System Test Specification

Hayden Eubanks

Table of Contents

	Section/Sub-section Title		
1.	Test Cases		
2.	Test Specification		
Apper	ndix – Updated Requirements Traceability Matrix		

1. Test Cases

Test Case ID	Requirement Number	Test Goal
		Validation of user Passwords:
		The validation of user passwords can be tested by
		creating test cases including all forms of invalid
		password data entries and then passing those test cases
		to the system to ensure they are not accepted. This
LOGIN-1	1.1	could include factors such as password length, the
		inclusion of numbers and special characters, and not
		solely using words from the dictionary. Further, as this
		is an input field, testing should be performed to ensure
		special characters used in injection attacks cannot be
		injected into the system.

		Minimum Password Requirements Met:
		This testing area is an extension of the first test case
		regarding password requirements but extends this test
		by testing for the security of password elements as a
		whole unit. For example, a password must contain at
	1.1.1	least four-letter characters, one special character, and
LOCIN 2		one number to make a minimum password of six
LOGIN-2		characters in length and contain a combination of
		elements that increase the password's security. Further,
		poor security practices with these elements such as
		commonly used patterns (i.e., "abc123!") or the
		repetition of characters (i.e., "111aaa!!!") will be
		tested for and passwords that practice these poor
		standards will not be accepted.

		Password Hashed and Hash Value Stored for
		Authentication:
		The hashing of passwords and their associated stored
		values can easily be tested by inspecting the stored
		values in the database to ensure that fixed hash values
		are implemented. Further, testing of using the same
LOGIN-3	1.1.2	password for different user accounts could be
		implemented to ensure these values hash to different
		outputs indicating the existence of salt in hashing.
		However, from a purely black-box testing perspective,
		the data traffic could be inspected to ensure that the
		password value is encrypted by the hashing algorithm
		before it is sent to the database for storage.
		Passwords Must Regularly Be Updated:
LOGIN-4		This test case can be performed by setting a password
	1.1.3	and ensuring the password expires after the given time,

		being three months in this system, and forces the
		generation of a new password. However, with access
		to the system code an inspection of the expiry value of
		passwords can be inspected to ensure the facilities for
		password timeout exist. Further, the system should
		remain inaccessible to the user until the password is
		reset.
		User Sessions will Timeout After a Period of Inactivity:
		This test feature can be tested by initiating a user
		session and then ensuring the system logs the user out
		and terminates the user session after five minutes of
LOGIN-5		inactivity. Creating a user session and manually
		verifying the system status after five minutes can then
		confirm this metric. Additionally, the system should
		not sign out if the user is still utilizing the system so a
	1.2	warning should be given to the user and the system
	1.2	warning should be given to the user and the system

should not initiate the auto logout if actions are still		
being performed.		
Only Connections from Within the U.S. Should Be		
Accepted:		
This can be tested by system testers through the		
utilization of VPNs to imitate connections from other		
nations. In all cases except for connections from the		LOCINIC
U.S., the system should reject the connection and		LUGIN-6
terminate the session without allowing access to		
system resources. In contrast to this, all verified		
connections originating in the U.S. should be accepted		
and access allowed.	1.3	
Efficient Querying of Database:		
The database should return queried values within an		PERFORM-1
acceptable timeframe. The general rule for testing this	2.1	
nations. In all cases except for connections U.S., the system should reject the connecti terminate the session without allowing acc system resources. In contrast to this, all ve connections originating in the U.S. should and access allowed. Efficient Querying of Database: The database should return queried values	2.1	LOGIN-6 PERFORM-1

		metric would seek to return query results in under five
		seconds on average. This can be tested by generating
		SQL queries of varying complexity and performing
		these queries on the database while tracking the time
		until data is returned. The average time can then be
		taken over the course of all tests to ensure the system
		performance is within an acceptable range.
		Sufficient Resources for College User Base:
		This testing could best be performed through a
		physical inspection of the storage and computational
		resources available to the server relevant to the
PERFORM-2		number of students needing to be served by the
	2.2	system. This would most easily be accomplished
		through inspecting the system infrastructure and
		resources but could also be accomplished through
		simulating the expected load of traffic on the system

		and ensuring all systems continue to function
		normally.
		Sufficient Data Throughput for Connections:
		As an extension of the previous test case, this test
		involves simulating user activity on the server
	2.3	specifically and ensuring that the data throughput
PERFORM-3		returns data to the user within an acceptable
		timeframe. This can be tested by simulating several
		user connections under the expected load and ensuring
		a timely response for data retrieval is present.
		TCP Implemented for User Connections:
		This test case can easily be performed by creating user
PERFORM-4		connections to the server and inspecting the protocols
	2.3.1	used in data transfer. A tester should then observe that
		the TCP protocol is utilized for all transfers of data.

