

Model Order Reduction of Rarefied Gases Using Neural Networks

Zachary Schellin | Institut für Numerische Fluiddynamik

Outline

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Table of Contents

Introduction

The BGK-Mode

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Table of Contents

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Boltzmann equation with the BGK operator

transport
$$\frac{\partial_t f + v \partial_x f}{\partial_t f} = \frac{\text{collisions}}{\frac{1}{\tau} (M_t - f)}$$
(1)

1

¹PhysRev.94.511.

Boltzmann equation with the BGK operator

Equilibrium solution: Maxwellian distribution M_f

$$\frac{\text{transport}}{\partial_t f + v \partial_x f} = \frac{\text{collisions}}{\frac{1}{\tau} (M_f - f)}$$

(1)
$$M_t = \frac{\rho(x,t)}{(2\pi RT(x,t))^{\frac{3}{2}}} \exp(-\frac{(v-u(x,t))^2}{2RT(x,t)}) \quad (2)$$

¹PhysRev.94.511.

Model Order Reduction of Rarefied Gases Using Neural Networks | Zachary Schellin

Boltzmann equation with the BGK operator

transport
$$\frac{\partial_t f + v \partial_x f}{\partial_t f + v \partial_x f} = \frac{\text{collisions}}{\frac{1}{\tau} (M_f - f)}$$

Equilibrium solution: Maxwellian distribution Mf

transport
$$\frac{\partial_t f + v \partial_x f}{\partial_t f + v \partial_x f} = \frac{\text{collisions}}{\frac{1}{\tau} (M_t - f)}$$

$$(1) \qquad M_t = \frac{\rho(x, t)}{(2\pi RT(x, t))^{\frac{3}{2}}} \exp(-\frac{(v - u(x, t))^2}{2RT(x, t)})$$

$$(2)$$

Duration to evolve into equilibrium: relaxation

time T

$$\tau^{-1} = \frac{\rho(x, t) T^{1-\nu}(x, t)}{Kn}$$
 (3)

1

¹PhysRev.94.511.

Boltzmann equation with the BGK operator

transport
$$\frac{\partial_t f + v \partial_x f}{\partial_t f} = \frac{\text{collisions}}{\frac{1}{\tau} (M_f - f)}$$

Equilibrium solution: Maxwellian distribution M_f

transport
$$\frac{\partial_t f + v \partial_x f}{\partial t} = \frac{\frac{1}{\tau} (M_f - f)}{(2\pi RT(x, t))^{\frac{3}{2}}} \exp(-\frac{(v - u(x, t))^2}{2RT(x, t)}) \quad (2)$$

Duration to evolve into equilibrium: relaxation time 7

$$\tau^{-1} = \frac{\rho(x, t) T^{1-\nu}(x, t)}{Kn}$$
 (3)

Rarefaction level: Knudsen number Kn

$$Kn = \frac{\lambda}{l}$$
 (4)

1

¹PhysRev.94.511.

Berlin

Knudsen number

Figure: Partitioning of *Kn* into levels of rarefaction.

2

²Julian Koellermeier et al. "Moment Models for Kinetic Equations". NUMA seminar, KU Leuven. 2020. URL: https://wms.cs.kuleuven.be/groups/NUMA/events.

Knudsen number

Figure: Partitioning of Kn into levels of rarefaction.

2

- Solution is f(x, v, t) in 1D and $f(x, y, v_x, v_y, t)$ in 2D and $f(x, y, z, v_x, v_y, v_z, t)$ in 3D

²Julian Koellermeier et al. "Moment Models for Kinetic Equations". NUMA seminar, KU Leuven. 2020. URL: https://wms.cs.kuleuven.be/groups/NUMA/events.

