[Higher Math] Midterm Review

Relations

- Equivalence Relation (?)
- Types of relations
- Functions as relations

Functions

General Notes

Definition: Take two sets, X and Y. A function $f: X \to Y$ (a function from X to Y) is a collection of ordered pairs (x,y) such that $x \in X$ and $y \in Y$.

• The condition for these ordered pairs to be considered a function is that they follow the Vertical Line Test (VLT). Anoterh way to put this is that each input only ever has one output!

More formally, we can say that $\forall x \in X$, the function (x,y) only ever has one y. In these scenarios, we tend to use the "negative" definition, and say that if $(x_1,y_1) \in f$ and $(x_1,y_2) \in f$, then $y_1=y_2$.

Some important definitions are as follows:

- Image (Range): The image of $f:X \to Y$ is basically all the values in Y that values $x \in X$ map to. In order words, it's the "range" of the function.
 - o However, we use the term image because this refers to the "range" of a specific set. You can imagine that you have a function $f(x)=x^2$ defined over all the real numbers. The range is $(0,\infty)$, but let's say that we only cared about the inputs $\{1,2,3\}$. Then, the image of this set of the function would be $\{1,4,9\}$.
- **PreImage (Domain):** This is a fancy word for domain, but it's basically like all the elements $x \in X$ that map to values $y \in Y$. In the above example, take something like $\{1,4,9\}$ as output values for the function $f(x) = x^2$. Then, we can say the preimage of this set is $\{1,2,3\}$ because those are the values that map to those outputs.

There are three types of "mappings". Consider the function f:A o B where $a\in A$ and $b\in B$.

- Injective (one-to-one): If f(a) = f(b), then a = b. Another way to say this is that every input value only maps to one output value. You will never have a case where your function has something like f(1) = f(3).
- **Surjective (onto):** For all $b \in B$, there exists some $a \in A$ such that f(a) = b. This is basically saying that every possible output (in set B) guarentees to have some input from set A that can map to it.
- **Bijective:** Both surjective and injective!
 - NOTE: If they ever ask about the inverse of a function, this is only possible with a
 bijective function! If you think about it, it makes sense why you can only have an
 inverse (that is a function) if the properties of injectivity and surjectivity are satisfied.

Example Problems

Problem 1 (HW 5): Give the following definitions:

ullet a function f:X o Y

A function f:X o Y (a function from X to Y) is a collection of ordered pairs (x,y) such that $x\in X$ and $y\in Y$, and $\forall x\in X$, the function (x,y) only ever has one y.

• for $A \subset X$, the set f(A)

$$f(A) = \{ f(a) \in Y : \forall a \in A \}$$
 (1)

 $\bullet \ \ {\rm for} \ C \subset Y \text{, the set} \ f^{-1}(C) \\$

$$f^{-1}(C) = \{ a \in A : \forall c \in C, f(a) = c \}$$
 (2)

Injective Proof: By definitino of injectivity, we have that if f(a) = f(b), then a = b.

Take any element of $x\in A\cap B$. It should be obvious that $f(x)\in f(A)$ and $f(x)\in f(B)$. Now, take any element $y\in f(A)\cap f(B)$. Assume that $x_1\in A\implies f(x_1)=y$ and $x_2\in B\implies f(x_2)=y$ Then, $f(x_1)=f(x_2)=y$ and we know that $x_1=x_2$ and so that $x_1\in A\cap B$. This means that double inclusion so we good.

Limits

$$(|a| - |b|)^2 = |a|^2 + |b|^2 - 2|a||b| \implies |a| + |b|$$
(3)

Example 4 HW 7

 $0<|x|<\delta \implies 0<|x-M|<\epsilon$. Assume that $\delta=rac{1}{x}$. this means that $x\sin(x)$ and around x=0,

Fix some M. Now, define $x=rac{1}{\pi(M+1)} o f(x_0)=\pi(M+1)>M$. Thus, your bound fails.

Limits:

$$3x^2 - 3 < \epsilon \iff \delta = \sqrt{4}$$