Лабораторная работа №13

Дисциплина: Администрирование локальных сетей

Мишина Анастасия Алексеевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Первоначальная настройка	7 16
4	Контрольные вопросы 4.1 1. Случаи использования статической маршрутизации	
5	Выводы	24
Сг	писок литературы	25

Список иллюстраций

3.1	Схема L1 сети с дополнительными площадками	7
3.2	Схема L2 сети с дополнительными площадками	8
3.3	Схема L3 сети с дополнительными площадками	9
3.4	Размещение оборудования и присвоение названий	11
3.5	Замена модулей на медиаконвертерах	12
3.6	Добавление интерфейса на маршрутизаторе msk-q42-gw-1	13
3.7	г. Москва здание 42-го квартала	14
3.8	г. Сочи и здание филиала	14
3.9	г. Москва здание 42-го квартала	15
3.10	г. Сочи и здание филиала	15
3.11	Соединение объектов согласна схеме L1	15
3.12	Первоначальная настройка маршрутизатора msk-q42-gw-1	16
3.13	Первоначальная настройка коммутатора msk-q42-sw-1	17
3.14	Первоначальная настройка маршрутизирующего коммутатора msk-	
	hostel-gw-1	18
3.15	Первоначальная настройка коммутатора msk-hostel-sw-1	19
3.16	Первоначальная настройка коммутатора sch-sochi-sw-1	20
3.17	Первоначальная настройка маршрутизатора sch-sochi-gw-1	21

Список таблиц

3.1	Таблица VLAN	9
3.2	Таблица IP для филиала в г. Сочи	10
3.3	Таблица IP для связующих разные территории линков	10

1 Цель работы

Провести подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи [1].

2 Задание

- 1. Внести изменения в схемы L1, L2 и L3 сети, добавив в них информацию о сети основной территории (42-й квартал в Москве) и сети филиала в г. Сочи.
- 2. Дополнить схему проекта, добавив подсеть основной территории организации 42-го квартала в Москве и подсеть филиала в г. Сочи.
- 3. Сделать первоначальную настройку добавленного в проект оборудования.
- 4. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

Внесем изменения в схему L1 сети, добавив в неё сеть квартала 42 и сеть в Сочи с указанием названий оборудования и портов подключения (рис. 3.1).

Рис. 3.1: Схема L1 сети с дополнительными площадками

Внесем изменения в схемы L2 (рис. 3.2) и L3 сети (рис. 3.3), указав ір-адреса и

VLAN.

Рис. 3.2: Схема L2 сети с дополнительными площадками

Рис. 3.3: Схема L3 сети с дополнительными площадками

Скорректируем таблицу VLAN (табл. 3.1), добавим распределение IP-адресов в Сочи (табл. 3.2) и для связующих разные территории линков (табл. 3.3).

Таблица 3.1: Таблица VLAN

Nº VLAN	Имя VLAN	Примечание
1	default	Не используется
2	management	Для управления устройствами
3	servers	Для серверной фермы
4	nat	Зарезервировано
5	q42	Линк в сеть квартала 42 в Москве
6	sochi	Линк в сеть филиала в Сочи
101	dk	Дисплейные классы (ДК)
102	departments	Кафедры
103	adm	Администрация

Примечание
Для других пользователей
Основной для квартала 42 в Москве
Для управления устройствами 42-го квартала в
Москве
Основной для общежитий в квартале 42 в
Москве
Основной для филиала в Сочи
Для управления устройствами в филиала в
Сочи
Основной для общежитий в квар Москве Основной для филиала в Сочи Для управления устройствами в

Таблица 3.2: Таблица ІР для филиала в г. Сочи

ІР-адреса	Примечание	VLAN
10.130.0.0/16	Вся сеть филиала в Сочи	
10.130.0.0/24	Основная сеть филиала в Сочи	401
10.130.0.1	sch-sochi-gw-1	
10.130.0.200	pc-sochi-1	
10.130.1.0/24	Сеть для управления устройствами в	402
	Сочи	
10.130.1.1	sch-sochi-gw-1	

