Package 'AnnuityRIR'

October 12, 2022

Version 1.0-0
Date 2017-11-03
Title Annuity Random Interest Rates
Depends R (>= 3.2.5), mc2d
Imports tseries, EnvStats, fitdistrplus, actuar, stats
Suggests MASS
Description Annuity Random Interest Rates proposes different techniques for the approximation of the present and final value of a unitary annuity-due or annuity-immediate considering interest rate as a random variable. Cruz Rambaud et al. (2017) <doi:10.1007 978-3-319-54819-7_16="">. Cruz Rambaud et al. (2015) <doi:10.23755 rm.v28i1.25="">. License GPL (>= 2)</doi:10.23755></doi:10.1007>
<pre>URL https://www.r-project.org</pre>
BugReports https://github.com/fabriziomaturo/AnnuityRIR
RoxygenNote 6.0.1
NeedsCompilation no
Author Salvador Cruz Rambaud [aut], Fabrizio Maturo [aut, cre], Ana Maria Sanchez Perez [aut]
Maintainer Fabrizio Maturo <f.maturo@unich.it></f.maturo@unich.it>
Repository CRAN
Date/Publication 2017-11-03 23:27:44 UTC
R topics documented:
beta_parameters FV_post_artan FV_post_beta_kmom FV_post_mood FV_post_norm_kmom FV_post_quad EXAMPLE 1

46

Index

FV_pre_artan	9
FV_pre_beta_kmom	0
FV_pre_mood	1
FV_pre_norm_kmom	2
FV_pre_quad	13
moment	4
norm_mom	5
norm_test_jb	6
plot_FVs_post	17
plot_FVs_pre	8
plot_FV_post_beta_kmom	9
plot_FV_post_norm_kmom	9
plot_FV_pre_beta_kmom	20
plot_FV_pre_norm_kmom	21
plot_PVs_post	22
plot_PVs_pre	23
PV_post_artan	24
PV_post_cubic	25
PV_post_exact	26
PV_post_mood_nm	27
PV_post_mood_pm	28
<u> </u>	29
PV_post_triang_dis	30
<u> </u>	30
PV_pre_cubic	31
PV_pre_exact	32
PV_pre_mood_nm	33
<u> </u>	34
-i - E-	35
_1	36
e – –	36
6 – – –	37
8 = =	38
triangular_moments_dis_U	39
<i>C</i> −i	10
triangular_parameters_U	11
-	12
variance_post_mood_nm	12
<u> </u>	13
- <u>i</u>	14
variance_pre_mood_pm	14

beta_parameters 3

Compute the parameters of the beta distribution and plot normalized data.

Description

Compute the parameters of the beta distribution and plot normalized data.

Usage

```
beta_parameters(data)
```

Arguments

data

A vector of interest rates.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
# example 1
data=c(0.00,-0.05,-0.05,-0.06,-0.06,0.02,-0.06,-0.05,-0.04,-0.05,
-0.03,-0.06,0.04,-0.05,-0.08,-0.05,-0.12,-0.03,-0.05,-0.04,-0.06)
beta_parameters(data)

# example 2
data<-rnorm(n=200,m=0.075,sd=0.2)
beta_parameters(data)</pre>
```

FV_post_artan

FV_post_artan	Compute the final expected value of an n-payment annuity, with
	payments of 1 unit each made at the end of every year (annuity-
	immediate), valued at the rate X , using the tetraparametric function

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the tetraparametric function approach.

Usage

```
FV_post_artan(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

approach.

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R. In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
FV_post_artan(data,6)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
FV_post_artan(data,10)</pre>
```

FV_post_beta_kmom 5

FV_post_	beta	kmom
----------	------	------

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the beta distribution.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the beta distribution.

Usage

```
FV_post_beta_kmom(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
# example 1
data=c(0.00,-0.05,-0.05,-0.06,-0.06,0.02,-0.06,-0.05,-0.04,-0.05,
-0.03,-0.06,0.04,-0.05,-0.08,-0.05,-0.12,-0.03,-0.05,-0.04,-0.06)
FV_post_beta_kmom(data,8)

# example 2
data<-rnorm(n=200,m=0.075,sd=0.2)
FV_post_beta_kmom(data,8)</pre>
```

FV_post_mood

FV_post_mood	Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-
	immediate), valued at the rate X , using the method of Mood et al.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the method of Mood $et\ al$.

Usage

