Econometría

Diplomado Banco Central de Honduras

Instituto de Economía

Pontificia Universidad Católica de Chile

Juan Ignacio Urquiza — Junio 2022

Modelo de Regresión Lineal Clásico

Supuestos:

- Linealidad en parámetros (RLM.1).
- Muestreo aleatorio (RLM.2).
- □ Colinealidad imperfecta (RLM.3).
- Media condicional cero (RLM.4).
- Homocedasticidad (RLM.5).
- □ En la clase 2 demostramos que:
 - Bajo los supuestos RLM.1 a RLM.4, los estimadores de MCO son insesgados.
 - Bajo los supuestos RLM.1 a RLM.5, los estimadores de MCO son MELI Teorema de Gauss-Markov.

Heterocedasticidad

- Los errores son heterocedásticos si su varianza condicional en los regresores no es constante.
- ¿Cuáles son las consecuencias?
 - Los estimadores de MCO siguen siendo insesgados pero dejan de ser MELI.
 - Los estimadores de las varianzas $V(\widehat{\beta_j}|\mathbf{X})$ son sesgados y por ende dejan de ser válidos para hacer inferencia.
 - $lue{}$ Las estadísticos t de MCO no tienen distribuciones t, ni los estadísticos F siguen distribuciones F.
 - Estos problemas no se resuelven con tamaños de muestra grandes.

Heterocedasticidad

- Los errores son heterocedásticos si su varianza condicional en los regresores no es constante.
- ¿Cuáles son las consecuencias?
 - Los estimadores de MCO siguen siendo insesgados pero dejan de ser MELI.
- Antes de abandonar MCO, podemos implementar una prueba formal que detecte la presencia de heterocedasticidad.
- Si se detecta heterocedasticidad, hacemos inferencia robusta:
 - Consiste en mantener MCO pero ajustando los errores estándar para que sean válidos en presencia de heterocedasticidad de forma desconocida.

Prueba de Breusch-Pagan

Considere el MRL múltiple:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

La hipótesis nula de homocedasticidad implica que:

$$H_0: V(u|x_1, x_2, ..., x_k) = \sigma^2$$

Dado el supuesto de media condicional nula, es equivalente a:

$$H_0: E(u^2|x_1, x_2, ..., x_k) = \sigma^2$$

- lacktriangle Entonces, la prueba consiste en evaluar si u^2 está relacionado (en valor esperado) con una o más variables explicativas.
- Una forma de hacerlo es suponiendo un modelo sencillo:

$$u^{2} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \dots + \delta_{k}x_{k} + v$$
$$\rightarrow H_{0}: \delta_{1} = \delta_{2} = \dots = \delta_{k} = 0$$

Prueba de Breusch-Pagan

Como los errores son inobservables, se utilizan los residuos:

$$\hat{u}^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_k x_k + error$$

Luego se calcula el estadístico F para la significancia conjunta de las variables explicativas:

$$F = \frac{R_{\widehat{\mathcal{U}}^2}^2}{\left(1 - R_{\widehat{\mathcal{U}}^2}^2\right)} \times \frac{(n - k - 1)}{k} \xrightarrow{a} F(k, n - k - 1)$$

donde $R_{\widehat{u}^2}^2$ es el R^2 de la regresión auxiliar anterior.

 $lue{}$ Si se rechaza H_0 , entonces los errores son heterocesdásticos.

