NSDE Programming ASSIGNMENT 3

Name: Keerti P. Charantimath Roll Number: 19MA20059

Q1.

Use the Crank-Nikolson method to solve the parabolic partial differential equation $u_t=u_{xx} \ , \ x\in (0,1), t\in (0,\infty) \ \text{with initial condition} \ u(x,0)=2x, \ \text{boundary conditions} \ u_x(0,t)=0 \ \text{and} \ u_x(1,t)=1 \ .$ Use the central difference approximation for the boundary conditions. Take $h=0.1,\ k=0.05$. Plot the data for various values of (x_m, t_n, u_m,n).

```
u t 0 = @(x) 2*x;
ux x 0 = @(t) 0;
ux_x_n = @(t) 1;
h=0.1;
k=0.05;
lambda = k / h^2;
x init = 0;
x final = 1;
t_init = 0;
t final = 1;
x itr = (x final - x init) / h;
t_itr = (t_final - t_init) / k;
Values = zeros(x_itr + 1, t_itr + 1);
for i=1:x itr + 1
  Values(i, 1) = u t O(x init + h * (i-1));
end
A = zeros(x itr + 1, x itr + 1);
B = zeros(x_itr + 1, 1);
syms u_m1_n2 u_m2_n2 u_m3_n2 u_m1_n1 u_m2_n1 u_m3 n1 eq
eq(u m1 n2, u m2 n2, u m3 n2, u m1 n1, u m2 n1, u m3 n1) = -1 * lambda *
u_m1_n2 + (2 + 2 * lambda) * u_m2_n2 - (lambda) * u_m3_n2 - 1 * lambda * u_m1_n1 -
(2 - 2 * lambda) * u m2 n1 - lambda * u m3 n1;
```

```
for j=1:t itr
    for i=1:x itr + 1
         if i==1
             temp eqs = subs(eq, \{u \ m1 \ n2 \ u \ m1 \ n1\}, \{u \ m3 \ n2 \ u \ m3 \ n1\});
             temp val = subs(eq, {u m1 n2 u m2 n2 u m3 n2 u m1 n1 u m2 n1 u m3 n1},
\{0\ 0\ 0\ 0\ 0\ 0\}\};
             A(1, 1) = subs(temp_eqs, \{u_m2_n2 u_m3_n2 u_m2_n1 u_m3_n1\}, \{1 0 0 0\}) -
temp_val;
             A(1, 2) = subs(temp eqs, \{u m2 n2 u m3 n2 u m2 n1 u m3 n1\}, \{0 1 0 0\}) -
temp val;
                  B(1, 1) = subs(temp rhs, \{u m2 n1 u m3 n1\}, \{Values(1, j) Values(2, j)\});
              B(1, 1) = -1 * (subs(temp eqs, {u m2 n2 u m3 n2 u m2 n1 u m3 n1}, {0 0})
Values(1, j) Values(2, j)}) - temp val);
         elseif i == x itr + 1
             temp_eqs = subs(eq, \{u_m3_n2 u_m3_n1\}, \{0.2 + u_m1_n2 0.2 + u_m1_n1\});
             temp val = subs(eq, {u m1 n2 u m2 n2 u m3 n2 u m1 n1 u m2 n1 u m3 n1},
\{0\ 0\ 0\ 0\ 0\ 0\}\};
             A(x itr + 1, x itr) = subs(temp eqs, \{u m1 n2 u m2 n2 u m1 n1 u m2 n1\}, \{100 u m1 n2 u m2 n2 u m3 n1 u m2 n1\}
0}) - temp val;
              A(x itr + 1, x itr + 1) = subs(temp eqs, {u m1 n2 u m2 n2 u m1 n1 u m2 n1}, {0}
100}) - temp_ val;
              B(x itr + 1, 1) = -1 * (subs(temp eqs, {u m1 n1 u m2 n1 u m1 n2 u m2 n2}),
\{Values(x itr, j) Values(x itr + 1, j) 0 0\}\} - temp val);
         else
             temp_val = subs(eq, {u_m1_n2 u_m2_n2 u_m3_n2 u_m1_n1 u_m2_n1 u_m3_n1},
\{0\ 0\ 0\ 0\ 0\ 0\};
              00000}) - temp val;
             A(i, i) = subs(eq, \{u m1 n2 u m2 n2 u m3 n2 u m1 n1 u m2 n1 u m3 n1\}, \{01 u m4 n1 u m5 n1\}, \{01 u m4 n1 u m5 n1 u m5 n1 u m5 n1 u m6 n1 u m7 n1 u m8 n1 u m7 n1 u m7 n1 u m8 n1 u m7 n1 u m8 n1 u m7 n1 u m8 n1 u m8 n1 u m7 n1 u m8 n1 u m8
0 0 0 0}) - temp_val;
             A(i, i + 1) = subs(eq, \{u \ m1 \ n2 \ u \ m2 \ n2 \ u \ m3 \ n2 \ u \ m1 \ n1 \ u \ m2 \ n1 \ u \ m3 \ n1\},
\{0\ 0\ 1\ 0\ 0\ 0\}) - temp val;
                  B(i, 1) = subs(eq rhs, \{u m1 n1 u m2 n1 u m3 n1\}, \{Values(i-1, j) Values(i, j)\}
Values(i + 1, j)});
              B(i, 1) = -1 * (subs(eq, \{u \ m1 \ n1 \ u \ m2 \ n1 \ u \ m3 \ n1 \ u \ m1 \ n2 \ u \ m2 \ n2 \ u \ m3 \ n2\},
{Values(i-1, j) Values(i, j) Values(i + 1, j) 0 0 0}) - temp val);
         end
    end
    Values(:, j+1) = linsolve(A, B);
    A = zeros(x itr + 1, x itr + 1);
    B = zeros(x itr + 1, 1);
end
X = 0:0.1:1;
T = 0:0.05:1;
```

```
surf(X.', T.', Values.')
xlabel('x');
ylabel('t');
zlabel('u');
```

