# Математическая логика и теория алгоритмов Лекция 12 Неклассические логики

#### Куценко Дмитрий Александрович

Белгородский государственный технологический университет имени В. Г. Шухова

Институт информационных технологий и управляющих систем Кафедра программного обеспечения вычислительной техники и автоматизированных систем

13 мая 2013 г.

Логику называют классической, если она основывается на следующих четырёх законах:

Логику называют классической, если она основывается на следующих четырёх законах:

**①** Закон тождества: каждое высказывание при повторении должно иметь одно и тоже определённое устойчивое содержание  $(A \equiv A)$ .

Логику называют классической, если она основывается на следующих четырёх законах:

- ① Закон тождества: каждое высказывание при повторении должно иметь одно и тоже определённое устойчивое содержание  $(A \equiv A)$ .
- ② Закон (запрета) противоречия: любое высказывание и его отрицание об одном и том же вместе не могут быть истинными  $(\overline{A}\ \&\ \overline{\overline{A}} \equiv 1)$ .

Логику называют классической, если она основывается на следующих четырёх законах:

- Закон тождества: каждое высказывание при повторении должно иметь одно и тоже определённое устойчивое содержание ( $A \equiv A$ ).
- Закон (запрета) противоречия: любое высказывание и его отрицание об одном и том же вместе не могут быть истинными ( $A \& \overline{A} \equiv 1$ ).
- Закон исключённого третьего: либо данное высказывание ложно, либо его отрицание ложно, третьего не дано  $(A \vee \overline{A} \equiv 1).$

Логику называют классической, если она основывается на следующих четырёх законах:

- ① Закон тождества: каждое высказывание при повторении должно иметь одно и тоже определённое устойчивое содержание  $(A \equiv A)$ .
- ② Закон (запрета) противоречия: любое высказывание и его отрицание об одном и том же вместе не могут быть истинными  $(\overline{A \& \overline{A}} \equiv 1)$ .
- ③ Закон исключённого третьего: либо данное высказывание ложно, либо его отрицание ложно, третьего не дано  $(A \lor \overline{A} \equiv 1)$ .
- Закон достаточного основания: всякое истинное высказывание должно быть обосновано другими высказываниями, истинность которых доказана.

Можно также выделить два основополагающих принципа:

Можно также выделить два основополагающих принципа:

Принцип двузначности (бивалентности):

Можно также выделить два основополагающих принципа:

• Принцип двузначности (бивалентности): всякое высказывание имеет в точности одно из двух значений — значение «истина» или значение «ложь».

Можно также выделить два основополагающих принципа:

- Принцип двузначности (бивалентности):
   всякое высказывание имеет в точности одно из двух значений — значение «истина» или значение «ложь».
- 2 Принцип взаимозаменяемости (экстенсиональности):

Можно также выделить два основополагающих принципа:

- Принцип двузначности (бивалентности):
   всякое высказывание имеет в точности одно из двух значений — значение «истина» или значение «ложь».
- Принцип взаимозаменяемости (экстенсиональности): значение сложного выражения зависит только от значений составляющих его выражений.

# Неуниверсальность принципов классической логики

Принципы, на которых базируется классическая логика, устанавливают исследователю весьма жёсткие рамки в процессе осуществления логических операций.

# Неуниверсальность принципов классической логики

Принципы, на которых базируется классическая логика, устанавливают исследователю весьма жёсткие рамки в процессе осуществления логических операций. Использование классической логики часто огрубляет предмет исследования и процедуры рассуждения, представляет их в упрощённом и схематизированном виде.

# Неуниверсальность принципов классической логики

Принципы, на которых базируется классическая логика, устанавливают исследователю весьма жёсткие рамки в процессе осуществления логических операций. Использование классической логики часто огрубляет предмет исследования и процедуры рассуждения, представляет их в упрощённом и схематизированном виде.

Следствиями пересмотра классических принципов и законов являются различные системы неклассических логик.

Неклассические логики могут строиться двумя способами:

1 как альтернативы классической логике:

Неклассические логики могут строиться двумя способами:

• как альтернативы классической логике: они формируются в том же языке, что и классическая логика, но символы интерпретируются иначе или же видоизменяются некоторые исходные понятия и правила.

Неклассические логики могут строиться двумя способами:

как альтернативы классической логике: они формируются в том же языке, что и классическая логика, но символы интерпретируются иначе или же видоизменяются некоторые исходные понятия и правила. Этот способ построения характерен для ряда многозначных логик, интуиционистской логики и др.

