### Predictive Analytics (ISE529)

# Linear Regression (I)

Dr. Tao Ma ma.tao@usc.edu

Tue/Thu, May 22 - July 1, 2025, Summer



School of Engineering
Daniel J. Epstein
Department of Industrial
and Systems Engineering





# **LEAST SQUARE METHOD**

### Outline



- Linear Regression Model
- Hypothesis Tests
- Confidence Intervals
- Prediction
- Model Adequacy Checking
- Correlation

# Simple Linear Regression



| Obs | Hydrocarbon | Oxygen Purity |
|-----|-------------|---------------|
| #   | x (%)       | y (%)         |
| 1   | 0.99        | 90.01         |
| 2   | 1.02        | 89.05         |
| 3   | 1.15        | 91.43         |
| 4   | 1.29        | 93.74         |
| 5   | 1.46        | 96.73         |
| 6   | 1.36        | 94.45         |
| 7   | 0.87        | 87.59         |
| 8   | 1.23        | 91.77         |
| 9   | 1.55        | 99.42         |
| 10  | 1.4         | 93.65         |
| 11  | 1.19        | 93.54         |
| 12  | 1.15        | 92.52         |
| 13  | 0.98        | 90.56         |
| 14  | 1.01        | 89.54         |
| 15  | 1.11        | 89.85         |
| 16  | 1.2         | 90.39         |
| 17  | 1.26        | 93.25         |
| 18  | 1.32        | 93.41         |
| 19  | 1.43        | 94.98         |
| 20  | 0.95        | 87.33         |



Scatter diagram of oxygen purity versus hydrocarbon

# Simple Linear Regression



Suppose that the true relationship between *Y* and *x* is a straight line and that the observation *Y* at each level of *x* is a random variable. We assume that each observation, *Y*, can be described by the model



where the intercept  $\beta_0$  and the slope  $\beta_1$  are unknown regression coefficients.  $\epsilon$  is a random error with mean zero and (unknown) variance  $\sigma^2$ .

# Simple Linear Regression



Model structure  $Y = \beta_0 + \beta_1 x + \epsilon$ 

$$E(Y|x) = E(\beta_0 + \beta_1 x + \epsilon) = \beta_0 + \beta_1 x + E(\epsilon) = \beta_0 + \beta_1 x$$
$$V(Y|x) = V(\beta_0 + \beta_1 x + \epsilon) = V(\beta_0 + \beta_1 x) + V(\epsilon) = 0 + \sigma^2 = \sigma^2$$



The distribution of Y for a given value of x for the oxygen purity-hydrocarbon data

# Least Square Method



We call the method for estimating the regression coefficients the **least squares**.

Suppose that we have n pairs of observations  $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ . The sum of the squares of the deviations of the observations from the true regression line is

$$L = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Normal equations

$$n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$
$$\hat{\beta}_0 \sum_{i=1}^n x_i + \hat{\beta}_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i x_i$$

# Least Square Estimate



The least squares estimates of the intercept and slope in the simple

linear regression model are

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} y_{i} x_{i} - \frac{1}{n} \left( \sum_{i=1}^{n} y_{i} \right) \left( \sum_{i=1}^{n} x_{i} \right)}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left( \sum_{i=1}^{n} x_{i} \right)^{2}}$$

where 
$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 and  $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 

The fitted or estimated regression line is therefore

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

where  $\varepsilon_i = y_i - \hat{y}_i$  is called the **residual**.



### Alternative Formula



Let

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}$$

$$S_{xy} = \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n}$$

Thus

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$



$$n = 20 \quad \sum_{i=1}^{20} x_i = 23.92 \quad \sum_{i=1}^{20} y_i = 1,843.21$$

$$\overline{x} = 1.1960 \quad \overline{y} = 92.1605$$

$$\sum_{i=1}^{20} y_i^2 = 170,044.5321 \quad \sum_{i=1}^{20} x_i^2 = 29.2892$$

$$\sum_{i=1}^{20} x_i y_i = 2,214.6566$$





Scatter plot of oxygen purity y versus hydrocarbon level x and regression model  $y^{\circ} = 74.283 + 14.947x$ 

# Estimating $\sigma^2$



### the error sum of squares

$$SS_E = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

### unbiased estimator of $\sigma^2$

$$\hat{\sigma}^2 = \frac{SS_E}{n-2}$$

# Hypothesis test



If  $X_1, X_2, ..., X_n$  is a random sample of size n from a normal distribution with unknown mean  $\mu$  and **unknown variance**  $\sigma^2$  and if  $\bar{x}$  is the sample mean, The random variable

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

has a t distribution with n-1 degrees of freedom.

