《计算模型导引》第五章参考答案*

2019年6月18日

习题 5.1

主要思想是先后抹除 \bar{x} 最后移到 \bar{y} 的头. 机器如下:

	0	1	解释
1	0R2	0R1	抹除第一个 \bar{x} 并指向 \bar{y} 头
2	0R3	1R2	移动到第二个 〒 头
3	0L4	0R3	抹除第二个 \overline{x}
4	0L4	1L5	越过 \bar{y} 的最后一个 1
5	0R6	1L5	移到 \overline{y} 头

习题 5.2

主要思想是每次抹掉输入的一个 1 对应两个输出各增加一个 1. 即设计机器 M 实现如下功能:

$$\begin{split} M|1:0\cdots0101^k01^k0\cdots & \twoheadrightarrow u:0\cdots01^{k+1}01^{k+1}0\cdots \\ M|1:0\cdots01^{l+1}01^k01^k0\cdots & \twoheadrightarrow v:0\cdots01^{l}01^{k+1}01^{k+1}0\cdots \\ \end{split}$$

这里 $k \geq 0$, u 为停机状态. 这样 M[v := 1] 既可实现循环. 具体实现如下:

 $^{^*}$ Ver. 0.3. 原答案由宋方敏教授给出手稿,然后由丁超录入修订补充. 此文档来源为https://github.com/sleepycoke/NJU_Com_Models

	0	1	解释	
1		0R2	输入移除 1	
2	0R3	1R12	判断输入是否还有 1, 移到尾部再跳过后面的 0	
3	1R4	1R3	輸入为 0 , 那么走第一个分支 3 -8. 将第一个 1^k 后的 0 改为 1	
4		0R5	将第二个 1^k 的第一个 1 改为 0	
5	1R6	1R5	将第二个 1^k 后的 0 改为 1	
6	1L7		再添个 1	
7	0L8	1L7	跳过 1 ^{k+1}	
8	0R9	1L8	移到输入头, 停机	
12	0R13	1R12	输入不为 0, 那么走第二个分支 12-19. 跳过第一个输入	
13	1R14	1R13	将第一个 1^k 后的 0 改为 1	
14		0R15	将第二个 1 ^k 的第一个 1 改为 0	
15	1R16	1R15	将第二个 1^k 后的 0 改为 1	
16	1L17		再添个 1	
17	0L18	1L17	跳过 1 ^{k+1}	
18	0R19	1L18	再跳过 1 ^{k+1}	
19	0R1	1L19	再移到输入头,循环	

大家可能在某些参考资料上看到了如下的乘法图灵机 M_1 , 但它并不适用于我们对输入的定义. 实际上, M_1 接收的输入为 $01^x01^y0\cdots$ 而不是我们定义的 $01^{x+1}01^{y+1}\cdots$.

	0	1	解释	
1	0R10	0R2	判断 x 是否为 0 , 不为 0 抹除一个 1 进入 $2-8$ 作一次累加	
2	0R3	1R2	移到第一串 1 的尾部	
3	0L8	0R4	3-7 作一次累加,作过 y 次后转到 8 . 进入 4 之前抹掉 1 留作标记给 7 找回用	
4	0R5	1R4	找到本串 1 的尾部	
5	1L6	1R5	找到 1 ^j 的尾部,+1	
6	0L7	1L6	找到 1^{j+1} 的头	
7	1R3	1L7	找到 1^i 的头,补回一个 1	
8	0L9	1L8	一次累加结束	
9	0R1	1L9	找到第一串 1 的头	
10	0R11	0R10	抹除第一串 1	

我们可以先证明

$$M_1|1:0\cdots0\underset{\uparrow}{1}^x01^y0\cdots \twoheadrightarrow u:0\cdots0\underset{\uparrow}{1}^{x*y}0\cdots$$

而理解 M1 和关键在于理解 3-7 状态完成了以下操作:

$$M_1|3:0\cdots 011^i01^j\cdots \twoheadrightarrow 3:11^i01^{j+1}0\cdots$$

从而 M1 和通过 3-8 状态完成了以下操作:

$$M_1|3:\underset{\uparrow}{1^i}01^j\cdots \twoheadrightarrow 8:\underset{\uparrow}{1^i}01^{j+i}0\cdots$$

即实现了一次累加. 这样总体上每抹除第一个输入的一个 1 就,对应一次加法,整体实现了乘法.

最后为了符合我们的输入输出规范, 实现机器 M_2, M_3 分别实现:

$$M_2|1:01^{x+1}_{\uparrow}01^{y+1}_{\uparrow}0\cdots \twoheadrightarrow u:001^x_{\uparrow}01^y_{\uparrow}0\cdots$$

$$M_3|1:01^x_{\uparrow}00\cdots \twoheadrightarrow v:01^{x+1}_{\uparrow}0\cdots$$

这两个机器很容易实现不赘述.

