Calcul propositionnel, Propositions quantifiées

Calcul propositionnel

Définition: une proposition est une information pouvant être jugée par vraie ou faux.

Exemples:

- 1. « Maintenant il fait nuit là où je suis » est une proposition car on peut savoir s'il fait nuit ou pas à l'endroit ou je suis.
- 2. « 1 + 1 = 2 » est une proposition car l'information est vraie
- 3. « 2 + 3 = 4 » est une proposition car l'information est fausse
- 4. « il est quel heure ? » n'est pas une proposition car ce n'est pas une information.
- 5. « prends soin de toi » n'est pas une proposition car ce n'est pas une information.
- 6. « x + 3 = 0 » n'est pas une proposition car on ne connaît pas la valeur de x.
- 7. « Pour tout x réel, x+3=0 » est une proposition car on peut dire que l'information est fausse, il existe des réels pour lesquels $x+3\neq 0$
- 8. « Pour tout entier n: n+1>0 » est une proposition car on peut dire qu'elle est vraie, en effet pour tout entier n on a : $(n \in N)$ alors $n \ge 0$ donc $n+1 \ge 0+1$ donc $n+1 \ge 1$ donc n+1>0.

Remarque : généralement les propositions sont notées p,q,r ...etc

Opération sur les propositions :

Négation d'une proposition :

Soit p une proposition; la négation de la proposition p, est une autre proposition notée \bar{p} et est définit par la phrase « il n'est pas vrai que p », elle est vraie si p est fausse , et fausse si p est vraie.

Exemple:

Si p: « 1+1=2 » alors \bar{p} est la proposition « $il\ n'est\ pas\ vrai\ que\ 1+1=2$ » , autrement dit \bar{p} : $1+1\neq 2$.

Si r est la proposition « Pour tout entier n, n+1>0 », alors sa négation \bar{r} est la proposition « il n'est pas vrai que pour tout entier n, n+1>0 », autrement dit \bar{r} est la proposition « il existe un entier $n:n+1\le 0$ »

Tableau de vérité de la négation d'une proposition :

Si une proposition est vraie on dit qu'elle vaut 1, et si elle est fausse, on dit qu'elle vaut 0.

Une proposition quelconque p peut avoir deux valeurs, 1 ou 0.

On a donc le tableau suivant :

р	$ar{p}$
1	0
0	1

Conjonction de deux propositions :

Soient p et q deux propositions. La conjonction de p et q, notée q, est la proposition « q et q ». La conjonction q q n'est vraie que si q et q sont vraies. Donc si l'une des deux propositions est fausse alors la conjonction q q est fausse.

Tableau de vérité de la conjonction :

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	1

Exercice:

Déterminer si les propositions suivantes sont vraies ou fausses :

- 1. $(1+1=2) \land (1+2=3)$
- 2. $(1+1=2) \land (1+2=4)$
- 3. $(2 = 0) \land (les moutons ont des ailes)$
- 4. (le srascov2 tue certains les hommes qu'il infecte) ∧ (le srascov2 mute)
- 5. (Tout entier naturel s'ecrit sous forme d'une somme de deux carrés) \(\Lambda\) (il existe des entier qui ne s'écrivent pas sous forme d'une somme de deux carrés)

Solution:

- 1. Les deux propositions sont vraies donc leur conjonction est vraie
- 2. La deuxième proposition est fausse donc la conjonction est fausse
- 3. « les moutons ont des ailes est une proposition fausse donc la conjonction est fausse
- 4. Les deux propositions sont vraies donc leur conjonction est vraie
- 5. 3 ne peut pas s'écrie sous forme d'une somme de deux carrés (3=1+2) donc la première proposition est fausse donc la conjonction est fausse

Exercice:

Montrer que $p \wedge \bar{p}$ est toujours fausse :

Solution:

L'une des deux propositions parmi p et \bar{p} est fausse donc leur conjonction $p \wedge \bar{p}$ est fausse.

Exercice:

Dans une même table de vérité, déterminer les valeurs de la proposition $p \land (q \land r)$ et de la proposition $(p \land q) \land r$. Quelle remarque peut-on faire.