- как альтернативы классической логике: они формируются в том же языке, что и классическая логика, но символы интерпретируются иначе или же видоизменяются некоторые исходные понятия и правила. Этот способ построения характерен для ряда многозначных логик, интуиционистской логики и др.
- как расширения классической логики:

- как альтернативы классической логике: они формируются в том же языке, что и классическая логика, но символы интерпретируются иначе или же видоизменяются некоторые исходные понятия и правила. Этот способ построения характерен для ряда многозначных логик, интуиционистской логики и др.
- как расширения классической логики: язык классической логики обогащается новыми логическими константами, все классические законы сохраняются, но к ним добавляются новые законы, характеризующие свойства введённых констант.

- как альтернативы классической логике: они формируются в том же языке, что и классическая логика, но символы интерпретируются иначе или же видоизменяются некоторые исходные понятия и правила. Этот способ построения характерен для ряда многозначных логик, интуиционистской логики и др.
- как расширения классической логики: язык классической логики обогащается новыми логическими константами, все классические законы сохраняются, но к ним добавляются новые законы, характеризующие свойства введённых констант. Обычно таким образом строятся различные системы модальных логик.

#### Многозначные логики

Многозначные логики — раздел неклассической логики, который объединяет логические теории, основанные на принципе многозначности, т. е. теории, допускающие, что высказывания могут быть не только истинными и ложными, но и могут иметь другие истинностные значения.

#### Многозначные логики

Многозначные логики — раздел неклассической логики, который объединяет логические теории, основанные на принципе многозначности, т. е. теории, допускающие, что высказывания могут быть не только истинными и ложными, но и могут иметь другие истинностные значения.

Т. о., в многозначных логиках не действует классический принцип двузначности. Взамен принимается принцип многозначности:

## Многозначные логики

Многозначные логики — раздел неклассической логики, который объединяет логические теории, основанные на принципе многозначности, т. е. теории, допускающие, что высказывания могут быть не только истинными и ложными, но и могут иметь другие истинностные значения.

Т. о., в многозначных логиках не действует классический принцип двузначности. Взамен принимается принцип многозначности:

#### Принцип многозначности

Всякое высказывание имеет более чем два возможных логических значения.

# Трёхзначная логика Лукасевича



Ян Лукасе́вич (1878—1956) польский логик и философ

Трёхзначная логика впервые была предложена Лукасевичем в 1920 году.

Поскольку высказывания о случайном будущем нельзя оценить как истинные или ложные, Лукасевич предложил ввести для них новое, третье значение — «случайно» (не определено, неизвестно, возможно).

# Трёхзначная логика Лукасевича



Ян Лукасе́вич (1878—1956) польский логик и философ

Трёхзначная логика впервые была предложена Лукасевичем в 1920 году.

Поскольку высказывания о случайном будущем нельзя оценить как истинные или ложные, Лукасевич предложил ввести для них новое, третье значение — «случайно» (не определено, неизвестно, возможно).

Т. о., взамен принципа двузначности Лукасевич предложил такой принцип:

# Трёхзначная логика Лукасевича



Ян Лукасе́вич (1878—1956) польский логик и философ

Трёхзначная логика впервые была предложена Лукасевичем в 1920 году.

Поскольку высказывания о случайном будущем нельзя оценить как истинные или ложные, Лукасевич предложил ввести для них новое, третье значение — «случайно» (не определено, неизвестно, возможно).

Т. о., взамен принципа двузначности Лукасевич предложил такой принцип:

#### Принцип трёхзначности Лукасевича

Всякое высказывание либо истинно, либо ложно, либо случайно.

Истинностные значения логики Лукасевича удобно выражать с помощью чисел:

Истинностные значения логики Лукасевича удобно выражать с помощью чисел:

«ложно» — «0»;

Истинностные значения логики Лукасевича удобно выражать с помощью чисел:

- «ложно» «0»;
- «исинно» «1»;

Истинностные значения логики Лукасевича удобно выражать с помощью чисел:

- «ложно» «0»;
- «исинно» «1»;
- «случайно» «½».

Истинностные значения логики Лукасевича удобно выражать с помощью чисел:

- «ложно» «0»:
- «исинно» «1»;
- «случайно» «½».

При этом Лукасевич предложил соблюдать максимальную преемственность по отношению к принятым в классической логике определениям пропозициональных связок:

Истинностные значения логики Лукасевича удобно выражать с помощью чисел:

- «ложно» «0»;
- «исинно» «1»;
- «случайно» «½».

