## ФИЗИКА

- 1. В ядерном реакторе ядро  ${}_{3}^{7}Li$  с большой энергией провзаимодействовало с частицей X, в результате реакции образовались две альфа-частицы. Определить частицу X.
  - A)  ${}_{2}^{4}He$  B)  ${}_{1}^{2}H$  C)  ${}_{1}^{1}H$  D)  ${}_{1}^{3}H$
- **2.** Две платформы движутся с постоянными скоростями  $v_1$ =4 m/s и  $v_2$ =3 m/s, люди на них движутся, как изображено на рисунке, со скоростями  $v_{1O}$ =3 m/s и  $v_{2O}$ =4 m/s относительно платформ. Определить относительную скорость (m/s) людей.



3. В результате термодинамических процессов идеальный газ переходит из первого состояния во второе. Какой будет температура (°C) в конце процесса, если начальная температура -173°C?



- A) 873 B) 927 C) 1073 D) 1200
- **4.** Длина проводника 800 m, сила тока в нём 40 A. Определить общий импульс (kg·m/s) всех электронов в проводнике. Для электронов  $m/e=5,7\cdot10^{-12}$  kg/C.
  - A)  $1.8 \cdot 10^{-8}$  B)  $1.8 \cdot 10^{-7}$  C)  $1.8 \cdot 10^{-6}$  D)  $1.8 \cdot 10^{-9}$
- **5.** Радиус нейтронной звезды 10 km, плотность  $10^{17}~{\rm kg/m^3}$ . Какова его масса (kg)?  $\pi{=}3$  A)  $4\cdot10^{28}$  B)  $4\cdot10^{27}$  C)  $4\cdot10^{30}$  D)  $4\cdot10^{29}$
- **6.** В какое ядро превратится ядро свинца  $^{213}_{82}Pb$  при альфа-распаде? A)  $^{225}_{88}Ra$  B)  $^{213}_{82}Pb$  C)  $^{217}_{84}Po$  D)  $^{209}_{80}Hg$
- 7. Тело бросили с земли со скоростью 50 m/s и под углом 60° к вертикали. Чему равна горизонтальная составляющая его скорости (m/s) через 1 s полёта?  $g=10 \text{ m/s}^2$  A)  $25\sqrt{3}$  B) 25 C) 15 D)  $15\sqrt{3}$

- 8. Предмет находится на расстоянии 20 cm от линзы, а мнимое изображение оказалось уменьшенной в 2 раза. Определить оптическую силу линзы (dptr).
  - A) 10 B) 5 C) -10 D) -5
- 9. Пружинный маятник, лежащий на горизонтальной плоскости, колеблется с амплитудой A. Материальное тело маятника при прохождении точки равновесия имеет кинетическую энергию 28 J. Чему равна кинетическая энергия (J) маятника в момент, когда его смещение равно A/2?
  - A) 28 B) 21 C) 7 D) 14
- **10.** Длина нити математического маятника  $2,5\,$  m, амплитуда колебаний  $5\,$  cm. Определить максимальную скорость тела маятника (cm/s).  $g{=}10\,$  m/s $^2$ 
  - A) 7,5 B) 2,5 C) 10 D) 5
- **11.** Из катода вакуумного диода ежесекундно вылетает  $2\cdot 10^{18}$  электронов. Определить силу тока (A) диода.
  - A) 3,2 B) 32 C) 0,032 D) 0,32
- 12. К источнику переменного тока последовательно соединены активное сопротивление 9  $\Omega$  и конденсатор с ёмкостью  $\frac{1}{3}$  mF. Найти циклическую частоту (rad/s) тока, если общее сопротивление цепи 15  $\Omega$ .
  - A) 250 B) 36 C) 360 D) 25
- 13. Одноатомный идеальный газ повысил температуру от  $T_1$  до  $T_2$  двумя путями:  $A \to B$  и  $A \to C$ . Найти отношение количеств тепла, переданных газу в первом и втором процессах.



- A) 5/3 B) 7/2 C) 7/3 D) 5/2
- 14. Площадь сечения алюминиевого провода S. Чему равна начальная длина провода, если под действием растягивающей силы F провод удлинился на  $\Delta l$ ? Модуль упругости алюминия E.
  - A)  $\frac{ES}{F\Delta l}$  B)  $\frac{E\Delta l}{FS}$  C)  $\frac{ES\Delta l}{F}$  D)  $\frac{F}{ES\Delta l}$

- T-115
- **15.** Материальное тело со скоростью  $v_0$ =6 m/s и массой m=2 kg ударяется о пружину жёсткостью k=1 kN/m и сжимает её на 20 cm. Коэффициент трения между телом и плоскостью 0,4. Определить начальное расстояние L (m) между телом и пружиной. g=10 m/s².



