Double-click (or enter) to edit

- PROPERTY LOAN PREDICTION

DATA COLLECTION

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv('/content/loan_sanction_train.csv')
df
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Appli
0	LP001002	Male	No	0	Graduate	No	
1	LP001003	Male	Yes	1	Graduate	No	
2	LP001005	Male	Yes	0	Graduate	Yes	
3	LP001006	Male	Yes	0	Not Graduate	No	
4	LP001008	Male	No	0	Graduate	No	
609	LP002978	Female	No	0	Graduate	No	
610	LP002979	Male	Yes	3+	Graduate	No	
611	LP002983	Male	Yes	1	Graduate	No	
612	LP002984	Male	Yes	2	Graduate	No	
613	LP002990	Female	No	0	Graduate	Yes	
614 rc	ws x 13 col	umns					

 $614 \text{ rows} \times 13 \text{ columns}$

df.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Applicar
0	LP001002	Male	No	0	Graduate	No	
1	LP001003	Male	Yes	1	Graduate	No	
2	LP001005	Male	Yes	0	Graduate	Yes	

	✓ 0s	completed a	t 9:26 PM		• X
3 LP001006	Male	Yes	0	NOL Graduate	No
4 LP001008	Male	No	0	Graduate	No
**					

df.describe()

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Cr
count	614.000000	614.000000	592.000000	600.00000	
mean	5403.459283	1621.245798	146.412162	342.00000	
std	6109.041673	2926.248369	85.587325	65.12041	
min	150.000000	0.000000	9.000000	12.00000	
25%	2877.500000	0.000000	100.000000	360.00000	
50%	3812.500000	1188.500000	128.000000	360.00000	
75%	5795.000000	2297.250000	168.000000	360.00000	
max	81000.000000	41667.000000	700.000000	480.00000	

df.shape

(614, 13)

df.isna().sum()

Loan ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

Dropping the missing values

dfe.isna().sum()

Loan_ID	6
Gender	6
Married	6
Dependents	6
Education	6
Self_Employed	6
ApplicantIncome	6
CoapplicantIncome	6
LoanAmount	6
Loan_Amount_Term	6
Credit_History	6
Property_Area	6
Loan_Status	6
dtype: int64	

dfe.shape

(599, 13)

Label_Encoding

 $\tt df.replace(\{"Loan_Status": \{'N':0,'Y':1\}\}, inplace=True)$

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Appli	
0	LP001002	Male	No	0	Graduate	No		
1	LP001003	Male	Yes	1	Graduate	No		
2	LP001005	Male	Yes	0	Graduate	Yes		
3	LP001006	Male	Yes	0	Not Graduate	No		
4	LP001008	Male	No	0	Graduate	No		
609	LP002978	Female	No	0	Graduate	No		
610	LP002979	Male	Yes	3+	Graduate	No		
611	LP002983	Male	Yes	1	Graduate	No		
612	LP002984	Male	Yes	2	Graduate	No		
613	LP002990	Female	No	0	Graduate	Yes		
614 rows × 13 columns								

df.value_counts(['Dependents'])

Depende	ents	
9		345
1		102
2		101
3+		51
dtvne:	int64	

#replaceing 3+ values to 4
df.replace({'Dependents':{'3+':4}},inplace=True)
df

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Appli		
0	LP001002	Male	No	0	Graduate	No			
1	LP001003	Male	Yes	1	Graduate	No			
2	LP001005	Male	Yes	0	Graduate	Yes			
3	LP001006	Male	Yes	0	Not Graduate	No			
4	LP001008	Male	No	0	Graduate	No			
609	LP002978	Female	No	0	Graduate	No			
610	LP002979	Male	Yes	4	Graduate	No			
611	LP002983	Male	Yes	1	Graduate	No			
612	LP002984	Male	Yes	2	Graduate	No			
613	LP002990	Female	No	0	Graduate	Yes			
614 rc	614 rows × 13 columns								

DATA VISUALIZATION

sns.countplot(x='Property_Area',hue='Loan_Status',data=dfe)
plt.title('Property Area')

Text(0.5, 1.0, 'Property_Area')

sns.countplot(df['Gender'])

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarnings.warn(
<matplotlib.axes. subplots.AxesSubplot at 0x7fb846b879a0>

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Appli
0	LP001002	1.0	0.0	0	1	0.0	
1	LP001003	1.0	1.0	1	1	0.0	
2	LP001005	1.0	1.0	0	1	1.0	
3	LP001006	1.0	1.0	0	0	0.0	
4	LP001008	1.0	0.0	0	1	0.0	
609	LP002978	0.0	0.0	0	1	0.0	
610	LP002979	1.0	1.0	4	1	0.0	
611	LP002983	1.0	1.0	1	1	0.0	
612	LP002984	1.0	1.0	2	1	0.0	
613	LP002990	0.0	0.0	0	1	1.0	

 $614 \text{ rows} \times 13 \text{ columns}$


```
df['Gender']=df['Gender'].fillna(df['Gender'].mean())
df['Married']=df['Married'].fillna(df['Married'].mean())
df['Self_Employed']=df['Self_Employed'].fillna(df['Self_Employed'].mean())
df['LoanAmount']=df['LoanAmount'].fillna(df['LoanAmount'].mean())
df['Loan_Amount_Term']=df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mear
df['Credit_History']=df['Credit_History'].fillna(df['Credit_History'].mean())
```

dfe=df.dropna()
dfe

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Appli
0	LP001002	1.0	0.0	0	1	0.0	
1	LP001003	1.0	1.0	1	1	0.0	
2	LP001005	1.0	1.0	0	1	1.0	
3	LP001006	1.0	1.0	0	0	0.0	
4	LP001008	1.0	0.0	0	1	0.0	
		•••					
609	LP002978	0.0	0.0	0	1	0.0	
610	LP002979	1.0	1.0	4	1	0.0	
611	LP002983	1.0	1.0	1	1	0.0	
612	LP002984	1.0	1.0	2	1	0.0	
613	LP002990	0.0	0.0	0	1	1.0	

