特向观察法

补充定理: 若 $(A-\lambda_1 I)P=0$,则P中列都是 λ_1 的特向

证明: $(A-\lambda_1 I)P=0 \Leftrightarrow AP=\lambda_1 P$, $\Leftrightarrow P=(X_1,\dots,X_n)$ ——按列分块

则
$$A(X_1, \dots, X_n) = \lambda_1(X_1, \dots, X_n) \Rightarrow AX_1 = \lambda_1 X_1, \dots, AX_n = \lambda_1 X_n$$
 证毕

方法 1: 若 $(A-\lambda_1 I)(A-\lambda_2 I)=0$,则

 $(A-\lambda,I)$ 的列都是 λ 的特向, $(A-\lambda,I)$ 的列都是 λ , 的特向

证明: 因为 $0=(A-\lambda_{i}I)(A-\lambda_{i}I)=(A-\lambda_{i}I)(A-\lambda_{i}I)$ (可交换!)

由**补充定理可知**, $(A-\lambda_2 I)$ 的列都是 λ_1 的特向,且 $(A-\lambda_1 I)$ 的列都是 λ_2 的特向

例 1:
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$
 (正规阵单阵!), 全体根 $\lambda(A) = \{5,0,0\}$, 不同根为 $\lambda_1 = 5, \lambda_2 = 0$

由于 A 为单阵! 必有 $(A-\lambda_i I)(A-\lambda_i I)=0$,即 (A-5)(A-0)=0

可知,
$$A-0=A=\begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$
中取一非0列 $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ 为 $\lambda_1=5$ 的特向

$$A-5 = \begin{pmatrix} -4 & 0 & -2 \\ 0 & -5 & 0 \\ -2 & 0 & -1 \end{pmatrix} = -\begin{pmatrix} 4 & 0 & 2 \\ 0 & 5 & 0 \\ 2 & 0 & 1 \end{pmatrix} + 取2列 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} 都是 \lambda_2 = 0 的特向!$$

例 2. $A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$,可知 $\lambda(A) = \{1, 4\}$,由 Cayley 公式得 (A-1)(A-4) = 0

且
$$A-4=\mathbf{A}=\begin{pmatrix} -1 & 1\\ 2 & -2 \end{pmatrix}$$
, $A-1=\mathbf{A}=\begin{pmatrix} 2 & 1\\ 2 & 1 \end{pmatrix}$, 可知

$$A$$
有 2 个特向 $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (分别属于 $\lambda_1 = 1$, $\lambda_2 = 4$) 不唯一

例 3
$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\lambda(\mathbf{A}) = \{i, -i\}$, 由 Cayley 公式得 $(A-i)(A+i) = 0$

且
$$\mathbf{A} + i = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}, \mathbf{A} - i = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix}$$
,可知

$$A$$
有 2 **个特向** $\binom{i}{1}$, $\binom{1}{i}$ (分别属于 $\lambda_1 = i$, $\lambda_2 = -i$) 不唯一.

例 4:
$$A = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}$$
, $\lambda(A) = \{-2, 1, 1\}$

观察
$$(A-I)$$
, $(A+2I)$ 中各列,可知有 3 个特向 $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 不唯一

分别属于特根-2, 1, 1

特别, 若有幂等阵: $A^2 = A$, 必有(A-1)A = 0, 则A中列都是 $\lambda_1 = 1$ 的特向,

例如,
$$A = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} = A$ 为幂等

则
$$A$$
 中非 0 列 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 是是 $\lambda_1 = 1$ 的特向

方法 2: 若 $(A-\lambda_1 I)(A-\lambda_2 I)(A-\lambda_3 I)=0$,则

 $(A-\lambda_2 I)(A-\lambda_3 I)$ 中非 0 列都是 λ 的特向,

 $(A-\lambda I)(A-\lambda I)$ 中非 0 列都是 λ_2 的特向,

 $(A-\lambda_1 I)(A-\lambda_2 I)$ 中非 0 列都是 λ_3 的特向.

证: 因 $0=(A-\lambda_1)(A-\lambda_2)(A-\lambda_3)=(A-\lambda_2)(A-\lambda_3)(A-\lambda_1)=(A-\lambda_3)(A-\lambda_1)(A-\lambda_2)$ 可交换, 由补充定理 1 可知,方法 2 结论成立

例
$$A = \begin{pmatrix} -1 & i & 0 \\ -i & 0 & -i \\ 0 & i & -1 \end{pmatrix}$$
 hermit 正规阵!,求 3 个特征向量

解 用平移法可知 $\lambda(A) = \{1, -2, -1\}$???

有 3 个不同特征根: $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = -2.$

利用 Cayley 公式,或正规阵单阵,必有(A-1)(A+1)(A+2)=0

分别计算(A+1)(A+2), (A-1)(A+2), (A-1)(A+1)中**第1列**, 可知 $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = -2$ 的 3 个特征向量如下

$$X_1 = \begin{pmatrix} 1 \\ -2i \\ 1 \end{pmatrix}, X_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, X_3 = \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}$$
 (正规阵的特向互正交!)

