|                 | Histor                        | y                 |                        |
|-----------------|-------------------------------|-------------------|------------------------|
| Type            | Author                        | Citation          | Literature Cutoff Date |
| Full Evaluation | M. S. Basunia and A. M. Hurst | NDS 134, 1 (2016) | 1-Feb-2016             |

 $Q(\beta^-)$ =-18110 *SY*; S(n)=19040 *10*; S(p)=5513.8 *5*;  $Q(\alpha)$ =-9166.0 *3* 2012Wa38  $\Delta Q(\beta^-)$ =200 (syst) (2012Wa38).

### <sup>26</sup>Si Levels

### Cross Reference (XREF) Flags

|                                    |                                        | A<br>B<br>C<br>D | <sup>27</sup> S<br><sup>1</sup> H( | $\varepsilon$ decay $\beta^+$ p decay $(2^{25}\text{Al,P})$ $(2^{27}\text{Si,}^{26}\text{Si})$ | ay  | $\begin{array}{lll} {\bf E} & {}^{12}{\bf C}({}^{16}{\bf O},2n\gamma) & {\bf I} & {}^{28}{\bf Si}(p,p2n\gamma) \\ {\bf F} & {}^{24}{\bf Mg}({}^{3}{\bf He},n) & {\bf J} & {}^{28}{\bf Si}(p,t) \\ {\bf G} & {}^{24}{\bf Mg}({}^{3}{\bf He},n\gamma) & {\bf K} & {}^{28}{\bf Si}(\alpha,{}^{6}{\bf He}) \\ {\bf H} & {\bf Coulomb~excitation} & {\bf L} & {}^{29}{\bf Si}({}^{3}{\bf He},{}^{6}{\bf He}) \end{array}$                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------|----------------------------------------|------------------|------------------------------------|------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(level) <sup>†</sup>              | $J^{\pi}$                              | $T_{1/2}f$       |                                    | XREF                                                                                           |     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0                                | 0+                                     | 2.2453 s 7       | A                                  | DEFGH                                                                                          | J L | $\%ε+%β^+=100$ T=1 $J^π$ : L=0 in $^{24}$ Mg( $^3$ He,n). $T_{1/2}$ : From 2010Ia01, the composite time decay of $^{26}$ Si (parent) and $^{26m}$ Al (daughter) was analyzed. The measurement described in 2010Ia01 disagrees with the other precision half-life measurement of 2008Ma39 ( $T_{1/2}$ =2.2283 s 27). The authors of 2010Ia01 propose that the result of 2008Ma39 should be discarded since they did not correct for parent-daughter detection-efficiency differences. The $β$ -decay mode $0^+(^{26}$ Si g.s.)→ $0^+(^{26m}$ Al 228.3-keV isomer) is a superallowed transition. Other values: 2.1 s $3$ (1960Ro06), 2.1 s $I$ (1963Fr10), 2.1 s $I$ (1971Mo27), 2.202 s $I$ (1972Ha58), 2.210 s $I$ (1975Ha21), and 2.240 s $I$ (1980Wi13). |
| 1797.30 <i>10</i>                  | 2+&                                    | 440 fs <i>40</i> | AB                                 | DEFGH                                                                                          | JKL | J <sup>π</sup> : L=2 in <sup>24</sup> Mg( <sup>3</sup> He,n). 1797.2γ E2 to 0 <sup>+</sup> .  T <sub>1/2</sub> : Average of 430 fs 42 ( <sup>3</sup> He,nγ) and 450 fs 40 (Coulomb Excitation). Uncertainty is the lowest input value. Other value: 970 fs 416 1969Be31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2787.05 <i>13</i>                  | 2 <sup>+</sup> &                       | 146 fs <i>35</i> | A                                  | DEFG                                                                                           | JKL | $J^{\pi}$ : L=2 in $^{24}$ Mg( $^{3}$ He,n). 2787.5 $\gamma$ E2 to 0 <sup>+</sup> . $T_{1/2}$ : Other value: 139 fs <i>111</i> (1969Be31).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3336.35 22                         | 0+&                                    | 1.52 ps 48       |                                    | DEFG                                                                                           | JK  | $J^{\pi}$ : L=0 in $^{24}$ Mg( $^{3}$ He,n). 1539.1 $\gamma$ E2 to 2 <sup>+</sup> . $T_{1/2}$ : Other value: 1.87 ps 114 (1969Be31).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3757.56 <i>15</i> 3842.2 <i>18</i> | (3 <sup>+</sup> )<br>(4 <sup>+</sup> ) | <485 fs          | A                                  | DEFG<br>G                                                                                      | J   | J <sup><math>\pi</math></sup> : Proposed in 2007Se02 from $\gamma(\theta)$ measurements. E(level): Weighted average of 3842.1 keV 20 (1969Be31) and 3842.2 keV 15 (2004Th09); adopted uncertainty from arithmetic mean. Level not observed in 2007Se02 and its existence considered doubtful based on mirror-nucleus ( $^{26}$ Mg) considerations and shell-model calculations. J <sup><math>\pi</math></sup> : Proposed by 1969Be31 ( $^{3}$ He,n $_{\gamma}$ ), based on n- $_{\gamma}$ correlations and observation of more than one depopulating $\gamma$ -ray transitions. log $ft$ =6.0 in $^{26}$ P $\varepsilon$ decay from (3) $^{+}$ and also from theoretical predictions (2004Th09).                                                           |
| 4139.06 20                         | 2+                                     | 35 fs <i>3</i>   | A                                  | DEFG                                                                                           | JKL | $J^{\pi}$ : L=2 in ( ${}^{3}$ He,n).<br>T <sub>1/2</sub> : Other value: 76 fs 72 (1969Be31).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4187.77 19                         | (3+)                                   |                  | A                                  | DEFG                                                                                           | J L | <ul> <li>XREF: L(4211).</li> <li>J<sup>π</sup>: Proposed in 2004Pa42 (<sup>3</sup>He,n), from comparison of measured differential cross sections with Hauser-Feshbach predictions. Also in 2007Se02 (<sup>16</sup>O,2nγ).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4446.37 18                         | (4 <sup>+</sup> ) <sup>d</sup>         | <350 fs          |                                    | DEFG                                                                                           | JKL | $J^{\pi}$ : 2648.7 $\gamma$ Q to 2 <sup>+</sup> (both in 2007Se02 ( $^{16}$ O,2n $\gamma$ ) and 2015Do07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| E(level) <sup>†</sup>               | $J^{\pi}$ @        | $T_{1/2}f$ |   | XREI         | F        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|--------------------|------------|---|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                    |            |   |              |          | $(^{3}\text{He,n}\gamma)$ ). Other assignment: $2^{+}$ in 2004Pa42 $(^{3}\text{He,n})$ from comparison of measured differential cross sections with Hauser-Feshbach predictions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4796.9 <i>8</i><br>4811.0 <i>10</i> | $(4^+)$ $(2^+)$    | <69 fs     |   | DE G<br>DEFG | J<br>JKL | $J^{\pi}$ : 2999.4 $\gamma$ Q to 2 <sup>+</sup> . $J^{\pi}$ : Proposed in 2004Pa42 ( <sup>3</sup> He,n), from comparison of measured differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4831.2 <i>4</i>                     | $(0^+)$            |            |   | E G          | J        | cross sections with Hauser-Feshbach predictions. $J^{\pi}$ : Proposed in 2010Ma43 (p,t), from measured angular distributions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5147.5 8                            | 2+                 |            |   | DEFG         | JKL      | DWBA analysis. Also L=0(+L>0) in ( $^{3}$ He,n) for doublet. $J^{\pi}$ : L=2 in (p,t).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5229? 12                            | (2+)               |            |   | DEFG         | J        | E(level): Level only observed in 1972Pa02 (p,t). 2010Ma43 (p,t) doubt its existence and claim observation in 1972Pa02 is likely from an overlap of the 5145.7- and 5289.0-keV levels obscured by the tail of the <sup>10</sup> C (g.s.) impurity peak at the same position.  J <sup>π</sup> : From shell-model calculations and mirror nuclei considerations (1996Il01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5289.04 18                          | 4+                 |            |   | DEFG         | JKL      | $J^{\pi}$ : L=4 in ( <sup>3</sup> He,n).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5517.79 23                          | (4+)               |            |   | DEFG         | JKL      | $J^{\pi}$ : L=(4) in (p,t). Also in 2004Pa42 ( <sup>3</sup> He,n) from comparison of measured differential cross sections with Hauser-Feshbach predictions. $J^{\pi}$ =4 <sup>+</sup> in 2016Ch09 on basis of angular distributions in 2007Se02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5676.2 <i>3</i>                     | 1+                 |            |   | DEFG         | J L      | $\Gamma_{\gamma}=1.2\times10^{-4}$ keV (2009Pe04); other value $\Gamma_{p}=1.3\times10^{-12}$ keV\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | _                  |            |   |              |          | $\Gamma_{\gamma} = 1.1 \times 10^{-4} \text{ keV } (2006 \text{Ba65}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                     |                    |            |   |              |          | $J^{\pi}$ : From comparison of measured differential cross sections with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                     |                    |            |   |              |          | Hauser-Feshbach predictions in 2004Pa42 ( $^{3}$ He,n). $\Delta J$ =1 from angular distribution measurements of $\gamma$ -ray transitions and feeding of 2 $^{+}$ state (2015Do07 – ( $^{3}$ He,n $\gamma$ )).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5890.1 <i>3</i>                     | $0_{+}$            |            |   | G            | K        | J <sup><math>\pi</math></sup> : Proposed in 2015Do07 ( $^3$ He,n $\gamma$ ), based on isotropic distribution of $\gamma$ rays and absence of 0 <sup>-</sup> analogue states in $^{26}$ Al and $^{26}$ Mg. Also in 2014Ko41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5929.4 <sup>#</sup> 8               | 3+ <b>d</b>        |            | Α | F            | JK       | XREF: F(5912)K(5918).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5945.9 <sup>‡</sup> 40              | (0+)de             |            |   |              |          | E(level): Other values: 5912 keV 4 (( $^3$ He,n)–2004Pa42), 5916 keV 2 (2006Ba65–(p,t)), and 5918 keV 8 (( $\alpha$ , $^6$ He) 2008Kw01). 2016Ch09 recommend an excitation energy of 5927.6 keV 10 from weighted average of particle reactions from references mentioned therein. $J^\pi$ : From angular distribution measurements of tritons in smaller angles and comparison with the mirror $^{26}$ Mg nucleus (2006Ba65 (p,t)). Also $3^+$ in 2004Pa42 ( $^3$ He,n) and in $^{26}$ P ε decay (2004Th09). Other measurements have generally converged on $3^+$ assignment (2016Ch09). $\Gamma_p$ =2.9×10 <sup>-3</sup> keV $10^{\$}$ $\Gamma_\gamma$ =9.2×10 <sup>-5</sup> keV (2009Pe04); other values: $\Gamma_p$ =2.3×10 <sup>-3</sup> keV, $\Gamma_\gamma$ =3.3×10 <sup>-5</sup> keV (2006Ba65); $\Gamma_\gamma$ / $\Gamma_p$ =0.014 4(stat) +5-4 (literature) based on the beta-delayed proton-decay branching ratio=17.96% 90 through this level (2004Th09), and total absolute γ-decay intensity $I\gamma$ =0.25% 7(stat) +8-7(literature) from this level deduced from 1742γ branching=71% +13–19 from the $^{26}$ Mg mirror level (2009Wr01). Further using $\Gamma_p$ =2.9 eV 10 from 2009Pe04, the deduced $\Gamma_\gamma$ =40 meV 11(stat) +19–18 (literature) and the resonance strength $\omega\gamma$ =23 meV 6(stat) +11–10 (literature). |
| 5945.9* <i>40</i>                   | (0·) <sup>uc</sup> |            |   | F            | J L      | E(level): Weighted average of 5946 keV 4 (2004Pa42), 5946 keV 4 (2006Ba65), 5945 keV 8 (2002Ca24), and 5946 keV 4 (2009Pe04). Uncertainty from most precise measurement. 2016Ch09 (a review) adopted a value of 5949.7 keV 53 from literature data mentioned therein. $J^{\pi}$ : From comparison of measured differential cross sections at two different energies with Hauser-Feshbach predictions in 2004Pa42 ( $^3$ He,n). Shell-model calculations (1996Il01) predict 0+ or 4+ for this state. Mirror-nucleus considerations with $^{26}$ Mg allow for a 4+ assignment (2016Ch09). However, Hauser-Feshbach calculations in 2004Pa42 rule out a J=4 assignment. $\Gamma_{\gamma}$ =5.7×10 <sup>-6</sup> keV (2009Pe04); other value \$ $\Gamma_{p}$ =1.9×10 <sup>-5</sup> keV\$ $\Gamma_{\gamma}$ =8.8×10 <sup>-6</sup> keV (2006Ba65). $\Gamma_{p}/(\Gamma_{p}+\Gamma_{\gamma})$ =0.91 <i>10</i> (2010Ch44).                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| E(level) <sup>†</sup>    | $J^{\pi}$   | $T_{1/2}f$        | XRE      | F       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|-------------|-------------------|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6101<br>6295.3 <i>24</i> | 2+          |                   | A C F    | K<br>JK | XREF: F(6312).<br>E(level): Weighted average from 6295.7 keV 24 (2010Ma43), 6292 keV 8 (2005ShZY), and 6295 keV 6 (2004Th09). Uncertainty from most                                                                                                                                                                                                                                                                                                                                                                       |
| 6382.7 29                | (2+)        |                   | A C F    | JK      | precise measurement. $J^{\pi}$ : L=2 in ( $^{3}$ He,n). $\Gamma_{p}/(\Gamma_{p}+\Gamma_{\gamma})$ =0.88 20 determined from 6300+6380-keV doublet peak in 2010Ch44. E(level): Weighted average from 6379.5 keV 29 (2010Ma43), 6388 keV 4 (2004Pa42), and 6384 keV 5 (2004Th09). Uncertainty from most precise measurement.                                                                                                                                                                                                 |
|                          |             |                   |          |         | The astronom. $J^{\pi}$ : L=(2) in (p,t). $\Gamma_p/(\Gamma_p+\Gamma_{\gamma})=0.88$ 20 determined from 6300+6380-keV doublet peak in 2010Ch44.                                                                                                                                                                                                                                                                                                                                                                           |
| 6461.1 28                | 0+          |                   | C F      | J       | E(level): Weighted average of 6456.2 28 (2010Ma43 – (p,t)), 6471 4 (2004Pa42) and 6470 30 (1982Bo14) both from ( <sup>3</sup> He,n). J <sup>π</sup> : L=0 in ( <sup>3</sup> He,n) 1982Bo14. Measured differential cross sections and                                                                                                                                                                                                                                                                                      |
| 6765 <i>5</i>            |             |                   | ٨        |         | Hauser-Feshbach calculations support $J^{\pi}=0^{+}$ (2004Pa42).                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6787 <i>4</i>            | 3-          |                   | A<br>C F | JK      | E(level): Weighted average of 6785 5 (2010Ma43), 6787 4 (2002Ba25), 6786 29 (1972Pa02) from (p,t) and 6788 4 (2004Pa42), 6780 30 (1982Bo14) from ( <sup>3</sup> He,n).  J <sup>π</sup> : L=3 in ( <sup>3</sup> He,n).                                                                                                                                                                                                                                                                                                     |
| 6810 8                   |             |                   |          | K       | $\Gamma_{\rm p}/(\Gamma_{\rm p} + \Gamma_{\gamma}) = 1.21 \ 24 \ (2010{\rm Ch}44).$                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6880 <i>30</i>           | $(0^+)^{d}$ |                   | C F      | K       | E(level): From $(^{3}\text{He,n})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0000 30                  | (0 )        |                   | C I      |         | $J^{\pi}$ : L=(0) in ( ${}^{3}$ He,n) (1982Bo14). [5 <sup>+</sup> ] mirror nucleus assignment in 2010Ma43 (p,t).                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7018 6                   | $(3^+)^a$   |                   | С        | JK      | E(level): From 2008Kw01 – $(\alpha,^6$ He).<br>$J^{\pi}$ : From mirror assignment in 2010Ma43 (p,t).                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7154 4                   | 2+          | 2.7 keV <i>1</i>  | C F      | JK      | $\Gamma_p/(\Gamma_p+\Gamma_\gamma)=1.04$ 25 (2010Ch44). E(level): Weighted average from 7152 keV 4 (2004Pa42), 7151 keV 5 (2010Ma43), 7161 keV 6 (2008Kw01), 7162 keV 24 (2012Ch04), 7147 keV 27 (2014Ju02), 7160 keV 10 (2002Ba25), 7150 keV 30 (1982Bo14), and 7150 keV 15 (1972Pa02). Uncertainty from most precise measurement.                                                                                                                                                                                       |
|                          |             |                   |          |         | $J^{\pi}$ : L=2 in ( <sup>3</sup> He,n).<br>T <sub>1/2</sub> : Other value from R-matrix fit in 2012Ch04: 7 keV 4.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |             |                   |          |         | $\Gamma_{\rm p}/(\Gamma_{\rm p}+\Gamma_{\gamma})=1.04$ 25 (2010Ch44).                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7198 6                   | $(5^+)^a$   |                   |          | JK      | E(level): Weighted average from 7199 keV 6 (2005ShZY) and (tentative) 7197 keV 8 (2010Ma43). Uncertainty from most precise measurement. J <sup>π</sup> : From mirror assignment in 2010Ma43 (p,t).                                                                                                                                                                                                                                                                                                                        |
| 7418.4 23                | $(4^+)^d$   | 1.1 keV <i>1</i>  | C F      | JK      | E(level): Weighted average from 7425 keV 4 (2004Pa42), 7415.2 keV 23 (2010Ma43), 7429 keV 7 (2008Kw01), 7402 keV 45 (2012Ch04), and 7401 keV 28 (2014Ju02). Uncertainty from most precise measurement. J <sup>π</sup> : From R-matrix analysis and proton-resonance cross sections in 2014Ju02 ( <sup>25</sup> Al,P), also in 2010Ma43 (p,t) from DWBA and mirror nucleus assignment. (0 <sup>+</sup> ) from L=(0) in 1982Bo14 ( <sup>3</sup> He,n); (2 <sup>+</sup> ) from                                               |
| 7496.4 <i>40</i>         | 2+          | 15.9 keV <i>3</i> | ACF      | JK      | angular-distribution measurements 2002Ba25 (L=2), $2^+$ from R-matrix analysis and measured differential cross sections (2012Ch04). T <sub>1/2</sub> : Other value: 6 keV 4 (2012Ch04) – from R-matrix fitting. $\Gamma_p/(\Gamma_p+\Gamma_\gamma)=1.31$ 27 determined from 7425+7498-keV doublet peak in 2010Ch44. E(level): Weighted average from 7493 keV 4 (2004Pa42), 7498 keV 4 (2006Ba65), 7480 keV 20 (2008Kw01), 7501 keV 5 (2004Th09), 7484 keV 24 (2012Ch04), and 7484 keV 28 (2014Ju02). Uncertainty – lowest |

| E(level) <sup>†</sup>            | J <sup>π</sup> @               | $T_{1/2}f$            | XREF          | Comments                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|--------------------------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                |                       |               | input value. $J^{\pi}$ : L=2 in ( $^{3}$ He,n).                                                                                                                                                                                                                                                                                                  |
|                                  |                                |                       |               | $T_{1/2}$ : Other value: 46 keV 11 (2012Ch04) – from R-matrix fitting. $\Gamma_p/(\Gamma_p+\Gamma_\gamma)=1.31$ 27 determined from 7425+7498-keV doublet peak in 2010Ch44.                                                                                                                                                                       |
| 7522 <i>12</i><br>7606 <i>6</i>  | (5 <sup>-</sup> ) <sup>a</sup> |                       | J<br><b>A</b> | peut in 2010en 11.                                                                                                                                                                                                                                                                                                                               |
| 7674.2 40                        | $(2^+)^a$                      | 30.1 keV 5            | C J           | E(level): Weighted average from 7661 keV 12 (2006Ba65), 7676 keV 4 (2008Kw01), and 7654 keV 29 (2014Ju02). Uncertainty – lowest input value.                                                                                                                                                                                                     |
| 7701.1 30                        | (3 <sup>-</sup> ) <sup>a</sup> | 41 <sup>g</sup> keV 6 | C F J         | *                                                                                                                                                                                                                                                                                                                                                |
| 7886.2 40                        | (1 <sup>-</sup> ) <sup>a</sup> | 22.8 keV <i>13</i>    | C F J         | 1 1 ,                                                                                                                                                                                                                                                                                                                                            |
| 7921 3                           |                                |                       |               | K ,                                                                                                                                                                                                                                                                                                                                              |
| 7962 <i>5</i><br>8008 <i>14</i>  | (3+)                           | 4.5 keV 3             | A<br>C        | E(level): Weighted average from 7977 keV 30 (2014Ju02) and 8015 keV 14 (2012Ch04). Uncertainty – lowest input value. J <sup>π</sup> : Extracted from R-Matrix fit to experimental cross sections in 2012Ch04. Other assignment: (2 <sup>+</sup> ,3 <sup>+</sup> ) from R-matrix fit in 2014Ju02.                                                 |
|                                  | 1.                             |                       |               | $T_{1/2}$ : Other value: 15 keV 5 (2012Ch04) – from R-matrix fitting.                                                                                                                                                                                                                                                                            |
| 8144 <i>21</i>                   | $(1^-,2^+)^b$                  |                       | A C F         | E(level): Weighted average from 8156 keV 21 (2004Th09) and 8120 keV 30 (1982Bo14). Uncertainty – lowest input value. Tentative level at 8166 keV 7 (2010Ch44 – (p,t)) not used in average.                                                                                                                                                       |
| 8222 5                           | $(1^{-})^{a}$                  |                       | J             | $J^{\pi}$ : mirror assignment as described in 2010Ma43.                                                                                                                                                                                                                                                                                          |
| 8254 <i>5</i><br>8269 <i>4</i>   | $(2^+)^a$                      |                       | A             |                                                                                                                                                                                                                                                                                                                                                  |
| 8282 <i>6</i>                    | (2)                            |                       |               | K                                                                                                                                                                                                                                                                                                                                                |
| 8356 12                          | $(3^{+})$                      | 27 keV 8              | С             | $J^{\pi}$ : From R-matrix fit to proton resonances in ${}^{1}H({}^{25}Al,P)$ 2012Ch04.                                                                                                                                                                                                                                                           |
| 8431 6                           | (a+) (1                        |                       |               | F(1 1) W. 1. 1                                                                                                                                                                                                                                                                                                                                   |
| 8558 17                          | $(2^+)^a$                      |                       | A F J         | <ul> <li>17 (2004Th09), and 8570 keV 30 keV (1982Bo14). Uncertainty from arithmetic mean of associated uncertainties.</li> <li>J<sup>π</sup>: mirror assignment as described in 2010Ma43. Other value (1<sup>-</sup>,2<sup>+</sup>)</li> </ul>                                                                                                   |
| 8689 21                          | $(1^-,2^+)^{b}$                |                       | F J           | <ul> <li>in 1982Bo14.</li> <li>E(level): Weighted average from 8700 keV 30 (1982Bo14) and 8687 keV 12 (2010Ma43). Uncertainty from arithmetic mean of associated uncertainties. Level was recorded as tentative observation in 2010Ma43.</li> <li>J<sup>π</sup>: Other: [4<sup>+</sup>] from mirror assignment described in 2010Ma43.</li> </ul> |
| 8806 5                           |                                |                       |               | K                                                                                                                                                                                                                                                                                                                                                |
| 8952 <i>7</i><br>8989 <i>7</i>   | $(4^+)^a$                      |                       | J             | X .                                                                                                                                                                                                                                                                                                                                              |
| 9067 <i>5</i>                    | (+ )                           |                       |               | K                                                                                                                                                                                                                                                                                                                                                |
| 9124? 8                          |                                |                       | J             |                                                                                                                                                                                                                                                                                                                                                  |
| 9170 30                          | $(1^-,2^+)^{b}$                |                       | F             | _                                                                                                                                                                                                                                                                                                                                                |
| 9247 8                           | (A+)C                          |                       |               | E/1                                                                                                                                                                                                                                                                                                                                              |
| 9316 <i>5</i><br>9373.3 <i>7</i> | (4 <sup>+</sup> ) <sup>c</sup> |                       | A :           | E(level): Mirror state in <sup>26</sup> Mg at 9579 keV <i>3</i> (1986Al06,2011Ma46).<br>E(level): Weighted average from 9374 keV <i>7</i> (2005ShZY) and 9370                                                                                                                                                                                    |
|                                  |                                |                       | Contir        | ued on next page (footnotes at end of table)                                                                                                                                                                                                                                                                                                     |

| E(level) <sup>†</sup> | $J^{\pi}$                      | XREF | Comments                                                                                                                                                                                                    |
|-----------------------|--------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                |      | keV 15 (2004Th09). Uncertainty from most precise experimental result.                                                                                                                                       |
| 9433 <i>4</i>         |                                | A    |                                                                                                                                                                                                             |
| 9606.1 9              | (2 <sup>+</sup> ) <sup>c</sup> | JK   | E(level): Weighted average from 9605 keV 10 (2011Ma46) and 9607 keV 9 (2005ShZY). Uncertainty from most precise experimental result. Mirror state in <sup>26</sup> Mg at 9856.52 keV 6 (1986Al06,2011Ma46). |
| 9725 7                |                                | Α    |                                                                                                                                                                                                             |
| 9762 <i>4</i>         | $(5^{-})^{c}$                  | J    | E(level): Mirror state in <sup>26</sup> Mg at 10040 keV 2 (1986Al06,2011Ma46).                                                                                                                              |
| 9802 7                |                                | K    |                                                                                                                                                                                                             |
| 9910.2 20             | (0 <sup>+</sup> ) <sup>c</sup> | JK   | E(level): Mean and adopted uncertainty from arithmetic average of 9903.4 keV 20 (2011Ma46) and 9917 keV 2 (2005ShZY). Mirror state in <sup>26</sup> Mg at 10159 keV 3 (1986Al06,2011Ma46).                  |
| 10070 8               |                                | K    |                                                                                                                                                                                                             |
| 10296.9 <i>60</i>     |                                | A K  | E(level): Weighted average of 10294 keV 7 (2005ShZY) and 10299 keV 6 (2004Th09). Uncertainty – lowest input value.                                                                                          |
| 10405 5               |                                | A J  | XREF: J(10436).                                                                                                                                                                                             |
| 10688 9               |                                | A J  | XREF: J(10660).                                                                                                                                                                                             |
| 10827 8               |                                | A J  | XREF: J(11010).                                                                                                                                                                                             |
| 13015 4               | (3 <sup>+</sup> )              | A    | T=2 E(level): Highest T=2 level proposed at 13080 keV $I5$ in 1983Ca06. $J^{\pi}$ : From $^{26}$ P $\varepsilon$ decay (2004Th09).                                                                          |

 $<sup>^{\</sup>dagger}$  Up to 5929.4 – from a least-squares fit to  $\gamma$ -ray energies, except for 3842.2-, 5229-, and 5913.8-keV levels. 1763.5 $\gamma$  from 5517.79-keV level poorly fit to the level scheme and omitted during the fitting procedure and also uncertainty tripled for 988.9 $\gamma$  from 2787 keV level.

<sup>&</sup>lt;sup>‡</sup> The existence of this level as a separate resonance is called into question in 2015Do07 due to lack of evidence in their (<sup>3</sup>He,ny) measurement and also argue that 5946 keV level might the same level as that at 5929.4 keV. This inference is refuted in 2016Ch09 on the basis of (<sup>3</sup>He,ny) (2004Pa42) and (p,t) (2010Ma43) measurements that have populated both this resonance and the 5929.4-keV resonance simultaneously.

<sup>#</sup> A value of 5926.9 keV 6 may be obtained from the weighted average of 5927 keV 4 (2010Ch44), 5921 keV 12 (2010Ma43), 5912 keV 4 (2004Pa42), 5916 keV 2 (2002Ba25), 5928.7 keV 7 (2013Be41), 5929 keV 5 (2004Th09), and 5918 keV 8 (2008Kw01). Other values not used in averaging: 5914 keV 2 (200Ba25) and 5914 keV 4 (2009Pe04) for reasons outlined in Sect. IV of 2016Ch09, and 5910 keV 30 (1982Bo14) owing to its large uncertainty overlapping with neighboring resonances. Both the adopted and weighted values are statistically consistent with the suggested value of 5927.6 keV 10 reported in the reanalysis of 2016Ch09.

<sup>&</sup>lt;sup>®</sup> Taken from 2004Pa42 except where noted. Assignments established by comparison of measured differential cross sections with Hauser-Feshbach calculations.

<sup>&</sup>amp; Deduced from comparison between measured angular distributions and DWBA calculations in 1982Bo14.

<sup>&</sup>lt;sup>a</sup> Deduced from mirror assignments with <sup>26</sup>Mg presented in Fig. 7 in 2010Ma43.

<sup>&</sup>lt;sup>b</sup> Based on comparison of measured angular distributions with DWBA calculations in 1982Bo14.

<sup>&</sup>lt;sup>c</sup> Based on mirror assignments with <sup>26</sup>Mg described in 1986Al06 and 2011Ma46.

<sup>&</sup>lt;sup>d</sup> Conflicting spin-parity assignments. See comments.

e 2002Ca24 argue for a 3<sup>+</sup> assignment in (<sup>3</sup>He,<sup>6</sup>He) on the basis that other 0<sup>+</sup> states are only weakly populated in their measurement. However, 2002Ca24 note "a small high energy shoulder on the peak, making it slightly wider at the base, suggests that another state lies there." Evaluators note: It appears that the reported peak at 5945 keV 8 in 2002Ca24 is a doublet of 5929+5946 and the 3<sup>+</sup> assignment probably related to the 5929 keV state. 2016Ch09 suggest a similar view for this spin-parity assignment. However, from recent measurements, 2015Do07 (<sup>3</sup>He,nγ) propose the first 0<sup>+</sup> state above proton separation energy at 5890 keV and note that there is no theoretical prediction or experimental evidence for T=1 states in analogue nuclei <sup>26</sup>Al and <sup>26</sup>Mg for two closely spaced 0<sup>+</sup> states in this region and the existence of this level as a separate resonance is called into question. However, 2016Ch09 argued that both this level and the 5890.1-keV level may have 0<sup>+</sup> assignments due to particle

### <sup>26</sup>Si Levels (continued)

excitations into a different shell and suggest for additional experimental and theoretical work.

| γ( | 26 | S | i) |
|----|----|---|----|
|    |    |   |    |

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}$ &        | $\mathrm{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>C</sup> | $\delta^{f}$ | Comments                                                                                                                                                                                                         |
|--------------|----------------------|---------------------------------|-----------------------|----------------|----------------------|--------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1797.30      | 2+                   | 1797.2 <i>1</i>                 | 100                   | 0.0            | 0+                   | E2                 |              | B(E2)(W.u.)=15.3 15<br>Mult.: Deduced from measured A <sub>2</sub> /A <sub>4</sub><br>anisotropy coefficients from 1797.2γ to<br>g.s. (2007Se02).                                                                |
| 2787.05      | 2+                   | 988.9 1                         | 100.0 <sup>a</sup> 27 | 1797.30        | 2+                   | M1+E2              | +0.21 10     | B(M1)(W.u.)=0.100 25; B(E2)(W.u.)=25 24 δ: The other value -3.7(18) (1968Ro18) is rejected in both 1968Ro18 and 1969Be31 on the basis of unlikely transition probability implications.                           |
|              |                      | 2787.0 2                        | 48.9 <sup>a</sup> 27  | 0.0            | 0+                   | E2                 |              | B(E2)(W.u.)=1.7 4<br>I <sub>y</sub> : Others: 67 5 (2015Do07) and 1.35 20<br>(2014Ko41) both in ( <sup>3</sup> He,ny).                                                                                           |
| 3336.35      | $0^{+}$              | 549.3 <sup>#</sup>              | <2 <b>b</b>           | 2787.05        | 2+                   | d                  |              |                                                                                                                                                                                                                  |
|              |                      | 1539.0 2                        | 100 19                | 1797.30        | 2+                   | E2 <sup>d</sup>    |              | B(E2)(W.u.)=10 5                                                                                                                                                                                                 |
| 3757.56      | (3+)                 | 970.5 1                         | 82 4                  | 2787.05        | 2+                   | (M1+E2)            |              | Mult.: From ( ${}^{3}$ He,n $\gamma$ ) – 1969Be31.<br>I $_{\gamma}$ : Others: 47 4 (2014Ko41) and 43 14 (1969Be31) both in ( ${}^{3}$ He,n $\gamma$ ).                                                           |
|              |                      | 1960.1 2                        | 100 4                 | 1797.30        | 2+                   | (M1+E2)            |              | Mult.: From $(^{3}\text{He,n}\gamma) - 1969\text{Be}31$ .                                                                                                                                                        |
| 3842.2       | $(4^{+})$            | 1055.1 <sup>#</sup>             | <15 <b>b</b>          | 2787.05        | 2+                   | d                  |              | · / //                                                                                                                                                                                                           |
|              | , ,                  | 2044.8 <sup>#</sup>             | 100 <sup>b</sup> 28   | 1797.30        |                      |                    |              | $E_{\gamma}$ : Measured in $\gamma$ - $\gamma$ coincidence (1969Be31).                                                                                                                                           |
|              |                      |                                 |                       |                |                      |                    |              | $\Delta$ I $\gamma$ : Derived from 2004Th09.                                                                                                                                                                     |
| 4139.06      | 2+                   | 802.7 <sup>#</sup>              | <12 <sup>b</sup>      | 3336.35        |                      |                    |              |                                                                                                                                                                                                                  |
|              |                      | 1351.5 4                        | 4.9 <mark>b</mark> 8  | 2787.05        | 2+                   |                    |              | $I_{\gamma}$ : From 2014Ko41. Other: 11 5                                                                                                                                                                        |
|              |                      |                                 |                       |                |                      |                    |              | (2015Do07) both in ( ${}^{3}$ He,n $\gamma$ ).                                                                                                                                                                   |
|              |                      | 2341.8 2                        | 100.0 <i>21</i>       | 1797.30        |                      | M1+E2 <sup>e</sup> |              | $I_{\gamma}$ : From 2014Ko41. Other: 100 4 (2015Do07) both in ( <sup>3</sup> He,n $\gamma$ ).                                                                                                                    |
|              |                      | 4141‡ 3                         | 11.8 59               | 0.0            | 0+                   | [E2]               |              | B(E2)(W.u.)=0.28 <i>15</i><br>I <sub>γ</sub> : From 2007Se02 ( <sup>16</sup> O,2nγ). Other: 25 <i>13</i> (1969Be31) in ( <sup>3</sup> He,nγ).                                                                    |
| 4187.77      | (3+)                 | 1400.5 2                        | 100.0 59              | 2787.05        | 2+                   | D                  |              | I <sub>γ</sub> : From 2007Se02 ( <sup>16</sup> O,2nγ). Other: 61 5 (2015Do07) ( <sup>3</sup> He,nγ). Evaluators adopt as the strongest branch along with supporting evidence in 2014Ko41 ( <sup>3</sup> He,nγ).  |
|              |                      | 2390.3 3                        | 57.4 59               | 1797.30        | 2+                   | D                  |              | I <sub>γ</sub> : From 2007Se02 ( <sup>16</sup> O,2nγ). Other: 100 5 (2015Do07) ( <sup>3</sup> He,nγ). Evaluators adopt this as a weaker branch along with supporting evidence in 2014Ko41 ( <sup>3</sup> He,nγ). |
| 4446.37      | $(4^{+})$            | 1658.3 <sup>@</sup> 14          | 10 5                  | 2787.05        |                      |                    |              |                                                                                                                                                                                                                  |
|              |                      | 2648.7 2                        | 100.0 22              | 1797.30        | 2+                   | (E2)               |              | B(E2)(W.u.)>2.3                                                                                                                                                                                                  |
| 4796.9       | (4 <sup>+</sup> )    | 2999.4 8                        | 100                   | 1797.30        | 2+                   | Q <sup>e</sup>     |              | E <sub>γ</sub> : Average of data from 2007Se02 ( <sup>16</sup> O,2nγ), and 2015Do07, 2014Ko41 both in ( <sup>3</sup> He,nγ).                                                                                     |
| 4811.0       | $(2^{+})$            | 2023.9 10                       | 100 12                | 2787.05        | 2+                   | D+Q <sup>e</sup>   |              | $E_{\gamma}$ : Average of data from 2007Se02                                                                                                                                                                     |
|              |                      |                                 |                       | G .:           |                      |                    |              |                                                                                                                                                                                                                  |

f From (3He,nγ), deduced using the Doppler-shift attenuation method except where noted; widths deduced from R-matrix fits to differential cross-sections for  ${}^{1}H({}^{25}Al,P)$  measured in 2014Ju02 except where noted.

g Width deduced from R-matrix fits to differential cross-sections for  ${}^{1}H({}^{25}Al,P)$  measured in 2012Ch04.