Solution:

Chaque proposition composant la proposition $p \land (q \land r)$ doit etre sur le haut d'une colonne, donc il faut une colonne pour p, une pour q, une pour q, une pour q, une pour q and q and q are pour q are pour q are pour q and q are pour q are pour q are pour q and q are pour q and q are pour q ar

Pour le nombre de ligne dans la table de vérité, il faut voir qu'il y a trois proposition élémentaires composant la proposition $p \land (q \land r)$, et que chacune d'elle peut prendre deux valeurs de vérité, et pour chaque chois de l'une d'elle correspond deux choix pour l'autre, donc il y a huit possibilités et on a :

p	q	r	$q \wedge r$	$p \wedge q$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
1	1	1	1	1	1	1
1	1	0	0	1	0	0
1	0	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

On remarque que chaque cas (chaque ligne est un cas) les deux propositions $p \land (q \land r)$ et $(p \land q) \land)$ prennent les mêmes valeurs de vérité. On dit qu'elles sont logiquement équivalentes. On dit aussi que **la conjonction est associative.**

Disjonction de deux propositions :

Soient p et q deux propositions. La disjonction de p et q, notée q v q, est la proposition « q ou q ». La disjonction est tout le temps vraie sauf si toutes les propositions sont fausse

р	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

Exercice:

Montrer que la proposition $p \vee \bar{p}$ est toujours vraie

Solution

L'une des deux propositions parmi p et \bar{p} est vraie donc leur disjonction $p \vee \bar{p}$ est toujours vraie

Exercice:

Dans une même table de vérité, déterminer les valeurs de la proposition $p \lor (q \lor r)$ et de la proposition $(p \lor q) \lor r$. Quelle remarque peut-on faire.

Solution:

Pour chaque proposition composant la proposition $p \lor (q \lor r)$, il faut une colonne, donc il faut une colonne pour p, une pour q, une pour q, une pour q $\lor r$ et une pour $p \lor (q \lor r)$; de même pour la proposition $(p \lor q) \lor r$. Et il faut huit lignes car il q a huit possibilités.

p	q	r	$p \lor q$	$q \lor r$	$p \lor (q \lor r)$	$(p \lor q) \lor r$
1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	0	1	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
0	1	0	1	1	1	1
0	0	1	0	1	1	1
0	0	0	0	0	0	0

On remarque que pour chaque possibilité (chaque ligne) les propositions $(p \lor q) \lor r$ et $p \lor (q \lor r)$ prennent les mêmes valeurs. On dit qu'elles sont équivalentes ; on dit aussi que la disjonction est associative.

L'implication logique :

L'implication logique p impliqueq, notée $p \Longrightarrow q$, est la proposition $\bar{p} \lor q$

p	q	$\bar{p} \lor q$
1	1	1
1	0	0
0	1	1
0	0	1

Remarquons que l'implication $p \Rightarrow q$ est toujours vraie sauf dans un seul cas, lorsque p est vraie et q est fausse, on dit que le vrai n'implique pas le faux, autrement dit :

 $(vrai \Rightarrow vrai)$ est une proposition vraie

(faux \Rightarrow vrai) est une proposition vraie

 $(faux \Rightarrow faux)$ est une proposition vraie

 $(vrai \Rightarrow faux)$ est une proposition fausse

Dans l'implication $p \Rightarrow q$, p s'appelle **l'hypothèse**, et q s'appelle **la conclusion**

Quand l'hypothèse est fausse l'implication est toujours vraie, alors que **l'implication est fausse si** l'hypothèse est vraie et la conclusion fausse.

On dit aussi que q est une condition nécessaire pour p, et que p est condition suffisante pour q. On dit aussi que : si p alors q.

Exercice:

Montrer que l'implication $p \Longrightarrow p$ est toujours vraie

Solution:

Si p est vraie alors l'implication est vraie car le vrai implique le vrai, et si p est fausse alors le faux implique le faux donc l'implication esr vraie, donc dans les deux cas possible elle est vraie.

a. Contraposée de l'implication $p \Rightarrow q$:

La contraposée de l'implication $p \Longrightarrow q$ est l'implication $\bar{q} \Longrightarrow \bar{p}$

p	q	$ar{p}$	$ar{q}$	$\bar{q} \Longrightarrow \bar{p}$
1	1	0	0	1
1	0	0	1	0
0	1	1	0	1
0	0	1	1	1

b. Equivalence de deux propositions :

On dit que les deux propositions p et q sont équivalentes, et on note $p \Leftrightarrow q$, losque on a la conjonction $(p \Rightarrow q) \land (q \Rightarrow p)$.

Р	q	$p \Longrightarrow q$	$q \Longrightarrow p$	$p \Leftrightarrow q$
1	1	1	1	1
1	0	0	1	0
0	1	1	0	0
0	0	1	1	1

Remarquons que deux propositions sont équivalentes lorsque qu'elles ont même valeur de vérité, c'est-à-dire qu'elles sont toutes les deux vrais ou toutes les deux fausses.

Exercice:

Déterminer si les implications suivantes sont vraies :

1.
$$(1+1=2) \Rightarrow (3=4)$$

2.
$$(1+1=3) \implies (3=4)$$

3.
$$(1+1=0) \Rightarrow (2+3=5)$$

4.
$$(1+1=2) \Rightarrow (2+3=5)$$

Solution:

1. Le première proposition est vraie et la seconde fausse, le vraie n'implique pas le faux donc l'implication est fausse

- 2. Le première proposition est fausse, donc sans voir l'autre proposition on peut dire que l'implication est vraie car le faux implique le vraie et le faux implique le faux
- 3. Meme chose
- 4. Les deux propositions sont vraie, le vraie implique le vraie, donc l'implication est vraie.

Théorème:

Pour toute proposition p on a : $\bar{p} \Leftrightarrow p$

Preuve:

on dresse la table de vérité de la proposition :

p	\bar{p}	$ar{ar{p}}$	$\bar{\bar{p}} \Longleftrightarrow p$
1	0	1	1
0	1	0	1

Exercice:

Etablir la table de vérité de la proposition suivante : $(p \lor \bar{q}) \Rightarrow (p \Rightarrow q)$

Solution:

p	q	$ar{q}$	$p \lor \overline{q}$	$p \Longrightarrow q$	$(p \lor \bar{q}) \Longrightarrow (p \Longrightarrow q)$
1	1	0	1	1	1
1	0	1	1	0	0
0	1	0	0	1	1
0	0	1	1	1	1

Exercice:

Déterminer si les équivalences suivantes sont vraies :

- 1. $(2+2=4) \Leftrightarrow (1+1=2)$
- 2. $(1+1=2) \Leftrightarrow (1+3=2)$
- 3. $(1 + 2 = 5) \Leftrightarrow$ (les vachent ont des ailes)
- 4. $(2 < 3) \Leftrightarrow (2 > 5)$

Solution:

- 1. Les deux propositions sont vraies donc l'équivalence logique est vraie
- 2. Le première est vraie et la secnode fausse donc il n'y a pas d'équivalence logique.
- 3. Les deux propositions sont fausses donc elles sont logiquement équivalentes
- 4. La première proposition est vraie, la seconde fausse, donc l'équivalence logique est fausse

Exercice:

Montrer l'équivalence des propositions suivantes sans utiliser de table de vérité :

- 1. $p \lor p \Leftrightarrow p$
- 2. $p \land p \Leftrightarrow p$
- 3. $p \Leftrightarrow (\bar{p} \Rightarrow p)$
- 4. $(p \lor q) \Leftrightarrow (\bar{p} \Rightarrow q)$

Solution:

- 1. Si p est vraie alors $p \lor p$ est vraie , et si p est fausse alors $p \lor p$ est fausse, donc elles sont équivalentes
- 2. Si p est vraie alors $p \wedge p$ est vraie, et si p est fausse $p \wedge p$ l'est aussi, donc elles sont équivalentes
- 3. Si p est vraie alors \bar{p} est fausse, et comme le faux implique le vraie alors $\bar{p} \Longrightarrow p$ est vraie, ceci d'une part, d'autre part si p est fausse alors \bar{p} est vraie et comme le vraie n'implique pas

le faux alors l'implication $\bar{p} \Longrightarrow p$ est fausse, donc p et $\bar{p} \Longrightarrow p$ ont meme valeur de vérité, donc elles sont équivalentes.

$$4.\ (p\vee q) \Leftrightarrow (\bar{\bar{p}}\vee q) \stackrel{def}{\Longleftrightarrow} (\bar{p} \Rightarrow q)$$

Théorème 1 : Lois de Morgan

Pour toutes propositions p et q on a :

- a. $\overline{p \wedge q} \Leftrightarrow \overline{p} \vee \overline{q}$
- b. $\overline{p \vee q} \Leftrightarrow \overline{p} \wedge \overline{q}$

Démonstration:

a.

р	q	$ar{p}$	\overline{q}	$p \wedge q$	$\overline{p \wedge q}$	$\bar{p} \vee \bar{q}$	$\overline{p \wedge q} \Longleftrightarrow \bar{p} \vee \bar{q}$
1	1	0	0	1	0	0	1
1	0	0	1	0	1	1	1
0	1	1	0	0	1	1	1
0	0	1	1	0	1	1	1

On remarque que quelles que soient les valeurs de p et q, $\overline{p \wedge q} \iff \overline{p} \vee \overline{q}$ est toujours vraie.

b. On fait la même chose.

