# Geometry for Competitive Programming

## **Airport Construction: WF '17**

#### Input

The input starts with a line containing an integer n ( $3 \le n \le 200$ ) specifying the number of vertices of the polygon. This is followed by n lines, each containing two integers x and y ( $|x|, |y| \le 10^6$ ) that give the coordinates (x, y) of the vertices of the polygon in counter-clockwise order. The polygon is simple, i.e., its vertices are distinct and no two edges of the polygon intersect or touch, except that consecutive edges touch at their common vertex. In addition, no two consecutive edges are collinear.

#### Output

Display the length of the longest straight line segment that fits inside the polygon, with an absolute or relative error of at most  $10^{-6}$ .



# **Airport Construction: Solution Sketch**

Some initial observations:

•  $n \le 200$ :  $O(n^3)$  should be sufficient

# **Airport Construction: Solution S**



#### Some initial observations:

- $n \le 200$ :  $O(n^3)$  should be sufficient
- coordinates are  $\max 10^6$ : quadratic formulas are OK

# **Airport Construction: Solution S**



#### Some initial observations:

- $n \le 200$ :  $O(n^3)$  should be sufficient
- coordinates are  $\max 10^6$ : quadratic formulas are OK
- the longest line segment must have its endpoints at polygon vertices
  - (why?)

## **Airport Construction: Solution S**



```
maxlen = 0
for each pair of vertices p, q:
  extend pq until it intersects the polygon
  if the segment is inside the polygon
  maxlen = max( maxlen, len(p,q) )
```

This is an "easy" geometry problem for the WF level!

### **Airport Construction: Some Stats**

Here are the scoreboard stats from World Finals 2017:

|                         | A                                   | В                                     | С                   | D                                       | E                            | F                                        | G                                      | н                                 | I                            | J                                 | K                                      | L                              |
|-------------------------|-------------------------------------|---------------------------------------|---------------------|-----------------------------------------|------------------------------|------------------------------------------|----------------------------------------|-----------------------------------|------------------------------|-----------------------------------|----------------------------------------|--------------------------------|
| Solved / Tries          | <sup>35</sup> / <sub>710</sub> (5%) | <sup>8</sup> / <sub>37</sub><br>(22%) | 105/ <sub>255</sub> | <sup>31</sup> / <sub>311</sub><br>(10%) | 127/ <sub>191</sub><br>(66%) | <sup>123</sup> / <sub>174</sub><br>(71%) | <sup>18</sup> / <sub>33</sub><br>(55%) | <sup>0</sup> / <sub>18</sub> (0%) | 127/ <sub>137</sub><br>(93%) | <sup>1</sup> / <sub>14</sub> (7%) | <sup>15</sup> / <sub>99</sub><br>(15%) | <sup>27</sup> / <sub>150</sub> |
| Average tries           |                                     | American                              | 2.11                |                                         |                              |                                          |                                        |                                   | 1.07                         |                                   |                                        |                                |
| Averages tries to solve | 5.43                                | 2.62                                  | 1.92                | 2.84                                    | 1.50                         | 1.33                                     | 1.44                                   | 10770                             | 1.06                         | 11.00                             | 2.20                                   | 2.59                           |

What happened?

### **Airport Construction: Some Stats**

Here are the scoreboard stats from World Finals 2017:

|                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                    | С                   | D                                       | E                            | F                                        | G                                      | н                                 | I                            | J                        | K                                   | L                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-----------------------------------------|------------------------------|------------------------------------------|----------------------------------------|-----------------------------------|------------------------------|--------------------------|-------------------------------------|--------------------------------------|
| Solved / Tries          | <sup>35</sup> / <sub>710</sub> (5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>8</sup> / <sub>37</sub><br>22%) | 105/ <sub>255</sub> | <sup>31</sup> / <sub>311</sub><br>(10%) | 127/ <sub>191</sub><br>(66%) | <sup>123</sup> / <sub>174</sub><br>(71%) | <sup>18</sup> / <sub>33</sub><br>(55%) | <sup>0</sup> / <sub>18</sub> (0%) | 127/ <sub>137</sub><br>(93%) | 1/ <sub>14</sub><br>(7%) | <sup>15</sup> / <sub>99</sub> (15%) | <sup>27</sup> / <sub>150</sub> (18%) |
| Average tries           | The second secon | Acres de la Company                  | 2.11                |                                         |                              |                                          |                                        |                                   | 1.07                         |                          |                                     |                                      |
| Averages tries to solve | 5.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.62                                 | 1.92                | 2.84                                    | 1.50                         | 1.33                                     | 1.44                                   |                                   | 1.06                         | 11.00                    | 2.20                                | 2.59                                 |
|                         | igcup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                     |                                         |                              |                                          |                                        |                                   |                              |                          |                                     |                                      |

