

Banco de Dados I

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Profa. Rebeca Schroeder Freitas Prof. Fabiano Baldo

- Modelo representado de forma textual
- Representa como os dados serão agrupados
- > Se baseia na tecnologia de BD

É um modelo baseado em regras

- Objetivos e Princípios:
 - ☐ Bom desempenho
 - Evitar junções de registros ter os dados necessários em um único registro
 - Diminuir número de chaves; evitar chaves desnecessárias chaves ocupam espaço adicional em disco
 - Evitar campos opcionais
 - ☐ Menor manutenibilidade

Passos para a transformação [conceito] → [lógico]

- 1. Tradução das Entidades e seus Atributos
- 2. Tradução de Generalizações / Especializações
- 3. Tradução de Relacionamentos e seus Atributos

* Passos para a transformação em modelo relacional

Nomenclatura:

- Chave Primária: atributo identificador; identifica unicamente um registro
- Chave Estrangeira: uma referência a chave primária de outra tabela
- Chave Alternativa: atributo identificador que não é uma boa chave primária, pois seria uma chave estrangeira ruim

Representação:

NomeTabela (coluna1, coluna2, ..., coluna n)

Mapeamento de Entidades e Atributos

- \triangleright Entidade \rightarrow Tabela
- ➤ Atributo de Entidade → Coluna da Tabela
- ➤ Atributos Identificadores → Chave Primária

Notação:

- # atributo que faz parte de chave primária
- & atributo que faz parte de chave estrangeira
- [] atributo opcional

Mapeamento de Entidades e Atributos

Exemplo: Como ficaria o mapeamento lógico?

Mapeamento de Atributo Opcional, Composto e Multivalorado

- > Atributo opcional se torna uma coluna opcional
- > Atributo composto é decomposto em colunas
- > Atributo multivalorado se torna uma nova tabela

Poderia ser Email(#&RG, email) ???

Clientes (#RG, nome, [CNH], rua, bairro, CEP)
Email (#&RG, #email) ou Email (#cod, &RG, email)

Tabela única para toda hierarquia

- ➤ Atributos de entidade especializada vira opcional
- Cria-se restrições de integridade para especializações

Restrições de Integridade:

se Pessoa Física

 \rightarrow tipo = 1 / CPF \neq null

se Pessoa Jurídica

 \rightarrow tipo = 2 / CNPJ \neq null

Pessoas (#código, nome, endereco, [CPF], [CNPJ])

Tabelas para entidade genérica e especializadas

Entidades especializadas ganham chave estrangeira

Tabelas somente para as entidades especializadas

- Entidades especializadas herdam atributos da entidade genérica
- Não aplicável a especializações parciais!

PessoasFisicas (#&código, nome, endereco, CPF)

PessoasJurídicas (#&código, nome, endereco, CNPJ)

As especializações podem ser projetadas como:

- Tabela única para toda hierarquia
 - o boa quando especializações não tem muitos atributos
- Tabelas para entidade genérica e especializadas
 - o boa quando entidades genérica e especializadas possuem muitos atributos e/ou relacionamentos
- Tabelas somente para as entidades especializadas
 - boa quando a entidade genérica possui poucos atributos e relacionamentos, mas não aplicável em alguns casos

Exercício 2: Como ficaria o mapeamento lógico?

Exercício 3: Como ficaria o mapeamento lógico?

Mapeamento de Relacionamentos

- O projeto lógico dos relacionamentos depende da cardinalidade mínima e máxima
- Os relacionamentos podem ser projetadas como:
 - Fusão entre entidades relacionadas
 - Comum para cardinalidades menores
 - Adição de colunas para representar relacionamento
 - Comum para relacionamentos opcionais
 - Nova tabela para relacionamento
 - Comum para cardinalidades maiores

Relacionamento obrigatório em ambos os sentidos Fusão de entidades

Eventos (#código, nome, dataInstCom, nroCom, nomeCom)

Relacionamento opcional em um dos sentidos

➤ Opção 1: fusão de entidades

Bibliotecárias (#código, nome, [codArea], [nomeArea], [periodicidade])

Relacionamento opcional em um dos sentidos

➤ Opção 2: uso de chave estrangeira em uma tabela

Bibliotecárias (#código, nome) Áreas (#codArea, &codBiblio, nome, periodicidade)

Relacionamento opcional em ambos os sentidos

► Opção 1: criar tabela para relacionamento

Pessoa (#RG, nome) [usada para esposa e marido] **Casamento** (#&RGM, #&RGE, regime)

