Prediction Model to Measure Crowdedness Within Amsterdam

Don de Lange

Problem Statement

- No method to predict city-wide crowdedness
- Crowdedness unevenly measured within the city

How can a prediction of the level of crowdedness within the city of Amsterdam be given, based on input from city-wide available data sources?

Data

Data

GVB Public transport data

	Sensor	Date	Hour	SensorLongitude	SensorLatitude	CrowdednessCount	
0	GAWW-02	2018-03-11	0	4.898903	52.373786	0	

Crowdedness data localized data gathering sources

	Date	Event	Latitude	Longtitude
0	2018-04-20	Springsnow Festival	52.372638	4.894106

Amsterdam Event Data

	Date	Hour	NieuwmarktCode	NieuwmarktLat	NieuwmarktLon	NieuwmarktArrivals
0	2018-04-01	0	NMT	52.371942	4.901239	31.0

Time

- Time made circular with sinus and cosine
 - Makes 23:00 close to 01:00

```
v["hour_sin"] = np.sin(2 * np.pi * v["Hour"] / 2400)
v["hour_cos"] = np.cos(2 * np.pi * v["Hour"] / 2400)
```

Models

Regression - Evaluation

R^2 Score: 0.42610179006098087

MSE: 474492.7948214673 RMSE: 688.8343740126993

R^2 Score: 0.49838245282978344

MSE Test: 414731.9294018637 RMSE Test: 643.9968395899655

R^2 Score: 0.5361123190873034 MSE Test: 383537.2865562742 RMSE Test: 619.3038725506843

Classification - Evaluation

Majority Class

Random Forest Classification

Accuracy Score	Score: 0.07314814814814814				Accuracy Score: 0.5525462962963				
17.3	precision	recall	f1-score	support	pr	recision	recall	f1-score	support
1	0.00	0.00	0.00	1429	1	0.54	0.87	0.67	1429
2	0.00	0.00	0.00	1716	2	0.75	0.36	0.49	1716
3	0.00	0.00	0.00	859	3	0.42	0.39	0.41	859
4	0.07	1.00	0.14	316	4	0.46	0.57	0.51	316
micro avg	0.07	0.07	0.07	4320	micro avg	0.55	0.55	0.55	4320
macro avg	0.02	0.25	0.03	4320	macro avg	0.54	0.55	0.52	4320
weighted avg	0.01	0.07	0.01	4320	weighted avg	0.60	0.55	0.53	4320

XGBoost

Accuracy	Score:	0.583333			
	pı	recision	recall	fl-score	support
	1	0.43	1.00	0.60	3
	2	0.50	0.75	0.60	4
	3	0.70	0.64	0.67	11
	4	1.00	0.17	0.29	6
micro	avg	0.58	0.58	0.58	24
macro	avg	0.66	0.64	0.54	24
weighted	avg	0.71	0.58	0.55	24

Euture

Future

- Increase Performance Models
- Add more data
- Add spatial dimension

Thank you for your time