```
FV_post_mood(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
FV_post_mood(data,6)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
FV_post_mood(data,10)</pre>
```

FV_post_norm_kmom

Compute the final expected value of an n-payment annuity, with payments of l unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the normal distribution.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the normal distribution.

Usage

```
FV_post_norm_kmom(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
# example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
FV_post_norm_kmom(data,8)

# example 1
data<-rnorm(n=200,m=0.075,sd=0.2)
norm_test_jb(data) #test data
FV_post_norm_kmom(data,8)</pre>
```

FV_post_quad

FV_post_quad	Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-
	immediate), valued at the rate X , using the quadratic discount method.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the quadratic discount method.

Usage

```
FV_post_quad(data, years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
FV_post_quad(data,8)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
FV_post_quad(data,10)</pre>
```

FV_pre_artan 9

FV_pre_artan	Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due),
	valued at the rate X , using the tetraparametric function approach.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the tetraparametric function approach.

Usage

```
FV_pre_artan(data, years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
FV_pre_artan(data,6)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
FV_pre_artan(data,10)</pre>
```

FV_pre_beta_kmom

FV_pre_beta_kmom

Compute the final expected value of an n-payment annuity, with payments of l unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the beta distribution.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the beta distribution.

Usage

```
FV_pre_beta_kmom(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
# example 1
data=c(0.00,-0.05,-0.05,-0.06,-0.06,0.02,-0.06,-0.05,-0.04,-0.05,
-0.03,-0.06,0.04,-0.05,-0.08,-0.05,-0.12, -0.03,-0.05,-0.04,-0.06)
FV_pre_beta_kmom(data,8)

# example 2
data<-rnorm(n=200,m=0.075,sd=0.2)
FV_pre_beta_kmom(data,8)</pre>
```

FV_pre_mood 11

FV_pre_mood	Compute the final expected value of an n -payment annuity, with payments of l unit each made at the beginning of every year (annuity-due), valued at the rate X , using the method of Mood et al.
	, and an ine rate 12, name in the memory of 1200 at the

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the method of Mood $et\ al$.

Usage

```
FV_pre_mood(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
FV_pre_mood(data,6)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
FV_pre_mood(data,10)</pre>
```

FV_pre_norm_kmom

Compute the final expected value of an n-payment annuity, with payments of l unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the normal distribution.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the normal distribution.

Usage

```
FV_pre_norm_kmom(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
# example 1
data<-rnorm(n=30,m=0.03,sd=0.01)
norm_test_jb(data) #test data
FV_pre_norm_kmom(data,8)

# example 1
data<-rnorm(n=200,m=0.075,sd=0.2)
norm_test_jb(data) #test data
FV_pre_norm_kmom(data,8)</pre>
```

FV_pre_quad 13

FV_pre_quad	Compute the final expected value of an n -payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due),
	valued at the rate X , using the quadratic discount method.

Description

Compute the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the quadratic discount method.

Usage

```
FV_pre_quad(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
FV_pre_quad(data,6)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
FV_pre_quad(data,10)</pre>
```

14 moment

moment	Compute the exact moments of a distribution.

Description

Compute the exact moments of a distribution.

Usage

```
moment(x,order,central, absolute, na.rm)
```

Arguments

x	A vector X of interest rates.
order	The order of moment that should be computed. Default is 1.
central	If central moments are to be computed. Default is "FALSE".
absolute	If absolute moments are to be computed. Default is "FALSE".
na.rm	If missing values should be removed. Default is "FALSE".

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
#example 1
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
moment(data,3)
```

norm_mom 15

norm_mom	Fit the data to a normal curve and compute the moments of the normal
	distribution according to the definition (as integral).

Description

Fit the data to a normal curve and compute the moments of the normal distribution according to the definition (as integral).