### $\gamma$ <sup>(26</sup>Si) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$        | $I_{\gamma}$ &   | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ | Mult. <sup>c</sup>          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------------------|-------------------------------|------------------|-------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                      |                               |                  |                                     |                             | $(^{16}\text{O},2\text{n}\gamma)$ , and 2015Do07, 2014Ko41 both in $(^{3}\text{He},\text{n}\gamma)$ .                                                                                                                                                                                                                                                                                                                             |
| 4811.0       | $(2^{+})$            | 4810.5 <sup>#</sup>           | <10 <sup>b</sup> | $0.0 	 0^{+}$                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4831.2       | $(0^{+})$            | 2044.1 3                      | 100              | 2787.05 2+                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5147.5       | 2+                   | 2359.3 <sup>@</sup> 15        | 100 4            | 2787.05 2+                          | $D^{\boldsymbol{e}}$        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 3350.3 <sup>@</sup> 8         | 19 5             | 1797.30 2 <sup>+</sup>              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5289.04      | 4+                   | 842.2 2                       | 53 7             | 4446.37 (4+)                        | D+Q <sup>e</sup>            |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 1530.1 <i>10</i>              | 100 7            | 3757.56 (3 <sup>+</sup> )           | $D^e$                       | $E_{\gamma}$ : Average of data from 2007Se02 ( $^{16}$ O,2n $\gamma$ ), and 2015Do07, 2014Ko41 both in ( $^{3}$ He,n $\gamma$ ).                                                                                                                                                                                                                                                                                                  |
|              |                      | 2501.9 <sup>@</sup> 10        | 8 9              | 2787.05 2+                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 3492.0 <sup>@</sup> 2         | 43 9             | 1797.30 2 <sup>+</sup>              | Q <mark>e</mark>            |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5517.79      | $(4^{+})$            | 1071.6 2                      | 65 11            | 4446.37 (4 <sup>+</sup> )           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 1329.5 <i>3</i>               | 95 11            | 4187.77 (3 <sup>+</sup> )           | $D^{\boldsymbol{e}}$        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 1763.5 8                      | 100 11           | 3757.56 (3 <sup>+</sup> )           | D <b>e</b>                  | $E_{\gamma}$ : Average of data from 2007Se02 ( $^{16}$ O,2n $_{\gamma}$ ), and 2015Do07, 2014Ko41 both in ( $^{3}$ He,n $_{\gamma}$ ).                                                                                                                                                                                                                                                                                            |
|              |                      | 2733 3                        | 11 <i>14</i>     | 2787.05 2+                          |                             | $E_{\gamma}$ : From 2007Se02 ( $^{16}$ O,2n $\gamma$ ). Other: 2736.3 10 (2015Do07) ( $^{3}$ He,n $\gamma$ ) – weak transition.                                                                                                                                                                                                                                                                                                   |
| 5676.2       | 1+                   | 2888.9 <sup>@</sup> 9         | 16 7             | 2787.05 2+                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 3878.6 <i>3</i>               | 100 5            | 1797.30 2+                          | $\mathrm{D}^{oldsymbol{e}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5890.1       | $0_{+}$              | 1751.9 <sup>@</sup> <i>10</i> | 76 <i>14</i>     | 4139.06 2+                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 3103.1 <sup>@</sup> 4         | 95 14            | 2787.05 2 <sup>+</sup>              | Q <mark>e</mark>            |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 4092.1 <sup>@</sup> 4         | 100 14           | 1797.30 2+                          | Qe                          | $E_{\gamma}$ : a $\gamma$ at 4094 keV 4 was also observed in 1969Be31 and tentatively assigned to deexcite a level at 4094 keV, with additional weaker $\gamma$ rays. However, this state was not established in subsequent coincidence measurements in 2007Se02 ( $^{16}$ O,2n $\gamma$ ), 2015Do07 ( $^{3}$ He,n $\gamma$ ), and 2014Ko41 ( $^{3}$ He,n $\gamma$ ), suggesting it is likely to have been misplaced in 1969Be31. |
| 5929.4       | 3+                   | 1741.6 <i>7</i>               | 100              | $4187.77 (3^{+})$                   |                             | $E_{\gamma}$ : From <sup>26</sup> P $\varepsilon$ decay.                                                                                                                                                                                                                                                                                                                                                                          |

<sup>&</sup>lt;sup>†</sup> Weighted average of data from 2007Se02 ( $^{16}$ O,2n $\gamma$ ), and 2015Do07, 2014Ko41 both in ( $^{3}$ He,n $\gamma$ ), except where noted. Uncertainty from the most precise measurement.

<sup>&</sup>lt;sup>‡</sup> From 2007Se02 (<sup>16</sup>O,2nγ).

<sup>#</sup> From level energy differences, recoil energy subtracted. Placement in 1969Be31 (<sup>3</sup>He,nγ).

<sup>&</sup>lt;sup>@</sup> From 2015Do07 (<sup>3</sup>He,nγ).

<sup>&</sup>amp; From 2015Do07 ( ${}^{3}$ He,n $\gamma$ ), except where noted.

<sup>&</sup>lt;sup>a</sup> From 2007Se02 (<sup>16</sup>O,2nγ).

b Limits are proposed in Table 4 of 1969Be31, corresponding to the Doppler-shift attenuation measurement (DSAM) for <sup>24</sup>Mg(<sup>3</sup>He,ny).

<sup>&</sup>lt;sup>c</sup> Inferred from deduced anisotropy coefficients for the angular distributions measured in the fusion-evaporation reaction  $^{12}\text{C}(^{16}\text{O},2\text{n}\gamma)$  from 2007Se02, except where noted or from  $\gamma(\theta)$  measurements in 2015Do07 ( $^{3}\text{He},\text{n}\gamma$ ).

<sup>&</sup>lt;sup>d</sup> From measured gamma-transition widths deduced using Doppler-shift attenuation method for <sup>24</sup>Mg(<sup>3</sup>He,ny) in 1969Be31.

<sup>&</sup>lt;sup>e</sup> In (<sup>3</sup>He,ny), assigned by evaluators based on  $\gamma(\theta)$  data in 2015Do07 and RUL (if applicable).

<sup>&</sup>lt;sup>f</sup> From <sup>24</sup>Mg(<sup>3</sup>He,nγ), based on n-γ angular-correlation measurements in 1968Ro18.

# Level Scheme

Intensities: Relative photon branching from each level



 $\infty$ 

```
History
                                                                   Author
                                                                                                      Citation
                                                                                                                              Literature Cutoff Date
                                      Type
                               Full Evaluation
                                                      M. Shamsuzzoha Basunia
                                                                                           NDS 114, 1189 (2013)
                                                                                                                                     1-Apr-2013
Q(\beta^{-})=-14345.1 \ 12; S(n)=17179.72 \ 14; S(p)=11585.02 \ 10; Q(\alpha)=-9984.14 \ 1
Other reactions:
^{12}\text{C}(^{16}\text{O}, ^{12}\text{C}^{12}\text{C})\alpha: 2001Fr19.
<sup>12</sup>C(<sup>24</sup>Mg, <sup>12</sup>C<sup>16</sup>O)<sup>8</sup>Be: 2001Sh08.
<sup>16</sup>O(<sup>16</sup>O,α): 1963Ev03, 1966Le07, 1969Al01, 1982Ta02.
^{16}O(^{16}O, ^{12}C^{16}O)\alpha: 2001As01.
<sup>20</sup>Ne(<sup>12</sup>C,α): 1981Ku07, 1986Ku06, 1986Ku13.
<sup>24</sup>Mg(<sup>6</sup>Li,d): 1969Go17, 1974Dr07, 1975An13, 1975Ar21, 1983Ta08.
<sup>24</sup>Mg(<sup>7</sup>Li,t): 1969Go17, 1974Ro02.
<sup>24</sup>Mg(<sup>12</sup>C, <sup>8</sup>Be): 1974Ho30, 1976Ma12.
<sup>24</sup>Mg(<sup>16</sup>O,<sup>12</sup>C): 1972Ma36, 1975Er02, 1976Pe05, 1980Sa31, 1985Sa11.
<sup>24</sup>Mg(<sup>24</sup>Mg, <sup>20</sup>Ne): 1987Sa05, 1989Le19.
^{25}Mg(^{3}He,\gamma): 1986Ha30.
<sup>25</sup>Mg(<sup>12</sup>C, <sup>9</sup>Be): 1980Fo02.
<sup>26</sup>Mg(<sup>3</sup>He,n): 1969Bo18, 1970Br40, 1976Bo24, 1982Bo14.
^{26}Mg(^{3}He,n\gamma): 1977Mi01.
<sup>26</sup>Mg(<sup>16</sup>O, <sup>14</sup>C): 1974Si24, 1976Ge07.
^{27}Al(\alpha,t): 1975Du14, 1977Ne08, 1978Du05, 1978Le08, 1980Me01, 1981Be19, 1982Ya06, 1984Ci04, 1984Sk02, 1986Ch35.
<sup>27</sup>Al(<sup>12</sup>C, <sup>11</sup>B): 1975Po02, 1989Wi07, 2012De22.
<sup>27</sup>Al(<sup>13</sup>C, <sup>12</sup>B): 1988Vo08.
<sup>27</sup>Al(<sup>16</sup>O, <sup>15</sup>N): 1973De38, 1976Ma51.
<sup>27</sup>Al(<sup>19</sup>F, <sup>18</sup>O): 1976Mc07.
<sup>28</sup>Si(d,d): 1980Cl06, 1980Ha14, 1980Ma10, 1981Ha02, 1982Cl01, 1983Cl06, 1983Vo08, 1987Nu01.
<sup>28</sup>Si(t,t): 1982Sc21, 1986Pe13, 1987Pe09.
<sup>28</sup>Si(<sup>3</sup>He, <sup>3</sup>He): 1978Fu06, 1982Ma04, 1982Ta05, 1982Ve13.
^{28}Si(\alpha,\alpha'): 1964We02, 1968Ro05, 1971Ha32, 1978Fu06, 1979Pa16, 1980Va10, 1981Kn05, 1981Ni06, 1981Va05, 1981Va09,
     1982Bo14, 1983Or01, 1984Ja14, 1984Se02, 1985Lu04, 1986La28, 1987Ni04, 1989Ma50, 1990To04, 1992Wi13, 1994Ch36.
<sup>28</sup>Si(HI,HI): 1979Be21, 1979Me04, 1980An16, 1980Ec04, 1980Sc12, 1981Br13, 1981Ni06, 1981Sc16, 1982Bo25, 1982Ec01,
     1983Sh18, 1983Vi03, 1984Ch01, 1984Ko14, 1985Ba74, 1986Ci06, 1986Vi02, 1987Ni04, 1988Bi06, 1988Bu15, 1989Na11,
     1990Fe03.
^{29}Si(^{3}He,\alpha): 1970Pe05, 1972Fo06, 1985Po17.
<sup>29</sup>Si(<sup>16</sup>O, <sup>17</sup>O): 1975Ts01.
<sup>32</sup>S(d, <sup>6</sup>Li): 1983Oe03.
<sup>32</sup>S(<sup>3</sup>He, <sup>7</sup>Be): 1975Au01.
```

### <sup>28</sup>Si Levels

### Cross Reference (XREF) Flags

| Α | $^{28}$ Al $\beta^-$ decay                        | G  | $^{14}N(^{16}O,pn\gamma)$          | M | $^{28}$ Si( $\gamma$ , $\gamma$ ),(e,e')             |
|---|---------------------------------------------------|----|------------------------------------|---|------------------------------------------------------|
| В | $^{28}$ P $\varepsilon$ decay                     | H  | $^{24}{ m Mg}(\alpha,\gamma)$      | N | $^{28}$ Si(n,n' $\gamma$ )                           |
| C | <sup>29</sup> S $\beta^+$ p decay                 | I  | $^{25}$ Mg( $\alpha$ ,n $\gamma$ ) | 0 | $^{28}$ Si(p,p'), $^{27}$ Al(p,p): res               |
| D | $^{31}$ Ar $\beta^{+}$ 3p decay                   | J  | $^{27}$ Al(p, $\gamma$ )           | P | <sup>28</sup> Si( <sup>6</sup> Li, <sup>6</sup> Li') |
| E | $^{32}\text{Cl }\beta^+\alpha$ decay              | K  | $^{27}$ Al(d,n $\gamma$ ),(d,n)    | Q | $^{29}$ Si(p,d), $^{30}$ Si(p,t)                     |
| F | $^{12}\text{C}(^{20}\text{Ne}.\alpha\gamma)$ :SDB | L. | $^{27}$ Al( $^{3}$ He.d)           |   |                                                      |

| E(level) <sup>†</sup>           | Jπ‡ | $T_{1/2}f$       |       | XR  | REF   |      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|---------------------------------|-----|------------------|-------|-----|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $0.0^{j}$                       | 0+  | stable           | ABCDE | FGH | JKLMN | 10 Q |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1779.030 <sup><i>j</i></sup> 11 | 2+  | 475 fs <i>17</i> | ABC   |     | JKL   | PQ   | $\mu$ =+1.12 $I8$ ; Q=+0.16 $^3$<br>E(level): From $^{28}$ P $\varepsilon$ decay.<br>$\mu$ ,Q: From 1989Ra17.<br>$T_{1/2}$ : From mean lifetime 686 fs 25: weighted average of 720 fs 40 (1969Ha31), 689 fs 25 (1977Sc36), 667 fs 37 (1979Fo02), 697 fs 39 (1979Po01), 688 fs 26 (1980Sc25), and 648 fs 37 (1980Sp09): uncertainty – lowest experimental value. Other: 880 fs $^{130}$ (1990En02), 820 fs $^{190}$ and 1000 fs $^{+600-150}$ .            |  |  |  |
| 4617.86 <sup><i>j</i></sup> 4   | 4+  | 37 fs 4          | BC    | F   | JKL 1 | 10 Q | T <sub>1/2</sub> : From mean lifetime 54 fs 6: weighted average of 61 fs 10 (1968Gi05), 100 fs 20 (1969Li03), 58 fs 15 (1969Me14,1970Me04), 42 fs 10 (1970Al05,1974Da15), 54 fs 10 (1969Bi09), 39 fs 6 (1975Me14), 55 fs 15 (1968Ro05), 60 fs 20 (1969An08), 83 fs 14 (1971Ha32), 57 fs 7 (1972Bi04), 80 fs 20 (1975Kr09), 55 fs 8 (1983Mi32), and 84 fs 27 (1990En02): uncertainty – lowest experimental value. Other: mean lifetime 28 fs 5 (1989Ge09). |  |  |  |
| 4979.92 <sup>m</sup> 8          | 0+  | 35 fs 2          | В     | FG  | JKL N | 10 Q | T <sub>1/2</sub> : From mean lifetime 51 fs 3: weighted average of 60 fs 20 (1969Li03), 41 fs 27 (1970Hu14,1971Hu04), 34 fs 12 (1969Bi09), 54 fs 13 (1978Da08), 81 fs 13 (1990En02), 65 fs 6 (1989Ge09), 47 fs 3 ( <sup>16</sup> O,pn) and 51 fs 4 (p,γ) (1993Ti02): uncertainty – lowest experimental value. Other: mean lifetime 31 fs 6 (1969Me14,1970Me04).                                                                                           |  |  |  |
| 6276.20 <sup>k</sup> 7          | 3+  | 0.78 ps <i>6</i> | В     | FG  | JKL N | 10 Q | $T_{1/2}$ : From mean lifetime 1.12 fs 9: weighted average of 1.35 ps 20 (1968Gi05), 1.15 ps 13 (1969Li03), 1.10 ps 28 (1970Al05,1974Da15), 1.5 ps 4 (1970Hu14,1971Hu04), 0.81 ps 49 (1969Bi09), 1.3 ps 2 (1969An08), 1.35 ps 40 (1978Da08), 0.89 ps 9 (1983Mi32), 0.99 ps 23 (1990En02), 1.25 ps 15 ( $^{16}$ O,pn) and 1.26 ps 11 (p,γ) (1993Ti02): uncertainty – lowest experimental value. Other: mean lifetime 1.9 ps 2 (1989Ge09).                  |  |  |  |
| 6690.74 <sup>l</sup> 15         | 0+  | 147 fs <i>10</i> |       | F   | J L   | Q    | T <sub>1/2</sub> : From mean lifetime 212 fs <i>I</i> 4 (1993Ti02). Others: 180 fs <i>4</i> 0 (1969Li03), 88 fs <i>I</i> 2 (1969Me14,1970Me04), 120 fs <i>3</i> 0 (1970Al05,1974Da15), 100 fs <i>3</i> 0 (1970Hu14,1971Hu04), 130 fs <i>3</i> 0 (1975Me14), 125 fs <i>3</i> 0 (1978Da08).                                                                                                                                                                 |  |  |  |
| 6878.79 8                       | 3-  | 1.9 ps 2         |       |     | JKL   | Q    | T <sub>1/2</sub> : From mean lifetime 2.7 ps 3: weighted average of 2.3 ps 5 (1968Gi05), 2.7 ps 6 (1969Li03), 2.0 ps 15 (1970Al05,1974Da15), 2.4 ps 4 (1970Hu14,1971Hu04), 2.1 ps 4 (1970St10), 3.5 ps 3 (1972Na06): uncertainty – lowest experimental value. Other mean lifetimes: >1.8 (1969Me14,1970Me04), >3.7 (1990En02).                                                                                                                            |  |  |  |
| 6887.65 <sup>k</sup> 10         | 4+  | 33 fs 2          |       | FG  | JKLM  | PQ   | $T_{1/2}$ : From mean lifetime 48 fs 3: weighted average of 70 fs 20 (1969Li03), 53 fs 10 (1969Me14,1970Me04), 44 fs 13 (1970Al05,1974Da15), 40 fs 8 (1975Me14), 67 fs 10 (1983Mi32), 27 fs 8 (1990En02), 47 fs 8 ( $^{16}$ O,pn) and 49 fs 3 (p, $\gamma$ ) (1993Ti02): uncertainty – lowest experimental value. Other mean lifetimes: 100 fs 40 (1968Ro05), >4 ps (1969An08).                                                                           |  |  |  |
| 7380.59 <sup>l</sup> 9          | 2+  | 5 fs 2           |       | FG  | J L   | Q    | $T_{1/2}$ : From mean lifetime 7 fs 3: using the limitation of relative statistical weight averaging method of data 13 fs 3 (1968Gi05), 7 fs 4 (1969Me14,1970Me04), 6 fs 5 (1970Al05,1974Da15), 6 fs 2 (1970Hu14,1971Hu04), 8 fs 3 (1975Me14), 7 fs 4 (1978Da08), 11.5 fs $l5$ ( $l6$ O,pn) and 4.4 fs $l0$ (p, $\gamma$ ) (1993Ti02). Other: mean lifetime lt15 fs (1990En02).                                                                           |  |  |  |
| 7416.26 <sup>l</sup> 9          | 2+  | 29 fs <i>3</i>   | В     | FG  | JKL   | Q    | $T_{1/2}$ : From mean lifetime 42 fs 4: weighted average of 40 fs 7 (1968Gi05), 40 fs 8 (1970Al05,1974Dal5), 39 fs 5 (1970Hu14,1971Hu04), 30 fs 5 (1975Me14), 44 fs $I0$ (1978Da08),                                                                                                                                                                                                                                                                      |  |  |  |

| E(level) <sup>†</sup>          | $J^{\pi \ddagger}$ | $T_{1/2}f$        |   | XR  | REF      |       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------|--------------------|-------------------|---|-----|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                    |                   |   |     |          |       | 51 fs 4 ( $^{16}$ O,pn) and 50 fs 9 (p, $\gamma$ ) (1993Ti02): uncertainty – lowest experimental value. Other: mean lifetime 24 fs 4 (1969Me14,1970Me04).                                                                                                                                                                                                                                                                              |
| 7799.01 9                      | 3+                 | 225 fs <i>10</i>  | В |     | JKL      | Q     | T <sub>1/2</sub> : From mean lifetime 325 fs <i>15</i> : weighted average of 310 fs 55 (1968Gi05), 300 fs <i>90</i> (1967Ca10), 300 fs <i>100</i> (1969Al01), 250 fs <i>75</i> (1975Me14), 300 fs <i>75</i> (1978Da08), 240 fs <i>45</i> (1990En02), and 340 fs <i>15</i> (p,γ) (1993Ti02): uncertainty – lowest experimental value. Others: mean lifetime 190 fs <i>30</i> (1969Me14,1970Me04), 150 fs <i>85</i> (1970Hu14,1971Hu04). |
| 7933.45 10                     | 2+                 | 11 fs 2           | В | G   | JKL      | Q     | $T_{1/2}$ : From mean lifetime 16 fs 2: weighted average of 15 fs 10 (1978Da08), 14 fs 2 (1990En02), 16 fs 2 ( $^{16}$ O,pn) and 17 fs 2 ( $^{19}$ O,pn) (1993Ti02): uncertainty – lowest experimental value. Others: mean lifetime 50 fs 25 (1969An08), 21 fs 10 (1970St10).                                                                                                                                                          |
| 8258.74 <sup>m</sup> 10        | 2 <sup>(+)</sup>   | 10 fs 2           | В | F   | JL       | Q     | $T_{1/2}$ : From mean lifetime 14 fs 4: weighted average of 14 fs 6 (1968Gi05), 8 fs 6 (1970Hu14,1971Hu04), 12 fs 4 (1990En02), and 20 fs 5 (p, $\gamma$ ) (1993Ti02): uncertainty – lowest experimental value. Other: mean lifetime 26 fs 10 (1975Me14).                                                                                                                                                                              |
| 8328.38 12                     | 1+                 | 347 fs <i>166</i> |   |     | JKL      | Q     | T <sub>1/2</sub> : From mean lifetime 500 fs 240: unweighted average of 150 fs 85 (1970Hu14,1971Hu04), 380 fs 75 (1975Me14), and 960 fs 220 (1990En02).                                                                                                                                                                                                                                                                                |
| 8413.33 10                     | 4-                 | 324 fs 55         |   |     | JKL      |       | $T_{1/2}$ : From mean lifetime 467 fs 80: weighted average of 280 fs 80 (1968Gi05), 560 fs 150 (1969Me14,1970Me04), 490 fs 110 (1970Al05,1974Da15), 580 fs 400 (1970Hu14,1971Hu04), 890 fs 160 (1990En02), and 540 fs 110 (p, $\gamma$ ) (1993Ti02): uncertainty – lowest experimental value. Other: mean lifetime 230 fs 50 (1967Ca10).                                                                                               |
| 8543.56 <sup><i>j</i></sup> 20 | 6+                 | 11.4 fs <i>10</i> |   | FG  | J        |       | J <sup>π</sup> : From 1968No06 – <sup>16</sup> O( <sup>14</sup> N,pnγ).<br>T <sub>1/2</sub> : From mean lifetime 16.4 fs 14 (1993Ti02). Others: 18 fs 7 (1974NeZZ), 18 fs 6 (1970Hu14,1971Hu04), <5 fs (1975Me14), 58 fs 12 (1969La13), 19 fs 8 (1975Di07), 15 fs 3 (1975Fr22), 31 fs 7 (1983Mi32), 38 fs 14 (1990En02).                                                                                                               |
| 8588.71 10                     | 3 <sup>+</sup>     | 11 fs 2           | В |     | JKL      | Q     | T <sub>1/2</sub> : From mean lifetime 16 fs 2: weighted average of 25 fs 5 (1968Gi05), 13 fs 4 (1970Al05,1974Da15), 10 fs 3 (1970Hu14,1971Hu04), 12 fs 3 (1990En02), and 19 fs 2 (p,γ) (1993Ti02): uncertainty – lowest experimental value. Other mean lifetimes: 5 fs 2 (1975Me14), <10 fs (1967Ca10), <25 fs (1969An08).                                                                                                             |
| 8819 <i>9</i>                  | 1-                 | 0.6.2             |   |     | K        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8904.8 <i>4</i>                | 1-                 | 8 fs 2            |   |     | JKL      | Q     | T <sub>1/2</sub> : From mean lifetime 11 fs 3: weighted average of 12 fs 4 (1969Me14,1970Me04) and 10 fs 3 (1975Me14): uncertainty – lower experimental value.                                                                                                                                                                                                                                                                         |
| 8945.20 <sup>k</sup> 13        | 5+                 | 58 fs 6           |   | FG  | JKL      |       | T <sub>1/2</sub> : From mean lifetime 84 fs 8: weighted average of 67 fs 16 (1974NeZZ), 65 fs 12 (1970Al05,1974Da15), 110 fs 30 (1971Go41), 105 fs 15 (1975Me14), 104 fs 17 (1975Fr22), 100 fs 10 (1986Gl05), 89 fs 10 (1983Mi32), 96 fs 19 (1990En02), and 70 fs 8 (1993Ti02): uncertainty – lowest experimental value.                                                                                                               |
| 8953.3 4                       | $(0^+,1,2)$        |                   |   |     | J        |       | $J^{\pi}$ : $\gamma$ ray to 2 <sup>+</sup> state at 1179 keV, $\gamma$ ray feeding, and L(0) in 1982Bo14 ( $^{26}$ Mg( $^{3}$ He,n) $^{28}$ Si).                                                                                                                                                                                                                                                                                       |
| 9164.68 <sup>l</sup> 17        | (4+)               | 28 fs <i>3</i>    |   | F   | J        |       | $J^{\pi}$ : From (p, $\gamma$ ) study in 1981Gl05.<br>$T_{1/2}$ : From mean lifetime 40 fs 5: weighted average of 39 fs 7 (1968Gi05), 57 fs 10 (1970Hu14,1971Hu04), 37 fs 7 (1975Me14), 37 fs 5 (1981Gl05), and 65 fs 30 (1990En02):                                                                                                                                                                                                   |
| 9315.92 10                     | 3+                 | 1.5 fs 6          | В |     | JKL      | Q     | uncertainty – lowest experimental value.<br>T=1<br>$T_{1/2}$ : From mean lifetime 2.2 fs 9: unweighted average of 3.1 fs                                                                                                                                                                                                                                                                                                               |
|                                |                    |                   |   | Con | tinued o | on ne | xt page (footnotes at end of table)                                                                                                                                                                                                                                                                                                                                                                                                    |

| E(level) <sup>†</sup>                                                   | Jπ‡                                                                   | $T_{1/2}f$       |   | XREF                        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|---|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9381.55 12                                                              | 2+                                                                    | 1.1 fs <i>3</i>  | В | J L Q                       | 15 (1990En02) and 1.3 fs 8 (1993Ti02). Other meanlives: <10 fs (1968Gi05), 15 fs 2 (1975An09), <5 (1969Me14,1970Me04), 13 fs 10 (1970Hu14,1971Hu04), <5 (1975Me14), 16 fs 4 (1983Mi32), and <30 fs (1977Mi01).  T=1  T <sub>1/2</sub> : From mean lifetime 1.6 fs 4: average of 1.4 fs 4 (1990En02) and 1.8 fs 6 (1993Ti02), uncertainty from 1990En02. Other mean lifetimes: 12 fs 4 (1975An09), 5 fs 3 (1969Me14,1970Me04), <5 fs (1970Al05,1974Da15), <12 fs |
| 9417.17 <i>14</i>                                                       | 4+                                                                    | 78 fs <i>12</i>  |   | JKL                         | (1970Hu14,1971Hu04), <10 fs (1975Me14), 20 fs +30–17 (1977Mi01).<br>J $^{\pi}$ : From 1986Gl05 (p, $\gamma$ ), based on $\gamma$ -ray decay and feeding.<br>T $_{1/2}$ : From mean lifetime 113 fs $I8$ : weighted average of 130 fs $65$ (1970Hu14,1971Hu04), 160 fs $35$ (1971Go41), 115 fs $25$ (1975Me14), 99 fs $I8$ (1990En02): uncertainty – lowest experimental value.                                                                                  |
| 9479.49 11                                                              | (2 <sup>+</sup> ) <sup>#</sup>                                        | 6 fs 2           | В | G J L                       | $T_{1/2}$ : From mean lifetime 8 fs 3: weighted average of 13 fs 6 (1990En02) and 7 fs 3 (1993Ti02).                                                                                                                                                                                                                                                                                                                                                            |
| 9496.04 <i>15</i>                                                       | (1 <sup>+</sup> ) <sup>#</sup>                                        | 5 fs 2           |   | J L                         | T <sub>1/2</sub> : From mean lifetime 7 fs 3: weighted average of 9 fs 3 (1969Me14,1970Me04) and 5 fs 2 (1975Me14).                                                                                                                                                                                                                                                                                                                                             |
| 9702.34 12                                                              | (5 <sup>-</sup> )                                                     | 4 ps 1           |   | J L O                       | $J^{\pi}$ : L=3 in ( $^{3}$ He,d) and from 1975Ne03 (p, $\gamma$ ).<br>T <sub>1/2</sub> : From mean lifetime 4.8 ps <i>14</i> (1970Al05,1974Da15).<br>Other: 8 ps <i>4</i> (1972Ba48).                                                                                                                                                                                                                                                                          |
| 9764.52 <i>11</i><br>9795.95 <sup>n</sup> <i>14</i><br>9929.2 <i>17</i> | (3 <sup>-</sup> )<br>(2 <sup>+</sup> ) <sup>#</sup><br>1 <sup>-</sup> | <2 fs            | В | JKL 0 Q<br>F J 0<br>JKL 0 Q | $T_{1/2}$ : From 1990En02.<br>E(level): Weighted average of data from $(p,\gamma)$ and $(p,p')$ .                                                                                                                                                                                                                                                                                                                                                               |
| 10181.60 <i>12</i><br>10189.59 <i>20</i>                                | (3 <sup>-</sup> )<br>(5 <sup>-</sup> ,3 <sup>-</sup> )                | 7 fs 2<br><21 fs |   | JKLM O Q                    | <ul> <li>J<sup>π</sup>: L=1 in 1982Bo14 (<sup>26</sup>Mg(<sup>3</sup>He,n)<sup>28</sup>Si). γ ray to 0<sup>+</sup>.</li> <li>T<sub>1/2</sub>: From 1975Me14. Other: &lt;6 fs (1990En02).</li> <li>J<sup>π</sup>: From (α,nγ), based on n-γ angular correlation and mean lifetime measurements. γ ray to 3<sup>-</sup>.</li> <li>T<sub>1/2</sub>: From 1981Gl05.</li> </ul>                                                                                      |
| 10209.01 20                                                             | (3 <sup>+</sup> ) <sup>@</sup>                                        | 10 fs <i>3</i>   | В | J O                         | T <sub>1/2</sub> : From mean lifetime 14 fs 4: weighted average of 15 fs 7 (1968Gi05), 13 fs 4 (1975Me14), and 17 fs 8 (1990En02).                                                                                                                                                                                                                                                                                                                              |
| 10272.3 8                                                               | 0+                                                                    | <42 fs           |   | JKL O                       | T=1<br>E(level): Weighted average of data in $(p,\gamma)$ and $(p,p')$ .<br>$J^{\pi}$ : L=0 in 1982Bo14 ( $^{26}$ Mg( $^{3}$ He,n) $^{28}$ Si).<br>$T_{1/2}$ : From 1977Mi01.                                                                                                                                                                                                                                                                                   |
| 10310.92 13                                                             | $(4^+)^{\textcircled{@}}$<br>$(3^+,4^+)^{#}$                          | 11 fs 4          |   | J L 0                       | T <sub>1/2</sub> : From 1975Me14.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10376.24 <i>12</i><br>10418.25 <i>22</i>                                | (5 <sup>+</sup> )&                                                    | 18 fs 4          |   | J L O<br>G JK O             | T=1  T <sub>1/2</sub> : From mean lifetime 26 fs 6: weighted average of 23 fs 7 (1970Al05,1974Da15), 27 fs 8 (1975Me14), 22 fs 6 (1983Mi32), 27 fs 11 (1990En02), 38 fs 10 (1993Ti02): uncertainty – lowest experimental value. Other: mean lifetime 28 fs +21-7 (1974NeZZ).                                                                                                                                                                                    |
| 10514.1 3                                                               | $(2^+)^{\#}$ $(3^-)^{\#}$                                             |                  |   | H J M O                     | $J^{\pi}$ : From 1979Sc14 – (e,e').                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10541.0 8<br>10596.18 <i>15</i>                                         | (1 <sup>+</sup> )                                                     | 388 as <i>83</i> |   | J L O                       | T=0<br>E(level): Weighted average of data in $(p,\gamma)$ and $(p,p')$ .<br>T=0,1<br>J <sup><math>\pi</math></sup> : 1 <sup>+</sup> in $(e,e')$ .<br>T <sub>1/2</sub> : From mean lifetime 560 as 120: weighted average of 420<br>as 160 (1984Be26) and 640 as 120 (1979Sc14): uncertainty<br>from 1979Sc14. Other mean lifetimes: <5000 as (1975Me14),<br><4000 as (1990En02).                                                                                 |
| 10668.05 <i>13</i>                                                      | $(2,3)^{+}$                                                           | 15 fs <i>3</i>   | b | iJ o                        | T=0                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$             | $T_{1/2}f$           |   | XREF  |     | Comments                                                                                                                                                                                                                                                                                      |
|-------------------------|--------------------------------|----------------------|---|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                |                      |   |       |     | T <sub>1/2</sub> : From 1990En02.                                                                                                                                                                                                                                                             |
| 10668.34 11             | 4+#                            | 18 fs 3              | b | iJ L  | . 0 | T=0                                                                                                                                                                                                                                                                                           |
| 105045.4                |                                | (24 110              |   |       |     | T <sub>1/2</sub> : From mean lifetime 26 fs 5: weighted average of 22 fs 7 (1975Me14), 27 fs 6 (1990En02), and 31 fs 8 (1993Ti02).                                                                                                                                                            |
| 10724.7 <i>4</i>        | $(1^+)$                        | 624 as <i>110</i>    |   | J L   | M O | $T=0,1$ $J^{\pi}$ : 1 <sup>+</sup> in (e,e').                                                                                                                                                                                                                                                 |
|                         |                                |                      |   |       |     | $T_{1/2}$ : From 1979Sc14. Other: <5545 as (1990En02).                                                                                                                                                                                                                                        |
| 10778 2                 | $1^{+}$ to $5^{+}$             |                      |   | JK    |     | 1 <sub>1/2</sub> . 110m 1775011. Odici. 350 to do (1770Eno2).                                                                                                                                                                                                                                 |
| 10805.5 10              | $(2^{+})$                      |                      |   |       | мо  | $J^{\pi}$ : 2 <sup>+</sup> in (e,e').                                                                                                                                                                                                                                                         |
| 10883.45 <i>14</i>      | $(2,3^+)^a$                    |                      |   | н Ј   | 0   | T=1                                                                                                                                                                                                                                                                                           |
| 10900.42 15             | $(1^+)^a$                      | 83 as 7              |   | J L   | M O | T=1                                                                                                                                                                                                                                                                                           |
|                         |                                |                      |   |       |     | $T_{1/2}$ : From mean lifetime 120 as 10: weighted average of 87 as 23 (1966Li08), 93 as 25 (1984Be26), and 131 as 10 (1979Sc14). Uncertainty – lowest experimental value. Other mean lifetime <7000 as (1990En02).                                                                           |
| 10915.6 7               | (3 <sup>-</sup> ) <sup>@</sup> |                      |   | 117.7 | 0   | Other mean metinic 000 as (1990En02).</td                                                                                                                                                                                                                                                     |
|                         | $(3^{+})^{@}$                  | 15 fo 10             |   | HIJ L |     | T . From 1000Er 02                                                                                                                                                                                                                                                                            |
| 10944.0 <sup>n</sup> 3  |                                | 15 fs <i>10</i>      |   | F HIJ | 0   | T <sub>1/2</sub> : From 1990En02.                                                                                                                                                                                                                                                             |
| 10952.8 3               | 1 to 4 <sup>#</sup>            |                      |   | H J   | 0   |                                                                                                                                                                                                                                                                                               |
| 10994 2                 | $(1,2^+)^{\#}$                 |                      |   | H J   | 0   | E(level): Weighted average of data in $(p,\gamma)$ and $(p,p')$ .                                                                                                                                                                                                                             |
| 11078.52 <i>14</i>      | $(3^{-})^{\textcircled{@}}$    | 44.0.0.70            |   | H J   | 0   |                                                                                                                                                                                                                                                                                               |
| 11100.0 <i>10</i>       | $(6^+)^{\&}$                   | 11.0 fs <i>10</i>    |   | G IJ  | 0   | E(level): Weighted average of data in $(p,\gamma)$ , $(p,p')$ , and $(\alpha,n\gamma)$ .                                                                                                                                                                                                      |
| 11142 <i>I</i>          | (2+)                           |                      |   | н Ј   | МО  | $T_{1/2}$ : From 1993Ti02. Other: <11 fs (1981Gl05). $T=0$ $J^{\pi}$ : $2^{+}$ in (e,e').                                                                                                                                                                                                     |
| 11195.22 <i>13</i>      | $(4^+)^{@}$                    |                      |   | ΗЈ    | 0   | T=0                                                                                                                                                                                                                                                                                           |
| 11242 6                 | <b>6</b>                       |                      |   | K     |     |                                                                                                                                                                                                                                                                                               |
| 11265 <i>3</i>          | $(3^{-})^{@}$                  |                      |   | IJ    | 0   | T=0                                                                                                                                                                                                                                                                                           |
| 11295.6 2               | (1-)                           | <150 <sup>g</sup> eV |   | HЈ    | 0   | T=0                                                                                                                                                                                                                                                                                           |
| 11331.9 <sup>k</sup> 9  | 6+                             | <21 fs               |   | F IJ  | 0   | E(level), $I^{\pi}$ : From $(\alpha, \gamma)$ .<br>E(level): Weighted average of data from $(p, \gamma)$ , $(p, p')$ , and                                                                                                                                                                    |
| 11331.9 9               | U                              | <b>\21 18</b>        |   | r 1J  | U   | ( $\alpha$ ,n $\gamma$ ).                                                                                                                                                                                                                                                                     |
|                         |                                |                      |   |       |     | $J^{\pi}$ : From $(p,\gamma)$ , based on the $\gamma$ -ray angular distribution, linear polarization, and transition rates. $K^{\pi}=3^+$ band member.                                                                                                                                        |
| 11200                   |                                |                      |   |       |     | $T_{1/2}$ : From 1986Gl05.                                                                                                                                                                                                                                                                    |
| 11388 3                 | (2+)(1                         | -21 f-               |   | 717   | 0   | T 0.1                                                                                                                                                                                                                                                                                         |
| 11432.63 <i>18</i>      | $(2^+)^a$                      | <21 fs               |   | JK    | 0   | T=0,1<br>$T_{1/2}$ : From 1977Mi01.                                                                                                                                                                                                                                                           |
| 11434.50 22             | $(4^{-})^{a}$                  | 14 fs 4              |   | JK    | 0   | T=0.1<br>$T_{1/2}$ : From 1970Al05. Other: 87 fs +90-42 (1977Mi01).                                                                                                                                                                                                                           |
| 11446.00 <i>16</i>      | (1+)                           | 17.6 as 8            |   | J     | МО  | T = 1<br>$J^{\pi}$ : 1 <sup>+</sup> in (e,e').                                                                                                                                                                                                                                                |
|                         |                                |                      |   |       |     | T <sub>1/2</sub> : From mean lifetime 27.7 fs <i>15</i> : weighted average of 24 fs <i>4</i> (1966Li08), 31 fs <i>6</i> (1969Fa11), 28.1 fs <i>35</i> (1984Be26), and 28.0 fs <i>15</i> (1979Sc14): uncertainty – lowest experimental value. Other mean lifetime: 73 as <i>16</i> (1978Ma23). |
| 11510.4 <sup>l</sup> 10 | $(6^+)^{@}$                    | 9 fs 2               |   | FG IJ |     | T=0                                                                                                                                                                                                                                                                                           |
| 11515.5 2               | $(2^{+})$                      | <200 <sup>g</sup> eV | В | Н     | 0   | $T_{1/2}$ : From 1993Ti02. Other: <21 fs (1981Gl05).<br>T=0                                                                                                                                                                                                                                   |
| 11313.3 2               | (2)                            | \200° C Y            | ם | 11    | J   | E(level), $J^{\pi}$ : From $(\alpha, \gamma)$ .                                                                                                                                                                                                                                               |