При этом Лукасевич предложил соблюдать максимальную преемственность по отношению к принятым в классической логике определениям пропозициональных связок:

#### Принцип преемственности

Истинностные значения логики Лукасевича удобно выражать с помощью чисел:

- «ложно» «0»;
- «исинно» «1»;
- «случайно» «½».

При этом Лукасевич предложил соблюдать максимальную преемственность по отношению к принятым в классической логике определениям пропозициональных связок:

#### Принцип преемственности

При значениях аргументов «1» и «0» формулы должны принимать в многозначной логике те же самые значения, что и в классической двузначной логике.

# Истинностные значения пропозициональных связок

В трёхзначной логике Лукасевича пропозициональные связки задаются следующими таблицами истинности:

## Истинностные значения пропозициональных связок

В трёхзначной логике Лукасевича пропозициональные связки задаются следующими таблицами истинности:

| Α   | Ā   |  |  |
|-----|-----|--|--|
| 0   | 1   |  |  |
| 1/2 | 1/2 |  |  |
| 1   | 0   |  |  |

| Α   | В   | A & B | $A \vee B$ | $A \rightarrow B$ | $A \leftrightarrow B$ |
|-----|-----|-------|------------|-------------------|-----------------------|
| 0   | 0   | 0     | 0          | 1                 | 1                     |
| 0   | 1/2 | 0     | 1/2        | 1                 | 1/2                   |
| 0   | 1   | 0     | 1          | 1                 | 0                     |
| 1/2 | 0   | 0     | 1/2        | 1/2               | 1/2                   |
| 1/2 | 1/2 | 1/2   | 1/2        | 1                 | 1                     |
| 1/2 | 1   | 1/2   | 1          | 1                 | 1/2                   |
| 1   | 0   | 0     | 1          | 0                 | 0                     |
| 1   | 1/2 | 1/2   | 1          | 1/2               | 1/2                   |
| 1   | 1   | 1     | 1          | 1                 | 1                     |

#### Истинностные значения пропозициональных связок

В трёхзначной логике Лукасевича пропозициональные связки задаются следующими таблицами истинности:

| Α   | Ā   |
|-----|-----|
| 0   | 1   |
| 1/2 | 1/2 |
| 1   | 0   |

| _ |     |     |       |            |                   |                       |
|---|-----|-----|-------|------------|-------------------|-----------------------|
|   | Α   | В   | A & B | $A \vee B$ | $A \rightarrow B$ | $A \leftrightarrow B$ |
| Ī | 0   | 0   | 0     | 0          | 1                 | 1                     |
|   | 0   | 1/2 | 0     | 1/2        | 1                 | 1/2                   |
|   | 0   | 1   | 0     | 1          | 1                 | 0                     |
|   | 1/2 | 0   | 0     | 1/2        | 1/2               | 1/2                   |
|   | 1/2 | 1/2 | 1/2   | 1/2        | 1                 | 1                     |
|   | 1/2 | 1   | 1/2   | 1          | 1                 | 1/2                   |
|   | 1   | 0   | 0     | 1          | 0                 | 0                     |
|   | 1   | 1/2 | 1/2   | 1          | 1/2               | 1/2                   |
|   | 1   | 1   | 1     | 1          | 1                 | 1                     |

Очевидно, что в трёхзначной логике таблица истинности для формулы с n переменными будет содержать  $3^n$  строк.

# Расширенные операции

Если рассматривать значения  $0, \frac{1}{2}$  и 1 как вещественные числа, то можно заметить, что в логике Лукасевича

$$\overline{A} = 1 - A;$$
 $A \& B = \min(A, B);$ 
 $A \lor B = \max(A, B);$ 
 $A \to B = \min(1, 1 + B - A);$ 
 $A \leftrightarrow B = (A \to B) \& (B \to A).$ 

# Расширенные операции

Если рассматривать значения  $0, \frac{1}{2}$  и 1 как вещественные числа, то можно заметить, что в логике Лукасевича

$$\overline{A} = 1 - A;$$
  
 $A \& B = \min(A, B);$   
 $A \lor B = \max(A, B);$   
 $A \to B = \min(1, 1 + B - A);$   
 $A \leftrightarrow B = (A \to B) \& (B \to A).$ 

Для их построения Лукасевич использовал в качестве основы отрицание и импликацию:

$$A \lor B = (A \to B) \to B;$$
  
 $A \& B = \overline{\overline{A} \lor \overline{B}}.$ 

Построим таблицу истинности для формул  $\overline{P} \vee P$ ,  $\overline{P \& \overline{P}}$  и  $P \to P$  трёхзначной логики Лукасевича:

Построим таблицу истинности для формул  $\overline{P} \vee P$ ,  $\overline{P \& \overline{P}}$  и  $P \to P$  трёхзначной логики Лукасевича:

| Р   | $\overline{P}$ | $P \vee \overline{P}$ | $P \& \overline{P}$ | $\overline{P \& \overline{P}}$ | $P \rightarrow P$ |
|-----|----------------|-----------------------|---------------------|--------------------------------|-------------------|
| 0   | 1              | 1                     | 0                   | 1                              | 1                 |
| 1/2 | 1/2            | 1/2                   | 1/2                 | 1/2                            | 1                 |
| 1   | 0              | 1                     | 0                   | 1                              | 1                 |

Построим таблицу истинности для формул  $\overline{P} \vee P$ ,  $P \& \overline{P}$  и  $P \to P$  трёхзначной логики Лукасевича:

| Р   | P   | $P \vee \overline{P}$ | $P \& \overline{P}$ | $\overline{P \& \overline{P}}$ | $P \rightarrow P$ |
|-----|-----|-----------------------|---------------------|--------------------------------|-------------------|
| 0   | 1   | 1                     | 0                   | 1                              | 1                 |
| 1/2 | 1/2 | 1/2                   | 1/2                 | 1/2                            | 1                 |
| 1   | 0   | 1                     | 0                   | 1                              | 1                 |

Из таблицы видно, что импликация Лукасевича не поддерживает правило разложения импликации  $(A o B \equiv \overline{A} \lor B)$ , определённое в классической логике.

# Общезначимость

Формула  $\mathfrak A$  общезначима (является законом, тавтологией) в трёхзначной логике Лукасевича тогда и только тогда, когда  $\mathfrak A$  принимает значение «1» при любых наборах значений (из множества  $\{1,\frac{1}{2},0\}$ ) пропозициональных переменных, входящих в  $\mathfrak A$ .

#### Общезначимость

Формула  $\mathfrak A$  общезначима (является законом, тавтологией) в трёхзначной логике Лукасевича тогда и только тогда, когда  $\mathfrak A$  принимает значение «1» при любых наборах значений (из множества  $\{1, \frac{1}{2}, 0\}$ ) пропозициональных переменных, входящих в  $\mathfrak A$ .

Из предыдущего примера видно, что классические законы исключённого третьего  $(P \vee \overline{P})$  и противоречия  $(\overline{P \& \overline{P}})$  не общезначимы в трёхзначной логике Лукасевича, в то время как классический закон тождества  $(P \to P)$  является в ней законом.

# Логическое следствие

В трёхзначной логике Лукасевича из множества формул  $\mathfrak{A}_1, \dots, \mathfrak{A}_n$  логически следует формула  $\mathfrak{B}$  (т. е.  $\mathfrak{A}_1, \dots, \mathfrak{A}_n \vdash \mathfrak{B}$ ) тогда и только тогда, когда  $\mathfrak{B}$  принимает значение 1 на всех наборах значений (из множества  $\{1, \frac{1}{2}, 0\}$ ) пропозициональных переменных, входящих в  $\mathfrak{A}_1, \dots, \mathfrak{A}_n$  или в  $\mathfrak{B}$ , на которых каждая из формул  $\mathfrak{A}_1, \dots, \mathfrak{A}_n$  принимает значение 1.

### Логическое следствие

В трёхзначной логике Лукасевича из множества формул  $\mathfrak{A}_1,\dots,\mathfrak{A}_n$  логически следует формула  $\mathfrak{B}$  (т. е.  $\mathfrak{A}_1,\dots,\mathfrak{A}_n \vdash \mathfrak{B}$ ) тогда и только тогда, когда  $\mathfrak{B}$  принимает значение 1 на всех наборах значений (из множества  $\{1, \frac{1}{2}, 0\}$ ) пропозициональных переменных, входящих в  $\mathfrak{A}_1,\dots,\mathfrak{A}_n$  или в  $\mathfrak{B}$ , на которых каждая из формул  $\mathfrak{A}_1,\dots,\mathfrak{A}_n$  принимает значение 1.

