- y = f(x) + e, f(x) = a + bx.
- 最小二乘拟合系数、最大似然估计、最优线性无偏估计: $\hat{a} = \bar{y} \hat{b}\bar{x}, \quad \hat{b} = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})}{\sum_{i=1}^{n} (x_i \bar{x})^2} = \frac{\ell_{xy}}{\ell_{xx}}.$
- 残差平方和: $Q = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=3}^{n} Z_i^2$, 回归平方和: $U = \sum_{i} (\hat{y}_i - \bar{y})^2 = (\sqrt{\ell_{xx}}b + Z_2)^2$,
- $\frac{1}{\sigma^2}Q \sim \chi^2(n-2)$, $\frac{1}{\sigma^2}U_0 \sim \chi^2(1)$, 在某种意义下, $U_0 \leqslant U_b$.
- Q 与U 相互独立.
- 直观: $Q, U, \ell_{yy} = \sum_{i} (y_i \bar{y})^2$ 都是N(0, *) 的平方和. ℓ_{yy} : 自由度为n-1 (1个约束条件 $\sum_{i} (y_i \bar{y}) = 0$). U: 自由度(维数)为1, $\hat{y}_i \bar{y} = \hat{b}(x_i \bar{x})$. $Q = \ell_{yy} U$: 自由度为(n-1) 1 = n-2.

假设检验问题 $H_0: b = 0 \leftrightarrow H_1: b \neq 0$.

- 否定 H_0 , 则表明y 与x 之间有线性依赖关系.
- 若 H_0 成立,则 $\frac{1}{\sigma^2}Q \sim \chi^2(n-2), \frac{1}{\sigma^2}U \sim \chi^2(1),$ $\frac{U}{Q/(n-2)} \sim F(1, n-2).$
- 否定域: $W = \{(\vec{x}, \vec{y}) : \frac{U}{Q/(n-2)} > \lambda\}$. 在某种意义下, $U_0 \leq U_b$.
- 根据水平 α 选择 λ . $P(F_{1,n-2} > \lambda) = \alpha$.

例2.1. 根据散点图建立函数关系 $y = e^a e^{bx}$,

即回归关系式 $z = \log y = a + bx + e$.

x = 注射后天数, y = 金残留量.

- 求 \bar{x} , \bar{z} ; $\hat{b} = \frac{\ell_{xz}}{\ell_{xx}}$, $\hat{a} = \bar{z} \hat{b}\bar{x}$. 以及 $\hat{z}_i = \hat{a} + \hat{b}x_i$.
- 求残差平方和: $Q = \sum_{i} (z_i \hat{z}_i)^2$ 与回归平方和: $U = \sum_{i} (\hat{z}_i - \bar{z})^2$.
- 根据 $P(F_{1,n-2} = F_{1,5} > \lambda) = \alpha = 0.05$,查表得 $\lambda = 6.61$. $\frac{U}{Q/(n-2)} = 344.82 > \lambda$ 否定 H_0 ,强烈认可z 线性依赖于x.
- 自习图9.9.2 ~ 9.2.5.

§9.3 多元线性回归

- 函数关系: $y = a + b_1 x_1 + \dots + b_p x_p + e = a + \mathbf{x} \mathbf{b} + e$. $\mathbf{x} = (x_1, \dots, x_p)$ 行向量, $\mathbf{b} = (b_1, \dots, b_p)^T$ 列向量.
- 数据: y_i ; $\mathbf{x}_i = (x_{i1}, \dots, x_{ip}), i = 1, \dots, n$. 均值: \bar{y} ; $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$.
- 回归模型: $y_i = a + \mathbf{x}_i \mathbf{b} + e_i$, $e_1, \dots, e_n \sim \text{i.i.d. } N(0, \sigma^2)$. $\mathbf{y} = a\vec{1} + \mathbf{X}\mathbf{b} + \mathbf{e}$, 其中 $\mathbf{y} = (y_i)_{n \times 1}$, $\mathbf{X} = (x_{ij})_{n \times p}$.
- 最小二乘、最优(定理3.1,3.3): $\hat{a} = \bar{y} - \hat{b}\bar{x} \longrightarrow \bar{y} - \mathbf{X}\hat{\mathbf{b}},$ $\hat{\mathbf{b}} = \frac{1}{\ell_{xx}}\ell_{xy} \longrightarrow (\tilde{\mathbf{X}}^T\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^T\tilde{\mathbf{y}} = (\tilde{\mathbf{X}}^T\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^T\mathbf{y},$ $\tilde{\mathbf{x}}_i = \mathbf{x}_i - \bar{\mathbf{x}}, \ \tilde{\mathbf{y}} = \mathbf{y} - \bar{y}\mathbf{1}. \ \underline{\tilde{\mathbf{X}}}^T\mathbf{1} = 0.$
- $\bullet \hat{\mathbf{b}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{X} \mathbf{b} + (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{e}$

