

# QUÍMICA

### A Ciência Central 9<sup>a</sup> Edição

# Capítulo 4 Reações em soluções aquosas e estequiometria de soluções

**David P. White** 



#### Propriedades eletrolíticas

- As soluções aquosas em água têm o potencial de conduzir eletricidade.
- A habilidade da solução em ser um bom condutor depende do número do seu número de íons.
- Há três tipos de solução:
  - eletrólitos fortes,
  - eletrólitos fracos e
  - não-eletrólitos.





#### Propriedades eletrolíticas







#### Compostos iônicos em água

- Os íons se dissociam em água.
- Em solução, cada íon é rodeado por moléculas de água.
- O transporte de íons através da solução provoca o fluxo de corrente.





#### Compostos moleculares em água

- Compostos moleculares em água, por exemplo, o CH<sub>3</sub>OH, não formam íons.
- Se não existem íons em solução, não existe nada para transportar a carga elétrica.



#### Eletrólitos fortes e fracos

• Eletrólitos fortes: dissociam-se completamente em solução. Por exemplo:

$$HCl(aq) \longrightarrow H^+(aq) + Cl^-(aq)$$

- Eletrólitos fracos: produzem uma pequena concentração de íons quando se dissociam.
- Esses íons existem em *equilíbrio* com a substância não-ionizada. Por exemplo:

$$HC_2H_3O_2(aq)$$
  $\longrightarrow$   $H^+(aq) + C_2H_3O_2^-(aq)$ 



• Quando duas soluções são misturadas e um sólido é formado, o sólido é chamado de um *precipitado*.





| TABELA 4.1 Regras de solubilidade | em água para compo                       | ostos iônicos comuns                                                                               |  |  |
|-----------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| Compostos iônicos solúveis        |                                          | Exceções importantes                                                                               |  |  |
| Compostos contendo                | NO <sub>3</sub>                          | Nenhuma                                                                                            |  |  |
|                                   | $\mathbf{C_2}\mathbf{H_3}\mathbf{O_2}^-$ | Nenhuma                                                                                            |  |  |
|                                   | Cl⁻                                      | Compostos de $Ag^+$ , $Hg_2^{2+}$ e $Pb^{2+}$                                                      |  |  |
|                                   | $\mathbf{Br}^-$                          | Compostos de $Ag^+$ , $Hg_2^{2+}$ e $Pb^{2+}$                                                      |  |  |
|                                   | Γ                                        | Compostos de $Ag^+$ , $Hg_2^{2+}$ e $Pb^{2+}$                                                      |  |  |
|                                   | SO <sub>4</sub> <sup>2-</sup>            | Compostos de $Sr^{2+}$ , $Ba^{2+}$ , $Hg_2^{2+}$ e $Pb^{2+}$                                       |  |  |
| Compostos iônicos insolúveis      |                                          | Exceções importantes                                                                               |  |  |
| Compostos contendo                | S <sup>2-</sup>                          | Compostos de $NH_4^+$ dos cátions de metais alcalinos e $Ca^{2+}$ , $Sr^{2+}$ e $Ba^{2+}$          |  |  |
|                                   | CO <sub>3</sub> <sup>2-</sup>            | Compostos de NH <sub>4</sub> <sup>+</sup> e dos cátions de metais alcalinos                        |  |  |
|                                   | <b>PO₄</b> ³⁻                            | Compostos de NH <sub>4</sub> <sup>+</sup> e dos cátions de metais alcalinos                        |  |  |
|                                   | OH <sup>-</sup>                          | Compostos dos cátions de metais alcalinos e Ca <sup>2+</sup> , Sr <sup>2+</sup> e Ba <sup>2+</sup> |  |  |



#### Reações de dupla troca (metáteses)

As reações de metátese envolvem a troca de íons em solução:

$$AX + BY \rightarrow AY + BX$$
.

- As reações de metátese levarão a uma alteração na solução se um dos três eventos abaixo acontecer:
  - forma-se um sólido insolúvel (precipitado),
  - formam-se eletrólitos fracos ou não-eletrólitos ou
  - forma-se um gás insolúvel.