Usage

```
norm_mom(data,order)
```

Arguments

data A vector X of interest rates.

order The order of moment that should be computed.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
#example 1
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
norm_mom(data,5)
```

norm_test_jb

norm_test_jb	Compute the Jarque-Bera test for checking the assumption of normal-
	ity of the interest rates distribution and returns the parameters of the fitted normal distribution.

Description

Compute the Jarque-Bera test for checking the assumption of normality of the interest rates distribution and returns the parameters of the fitted normal distribution.

Usage

```
norm_test_jb(data)
```

Arguments

data

A vector of interest rates.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2015): "Approach of the value of an annuity when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions". *Ratio Mathematica*, 28(1), pp. 15-30. doi: 10.23755/rm.v28i1.25.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,
0.154,0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
norm_test_jb(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
norm_test_jb(data)

# example 3
data=runif(999, min = 0, max = 1)
norm_test_jb(data)

# example 4
data=c(0.00,-0.05,-0.05,-0.06,-0.06,0.02,-0.06,-0.05,-0.04,-0.05,-0.03,-0.06,0.04,-0.05,-0.08,-0.05,-0.12,-0.03,-0.05,-0.04,-0.06)
norm_test_jb(data)</pre>
```

plot_FVs_post 17

plot_FVs_post	Plot the final expected values of an n -payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X , using different approaches.
	ued at the rate X , using different approaches.

Description

Plot the final expected values of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using different approaches.

Usage

```
plot_FVs_post(data,years,lwd,lty1,lty2,lty3)
```

Arguments

data	A vector of interest rates.
years	The number of years of the income. Default is 10 years.
lwd	The width of the curve. Default is 1.5.
lty1	The style of the curve for the "arctan" approximation. Default is 1.
lty2	The style of the curve for the "cubic" approximation. Default is 2.
ltv3	The style of the curve for the "mood" approximation. Default is 3.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
#example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
plot_FVs_post(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.003)
plot_FVs_post(data)</pre>
```

18 plot_FVs_pre

plot_FVs_pre	Plot the final expected values of an n -payment annuity, with payments of I unit each made at the beginning of every year (annuity-due), valued at the rate X , using different approaches.

Description

Plot the final expected values of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using different approaches.

Usage

```
plot_FVs_pre(data,years,lwd,lty1,lty2,lty3)
```

Arguments

data	A vector of interest rates.
years	The number of years of the income. Default is 10 years.
lwd	The width of the curve. Default is 1.5.
lty1	The style of the curve for the "arctan" approximation. Default is 1 .
lty2	The style of the curve for the "cubic" approximation. Default is 2 .
lty3	The style of the curve for the "mood" approximation. Default is 3.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
#example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
plot_FVs_pre(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.003)
plot_FVs_pre(data)</pre>
```

```
plot_FV_post_beta_kmom
```

Plot the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the beta distribution.

Description

Plot the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the beta distribution.

Usage

```
plot_FV_post_beta_kmom(data,years,lwd,lty)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

1wd The width of the curve. Default is 1.5.1ty The style of the curve. Default is 1.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
# example 1
data<-runif(34, 0,1)
plot_FV_post_beta_kmom(data,8)</pre>
```

```
plot_FV_post_norm_kmom
```

Plot the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the normal distribution.

Description

Plot the final expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using the estimated moments of the normal distribution.

Usage

```
plot_FV_post_norm_kmom(data,years,lwd,lty)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

1wd The width of the curve. Default is 1.5.1ty The style of the curve. Default is 1.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
# example 1
data<-rnorm(n=30,m=0.03,sd=0.01)
plot_FV_post_norm_kmom(data,8)

# example 2
data<-rnorm(n=200,m=0.075,sd=0.2)
plot_FV_post_norm_kmom(data,8)</pre>
```

plot_FV_pre_beta_kmom Plot the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the beta distribution.

Description

Plot the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the beta distribution.

Usage

```
plot_FV_pre_beta_kmom(data,years,lwd,lty)
```

Arguments

A vector of interest rates. data

The number of years of the income. Default is 10 years. vears

lwd The width of the curve. Default is 1.5. lty The style of the curve. Default is 1.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
# example 1
data<-runif(34, 0,1)
plot_FV_pre_beta_kmom(data,8)
```

of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the normal distribution.

Description

Plot the final expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the estimated moments of the normal distribution.

Usage

```
plot_FV_pre_norm_kmom(data,years,lwd,lty)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

The width of the curve. Default is 1.5. lwd lty The style of the curve. Default is 1.