		Critical Sections of Data Modification Protected:
		Test cases can be crafted to examine the functionality
		of data-critical sections by testing scenarios in which
		race conditions could occur. For example, a user could
PERFORM-5		attempt to modify a piece of data while another is
	2.4	viewing that data, or two users could attempt to
		simultaneously modify the same data element. In all of
		these examples, the integrity of data should be upheld
		through the protection of critical data sections.
		Encryption of Data at Rest:
		The encryption of data at rest would almost
	3.1	exclusively be testable by inspecting the database
DATA_PROTEC-1		values and ensuring that encryption is implemented for
		the data values. A tester could then examine server
		files to ensure encryption practices are implemented
		across all stored data files.

		Encryption of Data in Transit:
		The encryption of data in transit is more easily testable
		as the values of data in transit can be inspected
DATA_PROTEC-2		through an application for inspecting network traffic.
	3.2	Inspecting network traffic should then reveal no
		cleartext transfers implying that encryption is
		practiced for all transferred data values.
		Principle of Least Privilege Applied Throughout Design:
		The principle of least privilege should be practiced
		throughout the design and can only be tested with a
DATA PROTECT	3.3	thorough understanding of the roles associated with
DATA_PROTEC-3		each user class. With this understanding, a tester could
		then attempt actions as a user of each user group and
		ensure that only needed actions are performable with
		each user group type.

		Audit Log Maintained of all Data Transformations:
		In a similar manner to the other test cases revolving
		around data stored on the server, the testing of audit
DATA PROTECT		log values can only be performed by inspecting the
DATA_PROTEC-4		audit log and performing actions that should be
	3.4	recorded on the system. The audit log should then
		reflect these actions and be observable by the system
		tester.
		All Mandatory Fields Must Contain a Value:
		This test case can be tested by examining the outcome
DATE OHAL 1		of leaving each mandatory field empty. In the end
DATA_QUAL-1		system, this should result in the form not being
	4.1	submitted and a warning message displayed to inform
		the user that they must add data to the input field.

		Every Student Has a Data Entry:
		Similar to the previous test case, this test case can be
		implemented by scanning the database against a
		known list of students attending the university. For this
DATA_QUAL-2	4.2	test to be successful, it must then be observed that
	4.2	every student represented in the list holds an entry in
		the database. This test could also be used to identify
		errors in student names and all misrepresentations
		must be manually inspected.
		Data Validation is Performed on All Fields:
		This test case can ensure data quality by testing every
		input field for the adequate validation needed to ensure
DATA_QUAL-3	4.3	high-quality data from that field. This could look like
		generating testing parameters concerning areas such as
		the characters allowed in a field, the length of the
		field, and the correct data type are validated for each

		entry field. All fields must be tested but test cases can be written and automated to streamline this testing process.
DATA_QUAL-4	4.4	User Records Deleted After Allotted Time: A lifespan should be generated for all data stored within the system to ensure all data kept is relevant to the college. This can be tested by creating a new data entry and ensuring that this data entry is removed from the system after the allotted time. However, this black box testing approach may not be desirable as the expiry of data will occur after five years. For this reason, artificial aging should be performed on data elements to ensure that this feature works correctly when the age of data is set past the expiry value.

		FERPA Regulation Compliance Throughout Design:
		This compliance can be tested by comparing the
		current implementation against the policy and
		guidelines outlined in the FERPA regulation. This area
LEGAL-1	5.1	reflects the testing of policy, and for this reason, can
		be tested by examining the current policy involved in
		the implementation process and then ensuring that
		adequate technical controls are expressed in the
		design.
		All U.S. PII Best Practices and Legislation Must Be
		Followed:
LEGAL-2		In a similar manner, this test case can be performed by
	5.2	generating automated tests that explore the compliance
		of the system's implementation to ensure that all
		regulation is followed in protecting personally
		identifiable information. These test cases will be quite

		specific as they will reflect specific guidelines in the
		regulations and as such will clearly distinguish if the
		system is in compliance.
		System Must Be Easily Scalable to Accommodate Student
		Growth:
		This factor can be easily tested by examining the
		current usage data of the system and then calculating
SCALABILITY-1		the predicted usage statistics regarding the expected
	6.1	growth over the coming years. The system can be seen
		to adequately accommodate for growth if the newly
		predicted values are still within the range of acceptable
		performance.
		The system Must Be of Adequate Size to Hold All Student
SCALABILITY-2	6.2	Records Plus Growth Buffer:
		Extending from the previous test case, this test case
		involves examining the storage capacity utilized by the

		current database of students and then examining the
		remaining storage space to ensure that adequate
		storage for growth is present throughout the system.
		This can be accomplished by calculating the average
		storage capacity of a single database entry and then
		calculating the expected future storage needed.
	6.3	System Brought Up to Compliance for International Use:
		While not an immediate requirement for the system,
		this test case can be performed by examining the
		system's implementation to highlight areas that would
SCALABILITY-3		stop the system from being compliant with
		international communication standards so a list of
		features to change is readily available when
		international communications are desired to be added.

