Clustering and Labeling of a V2V Communication Dataset

based on CAM and DENM Messages with Malicious Data Injection

Analysis and Implications

INTRO

VEHICULAR COMMUNICATION SYSTEMS

Computer networks
where vehicles and roadside units
(RSU) serve as communicating nodes

VEHICLE-TO-VEHICLE COMMUNICATION (V2V)

Wireless information exchange about the speed and position of nearby vehicles.

Offering great promise in accident prevention.

0

INTRO

DATASETS

Two different types of messages:
Cooperative Awareness Messages
(CAM) and Decentralized
Environmental Notification Messages
(DENM).

OBJECTIVE OF THE WORK

Data preprocessing, clustering, introduce noise into the provided dataset to simulate potential malicious reports, labeling the data based on clustering and identifying potential outliers.

0

CAM MESSAGES

×

Cooperative Awareness Message defined by the European Telecommunications Standards Institute (ETSI) in 2011

- Basic awareness service by sending status data to nearby nodes
- Distributing messages about presence, location, and fundamental status

Version, ID, Generation Time

ID Station Type

Reference Position

Optional Parameters

HEADER

0

BODY

DENM MESSAGES

Decentralized Environmental Notification Message defined by the European Telecommunications Standards Institute (ETSI) in 2011

- Notification service regarding road status
- Support active road **safety** applications

Version, ID, Generation Time

Management

Situation

Location

HEADER

0

BODY

DATA ANALYSIS

X-Means Algorithm

A variant of K-Means algorithm, determines automatically the optimal number of clusters in the data without requiring a predefinited specification, based on recursion. Part of pyclustering open-source library.

- Initially applies standard K-Means with an initial cluster count
- Assesses clustering quality using measures
- Checks if **splitting clusters** improves overall quality
- Divides clusters with K-Means if advantageous

DATA ANALYSIS

X-Means Algorithm

A variant of K-Means algorithm, determines automatically the optimal number of clusters in the data without requiring a predefinited specification, based on recursion. Part of pyclustering open-source library.

- Initially applies standard K-Means with an initial cluster count
- Assesses clustering quality using measures
- Checks if splitting clusters improves overall quality
- Divides clusters with K-Means if advantageous

Repeats division and evaluation for existing clusters and allows potential creation of new sub-clusters for improved clustering

- Stops when no further cluster division is possible
- Halts if the division doesn't significantly enhance results compared to complexity

Returns optimal clusters determined automatically

DATA ANIVOIC

Clustering of the provided CAM dataset

Clustering of the provided DENM dataset

INTRODUCTION OF MALICIOUS DATA

0

Variation of coordinates using a **Gaussian distribution** (mean: 0, standard deviation: 1)
multiplied by a factor of 100

Variations within a range of approximately 100 to 900 meters on the map

- Focus contamination on sources with
 eventType value 97, representing the most
 significant cluster
- Contamination of 20% (8 sources) of this specific eventType

INTRODUCTION OF

Clustering Following
Data Contamination

EVENT TYPE ANALYSIS

3 Specific Event
Types

Time difference between simulation time and detection time

Spatial variation between CAM and DENM messages from the same source within a minimal time gap

Graphical representation

CauseCodeType_dangerousEndOfQueue = 27
CauseCodeType_collisionRisk = 97
CauseCodeType_trafficCondition = 1

The time differences between when a vehicle perceives an event and when it reports it.

Ca Ca

C

OUTLIER DETECTION

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm
- Groups points based on the data density in space
- → Two parameters:
 - epsilon (ε), the maximum distance between two points to consider them part of the same cluster;
 - minPoints, the minimum number of points required to form a cluster.
- Experiment varying epsilon values to find the optimal configuration
- The best epsilon is the fewest possible outliers, the data we are working with is clean!

OUTLIFR

LABELING - EXPERIMENTS, SS

Outliers detection for epsilon = 2481 with the dirty dataset

Outliers detection for epsilon = 1281 with the dirty dataset

LABELING - EXPERIMENTS, 🔾

TP	FN	FP	TN
38.66%	61.34%	14.44%	85.56%

Outliers detection, points with malicious = True, only considering spatial difference

CONCLUSIONS

Challenges in outlier identification, especially for points near trajectories.

Substantial improvement observed by removing the temporal component.

Best-performing experiment captured only 38.66% outliers.

Consider utilizing a more extensive dataset with diverse event types to enhance the robustness and generalizability of the model.

Explore more advanced machine learning and deep learning techniques.

Thanks for the attention!

