





# **Hurtownie danych**

**Podstawy procesu ETL** 

dr inż. Bernadetta Maleszka







## Hurtownia danych - definicja

### **Hurtownia danych to:**

- tematycznie zorientowana
- zintegrowana
- chronologiczna
- trwała

kolekcja danych do wspomagania procesów podejmowania decyzji







### ETL

- Extract
- Transform
- Load
- Zastosowanie reguł biznesowych do istniejących danych w celu uzyskania użytecznych informacji
- Czyszczenie i standaryzacja danych
- Integracja różnych danych (wewnętrznych i zewnętrznych)
- Agregacja danych
- Nawet 70% 80% wysiłku budowy hurtowni danych







### ETL

- Pobierz dane ze źródła i załaduj do hurtowni
  - kopiowanie danych pomiędzy bazami
- Dane są wyciągane z bazy OLTP, przekształcane tak, aby pasowały do schematu hurtowni i ładowane do hurtowni
- Źródłowe dane mogą nie być przechowywane w tej samej bazie
- Myśl o procesie ETL, a nie o fizycznej implementacji tego procesu!







### ETL

- Złożona kombinacja procesu i technologii wymagająca nakładów sił i energii:
  - analityków biznesowych
  - projektantów baz danych
  - developerów aplikacji
- Nie mylić procesu ETL z jednorazowym czy nawet okresowym dodawaniem danych do bazy!
- Proces:
  - zautomatyzowany
  - udokumentowany
  - łatwo modyfikowalny







### **Extraction**

- integracja wszystkich systemów przedsiębiorstwa
- heterogeniczne źródła danych
- każde źródło danych ma swoją charakterystykę:
  - DBMS
  - system operacyjny
  - hardware
  - protokoły komunikacji
- Logiczna mapa danych
  - określa relacje pomiędzy skrajnymi etapami procesu ETL







## Ekstrakcja – mapa logiczna

| Cel    |         |            | Źródło |         | Przekształcenie |  |
|--------|---------|------------|--------|---------|-----------------|--|
| Tabela | Kolumna | Typ danych | Tabela | Kolumna | Typ danych      |  |