	Students Must Be Able to Request Corrections to Their
	Data:
	This test case can easily be carried out by creating a
7.1	student user account and then ensuring all data fields
	can be requested for change. This could involve
	manually attempting to request a change of each data
	field present in the student database entry.
	Only the Data Owner Can Request Data Changes:
7.1.1	Like the test case before it, this test case can also be
	carried out by creating a student user and then
	attempting to request the data change of another
	student user's data. The system should not allow this
	request to be processed, but even further should not
	allow a student access to another's data entry in the
	database.

SYS_PROTEC-3	7.2	Acceptable Use Policy Implemented: The acceptable use policy can be used for this test case to examine the adequate enforcement of the policy throughout the system. This test case primarily regards
		the testing of policy and as such could further be tested through the performance of workplace audits regarding compliance with the policy. DOS Protection:
SYS_PROTEC-4	7.3	This test case could be performed through penetration testing methods where a mock DOS attack could be performed against a copy of the system to ensure the system adequately defends against the DOS attack. The system's availability should not suffer as a result of the attack to ensure that this requirement is fully met.

		TCP Connections Will Time Out After Inactivity:
	7.3.1	This can be tested by generating TCP connections and
		then observing them to ensure the connections are
SYS_PROTEC-5		terminated after the desired period of inactivity. In this
		implementation, the inactivity period has been set to
		fifteen minutes and the test cases should reflect this
		value.
		User Action Verification:
		This test case revolves around the requirement that all
		user actions must verify that the user attempting them
SYS_PROTEC-6		has the appropriate privileges. This can be tested by
	7.4	generating a user of each type and then attempting to
		perform every action possible with that user type. For
		this test to be successful, only the actions associated
		with that user group should be allowed with the rest

	being rejected and an error message displayed
	indicating the action is not allowed for that user.

2. Test Specification

2.1. LOGIN-1 - Validation of user passwords

Steps	Sub-Steps
Check Password Length	Ensure the Password contains at least six characters Ensure the Password contains at most fifteen characters
Check for Special Characters	Encode all special characters Ensure at least one special character is used Ensure that no banned special characters are used
Check for Numbers	Ensure the Password contains at least one number

	If the Password is compliant with all tests, accept the
Accept or Deny the Password	password and process the request
	If any tests fail, deny the password and display the error
	message

Test Completion Indicator: "Password meets all desired criteria" – Password validation is accepted, and the password is then hashed and stored in the user database.

Evaluation Process: Inspect passwords accepted by the system to manually validate that all requirements are complied with in accepted passwords.

2.2. LOGIN-2 - Minimum password requirements met

Steps	Sub-Steps
Ensure No Common Words are Used in Isolation	Simple dictionary words should be rejected when not combined with other words or characters

	Ensure dictionary words used are at least five characters
	long
Ensure Minimum Character Values	Ensure the password is at least six characters long Ensure the password contains at least one number Ensure the password contains at least one special character
Ensure Character Variation	Ensure at least three different alphabetic characters are used Ensure that at least six different characters are used overall
Deny Commonly Used Passwords	Test given password against a list of most common and vulnerable passwords If a vulnerability is identified, deny the password

Test Completion Indicator: "Password meets all minimum security requirements" – Password is accepted and updated as the user's password.

Evaluation Process: Passwords accepted into the system can be examined to ensure that all compliant passwords are accepted while non-compliant passwords are rejected.

2.3. LOGIN-3 - Password Hashed and hashed values stored for authentication

Steps	Sub-Steps
Ensure password values are hashed	Create a new acceptable password Save the password to the user account Inspect network traffic to ensure encrypted value is transferred to the database

Ensure hashed values are present in the database	Inspect the database to ensure password value is hashed and stored in its encrypted form
	Repeat the first two steps of creating a password with
Ensure the same password	the identical value to the first step
hashed by different users	Inspect hashed value in the database
results in different hash	Ensure the hashed value differs from the first hashed
values	value indicating the presence of salted hashed values for
	added security

Test Completion Indicator: "Passwords successfully hashed and stored in database with hash values being salted for added security" – Each password's hashed values are then stored in the database for comparison upon user login to the system

Evaluation Process: This process can be evaluated by inspecting the database and ensuring that all input values are hashed and further repeated input values output varying hashed values.

2.4. LOGIN-4 - Password must be regularly updated

Steps	Sub-Steps
New Password Generated	A new password is created and accepted by the system The system assigns an expiry value to the password
Password aged	Password artificially aged by changing password age value to after the expiry length
Password Aging Validated or Denied	Password status inspected Password should be denied, and new password creation forced

Test Completion Indicator: "Password aged successfully, and user password resetting forced" – The user is forced to create a new password and denied access to system resources until this action is taken.

