પ્રશ્ન 1(અ) [3 ગુણ]

એનહેન્સમેન્ટ અને ડીપ્લેશન ટાઈપ MOSFET માટે બધા સિમ્બોલ દોરો.

જવાબ:

આકૃતિ:

- **એનહેન્સમેન્ટ MOSFET**: સોર્સ અને ડ્રેઇન વચ્ચે સામાન્ય કનેક્શન લાઇન
- **ડીપ્લેશન MOSFET**: અસ્તિત્વમાં રહેલ ચેનલ દર્શાવતી જાડી લાઇન
- એરો દિશા: NMOS માટે અંદરની તરફ, PMOS માટે બહારની તરફ

મેમરી ટ્રીક: "Enhancement ને વોલ્ટેજ જોઈએ, Depletion માં ડિફોલ્ટ ચેનલ"

પ્રશ્ન 1(બ) [4 ગુણ]

વ્યાખ્યા આપો: 1) હાઈરારકી 2) રેગ્યુલારીટી

જવાબ:

પરિભાષા	વ્યાખ્યા	ઉપયોગ
હાઈરારકી	ટોપ-ડાઉન ડિઝાઇન અભિગમ જેમાં જટિલ સિસ્ટમને નાના, વ્યવસ્થિત મોડ્યુલમાં વિભાજિત કરાય છે	VLSI ડિઝાઇન ફ્લોમાં સિસ્ટમ લેવલથી ટ્રાન્ઝિસ્ટર લેવલ સુધી વપરાય છે
રેગ્યુલારીટી	જટિલતા ઘટાડવા માટે પુનરાવર્તિત સમાન સ્ટ્રક્ચરનો ઉપયોગ કરતી ડિઝાઇન તકનીક	મેમરી એરે, પ્રોસેસર ડેટાપાથમાં નિયમિત સ્ટ્રક્ચર વપરાય છે

- હાઈરારકીના ફાયદા: સરળ ડિઝાઇન વેરિફિકેશન, મોક્યુલર ટેસ્ટિંગ, ટીમ કોલેબોરેશન
- રેગ્યુલારીટીના ફાયદા: ઓછો ડિઝાઇન સમય, બહેતર યીલ્ડ, સરળ લેઆઉટ

• **ડિઝાઇન ફલો**: સિસ્ટમ \rightarrow બિહેવિયરલ \rightarrow RTL \rightarrow ગેટ \rightarrow લેઆઉટ

• **નિયમિત સ્ટ્રક્ચર**: ROM એરે, કેશ મેમરી, ALU બ્લોક

મેમરી ટ્રીક: "હાઈરારકી હેલ્પ કરે ઓર્ગેનાઇઝ કરવામાં, રેગ્યુલારીટી રિક્યુસ કરે કોમ્પ્લેક્સિટી"

પ્રશ્ન 1(ક) [7 ગુણ]

MOS અન્ડર એક્સટર્નલ બાયસ સમજાવો.

જવાબ:

MOS બાયસ કન્ડિશન કોષ્ટક:

બાયસ કન્ડિશન	ગેટ વોલ્ટેજ	ચેનલ નિર્માણ	કરંટ ફ્લો
એક્યુમ્યુલેશન	VG < 0 (NMOS)	મેજોરિટી કેરિયર એકત્ર થાય છે	ચેનલ નથી
ડીપ્લેશન	0 < VG < VT	ડીપ્લેશન રીજન બને છે	ન્યૂનતમ કરંટ
ઇન્વર્શન	VG > VT	માઇનોરિટી કેરિયર ચેનલ બનાવે છે	ચેનલ વહન કરે છે

આકૃતિ:

- **બેન્ડ બેન્ડિંગ**: એક્સરર્નલ વોલ્ટેજ ઓક્સાઇડ-સિલિકોન ઇન્ટરફેસ પર એનર્જી બેન્ડ વાળે છે
- થ્રેશોલ્ડ વોલ્ટેજ: ચેનલ નિર્માણ માટે જરૂરી ન્યૂનતમ ગેટ વોલ્ટેજ
- સરફેસ પોટેન્શિયલ: સિલિકોન સરફેસ પર કેરિયર કોન્સંટ્રેશન કંટ્રોલ કરે છે
- કેપેસિટન્સ વેરિએશન: બાયસ કન્ડિશન સાથે બદલાય છે

મેમરી ટ્રીક: "એક્યુમ્યુલેશન આકર્ષે, ડીપ્લેશન ડિપ્લીટ કરે, ઇન્વર્શન ઇન્વર્ટ કરે કેરિયર"

પ્રશ્ન 1(ક) OR [7 ગુણ]

સ્કેલિંગની શું જરૂરિયાત છે? સ્કેલિંગના ટાઈપ તેની ઈફેક્ટ સાથે સમજાવો.

