# 光照和遮挡条件下的人脸识别 算法研究

**栾晓** 2013.11.7



#### 结构

1. 绪论及基础知识

2. 连续性遮挡下的人脸识别方法

3. 基于稀疏误差特征提取的人脸识别方法



#### 研究背景及意义

# 人脸识别







Who is this?

Who is this?

Who is this?







Who is this?

Who is this?

Who is this?









#### 人脸识别流程





#### 人脸识别的影响因素



#### 线性回归分类 LRC

▶线性回归分类(linear regression-based classification, LRC)

测试样本被表示为每一类训练样本的线性组合,而组合系数的求解归类为最小二乘问题,识别结果最小重构误差对应的类别。





#### 鲁棒主成分分析 RPCA



Nuclear norm  $||A||_* = \sum_i \sigma_i(A)$ .



#### 主要工作

- ❖融合线性回归和水平集方法,提出一个解决人脸识别中连续性遮挡问题的方法
- ❖提出一个基于稀疏误差特征提取的人脸识别方法,解决正面人脸识别中的光照以及 遮挡问题



# 2. 连续性遮挡下的人脸识别方法



# 本章解决的问题













#### 本章结构

- ❖问题的分析及动机
- ❖融合线性回归和CV模型的人脸识别方法
- \*实验及分析



#### 问题的分析

❖有助于处理遮挡问题的性质:

冗余性 利用LRC识别

局部性 去除遮挡区域,用"干净"像素识别

稀疏性 重新定义分类准则



#### 研究动机

#### ❖LRC 识别框架







#### ❖观察:

- (1) 测试人脸 = 该类人脸的本质成分 + 误差成分。
- (2) 误差图像反映了测试人脸和本质成分之间的差异。 该差异是稀疏的,反映在图像上是遮挡区域。

#### 研究动机





#### ❖结论:

在误差图像中,遮挡(太阳镜)之外的人脸区域得到了较好的抑制。因此,遮挡区域在误差图中得到了更为显著的呈现,更易于被确定出来。



#### 如何确定遮挡区域



原图



误差图

#### ❖ CV模型:

- (1) 提供光滑、连续、封闭的边缘检测结果;
- (2) 对弱边界有效;
- (3) 抑制噪声的影响。



#### 融合线性回归和CV模型的人脸识别方法

1: 估计误差图像

$$\hat{x}_i = (A_i^T A_i)^{-1} A_i^T y, \quad i = 1, 2, \dots, K.$$

$$e_i = y - A_i \hat{x}_i$$

2: 检测遮挡区域

$$\phi_{i} = \arg\min_{\phi_{i}, c_{1}, c_{2}} \{ \mu \int_{\Omega} \delta(\phi_{i}(x, y)) | \nabla \phi_{i}(x, y) | dxdy$$

$$+ \nu \int_{\Omega} H(\phi_{i}(x, y)) dxdy$$

$$+ \lambda_{1} \int_{\Omega} |e_{i} - c_{1}|^{2} H(\phi_{i}(x, y)) dxdy$$

$$+ \lambda_{2} \int_{\Omega} |e_{i} - c_{2}|^{2} (1 - H(\phi_{i}(x, y))) dxdy \}$$

3: 更新表示系数并分类

$$identity(y) = \arg\min_{i} \frac{\|y^* - A_i^* x_i\|_1}{|\{j|j \in \phi_i^-\}|^2}$$



