#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

다중선형회귀

독립변수가 두 개 이상인 경우의 회귀분석

분석 정확도를 높이기 위해 적절하지 않은 변수를 추려내는 과정을 반복적으로 수행하여 최적의 독립변수 그룹을 찾아내는 것을 목표로 한다.

#01. 작업 준비

1) 패키지 참조

```
from pandas import read_excel, DataFra
from statsmodels.formula.api import of
from matplotlib import pyplot as plt
import seaborn as sb
import sys
import os
import statsmodels.api as sm
```

sys.path.append(os.path.dirname(os.pat
from helper import ext_ols, my_ols

2) 데이터 가져오기

필드	설명
CRIM	범죄율
ZN	25,000 평방피트를 초과 거주지역 비율
INDUS	비소매상업지역 면적 비율
CHAS	찰스강의 경계에 위치한 경우는 1, 아니면 0
NOX	일산화질소 농도

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

필드	설명
RM	주택당 방 수
AGE	1940년 이전에 건축된 주택의 비율
DIS	직업센터의 거리
RAD	방사형 고속도로까지의 거리
TAX	재산세율
PTRATIO	학생/교사 비율
В	인구 중 흑인 비율
LSTAT	인구 중 하위 계층 비율
MEDV	집값
CAT.MEDV	\$3000 이상 여부

df = read_excel("https://data.hossam.)
df

	CRIM	ZN	INDUS	CHAS	NC
0	0.00632	18.0	2.31	0	0.53
1	0.02731	0.0	7.07	0	0.46
2	0.02729	0.0	7.07	0	0.46
3	0.03237	0.0	2.18	0	0.45
4	0.06905	0.0	2.18	0	0.45
•••	•••				
501	0.06263	0.0	11.93	0	0.57
502	0.04527	0.0	11.93	0	0.57
503	0.06076	0.0	11.93	0	0.57
504	0.10959	0.0	11.93	0	0.57
505	0.04741	0.0	11.93	0	0.57
4					•

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

506 rows × 15 columns

df.shape

(506, 15)

#02. 파이썬의 ols 객체로 분석 (맛 보기)

임의의 독립변수를 선정하여 분석 수행

```
model = ols("MEDV ~ CRIM + INDUS", dat
fit = model.fit()
fit.summary()
```

Dep. Variable:	MEDV	R-squared:	0.27
Model:	OLS	Adj. R- squared:	0.27
Method:	Least Squares	F-statistic:	96.8
Date:	Wed, 26 Jul 2023	Prob (F- statistic):	2.66 36
Time:	10:39:36	Log- Likelihood:	-175
No. Observations:	506	AIC:	3522
Df Residuals:	503	BIC:	3534
Df Model:	2		
Covariance Type:	nonrobust		
4			•

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

	coef	std err	t	P> t
Intercept	29.2483	0.670	43.624	0.000
CRIM	-0.2455	0.044	-5.536	0.000
INDUS	-0.5234	0.056	-9.414	0.000
4)

Omnibus:	193.751	Durbin- Watson:	0.739
Prob(Omnibus):	0.000	Jarque- Bera (JB):	653.88
Skew:	1.800	Prob(JB):	1.03e- 142
Kurtosis:	7.248	Cond. No.	27.7
4			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스트로 생성

```
cls = list(df.columns)
cls.remove("MEDV")
cls.remove("CAT. MEDV")
cls
```

```
['CRIM',
'ZN',
'INDUS',
```

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

'CHAS',

'NOX',

'RM',

'AGE',

'DIS',

'RAD',

'TAX',

'PTRATIO',

'B',

'LSTAT']

분석 수행

model, fit, summary, table, result, go

summary

Dep. Variable:	MEDV	R-squared:	0.74
Model:	OLS	Adj. R- squared:	0.73
Method:	Least Squares	F-statistic:	108.
Date:	Wed, 26 Jul 2023	Prob (F- statistic):	6.72 135
Time:	10:39:36	Log- Likelihood:	-149
No. Observations:	506	AIC:	3026
Df Residuals:	492	BIC:	3085
Df Model:	13		
Covariance Type:	nonrobust		
4			>

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

	coef	std err	t	P> t
Intercept	36.4595	5.103	7.144	0.000
CRIM	-0.1080	0.033	-3.287	0.001
ZN	0.0464	0.014	3.382	0.001
INDUS	0.0206	0.061	0.334	0.738
CHAS	2.6867	0.862	3.118	0.002
NOX	-17.7666	3.820	-4.651	0.000
RM	3.8099	0.418	9.116	0.000
AGE	0.0007	0.013	0.052	0.958
DIS	-1.4756	0.199	-7.398	0.000
RAD	0.3060	0.066	4.613	0.000
TAX	-0.0123	0.004	-3.280	0.001
PTRATIO	-0.9527	0.131	-7.283	0.000
В	0.0093	0.003	3.467	0.001
LSTAT	-0.5248	0.051	-10.347	0.000

