

Evolving Non-Thermal Electron Distributions in Black Hole Accretion **Disk Simulations**

Andrew Chael EHT2016 December 2, 2016

Image Credit: Genzel et al. (2010)

Nonthermal effects on EHT image

Goals:

- 1. Self-consistently evolve a spectrum $n(\gamma)$ of nonthermal electrons in global GRRMHD simulations **including interactions** with all other quantities (thermal gas, radiation, magnetic field...).
- 2. Include the resulting nonthermal population in radiative transfer.

Background: Two-Temperature Simulations

• Low densities in hot flows → Inefficient Coulomb coupling between ions and electrons.

Electrons lose energy through radiation much more efficiently than ions.

• Electrons can be relativistic ($\Gamma=4/3$) while ions are not ($\Gamma=5/3$). Relativistic species store more energy with a smaller increase in temperature.

$$nk_BT = (\Gamma - 1)u$$

Background: Two-Temperature Simulations

• Added to KORAL: Sądowski et al. 2016.

Electrons and ions are each separate fluids in thermal equilibrium.

• Energy and pressure are related by a **self-consistent adiabatic index**:

$$\Gamma(\theta)$$
 , $\theta = k_B T/mc^2$

Background: Two-Temperature Simulations

• Entropy per particle is taken as the "conserved" quantity.

$$\delta\tau\,(nsu^\mu)_{;\mu}=(\delta q_{\rm heat}-\delta q_{\rm cool})/T$$
 entropy per particle change in energy from dissipative processes

• Evolve electrons and ions **adiabatically** and compare their energy density with total fluid to identify **viscous heating**.

Video Credit: Aleksander Sądowski

Non-Thermal Population: Assumptions

• Track the spectrum $n(\gamma)$ sampled in different "bins" in Lorentz factor space.

 We assume the non-thermal distribution is isotropic in the fluid frame.

• We also assume the non-thermal population is **highly relativistic** and **optically thin** (neglect absorption).

Number, Energy, Pressure

• Nonthermal distribution fluid quantities come directly from $n(\gamma)$.

$$n_{e \text{ ur}} = \int_{\gamma_{min}}^{\gamma_{max}} n(\gamma) d\gamma$$

$$u_{e \text{ ur}} = m_e \int_{\gamma_{min}}^{\gamma_{max}} n(\gamma) (\gamma - 1)$$

$$p_{e \text{ ur}} = m_e \int_{\gamma_{min}}^{\gamma_{max}} \frac{1}{3} n(\gamma) (\gamma - \gamma^{-1})$$

• We have to subtract off $n_{\mathrm{e}\ \mathrm{ur}}$ from the thermal number density.

Evolution Equation

$$\underbrace{(n(\gamma)u^\alpha)_{;\alpha}}_{;\alpha} = \frac{\partial}{\partial\gamma} \left[u^\alpha_{;\alpha} \frac{1}{3} (\gamma - \gamma^{-1}) n(\gamma) \right] + S(\gamma)$$
 Advection Interaction terms

Adiabatic Compression/Expansion

Evolution Equation

$$\underbrace{(n(\gamma)u^\alpha)_{;\alpha}}_{(\alpha)} = \frac{\partial}{\partial\gamma} \left[u^\alpha_{;\alpha} \frac{1}{3} (\gamma - \gamma^{-1}) n(\gamma) \right] + S(\gamma)$$
 Advection Interaction terms

Adiabatic Compression/Expansion

Interaction Terms

Adiabatic Part

$$(n(\gamma)u^{\alpha})_{;\alpha} = \frac{\partial}{\partial \gamma} \left[\frac{1}{3} u^{\alpha}_{;\alpha} (\gamma - \gamma^{-1}) n(\gamma) \right] - \frac{\partial}{\partial \gamma} \left(\dot{\gamma}_{\text{tot}} n(\gamma) \right) + Q^{I}(\gamma).$$

Interaction Terms

Adiabatic Part

$$(n(\gamma)u^{\alpha})_{;\alpha} = \frac{\partial}{\partial \gamma} \left[\frac{1}{3} u^{\alpha}_{;\alpha} (\gamma - \gamma^{-1}) n(\gamma) \right] - \frac{\partial}{\partial \gamma} \left(\dot{\gamma}_{\text{tot}} n(\gamma) \right) + Q^{I}(\gamma).$$

