Final open presentation

Imputation Project team

Adrien Lucbert,
Albert Corson,
Jesús Martínez,
Julien van der Niet,
Michael Weij,
Ramon van der Elst

Table of content

Introduction to our project
Methodology
Conclusions
Future work

Terminology

Imputation

Replacing missing data with a substitute value

Time-series data

Data indexed by a timestamp

Building Management System (BMS)

System that controls and monitors building appliances such as a thermostat or heatpump

Data measurement scale

Measurement refers to the assignment of numbers e.g. Interval, Ratio

Scenario

Combination of data measurement scale and gap sizes

Trends

Behavior of patterns In data.

What is the project about?

Applied Data Science and imputation

Imputation

Impute Building Management System time-series data.

Test methods

Multiple imputation methods studies and tested.

Write guideline

What imputation methods should be used when?

Datasets used

BMS time-series

- Source Net Zero Energy Building from FactoryZero
- Target dataset for research
- 5-minutes measurement interval
- Row count: 105096

Meteorogical time-series

- Source Royal Netherlands
 Meteorological Institute (KNMI)
- Contains similar data to BMS time-series
- Hourly measurement interval
- Row count: 17545

Selected columns

Data selected for measurement scales

Column	Dataset	Scale	
Flow_temp	BMS	Interval	
Temperature	KNMI	Interval	
OP_mode	BMS	Nominal	
Power	BMS	Ratio	
CO2 level	BMS	Ratio	
Solar Radiation	KNMI	Ratio	
Humidity	KNMI	Ratio	

The Testing Method

Loading data

Load data without gaps

Creating gaps

Create reproducible gaps of different sizes

Running imputations

Hot-swappable imputation methods

Evaluating results

Wide range of evaluation criteria

Imputation methods

Wide scope of methods

From previous literature

K-Nearest Neighbour regression (KNN)

Last Observation Carried Forward (LOCF)

Recurrent Neural Networks (RNN)

Hot Deck (HD)

K-NN regression

The K-values tested are:
1,5,10,15,20,100
Compared by Root Mean Squared Error

Best results:

Gap size 1: KNN = 5 Gap size 2,3,4,5: KNN = 100

LOCF

Last Observation Carried Forward

Use the last valid measurement to fill a gap

Hot Deck

Use data from donors

Import data from similar units

Donor selection

Pattern search based selection

Reliance on donor quality

Heavily dependant on the quality of the donors

Recurrent Neural Network

Sequence as input

Considers a sequence of measurements to predict one or a sequence of the following values

Fit for time-series

Time-series values often depend on values preceding them, which makes RNN ideal for predicting time-series data

Recurrent Neural Network

Makes use of correlation

It always performs much better with highly correlated features

Poor correlators = poor predictions

Predictions need correlators, but poor correlators will still result in poor predictions

Recurrent Neural Network

Great with interval data

We noticed it performs especially well with interval data

Reliance on correlators

Consistent correlators = great predictions

Results

Smaller conclusions based on results

Imputation, as evaluated by RMSE, is poor

Hot Deck performs better on KNMI

RMSE and VE results don't always align

No consistent link between performance and difference in Kurtosis & Skewness

Conclusion

Resulting guideline

- Guideline in both VE and RMSE
- No single best method for all gap sizes and scales
- Performance on gap depends on scale

	Gap size 1	Gap size 2	Gap size 3	Gap size 4	Gap size 5
Nominal	HD	HD	HD	HD	HD
Ratio	HD	HD	HD	HD	HD
Interval	RNN	RNN	RNN	RNN	RNN

Future work

FOCUS:

- evaluating imputation with metrics based on the error
- + evaluating on the impact of forecasting using imputed data

Sequence-to-sequence RNN

Instead of sequence-to-value RNN in order to remove potential bias of imputation using its own imputed values.

Do you have any questions?