Evaluation Process: Attempt password login with an aged password to ensure that access to system resources is denied.

2.5. LOGIN-5 - User Sessions will timeout after a period of inactivity

Steps	Sub-Steps
Create a new user session	Login as a user initiating a new user session with an initialized session age of zero
Age Session	Artificially increase the age of the session to a value greater than the expiry value
Ensure the Session is Terminated	Attempt to further access the session Ensure that access is denied to system resources and relogin enforced

Test Completion Indicator: "Session has timed out successfully" – The system successfully times out and with this, the session is terminated denying user access until the user is reauthenticated during a new session.

Evaluation Process: This process can be evaluated by ensuring that an aged session is not allowed access to system resources and likewise that premature denial of access is not performed.

2.6. LOGIN-6 - Only connections from within the U.S. should be accepted

Steps	Sub-Steps
Test a connection within the U.S.	A connection from within the U.S. should be attempted It should then be verified that the system allows the connection to proceed and function normally
Log in to a VPN	A VPN session should then be initiated to allow for the testing of international connections
Test International	An international connection can then be tested on the
Connection	system

The system should deny the connection and disallow
access to any system resources

Test Completion Indicator: "International connections successfully denied" – When the system can be seen to only allow connections from within the U.S., the test case can be said to have been completed successfully.

Evaluation Process: This process can be evaluated by inspecting connections under varying contexts to ensure that only U.S. connections are accepted.

2.7. PERFORM-1 - Efficient querying of database

Steps	Sub-Steps
Generate SQL queries to represent varying query types	Generate SQL queries of varying complexity Ensure SQL queries attempt to access every database file

	Ensure queries are generated for each of the two databases
Time query response to evaluate effectiveness	Perform each query while timing the return time of results Confirm that each result returns within the acceptably defined timeframe

Test Completion Indicator: "All queries performed within acceptable timeframe" – The test can be verified as complete when all query tests return within the desired timeframe criteria.

Evaluation Process: This process can be evaluated by generating complex database queries and ensuring the results are returned within the acceptably defined timeframe values.

2.8. PERFORM-2 - Sufficient resources for college user base

Steps	Sub-Steps
Examine current resource	
usage	Examine the current load on system resources
Determine needed	Compare this usage to the number of students the system
resources	serves
	Calculate per/user resource consumption
Confirm sufficient	Examine current system resources to ensure sufficient
resources exist	resources exist to meet the calculated needed value.

Test Completion Indicator: "Sufficient resources present to fulfill system objectives" – When the amount of resources available to the system is sufficient for the system's use case, the test is said to be complete.

Evaluation Process: This process can be evaluated by checking the calculations and ensuring the calculation process is sufficient for accurately estimating the system's usage.

2.9. PERFORM-3 - Sufficient Data throughput for connections

Steps	Sub-Steps
Simulate system usage	Simulate usage on the system within a controlled context to get a baseline for data throughput
Measure throughput levels	Measure the throughput levels given this data load Determine the per-user effect on data throughput levels
Confirm the sufficiency of	Confirm that the throughput levels are sufficient to
the throughput values	sustain the expected system userbase

Test Completion Indicator: "Throughput is sufficient to sustain system activity" – If the throughput potential exceeds the expected values needed, then the system test is complete.

Evaluation Process: This process can be evaluated by comparing the expected throughput needed to the system's capabilities to ensure sufficient throughput can be provided.

2.10. PERFORM-4 - TCP implemented for user connections

Steps	Sub-Steps
Attempt a connection	Attempt user connections given all contexts in which a user may issue a request to the college's system
Inspect network traffic to	
ensure a TCP connection	Using a network inspection tool, inspect the network traffic
has been initiated	to observe network communications.

Confirm that in all instances, a TCP connection is
established.

Test Completion Indicator: "TCP connections established for all user connections" – Once every form of user connection has been tested, the test can be labeled complete, and the results returned for confirmation or denial of the fulfillment of test objectives.

Evaluation Process: Evaluation can be performed on this process by ensuring that all connections establish a TCP connection and further that no other communication protocols are attempted.

2.11. PERFORM-5 - Critical sections of data modification protected

Steps	Sub-Steps
Develop a list of all race	
condition scenarios	

	List race conditions involving editing while a user is
	viewing data
	List race conditions that involve two users editing data
	at the same time
	List race conditions that involve a user attempting to
	view data that is being modified
Test All conditions	Test each of the race conditions generated in the previous step
Repeat tests many times and observe for anomalies	Repeatedly perform these tests to generate confidence
	that race conditions do not ensue on the system
	Observe for output indicative of a race condition such as
	the viewing of old data that has since been modified by
	the system

Test Completion Indicator: "Critical sections sufficiently protected within the system." – The test can be deemed complete when the generated test results reveal no anomalies in test-case data.

