2IL50 Data Structures

2023-24 Q3

Lecture 10: Data Structures for Disjoint Sets

Abstract data type

Abstract Data Type (ADT)

A set of data values and associated operations that are precisely specified independent of any particular implementation.

Dictionary, stack, queue, priority queue, set, bag ...

Dynamic sets

Dynamic sets

Sets that can grow, shrink, or otherwise change over time.

Two types of operations:

queries return information about the set

modifying operations change the set

Common queries

Search, Minimum, Maximum, Successor, Predecessor

Common modifying operations

Insert, Delete

Union-find structure

Union-Find Structure

Stores a collection of disjoint dynamic sets.

Operations

```
Make-Set(x): creates a new set whose only member is x
Union(x, y): unites the dynamic sets that contain x and y
Find-Set(x): finds the set that contains x
```

Union-find structure

Union-Find Structure

Stores a collection of disjoint dynamic sets.

every set S_i is identified by a representative

(It doesn't matter which element is the representative, but if we ask for it twice, without modifying the set, we need to get the same answer both times.)

Operations

```
Make-Set(x): creates a new set whose only member is x
(x is the representative.)

Union(x, y): unites the dynamic sets S_x and S_y that contain x and y
(Representative of new set is any member of S_x or S_y, often one of their representatives.

Destroys S_x and S_y since sets must be disjoint.)
```

Find-Set(x): finds the set that contains x(Returns the representative of the set containing x, assumes that x is an element of one of the sets.)

Analysis of union-find structures

Union-find structures are often used as an auxiliary data structure by algorithms

total running time over all operations is more important than worst case running time for each operation

Analysis in terms of

```
n = # of elements = # Make-Set operations
```

m = total # of operations (incl. Make-Set)

Example application: connected components

Maintain the connected components of a graph G = (V, E) under edge insertions.

Same-Component(u, v) 1 if Find-Set(u) == Find-Set(v) 2 return true 3 else 4 return false

Connected-Components(V, E) 1 **for** each vertex $v \in V$ 2 Make-Set(v) 3 **for** each edge $(u, v) \in E$ 4 Insert-Edge(u, v)

```
Insert-Edge(u, v)

1 if Find-Set(u) \neq Find-Set(v)

2 Union(u, v)
```

Data Structures for union-find: Solution 1

Store every set S_i in a doubly-linked lists

Representative: first element of the list

The prev-pointer of the first element points to the last element

x is the representative if x. prev. next = NIL

Disclaimer: This is not quite the same solution as in Chapter 19 of the textbook ...

Solution 1: Make-Set and Find-Set

```
Make-Set(x)
 1 x. prev = x
 2 x. next = NIL
                  Note: x is a pointer to an element in the
                  list and hence we do not need to search.
Find-Set(x)
 1 if x. prev. next \neq NIL
        return Find-Set(x. prev)
 3 return x
```

Solution 1: Union

```
Union(x, y)

// assumes x and y are elements of different sets

1 a = \text{Find-Set}(x); b = \text{Find-Set}(y)

2 append the list of b onto the end of the list of a
```


Analysis Solution 1

Make-Set(x): O(1)

Find-Set(x): O(size of set that contains x)

Union(x, y): 2 Find-Set + O(1) = O(size of both sets)

Total running time for m operations, of which n are Make-Set:

Each set has size $\leq n \rightarrow \text{total running time } O(mn)$

Is this possible at all?!?

Yes Make-Set(
$$x_1$$
), ..., Make-Set(x_n)
Union(x_2 , x_1), Union(x_3 , x_1), ..., Union(x_n , x_1)
Find-Set(x_1), Find-Set(x_1), Find-Set(x_1), ...

Problems with Solution 1

Problem: Find-Set takes too long

Solution 2

Replace x. prev pointer with a x. rep pointer to the representative The rep-pointer of the representative points to the last element

Solution 2: Make-Set and Find-Set

```
Make-Set(x)

1 x. rep = x

2 x. next = NIL
```

Find-Set can now be executed in O(1) time:

```
Find-Set(x)

1 if x. rep. next == NIL

2 return x

3 return x. rep
```


Solution 2: Union

```
Union(x, y)

// assumes x and y are elements of different sets

1 a = \text{Find-Set}(x); b = \text{Find-Set}(y)

2 append the list of b onto the end of the list of a

3 update all rep-pointers
```

Running time? O(size of set that contains y)

Analysis Solution 2

Make-Set(x): O(1)

Find-Set(x): O(1)

Union(x, y): O(size of set that contains y)

Total running time for m operations, of which n are Make-Set:

Let's check the worst case example for Solution 1...

