Universität Würzburg Institut für Mathematik Lehrstuhl für Komplexe Analysis

Prof. Dr. Oliver Roth Annika Moucha

Einführung in die Funktionentheorie

6. Übungsblatt, Abgabe bis 27. Mai 2024 um 10 Uhr

Hausaufgaben

H6.1 Richtig oder falsch? (2+2)

Beweisen oder widerlegen Sie:

(a) Es sei $U \subseteq \mathbb{C}$ offen, $f \in \mathcal{H}(U)$ und Δ ein Dreieck mit $\partial \Delta \subseteq U$. Dann gilt

$$\int_{\partial \Delta} f(z) \, dz = 0.$$

(b) Die Funktion

$$f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \quad f(z) = \frac{e^z - 1}{z}$$

besitzt eine holomorphe Stammfunktion auf \mathbb{C} .

H6.2 Eine injektive Funktion (4)

Es seien $a_2, a_3, \dots \in \mathbb{C}$ und es gelte

$$\sum_{n=2}^{\infty} n|a_n| < 1. \tag{*}$$

Wir betrachten die Funktion

$$f: \mathbb{D} \to \mathbb{C}, \quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

Beweisen Sie, dass f injektiv auf \mathbb{D} ist.

Hinweis: Versuchen Sie ein geeignetes Wegintegral zu betrachten.