ამოცანათა კრებული მათემატიკურ ანალიზში

ზ. კუჭავა, I^{AT}EX 23.7.2025

§ 4. ნამდვილი რიცხვები.

0.1 თეორია

ამ პარაგრაფში ითვლება, რომ მკითხველისთვის ცნობილია რაციონალურ რიცხვთა ℚ სიმრავლე და მისი თვისებები.

 $A\subset\mathbb{Q}$ სიმრავლის **მაქსიმუმი** ეწოდება a რიცხვს, რომლისთვისაც სრულდება $\Big(a\in A\ \&\ (\forall x\in A)\big(x\geqslant a\Rightarrow x=a\big)\Big)$. გამოიყენება აღნიშვნა $a=\max A$.

 $A\subset \mathbb{Q}$ სიმრავლის **მინიმუმი** ეწოდება a რიცხვს, რომლისთვისაც სრულდება $\Big(a\in A\ \&\ ig(orall x\in Aig)\big(x\leqslant a\Rightarrow x=a\big)\Big)$. გამოიყენება აღნიშვნა $a=\min A$.

 $A\subset \mathbb{Q}$ სიმრავლის **უდიდესი** ელემენტი ეწოდება a რიცხვს, რომ-ლისთვისაც სრულდება $\Big(a\in A\ \&\ ig(orall x\in Aig)\big(x\leqslant a\Big)\Big).$

 $A\subset \mathbb{Q}$ სიმრავლის **უმცირესი** ელემენტი ეწოდება a რიცხვს, რომლისთვისაც სრულდება $\Big(a\in A\ \&\ ig(orall x\in Aig)(x\geqslant a)\Big).$

 $A\subset \mathbb{Q}$ სიმრავლის **მაჟორანტი** (ზევიდან შემომსაზღვრელი) ეწოდება a რიცხვს, რომლისთვისაც სრულდება

$$a \in \mathbb{Q} \& (\forall x \in A) (x \leqslant a)$$

 $A\subset\mathbb{Q}$ სიმრავლის **მინორანტი** (ქვევიდან შემომსაზღვრელი) ეწოდება a რიცხვს, რომლისთვისაც სრულდება

$$a \in \mathbb{Q} \& (\forall x \in A) (x \geqslant a)$$

 $A\subset\mathbb{Q}$ სიმრავლის **სუპრემუმი** (ზედა საზღვარი) ეწოდება a რიცხვს, რომლისთვისაც სრულდება

$$(\forall x \in A) (x \leqslant a) \& (\forall \varepsilon > 0, \exists x_0 \in A, a - \varepsilon < x_0)$$

გამოიყენება აღნიშვნა $a=\sup A$. ექვივალენტური განმარტება გამოდის, თუ სუპრემუმს განვმარტავთ როგორც A-ს მაჟორანტთა სიმრავლის უმცირესს ელემენტს. $A\subset\mathbb{Q}$ სიმრაგლის **ინფიმუმი** (ქვედა საზღვარი) ეწოდება a რი-ცხვს, რომლისთვისაც სრულდება

$$(\forall x \in A)(x \geqslant a) \& (\forall \varepsilon > 0, \exists x_0 \in A, a + \varepsilon > x_0)$$

გამოიყენება აღნიშვნა $a=\inf A$. ექვივალენტური განმარტება გამოდის, თუ სუპრემუმს განვმარტავთ როგორც A-ს მინორანტთა სიმრავლის უდიდესს ელემენტს.

Julius Wilhelm Richard Dedekind 6 October 1831 - 12 February 1916.

რაციონალურ რიცხვთა α სიმრავლეს ეწოდება **განკვეთა** ანუ **ნამდვილი რიცხვი**, თუ სრულდება

- $1. \exists q \in \mathbb{Q}, \ q \in \boldsymbol{\alpha}$ და $\exists p \in \mathbb{Q}, \ q \notin \boldsymbol{\alpha}$
- 2. $\left(p \in \boldsymbol{\alpha} \ \& \ q \in \mathbb{Q} \ \& \ q$
- 3. არ არსებობს $\max lpha$

 $q\in \pmb{\alpha}$ სახის რიცხვებს ეწოდება $\pmb{\alpha}$ განკვეთის ქვედა რიცხვები და $q\notin \pmb{\alpha}$ სახის რიცხვებს კი - $\pmb{\alpha}$ განკვეთის ზედა რიცხვები.

