Modeling and estimating generation intervals

Tachikawa infectious boot camp, 2019

Jonathan Dushoff, McMaster University

https://github.com/dushoff/Generation_talks

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating \mathcal{R}

Effective generation times

Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra

Introduction

- ▶ I talk too fast
- ▶ I have too much to tell you
- ► Interrupt me!

Who am I? Head (present)

Who am I? Heart (present)

Who am I? Stomach (present)

Who are you? (present)

- ► Math person
- ► Health person
- ► Biology person

How long is a disease generation?

- ► Introduced by Prof. Nakaoka
- ► If I am infected on day 0, when do I infect you?
- When do you infect Dr. Akhmetzhanov?

Approximate generation intervals

4 日 × 4 御 × 4 蓮 × 4 蓮 ×

How long is a disease generation? (present)

Definition

Generation Interval:

Interval between the time that an individual is infected by an infector and the time this infector was infected

Goals

- ▶ Introduce a generation-based framework for modeling
- ▶ Discuss importance of generation intervals
- Discuss how generation intervals are defined and measured

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating \mathcal{R}

Effective generation times
Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra

Speed

- ▶ We measure epidemic speed using little *r*:
 - ► The ratio of the *change* in disease impact to the *amount* of disease impact
 - ► *Units*: [1/time]
 - Disease increases like e^{rt}
- ▶ Time scale is C = 1/r

Ebola outbreak

 $C \approx 1 \, \text{month}$. Sort-of fast.

Mexican flu

 $C \approx 1 \, \mathrm{week}$. Sort-of fast.

HIV in sub-Saharan Africa

 $C \approx 18 \, \mathrm{month}$. Horrifyingly fast.

${\cal R}$ and control

- lacktriangle We describe epidemic *strength* with big ${\cal R}$
- Number of potential new cases per case
 - Not accounting for proportion susceptible
- ► To eliminate disease, we must:
 - lacktriangle Reduce effective reproduction by a factor of ${\cal R}$

${\cal R}$ and equilibrium

- \blacktriangleright If we have ${\cal R}$ new cases per case when everyone is susceptible
- ▶ And 1 case per case (on average) at equilibrium:
 - lacktriangle Proportion susceptible at equilibrium is $S=1/\mathcal{R}$
 - Proportion affected at equilibrium is $V = 1 1/\mathcal{R}$

${\cal R}$ and control (present)

Outline

Introduction

Linking strength and speed

The link
Renewal-equation models

Estimating \mathcal{R} Effective generation times
Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra)

Approximate generation intervals

- ► The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- ► Do fast disease generations mean more danger or less danger?

Conditional effect of generation time

- ightharpoonup Given the reproductive number ${\cal R}$
 - ▶ faster generation time *G* means faster growth rate *r*
 - More danger
- Given the growth rate r
 - faster generation time G means smaller $\mathcal R$
 - Less danger

Generations and $\mathcal{R}(present)$

Generations and ${\cal R}$

Generations and $\mathcal{R}(present)$

Ebola outbreak

 $C \approx 1 \, \text{month}, \, G \approx 2 \, \text{week}$

Mexican flu

 $C \approx 1 \, \mathrm{week}, \ G \approx 3 \, \mathrm{day}$

HIV in sub-Saharan Africa

 $C \approx 18 \, \mathrm{month}, \ G \approx 4 \, \mathrm{years}$

Linking framework

- ► Epidemic speed (*r*) is a *product*:
 - generation speed ×
 - epidemic strength
- ▶ WRONG

- ► Epidemic speed (r) is a product:
 - (something to do with) generation speed ×
 - (something to do with) epidemic strength

Outline

Introduction

Linking strength and speed

The link
Renewal-equation models

Estimating \mathcal{R} Effective generation times
Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra)

Box models

Renewal equation

- ➤ A broad framework that covers a wide range of underlying models
- $i(t) = S(t) \int k(\tau) i(t-\tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - \triangleright S(t) is the *proportion* of the population susceptible
 - $k(\tau)$ measures how infectious a person is (on average) at time τ after becoming infected
- For invasion, treat S as constant

Infection kernel

- ▶ $k(\tau)$ is the expected rate at which you infect at time τ after being infected
- $\int_{\tau} k(\tau) d\tau$ is the expected number of people infected:
 - R the effective reproductive number
- $\blacktriangleright k(\tau)/\mathcal{R}$ is a distribution:
 - $g(\tau)$, the *intrinsic* generation distribution

Renewal equations

- More flexible than ODEs
 - Non-exponential distributions, variation in infectiousness through time
 - ▶ The ODEs we've seen can be rewritten as renewal equations!
- Can be parameterized by observing generation intervals
 - Contact tracing (realized intervals)
 - infectiousness of studied individuals (intrinsic distribution)

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating ${\cal R}$

Effective generation times Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra)