Author(s)

plot_PVs_post

Examples

```
# example 1
data<-rnorm(n=30,m=0.03,sd=0.01)
plot_FV_pre_norm_kmom(data,8)

# example 2
data<-rnorm(n=200,m=0.075,sd=0.2)
plot_FV_pre_norm_kmom(data,8)</pre>
```

plot_PVs_post	Plot the present expected values of an n-payment annuity, with			
	payments of 1 unit each made at the end of every year (annuit			
	immediate), valued at the rate X , using different approaches.			

Description

Plot the present expected values of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, using different approaches.

Usage

```
plot_PVs_post(data,years,lwd,lty1,lty2,lty3,lty4,lty5,lty6)
```

Arguments

data	A vector of interest rates.
years	The number of years of the income. Default is 10 years.
lwd	The width of the curve. Default is 1.5.
lty1	The style of the curve for the "arctan" approximation. Default is 1.
lty2	The style of the curve for the "cubic" approximation. Default is 2.
lty3	The style of the curve for the "mood with positive moments" approximation. Default is $\bf 3$.
lty4	The style of the curve for the "mood with negative moments" approximation. Default is 4 .
lty5	The style of the curve for the exact value. Default is 5.
lty6	The style of the curve for "triangular distribution" approximation. Default is 6.

Author(s)

plot_PVs_pre 23

Examples

```
# example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
plot_PVs_post(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.003)
plot_PVs_post(data)</pre>
```

plot_PVs_pre	Plot the present expected values of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due),
	valued at the rate X , using different approaches.

Description

Plot the present expected values of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using different approaches.

Usage

```
plot_PVs_pre(data,years,lwd,lty1,lty2,lty3,lty4,lty5,lty6)
```

Arguments

years The number of years of the income. Default is 10 years.	
1wd The width of the curve. Default is 1.5.	
1ty1 The style of the curve for the "arctan" approximation. Default is 1.	
1ty2 The style of the curve for the "cubic" approximation. Default is 2.	
The style of the curve for the "mood with positive moments" approximati Default is 3.	on.
The style of the curve for the "mood with negative moments" approximati Default is 4.	on.
1ty5 The style of the curve for the exact value. Default is 5.	
1ty6 The style of the curve for "triangular distribution" approximation. Default is	6.

Author(s)

PV_post_artan

Examples

```
# example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
plot_PVs_pre(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.003)
plot_PVs_pre(data)</pre>
```

PV_post_artan

Compute present expected value of an n-payment annuity, with payments of 1 unit each, made at the end of every year (annuity-immediate), valued at the rate X, using the tetraparametric function approach.

Description

Compute present expected value of an n-payment annuity, with payments of 1 unit each, made at the end of every year (annuity-immediate), valued at the rate X, using the tetraparametric function approach.

Usage

```
PV_post_artan(data, years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

PV_post_cubic 25

Examples

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_post_artan(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
PV_post_artan(data)

# example 3
data<-rnorm(n=30,m=0.03,sd=0.2)
PV_post_artan(data)</pre>
```

PV_post_cubic

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-due), valued at the rate X, using the cubic discount method.

Description

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-due), valued at the rate X, using the cubic discount method.

Usage

```
PV_post_cubic(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_post_cubic(data)

#example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
PV_post_cubic(data)</pre>
```

PV_post_exact

```
# example 3
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
PV_post_cubic(data)
```

PV_post_exact

Computes the present value of an annuity-immediate considering only non-central moments of negative orders.

Description

Computes the present value of an annuity-immediate considering only non-central moments of negative orders.

Usage

```
PV_post_exact(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
# example 1
data=c(0.0177, 0.0185, 0.0185, 0.0184, 0.0184, 0.0183, 0.0185, 0.0185, 0.0188, 0.0185,
0.0180, 0.0184, 0.0191, 0.0185, 0.0184, 0.0185, 0.0186, 0.0185, 0.0188, 0.0186)
PV_post_exact(data,10)
```

PV_post_mood_nm 27

PV_post_mood_nm	Compute the present expected value of an n-payment annuity, with
	payments of 1 unit each made at the end of every year (annuity-
	immediate), valued at the rate X , with the method of Mood et al. using
	some negative moments of the distribution.

Description

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, with the method of Mood $et\ al.$ using some negative moments of the distribution.

