LECTURE 10.4 Model evaluation and selection (MODEL BUILDING)

SHOULD WE INCLUDE VARIABLES AS MANY AS POSSIBLE?

- First, any correlation among predictors will increase the standard error of the estimated regression coefficients.
- Second, having more slope parameters in our model will reduce interpretability and cause problems with multiple testing.
- Third, the model may suffer from overfitting. As the number of predictors approaches the sample size, we begin fitting the model to the noise.

$$R^2 = \frac{\text{SSReg}}{\text{SS total}} = 1 - \frac{\text{SSerror}}{\text{SS total}}$$

LIMITATIONS OF R-SQUARE

In least-squares regression, R^2 is a statistic to reflect the strength of linear relationship between outcome and *a given set* of predictors. However, it does not indicate whether:

- the correct regression was used;
- omitted-variable bias exists;
- the most appropriate set of predictors has been chosen;
- the model might be improved by using transformed predictors.

In particular, R^2 has an *undesired property*. It increases when more variables enter the linear regression as predictors, even they are irrelevant to the outcome (Figures 1 and 2).

Adjusted R-square

To take account of this drawback of R^2 , we use an adjusted R^2_{adj} , which is defined by:

$$R_{adj}^{2} = 1 - (1 - R_{k}^{2}) \frac{n - 1}{n - k - 1}$$
$$= R_{k}^{2} - (1 - R_{k}^{2}) \frac{k}{n - k - 1}$$

Note: R_{adj}^2 is always be less than or equal to that of R^2 and could be could be negative. The R_{adj}^2 measure *penalizes* the inclusion of a new predictor and thus it increases only if the contribution of the k^{th} predictor is large enough.

Figure 1:

Mean R^2 and R_{adi}^2 over 1000 least-squares of y_i 's on noises $(x_{i1}, ...,$ x_{ik})'s. In each fit, sample size n=100, and all y_i 's and all the x_{ik} 's were iid N(0,1).

Figure 2:

Mean R^2 and R_{adi}^2 over 1000 least-squares of y_i 's on noises $(x_{i1}, ...,$ x_{ik})'s. In each fit, sample size n = 100, and all y_i 's and all the x_{ik} 's were independent, $y_i \sim N(0,1)$, and $x_{ik} \sim B(10, 0.3)$.

MODEL SELECTION

Forward selection (forward stepwise selection)

Forward stepwise selection example with 5 variables:

- 1. Determine the most significant variable to add at each step
- The most significant variable can be chosen so that, when added to the model:
- It has the smallest p-value, or
- It provides the highest increase in R², or
- It provides the highest drop in model RSS (Residuals Sum of Squares) compared to other predictors under consideration.

2. Choose a stopping rule

- The stopping rule is satisfied when all remaining variables to consider have a p-value larger than some specified threshold, if added to the model. When we reach this state, forward selection will terminate and return a model that only contains variables with p-values < threshold.</p>
- The threshold can be:
- 1 A fixed value (for instance: 0.05 or 0.2 or 0.5)
- 2 Determined by AIC (Akaike Information Criterion)
- 3 Determined by BIC (Bayesian information criterion)

Backward selection

(backward stepwise selection)

Backward stepwise selection example with 5 variables:

Keep removing the least significant variable until reaching the stopping rule or running out of variables

- 1. Determine the least significant variable to remove at each step
- The least significant variable is a variable that:
- 1 Has the highest p-value in the model, or
- 2 Its elimination from the model causes the lowest drop in R², or
- 3 Its elimination from the model causes the lowest increase in RSS (Residuals Sum of Squares) compared to other predictors

- 1. Choose a stopping rule
- The stopping rule is satisfied when all remaining variables in the model have a p-value smaller than some pre-specified threshold:
- 1 A fixed value (for instance: 0.05 or 0.2 or 0.5)
- 2 Determined by AIC (Akaike Information Criterion)
- 3 Determined by BIC (Bayesian information criterion)

Stepwise selection

p value to enter = P_{enter} = 0.15, p value to remove = P_{remove} = 0.15

