Abstractattached

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出職公開番号 特開2003-146697 (P2003-146697A)

(43)公開日 平成15年5月21日(2003.5.21)

H 0 1 B	3/00 	特蘭2001-347055(P2	審查請求 001-347055)	T		-, -	776	(全 28 頁)	最終質に続く
	35/49			H 0 1	_	3/00 3/08		A A	5 G 3 O 3
	35/46				3	5/49		Z	4 G 0 6 2
C 0 4 B	35/00			C 0 4	В 3	5/46		С	4G031
COSC	8/20			C 0 3	C	8/20			4G030
(51) Int.Cl.7		識別記号		FΙ				デ	-71-1 (参考)

(22)出願日

平成13年11月13日(2001.11.13)

(72) 発明者 角田 修一

群馬県勢多郡赤城村大字津久田236-14

有限会社三和電材内

(74)代理人 100092808

弁理士 羽鳥 耳

最終頁に続く

(54) 【発明の名称】 誘電体組成物

(57)【要約】

【目的】 ガラス誘電体組成物、ガラス/磁器複合型誘 電体組成物、ガラス誘電体ペースト、及びコンデンサ素 子を提供する。

【構成】 SiO2、B2O3及びP2O5から選択された2種以上 を28~80モル%と、Li20、Na20及びK20から選択さ れた1種又は2種以上を5~58モル%と、MgO、CaO、 SrO及びBaOから選択された2種以上を0~45モル%と を調合熔解してなるガラス誘電体組成物、及び当該ガラ ス誘電体組成物を微粉砕後、樹脂や溶剤等と混練したガ ラス誘電体ペーストや磁器誘電体粉末(例えばBaTiOs、 SrTiO3、MgTiO3、CaTiO3、CaZrO3等)と混合、仮焼して なるガラス/磁器複合型誘電体組成物を使用すること で、大気中、不活性ガス雰囲気中或いは還元ガス雰囲気 中の何れの雰囲気下でも焼成温度1100℃以下、且つ 保持時間1時間以内で緻密な焼結構造を有する安価なコ ンデンサ素子が作れる。

10

【特許請求の範囲】

【請求項1】酸化物換算表示が二酸化ケイ素 (SiO2) で 表される原料と、少なくとも酸化物換算表示が酸化ホウ 素 (B₂O₃)、酸化リン (P₂O₅)、酸化リチウム (Li 20) 、酸化ナトリウム(Na20)、酸化カリウム(K 20) 、酸化マグネシウム (MgD) 、酸化カルシウム (Ca 1)、酸化ストロンチウム (Sr0) 及び酸化バリウム (Ba 0) で表される一つ以上を原料とし、モル%表示の組成 式、 $aSiO_2 + bB_2O_3 + cP_2O_5 + dLi_2O + eNa_2O + fK_2O + gMgO$ +hCaO+iSrO+iBaOで表されるa~jまでの係数が、1. $8 \le a \le 70.4$, $0 \le b \le 57.6$, $0 \le c \le 52$. $0, 0 \le d \le 62.56, 0 \le e \le 39.44, 0 \le f \le$ $68.0.0 \le g \le 34.0.0 \le h \le 34.0.0 \le i$ ≤34、0、0≤j≤34、0を満足する条件で調合し てガラス化させたガラス誘電体組成物であり、組成物中 に含まれる調合成分以外の無機不純物の含有率が1モル %未満であることを特徴とするガラス誘電体組成物。 【請求項2】請求項1に記載のガラス誘電体組成物にお いて、使用する各原料が炭酸化物、水酸化物、塩化物、

【請求項2】請求項1に記載のガラス誘電体組成物において、使用する各原料が炭酸化物、水酸化物、塩化物、硫化物、窒化物、フッ化物、硝酸化物、硫酸化物、水化 20物、有機化合物或いは各原料同士の化合物であって、組成物中に含まれる調合成分以外の無機不純物の含有率が1モル%未満であることを特徴とするガラス誘電体組成物。

【請求項3】請求項1または請求項2に記載のガラス誘電体組成物を粉末状に粉砕し、その平均粒径が0.5μm以上5.0μm未満の範囲であり、且つ最大粒径が100μm未満であるガラス誘電体組成物粉末であって、組成物中に含まれる調合成分以外の無機不純物の含有率が3モル%未満であることを特徴とするガラス誘電体組30成物粉末。

【請求項4】請求項3に記載のガラス誘電体組成物粉末と磁器誘電体粉末とを重量比率で、誘電体組成物粉末:磁器誘電体粉末=0、5:99.5~5、0:95、0で混合した後、露点50℃以下の大気中1000℃以下の温度で仮焼して成るガラス/磁器複合型誘電体組成物であって、組成物中に含まれる調合成分以外の無機不純物の含有率が2モル%未満であることを特徴とするガラス/磁器複合型誘電体組成物。

【請求項5】請求項4に記載のガラス/磁器複合型誘電 40 体組成物において、前記磁器誘電体粉末は平均粒径10 μ m未満且つ最大粒径200 μ m未満であり、BaOに対するTiO2のモル比が1.0±0.1を満たすBaTiO3粉末、またはSrOに対するTiO2のモル比が1.0±0.1を満たすSrTiO3粉末、またはCaOに対するTiO2のモル比が1.0±0.1を満たすCaTiO3粉末、またはMgOに対するTiO2のモル比が1.0±0.1を満たすMgTiO3粉末、またはCaOに対するZrO2のモル比が1.0±0.1を満たすCaTiO3粉末、またはMgOとCaOの合計に対するTiO2のモル比が1.0±0.1を満たすCaTiO3粉末、またはMgOとCaOの合計に対するTiO2のモル比が1.0±0.1を満たし且つMgOに対するC 50

aDのモル比が0、01~0.2を満たす(Mg·Ca)0、T iO₂粉末、またはBaOとCaOの合計に対するTiO₂のモル比 が1.0±0.1を満たし且つBaDに対するCaDのモル比 がO. 01~0. 2を満たす (Ba·Ca) O·TiO2粉末、 またはBaOとSrOの合計に対するTiO2のモル比が1、0± O. 1を満たし且つBaOに対するSrOのモル比がO. O1 ~0.2を満たす(Ba・Sr)○・TiO2粉末、またはBaOと Sr0と Ca0の合計に対するTi02のモル比が1. 0 ± 0 . 1 を満たし且つBaOに対するSrOのモル比が0.01~0. 2を満たし且つBaOに対するCaOのモル比が0、01~ O. 2を満たす (Ba・Sr・Ca) D·TiO2粉末、またはMgO とCaOの合計に対するTiO2とZrO2の合計のモル比が1. 0 ± 0.1 を満たし且つMgDに対するCaDのモル比が0.01~0.2を満たし且つTiO₂に対するZrO₂のモル比が O. O 1~O. 3を満たす (Mg·Ca) O· (Ti·Zr) O₂ 粉末、またはBaOとCaOの合計に対するTiO2とZrO2の合計 のモル比が1.0±0.1を満たし且つBaDに対するCaD のモル比が 0.01~0.2を満たし且つTiO2に対する ZrO2のモル比が0.01~0.3を満たす(Ba·Ca)0 · (Ti·Zr) 02粉末、またはBaOとSrOとCaOの合計に対 するTiO2とZrO2の合計のモル比が1.0±0.1を満た し且つBa0に対するSr0のモル比が $0.01\sim0.2$ を満 たし且つBaOに対するCaOのモル比がO. O 1 \sim O. 2 δ 満たし且つTiO2に対するZrO2のモル比がO.01~O. 3を満たす (Ba·Sr·Ca) O·(Ti·Zr) O₂粉末の何れ かであることを特徴とするガラス/磁器複合型誘電体組 成物。

2

【請求項6】請求項3に記載のガラス誘電体組成物粉末30~90重量%、平均分子量1,000,000未満の樹脂2~20重量%と水又は大気圧下300℃未満で蒸発する有機溶剤8~50重量%とを混練して成ることを特徴とするガラス誘電体ペースト。

【請求項7】請求項6に記載のガラス誘電体ペースト と、銀 (Ag) 粉末、金 (Au) 粉末、白金 (Pt) 粉末、パ ラジウム (Pd) 粉末、銅 (Cu) 粉末、亜鉛 (Zn) 粉末、 アルミニウム (A1) 粉末、ニッケル (Ni) 粉末、鉄 (F e) 粉末及びクロム (Cr) 粉末の中から選択された1種 又は2種以上を混合した粉末25~80重量%と、平均 分子量1,000,000未満の樹脂2~20重量%と、 水又は大気圧下300℃未満で蒸発する有機溶剤からな る溶媒18~45重量%と、シリカ (SiO2) 粉末、アル ミナ (Al₂O₃) 粉末、ジルコニア (ZrO₂) 粉末または酸 化チタン (TiO₂) 粉末の中から選択された1種又は2種 以上を混合した粉末0~10重量%と、を混練して成る 導電ペーストと、を使用して磁器基板上に塗布後、単層 誘電体のまま或いは複層誘電体に塗り重ねた状態で、露 点50℃以下の大気中または露点50℃以下の不活性ガ ス雰囲気中または露点50℃以下の還元ガス雰囲気中で 焼成してなるコンデンサ素子。

【請求項8】請求項5に記載のガラス/磁器複合型誘電

体組成物に平均分子量1,000,000未満の樹脂と大 気圧下300℃未満で蒸発する有機溶剤を加えて混練し たスラリーを板状または筒状またはシート状に成型後、 その表面に銀 (Ag) 粉末、金 (Au) 粉末、白金 (Pt) 粉 末、パラジウム (Pd) 粉末、鋼 (Cu) 粉末、亜鉛 (Zn) 粉末、アルミニウム (Al) 粉末、ニッケル (Ni) 粉末、 鉄 (Fe) 粉末及びクロム (Cr) 粉末の中から選択された 1種または2種以上を混合した粉末25~80重量% と、平均分子量1,000,000未満の樹脂2~20重 量%と、水又は大気圧下300℃未満で蒸発する有機溶 10 剤からなる溶媒18~45重量%と、シリカ(SiO2)粉 末、アルミナ (Al 203) 粉末、ジルコニア (Zr02) 粉末 或いは酸化チタン(TiO2)粉末の中から選択された1種 又は2種以上を混合した粉末0~10重量%と、を混練 して成る導電ペーストを塗布後、単層誘電体の状態また は複層誘電体に積層した状態で、露点50℃以下の大気 中または露点50℃以下の不活性ガス雰囲気中または露 点50℃以下の還元ガス雰囲気中で焼成してなることを 特徴とするコンデンサ素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ガラスまたはガラ スと磁器 (セラミックス) を素材にして製造されるコン デンサ用の誘電体組成物及びそれを材料に用いたガラス 誘電体ペーストとコンデンサ素子に関するものである。 [0002]

【従来の技術】従来より、ガラス誘電体粉末を主成分に したガラス誘電体ペーストが製造されており、Ag粉末や Ag/Pd混合粉末等を主成分に使った導電ペーストとを組 み合わせて、主に磁器製基板上にスクリーン印刷法等で 30 塗布後、焼成してコンデンサ素子を形成していた。

【0003】この場合、ガラス誘電体粉末の組成が大気 中又は不活性ガス雰囲気中での焼成に対応した設計であ るため、主に酸化鉛(PbO)、酸化ビスマス(Bi2O3)、 酸化錫(SnO2)、酸化亜鉛(ZnO)、酸化カドミウム(C dO)、酸化ナトリウム(NaO)、硼酸(B2O3)、二酸化 ケイ素 (SiO2) 及びアルカリ土類金属酸化物 (MgO、Ca O、SrO、BaO)で構成されていた。

【0004】また、ガラス誘電体ペーストには、その機 能・特性として高くても1000℃以下で焼成できるも のが市場要求として強かったが、その要求を満足するた めにはガラスの軟化点を低温度化させるPbO、Bi2O3、Sn O₂、ZnO、CdOが不可欠であった。

【0005】しかしながら、これらの組成で作られたガ ラス誘電体ペーストを還元ガス雰囲気中で焼成しようと した場合、PbO、Bi₂O₃、SnO₂、ZnO、CdOは化学量論比よ りも酸素が不足する状態になるため、大気中や不活性が ス雰囲気中で焼成したときと同等の誘電体特性が得られ なかった。

ついては先ず、基板上に下側電極用の導電ペーストを印 刷・焼成して下側電極を形成し、次に下側電極上にガラ ス誘電体ペーストを印刷・焼成して、誘電体層を形成 し、更に上側電極用の導電ペーストを印刷・焼成して上 側電極を形成し、最後に上側電極上に被覆用ガラス誘電 体ペーストを印刷・焼成するものであり、少なくとも3 ~4回の焼成を行ってコンデンサ素子を形成していた。 【0007】一方、磁器誘電体粉末(例えばBaTiO3、Mg TiO3、CaTiO3、CaZrO3等)の焼成は従来より盛んに焼結 後の誘電体特性改善、即ち、より高い比誘電率と絶縁抵 抗及びより少ない誘電損失を得るための改善がなされて きたが、その主な改善手法は、ガラス状組成物も含めた 無機微量添加物の配合で焼成時の誘電体粒径や結晶構造 制御等に工夫を凝らすことにあった。また、近年では高 価な貴金属を電極材料に使い、且つ大気中でしか所望の 誘電体特性が得られない磁器誘電体組成物に代わって、 Ni等の非金属を電極に使って還元ガス雰囲気中で焼成し ても良好な誘電体特性を有するコンデンサ素子が開発さ れている(例えば、日本国特許第2669184号、2 761690号、2762427号、2975459 20 号、3024536号等)。

【0008】しかしながら、これらの磁器誘電体組成物 は全て還元ガス雰囲気中或いは低酸素濃度(10PPM以 下)雰囲気中で焼成した場合に所望の誘電体特性が得ら れるものであり、大気(酸化雰囲気)中で焼成した場合 には比誘電率や温度特性に変化が現れて所望の特性が得 られないため、焼成雰囲気中を問わずに所望の誘電体特 性を得られるものがなかった。

【0009】また、これらの磁器誘電体組成物は還元雰 囲気中或いは低酸素濃度雰囲気中で約1100~140 □ 140 0℃の高温度下で2~3時間保持して焼成していた。 (0010)

【発明が解決しようとする課題】従来のガラス誘電体ペ ーストを使用したコンデンサ素子では次の三点の課題を 抱えていた。

【0011】即ち、ガラス誘電体の軟化点が400℃未 満であった場合に、ガラス誘電体に混練された樹脂の分 解や燃焼が不完全となり、絶縁抵抗値低下や発泡(気孔 率の増加)が現れてくる点と、還元ガス雰囲気中の焼成 を行おうした場合では、大気中や不活性ガス雰囲気中の 焼成に比べてガラスを構成している耐湿元性に劣る成分 の一部から酸素が奪われて、化学量論比よりも酸素が欠 乏する結果となるため、絶縁抵抗値低下、発泡による変 形や強度低下等の不具合が発生する点と、下側電極、誘 電体層、上側電極及び被覆用誘電体層を一度で焼成する ことで焼成回数を減らすことが困難であった点にある。 【0012】一方、磁器誘電体粉末を使用したコンデン サ素子の焼成では約1200~1400℃の高温度下で 焼成を必要としていたため、多大なエネルギーを消費す 【①①○6】更に、コンデンサ素子を形成させる手順に 50 るのみならず発熱体や炉体及び匣鉢等保持具の寿命まで 20

もが短くなるため、コンデンサ素子を製造する一連の工 程の中で焼成工程における製造費用が極めて大きいとい う課題があった。

【0013】更に、従来の誘電体材料では、その成分や 組成設計が大気中焼成及び不活性ガス雰囲気焼成向き か、或いは還元雰囲気焼成向きの何れか好ましい雰囲気 で焼成した場合に所望の誘電体特性が得られるという観 点から行われていたため、低気孔率で焼結され、より高 い比誘電率と絶縁抵抗及びより少ない誘電損失を有する コンデンサ素子を得るには、自ずと焼成する雰囲気が限 10 定されてしまうという課題も残されていた。

【0014】本発明は、大気中、不活性ガス雰囲気中、 還元ガス雰囲気中のいずれの雰囲気下で焼成しても焼成 温度400~1000℃の範囲で且つ保持時間30分以 内で緻密な焼結構造と誘電体特性を得ることが可能とな るガラス誘電体組成物及びガラス誘電体ペーストと、焼 成温度1100℃以下で且つ保持時間1時間以内で緻密 な焼結構造と誘電体特性を得ることが可能であるガラス ・磁器複合型誘電体組成物と、それらを利用した安価な コンデンサ素子を提供することを目的とする。

[0015]

【課題を解決するための手段】本発明は、上記課題を解 決するため、

(1)酸化物換算表示が二酸化ケイ素 (SiO2)で表され る原料と、少なくとも酸化物換算表示が、酸化ホウ素 (B2O3)、酸化リン(P2O5)、酸化リチウム(Li2O)、 酸化ナトリウム(Na2O)、酸化カリウム(K2O)、酸化 マグネシウム (MgO)、酸化カルシウム (CaO)、酸化ス トロンチウム (SrO) 及び酸化バリウム (BaO) で表され る一つ以上を原料とし、モル%表示の組成式、aSiO2+b 30 $B_2O_3 + cP_2O_5 + dLi_2O + eNa_2O + fK_2O + gMgO + hCaO + iSrO$ +jBa0で表される $a\sim j$ までの係数が、1.8 $\leq a \leq 7$ $0.4, 0 \le b \le 57.6, 0 \le c \le 52.0, 0 \le d \le$ 62. 56, $0 \le e \le 39$. 44, $0 \le f \le 68$. 0, 0 $\leq g \leq 34$, 0, $0 \leq h \leq 34$. 0, $0 \leq i \leq 34$. 0, O≤j≤34、Oを満足する条件で調合してガラス化さ せたガラス誘電体組成物であり、組成物中に含まれる調 合成分以外の無機不純物の含有率が1モル%未満である ことを特徴とするガラス誘電体組成物を提供することに より上記課題を達成する。

【0016】(2)上記(1)に記載のガラス誘電体組 成物において、使用する各原料が炭酸化物、水酸化物、 塩化物、硫化物、窒化物、フッ化物、硝酸化物、硫酸化 物、水化物、有機化合物或いは各原料同士の化合物であ って、組成物中に含まれる調合成分以外の無機不純物の 含有率が1モル%未満であることを特徴とするガラス誘 電体組成物を提供することにより上記課題を達成する。 【0017】(3)上記(1)または(2)に記載のガ ラス誘電体組成物を粉末状に粉砕し、その平均粒径が

粒径が100μm未満であるガラス誘電体組成物粉末で あって、組成物中に含まれる調合成分以外の無機不純物 の含有率が3モル%未満であることを特徴とするガラス 誘電体組成物粉末を提供することにより上記課題を達成 する。

【0018】(4)上記(3)に記載のガラス誘電体組 成物粉末と磁器誘電体粉末とを重量比率で、誘電体組成 物粉末:磁器誘電体粉末=0、5:99.5~5、0: 95.0で混合した後、露点50℃以下の大気中100 ○℃以下の温度で仮焼して成るガラス/磁器複合型誘電 体組成物であって、組成物中に含まれる調合成分以外の 無機不純物の含有率が2モル%未満であることを特徴と するガラス・磁器複合型誘電体組成物を提供することに

