03/09/2020-Shift 2

1

EE24BTECH11021 - Eshan Ray

- 16) If $x^3dy + xydx = x^2dy + 2ydx$; y(2) = e and x > 1, then y(4) is equal to : [Sep-2020]
 - a) $\frac{3}{2} + \sqrt{e}$ b) $\frac{3}{2}\sqrt{e}$ c) $\frac{1}{2} + \sqrt{e}$ d) $\frac{\sqrt{e}}{2}$
- 17) Let e_1 and e_2 be eccentricities of the ellipse, $\frac{x^2}{25} + \frac{y^2}{b^2} = 1$ (b<5) and the hyperbola, $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$ respectively satisfying $e_1 e_2 = 1$. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to : [Sep-2020]
 - a) (8, 10)
 - b) (8, 12)

 - c) $(\frac{20}{3}, 12)$ d) $(\frac{24}{5}, 10)$
- 18) The set of all real values of λ for which the quadratic equations, $(\lambda^2 + 1)x^2 - 4\lambda x + 2 = 0$ always has exactly one root in the interval (0, 1) is : [Sep-2020]
 - a) (-3, -1)
 - b) (1,3]
 - (0,2)
 - d) (2,4]
- 19) If the term independent of x in the expansion of $\left(\frac{3}{2}x^2 \frac{1}{3x}\right)^9$ is k, then 18k is equal to: [Sep-2020]
 - a) 9
 - b) 11
 - c) 5
 - d) 7
- 20) Let p,q,r be three statements such that the truth value of $(p \land q) \rightarrow (\sim p \lor r)$ is F. The truth values of p, q, r are respectively: [Sep-2020]
 - a) F, T, F
 - b) T, F, T
 - c) T, T, F
 - d) T, T, T
- 21) If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that the $4^{th}A.M.$ is equal to $2^{nd}G.M.$, then m is equal to...[Sep-2020]
- 22) Let a plane *P* contain two lines $\vec{r} = \hat{i} + \lambda (\hat{i} + \hat{j}), \lambda \in R$ and $\vec{r} = -\hat{j} + \mu (\hat{j} \hat{k}), \mu \in R$. If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from the point M(1, 0, 1) to P,

then $3(\alpha, \beta, \gamma)$ equals...

[Sep-2020]

23) Let S be set of all integer solutions (x, y, z), of the system of equations

$$x - 2y + 5z = 0$$

$$-2x + 4y + z = 0$$

$$-7x + 14y + 9z = 0$$

such that $15 \le x^2 + y^2 + z^2 \le 150$. Then the number of elements in the set *S* is equal to ... [Sep-2020]

- 24) The total number of 3-digit number numbers, whose sum of digits is 10, is...[Sep-2020]
- 25) If the tangent at the curve, $y = e^x$ at a point (c, e^c) and the normal to the parabola, $y^2 = 4x$ at the point (1, 2) intersect at the same point on the x axis, then the value of c is... [Sep-2020]