可令优阵
$$Q = \begin{pmatrix} \begin{pmatrix} 1 \\ -2i \\ 1 \end{pmatrix} & \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix} \\ \sqrt{2} & \sqrt{3} \end{pmatrix}$$
, 必有 $Q^{-1}AQ = D = \begin{pmatrix} 1 \\ & -1 \\ & & -2 \end{pmatrix}$

.....

方法 3: 若 $(A-\lambda I)^2=0$,则 $(A-\lambda I)$ 中非 0 列都是 λ 的特向

特别, 若 $A^2 = 0$, 则 A 中非 0 列都是 $\lambda_1 = 0$ 的特向

例如
$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = 0$,

则
$$A$$
 中非 0 列 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 是 $\lambda_1 = 0$ 的特向

例:
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix}$$
 根为 $\lambda(A) = \{2, 2, 2\}$,特式 $|xI - A| = (x - 2)^3$

验:
$$: (A-2I)^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = 0$$
,且 $(A-2I) \neq 0$,A不是单阵!

可知
$$A-2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
中的列 $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ 是特征根 2 的一个特征向量

•••••

利用上面备注 1, 2, 3 可观测求出下面例子中的特征向量

.....

其它观察法:

引理: 若方阵 A 中各行元素之和==常数 a ,则 x = a 是一个特根,对应的特向为

(利用转置公式可知: 各列元素之和为常数 a 时 x = a 也是一个特根)

 $\text{i.i.}: \mathbf{AX} = \mathbf{A}(1,1,\dots,1)^T = (a,a,\dots,a)^T = a(1,1,\dots,1)^T = a\mathbf{X}.$

例: n 阶全 1 方阵 \mathbf{A} ,其各行元素之和为常数 n ,则 $\lambda_1 = n$ 是一个特根,其特向为全 1 向量 $\mathbf{X} = \begin{pmatrix} 1,1,\cdots,1 \end{pmatrix}^T$

例: $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$ 的各行元素的和为4,则 $\lambda_1 = 4$ 为一特根,其特向为 $\mathbf{2} \mathbf{1}$ 向量 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

另一个根为
$$\lambda_2 = 5-4=1$$
,特向为 $\mathbf{A}-4 = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$ 中的列 $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

补充题: 用平移法求根 $\lambda(A)$,用观察法写出特征向量

注: 记号" $A \pm c$ "表示 $A \pm cI$.例如(A-2)(A-1)表示(A-2I)(A-I)

(1)
$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$$
, (2) $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, (3) $\mathbf{A} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$

$$(4) A = \begin{pmatrix} -3 & 4 & 2 \\ -2 & 3 & 1 \\ -2 & 2 & 2 \end{pmatrix}, A - 1 = ? , (5) A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 0 & 2 & 0 \end{pmatrix}, A - 1 = ?$$

其它结论

定理1: 若**n**方阵 $A = (a_{ii})$ 中 "行和 = 常数**k**",则常数**k**为A的一个特征根,

且 $\mathbf{21}$ 向量 \mathbf{X} =(1,1,...,1)^T为 \mathbf{A} 的一个特向,使得 \mathbf{AX} = \mathbf{kX}

推论1: 若**n**方阵 $A = (a_{ii})$ 中"列<mark>和 = 常数k",则常数k为 A^{T} 的一个特根,</mark>

且全1向量 $X=(1,1,\dots,1)^T$ 为 A^T 的特征向量,使得 $A^TX=kX$

证明:由条件可知转置 A^{T} 的"行和 = 常数k" 由定理1可得推论1成立.

备注: A^{T} 的特征根与A特征根相同!

 $但A^{T}$ 的特征向量不一定是A的特征向量.

其它例子:

例1:
$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$$
; $B = \begin{pmatrix} 3 & 3 & 3 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \end{pmatrix}$ 可知A,B的列和 = 常数1,令 $X = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

则**A**,**B**都有特征根 λ_1 =**1**,可知**X**不是**A**,**B**的特向!!

可知, $A^TX=X$, $B^TX=X$,即X是 A^T , B^T 的特向

例: 已知2介阵
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$$
有2个特向 $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ 且无关!

令
$$P=(X,Y)=\begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$
(P可逆),证明 $AP=PD$, $D=\begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$ 为对角阵

且 $P^{-1}AP = D$ 对角阵,即A为单阵!

解
$$:: A\mathbf{X} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 4\mathbf{X}, \quad A\mathbf{Y} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = 1\mathbf{Y}$$

$$\diamondsuit$$
P=(X,Y), 则AP=(AX,AY)=(4X,1Y)=(X,Y) $\begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$ =PD

其中,
$$\mathbf{D} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$
,即 $A\mathbf{P} = \mathbf{PD}$

由于X,Y无关,故P=(X,Y)可逆,且AP=PD

故 ⇒
$$\mathbf{P}^{-1}A\mathbf{P} = \mathbf{D} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$
 对角阵

补充题: $A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$ (列和=?), $\lambda(A) = \{4,1\}$ 观察A的2个特向X=?, Y=?

使得AX=4X, AY=Y, 令P=(X,Y),验证P⁻¹AP=D为对角阵