VHDL Programming Assignment

Arista - v0.3 Zihao Cheng

Questions:

1. Write RTL for a simple memory model that has 4 address locations with the following values on reset:

```
0x00 => 0x01234567
0x01 => 0x89abcde7
0x02 => 0x0a0b0c0d
0x03 => 0x10203040
0xe7 => 0xdeadbeef
```

Read access to locations outside this range should not assert rd_ack.

2. Write RTL for the FSM such that the following input byte streams generate the following output (responses):

```
a. input: 0xe7, 0x13, 0x00, 0x00, 0x00, 0x03
        output: 0xe7, 0x03, 0x10, 0x20, 0x30, 0x40
b. input: 0xe7, 0x13, 0x00, 0x00, 0x00, 0xe7, 0xe7
        output: 0xe7, 0x03, 0xde, 0xad, 0xbe, 0xef
c. input: 0xe7, 0x23, 0x00, 0x00, 0x02, 0xaa, 0xe7, 0xe7, 0x55, 0xaa, 0xe7, 0x13, 0x00, 0x00, 0x00
output: 0xe7, 0x03, 0xaa, 0xe7, 0xe7, 0x55, 0xaa
d. input: 0xe7, 0x23, 0x00, 0x00, 0x00, 0x01, 0xaa, 0xe7, 0x55, 0xe7, 0x13, 0x00, 0x00, 0x00, 0x01
output: 0xe7, 0x03, 0x89, 0xab, 0xcd, 0xe7, 0xe7
```

Memory content:

 $0x00 \Rightarrow 0x01234567$

 $0x01 \Rightarrow 0x89abcde7$

 $0x02 \Rightarrow 0x0a0b0c0d$

 $0x03 \Rightarrow 0x10203040$

0xe7 => 0xdeadbeef

Simulation Result screenshot

CASE1:

IN e7_13_00_00_00_03 OUT e7_03_10_20_30_40

CASE2:

IN e7_13_00_00_00_e7_e7 OUT e7_03_de_ad_be_ef

CASE3:

IN e7_23_00_00_00_02_aa_e7_e7_55_aa_e7_13_00_00_00_02

OUT e7_03_aa_e7_e7_55_aa

CASE4:

IN e7_23_00_00_00_01_aa_e7_55_e7_13_00_00_00_01

OUT e7_03_89_ab_cd_e7_e7