數值分析

Chapter 5 Numerical Differentiation

授課教師:劉耀先

國立陽明交通大學 機械工程學系 EE464

yhliu@nctu.edu.tw

110學年度第一學期

Outline

- Background (5.1)
- Finite difference approximation of the derivative (5.2)
- Finite difference using Taylor series expansion (5.3)
- Summary of finite difference formulas (5.4)
- Differentiation formulas using Lagrange polynomials (5.5)
- Differentiation using curve fitting (5.6)
- MATLAB built-in functions (5.7)
- Complementary topics (5.8 5.9 5.10)

5.1 Background

- Differentiation gives a measure of the rate at which a quantity changes
- Position x = f(t)
- Velocity $v = \frac{df(x)}{dt}$
- Acceleration $a = \frac{dv(x)}{dt}$

Numerical Differentiation

- The function to be differentiated can be:
 - Given as an <u>analytical expression</u>
 - Numerical differentiation if the analytical differentiation is impossible or difficult
- Numerical differentiation is carried out on data that are specified as a set of discrete points

Numerical differentiation using finite difference method

Analytical expression

Numerical Differentiation

- Numerical differentiation using finite difference method (5.2, 5.3)
 - Obtain the derivative of x_i based on the values of points in the neighborhood (x_{i-1} and x_{i+1})
 - The accuracy of the finite difference approximation depends on the
 - accuracy of the data points
 - the spacing between the points and
 - the specific formula used for approximation
- Function approximation using analytical expression (5.6)
 - Calculate the derivative by differentiating the analytical expression

Noise and scatter in the data points

- Because of experimental errors or uncertainties
- Two-point finite difference approximation will give large variations in the derivative from point to point
- Using higher-order formulas of finite difference approximation could give better results
- The differentiation could also be done by curve fitting the data to produce an analytical function and then differentiate

5.2 Finite Difference Approximation

 The derivative f'(x) of a function f(x) at the point x=a is defined by:

$$\left. \frac{df(x)}{dx} \right|_{x=a} = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- The accuracy of calculating the derivative increases as point x is closer to point a
- Using the data points near point a

Finite Difference Methods

- Forward difference: $\frac{df}{dx}\Big|_{x=x_i} = \frac{f(x_{i+1}) f(x_i)}{x_{i+1} x_i}$
- Backward difference: $\frac{df}{dx}\Big|_{x=x_i} = \frac{f(x_i) f(x_{i-1})}{x_i x_{i-1}}$
- Central difference: $\frac{df}{dx}\Big|_{x=x_i} = \frac{f(x_{i+1}) f(x_{i-1})}{x_{i+1} x_{i-1}}$

Example 5-1

- Consider function $f(x) = x^3$. Calculate its first derivative at point x = 3 numerically with the forward, backward, and central finite formulas using x = 2, 3, 4
- Analytical differentiation: $f'(x) = 3x^2$ and f'(3) = 27
- Numerical differentiation:
- Forward:

$$\frac{df}{dx}\Big|_{x=3} = \frac{f(4) - f(3)}{4 - 3} = \frac{64 - 27}{4 - 3} = 37$$
 $error = \left|\frac{37 - 27}{27} \cdot 100\right| = 37.04\%$

Backward:

$$\frac{df}{dx}\Big|_{x=3} = \frac{f(3) - f(2)}{3 - 2} = \frac{27 - 8}{3 - 2} = 19$$
 $error = \left|\frac{19 - 27}{27} \cdot 100\right| = 29.63\%$

Central

$$\left. \frac{df}{dx} \right|_{x=3} = \frac{f(4) - f(2)}{4 - 2} = \frac{64 - 8}{4 - 2} = 28 \qquad error = \left| \frac{28 - 27}{27} \cdot 100 \right| = 3.704\%$$

Example 5-2: Damped vibrations

Calculate the derivative of the following data by:

X (cm)

5.77

5.52

5.08

4.46

- Calculating the first and last points using the forward and backward finite difference formulas
- Using the central finite difference formula for all of the other points

	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0
X (cm) -	-5.87	-4.23	-2.55	-0.89	0.67	2.09	3.31	4.31	5.06	5.55	5.78
t (s) 6	6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0	

2.88

2.00

1.10

0.23

-0.59

3.72

5.3 Finite Difference Formulas Using Taylor Series Expansion

- Taylor series expansion gives an estimate of the derivative at a point from the values of points in its neighborhood
- One advantage is that the formula provides an estimate for the truncation error
- Forward, backward, and central difference formulas
- Taylor series expansion:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f'''(x_i)}{3!}h^3 + \frac{f^{(4)}(x_i)}{4!}h^4 + \dots$$

where h is the spacing between the points

$$h = x_{i+1} - x_i$$

First Derivative – Forward Difference

By two-term Taylor series expansion:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(\xi)}{2!}h^2$$

