Midterm – Math 130B

Instructor: Liam Hardiman

August 19, 2022

Instructions:

- You must show your work and clearly explain your line of reasoning.
- You have one hour and twenty minutes to complete the exam.

GOOD LUCK!

- 1. (10 points) Suppose the measurement errors, X_i , from n experiments are uniformly distributed on [-1,1]. Assume that the errors are independent.
 - (a) (4 points) Find the probability distribution function for $|X_i|$.

(b) (6 points) Find the probability density function and probability distribution functions for the largest absolute error. Be sure to clearly state the domains of the PDF and CDF. [Hint: consider $Y = \max(|X_1|, \ldots, |X_n|)$.]

2. (10 points) Let X and Y be independent random variables with $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Unif}[a,b]$. Let U = 2X - 3Y and V = 4X + Y. Find the joint probability density function for (U,V). Be sure to state the domain of this function.

- 3. (10 points) Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$ be independent. Let Z = X/Y.
 - (a) (5 points) Find the conditional probability density $f_{Z\mid Y}(z\mid Y=y).$

(b) (5 points) Find the joint probability density $f_{Z,Y}(z,y)$ and use this to find the marginal density $f_Z(z)$. What type of random variable is Z?

4. (10 points) Let X and Y be random variables with joint density

$$f(x,y) = \begin{cases} ce^{-(x+y)}, & \text{if } 0 < x < y < \infty \\ 0, & \text{otherwise.} \end{cases}$$

(a) (2 points) Find the value of c such that f is a density function.

(b) (5 points) What is the conditional density of X given that Y = y. Be sure to state the domain of this function.

(c) (3 points) Are X and Y independent? Why or why not?

- 5. (10 points) True or false? Give a brief justification for each answer.
 - (a) Suppose X is a continuous random variable with distribution function F_X . Then there exists a random variable Y with distribution F_Y satisfying $F_Y(y) = 2F_X(y)$.

(b) Let X and Y be random variables such that E[XY] = E[X]E[Y]. Then X and Y are independent.

(c) If X and Y are independent random variables, then E[XY] = E[X]E[Y].

(d) If X and Y are independent random variables, then Var[X + Y] = Var[X] + Var[Y].

(e) If the events E_1 and E_2 are independent and the events E_2 and E_3 are independent, then the events E_1 and E_3 are independent.