#### 实验结果及分析

- ❖随机图像块遮挡识别
- ❖人脸五官遮挡识别
- ❖室外数据库的随机图像块遮挡识别
- ❖真实人脸遮挡识别
- ◆算法时间分析



#### 随机图像块遮挡识别

实验对象

Extended Yale B





#### 随机图像块遮挡识别



测试图像在不同仿真遮挡下的示例图像。遮挡比例: 10%~60%。

Extended Yale B数据库中子集1训练,对子集2进行仿真遮挡下的识别率

| Percent occluded          | 0%         | 10%        | 20%          | 30%          | 40%          | 50%          | 60%          |
|---------------------------|------------|------------|--------------|--------------|--------------|--------------|--------------|
| Eigenfaces+NN             | 89.91      | 94.30      | 91.01        | 87.28        | 67.76        | 52.41        | 31.36        |
| Fisherfaces+NN            | 100        | 100        | 99.56        | 81.80        | 68.86        | 53.73        | 28.51        |
| LNMF                      | 99.78      | 94.96      | 94.74        | 84.21        | 55.70        | 44.74        | 23.68        |
| SRC                       | 100        | 100        | 98.9         | 94.96        | 67.54        | 41.45        | 17.54        |
| LRC                       | 100        | 99.34      | 98.03        | 94.74        | 72.15        | 49.12        | 22.59        |
| Proposed method_ $\ell_2$ | 99.78      | 100        | 96.05        | 80.70        | 62.72        | 48.25        | 26.97        |
| Proposed method           | <b>100</b> | <b>100</b> | <b>99.56</b> | <b>94.73</b> | <b>79.16</b> | <b>60.31</b> | <b>39.69</b> |

#### 随机图像块遮挡识别

Extended Yale B数据库中子集1训练,对子集3进行仿真遮挡下的识别率(%)

| Percent occluded                   | 0%    | 10%   | 20%   | 30%   | 40%   | 50%   | 60%   |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Eigenfaces+NN                      | 37.58 | 65.27 | 63.96 | 52.09 | 39.12 | 30.99 | 18.46 |
| Fisherfaces+NN                     | 97.14 | 90.11 | 79.12 | 61.76 | 38.68 | 44.84 | 21.76 |
| LNMF                               | 100   | 80.00 | 75.82 | 59.56 | 42.86 | 28.35 | 16.92 |
| SRC                                | 100   | 98.02 | 95.38 | 76.04 | 45.27 | 27.25 | 15.38 |
| LRC                                | 100   | 98.02 | 94.73 | 76.70 | 52.09 | 32.53 | 16.48 |
| Proposed method $_{\mathscr{L}_2}$ | 100   | 96.70 | 91.21 | 81.10 | 67.03 | 48.13 | 26.37 |
| Proposed method                    | 99.78 | 99.56 | 96.48 | 90.33 | 79.12 | 63.74 | 41.98 |



## 人脸五官遮挡识别



人脸五官遮挡下的识别结果

| Occluded        | Nose  | Mouth | Eyes  |
|-----------------|-------|-------|-------|
| Eigenfaces+NN   | 84.65 | 54,17 | 66.45 |
| Fisherfaces+NN  | 92.76 | 74.78 | 91.45 |
| LNMF            | 87.06 | 60.53 | 64.91 |
| SRC             | 98.70 | 97.10 | 95.60 |
| LRC             | 95.18 | 70.39 | 75.44 |
| Proposed method | 100   | 100   | 100   |



#### 室外数据库的随机图像块遮挡识别



室外人脸数据库不同程度的仿真图像块遮挡实验对比(%)。

| Percent occluded   | 10%                     | 20%                     | 30%                     | 40%                     | 50%                     | 60%                     | 70%                     |
|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| LNMF<br>SRC<br>LRC | 96.97<br>98.48<br>92.42 | 91.67<br>96.97<br>84.09 | 71.97<br>81.82<br>66.67 | 55.30<br>64.39<br>53.79 | 36.36<br>60.61<br>44.70 | 21.21<br>32.58<br>25.00 | 14.39<br>19.70<br>15.91 |
| Proposed method    | 98.48                   | 98.48                   | 83.33                   | 68.18                   | 64.39                   | 43.18                   | 25.76                   |

