# E-R Diagram

#### Database Development

- We know how to query a database using SQL
  - A set of tables and their schemas are given
  - Data are properly loaded
- But, how can we develop appropriate tables and their schema for an application?
  - In real applications, data often does not present as tables naturally
  - What are the corresponding data units of tables?

#### What Is Data in Applications?

- A student information system
  - Objects: students (Ann, Bob, ...), courses (354, 459, ...), departments (CS, Engineering, ...), ...
- Objects are related
  - Students taking courses (Ann takes 354, Bob takes 459, ...), courses offered by departments (354 and 459 are offered by CS), ...
- Generally, an application contains a set of objects and their relationships

#### **Entities**

- An entity: an object that exists and is distinguishable from other objects
  - E.g., Ann, Bob, CS, Engineering, 354, 459, ...
  - Entities have attributes, e.g., Ann has a phone number and an address
- An entity set: a set of entities of the same type that share the same properties
  - E.g., the set of students, the set of departments, the set of courses, ...

#### Entity Sets in Relational Databases

customer\_id customer\_ customer\_ customer\_ name street city

| 321-12-3123 | Jones    | Main   | Harrison   |
|-------------|----------|--------|------------|
| 019-28-3746 | Smith    | North  | Rye        |
| 677-89-9011 | Hayes    | Main   | Harrison   |
| 555-55-5555 | Jackson  | Dupont | Woodside   |
| 244-66-8800 | Curry    | North  | Rye        |
| 963-96-3963 | Williams | Nassau | Princeton  |
| 335-57-7991 | Adams    | Spring | Pittsfield |

customer

loan\_ amount number



loan

#### **Attributes**

An entity is represented by a set of attributes – the descriptive properties possessed by all members of an entity set customer = (customer\_id, customer\_name, customer\_street, customer\_city)
loan = (loan\_number, amount)

Domain – the set of permitted values for an attribute

#### Attribute types

- Simple and composite attributes
  - Simple: cannot be divided into subparts
  - Composite: Name = first\_name + last\_name
- Single-valued and multi-valued attributes
  - Single-valued: each entity has only one value
  - Multi-valued: an entity may have zero, one, or more values, e.g., telephone numbers
- Derived attributes
  - Can be computed from other attributes
  - Example: age, given date\_of\_birth

#### Relationships

- A relationship: an association among several entities
  - Ann takes 354, Bob takes 459
  - A set of relationships may share common features: student-takingcourses
- A relationship set: a mathematical relation among n ≥ 2 entities, each taken from an entity set
  - $-\{(e_1, e_2, ..., e_n) \mid e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}, \text{ where } (e_1, e_2, ..., e_n) \text{ is a relationship}$
  - Example: (Ann, 354) ∈ std-take-crs, (Bob, 459) ∈ std-take-crs

#### Relationship Set borrower



# Properties of Relationship Sets

A relationship set can also have properties



# Degree of a Relationship Set

- The number of entity sets that participate in a relationship set
  - Relationship sets that involve two entity sets are binary (or of degree two)
  - Most relationship sets in a database system are binary
- Relationship sets may involve more than two entity sets
  - Example: a ternary relationship set between entity sets student, course, and instructor

# Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set
  - Most useful in describing binary relationship sets
- For a binary relationship set the mapping cardinality must be one of the following types
  - One to one, e.g., president university
  - One to many, e.g., instructor course
  - Many to one, e.g., course instructor
  - Many to many, e.g., student course

# Mapping Cardinalities



# Mapping Cardinalities



Many to one

Many to many

# Entity-Relationship (ER) Model

- Elements in a database: data entries
- Data entries represent
  - Entities: data objects, e.g., students, courses, and instructors
  - Relationships among entities: students take courses, instructors teach courses
- ER model: model data using entities and relationships

# Object Identity and Keys

- In an application, we need to uniquely identify a natural object, and a natural relationship among multiple objects
  - Student: name, address, phone number
  - Course: name, instructor, time
  - Student-take-course: student-id, course-id
- The identities are modeled as keys

# Keys

- A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity
- A candidate key of an entity set is a minimal super key
  - customer\_id is a candidate key of customer
  - account\_number is a candidate key of account
- One of the candidate keys is selected to be the primary key

#### Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set
  - (customer\_id, account\_number) is the super key of depositor
- Need to consider the semantics of relationship set in selecting the primary key if more than one candidate key is feasible

# Keys and Mapping Cardinality

- One to one relationship set
  - Use a candidate key in either entity set
  - University-president (university, president)
- Many to one relationship set
  - Use a candidate key in the many side entity set
  - Teaching (instructor, courses)
- Many to many relationship set
  - Use a candidate key in each participating entity set
  - Take-course (student, course)

# E-R Diagrams

- Rectangles represent entity sets
- Diamonds represent relationship sets
- Lines link attributes to entity sets and entity sets to relationship sets
- Ellipses represent attributes
  - Double ellipses represent multivalued attributes
  - Dashed ellipses denote derived attributes
- Underline indicates primary key attributes

# Example



# A More Complicated Example



#### Relationship Sets with Attributes



#### Summary

- Model real world data using entities and relationships
- The ER model
- ER diagrams
  - Entities, relationships, attributes
  - Constraints, keys, cardinalities

#### To-Do-List

 Examine the tables in the TPC data set used in assignment 1. Can you guess for each table whether it models an entity set or a relationship set?