

INTERPRETABILITY OF BLACK-BOX MODELS

CONTEXT, FORMALIZATION, AND A FOCUS ON COOPERATIVE GAME THEORY

¹EDF Lab Chatou - Département PRISME ²Institut de Mathématiques de Toulouse ³SINCLAIR AI Lab

Vendredis de la Data Science MAIF - Niort.

2nd of December, 2022

"ML interpretability methods to certify A.I models on critical systems."

"ML interpretability methods to certify A.I models on critical systems."

- ML interpretability: Tools that allow to better understand a (black-box) model.
- Critical systems: Hydroelectric dams, wind turbines, stocks, a human body...
- A.I. model certification: Guarantee a certain level of confidence on the A.I via (usually) a set of meaningful (rigid) rules.

"ML interpretability methods to certify A.I models on critical systems."

- ML interpretability: Tools that allow to better understand a (black-box) model.
- Critical systems: Hydroelectric dams, wind turbines, stocks, a human body...
- A.I. model certification: Guarantee a certain level of confidence on the A.I via (usually) a set of meaningful (rigid) rules.

Main goal: Develop *meaningful* tools in order to *better understand* a black-box model, in order to *ensure confidence* in their use for *critical systems*.

"ML interpretability methods to certify A.I models on critical systems."

- ML interpretability: Tools that allow to better understand a (black-box) model.
- Critical systems: Hydroelectric dams, wind turbines, stocks, a human body...
- A.I. model certification: Guarantee a certain level of confidence on the A.I via (usually) a set of meaningful (rigid) rules.

Main goal: Develop *meaningful* tools in order to *better understand* a black-box model, in order to *ensure confidence* in their use for *critical systems*.

Who needs convincing: Safety authorities, which are not receptive to empirical results (i.e., SOTA statements).

"ML interpretability methods to certify A.I models on critical systems."

- ML interpretability: Tools that allow to better understand a (black-box) model.
- Critical systems: Hydroelectric dams, wind turbines, stocks, a human body...
- A.I. model certification: Guarantee a certain level of confidence on the A.I via (usually) a set of meaningful (rigid) rules.

Main goal: Develop *meaningful* tools in order to *better understand* a black-box model, in order to *ensure confidence* in their use for *critical systems*.

Who needs convincing: Safety authorities, which are not receptive to empirical results (i.e., SOTA statements).

Meaningful tools to safety authorities = Theoretical guarantees on the interpretability method.

Sommaire

- 1. Explanation vs. Interpretation
- 2. Interpretability methods
- 3. Interpretability and cooperative game theory

The need of a formal definition

From the litterature (Barredo Arrieta et al. 2020):

- Interpretability: "[...] The ability to explain or to provide the meaning in understandable terms to a human." Provide meaningful (mathematical) tools.
- Explainability: "[...] Associated with the notion of explanation as an interface between humans and a decision maker [...]. " Use of these tools in a human interaction context.

The need of a formal definition

From the litterature (Barredo Arrieta et al. 2020):

- Interpretability: "[...] The ability to explain or to provide the meaning in understandable terms to a human." Provide meaningful (mathematical) tools.
- Explainability: "[...] Associated with the notion of explanation as an interface between humans and a decision maker [...]. " Use of these tools in a human interaction context.

Asher et al. (2022) provides a first step towards a formal model of explanability:

- 2-player explanation game between an explainee (decision maker) and an explainer (data scientist), to model the interaction:
 - Each player aim at solving a **conundrum** (a question on the black-box model).
 - The explainer provides **diagnostics** (interpretability method) at each turn.
 - The explainee either accepts or rejects the explanation (based, e.g., on the theoretical foundations of the interpretability method).

Explanation game

ML interpretability

In the rest of this presentation, ML interpretability can then be understood as:

- Development of interpretability methods relative to different conundrums.
- Theoretical understanding of their meaning and their validity.
- Development of efficient estimation schemes in order to compute relevant indices.