Таблица 3.3: Таблица IP для связующих разные территории линков

ІР-адреса	Примечание	VLAN
10.128.255.0/24	Вся сеть для линков	
10.128.255.0/30	Линк на 42-й квартал	5
10.128.255.1	msk-donskaya-gw-1	

ІР-адреса	Примечание	VLAN
10.128.255.2	msk-q42-gw-1	
10.128.255.4/30	Линк в Сочи 6	6
10.128.255.5	msk-donskaya-gw-1	
10.128.255.6	sch-sochi-gw-1	
10.129.0.0/16	Вся сеть квартала 42 в Москве	
10.129.0.0/24	Основная сеть квартала 42 в Москве	201
10.129.0.1	msk-q42-gw-1	
10.129.0.200	pc-q42-1	
10.129.1.0/24	Сеть для управления устройствами в	202
	сети квартала 42 в Москве	
10.129.1.1	msk-q42-gw-1	
10.129.1.2	msk-hostel-gw-1	
10.129.128.0/17	Вся сеть hostel	
10.129.128.0/24	Основная сеть hostel	301
10.129.128.1	msk-hostel-gw-1	
10.129.128.200	pc-hostel-1	

На схеме предыдущего проекта разместим необходимое оборудование: 4 медиаконвертера (Repeater-PT), 2 маршрутизатора типа Cisco 2811, 1 маршрутизирующий коммутатор типа Cisco 3560-24PS, 2 коммутатора типа Cisco 2950-24, коммутатор Cisco 2950-24T, 3 оконечных устройства типа PC-PT (рис. 3.4).

Рис. 3.4: Размещение оборудования и присвоение названий

Присвоим названия размещённым объектам. На медиаконвертерах заменим имеющиеся модули на PT-REPEATERNM-1FFE и PT-REPEATER-NM-1CFE для подключения витой пары по технологии Fast Ethernet и оптоволокна соответственно (рис. 3.5).

Рис. 3.5: Замена модулей на медиаконвертерах

На маршрутизаторе msk-q42-gw-1 добавим дополнительный интерфейс NM-2FE2W (рис. 3.6).

Рис. 3.6: Добавление интерфейса на маршрутизаторе msk-q42-gw-1

В физической рабочей области Packet Tracer добавим в г. Москва здание 42-го квартала, присвоим ему соответствующее название (рис. 3.7).

Рис. 3.7: г. Москва здание 42-го квартала

В физической рабочей области Packet Tracer добавим город Сочи и в нём здание филиала, присвоим ему соответствующее название (рис. 3.8).

Рис. 3.8: г. Сочи и здание филиала

Перенесем из сети «Донская» оборудование сети 42-го квартала (рис. 3.9) и сети филиала в соответствующие здания (рис. 3.10).

Рис. 3.9: г. Москва здание 42-го квартала

Рис. 3.10: г. Сочи и здание филиала

Проведем соединение объектов согласно скорректированной схеме L1 (рис. 3.11).

Рис. 3.11: Соединение объектов согласна схеме L1

3.1 Первоначальная настройка

Перейдем к первоначальной настройке оборудования. Для всех сетевых устройств установим имя хоста, доступ по паролю, telnet и ssh (рис. 3.12 - 3.17).

```
msk-q42-aamishina-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-q42-aamishina-gw-1(config) #line vty 0 4
msk-q42-aamishina-gw-1(config-line) #password cisco
msk-q42-aamishina-gw-1(config-line)#login
msk-q42-aamishina-gw-1(config-line) #exit
msk-q42-aamishina-gw-1(config) \#line console 0
msk-q42-aamishina-gw-1(config-line) #password cisco
msk-q42-aamishina-qw-1(config-line) #login
msk-q42-aamishina-gw-1(config-line)#exit
msk-q42-aamishina-gw-1(config) #enable secret cisco
msk-q42-aamishina-gw-1(config) #service password-encryption
msk-q42-aamishina-gw-1(config) #username admin privilege 1 secret cisco
msk-q42-aamishina-gw-1(config) #ip domain-name q42.rudn.edu
msk-q42-aamishina-gw-1(config) #crypto key generate rsa
The name for the keys will be: msk-q42-aamishina-gw-1.q42.rudn.edu
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
msk-q42-aamishina-gw-1(config) \#line vty 0 4
*Mar 1 0:23:23.509: %SSH-5-ENABLED: SSH 1.99 has been enabled
msk-q42-aamishina-gw-1(config-line) #transport input ssh
msk-q42-aamishina-gw-1(config-line)#^Z
msk-q42-aamishina-gw-1#
%SYS-5-CONFIG I: Configured from console by console
msk-q42-aamishina-gw-1#
```

