Basic facts on completeness and p-adic numbers

Filter

Definition

We call the non-empty subfamily $\mathscr{F}\subset \mathcal{P}(X)$ a filter (滤子) whenever

- $A, B \in \mathscr{F}$ implies $A \cap B \in \mathscr{F}$ (downward closed),
- ullet $A\in\mathscr{F}$ implies $\{U\in\mathcal{P}(X)\mid A\subset U\}\subset\mathscr{F}$ (upward closed),
- $\emptyset \notin \mathscr{F}$.

Example. Let $\{x_n\}_{n\geq 1}$ be a sequence in X. Then

$$\mathscr{F} := \{ E \subset X \mid \exists N \text{ s.t. } \{x_k\}_{k \geq N} \subset E \}.$$

is a filter.

Ex1 $\forall (X, \tau)$, $\forall x_0 \in X$ are given. Prove that $\{ \text{neighbourhoods of } x_0 \}$ is a filter.

Example. For any partially ordered set (P, \leq) , we define interval with endpoints $\alpha \leq \beta$ as $[\alpha, \beta] : \{x \mid \alpha \leq x \leq \beta\}$.

The topology generated by $\{[\alpha, \max]\}_{\alpha \in P}$ is called order filter.

The topology generated by $\{[\min, \alpha]\}_{\alpha \in P}$ is called order ideal.

Ex2 Is the topology generated by order ideal (or order filter) a filter?

Basis of a filter

We call $\mathscr{B} \in \mathcal{P}(X)$ a basis of filter in X whenever

- ∅ ∉ ℬ,
- $A, B \in \mathcal{B}$ implies $\exists C \in \mathcal{B}$ s.t. $C \subset A \cap B$.

Compare such definition with topological basis.

We say a filter converges to a point $(\mathscr{F} \to x)$ whenever each neighbourhood of x contains some elements in \mathscr{F} .

Is
$$\{(-1-n^{-1},1+n^{-1})\}_{n\geq 1}$$
 a convergent filter in $(\mathbb{R}, au_{\mathrm{standard}})$?

We say the (X, au) is Hausdorff whenever each filter converges to at most one point.

Is
$$\{(-1-n^{-1},-1+n^{-1})\cap (1-n^{-1},1+n^{-1})\}_{n\geq 1}$$
 a convergent filter in quotient space $(\mathbb{R},\tau_{\mathrm{standard}})/(-1\sim 1)$? Is such quotient space Hausdorff?

For f:X o Y, ${\mathscr F}$ is a filter in X. Set

$$f\mathscr{F}:=\{F\subset Y\mid \exists E\in\mathscr{F}\text{ s.t. }f(E)\subset F\}.$$

Then $f\mathscr{F}$ is also a filter in Y. The function f is continuous whenever f is continuous in filters. One can regard (convergent) filters as *generalised* (convergent) sequences.

Ex3 Why convergence of filters seems "better" than convergence of sequences? (Hint: sequences can ill afford to discribe "uncountable cases". One may encounter something like net convergence in the study of completeness and sequencially completeness in functional analysis.)

Cauchy filter

We call (G, +) an Abelian group whenever

1. G is closed under the binary operation +, that is,

$$\forall a, b \in G, a + b \in G.$$

2. *G* admits associativity, that is,

$$\forall a, b, c \in G, (a + b) + c = a + (b + c) =: a + b + c.$$

3. G has a (additive) unit, that is,

$$\exists e \in G \text{ s.t. } \forall g \in G, g+e=e+g=g.$$

4. $\forall g \in G$ has an (additive) inverse, that is,

$$\forall g \in G, \exists ilde{g} \in G ext{ s.t. } g + ilde{g} = ilde{g} + g = e.$$

5. G (additively) commutes, that is,

$$\forall a,b \in G, a+b=b+a.$$

Ex4 Verify the uniqueness of e and \tilde{g} . We write the inverse \tilde{g} as -g, a+(-b) as a-b thenceforth.

Write \mathscr{N}_x as the set of all neighbourhoods of x. For $x \in G$ and $S \subset G$, define x + S as $\{x + s \mid s \in S\}$.

