Необходимо с использованием системы JFLAP построить регулярное выражение, описывающее заданный язык, или формально доказать невозможность этого. Привести обобщенный граф переходов и эквивалентный КА, а также пошаговое выполнение преобразований.

Варианты заданий.

Вариант 1. Язык $L_1 = \{a^n b^m : (n+m)$ — четное число $\}$.

Вариант 2. Язык $L_2 = \{a^n b^m : n \ge 4, m \le 3\}$.

Вариант 3. Язык $L_3 = \{a^n b^m : n < 4, m \le 3\}$.

Вариант 4. Язык $L_4 = \{(a+b)^*b(a+ab)^* : длина любой цепочки меньше 4 знаков <math>\}$.

Вариант 5. Язык $L_5 = \{a^n b^m : n \ge 1, m \ge 1, n \cdot m \ge 3\}$.

Вариант 6. Язык $L_6 = \{ab^n w: n \ge 3, w$ принадлежит $\{a,b\}^+\}$.

Вариант 7. Язык $L_7 = \{vwv: v, w \text{ принадлежит } \{a,b\}^*, |v|=2 \}.$

Вариант 8. Язык $L_8 = \{w \text{ принадлежит } \{0,1\}^* : w \text{ содержит ровно одну пару последовательных нулей }.$

Вариант 9. Язык L_9 над алфавитом $\{a, b, c\}$ такой, что все строки содержат ровно одну литеру a.

Вариант 10. Язык L_{10} над алфавитом $\{a, b, c\}$ такой, что все строки содержат **не более** трех литер a.

Вариант 11. Язык L_{II} над алфавитом $\{a, b, c\}$ такой, что все строки содержат по крайней мере одно вхождение символа из алфавита.

Вариант 12. Язык L_{12} над алфавитом $\{a, b, c\}$ такой, что строки не содержат «отрезков» из символов a длиной больше 2.

Вариант 13. Язык L_{13} над алфавитом $\{0, 1\}$ такой, что все строки заканчиваются на 010.

Вариант 14. Язык L_{14} над алфавитом $\{0, 1\}$ такой, что все строки **не** заканчиваются на 010.

Регулярные выражения 2

Вариант 15. Язык L_{15} над алфавитом $\{0, 1\}$ такой, что все строки содержат четное число 0.

Вариант 16. Язык L_{16} над алфавитом $\{0, 1\}$ такой, что все строки содержат по крайней мере два вхождения подстроки 00.

Вариант 17. Язык L_{17} над алфавитом $\{0, 1\}$ такой, что все строки содержат **не больше** двух вхождений подстроки 00.

Вариант 18. Язык L_{18} над алфавитом $\{0, 1\}$ такой, что строки **не** содержат подстроки 101.

Вариант 19. Язык L_{19} над алфавитом $\{a, b\}$ такой, что длина любой строки делится нацело на 3.

Вариант 20. Язык L_{20} над алфавитом $\{a, b\}$ такой, что в любой строке количество символов a делится нацело на 3.

Вариант 21. Язык L_{21} над алфавитом $\{a, b\}$ такой, что в любой строке остаток от деления количество символов a на 5 больше нуля.

Вариант 22. Язык L_{22} над алфавитом $\{0, 1\}$ такой, что любая строка, будучи интерпретированной как целое число, больше либо равна 40.

Вариант 23. Язык L_{23} над алфавитом $\{0, 1\}$ такой, что любая строка с лидирующей 1 будучи интерпретированной как целое число, лежит в диапазоне от 10 до 30.

Вариант 24. Язык L_{24} над алфавитом $\{a, b\}$ такой, что в любой строке количество символов a и количество символов b — четные числа.

Вариант 25. Язык L_{25} над алфавитом $\{a, b\}$ такой, что в любой строке, если из количество символов a вычесть количество символов b, то результат не делится нацело на 3.

Вариант 26. Язык L_{26} над алфавитом $\{a, b\}$ такой, что в любой строке, если к удвоенному количеству символов a прибавить утроенное количество символов b, то результат — четное число.