Generate the datasets A and B in R^2 with each of them consisting 2000 data points from normal distribution. The dataset A and B has been drawn from the N (μ_1 , Σ_1) and N (μ_2 , Σ_2). Let us fix the μ_1 = [-1,1] and μ_2 = [1,1].

- a. Find the optimal decision boundary for the classification of the dataset A and B using $\Sigma_1 = \Sigma_{2=}$ $0.6 \ 0.6 \ 0.6$. Plot the dataset A and B with different colors and plot the obtained optimal decision boundary. Comment on the characteristics of obtained decision boundary.
- b. Find the optimal decision boundary for the classification of the dataset A and B using $\Sigma_1 = \Sigma_{2=}$ $0.7 \ 0.3$. Plot the dataset A and B with different colors and plot the obtained optimal decision boundary. Comment on the characteristics of obtained decision boundary.
- c. Find the optimal decision boundary for the classification of the dataset A and B using $\Sigma_1 = \Sigma_{2=}$ $0.6 \quad 0.25 \\ 0.25 \quad 0.4$. Plot the dataset A and B with different colors and plot the obtained optimal decision boundary. Comment on the characteristics of obtained decision boundary.