## Probabilidades e Estatística D

2023/2024 Duração: 1h30Teste 3 - 7 de Junho

|       | Nome              | comple               | eto:                          |                            |                      |                   |                            |                     |                   |                                       |                |                       |                                           |                |                        |                        |                                                |
|-------|-------------------|----------------------|-------------------------------|----------------------------|----------------------|-------------------|----------------------------|---------------------|-------------------|---------------------------------------|----------------|-----------------------|-------------------------------------------|----------------|------------------------|------------------------|------------------------------------------------|
|       | N.º a             | luno: _              |                               | _ Curs                     | so:                  |                   |                            |                     |                   |                                       |                |                       |                                           |                |                        |                        |                                                |
| pone  | lente.<br>ecta te | Se pret<br>m a co    | ender a<br>tação inc          | nular um                   | a respo<br>a prova   | osta ja<br>. Um   | á assir<br>a resp          | nalada,<br>oosta ir | rasu<br>acorre    | re por<br>cta de                      | comp           | pleto                 | o re                                      | spect          | tivo qua               | drado. U               | drado corres-<br>Jma resposta<br>sta nada vale |
| 1     | cons<br>de p      | idere a<br>arâmet:   | populaçã $\cos (\mu, \sigma)$ | io X-velo                  | ocidade<br>cionara   | e (em i<br>am-se  | $\overline{\mathrm{MB/s}}$ | ) por u             | nidad             | le de m                               | nemó           | ria. <i>I</i>         | Admi                                      | ita qı         | $\mathbf{u} \in X$ ter | n distrib              | to fabricante,<br>uição Normal<br>m cada uma,  |
| (1.6) | (a)               | 3  MB                | s. Adm                        |                            | $\sigma =$           | 2.5, a            | a estir                    | nativa              | por i             | nterval                               | lo de          | 80%                   | de d                                      | confia         |                        |                        | rio padrão de<br>cidade média                  |
|       |                   | A                    | [30.23                        | 2, 31.768                  | B] B                 | [30.              | 208,                       | 31.792]             | С                 | [30.8                                 | 372,           | 31.12                 | 28]                                       | D              | [30.360                | , 31.640]              | E n.o.                                         |
| (1.5) | (b)               | do lim               | ite supe                      |                            | tervalo              | de co             | onfian                     | .ça a 10            | 00 (1 -           | $-\alpha)\%$                          | para           | $\sigma^2$ $\epsilon$ | § 35.5                                    | 26605          |                        |                        | a estimativa<br>dando com 6                    |
|       |                   |                      | A                             | 90%                        |                      | В                 | 95%                        |                     | C                 | 80%                                   |                |                       | D                                         | 5%             |                        | E n.o.                 |                                                |
|       | (c)               | Consid               | lere a ar                     | nostra de                  | regist               | os da             | veloci                     | dade e              | m 36              | unidad                                | des de         | e mei                 | móri                                      | a.             |                        |                        |                                                |
|       |                   |                      |                               |                            |                      | 3<br>1<br>9       | 3 2<br>5 3<br>2 2          | 3                   | 4 3<br>4 4<br>3 3 | 4 2<br>1 2<br>4 8                     |                | 6<br>7<br>7           | $\begin{matrix} 1 \\ 7 \\ 6 \end{matrix}$ | 8<br>2<br>6    |                        |                        |                                                |
| (1.5) |                   | i. A                 | estimat                       | iva ponti $\boxed{A}$ 0.75 |                      | a a pr            | _                          |                     |                   | $\frac{\mathrm{des}}{\mathbb{C}}$ 0.5 |                | iória                 | cuja<br>D                                 | _              |                        | superior<br>E n        | a 5 MB/s é:                                    |
| (1.5) |                   | u:<br>de             | nidades e<br>e confiar        | de memó                    | ria cuja<br>a prop   | a velo<br>orção   | cidad<br>de u              | e é infe<br>nidade  | erior a<br>s de 1 | a 6 ME<br>nemóri                      | B/s é<br>ia cu | de 0.<br>ja ve        | .75.<br>locid                             | A est<br>lade  | imativa                | por inte               | proporção de<br>rvalo de 95%<br>B/s é (Use o   |
|       |                   |                      | A [0.6                        | 085, 0.89                  | 915] [               | B [(              | ).5867                     | , 0.913             | 33]               | <u>C</u> [0                           | .7228          | 3, 0.7                | 7772]                                     | D              | [0.73                  | 98, 0.760              | )2] E n.o.                                     |
| 2     | variá<br>respe    | ível alea<br>osta do | atória qu<br>referido         | e se supõ<br>servidor      | be ter d<br>difere d | listrib<br>de 100 | uição<br>ms. (             | Norma<br>Com o      | l. Un<br>objec    | n Enge<br>tivo de                     | nheir<br>se fa | o Inf<br>zer e        | orma<br>stud                              | ático<br>os so | afirma o<br>bre parâ   | que o ten<br>imetros d | adores é uma<br>npo médio de<br>lesconhecidos  |
|       | da p              | opulaçâ              | io, recoll                    | neu-se un                  | na amo               | stra c            | om 9                       | tempo               | s de r            | esposta                               | a onc          | le se                 | obse                                      | rvou           | $\bar{x} = 101$        | $e \sum_{i=1} (x$      | $_i - \bar{x})^2 = 72.$                        |
| (1.6) | (a)               |                      |                               | a afirma                   |                      | _                 |                            |                     |                   |                                       |                |                       |                                           |                |                        |                        |                                                |
|       |                   | A A                  | $I_0: \mu = 0$                | 100  vs                    | $H_1: \mu$           | $u \neq 10$       | 00                         | E                   | $H_0$             | $\mu \leq \mu$                        | 100            | vs                    | $H_1$                                     | : <i>μ</i> >   | 100                    |                        |                                                |
|       |                   | C                    | $H_0: \bar{X} =$              | = 100 vs                   | $H_1:$               | $\bar{X} \neq$    | 100                        |                     | H                 | $_{0}:\mu\geq$                        | 100            | vs                    | $H_1$                                     | : μ <          | < 100                  | E                      | n.o.                                           |

