

A Hardware-aware Heuristic for the Qubit Mapping Problem in the NISQ Era

Siyuan Niu, Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial

▶ To cite this version:

Siyuan Niu, Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial. A Hardware-aware Heuristic for the Qubit Mapping Problem in the NISQ Era. 15ème Colloque National du GDR $\rm SoC^2$, Jun 2021, Rennes, France. . lirmm-03275340

HAL Id: lirmm-03275340 https://hal-lirmm.ccsd.cnrs.fr/lirmm-03275340v1

Submitted on 1 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Hardware-aware Heuristic for the Qubit Mapping Problem in the NISQ Era

Siyuan Niu¹, Adrien Suau^{1,2}, Gabriel Staffelbach², and Aida Todri-Sanial¹

¹LIRMM, University of Montpellier, 34090, Montpellier, France ²CERFACS, 42 Avenue G.Coriolis, 31057, Toulouse, France Contact e-mail: siyuan.niu@lirmm.fr

Introduction

- •NISQ devices.
- •Connectivity constraint: Nearest-neighbor connections.
- •Different physical qubits: various calibration data.
- •Qubit mapping problem: Adapting a quantum program to given hardware connectivity.

Motivation

- Initial mapping
- $\{q_0 \to Q_0, q_1 \to Q_1, q_2 \to Q_2, q_3 \to Q_3, q_4 \to Q_4\}$
- •SWAP candidates:
- $\{q_1, q_2\}$ and $\{q_1, q_3\}$
- Choose $\{q_1, q_2\}$ because of the lower error rate.
- Final mapping
- $\{q_0 \to Q_0, q_1 \to Q_2, q_2 \to Q_1, q_3 \to Q_3, q_4 \to Q_4\}$

Methods

- Hardware-Aware (HA) mapping transition algorithm.
 - Cost function

$$H = \frac{1}{|F|} \sum_{g \in F} D[\pi(g, q_1)][\pi(g, q_2)] + W \times \frac{1}{|E|} \sum_{g \in E} D[\pi(g, q_1)][\pi(g, q_2)]$$

Distance matrix

$$D = \alpha_1 \times S + \alpha_2 \times \varepsilon + \alpha_3 \times T$$

• S: SWAP matrix, ε : SWAP error matrix, T: SWAP execution time matrix

• Selection between SWAP and Bridge gate.

SWAP gate

Bridge gate

- Hardware-aware Simulated Annealing (HSA) initial mapping.
 - Hardware-aware **get_neighbor** method.

Results

• Comparison of number of additional gates and fidelity on IBM Q 20 Almaden.

Conclusion

- •Map the most used qubit of the mapped circuit to the most connected physical qubit.
- •Apply CNOT gates on qubits that are directly connected and with reliable interconnects.
- •If a CNOT cannot be applied on two neighbor qubits, apply on two qubits whose distance is two.

This work was supported in part by the Region of Occitanie, Direction de la Recherche, du Transfert Technologique et de l'Enseignment Superieur, France, under the Grant "Quantum CAD", in part by a Research Collaboration Grant between TOTAL, LIRMM, and CERFACS, and in part by the QuantUM Initiative of the Region Occitanie, University of Montpellier, and IBM Montpellier.