Let (X, +) be Abelian group and also a Hausdorff space (X, τ) (e.g., $(\mathbb{R}, \tau_{\mathrm{standard}})$). Such X is a object in the category \mathbf{TopAb} . Then

- ullet $\exists e \in X ext{ s.t. } \mathscr{N}_e = -\mathscr{N}_e.$
- $\mathcal{N}_x = x + \mathcal{N}_0$.

We call $\mathscr F$ a Cauchy filter in $\mathscr F$ whenever $\forall U\in\mathscr N_0,\,\exists E\in\mathscr F$ such that $E-E\subset U.$ For instance, $\mathscr N_x$ is a Cauchy filter for arbitrary fixed $x\in X.$

One can also regard Cauchy filters as generalised Cauchy sequences.

Ex5 Verity that each convergent filter in above X is always a Cauchy filter.

Completeness

Definition

Consider the injection $i:\mathbb{Q}
ightarrow \mathbb{R}, r \mapsto r$. Then

- $\mathbb{Q} \to i(\mathbb{Q})$ is a homeomorphism.
- $i(\mathbb{Q})$ is dense in \mathbb{R} .
- $\mathbb R$ is complete in sense of Cauchy sequences, that is, each Cauchy sequence in $i(\mathbb Q)$ converges in $\mathbb R$.

Completeness in general

The completeness of $A\in \mathrm{Obj}(\mathbf{TopAb})$ is a morphism $f\in \mathrm{Mor}(\mathbf{TopAb})$ such that

- $f:A \to f(A)$ is a homeomorphism.
- f(A) is dense in \tilde{A} .
- \tilde{A} is complete in sense of Cauchy filters (either in A or \tilde{A}), that is, each Cauchy filter converges to exactly one point in \tilde{A} .

One may observe that for each continuous function $f \in C(\mathbb{Q})$, there exists a unique continuous function $\tilde{f} \in C(\mathbb{R})$ such that $\tilde{f}|_{\mathbb{Q}} = f$. This is due to the universal property (the translation 泛性质 is often heard, e.g. 拥有学习能力系学生之泛性质) of completeness, i.e., for each morphism $f: A \to B$ in the category **TopAb** (or **TopRing**), there exists unique \tilde{f} such that the following diagram commutes

$$egin{array}{ccc} A & \stackrel{i}{\longrightarrow} & ilde{A} & & & \\ & & & & \downarrow \exists | ilde{f} & & & \\ & & & & B & & \end{array}$$

Ex6 Verify the completeness is unique in sense of homeomorphism. (It is quite hard).

Introduction of p-adic valuation

p-adic number

The standard absolute value $|\cdot|_{\infty}$ (or $|\cdot|$ for simplicity) is induced by the standard topology for $\mathbb R$ (and its subspaces). We say x is close enough to y whence $|x-y|_{\infty} \ll 1$.

We shall define a new absolute value $|\cdot|_p$ on \mathbb{Q} , which is called p-adic absolute value, as follows.

The p-valuation of $d \in \mathbb{Z}$ is defined by the powers of p it contains, i.e.,

$$v_p(d) := \sup\{n \in \mathbb{Z} \mid d \cdot p^{-n} \in \mathbb{Z}\}.$$

One may observe $v_p(d_1d_2)=v_p(d_1)+v_p(d_2)$, thus the domain of v_p can be extended to \mathbb{Q} .

Here
$$v_p(0)=v_p(0)+v_p(d)$$
 is well-defined since one can set $\infty+k=\infty$.

Define
$$|r|_p:=p^{-v_p(r)}$$
 for $r\in\mathbb{Q}.$ Here $|0|_p=p^{-\infty}=0.$

For each $x\in\mathbb{Q}$, there exists a unique $k_0\in\mathbb{Z}$ and unique factorisation

$$x = \sum_{k \geq k_0} a_{k_0} p^{k_0}, \quad a_k \in \{0,1,\dots,p-1\}.$$

Thus $v_p(x) = -k_0$ and $|x|_p = p^{k_0}$. Such factorisation is called the standard representation of p-adic numbers.

For instance, $|9|_3 = 3^{-2}$, $|28|_7 = 7^{-1}$.

