
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2010; month=1; day=19; hr=10; min=55; sec=46; ms=248;]

Reviewer Comments:

<210> 1

<211> 776

<212> PRT

<213> mammalian

The above <213> response is invalid, per 1.823 of the Sequence Rules. The only valid responses are: the Genus species of the organism, "Artificial Sequence," or "Unknown". "Artificial Sequence" and "Unknown" require explanation in the <220>-<223> section; please indicate the source of the genetic material. For example, "mammalian" would be an acceptable explanation for "Unknown". Same error in Sequence 2.

<210> 11

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 11

As an explanation of "<213> Artificial Sequence", the above <223> response is insufficient. The sequence is obviously a peptide sequence. Please indicate the source of the genetic material; same error in Sequences 12-14.

Validated By CRFValidator v 1.0.3

Application No: 10568396 Version No: 3.0

Input Set:

Output Set:

Started: 2009-12-30 18:59:37.288 **Finished:** 2009-12-30 18:59:38.532

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 244 ms

Total Warnings: 14
Total Errors: 0

No. of SeqIDs Defined: 14

Actual SeqID Count: 14

Error code		Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)

SEQUENCE LISTING

<110)>	THE	TRUS	TEES	OF	COLU	MBIA	UNI	/ERS	ITY :	IN TI	HE C	ETY (OF NE	EW Y	ORK
<120)>	ZAP	PROTI	EIN .	AND	RELA:	ΓED	COMP	OSIT:	IONS	AND	METH	HODS			
<130)>	6748	9-PC'	I/JP	W/JW	•										
<140)>	1056	8396													
<141	L>	2006	-08-	31												
<150)> P	CT/U	s200	4/02	6162											
<151	L>	2004	-08-	12												
<160)>	14														
<170)>	Pate	ntIn	ver	sion	3.5										
<210)>	1														
<211	L>	776														
<212	2>	PRT														
<213	3>	mamm	alia	n												
<400)>	1														
Met 1	Ala	Asp	Pro	Gly 5	Val	Суз	Cys	Phe	Ile 10	Thr	Lys	Ile	Leu	Cys 15	Alá	a
His	Gly	Gly	Arg 20	Met	Thr	Leu	Glu	Glu 25	Leu	Leu	Gly	Glu	Ile 30	Arg	Lei	1
Pro	Glu	Ala 35	Gln	Leu	Tyr	Glu	Leu 40	Leu	Glu	Thr	Ala	Gly 45	Pro	Asp	Arç	1
Phe	Val 50	Leu	Leu	Glu	Thr	Gly 55	Gly	Gln	Ala	Gly	Ile 60	Thr	Arg	Ser	Val	L
Val 65	Ala	Thr	Thr	Arg	Ala 70	. Arg	Val	Cys	Arg	Arg 75	Lys	Tyr	Суз	Gln	Arq 80	3
Pro	Суз	Asp	Ser	Leu 85	His	Leu	Суз	Lys	Leu 90	Asn	Leu	Leu	Gly	Arg 95	Суя	3
His	Tyr	Ala	Gln 100	Ser	Gln	Arg	Asn	Leu 105	Cys	Lys	Tyr	Ser	His	Asp	Val	L
Leu	Ser	Glu	Gln	Asn	Phe	Gln	Ile	Leu	Lvs	Asn	His	Glu	Leu	Ser	Glv	,