| E(level) <sup>†</sup>             | Jπ‡                       | $T_{1/2}f$                    | XREF |               | Comments                                                                                                                                                                                      |  |
|-----------------------------------|---------------------------|-------------------------------|------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 11572.0 7                         | $(4,5^+)^{@}$             |                               |      | J o           |                                                                                                                                                                                               |  |
| 11576 2                           | $(6^-)^{a}$               | 235 fs 70                     |      | IJKL o        | T=0 E(level): Weighted average of 11577 keV 2 (p, $\gamma$ ), 11577 keV 3 – 1981Gl05 ( $\alpha$ ,n $\gamma$ ), and 11574 keV 3 (p,p $\prime$ ).                                               |  |
|                                   |                           |                               |      |               | T <sub>1/2</sub> : From mean lifetime 351 fs 70: weighted average of 340 fs 100 (1973Ne11), 220 fs 70 (1970Al05,1974Da15), and 530 fs 80 (1973Mi24): uncertainty – lowest experimental value. |  |
| 11584.62 <i>19</i>                | (3-)                      | <200 <sup>g</sup> eV          |      | н Ј О         | T=0 $J^{\pi}$ : From $(\alpha, \gamma)$ . 9803.74 $\gamma$ to 2 <sup>+</sup> state.                                                                                                           |  |
| 11656.9 <i>3</i>                  | (2+)                      | 0.18 <sup>i</sup> eV 7        | В    | H L O         | T=0<br>E(level), $J^{\pi}$ : From $(\alpha, \gamma)$ .                                                                                                                                        |  |
| 11669.7 2                         | (1-)                      | 0.46 <sup>i</sup> eV 10       |      | H L O         | T=0<br>E(level), $J^{\pi}$ : From $(\alpha, \gamma)$ .                                                                                                                                        |  |
| 11778.7 2                         | (2+)                      | <5 <i>i</i> eV                |      | h L o         | T=0,1<br>E(level), $J^{\pi}$ : From $(\alpha,\gamma)$ .                                                                                                                                       |  |
| 11778.9 <i>10</i>                 | $(5^+)^{\textcircled{@}}$ |                               |      | h J o         | E(level): From $(\alpha, \gamma)$ .                                                                                                                                                           |  |
| 11770.7 10                        | $(0^+ \text{ to } 4^+)$   |                               |      | J o           | $E((ever), 1 \text{ form } (u, \gamma).$                                                                                                                                                      |  |
| 11799.8 <i>4</i>                  | $(2,3)^{-}$               | <35 eV                        |      | J L O         |                                                                                                                                                                                               |  |
| 11867.2 <i>4</i>                  | (4 <sup>+</sup> )         | 59 eV <i>14</i>               |      | J L O         | T=1<br>Γ from 1990En08. Other: <5 eV quoted from a private communication in 1998En04.                                                                                                         |  |
| 11899.9 2                         | 4+                        | <40 <sup>i</sup> eV           |      | H J L O       | T=0,(1)                                                                                                                                                                                       |  |
| 11933.5 7                         | 5 <sup>@</sup>            |                               | В    | IJ O          | T=0                                                                                                                                                                                           |  |
| 11975.7 3                         | $(3^-,4^+)$               | <40 eV                        |      | H J L O       | T=0,1<br>$\Gamma$ – from Table 28.16 in 1990En08.                                                                                                                                             |  |
| 11986 2                           | (1 to 3)                  |                               |      | J O           |                                                                                                                                                                                               |  |
| 12015.8 5                         | $(2^+,3)^a$               | 2500 27                       |      | J 0           | <b></b>                                                                                                                                                                                       |  |
| 12022.7 2                         | (5 <sup>-</sup> )         | $<250^{8} \text{ eV}$         | _    | Н О           | T=0                                                                                                                                                                                           |  |
| 12071.1 <i>I</i> 12073.3 <i>I</i> | $(2^+)$                   | 1.4 <sup>i</sup> eV<br><80 eV | В    | HJ Mo<br>JL o | T=0                                                                                                                                                                                           |  |
| 12073.3 1                         | $(2^{-})$ $(6^{+})$       | <7 fs                         |      | JL o<br>IJ 0  | $J^{\pi}, T_{1/2}$ : From $(\alpha, n\gamma)$ .                                                                                                                                               |  |
| 12174.6 <i>1</i>                  | $(5^+, 3^-, 4)^a$         | 9 fs 2                        |      | J O           | $T_{1/2}$ : From 1972An10.                                                                                                                                                                    |  |
| 12182.0 <i>3</i>                  | $(1^{-})^{b}$             | <250 <sup>g</sup> eV          |      | н о           | T=0                                                                                                                                                                                           |  |
| 12194.7 <i>1</i>                  | $(3^{-})^{b}$             | 6.7 eV 5                      |      | H J L O       | T=0                                                                                                                                                                                           |  |
| 12204 2                           | $(6^-,4^-)^{\it c}$       | <21 fs                        |      | I 0           | T=0                                                                                                                                                                                           |  |
|                                   |                           |                               |      |               | E(level): Weighted average of data from $(p,p')$ and $(\alpha,n\gamma)$ .                                                                                                                     |  |
| 12216.3 <i>1</i>                  | $(2^{-})$                 | <30 eV                        |      | J L O         | $T_{1/2}$ : From $(\alpha, n\gamma)$ .<br>T=0                                                                                                                                                 |  |
| 12240.1 <i>I</i>                  | $(3^+)$                   | $< 80^{8} \text{ eV}$         |      | JLo           | 1-0                                                                                                                                                                                           |  |
| 12240.9 <i>3</i>                  | $(4^{+})^{b}$             | <250 <sup>g</sup> eV          |      | H L o         | T=0                                                                                                                                                                                           |  |
| 12265.8 23                        | $(0,1)^+$                 |                               |      | K             | $J^{\pi}$ ,E(level): L=0 in ( <sup>3</sup> He,n) and also 12270 keV 30 (1982Bo14).                                                                                                            |  |
| 12289.5 3                         | $(2^+)^{b}$               | 13 eV 3                       | В    | н Ј           | T=0<br>Γ from 1973Na10 and 1980Fu02.                                                                                                                                                          |  |
| 12295.2 <i>1</i>                  | $(2,3)^{+d}$              | <60 eV                        |      | J O           |                                                                                                                                                                                               |  |
| 12301.4 <i>I</i>                  | $(0^+, 1^-, 2^+)$         | <80 <sup>g</sup> eV           |      | H J L O       | T=0 $J^{\pi}$ : From $(p, \gamma) - 1995Br17$ .                                                                                                                                               |  |
| 12318.3 <i>1</i>                  | $(2^{-})^{d}$             | <40 eV                        |      | J O           | T=0                                                                                                                                                                                           |  |
| 12324.8 <i>I</i>                  | $(4^+)^{d}$               | <50 eV                        |      | J O           |                                                                                                                                                                                               |  |
| 12331.0 <i>I</i>                  | (1+)                      | <80 <sup>g</sup> eV           |      | J M O         | T=1 $J^{\pi}: \text{ From } (\gamma, \gamma), (e, e').$                                                                                                                                       |  |
| 12441.1 <i>I</i>                  | $(2^{+})$                 | 18 eV 3                       | В    | H J M O       | T=0                                                                                                                                                                                           |  |
|                                   |                           |                               |      |               |                                                                                                                                                                                               |  |

| E(level) <sup>†</sup>                      | $J^{\pi \ddagger}$             | $T_{1/2}f$            |   | XREF                                          |   | Comments                                                                                                                                                                                     |
|--------------------------------------------|--------------------------------|-----------------------|---|-----------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                |                       |   |                                               |   | $J^{\pi}$ : From (e,e'), $(\alpha,\gamma)$ , spectroscopic strength.                                                                                                                         |
| 12475.0 <i>1</i>                           | $(4^{+})$                      | <80 <sup>g</sup> eV   |   | нЈ                                            | 0 | T=0                                                                                                                                                                                          |
| 12488.8 <i>I</i>                           | $(3^{-})^{e}$                  | 100 eV 20             |   | НJL                                           | 0 | T=0                                                                                                                                                                                          |
| 12541.5 <i>1</i>                           | $(3^{+})^{e}$                  | 70 eV <i>14</i>       |   | JL                                            | 0 | T=1                                                                                                                                                                                          |
| 12551.2 <i>I</i>                           | $(4^{+})^{b}$                  | 1.4 <sup>i</sup> eV   | В | н Ј                                           | 0 | T=0                                                                                                                                                                                          |
| 12573.7 <i>I</i>                           | $(2^{+})^{e}$                  | 110 eV 22             | В | JL                                            | 0 | T=1                                                                                                                                                                                          |
| 12635.8 1                                  | $(2,3)^{+d}$                   | $<60^g \text{ eV}$    | _ | j                                             | 0 | T=0                                                                                                                                                                                          |
| 12643.1 <i>I</i>                           | $(5^{-})^{\textcircled{@}}$    | $<80^{\circ}$ eV      |   |                                               |   | 1-0                                                                                                                                                                                          |
|                                            | $(3^{-})^{e}$                  | 700 eV <i>70</i>      |   | J L<br>J L                                    | 0 | T=1                                                                                                                                                                                          |
| 12663.7 <i>1</i><br>12715.0 <i>1</i>       | $(0^+,1^+)$                    | $<100^{g} \text{ eV}$ | В | J                                             | 0 | T=0                                                                                                                                                                                          |
|                                            |                                |                       | ь | J                                             | U | J <sup><math>\pi</math></sup> : From re-interpretation (by evaluator in 1998En04) of $\gamma$ -decay in 1975Me14. L=0 is reported from the observed (p,p <sub>1</sub> ) yield in 1975Me14.   |
| 12726.2 <i>1</i>                           | $(2^+)^d$                      | 250 eV 5              | В |                                               | 0 | T=0                                                                                                                                                                                          |
| 12742.5 5                                  | (3 <sup>-</sup> ) <sup>e</sup> | 5.4 keV 5             |   | J L                                           | 0 | T=0,1                                                                                                                                                                                        |
| 12754.8 <i>1</i>                           | $(1,2)^{+}$                    | $<100^{8} \text{ eV}$ |   | J                                             | 0 | T=0,1                                                                                                                                                                                        |
| 12802.7 <i>I</i>                           | $(3^{-})^{e}$                  | 100 eV 20             |   | J L                                           | 0 | T=0                                                                                                                                                                                          |
| 12805.3 4                                  | $(1^-,2^+)^b$                  | <350 <sup>g</sup> eV  |   | H                                             |   | T=0                                                                                                                                                                                          |
| 12815.4 5                                  | $(1^{-})^{b}$                  | 3.5 keV 10            |   | Н                                             | 0 | T=0                                                                                                                                                                                          |
| 1201671                                    | $(5^+)$                        | <100 <sup>g</sup> eV  |   | -                                             | _ | $\Gamma$ from $(\alpha, \gamma)$ .<br>T=0                                                                                                                                                    |
| 12816.7 <i>I</i><br>12855.1 <i>I</i>       | $(3^{+})$                      | 30 eV 6               |   | J<br>H J L                                    | 0 | T=0<br>T=0,1                                                                                                                                                                                 |
| 12853.1 <i>1</i> 12862 <sup><i>n</i></sup> | $(6^+)$                        | <350 eV 0             |   | FH L                                          | U | T=0,1<br>T=0                                                                                                                                                                                 |
| 12002                                      | (0 )                           | \350 CV               |   | rn L                                          |   | E(level): From E $\gamma$ . Other: 12859.1 $3$ ( $\alpha$ , $\gamma$ ). $J^{\pi}$ : $\gamma$ to (4 <sup>+</sup> ) and member of the g.s. oblate band. $\Gamma$ from ( $\alpha$ , $\gamma$ ). |
| 12866.5 <i>1</i>                           | $(2^+,3^+)$                    | 35 eV 5               |   | J                                             | 0 | T=0                                                                                                                                                                                          |
| 12900.4 <i>1</i>                           | $(4^+)^{\&}$                   | 550 eV 60             | В | ΗЈ                                            | 0 | T=0                                                                                                                                                                                          |
| 12902.0 2                                  | $(2^{+})$                      | <200 <sup>g</sup> eV  |   | ΗЈ                                            | 0 | T=0                                                                                                                                                                                          |
|                                            |                                |                       |   |                                               |   | $J^{\pi}$ : From $(p,p')$ .                                                                                                                                                                  |
| 12917.3 <i>1</i>                           | $(2,3)^{+#}$                   | 780 eV 80             |   | J L                                           | 0 | T=1                                                                                                                                                                                          |
| 12923.8 <i>1</i>                           | $(3^{+})$                      | 600 eV 60             |   | h J                                           | 0 | T=1                                                                                                                                                                                          |
| 12924.0 <i>3</i>                           | $(2^{+})$                      | 200 eV 40             |   | h J                                           | 0 | T=0                                                                                                                                                                                          |
| 12974.2 <i>3</i>                           | $(1^{-})$                      | 250 eV <i>50</i>      |   | НJ                                            | 0 | T=0                                                                                                                                                                                          |
| 12976 2                                    | $(0^{+})$                      | 5.2 keV <i>16</i>     |   | Н                                             |   | T=0                                                                                                                                                                                          |
| 12000 0 2                                  | (2.4)=                         | 221 7/2               |   |                                               | _ | Γ from 1982Cs01.                                                                                                                                                                             |
| 12990.0 2                                  | $(3,4)^{-}$                    | 2.3 keV 2             |   | JL                                            | U | T=0                                                                                                                                                                                          |
| 12994 3                                    | $(5,6,7)^+$                    | 16 fs <i>3</i>        |   | FG I                                          |   | J <sup><math>\pi</math></sup> : 7 <sup>+</sup> in ( <sup>20</sup> Ne, $\alpha\gamma$ ).<br>T <sub>1/2</sub> : From ( <sup>16</sup> O,pn). Other: <11 fs ( $\alpha$ ,n $\gamma$ ).            |
| 13014 3                                    |                                |                       |   |                                               | 0 | $1_{1/2}$ . From ( $\mathcal{O}$ ,pii). Other: <11 is $(\alpha, \eta \gamma)$ .                                                                                                              |
| 13014 3<br>13033.5 <i>1</i>                | $(3^+)$                        | 550 eV 60             |   | J                                             | 0 | T=0                                                                                                                                                                                          |
| 13039.8 5                                  | $(0^+)$                        | 3.2 keV 10            |   | Н                                             | O | T=0,1                                                                                                                                                                                        |
| 15057.05                                   | (0 )                           | 3.2 Re v 10           |   | ••                                            |   | $\Gamma$ from 1982Cs01.                                                                                                                                                                      |
| 13050.4 2                                  | $(2^{-})$                      | 3.7 keV 4             |   | J L                                           | 0 |                                                                                                                                                                                              |
| 13094.1 <i>1</i>                           | $(4^{+})$                      | 20 eV 3               | В | НJ                                            | 0 | Other Γ: 45 eV (1978Ma23).                                                                                                                                                                   |
| 13103.9 10                                 |                                |                       |   | J                                             |   |                                                                                                                                                                                              |
| 13104.4 10                                 |                                | 2.4 keV 3             |   | J                                             | 0 | XREF: O(13106.1).                                                                                                                                                                            |
| 13105.9 4                                  | (2.4+)                         | 130 eV 3              |   | H J                                           | 0 | T=0                                                                                                                                                                                          |
| 13114.9 10                                 | $(3,4^+)$                      | <200 <sup>g</sup> eV  |   | J L<br>J                                      | 0 | T=0+1<br>T=0                                                                                                                                                                                 |
| 13116.8 <i>10</i><br>13121 <i>3</i>        |                                | <350 eV               |   | H                                             |   | $\Gamma = 0$ $\Gamma \text{ from } ^{24}\text{Mg}(\alpha, \gamma).$                                                                                                                          |
| 13173.3 <i>I</i>                           | (3-)                           | 340 eV 70             |   | n<br>J                                        | 0 | Thom - $\operatorname{Mg}(\alpha, \gamma)$ .<br>T=0                                                                                                                                          |
| 13188.6 5                                  | $(2^+)$                        | 1.9 keV 2             |   | JL                                            | 0 | T=0+1                                                                                                                                                                                        |
| 13190.0 2                                  | $(1^+)$                        | 450 eV <i>50</i>      |   | JL                                            | 0 | T=0                                                                                                                                                                                          |
|                                            | ` /                            |                       |   | , <u>, , , , , , , , , , , , , , , , , , </u> | - |                                                                                                                                                                                              |

| E(level) <sup>†</sup>                | $J^{\pi \ddagger}$                   | $T_{1/2}f$             | XREF           |   | Comments                                                                                     |
|--------------------------------------|--------------------------------------|------------------------|----------------|---|----------------------------------------------------------------------------------------------|
| 13204.6 <i>1</i>                     | $(2,3)^+$                            | 210 eV 40              | J              | 0 | T=0                                                                                          |
| 13208.5 2                            | 2                                    | <200 <sup>g</sup> eV   | J              | 0 | T=0                                                                                          |
| 13229.7 5                            | $(2^{+})$                            | 1.1 keV <i>1</i>       | нЈ             | 0 | T=0                                                                                          |
| 13230.7 10                           | $(6^+)$                              |                        | J              |   |                                                                                              |
| 13234 2                              | $(0^+)$                              | 3.0 keV 9              | H              |   | T=0                                                                                          |
|                                      |                                      |                        |                |   | $\Gamma$ from $^{24}$ Mg( $\alpha$ , $\gamma$ ).                                             |
| 13246.9 <i>6</i>                     | $(5^{-})$                            | 200 eV 40              | hJL            | 0 | T=1                                                                                          |
| 13247.7 6                            | $(3^{-})$                            | 9.6 keV 10             | hJL            | 0 | T=0                                                                                          |
| 13271.6 <i>5</i>                     | $(2^{-})$                            | 6.6 keV 7              | J              | 0 |                                                                                              |
| 13318.2 3                            | $(3,4)^{-}$                          | 1.2 keV <i>1</i>       | J              | 0 |                                                                                              |
| 13320.5 1                            | $(1^+)$                              | 450 eV 60              | J              | 0 | T=1                                                                                          |
| 13360.8 5                            | $(4^+)$                              | 550 eV 60              | НJ             | 0 | T=0                                                                                          |
| 13415.3 5                            | $(4^+)$                              | 140 eV <i>30</i>       | JK             | 0 | T=0                                                                                          |
| 13423.3 5                            | $(1^{-})$                            | 20 keV 1               | Н ЈК<br>Ј      | 0 | T=0+1                                                                                        |
| 13425.4 <i>4</i><br>13467 <i>3</i>   | $(5^+)$                              | 80 eV 20               | K              | U | T=1                                                                                          |
| 13478.6 5                            | $(2^{-})$                            | 4.0 keV 4              | J              | 0 |                                                                                              |
| 13483.7 5                            | $(2^{+})$                            | 1.5 keV 2              | JK             | 0 | T=0+1                                                                                        |
| 13491.8 6                            | $(3^{-})$                            | 31 keV 3               | H J            | 0 | T=0                                                                                          |
| 13500 2                              | (3)                                  | ST RC V S              | K              | • | 1-0                                                                                          |
| 13510.0 20                           |                                      |                        | K              |   |                                                                                              |
| 13546.7 6                            | $(2^+)$                              | 8.5 keV 9              | JK             | 0 | T=0                                                                                          |
| 13557.1 <i>1</i>                     | $(5^+,4^+)$                          | 150 eV 30              | JK             | 0 | T=0+1                                                                                        |
| 13560.3 9                            | $(3^{+})$                            | 1.8 keV 2              | J              | 0 |                                                                                              |
| 13569.0 7                            | $(5^-,4^+)^{\#\&}$                   |                        | JK             |   |                                                                                              |
| 13582.3 5                            | (6 <sup>+</sup> )                    | <28 fs                 | hIJ            |   | T=0                                                                                          |
|                                      | (- )                                 |                        |                |   | T <sub>1/2</sub> : From 1981Gl05.                                                            |
| 13604 <i>4</i>                       |                                      |                        | h K            |   | -,-                                                                                          |
| 13611.6 8                            | $(4^+,5^-)^{\#\&}$                   |                        | JK             |   |                                                                                              |
| 13616.1 8                            | $(2^{-})$                            | 11 keV <i>1</i>        | J              | 0 |                                                                                              |
| 13626.0 <i>15</i>                    | , ,                                  |                        | K              |   |                                                                                              |
| 13636.3 7                            | $(3^{+})$                            | 570 eV 60              | JK             | 0 | XREF: K(13633.0).                                                                            |
| 13639.9 <i>10</i>                    | $(2^{+})$                            | 5.7 keV 6              | н јк           | 0 | T=0                                                                                          |
| 13640.4 <i>10</i>                    | $(1^-,2^+)$                          | 120 eV 20              | J              | 0 | T=0                                                                                          |
|                                      |                                      |                        |                |   | $J^{\pi}$ : From re-interpretation (by evaluator in 1998En04) of                             |
|                                      |                                      |                        |                |   | $\gamma$ -decay in 1975Me14.                                                                 |
| 13663.2 7                            | (3,4)                                | 450 eV <i>50</i>       | J              | 0 | T 0                                                                                          |
| 13668.1 5                            | (4 <sup>+</sup> )                    | 250 eV 50              | JK             | 0 | T=0                                                                                          |
| 13678.7 7                            | $(2^+)$                              | 1.3 keV 2              | НJ             | 0 | T=0                                                                                          |
| 13686.4 <i>5</i><br>13706.6 <i>5</i> | $(2^+ \text{ to } 4^+)$<br>$(2,3)^+$ | 500 eV <i>50</i>       | JK<br>JK       | 0 | XREF: K(13703.0).                                                                            |
| 13708.6 10                           | $(2,3)$ $(4^+)$                      | 190 eV <i>40</i>       | H J            | 0 | T=0                                                                                          |
|                                      |                                      | 190 6 7 40             |                | U |                                                                                              |
| 13710.2 <sup>k</sup> 10              | 7 <sup>+</sup>                       | 20 17/ 2               | F J            | ^ | $J^{\pi}$ : $\gamma$ to $6^+$ , member of the $K^{\pi}=3^+$ band.                            |
| 13711.8 <i>5</i> 13734.7 <i>6</i>    | (3-)                                 | 20 keV 2               | JK             | 0 |                                                                                              |
|                                      | $(1^{-})$                            | 35 keV <i>4</i> <21 fs | JK<br>I K      | 0 | E(level): Weighted average of data from $(p,p')$ and $(d,n\gamma)$ .                         |
| 13744 2                              | $(4^- \text{ to } 7^-)$              | <21 18                 | 1 K            |   | E(level). Weighted average of data from $(p,p)$ and $(d,ry)$ .<br>$T_{1/2}$ : From 1981Gl05. |
| 13789.4 7                            | (3-)                                 | 2.7 keV 3              | ЈК             | 0 | 11/2. 110111 17010103.                                                                       |
| 13798 2                              | (3)                                  | 2.7 KC V 3             | K              | U |                                                                                              |
| 13805.9 8                            | $(4^{+})$                            | 150 eV 30              | J              | 0 | T=0                                                                                          |
| 13812.9 8                            | $(1^{-})$                            | 3.7 keV 4              | H JKL          | 0 | T=0                                                                                          |
|                                      | . ,                                  |                        | - <del>-</del> |   | XREF: H(13816)K(13810.6).                                                                    |
| 13814.4 10                           | $(3^+)$                              | 320 eV 30              | J              | 0 | T=0                                                                                          |
| 13821 2                              |                                      |                        | K              |   |                                                                                              |
| 13830.4 8                            | (3,4)                                | 2.2 keV 2              | н јк           | 0 |                                                                                              |
|                                      |                                      |                        |                |   |                                                                                              |

| E(level) <sup>†</sup>            | $J^{\pi}$                              | $T_{1/2}f$           | XREF      |        | Comments                                                         |
|----------------------------------|----------------------------------------|----------------------|-----------|--------|------------------------------------------------------------------|
| 13860.6 <i>15</i>                | (3-)                                   | 3.9 keV 4            | JK        | 0      | T=0                                                              |
| 12074 0 12                       | (2-)                                   | 711 777              | 11 717    | 0      | XREF: K(13864).                                                  |
| 13874.0 12                       | (3-)                                   | 7.1 keV 7            | н јк      | 0      | T=0,1                                                            |
| 13889.3 8                        | $(3 \text{ to } 6)^{-}$                | 35 eV 7              | JK        | 0      | Tr. O                                                            |
| 13901.7 11                       | $(1^{-})$                              | 2.7 keV 3            | HJL       | 0      | T=0                                                              |
| 13941.0 10                       | $(2^+)$                                | 5.2 keV 5            | н јк      | 0      | T=0                                                              |
| 13968.2 7                        | $(4^+)$                                | 250 eV 50            | Jk        | 0      | T=0                                                              |
| 13972.4 7                        | $(2^+)$                                | 2.5 keV 3            | H Jk      | 0      | T=0                                                              |
| 13979.9 7                        | $(4^+)$                                | 2.6 keV 3            | H Jk      | 0      | T=1                                                              |
| 13982.6 7                        | $(6^{-})$                              | 300 eV 60            | JkL<br>Jk | 0      | $T_{-0}$                                                         |
| 13984.1 7                        | (2+)                                   | 380 eV 60            |           | 0      | T=0                                                              |
| 14012.4 10                       | $(4^{+})$                              | $100^{h}$ eV 2       | J         | 0      |                                                                  |
| 14024 3                          | (1-)                                   | 16 keV 2             | Н         | 0      |                                                                  |
| 14037 3                          | $(3^-,2^-)$                            | 45 keV 5             |           | 0      |                                                                  |
| 14048 3                          | $(5,4)^{+}$                            | 1.2 keV <i>I</i>     |           | 0      |                                                                  |
| 14049 3                          | $(2^{+})$                              | 2.4 keV 2            |           | 0      |                                                                  |
| 14065 3                          | $(2^+)$                                | 6.1 keV 6            | Н         | 0      |                                                                  |
| 14075 3                          | $(2^{-})$                              | 47 keV 5             |           | 0      |                                                                  |
| 14089 3                          | (3-)                                   | 4.3 keV 4            | Н         | 0      |                                                                  |
| 14094 3                          | $(1^+)$                                | 12 keV <i>1</i>      |           | 0      |                                                                  |
| 14095 3                          | $(4^+)$                                | 830 eV 80            | _         | 0      |                                                                  |
| 14102.8 10                       | (5 <sup>-</sup> )                      | 240 eV 20            | J         | 0      | TTPTT TT ( 14 T )                                                |
| 14159 3                          | $(4,3)^{-}$                            | 13 keV <i>1</i>      | K         | 0      | XREF: K(14151.8).                                                |
| 14163.7 10                       | $(5^+)$                                | 4 4 4 47 7           | J         | _      |                                                                  |
| 14198.6 <i>10</i>                | $(3^{+})$                              | 1.1 keV <i>1</i>     | J         | 0      |                                                                  |
| 14207.5 10                       | $(4^+)$                                | 1.0 keV <i>1</i>     | J         | 0      |                                                                  |
| 14210 3                          | $(2^{-})$                              | 20 keV 2             | _         | 0      |                                                                  |
| 14212.1 10                       | $(5^+)$                                | 600 eV 60            | J         | 0      |                                                                  |
| 14227 3                          | $(3^+)$                                | 2.1 keV 2            |           | 0      |                                                                  |
| 14245 3                          | $(3^{-})$                              | 41 keV 4             | h         | 0      |                                                                  |
| 14245.4 10                       | $(7^+)$                                | 261 77 2             | h J       | 0      |                                                                  |
| 14247 3                          | $(2^{+})$                              | 26 keV 3             | h K       | 0      |                                                                  |
| 14272 3                          |                                        |                      | K         |        |                                                                  |
| 14287.6 25                       | (2±)                                   | 201 7/2              | K         | 0      |                                                                  |
| 14294 3                          | $(2^+)$                                | 2.0 keV 2            | 77        | 0      | VDEE. W(14200.0)                                                 |
| 14298 3                          | $(4^+)$                                | 1.4 keV <i>I</i>     | K         | 0      | XREF: K(14300.0).                                                |
| 14306 3                          | $(1^{-})$                              | 74 keV 7             | Н         | 0      |                                                                  |
| 14308 <i>5</i><br>14318 <i>4</i> | $(2^{+})$                              |                      | n<br>K    |        |                                                                  |
| 14318 4                          | $(4^{+})$                              | 620 eV <i>120</i>    | K         | 0      |                                                                  |
| 14328 3                          | $(5^+)$                                | 70 eV 15             | JK        | 0      |                                                                  |
| 14331.7 10                       | (3)                                    | 70 EV 13             | Н         | U      |                                                                  |
| 14346.2 10                       | (4-)                                   | 2.3 keV 2            |           | 0      | XREF: K(14349.0)O(14349).                                        |
| 14356 3                          | (4 <sup>-</sup> )<br>(6 <sup>-</sup> ) | 4.0 keV 2            | JK<br>J   | 0      | T=1                                                              |
| 14330 3                          | (0)                                    | 4.0 Ke v 2           | J         | U      | $J^{\pi}$ : From an M1 transition to 11576 keV level             |
|                                  |                                        |                      |           |        | $((p,\gamma)-1975\text{Ne}03)$ .                                 |
|                                  |                                        |                      |           |        | $((p,\gamma)-1973NeO3)$ .<br>$T_{1/2}$ : $\Gamma$ from 1983SnO2. |
| 1/250 2                          | (4±)                                   | 3.5 keV 4            | le.       | 0      | 11/2. 1 110111 198331102.                                        |
| 14358 <i>3</i> 14358 <i>3</i>    | $(4^+)$ $(2^-)$                        | 43 keV 4             | k         | 0<br>0 |                                                                  |
| 14358 <i>3</i> 14375 <i>3</i>    | $(2^{+})$                              | 43 keV 4<br>27 keV 3 | k<br>K    | 0      |                                                                  |
| 14373 3<br>14391 <i>3</i>        | $(2)$ $(0^+)$                          | 9.0 keV 9            | K         | 0      |                                                                  |
| 14391 3<br>14392.9 <i>10</i>     | $(0^+)$ $(3^+)$                        | 560 eV 60            | J         | 0      |                                                                  |
| 14392.9 10                       | $(3^{-})$                              | 430 eV <i>40</i>     | JK        | 0      | XREF: K(14398.0).                                                |
| 14402.0 10                       | (7)                                    | 730 C Y 70           | K         | U      | ANLI . IN(17370.0).                                              |
| 14417.3 20                       | $(3^{+})$                              | 19 keV 2             | K         | 0      |                                                                  |
| 14471.2 10                       | (6 <sup>-</sup> )                      | 180 eV 40            | J         | 0      |                                                                  |
| 111/1.2 10                       | (0)                                    | 100 01 70            | J         | J      |                                                                  |
|                                  |                                        |                      |           |        |                                                                  |

| E(level) <sup>†</sup>         | $J^{\pi \ddagger}$      | $T_{1/2}f$        | XREF  |   | Comments                                                        |
|-------------------------------|-------------------------|-------------------|-------|---|-----------------------------------------------------------------|
| 14478.0 20                    |                         |                   | K     |   |                                                                 |
| 14493 <i>3</i>                | $(2^{+})$               | 23 keV 2          | _     | 0 |                                                                 |
| 14493 3                       | $(3^{+})$               | 5.9 keV 6         |       | 0 |                                                                 |
| 14515 3                       | $(3^{-})$               | 950 eV <i>100</i> |       | 0 |                                                                 |
| 14523 3                       | $(3^{-})$               | 11 keV <i>I</i>   |       | 0 |                                                                 |
| 14525 <i>J</i> 14535 <i>I</i> | (3)                     | <2 keV            | JK    | U |                                                                 |
|                               |                         |                   |       |   |                                                                 |
| 14542 <i>I</i>                | (2+4)                   | 4 keV 2           | J     |   |                                                                 |
| 14550.5 10                    | $(3^+,4)$               | <2 keV            | J     |   |                                                                 |
| 14554.5 10                    | $(2^{+})$               | 6 keV 2           | J     |   |                                                                 |
| 14561 3                       | ~                       | 21.77             | K     |   |                                                                 |
| 14572.0 10                    | 5                       | <2 keV            | J     |   |                                                                 |
| 14577.4 10                    | $(2^{+})$               | <2 keV            | J_    |   |                                                                 |
| 14625 <i>4</i>                |                         |                   | K     |   |                                                                 |
| 14633.3 <i>10</i>             | $(5^+)$                 | <2 keV            | J     |   |                                                                 |
| 14643 <sup><i>j</i></sup> 3   | 8+                      |                   | F IJK |   | $J^{\pi}$ : $\gamma$ to $6^+$ , member of the g.s. oblate band. |
| 14650 <i>1</i>                |                         | 10 keV 2          | J     |   |                                                                 |
| 14687 <i>1</i>                |                         | 4 keV 2           | J     |   |                                                                 |
| 14709 <i>4</i>                |                         |                   | K     |   |                                                                 |
| 14722.0 10                    | $(4^+,5)$               | <2 keV            | J     |   |                                                                 |
| 14728 <i>1</i>                |                         | 13 keV 2          | J     |   |                                                                 |
| 14741.6 <i>10</i>             | $(3^+ \text{ to } 5^+)$ | <2 keV            | J     |   |                                                                 |
| 14762 <i>1</i>                |                         | 6 keV 2           | JK    |   | XREF: K(14756).                                                 |
| 14766 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 14785 <i>3</i>                |                         |                   | K     |   |                                                                 |
| 14799 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 14802.6 <i>10</i>             | $(4^+)$                 | <2 keV            | J     |   |                                                                 |
| 14854 <i>1</i>                |                         | 5 keV 2           | JK    |   |                                                                 |
| 14860 <i>1</i>                |                         | 4 keV 2           | J     |   |                                                                 |
| 14864 <i>1</i>                |                         | 4 keV 2           | J     |   |                                                                 |
| 14897 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 14904 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 14926 <i>1</i>                |                         | 10 keV 2          | J     |   |                                                                 |
| 14954.2 <i>10</i>             | $(3,4^+)$               | 10 keV 2          | J     |   |                                                                 |
| 15006 <i>1</i>                |                         | <3 keV            | J     |   |                                                                 |
| 15021 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 15027.1 <i>10</i>             | (5)                     | <5 keV            | J     |   |                                                                 |
| 15034 <i>1</i>                |                         | 5 keV 2           | J     |   |                                                                 |
| 15051 <i>I</i>                | $(0 \text{ to } 6)^{-}$ | <2 keV            | J     |   |                                                                 |
| 15076 <i>1</i>                |                         | 4 keV 2           | J     |   |                                                                 |
| 15085 <i>1</i>                |                         | <3 keV            | J     |   |                                                                 |
| 15113 <i>1</i>                |                         | 5 keV 2           | J     |   |                                                                 |
| 15127.0 <i>10</i>             | $(5^{-})$               | <2 keV            | J     |   |                                                                 |
| 15153 <i>1</i>                |                         | 5 keV 2           | J     |   |                                                                 |
| 15182.7 <i>10</i>             | 6                       | <2 keV            | J     |   |                                                                 |
| 15227 <i>1</i>                | $(0^+)$                 | 90 eV 15          | н Ј   |   | T=2                                                             |
| 15239.5 10                    | (4)                     | <2 keV            | J     |   |                                                                 |
| 15243 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 15250 <i>1</i>                |                         | <3 keV            | J     |   |                                                                 |
| 15264 <i>1</i>                |                         | 4 keV 2           | J     |   |                                                                 |
| 15267 <i>1</i>                |                         | 4 keV 2           | J     |   |                                                                 |
| 15272 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 15292 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 15357 <i>1</i>                |                         | <3 keV            | J     |   |                                                                 |
| 15386 <i>1</i>                |                         | <2 keV            | J     |   |                                                                 |
| 15402.5 <i>10</i>             | (5)                     | <2 keV            | J     |   |                                                                 |
|                               |                         |                   |       |   |                                                                 |

### <sup>28</sup>Si Levels (continued)

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$      | XREF |
|-----------------------|-------------------------|------|
| 15494 10              | $(0 \text{ to } 6)^{-}$ | L    |
| 15914.8 <i>10</i>     | $(6^+)$                 | J    |

<sup>†</sup> From  $(p,\gamma)$ , except otherwise noted.