જવાબ:

સ્કેલિંગની જરૂરિયાત:

પેરામીટર ફાયદો		પ્રભાવ	
એરિયા રિડક્શન	ચિપ દીઠ વધુ ટ્રાન્ઝિસ્ટર	ઊંચી ઇન્ટિગ્રેશન ડેન્સિટી	
સ્પીડ ઇન્ક્રીઝ	ઓછી ડીલે	બહેતર પરફોર્મન્સ	
પાવર રિડક્શન	ઓછો પાવર વપરાશ	પોર્ટેબલ ડિવાઇસ	
કોસ્ટ રિડક્શન	ફંક્શન દીઠ સસ્તું	માર્કેટ કોમ્પિટિટિવનેસ	

સ્કેલિંગના પ્રકાર:

- **કુલ વોલ્ટેજ સ્કેલિંગ**: લેન્થ, વિડથ, વોલ્ટેજ બધું a ફેક્ટર દ્વારા સ્કેલ
- કોન્સ્ટન્ટ વોલ્ટેજ સ્કેલિંગ: ડાઇમેન્શન સ્કેલ, વોલ્ટેજ અપરિવર્તિત
- પાવર ડેન્સિટી: ફુલ સ્કેલિંગમાં કોન્સ્ટન્ટ રહે, કોન્સ્ટન્ટ વોલ્ટેજમાં વધે
- **ઇલેક્ટ્રિક ફીલ્ડ**: ફુલ સ્કેલિંગમાં મેન્ટેઇન થાય છે

મેમરી ટ્રીક: "સ્કેલિંગ સેવ કરે સ્પેસ, સ્પીડ અને સ્પેન્ડિંગ"

પ્રશ્ન 2(અ) [3 ગુણ]

FPGA પર ટૂંકનોંધ લખો.

જવાબ:

FPGA લાક્ષણિકતાઓ કોષ્ટક:

લક્ષણ	นย์า	ફાયદો
ફીલ્ડ પ્રોગ્રામેબલ	મેન્યુફેક્યરિંગ પછી કોન્ફિગરેબલ	ડિઝાઇનમાં લવચીકતા
ગેટ એરે	લોજિક બ્લોકનું એરે	પેરેલલ પ્રોસેસિંગ
રિકોન્ફિગરેબલ ફરીથી પ્રોગ્રામ કરી શકાય		પ્રોટોટાઇપ ડેવલપમેન્ટ

• એપ્લિકેશન: ડિજિટલ સિગ્નલ પ્રોસેસિંગ, એમ્બેડેડ સિસ્ટમ, પ્રોટોટાઇપિંગ

• **આર્કિટેક્ચર**: CLBs (કોન્ફિગરેબલ લોજિક બ્લોક) રાઉટિંગ મેટ્રિક્સ દ્વારા કનેક્ટેડ

• **પ્રોગ્રામિંગ**: SRAM-આધારિત કોન્ફિગરેશન મેમરી

• येन्डर: Xilinx, Altera (Intel), Microsemi

મેમરી ટ્રીક: "FPGA: ફ્લેક્સિબલ પ્રોગ્રામિંગ ફોર ગેટ એરે"

પ્રશ્ન 2(બ) [4 ગુણ]

સેમી કસ્ટમ અને ફુલ કસ્ટમ ડિઝાઇન મેથોડોલોજી સરખાવો.

જવાબ:

પેરામીટર	સેમી-કસ્ટમ	કુલ કસ્ટમ	
ડિઝાઇન ટાઇમ ઓછો (અઠવાડિયા)		વધુ (મહિના)	
કોસ્ટ	ઓછો ડેવલપમેન્ટ કોસ્ટ	વધુ ડેવલપમેન્ટ કોસ્ટ	
પરફોર્મન્સ	મધ્યમ પરફોર્મન્સ	સર્વોચ્થ પરફોર્મન્સ	
એરિયા એફિશિયન્સી	ઓછી કાર્યક્ષમ	સૌથી કાર્યક્ષમ	
એપ્લિકેશન	ASICs, મધ્યમ વોલ્યુમ	માઇક્રોપ્રોસેસર, ઊંચો વોલ્યુમ	
ડિઝાઇન એફર્ટ	સ્ટાન્ડર્ડ સેલ વપરાય છે	દરેક ટ્રાન્ઝિસ્ટર ડિઝાઇન કરાય છે	

• સેમી-કસ્ટમ: પ્રી-ડિઝાઇન્ડ સ્ટાન્ડર્ડ સેલ અને ગેટ એરેનો ઉપયોગ કરે છે

• કુલ કસ્ટમ: સંપૂર્ણ ટ્રાન્ઝિસ્ટર-લેવલ ડિઝાઇન ઓપ્ટિમાઇઝેશન

• ટ્રેડ-ઓફ: સમય વર્સિસ પરફોર્મન્સ, કોસ્ટ વર્સિસ એફિશિયન્સી

• માર્કેટ ફિટ: મોટાભાગના એપ્લિકેશન માટે સેમી-કસ્ટમ, સ્પેશિયલાઇઝડ જરૂરિયાત માટે ફુલ કસ્ટમ

મેમરી ટ્રીક: "સેમી-કસ્ટમ છે સ્ટાન્ડર્ડ, ફુલ કસ્ટમ છે ફાઇનેસ્ટ"

પ્રશ્ન 2(ક) [7 ગુણ]

1) 0<VDS<VDSAT 2) VDS = VDSAT 3) VDS > VDSAT માટે MOSFET ઓપરેશન સમજાવો.

જવાબ:

ઓપરેટિંગ રીજન:

રીજન	કન્ડિશન	ચેનલ	કરંટ બિહેવિયર
લિનિયર	0 < VDS < VDSAT	યુનિફોર્મ ચેનલ	ID ∝ VDS
સેચ્યુરેશન ઓન્સેટ	VDS = VDSAT	પિંચ-ઓફ શરૂ થાય છે	મેક્સિમમ લિનિયર કરંટ
સેચ્યુરેશન	VDS > VDSAT	પિંચ્ડ ચેનલ	ID કોન્સ્ટન્ટ

આકૃતિ:

• **લિનિયર રીજન**: ચેનલ વોલ્ટેજ-કંટ્રોલ્ડ રેઝિસ્ટર તરીકે કામ કરે છે

• સેચ્યુરેશન રીજન: કરંટ માત્ર ગેટ વોલ્ટેજ દ્વારા કંટ્રોલ થાય છે

• VDSAT डेस्ड्युलेशन: VDSAT = VGS - VT

• કરંટ સમીકરણો: દરેક રીજન માટે અલગ મેથેમેટિકલ મોડેલ

મેમરી ટ્રીક: "લિનિયર લાઇક્સ VDS, સેચ્યુરેશન સેઝ નો મોર"

પ્રશ્ન 2(અ) OR [3 ગુણ]

સ્ટાન્ડર્ડ સેલ બેઝ્ડ ડિઝાઇન સમજાવો.