თუ $q\in\mathbb{Q}$ და $\pmb{\alpha}=\{p\in\mathbb{Q}\ \&\ p< r\}$, მაშინ $\pmb{\alpha}$ განკვეთაა და მას ვუ-წოდებთ $q\in\mathbb{Q}$ -ის შესაბამის **რაციონალურ განკვეთას** და აღვნიშ-ნავთ \pmb{r}^* სიმბოლოთი.

დავუშვათ α და β განკვეთებია. განმარტებით $\alpha<\beta$ თუ $(\exists p\in\mathbb{Q})(p\notin\alpha\& p\in\beta)$. და განმარტებით $\alpha\leqslant\beta$ თუ $\alpha<\beta$ ან $\alpha=\beta$.

დავუშვათ α და β განკვეთებია. მაშინ სიმრავლე $\{r: r=p+q,\ p\in\alpha\ \&\ q\in\beta\}$ განკვეთაა, აღინიშნება სიმბოლოთი " $\alpha+\beta$ "და ვუწოდებთ განკვეთათა ჯამს.

დავუშვათ α განკვეთაა. განვიხილოთ რაციონალურ რიცხვთა სიმრაგლე $\beta=\{p:-p\notin\alpha\&-p\neq\min\{x:x\notin\alpha\}\}$. ასეთი β -ის მტკიცდება, რომ იგი განკვეთაა, ერთადერთია და $\alpha+\beta=0^*$. ასე აგებული განკვეთა აღინიშნება " $-\alpha$ " სიმბოლოთი. განმარტებით $\alpha-\beta=\alpha+(-\beta)$.

დავუშვათ α და β განკვეთებია ისეთი, რომ $\alpha>0^*$ და $\beta>0^*$. მაშინ სიმრავლე $\gamma=\{r:r=p\cdot q,p\in\alpha,q\in\beta,p\geqslant0,q\geqslant0\}\cup\{r\in\mathbb{Q},r\leqslant0\}$ წარმოადგენს განკვეთას და აღინიშნება " $\alpha\cdot\beta$ " სიმბოლოთი და ვუწოდებთ განკვეთათა ნამრავლს.

ყოველ lpha განკვეთას შეესაბამება განკვეთა |lpha|, რომელსაც ეწო-დება lpha-ს აბსოლუტური სიდიდე ანუ მოდული და განიმარტება შემ-

დეგნაირად

$$|\boldsymbol{\alpha}| = egin{cases} \boldsymbol{\alpha}, & \boldsymbol{\alpha} \geqslant 0^* \\ -\boldsymbol{\alpha}, & \boldsymbol{\alpha} < 0^* \end{cases}$$

ნებისმიერი lpha და eta განკვეთებისთვის განმარტების მიხედვით

$$\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = \begin{cases} -(|\boldsymbol{\alpha}| \cdot |\boldsymbol{\beta}|), & \boldsymbol{\alpha} < 0^*, \boldsymbol{\beta} > 0^* \vee \boldsymbol{\alpha} > 0^*, \boldsymbol{\beta} < 0^* \\ |\boldsymbol{\alpha}| \cdot |\boldsymbol{\beta}|, & \boldsymbol{\alpha} < 0^*, \boldsymbol{\beta} < 0^* \end{cases}$$

 $oldsymbol{lpha}
eq 0^*$ და $oldsymbol{lpha} > 0^*$ განკვეთისთვის შებრუნებული განკვეთა $oldsymbol{lpha}^{-1}$ განიმარტება ტოლობით

$$\boldsymbol{\alpha}^{-1} = \frac{1}{\boldsymbol{\alpha}} = \left\{r: \frac{1}{r} \notin \boldsymbol{\alpha} \ \& \ \frac{1}{r} \neq \min\{x: x \notin \boldsymbol{\alpha}\}\right\} \cup \{r \in \mathbb{Q}, r \leqslant 0\}$$

