幂等矩阵的定义

定义 设 $A \in C^{n \times n}$, 如果 A 满足 $A^2 = A$ 则称 A 是一个 幂等矩阵.

$$A = \begin{bmatrix} I_r & M \\ O & O \end{bmatrix} \in C^{n \times n}, \quad M \in C^{r \times (n-r)}$$

是一个分块幂等矩阵.

幂等矩阵的性质

设A是幂等矩阵,那么有

(1)
$$A^{T}, A^{H}, I - A, I - A^{T}, I - A^{H}$$
 都是幂等矩阵;

(2)
$$A(I-A) = (I-A)A = 0$$

(3)
$$N(A) = R(I - A)$$

$$N(I-A) = R(A)$$

(4)
$$Ax = x$$
 的充分必要条件是 $x \in R(A)$

(5)
$$C^n = R(A) \oplus N(A)$$
 $x = Ax + (x - Ax)$

(3) N(A) = R(I - A)

证: 对 $\forall X \in N(A)$, 有 AX = 0.

X-AX=X-0=X,整理得 (I-A)X=X

因此 $X \in R(I-A)$, 可得 $N(A) \subseteq R(I-A)$.

対 $\forall Y \in R(I-A)$, 存在 X 使得 Y = (I-A)X, $AY = A(I-A)X = (A-A^2)X = 0$

因此 $Y \in N(A)$, 可得 $R(I-A) \subseteq N(A)$.

定理: 设A 是一个秩为r的n阶矩阵,那么A为一个幂等矩阵的充分必要条件是存在 $P \in C_n^{n \times n}$,使得

$$P^{-1}AP = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}.$$

推论: 设A是一个n阶幂等矩阵,则有

$$\operatorname{Tr}(A) = \operatorname{rank}(A)$$
.

幂等矩阵与投影变换

定义:设S, T是n维酉空间V的两个子空间,且 $V = S \oplus T$.则对于V中任一向量 α 均可唯一的表示为

$$\alpha = x + y, \quad x \in S, y \in T$$

则称 x 是 α 沿 T 到 S 的投影, y 是 α 沿 S 到 T 的投影.

由上式确定的线性变换 $\tau: V \to S \subseteq V$

$$\tau(\alpha) = x$$

称为V沿T到S的投影变换.

定理: 设A 是一个n 阶幂等矩阵,则下面线性变换 $\tau(\alpha) = A\alpha$, $\forall \alpha \in C^n$

是 C^n 沿着 N(A) 到 R(A) 的投影变换.

提示: $C^n = R(A) \oplus N(A)$, $\alpha = A\alpha + (\alpha - A\alpha)$, 其中 $A\alpha \in R(A)$, $(\alpha - A\alpha) \in N(A)$.

定理:设 τ 是n维酉空间V上的线性变换,则下列命题等价.

- (1) τ 是 V 上的投影变换.
- $(2) \tau^2 = \tau.$
- (3) τ 的矩阵表示 A 满足 $A^2 = A$.

证明: (1) \rightarrow (2) τ 是 V 沿 T 到 S 的投影变换, $\forall \alpha \in V$,

$$\alpha = x + y$$
, $x \in S$, $y \in T$, $\tau(\alpha) = x$,

$$\because \tau^2(\alpha) = \tau[\tau(\alpha)] = \tau(x) = x = \tau(\alpha), \quad \therefore \tau^2 = \tau.$$

$$(2) \to (1), \quad \forall \alpha \in V, \quad \bigcup \quad \alpha = \underline{\tau(\alpha)} + \underline{\alpha - \tau(\alpha)}, \quad \because \tau^2 = \tau,$$

$$\therefore \tau[\alpha - \tau(\alpha)] = \tau(\alpha) - \tau^2(\alpha) = 0, \quad \bigcup \quad \overline{\square} \quad \alpha - \tau(\alpha) \in N(\tau), \quad \text{并且}$$

$$V = R(\tau) + N(\tau).$$

$$\forall x \in R(\tau)$$
, 则存在 $\beta \in V$,使得 $x = \tau(\beta)$,那么
$$\tau(x) = \tau^2(\beta) = \tau(\beta) = x.$$

从而 $\forall \gamma \in R(\tau) \cap N(\tau)$, 则 $\gamma = \tau(\gamma) = 0$. $\therefore V = R(\tau) \oplus N(\tau)$. $\alpha = \tau(\alpha) + \alpha - \tau(\alpha)$, 即 $\tau \in V$ 沿着 $N(\tau)$ 到 $R(\tau)$ 的投影变换.

 $(2) \rightarrow (3)$, 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 V 的一组基, A 是 τ 在该基下的 矩阵表示, 于是 $\tau(\alpha_1,\alpha_2,...,\alpha_n) = (\alpha_1,\alpha_2,...,\alpha_n)A$, $\tau^{2}(\alpha_{1},\alpha_{2},\ldots,\alpha_{n}) = \tau[(\alpha_{1},\alpha_{2},\ldots,\alpha_{n})A] = \tau(\alpha_{1},\alpha_{2},\ldots,\alpha_{n})A$ $= (\alpha_1, \alpha_2, \dots, \alpha_n)A^2 = (\alpha_1, \alpha_2, \dots, \alpha_n)A. \quad (\because \tau^2 = \tau)$ $\alpha_1, \alpha_2, ..., \alpha_n$ 线性无关,所以 $A^2 = A$. $(3) \rightarrow (2)$, 若 $\tau(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)A$, 则 $\tau^{2}(\alpha_{1},\alpha_{2},...,\alpha_{n}) = (\alpha_{1},\alpha_{2},...,\alpha_{n})A^{2}$, 如果 $A^{2} = A$, 则 $\tau^2(\alpha_1,\alpha_2,\ldots,\alpha_n)=\tau(\alpha_1,\alpha_2,\ldots,\alpha_n), \quad \text{M} \ \overline{m} \ \tau^2=\tau.$

正交投影变换

定义: 设S, T 是n 维酉空间V的两个子空间, 若对于任意的 $x \in S$, $y \in T$, 都有(x, y) = 0, 则称S 与T 是正交的.

定义:设S, T是n维酉空间V的两个子空间,若S与T是正交的,则S+T称为S与T的正交和.(显然是直和)

定义: 设 n 维酉空间 V 是子空间 S 与 T 的正交和, 对任意 $\alpha \in V$, 有 $\alpha = x + y$, $x \in S$, $y \in T$, 则线性(投影)变换 $\sigma: V \to S \subseteq V$, $\sigma(\alpha) = x$,

称为由 V 到 S 的正交投影.

定理:设A是一个n阶幂等的H-矩阵,则下面线性变换

$$\sigma(\alpha) = A\alpha, \quad \forall \alpha \in \mathbb{C}^n$$

是 C^n 到 R(A) 的正交投影变换.

提示: 只要证 R(A) 与 N(A) 正交. $\forall x \in R(A), y \in N(A) = R(I - A),$ 则存在 z_1, z_2 使得 $x = Az_1, y = (I - A)z_2,$ 则

$$(x, y) = (Az_1, (I - A)z_2) = z_2^H (I - A)^H Az_1 = z_2^H (I - A)Az_1 = 0.$$