Zeilenstufenform (Forts.)

Beispiel

$$\begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 2 & -4 & 6 & 9 & 1 \\ -1 & 2 & -1 & -3 & -6 \\ 1 & -2 & 5 & 4 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 0 & 0 & 2 & 1 & -4 \\ 0 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Lösungsverfahren für homogene LGS

Algorithmus

- **Eingabe**: $A \in K^{m \times n}$. **Ausgabe**: $\mathbb{L}(A, 0)$.
- 1. Bringe A mittels elementarer Zeilentransformationen auf Zeilenstufenform.
- 2. Abhängige Unbekannte: die r Unbekannten zu k_1, \ldots, k_r ; Freie Unbekannte: die n-r restlichen.
- 3. Ersetze die freien Unbekannten durch Parameter $t_1, \ldots, t_{n-r} \in K$.
- 4. Löse von unten nach oben nach den abhängigen Unbekannten auf (*Rückwärtssubstitution*).

Lösungsverfahren für homogene LGS (Forts.)

Beispiel

$$A \leadsto \begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 0 & 0 & 2 & 1 & -4 \\ 0 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbb{L}(A,0) = \left\{ egin{pmatrix} 2t_1 - rac{31}{2}t_2 \ t_1 \ rac{1}{2}t_2 \ 3t_2 \ t_2 \end{pmatrix} \mid t_1,t_2 \in \mathbb{Q}
ight\}.$$

Lösungsverfahren für homogene LGS (Forts.)

Bemerkung

Es sei $A \in K^{m \times n}$.

- ▶ $0 \in \mathbb{L}(A, 0)$: die *triviale Lösung* $0 \in K^n$
- ▶ Ist m < n, dann existiert ein $s \in \mathbb{L}(A, 0) \setminus \{0\}$ (eine nicht-triviale Lösung).

Die Umkehrung dieser Aussage gilt nicht!

- Für das homogene LGS Ax = 0 sind äquivalent:
 - ▶ Das LGS ist nicht-trivial lösbar.
 - ▶ $\mathbb{L}(A,0) \neq \{0\}.$
 - ► Das LGS ist nicht eindeutig lösbar.
 - ▶ Es gibt freie Unbekannte (n r > 0).

Lösungsverfahren für inhomogene LGS

Es seien $A \in K^{m \times n}$, $b \in K^m$.

Erinnerung

Ist $s \in \mathbb{L}(A, b)$, dann ist

$$L(A, b) = \{s + u \mid u \in L(A, 0)\} = s + L(A, 0).$$

Bemerkung

 $\mathbb{L}(A, b) = \emptyset$ ist möglich.

Lösungsverfahren für inhomogene LGS (Forts.)

Algorithmus

Eingabe: $A \in K^{m \times n}$, $b \in K^m$.

Ausgabe: $\mathbb{L}(A, b)$.

- 1. Bringe (A, b) mittels elementarer Zeilentransformationen auf Zeilenstufenform.
- 2. Lösungsentscheidung:

Es seien k_1, \ldots, k_r die Stufenindizes der Zeilenstufenform. Ist r > 0 und $k_r = n + 1$, so ist $\mathbb{L}(A, b) = \emptyset$.

Ist r = 0 oder $k_r \le n$, so ist $\mathbb{L}(A, b) \ne \emptyset$.

3. <u>Lösungsmenge</u>: Bestimme $\mathbb{L}(A,0)$ (ignoriere b). Bestimme **eine** Lösung $s \in \mathbb{L}(A,b)$ wie folgt:

Setze alle freien Unbekannten gleich 0 und löse nach den abhängigen Unbekannten auf.

Lösungsverfahren für inhomogene LGS (Forts.)

Beispiel

$$A = \begin{pmatrix} 1 & -2 & 3 & 4 \\ 2 & -4 & 6 & 9 \\ -1 & 2 & -1 & -3 \\ 1 & -2 & 5 & 4 \end{pmatrix} \in \mathbb{Q}^{4 \times 4}, \qquad b = \begin{pmatrix} 2 \\ 1 \\ -6 \\ 1 \end{pmatrix} \in \mathbb{Q}^4.$$

$$(A,b) \leadsto \begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 0 & 0 & 2 & 1 & -4 \\ 0 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Lösungsverfahren für inhomogene LGS (Forts.)

Bemerkung

Es sei $A \in K^{m \times n}$ und A' eine Zeilenstufenform von A. Dann sind folgende Aussagen äquivalent:

- ▶ Ax = b hat für jedes $b \in K^m$ höchstens eine Lösung.
- Ax = 0 ist eindeutig lösbar (nur trivial).
- \triangleright A' hat Stufenzahl n.
- $ightharpoonup \varphi_A$ is injektiv.

Insbesondere ist in diesem Fall $m \ge n$.