- dokładnie wiadomo, co dzieje się z danymi
- przekształcenie zazwyczaj SQL







## Mapa logiczna - przykład

| Target      |                    |              |            |          |               | Sc             | Toposformation    |               |                                                        |
|-------------|--------------------|--------------|------------|----------|---------------|----------------|-------------------|---------------|--------------------------------------------------------|
| Table Name  | Column Name        | Data Type    | Table Type | SCD Type | Database Name | Table Name     | Column Name       | Data Type     | Transformation                                         |
| MPLOYEE_DIM | ENPLOYEE_KEY       | NUMBER       | Dimension  | 1        |               |                |                   | NUMBER        | Surrogate key.                                         |
| MPLOYEE_DIM | ENPLOYEE_ID        | NUMBER       | Dimension  | 1        | HP_SYS        | EMPLOYEES      | EMPLOYEE_ID       | NUMBER        | Natural Key for employee in HR system                  |
|             |                    |              |            |          |               |                |                   |               | sidect curame from employees e, states s, countr       |
|             |                    |              |            |          | l             |                |                   |               | c where e.state_jd = s.state_jd and s.country_jd :     |
| MPLOYEE_DIM | BIRTH_COUNTRY_NAME | WARCHAR2(75) | Dimension  | 1        | HR_SYS        | COUNTRIES      | NAME              | VARCHAR2(75)  | c.country                                              |
|             |                    |              |            |          |               |                |                   |               | s elect sudescription from employees e, states s       |
| PLOYEE_DIM  | BIRTH_STATE        | VARCHAR2(75) | Dimension  | 1        | HR_SYS        | STATES         | DESCRIPTION       | VARCHAR2(255) | where e.state_id = s.state_id                          |
|             |                    |              |            |          |               |                |                   |               | s elect initcap(sall/tation) IF "llinitcap(first_name) |
| PLOYEE_DIM  | DISPLAY_NAME       | VARCHAR2(75) | Dimension  | 1        | HR_SYS        | EMPLOYEES      | FIRST_NAME        |               | initcap(last_name) from employee                       |
| PLOYEE_DIM  | BIRTH_DATE         | DATE         | Dimension  | 1        | HR_SYS        | EMPLOYEES      | DOB               | DATE          | truno(DOB)                                             |
| PLOYEE_DIM  | SALUTATION         | WARCHAR2(12) |            | 1        | HR_SYS        | EMPLOYEES      | SALUTATION        |               | initcap(sallutation)                                   |
| PLOYEE_DIM  | FIRST_NAME         | WARCHAR2(30) | Dimension  | 1        | HR_SYS        | EMPLOYEES      | FIRST_NAME        | VARCHAR2(30)  | initcap(first_name)                                    |
| PLOYEE_DIM  | LAST_NAME          | WARCHAR2(30) | Dimension  | 1        | HR_SYS        | EMPLOYEES      | LAST_NAME         | VARCHAR2(30)  | initcap(last_name)                                     |
|             |                    |              |            |          | l             |                |                   |               | select nul(muname, 'Unknown') from employee e          |
|             |                    |              |            |          | l             |                |                   |               | marital_status m where e.marital_status_id =           |
| MPLOYEE_DIM | MARITAL_STATUS     | VARCHAR2(12) | Dimension  | 2        | HR_SYS        | MARITAL_STATUS | DESCRIPTION       | VARCHAR2(12)  | rr_mantal_status_id                                    |
|             |                    |              |            |          | l             |                |                   |               | diecode/eeo_class,null, "Not Stated",                  |
| MPLOYEE_DIM | DIVERSITY_CATEGORY | VARCHAR2(30) | Dimension  | 1        | HR_SYS        | EMPLOYEES      | EEO_CLASS         | VARCHAR2(30)  | decode(eeo_class, W, "Not Stated",eeo_class))          |
| MPLOYEE_DIM | GENDER             | WARCHAR2(12) | Dimension  | 1        | HR_SYS        | EMPLOYEES      | SEX               | VARCHAR2(12)  | nvl(sex, Unknown')                                     |
|             |                    |              |            |          |               |                |                   |               | s diect es.name from employee e employee_sta           |
|             |                    |              |            |          |               |                |                   |               | where e.employee_status_id =                           |
| MPLOYEE_DIM | EMPLOYEE_STATUS    | WARCHAR2(24) | Dimension  | 1        | HR_SYS        | EMPLOYEES      | STATUS            |               | m.employee_status_id                                   |
|             |                    |              |            |          |               |                |                   |               | select p.code from employees e, positions p wh         |
| IPLOYEE_DIM | POSMON_CODE        | WARCHAR2(12) | Dimension  | 2        | HR_SYS        | POSITIONS      | POSITION_CODE     |               | p.position_id = eposition_id                           |
|             |                    |              |            |          |               |                |                   |               | s elect p.categary from employees e, positions p       |
| MPLOYEE_DIM | POSITION_CATEGORY  | WARCHAR2(30) | Dimension  | 2        | HR_SYS        | POSITIONS      | POSITION_CATEGORY |               | where p.position_id = e.position_id                    |
| MPLOYEE_DIM | HIRE_DATE          | DATE         | Dimension  | 1        | HR_SYS        | EMPLOYEES      | DATE_HIRED        | DATE          | truno(date_hired)                                      |







### Fazy ekstrakcji

#### 1. Wykrywanie danych:

- czystość danych
- spójność danych
- identyfikacja i sprawdzenie źródła pod kątem założonego celu
- dokumentacja systemu źródłowego
- śledzenie zmian w systemie
- określenie miejsca pochodzenia danych
- świadomość redundancji danych (dane kopiowane, przekształcane, czyszczone, itp.)







## Fazy ekstrakcji

### 2. Detekcja anomalii:

- NULL (operacje złączenia tabel)
- wartości kluczowe
- daty
- audit columns używane przez DB, warunkowo uaktualniane

### 3. Eliminacja anomalii:

- tworzenie dwóch tabel (dane z poprzedniego i bieżącego ładowania)
- obliczanie różnicy pomiędzy tabelami w celu wykrycia zmian







### **Transformation**

- udokumentowany etap modyfikacji danych do pożądanej postaci
- paradygmaty jakości danych:
  - poprawność
  - jednoznaczność
  - spójność
  - kompletność
- dwukrotne sprawdzenie:
  - po ekstrakcji
  - po czyszczeniu i potwierdzeniu dodatkowych warunków







## **Transformation - Czyszczenie danych**

- detekcja anomalii:
  - próbkowanie danych
  - zliczanie rekordów
- sprawdzenie własności kolumn:
  - wartości NULL w miejscu kluczy
  - wartości numeryczne poza oczekiwanym zakresem
  - zbyt długie/krótkie długości danych
  - dane poza zakresem zbioru
  - dane odstające od wzorca







### **Transformation - zatwierdzenie**

- Sprawdzenie struktury
  - klucze główne i obce
  - integralność referencyjna kluczy
- Sprawdzenie danych i reguł
  - prostych reguł biznesowych
  - na poziomie logicznym







## Loading Ładowanie danych do wymiarów

- minimalizacja zbioru komponentów
- prosty klucz główny
- denormalizacja tabel
- slowly changing dimentions
  - zapis wymiaru jako fizycznej tabeli na dysku
- przypisanie kluczy zastępczych







