Máquina de Atwood Experimento 4

F 229 GRUPO 1

XX de XX, 2014

Integrantes: Henrique Noronha Facioli 157986

Guilherme Lucas da Silva 155618 Beatriz Sechin Zazulla 154779

Lucas Alves Racoci 156331

Isadora Sophia Garcia Rodopoulos 158018

1 Resumo

Neste experimento, estudamos uma *Máquina de Atwood*, um sistema físico que consiste de: um cilindro de latão funcionando como polia, ou seja com liberdade de girar em torno de um eixo fixo; um fio que será considerado leve - ou seja, com massa irrelevante -, inestensível - isto é, inelástico; dois corpos (1 e 2) que são pendurados na polia por meio do fio anteriormente citado, onde:

- O corpo 1 consiste de um sub-corpo de massa m_1 e mais n_1 de 5 sub-corpos;
- O corpo 2 consiste de um sub-corpo de massa m_2 e mais n_2 de 5 sub-corpos;
- Os valores de n_1 e n_2 são tais que $n_1 + n_2 = 5$;
- As massas dos corpos 1 e 2 serão chamadas respectivamente de m_1 e m_2

Sabemos que a diferença entre as massas dos dois corpos gera um torque não nulo na polia, o que nos permite estudar seu Momento de Inércia I_0 e a aceleração da grávidade g, através da fórmula a seguir:

$$\Delta m = \frac{2h}{gR^2}(I + MR^2)\frac{1}{t^2} + \frac{\tau_a}{gR}$$

2 Objetivo

Este experimento teve como objetivo principal o estudo da máquina de Atwood e a determinação do momento de inérciada da polia e o torque da força de atrito.

3 Procedimentos e coleta de dados

Na realização deste experimento foram utilizados os seguintes materiais:

- 1. Polia de latão com eixo;
- 2. Barbante;
- 3. Conjunto de discos metálicos;
- 4. Trena;
- 5. Paquímetro;
- 6. Balança de precisão;
- 7. Cronômetro.

Tabela 1: Modelo de tabela

	Massa (Kg)
Medida	1,2790
Erro Instrumental	0,0001

4 Análise dos resultados

5 Conclusão