Spectral Clustering

Part 3: The Normalized Laplacian

Ng Yen Kaow

More constraint for balance

- Further constraints can be added to the eigenvalue system
 - The next problem, Graph Partitioning, will use this strategy
 - However, the resultant eigenvalue system will no longer be standard

Graph Partitioning Problem

 \square Given edge weight matrix $W = (w_{ij})$ and vertex mass matrix M with diagonal elements (m_i) , a 2-partitioning of an undirected graph G = (V, E) is a partition of V into two groups S and \overline{S} such that $\operatorname{cut}(S, \overline{S}) = \sum_{i \in S, j \in \overline{S}} w_{ij}$ is minimized under the constraint that $\sum_{i \in S} m_i = \sum_{i \in \bar{S}} m_i$, or $1^{T}Mx = 0$

Observe that if $m_i=1$ for all i, then the condition $\sum_{i\in S} m_i = \sum_{i\in \bar{S}} m_i$ is the same as $|S|=|\bar{S}|$

Constrained optimization problem

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}M \in \{1, -1\}$ and $\mathbf{1}^{T}Mx = 0$
 - $x_i \in \{1, -1\}$ and $\mathbf{1}^T M x = 0$ together enforce balance in the solution

- However, problem is NP-hard
 - Recall that even the minimum bisection problem, where all edges and vertices have the same weight, is NP-hard

Relaxed Rayleigh quotient version

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{T}Mx = 0$
 - $x_i \in \{1, -1\} \Rightarrow x^\top M x = \sum_i m_i$ but not the other way around
 - Balance no longer enforced but that's the least of our worry for now because instead of the standard eigensystem
- Optimization must now be achieved through solving the generalized eigensystem

$$Lx = \lambda Mx$$

Relaxed Rayleigh quotient version

- □ Minimize $x^{\top}Lx$ where L = D' Wsubject to $x^{\top}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{\top}Mx = 0$
- \Box Optimize through $Lx = \lambda Mx$
- \square Since 1 fulfills condition for L and M, $\mu_k = 1$
 - However, eigenvectors in the solutions are not orthogonal but rather, M-orthogonal ($\mu_i M \mu_j = 0$ for $i \neq j$)
 - \square $\mathbf{1}^{\mathsf{T}} M \mu_{k-1} = 0$ is fulfilled
- □ Convert to a standard eigenvalue system $M^{-1/2}LM^{-1/2}x = \lambda x$ to compute

Convert to $M^{-1/2}LM^{-1/2}x = \lambda x$

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{T}Mx = 0$
- Let $y = M^{1/2}x$, that is, $x = M^{-1/2}y$ $x^{\mathsf{T}}Lx \Rightarrow y^{\mathsf{T}}M^{-1/2}LM^{-1/2}y$ $x^{\mathsf{T}}Mx = \sum_{i} m_{i} \Rightarrow y^{\mathsf{T}}y = \sum_{i} m_{i}$ $\mathbf{1}^{\mathsf{T}}Mx = 0 \Rightarrow \mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$

Hence equivalently

□ Minimize $yM^{-1/2}LM^{-1/2}y$ subject to $y^{\mathsf{T}}y = \sum_i m_i$ and $\mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$

Convert to $M^{-1/2}LM^{-1/2}x = \lambda x$

- □ Minimize $yM^{-1/2}LM^{-1/2}y$ subject to $y^{T}y = 1$ and $\mathbf{1}^{T}M^{1/2}y = 0$
- □ As 1 is a eigenvector for $Lx = \lambda Mx$ with eigenvalue 0, $M^{1/2}$ 1 is a eigenvector for this system with eigenvalue 0 (smallest)
 - Since eigenvectors of this system are orthogonal, $(M^{1/2}\mathbf{1})\mu_{k-1} = 0$ $\Rightarrow \mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$ fulfilled
 - In fact the eigenvalues for this system are the same as those for $Lx = \lambda Mx$, even though the eigenvectors are different (related by $y = M^{1/2}x$)

Eigendecomposition

Edges and vertices have weight 1

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8
5.9390	5.1420					1.3940	0.0
μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_6	μ_6
0.5677	-0.1583	-0.4862	0.3536	0.2315	-0.2855	0.1766	0.3536
-0.4281	0.6222	-0.2059	0.3536	0.0622	0.2469	0.2690	0.3536
0.3517	0.1203	0.2984	-0.3536	0.5170	0.5007	-0.0694	0.3536
-0.0855	0.0612	0.6267	0.3536	0.1159	-0.4899	-0.3044	0.3536
-0.5514	-0.3549	-0.3566	-0.3536	0.3216	-0.1795	-0.2392	0.3536
0.2351	0.3822	-0.2014	-0.3536	-0.5589	-0.1183	-0.4263	0.3536
-0.0354	-0.1476	0.2596	-0.3536	-0.2798	-0.2029	0.7349	0.3536
-0.0540	-0.5251	0.0654	0.3536	-0.4096	0.5286	-0.1411	0.3536

