5 业班级

得分: ____ 一、 填空题。(10*3 分=30 分)

1、已知 4 阶行列式 D 的第 2 行元素分别为 1,2,2,1,第 4 行元素的余子式分别为-5,10,a,-3,则 a=____。

- $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 2, \quad \boxed{\mathbb{N}} \begin{vmatrix} a_{12} & 2a_{13} + a_{11} & a_{11} \\ a_{22} & 2a_{23} + a_{21} & a_{21} \\ a_{32} & 2a_{33} + a_{31} & a_{31} \end{vmatrix} = \underline{\qquad}.$
- 3、排列(2n) (2n-2)..4 2 1 3...(2n-1)的逆序数为_____。
- 4、已知 A 是 4 阶可逆矩阵,A*是 A 的伴随矩阵,如果|A|=3,则 $|A^*|=$ ______; $|A^{-1}-A^*|=$ _____。
- 6、已知矩阵 A 和 E-A 均可逆,E 为单位阵,若矩阵 B 满足 $[E-(E-A)^{-1}]B=A$,则 B-A= 。
- 7、n 元非齐次线性方程组 Ax=b 有无穷多解的充要条件是_____。
- 8、若 A,B 为 n 阶可逆方阵,设 $C = \begin{pmatrix} D & A \\ B & O \end{pmatrix}$ (A,B,D,O 均为同阶方阵),则 $C^{-1} = \underline{\hspace{1cm}}$

得分: _____二、计算题(5*8分=40分)

得分: _____1、设 D= $\begin{bmatrix} 3 & -3 & 2 & 1 \\ 1 & 1 & 0 & -5 \\ -1 & 3 & 1 & 3 \\ 2 & -4 & -1 & -3 \end{bmatrix}$, D 中元素 a_{ij} 的余子式和代数余子式分别记作 M_{ij} 和

 A_{ij} , $\dot{\mathbb{R}}$ (1) $A_{11}+A_{21}-5A_{31}$; (2) $M_{11}+M_{12}+M_{13}+M_{14}$.

得分: _____2、设 3 阶方阵 A,B 满足 $A^{-1}BA = 6A + BA$,且 $A = \begin{pmatrix} 1/3 & 0 & 0 \\ 0 & 1/4 & 0 \\ 0 & 0 & 1/7 \end{pmatrix}$,求矩阵 B。

中洲	
姓名	
专业班级	

得分: _____3、解矩阵方程: $\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} X = \begin{pmatrix} 2 & 3 \\ 4 & 2 \\ 1 & 5 \end{pmatrix}$

得分: _____5、求齐次线性方程组 $\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 0\\ 3x_1 + 6x_2 - x_3 - 3x_4 = 0\\ 5x_1 + 10x_2 + x_3 - 5x_4 = 0 \end{cases}$

的通解。

得分: _____4、若矩阵 AB=O,其中 $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 3 & 2 \\ 2 & 1 & k \\ -2 & 1 & -1 \end{pmatrix}$, B 为 3 阶非零阵,求 k 。

	得分:(15分) 三、设 $_{A}=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 3 & 7 & 3 & 2 \\ 2 & 5 & 2 & 1 \end{pmatrix}$, 求 $_{A}^{-1}$	得分: (15 分)四、讨论 λ 取何值时,非齐次线性方程组 $\begin{cases} (\lambda+3)x_1+x_2+2x_3=\lambda\\ \lambda x_1+(\lambda-1)x_2+x_3=\lambda\\ 3(\lambda+1)x_1+\lambda x_2+(\lambda+3)x_3=3 \end{cases}$
孙		只有唯一解? 无解? 有无穷多解? 并在有无穷多解时求出通解。
姓名		
专业班级		