. reg testscr str el_pct expn_stu

Source	SS	df	MS		Number of obs		420
Model Residual	66409.8837 85699.7099		136.6279		F(3, 416) Prob > F R-squared	=	107.45 0.0000 0.4366
Total	152109.594	419 36	3.030056		Adj R-squared Root MSE	=	0.4325 14.353
testscr	Coef.	Std. Err	. t	P> t	[95% Conf.	In	terval]
str el_pct expn_stu cons	2863992 6560227 .0038679 649.5779	.4805232 .0391059 .0014121	-16.78 2.74	0.000	-1.230955 7328924 .0010921 619.6883		.658157 5791529 0066437 79.4676
_cons	049.3779	15.20572	42.12	0.000	019.0003	О	19.407

. estat hett, rhs fstat

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: str el_pct expn_stu

$$F(3, 416) = 14.84$$

 $Prob > F = 0.0000$

Recuerde que en el MRL simple:

$$\widehat{\beta_1} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \beta_1 + \frac{\sum_{i=1}^n (x_i - \bar{x})u_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Bajo el supuesto de homocedasticidad, sabemos que:

$$V(\widehat{\beta_1}|X) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{SCT_x}$$

 \square Bajo heterocedasticidad, $V(u_i|x_i)=\sigma_i^2$, lo que implica que:

$$V(\widehat{\beta_1}|X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma_i^2}{SCT_x^2}$$

Duando $\sigma_i^2=\sigma^2\; \forall i$ estas fórmulas coinciden, pero si $\sigma_i^2
eq \sigma^2$ vemos que la fórmula usual ya no es válida.

Se puede demostrar que un estimador válido de esta varianza se obtiene al reemplazar σ_i^2 (desconocido) por \hat{u}_i^2 tal que:

$$\widehat{V}(\widehat{\beta_1}|X) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \widehat{u}_i^2}{SCT_x^2}$$

- Naturalmente, este análisis se extiende al MRL múltiple.
- lacktriangle La raíz cuadrada de $\widehat{V}(\widehat{eta_j}|X)$ constituye el estándar robusto.
- $lue{}$ Una vez obtenidos los errores estándar robustos, es fácil construir un estadístico t robusto:

$$t = \frac{estimación - valor hipotético}{error estándar robusto}$$

. reg testscr str el_pct expn_stu

Source	SS	df	MS	Number of ob		420
Madal	66400 0007		22126 6276	F(3, 416)	=	107.45
Model Residual	66409.8837	416	22136.6279		=	0.0000
Residual	85699.7099	416	206.008918		- -	0.4366
Total	152109.594	419	363.030056	- Adj R-square Root MSE	d = =	0.4325 14.353
testscr	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
str	2863992	. 4805232	-0.60	0.551 -1.230	955	.658157
el_pct	6560227	.0391059	-16.78	0.0007328	924	5791529
expn_stu	.0038679	.0014121	2.74	0.006 .0010	921	.0066437
_cons	649.5779	15.20572	42.72	0.000 619.6	883	679.4676
Linear regress	str el_pct ex	pn_stu, ro	bust	Number of obs	=	420
				F(3, 416)	=	147.20
				Prob > F	=	0.0000
				R-squared	=	0.4366
				Root MSE	=	14.353
		Robust				
testscr	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
str el_pct	2863992 6560227	.4820728	-0.59 -20.64	0.553 -1.234 0.000718		.661203 5935446
expn_stu	.0038679	.0015807	2.45	0.015 .0007		.0069751
_cons	649.5779	15.45834	42.02	0.000 619.		679.9641

- En este ejemplo se pueden observar varias cosas:
 - Los errores estándar no son muy diferentes. Esto ocurre a menudo, pero no tiene porqué ser así.
 - $lue{}$ En este caso particular, las variables que son significativas empleando el estadístico t usual lo siguen siendo cuando se emplea el estadístico t robusto.
 - Los errores estándar robustos pueden ser mayores o menores que los errores estándar usuales. Sin embargo, por lo general son mayores.

Observaciones no independientes

- Recién vimos qué pasaba cuando se levantaba el supuesto de homocedasticidad (RLM.5).
- Ahora veremos qué ocurre cuando las observaciones no son independientes. Es decir, cuando se viola el supuesto (RLM.2).
 - En general, hablaremos de dependencia de los errores.
- Formalmente, existe dependencia de los errores cuando:

$$E(u_iu_i) = Cov(u_i, u_i) \neq 0$$
 para $i \neq j$.

