Discussions on *I*-Ulrich Modules

Sarasij Maitra
Based on joint work with Hailong Dao and Prashanth Sridhar (both at University of Kansas)

Overview

- Definition of *I*-Ulrich modules for some ideal *I*. (It is the generalization of the notion of an Ulrich module which is and has been an object of high interest for quite some time.)
- ullet Basic Properties of I-Ulrich module. (In particular, we shall establish the existence of a lattice like structure among I-Ulrich ideals.)
- Talk about the connection to the category of Reflexive modules.

All of the results in this talk are available at On Reflexive and *I*-Ulrich modules over curve singularities (mainly, Sec 4).

Motivation

A category C is said to be of finite type if there are only finitely many indecomposable objects upto isomorphism.

Two categories of interest for study of finite type:

- \bullet CM(R): The category of maximal Cohen-Macaulay modules.
- Ref(R): The category of reflexive modules.

Over a commutative ring R, recall that a module M is called reflexive if the natural map $M \to M^{**}$ is an isomorphism, where M^* denotes $\operatorname{Hom}_R(M,R)$.

It is well known that understanding the 'one dimensional (local) case' is key to understanding reflexivity in general and also ' $\operatorname{Ref}(R) \subset \operatorname{CM}(R)$ '.

How abundant are these modules?

Motivation Continued

We found that the equality xM = IM for certain modules $M \in CM(R)$ appears in many situations related to our investigation where I is a height one ideal with principal reduction x, in a one-dimensional local Cohen-Macaulay ring.

For instance, we establish the following: Suppose R is one-dimensional local Cohen Macaulay with canonical ideal ω_R whose principal reduction is x.

If
$$\omega_R M = xM$$
, then $M \in \text{Ref}(R)$!

Thus these modules form a category critical to the abundance of reflexive modules.

So, we make a more general study of such modules with respect to any regular (i.e. height 1) ideal I and we shall see that the category of such modules has nice properties.

Discussions on I-Ulrich Modules

Throughout this talk, here's the hypothesis.

Hypothesis

Let (R, \mathfrak{m}, k) be a one-dimensional Cohen-Macaulay local ring with infinite residue field k and total ring of fractions K. Let \bar{R} denote the integral closure of R. All modules M considered are finitely generated.

Thus all regular ideals have a principal reduction.

Definition

I-Ulrich Modules

Let I be a height 1 ideal. We say that $M \in CM(R)$ is I-Ulrich if $e_I(M) = \ell(M/IM)$, where $e_I(M)$: Hilbert Samuel multiplicity of M with respect to I and $\ell(\cdot)$ denotes length.

Let $Ul_I(R)$ denote the category of *I*-Ulrich modules.

• Note that this definition is very much a straight generalization of an Ulrich module:

Any Ulrich module (in the popular literature) is simply an \mathfrak{m} -Ulrich module (in the above sense).

• Note that if $M \cong N$ in CM(R), then the same isomorphism takes IM to IN, so $\ell(M/IM) = \ell(N/IN)$ for any ideal I and so I-Ulrich condition is preserved under isomorphism i.e. $Ul_I(R)$ makes sense!

Critical Example

Example

Let $M \in \text{CM}(R)$. By definition, $\ell(I^nM/I^{n+1}M) = e_I(M)$ for $n \gg 0$. Also, $e_I(M) = e_I(I^nM)$ for all n. It follows that I^nM is I-Ulrich for $n \gg 0$.

Thus, these modules are abundant!

In fact, high enough powers of every ideal is Ulrich with respect to itself.

B(I), b(I)

Blowup of I and its Conductor

Let B(I) denote the blow-up of I, namely the ring

$$\bigcup_{n\geq 0} (I^n:_K I^n).$$

Let $b(I) := R :_K B(I)$, the *conductor* ideal of B(I) to R (the largest common ideal of R and B(I).)

