P	١	(ÿ	1	3																									
									7		ì				,										,					
D.	4	1	ľ	1	3																									

A	supplementary	note	for	the	Section	1.	3	:
							_	

O An alternative approach to see J(n) = zl+1: In class, we've shown that $J(z^m) = 1$ and here's the remaining part.

Since we defined $N = 2^m + l$, after removing l people we have $n' = 2^m$,

and therefore J(n')=1. The last step we need is to find the mapping of people's ID for the n'-people case back to people's ID for the n-people case.

A needed lemma: $l < \frac{n}{2}$ Proof: $2^m \le n < 2^{m+1}$ $\Rightarrow l = n-2^m < 2^{m+1}-2^m = 2^m = n-l$ $\Rightarrow 2l < n$ $\Rightarrow l < \frac{n}{2}$

(n=2m+l and 0 slezm) (3) Another way to make sense that $(n) = 2^{m} - |-1|$ $(n) = \mathcal{L}$ tor f(n)= A(n) x + B(n) B+ a closed-form solution of the recurrence f(2n) = 2f(n)+B for n=1 fanti) = 2f(n) + + for n=1 is as follows: f(n) = 2(2(2--f(1)+(Borr))+(Borr))+...) $\sqrt{2m}$ and since $f(1) = x \Rightarrow A(n) = 2^m$ Now, consider in terms of shifting bits to the left. If n is even \Rightarrow (f(n)) is equal to (f($\frac{1}{2}$)) appends a 0 If n is odd =) (f(n)) is equal to (f(1)) appends a 1 n=(16m-16m-2...b, bo)2 l=(bm, bmz...b, bo) = each 1 in position by implies Therefore, C(h) = l Finally, since B(n)+c(n)=2m-1, we have B(n)=2m-1-1