Inequalities/Bounds

- Chebyshev Inequality (a bound on the probability of how much X can deviate from $E[X] = \mu_X$): $P[|X \mu_X| \ge \varepsilon] \le \frac{\sigma_X^2}{\varepsilon^2}$
- Markov Inequality: For RVs with nonnegative values, $P[X \ge \varepsilon] \le \frac{E[X]}{\varepsilon}$
- The Schwarz Inequality: i) $|Cov[X, Y]| \le \sigma_X \sigma_Y$,
 - ii) For real functions h(X) and g(X) of a real rv X, $|E[h(X)g(X)]| \leq \sqrt{E[h^2(X)]}\sqrt{E[g^2(X)]}.$
- Chernoff Bound (upper bound on the tail probability):

$$P[X \ge a] \le \min_t \{e^{-at}\theta_X(t)\}$$

• Example: For $X \sim N(\mu, \sigma^2)$, and $a > \mu$, the Chernoff bound is $P[X \geq a] \leq e^{-(a-\mu)^2/(2\sigma^2)}$.

$$\theta_X(t) = e^{\mu t + 0.5\sigma^2 t^2} \implies P[X \ge a] \le \min_t \{ e^{-at} \theta_X(t) \} = \min_t \{ e^{-at} e^{\mu t + 0.5\sigma^2 t^2} \}$$

Let $g(t) \triangleq e^{-at}e^{\mu t + 0.5\sigma^2 t^2}$. Then, g'(t) = 0 gives $t_m = (a - \mu)/\sigma^2$.

As g''(t) > 0, g(t) is minimum at t_m . Then $g(t_m)$ gives the above bound.

Bienayme Inequality:

$$P\{|X-a|^n \ge \varepsilon^n\} \le \frac{E\{|X-a|^n\}}{\varepsilon^n}$$

Hence,
$$P\{|X - a| \ge \varepsilon\} \le \frac{E\{|X - a|^n\}}{\varepsilon^n}$$
.

Chebyshev inequality is a special case obtained with $a = \mu$ and n = 2.

• Lyapunov Inequality:

Let $\beta_k = E\{|X|^k\} < \infty$ represent the absolute moments of the random variable

$$X.$$
 Then for any k , $\beta_{k-1}^{1/(k-1)} \leq \beta_k^{1/k}$

• The Weak Law of Large Numbers (LLN):

For iid X_i , $i=1,\ldots,n$ with a finite mean μ_X , consider the sample mean estimator $\hat{\mu}_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i$. Then for $\delta > 0$,

$$\overline{\lim_{n\to\infty}P[|\hat{\mu}_n-\mu_X|<\delta]}=1$$

- Since we have $E[\hat{\mu}_n] = \mu_X$ & $\mathrm{Var}[\hat{\mu}_n] = \frac{\sigma_X^2}{n}$, by the Chebyshev inequality, $P[|\hat{\mu}_n \mu_X| \geq \delta] \leq \frac{\sigma_X^2}{n\delta^2}$, $\lim_{n \to \infty} P[|\hat{\mu}_n \mu_X| \geq \delta] = 0$, and $\lim_{n \to \infty} P[|\hat{\mu}_n \mu_X| < \delta] = 1$.
- The Weak Law of Large Numbers (LLN) Non-uniform Variance: Let X_i be an independent random sequence with constant mean μ and variance σ_i^2 defined for $i \geq 1$. Then if $\lim_{n \to \infty} \sum_{i=1}^n \sigma_i^2/n^2 < \infty$, $\hat{\mu}[n] \triangleq (1/n) \sum_{i=1}^n X_i \to \mu$ (convergence in probability) as $n \to \infty$.
- For a large enough fixed value of n, the sample mean using n samples will be close to the true mean with high probability. WLLN does not address the question about what happens to the sample mean as a function of n as we make additional measurements.

19

• The Strong Law of Large Numbers (LLN):

For a sequence of iid X_i , $i=1,\ldots,n$ with a finite mean μ_X and finite variance,

$$P[\lim_{n\to\infty} \hat{\mu}_n = \mu_X] = 1.$$

- With probability 1, every sequence of sample mean calculations will eventually approach and stay close to μ_X .
- LLN is the theoretical basis for estimating μ_X from measurements.