Omnibus:	178.041	Durbin- Watson:	1.078
Prob(Omnibus):	0.000	Jarque- Bera (JB):	783.12
Skew:	1.521	Prob(JB):	8.84e- 171
Kurtosis:	8.281	Cond. No.	1.51e+
1			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

[2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

분석 결과 표 확인

table

		В	표준 오차	β	
종속 변수	독립변 수				
MEDV	CRIM	-0.1080	0.033	0	_{;
	ZN	0.0464	0.014	0	3
	INDUS	0.0206	0.061	0	0
	CHAS	2.6867	0.862	0	3
	NOX	-17.7666	3.820	0	-4
	RM	3.8099	0.418	0	9
	AGE	0.0007	0.013	0	0
	DIS	-1.4756	0.199	0	-7
	RAD	0.3060	0.066	0	4
	TAX	-0.0123	0.004	0	-3
	PTRATIO	-0.9527	0.131	0	-7
	В	0.0093	0.003	0	3
4	LSTAT	-0.5248	0.051	0	

VIF가 10 이상인 값을 제외하고 다시 분석

model2, fit2, summary2, table2, result

summary2

05-다중선형회귀_강사님추가.ipynb

다중선형회귀

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

Dep. Variable:	MEDV	R-squared:	0.26
Model:	OLS	Adj. R- squared:	0.25
Method:	Least Squares	F-statistic:	59.6 ⁻
Date:	Wed, 26 Jul 2023	Prob (F- statistic):	5.23 33
Time:	10:39:36	Log- Likelihood:	-176
No. Observations:	506	AIC:	3534
Df Residuals:	502	BIC:	3551
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t
Intercept	21.9715	0.449	48.937	0.000
CRIM	-0.3398	0.042	-8.108	0.000
ZN	0.1199	0.015	7.761	0.000
CHAS	6.1729	1.392	4.435	0.000
4				K

Omnibus:	150.219	Durbin- Watson:	0.821
Prob(Omnibus):	0.000	Jarque- Bera (JB):	358.81 [°]
Skew:	1.524	Prob(JB):	1.21e- 78

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

Kurtosis:	5.779	Cond. No.	103.
-----------	-------	--------------	------

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

table2

		В	표준 오차	β	
종속 변수	독립 변수				
MEDV	CRIM	-0.3398	0.042	0	-8.108
	ZN	0.1199	0.015	0	7.761
	CHAS	6.1729	1.392	0	4.435
→					

result2

'R(0.263), R^2(0.258), F(59.67), 유의호

goodness2

'MEDV에 대하여 CRIM,ZN,CHAS로 예측하는 회

varstr2

['CRIM의 회귀계수는 -0.3398(p<0.05)로, M 'ZN의 회귀계수는 0.1199(p<0.05)로, MEDV

#01. 작업 준비

1) 패키지 참조

2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

'CHAS의 회귀계수는 6.1729(p<0.05)로, ME

변수를 다시 선정하여 진행

names3 = ["CRIM", "INDUS", "CHAS", "NO
result = my_ols(df, x=names3, y="MEDV")

result.summary

Dep. Variable:	MEDV	R-squared:	1.00
Model:	OLS	Adj. R- squared:	1.00
Method:	Least Squares	F-statistic:	7.50
Date:	Wed, 26 Jul 2023	Prob (F- statistic):	0.00
Time:	10:39:36	Log- Likelihood:	1462
No. Observations:	506	AIC:	-2.92
Df Residuals:	493	BIC:	-2.9´
Df Model:	12		
Covariance Type:	nonrobust		
4			>

	coef	std err	t	P>
Intercept	1.288e- 14	7.35e- 14	0.175	0.8
CRIM	1.931e-	4.61e-	0.419	0.6

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

	16	16		
INDUS	4.97e- 16	8.56e- 16	0.581	0.5
CHAS	3.9e-15	1.26e- 14	0.310	0.7
NOX	1.776e- 15	5.57e- 14	0.032	0.9
RM	-3.941e- 15	6.52e- 15	-0.604	0.5
AGE	-2.492e- 15	1.9e- 16	-13.116	0.0
DIS	2.227e- 15	2.76e- 15	0.806	0.4
TAX	3.691e- 16	3.28e- 17	11.262	0.0
PTRATIO	-7.147e- 16	1.86e- 15	-0.385	0.7
В	1.258e- 16	3.93e- 17	3.204	0.0
LSTAT	-5.967e- 16	8.03e- 16	-0.743	0.4
MEDV	1.0000	6.35e- 16	1.57e+15	0.0

