Evaluación ML I

Ejercicio 1 (Análisis Discriminante, Naïve Bayes)

Inmaculada Perea Fernández

junio 2017

Sobre la base de datos BreastCancer de la librería mlbench, realice las siguientes actividades:

- Construya un clasificador Naive-Bayes usando una muestra aleatoria constituida por 2/3 de la totalidad del fichero de datos.
- Obtenga la matriz de confusión y el porcentaje de clasificación incorrecta a partir de las instancias no usadas en la construcción del clasificador.
- Determine el número de predicciones correspondientes a la clase malignant
- De las predicciones consideradas en el apartado anterior, determine cuántas de ellas se han obtenido con una probabilidad mayor que 0.75

Carga de las librerías necesarias

```
if (!require('mlbench')) install.packages('mlbench'); library('mlbench')
if (!require('e1071')) install.packages('e1071'); library('e1071')
```

1 Carga, inspección y preparación de los datos

1.1. Carga e inspección de los datos

El conjunto de datos BreastCancer consta de 699 observaciones y 11 variables:

- [,1] **Id**: Sample code number
- [,2] Cl.thickness: Clump Thickness
- [,3] Cell.size: Uniformity of Cell Size
- [,4] Cell.shape: Uniformity of Cell Shape
- [,5] Marg.adhesion: Marginal Adhesion
- [,6] **Epith.c.size**: Single Epithelial Cell Size
- [,7] Bare.nuclei: Bare Nuclei
- [,8] Bl.cromatin: Bland Chromatin
- [,9] Normal.nucleoli: Normal Nucleoli
- [,10] **Mitoses**: Mitoses
- [,11] Class: Class

```
# carga de los datos
data(BreastCancer)
# Dimensión de los datos
dim(BreastCancer)
```

```
: Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 1 1 2 ...
    $ Cell.size
##
    $ Cell.shape
                       : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 2 1 1 ...
                      : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 1 5 1 1 3 8 1 1 1 1 ...
##
    $ Marg.adhesion
                       : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 2 7 2 3 2 7 2 2 2 2 ...
##
    $ Epith.c.size
                       : Factor w/ 10 levels "1", "2", "3", "4", ...: 1 10 2 4 1 10 10 1 1 1 ...
##
    $ Bare.nuclei
    $ Bl.cromatin
                       : Factor w/ 10 levels "1", "2", "3", "4", ...: 3 3 3 3 3 9 3 3 1 2 ...
##
    $ Normal.nucleoli: Factor w/ 10 levels "1","2","3","4",..: 1 2 1 7 1 7 1 1 1 1 ...
                       : Factor w/ 9 levels "1","2","3","4",...: 1 1 1 1 1 1 1 5 1 ...
##
    $ Mitoses
    $ Class
                       : Factor w/ 2 levels "benign", "malignant": 1 1 1 1 1 2 1 1 1 1 ...
head(BreastCancer)
           Id Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size
##
## 1 1000025
                          5
                                     1
## 2 1002945
                          5
                                     4
                                                 4
                                                                5
                                                                               7
## 3 1015425
                          3
                                     1
                                                 1
                                                                1
                                                                               2
                          6
                                     8
                                                 8
                                                                               3
## 4 1016277
                                                                1
                                                                               2
## 5 1017023
                          4
                                     1
                                                 1
                                                                3
                                                                               7
## 6 1017122
                          8
                                    10
                                                10
                                                                8
##
     Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses
                                                              Class
## 1
                             3
                                                             benign
                1
                                               1
## 2
               10
                             3
                                               2
                                                        1
                                                             benign
                2
## 3
                             3
                                               1
                                                        1
                                                             benign
## 4
                4
                             3
                                               7
                                                        1
                                                             benign
## 5
                1
                             3
                                               1
                                                        1
                                                             benign
## 6
               10
                             9
                                               7
                                                        1 malignant
summary(BreastCancer)
##
         Ιd
                          Cl.thickness
                                          Cell.size
                                                          Cell.shape
    Length:699
                                        1
                                                :384
                                                                :353
##
                         1
                                 :145
                                                        1
    Class : character
                         5
                                 :130
                                        10
                                                : 67
                                                        2
                                                               : 59
    Mode :character
                                                               : 58
##
                         3
                                 :108
                                        3
                                                : 52
                                                        10
                                 : 80
                                        2
##
                         4
                                                  45
                                                        3
                                                               : 56
##
                         10
                                 : 69
                                        4
                                                  40
                                                        4
                                                                : 44
##
                         2
                                 : 50
                                        5
                                                : 30
                                                        5
                                                               : 34
                                                        (Other): 95
##
                         (Other):117
                                        (Other): 81
##
    Marg.adhesion
                   Epith.c.size
                                  Bare.nuclei
                                                   Bl.cromatin
                                                                 Normal.nucleoli
                   2
                           :386
                                          :402
                                                  2
                                                                         :443
##
    1
            :407
                                   1
                                                          :166
                                                                 1
##
    2
            : 58
                   3
                           : 72
                                   10
                                          :132
                                                  3
                                                          :165
                                                                 10
                                                                         : 61
                                          : 30
##
    3
              58
                   4
                           : 48
                                   2
                                                  1
                                                          :152
                                                                 3
                                                                          : 44
##
    10
              55
                           : 47
                                   5
                                           : 30
                                                  7
                                                          : 73
                                                                 2
                                                                         : 36
            :
                   1
##
             33
                   6
                           : 41
                                   3
                                          : 28
                                                          : 40
                                                                         : 24
                                                                         : 22
##
    8
            :
             25
                           : 39
                                   (Other): 61
                                                          : 34
                                                                 6
                   5
                                                  5
##
    (Other): 63
                    (Other): 66
                                   NA's
                                          : 16
                                                  (Other): 69
                                                                  (Other): 69
       Mitoses
##
                          Class
##
    1
            :579
                   benign
                             :458
##
    2
            : 35
                   malignant:241
    3
            : 33
##
    10
            : 14
##
##
            : 12
    7
##
            :
              9
    (Other): 17
```