Evaluation Process: This process can be evaluated through crafting scenarios intentionally designed to generate race conditions and then performing those tests to ensure a race condition does not ensue.

2.12. DATA_PROTEC-1 - Encryption of data at rest

Steps	Sub-Steps
Create data to be passed to	Create data to be passed to every input field found
the database	throughout the system
	Input values into each data field
Access the database to	
inspect the stored value	Access the database and inspect the database file

Ensure value is encrypted and not decipherable
Repeat tests for all files found within the database

Test Completion Indicator: "All stored data successfully encrypted" – The test can be labeled as complete when it is determined that all input fields generate an encrypted value to be stored in the database.

Evaluation Process: This process can be evaluated by inspecting all of the database files to ensure no values are present in their cleartext form.

2.13. DATA_PROTEC-2 - Encryption of data in transit

Steps	Sub-Steps
Generate values to be	
passed to each user entry	Create data to be passed to each entry field
field	•

	Enter data into each entry field to be passed to the
	database
Inspect network traffic for encryption	Inspect network traffic Ensure all values being passed to the database are encrypted so that a malicious observer cannot decipher them.
Generate SQL requests for database	Generate SQL requests of various types to the database
Ensure values are encrypted	Inspect network traffic again to ensure that values transferred from the database to the user are encrypted and not decipherable by a malicious observer

Test Completion Indicator: "All input values encrypted in transit" – This test can be validated as complete when all transported values are observed as encrypted.

Evaluation Process: Network traffic can be inspected to ensure that no values are transported in their cleartext form.

2.14. DATA_PROTEC-3 - Principle of least privilege applied throughout the design

Steps	Sub-Steps
Create a user for each group type	Create a new user of each user group for testing user actions Make sure an understanding is held of the actions that each user group should be able to perform and not perform.
Attempt all tasks as each user type	Using each user class, attempt all actions on the system including actions that should not be allowed for that user type

	Ensure that the user is allowed to access all functions
Ensure no action is	they are permitted to access
performed that is irrelevant	
to a user group	Ensure the user is not able to perform any tasks they are
	not permitted to perform

Test Completion Indicator: "All user groups exhibit desired access control enforcing the principle of least privilege" – After all actions have been attempted with all user classes, the system can then be confirmed to have accomplished the implementation of the least privilege principle.

Evaluation Process: This process can be evaluated by creating a user of each user class and attempting to access the actions available and not available to that user.

2.15. DATA_PROTEC-4 - Audit log maintained of all data transformations

Steps	Sub-Steps
Create a list of actions resulting in data transformation	Think of all actions involving data transformation. List these actions and generate tests to modify data in each of these instances
Perform actions resulting in data transformation	Perform all actions listed in the first step to ideally generate the log requests
Observe audit logs after data transformations have occurred	Open the audit logs and inspect for all of the data modification actions performed on the database.
Ensure all data	Ensure that each data modification is reflected in a log
transformations are present in the logs	entry with sufficient detail to identify the modification and the user who performed the modification.

Test Completion Indicator: "All data modifications present in system logs" – This test case can be labeled as complete when every data modification action can be seen to generate a log entry.

Evaluation Process: This process can be evaluated by opening and inspecting the audit logs for the system.

2.16. DATA_QUAL-1 - All mandatory fields contain a value

Steps	Sub-Steps
Open a form to create a new user entry	Operate under the assumption that a new student entry is to be added to the database Open form where user data is added to the database
Test each field to see how it responds to lacking input	Starting with the first field but filling in all others, work down the list testing the state of the form with the field being empty.

	Continue to the next field and test for lacking data, noting if the field is mandatory or optional
Confirm that the form will	Confirm that all mandatory fields require data for the
not be submitted unless all	form to be submitted
mandatory fields contain	Confirm that all optional fields do not require data for
input	the form to be submitted.

Test Completion Indicator: "All mandatory fields must contain data for the form to be submitted." – The test will be completed when all fields in the form have been tested for their reaction to not holding data.

Evaluation Process: Through testing each field individually, the form can be validated to ensure that all mandatory fields require data for form submission.

2.17. DATA_QUAL-2 - Every student has a data entry

Steps	Sub-Steps
Get the list of all students who should be in the database	Using the hard copies of student records that currently exist, create a list of all students whose data should be present in the database Create this list in a form that can easily be compared against the database values
Access the database	Access the database files Create a list of all student entries currently present in the database
Inspect the database to	Compare the list of students in the database against the
ensure each student in the	list of students that should be in the database.
initial list is present in the	Confirm that all students who should hold data in the
database	database do have database entries.

Test Completion Indicator: "All students have entries in the database" – The test will be marked as complete when all student entries can be observed within the database.