# Hypothesis test



$$P\left(-t_{1-\alpha/2,n-1} \leq \frac{\overline{X} - \mu}{S/\sqrt{n}} \leq t_{1-\alpha/2,n-1}\right) = 1 - \alpha$$

where  $t_{I-\alpha/2, n-1}$  is the upper  $100\alpha/2$  percentage point of t distribution with n-1 degrees of freedom.



# Hypothesis test



#### Make hypothesis:

e.g.  $H_0: \mu = \mu_0$  (null hypothesis regarding the mean)  $H_A: \mu \neq \mu_0$  (alternative hypothesis regarding the means)

$$P\left(-t_{1-\alpha/2,n-1} \le \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \le t_{1-\alpha/2,n-1}\right) = 1 - \alpha$$

Hypothesis testing is to test the following probability: P(sample data | null hypothesis is true )

### Expectation & Variance of Parameters



### Properties of the Least Squares Estimators

$$E(\hat{\beta}_1) = \beta_1 \qquad V(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$

$$E(\hat{\beta}_0) = \beta_0$$
 and  $V(\hat{\beta}_0) = \sigma^2 \left[ \frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]$ 

In simple linear regression, the estimated standard error of the slope and the estimated standard error of the intercept are

$$se(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$
 and  $se(\hat{\beta}_0) = \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right]}$ 

# Hypothesis



The complete assumptions are that the errors are normally and independently distributed with mean zero and variance  $\sigma^2$ , abbreviated NID  $(0, \sigma^2)$ .

$$H_0$$
:  $\beta_1 = \beta_{1,0}$  Test Statistic for the Slope  $T_0 = \frac{\beta_1 - \beta_{1,0}}{se(\hat{\beta}_1)}$ 

follows the t distribution with n -2 degrees of freedom under  $H_0$ 

$$H_0: \beta_0 = \beta_{0,0}$$
  
 $H_1: \beta_0 \neq \beta_{0,0}$ 

Test Statistic for the Intercept

$$T_{0} = \frac{\hat{\beta}_{0} - \beta_{0,0}}{\sqrt{\hat{\sigma}^{2} \left[ \frac{1}{n} + \frac{z}{S_{xx}} \right]}} = \frac{\hat{\beta}_{0} - \beta_{0,0}}{se(\hat{\beta}_{0})}$$



### Oxygen Purity Tests of Coefficients

$$H_0: \beta_1 = 0$$

$$H_1$$
:  $\beta_1 \neq 0$ 

$$\hat{\beta}_1 = 14.947$$
  $n = 20$ ,  $S_{xx} = 0.68088$ ,  $\hat{\sigma}^2 = 1.18$ 

### Confidence Interval



Letting  $t_{1-\alpha/2,n-1}$  be the upper  $100(1-\alpha/2)$  percentage point of the t distribution with n-1 degrees of freedom, we may write

$$P\left(-t_{1-\alpha/2,n-1} \leq \frac{\overline{X} - \mu}{S/\sqrt{n}} \leq t_{1-\alpha/2,n-1}\right) = 1 - \alpha$$

Rearranging this equation yields

$$P\left(\overline{X} - t_{1-\alpha/2,n-1} S / \sqrt{n} \le \mu \le \overline{X} + t_{1-\alpha/2,n-1} S / \sqrt{n}\right) = 1 - \alpha$$