Leu	Asn 130	Gln	Glu	Glu	Leu	Ala 135	Cys	Leu	Leu	Val	Gln 140	Ser	Asp	Pro	Phe
Phe 145	Leu	Pro	Glu	Ile	Cys 150	Lys	Ser	Tyr	Lys	Gly 155	Glu	Gly	Arg	Lys	Gln 160
Thr	Суз	Gly	Gln	Pro 165	Gln	Pro	Суз	Glu	Arg 170	Leu	His	Ile	Суз	Glu 175	His
Phe	Thr	Arg	Gly 180	Asn	Cys	Ser	Tyr	Leu 185	Asn	Cys	Leu	Arg	Ser 190	His	Asn
Leu	Met	Asp 195	Arg	Lys	Val	Leu	Thr 200	Ile	Met	Arg	Glu	His 205	Gly	Leu	Ser
Pro	Asp 210	Val	Val	Gln	Asn	Ile 215	Gln	Asp	Ile	Cys	Asn 220	Asn	Lys	His	Ala
Arg 225	Arg	Asn	Pro	Pro	Gly 230	Thr	Arg	Ala	Ala	His 235	Pro	His	Arg	Arg	Gly 240
Gly	Ala	His	Arg	Asp 245	Arg	Ser	Lys	Ser	Arg 250	Asp	Arg	Phe	Leu	His 255	Asn
Ser	Leu	Glu	Phe 260	Leu	Ser	Pro	Val	Val 265	Ser	Pro	Leu	Gly	Ser 270	Gly	Pro
Pro	Ser	Pro 275	Asp	Val	Thr	Ser	Cys 280	Lys	Asp	Ser	Leu	Glu 285	Asp	Val	Ser
Val	Asp 290	Val	Thr	Gln	Lys	Phe 295	Lys	Tyr	Leu	Gly	Thr 300	His	Asp	Arg	Ala
Gln 305	Leu	Ser	Pro	Val	Ser 310	Ser	Lys	Ala	Ala	Gly 315	Val	Gln	Gly	Pro	Ser 320
Gln	Met	Arg	Ala	Ser 325	Gln	Glu	Phe	Ser	Glu 330	Asp	Gly	Asn	Leu	Asp 335	Asp
Ile	Phe	Ser	Arg 340	Asn	Arg	Ser	Asp	Ser 345	Ser	Ser	Ser	Arg	Ala 350	Ser	Ala

Ala Lys Val Ala Gln Arg Asn Glu Ala Val Ala Met Lys Met Gly Met

355 360 365

Glu Val Lys Gly Lys Lys Glu Ala Pro Asp Ile Asp Arg Val Pro Phe 370 375 380 Leu Asn Ser Tyr Ile Asp Gly Val Thr Met Glu Lys Ala Ser Val Ser 385 390 395 Gly Ile Pro Gly Lys Lys Phe Thr Ala Asn Asp Leu Glu Asn Leu Leu 405 410 415 Leu Leu Asn Asp Thr Trp Lys Asn Val Ala Lys Pro Gln Asp Leu Gln 420 425 Thr Thr Gly Arg Ile Thr Asp Ser Gly Gln Asp Lys Ala Phe Leu Gln 435 440 445 Asn Lys Tyr Gly Gly Asn Pro Val Trp Ala Ser Ala Ser Thr His Asn 450 455 460 Ala Pro Asn Gly Ser Ser Gln Ile Met Asp Glu Thr Pro Asn Val Ser 465 470 475 480 Lys Ser Ser Thr Ser Gly Phe Ala Ile Lys Pro Ala Ile Ala Gly Gly 485 490 Lys Glu Ala Val Tyr Ser Gly Val Gln Ser Pro Arg Ser Gln Val Leu 505 500 510 Ala Val Pro Gly Glu Ala Thr Thr Pro Val Gln Ser Asn Arg Leu Pro 515 520 525 Gln Ser Pro Leu Ser Ser Ser His Arg Ala Ala Ala Ser Gly Ser 535 530 Pro Gly Lys Asn Ser Thr His Thr Ser Val Ser Pro Ala Ile Glu Ser 545 550 555 560 Ser Arg Met Thr Ser Asp Pro Asp Glu Tyr Leu Leu Arg Tyr Ile Leu 570 565