## Loading Ładowanie danych do tabeli faktów

- w tabeli faktów przechowywane są miary
- uproszczone relacje pomiędzy tabelą faktów a wymiarami
- tworzenie klucza tabeli faktów
  - tworzenie klucza zastępczego







## ETL – zasilanie hurtowni danych danymi

- **ekstrakcja danych** z systemów źródłowych (SAP, ERP, inne systemy transakcyjne), dane z rożnych systemów są konwertowane do wspólnego, jednolitego formatu danych hurtowni danych
- transformacja danych:
  - zastosowanie logiki biznesowej,
  - czyszczenie danych,
  - filtrowanie,
  - rozdzielenie jednej kolumny na kilka i odwrotnie,
  - łączenie danych z kilku źródeł (lookup, merge),
  - transpozycje kolumn i wierszy,
  - odrzucanie danych niespełniających zdefiniowanych wymagań/założeń
- załadowanie danych do hurtowni danych lub repozytoriów danych innych aplikacji raportujących







### **ELT**

- Dane ekstraktowane z systemów źródłowych bezpośrednio ładowane w oryginalnym formacie do bazy danych hurtowni danych
- Przy pomocy wygenerowanych poleceń i procedur SQL serwer bazy danych (DBMS) wykonuje transformacje danych
- Zasila tabele docelowe hurtownie
- Wymagania:
  - bardzo wydajny
  - wysoce skalowalny
  - i dobrze dostrojony serwer DBMS
- Stosowany przy bardzo dużych wolumenach danych







### **ETL vs ELT**





https://blog.gft.com/pl/2017/02/24/etl-vs-elt-czyli-rozne-podejscia-do-zasilenia-hurtowni-i-repozytoriow-danych/







### **ETL vs ELT**

#### ETL

- Extract wyładowanie danych i załadowanie ich do przestrzeni tymczasowej (ang. staging)
- Wada: niezbędny serwer na potrzeby narzędzia SQL
- Transform przygotowanie modelu
  i przekształcenie danych do pożądanej postaci
  (ang. schema-on-write)
- Load

#### ELT

- Exctract przygotowanie danych, ale bez definiowania, jak mają wyglądać dane wyjściowe (ang. schema-on-read)
- Load załadowanie surowych danych do centralnego repozytorium danych (ang. Data Lake)
- Transform wykorzystanie technologii pozwalającej przetwarzać dane nierelacyjne, w różnych formatach i strukturach







## Przykład ELT – Big Data









## **Zalety i wady**

| Kryterium                | ETL                                                                    | ELT                                                                                                                                                 |
|--------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Schemat                  | Podczas tworzenia hurtowni.                                            | ELT nie wyklucza podejścia Schema-on-Write.<br>Decyzja o formie danych podczas ich odczytu<br>z repozytorium danych.                                |
| Zmiany w modelu hurtowni | Często musimy zmienić przepływ ETL oraz model hurtowni.                | Zmiana może ograniczyć się do warstwy hurtowni danych i kroku transformacji.                                                                        |
| Infrastruktura           | Potrzebne dodatkowe maszyny.                                           | Całość procesu realizowana na docelowym wystarczająco wydajnym serwerze.                                                                            |
| Kompetencje              | Wymagane dodatkowe kompetencje związane z procesami i narzędziami ETL. | L+T -> znajomość baz danych. W pozostałych przypadkach wymagana jest znajomość technologii, wykorzystywana do przechowywania i procesowania danych. |







## **Zalety i wady**

| Kryterium                 | ETL                                                                                                                                                                   | ELT                                                                                                                                        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Czas dostępu do<br>danych | Zazwyczaj dane dostępne po ukończeniu całego procesu.                                                                                                                 | Dane szybciej dostępne na docelowej<br>maszynie.<br>Możemy mieć dostęp do danych surowych<br>przed transformacją.                          |
| Zastosowanie              | Rozwiązanie popularne i optymalne przy<br>dużych wolumenach danych oraz<br>skomplikowanych transformacjach.  Może nie być optymalne kosztowo dla<br>małych rozwiązań. | Zysk widoczny przy przetwarzaniu potężnych zbiorów danych opartych o rozwiązania nastawione na skalowalność oraz dane nieustrukturyzowane. |





"ZPR PWr – Zintegrowany Program Ro

### **Reverse ETL**

- Źródło danych: nowoczesna hurtownia danych
- Cel: analiza operacyjna w wybranych zakresach
- Software-as-a-service (SaaS)
- Wykorzystanie danych z hurtowni (KPI) przez zewnętrzne systemy















