CS & IT

ENGINEERING

Combinational Circuit

Lecture No. 4

By- CHANDAN SIR

TOPICS TO BE COVERED 01 DEMUX

02 Question Practice

03 ENCODER

.

03 Discussion

$$\int T_{MUX} = 2 \mu s$$

$$\int T_{ANID} = 1 \mu s$$

$$case(s) = T$$

Q.2

do= 501 di= SoI

Design a 1 x 2 DE-MUX?

50	70	81		
0	I	0		
1	0	I		

HW.

1X8 DE-MUX

$$\frac{4}{2} + \frac{3}{2}$$

$$= 1 \times 2 \text{ DEMUX} \qquad 3 + 1 = 3$$

$$3 \times 4 \text{ DE-MUX}.$$

Base	Pigit
2	0,1
3	0,1,2
4	0,1,2,3
5	0,1,2,3,4
6	0,1,2,3,4,5
7	0,1,2,3,4,5,6
8	0,1,2,3,4,5,6,7
10	0,1,2,3,4,5,6,7,8,9
11	0-9, A
12	0-9, A, B
13	0-3, A, B, C

	14	0-9, A,B,C,D
	15	0-9, A,B,C,D,E
	16	0-9, A-F
(101) 2,3,4	• •	
Minimum t	ose=2	

1111

ENCODER

- A circuit used to convert any code into Binary are called Encoder.
- 4 × 2 Encoder [Quad to Binary Encoder]
- 8 × 3 Encoder [Octa to Binary Encoder]
- 16 × 4 Encoder [Hexa to Binary Encoder]

	0 7 7		
Decimal	BCD	EXCESS-3	4221
→ 0	0000	0011	0000
→ 1	0001	0100	0001
2	0010	0101	0010
73	0011	0110	0011
74	0100	0111	0110
5	0101	1000	1001
→6	0110	1001	1100
→ 7	0111	1010	1101
→ 8	1000	1001	1110
→ 9	1001	1100	1111

Binary coded (Recimal) 70 to 9

Fach Decimal numbers will be represented by 4 bits.

Becimy	BID
0	0000
1 -	0001
2 —	0010
9	20011
4 -	40100
9 —	1001

8→ Bose or Radix

complement (8-1) & complement 1's complement 8=2 7's complement 8 = 8 9's complement 01=8 15's complement

己

1= 16

r's complement a complement 8's complement 10's complement les complemt

Pw

1's complement

$$\frac{1}{-0} \frac{1}{0}$$

9's complement

$$\frac{9}{-9}$$

Self complement

$$\frac{9}{-\frac{1}{8}} = \frac{9}{8}$$

$$\frac{-8}{1}$$
Self complement

CODE CONVERSION

BCD CODE - It is weighted code but not self complimented

Excess 3 CODE - It is not a weighted code but self complimented code

4221 CODE - It is weighted code and self complimented code

4 × 2 ENCODER

Step 1. Find the number of inputs and outputs

4 × 2 ENCODER

Step 2. Truth Table

SB			LSB	MSB	Lsg
I_3	I ₂	I ₁	Io	Y ₁	y ₀
0	0	0	1	0	0
0	0	4	0	0	1
0	(L	Φ	0	1	0
1	0	0	0	1	1

	7		1	
1		Ľ		i
1	V	١		ŝ
	y	7		١

LSB
-g.
- di Mss

1	7			CLSB		
		12	1,	Io	18	do
	^	0	0	1	0	0
		A	1	0	0	1
	0	1	Ó	0	Į	ō
	1	0		0	1	1.

$$\frac{30 = I_1 + I_3}{31 = I_2 + I_3}$$

$$I_1 = \frac{1}{2} + \frac{1}{2}$$

8 × 3 ENCODER

Step 1.

Thank you

GW Soldiers!