より上記課題を達成する。 【0019】(5)上記(4)に記載のガラス/磁器複 合型誘電体組成物において、前記磁器誘電体粉末は平均 粒径10μm未満且つ最大粒径200μm未満であり、 BaOに対する TiO_2 のモル比が 1.0 ± 0.1 を満たすBaTiO3粉末、またはSrOに対するTiO2のモル比が1.0± 0.1を満たすSrTiO3粉末、またはCaOに対するTiO2の モル比が1.0±0.1を満たすCaTiOs粉末、またはMg Oに対するTiO₂のモル比が1. O±O. 1を満たすMeTiO 3粉末、またはCaOに対するZrO2のモル比が1. 0 ± 0 . 1を満たすCaTiO₃粉末、またはMgOとCaOの合計に対する TiO_2 のモル比が1.0±0.1を満たし且つMgOに対す るCaOのモル比が O. O 1 ~ O. 2を満たす (Mg·Ca) O・ TiO2粉末、またはBaOとCaOの合計に対するTiO2のモル比 が1、0±0、1を満たし且つBaOに対するCaOのモル比 が0.01~0.2を満たす(Ba·Ca)0·TiO₂粉末、ま たはBaOとSrOの合計に対するTiO2のモル比が1、0± O. 1 を満たし且つBaOに対するSrOのモル比がO. O 1 ~0. 2を満たす (Ba·Sr) 0·TiO2粉末、またはBaOとSr 0とCa0の合計に対するTiO₂のモル比が1.0±0.1を 満たし且つBaOに対するSrOのモル比が0.01~0.2 を満たし且つBaOに対するCaOのモル比がO. O $1 \sim O$. 2を満たす (Ba·Sr·Ca) O·TiO₂粉末、またはMgOとCaOの 合計に対する $Ti\,O_2$ と $Zr\,O_2$ の合計のモル比が $\,1$. $\,O\pm O$. 1を満たし且つMgOに対するCaOのモル比が0.01~ ○ 2を満たし且つTiO₂に対するZrO₂のモル比がO、O 1~0.3を満たす (Mg·Ca) O· (Ti·Zr) O₂粉末、また はBaOとCaOの合計に対するTiO2とZrO2の合計のモル比が 1.0±0.1を満たし且つBaOに対するCaOのモル比が 0.01~0.2を満たし且つTiO₂に対するZrO₂のモル 比が0、01~0、3を満たす (Ba·Ca) 0・(Ti・Zr) 02 粉末、またはBaOとSrOとCaOの合計に対するTiOzとZrOz の合計のモル比が1、 0 ± 0 、1を満たし且つBaOに対 するSrOのモル比がO、O1~O、2を満たし且つBaOに 対するCaOのモル比がO.01~0.2を満たし且つTiO 2に対するZrO2のモル比がO.01~0.3を満たす(B O . 5μm以上5.0μm未満の範囲であり、且つ最大 50 a·Sr·Ca)0·(Ti·Zr)02粉末の何れかであることを特徴

とするガラス/磁器複合型誘電体組成物を提供すること により上記課題を達成する。

【0020】(6)上記(3)に記載のガラス誘電体組成物粉末30~90重量%、平均分子量1,000,000未満の樹脂2~20重量%と水又は大気圧下300℃未満で蒸発する有機溶剤8~50重量%とを混練して成ることを特徴とするガラス誘電体ペーストを提供することにより上記課題を達成する。

【0021】(7)また、上記(6)に記載のガラス誘 電体ペーストと、銀 (Ag) 粉末、金 (Au) 粉末、白金 (Pt) 粉末、パラジウム (Pd) 粉末、銅 (Cu) 粉末、亜 鉛(Zn)粉末、アルミニウム(Al)粉末、ニッケル(N i) 粉末、鉄 (Fe) 粉末及びクロム (Cr) 粉末の中から 選択された1種又は2種以上を混合した粉末25~80 重量%と、平均分子量1,000,000未満の樹脂2~ 20重量%と、水又は大気圧下300℃未満で蒸発する 有機溶剤からなる溶媒18~45重量%と、シリカ(Si O2) 粉末、アルミナ (Al2O3) 粉末、ジルコニア (Zr O2)粉末または酸化チタン (TiO2)粉末の中から選択さ れた1種又は2種以上を混合した粉末0~10重量% と、を混練して成る導電ペーストと、を使用して磁器基 板上に塗布後、単層誘電体のまま或いは複層誘電体に塗 り重ねた状態で、露点50℃以下の大気中または露点5 0℃以下の不活性ガス雰囲気中または露点50℃以下の 還元ガス雰囲気中で焼成してなるコンデンサ素子を提供 することにより上記課題を達成する。

【0022】(8) さらに、上記(5) に記載のガラス /磁器複合型誘電体組成物に平均分子量1,000,00 ○未満の樹脂と大気圧下300℃未満で蒸発する有機溶 剤を加えて混練したスラリーを板状または筒状またはシ 30 ート状に成型後、その表面に銀(Ag)粉末、金(Au)粉 末、白金 (Pt) 粉末、パラジウム (Pd) 粉末、銅 (Cu) 粉末、亜鉛 (Zn) 粉末、アルミニウム (Al) 粉末、ニッ ケル (Ni) 粉末、鉄 (Fe) 粉末及びクロム (Cr) 粉末の 中から選択された1種または2種以上を混合した粉末2 5~80重量%と、平均分子量1,000,000未満の 樹脂2~20重量%と、水又は大気圧下300℃未満で 蒸発する有機溶剤からなる溶媒18~45重量%と、シ リカ (Si O2) 粉末、アルミナ (Al 2O3) 粉末、ジルコニ ア(ZrO2)粉末或いは酸化チタン(TiO2)粉末の中から 選択された1種又は2種以上を混合した粉末0~10重 量%と、を混練して成る導電ペーストを塗布後、単層誘 電体の状態または複層誘電体に積層した状態で、露点5 0℃以下の大気中または露点50℃以下の不活性ガス雰 囲気中または露点50℃以下の還元ガス雰囲気中で焼成 してなることを特徴とするコンデンサ素子を提供するこ とにより、上記課題を達成する。

[0023]

【発明の実施の形態】本発明に係るガラス誘電体組成 いう)を作製する。ここで、図1中の点Aと点片を結ぶ物、ガラス/磁器複合型誘電体組成物、誘電体ペースト 50 線よりもSi0₂が多い組成範囲ではガラス誘電体組成物の

及びコンデンサ素子の実施の形態について図表に基づい て説明する。

【0024】図1は第1群成分のSiO2、B2O3、P2O5の調合比率を示す図である。図2は第2群成分のLi2O、Na2O、K2Oの調合比率を示す図である。図3は第3群成分のMgO、CaO、SrO、BaOの調合比率を示す図である。図4は第1群成分と第2群成分と第3群成分の調合比率を示す図である。図5は本発明に係る平板形コンデンサ素子断面構造図である。図6は本発明に係るガラス/磁器複10合型誘電体組成物を用いた円板形コンデンサ素子の断面構造図である。図7は本発明に係る積層形コンデンサ素子の断面構造図である。図7は本発明に係る積層形コンデンサ素子の断面構造図である。

【0025】先ず、本発明の実施の形態の例においては 前提として、第1群成分として、SiO2、B2O3、P2O5を使 い、その調合比率を図1に示した点A(SiO2:B2O3:P2 05=82:18:0モル%)、点B(SiO2:B2O3:P2O5=3 0:70:0モル%)、点C (SiO2:B2O3:P2O5=10:72: 18モル%)、点D(SiO2:B2O3:P2O5=15:20:65モル %)、点E (SiO₂:B₂O₃:P₂O₅=38:0:62モル%)、 点F (SiO₂: B₂O₃: P₂O₅=88: 0:12モル%) で囲まれ た範囲(但し、点A~点Fは範囲に含む)で調合し、ま た、第2群成分として、Li2O、Na2O、K2Oを使い、その 調合比率を図2に示した点G(Li20:Na20:K20=76:2 4:0モル%)、点H(Li2O:Na2O:K2O=50:50:0モル %)、点I(Li20: Na20: K20=18:58:24モル%)、 点J (Li2O: Na2O: K2O=O:50:50モル%)、点K(Li 20: Na20: K20=0:0:100モル%)、点し(Li20: Na 20: K20=92:0:8モル%) で囲まれた範囲(但し、点 G~点Lは範囲に含む)で調合し、更に、第3群成分と して、MgO、CaO、SrO、BaOを使い、その調合比率を図3 に示した点M (MgO: CaO: SrO: BaO=0:0:50:50モル %) 点N (Mg0: Ca0: Sr0: Ba0=17:0:33:50モル %)、点O (MgO: CaO: SrO: BaO=50: 27:0: 23モル %)、点P (MgO: CaO: SrO: BaO=50:50:0:0モル %)、点Q (Mg0:Ca0:Sr0:Ba0=0:50:50:0モル %) で囲まれた範囲(但し、点M〜点Qは範囲に含む) で調合したものを、第1群成分と第2群成分と第3群成 分の調合比率を図4に示した点R(主成分:第1副成分: 第2副成分=80:20:0重量%)、点S(主成分:第1 副成分:第2副成分=42:58:0重量%)、点T(主成 分:第1副成分:第2副成分=28:42:30重量%)、点 U (主成分:第1副成分:第2副成分=50:5:45重量 %)、点V(主成分:第1副成分:第2副成分=80: 5:15重量%) で囲まれた範囲 (但し、点R~点Vは範 囲に含む)で調合した混合物を、大気中1000℃以上 で熔解後、急冷させることにより、軟化点が400~9 60℃であり、調合成分以外の無機不純物の含有量が1 モル%以下となるガラス(以下、ガラス誘電体組成物と いう) を作製する。ここで、図1中の点Aと点Fを結ぶ 軟化点が960℃を越えてしまい、本発明の目的である ガラス誘電体ペーストの焼成温度を1000℃以下、ガ ラス/磁器複合型誘電体組成物の焼成温度を1100℃ 以下にすることが困難になるためであり、点Bと点Cと 点Dと点Eを結ぶ線よりもB2O3とP2O5が多い組成範囲で はガラス誘電体組成物の軟化点が400℃未満となる場 合が多く、ガラス誘電体ペーストの作製やコンデンサ素 子の成型時に使われる各種樹脂を焼結前に完全に取り除 くことが困難になり、結果として誘電体組成物の諸特性 に悪影響を与えるためである。また、低屈折率光学ガラ スには利用されているものの、コンデンサ素子用誘電体 ペースト成分及び磁器誘電体組成物の添加物として利用 実績のない燐酸 (P2Os) を第1群成分として選択した理 由は、ガラスの軟化点を比較的低温に制御することが可 能になることと、ガラス化時に発生しやすい失透化現象 を防止しやすくなる利点があるためである。

【0026】また、第2群成分を構成するLi₂O、Na2O、K₂Oの調合比率を図2中の点G〜点Lで囲まれた範囲に限定した理由は、点Gと点Lを結ぶ線よりもLi₂Oが多い組成範囲では熔解後の冷却過程で失透化現象が現れ、そ 20の結果として軟化点が変動したり、960℃を越えてしまうことがあるためであり、点Hと点Iと点Lを結ぶ線よりもNa₂Oが多い組成範囲でも失透化現象が現れやすいためである。

【0027】また、瓶ガラスや板ガラス等には利用されているものの、コンデンサ素子用誘電体ペースト成分及び磁器誘電体用添加物として利用例がないNa20やK20を第2群成分として選択した理由は、Li20単体で設計したガラスよりも絶縁抵抗を高められたことと、失透化現象防止効果もあったためである。

【0028】また、第3群成分を構成するMgO、CaO、SrO、BaOの調合比率を図3中の点M〜点Qで囲まれた範囲とした理由は、点Nと点Oを結ぶ線よりもMgOが多い組成範囲では熔解後の冷却過程で失透化現象が現れ、その結果として軟化点が変動したり、960℃を越えてしまうことがあるため、発明の対象範囲外とした。

【0029】更に、上記第1群成分、第2群成分及び第3群成分の調合比率を図4中の点R~点Vで囲まれた範囲に限定した理由は、ガラス誘電体組成物の軟化点が400~960℃の範囲にあり、失透化現象や軟化点変動の発生もなく、酸化雰囲気、不活性ガス雰囲気及び還元ガス雰囲気の何れの焼成雰囲気でもガラス誘電体組成物の特性が安定しているためである。

【0030】当該ガラス誘電体組成物を製作する上で使用する原料は酸化物だけでなく、炭酸化物、水酸化物、フッ化物、窒化物、塩化物、硫化物、硝酸化物、硫酸化物、水化物或いは有機化合物のうちで、大気中1000℃以上の高温下で分解し、酸化されるものであれば酸化物を原料に使用した場合と同等の特性を得ることができるため、本発明の原料として使用することができる。

【0031】当該ガラス誘電体組成物中には原料や製作用設備、器具等から調合成分以外の無機質不純物が混入することは避け難いが、熔解直後のガラス誘電体組成物中で1モル%以下の含有率に抑制することで失透化現象や軟化点変動を防止できる。

【0032】次に、ガラス誘電体組成物を磁器製ボールミル等の粉砕設備・器具を使い、微粉砕して平均粒径 0.5~5.0μmで、最大粒径が100μmに粉砕したガラス誘電体組成物粉末を作製し、平均分子量1,000,000未満の樹脂と水又は大気圧下300℃未満で蒸発する有機溶剤に溶解してなる有機ビヒクルとを混練してガラス誘電体ペーストを作製する。

【0033】ここで、平均粒径を0.5~5.0μmをの範囲に限定した理由は、0.5μm未満では粉末の比表面積が大きくてガラス誘電体ペーストを作製する上で樹脂や溶剤等への均一分散が困難になるためであり、5.0μm以上では当該ペースト塗布後の表面が粗くなり、コンデンサ素子成型上、不具合品が発生しやすく、最大粒径100μm以上でも不具合品が発生しやすくなるためである。

【0034】また、微粉砕後のガラス誘電体組成物粉末の調合成分以外の無機不純物含有率を3モル%未満にした理由は、粉砕前のガラス誘電体組成物の軟化点に対する許容幅を±5℃にするためである。

【0035】当該ガラス誘電体ペーストと大気中焼成用 導電ペースト原料としてAg粉末、Au粉末、Pt粉末或いは Pd粉末の中から選択した1種又は2種以上を任意の比率 で混合した粉末と平均分子量1.000,000未満の樹 脂2~20重量%を水又は大気圧下300℃未満で蒸発 30 する有機溶剤18~45重量%を溶媒とした有機ビヒク ルと、SiO2粉末、Al2O3粉末、ZrO2粉末或いはTiO2粉末 から選択した1種又は2種以上を任意の比率で混合した 粉末0~10重量%とを混練して成る導電ペーストを作 製し、コンデンサ素子の電極形成用ペーストとした。

【0036】また、不活性ガス雰囲気焼成用導電ペースト原料としてはCu粉末、Zn粉末或いはAl粉末の中から選択した1種又は2種以上を任意の比率で混合した粉末25~85重量%を、還元ガス雰囲気焼成用導電ペースト原料としてNi粉末、Fe粉末或いはCr粉末の中から選択した1種又は2種以上を任意の比率で混合した粉末25~85重量%を、同様に平均分子量1,000,000未満の樹脂2~20重量%を水又は大気圧下300℃未満で蒸発する有機溶剤18~45重量%を溶媒とした有機ビヒクルと、SiO2粉末、Al2O3粉末、ZrO2粉末或いはTiO2粉末から選択した1種又は2種以上を任意の比率で混合した粉末0~10重量%とを混練して成る導電ペーストを作製し、コンデンサ素子の電極形成用ペーストとし

【0037】ここで、導電ペーストに使用した樹脂の平 50 均分子量を1.000.000以下とした理由は溶媒に溶 解しやすく、ガラス誘電体組成物粉末の軟化点以下で分解、燃焼しやすく、塗布作業にも適しているためであり、また大気圧下300℃未満で蒸発する有機溶剤に限定した理由は、ガラス誘電体組成物粉末の軟化が始まる前に完全に蒸発させることが不具合品発生防止上好ましいからであり、更に、SiO₂粉末、Al₂O₂粉末、ZrO₂粉末或いはTiO₂粉末を混合した理由としては焼成後のガラス誘電体層をより強固にする効果と基板との熱膨張率差から生じるひび割れ等を防止する効果が得られるためである。

【0038】次に、従来から製造されている円板形、筒型或いは積層形コンデンサ素子を製作するための手段として、大気中、不活性ガス雰囲気中及び還元ガス雰囲気中の何れでも安定した誘電体特性が得られるガラス誘電体組成物粉末と磁器誘電体粉末とをガラス誘電体組成物粉末:磁器誘電体粉末=0.5:99、5~5.0:95.0(重量%)の比率範囲でボールミル等により混合したものを露点50℃未満の大気中1000℃以下、保持時間1時間以内で仮焼したガラス/磁器複合型誘電体組成物を作る。

【0039】ここで、ガラス/磁器複合型誘電体組成物 としても大気中、不活性ガス(窒素ガスまたはアルゴン ガス)雰囲気中及び還元ガス(水素混合窒素ガス、一酸 化炭素混合窒素ガス、或いは水素、一酸化炭素混合窒素 ガス)雰囲気中の何れで焼成しても磁器誘電体の持つ比 誘電率、誘電損失及び絶縁抵抗値を損なわないように工 夫するため、本発明では特定の組成を有する磁器誘電体 粉末を限定した。

【0040】限定した磁器誘電体粉末の種類と組成は請求項5に記載したものである。ガラス誘電体組成物粉末 30 の混合比率を0、5~5、0(重量%)にした理由は、0、5重量%未満の場合にはガラス/磁器複合型組成物の気孔率3%以下の焼結体を1100℃以下の温度で得ることが困難であり、5.0重量%を越えた場合には比誘電率の低下が顕著になるためである。

【0041】また、混合した後に1000℃以下の温度で仮焼するのは、ガラス誘電体粉末を軟化させて、磁器誘電体粉末の表面に均一に固着させ、コンデンサ素子の焼結温度を低下させる効果と焼結密度を向上させやすくする効果を得るためである。

【0042】仮焼は混合したガラス誘電体粉末の軟化点 よりも30~50℃高い温度で行うことが好ましい。

【0043】更に、組成物中に含まれる調合成分以外の無機不純物の含有率を2モル%未満にした理由は不純物混入が原因で発生する誘電体特性変化を避けるためであり、磁器誘電体粉末の平均粒径を10μm未満且つ最大

粒径を200μm未満に限定した理由は、ガラス/磁器 複合型組成物を1100℃以下で、気孔率3%以下の焼 結体を安定して得られると共に焼成前成型体を製作しや すいためである。

12

【0044】一方、上記ガラス誘電体ペーストを使った本発明のコンデンサ素子を作製する手段は、先ずガラス製又は磁器製基板上に導電ペーストを塗布、乾燥し、続いてガラス誘電体ペーストを塗布、乾燥し、再び同一の導電ペーストを印刷、乾燥し、最後に被覆用として同一のガラス誘電体ペーストを印刷、乾燥後、大気中又は不活性ガス雰囲気中又は還元ガス雰囲気中で脱脂して、何れかの雰囲気下1000℃以下、保持時間30分以内で1回焼成することでコンデンサ素子が得られる。

【0045】また、円板形、筒形のコンデンサ素子を得る場合も、先ずガラス誘電体組成物粉末又はガラス/磁器複合型誘電体組成物に分子量1,000,000未満の樹脂と大気圧下300℃未満で蒸発する溶媒とを混練したものを使い、金型等を使ったプレス成形等による成型を施した後、対向する2面に導電ペーストを塗布、乾燥20後、大気中又は不活性ガス雰囲気中又は還元ガス雰囲気中で脱脂し、何れかの雰囲気下で1100℃以下、保持時間1時間以内で同時に焼成してコンデンサ素子が得られる。

【0046】更に、積層形コンデンサの場合は、先ずガラス誘電体組成物粉末又はガラス/磁器複合型誘電体組成物に分子量1,000,000未満の樹脂と大気圧下300℃未満で蒸発する溶媒とを混練して、ドクターブレード法等でシートを成型後、当該シートの片面に導電ペーストをスクリーン印刷法等で印刷・乾燥したものを複数枚積み重ねて加熱圧着したものを大気中又は不活性ガス雰囲気中又は還元ガス雰囲気中で脱脂し、何れかの雰囲気下で1100℃以下、保持時間1時間以内で焼成してコンデンサ素子が得られる。

