

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : EE-601

CONTROL SYSTEM - II

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) To compute the describing function of a non-linear element for a sinusoidal input
 - a) the fundamental harmonic component of the output is required
 - -b) the dead zone & saturation are to be avoided
 - c) the non-linear system is to be assumed linear
 - d) the fundamental & higher harmonic are required.

[Turn over

nttp://www.makaut.com

- ii) The variable gradient method is used to find
 - a) Lyapunov function
 - b) Describing function
 - c) State transition matrix
 - d) Exgen vectors.
- iii) In a parallel R-L-C circuit, the number of state variables required to describe the system is
 - a) 1

b) 2

c) 3

nttp://www.makaut.com

- d) 4.
- iv) The state equation of a linear system is given by $\dot{X}(t) = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} U(t), \text{ then the system is}$
 - a) controllable
 - b) observable
 - c) both controllable & observable
 - d) unstable.
- v) Consider the following state equation :

$$\begin{bmatrix} X_1(k+1) \\ X_2(k+1) \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} X_1(k) \\ X_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$$

$$Y(k) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} X_1(k) \\ X_2(k) \end{bmatrix}.$$

The system given above is

- a) uncontrollable & observable
- b) controllable & unobservable
- c) uncontrollable & unobservable
- d) controllable & observable.

vi) In the figure shone

- A has unstable limit cycle & B has stable limit cycle
- b) A has stable limit cycle & B has unstable limit cycle http://www.makaut.com
- c) both A & B have unstable limit cycle
- d) both A & B have stable limit cycle.
- vii) The inverse z-transform of the function $\frac{Tz}{(z-1)^2}$ is
 - a) kT

http://www.makaut.com

b) k^2T

c) kT^2

d) k.

viii) The input-output characteristics of the control system is shown below. The non-linearity is

- a) Relay with dead zone
- b) Relay with dead zone & hysteresis
- c) Relay with hysteresis
- d) Relay.

- ix) The phase plane analysis method is restricted to
 - a) second order systems
 - b) 4th order systems
 - c) n th order system
 - d) 3rd order systems.
- x) Jump resonance characteristic can be found in
 - a) chaotic system
 - b) second order non-linear system
 - c) higher order non-linear system
 - d) linear time varying system.
- xi) The matrix A is given by $\begin{bmatrix} 4 & -4 & 2 \\ -4 & 5 & -2 \\ 2 & -2 & 1 \end{bmatrix}$.

The matrix A is

- a) positive semi-definite
- b) negative semi-definite,
- c) positive definite
- d) negative definite.
- xii) The state equation of a system is given by $\dot{X} = AX + BU$ & Y = CX + DU. The transfer function is
 - a) $D+C(SI-A)^{-1}B$ b) $B(SI-A)^{-1}C+B$
 - c) $B(SI-A)^{-1}B+C$ d) $B(SI-A)^{-1}D+B$.

http://www.makaut.com

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

 Obtain the state model for an armature controlled DC motor shown in the figure below. Symbols have their usual meaning.

- 3. Determine the describing function of a 'saturation' non-linearity.
- 4. A system is described by

$$\dot{X}_1 = -X_1 + X_2 + X_1 (X_1^2 + X_2^2)$$

$$\dot{X}_2 = -X_1 - X_2 + X_1 (X_1^2 + X_2^2)$$

Determine the asymptotic stability of the system using Lyapunov's second method.

- 5. Draw the phase plane portrait of the system described by $x+0.5x+2x+x^2=0$.
- 6. Determine the stability of a discrete data system described by the following characteristic equation:

$$Q(z) = z^3 + 3 \cdot 3z^2 + 42 + 0 \cdot 8 = 0.$$

http://www.makaut.com

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Find the state transition matrix using Cayley-Hamilton theorem of the system having $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$.
 - b) The dynamic equation of a non-homogeneous system is given as $\dot{X}(t) = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t)$ & output $Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} X(t)$. The initial condition is $X(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, where U(t) is unit step input. Determine the output of Y(t) at t = 1 sec.

nttp://www.makaut.com

- c) A system is characterised by $\dot{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U \cdot X(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$ Find the transfer function of the system. 5 + 7 + 3
- 8. a) Determine the pulse transfer function and stability of the sampled data control system shown in figure below. The sampling time is 1 sec.

b) Comment on the controllability & observability of the given discrete time system shown.

$$X(k+1) = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(k)$$

$$Y(k) = \begin{bmatrix} 2 & 2 \end{bmatrix} X(k).$$
8 + 7

- 9. a) Explain the phenomenon of jump resonance in nonlinear control system.
 - b) Determine the amplitude and frequency of the limit cycle of the nonlinear system shown in the figure below:

- 10. a) Discuss the concept of Lyapunov's first & second stability analysis. http://www.makaut.com
 - b) Investigate stability of the system shown using Lyapunov's second method $\dot{X} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} X$.
 - c) Explain the term asymptotic stability & global stability. 5+5+5
- 11. a) Consider a system having the plant represented by

$$\dot{X}(t) = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t)$$

$$Y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} X(t).$$

Using the state feedback control U = -kX, it is desired to have the closed loop poles at S = -10,-5. Determine the state feedback gain matrix.

nttp://www.makaut.com

b) A system is represented by

$$\dot{X}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t)$$

$$Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} X(t).$$

Comment on controllability & observability of the system.

nttp://www.makaut.com

- 12. Write short notes on any three of the following: 3×5
 - a) Properties of state transition matrix.
 - b) Zero order hold device.
 - c) Digital compensator design.
 - d) Harmonic linearization.

http://www.makaut.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्य, Paytm or Google Pay से

VI/7104(6)-6150