Review

- Last time: found flux absorbed ≠ flux injected w/ v-extrapolation, must have reflection.
- Hypothesis:

$$\vec{u} = A_0 \vec{u}_0 + \delta \vec{u},\tag{1}$$

where A_0 is set by forcing, $\delta \vec{u}$ is "turbulent."

• Since $S_{px} = \langle \rho u_x u_z \rangle_x$, decided to plot

$$\delta S_{px} = \langle \rho \delta u_x \delta u_z \rangle_x. \tag{2}$$

Results

Driving amplitude

- Actually, discovered $A < A_0$, driving amplitude changes over time (via convolution). Oscillation timescale $\sim \frac{z_0 z_c}{v_{gz}}$ for higher order modes.
- Adjusting for this gives $\langle \rho u_{x0} \delta u_z \rangle_x$, $\langle \rho \delta u_x u_{z0} \rangle_x$ centered on zero, no net flux.

(a) Linear excited $\frac{u_x}{u_{x0}}, \frac{u_z}{u_{z0}}$ over time.

(b) Nonlinear excited $\frac{u_x}{u_{x0}}$, $\frac{u_z}{u_{z0}}$ over time.

Results

Driving Amplitude

Figure: Decompositions of the flux over time. 01 means $u_{x0}\delta u_z$. Oscillating 01,10 implies reflected $k_z \rightarrow -k_z$ mode.

Results

Front Position

Figure: Front evolution, nonlinear.

Results Minimum Ri

Figure: Mean flow and flux evolution, non-linear.

Conclusion

All effects

- Excite wave with S_{px} . Deposit some ηS_{px} in critical layer (efficiency η).
- Critical layer width δz such that $\mathrm{Ri} \gtrsim \frac{1}{4}$.
- Critical layer position obeys $\rho c_{ph,x} \frac{\partial z_c}{\partial t} = -\eta S_{px}$, or $\left(\tau = \frac{H\rho_0(z=0)c_{ph,x}}{\eta S_{px}}\right)$

$$z_c(t) = -H \ln \frac{t - t_i + \tau e^{-z_i/H}}{\tau},\tag{3}$$

- Reflect $(1-\eta)S_{px}$, some in $k_z \to k_z$ linear reflection, some in higher-order modes.
- Reflected wave causes inefficient excitation $S_{px,0} \to \alpha S_{px,0}$, $\alpha \lesssim 1$.
- Probably can't be any more exact, time delays + noisy data.