Generalized eigenvalue system

 First use of generalized eigenvalue system for spectral clustering in

Donath and Homan, "Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices", 1972, IBM Technical Disclosure Bulletin 15(3):938–944

□ Note that $M^{-1/2}LM^{-1/2}$ cannot be related to the incidence matrix as with the earlier graph Laplacian

Normalized Cut Problem

Given weight matrix $W = (w_{ij})$ and weighted degree matrix $D' = (d_i)$, the normalized cut of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} such that

$$\operatorname{ncut}(S, \bar{S}) = \operatorname{cut}(S, \bar{S}) \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right)$$

is minimized, where $\operatorname{vol}(S) = \sum_{i \in S} d_i$, that is, sum of all the weights of the edges adjacent to vertices in S, and $\operatorname{cut}(S, \bar{S}) = \sum_{i \in S, i \in \bar{S}} w_{ij}$

Normalized Cut

 \square Represent a partition S, \overline{S} of V with $x \in \mathbb{R}^n$, where

$$x_i = \begin{cases} \frac{1}{\operatorname{vol}(S)} & \text{if } i \in S \\ -\frac{1}{\operatorname{vol}(\bar{S})} & \text{if } i \in \bar{S} \end{cases}$$
 As in Ratio Cut, $|x_i|$ changes according to the solution

1.
$$x^{\mathsf{T}} L x = \sum_{ij} w_{ij} (x_i - x_j)^2 = \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})}\right)^2 \sum_{ij} w_{ij}$$
$$= \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})}\right)^2 \operatorname{cut}(S, \bar{S})$$

2.
$$x^T D' x = \sum_i d_i(x_i)^2 = \sum_{i \in S} \frac{d_i}{\text{vol}(S)^2} + \sum_{i \in \bar{S}} \frac{d_i}{\text{vol}(\bar{S})^2} = \frac{1}{\text{vol}(S)} + \frac{1}{\text{vol}(\bar{S})}$$

$$1 + 2 \Rightarrow \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} D' x} = \operatorname{cut}(S, \bar{S}) \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right) = \operatorname{ncut}(S, \bar{S})$$

Constrained optimization problem

 \square Minimize $x^{\top}Lx$ where L = D' - W

subject to
$$x_i \in \left\{\frac{1}{\operatorname{vol}(S)}, -\frac{1}{\operatorname{vol}(\bar{S})}\right\}$$
, $x^T D' x = 1$, and $\mathbf{1}^T D' x = 0$

- Problem is NP-hard
- □ Note:

- $\frac{1}{\operatorname{vol}(S)}$, $-\frac{1}{\operatorname{vol}(\bar{S})}$ are not the only possible choices
 - See https://arxiv.org/abs/1311.2492

Relaxed Rayleigh quotient version

□ Minimize $x^T L x$ subject to $x^T D' x = 1$ and $\mathbf{1}^T D' x = 0$

Through the same reasoning as in graph partitioning problem, equivalently solve the generalized eigensystem $Lx = \lambda D'x$

- □ Minimize $y(D')^{-1/2}L(D')^{-1/2}y$ subject to $y^Ty = 1$ and $\mathbf{1}^T(D')^{1/2}y = 0$ where $y = (D')^{1/2}x$
 - \square $(D')^{-1/2}L(D')^{-1/2}$ is called the **normalized** Laplacian (due to its relation to $D^{-1}W$... later)

Eigendecomposition

Edges and vertices have weight 1

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8
1.6760	1.5100	1.42700	1.3100	0.9900	0.5880	0.4990	0.0

μ_1	μ_2	μ_3	μ_4	μ_{5}	μ_6	μ_7	μ_8	
0.348	5 0.0034	0.6240	-0.2451	-0.0704	-0.5023	0.1342	0.3922	•
-0.030	0.6546	-0.3393	-0.2014	0.0768	0.0885	0.4973	0.3922	•
0.412	9 -0.3896	-0.1906	-0.0484	-0.5545	0.4474	0.1265	0.3397	*
-0.214	8 -0.2574	-0.4363	-0.5537	0.0989	-0.2859	-0.4286	0.3397	*
-0.429	2 0.2801	0.1122	0.4236	-0.5021	-0.0836	-0.3638	0.3922	K
0.505	8 0.1486	-0.0793	0.3598	0.4989	0.1541	-0.4454	0.3397	k
	2 -0.4557							
-0.439	7 -0.2128	0.4406	-0.1475	0.3513	0.5487	0.0744		

