Closed form for Fibonacci Sequence (advertisement for vector spaces and eigendecomposition)

MATH2212 Spring 2022

January 26, 2022

Theorem 1 (Binet's formula). Let $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Now let $\phi = (1 + \sqrt{5})/2$. Then

$$F_n = \frac{1}{\sqrt{5}}\phi^n - \frac{1}{\sqrt{5}}\left(-\frac{1}{\phi}\right)^n \quad \text{for all } n \ge 0.$$

Proof using vector spaces. Let us consider the set V of all real-valued sequences $(a_n)_{n=0}^{\infty}$ satisfying $a_n = a_{n-1} + a_{n-2}$ for $n \geq 2$. We can see that V is a vector space over \mathbb{R} because the sum of two sequences satisfying the recurrence still satisfies the recurrence, and any scalar multiple of a sequence satisfying the recurrence still satisfies the recurrence. Moreover, a sequence in V is determined by its first two terms a_0 and a_1 , which can be freely chosen, so V is a 2-dimensional vector space over \mathbb{R}

Let ϕ be the positive root of x^2-x-1 (i.e. the golden ratio), so its negative root is $-1/\phi$. The sequences $(1,\phi,\phi^2,\dots)$ and $(1,-1/\phi,(-1/\phi)^2,\dots)$ are both in V and are linearly independent, and therefore form a basis of V since V is 2-dimensional. Hence $(F_0,F_1,F_2,\dots)=c_1(1,\phi,\phi^2,\dots)+c_2(1,-1/\phi,(-1/\phi)^2,\dots)$ for some c_1 and c_2 . This yields an infinite sequence of linear equations involving c_1 and c_2 . Using the first two of these to solve for c_1 and c_2 we get $c_1=\frac{1}{\sqrt{5}}$ and $c_2=-\frac{1}{\sqrt{5}}$, thus obtaining the formula

$$F_n = \frac{1}{\sqrt{5}}\phi^n - \frac{1}{\sqrt{5}}\left(-\frac{1}{\phi}\right)^n \quad \text{for all } n \ge 0.$$

A bit more detail on how to solve for c_1 and c_2 . In what follows, I have renamed ϕ to r and $-1/\phi$ to s. As above, the sequences $(1, r, r^2, r^3, \ldots)$ and $(1, s, s^2, s^3, \ldots)$ are both in V and are linearly independent, so they form a basis of V. That is, every element of V is a real linear combination of these two sequences. In particular, $(0, 1, 1, 2, 3, \ldots)$, the Fibonacci sequence, is a linear combination of $(1, r, r^2, r^3, \ldots)$ and $(1, s, s^2, s^3, \ldots)$. So there are unique real numbers c_1 and c_2 such that

$$(0,1,1,2,3,\dots) = c_1(1,r,r^2,\dots) + c_2(1,s,s^2,\dots).$$

If we expand what this says, this says that

$$F_0 = 0 = c_1 + c_2$$

 $F_1 = 1 = c_1 r + c_2 s$
 \vdots
 $F_n = c_1 r^n + c_2 s^n$ for all $n \ge 2$.

The first two lines allow us to solve for c_1 and c_2 : the first line says $c_2 = -c_1$, and this combined with the second line implies that $c_1 = \frac{1}{r-s} = -\frac{1}{\sqrt{5}}$ (because $r-s = \sqrt{5}$). \square

Proof by eigendecomposition. Let $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Then one can verify (by induction) that

$$M^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$
 for all $n \ge 1$.

Now M has eigenvalues $\phi = (1 + \sqrt{5})/2$ and $-1/\phi = (1 - \sqrt{5})/2$ because the characteristic polynomial of M is $x^2 - x - 1$. The matrix M has eigendecomposition

$$M = \begin{pmatrix} \phi & -\frac{1}{\phi} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \phi & 0 \\ 0 & -\frac{1}{\phi} \end{pmatrix} \begin{pmatrix} \phi & -\frac{1}{\phi} \\ 1 & 1 \end{pmatrix}^{-1}$$
$$= \frac{1}{\sqrt{5}} \begin{pmatrix} \phi & -\frac{1}{\phi} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \phi & 0 \\ 0 & -\frac{1}{\phi} \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\phi} \\ -1 & \phi \end{pmatrix}.$$

The purpose of this eigendecomposition is that powers of M now have a closed form:

$$M^{n} = \begin{pmatrix} \phi & -\frac{1}{\phi} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \phi^{n} & 0 \\ 0 & \left(-\frac{1}{\phi}\right)^{n} \end{pmatrix} \begin{pmatrix} \phi & -\frac{1}{\phi} \\ 1 & 1 \end{pmatrix}^{-1}$$

$$= \frac{1}{\sqrt{5}} \begin{pmatrix} \phi & -\frac{1}{\phi} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \phi^{n} & 0 \\ 0 & \left(-\frac{1}{\phi}\right)^{n} \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\phi} \\ -1 & \phi \end{pmatrix}$$

$$= \frac{1}{\sqrt{5}} \begin{pmatrix} \phi & -\frac{1}{\phi} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \phi^{n} & \phi^{n-1} \\ -\left(-\frac{1}{\phi}\right)^{n} & \phi\left(-\frac{1}{\phi}\right)^{n} \end{pmatrix}.$$

We only want F_n , so let's compute the top right entry of the product. We find that it is

$$\frac{1}{\sqrt{5}} \left(\phi^n - \left(-\frac{1}{\phi} \right)^n \right),\,$$

as promised. \Box