

Introduction

- A novel method for phylogenetic inference
- Really "novel"
 - Based on community-detection in graphs
 - "Novel" does not mean it will change the world
- Explore how it works
- Give some linguistic examples
- Quickly discuss publication and alternatives

Methods for phylogenetic inference

- Manual construction
- Distance-based methods
 - NJ and UPGMA
- Character-based methods
 - Parsimony
 - Maximum Likelihood and Bayesian

Methods for phylogenetic inference

- Manual construction
- Distance-based methods
 - NJ and UPGMA
- Character-based methods
 - Parsimony
 - Maximum Likelihood and Bayesian

	Swedish	Danish	Italian	Hittite
Swedish	0.0	0.1	0.4	0.9
Danish	0.1	0.0	0.4	0.9
Italian	0.4	0.4	0.0	0.9
Hittite	0.9	0.9	0.9	0.0

	Swedish	Danish	Italian	Hittite
Swedish	0.0	0.1	0.4	0.9
Danish	0.1	0.0	0.4	0.9
Italian	0.4	0.4	0.0	0.9
Hittite	0.9	0.9	0.9	0.0

Methods for phylogenetic inference

- Manual construction
- Distance-based methods
 - NJ and UPGMA
- Character-based methods
 - Parsimony
 - Maximum Likelihood and Bayesian

Number of necessary changes: 80

$$b + e + a + c + d + f = 6$$

$$\pi_A + \pi_C + \pi_G + \pi_T = 1$$

$$\int Degrees of freedom$$

$$GTR$$

$$\mu b e a c d f \pi_C \pi_C \pi_C \pi_C \pi_T \pi_A = 1$$

HKY85
$$\mu = b : a = c = d = f : \pi_C : \pi_G : \pi_T : \pi_A : A$$

F81
$$\mu b e a c d f \pi_C \pi_G \pi_T (\pi_A)$$
 3

Legend

GTR

- Constant. Set to the value above the box.
- (x)Stochastic. Free to vary.
- (x)Deterministic. Value depends on other values.

Limitations

- Some methods are hard to introspect and understand
- Some methods can take extremely long time to compute
- No method really addresses issues like borrowings
 - o But, truth be told, there are some extensions
- No method really addresses issues like informativity
 - Shared innovations vs. shared retentions
 - This can be specified by the researcher (good!)

Community detection

- Very active area of research
 - Already used in CHL: Lexstat+Infomap, for example, is the best method in lingpy because of Infomap, not Lexstat
- Many methods allow to specify either the number the clusters (k) or the resolution (r)
- As seen, it is not guaranteed the higher resolutions will respect the lower-resolution groupings
- A few algorithms (greedy, Louvain, Infomap) allow us to use weighted edges

Danish

Tree building

- We can build a tree by gradually increasing the resolution and recording when the number of communities (i.e., clades) increases
 - The difference in resolution is used as a branch length
 - But not directly! It is (inversely) proportional and, depending on the method for community detection, **not** linear
- There are a number of technical difficulties
- Important question: where do the weights come from?

Weights

- Different strategies are possible, and I have been experimenting
- The easiest is to just add 1.0 whenever there is a shared trait (e.g. a cognate set)
 - This effectively makes the graph similar in spirit to a neighbornet
- We can also adjust the scoring by language proximity and entropy
 - This effectively addresses (*to a minimal extent!*) issues like borrowings and parallel innovations, with higher weights to shared innovations

Meaning: four

Represented in 159 languages with 4 cognate sets.

Meaning: dirty

Represented in 142 languages with 83 cognate sets.

On this approach - I

- While using characters, this approach is more like distance-methods
 - No implied evolutionary model
 - Decision ultimately based on shared material
- However, we can correct edge weights by substitution model expectancy (i.e., as in Bayesian), without mandatory symmetry, or expert judgement (e.g., Billing and Elgh [forth.])
 - This essentially incorporates an evolutionary model!
- I argue that this is still worth in our phylogenetic toolbox
 - No model is better than a bad model
 - It combines some advantages of distance- and character-methods
- The trees are rooted, and have branch length
 - We can force them to be bifurcating, but it will be more natural to have polytomies

On this approach - II

- It's more a framework than a method
 - Different community detection methods
 - Different graph construction strategies
 - Different tree building strategies
- The following examples all use the simplest (and "less correct") methods, all with default parameters, no calibrations, no monophyletic restrictions
 - Don't mind branch lengths too much I'll explain why

How to proceed?

- Code on GitHub is essentially ready
 - More methods could be implemented, especially Infomap and new strategies for tree-building
- Independent researcher...
- Some free-to-publish options
 - Journal of Language Modelling (appropriate?)
 - Journal of Open Source Software (more a method than software)
 - Look for a different journal?
 - Just release with a DOI on Zenodo and be happy?

In all fields SEARCH

80 LANGUAGES

134 COUNTRIES REPRESENTED 13,542 **JOURNALS** WITHOUT FEES 20,496 **JOURNALS**

10,143,203 ARTICLE RECORDS

Thank you!

tresoldi@gmail.com tiago@tresoldi.org