#### 真实人脸遮挡识别

实验对象: AR

а



b





# 真实人脸遮挡识别

AR人脸数据库的遮挡人脸识别率(%)。

| Approach                      | Sunglasses | Scarf |
|-------------------------------|------------|-------|
| Eigenfaces+NN                 | 70.0       | 12.0  |
| Fisherfaces+NN                | 38.5       | 67.5  |
| ICA I+NN                      | 53.5       | 15.0  |
| LNMF                          | 33.5       | 24.0  |
| SRC                           | 87.0       | 59.5  |
| SRC (partitioned)             | 97.5       | 93.5  |
| LRC                           | 66.0       | 12.5  |
| LRC (partitioned)             | 93.5       | 73.0  |
| $LRC_{-\ell_1}$               | 73.0       | 9.5   |
| $LRC_{-\ell_1}$ (partitioned) | 98.0       | 73.5  |
| IGO-PCA                       | 99.0       | 96.5  |
| IGO-LDA                       | 99.0       | 95.0  |
| Proposed method               | 99.0       | 95.0  |

#### 算法时间分析

随机图像块遮挡识别的算法运行时间(s)

| Percent occluded | 10%          | 20%          | 30%          | 40%           | 50%           | 60%           |
|------------------|--------------|--------------|--------------|---------------|---------------|---------------|
| LRC<br>SRC       | 0.02<br>5.50 | 0.02<br>7.05 | 0.02<br>9.45 | 0.02<br>11.02 | 0.02<br>12.84 | 0.02<br>17.39 |
| Proposed method  | 12.65        | 12.52        | 12.47        | 12.45         | 12.45         | 12.48         |

#### AR数据库算法运行时间(s)

| Approach                           | Sunglasses    | Scarf         |
|------------------------------------|---------------|---------------|
| LRC_partitioned<br>SRC_partitioned | 3.25<br>32.79 | 3.28<br>35.02 |
| Proposed method                    | 24.22         | 24.10         |



#### 本章小结

- \*提出一个解决人脸识别中连续性遮挡问题的方法
- ❖核心思想:消除遮挡区域对分类的影响。
- 从误差图像中提取遮挡区域
- 利用水平集方法提取连续性边缘
- ❖优点:对遮挡鲁棒、不需要对人脸分块



# 3. 基于稀疏误差特征提取的人脸识别方法



#### 拟解决的问题

- ❖目前,大多研究工作往往只针对一种外部变化设计人脸识别算法,如克服光照变化的算法,以及针对遮挡变化的算法。
- ❖采集到的人脸图像会受到不同因素的影响,因此 这些方法具有一定的局限性。
- ❖针对该问题,本章试图给出一个既能克服光照变化,又能抑制遮挡影响的人脸识别算法。



#### 本章结构

- ❖研究动机及问题分析
- ❖基于稀疏误差特征提取的人脸识别方法
- 两个描述子
- > 两个识别协议
- > 参数选择
- \*实验结果及分析



研究数据 = 低秩成分 + 稀疏成分

Robust PCA



\*光照变化



b



С





#### ❖遮挡变化





#### ❖观察:

低秩成分——相似,不利于识别 误差成分——人脸因光照、表情或遮挡引起的变化

#### ❖猜想:

给定一幅测试图像,不同类别的人脸图像对应的稀疏误差图像是否不同?

利用这一特点进行后续的分类?







- (a) 测试图像;
- (b) 6个人的训练样本;
- (c) 测试样本在6类下的低秩图像;
- (d) 测试样本在6类下的稀疏误差图像。











- ❖两个描述子
- ❖稀疏度描述子:

$$D_{sparsity}(E) = Num(|E| \le \varepsilon)$$

 $D_{sparsity}$  计算的是矩阵中约等于零的元素个数。本文没有使用矩阵的 $l_0$ 范数,

而是将 0 松弛为一个非常小的正常数  $\varepsilon$ ,通过统计矩阵落在区间 $[-\varepsilon,\varepsilon]$ 内的元素

个数来刻画误差图像的稀疏性。注意到 $D_{sparsity}$ 越大,表示误差图像越稀疏。 $\iota$ 





归一化后的误差图像的稀疏度



❖平滑度描述子:

$$D_{smoothness}(E) = \sqrt{E_x^2 + E_y^2}$$

 $E_x$  和  $E_y$  分别表示误差图像 E 在 x 和 y 方向上的偏导数









(a)稀疏误差图像对应的的梯度幅值图像; (b)梯度幅值图像归一化后的平滑度 40



❖两个识别协议:

#### 比值的方法:

$$S_r(E) = \frac{D_{sparsity}(E)}{D_{smoothness}(E)}$$

#### 权重的方法:

$$S_w(E) = \alpha \cdot D_{sparsity}(E) + (1 - \alpha) \cdot \overline{D_{smoothness}(E)}$$



# 算法概述

输入: K类的训练样本构成矩阵  $D=[D_1,D_2,...,D_K]\in \mathbf{R}^{m\times n}$ ,测试样本  $y\in \mathbf{R}^m$ 。

a) 对于第 i 类(i = 1,2,...,K)的训练样本  $D_i$ ,形成矩阵  $D_i^*$  =  $[D_i,y]$ ,并执行 RPCA:

$$\min_{L_i, E_i} (\|L_i\|_* + \gamma \|E_i\|_1), \quad s.t. \ D_i^* = L_i + E_i + C_i +$$

得到测试样本 y 的误差图像: -

$$E_i^y \leftarrow E_i(:,end) \, \varphi$$

- b) 通过(5.1)和(5.2)式分别计算得到误差图像 $E_i^y$ 的稀疏度和平滑度。
- c) 通过比值或权重的方法计算上述两个描述子的组合: -

$$S(E_i^y) = \frac{D_{sparsity}(E_i^y)}{D_{smoothness}(E_i^y)}$$

(或者₄

$$S(E_i^y) = \alpha \cdot D_{\textit{sparsity}}(E_i^y) + (1-\alpha) \cdot D_{\textit{smoothness}}(E_i^y) \cdot P_{\textit{smoothness}}(E_i^y) \cdot P_{\textitsmoothness}(E_i^y) \cdot P_{\textitsmoothness}(E_i^y) \cdot P_{\textitsmoothness}(E_i^y) \cdot P_{\textit$$



输出: 测试样本 y 所属类别:  $identity(y) = \arg \max_{i} S(E_{i}^{y})$ .

# 实验结果及分析

- \*光照条件下的人脸识别
- ❖随机像素点破坏下的人脸识别
- ❖随机图像块遮挡下的人脸识别
- \*参数讨论
- ❖真实条件下的连续性遮挡人脸识别



# 光照条件下的人脸识别

表 5.1 使用子集 1 作为训练不同方法在 Extended Yale B 人脸库上的识别率(%)。

Table 5.1 Recognition results (%) of different methods on the Extended Yale B database when using Subset 1 as training samples.

| 测试子集                | 2     | 3     | 4     | 5     |
|---------------------|-------|-------|-------|-------|
| Eigenfaces+NN       | 89.91 | 37.58 | 5.32  | 3.08  |
| Fisherfaces+NN      | 100   | 97.14 | 38.59 | 5.74  |
| LRC                 | 100   | 100   | 88.59 | 43.13 |
| SRC                 | 100   | 100   | 67.87 | 17.51 |
| CRC-RLS             | 100   | 100   | 90.68 | 45.10 |
| Gradientfaces       | 100   | 100   | 89.73 | 83.33 |
| Our method weighted | 100   | 100   | 95.06 | 49.38 |
| Our method ratio    | 100   | 100   | 54.18 | 38.12 |

# 随机像素点破坏下的人脸识别



子集1训练,对子集2的一幅测试人脸随机像素点破坏

# 随机像素点破坏下的人脸识别



# 随机像素点破坏下的人脸识别



# 随机图像块遮挡下的人脸识别



子集1训练,对子集2的一幅测试人脸进行随机狒狒图像遮挡

# 随机图像块遮挡下的人脸识别

表 5.2 Extended Yale B 数据库中子集 1 训练,对子集 2 进行仿真遮挡下的识别率(%)。

Table 5.2 Recognition rate (%) on Subset 2 of Extended Yale B database under varying level of contiguous occlusion using Subset 1 as training sample.