- Space and time discretization: $x_j = j\Delta x$ and $j \in \mathbb{Z}$, $v_k = k\Delta v$ and $k \in \mathbb{Z}$, $t^i = i\Delta t$ and $t \in \mathbb{N}$,

- Space and time discretization: $x_j = j\Delta x$ and $j \in \mathbb{Z}$, $v_k = k\Delta v$ and $k \in \mathbb{Z}$, $t^i = i\Delta t$ and $t \in \mathbb{N}$,
- Leads to: set of ODE's in time

$$\partial_t f_{j,k} = -(v_k)_1 D_x f|_{j,k}(t) + \frac{1}{\tau} (M_{f_{j,k}}(t) - f_{j,k}(t)).$$
 (5)

- Space and time discretization: $x_j = j\Delta x$ and $j \in \mathbb{Z}$, $v_k = k\Delta v$ and $k \in \mathbb{Z}$, $t^i = i\Delta t$ and $t \in \mathbb{N}$,
- Leads to: set of ODE's in time

$$\partial_t f_{j,k} = -(v_k)_1 D_x f|_{j,k}(t) + \frac{1}{\tau} (M_{f_{j,k}}(t) - f_{j,k}(t)). \tag{5}$$

- KJ first-order differential equations:

K gridpoints in space & J number of gridpoints in velocity space

- Space and time discretization: $x_j = j\Delta x$ and $j \in \mathbb{Z}$, $v_k = k\Delta v$ and $k \in \mathbb{Z}$, $t^i = i\Delta t$ and $t \in \mathbb{N}$,
- Leads to: set of ODE's in time

$$\partial_t f_{j,k} = -(v_k)_1 D_x f|_{j,k}(t) + \frac{1}{\tau} (M_{f_{j,k}}(t) - f_{j,k}(t)).$$
 (5)

- KJ first-order differential equations:

K gridpoints in space & J number of gridpoints in velocity space

- 3D:

 K^3J^3 first-order differential equations

- Space and time discretization: $x_j = j\Delta x$ and $j \in \mathbb{Z}$, $v_k = k\Delta v$ and $k \in \mathbb{Z}$, $t^i = i\Delta t$ and $t \in \mathbb{N}$,
- Leads to: set of ODE's in time

$$\partial_t f_{j,k} = -(v_k)_1 D_x f|_{j,k}(t) + \frac{1}{\tau} (M_{f_{j,k}}(t) - f_{j,k}(t)).$$
 (5)

- KJ first-order differential equations:

K gridpoints in space & J number of gridpoints in velocity space

- 3D:
 - K^3J^3 first-order differential equations
- Evaluation requires: the moments of f.

Question: How do we get the moments of *f*?

Figure: Illustration of the linkage between f and the moments of f.

Question: How do we get the moments of *f*?

- Collision invariants $\Phi(v) = [1, v, \frac{1}{2}v^2]$

Figure: Illustration of the linkage between *f* and the moments of *f*.

Question: How do we get the moments of *f*?

- Collision invariants $\Phi(v) = [1, v, \frac{1}{2}v^2]$
- The first moment/ Density is

$$\rho(x,t) = \int f \, \mathrm{d}v \,, \tag{6}$$

Figure: Illustration of the linkage between f and the moments of f.

Question: How do we get the moments of f?

- Collision invariants $\Phi(v) = [1, v, \frac{1}{2}v^2]$
- The first moment/ Density is

$$\rho(x,t) = \int f \, \mathrm{d}v \,, \tag{6}$$

- the second moment/ Momentum is

$$\rho(x,t)u(x,t) = \int vf \, dv \,, \tag{7}$$

Figure: Illustration of the linkage between f and the moments of f.

Question: How do we get the moments of f?

- Collision invariants $\Phi(v) = [1, v, \frac{1}{2}v^2]$
- The first moment/ Density is

$$\rho(x,t) = \int f \, \mathrm{d}v \,, \tag{6}$$

- the second moment/ Momentum is

$$\rho(x,t)u(x,t)=\int vf\,\mathrm{d}v\,,\qquad (7)$$

(8)

- the third moment/ Energy is

$$E(x, t) = \int \frac{1}{2} v^2 f \, \mathrm{d}v.$$

Figure: Illustration of the linkage between *f* and the moments of *f*.