- $B(I) \subset \bar{R}$.
- $B(I) = B(I^n)$ for all n > 1.
- If x is a principal reduction of I, then it is well-known that

$$B(I) = R \left\lceil \frac{I}{x} \right\rceil.$$

Theorem (Main Properties)

Let R be a one-dimensional Cohen-Macaulay local ring and I is regular. Suppose that $x \in I$ is a principal reduction and $M \in CM(R)$. TFAE:

- M is I-Ulrich.
- $IM \subset xM.$
- \bullet $IM \cong M$.
- $M \in \mathrm{CM}(B(I)).$
- \bullet M is I^n -Ulrich for all $n \geq 1$.
- \bullet M is I^n -Ulrich for infinitely many n.
- \bullet M is I^n -Ulrich for some $n \geq 1$.

PROOF: As x is a reduction of I and $M \in CM(R)$, $\ell(M/xM) = e_I(M)$. So

- (1) is equivalent to $\ell(M/xM) = \ell(M/IM)$, or IM = xM. Hence
- $(1) \Longrightarrow (2)$. $(2) \Longleftrightarrow (3)$ is clear. $(2) \Longrightarrow (4)$ is clear. Assume (4), then $M \cong I^n M$ for $n \gg 0$, so M is I-Ulrich by the previous example. Thus,
- $(4) \implies (1)$. In fact, we just showed that $(1) \iff (2) \iff (3) \iff (4)$.

- lacksquare M is I-Ulrich.
- $IM \subset xM.$
- $0 IM \cong M$.
- $M \in CM(B(I)).$
- \bullet M is I^n -Ulrich for all n > 1.
- \bigcirc M is I^n -Ulrich for infinitely many n.
- \bullet M is I^n -Ulrich for some n > 1.

PROOF CNTD: (3) is equivalent to $\frac{I}{x}M\subseteq M$. In other words (3) $\Longrightarrow M\in \mathrm{CM}(B(I))$, since R[I/x]=B(I). This also shows that (5) \Longrightarrow (3). Since $B(I)=B(I^n)$ for any $n\geq 1$, we have (5) \Longrightarrow (6). Clearly (6) \Longrightarrow (7) \Longrightarrow (8). Assume (8). We have $\ell(M/I^nM)=e_{I^n}(M)=ne_I(M)$. Note that for each i,I^iM is in $\mathrm{CM}(R)$ and hence we get for each i,I^iM is in $\mathrm{CM}(R)$ and hence we get for each i,I^iM is in $\mathrm{CM}(R)$ and hence we

$$\ell(I^{i}M/I^{i+1}M) \le \ell(I^{i}M/xI^{i}M) = e_{I}(I^{i}M) = e_{I}(M).$$

Thus, equality must occur for each i; in particular, it occurs for i = 0, which shows that M is I-Ulrich.

• Note that I is I-Ulrich simply says that $I^2 = xI$ i.e. I is stable, a concept heavily used in Lipman's work on Arf rings.

Without any assumption on the existence of a principal reduction (relaxing to finite residue field), the following still holds:

Theorem

Let R be a one-dimensional Cohen-Macaulay local ring. Let I be a regular ideal and $M \in CM(R)$. The following are equivalent:

- \bullet $IM \cong M$.
- M is I-Ulrich.
- \bullet M is I^n -Ulrich for all $n \geq 1$.
- \bullet M is I^n -Ulrich for infinitely many n.
- \bullet M is I^n -Ulrich for some $n \geq 1$.
- $M \in CM(B(I)).$

Let I be a regular ideal. Then R is I-Ulrich if and only if I is principal.

Proof.

The hypothesis implies that $IR \cong R$, so I is principal.

Corollary

Let R have a canonical ideal ω_R . Then R is ω_R -Ulrich if and only if R is Gorenstein.

Corollary

Let R have a canonical ideal ω_R . Then R has minimal multiplicity if and only if \mathfrak{m} is \mathfrak{m} -Ulrich.

Proof.

Minimal multiplicity iff $\mathfrak{m}^2 = x\mathfrak{m}$.

The case of Birational Extensions

Remark

Note that if $M \in \mathrm{CM}(R)$ is I-Ulrich, the proof of the main theorem showed that the action of B(I) on M extends the action of R on M. (Recall, $\frac{I}{x}M \subset M$.) In other words, there is an action of B(I) on M which when restricted to R yields the original action of R on M.