| 遮挡比例                | 10%   | 20%   | 30%   | 40%   | 50%   | 60%   | 70%   |
|---------------------|-------|-------|-------|-------|-------|-------|-------|
| Eigenfaces+NN       | 94.30 | 91.01 | 87.28 | 67.76 | 52.41 | 31.36 | 28.51 |
| Fisherfaces+NN      | 100   | 99.56 | 81.80 | 45.61 | 53.73 | 28.51 | 14.25 |
| LNMF                | 94.56 | 94.74 | 84.21 | 55.70 | 44.74 | 23.68 | 14.47 |
| LRC                 | 99.34 | 98.03 | 94.74 | 72.15 | 49.12 | 22.59 | 8.55  |
| SRC                 | 100   | 98.90 | 94.96 | 67.54 | 41.45 | 17.54 | 11.40 |
| Our method weighted | 99.78 | 99.56 | 96.92 | 99.12 | 95.40 | 83.99 | 60.53 |
| Our method ratio    | 100   | 100   | 93.41 | 98.25 | 92.98 | 80.04 | 62.28 |

# 参数讨论



# 参数讨论





# 参数讨论



# 参数选择

 $\varepsilon$ 的合理取值范围在[0.002,0.005]之间,取值过大或过小会造成统计出的稀疏度 缺乏判别性,从而不利于分类。本章所有实验 $\varepsilon$ 固定取值为 $\varepsilon$ =0.003。

基于权重的方法中,参数 $\alpha$ 用来权衡稀疏度和平滑度的比重。

光照变化下,平滑度 $D_{smoothness}$  比稀疏度 $D_{sparsity}$  的权重大, $\alpha < 0.5$ 

随机像素点或遮挡破坏的情况下, $D_{sparsity}$ 具有较大的权重, $\alpha > 0.5$ 



# 真实条件下的连续性遮挡人脸识别

表 5.3 AR 人脸数据库真实遮挡下各算法的人脸识别率(%)。

Table 5.3 Recognition results (%) on the AR database with disguise occlusion.

| 算法                          | 太阳镜  | 围巾   |
|-----------------------------|------|------|
| Eigenfaces+NN               | 70.0 | 12.0 |
| Fisherfaces+NN              | 38.5 | 67.5 |
| ICA I+NN                    | 53.5 | 15.0 |
| LNMF                        | 64.0 | 6.5  |
| SRC                         | 87.0 | 59.5 |
| LRC                         | 66.0 | 12.5 |
| Our method weighted         | 94.0 | 40.0 |
| Our method ratio            | 93.0 | 15.5 |
| 分块识别                        |      |      |
| LRC                         | 93.5 | 73.0 |
| SRC                         | 94.0 | 88.5 |
| R-CRC                       | 92.0 | 94.5 |
| Our method weighted         | 94.5 | 95.0 |
| Our method <sub>ratio</sub> | 90.5 | 89.5 |



# 真实条件下的连续性遮挡人脸识别

表 5.4 AR 人脸数据库同时包含光照和遮挡下的各算法的人脸识别率(%)。

Table 5.4 Recognition results (%) on the AR database with both illumination and disguise occlusion.

| 算法                  | 太阳镜  | 围巾   |
|---------------------|------|------|
| LRC                 | 51.0 | 11.2 |
| SRC                 | 69.8 | 40.8 |
| R-CRC               | 65.8 | 73.2 |
| Our method weighted | 73.3 | 58.0 |
| Our method ratio    | 72.7 | 13.7 |



# 本章小结

❖提出一个基于稀疏误差特征提取的人脸识别方法, 解决正面人脸识别中的光照以及遮挡问题

- ❖核心思想: 提取稀疏误差图像中的判别性信息。
- > 由RPCA得到稀疏误差图像
- > 构建描述子:稀疏度、平滑度
- > 定义识别协议:比值、权重

❖优点:光照、遮挡条件下的人脸识别表现出色。



# 总结

- **❖**研究的方法
- ▶线性回归分类LRC、鲁棒PCA低秩分解
- >"误差图像"
- ❖解决的问题
- > 光照和遮挡



# 