Table of Contents

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t = 0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t = 0s

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t > 0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t > 0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities
 - » x₁ head of rarefaction wave
 - x₂ tail of rarefaction wave

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t>0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities
 - » **x**₁ head of rarefaction wave
 - **x**₂ tail of rarefaction wave
 - x₃ contact discontinuity

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t > 0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities
 - » **x**₁ head of rarefaction wave
 - » **x**₂ tail of rarefaction wave
 - x₃ contact discontinuity
 - **x**₄ position of shockwave

Two solutions of the BGK model in Sod's shock tube

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, *Kn* = 0.00001, "Continuum Flow"
 - **R**, Kn = 0.001, "Slip flow"

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, Kn = 0.00001, "Continuum Flow"
 - **R**, Kn = 0.001, "Slip flow"
- Pronounced discontinuities

<u>H</u>	R
• X ₁	• X ₁
• X ₂	• <i>x</i> ₂
• X ₃	• <i>x</i> ₃
• X ₄	• X ₄

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, Kn = 0.00001, "Continuum Flow"
 - **R**, Kn = 0.001, "Slip flow"
- Pronounced discontinuities

Н	R	
• X ₁	• x ₁	
• X ₂	• x ₂	
• x ₃	• X ₃	
• X ₄	• X ₄	

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, Kn = 0.00001, "Continuum Flow"
 - **R**, Kn = 0.001, "Slip flow"
- Pronounced discontinuities

н	R
• X ₁	• X ₁
• X ₂	• X ₂
• X ₃	• X ₃
• X ₄	• X ₄

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, Kn = 0.00001, "Continuum Flow"
 - **R**, Kn = 0.001, "Slip flow"
- Pronounced discontinuities

н	R
• X ₁	• x ₁
• X ₂	• x ₂
• X ₃	• X ₃
• X ₄	• X ₄

- Spatial resolution J = 200

- Velocious resolution K = 40

- Temporal resolution I = 25

Figure: Solution f top row for **H** and bottom row fro **R** in x and v.

Table of Contents

Introduction

The BGK-Mode

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Model Order Reduction

Goal: Reduce computational cost

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the ROM.

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM.

- Goal: Reduce computational cost

• f(x, v, t) with KJ ODE's in time for 1D

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm

 $\frac{\text{input } t}{\text{odd} q} = Q(q, t)$ output \tilde{f}

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the ROM.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- Reduce: POD(f(x, v, t)) = q(x, n, t)

Figure: In the online phase the operator *Q* is different for the FOM and the BOM

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - P is # n with P << K

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - P is # n with P << K
 - KJ ODE's vs. PJ ODE's

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - *P* is # n with *P* << *K*
 - KJ ODE's vs. PJ ODE's
- Evolve in time: $\rightarrow Q(q, t) = \tilde{t}$

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - *P* is # n with *P* << *K*
 - KJ ODE's vs. PJ ODE's
- Evolve in time: $\rightarrow Q(q, t) = \tilde{t}$
- Evaluate mistake: $f \tilde{f} < \epsilon$

Table of Contents

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Appendix

- Solution of a PDE is f(x, v, t) can be obtained

- Solution of a PDE is f(x, v, t) can be obtained
 - Discretization into a system of ODE's

- Solution of a PDE is f(x, v, t) can be obtained
 - · Discretization into a system of ODE's
 - Separation of variables ansatz

- Solution of a PDE is f(x, v, t) can be obtained
 - · Discretization into a system of ODE's
 - · Separation of variables ansatz

»
$$f(t, v, x) = \sum_{i=1}^{n} a_i(t) \Phi_i(x, v)$$
 (9)

– How to get Φ_i ?

- How to get Φ_i ?
 - **Preprocessing**: Separating the spatial and temporal axis of the solution f(x, v, t)

- How to get Φ_i ?
 - **Preprocessing**: Seperating the spatial and temporal axis of the solution f(x, v, t)

• Sigular Value Decomposition:
$$X = \begin{bmatrix} LSV & SV & RSV \\ U & \Sigma & V^* \end{bmatrix}$$
 (9)

• Truncation:
$$\tilde{X} = \begin{bmatrix} \tilde{U} \\ \tilde{U} \end{bmatrix} \tilde{\Sigma} \tilde{V}^* (10), \qquad \tilde{U} = \Phi = [\Phi_1, \Phi_2, \dots, \Phi_\rho] (11)$$

- How to get Φ_i ?
 - **Preprocessing**: Seperating the spatial and temporal axis of the solution f(x, v, t)

• Sigular Value Decomposition:
$$X = \begin{bmatrix} LSV & SV \\ U & \Sigma \end{bmatrix}$$

