Бином Ньютона

Ниже представлены задачи к лекции «Бином Ньютона» к курсу «100 уроков математики» Алексея Владимировича Саватеева. Задачи разделены на 2 вида: типовые (их можно решить прямо используя формулу бинома Ньютона) и нетиповые (решение этих задач потребует большего количества времени и «математической смекалки»).

Типовые задачи

Задача 1. Разложить по формуле бином $(a-\sqrt{2})^6$. Задача 2. Найти шестой член разложения $(1-2z)^{21}$.

Задача 3. Найдите два средних члена разложения $(a^3 + ab)^{21}$.

Задача 4. В биномиальном разложении $\left(x^3 + \frac{1}{x^3}\right)^{18}$ найти член разложения, не содержащий х.

Нетиповые задачи

Определение 1. Треугольником Паскаля называется треугольная таблица, составленная из чисел по следующему правилу: строка с номером п состоит из n чисел, первое и последнее числа каждой строки равны единице, а каждое из остальных чисел равно сумме двух ближайших к нему чисел предыдущей строки. Число, стоящее на (k+1)-м месте (n+1)-й строки, обозначается $\binom{n}{k}$

Задача 1. Выпишите первые 10 строк треугольника Паскаля.

Задача 2. Запишите в виде $\binom{a}{b}$ числа предыдущей строки, ближайшие к числу $\binom{n}{m}$.

Задача 3. Докажите, что
$$\binom{n}{m} = \binom{n}{n-m}$$
.

Задача 4. В каких строках треугольника Паскаля все числа нечётные? Onpedenehue 2. Числом сочетаний из n по m называется количество тельноств из траничение: тольных подмножеств множества из транентов. Обозначение:

Задача 5. Найдите: а) C^1_{100} , б) C^2_4 , в) C^2_5 , г) C^4_6 . Задача 6. Раскройте скобки в выражениях (a+b), $(a+b)^2$, $(a+b)^3$, $(a+b)^4$ и выпишите результаты друг под другом. Обратите внимание, что коэффициенты образуют треугольник Паскаля.

Задача 7. Докажите, что:
$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n}b^n$$

Задача 8. Правило Паскаля: $C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$.

Задача 9. Биномиальные коэффициенты членов разложения, равноотстоящих от концов разложения, равны между собой: $C_n^m = C_n^{n-1}$. (правило симметрии).

Задача 10. Докажите, что $\binom{n}{m} = C_n^m$.

Задача 11. Сумма биномиальных коэффициентов всех членов разложения равна 2^n .

Задача 12. Сумма биномиальных коэффициентов, стоящих на нечетных местах, равна сумме биномиальных коэффициентов, стоящих на четных местах и равна 2^{n-1} .

Задача 13. Любой биномиальный коэффициент, начиная со второго, равен произведению предшествующего биномиального коэффициента и дроби $\frac{n-(m-1)}{m}$, т.е. $C_n^m=C_n^{m-1}\cdot\frac{n-(m-1)}{m}$. Задача 14. Докажите, что число способов пройти из левого нижнего

угла прямоугольника $(m \times n)$ в правый верхний, двигаясь только вверх или вправо по границам клеток, равно $\binom{n+m}{n}$.