 $^{\ddagger}$  From L values in (d,n), (p,d), and ( $^{3}$ He,d), and  $\gamma$ -ray transitions, except otherwise noted. Additional arguments are presented as comments and footnotes. For resonance states (above 11780 keV), spin/parity assignments are based on available data from  $(p,\gamma)$ :resonance strength, (e,e'), (p,p'),  $(\alpha,\gamma)$  studies, along with the L values from ( $^3$ He,d).

# From  $\gamma$ -ray decay.

<sup>@</sup> From  $(p,\gamma)$ , based on  $\gamma(\theta)$  measurements.

& From  $(p,\gamma)$ , based on the  $\gamma$ -ray angular distribution, linear polarization, and transition rates.

<sup>a</sup> From  $\gamma$ -ray decay and  $\gamma$ -ray feeding.

<sup>b</sup> From  $(\alpha, \gamma)$ , based on  $\gamma$ -ray angular distribution measurements.

<sup>c</sup> From  $(\alpha, n\gamma)$ , based on n- $\gamma$  angular correlation and mean lifetime.

<sup>d</sup> From spectroscopic strength in  $(p,\gamma)$ : Resonance and/or based on the  $\alpha_0$  or  $\alpha_1$  decay.

<sup>e</sup> From 1984Ne03 and 1984Ne04 in (p,p): Resonance.

 $^f$  T<sub>1/2</sub> or Γ. Γ from 1984Ne03 or 1984Ne04, except otherwise noted. For levels at 14535 keV and above – Γ quoted from 1995Br16.

<sup>g</sup> Γ from 1978Ma23.

 $^h$   $\Gamma$  – from 1995Br16.  $^i$   $\Gamma$  – From Table 28.17 in 1990En08.

<sup>j</sup> Band(A): Oblate band based on g.s.

<sup>k</sup> Band(B):  $K^{\pi}=3^{+}$  band.

<sup>1</sup> Band(C): Prolate band based on 0<sup>+</sup>.

<sup>m</sup> Band(D): Vibrational band.

 $^n$  Band(E): SD band based on  $2^+$ .

| $E_i(level)$       | $\mathbf{J}_i^{\pi}$             | $E_{\gamma}{}^{\dagger}$        | $I_{\gamma}$                   | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$          | Mult.b  | δ       | Comments                                                                                            |
|--------------------|----------------------------------|---------------------------------|--------------------------------|---------------------------------------------------|---------|---------|-----------------------------------------------------------------------------------------------------|
| 1779.030           | 2+                               | 1778.969 <sup>‡</sup> <i>11</i> | 100                            | 0.0 0+                                            | E2      |         | B(E2)(W.u.)=13.2 5                                                                                  |
| 4617.86            | 4+                               | 2838.29 <sup>‡</sup> <i>15</i>  | 100                            | 1779.030 2+                                       | (E2)    |         | B(E2)(W.u.)=16.4 18                                                                                 |
| 4979.92<br>6276.20 | 0 <sup>+</sup><br>3 <sup>+</sup> | 3200.7 <sup>‡</sup> 5<br>1658.2 | 100<br>13.4 <i>4</i>           | 1779.030 2 <sup>+</sup><br>4617.86 4 <sup>+</sup> | E2      |         | B(E2)(W.u.)=9.5 6                                                                                   |
|                    |                                  | 4496.92 <sup>‡</sup> 25         | 100.0 4                        | 1779.030 2+                                       | (M1+E2) | -0.14 2 | B(M1)(W.u.)=0.000269 21;<br>B(E2)(W.u.)=0.0013 4<br>δ: From 1974Da15. Other: -0.12 5<br>(1963Br15). |
| 6690.74            | $0_{+}$                          | 4910.8 5                        | 100                            | 1779.030 2+                                       | E2      |         | B(E2)(W.u.)=0.267 19                                                                                |
| 6878.79            | 3-                               | 2260.7<br>5098.8                | 3.9 <i>6</i><br>39.0 <i>15</i> | 4617.86 4 <sup>+</sup> 1779.030 2 <sup>+</sup>    | (E1)    |         | B(E1)(W.u.)= $9.1 \times 10^{-7} 17$                                                                |
|                    |                                  | 6877.0                          | 100.0 <i>16</i>                | $0.0 	 0^{+}$                                     | [E3]    |         | B(E3)(W.u.)=13.2 15                                                                                 |
| 6887.65            | 4+                               | 2269.6                          | 1.31 9                         | 4617.86 4+                                        |         |         |                                                                                                     |
|                    |                                  | 5107.6                          | 100.00 9                       | 1779.030 2+                                       | (E2)    |         | B(E2)(W.u.)=0.96 6                                                                                  |
| 7380.59            | 2+                               | 2400.5<br>5600.4                | 0.47 <i>16</i><br>100.0 8      | 4979.92 0 <sup>+</sup> 1779.030 2 <sup>+</sup>    | E2      |         | B(E2)(W.u.)=0.8 5                                                                                   |
|                    |                                  | 7378.5                          | 57.3 8                         | $0.0 	 0^{+}$                                     | E2      |         | B(E2)(W.u.)=0.37 15                                                                                 |
| 7416.26            | 2+                               | 5636.0                          | 6.4 22                         | 1779.030 2+                                       |         |         |                                                                                                     |

### $\gamma$ (28Si) (continued)

| $E_i(level)$                            | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}$ @                   | $\mathrm{E}_f$      | $\mathbf{J}_f^{\pi}$             | Mult.b      | δ         | Comments                                                       |
|-----------------------------------------|----------------------|------------------------|----------------------------------|---------------------|----------------------------------|-------------|-----------|----------------------------------------------------------------|
| 7416.26                                 | 2+                   | 7414.2                 | 100.0 22                         | 0.0                 | 0+                               | E2          |           | B(E2)(W.u.)=0.162 18                                           |
| 7799.01                                 | 3 <sup>+</sup>       | 911.3                  | 0.21 3                           | 6887.65             | 4+                               |             |           |                                                                |
|                                         |                      | 1522.7                 | 49.5 17                          | 6276.20             | 3+                               |             |           |                                                                |
|                                         |                      | 3180.8                 | 2.00 13                          | 4617.86             | 4 <sup>+</sup>                   |             |           |                                                                |
| 7933.45                                 | 2+                   | 6018.6<br>1657.1       | 100.0 <i>17</i><br>2.9 <i>15</i> | 1779.030<br>6276.20 | 2 <sup>+</sup><br>3 <sup>+</sup> |             |           |                                                                |
| 1933.43                                 | 2                    | 2953.2                 | 4.81 24                          | 4979.92             | 0 <sup>+</sup>                   | E2          |           | B(E2)(W.u.)=1.8 4                                              |
|                                         |                      | 3315.2                 | 5.65 24                          | 4617.86             | 4 <sup>+</sup>                   | (E2)        |           | B(E2)(W.u.)=1.0 7<br>B(E2)(W.u.)=1.20 23                       |
|                                         |                      | 6153.0                 | 6.61 24                          | 1779.030            | 2+                               | ,           |           | ( )()                                                          |
|                                         |                      | 7931.0                 | 100.0 18                         | 0.0                 | $0_{+}$                          | E2          |           | B(E2)(W.u.)=0.27 5                                             |
| 8258.74                                 | $2^{(+)}$            | 3278.4                 | 24.3 15                          | 4979.92             | 0+                               | E2          |           | B(E2)(W.u.)=5.0 11                                             |
|                                         |                      | 3640.4                 | 5.7 15                           | 4617.86             | 4 <sup>+</sup>                   | (E2)        |           | B(E2)(W.u.)=0.70 24                                            |
|                                         |                      | 6478.1                 | 100 <i>3</i><br>12.9 22          | 1779.030            | 2 <sup>+</sup><br>0 <sup>+</sup> | E2          |           | D(E2)(Wn)=0.026.7                                              |
| 8328.38                                 | 1+                   | 8256.1<br>2052.0       | 12.9 22<br>28 <i>4</i>           | 0.0<br>6276.20      | 3 <sup>+</sup>                   | E2          |           | B(E2)(W.u.)=0.026 7                                            |
| 0320.30                                 | 1                    | 6547.7                 | 45 9                             | 1779.030            |                                  |             |           |                                                                |
|                                         |                      | 8325.7                 | 100 9                            | 0.0                 | 0+                               | M1          |           | B(M1)(W.u.)=6.E-5 4                                            |
| 8413.33                                 | 4-                   | 1534.5                 | 100.0 8                          | 6878.79             | 3-                               | (M1+E2)     | -0.17 I   | B(M1)(W.u.)=0.0146 25;                                         |
|                                         |                      |                        |                                  |                     |                                  |             |           | B(E2)(W.u.)=0.91 19                                            |
|                                         |                      |                        |                                  |                     |                                  |             |           | δ: From 1974Da15. Other: -0.18 4                               |
|                                         |                      | 3794.9                 | 3.50 25                          | 4617.86             | 4+                               |             |           | (1981Gl05).                                                    |
|                                         |                      | 6632.6                 | 21.3 8                           | 1779.030            |                                  | (M2+E3)     | +2.5 2    | B(M2)(W.u.)=0.019 5; B(E3)(W.u.)=21 4                          |
|                                         |                      | 0032.0                 | 21.5 0                           | 1777.030            | 2                                | (IVI2   L3) | 12.3 2    | δ: From 1974Da15.                                              |
| 8543.56                                 | 6+                   | 3925.1 <i>3</i>        | 100                              | 4617.86             | 4+                               | [E2]        |           | B(E2)(W.u.)=10.6 10                                            |
| 8588.71                                 | 3+                   | 789.7                  | 0.59 10                          | 7799.01             | 3+                               | [M1]        |           | B(M1)(W.u.)=0.021 6                                            |
|                                         |                      | 1700.9                 | 0.34 23                          | 6887.65             | 4 <sup>+</sup>                   |             |           |                                                                |
|                                         |                      | 2312.3                 | 7.85 <i>23</i> 4.89 <i>23</i>    | 6276.20<br>4617.86  | 3 <sup>+</sup><br>4 <sup>+</sup> |             |           |                                                                |
|                                         |                      | 3970.3<br>6807.9       | 4.89 <i>23</i><br>100.0 <i>5</i> | 1779.030            |                                  |             |           |                                                                |
| 8904.8                                  | 1-                   | 7123.8                 | 100.6                            | 1779.030            |                                  | [E1]        |           | B(E1)(W.u.)=0.00013 4                                          |
|                                         |                      | 8901.8                 | 89 6                             | 0.0                 | 0+                               | [E1]        |           | $B(E1)(W.u.)=6.1\times10^{-5}$ 16                              |
| 8945.20                                 | 5 <sup>+</sup>       | 2057.4                 | 64 <i>4</i>                      | 6887.65             | 4+                               | (M1+E2)     | >25       | $B(M1)(W.u.) < 3.1 \times 10^{-5}$ ; $B(E2)(W.u.) > 18$        |
|                                         |                      |                        |                                  |                     |                                  |             |           | δ: From 1986Gl05.                                              |
|                                         |                      | 4326.6                 | 100 4                            | 4617.86             | 4+                               | (M1+E2)     | +7 +7-2   | B(M1)(W.u.)=6.E-5+12-6;                                        |
|                                         |                      |                        |                                  |                     |                                  |             |           | B(E2)(W.u.)=0.76 <i>10</i>                                     |
| 8953.3                                  | $(0^+,1,2)$          | 7172.3                 | 100                              | 1779.030            | 2+                               |             |           | δ: From 1995Br17.                                              |
| 9164.68                                 | $(4^+)$              | 1748.3                 | 9.8 11                           | 7416.26             | 2+                               | [E2]        |           | B(E2)(W.u.)=11.1 <i>18</i>                                     |
| ,                                       | ( · )                | 1784.0                 | 29.3 22                          | 7380.59             | 2+                               | [E2]        |           | B(E2)(W.u.)=30 4                                               |
|                                         |                      | 2276.8                 | 6.3 7                            | 6887.65             | 4+                               | =           |           |                                                                |
|                                         |                      | 2285.7                 | 4.1 7                            | 6878.79             | 3-                               | [E1]        |           | $B(E1)(W.u.)=4.2\times10^{-5} 9$                               |
|                                         |                      | 4546.0                 | 67.0 9                           | 4617.86             | 4 <sup>+</sup>                   | EE C        |           | D(D2)(N) ) 0.024 11                                            |
| 0215 02                                 | 3 <sup>+</sup>       | 7383.6                 | 100 <i>5</i><br>0.8 <i>3</i>     | 1779.030            | 3 <sup>+</sup>                   | [E2]        |           | B(E2)(W.u.)=0.084 11                                           |
| 9315.92                                 | 3.                   | 727.2<br>1516.8        | 2.4 6                            | 8588.71<br>7799.01  | 3 <sup>+</sup>                   |             |           |                                                                |
|                                         |                      | 3039.4                 | 37 3                             | 6276.20             | 3+                               | (M1+E2)     | $-0.2\ 2$ | B(M1)(W.u.)=0.13 6; B(E2)(W.u.)=3                              |
|                                         |                      |                        |                                  |                     |                                  | ,           |           | +6-3                                                           |
|                                         |                      |                        |                                  |                     |                                  |             |           | δ: From 1978Da08.                                              |
|                                         |                      | 7534.7                 | 100 3                            | 1779.030            | 2+                               | (M1+E2)     | +0.01 1   | B(M1)(W.u.)=0.024 10;                                          |
|                                         |                      |                        |                                  |                     |                                  |             |           | B(E2)(W.u.)=0.00022 +45-22<br>δ: From 1978Ma23. Other: +0.08 6 |
|                                         |                      |                        |                                  |                     |                                  |             |           | (1978Da08).                                                    |
| 9381.55                                 | 2+                   | 1122.7                 | 0.60 18                          | 8258.74             | 2(+)                             | (M1)        |           | B(M1)(W.u.)=0.08 3                                             |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -                    | 1448.0                 | 3.14 23                          | 7933.45             | 2+                               | (M1)        |           | B(M1)(W.u.)=0.18 6                                             |
|                                         |                      | 1965.1                 | 0.12 7                           | 7416.26             | 2+                               | •           |           |                                                                |
|                                         |                      |                        |                                  |                     |                                  |             |           |                                                                |

### $\gamma$ (28Si) (continued)

| $E_i(level)$         | $\mathbf{J}_i^{\pi}$                                   | $E_{\gamma}^{\dagger}$                         | Ι <sub>γ</sub> @                                                           | $\mathbb{E}_f$                                       | $\mathbf{J}_f^{\pi}$                                                 | Mult.b               | δ       | Comments                                                                |
|----------------------|--------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------|---------|-------------------------------------------------------------------------|
| 9381.55              | 2+                                                     | 3105.0<br>7600.3                               | 4.48 <i>23</i> 100.0 <i>13</i>                                             | 6276.20<br>1779.030                                  | 3 <sup>+</sup><br>2 <sup>+</sup>                                     | (M1)<br>(M1+E2)      | +0.09 5 | B(M1)(W.u.)=0.027 8<br>B(M1)(W.u.)=0.040 11; B(E2)(W.u.)=0.03<br>+4-3   |
| 9417.17              | 4+                                                     | 9378.2<br>1483.6<br>1618.1<br>2000.8           | 3.7 <i>4</i><br>27 <i>4</i><br>100 <i>6</i><br>13 <i>9</i>                 | 0.0<br>7933.45<br>7799.01<br>7416.26                 | 0 <sup>+</sup><br>2 <sup>+</sup><br>3 <sup>+</sup><br>2 <sup>+</sup> | (E2)<br>(E2)         |         | δ: From 1978Ma23.<br>B(E2)(W.u.)=0.046 14<br>B(E2)(W.u.)=23 5           |
|                      |                                                        | 2036.4<br>2529.3<br>3140.6                     | 1.2 2<br>18.8 6<br>3.1 2                                                   | 7380.59<br>6887.65<br>6276.20                        | 2 <sup>+</sup><br>4 <sup>+</sup><br>3 <sup>+</sup>                   | (E2)                 |         | B(E2)(W.u.)=0.21 5                                                      |
| 9479.49              | (2+)                                                   | 4798.4<br>7635.9<br>2063.1<br>2098.7           | 36.3 <i>14</i><br>33.3 <i>10</i><br>0.58 <i>7</i><br>0.71 <i>24</i>        | 4617.86<br>1779.030<br>7416.26<br>7380.59            | 4 <sup>+</sup><br>2 <sup>+</sup><br>2 <sup>+</sup><br>2 <sup>+</sup> | (E2)                 |         | B(E2)(W.u.)=0.0079 13                                                   |
|                      |                                                        | 4498.8<br>4860.7<br>7698.2                     | 5.3 <i>18</i><br>7.5 <i>4</i><br>3.04 <i>15</i><br>100.0 <i>24</i>         | 4979.92<br>4617.86<br>1779.030<br>0.0                | 0 <sup>+</sup><br>4 <sup>+</sup><br>2 <sup>+</sup><br>0 <sup>+</sup> | (E2)<br>(E2)         |         | B(E2)(W.u.)=0.46 22<br>B(E2)(W.u.)=0.44 15                              |
| 9496.04              | (1+)                                                   | 9476.1<br>7714.7<br>9492.6                     | 18 <i>5</i><br>100 <i>5</i>                                                | 1779.030<br>0.0                                      |                                                                      | (E2)<br>(M1)         |         | B(E2)(W.u.)=0.21 7<br>B(M1)(W.u.)=0.0044 18                             |
| 9702.34              | (5-)                                                   | 1288.9                                         | 100 5                                                                      | 8413.33                                              | 4-                                                                   | (M1+E2)              | <+2.0   | B(M1)(W.u.)>0.00017; B(E2)(W.u.)<3.6 δ: From 1981Gl05.                  |
|                      |                                                        | 2814.4<br>2823.2<br>5083.5                     | 15.6 23<br>51.1 23<br>33.3 23                                              | 6887.65<br>6878.79<br>4617.86                        | 4 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                   | (E2)                 |         | B(E2)(W.u.)=0.036 10                                                    |
| 9764.52              | (3-)                                                   | 7920.9<br>2885.4                               | 22.2 <i>23</i><br>0.57 <i>16</i>                                           | 1779.030<br>6878.79                                  | 2 <sup>+</sup><br>3 <sup>-</sup>                                     | (E3)                 |         | B(E3)(W.u.)=0.33 9                                                      |
|                      | ,                                                      | 3487.9<br>7983.1                               | 2.6 <i>3</i><br>100.0 <i>3</i>                                             | 6276.20<br>1779.030                                  | 3 <sup>+</sup><br>2 <sup>+</sup>                                     | (E1)<br>(E1)         |         | B(E1)(W.u.)>0.00022<br>B(E1)(W.u.)>0.00070                              |
| 9795.95              | (2+)                                                   | 3105 <sup>#</sup> 4815.1 8014.5 9792.3         | 7.2 <i>4</i><br>78 2<br>100 2                                              | 6690.74<br>4979.92<br>1779.030<br>0.0                | 0 <sup>+</sup><br>0 <sup>+</sup><br>2 <sup>+</sup><br>0 <sup>+</sup> | (E2)                 |         | $I_{\gamma}$ : $\gamma$ -ray branching not available.                   |
| 9929.2<br>10181.60   | 1 <sup>-</sup> (3 <sup>-</sup> )                       | 9925.4<br>1016.9                               | 100<br>31.0 <i>14</i>                                                      | 0.0<br>9164.68                                       | 0 <sup>+</sup> (4 <sup>+</sup> )                                     | (E1)<br>(E1)         |         | B(E1)(W.u.)=0.022 7                                                     |
|                      |                                                        | 3904.8<br>5562.6                               | 10 <i>3</i><br>100 <i>3</i>                                                | 6276.20<br>4617.86                                   | 3 <sup>+</sup><br>4 <sup>+</sup>                                     | (E1)<br>(E1)<br>(E1) |         | B(E1)(W.u.)=0.0022 /<br>B(E1)(W.u.)=0.00012 6<br>B(E1)(W.u.)=0.00043 13 |
| 10189.59<br>10209.01 | (5 <sup>-</sup> ,3 <sup>-</sup> )<br>(3 <sup>+</sup> ) | 3310.4<br>2792.5<br>5590.0                     | 100<br>4.7 20<br>29 7                                                      | 6878.79<br>7416.26<br>4617.86                        | 3 <sup>-</sup><br>2 <sup>+</sup><br>4 <sup>+</sup>                   | (E2)                 |         | B(E2)(W.u.)=0.45 18                                                     |
| 10272.3              | $0_{+}$                                                | 8427.3<br>1943.8                               | 100 7<br>70 3                                                              | 1779.030<br>8328.38<br>1779.030                      | 1+                                                                   | M1                   |         | B(M1)(W.u.)>0.029<br>B(E2)(W.u.)>0.036                                  |
| 10310.92             | (4+)                                                   | 8490.5<br>4034.1<br>5691.8                     | 100 <i>3</i><br>20 <i>6</i><br>100 <i>10</i>                               | 6276.20<br>4617.86                                   | 3 <sup>+</sup><br>4 <sup>+</sup>                                     | E2                   |         | B(E2)(W.u.)>0.030                                                       |
| 10376.24             | (3+,4+)                                                | 8529.1<br>1787.4<br>3488.1<br>4099.4<br>5757.1 | 80 <i>12</i><br>75 <i>4</i><br>21 <i>4</i><br>100 <i>11</i><br>79 <i>7</i> | 1779.030<br>8588.71<br>6887.65<br>6276.20<br>4617.86 | 3 <sup>+</sup><br>4 <sup>+</sup><br>3 <sup>+</sup><br>4 <sup>+</sup> |                      |         |                                                                         |
| 10418.25             | (5 <sup>+</sup> )                                      | 8594.4<br>2619.0<br>3530.1                     | 70 <i>5</i><br>6.2 <i>11</i><br>11.4 <i>7</i>                              | 1779.030<br>7799.01<br>6887.65                       | 2 <sup>+</sup><br>3 <sup>+</sup><br>4 <sup>+</sup>                   | (E2)                 |         | B(E2)(W.u.)=2.3 7                                                       |
|                      |                                                        | 4141.4                                         | 100 3                                                                      | 6276.20                                              | 3+                                                                   | (E2)                 |         | B(E2)(W.u.)=3.7 9                                                       |

## $\underline{\gamma}(^{28}\mathrm{Si})$ (continued)

| $E_i(level)$     | $\mathtt{J}_{i}^{\pi}$           | $E_{\gamma}^{\dagger}$ | $I_{\gamma}$                    | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$                | Mult.b | Comments                |
|------------------|----------------------------------|------------------------|---------------------------------|----------------------------------------------------|--------|-------------------------|
| 10418.25         | (5 <sup>+</sup> )                | 5799.1                 | 19 3                            | 4617.86 4+                                         |        |                         |
| 10514.1          | $(2^{+})$                        | 5533.0                 | 7.3 11                          | 4979.92 0+                                         |        |                         |
|                  | ` /                              | 8732.1                 | 100 2                           | 1779.030 2+                                        |        |                         |
|                  |                                  | 10510.0                | 51 2                            | $0.0 	 0^{+}$                                      | E2     |                         |
| 10541.0          | $(3^{-})$                        | 3661.7                 | 52 13                           | 6878.79 3-                                         |        |                         |
|                  |                                  | 8759.0                 | 100 13                          | 1779.030 2+                                        |        |                         |
| 10596.18         | $(1^+)$                          | 2267.6                 | 5.7 17                          | 8328.38 1+                                         |        |                         |
|                  |                                  | 3179.5                 | 7 3                             | 7416.26 2+                                         |        |                         |
|                  |                                  | 5615.1                 | 23 7                            | 4979.92 0+                                         | (M1)   | $B(M1)(W.u.)=0.054\ 21$ |
| 10660.05         | (2 2) ±                          | 10592.0                | 100 7                           | $0.0 	 0^{+}$                                      | (M1)   | B(M1)(W.u.)=0.035 8     |
| 10668.05         | $(2,3)^+$                        | 1352.1                 | 100 7                           | 9315.92 3+                                         | (M1)   | B(M1)(W.u.)=0.29 7      |
|                  |                                  | 2734.3                 | 2.2 7                           | 7933.45 2 <sup>+</sup> 7416.26 2 <sup>+</sup>      |        |                         |
|                  |                                  | 3251.4<br>3287.1       | 22.9 <i>15</i><br>4.3 <i>9</i>  | 7416.26 2 <sup>+</sup><br>7380.59 2 <sup>+</sup>   |        |                         |
|                  |                                  | 3780.0                 | 4.5 <i>9</i><br>13.9 <i>11</i>  | 6887.65 4 <sup>+</sup>                             |        |                         |
|                  |                                  | 4391.1                 | 11.3                            | 6276.20 3+                                         |        |                         |
|                  |                                  | 8886.0                 | 49 7                            | 1779.030 2 <sup>+</sup>                            |        |                         |
| 10668.34         | 4+                               | 1251.1                 | 0.88 17                         | 9417.17 4+                                         |        |                         |
| 1000012.         | ·                                | 1286.7                 | 0.76 23                         | 9381.55 2+                                         | (E2)   | B(E2)(W.u.)=5.3 19      |
|                  |                                  | 1352.4                 | 100 7                           | 9315.92 3+                                         | (M1)   | B(M1)(W.u.)=0.19 4      |
|                  |                                  | 1723.0                 | 1.9 <i>4</i>                    | 8945.20 5 <sup>+</sup>                             | . ,    |                         |
|                  |                                  | 2079.5                 | 13.3 4                          | 8588.71 3 <sup>+</sup>                             |        |                         |
|                  |                                  | 2124.6                 | 0.86 15                         | 8543.56 6 <sup>+</sup>                             | (E2)   | B(E2)(W.u.)=0.48 12     |
|                  |                                  | 2409.4                 | 1.73 19                         | 8258.74 2 <sup>(+)</sup>                           |        |                         |
|                  |                                  | 2734.6                 | 14.1 4                          | 7933.45 2 <sup>+</sup>                             | (E2)   | B(E2)(W.u.)=2.2 4       |
|                  |                                  | 2869.0                 | 3.8 <i>3</i>                    | 7799.01 3+                                         |        |                         |
|                  |                                  | 3251.7                 | 30.2 11                         | 7416.26 2+                                         |        |                         |
|                  |                                  | 3287.3                 | 1.0 3                           | 7380.59 2+                                         |        |                         |
|                  |                                  | 3780.1                 | 3.5 4                           | 6887.65 4+                                         |        |                         |
|                  |                                  | 4391.4                 | 49.4 17                         | 6276.20 3 <sup>+</sup><br>4617.86 4 <sup>+</sup>   |        |                         |
|                  |                                  | 6049.1<br>8886.3       | 18.4 <i>13</i><br>15.3 <i>7</i> |                                                    |        |                         |
| 10724.7          | $(1^+)$                          | 10720.3                | 100                             | 1779.030 2 <sup>+</sup><br>0.0 0 <sup>+</sup>      | (M1)   | B(M1)(W.u.)=0.029 6     |
| 10724.7          | 1 <sup>+</sup> to 5 <sup>+</sup> | 4501                   | 100                             | 6276.20 3+                                         | (1111) | D(W1)(W.u.) = 0.029 0   |
| 10883.45         | $(2,3^+)$                        | 3466.7                 | 5.7 16                          | 7416.26 2 <sup>+</sup>                             |        |                         |
| 100001.10        | (=,0)                            | 9101.2                 | 100 7                           | 1779.030 2+                                        |        |                         |
| 10900.42         | $(1^+)$                          | 9118.2                 | 47 5                            | 1779.030 2+                                        |        |                         |
|                  |                                  | 10895.9                | 100 5                           | $0.0 	 0^{+}$                                      | (M1)   | B(M1)(W.u.)=0.133 16    |
| 10915.6          | $(3^{-})$                        | 1599.6                 | 16 <i>3</i>                     | 9315.92 3+                                         |        |                         |
|                  |                                  | 6296.2                 | 19 <i>4</i>                     | 4617.86 4+                                         |        |                         |
|                  |                                  | 9133.4                 | 100 4                           | 1779.030 2+                                        |        |                         |
| 10944.0          | $(4^{+})$                        | 2685.0                 | 26 <i>4</i>                     | 8258.74 2 <sup>(+)</sup>                           |        |                         |
|                  |                                  | 3527.3                 | 42 6                            | 7416.26 2+                                         |        |                         |
|                  |                                  | 3562.9                 | 21 4                            | 7380.59 2+                                         |        |                         |
| 10052.9          | 1 4- 4                           | 9161.8                 | 100 6                           | 1779.030 2 <sup>+</sup><br>1779.030 2 <sup>+</sup> |        |                         |
| 10952.8<br>10994 | 1 to 4 (1,2 <sup>+</sup> )       | 9170.5<br>9212         | 100<br>100                      | 1779.030 2 <sup>+</sup> 1779.030 2 <sup>+</sup>    |        |                         |
| 11078.52         | $(3^{-})$                        | 1696.9                 | 20 3                            | 9381.55 2+                                         |        |                         |
| 11070.52         | (3)                              | 1762.5                 | 34 3                            | 9315.92 3+                                         |        |                         |
|                  |                                  | 3661.8                 | 49 3                            | 7416.26 2 <sup>+</sup>                             |        |                         |
|                  |                                  | 4801.4                 | 83 <i>3</i>                     | 6276.20 3+                                         |        |                         |
|                  |                                  | 9296.2                 | 100 3                           | 1779.030 2 <sup>+</sup>                            |        |                         |
| 11100.0          | $(6^+)$                          | 6480.5                 | 100                             | 4617.86 4+                                         | (E2)   | B(E2)(W.u.)=0.89 9      |
| 11142            | (2+)                             | 3725                   | 32 <sup>a</sup> 5               | 7416.26 2+                                         |        |                         |
|                  |                                  | 3761                   | 73 <sup>a</sup> 7               | 7380.59 2+                                         |        |                         |
|                  |                                  |                        |                                 |                                                    |        |                         |

## $\gamma$ <sup>(28</sup>Si) (continued)</sup>

| $E_i(level)$        | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | Ι <sub>γ</sub> @                | $\mathbb{E}_f$      | $\mathbf{J}_f^{\pi}$               | Mult.b       | δ       | Comments                                |
|---------------------|----------------------|------------------------|---------------------------------|---------------------|------------------------------------|--------------|---------|-----------------------------------------|
| 11142               | (2 <sup>+</sup> )    | 6523                   | 23 <sup>a</sup> 2               | 4617.86             | 4+                                 |              |         |                                         |
|                     |                      | 9360                   | 100 <mark>a</mark> 9            | 1779.030            |                                    |              |         |                                         |
| 11195.22            | $(4^{+})$            | 1399.2                 | 13 6                            | 9795.95             | $(2^{+})$                          |              |         |                                         |
|                     |                      | 1879.2                 | 21 8                            | 9315.92             | 3+                                 |              |         |                                         |
|                     |                      | 3814.1                 | 23 6                            | 7380.59             | 2+                                 |              |         |                                         |
|                     |                      | 4918.1                 | 26 6                            | 6276.20             | 3 <sup>+</sup>                     |              |         |                                         |
|                     |                      | 6575.7                 | 74 <i>13</i><br>100 <i>16</i>   | 4617.86<br>1779.030 | 4 <sup>+</sup>                     |              |         |                                         |
| 11265               | (3-)                 | 9412.8<br>1083.4       | 4.4 19                          | 1779.030            | (3-)                               |              |         |                                         |
| 11203               | (3)                  | 9482.5                 | 100 4                           | 1779.030            |                                    |              |         |                                         |
|                     |                      | 11260.1                | 13 4                            | 0.0                 | 0+                                 |              |         |                                         |
| 11295.6             | $(1^{-})$            | 4416                   | 4.1 <sup>a</sup> 14             | 6878.79             | 3-                                 |              |         |                                         |
|                     | ` /                  | 4604                   | 3.0 <mark>a</mark> 14           | 6690.74             | $0^{+}$                            |              |         |                                         |
|                     |                      | 6314                   | 3.4 <sup>a</sup> 14             | 4979.92             | $0^{+}$                            |              |         |                                         |
|                     |                      | 9513                   | 26 <sup>a</sup> 3               | 1779.030            |                                    |              |         |                                         |
|                     |                      | 11291                  | 100 <sup>a</sup> 7              | 0.0                 | $0_{+}$                            |              |         |                                         |
| 11331.9             | 6+                   | 2386.5                 | 16 <i>4</i>                     | 8945.20             | 5+                                 |              |         |                                         |
|                     |                      | 4443.5                 | 7.4 25                          | 6887.65             | 4+                                 | (E2)         |         | B(E2)(W.u.)>0.18                        |
| 11422 (2            | (2±)                 | 6712.3                 | 100 4                           | 4617.86             | 4 <sup>+</sup>                     | (E2)         |         | B(E2)(W.u.)>0.32                        |
| 11432.63            | $(2^{+})$            | 2843.6                 | 59.6 4                          | 8588.71             | 3 <sup>+</sup><br>2 <sup>(+)</sup> |              |         |                                         |
|                     |                      | 3173.5                 | 5.6 13                          | 8258.74             | 2+                                 |              |         |                                         |
|                     |                      | 3498.7<br>3633.1       | 10.2 <i>15</i><br>9.6 <i>17</i> | 7933.45<br>7799.01  | 3 <sup>+</sup>                     |              |         |                                         |
|                     |                      | 4015.8                 | 5.6 15                          | 7416.26             | 2 <sup>+</sup>                     |              |         |                                         |
|                     |                      | 4051.4                 | 6.5 17                          | 7380.59             | 2 <sup>+</sup>                     |              |         |                                         |
|                     |                      | 9650.0                 | 100 2                           | 1779.030            |                                    |              |         |                                         |
|                     |                      | 11427.6                | 19.3 4                          | 0.0                 | $0^{+}$                            |              |         |                                         |
| 11434.50            | $(4^{-})$            | 2118.4                 | 100 2                           | 9315.92             | 3 <sup>+</sup>                     |              |         |                                         |
|                     |                      | 3020.8                 | 13 2                            | 8413.33             | 4-                                 |              |         |                                         |
|                     |                      | 4546.1                 | 51 5                            | 6887.65             | 4+                                 |              |         |                                         |
| 11446.00            | (1±)                 | 5157.3                 | 70 4                            | 6276.20             | 3 <sup>+</sup>                     | (E1)         |         | B(E1)(W.u.)=0.00011 4                   |
| 11446.00<br>11510.4 | $(1^+)$ $(6^+)$      | 11441.0<br>2345.5      | 100<br>36 7                     | 0.0<br>9164.68      | $0^+$ $(4^+)$                      | (M1)<br>(E2) |         | B(M1)(W.u.)=0.84 4<br>B(E2)(W.u.)=27.11 |
| 11310.4             | (0)                  | 4621.9                 | 100 7                           | 6887.65             | ( <del>4</del> )<br>4 <sup>+</sup> | (E2)         |         | B(E2)(W.u.)=37 11<br>B(E2)(W.u.)=3.4 9  |
|                     |                      | 6890.7                 | 36 4                            | 4617.86             | 4 <sup>+</sup>                     | (E2)         |         | B(E2)(W.u.)=0.17 5                      |
| 11572.0             | $(4,5^+)$            | 4683.5                 | 100.0 2                         | 6887.65             | 4+                                 | ()           |         | _(==)()                                 |
|                     |                      | 6952.3                 | 17.0 2                          | 4617.86             | 4+                                 |              |         |                                         |
| 11576               | (6-)                 | 1874                   | 100.0 <sup>&amp;</sup> 22       | 9702.34             | $(5^{-})$                          |              |         |                                         |
|                     | ` /                  | 3032                   | 7.5 <mark>&amp;</mark> 22       | 8543.56             | 6+                                 | (E1)         |         | B(E1)(W.u.)=8.E-6 4                     |
| 11584.62            | $(3^{-})$            | 9801.9                 | 100                             | 1779.030            |                                    | ()           |         |                                         |
| 11778.9             | $(5^{+})$            | 7158.9                 | 100                             | 4617.86             | 4+                                 | (M1+E2)      | -0.02~3 | <i>δ</i> : From 1995Br17.               |
| 11933.5             | 5                    | 5044.9                 | 6 2                             | 6887.65             | 4+                                 |              |         |                                         |
|                     |                      | 7313.6                 | 100 2                           | 4617.86             | 4+                                 |              |         |                                         |
| 11986               | (1  to  3)           | 10203                  | 100                             | 1779.030            |                                    |              |         |                                         |
| 12152.0             | $(6^+)$              | 5263.3                 | 100                             | 6887.65             | 4 <sup>+</sup>                     |              |         |                                         |
| 12204               | $(6^-,4^-)$          | 2014                   | 9.9 <mark>&amp;</mark> 22       | 10189.59            | $(5^-,3^-)$                        |              |         |                                         |
|                     |                      | 3790                   | 100.0 22                        | 8413.33             | 4-                                 |              |         |                                         |
| 12862               | $(6^+)$              | 1919 <sup>#</sup>      |                                 | 10944.0             | $(4^{+})$                          |              |         |                                         |
|                     |                      | 3700 <sup>#</sup>      |                                 | 9164.68             | $(4^{+})$                          |              |         |                                         |
|                     |                      | 5977 <mark>#</mark>    |                                 | 6887.65             | 4+                                 |              |         |                                         |
|                     |                      | 8247 <sup>#</sup>      |                                 | 4617.86             | 4 <sup>+</sup>                     |              |         |                                         |
| 12994               | $(5,6,7)^+$          | 4450                   | 100                             | 8543.56             | 6 <sup>+</sup>                     |              |         |                                         |
| 13710.2             | 7 <sup>+</sup>       | 5166 <sup>#</sup>      | 100                             | 8543.56             | 6 <sup>+</sup>                     |              |         |                                         |
| 13/10.2             | ,                    | 5100                   | 100                             | 05 15.50            | 3                                  |              |         |                                         |

### $\gamma$ (28Si) (continued)

<sup>†</sup> Calculated by the evaluator from level energy differences, except otherwise noted. Recoil energy has been subtracted.