x\t	0	0.05	0.1	0.15	0.2	0.25	0.3
0	0	0.609275	0.704092	1.07433	1.359187	1.848288	2.362102
0.1	0.2	0.53113	0.801201	1.051269	1.43922	1.866076	2.447077
0.2	0.4	0.585437	0.873885	1.152659	1.549981	2.023877	2.624439
0.3	0.6	0.713919	0.987775	1.324354	1.749367	2.282612	2.941091
0.4	0.8	0.887968	1.165639	1.566706	2.0481	2.655298	3.407185
0.5	1	1.097205	1.419383	1.893605	2.454845	3.162851	4.039165
0.6	1.2	1.345324	1.763117	2.320204	2.986386	3.828811	4.863265
0.7	1.4	1.651573	2.215837	2.86065	3.670552	4.679115	5.916802
0.8	1.6	2.058451	2.793635	3.533944	4.54583	5.741733	7.253101
0.9	1.8	2.648709	3.482125	4.39267	5.640433	7.063387	8.93491
1	2	3.578451	4.164499	5.62173	6.863805	8.825453	10.92492

x\t	0.35	0.4	0.45	0.5	0.55	0.6	0.65
0	3.073033	3.902421	4.972944	6.269561	7.902193	9.907757	12.40954
0.1	3.130244	4.011087	5.078382	6.423447	8.074834	10.13623	12.68142
0.2	3.368336	4.291211	5.439282	6.859897	8.625466	10.81127	13.52482
0.3	3.764695	4.782216	6.048528	7.616246	9.562425	11.9743	14.96564
0.4	4.341055	5.500229	6.93729	8.720165	10.93029	13.67118	17.06915
0.5	5.125076	6.47425	8.14487	10.21842	12.78786	15.9747	19.9252
0.6	6.151343	7.745695	9.723273	12.17527	15.21462	18.98378	23.6559
0.7	7.463403	9.369088	11.74076	14.67383	18.31541	22.82649	28.42182
0.8	9.111342	11.41888	14.28052	17.82335	22.22187	27.66796	34.42711
0.9	11.15707	13.99389	17.43971	21.77056	27.09004	33.72616	41.91932
1	13.78346	17.12297	21.42317	26.62585	33.17793	41.21909	51.25408