Relacionamento opcional em ambos os sentidos

➤ Opção 2: uso de chaves estrangeiras na(s) tabela(s)

Pessoa (#RG, nome, [&RGConjuge], [Regime]) [usada para esposa e marido]

Relacionamento obrigatório ou opcional no lado N

➤ Uso de chaves estrangeiras no lado N

Editoras (#código, nome)
Livros (#ISBN, titulo, &codEditora, dataPublicacao)

Relacionamento opcional no lado 1

➤ Opção 1: criar tabela para relacionamento com chave da tabela do lado N

Estantes (#número, capacidade)

Livros (#ISBN, titulo)

Localizacao (#&ISBN, &nroEstante, nroControle)

Relacionamento opcional no lado 1

➢ Opção 2: criar chave estrangeira na tabela do lado N

Estantes (#numero, capacidade)
Livros (#ISBN, titulo, [&nroEstante], [nroControle])

* Exercício 4: Como ficaria o mapeamento lógico?

Mapeamento de Entidades Fracas

Chave primária da entidade forte se torna chave estrangeira na entidade fraca

Sócios (#matrícula, dataNascimento)

Dependentes (#&matrícula, #nroSequência, nome)

Mapeamento de Entidades Fracas

Exercício 1: Como ficaria o mapeamento lógico?

Relacionamento obrigatório ou opcional em ambos os sentidos

Criar nova tabela usando as chaves dos dois lados

Livros (#ISBN, titulo)
Compras (#número, ordemCompra)
Pedido (#&ISBN, #&nroCompra, quantidade)

Relacionamento obrigatório ou opcional em ambos os sentidos

Criar nova tabela usando as chaves dos dois lados

Livros (#ISBN, titulo)

Compras (#número, ord

Pedido (#idPed, &ISBN, &nroCompra, quantidade)

As vezes é melhor criar uma nova chave primária para a nova tabela ao invés de usar uma chave composta!

Mapeamento Relacionamento com Entidades Associativas

Solução varia de acordo com as cardinalidades


```
Livros (#ISBN, ... ) Clientes (#rg, ... )
Bibliotecárias (#rg, ... )
Empréstimos (#idEmp, &ISBN, &rgCliente, &rgBibli, data, [dtDev] )
```


Mapeamento Relacionamento com Entidades Associativas

Solução varia de acordo com as cardinalidades

Solução 1:

Conta (#número, &rgCliente, [&nroCartao], [dataExp])
Cliente (#rg, ...)

Mapeamento Relacionamento com Entidades Associativas

Solução varia de acordo com as cardinalidades

Conta(#nroConta, #&rgCliente)

Cliente (#rg, ...)

CartoesMagneticos (#número, dataExp, &nroConta)

Relacionamento N:N:N

Criar nova tabela para a relação com todas as chaves


```
Distribuidores (#&cnpj, ...)
Produtos (#codigo, ...) Cidades (#codigo, ...)
Distribuição (#&cnpjDistr, #&codProd, #&codCidade, data)
```


Relacionamento 1:N:N

Criar nova tabela para a relação com todas as chaves, sendo a chave do lado 1 apenas estrangeira

Pesquisadores (#RG,...) Projetos (#número,...) Instituições (#sigla,...)

Pesquisa (#&rgPesq, #&nroProj, &siglaInst, dataInicio)

Relacionamento 1:1:N

Entidade do lado N recebe chaves estrangeiras

Bairros (#código, ...)

Carteiros (#rg, ...)

Correspondências (#código, peso, &rgCarteiro, &codBairro)

Relacionamento 1:1:1

Criar uma tabela única unificada

Veículo (#numSérie, #numModelo, nomeModelo, códigoCarroceria, obsCarroceria)

Dicionário de Dados

O modelo lógico deve se preocupar também em como os dados serão representados, ou seja, a sua **tipagem**.

ALUNOS

Atributo	Domínio	Tamanho	Restrição de Integridade	Descrição
matrícula	Numérico		Chave primária	Matrícula do aluno
nome	Texto	50	Não nulo	Nome do aluno
rg	Numérico		Chave alternativa	RG do aluno
cred	Numérico		Não nulo	Quantidade de créditos cursados

Dicionário de Dados

Também pode ser produzido por software

FABForce → DBDesigner

No momento não vamos nos preocupar com os tipos aceitos pelos BD relacionais (cada SGBD tem as suas peculiaridades)

http://fabforce.eu/downloads.php https://dbdesigner.net/

Exercício 6: Faça o mapeamento lógico do seguinte diagrama ER e escreva o dicionário de dados:

