STA2001 Assignment 7

1. (4.1-3). Let the joint pmf of X and Y be defined by

$$f(x,y) = \frac{x+y}{32}$$

x = 1, 2, y = 1, 2, 3, 4.

- (a) Find $f_X(x)$, the marginal pmf of X
- (b) Find $f_Y(y)$, the marginal pmf of Y
- (c) Find P(X > Y)
- (d) Find P(Y = 2X)
- (e) Find P(X + Y = 3)
- (f) Find $P(X \le 3 Y)$
- (g) Are X and Y independent or dependent? Why or why not?
- (h) Find the means and the variances of X and Y
- 2. (4.1-4). Select an (even) integer randomly from the set $\{12, 14, 16, 18, 20, 22\}$. Then select an integer randomly from the set $\{12, 13, 14, 15, 16, 17\}$. Let X equal the integer that is selected from the first set and let Y equal the sum of the two integers.
 - (a) Show the joint pmf of X and Y on the space of X and Y.
 - (b) Compute the marginal pmfs.
 - (c) Are X and Y independent? Why or why not?
- 3. (4.1-5). Roll a pair of four-sided dice, one red and one black. Let X equal the outcome on the red die and let Y equal the sum of the two dice.
 - (a) On graph paper, describe the space of X and Y.
 - (b) Define the joint pmf on the space (similar to Figure 4.1-1).
 - (c) Give the marginal pmf of X in the margin.
 - (d) Give the marginal pmf of Y in the margin.
 - (e) Are X and Y dependent or independent? Why or why not?
- 4. (4.1-8). In a smoking survey among men between the ages of 25 and 30. 63% prefer to date nonsmokers, 13% prefer to date smokers, and 24% dont care. Suppose nine such men are selected randomly. Let X equal the number who prefer to date nonsmokers and Y equal the number who prefer to date smokers.
 - (a) Determine the joint pmf of X and Y. Be sure to include the support of the pmf.
 - (b) Find the marginal pmf of X. Again include the support.
- 5. (4.1-9). A manufactured item is classified as good, a second, or defective with probabilities 6/10, 3/10, and 1/10, respectively. Fifteen such items are selected at random from the production line. Let X denote the number of good items, Y the number of seconds, and 15 X Y the number of defective items.
 - (a) Give the joint pmf of X and Y, f(x,y).
 - (b) Sketch the set of integers (x, y) for which f(x, y) > 0. From the shape of this region, can X and Y be independent? Why or why not?
 - (c) Find P(X = 10, Y = 4).
 - (d) Give the marginal pmf of X.
 - (e) Find $P(X \leq 11)$.

- 6. (4.2-2). Let X and Y have the joint pmf defined by f(0,0) = f(1,2) = 0.2, f(0,1) = f(1,1) = 0.3.
 - (a) Depict the points and corresponding probabilities on a graph.
 - (b) Give the marginal pmfs in the 'margins.'
 - (c) Compute $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \text{Cov}(X, Y)$, and ρ .
- 7. (4.2-3). Roll a fair four-sided die twice. Let X equal the outcome on the first roll, and let Y equal the sum of the two rolls. Determine $\mu_X, \mu_Y, \sigma_x^2, \sigma_Y^2, \text{Cov}(X, Y)$, and ρ .
- 8. (4.2-9). A car dealer sells X cars each day and always tries to sell an extended warranty on each of these cars. (In our opinion, most of these warranties are not good deals.) Let Y be the number of extended warranties sold; then $Y \leq X$. The joint pmf of X and Y is given by

$$f(x,y) = c(x+1)(4-x)(y+1)(3-y)$$

x = 0, 1, 2, 3, y = 0, 1, 2, with $y \le x$.

- (a) Find the value of c.
- (b) Sketch the support of X and Y.
- (c) Record the marginal pmfs $f_X(x)$ and $f_Y(y)$ in the margins.
- (d) Are X and Y independent?
- (e) Compute μ_X and σ_X^2 .
- (f) Compute μ_Y and σ_Y^2 .
- (g) Compute Cov(X, Y)
- (h) Determine ρ , the correlation coefficient.
- 9. Let Y_1, Y_2, Y_3 be independent random variables which have the Bernoulli distribution with the probability of success p.
 - (a) Define a new random variable $Z = Y_1 + Y_2 + Y_3$. For independent Y_1, Y_2, Y_3 , we have

$$E(e^{tZ}) = E(e^{t(Y_1 + Y_2 + Y_3)}) = E(e^{tY_1})E(e^{tY_2})E(e^{tY_3}) = (1 - p + pe^t)^3$$

What's the distribution of Z?

(b) For k = 1, 2, let

$$X_k = \begin{cases} 1, & Y_1 + Y_2 + Y_3 = k, \\ -1 & Y_1 + Y_2 + Y_3 \neq k. \end{cases}$$

- i. Find the joint pmf of X_1 , X_2 .
- ii. Find the marginal pmfs of X_1 and X_2 , respectively.
- iii. Find the value of the success probability p that minimizes $E(X_1X_2)$.
- iv. Compute $Cov(X_1 X_2, X_2)$.
- 10. (2023 Final Q10) Suppose the joint distribution of two discrete random variables X, Y is given as

$$P_{XY}(n,m) = \frac{\lambda^n e^{-\lambda}}{n!} \begin{pmatrix} n \\ m \end{pmatrix} p^m (1-p)^{n-m}$$

where $0 \le m \le n$ and $0 \le p \le 1$.

(a) Find the marginal pmf $P_Y(m)$.

- (b) Find the marginal pmf $P_X(n)$.
- (c) Find the conditional pmf $P_{X|Y}(n|m)$.
- (d) (optional) Find the expectation E[XY].

Hint:
$$\sum_{n=0}^{\infty} \frac{a^n}{n!} = e^a$$