Лабораторна робота №4

Середня кількість інформації та інформаційна пропускна здатність дискретних каналів зв'язку.

В технічних системах каналом зв'язку називають сукупність технічних засобів та фізичного середовища розповсюдження сигналу (лінії зв'язку), яка забезпечує передачу повідомлень від джерела до одержувача незалежно від передачі повідомлень між іншими джерелами та одержувачами по цій лінії зв'язку.

В теорії інформації під каналом зв'язку (або просто каналом), розуміють математичну модель, яка описує перетворення вхідного сигналу у вихідний. Позначимо через $X = \{x_1, x_2, x_3, ..., x_M\}$ алфавіт на вході дискретного каналу, а через $Y = \{y_1, y_2, y_3, ..., y_N\}$ — алфавіт на його виході. М — потужність або об'єм алфавіту на вході каналу, N — на його виході. Якщо потужність алфавіту на вході M = 2, канал називають двійковим, при M = 3 — трійковим.

Для каналу без витирання потужності вхідного та вихідного алфавітів збігаються, тобто M = N. Для каналів з витиранням кількість символів вихідного алфавіту на одиницю перевищує кількість символів вхідного алфавіту, тобто N = M + 1. Цей додатковий символ вихідного алфавіту називають символом витирання. Поява символу витирання на виході каналу відповідає такій ситуації в реальному (фізичному) каналі, коли сигнал, за допомогою якого передавався символ, був істотно спотвореним. В цьому випадку прийняття рішення пристроєм, що вирішує, який входить до складу дискретного каналу зв'язку, про передачу конкретного символу призведе з високою ймовірністю до невірного результату. Таким чином, наявність символу витирання у вихідному алфавіті каналу знижує ймовірність помилок, але ж виникнення символу витирання у послідовності символів на виході каналу вносить суттєву невизначеність відносно того, який символ було передано. Ця невизначеність зменшується у реальних системах зв'язку відповідними засобами (завадостійке кодування, повторна передача спотворених символів по командам зворотного зв'язку).

Дискретний канал вважають цілком заданим, якщо можна визначити ймовірність переходу будь-якої послідовності символів на вході каналу для будь-яких фіксованих моментів часу у будь-яку послідовність символів на виході каналу для тих же моментів часу. Для деяких каналів достатньо мати матрицю перехідних ймовірностей:

$$\begin{bmatrix} p(y_1/x_1) & p(y_2/x_1) & \dots & p(y_N/x_1) \\ p(y_1/x_2) & p(y_2/x_2) & \dots & p(y_N/x_2) \\ \vdots & \vdots & \vdots & \vdots \\ p(y_1/x_M) & p(y_2/x_M) & \dots & p(y_N/x_M) \end{bmatrix}$$

Тут $p(y_k|x_i)$ — умовна ймовірність появи на виході каналу в деякий момент часу символу y_k при умові, що на вході каналу в цей же момент мав місце символ x_i . Сума кожного рядка матриці дорівнює одиниці.

Для двійкового каналу без пам'яті з витиранням, матрицю перехідних ймовірностей набуває вигляду:

$$\begin{bmatrix} p(y_1/x_1) & p(y_2/x_1) & p(y_3/x_1) \\ p(y_1/x_2) & p(y_2/x_2) & p(y_3/x_2) \end{bmatrix} = \begin{bmatrix} q & p_n & p_B \\ p_n & q & p_B \end{bmatrix}.$$

Середня кількість інформації I(Y,X), яка міститься в символі на виході каналу про символ, що передається (тобто має місце на вході каналу), розраховується за виразами для повної взаємної інформації I(Y,X)=H(X)-H(X|Y); I(Y,X)=I(X,Y)=H(Y)-H(Y|X). Іншими словами, це є кількість інформації, що переноситься в середньому одним словом.

"Інформаційна" пропускна здатність каналу для дискретного каналу без пам'яті, визначається як: $C=\max_{p(x)}I(X;Y)$ для усіх можливих вхідних розподілів p(x).

Сумісна ентропія H(X,Y) сукупності символів x_i , y_k або ентропія об'єднання алфавітів X та Y визначається як:

$$H(X,Y) = -\sum_{i=1}^{M} \sum_{k=1}^{N} p(x_i, y_k) \cdot log_2 p(x_i, y_k)$$

Для обчислення H(X,Y) слід мати набір або матрицю ймовірностей p(xi,yk) сумісної появи хі та ук:

$$\begin{bmatrix}
p(x_1, y_1) & p(x_2, y_1) & \dots & p(x_M, y_1) \\
p(x_1, y_2) & p(x_2, y_2) & \dots & p(x_M, y_2) \\
\vdots & \vdots & \vdots & \vdots \\
p(x_1, y_N) & p(x_2, y_N) & \dots & p(x_M, y_N)
\end{bmatrix}$$

Сума елементів k-го рядка цієї матриці дорівнює безумовній імовірності $p(y_k)$ появи символу y_k на виході другого джерела, а сума елементів і-го стовпця — безумовній ймовірності $p(x_i)$ появи символу x_i на виході першого джерела:

$$p(y_k) = \sum_{i=1}^{M} p(x_i, y_k)$$
; $p(x_i) = \sum_{k=1}^{N} p(x_i, y_k)$.

