

US006557129B1

(12) United States Patent Rajski et al.

(10) Patent No.:

US 6,557,129 B1

(45) Date of Patent:

Apr. 29, 2003

(54) METHOD AND APPARATUS FOR SELECTIVELY COMPACTING TEST RESPONSES

(76) Inventors: Janusz Rajski, 6502 Horton Rd., West Linn, OR (US) 97068; Jerzy Tyszer,

Os. Stare Zegrze 89C/2, 61-249 Poznan (PL); Mark Kassab, 29665 SW. Rose La., Apartment 288, Wilsonville, OR (US) 97070; Nilanjan Mukherjee, 29290 SW. Parkway Ct., Apartment 92,

Wilsonville, OR (US) 97070

(*) Notice:

Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/619,988

(22) Filed: Jul. 20, 2000

Related U.S. Application Data

(60) Provisional application No. 60/167,136, filed on Nov. 23, 1999.

(51)	Int. Cl. ⁷ G01R 31/28
(52)	U.S. Cl
(58)	Field of Search
` '	714/727 728 720 30 732 733

(56) References Cited

U.S. PATENT DOCUMENTS

3,614,400			Farnett
3,700,869 4,503,537			Low et al
4,513,418 4,602,210			Bardell, Jr. et al. Fasang et al.
4,687,988	Α	8/1987	Eichelberger et al 324/73 AT
4,754,215 4,785,410			Kawai
4,801,870			Eichelberger et al 324/73 R
4,860,236 4,959,832			McLeod et al

OTHER PUBLICATIONS

M. Morris Mano; "Computer System Architecture" (2nd edition); section 2-3, pp. 50-54.*

Bershteyn, M., "Calculation of Multiple Sets of Weights for Weighted Random Testing," International Test Conference 1993, Paper 45.3, pp. 1031-1040.

Zacharia, N., et al., "Decompression of Test Data Using Variable-Length Seed LFSRs", IEEE 1995, 426-433.

P.H. Bardell, "Design Considerations for Parallel Pseudorandom Pattern Generators", Journal of Electronic Testing: Theory and Applications, 1, 73–87 (1990) pp. 73–87.

I. Hamzaoglu, J. Patel, "Reducing Test Application Time for Full Scan Embedded Cores," Center for Reliable & High-Performance Computing, University of Illinois, Urbana, IL., 1999 IEEE pp. 260–267.

(List continued on next page.)

Primary Examiner—Christine T. Tu (74) Attorney, Agent, or Firm—Klarquist Sparkman LLP

57) ABSTRACT

A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled. Other embodiments allow selective masking of a variable number of scan chain outputs.

68 Claims, 9 Drawing Sheets

U.S. PATENT DOCUMENTS

4,974,184	Α	11/1990	Avra 364/717
5,090,035	Α	2/1992	Murase 377/72
5,138,619	Α	8/1992	Fasang et al 714/718
5,173,906	Α	12/1992	Dreibelbis et al 714/733
5,268,949	Α	12/1993	Watanabe 714/749
5,301,199	Α	4/1994	Ikenaga et al 714/733
5,325,367	Α	6/1994	Dekker et al 714/718
5,369,648	Α	11/1994	Nelson 371/27
5,394,405	Α	2/1995	Savir 371/27
5,412,665	Α	5/1995	Gruodis et al 371/27
5,414,716	Α	5/1995	Bershteyn
5,446,683	Α	8/1995	Mullen et al 364/717
5,450,414	Α	9/1995	Lin 371/22.3
5,574,733	Α	11/1996	Kim 371/27
5,586,125	Α	12/1996	Warner 371/27
5,592,493	Α	 1/1997 	Crouch et al 714/729
5,612,963	Α	3/1997	Koenemann et al 371/27
5,631,913	Α	5/1997	Maeda 714/732
5,694,402	Α	12/1997	Butler et al 714/732
5,719,913	Α	2/1998	Maeno 377/54
5,748,497	Α	5/1998	Scott et al 364/557
5,790,562	Α	8/1998	Murray et al 714/732
5,790,626	Α	8/1998	Johnson et al 377/69
5,831,992	Α	11/1998	Wu 714/732
5,899,961	Α	5/1999	Sundermann 702/117
5,905,986	Α	5/1999	Rohrbaugh et al 707/701
5,974,433	Α	10/1999	Currie 708/252
5,991,898	Α	11/1999	Rajski et al 714/30
5,991,909	Α	11/1999	Rajski et al 714/729
6,006,349	Α	12/1999	Fujisaki 714/738
6,072,823	Α	6/2000	Takakusaki 375/208
6,141,669	Α	10/2000	Carleton 708/252
6,158,032	Α	* 12/2000	Currier et al 714/726
6,300,885	Bı	10/2001	Davenport et al.

OTHER PUBLICATIONS

- S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, B. Courtois, "Built-in Test for Circuits With Scan Based on Reseeding of Multiple Polynomial Linear Feedback Shift Registers", *IEEE Trans. On Computers*, vol. C-44, pp. 223-233, Feb. 1995.
- S. Hellebrand, B. Reeb, S. Tarnick, H-J Wunderlich, "Pattern Generation for a Deterministic BIST Scheme", pp. 88-94, 1995 IEEE.
- B. Koenemann c/o IBM Corp., B56/901, "LFSR-Coded Test Patterns for Scan Designs", *Proceedings of European Test Conference*, pp. 237-242, 1991.
- J. Rajski, J. Tyszer, N. Zacharia, "Decompression of Test Data Using Variable-Length Seed LFSRs", Microelectronics and Computer Systems Laboratory, McGill University, Montreal, Canada, 1995 IEEE pp. 426-433.
- J. Rajski, J. Tyszer, N. Zacharia, "Test Data Decompression for Multiple Scan Designs with Boundary Scan," IEEE Transactions on Computers, vol. 47, No. 11, Nov. 1998 pp. 1188–1200.
- J. Rajski and J. Tyszer, "Design of Phase Shifters for BIST Applications", *Proc. VLSI Test Symposium*, pp. 218–224, 1998. IEEE.
- J. Rajski, N. Tamarapalli, J. Tyszer, "Automated Synthesis of Large Phase Shifters for Built-In Self-Test," International Test Conference, Paper 41.1, pp. 1047-1056, IEEE 1998 paper 41.1.
- Venkataraman, Rajski, Hellebrand, and Tarnick, "An Efficient BIST Scheme Based on Reseeding of Multiple Polynomial Linear Feedback Shift Registers", pp. 572-577, 1993

