11.12 ADC registers

Refer to Section 2.2 on page 45 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

11.12.1 ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserve	vd.					STRT	JSTRT	JEOC	EOC	AWD
					Reserve	:u					rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bits 31:5 Reserved, must be kept at reset value.

Bit 4 STRT: Regular channel Start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.

- 0: No regular channel conversion started
- 1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel Start flag

This bit is set by hardware when injected channel group conversion starts. It is cleared by software.

- 0: No injected group conversion started
- 1: Injected group conversion has started

Bit 2 **JEOC**: Injected channel end of conversion

This bit is set by hardware at the end of all injected group channel conversion. It is cleared by software.

- 0: Conversion is not complete
- 1: Conversion complete

Bit 1 EOC: End of conversion

This bit is set by hardware at the end of a group channel conversion (regular or injected). It is cleared by software or by reading the ADC DR.

- 0: Conversion is not complete
- 1: Conversion complete

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in the ADC LTR and ADC HTR registers. It is cleared by software.

- 0: No Analog watchdog event occurred
- 1: Analog watchdog event occurred

RM0008 Rev 21 237/1136

11.12.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Res	erved				AWDE N	JAWDE N	Rese	rved		DUALM	IOD[3:0]	
								rw	rw			rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIS	DISCNUM[2:0] JDISCE DISC JAUTO SGL						SCAN	JEOC IE	AWDIE	EOCIE		А	WDCH[4:	0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set/reset by software.

0: Analog watchdog disabled on regular channels

1: Analog watchdog enabled on regular channels

Bit 22 **JAWDEN:** Analog watchdog enable on injected channels

This bit is set/reset by software.

0: Analog watchdog disabled on injected channels

1: Analog watchdog enabled on injected channels

Bits 21:20 Reserved, must be kept at reset value.

Bits 19:16 **DUALMOD[3:0]**: Dual mode selection

These bits are written by software to select the operating mode.

0000: Independent mode.

0001: Combined regular simultaneous + injected simultaneous mode

0010: Combined regular simultaneous + alternate trigger mode

0011: Combined injected simultaneous + fast interleaved mode

0100: Combined injected simultaneous + slow Interleaved mode

0101: Injected simultaneous mode only

0110: Regular simultaneous mode only

0111: Fast interleaved mode only

1000: Slow interleaved mode only

1001: Alternate trigger mode only

Note: These bits are reserved in ADC2 and ADC3.

In dual mode, a change of channel configuration generates a restart that can produce a loss of synchronization. It is recommended to disable dual mode before any configuration change.

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of regular channels to be converted in discontinuous mode, after receiving an external trigger.

000: 1 channel

001: 2 channels

111: 8 channels

238/1136 RM0008 Rev 21

Bit 12 JDISCEN: Discontinuous mode on injected channels

This bit set and cleared by software to enable/disable discontinuous mode on injected group channels

- 0: Discontinuous mode on injected channels disabled
- 1: Discontinuous mode on injected channels enabled

Bit 11 **DISCEN**: Discontinuous mode on regular channels

This bit set and cleared by software to enable/disable Discontinuous mode on regular channels.

- 0: Discontinuous mode on regular channels disabled
- 1: Discontinuous mode on regular channels enabled

Bit 10 JAUTO: Automatic Injected Group conversion

This bit set and cleared by software to enable/disable automatic injected group conversion after regular group conversion.

- 0: Automatic injected group conversion disabled
- 1: Automatic injected group conversion enabled

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit set and cleared by software to enable/disable the analog watchdog on the channel identified by the AWDCH[4:0] bits.

- 0: Analog watchdog enabled on all channels
- 1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable Scan mode. In Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.

- 0: Scan mode disabled
- 1: Scan mode enabled

Note: An EOC or JEOC interrupt is generated only on the end of conversion of the last channel if the corresponding EOCIE or JEOCIE bit is set

Bit 7 **JEOCIE**: Interrupt enable for injected channels

This bit is set and cleared by software to enable/disable the end of conversion interrupt for injected channels.

- 0: JEOC interrupt disabled
- 1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

RM0008 Rev 21 239/1136

Bit 6 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt.

0: Analog watchdog interrupt disabled

1: Analog watchdog interrupt enabled

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the End of Conversion interrupt.

0: EOC interrupt disabled

1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits

These bits are set and cleared by software. They select the input channel to be guarded by the Analog watchdog.

