A.3 Compléments : trigonométrie

Définition A.1 $(O; \vec{\imath}, \vec{\jmath})$ est un repère orthonormé.

Le couple de coordonnées polaires $(r\;;\;\theta)$ détermine un point P du plan tel que :

 $\cos \theta$

0

la coordonnée radiale r = OP

la **coordonnée angulaire** θ est une mesure de l'angle orienté $(\vec{i}; \vec{OP})$.

Figure A.1 – Représentation de points données par leur coordonnées polaires. Différentes coordonnées peuvent représenter le même point.

Les relations entre coordonnées cartésiennes et polaires sont :

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases} \begin{cases} r^2 = x^2 + y^2 \\ \tan(\theta) = \frac{y}{x} \quad (x \neq 0) \end{cases}$$

Pour P sur le cercle unité : $\theta = (\overrightarrow{i}; \overrightarrow{OP}), r = 1, x = \cos(\theta), y = \sin(\theta).$

Figure A.2 – Coordonnées des points du cercle unité et valeurs particulières de cos et sin

Propriété A.1 — parité. Pour tout $t \in \mathbb{R}$

$$\cos(-t) = \cos(t)$$

la fonction cos est paire

$$\sin(-t) = -\sin(t)$$

la fonction sin est impaire

Propriété A.2 Pour tout $t \in \mathbb{R}$:

$$\cos(\pi + t) = -\cos(t)$$

$$\sin(\pi + t) = -\sin(t)$$

$$\cos(\pi - t) = -\cos(t)$$

$$\sin(\pi - t) = \sin(t)$$

Propriété A.3 — cofonctions. Pour tout $t \in \mathbb{R}$:

$$\cos\left(\frac{\pi}{2} - t\right) = \sin(t) \qquad \qquad \cos\left(\frac{\pi}{2} + t\right) =$$

$$\cos\left(\frac{\pi}{2} + t\right) =$$

$$\sin\left(\frac{\pi}{2} - t\right) = \cos(t)$$

$$\sin\left(\frac{\pi}{2} + t\right) =$$

Propriété A.4 — formules d'addition.

Pour tout $a, b \in \mathbb{R}$:

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(2a) = \cos^2(a) - \sin^2(a)$$

$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\sin(2a) = 2\sin(a)\cos(a)$$

Démonstration.

Soit P(a) et Q(b) les points du cercle trigonométriques associés aux angles $a=(\overrightarrow{\imath};\overrightarrow{OP})$ et $b=(\overrightarrow{\imath};\overrightarrow{OQ}):P(\cos(a);\sin(a))$ et $Q(\cos(b); \sin(b)).$

Calculons le produit scalaire de deux manières différentes :

$$\overrightarrow{OP} \cdot \overrightarrow{OQ} = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\overrightarrow{OP} \cdot \overrightarrow{OQ} = \cos(b - a) \|\overrightarrow{OP}\| \|\overrightarrow{OQ}\| = \cos(a - b)$$

$$\therefore \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

A.3.1 Exercices

A.3.2 Exercices : trigonométrie

■ Exemple A.1 — **a**. t est situé dans le Quadrant IV. Déterminer $\sin(t)$ sachant que $\cos(t) = \frac{3}{5}$.

solution. $\cos^2(t) + \sin^2(t) = 1$ donc $\sin^2(t) = 1 - \cos^2(t) = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$, $\sin(t) = \pm \frac{4}{5}$. t est dans le Quadrant IV, $\sin(t) < 0$ et on a $\sin(t) = -\frac{4}{5}$.

Exercice $1 - \mathbf{H}$. Dans chaque cas, déterminer l'image demandée :

- 1. $\cos(t) = -\frac{7}{25}$, déterminer $\sin(t)$ avec $t \in [\pi; \frac{3\pi}{2}]$.
- 2. $\sin(t) = 0.8$, déterminer $\cos(t)$ avec $t \in [\frac{\pi}{2}; \pi]$.

Exercice 2 — \blacksquare . Trouver dans chaque cas le réel t demandé.

- $(E_1) \cos(x) = \frac{\sqrt{2}}{2} \text{ et } x \in [-\pi; 0]$ $(E_2) \cos(x) = -\frac{1}{2} \text{ et } x \in [\pi; 2\pi]$ $(E_3) 2\sin(x) = 1 \text{ et } x \in [\frac{\pi}{2}; \pi]$ $(E_4) \sin(x) = \frac{1}{2} \text{ et } x \in [-\pi; 0]$
- Exemple A.2 Analyser les résolutions dans $\mathbb R$ des équations d'inconnue x suivantes :

Exercice 3 — \blacksquare . Résoudre dans $\mathbb R$ les équations suivantes :

$$(E_1) \cos(x) = -\frac{1}{2}$$
 $(E_2) \cos(x) = -1$ $(E_3) \sin(x) = \frac{\sqrt{3}}{2}$

■ Exemple A.3 — formules d'addition. Déterminer les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et $\cos\left(\frac{\pi}{12}\right)$.

solution. On note que $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$ et $\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$

$$\cos\left(\frac{5\pi}{12}\right) = \cos\left(\frac{\pi}{4} + \frac{\pi}{6}\right) \qquad \cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$$

$$= \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right) \qquad = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$

$$= \frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\frac{1}{2}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{2}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{2}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{2}$$

Exercice 4 Utiliser les formules d'addition pour déterminer les expressions suivantes :

- 1. $\sin(18^\circ)\cos(27^\circ) + \cos(18^\circ)\sin(27^\circ)$ 3. $\cos\left(\frac{3\pi}{7}\right)\cos\left(\frac{2\pi}{21}\right) + \sin\left(\frac{3\pi}{7}\right)\sin\left(\frac{2\pi}{21}\right)$
- 2. $\cos(10^\circ)\cos(80^\circ) \sin(10^\circ)\sin(80^\circ)$ 4. $\cos\left(\frac{13\pi}{15}\right)\cos\left(\frac{-\pi}{5}\right) \sin\left(\frac{13\pi}{15}\right)\sin\left(\frac{-\pi}{5}\right)$

Exercice 5 Déterminer les valeurs suivantes à l'aide des formules d'addition.

