

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Linguaggi di Programmazione

Author
Simone Bianco

Indice

Informazioni e Contatti				
1	Induzione strutturale			
	1.1	Algebre induttive	2	
	1.2	Strutture dati induttive	7	
	1.3	Sintassi astratta	11	

Informazioni e Contatti

Appunti e riassunti personali raccolti in ambito del corso di *Linguaggi di Programma-zione* offerto dal corso di laurea in Informatica dell'Università degli Studi di Roma "La Sapienza".

Ulteriori informazioni ed appunti possono essere trovati al seguente link: https://github.com/Exyss/university-notes. Chiunque si senta libero di segnalare incorrettezze, migliorie o richieste tramite il sistema di Issues fornito da GitHub stesso o contattando in privato l'autore:

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se le modifiche siano già state apportate nella versione più recente.

Prerequisiti consigliati per lo studio:

Apprendimento del materiale relativo al corso Algebra.

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

1

Induzione strutturale

1.1 Algebre induttive

Definizione 1: Assiomi di Peano

L'insieme dei numeri naturali N è definito secondo i seguenti assiomi di Peano:

- 1. $0 \in \mathbb{N}$
- 2. $n \in \mathbb{N} \implies \operatorname{succ}(n) \in \mathbb{N}$, dove $\operatorname{succ} : \mathbb{N} \to \mathbb{N}$ è la funzione successore
- 3. $\forall n, m \in \mathbb{N}, \operatorname{succ}(n) = \operatorname{succ}(m) \implies n = m$, ossia succ è iniettiva
- 4. $\nexists n \in \mathbb{N} \mid \operatorname{succ}(n) = 0$
- 5. $\forall S \subseteq \mathbb{N} \mid (0 \in S \land (n \in S \implies \operatorname{succ}(n) \in S)) \implies S = \mathbb{N}$

Proposizione 1: Numeri naturali di Von Neumann

I numeri naturali data da Von Neumann, indicati con \mathcal{N} , definiti come:

$$0_{\mathcal{N}} := \{ \}$$

$$1_{\mathcal{N}} := \{ \{ \} \} \}$$

$$2_{\mathcal{N}} := \{ \{ \}, \{ \{ \} \} \} \}$$

$$3_{\mathcal{N}} := \{ \{ \}, \{ \{ \} \}, \{ \{ \} \} \} \}$$

• • •

dove ${\rm succ}_{\mathcal{N}}:\mathcal{N}\to\mathcal{N}:n\mapsto n\cup\{n\},$ soddisfano gli assiomi di Peano

Dimostrazione.

- 1. $0_{\mathcal{N}} \in \mathcal{N}$ per definizione stessa di \mathcal{N}
- 2. $n \in \mathcal{N} \implies \operatorname{succ}_{\mathcal{N}}(n) \in \mathcal{N}$ per definizione stessa di $\operatorname{succ}_{\mathcal{N}}$
- 3. Siano $n, m \in \mathcal{N}$ tali che $n \neq m$. In tal caso, ne segue automaticamente che:

$$n \neq m \implies n \cup \{n\} \neq m \cup \{m\} \iff \operatorname{succ}_{\mathcal{N}}(n) \neq \operatorname{succ}_{\mathcal{N}}(m)$$

Per contro-nominale, dunque, otteniamo che:

$$\operatorname{succ}_{\mathcal{N}}(n) = \operatorname{succ}_{\mathcal{N}}(m) \implies n = m$$

4. Supponiamo per assurdo che $\exists n \in \mathbb{N} \mid \operatorname{succ}_{\mathcal{N}}(n) = 0_{\mathcal{N}}$. In tal caso, avremmo che:

$$succ(n) = 0_{\mathcal{N}} \iff n \cup \{n\} = 0_{\mathcal{N}} \iff n \cup \{n\} = \{\}$$

ma ciò risulta assurdo poiché implicherebbe che l'insieme $\{\}$ contenga degli elementi. Di conseguenza, l'unica possibilità è che $\nexists n \in \mathbb{N} \mid \operatorname{succ}_{\mathcal{N}}(n) = 0_{\mathcal{N}}$

5. Supponiamo per assurdo che $\exists S \subseteq \mathcal{N} \mid (0_{\mathcal{N}} \in S \land (n \in S \implies \operatorname{succ}_{\mathcal{N}}(n) \in S)) \land S \neq \mathcal{N}$. Consideriamo quindi $\mathcal{N} - S = \{n_1, \ldots, n_k\}$. Per via del secondo assioma, ogni elemento di $\mathcal{N} - S$ deve avere un proprio successore e un proprio predecessore in \mathcal{N} .

