3.1. MC Fragen: Folgen und Reihen. Wählen Sie die einzige richtige Antwort.

(a) Die Folge $(a_n)_{n\geq 1}$ sei definiert durch

$$a_n = \begin{cases} 1 + \sqrt{\frac{k}{12k+1}}, & \text{falls } n = 3k+1 \text{ für ein } k \in \mathbb{N}, \\ \frac{5k^3+k}{k^3+1}, & \text{falls } n = 3k+2 \text{ für ein } k \in \mathbb{N}, \\ \frac{(-1)^k}{k}, & \text{falls } n = 3k+3 \text{ für ein } k \in \mathbb{N}. \end{cases}$$

Welche der folgenden Aussagen ist richtig?

 $\bigcap \lim_{n\to\infty} a_n$ existiert in \mathbb{R} ;

Falsch: Die Teilfolge $(a_{3k+1})_k$ konvergiert gegen $1 + \sqrt{1/12}$, die Teilfolge $(a_{3k+2})_k$ konvergiert gegen 5 und die Teilfolge $(a_{3k})_k$ gegen 0. Es folgt, dass $(a_n)_{n\geq 1}$ nicht konvergiert.

• $\liminf_{n\to\infty} a_n$ existiert in \mathbb{R} ;

Richtig: Die Folge $(a_n)_{n\geq 1}$ hat die untere Schranke -1. Also existiert der Limes inferior von $(a_n)_{n\geq 1}$ in \mathbb{R} .

 $\bigcirc \lim \sup_{n \to \infty} a_n = 1 + \sqrt{1/12}.$

Falsch: Wie oben bemerkt ist $\{1+\sqrt{1/12},5,0\}$ die Menge der Häufungspunkte der Folge $(a_n)_{n\geq 1}$. Der grösste Häufungspunkt 5 ist der Limes superior.

(b) Welche der folgenden Aussagen ist richtig?

 \bigcirc Sei $(q_n)_{n\geq 1}$ eine Folge rationaler Zahlen, so dass

$$|q_n - q_{n+1}| \to 0$$
 für $n \to \infty$.

Dann ist $(q_n)_{n>1}$ eine Cauchy-Folge.

Falsch: Als Gegenbeispiel können wir $q_n = \sum_{k=1}^n \frac{1}{k}$ nehmen. Dann ist $q_n \in \mathbb{Q}$ und es gilt $|q_n - q_{n+1}| = |-\frac{1}{n+1}| \to 0$ für $n \to \infty$, aber $(q_n)_{n \ge 1}$ ist keine Cauchy-Folge, wie zum Beispiel aus

$$q_{2n} - q_n = \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{n}{2n} = \frac{1}{2}$$

folgt.

• Sei $(a_n)_{n\geq 1}$ eine konvergente Folge, und σ eine Permutation von \mathbb{N}^* (d.h. eine Bijektion der Menge \mathbb{N}^* auf sich selbst). Dann konvergiert auch die Folge $(b_n)_{n\geq 1}$ definiert durch $b_n = a_{\sigma(n)}$ für $n \geq 1$.

Richtig: Sei $a \in \mathbb{R}$ der Grenzwert der Folge $(a_n)_{n>1}$. Es gilt

$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{N} \,\forall n \geq N_{\varepsilon} \colon |a - a_n| < \varepsilon.$$

Wir definieren $M_{\varepsilon} = \max(\{k \mid \sigma(k) < N_{\varepsilon}\})$. Es ist $M_{\varepsilon} < \infty$, da $N_{\varepsilon} < \infty$ und σ eine Bijektion ist. Dann gilt für alle $n \geq M_{\varepsilon}$, dass $|a - b_n| = |a - a_{\sigma(n)}| < \varepsilon$. Somit folgt $\lim_{n \to \infty} b_n = a$.

- (c) Sei $(x_n)_{n\geq 1}$ eine Cauchy-Folge in \mathbb{R} . Dann:
 - \bigcirc konvergiert die Reihe $\sum_{k\geq 1} \sqrt{x_k}$;

Falsch: Zum Beispiel ist die konstante Folge $x_n = 1$ eine Cauchy-Folge, aber die Reihe $\sum_{k \geq 1} \sqrt{1} = \sum_{k \geq 1} 1$ ist divergent.