- P.H. Bardell, W.H. McAnney, J. Savir, Built in test for VLSI: Pseudorandom Techniques, John Wiley & Sons, 1987.
- W-B, Jone and S.R. Das, "Space compression method for built-in self testing of VLSI circuits," *Int. Journal of Computer Aided VLSI Design*, vol. 3, pp. 309-322, 1991.
- H.J. Wunderlich, "On computing optimized input probabilities for random tests," Proc. DAC pp. 392–398, 1987. Paper 24.2.
- N.R. Saxena and J.P. Robinson, "Accumulator compression testing," *IEEE Trans. Comput.*, vol. C-35, No. 4, pp. 317-321, 1986.
- J.P. Hayes, "Check sum test methods," Proc. FTCS, pp. 114-120, 1976.
- J. Savir, "Syndrome-testable design of combinational circuits," *IEEE Trans. Comput.* vol. C-29, No. 6, pp. 442-451, 1980
- Y.K. Li and J.P. Robinson, "Space compression methods with output data modification," *IEEE Trans. CAD if Integrated Circuits and Systems*, vol. CAD-6, No. 2, pp. 290-294, 1987.
- J.E. Smith, "Measures of the effectiveness of fault signature analysis," *IEEE Trans. Comput.*, vol. C-29, No. 6, pp. 510-514, Jun. 1980.
- K.J. Latawiec, "New method of generation of shifted linear pseudorandom binary sequences", *Proc. IEE*, vol. 121, No. 8, pp. 905–926, Aug. 1974.
- N.R. Saxena and E.J. McCluskey, "Extended precision checksums," *Proc. FTCS*, pp. 142-147, 1987.
- J.P. Hayes, "Transition count testing of combinational logic circuits," *IEEE Trans. Comput.*, vol. C-25, No. 6, pp. 613-620, Jun. 1976.
- P.H. Bardell and W.H. McAnney, "Pseudorandom arrays for built-in tests," IEEE Trans. Comput., vol. C-35, No. 7, pp. 653-658, 1986.
- B. Ireland and J.E. Marshall, "Matrix method to determine shaft-register connections for delayed pseudorandom binary sequences," *Electronics Letters*, vol. 4 No. 15, pp. 309-310, (Jul 26, 1968).
- J.A. Waicukauski, E. Lindbloom, E.B. Eichelberger, O.P. Forlenza, "A method for generating weighted random test patterns," *IBM J. Res. Develop.*, vol. 33, No. 2, pp. 149–161, Mar. 1989.
- R.A. Frowerk, "Signature analysis: a new digital field services method," *Hewlett-Packard Journal*, pp. 2-8, May 1997.
- G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hasson and J. Rajski, "Logic BIST for Large Industrial Designs: Real Issues and Case Studies," *Proc. ITC*, pp. 358–367, 1999.
- V. Iyengar, K. Chakrabarty, and B.T. Murray, "Built-In Slf-testing of sequential circuits using precomputed test sets," *Proc. VLSI Test Symposium*, pp. 418-423, 1998.
- A. Jas, J. Ghosh-Dastidar, and N.A. Touba, "Scan vector compression/decompression using statistical coding," Proc. VLSI Test Symposium, pp. 114-120, 1999.
- A.Jas, and N.A. Touba, "Test vector decompression via cyclical scan chains and its application to testing core-based designs," Proc. ITC, pp. 458-464, 1998.
- H.J. Wunderlich, "Multiple distribution for biased random test patterns," *Proc. ITC*, pp. 236–244, 1988. Paper 15.1.
- T. Yamaguchi, M. Tilgner, M. Ishida, D.S. Ha, "An efficient method for compressing test data," Proc. ITC, pp. 79–88, 1997

- K. Chakrabarty, B.T. Murray, and J.P. Hayes. "Optimal space compaction of test responses," *Proc. ITC*, pp. 834–843, 1995. Paper 35.3.
- K, Chakrabarty and J.P. Hayes, "Test response compaction using multiplexed parity trees." *IEEE Transactions CAD of Integrated Circuits and Systems*, vol. CAD-15, No. 11, pp. 1399-1408, Nov. 1996.
- A. Ivanov, B. Tsuji, and Y. Zorian, "Programmable BIST sapce compactors," *IEEE Trans. Comput.*, vol. C-45, No. 12, pp. 1393-1404, 1996.
- B. Pouya and N.A. Touba, "Synthesis of zero-aliasing elementary-tree space compactors," Proc. VLSI Test Symp., pp. 70-77, 1998.
- S.M. Reddy, K. Saluja, M. Karpovski, "A Data compression technique for built-in self-test," IEEE Trans. Comput., vol. C-37, pp. 1151-1156, Sep. 1988.
- M. Serra, T. Slater, J.C. Muzio, and D.M. Miller, "The analysis of one-dimensional linear cellular automata and their aliasing properties," *IEEE Trans. CAD of Integarted Circuits and Systems*, vol. CAD-9, No. 7, pp. 767-778, 1990.
- T.W. Williams, W. Daehn, M. Gruetzner, and C.W. Starke, "Bounds and analysis of aliasing errors in linear-feedback shift registers," *IEEE Trans. CAD of Integarted Circuits and Systems*, vol. CAD-7, No. 1, pp. 75-83, 1988.
- M. Ishida, D.S. Ha, T. Yamaguchi, "COMPACT: A hybrid method for compression test data," *Proc. VLSI Test Symposium*, pp. 62-69, 1998.
- K. Kim, D.S. Ha, J.G. Tront, "On using signature registers as pseudorandon pattern generators in built-in self testing," *IEEE Trans. CAD of IC*, vol. CAD-7, No. 8, 1988, pp. 919-928.
- G. Mrugalski, J. Rajski, J. Tyszer, "Synthesis of pattern generators based on cellular automata with phase shifters," Proc. Int. Test Conf., pp. 368-377, 1999.
- R. Kapur, S. Patil, T.J. Snethen, and T.W. Williams, "Design of an efficient weighted random pattern generation system," *Proc. ITC.*, pp. 491-500, 1994.