Evaluation Process: This process can be evaluated by opening the database files and ensuring that all students have entries in the database.

2.18. DATA_QUAL-3 - Data validation is performed on all fields

Steps	Sub-Steps
Identify all data entry fields	Scan through the system to identify all data entry fields Compile a list of these fields for future reference

Test field for data validation	Ensure each field encodes special characters. Ensure each field accepts only the type of data required Ensure that each field complies with the desired field length
Confirm that all fields consistently mandate data validation	Confirm that all validation parameters are met for each entry field in the generated list of fields

Test Completion Indicator: "All fields correctly validate data entry" – This test case can be verified as complete when all fields generated in the initial list have been tested for validation parameters.

Evaluation Process: This process can be validated by selecting a random assortment of data entry fields and ensuring validation is performed on each of the fields.

2.19. DATA_QUAL-4 - User records deleted after allotted time

Steps	Sub-Steps
Create a new user record	Create a new user record that will be added to the database Ensure that the age value for this record is initialized correctly
Age user record beyond the	Set the age for this record to a value beyond the expiry
expiry date	date for which records should be deleted
Inspect the state of the user	Inspect the database to ensure that the record is removed
record	from the database

Test Completion Indicator: "Records are removed from the database when the age limit is reached" – This test can be confirmed as complete when the aging process is performed on database records and the records can be observed as appropriately removed from the database.

Evaluation Process: This process can be validated by attempting to create new database record entries with ages past the expiry date to ensure they are removed from the database correctly.

2.20. LEGAL-1 - FERPA regulation compliance throughout design

Steps	Sub-Steps
Generate a list of FERPA regulation guidelines	Read through the FERPA regulation and gain an understanding of the expectations facing the organization. From this regulation create a list of guidelines that must be implemented through both policy and technically in the software implementation.
Ensure guidelines are implemented through policy	For each guideline listed, ensure a policy is enforced to express that guideline in the implementation of the software project.

Ensure guidelines are	For each guideline identified, ensure a technical control
implemented through	is implemented to enforce the guideline in the technical
technical controls	implementation of the software.

Test Completion Indicator: "FERPA compliance is enforced throughout the software's design." – The test case can be seen as complete when each FERPA guideline requirement is investigated in both the policy and technical implementation of the software.

Evaluation Process: Inspecting existing policies and implementations regarding this regulation can assist in identifying if the requirement is met in the final product.

2.21. LEGAL-2 - All U.S. PII best practices and legislation must be followed

Steps	Sub-Steps
Identify key areas of the	
software product that	

involve personally	Search the software to identify all areas that engage with
identifiable information	PII
	Inspect the database where PII is stored and accessed
	For each area that engages with PII a thorough inspection
	of PII regulation in reference to that specific area should
Test each of the identified	manually be performed
areas for compliance with	
existing legislation and best	A decision regarding compliance in that area should then
practices.	be made and recorded
	A decision should then be made to confirm or deny PII
	compliance of the system as a whole

Test Completion Indicator: "Compliance to PII regulation is practiced throughout the entirety of the system" – The test can be marked as complete when each area that involves PII is investigated and verified as compliant.

Evaluation Process: This process can be evaluated through the manual inspection of the system in regard to the system's compliance with PII regulations.

2.22. SCALABILITY-1 - System must be easily scalable to accommodate student growth

Steps	Sub-Steps
Calculate current usage statistics	The current usage statistics can be calculated by examining the system under the current usage load From this current usage, a set of comparison statistics can be calculated for the system

	These statistics can be included in a file for comparison
	with future statistics
Calculate expected growth statistics	With the per-user statistics generated, the same statistics can be calculated for a future predicted student number These statistics can additionally be put into a file for comparison with the current statistics
Ensure resources exist to	The two files of current and future resources can be compared
accommodate system	From this comparison, an evaluation can be performed
growth	to identify if adequate system resources exist to accommodate growth within the system

Test Completion Indicator: "Sufficient resources exist to accommodate expected growth." – The test can be marked as complete when an evaluation of the sufficiency of the system resources is produced.

Evaluation Process: This process can be evaluated by performing additional metric checks regarding expected growth and comparing these results against the results generated from this test.

2.23. SCALABILITY-2 - The system must be of adequate size to hold all student records plus growth buffer

Steps	Sub-Steps
Determine Currently used system storage	Identify the current storage utilized by the system data From this statistic calculate the per-user effect on the overall storage utilization Calculate the current number of students that the system can support
Calculate expected student growth	Calculate the expected student growth over the coming years that this system may be implemented

	Compare the storage capacity needed for this number of
	students with the current capacity limits
	If the system is not currently adequate to support the
Make decisions as to the	expected growth, this test will be denoted as failed
current system's sufficiency	Otherwise, if the system does have adequate resources,
	the system is marked as a success

Test Completion Indicator: "Current storage capacity is sufficient to accommodate student growth" – This test will be marked as complete when a determination is made regarding the ability of the system to accommodate the calculated storage needed for student growth.

