Numéro d'anonymat:

Examen 2I003

Vendredi 19 Janvier 2018, 2 heures aucun document autorisé

Exercice 1 – Un exemple à ne pas suivre

Dans cet exercice, les seuls caractères considérés sont des lettres en minuscule. On dit qu'une chaîne de caractères est un *palindrome* si elle reste la même, qu'on la lise de gauche à droite ou de droite à gauche.

Par exemple:

- le mot vide est un palindrome, tout mot réduit à une seule lettre est un palindrome,
- "noyon", "elle", "esoperesteicietserepose", "eibohpphobie" sont des palindromes,
- "maman", "papa", "marmelade" n'en sont pas.

Soit $m = m_0 \dots m_{n-1}$ un mot de longueur n. On appelle *sous-mot* du mot m tout mot de la forme $m_{i_1} \dots m_{i_k}$ avec $0 \le i_1 < i_2 < \dots < i_k \le n-1$.

Par exemple : "noel" est un sous-mot de "nouvelan" ($i_1 = 0, i_2 = 1, i_3 = 4, i_4 = 5$), mais "babar" n'est pas un sous-mot de "barbapapa".

Dans cet exercice nous voulons trouver, pour un mot m donné, un sous-mot de m qui soit le plus long palindrome possible.

Par exemple, pour "noyon", la réponse est "noyon", mais pour "marmelade", il y a plusieurs réponses possibles : "mam", "ara", "mrm", etc. Dans ce cas, notre algorithme renverra une seule des possibilités.

Préliminaires

Rappels:

- la numérotation des positions dans une chaîne de caractères commence à 0;
- la fonction len renvoie la longueur d'un mot (len (m) =n, par exemple : len ("babar") =5). On considère les deux fonctions :

```
def est_palindrome_rec(m, d, f):
    if f <= d:
        return True
    if m[d] != m[f]:
        return False
        return est_palindrome_rec(m, d + 1, f - 1)

et

def est_palindrome(m):
    return est_palindrome_rec(m, 0, len(m) - 1)</pre>
```

Question 1

- 1. Quelle est la valeur de est_palindrome_rec("camarade", 1, 3)?
 de est_palindrome_rec("barbapapa", 0, 4)?
- 2. Quelle est la valeur de est_palindrome ("noyon")?

où m est une chaîne de caractères, d et f des entiers naturels.

ıestic	on 2
se Ir	Nontrer que, pour $d, f \in \{0, \ldots, n-1\}$ tels que $f \geq d-1$, est_palindrome_rec (m, d, f) etermine et renvoie la valeur True si $m_d \ldots m_f$ est un palindrome, et la valeur False sinon. Adication. Faire un raisonnement par récurrence forte sur $k=f-d+1$ (longueur de $m_d \ldots m_f$), in prenant comme cas de base $k \leq 1$.
	n déduire que ${\tt est_palindrome}$ (m) renvoie la valeur ${\tt True}$ si m est un palindrome, et la valeur ${\tt alse}$ sinon.
	on 3 r la complexité de $est_palindrome$ dans le meilleur cas et dans le pire cas, en précisant quel est eur cas et quel est le pire cas pour un mot de longueur n .

Un premier algorithme, très lent

Voici un premier algorithme permettant, étant donné un mot m, de calculer un plus long sous-mot de m qui soit un palindrome. Celui-ci consiste à calculer tous les sous-mots de m, à tester pour chacun d'eux s'il est un palindrome (en utilisant la fonction <code>est_palindrome</code>) et à retenir le plus long (ou l'un des plus longs, s'il y en a plusieurs).

Ouestion 4

Combien y-a-t-il de sous-mots pour un mot de longueur n?

On admet que la complexité du calcul d'un sous-mot d'un mot m de longueur n est en $\Theta(n)$.

Question 5

En déduire la complexité de l'algorithme proposé, pour un mot de longueur n.