 Es decir, cuando el término de error de una observación está correlacionado con el término de error de otra.

Dependencia de los errores

- □ ¿Cuáles son las consecuencias?
 - Los estimadores de MCO siguen siendo insesgados; sin embargo, la dependencia de los errores causa problemas a la hora de estimar la varianza de los estimadores.
 - Por lo tanto, los errores estándar de MCO y los estadísticos de contraste usuales dejan de ser válidos.
- Antes de abandonar MCO, podemos implementar una prueba que detecte la presencia de correlación de los errores.
- Si detectamos correlación, hacemos inferencia robusta:
 - Consiste en mantener MCO pero ajustando los errores estándar para que sean válidos en presencia de correlación serial.

MCO con errores correlacionados

- \square Considere el MRL simple: $y_t = \beta_0 + \beta_1 x_t + u_t$.
- $\hfill\Box$ Por simplicidad, suponga que $\bar{x}=0$ tal que el estimador de β_1 de MCO puede escribirse como:

$$\widehat{\beta_1} = \beta_1 + SCT_x^{-1} \sum_{t=1}^{I} x_t u_t$$

□ Se puede demostrar que la varianza condicional es igual a:

$$V(\widehat{\beta_1}|x_t) = SCT_x^{-2} \times Var\left(\sum_{t=1}^T x_t u_t\right)$$

$$= SCT_x^{-2} \left[\sum_{t=1}^{T} x_t^2 V(u_t) + 2 \sum_{t=1}^{T-1} \sum_{j=1}^{T-t} x_t x_{t+j} E(u_t u_{t+j}) \right]$$

MCO con errores correlacionados

- El primer término corresponde a la varianza del estimador de MCO cuando no hay correlación de los errores.
- Por lo tanto, si los errores están correlacionados, el estimador usual de la varianza es sesgado.
- En la mayoría de las aplicaciones económicas, tanto las v. explicativas y como los errores suelen presentar correlación serial positiva.
- Entonces, la fórmula usual de la varianza de MCO suele subestimar la verdadera varianza.
- En cualquier caso, esto implica que en presencia de errores correlacionados, los estadísticos de contraste usuales ya no pueden ser utilizados para probar hipótesis.

Prueba de Breusch-Godfrey

Considere el MRL múltiple con correlación serial de orden 1:

$$y_t = \beta_0 + \beta_1 x_{t,1} + \dots + \beta_k x_{t,k} + u_t,$$
$$\to u_t = \rho u_{t-1} + \varepsilon_t$$

La hipótesis nula de no correlación serial implica que:

$$H_0: \rho = 0$$

- \square Si pudiéramos observar u_t , entonces podríamos estimar ρ a partir de la regresión de u_t sobre u_{t-1} .
- Sin embargo, como los errores son inobservables, usamos los residuos de MCO.
- Entonces, primero se estima la regresión original por MCO y se obtienen los residuos (\hat{u}_t) para t=1,2,...,T.

Prueba de Breusch-Godfrey

- Luego se estima por MCO la regresión auxiliar de los residuos sobre su primer rezago para probar H_0 .
- \square Alternativamente, se estima la regresión auxiliar controlando por todas las v. explicativas, y se utiliza el estadístico ML:

$$\hat{u}_t = \rho \hat{u}_{t-1} + \delta_1 x_{t1} + \dots + \delta_k x_{tk} + e_t$$

$$ML = (T - 1) \times R_{\hat{u}}^2 \xrightarrow{a} \chi_q^2$$

donde (T-1) es el tamaño efectivo de la muestra y $R_{\widehat{u}}^2$ es el R^2 de la regresión auxiliar.

 \square Si $ML > \chi_q^2$, se rechaza H_0 y decimos que hay evidencia en favor de la presencia de correlación serial (o autocorrelación).

