Readings: Nagler

Outline

- 1. Logit vs Scobit
- 2. Plotting Logits and Scobits
- 3. Example: The Effect of Registration Laws and Education on U.S. Voter Turnout
- 4. Example, continued: Scobit: An Alternative Estimator to Logit

Readings: Nagler

0. Two approaches to binary response

A. Latent variables approach

- Assumes there exists a continuous underlying variable, like a propensity, that is latent
- Treats binary variables as a measurement problem

Suppose:
$$y_i^* = x_i \beta + \epsilon_i$$

Assume:
$$\epsilon$$
 has mean 0

$$\epsilon$$
 follows standard logistic distribution with variance $\frac{\pi^2}{3}$

Then:
$$y_i = 1$$
 if $y_i^* > t$ where t is some threshold, usually assumed = 0 for convenience $y_i = 0$ if $y_i^* \le t$

Logit (or probit) is just regression with less information, where all we know is the sign of y_i^*

The assumptions about the variance of ϵ and the value of t are innocuous:

You can always rescale variables. If $y^* = x\beta + \sigma\epsilon$, then you could rewrite: $\frac{y^*}{\sigma} = x\frac{\beta}{\sigma} + \epsilon$ As long as the model contains a constant, you could rewrite:

$$\Pr(y^* > a) = \Pr(\alpha + x\beta + \epsilon > a) = \Pr((\alpha - a) + x\beta + \epsilon > 0)$$

Readings: Nagler

0. Two approaches to binary response

- B. Random utility approach
 - Assumes there are fixed alternatives, indexed by *m*
 - Treats choice as if it has a systematic component (V) and a stochastic component (ϵ)

Suppose:
$$U_{im} = V_{im} + \epsilon_{im}$$

Let:
$$V_{im} = X_{im}\beta_{im}$$

If
$$m = \{1, 2\}$$
, then:
$$P(y_i = 1) = P(U_{i1} > U_{i2})$$
$$= P(V_{i1} + \epsilon_{i1} > V_{i2} + \epsilon_{i2})$$
$$= P(\epsilon_{i2} - \epsilon_{i1} < V_{i1} - V_{i2})$$

Assume: ϵ is i.i.d. according to the "Type I Extreme Value distribution" $F(\epsilon_{im}) = \exp(-\exp^{-\epsilon_{im}})$ then the difference $\epsilon_{i2} - \epsilon_{i1}$ follows the standard logistic distribution

Model can easily be extended to more than two options; Daniel McFadden won the 2000 Nobel Prize for his pioneering contributions to discrete choice theory

Readings: Nagler

1. Logit vs. Scobit (skewed logit)

logit:
$$P_i = \frac{1}{1 + e^{-Z_i}}$$
 where $Z_i = \beta \mathbf{x}_i + u_i$

scobit:
$$P_i = \frac{1}{\left(1 + e^{-Z_i}\right)^{\alpha}}$$
 where $\alpha > 0$; if $\alpha = 1$ then the model is logit

In logit (or in scobit when $\alpha = 1$), the maximal impact of Δx on y is at p = 0.5

Achen (2002) shows that the point at which the impact of Δx on y is maximal is:

$$P^* = 1 - \left[\frac{\alpha}{\alpha + 1}\right]^{\alpha}$$

In scobit when α diverges from 1, the maximal impact of Δx on y is at p < 0.5 when $\alpha < 1$ is at p > 0.5 when $\alpha > 1$

 α can be though of as a shape parameter that can be estimated along with the β

Readings: Nagler

1. Logit vs. Scobit (skewed logit)

Scobit CDFs, with $\beta = 1$ and Varying α s

Readings: Nagler

1. Logit vs. Scobit (skewed logit)

2. Plotting Logits and Scobits

See R script: displaying logit and scobit.R

Also see R script: Default.R, which uses dataset default.csv / default01.dta

Readings: Nagler

3. Example: The Effect of Registration Laws and Education on U.S. Voter Turnout

Wolfinger and Rosenstone (1980) *Who Votes?* argued that voting law restrictions have their largest impact on the least educated.

Empirical demonstration (see Nagler (1991) Table 1, p. 1397)

Education (years)	Predicted Voting Rate	Predicted Change if Day-of Registration Allowed
0-4	32.2	+ 6.2
5-7	42.2	+ 6.4
8	56.2	+ 5.8
9-11	59.0	+ 5.7
12	66.1	+ 5.2
13-15	72.1	+ 4.8
16	83.2	+ 3.6
17+	90.8	+ 2.2

Process used in *Who Votes?* described on p. 1395–1396 of Nagler (1991)

Explanation: "Formal education increases one's capacity for understanding and working with complex, abstract, and intangible subjects, ... [and] this heightened level of understanding and information would also reduce the cost of registering."

