ENG1004 Engineering Physics

AY2023/ 24 Trimester 1, Week 10

Topic: Wave Motion

Asst. Prof Tan Kim Seng

KimSeng.Tan@SingaporeTech.edu.sg

Content

- 1. Types of waves:
 - i. Progressive: Sub-types (1) Transverse (2) Longitudinal
 - ii. Stationary (Next Topic) Next week (Prof Venkat)
- 2. Graphs of progressive waves
- 3. Intensity of Waves
- 4. Polarization (Transverse Waves)

^{*}Stationary Wave: Wave profile does not seem to be travelling/propagating.

0. Introduction - Wave Motion

Wave characteristics:

- 1. Crest: Highest point of wave
- 2. Trough: Lowest point of wave
- 3. Amplitude, A
- 4. Wavelength, λ
- 5. Frequency f(Hz) and period T(s)
- 6. Wave velocity $v = f\lambda = \frac{\lambda}{T}$

NOTE:

Speed of wave particles (in SHM) $\neq f \lambda$!

1. Types of Waves: Progressive waves $v = f\lambda$

- Definition of Progressive Wave:
 Disturbance (vibration) which propagates, carrying energy
 w/o physically transferring wave particles. Means wave particles are NOT transferred
 https://www.youtube.com/watch?v=iT4KAc0Ag1E
- 2. Oscillation of particles in a progressive wave can either be
 - (i) perpendicular to wave direction (**Transverse**) or
 - (ii) parallel to it (Longitudinal).

1. Types of Waves: Progressive waves $v = f \lambda$

Longitudinal Wave

Sound waves are longitudinal waves:

https://www.youtube.com/watch?v=zp1_waJkGcU

Displacement node undergoes max pressure variation: low and high pressure alternate every $\frac{1}{2}T$ period; thus it is a pressure antinode. $\lambda = 2 \times 10^{-2}$ internodal distance

Graphical representation

Horizontal

Common mistake:

Note this is a GRAPH & not a transverse wave

Displacement vs Distance
Pressure vs Distance

1. Types of Waves: Progressive waves $v = f\lambda$

Transverse Wave

Speed of EM waves in **vacuum**, $c = 3.0 \times 10^8 \text{ m/s}$

EM Spectrum (Wavelengths)

1.
$$\gamma$$
 rays $10^{-10} - 10^{-14}$ m

2. X rays
$$10^{-9} - 10^{-12}$$
 m

3. UV
$$10^{-7} - 10^{-10}$$
 m

- 4. Visible light $4 \times 10^{-7} \text{ m} 7 \times 10^{-7} \text{ m}$ *
- 5. IR $10^{-3} 10^{-7}$ m
- 6. μ waves $10^{-1} 10^{-3}$ m
- 7. **Radio waves** $10^{-2} 10^3 \text{ m}$

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/emwavecon.html

EM wave has an oscillating E-field (electric field) & a B-field (magnetic field) that are:

- 1. Perpendicular to each other
- 2. Both perpendicular to direction of propagation

Go find out what are the colors of visible light and their CORRESPONDING WAVELENGTHS

2. Graphs of Progressive waves

Wave travelling to RIGHT (snapshots at different TIMES)

Phase difference between two particles A & B on wave.

Phase difference:

EITHER displacement-distance

$$\frac{\Delta \phi}{2 \pi} = \frac{\Delta x}{\lambda}$$

$$\Delta \phi = \frac{\Delta x}{\lambda} \times 2\pi$$
 rad

Displacement-Time

OR displacement-time graph

$$\frac{\Delta \phi}{2\pi} = \frac{\Delta t}{T}$$

$$\Delta \phi = \frac{\Delta t}{T} \times 2\pi$$
 rad

$$\frac{\Delta \phi}{2 \pi} = \frac{\Delta x}{\lambda} = \frac{\Delta t}{T}$$

Example

At a particular instant, the variation of the displacement of the particles in a transverse progressive water wave, of <u>wavelength 4 cm</u>, travelling from left to right is shown below.

Which one of the following statements is **incorrect**?

- A. Particle at Q has a maximum velocity.
- B. Particles at P and R are in phase.
- C. Particle at S is moving downwards.
- D. Distance PS = 3 cm.

As graph moves towards RIGHT, particle at P moves **DOWN** particle at R moves **UP** Hence P and R are **not in phase**.

As graph moves towards RIGHT, particle at P moves **DOWN** particle at R moves **UP** Hence P and R are **not** in phase.

Particle at S moves **DOWN**

3. Intensity

Energy possessed by wave particle (& eventually transferred to next particle):

$$E_{\text{total}} = \frac{1}{2} m\omega^2 x_0^2 = \frac{1}{2} kA^2$$

Amplitude: $x_0 = A$ Constant: $k = m\omega^2$ $\omega = \frac{2\pi}{T}$

Total energy, $E = E_{\text{total}}$

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/emwavecon.html

2. Hence,
$$E \propto A^2$$
 $E_{\text{total}} = \frac{1}{2} kA^2$

Intensity of wave, I: Rate of energy flow, $\frac{dE}{dt}$, per unit surface area $I = \frac{\frac{dE}{dt}}{C}$ 3. perpendicular to direction of wave propagation (or wave motion).