从而且乘法机器为

$$M_2 \Longrightarrow M_1 \Longrightarrow M_3$$

习题 5.4

参照第 133 页定理 5.14, 我们需要作一个预处理,添上一个输入 $\bar{1}$. 具体可以由如下机器 M_3 实现:

	0	1
1	0R2	1R1
2		1R3
3	1L4	
4		1L5
5	0L6	
6	0R7	1L6

如书中第 134 页构造机器 M1:

	0	1
1		0R2
2	0R4	1R3
3	0R4	1R3

令
$$M_2$$
 为 M_1 ⇒ double ⇒ compress ⇒ shiftl, 从而 若 $x = 0$, 则 $M_2 | 1 : 0 \overline{x} 0 \overline{y} 0 \cdots \rightarrow v : 000 \overline{y} 0 \cdots$

若
$$x>0$$
, 则 $M_2|1:0\overline{x}0\overline{y}0\cdots \twoheadrightarrow w:00\overline{x-10}\overline{g(y)}0\cdots$, 其中 w 为 M_2 的输出时的状态.

令
$$[f] = M_2[w := 1], M_3 \mapsto [f]$$
 即为所求.

$$1: \underset{\uparrow}{010000} \cdots \tag{1R2}$$

$$2:010000\cdots$$
 (0L3)

$$3: 010000\cdots$$
 (1L3)

$$3: \underset{\uparrow}{010000} \cdots \tag{0L3}$$

$$3: \underset{\uparrow}{0}100000 \cdots$$
 (halt)

若 x > 0:

$$1:011^x0000\cdots \tag{1R2}$$

$$2:01_{\uparrow}^{x}0000\cdots$$
 (0R1)

$$1:0101^{x-1}_{\uparrow}0000\cdots$$
 (1R2)

$$2:01011^{x-2}0000\cdots$$
 (0R1)

$$\cdots \qquad \qquad (1R2, 0R1)$$

$$3: \underbrace{0101\cdots01}_{\left(1\text{L3}\right)} 0000\cdots \tag{1L3}$$

$$(0L3, 1L3)$$

$$3: \overbrace{0101\cdots01}^{\lfloor x/2\rfloor+1\uparrow 01} \cdots 010000\cdots$$

$$3: \overbrace{0101\cdots01}^{\lfloor x/2\rfloor+1\uparrow 01} \cdots 010000\cdots$$
(0L3)

$$3: \overbrace{0101\cdots01}^{\lfloor x/2\rfloor+1\uparrow 01}\cdots010000\cdots$$
 (halt)

总之就是擦除了第偶数个 1, 然后指向第一个 0 左边 (越界).

习题 5.6

易见
$$M_2|1:0\overline{x}0\overline{y}0\cdots \to 1:000\overline{y}0\cdots$$

从而 $M_2|1:01^n01^m01^k0\overline{y}0\cdots \to 1:0^{n+m+k+3}00\cdots$ (停)
又易见 $M_2|1:000\cdots \to 7:011110\cdots$
于是 $M_2|1:01^n01^m01^k0\overline{y}0\cdots \to 7:0^{m+n+k+4}11110\cdots$ (停)

由于

$$y = \lfloor \sqrt{x} \rfloor \Leftrightarrow y \le \sqrt{x} < y + 1 \Leftrightarrow y^2 \le x < (y + 1)^2$$

所以

$$f(x) = \mu y.x < (y+1)^2 = \mu y.N^2((sx) \div (sy)^2)$$

习题 5.10

参照第 133 页定理 5.14, 我们需要作一个预处理,添上一个输入 $\bar{0}$. 具体可以由如下机器 M_3 实现:

	0	1
1	0R2	1R1
2	1L3	
3	0L4	
4	0R5	1L4

接下来再如法构造 f 既可. 最后结果为 $M_3 \mapsto f$.

习题 5.11

注意到 0 - y = 0, x - 0 = x, (x + 1) - (y + 1) = x - y, 我们可以分情况处理. 机器如下:

	0	1	解释
1		0R2	将 x 减 1
2	0R3	1R4	判断原 x 是否为 0
3	1015	0R3	原 x 为 0 那么把 \overline{y} 修改为 1 输出
4	0R11	1R4	原 x 不为 0 找到 \overline{y} 的头
5	0L6	1R5	找到 \overline{y} 的尾部
6		0L7	将 y 减 1
7	0L10	1L7	找到 \overline{x} 的尾
10	0R1	1L10	找到 \bar{x} 的头, 迭代
11		1R12	跳过 \overline{y} 的第一个 1
12	0L13	1R5	判断 y 是否为 0
13		0L16	原 $y \to 0$,抹掉 \overline{y}
14	0R15	1L14	原 y 为 0 ,找到 \overline{x} 的头, 输出 x
15			停机
16	0L14		前左跳过一个 0

计算过程如下:

若 x = 0:

$$1:011^x0\overline{y}000\cdots \tag{0R2}$$

$$2:001^{x}0\overline{y}000\cdots \tag{1R4}$$

$$\cdots$$
 (1R4)

$$4:001^{x}\underset{\uparrow}{0}\overline{y}000\cdots \tag{0R11}$$

$$11:001^x 0 \overline{y} 000 \cdots$$

$$\uparrow$$

$$(1R12)$$

$$12:001^{x}01\overline{y-1}000\cdots$$
 (1R5)

$$\cdots$$
 (1R5)

$$5:001^x0\overline{y}_{\uparrow}^{000}\cdots \tag{0L6}$$

$$6:001^x01^y_{\uparrow}_{\uparrow}_{\downarrow}_{\downarrow}_{\downarrow}_{\downarrow}$$
 (0L7)

$$7:001^{x}01^{y-1}\underset{\uparrow}{1000}\cdots \tag{1L7}$$

$$\cdots$$
 (1L7)

$$7:001 {\overset{\circ}{\uparrow}} 0\overline{y}000 \cdots \tag{0L10}$$

$$10:001^{x-1} \underset{\uparrow}{10} 1^y 000 \cdots \tag{1L10}$$

$$\cdots$$
 (1L10)

$$10:001^x01^y000\cdots$$
 (0R1)

1:
$$001^x 01^y 000 \cdots$$
 (Compute $(x-1) - (y-1)$)

习题 5.12

欲证 Even Turing-可计算, 只需构造机器 E 满足:

$$E|1:0\underset{\uparrow}{1^{2x+1}0}\cdots \twoheadrightarrow u:0\cdots \underset{\uparrow}{010}\cdots$$
$$E|1:0\underset{\uparrow}{1^{2x}0}\cdots \twoheadrightarrow u:0\cdots \underset{\uparrow}{0110}\cdots$$

其中 E(1,u) 无定义. E 可如下构造:

	0	1
1	1L3	0R2
2	104	0R4
3	103	

E(1,1) 的 E(1,2) 形成循环将成对的 1 改为 0. 若有奇数个 1, 最后会执行 M(0,2) 停机, 输出 $\overline{0}$. 若有偶数个 1, 最后会执行 M(0,1), M(0,3) 停机, 输出 $\overline{1}$.

首先 0,1 显然都不是一个合法的机器编码, 假定输入至少为 2.

此题的关键在于给定机器 M 的编码 #M 如何确定其行数. 解法为:

设 M 有 k+1 行, 那么显然有 k < #M. 从而设 $k = \max z \le \#M, [p_z] \#M]$,

一但 k 确定,那么对于各行的解码过程都是可计算的.一旦出现不合法的行则解码失败,全部成功解码则说明输入是一个合法的机器编码,属于 S.

反过来由于编码和解码是一对逆过程,那么解码失败的输入一定不属于 S.

如果我们承认 CT, 那么我们已经给出了一个能行的方法判定 S, 从而 S 是 Turing-可计算的. 若持有更保守的观点, 那可以通过证明 S 为递归集来证明其 Turing-可计算. 过程繁杂从略.

习题 5.18

由 Taylor 公式

$$e = \sum_{i=0}^{n} \frac{1}{i!} + \frac{e^{\theta}}{(n+1)!}, \quad 0 < \theta < 1$$

(1) $\diamondsuit f(n) = |e \cdot n!|$, 我们往证 $f \in \mathcal{EF}$:

 $f(0) = f(1) = 2, \stackrel{\text{def}}{=} n \ge 2$

$$f(n) = \left\lfloor \left(\sum_{i=0}^{n} \frac{1}{i!} \right) n! + \frac{e^{\theta}}{n+1} \right\rfloor = \left\lfloor \sum_{i=0}^{n} \binom{n}{i} (n-i)! + \frac{e^{\theta}}{n+1} \right\rfloor$$

注意到当 $n \ge 2$ 时 $0 < \frac{e^{\theta}}{n+1} < 1$, 从而

$$f(n) = \sum_{i=0}^{n} \binom{n}{i} (n-i)!$$

于是 $f \in \mathcal{EF}$.

注: 下面给出 (*) 的证明:

设

$$e \cdot n! = k_1(n-1)! + r_1$$

$$f(n) = k_2(n-1)! + r_2$$

其中 $k_1, k_2 \in \mathbb{N}$, $r_1, r_2 \in [0, (n-1)!)$

由于 f(n) 为整数, 我们有 $r_2 \in [0, (n-1)! - 1]$. 那么

$$r \triangleq e \cdot n! - f(n) = (k_1 - k_2)(n - 1)! + (r_1 - r_2) \in [0, 1)$$

又 $r_1 - r_2 \in [1 - (n-1)!, (n-1)!)$,从而 $k_1 = k_2$.

(3)

$$g(1) = 2$$

$$g(n) = h(10^n) - h(10^{n-1}) \cdot 10, \quad n > 1$$

从而 $g \in \mathcal{EF}$, 于是 g 可计算。

注意到余项的上界 $\frac{e}{(n+1)!}$ 严格单调递减且收敛速度超过指数函数,此题也可以设计数值算法来求 e 的前 n 位有效数字,进而通过 CT 说明 g 可计算.