Теорема о дедукции, играющая важную роль в классической логике, в трёхзначной логике Лукасевича не выполняется:

# Логическое следствие

В трёхзначной логике Лукасевича из множества формул  $\mathfrak{A}_1,\dots,\mathfrak{A}_n$  логически следует формула  $\mathfrak{B}$  (т. е.  $\mathfrak{A}_1,\dots,\mathfrak{A}_n \vdash \mathfrak{B}$ ) тогда и только тогда, когда  $\mathfrak{B}$  принимает значение 1 на всех наборах значений (из множества  $\{1,\frac{1}{2},0\}$ ) пропозициональных переменных, входящих в  $\mathfrak{A}_1,\dots,\mathfrak{A}_n$  или в  $\mathfrak{B}$ , на которых каждая из формул  $\mathfrak{A}_1,\dots,\mathfrak{A}_n$  принимает значение 1.

Теорема о дедукции, играющая важную роль в классической логике, в трёхзначной логике Лукасевича не выполняется:

Можно подобрать такие  $\mathfrak A$  и  $\mathfrak B$ , что  $\mathfrak A \vdash \mathfrak B$ , но  $\mathfrak A \to \mathfrak B \not\equiv 1$ .

Например,  $\mathfrak{A} = (P \& \overline{P}), \quad \mathfrak{B} = Q.$ 

#### Нечёткая логика



Лотфи Аскер Заде́ (р. 1921) — американский математик, инженер, информатик.

Нечёткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено Заде в 1965 году. Заде расширил понятие множества допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0, 1], а не только из множества  $\{0, 1\}$ .

#### Нечёткая логика



Лотфи Аскер Заде́ (р. 1921) — американский математик, инженер, информатик.

Нечёткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено Заде в 1965 году. Заде расширил понятие множества допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0, 1], а не только из множества  $\{0, 1\}$ .

Такие множества он назвал нечёткими (fuzzy).

#### Нечёткая логика



Лотфи Аскер Заде́ (р. 1921)— американский математик, инженер, информатик.

Нечёткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено Заде в 1965 году. Заде расширил понятие множества допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0, 1], а не только из множества  $\{0, 1\}$ .

Такие множества он назвал нечёткими (fuzzy). Также Заде были введены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Множество A в классическом понимании можно представить с помощью следующей записи:

$$A = \{x \mid P(x)\},\,$$

где P(x) — характеристическая функция (предикат), определяющая, принадлежит элемент x множеству A или нет.

Множество A в классическом понимании можно представить с помощью следующей записи:

$$A = \{x \mid P(x)\},\,$$

где P(x) — характеристическая функция (предикат), определяющая, принадлежит элемент x множеству A или нет. Существуют два возможных случая:

**①** Элемент x принадлежит множеству A (т. е.  $x \in A$ ), тогда P(x) = 1.

Множество A в классическом понимании можно представить с помощью следующей записи:

$$A = \{x \mid P(x)\},\,$$

где P(x) — характеристическая функция (предикат), определяющая, принадлежит элемент x множеству A или нет. Существуют два возможных случая:

- **①** Элемент x принадлежит множеству A (т. е.  $x \in A$ ), тогда P(x) = 1.
- ② Элемент x не принадлежит множеству A (т. е.  $x \notin A$ ), тогда P(x) = 0.

Множество A в классическом понимании можно представить с помощью следующей записи:

$$A = \{x \mid P(x)\},\$$

где P(x) — характеристическая функция (предикат), определяющая, принадлежит элемент x множеству A или нет. Существуют два возможных случая:

- **①** Элемент x принадлежит множеству A (т. е.  $x \in A$ ), тогда P(x) = 1.
- ② Элемент x не принадлежит множеству A (т. е.  $x \notin A$ ), тогда P(x) = 0.

Подобные множества назовём чёткими.

Деталь считается стандартной, если её длина находится в пределах от 100 до 105 мм включительно.

Деталь считается стандартной, если её длина находится в пределах от 100 до 105 мм включительно. Тогда множество стандартных деталей можно описать так:

Деталь считается стандартной, если её длина находится в пределах от 100 до 105 мм включительно. Тогда множество стандартных деталей можно описать так:

$$S = \{x \mid 100 \leqslant x \leqslant 105\}.$$

Деталь считается стандартной, если её длина находится в пределах от 100 до 105 мм включительно.

Тогда множество стандартных деталей можно описать так:

$$S = \{x \mid 100 \leqslant x \leqslant 105\}.$$

Здесь x — длина детали в мм,  $P(x) = (x \geqslant 100) \& (x \leqslant 105)$ . Изобразим график y = P(x):

Деталь считается стандартной, если её длина находится в пределах от 100 до 105 мм включительно.

Тогда множество стандартных деталей можно описать так:

$$S = \{x \mid 100 \leqslant x \leqslant 105\}.$$

Здесь x — длина детали в мм,  $P(x) = (x \geqslant 100) \& (x \leqslant 105)$ . Изобразим график y = P(x):



Операции над чёткими множествами связаны с логикой предикатов следующим образом.