En la inspección de los datos realizadas en este apartado observamos que existe una variable que no aporta información al estudio (Id), y que existen 16 valores perdidos pertenecientes a la variable Bare.nuclei.

1.2 Preparación de los datos

A continuación realizaremos las transformaciones necesarias a los datos antes de usarlos en la construcción del modelo.

1.2.1 Eliminación de la variable Id

Eliminamos la variable Id del estudio, ya que se trata de un identificador tipo caracter de la muestra, y no aporta información relevante para la clasificación.

```
datos<-subset(BreastCancer, select=-Id)</pre>
```

1.2.2 Estudio y eliminación de los valores perdidos

```
table(is.na(datos))
##
## FALSE TRUE
## 6974 16
```

A continuación eliminaremos los valores perdidos del estudio, porque aunque sea posible indicar que no se tengan en cuenta en la construcción del modelo con la función naviveBayes y la opción na.action=na.omit, no queremos que formen parte tampoco del conjunto test que construiremos a continuación.

```
datos<-na.omit(datos)
dim(datos)</pre>
```

```
## [1] 683 10
```

Si volvemos a consultar la existencia de valores perdidos observamos que se han eliminado correctamente, y que nuestro dataset ahora sólo contiene valores completos.

```
table(is.na(datos))
##
## FALSE
## 6830
```

1.2.3. División entrenamiento y test

A continuación dividiremos el conjunto de datos en entrenamiento y test. Destinaremos 2/3 de los datos a entrenamiento y 1/3 a test

```
set.seed(123456789)
n=nrow(datos)
train.index=sort(sample(1:n, ceiling((2/3)*n)))
train=datos[train.index,]
test=datos[-train.index,]
```