. reg i3 inf def

Source	SS	df	MS	Number of obs	=	56
Model Residual	272.420338 180.054275	2 53	136.210169 3.39725047	R-squared	=	40.09 0.0000 0.6021
Total	452.474612	55	8.22681113	- Adj R-squared B Root MSE	=	0.5871 1.8432
i3	Coefficient	Std. err.	t	P> t [95% c	onf.	interval]
inf def _cons	.6058659 .5130579 1.733266	.0821348 .1183841 .431967	7.38 4.33 4.01	0.000 .44112 0.000 .27560 0.000 .86684	95	.7706074 .7505062 2.599682

. estat bgodfrey, lag(1) nomiss0

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	21.553	1	0.0000

H0: no serial correlation

. predict u, r

. reg u L.u inf def

	Ī						
Source	SS	df	MS	Numbe	er of obs	=	55
				F(3,	51)	=	10.95
Model	66.3679315	3	22.1226438	Prob	> F	=	0.0000
Residual	102.993175	51	2.01947402	R-squ	ared	=	0.3919
				Adj F	k-squared	=	0.3561
Total	169.361106	54	3.13631678	Root	MSE	=	1.4211
	•						
u	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
u L1.	. 62339	. 1111842	5.61	0.000	. 40017	84	.8466015
inf	.0066283	.0657049	0.10	0.920	12527	98	.1385364
def	1105103	.1009978	-1.09	0.279	31327	19	.0922513
_cons	.1795108	.3352319	0.54	0.595	49349	53	.8525169
. _	57 tsi 1,8 100						

$$\rightarrow LM = (T-1) \times R_{\widehat{u}}^2 = (56-1) \times 0.3919 \cong 21.55$$

TABLE C: Chi-Square distributions

cum probability	0.025	0.80	0.90	0.95	0.975	0.99	0.995	0.999	0.9995
right tail	0.975	0.2	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
df	0.010	012		0.00	0.020	0.01	0.000	0.001	0.0000
1	0.00098	1.64	2.71	3.84	5.02	6.63	7.88	10.83	12.12
2	0.051	3.22	4.61	5.99	7.38	9.21	10.60	13.82	15.20
3	0.216	4.64	6.25	7.81	9.35	11.34	12.84	16.27	17.73
4	0.48	5.99	7.78	9.49	11.14	13.28	14.86	18.47	20.00
5	0.83	7.29	9.24	11.07	12.83	15.09	16.75	20.51	22.11
6	1.24	8.56	10.64	12.59	14.45	16.81	18.55	22.46	24.10
7	1.69	9.80	12.02	14.07	16.01	18.48	20.28	24.32	26.02
8	2.18	11.03	13.36	15.51	17.53	20.09	21.95	26.12	27.87
9	2.70	12.24	14.68	16.92	19.02	21.67	23.59	27.88	29.67
10	3.25	13.44	15.99	18.31	20.48	23.21	25.19	29.59	31.42
11	3.82	14.63	17.28	19.68	21.92	24.73	26.76	31.26	33.14
12	4.40	15.81	18.55	21.03	23.34	26.22	28.30	32.91	34.82
13	5.01	16.98	19.81	22.36	24.74	27.69	29.82	34.53	36.48
14	5.63	18.15	21.06	23.68	26.12	29.14	31.32	36.12	38.11
15	6.26	19.31	22.31	25.00	27.49	30.58	32.80	37.70	39.72
16	6.91	20.47	23.54	26.30	28.85	32.00	34.27	39.25	41.31
17	7.56	21.61	24.77	27.59	30.19	33.41	35.72	40.79	42.88
18	8.23	22.76	25.99	28.87	31.53	34.81	37.16	42.31	44.43
19	8.91	23.90	27.20	30.14	32.85	36.19	38.58	43.82	45.97
20	9.59	25.04	28.41	31.41	34.17	37.57	40.00	45.31	47.50
21	10.28	26.17	29.62	32.67	35.48	38.93	41.40	46.80	49.01
22	10.98	27.30	30.81	33.92	36.78	40.29	42.80	48.27	50.51
23	11.69	28.43	32.01	35.17	38.08	41.64	44.18	49.73	52.00
24	12.40	29.55	33.20	36.42	39.36	42.98	45.56	51.18	53.48
25	13.12	30.68	34.38	37.65	40.65	44.31	46.93	52.62	54.95
30	16.79	36.25	40.26	43.77	46.98	50.89	53.67	59.70	62.16
40	24.43	47.27	51.81	55.76	59.34	63.69	66.77	73.40	76.10
50	32.36	58.16	63.17	67.50	71.42	76.15	79.49	86.66	89.56
60	40.48	68.97	74.40	79.08	83.30	88.38	91.95	99.61	102.7
80	57.15	90.41	96.58	101.9	106.6	112.3	116.3	124.8	128.3
100	74.22	111.7	118.5	124.3	129.6	135.8	140.2	149.4	153.2

