

Best Available Copy

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 043 399 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
11.10.2000 Patentblatt 2000/41

(51) Int. Cl.⁷: C12N 15/86, C12N 7/01,
C12N 7/04, C12N 5/10,
C07K 14/18, A61K 49/00,
A61K 48/00

(21) Anmeldenummer: 00105929.4

(22) Anmelddatum: 23.03.2000

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 03.04.1999 DE 19915178

(71) Anmelder:
Bartenschlager, Ralf, Dr.
55239 Gau-Odernheim (DE)

(72) Erfinder:
Bartenschlager, Ralf, Dr.
55239 Gau-Odernheim (DE)

(74) Vertreter: Rudolph, Ulrike, Dr.
Patentanwältin
In der Schanz 10
69198 Schriesheim (DE)

(54) Hepatitis C Virus Zellkultursystem

(57) Das erfindungsgemäße Hepatitis C Virus (HCV) Zellkultursystem besteht aus humanen Hepatoma zellen, die mit einem HCV-RNA-Konstrukt transfiziert sind, das die HCV-spezifischen RNA-Abschnitte 5' NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3' NTR und zudem wenigstens ein selektierbares Markergen (Selektionsgen) umfaßt.

EP 1 043 399 A2

Beschreibung

- [0001] Die Erfindung betrifft ein Hepatitis C Virus (HCV) Zellkultursystem, das im wesentlichen eukaryontische Zellen umfaßt, die eingeschleustes HCV-spezifisches Genmaterial enthalten, d.h. die mit HCV-spezifischem Genmaterial transfiziert sind.
- [0002] Das Hepatitis C Virus (HCV) ist eine der Hauptursachen chronischer und sporadischer Leberkrankungen weltweit. Die meisten HCV-Infektionen verlaufen ohne erkennbare klinische Symptome, allerdings werden 80-90% der Infizierten dauerhafte Virusträger und bei 50% dieser dauerhaften Virusträger kommt es zu einer chronischen Leberentzündung mit unterschiedlichen Schweregraden. Ca. 20% der chronisch Infizierten entwickeln im Laufe von 10 bis 20 Jahren eine Leberzirrhose, auf deren Basis sich ein primäres Leberzellkarzinom entwickeln kann. Die chronische Hepatitis C ist heute die Hauptindikation für eine Lebertransplantation. Eine Kausaltherapie gibt es bisher noch nicht. Die einzige derzeit verfügbare Therapie ist die hochdosierte Verabreichung von Interferon-Alpha oder eine Kombination aus Interferon-Alpha und dem Purin-Nukleosidanalogon Ribavirin. Allerdings sprechen nur ca. 60 % aller Behandelten auf diese Therapie an und bei diesen kommt es in mehr als der Hälfte aller Fälle nach dem Absetzen der Behandlung 15 zu einer erneuten Virämie.
- Aufgrund der hohen Prävalenz, gerade auch in den Industrieländern, den schwerwiegenden Folgen chronischer Infektionen und dem Fehlen einer Kausaltherapie ist die Entwicklung einer HCV-spezifischen Chemotherapie ein wesentliches Ziel der pharmazeutischen Forschung und Entwicklung. Hauptproblem hierbei ist bisher das Fehlen eines geeigneten Zellkultursystems, das ein Studium der Virus-Replikation und der Pathogenese in eukaryontischen Zellen ermöglicht.
- [0003] Aufgrund der geringen Virusmengen im Blut bzw. Gewebe, dem Fehlen geeigneter Zellkultursysteme oder Tiermodelle (bis heute ist der Schimpanse das einzige mögliche Versuchstier) sowie dem Fehlen effizienter Systeme zur Produktion virus-ähnlicher Partikel, konnte die molekulare Zusammensetzung des HCV-Partikels bis heute noch nicht eingehend untersucht bzw. aufgedeckt werden. Die derzeit vorliegenden Ergebnisse lassen sich wie folgt zusammenfassen: Das HCV ist ein umhülltes Plusstrang RNA Virus mit einem Partikeldurchmesser von 50-60 nm und einer mittleren Dichte von 1,03-1,1g/ml. Es wurde erstmals 1989 molekular kloniert und charakterisiert (Choo et al., 1989: Science, 244, 359-362). Die HCV-RNA hat eine Länge von ca. 9.6 kb (= 9600 Nukleotide), eine positive Polarität und besitzt ein einziges offenes Leseraster (ORF = open reading frame), das ein lineares Polyprotein von ca 3010 Aminosäuren kodiert (siehe Rice 1996, in Virology, B. N. Fields, D. M. Knipe, P. M. Howley, Eds. (Lippincott-Raven, Philadelphia, PA, 1996), vol. 1, pp.931-960; Clarke 1997, J. Gen. Virol. 78, 2397; und Bartenschlager 1997, Intervirology 40, 378 und vgl. Fig. 1 A). Bei der Virusreplikation wird das Polyprotein durch zelluläre und virale Proteasen in die reifen 20 und funktionell aktiven Proteine gespalten.
- Innerhalb des Polyproteins sind die Proteine wie folgt angeordnet (vom Amino- zum Carboxyterminus): Core-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B. Das Core-Protein ist die Hauptkomponente des Nukleokapsids. Die Glykoproteine E1 und E2 sind Transmembranproteine und Hauptkomponenten der Virushülle. Sie spielen wahrscheinlich bei der Anheftung des Virus an die Wirtszelle eine wesentliche Rolle. Diese drei Proteine Core, E1 und E2 bauen den Viruspartikel auf und werden deshalb als Strukturproteine bezeichnet. Die Funktion des Proteins p7 ist noch unklar. Das Protein NS2 ist wahrscheinlich die katalytische Domäne der NS2-3 Protease, die für die Prozesierung zwischen den Proteinen NS2 und NS3 verantwortlich ist. Das Protein NS3 hat zwei Funktionen, nämlich in der aminoterminalen 25 Domäne eine Proteaseaktivität, die für die Polyproteinprozessierung essentiell ist, und in der carboxyterminalen Domäne eine NTPase/Helikase-Funktion, die wahrscheinlich bei der Replikation der viralen RNA eine Rolle spielt. Das Protein NS4A ist ein Kofaktor der NS3-Protease. Die Funktion des Proteins NS4B ist unbekannt.
- [0004] Das offene Leseraster ist an seinem 5' Ende von einer ca 340 Nukleotide langen nicht-translatierten Region (NTR = non-translated region) flankiert, die als interne Ribosomenansatzstelle (IRES = internal ribosome entry site) fungiert, und an seinem 3' Ende von einer ca. 230 Nukleotide langen NTR, die höchstwahrscheinlich für die Genomreplikation von Bedeutung ist. Eine solche 3' NTR ist Gegenstand der Patentanmeldung PCT/US 96/14033. Die Strukturproteine in dem amino-terminalen Viertel des Polyproteins werden von der Signalpeptidase der Wirtszelle gespalten. Die Nicht-Strukturproteine (NS) 2 bis (NS) 5B werden von zwei viralen Enzymen prozessiert, nämlich von der NS2-3 und der NS3/4A Proteinase. Die NS3/4A Proteinase wird für alle Spaltungen jenseits des Carboxyterminus von NS3 benötigt. Die Rolle von NS4B ist nicht bekannt. NS5A, ein hoch phosphoryliertes Protein, scheint für die Interferon Resistenz verschiedener HCV-Genotypen verantwortlich zu sein (vgl. Enomoto et al. 1995, J. Clin. Invest. 96, 224; Enomoto et al. 1996, N. Engl. J. Med. 334, 77; Gale Jr. et al. 1997, Virology 230, 217; Kaneko et al. 1994, Biochem. Biophys. Res. Commun. 205, 320; Reed et al., 1997, J. Virol. 71, 7187) und NS5B wurde als die RNA-abhängige RNA-Polymerase identifiziert.
- [0005] Anhand dieser Erkenntnisse wurden erste Diagnosesysteme entwickelt, die entweder auf dem Nachweis von HCV-spezifischen Antikörpern in Patientenserum oder auf dem Nachweis von HCV-spezifischer RNA mittels RT-PCR (= Reverse Transcription Polymerase Chain Reaction) beruhen, und die mittlerweile routine- und/oder vorschriftsmäßig bei allen Blutkonserven angewendet werden (müssen).

- [0006] Seit der Erstbeschreibung des Genoms 1989 wurden mit Hilfe der PCR-Methode zahlreiche Teil- und Komplettsequenzen des HCV kloniert und charakterisiert. Ein Vergleich dieser Sequenzen zeigt eine hohe Variabilität des viralen Genoms, insbesondere im Bereich des NS5B-Gens, was letztendlich zu einer Einteilung in 6 Genotypen geführt hat, die selbst nochmals in Subtypen a, b, und c untergliedert sind. Die genomische Varianz ist nicht gleichmäßig über das Genom verteilt. So sind die 5'NTR und Teile der 3'NTR hoch konserviert, während bestimmte kodierende Sequenzen z.T. sehr stark variieren, vor allem die Hüllproteine E1 und E2.
- [0007] Die klonierten und charakterisierten Teil- und Komplettsequenzen des HCV-Genoms wurden außerdem hinsichtlich geeigneter Angriffsziele für ein prospektives antivirales Therapeutikum untersucht. Dabei wurden drei virale Enzyme gefunden, die sich als solches Angriffsziel anbieten. Diese sind (1) der NS3/4A Proteasekomplex, (2) die NS3 Helikase und (3) die NS5B RNA-abhängige RNA Polymerase. Der NS3/4A Proteasekomplex und die NS3 Helikase konnten bereits kristallisiert und hinsichtlich ihrer dreidimensionalen Struktur aufgeklärt werden (Kim et al., 1996, *Cell*, 87, 343; Yem et al., 1998, *Protein Science*, 7, 837; Love et al., 1996, *Cell*, 87, 311; Kim et al., 1998, *Structure*, 6, 89; Yao et al., 1997, *Nature Structural Biology*, 4, 463; Cho et al., 1998, *J. Biol. Chem.*, 273, 15045); bei der NS5B RNA-abhängigen RNA Polymerase ist dies bis heute noch nicht gelungen.
- [0008] Obwohl mit diesen Enzymen bedeutsame Angriffsziele für eine Therapieentwicklung der chronischen HCV-Infektion definiert sind, und obwohl sowohl mit Hilfe von 'rational drug design' als auch mit Hilfe von 'high throughput screens' weltweit intensiv nach geeigneten Inhibitoren gesucht wird, leidet die Therapieentwicklung an einem großen Defizit, nämlich dem Fehlen von Zellkultursystemen oder einfachen Tiermodellen, die es erlauben, HCV-RNA oder HCV-Antigene direkt, zuverlässig und mit einfachen laborüblichen Methoden nachzuweisen. Das Fehlen solcher Zellkultursysteme ist auch der Hauptgrund dafür, daß das Verständnis der HCV-Replikation bis heute noch sehr lückenhaft und in weiten Teilen nur hypothetisch ist.
- [0009] Obwohl nach Meinung der Fachwelt eine enge evolutionäre Beziehung zwischen HCV und den Flavi- und Pestiviren besteht und für diese autonom replizierende RNAs beschrieben sind, die in verschiedenen Zelllinien ohne weiteres zur Replikation gebracht werden können und dabei relativ hohe Ausbeuten zeigen (siehe Khromykh et al., 1997, *J. Virol.* 71, 1497; Behrens et al., 1998, *J. Virol.* 72, 2364; Moser et al., 1998, *J. Virol.* 72, 5318), waren ähnliche Versuche mit HCV bisher nicht erfolgreich.
- [0010] Zwar ist aus verschiedenen Publikationen bekannt, daß Zelllinien oder primäre Zellkulturen mit HCV-haltigem, hochtitrigem Patientenserum infiziert werden können, (Lanford et al. 1994, *Virology* 202, 606; Shimizu et al. 1993, *Proceedings of the National Academy of Sciences*, USA, 90, 6037-6041; Mizutani et al. 1996, *Journal of Virology*, 70, 7219-7223; M. Ikeda et al. 1998, *Virus Res.* 56, 157; Fournier et al. 1998, *J. Gen. Virol.* 79, 2376 und darin zitierte Literaturstellen, Ito et al. 1996, *Journal of General Virology*, 77, 1043-1054), diese virusinfizierten Zelllinien oder Zellkulturen erlauben jedoch nicht den direkten Nachweis von HCV-RNA oder HCV-Antigenen. Die virale RNA in diesen Zellen ist weder in einem Nothern-Blot (einem Standardverfahren zum quantitativen Nachweis von RNA) noch sind die viralen Proteine in einem Western-Blot oder mittels Immunpräzipitation detektierbar. Nur mit sehr aufwendigen und indirekten Methoden ist es überhaupt gelungen, eine HCV-Replikation nachzuweisen. Diese nachteiligen Umstände zeigen klar, daß die Replikation in diesen bekannten virusinfizierten Zelllinien oder Zellkulturen absolut unzureichend ist.
- [0011] Des Weiteren ist aus den Publikationen von Yoo et al. (1995, *Journal of Virology*, 69, 32-38) und von Dash et al., (1997, *American Journal of Pathology*, 151, 363-373) bekannt, daß Hepatomazelllinien mit synthetischer HCV-RNA, die mittels *in vitro* Transkription von kloniertem HCV-Genom gewonnen wurde, transfiziert werden können. In beiden Publikationen gingen die Autoren von dem Grundgedanken aus, daß das virale HCV-Genom eine Plusstrang-RNA ist, die nach dem Einschleusen in die Zelle direkt als mRNA fungiert, an die sich Ribosomen anheften und im Zuge von Translationsprozessen Virusproteine bilden, aus denen sich letztendlich neue HCV-Partikel bilden (können). Diese Virusreplikation, d.h. diese neu gebildeten HCV-Viren bzw. deren RNA wurde mittels RT-PCR nachgewiesen. Die publizierten Ergebnisse der durchgeföhrten RT-PCR sprechen jedoch dafür, daß die Effizienz der HCV-Replikation in den beschriebenen HCV-transfizierten Hepatomazellen nur sehr gering ist und jedenfalls nicht ausreicht, um Schwankungen in der Replikationsrate nach gezielter Einwirkung mit prospektiven antiviralen Therapeutika auch nur qualitativ, geschweige denn quantitativ zu messen. Außerdem ist im Stand der Technik mittlerweile bekannt (Yanagi et al., Proc. Natl. Acad. Sci. USA, 96, 2291-95, 1999), daß die hochkonservierte 3' NTR essentiell ist für die Virusreplikation, was in klarem Widerspruch zu den Behauptungen von Yoo et al. und Dash et al. steht, die für ihre Versuche in Unkenntnis des authentischen 3' Endes des HCV-Genoms ausschließlich HCV-Genome mit verkürzten 3' NTRs verwendet haben.
- [0012] Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines HCV- Zellkultursystems, bei dem die virale RNA in den transfizierten Zellen autonom und mit so hoher Effizienz repliziert, daß Schwankungen in der Replikationsrate nach gezielter Einwirkung mit virus- und insbesondere HCV-spezifischen prospektiven antiviralen Therapeutika qualitativ und quantitativ und mit Hilfe gängiger, laborüblicher Meßverfahren gemessen werden können.
- [0013] Eine Lösung dieser Aufgabe besteht in der Bereitstellung eines Zellkultursystems der eingangs genannten Art, bei dem die eukaryontischen Zellen humane Zellen, insbesondere Hepatomazellen sind, die vorzugsweise von einer handelsüblichen Hepatomazelllinie abstammen, aber auch aus einer entsprechenden Primärzellkultur gewonnen sein können, und bei dem das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt ist, das im

EP 1 043 399 A2

wesentlichen die HCV-spezifischen RNA-Abschnitte 5' NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3' NTR, vorzugsweise in der genannten Reihenfolge, und zudem wenigstens ein selektierbares Markergen (Selektionsgen) umfaßt. "NTR" steht hier und im folgenden für "nicht-translatierte Region" und ist dem einschlägigen Fachmann als Begriff bzw. Abkürzung bekannt und geläufig. Der Begriff "HCV-RNA-Konstrukt" umfaßt hier und im folgenden sowohl Konstrukte, die das komplette HCV-Genom enthalten, als auch solche, die lediglich einen Teil davon, d.h. ein HCV-Subgenom enthalten.

Eine bevorzugte Variante des erfindungsgemäßen Zellkultursystems, die sich in der Praxis sehr gut bewährt hat, ist unter der Nummer DSM ACC2394 (Laborbezeichnung HuBl 9-13) bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH in Braunschweig, Deutschland, hinterlegt.

[0013] Mit dem erfindungsgemäßen Zellkultursystem wird erstmals ein in-vitro-System bereit gestellt, in dem HCV-RNA intrazellulär, autonom und in ausreichend großen Mengen repliziert und exprimiert wird, so daß eine quantitative Bestimmung sowohl der HCV-RNA-Mengen als auch der HCV-spezifischen Proteine mit konventionellen und zuverlässig genauen biochemischen Meßmethoden durchgeführt werden kann. Das heißt: es steht erstmals ein annähernd authentisches zellgestütztes ("cell-based") HCV-Replikationssystem zur Verfügung, das für die Entwicklung und Erprobung von antiviralen Pharmazeutika dringend benötigt wird. Dieses Testsystem bietet nun die Möglichkeit, potentielle Angriffsziele für eine wirksame HCV-spezifische Therapie zu identifizieren und HCV-spezifische Chemotherapeutika zu entwickeln und zu evaluieren.

[0014] Die Erfindung basiert auf der überraschenden Erkenntnis, daß eine effiziente Replikation der HCV-RNA nur dann in Zellen stattfindet, wenn diese mit einem HCV-RNA-Konstrukt transfiziert wurden, das mindestens die 5' und die 3' nicht-translatierten Regionen (NTR) und die Nichtstrukturproteine (NS) 3 bis 5B umfaßt und zusätzlich ein selektierbares Markergen (Selektionsgen) aufweist. Offensichtlich sind die Strukturgene für den Ablauf der Replikation ohne wesentliche Bedeutung, während andererseits eine effiziente Replikation der HCV-RNA anscheinend nur dann stattfindet, wenn die transfizierten Zellen einem permanenten Selektionsdruck unterzogen werden, der durch das mit der HCV-RNA verbundene selektierbare Markergen (Selektionsgen) vermittelt wird. Das Markergen (Selektionsgen) scheint somit einerseits die Selektion derjenigen Zellen zu provozieren, in denen die HCV-RNA produktiv repliziert, und andererseits scheint es die Effizienz der RNA-Replikation wesentlich zu steigern.

[0015] Gegenstand der Erfindung ist auch ein zellfreies HCV-RNA-Konstrukt, das sich dadurch auszeichnet, daß es die HCV-spezifischen RNA-Abschnitte 5' NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3' NTR, vorzugsweise in der genannten Reihenfolge, und zudem ein selektierbares Markergen (Selektionsgen) umfaßt.

[0016] Der Begriff 5' NTR bzw. NS3 bzw. NS4A bzw. NS4B bzw. NS5A bzw. NS5B bzw. 3' NTR umfaßt im vorliegenden Zusammenhang jede Nukleotidsequenz, die im Stand der Technik als Nukleotidsequenz für den jeweils betreffenden funktionellen Abschnitt des HCV-Genoms beschrieben ist.

[0017] Die Bereitstellung eines solchen HCV-RNA-Konstrukts ermöglicht erstmals eine detaillierte Analyse der HCV - Replikation, - Pathogenese und - Evolution in Zellkulturen. Die HCV-spezifische virale RNA kann - als vollständiges Genom oder als Subgenom - gezielt in beliebigen Mengen erzeugt werden, und es besteht die Möglichkeit, das RNA-Konstrukt zu manipulieren und damit die HCV-Funktionen auf genetischer Ebene zu untersuchen und aufzuklären.

[0018] Da alle zur Zeit als Hauptangriffsziel für eine Therapie untersuchten HCV-Enzyme, nämlich die NS3/4A Protease, die NS3 Helikase und die NS5B Polymerase, in dem erfindungsgemäßen HCV-RNA-Konstrukt enthalten sind, kann es für alle entsprechenden Untersuchungen benutzt werden.

[0019] Eine Ausführungsform des HCV-RNA-Konstrukts, die sich in der praktischen Anwendung sehr gut bewährt hat, zeichnet sich dadurch aus, daß sie die Nukleotidsequenz gemäß Sequenzprotokoll SEQ ID NO:1 umfaßt. Weitere Ausführungsvarianten mit vergleichbar guten Eigenschaften für den Einsatz in der Praxis sind dadurch gekennzeichnet, daß sie eine Nukleotidsequenz entweder gemäß Sequenzprotokoll SEQ ID NO:2 oder SEQ ID NO:3 oder SEQ ID NO:4 oder SEQ ID NO:5 oder SEQ ID NO:6 oder SEQ ID NO:7 oder SEQ ID NO:8 oder SEQ ID NO:9 oder SEQ ID NO:10 oder SEQ ID NO:11 umfassen.

[0020] Es besteht die Möglichkeit, das erfindungsgemäße HCV-Subgenom-Konstrukt mit einer 3' NTR zu versehen, die eine im Stand der Technik hierfür bisher unbekannte Nukleotidsequenz aufweist, nämlich eine Nukleotidsequenz, die aus der Gruppe der nachfolgend aufgelisteten Nukleotidsequenzen (a) bis (i) ausgewählt ist:

50

55

5 (a) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTTTTA
GCTTTTTTTTTCTTTTTTGAGAGAGAGTCTCACTCTGTTGCC
AGACTGGAGT

10 (b) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTC TTTTTTTGA GAGAGAGAGT CTCACTCTGT
GCCAGACT GGAGC

15 (c) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTAATCTT TTTTTTTCT TTTTTTTGA GAGAGAGAGT CTCACTCTGT
GCCAGACT GCAGC

20 (d) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTTAGTC TTTTTTTTT TCTTTTTTT TGAGAGAGAG AGTCTCACTC
TGTTGCCAG ACTGGAGT

25 (e) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTT TCTTTTTTT TGAGAGAGAG AGTCTCACTC
TGTTGCCAG ACTGGAGT

30 (f) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTT TCTTTTTTT TTGAGAGAGA GAGTCTCACT
CTGTTGCCCA GACTGGAGT

35 (g) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTT CTTTTTTTT GAGAGAGAGA
GTCTCACTCT GTGCCAGA CTGGAGT

40 (h) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTTTAAT CTTTTTTTT TTTTCCTTT TTTGAGAGA
GAGAGTCTCA CTCTGTTGCC CAGACTGGAG T

45 (i) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTTTAATC TTTTTTTTT TTTCTTTTT TTTTGAGAG
AGAGAGTCTC ACTCTGTTGC CCAGACTGGAG GT

Das in den erfindungsgemäßen HCV-RNA-Konstrukten enthaltene selektierbare Markergen (Selektionsgen) ist vor-
50 zugsweise ein Resistenzgen, insbesondere eine Antibiotikumresistenzgen.

Das hat den Vorteil, daß die mit diesem Konstrukt transfizierten Zellen leicht von den nicht transfizierten Zellen selek-
tiert werden können, indem dem Zellkulturmedium z.B. im Fall eines Antibiotikumresistenzgens das betreffende Anti-
biotikum zugegeben wird. Unter 'Antibiotikum' wird im vorliegenden Zusammenhang jede Substanz verstanden, die die
nicht-transfizierten Wirtszellen oder die Zellen, in denen die HCV-RNA nur mit geringer Effizienz repliziert, am Leben
oder Wachstum hindert, insbesondere Zellgifte wie z.B. Puromycin, Hygromycin, Zeocin, Bleomycin oder Blasticidin.

55 [0021] Ein bevorzugtes selektierbares Markergen (Selektionsgen) bzw. Resistenzgen, das sich in der Praxis sehr
gut bewährt hat, ist das Neomycinphosphotransferasegen.

[0022] Eine Alternative zu den Antibiotikumresistenzgenen ist z.B. das Thymidin-Kinase-Gen, mit dem eine HAT-

Selektion durchgeführt werden kann.

[0023] Die Position des selektierbaren Markergens (Selektionsgens), bzw. des bevorzugten Resistenzgens bzw. des besonders bevorzugten Antibiotikumresistenzgens in dem HCV-RNA-Konstrukt liegt vorzugsweise hinter der HCV 5' NTR, d.h. strangabwärts der 5' NTR bzw. strangaußwärts des HCV-Leserasters. Denkbar ist aber auch eine Insertion im Bereich der 3' NTR oder an anderer Stelle des HCV-Genoms oder -Subgenoms, z.B. innerhalb des Polyproteins.

[0024] Bei einer alternativen Ausführungsform des erfindungsgemäßen HCV-RNA-Konstrukts ist das selektierbare Markergen (Selektionsgen), insbesondere ein Antibiotikumresistenzgen, über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA bzw. der HCV-Genom- oder -Subgenomsequenz verbunden.

[0025] Damit geht der Vorteil einher, daß nach erfolgter Selektion derjenigen Zellen, in denen die HCV-RNA produktiv repliziert, in den daraus gewonnenen Zellklonen das Resistenzgen durch ribozymvermittelte Spaltung von der HCV-Subgenomsequenz abgetrennt werden kann, nämlich durch Aktivierung des einklonierten Ribozyms oder, im Fall eines Konstrukts mit einer Erkennungsstelle für ein Ribozym, durch Einschleusen des Ribozysms in die Zellen (z.B. mittels Transfektion eines Ribozymkonstrukts oder Infektion mit einem viralen Expressionsvektor, in den das entsprechende Ribozym eingesetzt wurde). Auf diese Weise wird ein authentisches HCV-Genom-Konstrukt ohne Resistenzgen erhalten, das zur Bildung authentischer infektiöser Viruspartikel befähigt ist.

[0026] Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen HCV-RNA-Konstrukts zeichnet sich dadurch aus, daß das Konstrukt wenigstens ein integriertes Reportergen aufweist.

[0027] Unter Reportergen wird im folgenden jedes Gen verstanden, dessen Anwesenheit sich nach Überführung in einen Zielorganismus leicht und im allgemeinen mit einfachen biochemischen oder auch histochemischen Methoden nachweisen läßt, d.h. das für ein Protein kodiert, welches auch in geringen Mengen einfach und zuverlässig mit den laborüblichen Meßmethoden nachgewiesen und quantifiziert werden kann.

[0028] Diese Variante des HCV-RNA-Konstrukts hat den Vorteil, daß der Umfang der Replikation dieses Konstrukts anhand des Reportergenprodukts einfach und schnell mit laborüblichen Methoden gemessen werden kann.

[0029] Das Reportergen ist vorzugsweise ein Gen aus der Gruppe der Luziferasengene, dem CAT-Gen (Chloramphenicol-Acetyl-Transferase-Gen), dem lacZ-Gen (beta-Galaktosidasegen), dem GFP-Gen (green-fluorescence-protein-Gen), dem GUS-Gen (Glukuronidasegen) oder dem SEAP-Gen. (Sezernierte-Alkalische-Phosphatase-Gen). Diese Reportergene bzw. deren Produkte, nämlich die entsprechenden Reporterproteine, können z.B. mittels Fluoreszenz, Chemilumineszenz, colorimetrisch oder mit Hilfe immunologischer Methoden (z.B. ELISA) bestimmt werden.

[0030] Als Reportergen kommt aber auch ein Surrogatmarkergen in Betracht. Darunter sind in diesem Zusammenhang solche Gene zu verstehen, die für zelluläre Proteine, Nukleinsäuren oder — allgemein — für solche Funktionen kodieren, die einer von der Virusreplikation abhängigen Variation unterliegen, und die infolgedessen in denjenigen Zellen, in denen sich das HCV bzw. das HCV-RNA-Konstrukt vermehrt, entweder reprimiert oder aktiviert werden. Das heißt: die Reduktion bzw. Aktivierung dieser Funktion ist ein Ersatzmarker für die Virusreplikation bzw. die Replikation des HCV-RNA-Konstrukts.

[0031] Die Positionen von Reportergen und selektierbarem Markergen (Selektionsgen) können so gewählt sein, daß ein aus den beiden Genprodukten gebildetes Fusionsprotein exprimiert wird. Hierbei besteht die vorteilhafte Möglichkeit, daß diese beiden Gene so in dem HCV-RNA-Konstrukt angeordnet sind, daß ihre beiden exprimierten Proteine zunächst über eine Schnittstelle für eine Protease (z.B. Ubiquitin) oder über ein selbstspaltendes Peptid (z.B. das 2A-Protein der Picornaviren) fusioniert sind und erst später proteolytisch wieder getrennt werden.

Ebensogut können diese beiden Positionen aber auch derart getrennt voneinander liegen, daß beide Genprodukte separat exprimiert werden. (z.B. in der Reihenfolge: Marker- bzw. Resistenzgen — interne Ribosomenbindungsstelle — Reportergen).

Im Fall des Reportergens hat sich eine Ausführungsvariante besonders bewährt, bei der das Reportergen in das offene Leseraster des HCV-Genoms oder -Subgenoms einkloniert ist, und zwar derart, daß es erst nach einer proteolytischen Prozessierung in eine aktive Form überführt wird.

[0032] Das erfindungsgemäße Zellkultursystem in allen seinen Variationen kann für vielfältige Zwecke eingesetzt werden. Diese umfassen:

- Das Auffinden antiviral wirksamer Substanzen. Dies können beispielsweise sein: organische Verbindungen, die unmittelbar oder mittelbar in die Virusvermehrung eingreifen (z.B. Inhibitoren der viralen Proteasen, der NS3-Helikase, der NS5B RNA-abhängigen RNA Polymerase), antisense Oligonukleotide, die an eine beliebige Zielsequenz innerhalb des HCV-RNA-Konstrukts (z.B. die 5' NTR) hybridisieren und unmittelbar oder mittelbar zu einer Beeinflussung der Virusvermehrung führen z.B. auf Grund einer Reduktion der Translation des HCV-Polyproteins oder Ribozyme, die eine beliebige HCV-RNA-Sequenz spalten und damit die Virusreplikation beeinträchtigen.
- Die Evaluierung jeglicher Art antiviral wirksamer Substanzen in Zellkultur. Solche Substanzen können beispielsweise mittels 'rational drug design' oder 'high-throughput screening' am isolierten gereinigten Enzym gefunden werden. Unter Evaluierung sind vor allem die Bestimmung der inhibitorischen Eigenschaften der entsprechenden Substanz sowie deren Wirkungsmechanismus zu verstehen.

EP 1 043 399 A2

- Die Identifikation neuer Angriffsziele, viralen oder zellulären Ursprungs, für eine HCV-spezifische antivirale Therapie. Ist beispielsweise ein zelluläres Protein essentiell für die Virusreplikation, kann mittels Hemmung dieses zellulären Proteins die Virusreplikation ebenfalls beeinflußt werden. Das Auffinden solcher auxiliären Faktoren ist mit dem erfindungsgemäßen System ebenfalls möglich.
- 5 • Der Einsatz für die Resistenzbestimmung. Es ist anzunehmen, daß auf Grund der hohen Mutationsrate des HCV-Genoms Therapieresistenzen auftreten. Solche Resistenzen, die gerade bei der klinischen Zulassung einer Substanz von großer Bedeutung sind, lassen sich mit dem erfindungsgemäßen Zellkultursystem ermitteln. Zelllinien in denen sich das HCV-RNA-Konstrukt bzw. das HCV-Genom oder - Subgenom repliziert, werden mit steigenden Konzentrationen der entsprechenden Substanz inkubiert und die Replikation der viralen RNA wird entweder anhand eines eingebrachten Reporters oder durch qualitative oder quantitative Bestimmung der viralen Nukleinäsuren oder Proteine bestimmt. Resistenz ist dann gegeben, wenn bei normaler Wirkstoffkonzentration keine Hemmung der Replikation zu beobachten ist. Durch Rekonstruktion der HCV-RNA (z.B. mittels RT-PCR) und Sequenzanalyse können die für Therapieresistenz verantwortlichen Nukleotid- bzw. Aminosäureaustausche ermittelt werden. Durch Einklonieren der/des entsprechenden Austausche/s in das Ursprungskonstrukt kann deren Kausalität für die Therapieresistenz bewiesen werden.
- 10 • Die Produktion von authentischen Virusproteinen (Antigene) für die Entwicklung und/oder Evaluierung von Diagnostika. Das erfindungsgemäße Zellkultursystem erlaubt auch die Expression von HCV-Antigenen in Zellkulturen. Diese Antigene können prinzipiell auch für den Aufbau diagnostischer Nachweisverfahren eingesetzt werden.
- 15 • Die Produktion von HCV Viren und virus-ähnlichen Partikeln insbesondere zur Entwicklung oder Herstellung von Therapeutika und Impfstoffen sowie für diagnostische Zwecke. Insbesondere zellkultur-adaptierte vollständige HCV-Genome, die mit dem erfindungsgemäßen Zellkultursystem hergestellt werden können, sind in der Lage, mit hoher Effizienz in Zellkulturen zu replizieren. Diese Genome besitzen alle Funktionen des HCV und sind deshalb in der Lage infektiöse Viren zu produzieren.

25 [0033] Das erfindungsgemäße HCV-RNA-Konstrukt für sich genommen kann in allen seinen Variationen ebenfalls für vielfältige Zwecke eingesetzt werden. Dazu gehören vor allem:

- Die Konstruktion attenuierter Hepatitis C Viren bzw. HCV-ähnlicher Partikel und deren Produktion in Zellkulturen: Durch zufällige oder gezielt hervorgerufene Mutationen, beispielsweise Punktmutationen, Deletionen oder Insertionen, können attenuierte HCV- oder HCV-ähnliche Partikel erzeugt werden, d.h. Viren bzw. virusähnliche Partikel mit voller Replikationskompetenz aber verringelter bzw. fehlender Pathogenität. Solche attenuierte HCV- oder HCV-ähnliche Partikel sind insbesondere als Impfstoff einsetzbar.
- 30 • Die Konstruktion von HCV-RNA-Konstrukten mit integrierten Fremdgenen, beispielsweise zur Verwendung als leberzellspezifische Genföhren in der Gentherapie. Auf Grund des ausgeprägten Leberzell tropismus des HCV und der Möglichkeit, Teile des Genoms durch heterologe Sequenzen zu ersetzen, lassen sich HCV-RNA-Konstrukte herstellen, bei denen beispielsweise die Strukturproteine durch ein therapeutisch wirksames Gen ersetzt werden. Das so erhaltene HCV-RNA-Konstrukt wird in Zellen eingeschleust, vorzugsweise mittels Transfektion, die die fehlenden HCV-Funktionen, beispielsweise die Strukturproteine, konstitutiv oder induzierbar exprimieren. Durch diese dem Fachmann unter dem Begriff der 'Transkomplementation' bekannte Technik lassen sich Viruspartikel erzeugen, in die das HCV-RNA-Konstrukt eingebaut wird. Die so erhaltenen Partikel können für die Infektion vorzugsweise von Leberzellen verwendet werden. In diesen wird das therapeutisch wirksame Fremdgen zur Expression gebracht und entfaltet damit seine therapeutische Wirkung.
- 35 • Das Auffinden permissiver Zellen, d.h. Zellen, in denen eine produktive Virusvermehrung erfolgt. Zu diesem Zweck wird entweder eines der vorgenannten HCV-RNA-Genomkonstrukte verwendet, das zur Bildung kompletter infektiöser Viren befähigt ist, oder es wird eines der vorgenannten HCV-Subgenom-Konstrukte eingesetzt, das allerdings zunächst gemäß vorgenanntem Beispiel in einer Zelllinie transfiziert wird, die die fehlenden Funktionen konstitutiv oder induzierbar exprimiert. In all diesen Fällen entstehen Viruspartikel, die zusätzlich zur HCV-Sequenz ein Resistenz- und/oder Reportergen tragen. Zum Auffinden von Zellen, in denen das HCV replizieren kann, werden diese Zellen mit den so hergestellten Viren infiziert und einer Antibiotikumselektion unterzogen oder, in Abhängigkeit vom HCV-RNA-Konstrukt, mittels Nachweis der Expression des Reportergens untersucht. Da eine Antibiotikumresistenz bzw. eine Expression des Reportergens nur dann nachweisbar ist, wenn das HCV-RNA-Konstrukt repliziert, müssen die so gefundenen Zellen permissiv sein. Auf diese Weise lassen sich nahezu beliebige Zelllinien oder primäre Zellkulturen hinsichtlich der Permissivität testen und auffinden.

