

Revisiting Backscatter Frequency Drifts for Fingerprinting RFIDs: A Perspective of Frequency Resolution

Qingrui Pan, Zhenlin An, Xiaopeng Zhao, Lei Yang

Department of Computing, The Hong Kong Polytechnic University

Retail and Inventory Management

RFID technology assists in accurately tracking goods, enhancing supply chain efficiency and reducing theft.

Transportation and Logistics

RFID is employed for seamless fare transactions in public transportation and real-time package tracking during shipment.

Healthcare and Medical Field

RFID aids in locating equipment, managing supplies, monitoring patients, and ensuring accurate patient-medication matching

RFID in Daily Life

Security and Identification

RFID serves a crucial role in providing data storage, passports, and enabling access control, as well as pet identification.

RFID is Everywhere

The Global RFID Market Worth In 2022

Predicted Global RFID Market Worth In 2023

Predicted Number of Sold Passive RFID Tags

Contrasting Its Prevalence,

RFID's Simplicity Causes Vulnerability

Contrasting Its Prevalence,

RFID's Simplicity Causes Vulnerability

- Consist of only Antenna and Chip
- Limited Power and Computation

First Choice,

Protocol-Based Solution

- Cryptographic protocols are not practical for the limitation of power and computation
- Industry prefers straightforward
 Authentication Protocols, vulnerable to counterfeiting attacks

Second Choice,

Hardware Fingerprint

Second Choice,

Hardware Fingerprint

RF Frontend

- Average baseband power (Danev, 2012)
- Minimum activated power (Periaswamy, 2010)

Capacitor

- Persistence Time (Chen, 2020)
- •

Clock Drift

- Backscatter Frequency Drift (Zanetti, 2010)
- ..

Second Choice,

Hardware Fingerprint

RF Frontend

- Average baseband power (Danev,2012)
- Minimum activated power (Periaswamy, 2010)

Capacitor

- Persistence Time (Chen, 2020)
- •

Clock Drift

- Backscatter
 Frequency Drift
 (Zanetti, 2010)
- ..

Advantage

- Versatility Stable across diverse RF systems
- Robustness Resilient to environmental factors; no extra elimination required
- Tolerance Functions even with less intactness than traditional RF-related fingerprints

What is **BFD**?

(Backscatter Frequency Drift)

2023 SECON 11

BFD: Backscatter Frequency Drift

BFD: Backscatter Frequency Drift

Ideal Clock Actual Signal

BFD: Backscatter Frequency Drift

Tag reply at the BLF,

Time Domain to Frequency Domain

- BFD can be measured on frequency domain by FFT
- BFD is Unique and suitable for fingerprinting tags

Revisiting BFD from a Resolution Perspective

Frequency Resolution = 1.25 kHz

BFD Bandwidth = 281.6 kHz

281.6 kHz/1.25kHz ≈ 225 tags at most

Look into a similar problem

SECON

High-Resolution

Low-Resolution (10x7 pixels)

2023

Solution:

Acquiring Ultra-High-Resolution BFDs

SECON

2023

Measure 1: Increase Symbol Number M

Using longer Miller Code

8 symbols each sequence

Measure 1: Increase Symbol Number M

Using longer Preamble (Pilot Tone)

Short Pilot Tone:

$$M = 4 \times m$$

Resolution improved by 16 x in total.

Measure 2: Increase by Redundancy R

Redundant Replies

Measure 2: Increase by Redundancy R

Redundant Replies

By concatenating R segments of the signal, we obtain an FFT input with R times the length, Resolution improved by R times.

Measure 2: Increase by Redundancy R

Redundant Replies

By concatenating R segments of the signal, we obtain an FFT input with R times the length, Resolution improved by R times.

Measure 3: Increase by Harmonics K

Square wave Taylor expansion:

$$x(t) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2\pi(2k-1)f_b t)}{2k-1}$$

$$=\frac{4}{\pi}\left(\underbrace{\sin(2\pi f_b t)}_{\text{Fundamental}}+\frac{1}{3}\underbrace{\sin(2\pi 3 f_b t)}_{\text{3rd-order}}+\frac{1}{5}\underbrace{\sin(2\pi 5 f_b t)}_{\text{5th-order}}+\cdots+\frac{1}{11}\underbrace{\sin(2\pi 11 f_b t)}_{\text{11th-order}}+\cdots\right)$$

Measure 3: Increase by Harmonics K

Measure 3: Increase by Harmonics K

The **bandwidth** of BFD increases by **K** x wider at the Kth Harmonics

Measure 4: Increase by Multi-frequency W

BLF drifts from 40 kHz to 260 kHz acquired from three commercial RFID tags

Suppose we acquire W BLF drift results at the W BLFs as follows: $\{\mathcal{D}(f_1), \mathcal{D}(f_2), \cdots, \mathcal{D}(f_W)\}$

Measure Summary

Resolution =
$$\frac{f_b}{M \cdot R \cdot K \cdot W}$$

M: Number of symbols

R: Multiples of redundancy

Resolution: 1250 Hz \rightarrow 0.272 Hz (4590×)

S0	32	1	1	1	$1250 \sim 20,000$	6	0.167	10
S1	32	1	1	10	$125 \sim 2000$	64	1.6e-2	10
S2	128	1	1	10	$31.25 \sim 500$	256	3.9e-3	10
S3	128	5	1	10	$6.25 \sim 100$	1280	7.8e-4	50
S4	128	5	23	10	$0.272 \sim 4.3478$	29440	3.40e-5	50

Implementation & Evaluation

SECON

2023

2

Implementation

Auto Acquisition System

RFID Tags

Evaluation: Distinguishability & Accuracy

Distinguishability

- The percent of unique BFD fingerprints
- the distinguishability is increased to 99.39% in setting #4

Mean accuracy of 94% with std of 3% across all models

Evaluation: Impact Analysis

- Miller 4 and Miller 8
 perform better than
 other schemes for more
 Miller cycles
- Acquisition devices have little impact
- Distance is increased, the SNR decreases
- More difficult to distinguish harmonics from noise

Conclusion

- Revisiting BFD as a practical fingerprint from the perspective of resolution
- Introducing methods to enhance frequency resolution from kHz to sub-Hz using only time as a trade-off
- Evaluating the fingerprints on 7,000+ tags under diverse acquisition contexts

2023 SECON 33

Thank You

Q & A