#### Equações iônicas

- Equação iônica: utilizada para realçar a reação entre íons.
- Equação molecular: todas as espécies listadas como moléculas:

$$HCl(aq) + NaOH(aq) \rightarrow H_2O(l) + NaCl(aq)$$

• Equação iônica completa: lista *todos* os íons:

$$H^{+}(aq) + Cl^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(l) + Na^{+}(aq) + Cl^{-}(aq)$$

• Equação iônica simplificada: lista somente íons únicos:

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$$



#### Ácidos

- Dissociação = os íons pré-formados no sólido se separam em solução.
- Ionização = uma substância neutra forma íons em solução.
- Ácido = substâncias que se ionizam para formar H<sup>+</sup> em solução (por exemplo, HCl, HNO<sub>3</sub>, CH<sub>3</sub>CO<sub>2</sub>H, limão, lima, vitamina C).
- Ácidos com *um* próton ácido são chamados *mono*próticos (por exemplo, HCl).
- Ácidos com *dois* prótons ácidos são chamados *di*próticos (por exemplo, H<sub>2</sub>SO<sub>4</sub>).
- Ácidos com *muitos* prótons ácidos são chamados *poli*próticos.



#### **Bases**

• Bases = substâncias que reagem com os íons H<sup>+</sup> formados por ácidos (por exemplo, NH<sub>3</sub>, Drano<sup>TM</sup>, Leite de Magnésia<sup>TM</sup>).





#### Ácidos e bases fortes e fracos

- Ácidos e bases fortes são eletrólitos fortes.
  - Eles estão completamente ionizados em solução.
- Ácidos e bases fracas são eletrólitos fracos.
  - Eles estão parcialmente ionizados em solução.





#### Identificando eletrólitos fortes e fracos

- Iônico e solúvel em água = eletrólito forte (provavelmente).
- Solúvel em água e não-iônico, mas é um ácido (ou base) forte = eletrólito forte.
- Solúvel em água e não-iônico, e é um ácido ou uma base fraca = eletrólito fraco.
- Caso contrário, o composto é provavelmente um não-eletrólito.



#### Identificando eletrólitos fortes e fracos

| TABELA 4.3 | Resumo do comportamento eletrolítico de compostos iônicos solúveis e moleculares comuns |                    |                           |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------|--------------------|---------------------------|--|--|--|--|
|            | Eletrólito forte                                                                        | Eletrólito fraco   | Não-eletrólito            |  |  |  |  |
| Iônico     | Todos                                                                                   | Nenhum             | Nenhum                    |  |  |  |  |
| Molecular  | Ácidos fortes                                                                           | Ácidos fracos (H)  |                           |  |  |  |  |
|            | (ver Tabela 4.2)                                                                        | Bases fracas (NH3) | Todos os outros compostos |  |  |  |  |



#### Reações de neutralização e sais

• A neutralização ocorre quando uma solução de um ácido e a de uma base são misturadas:

$$HCl(aq) + NaOH(aq) \rightarrow H_2O(l) + NaCl(aq)$$

- Observe que formamos um sal (NaCl) e água.
- Sal = composto iônico cujo cátion vem de uma base e o ânion de um ácido.
- A neutralização entre um ácido e um hidróxido metálico produz água e um sal.

#### Reações ácido-base com formação de gás

• Os íons sulfeto e carbonato podem reagir com H<sup>+</sup> de uma maneira similar ao

OH-.

$$2\text{HCl}(aq) + \text{Na}_2\text{S}(aq) \rightarrow \text{H}_2\text{S}(g) + 2\text{NaCl}(aq)$$

$$2\text{H}^+(aq) + \text{S}^2\text{-}(aq) \rightarrow \text{H}_2\text{S}(g)$$

$$\text{HCl}(aq) + \text{NaHCO}_3(aq) \rightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l) + \text{CO}_2(g)$$

#### Oxidação e redução

 Quando um metal sofre corrosão, ele perde elétrons e forma cátions:

$$\operatorname{Ca}(s) + 2\operatorname{H}^+(aq) \to \operatorname{Ca}^{2+}(aq) + \operatorname{H}_2(g)$$

- Oxidado: o átomo, a molécula ou o íon torna-se mais carregado positivamente.
  - A oxidação é a perda de elétrons.
- Reduzido: o átomo, a molécula ou o íon torna-se menos carregado positivamente.
  - Redução é o ganho de elétrons.