Conjunto de entrenamiento

```
dim(train)
## [1] 456 10
```

```
summary(train)
     Cl.thickness
                     Cell.size
                                    Cell.shape
                                                Marg.adhesion Epith.c.size
##
##
            :99
                           :247
                                          :228
                                                 1
                                                        :268
                                                                2
                                                                        :248
                   1
##
    5
            :90
                   10
                                  10
                                                         : 41
                                                                        : 51
                           : 45
                                          : 40
                                                 3
                                                                3
                                                         : 36
##
    3
            :65
                   3
                           : 36
                                  3
                                          : 39
                                                 2
                                                                1
                                                                        : 30
##
    4
            :50
                   2
                           : 30
                                  2
                                          : 34
                                                 10
                                                         : 35
                                                                6
                                                                        : 29
##
    10
            :49
                   4
                           : 23
                                  4
                                          : 27
                                                 8
                                                                4
                                                                        : 27
                                                         : 18
##
    2
            :32
                   6
                          : 21
                                  5
                                          : 22
                                                 4
                                                         : 17
                                                                10
                                                                        : 24
                                                 (Other): 41
                   (Other): 54
                                  (Other): 66
                                                                (Other): 47
##
    (Other):71
                                                      Mitoses
##
     Bare.nuclei
                    Bl.cromatin Normal.nucleoli
                                                                        Class
##
    1
            :263
                   3
                          :111
                                  1
                                          :289
                                                   1
                                                           :372
                                                                  benign
                                                                            :294
##
    10
            : 94
                   2
                          :102
                                  10
                                          : 43
                                                   2
                                                           : 23
                                                                  malignant:162
    5
            : 22
                                          : 30
                                                           : 23
##
                   1
                          :100
                                  3
                                                   3
                                                   10
##
    2
            : 20
                   7
                          : 51
                                  2
                                          : 21
                                                           : 11
##
    3
            : 19
                           : 27
                                  5
                                          : 17
                                                   4
                                                           : 8
                                                           : 7
##
            : 14
                   5
                           : 22
                                  6
                                          : 15
                                                   8
    (Other): 24
                   (Other): 43
                                  (Other): 41
                                                   (Other): 12
str(train)
                     456 obs. of 10 variables:
   'data.frame':
                     : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 5 5 3 4 8 1 2 4 1 2 ...
    $ Cl.thickness
                      : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 1 10 1 1 2 1 1 ...
##
    $ Cell.size
                      : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 1 4 1 1 10 1 1 1 1 1 ...
##
    $ Cell.shape
##
    $ Marg.adhesion
                     : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 5 1 3 8 1 1 1 1 1 ...
                      : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 2 7 2 2 7 2 2 2 1 2 ...
    $ Epith.c.size
                      : Factor w/ 10 levels "1","2","3","4",..: 1 10 2 1 10 10 1 1 1 1 ...
##
    $ Bare.nuclei
                      : Factor w/ 10 levels "1", "2", "3", "4", ...: 3 3 3 3 9 3 1 2 3 2 ...
##
    $ Bl.cromatin
    $ Normal.nucleoli: Factor w/ 10 levels "1","2","3","4",..: 1 2 1 1 7 1 1 1 1 1 ...
##
                      : Factor w/ 9 levels "1", "2", "3", "4", ...: 1 1 1 1 1 1 5 1 1 1 ...
    $ Class
                      : Factor w/ 2 levels "benign", "malignant": 1 1 1 1 2 1 1 1 1 1 ...
##
    - attr(*, "na.action")=Class 'omit' Named int [1:16] 24 41 140 146 159 165 236 250 276 293 ...