### Confidence interval



#### Confidence Intervals on **Parameters**

Under the assumption that the observations are normally and independently distributed, a  $100(1 - \alpha)\%$  confidence interval on the slope  $\beta_I$  in simple linear regression is

$$\hat{\beta}_1 \pm t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

Similarly, a  $100(1-\alpha)\%$  confidence interval on the intercept  $\beta_0$  is

$$\hat{\beta}_0 \pm t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[ \frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]}$$

### Confidence interval



Confidence Interval on the **Mean Response** 

$$\hat{\mu}_{Y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

$$V(\hat{\mu}_{Y|x_0}) = \sigma^2 \left[ \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

$$\frac{\hat{\mu}_{Y|x_0} - \mu_{Y|x_0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}}$$

has a t distribution with n-2 degrees of freedom

A  $100(1-\alpha)\%$  confidence interval on the mean response at the value of  $x=x_0$ , say  $\mu_{Y|x0}$ , is given by

$$\hat{\mu}_{Y|x_0} \pm t_{\alpha/2,n-2} \sqrt{\hat{\sigma}^2 \left[ \frac{1}{n} + \frac{\left(x_0 - \overline{x}\right)^2}{S_{xx}} \right]}$$

where  $\hat{\mu}_{Y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$  is computed from the fitted regression model.

### Confidence interval



### Confidence Interval on the Mean Response



Scatter diagram of oxygen purity data with fitted regression line and 95 percent confidence limits on

### Prediction



Note that the error in prediction  $e_{\hat{p}} = Y_0 - \hat{Y}_0$ 

$$e_{\hat{p}} = Y_0 - \hat{Y}_0$$

is a normally distributed random variable with mean zero and variance

$$V(e_{\hat{p}}) = V(Y_0 - \hat{Y}_0) = \alpha^2 \left[ 1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

If we use  $\hat{\sigma}^2$  to estimate  $\alpha^2$ , we can show that

A  $100(1-\alpha)\%$  prediction interval on a future observation  $Y_0$  at the value  $x_0$  is given by

$$\hat{y}_0 \pm t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[ 1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$$

The value  $\hat{y}_0$  is computed from the regression model  $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ 

### Prediction





the **prediction** interval at the point  $x_0$  is always wider than the confidence interval at  $x_0$ . because the prediction interval depends on both the error from the fitted model and the error associated with future observations.



the error sum of squares

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

the regression sum of squares

$$SS_R = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2$$

the total corrected sum of squares of y

$$SS_T = \sum_{i=1}^n \left( y_i - \overline{y} \right)^2$$

Analysis of Variance (ANOVA)

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SS_T = SS_R + SS_E$$



The coefficient of determination is  $R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}$ 





### **Test for Significance of Regression**

If the null hypothesis  $H_0$ :  $\beta_1 = 0$  is true, the statistic

$$F_0 = \frac{SS_R/1}{SS_E/(n-2)} = \frac{MS_R}{MS_E}$$

follows the  $F_{1,n-2}$  distribution, and we would reject  $H_0$  if  $f_0 > f_{\alpha,1,n-2}$ .

| Source of Variation | Sum of Squares                       | Degrees of<br>Freedom | Mean<br>Square | $oldsymbol{F_0}$ |
|---------------------|--------------------------------------|-----------------------|----------------|------------------|
| Regression          | $SS_R = \hat{\beta}_1 S_{xy}$        | 1                     | $MS_R$         | $MS_R/MS_E$      |
| Error               | $SS_E = SS_T - \hat{\beta}_1 S_{xy}$ | n-2                   | $MS_E$         |                  |
| Total               | $SS_T$                               | n-1                   |                |                  |

Note that  $MS_E = \hat{\sigma}^2$ .



### Residual analysis, checking assumptions

- 1. The errors are uncorrelated random variables with mean zero and constant variance
- 2. Tests of hypotheses and interval estimation require that the errors be normally distributed.
  - a normal probability plot of residuals
  - plot the residuals against the  $\hat{y}_i$  and against the independent variable x.







