

<u>Help</u>

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Course Notes</u>

☆ Course / Assignment 2 (due Oct 24) / Lab 2: Combinational Logic

(3)

Next >

CMOS basics

 \square Bookmark this page

■ Calculator

Lab due Oct 24, 2016 21:59 -02 Past due

CMOS Basics

0.0/2.0 points (graded)

The following questions are multiple-choice. Using the "check" button, you can of course simply keep guessing until you get the right answer. But you'll be in a much better position to take the quizzes if you take the time to actually figure out the answers.

1. If we set the inputs of a particular CMOS gate to voltages that correspond to valid logic levels, we would expect the *static* power dissipation of the gate to be

		essentially zero
		depends on whether output voltage is low or high
		unknown with the facts given
		uring a particular CMOS device G, we find 1.5V noise margins. If the <i>width</i> of all mosfets inside of G doubled, we would expect the noise margins of the new gate to
		stay about the same
		increase noticeably
		decrease noticeably
		change noticeably, but can't tell which way
3.	To <i>de</i>	crease the output rise time of a CMOS gate one could
		increase the length of all pfets
		increase the width of all pfets ✓ ✓
		increase the length of all nfets
		increase the width of all nfets
		none of the above

4. The Boolean function F(A,B,C,D) of four inputs is implemented as a single CMOS gate whose output connects to a pullup circuit containing only PFETs and a pulldown containing only NFETs. The output of F is known to depend on its inputs; i.e., F(A,B,C,D) is 0 for certain input combinations and 1 for others. What can you deduce about F(1,1,1,1)?

F(1,1,1,1) will be 0	
$\bigcirc \ F(1,1,1,1)$ will be 1	

oan't tel
Odir Ctol

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>