Reduzierte Zeilenstufenform

Beispiel

Weitere elementare Zeilentransfornationen an Spalten zu Stufenindizes liefern:

$$(A,b) \leadsto \begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 0 & 0 & 2 & 1 & -4 \\ 0 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \leadsto \begin{pmatrix} 1 & -2 & 0 & 0 & \frac{31}{2} \\ 0 & 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Daraus ist die Lösungsmenge direkt ablesbar.

$$\mathbb{L}(A,b) = \begin{pmatrix} \frac{31}{2} \\ 0 \\ -\frac{1}{2} \\ -3 \end{pmatrix} + \mathbb{Q} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Definition

Es sei $A \in K^{m \times n}$.

1. A hat reduzierte Zeilenstufenform, wenn A Zeilenstufenform hat und zusätzlich gilt:

Für alle
$$1 \le j \le r$$
: $a_{1k_j} = a_{2k_j} = \cdots = a_{j-1,k_j} = 0$, $a_{jk_j} = 1$

2. A hat Normalform, wenn A reduzierte Zeilenstufenform hat und zusätzlich gilt:

Für alle
$$1 \le i \le r$$
 ist $k_i = i$.

Eine Matrix hat reduzierte Zeilenstufenform, wenn sie so aussieht:

wobei \star beliebige Einträge aus K sind.

Eine Matrix $A \in K^{m \times n}$ hat Normalform, wenn sie so aussieht:

$$\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \vdots & C \\
\vdots & \vdots & & 1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{pmatrix}$$

wobei $C \in K^{r \times (n-r)}$ ist. Dafür verwenden wir auch die "Block"-Schreibweise:

$$A = \left(\begin{array}{c|c} E_r & C \\ \hline 0 & 0 \end{array}\right).$$

Satz

Jede Matrix $A \in K^{m \times n}$ kann durch eine Folge elementarer Zeilentransformationen (vom Typ τ, α und μ) auf reduzierte Zeilenstufenform gebracht werden.

Mit Spaltenvertauschungen kann A weiter auf Normalform gebracht werden.

Bemerkung

Beim Lösen von (homogenen und inhomogenen) linearen Gleichungssystemen dürfen Spalten vertauscht werden, wenn über die Zuordnung zwischen Spalten und Unbekannten Buch geführt wird, und die "b-Spalte" an ihrer Stelle bleit.

Beispiel

Spaltenvertauschungen können die Rechnung abkürzen. Z.B. kann man

$$(A,b) := \begin{pmatrix} \begin{array}{c|ccc} x_1 & x_2 & x_3 & b \\ \hline 2 & 1 & -1 & 2 \\ -2 & 0 & 1 & -6 \\ 1 & 0 & 0 & 3 \\ \end{array} \end{pmatrix}$$

allein durch Spaltenvertauschungen auf die Zeilenstufenform

$$\begin{pmatrix}
x_2 & x_3 & x_1 & b \\
1 & -1 & 2 & 2 \\
0 & 1 & -2 & -6 \\
0 & 0 & 1 & 3
\end{pmatrix}$$

bringen.

Beispiel

Weiter kommt man in zwei Schritten zur reduzierten Zeilenstufenform:

$$\begin{pmatrix} x_2 & x_3 & x_1 & b \\ 1 & -1 & 2 & 2 \\ 0 & 1 & -2 & -6 \\ 0 & 0 & 1 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} x_2 & x_3 & x_1 & b \\ 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{pmatrix}.$$

Diese ist eine Normalform, und man liest als Lösungsmenge ab:

$$\mathbb{L}(A,b) = \left\{ \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} \right\}.$$

Beispiel

Über $K=\mathbb{Q}$ sei die folgende erweiterte Koeffizientenmatrix in Normalform gegeben:

$$(A,b) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 & 1 & 4 \\ 0 & 0 & 1 & 0 & -1 & 6 \end{pmatrix}.$$

Die Lösungsmenge kann man direkt ohne jede Rechnung ablesen:

$$\mathbb{L}(A,b) = \begin{pmatrix} 2\\4\\6\\0\\0 \end{pmatrix} + \mathbb{Q} \cdot \begin{pmatrix} 1\\2\\0\\-1\\0 \end{pmatrix} + \mathbb{Q} \cdot \begin{pmatrix} 0\\1\\-1\\0\\-1 \end{pmatrix}.$$

Satz

Es sei
$$A = \begin{pmatrix} E_r & C \\ \hline 0 & 0 \end{pmatrix} \in K^{m \times n}$$
 (also $C \in K^{r \times (n-r)}$).

Weiter sei
$$b = \left(\frac{b'}{b''}\right) \in K^m$$
 mit $b' \in K^r$ und $b'' \in K^{m-r}$.

Dann gilt:

$$\blacktriangleright \ \mathbb{L}(A,0) = \left\{ \left(\frac{C}{-E_{n-r}} \right) t \mid t \in K^{n-r} \right\}.$$

$$\blacktriangleright \ \mathbb{L}(A,b) = \emptyset \Leftrightarrow b'' \neq 0.$$

▶ Ist
$$b'' = 0$$
, dann ist $\left(\frac{b'}{0}\right) \in \mathbb{L}(A, b)$.