

SGM8271/2/4 High Voltage Rail-to-Rail Output Operational Amplifiers

GENERAL DESCRIPTION

The SGM8271 (single), SGM8272 (dual) and SGM8274 (quad) are high voltage operational amplifiers that are designed to offer a wide input common mode voltage range and output voltage swing. These devices can operate from ± 2.25 V to ± 18 V dual power supplies or from ± 4.5 V to ± 36 V single supplies.

The devices feature high slew rate, low input bias and offset current, low offset voltage and low offset-voltage temperature coefficient.

The SGM8271/2/4 are specified over the extended -40°C to +125°C temperature range. The SGM8271 single is available in Green SOT-23-5, MSOP-8 and SOIC-8 packages. The SGM8272 dual is available in Green SOIC-8 and MSOP-8 packages. The SGM8274 quad is available in Green SOIC-14 and TSSOP-14 packages.

FEATURES

- Low Power Consumption: 150µA/Amplifier
- Wide Input Common Mode Voltage Range
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Rail-to-Rail Output
- High Input Impedance
- Low Offset Voltage: 3mV (MAX)
- High Slew Rate: 7V/µs
- Small Packaging:

SGM8271 Available in Green SOT-23-5, MSOP-8 and SOIC-8

SGM8272 Available in Green MSOP-8 and SOIC-8 SGM8274 Available in Green TSSOP-14 and SOIC-14

APPLICATIONS

High Impedance Sensors

Photodiode Amplifier

Precision Instrumentation

Phase-Locked Loop Filters

High End, Professional Audio

DAC Output Amplifier

ATE

Medical

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SOT-23-5	-40°C to +85°C	SGM8271AYN5G/TR	SBDXX	Tape and Reel, 3000
	SOT-23-5	-40°C to +85°C	SGM8271BYN5G/TR	SG5XX	Tape and Reel, 3000
SGM8271	MSOP-8	-40°C to +85°C	SGM8271YMS8G/TR	SGM8271 YMS8 XXXXX	Tape and Reel, 3000
	SOIC-8	-40°C to +85°C	SGM8271YS8G/TR	SGM 8271YS8 XXXXX	Tape and Reel, 2500
	SOIC-8	-40°C to +125°C	SGM8271XS8G/TR	SGM 8271XS8 XXXXX	Tape and Reel, 2500
	MSOP-8	-40°C to +85°C	SGM8272YMS8G/TR	SGM8272 YMS8 XXXXX	Tape and Reel, 3000
SGM8272	SOIC-8	-40°C to +85°C	SGM8272YS8G/TR	SGM 8272YS8 XXXXX	Tape and Reel, 2500
	SOIC-8	-40°C to +125°C	SGM8272XS8G/TR	SGM 8272XS8 XXXXX	Tape and Reel, 2500
	SOIC-14	-40°C to +85°C	SGM8274YS14G/TR	SGM8274YS14 XXXXX	Tape and Reel, 2500
SGM8274	SOIC-14	-40°C to +125°C	SGM8274XS14G/TR	SGM8274XS14 XXXXX	Tape and Reel, 2500
	TSSOP-14	-40°C to +85°C	SGM8274YTS14G/TR	SGM8274 YTS14 XXXXX	Tape and Reel, 3000

NOTE: XX = Date Code. XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

MARKING INFORMATION

For example: SBDCA (2012, January)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	40V
Input Common Mode Voltage Range	
(-V _S) -	$0.1V$ to $(+V_S)$ - $1.5V$
Input/Output Voltage Range (-V _S) -	$0.3V \text{ to } (+V_S) + 0.3V$
Differential Input Voltage	1.5V
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Operating Temperature Range	40°C to +125°C
Lead Temperature (Soldering 10sec)	+260°C
ESD Susceptibility	
HBM	4000V
MM (SGM8271/2)	150V
MM (SGM8274)	300V

NOTE:

1. Proper power-supply sequencing is recommended for the CMOS device. Always sequence $V_{\rm S}$ on first, followed by the inputs and outputs.

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS

(Vs = +5V, R_L = $2k\Omega$ connected to +2.5V, unless otherwise noted.)