Usage

```
PV_post_mood_nm(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Mood, A. M.; Graybill, F. A. and Boes, D. C. (1974). *Introduction to the Theory of Statistics* (3rd Ed.). New York: McGraw Hill.

Rice, J. A. (1995). *Mathematical Statistics and Data Analysis* (2nd Ed.). California: Ed. Duxbury Press.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_post_mood_nm(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
PV_post_mood_nm(data)

# example 3
data = c(1.77,1.85,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
PV_post_mood_nm(data)</pre>
```

28 PV_post_mood_pm

PΜ	nost	mood	nm
Γ V	DOSL	IIIOOU	DIII

Compute the present expected value of an n-payment annuity, with payments of l unit each made at the end of every year (annuity-immediate), valued at the rate X, with the method of Mood et al. using some positive moments of the distribution.

Description

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-immediate), valued at the rate X, with the method of Mood $et\ al.$ using some positive moments of the distribution.

Usage

```
PV_post_mood_pm(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Mood, A. M.; Graybill, F. A. and Boes, D. C. (1974). *Introduction to the Theory of Statistics* (3rd Ed.). New York: McGraw Hill.

Rice, J. A. (1995). *Mathematical Statistics and Data Analysis* (2nd Ed.). California: Ed. Duxbury Press.

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_post_mood_pm(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
PV_post_mood_pm(data)</pre>
```

PV_post_triang_3 29

```
# example 3
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
PV_post_mood_pm(data)
```

PV_post_triang_3

Compute the present value of an annuity-immediate considering only non-central moments of negative orders. The calculation is performed by using the function triangular_moments_3 for the moments greater than -2 (in absolute value).

Description

Compute the present value of an annuity-immediate considering only non-central moments of negative orders. The calculation is performed by using the function triangular_moments_3 for the moments greater than -2 (in absolute value).

Usage

```
PV_post_triang_3(data,years)
```

Arguments

data A vector of interest rates expressed as percentages.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85, 1.86,1.85,1.88,1.86)
PV_pre_triang_3(data,10)
```

30 PV_pre_artan

DV/		4	ے ناہ
P۷	DOSL	triang	uis

Compute the present value of an annuity-immediate considering only non-central moments of negative orders. The calculation is performed by using the moments of the fitted triangular distribution of the random variable "capitalization factor" U (which are obtained from the definition of negative moment of a continuous random variable).

Description

Compute the present value of an annuity-immediate considering only non-central moments of negative orders. The calculation is performed by using the moments of the fitted triangular distribution of the random variable "capitalization factor" U (which are obtained from the definition of negative moment of a continuous random variable).

Usage

```
PV_post_triang_dis(data, years)
```

Arguments

data A vector of interest rates expressed as percentages.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85, 1.86,1.85,1.88,1.86)
PV_post_triang_dis(data,10)
```

PV_pre_artan

Compute the present expected value of an n-payment annuity, with payments of l unit each, made at the beginning of every year (annuity-due), valued at the rate X, using the tetraparametric function approach.

Description

Compute the present expected value of an n-payment annuity, with payments of 1 unit each, made at the beginning of every year (annuity-due), valued at the rate X, using the tetraparametric function approach.

PV_pre_cubic 31

Usage

```
PV_pre_artan(data, years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

Examples

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,0.128,
0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_pre_artan(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
PV_pre_artan(data)</pre>
```

PV_pre_cubic

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the cubic discount method.

Description

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, using the cubic discount method.

Usage

```
PV_pre_cubic(data, years)
```

PV_pre_exact

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_pre_cubic(data)

#example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
PV_pre_cubic(data)

# example 3
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
PV_pre_cubic(data)</pre>
```

PV_pre_exact

Compute the present value of an annuity-due considering only noncentral moments of negative orders.

Description

Compute the present value of an annuity-due considering only non-central moments of negative orders.

Usage

```
PV_pre_exact(data, years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

PV_pre_mood_nm 33

Examples

```
# example 1
data=c(0.0177, 0.0185, 0.0185, 0.0184, 0.0184, 0.0183, 0.0185, 0.0185, 0.0188,
0.0185, 0.0180, 0.0184, 0.0191, 0.0185, 0.0184, 0.0185, 0.0186, 0.0185, 0.0188, 0.0186)
PV_pre_exact(data,10)
```

PV_pre_mood_nm

Compute the present expected value of an n-payment annuity, with payments of I unit each made at the beginning of every year (annuity-due), valued at the rate X, with the method of Mood et al. using some negative moments of the distribution.