Poiché per ipotesi si ha che $n \in S \implies \operatorname{succ}_{\mathcal{N}}(n) \in S$, ne segue che tutti i predecessori degli elementi in $\mathcal{N} - S$ non possano essere in S, poiché altrimenti tali elementi sarebbero in S. Inoltre, poiché $\operatorname{succ}_{\mathcal{N}}$ è iniettiva, ne segue che i successori degli elementi in $\mathcal{N} - S$ non possano essere in S, poiché esiste già un predecessore in S per ogni elemento in S.

Di conseguenza, ogni predecessore ed ogni successore degli elementi di $\mathcal{N}-S$ deve essere in $\mathcal{N}-S$ stesso. Consideriamo quindi (per comodità) la seguente catena di successori in $\mathcal{N}-S$:

$$n_1 \rightarrow n_2 \rightarrow \dots \rightarrow n_k \rightarrow n_1$$

Notiamo a questo punto che:

$$\operatorname{succ}_{\mathcal{N}}^k(n_1) = n_1 \implies n_1 \in n_1$$

contraddicendo gli assiomi insiemistici per cui un insieme non possa essere contenuto in se stesso. Di conseguenza, l'unica possibilità è che $S=\mathcal{N}$

Principio 1: Principio di induzione

Sia P una proprietà che vale per n=0. Dato $n\in\mathbb{N}$, se si verifica che la veridicità di P per n implica che P sia vera anche per n+1, allora P vale per tutto \mathbb{N} . In simboli, abbiamo che:

$$\forall P \ ((P(0) \land (P(n) \implies P(n+1)))) \implies \forall m \in \mathbb{N} \ P(m)$$

Osservazione 1

Il quinto assioma di Peano è equivalente al principio di induzione, poiché basta considerare $S \subseteq \mathbb{N}$ come l'insieme degli elementi per cui vale la proprietà desiderata

Osservazione 2

Dato $k \in \mathbb{N}$, il principio di induzione può essere utilizzato per dimostrare che una proprietà P valga $\forall n \in \mathbb{N} \mid n \geq k$. In altre parole, non è necessario che il principio valga per tutti i naturali a partire da 0.

Dimostrazione.

• Definendo una proprietà Q tale che P(n) = Q(n-k), si ha che:

$$\forall n - k \in \mathbb{N} \ Q(n - k) \iff P(n)$$

dunque applicare il principio di induzione per P partendo da k equivale ad applicare il principio di induzione per Q partendo da 0, rispettando quindi il quinto assioma di Peano

Definizione 2: Insieme unità

Definiamo come **insieme unità**, indicato con 1, un insieme tale che |1| = 1.

Definizione 3: Funzione unaria

Definiamo una funzione $f: \mathbb{1} \to S$, dunque avente $\mathbb{1}$ come dominio, come **funzione** unaria. Inoltre, per comodità, indichiamo f(x) direttamente con f.

Esempio:

• Data la funzione zero : $\mathbb{1} \to \mathbb{N} : x \mapsto 0$, indichiamo zero(x) direttamente come zero

Osservazione 3

Una funzione unaria è sempre **iniettiva** in quanto esiste un solo elemento nel dominio.

Definizione 4: Algebra

Definiamo come **algebra** (o struttura algebrica) una n-upla $(A, \gamma_1, \ldots, \gamma_n)$ dove A è un insieme non vuoto, detto **dominio**, e $\gamma_1, \ldots, \gamma_n$ sono delle operazioni definite su A stesso

Esempi:

- La coppia (N, succ) è un'algebra
- La coppia (N, zero) è un'algebra

Definizione 5: Algebra induttiva e Costruttori

Definiamo l'algebra $(A, \gamma_1, \dots, \gamma_n)$ come **induttiva** se:

- $\gamma_1, \ldots, \gamma_n$ sono iniettive
- $\forall i \neq j \quad \text{im}(\gamma_i) \cap \text{im}(\gamma_j) = \emptyset$, ossia le immagini delle operazioni sono due a due disgiunte
- $\forall S \subseteq A \ (\forall i \in [1, n], a_1, \dots, a_k \in S \ \gamma_i(a_1, \dots, a_k) \in S) \implies S = A$, ossia è soddisfatto il principio di induzione per ogni operazione

Inoltre, definiamo $\gamma_1, \ldots, \gamma_n$ come **costruttori di** A.