 \bigcirc kann $(x_n)_{n\geq 1}$ unbeschränkt sein;

Falsch: Jede Cauchy-Folge konvergiert in \mathbb{R} , und ist daher beschränkt.

ullet gibt es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$, so dass für alle $m, n \geq N$

$$|x_m - x_n| < \varepsilon$$
.

Richtig: Das ist die Definition einer Cauchy-Folge.

- (d) Seien $X_n = \left[\frac{n-1}{2n}, \frac{n+1}{2n}\right)$ und $Y_n = \left[n^2 n, \infty\right)$ für $n \ge 1$. Welche der folgenden Aussagen ist richtig?
 - $\bigcirc X_n \subset X_{n+1}$ für jedes $n \ge 1$;
- \bigcirc es existiert $n \ge 1$, so dass $Y_n \subset Y_{n+1}$;

 $\bullet \ \bigcap_{n\geq 1} X_n \neq \emptyset;$

 $\bigcirc \cap_{n\geq 1} Y_n \neq \emptyset.$

Lösung: $\bigcap_{n\geq 1} X_n = \{1/2\}.$

- (e) Sei $\sum_{k\geq 1} a_k$ eine reelle oder komplexe Reihe. Welche der folgenden Aussagen ist richtig?
 - \bigcirc Wenn $\lim_{n\to\infty} a_n = 0$, dann konvergiert die Reihe $\sum_{k\geq 1} a_k$.

Falsch: Gemäss Beispiel 2.7.3 divergiert die harmonische Reihe $\sum_{k\geq 1} 1/k$, obwohl $\lim_{n\to\infty} 1/n=0$.

• Wenn die Reihe $\sum_{k>1} a_k$ konvergiert, dann gilt $\lim_{n\to\infty} a_n = 0$.

Richtig: Die Partialsummen $S_n = \sum_{k=1}^n a_k$ konvergieren gegen $\sum_{k=1}^\infty a_k$, und $a_n = S_n - S_{n-1}$ für $n \geq 2$. Somit folgt aus der Konvergenz der Reihe, dass

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \sum_{k=1}^{\infty} a_n - \sum_{k=1}^{\infty} a_n = 0.$$

 \bigcirc Wenn die Folge $(S_n)_{n\geq 1}$ der Partialsummen beschränkt ist, dann konvergiert die Reihe $\sum_{k\geq 1} a_k$.

Falsch: Für $a_k = (-1)^k$ ist die Folge der Partialsummen gegeben durch $S_n = -1$ für n ungerade und $S_n = 0$ für n gerade. Die Folge der Partialsummen ist also beschränkt, konvergiert jedoch nicht.

 \bigcirc Wenn die Reihe $\sum_{k\geq 1}a_k$ konvergiert, dann gilt $\lim_{n\to\infty}n^2a_n=0.$

Falsch: Zum Beispiel konvergiert mit $a_k = 1/k^2$ die Reihe $\sum_{k\geq 1} 1/k^2$ (Beispiel 2.7.8 im Skript), aber $\lim_{n\to\infty} n^2 a_n = 1$.

(f) Was ist der Wert der Reihe $\sum_{k\geq 1} 1/(4k^2-1)$?

 \bigcirc 1

- •
- $\bigcirc \frac{1}{3}$
- $\bigcirc \frac{1}{4}$

Lösung: Durch Partialbruchzerlegung erhalten wir

$$\frac{1}{4k^2 - 1} = \frac{1}{2(2k - 1)} - \frac{1}{2(2k + 1)}$$

für alle $k \geq 1$. Für die Folge $(S_n)_{n\geq 1}$ der Partialsummen impliziert dies

$$S_n = \sum_{k=1}^n \frac{1}{4k^2 - 1} = \frac{1}{2} - \frac{1}{2(2n+1)}$$

für alle $n \ge 1$. Somit ist

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{2(2n+1)} \right) = \frac{1}{2}.$$

3.2. Komplexe Folgen. Entscheiden Sie in den folgenden Fällen, ob die komplexe Folge $(z_n)_{n\geq 1}$ konvergiert oder nicht. Im Falle der Konvergenz, bestimmen Sie den Grenzwert.