Euler-Lotka equation

Model

$$i(t) = S \int k(\tau)i(t-\tau) d\tau$$

- ightharpoonup If we neglect changes in S, we expect exponential growth
- Exponential phase
 - lacktriangle Disease grows with characteristic time ${\cal C}=1/r$

$$i(t) = i(0) \exp(rt)$$

Euler-Lotka equation

$$i(t) = S \int k(\tau)i(t-\tau) d\tau$$

Substitute:

$$i(t) = i(0) \exp(rt)$$

- $1 = \int k(\tau) \exp(-r\tau) \, d\tau$
 - lacktriangle i.e., the total of *discounted* contributions is 1
- ► $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$

Interpretation: generating functions

►
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

► J Wallinga, M Lipsitch; DOI: 10.1098/rspb.2006.3754

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating ${\cal R}$

Effective generation times

Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra)

Interpretation: "effective" generation times

Define the effective generation time so that

$$\mathcal{R} = \exp(r\hat{G})$$

► Then:

$$1/\mathcal{R} = \int g(au) \exp(-r au) \, d au$$

$$\exp(-r\hat{G}) = \langle \exp(-r\tau) \rangle_g$$
.

- A filtered mean:
 - ► The discounted value of \hat{G} is the expectation of the discounted values across the distribution

Filtered means

- Many things we know about are examples of filtered means
 - ► Geometric mean (log function)
 - Harmonic mean (reciprocal function)
 - ► Root mean square (square)

Linking framework

- ▶ Epidemic speed (*r*) is a *product*:
 - ightharpoonup (something to do with) generation speed imes
 - (something to do with) epidemic strength
- In particular:
 - $r = (1/\hat{G}) \times \log(\mathcal{R})$
 - $ightharpoonup \hat{G}$ is the effective mean generation time

$$C = 1/r = 30d$$
 (present)

Filtered means have intuitive properties

- Shifts in distribution shift the mean about how you would expect
 - lacktriangle More late transmission means longer \hat{G}
 - ▶ Longer \hat{G} means higher \mathcal{R} for a given r
- lacktriangle As distribution gets narrower, \hat{G} increases toward the mean $ar{G}$
- ightharpoonup As distribution gets wider, \hat{G} decreases
 - Scientific interpretation?

The filtering function

- $ightharpoonup \hat{G}$ is the mean of the generation distribution g(au) ...
- ► Filtered by the discount function associated with the rate of exponential growth of the epidemic
 - i.e., the relative importance of a contribution at that time

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating ${\cal R}$

Effective generation times
Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra)

Problems

- ► The filtered mean has drawbacks
- $ightharpoonup \hat{G}$ depends on r as well as G
- ► How is

$$ightharpoonup \mathcal{R} = \exp(r\hat{G})$$

Consistent with the result from ODEs

$$ightharpoonup \mathcal{R} = 1 + r\bar{G}?$$

Infectious times and waiting times

- ▶ If the average infectious time is 5 days, what is the average generation time?
 - ▶ The average latent period plus the infectious-waiting period
- What is the average infectious-waiting period?
 - ▶ $5d(1+\kappa)/2$
 - $ightharpoonup \kappa$ measures the relative variation of the infectious period
 - The waiting period is not the infectious period
 - The exponential distribution is trying to trick you!

Infectious and waiting periods (present)

Infectious and waiting periods

Infectious and waiting periods

An approximation

- ▶ We make the rR link with a moment approximation
- ▶ Define $\kappa = \sigma_G^2/\mu_G^2$ the squared coefficient of variation of the generation distribution
- ightharpoons $\mathcal{R} \approx (1 + r\kappa \bar{G})^{1/\kappa}$
 - **Equal** when $g(\tau)$ has a gamma distribution
 - Simple and straightforward
 - When is it a useful approximation?

Compound-interest interpretation

- ▶ Define $\mathcal{R} \approx (1 + r\kappa \bar{G})^{1/\kappa} \equiv X(r\bar{G}; 1/\kappa)$
- ▶ X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)
 - lacktriangle Approaches exponential as $\kappa o 0$

Moment approximation (present)

Moment approximation (present)

Moment approximation (present)

Moment approximation

Qualitative response

- ▶ For a given value of \bar{G} , smaller values of κ mean:
 - less variation in generation interval
 - less compounding of growth
 - ightharpoonup greater $\mathcal R$ required for a given r

Fitting to Ebola

- Simulate generation intervals based on data and approach from WHO report
- Use both lognormals and gammas
 - WHO used gammas
 - Lognormals should be more challenging

Approximating the distribution

Single-gamma approximation

Approximating the curve

Exponential growth rate (per generation)

Linking framework

- ▶ Epidemic speed (r) is a product:
 - ightharpoonup (something to do with) generation speed imes
 - (something to do with) epidemic strength
- In particular:
 - $ightharpoonup r pprox (1/\bar{G}) imes \ell(\mathcal{R}; \kappa_g)$
 - \blacktriangleright ℓ is the inverse of X