Worst case for Solution 1

Make-Set(x_1), ..., Make-Set(x_n)
Union(x_2 , x_1), Union(x_3 , x_1), ..., Union(x_n , x_1)
Find-Set(x_1), Find-Set(x_1), Find-Set(x_1), ... m-2n+1

$$\sum_{2 \le i \le n} \Theta(i) = \Theta(n^2)$$

$$\Theta(m - 2n)$$

Total: $\Theta(m + n^2)$

Make-Set(x) and Find-Set(x): O(1)Union(x, y): O(size of set that contains y)

Problems with Solution 2

What is the problem?

Appending $\{x_3, x_2, x_1\}$ onto $\{x_4\}$ was not a great idea ...

Solution 3 Always append the shorter list onto the longer list Less rep-pointers need to be updated

Union-by-size

Solution 3

Solution 3 The same as Solution 2, but Store with each list its length (this can be easily maintained) Union(x, y) always appends the shorter onto the longer list

Theorem

A sequence of m operations, of which n are Make-Set, takes $\Theta(m + n \log n)$ time in the worst case.

We can do even better ...

Proof Make-Set and Find-Set cost $\Theta(1)$ per operation O(m) in total.

Time for all Union operations

- = O(total number of times that a rep-pointer was moved)
- $=\sum_{x}$ (number of times that x. rep was moved)
- $= \sum_{x} O(\log n) = O(n \log n)$

Can it really be $\Omega(m + n \log n)$? Yes.

Solution 4

Solution 1

append one list onto the other

New idea

append one list directly onto (under) the representative of the other

Solution 4

New idea

append one list directly onto (under) the representative of the other

next-pointers are not needed anymore the rep-pointer of the representative points to the representative

a sort of tree structure ...

disjoint-set forest

Disjoint-set forest: The data structure

Each set is stored in a tree; nodes have only a pointer x. p that points to their parent.

The root is the representative of the set; the parent-pointer x.p of the root points to the root.

We need to know the height of each tree to attach the smaller tree to the larger

Each node x has a field x rank, which is an upper bound for the height of x.

height of x = the number of edges in the longest path between x and a descendant leaf

Union-by-rank

Disjoint-set forest: Make-Set

Make-Set(x)

- 1 $x \cdot p = x$
- 2 x.rank = 0

Disjoint-set forest: Union

Union(x, y)

- 1 a = Find-Set(x); b = Find-Set(y)
- 2 **if** a. rank > b. rank
- b.p = a
- 4 else
- 5 a.p = b
- 6 **if** a. rank == b. rank
- b. rank = b. rank + 1

Disjoint-set forest: Find-Set

```
Find-Set(x)

1 if x \neq x. p

2 return Find-Set(x. p)

3 return x
```


Analysis disjoint-set forest

Lemma (# elements in the tree rooted at x) $\geq 2^{x.rank}$

Proof Induction on r = x. rank

Base case: r = 0

elements $\geq 1 = 2^0$

Inductive step: r > 0

a node x with rank r is created by joining two trees with roots of rank r-1

 \rightarrow (# elements in new subtree rooted at x) $\geq 2 \cdot 2^{r-1} = 2^r$

This immediately implies x. rank $\leq \log n$

Analysis disjoint-set forest

Theorem A sequence of m operations, of which n are Make-Set, takes $O(m \log n)$ time in the worst case.

Proof

x.rank $\leq \log n$

the rank of nodes on the find path increases by at least one in every step

- \rightarrow maximal length of find path = maximal rank $\leq \log n$
- \rightarrow Find-Set takes $O(\log n)$ time

Make-Set and Union (excl. Find-Set) both take O(1) time But Solution 3 works in $O(m + n \log n)$... ?!?

Disjoint-set forest: Find-Set (again)

```
Find-Set(x)

1 if x \neq x. p

2 return Find-Set(x. p)

3 return x
```

Path compression

Find path = nodes visited during Find-Set on the path to the root. Make all nodes on the find path direct children of the root.

```
Find-Set(x)

1 if x \neq x. p

2 x. p = Find-Set(x. p)

3 return x. p
```


Analysis disjoint-set forest

Theorem A sequence of m operations, of which n are Make-Set, takes $O(m \alpha(n))$ time in the worst case.

 $\alpha(n)$ is a function that grows extremely slow $\alpha(n) \leq \lceil \log^* n \rceil$

Number of times that one has to take a log before getting to 1 or below:

$$log^*2 = 1$$
 $log^*2^2 = 2$ $log^*2^4 = 3$ $log^*2^{16} = 4$ $log^*2^{65536} = 5$

Proof is somewhat complicated ... we will prove $O(m \log^* n)$

Analysis disjoint-set forest

Theorem A sequence of m operations, of which n are Make-Set, takes $O(m \log^* n)$ time in the worst case.