<sup>&</sup>lt;sup>‡</sup> From <sup>28</sup>P  $\varepsilon$  decay. <sup>#</sup> From (<sup>20</sup>Ne, $\alpha\gamma$ ).

<sup>&</sup>lt;sup>@</sup> From  $(p,\gamma)$ , except otherwise noted. In some cases, weighted averages of data from  $(p,\gamma)$  and  $(^{28}P \varepsilon \text{ decay-}1982\text{Wa}05)$  are presented.

<sup>&</sup>amp; From  $(\alpha, n\gamma)$ .

<sup>&</sup>lt;sup>*a*</sup> From  $(\alpha, \gamma)$ .

b Assigned by the evaluator based on  $\gamma$ -ray angular distribution measurements, RUL, mixing ratio,  $\Delta J^{\pi}$ , etc.

### Level Scheme



### Level Scheme (continued)



### Level Scheme (continued)



### Level Scheme (continued)



# Level Scheme (continued)



### Level Scheme (continued)



# Band(A): Oblate band based on g.s



|                 | Н                      | istory              |                        |
|-----------------|------------------------|---------------------|------------------------|
| Type            | Author                 | Citation            | Literature Cutoff Date |
| Full Evaluation | M. Shamsuzzoha Basunia | NDS 111,2331 (2010) | 30-Jun-2010            |

 $Q(\beta^-)=-4232.4~4$ ; S(n)=10609.20~2; S(p)=13517.3~10;  $Q(\alpha)=-10643.3~1~2012$ Wa38 Note: Current evaluation has used the following Q record -4232.4~3~10609.20~2~13506.612 $Q(\alpha)=-10643.29~4~(2009$ AuZZ).

2009AuZZ.

 $Q(\beta^-) = -4232.4 \ 3$ ,  $S(n) = 10609.20 \ 2$ ,  $S(p) = 13506.6 \ 12 \ S(\alpha) = -10643.26 \ 4 \ (2003Au03)$ .

There are 26 neutron resonances for the <sup>29</sup>Si+n reaction in the 15 keV to 1389 keV energy range (2006MuZX). Other: 2003Gu05.

2007No13: Production cross section  $\sim$ 80 mb and  $\sim$ 70 mb, measured in  $^{40}$ Ar fragmentation reactions of  $^{9}$ Be( $^{40}$ Ar,X), E=90 $\alpha$  MeV, and  $^{181}$ Ta( $^{40}$ Ar,X), E=94 $\alpha$  MeV, reactions, respectively.

2001Pa52:  $^{29}$ Si(n, $\gamma$ ) – mass measurement.

### 30Si Levels

### Cross Reference (XREF) Flags

| Α | $^{30}$ Al $\beta^-$ decay | D | $^{27}$ Al( $\alpha$ ,p),( $\alpha$ ,p $\gamma$ ) |
|---|----------------------------|---|---------------------------------------------------|
| В | $^{30}P \beta^+$ decay     | E | $^{28}$ Si(t,p)                                   |
| C | $^{14}C(^{18}O,2n\gamma)$  | F | $^{29}$ Si(n, $\gamma$ ) E=thermal                |

| E(level) <sup>†</sup>  | $J^{\pi \#}$    | T <sub>1/2</sub> <b>b</b> | XREF   | Comments                                                                                                                                            |
|------------------------|-----------------|---------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                      | 0+              | stable                    | AB DEF | $J^{\pi}$ : L=0 in (t,p).                                                                                                                           |
| 2235.322 18            | 2+              | 215 fs 28                 | ABCDEF | $\mu$ =+0.76 18                                                                                                                                     |
|                        |                 |                           |        | Q = -0.05 6                                                                                                                                         |
|                        |                 |                           |        | $J^{\pi}$ : L=2 in (t,p).                                                                                                                           |
|                        |                 |                           |        | μ: From 1978Za13 – Perturbed angular correlation after ion implantation, re-evaluated data (Same in 1989Ra17 and 2005St24).                         |
|                        |                 |                           |        | Q: or +0.01 6, both from 1979Fe08 – depending on constructive or destructive                                                                        |
|                        |                 |                           |        | interference from the 2nd excited state – Method: Coulomb Excitation                                                                                |
|                        |                 |                           |        | Reorientation. In a compilation, 1981Sp07 reported only -0.05 6. 1989Ra17 and                                                                       |
| 3498.49 <i>3</i>       | 2+              | 58 fs <i>17</i>           | ABCDEF | 2005St24 reported both values.<br>$J^{\pi}$ : L=2 in (t,p).                                                                                         |
| 3769.48 <i>4</i>       | 1 <sup>+</sup>  | 36 fs 9                   | AB DEF | $J^{\pi}$ : From angular correlation fit $((\alpha,p),(\alpha,p\gamma)-1971Sy01)$ .                                                                 |
| 3787.72 <i>4</i>       | 0+              | 8.3 ps 5                  | B DEF  | $J^{\pi}$ : From isotropic distribution characteristics of 1552 $\gamma$ (( $\alpha$ ,p),( $\alpha$ ,p $\gamma$ )–1971Sy01).                        |
| 4810.31 <i>11</i>      | 2+&             | 104 fs <i>15</i>          | A DEF  | , ((«A))/(«A))                                                                                                                                      |
| 4830.85 <i>4</i>       | 3+&             | 83 fs 24                  | A CDEF |                                                                                                                                                     |
| 5231.38 7              | 3+ <b>&amp;</b> | 43 fs 21                  | A CDEF |                                                                                                                                                     |
| 5279.37 14             | 4 <sup>+</sup>  | 83 fs 22                  | CDE    | $J^{\pi}$ : L=4 in (t,p).                                                                                                                           |
| 5372.2 6               | $0^{+}$         | 59 fs 21                  | DEF    | $J^{\pi}$ : 3136.6 $\gamma$ to 2 <sup>+</sup> and, 1602 $\gamma$ to (1 <sup>+</sup> ), absence of g.s. branching.                                   |
| 5487.50 <sup>‡</sup> 5 | 3-              | 43 fs <i>12</i>           | CDEF   | $J^{\pi}$ : L=3 in (t,p).                                                                                                                           |
| 5614.04 <i>13</i>      | 2+              | <21 fs                    | A DEF  | $J^{\pi}$ : L=2 in (t,p).                                                                                                                           |
| 5950.73 <i>15</i>      | 4+              | 15 fs 8                   | A CDE  | $J^{\pi}$ : Assigned by 1971Sy01 based on $(\alpha, \alpha')$ population at 180° $\gamma$ -ray angular                                              |
|                        |                 |                           |        | distribution.                                                                                                                                       |
| 6503.41 <sup>‡</sup> 8 | 4-              | 139 fs <i>35</i>          | CDE    | $J^{\pi}$ : Assigned by 1971Sy01 based on 540 $\gamma$ angular correlation measurements;                                                            |
| 650F 5 16              | 2+              | 17.6                      |        | feeding of this level from the 7044 keV level ( $J^{\pi}=5^{-}$ ).                                                                                  |
| 6537.5 16              | 2+              | <17 fs                    | DE     | XREF: $E(6541)$ .                                                                                                                                   |
| 6641.21 7              | 2-              | 21 fs 9                   | F      | $J^{\pi}$ : L=2 in (t,p). $J^{\pi}$ : 1810.4 $\gamma$ to 3 <sup>+</sup> , 1153.6 $\gamma$ to 3 <sup>-</sup> . For the second member of the doublet, |
| 00-1.21 /              | 2               | 21 15 9                   | r      | 1973Ba50 (t,p) suggested $J^{\pi}$ =0-,1- or 2-, 1980Bi14 excluded 0- and 1-                                                                        |
|                        |                 |                           |        | (1) 20                                                                                                                                              |

| E(level) <sup>†</sup>                | J <sup>π#</sup>         | $T_{1/2}^{\ \ b}$ | XREF       | Comments                                                                                                                                                                                                                                      |
|--------------------------------------|-------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                         |                   |            | assignments from 18010y intensity and feeding the 3 <sup>+</sup> state.                                                                                                                                                                       |
| 6642 <i>3</i>                        | $0^{+}$                 |                   | DE         | $J^{\pi}$ : L=0 in (t,p).                                                                                                                                                                                                                     |
| 6744.06 <i>4</i>                     | 1-                      | <14 fs            | DEF        | $J^{\pi}$ : L=1 in (t,p).                                                                                                                                                                                                                     |
| 6865.2 12                            | 3 <sup>+</sup>          | 23 fs <i>16</i>   | DE         | $J^{\pi}$ : Assigned by 1980Bi14 based on $\gamma$ -ray feeding to 4 <sup>+</sup> , 3 <sup>+</sup> , 2 <sup>+</sup> states. $J^{\pi}=4^+$ is rejected from E2 strength calculation (1971Sy01).                                                |
| 6914.79 <i>24</i>                    | $(2^{+})$               | <24 fs            | DEF        | $J^{\pi}$ : L=(2) in (t,p).                                                                                                                                                                                                                   |
| 6998.90 <i>15</i>                    | 5+                      | 104 fs <i>35</i>  | CDE        | XREF: E(6990). $J^{\pi}$ : Assigned by 1980Bi14 based on lifetime, unnatural parity, population from 8196 keV ( $J^{\pi}=5^-$ ) level.                                                                                                        |
| 7043.21 <i>14</i>                    | 5-                      | 0.83 ps 20        | CDE        | $J^{\pi}$ : L=5 in (t,p).                                                                                                                                                                                                                     |
| 7079.4 <i>14</i>                     | $(1^+, 2^-, 3^+)$       | <14 fs            | DE         | XREF: E(7070).<br>J <sup><math>\pi</math></sup> : Assigned by 1971Sy01 based on population or absence of population in the $(\alpha, p)$ , $(\alpha, \alpha')$ , $(\alpha, \alpha \gamma)$ reactions.                                         |
| 7223.2 4                             | 4+@                     | <14 fs            | CDE        |                                                                                                                                                                                                                                               |
| 7255.8 16                            | 2+                      | <35 fs            | DE         | $J^{\pi}$ : L=2 in (t,p).                                                                                                                                                                                                                     |
| 7441 <i>4</i>                        | 0+                      |                   | DE         | XREF: $E(7446)$ .<br>$J^{\pi}$ : L=0 in (t,p).                                                                                                                                                                                                |
| 7507.84 <i>5</i>                     | $(2^{-})$               | <24 fs            | DEF        |                                                                                                                                                                                                                                               |
| 7612.4 <i>13</i>                     | $(4^{-})$               | 13 fs 6           | DE         |                                                                                                                                                                                                                                               |
| 7623.9 <i>23</i>                     | $(2^{+})$               | <17 fs            | D          |                                                                                                                                                                                                                                               |
| 7634 <i>3</i>                        |                         |                   | D          |                                                                                                                                                                                                                                               |
| 7667.4 6                             | $(1^+,2^+)$             | <14 fs            | DEF        | XREF: E(7660). $J^{\pi}$ : 5431 $\gamma$ to 2 <sup>+</sup> (1980Bi14).                                                                                                                                                                        |
| 7809.7 <i>13</i>                     | 4+                      | 12 fs 8           | DE         | XREF: E(7800). $J^{\pi}$ : L=4 in (t,p).                                                                                                                                                                                                      |
| 7911.8 20                            | 2+                      | 21 fs <i>15</i>   | DE         | XREF: $E(7894)$ .<br>$J^{\pi}$ : L=2 in (t,p).                                                                                                                                                                                                |
| 8104.8 <i>3</i>                      | $(2^+,3^-)$             | <24 fs            | DEF        | $J^{\pi}$ : 3295 $\gamma$ to 2 <sup>+</sup> , 5869 $\gamma$ to 2 <sup>+</sup> , 2628 $\gamma$ from (3 <sup>-</sup> ,4 <sup>+</sup> ) ( $\alpha$ ,p),( $\alpha$ ,p $\gamma$ ) – 1980Bi14. L=(0) in (t,p) is inconsistent with this assignment. |
| 8156.1 7                             | $(1^- \text{ to } 4^+)$ |                   | D F        |                                                                                                                                                                                                                                               |
| 8163.22 7                            | 1-                      |                   | DEF        | $J^{\pi}$ : L=1 in (t,p).                                                                                                                                                                                                                     |
| 8190.6 <i>24</i>                     | $(2^{+})$               | <24 fs            | D          |                                                                                                                                                                                                                                               |
| 8194.0 <sup>‡</sup> 4                | 5-                      | 35 fs <i>12</i>   | CDE        | XREF: E(8204). $J^{\pi}$ : L=5 in (t,p).                                                                                                                                                                                                      |
| 8289.5 <i>23</i><br>8332.7 <i>13</i> | (1 to 3)                |                   | D<br>D     |                                                                                                                                                                                                                                               |
| 8441.2 23                            | 3-                      |                   | DE         | XREF: E(8453).                                                                                                                                                                                                                                |
|                                      |                         |                   |            | $J^{\pi}$ : L=3 in (t,p).                                                                                                                                                                                                                     |
| 8536.4 <i>16</i>                     | $(3^+,4^+)$             | 31 fs <i>16</i>   | D          | $J^{\pi}$ : 1535 to $5^{+}$ , 6300 $\gamma$ to $2^{+}$ .                                                                                                                                                                                      |
| 8554 <i>3</i>                        | 3-                      | <14 fs            | DE         | XREF: E(8564). $J^{\pi}$ : L=3 in (t,p).                                                                                                                                                                                                      |
| 8595.9 <i>17</i>                     | $(4^{-})$               | <24 fs            | D          | $J^{\pi}$ : $\gamma$ -decays to $3^+, 3^-, 4^+$ states.                                                                                                                                                                                       |
| 8639.4 <i>21</i>                     | $(1^+ \text{ to } 4^+)$ | <24 fs            | D          |                                                                                                                                                                                                                                               |
| 8672.2 18                            | $(1^-,2^+)$             |                   | D          |                                                                                                                                                                                                                                               |
| 8683.7 <i>15</i>                     | 2+                      | <24 fs            | DE         | $J^{\pi}$ : L=2 in (t,p).                                                                                                                                                                                                                     |
| 8734 3                               | $(0^+ \text{ to } 3^+)$ |                   | D          |                                                                                                                                                                                                                                               |
| 8799 <i>3</i>                        | $(1,2^+)$               |                   | D          | VDEE E(0000)                                                                                                                                                                                                                                  |
| 8887 <i>4</i>                        | $(0^+ \text{ to } 4^+)$ |                   | DE         | XREF: E(8893).                                                                                                                                                                                                                                |
| 0000 10 11                           | (1=)                    |                   | ъ. г       | $J^{\pi}$ : L=(2,3) in (t,p).                                                                                                                                                                                                                 |
| 8898.10 <i>11</i><br>8939 <i>3</i>   | $(1^{-})$ $(2^{+})$     |                   | D F<br>DEF | $J^{\pi}$ : 6700 $\gamma$ to 2 <sup>+</sup> , 5165 $\gamma$ to 1 <sup>+</sup> , L=(2,3) in (t,p).                                                                                                                                             |
| 8953.4 <i>5</i>                      | $(1,2^+)$               |                   | DEF<br>D F | $J$ . $O/OO_f$ to $Z$ , $J/OO_f$ to $I$ , $L-(Z,J)$ III $(I,p)$ .                                                                                                                                                                             |
| 8959.4 <i>7</i>                      | $(5^{-})$               | 17 fs <i>10</i>   | CDE        | $J^{\pi}$ : L=(5) in (t,p).                                                                                                                                                                                                                   |
| 8979 <i>3</i>                        | $(1,2^+)$               | 1, 10 10          | D          | · · · (v, · · · (v,p).                                                                                                                                                                                                                        |
| 9034.8 23                            | $(0^+ \text{ to } 3^+)$ |                   | D          |                                                                                                                                                                                                                                               |
|                                      | . ,                     |                   |            |                                                                                                                                                                                                                                               |

| E(level) <sup>†</sup>             | $J^{\pi \#}$                                       | $T_{1/2}^{\ \ b}$  | XREF    | Comments                                                                                               |
|-----------------------------------|----------------------------------------------------|--------------------|---------|--------------------------------------------------------------------------------------------------------|
| 9044.8 18                         | (3,4)                                              | <24 fs             | D       |                                                                                                        |
| 9103.73 6                         | $(1^-,2^-)$                                        | <24 fs             | D F     | $J^{\pi}$ : 2359.6 $\gamma$ to 1 <sup>-</sup> and 998.9 $\gamma$ to (2 <sup>+</sup> ,3 <sup>-</sup> ). |
| 9106.76 <i>17</i>                 | 6 <sup>-</sup> @                                   | 24 fs 6            | CD      |                                                                                                        |
| 9129.8 20                         | $(4^+,5^+)$                                        | <17 fs             | D       |                                                                                                        |
| 9166.4 <i>16</i>                  | $(1^+ \text{ to } 3^+)$                            | <24 fs             | DE      | $J^{\pi}$ : Other: L=3 in (t,p).                                                                       |
| 9255.2 20                         | $(2^+,3^+)$                                        |                    | D       |                                                                                                        |
| 9308.11 22                        | $(1 \text{ to } 3^+)$                              | <24 fs             | D F     |                                                                                                        |
| 9349.3 <i>17</i>                  | (4-)                                               | <24 fs             | D       |                                                                                                        |
| 9362 4                            | $(1,2^+)$                                          |                    | D       |                                                                                                        |
| 9367.2 4                          | 6 <sup>+</sup> @                                   | <17 fs             | CD      |                                                                                                        |
| 9405.7 20                         | $(1^+ \text{ to } 4^+)$                            | <24 fs             | DE      | $J^{\pi}$ : Other: L=4 in (t,p).                                                                       |
| 9439 <i>3</i>                     | $(1^{-})$                                          |                    | D       |                                                                                                        |
| 9474.1 <i>24</i>                  | $(2^+ \text{ to } 4^+)$                            |                    | D       |                                                                                                        |
| 9505.2 17                         | (5 <sup>-</sup> )                                  | <17 fs             | D       |                                                                                                        |
| 9575 <i>3</i>                     | $(1^+ \text{ to } 3)$                              |                    | D       |                                                                                                        |
| 9597.3 3                          | $(0^+ \text{ to } 4^+)$                            |                    | D F     |                                                                                                        |
| 9604.5 20                         | $(2 \text{ to } 4^+)$                              |                    | D       |                                                                                                        |
| 9619.74 <i>13</i>                 | $(1^{-})$                                          | 25.6               | D F     |                                                                                                        |
| 9647.3 20                         | $(3^-,4)$                                          | <35 fs             | D       |                                                                                                        |
| 9688 <i>4</i>                     | $(0 \text{ to } 3^{-})$                            |                    | D       |                                                                                                        |
| 9725 <i>3</i><br>9760.5 <i>20</i> | $(0^+ \text{ to } 4^+)$<br>$(2^+ \text{ to } 4^+)$ | <35 fs             | D<br>D  |                                                                                                        |
| 9768 <i>3</i>                     | $(2 \ 0 \ 4)$ $(1,2^+)$                            | <33 18             | D       |                                                                                                        |
| 9773.7 <sup>‡</sup> 5             | 6-@                                                | 24.6               |         |                                                                                                        |
|                                   |                                                    | <24 fs             | CD      |                                                                                                        |
| 9792.3 <i>3</i>                   | $(1^{-})$<br>$(0^{+} \text{ to } 4^{+})$           |                    | D F     |                                                                                                        |
| 9816 <i>4</i><br>9881.8 <i>20</i> | (3,4)                                              |                    | D<br>DE | $J^{\pi}$ : L=4 in (t,p).                                                                              |
| 9896.6 20                         | $(0^+ \text{ to } 4^+)$                            |                    | DE<br>D | $J^{*}$ . L=4 III (t,p).                                                                               |
| 9953.9 <i>16</i>                  | (4,5)                                              | <14 fs             | D<br>D  |                                                                                                        |
| 9958 <i>3</i>                     | $(1,2^+)$                                          | <1 <del>+</del> 15 | D       |                                                                                                        |
| 10026.6 23                        | $(2 \text{ to } 4^+)$                              |                    | D       |                                                                                                        |
| 10056.4 20                        | 4+                                                 |                    | DE      | $J^{\pi}$ : L=4 in (t,p).                                                                              |
| 10078.7 24                        | $(1^+ \text{ to } 4^+)$                            |                    | D       | V17                                                                                                    |
| 10115.8 24                        | $(1^- \text{ to } 4^+)$                            |                    | D       |                                                                                                        |
| 10183.8 <i>23</i>                 | $(0^+ \text{ to } 3^+)$                            |                    | D       |                                                                                                        |
| 10186.7 <i>17</i>                 | $(5^{-})$                                          | 19 fs <i>14</i>    | D       |                                                                                                        |
| 10202.3 5                         | $(1^{-})$                                          |                    | D F     |                                                                                                        |
| 10219 4                           | $(0^+ \text{ to } 4^+)$                            |                    | D       |                                                                                                        |
| 10275.5 7                         | $(0^+ \text{ to } 4^+)$                            |                    | D F     |                                                                                                        |
| 10286.7 24                        | $(4^+,5^+)$                                        | <28 fs             | D       |                                                                                                        |
| 10304.4 18                        | $(3^{-})$                                          | -24 C              | D       |                                                                                                        |
| 10347.8 20                        | $(3^+,4)$                                          | <24 fs             | D       |                                                                                                        |
| 10354.9 23                        | $(0^+ \text{ to } 4^+)$<br>$(3,5^+)$               | <24 fs             | D       |                                                                                                        |
| 10396 <i>3</i><br>10420 <i>4</i>  | $(2^+ \text{ to } 6^+)$                            | <24 18             | D       |                                                                                                        |
| 10420 <i>4</i><br>10449 <i>3</i>  | $(0 \text{ to } 3^+)$                              |                    | D<br>D  |                                                                                                        |
| 10464.1 20                        | $(3^+,4)$                                          | <35 fs             | D       |                                                                                                        |
| 10404.1 20                        | $(1,2^+)$                                          | <b>\JJ 15</b>      | D       |                                                                                                        |
| 10507.9 23                        | $(0^+ \text{ to } 3^+)$                            |                    | D       |                                                                                                        |
| 10554.6 3                         | (6 <sup>-</sup> )                                  | <35 fs             | CD      |                                                                                                        |
| 10581 4                           | $(0 \text{ to } 3^+)$                              |                    | D       |                                                                                                        |
| 10622 4                           | $(0 \text{ to } 4^+)$                              |                    | D       |                                                                                                        |
| 10668.2 <i>21</i>                 | $(3^-,4^-,5)$                                      | <17 fs             | D       |                                                                                                        |
| 10675.4 <i>12</i>                 | $(6^+)$                                            | 12 fs 8            | CDE     | $J^{\pi}$ : L=6 in (t,p).                                                                              |
|                                   |                                                    |                    |         |                                                                                                        |

| E(level) <sup>†</sup>                  | $J^{\pi \#}$                                       | $T_{1/2}^{\ \ b}$ | XREF    | Comments                                                                                                                                                                                                                 |
|----------------------------------------|----------------------------------------------------|-------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10719.33 19                            | (7 <sup>-</sup> ) <sup>@</sup>                     | 17 fs 9           | CDe     | $J^{\pi}$ : 1613 $\gamma$ to 5 <sup>-</sup> , 3681 to 6 <sup>-</sup> .                                                                                                                                                   |
| 10731.4 18                             | $(3^-,4^-,5^-)$                                    | <28 fs            | De      | $J^{\pi}$ : 2628 $\gamma$ to (2 <sup>+</sup> ,3 <sup>-</sup> ), L=5 in (t,p) for doublet.                                                                                                                                |
| 10794.5 24                             | (2 to 4)                                           |                   | D       | (-,F) (-,F) (-,F)                                                                                                                                                                                                        |
| 10805 4                                | $(0^+ \text{ to } 4^+)$                            |                   | D       |                                                                                                                                                                                                                          |
| 10821.6 <i>18</i>                      | $(4,5^+,6^+)$                                      | <24 fs            | D       |                                                                                                                                                                                                                          |
| 10835 4                                | $(1^+ \text{ to } 5^+)$                            |                   | D       |                                                                                                                                                                                                                          |
| 10865.1 <i>18</i>                      | $(3^- \text{ to } 5)$                              | <35 fs            | D       |                                                                                                                                                                                                                          |
| 10909 10                               |                                                    |                   | E       | Additional information 1.                                                                                                                                                                                                |
| 10975 4                                | $(0^+ \text{ to } 4^+)$                            |                   | D       |                                                                                                                                                                                                                          |
| 10990.0 <i>17</i>                      | (3  to  5)                                         |                   | DE      |                                                                                                                                                                                                                          |
| 11015 <i>3</i><br>11037.5 24           | $(2^+ \text{ to } 4^+)$<br>$(3^- \text{ to } 6^+)$ | √50 fo            | D       |                                                                                                                                                                                                                          |
| 11037.3 24                             | (3 to 5)                                           | <52 fs<br><35 fs  | D<br>D  |                                                                                                                                                                                                                          |
| 11073 7                                | (4 <sup>-</sup> to 6 <sup>-</sup> )                | 24 fs 9           | CD      | J <sup><math>\pi</math></sup> : 2010StZZ ( <sup>18</sup> O,2n $\gamma$ ) proposes J <sup><math>\pi</math></sup> to be 6 <sup>-</sup> or 7 <sup>-</sup> based on $\gamma$ -ray feeding. 4040 $\gamma$ to 5 <sup>-</sup> . |
| 11090 4                                | (3 to 5)                                           | <35 fs            | D       | ,                                                                                                                                                                                                                        |
| 11205 <i>3</i>                         | $(0^+ \text{ to } 4^+)$                            |                   | D       |                                                                                                                                                                                                                          |
| 11209.5 <i>21</i>                      | $(4,5^+)$                                          |                   | D       |                                                                                                                                                                                                                          |
| 11248.2 <i>13</i>                      |                                                    | <24 fs            | D       |                                                                                                                                                                                                                          |
| 11268 <i>3</i>                         | $(2^+ \text{ to } 5^+)$                            |                   | D       |                                                                                                                                                                                                                          |
| 11321.8 24                             | $(2^+ \text{ to } 5^+)$                            |                   | D       |                                                                                                                                                                                                                          |
| 11348 4                                | $(2^+ \text{ to } 6^+)$                            |                   | D       |                                                                                                                                                                                                                          |
| 11382 4                                | $(0^+ \text{ to } 4^+)$                            | .25 6             | D       |                                                                                                                                                                                                                          |
| 11416.3 <i>20</i><br>11473.6 <i>18</i> | $(6^+,4^+)$<br>$(6^-,5^-)$                         | <35 fs            | D<br>D  |                                                                                                                                                                                                                          |
| 11473.0 18                             | $(3^+ \text{ to } 6^+)$                            |                   | D<br>D  |                                                                                                                                                                                                                          |
| 11510 3                                | $(4 \text{ to } 5^+)$                              |                   | D       |                                                                                                                                                                                                                          |
| 11539.4 <sup>‡</sup> 8                 | 7-@                                                |                   |         |                                                                                                                                                                                                                          |
| 11563 3                                | $(5,3^+)$                                          | <24 fs            | CD<br>D |                                                                                                                                                                                                                          |
| 11659.4 24                             | (3,3 )<br>(4 to 6)                                 | <24 18            | D<br>D  |                                                                                                                                                                                                                          |
| 11739.5 20                             | (3 to 5)                                           |                   | D       |                                                                                                                                                                                                                          |
| 11783.7 24                             | $(4,5^+)$                                          | <35 fs            | D       |                                                                                                                                                                                                                          |
| 11842 4                                | $(0^+ \text{ to } 4^+)$                            | 100 10            | D       |                                                                                                                                                                                                                          |
| 11879 <i>4</i>                         | $(3^- \text{ to } 7^-)$                            |                   | D       |                                                                                                                                                                                                                          |
| 12014.1 24                             | $(4 \text{ to } 6^+)$                              |                   | D       |                                                                                                                                                                                                                          |
| 12393.8 24                             |                                                    |                   | C       |                                                                                                                                                                                                                          |
| 12510 <i>3</i>                         |                                                    |                   | C       |                                                                                                                                                                                                                          |
| 12714.9 <i>15</i>                      |                                                    |                   | C       |                                                                                                                                                                                                                          |
| 12832.02 24                            | $(8^{-})^{a}$                                      |                   | C       |                                                                                                                                                                                                                          |
| 13202.8 5                              | $(8^{-})^{a}$                                      |                   | C       |                                                                                                                                                                                                                          |
| 15191.4 5                              | $(9^{-})^{a}$                                      |                   | C       |                                                                                                                                                                                                                          |
| 15528.8 <i>14</i>                      | $(9^{-})^{a}$                                      |                   | С       |                                                                                                                                                                                                                          |

<sup>&</sup>lt;sup>†</sup> From a least-squares fit to the  $\gamma$ -ray energies.  $\Delta E=4$  keV assumed by the evaluator when no uncertainty is given (in 1980Bi14,  $((\alpha,p),(\alpha,p\gamma))$ ), 4 keV uncertainty is quoted for the reported excitation energies). During the least squares fit uncertainties of the  $\gamma$ -rays 3043.2(1), 2168.9(3), 1556.3(1) and 3676.7(2) depopulating the states 5279, 6998, 7043 and 10719 keV, respectively, increased to 0.3, 0.4, 0.3, and 0.4 keV, respectively, to yield less than  $3\sigma$  deviation.

 $<sup>^{\</sup>ddagger}$   $K^{\pi}=3^{-}$  band; with an absolute value of intrinsic quadrupole moment  $Q_0=350+250-70$  mb.

<sup>#</sup> Assignments are based on L values in (t,p) reaction, the  $\gamma$ -ray linear polarization calculation, measured angular correlation coefficients and recommended upper limits of the calculated transition rates from lifetime and mixing ratio  $((\alpha,p),(\alpha,p\gamma)) - 1980Bi14)$ 

<sup>&</sup>lt;sup>@</sup> Consistent with  $\gamma$ -ray polarization data (1980Si14).

