Exercise 4 Probability Theory 2020 Autumn

Hanmo Chen Student ID 2020214276

November 9, 2020

Contents

1	Problem 1 1.1 (i)	2 2 2
2	Problem 2 2.1 (a)	$\frac{3}{4}$
3	Problem 3	4
4	Problem 4 4.1 (i) 4.2 (ii) 4.3 (iii)	5
5	Problem 5	6
6	Problem 6	6

1 Problem 1

1.1 (i)

Claim that $M_X(s) = \infty$ for all $s \neq 0$. The proof is as below.

$$M_X(s) = \mathbb{E}[e^{sx}] = \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{t}{t^2 + x^2} e^{sx} dx = \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{t}{t^2 + x^2} e^{-sx} dx \tag{1}$$

So $M_X(s) = M_X(-s)$, we just need to prove $M_X(s) = \infty$ for s > 0.

Notice that for x > 0, $e^x > \frac{x^3}{6}$.

$$M_X(s) = \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{t}{t^2 + x^2} e^{sx} dx > \int_0^{\infty} \frac{1}{\pi} \frac{t}{t^2 + x^2} e^{sx} dx$$

$$> \int_0^{\infty} \frac{1}{6\pi} \frac{t s^3 x^3}{t^2 + x^2} dx = \int_0^{\infty} \frac{t^3 s^3}{6\pi} \frac{x^3}{1 + x^2} dx$$

$$= \frac{t^3 s^3}{12\pi} (x^2 - \ln(1 + x^2)) \Big|_0^{\infty} = \infty$$
(2)

So $M_X(s) = \infty$ for all $s \neq 0$. And it is trivial that $M_X(0) = 1$.

$$M_X(s) = \begin{cases} 1, & s = 0\\ \infty, & s \neq 0 \end{cases}$$
 (3)

1.2 (ii)

Yes. An example is given as the symmetrized lognormal distribution.

For example, $Z \sim N(0,1)$ and $Y = e^Z \sim \text{lognormal}(0,1)$ and define X as

$$X = \begin{cases} Y, & \text{with probability } \frac{1}{2} \\ -Y, & \text{with probability } \frac{1}{2} \end{cases}$$
 (4)

It is easy to verify that

$$f_Y(y) = f_Z(\ln y) \frac{1}{y} = \frac{1}{\sqrt{2\pi y}} e^{-\frac{1}{2}(\ln y)^2}$$
 (5)

And the n-th moment of Y is

$$\mathbb{E}[Y^n] = \int_0^\infty \frac{1}{\sqrt{2\pi}y} e^{-\frac{1}{2}(\ln y)^2} * y^n dy = \int_0^\infty \frac{1}{\sqrt{2\pi}y} \exp\left(-\frac{1}{2}(\ln y)^2 + n \ln y\right) dy$$

$$= \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2 + \frac{n^2}{2}\right) dz \quad (z = \ln y - n)$$

$$= e^{\frac{n^2}{2}}$$
(6)

And

$$f_X(x) = \frac{1}{2\sqrt{2\pi}|x|} e^{-\frac{1}{2}(\ln|x|)^2} \tag{7}$$

Then we will show that all the moments of X are finite. For all odd integers k,

$$\mathbb{E}[X^k] = \mathbb{E}[X_+^k] - \mathbb{E}[X_-^k] = \frac{1}{2}\mathbb{E}[Y^k] - \frac{1}{2}\mathbb{E}[Y^k] = 0 \tag{8}$$

For all even integers k,

$$\mathbb{E}[X^k] = \frac{1}{2}\mathbb{E}[Y^k] + \frac{1}{2}\mathbb{E}[Y^k] = e^{\frac{n^2}{2}}$$
(9)

So $\mathbb{E}[X^k] < \infty$ for all integers $k \ge 1$. But for the moment generating function $M_X(s)$, assuming s > 0,

$$M_X(s) = \mathbb{E}[e^{sx}] = \int_{-\infty}^{\infty} \frac{1}{2\sqrt{2\pi}|x|} e^{-\frac{1}{2}(\ln|x|)^2} e^{sx} dx > \int_{0}^{\infty} \frac{1}{2\sqrt{2\pi}x} e^{-\frac{1}{2}(\ln x)^2} e^{sx} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{2\sqrt{2\pi}} e^{-\frac{1}{2}z^2} e^{se^z} dz > \int_{0}^{\infty} \frac{1}{2\sqrt{2\pi}} e^{\frac{s}{6}z^3 - \frac{1}{2}z^2}$$

$$> \int_{\frac{6}{9}}^{\infty} \frac{1}{2\sqrt{2\pi}} e^{\frac{1}{2}z^2} = \infty \quad (\frac{s}{6}z^3 > z^2 \text{ when } z > \frac{6}{s})$$

$$(10)$$

 $M_X(s) = \infty$ for s > 0 and $M_X(s) = M_X(-s)$, so $M_X(s) = \infty$ for $s \neq 0$

2 Problem 2

2.1 (a)

Notice that the conclusion in (a) is a weaker version of the conclusion from (b) because $X^k \leq X^k e^{sX}$ when s > 0, we will just prove (b).

