NCTU Deep Learning

Week 09

Mostly Chapter 12

Fast Implementations

CPU

- Exploit fixed point arithmetic in CPU families where this offers a speedup
- Cache-friendly implementations

GPU

- High memory bandwidth
- No cache
- Warps must be synchronized

TPU

- Similar to GPU in many respects but faster
- Often requires larger batch size
- Sometimes requires reduced precision

Distributed Implementations

Distributed

- Multi-GPU
- Multi-machine

Model parallelism

Data parallelism

- Trivial at test time
- Synchronous or asynchronous SGD at train time

Synchronous SGD

```
# Calculate the gradients for each model tower.
 tower_grads = []
 with tf.variable_scope(tf.get_variable_scope()):
   for i in xrange(FLAGS.num_gpus):
     with tf.device('/gpu:%d' % i):
       with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
         # Dequeues one batch for the GPU
         image_batch, label_batch = batch_queue.dequeue()
         # Calculate the loss for one tower of the CIFAR model. This function
         # constructs the entire CIFAR model but shares the variables across
         # all towers.
         loss = tower_loss(scope, image_batch, label_batch)
         # Reuse variables for the next tower.
         tf.get_variable_scope().reuse_variables()
        # Calculate the gradients for the batch of data on this CIFAR tower.
        grads = opt.compute_gradients(loss)
        # Keep track of the gradients across all towers.
        tower_grads.append(grads)
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads)
```

Example: ImageNet in 18 minutes for \$40

Model Compression

Large models often have lower test error

- Very large model trained with dropout
- Ensemble of many models

Want small model for low resource use at test time

Train a small model to mimic the large one

 Obtains better test error than directly training a small model

Quantization

Normalization

Whitening

Whitening

$$\sum = UDU^{T}$$

$$W_{PCA} = D^{-\frac{1}{2}}U^{T}$$

$$W_{ZCA} = RW_{PCA} = VD^{-\frac{1}{2}}U^{T} = \Xi^{-\frac{1}{2}}$$

$$\sum_{N=1}^{\infty} V_{N}(N) = VD^{-\frac{1}{2}}U^{T} = Z^{-\frac{1}{2}}$$

$$\sum_{N=1}^{\infty} V_{N}(N) = VD^{-\frac{1}{2}}U^{T} = Z^{-\frac{1}{2}}$$

ZCA

https://github.com/tjwei/Animation-with-Identical-Statistics/blob/master/Animation%20with%20Identical%20Statistics.ipynb

Dataset Augmentation for Computer Vision

Generative Modeling: Sample Generation

Covered in Part III

Progressed rapidly after the book was written

Underlies many graphics and speech applications

Graphics

(Table by Augustus Odena)

Attention Mechanisms

Figure 12.6

Important in many vision, speech, and NLP applications

Improved rapidly after the book was written

Generating Training Data

(Bousmalis et al, 2017)

Generating Training Data

(Bousmalis et al, 2017)

Attention for Images

Attention mechanism from Wang et al 2018 Image model from Zhang et al 2018

Attention

Attention

```
V: (dv, h)
   Q:(d_{q},n)
    K:(dy,n)
QKT: (da, dv), softmax
                  > distribution
```

Attention

Natural Language Processing

$$P(x_1, \dots, x_{\tau}) = P(x_1, \dots, x_{n-1}) \prod_{t=n}^{\tau} P(x_t \mid x_{t-n+1}, \dots, x_{t-1}).$$
 (12.5)

$$P(\text{THE DOG RAN AWAY}) = P_3(\text{THE DOG RAN})P_3(\text{DOG RAN AWAY})/P_2(\text{DOG RAN}).$$
 (12.7)

Improve with:

- -Smoothing
- -Backoff
- -Word categories

• An important predecessor to deep NLP is the family of models based on *n*-grams:

CBOW and Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Word Embeddings

High-Dimensional Output Layers for Large Vocabularies

Short list

Hierarchical softmax

Importance sampling

Noise contrastive estimation

A Hierarchy of Words and Word Categories

Figure 12.4

Neural Machine Translation

Figure 12.5

Google Neural Machine Translation

Speech Synthesis

(van den Oord et al, 2016)

Speech Recognition

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence \mathbf{x} into high level features \mathbf{h} , the speller is an attention-based decoder generating the \mathbf{y} characters from \mathbf{h} .

"Listen, Attend, and Spell"

Graphic from

Chan et al 2015

Current speech recognition is based on seq2seq with attention

Deep RL for Atari game playing

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

(Mnih et al 2013)

Convolutional network estimates the value function (future rewards) used to guide the game-playing agent.

(Note: deep RL didn't really exist when we started the book, became a success while we were writing it, extremely hot topic by the time the book was printed)

Superhuman Go

Monte Carlo tree search, with convolutional networks for value function and policy

a, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus u(P) that depends on a stored prior probability P for that edge. **b**, The leaf node may be expanded; the new node is processed once by the policy network p_{σ} and the output probabilities are stored as prior probabilities P for each action. **c**, At the end of a simulation, the leaf node is evaluated in two ways: using the value network v_{θ} ; and by running a rollout to the end of the game with the fast rollout policy p_{π} , then computing the winner with function r. **d**, Action values Q are updated to track the mean value of all evaluations $r(\cdot)$ and $v_{\theta}(\cdot)$ in the subtree below that action.

(<u>Silver et al,</u> 2016)