1.
$$\sin(75^{\circ})$$
, indication: $75^{\circ} = 30^{\circ} + 45^{\circ}$

2.
$$\sin(15^{\circ})$$
, indication : $15^{\circ} = 45^{\circ} - \dots$

3.
$$\sin\left(\frac{19\pi}{12}\right)$$
, indication : $\frac{19\pi}{12} = \frac{4\pi}{3} + \dots$

4.
$$\cos\left(\frac{17\pi}{12}\right)$$
, indication : $\frac{17\pi}{12} = \frac{7\pi}{6} + ...$

4.
$$\cos\left(\frac{17\pi}{12}\right)$$
, indication : $\frac{17\pi}{12} = \frac{7\pi}{6} + \dots$
5. $\sin\left(\frac{-5\pi}{12}\right)$, indication : $\frac{-5\pi}{12} = \frac{-\pi}{6} + \dots$
6. $\cos\left(\frac{11\pi}{12}\right)$, indication : $\frac{11\pi}{12} = \frac{\dots \pi}{3} + \dots$

6.
$$\cos\left(\frac{11\pi}{12}\right)$$
, indication: $\frac{11\pi}{12} = \frac{\dots \pi}{3} + \dots$

Exercice 6 Résoudre dans \mathbb{R} l'équation $\sin\left(x+\frac{\pi}{4}\right)-\sin\left(x-\frac{\pi}{4}\right)=1$.

Exercice 7 Démontrer les identités suivantes pour $x \in \mathbb{R}$

1.
$$\cos(2x) = 2\cos^2(x) - 1$$

$$2. \sin\left(x - \frac{\pi}{2}\right) = -\cos(x)$$

3.
$$\cos\left(x+\frac{\pi}{3}\right)+\sin\left(x-\frac{\pi}{6}\right)=0$$

4.
$$\sin(x+y) - \sin(x-y) = 2\cos(x)\sin(y)$$

5.
$$\cos(x+y) + \cos(x-y) = 2\cos(x)\cos(y)$$

6.
$$\cos(x+y)\cos(x-y) = \cos^2(x) - \sin^2(y)$$

Exercice 8 Utiliser les formules de duplications pour simplifier les expressions suivantes :

1.
$$\cos^2(2x) - \sin^2(2x)$$

2.
$$\frac{1-\cos(2x)}{2}$$

3.
$$6\sin(x)\cos(x)$$

4.
$$(\sin(x) + \cos(y))^2 - 1$$

Exercice 9 Déterminer $\sin(2x)$ et $\cos(2x)$ sachant que $\sin(x) = -\frac{4}{5}$ et $\pi < x < \frac{3\pi}{2}$.

Exprimer une expression de la forme $A\sin(x) + B\cos(x)$ uniquement à l'aide de sin.

$$\begin{split} A\sin(x) + B\cos(x) &= \sqrt{A^2 + B^2} \left(\frac{A}{\sqrt{A^2 + B^2}} \sin(x) + \frac{B}{\sqrt{A^2 + B^2}} \cos(x) \right) \\ &= \sqrt{A^2 + B^2} \left(\cos(\varphi) \sin(x) + \sin(\varphi) \sin(x) \right) \\ &= \sqrt{A^2 + B^2} \sin(\varphi + x) \end{split}$$

Où φ est tel que $\cos(\varphi) = \frac{A}{\sqrt{A^2 + B^2}}$ et $\sin(\varphi) = \frac{B}{\sqrt{A^2 + B^2}}$

■ Exemple A.4 $\frac{1}{2}\sin(x) + \frac{\sqrt{3}}{2}\cos(x) = \cos\left(\frac{\pi}{3}\right)\sin(x) + \sin\left(\frac{\pi}{3}\right)\cos(x) = \sin\left(\frac{\pi}{3} + x\right)$ $3\sin(x) + 4\cos(x) = \sqrt{3^2 + 4^2} \left(\frac{3}{\sqrt{3^2 + 4^2}} \sin(x) + \frac{4}{\sqrt{3^2 + 4^2}} \cos(x) \right)$

$$= 5\left(\frac{3}{5}\sin(x) + \frac{4}{5}\cos(x)\right)$$

$$= 5\left(\cos(\varphi)\sin(x) + \sin(\varphi)\cos(x)\right)$$

$$= 5\sin(\varphi + x)$$

$$\begin{cases} (\frac{3}{5})^2 + (\frac{4}{5})^2 = 1, & \text{il existe } \varphi \text{ tel que :} \\ \cos(\varphi) > 0 & \text{et } \sin(\varphi) > 0, \\ \varphi \approx 0.927 \text{ rad } \approx 53.1^\circ \end{cases}$$

Exercice 10 Écrire les expressions suivantes à l'aide de sin uniquement.

1.
$$-\sqrt{3}\sin(x) + \cos(x)$$

2.
$$5(\sin(2x) - \cos(2x))$$

3.
$$\sin(x) - \cos(x)$$

4.
$$3\sin(\pi x) + 3\sqrt{3}\cos(\pi x)$$