Calcul différentiel 2

Table des matières

I. Inversion locale et fonctions implicites	2
1.1. Théorème d'inversion locale · · · · · · · · · · · · · · · · · · ·	2

1. Inversion locale et fonctions implicites

1.1. Théorème d'inversion locale

Définition 1.1. Soit $k \in \mathbb{N} \setminus \{0\} \cup \{+\infty\}$, U et V deux ouverts de \mathbb{R}^n , et $f: U \to V$ une application. On dit que f est un C^k -difféomorphisme de U sur V si

- 1. f est bijective de U sur V,
- 2. f est de classe C^k sur U,
- 3. f^{-1} est de classe C^k sur V.

Remarque 1.2. Soit $f: U \to V$ un C^k -difféomorphisme, alors

$$\forall x \in U, f^{-1}(f(x)) = x$$

$$\forall y \in V, f(f^{-1}(y)) = y$$

de plus en appliquant le théorème de composition des différentielles

$$\mathrm{d}f^{-1}(f(x))\circ\mathrm{d}f(x)=\mathrm{id}_{\mathbb{R}^n}$$

$$\mathrm{d}f(f^{-1}(x))\circ\mathrm{d}f^{-1}(x)=\mathrm{id}_{\mathbb{R}^n}$$

donc df(x) est inversible avec $df(x)^{-1} = df^{-1}(f(x))$.

Exemples 1.3.

- 1. On considère $f:\mathbb{R}^n \to \mathbb{R}^n, x \mapsto Ax$ où $A \in \mathrm{GL}_n(\mathbb{R})$, alors f est C^∞ comme fonction linéaire et bijective de réciproque $y \mapsto A^{-1}y$. On remarque que f^{-1} est C^∞ comme fonction linéaire, donc f est un C^∞ -difféomorphisme.
- 2. On considère $f:U\to V, (x,y)\mapsto (x+y,xy)$ où U et V sont définis par

$$U = \left\{ (x, y) \in \mathbb{R}^2 \mid x > y \right\}$$

$$V = \left\{ (s,t) \in \mathbb{R}^2 \ | \ s^2 - 4t > 0 \right\}$$

alors f est un C^{∞} difféomorphisme de U sur V , en effet

a. f est bijective de U sur V, puisque pour $(x, y) \in U$ on a

$$(x+y)^2 - 4xy = x^2 - 2xy + y^2 = (x-y)^2 > 0$$

donc $f(U) \subset V$, réciproquement pour $(s,t) \in V$ on cherche $(x,y) \in U$ tels que

$$\begin{cases} x + y = s \\ xy = t \end{cases}$$

c'est-à-dire x et y sont racines du polynôme $X^2 - sX + t$, comme x > y on a

$$\begin{cases} x = \frac{s + \sqrt{s^2 - 4t}}{2} \\ y = \frac{s - \sqrt{s^2 - 4t}}{2} \end{cases}$$

donc $V \subset f(U)$, f est bijective,

- b. f est de classe C^{∞} sur U car polynômiale,
- c. f^{-1} est de classe C^{∞} sur V car $(s,t)\mapsto s^2-4t$ et $\sqrt{\cdot}$ sont C^{∞} sur V.
- 3. On considère $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$, alors f est de classe C^{∞} sur \mathbb{R} et bijective. Mais son inverse $f^{-1}: \mathbb{R} \to \mathbb{R}, y \mapsto \sqrt[3]{y}$, n'est pas dérivable en 0 donc f n'est pas un C^{∞} -difféomorphisme.

2

Théorème 1.4. (Théorème d'inversion locale) Soit U un ouvert non-vide de \mathbb{R}^n et $f:U\to\mathbb{R}^n$ une application de classe C^k . On suppose qu'il existe $x_0\in U$ tel que $\mathrm{d}f(x_0)$ soit inversible. Alors il existe un voisinage ouvert U' de x_0 et un voisinage ouvert V' de $f(x_0)$ tels que $f:U'\to V'$ est un C^k -difféomorphisme.

Théorème 1.5. (Théorème d'inversion globale) Soit U un ouvert non-vide de \mathbb{R}^n et $f:U\to\mathbb{R}^n$ une application. On suppose que

- 1. f est de classe C^k sur U,
- 2. f est injective sur U,
- 3. $\forall x \in U, df(x)$ est inversible.

Alors f(U) est un ouvert de \mathbb{R}^n et $f:U\to f(U)$ est un C^k -difféomorphisme.

 $D\'{e}monstration$. Soit x_0 in U, alors d'après le théorème d'inversion locale il existe un voisinage ouvert U_{x_0} de x_0 et un voisinage ouvert $V_{f(x_0)}$ de $f(x_0)$ tels que $f:U_{x_0}\to V_{f(x_0)}$ est un C^k -difféomorphisme. En particulier $V_{f(x_0)}=f\left(U_{x_0}\right)$, et on a

$$f(U) = \bigcup_{x \in U} V_{f(x)}$$

est un ouvert de \mathbb{R}^n comme union d'ouverts. De plus puisque f est injective sur U, on en déduit que f est bijective de U sur f(U).

Soit $y_0 \in f(U)$, alors il existe un unique $x_0 \in U$ tel que $y_0 = f(x_0)$, et d'après le théorème d'inversion locale $f: U_{x_0} \to V_{y_0}$ est un C^k -difféomorphisme, on en déduit que f^{-1} est de classe C^k sur V_{y_0} . Donc f^{-1} est C^k sur f(U).

Exemples 1.6.

- 1. On considère $f:\mathbb{R}^2 \to \mathbb{R}^2, (r,\theta) \mapsto (f_1,f_2) = (r\cos(\theta),r\sin(\theta))$, alors
 - a. f est de classe C^{∞} sur \mathbb{R}^2 puisque cos et sin sont de classe C^k ,
 - b. On pose $U:=]0,+\infty[\times]-\pi,\pi[$, qui est un ouvert de \mathbb{R}^2 sur lequel f est injective,
 - c. Soit $(r, \theta) \in U$, alors

$$J_f(r,\theta) = \begin{pmatrix} \frac{\partial f_1}{\partial r} & \frac{\partial f_1}{\partial \theta} \\ \frac{\partial f_2}{\partial r} & \frac{\partial f_2}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$$

 $\operatorname{et} \det \left(J_f(r,\theta)\right) = r \cos^2(\theta) + r \sin^2(\theta) = r > 0 \text{, donc } \mathrm{d}f_{(r,\theta)} \text{ est inversible.}$

Donc d'après le Théorème $1.5 f: U \to f(U)$ est un C^{∞} -difféomorphisme.