Viscous Heating/Injection: Total injected energy is a fraction of identified viscous heating

Viscous Heating

• Compare the internal energy of the total fluid to the internal energy of the components **evolved adiabatically**.

$$q^{v} = \frac{u - u_{i \text{ th adiab}} - u_{e \text{ th adiab}} - u_{e \text{ ur adiab}}}{\Delta \tau}$$

• A fraction δ_e goes directly into both electron populations: δ_{ur} of that goes into non-thermal electrons.

$$u_i o u_i + (1-\delta_e)q^v \Delta au$$

$$u_{e\, ext{th}} o u_{e\, ext{th}} + \delta_e (1-\delta_{ ext{ur}})q^v \Delta au$$
 Thermal heating
$$n(\gamma) o n(\gamma) + Q_I(\gamma) \Delta au$$

Fixed Power Law normalized to total injected energy $\delta_e \delta_{\mathrm{ur}} q^v$

Interaction Terms

Interaction Terms

Radiative Cooling

• Synchrotron:

$$\dot{\gamma}_{\rm syn} \sim B^2 \gamma^2$$

• Free-Free:

$$\dot{\gamma}_{ff} \sim -n_i \gamma \log \gamma$$

• Inverse Compton:

$$\dot{\gamma}_{\rm IC} \sim -\hat{E}_r \, \gamma^2 F_{KN}(\gamma)$$

Test #1: Synchrotron Cooling Test

• Power law injection at fixed rate + synchrotron cooling in constant magnetic field.

Tests both viscous updating step and implicit radiative cooling.

Test #1: Synchrotron Cooling with Boundary

Test #1: Particle number Equilibrium

Test #1: Energy Conservation

Test #2: Driven Turbulent Box

 No radiation: injection and adiabatic expansion.

Energy is added by "stirring"
 with a spectrum of perturbations.

• Parameters: $\delta_e = .1$, $\delta_{\rm ur} = .05$

Test #2: Driven Turbulent Box

 No radiation: injection and adiabatic expansion.

• Energy is added by "stirring" gray with a spectrum of perturbations.

• Parameters: $\delta_e = .1$, $\delta_{\rm ur} = .05$

- Synchrotron cooling **only** for rel. electrons.
- Initial conditions: evolved twotemperature GRRMHD disk with **no** rel. electrons.
- Parameters: $\delta_e = .05$, $\delta_{\rm ur} = .005$

- Synchrotron cooling **only** for rel. electrons.
- Initial conditions: evolved twotemperature GRRMHD disk with **no** rel. electrons.
- Parameters: $\delta_e = .05$, $\delta_{\rm ur} = .005$

$u_{\mathrm{nth.}}$

Nonthermal Rad. Power

Nonthermal Rad. Power

Next Steps

• Determine prescriptions for energy injection fraction & power law parameters.

Use new code in more Sgr A* & M87 simulations.

Do radiative transfer and look at resulting spectrum and images.

Questions?

What about absorption?

• For $\gamma >> 1$, to **2nd order** in $h\nu/mc^2$, the evolution equation is:

$$\left(\frac{\partial n}{\partial t}\right) = -\frac{\partial}{\partial \gamma} \left[\dot{\gamma} n(\gamma)\right] + \frac{\partial}{\partial \gamma} \left[\gamma^2 C(\gamma) \frac{\partial}{\partial \gamma} \left(\frac{n(\gamma)}{\gamma^2}\right)\right]$$

Emission: 1st order

Absorption: 2nd order

• Where:

$$\dot{\gamma} = -\int \frac{\epsilon(\nu, \gamma)}{mc^2} d\nu \propto \left(\frac{h\nu}{mc^2}\right)$$

$$C(\gamma) = \int \frac{I_{\nu} \epsilon(\nu, \gamma)}{2\nu^2 m^2 c^4} d\nu \propto \left(\frac{h\nu}{mc^2}\right)^2$$

Requires radiation spectrum and emissivity spectrum!