流形优化期末报告

GallyYoko

2024年10月9日

1 Question 1

编程实现 Algorithm 10 和 Algorithm 11. 下载文再文老师的代码. 运行文老师的代码, 比较简化版与 ARNT, 指出文老师方法的优势.

1.1 数值实验比较

首先, 我们使用文再文老师原论文中的非线性特征值问题 (Single Nonlinear Eigenvalue Problems) 为例, 从简化版算法与 ARNT 在这个优化问题的表现上出发, 比较两个算法的计算效果. 考虑优化问题

$$\min_{X \in \mathbb{R}^{n \times p}} \frac{1}{2} \mathrm{tr}(X^T L X) + \frac{\alpha}{4} \rho(X)^T L^{-1} \rho(X), \quad \text{subject to } X^T X = I_k.$$

其中 L 为一维 Laplace 算子离散化, 主对角线上全为 2, 次对角线上全为 1. $\rho(X)$ 是一个向量, 定义为 $\rho(X) = \mathrm{diag}(XX^T)$. α 为一个常数. 我们使用 Algorithm 11 和 ARNT 对这个问题进行求解. 在参数选择上, 我们使用表 1 中的参数值.

参数	具体数值	参数描述		
σ	10	初始正则参数		
γ	0.2	回退幅度		
c	0.001	Armijo 条件的系数		
η_1	0.01	正则化调整下限参数		
η_2	0.09	正则化调整上限参数		
γ_1	0.2	正则化缩小幅度		
γ_2	10	正则化增大幅度		
κ	0.01	修正共轭梯度法偏差阈值		
method	Cayley 变换	收缩映射方式		
arepsilon	10^{-5}	梯度阈值		

表 1: 算法参数

1 QUESTION 1 2

对于参数 n, p 和 α , 我们固定其中两个参数, 改变第三个参数, 进行数值实验, 得到结果分别 见表 2, 3 和 4, 其中的迭代数指正则化牛顿法的迭代次数, 总迭代数指修正共轭梯度法的总迭代次数.

	Algorithm 11				ARNT			
n	迭代数	总迭代数	梯度范数	时间	迭代数	总迭代数	梯度范数	时间
2000	8	146	1.18e-05	1.23	3	95	1.21e-05	0.47
3000	8	154	6.23 e-06	2.58	3	95	2.08e-05	0.84
5000	8	157	4.96e-06	5.92	4	121	2.47e-05	1.57
8000	8	157	5.06e-06	12.37	3	100	1.29e-05	2.60
10000	8	167	2.77e-06	18.95	3	117	3.15e-06	3.43

表 2: $(p,\alpha) = (30,10)$ 时的数值实验结果

	Algorithm 11				ARNT			
р	迭代数	总迭代数	梯度范数	时间	迭代数	总迭代数	梯度范数	时间
10	8	43	6.01 e- 05	3.51	3	32	3.85 e-07	0.21
20	8	106	4.73e-06	3.97	3	66	3.70e-06	0.70
30	8	157	4.96e-06	5.80	4	121	2.47e-05	1.60
50	8	248	2.22e-05	9.60	3	180	3.28e-05	4.30

表 3: $(n,\alpha) = (5000,10)$ 时的数值实验结果

	Algorithm 11			ARNT				
α	迭代数	总迭代数	梯度范数	时间	迭代数	总迭代数	梯度范数	时间
1	10	107	8.00e-05	6.73	3	73	1.11e-06	1.87
10	8	157	4.96e-06	5.61	4	121	2.47e-05	1.61
100	8	170	1.88e-06	5.96	4	108	7.00e-06	2.02

表 4: (n,p) = (5000,30) 时的数值实验结果

从这些结果中可以看出, 对于实验中的这些例子, Algorithm 11 的迭代数几乎都是 8, ARNT 的迭代数几乎都是 3. 不过, 这些结果仍然揭示了一些信息:

- 当参数 n 增大时, 共轭梯度法的迭代次数没有明显差异, 但算法花费的时间增大了.
- 当参数 p 增大时, 共轭梯度法的迭代次数和算法花费的时间都增大了.
- 当参数 α 增大时, 算法花费的时间没有明显的变化, 共轭梯度法的迭代次数的在 α 较小时上升, 而在 α 较大时保持基本不变.
- Algorithm 11 的表现在各方面都要差于 ARNT.

1 QUESTION 1 3

1.2 修正共轭梯度法比较

本小节中, 我们对简化版 ARNT 中使用的修正共轭梯度法 Algorithm 10 与 ARNT 中使用 的修正共轭梯度法 RNewton 进行比较, 说明 ARNT 相比简化版的优点所在.

首先, 我们将两个算法同时给出, 见算法 1 和算法 2, 对于其中不同的部分, 我们使用不同的 颜色加以区分, 其中绿色表示仅在这个算法中出现的部分, 红色表示在两个算法中都有出现, 但有 所区别的部分. 为了更直观地展现两个算法的不同之处, 下面的伪代码将与书上和论文中的伪代 码略有不同.

```
算法 1: Algorithm 10
```

```
输入: 黎曼梯度方向 q, 黎曼海森算子 B, 偏差阈值 \kappa
    输出: 方程的解 d, 其中方程为 Bd = -q
 1 \in \min(0.5, \sqrt{\|g\|}) \|g\|; \quad z_0 \leftarrow 0; \quad r_0 \leftarrow -g; \quad p_0 \leftarrow -g;
                                                                                                                   // 初始设置
 2 for j = 0, 1, 2, \cdots do
         if \langle p_i, Bp_i \rangle \leq 0 then
        若 j=0 则 d \leftarrow -g, 否则d \leftarrow z_i, 终止循环; // 前进方向为零或负曲率方向
        end
 5
        \alpha_j \leftarrow \frac{\langle r_j, r_j \rangle}{\langle p_i, Bp_i \rangle}; \quad z_{j+1} \leftarrow z_j + \alpha_j p_j; \quad r_{j+1} \leftarrow r_j - \alpha_j Bp_j;
                                                                                                           // 方程近似解更新
         if \langle z_{j+1}, -g \rangle \leq \kappa ||g|| ||z_{j+1}|| then
        d \leftarrow z_j, 终止循环;
                                                                                                  // 方程近似解偏离负梯度方向
         end
 9
         if ||r_{i+1}|| \leq \varepsilon then
10
         d \leftarrow z_{i+1}, 终止循环;
11
                                                                                                                     // 残差很小
12
         \beta_j \leftarrow \frac{\langle r_{j+1}, r_{j+1} \rangle}{\langle r_i, r_i \rangle}; \quad p_{j+1} \leftarrow r_{j+1} + \beta_j p_j;
                                                                                                           // 解的前进方向更新
14 end
```

从算法 1 和算法 2 中可以直观地看出,这两个算法的方程近似解更新和前进方向更新阶段是 完全一样的,不同点在于输入值、初始设置和跳出循环的方式,而其中输入值和初始设置的不同 是由于二者跳出循环的方式不同而导致的. 因此, 我们主要探讨二者跳出循环方式的差别:

- 算法 1 和算法 2 都会在前进方向为零曲率或负曲率后跳出循环. 不同的是, 在算法 1 中 使用的是数值 0 来判断, 并且当前进方向为零曲率或负曲率方向时, 算法都是同样的输出 $d \leftarrow z_i$; 在算法 2 中使用的是输入的小参数 ϵ 来判断, 可以略微降低计算误差带来的影响, 并且对于不同的前进方向, 算法给出了不同的输出 $d \leftarrow z_i + \tau p_i$ (其中 τ 在零曲率时为 0, 在 负曲率时不为 0), 相比算法 1 更精细.
- 算法 1 会在迭代的解偏离负梯度方向过远的时候跳出循环, 而算法 2 中并没有这种停止循 环方式.

1 QUESTION 1 4

算法 2: RNewton

```
输入: 黎曼梯度方向 q, 黎曼海森算子 B, 参数 T, \theta, \epsilon
     输出: 方程的解 d, 其中方程为 Bd = -q
 1 z_0 \leftarrow 0; r_0 \leftarrow -g; p_0 \leftarrow -g;
                                                                                                                                     // 初始设置
 2 for j = 0, 1, 2, \cdots do
          if -\epsilon \langle p_i, p_i \rangle \leq \langle p_i, Bp_i \rangle \leq \epsilon \langle p_i, p_i \rangle then
            若 j=0 则 d \leftarrow -g, 否则 d \leftarrow z_i, 终止循环;
                                                                                                                     // 前进方向为零曲率方向
          end
          if \langle p_j, Bp_j \rangle \leq -\epsilon \langle p_j, p_j \rangle then
          若 j=0 则 d\leftarrow -g,否则d\leftarrow z_j+\frac{\langle p_j,g\rangle}{\langle p_i,Bp_i\rangle}p_j,终止循环;  // 前进方向为负曲率方向
 8
         \alpha_j \leftarrow \frac{\langle r_j, r_j \rangle}{\langle p_j, Bp_j \rangle}; \quad z_{j+1} \leftarrow z_j + \alpha_j p_j; \quad r_{j+1} \leftarrow r_j - \alpha_j Bp_j;
                                                                                                                            // 方程近似解更新
          if ||r_{i+1}|| \le \min(||r_0||^{\theta}, T) then
10
          d \leftarrow z_{i+1}, 终止循环;
                                                                                                                                     // 残差很小
11
12
          \beta_j \leftarrow \frac{\langle r_{j+1}, r_{j+1} \rangle}{\langle r_{i}, r_{i} \rangle}; \quad p_{j+1} \leftarrow r_{j+1} + \beta_j p_j;
                                                                                                                          // 解的前进方向更新
14 end
```

• 算法 1 和算法 2 都会在残差过小的时候跳出循环, 但二者的判别阈值并不完全相同, 算法 1 使用的是阈值 ε 来判断, 算法 2 使用的是阈值 $\min(\|r_0\|^{\theta}, T)$ 来判断. 值得注意的是, 当切向量 g 的范数 $\|g\| \le 0.25$ 时, 有 $\varepsilon = \|g\|^{1.5} = \|r_0\|^{1.5}$, 因此算法 2 的判别阈值实际上是比算法 1 更精细的.

1.3 正则化牛顿法比较

在上一节中我们已经比较过了 Algorithm 10 与 RNewton 算法之间的不同点. 在本节中, 我们用同样的的方式比较 Algorithm 11 与 ARNT 算法之间的不同点, 两个算法的伪代码实现见算法 3 和算法 4, 其中的 f 为待优化函数, m_k 为 f 在 x_k 点二阶展开后正则化的近似模型

$$m_k(d) = f(x_k) + \langle \operatorname{grad} f(x_k), d \rangle + \frac{1}{2} \langle \operatorname{Hess} f(x_k)d, d \rangle + \frac{\sigma_k}{2} ||d||^2.$$

从算法 3 和算法 4 可以看出, Algorithm 11 与 ARNT 的区别主要在两点:

- Algorithm 11 使用的是关于 f 的回退法线搜索, 而 ARNT 使用的是关于 m_k 的回退法线搜索. 事实上, m_k 是 f 在 x_k 点二阶展开后的近似模型, 因此在计算量上会比直接计算关于 f 的回退法线搜索要略低一点.
- 二者的正则化参数更新过程不同, Algorithm 11 设定了正则化参数更新的具体方式, 而 ARNT 仅给出了正则化参数的更新范围, 因此 ARNT 在正则化参数更新上要更精细一些.

2 QUESTION 2 5

算法 3: Algorithm 11

```
输入: 初始点 x_0, 初始参数 \sigma_0, 系数 c, 回退幅度 \gamma, 正则阈值 \eta_1, \eta_2, 正则幅度 \gamma_1, \gamma_2 1 k \leftarrow 0;

2 while 终止条件不成立 do

3 使用 Algorithm 10得到步长 d_k;

4 初始步长为 1, 使用关于 f的回退法线搜索得到步长 t_k 和中间点 y_k = \mathbf{R}_{x_k}(t_k d_k);

5 计算预测比 \rho_k \leftarrow \frac{f(y_k) - f(x_k)}{m_k(t_k d_k) - f(x_k)};

6 更新正则参数: 若 \rho_k \geq \eta_2, 则\sigma_{k+1} \leftarrow \gamma_1 \sigma_k; 若 \eta_2 \geq \rho_k \geq \eta_1, 则\sigma_{k+1} \leftarrow \sigma_k; 若 \rho_k \leq \eta_1, 则\sigma_{k+1} \leftarrow \gamma_2 \sigma_k;

7 更新迭代点: 若 \rho_k \geq \eta_1, 则 \sigma_{k+1} \leftarrow \sigma_k; 若 \sigma_k \leq \sigma_k; \sigma_k
```

算法 4: ARNT

9 end

```
输入: 初始点 x_0, 初始参数 \sigma_0, 系数 c, 回退幅度 \gamma, 正则阈值 \eta_1, \eta_2, 正则幅度 \gamma_0, \gamma_1, \gamma_2 1 k \leftarrow 0;

2 while 终止条件不成立 do

3 使用 RNewton得到步长 d_k;

4 初始步长为 1, 使用关于 m_k的回退法线搜索得到步长 t_k 和中间点 y_k = \mathbf{R}_{x_k}(t_k d_k);

5 计算预测比 \rho_k \leftarrow \frac{f(y_k) - f(x_k)}{m_k(t_k d_k) - f(x_k)};

6 更新正则参数: 若 \rho_k \geq \eta_2, 则\sigma_{k+1} \in [\gamma_1 \sigma_k, \gamma_2 \sigma_k];

7 更新迭代点: 若 \rho_k \geq \eta_1, 则 x_{k+1} \leftarrow y_k; 若 \rho_k \leq \eta_1, 则 x_{k+1} \leftarrow x_k;

8 k \leftarrow k + 1;
```

事实上, 相较于 Algorithm 11, 在文老师的具体代码实现中, 当预测比 $\rho_k < 0$ 时, 正则化参数 σ_k 的增大幅度会比 $0 \le \rho_k \le \eta_1$ 更大, 这带来了更好的计算结果.

2 Question 2

编程实现教材上的 Algorithm 3 和 Algorithm 4, 随机生成 Stiefel 流形的一个二次函数, 用 Algorithm 4 极小化这个二次函数, 比较两个算法的计算效果, 探索非单调的作用, 或者交替使用 BB 步长两个公式的作用.

2 QUESTION 2

2.1 随机二次函数的生成

首先考虑实现二次函数的随机生成问题. 对于整数 $n \geq p > 0$, 欧氏空间 $\mathbb{R}^{n \times p}$ 上的 Stiefel 流形为

$$St(n, p) = \{ X \in \mathbb{R}^{n \times p} | X^T X = I_p \}.$$

对于矩阵 $B \in \mathbb{R}^{n \times p}$ 和对称矩阵 $A \in \mathbb{R}^{n \times n}$, St(n,p) 上的二次函数定义为

$$f(X; A, B) = \operatorname{tr}(X^T A X + 2X^T B).$$

故二次函数 f 的生成问题等价于矩阵 A,B 的生成问题. 在 MATLAB 中, 可以使用 **randn** 函数随机生成矩阵, 因此, 可以取

$$B \leftarrow \text{randn}(n, p)$$
.

但 MATLAB 中并没有直接生成对称矩阵的函数. 不过, 我们可以注意到, 对于任意的方阵 \hat{A} , 矩阵 $\hat{A} + \hat{A}^T$ 是一个对称矩阵. 基于这一结论, 我们使用吴钢老师论文中的随机对称矩阵生成方法:

$$\hat{A} \leftarrow \operatorname{sprand}(n, n, 0.5), \quad A \leftarrow \hat{A} + \hat{A}^T.$$

详细的代码实现可以参考附录. 在下文中, 我们考虑 n = 500, p = 50 时各算法的表现, 取 MATLAB 中随机函数的种子为 99, 生成对应的矩阵对 (A, B).

2.2 梯度下降算法与 BB 算法的比较

本小节中, 我们使用基于单调线搜索的梯度下降算法与基于非单调线搜索的 BB 算法对二次 函数 $f(X) = \operatorname{tr}(X^TAX + 2X^TB)$ 进行优化. 在参数选择上, 我们使用表 5 中的参数值.

 参数	具体数值	参数描述
t_0	0.01	回退法的初始步长
$lpha_0$	0.01	BB 算法的初始步长
ho	0.5	回退幅度
c	0.001	Armijo 条件的系数
M	5	非单调线搜索的前项个数
$\alpha_{ m max}$	1000	BB 步长的上界
$lpha_{ m min}$	0.001	BB 步长的下界
method	QR 分解	收缩映射算法
ε	10^{-10}	梯度范数的阈值

表 5: 算法参数

我们先了解一下两个算法的收敛速度, 随机选取初始点 X_0 , 观察函数值 $f(X_k)$ 与点列 X_k 的误差变化情况, 以及黎曼梯度 $\operatorname{grad} f(X_k)$ 的范数变化情况. 实验结果见图 1, 其中左边是自变量点列 X_k 关于最小值点 X^* 的误差随迭代次数的变化情况, 其度量为两点作为 $\mathbb{R}^{n \times p}$ 矩阵时, 差

2 QUESTION 2 7

值 $X_k - X^*$ 的 Frobenius 范数; 中间是函数值 $f(X_k)$ 关于最小值 $f(X^*)$ 的相对误差变化情况; 右边是黎曼梯度 $\operatorname{grad} f(X_k)$ 的范数变化情况.

图 1: 单调梯度法与 BB 算法的比较

从图 1 中可以看出两个算法的表现情况:

- BB 算法在 80 步内使函数值误差达到了机器精度, 自变量 X_k 的误差降到了 10^{-8} 以内, 黎 曼梯度的范数降到了 10^{-7} 以内, 效果非常好.
- 单调梯度法在 100 步内将函数值误差降到了 10^{-7} 以内, 自变量 X_k 的误差仅在 10^{-2} 内, 黎 曼梯度的范数更是有 0.1 的误差, 远不如 BB 算法.
- 梯度下降算法使点列和函数值的误差单调下降, BB 算法却有时会导致二者误差上升, 但 BB 算法的误差从总体上看是下降的, 这一点是由非单调线搜索的性质产生的.
- 函数值的收敛速度比自变量点列的收敛速度更快,这一点是由二次函数的性质产生的.

接下来,对于不同的收缩映射算法,我们对比一下算法的收敛速度,结果见图 2,其中左边为自变量点列的误差变化,中间为函数值的相对误差变化,右边为黎曼梯度的范数变化,第一行为使用单调梯度法得到的变化图,第二行为使用 BB 算法得到的变化图.

从图 2 中可以看到, 不同的收缩映射在同一个优化算法下的表现是几乎完全相同的. 唯一有所不同的是使用极分解的 BB 算法. 从图 2 的第二行可以看出, 当迭代次数超过 70 次后, 极分解的表现要略微差于其他收缩映射.

值得特别一提的是, 在理论上, 基于 SVD 分解的收缩映射和基于极分解的收缩映射应当是同一个, 而这两个算法在单调梯度法中的表现也的确是完全一致的. 然而, 这两种不同的收缩映射在 BB 算法下的表现是不同的, 极分解在迭代后期要明显差于 SVD 分解, 这可能是由计算误差所导致的: 在实现基于 SVD 分解的收缩映射时, 我们直接使用了 MATLAB 内置的 svd 函数, 这一函数是使用商业库 MKL 构建的, 因此会进行专业的优化, 达到比极分解更好的表现.

2.3 非单调线搜索的作用

本小节中, 我们通过使用不同的前项个数 M 对二次函数 f(X) 进行优化, 探索非单调线搜索的作用. 在正式讨论前, 先观察一个现象: 取初始步长 $t_0=0.005$ 和 0.05, 前项个数 M=10,

2 QUESTION 2 8

图 2: 不同收缩映射算法的表现

其他参数同表 5, 查看单调线搜索与非单调线搜索的表现. 其结果见图 3, 其中左图为初始步长 $t_0 = 0.005$ 时的表现, 右图为初始步长 $t_0 = 0.05$ 时的表现, 图像为函数值的相对误差随迭代次数的变化情况, Armijo 条件指单调线搜索, Grippo 条件指 Grippo 提出的非单调线搜索, 凸组合条件指 H. Zhang 与 W. W. Hager 提出的非单调线搜索, 其系数 $\varrho = 0.5$.

图 3: 步长对函数值误差的影响

从图 3 中可以看到, 当初始步长 $t_0 = 0.005$ 时, 单调线搜索误差与非单调线搜索误差都在持续地下降, 但当初始步长 t_0 提高 10 倍, 变成 0.05 后, 单调线搜索和凸组合线搜索的收敛速度都提高了, 但 Grippo 线搜索的收敛速度变得非常缓慢. 一种可能的解释是, Grippo 条件比 Armijo 条件和凸组合条件更宽松, 这导致算法在接近最小值点、初始步长很大时容易越过最小值点而跳到更远的地方, 导致下降缓慢.

现在我们正式考察不同参数 M 对梯度下降算法的影响,取初始步长 $t_0=0.01,M=1,5,10,15$,其余参数同表 5,结果见图 4,其中左边为自变量点列的误差变化,中间为函数值的相对误差变化,右边为黎曼梯度的范数变化.

2 QUESTION 2

图 4: 不同参数 M 下梯度下降法的表现

从图 4 中观察到的情况如下:

- 参数 M=1.5 以及凸组合线搜索的表现是几乎完全一致的.
- 随着 M 的继续增大, 算法的表现也越来越差.
- 随着 *M* 的增大, 自变量点列和函数值的误差波动也越来越剧烈.

对于第一点,这有可能是因为本问题中的矩阵 A 是一个稀疏对称矩阵,本身性质很好,使得单调梯度法和小参数非单调梯度法的效果都很好,使用非单调线搜索没有优势,因此这些算法并没有明显的区分;对于第二点,这可能是因为 M 的增大导致了线搜索判别条件的加宽,得不到想要的结果,反而不利于算法的运行;对于第三点,这是符合直观的,因为单调线搜索可以保证函数值单调下降,但非单调线搜索有可能使得函数值短暂上升,并且 M 越大,函数值的波动就越剧烈,不过其总体上是下降的.

2.4 交替使用 BB 步长的作用

本小节中, 我们探索一下交替使用 BB 步长的作用. 选取参数同表 5, 我们直接考察使用交替步长、仅使用短 BB 步长、仅使用长 BB 步长这三种情况下 BB 算法的表现情况, 结果见图 5, 左边为自变量点列的误差变化, 中间为函数值的相对误差变化, 右边为 BB 步长随迭代次数的变化.

图 5: 不同 BB 步长的表现

从图 5 中可以看出, 在本问题中, 选择不同的 BB 步长并不会带来很大不同, 三种算法无论 是在函数值 f(X) 还是在自变量 X 的收敛速度几乎一样, 甚至连 BB 步长变化都是类似的波动.