• Truncation:
$$\tilde{X} = \frac{\tilde{U}}{\tilde{U}} \tilde{\Sigma} \tilde{V}^*$$
 (10),

$$\tilde{X} = \tilde{U} \quad \tilde{\Sigma} \tilde{V}^*$$
 (10), $\tilde{U} = \Phi = [\Phi_1, \Phi_2, \dots, \Phi_{\rho}]$ (11)

(9)

• Eckard-Young Theorem:

$$\underset{\tilde{X}.s.t.capk(\tilde{X})=p}{\operatorname{argmin}} \|X - \tilde{X}\|_{F} = \tilde{U}\tilde{\Sigma}\tilde{V}^{*}$$
(12)

Table of Contents

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Appendix

Figure: Example of a simple network.

- Network with three layers

Figure: Example of a simple network.

- Network with three layers
 - Input layer
 - Hidden layer
 - Output layer

Figure: Example of a simple network.

- Network with three layers
 - Input layer
 - Hidden layer
 - Output layer

Layer: Stage of computation

Figure: Example of a simple network.

- Layer: Stage of computation
- Computations/ Forward pass

•
$$g(x) = g(xW + b) = z$$

$$\bullet \quad h(z) = h(zW + b) = y$$

$$\ \ ^{\ast }h(g(x))=y$$

- Network with three layers
 - Input layer
 - Hidden layer
 - Output layer

Figure: Example of a simple network.

- Network with three layers
 - Input layer
 - Hidden layer
 - Output layer

- Layer: Stage of computation
- Computations/ Forward pass

•
$$g(x) = g(xW + b) = z$$

$$\bullet \quad h(z) = h(zW + b) = y$$

$$h(g(x)) = y$$

- **Neuron**: Entry in 'Tensor'

Figure: Example of a simple network.

- Network with three layers
 - Input layer
 - Hidden layer
 - Output layer

- Layer: Stage of computation
- Computations/ Forward pass

•
$$g(x) = g(xW + b) = z$$

$$\bullet \quad h(z) = h(zW + b) = y$$

$$h(g(x)) = y$$

- Neuron: Entry in 'Tensor'
- Trainable parameters: W, b

Autoencoders

Figure: A fully connected autoencoder.

Autoencoders

Figure: A fully connected autoencoder.

- Structure: Encoder & Decoder
- Layers: Input-, Output- and Code layer

- Category: Self-supervised learning
- Main hyperparameters:
 Number & size of hidden layers
 esp. size of code layer

Figure: A very simple network

– Forward propagation:

$$\tilde{y} = h(z, b) = h((g(y, a)), b)$$
 (13)

Figure: A very simple network

– Forward propagation:

$$\tilde{y} = h(z, b) = h((g(y, a)), b)$$
 (13)

- Loss function:

$$L(y, \tilde{y}) = \frac{1}{2}(y - \tilde{y})^2 = E$$
 (14)

Figure: A very simple network

Forward propagation:

$$\tilde{y} = h(z, b) = h((g(y, a)), b)$$
 (13)

- Loss function:

$$L(y, \tilde{y}) = \frac{1}{2}(y - \tilde{y})^2 = E$$
 (14)

Backpropagation:

Figure: A very simple network

- Forward propagation:

$$\tilde{y} = h(z, b) = h((g(y, a)), b)$$
 (13)

- Loss function:

$$L(y, \tilde{y}) = \frac{1}{2}(y - \tilde{y})^2 = E$$
 (14)

- Backpropagation:

•
$$\frac{\partial E}{\partial a} = -(y - \tilde{y}) \frac{\partial y}{\partial z} \frac{\partial z}{\partial a}$$
 (15)
• $\frac{\partial E}{\partial b} = -(y - \tilde{y}) \frac{\partial y}{\partial b}$ (16)

•
$$\frac{\partial E}{\partial b} = -(y - \tilde{y})\frac{\partial y}{\partial b}$$
 (16)

Figure: A very simple network

Forward propagation:

$$\tilde{y} = h(z, b) = h((g(y, a)), b)$$
 (13)

- Loss function:

$$L(y, \tilde{y}) = \frac{1}{2}(y - \tilde{y})^2 = E$$
 (14)

- Backpropagation:

•
$$\frac{\partial E}{\partial a} = -(y - \tilde{y}) \frac{\partial y}{\partial z} \frac{\partial z}{\partial a}$$
 (15)

