Assignment 5

October 16, 2023

1. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Assume that $\lim_{x\to 0} f(x) = L$ exists. Prove that L = 0, and then prove that f has a limit at every point $c \in \mathbb{R}$.

Proof. Let $\{x_n\}$ be a sequence in \mathbb{R} such that $\lim_{n\to\infty} x_n = 0$. Then by Algebra of limits of sequences $\lim_{n\to\infty} 2x_n = 0$. As $\lim_{x\to 0} f(x) = L$, so this will imply $\lim_{n\to\infty} f(x_n) = L$ as well as $\lim_{n\to\infty} f(2x_n) = L$. But $f(2x_n) = 2f(x_n)$ by the given properties of f (Given f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. In particular, if x = y that will imply f(2x) = 2f(x) for all $x \in \mathbb{R}$.) Hence

$$L = \lim_{n \to \infty} f(2x_n) = 2 \lim_{n \to \infty} f(x_n) = 2L,$$

Hence 2L = L implies L = 0.

Let $c \neq 0$, and let $\{x_n\}$ be any sequence in \mathbb{R} such that $\lim_{n \to \infty} x_n = c$. Then $\lim_{n \to \infty} (x_n - c) = 0$, hence $0 = \lim_{n \to \infty} f(x_n - c) = \lim_{n \to \infty} (f(x_n) - f(c))$ (as f(x - y) = f(x) - f(y)) and so we will have $0 = \lim_{n \to \infty} f(x_n) - f(c)$ which imply $\lim_{n \to \infty} f(x_n) = f(c)$.

- 2. Consider two functions f, g.
 - (a) Show that if both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} (f(x)+g(x))$ exist, then $\lim_{x\to c} g(x)$ exists.
 - (b) If both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} f(x)g(x)$ exist, does it follow that $\lim_{x\to c} g(x)$ exists?

Proof. a) Consider g = (f+g)-f. So we have $\lim_{x\to c} g(x) = \lim_{x\to c} (f(x)+g(x)) - \lim_{x\to c} f(x)$ (by Algebra of limit of the functions).

- b) If $\lim_{x\to c} f(x) \neq 0$ then $\lim_{x\to c} g(x) = \frac{\lim_{x\to c} f(x)g(x)}{\lim_{x\to c} f(x)}$ (by Algebra of limit of the functions) since $\lim_{x\to c} f(x) \neq 0$.
- 3. Give examples of functions f and g such that f and g do not have limits at a point c, but such that both f+g and fg have limits at c.

Proof. Hint: Consider the function $f, g : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} -1 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases} \text{ and } g(x) = \begin{cases} 1 & \text{if } x \le 0 \\ -1 & \text{if } x > 0 \end{cases}$$

then limit of f and g do not exist at x = 0. But f + g where (f + g)(x) = f(x) + g(x) and fg(x) = f(x)g(x) have limits at x = 0.

1

4. Show that if $f:(a,\infty)\to\mathbb{R}$ is such that $\lim_{x\to\infty}xf(x)=L$ where $L\in\mathbb{R}$, then $\lim_{x\to\infty}f(x)=0$.

Proof. Given $\lim_{n\to\infty} x f(x) = L$. Let $\{x_n\}$ be any sequence diverges to ∞ . Then $\lim_{n\to\infty} x_n f(x_n) = L$ as $\lim_{x\to\infty} x f(x) = L$. Let $X_n = x_n f(x_n)$ and $Y_n = \frac{1}{x_n}$. Now $\lim_{n\to\infty} X_n = L$ and $\lim_{n\to\infty} Y_n = \lim_{n\to\infty} \frac{1}{x_n} = 0$. So by Algebra of limits $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} X_n Y_n = \lim_{n\to\infty} X_n \times \lim_{n\to\infty} Y_n = L \times 0 = 0$. So for any arbitrary sequence $\{x_n\}$ converging to ∞ , $\lim_{n\to\infty} f(x_n) = 0$ concluding $\lim_{x\to\infty} f(x) = 0$.