55 [0034] Das erfindungsgemäße Zellkultursystem erlaubt auch das gezielte Auffinden von HCV-RNA-Konstrukten, bei denen es auf Grund von Mutationen, die sich entweder zufällig im Rahmen der HCV-RNA-Replikation ereignen oder die gezielt in das Konstrukt eingeführt werden, zu einer Steigerung der Replikationseffizienz kommt. Solche Mutationen, die zu einer Veränderung der Replikation des HCV-RNA-Konstrukt führen, sind dem Fachmann als adaptive

Mutationen bekannt. Die Erforschung umfaßt deshalb auch Verfahren zur Gewinnung von zellkultur-adaptierten Mutanten eines erfindungsgemäßen HCV-RNA-Konstrukts gemäß vorstehender Beschreibung, wobei die Mutanten gegenüber dem originären HCV-RNA-Konstrukt eine erhöhte Replikationseffizienz aufweisen. Sie umfaßt des Weiteren ein Verfahren zur Herstellung von Mutanten eines HCV-RNA-Vollängengenoms oder eines HCV-RNA-Teilgenoms oder eines beliebigen HCV-RNA-Konstrukts mit im Vergleich zu dem ursprünglichen HCV-RNA-Vollängengenom oder -Teilgenom oder HCV-RNA-Konstrukt erhöhter Replikationseffizienz, sowie zellkultur-adaptierte Mutanten von HCV-RNA-Konstrukten, HCV-Vollängengenomen und HCV-Teilgenomen mit im Vergleich zu den ursprünglichen Konstrukten, Teil- oder Vollängengenomen erhöhter Replikationseffizienz.

[0035] Das erfindungsgemäße Verfahren zur Gewinnung von zellkultur-adaptierten Mutanten eines erfindungsgemäßen HCV-RNA-Konstrukts, wobei die Mutanten gegenüber dem HCV-RNA-Konstrukt eine erhöhte Replikationseffizienz aufweisen, ist dadurch gekennzeichnet, daß man ein Zellkultursystem gemäß Anspruch 1, bei dem das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt mit Selektionsgen nach einem der Ansprüche 4 bis 19 ist, auf/in dem dem Selektionsgen entsprechenden Selektionsmedium kultiviert, daß man die gewachsenen Zellklone erntet, und daß man aus diesen Zellklonen die HCV-RNA-Konstrukte isoliert.

[0036] Bei einer vorteilhaften Weiterbildung dieses Herstellungsverfahrens werden die isolierten HCV-RNA-Konstrukte wenigstens einmal erneut passagiert, nämlich in Zellen eines Zellkultursystems nach Anspruch 1 eingeschleust, das dabei erhaltenes Zellkultursystem gemäß Anspruch 1, bei dem das eingeschleuste HCV-spezifische Genmaterial das isolierte HCV-RNA-Konstrukt mit Selektionsgen ist, auf/in dem dem Selektionsgen entsprechenden Selektionsmedium kultiviert, die gewachsenen Zellklone geerntet und daraus die HCV-RNA-Konstrukte isoliert.

20 Mit dieser Verfahrensvariante kann der Grad der adaptiven Mutationen und damit der Grad der Replikationseffizienz in den betreffenden HCV-RNA-Konstrukten noch gesteigert werden.

[0037] Das erfindungsgemäße Verfahren zur Herstellung von Mutanten eines HCV - Vollängengenoms oder eines HCV-Teilgenoms oder eines beliebigen HCV-RNA-Konstrukts mit im Vergleich zu dem ursprünglichen HCV- Vollängengenom oder -Teilgenom oder HCV-RNA-Konstrukt erhöhter Replikationseffizienz zeichnet sich dadurch aus, daß man mit Hilfe eines der beiden vorstehend genannten Herstellungsverfahren eine zellkultur-adaptierte Mutante eines HCV-RNA-Konstrukts herstellt, diese aus den Zellen isoliert, mit im Stand der Technik bekannten Methoden kloniert und sequenziert und durch Vergleich mit der Nukleotid- und Aminosäuresequenz des ursprünglichen HCV-RNA-Konstrukts die Art, Anzahl und Positionen der Mutationen bestimmt, und diese Mutationen dann entweder durch gezielte Mutagenese oder durch Austausch von Sequenzabschnitten, welche die betreffenden Mutationen enthalten, in ein (isoliertes) HCV-Vollängen- oder -teilgenom oder ein beliebiges HCV-RNA-Konstrukt einführt.

Zum Nachweis bzw. zur Verifizierung derjenigen Mutationen, die tatsächlich eine Veränderung der Replikation und insbesondere eine Replikationssteigerung bewirken, kann ein Test durchgeführt werden, bei dem die bestimmten Nukleotid- und/oder Aminosäureaustausche in das ursprüngliche HCV-RNA-Konstrukt eingeführt und dieses wiederum in Zellkultur eingeschleust wird. Wenn die eingeführte Mutation tatsächlich zu einer Steigerung der Replikation führt, sollte im Fall eines HCV-RNA-Konstrukts mit selektierbarem Marker gen die Zahl der resistenten Zellklone bei dem künstlich mutierten Konstrukt deutlich höher sein als bei dem unbehandelten Konstrukt. Im Fall eines Konstrukts mit einem Reportergen sollte die Aktivität bzw. Menge des Reporters bei dem künstlich mutierten Konstrukt deutlich höher sein als bei dem unbehandelten.

[0038] Die erfindungsgemäßen zellkultur-adaptierten HCV-RNA-Konstrukte mit hoher Replikationseffizienz sind dadurch gekennzeichnet, daß sie durch Nukleotid- und/oder Aminosäureaustausche von einem HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 19 ableitbar sind und daß sie mit einem der beiden vorstehend genannten Herstellungsverfahren erhältlich sind.

[0039] Diese zellkultur-adaptierten HCV-RNA-Konstrukte können dazu verwendet werden, beliebige HCV-RNA-Konstrukte oder HCV-Vollängen- oder Teilgenome mit erhöhter Replikationseffizienz herzustellen. Dabei können sowohl Konstrukte mit einem selektierbaren Resistenzgen als auch Konstrukte ohne ein solches bzw. mit einem nicht-selektierbaren Reportergen (z.B. Luziferase) hergestellt werden, denn aufgrund der sehr hohen Replikationseffizienz des zellkultur-adaptierten HCV-RNA-Konstrukts kann dessen Replikation auch in nicht-selektionierten Zellen nachgewiesen werden.

50 Die erfindungsgemäßen zellkultur-adaptierten Mutanten eines HCV-RNA-Konstrukts oder eines HCV-Vollängengenoms oder eines HCV-Teilgenoms mit im Vergleich zu dem ursprünglichen HCV-RNA-Konstrukt oder dem ursprünglichen HCV-Vollängengenom erhöhter Replikationseffizienz, sind dadurch charakterisiert, daß sie mit einem Verfahren erhältlich sind, bei dem man in einem zellkultur-adaptierten HCV-RNA-Konstrukt durch Sequenzanalyse und Sequenzvergleich die Art und Anzahl der Mutationen bestimmt und diese Mutationen in ein HCV-RNA-Konstrukt, insbesondere in ein HCV-RNA-Konstrukt gemäß einem der Ansprüche 4 bis 19, oder in ein (isoliertes) HCV-RNA-Vollängengenom einführt, entweder durch gezielte Mutagenese oder durch Austausch von Sequenzabschnitten, die die betreffenden Mutationen enthalten.

[0040] Eine Gruppe ganz bevorzugter HCV-RNA-Konstrukte, HCV-Vollängengenome und HCV-Teilgenome mit hoher und sehr hoher Replikationseffizienz und infolgedessen sehr guter Eignung für die praktische Anwendung ist

EP 1 043 399 A2

dadurch gekennzeichnet, daß sie einen oder mehrere oder alle der in Tabelle 3 aufgelisteten Aminosäure- bzw. Nukleotidaustausche und/oder einen oder mehrere der folgenden Aminosäureaustausche aufweist: 1283 arg -> gly , 1383 glu -> ala , 1577 lys -> arg , 1609 lys -> glu , 1936 pro -> ser , 2163 glu -> gly , 2330 lys -> glu , 2442 ile -> val. (Die Zahlen beziehen sich auf die Aminosäurepositionen des Polyproteins des HCV-Isolats con1, siehe Tabelle 1).

5

Besondere Eigenschaften der in den Sequenzprotokollen angegebenen Sequenzen:

SEQ ID-NO: 1

10 [0041]

Name: I389/Core-3'/wt

Aufbau (Nukleotidpositionen):

- 15 1. 1-341: HCV 5' nicht-translatierte Region
2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
- 20 4. 1813-10842: HCV Polyprotein von Core bis Nichtstrukturprotein 5B
5. 1813-2385: HCV Core Protein; Strukturprotein
6. 2386-2961: Hülprotein 1 (envelope protein 1); Strukturprotein
7. 2962-4050: Hülprotein 2 (envelope protein 2); Strukturprotein
8. 4051-4239: Protein p7
- 25 9. 4240-4890: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
10. 4891-6783: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
11. 6784-6945: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
12. 6946-7728: Nichtstrukturprotein 4B (NS4B)
13. 7729-9069: Nichtstrukturprotein 5A (NS5A)
- 30 14. 9070-10842: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
15. 10846-11076: HCV 3' nicht-translatierte Region

SEQ ID-NO: 2

35 [0042]

Name: I337/NS2-3'/wt

Aufbau (Nukleotidpositionen):

- 40 1. 1-341: HCV 5' nicht-translatierte Region
2. 342-1181: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
3. 1190-1800: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
- 45 4. 1801-8403: HCV Polyprotein von Nichtstrukturprotein 2 bis Nichtstrukturprotein 5B
5. 1801-2451: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
6. 2452-4344: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
7. 4345-4506: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
- 50 8. 4507-5289: Nichtstrukturprotein 4B (NS4B)
9. 5290-6630: Nichtstrukturprotein 5A (NS5A)
10. 6631-8403: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
11. 8407-8637: HCV 3' nicht-translatierte Region

55

EP 1 043 399 A2

SEQ ID-NO: 3

[0043]

- 5 Name: I389/NS3-3'/wt
Aufbau (Nukleotidpositionen):
1. 1-341: HCV 5' nicht-translatierte Region
 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
 - 10 3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 4. 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B
 - 15 5. 1813-3708: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 6. 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
 8. 4654-5994: Nichtstrukturprotein 5A (NS5A)
 9. 5995-7767: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
 10. 7771-8001: HCV 3' nicht-translatierte Region

20 **SEQ ID-NO: 4**

[0044]

- 25 Name: I337/NS3-3'/wt
Aufbau (Nukleotidpositionen):
1. 1-341: HCV 5' nicht-translatierte Region
 2. 342-1181: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
 - 30 3. 1190-1800: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 4. 1801-7758: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B
 - 35 5. 1801-3696: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 6. 3697-3858: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 7. 3859-4641: Nichtstrukturprotein 4B (NS4B)
 8. 4642-5982: Nichtstrukturprotein 5A (NS5A)
 9. 5983-7755: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
 10. 7759-7989: HCV 3' nicht-translatierte Region

40 **SEQ ID-NO: 5**

[0045]

- 45 Name: I389/NS2-3'/wt
Aufbau (Nukleotidpositionen):
1. 1-341: HCV 5' nicht-translatierte Region
 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
 - 50 3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 4. 1813-8418: HCV Polyprotein von Nichtstrukturprotein 2 bis Nichtstrukturprotein 5B
 - 55 5. 1813-2463: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
 6. 2464-4356: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 7. 4357-4518: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 8. 4519-5301: Nichtstrukturprotein 4B (NS4B)
 9. 5302-6642: Nichtstrukturprotein 5A (NS5A)

EP 1 043 399 A2

10. 6643-8415: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
11. 8419-8649: HCV 3' nicht-translatierte Region

SEQ ID-NO: 6

5

[0046]

Name: I389/NS3-3'/9-13F
Aufbau (Nukleotidpositionen):

10

1. 1-341: HCV 5' nicht-translatierte Region
2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
4. 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 9-13F
5. 1813-3708: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
6. 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
8. 4654-5994: Nichtstrukturprotein 5A (NS5A)
9. 5995-7767: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase 7771-8001: HCV 3' nicht-translatierte Region

15

SEQ ID-NO: 7

[0047]

20

Name: I389/Core-3/9-13F
Aufbau (Nukleotidpositionen):

25

1. 1-341: HCV 5' nicht-translatierte Region
2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
4. 1813-10842: HCV Polyprotein von Core bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 9-13F
5. 1813-2385: HCV Core Protein; Strukturprotein
6. 2386-2961: Hüllprotein 1 (envelope protein 1); Strukturprotein
7. 2962-4050: Hüllprotein 2 (envelope protein 2); Strukturprotein
8. 4051-4239: Protein p7
9. 4240-4890: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
10. 4891-6783: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
11. 6784-6945: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
12. 6946-7728: Nichtstrukturprotein 4B (NS4B)
13. 7729-9069: Nichtstrukturprotein 5A (NS5A)
14. 9070-10842: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
15. 10846-11076: HCV 3' nicht-translatierte Region

30

35

40

45

50

55

SEQ ID-NO: 8

[0048]

Name: I389/NS3-3'/5.1
Aufbau (Nukleotidpositionen):

1. 1-341: HCV 5' nicht-translatierte Region
2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker

EP 1 043 399 A2

3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
4. 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 5.1

5. 1813-3708: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
6. 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
8. 4654-5994: Nichtstrukturprotein 5B (NS5A)
10. 5995-7767: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase 7771-8001: HCV 3' nicht-translatierte Region

SEQ ID-NO: 9

15 [0049]

Name: I389/Core-3'/5.1
Aufbau (Nukleotidpositionen):

20. 1. 1-341: HCV 5' nicht-translatierte Region
2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
4. 1813-10842: HCV Polyprotein von Core bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 5.1
25. 5. 1813-2385: HCV Core Protein; Strukturprotein
6. 2386-2961: Hüllprotein 1 (envelope protein 1); Strukturprotein
7. 2962-4050: Hüllprotein 2 (envelope protein 2); Strukturprotein
8. 4051-4239: Protein p7
30. 9. 4240-4890: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
10. 4891-6783: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
11. 6784-6945: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
12. 6946-7728: Nichtstrukturprotein 4B (NS4B)
13. 7729-9069: Nichtstrukturprotein 5A (NS5A)
35. 14. 9070-10842: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
15. 10846-11076: HCV 3' nicht-translatierte Region

SEQ ID-NO: 10

40 [0050]

Name: I389/NS3-3'/19
Aufbau (Nukleotidpositionen):

45. 1. 1-341: HCV 5' nicht-translatierte Region
2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
4. 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 19
50. 5. 1813-3708: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
6. 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
8. 4654-5994: Nichtstrukturprotein 5A (NS5A)
55. 9. 5995-7767: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase 7771-8001: HCV 3' nicht-translatierte Region

SEQ ID-NO: 11

[0051]

5 Name: I389/Core-3'/19

Aufbau (Nukleotidpositionen):

10 1. 1-341: HCV 5' nicht-translatierte Region

2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker

15 3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters

4. 1813-10842: HCV Polyprotein von Core bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 19

20 5. 1813-2385: HCV Core Protein; Strukturprotein

15 6. 2386-2961: Hüllprotein 1 (envelope protein 1); Strukturprotein

7. 2962-4050: Hüllprotein 2 (envelope protein 2); Strukturprotein

8. 4051-4239: Protein p7

9. 4240-4890: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease

10. 4891-6783: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase

20 11. 6784-6945: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor

12. 6946-7728: Nichtstrukturprotein 4B (NS4B)

13. 7729-9069: Nichtstrukturprotein 5A (NS5A)

14. 9070-10842: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase

25 15. 10846-11076: HCV 3' nicht-translatierte Region

[0052] Die Erfindung wird im folgenden anhand von Ausführungsbeispielen und dazugehörigen Tabellen und Figuren näher erläutert. Die erwähnten Figuren zeigen

30 **Fig. 1 A:** Die Struktur eines erfindungsgemäßen HCV-RNA-Konstrukts Ganz oben ist eine schematische Darstellung der Struktur des kompletten parentalen HCV-Genoms gegeben mit den Positionen der Gene für die Spaltungsprodukte core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A und NS5B innerhalb des Polyproteins, und den 5' und 3' nichttranslatierten Regionen (5' NTR und 3' NTR) — als Horizontalbalken dargestellt —, und mit den beiden für die Erzeugung der Subgenom-Konstrukte ausgewählten Positionen, nämlich der Position der 'GDD-katalytischen Domäne' der NS5B RNA Polymerase (GDD) und der Position der 3' Grenze der HCV-IRES (Nukleotidpositionen 1 bis 377 bzw. 1 bis 389) — oberhalb des Genomschemas eingezeichnet —. Die Zahlen unterhalb des Genomschemas bezeichnen die entsprechenden Nukleotidpositionen.

35 Darunter sind schematische Darstellungen der Strukturen zweier erfindungsgemäßer, modifizierter HCV-RNA-Konstrukte (Subgenom) gezeigt, bestehend aus der 5' HCV-IRES, dem Neomycinphosphotransferasegen (Neo^R), der EMCV-IRES (E-I) und den HCV Sequenzen von NS2 bzw. NS3 bis zum authentischen 3' Ende. Die Position der das NS5B Polymerase GDD-Motiv umfassenden 10 Aminosäuren-Deletion ist jeweils mit einem Dreieck (Δ) markiert.

40 **Fig. 1 B:** Das Ergebnis einer denaturierenden Formaldehyd-Agarose-Gelelektrophorese zum Nachweis von replizierter Plusstrang-RNA in transfizierten subpassagierten Huh-7 Zellklonen.
45 Die Positionen der HCV-spezifischen RNAs (Pfeile) und der 28S rRNA sind rechts von Spur 12 angegeben, die Größen (Anzahlen der Nukleotide) der RNA-Marker (M) sind links von Spur 1 angegeben.

50 **Fig. 1 C:** Das Ergebnis eines PCR-Tests mit nachfolgendem Southern-Blot zum Nachweis der Abwesenheit von integrierter Replikon-DNA in den meisten der selektierten Zellklone.
55 Spuren 1 und 2 zeigen die Positivkontrollen, Spur 13 die Negativ-Kontrolle. Die Zahlenangaben links der Spur 1 bezeichnen die Größe der Nukleotid-Marker-Moleküle.

55 **Fig. 2 A:** Das Ergebnis eines PCR-Tests mit nachfolgendem Southern-Blot zum sensitiven Ausschluß integrierter Replikon-DNA (Plasmid Moleküle I₃₇₇/NS3-3'/wt) in einem HCV-RNA-Konstrukt-haltigen Zellkton (9-13). Die Spuren 7 bis 11 repräsentieren das Ergebnis einer Titration von DNA-Molekülen des Konstrukts I₃₇₇/NS3-3'/wt ohne Zugabe von Gesamt-DNA des Zellktons 9-13 und die Spuren 2 - 6 repräsentieren die gleichen Plasmidmoleküle mit Zugabe von jeweils 1 µg 9-13 DNA vor der PCR (zwecks Ausschluß

EP 1 043 399 A2

eines Inhibitors der PCR in der DNA-Präparation). Spur 13 repräsentiert die Negativ-Kontrolle (PCR ohne DNA-Sonde). Spur 1 zeigt das Ergebnis, das mit einem µg Gesamt-DNA des Zellkons 9-13 erhalten wurde.

- 5 **Fig. 2 B:** Das Ergebnis eines Northern-Blot-Tests zur Quantifizierung von HCV Plus- und Minusstrang RNA. Die Pfeile markieren die Positionen von Replikon-RNA. Die "plus" und "minus"-Abgaben bezeichnen die positive (plus) bzw. negative (minus) Polarität der RNA-Kontrollen, die auf das Gel aufgetragen wurden. "Minusstrand" und "Plusstrand" bezeichnen die Spezifität der radioaktiven RNA-Sonden.
- 10 **Fig. 2 C:** Ergebnis einer Formaldehyd-Agarose-Gelelektrophorese nach radioaktiver Markierung der intrazellulär replizierten HCV-RNA zum Nachweis der Resistenz der HCV-RNA-Replikation gegen Dactinomycin.
- 15 **Fig. 3 A:** Nachweis von HCV-spezifischen Antigenen in den selektierten Zellkulturen mittels Immunopräzipitation nach metabolischer Radioaktivmarkierung. Die Spuren 7 - 9 repräsentieren authentische Größenmarker (die nach transiente Expression eines HCV-RNA-Konstrukts in Huh-7-Zellen erhalten wurden); identifizierte HCV-Proteine sind am linken Rand von Spur 1 markiert, die Molekulargewichte (in Kilodalton) sind am rechten Rand von Spur 9 angegeben.
- 20 **Fig. 3 B:** Ergebnisse eines Immunfluoreszenztests zum Nachweis der subzellulären Lokalisation von HCV Antigenen.
- 25 **Fig. 4:** Schematische Darstellung der Struktur eines erfindungsgemäßen selektierbaren HCV-RNA-Konstrukts (komplettes Genom) bestehend aus der 5' HCV-IRES, dem Neomycinphosphotransferasegen (NeoR), einem heterologen IRES-Element, z.B. des Encephalomycarditisvirus (E-I), dem vollständigen HCV-Leseraster und der authentischen 3' NTR.
- 30 **Fig. 5:** Schematische Darstellung der Struktur von HCV-RNA-Konstrukten mit insertiertem Antibiotikumresistenzgen (A) innerhalb der für das Polyprotein kodierenden Nukleotidsequenz (monocistronische RNA), und (B) innerhalb der 3' NTR (bicistronische RNA).
- 35 **Fig. 6:** Schematische Darstellung der Struktur von HCV-RNA-Konstrukten mit insertiertem Reportergen (A) als Teil eines HCV-Replikons von NS3 bis NS5B; — das Reporterprotein wird letztendlich durch virale oder durch zelluläre Proteasen aus dem Polyprotein gespalten und das selektierbare Markerogen (Selektionsgen) bzw. das Resistenzgen durch Kontransfektion in die Zellen einschleust, (B) als Teil eines Fusionsgens aus Resistenz- und Reportergen (z.B. für die Neomycinphosphotransferase und green fluorescent Protein) (C) als Teil eines Replikons aus Resistenz- und Reportergen (z.B. für die Neomycinphosphotransferase und das green fluorescent Protein), die über eine Nukleotidsequenz verbunden sind, welche für eine Aminosäuresequenz kodiert (schraffierter Bereich), die von einer Protease gespalten werden kann oder die über eine selbstspaltende (autokatalytische) Aktivität verfügt, (D) als unabhängiges Gen (hier green fluorescent protein), das von einer eigenen internen Ribosomenbindungsstelle (IRES) aus exprimiert wird; — das Resistenzgen (hier: Neomycinphosphotransferase-Gen) wird davon unabhängig ebenfalls von einer eigenen internen Ribosomenbindungsstelle (IRES) aus exprimiert (polycistronisches Konstrukt).
- 40 **Fig. 7:** Schematische Darstellung der Struktur eines HCV-RNA-Konstrukts bei dem das Resistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA-Sequenz verbunden ist. Die dicken Linien stellen die HCV 5' und 3' NTRs dar, E-I ist eine heterologe interne Ribosomenbindungsstelle, die für die Expression des Resistenzgens notwendig ist, und das graue Quadrat stellt das Ribozym bzw. eine Erkennungsstelle für ein Ribozym dar.
- 45 **Fig. 8:** Schematische Darstellung der Struktur eines HCV-RNA-Konstrukts mit Resistenzgen und integriertem Fremdgien.
- 50 **Fig. 9:** Methodisches Vorgehen zum Vergleich der spezifischen Infektiosität (ausgedrückt als Anzahl gebildeter Zellkolonien) von Gesamt-RNA versus in vitro Transkripte. HCV-RNA wird mittels in vitro Transkription eines entsprechenden RNA-Konstrukts hergestellt und durch Messung der optischen Dichte bei 260 nm (OD 260 nm) quantifiziert. Eine definierte Anzahl dieser Moleküle wird mit einer bestimmten Menge Gesamt-RNA von naiven Huh-7 Zellen gemischt und diese Mischung mit Hilfe der Elektroporation in

EP 1 043 399 A2

naive Huh-7 Zellen eingeschleust. Parallel dazu wird die Gesamt-RNA eines Zellkions, der mit der in Figur 1 beschriebenen Methode hergestellt wurde, mit einem im Stand der Technik bekannten Verfahren isoliert und die Menge der darin enthaltenen HCV-RNA mittels Northern-blot unter Verwendung einer HCV-spezifischen RNA-Sonde und anschließender Quantifizierung mittels Phosphoimager bestimmt. Eine definierte Menge dieser Gesamt-RNA wird analog den in vitro Transkripten in naive Huh-7 Zellen transfiziert. Diese Zellen in beiden Ansätzen werden danach einer G418-Selektion unterzogen und die Anzahl der gebildeten Kolonien durch Auszählen nach fixieren und anfärben mit Coomassie-Brilliant-Blau bestimmt. Zur Bestimmung der Transfektionseffizienz wird jedem Transfektionsansatz 1 μ g eines Plasmids zugesetzt, das die Expression der Luziferase erlaubt. Ein Aliquot der transfizierten Zellen wird nach 24 Stunden geerntet und die Luziferaseaktivität im jeweiligen Zellsatz bestimmt. Die Anzahl der Kolonien wird jeweils auf die Luziferaseexpression normiert.

Fig. 10: Sequenzanalyse der 9-13 Klone. Gesamt-RNA des Zellkions 9-13, der durch Transfektion des HCV-RNA-Konstrukt I377/NS3-3' entstand, wurde mit einem im Stand der Technik bekannten Verfahren isoliert und das HCV-RNA-Konstrukt von Nukleotidposition 59 bis 9386 mit Hilfe der 'long-distance RT-PCR' unter Verwendung der primer S59 und A9413 amplifiziert. Die PCR-Fragmente wurden kloniert und 11 Klone (genannt 9-13 A - K) vollständig sequenziert, wobei sich die Klone D und I, E und G sowie H und J als identisch erwiesen. Die Positionen der Aminosäureunterschiede in der NS3-5B Region zwischen den rekombinierten HCV-RNAs und dem parentalnen Konstrukt sind mit einem dicken vertikalen Strich beim jeweiligen Klon markiert. Jeder Klon wurde mit dem Restriktionsenzym Sfi 1 verdaut und das jeweilige Fragment in das parentale Konstrukt inseriert. Diese Klone wurden jeweils in Huh-7 Zellen transfiziert und die Zellen wie in Figur 1 beschrieben einer Selektion unterzogen. Die Anzahl der mit jedem Konstrukt erhaltenen Zellklone ist rechts neben dem jeweiligen Konstrukt vermerkt.

Fig. 11 A: Prinzip der Replikationsbestimmung mit Hilfe eines Reportergens. Im oberen Teil der Figur ist das HCV-DNA-Konstrukt I₃₈₉/Luc/NS3-3' dargestellt, bestehend aus der HCV 5' NTR (Nukleotidposition 1-389), dem Luziferasegen (luc), der IRES des Encephalomyocarditis Virus, dem HCV NS3-5B und der 3' NTR. Die Position des aktiven Zentrums der NS5B RNA-Polymerase, in das ein inaktivierender Aminosäureaustausch eingeführt wurde, ist mit 'GND' angedeutet. Die Plasmide, die für das replikationskompetente bzw. das defekte HCV-RNA-Konstrukt kodieren, werden mit dem Restriktionsenzym Sca I verdaut und in eine in vitro Transkription mit der T7 RNA-Polymerase eingesetzt. Nach Entfernung der Matrizen-DNA werden die jeweiligen HCV-RNA-Konstrukte mittels Elektroporation in naive Huh-7 Zellen eingeschleust und diese in regelmäßigen Abständen geerntet.

Fig. 11 B: Vergleich der Luziferaseaktivitäten in Zellen transfiziert mit dem parentalnen HCV-RNA-Konstrukt I₃₈₉/Luc/NS3-3'/wt (wt) oder den folgenden Varianten: Der inaktiven RNA (318 DN), der Variante 9-13F oder der Variante 5.1. Die Zellen wurden 6 (nicht gezeigt), 24, 48, 72, 96, 120, 144 und 168 Stunden nach der Transfektion geerntet und die Luziferaseaktivitäten luminometrisch bestimmt.

Fig. 12: Selektionierbare HCV-Vollängengenome (Konstrukte I₃₈₉/core-3'/5.1 und I₃₈₉/core-3'/9-13F).

(A) Schematische Darstellung des Vollängenkonstrukturts. Der Bereich zwischen den beiden ange deuteten Erkennungsstellen für das Restriktionsenzym Sfi I entspricht den Sequenzen der hoch adaptierten RNA-Varianten 5.1. oder 9-13F.

(B) Anzahl der Kolonien die nach Transfektion von jeweils 0,1 μ g in vitro transkribierter RNA der unter A dargestellten Konstrukte I₃₈₉/core-3'/5.1 in HUH7-Zellen erhalten wurden. Angegeben ist das Ergebnis eines repräsentativen Experiments.

(C) Nachweis autonom replizierender HCV-Vollängen-RNAs in G418-resistenten Zellklonen, die nach Transfektion des entsprechenden in vitro Transkripts erhalten wurden. Die Abbildung zeigt das Autoradiogramm eines Northern Blots, der mit einer Sonde gegen das neo-Resistenzgen und der HCV 5' NTR hybridisiert wurde. Die in Spur 1 und 2 dargestellten Kontrollen entsprechen jeweils 10⁸ Molekülen der angegebenen in vitro Transkripte, gemischt mit Gesamt-RNA aus naiven Huh-7 Zellen. Die Negativkontrolle enthält ausschließlich Gesamt RNA aus naiven Huh-7 Zellen (Spur 3). Die Spuren 4-9 enthalten 3-10 μ g Gesamt-RNA aus G418-resistenten Zellklonen, die nach Transfektion von in vitro transkribierter I₃₈₉/core-3'/5.1-RNA bzw. I₃₈₉/core-3'/9-13F-RNA erhalten wurden. Die für die Selektion verwendete G418-Konzentration ist jeweils angegeben. Fünf der dargestellten Zellklone enthalten die hoch adaptierte RNA-Variante 5.1 (Spur 4-8), einer die adaptierte RNA-Variante 9-13F (Spur 9).

EP 1 043 399 A2

- 5 Fig. 13: HCV-RNA-Konstrukte mit einem Reportergen. (A) Bicistronische HCV-RNA-Konstrukte. Das Reporter-
gen wird mit Hilfe einer separaten IRES translatiert. (B) Monocistronische HCV-RNA-Konstrukte. Das
Reportergenprodukt wird als Fusionsprotein mit einem HCV-Protein exprimiert. Die beiden Anteile sind
über eine Erkennungssequenz für eine virale oder zelluläre Protease verbunden, die eine proteolytische
Trennung der beiden fusionierten Proteinanteile erlaubt. Im gezeigten Beispiel wurden das Reportergen-
produkt und das jeweilige HCV-Protein über eine Erkennungssequenz für Ubiquitin (Ub) fusioniert.
- 10 Fig. 14: Tricistronisches Vollängen HCV-RNA-Konstrukt, das zusätzlich zum Resistenzgen ein Fremdgen in-
sriert besitzt.
- 15 Fig. 15: Monocistronische HCV-RNA-Konstrukte, bei denen das Resistenzgenprodukt als Fusionsprotein mit
dem HCV-Anteil exprimiert wird. Das Resistenzgen (RG) ist entweder als Fusionsprotein aktiv oder es
wird so mit einer proteolytisch spaltbaren Sequenz mit dem HCV-Anteil fusioniert, daß das Resistenz-
genprodukt durch eine zelluläre oder virale Protease vom HCV-Anteil abgespalten wird. Im gezeigten
Beispiel wurde das Resistenzgen über die für Ubiquitin (Ub) kodierende Sequenz mit dem jeweiligen
HCV-Anteil fusioniert.

Beispiel 1: Herstellung von HCV-RNA-Konstrukten

20 (A) Synthese und Klonierung eines vollständigen HCV-Konsensusgenoms mittels RT- PCR

[0053] Aus der Leber eines chronisch infizierten Patienten wurde das HCV-Genom, d.h. die HCV-RNA wie nachfol-
gend beschrieben isoliert:
[0054] Aus ca. 100 mg Leber wurde die komplette RNA gemäß dem Verfahren von Chomczynski und Sacci (1987,
Anal. Biochem. 162, 156) isoliert. Mit 1 µg dieser isolierten RNA wurde eine reverse Transkription mit den Primern
A6103 (GCTATCAGCCGGTTCATCCACTGC) oder A9413 (CAGGATGGCCTATTGG CCTGGAG) und dem 'expand
reverse transcriptase'- System (Boehringer Mannheim, Deutschland) nach den Vorschriften des Herstellers durchge-
führt. Mit den Produkten dieser reversen Transkription (RT) wurde eine Polymerase-Kettenreaktion (PCR=polymerase
chain reaction) durchgeführt, und zwar unter Verwendung des 'expand long template'-Systems (Boehringer Mannheim,
Deutschland), wobei der Puffer mit 2% Dimethylsulfoxid-Gehalt eingesetzt wurde. Nach einer Stunde bei 42°C wurde
1/8 dieses Reaktionsansatzes in einem ersten PCR-Durchgang mit den Primern A6103 und S59 (TGTCTTCACGCA-
GAAAGCGTCTAG) oder A9413 und S4542 (GATGAGCT CGCCGCGAAGCTGTCC) eingesetzt. Nach 40 Zyklen
wurde 1/10 dieses Reaktionsansatzes in einem zweiten PCR-Durchgang mit den Primern S59 und A4919 (AGCACAC-
GCCCGCGTCATAGCACTCG) oder S4542 und A9386 (TTAGCTCCCCG TTCATCGGTTGG) eingesetzt. Nach 30
Zyklen wurden die PCR-Produkte mittels präparativer Agarose-Gel-Elektrophorese gereinigt und die dabei eluierten
Fragmente wurden in den Vektor pCR2.1 (Invitrogen) oder pBSK II (Stratagene) ligiert. Vier Klone von jedem Fragment
wurden analysiert und sequenziert, und es wurde eine Konsensus-Sequenz ermittelt. Zu diesem Zweck wurden die
DNA-Sequenzen miteinander verglichen. Die Positionen, an denen sich die Sequenz eines der Fragmente von den
übrigen unterschied, wurde als unerwünschte Mutation betrachtet. Im Fall von Mehrdeutigkeiten der Sequenz wurden
kürzere sich überlappende PCR-Fragmente der betreffenden Region amplifiziert und mehrere Klone sequenziert. Auf
diese Weise konnten zahlreiche potentielle Mutationen in jedem Fragment identifiziert und somit eine isolat-spezifische
Konsensussequenz etabliert werden. Diese etablierte Konsensussequenz bzw. dieses Genom gehört zum weltweit
verbreiteten Genotyp 1b. Die nicht translatierte Region am 3'-Ende (=3' NTR) wurde mittels konventioneller PCR erhalten,
wobei ein Antisense-Primer eingesetzt wurde, der die letzten 24 Nukleotide des im Stand der Technik bekannten
'X-tails' (Tanaka et al., 1995, Biochem. Biophys. Res. Commun. 215, 744; und Rice, PCT/US 96/14033) abdeckt. Die
authentische nicht translatierte Region am 5'-Ende (=5' NTR) strangabwärts vom T7 Promotor wurde mittels PCR
erzeugt, wobei zum einen ein Oligonukleotid verwendet wurde, das einem verkürzten T7 Promotor (TAA TAC GAC TCA
CTA TAG) und den ersten 88 Nukleotiden von HCV entspricht, und zum anderen eines der vorgenannten Plasmide ein-
gesetzt wurde, das eines der 5' Fragmente des Genoms trägt. Aus den subgenomischen Fragmenten mit der gering-
sten Anzahl an Nicht-Konsensus-Austauschen wurde ein komplettes HCV-Konsensusgenom zusammengesetzt und in
einen modifizierten pBR322-Vektor insertiert. Abweichungen von der Konsensussequenz wurden mittels ortsgerichte-
ter Mutagenese ("site-directed mutagenesis") beseitigt. Um "run-off"-Transkripte mit einem authentischen 3' Ende her-
zustellen, wurde die 3'-NTR der Isolate (mit dem Ende TGT) zu AGT modifiziert (gemäß der Sequenz vom Genotyp 3
= Klon 'WS' nach Kolykhalov et al., 1996, J. Virol. 70, 3363) und außerdem wurde ein zusätzlicher Nukleotidaustausch
55 an Position 9562 vorgenommen, um die A:T Basenpaarung in der Haarnadelstruktur am 3' Ende der 3' NTR (Kolykhalov
et al. ibid.) beizubehalten. Um eine interne Restriktionsstelle für das Enzym Scal zu beseitigen, wurde ferner ein sog.
stiller ("silent") Nukleotidaustausch vorgenommen. Nach dem Zusammenfügen des Vollängen-Genoms mit passenden
5'- und 3' NTRen wurde die komplette HCV-Sequenz überprüft. Dabei wurde kein ungewünschter Nukleotidaustausch

gefunden.