Esempi:

- L'algebra $(\mathbb{N},+)$ non è un'algebra induttiva poiché $+:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ non è iniettiva
- L'algebra (N, succ, zero) è un'algebra induttiva poiché:
 - succ risulta essere iniettiva grazie al secondo assioma di Peano, mentre zero risulta essere iniettiva poiché funzione unaria
 - $\operatorname{im}(\operatorname{succ}) \cap \operatorname{im}(\operatorname{zero}) = (\mathbb{N} \{0\}) \cap \{0\} = \emptyset$
 - Sia $S \subseteq \mathbb{N}$ tale che $\forall x \in S \ \operatorname{succ}(x) \in S$ e zero ∈ S. Preso $x \in \mathbb{N}$, possiamo esprimere x come $x = \operatorname{succ}(\operatorname{succ}(...(\operatorname{zero})))$.

Di conseguenza, poiché S è chiuso per succ e zero, otteniamo che:

- * zero $\in S \implies \operatorname{succ}(\operatorname{zero}) \in S$
- * $\operatorname{succ}(\operatorname{zero}) \in S \implies \operatorname{succ}(\operatorname{succ}(\operatorname{zero})) \in S$
- * ...
- * $\operatorname{succ}(...(\operatorname{zero})) \in S \implies x = \operatorname{succ}(\operatorname{succ}(...(\operatorname{zero}))) \in S$

Di conseguenza, otteniamo che $A \subseteq S$ e dunque che S = A

Osservazione 4

Equivalentemente, la terza condizione necessaria delle algebre induttive può essere considerata come

$$\nexists S \subsetneq A \mid (S, \gamma_1, \dots, \gamma_n)$$
 è algebra induttiva

Definizione 6: Omomorfismo

Date due strutture algebriche $(A, \gamma_1, \dots, \gamma_k)$ e $(B, \delta_1, \dots, \delta_k)$ dello stesso tipo, definiamo $f: A \to B$ come **omomorfismo** se

$$\forall a_1,\ldots,a_n\in A, i\in[1,k] \quad f(\gamma_i(a_1,\ldots,a_k))=\delta_i(f(a_1),\ldots,f(a_k))$$

Esempi:

• Date le due algebre $(\mathbb{N}, \operatorname{succ}_{\mathcal{N}}, +)$ e $(\mathcal{N}, \operatorname{succ}_{\mathcal{N}}, +_{\mathcal{N}})$, affinché la funzione $f : \mathbb{N} \to \mathcal{N}$ sia un omomorfismo è necessario che:

$$f(\operatorname{succ}(n)) = \operatorname{succ}_{\mathcal{N}}(f(n))$$
 $f(n+m) = f(n) +_{\mathcal{N}} f(m)$

• Date le due algebre $(\mathbb{R},+)$ e $(\mathbb{R}_{>0},\cdot)$, la funzione $\exp:\mathbb{R}\to\mathbb{R}_{>0}:x\mapsto e^x$ è un omomorfismo:

$$\exp(x+y) = e^{x+y} = e^x e^y = \exp(x)\exp(y)$$

Definizione 7: Isomorfismo

Definiamo come isomorfismo un omomorfismo biettivo

Osservazione 5

Data una funzione $f: A \to B$, si ha che:

$$f$$
 è biettiva $\iff \exists f^{-1}: B \to A$

(dimostrazione omessa)

Osservazione 6

Data una funzione $f: A \to B$, si ha che:

f è un isomorfismo $\iff f^{-1}$ è un isomorfismo

(dimostrazione omessa)

Esempio:

- Date le due algebre $(\mathbb{R}, +)$ e $(\mathbb{R}_{>0}, \cdot)$, la funzione $\exp : \mathbb{R} \to \mathbb{R}_{>0} : x \mapsto e^x$ è un isomorfismo, poiché:
 - exp è un omomorfismo
 - $-\exists \ln : \mathbb{R}_{>0} \to \mathbb{R} \mid \ln(\exp(x)) = x$, dunque f è biettiva.

1.2 Strutture dati induttive

Definizione 8: Insieme delle liste finite

Definiamo List<T> come l'insieme delle liste finite di elementi di T

Esempio:

• Dato List<Int>, si ha che $[3 \rightarrow 5 \rightarrow 1] \in List<Int>$

Proposizione 2: Algebra induttiva delle liste finite

La tripla (List<T>, empty, cons), dove:

- empty : $\mathbb{1} \to \text{List} < T > : x \mapsto []$ è la funzione unaria che restituisce la lista vuota
- cons : List<T> \times T \rightarrow List<T> : $x, ([x_1 \rightarrow \ldots \rightarrow x_n]) \mapsto [x \rightarrow x_1 \rightarrow \ldots x_n]$ è la funzione di **costruzione delle liste**

è un'algebra induttiva

Dimostrazione.