Un deuxième algorithme, un peu moins lent

On considère la fonction :

```
def plp(m, d, f):
    if f < d:
        return ""
    if f == d:
        return m[d]
    if f == d + 1:
        if m[d] == m[f]:
            return m[d] + m[f]
        return m[d]
    if m[d] == m[f]:
        return m[d] + plp(m, d + 1, f - 1) + m[f]
    s1 = plp(m, d + 1, f)
    s2 = plp(m, d, f - 1)
    if len(s1) > len(s2):
        return s1
    return s2
```

où m est une chaîne de caractères, d et f des entiers naturels tels que $d, f \in \{0, \dots, n-1\}$ et $f \ge d-1$.

Question 6 Dessiner un arbre des appels pour plp("perle", 0, 4) et préciser les sous-mots retournés par chaque appel récursif.
Question 7 On note $c(k)$ le nombre de concaténations effectuées par plp (m, d, f), avec $k=f-d+1$.
1. Cas de base : calculer $c(0)$, $c(1)$ et montrer que $c(2) \leq 1$.
2. Montrer que $c(k)$ vaut $2 + c(k-2)$ ou bien $2c(k-1)$.
3. Montrer, par récurrence sur k , que $c(k) \leq 2^k$.
4. En déduire la complexité de plp (m, 0, len (m) −1) dans le pire cas.
5. Si le mot m est un palindrome, quelle est la valeur de $c(k)$ dans tous les appels récursifs ? Quelle est la complexité de plp (m, 0, len (m) -1) dans le meilleur cas ?

Question 8
Montrer que la fonction plp (m, d, f) se termine, par récurrence forte sur $k = f - d + 1$, pour tout $k \ge 0$.
Question 9 – Bonus Soit la propriété :
$\mathcal{P}(k)$: plp (m, d, f) calcule un sous-mot de $m_d \dots m_f$ qui est le plus long palindrome possible.
On veut montrer, par récurrence sur $k = f - d + 1$, que la propriété $\mathcal{P}(k)$ est vraie pour tout $k \leq n$.
 Cas de base : montrer que P(k) est vraie pour k ≤ 2. Induction : soit k > 2, on suppose que P(j) est vraie pour tout j < k, montrer que P(k) est vraie.
Indication. On distinguera deux cas : le cas où m_d est égal à m_f et le cas où m_d est différent de m_f .
3. Conclure.

uestion 10				
	1 a m (m) 1) a alayla ym	saus mat da ma qui a	at la mlua lana malinda	oma massibla
n déduire que plp (m, 0,	ten (m) -1) calcule un	sous-moi de m qui e	st le plus long paillidi	ome possible.

Épilogue

Ces deux algorithmes sont à prohiber car leurs complexités sont beaucoup trop élevées. On peut faire beaucoup mieux en utilisant la programmation dynamique 1 , qui permet d'écrire un algorithme en $\Theta(n^2)$ (où n est la longueur du mot).

Exercice 2 – Graphes bipartis

Dans cet exercice, G = (V, E) désigne un graphe **non orienté connexe** possédant au moins deux sommets. n désigne le nombre de sommets, et m le nombre d'arêtes.

Si H est un ensemble, on rappelle qu'une partition est une suite de sous-ensembles H_0, \cdots, H_k non vides de H telle que $H = \bigcup_{i=0}^k H_i$ et $\forall (i,j) \in \{1,\cdots,k\}^2$ tels que $i \neq j, H_i \cap H_j = \emptyset$.

Un graphe G=(V,E) est biparti si il existe une partition des sommets en deux ensembles V_0 et V_1 tels que toute arête $e=\{x,y\}\in E$ possède un sommet dans V_0 et un sommet dans V_1 . On dira alors que V_0 et V_1 forment une bipartition du graphe.

Un cycle est impair (pair) si il contient un nombre impair (pair) d'arêtes. On considère qu'un sommet ne forme pas à lui seul un cycle.