[0055] Das auf diese Weise hergestellte HCV-Genom sollte per Definition hepatotrop sein.

(B) Synthese selektierbarer HCV-Subgenom-Konstrukte

5 [0056] Unter Verwendung des unter (A) beschriebenen Konsensusgenoms wurden HCV-Subgenom-Konstrukte hergestellt, die das Antibiotikumresistenzgen Neomycin-Phosphotransferase (NPT) und zwei Sequenzen von internen Ribosomenbindungsstellen (IRES) enthalten. Die hierfür angewendeten biochemischen Verfahrenstechniken sind dem Fachmann bekannt und geläufig (siehe: Sambrook, J., E.F. Fritsch, T. Maniatis, 1989, Molecularcloning: a laboratory manual, 2nd ed., Cold Spring Harbour Laboratory, Cold Spring Harbor, N.Y.; Ausubel et al. (eds.), 1994, Current Protocols in Molecular Biology, Vol. 1-3, John Wiley & Sons Inc., New York). Das Antibiotikumresistenzgen wurde unmittelbar hinter der 5' NTR insertiert, wodurch eine bicistronische RNA erhalten wurde (siehe Fig. 1 A). Ebenso gut kann das Antibiotikumresistenzgen aber auch an anderer Stelle des HCV-Subgenom-Konstrukts insertiert werden, beispielsweise innerhalb der für das Polyprotein kodierenden Nukleotidsequenz, wodurch eine monocistronische RNA erhalten wird (siehe Fig. 5 A) oder in die 3' NTR (siehe Fig. 5 B). Bei den IRES-Elementen handelt es sich zum einen um eine der beiden HCV-IRES-Varianten Nukleotide 1-377 oder Nukleotide 1-389, und zum anderen um die IRES des Encephalomyocarditis Virus, die die Translation der HCV Sequenz strangabwärts von den Genen für NS2 oder NS3 bis zu dem authentischen 3' Ende des Genoms steuert.

10 [0057] Die beiden genannten HCV-IRES-Varianten wurden wie folgt ermittelt: Auf der Basis von Deletionsanalysen der 3' Grenze der HCV-IRES (Reynolds et al. 1995, EMBO J. 14, 6010) wurden verschiedene Abschnitte der 5' NTR mit dem NPT Gen fusioniert und anhand von Kotransfektionen mit einem das T7 RNA Polymerase Gen enthaltenden Plasmid hinsichtlich der maximalen Anzahl gebildeter Kolonien analysiert. Die besten Ergebnisse wurden mit den HCV Sequenzen von 1-377 und 1-389 erhalten. Da sich das AUG-Startkodon des HCV Polyproteins an Position 342 befindet und somit in der IRES-Sequenz enthalten ist, kommt es zu einer Fusion von 12 bzw. 16 Aminosäuren des HCV-Kapsidproteins ("Core-Proteins") mit der Neomycin Phosphotransferase (siehe Fig. 1 A).

15 [0058] Diese modifizierten HCV-Subgenom-Konstrukte erhielten dementsprechend die Bezeichnungen I₃₇₇/NS2-3' (oder I₃₇₇/NS3-3') und I₃₈₉/NS2-3' (oder I₃₈₉/NS3-3'). Sie sind in Fig. 1A schematisch dargestellt.

20 [0059] Mit in-vitro-Transkripten dieser modifizierten parentalen HCV-Subgenom-Konstrukte I₃₇₇/NS2-3' (oder I₃₇₇/NS3-3') und I₃₈₉/NS2-3' (oder I₃₈₉/NS3-3') wurden verschiedene Zelllinien und Primärzellkulturen von menschlichen Hepatocyten transfiziert.

25 [0060] Als parallele Negativ-Kontrolle zu allen Transfektionsexperimenten wurde zu jedem modifizierten parentalen HCV-Subgenom-Konstrukt ein entsprechend modifiziertes aber defektes Subgenom konstruiert, das sich von dem parental dadurch unterscheidet, daß es innerhalb des Leserasters eine Deletion von 10 Aminosäuren aufweist, die das aktive Zentrum der NS5B RNA Polymerase umfaßt (Behrens et al., 1996, EMBO J. 15, 12; und Lohmann et al., 1997, J. Virol. 71, 8416).

(C) Synthese selektierbarer HCV-Genom-Konstrukte

30 [0061] Ein NS2-3' Subgenomkonstrukt, das am 5' Ende mit einem Fragment des Luziferasegens und der vollständigen EMCV-IRES verbunden ist, wurde mit NcoI und Spel restringiert und mittels präparativer Agarosegelektrophorese gereinigt. Der so erhaltene Vektor wurde in einer 3-Faktor Ligation mit einem NcoI/NotI-HCV-Fragment, entsprechend den Nukleotidpositionen 342 bis 1968 des HCV-Genoms und mit einem NotI/Spel-Fragment, entsprechend den Nukleotidpositionen 1968-9605 ligiert. Das entstandene Konstrukt, bei dem das vollständige HCV-Leseraster und die 3' NTR stromabwärts dem Luziferasegenfragment und der EMCV-IRES liegen, wurde danach mit PmeI und Spel restringiert und mit dem analog restringierten I₃₈₉/NS3-3'/wt-Subgenomkonstrukt-Vektor ligiert. Dieses selektierbare HCV-Genomkonstrukt ist in Fig. 4 dargestellt.

(D) Herstellung von den HCV-RNA-Konstrukten entsprechenden in-vitro-Traskripten

35 [0062] Die vorstehend beschriebenen gereinigten Plasmid DNAs wurden mit ScaI linearisiert und nach Phenol/Chloroform-Extraktion und Isopropanol-Präzipitation in eine In-vitro-Transkriptionsreaktion eingesetzt unter Verwendung der folgenden Komponenten: 80 mM HEPES, pH 7.5, 12,5 mM MgCl₂, 2 mM Spermidin, 40 mM Dithiothreitol, 2 mM von jedem NTP, 1 Einheit RNasin/ μ l, 50 μ g/ml restringierte DNA und ca. 2 Einheiten/ μ l T7 RNA Polymerase. Nach 2 Std. bei 37°C wurde die Hälfte der Menge an T7 Polymerase zugegeben und der Reaktionsansatz weitere 2h inkubiert. Zur Entfernung von DNA wurde die Mischung mit saurem Phenol extrahiert (U. Kedzierski, J.C. Porte, 1991, Bio Techniques 10, 210), mit Isopropanol präzipitiert, das Pellet in Wasser gelöst und mit DNase (2 Einheiten pro μ g DNA) für 60 Min. bei 37°C inkubiert. Nach anschließender Extraktion mit saurem Phenol, saurem Phenol/Chloroform und Chloroform und Isopropanol-Präzipitation wurde die gelöste RNA mittel optischer Dichtemessungen quantifiziert und

ihrer Unversehrtheit mittels Formaldehyd-Agarose-Gelelektrophorese überprüft.

Beispiel 2: Transfektionsexperimente mit der Hepatomazelllinie Huh-7

- 5 [0063] Bei sämtlichen Transfektionsexperimenten wurde sorgfältig darauf geachtet, daß jegliche Matrizen-DNA zuvor entfernt worden war, um zu vermeiden, daß solche DNA in transfizierte Zellen integrieren und diesen unabhängig von einer HCV-Replikation eine Neomycin-Resistenz vermittelten könnte. Deshalb wurde im Anschluß an die in-vitro-Transkription (Beispiel 1 D) die Reaktionsmischung mit 2 Einheiten DNase pro µg DNA für 60 Min. bei 37°C behandelt und mit saurem Phenol, saurem Phenol/Chloroform und Chloroform extrahiert. Vor der Verwendung für die Transfektion 10 wurde die präzipitierte RNA mittels Formaldehyd Agarose Gel Elektrophorese analysiert.
- [0064] Es wurden drei separate Transfektionsexperimente mit der hoch differenzierten humanen Hepatomazelllinie Huh-7 (gemäß Nakabayashi et al. 1982, *Cancer Res.* 42, 3858) durchgeführt. Dabei wurde jeweils 15 µg RNA in 8 x 10⁶ Huh-7-Zellen mit Hilfe der Elektroporation eingebracht und diese Zellen anschließend in Kulturschalen von 10 cm Durchmesser ausgesät. 24 Stunden nach der Aussaat wurde Neomycin (= G418) in einer Endkonzentration von 1 15 mg/ml zugegeben. Das Kulturmedium wurde zweimal pro Woche gewechselt. Nach 3 - 5 Wochen waren kleine Kolonien erkennbar, die isoliert und unter den gleichen Kulturbedingungen passagiert wurden.
- [0065] Die Zellklone, die im Verlauf des ersten Experiments erhalten wurden, wurden isoliert und subpassagiert. Während dieser Prozedur starben die meisten Klone und die Endausbeute betrug nur noch 9 Klone von Zellen, die mit den parentalen HCV-Subgenom-Konstrukten transfiziert worden waren und 1 Klon (Klone 8-1) von Zellen, die mit einem defekten HCV-Genom-Konstrukt, nämlich einer defekten NS2-3' HCV-RNA transfiziert worden waren. Außer einer verkürzten Verdopplungszeit und dem gelegentlichen Auftreten von irregulär geformten Zellen wurden keine beständigen morphologischen Unterschiede zwischen diesen 9 Zellklonen und dem einen Zellkton (Klon 8-1) oder den parentalen Huh-7 Zellen gefunden.
- [0066] Die Hauptkriterien für funktionierende HCV-Genomkonstrukte sind die Bildung von viraler RNA mit korrekter Größe und die Abwesenheit von (integrierter) Plasmid DNA, die eine G418-Resistenz übertragen bzw. vermitteln könnte.
- [0067] Um die HCV-RNA in den Huh-7-Zellen zu bestimmen, wurde die Gesamt-RNA isoliert und mittels des gängigen Northern-Blot Verfahrens unter Verwendung einer Plusstrang-spezifischen Ribosonde (= RNA-Sonde) analysiert. Hierfür wurde von den jeweiligen Zellklonen Gesamt-RNA nach der Methode von Chomczynski und Sacchi 1987, 30 Anal. Biochem. 162, 156 isoliert, und 10 µg RNA, was dem Gesamt-RNA-Gehalt von 0,5 - 1 x 10⁶ Zellen entspricht, mittels denaturierender Formaldehyd-Agarose-Gelelektrophorese aufgetrennt (Spuren 3 bis 12 der Fig. 1 B). Als Größenmarker mit authentischer Sequenz wurden gleichzeitig 10⁹ in-vitro-Transkripte (ivtr.), die zu den I₃₈₉/NS2-3'/wt oder den I₃₈₉/NS3-3'/wt Replikons RNAs korrespondieren, mit aufgetrennt (Spur 1 bzw. Spur 2). Die aufgetrennte RNA wurde auf Nylon-Membranen transferiert und mit radioaktiv markierter Plusstrang-spezifischer RNA-Sonde, die komplementär zu dem kompletten NPT-Gen und der HCV-IRES von Nukleotid 377 bis Nukleotid 1 war, hybridisiert. Die Positionen der HCV-spezifischen RNAs (Pfeile) und der 28S rRNA sind rechts von Spur 12 angegeben, die Größen (Anzahlen der Nukleotide) der RNA-Marker sind links von Spur 1 angegeben. Die RNA Marker-Fragmente enthalten HCV-Sequenzen und hybridisieren deshalb mit der Ribosonde (= RNA-Sonde). Die Ergebnisse dieser Analyse sind in Fig. 1 B dargestellt.
- [0068] Mit Ausnahme des mit dem defekten HCV-Genom-Konstrukt transfizierten Klons 8-1, lieferten alle Zellklone homogene HCV-RNAs korrekter Länge (ca. 8640 Nukleotide im Fall des NS2-3' und ca. 7970 Nukleotide im Fall des NS3-3' Replikons). Dieser Befund ist ein Indiz dafür, daß die funktionalen Replikons bzw. die funktionalen HCV-Genom-Konstrukte die G418 Resistenz übertragen. Um auszuschließen, daß die G418 Resistenz auf eine Plasmid-DNA zurückzuführen ist, die in das Genom der Huh-7 Wirtszelle integriert ist und unter der Kontrolle eines zellulären Promotors transkribiert wird, wurde von jedem Klon die DNA mittels einer NPT-Gen-spezifischen PCR untersucht. Hierbei 45 wurde aus den selektierten Huh-7-Zellklonen die DNA mittels Verdau mit Proteinase K (40µg/ml, 1h, 37°C) in 10mMTris, pH7,5, 1mM EDTA, 0,5% SDS und anschließender Extraktion mit Phenol, Phenol/Chloroform und Isopropanolpräzipitation isoliert. Das DNA-Präzipitat wurde in 10 mM Tris (pH 7,5) und 1 mM EDTA gelöst und 1 Stunde mit Rnase A inkubiert. Im Anschluß an eine Phenol/Chloroform Extraktion und Ethanol Präzipitation wurde 1 µg DNA, entsprechend 4 - 8 x 10⁴ Zellen, mittels PCR unter Einsatz NPT-Gen-spezifischer Primer (5'-TCAAGACCGACCTG 50 TCCGGTGCCC-3' und 5'-CTTGAGCCTGGCGAACAGTTCGGC-3') analysiert und ein DNA-Fragment bestehend aus 379 Nukleotiden erzeugt. Die Spezifität des PCR-Produkts wurde mittels Southern Blot Verfahren nachgewiesen, wobei ein Digoxigenin-markiertes DNA Fragment eingesetzt wurde, das zu dem NPT-Gen korrespondiert. Als Positiv-Kontrollen (zum Nachweis etwa vorhandener kontaminierender Nukleinsäuren) wurde das PCR-Verfahren mit 10⁷ 55 Plasmid Molekülen oder 1 µg DNA aus einer BHK Zelllinie, die stabil mit einem Neomycin-Resistenz-Gen transfiziert war, durchgeführt, und als Negativ-Kontrolle wurde die PCR mit denselben Reagenzien aber ohne zugesetzte DNA durchgeführt.
- Die Ergebnisse dieser Untersuchung sind in Fig. 1 C dargestellt. Die Spuren 1 und 2 repräsentieren die Positiv-Kontrol-

EP 1 043 399 A2

Ien, Spur 13 repräsentiert die Negativ-Kontrolle. Die Zahlenangaben links der Spur 1 bezeichnen die Größe der Nukleotid-Marker-Moleküle. Außer in Klon 7-3 (Fig. 1C, Spur 3), der von Zellen nach Transfektion mit einem NS2-3' Replikon/NS2-3'HCV-Genom-Konstrukt stammt, und in Klon 8-1 (Fig. 1C, Spur 12), der von Zellen nach Transfektion mit einem defekten HCV-Genom-Konstrukt stammt, war in keinem Zellklon eine NPT-DNA nachweisbar. Dieser Befund ist ein weiteres Indiz dafür, daß die G418 Resistenz der meisten Klone durch die replizierende HCV-RNA vermittelt wurde. Aber auch unabhängig von diesen Ergebnissen ist es unwahrscheinlich, daß HCV-RNAs mit korrekter Größe von integrierter Plasmid DNA erzeugt wird, denn die für die in-vitro-Transkription verwendeten Plasmide enthalten weder einen eukaryontischen Promotor noch ein Polyadenylierungssignal. Im Fall des Klons 7-3 ist die Resistenz deshalb höchst wahrscheinlich sowohl durch das HCV-RNA-Konstrukt bzw. die replizierende HCV-RNA als auch durch eine integrierte NPT DNA Sequenz vermittelt worden, während die Resistenz der Zellen von Klon 8-1 ausschließlich auf die integrierte Plasmid DNA zurückzuführen ist.

[0069] Um zu bestätigen, daß die G418 Resistenz von einer autonom replizierenden HCV-RNA vermittelt ist, wurde der Klon 9-13 (Fig. 1 B, Spur 11) weiteren Tests unterworfen. Klon 8-1, der integrierte Kopien des NPT-Gens trägt, wurde überall als Negativkontrolle eingesetzt. Mit dem Ziel, die Anwesenheit von NPT-DNA im Klon 9-13 rigoros auszuschließen, wurde eine PCR durchgeführt, die den Nachweis von < 1000 NPT-Gen-Kopien in ~ 40.000 Zellen erlaubt.

Das Ergebnis dieser PCR ist in Fig. 2A dargestellt. Im einzelnen wurde bei dieser PCR wie folgt verfahren: Es wurden jeweils 10^6 - 10^2 Plasmid Moleküle ($I_{377}/NS3-3'/wt$) entweder direkt (Spuren 7 - 11) oder nach Zugabe von jeweils 1 µg 9-13 DNA (Spuren 2 - 6) in dem Test eingesetzt. Die Spezifität der amplifizierten DNA Fragment wurde mittels Southern Blot unter Verwendung einer NPT-spezifischen Sonde bestimmt. Eine PCR ohne DNA-Sonde wurde als Negativ-Kontrolle durchgeführt (Spur 12).

Selbst mit dieser sensitiven Methode wurde in einem µg DNA des Zellklons 9-13 keine Plasmid DNA gefunden (Spur 1). Um die Menge an HCV Plus- und Minusstrang RNAs in diesen Zellen abzuschätzen, wurde eine Verdünnungsreihe von Gesamt-RNA mit dem Northern-Blot-Verfahren unter Verwendung einer Plus- oder Minusstrang-spezifischen radioaktiv markierten Ribosonde (= RNA-Sonde) analysiert. Hierfür wurden jeweils 8, 4 oder 2 µg Gesamt-RNA, die aus den Zellklonen 9-13 und 8-1 isoliert worden waren, parallel zu bekannten Mengen analoger in-vitro-Transkripte mit Plus- oder Minusstrang-Polarität (Kontroll-RNAs) im Northern-Blot-Verfahren analysiert und anschließend einer Hybridisierung unterworfen. Die Hybridisierung wurde mit einer Plusstrang-spezifischen Ribosonde, die das komplett NPT-Gen und die HCV-IRES abdeckte ('plusstrand', obere Bildtafel), oder mit einer Minusstrang-spezifischen RNA-Sonde, die zu der NS3-Sequenz komplementär war ('minusstrand', untere Bildtafel) durchgeführt. Die Pfeile markieren die Positionen von Replikon-RNA. Die Ergebnisse dieser Analyse sind in Fig. 2 B dargestellt.

Im Fall des Plusstrangs wurden ca. 10^8 Kopien/µg Gesamt-RNA nachgewiesen, was 1000 - 5000 HCV-RNA-Molekülen pro Zelle entspricht, während die Menge an Minusstrang-RNA 5- bis 10-fach niedriger war. Dieses Ergebnis stimmt mit der Annahme überein, daß die Minusstrang RNA die replikative Zwischenform bzw. Zwischenkopie ist, die als Vorlage für die Synthese der Plusstrang Moleküle dient.

Da die Reaktion im wesentlichen von der viralen RNA-abhängigen RNA Polymerase katalysiert wird, sollte die Synthese der HCV-RNAs resistent gegen Dactinomycin sein, einem Antibiotikum, das selektiv die RNA-Synthese von DNA-Matrizen inhibiert, nicht jedoch die RNA-Synthese von RNA-Matrizen. Um diese Vermutung zu bestätigen, wurden Zellen mit [3 H] Uridin in Anwesenheit von Dactinomycin inkubiert, die radioaktiv markierten RNAs extrahiert, mittels denaturierender Agarose-Gel-Elektrophorese aufgetrennt und mit Hilfe eines handelsüblichen Bio-Imagers unter Verwendung einer [3 H]-sensitiven Bildplatte analysiert. Hierfür wurden jeweils ca. 5×10^5 Zellen der Klone 9-13 und 8-1 mit 100 µ Ci [3 H]Uridin für 16 Std. in Abwesenheit (-) oder Gegenwart (+) von 4 µg/ml Dactinomycin (Dact) inkubiert. Im Anschluß an diese Markierungsreaktion wurde die Gesamt-RNA präpariert und mittels Formaldehyd-Agarose-Gel-Elektrophorese analysiert. In den beiden ersten Spuren ist nur 1/10 der Gesamt-RNA dargestellt. Die radioaktiv markierte RNA wurden mit einem BAS-2500 Bio-Imager (Firma Fuji) sichtbar gemacht.

Die Ergebnisse dieser Analyse sind in Fig. 2 C dargestellt. In Übereinstimmung mit dem Inhibitor-Profil der NS5B Polymerase (Behrens et al., 1996, EMBOJ. 15, 12 und Lohmann et al., 1997, J Virol. 71, 8416) war die Replikation der HCV RNA nicht durch Dactinomycin beeinflußt worden, während die Synthese von zellulärer RNA gehemmt worden war. Um die Identität der viralen RNA zu bestätigen, wurde eine RT-PCR zur Rekonstruktion der replizierten Sequenzen durchgeführt. Die Sequenzanalyse der rekonstruierten RNA zeigte, daß die RNA in dem Klon 9-13 HCV-spezifisch ist und mit dem transzipierten Transkript des HCV-Konstruktks $I_{377}/NS3-3'/wt$ übereinstimmt.

[0070] Zur Analyse der viralen Proteine wurden die betreffenden Zellen zunächst metabolisch mit [35 S] Methionin/Cystein radioaktiv markiert, anschließend lysiert und danach die HCV-spezifischen Proteine mittels Immunopräzipitation aus den Zell-Lysaten isoliert. Die Ergebnisse dieser Analysen sind in Fig. 3 A dargestellt. Im einzelnen wurde dabei wie folgt verfahren: Zellen der Zellklone 9-13 (wt) und 8-1 (Δ) waren durch Behandlung für 16 Stunden mit einer dem Fachmann geläufigen und im Handel erhältlichen Protein-Markierungs-Mischung (z.B. NEN Life Science) metabolisch radioaktiv markiert worden. Mittels Immunopräzipitation (IP) unter nicht-denaturierenden Bedingungen (z.B. nach Bartenschlager et al., 1995, J. Virol. 69, 7519) und unter Verwendung von drei verschiedenen Antisera (3/4, 5A, 5B, gemäß Markierung am oberen Ende der Spuren 1 bis 12) waren die HCV-spezifischen Proteine vom Zell-Lysat abge-

EP 1 043 399 A2

trennt worden.. Die Immunokomplexe wurden mittels Tricine SDS-PAGE analysiert und mittels Autoradiographie sichtbar gemacht. Um authentische Größenmarker zu erhalten, wurde das homologe Replikikonstrukt I₃₇₇/NS3-3'/wt einer transienten Expression mit dem Vaccinia Virus T7-Hybrid System in Huh-7 Zellen unterworfen. Die dabei erhaltenen Produkte waren als Größenmarker (Spuren 7 - 9) parallel zu den Zellen der Klone 9-13 und 8-1 behandelt worden. Identifizierte HCV-Proteine sind am linken Rand von Spur 1 markiert, die Molekulargewichte (in Kilodalton) sind am rechten Rand von Spur 9 angegeben. Es ist anzumerken, daß das verwendete NS3/4-spezifische Antiserum ('3/4') bevorzugt mit NS4A und NS4B reagiert, was zu einer Unterrepräsentation von NS3 führt.

[0071] Alle viralen Antigene waren eindeutig nachweisbar und ihre apparenten Molekulargewichte zeigten keine Abweichungen gegenüber denjenigen, die nach transakter Expression desselben bicistronischen HCV-RNA-Konstrukts in den ursprünglichen Huh-7 Zellen ermittelt wurden. Um die subzelluläre Verteilung der viralen Antigene zu bestimmen, wurde eine Immunfluoreszenz-Nachweisreaktion unter Einsatz von NS3- und NS5A-spezifischen Antisera durchgeführt (z.B. nach Bartenschlager et al., 1995, J. Virol. 69, 7519). Hierfür wurden Zellen der Klone 9-13 (wt) und 8-1 (Δ) 24 Std. nach dem Aussäen auf Deckgläsern mit Methanol/Azeton fixiert und mit polyklonalen NS3- oder NS5A-spezifischen Antisera inkubiert. Die gebundenen Antikörper wurden mit einem kommerziell erhältlichen FITC-konjugierten Anti-Kaninchens-Antiserum sichtbar gemacht. Zur Unterdrückung unspezifischer Fluoreszenzsignale wurden die Zellen mit dem Farbstoff 'Evans Blue' gegenfärbt.

[0072] Die Ergebnisse dieses Nachweistests sind in Fig. 3 B dargestellt. Mit beiden Antisera war eine starke Fluoreszenz im Zytoplasma nachweisbar. Die NS5A-spezifischen Antisera führten außerdem zu einer schwachen Zellkern-Fluoreszenz, was darauf hindeutet, daß zumindest kleine Mengen dieses Antigens auch zum Zellkern gelangen. Die generell dominierende Präsenz der viralen Antigene im Zytoplasma ist jedoch ein starkes Indiz dafür, daß die HCV-RNA Replikation im Zytoplasma stattfindet — so wie das bei den meisten RNA-Viren der Fall ist. [0073] Diese Ergebnisse belegen klar, daß mit dem hier beschriebenen Versuchsansatz der Aufbau eines Zellkultursystems für das HCV gelungen ist, dessen Effizienz alles bisher bekannte um Größenordnungen übersteigt und erstmalig den Nachweis viraler Nukleinsäuren und Proteine mit konventionellen und bewährten biochemischen Methoden erlaubt. Erst diese Effizienz erlaubt überhaupt detaillierte Untersuchungen der HCV-Pathogenese, genetische Analysen verschiedener HCV-Funktionen und ein genaues Studium der Virus-/Wirtszellwechselwirkungen, wodurch sich neue Ansatzpunkte für die Entwicklung einer antiviralen Therapie definieren lassen.

Beispiel 3: Transfektion von Huh-7 Zellen mit HCV-Genomkonstrukten

[0074] Huh-7 Zellen werden wie in Beispiel 2 beschrieben transfiziert und selektiert, wobei hier jedoch selektionsfähige Konstrukte verwendet werden, die das vollständige Virusgenom enthalten. Die erhaltenen Zellklone werden analog dem Beispiel 2 mittels PCR auf Abwesenheit von HCV-DNA untersucht und die produktive Replikation der HCV-RNA wird danach mittels Northern Blot, [³H]Uridinmarkierung in Anwesenheit von Dactinomycin, Nachweis der viralen Proteine bzw. Antigene vorzugsweise mit Hilfe des Western Blots, der Immunopräzipitation oder der Immunfluoreszenz nachgewiesen. Im Gegensatz zu den im Beispiel 2 beschriebenen Ansätzen lassen sich mit dem hier beschriebenen Konstrukt außerdem vollständige und sehr wahrscheinlich infektiöse Viren erhalten, was bei den dort (in Beispiel 2) beschriebenen Subgenomkonstrukten nicht der Fall ist. Diese Viren, die in der Zelle und dem Zellkulturüberstand vorhanden sind, werden beispielsweise mittels Ultrazentrifugation, Immunpräzipitation oder Fällung mit Polyethylenglykol konzentriert und alle exogenen, d.h. nicht im Viruspartikel eingebauten Nukleinsäuren werden mittels Inkubation mit Nukleasen (RNase, DNase, Mikrococcusnuklease) verdaut. Auf diese Weise lassen sich alle kontaminiierenden Nukleinsäuren, die nicht im schützenden Viruspartikel enthalten sind, entfernen. Die geschützte virale RNA wird nach Inaktivierung der Nukleasen, beispielsweise mittels Inkubation mit Proteinase K in einem SDS-haltigen Puffer durch Extraktion mit Phenol und Phenol/Chloroform isoliert und mittels Northern Blot oder RT-PCR unter Verwendung HCV-spezifischer Primer nachgewiesen. Auch in diesem Versuchsansatz ist die Kombination des beschriebenen HCV-Konsensusgenoms mit einem Selektionsmarker entscheidend für die effiziente Produktion von viraler RNA, viralem Protein und damit von HCV-Partikeln.

Beispiel 4: Herstellung und Anwendung eines HCV-RNA Konstrukt, bei dem das Resistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-Subgenom-Sequenz verbunden ist.

[0075] Es wird ein HCV-RNA-Konstrukt gemäß Beispiel 1 oder Beispiel 3 hergestellt, bei dem ein Antibiotikumresistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA-Sequenz verbunden ist. Solche Konstrukte sind in Fig. 7 schematisch dargestellt. Huh-7 Zellen werden wie in Beispiel 2 beschrieben mit diesem HCV-RNA-Konstrukt transfiziert. Nach der Transfektion in die Zellen erfolgt zunächst die Selektion mit dem entsprechenden Antibiotikum. In den dabei erhaltenen Zellklonen wird das einklonierte Ribozym aktiviert oder, im Fall eines Konstrukt, das eine Erkennungsstelle für ein Ribozym trägt, wird das Ribozym in die Zelle eingeschleust (z.B. mittels Transfektion eines Ribozymkonstrukt oder Infektion mit einem viralen Expressionsvektor, in den das entsprechende

Ribozym eingesetzt wurde). In beiden Fällen wird durch die ribozymvermittelte Spaltung das Resistenzgen von der HCV-RNA-Sequenz abgetrennt. Das Ergebnis ist im Fall des HCV-Genom-Konstrukts ein authentisches HCV-Genom ohne Resistenzgen, das zur Bildung authentischer infektiöser Viruspartikel befähigt ist. Im Fall des HCV-Subgenom-Konstrukts entsteht ein HCV-Replikon ohne Resistenzgen.

5

Beispiel 5: Kotransfektion eines HCV-RNA-Konstrukts mit einem separaten Luziferase-Transfektionskonstrukt

[0076] Es wird ein HCV-RNA-Konstrukt gemäß Beispiel 1 (A) oder Beispiel 3 oder Beispiel 4 hergestellt. Parallel dazu wird ein Transfektionskonstrukt hergestellt, welches das Luziferasegen umfaßt, wobei dieses Luziferasegen ver-
10 mittels einer ersten Nukleotidsequenz, die für eine HCV-Protease- (z.B. NS3-Protease-) Spaltungsstelle kodiert, mit einer zweiten Nukleotidsequenz, die für ein anderes Protein oder einen Teil eines anderen Proteins kodiert, verbunden ist. HCV-RNA-Konstrukt und Transfektionskonstrukt werden in beliebige Wirtszellen, vorzugsweise Hepatomazellen, insbesondere Huh-7-Zellen, eingeschleust. Dies kann auf die in Beispiel 2 beschriebene Art und Weise geschehen. Das Produkt des modifizierten Luziferasegens ist ein Luziferase-Fusionsprotein, in dem die Luziferase auf Grund der
15 Fusion mit dem Fremdanteil inaktiv ist. In transfizierten Zellen mit hoher HCV-Replikation wird das Fusionsprotein, das ja eine Schnittstelle für eine HCV-Protease enthält, gespalten und damit die aktive Form der Luziferase freigesetzt, die sich durch luminometrische Messung bestimmen läßt. Wird die Replikation des HCV-RNA-Konstrukts gehemmt, wird das Fusionsprotein nicht gespalten und keine aktive Luziferase freigesetzt. Infolgedessen ist die quantitative Bestim-
20 mung der Luziferase ein Maß für die Replikation des HCV-Subgenom-Konstrukts. Anstelle des Luziferasegens kann ebensogut ein anderes Reportergen verwendet werden, das in analoger Weise modifiziert ist, so daß seine Expression von der Virusreplikation abhängt, obwohl dieses Reportergen nicht Bestandteil des HCV-Subgenom-Konstrukts ist. Es kann auch ein zelluläres Protein, welches durch die HCV-Proteine oder Nukleinsäure inaktiviert oder aktiviert wird, als sogenannter Surrogatmarker verwendet werden. In diesem Fall ist die Expression bzw. Aktivität dieses Surrogatmark-
ers ein Maß für die Replikation der viralen DNA.

25

Beispiel 6: Herstellung von HCV-Subgenom-Konstrukten mit integrierten Fremdgenen zur Verwendung als leberzellspezifische Genfären für die Gentherapie

[0077] Diese rekombinanten und selektionierbaren HCV-Subgenom-Konstrukte werden in trans-komplementie-
30 rende Helferzelllinien transfiziert, d.h. in Zelllinien, die induzierbar oder konstitutiv die fehlenden Funktionen (beispiels-
weise die Strukturproteine) exprimieren. Zellklone, die ein funktionelles HCV-Subgenom-Konstrukt enthalten, lassen sich durch entsprechende Selektion etablieren. Die von der Wirtszelle exprimierten Virus-Strukturproteine erlauben die
35 Bildung von Viruspartikeln, in die die RNA der HCV-Subgenom-Konstrukte eingeschleust wird. Das Ergebnis sind also virus-ähnliche Partikel, die ein erfindungsgemäßes HCV-Subgenom-Konstrukt einschließlich des einklonierten Fremd-
gens enthalten und die dieses mittels Infektion auf andere Zellen übertragen können. Ein Beispiel für ein solches Kon-
strukt ist in Fig. 8 dargestellt. Es besteht auch die Möglichkeit, das hier beschriebene erfindungsgemäßes HCV-
40 Subgenom-Konstrukt mit integriertem Fremdgen direkt als Expressionsvektor einzusetzen. Dabei wird analog dem vorgenannten Verfahren vorgegangen, allerdings mit dem Unterschied, daß Zelllinien transfiziert werden, die keine trans-
komplementierenden Faktoren exprimieren. In diesem Fall dient das HCV-Konstrukt also lediglich als Expressionsvektor.

Beispiel 7: Herstellung zellkultur-adaptierter HCV-RNA-Konstrukte

(A) Isolationsverfahren

45

[0078] Für die Bestimmung adaptiver Mutationen und die Herstellung zellkultur-adaptierter HCV-RNA-Konstrukte wurde wie folgt verfahren: Zellen wurden mit einem HCV-RNA-Konstrukt wie unter den Beispielen 1 und 2 beschrieben transfiziert und G418-resistente Zellklone hergestellt. Zur Bestimmung der Replikationskompetenz (darunter wird in diesem Zusammenhang die Anzahl G418-resistenter Zellklone verstanden, die pro Mikrogramm transfizierter HCV-
50 RNA bzw. HCV-RNA-Konstrukt erhalten wird) wurde exemplarisch die Gesamt-RNA aus einem der Zellklone, genannt 9-13 (Fig. 1B, Spur 11) isoliert und die Menge der darin enthaltenen HCV-RNA mittels Northern-blot wie in Fig. 2 B beschrieben bestimmt. 10 Mikrogramm der Gesamt-RNA, die ca. 10^9 Moleküle HCV-RNA enthielt, wurde anschließend per Elektroporation in naïve Huh-7 Zellen eingeschleust (Fig. 9). Parallel dazu wurden 10^9 in vitro Transkripte der analogen neo-HCV-RNA, die mit isolierter Gesamt-RNA aus naïven Huh-7 Zellen auf eine Gesamt-RNA-Menge von 10 µg
55 aufgefüllt worden war, in naïve Huh-7 Zellen transfiziert. Nach Selektion mit G418 wurde die Anzahl der Zellkolonien, ausgedrückt in 'colony forming units (cfu) pro Mikrogramm RNA' in den beiden Ansätzen bestimmt. Bei einer Konzentration von 500 µg/ml G418 im Selektionsmedium betrug die Zahl der Kolonien, die mit der in der *isolierten* Gesamt-RNA enthaltenen HCV-RNA erhalten wurde, ca. 100.000 cfu pro Mikrogramm HCV-RNA. Dagegen wurden mit dersel-

ben Menge in vitro transkribierter HCV-RNA nur 30 - 50 Kolonien erhalten. Dieses Ergebnis belegt, daß die spezifische Infektiosität der HCV-RNA, die aus den Zellklonen isoliert wurde, ca. 1.000 - 10.000-fach höher ist als die Infektiosität der analogen in vitro Transkripte. Das methodische Vorgehen ist in Fig. 9 dargestellt.