જવાબ:

સ્ટાન્ડર્ડ સેલ ડિઝાઇન કોઇ્ટક

કમ્પોનન્ટ	વર્ણન	ફાયદો
સ્ટાન્ડર્ડ સેલ	પ્રી-ડિઝાઇન્ડ લોજિક ગેટ	ઝડપી ડિઝાઇન
સેલ લાઇબ્રેરી	કેરેક્ટરાઇઝ્ડ સેલનો સંગ્રહ	અનુમાનિત પરફોર્મન્સ
પ્લેસ એન્ડ રાઉટ	ઓટોમેટેડ લેઆઉટ જનરેશન	ઓછો ડિઝાઇન સમય

• **પ્રોસેસ**: લોજિક સિન્થેસિસ → પ્લેસમેન્ટ → રાઉટિંગ → વેરિફિકેશન

• સેલ પ્રકાર: બેસિક ગેટ, ફિલપ-ફ્લોપ, લેચ, કોમ્પ્લેક્સ ફંક્શન

• **ઓટોમેશન**: EDA ટૂલ ફિઝિકલ ઇમ્પ્લિમેન્ટેશન હેન્ડલ કરે છે

• ક્વોલિટી: બેલેન્સ્ડ પરફોર્મન્સ, એરિયા અને પાવર

મેમરી ટ્રીક: "સ્ટાન્ડર્ડ સેલ સ્પીડ અપ કરે સિન્થેસિસ"

પ્રશ્ન 2(બ) OR [4 ગુણ]

Y ચાર્ટ દોરો અને સમજાવો.

જવાબ:

આકૃતિ:

ડોમેઇન	นถุ่น	ઉદાહરણ
બિહેવિયરલ	સિસ્ટમ શું કરે છે	એલ્ગોરિધમ, RTL કોડ
સ્ટ્રક્ચરલ	સિસ્ટમ કેવી રીતે બને છે	ગેટ, મોક્યુલ, પ્રોસેસર
ફિઝિકલ	ફિઝિકલ ઇમ્પ્લિમેન્ટેશન	લેઆઉટ, ફ્લોરપ્લાન, માસ્ક

• ડિઝાઇન ફ્લો: બાહ્ય રિંગ (સિસ્ટમ) થી અંદરની રિંગ (ડિવાઇસ) તરફ જવું

• એલ્સ્ટ્રેક્શન લેવલ: દરેક રિંગ અલગ વિગતનું સ્તર દર્શાવે છે

• ડોમેઇન ઇન્ટરેક્શન: સમાન એબ્સ્ટ્રેક્શન પર ડોમેઇન વચ્ચે મૂવ થઈ શકાય

• VLSI ડિઝાઇન: ત્રણેય ડોમેઇન અને એબ્સ્ટ્રેક્શન લેવલ કવર કરે છે

મેમરી ટ્રીક: "Y-ચાર્ટ: બિહેવિયર, સ્ટ્રક્ચર, ફિઝિકલ"

પ્રશ્ન 2(ક) OR [7 ગુણ]

MOSFET કરંટ-વોલ્ટેજ કેરેક્ટરિસ્ટિક માટે ગ્રેજુઅલ ચેનલ એપ્રોક્સિમેશન સમજાવો.

જવાબ:

દ્યારણાઓ:

ધારણા	વર્ણન	જસ્ટિફિકેશન
ગ્રેજુઅલ ચેનલ	ચેનલ લેન્થ >> ચેનલ ડેપ્થ	લોંગ ચેનલ ડિવાઇસ
1D એનાલિસિસ	કરંટ માત્ર x-દિશામાં ફ્લો થાય છે	મેથેમેટિક્સ સરળ બનાવે છે
ડ્રિફ્ટ કરંટ	ડિફ્યુઝન કરંટ નેગ્લેક્ટ કરવો	હાઇ ફીલ્ડ કન્ડિશન
ચાર્જ શીટ	મોબાઇલ ચાર્જ પાતળી શીટમાં	નાની ઇન્વર્શન લેચર

કરંટ ડેરિવેશન:

• รู้ย**-** ระ๋**ะ**: ID = µn Cox (W/L) [(VGS-VT)VDS - VDS²/2]

• **લિનિયર રીજન**: જ્યારે VDS < VGS-VT

• **સેચ્યુરેશન**: જ્યારે VDS ≥ VGS-VT, ID = µn Cox (W/2L)(VGS-VT)²

• યેનલ ચાર્જ: સોર્સથી ડ્રેઇન સુધી લિનિયર રીતે વેરી થાય છે

મર્યાદાઓ:

• શોર્ટ ચેનલ ઇફેક્ટ: ગ્રેજુઅલ એપ્રોક્સિમેશન બ્રેક ડાઉન થાય છે

• વેલોસિટી સેચ્યુરેશન: હાઇ ફીલ્ડ ઇફેક્ટ ઇન્ક્લુડ નથી

• 2D ઇફેક્ટ: સિમ્પલ મોડેલમાં અવગણાય છે

મેમરી ટ્રીક: "ગ્રેજુઅલ ચેન્જ ગિવ સિમ્પલ ગેઇન એક્વેશન"

પ્રશ્ન 3(અ) [3 ગુણ]

આઈડલ ઇન્વર્ટરનો સિમ્બોલ દોરો અને ટ્રુથ ટેબલ લખો. આઈડલ ઇન્વર્ટર માટે VTC દોરો અને સમજાવો.