ნებისმიერი $lpha < 0^*$ განკვეთისთვის განმარტებით $lpha^{-1} = -rac{1}{|lpha|}$

განმარტებით $m{eta}$ და $m{lpha}
eq 0^*$ განკვეთებისთვის $rac{m{eta}}{m{lpha}} = m{eta} \cdot rac{1}{m{lpha}}$

განმარტებით n ნატურალური რიცხვისთვის და α განკვეთისთვის $\alpha^0=1^*$ და $\alpha^n=\overbrace{\alpha\cdots\alpha}^{n-\Re 0}$. განმარტებით $\alpha^{-n}=\frac{1}{\alpha^n}$.

$$lpha^0=1^*$$
 და $lpha^n=\overbrace{lpha\cdotslpha}^n$. განმარტებით $lpha^{-n}=rac{1}{lpha^n}$

განვიხილოთ $lpha>0^*$. სიმრავლე $\{r:r\in\mathbb{Q}\ \&\ r>0\ \&\ r^n\inlpha\}\cup\{r\in\mathbb{Q}\}$ $\mathbb{Q},r\leqslant 0\}$ წარმოადგენს განკვეთას და აღინიშნება " $\sqrt[n]{m{lpha}}$ " სიმბოლოთი. განმარტებით $oldsymbol{lpha}>0^*$ -ის და m,n
eq 0 ნატურალური რიცხვებისთვის $\alpha^{\frac{m}{n}} = (\sqrt[n]{\alpha})^m$.

განვიზილოთ $\pmb{\alpha}>1^*$ და ნებისმიერი $\pmb{\beta}$ განკვეთები. განკვეთა განმარტებით $\sup_r \{\pmb{\alpha}^r: r\in \mathbb{Q} \ \& \ r*<\pmb{\beta}\}$ აღინიშნება " $\pmb{\alpha}^{\pmb{\beta}}$ " სიმბოლოთი.

განკვეთათა ანუ ნამდვილ რიცხვთა სიმრავლე აღინიშნება $\mathbb R$ სიმბოლოთი. რადგან $\mathbb R$ სიმრავლეში განმარტებულია უტოლობა და არითმეტიკული ოპერაციები, ამიტომ აქ გადმოიტანება უცვლელად მაქსიმუმის, მინიმუმის, სუპრემუმის და ინფიმუმის ცნებები.

განვიზილოთ ორი სიმრავლე: 🛭 და ყველა რაციონალურ რიცხვთა $\mathbb Q$ სიმრავლეები, რომლებიც შესაბამისად აღვნიშნოთ " $-\infty$ " და " $+\infty$ " სიმბოლოებით. სიმრავლეს $\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}$ ეწოდება გაფართოებული წამდვილ რიცხთა სიმრავლე. სიმრავლეებისთვის " $-\infty$ " და $\H-\infty$ " ბუნებრივად ნარჩუნდება ნამდვილი რიცხვებისთვის შემოყვანილი მოდულის, არითმეტიკული ოპერაციების და უტოლობის განმარტებები.

არ განიმარტება (მიეკუთვნება განუსაზღვრელ სიმბოლოთა რიცხვს) შემდეგი ჩანაწერები: $\pm\infty$ - $(\pm\infty)$, $\pm\infty$ \cdot 0, $\pm\infty$ + $(\mp\infty)$, $\pm\infty$, $\pm\infty$ 0, $1^{\pm\infty}$, $\pm\infty^{\mp\infty}$, $0^{\pm\infty}$. განმარტებით თუ $E\subset\mathbb{R}$ ზევიდან შემოუსაზღვრელი სიმრავლეა (ე.ი. თუ $\forall y \in \mathbb{R}, \exists x \in E, x > y$), მაშინ $\sup E = +\infty$. ანალოგიურად ქვევიდან შემოუსაზღვრელი სიმრავლისთვის $\inf E = -\infty$.