[0079] Mit Hilfe der 'long-distance RT-PCR' wurde die HCV-RNA aus der Gesamt-RNA der 9-13 Zellen amplifiziert, die PCR-Amplikate kloniert und zahlreiche Klone sequenziert. Ein Vergleich der Sequenzen dieser rekombinierten RNAs mit der Sequenz der RNA, die ursprünglich in die naiven Huh-7 Zellen eingeschleust wurde ergab, daß die rekombinierten RNAs zahlreiche Aminosäureaustausche besaßen, die über die gesamte HCV-Sequenz verteilt waren (Fig. 10). *Sfi*-Fragmente dieser rekombinierten Mutanten wurden im Austausch gegen das analoge *Sfi*-Fragment des ursprünglichen Replikonkonstrukts in dieses eingeführt und RNAs der jeweiligen Mutanten wurden in naiven Huh-7 Zellen eingeschleust. Nach Selektion mit G418 wurde dann für jede HCV-RNA-Mutante die Zahl der gebildeten Kolonien bestimmt. Während mit der Ausgangs-RNA nur 30 - 50 Kolonien pro Mikrogramm RNA erhalten wurde war die Koloniezahl bei zwei der rekombinierten Varianten deutlich höher (Fig. 10). Im Fall der HCV-RNA-Konstrukte 9-13I und 9-13C betrug die spezifische Infektiosität 100 - 1.000 cfu pro Mikrogramm RNA und beim 9-13F Replikon sogar 1.000 - 10.000 cfu pro Mikrogramm RNA. Diese Ergebnisse zeigen, daß die Aminosäureaustausche in dem analysierten NS3-5B-Bereich der Mutanten 9-13I, 9-13C und insbesondere 9-13F zu einer deutlichen Erhöhung der Replikationskompetenz führten. Demgegenüber waren alle anderen HCV-RNA-Konstrukte (9-13 A, B, G, H und K) nicht mehr replikationskompetent, enthielten also letale Mutationen.

[0080] Zwecks Beantwortung der Frage, welche der Aminosäureaustausche im 9-13F-Konstrukt zur Steigerung der Replikation führten, wurden die Austausche einzeln oder in Kombination in das Ausgangs-HCV-RNA-Konstrukt eingeführt und die entsprechenden RNAs in naiven Huh-7 Zellen eingeschleust. Das Ergebnis der Transfektionen mit diesen RNAs ist in Tabelle 1 zusammengefaßt. Daraus wird ersichtlich, daß im vorliegenden Beispiel die hohe Replikationskompetenz durch mehrere Mutationen bedingt ist. Den größten Beitrag leisten die Aminosäureaustausche in den HCV-RNA-Abschnitten NS5A und NS4B. Auch die einzelnen Austausche in der NS3-Region leisten einen Beitrag, der möglicherweise auf einem Synergismus dieser Einzelaustausche beruht.

Diese Befunde belegen, daß es durch die G418-Selektion der Zellen, die mit den *neo*-HCV-RNA-Konstrukten transfiziert wurden, zur Anreicherung solcher HCV-RNAs kam, die eine deutlich höhere Replikationskompetenz hatten. Mit dem hier beschriebenen Versuchsanansatz lassen sich HCV-RNA-Konstrukte mit sehr unterschiedlicher Replikationseffizienz selektionsieren. Je höher die Konzentration des Antibiotiks in dem Selektionsmedium ist, in/auf dem die HCV-RNA-Konstrukt-haltigen Zellen zwecks Selektion kultiviert werden, desto höher muß der Grad an adaptiven Mutationen und damit die Replikationseffizienz in den betreffenden HCV-RNA-Konstrukten sein, damit die Zellen auswachsen können. Werden die Selektionen mit niedrigeren Antibiotikum-Konzentrationen durchgeführt, können auch solche Zellen überleben und sich vermehren, die im Vergleich geringer adaptive Mutationen und eine weniger hohe Replikationseffizienz aufweisen.

Das bisher beschriebene HCV-RNA-Konstrukt 9-13F, das mehrere adaptive Mutationen enthielt, hatte eine erwiesenermaßen höhere Replikationseffizienz als die parentale HCV-RNA. Um HCV-RNAs mit noch höherer Replikation in Zellkultur zu erhalten, wurde die HCV-RNA, die in der Gesamt-RNA eines ausgewählten Zellklons enthalten war, mehrfach in naiven Huh-7 Zellen passagiert. Dieser ausgewählte Zellklon, genannt 5-15, wurde durch Transfektion mit dem HCV-RNA-Konstrukt I₃₈₉/NS3-3' erhalten (Fig. 1). Er entspricht weitgehend dem Zellklon 9-13, der durch Transfektion mit einem HCV-RNA-Konstrukt hergestellt wurde, das eine um 22 Nukleotide kürzere HCV-IRES besaß (I₃₇₇/NS3-3'; Fig. 1). 10 Mikrogramm Gesamt-RNA, isoliert aus dem Zellklon 5-15, wurden mittels Elektroporation in naiven Huh-7 Zellen eingeschleust und die Zellen einer Selektion mit 1 mg/ml G418 unterzogen. Aus einem der so erzeugten Zellklone wurde wiederum Gesamt-RNA isoliert, in naiven Huh-7 Zellen transfiziert und analog selektionsiert. Dieser Vorgang wurde insgesamt viermal wiederholt. Nach der vierten Passage wurde aus einem Zellklon die Gesamt-RNA isoliert und die *neo*-HCV-RNA mit Hilfe der 'long-distance RT-PCR' amplifiziert. Das amplifizierte DNA-Fragment wurde mit dem Restriktionsenzym *Sfi* verdaut und in das *Sfi*-restringierte Ausgangskonstrukt I₃₈₉/NS3-3' inseriert. Insgesamt wurden über 100 DNA-Klone erhalten und zunächst mittels Restriktionsverdau analysiert. In vitro transkribierte RNA von ca. 80 dieser Klone wurde jeweils in naiven Huh-7 eingeschleust und einer Selektion mit 500mg/ml G418 unterzogen. Von den 80 untersuchten *neo*-HCV-RNA-Varianten erwiesen sich die allermeisten als replikationsdefekt. Bei zwei Mutanten, genannt 5.1 und 19, war die spezifische Infektiosität, ausgedrückt als 'colony forming units' pro Mikrogramm RNA, jedoch sehr deutlich erhöht (Tabelle 2). Durch mehrfache Passage der RNA in Zellkultur lassen sich offensichtlich HCV-RNAs herstellen, deren Replikationseffizienz aufgrund von Mutationen (sog. "adaptiven Mutationen") mehrere Größenordnungen höher ist als die der ursprünglich aus dem Patienten klonierten RNA.

(B) Modifikationsverfahren

[0081] Solche nach (A) erzeugten und identifizierten adaptiven Mutationen können in ein wenig replikationskompetentes HCV-RNA-Konstrukt übertragen werden und führen zu einer massiven Steigerung der Replikation dieses Konstrukts. Diese Steigerung ist so hoch, daß damit nachweislich HCV-RNAs in Zellkultur zur Replikation gebracht

werden können, die kein selektierbares Markerogen mehr besitzen. Fig. 12 zeigt einen Vergleich der Replikationseffizienz von HCV-RNAs, die entweder der Ausgangssequenz oder den adaptierten Sequenzen 9-13F bzw. 5.1 entsprachen. Zwecks einfacher Messung wurde das neo-Gen entfernt und durch das Gen für die Luziferase ersetzt. Als Negativkontrolle diente wiederum ein HCV-RNA-Konstrukt, das auf Grund einer inaktivierenden Mutation der NS5B RNA-Polymerase replikationsdefekt war. Schon 24 Stunden nach der Transfektion erkennt man einen deutlichen Unterschied in der Luziferaseaktivität zwischen der defekten RNA und den 9-13F bzw. 5.1-Konstrukten während zwischen der defekten RNA (318 DN) und dem Ausgangs-RNA-Konstrukt (wt) das keine adaptiven Mutationen besaß, kaum ein Unterschied zu sehen war. Während des gesamten Beobachtungszeitraums wurde die höchste Luziferaseaktivität und damit die höchste Replikation mit der 5.1-RNA erhalten. Diese Befunde belegen nicht nur die hohe Replikationseffizienz dieser RNA, sondern zeigen auch, daß es möglich ist, mit adaptierten HCV-RNA-Konstrukten ein Zellkultursystem aufzubauen, für das die Anwesenheit eines selektierbaren Gens nicht mehr notwendig ist. Eine zusammenfassende Übersicht der Nukleotid- und Aminosäureunterschiede zwischen dem Ausgangskonstrukt und den Mutanten 9-13F, 5.1 und 19 ist in Tabelle 3 gegeben.

Beispiel 8: Herstellung zellkultur-adaptierter HCV-RNA-Vollängengenome

[0082] In den Beispielen 1 bis 7 wurde stets eine subgenomische HCV-RNA verwendet, der die gesamte Strukturproteinregion von Core bis einschließlich p7 bzw. NS2 fehlte. Im vorliegenden Beispiel 8 wird gezeigt, daß es möglich ist, mit Hilfe der adaptierten NS3-5B-Sequenz ein HCV-Vollängengenom in Zellkultur zur Replikation zu bringen. Zu diesem Zweck wurde zunächst das Sfil-Fragment der gemäß Beispiel 7 hergestellten, hoch adaptierten HCV-RNA 5.1 in ein selektionierbares HCV-Vollängengenom transferiert (Fig. 12). Dieses HCV-Genom wurde in naïve Huh-7 Zellen transfiziert und einer Selektion mit unterschiedlichen G418-Konzentrationen unterzogen. In Abhängigkeit von der Selektionsstärke (der G418-Konzentration) wurde eine unterschiedlich große Zahl an Zellklonen erhalten (Fig. 12 B). Im Vergleich dazu wurden mit dem unveränderten HCV-Vollängengenom, das keine-adaptiven Mutationen enthielt, keine Kolonien erhalten, ebenso mit der Negativkontrolle, die auf Grund einer inaktivierenden Mutation in der NS5B RNA-Polymerase replikationsdefekt war. Zum Nachweis dafür, daß die so entstandenen Zellklone tatsächlich ein autonom replizierendes HCV-Vollängengenkonstrukt enthielten, wurde Gesamt-RNA aus mehreren Zellklonen isoliert und mittels Northern-Blot analysiert. In allen Zellklonen war die Vollänge HCV-RNA eindeutig nachweisbar (Fig. 12). Damit ist eindeutig belegt, daß es mit Hilfe der an Zellkulturen adaptierten HCV-Sequenzen möglich ist, ein HCV-Vollängengenom herzustellen, das mit hoher Effizienz und autonom in einer Zelllinie repliziert, d.h. es können mit dem erfundsgemäßen System auch adaptierte HCV-Vollängengenome hergestellt werden. Da dieser Klon darüber hinaus die vollständige HCV-Sequenz besitzt, also auch die für die Viruspartikelbildung notwendigen Strukturproteine, ist es mit diesem System möglich, große Mengen infektiöser Viruspartikel in Zellkulturen herzustellen. Zum Nachweis dieser Viren werden zellfreie Überstände von Zellen, die ein replizierendes HCV-Vollängengenom tragen, auf naive Huh-7 Zellen gegeben und die so infizierten Zellen einer Selektion mit G418 unterzogen. Jeder Zellklon, der unter diesen Bedingungen auswächst, geht auf eine infizierte Zelle zurück. Die Viren in den Zellkulturüberständen von Zellen, die ein replizierendes HCV-Vollängengenom besitzen, können aber auch mit verschiedenen im Stand der Technik bekannten Verfahren wie Ultrazentrifugation oder Mikrodialyse angereichert und gereinigt werden und dann zur Infektion naiver Zellen verwendet werden. Mit diesem Verfahren ist eindeutig gezeigt, daß mit dem erfundsgemäßen HCV-Zellkultursystem zellkultur-adaptierte HCV-Vollängengenome hergestellt werden können, die mit hoher Effizienz in Zellen replizieren und infektiöse Viren produzieren. Diese können ebenfalls durch Infektion eines Versuchstiers, vorzugsweise dem Schimpanse, nachgewiesen werden.

Beispiel 9: Herstellung von HCV-Vollängen-Konstrukten und HCV-Subgenom-Konstrukten mit Reportergen.

[0083] Es wird ein HCV-RNA-Konstrukt hergestellt, bei dem anstelle des Antibiotikumresistenzgens ein Reportergen eingefügt wird (Fig. 13). Dabei kann die Replikation anhand der Menge bzw. der Aktivität des Reportergens bzw. Reportergenprodukts bestimmt werden. Das Reportergen ist vorzugsweise ein Gen aus der Gruppe der Luziferasegene, dem CAT-Gen (Chloramphenicol-Acetyl-Transferase-Gen), dem lacZ-Gen (beta-Galaktosidasegen), dem GFP-Gen (green fluorescence protein Gen), dem GUS-Gen (Glukuronidasegen) oder dem SEAP-Gen (sezernierte alkalische Phosphatasegen). Diese Reportergene bzw. deren Produkte, nämlich die entsprechenden Reporterproteine, können z.B. mittels Fluoreszenz, Chemilumineszenz, colorimetrisch oder mit Hilfe immunologischer Methoden (z.B. enzyme-linked immunosorbent assay, ELISA) bestimmt werden. Das Reportergen kann entweder von einer eigenen IRES exprimiert werden oder in Form eines Fusionsproteins, das entweder als solches aktiv ist oder mittels einer proteolytisch spaltbaren Aminosäuresequenz so mit einem HCV-Protein verbunden ist, daß es von einer zellulären oder viralen (HCV)-Protease von diesem abgespalten wird.

EP 1 043 399 A2

Beispiel 10: Herstellung von HCV-Vollängen-Konstrukten mit integrierten Fremdgenen zur Verwendung als leberzellspezifische Genfahre für die Gentherapie oder als Expressionsvektor.

[0084] Das Konstrukt (Fig. 14) wird in Zellen eingeschleust und führt dort zur Bildung von HCV-Viruspartikeln, die 5 zur Infektion weiterer Zellen verwendet werden können. Da die Viruspartikel eine RNA mit einem Fremdgen enkapsuliert haben kann dieses in den so infizierten Zellen zur Produktion des von diesem Fremdgen kodierten Proteins benutzt werden. Zellen, die mit dem Konstrukt transfiziert wurden, exprimieren ebenfalls das Fremdgen.

Beispiel 11: Herstellung von monocistronischen HCV-RNA-Konstrukten, bei denen das Resistenzgenprodukt 10 als Fusionsprotein mit dem HCV-Anteil exprimiert wird.

[0085] Für bestimmte Untersuchungen ist es von Vorteil, wenn das HCV-RNA-Konstrukt kein heterologes IRES-Element besitzt. Solche Untersuchungen sind beispielsweise die Bestimmung der Interferonresistenz. Wird eine Zelle, 15 die ein HCV-RNA-Konstrukt besitzt, mit Interferon-alpha oder -beta inkubiert, kommt es zu einer Reduktion der Replikation der HCV-RNA. Zur Aufklärung des Wirkungsmechanismus ist es notwendig, daß das HCV-RNA-Konstrukt keine heterologe IRES besitzt, da ansonsten nicht bestimmt werden kann, ob die Interferon-vermittelte Hemmung durch eine 20 Hemmung der HCV-Replikation oder durch eine Hemmung der heterologen IRES vermittelt wird. Deshalb werden Konstrukte hergestellt, bei denen das Resistenzgen mit einem HCV-Protein fusioniert wird (Fig. 15). Entweder das Fusionsprotein ist als solches aktiv oder das Resistenzgenprodukt wird mittels einer proteolytisch spaltbaren Aminosäuresequenz so mit einem HCV-Protein verbunden ist, daß es von einer zellulären oder viralen (HCV)-Protease von diesem abgespalten wird.

Tabelle 1

Spezifische Infektiositäten (cfu/µg RNA) der HCV-RNA-Konstrukte mit adaptiven Mutationen, die bei der 9-13F-Mutante gefunden und in das parentale HCV-RNA-Konstrukt I ₃₈₉ /NS3-3'/wt eingeführt wurden		
Aminosäureaustausch ¹	HCV-Protein	cfu/µg RNA ²
kein		30 - 60
1283 arg -> gly	NS3	200 - 250
1383 glu -> ala	NS3	30 - 60
1577 lys -> arg	NS3	30 - 60
1609 lys -> glu	NS3	160 - 300
(1283 arg -> gly + 1383 glu -> ala + 1577 lys -> arg + 1609 lys -> glu)	NS3	360 - 420
1936 pro -> ser	NS4B	500 - 1000
2163 glu -> gly	NS5A	1000-5000
2330 lys -> glu	NS5A	30 - 60
2442 ile -> val	NS5B	30 - 60
alle zusammen		5000

¹ Aminosäureaustausch im Polyprotein des HCV-Isolats Con-1 (EMBL-Genbank No. AJ238799); die Aminosäuren sind im Dreibuchstabenkode angegeben.

² Colony forming units (Anzahl der Zellklone) bei einer Selektion von 500 µg/ml G418.

EP 1 043 399 A2

Tabelle 2

Spezifische Infektiositäten (cfu/µg RNA) des parentalen HCV-RNA-Konstrukts I ₃₈₉ /NS3-3'/wt und der Varianten 9-13C, 9-13I, 9-13F, 5.1 und 19.		
Transfizierte	RNA-Variante	cfu/µg RNA ¹
Wildtyp		30 - 50
9-13 C		100 - 1.000
9-13 I		100 - 1.000
9-13 F		1.000 - 10.000
5.1		50.000 - 100.000
19		50.000 - 100.000

¹ Colony forming units (Anzahl der Zellklone) bei einer Selektion von 500µg/ml G418.

5

10

15

20

25

30

35

40

45

50

55

EP 1 043 399 A2

Tabelle 3: Nukleotid- und Aminosäureunterschiede zwischen dem parentalen HCV-
RNA-Konstrukt I₃₈₉/NS3-3'/wt und den Mutanten 9-13I, 9-13F, 5.1 und 19

HCV Mutante	Nukleotidposition	Nukleotidaustausch	Aminosäureaustausch
9-13 I	3685	C > T	Pro > Leu
	4933	C > T	Thr > Met
	5249	T > C	-
	8486	C > T	-
	8821	G > A	Trp > stop
	8991	C > G	Arg > Gly
	9203	A > G	-
	9313	T > C	Phe > Ser
	9346	T > C	Val > Ala
9-13 F	3866	C > T	-
	4188	A > G	Arg > Gly
	4489	A > C	Glu > Ala
	4562	G > A	-
	4983	T > C	-
	5071	A > G	Lys > Arg
	5166	A > G	Lys > Glu
	6147	C > T	Pro > Ser
	6829	A > G	Glu > Gly
	7329	A > G	Lys > Glu
	7664	A > G	Ile > Val
	8486	C > T	-
	8991	C > G	Arg > Gly
NK5.1	4180	C > T	Thr > Ile
	4679	C > T	-

EP 1 043 399 A2

	4682	T > C	-
5	5610	C > A	Leu > Ile
	6437	A > G	-
10	6666	A > G	Asn > Asp
	6842	C > T	-
15	6926	C > T	-
	6930	T > C	Ser > Pro
	7320	C > T	Pro > Ser
20	7389	A > G	Lys > Glu
	NK19	A > G	Glu > Gly
	3946	C > G	Ala > Gly
25	4078	C > T	Thr > Ile
	4180	T > C	-
	4682	C > A	Leu > Ile
30	5610	A > T	Met > Leu
	5958	T > A	-
	6170	G > A	-
35	6596	C > G	Ala > Gly
	6598	C > T	-
	6833	C > T	-
40	6842	T > C	-
	6930	A > G	Ser > Pro
	7141	C > T	Glu > Gly
45	7320	A > G	Pro > Ser
	7389	C > T	Lys > Glu
	7735	G > A	Ser > Asn

50

[0086] Angegeben sind die Unterschiede der Nukleotid- und Aminosäuresequenzen zwischen der Ausgangs-HCV-RNA-Sequenz Con 1 (EMBL-Genbank No. AJ238799) und denen der zellkulturadaptierten HCV-RNAs. Die Zahlen beziehen sich auf die Nukleotid- und Aminosäurepositionen des HCV-Isolats Con1.

EP 1 043 399 A2

SEQUENCE LISTING

5 <110> Bartenschlager, Ralf
 <120> Hepatitis C Virus cell culture system
 <130> ba-1
 10 <140> 199 15 178.4
 <141> 1999-04-03
 <160> 11
 <170> PatentIn Ver. 2.1
 15 <210> 1
 <211> 11076
 <212> DNA
 <213> Hepatitis C Virus
 20 <400> 1
 ggcagccccc gattggggc gacactccac catagatcac tccccgtgaa ggaactactg 60
 tcttcacgca gaaagcgctt agccatggcg ttatgtatgg tgcgtgcgg cctccaggac 120
 ccccccccc gggagagcca tagtggctc cggaaaccggg gatgacaccg gaatttgcgg 180
 gacgaccggg tcctttcttgc gatcaaccgg ctcaatgcct ggagatgg gctgtcccc 240
 gctgagactgc tagccggatg gtgtgggtc gcgaaaggcc ttgtggtaact gcctgtatgg 300
 gtgtgtcgaa gtgccccggg aggttctgtt gaccgtgcac catggacacg aatcccaaacc 360
 ctcaaaagaaa aaccacaaacg ggcgcggccat gattgaacaa gatggattgc 420
 acgcagggttc tcccgccgtt tggttgaga ggctattcggt ctatgactgg gcacaacaga 480
 caatcggtcg ctctgtatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccgggtcttt 540
 ttgtcaagac cgacgttcc ggtggccctt atgaaactgcg ggcggggcga ggcgggttat 600
 cgtggcttgc cacgacgggc ttcttgcg cagctgtgtc cgacgttgc actgaagcgg 660
 gaagggactg gctgtatgg ggcaagtgc cggggcagga ttcctgtca ttcacccctt 720
 tcctgtccca gaaagtatcc atcatggctg atgcaatgcg gcccgtcat acgcttgatc 780
 ccggctacttgc cccatcgac caccaacgca aacatcgat cgacgcgacca cgtactcgga 840
 tggaaagccgg tcttgcgtat cggatgtatc tggacgaga gcatcgggg ctcgecccg 900
 30 ccgaactgtt cgccaggctc aaggcgcgcgca tgcccgacgg cgaggatctc gtcgtgaccc 960
 atggcgatgc ctgtgtccg aatatacatgg tggaaaaatgg ccgttttttgc ggattcatcg 1020
 actgtggccg gctgggtcg gggacgcgtt atcggacat agcgttggct acccgtgata 1080
 ttgtgttgcg gcttgcgcgca gatgggtcg accgttcttcc cgtgttttac ggtatcgccg 1140
 ctcccgatcc gcaatcgatc gcttttccatc gcttcttgc ctaggttcttcc tgagtttaaa 1200
 cagaccacaa cggtttccct ctacggatgtt caatccgcgc ccctctccctt cccccccccc 1260
 35 aacgttactg gccgaagccg ctggatataa ggcgggtgtt ctttgttca tatgttattt 1320
 ttcaccatcatc tgccgttcc tggcaatgtt agggcccgaa aacctggccc ttttttttgc 1380
 acgagcattc ctagggttct ttcccttctc gccaaggaa tgcaggatctt gttgaatgtc 1440
 gtgaaggaa cagtgttccctt ggaaggcttct tgaagacaaa caacgttctgtt akgcggccctt 1500
 tgcaggcgc ggaacccccc acctggcgac aggtgcctt cggccaaaa gccacgtgtt 1560
 taagatacac ctgcaaaaggc ggcacaaaccc ctagtgcacg ttgtgatgtt gatagttgt 1620
 gaaagagtc aatggcttc ctaagcgta ttcaacaagg ggctgttgcg tggccagaag 1680
 40 gtacccattt gtatggatc tgatggggg cttcggtgc catgttttac atgtgtttatg 1740
 tcgagggttaa aaaacgttca ggcggcccgaa accacggggc cgtgggttcc ttttggaaaa 1800
 cacgataata ccatggccac gaaatctaaa ccttcaaagaa aaacccaaacg taacaccaac 1860
 cgccggccca aggacgttca gttccgggc ggtgttcaga tgcgtgggtgg agtttacctg 1920
 ttggccgcga gggggcccaag gtgggtgtt cgcgcgacta gaaagacttgc cgagcggtcg 1980
 45 caacccctgtt gaaaggcgacca acatccccc aaggctcgcc accccggagg tagggccctt 2040
 gctcggcccg ggttccctgtt gccccttcat ggcataatggg gcttgggggtt ggcaggatgg 2100
 ctccctgttcc cccgtggctc tggccctgtt tggggccccc cggacccccc gctgtggctcg 2160
 cgcaattttgg gtaagggttca ctagatccctt acgttgcgtt cttccgtat catggggatcc 2220
 attccgttgc tggccggccc cttgggggtt cttccgttgc cttccgttgc tggccgttgc 2280
 gttctggagg acggcgatgttca cttatgttgc gggatctgc cccgttgc ttttttccatc 2340
 ttccctttgg ctgtgttgc ttttttgc accccatgtt ccgttgc ttttttccatc akgcggccac 2400
 gtatccggag ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc 2460
 ggggacatgttca ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc 2520
 cgctgtgggg ttttgc 2580
 50 acgataacgac ggcacgttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc 2640
 gtggggatgttca ttttgc 2700

5 cggcacgaga cagtacagga ctgcaattgc tcaatatac cccggcacgt gacaggcac 2760
 cgtatggctt gggatatgtat gatgaactgg tcacccatag cagccctagt ggtatcgac 2820
 ttactccgga tccccacaagg tgctgtggat atgggtgggg gggcccatg gggactctta 2880
 gcggggcttg cctactattc catgggtgggg aactgggcta aggttctgtat tggatgtcta 2940
 ctctttggcg cggttgacgg gggaaacctat gtgacagggg ggacgatggc caaaaacacc 3000
 ctcgggatca cgtccctt ttccccggg tcatacccca aaatccagct tgtaaacacc 3060
 aacggcagtt ggcacatcaa caggactggc ctgactgtca atgactccctt caacaactggg 3120
 ttccctgtcg cgctgttcta cggtcacaag tcaactcat ctggatgccc agagcgcatt 3180
 gccagctgtca gccccatcgca cgcgttgcgt cagggtggg gggccatcac ttacaatggag 3240
 tcacacatcg cggaccagag gccttattgt tggactacg caccggccgt gtgcggatc 3300
 10 gtacccggcg cgcagggtgt tggccatgt tactgttca ccccaagccc tgctgtgt 3360
 gggacgaccc accgggttgg cgtccctacg tacagtggg gggagaatga gacggacgtg 3420
 ctgttcttata acaacacgcg gcccggcaaa gccaactgggt ttggctgtac atggatgaaat 3480
 agcaactgggt tccaccaagac gtgcggggc ccccccgtta acatcggggg gatcgccat 3540
 aaaaccttga cctgccccac ggcactgttc cggaaagcacc cccggccatcac ttacaccaag 3600
 tgggttccgg ggccttgggtt gacacccaga tggcttggcc actacccata caggcttgg 3660
 cactaccctt gcaactgtca ctttacccatc ttcacgggtta ggatgtacgt gggggggagt 3720
 15 gagcacaggg tcaagggcgc atcaaatgg actcgaggag acgtgttata cctggaggac 3780
 agggacagat cagagcttag cccgctgtcg ctgtctacaa cggagtggca ggatttggcc 3840
 tggcccttca ccacccatacc ggctctgtcc actgggttga tccatcttca tcagaacgtc 3900
 gtggacgttca aataccatgtt cggatgtggg tggcgggttgc tcttgcgttgc aatcaaatgg 3960
 gagatgttcc tggctgttcc ctttcttgc ggcggacgcg cgcgttgc ctgttgcgttgc 4020
 atgatgttcc tggatgttca agtggaggcc gcccataagaa acctgtgttgc cttcaacgcg 4080
 20 gcacccgtgg ccggggcgca tggcatttcc tccttcttgc tggttcttgc tgctgtgttgc 4140
 tacatcaagg cgcagggtgtt ccctggggcc gcatatggcc tctacggcgat atggccgtca 4200
 tcctgttcc tgctgtgttcc accacccaga gcatatggca tggacccggca gatggcagca 4260
 tggcggagat ggcgggtttt cgtagggtcg atacttgc tcttgcgttgc cactataag 4320
 ctgttcttgc ttaggttcat atgggttgc tttatattttt tcacccaggc cgaggcacac 4380
 ttgcgttgcggt ggatcccccc cttcaacgggtt cggggggggcc gggatggcgat catcccttc 4440
 25 acgtgcgcga tccacccaga gctaattttt accatccaca aaatcttgcgttgc cggccatctc 4500
 ggttccatca tgggtgttca gggttgtata accaaaatgtc cgtacttgcgttgc cggccatctc 4560
 gggcttacatc gtgcgttcatc gtgtgttgcggg aagggtgttgc ggggttcatca tggttcaatgg 4620
 gctcttcatgtt agttggccgc actgacaggtt acgtacgtttt atgaccatctt cccccactgt 4680
 cgggacttggg cccacgggg cttacacggat ctttgcgttgc ctttgcgttgc 4740
 tctgtatgg agaccaagggtt ttttacccatgg gggggcagaca cccgggggtt tggttgcgttgc 4800
 atcttggggcc tggccgttcc cggccggagg ggggggggaa tacatcttgcgttgc accggccagac 4860
 30 acgcttggaaat ggcgggggtt ggcacttcc tggccatctt cggccatctt cggccatctc 4920
 cggggcttacatc tgggtgttcatc catccatggc ctttgcgttgc ctttgcgttgc 4980
 ggggggggttca aagtgttccatc caccgcaaca caatcttcc tggcgttgc cgtcaatggc 5040
 gtgtgttggat tgggtgttcatc tgggtgttgc taaagacccatc ttggccggccaa aaaggggccca 5100
 atcaccaaaaat tggatgttcaatggatgttgc gacccatc tgggtgttgc gttggcaagc gccccccggg 5160
 ggggggttccatc tggatgttcaatggatgttgc gacccatc tgggtgttgc gttggcaagc 5220
 35 ggccatgttca ttttgcgttgc cccggggggc gacccatc tgggtgttgc gttggccatctc 5280
 cccgttccatc acttggaaat gggggggggcc gtttgcgttgc ttttgcgttgc ttttgcgttgc 5340
 gtggccatctt tgggtgttgc ctttgcgttgc cgggggggttgc cgggggggttgc gggccatctc 5400
 cccgttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5460
 cccgttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5520
 agcaacttggat tggccgttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5580
 tccgttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5640
 40 aacatcatggat cccgggggttgc gacccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5700
 ggcaagtttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5760
 gaggttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5820
 gagacgggttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5880
 gtggccatcttcaatggat ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 5940
 ggcaaaatggat ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6000
 aagaagaaat ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6060
 tattaccggat ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6120
 acggacgttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6180
 ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6240
 gtggccatcttcaatggat ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6300
 ggcatttacatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6360
 ctgttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6420
 50 gttaggttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6480
 ttcttggggat ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6540
 aagcaggccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6600
 gtcagggttccatc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 6660

EP 1 043 399 A2

5	acgtgcacg	ggccaaacgcc	cctgctgtat	aggctggag	ccgttcaaaa	cgaggttaact	6720
	accacacacc	ccataaccaa	atacatcatg	gcatgcatgt	cggtgcacct	ggaggtcgctc	6780
	acgagcacct	gggtgctgtt	aggccggagtc	ctgcagctc	tggccgctga	ttgcctgaca	6840
	acaggcagcg	tggtcatttg	gggcaggatc	atcttgcgg	aaaaaggccggc	catcattcccc	6900
	gacagggaaag	tcccttaccc	ggagttccat	gagatggaaag	agtgcgcctc	acacccctcc	6960
10	tacatcgAAC	agggaatgca	gctgcgcgaa	caattcaaaac	agaaggcaat	cggtttgtcg	7020
	caaacagcca	ccaagcaagc	ggaggctgtc	gctccgtgg	tggaaatccaa	gttgcggacc	7080
	ctcgaagcct	tctggccgaa	geatatgtgg	aatttcatca	gggggataca	atatttagca	7140
	ggcttgtcca	ctctgccttg	caaaaaaaaa	atagatcatc	tgtggcatt	cacagctct	7200
	atcaccagcc	cgctcaccac	ccaaacatacc	ctctgttta	acatcctggg	ggatgggtg	7260
15	gccgccccaaac	ttgctccccc	cagegtgtct	tctgttttcg	taggegcggg	catcgctgga	7320
	gcggcggttgc	gcagcatagg	cttggggaa	gtgttgggg	atatttttggc	aggttatggg	7380
	gcaggggttgg	caggcgcgt	ctggccctt	aaggctatca	gcccggagat	gcctccacc	7440
	gaggacctgg	ttaacactact	ccctgtatc	ctctccctg	gcccctctgt	cgtcgggtc	7500
	gtgtgcgcag	cgatactgca	teggcaatgt	ggcccgagggg	agggggctgt	geagtggatg	7560
20	aacccgtgt	tagcgttgc	ttcgcgggggt	aaccacgtt	ccccccacgca	ctatgtgt	7620
	gagagcgacg	ctgcagcac	tgtcactcag	atcttcctca	gttcttccat	cactcgatg	7680
	cttaagagggc	ttcaccagg	gatcaacagag	gactgttcca	cgccatgtc	cggtcggtgg	7740
	ctaagagatg	tttgggattt	gatatgcac	gtgttactgt	atttcaagac	ctggcttccag	7800
	tccaacgtcc	tgcggcgt	ggccggggatc	cccttctt	catgtcaacg	tgggtacaag	7860
25	ggagtctggc	ggggccgacgg	catcatgaa	accacccgtc	catgtggagc	acagatcacc	7920
	ggacatgtga	aaaaacgggtc	catgaggatc	gtggggctta	gjacctgtag	taacacgtgg	7980
	catggAACAT	tccccattaa	cgctacacc	acggggccct	gcacccccc	ccggggccca	8040
	aattttctca	ggggcgtgt	gggggggtgt	getgaggagt	aeftggaggt	tacgggggtg	8100
	ggggattttcc	actacgtac	gggcgtatcc	actgacaaacg	taaaatggccc	gtgtcagggt	8160
30	ccggcccccccg	aatttccac	agaagttggat	gggttgcgg	tgcacaggta	cgctccagcg	8220
	tgcaaaacccc	tcctacggg	ggaggtcaca	ttctgggtcg	ggctcaatca	atacttgggt	8280
	gggtcacaacg	ttccatgggg	ggcccaaccc	gaettagcag	tgtcacttcc	catgtcacc	8340
	gacccttccc	acattacggc	ggagacggct	aagcttaggc	tggccgggg	atctccccc	8400
	tccttggcca	gtctcatc	tagccatgt	tctgcgcctt	ccttgaaggc	aacatgact	8460
35	acccgtcatg	actccccgg	cgctgaccc	atcgaggcc	accttcgtgt	gcccggagg	8520
	atgggggggg	acatcaccc	cgtggatca	aaaaataagg	tagtaatttt	ggacttttcc	8580
	gagccgctcc	aaggcggagg	ggatggagg	gaatgtatcc	ttccggggga	gatectcgcc	8640
	aggtccagga	aatttccctcg	agcgatgtcc	atatggcac	gccccggatta	caaccctcca	8700
	ctgttagagt	cctggaaagga	cccgactact	gtccctccag	ttgtacacgg	gtgtccattg	8760
40	ccgcctgtcca	aggcccttcc	gataccaccc	ccacggaggaa	agaggacgggt	tgtctgttca	8820
	gaatcttaccc	tgatcttc	cttgcgggg	ctgcacccaa	agacccctgg	cagctccggaa	8880
	tcgtcgccg	tcgacagcgg	caaggcaacg	gecttcctc	accacccctc	cgacgacggc	8940
	gacgcgggat	ccgacgttga	gtctacttcc	tcctatcccc	cccttgcgggg	ggagccgggg	9000
	gatccggatc	tcagcgacgg	gtcttgcgt	accgttgcgg	aggaggctag	tgaggacgtc	9060
45	gtctgtctgt	cgatgttcc	catatggaca	gggccttgc	tcacccgttca	cgctcgccgg	9120
	gaaaaccaagc	tgcccatcaa	tgcactgagc	aacttttgc	tccgtaccca	caacttggtc	9180
	tatgtctacaa	catctcgac	cgcaaggctc	cggcagaaga	aggttacccct	tgacagactg	9240
	caggctctgg	acgaccata	ccggggatgt	ctcaaggaga	tgaaggcgaa	ggcgccacca	9300
	gttaaaggcta	aacttctatc	cgtggggaaa	gectttaatgc	tgacccccc	acatttcggcc	9360
	agatctaaat	ttggctatgg	ggcaaggac	gtccggaaacc	tatccagcaaa	ggccgttaac	9420
	cacatcccgct	ccgtgtggaa	ggacttgcgt	gaagacactg	agacaccaat	tgacacccacc	9480
	atcatggcaa	aaaatggatgt	tttttgcgtc	caacccaggaa	agggggggccg	caagccatgt	9540
50	cgccttaccc	tattttccaga	tttgggggtt	ctgtgtgcgt	agaaaaatggc	cctttacat	9600
	gtgttctcca	ccctccctca	ggccgtgtat	ggctttcat	acggatttcca	atactctct	9660
	ggacagccgg	tcgaggcttcc	ggtaatgtcc	tggaaaatgc	agaaaatggcc	tatgggtctc	9720
	gcatatgtaca	cccgctgtt	tgacttacac	gtcaactgaga	atgacatccg	tgttggagg	9780
	tcaatctacc	aatgttgcg	cttggccccc	gaagccggac	aggccataaag	tgctcgccca	9840
	gagccggcttt	acatcggggg	ccccctgtact	aatttctaaag	gycagaactg	cggtatcgcc	9900
	cggtggccgg	cgagcggtgt	actgaatggc	agtcggatgt	atacccttac	atgttacttg	9960
	aaggccggctg	ccggctgtcg	agtcgttgcgg	ctccaggact	gacatgttgc	cgtatcggt	10020
	gacgacccttgc	tcgtatcttc	tggaaatgcg	gggacccaaag	aggacggacgc	gagccctacgg	10080
	gccttcaccc	aggctatgtac	tagatacttc	ccccccctg	gggacccggcc	caaaccagaa	10140
	tacgacttgg	agttgataac	atcatgttcc	tccaaatgtgt	cagtcgcgc	cgatgcattt	10200
	ggcaaaaggaa	tgttactatc	caccctgtac	ccccccccc	cccttgcgc	qgctcgctgg	10260
	gagacagctaa	gacacacttc	tggcttgcgg	acatcatcat	tgatgcggcc	ccatagttac	10320
	accttgcggg	caaggatgtat	cctgtatgt	catttttctt	ccatcttctt	agctcaggaa	10380
	caacttgcggaa	aaggccctaga	ttgtcagatc	taaggggccct	tttactccat	tgagccacat	10440
	gaccctaccc	agatcattca	acgactccat	ggcccttageg	catttttact	ccatagttac	10500
	tctccagggt	atgatcaatag	gggtggctca	tgcttcaggaa	ataatgggggt	accggcccttgc	10560
	cgagcttgcg	gacatccggc	cagaatgttc	cgcgcttaggc	tactgtccca	ggggggggagg	10620

