A correlation analysis created by CAT

Creation time: $2012-07-20\ 16:35$

Input file: testdata.csv

1:
$$a = U(0,1)$$

2:
$$b = G(0,1)$$

3:
$$c = a \times b$$

4:
$$d = U(a, 1)$$

5:
$$e = r \times \cos \phi$$

6:
$$f = r \times \sin \phi$$

Pearson's correlation coefficient matrix of variables

1:
$$a = U(0, 1)$$

3:
$$c = a \times b$$

4:
$$d = U(a, 1)$$

5:
$$e = r \times \cos \phi$$

6:
$$f = r \times \sin \phi$$

^{2:} b = G(0,1)

Spearman's rank correlation coefficient matrix of variables

1:
$$a = U(0, 1)$$

3:
$$c = a \times b$$

4:
$$d = U(a, 1)$$

5:
$$e = r \times \cos \phi$$

6:
$$f = r \times \sin \phi$$

^{2:} b = G(0,1)

This page shows a profile plot matrix of all variables

1:
$$a = U(0, 1)$$

2:
$$b = G(0,1)$$

3:
$$c = a \times b$$

4:
$$d = U(a, 1)$$

5:
$$e = r \times \cos \phi$$

6:
$$f = r \times \sin \phi$$

Significance matrix of the test for two variables being dependent

1:
$$a = U(0, 1)$$

2:
$$b = G(0,1)$$

3:
$$c = a \times b$$

4:
$$d = U(a, 1)$$

5:
$$e = r \times \cos \phi$$

6:
$$f = r \times \sin \phi$$

$$a = U(0,1)$$
 vs. $b = G(0,1)$

from the expectation value of a flat distribution

Probability of the data

$$a = U(0,1)$$
 vs. $b = G(0,1)$

to be consistent with a flat hypothesis is 0.925910

This corresponds to a correlation with 0.09 sigma significance.

$$a = U(0,1)$$
 vs. $c = a \times b$

from the expectation value of a flat distribution

Probability of the data

$$a = U(0,1)$$
 vs. $c = a \times b$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$a = U(0,1)$$
 vs. $d = U(a,1)$

from the expectation value of a flat distribution

Probability of the data

$$a = U(0,1)$$
 vs. $d = U(a,1)$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$a = U(0,1)$$
 vs. $e = r \times \cos \phi$

from the expectation value of a flat distribution

Probability of the data

$$a = U(0,1)$$
 vs. $e = r \times \cos \phi$

to be consistent with a flat hypothesis is 0.577111

This corresponds to a correlation with 0.56 sigma significance.

$$a = U(0,1)$$
 vs. $f = r \times \sin \phi$

from the expectation value of a flat distribution

Probability of the data

$$a = U(0,1)$$
 vs. $f = r \times \sin \phi$

to be consistent with a flat hypothesis is 0.040554

This corresponds to a correlation with 2.05 sigma significance.

$$b = G(0,1)$$
 vs. $a = U(0,1)$

from the expectation value of a flat distribution

Probability of the data

$$b = G(0,1)$$
 vs. $a = U(0,1)$

to be consistent with a flat hypothesis is 0.925910

This corresponds to a correlation with 0.09 sigma significance.

$$b = G(0,1) \text{ vs. } c = a \times b$$

from the expectation value of a flat distribution

Probability of the data

$$b = G(0,1)$$
 vs. $c = a \times b$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$b = G(0,1)$$
 vs. $d = U(a,1)$

from the expectation value of a flat distribution

Probability of the data

$$b = G(0,1)$$
 vs. $d = U(a,1)$

to be consistent with a flat hypothesis is 0.209144

This corresponds to a correlation with 1.26 sigma significance.

$$b = G(0,1)$$
 vs. $e = r \times \cos \phi$

from the expectation value of a flat distribution

Probability of the data

$$b = G(0,1)$$
 vs. $e = r \times \cos \phi$

to be consistent with a flat hypothesis is 0.773495

This corresponds to a correlation with 0.29 sigma significance.

$$b = G(0,1)$$
 vs. $f = r \times \sin \phi$

from the expectation value of a flat distribution

Probability of the data

$$b = G(0,1)$$
 vs. $f = r \times \sin \phi$

to be consistent with a flat hypothesis is 0.223176

This corresponds to a correlation with 1.22 sigma significance.

$$c = a \times b \text{ vs. } a = U(0, 1)$$

from the expectation value of a flat distribution

Probability of the data

$$c = a \times b \text{ vs. } a = U(0, 1)$$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$c = a \times b \text{ vs. } b = G(0, 1)$$

from the expectation value of a flat distribution

Probability of the data

$$c = a \times b \text{ vs. } b = G(0, 1)$$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$c = a \times b$$
 vs. $d = U(a, 1)$

from the expectation value of a flat distribution

Probability of the data

$$c = a \times b$$
 vs. $d = U(a, 1)$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$c = a \times b \text{ vs. } e = r \times \cos \phi$$

from the expectation value of a flat distribution

Probability of the data

$$c = a \times b \text{ vs. } e = r \times \cos \phi$$

to be consistent with a flat hypothesis is 0.723861

This corresponds to a correlation with 0.35 sigma significance.