Операции над чёткими множествами связаны с логикой предикатов следующим образом.

Пусть 
$$A = \{x \mid P(x)\}, B = \{x \mid Q(x)\}.$$

Операции над чёткими множествами связаны с логикой предикатов следующим образом.

Пусть 
$$A = \{x \mid P(x)\}, B = \{x \mid Q(x)\}.$$

• Объединение множеств А и В:

$$A \cup B = \{x \mid P(x) \lor Q(x)\}.$$

Операции над чёткими множествами связаны с логикой предикатов следующим образом.

Пусть 
$$A = \{x \mid P(x)\}, B = \{x \mid Q(x)\}.$$

• Объединение множеств А и В:

$$A \cup B = \{x \mid P(x) \lor Q(x)\}.$$

• Пересечение множеств А и В:

$$A \cap B = \{x \mid P(x) \& Q(x)\}.$$

Операции над чёткими множествами связаны с логикой предикатов следующим образом.

Пусть 
$$A = \{x \mid P(x)\}, B = \{x \mid Q(x)\}.$$

• Объединение множеств А и В:

$$A \cup B = \{x \mid P(x) \lor Q(x)\}.$$

• Пересечение множеств А и В:

$$A \cap B = \{x \mid P(x) \& Q(x)\}.$$

• Дополнение множества А:

$$A^{\complement} = \{x \mid \overline{P(x)}\}.$$

Пусть задана функция  $\mu(x)$ , такая что

$$\mu \colon B \longrightarrow [0, 1],$$

т. е. каждому элементу чёткого множества B ставится в соответствие число из интервала [0, 1].

Пусть задана функция  $\mu(x)$ , такая что

$$\mu \colon B \longrightarrow [0, 1],$$

т. е. каждому элементу чёткого множества B ставится в соответствие число из интервала [0, 1].

Множество, у которого вместо характеристической функции используется вышеуказанная функция  $\mu(x)$ , называется нечётким.

Пусть задана функция  $\mu(x)$ , такая что

$$\mu \colon B \longrightarrow [0, 1],$$

т. е. каждому элементу чёткого множества B ставится в соответствие число из интервала [0, 1].

Множество, у которого вместо характеристической функции используется вышеуказанная функция  $\mu(x)$ , называется нечётким.

Нечёткие множества обычно обозначаются заглавными латинскими буквами с тильдой:  $\widetilde{A}, \widetilde{B}, \widetilde{C}, \dots$ 

Пусть задана функция  $\mu(x)$ , такая что

$$\mu \colon B \longrightarrow [0, 1],$$

т. е. каждому элементу чёткого множества B ставится в соответствие число из интервала [0, 1].

Множество, у которого вместо характеристической функции используется вышеуказанная функция  $\mu(x)$ , называется нечётким.

Нечёткие множества обычно обозначаются заглавными латинскими буквами с тильдой:  $\widetilde{A},\widetilde{B},\widetilde{C},\ldots$ 

Функция  $\mu(x)$  называется функцией принадлежности.

Пусть задана функция  $\mu(x)$ , такая что

$$\mu \colon B \longrightarrow [0, 1],$$

т. е. каждому элементу чёткого множества B ставится в соответствие число из интервала [0, 1].

Множество, у которого вместо характеристической функции используется вышеуказанная функция  $\mu(x)$ , называется нечётким.

Нечёткие множества обычно обозначаются заглавными латинскими буквами с тильдой:  $\widetilde{A}, \widetilde{B}, \widetilde{C}, \dots$ 

Функция  $\mu(x)$  называется функцией принадлежности.

Обычно функцию принадлежности нечёткого множества  $\widetilde{A}$  обозначают как  $\mu_{\widetilde{A}}(x)$ .

### Базовые множества нечётких подмножеств

Если элементы x, составляющие нечёткое множество, выбираются из некоторого чёткого множества B, то множество B называется базовым.

#### Базовые множества нечётких подмножеств

Если элементы x, составляющие нечёткое множество, выбираются из некоторого чёткого множества B, то множество B называется базовым.

Тот факт, что множество B является базовым для нечёткого множества  $\widetilde{A}$  (соответственно,  $\widetilde{A}$  является нечётким подмножеством чёткого множества B), обозначим так:

#### Базовые множества нечётких подмножеств

Если элементы x, составляющие нечёткое множество, выбираются из некоторого чёткого множества B, то множество B называется базовым.