【0047】以下、本発明者が行った以下の[試作1] ~[試作5]について詳述する。

[試作1]下記表1の中からガラス誘電体組成物を製作できる原料として比較的入手が容易なSiO2粉末(珪砂)、B2O3(無水硼酸)及びP2O5(無水燐酸)を第1群成分用原料に、Li2OO3粉末、Na2OO3粉末及びK2OO3粉末を40 第2群成分用原料に、更に、MgCO3粉末、CaCO3粉末、SrOO3粉末及びBaCO3粉末を第3群成分用原料に選び、下記表2から表9に記した367通り(ガラス誘電体試料番号GOO1~G367)の組成比率で調合後、攪拌混合機で混合し、混合済原料を製作した。

[0048]

【表1】

齢電体ガラス組成物製作に使用可能な原料例

SiO ₂	珪砂	石英がラス	H2S1205	•
原科例	天然石英	シリカケール	Na2SiO3	
	合成石英	H4S104	CeSiO3	
B203	B20s	ボリ機能	Na2B6011 - nH20	
原科例	H3B03	LiH2BO4	Ca2B5011 - 5H20	
	H2B407	NaH2BOs	機能エステル	
P20s	P20s	ポリ殊酸	NaH2PO4	正構酸加機酸工行列
原料例	H3P04	LiH2PO4	Na2H2P2O7	メタが発酵ストロンチウム
	H4P207	P3N5	K2Na2 (P409)	**・リ神酸ペリウム
L120	Li200s	Liks	LiN03	LiC2O4
原科例	Lion	LiF	Li2S04	
	LiC1	Lian	LiCEsCOO	
Na ₂ O	Na ₂ CO ₅	NaHS	NaNO3	NaCH3C00
原料例	NaOH	NeF	Na2S04	NaC204
	NaC1	Na3N	Na2COs - H2O	
K 20	KaCOs	KRS	KN03	KCE3COO
原料例	KOH	KF	K2S04	K2C2O4
	KC1	K3N	KF·2H2O	
Mg0	MgCOs	MgS	Mg (NOS) 2	Mg (CH3C00) 2
原料例	Mg (OH) 2	NgF2	MgSO4	MgC204
	MgCl2	MgaN2	MgC12-6H20	
CaO	CaCOs	CaS	Ca (NO3) 2	Ca (CH3C00) 2
原科例	Ca (OH) 2	CaF2	CaSO4	CaC2O4
	CeCl2	Ca3N2	CaC12-6H20	
Sr0	SrCO3	SrS	Sr (NO3)2	SrSO4·nH2O
原料例	Sr (OH) 2	SrF2	SrS04	Sr (CH3C00) 2
	SrCl2	SrsNz	BaF2	SrC2O4
BaO	Ba003	BaS	BaSO4	BaC2O4
原料例	Ba (OH) 2	Ba3N2	BaS04 · nH20	
	BaC12	Ba (NO3) 2	Ba (CH3COO) 2	

[0049] -

* *【表2】

16

15 鉄電体ガラス組成物調合比率例:その軟化点と不純物含有量 (1)

		第1群日	(第2群点	分		第3番目	2 5)						
酸化物組成	SiOz	8203	P20s	Li ₂ 0	NaxO	K₂0	MgO	CaO	Sr0	BaO	第1群	蕉2騨	第3件	數化点	不能制
使用原料	5102	B201	Pz0s	LinC03	NazO0s	£2003	NgC03	CaCOs	Sr003	B=COs	成分	成分	成分	.,	含有物
	6896	₹#%	1896	CA%	49%	EP96	8896	E#94	€#%	E#96	医合性	調会性	開会性	(°C)	£#96
所能体》;52															
試料器分		-													
6001	45.4	9.5	8.7	16.8	3.2	3.0	1.4	3.5	5.6	3.5	63	23	14	731	0.3
6002	27.4	6.7	4.9	19.2	13.0	4.8	6.3	3.0	6, 0	9.8	38	37	25	737 738	0.5 0.4
6003 6004	45.4 27.4	9. 5 5. 7	8.2 4.9	12.9 12.6	16.3	7. 1 8. 1	3.9	6.0 7.5	3. 1 9. 5	2. 0 5. 0	63 38	23 37	14 25	763	0.5
6006	45.4	9.6	8.2	8.7	3.7	10.6	1.4	3.5	5.5	3.5	63	23	14	754	0.3
6006	27.4	5.7	4.9	6.3	14. 1	16.7	6.3	3.0	6, D	9. 8	38	37	26	773	0.4
G007	45.4	9.5	8.2	3.7	3.9	15.4	3. 9	5.0	3.1	2. D	63	23	14	764	0.3
6008	27.4	5.7	4.9	3.0	2.6	31.5	3.0	7.5	9.5	5.0	38	37	25	819	0.5
6009	20.9	7.6	9.5	27.0	5.2	4.8	2.6	6.3	10.0	6.3	38	37	25	702	0.4
6010	34.7	12.6	15.8	12.0	1.8	3.0	3.5	1.7	3, 4	5.5	63	23	. 14	663	0.4
GO11	20.9	7.6	9.5	20.7	4.8	11.6	7.0	9.0	5, 5	3.5	38	37	25	713	0.5
GO12	34.7	12.6	15.8	7.8	10.1	5.1	1.7	4.2	5.3	2.8	63	23	14	678	0.3
6013	20.9	7.6	9.5	14. 1	5.9	17.0	2.5	6.3	10.0	6.3	38	37	25	747	0.3
6014 6015	34.7 20.9	12. 6 7. 6	15. 8 9. 5	3.9 5.9	8.7	10.4	3.5	1.7	3.4	5.5 3.5	63 38	23 37	14 25	686 755	0.4
6016	34.7	12.6	15.8	1.8	6.3	24.8	7.0	9.0	5.5	2.8	63	23	14	713	0.3
6017	29.6	23.3	10.1	16.8	1.6	19. 6 3. 0	1.7	4.2 3.5	5.3 5.6	3.5	េស	23	14	662	0.3
6018	17.9	14.1	6.1	19.2	13.0	4.8	6.3	3.0	6.0	9.8	38	37	25	695	0.5
6019	29.6	23,3	10.1	12.9	3. 0	7.1	3.9	6.0	3.1	2.0	63	23	14	669	0.4
6020	17.9	14.1	6.1	12.6	16.3	8. 1	3.0	7.5	9.5	5.0	38	37	26	721	0,5
G021	29.6	23.3	10.1	8.7	3.7	10.6	1.4	3.5	5.6	3.5	63	23	14	685	0.4
C055	17.9	14.1	6.1	6.3	14.1	16.7	6,3	3.0	6.0	9.8	38	37	25	732	-0.5
6023	29.6	23.3	10.1	3.7	3.9	16.4	3. 9	5.0	3.1	2.0	63	23	14	695	0.3
GU24	17.9	14.1	6.1	3.0	2, 6	31.5	3. 0	7. 5	9.5	5.0	38	37	25	794	0.5
6025	15, 2	9.5	13.3	27.0	5.2	4.8	2, 5	6.3	10.0	6.3	38	37	25	66B	0.6
G026	25, 2	15.8	22.1	12.0	1.8	3. 0	3.6	1.7	3, 4	5.5	63	23	14	606	0.3
G027	15, 2	9.5	13.3	20.7	4.8	11.5	7.0	9.0	5.6	3. 5	38	37	25	679	0.5
G028	25.2	15.8	22.1	7.8	10.1	5.1	L.7	4.2	5.3	2.8	63	23	14	622 705	0.3
G029 G030	15. 2 25. 2	9.5	13.3 22.1	14, 1 3, 9	5.9 8.7	17.0	2.5 3.6	6.3	10.0	6. 3 5. 6	38 63	37 23	25 14	629	0.3
6031	15.2	15.8 9, 5	13. 3	5, 9	6.3	10.4 24.8	7.0	9.0	5.5	3.5	38	37	25	720	0.5
G032	25.2	15.8	22.1	1.6	1.6	19.6	1.7	4.2	5.3	2.8	63	23	14	656	04
6033	26.5	9. 5	27.1	16.8	3.2	3.0	1.4	3.6	5.6	3.5	63	23	14	598	0.3
G034	16.0	5.7	16.3	19.2	13.0	4.8	6.3	3.0	6.0	9.8	38	37	25	657	0.6
G035	26.5	9.5	27.1	12.9	3.0	7, 1	3.9	5.0	3.1	2.0	63	23	14	606	0.3
G036	16.0	6.7	16.3	12.6	16.3	6.1	3.0	7.5	9.5	5.0	38	37	25	690	0.5
G037	25.5	9.5	27.1	8.7	3.7	10.6	1.4	3.5	6. 5	3.5	63	23	14	622	0.3
G036	16.0	5.7	16.3	6.3	14.1	16.7	6.3	3.0	6.0	9.8	38	37	25	693	0.5
G039	26.5	9.5	27. 1	3.7	3.9	15.4	3.9	5.0	3.1	2.0	63	23	14	632	0.3
C040	16.0	5.7	16.3	3.0	2.6	31.6	3.0	7.5	9.5	5.0	36	37	26	739	0.5
G041	9. 5	22.0	6.5	27.0	5, 2	1.8	2.5	6.3	10.0	6.3	38	37	25	666	0.7
G042	15.8	36.5	10.7	12.0	8L I	3.0	3.5	1.7	3.4	5.5	53	23	14	602	0.3
G043	9.6	22.0	6.5	20.7	4.8	11.6	7.0	9.0	5.5	3.5	36 63	37 23	25 14	677	0.5 0.3
G044 G045	15.8 9.5	36.5 22.0	10.7	7. 8	10. 1 5. 9	5. 1 17.0	1. 7 2. 5	6.3	5.3 10.0	2.8 6.3	38	37	25	703	0.5
G046	15.8	36.6	10.7	14. 1 3. 9	8.7	10.4	3.5	1.7	3.4	5.6	63	23	14	625	0.5
G047	9.5	22.0	6.5	5.9	6.3	24.8	7.0	9.0	5,5	3.5	38	37	25	718	0.5
G048	15.8	36.5	10.7	1.8	1,6	19.6	1.7	4.2	5,3	2.8	63	23	14	653	0.4
6049	16.4	23.3	23.3	16.8	3.2	3.0	1.4	3.5	5.6	3. 6	63	23	14	569	0.3
G050	9.9	14. 1	14. 1	19.2	13, Q	4.8	6.3	3. 0	6.0	9.8	38	37	25	639	0.5
G051	16.4	23.3	23.3	12.9	3.0	7.1	3.9	5.0	3. i	2.0	63	23	14	677	0.3
G052	9. 9	14. 1	14.1	12.6	16.3	6L L	3.0	7.5	9.5	5.0	38	37	2.5	672	0.5
6053	16.4	23.3	23. 3	8.7	3.7	10.6	1.4	3.5	5.6	3.5	63	23	14	593	0.3
G054	9.9	14.1	14. 1	6.3	14.1	16.7	6.3	3.0	6.0	9.8	88	87	25	676	0.6
G055	16.4	23.3	23.3	3.7	3.9	15.4	3. 9	5.0	3.1	2.0	63	23	14	603	0.3
G056	9.9	14.1	14.1	3.0	2.6	31.5	3.0	7.5	9.5	5.0	38	37	25	727	0.5
G057	10.6	6.5	20.9	27.0	5.2	4.6	2.5	6.3	10.0	6.3	38	37	25	627 538	0.5
G058	17.5	10.7	34.7	12.0	8.1	3.0	3.5	1.7	3.4	5.5	63 38	23 37	14 25	638	0.5
G059 G060	10.6 17.6	6.5 10.7	20.9 34.7	20.7 7.8	4. 8 10. t	11. 5 5. 1	7.0 1.7	9.0 4.2	5, 5 5. 3	3.5 2.8	63	23	14	553	0.3
G061	10.6	6. 5	70.9	14.1	5.9	17.0	2.5	6.3	10.0	6.3	38	37	25	664	0.6
G062	17.6	10.7	34.7	3.9	8.7	10.4	3.5	1.7	3.4	5.5	63	23	14	561	0.3
G063	10.6	6.5	20.9	5. 9	6.3	21. 8	7.0	9.0	5. 5	3.5	38	37	25	679	0.5
G064	17.6	10.7	34.7	1.8	1.6	19.5	1.7	4.2	5.3	2,8	63	23	14	588	0.4

[0050]

* *【表3】

17 課電体ガラス組成物測合比率例:その軟化点と不純物含有量 (E)

		第1群	(4)		第2群点	(/)		第3群日	£ 5)						
酸化酶加度	SiO ₂	8203	Pa0s	Liz0	NagO	K ₂ O	ReO.	C=O	0r2	BesO	第1群	第2群	第3群	教化点	不够的
使用原料	SiOz	8203	P206	LizCli	NazCOs	KaODs	MeOOs	Ca(0)3	Sr003	B=COs	成分	成分	成分		全有主
	78%	*#%	1#96	1096	1976	EP76	5946	€9 %6	11196	4845	開合性	要合此	明合性	(0)	14%
新聞体がうス															
战科委 号													ļ		
G065	65. 6	14.4	0.0	15. 2	4.8	0.0	0.0	0.0	0.0	0.0	BO	20	0	730	0.3
G066	34.4	7.6	0.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	592	0.3
G067	23.0	5.0	0.0	7.6	24.4	10. l	15.0	B. 1	0.0	6. 9	28	42	30	776	0.6
G068	41.0	9.0	0.0	0.0	2.5	2.5	22. 5	22.5	0.0	0.0	50	5	45	945	0.8
G069	65. 6	14.4	0.0	0.0	0.0	5, 0	0.0	7.5	7.5	0.0	80	5	15	960	0.7
C070	51.7	11.3	0.0	21.2	0.0	1. 8	0.0	0.0	7.0	7.0	63	23	14	774	0.4
G071	31.2	6.8	0.0	27.0	5. 2	4, 8	4.3	0.0	8.3	12.5	38	37	25	76 L	0.3
G072	24.0	56.0	0.0	t5. 2	4.8	0. 6	0.0	0.0	0.0	0.0	80	20	0	564	0.2
G073	12.6	29.4	0.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	504	0.3
G074	8.4	19.6	0,0	7.6	24.4	10. 1	0.0	15.0	15.0	0.0	28	42	30	762	0.6
G075	15.0	35.0	0.0	0.0	2.5	2.5	0.0	0.0	22, 5	22.5	50	5	45	874	0.€
6076	24.0	56.0	0.0	0.0	0.0	5.0	2.6	0.0	5.0	7.5	80	5	15	691	0.7
G077	18.9	44.1	0.0	21.2	0.0	1.8	7.0	3.8	0.0	3. 2	63	23	14	621	0.3
G078	11,4	26.6	0.0	27.0	5.2	4.8	12. 5	12.5	0.0	0.0	38	37	25	674	0.4
6079	8.0	57.6	14.4	16.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	457	0.2
G080	4.2	30. 2	7.6	29. 0	29.0	0.0	0.0	0.0	0.0	0.0	42	68	0	448	0.9
G081	2.8	20.2	5.0	7.6	24.4	10.1	5.1	0.0	9.9	15.0	28	42	30	697	0.6
G082	5.0	36.0	9.0	0.0	2.5	2.5	22.5	12.2	0.0	10.4	50	5	45	763	0.8
G083	8.0	57. 6	14.4	0.0	0.0	5. 0	7.5	7.5	0.0	0.0	80	5	15	579	0.7
GQ84	6.3	45.4	11.3	21. 2	0.0	1.8	0.0	7.0	7.0	0.0	63	23	14	665	0.5
G085	3.8	27.4	6.8	27.0	5.2	4. 8	0,0	0.0	12.5	12.5	38	37	25	642	0.4
G086	12.0	16.0	52.0	15.2	4.6	0.0	0.0	0.0	0.0	0.0	80	20	0	101	0.2
G087	6.3	8.4	27.3	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	59	0	412	0.3
G088	1.2	5. 6	18, 2	7.6	24.4	10.1	15.0	15.0	0.0	0.0	2H	42	30	653	26
G089	7.5	10.0	32.5	0.0	2.5	2. 5	0.0	22.5	22.5	0.0	50	5	45	769	0.8
G090	12.0	16.0	62.0	0.0	0.0	5.0	0.0	0.0	7.5	7. 5	190	6	15	191	0.7
G091	9.5	12.6	41.0	21.2	0.0	1.8	2.4	0.0	4.6	7.0	63	23	14	476	0.5
6092	5.7	7.6	21.7	27.0	5. 2	4.8	12.5	6.8	0.0	5.8	38	37	25	571	0.4
G093	30.4	0.0	49.6	15.2	1.8	0.0	0.0	0.0	0.0	0.0	80	20	0	441	0.2
G094	16.0	0.0	26.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	68	0	440	0.3
G095	10.6	0.0	17.4	7.6	24.4	10.1	0.0	0.0	15.0	15.0	28	42	30	704	06
G096	19.0	0.0	31.0	0.0	2.5	2.5	7.7	0.0	14.9	22.5	50	5	45	778	0.7
CO97	30.4	0.0	49.6	0.0	0.0	5.0	7.6	4.1	0.0	3.5	80	5	15	560	0.7
6098	23.9	0,0	39.1	21.2	0.0	1.8	7.0	7.0	0.0	0.0	63	23	14	535	0.6
G099	14.4	0.0	23.5	27. 0	5. 2	4.8	0.0	12.5	12.5	0.0	38	37	25	647	0.3
G100	70.4	0.0	9.6	15.2	4.8	0.0	0.0	0.0	9.0	0.0	80	20	0	706	0.3
G101	37.0	0.0	5.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	587	0.2
G102	24.6	0.0	3.4	7.6	24.4	10. t	16.0	8.1	0.0	6.9	28	42	30	772	0.7
G103	14.0	0.0	6.0	0,0	2. 5	2.5	22. 5	22.5	0.0	0.0	50	5	45	939	0.8
G104	70.4	0.0	9.6	0.0	0.0	5.0	0.0	7.6	7.5	0.0	80	5	16	960	0.7
G105	55. 4	0.0	7.6	21.2	0.0	1.8	6.0	0.0	7.0	7.0	63	23	14	766	0.7
G106	33.4	0.0	4.6	27.0	5. 2	4.8	4.3	0.0	8.3	12.5	38	37	25	756	0.3
G107	57.6	13.0	10.4	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	667	0.1
G108	30.2	6.3	5.5	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	68	0	559	0.2
G109	20.2	4.2	3.6	7.6	24. 4	10. t	0.0	15.0	15.0	0.0	28	42	30	798	0.5
G110	36.0	7.5	6.6	0.0	2.5	2.5	0.0	0.0	22.5	22.5	50	5	45	939	0.7
GIJI	57.6	12.0	10.4	0.0	0.0	5.0	2.6	0.0	5.0	7.5	80	5	15	795	0.7
G112	45.4	9.5	8.2	21.2	0.0	1.8	7.0	3. 8	0.0	3.2	63	23	14	710	0.4
G112	27. 4	5.7	4.9	27.0	5.2	4.8	12.6	12.5	0.0	0.0	38	37	25	720	0.3

[0051]

* *【表4】

19 誘電体ガラス組成物調合比率例:その軟化点と不純物含有量(III)