1. La funzione empty risulta essere iniettiva poiché unaria.

Dati $\ell_1, \ell_2 \in \text{List} < T > \text{e } x_1, x_2 \in T$, supponiamo che:

$$cons(y_1, \ell_1) = cons(y_2, \ell_2) = [x_1 \to x_2 \to \dots \to x_n]$$

Per definizione stessa di cons, si ha che:

$$cons(y_1, \ell_1) = cons(y_2, \ell_2) = [x \to x_1 \to \dots \to x_n]$$

$$\implies y_1 = y_2 = x, \ell_1 = \ell_2 = [x_1 \to \dots \to x_n]$$

dunque anche cons risulta iniettiva

2. $\operatorname{im}(\operatorname{empty}) \cap \operatorname{im}(\operatorname{cons}) = \{[]\} \cap (\operatorname{List} < T > - \{[]\}) = \emptyset$

3. Sia $S \subseteq \text{List} < T > \text{tale che } \forall x \in T, \ell \in \text{List} < T > \cos(x, \ell) \in S \text{ e empty } \in S.$

Preso $\ell := [x_1 \to x_2 \to \dots \to x_n] \in \texttt{List<T>}$, possiamo esprimere ℓ come

$$\ell = \cos(x_1, \cos(x_2, ... \cos(x_n, \text{empty})))$$

Di conseguenza, poiché S è chiuso per cons e empty e poiché empty $\in S$, otteniamo che ogni valore della catena sia contenuto in S, implicando che $x \in S$ e quindi che List<T> $\subseteq S$, concludendo che S = List<T>

Osservazione 7

La tripla (List<T> $_{\infty}$, empty, cons), dove List<T> $_{\infty}$ è l'insieme delle liste infinite di elementi di T non è un'algebra induttiva, poiché List<T> \subsetneq List<T> $_{\infty}$ e poiché (List<T>, empty, cons) è un'algebra induttiva

Osservazione 8

Tramite i costruttori di un'algebra induttiva è possibile definire le ulteriori operazioni "aggiuntive" di tale algebra

Esempio:

• Data l'algebra induttiva (List<T>, empty, cons), definiamo la seguente operazione

$$concat : List \times List \rightarrow List$$

dove:

$$\begin{cases} \operatorname{concat}(\operatorname{empty}, \ell) = \ell \\ \operatorname{concat}(\operatorname{cons}(n, \ell), \ell') = \operatorname{cons}(n, \operatorname{concat}(\ell, \ell')) \end{cases}$$

• Ad esempio, in List<Int>, abbiamo che:

$$concat([1 \to 5], [7 \to 2]) = concat(cons(1, [5], [7 \to 2])) = cons(1, concat([5], [7 \to 2])) = cons(1, concat(cons(5, empty), [7 \to 2])) = cons(1, cons(5, concat(empty, [7 \to 2]))) = cons(1, cons(5, [7 \to 2])) = cons(1, [5 \to 7 \to 2]) = [1 \to 5 \to 7 \to 2]$$

Definizione 9: Insieme degli alberi binari finiti

Definiamo BinTree come l'insieme degli alberi binari finiti

Proposizione 3: Algebra induttiva degli alberi binari finiti

La tripla (BinTree, leaf, branch), dove:

- leaf : $\mathbb{1} \to \text{BinTree} : x \mapsto \circ$ è la funzione unaria che restituisce una foglia
- branch : BinTree \times BinTree \to BinTree : $(t_{sx}, t_{dx}) \mapsto t$ è la funzione di **costruzione dei rami**, ossia tale che

è un'algebra induttiva

 $(dimostrazione \ omessa)$

Esempio:

• Il seguente albero

corrisponde a:

a = branch(leaf, branch(leaf, leaf))

Definizione 10: Induzione strutturale

Definiamo come **induzione strutturale** il metodo dimostrativo generalizzante il principio di induzione e basato sulle proprietà di un'algebra induttiva.

In particolare, viene ipotizzato che una proprietà P valga per ogni argomento di ogni costruttore dell'algebra e tramite il terzo assioma viene dimostrato che tale proprietà valga per tutti gli elementi dell'algebra stessa

Teorema 1: Relazione tra nodi e foglie

Dato $t \in BinTree$ avente n foglie, il numero di nodi di t è pari a 2n-1

Dimostrazione per induzione strutturale.