#### Oxidação e redução







#### Oxidação e redução



Substância oxida (perde elétron) Substância reduz (ganha elétron)



#### Números de oxidação

- O número de oxidação para um íon: é a carga no íon.
- O número de oxidação para um átomo: é a carga hipotética que um átomo teria se fosse um íon.
- Os números de oxidação são determinados por uma série de regras:
  - 1. Se o átomo estiver em sua forma elementar, o número de oxidação é zero. Por exemplo, Cl<sub>2</sub>, H<sub>2</sub>, P<sub>4</sub>.
  - 2. Para um íon monoatômico, a carga no íon é o estado de oxidação.



#### Números de oxidação

- 1. Os não-metais *normalmente* têm números de oxidação negativos:
  - a) O número de oxidação do O geralmente é −2. O íon peróxido, O<sub>2</sub><sup>2-</sup>, tem oxigênio com um número de oxidação de −1.
  - b) O número de oxidação do H é +1 quando ligado a nãometais e -1 quando ligado a metais.
  - c) O número de oxidação do F é −1.
- 2. A soma dos números de oxidação para o átomo é a carga na molécula (zero para uma molécula neutra).

#### Oxidação de metais por ácidos e sais

- Os metais são oxidados por ácidos para formarem sais:  $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
- Durante a reação,  $2H^+(aq)$  é reduzido para  $H_2(g)$ .
- Os metais também podem ser oxidados por outros sais:  $Fe(s) + Ni^{2+}(aq) \rightarrow Fe^{2+}(aq) + Ni(s)$
- Observe que o Fe é oxidado para Fe<sup>2+</sup> e o Ni<sup>2+</sup> é reduzido para Ni.



#### Série de atividade

- Alguns metais são facilmente oxidados; outros, não.
- Série de atividade: é uma lista de metais organizados em ordem decrescente pela facilidade de oxidação.
- Quanto mais no topo da tabela estiver o metal, mais ativo ele é.
- Qualquer metal pode ser oxidado pelos íons dos elementos abaixo dele.