		第1群球	(分		第2群	分		第3群点	57						
碘化物组成	SiO2	R203	P206	Liz0	NasO	K ₂ O	≡ ₆ 0	CaO	SrO	Beat	第1群	第2書	第8群	軟化水	不掩的
使用原料	5102	8200	P206	L12003	Na ₂ OU ₃	K2003	MgCO3	Ca001	SrOos	BeCOs	成分	成分	成分		合有中
Printel I	₹#96	€#96	7#%	18%	1996	1496	(#96	65%	61%	1996	国介北	用合化.	#ôtt.	(0)	£#96
美國体計 9人	477	4.72	17.4	1000											
大利春号											1				
G114	65.6	14.4	0.0	15.2	4. 8	0.0	0.0	0.0	0,0	0.0	80	20	0	730	0.2
G115	34.4	7.6	0.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	592	0.3
6116	23.0	5.0	0.0	7.6	21.4	10.1	15.0	15.0	0.0	0.0	28	42	30	783	0.7
6117	41.0	9.0	0.0	0.0	2.5	2.5	0.0	22.5	22. 5	0.0	50	6	45	1001	0.8
G116	65.6	14.4	0.0	0.0	0.0	5.0	0.0	0.0	7.5	7.5	80	5	15	864	0.7
G119	51,7	11.3	0.0	21.2	0.0	1.8	2.4	0.0	4.6	7.0	63	23	14	768	0.5
6120	31.2	6.8	0.0	19. 2	13.0	4.8	12.5	6.8	0.0	5. 8	38	37	25	755	0.3
G121	24.0	56.0	0.0	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	564	0.2
C122	12.6	29.4	0.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	504	0.4
G123	8.4	19.6	0.0	7.5	24.4	10.1	0.0	0.0	15.0	15.0	28	42	30	747	0.8
G124	15.0	35.0	0.0	0.0	2.5	2.5	7.7	0.0	14.9	22.5	50	5	45	855	0.8
G126	24.0	56.0	0.0	0.0	0.0	5.0	7. 5	4.1	0.0	3.5	80	5	15	583	0.7
G126	18.9	44.1	0.0	21.2	0.0	1,8	7. 6	7.0	0.0	0.0	63	23	14	624	0.3
G127	11.4	26.6	0.0	19.2	13.0	4.8	0.0	12.5	12.5	0.0	38	37	25	713	0.5
G128	8.0	57.8	14.4	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	457	0.2
G129	4. 2	30.2	7.6	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	448	0.2
G130	2.8	20.2	5.0	7. 5	24.4	10.1	15.0	8.1	0.0	6.9	28	42	30	680	0.8
GISL	5. 0	36,0	9.0	0.0	2.5	2.5	22.5	22. 5	0.0	0.0	50	5	45	774	0.8
G132	8.0	57.6	14.4	0.0	0.0	5.0	0.0	7.5	7.5	0.0	80	5	15	598	0.8
G133	6.3	45.4	11.3	21.2	0.0	1.8	0.0	0.0	7.0	7.0	63	23	14	558	0.4
G134	3.8	27.4	6.8	19, 2	13.0	4.8	4.3	0,0	8.3	12.5	38	37	2.5	639	0.4
G135	12.0	16.0	52.0	15.2	4.8	0.0	0.0	0.0	0.0	0, 0	80	7.0	0	403	0.5
G136	6.3	8.4	27.3	29, 0	29.0	0.0	0.0	0.0	0,0	0.0	42	58	0	415	0.3
GL37	4.2	5.6	18.2	7.8	24.4	10. l	0.0	15.0	15.0	0.0	28	42	30	705	0.6
G138	7.5	10.0	32.5	0.0	2.5	2.5	0.0	0.0	22. 5	22. 5	50	5	45	747	08
C139	12.0	16.0	52.0	0.0	0.0	5.0	2.6	0.0	5.0	7.5	90	5	15	487	0.7
G140	9.5	12.6	41.0	21.2	0.0	1. 6	7.0	3.8	0.0	3.2	63	23	14	468	0.5
G141	5.7	7.6	24.7	19. 2	13.0	4.8	12.5	12.5	0.0	0.0	38	37	25	585	04
G142	30.4	0.0	49.6	15. 2	4.6	0.0	0.0	0.0	0.0	0.0	80	20	0	441	0.2
G143	15.0	0.0	26.0	29.0	29. 0	0.0	0.0	0.0	0.0	0.0	42	68	1_0_	440	0.3
G144	10.5	0.0	17.4	7.6	24. 4	10.1	5.1	0.1)	9,9	15.0	28	42	30	691	8.0
G145	19.0	0.0	31.0	0.0	2.5	2.5	22.5	12. 2	0.0	10.4	50	5	45	753	0.7
G145	30.4	0.0	49.5	0.0	0.0	6.0	7.5	7.5	0.0	0.0	80	5	16	563	0.7
G147	23. 9	0.0	39.1	21. 2	0.0	1.8	0.0	7.0	7.0	0.0	63	23	14	553	0.8
6148	14.4	0.0	23.8	19. 2	13.0	4.8	0.0	0.0	12.5	12.5	38	37	25	642	0.3
G149	70.4	0.0	9. 6	15. 2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	708	0.3
G150	37.0	0. 0	5.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	587	0.2
G151	24. 5	0.0	3.4	7.6	24. 4	10.1	15.0	15.0	0.0	0.0	28	42	30	779	0.7
G152	44.0	0.0	6.0	0.0	2.5	2. 5	0.0	22.5	22.5	0.0	50	5	45	995	0.6
G153	70.4	0.0	9.6	0.0	0.0	5.0	0.0	0.0	7.5	7.5	80	5	15	855	0.7
G154	55.4	0.0	7.6	21.2	0.0	1.8	2.4	0.0	4.6	7.0	63	23	14	760	0.5
G155	53. 4	0.0	4.6	19.2	13.0	4.8	12.5	6.8	0.0	5.8	38	37	25	750	0.4
G155	44.0	16.0	20.0	15.2	4.8	0.0	0.0	0.0	0.0	0.0	60	20	G	584	0.2
G157	23. 1	8.4	10.5	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	515	0.3
G158	15.4	5.6	7.0	7.6	24.4	10.1	0.0	0.0	15.0	15.0	28	42	30	754	0.5
G159	27. 5	10.0	12.5	0.0	2.5	2.6	7.7	0.0	14.9	22.5	50	5	45	868	8.0
G150	44.0	16.0	20.0	0.0	0.0	5.0	7.5	4.1	0.0	3.5	80	- 6	15	703	0.7
	34.7	12. 6	15.8	21.2	0.0	1.8	7.0	7.0	0.0	0.0	63	23	14	648	05
G161 G162	20. 9	7.6	9.5	19.2	13.0	4.8	0.0_	12.5	12.5	0.0	38	37	25	722	0.4

* *【表5】

[0052]

21 誘電体ガラス組成物調合比率例:その軟化点と不純物含有量 (IV)

		第1群局	幼		第2群周	(5)		第3群	252						
酸化物組成	SiO2	BaOs	P2O6	L120	Naz0	K ₂ O	MgO	CeO	SrO	BaO	第1章	第2群	第3件	敏化点	不能物
使用原料	SiOn	BgOs	P205	Li2O03	Na ₂ CO ₃	[L2005	MgCC3	CeCO ₃	SrCOs	Bacco	成分	成分	成分		含有字
	£#96	E#96	1996	1,696	₹996	₹#96	E#46	£496	78%	£8%	要会社	用会社	两企地	(°C)	4,644
英雄体が 3ス															
試料養身		<u> </u>													
G163	65.6	14.4	0.0	15.2	4.8	0.0	0.0	0.0	0.0	0. 0	80	20	0	730	0.2
G 164	34.4	7.6	0.0	29.0	29.0	0.0	0.0	8.0	0.0	0,0	42	58	0	592	0.4
G 165	23.0	5.0	0.0	7.6	24.4	10.1	0.0	15.0	15.0	0.0	28	12	30	820	0.6
G 166	41.0	9.0	0.0	0.0	2.5	2.5	0.5	0.0	22.5	22.5	50	5	45	978	0.8
G167	65. 6	14.4	0.0	0.0	0.0	5.0	2.8	0.0	5.0	7.6	RO	5	15	858	07
G168	51.7	11.3	0.0	21.2	0.0	1.8	7.0	3.8	0.0	3. 2	63	23	14	760	0.3
C 169	31.2	6.8	0.0	20.7	4.8	11.5	12.6	12.5	0.0	0.0	38	37	25	772	0.5
G170	24.0	56.0	6.0	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	564	0.2
G171	12.6	29.4	0.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	504	0.2
G172	8.1	19.6	0.0	7.6	24.4	10.1	5.1	0.0	9.0	15.0	28	42	30	734	0.6
G173	15.0	35.0	0.0	0. D	2.5	2.5	22.6	12.2	0.0	10.4	50	5	45	830	0.7
G174	24.0	56.0	0.0	0.0	0.0	5.0	7.5	7. 5	0.0	0.0	80	5	15	687	0.6
G175	18.9	44. 1	0.0	21.2	0.0	1. 8	0.0	7.0	7.0	0.0	63	23	14	649	0.4
6176	11.4	26, 6	0.0	20.7	4.8	11.5	0.0	0.0	12.5	12.5	38	37	25	712	0.6
6177	8,0	57.8	14.4	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	457	0.2
G178	4.2	30.2	7.5	29.0	29.0	0.0	0,0	0.0	0.0	0.0	42	58	0	448	0.3
G179	2.8	20.2	5.0	7.5	24.4	10. 1	15.0	15. 0	0.0	0.0	28	42	30	687	0.0
G180	5.0	16,0	8.0	0.0	2. 5	2, 5	0.0	22.5	22.5	0.0	50	5	45	830	0.8
G181	8.0	67.6	14.4	0.0	0.0	5.0	0.0	0.0	7.5	7.5	80	5	15	591	0.8
C182	6.3	45.4	11.3	21.2	0.0	L. 8	2,4	0.8	4.6	7.0	63	23	14	552	0.4
G183	3.8	27.4	6.8	20.7	4.8	11.5	12.5	6.8	0.6	5.8	38	37	25	637	0.4
G184	12.0	16.0	52.0	15.2	4.8	0.0	0.0	a.o	0.0	0.0	80	20	0	406	0.2
G185	6.3	6.4	27.3	29.0	29,0	0.0	0.0	0.0	0.0	0.0	42	58	0	415	0.3
G186	4.2	5.6	18.2	7.6	24.4	10. 1	0.0	a.o	15.0	15.0	28	42	30	675	0.8
G187	7.5	10.0	32.5	0.0	2.5	2.5	7.7	0.0	14.9	22.5	50	5	45	728	0.8
G188	12.0	16.0	62.0	0.0	0.0	5.0	7. 5	4.1	0.0	3.5	HO	5	15	479	0.7
G189	9.5	12.6	41.0	21.2	0.0	1.8	7.0	7. 0	0.0	0.0	63	23	14	161	0.5
G190	5. 7	7.6	24.7	20.7	4.8	11.5	0.0	12.5	12.5	0.0	38	37	25	628	0.4
G191	30.4	0.0	49.6	15.2	4.8	0.0	0.6	0.0	0.0	0.0	80	20	0	441	0.2
G192	16.0	0.0	26.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	440	0.3
G193	10.6	0.0	17.4	7.6	24.4	10.1	15.0	8.1	0.0	6. 9	28	42	30	674	0.8
G194	19.0	0.0	31.0	0.0	2.5	2.5	22.5	22.5	0.0	0.0	50	5	45	754	0.8
G195	30, 4	0.0	49.6	0.0	0.0	5.0	0.0	7.5	7.5	0.0	80	5	15	582	0.7
G196	23.9	0.0	39. 1	21.2	0.0	1.8	0.0	0.0	7.0	7. 0	63	23	14	546	0.4
G197	14.4	0.0	23.6	20.7	4.8	11.5	4.3	0.0	8.3	12.5	38	37	25	643	0.4
G198	70.4	0.0	9.6	15. 2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	721	0.2
G199	37.0	0.0	5.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	587	0.3
G200	24.6	0.0	3.4	7.6	24.4	10. L	0.0	15.0	15.0	0.0	28	42	30	817	0.6
G201	44.0	0.0	6.0	0.0	2.5	2.5	0.0	0.0	22.5	22.5	50	5	45	972	06
G202	70.4	0.0	9.6	0.0	ao	5.0	2.6	0.0	5.0	7.5	80	5	15	848	0.8
G203	55. 4	0.0	7.6	21.2	0.0	1. 8	7.0	3.8	0.0	3.2	63	23	14	744	0.4
G204	33. 4	0.0	4.6	20.7	4.6	11.5	12.5	12.5	0.0	0.0	38	37	25	768	0.4
G205	37.6	29.6	12.8	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	580	0.2
G206	19.7	15.5	6.7	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	613	0.3
G207	13, 2	10.4	4.5	7.6	24.4	10. 1	5.1	0.0	9.9	15. 0	28	42	30	740	0.8
G208	23. 5	18.5	6.0	0.0	2.5	2.6	72.5	12.2	0.0	10.4	50	5	45	840	0.5
G209	37.6	29.6	12.8	0.0	0.0	6.0	7.6	7.6	0.0	0,0	80	5	15	703	0.7
G210	29.6	23.3	10.1	21.2	0.0	1.8	0.0	7.6	7.0	0.0	63	23	14	662	0.3
G211_	17.9	14.1	6.1	20.7_	4.8	11.5	0.0	0,0	12.5	12.5	38	37_	25_	720	0.5

* *【表6】

[0053]

23 顕電体ガラス組成物調合比率例:その軟化点と不純物含有量 (V)

		第1群	44		第2群点	44		第3群	04>						
酸化物組成	SiO2	B2O3	P205	Li ₂ 0	Nax0	K20	MgO	CeO	SrO	800	第1群	第2章	焦3番	軟化点	不純物
使用原料	S102	B203	P206	Li200s	NacCOs	K2003	Mar COs	CaCOs	Sr003	BaCOs	成分	成分	成分	BA ILLIAN	合有率
BC MINERAL	1/102	7,696	1276	t#46	£#96	1896	1276	1496	₹896	₹₽%	WAW.	調合は	調会社	(°C)	₹#%
野電体がする	(10.70	100.70	1-70	- J. T.	1,770	1///10	17.70	1774	1.78	. SE 13					
於料益分															
G212	65.6	14.4	0, 0	15.2	4. 5	6.0	0.0	0.0	0.0	0.0	80	20	0	730	0.2
G213	34.4	7.6	0.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	592	0.4
G214	23.0	5.0	0.0	7.6	24.4	10. 1	8.4	10.8	6.6	4.2	28	42	30	795	0.6
G215	41.0	9.0	a. o	0.0	2.5	2.5	5.4	13.5	17. 1	9. 0	50	6	45	978	0.8
6216	65.6	14. 4	6.0	0.0	0.0	5.0	1.5	3.8	6.0	3.8	80	5	15	1164	0.7
G217	51.7	11.3	0.0	21.2	0.0	1.8	3. 5	1.7	3.4	5.5	63	23	14	767	0.3
G218	31.2	5.6	0.0	12.6	16.3	8. 1	2.5	6.3	10.0	6.3	38	37	25	793	0.5
G21 9	24.0	56.0	0.0	15.2	4.8	0.0	0.0	ດ.ຫ	0.6	0.0	80	20	0	564	0.2
G220	12.6	29.4	0.0	29.0	29.0	0. 0	0.0	0.0	0.0	0.0	42	58	0	504	0.2
G221	8.4	19.6	0.0	7.6	24.4	10.1	3.6	9.0	11.4	6.0	28	42	30	747	0.6
G222	15. 0	35.0	0.0	0.0	2. 5	2.5	4.5	11.3	18.0	11.3	50	5	45	874	0.8
G223	24.0	56.0	0.0	0.0	0.0	5.0	3.8	1.8	3. €	5. 9	80	5	15	690	0.7
G224	18.9	44.1	0, 0	21.2	0.0	1. 8	1.4	3.5	5.6	3.6	63	23	14	640	6.5
G225	11.4	26.5	0.0	12.6	16.3	8.1	6.3	3.0	6.0	9.8	38	37	25	701	6.4
G226	8. 6	67.6	14.4	16.2	4. 6	0.0	0.0	0.0	0.0	0.0	80	20	0	457	0.2
G227	4. 2	30.2	7.6	29.0	29.0	0.0	0.0	0, 0	0.0	ao	42	58	0	446	0.3
G228	2. 8	20.2	5,0	7.6	24.4	16. 1	3.0	7.5	12.0	7.5	28	42	30	709	0.6
G229	5.0	36.0	9.0	0.0	2.5	2.5	11.3	5.4	16. 8	17. 6	50	5	45	7R4	0.8
G230	8.0	67.6	14.4	0.0	0.0	5.0	1.5	3.8	6.0	3.8	80	5	15	591	0.7
G231	6.3	45.4	11.3	21.2	0.0	1.8	3.5	1.7	3.4	6.5	63	23	14	651	0.4
G232	3.8	27.4	6,8	12.6	16.3	8.1	7. 0	9. 0	5.5	3.5	38	37	25	654	0.4
G233	12.0	16.0	52. 0	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	U	494	0.2
G234	6.3	8.4	27. 3	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	56	0	410	0.3
G235	4.2	5.6	i8.2	7.6	24.4	10. 1	7.5	3.6	7. 2	11.7	28	42	30	660	0.6
G236	7.5	10.0	32. 5	0.0	2.5	2.5	4.5	11.3	18.0	11.3	50	- 5	45	747	0.6
G237	12.6	16.0	52.0	0.0	0.6	5.0	3.8	1.8	3.6	5. 9	80	5	15	486	0.8
G238	9.5	12.6	41.0	21.2	0.0	1.8	3.9	5. 0	3.1	2.0	63	53	14	472	0.4
G239	5.7	7. 6	24.7	12.6	16.3	8.1	3.0	7.5	9.5	5.0	38	37	25	617	04
G240	30.4	0.0	49.6	15.2	1.8	0.0	0.6	0.0	0.0	0.0	80	20	0	426	0.2
G241	16.0	a o	26.0	29.0	29.0	0.0	0.0	0.0	0.0	0,0	42	58	0	440	0.3
G242	10.6	a.o	17.4	7.6	24.4	10. 1	3.0	7. 6	12.0	7.5	28	42	30	704	0.6
G243	19.0	0.0	31.0	0.0	2.5	2.5	11.3	5.4	10.8	17.6	50	5	46	774	0.7
G244	30.4	0.0	49.6	0.0	0.0	5.0	4.2	5.4	3.3	2. 1	80	S	15	570	0.6
G245	23.9	a.o	39.1	21.2	0.0	1. 8	1.7	4.2	5.3	2.8	63	23	14	546	0.4
G246	14.4	0.0	23.6	12.6	16. 3	8.1	2.5	6.3	10.0	6.3	38	37	25	655	0.4
G247	76. 4	0.0	9.6	16. 2	4. 6	0.0	0.0	0.0	0.0	0.0	80	20	0	721	0.2
G248	37.0	0.0	6.6	29. 0	29.0	0.0	0.0	0.0	0.0	0.0	42	68	0	687	0.3
G249	24.6	0.0	3.4	7.6	24.4	10. 1	7.5	3.6	7.2	11.7	28	42	30	786	80
G250	44. 0	0.0	6.6	0. 6	2. 5	2.5	12.6	16. 2	9. 9	6.3	50	5	45	957	0.7
G251	70.4	0.0	9.6	0.0	0.0	5, 6	1.8	4.5	5.7	3.0	80	6	16	866	0.6
G252	55. 4	0.0	7.6	21.2	0.0	1. 6	1.4	3. 6	5.6	3.5	63	23	14	764	0.4
G253	33.4	0.0	4.6	12.5	16.3	8.1	6.3	3.0	6.0	9. 6	38	37	26	775	0.5
G254	32. 0	20.6	26.0	15.2	4.8	0.0	0.0	0.0	0.0	0.0	60	20	0	512	0.2
G255	16.6	10.5	14.7	29. 0	29.0	0.0	0.0	0.0	0.0	0.0	12	58	0	477	0.3
G256	11.2	7.0	9.8	7.6	24.4	16.1	8.4	10.8	6.6	4. ?	28	42	30	725	0.6
G257	20.0	12.5	17.5	6.0	2.6	2.6	6.4	13. 5	17.1	9.0	50	5	45	842	0.8
G258	32.0	20.0	28.0	0.0	0.0	5.0	1.5	3.8	6.0	3.8	80	6	16	646	0.7
G259	25. 2	15.8	22. 1	21.2	0.0	1.8	3.5	1.7	3.4	5.5	63	23	14	595	0.3
G260	15.2	9.5	13.3	12. 6	16.3	8. 1	2.5	6.3	10.0	6.3	38	37	2.5	689	0.5

·* *【表7】

[0054]

25 映電体ガラス組成物調合比率例:その軟化点と不純物含有量 (VI)