© 2021. Ng Yen Kaow

Shi and Malik (1997, 2000)

- Proposed the NP-hard ncut problem
- Related ncut to generalized eigenvalue system, resulting in the now ubiquitous normalized Laplacian
 - However, the first use of the generalized eigenvalue system for spectral clustering was in 1972
- □ Use Gaussian function $e^{-d^2/2\sigma^2}$ for weights
 - Previously used for min-cut (Wu and Leahy 1993)
 - Used for RatioCut later (Wang and Siskin 2003)
- Clustering with multiple eigenvectors (Shi and Malik 2000)

Clustering w/ multiple eigenvectors

With normalized Laplacian

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_{7}	μ_8
0.3485	0.0034	0.6240	-0.2451	-0.0704	-0.5023	0.1342	μ_8
-0.0304	0.6546	-0.3393	-0.2014	0.0768	0.0885	0.4973	0.3922
0.4129	-0.3896	-0.1906	-0.0484	-0.5545	0.4474	0.1265	0.3397
-0.2148	-0.2574	-0.4363	-0.5537	0.0989	-0.2859	-0.4286	0.3397
-0.4292	0.2801	0.1122	0.4236	-0.5021	-0.0836	-0.3638	0.3922
0.5058	0.1486	-0.0793	0.3598	0.4989	0.1541	-0.4454	0.3397
-0.1662	-0.4557	-0.2360	0.5096	0.2180	-0.3552	0.4457	0.2774
-0.4397	-0.2128	0.4406	-0.1475	0.3513	0.5487	0.0744	, 0.3397

Use the values from the top few eigenvectors for clustering (with, for example, *k*-means)

Clustering w/ multiple eigenvectors

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_6	μ_6
0.5677	-0.1583	-0.4862	0.3536	0.2315	-0.2855	0.1766	`\0.3536
-0.4281	0.6222	-0.2059	0.3536	0.0622	0.2469	0.2690	0.3536
0.3517	0.1203	0.2984	-0.3536	0.517Q	0.5007	-0.0694	0.3536
-0.0855	0.0612	0.6267	0.3536	0.115 9	-0.4899	-0.3044	¦0.3536
-0.5514	-0.3549	-0.3566	-0.3536	0.3216	-0.1795	-0.2392	¦0.3536
0.2351	0.3822	-0.2014	-0.3536	-0.5589	-0.1183	-0.4263	¦0.3536
-0.0354	-0.1476	0.2596	-0.3536	-0.2798	-0.2029	0.7349	¦0.3536
-0.0540	-0.5251	0.0654	0.3536	-0.4096	0.5286	-0.1411	, 0.3536

The resultant eigenvectors are less suitable for clustering

have weight 1

© 2021. Ng Yen Kaow

Theoretical justification

- How should we view the normalized Laplacian
 - Since normalized Laplacian cannot be related to the incidence matrix, it requires a new characterization
 - ⇒ Random walk characterization (Meilă and Shi 2000)
- Success in the use of multiple eigenvectors makes earlier justification for the use of Fiedler vector weak
 - Furthermore, the argument from minimizing divergence is no longer valid for the normalized Laplacian
 - ⇒ (Weiss 1999), (Meilă and Shi 2000), (Ng, Jordan and Weiss 2001) successively gives justification for the use of the eigenvectors

- \Box Let $P = D^{-1}W$ (where L = D W)
 - A solution x for $Px = \lambda x$ is a solution for the generalized eigensystem $Lx = \lambda Dx$ (with eigenvalues 1λ), and vice versa Proof.

$$Lx = \lambda Dx \Rightarrow D^{-1}(D - W)x = D^{-1}\lambda Dx$$
$$(I - P)x = \lambda x$$
$$Px = (I - \lambda)x$$
$$Lx = \lambda Dx$$

$$Px = (I - \lambda)x \Rightarrow D^{-1}Wx = (I - \lambda)x$$
$$(I - D^{-1}W)x = \lambda x$$
$$(D - W)x = D\lambda x$$
$$Lx = D\lambda x$$

- \Box Let $P = D^{-1}W$ (where L = D W)
 - A solution x for $Px = \lambda x$ is a solution for the generalized eigensystem $Lx = \lambda Dx$ (with eigenvalues 1λ), and vice versa
 - The normalized Laplacian $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$ computes the solutions to $Px = \lambda x$ for the normalized matrix P
 - However, P is not symmetric
 - Doesn't decompose to orthogonal eigenbasis
 - On the other hand $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$ is symmetric
 - Chosen over P for spectral clustering