TABELA 4.5 Série de atividade de metais em solução aquosa

| Metal      | Reação de Oxidação |                   |                              |   |                 |              |  |
|------------|--------------------|-------------------|------------------------------|---|-----------------|--------------|--|
| Lítio      | Li(s)              | $\longrightarrow$ | Li <sup>+</sup> (aq)         | + | e <sup>-</sup>  |              |  |
| Potássio   | K(s)               | $\longrightarrow$ | $K^+(aq)$                    | + | $e^{-}$         |              |  |
| Bário      | Ba(s)              | $\longrightarrow$ | $Ba^{2+}(aq)$                | + | $2e^{-}$        |              |  |
| Cálcio     | Ca(s)              | $\longrightarrow$ | $Ca^{2+}(aq)$                | + | $2e^{-}$        |              |  |
| Sódio      | Na(s)              | $\longrightarrow$ | $Na^+(aq)$                   | + | $e^{-}$         |              |  |
| Magnésio   | Mg(s)              | $\longrightarrow$ | $\mathrm{Mg}^{2+}(aq)$       | + | $2e^{-}$        |              |  |
| Alumínio   | Al(s)              | $\longrightarrow$ | $\mathrm{Al}^{^{3+}}(aq)$    | + | 3e <sup>-</sup> | aumenta      |  |
| Manganês   | Mn(s)              | $\longrightarrow$ | $Mn^{2+}(aq)$                | + | $2e^{-}$        | l me         |  |
| Zinco      | Zn(s)              | $\longrightarrow$ | $Zn^{2+}(aq)$                | + | $2e^{-}$        |              |  |
| Cromo      | Cr(s)              | <b>→</b>          | $Cr^{3+}(aq)$                | + | 3e <sup>-</sup> | oxidação     |  |
| Ferro      | Fe(s)              | $\longrightarrow$ | $Fe^{2+}(aq)$                | + | $2e^{-}$        | ridê<br>     |  |
| Cobalto    | Co(s)              | $\longrightarrow$ | $Co^{2+}(aq)$                | + | $2e^{-}$        |              |  |
| Níquel     | Ni(s)              | $\longrightarrow$ | $Ni^{2+}(aq)$                | + | $2e^{-}$        | e de         |  |
| Estanho    | Sn(s)              | $\longrightarrow$ | $\operatorname{Sn}^{2+}(aq)$ | + | $2e^{-}$        | lad          |  |
| Chumbo     | Pb(s)              | $\longrightarrow$ | $Pb^{2+}(aq)$                | + | $2e^{-}$        | A facilidade |  |
| Hidrogênio | $H_2(g)$           | $\longrightarrow$ | $2H^+(aq)$                   | + | $2e^{-}$        | l fac        |  |
| Cobre      | Cu(s)              | $\longrightarrow$ | $Cu^{2+}(aq)$                | + | $2e^{-}$        |              |  |
| Prata      | Ag(s)              | $\longrightarrow$ | $Ag^+(aq)$                   | + | $e^{-}$         |              |  |
| Mercúrio   | Hg(l)              | $\longrightarrow$ | $Hg^{2+}(aq)$                | + | $2e^{-}$        |              |  |
| Platina    | Pt(s)              | $\longrightarrow$ | $Pt^{2+}(aq)$                | + | $2e^{-}$        |              |  |
| Ouro       | Au(s)              | $\longrightarrow$ | $Au^{3+}(aq)$                | + | $3e^{-}$        |              |  |



# Concentrações de soluções

#### **Molaridade**

- Solução = é o soluto dissolvido em solvente.
- Soluto: está presente em menor quantidade.
- A água como solvente = soluções aquosas.
- Altera-se a concentração utilizando-se diferentes quantidades de soluto e solvente.

Concentração em quantidade de matéria: Mols de soluto por litro de solução.

• Se soubermos a concentração em quantidade de matéria e o volume de solução, podemos calcular a quantidade de matéria (e a massa) do soluto.





# Concentrações de soluções

#### Concentração em quantidade de matéria

Concentração em quantidade de matéria =  $\frac{\text{quantidade de matéria de soluto}}{\text{volume de solução em litros}}$ 





- Existem dois tipos diferentes de unidades:
  - unidades de laboratório (unidades macroscópicas: medida em laboratório);
  - unidades químicas (unidades microscópicas: referem-se a mols).
- Sempre converta inicialmente as unidades de laboratório em unidades químicas.
  - Gramas são convertidos em mols utilizando-se a massa molar.
  - O volume ou a quantidade de matéria é convertido em mols utilizando-se c = mol/L.
- Utilize os coeficientes estequiométricos para mover entre reagentes e produto.







#### **Titulações**





#### **Titulações**

- Suponha que sabemos a concentração em quantidade de matéria de uma solução de NaOH e que queremos encontrar a concentração em quantidade de matéria de uma solução de HCl.
- Sabemos:
  - a concentração em quantidade de matéria de NaOH, o volume de HCl.
- O que queremos?
  - A concentração em quantidade de matéria de HCl.
- O que devemos fazer?
  - Tome um volume conhecido da solução de HCl, meça o volume em mL de NaOH necessário para reagir completamente com o HCl.



#### **Titulações**

- O que temos?
  - O volume de NaOH. Sabemos a concentração em quantidade de matéria do NaOH, então, podemos calcular a quantidade de matéria de NaOH.
- Qual o próximo passo?
  - Sabemos também que HCl + NaOH → NaCl + H<sub>2</sub>O.
     Portanto, sabemos a quantidade de matéria de HCl.
- Podemos finalizar?
  - Sabendo a quantidade de matéria (HCl) e o volume de HCl (acima de 20,0 mL), podemos calcular a concentração em quantidade de matéria.



# Fim do Capítulo 4: Reações em soluções aquosas e estequiometria de soluções