

Sorting

insertion sort over idea ,reason it works , implentation and why does htis effect time complecity best case

merge sort over idea ,implentation and why does htis effect time complecity best case =worstcase

heap sort over idea, implentation and why does htis effect time complecity best case = worst case

why ios nlogn the most optimal? proof

Sorting Algorithms — Open Book Notes

Insertion Sort

Idea

- Build a **sorted prefix** from left to right.
- Insert each new element into its correct position in the prefix (by shifting larger elements right).

Why it works

- Any list of <2 elements is sorted.
- If a prefix is sorted, we can insert one new element and keep it sorted.
- By induction, this gives a fully sorted listlecture02_sorting (1).

Implementation sketch

- For each index i = 1..n-1:
 - Compare xs[i] backwards with elements in the sorted prefix.

Swap/shift until it's in place.

Complexity reasoning

- Inserting into a prefix of size k can require o(k) shifts.
- Total = 1+2+...+(n-1)=O(n2)
- Best case: already sorted → each insertion = O(1) → total O(n).
- Average/worst case: Θ(n²), since each element may be compared many times.

Merge Sort

Idea

- Divide list into halves, recursively sort each, then merge.
- Relies on merging two already sorted halves efficientlylecture02_sorting (1).

Why it works

- Merging two sorted lists takes linear time.
- Recursively sorting halves guarantees they're sorted before merging.
- Induction ensures correctness for full list.

Implementation sketch

- Base case: list length ≤ 1 is sorted.
- Recursive step: split in half, sort both halves, then merge.

Complexity reasoning

- Each merge step is O(n) for n elements.
- Recursion depth = log n.
- Total = $O(n \log n)$.
- Best = worst = average = O(n log n) (balanced recursion tree).

Heap Sort

ldea

- Use a heap (priority queue):
 - Build a max-heap from input (largest at root).
 - Repeatedly extract root, restore heap property, and append to sorted listlecture02_sorting (1).

Why it works

- A heap guarantees fast access to the largest element.
- Heapify maintains order efficiently.
- By extracting repeatedly, we eventually output sorted order.

Implementation sketch

- Build heap in O(n).
- For i = n..1:
 - Swap root with last element.
 - Reduce heap size, heapify root.

Complexity reasoning

- Build heap: O(n).
- Each extract+heapify: O(log n).
- n extracts total → O(n log n).
- Best = worst = average = O(n log n) (heap always rebalanced).

Why nlognn is Optimal (Decision Tree Argument)

Setup

- A comparison sort determines order using yes/no comparisons ("is a[i] ≤ a[j]?").
- Model as a binary decision tree:
 - Internal node = comparison.

Leaf = one possible sorted permutation.

Key facts

lecture02_sorting (1)

- There are n! possible input permutations.
- So decision tree must have ≥ n! leaves.
- A binary tree of height h has ≤ 2^h leaves.
- Thus:2h≥n!⇒h≥log2(n!)

Approximation (Stirling's formula)

log2(n!)≈nlog2n-nlog2e\

So height = $\Omega(n \log n)$.

Conclusion

- Any comparison-based sorting needs at least $\Omega(n \log n)$ comparisons.
- Merge sort and heapsort achieve O(n log n) → optimal.
- No comparison sort can be asymptotically faster.

✓ Summary Table

Algorithm	Best Case	Average Case	Worst Case	Reason
Insertion Sort	O(n)	O(n²)	O(n²)	Fixes inversions one by one
Merge Sort	O(n log n)	O(n log n)	O(n log n)	Divide-and- conquer, bulk resolves inversions
Heap Sort	O(n log n)	O(n log n)	O(n log n)	Heap property ensures log n per extract
Any Comparison Sort	≥ n log n	≥ n log n	≥ n log n	Decision tree lower bound

Sorting 4

Would you like me to format these notes into a **1-page condensed cheat sheet (PDF)** so it's easier to glance

Sorting 5