

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт искусственного интеллекта Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 5

построение комбинационных схем, реализующих СДНФ и СКНФ заданной логической функции от 4-х переменных

по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы (ИМБО-01-22) Жерздев Егор Олегович

Принял Ассистент Павлова Е.С

Практическая работа выполнена «<u>22</u>» октября 2022 г. Подпись студента.

«Зачтено» «<u>22</u>» октября 2022 г. Подпись преподавателя.

Москва 2022

СОДЕРЖАНИЕ

1.ПОСТАНОВКА ЗАДАЧИ	3
2.ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.2Вывод формулы для СДНФ	5
2.3Вывод формулы для СКНФ	6
2.4Построение схем в лабораторном комплексе	7
3.ВЫВОДЫ	8
4.ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	9

1 ПОСТАНОВКА ЗАДАЧИ

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. Записать формулы СДНФи СКНФ. Построить схемы СДНФ и СКНФ. Протестировать работу схем и убедиться в их правильности.

1.1 Персональный вариант

Логическая функция от четырех переменных, заданная в 16-теричной форме: 3767_{16}

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Подготовка данных для построения таблиц

Преобразуем заданную логическую функцию в двоичную запись: 3767₁₆ = 0011 0111 0110 0111₂ и получим значения логической функции, которые необходимы для восстановления таблицы истинности.

Таблица истинности заданной функции

a	b	c	d	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2.2 Вывод формулы для СДНФ

Запишем формулу СДНФ, рассмотрим наборы значений переменных, на которых функция равна единице. Мы берём переменные, равные нулю с отрицанием, а переменные равные единице, без отрицания. Тем самым мы получим формулу СДНФ.

Таблица СДНФ

a	b	c	d	F
0	0	1	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

 $\begin{array}{l} \text{Fедн} \varphi = \overline{a} \cdot \overline{b} \cdot c \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d + \overline{a} \cdot b \cdot c \cdot \overline{d} + \overline{a} \cdot b \cdot c \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot b \cdot \overline{c} \cdot d + a \cdot b \cdot \overline{c} \cdot d \\ \hline \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot d + a \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot d \\ \end{array}$

2.3 Вывод формулы для СКНФ

Запишем формулу СКНФ. Мы берём переменные равные единице с отрицанием, а переменные равные нулю без отрицания. Тем самым мы получаем формулу СКНФ.

Таблица истинности заданной функции

a	b	c	d	F
0	0	0	0	0
0	0	0	1	0
0	1	0	0	0
1	0	0	0	0
1	0	1	1	0
1	1	0	0	0

Fскнф=
$$(a + b + c + d) \cdot (a + \overline{b} + c + \overline{d}) \cdot (\overline{a} + \overline{b} + c + d) \cdot (\overline{a} + b + \overline{c} + \overline{d}) \cdot (\overline{a} + \overline{b} + c + d)$$

2.4 Построение схем в лабораторном комплексе

Построим в лабораторном комплексе комбинационные схемы СДНФ и СКНФ по данным, которые мы получили в процессе работы, протестируем их работу и убедимся в их правильности.

3 выводы

Тестирование показало, что схемы работают правильно.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

Нет информационных источников