Associativity schemes

Scheme	Number of sets	Blocks per set
Direct mapped	Number of blocks in cache	1
Set associative	Blocks in cache / Associativity	Associativity (2-8)
Fully associative	1	Number Blocks in cache

Placing blocks

Feature	Typical values for caches	Typical values for VM	Typical values for TLB
Size in blocks	1000 - 100,000	2000 – 250,000	32 - 4,000
Size in KB	8 - 8,000	8000 - 8,000,000	0.25 - 32
Block size in bytes	16 – 256	4000 - 64,000	4 - 32
Miss penalty (clocks)	10 - 100	1,000,000 - 10,000,000	10 - 100
Miss rate	0.1% - 10%	0.00001% - 0.0001%	0.01% - 2%

Miss rates

Finding blocks

Associativity	Location method	Comparisons required
Direct mapped	Index	1
Set associative	Index the set, search among elements	Degree of associativity
Full	Search all cache entries	Size of the cache
	Separate lookup table	0

Why do we use full associativity and a separate lookup table (page table) in VM:

- Misses are very expensive
- Full associativity allows software to use sophisticated replacement schemes to reduce miss rate
- Full mapping table (all pages have entries) allows indexing with no extra hardware and no searching.
- The large page size means that the page table overhead is relatively small.

Choosing a block to replace

- Random choice: The blocks are randomly selected, possibly using some hardware assistance. Used mainly larger caches
- Least recently used (LRU): The block replaced is the one that has been unused for the longest time. Used in VM (reference bit).

Writing blocks

Write-through:

- Read misses are simpler and cheaper because they do not require writing blocks to the lower level.
- Easier to implement, although normally a write-buffer is required Write-back:
 - Individual words are written at the rate of the cache
 - Multiple writes within a block require only one write to the lower level memory
 - When blocks are written back a high bandwidth transfer can be used since the entire block is written

The sources of misses

- *Compulsory misses* (cold-start misses): First time access to a block that has never been in the cache
- *Capacity misses*: The cache cannot contain all the blocks needed during the execution of a program. These misses occur because of blocks being replaced are later retrieved again.
- *Conflict misses* (collision misses): Misses that occur in direct or set associative schemes. Multiple blocks compete for the same set (or entry) in the cache.

The challenge

Design change	Effect on miss rate	Possible negative effect on performance
Increase size	Decreases capacity misses	May increase access time
Increase associativity	Decreases conflict misses	May increase access time
Increase block size	Decreases miss rate	May increase miss penalty

Characteristic	ARM Cortex-A53	Intel Core i7
L1 cache organization	Split instruction and data caches	Split instruction and data caches
L1 cache size	Configurable 16 to 64 KiB each for instructions/data	32 KiB each for instructions/data per core
L1 cache associativity	Two-way (I), four-way (D) set associative	Four-way (I), eight-way (D) set associative
L1 replacement	Random	Approximated LRU
L1 block size	64 bytes	64 bytes
L1 write policy	Write-back, variable allocation policies (default is Write-allocate)	Write-back, No-write-allocate
L1 hit time (load-use)	Two clock cycles	Four clock cycles, pipelined
L2 cache organization	Unified (instruction and data)	Unified (instruction and data) per core
L2 cache size	128 KiB to 2 MiB	256 KiB (0.25 MiB)
L2 cache associativity	16-way set associative	8-way set associative
L2 replacement	Approximated LRU	Approximated LRU
L2 block size	64 bytes	64 bytes
L2 write policy	Write-back, Write-allocate	Write-back, Write-allocate
L2 hit time	12 clock cycles	10 clock cycles

Characteristic	ARM Cortex-A53	Intel Core i7
Virtual address	48 bits	48 bits
Physical address	40 bits	44 bits
Page size	Variable: 4, 16, 64 KiB, 1, 2 MiB, 1 GiB	Variable: 4 KiB, 2/4 MiB
TLB organization	1 TLB for instructions and 1 TLB for data per core	1 TLB for instructions and 1 TLB for data per core
	Both micro TLBs are fully associative, with 10 entries, round robin replacement 64-entry, four-way set-associative TLBs	Both L1 TLBs are four-way set associative, LRU replacement
	TLB misses handled in hardware	L1 I-TLB has 128 entries for small pages, seven per thread for large pages
		L1 D-TLB has 64 entries for small pages, 32 for large pages
		The L2 TLB is four-way set associative, LRU replacement
		The L2 TLB has 512 entries
		TLB misses handled in hardware