$$c = a \times b$$
 vs. $f = r \times \sin \phi$

from the expectation value of a flat distribution

Probability of the data

$$c = a \times b$$
 vs. $f = r \times \sin \phi$

to be consistent with a flat hypothesis is 0.351546

This corresponds to a correlation with 0.93 sigma significance.

$$d = U(a, 1)$$
 vs. $a = U(0, 1)$

from the expectation value of a flat distribution

Probability of the data

$$d = U(a, 1)$$
 vs. $a = U(0, 1)$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$d = U(a, 1)$$
 vs. $b = G(0, 1)$

from the expectation value of a flat distribution

Probability of the data

$$d = U(a, 1)$$
 vs. $b = G(0, 1)$

to be consistent with a flat hypothesis is 0.209144

This corresponds to a correlation with 1.26 sigma significance.

$$d = U(a,1)$$
 vs. $c = a \times b$

from the expectation value of a flat distribution

Probability of the data

$$d = U(a, 1)$$
 vs. $c = a \times b$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$d = U(a, 1)$$
 vs. $e = r \times \cos \phi$

from the expectation value of a flat distribution

Probability of the data

$$d = U(a,1)$$
 vs. $e = r \times \cos \phi$

to be consistent with a flat hypothesis is 0.879887

This corresponds to a correlation with 0.15 sigma significance.

$$d = U(a,1)$$
 vs. $f = r \times \sin \phi$

from the expectation value of a flat distribution

Probability of the data

$$d = U(a,1)$$
 vs. $f = r \times \sin \phi$

to be consistent with a flat hypothesis is 0.334119

This corresponds to a correlation with 0.97 sigma significance.

$$e = r \times \cos \phi$$
 vs. $a = U(0, 1)$

from the expectation value of a flat distribution

Probability of the data

$$e = r \times \cos \phi$$
 vs. $a = U(0, 1)$

to be consistent with a flat hypothesis is 0.577111

This corresponds to a correlation with 0.56 sigma significance.

$$e = r \times \cos \phi \text{ vs. } b = G(0, 1)$$

from the expectation value of a flat distribution

Probability of the data

$$e = r \times \cos \phi$$
 vs. $b = G(0, 1)$

to be consistent with a flat hypothesis is 0.773495

This corresponds to a correlation with 0.29 sigma significance.

$$e = r \times \cos \phi$$
 vs. $c = a \times b$

from the expectation value of a flat distribution

Probability of the data

$$e = r \times \cos \phi$$
 vs. $c = a \times b$

to be consistent with a flat hypothesis is 0.723861

This corresponds to a correlation with 0.35 sigma significance.

$$e = r \times \cos \phi$$
 vs. $d = U(a, 1)$

from the expectation value of a flat distribution

Probability of the data

$$e = r \times \cos \phi$$
 vs. $d = U(a, 1)$

to be consistent with a flat hypothesis is 0.879887

This corresponds to a correlation with 0.15 sigma significance.

$$e = r \times \cos \phi$$
 vs. $f = r \times \sin \phi$

from the expectation value of a flat distribution

Probability of the data

$$e = r \times \cos \phi$$
 vs. $f = r \times \sin \phi$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

$$f = r \times \sin \phi$$
 vs. $a = U(0, 1)$

from the expectation value of a flat distribution

Probability of the data

$$f = r \times \sin \phi$$
 vs. $a = U(0, 1)$

to be consistent with a flat hypothesis is 0.040554

This corresponds to a correlation with 2.05 sigma significance.

$$f = r \times \sin \phi$$
 vs. $b = G(0, 1)$

from the expectation value of a flat distribution

Probability of the data

$$f = r \times \sin \phi$$
 vs. $b = G(0, 1)$

to be consistent with a flat hypothesis is 0.223176

This corresponds to a correlation with 1.22 sigma significance.

$$f = r \times \sin \phi$$
 vs. $c = a \times b$

from the expectation value of a flat distribution

Probability of the data

$$f = r \times \sin \phi$$
 vs. $c = a \times b$

to be consistent with a flat hypothesis is 0.351546

This corresponds to a correlation with 0.93 sigma significance.

$$f = r \times \sin \phi$$
 vs. $d = U(a, 1)$

from the expectation value of a flat distribution

Probability of the data

$$f = r \times \sin \phi$$
 vs. $d = U(a, 1)$

to be consistent with a flat hypothesis is 0.334119

This corresponds to a correlation with 0.97 sigma significance.

$$f = r \times \sin \phi$$
 vs. $e = r \times \cos \phi$

from the expectation value of a flat distribution

Probability of the data

$$f = r \times \sin \phi$$
 vs. $e = r \times \cos \phi$

to be consistent with a flat hypothesis is 0.000000

This corresponds to a correlation with more than 8 sigma significance.

0.6

