

About Me

- Johannes Schute-Vels (jschul)
- 5. Semester Mechanical Engineering
- Former Informatik II TA
- Wokring on the PEGASUS focus project (ARIS) as a controls engineer.
 Rotating Detonating Rocket Engine (don't even know yet what that is)
- 3 Fun facts about me:
 - I lie to everyone that I'm 2 meters tall
 - I am 2 meters tall
 - I like to lie

Organisation

Course and Exercise Structure

- Weekly lecture on Wednesday, 16:15 18:00
- Weekly Exercises on Friday 10:15 12:00
 - 1. hour: Theory Recap and example problems
 - 2. hour: You solve the exercises and can ask questions. Of course you can leave if you do not have any questions or do not want to solve the exercises.
- Study Center starting from the 3. Week.
 I will be there in the first few weeks. Good to ask questions!
- The entire course will be held in English.

 However, feel free to ask in German as well!

Materials

- Lecture Slides and Lecture Recordings
- Weekly Problem Sets for you to solve. Starting from next week.
 (not to be handed in)
- There won't be any Bonus ☺

Supplementary Materials

- Script made from TAs to improve your learning experience (weekly updated on moodle)
- Jupyter Notebooks and interactive Tools. (We go through the setup later)
- CS1 GPT (also on moodle)

This is all without guarantee for correctness!

Though we try our best, and ChatGPT hopefully as well

Materials

Polybox

PW: jschul

Website

https://n.ethz.ch/~jschul

Exam Info

- 150 min
- MC and some open questions. However you never receive partial points.
- Written on Paper
- No calculators allowed
- 40 Pages of hand written notes allowed (wth!?)
- 2 Page summary will be provided (updated during semester)

Personal Tips for Control Systems

- This course may seem very abstract in the beginning (it is kind of)
- Early incorporation of different subjects:
 - Linear Algebra II → Systems of ODEs
 - Mechanics III and Thermodynamics → Modeling
 - Analysis III → Laplace Transforms

Don't let this intimidate you! It's a lot easier than that

If you follow the rules and let me help you, it will make sense in the end!

Frazzolis Mantra

What are Control Systems

Systems

- A system is something physical:
 - Car
 - Plane
 - Etc.
- We want the system to do a certain thing
- A system transforms a signal and maps input to an output
- We will only look at Single Input Single Output systems (SISO)
 But there exist more! (MIMO: Multiple Input Multiple Output)
- We also will mainly look at linear systems

Signals

- Both the input and the output of the system are signals
- Signals:
 - a function of time
 - can be any physical observable

- The objective is to make the System behave in some desired way, given by a reference
- Controller transforms the reference to an input signal

Inverted Pendulum

https://www.youtube.com/watch?v=Rh7JuL3PRSY

Inverted pendulum

Open-loop system

Reference r:

- Some desired angle θ

Input u:

Electrical signal to motor

Output *y*:

- Current angle θ of pendulum

Inverted pendulum

Closed-loop system Feedback

- Some desired angle θ

Input u:

Electrical signal to motor

Output *y*:

- Current angle θ of pendulum

Error *e*:

 Difference between reference and current angle e = r - y

System Comparison

Open-loop system

- No feedback → Input doesn't depend on output
- Simple but unprecise

Closed-loop system Feedback

- Feedback! → Input depends on output
- More complex
- Can become unstable (we will later look at what that means)

Our Objects as a Control Engineer

1. Performance:

Execute the desired task as accurately as possible.

2. Robustness:

 Perform well in the presence of external disturbances, measurement noise, etc.

3. Stability:

System doesn't blow up, outputs stay under control

Line Follower

https://www.youtube.com/watch?v=oT3jdxmgo8M

Quadrcopter Juggle

https://www.youtube.com/watch?v=3CR5y8qZf0Y

Cubli

https://www.youtube.com/watch?v=n_6p-1J551Y

Our Objectives in the Course

1. Modeling:

 Learn how to represent a dynamic system in such a way that it can be treated effectively using mathematical tools.

2. Analysis:

 Understand the basic characteristics of a system (e.g., stability), and how the input affects the output.

3. Synthesis:

 Figure out how to change a system, typically by feedback, in such a way that it behaves in a desirable way.

Thanks

Thank you to Nicholas Bartzsch for providing his presentation!

Thank you to all of you for being here and the attention!

Feedback

https://n.ethz.ch/~jschul/Feedback