જવાબ:

સિમ્બોલ અને ટ્રુથ ટેબલ:

VIN	VOUT
0	1
1	0

VTC (વોલ્ટેજ ટ્રાન્સફર કેરેક્ટરિસ્ટિક):

• **આઈડલ લાક્ષણિકતા**: VDD/2 પર તીવ્ર સંક્રમણ

• નોઇઝ માર્જિન: NMH = NML = VDD/2

• ગેઇન: સ્વિચિંગ પોઇન્ટ પર અનંત

• પાવર કન્ઝમ્પશન: શૂન્ય સ્ટેટિક પાવર

મેમરી ટ્રીક: "આઈડલ ઇન્વર્ટર: અનંત ગેઇન, ઇન્સ્ટન્ટ સ્વિચિંગ"

પ્રશ્ન 3(બ) [4 ગુણ]

જનરાલાઇઝ્ડ ઇન્વર્ટર સર્કિટ VTC સાથે સમજાવો.

જવાબ:

સર્કિટ કોન્ફિગરેશન:

કમ્પોનન્ટ	ફંક્શન	લାક୍ષણિકતા
ડ્રાઇવર ટ્રાન્ઝિસ્ટર	પુલ-ડાઉન ડિવાઇસ	સ્વિચિંગ કંટ્રોલ કરે છે
લોડ ડિવાઇસ	પુલ-અપ એલિમેન્ટ	હાઇ આઉટપુટ પ્રદાન કરે છે
સપ્લાય વોલ્ટેજ	પાવર સોર્સ	લોજિક લેવલ નક્કી કરે છે

VTC રીજન:

- લોડ લાઇન એનાલિસિસ: ડ્રાઇવર અને લોડની લાક્ષણિકતાઓનું આંતરછેદ
- સ્વિચિંગ થ્રેશોલ્ડ: ડિવાઇસ સાઇઝિંગ રેશિયો દ્વારા નક્કી થાય છે
- નોઇઝ માર્જિન: ટ્રાન્ઝિશન શાર્પનેસ પર આધાર રાખે છે
- પાવર ડિસિપેશન: ટ્રાન્ઝિશન દરમિયાન સ્ટેટિક કરંટ

મેમરી ટ્રીક: "જનરાલાઇઝ્ડ ડિઝાઇન: ડ્રાઇવર પુલ ડાઉન, લોડ લિફ્ટ અપ"

પ્રશ્ન 3(ક) [7 ગુણ]

ડીપ્લેશન લોડ nMOS ઇન્વર્ટર તેની સર્કિટ, ઓપરેટિંગ રીજન અને VTC સાથે સમજાવો.

જવાબ:

સર્કિટ આકૃતિ:

ઓપરેટિંગ રીજન:

ઇનપુટ સ્ટેટ	T1 સ્ટેટ	T2 સ્ટેટ	આઉટપુટ
VIN = 0	બંધ	ચાલુ (ડીપ્લેશન)	VOUT = VDD-VT
VIN = VDD	ચાલુ	ચાલુ (રેઝિસ્ટિવ)	VOUT = VOL

VTC એનાલિસિસ:

- **ફાયદા**: સિમ્પલ ફેબ્રિકેશન, સારી ડ્રાઇવ કેપેબિલિટી
- નુકસાન: ડિગ્રેડેડ હાઇ આઉટપુટ, સ્ટેટિક પાવર કન્ઝમ્પશન
- **એપ્લિકેશન**: પ્રારંભિક NMOS લોજિક ફેમિલી
- ડિઝાઇન વિચારણા: વિડથ રેશિયો સ્વિચિંગ પોઇન્ટને અસર કરે છે

મેમરી ટ્રીક: "ડીપ્લેશન ડિવાઇસ ડિલિવર કરે ડીસેન્ટ ડ્રાઇવ"

પ્રશ્ન 3(અ) OR [3 ગુણ]

નોઇઝ માર્જિન સમજાવો.

જવાબ:

વ્યાખ્યા અને પેરામીટર:

પેરામીટર	વર્ણન	ફોર્મ્યુલા
NMH	હાઇ નોઇઝ માર્જિન	NMH = VOH - VIH
NML	લો નોઇઝ માર્જિન	NML = VIL - VOL
VOH	આઉટપુટ હાઇ વોલ્ટેજ	મિનિમમ હાઇ આઉટપુટ
VOL	આઉટપુટ લો વોલ્ટેજ	મેક્સિમમ લો આઉટપુટ
VIH	ઇનપુટ હાઇ થ્રેશોલ્ડ	મિનિમમ ઇનપુટ હાઇ
VIL	ઇનપુટ લો થ્રેશોલ્ડ	મેક્સિમમ ઇનપુટ લો

• મહત્વ: સર્કિટની નોઇઝ સામે પ્રતિરોધકતાનું માપ

• **ડિઝાઇન લક્ષ્ય**: NMH અને NML બન્નેને મેક્સિમાઇઝ કરો

• ટ્રેડ-ઓફ: નોઇઝ માર્જિન વર્સિસ સ્પીડ વર્સિસ પાવર

• એપ્લિકેશન: ડિજિટલ સિસ્ટમ ડિઝાઇનમાં મહત્વપૂર્ણ

મેમરી ટ્રીક: "નોઇઝ માર્જિન મેઇન્ટેઇન કરે સિગ્નલ ઇન્ટેગ્રિટી"

પ્રશ્ન 3(બ) OR [4 ગુણ]

રેઝિસ્ટિવ લોડ ઇન્વર્ટર સમજાવો.