Тот факт, что множество B является базовым для нечёткого множества  $\widetilde{A}$  (соответственно,  $\widetilde{A}$  является нечётким подмножеством чёткого множества B), обозначим так:

$$\widetilde{A} \in \mathsf{Fuzzy}(B)$$
,

### Базовые множества нечётких подмножеств

Если элементы x, составляющие нечёткое множество, выбираются из некоторого чёткого множества B, то множество B называется базовым.

Тот факт, что множество B является базовым для нечёткого множества  $\widetilde{A}$  (соответственно,  $\widetilde{A}$  является нечётким подмножеством чёткого множества B), обозначим так:

$$\widetilde{A} \in \mathsf{Fuzzy}(B)$$
,

где Fuzzy(B) — множество всех нечётких подмножеств чёткого множества B.

Рассмотрим нечёткое подмножество  $\widetilde{M}-$  «Молодой» базового чёткого множества  $A=[0,\ 100]-$  «Возраст человека», которое измеряется в годах от рождения.

Рассмотрим нечёткое подмножество M-«Молодой» базового чёткого множества A = [0, 100] — «Возраст человека», которое измеряется в годах от рождения.

Функцию принадлежности  $\mu_{\widetilde{M}}(x)$  можно изобразить различными способами (каждый понимает характеристику «Молодой» по-своему!), например, так:

Рассмотрим нечёткое подмножество M- «Молодой» базового чёткого множества  $A=[0,\ 100]-$  «Возраст человека», которое измеряется в годах от рождения.

Функцию принадлежности  $\mu_{\widetilde{M}}(x)$  можно изобразить различными способами (каждый понимает характеристику «Молодой» по-своему!), например, так:



Пусть  $\widetilde{A},\widetilde{B}\subset \operatorname{Fuzzy}(X)$ ,  $x\in X$ .

Пусть  $\widetilde{A}$ ,  $\widetilde{B} \subset \text{Fuzzy}(X)$ ,  $x \in X$ . Заде определил операции над нечёткими множествами следующим образом:

Пусть  $\widetilde{A},\widetilde{B}\subset \operatorname{Fuzzy}(X)$ ,  $x\in X$ . Заде определил операции над нечёткими множествами следующим образом:

ullet Объединение  $\widetilde{A} \cup \widetilde{B}$ :

$$\mu_{\widetilde{A}\cup\widetilde{B}}(x)=\max\left\{\mu_{\widetilde{A}}(x),\,\mu_{\widetilde{B}}(x)\right\}.$$

Пусть  $\widetilde{A}$ ,  $\widetilde{B} \subset \text{Fuzzy}(X)$ ,  $x \in X$ . Заде определил операции над нечёткими множествами следующим образом:

• Объединение  $\widetilde{A} \cup \widetilde{B}$ :

$$\mu_{\widetilde{A}\cup\widetilde{B}}(x)=\max\left\{\mu_{\widetilde{A}}(x),\,\mu_{\widetilde{B}}(x)
ight\}.$$

• Пересечение  $\widetilde{A} \cap \widetilde{B}$ :

$$\mu_{\widetilde{A}\cap\widetilde{B}}(x)=\min\left\{\mu_{\widetilde{A}}(x),\,\mu_{\widetilde{B}}(x)\right\}.$$

Пусть  $\widetilde{A},\widetilde{B}\subset \operatorname{Fuzzy}(X)$ ,  $x\in X$ . Заде определил операции над нечёткими множествами следующим образом:

• Объединение  $\widetilde{A} \cup \widetilde{B}$ :

$$\mu_{\widetilde{A} \cup \widetilde{B}}(x) = \max \left\{ \mu_{\widetilde{A}}(x), \, \mu_{\widetilde{B}}(x) \right\}.$$

• Пересечение  $\widetilde{A} \cap \widetilde{B}$ :

$$\mu_{\widetilde{A}\cap\widetilde{B}}(x) = \min\left\{\mu_{\widetilde{A}}(x), \, \mu_{\widetilde{B}}(x)\right\}.$$

ullet Дополнение  $\widetilde{A}^{\complement}$ :

$$\mu_{\widetilde{A}^{\mathbb{C}}}(x) = 1 - \mu_{\widetilde{A}}(x).$$

Пусть нечёткие множества  $\widetilde{A}$  и  $\widetilde{B}$  задаются следующим образом, причём  $\widetilde{A}^{\complement}=\widetilde{B}$ :