Soient également les graphes $G_1=(V_1,E_1),\ G_2=(V_2,E_2)$ et $G_3=(V_3,E_3)$ définis par les ensembles de sommets $V_1=V_2=V_3=\{1,2,3,4,5,6\}$ et les ensembles d'arêtes $E_1=\{1,2,3,4,5,6\}$ et les ensembles d'arêtes $E_1=\{1,2,4,4,5,6\}$ et les ensembles et les ensembles et les ensembles et les en

^{1.} La programmation dynamique est étudiée dans l'UE d'Algorithmique de L3

 $\{\{1,4\},\{1,5\},\{1,6\},\{2,4\},\{3,4\}\}, E_2 = \{\{1,2\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{3,5\},\{4,6\}\}, E_3 = \{\{1,2\},\{1,5\},\{2,3\},\{2,4\},\{3,5\},\{4,6\}\}.$

Question 1

- 1. Donnez la définition d'un graphe non orienté connexe. Donnez la définition d'un arbre.
- 2. Est-ce-que les graphes G_1 , G_2 , G_3 sont connexes? Est-ce-que ce sont des arbres? Justifiez votre réponse.
- 3. Est-ce-que les graphes G_1 , G_2 et G_3 sont bipartis ? Donnez le cas échéant une bipartition.

Question 2

- 1. Donnez la matrice sommet-sommet du graphe G_1 . Donnez la représentation de G_1 sous forme de listes d'adjacences.
- 2. Quel est l'ordre de grandeur de la taille de la représentation sommet-sommet et par listes d'adjacences d'un graphe *G* ? Quelle est la relation entre le nombre de sommets et le nombres d'arêtes d'un arbre ? Que deviennent alors les ordres de grandeur de la taille de la représentation sommet-sommet et par listes d'adjacences si *G* est un arbre ?

Moı	estion 3 ntrez par récurrence faible sur le nombre de sommets que tout arbre possèdant au moins deux sommets
est l	piparti. On admet que tout arbre possède au moins un sommet de degré 1 qui correspond à une feuille.
	estion 4
	G un graphe connexe. Démontrez que si G est biparti, alors tous les cycles de G sont pairs. Indication : e un raisonnement direct à partir d'une bipartition du graphe.

Question 5
Soit G un graphe connexe et soit x un sommet de $G = (V, E)$. Pour tout sommet $y \in V$, on note $\delta(y)$ la
valeur minimale en nombre d'arêtes d'une chaîne de x à y . Pour toute valeur $k \in \{0, \dots, n-1\}$, on note
Egalement D_k l'ensemble des sommets y de G tels que $\delta(y) = k$.
Dans cette question, on considère le graphe $G_3 = (V_3, E_3)$.
1. Calculez les valeur $\delta(y)$, $y \in V_3$ pour le sommet $x = 1$. En déduire les ensemble D_k , $k \in \{1, \dots, 5\}$
2. Calculez $V_0 = \bigcup_{k=0, kpair}^n D_k$ et $V_1 = \bigcup_{k=0, kimpair}^n D_k$. Qu'observez vous ?

Question 6

Soit G un graphe connexe.

- 1. Montrez que les ensembles $D_k \neq \emptyset$, $k \in \{1, \dots, n-1\}$ forment une partition de V
- 2. On suppose que G ne possède pas de cycle impair. Montrez par l'absurde que les ensembles $V_0 = \bigcup_{k=0, kpair}^n D_k$ et $V_1 = \bigcup_{k=0, kimpair}^n D_k$ forment une bipartition de G.
- 3. En déduire que G est biparti si et seulement si tous ses cycles sont pairs.

Question 7	
Soit x un sommet fixé de G . On suppose que, pour tout $y \in V$, on a calculé	$\delta \delta(y)$.
1. Décrire un algorithme qui calcule V_0 et V_1 .	
2. En déduire un algorithme qui détermine si un graphe est biparti.	