Other diseases

- This approximation works suspiciously well for measles parameters
- ▶ Noticeably less well for rabies parameters
 - Can be improved using gamma-based estimates of the moments

Summary

- For many practical applications:
 - Estimating the mean generation interval is not enough
 - But estimating the mean and CV may be enough
 - ► This can also allow us to address our uncertainty
- Filtered mean is useful for qualitative explanations
 - e.g., Ebola burial

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating \mathcal{R}

Effective generation times Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra)

Generation intervals through time

- Generation intervals can be estimated by:
 - Observing patients:
 - How long does it take to become infectious?
 - How long does it take to recover?
 - What is the time profile of infectiousness/activity?
 - Contact tracing
 - Who (probably) infected whom?
 - When did each become ill (serial interval)?

Types of interval

Contact-tracing intervals look systematically different, depending on when you observe them.

Define:

- Intrinsic interval: How infectious is a patient at time τ after infection?
- Forward interval: When do people infected at a particular time infect others?
- Backward interval: When were the people who infect at a particular time infected?

Growing epidemics

- ► Generation intervals look *shorter* at the beginning of an epidemic
 - A disproportionate number of people are infectious right now
 - They haven't finished all of their transmitting
 - We are biased towards observing faster events

Forward and backward intervals

Correcting

► Infection events: someone infected at time *s* is infecting someone at time *t*

$$i_s(t) = S(t)k(t-s)i(s)$$

- Backward intervals
 - Who infected the people infected at time t?

$$ightharpoonup \propto k(t-s)i(s)$$

- ▶ Depends on k, but also on changes in i(s)
- Forward intervals
 - ▶ Who did the people infected at time *s* infect?

$$ightharpoonup \propto S(t)k(t-s)$$

▶ Depends on k, but also on changes in S(t)

What changes backward intervals? (present)

What changes forward intervals? (present)

Theory and simulation

Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

Conclusion

- Backward intervals change if the number of infectious individuals is changing as you look back
- Forward intervals change if the number of susceptible individuals is changing as you look forward
- Lack of care in defining generation intervals can lead to bias
 - In particular, generation intervals look short during an epidemic outbreak
 - Makes diseases look less dangerous!
 - These biases can be corrected

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating \mathcal{R}

Effective generation times
Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra

Spatial struture

Individual-level heterogeneity

Summary

- Generation intervals are often taken for granted
- We need better methods for defining different measures of disease generations
 - We need to consider our *uncertainty* about generations when making conclusions
- Generation intervals are fun conceptually, mathematically and practically

Outline

Introduction

Linking strength and speed

The link

Renewal-equation models

Estimating \mathcal{R}

Effective generation times Moment approximations

Generation intervals through time

Conclusion

Renewal math (extra)

Compartments vs. cohorts

- We have a some simplified biological assumptions about how a disease spreads
- We can implement these assumptions into a model:
 - ► Track **compartments**: S, I, R, . . .
 - or track cohorts: a group of people infected at the same time

Cohort approach

Model

$$\frac{dS}{dt} = \mu S - \beta SI/N$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I$$

What happens to a cohort infected at time 0?

$$\frac{dI}{d\tau} = -\gamma I$$

$$I(\tau) = I(0) \exp(-\gamma \tau)$$

We can write cohort equations for more complicated models as well

Another view of the model

► Model **incidence** *i*:

$$\frac{dS}{dt} = \mu S - i(t)$$

$$\frac{dI}{dt} = i(t) - \gamma I$$

$$i(t) = \beta SI/N$$

Cohort approach

We can use standard methods for the differential equation:

$$\frac{dI}{dt} = i(t) - \gamma I$$

or we can just write down the answer using a cohort approach:

$$I(t) = \int I(t- au, au)) d au$$

 $= \int i(t-\tau) \exp(-\gamma \tau)) d\tau$

► This answer makes *biological* sense

Cohort-based equation

We can eliminate I and write:

$$\frac{dS}{dt} = \mu S - i(t)$$

$$i(t) = \frac{S}{N} \int \beta i(t - \tau) \exp(-\gamma \tau) d\tau$$

- ► This is the same model
 - Same assumptions, same dynamics
- We can generalize our compartmental assumptions:

$$i(t) = \frac{S}{N} \int i(t-\tau)k(\tau)d\tau$$

Renewal equation

$$i(t) = \frac{S}{N} \int i(t-\tau)k(\tau)d\tau$$

- $k(\tau)$ is the infection "kernel" it describes how an incident (new, occurring) case tends to cause other incident cases over time
 - As a function of time since infection
- What are the advantages or disadvantages of this cohort-based approach, compared to a general compartmental model?
- ▶ How would you estimate an infection kernel?