Description

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, with the method of Mood $et\ al.$ using some negative moments of the distribution.

Usage

```
PV_pre_mood_nm(data,years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_pre_mood_nm(data)

# example 2
data<-rnorm(n=30,m=0.03,sd=0.01)
PV_pre_mood_nm(data)

# example 3
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,</pre>
```

34 PV_pre_mood_pm

```
1.84,1.85,1.86,1.85,1.88,1.86)
data=data/100
PV_pre_mood_nm(data)
```

PV_pre_mood_pm

Compute the present expected value of an n-payment annuity, with payments of l unit each made at the beginning of every year (annuity-due), valued at the rate X, with the method of Mood et al. using some positive moments of the distribution.

Description

Compute the present expected value of an n-payment annuity, with payments of 1 unit each made at the beginning of every year (annuity-due), valued at the rate X, with the method of Mood $et\ al.$ using some positive moments of the distribution.

Usage

```
PV_pre_mood_pm(data, years)
```

Arguments

data A vector of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Source

Cruz Rambaud, S.; Maturo, F. and Sánchez Pérez A. M. (2017): "Expected present and final value of an annuity when some non-central moments of the capitalization factor are unknown: Theory and an application using R". In Š. Hošková-Mayerová, *et al.* (Eds.), *Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences* (pp. 233-248). Springer, Cham. doi:10.1007/978-3-319-54819-7_16.

```
#example 1
data=c(0.298,0.255,0.212,0.180,0.165,0.163,0.167,0.161,0.154,
0.128,0.079,0.059,0.042,-0.008,-0.012,-0.002)
PV_pre_mood_pm(data)

# example 2
data<-rnorm(n=30,m=0.3,sd=0.01)
PV_pre_mood_pm(data)</pre>
```

PV_pre_triang_3 35

```
# example 3
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
PV_pre_mood_pm(data)
```

PV_pre_triang_3

Compute the present value of an annuity-due considering only non-central moments of negative orders. The calculation is performed by using the function $\frac{1}{2}$ for the moments greater than -2 (in absolute value).

Description

Compute the present value of an annuity-due considering only non-central moments of negative orders. The calculation is performed by using the function $\frac{1}{2}$ for the moments greater than -2 (in absolute value).

Usage

```
PV_pre_triang_3(data, years)
```

Arguments

data A vector of interest rates expressed as percentages.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85, 1.86,1.85,1.88,1.86)
PV_pre_triang_3(data,10)
```

PV_pre_triang_dis

Compute the present value of an annuity-due considering only noncentral moments of negative orders. The calculation is performed by using the moments of the fitted triangular distribution of the random variable "capitalization factor" U (which are obtained from the definition of negative moment of a continuous random variable)

Description

Compute the present value of an annuity-due considering only non-central moments of negative orders. The calculation is performed by using the moments of the fitted triangular distribution of the random variable "capitalization factor" U (which are obtained from the definition of negative moment of a continuous random variable)

Usage

```
PV_pre_triang_dis(data, years)
```

Arguments

data A vector of interest rates expressed as percentages.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85, 1.86,1.85,1.88,1.86)
PV_pre_triang_dis(data,10)
```

triangular_moments_3

Compute the negatives moments (different from orders 1 and 2) of the fitted triangular distribution of the random variable X.

Description

Compute the negatives moments (different from orders 1 and 2) of the fitted triangular distribution of the random variable X.

