Discrete Mathematics (ITPC-309)

Algebraic Structures - Part IV

Dr. Sanga Chaki

Department of Information Technology

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar

Contents

MITOMAL MOTIVILE ST. SECHNOLOGY

- 1. Cosets
- 2. Factor group
- 3. Permutation groups
- 4. Normal subgroup

Cosets

- Let H be a subgroup of the group G whose operation is written multiplicatively.
- 2. Given an element g of G, the left cosets of H in G are the sets obtained by multiplying each element of H by a fixed element g of G

$$gH = \{gh : h \text{ an element of } H\} \text{ for } g \text{ in } G.$$

- 3. This is the left coset, the element g is a left factor
- 4. The right cosets are defined similarly, the element g is now a right factor

$$Hg = \{hg : h \text{ an element of } H\} \text{ for } g \text{ in } G.$$

5. Any two left cosets (respectively right cosets) are either disjoint or are identical as sets

Cosets - Example

- 1. Let G be $\{I, a, a^2, b, ab, a^2b\}$.
- 2. In this group, $a^3 = b^2 = I$ and $ba = a^2b$. The Cayley table (a Cayley table describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table):

*	I	a	a^2	b	ab	a^2b
I	I	a	a^2	b	ab	a^2b
а	a	a^2	I	ab	a^2b	b
a^2	a^2	I	a	a^2b	b	ab
b	b	a^2b	ab	I	a^2	а
ab	ab	b	a^2b	a	I	a^2
a^2b	a^2b	ab	b	a^2	a	I

- 1. Let T be the subgroup {I, b}.
- 2. The (distinct) left cosets of T are:

$$IT = T = \{I, b\}, aT = \{a, ab\}, and a^2T = \{a^2, a^2b\}.$$

- 1. Since all the elements of G have appeared in one of these cosets, generating any more can not give new cosets.
- 2. For eg, $abT = \{ab, a\} = aT$.

Cosets

- 1. The right cosets of T are:
 - $TI = T = \{I, b\},\$
 - Ta = $\{a, ba\} = \{a, a2b\}$, and
 - Ta2 = {a2, ba2} = {a2, ab}.

Some properties of cosets

- 1. A subgroup H of a group G may be used to decompose the underlying set of G into disjoint, equal-size subsets called cosets.
- 2. There are left cosets and right cosets.
- 3. Cosets (both left and right) have the same number of elements (cardinality) as does H.
- 4. Furthermore, H itself is both a left coset and a right coset.
- 5. The number of left cosets of H in G is equal to the number of right cosets of H in G. This common value is called the index of H in G and is usually denoted by [G : H].

Coset Example:

WILLIAMONAL MOTIVILIES OF THE STATE OF THE S

- 1. For the group $(Z_8, +)$ where the binary operation is addition modulo 8, and if $H = \{0, 4\}$
- 2. There are four left cosets of H: H itself, 1 + H, 2 + H, and 3 + H (written using additive notation since this is the additive group).
- 3. Together they partition the entire group G into equal-size, non-overlapping sets. The index [G:H] is 4.
- 4. Find the right cosets.

Normal subgroup

- 1. A subgroup H of a group G is normal in G if gH=Hg for all g∈G.
- 2. That is, a normal subgroup of a group G is one in which the right and left cosets are precisely the same.

3. Example:

Let G be an abelian group. Every subgroup H of G is a normal subgroup.

Solution

Since gh = hg for all $g \in G$ and $h \in H$, it will always be the case that gH = Hg.

Factor groups and Permutation groups

- 1. If N is a normal subgroup of a group G, then the cosets of N in G form a group G/N under the operation (aN)(bN)=abN. [This is pronounced G mod N]
- 2. This group is called the factor or quotient group of G and N.
- 3. A permutation group is a group G whose elements are permutations of a given set M and whose group operation is the composition of permutations in G (which are thought of as bijective functions from the set M to itself).
- 4. For instance, a particular permutation of the set $\{1, 2, 3, 4, 5\}$ can be written as follows, where σ satisfies $\sigma(1) = 2$, $\sigma(2) = 5$, $\sigma(3) = 4$, $\sigma(4) = 3$, and $\sigma(5) = 1$

$$\sigma = \left(egin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \ 2 & 5 & 4 & 3 & 1 \end{array}
ight)$$

5. The elements of M need not appear in any special order in the first row, so the same permutation could also be written as

$$\sigma = \left(egin{array}{ccccc} 3 & 2 & 5 & 1 & 4 \ 4 & 5 & 1 & 2 & 3 \end{array}
ight)$$