- F. Muradali, V.K. Agarwal, and B. Nadeau-Dostie, "A new procedure for weighted random built-in self-test," *Proc. ITC.*, pp. 600-669, 1990.
- S. Pateras and J. Rajski "Cube contained random patterns and their application to the complete testing of synthesized multi-level circuits," *Proc. ITC.*, pp. 473-482, 1991.
- J. Rajski, J. Tyszer, "Test responses compaction in accumulators with rotate carry adders," *IEEE Transactions CAD of Integrated Circuits and Systems*, vol. CAD-12, No. 4, pp. 531-539, 1993.
- J. Rajski, J. Tyszer, "Accumulator-based compaction of test responses," *IEEE Transactions on Comput.*, vol. C-42, No. 6, pp. 643-650, 1993.
- N.R. Saxena and E.J. McCluskey, "Analysis of checksums, extended-precision checksums, and cyclic redundancy," *IEEE Trans. Comput.*, vol. C-39, No. 7, pp. 969-975, 1990.
- N.A. Touba and E.J. McCluskey, "Transformed pseudo-random patterns for BIST," *Proc. VLSI Test Symposium*, pp. 410-416, 1995. IEEE.
- N.A. Touba and E.J. McCluskey, "Altering a pseudo-random bit sequence for scan-based BIST," Proc. ITC., pp. 167-175, 1996.
- K. H. Tsai, S. Hellebrand, J. Rajski, and Marek-Sadowska, "STARBIST: Scan autocorrelated random pattern generation," *Proc. DAC*, pp. 472-477, 1997.
- H.J. Wunderlich and G. Kiefer, "Bit-flipping BIST," Proc. ICCAD, pp. 337-343, 1996.
- S.W. Golomb, Shift Register Sequences, Holden Day, San Francisco, 1967, pp. 7-22, 75-89.
- V.N. Yarmolik and S.N. Demidenko, "Generation and Application of Pseudorandom Sequences for Random Testing," J. Wiley & Sons, New York, 1988, pp. 63-94.
- * cited by examiner

FIG. 1

FIG. 3 (PRIOR ART)

FIG. 4 (PRIOR ART)

FIG. 5 (PRIOR ART)

FIG. 6 (PRIOR ART)

FIG. 14

METHOD AND APPARATUS FOR SELECTIVELY COMPACTING TEST RESPONSES

RELATED APPLICATION DATA

This application claims the benefit of U.S. Provisional Application No. 60/167,136, filed Nov. 23, 1999, which is hereby incorporated by reference.

TECHNICAL FIELD

This invention relates generally to testing of integrated circuits and more particularly relates to compaction of test responses used in testing for faults in integrated circuits.

BACKGROUND

As integrated circuits are produced with greater and greater levels of circuit density, efficient testing schemes that guarantee very high fault coverage while minimizing test 20 costs and chip area overhead have become essential. However, as the complexity of circuits continues to increase, high fault coverage of several types of fault models becomes more difficult to achieve with traditional testing paradigms. This difficulty arises for several reasons. First, larger integrated circuits have a very high and still increasing logicto-pin ratio that creates a test data transfer bottleneck at the chip pins. Second, larger circuits require a prohibitively large volume of test data that must be then stored in external testing equipment. Third, applying the test data to a large 30 circuit requires an increasingly long test application time. And fourth, present external testing equipment is unable to test such larger circuits at their speed of operation.

Integrated circuits are presently tested using a number of structured design for testability (DFT) techniques. These 35 techniques rest on the general concept of making all or some state variables (memory elements like flip-flops and latches) directly controllable and observable. If this can be arranged, a circuit can be treated, as far as testing of combinational faults is concerned, as a combinational or a nearly combinational network. The most-often used DFT methodology is based on scan chains. It assumes that during testing all (or almost all) memory elements are connected into one or more shift registers, as shown in U.S. Pat. No. 4,503,537. A circuit that has been designed for test has two modes of operation: 45 a normal mode and a test, or scan, mode. In the normal mode, the memory elements perform their regular functions. In the scan mode, the memory elements become scan cells that are connected to form a number of shift registers called scan chains. These scan chains are used to shift a set of test 50 patterns into the circuit and to shift out circuit, or test, responses to the test patterns. The test responses are then compared to fault-free responses to determine if the circuit under test (CUT) works properly.

Scan design methodology has gained widespread adoption by virtue of its simple automatic test pattern generation (ATPG) and silicon debugging capabilities. Today, ATPG software tools are so efficient that it is possible to generate test sets (a collection of test patterns) that guarantee almost complete fault coverage of several types of fault models 60 including stuck-at, transition, path delay faults, and bridging faults. Typically, when a particular potential fault in a circuit is targeted by an ATPG tool, only a small number of scan cells, e.g., 2–5%, must be specified to detect the particular fault (deterministically specified cells). The remaining scan 65 cells in the scan chains are filled with random binary values (randomly specified cells). This way the pattern is fully

specified, more likely to detect some additional faults, and can be stored on a tester.

FIG. 1 is a block diagram of a conventional system 10 for testing digital circuits with scan chains. External automatic testing equipment (ATE), or tester, 12 applies a set of fully specified test patterns 14 one by one to a CUT 16 in scan mode via scan chains 18 within the circuit. The circuit is then run in normal mode using the test pattern as input, and the test response to the test pattern is stored in the scan chains. With the circuit again in scan mode, the response is then routed to the tester 12, which compares the response with a fault-free reference response 20, also one by one. For large circuits, this approach becomes infeasible because of large test set sizes and long test application times. It has been reported that the volume of test data can exceed one kilobit per single logic gate in a large design. The significant limitation of this approach is that it requires an expensive, memory-intensive tester and a long test time to test a complex circuit.

These limitations of time and storage can be overcome to some extent by adopting a built-in self-test (BIST) framework as shown in FIG. 2. In BIST, additional on-chip circuitry is included to generate test patterns, evaluate test responses, and control the test. For example, a pseudorandom pattern generator 21 is used to generate the test patterns, instead of having deterministic test patterns. Additionally, a multiple input signature register (MISR) 22 is used to generate and store a resulting signature from test responses. In conventional logic BIST, where pseudorandom patterns are used as test patterns, 95-96% coverage of stuck-at faults can be achieved provided that test points are employed to address random-pattern resistant faults. On average, one to two test points may be required for every 1000 gates. In BIST, all responses propagating to observable outputs and the signature register have to be known. Unknown values corrupt the signature and therefore must be bounded by additional test logic. Even though pseudorandom test patterns appear to cover a significant percentage of stuck-at faults, these patterns must be supplemented by deterministic patterns that target the remaining, random pattern resistant faults. Very often the tester memory required to store the supplemental patterns in BIST exceeds 50% of the memory required in the deterministic approach described above. Another limitation of BIST is that other types of faults, such as transition or path delay faults, are not handled efficiently by pseudo-random patterns. Because of the complexity of the circuits and the limitations inherent in BIST, it is extremely difficult, if not impossible, to provide a set of test patterns that fully covers hard-to-test faults.

