Commitment

Notes on Behavioural Economics

Jason Collins

Depress the value of the bad course of action

Increase the value of the optimal course of action

Force the agent to maintain the optimal course of action

$$\beta = 0.5$$

$$\delta = 1$$

$$\beta = 0.5$$

$$\delta = 1$$

$$u(0K) = 6$$

$$u(good) = 10$$

$$u(great) = 16$$

$$U_1(1, \text{good}) = u(\text{good})$$
$$= 10$$

$$U_1(2, \text{great}) = \beta \delta u(\text{great})$$

= 0.5 × 1 × 16
= 8

$$U_1(1, \text{good}) = 10 > 8 = U_1(2, \text{great})$$

$$U_0(0, OK) = u(OK)$$

= 6

$$U_0(1, \text{good}) = \beta \delta u(\text{good})$$

= $0.5 \times 1 \times 10$
= 5

$$U_0(0, OK) = 6 > 5 = U_0(1, good)$$

$$U_0(2, \text{great}) = \beta \delta^2 u(\text{great})$$

= $0.5 \times 1^2 \times 16$
= 8
 $\geq 6 = U_0(0, 0K)$

$$\delta = 1$$

	t = 0	<i>t</i> = 1	<i>t</i> = 2
Save	0	0	45
Spend	10	10	10

$$U_0(\text{Save}) = 0 + \beta \delta \times 0 + \beta \delta^2 \times 45$$
$$= 0.5 \times 45$$
$$= 22.5$$

$$U_0(\text{Spend}) = 10 + \beta \delta \times 10 + \beta \delta^2 \times 10$$

= 10 + 5 + 5
= 20

$$U_0(\text{Save}) = 22.5 > 20 = U_0(\text{Spend})$$

	<i>t</i> = 1	<i>t</i> = 2
Save	0	45
Spend	20	10

$$U_1(\text{Save}) = 0 + \beta \delta \times 45$$

= 0.5 \times 45
= 22.5

$$U_1$$
(Start spending at $t = 1$) = $20 + \beta \delta \times 10$
= $20 + 5$

$$U_1(\text{Save}) = 22.5 < 25 = U_1(\text{Start spending at } t = 1)$$

	t = 0	<i>t</i> = 1	<i>t</i> = 2
Save	0	0	45
Start spending at t=1	0	20	10
Spend	10	10	10

$$U_1$$
(Start spending at $t = 1$) = $20 + \beta \delta \times 10$
= $20 + 5$

$$U_1(\text{Save}) = 0 + \beta \delta \times 45$$

= 0.5 \times 45
= 22.5

$$U_1(\text{Start spending at } t = 1) = 25 > 22.5 = U_1(\text{Save})$$

$$U_0$$
(Start spending at $t=1$) = $0+\beta\delta\times 20+\beta\delta^2\times 10$
= $0.5\times 20+0.5\times 10$
= 15

$$U_0(\text{Spend}) = 10 + \beta \delta \times 10 + \beta \delta^2 \times 10$$

= 10 + 0.5 \times 10 + 0.5 \times 10 = 20

$$U_0(Spend) = 20 > 15 = U_0(Start spending at t = 1)$$

	t = 0	<i>t</i> = 1	<i>t</i> = 2
Save	0	0	45
Start spending at t=1	0	20	10
Spend	10	10	10
Lay-by	-1	0	45

$$U_0$$
(Start spending at $t=1$) = $0+\beta\delta\times 20+\beta\delta^2\times 10$
= $0.5\times 20+0.5\times 10$
= 15

$$U_0(\text{Spend}) = 10 + \beta \delta \times 10 + \beta \delta^2 \times 10$$

= 10 + 0.5 \times 10 + 0.5 \times 10
= 20

$$U_0(\text{Lay-by}) = -1 + \beta \delta \times 0 + \beta \delta^2 \times 45$$

= -1 + 0 + 0.5 \times 45
= 21.5

$$U_0(\text{Lay-by}) > U_0(\text{Spend}) >= U_0(\text{Start spending at } t = 1)$$

7M 568K

Commitments created

1M

workouts

50M

smoked

$$\beta = 0.5$$

$$\delta = 1$$

$$\beta = 0.5$$

$$\delta = 1$$

$$u(\text{smoking}) = 5$$

$$u(\text{healthy}) = 8$$

$$U_1$$
(smoking) = u (smoking)
= 5

$$U_1$$
(healthy) = $\beta \delta \times u$ (healthy)
= $\beta \delta \times 8$
= 4

$$U_0(\text{smoking}) = \beta \delta \times u(\text{smoking})$$

= $\beta \delta \times 5$
= 2.5

$$U_0$$
(healthy) = $\beta \delta^2 \times u$ (healthy)
= $\beta \delta^2 \times 8$
= 4

7M 568K

Commitments created

1M

workouts

50M

smoked

$$U_1(\text{stickK} + \text{smoking}) = u(\text{smoking}) + \beta \delta \times u(\text{lost stake})$$

= $5 + \beta \delta \times (-5)$
= 2.5

$$U_1(\text{stickK} + \text{healthy}) = \beta \delta \times u(\text{healthy})$$

= $\beta \delta \times 8$
= 4

$$U_0(\text{smoking}) = \beta \delta \times u(\text{smoking})$$

= $\beta \delta \times 5$
= 2.5

$$U_0(\text{stickK} + \text{healthy}) = \beta \delta^2 \times u(\text{healthy})$$

= $\beta \delta^2 \times 8$
= 4

u(exercise) = 0

u(television) = 6

u(healthy) = 12

u(unhealthy) = 12

$$\beta = \frac{1}{2}$$

$$\delta = \frac{2}{3}$$

$$U_0$$
(exercise) = u (exercise) + $\beta \delta u$ (healthy)

$$=0+\frac{1}{2}\times\frac{2}{3}\times 12$$

$$=4$$

$$U_0$$
(television) = u (television) + $\beta \delta u$ (unhealthy)

$$=6+\frac{1}{2}\times\frac{2}{3}\times0$$

$$U_0(\text{exercise} + \text{massage}) = u(\text{exercise}) + u(\text{massage})$$
 $+\beta \delta u(\text{healthy})$ $= 3 + \frac{1}{2} \times \frac{2}{3} \times 12$ $= 7$