

12C bus

Inter-Integrated Circuit

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Diseño de Sistemas Digitales Ing. Juan Scott Chaves M.S.E.E

12C

CARACTERÍSTICAS

- The I2C es un bus multi-master bus.
- The I2C bus físicamente consiste de 2 cables activos y una conexión a GND.
- Los cables activos se llaman SDA y SCL y son bi-direccionales.
- SDA es la Serial Data line, y SCL es la Serial Clock line.
- Cada dispositivo conectado al bus tiene una dirrección única.

12C

FUNCIONAMIENTO

- El MCU dará la condición de START.
 Esta actúa como una señal de "ATENCIÓN" para todos los dispositivos conectados.
- 2. Todos los ICs conectados al Bus van a "ESCUCHAR" del bus los datos que envió.
- 3. El MCU envía la DIRECCIÓN del dispositivo que quiere accesar, con un indicador de si el acceso es una operación de READ o WRITE.

12C

FUNCIONAMIENTO

4. Cuando reciben la dirección los dispositivos la comparan con la propia:

Si no hace match: El IC espera que el bus se desocupe.

Si hace match: El IC va a producir una respuesta llamada Señal de ACKNOWLEDGE.

- 5. Cuando el MCU recibe el ACKNOWLEDGE, puede empezar a transmitir o recibir datos.
- 6. Cuando termina el proceso el MCU envía la condición de STOP.

12C CAPA FÍSICA

12C LINK LAYER

DIRECCIÓN DE LLAMADA GENERAL

(000000) para broadcast.

CADA DISPOSITIVO TIENE UNA DIRECCIÓN

- Configurada por el dispositivo y/o el diseñador del sistema.
- 7 bits en standard (10 bits en extension).
- El bit 8 de las señales de dirección lee
 (1) o escribe (0).

TRANSACCIÓN DE BUS = SERIE DE TRANSMISIONES DE UN BYTE

El Master envía la dirección del Slave seguido de datos hacia o desde el Slave. Bueno para la programación de "inserción de datos" (data-push).

SEÑALIZACIÓN 12C

EXCEPCIONES:

SDA 1-> 0 mientras SCL = 1 señala la condición de INICIO SDA 0-> 1 mientras SCL = 1 señala la condición de PARADA

BUS = CONFIGURACIÓN "WIRED-AND"

- Colector abierto / controladores de drenaje en SDA y SCL
- La resistencia tira del bus a la lógica 1.
- Cualquier remitente puede bajar el bus a 0, incluso si otros remitentes intentan conducir el bus a 1.
- El remitente "libera" SDA al deshabilitar su controlador, permitiendo que SDA sea llevado a la lógica 1

LOS DATOS SOBRE SDA DEBEN SER ESTABLES MIENTRAS SCL HIGH

- Los datos en SDA se muestrean mientras que SCL es HIGH
- SDA puede cambiar solo mientras SCL LOW

12C DATA FORMAT

Sincronización de reloj

Master genera su propio reloj en SCL durante la transferencia de datos

La sincronización del reloj utiliza "wired-and"

- Conducción "low pull" tira SCL LOW,
 reiniciando todos los contadores de reloj
- SCL permanece LOW mientras cualquier conductor lo baja
- SCL low time= reloj más lento (otros en estado de espera)
- Primer dispositivo en terminar
- High State pulls tira SCL LOW

I2C modos de operación

MASTER-SENDER

El módulo emite INICIO y
DIRECCIÓN, y luego
transmite datos al dispositivo
esclavo direccionado

SLAVE-SENDER

Otro Master emite INICIO y la DIRECCIÓN de este módulo, que luego envía datos al maestro

MASTER-RECEIVER

El módulo emite INICIO y
DIRECCION, y recibe datos del
dispositivo esclavo
direccionado

SLAVE-RECEIVER

Otro Master emite INICIO y la DIRECCIÓN de este módulo, que luego recibe datos del maestro.

Arbitraje de bus I2C

EL MASTER PUEDE COMENZAR A ENVIAR SI EL BUS ESTÁ LIBRE

2 o más pueden generar START al mismo tiempo

EL REMITENTE DEJA DE TRANSMITIR SI SE PIERDE EL ARBITRAJE

Transmita 1 y escuche 0 en SDA.

EL REMITENTE ESCUCHA MIENTRAS SE ENVÍA

Prueba SDA mientras SCL HIGH

EL ARBITRAJE CONTINÚA A TRAVÉS DE DIRECCIONES Y ACKBITS, Y LUEGO DATOS Y ACKBITS SI ES NECESARIO

EJEMPLO DE ARBITRAJE

TRANSFERENCIA DE DATOS

- Enviar byte de 8 bits (MSB primero)
- Cada byte seguido de bit de reconocimiento (acknowledge)
 - o Master lanza la línea SDA (alta) durante el reloj
 - Slave debe tirar SDA low para reconocimiento adecuado
 - Si SDA se dejó High, el master puede detenerse o repetir el inicio
 - Si el master está recibiendo del slave, el slave libera SDA para permitir que el master tire de SDA low por un golpe
- El slave puede mantener SCL low para forzar el tiempo de espera entre bytes

Transmisiones I2C (no se muestran los ACK)

FIN