EP 1 043 399 A2

gctggccactt	gtggcaagta	cctttcaac	tgggcagtaa	ggaccaagct	caaactcact	10680
ccaatccccg	ctgcgtcccc	gttggattta	tccagctgg	tcgttgctgg	ttacagcggg	10740
ggagacatat	atcacagcct	gtctcggtcc	cgaccccgc	ggttcatgtg	gtgcctactc	10800
ctactttctg	tagggtagg	catctatcta	ctcccccaacc	gatgaacggg	gagctaaaca	10860
ctccaggcca	ataggccatc	ctgttttttt	cccttttttt	tttttttttt	tttttttttt	10920
tttttttttt	tttttttttt	tccttttttt	ttctcttttt	tttccttttc	tttcctttgg	10980
tggctccatc	ttagccctag	tcacggctag	ctgtgaaagg	tccgtgagcc	gcttgactgc	11040
aqagagtqct	gatactggcc	tctctgcaga	tcaagt			11076

10

15

20

25

30

35

40

45

50

55

EP 1 043 399 A2

<210> 2
<211> 8637
<212> DNA
<213> Hepatitis C Virus

<21> Hepatitis C Virus

	<400> 2	gcccgtcccc gattgggggc gacactccac catagatcac tcccctgtga ggaactactg 60
10	tcttcacgca gaaagcgtct agccatggcg ttagtatgag tgctgtcgag cctccaggac 120	
	cccccttccc gggagagcca tagtggtctg cggAACCGT gagtacaccg gaattgccg 180	
	gacgaccggg tccttttgg gatcaacccg ctaatgcct ggagatttg gctgtcccc 240	
	gcgagactgc tagcgagta gtgttgggtc gcggaaaggcc ttgtgtact gcctgtatag 300	
	gtgcttgcga gtggcccccgg aggctgtcac gacgtgcac catgagcacg aatccaaac 360	
15	ctcaaaaggaa aaccaaagggg cgccgcata gttgaacaaga tgattgcac cgacgttctc 420	
	cgccgcctt ggtggagagg ctattcgct atgactgggc aacacagaca atcggctgtc 480	
	ctgtatccgc ctgttccggg tgccttgcata gaactgcagg acgaggcgc gggctatcg tgcacagacc 540	
	actctgtccgg tgccttgcata gaactgcagg acgaggcgc gggctatcg tgcacagacc 540	
	cgacgggggt tccttgcata gctgtgtcg acgttgtcac tgaagcggga aaggactggc 660	
	tgcttattggg cgaagtgcgg gggcaggatc tcctgtcatc tcaacctgtc cctgccgaga 720	
	aagtatccat catgtgtcat gcaatgcggc gcgtgcatac gctgtatcc gctgtatcc 780	
	cattgcacca ccaaggaaat catgcatac acgcgcacg tactcgatg gacggcgtc 840	
20	ttgtcgatca ggatgtatcg gacgaaggacg atcaggggct cgcgcacagg gaaactgttc 900	
	ccaggctcaa ggcgcgcata cccgcaggcg aggatctcg cgtgaccat ggcgtatcc 960	
	gcttgcggas tatcatgttg gaaaatggcc gcttttctt attcatgcac tggccggcgc 1020	
	tgggtgtggc gagccgtat caggacatcg ctgttgcac cctgtatatt gctgaagac 1080	
	ttggcgcgca atgggctgac cgcttcccg tgctttacgg tategcgcgt ccggatattgc 1140	
	agcgcategc ctcttgcacg ctgttgcacg agttttctcg agttttaaaaa gaccacaacg 1200	
	gttccctctc acggccgtatc atccggcccc tctcccttccc ccccccctaa cgttactggc 1260	
	cgaaggccgt tggaaatagg cccgtgtcg tttgttata tggattttttt cccatatttg 1320	
25	ccgttccgg gcaatgttag gggccggaaa cctggccctg tcttcttgac gaggatcc 1380	
	aggggtttt ccccttcgc caaaggatg caaggctgt tgaatgtcg gacggcgtc 1440	
	gttccctctgg aaggttcttg aagacaaaca acgtctgtcg cgaccccttg cggcggcgc 1500	
	aaccccttccac ttggcgcacg gtgccttcgc ggccaaaggc cactgttata agatcacct 1560	
	gcaaaaggcg cacaacccca gtgcacatcg gtgatgttgg tagttgttgg aagagtcaaa 1620	
	tggcttccctc caagcgatcc caaacaagggg ctgaaggatg cccagaaggat accccattgt 1680	
	atggatctg atctggggcc tcggtcaca tgctttatcg gtgttagtc gagggtttaaa 1740	
30	aacgttctagg ccccccggac cacggggacg tggttttctt tttaaaaaaa cgataatacc 1800	
	atggacccggg agatggcgc acgtgtcgaa ggcgggttt tctgttgcgt gataactttt 1860	
	accttgcac cgcaactata gctttccctc gctaggctca tatgtgttgg aacaatatttt 1920	
	atcacccaggc ccgaggcaca tcgtgcatacg tggatcccccc cccctcaacgt tcggggggcc 1980	
	cgcgtatccg tcatccctc caegtgcgcg atcccaacccg actaaatctt taccatcac 2040	
35	aaaatcttgc tgcgcatact cggttccatc atgggtgtcc aggtgttat aaccaaagggt 2100	
	ccgtacttccg tgcgcgcaca cgggtctatt cgtgtatcgca tgctgtgcg gaagggttgc 2160	
	gggggttccat atgttccaaat ggctctctcg aagtggccg cactgcacgg tacgtacgtt 2220	
	tatggaccat tcacccctact gggggactgg ggccacgggg gctctacgaga ccttgcgtg 2280	
	gcagttgagc ccgtgtctt ctctgtatcg gagaccaagg ttatcacctg gggggcagac 2340	
	accggccgt gtggggacat catctggc ctgcggctct ccgcggccgcg gggggaggag 2400	
40	atacatctgg gaccggcaca cagccgttgg gggcagggtt ggcgtactt cgegcctatt 2460	
	acggcttact cccaaacagac gcggggccata ctgggtcgca tcatactact cccaccaac 2520	
	cgggacagga accaggtcgaa gggggagggtc caagtggtct ccacccgaac acaatcttt 2580	
	cttggcgcaccc gctgtatgg cgtgtgttgg actgttctatc atgggtccgg ctcaaaagac 2640	
	cttgcggcccaaaaggccca aatcacccaa atgtacacca atggggacca ggacccatcg 2700	
	ggcttgcggaa cggccccccgg gggcgttgc ttgcacccat gacactcgac cgttcggcgc 2760	
	cttacttgg tcacgaggca tgccgtatgc attccgggtc gccggggggg cgacagcagg 2820	
	gggagcttac tctcccccac gcccgttcc tacttgcagg gcttttccggg cggcttccact 2880	
45	ctctgcggcc cggggcacat tggggggatc ttccgggtcg ctgtgtgcac ccgggggttt 2940	
	gcaaggccgg tggatcttgc accccgtcgat tctatggaaa ccatactcg tggccggcgc 3000	
	ttcacggaca actgttcccc tccggccgtt ccgcagacat tccagggtgc ccatactacac 3060	
	gccccctactg gtacggcga gggactaag gtgcggctg cgtatgcacg ccaagggtat 3120	
	aagggtcttg tcctgcaccc gtcggctccg gcccacccat gtgttggggc gatatgttc 3180	
	aaggcacatg gatgcaccc taacatcgaa acggggtaa ggacccatcac cacgggtgc 3240	
	cccatcacgt actccaccta tgcaagttt cttggccacg gtgggtgtc tggggggcgc 3300	
50	tatgacatca taatatgtga tgagtgcac tcaactgact cgacccatct cctgggcatac 3360	
	ggcacagttc tgccggacca gggagacgcgt ggacggcgc acgtgtgtcg tggccggcgc 3420	
	acgcctccgg gatcggtcac ctgtgcacat cccaaatcg agggtgtgc tggccggcgc 3480	
	actggagaaa tcccttttta tggcaaaaggcc atcccatcg agacccatcaa gggggggagg 3540	

EP 1 043 399 A2

cacctcattt tctgccattc caagaagaaa tgtgatgagc tggccgcgaa gctgtccggc 3600
 ctcggactca atgctgttagc atattacccg ggcccttgatg tatccgtcat accaacttagc 3660
 ggagacgtca ttgtctgtac aacggacgtc ctatgacgg gctttacccg cgatttcgac 3720
 tcagtatcg actgtcaatac atgtgtcacc cagacagtcg acttcagctt ggacccgacc 3780
 ttcaccattt agacgacgac cgtgccacaa gacgcggtgtt cagctcgca gccccgaggc 3840
 aggactgtta ggggcaggat gggcatttac aggtttgtga ctccaggaga acggccctcg 3900
 ggcgtatcg attctcggt tctgtcgac tgctatgacg cgggtgtgc tttgtacgag 3960
 ctcaccccg ccgagacgtc agtttagttt cgggttacc taacacacc agggttccc 4020
 gtctgcccagg accatctgga ttcttgggg agcgcttta caggcctcac ccacatagac 4080
 gcccatttt tgcccccagg taaggcggca acttccctactt ggttagcatac 4140
 10 cagctacgg tttgtcgccag ggctcaggat ccacccat cgtgggacca aatgtgaaag 4200
 tttgtctatc ggcttaaagcc tacgctgcac gggccaaacgc cccctgtta taggtctggg 4260
 gccgttcaaa acgaggatcc taccacacac cccataacca aatacatcat ggcgtatcg 4320
 tcggctgacc tggggatcgat caccggacc tgggtgtcg tagggggagt ctttagcgt 4380
 ctggcccgat attggctgac aacaggcggc gtggcttattt tggggaggat catcttgc 4440
 gggaaagccgg ccatcattcc cggacaggaa gtcccttacc gggagttcga tgagatggaa 4500
 15 gagtgcgcct cacacccccc ttacatcgaa caggaaatgc agtcgcgcg acaattcaaa 4560
 cagaaggcca tcgggttgcgt gcaaacagcc accaagcag cggggatgtc tgctcccg 4620
 gtggaatcca agtggccgac ccttcggac ttcttggcgca agcatatgtg gaatttcatc 4680
 agccggatataatatttc aggtttgtcc actctgtctg gcaaaaaaccgc gatagcatca 4740
 ctgatggatc tcacagccctt tataccaggc cccgttcacca cccaaatatac cttctgttt 4800
 aacatccctgg gggggatgggtt ggcggcccaa ttgttccttc ccaggcgttc ttctgtttc 4860
 gttaggcggc gcatcgctgg agggcggtt ggcgtacatg gcttggggaa ggtgtttgt 4920
 20 gatattttgg cagggttatgg agcagggttgc gaggcgccg tctgtggctt taaggtcatg 4980
 agcggegaga tgccctccac cgaggacatc gttaaacctac tccctgtat cttctccct 5040
 ggcgccttag tcgtgggggtt cgtgtcgca gcatatgtc gtcggcactg gggcccgagg 5100
 gagggggttgc tggcgttggat gaaaccgggtt atagegttcg tttcgggggg taaccacgtc 5160
 tccccccacgc actatgtcc ttggagcgtac gtcgtacatc gtttgcgttc gtttgcgttc 5220
 agtcttacca tcaactacgt gtcgttggggat gttttggattt ggtatgtc ggtactgtcc 5280
 acggcatatc cccgtcgat gtcgttggggat ggtatgtc ggtgttact 5340
 25 gatattcaaga cctggcttca gtcgttggggat tccctgtat cttctccct 5400
 tcatgtcaac gtgggtacaa ggggttgc gggggcgtt gcatatgtc aaccacgtc 5460
 ccatgtggatc cacaatgttcc cggacatgtt gaaaaccgtt ccatgttggat ctttggggct 5520
 aggacgttgc gtaacacgtt gtcgttggggat ttttttttttccatc acgggtatc cttttttttt 5580
 tgcacccctt cccggggccca aatttttttccatc acgggtatc gtcgttggggat 5640
 tacgtggagg ttacgtgggtt gggggatttc cactacgtt gtcgttggggat 5700
 30 gtaaaatgttcc cgtgttggggat tcccttttttccatc acgggtatc gtcgttggggat 5760
 ttgcacatgttcc acgggttggggat tcccttttttccatc acgggtatc gtcgttggggat 5820
 gggcttcaaa aatccctggt tgggttggggat tcccttttttccatc acgggtatc gtcgttggggat 5880
 gtgttcaattt ccatgttccatc cggacccctcc cacattacgtt gtcgttggggat 5940
 ctggccggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 6000
 tcccttttttccatc acgggtatc gtcgttggggat 6060
 35 aacccctgtt gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 6120
 gtagtaattt tggactttt ccggccgttc caagccggggat gtcgttggggat 6180
 gttccggggat agatccgttcc gggggggggat aatccctccatc acgggtatc gtcgttggggat 6240
 ccccttggggat acaaccctccatc acgggtatc gtcgttggggat 6300
 40 gttggatccatc ggtgttccatc gggccgttc acgggtatc gtcgttggggat 6360
 aagaggacgg ttgttcttgc agaatcttccatc gtcgttggggat 6420
 aagacccttcg ccggccgttc acgggtatc gtcgttggggat 6480
 gaccggccatc ccggccgttc acgggtatc gtcgttggggat 6540
 ccccttggggat gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 6600
 gaggaggatc gtggggatccatc ggtgttccatc acgggtatc gtcgttggggat 6660
 atccacccatc gtcgttggggat gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 6720
 ctccgttccatc acaacttggat ctttttttttccatc acgggtatc gtcgttggggat 6780
 aagggttccatc ttggacatgttccatc acgggtatc gtcgttggggat 6840
 45 atgaaggccatc aggttccatc acgggtatc gtcgttggggat 6900
 ctggatccatc ccccttggggat gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 6960
 ctatccatc acgggtatc gtcgttggggat gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 7020
 gagacacccatc ttggacatgttccatc acgggtatc gtcgttggggat 7080
 aaggggggccatc gtcgttggggat gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 7140
 gagaaaaatggt ccggccgttc acgggtatc gtcgttggggat 7200
 tacggatccatc aatccctccatc acgggtatc gtcgttggggat 7260
 50 aagaaaatgttccatc ctatgggttccatc acgggtatc gtcgttggggat 7320
 aatggacatccatc gtcgttggggat gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 7380
 caggccatccatc gtcgttggggat gggggggggat gatcccccctt ctttttttttccatc acgggtatc gtcgttggggat 7440
 gggcagaatccatc gggccgttc acgggtatc gtcgttggggat 7500

EP 1 043 399 A2

aataccctca	catgttactt	gaaggccgct	gcggcctgtc	gagctgcgaa	gctccaggac	7560
tgcacgatgc	tcgttatgcgg	agacgacccct	gtcgatatct	tgaaaagcgc	ggggacccaa	7620
gaggacgagg	cgagcctacg	ggccttcacg	gaggctatga	ctagatactc	tgcggccct	7680
ggggaccggc	ccaaaccaga	atacgacttg	gagttataaa	catcatgtc	ctccaatgtg	7740
tcagtcgccc	acgatgcattc	tggccaaagg	gtgtactata	tcacccgtga	ccccaccacc	7800
ccccttgcgc	gggtctgcgtg	ggagacacgt	agacacactc	cagtcaatc	ctggctaggc	7860
aacatcatca	tgtatgcgc	cacccttgtgg	gcaaggatga	tcctgtatgc	tcatttcttc	7920
tccatccctc	tagtcagga	aaacaatgtaa	aaaggccctag	attgtcagat	ctacggggcc	7980
tgttacttca	tttagccact	tgacacctac	cagatcattc	aacgactcca	tggccttage	8040
gcattttcac	tccatagttt	ctctccaggt	gagatcaata	gggtggcttc	atgcctcagg	8100
aaacttgggg	taccgcctt	gcgagtcgg	agacatcggt	ccagaagtgt	ccgcgtttagg	8160
ctactgtccc	agggggggag	ggctgccact	tgtggcaagt	acctcttcaa	ctggggcagta	8220
aggaccaagc	tcaaactcac	tccaatcccg	gctgggtccc	agtggattt	atccagctgg	8280
ttcggttgcgt	gttacagcggt	gggagacata	tatccacagcc	tgtctctgtc	ccggccccgc	8340
tggttcatgt	gggtctact	cctactttct	gtagggtag	gcatastatct	actcccccac	8400
cgatgaacgg	ggagcttaaac	actccaggcc	aataggccat	cctgtttttt	tccctttttt	8460
tttttctttt	tttttttttt	tttttttttt	tttttttttt	ctcctttttt	tttcctcttt	8520
ttttccctttt	ctttccctttg	gtggctccat	cttagcccta	gtcacggcta	gctgtgaaag	8580
gtccgtgagc	cgcttgactg	cagagagtgc	tgataactggc	ctctctgtcag	atcaagt	8637

20

25

30

.35

40

45

50

55

<210> 3
<211> 8001
<212> DNA
<213> Hepatitis C Virus

5

<400> 3
gccagcccc gattggggc gacactccac catagatcac tcccctgtga ggaactactg 60
tcttcacgca gaaagcgctc aaccatggcg ttagtatgag tgcgtgcag cctccaggac 120
ccccccctccc gggagagcca tagtggtctg cggAACGGT gaggatTTG gctgtccccc 180
gacgaccggg tcccttcttgc gatcaaccccg ctcaatgcct ggagatTTG gctgtatgg 240
gctggactgc tagccgatgt gtgtgggtc gggaaaggcc ttgttact gctgtatgg 300
gtgttgcga gtccccccggg agttctgtca gaccgtgcac catgacacg aatcttaac 360
ctcaaaagaaa aaccaaacgt aacaccaacg ggegcgcatt gattgaacaa gatggattgc 420
acgcagggtc tccggccgct tgggtggaga ggctattcgg ctatgcgttgc acacaacaga 480
caatcggtc ctctgtatcc gccgttcc gctgttgcage cgaggggcgc cgggttttt 540
ttgtcaagac cgacgttcc gttggccctga atgactgtca ggacggaca gegegcgtat 600
cgtggctggc caegacgggc gttcctgtcg cagctgtgtc cgacgttgc actgaagcgg 660
gaagggactg gctgttattt ggcgaaagtgc eeeeeccgggaggat ttcctgtca ttcacccctt 720
cttcgtccga gaaagatccat atcattggctg atcgtatgc ggggtcgat aegcttgc 780
cggttaccccttccatcgac caaccatcgca aacatcgcat cgagcgacg cgtacttgg 840
tggaaaggccg tcttgcgtat caggatgtatc tggtggaa gcatcaggggg ctcgcgc 900
ccgaactgtt cgccaggtc aaggccgcga tgccccacgg cgaggatctc gtcgtgaccc 960
atggcgatgc ctgttgcgg aataatcatgg tgaaaaatgg cggctttttt ggttcatcg 1020
atgtggccg gctgggtgtc gccggccgtt atcaggacat aegcttgcgat accccgtata 1080
ttgcttgaaga gcttggccgc gaatgggtgt accgttcttct cgtgttttac ggtatcgccg 1140
ctcccgatttgc acgtcgatc gccttctat gccttcttgc ctagtttctc tgatgtttaa 1200
cagaccacaa cggtttccctt ctatgggtat caattccggcc cctcttccctt cccccccctt 1260
aacgttactg gccgaaggccg ctgttgcataa ggccgggtgtc cgtttgtata tatttttttt 1320
tccaccatat tgccgttctt tggcaatgtg agggccggg aacgttgcgtt gttgaatgtc 1440
acgagacatc ctagggttctt tcccttctc gccaaaggaa gttgaaggaa gtttgcgtt 1500
gtgaaggaaat gtttgcgttctt gtaagatctt tgaaagacaaa caacgttgcgtt aegcaccctt 1560
tgcaggcgc gaaacccccc accttggccac aggttgcctt ttgttgcgtt gatagttgt 1620
taagatacac ctgcaaaaggc ggcacaaccc cagtgcacg gaaagagtc aatggcttcc tcacccatc 1680
gtatggatc tgatgttgc tgatctgggg ctcgggtca tccatggatc aaaaatgtca tgatgttgc 1740
tccatggatc aaaaatgtca tgcccccggc accacggggg cttatggatc 1800
cacgataata ccatggccg tattacggcc tactcccaac tgcgttgcgtt atgttttag 1860
tgcacatca ctacgttccac agggccggac aggaacccagg gtcaggggga ggttcaatgt 1920
gttccacccg caacacaaat tttctggcg acctgtgtca tttatggatc atgttttag 1980
tatcatgttgc cgggtctaaa gaccccttgc gggccaaagg cggccatc ccaatgtac 2040
accaatgtgg accaggacat cgtcggttgc caagcgcccc cccatgcactt ggcacccatc 2100
gttccatccatc gggccgttgc gaccccttgc ttgttgcacg ccacgttgcgtt 2160
gttccatccatc gggccgttgc gaccccttgc ttgttgcacg ccacgttgcgtt 2220
aagggttccctt cggccgttcc acgttctgc cccctggggc gtcgttgcgtt gtttccatc 2280
gttccatccatc gggccgttcc acgttctgc cccctggggc gtcgttgcgtt gtttccatc 2340
gaaacccacta tgcgttccctt ggttccatc gaccaactctt ccccttgcgtt cgttccatc 2400
acatccatccatc gggccgttcc acgttctgc gtcgttgcgtt gcaagagacat taatgttgc 2460
gttccatccatc gggccgttgc gaccccttgc ttgttgcacg ccacgttgcgtt 2520
ctatgttgcgtt gggccgtatata tttatggatc agccatcccccc 2580
gttccatccatc gggccgttcc acgttctgc cccctggggc gtcgttgcgtt gtttccatc 2640
gtaaggacca tcaaccacggg tggcccccattt acgttacttca gtcgttgcgtt gtttccatc 2700
gacgggttgc gtcgttgcgtt cccatgtac atcataatat gtcgttgcgtt cccatgtac 2760
gactcgacca ctatcttggg catccggcaca gtcgttgcgtt aacccatgtac 2820
cgactcgatc tgatgttgcgtt cccatgtac atcataatat gtcgttgcgtt acatccaaac 2880
atcgaggagg tggcttgcgtt cccatgtac gaaatcccccc tttatggatc agccatcccccc 2940
atcgaggagg tcaagggggg gggccacccatc tttatggatc atccatgtac 2940
gagtcgtcccg cggccgttgcgtt cccatgtac tttatggatc atccatgtac 3000
gatgttgcgtt cccatgtac tttatggatc atccatgtac tttatggatc atccatgtac 3060
acggggcttca cccatgtac tttatggatc atccatgtac tttatggatc atccatgtac 3120
gttccatccatc gggccgttgcgtt cccatgtac tttatggatc atccatgtac 3180
gttccatccatc gggccgttgcgtt cccatgtac tttatggatc atccatgtac 3240
gttccatccatc gggccgttgcgtt cccatgtac tttatggatc atccatgtac 3300
gacggggctt gtcgttgcgtt cccatgtac tttatggatc atccatgtac 3360
tacccaaaca caccagggtt gggccgttgcgtt cccatgtac tttatggatc atccatgtac 3420
tttacaggccc tcaaccacat agaccccatc tttatggatc atccatgtac 3480
aactccctt acgttgcgtt cccatgtac tttatggatc atccatgtac 3540

55

EP 1 043 399 A2

EP 1 043 399 A2

cggggccagaa gtgtccgcgc taggctactg tcccaggggg ggagggctgc cacttgtggc 7560
aagtacctct tcaactgggc agtaaggacc aagctcaaac tcactccaat cccggctgcg 7620
5 tcccagtgg atttatccag ctggttcggt gctggttaca gcgggggaga catatatcac 7680
agcctgtctc gtgcccggacc ccgctgggttc atgtggtgcc tactctact ttctgttaggg 7740
gtaggcatct atctactcccc caaccgatga acggggagct aaacactcca ggccaatagg 7800
ccatccctgtt tttttccctt tttttttttt tttttttttt tttttttttt 7860
tttttcctt tttttttccctt tttttttccctt tttttttttt tttttttttt 7920
10 cctagtcacg gctagctgtg aaaggccgt gagccgcttg actgcagaga gtgctgatac 7980
tggccctctctt gcagatcaag t 8001

15

20

25

30

35

40

45

50

55

EP 1 043 399 A2

<210> 4
<211> 7989
<212> DNA
<213> Hepatitis C Virus

	<400> 4	gacactccac	catagatcac	tccctctgtga	ggaactactg	60
10	tcttcacgc	gaaagcgtct	agccatggcg	ttatgtatgag	tgtctgtgcag	120
	ccccccccc	gggagagcca	tagtggctct	cggaaaccgt	gagtacacccg	180
	gacgaccggg	tccttcttg	gataccccc	ctcaatgcct	ggagattttgg	240
	gcgagactgc	tagcccgatg	gtgttgggc	cgccaaaggcg	ttgtgttact	300
	gtcttgcga	gtccccccgg	aggctctgc	cacgtgcac	catgagcactg	360
15	ctcaaaa	aaccaaaggg	cgcgcatga	ttgacaaga	tggattgcac	420
	cggccgctt	ggtggagagg	ctatcgct	atgaatgggc	acaacacaga	480
	ctgatgcgc	cgtgtttcc	ctgtcgccg	aggggccccc	ggttttttt	540
	acctgtccg	tccttgcata	gaaactcgac	aggcaggcgc	cgccgtatcg	600
	cgacggcg	tccttgcgc	gctgtgtcg	acgttgtac	tgaagcggga	660
	tgctattggg	cgaagtgcgg	gggcaggatc	tcctgtatc	tcacccctgt	720
20	aagtatccat	catggctgt	gcaatgcgc	ggctgcatac	gettgatecg	780
	cattcgacca	ccaaaggaa	catcycatc	egacgacacg	tactcgatcg	840
	ttgtcgatca	ggatgatct	gacgaagac	atcaggggct	cgccgcagcc	900
	ccaggctcaa	ggcgcgcata	cccgcggcg	aggatctcg	cgtagccat	960
	gcttgcggaa	tatcatgttg	gaaaatggcc	gctttttcg	attcatcgac	1020
	tgggtgtggc	ggaccctata	caggacatag	ctgttgatct	cggtatgtat	1080
	ttggcggcga	atgggctgac	cgcttctcg	tgttttacgg	tatcgccgt	1140
	agcgcatacg	cttctatcg	cttcttgacg	agtttttcgt	agtttaaacaa	1200
	gttccctct	agcggggatc	atccccc	teteccccc	ccccccctaa	1260
	cgaagccgct	tggaaataagg	ccgggtgtcg	ttttttata	tgttattttc	1320
25	ccgtctttt	gcaatgttag	ggccceggaa	cctggccctg	tcttcttgac	1380
	agggtttttt	ccccctctcg	caaaggaa	caaggtctgt	tgaatgtcg	1440
	gttcccttgg	aagetttttt	aagacaaca	acgtctgtag	cgaccctttt	1500
	aacccccccac	ctggcgcac	gtgccttgc	ggccaaaagc	cacgtgtata	1560
	gcaaaggcgg	cacaacccca	gtgcacat	gtgagttgga	tagttgtga	1620
	tggctctct	caagcgat	caacaagggg	ctgagatgc	cccagaagg	1680
	atgggatctg	atctggggcc	tccgtgcaca	tgttttacat	gtgttttagt	1740
	aacgtctagg	ccccccgaac	cacggggacg	tgtttttctt	ttaaaaaaca	1800
30	atggcgceta	ttacggccta	ctcccaacag	acgcgaggcc	tacttggct	1860
	agcctcag	gcccggacag	gaaccaggc	gagggggggg	tccaaatgt	1920
	acacaatctt	teetggcgac	tcgtgtcaat	ggcgtgttt	ttatgtgt	1980
	ggctcaaga	cccttgcggc	ccccaaaggc	ccaaatcaccc	aatgtacac	2040
	caggacetcg	tccgtgtggc	agcccccccc	ggggcgcgtt	ccttgacacc	2100
35	ggcagctcg	acctttactt	ggtcacagg	catcgatgt	tcattccgt	2160
	ggcgcacaga	gggggagact	acttcacccc	aggccgtet	cetacttgg	2220
	ggcgttccac	tgtctctgc	ctcggggcac	gtgtggca	tcttccggc	2280
	acccgagggg	tttgcgaagg	ggtggacttt	gtaccctcg	agttctatgg	2340
	cgttcccccgg	tcttcacgga	caactgtcc	cctccggcc	tacccgcac	2400
	gcccatactac	acggccctac	tgttagggc	aaagacacta	atccagggt	2460
	gccaagggt	taatagggt	tgtctgtac	ccgttccgt	ccgcacccct	2520
40	ggttatatgt	ctaaggcaca	tggtatcgac	cctaacatca	gaacccgggt	2580
	accacgggt	ccccccatcac	gtactccac	tatgtcaat	ttttccggca	2640
	tctggggggc	cctatgacat	cataatatgt	gatgtatgc	actcaactgt	2700
	atccctggca	tccggacatg	cctggaccaa	cgggagacgg	cttggagcg	2760
	ctcgccaccc	ctacgcctcc	gggatcggtc	acccgtccac	atccaaacat	2820
	gctctgtcca	gcactggaga	aatcccttt	tatgtcaat	ccatccccc	2880
	aaggggggga	ggcactccat	tttctggcat	tccaaaga	aatgtatgt	2940
45	aagctgtccg	gcctcgccat	caatgtctg	gcataatacc	ggggcccttg	3000
	ataccaacta	ggggagacgt	cattgtctg	gcaacggacg	ctctaatacg	3060
	ggcgatttcg	actcgtgtat	cgactgcata	acatgtgtca	ccccagacgt	3120
	ctggccacca	ccttcacccat	tgagacacg	accgtgcac	aacgcgcgtt	3180
	cagcggcgg	cagggacttg	tagggccagg	atggccattt	acaggtttgt	3240
	gaacggccct	cgggcatgtt	cgatcttc	gttctgtcg	agtgctatga	3300
	gcttggtagc	agctcacccc	cgccgagacc	tcgttaggt	tgcgggtt	3360
	ccagggttgc	cgctctgc	ggacccat	gagtttggg	agacgtctt	3420
	accacatag	acggccattt	tttgcctcc	actaaaggg	caggagacaa	3480
50	ctggtagcat	accaggctac	gggtgtgecc	agggtcagg	cttcacccctcc	3540

EP 1 043 399 A2

5	caaatgtgga	agtgtctcat	acggctaaag	cctacgtgc	acggggcaac	gccccctgtct	3600
	tataggctgg	gagccgttca	aaacgaggtt	actaccacac	accccataac	caaatacatc	3660
	atggcatgca	tgtcggtctg	cctggaggtc	gtcacaagca	cctgggtct	ggtagggcga	3720
	gtctccatcg	ctctggccct	gtattgtctg	acaacaggca	gctgggtcat	tgtgggcgg	3780
	atcatcttgt	ccggaaaggc	ggccatcatc	ccccacaggc	aagtttttta	ccgggggttc	3840
	gatgagatgg	aagagtgcgc	ctcacacetc	ccttacatcg	aacagggaaat	gcagtcgc	3900
	gaacaattca	aacagaaggc	aatcggttg	ctgcaacacag	ccaccaagca	ageggaggct	3960
	gtctgtcccg	tggtggaaatc	caagtgggg	accctcgaag	ccttctggc	gaagcatatc	4020
	tgaatttca	ttagcggtgg	acaatattta	gcaggctgtt	caactctgcc	tggcaaaaacc	4080
	gcatagatcat	cactgtatgc	attcacagcc	tctatcacca	gccccgtc	cacccaacat	4140
	accctctctgt	ttaacatctt	ggggggatgg	gtggggcccc	aacttgc	tccccagcgt	4200
	gtcttcgttt	tcgttaggcgc	cggcacatct	ggagggctg	ttggcagcat	aggecttggg	4260
	aagggtgttg	tggatatttt	ggcagggtt	tgagcagggg	tggcaggcgc	gtctgtggc	4320
	ttaagggtca	ttagcggtgg	gatgccc	accgaggacc	tggttaacct	actecctgt	4380
	atccctctccc	ctggcgccct	agtcgtcg	gtcggtcg	cagegatact	gctgtcgac	4440
	gtggggcccg	gggggggggc	tgtgcgtgg	atgaacccgg	tgatagcg	cggttgcgg	4500
	ggttaaccacg	tctccccccat	gcaactatcg	cttggagacg	acgtgcgc	acgtgtact	4560
	cagatccctt	ctagtcttac	catcaactcg	ctgtgttgc	ggcttccacca	gttggatcaac	4620
	gaggactgtt	ccacgcctat	ctccggctcg	tggcttaagag	atgtttggg	ttggatatgc	4680
	acgggtgttg	ctgat	gacccgtc	cagtccaa	tcctggccgc	attggcggg	4740
	gtcccccttc	tctcatgtca	acgtgggtt	agggtact	ggggggccg	ccggcatatc	4800
	caaaccacct	gcccattgtt	ggcacagatc	accggacatg	tggaaaacgg	ttccatgagg	4860
	atctgtggggc	ctaggaccc	tagtaacacg	tggcatgg	cattttccat	taacgcgtac	4920
	accacggggcc	ctgtgcacgc	gttacgtgg	gttggggatt	ctaggcgct	gtggcgggt	4980
	gctgtcgagg	agtagtcgtt	gttacgtgg	ttccactacgt	gacggccat	5040	
	accactgaca	acgtaaaatg	ttccgtgtcg	gttccggccc	ccgaaatttct	cacagaagt	5100
	gatgggggtc	gggttgcacag	gtacgttca	gctgtcaaa	cccttcttac	gggaggggtc	5160
	acattcttgc	tcgggtctca	tcaataact	gttgggttac	agtcctccat	cgagcccg	5220
	ccggacgtag	ctgtgttc	ttccatgtc	acggacccct	ccacattac	ggcggagac	5280
	gctaagcgta	ggctggccag	gggatcttcc	cccttcttgg	ceagtcate	agctagccag	5340
	ctgtctgcgc	cttcccttga	ggcaacatgc	actacccgtc	atgacttccc	ggacgtgtac	5400
	ctcatcgagg	ccaaacctt	gttggcgtcg	gagatggcg	ggaaacatc	ccgcgtgg	5460
	tcaaaaaata	aggtgtat	tttggactct	tttgcggc	tccaa	ggaggatgt	5520
	agggaaatgt	ccgttccggc	ggagatctt	cgagggttca	ggaaattccc	tcgagcgat	5580
	cccatatggg	cacgcccgg	ttacaatcc	ccactgtttag	atgttggaa	ggacccggac	5640
	ta	cagtgttca	cggtgttca	ttgcgttgc	ccaaaggcccc	tccgatacc	5700
	cctccacgg	ggaaaggagg	gttggtctt	tcaatcttca	ccgtgttttc	tgcttggc	5760
	gagctcgcca	caaaagac	cggttgc	gaatgttgc	ccgttgcacag	ccgcacggca	5820
	acggcctctc	ctgaccagcc	cttgcgac	ggcgtcg	gateccacgt	tgagtgtac	5880
	tctccatgc	cccccccttgc	ggggggac	ggggatccc	attcgttgc	ccgggttgg	5940
	tttacccgtaa	gtcgaggag	tagtgggg	gtcggttgc	gtcgatgtc	ctacatcg	6000
	acaggcgccc	tgtatcgtcc	atgcgttgc	gagggaaatca	agtcgtccat	caatgcgt	6060
	agcaacttct	tgctccgtca	ccacaactt	gtctatgtca	caacatctcg	cagcgtca	6120
	ctgcggcaga	agaagggttac	cttgcacaga	ctgcgttgc	tgacgttgc	ctaccgggac	6180
	gtgtcaagg	agatgttgc	gttgggttac	tttgcgttgc	tttgcgttgc	atccgttgc	6240
	gaaggctgtt	agctgtaccc	cccacat	gttgggttac	tttgcgttgc	tggggcaaa	6300
	gacgtccgg	accttatcc	caaggcgtt	aaaccatcc	gttgggttac	gaaggactt	6360
	ctggaaagaca	ctggacacat	aatttgcac	accatgttgc	tttgcgttgc	gttttttgc	6420
	gttcaaccag	agaagggggg	ccgttgc	ccgttgc	tttgcgttgc	atagggttgc	6480
	gttcgtgtt	ggcgaaaaat	ggcccttac	gttgggttac	ccacccttcc	tcaggccgt	6540
	atgggtcttt	catacggatt	ccaatactt	cttgcac	ccacccttcc	cctgttgc	6600
	gcctggaaag	cgaaaggaaat	ccctatggc	tttgcac	acaccctgt	ttttgtact	6660
	acggtactcg	agaatgtat	ccgttgc	gttgggttac	acaccctgt	tgacttgc	6720
	cccgaaagcca	cgacggccat	aaagggtc	acagaggttgc	tttgcgttgc	ggggccccgt	6780
	actaattctt	aagggttgc	ctgcgttgc	ccgggttgc	ccgggttgc	tgatgtac	6840
	accagctgc	gtatatttctt	catgttgc	tttgcgttgc	ccgggttgc	tcgatgtc	6900
	aagctccagg	actgcgtatc	gtctgtatgc	ggagacacc	tttgcgttgc	ctgtgtaa	6960
	ggggggaccc	aaagggttgc	ggcgacgtt	ccgggttgc	ccgggttgc	gactagatac	7020
	tctccccccc	ctggggaccc	gcccacca	gaatacgtt	tttgcgttgc	aacatcatgc	7080
	tctccatgc	tgtcgttgc	gtcgttgc	tctggcaaa	gggtgttact	tctccatgc	7140
	gaccccaatca	cccccccttgc	gggggttgc	tggggatcc	tttgcgttgc	tccatgttgc	7200
	tcttggctag	gcaacatcat	catgttgc	tttgcgttgc	tttgcgttgc	tttgcgttgc	7260
	actcattttt	tctccatctt	tctatgttgc	tttgcgttgc	tttgcgttgc	tttgcgttgc	7320
	atctacgggtt	cctgttactt	cattgttgc	tttgcgttgc	tttgcgttgc	tcaacgcgtc	7380
	catggccgtt	gcccgtttt	actccatgt	tttgcgttgc	tttgcgttgc	taggttgc	7440
	tcatgcctca	ggaaacttgc	ggfattcc	tttgcgttgc	tttgcgttgc	ggccagaatgt	7500

