

آزمایشگاه فیزیک عمومی ۲

دانشکده فیزیک دانشگاه صنعتی شریف دستیار آموزشی: سرکار خانم صدری پاییز ۱۴۰۲

دوشنبه صبح — گروه **A£**

هین آعلی - ۴۰۱۱۰۵۵۱۱

امیرحسین صوری - ۴۰۱۱۰۲۱۸۲

آزمایشگاه فیزیک عمومی ۲ − آزمایش شماره ۸ دوشنبه صبح - معین آعلی، امیرحسین صوری فهرست عناوين ۵.۱. ۵.۲. تعیین ظرفیت خازن (C) ۵.٣. ۵.۴.

١. عنوان آزمايش:

مشاهده منحنیهای لیساژو و مطالعه مدارها با جریان متناوب.

۲. هدف آزمایش:

استفاده از اسیلوسکوپ برای مشاهده منحنیهای لیساژو و مطالعه مدارها با جریان متناوب.

۳. وسایل مورد نیاز برای آزمایش:

- نوسانساز (اسیلاتور)
 - اسیلوسکوپ
- منبع تغذیه ۶ ولت با فرکانس مجهول
 - جعبه مقاومت
 - خازن
 - القاگر
 - سيم رابط

٤. نكاتى كه بايد حين آزمايش مورد توجه قرار گيرند:

- با توجه به پیچیدگی مدار باید اطمینان حاصل کرد که سیم ها به درستی به یکدیگر وصل شدهاند.
 - زمین (ground) اسیلوسکوپ و اسیلاتور و منبع تغذیه هر سه باید به یکدیگر متصل باشند.
 - از اتصال سیم منفی و مثبت به یکدیگر خودداری شود، امکان جرقه و آتشسوزی وجود دارد.
 - از درست بودن واحد فرکانس روی نوسانساز اطمینان حاصل کنید.
 - پیش از اندازه گیری از روی نوساننما، مطمئن شوید که نقطهی اولیه روی مرکز قرار دارد.

ه. شرح آزمایش:

٥/١م. تعيين فركانس موج با استفاده از منحنىهاى ليساژو

۵۰ Hz	۵۰ Hz	فركانس نوسانساز
٢	١	$\frac{N_X}{N_Y}$
۵٠	۵٠	فركانس مجهول

حالتهای مشاهدهشده:

۰۵/۲ تعیین ضریب خودالقایی القاگر (L)

نتىحە مشاھدات:

f (Hz)	٣٠	۶۰	٩٠	17.
$\sin arphi$	٠.۵٠	٠.٧١	۲۸.۰	٩٨.٠
an arphi	۸۵.۰	17	1.44	۱.۹۸
а	۰.۶۵	١	1.10	١.٢۵
b	١.٣	1.4	1.4	1.4

منحنی تغییرات تانژانت arphi برحسب فرکانس:

ابتدا شیب را به کمک روش کمترین مجموع مربعات به دست می آوریم:

$$\bar{x} = \frac{r \cdot + s \cdot + s \cdot + s \cdot + s \cdot r}{s} = ra$$

$$m = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^r} = \frac{-rs \cdot s - sa \cdot r + r \cdot s \cdot s + ss \cdot s}{r \cdot ra + rra + rra + rra} = \dots random$$

$$m = \frac{\tan \varphi}{f} = \frac{X_L}{Rf} = \frac{L\omega}{Rf} = \frac{L \cdot r\pi f}{Rf} = \frac{r\pi L}{R} \rightarrow L = \frac{mR}{r\pi} = \frac{\dots r\pi f}{r\pi} = \dots random$$

۳/۰. تعیین ظرفیت خازن (C)

نتبحه مشاهدات:

f (Hz)	٣٠	۶۰	٩٠	17.
$\sin arphi$	۵۸.۰	۸۵.۰	٠.۴۴	٠.٣۶
an arphi	۱.۵۹	٠.٧١	٠.۴٩	٠.٣٩
а	1.1	٠.٧۵	۵۵. ۰	۰.۴۵
b	1.1	1.1	1.70	1.۲۵