Some of the DFT techniques include compactors to compress the test responses from the scan chains. There are generally two types of compactors: time compactors and spatial compactors. Time compactors typically have a feedback structure with memory elements for storing a signature, which represents the results of the test. After the signature is completed it is read and compared to a fault-free signature to determine if an error exists in the integrated circuit. Spatial compactors generally compress a collection of bits (called a vector) from scan chains. The compacted output is analyzed in real time as the test responses are shifted out of the scan chains. Spatial compactors can be customized for a given circuit under test to reduce the aliasing phenomenon, as shown in the U.S. Pat. No. 5,790,562 and in few other works based on multiplexed parity trees or nonlinear trees comprising elementary gates such as AND, OR, NAND, and NOR gates.

Linear spatial compactors are built of Exclusive-OR (XOR) or Exclusive-NOR (XNOR) gates to generate n test

outputs from the m primary outputs of the circuit under test, where n<m. Linear compactors differ from nonlinear compactors in that the output value of a linear compactor changes with a change in just one input to the compactor. With nonlinear compactors, a change in an input value may 5 go undetected at the output of the compactor. However, even linear compactors may mask errors in an integrated circuit. For example, the basic characteristic an XOR (parity) tree is that any combination of odd number of errors on its inputs propagates to their outputs, and any combination of even 10 number of errors remains undetected.

An ideal compaction algorithm has the following features: (1) it is easy to implement as a part of the on-chip test circuitry, (2) it is not a limiting factor with respect to test time, (3) it provides a logarithmic compression of the test data, and (4) it does not lose information concerning faults. In general, however, there is no known compaction algorithm that satisfies all the above criteria. In particular, it is difficult to ensure that the compressed output obtained from a faulty circuit is not the same as that of the fault-free circuit. This phenomenon is often referred to as error masking or aliasing and is measured in terms of the likelihood of its occurrence. An example of error masking occurs when the spatial compactor reads two fault effects at the same time. The multiple fault effects cancel each other out and the 25 compactor output is the same as if no faults occurred.

Unknown states are also problematic for error detection. An unknown state on one or more inputs of an XOR tree generates unknown values on its output, and consequently masks propagation of faults on other inputs. A common application of space compactors is to combine the observation points inserted into the CUT as a part of design-fortestability methodology. The spatial compactors can be also used to reduce the size of the time compactors by limiting the number of their parallel inputs.

Undoubtedly, the most popular time compactors used in practice are linear feedback shift registers (LFSRs). In its basic form, the LFSR (see FIG. 3) is modified to accept an external input in order to act as a polynomial divider. An alternative implementation (called type II LFSR) is shown in FIG. 4. The input sequence, represented by a polynomial, is divided by the characteristic polynomial of the LFSR. As the division proceeds, the quotient sequence appears at the output of the LFSR and the remainder is kept in the LFSR. Once testing is completed, the content of the LFSR can be treated as a signature.

FIG. 5 shows another time compactor (which is a natural extension of the LFSR-based compactor) called a multiple-input LFSR, also known as a multiple-input signature register (MISR). The MISR is used to test circuits in the multiple scan chain environment such as shown in the U.S. Pat. No. 4,503,537. MISRs feature a number of XOR gates added to the flip-flops. The CUT scan chain outputs are then connected to these gates.

FIG. 6 shows an example of a pipelined spatial compactor with a bank of flip-flops separating stages of XOR gates. A clock (not shown) controls the flip-flops and allows a one-cycle delay before reading the compacted output.

The limitation of spatial compactors, such as the one 60 shown in FIG. 6, is that unknown states can reduce fault coverage. Time compactors, such as shown in FIGS. 3, 4, and 5, are completely unable to handle unknown states since an unknown state on any input can corrupt the compressed output generated by the compactor. With both time compactors and spatial compactors, multiple fault effects can reduce fault coverage. Additionally, if a fault effect is detected

within the integrated circuit, these compactors have limited ability to localize the fault.

An object of the invention, therefore, is to provide an efficient compactor that can select which scan chains are analyzed. This ability to select allows the compactor to generate a valid compressed output even when receiving unknown states or multiple fault effects on its inputs. The compactor can also be used diagnostically to determine the location of faults within an integrated circuit.

SUMMARY

A compactor is disclosed that selects test responses in one or more scan chains to compact into a compressed output, while one or more other test responses are masked. Thus, test responses containing unknown states may be masked to ensure that the compactor generates a valid compressed output. Additionally, test responses can be masked to ensure fault masking does not occur. The compactor can also analyze test responses from individual scan chains to diagnostically localize faults in an integrated circuit.

A compactor includes selection circuitry that controls which scan chains are analyzed. The selection circuitry passes desired test responses from scan chains onto a compactor, while masking other test responses. In one embodiment, the selection circuitry may include an identification register that is loaded with a unique identifier of a scan chain. Based on the state of a flag register, either only the test response stored within the scan chain identified is passed to the compactor or all test responses are passed to the compactor except the test response associated with the identified scan chain.

In another embodiment, the selection circuitry includes a flag that controls whether only selected test responses are compacted or whether all test responses are compacted.

In yet another embodiment, a control register is used that individually identifies each scan chain included in compaction. In this embodiment, a variable number (e.g., 1, 2, 3, 4...) of test responses within scan chains may be included in compaction. Alternatively, the control register may store a unique identifier that is decoded to select one test response that is compacted.

In still another embodiment, the selection circuitry includes a control line that masks bits from scan chains on a per clock-cycle basis. Consequently, a test response may have only individual bits masked while the remaining bits of the test response are compacted.

The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a prior art system for testing integrated circuits.

FIG. 2 is a block diagram of a prior art system using a built-in-test system.

FIG. 3 is a circuit diagram of a prior art type I LFSR compactor.

FIG. 4 is a circuit diagram of a prior art type II LFSR compactor.

FIG. 5 is a circuit diagram of a prior art architecture of a multiple input signature register (MISR) compactor shown receiving input from scan chains.

FIG. 6 is a circuit diagram of a prior art pipelined spatial compactor.

FIG. 7 is a block diagram of a selective compactor according to the invention.

FIG. 8 shows one embodiment of a selective compactor, including selection circuitry and a spatial compactor, for masking test responses from scan chains.

FIG. 9 is another embodiment of a selective compactor including selection circuitry and a time compactor for masking test responses from scan chains.

FIG. 10 is yet another embodiment of a selective compactor including selection circuitry and a cascaded compactor for masking individual bits of test responses from scan chains.

FIG. 11 is another embodiment of a selective compactor including selection circuitry and multiple compactors for 15 masking test responses.

FIG. 12 is another embodiment of a selective compactor with selection circuitry that masks any variable number of test responses from the scan chains.

FIG. 13 is another embodiment of a selective compactor 20 with programmable selection of scan chains.

FIG. 14 is a flowchart of a method for selectively compacting test responses from scan chains.