Рис. 3.12: Первоначальная настройка маршрутизатора msk-q42-gw-1

```
msk-q42-aamishina-sw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-q42-aamishina-sw-1(config)#line vty 0 4
msk-q42-aamishina-sw-1(config-line) #password cisco
msk-q42-aamishina-sw-1(config-line) #login
msk-q42-aamishina-sw-1(config-line) #exit
msk-q42-aamishina-sw-1(config)#line console 0
msk-q42-aamishina-sw-1(config-line) #password cisco
msk-q42-aamishina-sw-1(config-line)#login
msk-q42-aamishina-sw-1(config-line)#exit
msk-q42-aamishina-sw-1(config) #enable secret cisco
msk-q42-aamishina-sw-1(config) #service password-encryption
msk-q42-aamishina-sw-1(config) #username admin privilege 1 secret cisco
msk-q42-aamishina-sw-1(config) #ip domain-name q42.rudn.edu
msk-q42-aamishina-sw-1(config) #crypto key generate rsa
The name for the keys will be: msk-q42-aamishina-sw-1.q42.rudn.edu
Choose the size of the key modulus in the range of 360 to 4096 for your
  General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
msk-q42-aamishina-sw-1(config) #line vty 0 4
 *Mar 1 0:32:24.811: %SSH-5-ENABLED: SSH 1.99 has been enabled
msk-q42-aamishina-sw-1(config-line) #transport input ssh
msk-q42-aamishina-sw-1(config-line) #^Z
msk-q42-aamishina-sw-1#
%SYS-5-CONFIG_I: Configured from console by console
msk-q42-aamishina-sw-1#
```

Рис. 3.13: Первоначальная настройка коммутатора msk-q42-sw-1

```
msk-hostel-aamishina-gw-1(config) \#line vty 0 4
msk-hostel-aamishina-gw-1(config-line) #password cisco
msk-hostel-aamishina-gw-1(config-line) #login
msk-hostel-aamishina-gw-1(config-line) #exit
\verb|msk-hostel-aamishina-gw-1| (\verb|config|) # line console 0
msk-hostel-aamishina-gw-1(config-line) #password cisco
msk-hostel-aamishina-gw-1(config-line) #login
msk-hostel-aamishina-qw-1(config-line) #exit
msk-hostel-aamishina-gw-1(config) #enable secret cisco
msk-hostel-aamishina-gw-1(config) #service password-encryption
msk-hostel-aamishina-gw-1(config) #username admin privilege 1 secret cisco
msk-hostel-aamishina-gw-1(config)#ip ssh version 2
Please create RSA keys (of at least 768 bits size) to enable SSH v2.
msk-hostel-aamishina-gw-1(config)#ip domain-name hostel.rudn.edu
msk-hostel-aamishina-gw-1(config)#crypto key generate rsa
The name for the keys will be: msk-hostel-aamishina-gw-1.hostel.rudn.edu
Choose the size of the key modulus in the range of 360 to 2048 for your
  General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
msk-hostel-aamishina-gw-1(config) #line vty 0 4
*Mar 1 0:33:42.686: %SSH-5-ENABLED: SSH 2 has been enabled
msk-hostel-aamishina-gw-1(config-line) #transport input ssh
msk-hostel-aamishina-gw-1(config-line) #^Z
msk-hostel-aamishina-gw-1#
%SYS-5-CONFIG I: Configured from console by console
msk-hostel-aamishina-gw-1#
```

