מבוא לתורת הקבוצות - שיעור 7

2023 באוגוסט, 14

יונתן מגר

מספרים טבעיים

המטרה היא לבחור מייצגים לעוצמות ספציפיות (הנקראות מספרים טבעיים). ההגדרה היא רקורסיבית (משפט הרקורסיה -מוכיח באמצעות אינדוקציה שבתורה נובעת מהגדרת המספרים הטבעיים). נגדיר:

$$0 := \emptyset$$

$$1 := \{\emptyset\} = \{0\} = 0 \cup \{0\}$$

$$2 := \{\emptyset, \{\emptyset\}\} = \{0, 1\} = 1 \cup \{1\}$$

$$3 := \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} = \{0, 1, 2\} = 2 \cup \{2\}$$

$$\vdots$$

$$n + 1 := n \cup \{n\} = \{0, 1, 2, ..., n\}$$

אקסיומת האינסוף (או אקסיומת האינדוקציה)

 $.x \cup \{x\} \in X$ מתקיים $x \in X$ לכל וכן את המכילה המכילה קבוצה קיימת קיימת את

הגדרה (המספרים הטבעיים)

Xבחר בהתקיימת את האקסיומה. נגדיר את הטבעיים להיות הקבוצה המתקבלת מחיתוך כל הקבוצות המוכלות ב-Xהמקיימות את התנאי באקסיומה.

טענה

הגדרת הטבעיים אינה תלויה בבחירת הקבוצה המקורית X המקיימת את האקסיומה.

הוכחה

יחס סדר על הטבעיים

יחס סדר חלש (חזק) - יחס על קבוצה המקיים רפלקסיביות (רק לחלש), טרנזטיביות ואנטי-סימטרי חלש (חזק).

- . בדקו כי זהו יחס סדר אל (טרנזיטבי ואנטי-סימטרי חזק). $n \in m$ אם n < m אם n < m
- . בדקו כי זהו יחס סדר חלש. (n=m או n< m-שים שקול לכך עראה שזה שקו בהמשך (n=m אם בדקו כי זהו יחס סדר חלש. (n=m אם מתקיים (n=m אם מתקיים (n=m אם לכל n=m). נרצה להראות בהמשך יחס סדר חלש (חזק) יקרא מלא אם לכל על n=m מתקיים על n=m מתקיים שהגדרנו על הטבעיים הינם מלאים.

1

עקרון האינדוקציה

אז כל $P(x)\Rightarrow P(x\cup\{x\})$ ש ש- שרים, ומראים את הריקה הריקה והקבוצה איברי איברי של איברי איברי חדעה את את הריקה מקיימת את $P(x)\Rightarrow P(x\cup\{x\})$ אומר ש- את מקיימת את והעבעיים מקיימים את אומר ש- אומר מקיימת את אומר ש- אומר ש

הוכחה

נסמן ב- $\mathbb{N}\subseteq X$ את קבוצת האיברים המקיימים את התכונה P. אז $X\in X\Rightarrow x\cup\{x\}\in X$ את קבוצת האינסוף ולכן משתתפת בחיתוך שמגדיר את \mathbb{N} .

דוגמות

 $0 \in n$ או n = 0 מתקיים מכל לכל נוכיח נוכיח בעצם נוכיח מבעי אחר. בעצם נוכיח (1)

עבור הקבוצה הריקה מתקיים $\emptyset=0$. נניח כי $\emptyset=0$. מקיים את התכונה עבור הקבוצה הריקה מתקיים את ניח כי $\emptyset=0$. ניח כי $0\in x$ אם חבר אחרת $0\in y$ ולכן לפי עקרון עקרון $y=x\cup\{x\}$ האינדוקציה התכונה נכונה לכל הטבעיים.

או או $m \cup \{m\} = n$ אז אז m < n שאם להראות עלינו הראות $m < n \Rightarrow m+1 = n \lor m+1 < n$ כי נוכיח נוכיח נוכיח $m \cup \{m\} \subseteq n$

. הריקה, אז הקבוצה בקבוצה איברים באופן ריק (כי אין איברים בקבוצה הריקה, אז התנאי מתקיים באופן היא היא הקבוצה הריקה, אז התנאי מתקיים באופן היא הריקה.

 $m\in n$ נניח את התכונה את התכונה ונוכיח כי $\{n\}$ מקיים את התכונה. נניח כי $m\in n$ אז או שמתקיים את התכונה ונוכיח מקיים את התכונה ווכיח מקיים או $m\in n$ או שמתקיים m=n וובמקרה או $m\cup\{m\}=n$ או שייך ל- $\{m\}=n$ וובמקרה או $m\cup\{m\}=n$ וובמקרה או $m\cup\{m\}=n$ וובמקרה או וובמקרה או מקיים או שמתקיים וובמקרה או מקיים או מ

עקרון האינדוקציה השלמה

: נוכיח: $X=\mathbb{N}$ אז $y\in X$ אז א $x\in X$ מקיים אם עבור $X\in \mathbb{N}$ בניטה עבור $X\in \mathbb{N}$ אז עבור $X\in \mathbb{N}$ וגם מתקיים שאם עבור $X\in \mathbb{N}$ ביט בקבוצה הבאה (כל האיברים הטבעיים שכל קודמיהם שייכים ל- $X=\{x\in \mathbb{N}\mid \forall y\in X(y\in X)\}$: נשים לב ש- $X=\{x\in \mathbb{N}\mid \forall y\in X(y\in X)\}$ מהעקרון. נראה כי $X=\{x\in \mathbb{N}\mid \forall y\in X(y\in X)\}$

המשך בשיעור הבא...

2