0.2 მაგალითები და ამოცანები

დაამტკიცეთ ტოლობები

1.
$$2^* + 3^* = 5^*$$

2.
$$2^* + 2^* = 2 \cdot 2^*$$

3.
$$3^* + 3^* = 2^* \cdot 3^*$$

4.
$$\alpha + \alpha = 2^* \cdot \alpha$$

ნებისმიერი lpha,eta და γ განკვეთებისთვის დაამტკიცეთ

5.
$$\alpha + \beta = \beta + \alpha$$

6.
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

7.
$$\alpha + 0^* = \alpha$$

დაამტკიცეთ შემდეგი წინადადებები

8.
$$2^* + 5^* > 2^*$$

9.
$$\sqrt{2^*} < 3^*$$

10.
$$\sqrt{2^*} < \sqrt{3^*}$$

11.
$$\sqrt{2^*} < \sqrt{3^*} \Rightarrow \sqrt{2^*} + \sqrt{5^*} < \sqrt{3^*} + \sqrt{5^*}$$

12.
$$\sqrt{5^*} > \sqrt{3^*} \& \sqrt{7^*} > \sqrt{2^*} \Rightarrow \sqrt{7^*} + \sqrt{3^*} > \sqrt{5^*} + \sqrt{2^*}$$

13.
$$\sqrt{2^*} > 1^*$$

14.
$$\sqrt{3^*} \cdot \sqrt{2^*} > 1^* \cdot \sqrt{3^*}$$

15.
$$\sqrt{5^*} \cdot 1^* = \sqrt{5^*}$$

16.
$$\sqrt{5^*} \cdot \sqrt{2^*} = \sqrt{10^*}$$

17.
$$\sqrt{2^*} \cdot \sqrt{3^*} = \sqrt{6^*}$$

18.
$$\sqrt{2^*} + \sqrt{8^*} = \sqrt{18^*}$$

19.
$$1^* + (-1^*) = 0^*$$

20.
$$\sqrt{2^*} \cdot \sqrt{2^*} = 2^*$$

დაამტკიცეთ, რომ თუ α, β , δ და γ განკვეთებია, მაშინ:

21.
$$(\alpha < \beta) \lor (\alpha = \beta) \lor (\alpha > \beta)$$

22.
$$\alpha < \beta \& \beta < \gamma \Rightarrow \alpha < \gamma$$

23.
$$\forall \beta \& \alpha > 0^* \Rightarrow \beta + \alpha > \beta$$

24.
$$\beta < \gamma \Rightarrow \beta + \alpha < \gamma + \alpha$$

25.
$$\alpha < \beta \Rightarrow \exists r \in \mathbb{Q}, \ \alpha < r^* < \beta$$

26.
$$\alpha > \beta \& \gamma > \delta \Rightarrow \alpha + \gamma > \beta + \delta$$

27.
$$\alpha \cdot \beta = \beta \cdot \alpha$$

28.
$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

29.
$$(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$$

30.
$$\alpha \cdot 0^* = 0^*$$

31.
$$\alpha \cdot \beta = 0^* \Leftrightarrow \alpha = 0^* \vee \beta = 0^*$$

32.
$$\alpha \cdot 1^* = 1^*$$

33.
$$\alpha < \beta \& \gamma > 0^* \Rightarrow \alpha \cdot \gamma < \beta \cdot \gamma$$

34.
$$\alpha > \beta > 0^* \& \gamma > \delta > 0^* \Rightarrow \alpha \cdot \gamma > \beta \cdot \delta$$

35.
$$\alpha = \beta \Rightarrow \alpha \cdot \gamma = \beta \cdot \gamma$$

36.
$$\alpha \cdot \gamma = \beta \cdot \gamma \& \gamma \neq 0^* \Rightarrow \alpha = \beta$$

37.
$$\alpha + (-\alpha) = 0^*$$

38.
$$\alpha \cdot (-1^*) = -\alpha$$

39.
$$|\alpha + \beta| \leq |\alpha| + |\beta|$$

40.
$$||\alpha| - |\beta|| \le |\alpha - \beta|$$

41.
$$|\alpha| \geqslant 0^*$$

42.
$$|\boldsymbol{\alpha}| = 0^* \Leftrightarrow \boldsymbol{\alpha} = 0^*$$

დაამტკიცეთ, რომ $\forall p,q\in\mathbb{Q}$ -ის და $\pmb{\alpha}$ განკვეთისთვის სამართლიანია