5. Let $f(x) = \frac{\sqrt{1+3x^2}-1}{x^2}$ for $x \neq 0$. Find the limit of $\lim_{x\to 0} f(x)$.

Proof. We have $f(x) = \frac{\sqrt{1+3x^2}-1}{x^2} = \frac{3x^2}{x^2(\sqrt{1+3x^2}+1)}$ for $x \neq 0$. Hence $f(x) = \frac{3}{(\sqrt{1+3x^2}+1)}$ for $x \neq 0$. Then apply the algebra of limits, $\lim_{x\to 0} f(x) = \frac{\lim_{x\to 0} 3}{\lim_{x\to 0} (\sqrt{1+3x^2}+1)} = \frac{3}{2}$.

6. Let $\lim_{x\to 0} \frac{f(x)}{x^2} = 5$, then $\lim_{x\to 0} \frac{f(x)}{x} = 0$.

Proof. Let $F(x) = \frac{f(x)}{x^2}$ when $x \neq 0$ and G(x) = x which gives $F(x)G(x) = \frac{f(x)}{x}$ when $x \neq 0$. Hence $\lim_{x \to 0} F(x) = 5$ (given) and $\lim_{x \to 0} G(x) = 0$. So by Algebra of limits of functions $\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} F(x)G(x) = \lim_{x \to 0} F(x) \times \lim_{x \to 0} G(x) = 5 \times 0 = 0$.

7. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that $\lim_{x\to 0} f(x^2)$ exists but $\lim_{x\to 0} f(x)$ does not exist.

Proof. Hint: Example $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 \text{ if } x \ge 0\\ -1 \text{ if } x < 0 \end{cases}$$

Then $\lim_{x\to 0} f(x)$ does not exist. Now $x^2 \ge 0$ so $f(x^2) = 1$ for all $x \in \mathbb{R}$ giving $\lim_{x\to 0} f(x^2) = 1$

8. Let $f:(0,\infty)\to\mathbb{R}$. Prove that $\lim_{x\to\infty}f(x)=L$ iff $\lim_{x\to0+}f(\frac{1}{x})=L$.

Proof. Given $\lim_{x\to\infty} f(x) = L$. Required to prove $\lim_{x\to 0+} f(\frac{1}{x}) = L$. Consider $g(x) = f(\frac{1}{x})$ Let $\{x_n\}$ be any sequence of positive real numbers converging to 0. Then the sequence $\{y_n\}$ be the sequence of positive real numbers converging to ∞ where $y_n = \frac{1}{x_n}$ for $n \ge 1$. As $\lim_{x\to\infty} f(x) = L$, so $\lim_{n\to\infty} f(y_n) = L$ which implies $\lim_{n\to\infty} f(\frac{1}{x_n}) = \lim_{n\to\infty} g(x_n) = L$. Hence $\lim_{x\to 0+} f(\frac{1}{x}) = \lim_{x\to 0+} g(x) = L$ as $\{x_n\}$ is any arbitrary sequence of positive real numbers converging to 0.

Similarly, we can prove the converse.

9. Consider the function $f:[0,2]\to\mathbb{R}$ defined by $f(x)=x^{\frac{3}{2}}$. Prove that the function is continuous at $c\in[0,2]$.

Proof. Let $\varepsilon > 0$ be any given real number. When c = 0, we have

$$|f(x) - 0| = x^{3/2} < \varepsilon$$

whenever $0 < |x - 0| < \delta = \varepsilon^{2/3}$. When $c \neq 0$. Then

$$\begin{split} |f(x)-f(c)| &= |x^{\frac{3}{2}}-c^{\frac{3}{2}}| = |x^{\frac{1}{2}}-c^{\frac{1}{2}}||x+\sqrt{xc}+c|\\ &\leq |x^{\frac{1}{2}}-c^{\frac{1}{2}}|(2+\sqrt{4}+2) \quad \text{since} \quad x,c \leq 2\\ &= 6|x^{\frac{1}{2}}-c^{\frac{1}{2}}|\\ &= \frac{6}{|x^{\frac{1}{2}}+c^{\frac{1}{2}}|}|x-c|\\ &\leq \frac{6}{c^{\frac{1}{2}}}|x-c| \quad \text{since} \ x \geq 0, \quad x^{\frac{1}{2}}+c^{\frac{1}{2}} \geq c^{\frac{1}{2}}\\ &< \varepsilon, \end{split}$$

whenever $0 < |x - c| < \delta = \frac{\varepsilon c^{\frac{1}{2}}}{6}$.