|       | Α        | $R_{0.02} = ]-\infty, -2.33$                                                                                                                                                                 | $3[\cup]2.33,+\infty[$       | $[B] R_{0.02} = ]2.05, +$                                                                                                                                                             | $-\infty[$                                       |                                                                                        |
|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------|
|       | C        | $R_{0.02} = ]-\infty, -2.90$                                                                                                                                                                 | $0[\cup]2.90,+\infty[$       | $\boxed{\mathbb{D}}  R_{0.02} = ]-\infty, -$                                                                                                                                          | -2.05[                                           | E n.o.                                                                                 |
| (1.6) | ii. O v  | ralor observado da est                                                                                                                                                                       | atística de teste     B   -1 | é: C 2/3                                                                                                                                                                              | D = -2/3                                         | E n.o.                                                                                 |
| (1.5) |          | a outra amostra d<br>- value associado ao<br>A 0.05                                                                                                                                          | _                            |                                                                                                                                                                                       | este apresentou um $\boxed{ \mathbb{D}  0.025 }$ | valor observado 1.86.                                                                  |
| (1.5) |          | significância:                                                                                                                                                                               |                              | $-value=0.08$ , rejeita $\boxed{\mathtt{C}}$ $0.01<\alpha<0.1$                                                                                                                        |                                                  | a para valores do nível $\boxed{E}_{\mathrm{n.o.}}$                                    |
| (1.6) | tempos o | de resposta do servid                                                                                                                                                                        | or é $\sigma = 3$ e que      | 00 $vs$ $H_1: \mu > 10$ se rejeita a hipótese r distribuição, sob a va                                                                                                                | nula se $\bar{X} > c$ :                          | o <b>desvio padrão</b> dos                                                             |
|       |          | $\left \sqrt{n}\frac{\overline{X} - 100}{S} \underset{\mu = 100}{\overset{a}{\sim}} \Lambda \right $ $\left \sqrt{n}\frac{\overline{X} - \mu}{S} \underset{\mu = 100}{\sim} t_{n-1} \right $ |                              | $\boxed{\mathbb{B}} \sqrt{n} \frac{\overline{X} - 100}{\sigma} \underset{\mu = 100}{\sim}$ $\boxed{\mathbb{D}} \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \underset{\mu = 100}{\sim}$ |                                                  | E n.o.                                                                                 |
| (1.5) |          | o nível de significânc a $\mu=101$ é:  A $0.8413$                                                                                                                                            | ia do teste for $\alpha$     | = 0.0228 (para $\mu$ =                                                                                                                                                                |                                                  | ade do erro de tipo II  E n.o.                                                         |
| 3.    |          |                                                                                                                                                                                              |                              | caracterizada por un<br>ostra aleatória desta p                                                                                                                                       |                                                  |                                                                                        |
| (1.5) |          |                                                                                                                                                                                              |                              | a distribuição aproxin                                                                                                                                                                | y - ·                                            | $\frac{1}{\pi} \frac{\theta^* - \theta}{\theta} \stackrel{a}{\sim} N(0, 1), \text{ o}$ |
|       |          | Γ<br><i>Θ</i> *                                                                                                                                                                              | Ω*                           | ] _ [                                                                                                                                                                                 | Δ*                                               | <i>Ω</i> *                                                                             |