x\t 0.7	0.75	0.8	0.85	0.9	0.95	1
0 15.49978	19.34055	24.09519	29.99598	37.30735	46.37583	57.61623
0.1 15.84594	19.76254	24.62413	30.6472	38.1184	47.37847	58.86166
0.2 16.88641	21.05686	26.22537	32.63535	40.58101	50.43359	62.6479
0.3 18.67408	23.27216	28.97304	36.04105	44.80433	55.66903	69.13955
0.4 21.28244	26.50601	32.98252	41.01215	50.96756	63.31043	78.61343
0.5 24.82357	30.89651	38.42595	47.76115	59.33505	73.68473	91.47563
0.6 29.4494	36.63149	45.53667	56.57694	70.26532	87.23611	108.2771
0.7 35.35741	43.95713	54.61882	67.83741	84.22626	104.5451	129.7373
0.8 42.80029	53.18778	66.06061	82.02566	101.815	126.354	156.7746
0.9 52.10552	64.71108	80.3589	99.74345	123.7898	153.5922	190.5507
1 63.64268	79.04467	98.10602	121.7662	151.0783	187.4379	232.5027

Using the Crank-Nicolson method with h=0.1 and the mesh ratio parameter r=0.25 find the solution of $u_t=u_{xx}$ with Initial condition $u(x,0)=\cos\frac{\pi x}{2}$, $-1\leq x\leq 1, t=0$; boundary conditions $u(-1,t)=u(1,t)=0, \quad t>0$ at the first 3 time steps. Plot the results for each time step in different frame.

```
u t 0 = @(x) \cos(pi * x / 2);
ux x 0 = @(t) 0;
ux_x_n = @(t) 0;
h=0.1;
lambda = 0.25;
k=lambda * h^2;
x init = -1;
x final = 1;
t init = 0;
t final = 0.0075;
x_{ir} = int16((x_{inal} - x_{init}) / h);
t itr = int16((t final - t init) / k);
Values = zeros(x_itr + 1, t_itr + 1);
for i=1:x itr + 1
  Values(i, 1) = u_t_0(x_init + h * double(i-1));
end
for j=2:t itr + 1
  Values(1, j) = 0;
  Values(x itr + 1, j) = 0;
end
A = zeros(x itr - 1, x itr - 1);
B = zeros(x_itr - 1, 1);
syms u_m1_n2 u_m2_n2 u_m3_n2 u_m1_n1 u_m2_n1 u_m3 n1 eq
eq(u m1 n2, u m2 n2, u m3 n2, u m1 n1, u m2 n1, u m3 n1) = -1 * lambda *
u_m1_n2 + (2 + 2 * lambda) * u_m2_n2 - (lambda) * u_m3_n2 - 1 * lambda * u_m1_n1 - 1 = 0
(2 - 2 * lambda) * u m2 n1 - lambda * u m3 n1;
for j=1:t itr
  for i=2:x itr
    if i == 2
       temp eqs = subs(eq, \{u \text{ m1 n2 u m1 n1}\}, \{Values(1, j+1) \text{ Values}(1, j)\});
       temp val = subs(temp eqs, \{u \ m2 \ n2 \ u \ m3 \ n2 \ u \ m3 \ n1 \ u \ m3 \ n1\}, \{0000\});
```

```
A(1, 1) = subs(temp eqs, \{u m2 n2 u m3 n2 u m2 n1 u m3 n1\}, \{1 0 0 0\})
temp val;
              A(1, 2) = subs(temp eqs, \{u m2 n2 u m3 n2 u m2 n1 u m3 n1\}, \{0 1 0 0\}) -
temp val;
                    B(1, 1) = subs(temp rhs, \{u m2 n1 u m3 n1\}, \{Values(1, j) Values(2, j)\});
               B(1, 1) = -1 * (subs(temp_eqs, {u_m2_n2 u_m3_n2 u_m2_n1 u_m3_n1}, {0 0})
Values(2, j) Values(3, j)}) - temp val);
          elseif i == x itr
              temp eqs = subs(eq, \{u \text{ m3 n2 u m3 n1}\}, \{Values(x \text{ itr + 1, j + 1}) \text{ Values(x itr + 1, j + 1)}\}
j)});
              temp val = subs(temp eqs, \{u \ m1 \ n2 \ u \ m2 \ n2 \ u \ m1 \ n1 \ u \ m2 \ n1\}, \{0 \ 0 \ 0 \ 0\}\};
              A(x itr - 1, x itr - 2) = subs(temp eqs, {u m1 n2 u m2 n2 u m1 n1 u m2 n1}, {1})
0 0 0}) - temp val;
              A(x itr - 1, x itr - 1) = subs(temp eqs, {u m1 n2 u m2 n2 u m1 n1 u m2 n1}, {0}
100}) - temp val;
               B(x itr - 1, 1) = -1 * (subs(temp eqs, {u m1 n1 u m2 n1 u m1 n2 u m2 n2}),
{Values(x itr - 1, j) Values(x itr, j) 0 0}) - temp val);
               temp val = subs(eq, {u m1 n2 u m2 n2 u m3 n2 u m1 n1 u m2 n1 u m3 n1},
\{0\ 0\ 0\ 0\ 0\ 0\};
              A(i - 1, i - 2) = subs(eq, \{u_m1_n2 u_m2_n2 u_m3_n2 u_m1_n1 u_m2_n1\}
u m3 n1\}, {100000\}) - temp val;
               A(i - 1, i - 1) = subs(eq, \{u_m1_n2 u_m2_n2 u_m3_n2 u_m1_n1 u_m2_n1\}
u m3 n1}, {0 1 0 0 0 0}) - temp val;
               A(i-1, i) = subs(eq, \{u m1 n2 u m2 n2 u m3 n2 u m1 n1 u m2 n1 u m3 n1\}, \{0 u m4 n2 u m4 n2 u m4 n2 u m4 n2 u m5 n2 u m4 n2 u m5 n2 u m6 n2 u m6 n2 u m6 n2 u m6 n2 u m7 n2 u m8 n2 u
0 1 0 0 0}) - temp val;
                    B(i, 1) = subs(eq_rhs, \{u_m1_n1 u_m2_n1 u_m3_n1\}, \{Values(i-1, j) Values(i, j)\}
Values(i + 1, j)});
               B(i - 1, 1) = -1 * (subs(eq, {u_m1_n1 u_m2_n1 u_m3_n1 u_m1_n2 u_m2_n2
u m3 n2}, {Values(i-1, j) Values(i, j) Values(i + 1, j) 0 0 0}) - temp val);
          end
     end
    Values(2:x itr, j+1) = linsolve(A, B);
     A = zeros(x itr - 1, x itr - 1);
     B = zeros(x itr - 1, 1);
end
X = -1:0.1:1
T = 0:0.0025:0.0075
surf(X.', T.', Values.')
xlabel('x');
ylabel('t');
zlabel('u');
```

