

Local file systems update

Red Hat Lukáš Czerner February 23, 2013 Copyright © 2013 Lukáš Czerner, Red Hat.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included

in the COPYING file.

Agenda

- Linux file systems overview
- Challenges we're facing today
- 3 Xfs
- 4 Ext4
- Btrfs
- Questions ?

Part I Linux kernel file systems overview

File systems in Linux kernel

- Linux kernel has a number of file systems
 - Cluster, network, local
 - Special purpose file systems
 - Virtual file systems
- Close interaction with other Linux kernel subsystems
 - Memory Management
 - Block layer
 - VFS virtual file system switch
- Optional stackable device drivers
 - device mapper
 - mdraid

The Linux I/O Stack Diagram

outlines the Linux I/O stack as of Kernel version 3.3

Most active local file systems

File system	Commits	Developers	Active developers
Ext4	648	112	13
Ext3	105	43	2
Xfs	650	61	8
Btrfs	1302	114	21

Number of lines of code

Part II Challenges we're facing today

Scalability

- Common hardware storage capacity increases
 - You can buy single 4TB drive for a reasonable price
 - Bigger file system and file size
- Common hardware computing power and parallelism increases
 - More processes/threads accessing the file system
 - Locking issues
- I/O stack designed for high latency low IOPS
 - Problems solved in networking subsystem

Reliability

- Scalability and Reliability are closely coupled problems
- Being able to fix your file system
 - In reasonable time
 - With reasonable memory requirements
- Detect errors before your application does
 - Metadata checksumming
 - Metadata should be self describing
 - Online file system scrub

New types of storage

Non-volatile memory

- Wear levelling more-or-less solved in firmware
- Block layer has it's IOPS limitations
- We can expect bigger erase blocks

Thinly provisioned storage

- Lying to users to get more from expensive storage
- Filesystems can throw away most of it's locality optimization
- Cut down performance
- Device mapper dm-thinp target

Hierarchical storage

- Hide inexpensive slow storage behind expensive fast storage
- Performance depends on working set size
- Improve performance
- Device mapper dm-cache target, bcache

Maintainability issues

- More file systems with different use cases
 - Multiple set of incompatible user space applications
 - Different set of features and defaults
 - Each file system have different management requirements
- Requirements from different types of storage
 - SSD
 - Thin provisioning
 - Bigger sector sizes
- Deeper storage technology stack
 - mdraid
 - device mapper
 - multipath
- Having a centralized management tool is incredibly useful
- Having a central source of information is a must
- System Storage Manager http://storagemanager.sf.net

Part III
What's new in xfs

Scalability improvements

Delayed logging

- Impressive improvements in metadata modification performance
- Single threaded workload still slower then ext4, but not much
- With more threads scales much better than ext4
- On-disk format change

XFS scales well up to hundreds of terabytes

- Allocation scalability
- Free space indexing
- Locking optimization
- Pretty much the **best** choice for *beefy* configurations with lots of storage

Reliability improvements

Metadata checksumming

- CRC to detect errors
- Metadata verification as it is written to or read from disk
- On-disk format change

Future work

- Reverse mapping allocation tree
- Online transparent error correction
- Online metadata scrub

Part IV What's new in ext4

Scalability improvements

Based on very old architecture

- Free space tracked in bitmaps on disk
- Static metadata positions
- Limited size of allocation groups
- Limited file size limit (16TB)
- Advantages are resilient on-disk format and backwards and forward compatibility

Some improvements with bigalloc feature

- Group number of blocs into clusters
- Cluster is now the smallest allocation unit
- Trade-off between performance and space utilization efficiency

Extent status tree for tracking delayed extents

- No longer need to scan page cache to find delalloc blocks
- Scalability is very much limited by design, on-disk format and backwards compatibility

Reliability improvements

- Better memory utilization of user space tools
 - No longer stores whole bitmaps converted to extents
 - Biggest advantage for e2fsck
- Faster file system creation
 - Inode table initialization postponed to kernel
 - Huge time saver when creating bigger file systems
- Metadata checksumming
 - CRC to detect errors
 - Not enabled by default

Part V What's new in btrfs

Getting stabilized

- Performance improvements is not where the focus is right now
 - Design specific performance problems
 - Optimization needed in future
- Still under heavy development
- Not all features are yet ready or even implemented
- File system stabilization takes a long time

Reliability in btrfs

- Userspace tools not in very good shape
 - Fsck utility still not fully finished
- Neither kernel nor userspace handles errors gracefully
- Very good design to build on
 - Metadata and data checksumming
 - Back reference
 - Online filesystem scrub

Resources

- Linux Weekly News http://lwn.net
- Kernel mailing lists http://vger.kernel.org
 - linux-fsdevel
 - linux-ext4
 - linux-btrfs
 - linux-xfs
- Linux Kernel code http://kernel.org
- Linux IO stack diagram
 - http://www.thomas-krenn.com/en/oss/linuxiostackdiagram.html

The end.

Thanks for listening.