(a)
$$z_n = \left(\frac{1}{1+i}\right)^n$$

Lösung: Es gilt

$$\left| \frac{1}{1+i} \right| = \frac{1}{|1+i|} = \frac{1}{\sqrt{2}} < 1.$$

Somit folgt $\lim_{n\to\infty} \left(\frac{1}{1+i}\right)^n = 0.$

(b)
$$z_n = \frac{n^2 + 2 - n \cdot i}{n - n^2 \cdot i}$$

Lösung: Indem wir Zähler und Nenner durch n^2 dividieren und Rechenregeln für konvergente Folgen anwenden, finden wir

$$\lim_{n \to \infty} \frac{n^2 + 2 - n \cdot i}{n - n^2 \cdot i} = \lim_{n \to \infty} \frac{1 + \frac{2}{n^2} - \frac{i}{n}}{\frac{1}{n} - i} = \frac{1}{-i} = i.$$

(c)
$$z_n = a^n$$
 für ein $a \in \mathbb{C}$ mit $|a| = 1$

Lösung: Für alle $n \geq 1$ gilt aufgrund der Rechenregeln für den komplexen Absolutbetrag, dass

$$|z_{n+1} - z_n| = |a^{n+1} - a^n| = \underbrace{|a|^n}_{=1} |a - 1| = |a - 1|.$$

Somit kann diese Folge $(z_n)_{n\geq 1}$ nur dann eine Cauchy-Folge sein, wenn a=1 gilt. Daraus folgt, dass die Folge für $a\neq 1$ nicht konvergieren kann. Im Fall a=1 ist die Folge konstant mit $z_n=1$ für alle $n\geq 1$, und konvergiert daher gegen 1.

3.3. Folge mit summierbaren Abständen. Sei $(z_n)_{n\geq 1}$ eine komplexe Folge mit der Eigenschaft, dass

$$|z_{n+1} - z_n| \le \frac{1}{2^n}$$

für alle $n \geq 1$. Zeigen Sie, dass $(z_n)_{n \geq 1}$ konvergiert.

Hinweis: Zeigen Sie, dass $(z_n)_{n\geq 1}$ eine Cauchy-Folge ist.

Lösung: Sei $m > n \ge 1$. Dann gilt aufgrund der Dreiecksungleichung:

$$\begin{aligned} |z_n - z_m| &= |z_n - z_{n+1} + z_{n+1} - z_{n+2} + z_{n+2} - \dots + z_{m-1} - z_m| \\ &\leq |z_n - z_{n+1}| + |z_{n+1} - z_{n+2}| + \dots + |z_{m-1} - z_m| \\ &\leq \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}} = \sum_{k=n}^{m-1} \frac{1}{2^k}. \end{aligned}$$

D-INFK Analysis I ETH Zürich
Dr. R. Prohaska Lösung 3 FS 2024

Auf die letzte obere Schranke wenden wir nun das Beispiel 2.7.2 der geometrischen Reihe an:

$$\sum_{k=n}^{m-1} \frac{1}{2^k} = \frac{1}{2^n} \sum_{k=0}^{m-n-1} \frac{1}{2^k} \le \frac{1}{2^n} \sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{2^{n-1}}.$$

Wir haben also gezeigt, dass für alle $m > n \ge 1$ die Ungleichung $|z_n - z_m| \le 1/2^{n-1}$ gilt. Dies impliziert, dass $(z_n)_{n\ge 1}$ eine Cauchy-Folge ist. Gemäss Satz 2.6.6(1) ist die Folge also konvergent.

- **3.4. Limes superior und Limes inferior I.** Sei $x_n = 2^n(1 + (-1)^n) + 1$ für $n \ge 1$. Bestimmen Sie (mit Beweis):
- (a) $\liminf_{n\to\infty} x_n$

Lösung: Für alle $n \ge 1$ gilt $x_n \ge 1$ und wenn n ungerade ist, dann $x_n = 1$. Für alle $n \in \mathbb{N}$ gilt also, dass $\inf\{x_k \mid k \ge n\} = 1$. Daraus folgt, dass

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \inf \{ x_k \mid k \ge n \} = 1.$$

(b) $\limsup_{n\to\infty} x_n$

Lösung: Für gerade n gilt $x_n = 2^{n+1} + 1$, was nach oben unbeschränkt ist. Für alle $n \in \mathbb{N}$ gilt also, dass

$$\sup\{x_k \mid k \ge n\} \ge \sup\{2^{k+1} + 1 \mid k \ge n, k \text{ gerade}\} = \infty.$$

Daraus folgt, dass $\limsup_{n\to\infty} x_n = \infty$.