- where ξ is a value between x_i and x_{i+1}
- Therefore

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(\xi)}{2!}h$$

- The derivative can be calculated if last term is ignored
- Ignoring this term introduces a truncation error which is to be the order of h (written as O(h)):

truncation
$$error = -\frac{f''(\xi)}{2!}h = O(h)$$
 $f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)$

First Derivative – Backward Difference

Taylor series expansion:

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2!}h^2 - \frac{f'''(x_i)}{3!}h^3 + \frac{f^{(4)}(x_i)}{4!}h^4 + \dots$$

- where h is $h = x_i x_{i-1}$
- Two-term Taylor series expansion

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(\xi)}{2!}h^2$$

- where ξ is a value between x_{i-1} and x_i
- Therefore

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} - \frac{f''(\xi)}{2!}h = \frac{f(x_i) - f(x_{i-1})}{h} + O(h)$$

First Derivative – Central Difference

Three terms Taylor series expansion using x_i and x_{i+1}:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f'''(\xi_1)}{3!}h^3$$

- where ξ_1 is a value between x_i and x_{i+1}
- Three terms Taylor series expansion using x_{i-1} and x_i:

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2!}h^2 - \frac{f'''(\xi_2)}{3!}h^3$$

- where ξ₂ is a value between x_{i-1} and x_i
- where h is $h = x_{i+1} x_i = x_i x_{i-1}$

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)h + \frac{f'''(\xi_1)}{3!}h^3 + \frac{f'''(\xi_2)}{3!}h^3$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2)$$

Three-point finite difference formula

Forward difference: calculate the derivative of x_i using x_{i+1} and x_{i+2}:

$$f'(x_i) = \frac{-3f(x_i) + 4f(x_{i+1}) - f(x_{i+2})}{2h} + O(h^2)$$

Backward difference: calculate the derivative of x_i using x_{i-1} and x_{i-2}:

$$f'(x_i) = \frac{f(x_{i-2}) - 4f(x_{i-1}) + 3f(x_i)}{2h} + O(h^2)$$

Example 5-3

- Consider the function f(x)=x³. Calculate the first derivative at point x=3 numerically with the three point forward difference formula using x=3 x=4 and x=5
- Analytical differentiation: f'(x) = 3x²
 f'(3)=27
- Numerical differentiation: (three point forward difference)

$$f'(3) = \frac{-3f(3) + 4f(4) - f(5)}{2 \cdot 1} = 25$$

$$error = \left| \frac{25 - 27}{27} \cdot 100 \right| = 7.41\%$$

Finite Difference Formulas for the Second Derivative

Three-point central difference formula:

$$f''(x_i) = \frac{f(x_{i-1}) - 2f(x_i) + f(x_{i+1})}{h^2} + O(h^2)$$

Three-point forward difference formula:

$$f''(x_i) = \frac{f(x_i) - 2f(x_{i+1}) + f(x_{i+2})}{h^2} + O(h)$$

Three-point backward difference formula:

$$f''(x_i) = \frac{f(x_{i-2}) - 2f(x_{i-1}) + f(x_i)}{h^2} + O(h)$$

5.4 Summary of Finite difference Formulas

	Table 5-1: Finite difference formulas.		
First Derivative			
Method	Formula	Truncation Error	
Two-point forward dif- ference	$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$	O(h)	
Three-point forward difference	$f'(x_i) = \frac{-3f(x_i) + 4f(x_{i+1}) - f(x_{i+2})}{2h}$	$O(h^2)$	

Two-point backward difference	$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$	O(h)
Three-point backward difference	$f'(x_i) = \frac{f(x_{i-2}) - 4f(x_{i-1}) + 3f(x_i)}{2h}$	$O(h^2)$
Two-point central dif- ference	$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$	$O(h^2)$
Four-point central dif- ference	$f'(x_i) = \frac{f(x_{i-2}) - 8f(x_{i-1}) + 8f(x_{i+1}) - f(x_{i+2})}{12h}$	$O(h^4)$