(b) Considere agora as hipóteses:  $H_0: \mu=102$  vs  $H_1: \mu\neq 102$ . i. Para um nível de 2% de significância, a região de rejeição é:

(1.6)



(1.5) (b) Considere o parâmetro  $\beta$  e o seu estimador  $\hat{\beta}$ . Sabemos que  $W=2n\frac{\hat{\beta}}{\beta}\sim\chi^2_{2n}$ . Para uma amostra de dimensão n=5, o intervalo de confiança  $100\left(1-\alpha\right)\%$  para  $\beta$  tem expressão:



## ICA D e Junho

2023/2024 Duração: 1h30

| Estatísti<br>Teste 3 - 7 de |
|-----------------------------|
|                             |

|               | Nome                            | completo:                                                                                         |                                                       |                                                      |                                                                        |                           |                           |                                      |                      |
|---------------|---------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|---------------------------|---------------------------|--------------------------------------|----------------------|
|               | N.º al                          | uno:                                                                                              | Curso:                                                | _                                                    |                                                                        |                           |                           |                                      |                      |
| pond<br>corre | ente. Se pret<br>ecta tem a cot | unta apenas uma da<br>ender anular uma r<br>ação indicada na pr<br>. significa nenhuma            | esposta já assina<br>rova. Uma respos                 | lada, rasuı<br>sta incorre                           | re por comp<br>cta descont                                             | oleto o resp              | pectivo qua               | adrado. Uma                          | resposta             |
| 1.            | considere a p<br>de parâmetr    | avaliar a velocidade população $X$ -velocidos $(\mu, \sigma^2)$ . Seleccio velocidade (em ME      | lade (em MB/s) p<br>naram-se aleatori                 | or unidad                                            | e de memó                                                              | ria. Admita               | a que $X$ te              | em distribuição                      | Normal               |
| (1.6)         | 3 MB/                           | = 25, as medições as<br>s. Admitindo que o<br>unidades de memór                                   | $\sigma = 2.5$ , a estima                             | ativa por i                                          | ntervalo de                                                            | 80% de co                 |                           |                                      |                      |
|               | Α                               | $[30.232 \;,\; 31.768]$                                                                           | B [30.360, 31                                         | .640] C                                              | [30.872,                                                               | 31.128]                   | 0 = [30.208]              | 3, 31.792] E                         | ] n.o.               |
| (1.5)         | do limi                         | ima amostra de $n = 1$ ite superior do interdecimais). Determin                                   | valo de confiança                                     | а 100 (1 -                                           | $-\alpha)\%$ para                                                      | $\sigma^2$ é 35.26        | 66055 (valo               |                                      |                      |
|               |                                 | A 95%                                                                                             | B 80%                                                 | C                                                    | 90%                                                                    | D 5                       | 5%                        | E n.o.                               |                      |
|               | (c) Consid                      | ere a amostra de re                                                                               | gistos da velocida                                    | ade em 36                                            | unidades de                                                            | e memória.                |                           |                                      |                      |
|               |                                 |                                                                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{ccccc} 4 & 2 & 5 \\ 1 & 2 & 2 \\ 4 & 5 & 6 \end{array}$ | 6 1 8<br>7 7 2<br>7 6 6   | 8<br>2<br>6               |                                      |                      |
| (1.5)         | i. A                            | estimativa pontual                                                                                | para a proporção  B 0.2                               | _                                                    | $\begin{array}{c} \text{des de mem} \\ \hline 0.75 \end{array}$        | oória cuja v              | velocidade<br>0.9         | é superior a 5<br>E n.o.             | MB/s é:              |
| (1.5)         | ur<br>de                        | dmita que para <b>ou</b> idades de memória e confiança para a para a para de tervalo menos precis | cuja velocidade e<br>proporção de uni                 | é inferior a<br>dades de r                           | 6 MB/s é<br>nemória cu                                                 | de 0.75. A<br>ja velocida | estimativa<br>de é inferi | a por intervalo                      | de $95\%$            |
|               |                                 | A [0.7228, 0.7772                                                                                 | B [0.5867,                                            | 0.9133] [                                            | C [0.6085                                                              | , 0.8915]                 | D [0.75                   | 398, 0.7602]                         | E n.o.               |
| 2.            | variável alea<br>resposta do :  | resposta, em milisse<br>tória que se supõe t<br>referido servidor dife                            | er distribuição Nere de 100 ms. Co                    | ormal. Um<br>om o object                             | n Engenheir<br>tivo de se fa                                           | o Informát<br>zer estudos | ico afirma<br>s sobre par | que o tempo r<br>râmetros descor     | nédio de<br>nhecidos |
|               | da populaçã                     | o, recolheu-se uma                                                                                | amostra com 9 te                                      | mpos de re                                           | esposta ond                                                            | le se observ              | $vou \ \bar{x} = 10$      | $1 e \sum_{i=1}^{3} (x_i - \bar{x})$ | $(x)^2 = 72.$        |
| (1.6)         | (a) Para s                      | e testar a afirmação                                                                              | do Engenheiro,                                        | as hipótese                                          | s a conside                                                            | rar são:                  |                           |                                      |                      |
|               | lacksquare                      | $f_0: \mu \le 100  vs  H$                                                                         | $T_1: \mu > 100$                                      | $lacksquare$ $lacksquare$ $H_0$                      | $: \mu = 100$                                                          | $vs$ $H_1:$               | $\mu \neq 100$            |                                      |                      |
|               | lacksquare                      | $H_0: \bar{X} = 100  vs$                                                                          | $H_1: \bar{X} \neq 100$                               | $D H_0$                                              | $\mu \geq 100$                                                         | $vs$ $H_1$ :              | $\mu < 100$               | E n.o.                               |                      |