(c) $\liminf_{n\to\infty} \frac{x_{n+1}}{x_n}$

Lösung: Wir bemerken zuerst, dass $x_{n+1}/x_n \ge 0$ für alle $n \ge 1$. Wenn n gerade ist, dann gilt $\frac{x_{n+1}}{x_n} = 1/x_n = 1/(2^{n+1}+1)$, was gegen 0 konvergiert. Für alle $n \in \mathbb{N}$ gilt also, dass

$$0 \le \inf\{x_{k+1}/x_k \mid k \ge n\} \le \inf\{1/(2^{k+1}+1) \mid k \ge n, \ k \text{ gerade}\} = 0.$$

Daraus folgt, dass

$$\liminf_{n \to \infty} (x_{n+1}/x_n) = 0 = \lim_{n \to \infty} \inf\{x_{k+1}/x_k \mid k \ge n\} = 0.$$

13. März 2024 5/7

(d) $\limsup_{n\to\infty} \frac{x_{n+1}}{x_n}$

Lösung: Wenn n ungerade ist, dann ist $\frac{x_{n+1}}{x_n} = x_{n+1} = 2^{n+2} + 1$, was nach oben unbeschränkt ist. Für alle $n \in \mathbb{N}$ gilt also, dass

Analysis I

Lösung 3

$$\sup\{x_{k+1}/x_k \mid k \ge n\} \ge \sup\{2^{k+2} + 1 \mid k \ge n, k \text{ ungerade}\} = \infty.$$

Daraus folgt, dass $\limsup_{n\to\infty} (x_{n+1}/x_n) = \infty$.

3.5. Limes superior und Limes inferior II. Sei $(x_n)_{n\geq 1}$ eine beschränkte Folge reeller Zahlen. Zeigen Sie, dass $\liminf_{n\to\infty} x_n$ der kleinste Häufungspunkt von $(x_n)_{n\geq 1}$ und $\limsup_{n\to\infty} x_n$ der grösste Häufungspunkt von $(x_n)_{n\geq 1}$ ist.

Lösung: Wir haben in der Vorlesung Folgendes bewiesen: Für alle $\varepsilon > 0$ gibt es ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ gilt, dass

$$x_n \in \left(\liminf_{n \to \infty} x_n - \varepsilon, \limsup_{n \to \infty} x_n + \varepsilon \right).$$

Hieraus folgt, dass alle Häufungspunkte der Folge $(x_n)_{n\geq 1}$ im abgeschlossenen Intervall [$\lim\inf_{n\to\infty}x_n$, $\lim\sup_{n\to\infty}x_n$] liegen müssen.

Nun müssen wir noch zeigen, dass der Limes inferior und Limes superior tatsächlich Häufungspunkte sind. Wir beweisen diese Behauptung nur für $\liminf_{n\to\infty} x_n$, da der Beweis für $\limsup_{n\to\infty} x_n$ analog verläuft. Sei also $r:=\liminf_{n\to\infty} x_n$. Wir zeigen nun, dass für jedes $\varepsilon>0$ und für jedes $N\in\mathbb{N}$ ein $k\geq N$ existiert, so dass $|x_k-r|<\varepsilon$. Dies wird implizieren, dass eine Teilfolge existiert, die gegen r konvergiert.

Betrachten wir hierzu die Folge $(b_n)_{n\geq 1}$ in der Definition des Limes inferior, die in Abschnitt 2.3 des Skripts eingeführt wurde. Da sie gegen r konvergiert, können wir für gegebenes $\varepsilon>0$ und $N\in\mathbb{N}$ ein $k'\geq N$ finden, so dass $|b_{k'}-r|<\frac{\varepsilon}{2}$. Aufgrund der Definition von $b_{k'}$ können wir nun ein $k\geq k'$ finden, so dass $b_{k'}\leq x_k< b_{k'}+\frac{\varepsilon}{2}$. Zusammen folgt

$$|x_k - r| \le |x_k - b_{k'}| + |b_{k'} - r| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

was wir beweisen wollten.