Рис. 3.14: Первоначальная настройка маршрутизирующего коммутатора mskhostel-gw-1

```
Switch>en
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #hostname msk-hostel-aamishina-sw-1
msk-hostel-aamishina-sw-1(config)#
msk-hostel-aamishina-sw-1(config)#
msk-hostel-aamishina-sw-1(config) #line vty 0 4
msk-hostel-aamishina-sw-1(config-line) #password cisco
msk-hostel-aamishina-sw-1(config-line)#login
msk-hostel-aamishina-sw-1(config-line)#exit
msk-hostel-aamishina-sw-1(config)#line console 0
msk-hostel-aamishina-sw-1(config-line) #password cisco
msk-hostel-aamishina-sw-1(config-line) #login
msk-hostel-aamishina-sw-1(config-line)#exit
msk-hostel-aamishina-sw-1(config)#enable secret cisco
msk-hostel-aamishina-sw-1(config) #service password-encryption
msk-hostel-aamishina-sw-1(config) #username admin privilege 1 secret cisco
msk-hostel-aamishina-sw-1(config)#ip domain-name hostel.rudn.edu
msk-hostel-aamishina-sw-1(config)#crypto key generate rsa
The name for the keys will be: msk-hostel-aamishina-sw-1.hostel.rudn.edu
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
 a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
msk-hostel-aamishina-sw-1(config)#line vty 0 4
*Mar 1 0:35:54.996: %SSH-5-ENABLED: SSH 1.99 has been enabled
msk-hostel-aamishina-sw-1(config-line) #transport input ssh
msk-hostel-aamishina-sw-1(config-line)#^Z
msk-hostel-aamishina-sw-1#
%SYS-5-CONFIG I: Configured from console by console
msk-hostel-aamishina-sw-1#
```

Рис. 3.15: Первоначальная настройка коммутатора msk-hostel-sw-1

```
Switch>en
Switch#conf t
Enter configuration commands, one per line. End with \mathtt{CNTL}/\mathtt{Z}.
Switch(config) #hostname sch-sochi-aamishina-sw-1
sch-sochi-aamishina-sw-1(config)#
sch-sochi-aamishina-sw-1(config) #line vty 0 4
sch-sochi-aamishina-sw-1(config-line) #password cisco
sch-sochi-aamishina-sw-1(config-line) #login
sch-sochi-aamishina-sw-1(config-line)#exit
sch-sochi-aamishina-sw-1(config) #line console 0
sch-sochi-aamishina-sw-1(config-line)#password cisco
sch-sochi-aamishina-sw-1(config-line)#login
sch-sochi-aamishina-sw-1(config-line)#exit
sch-sochi-aamishina-sw-1(config) #enable secret cisco
sch-sochi-aamishina-sw-1(config) #service password-encryption
sch-sochi-aamishina-sw-1(config) #username admin privilege 1 secret cisco
sch-sochi-aamishina-sw-1(config)#ip domain-name sochi.rudn.edu
sch-sochi-aamishina-sw-1(config) #crypto key generate rsa
The name for the keys will be: sch-sochi-aamishina-sw-1.sochi.rudn.edu
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
 a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
sch-sochi-aamishina-sw-1(config)#line vty 0 4
*Mar 1 0:37:21.543: %SSH-5-ENABLED: SSH 1.99 has been enabled
sch-sochi-aamishina-sw-1(config-line) #transport input ssh
sch-sochi-aamishina-sw-1(config-line) #^Z
sch-sochi-aamishina-sw-1#
SYS-5-CONFIG_I: Configured from console by console
sch-sochi-aamishina-sw-1#
```

