

Come gettarsi su un'auto in tutta sicurezza

La fisica di Batman

Come gettarsi su un'auto in tutta sicurezza

La fisica di Batman

Come lanciarsi dall'alto in sicurezza

Come lanciarsi dall'alto in sicurezza

Amazing Spider-Man # 121

$$v^2 = 2gh$$

$$v^2 = 2gh$$
$$h = 81m$$

$$v^{2} = 2g h$$

$$h = 81 m$$

$$v = 39.9 m/s = 143 km/h$$

$$v^{2} = 2gh$$

$$h = 81 m$$

$$v = 39.9 m/s = 143 km/h$$

$$F = m a, a = \frac{\Delta v}{\Delta t}$$

$$v^{2} = 2gh$$

$$h = 81 m$$

$$v = 39.9 m/s = 143 km/h$$

$$F = m a, a = \frac{\Delta v}{\Delta t}$$

$$m = 50 kg, \Delta t = 0.5 s$$

$$v^{2} = 2g h$$

 $h = 81 m$
 $v = 39.9 m/s = 143 km/h$
 $F = m a, a = \frac{\Delta v}{\Delta t}$
 $m = 50 kg, \Delta t = 0.5 s$
 $F = 3990 N, P = 490 N$

$$v^{2} = 2g h$$

 $h = 81 m$
 $v = 39.9 m/s = 143 km/h$
 $F = m a, a = \frac{\Delta v}{\Delta t}$
 $m = 50 kg, \Delta t = 0.5 s$
 $F = 3990 N, P = 490 N$