43.
$$p^* + q^* = (p+q)^*$$

45.
$$p^* < q^* \Leftrightarrow p < q$$

44.
$$p^* \cdot q^* = (p \cdot q)^*$$

46.
$$p \in \alpha \Leftrightarrow p^* < \alpha$$

დაამტკიცეთ n,m ნატურალური რიცხვებისთვის და $\pmb{\alpha}$ განკვეთისთვის

47.
$$\alpha^n \cdot \alpha^m = \alpha^{n+m}$$

48.
$$\alpha^n : \alpha^m = \alpha^{n-m}$$

49.
$$(\boldsymbol{\alpha}^n)^m = \boldsymbol{\alpha}^{n \cdot m}$$

50.
$$\alpha > \beta > 0^* \Rightarrow \alpha^n > \beta^n$$

51.
$$\alpha > 1^*$$
 & $m > n \Rightarrow \alpha^m > \alpha^n$

52. $0^* < \alpha < 1^* \& m > n \Rightarrow \alpha^m < \alpha^n$

დაამტკიცეთ, რომ ყოველი $\alpha>0^*$ განკვეთისვის სამართლიანია შემდეგი ტოლობები:

53.
$$\alpha \cdot \frac{1}{\alpha} = 1^*$$

54.
$$\frac{1}{\alpha} = \frac{1^*}{\alpha}$$

$$55. \ \alpha^{-n} = \frac{1}{\alpha^n} = \left(\frac{1}{\alpha}\right)^n$$

დაამტკიცეთ, რომ $lpha>0^*$ -თვის და $r_1,r_2\in\mathbb{Q}$ -ის სამართლიანია

56.
$$(\sqrt[n]{\alpha})^n = \alpha$$

57.
$$\alpha^{r_1} \cdot \alpha^{r_2} = \alpha^{r_1 + r_2}$$

58.
$$(\alpha^{r_1})^{r_2} = \alpha^{r_1 \cdot r_2}$$

59.
$$\alpha^{r_1}: \alpha^{r_2} = \alpha^{r_1-r_2}$$

დაამტკიცეთ, რომ $lpha>1^*$ და ნებისმიერი eta, γ განკვეთებისთვის

60.
$$\beta > \gamma \Rightarrow \alpha^{\beta} > \alpha^{\gamma}$$

61.
$$\alpha > \beta > 1^* \& \gamma > 0^* \Rightarrow \alpha^{\gamma} > \beta^{\gamma}$$

62.
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$

დაამტკიცეთ, რომ $0^* < \alpha < 1^*$ და ნებისმიერი $oldsymbol{eta}$, $oldsymbol{\gamma}$ განკვეთებისთვის

63.
$$\beta > \gamma \Rightarrow \alpha^{\beta} < \alpha^{\gamma}$$

64.
$$1^* > \alpha > \beta > 0^* \& \gamma > 0^* \Rightarrow \alpha^{\gamma} < \beta^{\gamma}$$

ქვემოთ სიმბოლო * გამოტოვებულია ჩანაწერების სიმარტი-ვისთვის.

65. ააგეთ განკვეთა $2^{\sqrt{2}}$

დაამტკიცეთ შემდეგი ტოლობები

66.
$$\forall a \in \mathbb{R}, -\infty < a < +\infty$$

67.
$$\forall a \in \mathbb{R}, \quad a \pm \infty = \pm \infty$$

68.
$$-(+\infty) = -\infty$$

69.
$$-(-\infty) = +\infty$$

70.
$$\pm \infty + (\pm \infty) = \pm \infty$$

71.
$$|+\infty| = +\infty$$

72.
$$|-\infty| = +\infty$$

73.
$$\forall a > 0, \quad a \cdot (+\infty) = +\infty$$

74.
$$\forall a < 0, \quad a \cdot (+\infty) = -\infty$$

75.
$$\pm \infty \cdot (\pm \infty) = +\infty$$

76.
$$\pm \infty \cdot (\mp \infty) = -\infty$$

77.
$$\forall a \in \mathbb{R}, \quad \frac{a}{+\infty} = 0$$

78. თუ $\alpha, \beta, \gamma \in \mathbb{R}$, მაშინ $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$ როდესაც ტოლობის ორივე მხარეს მდგომი ყველა ოპერაცია განმარტებულია.