જવાબ:

સર્કિટ અને એનાલિસિસ:

કમ્પોનન્ટ	ફંક્શન	લાક્ષણિકતા
NMOS ટ્રાન્ઝિસ્ટર	સ્વિચિંગ ડિવાઇસ	વેરિએબલ રેઝિસ્ટન્સ
લોડ રેઝિસ્ટર	પુલ-અપ એલિમેન્ટ	ફિક્સ્ડ રેઝિસ્ટન્સ RL
પાવર સપ્લાય	વોલ્ટેજ સોર્સ	VDD પ્રદાન કરે છે

ઓપરેટિંગ પ્રિન્સિપલ:

• **હાઇ ઇનપુટ**: ટ્રાન્ઝિસ્ટર થાલુ, VOUT = ID × RL (લો)

• **લો ઇનપુટ**: ટ્રાન્ઝિસ્ટર બંધ, VOUT = VDD (હાઇ)

• કરંટ પાથ: આઉટપુટ લો હોય ત્યારે હંમેશા રેઝિસ્ટર દ્વારા

• **પાવર કન્ઝમ્પશન**: સ્ટેટિક પાવર = VDD²/RL

ફાયદા અને નુકસાન:

• સિમ્પલ ડિઝાઇન: સમજવામાં અને ઇમ્પ્લિમેન્ટ કરવામાં સરળ

• ખરાબ પરફોર્મન્સ: હાઇ સ્ટેટિક પાવર, સ્લો સ્વિચિંગ

• મર્યાદિત ઉપયોગ: મુખ્યત્વે કોન્સેપ્ટ સમજવા માટે

મેમરી ટ્રીક: "રેઝિસ્ટર રિસ્ટ્રિક્ટ કરે કરંટ, રિક્યુસ કરે પરફોર્મન્સ"

પ્રશ્ન 3(ક) OR [7 ગુણ]

CMOS ઇન્વર્ટર તેની VTC સાથે સમજાવો.

જવાબ:

સર્કિટ કોન્ફિગરેશન:

```
VDD

|
+--+--+
VIN -+ +- VOUT

| PMOS |
+----+
|
+--+--+
VIN -+ |
| NMOS+- VOUT
+-----+
| GND
```

VTC રીજન:

રીજન	ઇનપુટ રેન્જ	PMOS સ્ટેટ	SSS SOMN	આઉટપુટ
1	VIN < VTN	ચાલુ	બંધ	VDD
2	VTN < VIN < VDD/2	ચાલુ	યાલુ	ટ્રાન્ઝિશન
3	VDD/2 < VIN < VDD+VTP	ચાલુ	યાલુ	ટ્રાન્ઝિશન
4	VIN > VDD+VTP	બંધ	યાલુ	0

મુખ્ય લાક્ષણિકતાઓ:

- કોમ્પ્લિમેન્ટરી ઓપરેશન: સ્ટેડી સ્ટેટમાં માત્ર એક ટ્રાન્ઝિસ્ટર વહન કરે છે
- સ્વિ**ચિંગ પોઇન્ટ**: PMOS/NMOS રેશિયો દ્વારા નક્કી થાય છે
- પાવર એફિશિયન્સી: ન્યૂનતમ સ્ટેટિક પાવર કન્ઝમ્પશન
- **નોઇઝ ઇમ્યુનિટી**: ઉત્તમ નોઇઝ માર્જિન

મેમરી ટ્રીક: "CMOS: કોમ્પ્લિમેન્ટરી ફોર કોમ્પ્લીટ પરફોર્મન્સ"

પ્રશ્ન 4(અ) [3 ગુણ]

AOI CMOS ઇમ્પ્લિમેન્ટેશન સાથે દોરો.

જવાબ:

AOI (AND-OR-INVERT) લોજિક: Y = (AB + CD)'

CMOS ઇમ્પ્લિમેન્ટેશન:


```
|
+---+
|
| |
NMOS NMOS (પેરેલલ: CD)
C D
|
| +---+
|----+
```

- **પુલ-અપ નેટવર્ક**: PMOS ટ્રાન્ઝિસ્ટર સીરીઝ-પેરેલલમાં
- **પુલ-ડાઉન નેટવર્ક**: NMOS ટ્રાન્ઝિસ્ટર પેરેલલ-સીરીઝમાં
- ક્યુઆલિટી: પુલ-અપ અને પુલ-ડાઉન કોમ્પ્લિમેન્ટ છે

મેમરી ટ્રીક: "AOI: AND-OR પછી ઇન્વર્ટ"

પ્રશ્ન 4(બ) [4 ગુણ]

બે ઇનપુટ NOR અને NAND ગેટ ડીપ્લેશન લોડ nMOS થી બનાવો.

જવાબ:

NOR ગેટ:

SÍC DUAN

```
VDD
|
+--+-+ (Slપલેશન લોડ)
VG --| |
| |
+----+-- VOUT
|
+--+--+
```

```
A --| |
| NMOS| (원원)
+----+
| +--+-+
B --| |
| NMOS|
+----+
```

ટ્રુથ ટેબલ:

Α	В	NOR	NAND
0	0	1	1
0	1	0	1
1	0	0	1
1	1	0	0

મેમરી ટ્રીક: "NOR ને કંઈ હાઇ નહીં જોઈએ, NAND ને બધું હાઇ જોઈએ લો થવા માટે"

પ્રશ્ન 4(ક) [7 ગુણ]

NOR2 અને NAND2 ગેટનો ઉપયોગ કરીને CMOS SR લેચ ઇમ્પ્લિમેન્ટ કરો.