- Each row in P sums to 1 (normalized)
 - P is a Markovian transition matrix
- □ To start a walk from v_1 , let $x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$, then $P^l x$ is the probability distribution after l steps from v_1
- x_i for neighboring vertices will become more similar \Rightarrow gradients decrease
- Parts of the graph will even out more quickly

- □ Each row in *P* sums to 1 (normalized)
 - P is a Markovian transition matrix
- □ A limiting/stable/stationary state for a random walk P is a distribution x^* where $Px^* = x^*$
 - By definition x^* is a eigenvector of P with $\lambda = 1$

Furthermore, x^* is everywhere constant if P is

- A transition matrix for a regular graph
 By symmetry of the graph, a random walk from any vertex is equally likely to be at any other vertex in the limit
- A Laplacian $L = MM^{\mathsf{T}}$ for incidence matrix MFirst note that the eigenvector minimizes $x^{\mathsf{T}}Lx$. On the other hand, we know that $x^{\mathsf{T}}Lx = \sum_{v} f(v) \Delta f(v)$. Since $\Delta f(v) = 0$ for the everywhere constant x^* , it minimizes $x^{\mathsf{T}}Lx$

- □ For convenience use $L' = D'^{-\frac{1}{2}}(W)D'^{-\frac{1}{2}}$ instead of the normalized Laplacian for analysis
 - L' = I L (L = normalized Laplacian)

Proof.
$$L = D'^{-1/2}(D' - W)D'^{-1/2}$$

 $= D'^{-1/2}(D')D'^{-\frac{1}{2}} - D'^{-\frac{1}{2}}(W)D'^{-\frac{1}{2}}$
 $= I - D'^{-\frac{1}{2}}(W)D'^{-\frac{1}{2}} = I - L'$

Results in the same eigenvectors but eigenvalues become $1 - \lambda_1, ..., 1 - \lambda_k$

Matrix	Eigenvalues/vectors (decreasing order)					
L'_u	$\lambda_1^u = 1$ $v_1^u = [.5 .7 .5]$ $\lambda_2^u = 0$ $v_2^u = [.7 0 7]$ $\lambda_3^u = -1$ $v_3^u = [5 7 .5]$					
L'_l	$\lambda_1^l = 1$ $v_1^l = [.6 .6 .6]$ $\lambda_2^l =5$ $v_2^l = [077]$ $\lambda_3^l =5$ $v_3^l = [8 .4 .4]$					
L'	$\lambda_1 = 1$ $v_1 = \begin{bmatrix} 0 & 0 & 0 & .6 & .6 & .6 \end{bmatrix}$ $\lambda_2 = 1$ $v_2 = \begin{bmatrix} .5 & .7 & .5 & 0 & 0 & 0 \end{bmatrix}$ $\lambda_3 = 0$ $v_3 = \begin{bmatrix} .7 & 0 &7 & 0 & 0 & 0 \end{bmatrix}$ $\lambda_4 =5$ $v_4 = \begin{bmatrix} 0 & 0 & 0 & 0 &7 & .7 \end{bmatrix}$ $\lambda_5 =5$ $v_5 = \begin{bmatrix} 0 & 0 & 0 &8 & .4 & .4 \end{bmatrix}$ $\lambda_6 = -1$ $v_6 = \begin{bmatrix} .5 &7 & .5 & 0 & 0 & 0 \end{bmatrix}$					

- The eigenvalues/vectors of L' compose of the eigenvalues/vectors of the submatrices L'_{ij} and L'_{ij}
- \Box The largest eigenvalue of L'_u and L'_l are both 1 for the ideal case

□ The largest eigenvalue of L'_u and L'_l is 1 for the ideal (disconnected) case

$$\lambda_1 = \lambda_2 = 1 \Rightarrow |\lambda_1 - \lambda_2| = 0$$

- In non-ideal case, $\lambda_2 < \lambda_1$
- The larger the eigenvalue (for L'), the more cohesive the cluster (this is opposite for L)
- $\square |\lambda_k \lambda_{k+1}|$ is called **eigengap** or spectral gap
 - Large $|\lambda_k \lambda_{k+1}|$ implies higher cohesion in the clusters given by μ_k than those by μ_{k+1}
 - Evaluate whether to use a eigenvector in clustering by its eigengap from the previous

- Historical use based on the Fiedler vector
 - Sign cut or zero threshold cut
 - Median cut (ensures balance)
 - Sweep/criterion cut
 - Sort vertices by Fiedler vector values and cut at the lowest value of some cost function
 - Jump/gap cut
 - Sort vertices by Fiedler vector values and cut at the point of largest gap
- Based on multiple eigenvectors
 - Simultaneous k-way (Shi and Malik 2000)
 - k-means (Ng, Jordan and Weiss 2001)