

Travis Hallam¹, Carlo Fiorina¹

¹ Department of Nuclear Engineering, Texas A&M University, College Station, TX, USA

Theoretical Tritium Breeding Ratio Limits and Neutron Multiplication in Fusion Breeding Blankets

This project involves using Monte Carlo neutron transport simulations (OpenMC) to analyze the effectiveness of various lithium-based materials for tritium breeding in fusion reactors. The tasks include:

- Determining the theoretical Tritium Breeding Ratio (TBR) limit for different lithium materials by simulating an infinite sphere with a 6-meter inside diameter exposed to fusion neutrons.
- Introducing a finite neutron multiplication layer and evaluating its effect on TBR by testing multiple neutron multiplication materials and layer thickness.
- Performing an enrichment study, varying the isotopic composition, and evaluating the effects of TBR.
- Generating graphs of lithium enrichment vs. TBR, both with and without neutron multiplication.

Materials to be Tested

- Liquid Lithium
- FLiBe (Li₂BeF₄)
- Lithium Lead (LiPb)
- Lithium Orthosilicate (Li₄SiO₄)
- Lithium Titanate (Li₂TiO₃)
- Lithium Zirconate (Li₂ZrO₃)
- Lithium-based ternary alloys such as LiBaBi, LiPbBa, LiSnZn, LiCuPb, LiGaPb, LiSrPb, LiPbZn, and LiNaSn.

Deliverables

- A table of theoretical maximum TBR values for each material.
- Plots of enrichment vs. TBR, with and without neutron multiplication.
- A table summarizing optimal neutron multiplication thickness/material for each lithium breeding material.
- A brief report on findings, including key trends and conclusions.

This study aims to evaluate whether neutron multiplication is beneficial for optimizing tritium production and to determine the best lithium-based materials for fusion blanket applications.

.