2.2 (b)

If s < 0, $X^k e^{sX} \le X^k \le X^k e^{s'X}$, s' > 0, so we will just prove the case when s > 0.

Because X is nonnegative.

$$e^{ax} = e^{(a-s)x}e^{sx} > \frac{(a-s)^k x^k}{k!}e^{sx}$$
 (11)

So $x^k e^{sx} < e^{ax} \frac{k!}{(a-s)^k}$,

$$\mathbb{E}[X^k e^{sX}] \leqslant \mathbb{E}\left[\frac{k!}{(a-s)^k} e^{aX}\right] = \frac{k!}{(a-s)^k} M_X(a) < \infty \tag{12}$$

2.3 (c)

The inequality holds true only when h > 0. The following proof is given under the condition h > 0.

It's obvious when X = 0. And for X > 0, it is equivalent to $\frac{e^{hX} - 1}{hX} \le e^{hX}$, denote b as hX and g(x) as e^X , using Lagrange's mean value theorm,

$$\frac{e^{hX} - 1}{hX} = \frac{g(b) - g(0)}{b - 0} = g'(c) \leqslant g'(b) = e^{hX}, c \in (0, b)$$
(13)

2.4 (d)

Using L'Hospital's Rule, $X = \lim_{h\to 0} \frac{e^{hX}-1}{h}$. Suppose $\{h_n\}$ is a sequence of nonnegative numbers and $\lim_{n\to\infty} h_n = 0$, so $h_n < \frac{a}{2}$ for sufficiently large n. And define $X_n = \frac{e^{h_n X}-1}{h_n}$.

Using the conclusion from (c)

$$0 < X_n \leqslant X e^{h_n X} < X e^{\frac{a}{2}X} \tag{14}$$

And $\mathbb{E}[Xe^{\frac{a}{2}X}] < \infty$, so according to the Dominant Convergence Theorm,

$$\mathbb{E}[X] = \mathbb{E}[\lim_{h\downarrow 0} \frac{e^{hX} - 1}{h}] = \lim_{h\downarrow 0} \mathbb{E}[\frac{e^{hX} - 1}{h}] = \lim_{h\downarrow 0} \frac{\mathbb{E}[e^{hX}] - 1}{h}$$

$$\tag{15}$$

3 Problem 3

Let $Z = \frac{X}{\sigma} \sim N(0,1)$ and $z = \frac{x}{\sigma}$. So $xe^{x^2/(2\sigma^2)}P(X \geqslant x) = \sigma ze^{z^2/2}P(Z \geqslant z)$.

Define the Mills Ratio as

$$R(x) = \frac{1 - \Phi(x)}{\phi(x)} = e^{\frac{x^2}{2}} \int_x^{\infty} e^{-\frac{t^2}{2}} dt, x > 0$$
 (16)

We will prove that $\frac{x}{x+1} < R(x) < \frac{1}{x}, x > 0$, which is first given by $Gorden(1941)^1$. The following proof is based on the blog². Denote $\phi(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$, then $\phi'(t) = -t\phi(t)$,

Let $h_1(t) = -\frac{1}{t}\phi(t)$,

$$\frac{dh_1(t)}{dt} = (\frac{1}{t^2} + 1)\phi(t) \tag{17}$$

$$1 - \Phi(x) = \int_{x}^{\infty} \phi(t)dt < \int_{x}^{\infty} (1 + \frac{1}{t^{2}})\phi(t)dt$$
$$= h_{1}(t)\big|_{x}^{\infty} = \frac{\phi(x)}{x}$$
(18)

¹Gordon, RD: Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Stat. 12, 364-366 (1941)

²https://bowaggoner.com/blog/2018/03-17-gaussian-tails/index.html

So $R(x) = \frac{1 - \Phi(x)}{\phi(x)} < \frac{1}{x}$.

