7.12.2021

Seminar 10 - LR(0) parsing

Ex.: Given the grammar $G=(\{S,A\}, \{a,b,c\}, \{S->aA, A->bA \mid c\}, S)$, parse the sequence w = abbc using an LR(0) parser.

- (1) S->aA
- (2) A->bA
- (3) A->c

LR(0) item
$$[A \rightarrow \alpha. \beta]$$

$$[A \rightarrow \alpha. B\beta], [B \rightarrow. \gamma]$$

I. Compute canonical collection of states #VA: David T.

$$\begin{split} s_0 &= \mathsf{closure}(\{[\mathsf{S}'\text{-}>.\mathsf{S}]\}) = \{[\mathsf{S}'\text{-}>.\mathsf{S}], [\mathsf{S}\text{-}>.\mathsf{a}\mathsf{A}]\} \\ s_1 &= \mathsf{goto}(s_0, \mathsf{S}) = \mathsf{closure}(\{[\mathsf{S}'\text{-}>\mathsf{S}.]\}) = \{[\mathsf{S}'\text{-}>\mathsf{S}.]\} \\ &= \mathsf{goto}(s_0, \mathsf{A}) = \emptyset = \mathsf{goto}(s_0, \mathsf{b}) = \mathsf{goto}(s_0, \mathsf{c}) \\ s_2 &= \mathsf{goto}(s_0, \mathsf{a}) = \mathsf{closure}(\{[\mathsf{S}\text{-}>\mathsf{a}.\mathsf{A}]\}) = \{[\mathsf{S}\text{-}>\mathsf{a}.\mathsf{A}], [\mathsf{A}\text{-}>.\mathsf{b}\mathsf{A}], [\mathsf{A}\text{-}>.\mathsf{c}]\} \\ s_3 &= \mathsf{goto}(s_2, \mathsf{A}) = \mathsf{closure}(\{[\mathsf{S}\text{-}>\mathsf{a}.\mathsf{A}.]\}) = \{[\mathsf{S}\text{-}>\mathsf{a}.\mathsf{A}.]\} \\ s_4 &= \mathsf{goto}(s_2, \mathsf{b}) = \mathsf{closure}(\{[\mathsf{A}\text{-}>\mathsf{b}.\mathsf{A}]\}) = \{[\mathsf{A}\text{-}>\mathsf{b}.\mathsf{A}], [\mathsf{A}\text{-}>.\mathsf{b}\mathsf{A}], [\mathsf{A}\text{-}>.\mathsf{c}]\} \\ s_5 &= \mathsf{goto}(s_2, \mathsf{c}) = \mathsf{closure}(\{[\mathsf{A}\text{-}>\mathsf{b}.\mathsf{A}]\}) = \{[\mathsf{A}\text{-}>\mathsf{b}.\mathsf{A}.]\} \\ s_6 &= \mathsf{goto}(s_4, \mathsf{A}) = \mathsf{closure}(\{[\mathsf{A}\text{-}>\mathsf{b}.\mathsf{A}.]\}) = \{[\mathsf{A}\text{-}>\mathsf{b}.\mathsf{A}.]\} \\ \mathsf{goto}(s_4, \mathsf{b}) = \mathsf{closure}(\{[\mathsf{A}\text{-}>\mathsf{b}.\mathsf{A}]\}) = s_4 \\ \mathsf{goto}(s_4, \mathsf{c}) = \mathsf{closure}(\{[\mathsf{A}\text{-}>\mathsf{c}.]\}) = s_5 \\ \\ \mathsf{C} &= \{s_0, s_1, s_2, s_3, s_4, s_5, s_6\} \end{split}$$

II. Build LR(0) parsing table #VA: Andrada T.

		9010					
	ACTION	S	Α	a	b	C	
0	shift	1		2			
1	accept						
2	shift		3		4	5	
3	reduce1						
4	shift		6		4	5	
5	reduce3						
6	reduce2						

III. Parse the sequence #VA: Andrada T.

Work stack	Input stack	Output band
\$0	abbc\$	ϵ
\$0a2	bbc\$	ϵ
\$0a2b4	bc\$	ϵ
\$0a2b4b4	c\$	ϵ
\$0a2b4b4 <mark>c5</mark>	\$	ϵ
\$0a2b4 <mark>b4A6</mark>	\$	3
\$0a2 <mark>b4A6</mark>	\$	23
\$0 <mark>a2A3</mark>	\$	223
\$0\$1	\$	1223
acc	\$	1223

S => aA => abA => abbA => abbc (! Rightmost derivation)