第3群成分 CaO Sr0 CaCOs SvCOs 新1瞬 新2時 成分 成分 不純物 LizO NazO KzO LigOo NazOb KzOo 數化点 酸化物級成 使用原料 EDQUS EDQUS PaOs PaUs **\$4*** BaCOs E896 虚分 K200s SiUz (°C) 開合社 MAL 開合技 ₹#% 11% 14% 1#96 11% £#96 **EA%** 声像体) **兴事等** 0.0 0.0 4.2 0.0 0.0 0.0 80 42 0.0 15.6 G261 65.6 14.4 593 0.5 成分報析 30. 2 25. 2 2. 6 0. D 10. 1 2. 4 0.0 8.4 5.4 G262 34. 4 0.0 27.6 10. R 13. 5 28 68 96012 96012 失进化 失进化維養 42 6 30 45 15 14 25 9 8. T 0. 0 G263 G264 23. ft 41. 0 0.0 0.0 5. Q A. O 17. 1 9.0 0.5 0.0 2.4 12.5 0.0 0.0 0.0 0.0 6.8 0.0 7. 5 7. 0 5. 8 80 63 38 H50 636 7.5 4.6 0.0 成分解析 0. 0 0. 0 G265 G266 65. 6 14. 1 4.7 17.9 0.0 6.1 0.3 0.0 0.0 4.8 27.8 2.5 23 37 20 58 42 5 5 23 37 20 58 42 5 18.9 44. 1 648 624 554 0.5 0.2 0.3 26.6 17.8 19. 2 12. 6 30. 2 0. 0 1. 1 2. 6 13. 8 19. 2 0. 0 12. 8 21. 8 3. 0 2. 6 11.4 0.0 0.0 7.5 17.6 2.1 80 42 G268 G269 24.0 12.6 56. 0 29. 4 0. 0 0. 0 3. 2 0. 0 成分標析 0.0 0.5 大进化 大进化斯基 39.5 3.9 2.4 3.7 0.0 18.8 30 45 15 14 25 0 8, 4 5, 0 8, 0 6, 3 10. 8 36. 0 57. 6 46. 4 9.0 14.4 11.3 3, 0 11. 3 7.5 5.4 5.4 4.2 0.0 0.0 0.0 15.0 22.5 3.8 28 56 80 63 38 80 47 28 50 80 63 38 <u>6270</u> 6271 10.8 3.3 5.3 12.5 07 05 507 533 成分解析 0.0 6.6 17.8 1.2 0.0 0.0 1.2 2.4 4.2 1.7 0.0 0.0 0.0 16.0 0.0 2.8 12.5 0.0 0.0 0.0 0.0 3.8 G273 680 378 0.4 0.2 0.3 0.3 0.6 0.7 G274 G275 27.4 67.6 8.4 5.6 16.0 16.0 12.6 6.8 14.4 0.0 0.0 0.0 22.5 6.0 低軟化.4 8. O 6. 3 新黎化京 失婚化 失婚化 失选化課者 成分屬於 45.2 20.2 0.8 0.0 G276 G277 27.3 30 45 15 600-700 960以上 18. 2 32. 5 52. 0 1.2 7.5 429 12.0 G279 425 D.A 14 0.0 8.1 10.4 9. 0 0. 0 3.5 7.0 0.0 6.5 3.5 0.0 0.0 16.0 10.4 0.0 6.3 0.0 6.0 22.5 7.5 3.2 23 37 20 58 42 5 5 23 37 20 58 9.6 14.4 30.4 16.0 10.6 19.0 41.0 3.4 5.5 6.0 9.9 0.0 7.0 G280 603 391 456 25 0 0.4 0.2 0.5 0.3 0.6 0.8 0.0 0.0 0.0 0.0 28.9 9.6 0.0 G281 G282 23.6 49.6 低敏化点 成分關係 80 42 G283 G284 G285 34. 8 21. 8 0. 0 13.9 20.2 0.3 0.0 0.0 5.1 22.5 7.5 26. 0 17. 4 0.0 0.0 12.2 7.6 7.0 6.3 0.0 9.3 0.0 4.7 3.9 11.0 5.9 0.0 夫妻化 720 B20 960LL I 28 50 80 63 38 80 42 28 60 80 63 失透化期間 31.0 成分報析 15 14 622 701 9.6 7.6 4.6 9.6 1. I 12. 0 22. Z 10. 4 G286 G287 70. 4 56. 4 33. 4 70. 4 37. 0 11. 8 21. 0 0.0 0.0 0.0 0.0 0.0 4.7 7.5 0.0 8.9 9.6 0. 0 2. 5 0, 0 04 809 748 0.4 G288 G289 G290 0.0 0.0 11.4 22.5 5.0 03 02 05 08 3.5 0.0 0.0 1.2 11.0 0.0 9.0 0.0 0.0 3.8 5.0 12.0 21.5 34.4 27.1 0.0 9.2 2.6 3.0 0.0 3.6 0.0 2.6 7.0 54.5 32.6 30 45 15 14 **吳遊化** 吳遊化繁著 成分都符 42 5 5 680-780 96012 J 679 583 2.4 0.8 0.0 G293 G294 12. U 9. 5 0.0

* C795 16,0 5.7 16 *印は本美明範囲外のものを示す

[0055]

* *【表8】

2 / 誘端体ガラス組成物調合比率例:その軟化点と不純物含有量 (VI)

Г			第1.群席	t ý		第2群6	14		第3群	分							
ī	收化物程成	S102	B203	Pz06	LI ₂ 0	Next	K20	MgO	CaO	SrO	BaO	年1章	氟2群	第3雌	數化点	不純酶	
ı	使用原料	SiO2	B ₂ O ₃	P206	LisCOp	NegCO ₂	Ka00a	MacCos	CaCOs	Secos	BaCOs	成分	成分	成分		古有事	備考
L		4#96	₹#%	₹6%	€#%	₹4%	1896	1016	61%	1416	F#94	用金件	聚合 体	調合社	(°C)	₹89£	
F	海南体制 5人														1		
L	放射番号																
ı	G298	87.2	12. 6	0.0	15. 2.	4.0	U.O	0.0	0.0	0.0	0.0	80	20	0	718	0.2	
ı	G297	35.3	G. 7	0.0	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	٥	563	0.3	准分類性
İ	G298	23.5	4.5	0.0	7.6	24.4	10.1	3.6	9.0	11.4	6.0	28	42	30	820-920	0.8	失過化
l	G299	42.0	8.0	0.0	0.υ	2.6	2.5	0.0	0.0	22. 5	22, 5	50	Б	46	1014	06	失进化局
l	G300	67. 2	12.6	0.0	0.0	0.0	5.0	2.6	0.0	5.0	7.5	80	5	15	850	0.7	成分配
l	C301	52.4	10.1	0.0	21.2	0.0	1.8	7. 0	3.9	0.0	3.2	63	23	14	751	0.4	
Į	6302	31.9	6. l	0.0	14.1	5.9	17. 0	12.5	12.5	0.0	0.0	38	387	25	800-900	0.4	失进化
	C303	22.4	57.6	0.0	15.2	4. E	0.0	0.0	0.0	0.0	0.0	80	20	0	494	0.2	
ı	G304	11.8	30. 2	0.0	29.0	29. 0	0.0	0.0	0.0	0.0	0.0	42	58	0	465	0.4	東分離
Ļ.	G305	7.8	20.2	0.0	7.8	24.4	10.1	7.5	3.6	7.2	11.7	28	42	30	730 830	02	美洲
ı	G306	14.0	36.0	0.0	0.0	2.5	2.5	12.6	16.2	9.9	6.3	60	5	45	960以上	0.3	失過化學
ı	G307	22. 4	57.6	n. o	0.0	0.0	6.0	1, 8	4.5	5.7	3.0	BO	5	15	642	27	成分編制
t	C306	17.6	45.4	0.0	21.2	0.0	1.6	O. U	0.0	7.0	7.0	63	23	. 14	601	04	
l	G309	10.6	27.4	0.0	14. 1	5.9	17.0	4.3	0.0	8.3	12.5	3R	37	26	710-810	04	失透化
ı	G3 10	6.4	60.8	12.8	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	376	0.2	新教化
ı	G311	3.4	31.9	6.7	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	68	0	403	08	成分配
ı	G312	8-8	21.3	4.5	7.6	24.4	10.1	0.0	15.0	15.0	0.0	28	42	30	720-820	07	失過化
ı	G313	4.0	3R. O	R.O	0.0	2.5	2.5	4.5	11.3	18.0	11. 3	60		45	960以上	0.0	失进化研
ļ	G314	6.4	60.8	12, 8	0.0	0.0	5.0	3.8	1.8	3.6	5.9	80	5	15	514	07	42分割4
i.	C3 15	5.0	47.9	10.1	21.2	0.0	1.0	3.9	5.0	3.1.	2.0	63	23	14	499	0.4	
Γ	C316	3.0	28.9	6.1	14. 1	5.9	17.0	3.0	7.5	9.5	5.0	38	37	25	660-760	04	先进化
l	G317	11.2	14.4	54. 4	16.2	4.8	0.0	۵٥	0.0	0.0	0.0	80	2.0	0	275	0,4	在 軟化
ı	G318	5.9	7.6	28.6	29.0	29.0	0.0	0.0	0.0	0.0	0.0	42	68	٥	360	0.4	域分解
۱	G319	3, 9	ō.O	19.6	7.6	24.4	10.1	L5. D	8.1	0.0	6.9	28	42	30	630-730	0.2	先进化
l	G320	7.0	9.0	34,0	0.0	2.5	2.5	22.6	22.5	0.6	0.0	60	- 5	45	960以上	0.3	失過化酶
ŀ	G321	11.2	14.4	54. 4	0.0	0.0	5.0	0.4	7.5	7.5	0.0	80	5	15	432	OB	成分欄
l	6322	8.8	111.3	42.8	21.2	0.0	1.8	1.4	3.5	6. 6	3.5	63	23	11	427	0.4	
ı	G323	5.3	6.8	25. 8	14.1	5.9	17.0	6.3	3.0	6.0	9.8	38	37	25	600-700	0.4	失適化
ı	G324	28.8	0.0	61.2	15.2	4.8	0.0	0.0	0.0	0,0	0.0	80	20	D	373	0.2	餐飲化
ı	G325	15. 1	0.0	26.9	29.0	29.0	0.0	0.0	0.0	ao	0.0	42	58	0	402	0.5	12.3 40
ľ	G326	10. 1	0.0	17.9	7.0	24.4	10.1	0.0	0.0	15. D	15.0	78	42	30	710-810	0.7	失過化
ı	G327	18.0	0.0	32.0	0.0	2.5	2.5	7.7	0.0	14.9	22.5	50	5	45	980UL 1	0.6	火機化網
l	G328	28.8	0.0	51.2	0.0	0.0	5.0	7.5	6.1	0.0	3.5	80	5	15	500	0.6	接分類
l	G329	22.7	0.0	40.3	21.2	0.0	1.8	7.0	7.0	0.0	0.0	63	23	14	488	0.4	
ŀ	6330	13.7	0.0	24.3	14.1	5.9	17.0	0.0	12.5	12.5	0.0	38	37	2.5	670-770	0.4	失過化
l	G331	72.0	0.0	8.0	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	718	0.3	
ı	G332	37.8	0.0	4.2	29.0	29.0	0.0	0.0	0.0	0.0	ap	42	58	ŏ	583	0.4	成分額
ı	6333	26.2	0.0	2.8	7.6	24.4	10.1	8.4	10.8	6.8	1.2	28	42	30	810-916	0.5	失进位
ı	G334	45.0	0.0	5.0	0.0	2.5	2.5	5.4	13.5	17.1	9.0	60	5	45	1009	0.2	共通化
۱	G335	72.0	0.0	8.0	0.6	0.0	5.0	0.0	0.0	7.5	7.5	80	5	15	867	0.3	成分解
ŀ	G336	5G. 7	0.0	6.3	21.2	6.0	1.8	2.4	0.0	4.8	7.0	63	23	14	769	0.4	1
ĺ	G337	34.2	0.0	3.8	14.1	5.9	17.0	12.5	6.8	0.0	5.8	30	37	25_	790-890	0.5	失道化

*印は本発明範囲外のものを示す。

* *【表9】

[0056]

29 霧電体ガラス組成物體合比率例:その軟化点と不穏物含有量 (環)

		第1群员	£ 分		第2階層	(3)		第3群居	分							
微化物程成 使用反料	SiO ₂	820a 820a	Pa06 Pa06	L120 L1200s	NextOp	K200a	MgO MgODs	CaOs:	SrO 5rCO)	BarC0s	第1章	概2数 成分	施9聯 成分	軟化点	不統執 含有率	10 考
	E#96	1446	E#96	6496	£#9h	£546	1,016	₹#94	6896	7996	開会地	HALL	群会社	(C)	₹6%	
時電体がラス														1 1		
医整件																
G338	68. 9	13.1	0.0	14.0	4.0	0.0	0.0	0.0	CL O	0.0	82	18	0	726	0.3	成分無利
C339	33.6	6.4	0.0	28.8	31. 2	0.0	a. 0	8.0	0.0	0.0	40	60	0	580-680	0.6	失過化
G340	22.7	4.3	0.0	8.4	24.0	9.6	16.5	8.9	0.0	7.6	27	40	33	960CL	0.5	失進化線
6341	40.3	7.7	0.0	0.0	1.6	1.4	24. 5	24.6	0.0	0.0	4R	3	49	977	0.7	失速化算
6342	68.9	13. 1	0.0	0.0	0.0	0.0	0.0	9.0	9.0	0. D	B2	0	18	898	02	成分標
6343	23.0	59.0	0.0	14.0	4.0	0.0	0.0	8.0	0.0	0.0	82	18	0	496	0.4	成分權
G344	11.2	28.8	0.0	28.8	31.2	6.0	0.0	0.0	0.0	0.0	40	60	0	470 570	05	失過化
6345	7.5	19.4	0.0	6.4	24.0	9.6	9. 2	11.9	7.3	4.6	27	40	33	960EX 1:	0.6	火造化
G346	13.4	34.6	0.0	0.0	1.6	1.4	5.9	14.7	18.6	9.8	48	3	49	960以上	0.5	地域化理
6347	23.0	59,0	0.0	0.0	0.0	0.0	3.4	0.0	5.6	9.0	82	0	18	647	0.6	成分類
G348	6.6	62.3	13, 1	14.0	4.0	0.0	0.0	0.0	0.0	0.0	82	Le	0	375	0.4	低軟化
G349	3. 2	30. 1	6.4	28.8	31.2	6.0	0.0	0.0	0.0	0.0	40	60	0	430-510	0.4	失過
G350	2. 2	20.5	4.3	4.4	24.0	9.6	5. 8	0.0	10.9	16.5	27	40	33	960以上	0.6	失過化類
G351	3.8	36.5	7.7	0.0	1.6	1.4	24. 6	13. 2	0.0	11.3	48	3	49	960CL.h	0.7	夫进化师
C362	6.6	62.3	13.1	0.0	0.0	0.0	9. 0	9.0	0. Q	0.0	82	0	18	515	0.2	成分製
G353	11.5	14.8	55. 8	14.0	4.0	0.0	0.0	0.0	0,0	0.0	82	18		272	0.3	任教化
G354	5.6	7.2	27.2	28.8	36.2	0.0	0.0	0.0	0.0	0.0	40	60	0	355	0.5	能軟化
G355	3.8	4.9	18.4	6.4	24.0	9.6	8.3	4.0	7. 9	12.9	27	40	33	960ET 1:	0.7	夫进化 图
G356	6.7	8.6	32. b	0.0	1.6	1.4	13.7	17.6	10.8	6.9	48	3	49	960LL F	0.5	头端化 第
G357	11.5	14.8	66.8	0.0	6.0	0.0	2.2	6.4	6.8	3.6	82	0	18	432	0.4	成分费
6358	29.6	0.0	52. 5	14.0	4.0	0.0	0.0	0.0	8,0	0,0	82	18	O	372	0.4	低軟化
G359	14, 4	0.0	26.6	28.8	31.2	0.0	0.0	0.0	0.0	6.0	40	60	0	430-540	0.2	失適(
6360	9.7	0.0	17.3	6.4	24.0	9.6	0.0	0.0	16.6	16.5	27	40	33	960以上	0.8	先进化
G361	17.3	0.0	30.7	0.0	1.6	1.4	8.3	0.0	16.2	24.5	48	3	49	960以上	0.4	失激化量
G362	29.5	0.0	52.5	0.0	0.0	0.0	9.0	4.9	0.0	4.1	82	0	16	60H	0.4	成分轉
G363	73.8	0.0	8.2	14.0	4.0	0.0	0.0	0.0	0.0	0.0	82	18	0	726	0.4	成分類
G364	36.0	0.0	4.0	28.8	31.2	0.0	0.0	0.0	0.0	0.0	10	60	0	680-680	0.3	失進
G365	24.3	0.0	2.7	6.4	24.0	9.6	3.3	8.3	13.2	8.3	27	40	33	960ELF	0.7	央通化
C366	43. 2	0.0	4.8	0.0	1.6	1.4	12.3	5.9	11.8	19. 1	48	3	49	960LL	0.6	失著化 !
G367	73.8	0.0	0.2	0.0	0.0	0.0	5.0	6.5	4.0	2.5	82	n	18	877	0.4	成分數

【0057】以下に367通りのガラス誘電体組成物を得るまでの手順(イ)~(チ)及び条件を示す。

- (イ) 当該混合済み原料500gを容積600mlの白金 製坩堝に充填した。
- (ロ) 原料を充填した白金製坩堝をガラス熔解炉内に入れ、毎時300℃の昇温速度で900℃まで昇温後、更に毎時100℃のゆっくりした昇温速度で1100℃まで昇温し、1時間保持して、原料(炭酸化物)から発生 30する炭酸ガスを追い出し、白金製蓋を取り付けた。
- (ハ) 引き続き、毎時300℃の**昇温速度で1**300℃ まで昇温し、1時間保持して各原料を完全に熔融させ た。
- (二) 更に、均質組成物を得る目的で1300℃保持終 了直前に熔融物を白金製棒で1分間の攪拌混合を行っ た。
- (ホ)保持時間終了時点で、ガラス熔解炉から白金製坩堝を取り出し、予め準備しておいた冷水中に熔融物を速やかに流し出し、ガラス誘電体組成物を得た。
- (へ) 367通りのガラス誘電体組成物から各々小片を 抜き取り、光学顕微鏡で失透物、成分編析の有無の確認 及び軟化点の測定を行った。
- (ト)次にガラス誘電体組成物を磁器製ポット形容器 (組成:アルミナ含有率85%以上)と磁器製ボール (ジルコニア含有率95%以上)から構成されているボ*

*ールミルを使い、ガラス誘電体組成物200gに対してエタノール200gを入れて24時間連続で微粉砕した。

(チ) 微粉砕後、磁器製ポット形容器から被粉砕物を取り出し、温度約100℃に設定した加熱器でエタノール分を蒸発乾燥させて縦横隙間間隔70μmのステンレス製篩を通過させて100μm以上の粗粒子を除去し、ガラス誘電体組成物粉末を得た。なお、各々のガラス誘電体組成物粉末の平均粒径は空気透過式粒度測定器を使用して測定し、軟化点は示差熱分析計を使用して測定した。[試作2]表1の中から比較的容易にガラス誘電体組成物を製作できるH2Si2O5、LiH2BO4、及びH2PO4を第1群成分用原料に、LiNO3、NaF及びK2C2O4を第2群成分用原料に、更にMgCl2・6H2O、Ca(CH2COO)2、SrS及びBa(OH)2を第3群成分用原料に選び、下記表10に記した49通り(試料番号G368~G416)の組成比率で調合、投げ拌混合機で混合した混合済原料を製作した。

【0058】以降、ガラス誘電体組成物粉末を得るまでの手順及び条件は、前記[試作1]と同一であり、当該粉末の粒度分布、軟化点及び不純物含有率の測定方法や条件も同一とした。