જવાબ:

NOR ગેટ વડે SR લેચ:

CMOS NOR ગેટ ઇમ્પ્લિમેન્ટેશન:

સ્ટેટ ટેબલ:

S	R	Q(n+1)	Q'(n+1)	એક્શન
0	0	Q(n)	Q'(n)	હોલ્ક
0	1	0	1	રીસેટ
1	0	1	0	સેટ
1	1	0	0	અમાન્ય

• ક્રોસ-કપ્લ્ડ સ્ટ્રક્ચર: દરેક ગેટનું આઉટપુટ બીજાના ઇનપુટને ફીડ કરે છે

• **બાઇસ્ટેબલ ઓપરેશન**: બે સ્થિર અવસ્થા (સેટ અને રીસેટ)

• મેમરી એલિમેન્ટ: એક બિટ માહિતી સ્ટોર કરે છે

• ક્લોક ઇન્ડિપેન્ડન્સ: એસિંકોનસ ઓપરેશન

મેમરી ટ્રીક: "SR લેચ: સેટ-રીસેટ વિથ ક્રોસ-કપ્લ્ડ ગેટ"

પ્રશ્ન 4(અ) OR [3 ગુણ]

CMOS નો ઉપયોગ કરીને XOR ફંક્શન ઇમ્પ્લિમેન્ટ કરો.

જવાબ:

XOR ટ્રુથ ટેબલ:

Α	В	Y = A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

CMOS XOR ઇમ્પ્લિમેન્ટેશન:

• **ફંક્શન**: Y = AB' + A'B

• **ટ્રાન્ઝિસ્ટર કાઉન્ટ**: 8 ટ્રાન્ઝિસ્ટર (4 PMOS + 4 NMOS)

• વિકલ્પ: ટ્રાન્સમિશન ગેટ ઇમ્પ્લિમેન્ટેશન

મેમરી ટ્રીક: "XOR: એક્સક્લુસિવ OR, અલગ ઇનપુટ આપે 1"

પ્રશ્ન 4(બ) OR [4 ગુણ]

બે ઇનપુટ NOR અને NAND ગેટ CMOS થી બનાવો.

જવાબ:

CMOS NOR ais:

```
VDD
|
+---+---+
| |
| A'-+PMOS PMOS+-B' (원인정)
| |
| +---+----+-- VOUT
```


CMOS NAND ais:

ડિઝાઇન નિયમો:

ગેટ	પુલ-અપ નેટવર્ક	પુલ-ડાઉન નેટવર્ક
NAND	PMOS પેરેલલમાં	NMOS સીરીઝમાં
NOR	PMOS સીરીઝમાં	NMOS પેરેલલમાં

મેમરી ટ્રીક: "NAND: નોટ AND, NOR: નોટ OR - નેટવર્ક કોમ્પ્લિમેન્ટ કરો"

પ્રશ્ન 4(ક) OR [7 ગુણ]

Y=[PQ+R(S+T)]' બુલિયન સમીકરણ ડીપ્લેશન લોડ nMOS અને CMOS થી ઇમ્પ્લિમેન્ટ કરો.

જવાબ:

બુલિયન એનાલિસિસ:

- ફંક્શન: Y = [PQ + R(S+T)]'
- વિસ્તૃત: Y = [PQ + RS + RT]'
- ડે મોર્ગન: Y = (PQ)' · (RS)' · (RT)'
- અਂતਿમ: Y = (P'+Q') · (R'+S') · (R'+T')

nMOS ઇમ્પ્લિમેન્ટેશન:

CMOS ઇમ્પ્લિમેન્ટેશન:

- nMOS **લાક્ષણિકતા**: સિમ્પલ પણ સ્ટેટિક પાવર સાથે
- CMOS ફાયદા: સ્ટેટિક પાવર નથી, ફુલ સ્વિંગ
- જરિલતા: nMOS માટે 7 ટ્રાન્ઝિસ્ટર, CMOS માટે 14
- **પરફોર્મન્સ**: CMOS ઝડપી અને વધુ કાર્યક્ષમ

મેમરી ટ્રીક: "બુલિયન ટુ સર્કિટ: nMOS સિમ્પલ, CMOS કોમ્પ્લીટ"

પ્રશ્ન 5(અ) [3 ગુણ]

વેરિલોગમાં ઉપયોગ થતી ડિઝાઇન સ્ટાઇલ સમજાવો.

જવાબ:

વેરિલોગ ડિઝાઇન સ્ટાઇલ:

સ્ટાઇલ	વર્ણન	એપ્લિકેશન
ગેટ લેવલ	પ્રિમિટિવ ગેટનો ઉપયોગ	લો-લેવલ હાર્ડવેર મોડેલિંગ
ડેટા ફ્લો	assign સ્ટેટમેન્ટનો ઉપયોગ	કોમ્બિનેશનલ લોજિક
બિહેવિયરલ	always બ્લોકનો ઉપયોગ	સિક્વેન્શિયલ અને કોમ્પ્લેક્સ લોજિક
મિક્સ્ડ	સ્ટાઇલનું કોમ્બિનેશન	સંપૂર્ણ સિસ્ટમ ડિઝાઇન

• **ગેટ લેવલ**: and, or, not, nand, nor પ્રિમિટિવ

• ડેટા ફલો: ઓપરેટર સાથે કંટિન્યુઅસ એસાઇનમેન્ટ

• **બિહેવિયરલ**: always બ્લોકમાં પ્રોસિજરલ એસાઇનમેન્ટ

• હાઇરારકી: મોડ્યુલ અલગ સ્ટાઇલ વાપરી શકે છે

મેમરી ટ્રીક: "ગેટ-ડેટા-બિહેવિયર: મોડેલ કરવાની ત્રણ રીત"

પ્રશ્ન 5(બ) [4 ગુણ]

બિહેવિયરલ મોડેલિંગ થી ફુલ એડર માટે વેરિલોગ પ્રોગ્રામ લખો.