Usage

```
triangular_moments_3(data,order)
```

Arguments

data A vector X of interest rates.

order The order of moment that should be computed.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
#example 1
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
triangular_moments_3(data,3)
triangular_moments_3(data,4)

# example 2 - first 10 negative moments of fitted triangular distribution
#(an example from normal distributed simulated data)
data<-rnorm(n=200,m=0.75,sd=0.2)
triangular_parameters(data)
first10negmoments=rep(NA,10)  #except first and second
for (i in 3:10) first10negmoments[i]=triangular_moments_3(data,i)
first10negmoments</pre>
```

```
triangular_moments_3_U
```

Compute the negatives moments (different from orders 1 and 2) of the fitted triangular distribution of the random variable "capitalization factor" U.

Description

Compute the negatives moments (different from orders 1 and 2) of the fitted triangular distribution of the random variable "capitalization factor" U.

Usage

```
triangular_moments_3_U(data,order)
```

Arguments

data A vector X of interest rates.

order The order of moment that should be computed.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
#example 1
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
triangular_moments_3_U(data,3)
triangular_moments_3_U(data,4)

# example 2 - first 10 negative moments of fitted triangular distribution
#(an example from normal distributed simulated data)
data<-rnorm(n=200,m=0.75,sd=0.2)
triangular_parameters(data)
first10negmoments=rep(NA,10)  #except first and second
for (i in 3:10) first10negmoments[i]=triangular_moments_3_U(data,i)
first10negmoments</pre>
```

```
triangular_moments_dis
```

Compute the negative moments of the fitted triangular distribution of the random variable X according to the definition (as integral).

Description

Compute the negative moments of the fitted triangular distribution of the random variable X according to the definition (as integral).

Usage

```
triangular_moments_dis(data,order)
```

Arguments

data A vector of interest rates as percentage.

order The order of moment of the triangular distribution

Author(s)

Examples

```
# example 1
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
triangular_moments_dis(data,1)
triangular_moments_dis(data,2)
triangular_moments_dis(data,3)
triangular_moments_dis(data,4)

# example 2 - first 10 negative moments of fitted triangular distribution
#(an example from normal distributed simulated data)
data<-rnorm(n=200,m=0.75,sd=0.2)
triangular_parameters(data)
first10negmoments=rep(NA,10)
for (i in 1:10) first10negmoments[i]=triangular_moments_dis(data,i)
first10negmoments</pre>
```

triangular_moments_dis_U

Compute the negative moments of the fitted triangular distribution of the random variable "capitalization factor" U according to the definition (as integral).

Description

Compute the negative moments of the fitted triangular distribution of the random variable "capitalization factor" U according to the definition (as integral).

Usage

```
triangular_moments_dis_U(data,order)
```

Arguments

data A vector of interest rates as percentage.

order The order of moment of the triangular distribution

Author(s)

Examples

```
# example 1
data=c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
triangular_moments_dis_U(data,1)
triangular_moments_dis_U(data,2)
triangular_moments_dis_U(data,3)
triangular_moments_dis_U(data,4)

# example 2 - first 10 negative moments of fitted triangular distribution
#(an example from normal distributed simulated data)
data<-rnorm(n=200,m=0.75,sd=0.2)
triangular_parameters(data)
first10negmoments=rep(NA,10)
for (i in 1:10) first10negmoments[i]=triangular_moments_dis_U(data,i)
first10negmoments</pre>
```

Description

Compute the parameters and plot the fitted triangular distribution of the random variable X.

Usage

```
triangular_parameters(data)
```

Arguments

data

A vector of interest rates.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
# example 1
data=c(0.00,-0.05,-0.05,-0.06,-0.06,0.02,-0.06,-0.05,-0.04,-0.05,
-0.03,-0.06,0.04,-0.05,-0.08,-0.05,-0.12,-0.03,-0.05,-0.04,-0.06)
triangular_parameters(data)
```

```
# example 2
data<-rnorm(n=200,m=0.75,sd=0.2)
triangular_parameters(data)

# example 3
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
triangular_parameters(data)</pre>
```

triangular_parameters_U

Return the parameters of the fitted triangular distribution of the random variable "capitalization factor" U.

Description

Return the parameters of the fitted triangular distribution of the random variable "capitalization factor" U.

Usage

```
triangular_parameters_U(data)
```

Arguments

data

A vector of interest rates expressed as percentage.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
# example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
triangular_parameters_U(data)
```

variance_drv Compute the variance of the present value of an annuity using "discrete random variable" approach.

Description

Compute the variance of the present value of an annuity using "discrete random variable" approach.