00000: ADC analog Channel0 00001: ADC analog Channel1

....

01111: ADC analog Channel15 10000: ADC analog Channel16 10001: ADC analog Channel17

Other values: reserved.

Note: ADC1 analog Channel16 and Channel17 are internally connected to the temperature sensor and to V_{REFINT} , respectively.

ADC2 analog inputs Channel16 and Channel17 are internally connected to $V_{\rm SS}$. ADC3 analog inputs Channel9, Channel14, Channel15, Channel16 and Channel17 are connected to $V_{\rm SS}$.

11.12.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Res	erved				TSVRE FE	SWSTA RT	JSWST ART	EXTTR IG	E	XTSEL[2:	0]	Res.
								rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
JEXTT RIG							DMA		Rese	erved		RST CAL	CAL	CONT	ADON
rw	rw	rw	rw	rw	Re	es.	rw					rw	rw	rw	rw

240/1136 RM0008 Rev 21

- Bits 31:24 Reserved, must be kept at reset value.
 - Bit 23 **TSVREFE**: Temperature sensor and V_{REFINT} enable

This bit is set and cleared by software to enable/disable the temperature sensor and V_{REFINT} channel. In devices with dual ADCs this bit is present only in ADC1.

- 0: Temperature sensor and V_{REFINT} channel disabled
- 1: Temperature sensor and V_{REFINT} channel enabled
- Bit 22 SWSTART: Start conversion of regular channels

This bit is set by software to start conversion and cleared by hardware as soon as conversion starts. It starts a conversion of a group of regular channels if SWSTART is selected as trigger event by the EXTSEL[2:0] bits.

- 0: Reset state
- 1: Starts conversion of regular channels
- Bit 21 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by software or by hardware as soon as the conversion starts. It starts a conversion of a group of injected channels (if JSWSTART is selected as trigger event by the JEXTSEL[2:0] bits.

- 0: Reset state
- 1: Starts conversion of injected channels
- Bit 20 **EXTTRIG**: External trigger conversion mode for regular channels

This bit is set and cleared by software to enable/disable the external trigger used to start conversion of a regular channel group.

- 0: Conversion on external event disabled
- 1: Conversion on external event enabled

Bits 19:17 EXTSEL[2:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group: For ADC1 and ADC2, the assigned triggers are:

000: Timer 1 CC1 event

001: Timer 1 CC2 event

010: Timer 1 CC3 event

011: Timer 2 CC2 event

100: Timer 3 TRGO event

101: Timer 4 CC4 event

110: EXTI line 11/TIM8_TRGO event (TIM8_TRGO is available only in high-density and XL-density devices)

111: SWSTART

For ADC3, the assigned triggers are:

000: Timer 3 CC1 event

001: Timer 2 CC3 event

010: Timer 1 CC3 event

011: Timer 8 CC1 event

100: Timer 8 TRGO event

101: Timer 5 CC1 event

110: Timer 5 CC3 event

111: SWSTART

Bit 16 Reserved, must be kept at reset value.

RM0008 Rev 21 241/1136

Bit 15 **JEXTTRIG**: External trigger conversion mode for injected channels

This bit is set and cleared by software to enable/disable the external trigger used to start conversion of an injected channel group.

- 0: Conversion on external event disabled
- 1: Conversion on external event enabled

Bits 14:12 JEXTSEL[2:0]: External event select for injected group

These bits select the external event used to trigger the start of conversion of an injected group:

For ADC1 and ADC2 the assigned triggers are:

000: Timer 1 TRGO event

001: Timer 1 CC4 event

010: Timer 2 TRGO event

011: Timer 2 CC1 event

100: Timer 3 CC4 event

101: Timer 4 TRGO event

110: EXTI line15/TIM8_CC4 event (TIM8_CC4 is available only in high-density and XL-

density devices)

111: JSWSTART

For ADC3 the assigned triggers are:

000: Timer 1 TRGO event

001: Timer 1 CC4 event

010: Timer 4 CC3 event

011: Timer 8 CC2 event

100: Timer 8 CC4 event

101: Timer 5 TRGO event

110: Timer 5 CC4 event

111: JSWSTART

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 27. and Figure 28.

0: Right Alignment

1: Left Alignment

Bits 10:9 Reserved, must be kept at reset value.