DETAILED DESCRIPTION

FIG. 7 shows a block diagram of an integrated circuit 24 that includes multiple scan chains 26 in a circuit under test 28. A selective compactor 30 is coupled to the scan chains 26 and includes a selector circuit 32 and a compactor 36. The 30 illustrated system is a deterministic test environment because the scan chains 26 are loaded with predetermined test patterns from an ATE (not shown). The test patterns are applied to the core logic of the integrated circuit to generate test responses, which are also stored in the scan chains 26 35 (each scan chain contains a test response). The test responses contain information associated with faults in the core logic of the integrated circuit 24. Unfortunately, the test responses may also contain unknown states and/or multiple fault effects, which can negatively impact the effective coverage 40 of the test responses. For example, if a memory cell is not initialized, it may propagate an unknown state to the test response. The test responses are passed to the selector circuit 32 of the selective compactor 30. The selector circuit 32 includes control logic 34 that controls which of the test 45 responses are passed through the selector circuit to the compactor 36. The control logic 34 can control the selector circuit 32 such that test responses with unknown states or multiple fault effects are masked. The control logic is controlled by one or more control lines. Although not 50 shown, the control lines may be connected directly to a channel of an ATE or they may be connected to other logic within the integrated circuit. For example, the control lines may be coupled to a Linear Finite State Machine (e.g., LSFR type 1, LSFR type 2, cellular automata, etc.) in combination 55 with a phase shifter. The compactor 36 receives the desired test responses from the selector circuit 32 and compacts the responses into a compressed output for analysis. The compressed output is compared against a desired output to determine if the circuit under test contains any faults. The 60 selection circuitry, compactor, and circuit under test are all shown within a single integrated circuit. However, the selection circuitry and compactor may be located externally of the integrated circuit, such as within the ATE.

FIG. 8 shows one example of an integrated circuit 40 that 65 includes a selective compactor 42 coupled to multiple scan chains 44 within a circuit under test. Although only 8 scan

chains are shown, the test circuit 40 may contain any number of scan chains. The selective compactor 42 includes a selector circuit 46 and a compactor 48. The compactor 48 is a linear spatial compactor, but any conventional parallel test-response compaction scheme can be used with the selector circuit 46, as further described below. The selector circuit 46 includes control logic 50, which includes an input register 52, shown in this example as a shift register. The input register 52 has a clock input 54 and a data input 56. Each cycle of a clock on the clock input 54, data from data input 56 shifts into the input register 52. The register 52 has multiple fields including a scan identification field 58, a "one/not one" field 60 and a "not all/all" field 62. A control register 64 has corresponding bit positions to input register 52, and upon receiving an update signal on an update line 66, the control register 64 loads each bit position from input register 52 in parallel. Thus, the control register 64 also contains fields 58, 60, and 62. Although the control register 64 is shown generically as a shift register, the update line 66 is actually a control line to a multiplexer (not shown) that allows each bit position in register 64 to reload its own data on each clock cycle when the update line deactivated. When the update line is activated, the multiplexer passes the contents of register 52 to corresponding bit positions of the control register 64. The control register 64 is then loaded synchronously with the clock.

The selector circuit 46 includes logic gates, shown generally at 68, coupled to the control register 64. The logic gates 68 are responsive to the different fields 58, 60, 62 of the control register 64. For example, the scan identification field 58 contains a sufficient number of bits to uniquely identify any of the scan chains 44. The scan identification field 58 of the control register 64 is connected to a decoder, shown at 70 as a series of AND gates and inverters. The decoder 70 provides a logic one on a decoder output depending on the scan identification field, while the other outputs of the decoder are a logic zero.

The one/not one field 60 of the control register 64 is used to either pass only one test response associated with the scan chain identified in the scan identification field 58 or pass all of the test responses except for the scan chain identified in the scan identification field. The all/not all field 62 is effectively an override of the other fields. In particular, field 62 controls whether all of the test responses in the scan chains 44 are passed to the compactor 48 or only the test responses as controlled by the scan identification field 58 and the one/not one field 60. With field 62 cleared, only test responses as controlled by the scan identification field 58 and field 60 pass to the compactor 48. Conversely, if the field 62 is set to a logic one, then all of the test responses from all of the scan chains 44 pass to the compactor 48 regardless of the scan identification field 58 and the one/not one field 60

FIG. 9 shows another embodiment of a selective compactor 80 that is coupled to scan chains 82. The selective compactor includes a selector circuit 84, which is identical to the selector circuit 46 described in relation to FIG. 8. The selective compactor 80 also includes a time compactor 84, which is well understood in the art to be a circular compactor. The time compactor includes multiple flip-flops 86 and XOR gates 88 coupled in series. A reset line 90 is coupled to the flip-flops 86 to reset the compactor 84. The reset line may be reset multiple times while reading the scan chains. Output register 92 provides a valid output of the compactor 84 upon activation of a read line 94.

Referring to both FIGS. 8 and 9, in operation the scan chains 82 are serially loaded with predetermined test pat-

terns by shifting data on scan channels (not shown) from an ATE (not shown). Simultaneously, the input register 52 is loaded with a scan identification and the controlling flags in fields 60, 62. The test patterns in the scan chains 44, 82 are applied to the circuit under test and test responses are stored 5 in the scan chains. Prior to shifting the test responses out of the scan chains, the update line 66 is activated, thus moving fields 58, 60, 62 to the control register 64. The control register thereby controls the logic gates 68 to select the test responses that are passed to the compactors 48, 84. If the 10 field 62 is in a state such that selection is not overridden, then certain of the test responses are masked. In the example of FIG. 8, the spatial compactor 48 provides the corresponding compressed output serially and simultaneously with shifting the test responses out of the scan chains. Conversely, 15 in FIG. 9 the selective compactor 80 does not provide the appropriate compressed output until the read line 94 is activated. The selective compactor 80 provides a parallel compressed output as opposed to serial. The selective compactor 80 may be read multiple times (e.g., every eighth 20 clock cycle) while reading out the test responses.