### <sup>30</sup>Si Levels (continued)

<sup>&</sup> Assigned by 1971Sy01 based on  $\gamma$ -rays angular correlation and branching ratio measurements. <sup>a</sup> Assigned by 2010StZZ (<sup>18</sup>O,2n $\gamma$ ), based on  $\gamma$ -feeding sequence to the lower levels. <sup>b</sup> From  $(\alpha,p)$ , $(\alpha,p\gamma)$ , except otherwise noted.

|              |                      |                                |                          |                |                      |        | •               |                          |                                                                                                                                                                                                                                                                                                                     |
|--------------|----------------------|--------------------------------|--------------------------|----------------|----------------------|--------|-----------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | ${\rm E}_{\gamma}{}^{\dagger}$ | $I_{\gamma}{}^{\dagger}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult.b | $\delta^{m{b}}$ | $\alpha^{c}$             | Comments                                                                                                                                                                                                                                                                                                            |
| 2235.322     | 2+                   | 2235.23 <sup>‡</sup> 2         | 100‡                     | 0              | 0+                   | E2     |                 | 0.000436 6               | B(E2)(W.u.)=8.5 11<br>$\alpha$ (K)=5.65×10 <sup>-6</sup> 8; $\alpha$ (L)=4.03×10 <sup>-7</sup> 6; $\alpha$ (M)=2.66×10 <sup>-8</sup><br>4; $\alpha$ (N+)=0.000429 6<br>$\alpha$ (IPF)=0.000429 6                                                                                                                    |
| 3498.49      | 2+                   | 1263.13# 3                     | 100 3                    | 2235.322       | 2 2+                 | M1+E2  | +0.18 5         | 2.90×10 <sup>-5</sup> 5  | B(M1)(W.u.)=0.09 3; B(E2)(W.u.)=9 6<br>$\alpha$ (K)=1.359×10 <sup>-5</sup> 21; $\alpha$ (L)=9.70×10 <sup>-7</sup> 15;<br>$\alpha$ (M)=6.39×10 <sup>-8</sup> 10; $\alpha$ (N+)=1.438×10 <sup>-5</sup> 24<br>$\alpha$ (IPF)=1.438×10 <sup>-5</sup> 24<br>$\delta$ : From 1971Sh11 $(\alpha,p)$ , $(\alpha,p\gamma)$ . |
|              |                      | 3498.33 <sup>‡</sup> 5         | 98 <sup>‡</sup> 3        | 0              | 0+                   | E2     |                 | 0.000994 14              | B(E2)(W.u.)=1.7 5<br>$\alpha$ (K)=2.75×10 <sup>-6</sup> 4; $\alpha$ (L)=1.96×10 <sup>-7</sup> 3; $\alpha$ (M)=1.292×10 <sup>-8</sup><br>$18$ ; $\alpha$ (N+)=0.000991 $14$<br>$\alpha$ (IPF)=0.000991 $14$                                                                                                          |
| 3769.48      | 1+                   | 1534.12‡ 4                     | 100‡ 3                   | 2235.322       | 2 2+                 | M1+E2  | -0.09 3         | 8.40×10 <sup>-5</sup> 12 | B(M1)(W.u.)=0.091 23; B(E2)(W.u.)=1.5 11<br>$\alpha$ (K)=9.60×10 <sup>-6</sup> 14; $\alpha$ (L)=6.85×10 <sup>-7</sup> 10;<br>$\alpha$ (M)=4.52×10 <sup>-8</sup> 7; $\alpha$ (N+)=7.37×10 <sup>-5</sup> 11<br>$\alpha$ (IPF)=7.37×10 <sup>-5</sup> 11                                                                |
|              |                      | 3769.22‡ 5                     | 85 <sup>‡</sup> 3        | 0              | 0+                   | M1     |                 | 0.000949 14              | B(M1)(W.u.)=0.0052 <i>14</i><br>$\alpha$ (K)=2.37×10 <sup>-6</sup> 4; $\alpha$ (L)=1.691×10 <sup>-7</sup> 24;<br>$\alpha$ (M)=1.115×10 <sup>-8</sup> <i>16</i> ; $\alpha$ (N+)=0.000947<br>$\alpha$ (IPF)=0.000947 <i>14</i>                                                                                        |
| 3787.72      | 0+                   | 1552.36‡ 4                     | ≈100 <sup>‡</sup>        | 2235.322       | 2 2+                 | E2     |                 | 0.0001212 17             | B(E2)(W.u.) $\approx$ 1.4<br>$\alpha$ (K)=1.121×10 <sup>-5</sup> 16; $\alpha$ (L)=8.00×10 <sup>-7</sup> 12;<br>$\alpha$ (M)=5.27×10 <sup>-8</sup> 8; $\alpha$ (N+)=0.0001091<br>$\alpha$ (IPF)=0.0001091 16                                                                                                         |
| 4810.31      | 2+                   | 1040                           | 10 <i>3</i>              | 3769.48        | 1+                   |        |                 |                          |                                                                                                                                                                                                                                                                                                                     |
|              |                      | 1311.80 <sup>‡</sup> <i>14</i> | 89 <sup>‡</sup> 7        | 3498.49        |                      | M1+E2  | -0.17 6         | 3.58×10 <sup>-5</sup> 6  | B(M1)(W.u.)=0.036 7; B(E2)(W.u.)=2.8 20 $\alpha$ (K)=1.268×10 <sup>-5</sup> 20; $\alpha$ (L)=9.06×10 <sup>-7</sup> 14; $\alpha$ (M)=5.97×10 <sup>-8</sup> 9; $\alpha$ (N+)=2.22×10 <sup>-5</sup> 4 $\alpha$ (IPF)=2.22×10 <sup>-5</sup> 4                                                                           |
|              |                      | 2574.8 <sup>‡</sup> 5          | 28‡ 7                    | 2235.322       | 2 2+                 | M1+E2  | -0.52 11        | 0.000513 11              | B(M1)(W.u.)=0.0012 4; B(E2)(W.u.)=0.23 11 $\alpha$ (K)=4.21×10 <sup>-6</sup> 7; $\alpha$ (L)=3.00×10 <sup>-7</sup> 5; $\alpha$ (M)=1.98×10 <sup>-8</sup> 3; $\alpha$ (N+)=0.000509 11 $\alpha$ (IPF)=0.000509 11                                                                                                    |
|              |                      | 4810.0 <sup>‡</sup> 3          | 100 <sup>‡</sup> 7       | 0              | 0+                   | E2     |                 | 0.001434 20              | B(E2)(W.u.)=0.17 3<br>$\alpha$ (K)=1.741×10 <sup>-6</sup> 25; $\alpha$ (L)=1.242×10 <sup>-7</sup> 18;<br>$\alpha$ (M)=8.18×10 <sup>-9</sup> 12; $\alpha$ (N+)=0.001432<br>$\alpha$ (IPF)=0.001432 20                                                                                                                |

|               |                      |                                   |                                |                |                    |         | γ( S1) (        | continued)               |                                                                                                                                                                                                                                 |
|---------------|----------------------|-----------------------------------|--------------------------------|----------------|--------------------|---------|-----------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}{}^{\dagger}$ | ${\rm I}_{\gamma}{}^{\dagger}$ | $\mathrm{E}_f$ | $\mathbf{J}_f^\pi$ | Mult.b  | $\delta^{m{b}}$ | $\alpha^{c}$             | Comments                                                                                                                                                                                                                        |
| 4830.85       | 3+                   | 1332.48 <sup>‡</sup> <i>16</i>    | 10.1‡ 12                       | 3498.49        | 2+                 | D+Q     | +0.7 5          |                          |                                                                                                                                                                                                                                 |
|               |                      | 2595.39 <sup>‡</sup> 4            | 100‡ 3                         | 2235.322       | 2+                 | M1+E2   | +0.73 9         | 0.000537 10              | B(M1)(W.u.)=0.0014 5; B(E2)(W.u.)=0.51 17 $\alpha$ (K)=4.20×10 <sup>-6</sup> 7; $\alpha$ (L)=2.99×10 <sup>-7</sup> 5; $\alpha$ (M)=1.97×10 <sup>-8</sup> 3; $\alpha$ (N+)=0.000532 10 $\alpha$ (IPF)=0.000532 10                |
| 5231.38       | 3 <sup>+</sup>       | 400.2 <sup>&amp;</sup> 2          | 4.5 15                         | 4830.85        | 3 <sup>+</sup>     |         |                 |                          |                                                                                                                                                                                                                                 |
|               |                      | 421.0 <sup>‡</sup> 5              | 5.3 <sup>‡</sup> 15            | 4810.31        | 2+                 |         |                 |                          |                                                                                                                                                                                                                                 |
|               |                      | 1732.7 <sup>&amp;</sup> 1         | 100 5                          | 3498.49        | 2+                 | M1+E2   | +0.12 6         | 0.0001497 23             | B(M1)(W.u.)=0.08 4; B(E2)(W.u.)=1.8 +20-18<br>$\alpha$ (K)=7.82×10 <sup>-6</sup> 12; $\alpha$ (L)=5.58×10 <sup>-7</sup> 8;<br>$\alpha$ (M)=3.68×10 <sup>-8</sup> 6; $\alpha$ (N+)=0.0001413 2<br>$\alpha$ (IPF)=0.0001413 22    |
|               |                      | 2995.0 <mark>&amp;</mark> 5       | 10.6 23                        | 2235.322       |                    |         |                 |                          |                                                                                                                                                                                                                                 |
| 5279.37       | 4+                   | 1782                              | 1.0 3                          | 3498.49        |                    |         |                 |                          |                                                                                                                                                                                                                                 |
|               |                      | 3043.2 <sup>@</sup> 1             | 100.0 3                        | 2235.322       | 2+                 | (E2)    |                 | 0.000808 12              | B(E2)(W.u.)=4.7 <i>13</i><br>$\alpha$ (K)=3.40×10 <sup>-6</sup> 5; $\alpha$ (L)=2.42×10 <sup>-7</sup> 4;<br>$\alpha$ (M)=1.597×10 <sup>-8</sup> 23; $\alpha$ (N+)=0.000804 <i>12</i><br>$\alpha$ (IPF)=0.000804 <i>12</i>       |
| 5372.2        | 0+                   | 1602.8‡ 9                         | 66 <sup>‡</sup> 20             | 3769.48        | 1+                 | M1      |                 | 0.0001049 15             | B(M1)(W.u.)=0.036 19<br>$\alpha$ (K)=8.89×10 <sup>-6</sup> 13; $\alpha$ (L)=6.35×10 <sup>-7</sup> 9;<br>$\alpha$ (M)=4.18×10 <sup>-8</sup> 6; $\alpha$ (N+)=9.54×10 <sup>-5</sup> 14<br>$\alpha$ (IPF)=9.54×10 <sup>-5</sup> 14 |
|               |                      | 3136.6‡ 7                         | 100‡ 27                        | 2235.322       | 2+                 | E2      |                 | 0.000847 12              | B(E2)(W.u.)=3.4 17<br>$\alpha$ (K)=3.24×10 <sup>-6</sup> 5; $\alpha$ (L)=2.31×10 <sup>-7</sup> 4;<br>$\alpha$ (M)=1.525×10 <sup>-8</sup> 22; $\alpha$ (N+)=0.000843 12<br>$\alpha$ (IPF)=0.000843 12                            |
| 5487.50       | 3-                   | 1989.02‡ 7                        | 96‡ 5                          | 3498.49        | 2+                 | (E1+M2) | -0.02 7         | 0.000640 10              | B(E1)(W.u.)=(0.0010 3); B(M2)(W.u.)=(0.5 +33-5)<br>$\alpha$ (K)=4.21×10 <sup>-6</sup> 8; $\alpha$ (L)=3.01×10 <sup>-7</sup> 6;<br>$\alpha$ (M)=1.98×10 <sup>-8</sup> 4; $\alpha$ (N+)=0.000635 10<br>$\alpha$ (IPF)=0.000635 10 |
|               |                      | 3252.00‡ 9                        | 100‡ 5                         | 2235.322       | 2+                 | (E1+M2) | -0.04 5         | 0.001366 20              | B(E1)(W.u.)=(0.00024 7); B(M2)(W.u.)=(0.17 +42-17) $\alpha$ (K)=2.18×10 <sup>-6</sup> 4; $\alpha$ (L)=1.557×10 <sup>-7</sup> 24; $\alpha$ (M)=1.026×10 <sup>-8</sup> 16; $\alpha$ (N+)=0.001363 $\alpha$ (IPF)=0.001363 20      |
| 5614.04       | 2+                   | 783                               | 6 2                            | 4830.85        | 3+                 | M1+E2   | +0.20 11        | 3.65×10 <sup>-5</sup> 14 | B(M1)(W.u.)>0.066<br>$\alpha$ (K)=3.39×10 <sup>-5</sup> 13; $\alpha$ (L)=2.43×10 <sup>-6</sup> 10;<br>$\alpha$ (M)=1.60×10 <sup>-7</sup> 7                                                                                      |
|               |                      | 805                               | 2 1                            | 4810.31        | 2+                 |         |                 |                          |                                                                                                                                                                                                                                 |
|               |                      |                                   |                                |                |                    |         |                 |                          |                                                                                                                                                                                                                                 |

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$                   | ${\rm I}_{\gamma}{}^{\dagger}$                            | $\mathrm{E}_f$     | $\mathbf{J}_f^{\pi}$                                                 | Mult.b | $\delta^{m{b}}$ | $\alpha^{c}$        | Comments                                                                                                                                                                                                                        |
|--------------|----------------------|------------------------------------------------|-----------------------------------------------------------|--------------------|----------------------------------------------------------------------|--------|-----------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5614.04      | 2+                   | 1844.40 <sup>‡</sup> <i>16</i>                 | 100‡ 8                                                    | 3769.48            | 1+                                                                   | M1+E2  | +0.11 5         | 0.000191 3          | B(M1)(W.u.)>0.090; B(E2)(W.u.)>0.15<br>$\alpha$ (K)=7.04×10 <sup>-6</sup> $I0$ ; $\alpha$ (L)=5.03×10 <sup>-7</sup> $7$ ; $\alpha$ (M)=3.31×10 <sup>-8</sup> $5$ ;<br>$\alpha$ (N+)=0.000183 $3$<br>$\alpha$ (IPF)=0.000183 $3$ |
| 5950.73      | 4+                   | 3378.68 <sup>‡</sup> 25<br>671<br>720<br>1120  | 73 <sup>‡</sup> 0.5 2 0.3 <i>I</i> 1.7 4                  | 5231.38            | 2 <sup>+</sup><br>4 <sup>+</sup><br>3 <sup>+</sup><br>3 <sup>+</sup> |        |                 |                     |                                                                                                                                                                                                                                 |
|              |                      | 2452.6 <sup>@</sup> 13                         | 5 3                                                       | 3498.49            | 2+                                                                   | (E2)   |                 | 0.000540 8          | B(E2)(W.u.)=4 3<br>$\alpha$ (K)=4.82×10 <sup>-6</sup> 7; $\alpha$ (L)=3.44×10 <sup>-7</sup> 5; $\alpha$ (M)=2.27×10 <sup>-8</sup> 4;<br>$\alpha$ (N+)=0.000535 8<br>$\alpha$ (IPF)=0.000535 8                                   |
|              |                      | 3714.9 <sup>@</sup> 2                          | 100 3                                                     | 2235.322           | 2+                                                                   | (E2)   |                 | 0.001074 15         | B(E2)(W.u.)=9 5<br>$\alpha$ (K)=2.51×10 <sup>-6</sup> 4; $\alpha$ (L)=1.79×10 <sup>-7</sup> 3; $\alpha$ (M)=1.181×10 <sup>-8</sup> 17; $\alpha$ (N+)=0.001071 15<br>$\alpha$ (IPF)=0.001071 15                                  |
| 6503.41      | 4-                   | 551.9 <sup>a</sup> 11<br>1016.0 <sup>a</sup> 1 | 1.11 <sup>a</sup> 18<br>12.9 <sup>a</sup> 9               | 5950.73<br>5487.50 | 4 <sup>+</sup><br>3 <sup>-</sup>                                     | D+Q    | -0.23 2         |                     |                                                                                                                                                                                                                                 |
|              |                      | 1010.0 <i>T</i> 1271.9 <sup>a</sup> 2          | 12.9 9<br>100 <sup>a</sup> 4                              | 5231.38            | 3 <sup>+</sup>                                                       | (E1)   | -0.23 2         | 0.0001159 <i>17</i> | B(E1)(W.u.)=0.0013 5<br>$\alpha$ (K)=8.50×10 <sup>-6</sup> 12; $\alpha$ (L)=6.07×10 <sup>-7</sup> 9; $\alpha$ (M)=4.00×10 <sup>-8</sup> 6;<br>$\alpha$ (N+)=0.0001068 1<br>$\alpha$ (IPF)=0.0001068 15                          |
|              |                      | 1672.4 <sup>a</sup> 1                          | 61.1 <sup>a</sup> 18                                      | 4830.85            | 3+                                                                   | (E1)   |                 | 0.000409 6          | B(E1)(W.u.)=0.00048 18<br>$\alpha$ (K)=5.45×10 <sup>-6</sup> 8; $\alpha$ (L)=3.89×10 <sup>-7</sup> 6; $\alpha$ (M)=2.56×10 <sup>-8</sup> 4;<br>$\alpha$ (N+)=0.000403 6<br>$\alpha$ (IPF)=0.000403 6                            |
| 6537.5       | 2+                   | 923<br>1306<br>2768<br>3039<br>4302            | 13 4<br>16 7<br>35 9<br>100 7<br>27 7                     | 5231.38<br>3769.48 | 1 <sup>+</sup><br>2 <sup>+</sup>                                     |        |                 |                     |                                                                                                                                                                                                                                 |
|              |                      | 6537                                           | 100                                                       |                    |                                                                      | E2     |                 |                     | B(E2)(W.u.)>0.17<br>α(N+)=0.00186 3<br>α(IPF)=0.00186 3                                                                                                                                                                         |
| 6641.21      | 2-                   | 1153.61 <sup>‡</sup> 13                        | 15.6 12                                                   | 5487.50            |                                                                      |        |                 |                     |                                                                                                                                                                                                                                 |
|              |                      | 1810.42 <sup>‡</sup> 22                        | 15.6 <sup>‡</sup> <i>12</i><br>7.8 <sup>‡</sup> <i>12</i> | 4830.85            |                                                                      |        |                 |                     |                                                                                                                                                                                                                                 |
|              |                      | 1830.6 <sup>‡</sup> 4<br>2871.6 <sup>‡</sup> 3 | 7.8* <i>12</i><br>11.6 <sup>‡</sup> <i>14</i>             | 4810.31<br>3769.48 |                                                                      |        |                 |                     |                                                                                                                                                                                                                                 |
|              |                      | 4405.56 <sup>‡</sup> 8                         | $100^{\ddagger} 3$                                        | 2235.322           |                                                                      |        |                 |                     |                                                                                                                                                                                                                                 |

# $\gamma(^{30}\text{Si})$ (continued)

|              |                      |                                     |                               |          |                                  |        | /( - / (-    | ontinued)                |                                                                                                                                                                 |
|--------------|----------------------|-------------------------------------|-------------------------------|----------|----------------------------------|--------|--------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$              | $_{\rm I_{\gamma}}^{\dagger}$ | $E_f$    | $\underline{\mathbf{J}_f^\pi}$   | Mult.b | $\delta^{b}$ | $\alpha^{c}$             | Comments                                                                                                                                                        |
| 6641.21      | 2-                   | 6640.7‡ 9                           | 4.9 <sup>‡</sup> <i>14</i>    |          | 0+                               |        |              |                          |                                                                                                                                                                 |
| 6642         | $0_{+}$              | 4406                                | 100                           | 2235.322 |                                  |        |              |                          |                                                                                                                                                                 |
| 6744.06      | 1-                   | 1933.9 <sup>‡</sup> <i>5</i>        | 0.60‡ 11                      | 4810.31  | 2+                               |        |              |                          |                                                                                                                                                                 |
|              |                      | 2956.25 <sup>‡</sup> <i>12</i>      | 3.55 <sup>‡</sup> 19          | 3787.72  | $0^{+}$                          |        |              |                          |                                                                                                                                                                 |
|              |                      | 4508.64 <sup>‡</sup> <i>17</i>      | 2.16 <sup>‡</sup> <i>13</i>   | 2235.322 | 2+                               | (E1)   |              | 0.00186 <i>3</i>         | $B(E1)(W.u.) > 1.1 \times 10^{-5}$                                                                                                                              |
|              |                      |                                     |                               |          |                                  |        |              |                          | $\alpha(K)=1.468\times10^{-6}\ 2I;\ \alpha(L)=1.047\times10^{-7}\ I5;$<br>$\alpha(M)=6.90\times10^{-9}\ I0;\ \alpha(N+)=0.00186\ 3$<br>$\alpha(IPF)=0.00186\ 3$ |
|              |                      | 6743.22 <sup>‡</sup> 4              | 100‡ 3                        | 0        | 0+                               | E1     |              |                          | B(E1)(W.u.)>0.00015<br>α(N+)=0.00246 4<br>α(IPF)=0.00246 4                                                                                                      |
| 6865.2       | 3+                   | 914                                 | 6 2                           |          |                                  | D+Q    | -0.03 10     |                          |                                                                                                                                                                 |
|              |                      | 1251                                | 4 2                           | 5614.04  |                                  |        |              |                          |                                                                                                                                                                 |
|              |                      | 1585                                | 4 2                           | 5279.37  |                                  |        |              |                          |                                                                                                                                                                 |
|              |                      | 1634                                | 4 2                           |          | 3 <sup>+</sup>                   | D . O  | . 1 2 5      |                          |                                                                                                                                                                 |
|              |                      | 2034<br>2056                        | 73 <i>12</i><br>12 <i>4</i>   |          | 3 <sup>+</sup><br>2 <sup>+</sup> | D+Q    | +1.2 5       |                          |                                                                                                                                                                 |
|              |                      | 4630                                | 100 16                        | 2235.322 | _                                | D+Q    | -0.15 12     |                          |                                                                                                                                                                 |
| 6914.79      | $(2^+)$              | 1301                                | 4.2 22                        | 5614.04  |                                  | DIQ    | 0.13 12      |                          |                                                                                                                                                                 |
|              | (- )                 | 3146                                | 20 7                          |          | 1+                               |        |              |                          |                                                                                                                                                                 |
|              |                      | 3415.7 <sup>‡</sup> 7               | 31 <sup>‡</sup> 8             | 3498.49  | 2+                               |        |              |                          |                                                                                                                                                                 |
|              |                      | 4679.2 <sup>‡</sup> 3               | 100‡ 8                        | 2235.322 | 2+                               | M1+E2  | -0.63 14     | 0.001286 23              | B(M1)(W.u.)>0.0024; B(E2)(W.u.)>0.16                                                                                                                            |
|              |                      |                                     |                               |          |                                  |        |              |                          | $\alpha(K)=1.77\times10^{-6}$ 3; $\alpha(L)=1.266\times10^{-7}$ 18;<br>$\alpha(M)=8.34\times10^{-9}$ 12; $\alpha(N+)=0.001284$ 2<br>$\alpha(IPF)=0.001284$ 23   |
|              |                      | 6913.7 <sup>‡</sup> 5               | 78 <sup>‡</sup> 12            | 0        | 0+                               | E2     |              |                          | B(E2)(W.u.)>0.090<br>α(N+)=0.00194 <i>3</i><br>α(IPF)=0.00194 <i>3</i>                                                                                          |
| 6998.90      | 5 <sup>+</sup>       | 1048.2 <sup>@</sup> 2               | 18 <i>3</i>                   | 5950.73  | 4+                               | D+Q    | +0.12 2      |                          |                                                                                                                                                                 |
|              | -                    | 1719.4 <sup>@</sup> 1               | 100 7                         |          |                                  | D+Q    | +0.25 5      |                          |                                                                                                                                                                 |
|              |                      | 1767.7 <sup>a</sup> 10              | $7.5^{a}$ 15                  |          | 3+                               | . *    |              |                          |                                                                                                                                                                 |
|              |                      | 2168.9 <sup>@</sup> 3               | 35 <i>5</i>                   |          | 3 <sup>+</sup>                   | Q      |              |                          |                                                                                                                                                                 |
| 7043.21      | 5-                   | 539.5 <sup>@</sup> 3                | 96 9                          |          |                                  | M1+E2  | +0.04 3      | $7.56 \times 10^{-5}$ 12 | B(M1)(W.u.)=0.056 15; B(E2)(W.u.)=1.4 +22-14                                                                                                                    |
| 7043.21      | J                    |                                     | <i>7</i> 0 <i>7</i>           | 0303.41  | 7                                | IVITEZ | ±0.04 J      | 7.50×10 12               | $\alpha(K) = 7.03 \times 10^{-5} II; \ \alpha(L) = 5.03 \times 10^{-6} 8; \ \alpha(M) = 3.31 \times 10^{-7} 5$                                                  |
|              |                      | 1092.1 <sup>@</sup> 2               | 100 8                         | 5950.73  | 4+                               | D+Q    | $-0.02\ I$   |                          |                                                                                                                                                                 |
|              |                      | 1092.1 ° 2<br>1556.3 <sup>@</sup> 1 | 100 0                         | 3930.73  | 4                                | D+Q    | -0.02 1      |                          |                                                                                                                                                                 |

9

# $\gamma(^{30}\text{Si})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}{}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f$     | $\mathbf{J}_f^{\pi}$             | Mult. b    | $\delta^{m{b}}$ | $\alpha^{c}$ | Comments                                                                                                                                                                                                                                                                                       |
|---------------|----------------------|-----------------------------------|------------------------|--------------------|----------------------------------|------------|-----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 043.21        | 5-                   | 1763.8 <sup>@</sup> 1             | 62 6                   | 5279.37            | 4 <sup>+</sup>                   | D+Q        | +0.06 3         |              |                                                                                                                                                                                                                                                                                                |
| 7079.4        | $(1^+, 2^-, 3^+)$    | 1848<br>2270                      | <8<br>45 <i>8</i>      | 5231.38<br>4810.31 | 3 <sup>+</sup><br>2 <sup>+</sup> | D+Q        | +0.15 1         |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 3581                              | 22 5                   |                    | 2+                               | D+Q        | +0.13 1         |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 4844                              | 100 17                 | 2235.322           |                                  | D+Q        | -0.00 6         |              |                                                                                                                                                                                                                                                                                                |
| 7223.2        | 4+                   | 720                               | <2                     |                    | 4-                               |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 1274<br>1738                      | 24 7<br><9             |                    | 4 <sup>+</sup>                   |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 1738<br>1943.0 <sup>@</sup> 11    | 100 7                  |                    | 3 <sup>-</sup><br>4 <sup>+</sup> | M1+E2      | +0.3 4          | 0.000235 17  | B(M1)(W.u.)>0.074                                                                                                                                                                                                                                                                              |
|               |                      |                                   | 100 /                  | 3219.31            | 4                                | MII+E2     | +0.3 4          | 0.000233 17  | $\alpha(\text{K})=6.51\times10^{-6} \ 22; \ \alpha(\text{L})=4.65\times10^{-7} \ 16;$<br>$\alpha(\text{M})=3.06\times10^{-8} \ 11; \ \alpha(\text{N}+)=0.000228 \ 1$<br>$\alpha(\text{IPF})=0.000228 \ 17$                                                                                     |
|               |                      | 1991.5 <sup>@</sup> 4             | 30 7                   | 5231.38            | 3+                               | M1+E2      | +0.6 2          | 0.000268 10  | B(M1)(W.u.)>0.017; B(E2)(W.u.)>4.5<br>$\alpha$ (K)=6.39×10 <sup>-6</sup> 13; $\alpha$ (L)=4.56×10 <sup>-7</sup> 10;<br>$\alpha$ (M)=3.00×10 <sup>-8</sup> 6; $\alpha$ (N+)=0.000261 10<br>$\alpha$ (IPF)=0.000261 10<br>I <sub><math>\gamma</math></sub> : 63 15 in ( $^{18}$ O,2n $\gamma$ ). |
|               |                      | 2394                              | 23 4                   | 4830.85            | 3+                               | D+Q        | +0.10 3         |              | 17. 00 10 11 ( 0,217).                                                                                                                                                                                                                                                                         |
|               |                      | 3725.5 <sup>@</sup> 10            | 25 5                   | 3498.49            | 2+                               |            |                 |              | $I_{\gamma}$ : 69 22 in ( <sup>18</sup> O,2n $\gamma$ ).                                                                                                                                                                                                                                       |
| 7255.8        | 2+                   | 1768                              | 31 7                   |                    |                                  |            |                 |              | ,                                                                                                                                                                                                                                                                                              |
|               |                      | 2024                              | 24 7                   |                    | 3 <sup>+</sup>                   |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 2424<br>2446                      | 17 7                   | 4830.85<br>4810.31 | 3 <sup>+</sup><br>2 <sup>+</sup> | D+Q        | -1.5 14         |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 3757                              | 66 14                  |                    | 2 <sup>+</sup>                   | D+Q<br>D+Q | -0.17 <i>15</i> |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 5020                              | 100 10                 | 2235.322           | 2+                               | M1+E2      | +3.7 15         | 0.00148 3    | B(M1)(W.u.)>2.7×10 <sup>-5</sup> ; B(E2)(W.u.)>0.27<br>$\alpha$ (K)=1.639×10 <sup>-6</sup> 24; $\alpha$ (L)=1.169×10 <sup>-7</sup> 17;<br>$\alpha$ (M)=7.71×10 <sup>-9</sup> 11; $\alpha$ (N+)=0.00148 3<br>$\alpha$ (IPF)=0.00148 3                                                           |
|               |                      | 7256                              | 64 9                   | 0                  | 0+                               | E2         |                 |              | B(E2)(W.u.)>0.031<br>$\alpha$ (N+)=0.00200 3<br>$\alpha$ (IPF)=0.00200 3                                                                                                                                                                                                                       |
| 7441          | $0_{+}$              | 3671                              | 100                    | 3769.48            | 1+                               |            |                 |              |                                                                                                                                                                                                                                                                                                |
| 7507.84       | $(2^{-})$            | 1893.6 <sup>‡</sup> 5             | 1.01 <sup>‡</sup> 21   | 5614.04            | 2+                               |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 2020.33‡ 23                       | 8.0 <sup>‡</sup> 3     | 5487.50            | 3-                               |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 2276.22‡ 8                        | 7.9 <sup>‡</sup> 4     | 5231.38            | 3+                               |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 2676.87 <sup>‡</sup> 6            | 13.8 <sup>‡</sup> 6    | 4830.85            | 3+                               |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 3738.20 <sup>‡</sup> <i>18</i>    | 10.8 <sup>‡</sup> 5    | 3769.48            | 1+                               |            |                 |              |                                                                                                                                                                                                                                                                                                |
|               |                      | 4009.09 <sup>‡</sup> 21           | 5.9 <sup>‡</sup> 3     | 3498.49            | 2+                               |            |                 |              |                                                                                                                                                                                                                                                                                                |

10

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{\dagger}$       | $\mathrm{E}_f$ $\mathrm{J}_f^\pi$                                                 | Mult.b | $\delta^{b}$ | Comments                    |
|---------------|-------------------------|--------------------------------|------------------------------|-----------------------------------------------------------------------------------|--------|--------------|-----------------------------|
| 7507.84       | $(2^{-})$               | 5272.09 <sup>‡</sup> 7         | 100‡ 3                       | 2235.322 2+                                                                       |        |              |                             |
|               | ,                       | 7507.4 <sup>‡</sup> 8          | $0.9^{\ddagger} 2$           | $0 	 0^{+}$                                                                       |        |              |                             |
| 7612.4        | $(4^{-})$               | 1108                           | 7 2                          | 6503.41 4-                                                                        |        |              |                             |
|               | ,                       | 2126                           | 98 12                        | 5487.50 3-                                                                        | D+Q    | +0.25 3      |                             |
|               |                         | 2333                           | 17 5                         | 5279.37 4 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 2382                           | 17 5                         | 5231.38 3 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 2782                           | 100 10                       | 4830.85 3 <sup>+</sup>                                                            | D+Q    | -0.005       |                             |
| 7623.9        | $(2^{+})$               | 4125                           | 100 16                       | 3498.49 2+                                                                        |        |              |                             |
|               |                         | 5388                           | 61 <i>11</i>                 | 2235.322 2+                                                                       | D+Q    | +0.38 6      |                             |
|               |                         | 7623                           | 14 5                         | $0 	 0_{+}$                                                                       | (E2)   |              | B(E2)(W.u.)>0.019           |
|               |                         |                                |                              |                                                                                   |        |              | α(N+)=0.00206 3             |
| 7624          |                         | 20.46                          | 10.74                        | 2505.52 o±                                                                        |        |              | $\alpha(IPF) = 0.00206 \ 3$ |
| 7634          |                         | 3846                           | 43 14                        | 3787.72 0 <sup>+</sup>                                                            |        |              |                             |
| 7667 4        | (1+ 2+)                 | 3865                           | 100 <i>14</i><br>23 <i>5</i> | 3769.48 1 <sup>+</sup><br>3498.49 2 <sup>+</sup>                                  |        |              |                             |
| 7667.4        | $(1^+,2^+)$             | 4170                           |                              |                                                                                   |        |              |                             |
|               |                         | 5431.5 <sup>‡</sup> 6          | 100 <sup>‡</sup> 10          | 2235.322 2+                                                                       |        |              |                             |
| 7000 7        | 4+                      | 7668                           | 12 4                         | $0 	 0^+$                                                                         |        |              |                             |
| 7809.7        | 4 <sup>+</sup>          | 731<br>945                     | 4 2<br>12 <i>4</i>           | 7079.4 (1 <sup>+</sup> ,2 <sup>-</sup> ,3 <sup>+</sup> )<br>6865.2 3 <sup>+</sup> |        |              |                             |
|               |                         | 1859                           | 46 8                         | 5950.73 4 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 2530                           | 100 10                       | 5279.37 4 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 2579                           | 18 4                         | 5231.38 3 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 2979                           | 20 4                         | 4830.85 3 <sup>+</sup>                                                            |        |              |                             |
| 7911.8        | 2+                      | 2424                           | 11 4                         | 5487.50 3                                                                         |        |              |                             |
|               |                         | 4142                           | 40 9                         | 3769.48 1+                                                                        |        |              |                             |
|               |                         | 4413                           | 25 7                         | 3498.49 2 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 5676                           | 100                          | 2235.322 2 <sup>+</sup>                                                           | D+Q    | +0.7 3       |                             |
| 8104.8        | $(2^+,3^-)$             | 1188                           | 3 2                          | $6914.79 	 (2^+)$                                                                 |        |              |                             |
|               |                         | 2489                           | 5 3                          | 5614.04 2 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 2616                           | 9 3                          | 5487.50 3-                                                                        |        |              |                             |
|               |                         | 2872                           | 14.5                         | 5231.38 3 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 3294.9 <sup>‡</sup> 9          | 29 <sup>‡</sup> 9            | 4810.31 2 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 4334                           | 6 3                          | 3769.48 1+                                                                        |        |              |                             |
|               |                         | 5868.8 7                       | 100 19                       | 2235.322 2+                                                                       |        |              |                             |
| 8156.1        | $(1^- \text{ to } 4^+)$ | 2668                           | 29 10                        | 5487.50 3 <sup>-</sup>                                                            |        |              |                             |
|               |                         | 4657                           | 43 14                        | 3498.49 2 <sup>+</sup>                                                            |        |              |                             |
|               |                         | 5920.2 <sup>‡</sup> 7          | 100 <sup>‡</sup> 14          | 2235.322 2+                                                                       |        |              |                             |
| 8163.22       | 1-                      | 4375.18 <sup>‡</sup> <i>15</i> | 41.5 <sup>‡</sup> <i>17</i>  | 3787.72 0+                                                                        |        |              |                             |
|               |                         | 4393.43 <sup>‡</sup> 23        | 24.1 <sup>‡</sup> <i>14</i>  | 3769.48 1+                                                                        |        |              |                             |

12

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$    | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}{}^{\dagger}$ | $\mathbf{E}_f$    | ${\rm J}_f^\pi$         | Mult.b | $\delta^b$ |
|--------------|-------------------------|---------------------------------|--------------------------|-------------------|-------------------------|--------|------------|
| 8639.4       | $(1^+ \text{ to } 4^+)$ | 3026                            | 25 13                    | 5614.04           | 2+                      |        |            |
|              | ,                       | 5140                            | 100 25                   | 3498.49           | 2+                      |        |            |
|              |                         | 6403                            | 100 25                   | 2235.322          | 2+                      |        |            |
| 8672.2       | $(1^-,2^+)$             | 3185                            | 100 20                   | 5487.50           | 3-                      |        |            |
|              |                         | 4902                            | 53 14                    | 3769.48           | 1+                      |        |            |
|              |                         | 5173                            | 87 <i>17</i>             | 3498.49           | 2+                      |        |            |
|              |                         | 6436                            | 77 17                    | 2235.322          | 2+                      |        |            |
| 0.600.7      | 2+                      | 8671                            | 20 10                    | 0                 | 0+                      |        |            |
| 8683.7       | 2+                      | 1460                            | 11 4                     | 7223.2            | 4+                      |        |            |
|              |                         | 1604<br>2733                    | 21 8<br>54 <i>15</i>     | 7079.4<br>5950.73 | $(1^+, 2^-, 3^+)$ $4^+$ |        |            |
|              |                         | 3070                            | 21 8                     | 5614.04           | 2+                      |        |            |
|              |                         | 3403                            | 100 18                   | 5279.37           | 4 <sup>+</sup>          |        |            |
|              |                         | 3453                            | 50 11                    | 5231.38           | 3 <sup>+</sup>          |        |            |
|              |                         | 3852                            | 43 11                    | 4830.85           | 3+                      |        |            |
|              |                         | 3874                            | 57 15                    | 4810.31           | 2+                      |        |            |
| 8734         | $(0^+ \text{ to } 3^+)$ | 5235                            | 100 12                   | 3498.49           | 2+                      |        |            |
|              |                         | 6498                            | 47 12                    | 2235.322          | 2+                      |        |            |
| 8799         | $(1,2^+)$               | 5029                            | 100 30                   | 3769.48           | 1+                      |        |            |
|              |                         | 8797                            | 100 <i>30</i>            | 0                 | 0+                      |        |            |
| 8887         | $(0^+ \text{ to } 4^+)$ | 6651                            | 100                      | 2235.322          | 2+                      |        |            |
| 8898.10      | $(1^{-})$               | 1390.3‡ 5                       | 3.7‡ 11                  | 7507.84           | $(2^{-})$               |        |            |
|              |                         | 2154.3 6                        | 7.1 <sup>‡</sup> 14      | 6744.06           | 1-                      |        |            |
|              |                         | 2256.7‡ 4                       | 12.8 <sup>‡</sup> 20     | 6641.21           | 2-                      |        |            |
|              |                         | 3283.8 <sup>‡</sup> 3           | 22 <sup>‡</sup> 3        | 5614.04           | 2+                      |        |            |
|              |                         | 4087.6 <sup>‡</sup> 5           | 20.5 <sup>‡</sup> 20     | 4810.31           | 2+                      |        |            |
|              |                         | 5128.18 <sup>‡</sup> <i>17</i>  | 100‡ 4                   | 3769.48           | 1+                      |        |            |
|              |                         | 5398.8 <sup>‡</sup> 4           | 25 <sup>‡</sup> 3        | 3498.49           | 2+                      |        |            |
|              |                         | 6662.00 <sup>‡</sup> 25         | 64 <sup>‡</sup> 3        | 2235.322          | 2+                      |        |            |
|              |                         | 8896.7 <sup>‡</sup> <i>3</i>    | 31 <sup>‡</sup> <i>3</i> | 0                 | $0_{+}$                 |        |            |
| 8939         | $(2^{+})$               | 5169                            | 100 40                   | 3769.48           | 1+                      |        |            |
|              |                         | 6703                            | 100 40                   | 2235.322          | 2+                      |        |            |
| 8953.4       | $(1,2^+)$               | 6717.3 <sup>‡</sup> 8           | 92 <sup>‡</sup> 6        | 2235.322          | 2+                      |        |            |
|              |                         | 8951.9 <sup>‡</sup> <i>5</i>    | 100 <sup>‡</sup> 6       | 0                 | $0_{+}$                 |        |            |
| 8959.4       | $(5^{-})$               | 766                             | 11 4                     | 8194.0            | 5-                      | D+Q    | -0.04~3    |
|              |                         | 1152                            | 5.6 19                   | 7809.7            | 4+                      |        |            |
|              |                         | 1349                            | 30 4                     | 7612.4            | $(4^{-})$               | D+Q    | +0.22 5    |
|              |                         | 1915.6 <sup>@</sup> 7           | 93 12                    | 7043.21           | 5-                      | D+Q    | -0.03 13   |
|              |                         |                                 |                          |                   |                         |        |            |

|               | _                       | +                                                | +                      |                    | _                                | - h    | h              |
|---------------|-------------------------|--------------------------------------------------|------------------------|--------------------|----------------------------------|--------|----------------|
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}^{\dagger}$                           | $I_{\gamma}^{\dagger}$ | $E_f$              | $\mathbf{J}_f^{\pi}$             | Mult.b | $\delta^{b}$   |
| 8959.4        | $(5^{-})$               | 1961                                             | 19 4                   | 6998.90            | 5 <sup>+</sup>                   |        |                |
|               |                         | 2459                                             | 52 8                   | 6503.41            | 4-                               | D+Q    | -0.13 <i>3</i> |
|               |                         | 3012                                             | 15 4                   | 5950.73            | 4+                               |        |                |
|               |                         | 3475                                             | 48 8                   | 5487.50            | 3-                               |        |                |
|               |                         | 3682                                             | 100 12                 | 5279.37            | 4+                               | D+Q    | -0.02~3        |
| 8979          | $(1,2^+)$               | 6743                                             | 100 40                 | 2235.322           | 2+                               |        |                |
|               |                         | 8978                                             | 100 40                 | 0                  | 0+                               |        |                |
| 9034.8        | $(0^+ \text{ to } 3^+)$ | 5265                                             | 100 20                 | 3769.48            | 1+                               |        |                |
|               |                         | 5536                                             | 60 16                  | 3498.49            | 2+                               |        |                |
|               |                         | 9033                                             | 40 12                  | 0                  | 0+                               |        |                |
| 9044.8        | (3,4)                   | 2541                                             | 48 17                  | 6503.41            | 4-                               |        |                |
|               |                         | 3094                                             | 65 13                  | 5950.73            | 4+                               |        |                |
|               |                         | 3557                                             | 100 17                 | 5487.50            | 3-                               |        |                |
|               |                         | 3814                                             | 29 10                  | 5231.38            | 3 <sup>+</sup>                   |        |                |
| 0102.72       | (1- 2-)                 | 4213                                             | 81 <i>17</i>           | 4830.85            | 3 <sup>+</sup>                   |        |                |
| 9103.73       | $(1^-,2^-)$             | 998.9 <i>3</i>                                   | 7.2 8                  | 8104.8             | $(2^+,3^-)$                      |        |                |
| 0106.76       | -                       | 2359.57 <i>4</i><br>914.0 <sup>@</sup> <i>13</i> | 100.0 8                | 6744.06            | 1-                               |        |                |
| 9106.76       | 6-                      | 914.0 13                                         | 2.6 6                  | 8194.0             | 5-                               |        |                |
| 0120.0        | (4+ 5+)                 | 2063.4 <sup>@</sup> 1                            | 100.0 6                | 7043.21            | 5-                               | D+Q    | +0.35 4        |
| 9129.8        | $(4^+,5^+)$             | 1907                                             | 43 9                   | 7223.2             | 4 <sup>+</sup><br>5 <sup>+</sup> |        |                |
|               |                         | 2129                                             | 100 11                 | 6998.90            | 5 ·<br>4+                        |        |                |
|               |                         | 3180<br>4299                                     | 62 <i>11</i><br>65 9   | 5950.73<br>4830.85 | 3 <sup>+</sup>                   |        |                |
| 9166.4        | $(1^+ \text{ to } 3^+)$ | 2301                                             | 40 12                  | 4830.83<br>6865.2  | 3 <sup>+</sup>                   |        |                |
| 9100.4        | (1 10 3 )               | 2629                                             | 40 12                  | 6537.5             | 3<br>2 <sup>+</sup>              |        |                |
|               |                         | 4335                                             | 100 20                 | 4830.85            | 3 <sup>+</sup>                   |        |                |
|               |                         | 4357                                             | 40 20                  | 4810.31            | 2 <sup>+</sup>                   |        |                |
|               |                         | 5396                                             | 80 20                  | 3769.48            | 1+                               |        |                |
|               |                         | 5667                                             | 20 12                  | 3498.49            | 2+                               |        |                |
|               |                         | 6930                                             | 80 24                  | 2235.322           | 2 <sup>+</sup>                   |        |                |
| 9255.2        | $(2^+,3^+)$             | 3641                                             | 24 6                   | 5614.04            | 2+                               |        |                |
|               | (= ,= )                 | 4024                                             | 48 6                   | 5231.38            | 3 <sup>+</sup>                   |        |                |
|               |                         | 4445                                             | 13 4                   | 4810.31            | 2+                               |        |                |
|               |                         | 7018                                             | 100 10                 | 2235.322           | 2+                               |        |                |
| 9308.11       | $(1 \text{ to } 3^+)$   | 2667.0 <sup>‡</sup> 6                            | 16 <sup>‡</sup> 4      | 6641.21            | 2-                               |        |                |
|               |                         | 5538.05 <sup>‡</sup> 24                          | 100‡ 7                 | 3769.48            | 1+                               |        |                |
|               |                         | 7071.8 <sup>‡</sup> 7                            | 19 <sup>‡</sup> 4      | 2235.322           | 2+                               |        |                |
| 9349.3        | $(4^{-})$               | 753                                              | 13 5                   | 8595.9             | (4-)                             |        |                |
|               | ` /                     | 1736                                             | 63 25                  | 7612.4             | $(4^{-})$                        |        |                |
|               |                         | 2270                                             | 10 5                   | 7079.4             | $(1^+, 2^-, 3^+)$                |        |                |
|               |                         |                                                  |                        |                    |                                  |        |                |