Рис. 3.16: Первоначальная настройка коммутатора sch-sochi-sw-1

```
Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname sch-sochi-aamishina-gw-1
sch-sochi-aamishina-gw-1(config)#
sch-sochi-aamishina-gw-1(config) #line vty 0 4
sch-sochi-aamishina-gw-1(config-line) #password cisco
sch-sochi-aamishina-gw-1(config-line)#login
sch-sochi-aamishina-gw-1(config-line)#exit
sch-sochi-aamishina-gw-1(config)#line console 0
sch-sochi-aamishina-gw-1(config-line) #password cisco
sch-sochi-aamishina-gw-1(config-line)#login
sch-sochi-aamishina-gw-1(config-line)#exit
sch-sochi-aamishina-gw-1(config)#enable secret cisco
sch-sochi-aamishina-gw-1(config) #service password-encryption
sch-sochi-aamishina-gw-1(config) #username admin privilege 1 secret cisco
sch-sochi-aamishina-gw-1(config)#ip domain-name sochi.rudn.edu
sch-sochi-aamishina-gw-1(config)#crypto key generate rsa
The name for the keys will be: sch-sochi-aamishina-gw-1.sochi.rudn.edu
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
 a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
sch-sochi-aamishina-gw-1(config)#line vty 0 4
*Mar 1 0:38:58.684: %SSH-5-ENABLED: SSH 1.99 has been enabled
sch-sochi-aamishina-gw-1(config-line)#transport input ssh
sch-sochi-aamishina-gw-1(config-line)#^Z
sch-sochi-aamishina-gw-1#
%SYS-5-CONFIG_I: Configured from console by console
sch-sochi-aamishina-gw-1#
                                                                               Сору
```

Рис. 3.17: Первоначальная настройка маршрутизатора sch-sochi-gw-1

4 Контрольные вопросы

- 1. В каких случаях следует использовать статическую маршрутизацию? Приведите примеры.
- 2. Укажите основные принципы статической маршрутизации между VLANs.

4.1 1. Случаи использования статической

маршрутизации

Статическую маршрутизацию следует использовать в следующих случаях:

- **Для небольших сетей:** Когда сеть маленькая и не требует динамической маршрутизации.
- **Для резервных маршрутов:** Как резервный путь для динамической маршрутизации в случае сбоев.
- **Для контроля трафика:** Для направления трафика по конкретным путям, например, чтобы предотвратить перегрузку определенных ссылок.
- **Для администрирования сети:** Для ручного управления маршрутизацией для целей устранения неполадок или настройки.

Примеры:

- Настройка статического маршрута для подключения к удаленной офисной сети через VPN-соединение.
- Создание резервного маршрута на случай сбоя основного маршрутизатора.

- Направление трафика в определенный VLAN, чтобы отделить его от других видов трафика.
- Использование статической маршрутизации для перенаправления трафика на устройство межсетевого экрана для дополнительной безопасности.

4.2 2. Принципы статической маршрутизации между VLANs

Для статической маршрутизации между VLANs действуют следующие основные принципы:

- Создание маршрута по умолчанию: Необходимо создать маршрут по умолчанию для переадресации пакетов, не имеющих конкретного статического маршрута.
- Указание адреса следующего перехода: В каждом статическом маршруте должен быть указан адрес шлюза следующего перехода, через который должен проходить трафик.
- Раздельное применение на разных VLANs: Статические маршруты должны применяться отдельно к каждому VLAN, обеспечивая изоляцию трафика и контроль доступа.
- Использование списков доступа (ACL): ACL могут использоваться для управления тем, каким типам трафика разрешено проходить через статические маршруты.
- Мониторинг и устранение неполадок: Регулярно проверяйте статические маршруты, чтобы убедиться, что они работают должным образом, и устраняйте любые возникающие проблемы.

5 Выводы

В процессе выполнения лабораторной работы я провела подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.

Список литературы

1. Кулябов Д.С., Королькова А.В. Администрирование локальных систем: лабораторные работы : учебное пособие. Москва: РУДН, 2017. 119 с.