જવાબ:

```
module full_adder_behavioral (
    input wire a, b, cin,
    output reg sum, cout
);
always @(*) begin
    case ({a, b, cin})
        3'b000: {cout, sum} = 2'b00;
        3'b001: {cout, sum} = 2'b01;
        3'b010: {cout, sum} = 2'b01;
        3'b011: {cout, sum} = 2'b10;
        3'b100: {cout, sum} = 2'b01;
        3'b101: {cout, sum} = 2'b10;
        3'b110: {cout, sum} = 2'b10;
        3'b111: {cout, sum} = 2'b11;
        default: {cout, sum} = 2'b00;
    endcase
end
endmodule
```

મુખ્ય લક્ષણો:

• Always બ્લોક: બિહેવિયરલ મોડેલિંગ કન્સ્ટ્રક્ટ

• Case સ્ટેટમેન્ટ: ટ્રુથ ટેબલ ઇમ્પ્લિમેન્ટેશન

• **કોનકેટેનેશન**: કોમ્બાઇન**્**ક આઉટપુટ માટે {cout, sum}

• સેન્સિટિવિટી લિસ્ટ: કોમ્બિનેશનલ લોજિક માટે @(*)

મેમરી ટ્રીક: "બિહેવિયરલ યુઝ કરે Always વિથ Case સ્ટેટમેન્ટ"

પ્રશ્ન 5(ક) [7 ગુણ]

CASE સ્ટેટમેન્ટનું ફંક્શન વર્ણવો. CASE સ્ટેટમેન્ટનો ઉપયોગ કરીને 3x8 ડિકોડરનો વેરિલોગ કોડ લખો.

જવાબ:

CASE સ્ટેટમેન્ટ ફંક્શન:

લક્ષણ	นต์า	ઉપયોગ
મલ્ટિ-વે બ્રાન્ચ	અનેક વિકલ્પોમાંથી એક પસંદ કરે	C માં switch જેવું
પેટર્ન મેચિંગ	એક્સપ્રેશનને કોન્સ્ટન્ટ સાથે કોમ્પેર કરે	બરાબર બિટ મેચિંગ
પ્રાયોરિટી એન્કોડિંગ	પહેલું મેચ જીતે છે	ટોપ-ડાઉન ઇવેલ્યુએશન
ડિફોલ્ટ ક્લોઝ	અનસ્પેસિફાઇડ કેસ હેન્ડલ કરે	લેચ અટકાવે છે

3x8 ડિકોડર વેરિલોગ કોડ:

```
module decoder 3x8 (
    input wire [2:0] select,
    input wire enable,
    output reg [7:0] out
);
always @(*) begin
    if (enable) begin
        case (select)
            3'b000: out = 8'b00000001;
            3'b001: out = 8'b00000010;
            3'b010: out = 8'b00000100;
            3'b011: out = 8'b00001000;
            3'b100: out = 8'b00010000;
            3'b101: out = 8'b00100000;
            3'b110: out = 8'b01000000;
            3'b111: out = 8'b10000000;
            default: out = 8'b00000000;
        endcase
    end else begin
        out = 8'b00000000;
    end
end
endmodule
```

CASE સ્ટેટમેન્ટ લક્ષણો:

- બરાબર મેચિંગ: બધા બિટ બરાબર મેચ થવા જોઈએ
- પેરેલલ ઇવેલ્યુએશન: હાર્ડવેર ઇમ્પ્લિમેન્ટેશન પેરેલલ છે
- સંપૂર્ણ સ્પેસિફિકેશન: બધા શક્ય ઇનપુટ કોમ્બિનેશન કવર કર્યા
- ડિફોલ્ટ ક્લોઝ: સિન્થેસિસમાં અનઇન્ટેન્ડેડ લેચ અટકાવે છે

મેમરી ટ્રીક: "CASE કોમ્પેર કરે બધું સ્પેસિફાઇડ એક્ઝેક્ટલી"

પ્રશ્ન 5(અ) OR [3 ગુણ]

2:1 મલ્ટિપ્લેક્સર ઇમ્પ્લિમેન્ટ કરતો વેરિલોગ કોડ લખો.

જવાબ:

```
module mux_2to1 (
    input wire a, b, sel,
    output wire y
);
assign y = sel ? b : a;
endmodule
```

વિકલ્પિત ઇમ્પ્લિમેન્ટેશન:

સ્ટાઇલ	કોડ	ઉપયોગ કેસ
ડેટા ફ્લો	assign y = sel ? b : a;	સિમ્પલ લોજિક
ગેટ લેવલ	and, or, not ગેટ વાપરે	શીખવાનો હેતુ
બિહેવિયરલ	if-else સાથે always બ્લોક	કોમ્પ્લેક્સ કન્ડિશન

- કન્ડિશનલ ઓપરેટર: ? : મલ્ટિપ્લેક્સર ફંક્શન પ્રદાન કરે
- કંટિન્યુઅસ એસાઇનમેન્ટ: કોમ્બિનેશનલ લોજિક માટે assign
- સિન્થેસિસ: ટૂલ ગેટ-લે 130ૂળ ઇમ્પ્લિમેન્ટેશનમાં કન્વર્ટ કરે

મેમરી ટ્રીક: "MUX: sel ? b : a - ઇનપુટ વચ્ચે પસંદગી"

પ્રશ્ન 5(બ) OR [4 ગુણ]

બિહેવિયરલ મોડેલિંગ થી D ફિલપ-ફ્લોપ માટે વેરિલોગ પ્રોગ્રામ લખો.