5.4 Summary of Finite difference Formulas

	Second Derivative	
Method	Formula	Truncation Error
Three-point forward difference	$f''(x_i) = \frac{f(x_i) - 2f(x_{i+1}) + f(x_{i+2})}{h^2}$	O(h)
Four-point forward difference	$f''(x_i) = \frac{2f(x_i) - 5f(x_{i+1}) + 4f(x_{i+2}) - f(x_{i+3})}{h^2}$	$O(h^2)$
Three-point backward difference	$f''(x_i) = \frac{f(x_{i-2}) - 2f(x_{i-1}) + f(x_i)}{h^2}$	O(h)
Four-point backward difference	$f''(x_i) = \frac{-f(x_{i-3}) + 4f(x_{i-2}) - 5f(x_{i-1}) + 2f(x_i)}{h^2}$	$O(h^2)$
Three-point central difference	$f''(x_i) = \frac{f(x_{i-1}) - 2f(x_i) + f(x_{i+1})}{h^2}$	$O(h^2)$
Five-point central dif- ference	$f''(x_i) = \frac{-f(x_{i-2}) + 16f(x_{i-1}) - 30f(x_i) + 16f(x_{i+1}) - f(x_{i+2})}{12h^2}$	$O(h^4)$
	Third Derivative	
Method 40	Formula State of the state of t	Truncation Error
Four-point forward difference	$f'''(x_i) = \frac{-f(x_i) + 3f(x_{i+1}) - 3f(x_{i+2}) + f(x_{i+3})}{h^3}$	O(h)
Five-point forward dif- ference	$f'''(x_i) = \frac{-5f(x_i) + 18f(x_{i+1}) - 24f(x_{i+2}) + 14f(x_{i+3}) - 3f(x_{i+4})}{2h^3}$	$O(h^2)$
Four-point backward difference	$f'''(x_i) = \frac{-f(x_{i-3}) + 3f(x_{i-2}) - 3f(x_{i-1}) + f(x_i)}{h^3}$	O(h)
Five-point backward difference	$f'''(x_i) = \frac{3f(x_{i-4}) - 14f(x_{i-3}) + 24f(x_{i-2}) - 18f(x_{i-1}) + 5f(x_i)}{2h^3}$	$O(h^2)$
Four-point central dif- ference	$f'''(x_i) = \frac{-f(x_{i-2}) + 2f(x_{i-1}) - 2f(x_{i+1}) + f(x_{i+2})}{2h^3}$	$O(h^2)$
Six-point central dif- ference	$f'''(x_i) = \frac{f(x_{i-3}) - 8f(x_{i-2}) + 13f(x_{i-1}) - 13f(x_{i+1}) + 8f(x_{i+2}) - f(x_{i+3})}{8h^3}$	$O(h^4)$

5.5 Differentiation Formulas using Lagrange Polynomials

The Lagrange polynomial passes through (x_i, y_i), (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2}) is:

$$f(x) = \frac{(x - x_{i+1})(x - x_{i+2})}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{(x - x_i)(x - x_{i+2})}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{(x - x_i)(x - x_{i+1})}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

Take the derivative:

$$f'(x) = \frac{2x - x_{i+1} + x_{i+2}}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{2x - x_i + x_{i+2}}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{2x - x_i + x_{i+1}}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

Therefore

$$f'(x_i) = \frac{2x_i - x_{i+1} + x_{i+2}}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{x_i + x_{i+2}}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{x_i + x_{i+1}}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

5.5 Differentiation Formulas using Lagrange Polynomials

Similarly

$$f'(x_{i+1}) = \frac{x_{i+1} - x_{i+2}}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{2x_{i+1} - x_i - x_{i+2}}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{x_{i+1} - x_i}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

$$f'(x_{i+2}) = \frac{x_{i+2} - x_{i+1}}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{x_{i+2} - x_i}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{2x_{i+2} - x_i - x_{i+1}}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

- The formula can be used when the points are not spaced equally
- It can be used to calculate the value of first derivative at any point between x_i and x_{i+2}

5.6 Differentiation Using Curve Fitting

- First approximate the data points with an analytical function that can be easily differentiated
- The approximate function is then differentiated for calculating the derivative at any of the points
- Preferred when the data contains scatter or noise

5.7 MATLAB Built-in Functions

- diff: calculate the differences between adjacent elements of a vector
 - d = diff(x)
 - d is a vector with the differences between elements
 - d = $[(x_2-x_1), (x_3-x_2), ..., (x_n-x_{n-1})]$
 - x is a vector: $[x_1, x_2, ..., x_n]$
 - The first derivative can be calculated using diff(y)./diff(x)
 - d = diff(x,n)
 - N is a number that specifies the number of times that diff is applied recursively

