Wärme- und Stoffübertragung I

Biot-Zahl

Prof. Dr.-Ing. Reinhold Kneer

Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

Dimensionslose Kennzahl: Biot-Zahl

- Charakterisierung der relevanten thermischen Widerstände durch die Definition einer dimensionslosen Kennzahl.
- Vereinfachen von komplexen mehrdimensionalen
 Wärmeleitungsproblemen auf Basis der problembestimmenden thermischen Widerstände.

Relevanz der thermischen Widerstände

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Dem Zylinder wird von einer Seite Wärme zugeführt (hier Flamme).

Betrachtung der stationären Temperaturverteilung in einem Zylinder

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Dem Zylinder wird von einer Seite Wärme zugeführt (hier Flamme).

Betrachtung der stationären Temperaturverteilung in einem Zylinder

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Dem Zylinder wird von einer Seite Wärme zugeführt (hier Flamme).

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Dem Zylinder wird von einer Seite Wärme zugeführt (hier Flamme).

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Dem Zylinder wird von einer Seite Wärme zugeführt (hier Flamme).

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Betrachtung des radialen Temperaturprofils

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Betrachtung des radialen Temperaturprofils

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Veränderung des Temperaturprofils bei Erhöhung der Wärmeleitfähigkeit

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Je größer die Wärmeleitfähigkeit wird, desto geringer wird der Wärmewiderstand durch Leitung

Widerstand durch Konvektion

 $\Delta T_{\lambda} < \Delta T_{\alpha}$

geringer als

Veränderung des Temperaturprofils bei Erhöhung der Wärmeleitfähigkeit

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Je größer die Wärmeleitfähigkeit wird, desto geringer wird der Wärmewiderstand durch Leitung

Fall II: Wärmeleitwiderstand geringer als
Widerstand durch Konvektion

 $\Delta T_{\lambda} < \Delta T_{\alpha}$

Veränderung des Temperaturprofils bei Reduzierung des Durchmessers

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Je kleiner der Durchmesser wird, desto geringer wird der Wärmewiderstand durch Leitung in radialer Richtung

Fall II: Wärmeleitwiderstand geringer als
Widerstand durch Konvektion

 $\Delta T_{\lambda} < \Delta T_{\alpha}$

Veränderung des Temperaturprofils bei Reduzierung des Durchmessers

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Je kleiner der Durchmesser wird, desto geringer wird der Wärmewiderstand durch Leitung in radialer Richtung

Fall II: Wärmeleitwiderstand geringer als
Widerstand durch Konvektion

 $\Delta T_{\lambda} < \Delta T_{\alpha}$

Veränderung des Temperaturprofils bei Reduzierung der Konvektion

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Je geringer die Konvektion, desto mehr wird sie zur limitierenden Größe im Wärmetransport

 $\Delta T_{\lambda} < \Delta T_{\alpha}$

Widerstand durch Konvektion

geringer als

Dimensionslose Kennzahl: Biot-Zahl

Fragestellung

Welche thermischen Widerstände sind relevant?

Können bestimmte Widerstände vernachlässigt werden?

Temperaturverteilung innerhalb eines Zylinders

Wärme fließt sowohl in axialer als auch radialer Richtung (2D-Betrachtung innerhalb des Zylinders)

Je geringer die Konvektion, desto mehr wird sie zur limitierenden Größe im Wärmetransport

Temperaturprofil = $f(\alpha, d, \lambda)$

Dimensionslose Kennzahl: Biot-Zahl

Biot-Zahl

Zur Charakterisierung des problembestimmenden Widerstands, werden die Widerstände von Wärmeleitung im Körper und Konvektion am Körper ins Verhältnis gesetzt.

Dimensionslose Größe: Biot-Zahl.

$$\mathbf{Bi} = \frac{W_{\lambda}}{W_{\alpha}}$$

$$Bi = \frac{\alpha L}{\lambda}$$

Beispiel bei Zylindrischen Körpern:

$$\mathbf{Bi} = \frac{\alpha \, \mathbf{R}}{\lambda}$$

Wärmeleitwiderstand
innerhalb des Körpers

Bi = Wärmeübergangswiderstand
an der Oberfläche

- L: Charakteristische Länge, die für Wärmeleitwiderstand maßgeblich ist [m]
- λ : Wärmeleitfähigkeit $\left[\frac{W}{mK}\right]$
- α : Wärmeübergangskoeffizient $\left[\frac{W}{Km^2}\right]$

Regime der Biot-Zahl

Bi ≪ 1

- homogene Temperatur im Körper
- W_{\(\lambda\)} vernachlässigbar
- Kleine Körper oder Körpern mit hoher Wärmeleitfähigkeit

Bi ≈ 1

- ähnliche Anteile von Wärmeleitung und Konvektion
- $W_{\lambda} \approx W_{\alpha}$

$Bi \gg 1$

- hoher
 Wärmeleitwiderstand
- $W_{\lambda} >> W_{\alpha}$
- häufig bei Körpern mit niedriger Wärmeleitfähigkeit

Regime der Biot-Zahl

Bi ≪ 1

- homogene Temperatur im Körper
- W_{λ} vernachlässigbar
- Kleine Körper oder Körpern mit hoher Wärmeleitfähigkeit

Bi ≈ 1

- ähnliche Anteile von Wärmeleitung und Konvektion
- $W_{\lambda} \approx W_{\alpha}$

$Bi \gg 1$

- Hoher
 Wärmeleitwiderstand
- $W_{\lambda} >> W_{\alpha}$
- häufig bei Körpern mit niedriger Wärmeleitfähigkeit

$Bi \ll 1$: Eindimensionale Betrachtung

$Bi \ll 1$: Eindimensionale Betrachtung

$Bi \approx 1$ oder $Bi \gg 1$: Zweidimensionale Betrachtung

Bi ≈ 1 und Bi $\gg 1$ führt zu einer zweidimensionalen Betrachtung innerhalb des Zylinders X $\dot{Q}_{x+\mathrm{d}x}$ d*r* dx

Verständnisfragen

Welche Information liefert die Biot - Zahl?

Welche Annahmen dürfen bei $Bi \ll 1$ getroffen werden?

Ist die Biot-Zahl für ein Rippenproblem hoch oder niedrig?