Zur Konstruktion der Teilfolge von $(x_n)_{n\geq 1}$, die gegen r konvergiert, wählen wir eine streng monoton steigende Indexfolge $(l(n))_n$, so dass $|x_{l(n)} - r| < \frac{1}{n}$. Dies machen wir induktiv: Wir wählen den ersten Index l(1) so, dass $|x_{l(1)} - r| < 1$. Haben wir schon die Indizes $l(1) < l(2) < \cdots < l(n)$ mit der gewünschten Eigenschaft konstruiert, dann wählen wir $l(n+1) \geq l(n) + 1$ so, dass $|x_{l(n+1)} - r| < \frac{1}{n+1}$. Dies ist möglich, indem wir in der oben bewiesenen Aussage N := l(n) + 1 und $\varepsilon := \frac{1}{n+1}$ setzen. Induktiv

6/7 13. März 2024

erhalten wir also die gewünschte Teilfolge, welche dann die Eigenschaft hat, dass $|x_{l(n)} - r| \to 0$ für $n \to \infty$. Die konstruierte Teilfolge konvergiert also gegen r.

3.6. Konvergenz und Häufungspunkte. Sei $(x_n)_{n\geq 1}$ eine beschränkte Folge reeller Zahlen und $c\in\mathbb{R}$. Verwenden Sie den Satz von Bolzano-Weierstrass um zu zeigen:

 $(x_n)_{n\geq 1}$ konvergiert gegen $c\iff$ jede konvergente Teilfolge von $(x_n)_{n\geq 1}$ hat c als Grenzwert

Lösung:

- ⇒ Sei $(x_{l(n)})_{n\geq 1}$ eine Teilfolge von $(x_n)_{n\geq 1}$. Gegeben $\varepsilon>0$, wählen wir $N\in\mathbb{N}$ mit $|x_n-c|<\varepsilon$ für alle $n\geq N$, was aufgrund der Konvergenz von $(x_n)_{n\geq 1}$ gegen c möglich ist. Da die Indizes der Teilfolge streng monoton wachsend sind, gilt $l(n)\geq n$ für alle $n\geq 1$. Also gilt für alle $n\geq N$, dass $l(n)\geq N$, und damit folgt $|x_{l(n)}-c|<\varepsilon$ für alle $n\geq N$. Wir haben also bewiesen, dass aus der Konvergenz von $(x_n)_{n\geq 1}$ gegen c folgt, dass jede Teilfolge auch gegen c konvergiert.
- \Leftarrow Sei [a,b] ein Intervall in \mathbb{R} , so dass $x_n \in [a,b]$ für alle $n \geq 1$. Nehmen wir an, dass die Folge $(x_n)_{n\geq 1}$ nicht gegen c konvergiert. Für den Beweis der gewünschten Implikation " \Leftarrow " (über die Kontraposition) müssen wir dann eine konvergente Teilfolge konstruieren, deren Grenzwert nicht c ist. Die Negation der Konvergenz von $(x_n)_{n\geq 1}$ gegen c bedeutet:

$$\exists \varepsilon > 0 \, \forall N \in \mathbb{N} \, \exists n \geq N \colon |x_n - c| \geq \varepsilon.$$

Ähnlich wie in der Lösung der Aufgabe 3.5 können wir dies zur Konstruktion einer Teilfolge $(x_{l(n)})_{n\geq 1}$ nutzen, mit der Eigenschaft, dass $|x_{l(n)}-c|\geq \varepsilon$ für alle $n\geq 1$. Alle Folgenglieder der Teilfolge sind also in der Menge $K:=[a,c-\varepsilon]\cup [c+\varepsilon,b]$ enthalten. Wir wenden nun den Satz von Bolzano-Weierstrass auf diese Teilfolge an. Daraus erhalten wir eine weitere Teilfolge, die konvergent ist. D.h. es gibt eine Folge (l'(n)) von Indizes, so dass $(x_{l(l'(n))})_{n\geq 1}$ konvergiert. Setzen wir L(n):=l(l'(n)). Dann ist $(x_{L(n)})_{n\geq 1}$ also eine konvergente Teilfolge von $(x_n)_{n\geq 1}$, deren Folgenglieder alle in $K=[a,c-\varepsilon]\cup [c+\varepsilon,b]$ enthalten sind. Der Grenzwert $\lim_{n\to\infty}x_{L(n)}$ kann also nicht c sein.

13. März 2024 7/7