Théorème de la contraposée :

Pour toutes propositions p et q on a : $(p \Rightarrow q) \Leftrightarrow (\bar{q} \Rightarrow \bar{p})$

Preuve : on utilise la table de vérité.

p	q	$ar{p}$	\overline{q}	$p \Longrightarrow q$	$\bar{q} \Longrightarrow \bar{p}$
1	1	0	0	1	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

On voit que quelles que soient les valeurs des propositions p et q, $p \Rightarrow q$ et $\bar{q} \Rightarrow \bar{p}$ ont les mêmes valeurs de vérités, donc elles sont équivalentes.

Exercice

Montrer que pour tout entier naturel n on a : n^2 est impair $\Rightarrow n$ est impair

Solution:

On utilise le théorème de la contraposée, c'est-à-dire on va montrer que

n n'et pas impair $\Rightarrow n^2$ n'est pas impair

Autrement dit on montre que (n est pair \Rightarrow n² est pair). On a :

 $(n \text{ est pair}) \Longrightarrow (\exists k \in \mathbb{N}: n = 2k) \Longrightarrow \{n^2 = 4k^2 = 2\lceil 2k^2 \rceil\} \Longrightarrow (n^2 \text{ est pair}).$

Exercices de travaux dirigés

Exercice1:

Construire une table de vérité pour chacune des propositions suivantes :

- 1. $p \Rightarrow \bar{q}$ 2. $\bar{p} \Leftrightarrow q$ 3. $(p \Rightarrow q) \lor (\bar{p} \Rightarrow q)$ 4. $(p \Leftrightarrow q) \lor (\bar{p} \Leftrightarrow q)$
- 5. $p \Rightarrow (\bar{q} \lor r)$ 6. $\bar{p} \Rightarrow (q \Rightarrow r)$

Exercice 2:

Montrer l'équivalence des propositions suivantes :

1.
$$(p \lor q) \Leftrightarrow (q \lor p)$$
 2. $(p \land q) \Leftrightarrow (q \land p)$ 3. $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$

4.
$$(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r)$$
 5. $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

$$6.p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

Exercice 3:

Sans utiliser de table de vérité, et on utilisant l'exercice 2, et la définition logique de l'implication, montrer que :

$$[p \Rightarrow (q \land r)] \Leftrightarrow [(p \Rightarrow q) \land (p \Rightarrow r)]$$

Exercice 4:

On utilisant les lois de Morgan, les définitions et sans utiliser de table de vérité montrer que :

1.
$$[\overline{p \wedge q} \vee r] \Leftrightarrow [(p \Rightarrow r) \vee (q \Rightarrow r)]$$

2.
$$\overline{p \Longrightarrow q} \iff (p \land \overline{q})$$

3.
$$(\bar{p} \wedge \bar{q}) \Leftrightarrow \overline{\bar{p} \Rightarrow q}$$

Exercice 5:

Expliquer sans utiliser de table de vérité pourquoi la proposition suivante est vraie lorsque p, q, et r ont même valeur de vérité, et fausse sinon

$$(p \lor \overline{q}) \land (q \lor \overline{r}) \land (r \land \overline{p})$$

Exercice 6:

1. Expliquer sans utiliser de table de vérité pourquoi la proposition suivante est vraie lorsqu'au moins l'une des propositions p, q, r est vraie et au moins l'une d'elles est fausse, et qu'elle est fausse si les trois propositions p, q, r ont même valeur de vérité :

$$(p \lor q \lor r) \land (\bar{p} \lor \bar{q} \lor \bar{r})$$

2. Vérifier les résultats en utilisant une table de vérité.

Propositions Quantifiées

On voudrait étudier les informations contenant des variables, par exemple l'information notée P(x, y) dont le sens est « x est plus petit que y » et qu'on note [P(x, y) : x < y]

Dans cette information il y a deux variables, x et y; si on attribue a chacune de ces variables une valeur, par exemple P(1,2), alors on obtient une proposition, vue que P(1,2) est l'information 1 < 2, et que cette information est vraie. P(3,2) est une proposition car P(3,2): 3 < 2, et cette information est fausse.

Mais l'information P(x, y) : x < y, prise sans fixer de valeur aux variables n'est pas une proposition, car ne connaissant pas les valeurs de x et y, on ne sait pas si x < y, x > y, ou x = y.