Asn Pro Leu Phe Arg Met Asp Asn His Gly Pro Lys Glu Ile Cys Gln

585

590

580

Asp His Leu Tyr Lys Gly Cys Gln Gln Ser His Cys Asp Arg Ser His 600

Phe His Leu Pro Tyr Arg Trp Gln Met Phe Val Tyr Thr Trp Arg 610 615 620

Asp Phe Gln Asp Met Glu Ser Ile Glu Gln Ala Tyr Cys Asp Pro His 625 630 635 640

Val Glu Leu Ile Leu Ile Glu Asn His Gln Ile Asn Phe Gln Lys Met 645 650 655

Thr Cys Asp Ser Tyr Pro Ile Arg Arg Leu Ser Thr Pro Ser Tyr Glu 660 665 670

Glu Lys Pro Leu Ser Ala Val Phe Ala Thr Lys Trp Ile Trp Tyr Trp 675 680 685

Lys Asn Glu Phe Asn Glu Tyr Ile Gln Tyr Gly Asn Glu Ser Pro Gly 690 695 700

His Thr Ser Ser Asp Ile Asn Ser Ala Tyr Leu Glu Ser Phe Phe Gln 710 715 705 720

Ser Cys Pro Arg Gly Val Leu Pro Phe Gln Ala Gly Ser Gln Lys Tyr 725 730 735

Glu Leu Ser Phe Gln Gly Met Ile Gln Thr Asn Ile Ala Ser Lys Thr 740 745 750

Gln Arg His Val Val Arg Arg Pro Val Phe Val Ser Ser Asn Asp Val 755 760 765

Glu Gln Lys Arg Arg Gly Pro Glu 770 775

<210> 2

<211> 2331

<212> DNA

<213> mammalian

<400> 2

atgaccctgg	aggaactgct	gggtgagatc	aggctccccg	aggegeaget	ctacgagctg	120	
ctggagacgg	cggggcccga	tcgcttcgtg	ctattggaga	ctggaggcca	ggccgggatc	180	
acteggtetg	tagtggctac	tactcgagcc	cgcgtctgcc	gtcggaagta	ctgccagaga	240	
ccctgcgaca	gcctgcacct	ctgcaagctt	aatctgctcg	gccggtgcca	ctatgcacag	300	
tctcagcgga	acctctgcaa	atattctcac	gatgttctct	cggaacagaa	cttccagatc	360	
ctgaagaatc	atgagetete	tgggcttaac	caagaggagc	tagcttgcct	cctggtccaa	420	
agcgaccctt	ttttcctgcc	cgagatatgc	aagagttaca	aaggagaggg	ccgaaaacag	480	
acctgtgggc	agccacagcc	atgcgagaga	ctccacatct	gtgagcactt	cacccggggc	540	
aactgcagtt	acctcaactg	tctcaggtct	cacaacctga	tggacagaaa	ggtgttgacc	600	
atcatgaggg	agcacgggct	gagtcctgat	gtggtccaga	acatccagga	catctgcaac	660	
aacaaacacg	ccaggaggaa	cccgcctggc	acgagagctg	cccatccaca	ccgcagaggc	720	
ggcgcacaca	gagacagaag	caaaagcaga	gaccgcttcc	ttcacaacag	tctagaattt	780	
ctctcacctg	ttgtctcacc	tctgggatct	ggtccgccta	gcccagatgt	caccagctgt	840	
aaagattccc	tggaggatgt	gtctgtggat	gtcacccaga	agttcaagta	cttggggacg	900	
catgaccgtg	cgcagctctc	cccagtctca	tctaaggctg	ctggtgttca	aggacccagt	960	
caaatgagag	caagccaaga	gttttcagag	gatgggaatc	tagatgacat	attttctagg	1020	
aatcgttctg	attcatcatc	aagtcgagcc	tccgctgcca	aggtggcaca	aagaaatgaa	1080	
gctgtggcca	tgaaaatggg	catggaggtc	aagggcaaga	aggaggctcc	agacatcgat	1140	
cgggtcccat	ttttaaatag	ttatattgat	ggggtgacca	tggaaaaagc	atcggtctca	1200	
ggaattccag	gcaaaaagtt	cacagccaat	gatctggaaa	atttgctatt	acttaacgac	1260	
acttggaaga	atgtggctaa	gccccaggat	ctgcagacca	caggcagaat	cactgacagt	1320	
ggccaagaca	aggcattcct	gcagaataaa	tatggaggaa	acccagtgtg	ggcaagtgca	1380	
tccacccata	atgccccaaa	tggctctagt	caaattatgg	atgaaactcc	taatgtctct	1440	
aaaagtagta	ccagtggttt	tgccataaaa	ccagcaattg	ctggaggaaa	agaagcagtc	1500	
tattctggag	ttcagagtcc	gagaagccag	gtcctagctg	tgcctgggga	ggctactacc	1560	
cctgtacaga	gcaacaggct	gcctcagtcg	cctctgtctt	cctcaagcca	cagagctgca	1620	
gcctctggga	gccctggcaa	gaactccacc	catacctctg	tgagcccagc	catcgagtct	1680	
tcaaggatga	catcagaccc	cgatgagtat	ctcctacgct	acatcctaaa	tcctttattt	1740	

