H1N1 Exploration

Jose Figueroa, Liam Donohoe

April 6, 2020

Contents

1	Introduction	1
2	Dataset Exploration	1
3	Single Date Plot	3

1 Introduction

The goal of this project is to create a visualization of the progression of past epidemic or pandemic viruses throughout their lifetimes. In doing this, we hope to be able to provide a better understanding of not only the rate at which these types of viruses can spread throughout the population, but also the time it takes for scientists to develop and distribute a vaccine or cure for the spreading virus.

2 Dataset Exploration

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
  The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
##
## Attaching package: 'geojsonio'
##
  The following object is masked from 'package:base':
##
##
       pretty
## here() starts at /Users/josefigueroa/Documents/Interactive Visualization/Project
Dimensions:
H1N1.df <- here("Data", "Pandemic (H1N1) 2009.csv") %>%
    read.csv()
H1N1.df$Country <- as.character(H1N1.df$Country)</pre>
```

```
Grand.total.df <- H1N1.df %>% filter(Country == "Grand Total")
H1N1.df <- H1N1.df %>% filter(Country != "Grand Total")
```

Dataframe Summary:

```
glimpse(H1N1.df)
```

```
## Observations: 1,801
## Variables: 4
```

summary(H1N1.df)

##	Country	Cases	Deaths	Update.Time
##	Length: 1801	Min. : 1.0	Min. : 0.000	7/6/09 9:00 : 135
##	Class :character	1st Qu.: 3.0	1st Qu.: 0.000	7/3/09 9:00 : 125
##	Mode :character	Median: 13.0	Median : 0.000	7/1/09 9:00 : 120
##		Mean : 475.3	Mean : 2.269	6/29/09 9:00: 116
##		3rd Qu.: 81.0	3rd Qu.: 0.000	6/26/09 7:00: 112
##		Max. :33902.0	Max. :170.000	6/24/09 7:00: 108
##			NA's :1	(Other) :1085

Head:

head(H1N1.df)

Country	Cases	Deaths	Update.Time
Algeria	5	0	7/6/09 9:00
Antigua and Barbuda	2	0	7/6/09 9:00
Argentina	2485	60	7/6/09 9:00
Australia	5298	10	7/6/09 9:00
Austria	19	0	7/6/09 9:00
Bahamas	7	0	7/6/09 9:00

Tail:

tail(H1N1.df)

	Country	Cases	Deaths	Update.Time
1796	Sweden	3	0	5/23/09 8:00
1797	Switzerland	2	0	5/23/09 8:00
1798	Thailand	2	0	5/23/09 8:00
1799	Turkey	2	0	5/23/09 8:00
1800	United Kingdom	117	0	5/23/09 8:00
1801	United States of America	6552	9	5/23/09 8:00

Unique Dates:

```
unique.dates <- levels(H1N1.df$Update.Time)
length(unique.dates)</pre>
```

unique.dates

```
[1] "5/23/09 8:00"
                        "5/25/09 8:00"
                                       "5/26/09 6:00"
                                                        "5/27/09 8:00"
                                        "6/10/09 6:00" "6/11/09 14:00"
##
   [5] "5/29/09 6:00"
                       "6/1/09 6:00"
  [9] "6/12/09 7:00"
                       "6/15/09 17:00" "6/17/09 12:00" "6/19/09 7:00"
## [13] "6/22/09 7:00"
                        "6/24/09 7:00"
                                       "6/26/09 7:00"
                                                        "6/29/09 9:00"
## [17] "6/3/09 6:00"
                        "6/5/09 6:00"
                                        "6/8/09 6:00"
                                                        "7/1/09 9:00"
## [21] "7/3/09 9:00"
                        "7/6/09 9:00"
```

There are 22 unique weeks to account for. We should look into how to plot on a world map style heatmap (I have an idea on this), and then allowing for the option to traverse time on said heatmap. We can also easily transorm this notebook into a webapp with RShiny

3 Single Date Plot

For this week, we can probably focus on having just 1 week plotted (5/23/2009). Then we can generalize to be interactive through time

```
country.shapes <- here("Data", "countries.geojson") %>%
  geojson_read(what = "sp")

CASES <- as.data.frame(country.shapes$ADMIN)
colnames(CASES) <- c("Country")
rownames(CASES) <- CASES$Country

CASES$Cases <- 0

CASES[H1N1.df[H1N1.df$Update.Time == "5/23/09 8:00","Country"], "Cases"] <-
H1N1.df[H1N1.df$Update.Time == "5/23/09 8:00","Cases"]
pal <- colorNumeric(
  palette = "Reds",
  domain = country.shapes$CASES
)
country.shapes$CASES <- CASES$Cases

leaflet(options=leafletOptions(minZoom=2, maxZoom=18)) %>%
  setView(-96.8, 39, 4) %>%
  addTiles()
```


May 23 2009

```
m <- country.shapes %>%
leaflet() %>%
addPolygons(
    stroke=FALSE,
    smoothFactor = 0.2,
    fillOpacity = 0.7,
    color = ~pal(CASES)
)%>%
    setView(-96.8, 39, 4)
m
```