     ... - attr(*, "names")= chr [1:16] "24" "41" "140" "146" ...
table(train$Class)
##
##
      benign malignant
##
         294
                    162
Conjunto de test
dim(test)
## [1] 227 10
summary(test)
##
     Cl.thickness
                     Cell.size
                                    Cell.shape
                                                Marg.adhesion Epith.c.size
##
    1
            :40
                   1
                           :126
                                  1
                                          :118
                                                 1
                                                         :125
                                                                2
                                                                        :128
##
    3
            :39
                           : 22
                                  2
                                          : 24
                                                 2
                                                         : 22
                                                                4
                                                                        : 21
                   10
##
   5
            :38
                                                         : 20
                                                                3
                                                                        : 20
                   3
                           : 16
                                  10
                                          : 18
                                                 10
##
    4
            :29
                   2
                          : 15
                                  4
                                          : 16
                                                 3
                                                         : 17
                                                                5
                                                                        : 17
##
    10
            :20
                   4
                           : 15
                                  3
                                          : 14
                                                 4
                                                         : 16
                                                                1
                                                                        : 14
            :18
                   5
                          : 10
                                  7
                                          : 12
                                                 5
                                                                        : 11
```

```
##
    (Other):43
                   (Other): 23
                                 (Other): 25
                                                (Other): 18
                                                               (Other): 16
                                                    Mitoses
##
    Bare.nuclei
                   Bl.cromatin Normal.nucleoli
                                                                      Class
##
    1
           :139
                          :58
                                1
                                       :143
                                                 1
                                                        :191
                                                               benign
                                                                         :150
##
    10
           : 38
                          :50
                                       : 17
                                                 2
                                                        : 12
                                                               malignant: 77
                  1
                                10
##
    8
             11
                  3
                          :50
                                2
                                       : 15
                                                 3
                                                          10
    2
           : 10
                  7
                                                 4
                                                           4
##
                          :20
                                3
                                       : 12
                                                 7
##
                  4
                          :12
                                        : 12
##
    5
           :
              8
                  5
                          :12
                                6
                                          7
                                                 10
                                                           3
    (Other): 12
                   (Other):25
                                (Other): 21
                                                 (Other):
str(test)
  'data.frame':
                    227 obs. of 10 variables:
    $ Cl.thickness
                     : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 6 2 1 8 7 10 5 2 10 5 ...
##
    $ Cell.size
                      : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 8 1 1 7 4 7 1 1 10 4 ...
    $ Cell.shape
                      : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 8 2 1 5 6 7 1 1 10 4 ...
    $ Marg.adhesion : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 1 1 10 4 6 1 1 8 9 ...
##
   $ Epith.c.size
                     : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 3 2 2 7 6 4 2 2 6 2 ...
                      : Factor w/ 10 levels "1","2","3","4",..: 4 1 3 9 1 10 1 1 1 10 ...
##
   $ Bare.nuclei
    $ Bl.cromatin
                      : Factor w/ 10 levels "1", "2", "3", "4", ...: 3 3 3 5 4 4 2 3 8 5 ...
  $ Normal.nucleoli: Factor w/ 10 levels "1", "2", "3", "4", ..: 7 1 1 5 3 1 1 1 9 6 ...
##
                      : Factor w/ 9 levels "1", "2", "3", "4", ...: 1 1 1 4 1 2 1 1 1 1 ...
  $ Mitoses
                      : Factor w/ 2 levels "benign", "malignant": 1 1 1 2 2 2 1 1 2 2 ...
    $ Class
##
    - attr(*, "na.action")=Class 'omit' Named int [1:16] 24 41 140 146 159 165 236 250 276 293 ...
     ....- attr(*, "names")= chr [1:16] "24" "41" "140" "146" ...
table(test$Class)
##
##
      benign malignant
##
```