【0059】

【表10】

		第1群は	(/)		第2群	3		第3群成分							
觀化物組成	Si0z	HzO3	Pz0s	Liz0	Next	E20	M ₆ O	CaO	SrO	B ₄ O	第1群	第2件	飾ら縁	教化点	不掩悔
使用的(4)	KESi 205	1.1H2BO4	H3PO4	LiffOs	Net	E2C204	E-C12-6120	Ca (ORSCOO) 2	SrS	Ba (Off) 2	成分	成分	成分		含有率
	¥#96	£196	E#96	£696	£4%	E196	€#96	6843	t#96	£#%	Mak	養金数	開合批	(5)	1,494
何電体1 パ															
武科書号													L		
G368	65.6	14.4	0.0	15.2	4.8	0,0	0.0	0.0	0.0	0.0	80	20	0	730	0.3
6369	34. 4	7.8	0.0	29.0	29. 0	0.0	0.0	0.0	0.0	0.0	42	58	0	592	0.4
6370	23. 0	5.0	0.0	7. 6	24.4	1.01	8.4	10.8	6.8	4.2	28	42	30	795	0.2
G371	41.0	9.0	0.0	0.0	2.5	2.5	6.4	13.5	17. 1	9.0	50	8	45	960	0.3
G372	55. 6	14.4	0.0	0.0	Ø. 0	5.0	0. 0	0.0	7.5	7.5	80	5	15	864	0.6
G373	51.7	11 3	0.0	21.2	0.0	1.8	2. 1	0.0	4.6	7. 0	63	23	14	768	04
G374	31. 2	6.8	0.0	9. 3	21.5	6.3	12.5	6.8	0.0	5.0	38	37	25	768	0.3
G376	24.0	56.0	0.0	15.2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	564	0.2
C376	12.5	29. 4	0.0	29. 0	29. 0	0.0	0.0	0.0	0. 0	0.0	42	58	0	504	0.3
G377	8.4	19. 6	0.0	7.6	21.4	10.1	3.0	7.6	12.0	7.5	28	42	30	747	0.6
G378	15.0	35. 0	4.0	0.0	2.6	2.6	11.3	5.4	10.8	17.6	50	5	45	851	0.8
G379	24.0	56.0	0.0	0.0	0.0	5.0	4.2	5.4	3.3	2.1	80	5	15	693	0.7
G380	18.9	44, 1	0.0	21.2	0.0	1.8	1.7	1.2	5. 3	2. 8	63	23	14	643	0.8
G381	11.4	76. 6	0.0	9.6	13.7	13.7	0.0	0.0	12.5	12.5	38	37	25	728	0.7
G382	8.0	57.6	14.4	15.2	4. H	0.0	0.0	0.0	0,0	0.0	80	20	0	467	0.3
G383	4.2	30. 2	7.6	29. 0	29.0	0.0	0.0	0.0	0.0	0.0	42	58	0	448	0.3
G384	2.8	20. 2	5.0	7.6	24. 4	10.1	15.0	15.0	0.0	0.0	20	42	30	687	0.8
G385	5.0	30.0	9.0	0.0	2.5	2.5	0.0	22.5	22.5	0.0	50	5	45	830	0,8
C386	8.0	57.6	14.4	0.0	0.0	5.0	1.5	3.8	6.0	3. 6	80	5	15	591	0.7
G367	6.3	45.4	11.3	21.2	μ. ο	1.6	3.5	1.7	3.4	5. 5	63	23	14	551	0.5
G388	3, 8	27.4	6, 8	10.4	6.3	20, 4	7.0	9, 0	5.5	3.5	38	37	25	681	D.4
C389	12.0	16.0	52.0	16. 2	4.8	0.0	0.0	0.0	0.0	0, 0	80	20	0	402	0.2
G390	5.3	8.4	27.3	29.0	29.0	0.0	0.0	0.0	D. O	0.0	12	58	0	410	0.3
G391	4.2	5.6	18. 2	7.6	24. 4	10. 1	5.1	0,0	9.9	15.0	28	42	30	663	0.6
G392	7.5	10.0	32.5	0.0	2.5	2.5	22.5	12. 2	0, 0	10.4	60	5	45	703	0.8
G393	12.0	16.0	52.0	0.0	0.0	ō, O	7. 5	7.5	0.0	0.0	80	5	15	4803	07
G394	9.5	12.6	41.0	21.2	0.0	1.8	0.0	7.0	7.0	0.0	63	23] 14	489	0.6
G395	5.7	7.6	24. 7	27.0	5. 2	1.8	2.5	6.3	10.0	6.3	36	37	25	596	0.3
G396	30.4	0.0	49.6	15. 2	4.8	0.0	0.0	0.0	0.0	0.0	80	20	0	441	0.3
G397	16.0	0.0	26.0	29. 0	29.0	0.0	0.0	0.0	0,0	0.0	42	50	0	440	0.2
G398	10. fi	0.0	17.4	7.6	24.4	10.1	3.6	9.0	1i. 4	6.0	28	42	30	704	0.7
G399	19. a	0.0	31.0	0.0	2.5	2.5	0.0	0.0	22.5	22.5	50	5	45	797	6.0
G400	30.4	0.0	49.6	0.0	0.0	5.0	2.6	0. D	5.0	7.6	80	5	15	\$68	0.7
G401	23.9	0.0	39.1	21, 2	0.0	1.8	7.0	3.8	0.0	3.2	63	23	14	532	0.7
G402	14.4	0.0	23.6	20.4	7.4	9.3	12. 5	12.5	ao	0.0	38	37	25	631	0.3
G403	70.4	0.0	9.6	15. 2	4.8	0.0	0.6	0.0	ao	0.0	80	20	0	721	0.1
G101	37.0	0.0	5.0	29.0	29. 0	0.0	0.0	0.0	0.0	0.0	42	58	0	687	0.2
G406	24.6	0.0	3.4	7.6	24.4	10.1	7.6	3.6	7. 2	11.7	28	42	30	788	0.6
G406	44.0	0.0	6.0	0.0	2.5	2.5	12.6	16.2	9.9	6.3	50	5	45	957	0.7
G407	70.4	0.0	9.6	0.0	0.0	5.0	1.8	4.5	5. 7	3.0	RD_	5_	15_	855	0.7
G408	66, 4	0.0	7.6	21, 2	0.0	1.8	0.0	0.0	7.0	7.0	63	23	14	766	05
G409	33. 4	0.0	4.6	17. 4	13.7	5,9	4.3	0.0	8.3	12. 6	38	37	25	76R	0.4
6410	67.5	12.0	10.4	15.2	4.8	0.0	0.0	0. 0	0.0	0.0	80	20	0	667	0.2
6411	30. 2	6.3	5. 5	29.0	29.0	0.0	0.0	6.0	0.0	0.0	12	58	0	659	0.3
G412	20.2	4. 2	3. 6	7.6	24. 4	10. 1	0.0	15.0	15.0	0.0	28	42	30	798	0.6
G413	36.0	7.5	6.6	0.0	2.6	2.5	4.6	11.3	18.0	11.3	50	5	45	939	0.7
G414	57.6	12.0	10.4	0.0	0.0	5.0	3. 6	1, 8	3.6	5. 9	80	5	15	793	0.7
G416	45.4	9. 6	8.2	21. 2	0.0	1.8	3.9	5.0	3. 1	2.0	63	23	14	719	0.4
G416	27.4	5.7	4.9	14.8	9.3	13.0	3.0_	7.5	9.5	5.0	38	37	_26	770	0.3

【0060】[試作3]前記[試作1]で製作したガラ ス誘電体組成物粉末のうち、請求項1で示した組成を満 足するものを64種類(下記表14に記載のF001~ F064)を選び、各ガラス誘電体組成物粉末100g 秤量したものに対して、予め樹脂 (エチルセルロース) 6 gを溶剤 (α-テルピネオール) 30 gに溶解させた 有機ビヒクルを添加し、更に三本ロールミルで十分混練 40 して、64種類 (FP01~FP64) のガラス誘電体 ペーストを製作した。

【0061】次に、試験用として導電ペースト7種類 (P01~P07)を以下の調合比率及び製作方法で製 作した。

P01:Agペースト:銀(Ag)粉末75重量%、樹脂(エ チルセルロース) 5重量%を溶剤 (α-テルピネオー ル) 18重量%に溶解させた有機ビヒクル及び無機添加 物(シリカ粉末)2%とを三本ロールミルで混練したペ ースト

* P O 2:Ag/Pdペースト:銀 (Ag) 粉末49重量%、パ ラジウム (Pd) 粉末21重量%、樹脂 (エチルセルロー ス) 5<u>重量</u>%を溶剤 (αーテルピネオール) 23重量% に溶解させた有機ビヒクル及び無機添加物(シリカ粉 末)2%とを三本ロールミルで混練したペースト P03: Cuペースト: 銅 (Cu) 粉末65重量%、樹脂 (エチルセルロース) 5重量%を溶剤(α-テルピネオ ール)7重量%を溶解させた有機ビヒクル及び無機添加 物(シルカ粉末)3%とを三本ロールミルで混練したペ

P 0 4: Cu/Zn混合ペースト: Cu粉末52重量%、亜鉛 (Zn) 粉末13重量%、樹脂(アクリル酸樹脂)7重量 %を溶剤 (ブチルカルビトール) 17重量%と溶剤 (α ーテルピネオール)18重量%に溶解せた有機ビヒクルを三本 ロールミルで混練したペースト。

PO5:Niペースト:ニッケル(Ni)粉末60重量%、 *50 樹脂 (エチルセルロース) 5重量%を溶剤 (α-テルピ

ースト

ネオール)20重量%と溶剤(ブチルカルビトールアセテート)15重量%に溶解させた有機ビヒクルとを三本ロールミルで混練したペースト。

P06: Ni/Co混合ペースト: Ni粉末60重量%、コバルト(Co)粉末6重量%、樹脂(エチルセルロース)6重量%を溶剤(α -テルピネオール)28重量%に溶解させた有機ビヒクルとを三本ロールミルで混練したペースト。

P O 7: Ni/Co/Fe混合ペースト: Ni粉末48重量%、コバルト(Co)粉末6重量%、鉄(Fe)粉末6重量%、樹 10脂(ポリビニールブチラール)8重量%を溶剤(αーテルビネオール)30重量%に溶解させた有機ビヒクル及び無機添加物(シリカ粉末)2重量%とを三本ロールミルで混練したペースト。

【0062】次に、図5に示した断面構造を有する平板 形コンデンサ素子を成型するために、市販のアルミナ磁 器製基板(寸法長さ50×幅50×厚さ0.6mm、アルミナ含有量95%以上)上に前記64種類のガラス誘 電体ペースト(FP01~FP64)と7種類の導電ペースト(P01~P07)を表14に示した組合せで使 20 用して、スクリーン印刷法によりコンデンサ素子を成型 した。

【0063】続いて、当該コンデンサ素子を脱脂後、焼成及びメッキ工程を経て平板形コンデンサ素子を完成させた。

【0064】本試作の試験試料(下記表14に記載)は全て以下の通りの(イ)~(ト)の手順及び条件で製作した。

- (イ)アルミナ磁器製基板の片面に導電ペーストをスク リーン印刷後、保持温度120℃にした乾燥機で10分 30 間乾燥し、下側電極層を形成した。
- (ロ)ガラス誘電体ペーストを下側電極層の片側一部分を除いた全面にスクリーン印刷後、保持温度120℃にした乾燥機で10分間乾燥しガラス誘電体粉末層を形成した。
- (ハ) ガラス誘電体粉末層の上面に下側電極層印刷に使用したものと同じ導電ペーストを再度スクリーン印刷後、保持温度120℃にした乾燥機で10分間乾燥し、上側電極層を形成した。
- (二)上側電極層の片側一部分を除いた全面にガラス誘 40 電体粉末層印刷に使用したものと同じガラス誘電体ペー ストを再度スクリーン印刷後、保持温度120℃にした 乾燥機で10分間乾燥し被覆用ガラス誘電体粉末層を形

成した。

(ホ) 脱脂:印刷・乾燥を全て終了した焼成前のコンデンサ素子を焼成前に誘電体と電極の焼結を阻害する樹脂分を除去するため、アルミナ製磁器基板ごと温度350 ℃ (大気中)で2時間保持して樹脂分を分解、燃焼させた。

(へ) 焼成:脱脂が終了した焼成前コンデンサ素子を所 定の保持時間に達するまでの昇温時間を 1 時間、保持時 間を20分又は30分、保持後の冷却時間を約1時間に 設定した焼成炉(内容積約20L)で焼成した。なお、 保持温度は焼成後のガラス粉末誘電体の気孔率が3%以 下になるまで適宜設定を変更して試験を行った。また、 焼成雰囲気ガスには、空気、窒素、水素1%混合の窒 素、水素2%混合の窒素、一酸化炭素2%混合した窒素 及び水素2%と一酸化炭素1%を混合した窒素を適宜使 い分けた。各々の焼成雰囲気ガスは昇温開始から冷却終 了まで連続して流量10L/分で流し入れた。また、焼 成雰囲気ガスの加湿はガラス製ガス洗浄ビン中に純水を 入れ、その周囲を所定の温度に保温し、その内部に焼成 雰囲気ガスを通過させることで一定量の水分を加える方 法を採用した。流入した雰囲気ガスの露点測定はミラー 式露点計を使って測定した。更に、炉内の酸素濃度の測 定はジルコニア式酸素濃度計を使って測定した。

(ト)メッキ:焼成後のコンデンサ素子の両端部に露出した上下電極層に電解式メッキ装置を使い、ニッケルメッキ膜と錫メッキ膜を各々数μmの厚みになるように施し、平板形コンデンサ素子を完成させた。

【0065】次に、上記平板形コンデンサ素子における 誘電体特性の計測は、比誘電率はLCRメータ(測定条件:周波数1kHz、印加電圧1V、25℃)で測定し た静電容量と対向する上下電極の公差面積及びガラス粉 末誘電体層の厚みから算出し、誘電損失もLCRメータ (測定条件:周波数1kHz、印加電圧1V、25℃) で測定した。また、絶縁抵抗値は絶縁抵抗計(測定条件:直流電圧25V、1分間印加、25℃)を使用して 測定した。更に、焼結体気孔率測定はコンデンサ素子からガラス粉末誘電体層の一部を採取し、比重ビン(アルキメデスの原理)を使って計測した。焼結体気孔率は次の計算式から算出した。

【0066】焼結体気孔率={1-(焼結体の比重÷焼 結前のガラス粉末の比重)}×100(%)

[0067]

【表11】

ガラス粉末誘電体組成物の平均粒子径、軟化点及び不純物含有量側定結果例

		ま 5ス 調報	体粉末		
カプス誘電体	武料番号	平均粒子径	軟化点	不純物含有率	上な不純物
試料番号		(μ m)	(°C)	m o1%	元素
G001	F001	1.1	737	1.3	Al, Zr, Fe
G002	F002	1.5	759	1.6	n
GO03	F003	1.9	748	1.4	н
G004	P004	2.6	773	1.7	H
G006	F005	1.3	760	1.3	11
G006	17006	2.0	795	1.4	n
G007	F007	1.9	775	1.3	"
G008	F008	2.8	829	1.8	Л
G009	F009	1.0	715	1.4	"
G010	F010	1.4	677	1.4	#
GO11	F011	1.B	730	1.5	"
G012	F012	2.3 1.3	683	1.2	"
G013	F013		760	1.3	,,
G014	F014	1.7	699	1.4	"
G015	F015	1.9	774	1.9	"
G016	F016	2.4	721	1.3	"
G017	F017	1.0	670	1.2	#
G018	F018	1.4	717	1.6	"
G019	F019	1.7	680	1.4	<i>n</i>
G020	F020	2.4	732	1.5	и
G021	F021	1.2	691	1.4	"
G022	F022	1.8	728	1.6	"
G023	F023	1.8	706	1.3	"
G024	F024	2.7	799	1.5	"
G025	F025	1.0	676	1.6	"
G026	F026	1.2	818	12	"
G027	F027	1. 7	697	1.5	n
G028	F028	2.1	628	1.3	"
G029	F029	1.2	715	1.9	"
G030	F030	1.6	643	1.3	"
G031	F031	1.9	740	1.5	"
G032	F032	2, 2	663	1.3	"
G033	F033	0.9	604	1.2	n
G034	F034	1. ≰	680	1.6	"
G035	F035	1.5	617	1.1	11
G036	F036	2. 3	702	1.5	"
G037	F037	1.0	628	1.3	n
G038	F038	1.8	716	1.5	"
G039	F039	1.6	643	1.3	"
G040	F040	2, 5	750	1.5	"
G041	F041	1.0	675	1.8	N 11
G042	F042	1.2	615	1.2	
G043	F043	1.7	695	1.5	77
G044	F044	2.1	625	1.3	"
6045	F045	1.2	712	1.5	
G046	f046	1.6	638	1.4	"
G047	F047	1.8	737	1.6	11
. G048	F048	2.2	659	1.4	17
G049	F049	0.8	675	1.3	11
G 05 0	F050	1.3	662	1.5	II
6051	F051	1.5	588	1.2	y D
G052	F052	2.3	685	1.7	
G053	F053	1.0	600	1.3	N U
G054	F054	1.7	698	1.6 1.3	u
6055	FUND	1.5	613		U
G056	F058	2.4	732	1.7	Ü
G057	F057	1.9	637	1.5	u u
G058	F058	1.1	558	1.3	,, D
G059	F059	1.6	656	1.5	17
G060	P060	1.9	559	1.1	y Y
G061	P061	1.1	673	1.6	H H
G062	F062	1.4	571	1.2	'n
G063	1063	1.5	596 505	1.5	y y
G064	F064	1.2	595	1.4	. "

注) 軟化点はか 73諸電体組成物粉末のものを示す。

【0068】 【表12】

使用した導電パースト中の金属成分調合比率及び機成雰囲気がス

	海鹿ペースト	雰囲気	焼成雰囲気	炉内製業	炉内酸素 主成分4.7	金米
大学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	金属成分割合比率	蜂	主政公4.7	美	の事点 (で)	
<u>20</u>	(集(Ag)粉末100%	Air	大気	18~20%	$5 \sim 10$	酸化性素阻気
P02	Ag的末: パラジウム(Pd)粉末 =30%: 70%	Air	大気	18~20%	5~10	酸化性雰囲気
P03	爾(Cu)粉末100%	乾燥N2 加器N2	編集(N2)か, x 加強資素(N2)か, x	<20ppm	<20ppm -30~-50 100ppm 20±2	不活性が.7套開気 不活性が.3套開気
20	個 (Cu) 粉末: 亜鉛 (Zu) 粉末 =80%: 20%	乾燥N2 加燥N2	直素(N2)が、X 加強 資素(N2)が、X	<20ppm <100ppm	-30~-50 20±2	不活性が、1雰囲気 不活性が、1雰囲気
20	914(1) 勘末 1 0 0 %	乾燥R2/N2 加雹R2/N2	水素(N2)/N2 = 1%;9%混合1,7 加强 水素(R2)/N2 = 2%;4%增合1,7	<10ppm	-30~-50	議元性9° 7學問句 議元性9° 7學問句
P06	Ni粉末: クゥム(Cr)粉末 =90%: 10%	₹.#CO/N2	一颗化效素(CO)/N2=2%:98%能由,3	< 10pp	<10ppm -20~-30	還元性,7季囲気
P07	N(粉末;Cr粉末;飲(Pe)粉末=80%;10%;10%	加港H2/CO/N2	如道H2/CO/N2 加強 H2/CO/N2 = 2%: 1%: 97%現合が A	<100pp	40±2	道元性57.9周気