aggatg	gata atcatggo	ccc gaaggaaatc	tgtcaggacc	atctgtacaa	gggctgtcaa	1800
cagagco	cact gcgacago	gag tcacttccat	ctgccctacc	ggtggcagat	gttcgtatat	1860
accact	tgga gggactto	cca ggacatggag	tctatcgaac	aggcctattg	tgatccccac	1920
gttgaad	ctca ttttgata	aga aaaccatcag	atcaatttcc	agaaaatgac	ctgtgactcc	1980
tacccc	atcc gacgccto	ctc cactccctca	tatgaggaaa	agccacttag	tgctgtcttc	2040
gccacca	aagt ggatttg	gta ttggaagaat	gaatttaatg	aatatatcca	gtatgggaat	2100
gagagc	ccag gccacac	cag ctctgacatc	aactctgcgt	acctggagtc	tttcttccag	2160
tcttgt	ccca ggggagtt	tt gccattccag	gctggttcac	agaagtacga	gttaagcttc	2220
caaggga	atga ttcagaca	aaa tatagcttcc	aagactcaaa	ggcatgttgt	cagaaggcca	2280
gtattt	gttt cttcgaad	cga tgtggagcag	aagagaagag	gtccagagtg	a	2331
<210> <211> <212> <213> <223>	3 78 DNA Artificial S	Sequence				
<400>	3					
ataagct	ttgc caccatgo	gct tstccststg	stgttccaga	tatgctgaat	teggeggeeg	60
cgccaaq	gttg accagtgo	2				78
<210><211><211><212><213>	26 DNA	Sequence				
<220> <223>	PCR Primer					
<400> atatcga	4 attc agtcctgo	ete etegge				26
<210><211><211><212><213>		Sequence				
<220> <223>	Oligonucleot	ide				
<400>	5					

ctagataact tcgtataatg tatgctatac gaagttat

38

```
<210> 6
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 6
                                                                      38
ctagataact tcgtatagca tacattatac gaagttat
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR Primer
<400> 7
                                                                      25
gcttatccat atgatgttcc agatt
<210> 8
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR Primer
<400> 8
atataggcgg ccgccctctg gacctcttct cttc
                                                                      34
<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR Primer
<400> 9
                                                                      19
gagctctctg ggcttaacc
<210> 10
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
```

<223> PCR Primer

<210> 14 <211> 18 34

<210> 11 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> peptide <400> 11 Cys Arg Arg Lys Tyr Cys Gln Arg Pro Cys Asp Ser Leu His 5 10 <210> 12 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> peptide <400> 12 Cys Lys Leu Asn Leu Leu Gly Arg Cys His Tyr Ala Gln Ser Gln Arg 1 5 10 15 Asn Leu Cys Lys Tyr Ser His 20 <210> 13 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> peptide <400> 13 Cys Lys Ser Tyr Lys Gly Glu Gly Arg Lys Gln Thr Cys Gly Gln Pro 10 Gln Pro Cys Glu Arg Leu His 20

<212> PRT
<213> Artificial Sequence

<220>
<223> peptide

<400> 14

Cys Glu His Phe Thr Arg Gly Asn Cys Ser Tyr Leu Asn Cys Leu Arg 1 5 10 15

Ser His