The Central Limit Theorem

• Theorem: Let X_1, \ldots, X_n be n mutually independent r.v.'s with CDF's $F_{X_1}(x_1), \ldots, F_{X_n}(x_n)$, and $\bar{X}_k = 0$, $Var[X_k] = \sigma_k^2$. Denote

$$s_n^2 \triangleq \sigma_1^2 + \ldots + \sigma_n^2.$$

If, for a given $\varepsilon > 0$ and a sufficiently large n, $\sigma_k < \varepsilon s_n \ \forall k$, then the normalized sum $Z_n \triangleq (X_1 + \ldots + X_n)/s_n$ converges to the standard Normal CDF, i.e., $\lim_{n \to \infty} F_{Z_n}(z) = \Phi(z) = 1 - Q(z)$.

Central: CDF converges to normal CDF around the center (mean).

• Theorem: Let X_1, \ldots, X_n be iid r.v.s with $X_i = 0$ and $\text{Var}[X_i] = 1$, $\forall i$. Then $Z_n \triangleq \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$ tends to the normal in the sense that its characteristic function Φ_{Z_n} approaches to the characteristic function of N(0,1), i.e., $\log \Phi_{Z_n}(w) = e^{-\frac{w^2}{2}}$.

Fig. (An illustration of the CLT) Comparison of the Normal pdf $\mathcal{N}(0,n/12)$ (dotted line) and the pdf of $Y=\sum_{i=1}^n X_i$ (solid line) where $\{X_i\}$ are iid uniform r.v.'s within [-0.5,0.5]

• Example: The time between events in a certain random experiment is i.i.d. exponential random variables with mean m seconds. Find the probability that the $1000 {\rm th}$ event occurs in the time interval $(1000 \pm 50) m$.

 X_j = the time between events (inter-arrival time) S_n = the (occurrence or arrival) time of the nth event

$$S_n = X_1 + X_2 + \ldots + X_n.$$

Exponential:
$$E[X_j] = m$$
 and $Var[X_j] = m^2$ $E[S_n] = nE[X_j] = nm$, $Var[S_n] = nVar[X_j] = nm^2$.

Let $Z_n = (S_n - E[S_n])/\sqrt{\operatorname{Var}[S_n]}$. Then, the CLT gives

$$P[950m \le S_{1000} \le 1050m] = P\left[\frac{950m - 1000m}{m\sqrt{1000}} \le Z_n \le \frac{1050m - 1000m}{m\sqrt{1000}}\right]$$
$$= P\left[-1.58 \le Z_n \le 1.58\right] \simeq Q(-1.58) - Q(1.58) = 1 - 2Q(1.58) = 0.8866.$$

Thus, as n becomes large, S_n is very likely to be close to its mean nm. Hence, we can conjecture that the long-term average rate at which events occur is $\frac{n \text{ events}}{S_n \text{ seconds}} = \frac{n}{nm} = \frac{1}{m} \text{ events/second}$.

The Berry-Esseen Theorem

If $E[\mathbf{x}_i^3] \leq c\sigma_i^2$, $\forall i$, where c is some constant, then the distribution $F_{\overline{x}}$ of the normalized sum

$$\bar{\mathbf{x}} = \frac{\mathbf{x}_1 + \dots + \mathbf{x}_n}{n}$$

is close to the normal distribution G(x) in the following sense with $\sigma^2 = \sigma_1^2 + \cdots + \sigma_n^2$:

$$|F_{\bar{x}} - G(x)| < \frac{4c}{\sigma}$$
 (bound).

The central limit theorem is a corollary of this theorem because this theorem leads to the conclusion that

$$F_{\bar{x}} \to G(x)$$
 as $\sigma \to \infty$.

Note-1: Whereas the above is the convergence in distribution of $\bar{\mathbf{x}}$ to a normal random variable, the theorem also gives a *bound* of the deviation of $\bar{F}(x)$ from normality.

Note-2: The condition for the theorem is not too restrictive. It holds, for example, if the random variables x_i are i.i.d. and their third moment is finite.