#### What happened?

- it was Problem A so it was attempted by many teams
- it has some legitimate subtleties

#### The Subtleties

The solution could intersect other polygon vertices



#### The Subtleties

The solution could intersect other polygon vertices
The solution could coincide with polygon edges



#### The Subtleties

The solution could intersect other polygon vertices
The solution could coincide with polygon edges
Illegal line segments might intersect only at vertices



#### **Uniform Solution to All Cases**

Find where the line segment intersects polygon edges

ignoring coincident edges

Break the segment into sub-segments and if check each is inside the polygon (by e.g. checking midpoint)

Compute longest consecutive run of segments inside



You should have these in your code book!

You should have these in your code book! ...but they are not hard to derive.



You should have these in your code book! ...but they are not hard to derive.



$$[\mathbf{a} + t(\mathbf{b} - \mathbf{a}) - \mathbf{c}] \times (\mathbf{d} - \mathbf{c}) = 0$$



$$[\mathbf{a} + t(\mathbf{b} - \mathbf{a}) - \mathbf{c}] \times (\mathbf{d} - \mathbf{c}) = 0$$

2D cross  $\mathbf{v} \times \mathbf{W} = v_x w_y - v_y w_x$ 



$$[\mathbf{a} + t(\mathbf{b} - \mathbf{a}) - \mathbf{c}] \times (\mathbf{d} - \mathbf{c}) = 0$$
$$t = \frac{(\mathbf{c} - \mathbf{a}) \times (\mathbf{d} - \mathbf{c})}{(\mathbf{b} - \mathbf{a}) \times (\mathbf{d} - \mathbf{c})}$$

endpoint becomes parallel to cd

2D cross  $\mathbf{v} imes \mathbf{w}_x \mathbf{w}_y - v_y w_x$ 

Consider ray traveling from  ${\bf a}$  through  ${\bf b}$ Intersection is value of t when ray

$$[\mathbf{a} + t(\mathbf{b} - \mathbf{a}) - \mathbf{c}] \times (\mathbf{d} - \mathbf{c}) = 0$$
$$t = \frac{(\mathbf{c} - \mathbf{a}) \times (\mathbf{d} - \mathbf{c})}{(\mathbf{b} - \mathbf{a}) \times (\mathbf{d} - \mathbf{c})}$$

2D cross  $\mathbf{v} \times \mathbf{w} = v_x w_y - v_y w_x$ 

- t < 0 or t > 1: definitely no intersection
- 0 < t < 1: maybe intersection on interior
- t=0 or t=1: maybe intersection at endpoint

repeat check for other segment



$$[\mathbf{a} + t(\mathbf{b} - \mathbf{a}) - \mathbf{c}] \times (\mathbf{d} - \mathbf{c}) = 0$$
$$t = \frac{(\mathbf{c} - \mathbf{a}) \times (\mathbf{d} - \mathbf{c})}{(\mathbf{b} - \mathbf{a}) \times (\mathbf{d} - \mathbf{c})}$$

2D cross  $\mathbf{v} \times \mathbf{W} \underline{\underline{\mathbf{v}}} v_x w_y - v_y w_x$ 

- t < 0 or t > 1: definitely no intersection
- 0 < t < 1: maybe intersection on interior
- t=0 or t=1: maybe intersection at endpoint

repeat check for other segment

Note: these checks do not require division

they do require magnitudes quadratic in the coords

#### **Point in Polygon Predicate**

Again, must be robust to testing points exactly on the polygon boundary

Have book code for this too!

We will discuss a winding number solution later



### **Solving Airport Construction**

#### You need:

- to realize that there are nontrivial (literal) edge cases
- robust segment-segment intersection predicates
- robust point-in-polygon predicate

#### **Solving Airport Construction**

#### You need:

- to realize that there are nontrivial (literal) edge cases
- robust segment-segment intersection predicates
- robust point-in-polygon predicate

Are there any potential overflow or precision issues?

can you use doubles?