## Przykłady procesów ETL







Drop tables

Populate

Add constraints





















## Fun Eur Wied

## **Fuzzy Lookup**



| Error     | Package | String | ERROR     |
|-----------|---------|--------|-----------|
| likely    | Package | String | LIKELY    |
| non_match | Package | String | NON-MATCH |

| 94  | "Hex Nut 20             | Hex Nut 20          | 0.9875  | 0.9007731   | 0.9875       | LIKELY       | pejska    | **** |
|-----|-------------------------|---------------------|---------|-------------|--------------|--------------|-----------|------|
| 95  | "HL Touring Seat/Saddle | HL Touring Seat/Sad | 0.9875  | 0.6114928   | 0.9875       | LIKELY       | Społeczny |      |
| 96  | "Lock Washer 2          | Lock Washer 2       | 0.9875  | 0.9578876   | 0.9875       | LIKELY       |           |      |
| 97  | "Hex Nut 21             | Hex Nut 21          | 0.9875  | 0.9007731   | 0.9875       | LIKELY       | j"        |      |
| 98  | "LL Bottom Bracket      | LL Bottom Bracket   | 0.9875  | 0.5996314   | 0.9875       | LIKELY       |           |      |
| 99  | "HL Mountain Rim        | HL Mountain Rim     | 0.9875  | 0.681129    | 0.9875       | LIKELY       |           |      |
| 100 | "Hex Nut 2              | Hex Nut 2           | 0.9875  | 0.9713477   | 0.9875       | LIKELY       |           |      |
| 101 | "Lock Washer 11         | Lock Washe "Bearing | Ball,Be | aring Ball, | 0.98750001,0 | 5,0.98750001 | ,LIKELY   | ,    |

"Lock Washer 5

"Lock Washar 3

"ML Grip Tpe

"Thin-Jam Lock Nut 13

"External Lck Washer 8

102

103

104

105

106

Lock Washe "External Lck Washer 8, External Lock Washer 8, 0.92961943, 0.56844395, 0.92961943, NON-MATCH "External Lock Washer 1, External Lock Washer 1,0.98750001,0.98534936,0.98750001, LIKELY

"External Lock Washer 7, External Lock Washer 7,0.98750001,0.56334531,0.98750001, LIKELY

"External Lock Washer 9,External Lock Washer 9,0.98750001,0.56254739,0.98750001,LIKELY

ML Grip Tapi "Guide Pulley, Guide Pulley, 0.98750001, 0.56722081, 0.98750001, LIKELY

External Lock "Headset Ball Bearings, Headset Ball Bearings, 0.98750001, 0.52441591, 0.98750001, LIKELY

"Hex Nut 1, Hex Nut 1,0.98750001,0.97134769,0.98750001,LIKELY

"Hex Nut 10, Hex Nut 10, 0.98750001, 0.94661856, 0.98750001, LIKELY

"Hex Nut 11, Hex Nut 11,0.98750001,0.93934381,0.98750001, LIKELY

"Hex Nut 12, Hex Nut 12,0.98750001,0.93934381,0.98750001,LIKELY

"Hex Nut 13, Hex Nut 13,0.98750001,0.93934381,0.98750001,LIKELY

"Hex Nut 16, Hex Nut 16,0.98750001,0.93017125,0.98750001,LIKELY

"Hex Nut 17, Hex Nut 17,0.98750001,0.90077311,0.98750001,LIKELY

"Hex Nut 2, Hex Nut 2,0.98750001,0.97134769,0.98750001,LIKELY

"Hex Nut 20, Hex Nut 20,0.98750001,0.90077311,0.98750001,LIKELY

"Hex Nut 21, Hex Nut 21,0.98750001,0.90077311,0.98750001,LIKELY

"Hex Nut 22, Hex Nut 22,0.98750001,0.90077311,0.98750001,LIKELY

"Hex Nut 23, Hex Nut 23,0.98750001,0.90077311,0.98750001,LIKELY

"Hex Nut 3, Hex Nut 3,0.98750001,0.9654057,0.98750001,LIKELY

"Hex Nut 5, Hex Nut 5,0.98750001,0.96176714,0.98750001,LIKELY

"Hex Nut 7, Hex Nut 7,0.98750001,0.96176714,0.98750001,LIKELY

"Hex Nut 8, Hex Nut 8,0.98750001,0.96176714,0.98750001,LIKELY

"Hex Nut 9.Hex Nut 9.0.98750001.0.95754081.0.98750001.LIKELY















## Tworzenie partycji

- fizyczny podział tabeli faktów na mniejsze tabele
- cel: poprawa wydajności zapytań
- zazwyczaj podział względem dat
- uwzględnienie tych części wymiarów, które są potrzebne







### Dziennik zmian

- nadmiarowe, zbędne
- wszystkie dane są wprowadzane procesem ETL
- dane ładowane są luzem
- w przypadku niepowodzenia, proces można powtórzyć
- różne systemy bazodanowe korzystają z różnych dzienników
  - jak je zintegrować?







# **Hurtownie danych**

Dziękuję za uwagę

dr inż. Bernadetta Maleszka