•
$$\frac{\partial \tilde{E}}{\partial b} = -(y - \tilde{y})\frac{\partial \tilde{y}}{\partial b}$$
 (16)

- Optimize:

•
$$a_{i+1} = a_i + \epsilon \frac{\partial E}{\partial a_i}$$
 (17)

•
$$a_{i+1} = a_i + \epsilon \frac{\partial E}{\partial a_i}$$
 (17)
• $b_{i+1} = b_i + \epsilon \frac{\partial E}{\partial b_i}$ (18)

Figure: A very simple network

Forward propagation:

$$\tilde{y} = h(z, b) = h((g(y, a)), b)$$
 (13)

- Loss function:

$$L(y, \tilde{y}) = \frac{1}{2}(y - \tilde{y})^2 = E$$
 (14)

- Backpropagation:

•
$$\frac{\partial E}{\partial a} = -(y - \tilde{y}) \frac{\partial y}{\partial z} \frac{\partial z}{\partial a}$$
 (15)
• $\frac{\partial E}{\partial b} = -(y - \tilde{y}) \frac{\partial y}{\partial b}$ (16)

•
$$a_{i+1} = a_i + \epsilon \frac{\partial E}{\partial a_i}$$
 (17)

•
$$b_{i+1} = b_i + \epsilon \frac{\partial E}{\partial b_i}$$
 (18)

- **Hyperparameter**: learning rate ϵ

Concepts

Figure: Influence of capacity

- Over- and Underfitting:

Concepts

Figure: Influence of capacity

- Over- and Underfitting:
 - Goal: Reach optimal capacity

Concepts

Figure: Influence of capacity

- Over- and Underfitting:
 - Goal: Reach optimal capacity
- How to direct capacity ?:

Figure: Influence of capacity

- Over- and Underfitting:
 - Goal: Reach optimal capacity
- How to direct capacity ?:
 - · Size of the network

Figure: Influence of capacity

- Over- and Underfitting:
 - Goal: Reach optimal capacity
- How to direct capacity ?:
 - · Size of the network
 - · Activation functions

Figure: Influence of capacity

- Over- and Underfitting:
 - Goal: Reach optimal capacity
- How to direct capacity ?:
 - · Size of the network
 - · Activation functions
 - Loss function

Figure: Influence of capacity

- Over- and Underfitting:
 - Goal: Reach optimal capacity
- How to direct capacity ?:
 - · Size of the network
 - · Activation functions
 - · Loss function
 - Data distortion/ add variation to existing data

Figure: Influence of capacity

- Over- and Underfitting:

Goal: Reach optimal capacity

- How to direct capacity ?:

- · Size of the network
- Activation functions
- · Loss function
- Data distortion/ add variation to existing data
- ..
- · Any other means of regularization

Figure: Influence of capacity

– Over- and Underfitting:

Goal: Reach optimal capacity

- How to direct capacity ?:

- · Size of the network
- · Activation functions
- Loss function
- Data distortion/ add variation to existing data
- ..
- · Any other means of regularization

- Initialization

Table of Contents

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Appendix

Number of intrinsic variables

Figure: Variation of p for H left and R right.

- Evaluation metric:

$$L_2\text{-Error} = \frac{||f - \tilde{f}||_2}{||f||_2}$$
 (19)

Amount of parameters

Table: Amount of parameters used to reconstruct f, the number of intrinsic variables p and the corresponding L_2 -Error for POD, the FCNNs, and the CNN.

Algorithm	Parameters		Int. v	ariables <i>p</i>	Ł2-error	
	Н	R	Н	R	Н	R
POD	15129	25225	3	5	0.0205	0.0087
FCNN	2683	3725	3	5	0.0008	0.0009
CNN	8246	8246	5	5	0.025	0.027

Time dependece of L_2 -Error

- POD:

- **H** lin. increase of L₂
- R increase & stagnation of L₂

- FCNN:

- H & R no distinct time dependence L₂
- biggest value at onset

- CNN:

H & R - similar evolution

Figure: Comparison of the L_2 -Error over time, **H** top and **R** bottom.

A detailed look at reconstructions

Figure: Comparision of f and \tilde{f} at $t = t_{end}$ and $x \in [0.375, 0.75]$, **H** top and **R** bottom.