Ex7 Prove that $|x+y|_p \le \max(|x|_p, |y|_p) \le |x|_p + |y|_p$ and determine when equality holds. As a corollary, the absolute value $|\cdot|_p$ is non-Archimedean.

Ex8 Define a family valuations for the field of rational functions such that we can determine the multiplicity of zeros and ∞ 's on each point of \mathbb{R} , (or $\mathbb{R} \cup \{\infty\}$, \mathbb{C} , $\mathbb{C} \cup \{\infty\}$, whatever you like).

Rational function takes the form of $\frac{f(x)}{g(x)}$, f and g are (finite) polynomials. e.g., $\frac{x^2+x-1}{x^3+2}$ is a rational function.

The p-adic valuation on $\mathbb R$

There exists an extension of p-adic valuation on \mathbb{R} . We omit the proof since it requires the knowledge of abstract algebra. It requires the axiom of choice.

Topology of p-adic number

Let \mathbb{Q}_p denotes the topology of \mathbb{Q} induced by $|\cdot|_p$. Since the metric is discrete, each open ball in \mathbb{Q}_p is also closed.

Ex9 Prove that

- \mathbb{Q}_p is totally disconnected, whose only connected subspaces are singletons.
- $p\mathbb{Z}$ is a compact subspace in \mathbb{Q}_p , thus \mathbb{Q}_p is locally compact.

• At most p distinct points in \mathbb{Q}_p are equidistant from each other.

This thesis on *p*-adic numbers is easy to read for beginners.

Application: Monskey's theorem

It is not possible to dissect a square into an odd number of triangles of equal area.

Here quadrilaterals with vetrex angled 180° are NOT triangles.

Proof.

Step I. We shall first prove **Sperner's lemma** in dimension 2, saying

When colouring the vertices of a square among blue, red and green colours, then

number of red-green coloured edges on the boundary \equiv number of red-green-blue coloured squares mod 2.

For instance:

Ex10 Proof Sperner's lemma by counting the ■ by edges and by triangles.

Step II. Consider the valuation $|\cdot|_2$ on $[0,1]^2\subset\mathbb{R}^2$. Colour $(x,y)\in[0,1]^2$ with

- 1. Red whence $|x|_2 < 1 \land |y|_2 < 1$,
- 2. Gre whence $|x|_2 \ge 1 \land |x|_2 \ge |y|_2$,
- 3. Blu whence $|y|_2 \geq 1 \wedge |x|_2 < |y|_2$,

shown as follows:

Step III. For the sake of contradiction, we assume the existence of *the partition*. Then we coloured the vertices in accordance with **Step II.** As a result, there exists a 3-coloured triangle (in light of Sperner's lemma).

Step IV. Let S denotes the area of each triangle. Let $\{(x_i, y_i)\}_{i=1,2,3}$ be vertices of any 3-coloured triangle. Then

$$|S|_2 = \left| rac{1}{2} egin{vmatrix} 1 & 1 & 1 \ x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \end{bmatrix}
ight|_2 = 2 \left| egin{vmatrix} x_2 - x_1 & x_3 - x_1 \ y_2 - y_1 & y_3 - y_1 \end{bmatrix}
ight|_2.$$

Without the loss of generality, let $x_1=y_1=0$, and colour (x_1,y_2) , (x_2,y_2) and (x_3,y_3) with Red, Blue, Green respectively. Therefore,

$$|S|_2=2|x_2y_3-x_3y_3|_2=2\max\{|x_2y_3|_2,|x_3y_2|_2\}\geq 2.$$

 $|a+b|_p=\max\{|a|_p,|b|_p\}$ whenever $|a_p|\neq |b_p|$ when $a,b\in\mathbb{Q}$. Such equality still holds as we extend the valuation onto \mathbb{R} .

When $S=rac{1}{n}$ for odd n, $|S|_2=1<2$, which leads to a contradiction.

Ex11 It is possible to dissect $[0,1]^n$ a into m of triangles of equal area iff $n!\mid m$.

Ex12 It is possible to dissect regular n-polygon $(n \ge 5)$ into m triangle of equal area iff $n \mid m$.

Ex13 It is impossible to dissect the convex hull of $\{(0,0),(\pi,0),(0,1),(1,1)\}$ in to any number of triangles of equal area.