2021 Spring MAS 365: Homework 2

posted on Mar. 18; due by Mar. 25

1. [10 points] Let $\{p_n\}_{n=0}^{\infty}$ be a sequence generated by the Secant method. It can be shown that if $\{p_n\}_{n=0}^{\infty}$ converges to p, the solution to f(x)=0, then a constant C exists with $|e_{n+1}|\approx C|e_n|\,|e_{n-1}|$ for sufficently large value of n, where $e_n:=p_n-p$ for all n. Assuming that $\{p_n\}$ converges to p of order α , show that $\alpha=\frac{1+\sqrt{5}}{2}\approx 1.62$.

2. [5 points each]

- (a) Show that the sequence $p_n = 10^{-2^n}$ converges quadratically to 0.
- (b) Show that the sequence $p_n = 10^{-n^k}$ does not converge to 0 quadratically for any k > 1.
- 3. [5 points each] Let $P_n(x)$ be the *n*th Taylor polynomial for $f(x) = e^{-x}$ about $x_0 = 0$.
 - (a) For fixed x, show that $p_n = P_n(x)$ satisfies

$$\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}<1,$$

where p is a limit of $\{p_n\}_{n=0}^{\infty}$.

- (b) Let x=1, and use Aitken's Δ^2 method to generate the sequence $\hat{p}_0, \ldots, \hat{p}_5$. Report five-digit rounding values. [Hint: Use MATLAB command format long for more digits.]
- 4. [10 points] Use Gaussian elimination with backward substitution and two-digit rounding arithmetic to solve the following linear system. Do not reorder the equations.

$$E_1: -x_1+4x_2+x_3=8,$$

$$E_2: \frac{5}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3}x_3 = 1,$$

$$E_3: 2x_1 + x_2 + 4x_3 = 11.$$

5. [10 points each]

- $(1)\,$ Implement Steffensen's method via MATLAB grader.
- (2) Implement Müller's method via MATLAB grader. (See its pseudocode in the textbook.)

1

(3) Implement Newton's method with Horner's method via MATLAB grader.