

K-plus proches voisins

UP: GL/BD

Réalisé par : Equipe ML Appliqué

Classification: Définition

Définition:

La classification permet de prédire si un élément est membre d'un groupe ou d'une catégorie donnée.

Classes:

Identification de groupes avec des profils particuliers.

Possibilité de décider de l'appartenance d'une entité a une classe.

Caractéristiques de classification:

Apprentissage supervisé: classes connues a l'avance.

Qualité de la classification (taux d'erreur).

Classification: Procéssus

Le processus d'apprentissage

Phase 1: Apprentissage

K- plus proches voisins (KNN)

Problématique: Prédire la catégorie d'un client pour une société de télécommunication.

Pour simplifier la compréhension de l'algorithme, nous ne considérerons que deux attributs . « Age » et "Income".

Étant donné le graphique ci-dessous, comment pouvons-nous procéder pour identifier la catégorie d'un

nouveau client?

	11001	0000	CIICI								
	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	(?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1.	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

1-NN 4: Total Service

A quel point peut-on peut croire notre jugement basé sur le 1-NN?

Choisissons K = 5

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

KNN, Comment il fonctionne?

- Prend des points étiquetés et les utilise pour prédire les étiquettes d'autres points.
- Classer un cas en fonction de sa similarité avec d'autres cas
- Dans la méthode KNN, les points proches les uns des autres sont appelés « voisins ».
- KNN est basé sur ce paradigme : les cas similaires ayant la même étiquette sont voisins. En effet, la distance entre deux cas est la mesure de leurs dissimilarité.

KNN Pseudo code:

- 1- Choisir la valeur de K
- 2- Calculer la distance de nouveau cas par rapport à tous les cas de jeu de données.
- 3- Chercher les K observations dans le jeu de données qui sont proches du nouveau cas.
- 4- Prédire la classe du nouveau cas en utilisant la vote

Exemple de classification

• Supposons que nous ayons un ensemble de données avec deux caractéristiques X1, X2 et deux classes O et 1.

	X1	X2	CLASSE
P1	1	2	0
P2	2	3	0
P3	3	3	1
P4	6	8	1

Nouveau point P5 avec X1= 4 et X2= 5.

• Quelle est sa classe si K = 3?

Problematique?

Comment calculer la distance?

Comment choisir la valeur de K?

Comment calculer la distance?

Distance euclidienne

Customer 1							
Age	Income	Education					
34	190	3					

Customer 2							
Age	Income	Education					
30	200	8					

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

= $\sqrt{(34-30)^2 + (190-200)^2 + (3-8)^2} = 11.87$

Comment choisir K?

- Si K est trop petit, le modèle sera sensible aux points de bruit.
- Un K plus grand fonctionne bien. Mais un K trop grand peut inclure des points majoritaires des autres classes.
- La règle empirique est K < sqrt(n), n est le nombre d'exemples (échantillons).

Comment choisir K?

Expérimentez avec différentes valeurs k en utilisant des techniques telles que :

- Recherche de grille : exécutez une recherche de grille, en testant n_neighbors sur la plage définie.
- 1. Définir la plage de valeurs pour k
- 2. Créer un modèle KNN
- 3. La recherche de grille va tester toutes les combinaisons possibles des hyperparamètres spécifiés.
- 4. Elle utilise la validation croisée pour évaluer chaque combinaison.
- 5. Exécuter la recherche de grille

Une fois la recherche terminée, vous pouvez identifier la valeur de k qui donne les meilleures performances (par exemple, la plus grande précision ou le plus faible taux d'erreur).

Comment choisir K?

■ <u>La méthode du coude pour sélectionner le k qui maximise les performances du modèle:</u>

La méthode du coude permet de déterminer la valeur optimale de K en évaluant la performance du modèle (par exemple, l'erreur de classification) pour différentes valeurs de K.

- 1. Choisir une plage de valeurs pour K (par exemple, K = 1 à K = 10).
 - Pour chaque valeur de K, entraîner le modèle et calculer l'erreur.
 - 3. Tracer un graphique de l'erreur en fonction de K.
 - Identifier le "coude" dans la courbe, c'est-à-dire le point où l'erreur commence à se stabiliser. Ce point correspond à la valeur optimale de K.

On remarque que l'erreur diminue rapidement jusqu'à K=3 puis se stabilise. Le "coude" se situe donc autour de K=3 qui est la valeur optimale.

Advantages de KNN

- Simplicité et facilité d'utilisation
- Efficace pour les données non linéaires
- Interprétabilité : possibilité de voir quels points de données ont influencé la prédiction d'un nouveau point de données en examinant les k voisins les plus proches. Cela peut être utile pour comprendre le processus de prise de décision du modèle.
- Rapide à installer et à utiliser (pas de phase de formation).
- Polyvalence : KNN peut être utilisé à la fois pour des tâches de classification et de régression... etc.

Limitations de KNN

- Coût de calcul : trouver les voisins les plus proches pour chaque prédiction peut être coûteux en termes de calcul
- Stockage des données : KNN nécessite le stockage de l'intégralité des données de formation pour la prédiction
- Sensible aux fonctionnalités non pertinentes : les fonctionnalités non pertinentes peuvent fausser les calculs de distance et amener l'algorithme à identifier des voisins les plus proches trompeurs.
- Sensible au bruit
- Le choix de K est crucial.