|       |        |             | $R_{0.02} =$                                                        | $=]-\infty,-2.05 $                                                |                                                                                  | В                               | $R_{0.02} =$                                   | [2.05, +                                            | $-\infty$ [                                                |                                       |                                                               |
|-------|--------|-------------|---------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|
|       |        |             | $R_{0.02} =$                                                        | $= ]-\infty, -2.33 $                                              | $[\cup]2.33,+\infty[$                                                            | D                               | $R_{0.02} =$                                   | $= ]-\infty, -$                                     | $2.90[\cup]2.90, \dashv$                                   | ⊦∞[ [                                 | E n.o.                                                        |
| (1.6) | ii     | i. (        |                                                                     | rvado da esta $-2/3$                                              | E 6                                                                              | eé:                             | C 2/                                           | /3                                                  | □ -1                                                       |                                       | E n.o.                                                        |
| (1.5) | iii    |             |                                                                     | associado ao                                                      | igual dimen<br>teste destas hi<br>B 0.0314                                       | pótese                          |                                                | alor:                                               | este apresentou  D 0.05                                    | ı um val                              | or observado 1.86.                                            |
| (1.5) | iv     |             | e significând                                                       | cia:                                                              | <b>stra</b> se tiver $p$ $\alpha \le 0.08$                                       |                                 |                                                |                                                     |                                                            |                                       | ra valores do nível $\mathbb{E}_{\text{n.o.}}$                |
|       |        |             |                                                                     |                                                                   | $\mathbf{ses} \colon H_0 : \mu \le$ $\mathbf{r} \notin \sigma = 3 \text{ e que}$ |                                 |                                                |                                                     |                                                            | que o <b>d</b> e                      | esvio padrão dos                                              |
| (1.6) | j      | i. <i>A</i> | A estatística                                                       | de teste apro                                                     | opriada e a sua                                                                  | a distri                        | buição,                                        | sob a va                                            | lidade de $H_0$ ,                                          | é:                                    |                                                               |
|       |        |             | $\boxed{\underline{\mathbf{A}}} \sqrt{n} \frac{\overline{X} - }{S}$ | $\frac{100}{\stackrel{a}{\longrightarrow}} \sum_{\mu=100}^{a} N($ | (0, 1)                                                                           | В                               | $\sqrt{n}\frac{\overline{X} - }{S}$            | $\frac{\mu}{\mu} \underset{\mu=100}{\sim}$          | $t_{n-1}$                                                  |                                       |                                                               |