				SGM8271/2/4					
PARAMETER		CONDITIONS	TYP	М	IN/MAX O\	/ER TEMP	ERATUR	E	
PARAMETER		CONDITIONS	+25°C	+25℃	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ MAX	
Input Offset Voltage (Vos)		$V_{CM} = +2.5V$	0.6	3.0	3.8	3.9	mV	MAX	
Input Offset Voltage Drift (ΔV _{OS} /Δ	(TZ		3				μV/°C	TYP	
Input Bias Current (I _B)			20				pА	TYP	
Input Offset Current (I _{OS})			20				pA	TYP	
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = +0.5V to +4.5V, R_L = 5k Ω	86	75	72	70	dB	MIN	
Output Voltage Swing from Rail	V_{OH}	$R_L = 10k\Omega$	16	39	43	46	mV	MAX	
Output voitage Swing from Rail	V_{OL}	$R_L = 10k\Omega$	14	30	34	38	mV	MAX	
Output Short Circuit Current (L.)	Sink	$R_L = 10\Omega$	46.2	34.1	21.5	11.0	mΛ	MIN	
Output Short-Circuit Current (I _{SC})	Source	$R_L = 10\Omega$	44.4	30.5	20.7	12.3	mA	IVIIIN	
Input Common Mode Voltage Ran	ge (V _{CM})		-0.1 to +3.5				٧	TYP	
Common Mode Rejection Ratio	(CMRR)	$V_{CM} = -0.1V \text{ to } +3.5V$	84	67	62	60	dB	MIN	
Power Supply Rejection Ratio (F	SRR)	V _S = +4.5V to +36V	103	82	80	78	dB	MIN	
Quiescent Current/Amplifier		I _{OUT} = 0A	144	275	309	329	μΑ	MAX	
Gain-Bandwidth Product (GBP)		$C_L = 100pF, V_{CM} = +2.5V$	1.4				MHz	TYP	
Gain Margin		$C_L = 100pF, V_{CM} = +2.5V$	-10				dB	TYP	
Phase Margin		$C_L = 100pF, V_{CM} = +2.5V$	50				0	TYP	
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP	
Slew Rate (SR)	Up	V_{OUT} = 2 V_{PP} step, C_L = 100pF, A_V = 1	5				V/µs	TYP	
Siew Rate (SR)	Down	V_{OUT} = $2V_{PP}$ step, C_L = 100pF, A_V = 1	5				V/µs	TYP	
Overland Panavary Time (ORT)	Up	$V_{IN} \times Gain = V_{S}$	2.0					TYP	
Overload Recovery Time (ORT)	Down	$V_{IN} \times Gain = V_{S}$	4.0				μs	ITP	
Settling Time (t _S)		C_L = 100pF, A_V = 1, 200mV output step	2				μs	TYP	
Maltana Naisa Baraita (a.)		f = 20kHz, V _{CM} = +2.5V	30				n\// /:-	TYP	
Voltage Noise Density (e _n)		f = 1kHz, V _{CM} = +2.5V	45				nV/ _{√Hz}	וור	
Total Harmonic Distortion + Nois	e	$V_{OUT} = 2V_{PP}, f = 1kHz, A_V = 1, R_L = 600\Omega$	0.018				%	TVD	
(THD+N)		V_{OUT} = $2V_{PP}$, f = 1kHz, A_V = 1, R_L = $2k\Omega$	0.009				70	TYP	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = \pm 5V, R_L = 2k\Omega \text{ connected to 0V, unless otherwise noted.})$

					SGM827	1/2/4		
DADAMETED		CONDITIONS	TYP	М	IN/MAX O\	/ER TEMP	ERATUR	E
PARAMETER		CONDITIONS	+25℃	+25°C	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ MAX
Input Offset Voltage (Vos)		V _{CM} = 0V	0.6	3.0	3.8	3.9	mV	MAX
Input Offset Voltage Drift (ΔV _{OS} /Δ	T)		3				μV/°C	TYP
Input Bias Current (I _B)			20				pА	TYP
Input Offset Current (I _{OS})			20				pА	TYP
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = -4.5V to +4.5V, R_L = 5k Ω	-4.5V to +4.5V, R _L = 5kΩ 93 81 78 76		76	dB	MIN	
Output Valtage Swing from Bail	V_{OH}	$R_L = 10k\Omega$	28	67	73	79	mV	MAX
Output Voltage Swing from Rail	V_{OL}	$R_L = 10k\Omega$	23	39	47	62	mV	MAX
Output Current (I _{OUT})			60				mA	TYP
Input Common Mode Voltage Range (V _{CM})			-5.1 to +3.5				V	TYP
Common Mode Rejection Ratio (CMRR)		V _{CM} = -5.1V to +3.5V	92	75	68	66	dB	MIN
Quiescent Current/Amplifier		I _{OUT} = 0A	145	276	311	332	μA	MAX
Gain-Bandwidth Product (GBP)		C _L = 100pF, V _{CM} = 0V	1.4				MHz	TYP
Gain Margin		$C_L = 100pF, V_{CM} = 0V$	-10				dB	TYP
Phase Margin		C _L = 100pF, V _{CM} = 0V	50				0	TYP
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP
Class Data (CD)	Up	$V_{OUT} = 2V_{PP}$ step, $C_L = 100$ pF, $A_V = 1$	6				V/µs	TYP
Slew Rate (SR)	Down	$V_{OUT} = 2V_{PP}$ step, $C_L = 100$ pF, $A_V = 1$	4				V/µs	TYP
Overland Decovery Time (ODT)	Up	V _{IN} × Gain = V _S	1.5					TVD
Overload Recovery Time (ORT) Dov		V _{IN} × Gain = V _S	2.5				μs	TYP
Settling Time (t _s)		C _L = 100pF, A _V = 1, 200mV output step	2				μs	TYP
Voltage Noise Density (e _n)		$f = 20kHz$, $V_{CM} = 0V$	30				n\// [TVD
		$f = 1kHz, V_{CM} = 0V$	45				nV/ _{√Hz}	TYP
Total Harmonic Distortion + Noise		$V_{OUT} = 2V_{PP}, f = 1kHz, A_V = 1, R_L = 600\Omega$	0.018				%	TYP
(THD+N)		$V_{OUT} = 2V_{PP}, f = 1kHz, A_V = 1, R_L = 2k\Omega$	0.009				70	ITP