599 rows \times 13 columns

dfe.isna().sum()

Loan_ID	0
Gender	0
Married	0
Dependents	0
Education	0
Self_Employed	0
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	0
Loan_Amount_Term	0
	_

Creait_History	O
Property_Area	0
Loan_Status	0
dtype: int64	

dfe['Married'].value_counts().plot(kind='pie')

<matplotlib.axes._subplots.AxesSubplot at 0x7fb846b49730>

dfe.tail()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Appli
609	LP002978	0.0	0.0	0	1	0.0	
610	LP002979	1.0	1.0	4	1	0.0	
611	LP002983	1.0	1.0	1	1	0.0	
612	LP002984	1.0	1.0	2	1	0.0	
613	LP002990	0.0	0.0	0	1	1.0	

x=dfe.drop(['Loan_ID','Loan_Status'],axis=1)
x

		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
	0	1.0	0.0	0	1	0.0	5849
	1	1.0	1.0	1	1	0.0	4583
	2	1.0	1.0	0	1	1.0	3000
	3	1.0	1.0	0	0	0.0	2583
	4	1.0	0.0	0	1	0.0	6000
	•••						
•	200	Λ Λ	Λ Λ	0	1	0.0	2000

UUJ	υ.υ	υ.υ	U	1	υ.υ	2900
610	1.0	1.0	4	1	0.0	4106
611	1.0	1.0	1	1	0.0	8072
612	1.0	1.0	2	1	0.0	7583
613	0.0	0.0	0	1	1.0	4583

599 rows \times 11 columns


```
y=dfe['Loan_Status']
    0
            1
     1
    2
            1
    3
     4
    609
            1
     610
     611
            1
    612
            1
    613
    Name: Loan_Status, Length: 599, dtype: int64
```

from sklearn.model_selection import train_test_split
xtest,xtrain,ytest,ytrain=train_test_split(x,y,test_size=0.30,random_state=42)
xtrain

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
112	1.0	1.0	0	0	0.0	3572
430	0.0	0.0	1	1	1.0	8624
578	1.0	1.0	1	1	0.0	1782
77	1.0	1.0	1	1	1.0	1000
184	0.0	1.0	0	1	0.0	3625
54	0.0	1.0	1	1	1.0	11500
505	1.0	1.0	2	1	0.0	3510
46	1.0	1.0	1	1	0.0	5649
93	1.0	0.0	0	1	0.0	4133
269	0.0	0.0	1	1	0.0	2876

180 rows × 11 columns


```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(xtrain)
xtrain=scaler.transform(xtrain)
xtest=scaler.transform(xtest)
xtrain
    array([[ 0.4679807 , 0.74278135, -0.75854143, ..., -0.00726213,
             -2.41267568, -1.27064737],
            [-2.14916944, -1.3462912 ,
                                        0.035281 , ..., 0.27284874,
             0.4573293 , -0.01396316],
            [ 0.4679807 , 0.74278135,
                                        0.035281 , ..., 0.27284874,
             0.4573293 , -1.27064737],
            [ 0.4679807 , 0.74278135, 0.035281 , ..., 0.27284874,
             0.4573293 , 1.24272106],
            [\ 0.4679807\ ,\ -1.3462912\ ,\ -0.75854143\ ,\ \ldots,\ 0.27284874\ ,
              0.4573293 , -0.01396316],
            [-2.14916944, -1.3462912 ,
                                        0.035281 , ..., 0.27284874,
             0.4573293 , 1.24272106]])
```

KNN MODEL

from sklearn.neighbors import KNeighborsClassifier
model=KNeighborsClassifier(n_neighbors=5)
model.fit(xtrain,ytrain)
ypred=model.predict(xtest)
ypred

```
array([1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
    0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
    0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
    1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
    1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
    1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
    1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
    1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0,
    1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
    1])
```

Performance Evaluation

from sklearn.metrics import classification_report,accuracy_score,confusion_matri
result=confusion_matrix(ytest,ypred)
result

```
array([[ 55, 70],
[ 18, 276]])
```

score=accuracy_score(ytest,ypred)
score*100

78.99761336515513

report=classification_report(ytest,ypred)
report

```
recall f1-score
                                                 support\n\n
                                                                       0
               precision
                                                                   0.94
0.75
          0.44
                    0.56
                                125\n
                                                         0.80
           294\n\n
                                                           0.79
                                                                      419\n
0.86
                      accuracy
                                     ი 71
                A 78
                                                 110\nwainhtad ava
macro ava
```

from sklearn.metrics import ConfusionMatrixDisplay
cmd=ConfusionMatrixDisplay(result,display_labels='label')
cmd.plot()

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at
0x7fb80c71e520>

from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,n
print('mean_absolute_error',mean_absolute_percentage_error(ytest,ypred))
print('MAE % :',mean_absolute_percentage_error(ytest,ypred))
print('mean squared error : ',np.sqrt(mean_squared_error(ytest,ypred)))
print('r2_score:',r2_score(ytest,ypred))

mean_absolute_error 752391345861419.4 MAE % : 752391345861419.4

loan pred.ipynb - Colaboratory

mean squared error : 0.45828360907679067

r2_score: -0.003319727891156532

Colab paid products - Cancel contracts here