### Correlation



Both X and Y are random variables, assumed that the observations (Xi, Yi), i = 1, 2, ..., n are jointly distributed random variables obtained from the distribution f(x, y)

 $\mu_Y$  and  $\sigma_Y^2$  are the mean and variance of Y,  $\mu_X$ ,  $\sigma_X^2$  are the mean and variance of X, The **correlation coefficient** between Y and X is defined as

$$\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

where  $\sigma_{XY}$  is the covariance between Y and X

Regression model estimators can be written as

$$\beta_0 = \mu_Y - \mu_X \rho \frac{\sigma_Y}{\sigma_X}$$

$$\beta_1 = \frac{\sigma_Y}{\sigma_X} \rho$$



Regression methods were used to analyze the data from a study investigating the relationship between roadway surface temperature (x) and pavement deflection (y). Summary quantities were

$$n = 20$$
,  $\Sigma y_i = 12.75$ ,  $\Sigma y_i^2 = 8.86$ ,  $\Sigma x_i = 1478$ ,  $\Sigma x_i^2 = 143,215.8$ , and  $\Sigma x_i y_i = 1083.67$ .

- (a) Calculate the least squares estimates of the slope and intercept. Estimate  $\sigma^2$ .
- (b) What is the mean pavement deflection when the surface temperature is 90°F?
- (c) What change in mean pavement deflection would be expected for a 1°F change in surface temperature?
- (d) Find a 99% confidence interval on slope.

$$\hat{y} = 0.32999 + 0.00416x$$
  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-2} = \frac{0.143275}{18} = 0.00796$ 

$$\hat{y} = 0.32999 + 0.00416(90) = 0.7044$$

$$\hat{\beta}_1 \pm (t_{0.005,18}) se(\hat{\beta}_1)$$
  $t_{\alpha/2,n-2} = t_{0.005,18} = 2.878$ 

 $0.0041612 \pm (2.878)(0.000484)$ 

 $0.0027682 \le \beta_1 \le 0.0055542$ 



#### The regression equation is

$$Y = 12.9 + 2.34 x$$

Predictor

| redictor    | COCI         | SE COCI       | 1    |
|-------------|--------------|---------------|------|
| Constant    | 12.857       | 1.032         | ?    |
| X           | 2.3445       | 0.1150        | ?    |
| S = 1.48111 | R-sq = 98.1% | R-sq(adj) = 9 | 7.9% |

Coef

SE Coef

T

#### Analysis of Variance

| Source         | DF | SS     | MS     | F |
|----------------|----|--------|--------|---|
| Regression     | 1  | 912.43 | 912.43 | ? |
| Residual error | ?  | 17.55  | ?      |   |
| Total          | 9  | 929.98 |        |   |

- (b) Use 3 ways to check that the model defines a useful linear relationship,  $\alpha = 0.05$ ?
- (c) What is your estimate of  $\sigma^2$ ?

$$T_0 = \frac{\hat{\beta}_0 - \beta_0}{se(\beta_0)} = \frac{12.857}{1.032} = 12.4583$$

$$T_1 = \frac{\hat{\beta}_1 - \beta_1}{se(\beta_1)} = \frac{2.3445}{0.115} = 20.387$$

$$MS_E = \frac{SS_E}{n-2} = \frac{17.55}{8} = 2.1938$$

$$F_0 = \frac{MS_R}{MS_E} = \frac{912.43}{2.1938} = 415.913$$

### Example Code



- import standard libraries at this top level.
- import only a few items from a given module, help keep the "namespace" clean.
- inserted a line break \ to break a long line into multi-lines to ease readability.
- use dir() to show the attributes of the object as well as any methods associated with it.

```
import numpy as np
import pandas as pd
from matplotlib.pyplot import subplots
import statsmodels.api as sm
from statsmodels.stats.outliers influence \
     import variance inflation factor as VIF
from statsmodels.stats.anova import anova_lm
A = np.array([3,5,11])
dir(A)
A[0:2]
A.sum?
A.sum()
matrix1 = [[12,7,3,2],
           [4,5,6,4],
           [7,8,9,6]]
matrix1
matrix2 = [[5,8,1],
           [6,7,3],
           [4,5,9],
           [3,7,13]]
matrix2
```

```
type(matrix1)
res = [[0 for x in range(3)] for y in range(3)]
res
len(matrix1)
matrix2[0]
len(matrix2[0])
len(matrix2)
for i in range(len(matrix1)):
    for j in range(len(matrix2[0])):
        for k in range(len(matrix2)):
            # resulted matrix
            res[i][j] += matrix1[i][k] * matrix2[k][j]
print (res)
res = [[0 for x in range(3)] for y in range(3)]
```

