Problem 1. Пусть пространство $V = \{f \in K[x] \mid deg \ f \leqslant n\}$. Покажите, что любой набор многочленов $p_0(x), p_1(x), ..., p_n(x)$, что $deg \ pi(x) = i$, является базисом V

Solutions 1. Л**H3**. $\supset p_i = a_{ii}x^i + a_{ii-1}x^{i-1} + ... a_{i0}, a_{ii} \neq 0$. Вычтем p_{n-1} из p_n с коэффициентом a_{nn-1}/a_{n-1n-1} . Аналогично обнулим остальные коэффициенты p_n . Проделаем такую же операцию с остальными p_i по убыванию i. Получим новую систему векторов $p_i = a_{ii}x^i$ (такую же ЛЗ или ЛНЗ). Запишем матрицу из векторов. Её определитель равен произведению коэффициентов (по условию ненулевых), их произведение не ноль \Rightarrow вектора ЛНЗ.

Порождаемость. Очевидно из первого пункта.

Problem 2. Рассмотрим множество векторов $cos^{i}x * sin^{j}x$, что $i, j \ge 0$ и $i+j \le 3$. Найдите максимальную линейно независимую систему и выразите все остальные векторы через эту систему.

Problem 3. Покажите, что множество векторов $cos^k x$ линейно независимы $k\geqslant 0.$

Solutions 3. Рассмотрим промежуток $(0; \frac{\pi}{2})$ и выберем оттуда k различных значений x_k . Им поставим в соответствие линейные комбинации из $y_i = cosx_i$. Составим из сиситемы матрицу

$$\begin{pmatrix} 1 & y_1^1 & \dots & y_1^k \\ 1 & y_2^1 & \dots & y_2^k \\ \dots & \dots & \dots & \dots \\ 1 & y_k^1 & \dots & y_k^k \end{pmatrix}$$
 - матрица Вандермонта $det \neq 0 \Rightarrow$ система ЛНЗ.

Problem 4. Выяснить, являются ли вектора линейно зависимыми и если да, то найти хотя бы одну их нетривиальную линейную комбинацию, равную нулю

$$\begin{pmatrix} 1 \\ -1 \\ 2 \\ -3 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -3 \\ 4 \\ -1 \end{pmatrix}$$

Solutions 4. Заметим, что если составить систему из линейных комбинаций строк, то соответствующая ей матрица будет иметь ненулевой определитель \Rightarrow вектора ЛЗ. Если подставить в систему два числа, остальные два найдутся, одно из решений:

$$\lambda_1 = 1$$
 $\lambda_2 = 1$ $\lambda_3 = 1$ $\lambda_4 = -1$