In particular, if $M \subseteq K$, multiplication in K gives an action of B(I) on M.

Birational Extension

We say that an extension $f: R \to S$ is birational if $S \subset K$. Equivalently $K = \operatorname{Frac}(S)$. Also such an f induces a bijection on the sets of minimal primes of S and R and f is an isomorphism at all minimal primes P of R.

Let $R \subseteq S$ be a finite birational extension of rings. Then S is I-Ulrich if and only if $B(I) \subseteq S$.

Proof.

We saw that $\mathrm{Ul}_I(R)=\mathrm{CM}(B(I))$. So there is the multiplication action of B(I) on S, induced from the multiplication in K, i.e. $B(I)S\subseteq S$. Finally, let's not forget that $1\in S!$

Let I be a regular ideal. If \bar{R} is a finitely generated R-module, then \bar{R} and the conductor ideal $\mathfrak{c} := R :_K \bar{R}$ (largest common ideal of R and \bar{R}) are I-Ulrich.

Proof.

As $B(I) \subseteq \bar{R}$, \bar{R} is I-Ulrich. Since $\mathfrak{c} \in CM(\bar{R}) \subseteq CM(B(I))$, the conclusion follows.

In fact, $\mathfrak{c}:_K\mathfrak{c}=\bar{R}$ and hence $B(\mathfrak{c})=\bar{R}$: another way of proving the above.

More Properties

Proposition

Let $0 \to A \to B \to C \to 0$ be an exact sequence in CM(R). If B is I-Ulrich then so are A, C.

Proof.

Let I have the principal reduction x. Then x is a regular element and hence induces an exact sequence

$$0 \to A/xA \to B/xB \to C/xC \to 0.$$

B is I-Ulrich if and only if I kills the middle module, but if that's the case then I kills the other two as well.

Let $M \in Ul_I(R)$. For any $f \in M^*$, $Im(f) \in Ul_I(R)$.

Corollary

If ideals J, L are in $Ul_I(R)$, then $J + L, J \cap L \in Ul_I(R)$.

Proof.

The assertion follows from the short exact sequence $0 \to J \cap L \to J \oplus L \to J + L \to 0$.

Corollary (Ulrich Lattice)

The set of I-Ulrich ideals is a lattice under addition and intersection.

Largest Element in Ulrich Lattice

In fact, one can show that the largest element in this lattice is $b(I) := R :_K B(I)$.

 $b(I) \in CM(B(I))$ and hence is *I*-Ulrich. The rest of the proof goes through by showing that

- If $M \in Ul_I(R)$, then the trace ideal of M also is I-Ulrich,
- Any trace ideal obtained as above is in b(I).

Recall that the trace ideal of M is $\operatorname{tr}(M) := \sum_{f \in M^*} f(M)$. By previous slide, clearly, $\operatorname{tr}(M) \in \operatorname{Ul}_I(R)$.

Proposition

If $M \in \mathrm{Ul}_I(R)$, then $\mathrm{Hom}_R(M,N) \in \mathrm{Ul}_I(R)$ for any module $N \in \mathrm{CM}(R)$. In particular, $M^*, M^{**} \in \mathrm{Ul}_I(R)$.

PROOF: Note that there is an embedding

$$\operatorname{Hom}_R(M,N) \otimes_R R/xR \to \operatorname{Hom}_R(M/xM,N/xN)$$

and the latter is killed by I since $M \in Ul_I(R)$. This shows that $\operatorname{Hom}_R(M,N) \otimes_R R/xR$ is killed by I and this finishes the proof.

A Finiteness Result

Theorem

Let $\mathfrak{c} := R :_K \overline{R}$ be the conductor and I be a regular ideal. If $\mathfrak{c} \cong I^s$ for some s, then $\mathrm{Ul}_I(R) = \mathrm{CM}(\overline{R})$. If furthermore R is complete and reduced, then $\mathrm{Ul}_I(R)$ has finite type.

Proposition

Assume that I is a regular ideal. Let $S = \operatorname{End}_R(I)$ (which is a birational extension of R). If M is I-Ulrich, then

$$\operatorname{Hom}_R(M,I) \cong \operatorname{Hom}_R(M,S).$$

Proof.