Proof

Make-Set and Union (excl. Find-Set) both take O(1) time There are n Make-Set and at most n-1 Union operations

 \rightarrow in total O(n) time for all Make-Set and Union (excl. Find-Set) operations

remains to show:

m Find-Set operations can be executed in $O(m \log^* n)$ time

The $\log^* n$ function

Define function $t: \mathbb{N} \to \mathbb{N}$ as

$$t(i) = \begin{cases} 1 & \text{if } i = 0 \\ 2^{t(i-1)} & \text{if } i > 0 \end{cases}$$

i	0	1	2	3	4	5
t(i)	1	2	4	16	65,536	265,536

 $\log^* n = \min\{i: t(i) \ge n\}$

Note $\log^* t(i) = i$ and $\log^* t(0) = 0$

Rank groups

Divide nodes into rank groups: node x is in rank group g if $g = \log^*(x)$ rank)

$$\rightarrow t(g-1) < x$$
. rank $\leq t(g)$ for x. rank > 1

rank group 0 contains ranks 0 and 1

Lemma (# nodes in rank group g) $\leq n/t(g)$

obvious for g = 0, proof holds for g > 0

```
Proof (# nodes in rank group g)
\leq \sum_{t(g-1)+1 \leq r \leq t(g)} (# \text{ nodes with rank } r)
\leq \sum_{t(g-1)+1 \leq r \leq t(g)} n/2^r
= n/2^{t(g-1)+1} \cdot \sum_{0 \leq r \leq t(g)-t(g-1)-1} 1/2^r
< n/2^{t(g-1)+1} \cdot 2
= n/2^{t(g-1)}
= n/t(g)
```

Lemma

(# elements in the tree rooted at x) $\geq 2^{x.rank}$

 \rightarrow (# nodes with rank r) $< n/2^r$

Analysis disjoint-set forest: Find-Set

Lemma m Find-Set operations can be executed in $O(m \log^* n)$ time.

Proof Idea: bound # parent pointers on all find paths Note: applies to n > 1

Three cases:

- (i) pointer to root 2 per find path O(m) in total \checkmark
- (ii) pointer from node y to y. p with group(y.p) > group(y) highest rank is $\leq \log n$ # $groups \leq \log^*(\log n) + 1 = \log^* n 1 + 1 = \log^* n$ at most $\log^* n$ per find path $O(m \log^* n)$ in total \checkmark
- (iii) pointer from node y to y.p with group(y.p) = group(y)

Analysis disjoint-set forest: Find-Set

- (iii) pointer from node y to y.p with group(y.p) = group(y) after following the pointer y.p, y will get a new parent because of path compression ranks are monotonically increasing
 - → (new parent). rank > (previous parent). rank
 if the new parent is in a higher group, y will never be in Case (iii) again
 (the rank of a node that is not a root never changes)
- Q How often can Case (*iii*) occur for one node y?
- A At most # different ranks in y's rank group

Total for Case (iii)

$$\sum_{\text{nodes } y} (\text{# ranks in rank group of } y)$$

 $= \sum_{1 \le g \le \log^* n - 1} \sum_{y \text{ in rank group } g} (\# \text{ ranks in group } g)$

Analysis disjoint-set forest: Find-Set

- Q How often can Case (iii) occur for one node y?
- A At most # different ranks in y's rank group

Total for Case (iii)

```
\begin{split} &\sum_{\text{nodes }y} (\text{\# ranks in rank group of }y) \\ &= \sum_{1 \leq g \leq \log^* n - 1} \sum_{y \text{ in rank group }g} (\text{\# ranks in group }g) \\ &\leq \sum_{1 \leq g \leq \log^* n - 1} (n/t(g)) \cdot (t(g) - t(g - 1)) \\ &= n \cdot \sum_{1 \leq g \leq \log^* n - 1} (1 - \frac{t(g - 1)}{t(g)}) \\ &= n \log^* n - n \cdot \sum_{1 \leq g \leq \log^* n - 1} t(g - 1) \cdot \left(\frac{1}{2}\right)^{t(g - 1)} \\ &\leq n \log^* n - n \cdot 2 \\ &= O(n \log^* n) \end{split}
```


Analysis disjoint-set forest

Theorem

If we implement a union-find data structure with a collection of trees, using the union-by-rank heuristic and the path-compression heuristic, then a sequence of m operations, of which n are Make-Set, takes $O(m \log^* n)$ time in the worst case.