However, highest education groups have highest turnout → "compression" problem

Readings: Nagler

3. Example: The Effect of Registration Laws and Education on U.S. Voter Turnout

Huang and Shields (2000) have a really nice visual depiction of difference between ... the *Who Votes?* analysis & Nagler's (1991) reanalysis:

Figure 1: Predicted Probability of Voting (vertical axis) by Closing Date (horizontal axis)—Figure 2: Predicted Probability of Voting (vertical axis) by Closing Date (horizontal Wolfinger and Rosenstone's Final Model (1972 Current Population Survey)

Axis)—Nagler's Full Model (1972 Current Population Survey)

Readings: Nagler

3. Example: The Effect of Registration Laws and Education on U.S. Voter Turnout

Replication of Wolfinger & Rosenstone							
Independent Variable	Estimated Coefficient	t-ratio	Estimated Coefficient	t-ratio			
Intercept	-2.4928	-53.74**	-2.6562	-39.62**			
Education	.2635	20.52**	.3003	17.83**			
Education-squared	.0035	2.56**	.0033	2.36**			
Age	.0653	48.69**	.0652	48.63**			
Age-squared	0005	-35.93**	0005	-35.83**			
South	1935	-15.03**	1936	-15.05**			
Hours			_	****			
Gubernatorial election	.0682	6.66**	.0683	6.67**			
Irregular registration							
hours	0155	97	0137	86			
Evening/Saturday							
registration	.1009	10.10**	.1009	10.10**			
No absentee registration	0291	-1.92°	0295	-1.95*			
Closing date	0062	-10.27**	0005	26			
Closing date × education Closing date ×	_	_	0012	-3.38**			
education-squared	_	-	_	_			
Number of cases	90,279		90,279				
Percent voting	65.30		65.30				
Correctly predicted	70.62		70.63				
Log-likelihood	-51,915		-51,909				

Readings: Nagler

3. Example: The Effect of Registration Laws and Education on U.S. Voter Turnout

	Replication of Wolfinger & Rosenstone			
Independent Variable	Estimated Coefficient	t-ratio	Estimated Coefficient	t-ratio
Intercept	-2.4928	-53.74**	-2.7597	-26.51**
Education	.2635	20.52**	.3544	7.90**
Education-squared	.0035	2.56**	0029	59
Age	.0653	48.69**	.0652	48.60**
Age-squared	0005	-35.93**	0005	-35.79**
South	1935	-15.03**	1939	-15.07**
Hours			-	_
Gubernatorial election	.0682	6.66**	.0686	6.70**
Irregular registration				
hours	0155	97	0134	84
Evening/Saturday				
registration	.1009	10.10**	.1010	10.11**
No absentee registration	0291	-1.92*	0293	-1.94*
Closing date	0062	-10.27**	.0032	.96
Closing date × education Closing date ×	_	_	0032	-2.07**
education-squared	_		.0002	1.30
Number of cases	90,279		90,279	
Percent voting	65.30		65.30	
Correctly predicted	70.62		70.61	
Log-likelihood	-51,915		-51,909	

Readings: Nagler

4. Example, continued: *Scobit: An Alternative Estimator to Logit*

	Logita		Scobit ^b	
Independent Variable	Estimated Coef.	t-Stat.	Estimated Coef.	t-Stat.
Intercept	-4.4151	-24.60*	-4.7514	-28.13*
Education	0.3590	5.01*	0.2055	5.81*
Educ. squared	0.0193	2.61*	0.0706	10.27*
Age	0.1140	51.92*	0.1798	19.60*
Age squared	-0.0008	-36.14*	-0.0013	- 19.27*
South	-0.1834	- 10.55*	-0.2803	-11.00*
Gub. Elec.	0.0063	0.33	0.0019	0.09
Closing date	0.0007	0.11	-0.0213	-14.65*
Closing date \times educ.	-0.0046	-1.79**	-	
Closing date × educ-sq.	0.0004	1.32	<u> </u>	
α P*(α)	_	-	0.4242 0.40	13.30*
Number of cases	98,857		98,857	
Percent voting	67.01		67.01	
Correctly predicted	71.08		71.30	
Log-likelihood	-55,331°		-55,289	