Cours de quantique II

Lucas

11 février 2019

Table des matières

1	Outils mathématiques								1				
	1.1	Le produit tensoriel de 2 espaces vectoriels											1

Chapitre 1

Outils mathématiques

1.1 Le produit tensoriel de 2 espaces vectoriels

Soient ε_1 , ε_2 espaces vectoriels de dimensions N_1 et N_2 .

Théorème. Il existe toujours un espace vectoriel ε et 1 application bilinéaire ¹. $G: \varepsilon_1 \times \varepsilon_2 \to \varepsilon$ tels que, pour toute application bilinéaire $S: \varepsilon_1 \times \varepsilon_2 \to \varepsilon_S$, il existe une application linéaire $\tilde{S}: \varepsilon \to \varepsilon_S$ telle que

$$S(|u\rangle, |v\rangle) = \tilde{S}G(|u\rangle, |v\rangle), \forall |u\rangle \in \varepsilon_1, |v\rangle \in \varepsilon_2$$

Ce théorème est fondateur pour le produit tensoriel. On peut le lire autrement. Soient deux EV, il existe toujours un troisième EV avec une application G.

Théorème. L'espace vectoriel ε est unique à un isomorphisme près, de même que l'application G. Cet espace est de dim $N_1 \cdot N_2$ et $\{G(|u_i\rangle, |v_j\rangle)\}$ est une base de ε

Définition. L'espace ε est appelé espace produit tensoriel des espaces vectoriels ε_1 et ε_2 et on le note

$$\varepsilon = \varepsilon_1 \otimes \varepsilon_2$$

On peut noter les vecteurs $G(|u\rangle, |v\rangle) |u\rangle \otimes |v\rangle$ ou $|u\rangle |v\rangle$ ou $|u,v\rangle$

^{1.} Linéaire tant sur le premier membre que sur le second