# $\gamma$ (30Si) (continued)

Adopted Levels, Gammas (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$    | ${\rm E_{\gamma}}^{\dagger}$ | ${\rm I}_{\gamma}{}^{\dagger}$ | $E_f$    | ${\rm J}_f^\pi$                  | Mult.b | $\delta^{m{b}}$ |
|---------------|-------------------------|------------------------------|--------------------------------|----------|----------------------------------|--------|-----------------|
| 9349.3        | (4-)                    | 2846                         | 40 15                          | 6503.41  | 4-                               |        |                 |
| 7517.5        | ( )                     | 3862                         | 25 8                           | 5487.50  | 3-                               |        |                 |
|               |                         | 4118                         | 100 25                         | 5231.38  | 3 <sup>+</sup>                   |        |                 |
| 9362          | $(1,2^+)$               | 9360                         | 100                            | 0        | 0+                               |        |                 |
| 9367.2        | 6+                      | 2368.0 <sup>@</sup> 4        | 83 10                          | 6998.90  | 5 <sup>+</sup>                   | D+Q    | +0.24 3         |
|               |                         | 3418.8 <sup>@</sup> 14       | 55 8                           | 5950.73  | 4+                               | Q      |                 |
|               |                         | 4088.7 <sup>@</sup> 20       | 100 12                         | 5279.37  | 4 <sup>+</sup>                   | Q      |                 |
| 9405.7        | $(1^+ \text{ to } 4^+)$ | 4174                         | 66 11                          | 5231.38  | 3 <sup>+</sup>                   | ×      |                 |
| 7105.7        | (1 10 1 )               | 4574                         | 100 15                         | 4830.85  | 3+                               |        |                 |
|               |                         | 4596                         | 21 9                           | 4810.31  | 2+                               |        |                 |
|               |                         | 5906                         | 26 7                           | 3498.49  | 2+                               |        |                 |
| 9439          | $(1^{-})$               | 5669                         | 100 40                         | 3769.48  | 1+                               |        |                 |
|               | (- )                    | 9438                         | 100 40                         | 0        | 0+                               |        |                 |
| 9474.1        | $(2^+ \text{ to } 4^+)$ | 2395                         | 50 20                          | 7079.4   | $(1^+, 2^-, 3^+)$                |        |                 |
|               | ,                       | 4194                         | 100 20                         | 5279.37  | 4+                               |        |                 |
|               |                         | 7238                         | 50 10                          | 2235.322 | 2+                               |        |                 |
| 9505.2        | $(5^{-})$               | 2463                         | 6 3                            | 7043.21  | 5-                               |        |                 |
|               |                         | 2505                         | 17 <i>3</i>                    | 6998.90  | 5 <sup>+</sup>                   | D+Q    | -0.00~3         |
|               |                         | 3003                         | 6 3                            | 6503.41  | 4-                               |        |                 |
|               |                         | 4019                         | 14 5                           | 5487.50  | 3-                               |        |                 |
|               |                         | 4226                         | 100 8                          | 5279.37  | 4+                               | D+Q    | -0.007          |
| 9575          | $(1^+ \text{ to } 3)$   | 4744                         | 54 16                          | 4830.85  | 3 <sup>+</sup>                   |        |                 |
|               |                         | 6076                         | 100 16                         | 3498.49  | 2+                               |        |                 |
| 9597.3        | $(0^+ \text{ to } 4^+)$ | 4766.7 <sup>‡</sup> 7        | 19 <sup>‡</sup> 5              | 4830.85  | 3 <sup>+</sup>                   |        |                 |
|               |                         | 4786.5 <sup>‡</sup> 8        | 16 <sup>‡</sup> 5              | 4810.31  | 2+                               |        |                 |
|               |                         | 6098.0 <sup>‡</sup> 3        | 100‡8                          | 3498.49  | 2+                               |        |                 |
|               |                         | 7360                         | 43 11                          | 2235.322 | 2+                               |        |                 |
| 9604.5        | $(2 \text{ to } 4^+)$   | 4117                         | 43 12                          | 5487.50  | 3-                               |        |                 |
|               |                         | 4373                         | 100 18                         | 5231.38  | 3 <sup>+</sup>                   |        |                 |
|               |                         | 6105                         | 71 15                          | 3498.49  | 2+                               |        |                 |
|               |                         | 7368                         | 71 15                          | 2235.322 | 2+                               |        |                 |
| 9619.74       | $(1^{-})$               | 9618.08 <i>13</i>            | 100                            | 0        | $0_{+}$                          |        |                 |
| 9647.3        | $(3^{-},4)$             | 2604                         | 38 8                           | 7043.21  | 5-                               |        |                 |
|               |                         | 4160                         | 29 6                           | 5487.50  | 3-                               |        |                 |
|               |                         | 4367                         | 25 8                           | 5279.37  | 4+                               |        |                 |
|               |                         | 4816                         | 100 12                         | 4830.85  | 3+                               |        |                 |
| 9688          | $(0 \text{ to } 3^{-})$ | 2944                         | 100                            | 6744.06  | 1-                               |        |                 |
| 9725          | $(0^+ \text{ to } 4^+)$ | 6226                         | 100 13                         | 3498.49  | 2+                               |        |                 |
| 0760.5        | $(2^+ \text{ to } 4^+)$ | 7489                         | 54 13                          | 2235.322 | 2 <sup>+</sup><br>4 <sup>+</sup> |        |                 |
| 9760.5        | (2 10 4)                | 3810                         | 100 14                         | 5950.73  | 4                                |        |                 |

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$    | ${\rm E}_{\gamma}{}^{\dagger}$ | $_{I_{\gamma}}\dagger$ | $E_f$    | $\mathbf{J}^\pi_f$ | Mult.b | $\delta^{m{b}}$ | Comments                                           |
|---------------|-------------------------|--------------------------------|------------------------|----------|--------------------|--------|-----------------|----------------------------------------------------|
| 9760.5        | $(2^+ \text{ to } 4^+)$ | 4929                           | 78 12                  | 4830.85  | 3 <sup>+</sup>     |        |                 |                                                    |
|               | ,                       | 6261                           | 22 7                   | 3498.49  | 2+                 |        |                 |                                                    |
|               |                         | 7524                           | 22 7                   | 2235.322 |                    |        |                 |                                                    |
| 9768          | $(1,2^+)$               | 7532                           | 67 <i>17</i>           | 2235.322 |                    |        |                 |                                                    |
|               |                         | 9766                           | 100 <i>17</i>          | 0        | $0^{+}$            |        |                 |                                                    |
| 9773.7        | 6-                      | 1578.7 <sup>@</sup> 6          | 79 <i>6</i>            | 8194.0   | 5-                 | D+Q    | +0.26 5         |                                                    |
|               |                         | 2730.5 <sup>@</sup> 8          | 100 9                  | 7043.21  | 5-                 | D+Q    | +0.10 3         |                                                    |
|               |                         | 2776.1 <sup>@</sup> 16         | 30 6                   | 6998.90  | 5+                 | D+Q    | -0.00 5         |                                                    |
|               |                         | 3271.6 <sup>@</sup> 10         | 94 9                   | 6503.41  | 4-                 | Q      |                 | $I_{\gamma}$ : Strongest in ( $^{18}O,2n\gamma$ ). |
| 9792.3        | (1-)                    | 6004.4 <sup>‡</sup> 9          | 7 <sup>‡</sup> 3       | 3787.72  | $0^{+}$            |        |                 |                                                    |
|               |                         | 9790.5 <sup>‡</sup> 3          | 100 <sup>‡</sup> 5     | 0        | $0^{+}$            |        |                 |                                                    |
| 9816          | $(0^+ \text{ to } 4^+)$ | 6317                           | 100                    | 3498.49  | 2+                 |        |                 |                                                    |
| 9881.8        | (3,4)                   | 3378                           | 51 9                   | 6503.41  | 4-                 |        |                 |                                                    |
|               |                         | 3931                           | 89 11                  | 5950.73  | 4+                 |        |                 |                                                    |
|               |                         | 4394                           | 30 6                   | 5487.50  | 3-                 |        |                 |                                                    |
|               |                         | 4650                           | 100 11                 | 5231.38  | 3+                 |        |                 |                                                    |
| 9896.6        | $(0^+ \text{ to } 4^+)$ | 2981                           | 83 24                  | 6914.79  | $(2^{+})$          |        |                 |                                                    |
|               |                         | 5087                           | 67 <i>17</i>           | 4810.31  | 2+                 |        |                 |                                                    |
|               |                         | 6397                           | 100 20                 | 3498.49  | 2+                 |        |                 |                                                    |
|               |                         | 7660                           | 83 17                  | 2235.322 | 2+                 |        |                 |                                                    |
| 9953.9        | (4,5)                   | 1417                           | 13 4                   | 8536.4   | $(3^+,4^+)$        |        |                 |                                                    |
|               |                         | 2144                           | 100 8                  | 7809.7   | 4+                 |        |                 |                                                    |
|               |                         | 2953                           | 25 4                   | 6998.90  | 5+                 |        |                 |                                                    |
|               |                         | 3089                           | 21 4                   | 6865.2   | 3+                 |        |                 |                                                    |
|               |                         | 4004                           | 11.5 20                | 5950.73  | 4+                 |        |                 |                                                    |
|               |                         | 4674                           | 13 4                   | 5279.37  | 4+                 |        |                 |                                                    |
|               |                         | 4723                           | 7.7 20                 | 5231.38  | 3+                 |        |                 |                                                    |
| 9958          | $(1,2^+)$               | 7721                           | 100 11                 | 2235.322 | 2+                 |        |                 |                                                    |
|               |                         | 9956                           | 54 11                  | 0        | $0_{+}$            |        |                 |                                                    |
| 10026.6       | $(2 \text{ to } 4^+)$   | 4539                           | 30 6                   | 5487.50  | 3-                 |        |                 |                                                    |
|               |                         | 4795                           | 70 12                  | 5231.38  | 3+                 |        |                 |                                                    |
|               |                         | 6527                           | 100 14                 | 3498.49  | 2+                 |        |                 |                                                    |
| 10056.4       | 4+                      | 3553                           | 50 10                  | 6503.41  | 4-                 |        |                 |                                                    |
|               |                         | 4106                           | 100 20                 | 5950.73  | 4+                 |        |                 |                                                    |
|               |                         | 4776                           | 100 20                 | 5279.37  | 4+                 |        |                 |                                                    |
|               |                         | 5225                           | 83 17                  | 4830.85  | 3+                 |        |                 |                                                    |
| 10078.7       | $(1^+ \text{ to } 4^+)$ | 3163                           | 60 10                  | 6914.79  | $(2^{+})$          |        |                 |                                                    |
|               |                         | 5247                           | 40 8                   | 4830.85  | 3 <sup>+</sup>     |        |                 |                                                    |
|               |                         | 5269                           | 100 12                 | 4810.31  | 2+                 |        |                 |                                                    |
| 10115.8       | $(1^- \text{ to } 4^+)$ | 4165                           | 75 <i>13</i>           | 5950.73  | 4 <sup>+</sup>     |        |                 |                                                    |

# $\gamma$ (30Si) (continued)

| $E_i$ (level) | $\mathtt{J}_i^{\pi}$                  | ${\rm E}_{\gamma}{}^{\dagger}$ | ${\rm I}_{\gamma}{}^{\dagger}$ | $E_f$              | $\mathbf{J}_f^{\pi}$             | Mult.b | $\delta^{m{b}}$ |
|---------------|---------------------------------------|--------------------------------|--------------------------------|--------------------|----------------------------------|--------|-----------------|
| 10115.8       | $(1^- \text{ to } 4^+)$               | 4628                           | 100 15                         | 5487.50            | 3-                               |        |                 |
|               | ,                                     | 7879                           | 75 <i>13</i>                   | 2235.322           | 2+                               |        |                 |
| 10183.8       | $(0^+ \text{ to } 3^+)$               | 5374                           | 56 12                          | 4810.31            | 2+                               |        |                 |
|               | · · · · · · · · · · · · · · · · · · · | 6413                           | 100 18                         | 3769.48            | 1+                               |        |                 |
|               |                                       | 7947                           | 67 14                          | 2235.322           | 2+                               |        |                 |
| 10186.7       | $(5^{-})$                             | 1991                           | 15 8                           | 8194.0             | 5-                               |        |                 |
|               |                                       | 2377                           | 50 10                          | 7809.7             | 4+                               | D+Q    | -0.02 8         |
|               |                                       | 3144                           | 100 15                         | 7043.21            | 5-                               | D+Q    | -0.26 6         |
|               |                                       | 3186                           | 23 5                           | 6998.90            | 5 <sup>+</sup>                   |        |                 |
|               |                                       | 3684                           | 63 10                          | 6503.41            | 4-                               | D+Q    | -0.105          |
| 10202.3       | $(1^{-})$                             | 6431.7 9                       | 60 14                          | 3769.48            | 1+                               |        |                 |
|               |                                       | 7965.8 9                       | 25 8                           | 2235.322           | 2+                               |        |                 |
|               |                                       | 10200.6 6                      | 100 8                          | 0                  | 0+                               |        |                 |
| 10219         | $(0^+ \text{ to } 4^+)$               | 5408                           | 100                            | 4810.31            | 2+                               |        |                 |
| 10275.5       | $(0^+ \text{ to } 4^+)$               | 5465                           | 20 4                           | 4810.31            | 2+                               |        |                 |
|               |                                       | 6487.0 <sup>‡</sup> 7          | ‡                              | 3787.72            | $0_{+}$                          |        |                 |
|               |                                       | 6776                           | 13 4                           | 3498.49            | 2+                               |        |                 |
|               |                                       | 8040                           | 100 5                          | 2235.322           | 2+                               |        |                 |
| 10286.7       | $(4^+,5^+)$                           | 3286                           | 100 8                          | 6998.90            | 5+                               |        |                 |
|               |                                       | 4337                           | 30 4                           | 5950.73            | 4+                               |        |                 |
|               |                                       | 5007                           | 70 8                           | 5279.37            | 4+                               |        |                 |
| 10304.4       | (3 <sup>-</sup> )                     | 2691                           | 100 18                         | 7612.4             | (4-)                             |        |                 |
|               |                                       | 3801                           | 83 14                          | 6503.41            | 4-                               |        |                 |
|               |                                       | 4691                           | 52 11                          | 5614.04            | 2+                               |        |                 |
|               |                                       | 5024                           | 59 11                          | 5279.37            | 4 <sup>+</sup>                   |        |                 |
| 10247.0       | (2± 4)                                | 6805                           | 52 11                          | 3498.49            | 2 <sup>+</sup><br>5 <sup>+</sup> |        |                 |
| 10347.8       | $(3^+,4)$                             | 3347                           | 100 <i>14</i> 30 <i>6</i>      | 6998.90            | 3-                               |        |                 |
|               |                                       | 4861<br>5068                   | 40 <i>10</i>                   | 5487.50<br>5279.37 | 3<br>4 <sup>+</sup>              |        |                 |
|               |                                       | 5517                           | 30 <i>6</i>                    | 4830.85            | 3 <sup>+</sup>                   |        |                 |
| 10354.9       | $(0^+ \text{ to } 4^+)$               | 5545                           | 100 20                         | 4810.31            | 2 <sup>+</sup>                   |        |                 |
| 10334.9       | (0 10 4 )                             | 6855                           | 75 15                          | 3498.49            | 2 <sup>+</sup>                   |        |                 |
|               |                                       | 8118                           | 75 <i>15</i>                   | 2235.322           | 2+                               |        |                 |
| 10396         | $(3,5^+)$                             | 5116                           | 100 8                          | 5279.37            | 4 <sup>+</sup>                   |        |                 |
| 10370         | (3,3 )                                | 5165                           | 25 8                           | 5231.38            | 3+                               |        |                 |
| 10420         | $(2^+ \text{ to } 6^+)$               | 4469                           | 100                            | 5950.73            | 4 <sup>+</sup>                   |        |                 |
| 10449         | $(0 \text{ to } 3^+)$                 | 6679                           | 67 17                          | 3769.48            | i+                               |        |                 |
|               | ( )                                   | 8213                           | 100 17                         | 2235.322           | 2+                               |        |                 |
| 10464.1       | $(3^+,4)$                             | 3463                           | 29 15                          | 6998.90            | 5 <sup>+</sup>                   |        |                 |
|               | . , ,                                 | 4514                           | 100 15                         | 5950.73            | 4+                               |        |                 |
|               |                                       | 5233                           | 71 15                          | 5231.38            | 3 <sup>+</sup>                   |        |                 |
|               |                                       |                                |                                |                    |                                  |        |                 |

17

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$    | $\mathrm{E}_{\gamma}^{\dagger}$                 | ${\rm I}_{\gamma}{}^{\dagger}$  | $\mathrm{E}_f$     | ${\rm J}_f^\pi$                  | Mult.b | $\delta^{m{b}}$ | $\alpha^{c}$ | Comments                                                                                                                                                                                               |
|--------------|-------------------------|-------------------------------------------------|---------------------------------|--------------------|----------------------------------|--------|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10464.1      | (3+,4)                  | 5633                                            | 86 18                           | 4830.85            | 3+                               |        |                 |              |                                                                                                                                                                                                        |
| 10472        | $(1,2^+)$               | 6972<br>10470                                   | 100 <i>30</i><br>100 <i>30</i>  | 3498.49<br>0       | 2 <sup>+</sup><br>0 <sup>+</sup> |        |                 |              |                                                                                                                                                                                                        |
| 10507.9      | $(0^+ \text{ to } 3^+)$ | 5698                                            | 36 9                            | 4810.31            | 2+                               |        |                 |              |                                                                                                                                                                                                        |
|              |                         | 6737                                            | 45 11                           | 3769.48            | 1+                               |        |                 |              |                                                                                                                                                                                                        |
| 10554.6      | (6-)                    | 8271<br>1053                                    | 100 <i>15</i><br>30.2 <i>24</i> | 2235.322<br>9505.2 | 2 <sup>+</sup> (5 <sup>-</sup> ) |        |                 |              |                                                                                                                                                                                                        |
| 10334.0      | (0 )                    | 1447.9 <sup>@</sup> 5                           | 44 5                            | 9106.76            | 6-                               | D+Q    | -0.10 5         |              |                                                                                                                                                                                                        |
|              |                         | 1597                                            | 7.0 24                          | 8959.4             | $(5^{-})$                        | 2.4    | 0.10 5          |              |                                                                                                                                                                                                        |
|              |                         | 3511.0 <sup>@</sup> 3                           | 100 10                          | 7043.21            | 5-                               | D+Q    | +0.27 2         |              |                                                                                                                                                                                                        |
|              |                         | 3559<br>4057                                    | 42 <i>5</i><br>9.3 <i>24</i>    | 6998.90<br>6503.41 | 5 <sup>+</sup><br>4 <sup>-</sup> | D+Q    | -0.04 8         |              |                                                                                                                                                                                                        |
| 10581        | $(0 \text{ to } 3^+)$   | 6811                                            | 100                             | 3769.48            | 1 <sup>+</sup>                   |        |                 |              |                                                                                                                                                                                                        |
| 10622        | $(0 \text{ to } 4^+)$   | 7123                                            | 100                             | 3498.49            | 2+                               |        |                 |              |                                                                                                                                                                                                        |
| 10668.2      | $(3^-,4^-,5)$           | 2858<br>3625                                    | 7 <i>3</i><br>14 <i>5</i>       | 7809.7<br>7043.21  | 4 <sup>+</sup><br>5 <sup>-</sup> |        |                 |              |                                                                                                                                                                                                        |
|              |                         | 4165                                            | 100 8                           | 6503.41            | 4-                               |        |                 |              |                                                                                                                                                                                                        |
|              |                         | 5388                                            | 21 5                            | 5279.37            | 4+                               |        |                 |              |                                                                                                                                                                                                        |
| 10675.4      | (6 <sup>+</sup> )       | 3631.4 <sup>@</sup> 12                          | 100 4                           | 7043.21            | 5-                               | (E1)   |                 | 0.001538 22  | B(E1)(W.u.)=0.0010 7<br>$\alpha$ (K)=1.90×10 <sup>-6</sup> 3; $\alpha$ (L)=1.355×10 <sup>-7</sup> 19;<br>$\alpha$ (M)=8.93×10 <sup>-9</sup> 13; $\alpha$ (N+)=0.001536 2<br>$\alpha$ (IPF)=0.001536 22 |
|              |                         | 4175                                            | 12.5 25                         | 6503.41            | 4-                               |        |                 |              | u(HT) 0.001550 22                                                                                                                                                                                      |
| 10710 22     | (7-)                    | 5398                                            | 12.5 25                         | 5279.37            | 4+                               |        |                 |              |                                                                                                                                                                                                        |
| 10719.33     | (7-)                    | 1353.2 <sup>a</sup> 13<br>1612.5 <sup>@</sup> 1 | 7.2 <sup>a</sup> 7<br>100 6     | 9367.2<br>9106.76  | 6 <sup>+</sup>                   | D+0    | .0.27.2         |              |                                                                                                                                                                                                        |
|              |                         | 3676.7 <sup>@</sup> 2                           | 92 6                            | 7043.21            | 5-                               | D+Q    | +0.27 3         |              | $I_{\gamma}$ : Strongest in ( <sup>18</sup> O,2n $\gamma$ ).                                                                                                                                           |
| 10731.4      | $(3^-,4^-,5^-)$         | 2535                                            | 20 10                           | 8194.0             | 5-                               |        |                 |              | 17. Strongest III ( 0,2117).                                                                                                                                                                           |
|              |                         | 2628                                            | 20 6                            | 8104.8             | $(2^+,3^-)$                      |        |                 |              |                                                                                                                                                                                                        |
|              |                         | 4228<br>4781                                    | 100 <i>10</i><br>30 <i>6</i>    | 6503.41<br>5950.73 | 4 <sup>-</sup><br>4 <sup>+</sup> |        |                 |              |                                                                                                                                                                                                        |
|              |                         | 5451                                            | 30 6                            | 5279.37            | 4+                               |        |                 |              |                                                                                                                                                                                                        |
| 10794.5      | (2 to 4)                | 3929                                            | 100 25                          | 6865.2             | 3 <sup>+</sup>                   |        |                 |              |                                                                                                                                                                                                        |
|              |                         | 5306<br>5563                                    | 50 <i>13</i><br>100 <i>25</i>   | 5487.50<br>5231.38 | 3 <sup>-</sup><br>3 <sup>+</sup> |        |                 |              |                                                                                                                                                                                                        |
| 10805        | $(0^+ \text{ to } 4^+)$ | 8568                                            | 100                             | 2235.322           | 2+                               |        |                 |              |                                                                                                                                                                                                        |
| 10821.6      | $(4,5^+,6^+)$           | 2626                                            | 22 7                            | 8194.0             | 5 <sup>-</sup>                   |        |                 |              |                                                                                                                                                                                                        |
|              |                         | 3599<br>3821                                    | 11 <i>5</i><br>11 <i>5</i>      | 7223.2<br>6998.90  | 4 <sup>+</sup><br>5 <sup>+</sup> |        |                 |              |                                                                                                                                                                                                        |
|              |                         |                                                 |                                 |                    |                                  |        |                 |              |                                                                                                                                                                                                        |

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ |
|---------------|-------------------------|------------------------|------------------------|----------------|----------------------|
| 10821.6       | $(4,5^+,6^+)$           | 5542                   | 100 20                 | 5279.37        | 4+                   |
| 10835         | $(1^+ \text{ to } 5^+)$ | 5603                   | 100                    | 5231.38        | 3 <sup>+</sup>       |
| 10865.1       | $(3^{-} \text{ to } 5)$ | 2669                   | 18 <i>6</i>            | 8194.0         | 5-                   |
|               |                         | 3822                   | 18 4                   | 7043.21        | 5-                   |
|               |                         | 4362                   | 27 6                   | 6503.41        | 4-                   |
|               |                         | 4915                   | 18 4                   | 5950.73        | 4+                   |
|               |                         | 5585                   | 100 9                  | 5279.37        | 4+                   |
| 10975         | $(0^+ \text{ to } 4^+)$ | 8738                   | 100                    | 2235.322       | 2+                   |
| 10990.0       | (3  to  5)              | 2453                   | 100 25                 | 8536.4         | $(3^+,4^+)$          |
|               |                         | 3989                   | 100 50                 | 6998.90        | 5 <sup>+</sup>       |
|               |                         | 4487                   | 75 <i>15</i>           | 6503.41        | 4-                   |
|               |                         | 5040                   | 100 25                 | 5950.73        | 4+                   |
|               |                         | 5710                   | 75 <i>15</i>           | 5279.37        | 4+                   |
|               |                         | 6159                   | 50 10                  | 4830.85        | 3+                   |
| 11015         | $(2^+ \text{ to } 4^+)$ | 5064                   | 100 34                 | 5950.73        | 4+                   |
|               |                         | 5401                   | 67 <i>34</i>           | 5614.04        | 2+                   |
| 11037.5       | $(3^- \text{ to } 6^+)$ | 3994                   | 100 35                 | 7043.21        | 5-                   |
|               |                         | 5087                   | 75 25                  | 5950.73        | 4+                   |
|               |                         | 5757                   | 75 25                  | 5279.37        | 4+                   |
| 11073         | (3  to  5)              | 5122                   | 100                    | 5950.73        | 4+                   |
| 11082.7       | $(4^- \text{ to } 6^-)$ | 1972                   | 17 5                   | 9106.76        | 6-                   |
|               |                         | 2487                   | 25 5                   | 8595.9         | $(4^{-})$            |
|               |                         | 3470                   | 17 9                   | 7612.4         | $(4^{-})$            |
|               |                         | 4040.0 <sup>@</sup> 22 | 100 10                 | 7043.21        | 5-                   |
|               |                         | 4580                   | 8 4                    | 6503.41        | 4-                   |
| 11090         | (3 to 5)                | 5810                   | 100                    | 5279.37        | 4+                   |
| 11205         | $(0^+ \text{ to } 4^+)$ | 7705                   | 54 16                  | 3498.49        | 2+                   |
|               |                         | 8968                   | 100 16                 | 2235.322       | 2+                   |
| 11209.5       | $(4,5^+)$               | 1021                   | 43 15                  | 10186.7        | $(5^{-})$            |
|               |                         | 3400                   | 43 15                  | 7809.7         | 4+                   |
|               |                         | 5259                   | 100 29                 | 5950.73        | 4+                   |
|               |                         | 5978                   | 100 29                 | 5231.38        | 3+                   |
| 11248.2       |                         | 1472                   | 17 7                   | 9773.7         | 6-                   |
|               |                         | 2139                   | 10 7                   | 9106.76        | 6-                   |
|               |                         | 2286                   | 23 7                   | 8959.4         | $(5^{-})$            |
|               |                         | 2917                   | 13 7                   | 8332.7         |                      |
|               |                         | 3053                   | 10 7                   | 8194.0         | 5-                   |
|               |                         | 3637                   | 67 7                   | 7612.4         | (4 <sup>-</sup> )    |
|               |                         | 4206                   | 17 7                   | 7043.21        | 5-                   |
|               |                         | 4249                   | 100 17                 | 6998.90        | 5 <sup>+</sup>       |
|               |                         | 4746                   | 17 <i>7</i>            | 6503.41        | 4-                   |

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ | Comments                                                |
|--------------|-------------------------|------------------------|------------------------|----------------|----------------------|---------------------------------------------------------|
| 11248.2      |                         | 5762                   | 33 10                  | 5487.50        | 3-                   |                                                         |
|              |                         | 5969                   | 27 7                   | 5279.37        | 4+                   |                                                         |
| 11268        | $(2^+ \text{ to } 5^+)$ | 5988                   | 54 12                  | 5279.37        | 4+                   |                                                         |
|              |                         | 6437                   | 100 12                 | 4830.85        | 3+                   |                                                         |
| 11321.8      | $(2^+ \text{ to } 5^+)$ | 3512                   | 88 15                  | 7809.7         | 4+                   |                                                         |
|              |                         | 4097                   | 100 20                 | 7223.2         | 4+                   |                                                         |
|              |                         | 6091                   | 63 10                  | 5231.38        | 3 <sup>+</sup>       |                                                         |
| 11348        | $(2^+ \text{ to } 6^+)$ | 6068                   | 100                    | 5279.37        | 4+                   |                                                         |
| 11382        | $(0^+ \text{ to } 4^+)$ | 9145                   | 100                    | 2235.322       |                      |                                                         |
| 11416.3      | $(6^+,4^+)$             | 4192                   | 21 4                   | 7223.2         | 4+                   |                                                         |
|              |                         | 4416                   | 28 4                   | 6998.90        | 5 <sup>+</sup>       |                                                         |
|              |                         | 5466                   | 100 9                  | 5950.73        | 4+                   |                                                         |
|              |                         | 6137                   | 26 4                   | 5279.37        | 4+                   |                                                         |
| 11473.6      | $(6^-,5^-)$             | 916                    | 36 <i>6</i>            | 10554.6        | $(6^{-})$            |                                                         |
|              |                         | 1700                   | 39 9                   | 9773.7         | 6-                   |                                                         |
|              |                         | 2366                   | 67 15                  | 9106.76        | 6-                   |                                                         |
|              |                         | 4432                   | 100 12                 | 7043.21        | 5-                   |                                                         |
|              |                         | 4476                   | 61 9                   | 6998.90        | 5 <sup>+</sup>       |                                                         |
| 11492.0      | $(3^+ \text{ to } 6^+)$ | 4268                   | 78 11                  | 7223.2         | 4+                   |                                                         |
|              |                         | 4492                   | 100 22                 | 6998.90        | 5+                   |                                                         |
|              |                         | 6213                   | 44 9                   | 5279.37        | 4+                   |                                                         |
| 11510        | $(4 \text{ to } 5^+)$   | 2401                   | 100 17                 | 9106.76        | 6-                   |                                                         |
|              |                         | 6232                   | 67 17                  | 5279.37        | 4+                   |                                                         |
| 11539.4      | 7-                      | 1767                   | 42 6                   | 9773.7         | 6-                   |                                                         |
|              |                         | 2173                   | 42 6                   | 9367.2         | 6+                   |                                                         |
|              |                         | 2431.8 <sup>@</sup> 11 | 86 6                   | 9106.76        | 6-                   | $I_{\gamma}$ : 35 6 in ( <sup>18</sup> O,2n $\gamma$ ). |
|              |                         | 3345.7 <sup>@</sup> 13 | 100 8                  | 8194.0         | 5-                   |                                                         |
|              |                         | 4499                   | 8 3                    | 7043.21        | 5-                   |                                                         |
| 11563        | $(5,3^+)$               | 4339                   | 100 <i>3</i>           | 7223.2         | 4+                   |                                                         |
|              | , , ,                   | 6284                   | 11 <i>3</i>            | 5279.37        | 4+                   |                                                         |
| 11659.4      | (4 to 6)                | 3465                   | 100 6                  | 8194.0         | 5-                   |                                                         |
|              |                         | 4616                   | 13 4                   | 7043.21        | 5-                   |                                                         |
|              |                         | 4660                   | 13 4                   | 6998.90        | 5 <sup>+</sup>       |                                                         |
| 11739.5      | (3  to  5)              | 4695                   | 100 20                 | 7043.21        | 5-                   |                                                         |
|              |                         | 5235                   | 100 20                 | 6503.41        | $4^{-}$              |                                                         |
|              |                         | 5789                   | 100 20                 | 5950.73        | 4+                   |                                                         |
|              |                         | 6460                   | 100 20                 | 5279.37        | 4+                   |                                                         |
| 11783.7      | $(4,5^+)$               | 4787                   | 100 7                  | 6998.90        | 5+                   |                                                         |
|              |                         | 6502                   | 20 4                   | 5279.37        | 4+                   |                                                         |
|              |                         | 6951                   | 13 4                   | 4830.85        | 3+                   |                                                         |
| 11842        | $(0^+ \text{ to } 4^+)$ | 9605                   | 100                    | 2235.322       | 2+                   |                                                         |

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f  J_f^{\pi}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ |
|--------------|-------------------------|------------------------|------------------------|------------------|---------------|----------------------|------------------------|------------------------|-------------------------------------|
| 11879        | $(3^- \text{ to } 7^-)$ | 4835                   | 100                    | 7043.21 5        | 12832.02      | (8-)                 | 2112.7 <sup>@</sup> 2  | 100 4                  | 10719.33 (7-)                       |
| 12014.1      | $(4 \text{ to } 6^+)$   | 4970                   | 67 11                  | 7043.21 5-       |               |                      | 3724.7 <sup>@</sup> 3  | 37 7                   | 9106.76 6-                          |
|              |                         | 5014                   | 100 18                 | 6998.90 5+       | 13202.8       | $(8^{-})$            | 2483.4 <sup>@</sup> 4  | 100                    | 10719.33 (7-)                       |
|              |                         | 6064                   | 56 11                  | 5950.73 4+       | 15191.4       | (9-)                 | 2358.9 <sup>@</sup> 6  | 67 <i>7</i>            | 12832.02 (8-)                       |
| 12393.8      |                         | 3286.8 <sup>@</sup> 24 | 100                    | 9106.76 6-       |               |                      | 4472.1 <sup>@</sup> 6  | 100 7                  | 10719.33 (7-)                       |
| 12510        |                         | 3403 <sup>@</sup> 3    | 100                    | 9106.76 6-       | 15528.8       | (9-)                 | 2696.7 <sup>@</sup> 13 | 100                    | 12832.02 (8-)                       |
| 12714.9      |                         | 3607.9 <sup>@</sup> 15 | 100                    | 9106.76 6-       |               |                      |                        |                        |                                     |

<sup>†</sup> From  $(\alpha,p)$ , $(\alpha,p\gamma)$ , except otherwise noted. ‡ From  $(n,\gamma)$ , except otherwise noted. # From  $^{30}$ Al  $\beta^-$  decay. @ From  $(^{18}$ O, $^{2}$ n $\gamma)$ .