【0069】 【表13】

10

20

30

电体粗成物	
「保部部」	
使用した	
-	

的阻断条件如子	北京學 · 计多少于设计专案的法(不会大争张图法	(全[/=] 勝丘勝利即擊		建設新電体 的	大田原料館	茲與素實体粉末用原料關合比率 (重量比)	3	3
1 対対地の 対対地の		The state of the s	BaCO8	CaCOS	51003	T102	2702	Q.
8	BeT103	Bs0/Ti02=1.002	712, 28		-	287, 72	-	1
l	SrTiO	Sro/Tio2=1.003	1		649, 46	350.54	1	1
8	Carios	Ca0/Ti02=1.005	1	557.31	_	442.67	ı	i
	MeT-103	Mro/TiO2=1,006		-	1	863.61	1	336. 39
	C42+03	Ca0/Zr02=0.999		448.03	ì		551.97	
	(Mg-Ca)0-Ti02	OLEGHCa0)/F102=1.004	1	72.38	1	634.92	I	292. 70
203	(Ba-Ca) 0-T102	(Bed+Ca0)/T102=1,002 Ca0/Be0=0,05	690, 24	17. 53		292.23	ı	1
880	(Ba-Sr)0-Ti02	(BaO+SrO)/T102=1,003 SrO/Pa0=0,02	701.10	ı	10, 39	288, 52	1	
600	(Ba-Sr-Ca)0-Ti02	(Ba0+Sr0+Ca0)/Ti02 =1 005	586. 79	53.46	52, 53	307.22	1	ı
		Sr0/8m0=0.12 Ca0/8m0=0.18						
C10	(Mg-Ca) 0. (Ti-Zr) 02	(MgO+CaO) / (TiO2+2rO2) =1,005	1	43.02	1	482.69	186, 73	288.56
		$C_{e0}/M_{g0} = 0.06$ $Z_{r02}/T102 = 0.25$						
C11	(Ba-Ca)0-(Ti-Zr)02	(BaO+CaO) / (TiO2+2rO2) =1.004	666, 11	33.83	ı	286.97	13.09	1
		Ca0/Ba0 = 0.1 Z= $C2/T$; $C2 = 0.03$						
CIZ	Ge-Sr-Ca)0-(Ti-Zr)02	(BaO+SrO+CaO) / (TiO2+ZrO2) =1.006	620.21	12.62	60.18	265.94	41.06	1
		Srd/Ba0=0.13 Ca0/Ba0=0.04						
		2FUZ/ 11UZ = U. 1				-		

* *【表14】

[0070]

	文料書号 F001 F002 F003 I'004 F005 F006 F007	^*~ 小 舞号 FP01 FP02 FP03 FP01	養与 P01 P02 P03	780 810	(<u>/</u> 2)) 20	(雰囲気略号) Air	2.4	8. 2	(%) I. 4	(GΩ) ≥10
	F002 F003 I'004 F005 F006 F007	FPO2 FPO3 FPO1	P02			Air	2.4	8.2	1.4	1 >10 1
	F003 F004 F005 F006 F007	FPO3 FPO1								
Lian-san Am	1'004 F005 F006 F007	FPO1			30	1 iA	2.5	11.7	2.0	≧10
	F005 F006 F007			800	30 30	乾燥約2 加羅N2	2. 5 2. 6	8.3 11.9	1.4 2.0	≧10 ≥10
	F006 F007		P03 P04	820 810	30	乾燥N2	2.5	8.4	1.4	≥10
	F007	FP05 FP08	P05	850	30	乾燥\$2/N2	2.7	12. 1	2.0	≥10
		FF07	P05	830	30	加崖12/N2	2.6	8.5	1.4	≥10
	F008	FP08	P06	880	30	乾燥CO/N2	2. 0	11.9	2.0	≥10
	F009	FF09	P07	760	20	加湿H2/C0/N2	2. 4	11.3	1.9	≩10
	F010	FP10	POI	730	20	Air	2.3	8.2	1.4	≥10
1	FOI 1	FP11	P02	780	20	Ais	2.4	11.4	1.9	≧10
	F012	FP12	P03	740	20	加程N2	2.3	8.3	1.4	≥10
	F013	FP13	PO3	610	30	乾燥N2	2.5	11.6	1.9	≥10
1	F014	FP14	P04	750	20	加福N2	2.3	8.3	1.4	≧10
	F015	FP15	P05	830	30	加强82/N2	2.6	11.7	2.0	≧10
	F016	FP16	P05	770	20	乾燥CO/N2	2.4	6.3	1.4	≥10
	F017	FP17	P06	720	20	加港第2/00/112	2.3	8.4	1.4 2.0	≥10
	F018	FP18	P07	770	20	乾燥II2/N2	2.4	11.6		≥10
	F019 F020	FP19 FP20	P01 P02	730 780	20 20	Air Air	2.3 2.4	8.5 12.0	1.4 2.0	≩10 ≩10
	F020	PP21	P03	740	20	#Z∯N2	2.3	8.6	1.4	≥10
	F022	FP21	P03	780 780	20	加強N2	2.4	12.1	2.0	≥10
	F023	FP23	P04	760	20	乾燥N2	2.4	8. 7	1.5	≥10
	F024	FP24	P05	850	30	乾燥CO/N2	2.7	12.0	2.0	≥10
İ	F026	FP25	P06	730	20	加福H2/CO/N2	2.3	11.2	1.9	≥10
1	F026	FP26	P06	670	20	乾燥H2/N2	2.1	8.0	1.3	≥10
	P027	FP27	ľ07	750	20	加提H2/N2	2.3	11.3	1.9	≥10
1	PO28	FP28	P01	680	20	Air	2.1	8.1	1.4	≥10
1	F029	FP29	P02	770	20	Air	2.4	11.5	1.9	≥10
	FO30	FT30	P03	690	20	30 M N 2	2,2	8. 2	1.4	≥10
	F031	FP31	P03	790	20	MEMIN 2	2.5	11.6	1.9	≥10
1	F032	FP32	P04	720	20	加湿N2	2.3	8.1	1.4	≥10
1	F033	FP33	P05	660	20	加提H2/CO/NZ	2. 1	7. 5	1.3	≥10
	F034	FP34	P06	730	20	乾燥H2/N2	2.3	11.3	1.9	≥10
	F035	FP35	P06	670	20	加極R2/N2	2.1	7.6	1.3	≥10
	F036	FP36	P07	750	20	乾燥CD/N2	2.3	11.5	1.9	≧10 ≩10
l	1037	PP37	P01 P02	680	20 20	Air	2.1 2.4	7.7 11.6	1.9	≥10
	F038 F039	FP38 FP39	P02	770 690	20	Air 乾燥N2	2. 4	7.8	1.3	≥10
l	F040	FP40	P03	800	30	加维N2	2. 5	11.6	1.9	≥10
	F041	FP41	P04	730	20	乾燥N2	2.3	11.7	2.0	≥10
1	F042	FP42	P05	670	20	PENENZ/N2	2.1	8, 8	1.5	210
1	F043	FP43	P05	750	20	hunsen2/N2	2. 3	11.8	2.0	≥10
1	F044	FP44	P06	680	20	#EMECO/NZ	2.1	8.9	1.5	≥10
	F045	FP45	P07	780	20	DUBLE2/CO/N2	2.4	11.9	2.0	≧10
1	FU46	FP46	P01	690	20	Air	2.2	8.9	1.6	≥10
1	F047	FP47	P02	790	20	Air	2. 5	12. 1	2.0	≥10
	F048	FP48	P03	710	20	Innan2	2.2	9, 9	1.5	≥10
	F049	FP49	POJ	630	20	乾燥N2	2.0	7.9	1.3	≥10
ļ	F050	FP50	P04	710	20	hotens.	2, 2	11.5	1.9	≧10
l "	F051	FP51	POF	640	20	加速H2/N2	2.0	8.0	1.3	≥10
	F052	FP52	P05	740	20	乾燥CO/N2	2.3	11.7	2.0	≥10 ≥10
1	F053	FP53	P06	650	20 20	加强H2/00/N2	2.0 2.3	8.1 11.8	1.4 2.0	≥10
	F054 F055	PP54 PP55	POT POL	750 670	20 20	乾燥H2/N2 Air	2. 3	B. 2	1.4	≥10
l	F056	PP56	P02	780	20	Air	2.4	11.7	2.0	≥10
1	P057	FP57	P03	690	20	MAN2	2.2	10.9	1.8	≩10
1	F058	FP58	P03	610	20	708EN2	1.9	7.4	1.2	≥10
1	F069	FP69	P04	710	20	税集N 2	2.2	11.0	1.8	≥10
1	F060	fP60	P05	610	20	(EM)(00/N2	l_9	7. 5	1.3	≥10
	P061	FP61	P05	730	20	加热H2/00/N2	2.3	11.2	1.9	≥10
1	F062	FP62	P06	630	20	乾燥H2/N2	1.9	7.6	1.3	≥10
i	F063	FP63	P07	650	20	加温1/2/1/2	2.0	11.3	1.9	≥10
L	F064	1764	P01	650	20	Air	1.9	7.5	1.3	≥10

注)が「以誘電体粉末試料番号は【表11】に記載の番号、導電ペーストは【表12】に記載の番号を示す。

【0071】[試作4]図6に示した断面構造を有する 40*素子を完成させた。 ガラス・磁器複合型円板試料のコンデンサ素子を成型す るために、前記[試作1]で製作したガラス誘電体組成 物粉末のうち、請求項1で示した組成を満足するものを 64種類(上記表14に記載のF001~F064)と 表13に記載した磁器誘電体粉末12種類(上記表13 に記載のC01~C12)とを表15に示した組合せ及 び混合比率でガラス・磁器複合型誘電体を製作した。続 いて、ガラス/磁器複合型誘電体を加圧成型し、導電ペ ースト (上記表12に記載のP01~P07)を印刷

【0072】本試作の試験試料(下記表15に記載)は 全て以下の通りの(イ)~(ヌ)の手順及び条件で製作 した。

- (イ)ガラス誘電体組成物粉末と磁器誘電体粉末とを所 定重量比で秤量し、合計100gの混合粉末とした。
- (ロ) 内容積約1 Lのボールミルに混合粉末100gと イオン交換水100gを入れて15時間連続の混合攪拌 を行った。
- (ハ) 混合攪拌後の混合液体をステンレス製容器に移 後、脱脂、焼成及びメッキ工程を経て円板形コンデンサ*50 し、温度120℃で15時間乾燥して水分を蒸発させた

後、磁器乳鉢で解砕した。

(二)解砕した粉末をアルミナ製匣鉢に入れ、昇温時間 3時間、保持時間30分、降温時間約3時間に設定した 焼成炉で仮焼してガラス/磁器複合型誘電体粉末を製作 した。なお、仮焼温度(保持温度)は各ガラス粉末誘電 体の軟化点より約20~30℃高い温度に設定した。

43

(ホ)ガラス/磁器複合型誘電体粉末80gに対して、ポリビニールアルコール樹脂2gを純水20g中に予め溶解させた水溶液を加えて充分混練した後、温度100℃で2時間乾燥させて造粒粉末を得た。

(へ) 造粒粉 0.5 g を 秤量 し、 直径 10 m m の 金型 に 入れて、圧力 500 k g f / c m ² で加圧成型 して 円板 形素子を 成型 した。

(ト) 円板形素子の片面に導電ペーストをスクリーン印刷法で印刷面直径9mmに印刷し、保持温度120℃にした乾燥機で10分間乾燥した後、対向面にも同一ペーストを同一条件で印刷・乾燥し、対向電極層を形成した。

(チ)脱脂:印刷・乾燥を終了した焼成前の円板形素子

44 は[試作3]に記載の脱脂方法と同一条件で脱脂した。

(リ) 焼成: 脱脂が終了した焼成前円板形素子を所定の 保持時間に達するまでの昇温時間を5時間、保持時間を 60分、降温時間を約5時間に設定した焼成炉(内容積 約20L)で焼成した。

【0073】なお、保持温度は焼成後のガラス/磁器複合型誘電体の気孔率が3%以下になるまで適宜設定を変更して試験を行った。また、焼成試験に使用した焼成雰囲気ガスの種類、加湿方法、露点測定方法、炉内酸素濃10度測定方法は[試作3]に記載の内容と同一とした。

(ヌ)メッキ:焼成後の円板形素子の対向電極層へのメッキ方法は[試作3]と同一装置を使い、ニッケルメッキ膜とスズ・鉛混成メッキ膜を各々数μmの厚みになるように施し円板形コンデンサ素子を完成させた。

【0074】なお、誘電体特性及び焼結体気孔率の計測 も[試作3]と同一計測器を使い、同一条件で行った。 【0075】

【表15】

		3 * 9 30的现在分 别化:	4.8		存施ペール	TANKE !	となった	商的 常要 似	她依在	此旅程率	***		
52聯維体粉末	非型制理件	帝国的在外 为水	在基本		**	施格格件		(學歷知趣學)	気化学		(30)	(GQ)	# *
MH25	税末番号 1:0(機合性學(東張%) 0 :100	(t:)	(3)	702	(320	原件等((分)) 120	Air	2.6	9920	21	≥10	## 1100°C###
-	1301	6 :100			Pos	1310	120	W-MH2/12	2.9	238	0.6	<0.1	意告1100で記念、 心 奈保!
	130	0 :100 0 :100	_		106	1340	120	加速 (2/12	2.9	142	0.5	<0.1	被第1100C級強、療験報。
	(204	0 :100	_	_ [POT	1390	150	新聞(0/10) 新聞(0/10)	2.6	55	0.2	<0.1	福田1100代電車、他の地
	(206	0:100	_	"	902	1360	150	Alr	2.9	33	0.1	210	概念1100C世基
	1206	0:100	_		POS	1350	156	************************************	3.0	133	0.6	<0.1	施展1100亿新品、化学技
_	1207	0 :100		-	P06	1350	120	MANUAL PROPERTY AND ADDRESS OF THE PARTY AND A	2.9	2720	20	<0.1	機能100C機能, 化解析
	COH	0 :100	_	1 1	101	1310	120	M##2/CD/10	3.0	14900	1.0	<0.1	南海」100で発音、名称形
	(109	0 :100			101	1200	120	Air	2.6	14690	1.1	≥10	施拉100C基础
-	610		_		901	1320	150	EDBCC/IC	2.8	R9	0.2	<0.1	SELENCHS. ARK
	C11	0 :100 0 :100			806	1300	120	MARIE EL ATO AND	2.6	11990	0.0	21	MELIOCHE, MAKE
-	CI2	0 :100	-		100	1280	120	9:000/ID	2.0	11920	0.0	21	MEDICOCHE MEE
7001	001	Q. 3:99. Y	790	367	902	1030	60	Air	2.8	2920	2.1	210	
F002	003	0.3:99.7	780	30	PGS	1090	60	10E82/05/83	2.9	238	11.6	21	MART
F001	CONS	0.3:99.7	760	30	106	1080	60	0.350 2/10	2.9	142	0.6	21	AMET
1004	004	0.3:99.7	800	30	907	1090	60	10 HB 102/102	2.0	53	0.2	21	MANUELY:
POGS	C05	0.3:99.7	790	30	702	\$090	80	Allr	2. 9	33	0.1	≥10	
P006	(204)	tt. 3:09. 7	810	30	805	1110	60	W.M.10/14	3.0	138	0.6	21	株型100C電道、株件板
F007	cut	0.3:99.7	800	30	106	1100	60	31 M 32/42	2.9	2720	2.0	≥ 00	
POGB	100	0.3:99.7	860	30	P07	1120	90	E.MOV/1/2	3.0	14600	1,0	21	推取100亿期间,将服装
F00D	(09	0.3:99.7	740	30	P02	1060	60	Air	2.4	14690	1.1	₹10	
8010	(10	0.3199.7	700	30	P05	10:50	50	RESERVE.	2.4	52	0.2	≥1	把 概下
P011	611	0.3:89.7	750	30	P06	10.78	60	報理なんな	2.0	11990	0.9	≥10	
PO L2	C12	0.3:99.7	720	30	FO7	19.50	60	6.6 0x/62	7. B	11920	0.9	≥ 10	
PO L3	ωι	0.3.99.5	790	30	P02	1063	60	Afr	2.0	2730	2.1	₹10	1
F014	co:	0.5:99 5	730	30	POG	1030	60	701\$402/102	2. 7	220	0.7	≥10	1
PO15	ms.	0.4:99.6	800	20	90G	1070	60	R_MB(31/102	2.9	131	0.6	\$10	I
FO 15	CTH	0.5:99.5	750	30	POT	1040	60	M 200/00/102	2.0	55	0.8	≥ 10	
F017	CU3	0.5:99 5	700	30	F02	10:20	60	ASE	2.1	31	0.2	è 10	
POIR	COL	0.5.72.0	740	30	700	1040	60	EMICS/ID	2.8	131	0.6	<u>≥10</u>	
PO 19	007	0.5:99.6	710	30	P06	10/20	60	ESE/00/02	2.7	2500	2. 1	>.10	
F0:20	CUR	0.5:00.5	764	30	907	10.50	40	\$1.50002/MA	2.9	19130	5. L	≥10	1
FOXI	CO9	0, 5:99, 5	739	30	P02	1030	60	Air	2.7	14180	1.2	≥10	
P022	CIO	0.5:99.5	770	30	P05	1043	60	####/03/N2	2.8	-	0.3	≥ 10	
F023	CH	0.3:99.0	130	30	206	1043	60	10/58/2/102	1.0	11310	1.0	≥10	
FD24	C12	2.66:2.0	\$20	30	107	1080	60	11 HBR2/10	2.9	11290	0.9	\$10	i
P0:23	COI	2.9/02.0	710	20	702	10/9	40	Aly	2.1	2590	2.2	₹10	1
PD26	007	2.0:98.0	840	30	205	890	60	SEMPLY/17	2.6	217	0.8	5 10	1
FR21	003	2.0:98.0	1:20	30	P06	1070	60	MARIN TO	2.7	12%	0.6	≥:10	į .
FP24	034	2.4:38.0	160	30	P07	1000	60	EMCO/NZ	2.6	52	0.4	≥10	
F924	015	2.0:98.0	140	30	F02	1040	60	Air	2. 8	34	0.2	≥ (0	
P030	C06	2.0:09.0	6 70	10	705	1000	60	税(明位/)位	2.0	12!	0.5	510	ł .
1931	CØ7	1.0:98.0	TOD	30	P06	1050	60	MHHIZ/NZ	2.9	2400	2.3	≥10	
P032	C09	2.0:98.0	698	30	pe7	10:20	60	REMICO/NX	2.7	19420	1.5	≥10	
1-032	009	1.0:98.0	034	30	P972	940	60	Mr	2.6	13430	1.3	≥10	1
H034	C10	2. Q:9R. O	700	30	P85	10/20	60	Je18812/502	2.7	46	0.1	≥10	
Pess	CII	2.0:00.0	450	30	PMG	943	60	MCMCON/K2	2.6	19720	1.2	210	
[436	CI2	2.0:98.0	730	30	207	10:30	60	加温的/00/17	2.7	10090	1.2	₹10	
(40)	OΩL	6.0:95.0	570	ю	902	600	00	Air	2.6	2320	2.4	±10	ļ
1939	CD2	5.0:95.0	140	- 30		18030	60	B.GOV/VI	27	188	0.9	₹10	
1039	003	5. Q:96. O	670	10	P06	990	60	Jer#4,812/100/102	2.6	112	0.6	≥10	
P040	004	6.0:96.0	2MC	10	POT	1650	60	PC##02/102	2.0	91	0.5	≥ 10	
1041	005	5.0:96.9	110	10	P\$2	1010	60	lir .	2.7	30	0.3	≥10	1
P047	006	5, 0:96, 0	640	10	POE	(ABA)	60	###Z/05/10	2.6	111	0. 6	≥ 10	1
P041	007	4, 0:96. 0	720	10	P06	1020	60	464612/N2	2.7	2129	2. \$	≥10	
1944	008	5.0:95.0	000	10	P6?	890	60	James 12/NO	2.6	11910	1.4	210	1
P045	C00	8.0:96.0	740	30	Poz	1090	60	Alt	2.7	3 1680	1.5	≥10	1
PO4n	C10	5.0:95.0	660	30	PQ5	090	60	#EMMIZ/NZ	2.6	36	0. 1	≥10	t
F047	CII	6.0:95.0	760	10	PeG	1840	60	AND DOOR	2.0	9466	1.3	210	
P04fl	GI2.	0.0:95.0	690	- 80		1900	- 60	MOMOTONS.	20	95 to 2020	2.4	≥10	MERKY, STAR
P049	CD1	G. 0:94. 0	610	100	P92	960	60	Armaz/nz	2.5	250/200 16-4	2.0	210	跨電甲化下、第十尺字 跨電甲化下、第十至影
P050	(02	6.0:5L0	680	"	PNS	990	60	Animaz/Az Grimati/Az	2.6 2.6	104	1.7	210	神事中生と、本十七万
P051	CDA	6.0:94.0 6.0:94.0	629 710	30 20	P06	960	60 60	MDMC0/12	2.7	70	0. B	210	神事や此下
P053	CDS	6.0:94.0	710	30	P07	1010	50	Alz	2.5	l n	0. 8	≥10	時度学後下
F054	606	6.0:94.0	720	30	P05	1010	60	#13°	2.7	13	0.7	210	的电平化下、由于实形
FISS	CD7	6.0:94.0 6.0:94.0	640	30	POG	270	50	\$10000/12	2.5	1880	2.7	210	同独书教下、弟子奖形
FOJO	C07	6.0:94.0	750	30 I	P07	1070	60	# Mar / 1/2	27	10080	1.7	510	耐催中低下, 似子龙形
F057	019	6.0:94.0	670	20	P02	990	60	Air	3.8	10050	1.8	210	納電中低下; 非子武物
P050	C10	6.0:94.0	560	امدا	POS	940	50	# STR2/CO/82	24	40	0.4	210	美国中华下、弟子李彩
FUSO	CLI	6.0:94.0	680	20	P05	990	60	EB02/92	2.6	8290	1.5	≥10	病理学 核下、前子更等
FORCE	£12	6.0:94.0	590	👸	PQ7	940	60	Healtz/FC	2.4	6330	1.5	210	网络华色下、发了龙形
POSI	OFI	7.0:93.0	700	ا ءَوَا	P02	1000	80	Air	2.6	1590	1.9	≥10	金倉平衡下, 黄子松形
F052	(3)2	7.0:93.0	600	ایتا	P05	950	60	M 8880/00/10	2.5	142	3. 2	≥10	防衛甲化下、東子荒野
P062	(303	7.0:93.0	720	1 ã l	700	967	56	W200,02/N2	2.5	79	1. 8	≥10	排电率化 下. 東于武划
			530	ایتا	P07	960	60	Indian Ale	2.5	112	8.7	≥10	明集学是下、東北京学
F064	(44	7,0:98.0											