Bit 8 DMA: Direct memory access mode

This bit is set and cleared by software. Refer to the DMA controller chapter for more details.

0: DMA mode disabled

1: DMA mode enabled

Only ADC1 and ADC3 can generate a DMA request.

Bits 7:4 Reserved, must be kept at reset value.

Bit 3 RSTCAL: Reset calibration

This bit is set by software and cleared by hardware. It is cleared after the calibration registers are initialized.

0: Calibration register initialized.

1: Initialize calibration register.

Note: If RSTCAL is set when conversion is ongoing, additional cycles are required to clear the calibration registers.

242/1136 RM0008 Rev 21

Bit 2 CAL: A/D Calibration

This bit is set by software to start the calibration. It is reset by hardware after calibration is complete.

- 0: Calibration completed
- 1: Enable calibration

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If set conversion takes place continuously till this bit is reset.

- 0: Single conversion mode
- 1: Continuous conversion mode

Bit 0 ADON: A/D converter ON / OFF

This bit is set and cleared by software. If this bit holds a value of zero and a 1 is written to it then it wakes up the ADC from Power Down state.

Conversion starts when this bit holds a value of 1 and a 1 is written to it. The application should allow a delay of t_{STAB} between power up and start of conversion. Refer to *Figure 23*.

- 0: Disable ADC conversion/calibration and go to power down mode.
- 1: Enable ADC and to start conversion

Note: If any other bit in this register apart from ADON is changed at the same time, then conversion is not triggered. This is to prevent triggering an erroneous conversion.

RM0008 Rev 21 243/1136

11.12.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Poo	onund				S	MP17[2:0	0]	5	SMP16[2:0	0]	SMP1	5[2:1]
	Reserved							rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP 15_0							S	SMP12[2:0)]	S	SMP11[2:0	0]	S	SMP10[2:0)]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:0 **SMPx[2:0]:** Channel x Sample time selection

These bits are written by software to select the sample time individually for each channel. During sample cycles channel selection bits must remain unchanged.

000: 1.5 cycles 001: 7.5 cycles 010: 13.5 cycles 011: 28.5 cycles 100: 41.5 cycles 101: 55.5 cycles 110: 71.5 cycles 111: 239.5 cycles

Note: ADC1 analog Channel16 and Channel 17 are internally connected to the temperature sensor and to V_{RFFINT}, respectively.

ADC2 analog input Channel16 and Channel17 are internally connected to V_{SS} . ADC3 analog inputs Channel14, Channel15, Channel16 and Channel17 are connected to V_{SS} .

11.12.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved		SMP9[2:0)]		SMP8[2:0]	:	SMP7[2:0]	;	SMP6[2:0]	SMP	5[2:1]
Re	es.	rw	rw	rw	rw	rw									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP 5_0	SMP412:01		;	SMP3[2:0	0]		SMP2[2:0]	;	SMP1[2:0]		SMP0[2:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sample time individually for each channel. During sample cycles channel selection bits must remain unchanged.

000: 1.5 cycles 001: 7.5 cycles 010: 13.5 cycles 011: 28.5 cycles 100: 41.5 cycles 101: 55.5 cycles 110: 71.5 cycles 111: 239.5 cycles

Note: ADC3 analog input Channel9 is connected to V_{SS}.

11.12.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4)

Address offset: 0x14-0x20 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
					Reserved											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Rese	mund							JOFFSE	ETx[11:0]						
	Rese	erveu		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 **JOFFSETx[11:0]**: Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw converted data when converting injected channels. The conversion result can be read from in the ADC_JDRx registers.

RM0008 Rev 21 245/1136

11.12.7 ADC watchdog high threshold register (ADC_HTR)

Address offset: 0x24

Reset value: 0x0000 0FFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
					Reserved											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
HT[11:0]																
	Rese	erveu		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 HT[11:0]: Analog watchdog high threshold

These bits are written by software to define the high threshold for the analog watchdog.

Note:

The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed.

11.12.8 ADC watchdog low threshold register (ADC_LTR)

Address offset: 0x28

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LT[11:0]															
	Rese	ervea		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 LT[11:0]: Analog watchdog low threshold

These bits are written by software to define the low threshold for the analog watchdog.

Note:

The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed.