FIG. 10 shows another embodiment of a selective compactor 100. Again, the selective compactor includes a selector circuit 102 and a compactor 104. The compactor 104 is a type of spatial compactor called a cascaded compactor. N 25 scan chains 106 include M scan cells 108, each of which stores one bit of the test response. The selector circuit 102 includes logic gates 110, in this case shown as AND gates, coupled to a control line 112. The compactor 104 is a time compactor with a single serial output 114. The control line 30 112 is used to mask the test responses. In particular, the control line 112 either masks all corresponding scan cells in the scan chains or allows all of the scan cells to pass to the compactor 80. The control line 112 operates to mask each column of scan cells, rather than masking an entire scan 35 chain. Thus, individual bits from any scan chain can be masked on a per clock-cycle basis and the remaining bits of that scan chain applied to the compactor 104. With control line 112 activated, all bits from the scan chains pass to the compactor. With control line 112 deactivated, all bits from 40 the scan chains are masked. Although FIG. 10 shows only a single control line, additional control lines can be used to mask different groups of scan chains. Additionally, although control line 112 is shown as active high, it may be configured

FIG. 11 shows yet another embodiment of the selective compactor 120. Automated test equipment 122 provides test patterns to the scan chains 124. The scan chains 124 are a part of the circuit under test 126. The patterns that are loaded into the scan chains 124 by the ATE are used to detect faults 50 in the core logic of the circuit 126. The test responses are stored in the scan chains 124 and are clocked in serial fashion to the selective compactor 120. The selective compactor includes a selector circuit 128 and a compactor 130. The selector circuit 128 includes control logic including an 55 input register 132, multiple control registers 134, 136, and multiple decoders 137 and 139. The register 132 is loaded with a pattern of bits that are moved to the control registers 134, 136 upon activation of an update line (not shown). The control registers 134, 136 are read by the decoders 137 and 139 and decoded to select one or more logic gates 138. A flag 140 is used to override the decoders 137 and 139 and pass all of the test responses to the compactor 130. Although only a single flag 140 is shown, multiple flags may be used to separately control the decoders. In this example, the com- 65 pactor 130 includes multiple spatial compactors, such as compactors 142 and 144. Each control register may be

loaded with different data so that the compactors 142, 144 can be controlled independently of each other.

FIG. 12 shows yet another embodiment of the present invention with a selective compactor 150. Control logic 152 variably controls which test responses are masked and which test responses are compacted. Thus, activating the corresponding bit position in the control logic 152 activates the corresponding logic gate associated with that bit and allows the test response to pass to the compactor. Conversely, any bit that is not activated masks the corresponding test response.

FIG. 13 shows another embodiment of a selective compactor 156 including a selector circuit 158 and compactor 160. In this case, an input shift register 162 having a bit position corresponding to each scan chain 164 is used to selectively mask the scan chains. A clock is applied to line 166 to serially move data applied on data line 168 into the shift register 162. At the appropriate time, an update line 165 is activated to move the data from the shift register to a control register 169. Each bit position that is activated in the control register 169 allows a test response from the scan chains 164 to pass to the compactor. All other test responses are masked. Thus, the selective compactor can mask any variable number of test responses.

Each of the embodiments described above can be used as a diagnostic tool for localizing faults in the circuit under test. For example, each test response can be analyzed individually by masking all other test responses in the scan chains connected to the same compactor. By viewing the test response individually, the bit position in the test response containing fault effects can be determined.

FIG. 14 shows a flowchart of a method for selectively compacting test responses. In process block 170, an ATE loads predetermined test patterns into scan chains within an integrated circuit. This loading is typically accomplished by shifting the test patterns serially into the scan chains. The test patterns are applied to the circuit under test (process block 172) and the test responses are stored in the scan chains (process block 174). In process block 176, the selector circuit controls which test responses are masked. In particular, the selector circuit controls which scan chains are masked or which bits in the scan chains are masked. For example, in FIG. 8, the selector circuit masks the entire scan chain that is identified in the scan identification field 58. In FIG. 10, only individual bits of a scan chain are masked. In any event, in process block 176, the selector circuit typically masks unknown data or multiple fault effects so that the desired fault effect can propagate to the output (in some modes of operation, all of the test responses may pass to the output). In the event that the selector circuit includes a control register, the control register may be loaded concurrently with loading the test patterns in the scan chains or it can be loaded prior to reading the test responses. In process block 178, the test responses (one or more of which have been masked) are passed to the compactor and the compactor generates a compressed output associated with the test responses. In process block 180, the compressed output generated by the compactor is compared to an ideal response. If they match, the integrated circuit is assumed to be fault free.

Having illustrated and described the principles of the illustrated embodiments, it will be apparent to those skilled in the art that the embodiments can be modified in arrangement and detail without departing from such principles. For example, any of the illustrated compactors can be used with any of the illustrated selector circuits with minimum modi-

fication to create a selective compactor. Additionally, the selector circuit can easily be modified using different logic gates to achieve the selection functionality. For example, although the update lines are shown coupled to a separate bank of flip flops, the update lines can instead be coupled to input registers having tri-state outputs for controlling the logic in the selector circuit. Still further, although the scan chains are shown as serial shift registers, logic may be added so as to output test response data in parallel to the selective compactor. Additionally, although multiple spatial and time compactors were shown, compactors having features of both spatial and time compactors may be used. Indeed, any conventional or newly developed compactor may be used with the selection circuitry.

In view of the many possible embodiments, it will be recognized that the illustrated embodiments include only examples of the invention and should not be taken as a limitation on the scope of the invention. Rather, the invention is defined by the following claims. We therefore claim as the invention all such embodiments that come within the scope of these claims.

- 1. An apparatus for selectively compacting test responses of an integrated circuit, comprising:
 - a plurality of scan chains within the integrated circuit to store test responses that indicate faults in the integrated 25
 - at least one spatial compactor to compress the test responses stored within the scan chains; and
 - a selector circuit coupled between the scan chains and the spatial compactor that masks one or more of the test 30 responses received from the scan chains to the spatial compactor;

the spatial compactor including a feedback-free network of combinational logic.

- 2. The apparatus of claim 1, wherein the selector circuit 35 includes a register that stores an identification of one of the scan chains and a flag, the flag when activated allows only the test response associated with a scan chain identified in the register to pass to the compactor and the flag when deactivated allows all of the test responses pass to the 40 compactor, except for the test response identified in the
- 3. The apparatus of claim 1, wherein each scan chain has register. an output and the selector circuit includes a set of logic gates having first inputs coupled to the outputs of the scan chains, 45 second inputs coupled to one or more control lines, and outputs coupled to the compactor, wherein with the one or more control lines activated the logic gates pass data on the outputs of the scan chains to the compactor and with the one or more control lines deactivated the logic gates prevent the 50 data on the outputs of the scan chains from passing to the compactor.
- 4. The apparatus of claim 1 wherein each scan chain has an output and the selector circuit includes a set of logic gates having first inputs coupled to the outputs of the scan chains 55 and second inputs coupled to a register, wherein data loaded into the register controls which scan chains are passed to the compactor.
- 5. The apparatus of claim 1 wherein the compactor and selector circuit are physically located on the integrated 60 circuit.
- 6. The apparatus of claim 1 wherein the compactor and selector circuit are physically located externally of the
- 7. The apparatus of claim 1 wherein masking a test 65 integrated circuit. response includes masking one or more bits of a test response in a scan chain.

