HOMEWORK 1 – Q5

MINGLANG XIE z5228006 5. Determine if f(n) = O(g(n)) or g(n) = O(f(n)) or both (i.e., $f(n) = \theta(g(n))$ or neither of the two, for the following pairs of functions

(a)
$$f(n) = (log_2(n))^2$$
; $g(n) = log_2(n^{log_2n})^2$; (6 points)

(b)
$$f(n) = n^{10}$$
; $f(n) = 2^{10\sqrt{n}}$; (6 points)

(c)
$$f(n) = n^{1+(-1)^n}$$
; $g(n) = n$. (8 points)

Solution:

(a) Using $\log (a)^b = b \log (a)$ we obtain

$$g(n) = log_2(n^{log_2n})^2 = log_2(n^{2log_2n}) = 2log_2(n)log_2(n)$$
$$= 2(log_2(n))^2 = O(log_2(n)^2) = O(f(n))$$

Therefore g(n) = O(f(n)).

Using $blog(a) = log(a)^b$ we obtain

$$f(n) = (log_2(n))^2 = log_2(n)log_2(n)$$

$$g(n) = log_2(n^{log_2n})^2 = log_2(n^{2log_2n}) = 2log_2(n)log_2(n)$$

Therefore, there exists a positive constants c, when $c=\frac{1}{2}$, $g(n)=\Omega(f(n))$

Finally, we can obtain that $g(n) = \theta f(n)$.

(b) We want to show that f(n) = O(g(n)), which means we have to show that $n^{10} < c2^{10\sqrt{n}}$ for some positive c and all sufficiently

large n. But, since the log function is monotonically increasing, this will hole just in case

$$log_2(n^{10}) < log_2(c) + log_2(2^{10\sqrt{n}})$$

 $10 log_2(n) < log_2(c) + \sqrt[10]{n}$

we now see that if we take c = 1 then it is enough to show that

$$10 \log_2(n) < \sqrt[10]{n}$$

for all sufficiently large n which holds because

$$(10log_2(n))^{10} < n$$

Therefore f(n) = O(g(n)).

(c) Just note that $1+(-1)^n$ form a cycle, with one period equal to $\{0, 2\}$. Thus, for n to be an even number we have 1+1=2 and for n to be an odd number we have 1+(-1)=0. Thus for any fixed c>0 for all n to be an even number eventually $n^{1+(-1)^n}=n^2>cn$, and for n to be an odd number we have $n^{1+(-1)^n}=1< cn$. Thus, neither f(n)=O(g(n)) nor $g(n)=\Omega(f(n))$.