246/1136 RM0008 Rev 21

11.12.9 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x2C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	nyod					L[3	3:0]			SQ1	6[4:1]	
			Nesc	i veu				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ16_0	5_0 SQ15[4:0]]				SQ13[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:20 L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular channel conversion sequence.

0000: 1 conversion 0001: 2 conversions

.....

1111: 16 conversions

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

These bits are written by software with the channel number (0..17) assigned as the 16th in the conversion sequence.

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 1fourth conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

RM0008 Rev 21 247/1136

11.12.10 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x30

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Boos	erved			SQ12[4:0)]				SQ11[4:0]			SQ1	0[4:1]	
Rese	erveu	rw rw rw					rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ10_ 0			SQ9[4:0]					SQ8[4:0]					SQ7[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..17) assigned as the 12th in the sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 **SQ10[4:0]**: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

11.12.11 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	nuad			SQ6[4:0]					SQ5[4:0]				SQ4	[4:1]	
Rese	rw rw rw				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ4_0			SQ3[4:0]					SQ2[4:0]					SQ1[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence

These bits are written by software with the channel number (0..17) assigned as the 6th in the sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 SQ4[4:0]: fourth conversion in regular sequence

Bits 14:10 SQ3[4:0]: third conversion in regular sequence

Bits 9:5 SQ2[4:0]: second conversion in regular sequence

Bits 4:0 SQ1[4:0]: first conversion in regular sequence

RM0008 Rev 21 249/1136

11.12.12 ADC injected sequence register (ADC_JSQR)

Address offset: 0x38

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Pos	erved					JL[1:0]		JSQ	4[4:1]	
				1/690	civeu					rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
JSQ4_0 JSQ3[4:0] JSQ2[4:0]				JSQ1[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:22 Reserved, must be kept at reset value.

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected channel conversion sequence.

00: 1 conversion 01: 2 conversions 10: 3 conversions 11: 4 conversions

Bits 19:15 **JSQ4[4:0]**: fourth conversion in injected sequence (when JL[1:0] = 3) $^{(1)}$

These bits are written by software with the channel number (0..17) assigned as the fourth in the sequence to be converted.

Note: Unlike a regular conversion sequence, if JL[1:0] length is less than four, the channels are converted in a sequence starting from (4-JL). Example: ADC_JSQR[21:0] = 10 00011 00011 00111 00010 means that a scan conversion will convert the following channel sequence: 7, 3, 3. (not 2, 7, 3)

Bits 14:10 **JSQ3[4:0]**: third conversion in injected sequence (when JL[1:0] = 3)

Bits 9:5 JSQ2[4:0]: second conversion in injected sequence (when JL[1:0] = 3)

Bits 4:0 JSQ1[4:0]: first conversion in injected sequence (when JL[1:0] = 3)

 When JL=3 (4 injected conversions in the sequencer), the ADC converts the channels in this order: JSQ1[4:0] >> JSQ2[4:0] >> JSQ3[4:0] >> JSQ4[4:0]

When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in this order: JSQ2[4:0] >> JSQ3[4:0] >> JSQ4[4:0]

When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in this order: JSQ3[4:0] >> JSQ4[4:0]

When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0] channel

47/

11.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x3C - 0x48 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	JDATA[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 JDATA[15:0]: Injected data

These bits are read only. They contain the conversion result from injected channel x. The data is left or right-aligned as shown in *Figure 27* and *Figure 28*.

11.12.14 ADC regular data register (ADC_DR)

Address offset: 0x4C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ADC2DATA[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DAT	A[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 ADC2DATA[15:0]: ADC2 data

In ADC1: In dual mode, these bits contain the regular data of ADC2. Refer to Section 11.9: Dual ADC mode.

In ADC2 and ADC3: these bits are not used.

Bits 15:0 DATA[15:0]: Regular data

These bits are read only. They contain the conversion result from the regular channels. The data is left or right-aligned as shown in *Figure 27* and *Figure 28*.

RM0008 Rev 21 251/1136

11.12.15 ADC register map

The following table summarizes the ADC registers.