<sup>&</sup>amp; Weighted average of ( $^{18}\text{O},2\text{n}\gamma$ ) and ( $\text{n},\gamma$ ).

<sup>&</sup>lt;sup>a</sup> From ( $^{18}$ O,2n $\gamma$ ).

<sup>&</sup>lt;sup>b</sup> From  $(\alpha, p), (\alpha, p\gamma)$ , multipolarities are based on  $\gamma$ -ray linear polarization and correlation measurements.

<sup>&</sup>lt;sup>c</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

#### Level Scheme



#### Level Scheme (continued)



# Level Scheme (continued)



|                 | Hi           | story    |                        |
|-----------------|--------------|----------|------------------------|
| Type            | Author       | Citation | Literature Cutoff Date |
| Full Evaluation | Balrai Singh | ENSDF    | 15-Jan-2020            |

 $Q(\beta^{-})=227.2 \ 3; \ S(n)=9200.0 \ 3; \ S(p)=16416.0 \ 23; \ Q(\alpha)=-11483.8 \ 20$  2017Wa10

S(2n)=15787.36 30, S(2p)=29772 3 (2017Wa10).

Note that S(n)=9203.218 keV 5 deduced by 2001Pa15 from  $^{31}S(n,\gamma)$  is in disagreement with value from 2017Wa10, who had considered this measurement in their global AME analysis.

Mass measurements: 2003B117, 2009Kw02, 2009Sc09. Mass deduced from IMME analysis: 2010Ka30. Strong absorption radius measurement: 1999Ai02:

Theoretical nuclear structure calculations: consult Nuclear Science References database at www.nndc.bnl.gov/nsr/ for 65 primary references.

Additional information 1.

#### 32Si Levels

#### Cross Reference (XREF) Flags

A  $^{32}$ Al β<sup>-</sup> decay (32.3 ms) E  $^{31}$ Si(n,γ) B  $^{33}$ Al β<sup>-</sup>n decay (41.5 ms) F Coulomb excitation C  $^{30}$ Si(t,p) G  $^{208}$ Pb( $^{37}$ Cl,X)

D  $^{30}$ Si(t,p $\gamma$ )

 $\frac{\text{E(level)}^{\dagger}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}} \quad \frac{\text{T}_{1/2}^{\ddagger}}{157 \text{ y } 7} \quad \frac{\text{XREF}}{\text{ABCDEFG}}$ 

Comments

 $\%\beta^{-}=100$ 

 $r_0^2$ =1.15 fm<sup>2</sup> 7 (1999Ai02 in Si( $^{32}$ Si,X) at 44.78 MeV/nucleon). Also cross section measured in this work.

 $T_{1/2}$ : weighted average (NRM) of 159.4 y 56 (2015HeZY, decay rate); 178 y 10 (1998Ni19, measurement of the decrease of activity with depth in an accurately dated varved sediment core from the Kassjon lake, North Sweden, indirect but seemingly a reliable measurement); 132 y 13 (1993Ch10, average of 128 y 20 and 134 y 16, two different samples, accelerator mass spectroscopy (AMS) technique); 162 y 12 (1991Th06, AMS and activity); 133 y 9 (1990Ho27, average of 135 y 10, 132 y 9 and 136 13 from three different samples, AMS and activity, uncertainty increased to 9.9 y in NRM); 172 y 4 (1986Al10, decay rate, uncertainty increased to 7.5 y in NRM); 108 y 18 (1980El01, AMS, uncertainty increased to 20 y in NRM); and 101 y 18 (1980Ku11, AMS, uncertainty increased to 22 y in NRM). Normalized  $\chi^2$ =4.4, as compared to critical  $\chi^2$ =2.0. Unweighted average is 143 y 10, while regular weighted average is 161 y 7, with normalized  $\chi^2$ =6.4.

 $T_{1/2}$ : Direct, specific activity methods for half-life measurement: 1993Ch10: source from implantation of separated projectile ( $^{40}$ Ar beam) fragments into an inert collector, decay equilibrium technique, two independent samples. 1991Th06: source produced in  $^{18}$ O( $^{16}$ O,2p) reaction.  $^{32}$ Si/ $^{31}$ Si abundance ratio using AMS (accelerator mass spectrometry), and  $\beta$  scintillation spectrometry. 1990Ho27: source produced in  $^{37}$ Cl(p,X) and  $^{31}$ P(n,p) reactions.  $^{32}$ Si/Si abundance ratio by AMS, and  $\beta$  spectrometry. Three independent samples. 1980Ku11: source from  $^{30}$ Si(t,p), AMS technique and  $\beta$ -scintillation spectrometry. 1980El01: source from Cl(p,X), AMS technique and  $\beta$ -scintillation spectrometry.

 $T_{1/2}$ : Direct decay rate methods: 2015HeZY: used the same detector system and source as in 1986Al10. Counting for 6000 hours between June 2013 and June 2015. 1986Al10: source from  $^{30}$ Si(t,p),  $\beta$  decay rate measured over four years.

 $T_{1/2}$ : the values from indirect methods, described below, were not used in the averaging procedure because the accumulation rates of  $^{32}$ Si in ice cores and sediments are not known well, and the cross sections in reactions are poorly known for determining yields

# <sup>32</sup>Si Levels (continued)

| E(level) <sup>†</sup>          | $J^{\pi}$                         | $T_{1/2}^{\ddagger}$ | XREF       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------|-----------------------------------|----------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                   |                      |            | that were used to determine the half-life in the pre-1970 measurements. $T_{1/2}$ : indirect methods (accumulation rates of the naturally occurring $^{32}$ Si in different environments): $T_{1/2}$ : 178 y 10 (1998Ni19, measurement of the decrease of activity with depth in an accurately dated varved sediment core from the Kassjon lake, North Sweden, note that this value is close to the values from direct measurements, thus included in averaging); 276 y 32 (1980De46, natural source from varved core of Gulf of California, later corrected to 217 y 29 by J.B. Cumming, Radiochem. Radioanaly. Lett. 58, 297 (1983)); 330 y 40 (H.B. Clausen: Journal of Glaciology 12, 411 (1973), natural source from Greenland ice cores, later corrected to 250 y in 1980De46). |
|                                |                                   |                      |            | T <sub>1/2</sub> : indirect methods (reaction yields, mainly in successive neutron captures in <sup>30</sup> Si): T <sub>1/2</sub> : $\approx$ 280 y (Jantsch, Kernenergie 10, 89 (1967)); $\approx$ 500 y (1964Ho31); $\approx$ 650 y (1962Ge16); $\approx$ 42 y (Roy: Can. Jour. Chem. 35, 176 (1957), 600 y/barn for <sup>31</sup> Si(n,γ) reaction, and $\sigma$ =0.07 for E=thermal); $\approx$ 60 y (Turkevich: Phys. Rev. 94, 364 (1954)); $\approx$ 710 y (1953Li21). T <sub>1/2</sub> : see 1991Ku26 for a review of <sup>32</sup> Si half-life measurements, 2009Se07                                                                                                                                                                                                       |
|                                |                                   |                      |            | for discussion of possible oscillations in exponential decay of <sup>32</sup> Si in the measurement by 1986Al10; and 2010Ja03 and 2010St07 for power-spectrum analyses and discussion of variation of decay constant from solar influence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                   |                      |            | Using the BNL counting system and the <sup>32</sup> Si and <sup>36</sup> Cl sources (as used by 1986Al10), 2018Fi04 investigated correlation between the two decays in a 5-hour time interval immediately following the GW170817 binary neutron star inspiral on August 17, 2017; claiming observation of a correlation of the two decay rated on August 17, 2017, with an upward fluctuation peaking at 93 min following the arrival of the gravity wave detected by the LIGO                                                                                                                                                                                                                                                                                                        |
| 1941.4 <i>3</i>                | 2+                                | 0.78 ps 22           | ABCD FG    | apparatus.<br>B(E2) $\uparrow$ =0.0113 33 (1998Ib01)<br>J <sup><math>\pi</math></sup> : E2 $\gamma$ to 0 <sup>+</sup> ; L(t,p)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                |                                   |                      |            | $T_{1/2}$ : weighted average of 0.91 ps $+37-21$ from B(E2)( $\uparrow$ )=0.0113 33 (1998Ib01), and 0.64 ps 22 from DSAM in (t,p $\gamma$ ) (1972Pr18). Other: 0.33 ps 5 from DSAM in (t,p $\gamma$ ) (1974Gu11) seems discrepant. \$2016Pr01 evaluation gives $T_{1/2}$ =0.84 ps $+17-19$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4230.8 8                       | 2+                                | 0.26 ps 9            | A CD       | $J^{\pi}$ : L(t,p)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4983.9 <i>11</i> 5220 <i>3</i> | $0^+$ $(1^+)$                     | <0.30 ps<br><80 fs   | A CD<br>CD | $J^{\pi}$ : L(t,p)=0.<br>$J^{\pi}$ : possible unnatural-parity state from (p,t).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5288.8 8                       | 3-                                | 152 fs <i>35</i>     | CD         | $J^{\pi}$ : L(t,p)=3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5412.4 9                       | 1                                 | <50 fs               | D          | E(level): see comment for 5427 level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                   |                      |            | $J^{\pi}$ : 1 from $\gamma\gamma(\theta)$ in $(t,p\gamma)$ ; dipole $\gamma$ to $0^{+}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5427 14                        | 2+                                |                      | С          | E(level): this level is different from the 5412 level in $(t,p\gamma)$ , as the spin assignments in $(t,p)$ and $(t,p\gamma)$ are different.<br>$J^{\pi}$ : $L(t,p)=2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5502 4                         | (5 <sup>-</sup> ,4 <sup>+</sup> ) |                      | CD G       | <ul> <li>J<sup>π</sup>: 5<sup>-</sup> or 4<sup>+</sup> from L(p,t)=5,4 with some preference for L=5. In (p,t),</li> <li>1982Fo02 support 5<sup>-</sup> on the basis that observed cross section is three times as large as predicted for a 4<sup>+</sup> state from theoretical calculations.</li> <li>T<sub>1/2</sub>: 2002AsZY assign isomer of T<sub>1/2</sub>=33.4 ns 5 to this state. See 5581 level.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 |
| 5581 4                         | (5-)                              | 27 ns 2              | G          | <ul> <li>E(level): level proposed by 1997Fo01 (also 1998Fo07). But 2002AsZY using 198Pt(3<sup>7</sup>Cl,X) at 9 MeV/nucleon did not confirm this level since they did not observe a 79-keV γ ray.</li> <li>J<sup>π</sup>: from systematics of (5<sup>-</sup>) to (4<sup>+</sup>) transitions in N=18 isotones e.g. <sup>34</sup>S and <sup>36</sup>Ar, as assigned and discussed by 1997Fo01.</li> <li>T<sub>1/2</sub>: from γ(t) in <sup>208</sup>Pb(<sup>37</sup>Cl,X) (1997Fo01). 2002AsZY report an isomer with T<sub>1/2</sub>=33.1 ns 5 but assign this isomer to 5502 state.</li> </ul>                                                                                                                                                                                        |
| 5773 2<br>5785.7 <i>16</i>     | (1,2,3)<br>$(0,1,2)^+$            | <139 fs<br>≥0.8 ps   | cD<br>A cD | $J^{\pi}$ : D+Q $\gamma$ to 2 <sup>+</sup> .<br>$J^{\pi}$ : allowed $\beta$ feeding (log $f$ t=4.8) from 1 <sup>+</sup> parent; L(t,p=(0) for one component of a doublet from L(t,p)=(0), other component could be 5773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# <sup>32</sup>Si Levels (continued)

| E(level) <sup>†</sup>             | $J^{\pi}$                        | $T_{1/2}^{\ddagger}$ | XREF   | Comments                                                                                                                                                                                |
|-----------------------------------|----------------------------------|----------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                  |                      |        | level.                                                                                                                                                                                  |
| 5893 8                            | $(3^{+})$                        |                      | С      | E(level): possible doublet in (p,t).                                                                                                                                                    |
| 5054.2                            | 2+                               | .55.6                | _      | $J^{\pi}$ : possible unnatural-parity state from (p,t).                                                                                                                                 |
| 5954 2                            | 2+                               | ≤55 fs               | D      | $J^{\pi}$ : see comment for 5967 level.                                                                                                                                                 |
| 5967 4                            | 3-                               |                      | С      | $J^{\pi}$ : 2 from p $\gamma(\theta)$ in (t,p $\gamma$ ); E2 $\gamma$ to 0 <sup>+</sup> . E(level): this level is different from the 5954 in (t,p $\gamma$ ), as the spins from the two |
| 3901 4                            | 3                                |                      | C      | studies are different.                                                                                                                                                                  |
|                                   |                                  |                      |        | $J^{\pi}$ : L(t,p)=3.                                                                                                                                                                   |
| 6170 5                            | $(2^{+})$                        | ≤55 fs               | cD     | E(level), $J^{\pi}$ : 6208 9 with L=1+2 in (t,p) is a doublet.                                                                                                                          |
| 6195 <i>4</i>                     | 1-                               | ≤38 fs               | cD     | E(level), $J^{\pi}$ : 6208 9 with L=1+2 in (t,p) is a doublet; dipole $\gamma$ to 0 <sup>+</sup> .                                                                                      |
| 6242 5                            | $0_{+}$                          | ≤55 fs               | CD     | $J^{\pi}$ : $L(t,p)=0$ .                                                                                                                                                                |
| 6388 <i>3</i>                     | 2+                               | <42 fs               | CD     | $J_{}^{\pi}$ : L(t,p)=2.                                                                                                                                                                |
| 6477 6                            | 3-                               |                      | C      | $J^{\pi}$ : L(t,p)=3.                                                                                                                                                                   |
| 6705 <i>6</i>                     | 1-                               |                      | CD     | XREF: C(6734).                                                                                                                                                                          |
| 6860 <i>5</i>                     | 3-                               |                      | C      | $J^{\pi}$ : L(t,p)=1; dipole $\gamma$ to $0^+$ .                                                                                                                                        |
| 7083 <i>5</i>                     | 3<br>2+                          |                      | C<br>C | $J^{\pi}$ : L(t,p)=3. $J^{\pi}$ : L(t,p)=2.                                                                                                                                             |
| 7482 9                            | 2                                |                      | C      | J : L(t,p)=2.                                                                                                                                                                           |
| 7743 6                            |                                  |                      | Č      |                                                                                                                                                                                         |
| 7793 9                            | $3^{-},4^{+}$                    |                      | Č      | $J^{\pi}$ : L(t,p)=3.                                                                                                                                                                   |
| 7887 <i>18</i>                    | ŕ                                |                      | С      | \ 1/                                                                                                                                                                                    |
| 7978 <i>14</i>                    | 3-                               |                      | C      | $J^{\pi}$ : L(t,p)=3.                                                                                                                                                                   |
| 8066 9                            | 2+                               |                      | С      | $J^{\pi}$ : L(t,p)=2.                                                                                                                                                                   |
| 8321 8                            | 5-                               |                      | C      | $J_{}^{\pi}$ : L(t,p)=5.                                                                                                                                                                |
| 8361 10                           | 2+                               |                      | C      | $J^{\pi}$ : L(t,p)=2.                                                                                                                                                                   |
| 8422 10                           | 2-                               |                      | C      | II. I (4) 2                                                                                                                                                                             |
| 8567 <i>8</i><br>8650 <i>15</i>   | 3 <sup>-</sup><br>2 <sup>+</sup> |                      | C<br>C | $J^{\pi}$ : L(t,p)=3. $J^{\pi}$ : L(t,p)=2.                                                                                                                                             |
| 8758 <i>9</i>                     | 3 <sup>-</sup> ,4 <sup>+</sup>   |                      | C      | $J^{\pi}$ : $L(t,p)=2$ .<br>$J^{\pi}$ : $L(t,p)=3$ ,4.                                                                                                                                  |
| 8842 <i>13</i>                    | Э,т                              |                      | C      | J . L(t,p)-5,7.                                                                                                                                                                         |
| 8877 8                            |                                  |                      | Č      |                                                                                                                                                                                         |
| 8971 9                            |                                  |                      | C      |                                                                                                                                                                                         |
| 9003 7                            |                                  |                      | C      |                                                                                                                                                                                         |
| 9192 <i>12</i>                    |                                  |                      | C      |                                                                                                                                                                                         |
| (9203.218 5)                      | 1+,2+                            |                      | E      | E(level): this value is in diasgreement with $S(n)=9200.0 \ 3$ in 2017Wa10. $J^{\pi}$ : s-wave capture in $3/2^+$ g.s. of $^{31}S$ .                                                    |
| 9543 <i>6</i>                     |                                  |                      | C      |                                                                                                                                                                                         |
| 9701 <i>6</i>                     |                                  |                      | С      |                                                                                                                                                                                         |
| 9782 12                           |                                  |                      | C      |                                                                                                                                                                                         |
| 9934 29                           |                                  |                      | C      |                                                                                                                                                                                         |
| 9975 <i>25</i><br>10052 <i>5</i>  |                                  |                      | C      |                                                                                                                                                                                         |
| 10032 3                           |                                  |                      | C<br>C |                                                                                                                                                                                         |
| 10237 5                           |                                  |                      | C      |                                                                                                                                                                                         |
| 10317 5                           |                                  |                      | Č      |                                                                                                                                                                                         |
| 10461 9                           |                                  |                      | C      |                                                                                                                                                                                         |
| 10603 <i>15</i>                   |                                  |                      | C      |                                                                                                                                                                                         |
| 10664 <i>14</i>                   |                                  |                      | C      |                                                                                                                                                                                         |
| 10725 9                           |                                  |                      | C      |                                                                                                                                                                                         |
| 10778 13                          |                                  |                      | C      |                                                                                                                                                                                         |
| 10846 13                          |                                  |                      | C      |                                                                                                                                                                                         |
| 10888 <i>12</i><br>10971 <i>9</i> |                                  |                      | C<br>C |                                                                                                                                                                                         |
| 11398 7                           |                                  |                      | C      |                                                                                                                                                                                         |
| 11454 8                           |                                  |                      | C      |                                                                                                                                                                                         |
| -                                 |                                  |                      |        |                                                                                                                                                                                         |

#### <sup>32</sup>Si Levels (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$             | $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{\ddagger}$                       | $\mathbf{E}_f$          | $\mathbf{J}_f^{\pi}$ | Mult.@                 | $\delta^{@}$     | Comments                                                                                                                                             |
|--------------|----------------------------------|--------------------------------|-----------------------------------------------|-------------------------|----------------------|------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1941.4       | 2+                               | 1941.4 <sup>#</sup> 3          | 100 <sup>#</sup>                              | 0.0                     | 0+                   | E2                     |                  | B(E2)(W.u.)=4.4 <i>13</i>                                                                                                                            |
| 4230.8       | 2+                               | 2289.4 <sup>#</sup> 8          | 61 <sup>#</sup> 5                             | 1941.4                  | 2+                   | M1+E2                  | -0.8 4           | B(M1)(W.u.)=0.0016 9;<br>B(E2)(W.u.)=0.8 6                                                                                                           |
|              |                                  | 4230.0 <sup>#</sup> <i>15</i>  | 100 <b>#</b> 5                                | 0.0                     | $0^{+}$              | [E2]                   |                  | B(E2)(W.u.)=0.17 6                                                                                                                                   |
| 4983.9       | $0^{+}$                          | 3042.3 <sup>#</sup> <i>10</i>  | 100 <sup>#</sup>                              | 1941.4                  | 2+                   | [E2]                   |                  | B(E2)(W.u.)>1.2                                                                                                                                      |
| 5220         | (1 <sup>+</sup> )                | 989 <mark>&amp;</mark><br>3278 | <1<br>100                                     | 4230.8<br>1941.4        |                      |                        |                  |                                                                                                                                                      |
|              |                                  | 5219 <mark>&amp;</mark>        | <2                                            | 0.0                     |                      |                        |                  |                                                                                                                                                      |
| 5288.8       | 3-                               | 1058<br>3347                   | 12 <i>4</i><br>100 <i>4</i>                   | 4230.8<br>1941.4        |                      | (E1(+M2))<br>(E1(+M2)) | 0.0 2<br>+0.02 5 | B(E1)(W.u.)=0.00039 16<br>B(E1)(W.u.)=0.000104 25                                                                                                    |
|              |                                  | 5288 <mark>&amp;</mark>        | <3.4                                          | 0.0                     |                      |                        |                  |                                                                                                                                                      |
| 5412.4       | 1                                | 1181<br>3471<br>5412           | 11 <i>3</i><br>100 <i>3</i><br>12.3 <i>24</i> | 4230.8<br>1941.4<br>0.0 | 2+                   | D(+Q)<br>D             | -0.13 <i>33</i>  |                                                                                                                                                      |
| 5502         | $(5^-,4^+)$                      | 1271 <mark>&amp;</mark>        | <8                                            | 4230.8                  |                      |                        |                  |                                                                                                                                                      |
|              | · / /                            | 3560                           | 100                                           | 1941.4                  |                      |                        |                  | E3 assigned in 2002AsZY, based on (5 <sup>-</sup> ) assignment for 5502 level, but E2 in 1997Fo01 based on 4 <sup>+</sup> assignment for 5502 level. |
|              |                                  | 5502 <mark>&amp;</mark>        | < 20                                          | 0.0                     |                      |                        |                  |                                                                                                                                                      |
| 5581         | (5-)                             | 79 <i>1</i>                    |                                               | 5502                    | $(5^-,4^+)$          |                        |                  | $E_{\gamma}$ : from 1997Fo01, not confirmed by 2002AsZY.                                                                                             |
| 5773         | (1,2,3)                          | 3831                           | 100                                           | 1941.4                  |                      | D+Q                    |                  |                                                                                                                                                      |
| 5785.7       | $(0,1,2)^+$<br>$2^+$             | 3844.0 <sup>#</sup> 15         | 100#                                          | 1941.4                  |                      | (1.61 ( F2))           | 0.01.6           | D(11)(II)                                                                                                                                            |
| 5954         | 21                               | 4012<br>5953                   | 100 <i>4</i><br>35 <i>4</i>                   | 1941.4<br>0.0           |                      | (M1(+E2))<br>E2        | -0.01 6          | B(M1)(W.u.)>0.0046<br>B(E2)(W.u.)>0.059                                                                                                              |
| 6170         | $(2^{+})$                        | 4229                           | 33 1                                          | 1941.4                  |                      | 22                     |                  | B(E2)( W.d.)> 0.03>                                                                                                                                  |
| 6195         | 1-                               | 4253                           | 100 10                                        | 1941.4                  |                      |                        |                  | _                                                                                                                                                    |
| <b>60.10</b> | 0.1                              | 6194                           | 56 10                                         | 0.0                     |                      | (E1)                   |                  | $B(E1)(W.u.)>2.7\times10^{-5}$                                                                                                                       |
| 6242<br>6388 | 0 <sup>+</sup><br>2 <sup>+</sup> | 4301<br>2161                   | 6.4 11                                        | 1941.4<br>4230.8        |                      | [E2]                   |                  | B(E2)(W.u.)>1.2                                                                                                                                      |
| 0366         | 2                                | 4446                           | 100.0 11                                      | 1941.4                  |                      | (M1(+E2))              | +0.04 4          | B(M1)(W.u.)>0.0055                                                                                                                                   |
|              |                                  | 6387 <mark>&amp;</mark>        | <3.2                                          | 0.0                     |                      | [E2]                   | 10.017           | B(E2)(W.u.)>0.0031                                                                                                                                   |
| 6705         | 1-                               | 2474                           | 22 6                                          | 4230.8                  |                      | []                     |                  | _ (/(// 0.0001                                                                                                                                       |
|              |                                  | 4763                           | 9 7                                           | 1941.4                  | 2+                   |                        |                  |                                                                                                                                                      |
| (9203.218)   | 1+,2+                            | 6704<br>9201.798 <i>5</i>      | 100 7                                         | 0.0<br>0.0              |                      | D                      |                  | $E_{\gamma}$ : from $(n,\gamma)$ .                                                                                                                   |

<sup>&</sup>lt;sup>†</sup> From level-energy differences in  $(t,p\gamma)$ , unless otherwise stated.

<sup>&</sup>lt;sup>†</sup> From E $\gamma$  data, when uncertainties in E $\gamma$  are known, otherwise from (t,p) and/or (t,p $\gamma$ ).

 $<sup>^{\</sup>ddagger}$  For excited states above 4 MeV, values are from DSAM in (t,p $\gamma$ ), unless otherwise stated.

 $<sup>^{\</sup>ddagger}$  From  $(t,p\gamma)$ , unless otherwise stated. # From  $^{32}$ Al  $\beta^-$  decay.

<sup>&</sup>lt;sup>@</sup> From  $(t,p\gamma)$ , based on  $p\gamma(\theta)$  data, and RUL when level half-lives are known.

<sup>&</sup>amp; Placement of transition in the level scheme is uncertain.

Legend

#### Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



|                 | Н                        | listory             |                        |
|-----------------|--------------------------|---------------------|------------------------|
| Type            | Author                   | Citation            | Literature Cutoff Date |
| Full Evaluation | Ninel Nica, Balraj Singh | NDS 113,1563 (2012) | 28-May-2012            |

 $Q(\beta^{-})=4592\ 15$ ;  $S(n)=7514\ 15$ ;  $S(p)=1.878\times10^{4}\ 8$ ;  $Q(\alpha)=-13498\ 15$  2012Wa38

Note: Current evaluation has used the following Q record 4592 14 7514 14 18809 70-13490 19 2011AuZZ.

S(2n)=12022 14, S(2p)=33623 23 (2011AuZZ).

Values in 2003Au03:  $Q(\beta^-)=4601$  15, S(n)=7535 21, S(p)=18720 70,  $Q(\alpha)=-13471$  16, S(2n)=12018 14, S(2p)=33580 23.

Identifications and production of <sup>34</sup>Si: 1971Ar32 in <sup>232</sup>Th(<sup>40</sup>Ar,X) at E=290 MeV. Later study: 1977Na05.

2008Wi09:  $^{208}$ Pb( $^{36}$ S,X) E=230 MeV. Measured E $\gamma$  using GAMMASPHERE array and CHICO arrays at ANL. The known  $\gamma$  rays of 125, 591, 930, 3326 and 4255 keV were observed in this work. Main study was for  $^{35}$ P structure.

Measurement of strong absorption radius: 2006Kh08, 1999Ai02.

#### Additional information 1.

Structure calculations: 2009Bo16 (negative-parity intruders, shell model); 2009Gr04 (binding energy, charge radius, neutron density, shell model); 2007Co22 (binding energy, single proton transfer reactions); 2002St30 (shell closure effects); 2002Ut02 (levels, spins, shell model); 2001Ca49 (levels, spins, B(E2), shell model); 2000Pe27 (shell closure features); 2000Ro08 (2<sup>+</sup> levels, B(E2)); 1994Po05 (intruder levels);

1999Ai02: measurement of strong absorption radius; Si(<sup>34</sup>P,X) reaction at 38-80 MeV/nucleon, NSCL facility. The <sup>34</sup>P beam was obtained from fragmentation of <sup>55</sup>Mn beam with <sup>9</sup>Be target at 50-90 MeV/nucleon.

1986Sm05, 1985Wo07:  $^{64}$ Ni( $^{36}$ S, $^{34}$ Si) E=198 MeV. Measured σ, deduced mass excess.

34 41 0= 1---- (56 2 ---)

Nuclear structure theoretical calculations:

1992Fu07: pf-shell occupation numbers, vanishing of N=20 shell gap.

1991He06: intruder states.

1988Wa04: levels, decay scheme parameters, shell model.

#### <sup>34</sup>Si Levels

A 2133, (0<sup>+</sup>) level proposed in 2001Nu01 but not confirmed by 2002Mi44 and 2003Iw02 is omitted here. The 1193 transition feeding from 3326 level to a 2133 level is placed from a 4519 level to 3326 level according to 2003Iw02.

#### Cross Reference (XREF) Flags

9D-(35C: 34C:V.) T

160 a 1/36 a 37

|                 |         | B 35A<br>C 2H(    |                         | 7.7 ms) F $Si(^{34}Si,^{34}Si'\gamma)$ J Coulomb excitation G $^{36}S(^{11}B,^{13}N)$                                                                                                                                                                                            |
|-----------------|---------|-------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |         | D <sup>7</sup> Li | $(^{34}P,^{7}Be\gamma)$ | $H = {}^{36}S({}^{14}C, {}^{16}O)$                                                                                                                                                                                                                                               |
| E(level)        | $J^n$   | $T_{1/2}$         | XREF                    | Comments                                                                                                                                                                                                                                                                         |
| 0.0             | $0^{+}$ | 2.77 s 20         | ABCDEFGHIJ              | $\%\beta^{-}=100$                                                                                                                                                                                                                                                                |
|                 |         |                   |                         | Measured $r_0^2$ =1.23 fm <sup>2</sup> 4 (2006Kh08) in Si(3 <sup>34</sup> Si,X) reaction at 51.5 MeV/nucleon and 58.9 MeV/nucleon. Integral cross sections were also measured.<br>$r_0^2$ (strong absorption)=1.20 fm <sup>2</sup> 8 (1999Ai02).<br>$r_{1/2}^2$ : from 1977Na05. |
| 3327.14 20      | 2+      | 82 fs <i>3</i> 2  | ABCDEF IJ               | <ul> <li>Jπ: level excited in Coulomb excitation, inelastic scattering, systematics, and shell-model predictions.</li> <li>T<sub>1/2</sub>: from B(E2)=0.0085 33 in Coul. ex. (1998Ib01).</li> </ul>                                                                             |
| 3590 25         |         |                   | H                       |                                                                                                                                                                                                                                                                                  |
| 4256.1 <i>4</i> | (3-)    | <210 ns           | ABCDEF I                | $J^{\pi}$ : level excited in inelastic scattering, possible allowed $\beta$ decay from (4 <sup>-</sup> ), systematics, and shell-model predictions.                                                                                                                              |
| 4380.2 4        | (3-)    |                   | ABCDE I                 | $T_{1/2}$ : estimated from $βγ(t)$ (1989Ba50) in <sup>34</sup> Al $β$ <sup>-</sup> decay.<br>XREF: E(?).<br>J <sup><math>π</math></sup> : $β$ transition from (4 <sup>-</sup> ) is possibly allowed; gammas to 2 <sup>+</sup> and (3 <sup>-</sup> ).                             |

#### <sup>34</sup>Si Levels (continued)

| E(level)                                             | $J^{\pi}$         | XREF                                                                                    |                                                   |                                                                                                                                  |                  | Comr                       | ments                                                                                                                                                     |
|------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4520.2? <i>1</i> .4971.1 <i>5</i> 5042.2? <i>1</i> . | (3-,4-,5-         | A CDE A CDE                                                                             |                                                   | F: E(?). g ft=5.7 from (4                                                                                                        | ·).              |                            |                                                                                                                                                           |
| 5330.4 10                                            |                   | D G                                                                                     |                                                   |                                                                                                                                  | ibution comp     | pared with th              | neoretical predictions for $\Delta L=0$ transition                                                                                                        |
| 6023.3? 1                                            | 1                 | A CDE                                                                                   |                                                   | $i(^{34}P,^{7}Be\gamma)).$<br>ced B(>)=0.74 18                                                                                   | 8(stat) + 00 - 1 | 14(syst) ( <sup>7</sup> Li | $(^{34}P,^{7}Be\gamma)).$                                                                                                                                 |
| 0023.3. 1                                            | 1                 | II CDL                                                                                  |                                                   |                                                                                                                                  |                  |                            |                                                                                                                                                           |
|                                                      |                   |                                                                                         |                                                   | ,                                                                                                                                | $\gamma$ (34Si)  |                            |                                                                                                                                                           |
| $E_i(level)$                                         | ${\rm J}_i^\pi$   | $\mathrm{E}_{\gamma}{}^{\dagger}$                                                       | $_{\mathrm{I}_{\gamma}}^{\dagger}$                | $\mathrm{E}_f \qquad \mathrm{J}_f^\pi$                                                                                           | Mult.            | $a^{\ddagger}$             | Comments                                                                                                                                                  |
| 3327.14                                              | 2+                | 3326.96 20                                                                              | 100                                               | 0.0 0+                                                                                                                           | [E2]             |                            | B(E2)(W.u.)=2.6 10                                                                                                                                        |
| 4256.1                                               | $(3^{-})$         | 929.0 <i>3</i><br>4257 <i>3</i>                                                         | 100 <i>10</i><br>22 <i>3</i>                      | $3327.14 	 2^{+} \\ 0.0 	 0^{+}$                                                                                                 | [E2]             |                            | L. other: $I_{2}(A257)/I_{2}(O20) = 0.52$ A in                                                                                                            |
|                                                      |                   | 4237 3                                                                                  | 22 3                                              | 0.0 0                                                                                                                            | [E3]             |                            | I <sub>y</sub> : other: $I_{\gamma}(4257)/I_{\gamma}(929)=0.53 \ 4$ in ${}^{2}H({}^{34}Si, {}^{34}Si'_{\gamma})$ is too high by a factor of $\approx 2$ . |
| 4380.2                                               |                   |                                                                                         |                                                   |                                                                                                                                  |                  |                            |                                                                                                                                                           |
|                                                      | (3-)              | 124.2 <i>3</i> 1052.8 <i>4</i>                                                          | 100 8<br>7.5 12                                   | 4256.1 (3 <sup>-</sup> )<br>3327.14 2 <sup>+</sup>                                                                               | [M1+E2]          | 0.025 23                   | $\alpha(K)$ =0.023 22; $\alpha(L)$ =0.0017 16                                                                                                             |
| 4520.2?                                              | (3-)              | 124.2 <i>3</i><br>1052.8 <i>4</i><br>1193.34 <i>20</i>                                  | 100 8<br>7.5 <i>12</i><br>100                     | 4256.1 (3 <sup>-</sup> )<br>3327.14 2 <sup>+</sup><br>3327.14 2 <sup>+</sup>                                                     | [M1+E2]          | 0.025 23                   |                                                                                                                                                           |
| 4971.1                                               | (3 <sup>-</sup> ) | 1052.8 <i>4</i><br>1193.34 <i>20</i><br>590.9 <i>3</i>                                  | 7.5 <i>12</i><br>100<br>100                       | 3327.14 2 <sup>+</sup><br>3327.14 2 <sup>+</sup><br>4380.2 (3 <sup>-</sup> )                                                     | [M1+E2]          | 0.025 23                   |                                                                                                                                                           |
| 4971.1<br>5042.2?                                    | (3-,4-,5-)        | 1052.8 <i>4</i><br>1193.34 <i>20</i><br>590.9 <i>3</i><br>1715.4 8                      | 7.5 <i>12</i><br>100<br>100<br>100                | 3327.14 2 <sup>+</sup><br>3327.14 2 <sup>+</sup><br>4380.2 (3 <sup>-</sup> )<br>3327.14 2 <sup>+</sup>                           | [M1+E2]          | 0.025 23                   | $\alpha(K)$ =0.023 22; $\alpha(L)$ =0.0017 16                                                                                                             |
| 4971.1                                               | , ,               | 1052.8 <i>4</i><br>1193.34 <i>20</i><br>590.9 <i>3</i><br>1715.4 8<br>2000 <sup>#</sup> | 7.5 <i>12</i><br>100<br>100<br>100<br>59 <i>9</i> | 3327.14 2 <sup>+</sup><br>3327.14 2 <sup>+</sup><br>4380.2 (3 <sup>-</sup> )<br>3327.14 2 <sup>+</sup><br>3327.14 2 <sup>+</sup> | [M1+E2]          | 0.025 23                   | $\alpha(K)=0.023\ 22;\ \alpha(L)=0.0017\ 16$ $E_{\gamma}I_{\gamma}:\ from\ ^{7}Li(^{34}P_{\gamma}^{7}Be\gamma).$                                          |
| 4971.1<br>5042.2?                                    | (3-,4-,5-)        | 1052.8 <i>4</i><br>1193.34 <i>20</i><br>590.9 <i>3</i><br>1715.4 8                      | 7.5 <i>12</i><br>100<br>100<br>100                | 3327.14 2 <sup>+</sup><br>3327.14 2 <sup>+</sup><br>4380.2 (3 <sup>-</sup> )<br>3327.14 2 <sup>+</sup>                           | [M1+E2]          | 0.025 23                   | $\alpha(K)$ =0.023 22; $\alpha(L)$ =0.0017 16                                                                                                             |

 $<sup>^{\</sup>dagger}$  From  $^{34}{\rm Al}~\beta^-$  decay, unless otherwise stated.

 $<sup>^{\</sup>ddagger}$  Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>#</sup> Placement of transition in the level scheme is uncertain.

Legend

#### Level Scheme

Intensities: Relative photon branching from each level

---- 

→ γ Decay (Uncertain)

