

# CZ3002 - Advanced Software Engineering

# Test Plan, Strategy, Techniques and Tools

Faculty: Dr Althea Liang

School : School of Computer Science and Engineering

Email : qhliang@ntu.edu.sg

Office : N4-02c-107



#### Introduction to this Lesson

At the end of the lesson, you should be able to:

- Describe the fundamentals of Software Engineering Body of Knowledge (SWEBOK) on software testing
- Different kinds of software testing
  - Describe the test targets and test levels in software testing
  - Apply the model for the software testing life cycle
  - Integration and system testing
- Documentations for software testing
- List the types of test tools used in software testing





## **Software Testing - Definition and Scope**

- An activity performed for evaluating product quality and for improving it, by identifying defects and problems
- Consists of dynamic verification of the programme behaviour on a finite set of test cases, suitably selected from the usually infinite executions domain, against the expected behaviour





## **Software Testing - Objectives**

- Uncover as many as errors (or bugs) as possible in a given timeline
- Demonstrate that a given software product matches its requirement specifications
- Validate the quality of a software testing using the minimum cost and effort
- Generate high quality test cases, perform effective tests, and issue correct and helpful problem reports



# **SWEBOK Software Testing KA**

Software Testing Fundamentals:

#### **Test Levels**

 Unit Test, Integration Test, System Test

#### **Test-Related Measures**

Fault density, coverage

#### **Test Techniques**

Behavioural (White-Box),
Structural (Black-Box)

#### **Test Process**

 Test process management, documentation



## **White-Box / Structural Testing**

- ► Tests designed around knowing the internal design structure:
  - Graph-Based Testing
  - Graph Matrices (Cyclomatic Complexity)
  - Structuring Testing
  - Control Flow Testing (Path)
  - Data Flow Testing
  - Slice based Testing
  - Testing Coverage Analysis





# **Black Box / Behavioural Testing**

- Tests designed around functional requirements
  - Equivalence Partitioning
  - Boundary Value Analysis
  - Decision Table-Based Testing
  - Finite State Machine (FSM)-Based





#### V-model of Test Levels





# **Integration Testing**

- Decomposition-Based Integration Testing
  - Big-Bang
  - Top-Down
  - Bottom-Up
  - Sandwich
  - Use Case-Driven



# **Usage-Based Testing**

- Test environment reproduces operational environment of software as closely as possible.
- Inputs assigned probability distribution (i.e. profile) according to occurrence in actual operation.



# **System Testing**

| Types of System Testing | Functions                                                                                                                                                         |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Functional Testing      | Test of functional requirements.                                                                                                                                  |  |
| Performance Testing     | Test of non-functional requirements.                                                                                                                              |  |
| Pilot Testing           | Test of common functionality among selected group of end users in target environment.                                                                             |  |
| Acceptance Testing      | Usability, functional and performance tests performed by the customer in development environment against acceptance criteria, operation, contract and regulation. |  |
| Installation Testing    | Usability, functional and performance tests performed by the Customer in target environment.                                                                      |  |



# Alpha & Beta Test

#### **Alpha Test:**



#### **Beta Test:**





# **Performance Testing**

| Types of Performance Testing | Functions                                                                      |  |
|------------------------------|--------------------------------------------------------------------------------|--|
| Stress Testing               | Stress limits of system (maximum # of users, peak demands, extended operation) |  |
| Volume Testing               | Test what happens if large amounts of data are handled                         |  |
| Configuration Testing        | Test the various software and hardware configurations                          |  |
| Compatibility Test           | Test backward compatibility with existing systems                              |  |
| Security Testing             | Try to violate security requirements                                           |  |
| Timing Testing               | Evaluate response times and time to perform a function                         |  |
| Environmental Test           | Test tolerances for heat, humidity, motion, portability                        |  |
| Quality Testing              | Test reliability, maintain- ability & availability of the system               |  |
| Recovery Testing             | Tests system's response to presence of errors or loss of data                  |  |
| Human Factors Testing        | Tests user interface with user                                                 |  |



# **Stress Testing**

- Find how the system deals with overload
  - Reason 1: Determine failure behaviour if the load goes above the intended, how "gracefully" does the system fail?
  - Reason 2: Expose bugs that only occur under heavy loads, especially for OS, middleware, servers, etc.
    - E.g. memory leaks, incorrect resource allocation and scheduling, race conditions



# **Regression Testing**

- Rerun old tests to see if anything was "broken" by a change
  - Changes: bug fixes, module integration, maintenance enhancements, etc.
- Need test automation tools
  - Load tests, execute them, check correctness
  - Everything has to be completely automatic
- Could happen at any time: during initial development or after deployment



# Test Strategy – Using Different Techniques for Different Kinds of Faults

|                    | Requirement<br>Faults | Design<br>Faults | Code Faults | Doc Faults |
|--------------------|-----------------------|------------------|-------------|------------|
| Reviews            | Fair                  | Excellent        | Excellent   | Good       |
| Prototypes         | Good                  | Fair             | Fair        | NA         |
| Testing            | Poor                  | Poor             | Good        | Fair       |
| Correctness Proofs | Poor                  | Poor             | Fair        | Fair       |



# **Life Cycle of Testing**





# **IEEE Standard for Software and System Test Documentation - IEEE 829**

| 1. | Test plan identifier                            |  | Test deliverables           |  |
|----|-------------------------------------------------|--|-----------------------------|--|
| 2. | 2. Introduction                                 |  | Testing tasks               |  |
| 3. | Test items                                      |  | Environmental needs         |  |
| 4. | . Features to be tested                         |  | Responsibilities            |  |
| 5. | Feature not to be tested                        |  | Staffing and training needs |  |
| 6. | Approach (Strategy / Methods)                   |  | Schedule                    |  |
| 7. | Item pass/fail criteria                         |  | Risks and contingencies     |  |
| 8. | Suspension criteria and resumption requirements |  | Approvals                   |  |



# **Test Case Specification**

- 1. Test case specification identifier
- Test items
- 3. Input specifications
- 4. (Expected) Output specifications
- 5. Environmental needs
- 6. Special procedural requirements
- 7. Inter-case dependencies





#### **Test Tools**

- Test management tools
- Static analysis tools (e.g.,LOC; complexity;...)
- Test evaluation tools (e.g., code coverage)
- GUI test drivers & capture/replay tools
- Load & performance tools
- Automated test tools

### **Summary**

#### Now, you should be able to:

- Describe the fundamentals of Software Engineering Body of Knowledge (SWEBOK) on software testing
- Different kinds of software testing
  - Describe the test targets and test levels in software testing
  - Apply the model for the software testing life cycle
  - Integration and system testing
- Documentations for software testing
- List the types of test tools used in software testing



# Special Thanks to Kydon during the TEL Efforts of the Lecture

#### **End of Software Maintenance**

Faculty: Dr Althea Liang

School : School of Computer Science and Engineering

Email : qhliang@ntu.edu.sg

Office : N4-02c-107