BLATT 3

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

(31.10.2016)

Aufgabe 1

Sei $(F_1 \dot{\vee} F_2)$ eine Abkürzung für $((F_1 \vee F_2) \wedge \neg (F_1 \wedge F_2))$ ("ausschließlich oder") und $(F_1 | F_2)$ eine Abkürzung für $(\neg F_1 \wedge \neg F_2)$.

- (i) Welche der "Junktoren" $\dot{\lor}$, $|, \leftrightarrow \sin d$ assoziativ bis auf logischer Äquivalenz?
- (ii) Zeigen Sie: $(F_1\dot{\lor}F_2) \sim \neg(F_1 \leftrightarrow F_2)$

Aufgabe 2

Zeigen Sie

(i)
$$((F_1 \land F_2) \to F_3) \sim ((F_1 \to F_3) \lor (F_2 \to F_3))$$

 $((F_1 \lor F_2) \to F_3) \sim ((F_1 \to F_3) \land (F_2 \to F_3))$

(ii)
$$(F_1 \to (F_2 \land F_3)) \sim ((F_1 \to F_2) \land (F_1 \to F_3))$$

 $(F_1 \to (F_2 \lor F_3)) \sim ((F_1 \to F_2) \lor (F_1 \to F_3))$

(iii)
$$((F_1 \wedge F_2) \to F_3) \sim (F_1 \to (F_2 \to F_3))$$

(iv)
$$\vdash ((F_1 \to F_2) \lor (F_2 \to F_3))$$

(Hinweis: Umformungen sind eventuell schneller als Wahrheitstafeln)

Aufgabe 3

Sei $\mathfrak{B} = (B, \sqcap, \sqcup, \overset{\mathcal{C}}{,} 1, 0)$ eine Boole'sche Algebra.

- (i) Zeigen Sie $a \sqcap b = a \Leftrightarrow a \sqcup b = b$
- (ii) Wir definieren die Relation \leq auf \mathfrak{B} durch $a \leq b$, wenn $a \sqcup b = a$ ist. Zeigen Sie, dass \leq eine partielle Ordnung ist, d.h. dass sie reflexiv und transitiv ist.

Aufgabe 4

Betrachten Sie die oben definierte partielle Ordnung \leq auf der Lindenbaum-Algebra \mathfrak{F}_i , der Tarski-Lindenbaum-Algebra über den Aussagenvariablen A_0, \ldots, A_{i-1} .

(i) Zeigen Sie:

$$F/_{\sim} \leq G/_{\sim} \Leftrightarrow \vdash (F \to G) \Leftrightarrow F \vdash G$$

Definition: Ein Element a einer Boole'schen Algebra \mathfrak{B} heißt Atom, wenn $a \neq 0$ und für jedes $b \in B$ aus $0 \leq b \leq a$ stets $b \in \{0, a\}$ folgt, d.h. a ist minimal bzgl. \leq unter den Elementen $\neq 0$.

Dozent: PD Dr. Markus Junker Assistent: Andreas Claessens

- (ii) Zeigen Sie, dass es in \mathfrak{F}_{∞} keine Atome gibt.
- (iii) Bestimmen Sie die Atome von \mathfrak{F}_i für $i\in\mathbb{N}$ und zeigen Sie, dass es für jede Formel $F \nsim \perp$ ein Atom $A/_{\sim}$ gibt, mit $A/_{\sim} \leq F/_{\sim}.$