Example:

- Conundrum: Which feature is responsible for which part of a prediction?
- Interpretability method: SHAP.
- Estimation scheme: KernelSHAP.
- **Diagnostic**: Compute the results given by KernelSHAP.
- Explanation: Interpret the results and provide an answer to the question.

ML interpretability

In the rest of this presentation, ML interpretability can then be understood as:

- Development of interpretability methods relative to different conundrums.
- Theoretical understanding of their meaning and their validity.
- Development of efficient estimation schemes in order to compute relevant indices.

Example:

- Conundrum: Which feature is responsible for which part of a prediction?
- Interpretability method: SHAP.
- Estimation scheme: KernelSHAP.
- **Diagnostic**: Compute the results given by KernelSHAP.
- Explanation: Interpret the results and provide an answer to the question.

But is SHAP the only interpretability method that answers this question? Is it the best? What are its limits?

Sommaire

- 1. Explanation vs. Interpretation
- 2. Interpretability methods
- 3. Interpretability and cooperative game theory

Meaningfulness of interpretability methods

In order to decide if an interpretability method is **meaningful**, i.e., if it should be accepted by the decision maker, its **theoretical properties must be understood**.

Example: What does SHAP quantify?

Hence, one has to focus on the **theoretical quantities**, in order to provide **mathematical proofs** of the behavior of the interpretability method.

Example: When the features are independent, SHAP quantifies...

These properties allow to **accurately interpret the diagnostic**, and further enhances the impact of the **explanation**.

Parenthesis: Statistical inference

Goal: Make a distinction between a theoretical quantity and an estimator.

One is interested in the average salary in France, denoted μ . If the salary in France is assumed to be a random variable X, one would have that:

$$\mathbb{E}\left[X\right] =\mu.$$

This theoretical quantity could be measured exactly if **everyone in France would indicate its salary**. However, this is very costly.

In order to have an **educated guess** on μ , i.e., a "good" approximation, one could randomly ask their salary to n persons living in France, resulting in x_1, \ldots, x_n observations.

Then, an **estimator** of μ would be the empirical mean:

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Parenthesis: Statistical inference

For instance, the theoretical values of **SHAP** can be estimated using several methods: **TreeSHAP**, **KernelSHAP**...

Here, we are interested in knowing if SHAP is a **meaningful theoretical quantity**, i.e., does it have theoretical properties that would make it the basis of a **good explanation**?

In order to (partly) answer this question, one can start by taking an interest in the field of **Cooperative Game Theory**.

Sommaire

- 1. Explanation vs. Interpretation
- 2. Interpretability methods
- 3. Interpretability and cooperative game theory

Cooperative game theory

In a nutshell, cooperative game theory can be summarized as "the art of cutting a cake".

Given a set of players $D = \{1, ..., d\}$, who produces a quantity v(D), how can one allocate shares of v(D) among the d players?

The "cake cutting process" is often described through axioms (i.e., desired properties), and results in an allocation.

Formally, a cooperative game is denoted (D, v) where D is a **set of players**, and $v : \mathcal{P}(D) \to \mathbb{R}$ is a **value function**, mapping every possible subset of players to a real value.

Cooperative game: illustration

Quantifies the value produced by a coalition

$$(\bigcirc) = \boxed{} v(\bigcirc,\bigcirc) = \boxed{}$$

Cooperative game: illustration

Quantifies the value produced by a coalition

How can we share the cake between the players?

Allocations

The cake-cutting process must respect one fundamental property:

The whole cake and nothing but the cake must be shared (Efficiency).

For prediction decomposition (SHAP), we want **every feature contribution** (shares of cake) to **sum-up to the prediction itself** (the cake).

Example of efficient allocations:

- Give the whole cake to the yellow player.
- Divide the cake in three equal parts.
- Give half of the cake to blue, and one fourth to red and yellow.