EP 1 043 399 A2

gtccgcgcta ggctactgtc ccaggggggg agggctgcca cttgtggcaa gtaccttcc 7560
aactggcag taaggacaa gctcaaactc actccaatcc cggctgcgtc ccagttggat 7620
5 ttatccagct ggttcggtgc tggttacagc gggggagaca tatatcacag cctgtctcg 7680
gcccggcccc gctgggtcat gtgggtgccta ctcctacttt ctgttaggggt aggcatctat 7740
ctactccccca accgatgaac ggggagctaa acactccagg ccaataggcc atccgtttt 7800
tttccctttt tttttttttt tttttttttt tttttttttt ttctccctttt 7860
ttttccctct tttttccctt ttctttcctt tggtggctcc atcttagccc tagtcacggc 7920
tagctgtgaa aggtccgtga gccgcttgac tgcagagagt gctgatactg gcctctctgc 7980
10 agatcaagt 7989

15

20

25

30

35

40

45

50

55

<210> 5
 <211> 8649
 <212> DNA
 <213> Hepatitis C Virus

5
 <400> 5
 gccagcccc gattggggc gacactccac catagatcac tcccctgtga ggaactactg 60
 tcttcacgca gaaagcgctc agccatggcg ttagtatgag tgcgtgcag cttccaggac 120
 cccccctccc gggagagcca tagtggctg cggAACCGGT gagtacaccc gaattgccag 180
 gacgacccgg tcctttctt gataaaccgg ctcaatgcct ggagatgg gcgtgcccc 240
 gcgagactg tagccgatgttgggtc gccaaaggcc ttgtggtaact gcctgatagg 300
 gtgttgcga gtgcgggg aggctcgta gccgtgcac catgagcacg aatccataac 360
 ctcaaagaaa aaccaaacgt aacccaacg ggcgcgcacat gattgaacaa gatggattgc 420
 acgcagggtc tccggccgt tgggtggaga ggctatccgg ctatgactgg gcacaacaga 480
 caatcggtc ctctgatcc gccgttcc gctgtcagc cgaggggcc cccgttctt 540
 ttgtcaagac ccacctgtcc ggtgcccgtga atgaaactgca ggacgaggca ggcgcgctat 600
 cgtggctgca cgcgcggc gttcctgtcg cagctgtgct cgacgtgtc actgaagcg 660
 gaagggaactg gctgttattg ggcgaatgtc cggggcaggaa tcttcgtca tctcacctt 720
 ctccgtccga gaaagtatcc atcatggctg atgcaatgcg cggcgctcat acgcttgatc 780
 cggctactcc cccattcgac caccacggc aacatcgcat cgagcgagca cgtactcgga 840
 tggaaagccgg tcttgcgtat caggatgatc tggacgaga gcatcagggg ctcgcgcag 900
 ccgaactgtc cggcggatc aaggcgcgcg tggccgacggc cgaggatctc gtcgtgaccc 960
 atggcgatgc ctgcttgcg aataatcg tggaaaatgg cccgtttttt ggttgcata 1020
 actgtggccg gctgggtgt ggcggccgt atcaggacat agcggttgt acccgatc 1080
 ttgtcgaaga gcttggccgc gaatgggtg accgttctt cgtgttttac ggtatcgcc 1140
 ctcccgatttgc acgcgcate gccttcatac gccttgcgttgc cggatcttcc tgagttaaa 1200
 cagaccacaa cgggttccctt ctacggggatc aatttcggcc ccttccttc cccccccctt 1260
 aacgttaactg gccgaacccg cttggaaataa ggccgtgtg cgtttgtcta tatgttattt 1320
 tccaccatata tggccgtttt tggcaatgtg aggggccggaa aacctggcc tggcgttctt 1380
 acgagcatc ctagggttgc ttcccttc gccaaaggaa tgcgaaggatc gttgaatgtc 1440
 gtgaaggaaag cgttccctt ggaagcttct tgaagaaaaaa caacgtgttgc acgcacccctt 1500
 tgcaggcagc ggaacccccc acctggcgac aggtgttctt cggccaaaa gccacgtgt 1560
 taagatacac ctgcaaaaggc ggacaaaccc cagtgcacac ttgtgagtgc gatagttgt 1620
 gaaagatgtca aatggcttc ctaaagctgt tcaacaagg ggttgcggaa tgcccaaga 1680
 gtacccctt gtatgggtc tgatctgggg ctcgggtca catgttttac atgtgttag 1740
 tcgaggtaaa aaaacgttca ggccccccgg accacgggg cgtggtttc ctttggaaaa 1800
 30 cacgataata ccatggaccc ggagatggca gcategtgcg gaggcgcgtt ttcgttaggt 1860
 ctgtaactt tgacccgttgc accgcactat aagctgttcc tgcgttaggt catatgggt 1920
 ttacaatata ttatccagg ggcgcaggca cacttgcacat tggatcccc cccccctcaac 1980
 gttcgggggg gccgcgtatgc cgttccatc ctcacgtgcg cgateccaccc agagctaatc 2040
 ttaccatca caaaaatctt gctcgcatac ctcgggttcc tcatgtgtc ccaggctgtt 2100
 ataaccaaaatc tggccgtactt cgtgcgcgcg caccggcttgc ttcgtgcat catgtgttgc 2160
 35 cggagggtt ctgggggtca ttatgtccaa atggcttca tgaagtggc cgcactgaca 2220
 ggtacgtacg tttatgtcca tctcacccca ctgggggtactt gggccacgc gggctacga 2280
 gacccctgcgg tggcagttga gcccgtgtc ttctctgtata tggagacaa gtttatcc 2340
 tggggggccg acaccggcgc gtgtggggac atctctttgg gcctggccgt ctccggccgc 2400
 aggggggggg agataatctt gggacccggc gacacggcttgc aaggccgggg gtggcgactc 2460
 ctgcgcctta ttacggctta ctcaccaacag acgcggaggcc tacttggctg catcatcaact 2520
 agcctcacag gcccggacag gaaccagggtc gaggggggagg tccaaagtgtt ctccacccgc 2580
 40 acacaatata tccctggcgc acgcgtcaat ggcgtgtgtt ggactgttca tcatgtgtc 2640
 ggctcaaaga cccctggccg cccaaaggcc caatccatccc aatgtacac caatgtggac 2700
 caggacccctcg tggctggca agcccccggc gggccgcgtt cttgcacacc atgcacccgtc 2760
 ggcagctgg acctttactt ggtcacggg catgcgcgtg tcatccgtt ggcgcggcgg 2820
 ggcgcacgcg gggggagcc actctccccc aggccggctt cctacttggaa gggtcttcg 2880
 ggcgggtccac tgctctggcccttccggggcactt gctgtggca tcttcgggc tgccgtgtc 2940
 accccggggg ttgcgaaggc ggtggacttt gtacccgtcg agtctatggaa aaccactatg 3000
 cggtccccgg ttttacggca caactcgatcc ctcggccgc taccgcacac attccagggt 3060
 gcccacatcac acgcggccatc tggtagccgc aagagacta aggtgcggc tgcgtatgc 3120
 gcccaagggt ataagggtgt tggatcgaa ccttcgtcg ccgcacccctt aggtttcg 3180
 gctgtatatactt ctaaggcaca tggatcgac ctcacatca gaaacggggtaaaggaccatc 3240
 accacgggtt ccccatcac gtactccacc tatggcaagt ttcttgcgcg cgggtgttgc 3300
 50 tctggggggc cctatgatc cataatatgt gatgagtgcc actcaactga ctcgaccact 3360
 atccctggggca tcggcactatgttggacca gggagacgg ctggagcgcg actcgtcgtg 3420
 ctgcgcacccg ctacggctcc gggatcggtc accgtgcacat atccaaacat cgaggagggt 3480
 gctctgttca gcaactggaga aatccctttt tattggcaag ccacccatcgagaccatc 3540

EP 1 043 399 A2

EP 1 043 399 A2

accagctgcg gtaataccct cacatgttac ttgaaggccg ctgcggcctg tcgagctgcg 7560
aagctccagg actgcacgat gctcgatgc ggagacgacc ttgtcgttat ctgtgaaagc 7620
5 gcggggaccc aagaggacga ggcgagccta cgggccttcga cgaggctat gactagatac 7680
tctggccccc ctggggaccc gcccaaaccga aacatcatgc 7740
tectccaatg tgtcagtcgc gcacgatgc tctggcaaaa gggtgtacta ttcacccgt 7800
gaccaccca ccccccttgc ggggtgtcg tggggagacag ctagacacac tccagtcaat 7860
tcctggctag gcaacatcat catgtatgcg cccaccttg 7920
actcattct tctccatct tctagctcg gaacaacttg aaaaagccct agattgtcag 7980
10 atctacggg cctgttactc cattgagcca cttgacctac ctcagatcat tcaacgactc 8040
catggccta ggcattttc actccatagt tactctccag gtgagatcaa tagggtggct 8100
tcatgcctca gaaaaacttgg ggtacccccc ttgcgagtct ggagacatcg ggcagaagt 8160
gtccgcgcta ggctactgtc ccaggggggg agggtgtccaa 8220
aactggcag taaggaccaa gctcaaactc actccaaatcc 8280
15 ttatccagct gttcggttgc tggttacagc gggggagaca tatatcacag cttgtctcg 8340
gcccggacccc gctggttcat gtgggtccta ctccctacttt ctgtaggggt aggcatactat 8400
ctactccca accgatgaac ggggagctaa acactccagg ccaataggcc atccctgtttt 8460
tttccctttt tttttttctt tttttttttt tttttttttt ttctccctttt 8520
ttttccctct tttttccctt ttctttccctt tggtggctcc atcttagccc tagtcacggc 8580
tagctgtgaa aggtccgtga gcccgttgc tgcagagagt gctgatactg gcctctctgc 8640
20 agatcaagt 8649

25

30

35

40

45

50

55

<210> 6
 <211> 8001
 <212> DNA
 <213> Hepatitis C Virus

5
 <400> 6
 gccagcccc gattggggc gacactccac catagatcac tcccctgtga ggaactactg 60
 ttttcacgca gaaagcgctt agccatggcg ttagtatgag tgctgtgcag cttccaggac 120
 cccccctccc gggagagecca tagtggctcg cggAACCGGT gaggatcacccg gaattgccag 180
 gacgaccggg tcctttcttg gatcaaccggc ctcaatgcct ggagatttgg gcgtgcccc 240
 gcgagactgc tagccggata gtttgggtc gggaaaggcc ttgtggtaact gcctgatagg 300
 gtgttggca gttccccggg aggtctcgta gaccgtgcac catgagcacg aatccctaaa 360
 ctcaaagaaa aaccaaaacgt aacaccaacg ggcgcgcctt gattgaacaa gatggattgc 420
 acgcagggtc tccggccgtc tgggtggaga ggcttattcgctt ctatgactgg gcacaacaga 480
 caatcggtctt ctctgtatgcg cccgttcc ggtcttcgcg cggaggccgc ccgggttctt 540
 ttgtcaagac gacactgtcc ggtggccctt gatgaactgcg gggacggggc gcgcggctat 600
 cgtggctggc cacgacgggc ttcttcgtcg cagctgtgtc cgacgttgc actgaagccg 660
 gaagggaactg gttgttttgc ggcgaagtgc cggggcagggt ttttttttttgc tttcacctt 720
 ctctcgccgaa gaaagtatccatccatgtc atgcaatgcg gggctgtcat acgtttgtatc 780
 cggttacatcgcc cccatcgatc cacaacggc aacatcgcat cgagcgagca cgtactcgaa 840
 tggaaageccgg ttttgcgtat caggatgtatc tggacgaaga gcatcaggggg ctcgcgcag 900
 cggaaactgtt cggccagggtc aaggccgcgc tggcccgacgg cggaggatctc gtcgtgaccc 960
 atggcgatgc ctgttttgc aatcatatgg tggaaaatgg cggcttttttgc ggttttgc 1020
 atctggccgtc gtttttttttgc gggggccgtt atcaggacat acgttttttgc acccggtata 1080
 ttgtcaaga gtttttttttgc gaatggggctt accgttttttgc cgtgttttttgc ggtatcgccg 1140
 ctccccatgtt ccggccgtatc gcttttttttgc gggggccgtt ctttttttttgc tgatgtttaa 1200
 cagaccacaa cgggttccat ctggggatcat ctttttttttgc ctttttttttgc cccccccctt 1260
 aacgttactg cggccggccgtt tggaaataa gggccgggtgtc ctttttttttgc tatgttttttgc 1320
 tecaccatat tggccgttttgc tggcaatgtt gggggccggaa aacctggccctt ttttttttttgc 1380
 acggacatccatgggttcttcccccgttcccaaaaggaa tggcaaggatc ttttttttttgc 1440
 gtgaaggaaag ctttttttttgc gggggccgtt ttttttttttgc ttttttttttgc ttttttttttgc 1500
 tgcaggccgc gggaaaaaccctt acctggccgtt ttttttttttgc gggcccaaaatc gggccgtgtt 1560
 taagatacacat ctggccaaatccatgggttcccaaaaggaa ttttttttttgc ttttttttttgc 1620
 gaaagaggtca aatggcttc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1680
 gtacccccattt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1740
 tggaggtaaa aaaaatgttccatgggttcccaaaaggaa ttttttttttgc ttttttttttgc 1800
 cacgataataa ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1860
 tgcattatcatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1920
 gtttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1980
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2040
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2100
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2160
 35
 gtttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2220
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2280
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2340
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2400
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2460
 40
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2520
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2580
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2640
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2700
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2760
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2820
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2880
 45
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2940
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3000
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3060
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3120
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3180
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3240
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3300
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3360
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3420
 50
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3480
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3540

EP 1 043 399 A2

ccatcggtgg accaaatgtg ggagtgtctc atacggctaa agcctacgt gcacggcca 3600
 acggccctgc tgtataggct gggagccgtt caaaacgagg ttactaccac acacccata 3660
 accaaataca tcatggcatg catgtcggt gacctggagg tgctcacag caccctgggt 3720
 ctggtaggcg gagtcttcgc agctctggcc gctgtattgcc tgacaacagg cagcgtgtc 3780
 attgtggca ggatcatctt gtccggaaag cggccatca ttcccacac ggaagtctt 3840
 taccgggagt tcgatagat ggaagatgc gcctcacacc tcccttatcat cgaacaggaa 3900
 atgcagctc cccaaacatt caaacagaag ggaaatcggt tgctcaaac agccaccaag 3960
 caagcgagg ctgctctcc cggtgtggaa tccaagtggc ggaccctcga agcctctgg 4020
 gcaagcata tttggaaattt catcagcggt atacaatatt tagcagggtt gtccacttg 4080
 cttggcaatgc cccggatagc atcaactgtg gcttcacac cctctatcac cagcccgctc 4140
 10 accacccaaac atacccctctt gtttaacatc ctggggggat ggttggccg ccaacttgtc 4200
 cttccccagcg ctgtttctgc ttctgttaggc gccggcatcg ctggagcgcc tttttggcage 4260
 ataggccctt ggaagggtct tttggatatt ttggcagggtt atggagcagg ggttggcaggc 4320
 gcgctcggtt ctttttttttttggatattt catgagcggtt gatgtccctt ccacccggggaa ccttgggttaac 4380
 ctactccctgc ctatcttcgc cccttggccg ctatgtcg ggttgggtt cgcagcgata 4440
 ctgcgtcgcc acgtggggcc aggggggggg gctgtgcgtt ggttgggtt cgcagcgata 4500
 ttccgttcgc ggggttacca cgttccccc acgactatg ttttttttttgggtt cgcagcgata 4560
 15 gcaacgttca ctccatgtt ctccatgtt accataacto agtgcgtt ggggttccac 4620
 ctttttttttttggatattt catgagcggtt gatgtccctt ccacccggggaa ccttgggttaac 4680
 gattggatattt gcaatgtt gactgttttcc aagacctggc tccatgttcaaa gcttcttgcg 4740
 cgatgtccgg ggttgggtt ctttttttttggatattt catgagcggtt gatgtccctt ccacccggggaa ctttttttttgggtt 4800
 gacggcatca tgcaaaacccatc ctggccatgtt ggacccatca ttttttttttgggtt 4860
 gtttttttttggatattt catgagcggtt ggttgggtt ctttttttttgggtt 4920
 20 attaacgcgtt acaccacggg cccctgcacg ccctccccgg cggccaaatattt ttcttagggcg 4980
 ctgtggccggg tggctgtt gggatgtt gggatgtt gggatgtt gggatgtt gggatgtt 5040
 gtgacggggca tgaccactga caacgttcaaa ttttttttttgggtt 5100
 ttcacagaaag tggatgggtt gggatgtt gggatgtt gggatgtt gggatgtt 5160
 cggggaggagg ttccatgtt ggttgggtt ctttttttttgggtt 5220
 tcggggcccg aaccggacgtt agccgttccatgtt tcaccggaccc ctttttttttgggtt 5280
 acggccggaga cggctaaatgtt taggtggcc aaaaaaaaatgggttccatgtt tcaccggaccc 5340
 tcagctatgc agtgcgttccatgtt tcaccggatgtt ctttttttttgggtt 5400
 cccggacgttccatgtt tcaccggatgtt ctttttttttgggtt 5460
 accccccgtt agtgcgttccatgtt tcaccggatgtt ctttttttttgggtt 5520
 gaggaggatgtt agggggatgtt tcaccggatgtt ctttttttttgggtt 5580
 ctttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 5640
 aaggaccggg actacgttccatgtt tcaccggatgtt ctttttttttgggtt 5700
 25 ctttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 5760
 ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 5820
 agccggacccatgtt tcaccggatgtt ctttttttttgggtt 5880
 gtttggatgttccatgtt tcaccggatgtt ctttttttttgggtt 5940
 gacggggatgttccatgtt tcaccggatgtt ctttttttttgggtt 6000
 ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6060
 gtcaatgttccatgtt tcaccggatgtt ctttttttttgggtt 6120
 30 cggccggccatgtt tcaccggatgtt ctttttttttgggtt 6180
 ctttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6240
 ctttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6300
 tatggggccatgtt tcaccggatgtt ctttttttttgggtt 6360
 tggaaaggact ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6420
 gaggttttttccatgtt tcaccggatgtt ctttttttttgggtt 6480
 35 cccatgtt tcaccggatgtt ctttttttttgggtt 6540
 ccacgttccatgtt tcaccggatgtt ctttttttttgggtt 6600
 ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6660
 ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6720
 ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6780
 gggggccccc ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6840
 ggttgcgttccatgtt tcaccggatgtt ctttttttttgggtt 6900
 ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 6960
 atctgttccatgtt tcaccggatgtt ctttttttttgggtt 7020
 atgacttagat ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 7080
 ataacatcatgtt tcaccggatgtt ctttttttttgggtt 7140
 tatcttccatgtt tcaccggatgtt ctttttttttgggtt 7200
 actccatgtt tcaccggatgtt ctttttttttgggtt 7260
 40 atgatcttccatgtt tcaccggatgtt ctttttttttgggtt 7320
 ttttttttttgggttccatgtt tcaccggatgtt ctttttttttgggtt 7380
 attaggttccatgtt tcaccggatgtt ctttttttttgggtt 7440
 45 aatagggttccatgtt tcaccggatgtt ctttttttttgggtt 7500

EP 1 043 399 A2

cgggccagaa gtgtccgcgc taggctactg tcccaggggg ggagggctgc cacttgtgc 7560
aagtacctt tcaactggc agtaaggacc aagctcaaac tcactccaat cccggctgcg 7620
5 tcccagtgg atttatccag ctggttcggt gctggttaca gcgggggaga catatatcac 7680
agcctgttc gtgccccacc ccgctgggtc atgtggtgcc tactcctact ttctgttaggg 7740
gtaggcatct atctactccc caaccgtatga acggggagct aaacactcca ggccaaatagg 7800
ccatcctgtt tttttccctt ttttttttcc ttttttttcc ttttttttcc 7860
ttttctcctt tttttttcctt ctttttttcc ttttttttcc tttgggtggct ccacatttagc 7920
10 cctagtcacg gctagctgtg aaaggccgt gagccgcttg actgcagaga gtgctgatac 7980
tggcctctct gcagatcaag t 8001

15

20

25

30

35

40

45

50

55

EP 1043 399 A2

```

<210> 7
<211> 11076
<212> DNA
<213> Hepatitis C Virus
5

<400> 7
gccagccccc gattggggc gacactccac catagatcac tccccctgtga ggaactactg 60
tcttcacgca gaaagcgctc aacatggcg ttatgttag tgctgtcag cctccaggac 120
ccccctccc gggagagcca tagtggctg cggAACCGGT gagtacaccg gaattggcag 180
gacgacgggg tcctttcttg gataccccg ctcaatgcct ggagatggg gcgtgcccc 240
gcgagactgc tagccgatg gtgtggggc gggaaaggcc ttgtggtaat gcctgatagg 300
gtgttgcga gtccccggg aggtctcgta gaccgtgcac catgacacg aatcttaac 360
ctcaaaagaaa aaccaaacgt aacaccaacg ggccgcacat gattgaacaa gatggattgc 420
acgcagggtc tccggccgct tgggtggaga ggctatccg ctatgactgg gcacaacaga 480
caatcggtg ctctgtatcc gecgttcc ggctgtcage cgagggcgc ccggttttt 540
ttgtcaagac cgaccgtcc ggtgcctgtaa atgaactgcg ggacgagca gcgcgcgtat 600
cgtggctggc cacgacgggc gttcttgcg cagctgtgct cgacgttgtc actgaagcgg 660
gaagggactg gctgttgcg ggcgaatgcg cggggcagga tcttcgtca tctcacccctt 720
ctccatgcga gaaagatcc atcatggctg atgcatacg cggggctcat acgcttgatc 780
ccggatccctt cccattcgac caccacgcg aacatcgat cgagcgacgca ctgtactcg 840
tggaaagccgg ttttgcgtat cagatgtatc tggacaga gcatcagggg ctgcgcggcag 900
ccgacactgtt cgccgatgc aaggcgcgcg tgccgcacgg cgagatgtc gtgtgaccc 960
atggcgatgc ctgttgcgc aataatcgatgg tggaaaatgg cccgttttgcg ggttcatcg 1020
actgtggccg gttttttgcg gggggccgt atcaggacat agcgttgcg acccggtata 1080
ttgtcaaga gttttggcga gaatggctg aacgcgttcc cgtgttttac ggtatcgccg 1140
ctccatgttc gcaatgcgtc gcttccatc ggcttccgtt cgggtttttc tgagttaaa 1200
cagaccacaa cggttttccctt ctacggggat caattccctt ccccccctt 1260
aacgttactt gcccgaatccg ctttgcgttgg aacccggggc cttttgttata tatgttattt 1320
tccaccatata tggccgtttt tggcaatgtg aggggccggaa aacctggccc tggctttttt 1380
acgacgtatc ctgggggtctt ttcccttc gccaaaggaa tgcaagggtt gttgaatgtc 1440
gtgaaggaa gttttttttt ggaatgttgc tttttttttt tttttttttt 1500
tgcaggcagc ggaacccccc acctggcgac aggtgcctt cggggccaaa gccacgtgt 1560
taagatacac ctgcaaaaggc ggccacaaccc cagtgccacg ttgtgagttt gatagtttg 1620
gaaagagtc aatgggttc tcaacgcgtt tttttttttt 1680
gtacccctt gttttttttt tttttttttt 1740
tcgaggtaaa aaaaatgttca gggcccccggaa accacccggaa cttttttttt 1800
cacgataata ccatgggcac gaatcttaaa cctcaaaagaa aaaccaacg taacaccaac 1860
cgccgcaccc acggacgttca gttttttttt 1920
tttgcggcggc gggggccgggg gttttttttt 1980
caacctcgat gggggccggc gttttttttt 2040
gttcagcccg ggtttttttt tttttttttt 2100
cttcgttac cccgttgcgtt tttttttttt 2160
cgcaattttttt gttttttttt 2220
atcccgatcg tttttttttt 2280
gttctggagg acggcgatcg tttttttttt 2340
tttctttttt tttttttttt 2400
gtatccggag tttttttttt 2460
cgccgacatcg tttttttttt 2520
cgctgtttttt tttttttttt 2580
acgatcgatcg gttttttttt 2640
gttggggatcg tttttttttt 2700
cgccacgaga cttttttttt 2760
cgatgtttttt tttttttttt 2820
ttactccggat tttttttttt 2880
gccccccctt tttttttttt 2940
ctttttttt tttttttttt 3000
ctcggttacatcg tttttttttt 3060
aacggcgatcg tttttttttt 3120
tttctttttt tttttttttt 3180
cgccgatcg tttttttttt 3240
tcacacatcg tttttttttt 3300
gttccggatcg tttttttttt 3360
ggggacgttca gttttttttt 3420
ctgtttttt tttttttttt 3480
agcactgggt tttttttttt 3540

```

EP 1 043 399 A2

5	aaaaccccttga cctgccccac ggactgcttc cgaaagcacc ccgaggccac ttacaccaag 3600 tgtgggtcg ggccttgggt gacaccaga tgcgtggcc actacccata caggttttg 3660 caactccctc gcactgtcaa cttaaccate ttcaggtta ggtatgtacgt gggggggagtq 3720 gagcacaggc tcgaagccgc atgcaatgg actcgaggag agcgttgtaa cttggaggac 3780 agggacagat cagagcttag cccgctgtg ctgtctacaa cggagtggca ggtatttccc 3840 tgttccctca ccacccattc ggctctgtcc actgtttgtc tccatctcca tcagaacgtc 3900 gtggacgtac aatactgtc cggataggg tggcggttgc ttccttttgc aatcaaattgg 3960 gagatgttcc tggtgttcc ccttcttcg gggacggc ggttctgtgc ctgtttgtt 4020 atgtatgtgc tgatagctca agctgaggcc gecctagaga acctgtgtt cctcaacgcg 4080 gcateccgtgg cggggggcga tggcatctc tccctcttcg tggcttcttcg tgcgtccctt 4140 10 tacatcaagg gcaagctgtt ccctggggcg ccatatgtcc ttcacgggtt atggccgtt 4200 cttctgttcc tggtgttcc accacccaga gtatcggcc tgacccggga gatggcagca 4260 tcgtgcccgg ggcgggttt cgtaggcttgc atactttga cttgttccacc gcactataag 4320 ctgttccctcg cttaggtcat atgggttta caatattttt tccacaggggc cgaggccac 4380 ttgcaatgtt ggatcccccc cctcaacgtt cggggggggc gcatgttccctt 4440 acgtgcgcga tccacccaga gctaattttt accataccac aaatcttgcg cgcctatacte 4500 15 ggttccactca tgggtgttcc ggctgttata accaaagtgc cgtacttgcg ggcgcacac 4560 gggttccatca gtgtatgttgc gtcgttgcggg aadgttgcgtt ggggttattt tggtccaaatgg 4620 gttctcatga agttggccgc actgacagggt acgtacgttcc atgaccatc cacccttact 4680 cggggacttggg cccacccggg cctacagac cttgggttgc cgttggagcc cgtgttcttc 4740 tctgtatgtt agaccaatgtt tatcacctgg gggcagaca ccgcggcgtt tggggacatc 4800 atcttggggcc tggccgttcc cggccggcggg gggaggggcata tacatcttggg accggcagac 4860 20 agccttggaa ggcagggggtt ggcacttcc ggccttattt cggcttactc ccaacagacg 4920 cgaggccatcc ttggctgtat cttcaacttgc ctcacaggcc ggacacaggaa ccaggctcgag 4980 ggggaggtcc aagtgggttc caccgaaca caatttttcc tggcgttccacc cgtcaatggc 5040 gtgtgttggc ctgttctatca tgggtggcc tcaaaaggttgc tttccggggcc aaaggggccca 5100 atcacccaaa tggatccatca tgggttccacc gacccgttgcg tgggttccacc gccccccggg 5160 gcgcgttcc tggatccatca caccctggcc agcttggacc ttacttgcg caccggcat 5220 ggcgatgtca ttccgggtcg cccggggggc gacacgggg ggacgttccact cttccccccagg 5280 ccctgttccct acttgggttgc ctcttccggc ggttccacttgc tttccggggcc ggggttgcgt 5340 25 gttgggttccatctt ttcgggttgc ctgttccacc cgggggttgc cggaggccgtt ggactttgtt 5400 ccctgttccatctt ttcgggttgc ctgttccacc cgggggttgc cggaggccgtt ggactttgtt 5460 ctatggaaac cactatgttgc tccctgttgc tcaacggacaa tggggccatc tccgttccct 5520 ccggccgttcc cgcacatcc cccgggttgc cactacacgg cccctactgg tagcggcaag 5580 agcactaagg tgggggttgc gatgttgcg cgggggttgc tttccggggcc ttcgggttccact 5640 30 tccctgttccatctt ttcgggttgc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 5700 aacatcgaaa cccgggttgg gaccatcacc acgggttgc cccatcaatgg tttccggggcc ttcgggttccact 5760 ggcaagtttcc ttggccgttcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 5820 gagtggccact caactgttcc gaccatcacc tttccggggcc tttccggggcc ttcgggttccact 5880 gagacggcttgg gacccgttcc cttccggggcc tttccggggcc tttccggggcc ttcgggttccact 5940 gtgccacatcc caaatatgttgc ggggggggttgc tttccggggcc tttccggggcc ttcgggttccact 6000 40 ggcggccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6060 agaagaatgttgc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6120 tattaccggg gcttggatgttgc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6180 acggacgttcc taatgttcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6240 tgtgttccatcc agacgttcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6300 gtggccatcc acggccgttcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6360 45 ggcatttttccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6420 ctgttccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6480 ttctggggatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6540 aggcaggccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6600 gttcaggccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6660 acggccgttcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6720 accacacaccc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6780 acgagccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6840 45 ggcggccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6900 gacacggccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 6960 tacatcgaaa tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7020 caaacagccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7080 ctcgaaatgttcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7140 ggcttggatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7200 50 atcaccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7260 ggccggccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7320 gcccggccatcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7380 gcaggccgttcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7440 gaggacgttcc tttccggggcc tttccggggcc tttccggggcc tttccggggcc ttcgggttccact 7500
---	--