4. Intensity:
$$I = \frac{\text{Power}}{\perp \text{Area}} = \frac{P}{S}$$

Hence, $I \propto E \propto A^2$ 5.

Use "S" for area because we already used "A" for amplitude

Power (W or J s⁻¹) =
$$\frac{dE}{dt}$$

3. Intensity

Wave propagation methods

Spherical Wave:

- For wave originating from **point source**, area covered is spherical.
- Every point of impact on spherical surface can approx.. to be perpendicular plane to wave.
- As distance r from point source increases, surface area increases.

$$I = \frac{P}{S} = \frac{P}{4\pi r^2} \Rightarrow I \propto \frac{1}{r^2}$$
 Inverse Square Law spherical surface, $S = 4\pi r^2$

Comparing intensities from same wave at different distances $r_1 \& r_2$ from point source:

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$$

How does amplitude A of spherical wave change with distance r from source?

$$I \propto A^2 \propto \frac{1}{r^2}$$
 $\Rightarrow A \propto \frac{1}{r}$ Further (larger r) from point source, means

amplitude (A) is smaller.

3. Intensity

Spherical waves

Sphere surface area $S = 4\pi r^2$

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/isq.html

At infinity, intensity is 0 W/m²

Question: How about plane waves?

https://www.britannica.com/science/sound-physics/Circular-and-spherical-waves#ref527186

Answer: Plane wave of single frequency propagates forever with no change or loss.

4. Polarization

- Only transverse waves can be plane-polarised.
- Unpolarised light has infinite planes of vibration. 2.
- Polarised light has only a **single plane** of vibration. 3.
- Polariods: 4.
 - Plastic sheets highly strained to align plastic molecules in ONE direction.
 - Strongly absorbs light in ONE plane (Call it plane A) while easily allowing light to pass through in another plane (plane B) perpendicular to plane A.
 - Direction of vibration of polarized light: **Polarization axis**.
- Plane of polarization: Plane which is perpendicular to **E-field** vector's plane of 5. Vibration. [Plane containing direction of vibration & propagation of light is called plane of vibration.]
- Intensity of unpolarised light I_0 after passing through polariser: $I_1 = \frac{1}{2}I_0$ **6.**
- Intensity of plane polarized light is reduced after it passes through another **7.** Angle θ to plane of polarisation of polarizer: $I_2 = I_1 \cos^2 \theta$ incident light 13

4. Polarization

Polarisation Axis of a polarizing filter: Direction along which filter passes E-field of an EM wave.

Example

The figure below shows a beam of initially unpolarised light passing through three polarisers P_1 , P_2 and P_3 .

The polarizing axis of each polariser is shown by an arrow. Polarisers P_1 and P_2 are fixed, with their polarizing axes at 30° to one another and P_3 can be set with its polarising axis at a variable angle θ to that of P_1 .

Determine for what values of θ do intensity minima of the emergent light occur?

Example

The figure below shows a beam of initially unpolarised light passing through three polarisers P_1 , P_2 and P_3 .

The polarizing axis of each polariser is shown by an arrow. Polarisers P_1 and P_2 are fixed, with their polarizing axes at 30° to one another and P_3 can be set with its polarising axis at a variable angle θ to that of P_1 .

Determine for what values of θ do intensity minima of the emergent light occur?

4. Polarization

Application: Liquid Crystal Displays (LCD)

- 1. Liquid crystals are unpolarized in absence of an external voltage, and will easily transmit light.
- 2. When an external voltage is applied, crystals become polarized and no longer transmit light; they appear dark.

Topic worth exploring for your videos:

Colour liquid crystal displays – How they work?

Summary

- 1. Progressive Waves; Transverse & Longitudinal
- 2. Do not confuse velocity of wave **particles** in SHM with $v=f\lambda$
- 3. Phase difference between 2 particles on a travelling wave:

EITHER displacement-distance graph

$$\Delta \phi = \frac{\Delta x}{\lambda} \times 2\pi \quad \text{rad}$$

OR displacement-time graph

$$\Delta \phi = \frac{\Delta t}{T} \times 2\pi \quad \text{rad}$$

- 4. Spherical wave: $I \propto \frac{1}{r^2}$ Inverse Square Law $I \propto E \propto A^2$
- 5. Only transverse waves can be polarized. (CONCLUSIVE PROOF)
- 6. Intensity of plane polarized light (original intensity I_0) is reduced after it passes through another polarizer: $I = I_0 \cos^2 \theta$

Intensity of unpolarised light after passing through polariser: $I=0.50I_0$