Allocations

The cake-cutting process must respect one fundamental property:

The whole cake and nothing but the cake must be shared (Efficiency).

For prediction decomposition (SHAP), we want **every feature contribution** (shares of cake) to **sum-up to the prediction itself** (the cake).

Example of efficient allocations:

- Give the whole cake to the yellow player.
- Divide the cake in three equal parts.
- Give half of the cake to blue, and one fourth to red and yellow.

Can we define efficient allocations in a smarter way?

The Weber set

Random order model allocations allow to easily define efficient allocation.

First, to every cooperative game (D, v) can be associated its **dual** (D, w) where $\forall A \subseteq D$:

$$w(A) = v(D) - v(D \setminus A).$$

The Weber set

Random order model allocations allow to easily define efficient allocation.

First, to every cooperative game (D, v) can be associated its **dual** (D, w) where $\forall A \subseteq D$:

$$w(A) = v(D) - v(D \setminus A).$$

Instead to quantifying the **value** v(A) produced by a coalition A, we rather focus on its **cost** w(A) (i.e., how much value did we lose by removing A). w can be interpreted as the **bargaining power** of a coalition.

The Weber set

Random order model allocations allow to easily define efficient allocation.

First, to every cooperative game (D, v) can be associated its **dual** (D, w) where $\forall A \subseteq D$:

$$w(A) = v(D) - v(D \setminus A).$$

Instead to quantifying the **value** v(A) produced by a coalition A, we rather focus on its **cost** w(A) (i.e., how much value did we lose by removing A). w can be interpreted as the **bargaining power** of a coalition.

A random order allocation is computed as a **weighted average over the permutations of** *D*: it considers every possible order each player can interact with the others.

Backward-Forward and random order allocations

Marginal value gain of adding players to \emptyset : $v\left(C_{\pi(i)}(\pi)\right) - v\left(C_{\pi(i)-1}(\pi)\right)$

 \mathcal{S}_D (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

(b.)

Marginal value cost of removing players from $\{1, 2, 3\}$: $v\left(D \setminus C_{\pi(i)-1}(\pi)\right) - v\left(D \setminus C_{\pi(i)}(\pi)\right)$

Random order model allocations

For **any weighting scheme** (probability mass function) put on the permutations of *D* corresponds an **efficient allocation**.

Random order model allocations

For **any weighting scheme** (probability mass function) put on the permutations of *D* corresponds an **efficient allocation**.

In this context, to which weighting scheme corresponds the Shapley values?

Random order model allocations

For **any weighting scheme** (probability mass function) put on the permutations of *D* corresponds an **efficient allocation**.

In this context, to which weighting scheme corresponds the Shapley values?

They correspond to the **specific choice** of assigning the **same weight** to each permutation (i.e., 1/d!).

The Shapley values as a random order model allocation

The Shapley values of (D, v) and the ones of (D, w) are equal.

How can we understand the Shapley values as a random order model allocation:

- The order to which the players interact does not matter.
- The orders to which the players interact are **equally as likely** (this is a huge assumption).
- Allocating costs is the same as allocating profits.

They can be interpreted as

"[...] an a priori assessment of the situation, based on either ignorance or disregard of the social organization of the players." - L. S. Shapley (2016)

Unrelated but relevant parallel question: Uniform prior in the Bayesian context.

Proportional values

Defining an efficient allocation is as easy as putting a weighting scheme on the permutations of \mathcal{D} .

Are there other known allocations that might be relevant?

Proportional values

Defining an efficient allocation is as easy as putting a weighting scheme on the permutations of D.

Are there other known allocations that might be relevant?

Yes! For instance, the **proportional values**. They correspond to a weighting scheme proportional to the **order of importance** of the permutations:

For a profit game (D, v):

- 1 brings the most value (v(1) is bigger than the values of coalitions of 1 player).
- 3 added to 1 brings the most value ($v(\{1,3\})$ is bigger than the values of the coalitions of 2 players).
- 2 added to {1,3} brings the most value (same thing for coalitions of 3 players).
- ...

