1 Aufnahme eines Frequenzspektrums

1.1 Versuchsbeschreibung

Bei Grundschwingungen (1. Harmonische) befinden sich die Knoten an den Saiten-Enden. Neben der Grundschwingung bilden sich aber auch weitere sogenannte Oberschwingungen aus, die an den Enden ebenfalls Knoten bilden. Für die Wellenlängen dieser so genannten n-ten Harmonischen gilt:

$$\lambda_n = \frac{2L}{n} \tag{1}$$

Für n=1 ergibt sich die Grundschwingung für n=2 die 1. Oberschwingung für n=3 die 2. Oberschwingung und so weiter.

Abbildung 1: Stehende Welle und deren Harmonische bis n = 5.

Schlägt man die Saite im Abstand $d = \frac{L}{n}$ an, fehlen die n-te Harmonische und ihre Vielfachen, da sich dort kein Knoten bilden kann.

In diesem Versuch sollte das Frequenzspektrum der D-Saite einer Gitarre, die an verhiedenen Abständen angeschlagen wurde auf das oben beschriebene Verhalten untersucht werden.

1.2 Versuchsaufbau und Durchführung

Der Aufbau ist derselbe wie in den anderen Versuchen zur Gitarre.

Tabelle 1: Messparameter für Aufnahme des Frequenzspektrums der D-Saite.

Parameter	Einstellungen
Messintervall	$100~\mu s$
Anzahl Messwerte	16000
Messdauer	1.6s
Trigger	0.3V

Als Erstes wurde die D-Saite in der Mitte angeschlagen.

Abbildung 2: Grundfrequenz von 147,03 Hz ist deutlich erkennbar. Nur jede zweite Schwingung ist ausgeprägt.

Zum Vergleich wurde die Saite sehr weit oben angeschlagen.

Abbildung 3: Die Amplituden fallen bis zur 6. Harmonischen stetig ab.

1.3 Fazit

Wie in den gezeigten Abbildungen zu sehen ist, konnten wir die Theorie bestätigen.