In the same way, let $h_2(t) = -\frac{t}{1+t^2}\phi(t)$,

$$\frac{dh_2(t)}{dt} = \frac{x^4 + 2x^2 - 1}{(x^2 + 1)^2}\phi(t) = \left(1 - \frac{2}{(x^2 + 1)^2}\right)\phi(t) \tag{19}$$

$$1 - \Phi(x) = \int_{x}^{\infty} \phi(t)dt > \int_{x}^{\infty} ((1 - \frac{2}{(x^{2} + 1)^{2}})\phi(t)dt$$
$$= h_{2}(t)\big|_{x}^{\infty} = \frac{x}{r^{2} + 1}\phi(x)$$
(20)

So $\frac{x}{x^2+1} < R(x) < \frac{1}{x}$. Thus $\lim_{x\to\infty} xR(x) = 1$.

$$\lim_{x \to \infty} x e^{x^2/(2\sigma^2)} P(X \geqslant x) = \lim_{z \to \infty} \sigma z e^{z^2/2} P(Z \geqslant z) = \frac{\sigma}{\sqrt{2\pi}} \lim_{x \to \infty} x R(x) = \frac{\sigma}{\sqrt{2\pi}}$$
(21)

4 Problem 4

4.1 (i)

Suppose the pdf of X_1, X_2, \dots, X_n is $f_X(x)$ and the cdf is $F_X(x)$. And $P(\min(X_1, X_2, \dots, X_n) = X_1) = P(X_1 \leq \min(X_2, \dots, X_n))/$. Define $Y = \min(X_2, \dots, X_n)$,

$$F_Y(y) = P(\min(X_2, \dots, X_n) \le y) = 1 - \prod_{i=2}^n P(X_i > y) = 1 - (1 - F_X(y))^{n-1}$$
 (22)

Because X_1 and X_2, \dots, X_n are independent, X_1 and $Y = g(X_2, \dots, X_n)$ are also independent.

$$P(X_1 \le Y) = \int_{\infty}^{\infty} f_X(x)P(Y \ge x)dx = \int_{\infty}^{\infty} f_X(x)(1 - F_X(x))^{n-1}dx$$

$$= \int_{0}^{1} (1 - F_X(y))^{n-1}d(1 - F_X(x)) = \frac{1}{n}$$
(23)

So $P(\min(X_1, X_2, \dots, X_n) = X_1) = \frac{1}{n}$.

4.2 (ii)

$$P(\min(X_1, X_2, \dots, X_n) = X_1) = P(X_1 = 0) + P(X_1 = 1, X_2 = 1, \dots, X_n = 1) = 1 - p + p^n$$
 (24)

4.3 (iii)

 $P(\min(X_1, X_2, \dots, X_n) = X_1) = P(X_1 \leq \min(X_2, \dots, X_n)).$ Define $Y = \min(X_2, \dots, X_n),$

$$F_Y(y) = P(\min(X_2, \dots, X_n) \leqslant y) = 1 - \prod_{i=2}^n P(X_i > y) = 1 - \exp(-\sum_{i=2}^n \lambda_i y), x \geqslant 0$$
 (25)

So $Y \sim Exponential(\sum_{i=2}^{n} \lambda_i)$ and Y, X_1 are independent.

$$P(X_1 \leqslant Y) = \int_0^\infty f_X(x)P(Y \geqslant x)dx = \int_0^\infty \lambda_1 \exp(-\lambda_1 x) \exp(-\sum_{i=2}^n \lambda_i x)dx$$
$$= \frac{\lambda_1}{\sum_{i=1}^n \lambda_i}$$
(26)

So $P(\min(X_1, X_2, \dots, X_n) = X_1) = \frac{\lambda_1}{\sum_{i=1}^n \lambda_i}$

5 Problem 5

Denote $\Phi(x)$ and $\phi(x)$ as the pdf and cdf of standard Gaussian variable. So

$$P(X \ge \beta \sqrt{\log(n)}) = 1 - [\Phi(\beta \sqrt{\log(n)})]^n$$
(27)

According to Problem 3,

$$1 - \frac{1}{x}\phi(x) < \Phi(x) < 1 - \frac{x}{x^2 + 1}\phi(x) \tag{28}$$

So

$$\left(1 - \frac{1}{\sqrt{2\pi \log(n)\beta n^{\beta^2/2}}}\right)^n < [\Phi(\beta\sqrt{\log(n)})]^n < \left(1 - \frac{\beta\sqrt{\log(n)}}{\sqrt{2\pi}(\beta^2\log(n) + 1)n^{\beta^2/2}}\right)^n \tag{29}$$

Denote
$$L_n(\beta) = \left(1 - \frac{1}{\sqrt{2\pi \log(n)}\beta n^{\beta^2/2}}\right)^n$$
, $U_n(\beta) = \left(1 - \frac{\beta\sqrt{\log(n)}}{\sqrt{2\pi}(\beta^2\log(n) + 1)n^{\beta^2/2}}\right)^n$.