Then the order (1,3,2,...) should have a **bigger weight** than the other orders. The same reasoning can be applied to the dual (cost) game (D,w), resulting in a **different allocation**. 18/29

Shapley values and proportional values in linear regression

These allocations have been used in statistics for a very long time (without the knowledge that they came from cooperative game theory).

In the context of linear regression, the question is to redistribute the \mathbb{R}^2 (the cake) among the players (the covariates).

Shapley values and proportional values in linear regression

These allocations have been used in statistics for a very long time (without the knowledge that they came from cooperative game theory).

In the context of linear regression, the question is to redistribute the \mathbb{R}^2 (the cake) among the players (the covariates).

Let X_1, \ldots, X_d be the features (vectors of n observations), and Y be the target. Denote $R^2(A)$ be the R^2 of the linear model:

$$Y = \beta_0 + \sum_{i \in A} \beta_i X_i + \epsilon.$$

Shapley values and proportional values in linear regression

These allocations have been used in statistics for a very long time (without the knowledge that they came from cooperative game theory).

In the context of linear regression, the question is to redistribute the R^2 (the cake) among the players (the covariates).

Let X_1, \ldots, X_d be the features (vectors of n observations), and Y be the target. Denote $R^2(A)$ be the R^2 of the linear model:

$$Y = \beta_0 + \sum_{i \in A} \beta_i X_i + \epsilon.$$

In this case, the cake is $v(D) = R^2(D)$, the R^2 of the linear regression of Y by every feature X_1, \ldots, X_d .

And for any coalition of features $A \subseteq D$, $v(A) = R^2(A)$, is the R^2 of the **nested** linear regression of Y by only the coalition of features X_A .

 (D, R^2) forms a cooperative game!

LMG and PMVD as importance measures

In order to have a **good** importance measure ϕ_i , $i=1,\ldots,d$, in the context of linear regression (with correlated features), it must satisfy the four following criteria

- Non-negativity: $\forall i \in D$, $\phi(i) \geq 0$;
- **Proper exclusion:** If $\beta_i = 0$, then $\phi_i = 0$;
- Proper inclusion: If $\beta_i \neq 0$, then $\phi_i > 0$;
- Efficiency: $\sum_{i=1}^d \phi_i = R^2(D)$.

Lindeman, Merenda, and Gold (1980) proposed indices called LMG, which are nothing more than **the Shapley values** of (D, R^2) . However they violates the proper exclusion criterion.

Feldman (2005) proposed indices called PMVD, which are nothing more than **the proportional values** of the dual of (D, R^2) . They respect all four criterion.

Towards sensitivity analysis

But what if the model is non-linear, and the features are correlated?

Then, whenever, for a non-linear model G, such that:

$$Y=G(X),$$

the cake is $\mathbb{V}(Y) = \mathbb{V}(G(X))$ (notice that there is no ϵ). It leads to the **Sobol' cooperative** game where:

$$v(A) = \mathbb{V}(\mathbb{E}[G(X) \mid X_A]).$$

Its Shapley values are known as the **Shapley effects** (Owen 2014), and the proportional values of its dual are known as the **proportional marginal effects** (Herin et al. 2022).

Main distinction for correlated exogenous features:

- Their Shapley effects can be non-zero.
- Their proportional marginal effects are zero (this has been proven).

Bottom line: If the conundrum is about detecting exogenous inputs, the Shapley effects may fail, whereas the proportional marginal effects do answer the question. 21/29

Interpreting the Shapley values: Harsanyi dividends

Another equivalent enlightening representation of the Shapley values can be done using **Harsanyi dividends** (Harsanyi 1963).