假设检验 $H_0: \mathbf{b} = 0 \leftrightarrow H_1: \mathbf{b} \neq 0.$

•
$$\hat{y}_i - \bar{y} = \hat{b}(x_i - \bar{x}) \longrightarrow (\mathbf{x}_i - \bar{\mathbf{x}})\hat{\mathbf{b}}$$

$$U = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = \sum_{i=1}^n ((\mathbf{x}_i - \bar{\mathbf{x}})\hat{\mathbf{b}})^2 = \|\tilde{\mathbf{X}}\hat{\mathbf{b}}\|^2.$$
自由度(维数)为p: $\hat{y}_i - \bar{y} = \sum_{j=1}^p \hat{b}_j (x_{ij} - (\bar{\mathbf{x}})_j).$

$$\bullet \frac{1}{\sigma^{2}}U \overset{H_{0}}{\sim} \chi^{2}(p).$$

$$\tilde{\mathbf{X}}\hat{\mathbf{b}} \stackrel{H_{0}}{=} \underline{\tilde{\mathbf{X}}(\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{T}}\mathbf{e}.$$

$$\frac{1}{\sigma^{2}}EU = \operatorname{Tr}(\underline{\tilde{\mathbf{X}}(\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}}(\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{T}}) = \operatorname{Tr}(\underline{(\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}}(\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}})^{-1}}_{p \times p}(\tilde{\mathbf{X}}^{T}\underline{\tilde{\mathbf{X}}})_{p \times p}) = \operatorname{Tr}(\mathbf{I})_{\mathbf{p} \times \mathbf{p}} = \mathbf{p}.$$

$$\bullet \frac{1}{\sigma^2} Q \sim \chi^2 (n - 1 - p).$$

$$y_i - \hat{y}_i = (y_i - \bar{y}) - (\hat{y}_i - \bar{y}) = \tilde{y}_i - (\mathbf{x}_i - \bar{\mathbf{x}}) \hat{\mathbf{b}}.$$

$$Q = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \|\tilde{\mathbf{y}} - \tilde{\mathbf{X}} \hat{\mathbf{b}}\|^2.$$

•
$$\frac{U/p}{Q/(n-p-1)} \stackrel{H_0}{\sim} F(p, n-p-1).$$
 否定域: $W = \{\frac{U/p}{Q/(n-p-1)} > \lambda\}$, 其中 $P(F_{p,n-p-1} > \lambda) = \alpha$.

§10.1 统计决策问题概述

例1.1. θ_1 好, θ_2 坏; a_1 保留, a_2 更换, a_3 修理.

表 10.1.1 损失函数 L(\theta,a)的值							
$L(\theta,a)$ a θ	a_1	a_2	a_3				
θ_1	0	10	5				
θ_2	12	1	6				

• 状态: $\theta = \theta_1$ 或 θ_2 .

• 行动: a_1 , a_2 , a_3 . 行动空间 $A = \{a_1, a_2, a_3\}$.

• 损失: 比如 $L(\theta_1, a_2) = 10$: 如果是好零件, 更换它, 损失为10.

• 本应根据 θ 采取行动使得L 最小, 但是 θ 不可观测!

● 样本: X = 1(正常); X = 0(发烫). 可观测. 根据x 采取行动.

• $X 与 \theta$ 有关: $X \sim P_{\theta}$.

决策与风险.

● 决策函数: 根据观测值采取行动.

如: $\delta_7 = 若发烫则a_3 = 修理, 若正常则a_1 = 保留.$

The state of		表 10.	1.3	9个决策	函数的	列表	-	40000	
δ	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8	8
8(0)	a_1	a_1	a_1	a_2	a_2	a_2	a_3	a_3	a
$\delta(1)$	a_1	$\overline{a_2}$	a_3	a_1	a_2	a_3	a_1	a_2	a ₃

每个X 的观测值x,有3种可选行动.因此,共 3×3 个决策.

• 风险函数: 决策带来的平均损失.

$$P_{\theta}$$
: $P_{\theta_1=\cancel{y}}(X=0=\cancel{z}\cancel{z})=0.3$, $P_{\theta_2}(X=0)=0.6$.
 y_1 : $R(\theta_1,\delta_2)=P_{\theta_1}(X=0)L(\theta_1,a_1)+P_{\theta_1}(X=1)L(\theta_1,a_2)$
 $=0.3\times 0+0.7\times 10=7$.

决策的优劣:

8	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8	8
$R(\theta_1,\delta)$	0	7	3.5	3	10	6.5	1.5	8.5	5
$R(\theta_2,\delta)$	12	7.6	9.6	5.4	1	3	8.4	4	6

- 不可容许的: 如 δ_2 . $R(\theta, \delta_2) \geqslant R(\theta, \delta_4), \forall \theta, 且存在严格不等号.$
- 该例题不存在<u>一致最优</u>的 δ : 对任意 $\tilde{\delta}$ 都有 $R(\theta, \tilde{\delta}) \geqslant R(\theta, \delta), \forall \theta$.
- 极小极大准则: 选δ4 使得其最大风险5.4 是最小的.

贝叶斯决策.

- 将 θ 视为随机的: 如, 假设某零件"好"的概率为0.7, 先验分布: $\pi(\theta_1) = 0.7$, $\pi(\theta_2) = 0.3$.
- 平均风险: $\pi(\theta_1)R(\theta_1,\delta) + \pi(\theta_2)R(\theta_2,\delta)$.

		W 10. 1	.5 各	人米四多	2031-	JW6127 IE			
8	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8	89
平均风险	3.6	5.13	12.48	3.72	7.20	5.45	3, 57	7. 15	5. 3

• 选择 δ_7 , 使得平均风险达到最小.

一般情形.

- 状态(空间): θ∈ Θ.
 行动(空间): a∈ A.
 损失函数: L(θ, a).
- 样本(空间): X ~ P_θ, 取值x ∈ X.
 策略函数: δ: X → A, δ(x) = a.
 风险函数: R(θ, δ) = E_θL(θ, δ(X)), a = δ(X).
- 极小极大准则:
 选择δ* 使得max_{θ∈Θ} R(θ,δ) 在δ = δ* 达到最小.
- 贝叶斯决策:
 将θ 视为取值于Θ 的随机变量,分布为π.
 选择δ* 使得E_πR(θ,δ) 在δ = δ* 达到最小.

◆ロト ◆個ト ◆意ト ◆意ト ■ めの○