If
$$\beta > \sqrt{2}$$
, $\beta^2/2 > 1$, $\lim_{n \to \infty} L_n(\beta) = \lim_{n \to \infty} U_n(\beta) = 1$. So $\lim_{n \to \infty} P(X \ge \beta \sqrt{\log(n)}) = 0$

If
$$\beta < \sqrt{2}$$
, $\beta^2/2 < 1$, $\lim_{n \to \infty} L_n(\beta) = \lim_{n \to \infty} Un(\beta) = 0$. So $\lim_{n \to \infty} P(X \ge \beta \sqrt{\log(n)}) = 1$

So $\beta_0 = \sqrt{2}$. And when $\beta = \sqrt{2}$, using Bernoulli's inequality $(1+x)^n \geqslant 1 + nx$ for $x \geqslant -1$,

$$\lim_{n \to \infty} L_n(\sqrt{2}) = \lim_{n \to \infty} \left(1 - \frac{1}{2\sqrt{\pi \log(n)}n} \right)^n \geqslant \lim_{n \to \infty} 1 - \frac{1}{2\sqrt{\pi \log(n)}} = 1$$

Also we have $L_n(\sqrt{2}) \leq 1$ so $\lim_{n \to \infty} L_n(\sqrt{2}) = 1$

And
$$U_n(\beta) \leq 1$$
, so for $\beta = \sqrt{2}$, $\lim_{n \to \infty} P(X \geq \beta \sqrt{\log(n)}) = 1$

6 Problem 6

Denote V_n as $Var(X_n)$, we have

$$X_n = \sum_{i=1}^{X_{n-1}} W_i \tag{30}$$

with $\mathbb{E}[W_i] = \mu, \operatorname{Var}(W_i) = \sigma^2$.

First we need to use the Law of Total Variance

$$Var(X) = \mathbb{E}[Var(X \mid Y)] + Var(\mathbb{E}[X \mid Y])$$
(31)

The proof is given as below.

Because $Var(X|Y) = \mathbb{E}[(X - \mathbb{E}[X|Y])^2|Y] = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$,

$$\mathbb{E}[\operatorname{Var}(X|Y)] = \mathbb{E}[\mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2]$$

$$= \mathbb{E}[X^2] - \mathbb{E}[(\mathbb{E}[X|Y])^2]$$
(32)

Meanwhile,

$$\operatorname{Var}(\mathbb{E}[X|Y]) = \mathbb{E}[(\mathbb{E}[X|Y])^{2}] - (\mathbb{E}[\mathbb{E}[X|Y]])^{2}$$
$$= \mathbb{E}[(\mathbb{E}[X|Y])^{2}] - (\mathbb{E}[X])^{2}$$
(33)

Therefore,

$$\mathbb{E}[\operatorname{Var}(X|Y)] + \operatorname{Var}(\mathbb{E}[X|Y]) = \mathbb{E}[x^2] - (\mathbb{E}[x])^2$$

$$= \operatorname{Var}(X)$$
(34)

Using the Law of Total Variance,

$$Var(X_n) = \mathbb{E}[Var(X_n|X_{n-1})] + Var(\mathbb{E}[X_n|X_{n-1}])$$
(35)

For the first item,

$$\mathbb{E}\left[\operatorname{Var}\left(X_{n}|X_{n-1}\right)\right] = \mathbb{E}\left[\operatorname{Var}\left(\sum_{i=1}^{X_{n-1}} W_{i}|X_{n-1}\right)\right] = \mathbb{E}\left[X_{n-1}\sigma^{2}\right] = \sigma^{2}\mathbb{E}[X_{n-1}]$$
(36)

For the second item,

$$\operatorname{Var}\left(\mathbb{E}\left[X_{n}|X_{n-1}\right]\right) = \operatorname{Var}\left(\mathbb{E}\left[\sum_{i=1}^{X_{n-1}} W_{i}|X_{n-1}\right]\right) = \operatorname{Var}\left(X_{n-1}\mu\right) = \mu^{2}\operatorname{Var}(X_{n-1})$$
(37)

Also we have

$$\mathbb{E}[X_n] = \mathbb{E}[\mathbb{E}X_n | X_{n-1}] = \mu \mathbb{E}[X_{n-1}] = \mu^n \tag{38}$$

So

$$V_n = \sigma^2 \mu^{n-1} + \mu^2 V_{n-1} \tag{39}$$

And $V_1 = \text{Var}(W_1) = \sigma^2$. If $\mu = 1$, $V_n = n\sigma^2$.

If $\mu \neq 1$,

$$\frac{V_n}{\mu^{2n}} = \frac{V_{n-1}}{\mu^{2n-2}} + \frac{\sigma^2}{\mu^{n+1}} = \sum_{i=1}^n \frac{\sigma^2}{\mu^{i+1}} = \frac{\sigma^2}{\mu^{n+1}} \frac{\mu^n - 1}{\mu - 1}$$
(40)

So $\operatorname{Var}(X_n) = \sigma^2 \mu^{n-1} \frac{\mu^n - 1}{\mu - 1}$. In summary,

$$Var(X_n) = \begin{cases} n\sigma^2, & \text{if } \mu = 1, \\ \sigma^2 \mu^{n-1} \frac{\mu^n - 1}{\mu - 1}, & \text{if } \mu \neq 1. \end{cases}$$
 (41)