Let (D, v) be a cooperative game, and for any $A \subseteq D$, let the **Harsanyi dividend** of the coalition A be:

$$D_{\nu}(A) = \sum_{B \subseteq A} (-1)^{|A| - |B|} \nu(A).$$

The Harsanyi dividends can be interpreted as the **surplus (or shortfall)** that a coalition generates:

$$D_{\nu}(1) = \nu(1), \quad D_{\nu}(2) = \nu(2),$$

$$D_{\nu}(1,2) = \nu(1,2) - \nu(1) - \nu(2).$$

Interpreting the Shapley values: Harsanyi dividends

The Shapley values are then defined as:

$$Sh_i = \sum_{A \subseteq D: i \in A} \frac{D_v(A)}{|A|},$$

or, in other words, each dividend of a coalition is **equally** redistributed between the players that composes it.

Quick example: Eve and John are two developers, Eve produces 10.000 lines of code, John produces 8.000 lines of code.

However, John really likes to play babyfoot, but Eve is a hard-worker.

When working together, they only produce 10.000 lines of code. This means that the dividend of their coalition is -8.000.

Is it fair to attribute Eve -4.000 lines of code, even if she did all the work ?

Interpreting the proportional values: Harsanyi dividends

The proportional values can also be interpreted in terms of Harsanyi dividends. It represents a **proportional** redistribution of the dividends of coalitions between the players that composes it.

Quick example: In this case, most of the -8.000 lines of code would be given to John, but Eve would also be receive a hit.

Is it still fair? Is it cooperative?

A lot of things are said in the literature about cooperative game theory, and the Shapley values, which are discutable:

• An allocation is a Shapley value.

A lot of things are said in the literature about cooperative game theory, and the Shapley values, which are discutable:

 An allocation is a Shapley value. False. Cooperative game theory is a rich field with many different solution concepts.

- An allocation is a Shapley value. False. Cooperative game theory is a rich field with many different solution concepts.
- Cooperative game theory deals with cooperation.

- An allocation is a Shapley value. False. Cooperative game theory is a rich field with many different solution concepts.
- Cooperative game theory deals with cooperation. False. It deals with ways coalitions
 of players can interact between each other. Example of a non-cooperative allocation:
 Proportional values.

- An allocation is a Shapley value. False. Cooperative game theory is a rich field with many different solution concepts.
- Cooperative game theory deals with cooperation. False. It deals with ways coalitions
 of players can interact between each other. Example of a non-cooperative allocation:
 Proportional values.
- Shapley values are fair.

- An allocation is a Shapley value. False. Cooperative game theory is a rich field with many different solution concepts.
- Cooperative game theory deals with cooperation. False. It deals with ways coalitions
 of players can interact between each other. Example of a non-cooperative allocation:
 Proportional values.
- Shapley values are fair. False. They are an egalitarian way of redistributing dividends.

- An allocation is a Shapley value. False. Cooperative game theory is a rich field with many different solution concepts.
- Cooperative game theory deals with cooperation. False. It deals with ways coalitions
 of players can interact between each other. Example of a non-cooperative allocation:
 Proportional values.
- Shapley values are fair. False. They are an egalitarian way of redistributing dividends.
- Explanations based on Shapley values are always suitable.

- An allocation is a Shapley value. False. Cooperative game theory is a rich field with many different solution concepts.
- Cooperative game theory deals with cooperation. False. It deals with ways coalitions
 of players can interact between each other. Example of a non-cooperative allocation:
 Proportional values.
- Shapley values are fair. False. They are an egalitarian way of redistributing dividends.
- Explanations based on Shapley values are always suitable. False. They answer a specific conundrum, which is yet to be fully understood (but we're working on it!).

• Shapley values can provide explanations, but they are not always suitable.

- Shapley values can provide explanations, but they are not always suitable.
- They rely on **egalitarian principles**, which is **not synonym to fairness**.

- Shapley values can provide explanations, but they are not always suitable.
- They rely on **egalitarian principles**, which is **not synonym to fairness**.
- Explainability and ML interpretability is not restricted to Shapley values, allocations, or even prediction decomposition.