【0076】[試作5]図7に示した断面構造を有する 積層形コンデンサ素子を成型するために、前記[試作 1]で製作したガラス誘電体組成物の粉末のうち、請求 項1で示した組成を満足するものを36種類(上記表1 4に記載のF001~F036)と表13に記載した磁 器誘電体組成物の粉末12種類(表13に記載のC01 ~C12)とを表16に示した組合せ及び混合比率で、 [試作4]と同じ手順及び条件にてガラス/磁器複合型 誘電体組成物を製作した。

* 成物の粉末に樹脂、溶剤、可塑剤及び分散剤を混合して スラリーを作った後、ポリエステルフィルム上にドクタ ーブレード法で塗工してシート化した。

【0078】次に、シートの片面に導電ペースト(上記 表12に記載のP01~P07)をスクリーン印刷法で 印刷したもの3枚を製作し、未印刷シート1枚を加えた 合計4枚のシートを図7に示したように積み重ね、金型 で加熱圧着した後、内部電極層が露出した対向面に再度 電極ペーストを塗布・乾燥後、脱脂、焼成及びメッキ工 【0077】続いて、上記ガラス/磁器複合型誘電体組*50 程を経てガラス/磁器複合型誘電体組成物を材料とする

48 * (ホ)次に加熱圧着体の電極印刷端が露出している2面

に同一の電極ペーストを再度塗布し、積層形素子を製作

積層形コンデンサ素子を完成させた。

【0079】上記試作の試験試料(下記表16に記載)は全て以下の通りの手順及び条件で製作した。

47

- (イ)ガラス/磁器複合型誘電体粉末の製作手順及び諸 条件は[試作4]と同一。
- (ロ)ガラス/磁器複合型誘電体粉末1kgに対して、ポリビニルブチラール樹脂50g、エタノール150g及びトルエン150gを内容積約2Lのボールミル入れて15時間連続の混合攪拌を行った。
- (ハ)混合攪拌後のスラリーをポリエステルフィルム上 10 に塗工後、温度70℃で10分間乾燥して有機溶剤成分を蒸発させ、厚み約300μmのガラス/磁器複合型誘電体シートを製作した。
- (二)シート片面に導電ペーストをスクリーン印刷法で印刷寸法5×5mmに印刷したものを3枚作り、未印刷のシート1枚を加えた合計4枚のシートを図7に示したように積み重ね90℃に加熱した金型に入れて圧力500kgf/cm²で加熱圧着した。

した。
(へ) 脱脂及び焼成:積層形素子は[試作3]に記載した
さればみばる件に同じに勝勝し焼成を行った。なお、保

(へ) 脱脂及び焼成:積層形素子は「試作う」に記載した方法及び条件と同じに脱脂、焼成を行った。なお、保持温度は焼成後の積層形素子を構成するガラス/磁器複合型誘電体の気孔率が3%以下になるまで適宜設定を変更して試験を行った。また、焼成試験に使用した焼成雰囲気ガスの種類、加湿方法、露点測定方法、炉内酸素濃度測定方法は「試作3」と同一とした。

(ト)メッキ:焼成後の積層形素子の外部電極層へのメッキ方法は[試作3]と同一装置を使い、銅メッキ膜と 錫メッキ膜を各々数μmの厚みになるように施し、積層 形コンデンサ素子を完成させた。

【0080】誘電体特性及び焼結体気孔率の計測も[試作3]と同一計測器を使い、同一条件で行った。

[0081]

【表16】

が ラス/磁影複合形影響体組成物 関係型コンプ ソ・純皮軟動結果例

1* ラス新媒体的末	企業業業化	が55時間体的末: 音響新聞体的末	事能ペースト 番品	强孔率3%以下 使成条件	なった	能成) / 以非國伝 (等原化展升)	機器体 気孔率	比勝電車	新地掛失 (%)	絶縁抵抗制 (CQ)
新林春 春	粉末番号	混合比字(直量%)	-9	規模型度(*C)	条件時間(分)	(元四月年7月)	MILT.		(%)	(611)
F001	(0001	0.5:99.5	PO2	1060	60	Alr	2.3	3120	2. 4	≥10
F002	(2002	0.5:99.5	POS	1030	60	ANNURZZ/N2	24	250	0.7	≥10
F003	C003	0.5:99.5	POR	1070	60	MEMICO/N2	24	146	0. 6	≥10
F904	C004	0.5:99.5	P07	1010	60	7076H2/00/N2	2.4	55	0.3	≥10
F005	(2005	0.5:99.5	P02	1070	60	Air	24	34	0.3	≥10
F006	C006	0.0:99.5	P05	1040	60	MEMBCO/N2	2.5	142	0.6	≥10
F007	C067	0.5:99.5	PD6	1020	60	In miH2/CO/N2	24	2010	2,3	≥10
F008	0008	0 5:99.5	P07	1050	60	MEMBER 2/N2	2.5	16270	1. 3	≥10
F009	(1009	0.5:99.5	P02	1030	60	Air	2.3	16380	1. 4	~ 10 ≥10
F010	C010	0.5:99.5	P05	1050	60	###J42/C0/N2	2.3	54	0.5	≥10
F011	(011	0.5:99.5	P06	1040	60	###12/82	2.3	13086	1. 2	≥10
F012	(1)12	0.5:99.5	P07	1080	60	加施H2/N2	2.3	13116	1.2	≥10
F013	(30)	2.0:98.0	P07	1020	60	Air	22	2920	2.4	
F014	(1902	2.0.98.0	P05	990			2.2			≥10 ≥10
F015	C002	2. 0:98. 0	P06	1930	60	MANUELZ/N2		200	0. 8	
F016	C004	2. 0:98. 0	P07	1000	60	加斯H2/N2	2.3	135	0.7	≥10
F017	C005	2.0:98.0	107	1040	60	PCMICO/N2	2. 3	57	0.4	≥10
FOIR	C005	2. 0:98. 0	P05	1000	60 60	A£7	2. 2	32	0.3	≥10
F010	C007	2. 0:98. 0	P05	1050		(C.MH2/N2	2. J 2. 2	135	0.7	≥10
F026	C008	2.0:96.0	P07		60	DOMENIA/NO	2.2	2760	2.4	≥10
F021	C009	2.0:98.4	PO2	990 10.50	90	(E.SECO/)1/2		15540	1.4	≥10
F022	C010	2.0:98.0	P05		60	Air	2. 3	15580	1,6	≥ 10
F023	C011	2.0:98.0	P05	1020	60	使網(20/82	2.3	07	0.4	≥10
F024	C012			990	60	homeH2/C0/N2	2.4	12440	1.3	≥ 10
F025	C012	2.0:98.0 5.0:95.0	P07 P02	1030	60	健備H2/N2	2.5	12410 2770	1. 2	≥10
F026	C002	5.0.05.0	P02 P05	1030	60	Air	2.3	227	2.6	≥ 10 ≥ 10
F027	0003	5.0:85.0	P06		50	加級H2/C0/N2		128	0.8	
F028	C004	5.0:95.0		990	60	吃鍋F2/#2	2.2			≥ 10
F029	C005	5. 0:95. 0	P07	1050	60	和超32/N2	2.1	54	0.5	≥ 10
F030	C006				60	Air	2.3	36	0.3	≥ 10
F030	C007	5. 0:95. 0 5. 0:95. 0	P05	980	60	####2/N2 #####2/N2	2.1	131 2570	2.7	≥10 ≥10
F032	6009	5.0:95.0	Pes Pe7	990	60		2.3	14760	1.6	≥10
P032	C009	5. 0:95. 0	P62	1034	60	乾燥C0/N2	2.2	14770	1.6	₹ 10
F034	C010	5.0.95.0	P02	890	60 60	Air 航機和2/N2	2.1	46	0.4	≥10
F035	COLE	5.0:95.0	P06	1040	60	加麗代2/N2	2. 1	11780	1.5	≥10
F036	C012	5. 0:95. 0	P07	1040	60 60	###CD/NZ	2.2	11750	1.5	≥10

注) f 7.5 新電体粉未試料番号は【数1.1】に影散の番号、専電ベーストは【表1.2】に影散の番号を示す。 確器影響体粉末は【表1.3】に記載したものを示す。

[0082]

※磁器複合型誘電体組成物と、それらを原料とする誘電体

ているため、

- (1) 軟化点が400~960℃のガラス誘電体組成物を微粉砕したガラス誘電体組成物粉末を使用することで大気中、不活性ガス雰囲気中或いは還元ガス雰囲気中の何れにおいても焼成温度1000℃以下で、気孔率3%以下の緻密な焼結体と良好な誘電体特性を有するガラス誘電体ペーストの作製とそれを使ったコンデンサ素子を作製することができる。
- (2)また、当該ガラス誘電体組成物粉末を磁器誘電体粉末に混合し、仮焼して成るガラス/磁器複合型誘電体組成物を使ってコンデンサ素子を焼成する場合でも、大気中、不活性ガス雰囲気中或いは還元ガス雰囲気中の何れにおいてもその焼成温度を1100℃以下できるため、従来の誘電体材料に比較して消費エネルギーを大幅に低減できると共に発熱体、炉体及び匣鉢の寿命も著しく延ばすことができる。
- (3) 更に、本発明のガラス/磁器複合型誘電体を使 うことで、誘電体層と電極層とを交互に重ねて一体焼成 する積層型磁器コンデンサにも応用ができる。

【図面の簡単な説明】

【図1】第1群成分のSiO2、B2O3、P2O5の調合比率を示す図である。

【図2】第2群成分のLi2O、Na2O、K2Oの調合比率を示

す図である。

【図3】第3群成分のMgO、CaO、SrO、BaOの調合比率を示す図である。

【図4】第1群成分と第2群成分と第3群成分の調合比率を示す図である。

【図5】本発明に係る平板形コンデンサ素子断面構造図 である。

【図6】本発明に係るガラス/磁器複合型誘電体組成物 を用いた円板形コンデンサ素子の断面構造図である。

- 【図7】本発明に係るガラス/磁器複合型誘電体組成物 を用いた積層形コンデンサ素子の断面構造図である。 【符号の説明】
 - 1 アルミナ製焼結基板
 - 2 下側電極層
 - 3 ガラス粉末誘電体層
 - 4 上側電極層
 - 5 被覆用ガラス粉末誘電体層
 - 6 メッキ膜(Ni/Sn)
- 7 ガラス/磁器複合型誘電体(円板)
- 20 8 対向電極層
 - 9 ガラス/磁器複合型誘電体
 - 10 内部電極層
 - 11 外部電極層

【図1】

類合比率(EMO 第(0:28)(0:27)(2) 素(0) 72:15:18 高(2) 55:20:28 素(0) 47:37:16 40:25:35 素(0) 42:15:43 素(0) 42:15:43 素(0) 25:55:17 素(0) 25:37:37 素(0) 25:37:37 素(0) 25:37:37 素(0) 25:37:37

【図5】

【図3】

【図4】

フロントページの続き

(51) Int. Cl. 7 H O 1 B 3/08 識別記号

FI CO4B 35/00 テーマコード(参考)

C U 4 B

Fターム(参考) 4G030 AA03 AA04 AA07 AA08 AA09 AA35 AA37 AA41 BA12 GA01

GA03

4G031 AA01 AA03 AA04 AA05 AA06

AA12 AA28 AA30 AA33 BA09

GA11

4G062 AA09 BB01 CC10 DA03 DA04

DA05 DA06 DA07 DB01 DC01

DC02 DC03 DC04 DC05 DC06

DD01 DD02 DD03 DD04 DD05

DDO6 DE01 DF01 EA01 EA02

EA03 EA04 EA05 EA06 EA10

EB01 EB02 EB03 EB04 EB05

ECO1 ECO2 ECO3 ECO4 ECO5

ECO6 EDO1 EDO2 EDO3 EDO4

EDO5 EE01 EE02 EE03 EE04

EE05 EF01 EF02 EF03 EF04

EF05 EG01 EG02 EG03 EG04

EG05 FA01 FA10 FB01 FC01

FD01 FE01 FF01 FG01 FH01

FJ01 FK01 FL01 GA01 GA10

GB01 GC01 GD01 GE01 HH01

HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01

JJ03 JJ05 JJ07 JJ10 KK01

KK03 KK05 KK07 KK10 MM34

NN40 PP01 PP02 PP03 PP04

PP09 PP12 PP13 PP14

5G303 AA01 AB15 AB20 CA02 CA09

CBO2 CBO3 CBO6 CB14 CB16

CB17 CB20 CB24 CB30 CB32

First Hit

Previous Doc

Next Doc

Go to Doc#

End of Result Set

Generate Collection Print

L29: Entry 1 of 1

File: DWPI

May 21, 2003

DERWENT-ACC-NO: 2003-735916

DERWENT-WEEK: 200370

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Glass dielectric composition for use in powder and paste for making capacitors, to reduce

porosity and energy consumption

PATENT-ASSIGNEE:

ASSIGNEE

CODE

MIWA DENZAI YG

MIWAN

PRIORITY-DATA: 2001JP-0347055 (November 13, 2001)

Search Selected Search ALL Clear

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

TD 200

JP 2003146697 A

May 21, 2003

028

C03C008/20

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

JP2003146697A

November 13, 2001

2001JP-0347055

INT-CL (IPC): C03C 8/20; C04B 35/00; C04B 35/46; C04B 35/49; H01B 3/00; H01B 3/08

ABSTRACTED-PUB-NO: JP2003146697A

BASIC-ABSTRACT:

NOVELTY - A glass dielectric composition has a raw material supplying silicon dioxide (SiO2), and one or more raw material(s) supplying boron oxide (B2O3), phosphorus oxide (P2O5), lithium oxide (Li2O), sodium oxide (Na2O), potassium oxide (K2O), magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). The raw materials are blended so that the glass has formula aSiO2+bB2O3+cP2O5+dLi2O+eNa2O+f- K2O+gMgO+hCaO+iSrO+jBaO; with less than 1 mol.% inorganic impurities.

DETAILED DESCRIPTION - A glass dielectric composition has a raw material supplying silicon dioxide (SiO2), and one or more raw material supplying boron oxide (B2O3), phosphorus oxide (P2O5), lithium oxide (Li2O), sodium oxide (Na2O), potassium oxide (K2O), magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). The raw materials are blended so that the glass has formula aSiO2+bB2O3+cP2O5+dLi2O+eNa2O+f- K2O+gMgO+hCaO+iSrO+jBaO; with less than 1 mol.% inorganic impurities.

a = 1.8-70.4;

b = 0-57.6;

c = 0-52.0;

d = 0-62.56;

e = 0-39.44;

```
f = 0-68.0;
g = 0-34.0;
h = 0-34.0;
i = 0-34.0; and
```

j = 0-34.0.

INDEPENDENT CLAIMS are also included for the following:

- (i) a glass dielectric powder obtained by grinding particles of average particle size 0.5-5.0 microns m, and maximum particle size less than 100 microns m, where the powder contains not more than 3 mol.% inorganic impurities;
- (ii) a glass/ceramic composite dielectric composition with inorganic impurities of 2 mol.% or less, obtained by mixing the powder of (i) with ceramic dielectric powder in a weight ratio of 0.5:99.5-5.0:95.0 and sintering at 1000 deg. C or less in air with dew point 50 deg. C or less;
- (iii) a glass dielectric paste formed by mixing 30-90 wt.% of the glass powder of (i) with 2-20 wt.% of a resin (R) with a mean molecular weight of less than 1000000 and 8-50 wt.% of water or organic solvent (S) with boiling point up to 300 deg. C at atmospheric pressure;
- (iv) a capacitor element formed by applying the paste of (iii) and a conductive paste (CP) made by mixing 25-80 wt.% of powdered silver (Ag), gold (Au), platinum (Pt), palladium (Pd), copper (Cu), zinc (Zn), aluminum (Al), nickel (Ni), iron (Fe), and/or chromium (Cr); 2-20 wt.% (R); 18-45 wt.% of (S); and 0-10 wt.% powdered silica (SiO2), alumina (Al2O3), zirconia (ZrO2), and/or titanium-oxide (TiO2) to a dielectric substrate as a single layer or multi-layer, and baking in air or inert gas or reducing atmosphere (all with dew point 50 deg. C or less); and
- (v) a capacitor element formed by molding a slurry to a board, cylinder, or sheet; applying (CP) to the surface and sintering as for (iv).

The slurry is made by adding (R) and (S) to the glass/ceramic composite dielectric of (ii), where the ceramic dielectric is a powder with average particle diameter 10 microns m or less and maximum particle size 200 microns m, comprising MZO3, (M1M2)0.ZO2 or (M1M2M3)0.ZO2.

```
M = Ba, Sr, Ca or Mg;
```

M1M2 = Mg.Ca, Ba.Ca or Ba.Sr;

M1M2M3 = Ba.Sr.Ca; and

Z = Ti or Ti.Zr

with mole ratios M to Ti of 1.0 +/-0.1; M1 to M2 of 1:0.01-0.2; M1 to M3 of 1:0.01-0.2; and Ti to 2r of 1:0.01-0.3.

USE - Used for low-cost capacitor elements with fine structure.

ADVANTAGE - The resin decomposes completely, so that the sintered compact has porosity of 3% or less even with a sintering temperature of below 1000 deg. C. Air, inert gas, or reducing gas may all be used. The lower sintering temperature reduces energy consumption and prolongs the life of heat source, furnace, and sagger. A laminated ceramic capacitor with alternating dielectric layers and electrode layers can be produced. Holding time at maximum sintering temperature can be reduced to below 1 hour.

CHOSEN-DRAWING: Dwg.0/7

TITLE-TERMS: GLASS DIELECTRIC COMPOSITION POWDER PASTE CAPACITOR REDUCE POROUS ENERGY CONSUME

DERWENT-CLASS: LO3 VO1 X12

CPI-CODES: L03-B03E;