Table 72. ADC register map and reset values

									_					1111	•									_			_		_		_		
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	œ	2	9	2	4	က	2	1	0
0x00	ADC_SR Reset value		•		•	•		•						Re	eser	ved	•			•						•			o STRT	o JSTRT	o JEOC	o EOC	o AWD
0x04	ADC_CR1			F	Rese	erve	ed .				JAWDEN	Reserved			-	:0]			DIS NUI [2:0		JDISCEN			⋖	SCAN	-	AWDIE	EOCIE			DCH		
	Reset value									0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	ADC_CR2			F	Rese	erve	ed					•	EXTTRIG		XTS [2:0]	Reserved	JEXTTRIG		EXT: L [2:0]	ALIGN	Received	0000	DMA		Res	erve	ed	RSTCAL			ADON
	Reset value									0	0	0	0	0	0	0		0	0	0	0	0			0					0	0	0	0
0x0C	ADC_SMPR1	Sample time bits SMPx_x																															
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	ADC_SMPR2		Sample time bits SMPx_x																														
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x14	ADC_JOFR1									F	Rese	erve	d					ı								JOF	FSI	ET1	[11:0	0]			
	Reset value																					0	0	0	0	0	0	0	0	0	0	0	0
0x18	ADC_JOFR2									F	Rese	erve	d										,	,		JOF	FSI	ET2	[11:0)]			
	Reset value																					0	0	0	0	0	0	0	0	0	0	0	0
0x1C	ADC_JOFR3									F	Rese	erve	d									JOFFSET3[11:0]											
	Reset value																					0	0	0	0	0	0	0	0	0	0	0	0
0x20	ADC_JOFR4									F	Rese	erve	d										,	,	,	JOF	FSI	ET4	[11:0)]	•		
	Reset value																					0	0	0	0	0	0	0	0	0	0	0	0
0x24	ADC_HTR									F	Rese	erve	d													·	НТ[11:0)]				<u>, </u>
	Reset value																					0	0	0	0	0	0	0	0	0	0	0	0
0x28	ADC_LTR									F	Rese	erve	d										1	1	1	ı	LT[11:0]		I		<u> </u>
	Reset value																					0	0	0	0	0	0	0	0	0	0	0	0
0x2C	ADC_SQR1			F	Rese	erve	ed .				L[3	5:0]		(Q16 conv re sequ	ersi egul	ion i ar	n	(conv re	ers egu	0] 15 ion i lar ce bi	5th in		con	Q14 1fou ivers regu uend	[4:0] rth sion lar	in	C	Q13 conv	B[4:0 /ersi egula ienca	on i ar	Sth n
	Reset value									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
												$\overline{}$	ь—	-	-				1	-	-		_	4—	-		4	۰	4		_	L	-

Table 72. ADC register map and reset values (continued)

												1	Ē		Г	Ι	Г	Г	1	Г	Ė				Ė								\Box	
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	က	2	1	0	
0x30	ADC_SQR2	Reserved	SQ12[4:0] 12th conversion in regular regular sequence bits											(Q10 conv re sequ	ersi egul	ion i ar	in	(ersi egul enc	n	C	SQ8 conv re equ	ersi egul	on i ar	n	C	SQ7[4:0] 7th conversion in regular sequence bits						
	Reset value			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x34	ADC_SQR3	Reserved	SQ6[4:0] 6th SQ5[4:0] 5th										n	(Q4[4 conv re sequ	ersi egul	ion i ar	in	rth SQ3[4:0] third conversion in regular						Q2[4 conv re equ	ersi egul	on i ar	n	C	SQ1[4:0] first conversion in regular sequence bits				
	Reset value	1 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x38	ADC_JSQR				F	Rese	erve	d					.[1:)]		urth	njec	vers		(onv in	[4:0 rersi jecto enc	on i ed	n		se onv	ject	nd on i ed		JSQ1[4:0] fir conversion injected sequence bi				n	
	Reset value											0	0	0	0	0	0												0					
0x3C	ADC_JDR1							F	Rese	erve	d			ı				JDATA[15:0]																
	Reset value																	01010101010101010101010101010											0					
0x40	ADC_JDR2							F	Rese	erve	d							JDATA[15:0]																
	Reset value																												0					
0x44	ADC_JDR3							F	Rese	erve	d							JDATA[15:0]																
	Reset value	1																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x48	ADC_JDR4	Reserved													JDATA[15:0]																			
	Reset value																	0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1										0						
0x4C	ADC_DR		ADC2DATA[15:0]													Regular DATA[15:0]																		
	Reset value												0											0										

Refer to *Table 3 on page 50* for the register boundary addresses.

RM0008 Rev 21 253/1136