- Shapley values can provide explanations, but they are not always suitable.
- They rely on **egalitarian principles**, which is **not synonym to fairness**.
- Explainability and ML interpretability is not restricted to Shapley values, allocations, or even prediction decomposition.
- It is not because an interpretation method gives a good result, that it is always suitable.

Consequences between a player-centric perspective (cooperative game theory) vs.
 a model-centric perspective (statistics/ML)?

- Consequences between a player-centric perspective (cooperative game theory) vs.
 a model-centric perspective (statistics/ML)?
- Same cake as SHAP, but for another allocation? Can we ensure nice properties?

- Consequences between a player-centric perspective (cooperative game theory) vs.
 a model-centric perspective (statistics/ML)?
- Same cake as SHAP, but for another allocation? Can we ensure nice properties?
- Do the choice of value function matter in the diagnostic, and the subsequent explanation?

- Consequences between a player-centric perspective (cooperative game theory) vs.
 a model-centric perspective (statistics/ML)?
- Same cake as SHAP, but for another allocation? Can we ensure nice properties?
- Do the choice of value function matter in the diagnostic, and the subsequent explanation?
- Other forms of interpretability methods, for different types of conundrums?
 (Robustness, stability, behavior guarantees...).

- Consequences between a player-centric perspective (cooperative game theory) vs.
 a model-centric perspective (statistics/ML)?
- Same cake as SHAP, but for another allocation? Can we ensure nice properties?
- Do the choice of value function matter in the diagnostic, and the subsequent explanation?
- Other forms of interpretability methods, for different types of conundrums?
 (Robustness, stability, behavior guarantees...).
- Come-up with, and improve estimation strategies.

References i

- Asher, N., L. De Lara, S. Paul, and C. Russell. 2022. "Counterfactual Models for Fair and Adequate Explanations" [in en]. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute, Machine Learning and Knowledge Extraction 4, no. 2 (June): 316–349. ISSN: 2504-4990, accessed November 28, 2022. https://doi.org/10.3390/make4020014. https://www.mdpi.com/2504-4990/4/2/14.
- Barredo Arrieta, A., N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, et al. 2020. "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible Al" [in en]. Information Fusion 58 (June): 82–115. issn: 1566-2535. https://doi.org/10.1016/j.inffus.2019.12.012. https://www.sciencedirect.com/science/article/pii/S1566253519308103.
- Feldman, B. E. 2005. "Relative Importance and Value" [in English]. SSRN Electronic Journal, ISSN: 1556-5068. https://doi.org/10.2139/ssrn.2255827. http://www.ssrn.com/abstract=2255827.
- Harsanyi, J. C. 1963. "A Simplified Bargaining Model for the n-Person Cooperative Game." International Economic Review 4 (2): 194–220. issn: 0020-6598.
- Herin, Margot, Marouane II Idrissi, Vincent Chabridon, and Bertrand Iooss. 2022. "Proportional marginal effects for global sensitivity analysis." Working paper or preprint, October. https://hal.archives-ouvertes.fr/hal-03825935.
- Lindeman, R. H., P. F. Merenda, and R. Z. Gold. 1980. Introduction to bivariate and multivariate analysis. Glenview, IL: Scott Foresman / Company.
- Owen, A. B. 2014. "Sobol' Indices and Shapley Value" [in English]. SIAM/ASA Journal on Uncertainty Quantification 2, no. 1 (January): 245–251. ISSN: 2166-2525, accessed December 2, 2020. https://doi.org/10.1137/130936233.

References ii

Shapley, L. S. 2016. "17. A Value for n-Person Games." In *Contributions to the Theory of Games (AM-28), Volume II*, edited by Harold William Kuhn and Albert William Tucker, 307–318. Princeton University Press. https://doi.org/doi:10.1515/9781400881970-018. THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?