જવાબ:

```
module d_flipflop (
    input wire clk, reset, d,
    output reg q, qbar
);
```

```
always @(posedge clk or posedge reset) begin
    if (reset) begin
        q <= 1'b0;
        qbar <= 1'b1;
    end else begin
        q <= d;
        qbar <= ~d;
    end
end</pre>
```

મુખ્ય લક્ષણો:

એલિમેન્ટ	ફંક્શન	સિન્ટેક્સ
posedge clk	રાઇઝિંગ એજ ટ્રિગર	ક્લોક સિંક્રોનાઇઝેશન
posedge reset	એસિંક્રોનસ રીસેટ	તાત્કાલિક રીસેટ એક્શન
નોન-બ્લોકિંગ	<= ઓપરેટર	સિક્વેન્શિયલ લોજિક
કોમ્પિલમેન્ટરી	qbar = ~q	સાચી ફિલપ-ફલોપ બિહેવિયર

• એજ સેન્સિટિવિટી: માત્ર કલોક એજ પર પ્રતિભાવ આપે

• એસિંકોનસ રીસેટ: રીસેટ ક્લોક કરતાં પ્રાથમિકતા લે

• સિક્વેન્શિયલ લોઢિક: નોન-બ્લોકિંગ એસાઇનમેન્ટ વાપરે

• સ્ટેટ સ્ટોરેજ: ક્લોક સાઇકલ વચ્ચે ડેટા જાળવે

મેમરી ટ્રીક: "D ફિલપ-ફલોપ: ડેટા ફોલો કરે ક્લોક વિથ રીસેટ"

પ્રશ્ન 5(ક) OR [7 ગુણ]

ટેસ્ટબેંચ ટૂંકમાં વર્ણવો. 4-બિટ ડાઉન કાઉન્ટર ઇમ્પ્લિમેન્ટ કરવાનો વેરિલોગ કોડ લખો.

જવાબ:

ટેસ્ટબેંચ ઓવરવ્યુ:

કમ્પોનન્ટ	ઉદ્દેશ્ય	ઇમ્પ્લિમેન્ટેશન
સ્ટિમ્યુલસ જનરેશન	ટેસ્ટ ઇનપુટ પ્રદાન કરવું	ક્લોક, રીસેટ, કંટ્રોલ સિગ્નલ
રિસ્પોન્સ મોનિટરિંગ	આઉટપુટ ચેક કરવું	અપેક્ષિત મૂલ્ય સાથે સરખાવો
કવરેજ એનાલિસિસ	સંપૂર્ણતા ચકાસવી	બધી સ્ટેટ અને ટ્રાન્ઝિશન
ડિબગિંગ સપોર્ટ	સમસ્યા ઓળખવી	વેવફોર્મ એનાલિસિસ

4-બિટ ડાઉન કાઉન્ટર:

```
module down_counter_4bit (
    input wire clk, reset, enable,
    output reg [3:0] count
);
always @(posedge clk or posedge reset) begin
    if (reset) begin
        count <= 4'b1111; // भेडिसमम वेत्युथी शरू डरो
    end else if (enable) begin
        if (count == 4'b0000)
            count <= 4'b1111; // રેપ અરાઉન્ડ
        else
            count <= count - 1; // डेिंडिमेन्ट
    end
end
endmodule
// ડાઉન કાઉન્ટર માટે ટેસ્ટબેંચ
module tb down counter;
   reg clk, reset, enable;
    wire [3:0] count;
    down_counter_4bit dut (
        .clk(clk),
        .reset(reset),
        .enable(enable),
        .count(count)
    );
    // ક્લોક જનરેશન
    always #5 clk = ~clk;
    initial begin
        clk = 0;
        reset = 1;
        enable = 0;
        #10 reset = 0;
        #10 enable = 1;
        #200 $finish;
    end
    // આઉટપુટ મોનિટર
    initial begin
        $monitor("Time=%0t, Reset=%b, Enable=%b, Count=%b",
                  $time, reset, enable, count);
    end
endmodule
```

ટેસ્ટબેંચ કમ્પોનન્ટ:

• **કલોક જનરેશન**: always બ્લોક વડે કંટિન્યુઅસ ક્લોક

• સ્ટિમ્યુલસ: રીસેટ અને enable સિગ્નલ કંટ્રોલ

• **મોનિટરિંગ**: કંટિન્યુઅસ આઉટપુટ ડિસ્પ્લે

• **સિમ્યુલેશન કંટ્રોલ**: સિમ્યુલેશન અંત કરવા માટે \$finish

કાઉન્ટર લક્ષણો:

• **ડાઉન કાઉન્ટિંગ**: 15 થી 0 સુધી ડેક્રિમેન્ટ

• રેપ અરાઉન્ડ: 0 પહોંચ્યા પછી 15 પર પાછું ફરે

• **enable કંટ્રોલ**: માત્ર enable હોય ત્યારે જ કાઉન્ટિંગ

• સિંકોનસ ઓપરેશન: ક્લોક એજ પર બધા ફેરફાર

મેમરી ટ્રીક: "ટેસ્ટબેંચ ટેસ્ટ કરે ક્લોક, સ્ટિમ્યુલસ અને મોનિટર સાથે"