EP 1 043 399 A2

	gtgtgcgcag	cgatactcg	tcggcacgtg	ggcccagggg	agggggctgt	gcagtggatg	7560
5	aaccggctga	tagcgttgc	ttcgcggggt	aaccacgtct	cccccacca	ctatgtgtct	7620
	gagagcga	ctcagcaca	tgtcaactcg	atccctctcta	gtcttacat	cactcagctg	7680
	ctgaagaggc	ttcaccatgt	gatcaacgag	gactgtctca	cgccatgtctc	cggtctgtgg	7740
	ctaagagatg	tttgggattt	gatatcgac	gtgttactgt	atttcaagac	ctggctccag	7800
	tccaagctcc	tgccgcgatt	gccggagtc	cccttcttct	catgtcaac	tgggtacaag	7860
	ggagtctggc	ggggcgacgg	catcatgcaa	accacctgcc	catgtggagc	acagatcacc	7920
	ggacatgtga	aaaacggttc	catgaggatc	gtggggccta	ggacctgttag	taacacgtgg	7980
10	catggaaacat	tccccattaa	cgctcactacc	acggggccct	gcacgcctc	cccgccgcca	8040
	aattattctt	gggcgtctgt	gccccgggt	gtcgaggatg	acgtggatgt	tacgcgggtg	8100
	ggggattttcc	actacgtgac	gggcataacc	actgacaacg	taaagtggcc	gtgtcagggtt	8160
	ccggcccccc	aattttcac	agaagtggat	gggggtgcggg	tgcacaggt	cgctccagcg	8220
	tgc当地	tcctacggg	ggagggtcaca	ttcttggctcg	ggctcaatca	atacctgggtt	8280
	gggtcacagc	tccccatggg	gccccaaacc	gacgttagcag	tgctcacttc	catgtcacc	8340
15	gacccttccc	acattacggc	ggagacggct	aaacgttaggc	tggccagggg	atctcccccc	8400
	tcttggcca	gctcatcage	tagccatgt	tcttgcgtt	ccttgaaggc	aacatgcact	8460
	accgtcatg	actccccgg	cgctgaccc	atccggggca	accttctgtg	gccccaggag	8520
	atggggcggg	acatcaccc	cgtggagtca	aaaaataaagg	tagtaatttt	ggacttttc	8580
	gagccgctcc	aaggcgagga	ggatggaggg	gaatgtatcc	ttccggcgg	gatctgtggg	8640
	agttccagg	aattccctcg	agecatggcc	atatgggac	gccccgatta	caacccctcca	8700
20	ctgttagagt	ccttggagga	ccccggactac	gttccctccag	tgttacacgg	gtgtccattt	8760
	ccgcctgcca	aggcccccttcc	gataccaccc	ccacggaggg	agaggacgt	tgtctgtca	8820
	gaatctacc	tgttcttc	cttggcggag	ctcgccacaa	agaccttcgg	cagctccgaa	8880
	tcgtcggccg	tcgacagcgg	caeggaac	gcttcttc	accagccctc	cgacgacggc	8940
	gacgcgggat	ccgacgttga	gtcgtaactc	tccatgcccc	cccttgggg	ggagccgggg	9000
	gateccgatc	tcagcgcac	gttgggtct	acccgtaa	aggaggctag	tgagacgtc	9060
25	gtctgtgtct	cgatgtcttca	cacatggaca	ggccccctga	tacacccat	cgctcggag	9120
	gaaaccaagc	tgccgtcaa	tgcactgagc	aacttcttgc	tccgtcacca	caacttggtc	9180
	tatgtctacaa	catctcgcag	cgcaagcctg	cggcagaaga	aggtcacctt	tgacagactg	9240
	cagggtctgg	acgaccata	ccgggacgtg	ctcaaggaga	tgaaggcgaa	ggcgtccaca	9300
	gtttaggctt	aacttctatc	cgttggaggg	gctgttaa	tgacgcccc	acattcggcc	9360
	agatctaaat	tttgcata	ggcaaaagg	gttccggaaacc	tatccagca	ggccgttaac	9420
30	cacatccgct	ccgtgtggaa	ggacttgc	gaagacactg	agacaccaat	tgacaccacc	9480
	atcatggcaa	aaaatgggt	tttctgcgtc	caaccagaga	agggggggcc	caaggcagct	9540
	cgcccttatcg	tatccccaga	tttgggggtt	cggtgtgc	agaaaatggc	cctttacat	9600
	gttgtctcca	cccttccat	ggccgtgtat	ggcttcttcat	acggatttca	atacttctt	9660
	ggacagcggg	tcgagtttct	ggtgaatgg	tggaaaggcg	aaaaatggc	tatgggcttc	9720
	gcataatgaca	cccgctgtt	tgactcaac	gtcaactgaga	atgacatcc	tgttggggag	9780
35	tcaatctacc	aatgttgt	tttggcccc	gaagccagac	aggccataag	gtcgtcaca	9840
	gagcggtttt	acatggggg	ccccctgtact	aattctaaag	ggcagaactg	cggtatcgc	9900
	cggtgcgcg	cgagcggt	actgtacgacc	agctgggt	atacccttac	atgttatttg	9960
	aaggccgtg	cgccctgtcg	agctgcga	ctccaggact	cgacatgt	cgatgtcgga	10020
	gacgacattt	tcgttatttc	tgaagcgcg	gggacccaag	aggacgaggc	gagcttacgg	10080
	gccttacacgg	aggctatgc	tagatactc	gccccccctg	gggacccccc	caaaccagaa	10140
40	tacgacttgg	agttgataac	atcatgtcc	tccaatgtgt	catttttact	ccatagttac	10200
	ggcaaaagg	tgtactatc	cacccgtac	ccacccaccc	cccttgcgc	ggctgcgtgg	10260
	gagacagcta	gacacactc	agtcaatttc	tggcttaggc	acatcat	gtatgcggcc	10320
	accttgcgg	caaggatgt	cctgtatact	cattttcttct	ccatccttct	agctcaggaa	10380
	caacttggaa	aagccctaga	ttgtcagatc	tacggggctt	gttactccat	tgagccactt	10440
	gacctacctc	agatcattca	acgactccat	ggcccttagcg	catttttact	ccatagttac	10500
45	tctccagggt	agatcaatag	ggtgggttca	tgcctcagga	aacttgggt	accggccctt	10560
	cgagtctgg	gacatcgcc	cagaatgtc	cgccgttaggc	tactgtccca	ggggggggagg	10620
	gctgccactt	gtggcaagta	ccttccat	tggcgat	ggaccaat	caaactcact	10680
	ccaatcccg	ctgcgtccca	gttggattt	tccactgtgt	tcgttgcgg	ttacagcggg	10740
	ggagacat	atcacacgtt	gtctcgtgc	cgaccccgct	gttcatgt	gtgcctactc	10800
	ctactttctg	taggggtagg	catctatcta	ctcccaacc	gatgaacggg	gagctaaaca	10860
50	ctccaggc	ataggccat	ctgtttttt	cccttttttt	ttttttttt	ttttttttt	10920
	ttttttttt	ttttttttt	ttttttttt	ttttttttt	ttttttttt	ttttttttt	10980
	tgctccatc	ttagccctag	tcacggctag	ctgtgaaagg	tccgtgagcc	gtttgactgc	11040
	agagagtgt	gatactggcc	tctctcaga	tcaagt			11076

EP 1 043 399 A2

<210> 8
 <211> 8001
 <212> DNA
 <213> Hepatitis C Virus

5
 <400> 8
 gccagcccccc gattggggc gacactccat catagatcac tcccctgtga ggaactactg 60
 ttttcacgca gaaagcgctt agccatggcg ttagtatgag tgcgtgcag cttccaggac 120
 cccccctccc gggagagcca tagtggctt eggaaccgg gagaaccccg gatgcacccg 180
 gacgaccggg tccttctt gatcaacccg ctcaatgcg ggagatggg gctgtccccc 240
 gcgagactcg tagccggat gtgtgggc gegaaggcc ttgtgtact gcctgatagg 300
 gtgttgcga gtggccggg aggtctcgta gaccgtgcac catgagcaeg aatcctaacc 360
 ctcaaaagaaa aaccaaactt aacaccaacg ggcgcgcctt gattgaacaa gatggattgc 420
 acgcagggttc tccggccgtt tggttgaga ggctatccg ctatgactgg gcacaacaga 480
 caatcgctt ctctgtatcc gccgttcc ggctgtcage gcaaggggc 540
 ttgtcaagac cgacctgtcc ggtccctgtaa atgaactgca ggcacgggca ggcggctat 600
 ctgtggctggc cacgacgggc ttccctgtcg cagctgtgt cgacgttgc actgaagcgg 660
 gaagggaactg gctgttattt ggcgaagtgc cggggcaggaa tccctgtca ttcacccctt 720
 ctcttcggcc gaaatgttcc atcatgtcg atgcattcg gggctgtcat acgttgcattt 780
 cggctacccg cccattcgac cacaacggaa aacatcgcat cgacgcggca cgtactcgaa 840
 tggaaaggccg tcttgcgtat caggatgtat tggacgaaga gcatcagggg ctcgcggcc 900
 ccgaactgtt cgccaggctc aaggcgcgcg tggccggcgg cgaggatctc gtcgtgaccc 960
 atggcgtatgc ctgtggctcg aatatacatgg tggaaaatgg cggctttttt ggtttatcg 1020
 actgtggccg gctgggtgtt gggggccgtt atccggacat acgttgcgtt acccggtata 1080
 ttgtcaaga gcttggggc gaatgggtt acggcttctt cgtgttttac ggtatcgcc 1140
 ctccccgatcc gcaacgcgttcc gcttcttccat gcttcttgc cgggttcttcc ttagtttaaa 1200
 cagaccacaa cgggttccctt ctggggat caatccggcc ccttcccttcc cccccccctt 1260
 aacgttactg gggaaagccg ctggaaataa ggccgggtgtt ctttgttcttata gatgttattt 1320
 tccaccatat tggcgttcc tggcaatgtt agggccggaa aacctggccc tgcgttctt 1380
 acgaggcatcc ctgggggtt tttcccttc gccaaaggaa tgcaggatcc gttgaatgtc 1440
 gtgaaggaaag cagttccctt ggaaggctt tgaagacaaa caacgttgcg 1500
 tgcaggcgc ggaacccccc acctggcgc acggccctt cggccaaaaa gccacgtgt 1560
 taagatacac ctgcaaaaggc ggcacaaccc cagtggccacg ttgtgagttt gatagttgt 1620
 gaaagagtca aatggcttc tcaaggcgtt tccaaacaagg ggctgaaaggaa tggccagaag 1680
 gtaccccccattt gtatgggtt tgatctgggg cctctgggtt cattgttttac atgtgttttag 1740
 tcgagggtttaa aaaaacgttca gggcccccggaa accacggggca cttgggttttcc tttgaaaaaa 1800
 caccataataa ccatggcgc tattacggcc tactcccaac agacgcggg cctacttgc 1860
 tgcattcatca ctagcctcac agggcggggc aggaaaccagg ttggggggg ggttcaagt 1920
 gttctccacccg caacacacaa tttctggggc accttgcgtt atggcgtgtt ttggactgtc 1980
 tatacatgggtt cccggctcaaa gacccttgc gccccaaagg gccaaatcac ccaaataatgtac 2040
 accaatgtgg accaggactt cgtgggttgg caagcgcggg cggggggcgcg ttccttgaca 2100
 ccatgcaccc tggggcagtc gggatccat ttgttcaacgg gcatggccg tgcatttccg 2160
 gtgcggccggc gggggcggcag cggggggcgtt ctatcttcc cccaggccgtt ctcctactt 2220
 aagggttctt cgggggttcc actgttcttc cccctggggc acgttgcgtt cattttccg 2280
 gtcggcgtgtt gacccgggg ggttgcgaag ggggtggact ttgttccctt cggatctatg 2340
 gaaaccacta tgggttccccc ggttccatcg gacaactcg cccctccggc cgtaccggcag 2400
 acatccagg tggggccatcc acacggccctt actgttgcgtt gcaagagacac taagggtgcg 2460
 gtcgtatgc cggccaaagg gtataagggtt ctgttccgtt gaccgttccgtt cggcccccacc 2520
 cttagtttgc ggggttataat gtctaaaggca catggatcg accctaataat cagaatcg 2580
 gtaaggacca tcaaccacggg tggcccccattt acgttacttca cctatggcaaa gtttcttgc 2640
 gacgggtgtt gtttgcgggg cggctatcg attataatat gtatgtatcg ccactcaact 2700
 gactcgacca ctatcttggg catggcaca gtcctggacc aacggggagac ggttggggcgcg 2760
 cgactcgatcg tgcgttccatcg cgttgcgttcc cccggatcg tcaaccgttcc acatccaaac 2820
 atcgaggagg tggcttgcgtt cggacttgc gaaatccctt ttatggcaaa aecatccccc 2880
 atcgagacca tcaagggggg gggccatcc ttttttgcg atttccaaaggaa gaaatgtat 2940
 gagctcgccg cgaaggctgtt cggcccttgcg cttatcgatcg tagcatatcc cccggccctt 3000
 gatgtatccg tccatccaaatc tagggggagac gtcattgtcg tagcaacggc cgttcaatg 3060
 acggggcttta cccgttgcattt cgttgcgttcc atcgacttgc atatcatgtt caccctggaca 3120
 gtcgacttca gtcctggacc gacccatccat ttgttgcgtt gacccgttcc acaaagacgcg 3180
 gtgttgcgtt cggccggggc aggccggact ggttggggca ggttggggcat ttacagggtt 3240
 gtgactccag gagaacggcc ctcggccatg ttcgttccctt cggatcttgcg cggatgttat 3300
 gacggggctt gtttgcgtt cggatcttgc cccggccgaga ctttgcgtttag gtttgcgggct 3360
 tacccaaaca caccagggtt gcccgttgc cggaccatc tggatgttgcg gggagacgcgc 3420
 ttatccggcc tcaaccatccat agacggccat ttcttgcgttcc agactaagca ggcaggagac 3480
 aacttccctt accttgcgttcc ataccaggctt acggatgttgcg ccaggccatc ggcgttccaccc 3540

EP 1043 399 A2

5 ccatacggtgg accaaatgtg gaagtgtctc atacggctaa agcctacgt gcacgggcca 3600
 acggccctgc tggataggctt gggagccgtt caaaacggg ttactaccac acacccata 3660
 accaaataca tcatggcatg catgtcggtt gacctggagg tcgtcacgag cacctgggtt 3720
 ctggtaggcg gagtccttgc agctctggcc gcgtattgcc tgacaacagg cagcgtggc 3780
 attgtggca ggatcatctt gtccggaaag cggccatca tccccacag ggaagtccctt 3840
 taccgggagt tcgtatggat ggaagagtgc gcctcacacc tcccttacat cgaacaggaa 3900
 atgcagctcg cggaaacatt caaaacaaag cgaatcggtt tgctgcaaac acceccaaag 3960
 caagcgagg ctgtctgtcc ctgggtggaa tccaaatggc ggaccatcga agcctctgg 4020
 gcgaaagcata tggaaattt catcagcggtt atacaattt tagcaggctt gtccactctg 4080
 cctggcaacc cccgcataatcgc atactgtgc gattcacaat cctcttacat cagccggctc 4140
 10 accacccaaat atacccctt gtttacatc ctggggggat ggggtggccg ccaacttgtt 4200
 cctcccacgt ctgtttctgc ttctgttaggc gcccgcacgt ctggagcgcc tggggcage 4260
 ataggectt ggaagggtct tggatattt tggcagggtt atggagcagg ggtggcaggc 4320
 gcgctcggtt cctttaatggat catgagggc gagatggctt ccacggaga cctggtaac 4380
 ctactccctt ctatccctt ccttgcggcc ctatgtcg cgggtgttgc cgcagcata 4440
 ctgcgtcgcc acgtggggcc aggggagggg gctgtgcgtt ggtatggatcg gctgtatagc 4500
 ttctgttgcg gggtaaccc cgtcttccccc acgcaatgtc tggctgagag cgacgtgtca 4560
 15 gcaacgtgtca ctcagatctt ctatgttccatc acgtgtgttgc ggggtttttt 4620
 cagtggatca acggaggatctt ctcaccccca tgctccggct ctgggtcaag agatgtttgg 4680
 gattggatat gcaacgtgtt gactgatcc aagacctggc tccagtcacaa gctccctggc 4740
 cgattgcgg gagtccctt ctatctgttgc caacgtgggtt acaagggtt ctggggggcc 4800
 gacggcatca tggcaaccat ctggccatgtt gggggcaca tcaacggaca tggaaaaac 4860
 gtttccatca ggatgtggg gcttggggcc tggatgttgc aacatcccc 4920
 20 attaaacgcgtt acaccacggg ccctgcacg ccctcccccgg cgccaaatata ttcttagggc 4980
 ctgtggggg tggctgtgtt gggatgttgc ggggttttgc ggggtggggat tttccactac 5040
 gtgacggggca tgaccatgtt cggatgttgc tggccgttgc aggttccggc ccccgaaattt 5100
 ttccacaaatgg tggatgttgc gggatgttgc aggttacgttca cagctgtcaaa accccctcta 5160
 cgggaggaggatcc tggatgttgc aatcaatacc tggatgttgc acagctccca 5220
 tggcggccgg aaccggatgtt acggatgttgc acctccatgtt tcaacggatcc ctccccatc 5280
 25 acggcgaga cggatgttgc taggtggggcc aggggatgttgc ctccccccctt ggccagatca 5340
 tcagctatgtt acgtgttgc gccttccttgc aaggaaacat gcaactacccg tcatgactcc 5400
 cccggacgtt acctcatgtt ggcacacccgc ctgtggggcc aggagatggg cggaaacatc 5460
 accccgcgtt agtcagaaaaaa taatggatgttgc tttttggactt ctggatgttgc gtcggatgttgc 5520
 gaggatgttgc agggggatgtt atccgttgc gggatgttgc tggggatgttgc cagggatgttgc 5580
 cctcgagatca tggccatgtt ggcacacccgc gattacaacc ctccactgtt agatgttgc 5640
 aaggacccgg actacgttcc tccatgttgc tccatgttgc aacgggttgc tggccggcc tggccaaaggcc 5700
 30 cctccatgttgc tggatgttgc gggatgttgc tggatgttgc tggatgttgc tggatgttgc 5760
 tctggcttgc tggatgttgc cagggatgttgc tggatgttgc tggatgttgc tggatgttgc 5820
 agggggccgg caacggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 5880
 gttgatgttgc acttccatgtt gggcccccgg gggggggatcc cggggatgttgc tggatgttgc 5940
 gacgggttcc tggatgttgc aacggatgttgc tggatgttgc tggatgttgc tggatgttgc 6000
 tctccatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6060
 atcaatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6120
 35 cgcagcgcaatcc ggcctggggca gaagaagggtt accttttgc gactgttgc gggatgttgc 6180
 cactaccggg agtcgttgc gggatgttgc tggatgttgc tggatgttgc tggatgttgc 6240
 ctatccgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6300
 tatggggccatcc agggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6360
 tggaaaggact tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6420
 gaggttttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6480
 40 ccagatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6540
 cctcaggccg tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6600
 ttctctggatcc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6660
 tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6720
 tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6780
 gggggccccc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6840
 gggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6900
 tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 6960
 atctgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7020
 atgacttagat tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7080
 ataacatcatc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7140
 tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7200
 actccatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7260
 50 atgatcttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7320
 tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7380
 attcaacatc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7440
 aatagggttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 7500

EP 1 043 399 A2

cgggccagaa gtgtccgcgc taggctactg tcccaggggg ggagggctgc cacttgtgc 7560
aagtacacctc tcaactggc agtaaggacc aagctcaaac tcactccaat cccggctgcg 7620
5 tcccagttgg atttatccag ctggttcggt gctggttaca gcgggggaga catatatcac 7680
agcctgtctc gtgccccgacc ccgctgggtc atgtggtgcc tactcctact ttctgttaggg 7740
gtaggcatct atctactccc caaccgatga acggggagct aaacactcca ggccaatagg 7800
ccatcctgtt ttttccctt ttttttttcc ttttttttcc ttttttttcc ttttttttcc 7860
tttttcctt tttttttctt ctttttttcc ttttttttcc tttgggtggct ccatcttagc 7920
10 cctagtcacg gctagctgtg aaaggccgt gagccgcttg actgcagaga gtgctgatac 7980
tggccctctc tgcagatcaag t 8001

15

20

25

30

35

40

45

50

55

<210> 9
<211> 11076
<212> DNA
<213> Hepatitis C Virus

EP 1 043 399 A2

5	aaaacccctga	cctggccccac	ggactgcttc	cgaaagcacc	ccgaggccac	ttacaccaa	caggcttttg	3660
	tgtggttcg	ggccttgggt	gacacccaga	tgcttggtcc	actaccata	ggggggatgt	3720	
	cactaccct	gcaactgtcaa	cttttaccatc	ttcaagggtt	ggatgtacgt	cctggaggac	3780	
	gagcacaggc	tegaaggcc	atgcattatgg	actcgaggag	aggcttgaa	gttattgtcc	3840	
	aggacagat	cagacccatag	cccgtctgtg	tgcttacaa	cgagatggca	tcagaacgtc	3900	
10	tgttccctca	ccaccctacc	ggctctgtcc	actggtttga	tccatctcca	aatcaaatgg	3960	
	gtggacgtac	aataccgtta	cggtataaggg	teggcggtt	ttctcttgc	ctgcttgtgg	4020	
	gagtatgtc	tgttgcctc	ccttcttctg	gcccgcgc	gcttctgtgc	cctaacaacg	4080	
	atatgtctgc	tgtatgtca	agctgaggcc	gcccstagaa	acctgttgtt	tgctgcctgg	4140	
	gcattccgtgg	ceggggcgca	tggcatctc	tcetctctcg	tgttcttctg	atggccgtc	4200	
	tacatcaagg	gcaggctgtt	ccctggggcg	gcataatggcc	ttagccgggt	gatggcagca	4260	
	ctctgtctcc	tgtggccgtt	accacccaga	gcatacgcc	ttggccggga	gactataaag	4320	
	tctgtcgagg	gcgcgttgg	cgttagctgt	atactcttgc	ccttgcacc	cgaggcacac	4380	
	ctgttccctcg	ctaggctcat	atggtggttt	caatattttt	tcaccaggggc	catctcttc	4440	
15	ttgaatgtgt	ggatcccccc	cctcaacgtt	cgggggggcc	gcatgtccgt	cgccatactc	4500	
	acgtgcgcga	ttccccccaa	gtaatatttt	accatcaaca	aaatcttgc	gcccgcacac	4560	
	gggtccatca	tgtgtctca	ggctgttata	accaaagtgc	cgtagtctgt	tgtccaaatg	4620	
	gggtctatcc	gtgcatgtat	gctgggtcg	aagggtgtc	ggggtcatta	cacccttactc	4680	
	gctctcatga	agttggccgc	actgacagg	acgtacgtt	atgaccatct	ctgtgttctc	4740	
	cgggactggg	cccacgcggg	catacggagac	cttgcgttgg	cattgtggcc	tggggacatc	4800	
	tctgtatgg	agacaaatgt	tatcacttgc	ggggcagaca	ccggccgtgt	accggcagac	4860	
	atcttggcc	tgccctgtc	egcccgagg	ggggagggaga	tacatctggg	ccaaacagac	4920	
	agccctgtaa	ggcagggggt	gcatcttctc	gccccttata	cggttgcgg	caaggttcg	4980	
20	cgaggctcac	ttggctgtat	catcactage	ctcaacaggc	ggacagacaa	cgtcaatggc	5040	
	ggggagggtcc	aagtggcttc	caccgcacaa	caatctttcc	ttggcactctg	aaagggccca	5100	
	gtgtgttgg	ctgtctata	tggtgcggc	tcaaagaccc	ttggcggcccc	gccccccggg	5160	
	atcacccaaa	tgtacaccaa	tgtggaccag	gacctgtcg	gttggcaacg	cacggatcat	5220	
	ggcggttct	tgacacatt	cacccgtggc	agctcggacc	tttacttgg	ctccccccagg	5280	
	ggccatgtca	ttccgggtgc	ceggcggggc	gacacggagg	ggagcttact	ggggcacgt	5340	
	cccgcttect	acttgaagg	cttcttgggc	gttcaactgc	tctgccccctc	ggacttgcgt	5400	
25	gtgggcatct	ttccggctgc	cgtgtgcacc	cgagggtgt	cgaaaggccgt	ctcgccccct	5460	
	cccgctgatgt	ctatggaaac	cactatgtgg	tcccccgtt	tcacggacaa	tagcggcaag	5520	
	ccggccgtac	cgcagacatt	ccagggtggc	catctacacg	ccctctactc	cctgaaccc	5580	
	agcaactaagg	tgccggctgc	gtatgtaccc	caagggtata	aggtgtttgt	tatcgaccc	5640	
	tccgcggccg	ccacccctagg	tttcggggcg	tatatgttca	aggcacatcg	ctccacatct	5700	
	aacatcgaaa	tcgggatgtt	gaccatcacc	acgggtgc	ccatcgtat	aatatgtgtat	5760	
30	ggcaagttt	ttggccaccc	tgggtgtct	ggggggccct	atgacatcat	ggaccaagcg	5820	
	gagtgcact	caactgactc	gaccactatc	ctggcatacg	gacagtctt	atcggttacc	5880	
	gagacggctg	gagcgacact	cgtcggtc	gccacccgt	ccgctccggg	cccttttat	5940	
	gtgcccacatc	caaacatcg	ggagggtgt	ctgtccagca	ctggagaaat	ctgcatttc	6000	
	ggcaaaagcc	tccccatcg	gaccatcaag	ggggggagcc	acccttattt	tgctgtagca	6060	
	aagaagaaat	gtgatgtat	cgccgcgaag	ctgtccggc	tggactctaa	tgtgtacgaa	6120	
35	tattaccgg	gccttgcattt	atccgtatca	ccaaactagcg	gagacgtcat	ctgcaataca	6180	
	acggacgtc	taatgtacgg	tttacccgt	gacttgc	ctgtgtatcg	gacgacgacc	6240	
	tgtgtcacc	agacatgtca	tttcaggctc	gaccggactt	tcacatttgc	gggcaggatg	6300	
	gtgccacaag	acgcgggttc	acgtctcg	cggtggggca	ggacttggtag	ttcctcggtt	6360	
	ggcatttaca	ggtttgttgc	tccaggagaa	cgcccttcgg	gtatgttgc	cgagacttca	6420	
	ctgtcggt	gtatgtaccc	gggtgtgt	tggtacgat	tcacggccgc	ccatctggat	6480	
40	gttaggttgc	gggttactat	aaacacca	gggtgtccgg	tctggccagg	gtcccagact	6540	
	ttctgggaga	ggcttcttac	aggecttacc	cacatagac	cccatatttt	gtgcgcagg	6600	
	aagcaggcag	gagacaac	ccccatctc	gtacatacc	aggtctatgt	gtcaaaacgt	6660	
	gctcaggcttc	cacccatccat	gtggggacca	atgttggaaat	gtctcatatcg	cgaggatgtt	6720	
	acgctgtcagc	ggccaaacgg	cctgtgtat	aggctgggg	cggttcaaaa	ggaggtgtc	6780	
	accacacacc	ccataacccaa	atacatatcg	gtatgtatgt	cggttccat	ttgcgttacca	6840	
45	acgagacact	gggtgttgtt	aggcggagtc	ctagcagtc	tgcccgctgt	catcttccc	6900	
	acaggcagcc	tgtgttattgt	ggggcaggatc	atctgttcc	gaaaggccggc	acaccccttc	6960	
	gacaggggaa	tcctttaccc	ggagttccat	gatgttgc	atgtcgccctc	cggttgcgt	7020	
	tacatcgaa	agggaaatgc	gctcgccgaa	caattcaaa	agaaggcaat	gtggcgaccc	7080	
	caaacagcca	ccaagcaac	ggaggctgt	gtcccggtt	tgaatccaa	atatttagca	7140	
	atcgaaccc	tctggggcgaa	gcatatgtt	aatttcatca	ggggatataca	caacatcttc	7200	
	gcttgcgttca	ctctgtctgg	caaccccgcc	atagcatatcg	tgtggcatt	gggatgggt	7260	
	atcaccaccc	cgcttccaccc	ccaaatcatcc	cttcgttta	acatcttggg	catcgcttga	7320	
50	ggcgcccaac	ttgttccccc	cagcgtgtt	tctgttttc	taggcggccgg	agggtttaggg	7380	
	gcccgttgg	gcagcatgg	ccctggggaa	gtgttgggtt	atattttgg	ggcccttaccc	7440	
	gcaggggtgg	caggcgcgt	cgtggccctt	aaggctatcg	gcccggatgt	cgtcggttgc	7500	

EP 1 043 399 A2

	gtgtgcgcag cgatactgcg tcggcacgtg gccccagggg agggggctgt gcagtggatg 7560
5	aaccggctga tagcgttgc ttcgcggggt aaccacgtct ccccccacga ctatgtgcct 7620
	gagagcgacg ctgcagcacg tgtcaactcg atccctctcta gtcttaccat cactcagctg 7680
	ctgaagaggc ttcaaccatgt gatcaacgag gactgtctca cggccatgtct cggctcggtg 7740
	ctaagagatg tttgggatgt gatatgcacg gtgttactgt atttcaagac ctggctccag 7800
	tccaaagctcc tggcggcgatt gccgggagtc cccttcttct catgtcaacg tgggtacaag 7860
	ggagtctggc ggggcgacgg catcatgcaa accacctgccc catgtggggc acagatcacc 7920
	ggacatgtga aaaacggttc catgaggatc gtggggccta ggacctgttag taacacgtgg 7980
10	catgaaacat tccccattaa cgcgtacacc accggggccat gcaccccttc cccggcgcca 8040
	aattattctc gggcgctgtc ggggggtgt getgaggagt acgtggaggt tacggggtg 8100
	ggggatttcc actacgtgac gggcatgacc actgacgacg taaagtggcc gtgtcagggtt 8160
	ccggcccccg aattcttcac agaagtggat ggggtgcgggt tgcacagta cgctccagcg 8220
	tgcaaaccctt tcctacggga ggaggtcaca ttctctggtcg ggctcaatca atacctgggtt 8280
	gggtcaacage tccccatcgca gccccaaaccg gtgttagcag tgctcaatc catgtcacc 8340
	gacccttccc acattacggc ggagacggct aacgttaggc tggccagggg atctcctccc 8400
15	cccttggcca gtcatacgac tagccagctg tctgcgcctt ctttgaaggc aacatgact 8460
	acccgtcatg actccccggc cgctgacccatc atcgaggcca acctccctgt gggcaggag 8520
	atggggcgaaa acatcaccccg cgtggagtca gaaaataagg tagtaattttt ggactcttc 8580
	gagccgtccc aagcgggagga ggatgagagg gaatgtatcc ttccggcga gatctgcgg 8640
	aggttccaggaa aattccctcg aegcatgccc atatgggcac gcccggatata caaccctcca 8700
20	ctgttagagt ctggaaagga cccggactac gttccctccag tggtacacgg tggtccattt 8760
	ccgcctggca aggcccccttc gataccaccc tcaacggagga agaggacgtt tgcctgtca 8820
	gaatctacccg tgccttctgc cttggggag ctcgcacacag agaccttcgg cagctccgaa 8880
	tcgtcgcccg tcgacagcgg cacggcaacg gctcttcctcg accagcccttc ctagcagccg 8940
	gacgcggat cccgacgttga gtcgtactcc tccatgcggcc cccttgggg ggagccgggg 9000
	gatcccgatc tcagcgacgg gtcttgggtt acctgtaaagcg aggaggctag tgaggacgtc 9060
25	gtctgctgtc cgatgtctca cacatggaca ggcgccttca tcacgcatcg cgctgcggag 9120
	gaaaccaagc tgccttcaaa tgcactgacg aactcttttc tccgtaccca caacttggtc 9180
	tatgtctacaat catctcgacg cgcaagcctg cggcagaaga aggtcacctt tgacagactg 9240
	caggctctgg acgaccaacta cccggacgtc ctcaaggaga tgaaggcga ggcgtccaca 9300
	gttaaggeta aacttcttccatcgtggggaa gctctgtaaagc tgacggccccc acattggcc 9360
	agatctaaat ttggctatgg ggccaaaggac gtcggaaacc tatccagca ggcgttaac 9420
30	cacatccgct cccgtgtggaa ggacttgcg gaagacactg agacaccaat tgacaccacc 9480
	atcatggcaa aaaatgaggt tttctgcgtc caaccagaga agggggggccg caagccagct 9540
	cgcccttacccg tattttccaga tttgggggtt cgtgtgtcgc agaaaatggc cctttacgat 9600
	gtggtctcca ccccttccca ggccgtatgtt ggtctttcat acggattcca atactctct 9660
	ggacagcggg tcgaggatcc ggtgaatgcc tggaaagcga agaaatgcc tatgggcttc 9720
	gcatatgaca cccgctgtt tgcactcaacg gtcactgaga atgacatccg tggtagggag 9780
35	tcaatctacc aatgttgtga ctggggcccc gaagccagac aggcataag gtcgtcaca 9840
	gagcggctt acatcggggg ccccttgcact aattctaaag ggcagaatcg cggctatcgc 9900
	cgggtccgcg cggcggtgt actgacgacc agtcgtggta atacccttccat atgttacttg 9960
	aaggcccgctg cggccgtcg agtcgcgaag ctccaggact gacgatgtct cgtatgcgg 10020
	gacgacccctg tcgttatctcg tggaaagcgcg gggacccaaag aggacgaggc gaggctacgg 10080
	gccttacacgg aggctatgac tagataactct gccccccctg gggacccccc caaaccagaa 10140
40	tacgacttgg agttgataac atcatgtcc tccaatgtgt cagtgcgcgca cgatgcatt 10200
	ggcaaaaggg tgcgtatctcc cccaccatcc tccctgcgtt cccttgcgc ggtctcggtg 10260
	gagacagcttcc gacacactcc agtcaattcc tggcttaggca acatcatcat gtatgcggcc 10320
	acccctgtggc caaggatgtt cctgtatgtact cattttttctt ccatttctt agctcaggaa 10380
	caacttggaaa aaggccctaga ttgtcagatc taegggggctt gttactccat tgagccactt 10440
	gacctacccctc agatcattca acgactccat ggctttagcg catttttcaat ccatagttac 10500
45	tctccaggtg agatcaatag ggtggcttca tgctctggaa aacttgggtt accggccctt 10560
	cgagtctggc gacatcgggc cagaagtgc cggcgtaggc tactgtccca gggggggagg 10620
	gctgcccactt gttggcaagta cctcttcaac tggcgtagaa ggaccaagct caaactcact 10680
	ccaatcccccg ctgcgtccca gttggattta tccagctgggt tcgttgcgtt ttacagcggg 10740
	ggagacatata atcacagcct gtctcgcc cggcccccgct ggttcatgtg gtgcctactc 10800
	ctactttctg taggggttagg catctatcta ctccccaacc gatgaacggg gagctaaaca 10860
50	ctccaggccca ataggccatc ctgtttttt ccctttttt ttttctttt tttttttttt 10920
	ttttttttttt tttttttttt tttctttttt tttctttttc tttctttttg 10980
	tgcgtccatc ttagcccttag tcacgcttag ctgtgaaagg tccgtgagcc gcttgactgc 11040
	agagagtgtc gatactggcc tetctgcaga tcaagt 11076

EP 1 043 399 A2

<210> 10
 <211> 8001
 <212> DNA
 <213> Hepatitis C Virus
 5
 <400> 10
 gccagcccc gattggggc gacactccac catagatcac tcccctgtga ggaactactg 60
 ttttcacgca gaaagcgct agccatggcg ttagtatgag tgcgtgcag cttccaggac 120
 ccccccctccc gggagagcca tagtggctcg cggAACCGGT gaggatcccg gaattgccag 180
 gacgaccggg tcccttctcg gatcaaccccg ctcaatgcct ggagatTTGG gcgtgcccc 240
 gegagactgc tagggcggat gtgtggcgc gcgaaaggcc ttgtggtaact gcctgatagg 300
 gtgttgcga gtggcccccggg aggtctcgta gaccgtgcac catgagcacg aatcctaacc 360
 ctcaaaagaaa aaccaaagt aacaccaacg ggcgcgcct gattgaacaa gatggattgc 420
 acgcagggtc tccggccgct tgggtggaga ggctattcgct atgactgtgg gcacaacaga 480
 caatcgctg ctctgtatcc ggcgttcc ggtgtcagc gcaaggccgc ccggtttett 540
 ttgtcaagac gacactgtcc ggtggccctga atgaatgcg gacggaggca ggcggctat 600
 cgtggctggc cacgacgggc gttcctgtcg cagctgtgtc cgacgttgc actgaagccg 660
 gaagggactg gctgtatgg ggcgaagtgc cggggcaggag tccctgtca ttcacccctg 720
 ctctgtccgc gaaatgtatcc atcatgtcg atgcaatgcg ggggtgcatt acgcttgatc 780
 cggctacctg cccattcgac cacaacgcg aacatcgatc cggcgcggca cgtactcgaa 840
 tggaaaggccg ttttgcgtat caggatgate tggacgaaga gcatcagggg ctcgcgcag 900
 ccaactgtt cggcagggtc aaggcgcgcg tggccggcgg cgaggatctc gtcgtgaccc 960
 atggcgatgc ctggcgatgg aataatgttgg tgaaaaatgg cggctttctt gattcatcg 1020
 actgtggccg gctgggtgtg gggggccgtt atcaggacat acgcttgcgtt acccggtata 1080
 ttgtcaaga gtttggccgc gaatgggtgt accgttctt cgtgttttac ggtatgcgcg 1140
 ctcccgttcc gcaagcgcatttccgccttccatc gcttccgttgc cggatgttcc ttagtttaaa 1200
 cagaccacaa cgggttccctt ctageggat cattaatccgc ccttccctc cccccccctt 1260
 aacgttactg gccgaagcgtt cttggatataa ggcgggtgtg cgtttgtct tatgttattt 1320
 tccaccatat tggcgttcc tggcaatgtg agggccggaa aacctggccc tgcgttcc 1380
 acgagccatc ctgggggtt tttcccttc gccaaggaa tgcaggatc gttgaatgtc 1440
 gtgaaggaaag ctttgcgttcc ggaatgttcc tgaagacaaa caacgttgcgtt acgcaccctt 1500
 tgcaggcgc ggaaccccccc acctggccac aggtgccttgc gggcccaaaa gccacgtgt 1560
 taagatacac ctgcaaaagc ggcacaaccc cagtgccacg ttgtgatgtt gatagttgt 1620
 gaaagagtca aatggcttc tcaagcgttca tcaacaagg ggtgtggaa tgcccagaag 1680
 gtacccctt gtatgggtt tgatggggg cctcgggttgc catgttttac atgtgtttag 1740
 tgcagggttac aaaaatgtca gggccccccgaa accacggggg cttgggttttcc tttgaaaaaa 1800
 cacgataataa ccatggcc tattacggcc tactcccaac agacgcgagg cttacttggc 1860
 tgcattcatc ctagecctcac aggccggggc aggaacccgg tgcagggggg ggtccaaatgt 1920
 gtctccacccg ccaacacaatc tttccgtggc acctcggttca atgggtgtg ttggactgtc 1980
 tatcatgttgc cgggttcaaa gacccttgc ggcggaaagg gcccaatcc ccaaattgtac 2040
 accaatgtgg accaggaccc cgtcggttcc caagcccccc cccggggccgcg ttcccttgaca 2100
 ccatgcaccc tggggcgttcc ggaccccttac ttgttcacgca gycatggccg tgcatttcg 2160
 gtgeggccgc gggggcgttcc cttttttcc cttttttcc cttttttcc cttttttcc cttttttcc 2220
 aagggttcc tgggggttcc actgttgcgttcc cttttttcc cttttttcc cttttttcc cttttttcc 2280
 gtcgggtgtt gcaacccgggg ggttgcgttcc acgttgcgttcc cttttttcc cttttttcc cttttttcc 2340
 ggaacccacta tgcgggttcc ggttccatc gacaactcgat cccctccggc cgtaccggcag 2400
 acatccagg tggcccttac acaccccttacttgcgttcc gcaagagccac taagggtccg 2460
 gtcgtatgc tggcccaagg gtataagggtt cttttttcc cttttttcc cttttttcc cttttttcc 2520
 cttagtttcg ggggttccatc gtcttgcgttcc cttttttcc cttttttcc cttttttcc cttttttcc 2580
 gtaaggacca tcacccacggg tggcccttac acgttgcgttcc cttttttcc cttttttcc cttttttcc 2640
 gacgggtgtt gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 2700
 gactcgacca ttcacccgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 2760
 cgactcgatc tggcccttac acaccccttacttgcgttcc gcaagagccac acatccaaac 2820
 atcgaggagg tggcccttac cttttttcc cttttttcc cttttttcc cttttttcc cttttttcc 2880
 atcgagacca tcacccacggg tggcccttac atttttcc cttttttcc cttttttcc cttttttcc 2940
 gagtcggccg cgaactgttc cggccgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3000
 gatgtatccg tcataaccac tagcggttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3060
 acgggttta cggccgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3120
 gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3180
 gtgtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3240
 gtgtactccag gagaacccggcc ctcgggttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3300
 gacggccgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3360
 tacctaaaca caccagggtt cccgggttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc gtcgttcc 3420
 tttacccggcc tcacccacccat agaccccatc tttttttcc agactaagca ggcaggagac 3480
 aactccctt acctggtagc ataccaggct acgggtgtcc gtcgttcc 3540