• Definiamo l'operazione

leaves : BinTree $\rightarrow \mathbb{N} : t \mapsto \text{Numero di foglie in } b$

dove:

$$\begin{cases} leaves(leaf) = 1 \\ leaves(branch(b_1, b_2)) = leaves(b_1) + leaves(b_2) \end{cases}$$

• Dato $t \in BinTree$, sia k il numero di nodi di t e sia n = leaves(t)

Caso base. Se t = leaf, allora t è composto da k = 1 nodi e n = leaves(leaf) = 1 foglie. Difatti, si ha che:

$$k = 1 = 2n - 1$$

Ipotesi induttiva. Ogni argomento t' di ogni costruttore possiede k' = 2leaves(t') - 1 nodi

Passo induttivo. Se $t \neq \text{leaf}$, allora $\exists t_1, t_2 \in \texttt{BinTree} \mid t = \text{branch}(t_1, t_2)$ dove t_1 e t_2 possiedono rispettivamente k_1 e k_2 nodi. Inoltre, si ha che:

$$k = k_1 + k_2 + 1$$

In quanto t_1 e t_2 sono argomenti del costruttore branch, per ipotesi induttiva si ha che:

$$k = k_1 + k_2 + 1 = 2 \text{leaves}(t_1) - 1 + 2 \text{leaves}(t_2) - 1 + 1 = 2(\text{leaves}(t_1) + \text{leaves}(t_2)) - 1 = 2(\text{leaves}(\text{branch}(t_1, t_2))) - 1 = 2(\text{leaves}(t)) - 1$$

1.3 Sintassi astratta

Definizione 11: Linguaggio

Definiamo come **linguaggio** un insieme di stringhe

Definizione 12: Grammatica

Definiamo come **grammatica** un insieme di regole, dette **termini**, che definiscono come poter manipolare le stringhe di un linguaggio.

La **forma di Backus-Naur** è una notazione utilizzata per descrivere grammatiche ed è definita come:

dove:

- <symbol> è una simbolo non-terminale espresso dalla grammatica
- L'operatore ::= indica che ciò che si trova alla sua sinistra possa essere sostituito con ciò che si trova alla sua destra
- <_expression_> consiste in una o più sequenze di simboli terminali o nonterminali dove ogni sequenza è separata da una barra verticale (ossia |) indicante una scelta possibile per l'operatore ::=

Esempio:

• Consideriamo il linguaggio L espresso dalla grammatica:

$$M, N ::= 0 \mid 1 \mid \ldots \mid M + N \mid M * N$$

Tale grammatica indica che i simboli non-terminali M e N possono essere sostituiti con:

- Un numero naturale
- Un'espressione M+N o M*N dove M e N sono due ulteriori simboli terminali o non-terminali
- Ad esempio, abbiamo che la stringa "5 + 7" sia ben definita dalla grammatica, mentre la stringa "5 + +" non lo sia

Definizione 13: Sintassi astratta

La sintassi astratta di un linguaggio è una definizione induttiva di un insieme T di termini, permettendo di definire strutture algebriche senza dover necessariamente definire concretamente le sue operazioni

Esempio:

• Consideriamo ancora il linguaggio L definito dalla grammatica

$$M, N ::= 0 \mid 1 \mid \dots \mid M + N \mid M * N$$

• Definiamo quindi la funzione eval : $L \to \mathbb{N}$ in grado di valutare le espressioni del linguaggio:

$$\begin{aligned} \operatorname{eval}("\mathtt{0"}) &= 0 \\ \operatorname{eval}("\mathtt{1"}) &= 1 \\ & \dots \\ \operatorname{eval}("\mathtt{M} + \mathtt{N"}) &= \operatorname{eval}("\mathtt{M"}) + \operatorname{eval}("N") \\ \operatorname{eval}("\mathtt{M} * \mathtt{N"}) &= \operatorname{eval}("\mathtt{M"}) + \operatorname{eval}("N") \end{aligned}$$

• Notiamo quindi che la grammatica definisca in modo astratto (ma concretamente tramite eval) le seguenti operazioni:

$$0: \mathbb{I} \to \mathbb{N}: x \mapsto 0$$

$$1: \mathbb{I} \to \mathbb{N}: x \mapsto 1$$

$$\cdots$$
 plus: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}: (m, n) \mapsto m + n$ times: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}: (m, n) \mapsto m \cdot n$

- Notiamo però che le operazioni plus e times non risultano essere né iniettive né con immagini disgiunte. Di conseguenza, la funzione eval non ci permette di definire un'algebra induttiva.
- Tuttavia, per tale linguaggio è comunque possibile definire (in qualche modo, ad esempio fissando una precedenza per le operazioni rompendo proprietà come l'associatività e la commutatività) una funzione che possa descrivere un'algebra induttiva.

Teorema 2: Algebra dei termini

Dato un linguaggio L rappresentato da una sintassi astratta per termini definiti in T, esiste sempre un'algebra induttiva (T, α)

(dimostrazione omessa)