x\t	0	0.0025	0.005	0.0075
-1	6.12E-17	0	0	0
-0.9	0.156434	0.155474	0.15452	0.153572
-0.8	0.309017	0.307121	0.305236	0.303363
-0.7	0.45399	0.451204	0.448435	0.445683
-0.6	0.587785	0.584178	0.580593	0.57703
-0.5	0.707107	0.702767	0.698454	0.694168
-0.4	0.809017	0.804052	0.799118	0.794214
-0.3	0.891007	0.885538	0.880104	0.874703
-0.2	0.951057	0.94522	0.939419	0.933654
-0.1	0.987688	0.981627	0.975603	0.969616
0	1	0.993863	0.987764	0.981702
0.1	0.987688	0.981627	0.975603	0.969616
0.2	0.951057	0.94522	0.939419	0.933654
0.3	0.891007	0.885538	0.880104	0.874703
0.4	0.809017	0.804052	0.799118	0.794214
0.5	0.707107	0.702767	0.698454	0.694168
0.6	0.587785	0.584178	0.580593	0.57703
0.7	0.45399	0.451204	0.448435	0.445683
0.8	0.309017	0.307121	0.305236	0.303363
0.9	0.156434	0.155474	0.15452	0.153572
1	6.12E-17	0	0	0

Q3.

Use the explicit method to solve the wave equation

```
u_{tt}=u_{xx},\ 0< x<1, t>0 with boundary and initial conditions u(0,t)=-\sin t,\ u(1,t)=\sin(1-t),\ u(x,0)=\sin x,\quad u_t(x,0)=-\cos(x).
```

Take step length along *x*-axis and *t*-axis as 0.1 and 0.1 respectively. Find solution up to t = 0.5.

```
f = @(x) \sin(x);
g = @(x) -1 * cos(x);
u \times 0 = @(t) - 1 * sin(t);
u_x_n = @(t) \sin(1 - t);
h=0.1;
k=0.1;
r = 1 * k/h;
x init = 0;
x final = 1;
t init = 0;
t final = 0.5;
x itr = int16((x final - x init) / h);
t_itr = int16((t_final - t_init) / k);
Values = zeros(x_itr + 1, t_itr + 1);
for i=1:x itr + 1
        Values(i, 1) = f((x_init + h * double(i-1)));
end
for j=1:t itr + 1
        Values(1, j) = u \times O((t \text{ init} + k * double(j-1)));
        Values(x_itr + 1, j) = u_x_n((t_init + k * double(j-1)));
end
for i=2:x itr
        Values(i, 2) = 0.5 * (r^2 * f((x_iinit + double(i - 2) * h)) + 2 * (1 - r^2) * f((x_iinit + double(i -
1) * h)) + r^2 * f((x_init + double(i) * h)) + 2 * k * <math>g((x_init + double(i - 1) * h)));
end
for j=3:t itr + 1
        for i=2:x itr
               Values(i, j) = r^2 * Values(i-1, j-1) + 2 * (1 - r^2) * Values(i, j-1) + r^2 * Values(i + 1, j-1) - r^2 * Values(i + 1, j-1) + r^3 * Values(i + 1, j-1) + 
Values(i, j-2);
        end
end
```

```
X = 0:0.1:1;
T = 0:0.1:0.5;
surf(X.', T.', Values.')
xlabel('x');
ylabel('t');
zlabel('u');
```

x\t	0	0.1	0.2	0.3	0.4	0.5
0	0	-0.09983	-0.19867	-0.29552	-0.38942	-0.47943
0.1	0.099833	-0.00017	-0.1	-0.19883	-0.29567	-0.38956
0.2	0.198669	0.09967	-0.00032	-0.10015	-0.19897	-0.29581
0.3	0.29552	0.19851	0.099517	-0.00047	-0.10029	-0.1991
0.4	0.389418	0.295367	0.198364	0.099379	-0.0006	-0.1004
0.5	0.479426	0.389272	0.295229	0.198237	0.099263	-0.0007
0.6	0.564642	0.479288	0.389145	0.295113	0.198133	0.099263
0.7	0.644218	0.564515	0.479172	0.389041	0.295113	0.198237
0.8	0.717356	0.644102	0.564412	0.479172	0.389145	0.295229
0.9	0.783327	0.717253	0.644102	0.564515	0.479288	0.389272
1	0.841471	0.783327	0.717356	0.644218	0.564642	0.479426

Q4.

Using standard 5-point formula, derive the system of algebraic equations at the nodal points for the elliptic equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2, \quad -1 < x < 1, -1 < y < 1,$ $u = 2 \quad \text{at} \quad x = -1 \& x = 1, \quad u = 1 \quad \text{at} \quad y = -1 \& y = 1. \text{ Take } h = k = 0.25.$