We have an exact sequence

$$0 \to L \to I \otimes M \to IM \to 0$$

where L has finite length. Thus taking $\operatorname{Hom}_R(-,I)$ we get an isomorphism

$$\operatorname{Hom}_R(IM,I) \cong \operatorname{Hom}_R(I \otimes M,I).$$

The first is isomorphic to $\operatorname{Hom}_R(M,I)$ as $IM \cong M$, and by Hom-tensor adjointness, the second is isomorphic to

$$\operatorname{Hom}_R(M, \operatorname{Hom}_R(I, I)) = \operatorname{Hom}_R(M, S).$$

Assume that R has a canonical ideal ω_R . The following are equivalent:

PROOF: (1) \implies (2) by previous slide and the fact that $\operatorname{End}_R(\omega_R) = R$.

Conversely, using Hom-Tensor adjointness, statement (2) is the same as

$$\operatorname{Hom}_R(M,\omega_R) \cong \operatorname{Hom}_R(M,\operatorname{Hom}_R(\omega_R,\omega_R)) \cong \operatorname{Hom}_R(\omega_R \otimes_R M,\omega_R) \cong \operatorname{Hom}_R(\omega_R M,\omega_R).$$

Hence taking $\operatorname{Hom}_R(-,\omega_R)$ and using duality, we get

$$M \cong \omega_R M$$

and this finishes the proof.

Connection with Ref(R)

Theorem

Assume that R has a canonical ideal ω_R and $M \in \mathrm{Ul}_{\omega_R}(R)$. Then $M \in \mathrm{Ref}(R)$.

Proof.

Previous slide shows that $M^* \cong M^{\vee}$, where $M^* = \operatorname{Hom}_R(M,R)$ and $M^{\vee} = \operatorname{Hom}_R(M,\omega_R)$. We saw that M^* is still in $\operatorname{Ul}_{\omega_R}(R)$, so applying previous slide again and using duality, we have

$$M^{**} \cong M^{*\vee} \cong M^{\vee\vee} \cong M$$

as desired.

Suppose that R has a canonical ideal ω_R . Then for large enough n, the ideal $I = \omega_R^n$ is reflexive.

Proof.

Recall from our critical example that ω_R^n is ω_R -Ulrich for n >> 0. Now apply previous slide.

Additional Information: In the article, we further do the following:

- use ω_R -Ulrich modules to classify reflexive birational extensions of R;
- ullet use I-Ulrich modules to classify reflexive Gorenstein birational extensions
- relate the trace ideal of an *I*-Ulrich module to the core of *I*.

Theorem

Suppose that R is a one-dimensional Cohen-Macaulay local ring with a canonical ideal ω_R . Let S be a module finite R-algebra such that S is a maximal Cohen-Macaulay module over R. The following are equivalent:

- $\omega_S \in \operatorname{Ref}(R)$.
- \circ S is ω_R -Ulrich as an R-module.

Theorem

Suppose that R is a one-dimensional Cohen-Macaulay local ring with a canonical ideal ω_R . Let S be a finite birational extension of R such that $S \in \text{Ref}(R)$. Let $I = R :_K S$ be the conductor of S in R. The following are equivalent:

- S is Gorenstein.
- ② I is I-Ulrich and ω_R -Ulrich. That is $I \cong I^2 \cong I\omega_R$.

This extends Goto's theorem.

Corollary

Suppose that (R, \mathfrak{m}) is a one-dimensional Cohen-Macaulay local ring with a canonical ideal ω_R . Let $S = \operatorname{End}_R(\mathfrak{m})$. The following are equivalent:

- S is Gorenstein.
- 2 R has minimal multiplicity and is 'almost Gorenstein'.

Theorem

Assume that the residue field of R is infinite. Let $M \in Ref(R)$. The following are equivalent.

- M is I-Ulrich.
- \bullet tr(M) \subseteq b(I).
- \bullet tr(M) \subseteq (x) :_R I for some principal reduction x of I.
- $\operatorname{tr}(M) \subseteq (x) :_R I$ for any principal reduction x of I.