EP 1 043 399 A2

EP 1 043 399 A2

cgggccagaa gtgtccgcgc taggctactg tcccaggggg ggagggctgc cacttgtgc 7560
aagtacctct tcaactggc agtaaggacc aagctcaaac tcactccaat cccggctgcg 7620
5 tcccagttgg atttatccag ctggttcggt gctggttaca gcgggggaga catatatcac 7680
agcctgtctc gtggccgacc ccgctggtc atgtgggtcc tactcctact ttctgttaggg 7740
gtaggcatct atctactccc caaccgatga acggggagct aaacactcca ggccaaatagg 7800
ccatccgtt tttttccctt ttttttttcc ttttttttcc ttttttttcc ttttttttcc 7860
tttttcctt tttttttctt tttttttcc tttttttcc tttgggtggct ccatcttagc 7920
10 cctagtcacg gctagctgtg aaaggccgt gagccgcttg actgcagaga gtgctgatac 7980
tggcctctct gcagatcaag t 8001

15

20

25

30

35

40

45

50

55

EP 1 043 399 A2

<210> 11
<211> 11076
<212> DNA
<213> Hepatitis C Virus

	<400> 11	60
10	gcagcccccc gattgggggc gacactccac catagatcac tccctgtga ggaactactg 60 tcttcacgca gaaagcgctc agccatggcg ttatgtatgat tgctgtgcag cctccaggac 120 ccccctcccg gggagagcca tagtggtctg cgaaaccgt gatgacaccg gaattggccag 180 gacgaccggg tccttttctt gataaccgg ctaatgcct ggatattgg gctgtcccccc 240 gcgagactgc tagcccgatg ggtttgggc gcgaaaggc ttgtgtgt gcctgtatagg 300 gtgttgcga gtccccggg aggttctgta gagctgtc acatggccacg aatcttaaac 360 ctcaaaagaaa aaccasacgt aacaccaacg ggccgcacat gattgaacaa gatggattgc 420 acgcagggtc tccggccgt tgggtggaga ggcttattcg ctatgactgg gcacaaacaga 480 caatcgctg ctctgtatc ggcgtgtcc ggctgtcge ggaggggcgc cgggttctt 540 ttgtcaagac cgcacgttcc ggtgccttga aatgactgca ggacaggagca gctggctat 600 cgtggctggc cacgacgggc gtcccttgc cagctgtgtc cgacgttgc actgaagcgg 660 gaaggggactg gctgttattt ggcgaatgtc cggggcaggaa ttctctgtca tctcacctt 720 ctctgtccgg aaaaatgtc atcatggct atgeaatcg gggctgtcat acgttgtatc 780 cggtacatcg cccatcgac cacaacggaa aacatcgcat cgacggagca cgtactcgaa 840 tgaagccgg tcttgcgtat caggatgatc tggacgaaga gcatcagggg ctgcgcgg 900 ccgaatgtt cgcacgggtc aaggcgccca tgccgcacgg cgaggatctc gtcgtgacc 960 atggcgatgc ctgttgcgg aatatcatgg tggaaatgg cgctttttt ggattcatcg 1020 actgtggccg gctgggtgtc ggccgcacgt atcaggacat acgttgtgtc accgtgtata 1080 ttgctgaaga gcttggccgg gaatgggctg acgegttctt cgtgttttac ggtatcgcc 1140 ctcccgattc gcacgcacat gccttcttgc gcatttttc ctgttttttgc tgatgtttaaa 1200 cagaccacaa cggtttccct ctageggat caatccggc cttttttttt cccccccctt 1260 aacgttactg cgcgaacggc cttggaaataa gggccgtgtc cttttgtcta tatgttattt 1320 tccaccatat tgcgttctt tggcaatgtt agggccggaa aacctggccc tgcgttctt 1380 acgagcattc ctatgggtct ttcccttgc gccaaaggaa tgcgaatgtc gttagtgc 1440 gtgaaggaaag tgcaggcagc gaaacccccc acctggggac aggtgtctt gggccaaaaa gccacgtgt 1500 taagatcac ctcacaaaggc ggcacaaccc cagtgcacg ttgtgtatgg gatagtgt 1560 gaaagagtca aatggcttcc tctaagegtt ttcaacaagg ggtgaagga tggccagaa 1620 gtacccattt gtatgggttgc tgcgttgc acatgtttac atgtgtttatg 1680 tcgaggtaa aaaaacgttca ggcggccccc acacggggaa cgtgtttttc ctttggaaaa 1740 cacgataata ccatgggcac gaatctaaa cctcaaaagaa aaaccaaacg taacaccaac 1800 cgccgcaccac aggacgttca gttccgggc ggtgtcaga tcgtcggtgg agtttaccc 1860 ttggcgcgca gggggcccaat ggggggtgtc cgcgcacta ggaagacttc cgagcggtc 1920 caacctcgta aagggcgtaca acatccatccc aaggctggcc acggccgggg tagggccctt 1980 gtcagccccg ggttacccctt gccccttat ggcacatggg gtttgggtgt ggcaggatgg 2040 ctctgttac cccgttgcgtc tggccatgtt gggggccccc cggatgttgc gctgttgc 2100 cgcaatgttgg gtaagggtcat ctatccctc acgtgtgggt ctgcgtatct catgggttac 2160 atcccgctcg tcggccccc cctagggggc gtcggccaggg ccctggccca tggcgccgg 2220 gttctggagg acggcgatgaa ctatgcacca gggatctgc cgggttgc ttttctatc 2280 ttctttttgg ttttgcgttgc ctgttgcac atcccgatgtt ccccttatgta agtgcacaa 2340 gtatccggat ttttgcgttgc ctgttgcac atcccgatgtt ccccttatgta agtgcacaa 2400 ggggacatgta tcatgcata cccgggtgc gtcgttgc ttcggggaaa caactcttcc 2460 cgctgtggg tagcgctcac tcccacgttc gggccaggaa acgttgcgt ccccaactacg 2520 acgataacac gccatgtca ttttgcgttgc ggggggtgtc ctctgttgc cgtatgtac 2580 gtggggatgtc ttttgcgttgc ttttgcgttgc gtcggccagg ttttgcgttgc 2640 cggtacacgaa ctagacggaa ttttgcgttgc ttttgcgttgc ttttgcgttgc 2700 cgatgggtt gggatatgtat gatgaaactgg tcacccatag cagccctagt ggtatcgac 2760 ttactccggta tcccaacaaatc ttttgcgttgc atgggtgggg gggccatgtt ggggttccca 2820 ggggggcttg cctactatcc ttttgcgttgc aactgggtgtc agtttgcgt ttttgcgttgc 2880 ctctttggcc gctgttgcgttgc gggaaacctt gtgcacgggg gggatgttgc 2940 ctcggttattt cgttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3000 aacggcgatgtt aacccatccaa cggactgtcc ctgttgcgttgc atgacttccct caacactggg 3060 ttcttgcgttgc ggcacatccaa cggactgtcc ctgttgcgttgc atgacttccct caacactggg 3120 gcccacgtca cggccatccaa cggactgtcc ctgttgcgttgc atgacttccct caacactggg 3180 tcacacatgtt cggaccagag gctttattgt ttttgcgttgc ttttgcgttgc ttttgcgttgc 3240 gtaccccgccg cgcagggtgt ttttgcgttgc tactgttca ccccaagggc ttttgcgttgc 3300 gggacgttcc gggacgttcc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3360 ctgttcttta aacacacgtt cggccggccaa ggcacatgtt ttttgcgttgc atgatgtat 3420 acgactgggtt tcaccaacatc gtcggggggc cccctgttca acatcggtttt gatcggttac 3480 50	

EP 1 043 399 A2

5	aaaaccttga	ctgtccccac	ggactgcttc	cgaaagcacc	ccgaggccac	ttacaccaag	3600
	tgtggttcg	ggcccttggtt	gacaccaga	tgcttggtcc	actaccata	caggcttgg	3660
	cactaccct	gcactgtcaa	cttaccatc	tccaaaggta	ggatgtacgt	ggggggagtg	3720
	gagcacagc	tcaagcgc	atgcaatttg	actcgaggag	agcgttgtaa	cctggagagc	3780
	aggacatgg	cagactttca	ccccgtctg	ctgtctacaa	ccggatggca	ggtattggcc	3840
10	tgttccctca	ccaccctacc	ggctctgtcc	actgggttga	tccatcteca	tcagaacgtc	3900
	gtggacgtac	aatactctgt	cggtataggg	tcggcgggtt	tcccttttgc	aatcaaatttg	3960
	gagtatgtcc	tgttcttctt	ccttcttcgt	gcccacgcgc	gctgttgc	ctgtttgtgg	4020
	atgatgtgc	tgtatgtca	agctgaggcc	cccttagaga	acctgggtgt	cctcaacgcg	4080
	gcatccgtgg	ccggggcgeca	tggcattctc	tccttctcg	tgttcttctgt	tgctgcctgg	4140
	tacatcaagg	gcaggcttgt	ccctggggcg	gcatatgccc	tctacggcgt	atggccgcta	4200
	ctccctgtcc	tgtgggggtt	accacacca	gcatacggca	tggaccggga	gatggcagac	4260
	tctgtgggg	ggcgcgggtt	cgttagtctg	atacttctga	ccttgcaccc	gactataaag	4320
	ctgttctctg	ctaggtctat	atggtggta	caatattttt	tcaccaggcc	cgaggcacaac	4380
	ttgcaagtgt	ggatcccccc	cctcaacgt	ccggggggcc	gcatatgtcc	cattcctctc	4440
15	acgtgcgcga	tecacccca	gtaatcttt	accatcacca	aatatttgc	cgccataacte	4500
	gttccactca	tgtgtctcca	ggctgttata	accaaaagtgc	cgtaacttcgt	gcccgcacac	4560
	gggcttattc	gtgcgtatgc	gctgggtcg	aagggtgt	ggggtcattt	tgccaaatag	4620
	gctctctatgt	agttggcgc	actgacagggt	acgtacgtt	atggacatct	caccaccaact	4680
	cgggactggg	cccacgcggg	cctacagagac	cttgcgggtt	cagttgc	ctgtgttctt	4740
	tctgatattgt	agaccaaaatg	tatcaccttgc	ggggcagaca	ccggcggcgt	tgggggacatc	4800
	atcttgggg	tgccctgttc	cgccccgcagg	gggagggaga	tacatctggg	accggcagac	4860
	agccttgaag	ggcagggggt	gcaacttctc	cgcccttata	cgccctactc	ccaaacagac	4920
	cgaggcctac	ttggctgtat	cateactage	ctcacaggcc	gggacacaggaa	ccaggttcg	4980
	ggggaggttc	aagtggtctt	cacccgaaca	caattttcc	tgccgacacty	cgtaatggc	5040
	gtgtgttgg	ctgtctataca	tggtggccgc	tcaaaagaccc	ttggccggccc	aaagggccca	5100
20	atcaccctaa	tgtacaccaa	tgtggaccac	gaccctcg	gttggcgaage	gcccccccccgg	5160
	ggcgcttctt	tgacaccat	cacccgtggc	agetcggacc	tttacttgg	cacggaggatc	5220
	ggccatgtca	ttccgggttgc	ccggccggggc	gacacggagg	ggagcctact	ctccccccagg	5280
	cccgcttctt	acttgaaggg	cttttgcggc	gttccactgc	tctggcccttc	ggggcacaact	5340
	gtgggcattt	tccgggttgc	cggtgtccac	ccgggggttg	cgaaaggccgt	ggacttggta	5400
	cccgctcgat	ctatggaaac	cactatcg	tcccccgtt	tcacggacaa	ctcgccccct	5460
	ccggccgtac	cgcaagacat	ccagggtggcc	cattttacac	cccttactgg	tagcggcaag	5520
	agcaactaagg	tgccggcttc	gtatgcaggc	caagggtata	agggtcttgc	cctgaaccccg	5580
	tccgtcggcc	ccaccctttag	tttcggggcc	tatattgtca	aggcacatct	tatgcaccc	5640
	aacatcaga	ttgggttaag	gaccatcacc	acgggtgc	ccatcactga	ctccacatct	5700
25	ggcaagttt	ttggccacgt	tggttgtctt	ggggggccct	atgacatcat	aatatgtat	5760
	gagtgccact	caactgaatc	gaccactatc	ctgggcate	gcacagtctt	ggaccaagcg	5820
	gagacggctg	gagcgcgtact	cgtcgtctc	gcacccgtt	ccctcccccgg	atccgttacc	5880
	gtgcccacatc	caaacatcga	ggaggtggct	ctgtccagca	tctggagaaat	ccccctttat	5940
	ggcaaagcca	tccccatcga	gaccatcaag	ggggggggggc	acccatcttt	ctgccatctc	6000
	agaagaataat	gtgatgtact	cgccgcgaag	ctgtccggcc	tcggactcaa	tgctgttagca	6060
	tattaccggg	gccttgcgtt	atccgtatca	ccaaactagcg	gagacgtat	tgctgttagca	6120
	acggacgtc	atacgtacggg	tttaccggc	gacttcgtact	cagtatcga	ctgcaataca	6180
	tgtgtcacc	agacacgtca	tttcagctgt	gaccggacat	tcaccattga	gacgacgacc	6240
	gtgccacaag	acgcgggttc	acgctcgcag	cgccgaggca	ggactgttag	gggcaggatg	6300
	ggcatttac	gggttgcgtac	tccaggagaa	ccggcccttcgg	cgatgttgc	ttccctcggtt	6360
	ctgtgcggat	gtatgcacgc	gggtgtgtct	tggtaacgc	tcacccggcc	cgagacactca	6420
	gttaggttc	gggttttacat	aaacaccca	gggttccccc	tctggcagg	ccatctggag	6480
30	ttctgggaga	gggtcttacat	aggecttacc	cacatagac	cccatatttt	gtccctagact	6540
	aaggcaggcag	gagacaactt	cccttactcg	gtacatacc	aggctacgg	tgccgcagg	6600
	getcaggctc	cacccatcgt	gtgggaccat	atgttgcgt	gttctatcag	gttaaaggct	6660
	acgctcgcac	ggcccaacgc	cttgcgttat	aggtggggag	ccgttcaaaa	cgagggttact	6720
	accacacac	ccataacaa	atacatcatg	gcatgcattt	cggtgcac	ggaggctgtc	6780
	acgagcacct	gggtgtctgt	aggcggaggc	ctagcacttc	tgccgcgtt	ttgcctgaca	6840
	acagcaggcgt	tgtgtcatgt	gggcaggatc	atcttgcgtt	ggggcggcc	catcatttcc	6900
	gacaggcggag	tcctttaccc	ggatgtcgat	gagatggaa	agtgcgcctc	acacccctt	6960
35	tacatcgaac	agggatgttt	gctgcgcgaa	caatttcaac	agaaggcaat	cggttgcgt	7020
	caaacagcca	ccaagcaac	ggaggtgtct	gtccctgtt	tggaaatccaa	gtggcggacc	7080
	atcgaacgtt	tctggggaa	gcatatgttt	aaatttcatca	cggggatata	atatttgc	7140
	ggcttgcgttca	ttctgccttgc	caaaaaacgc	atacgatc	tgatggatt	cacacccctt	7200
	atcaccagcc	cgctcaccac	ccaaacatacc	cttctgttta	acatcttgg	gggatgggtt	7260
	ggccggccaaac	ttgtccctcc	cagcgtgtct	tgcttttgc	tgaggccgg	catcgcttgc	7320
	gcggcgttgc	gcacgtatgg	ccttggggaa	gtgtttgtt	atattttggc	aggttatgg	7380
	gcaggcgttgc	caggcgcgtt	cgtggccctt	aagggtatca	ggccctccacc	tgccatcc	7440
	gaggacacttgg	ttaacactat	ccctgtatcc	cttctccctgt	gcccctttagt	cggtggggtc	7500
40							
45							
50							

EP 1 043 399 A2

5 gtgtgcgcag cgatactgcg tcggcacgtg gccccagggg agggggctgt gcagtggatg 7560
 aaccggctga tagcgttgcg ttgcgggggt aaccacgtct ccccccacgca ctatgtgcct 7620
 gagagcgacg ctgcagcacg agtcacatcg atccctcgat gtcttacat cactcagctg 7680
 ctgaagaggc ttaccaggatg gatcaacgag gactgtctca cgcctatgtctc cggtctgtgg 7740
 ctaagagatg tttgggattt gatatgcacg gtgttgactg atttcaagac ctggctccag 7800
 tccaagctcc tgccgcgatt gccgggagtc cccttcttct catgtcaacg tgggtacaag 7860
 ggagtctggc ggggcgacgg catcatgaa accacctgcc catgtggagc acagatcacc 7920
 ggacatgtga aaaacgggtc catgaggatc gtggggctca ggacctgttag taacacgtgg 7980
 catggAACAT tccccattaa cgcgtacacc acggggccct cgcacgcctc cccggcgcca 8040
 10 aattattcta gggcgctgtg gccggtaggt gctgaggaggt acgtggaggt tacgggggtg 8100
 ggggatttcc actacgtgac gggcatgacc actgacaacg taaagtcccc gtgtcagggtt 8160
 ccggccccccg aattcttac agaagtggat ggggtgcgggt tgcacaggta cgctccacg 8220
 tgcaaaaaccc tcc tacggga ggaggtcaca ttccctgttc ggctcaatca atacctgggtt 8280
 ggttcacagc tccccccatc gctgtacacc acggggccct tgctacttc catgtcacc 8340
 gaccctccca acattacggc ggagacggct aacgttaggc tggccagggg atctccccc 8400
 15 cccttggcca gctcatcagc tagccagctg tctgcgcctt cttgaaggg aacatgcaact 8460
 acccgcatg actccccggg cgctgaccc tcattggggca acctccctgtg gccgcaggag 8520
 atggggcgaaa acatccaccccg cgtggagtca gaaaataagg tagtaatttt ggactcttcc 8580
 gagccgctcc aaggcgagga ggatggagg ggatgtatccg ttccggcgg gatctgcgg 8640
 aggcccggaa aattccctcg aegcatgccc atatgggcac gcccggattt caaccctcca 8700
 ctgttagagt ccttggaaaggc cccggactac gttccctccag tggtaacacgg gtgtccattt 8760
 20 ccgcctggcca agggccctcc gataccaccc tcacggagga agaggacgg tgcctgtca 8820
 gaatcttaccg tgcattttctgc cttggggag ctcggccacag agacccctcg cagctccgaa 8880
 tcgtcgcccg tcgacagccg cacggcaacg gctcttcctg accagccctc cgacgacggc 8940
 gacggggat gacgggttgc gtcgtactcc tccatggccc cccttggggg ggagccgggg 9000
 gateccgatc tcagcgacgg gtcttggctt accgtaaagcg aggaggctag tgaggacgtc 9060
 gtctgtgtct cgatgtccca cacatggaca gggccctgtg tcaacggccatg cgctgcggag 9120
 25 gaaaccaagc tgcccatcaa tgcactgacg aactctttgc tccgtcaccacaaacttggtc 9180
 tatgttacaa catctcgacg cgcaaaacccy eggcagaaga aggtcacctt tgacagactg 9240
 caggctctgg acgaccataa cccggacgtg ctcaaggaga tgaaggcgaa ggctgtccaca 9300
 gttaaggctt aacttcttatac cgtggggaa gctgttaagc tgaccccccc acattcgccc 9360
 agatctaaat ttggctatgg ggcaaaaggac gtcgggaaacc tatccagcaa ggcgttaac 9420
 cacatccgct ccgtgtggaa ggacttgcg gaagacactg agacaccaat tgacaccacc 9480
 30 atcatggcaaa aaaaatggat tttcttgc tcaaccagaga agggggggcc caagccagct 9540
 cgccattatcg tattttccaga tttgggggtt cgtgtgtcg agaaaatggc ctttacat 9600
 gtggcttcca ccctccctca ggccgtatg ggcttcttcat acggatttca atactctt 9660
 ggacagccggg tccagttctt ggtgaatgcc tgaaaagcga agaaatggcc tatgggttc 9720
 gcatatgaca cccgctgtt tgactcaacg gtcactgaga atgacatccg tggtagggag 9780
 tcaatctacc aatgttggta cttggggccc gaagccagac agggccataag gtcgtccaca 9840
 35 gacggggctt acatgggggg ccccttgcg aatcttcaag ggcagaactg cggctatcgc 9900
 cggccggcg cgacgggtt actgacgacc agtcgggtt atacccttac atgttactt 9960
 aaggccgtg cggccgttgc agtcggaaat cttcaggact gacgtatgtct cgtatgcgg 10020
 gacgacccgt tcgttatctg tgaaagcgcg gggacccaaag aggacggc gagcttacgg 10080
 gccttcaacgg aggctatgac tagatactct gccccccctg gggacccccc caaaccagaa 10140
 tacgacttgg agttgtataac atcatgtcttcc tcaatgtgt cgtcgccca cgtatcatct 10200
 40 ggcaaaagggt tttttttttt caccctgtac cccaccaccc cccttgcgg ggcgtcggtgg 10260
 gagacagacta gacacactcc agtcaattcc tgcttaggca acatcatcat gtatgcccc 10320
 accttgtggg caaggatgtat cctgtatgact cttttttttt ccattcttct agtcaggaa 10380
 caacttgaaa aaggccctaga ttgtcagatc tacggggccct gttactccat tgagccactt 10440
 gacccatctc agatcattca acgactccat ggctttagcg cattttactt ccatagtttac 10500
 tctccagggt agatcaatag ggtgggttca tgccctcaggaa aacttgggtt acggccctt 10560
 45 cgagtctggc gacatccggc cagaagtgtc cgcgttaggc tactgtccca ggggggggg 10620
 gctccactt gtggcaagta ccttcttcaac tgccgtatgg gaccaagct caaactcaact 10680
 ccaatcccccgt ctgcgtccca gttggattta tccagctgtt tctgttgcgg ttacagccgg 10740
 ggagacatat atcacagccct gtctcgcc cggcccccgt ggttcatgtg gtgcctactc 10800
 ctacttctg taggggttagg catctatcta cttcccaacc gatgaacggg gagctaaaca 10860
 ctccaggccca atagggccatc ctgtttttt ccctttttt tttttttttt tttttttttt 10920
 50 ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 10980
 tggctccatc ttagccctag tcacggctag ctgtgaaagg tccgtgagcc gcttgactgc 11040
 agagagtgtt gatactggcc tctctgcaga tcaagt 11076

Patentansprüche

1. Hepatitis C Virus (HCV) Zellkultursystem, das im wesentlichen eukaryontische Zellen umfaßt, die eingeschleustes HCV-spezifisches Genmaterial enthalten, dadurch gekennzeichnet,
 - 5 daß die eukaryontischen Zellen humane Hepatomazellen sind und daß das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt ist, das die HCV-spezifischen RNA-Abschnitte 5' NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3' NTR und zusätzlich ein selektierbares Markergen (Selektionsgen) umfaßt.
 - 10 2. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet,
 - daß die Hepatomazellen von einer handelsüblichen Hepatomazelllinie abstammen.
 - 15 3. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet,
 - 15 daß die Hepatomazellen aus einer Hepatoma primärzellkultur gewonnen sind.
 4. HCV-RNA-Konstrukt, dadurch gekennzeichnet,
 - 20 daß es die HCV-spezifischen RNA-Abschnitte 5' NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3' NTR und zusätzlich ein selektierbares Markergen (Selektionsgen) umfaßt.
 5. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet,
 - 25 daß es eine Nukleotidsequenz gemäß einem der Sequenzprotokolle SEQ ID NO: 1 bis SEQ ID NO: 11 umfaßt.
 6. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet,
 - 30 daß die 3' NTR eine Nukleotidsequenz aufweist, die aus der Gruppe der nachfolgend aufgelisteten Nukleotidsequenzen (a) bis (i) ausgewählt ist:
 - 35 (a) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTTTTT
TTAGCTTTTTTTTTCTTTTTTGAGAGAGAGAGTCTCACTCTG
TTGCCCAAGACTGGAGT
- 40
- 45
- 50
- 55

- 5 (b) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTC TTTTTTTGA GAGAGAGAGT
CTCACTCTGT TGCCCAGACT GGAGC
- 10 (c) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTAATCTTT TTTTTTTCT TTTTTTTGA GAGAGAGAGT
CTCACTCTGT TGCCCAGACT GCAGC
- 15 (d) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTTAGTC TTTTTTTTC TCTTTTTTG AGAGAGAGAG
AGTCTCACTC TGTTGCCAG ACTGGAGT
- 20 (e) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTC TCTTTTTTG AGAGAGAGAG
AGTCTCACTC TGTTGCCAG ACTGGAGT
- 25 (f) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTC TCTTTTTTG TTGAGAGAGA
GAGTCTCACT CTGTTGCCA GACTGGAGT
- 30 (g) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTAGTCT TTTTTTTTC CTTTTTTTG GAGAGAGAGA
GTCTCACTCT GTTGCCAGA CTGGAGT
- 35 (h) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTTTAAT CTTTTTTTC TTTTCCTTT TTTTGAGAGA
GAGAGTCTCA CTCTGTTGCC CAGACTGGAG T
- 40 (i) ACGGGGAGCTAACACTCCAGGCCAATAGGCCATCCTGTTTTT
TTTTTTAATC TTTTTTTTC TTTTCCTTT TTTTGAGAG
AGAGAGTCTC ACTCTGTTGC CCAGACTGGA GT

- 45 7. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet,
daß das selektierbare Markergen ein Resistenzgen und insbesondere eine Antibiotikaresistenzgen ist.
- 50 8. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet,
daß das selektierbare Markergen ein Neomycinphosphotransferasegen ist.
- 55 9. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet,
daß das selektierbare Markergen strangabwärts der 5' NTR in die HCV-RNA integriert ist.
10. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet,

EP 1 043 399 A2

daß das selektierbare Markergen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA verbunden ist.

11. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet,

5 daß es ein integriertes Reportergen aufweist.

12. HCV-RNA-Konstrukt nach Anspruch 11, dadurch gekennzeichnet,

10 daß das Reportergen ein Gen aus der Gruppe der Luziferasegene, dem CAT-Gen (Chloramphenicol-Acetyl-Transferase-Gen), dem lacZ-Gen (beta-Galaktosidasegen), der GFP-Gen (green-fluorescence-protein-Gen), dem GUS-Gen (Glukuronidasegen) und dem SEAP-Gen (Sezernierte-Alkalische-Phosphatase-Gen) ist.

13. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 11, dadurch gekennzeichnet,

15 daß deren Replikation die Expression eines (zellulären) Surrogatmarkergens beeinflußt.

14. HCV-RNA-Konstrukt nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet,

20 daß das Resistenzgen derart in das offene Leseraster der HCV-RNA einkloniert ist, daß es erst nach einer proteolytischen Prozessierung in eine aktive Form überführbar ist.

15. HCV-RNA-Konstrukt nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet,

25 daß das Reportergen und das selektierbare Markergen derart räumlich in dem Konstrukt angeordnet sind, daß sie gemeinsam ein Fusionsprotein exprimieren.

16. Zellkultursystem nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet,

30 daß das HCV-RNA-Konstrukt ein Konstrukt gemäß wenigstens einem der Ansprüche 4 bis 15 ist.

17. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet,

35 daß die das HCV-RNA-Konstrukt enthaltenden Zellen bei der DSMZ, Braunschweig, BRD, unter der Hinterlegungsnummer DSM ACC2394 (Laborbezeichnung HuBl 9-13) hinterlegt sind.

18. Verwendung eines Zellkultursystems nach einem der Ansprüche 1 bis 3 oder 16 bis 17 und/oder eines HCV-RNA-Konstrukts nach einem der Ansprüche 4 bis 15 zur Herstellung und/oder Evaluierung und/oder Testung von Therapeutika und/oder Diagnostika zur Behandlung von insbesondere HCV-Infektionen.

40 19. Verwendung eines Zellkultursystems nach einem der Ansprüche 1 bis 3 oder 16 bis 17 und/oder eines HCV-RNA-Konstrukts nach einem der Ansprüche 4 bis 15 zur Herstellung eines Impfstoffes gegen HCV-Infektionen.

20. Verwendung eines HCV-RNA-Konstrukturts nach einem der Ansprüche 4 bis 15 zur Herstellung einer leberzellspezifischen Genfahre für die Gentherapie .

45 21. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 15, dadurch gekennzeichnet,

50 daß es ein integriertes Fremdgen aufweist und dazu geeignet ist, dieses Fremdgen in eine Zielzelle einzuschleusen, die zur Expression dieses Fremdgens geeignet ist.

22. Verfahren zur Gewinnung von zellkultur-adaptierten Mutanten eines HCV-RNA-Konstrukturts gemäß einem der Ansprüche 4 bis 15, wobei die Mutanten gegenüber dem HCV-RNA-Konstrukt eine erhöhte Replikationseffizienz aufweisen, dadurch gekennzeichnet,

55 daß man ein Zellkultursystem gemäß Anspruch 1, bei dem das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt mit Selektionsgen nach einem der Ansprüche 4 bis 15 ist, auf/in dem dem Selektionsgen entsprechenden Selektionsmedium kultiviert, daß man die gewachsenen Zellklone erntet, und daß man

EP 1 043 399 A2

aus diesen Zellklonen die HCV-RNA-Konstrukte oder Teile davon isoliert.

23. Verfahren nach Anspruch 22, dadurch gekennzeichnet,

daß man die isolierten HCV-RNA-Konstrukte wenigstens einmal erneut passagiert, nämlich in Zellen eines Zellkultursystems nach Anspruch 1 einschleust, das dabei erhaltenes Zellkultursystem gemäß Anspruch 1, bei dem das eingeschleuste HCV-spezifische Genmaterial das isolierte HCV-RNA-Konstrukt mit Selektionsgen ist, auf/in dem dem Selektionsgen entsprechenden Selektionsmedium kultiviert, die gewachsenen Zellklone erntet und aus diesen Zellklonen die HCV-RNA-Konstrukte isoliert.

24. Verfahren zur Herstellung von Mutanten eines HCV-Vollängengenoms oder eines HCV-Teilgenoms oder eines beliebigen HCV- Konstrukts mit im Vergleich zu dem ursprünglichen HCV-Vollängengenom oder -Teilgenom oder HCV-RNA-Konstrukt erhöhter Replikationseffizienz, dadurch gekennzeichnet,

daß man mit einem Verfahren nach Anspruch 22 oder 23 eine zellkultur-adaptierte Mutante eines HCV-RNA-Konstrukts herstellt und isoliert,

daß man die Nukleotid- und Aminosäuresequenz dieser Mutante bestimmt und durch Vergleich mit der Nukleotid- und Aminosäuresequenz des ursprünglichen HCV-RNA-Konstrukts die Art, Anzahl und Positionen der Nukleotid- und Aminosäuremutationen bestimmt,

und daß man diese Mutationen entweder durch gezielte Mutagenese oder durch Austausch von Sequenzabschnitten, die die betreffenden Mutationen enthalten, in ein (isoliertes) HCV- Vollängengenom oder ein HCV-Teilgenom oder ein beliebiges HCV-RNA-Konstrukt einführt.

25. Zellkultur-adaptiertes HCV-RNA-Konstrukt mit hoher Replikationseffizienz, dadurch gekennzeichnet,

daß es durch Nukleotid- und/oder Aminosäure -Mutationen von einem HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 15 ableitbar ist und daß es mit einem Verfahren nach einem der Ansprüche 22 bis 24 erhältlich ist.

26. Zellkultur-adaptiertes HCV-RNA-Konstrukt nach Anspruch 25, dadurch gekennzeichnet,

daß es einen oder mehrere der nachfolgend aufgeführten Aminosäureaustausche aufweist, nämlich 1283 arg -> gly und/oder 1383 glu -> ala und/oder 1577 lys -> arg und/oder 1609 lys -> glu und/oder 1936 pro -> ser und/oder 2163 glu -> gly und/oder 2330 lys -> glu und/oder 2442 ile -> val aufweist.

27. Zellkultur-adaptiertes HCV-RNA-Konstrukt nach Anspruch 25 oder 26, dadurch gekennzeichnet,

daß es einen oder mehrere der in Tabelle 3 aufgeführten Nukleotid- und/oder Aminosäureaustausche aufweist, wobei Tabelle 3 Bestandteil dieses Anspruchs ist.

28. Zellkultur-adaptierte Mutanten eines HCV-RNA-Konstrukts oder eines HCV-Vollängengenoms mit im Vergleich zu dem ursprünglichen HCV-RNA-Konstrukt oder dem ursprünglichen HCV-Vollängengenom erhöhter Replikationseffizienz , dadurch gekennzeichnet,

daß sie mit einem Verfahren erhältlich ist, bei dem man in einem zellkultur-adaptierten HCV-RNA-Konstrukt nach Anspruch 24 durch Sequenzanalyse und Sequenzvergleich die Art und Anzahl der Mutationen bestimmt und diese Mutationen in ein HCV-RNA-Konstrukt, insbesondere in ein HCV-RNA-Konstrukt gemäß einem der Ansprüche 4 bis 15, oder in ein (isoliertes) HCV-RNA-Vollängengenom einführt, entweder durch gezielte Mutagenese oder durch Austausch von Sequenzabschnitten, die die betreffenden Mutationen enthalten.

29. Hepatitis C Viruspartikel oder virus-ähnliche Partikel dadurch gekennzeichnet,

daß sie mit einem Verfahren nach einem der Ansprüche 22-24 erhältlich sind.

30. Zellen, infiziert mit Hepatitis C Viruspartikeln oder virus-ähnliche Partikeln gemäß Anspruch 29.

A

B

C

Fig. 1

Fig. 2

3
Fig.

Fig. 4

A

B

Fig. 5

EP 1 043 399 A2

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

A

B

Fig. 11

A

B

G418-Konzentration:	500 µg/ml	250 µg/ml	100 µg/ml
Anzahl erhaltener Kolonien:	1	23	75

C

Fig. 12

Fig. 13

Fig. 14

EP 1 043 399 A2

Fig. 15

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.