Лекция 9

1. Свойства непрерывных на отрезке функций.

Определение 1. Функцию, непрерывную в каждой точке множества D (по множеству D), будем называть просто непрерывной на множестве D.

Теорема 2 (Вейерштрасс). Пусть функция f непрерывна на отрезке [a,b]. Тогда она ограничена на [a,b], т.е. существует число такое C>0, что $|f(x)| \leq C \ \forall x \in [a,b]$. Кроме того, существуют такие точки $x_m, x_M \in [a,b]$, что $f(x_m) = \inf\{f(x) : x \in [a,b]\}$ и $f(x_M) = \sup\{f(x) : x \in [a,b]\}$.

Доказательство. Предположим, что f не является ограниченной, т.е. для каждого $n \in \mathbb{N}$ найдется точка $x_n \in [a,b]$, для которой $|f(x_n)| > n$. По теореме Больцано можно найти подпоследовательность x_{n_k} , сходящуюся к некоторой точке x_0 . Заметим, что $x_0 \in [a,b]$ в силу свойств перехода к пределу в неравенствах. По непрерывности последовательность $\{f(x_{n_k})\}$ сходится к $f(x_0)$ и, в частности, является ограниченой, что приводит к противоречию.

Рассмотрим последовательность точек $x_n \in [a, b]$, для которых

$$\sup\{f(x) \colon x \in [a, b]\} - \frac{1}{n} \le f(x_n) \le \sup\{f(x) \colon x \in [a, b]\}.$$

Опять применяя теорему Больцано, находим подпоследовательность $\{x_{n_k}\}$, сходящуюся к некоторой точке $x_0 \in [a,b]$. По определению непрерывности $f(x_{n_k}) \to f(x_0)$, а по свойству перехода к пределу в неравенствах, $f(x_{n_k}) \to \sup\{f(x) \colon x \in [a,b]\}$. Отсюда получаем, что $f(x_0) = \sup\{f(x) \colon x \in [a,b]\}$. Аналогично поступаем с inf.

Определение 3. Функция f называется равномерно непрерывной на множестве D, если $\forall \varepsilon > 0 \; \exists \, \delta > 0 \; \text{для которого} \; |f(x) - f(y)| < \varepsilon$, если $x, y \in D$ и $|x - y| < \delta$.

Пример 4.

1) Функция $f(x) := \sin x$ равномерно непрерывна на \mathbb{R} , т.к.

$$|\sin x - \sin y| = \left| 2\cos\frac{x+y}{2} \cdot \sin\frac{x-y}{2} \right| \le |x-y|.$$

2) Функция f(x) = 1/x не равномерно непрерывна на (0,1), т.к. f(1/(2n)) - f(1/n) = n, а $|1/n - 1/(2n)| = 1/(2n) \to 0$.

Теорема 5 (Кантор). Если функция f непрерывна на отрезке [a,b], то f равномерно непрерывна на [a,b].

Доказательство. Если f не равномерно непрерывна, то найдется такое число $\varepsilon > 0$, что $\forall n \; \exists \; x_n, y_n \in [a,b] \colon |x_n - y_n| < n^{-1}, \; |f(x_n) - f(y_n)| \geq \varepsilon$. По теореме Больцано у последовательности $\{x_n\}$ есть сходящаяся подпоследовательность $x_{n_k} \to x_0 \in [a,b]$. Заметим, что $y_{n_k} \to x_0$. Но f непрерывна в точке x_0 по условию, что противоречит оценке $|f(x_{n_k}) - f(x_0)| + |f(x_0) - f(y_{n_k})| \geq |f(x_{n_k}) - f(y_{n_k})| \geq \varepsilon$.

Теорема 6 (Коши). Пусть f непрерывна на отрезке [a,b]. Если $f(a)=A,\ f(b)=B,\ mo$ для кажедого значения $C\in [A,B]$ (или $C\in [B,A]$, если B<A) найдется точка $c\in [a,b]$, для которой f(c)=C.

Доказательство. Не ограничивая общности, считаем, что $C \neq A$, $C \neq B$ и $A \neq B$. Тогда переходя к функции g(x) = f(x) - C, получаем, что $g(a) \cdot g(b) < 0$ и мы ищем точку $c \in [a,b]$ для которой g(c) = 0.

Разделим отрезок [a,b] на два подотрезка $[a,\frac{a+b}{2}]$ и $[\frac{a+b}{2},b]$. Если $f(\frac{a+b}{2})=0$, то искомая точка c найдена. Если $f(\frac{a+b}{2})\neq 0$, то либо $f(\frac{a+b}{2})$ и f(a) разных знаков, либо $f(\frac{a+b}{2})$ и f(b) разных знаков. Пусть $[a_1,b_1]$ тот из отрезков $[a,\frac{a+b}{2}]$ и $[\frac{a+b}{2},b]$, для которого значение

функции f на концах разных знаков. Далее повторяем эти же рассуждения для отрезка $[a_1,b_1]$ и т.д.

Возможны две ситуации. Либо мы на каком-то шаге получим искомую точку c, либо построем последовательность вложенных отрезков $[a_n,b_n]$, длины которых равны $\frac{b-a}{2^n}$ и стремятся к нулю, причем $f(a_n)\cdot f(b_n)<0$. По теореме о вложенных отрезках найдется единственная общая точка $c\in \cap [a_n,b_n]$. Тогда $a_n\to c$ и $b_n\to c$, откуда в силу непрерывности получаем $f(a_n)\cdot f(b_n)\to (f(c))^2$. Т.е. $(f(c))^2\le 0$, а значит f(c)=0.

2. НЕПРЕРЫВНОСТЬ ОБРАТНОЙ ФУНКЦИИ.

Теорема 7 (критерий непрерывности монотонной функции).

Монотонная функция $f:[a,b] \to \mathbb{R}$ непрерывна на [a,b] тогда и только тогда, когда f([a,b]) — отрезок.

Доказательство. Не ограничивая общности считаем, что f не убывает на [a,b]. Тогда при каждом $x \in [a,b]$ выполнено $f(a) \leq f(x) \leq f(b)$, т.е. $f(x) \in [f(a),f(b)]$. Если функция f непрерывна, то по теореме Коши для каждого $C \in [f(a),f(b)]$ найдется точка $c \in [a,b]$, для которой f(c) = C.

Наоборот, пусть f разрывна в некоторой точке $x_0 \in [a,b]$. Если $x_0 \neq a$ и $x_0 \neq b$, то интервал $(\sup_{x < x_0} f(x), \inf_{x > x_0} f(x))$ не пуст, а значит не пуст хотя бы один из интервалов $(\sup_{x < x_0} f(x), f(x_0))$ или $(f(x_0), \inf_{x > x_0} f(x))$. Этот интервал содержится в отрезке [f(a), f(b)] в силу монотонности, но не содержит ни одной точки вида $f(x), x \in [a,b]$.

Если точка разрыва x_0 сопадает с одним из концов, то непустыми будут интервалы $(\sup_{x < x_0} f(x), f(x_0))$ в случае $x_0 = b$ или $(f(x_0), \inf_{x > x_0} f(x))$ в случае $x_0 = a$. Дальнейшее рассуждение аналогично.

Теорема 8 (теорема об обратной финуции). Пусть f непрерывна u строго монотонна на [a,b] (т.е. f монотонна u $f(x) \neq f(y)$ при $x \neq y$). Тогда f — биекция между отрезками I = [a,b] u J c концами f(a) u f(b) u f^{-1} непрерывна u строго монотонна на J.