#### Use numpy

```
res = np.dot(matrix1,matrix2)
print(res)
```

### Example Code



33

#### **Simple Linear Regression**

- response variable = medv (median house value)
- predictor = 1stat (percent of households with low socioeconomic status)
- predict medv
- use statsmodels to implement regression methods.

```
Boston = pd.read_csv("Boston.csv")
Boston.columns
Boston['medv'][1:5]
type(Boston)
Boston[1:5]['medv']
Boston.iloc[5:8,2:6]
X = pd.DataFrame({'intercept': np.ones(Boston.shape[0]),
                  'lstat': Boston['lstat']})
X.iloc[5:8,0:3]
X["lstat"][1:5]
y = Boston['medv']
y[0:5]
model = sm.OLS(y, X)
results = model.fit()
results.summary()
results.summary2()
```

```
dir(results)
newdata = pd.DataFrame({'intercept': np.ones(3),
                   'lstat': [5, 10, 15]})
newdata.iloc[0:8,0:3]
results.predict(newdata)
new_predictions = results.get_prediction(newdata);
new predictions.predicted mean
Do matrix multiplication using Numpy
B = results.params
В
type(B)
predictions = np.dot(newdata,B)
predictions
use @ for matrix multiplication
newdata@B
new predictions.conf int(alpha=0.05)
new predictions.conf int(obs=True, alpha=0.05)
```



### **MAXIMUM LIKELIHOOD METHOD**

### Method of Maximum Likelihood



• Suppose that X is a random variable with probability mass or density function  $f(x \mid \theta)$ , where  $\theta$  is unknown parameters. Let  $x_1, x_2, ..., x_n$  be the observed values in a random sample of size n. Then the **likelihood function** of the sample is:

$$L(\theta) = f(x_1 \mid \theta) \cdot f(x_2 \mid \theta) \cdot \dots \cdot f(x_n \mid \theta)$$

• Note that the likelihood function is now a function of only the unknown parameters  $\theta$ . The **maximum likelihood estimator** (MLE) of  $\theta$  is the value of  $\theta$  that maximizes the likelihood function  $L(\theta)$ . Intuitively, it is the value of  $\theta$  that makes the observed data "most probable" or "most likely".

### Method of Maximum Likelihood



Optimization – the 1<sup>st</sup> order partial derivative

$$\frac{\partial L(x_1, x_2, \dots, x_n \mid \theta)}{\partial \theta} = 0$$

Because the likelihood function is a product function, it is more convenient to maximize the logarithm of the likelihood function; i.e.,

$$\frac{\partial \log L(x_1, x_2, \dots, x_n \mid \theta)}{\partial \theta} = 0$$



Let  $y_1, y_2, ..., y_n \sim N(\mu, \sigma^2)$ , i.e., the density function is

$$f(y_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[ -\frac{(y_i - \mu)^2}{2\sigma^2} \right]$$

Also recall, 
$$\mu = E(y_i \mid x_i) = f(x_i) = \beta_0 + \beta_1 x_i$$

Then the likelihood function of a random sample of size n is

$$L(y_i \mid \mu, \sigma^2) = f(y_1 \mid \mu, \sigma^2) f(y_2 \mid \mu, \sigma^2) \cdots f(y_n \mid \mu, \sigma^2)$$
$$= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right]$$

Therefore, the log-likelihood is

$$l(\beta_0, \beta_1, \sigma^2) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$



Take the 1<sup>st</sup> order derivative and set it to zero, we get

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\frac{\partial l}{\partial \beta_0} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial l}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$



Take the 1<sup>st</sup> order derivative and set it to zero, we get

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left( y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i} \right)^{2} = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2}$$

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\hat{\beta}_0 = \overline{y} - \beta_1 \overline{x}$$