Маючи безумовні ймовірності $p(x_i)$ та $p(y_k)$ появи символів x_i та y_k на виході кожного з джерел, а також ймовірності $p(x_i,y_k)$ сумісної їх появи, можна обчислити умовні ймовірності $p(x_i|y_k)$ та $p(y_k|x_i)$, користуючись виразом:

$$p(x_i, y_k) = p(x_i) \cdot p(y_k / x_i) = p(y_k) \cdot p(x_i / y_k)$$

Середня або повна умовна ентропія:

$$\begin{split} H(Y/X) &= \sum_{i=1}^{M} p(x_i) \cdot H(Y/x_i) = \\ &= -\sum_{i=1}^{M} \sum_{k=1}^{N} p(x_i) \cdot p(y_k/x_i) \cdot log_2 p(y_k/x_i) = \\ &= -\sum_{i=1}^{M} \sum_{k=1}^{N} p(x_i, y_k) \cdot log_2 p(y_k/x_i) \; , \end{split}$$

Завдання

- 1. Задано трійковий стаціонарний канал без пам'яті та без витирання. Ймовірності $p(x_i, y_k)$ сумісного виникнення символу x_i на вході каналу та символу y_k — на його виході для різних варіантів наведені у другому стовпці таблиці 1. Знайти середню кількість I(Y,X) інформації, що переноситься одним символом та інформаційну пропускну здатність С каналу.
- 2. Розрахувати пропускну здатність С двійкового стаціонарного симетричного по входу каналу без пам'яті із витиранням. Вихідні дані, а саме, ймовірності:
 - правильного прийому двійкового символу q;
 - помилки при його передачі по каналу p_{Π} ;
- витирання символу p_{B} , для різних варіантів наведені у таблиці 2.

Таблиця 1.

№ варіанта	$\begin{bmatrix} p(x_1, y_1) & p(x_2, y_1) & p(x_3, y_1) \\ p(x_1, y_2) & p(x_2, y_2) & p(x_3, y_2) \\ p(x_1, y_3) & p(x_2, y_3) & p(x_3, y_3) \end{bmatrix}$
1	0,170 0,015 0,050 0,020 0,255 0,025 0,010 0,030 0,425

	[0,360 0,016 0,012]
2	0,024 0,360 0,008
	0,016 0,024 0,180
	[0,075 0,020 0,100]
3	0,020 0,300 0,025
	0,005 0,080 0,375
	[0,200 0,015 0,060]
4	0,025 0,120 0,060
	0,025 0,015 0,480
	[0,255 0,007 0,048]
5	0,024 0,085 0,042
	0,021 0,008 0,51
	[0,105 0,025 0,120]
6	0,030 0,175 0,060
	0,015 0,050 0,420
	[0,276 0,010 0,015]
7	0,009 0,184 0,025
	0,015 0,006 0,460
	[0,255 0,015 0,040]
8	0,030 0,255 0,020
	0,015 0,030 0,340
	[0,045 0,018 0,030]
9	0,003 0,405 0,020
	0,002 0,027 0,450
	[0,450 0,015 0,020]
10	0,120 0,225 0,005
	0,030 0,060 0,075

	[0,280 0,	020 0,045
11	0,035 0,	160 0,045
	0,035 0,0	020 0,360
	[0,425 0,	021 0,016
12	0,040 0,	255 0,014
	0,035 0,0	024 0,170
13	[0,385 0,6	015 0,060
	0,110 0,	105 0,030
	0,055 0,0	030 0,210
	0,552 0,	015 0,003
14	0,018 0,	276 0,005
	0,030 0,0	009 0,092
15	[0,170 0,	035 0,010
	0,020 0,	595 0,005
	0,010 0,0	070 0,085

Таблиця 2.

№ варіанта	q	p_{II}	p_B
1	0,90	0,02	0,08
2	0,87	0,01	0,12
3	0,95	0,01	0,04
4	0,88	0,03	0,09
5	0,83	0,03	0,14
6	0,80	0,02	0,18
7	0,92	0,02	0,06
8	0,80	0,05	0,15
9	0,91	0,01	0,08
10	0,88	0,02	0,10

№ варіанта	q	p_{II}	p_B
11	0,90	0,03	0,07
12	0,95	0,01	0,04
13	0,87	0,03	0,10
14	0,84	0,04	0,12
15	0,94	0,01	0,05
16	0,81	0,02	0,17
17	0,88	0,02	0,10
18	0,86	0,03	0,11
19	0,93	0,01	0,06
20	0,89	0,01	0,10