Moments of f and \tilde{f}

Figure: Moments of f and \tilde{f} at $t = t_{end}$, **H** top and **R** bottom.

- POD:

- H undercuts shockwave in ρ, ρu and E
 ++ - ρu exceeds tail of
- rarefaction wave
 R only small deviations at shockwave for ρu and E
- FCNN:
 - R severe deviation at transition: tail of rarefaction wave → shockfront
- CNN:
 - R is copy of H

Physical consistency

- POD:

- H & R mass & + mass
 H & R +++ momentum
 H & R energy
- FCNN:
 - H & R mass
 - H & R momentum
 - + momentum
 - H & R energy
- CNN:
 - No conservation

Figure: Conservation properties of f and \tilde{f} , \mathbf{H} top and \mathbf{R} bottom.

Interpretabiliy

- 1:

• E: 0.98 & ρ: 0.97

- 2:

• u: $-0.75 \& \rho$: 0.71

- 3:

ρu: 0.69 & T: −0.54

Figure: Pearson correlation between of macroscopic quantities and intrinsic variables for **H**

Interpretabiliy

Figure: Pearson correlation between of macroscopic quantities and intrinsic variables for **R**

•
$$u$$
: $-0.92 \& \rho u$: -0.85

•
$$\rho$$
: $-0.8 \& E$: -0.74

L2-error

Interpolation

 Δt^*

х

Table: Validation and metric results for the interpolation task with 13, 9, 7 and 5 time steps.

L2-error

х

Validation error

х

				-		2	
		н*	R*	н*	R*	Ĥ*	Ř*
13	0.01s	2.5×10^{-8}	2.9×10^{-7}	0.0018	0.0054	0.0036	0.0058
9	0.015s	2.9×10^{-8}	9.5×10^{-8}	0.0017	0.0038	0.0067	0.0056
7	0.02s	2.5×10^{-8}	1.6×10^{-7}	0.0019	0.0042	0.0101	0.0073
5	0.025s	1.7×10^{-7}	1.6×10^{-7}	0.0039	0.0051	0.0367	0.0138
0.4 - U	pred. truth	0.4	pred. -+- truth	0.4	pred. truth	0.4 -	pred. truth
0.4 - W	pred.	0.4 –	pred.	0.4 — ш	—— pred. – +- truth	0.4 –	→ pred. +- truth

Figure: Energy after interpolation using the FCNN trained on 13,9,7 and 5 time steps, H top and R bottom.

х

Ш 0

Table of Contents

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Appendix

Bibliography

.

Koellermeier, Julian et al. "Moment Models for Kinetic Equations". NUMA seminar, KU Leuven. 2020. URL: https://wms.cs.kuleuven.be/groups/NUMA/events.

Table of Contents

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Discussion

Appendix

Designed for 2D/3D input

(a) Encoder of a convolutional autoencoder without input layer.

Designed for 2D/3D input

(a) Encoder of a convolutional autoencoder without input layer.

(b) Convolutional operation, 1 strided.

Designed for 2D/3D input

(a) Encoder of a convolutional autoencoder without input layer.

(b) Convolutional operation, 2 strided.

Designed for 2D/3D input

(a) Encoder of a convolutional autoencoder without input layer.

(b) Even deconvolution

Designed for 2D/3D input

(a) Encoder of a convolutional autoencoder without input layer.

(b) Uneven deconvolution

(a) Encoder of a convolutional autoencoder without input layer.

(b) Uneven deconvolution

- Designed for 2D/3D input
- Peculiarities: Sparse connections, parameter sharing
 - Promotes generalization

(a) Encoder of a convolutional autoencoder without input layer.

(b) Uneven deconvolution

- Designed for 2D/3D input
- Peculiarities: Sparse connections, parameter sharing
 - Promotes generalization
- Hyperparameters: Number & size of layers, kernel dimensions, stride increments

(a) Encoder of a convolutional autoencoder without input layer.

(b) Uneven deconvolution

- Designed for 2D/3D input
- Peculiarities: Sparse connections, parameter sharing
 - Promotes generalization
- Hyperparameters: Number & size of layers, kernel dimensions, stride increments
 - Non-trivial influence of output dimensions & quality