Evaluation Process: This process can be evaluated by generating a server copy and simulating storage elements on this server to verify expected storage values.

2.24. SCALABILITY-3 - System brought up to compliance for international use

Steps	Sub-Steps
	Examine all regulations and international standards that
	must be followed to achieve success in international
Examine international	communication
compliance factors	
	Generate a list of these factors for testing against the
	system
Test system against each of these factors	For each factor, test the relevant system components to evaluate current readiness for international communications Generate a list of all areas in which the system is found lacking regarding international compliance As this is for future implementation, return this list and generate action plans to bring the system into compliance

Test Completion Indicator: "List of improvements needed for international communication generated" – This test can be marked as complete when the list of improvements needed is generated and returned to the user.

Evaluation Process: This process can be evaluated through the manual inspection of current international compliance and comparing the manual report against the automated one.

2.25. SYS_PROTEC-1 - Students must be able to request corrections to their data

Steps	Sub-Steps
Generate a new student user with incorrect data values	Create a new student user with errors in each data field View these data fields in the newly created student user profile
Attempt to Request a change for each field	Request modification for each field belonging to the user

	Record any fields where the request fails to generate
Ensure each field allows the	Ensure each field allows for the submission of the
user to submit a request for	request for field modification
changing the value of that	Continue testing all fields until every field has been
field	tested

Test Completion Indicator: "Student is able to request modification for all data fields" – This test can be marked as complete when it can be verified that a student user is able to request data modification for each field of input.

Evaluation Process: This process can be evaluated by opening an additional user profile and verifying that a request is successfully generated for data field modification.

2.26. SYS_PROTEC-2 - Only the data owner can request data changes

Steps	Sub-Steps
Generate a student user	Create a new student user account for testing
Attempt to access the	Attempt to access the data of another student
resources of another user	Ensure that the student is unable to access data outside
	of their own
	Assuming the student somehow gains access to
	another's data, attempt to request a data modification
Attempt to request data	without the student being the owner of the data.
modification for a user who	Ensure that the request is denied and that the data
is not the active user	modification request is not generated
	Ensure the request is logged in the audit logs for
	inspection

Test Completion Indicator: "System verified to only let student data owner's request modification" – This test can be seen as complete when the thorough analysis of a user's ability to access another's data returns negative.

Evaluation Process: This process can be evaluated by attempting to access another student's resources from a student account to ensure that only the data owner can access their own data.

2.27. SYS_PROTEC-3 - Acceptable use policy implemented

Steps	Sub-Steps
Create a list of the requirements outlined in the acceptable use policy	Analyze acceptable use policy for compliance guidelines Generate a list of requirements that must be present in policy and the system
Ensure the policy is enforced within the workplace and other areas of access	Compare these requirements against the current policy enforced Ensure the existing policy is sufficient to enforce the acceptable use policy in the design
Ensure the acceptable use policy is implemented	Compare these requirements against the current technical software implementation
in the software	Ensure that the technical controls exist to monitor and subvert noncompliance to the acceptable use policy

Test Completion Indicator: "Acceptable use policy upheld through current implementation" – This test case can be seen as completed when the evaluation of compliance throughout the entire system has been performed.

Evaluation Process: This process can be evaluated through an inspection of policy enforcement as well as verifying that adequate technical controls are implemented within the system.

2.28. SYS_PROTEC-4 - DOS protection

Steps	Sub-Steps
Create a copy of the server for testing against	Create a virtual instance of the server with identical resource capabilities Generate a point from which the mock DOS attack will be performed.
Automate the continuous	
opening of partial TCP	

connections to attempt to	Continuously generate partial TCP connections that in
drain system resources	theory should clog the system and remove legitimate
	access to system resources
	Continue this process to the greatest possible capacity or
	until the system fails
Confirm that system	Verify that the system resources remain available
	Ensure that the DOS attack was detected and that the
resources remain available	proper defense mechanisms engaged

Test Completion Indicator: "System resources remain available when DOS attack is attempted" – This test can be seen as complete when the DOS attack has reached its full capabilities and in light of this the system remains accessible.

Evaluation Process: This process can be evaluated by performing stress testing on the actual server to determine sustainable traffic limits the system can tolerate as well as the system's ability to detect DOS attacks and defend from them accordingly.

2.29. SYS_PROTEC-5 - TCP connections will time out after inactivity

Steps	Sub-Steps
Create a TCP connection for a new user	Generate a new TCP connection between the user and the server
Let TCP connection age past the time limit	Allow the connection to remain open past the expiry limit of fifteen minutes with no activity
	Ensure the connection does not terminate before the fifteen minutes has elapsed
Ensure the connection is terminated	Ensure that the connection is terminated upon reaching fifteen minutes of inactivity
	Ensure that further activity before the expiry time is reached extends the inactivity timer

Test Completion Indicator: "TCP connections successfully terminated after inactivity" – This test can be marked as complete after the allotted time for expiry has passed and the TCP connection is verified as automatically terminated.