- A) 1 B) 2 C) 1,8 D) 2,2
- **16.** В двух одинаковых цилиндрических сосудах имеется вода и масло ( $\rho$ =800 kg/m³), и давление жидкостей на дно сосудов одинаковое. Как относятся массы этих жидкостей?
  - A)  $m_{\text{B}} = 1,7 m_{\text{M}}$  B)  $m_{\text{B}} = 1,5 m_{\text{M}}$  C)  $m_{\text{B}} = 1,25 m_{\text{M}}$  D)  $m_{\text{B}} = m_{\text{M}}$
- 17. Первый фотон излучён при переходе электрона атома водорода с восьмого энергетического уровня на седьмой уровень. Второй фотон излучён при переходе с восьмого уровня на шестой уровень. Каков импульс первого фотона, если энергия второго фотона  $\varepsilon$ ? c скорость света.
  - A)  $\frac{5\varepsilon}{1029c}$  B)  $\frac{49\varepsilon}{149c}$  C)  $\frac{135\varepsilon}{343c}$  D)  $\frac{27\varepsilon}{539c}$
- 18. Электролитические ванны A и B с разными растворами соединены в сеть, как изображено на рисунке. В процессе электролиза на катоде ванны A выделилось 5 g вещества. Сколько грамм другого вещества выделилось на катоде ванны B? Отношение электрохимических эквивалентов двух выделившихся веществ равно  $\frac{k_A}{k_B} = \frac{1}{2}$ .



- **19.** 10 mol гелия изохорически передали 24,93 kJ тепла. Во сколько раз в этом процессе увеличилось давление газа? Начальная температура газа 27 °C.
  - A) 3/2 B) 4/3 C) 5/3 D) 7/6

**20.** Сосуд с водой находится в лифте, шарик, подвешенный на динамометре, опущен в сосуд с водой. Когда лифт неподвижен, динамометр показывает 6 N. Каково будет показание динамометра (N), если лифт начнёт подъём с ускорением 2 m/s<sup>2</sup>?  $q=10 \text{ m/s}^2$ .



- A) 7,8 B) 7,2 C) 8,2 D) 9,1
- **21.** Из проволоки изготовлена рамка прямоугольной формы, одна сторона рамки (AB) подвижная. Рамку окунули в мыльный раствор ( $\sigma$ =0,04 N/m), а затем, сдвигая подвижную сторону на 8 ст вправо, выполнили работу 1,28 mJ. Найти длину (ст) подвижной стороны рамки.



- A) 40 B) 20 C) 10 D) 30
- 22. Имеется равносторонний треугольник со стороной a. На разных вершинах треугольника расположены соответственно точечные заряды q, 2q, 3q. Если освободить частицу массой m и зарядом 3q, какой максимальной скорости она достигнет?

A) 
$$\sqrt{\frac{18kq}{am}}$$
 B)  $\sqrt{\frac{4kq^2}{am}}$  C)  $\sqrt{\frac{6kq}{am}}$  D)  $\sqrt{\frac{18kq^2}{am}}$ 

**23.** По трём прямым, бесконечным, параллельным проводникам A, B, C в одну сторону текут равные токи I. Первый проводник на расстоянии d образует магнитную индукцию B. Чему равен модуль общей магнитной индукции в точке 3?

A) 5B/30 B) 2B/3 C) 5B/2 D) 3B/2

- **24.** Напряжение первого конденсатора U, электрическая ёмкость C. Напряжение второго конденсатора 2U, ёмкость 2C. Определить конечное напряжение, если эти конденсаторы соединить согласно знаков зарядов.
  - A) 5U/3 B) 7U/3 C) 7U/4 D) 7U/5
- **25.** Частица со скоростью 0.9c догоняет другую частицу. Их относительная скорость 0.4c. Определить скорость второй частицы? A) 0.92c B) 0.67c C) 0.78c D) 0.88c
- 26. Две лампы с вольфрамовыми элементами накаливания подсоединены к сети постоянного напряжения параллельно, при этом первая лампа горит ярче. Как они будут гореть, если их соединить в сеть последовательно?
  - А) первая будет гореть ярче
  - В) обе будут гореть одинаково
  - С) вторая будет гореть ярче
  - D) сначала ярче будет гореть вторая лампа, затем первая

- **27.** Тело брошено с поверхности земли со скоростью 15 m/s под углом к горизонту. Какая будет скорость (m/s) тела на высоте 10 m?  $g{=}10 \text{ m/s}^2$ 
  - A) 12,5 B) 5 C) 8 D) 10
- **28.** Два тела начали равноускоренное движение из одной точки. Первое тело из состояния покоя с ускорением  $2 \text{ m/s}^2$ , второе с начальной скоростью 5 m/s и ускорением  $1 \text{ m/s}^2$ . Найти отношение их путей  $S_1/S_2$  к моменту, когда их скорости сравняются.
  - A) 4/3 B) 3/4 C) 3/2 D) 2/3
- **29.** Однородный стержень массой M, как показано на рисунке, приведён в равновесие грузом m=3 kg. Определить массу M (kg). Массой блоков пренебречь.



- A) 1,5 B) 9 C) 4,5 D) 6
- **30.** Определить общее сопротивление  $(\Omega)$  цепи, если  $R_1 = R_2 = R_3 = 9 \ \Omega$ .



A) 4,5 B) 18 C) 3 D) 27