ELECTRICAL CHARACTERISTICS (continued)

(Vs = ± 15 V, R_L = $2k\Omega$ connected to 0V, unless otherwise noted.)

					SGM8271	/2/4		
DADAMETED		CONDITIONS	TYP	M	MIN/MAX OVER TEMPERATURE			
PARAMETER		CONDITIONS	+25℃	+25℃	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ MAX
Input Offset Voltage (Vos)		V _{CM} = 0V	0.6	3.0	3.8	3.9	mV	MAX
Input Offset Voltage Drift (ΔV _{OS} /Δ	T)		3				μV/°C	TYP
Input Bias Current (I _B)			20				pА	TYP
Input Offset Current (Ios)			20				pA	TYP
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = -14.5V to +14.5V, R_L = 5k Ω	100	85	85 82 80 174 193 210		dB	MIN
Output Valtage Swing from Bail	V _{OH}	$R_L = 10k\Omega$	67	174	193	210	mV	MAX
Output Voltage Swing from Rail	V _{OL}	$R_L = 10k\Omega$	63	102	124	148	mV	MAX
Output Current (I _{OUT})			60				mA	TYP
Input Common Mode Voltage Range (V _{CM})			-15.1 to +13.5				V	TYP
Common Mode Rejection Ratio (CMRR)	V _{CM} = -15.1V to +13.5V	95	79	71	66	dB	MIN
Quiescent Current/Amplifier		I _{OUT} = 0A	150	286	320	337	μΑ	MAX
Gain-Bandwidth Product (GBP)		C _L = 100pF, V _{CM} = 0V	1.4				MHz	TYP
Gain Margin		$C_L = 100pF, V_{CM} = 0V$	-10				dB	TYP
Phase Margin		C _L = 100pF, V _{CM} = 0V	50				0	TYP
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP
Clays Data (CD)	Up	V_{OUT} = $2V_{PP}$ step, C_L = 100pF, A_V = 1	7				V/µs	TYP
Slew Rate (SR)	Down	V_{OUT} = $2V_{PP}$ step, C_L = 100pF, A_V = 1	4				V/µs	TYP
Overland Denovery Time (ODT)	Up	V _{IN} × Gain = V _S	0.5					TYP
Overload Recovery Time (ORT)	Down	V _{IN} × Gain = V _S	1.0				μs	ITP
Settling Time (t _s)		C_L = 100pF, A_V = 1, 200mV output step	2				μs	TYP
Voltage Noise Density (e _n)		f = 20kHz, V _{CM} = 0V	29				n\// 5-	TVD
		f = 1kHz, V _{CM} = 0V	43				nV/ _{√Hz}	TYP
Total Harmonic Distortion + Noise	е	$V_{OUT} = 2V_{PP}, f = 1kHz, A_V = 1, R_L = 0.018$		%	TYP			
(THD+N)		V_{OUT} = $2V_{PP}$, f = $1kHz$, A_V = 1 , R_L = $2k\Omega$	0.009					

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = \pm 18V, R_L = 2k\Omega \text{ connected to 0V, unless otherwise noted.})$

