Proof:

By definition of Big-O, $t(n) \in O(g(n))$ means there exist constants c > 0 and n_0 such that $t(n) \le c \cdot g(n)$ for all $n \ge n_0$.

By definition of Big-Omega, $g(n) \in \Omega(t(n))$ means there exist constants c' > 0 and n'_0 such that $g(n) \ge c' \cdot t(n)$ for all $n \ge n'_0$.

Hence, if $t(n) \leq c \cdot g(n)$, then $g(n) \geq \frac{1}{c} \cdot t(n)$.

Therefore, the statement is true.

(b)
$$\Theta(\alpha g(n)) = \Theta(g(n))$$
, where $\alpha > 0$.

Proof:

By definition of Theta, $f(n) = \Theta(g(n))$ if f(n) is both O(g(n)) and $\Omega(g(n))$.

Given $\alpha > 0$, $\alpha g(n)$ is simply a constant multiple of g(n).

Constants do not affect the growth rate, thus $\Theta(\alpha g(n)) = \Theta(g(n))$.

Therefore, the statement is true.

(c)
$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$
.

Proof:

By definition, $\Theta(g(n))$ means the function is bounded both above and below by g(n) up to constant factors.

O(g(n)) defines an upper bound, and $\Omega(g(n))$ defines a lower bound.

Intersection of these two sets means the function is both bounded above and below by g(n), which is the definition of $\Theta(g(n))$.

Therefore, the statement is true.

(d) For any two nonnegative functions t(n) and g(n) defined on the set of nonnegative integers, either $t(n) \in O(g(n))$ or $t(n) \in O(g(n))$, or both.

Proof/Disproof:

Consider t(n) = n and g(n) = n.

Both functions are equal, hence $t(n) \in O(g(n))$ and $t(n) \in \Omega(g(n))$.

Consider t(n) = n and $g(n) = n^2$.

 $t(n) \in O(g(n))$ since $n \le n^2$.

Consider $t(n) = n^2$ and g(n) = n.

 $t(n) \in \Omega(g(n))$ since $n^2 \ge n$.

Therefore, the statement is true as one of these conditions will always hold.

Problem 3

Determine the order of growth $(\Theta(\cdot))$ for each of the following functions. Show your work.

(a)
$$T(n) = \sum_{i=1}^{2n} i$$

Sum of first 2n natural numbers:

$$\frac{2n(2n+1)}{2} = 2n^2 + n$$

Order of growth: $\Theta(n^2)$

(b)
$$T(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} n$$

Inner sum analysis:

$$\sum_{j=i}^{n} n = (n-i+1)n$$

Outer sum analysis:

$$\sum_{i=1}^{n} (n-i+1)n = n \sum_{i=1}^{n} (n-i+1) = n \sum_{k=1}^{n} k = n \cdot \frac{n(n+1)}{2}$$

Order of growth: $\Theta(n^3)$

(c)
$$T(n) = \sum_{i=1}^{n} n^2$$

Sum analysis:

$$n \cdot n^2 = n^3$$

Order of growth: $\Theta(n^3)$

(d)
$$T(n) = \sum_{i=1}^{n^2} i$$

Sum of first n^2 natural numbers:

$$\frac{n^2(n^2+1)}{2} \approx n^4$$

Order of growth: $\Theta(n^4)$

(e)
$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{\ell=1}^{n} \ell$$

Innermost sum:

$$\sum_{\ell=1}^{n} \ell = \frac{n(n+1)}{2} \approx n^2$$

Next sum:

$$\sum_{k=1}^{n} n^2 = n^3$$

Next sum:

$$\sum_{j=1}^{n} n^3 = n^4$$

Outermost sum:

$$\sum_{i=1}^{n} n^4 = n^5$$

Order of growth: $\Theta(n^5)$