# The Minimum Every Competitive Programmer Needs To Know About Floating Point

Structure of a **double**:  $\pm a \cdot 2^b$ 



Double Precision
IEEE 754 Floating-Point Standard



#### **IEEE Floating Point**

Double Precision IEEE 754 Floating-Point Standard

Integers up to 2<sup>52</sup> (about 15 decimal digits) can be **exactly** represented



#### **IEEE Floating Point**

Double Precision IEEE 754 Floating-Point Standard

Integers up to 2<sup>52</sup> (about 15 decimal digits) can be **exactly** represented

Fractions with power-of-2 denominators (e.g.: averages, midpoints) can be **exactly** represented

Arithmetic operations (+,-,\*,/,sqrt) and comparisons (including ==) Just Work so long as all intermediate values stay in the exactly representable range



#### **IEEE Floating Point**

Double Precision
IEEE 754 Floating-Point Standard

Integers up to 2<sup>52</sup> (about 15 decimal digits) can be **exactly** represented

Fractions with power-of-2 denominators (e.g.: averages, midpoints) can be **exactly** represented

Other numbers have up to 52 **bits of precision**. This goes down as errors accumulate in intermediate calculations

#### **More Precision**

long double sometimes\* lets you use 80-bit floating point numbers with 64 bits of mantissa precision

\*: non-standard, but supported by e.g. GCC on x64

#### **More Precision**

long double sometimes\* lets you use 80-bit floating point numbers with 64 bits of mantissa precision

these can exactly represent all int64s!

\*: non-standard, but supported by e.g. GCC on x64



# The Minimum Every Competitive Programmer Needs To Know About Floating Point



The rabbit hole goes deeper:

- extended-precision FPU registers
- denormalized numbers
- IEEE rounding modes
- errno and hardware traps
- signed 0 and inf
- signaling and quiet nan

Given points on an  $N \times N$  integer grid:



What is the smallest possible triangle area?

Given points on an  $N \times N$  integer grid:



What is the smallest possible triangle area?  $\frac{1}{2}$ 

• for triangle  $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ ,

Area = 
$$\frac{1}{2} \det \begin{bmatrix} x_1 - x_0 & x_2 - x_0 \\ y_1 - y_0 & y_2 - y_0 \end{bmatrix}$$
  
=  $\frac{(x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)}{2}$ 

Given points on an  $N \times N$  integer grid:



What is the smallest possible triangle area?  $\frac{1}{2}$ 

What is the smallest possible angle?

Given points on an  $N \times N$  integer grid:



Given points on an  $N \times N$  integer grid:



Given points on an  $N \times N$  integer grid:



What is the smallest possible triangle area?  $\frac{1}{2}$ 

What is the smallest possible angle?

$$O(1/N^2)$$

Given points on an  $N \times N$  integer grid:

## **Angle Sweeps**



#### Sorting points around origin (easy way):

• simply sort by  $p_{\theta} = \operatorname{atan2}(p_y, p_x)$ 

#### Use when:

- slight errors don't matter when angles are very similar
- detecting identical angles isn't needed

## **Angle Sweeps**



#### Sorting points around origin (easy way):

• simply sort by  $p_{\theta} = \operatorname{atan2}(p_y, p_x)$ 

#### Use when:

- slight errors don't matter when angles are very similar
- detecting identical angles isn't needed

#### Example:

 compute the fraction of the circle covered by a union of angle intervals, up to some tolerance











Divide points into four classes

Within top and bottom class, sort by cross product predicate  $q \Leftrightarrow p_y q_x < p_x q_y$ 

$$p_x > 0, p_y = 0$$

Requires magnitudes quadratic in the coords



Divide points into four classes

Within top and bottom class, sort by cross product predicate  $q \Leftrightarrow p_y q_x < p_x q_y$ 

$$p_x > 0, p_y = 0$$

Requires magnitudes quadratic in the coords

Sometimes some classes are

### **Geometry Toolbox Checklist**

#### **Exact Predicates:**

- point on segment
- point in polygon
- segment-segment intersection
- segment-circle intersection

#### Formulas / Subroutines:

- basic trig
- polygon area
- segment-segment distance
- segment-circle distance
- circle-circle intersection points
- segments tangent to two circles
- circumscribed and inscribed circles

#### Algorithms and Data Structures: