Aufgabenblatt 2

http://image.informatik.htw-aalen.de/~thierauf/

- 1. Geben Sie DFAs für folgende Sprachen über dem Alphabet $\Sigma = \{0, 1\}$ an.
 - a) $U = \{ w \mid w \text{ hat ungerade Länge } \}$
 - b) AXA = $\{ axa \mid a \in \Sigma \text{ und } x \in \Sigma^* \}$
 - c) Ø
 - d) Σ^*
 - e) $\Sigma^+ = \Sigma^* \{\varepsilon\}$
 - f) $\Sigma^* \{11, 111\}$
 - g) $GU = \{0^n 1^m \mid n \text{ gerade } \iff m \text{ ungerade}\}\$
 - h) $\{w \mid w \text{ enthält } 01011 \text{ als Teilwort } \}$
 - i) $\{w \mid w \text{ enthält nicht } 110 \text{ als Teilwort } \}$
- **2.** Welche der folgenden Wörter werden von dem unten abgebildeten NFA akzeptiert? ε , a, baaaa, b, bbb, baba, bbaa. Geben Sie einen äquivalenten DFA an.

- 3. Geben Sie zunächst NFAs und dann DFAs für folgende Sprachen an
 - a) Alle Wörter über $\{0,1\}$ der Länge ≥ 3 , die als dritt-letzes Zeichen eine 1 haben. Zum Beispiel gehört 00100 dazu, aber nicht 0011.
 - b) Alle Wörter über $\{1\}$ der Form 1^n , so dass n ein Vielfaches von 2 oder von 3 ist. Zum Beispiel gehört $1^4 = 1111$ dazu, aber nicht $1^5 = 11111$.
- **4.** Geben Sie (verbale Beschreibungen von) Algorithmen an, die folgende Problemstellungen für reguläre Sprachen möglichst effizient lösen.
 - a) Gegeben ein DFA M und $x \in \Sigma^*$. Ist $x \in L(M)$?
 - b) Gegeben ein NFA M und $x \in \Sigma^*$. Ist $x \in L(M)$?
 - c) Gegeben eine reguläre Grammatik G und $x \in \Sigma^*$. Ist $x \in L(G)$?