• **Theorem:** The pdf of $Y \triangleq X_1 X_2 \dots X_n$ for independent continuous and positive r.v.'s X_i with a large n:

For large n, the density of \mathbf{y} is approximately *lognormal*:

$$f_y(y) \simeq \frac{1}{y \sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} (\ln y - \eta)^2\right\} U(y)$$

where

$$\eta = \sum_{i=1}^{n} E[\ln \mathbf{x}_i] \text{ and } \sigma^2 = \sum_{i=1}^{n} Var(\ln \mathbf{x}_i).$$

Proof: The random variable

$$\mathbf{z} = \ln \mathbf{y} = \ln \mathbf{x}_1 + \dots + \ln \mathbf{x}_n$$

is the sum of the random variables $\ln \mathbf{x}_i$. From the CLT, for large n, \mathbf{z} is nearly $\mathcal{N}(\eta, \sigma^2)$. And $\mathbf{y} = e^z \Rightarrow \mathsf{lognormal}\ \mathbf{y}$.

The theorem holds if $\ln x_i$'s satisfy the conditions for the validity of the CLT.

Entropy, Differential Entropy, and Relative Entropy

- $H_X = \text{Entropy of a discrete RV } X$
 - = expected value of uncertainty of the value of X
 - = average amount of information required to identify the value of X
- For a discrete RV X with PMF $P_X(x)$, $H_X = E[-\log(P_X(x))]$, i.e., $H_X = -\sum_i P_X(x_i) \log(P_X(x_i))$ where if \log is base 2, unit of H_X is bits.
- Relative entropy of $Y \in \{a_1, \cdots, a_K\}$ with respect to $X \in \{a_1, \cdots, a_K\}$ is $H(X;Y) = E_X[\log(\frac{P_X(a_i)}{P_Y(a_i)})]$, i.e., $H(X;Y) = \sum_{i=1}^K P_X(a_i) \log(\frac{P_X(a_i)}{P_Y(a_i)})$ which is nonnegative and equal to zero iff $P_X(a_i) = P_Y(a_i)$ for all i. Note: $0\log(0/0) \triangleq 0$, $\log(0/q) \triangleq 0$, $p\log(1/0) \triangleq \infty$.
- Differential entropy of a continuous RV X with pdf $f_X(x)$: $H_X = E[-\log(f_X(x))], \text{ i.e., } H_X = -\int_{-\infty}^{\infty} f_X(x) \log(f_X(x)) dx.$
- Relative entropy of continuous RVs Y w.r.t X with pdfs $f_Y(y)$ and $f_X(x)$: $H(X;Y) = E_X[\log(\frac{f_X(x)}{f_Y(x)})], \text{ i.e., } H(X;Y) = \int_{-\infty}^{\infty} f_X(x) \log(\frac{f_X(x)}{f_Y(x)}) dx$

Entropy, Differential Entropy, and Relative Entropy

Kullback-Leibler divergence (= Relative entropy):

For discrete RVs,
$$D_{\mathrm{KL}}(P_X||P_Y) = H(X;Y)$$

For continuous RVs,
$$D_{\mathrm{KL}}(f_X||f_Y) = H(X;Y)$$
.

A measure of how one pdf/PMF is different from a second reference pdf/PMF.

In Bayesian perspective, it is information gained when we revise beliefs from prior pdf f_Y (PMF P_Y) to posterior pdf f_X (PMF P_X).

In general,
$$D_{\mathrm{KL}}(f_X||f_Y) \neq D_{\mathrm{KL}}(f_Y||f_X)$$
 and $D_{\mathrm{KL}}(P_X||P_Y) \neq D_{\mathrm{KL}}(P_Y||P_X)$.

Method of Maximum Entropy

• For a discrete RV $X \in \{x_1, \cdots, x_K\}$ with unknown PMF $P_X(x)$, suppose we know E[g(X)] = c. Then, the PMF which maximizes the entropy is given by $P_X(x_i) = Ae^{-\lambda g(x_i)}$

where A and λ are chosen to satisfy a valid PMF and E[g(X)] = c.

• For a continuous RV X with unknown pdf $f_X(x)$, suppose we know E[g(X)]=c. Then, the pdf which maximizes the differential entropy is given by

$$f_X(x) = Ae^{-\lambda g(x)}$$

where A and λ must be chosen to satisfy a valid pdf and E[g(X)] = c.