|       |        |             | $\boxed{\mathbf{C}} \sqrt{n} \frac{\overline{X} - \sigma}{\sigma}$  | $\frac{100}{\mu=100} \underset{\mu=100}{\sim} N($                 | (0, 1)                                                                           | D .                             | $\sqrt{n}\frac{\overline{X} - \sigma}{\sigma}$ | $\frac{\mu}{\sum_{\mu=100}^{a}}$                    | N(0,1)                                                     | [                                     | E n.o.                                                        |
| (1.5) | ii     |             |                                                                     |                                                                   | a do teste for a                                                                 | $\alpha = 0.$                   | 0228 (pa                                       | ara $\mu =$                                         | 100), a proba                                              | bilidade                              | do erro de tipo II                                            |
|       |        | р           | ara $\mu = 101$                                                     | e:<br>0.9772                                                      | B 0.8413                                                                         |                                 | C 0.                                           | 0228                                                | D 0.0250                                                   | 0                                     | E n.o.                                                        |
|       |        |             |                                                                     |                                                                   | a distribuição $n \geq 2$ , uma an                                               |                                 |                                                |                                                     |                                                            | $\in \mathbb{R}^+$ .                  |                                                               |
| (1.5) | (a) Pa | ara         | $n \ge 30$ , a v                                                    | variável pivot                                                    | para $\theta$ e a su                                                             | ıa disti                        | ribuição                                       | aproxin                                             | nada, $W = \sqrt{}$                                        | $\frac{n\pi}{4} = \frac{\theta^*}{1}$ | $\frac{-\theta}{\theta} \stackrel{a}{\sim} N(0,1), \text{ o}$ |
|       |        |             |                                                                     |                                                                   | kimadamente 9                                                                    |                                 |                                                |                                                     | v v                                                        |                                       | <i>O</i>                                                      |
|       |        | [           | $\boxed{1+}$                                                        | $\frac{\theta^*}{\sqrt{1.96  \frac{4-\pi}{n\pi}}} ,$              | $\frac{\theta^*}{1 - \sqrt{1.96 \frac{4}{r}}}$                                   | $\left[\frac{\pi}{n\pi}\right]$ | В                                              | $\frac{\phantom{0000000000000000000000000000000000$ | $\frac{\theta^*}{5\sqrt{\frac{4-\pi}{n\pi}}}, \frac{1}{1}$ | $\frac{\theta^*}{-1.65}\sqrt{{1}}}$   | $\sqrt{\frac{4-\pi}{n\pi}}$                                   |
|       |        |             | $\boxed{\mathbf{C}}$ $\left[\theta^* - 1\right]$                    | $1.96\sqrt{\frac{n\pi}{4-\pi}}$                                   | $\theta^* + 1.96\sqrt{\frac{n}{4}}$                                              | $\left[\frac{\pi}{\pi}\right]$  | D .                                            | $\frac{\theta}{1 - 1.96}$                           | $\frac{*}{\sqrt{\frac{4-\pi}{n\pi}}}$ , $\frac{1}{1+n\pi}$ | $\theta^*$ $1.96 \sqrt{\frac{2}{3}}$  | $\frac{1-\pi}{m\pi}$                                          |

(b) Considere agora as hipóteses:  $H_0: \mu = 102 \quad vs \quad H_1: \mu \neq 102$ . i. Para um nível de 2% de significância, a região de rejeição é:

(1.6)

(1.5) (b) Considere o parâmetro  $\beta$  e o seu estimador  $\hat{\beta}$ . Sabemos que  $W=2n\frac{\hat{\beta}}{\beta}\sim\chi_{2n}^2$ . Para uma amostra de dimensão n=5, o intervalo de confiança  $100\left(1-\alpha\right)\%$  para  $\beta$  tem expressão:

 $\mathbb{E}\left[\frac{\theta^*}{1+1.96\sqrt{\frac{4-\pi}{n\pi}}}, \frac{\theta^*}{1-1.96\sqrt{\frac{4-\pi}{n\pi}}}\right]$  F n.o.