En ambos conjuntos estan presentes las dos clases existentes benign y malignant, por lo que no será necesario realizar suavizado de Laplace ni tampoco seleccionar el conjunto test y aprendizaje con técnicas de estratificación de la librería caret.

2. Contrucción del clasificador Naive-Bayes

A continuación construiremos el modelo

2.1 Proporción de muestras en cada clase estimadas a partir de la muestra

```
clasificador$apriori

## train$Class

## benign malignant

## 294 162
```

2.3 Probabilidades de cada variable condicionadas a la clase

clasificador\$tables

```
## $Cl.thickness
##
              Cl.thickness
## train$Class
                          1
                                                   3
                                                                            5
##
               0.329931973 0.095238095 0.193877551 0.149659864 0.193877551
     benign
     malignant 0.012345679 0.024691358 0.049382716 0.037037037 0.203703704
##
##
              Cl.thickness
                                      7
  train$Class
                                                  8
##
               0.030612245 0.000000000 0.006802721 0.000000000 0.000000000
##
     benign
##
     malignant 0.061728395 0.074074074 0.185185185 0.049382716 0.302469136
##
##
   $Cell.size
##
              Cell.size
##
  train$Class
##
     benign
               0.836734694 0.081632653 0.057823129 0.020408163 0.000000000
##
     malignant 0.006172840 0.037037037 0.117283951 0.104938272 0.123456790
##
              Cell.size
                          6
                                      7
                                                   8
                                                                           10
## train$Class
               0.000000000\ 0.003401361\ 0.000000000\ 0.000000000\ 0.000000000
##
     benign
##
     malignant 0.129629630 0.067901235 0.123456790 0.012345679 0.277777778
##
##
  $Cell.shape
##
              Cell.shape
##
  train$Class
                                      2
                                                   3
               0.775510204 0.105442177 0.078231293 0.023809524 0.006802721
##
     malignant 0.000000000 0.018518519 0.098765432 0.123456790 0.123456790
##
              Cell.shape
##
  train$Class
##
               0.006802721 0.003401361 0.000000000 0.000000000 0.000000000
##
     benign
     malignant 0.117283951 0.104938272 0.129629630 0.037037037 0.246913580
##
##
##
   $Marg.adhesion
##
              Marg.adhesion
##
  train$Class
                          1
                                      2
                                                   3
                                                                            5
               0.826530612\ 0.078231293\ 0.068027211\ 0.010204082\ 0.006802721
##
##
     malignant 0.154320988 0.080246914 0.129629630 0.086419753 0.074074074
##
              Marg.adhesion
## train$Class
                                      7
                                                  8
               0.006802721 0.000000000 0.000000000 0.000000000 0.003401361
##
     malignant 0.074074074 0.061728395 0.111111111 0.018518519 0.209876543
##
##
  $Epith.c.size
##
##
              Epith.c.size
##
  train$Class
               0.102040816 0.802721088 0.054421769 0.010204082 0.010204082
##
     benign
     malignant 0.000000000 0.074074074 0.216049383 0.148148148 0.117283951
##
              Epith.c.size
##
## train$Class
                          6
                                      7
                                                   8
                                                                           10
##
     benign
               0.003401361 0.006802721 0.006802721 0.000000000 0.003401361
##
     malignant 0.172839506 0.030864198 0.086419753 0.012345679 0.141975309
##
```

```
$Bare.nuclei
##
              Bare.nuclei
##
   train$Class
               0.867346939 0.057823129 0.023809524 0.010204082 0.027210884
##
     benign
##
     malignant 0.049382716 0.018518519 0.074074074 0.067901235 0.086419753
##
              Bare.nuclei
##
  train$Class
               0.00000000 0.00000000 0.003401361 0.00000000 0.010204082
##
     benign
##
     malignant 0.012345679 0.037037037 0.055555556 0.037037037 0.561728395
##
##
   $Bl.cromatin
##
              Bl.cromatin
##
   train$Class
                                                   3
               0.340136054 0.326530612 0.289115646 0.013605442 0.013605442
##
     malignant 0.000000000 0.037037037 0.160493827 0.141975309 0.111111111
##
##
              Bl.cromatin
##
   train$Class
               0.003401361 0.013605442 0.000000000 0.000000000 0.000000000
##
     benign
     malignant 0.030864198 0.290123457 0.111111111 0.049382716 0.067901235
##
##
##
   $Normal.nucleoli
##
              Normal.nucleoli
  train$Class
                                                   3
                                                                            5
##
                          1
               0.891156463 0.061224490 0.023809524 0.003401361 0.006802721
##
     benign
     malignant 0.166666667 0.018518519 0.141975309 0.074074074 0.092592593
##
##
              Normal.nucleoli
##
   train$Class
                                      7
                                                   8
                                                                           10
               0.010204082 0.000000000 0.003401361 0.000000000 0.000000000
##
     benign
     malignant 0.074074074 0.055555556 0.061728395 0.049382716 0.265432099
##
##
##
   $Mitoses
##
              Mitoses
##
   train$Class
               0.962585034 0.020408163 0.006802721 0.000000000 0.003401361
##
     benign
##
     malignant 0.549382716 0.104938272 0.129629630 0.049382716 0.030864198
##
              Mitoses
## train$Class
                          6
                                      7
                                                   8
                                                              10
##
     benign
                0.000000000 \ 0.003401361 \ 0.003401361 \ 0.000000000 
     malignant 0.006172840 0.024691358 0.037037037 0.067901235
```

3. Evaluación del rendimiento

A continuación evaluaremos la bondad del ajuste del modelo Naïve Bayes a los datos.

3.1 Cálculo de predicciones sobre el conjunto test

Indicamos type="clase" porque en este caso nos interesa conocer la predicción de pertenencia o no a cada clase

3.2 Matriz de confusión

3.3 Porcentaje de clasificación incorrecta

```
round(100*(1-(sum(diag(matconf))/nrow(test))), 3)
```

```
## [1] 3.084
```

El porcentaje de clasificación incorrecta es bajo, con lo que podemos concluir que el modelo obtenido se ajusta bien a los datos.

3.4 Número de predicciones correspondientes a la clase malignant

A contiuación el número de predicciones clasificadas como malignant

```
length(which(prediccion.class=="malignant"))
```

```
## [1] 78
```

A continuación el porcentaje de predicciones del total calculado que corresponden a la clase malignant round(100*length((which(prediccion.class=="malignant"))) / length(prediccion.class), 3)

```
## [1] 34.361
```

3.5 Predicciones correspondientes a la clase malignant con probabilidad mayor que 0.75

Indicamos la opción type="raw" en el cálculo de las predicciones en el conjunto test para obtener el valor de la probabilidad de pertenencia a cada clase.

```
## [1] 77
```

Sólamente una de las 78 predicciones obtenidas de pertenencia a la clase *malignant* tiene una probabilidad inferior a 0.75. Las otras 77 tienen una probabilidad de pertenecer a *malignant* superior a 0.75.