5.7 MATLAB Built-in Functions

- polyder: calculate the derivative of a polynomial
 - dp = polyder(p)
 - dp is a vector with the coefficients of the polynomial that is the derivative of polynomial p
 - p is a vector with the coefficients of the polynomial
 - For $f(x) = 4x^3 + 5x + 7$
 - -P = [4057]
 - dp = polyder(p)
 - This function can be used for calculating the derivative when a function is given

5.8 Richardson's Extrapolation

- Richardson's extrapolation is a method for calculating a more accurate approximation of a derivative from two less accurate approximations of that derivative
- Consider the value, D, of a derivative is calculated:

$$D = D(h) + k_2 h^2 + k_4 h^4$$

Using a spacing of h/2:

$$D = D(h/2) + k_2(h/2)^2 + k_4(h/2)^4$$

Combining the above two terms:

$$3D = 4D(h/2) - D(h) - k_4 \frac{3h^4}{4}$$

$$D = \frac{1}{3} \left(4D \left(\frac{h}{2} \right) - D(h) \right) - k_4 \frac{h^4}{4} = \frac{1}{3} \left(4D \left(\frac{h}{2} \right) - D(h) \right) + O(h^4)$$

Example 5-5

 Using Richardson's extrapolation to calculate the derivative of f(x) = 2*/x at the point x=2

- For h = 0.2 f'(2) = 0.577482 error = 0.5016%
- For h=0.1, f'(2)=0.575324 error = 0.126%
- Use Richardson's extrapolation:

$$D = \frac{1}{3} \left(4D \left(\frac{h}{2} \right) - D(h) \right) + O(h^4) = \frac{1}{3} \left(4 \cdot 0.575324 - 0.577482 \right) = 0.574605$$

$$error = 0.00087\%$$

 Note: Richardson's extrapolation can be used with approximations that have errors of higher order

5.9 Error in Numerical Differentiation

- The truncation error (discretization error) can be reduced by:
 - Reduce the spacing h between the points (not possible when a set of discrete data points are given)
 - Use the finite difference formula with higher-order truncation error
- When the function is given by a mathematical expression, choosing smaller spacing h can give smaller error
- However, round-off error still exists due to the finite precision of the particular computer used
- The total error can even grow as h is made smaller and smaller

5.10 Numerical Partial Differentiation

 Finite difference formulas can be used for approximating the derivatives of functions with one independent variable can be adopted for calculating the partial derivative

$$\left. \frac{\partial f(x,y)}{\partial x} \right|_{\substack{x=a\\y=b}} = \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a}$$

$$\left. \frac{\partial f(x,y)}{\partial y} \right|_{\substack{x=a\\y=b}} = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y - b}$$

Two-point forward difference formula is:

$$\left. \frac{\partial f}{\partial x} \right|_{\substack{x=x_i \\ y=y_i}} = \frac{f(x_{i+1}, y_i) - f(x_i, y_i)}{h_x}$$

$$\left. \frac{\partial f}{\partial y} \right|_{\substack{x=x_i \\ y=y_i}} = \frac{f(x_i, y_{i+1}) - f(x_i, y_i)}{h_y}$$

$$h_{x} = x_{i+1} - x_{i}$$

$$h_{y} = y_{i+1} - y_{i}$$

5.10 Numerical Partial Differentiation

Two-point backward formula:

$$\left. \frac{\partial f}{\partial x} \right|_{\substack{x=x_i \\ y=y_i}} = \frac{f(x_i, y_i) - f(x_{i-1}, y_i)}{h_x} \qquad \left. \frac{\partial f}{\partial y} \right|_{\substack{x=x_i \\ y=y_i}} = \frac{f(x_i, y_i) - f(x_i, y_{i-1})}{h_y}$$

Two-point central difference formula:

$$\left. \frac{\partial f}{\partial x} \right|_{\substack{x=x_i \\ y=y_i}} = \frac{f(x_{i+1}, y_i) - f(x_{i-1}, y_i)}{2h_x} \qquad \left. \frac{\partial f}{\partial y} \right|_{\substack{x=x_i \\ y=y_i}} = \frac{f(x_i, y_{i+1}) - f(x_i, y_{i-1})}{2h_y}$$

The second partial derivative with the 3-point central difference:

$$\left. \frac{\partial^2 f}{\partial x^2} \right|_{\substack{x = x_i \\ y = y_i}} = \frac{f(x_{i+1}, y_i) - 2f(x_i, y_i) + f(x_{i-1}, y_i)}{h_x^2}$$

Read Example 5-7

$$\left. \frac{\partial^2 f}{\partial y^2} \right|_{\substack{x = x_i \\ y = y}} = \frac{f(x_i, y_{i+1}) - 2f(x_i, y_i) + f(x_i, y_{i-1})}{h_y^2}$$