შემდეგი სიმრავლეებისთვის იპოვეთ max, min, sup, inf თუ ისინი არსებობენ

79.
$$(-1,1)$$
; $[-7,2)$; $(0,8]$; $[-10,0]$

80.
$$n \in \mathbb{N}$$
-ob $\left\{\frac{1}{n}\right\}$; $\left\{1 + \frac{(-1)^n}{n}\right\}$; $\left\{\sum_{k=1}^n \frac{1}{2^k}\right\}$

81.
$$\mathbb{Q} \cap \{|x| < 2\}; \{x : x \in \mathbb{Q} \& x^2 < 2\}; \{\frac{m}{n} : 0 < m < n \& m, n \in \mathbb{N}\}$$

დავუშვათ $A,B\subset\mathbb{R}$ და $A,B
eq\varnothing$. განმარტებით $A\pm B=\{z:z=x\pm y\ \&\ (x,y)\in A\times B\}$ და $A\cdot B=\{z:z=x\cdot y\ \&\ (x,y)\in A\times B\}$. დაამტკიცეთ, რომ

82.
$$(0,1) \cdot (0,1) = (0,1)$$

83.
$$(0,1) + (0,1) = (0,2)$$

84.
$$(0,1) + (-1,0) = (-1,1)$$

85.
$$\{2\} \cdot (0,1) = (0,2)$$

86.
$$\{1,3\} \cdot (0,1) = (0,3) = \{3\} \cdot (0,1)$$

87.
$$\{1,3\} \cdot (1,2) = (1,2) \cup (3,6)$$

88.
$$(a,b) + (c,d) = (a+c,b+d)$$

89.
$$\inf(-A) = -\sup A$$

90.
$$\sup(-A) = -\inf A$$

91.
$$\sup(A + B) = \sup A + \sup B$$

92.
$$\inf(A + B) = \inf A + \inf B$$

93.
$$\sup(A \setminus B) = \sup A - \inf B$$

თუ
$$x \in A \Rightarrow x \geqslant 0$$
 & $y \in B \Rightarrow y \geqslant 0$ მაშინ

94.
$$\sup(A \cdot B) = \sup A \cdot \sup B$$

95.
$$\inf(A \cdot B) = \inf A \cdot \inf B$$

დაგუშვათ $A,A_1,A_2\subset\mathbb{R},E\subset A,E_1\subset A_1,E_2\subset A_2$ და $\varphi:A\to\mathbb{R},g:A\to\mathbb{R},f:A_1\times A_2\to\mathbb{R}$ დაამტკიცეთ შემდეგი წინადადებები (იგულისხმება, რომ უტოლობები მხარეებზე მდგომი გამოსახულებები განმარტებულია)

96.
$$\sup_{x \in E} g(x) = -\inf_{x \in E} (-g(x))$$

97.
$$\sup_{x \in E} g(x) + \inf_{x \in E} \varphi(x) \leqslant \sup_{x \in E} (g(x) + \varphi(x)) \leqslant \sup_{x \in E} g(x) + \sup_{x \in E} \varphi(x)$$

98.
$$\sup_{(x_1,x_2)\in E_1\times E_2} f(x_1,x_2) = \sup_{x_1\in E_1} \left\{ \sup_{x_2\in E_2} f(x_1,x_2) \right\} = \sup_{x_2\in E_2} \left\{ \sup_{x_1\in E_1} f(x_1,x_2) \right\}$$

დაამტკიცეთ, რომ თუ, დამატებით, $\forall x \in E$ -თვის $g(x) \geqslant 0$ და $\varphi(x) \geqslant 0$, მაშინ სამართლიანია

99.
$$\sup_{x \in E} g(x) \cdot \inf_{x \in E} \varphi(x) \leqslant \sup_{x \in E} (g(x) \cdot \varphi(x)) \leqslant \sup_{x \in E} g(x) \cdot \sup_{x \in E} \varphi(x)$$

$$100. \ \sup_{x\in E} rac{1}{g(x)} = rac{1}{\inf_{x\in E} g(x)} \, igg($$
 აქ პირობით ვუშვებთ $rac{1}{0} = +\infty$ და $g(x) > 0 igg).$