Setup the (i) Gauss-Seidel and (ii) Gauss-Jacobi iterations for the system of equations. Take all the starting values for the iteration as ZEROS. Compare your Gauss Seidel and Gauss Jacobi solution on the plotter frame.

```
h=0.25;
k = 0.25;
iterations = 10;
f = @(x, y) x^2 + y^2;
x init = -1;
x final = 1;
y_init = -1;
y final = 1;
u_x_0 = 2;
u x n = 2;
u_y_0 = 1;
u_y_n = 1;
x itr = int16((x final - x init) / h);
y_{ir} = int16((y_{final} - y_{init}) / k);
Values = zeros(x itr + 1, y itr + 1);
for i=1:x itr + 1
  Values(i, 1) = u y 0;
  Values(i, y itr + 1) = u y n;
end
for j=1:y itr + 1
  Values(1, j) = u_x_0;
  Values(x itr + 1, j) = u \times n;
end
Values jacobi = zeros(x itr + 1, y itr + 1);
Values_seidel = zeros(x_itr + 1, y_itr + 1);
Values jacobi(:, :) = Values(:, :);
Values_seidel(:, :) = Values(:, :);
% Gauss jacobi
for k=1:iterations
  Values_temp = zeros(x_itr + 1, y_itr + 1);
```

```
Values temp(:,:) = Values jacobi(:,:);
             for j=2:y_itr
                             for i=2:x itr
                                         Values\_temp(i, j) = (0.25) * (Values\_jacobi(i - 1, j) + Values\_jacobi(i + 1, j) + Values\_jacob
Values jacobi(i, j-1) + Values jacobi(i, j+1) - h^2 * f(x init + h * double(i - 1), y init + k *
double(j - 1)));
                             end
              end
             Values jacobi(:, :) = Values temp(:, :);
end
% Gauss Seidel
for k=1:iterations
             for j=2:y_itr
                             for i=2:x itr
                                         Values\_seidel(i, j) = (0.25) * (Values\_seidel(i - 1, j) + Values\_seidel(i + 1, j) + Values\_sei
Values_seidel(i, j-1) + Values_seidel(i, j+1) - h^2 * f(x_init + h * double(i - 1), y_init + k *
double(j - 1)));
                             end
             end
end
X = -1:0.25:1;
Y = -1:0.25:1;
surf(X.', Y.', Values_jacobi.', 'FaceColor','b', 'FaceAlpha',0.5, 'EdgeColor','none');
hold on
surf(X.', Y.', Values_seidel.', 'FaceColor','g', 'FaceAlpha',0.4, 'EdgeColor','none');
xlabel('x');
ylabel('t');
zlabel('u');
legend('Jacobi', 'Seidel');
```

1. Performing Gauss Jacobi Iterations

x\y	-1	-0.75	-0.5	-0.25	0	0.25	0.5	0.75	1
-1	2	2	2	2	2	2	2	2	2
-0.75	1	-4.8133	-16.9886	-36.9648	-64.7002	-98.3356	-129.935	-130.328	1
-0.5	1	-7.39705	-23.6307	-49.9354	-86.2969	-129.886	-169.16	-164.801	1
-0.25	1	-8.22095	-25.6341	-53.7051	-92.4069	-138.594	-179.531	-173.217	1
0	1	-8.39733	-26.0552	-54.4657	-93.6224	-140.287	-181.502	-174.744	1
0.25	1	-8.22095	-25.6341	-53.7051	-92.4069	-138.594	-179.531	-173.217	1
0.5	1	-7.39705	-23.6307	-49.9354	-86.2969	-129.886	-169.16	-164.801	1
0.75	1	-4.8133	-16.9886	-36.9648	-64.7002	-98.3356	-129.935	-130.328	1
1	2	2	2	2	2	2	2	2	2

2. Performing Gauss Seidel iterations

x\y	-1	-0.75	-0.5	-0.25	0	0.25	0.5	0.75	1
-1	2	2	2	2	2	2	2	2	2
-0.75	1	-6.08741	-21.1117	-45.9466	-80.6594	-122.373	-159.808	-156.375	1
-0.5	1	-10.7663	-33.6865	-70.9354	-122.523	-183.168	-233.798	-219.392	1
-0.25	1	-13.2386	-40.1385	-83.4095	-142.915	-211.83	-266.878	-245.294	1
0	1	-14.3891	-43.0919	-88.9997	-151.829	-223.945	-280.219	-255.14	1
0.25	1	-14.5702	-43.5088	-89.6667	-152.649	-224.639	-280.421	-254.842	1
0.5	1	-13.3633	-40.2563	-83.1574	-141.622	-208.533	-261.057	-239.056	1
0.75	1	-9.03937	-28.6362	-60.0631	-102.95	-152.509	-193.227	-181.72	1
1	2	2	2	2	2	2	2	2	2