- 8. The apparatus of claim 1 wherein masking a test response includes masking all bits in a scan chain that includes the test response.
- 9. The apparatus of claim 1, wherein the selector circuit masks test responses having unknown states.
- 10. The apparatus of claim 1, wherein the selector circuit is controlled by an external ATE.
- 11. The apparatus of claim 1, wherein the selector circuit includes a register and a decoder coupled to the register, the decoder being responsive to contents of the register for controlling whether the test response from the scan chains pass to the compactor.
- 12. The apparatus of claim 1, wherein the feedback-free network of combination logic includes Exclusive-OR gates, Exclusive-NOR gates or combinations thereof.
- 13. The apparatus of claim 12, wherein an output of the spatial compactor is observed in real time.
- 14. The apparatus of claim 1, wherein the feedback-free network is devoid of memory elements.
- 15. A method for selectively compacting test responses of an integrated circuit, comprising:
 - passing N test responses in an integrated circuit to a selector circuit;
 - using the selector circuit, selectively preventing between 0 and N of the test responses from being passed to a compactor while allowing the remaining test responses to be passed to the compactor; and
 - compacting the test responses passed to the compactor by the selector circuit;
 - wherein the selector circuit masks test responses with unknown states;
 - wherein the compacting is achieved using a spatial compactor having a feedback-free network of combination
 - 16. The method of claim 15 wherein passing the test responses to the selector circuit includes shifting each test response serially to the selector circuit.
 - 17. The method of claim 15 further including:
 - loading scan chains located within the integrated circuit with predetermined test patterns for testing the integrated circuit; and
 - generating and storing test responses in response to applying the test patterns to the integrated circuit.
 - 18. The method of claim 15 further including:
 - loading scan chains located within the integrated circuit with predetermined test patterns;
 - generating and storing test responses in the scan chains; identifying one of the scan chains, and
 - wherein selectively preventing includes preventing only the test response in the identified scan chain from being passed to the compactor.
 - 19. The method of claim 15 further including:
 - loading scan chains located within the integrated circuit with predetermined test patterns;
 - storing test responses in the scan chains;
 - identifying one scan chain as a scan chain of interest and passing only the test response within the identified scan chain to the compactor while preventing all other test responses from being passed to the compactor.
 - 20. The method of claim 15 further including loading a scan chain identifier into a register, the scan chain identifier uniquely identifying one of the scan chains.
 - 21. The method of claim 15 wherein selectively preventing the test responses from being passed to the compactor includes preventing one or more bits of a test response from

being passed to the compactor while allowing other bits of the test response to pass to the compactor.

- 22. The method of claim 15 where selectively preventing the test responses from being passed to the compactor includes preventing all bits of a test response from being 5 passed to the compactor.
 - 23. The method of claim 11 further including:
 - loading a plurality of scan chains located within the integrated circuit with test patterns;

storing the test responses in the scan chains;

loading a register with a scan chain identifier that uniquely identifies one of the scan chains; and

- optionally configuring the selector circuit so that either all of the test responses in the scan chains are passed to the compactor except the test response stored in the scan chain identified in the register or only the test response stored in the scan chain identified in the register is passed to the compactor and all other test responses are masked from the compactor.
- 24. The method of claim 15 wherein the selectively ²⁰ preventing includes allowing all of the test responses to pass to the compactor.
- 25. The method of claim 15, wherein the compactor is a spatial compactor.
- 26. The method of claim 15, further including controlling 25 the selector circuit via an external ATE.
- 27. An apparatus for selectively compacting test responses of an integrated circuit, comprising:
 - means for storing a plurality of test responses that include information relating to faults within the integrated ³⁰ circuit;
 - selection means for selectively masking the test responses; and
 - means for spatially compacting the test responses selected by the selection means, the spatial compacting means including a feedback-free network;
 - wherein selection means for selectively masking includes decoding means for decoding contents of a scan chain identification register.
- 28. The apparatus of claim 27 wherein the selection means for selectively masking includes means for either allowing all of the test responses to pass to the means for compacting or for masking any variable number of test responses to prevent the masked test responses from being passed to the means for compacting.
- 29. The apparatus of claim 27 wherein the selection means for selectively masking includes means for selecting between the following modes of operation:
 - a) all test responses are compacted; or
 - b) all test responses are compacted except one identified test response.
- 30. The apparatus of claim 27 wherein the selection means for selectively masking includes means for selecting between the following modes of operation:
 - a) all test responses are compacted; or
 - b) only one identified test response is compacted.
- 31. The apparatus of claim 27 wherein the means for storing a plurality of test responses includes scan chain means for serially receiving predetermined test patterns, for 60 applying the test patterns to the integrated circuit and for storing the test responses.
- 32. The apparatus of claim 27, wherein the selection means is controlled to mask test responses with unknown states.
- 33. The apparatus of claim 27, further including an external ATE to control the selection means.

- 34. An apparatus for selectively compacting test responses of an integrated circuit, comprising:
 - a plurality of scan chains within the integrated circuit to store test responses that indicate faults in the integrated circuit:
 - at least one spatial compactor to compress the test responses stored within the scan chains; and
 - a selector circuit coupled between the scan chains and the spatial compactor that masks one or more of the test responses from the spatial compactor,
 - wherein the selector circuit includes a register that stores an identification of one of the scan chains and a flag which when the flag is activated allows only the test response associated with a scan chain identified in the register to pass to the compactor and when the flag is deactivated allows all of the test response pass to the compactor, except for the test response identified in the register.
- 35. The apparatus of claim 34, wherein each scan chain has an output and the selector circuit includes a set of logic gates having first inputs coupled to the outputs of the scan chains, second inputs coupled to one or more control lines, and outputs coupled to the compactor, wherein with the one or more control lines activated the logic gates pass data on the outputs of the scan chains to the compactor and with the one or more control lines deactivated the logic gates prevent the data on the outputs of the scan chains from passing to the compactor.
- 36. The apparatus of claim 34 wherein the compactor and selector circuit are physically located on the integrated circuit.
- 37. The apparatus of claim 34 wherein the compactor and selector circuit are physically located externally of the integrated circuit.
- 38. The apparatus of claim 34 wherein masking a test response includes masking one or more bits of a test response in a scan chain.
- 39. The apparatus of claim 34 wherein masking a test response includes masking all bits in a scan chain that includes the test response.
- 40. A method for selectively compacting test responses of an integrated circuit, comprising:
 - passing N test responses in an integrated circuit to a selector circuit;
 - using the selector circuit, selectively preventing between 0 and N of the test responses from being passed to a compactor while allowing the remaining test responses to be passed to the compactor; and
- compacting the test responses passed to the compactor by the selector circuit using a spatial compactor that includes a feedback-free network of combinational logic,
- wherein the selector circuit masks test responses with unknown states;
- loading a scan chain identifier into a register, the scan chain identifier uniquely identifying one of the scan chains.
- 41. The method of claim 40 wherein passing the test responses to the selector circuit includes shifting each test response serially to the selector circuit.
 - 42. The method of claim 40 further including:
 - loading scan chains located within the integrated circuit with predetermined test patterns for testing the integrated circuit; and
 - generating and storing test responses in response to applying the test patterns to the integrated circuit.