				SGM8271/2/4					
DADAMETED		CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
PARAMETER		CONDITIONS	+25℃	+25℃	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ MAX	
Input Offset Voltage (Vos)		V _{CM} = 0V	0.6	3.0	3.8	3.9	mV	MAX	
Input Offset Voltage Drift (ΔV _{OS} /Δ	.T)		3				μV/°C	TYP	
Input Bias Current (I _B)			20				pА	TYP	
Input Offset Current (Ios)			20				pА	TYP	
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = -17.5V to +17.5V, R_L = $5k\Omega$	101	87	84	82	dB	MIN	
Output Voltage Swing from Rail	V _{OH}	$R_L = 10k\Omega$	81	208	231	251	mV	MAX	
Output voitage Swing Iron Rail	V _{OL}	$R_L = 10k\Omega$	73	119	146	172	mV	MAX	
Output Current (I _{OUT})			60				mA	TYP	
Input Common Mode Voltage Rang	ge (V _{CM})		-18.1 to +16.5				V	TYP	
Common Mode Rejection Ratio (CMRR)	V _{CM} = -18.1V to +16.5V	91	78	72	69	dB	MIN	
Quiescent Current/Amplifier		I _{OUT} = 0A	157	299	332	352	μΑ	MAX	
Gain-Bandwidth Product (GBP)		$C_L = 100pF, V_{CM} = 0V$	1.4				MHz	TYP	
Gain Margin		$C_L = 100pF, V_{CM} = 0V$	-10				dB	TYP	
Phase Margin		C _L = 100pF, V _{CM} = 0V	50				0	TYP	
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP	
Class Data (CD)	Up	V_{OUT} = 2 V_{PP} step, C_L = 100pF, A_V = 1	7				V/µs	TYP	
Slew Rate (SR)	Down	V_{OUT} = 2 V_{PP} step, C_L = 100pF, A_V = 1	4				V/µs	TYP	
Overland Decement Time (ODT)	Up	V _{IN} × Gain = V _S	0.5					TYP	
Overload Recovery Time (ORT)		V _{IN} × Gain = V _S	1.0				μs	ITP	
Settling Time (t _S)		C_L = 100pF, A_V = 1, 200mV output step	2				μs	TYP	
Voltage Noise Density (e _n)		f = 20kHz, V _{CM} = 0V	29				n\// ==	TVD	
		$f = 1kHz$, $V_{CM} = 0V$	43				nV/ _{√Hz}	TYP	
Total Harmonic Distortion + Noise	Э	V_{OUT} = $2V_{PP}$, f = 1kHz, A_V = 1, R_L = 600Ω	0.018				%	TYP	
(THD+N)		V_{OUT} = $2V_{PP}$, f = 1kHz, A_V = 1, R_L = $2k\Omega$	0.009						

TYPICAL APPLICATION CIRCUITS

TYPICAL PERFORMANCE CHARACTERISTICS

At $V_S = \pm 15V$, $R_L = 2k\Omega$ connected to 0V, unless otherwise noted.

PACKAGE OUTLINE DIMENSIONS SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
Е	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950	BSC	0.037	BSC		
e1	1.900	BSC	C 0.075 BSC			
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

PACKAGE OUTLINE DIMENSIONS SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimer In In	
	MIN	MAX	MIN	MAX
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.27	BSC	0.050	BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

PACKAGE OUTLINE DIMENSIONS MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	0.820	1.100	0.032	0.043		
A1	0.020	0.150	0.001	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.250	0.380	0.010	0.015		
С	0.090	0.230	0.004	0.009		
D	2.900	3.100	0.114	0.122		
E	2.900	3.100	0.114	0.122		
E1	4.750	5.050	0.187	0.199		
е	0.650	BSC	0.026	BSC		
L	0.400	0.800	0.016	0.031		
θ	0°	6°	0°	6°		

PACKAGE OUTLINE DIMENSIONS SOIC-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters		nsions ches
	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.25	1.65	0.049	0.065
A3	0.55	0.75	0.022	0.030
b	0.36	0.49	0.014	0.019
D	8.53	8.73	0.336	0.344
Е	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
L	0.45	0.80	0.018	0.032
L1	1.04	REF	0.040	REF
L2	0.25	BSC	0.01	BSC
R	0.07		0.003	
R1	0.07		0.003	
h	0.30	0.50	0.012	0.020
θ	0°	8°	0°	8°

PACKAGE OUTLINE DIMENSIONS TSSOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	800.0		
D	4.860	5.100	0.191	0.201		
E	4.300	4.500	0.169	0.177		
E1	6.250	6.550	0.246	0.258		
е	0.650	BSC	0.026	BSC		
L	0.500	0.700	0.02	0.028		
Н	0.25	TYP	0.01 TYP			
θ	1°	7°	1°	7°		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
SOIC-14	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1
TSSOP-14	13"	12.4	6.95	5.60	1.20	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5