Usage

```
variance_drv(data,years)
```

Arguments

data A vector X of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
# example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
variance_drv(data)
```

variance_post_mood_nm Compute the variance of the present value of an annuity-immediate using the Mood et al. approximation and some non-central moments of negative order.

Description

Compute the variance of the present value of an annuity-immediate using the Mood *et al.* approximation and some non-central moments of negative order.

Usage

```
variance_post_mood_nm(data,years)
```

Arguments

A vector X of interest rates. data

The number of years of the income. Default is 10 years. years

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
data = c(1.77, 1.85, 1.85, 1.84, 1.84, 1.84, 1.83, 1.85, 1.85, 1.88, 1.85, 1.80, 1.84, 1.91, 1.85, 1.84, 1.85,
1.86, 1.85, 1.88, 1.86)
data=data/100
variance_post_mood_nm(data)
```

variance_post_mood_pm Compute the variance of the present value of an annuity-immediate using the Mood et al. approximation and some non-central moments of positive order.

Description

Compute the variance of the present value of an annuity-immediate using the Mood et al. approximation and some non-central moments of positive order.

Usage

```
variance_post_mood_pm(data,years)
```

Arguments

data A vector X of interest rates.

The number of years of the income. Default is 10 years. years

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
# example 1
data = c(1.77, 1.85, 1.85, 1.84, 1.84, 1.84, 1.83, 1.85, 1.85, 1.88, 1.85, 1.80, 1.84, 1.91, 1.85, 1.84, 1.85,
1.86, 1.85, 1.88, 1.86)
data=data/100
variance_post_mood_pm(data)
```

Description

Compute the variance of the present value of an annuity-due using the Mood *et al.* approximation and some non-central moments of negative order.

Usage

```
variance_pre_mood_nm(data,years)
```

Arguments

data A vector X of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

Examples

```
# example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
variance_pre_mood_nm(data)
```

variance_pre_mood_pm

Compute the variance of the present value of an annuity-due using the Mood et al. approximation and some non-central moments of positive order.

Description

Compute the variance of the present value of an annuity-due using the Mood *et al.* approximation and some non-central moments of positive order.

Usage

```
variance_pre_mood_pm(data,years)
```

variance_pre_mood_pm 45

Arguments

data A vector X of interest rates.

years The number of years of the income. Default is 10 years.

Author(s)

Salvador Cruz Rambaud, Fabrizio Maturo, Ana María Sánchez Pérez

```
# example 1
data = c(1.77,1.85,1.85,1.84,1.84,1.83,1.85,1.85,1.88,1.85,1.80,1.84,1.91,1.85,1.84,1.85,
1.86,1.85,1.88,1.86)
data=data/100
variance_pre_mood_pm(data)
```

Index

beta_parameters, 3	<pre>triangular_moments_3, 36 triangular_moments_3_U, 37</pre>
FV_post_artan, 4	triangular_moments_dis, 38
FV_post_beta_kmom, 5	triangular_moments_dis_U, 39
FV_post_mood, 6	triangular_parameters, 40
FV_post_norm_kmom, 7	triangular_parameters_U, 41
FV_post_quad, 8	ti Tangutai _pai ame tei 3_0, 41
FV_pre_artan, 9	variance_drv, 42
FV_pre_beta_kmom, 10	variance_post_mood_nm, 42
FV_pre_mood, 11	variance_post_mood_pm, 43
FV_pre_norm_kmom, 12	variance_pre_mood_nm, 44
FV_pre_quad, 13	variance_pre_mood_pm, 44
TV_pre_quad, 13	тап - апто - дет о - дет, т
moment, 14	
norm_mom, 15	
norm_test_jb, 16	
plot_FV_post_beta_kmom, 19	
plot_FV_post_norm_kmom, 19	
plot_FV_pre_beta_kmom, 20	
plot_FV_pre_norm_kmom, 21	
plot_FVs_post, 17	
plot_FVs_pre, 18	
plot_PVs_post, 22	
plot_PVs_pre, 23	
PV_post_artan, 24	
PV_post_cubic, 25	
PV_post_exact, 26	
PV_post_mood_nm, 27	
PV_post_mood_pm, 28	
PV_post_triang_3, 29	
PV_post_triang_dis, 30	
PV_pre_artan, 30	
PV_pre_cubic, 31	
PV_pre_exact, 32	
PV_pre_mood_nm, 33	
PV_pre_mood_pm, 34	
PV_pre_triang_3,35	
PV pre triang dis. 36	