Power-efficient memory and caches

Jothini Sritharan

Green Computing

Introduction

Motivation

Power-consumption distribution in a SoC Design (Integrated Circuit)

Content

- Revision: Memory organization and caches
- Energy consumption concerning memory access
- Ideas of reducing power consumption
- Low power memory design

1. Memory organization and caches

Input:

→ address: location of memory which is accessed

→ control: indicates important data; signals kind of operation

Bidirectional bus:

→ data: depending on operation it serves as input or output

Read operation:

- 1. row address decoded
 - → activates word line
- 2. selection of a row of cells
 - transfer of data between cells and bit lines
- 3. column decoder chooses bits in right column and transfers them to data bus

Cache

- "Cache hit" → succesful finding of data
- "Cache missing":
 - → compulsory miss
 - → capacity miss
 - → conflict miss
- Cache miss ratio = $\frac{number\ of\ Cache\ misses}{number\ of\ Cache\ accesses}$

Cache architecture

Cache hit:

- tag matches to an element of tag array
- Index collects corresponding tag and cache line
- Offset chooses right data from selected line

2. Energy consumption concerning memory access

The following three main components basically determine the energy consumption:

1. address decoders and word lines

• 2. data array, sense amplifiers and the bit lines

• 3. the data and address buses leading to the memory

3. Ideas of reducing power consumption

3.1 Power-efficient memory Architectures

Partitioning memory and caches

➤ memory array is divided into several banks → shorter transferring path because of smaller bit lines

Additional memory

➤ a small extra cache, which stores recently used data, is searched first and may prevent browsing through the whole main cache

Reducing Tag and Data Array Fetches

- Reducing number of accesses by only searching the tags without data first
- Then picking only the data of the right tag

3.2 Clock-Gating

 By connecting the clock with a control signal by an AND Gatter, the capacitance is only charged and discharged when control is on TRUE

3.3 Cacheable switching activity

Recurring instructions are stored in a cache

→ calculation has to be done only once

- Example: For loops
 - → But only applicable when same input

4 Low power memory design

4.1 NOR-Flash-Memory

Fast random access since a transistor can be individually adressed due to the parallel circuit

Bit-by-bit-weak program

- ➤ Applying lower voltage than ordinary
- ➤ Offset of whole curve

→ Lower voltage is needed

4.2 Ferroelectric Random Access Memory (FeRAM)

- Selecting transistor
- Capacitor saves information in form of polarization
- Reading: another voltage impulse leads to either a change or a constancy in polarization

Two stable states at the voltage of 0V

- Readout-signal depends on used capacitance
 - → has a maximum

Summary

- Memory and caches are responsible for a large share of power-consumption
 - → necessity for power-efficient caches and memories

General solutions:

- Optimization of Cache architecture
- Additional memory with most recently used data
- Adaption of components like transistors and capacitances