منحنی تغییرات تانژانت ϕ برحسب معکوس فرکانس:

ابتدا شیب را به کمک روش کمترین مجموع مربعات به دست می آوریم:

$$\bar{x} = \frac{\dots rrr + \dots rr + \dots rr}{r} = \dots rr$$

$$m = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^r} = rr$$

$$m = \frac{\tan \varphi}{\frac{1}{f}} = f \tan \varphi = \frac{-f X_C}{R} = \frac{f}{C \omega R} = \frac{r}{C \cdot r \pi f R} = \frac{r}{r \pi C R} \rightarrow C = \frac{r}{r \pi m R} = \frac{r}{r \pi \times rr \times r \cdot r} = rr \ln r \mu F$$

دوشنبه صبح - معین آعلی، امیرحسین صوری

آزمایشگاه فیزیک عمومی ۲ - آزمایش شماره ۸

ه/ه. مدار تشدید

f	۵.۷۲	۵.۷۳	۴۷.۵	۵۲.۵	۶۷.۵
sin φ	٠.۶۴	٣٣.٠	•	٠.٢٣	٠.۴۴
tan φ	٠.٨۴	۵۳.۰	•	٠.٢۴	٠.۵٠

طبق رابطه فرکانس تشدید $x_{C}=\cdot$ داریم:

$$x_{L} - x_{C} = 0 \rightarrow \tan \varphi = \frac{x_{L} - x_{C}}{R} = 0$$

$$\sin \varphi = 0$$

$$\cos \varphi = \frac{R}{Z} > 0$$

حال، با توجه به ویژگیهای فرکانس تشدید داریم:

$$f < f_{res} \to \begin{cases} \sin \varphi < 0 \\ \tan \varphi < 0 \end{cases}$$

$$f \ge f_{res} \to \begin{cases} \sin \varphi \ge 0 \\ \tan \varphi \ge 0 \end{cases}$$

دوشنبه صبح - معین آعلی، امیرحسین صوری

آزمایشگاه فیزیک عمومی ۲ - آزمایش شماره ۸

در نقطهی اکسترمم نمودار، تشدید رخ میدهد و تانژانت برابر ۰ است.

f (Hz)	۲۷.۵	۳۷.۵	۴۷.۵	۵۷.۵	۶۷.۵
V _R (V)	۲.۲۵	۸.۲	۳.۱	۲.۹	۲.۳۵

٦. پرسشها

• جریان گذرنده از مدار طبق رابطه زیر و با توجه با امپدانس $Lj\omega$ تعریف می شود:

$$V = (R + Lj\omega)I \Rightarrow I = \frac{v}{R + Lj\omega}$$

و چون این زاویه همواره مثبت است. میتوانیم نتیجه بگیریم که زاویه فازور ولتاژ از فازور جریان به $arphi= an^{-1}\left(rac{L\omega}{R}
ight)$ اندازه arphi بیشتر است و ولتاژنسبت به جریان تقدم فاز دارد.

• جریان گذرنده از مدار طبق رابطه زیر و با توجه با امپدانس تعریف میشود: $\frac{-j}{c\omega}$

$$V = \left(R - \frac{j}{c\omega}\right)I \Rightarrow I = \frac{v}{R - \frac{j}{c\omega}}$$

و چون این زاویه همواره منفی است. میتوانیم نتیجه بگیریم که زاویه فازور ولتاژ از فازور $\varphi = - an^{-1}\left(rac{1}{RC\omega}
ight)$ جریان به اندازه φ کمتر است و ولتاژ نسبت به جریان تاخیر فاز دارد.

• اگر روابط زیر را در رابطه فرکانس تشدید $x_C = \cdot$ قرار دهیم:

$$x_{L} = L\omega$$

$$x_{C} = \frac{1}{C\omega}$$

$$\Rightarrow \omega = \sqrt{\frac{1}{LC}} = \pi f \Rightarrow f = \sqrt{\frac{1}{LC \times \pi \pi^{\tau}}}$$