Une autre façon de rendre proposition l'information P(x,y): x < y, c'est de la **quantifier**. Une façon de le faire c'est de dire que : **il existe au moins un** entier naturel x et **il existe au moins un** entier naturel y tels que x < y, symboliquement on écrit :

$$\exists x \in N, \exists y \in N: P(x, y)$$

De cette façon, on obtient une proposition, car il est vraie qu'il existe deux entiers naturels x et y tels que x < y, on peut donnner à x la valeur 1, et à y la valeur 2.

On peut aussi dire que **pour tout** réel x et **pour tout** réel y on a x < y, sympoliquement on écrit :

$$\forall x \in R, \forall y \in R: P(x, y)$$

De cette façon on obtient une proposition, car l'information est fausse.

On peut aussi se dire que pour tout réel x , il existe un réel y tel que x < y, ce qui se traduit symboliquement par :

$$\forall x \in R, \exists y \in R: P(x, y)$$

De cette façon aussi on obtient une proposition car pour tout x dans R, si y = x + 1 alors x < y. Exemple :

Considérons l'information R(x): x < 1. Cette information n'est pas une proposition car il y a une variable x dont on ne connait pas de valeur. On peut la quantifier de deux façon , soit en introduisant le quantificateur existentiel « il existe au moins », noté \exists , ou bien le quantificateur universel « pour tout » ou « quel que soit », noté \forall , pour obtenir soit la proposition vraie $\exists x \in Z : x < 1$, ou bien pour obtenir la proposition fausse $\forall x \in Z : x < 1$

D'une façon générale pour rendre proposition une information contenant des variables, il suffit d'attribuer à chaque variable l'un des deux quantificateurs \exists ou \forall et de définir l'ensemble auquel appartient chaque variable.

Négation d'une proposition quantifiée :

Exemple:

Considérons la proposition quantifiée : $\forall x \in R : P(x)$ ou P(x) est l'information x > 1 Il est clair que cette proposition est fausse car il existe un réel x tel que $x \le 1$, symboliquement $\exists x \in R : x \le 1$, et cette proposition est vraie, il suffit de choisir x = 0

La propostion $\exists x \in R: x \leq 1$ est la négation de la proposition $\forall x \in R: x > 1$, car dire qu'il n'est pas vraie que $\forall x \in R: x > 1$, c'est dire que $\exists x \in R: x \leq 1$.

Remarquons aussi que la négation de x>1 est l'information $x\leq 1$, qui se traduit symboliquement par $\overline{P(x)}$: $x\leq 1$

Symboliquement on a:

$$\overline{\forall x \in R: P(x)} \iff \exists x \in R: \overline{P(x)}$$

Exemple:

Considérons la proposition quantifiée définit par : $\forall x \in R, \exists n \in Z : P(x,n) \text{ ou } P(x,n) \text{ signifie } n > x$ Dire qu'il n'est pas vraie que $\forall x \in R, \exists n \in Z : P(x,n)$, veut dire qu'il existe un réel x plus grand ou égale à tout entier relatif n, autrement dit la négation de la proposition $\forall x \in R, \exists n \in Z : n > x \text{ est la proposition } \exists x \in R, \forall n \in Z : n \leq x$

Symboliquement on a:

$$\forall x \in R, \exists n \in Z: P(x,n) \iff \exists x \in R, \forall n \in Z: \overline{P(x,n)}$$

D'une façon générale on a :

Pour trouver la négation d'une information quantifiée contenant des variables, on transforme le quantifiquateur existentiel \exists en le quantificateur universel \forall , et inversement, sans toucher au ensembles d'appartenance des variables, puis on prend la négation de l'information contenant les variables , par exemple :

$$\forall a \in A, \exists b \in B, \forall c \in C: p(a, b, c) \iff \exists a \in A, \forall b \in B, \exists c \in C: \overline{p(a, b, c)}$$

Exercice:

Ecrire la négation de la proposition suivante :

$$\forall x \in A, \exists b \in B: p(a,b) \Longrightarrow q(a,b)$$

Exercice:

Soit $f: R \to R$

On dit que f est continue en a lorsque :

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in R: |x - a| < \delta \Longrightarrow f|(x) - f(a)| < \varepsilon$ Que veut dire que f n'est pas continue en a.

Exercice:

Soit $f: R \to R$

On dit que f admet une limite lorsque ${\bf x}$ tend vers $\,a$ lorsque :

$$\exists l \in R, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in R: |x - a| < \delta \Longrightarrow f|(x) - l| < \varepsilon$$

Que veut dire que f n'admet pas de limite au voisinage de a