14

43. The method of claim 40 further including:

loading scan chains located within the integrated circuit with predetermined test patterns;

generating and storing test responses in the scan chains; identifying one of the scan chains; and

wherein selectively preventing includes preventing only the test response in the identified scan chain from being passed to the compactor.

44. The method of claim 40 further including:

loading scan chains located within the integrated circuit with predetermined test patterns;

storing test responses in the scan chains;

identifying one scan chain as a scan chain of interest and passing only the test response within the identified scan 15 chain to the compactor while preventing all other test responses from being passed to the compactor.

45. The method of claim 40 wherein selectively preventing the test responses from being passed to the compactor includes preventing one or more bits of a test response from 20 being passed to the compactor while allowing other bits of the test response to pass to the compactor.

46. The method of claim 40 where selectively preventing the test responses from being passed to the compactor includes preventing all bits of a test response from being ²⁵ passed to the compactor.

47. The method of claim 40 further including:

loading a plurality of scan chains located within the integrated circuit with test patterns;

storing the test responses in the scan chains; and

optionally configuring the selector circuit so that either all of the test responses in the scan chains are passed to the compactor except the test response stored in the scan chain identified in the register or only the test response stored in the scan chain identified in the register is passed to the compactor and all other test responses are masked from the compactor.

48. The method of claim 40 wherein the selectively preventing includes allowing all of the test responses to pass to the compactor.

49. A method for selectively compacting test responses of an integrated circuit, comprising:

passing N test responses in an integrated circuit to a selector circuit:

using the selector circuit, selectively preventing between 0 and N of the test responses from being passed to a compactor while allowing the remaining test responses to be passed to the compactor; and

compacting the test responses passed to the compactor by 50 the selector circuit;

controlling the selector circuit via an external ATE.

50. The method of claim 49 wherein passing the test responses to the selector circuit includes shifting each test response serially to the selector circuit.

51. The method of claim 49 further including:

loading scan chains located within the integrated circuit with predetermined test patterns for testing the integrated circuit; and

generating and storing test responses in response to applying the test patterns to the integrated circuit.

52. The method of claim 49 further including:

loading scan chains located within the integrated circuit with predetermined test patterns;

generating and storing test responses in the scan chains; identifying one of the scan chains; and

wherein selectively preventing includes preventing only the test response in the identified scan chain from being passed to the compactor.

53. The method of claim 49 further including:

loading scan chains located within the integrated circuit with predetermined test patterns;

storing test responses in the scan chains;

identifying one scan chain as a scan chain of interest and passing only the test response within the identified scan chain to the compactor while preventing all other test responses from being passed to the compactor.

54. The method of claim 49 further including loading a scan chain identifier into a register, the scan chain identifier uniquely identifying one of the scan chains.

55. The method of claim 49 wherein selectively preventing the test responses from being passed to the compactor includes preventing one or more bits of a test response from being passed to the compactor while allowing other bits of the test response to pass to the compactor.

56. The method of claim 49 where selectively preventing the test responses from being passed to the compactor includes preventing all bits of a test response from being

passed to the compactor.

57. The method of claim 49 further including:

loading a plurality of scan chains located within the integrated circuit with test patterns;

storing the test responses in the scan chains;

loading a register with a scan chain identifier that uniquely identifies one of the scan chains; and

optionally configuring the selector circuit so that either all of the test responses in the scan chains are passed to the compactor except the test response stored in the scan chain identified in the register or only the test response stored in the scan chain identified in the register is passed to the compactor and all other test responses are masked from the compactor.

58. The method of claim 49 wherein the selectively preventing includes allowing all of the test responses to pass to the compactor.

59. A method for selectively compacting test responses of an integrated circuit, comprising:

passing N test responses in an integrated circuit to a selector circuit;

using the selector circuit, selectively preventing between 0 and N of the test responses from being passed to a compactor while allowing the remaining test responses to be passed to the compactor; and

compacting the test responses passed to the compactor by the selector circuit using a spatial compactor having a feedback-free network of combinational logic;

wherein the selection means is controlled to mask test responses with unknown states.

60. The method of claim 59 wherein passing the test responses to the selector circuit includes shifting each test response serially to the selector circuit.

61. The method of claim 59 further including:

loading scan chains located within the integrated circuit with predetermined test patterns for testing the integrated circuit; and

generating and storing test responses in response to applying the test patterns to the integrated circuit.

62. The method of claim 59 further including:

loading scan chains located within the integrated circuit with predetermined test patterns;

generating and storing test responses in the scan chains;

16

identifying one of the scan chains; and

wherein selectively preventing includes preventing only the test response in the identified scan chain from being passed to the compactor.

63. The method of claim 59 further including:

loading scan chains located within the integrated circuit with predetermined test patterns;

storing test responses in the scan chains;

identifying one scan chain as a scan chain of interest and 10 passing only the test response within the identified scan chain to the compactor while preventing all other test responses from being passed to the compactor.

64. The method of claim 59 further including loading a scan chain identifier into a register, the scan chain identifier 15 uniquely identifying one of the scan chains.

65. The method of claim 59 wherein selectively preventing the test responses from being passed to the compactor includes preventing one or more bits of a test response from the test response to pass to the compactor.

66. The method of claim 59 where selectively preventing the test responses from being passed to the compactor

includes preventing all bits of a test response from being passed to the compactor.

67. The method of claim 59 further including:

loading a plurality of scan chains located within the integrated circuit with test patterns;

storing the test responses in the scan chains;

loading a register with a scan chain identifier that uniquely identifies one of the scan chains; and

optionally configuring the selector circuit so that either all of the test responses in the scan chains are passed to the compactor except the test response stored in the scan chain identified in the register or only the test response stored in the scan chain identified in the register is passed to the compactor and all other test responses are masked from the compactor.

68. The method of claim 59 wherein the selectively being passed to the compactor while allowing other bits of 20 preventing includes allowing all of the test responses to pass to the compactor.