Evaluation Process: This process can be evaluated by inspecting network traffic to note when the TCP connection is created and terminated.

2.30. SYS_PROTEC-6 - User action verification

Steps	Sub-Steps		
Create a user from each user group	Create a student user Create a faculty user Create a registrar user Create a FERPA compliance officer user		

Attempt each possible task within the system	Attempt all tasks with a user, both allowable and non- allowable Record the state of the system after each system request
Validate that only approved tasks can be performed by a user according to their privileges	Ensure that each action performed is of an allowable type for the user performing the action Record the results of the test

Test Completion Indicator: "User action verification is enforced on all user actions" – This test can be marked as complete when all user actions have been tested with each user type.

Evaluation Process: This process can be evaluated by examining the results of each test round and ensuring that access control is followed in every instance.

Appendix - Requirements Traceability Matrix

Priority	Requirement	Description	SRS Section	SDS Section	STS
	# by				Test Case ID
	Category				
	Cutegory				
	1	Logging into the system	3.3	3.1.5	1
					LOGIN-1
1	1.1	Validation of user Passwords	3.3	3.1.5	Loonvi
					LOGIN-2
1	1.1.1	Minimum Password Requirements Met	3.3	3.1.5	
		Password Hashed and Hash Value Stored for			LOCINI 2
1	1.1.2	Authentication	3.3	3.1.5	LOGIN-3

1	1.1.3	Passwords Must Regularly Be Updated	3.3	3.1.5	LOGIN-4
2	1.2	User Sessions will Timeout After a Period of Inactivity	3.3	2.6	LOGIN-5
2	1.3	Only Connections from Within the U.S. Should Be Accepted	3.3	2.1	LOGIN-6
	2	System Performance	3.1	3.1.4	2
2	2.1	Efficient Querying of Database	3.1	1.1	PERFORM-1
1	2.2	Sufficient Resources for College User Base	3.1	1.1	PERFORM-2

2	2.3	Sufficient Data Throughput for Connections	3.1	1.1	PERFORM-3
1	2.3.1	TCP Implemented for User Connections	3.1	1.1	PERFORM-4
1	2.4	Critical Sections of Data Modification Protected	3.1		PERFORM-5
	3	Data Protection	3.3	3.1	3
1	3.1	Encryption of Data at Rest	3.3	3.1	DATA_PROTEC-1
1	3.2	Encryption of Data in Transit	3.3	1.1	DATA_PROTEC-2
1	3.3	Principle of Least Privilege Applied Throughout Design	3.3	3.1.2	DATA_PROTEC-3

					DATA_PROTEC-4
1	3.4	Audit Log Maintained of all Data Transformations	3.3	1.1	
	4	Data Quality	4	3.1	4
1	4.1	All Mandatory Fields Contain a Value	3.2	3.1	DATA_QUAL-1
1	7.1	An Manuatory Ficius Contain a Value	3.2	3.1	
1	4.2	Every Student Has a Data Entry	4	3.1	DATA_QUAL-2
1	4.3	Data Validation is Performed on All Fields	4	2	DATA_QUAL-3
1	4.4	User Records Deleted After Allotted Time	4	3.1	DATA_QUAL-4
	5	Legal Compliance	4	3.1.2	5

1	5.1	FERPA Regulation Compliance Throughout Design	4	3.1.2	LEGAL-1
1	5.2	All U.S. PII Best Practices and Legislation Must Be Followed	4	3.1.2	LEGAL-2
	6	Scalability	4		6
3	6.1	System Must Be Easily Scalable to Accommodate Student Growth	4	1.1	SCALABILITY-1
2	6.2	The system Must Be of Adequate Size to Hold All Student Records Plus Growth Buffer	4	2.7	SCALABILITY-2
3	6.3	System Brought Up to Compliance for International Use	4	3.1.2	SCALABILITY-3

	7	System Protection	3.2	3.1	7
1	7.1	Students Must Be Able to Request Corrections to Their Data	3.2	3.1.1	SYS_PROTEC-1
1	7.1.1	Only the Data Owner Can Request Data Changes	3.2	3.1.1	SYS_PROTEC-2
1	7.2	Acceptable Use Policy Implemented	3.2		SYS_PROTEC-3
1	7.3	DOS Protection	3.2	1.1	SYS_PROTEC-4
1	7.3.1	TCP Connections Will Time Out After Inactivity	3.2	1.1	SYS_PROTEC-5
1	7.4	User Action Verification	3.2	3.1.5	SYS_PROTEC-6