# 查找算法

胡船长

初航我带你,远航靠自己

#### 本章题目

- 1-应试. Leetcode-01: 两数之和
- 2-应试. Leetcode-35: 搜索插入位置
- 3-应试. Leetcode-217: 存在重复元素
- 4-应试. Leetcode-349: 两个数组的交集
- 5-校招. Leetcode-03: 无重复字符的最长子串
- 6-校招. Leetcode-04:两个正序数组的中位数
- 7-竞赛. HZOJ-242: 最大平均值
- 8-竞赛. HZOJ-244: 奶牛围栏

#### 本期内容

- 一. 二分算法
- 二. 跳跃表(Skiplist)
- 三.哈希表与布隆过滤器

# 一. 二分算法

待查找 x

1 2 3 4 5 6 7 7 8 9

#### 待查找





min是头指针; max是尾指针; mid = (min + max) / 2

#### 调整:

终止条件: min >= max

如果arr[mid] < x, min = mid + 1 如果arr[mid] > x, max = mid - 1 如果arr[mid] == x, 找到结果

待查找 x

1 2 3 4 5 6 7 7 8 9

#### 待查找





min是头指针; max是尾指针; mid = (min + max) / 2

#### 调整:

终止条件: min >= max

如果arr[mid] < x, min = mid + 1 如果arr[mid] > x, max = mid - 1 如果arr[mid] == x, 找到结果

#### 待查找





arr[mid] < x, min = mid + 1 重新计算, 得到 mid = 6

#### 待查找

7



arr[mid] < x, min = mid + 1 重新计算, 得到 mid = 6

#### 待查找

7



arr[mid] < x, min = mid + 1 重新计算, 得到 mid = 6

#### 待查找





arr[mid] == x, 找到结果

总查找次数: 2次

#### 待查找





arr[mid] == x, 找到结果

总查找次数: 2次



采用二分查找,总查找次数为:?次

# 

min

采用二分查找,总查找次数为:?次

mid

max

#### 待查找





采用二分查找,总查找次数为:?次

# 待查找 1 2 3 4 5 6 7 7 8 9 min mid max

# 待查找 1 2 3 4 5 6 7 7 8 9 mid min max

# 待查找 1 2 3 4 5 6 7 7 8 9 min max

mid

#### 待查找 [



采用二分查找,总查找次数为:4次

#### 待查找 [



采用二分查找,总查找次数为:4次

#### 待查找



采用二分查找,总查找次数为:4次

#### 二分查找—泛型情况



1 1 1 1 1 0 0 0 0

#### 二分中的数组和函数的关系

```
1. vim
          #1 X
   vim
                   bash
                           #2 X
                                    bash
                                            23
39 }
40
41 Node *insert_maintain(Node *root) {
42
       if (!hasRedChild(root)) return root;
43
       if (root->lchild->color == RED && root->rchild->color == REL____
44
           if (!hasRedChild(root->lchild) && !hasRedChild(root->rchild)) return root;
45
           root->color = RED:
46
           root->lchild->color = root->rchild->color = BLACK;
47
           return root;
48
49
       if (root->lchild->color == RED) {
50
           if (!hasRedChild(root->lchild)) return root;
51
52
53
       } else {
54
           if (!hasRedChild(root=>rchild)) return root;
55
56
57
```

#### 二分算法:代码演示

if (root == NIL) return getNewNode(key);

<-6班资料/X.现场撸代码/15.RBT.cpp [FORMAT=unix] [TYPE=CPP] [POS=54,30][62%] 21/09/19 - 20:21

#### 随堂练习题:

个人所得税,是根据收入进行阶梯设置的,我国个人所得 税现行标准如下:

| 个人所得稅稅率表三 (非居民公司薪金所得等按月换算) |                    |       |       |
|----------------------------|--------------------|-------|-------|
| 级数                         | 全年应纳税所得额           | 税率(%) | 速算扣除数 |
| 1                          | 不超过3000元的          | 3     | 0     |
| 2                          | 超过3000元至12000元的部分  | 10    | 210   |
| 3                          | 超过12000元至25000元的部分 | 20    | 1410  |
| 4                          | 超过25000元至35000元的部分 | 25    | 2660  |
| 5                          | 超过35000元至55000元的部分 | 30    | 4410  |
| 6                          | 超过55000元至80000元的部分 | 35    | 7160  |
| 7                          | 超过80000元的          | 45    | 15160 |

问题:给出税后收入,求税前收入

# 二.跳跃表(Skiplist)

# 跳跃表 (Skiplist)





查找 15



查找 15



查找 15



查找 15



查找 30



插入 10



插入 10



插入 10



插入 10



插入 10



```
1. vim
          #1 X
   vim
                   bash
                           #2 X
                                    bash
                                            23
39 }
40
41 Node *insert_maintain(Node *root) {
42
       if (!hasRedChild(root)) return root;
43
       if (root->lchild->color == RED && root->rchild->color == REL____
44
           if (!hasRedChild(root->lchild) && !hasRedChild(root->rchild)) return root;
45
           root->color = RED:
46
           root->lchild->color = root->rchild->color = BLACK;
47
           return root;
48
49
       if (root->lchild->color == RED) {
50
           if (!hasRedChild(root->lchild)) return root;
51
52
53
       } else {
54
           if (!hasRedChild(root=>rchild)) return root;
55
56
57
```

### 跳跃表:代码演示

62 if (root == NIL) return getNewNode(key);

<-6班资料/X.现场撸代码/15.RBT.cpp [FORMAT=unix] [TYPE=CPP] [POS=54,30][62%] 21/09/19 - 20:21

### 三. 哈希表与布隆过滤器















冲突处理

- 1、开放定址法
- 2、再哈希法
- 3、建立公共溢出区
- 4、链式地址法(拉链法)

#### 1、开放定址法



#### 1、开放定址法



冲突处理

- 1、开放定址法
- 2、再哈希法
- 3、建立公共溢出区
- 4、链式地址法(拉链法)

#### 2、再哈希法



冲突处理

- 1、开放定址法
- 2、再哈希法
- 3、建立公共溢出区
- 4、链式地址法(拉链法)

#### 3、建立公共溢出区





3、建立公共溢出区



溢出缓冲区 **7** 

冲突处理

- 1、开放定址法
- 2、再哈希法
- 3、建立公共溢出区
- 4、链式地址法(拉链法)

4、链式地址法(拉链法)



4、链式地址法(拉链法)



传统哈希表,存储空间与元素数量有关

布隆过滤器,存储空间与元素数量无关

哈希函数

哈希函数

哈希函数

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0
 1
 1
 0
 0
 0
 0
 1
 0









```
1. vim
          #1 X
   vim
                   bash
                           #2 X
                                    bash
                                            23
39 }
40
41 Node *insert_maintain(Node *root) {
42
       if (!hasRedChild(root)) return root;
43
       if (root->lchild->color == RED && root->rchild->color == REL____
44
           if (!hasRedChild(root->lchild) && !hasRedChild(root->rchild)) return root;
45
           root->color = RED:
46
           root->lchild->color = root->rchild->color = BLACK;
47
           return root;
48
49
       if (root->lchild->color == RED) {
50
           if (!hasRedChild(root->lchild)) return root;
51
52
53
       } else {
54
           if (!hasRedChild(root=>rchild)) return root;
55
56
57
```

### 哈希表:代码演示

62 if (root == NIL) return getNewNode(key);

<-6班资料/X.现场撸代码/15.RBT.cpp [FORMAT=unix] [TYPE=CPP] [POS=54,30][62%] 21/09/19 - 20:21



# 为什么 会出一样的题目?