Recuerde que en el MRL simple, la varianza condicional de $\widehat{eta_1}$ viene dada por:

$$V(\widehat{\beta_1}|x_t) = SCT_x^{-2} \left[\sum_{t=1}^{T} x_t^2 V(u_t) + 2 \sum_{t=1}^{T-1} \sum_{j=1}^{T-t} x_t x_{t+j} E(u_t u_{t+j}) \right]$$

- Por lo tanto, si los errores están serialmente correlacionados, es necesario tomar en cuenta la correlación entre u_t y u_{t+i} .
- En la práctica, es común suponer que una vez que los términos de error están alejados por más de unos cuantos períodos, dicha correlación es fundamentalmente 0.
- Para ello, se debe elegir un número entero J>0 que controle cuánta correlación serial se estará permitiendo en el cálculo.

Entonces, el error estándar robusto viene dado por la raíz de:

$$\widehat{V}(\widehat{\beta_1}|x_t) = SCT_x^{-2} \left[\sum_{t=1}^{T} x_t^2 \widehat{u}_t^2 + 2 \sum_{j=1}^{J} \sum_{t=j+1}^{T} w_j x_t x_{t-j} \widehat{u}_t \widehat{u}_{t-j} \right]$$

donde
$$w_j = \left(1 - \frac{j}{J+1}\right)$$
.

- Estos errores estándar de Newey-West son robustos tanto a la heterocedasticidad como a la correlación serial (HAC).
- \square El número de rezagos se elige según la frecuencia de los datos: anual (1 a 3), trimestral (4 a 12), mensual (12 a 36).
- En Stata, simplemente utilizamos el comando "newey" (después de "tsset"), especificando el número de rezagos.

. reg i3 inf def

Source	SS	df	MS	Number of obs	=	56
Model Residual Total	272.420338 180.054275 452.474612	2 53	136.210169 3.39725047	R-squared Adj R-squared	= = =	40.09 0.0000 0.6021 0.5871 1.8432
Total	432.474012	33	0.22001113	NOOT HISE		1.0452
						_
i3	Coefficient	Std. err.	t	P> t [95% co	nf.	interval]
inf def _cons	.6058659 .5130579 1.733266	.0821348 .1183841 .431967	7.38 4.33 4.01	0.000 .441124 0.000 .275609 0.000 .866849	5	.7706074 .7505062 2.599682

. newey i3 inf def, lag(3)

Regression with Newey-West standard errors	Number of obs	=	56
Maximum lag = 3	F(2,	53) =	18.32
	Prob > F	=	0.0000

i3	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
inf	.6058659	.1075138	5.64	0.000	.3902205	.8215112
def	.5130579	.2196756	2.34	0.023	.0724444	.9536713
_cons	1.733266	.5438208	3.19	0.002	.6424995	2.824032