Omnibus:	19.254	Durbin- Watson:	0.451
Prob(Omnibus):	0.000	Jarque- Bera (JB):	8.992
Skew:	-0.041	Prob(JB):	0.0112
Kurtosis:	2.352	Cond. No.	1.51e+0
4			•

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

result.table

		В	표준 오차	β	
종속 변수	독립변 수				
MEDV	CRIM	1.931e- 16	4.61e- 16	0	C
	INDUS	4.97e- 16	8.56e- 16	0	C
	CHAS	3.9e-15	1.26e- 14	0	C
	NOX	1.776e- 15	5.57e- 14	0	C
	RM	-3.941e- 15	6.52e- 15	0	_
	AGE	-2.492e- 15	1.9e- 16	0	_
	DIS	2.227e- 15	2.76e- 15	0	C
	TAX	3.691e- 16	3.28e- 17	0	1
	PTRATIO	-7.147e- 16	1.86e- 15	0	_
	В	1.258e- 16	3.93e- 17	0	3

05-다중선형회귀_강사님추가.ipynb

다중선형회귀

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

		В	표준 오차	β	
종속 변수	독립변 수				
	LSTAT	-5.967e- 16	8.03e- 16	0	_
	MEDV	1.0000	6.35e- 16	0	

#04. 결과 비교하기

실제집값 = df["MEDV"] 실제집값

24.0 0 21.6 1 2 34.7 3 33.4 4 36.2 • • • 22.4 501 502 20.6 503 23.9 504 22.0 505 11.9 Name: MEDV, Length: 506, dtype: float(

result1 = fit.predict(df.filter(cls))
result1

0 30.003843 1 25.025562 2 30.567597 3 28.607036 4 27.943524

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

501 23.533341 502 22.375719 503 27.627426 504 26.127967 505 22.344212

Length: 506, dtype: float64

result2 = fit2.predict(df.filter(['CR]
result2

0 24.127287 1 21.962235 2 21.962242 3 21.960515 21.948050 4 501 21.950232 502 21.956131 503 21.950867 21.934273 504 21.955404 505 Length: 506, dtype: float64

result3 = result.fit.predict(df.filte)
result3

24.0 0 1 21.6 2 34.7 3 33.4 4 36.2 • • • 501 22.4 502 20.6 23.9 503 504 22.0

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

505 11.9

Length: 506, dtype: float64

```
result_df = DataFrame({
    "실제집값":실제집값,
    "예측집값1":result1,
    "예측집값2":result2,
    "예측집값3":result3
})
result_df
```

	실제 집 값	예측집값1	예측집값 2	예측 집값 3
0	24.0	30.003843	24.127287	24.0
1	21.6	25.025562	21.962235	21.6
2	34.7	30.567597	21.962242	34.7
3	33.4	28.607036	21.960515	33.4
4	36.2	27.943524	21.948050	36.2
•••				
501	22.4	23.533341	21.950232	22.4
502	20.6	22.375719	21.956131	20.6
503	23.9	27.627426	21.950867	23.9
504	22.0	26.127967	21.934273	22.0
505	11.9	22.344212	21.955404	11.9

506 rows × 4 columns

```
plt.rcParams["figure.figsize"] = (20, fig, (ax1, ax2, ax3) = plt.subplots(3 sb.lineplot(data=result_df.filter(['실sb.lineplot(data=result_df.filter(['실sb.lineplot(data=result_df.filter(['실sb.lineplot(data=result_df.filter(['실
```

#01. 작업 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

#02. 파이썬의 ols 객체로 분석 (맛보기)

#03. 모듈화 한 기능을 활용

1) 모든 변수 사용하기

모든 독립변수의 이름을 리스 트로 생성

분석 수행

분석 결과 표 확인

VIF가 10 이상인 값을 제외하고 다시 분석

변수를 다시 선정하여 진행

#04. 결과 비교하기

05-다중선형회귀_강사님추가.ipynb

plt.show()
plt.close()

- c:\Users\leekh\AppData\Local\Programs\
 fig.canvas.print_figure(bytes_io, *
- c:\Users\leekh\AppData\Local\Programs\
 fig.canvas.print_figure(bytes_io, **)
- c:\Users\leekh\AppData\Local\Programs\
 fig.canvas.print_figure(bytes_io, **)
- c:\Users\leekh\AppData\Local\Programs\
 fig.canvas.print_figure(bytes_io, **)
- c:\Users\leekh\AppData\Local\Programs\
 fig.canvas.print_figure(bytes_io, *,
- c:\Users\leekh\AppData\Local\Programs\
 fig.canvas.print_figure(bytes_io, **)