Модальные логики

Пусть нечёткие множества  $\widetilde{A}$  и  $\widetilde{B}$  задаются следующим образом, причём  $\widetilde{A}^\complement=\widetilde{B}$ :





Пусть нечёткие множества  $\widetilde{A}$  и  $\widetilde{B}$  задаются следующим образом, причём  $\widetilde{A}^\complement=\widetilde{B}$ :





Тогда их объединение и пересечение будут выглядеть так:

Пусть нечёткие множества  $\widetilde{A}$  и  $\widetilde{B}$  задаются следующим образом, причём  $\widetilde{A}^\complement=\widetilde{B}$ :





Тогда их объединение и пересечение будут выглядеть так:





Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

#### Примеры ассерторических высказываний

Дождь не идёт.

Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

#### Примеры ассерторических высказываний

- Дождь не идёт.
- Всякий человек разумен.

Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

#### Примеры ассерторических высказываний

- Дождь не идёт.
- Всякий человек разумен.
- Иван старше Петра.

Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

#### Примеры ассерторических высказываний

- Дождь не идёт.
- Всякий человек разумен.
- Иван старше Петра.

Существуют и другие высказывания, которые, помимо утверждения фактов, дают ещё и оценку описываемой ситуации. Такие высказывания называют модальными.

Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

#### Примеры ассерторических высказываний

- Дождь не идёт.
- Всякий человек разумен.
- Иван старше Петра.

Существуют и другие высказывания, которые, помимо утверждения фактов, дают ещё и оценку описываемой ситуации. Такие высказывания называют модальными.

#### Примеры модальных высказываний

• Хорошо, что дождь не идёт.

Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

#### Примеры ассерторических высказываний

- Дождь не идёт.
- Всякий человек разумен.
- Иван старше Петра.

Существуют и другие высказывания, которые, помимо утверждения фактов, дают ещё и оценку описываемой ситуации. Такие высказывания называют модальными.

#### Примеры модальных высказываний

- Хорошо, что дождь не идёт.
- Всякий человек с необходимостью разумен.

Ранее мы рассматривали лишь такие высказывания, в которых утверждался сам факт наличия или отсутствия чего-либо. Такие высказывания называют ассерторическими.

#### Примеры ассерторических высказываний

- Дождь не идёт.
- Всякий человек разумен.
- Иван старше Петра.

Существуют и другие высказывания, которые, помимо утверждения фактов, дают ещё и оценку описываемой ситуации. Такие высказывания называют модальными.

#### Примеры модальных высказываний

- Хорошо, что дождь не идёт.
- Всякий человек с необходимостью разумен.
- Иван полагает, что он старше Петра.

### Модальности

Модальными называют высказывания, содержащие дополнительную информацию оценочного характера относительно ситуаций или взаимосвязей между ними, или присущности признаков предметам.

### Модальности

Модальными называют высказывания, содержащие дополнительную информацию оценочного характера относительно ситуаций или взаимосвязей между ними, или присущности признаков предметам.

Модальности — это термины, посредством которых осуществляется оценка, квалификация ситуаций, взаимосвязей между ними и присущности свойств и отношений предметам в модальных высказываниях.

### **Модальности**

Модальными называют высказывания, содержащие дополнительную информацию оценочного характера относительно ситуаций или взаимосвязей между ними, или присущности признаков предметам.

Модальности — это термины, посредством которых осуществляется оценка, квалификация ситуаций, взаимосвязей между ними и присущности свойств и отношений предметам в модальных высказываниях.

#### Примеры модальностей

«хорошо», «плохо», «запрещено», «необходимо», «полагает», «с неизбежностью приводит», «а затем» и т. д.

В зависимости от того, под каким углом зрения осуществляется модальная квалификация, выделяют следующие виды модальностей.

В зависимости от того, под каким углом зрения осуществляется модальная квалификация, выделяют следующие виды модальностей.

• Алетические модальности оценивают ситуации или связь признаков с предметами с точки зрения некоторого множества законов (физических, биологических, математических и т. п.)

В зависимости от того, под каким углом зрения осуществляется модальная квалификация, выделяют следующие виды модальностей.

 Алетические модальности оценивают ситуации или связь признаков с предметами с точки зрения некоторого множества законов (физических, биологических, математических и т. п.) Сюда относятся модальности «необходимо», «возможно», «случайно», «невозможно» и др.

В зависимости от того, под каким углом зрения осуществляется модальная квалификация, выделяют следующие виды модальностей.

- Алетические модальности оценивают ситуации или связь признаков с предметами с точки зрения некоторого множества законов (физических, биологических, математических и т. п.) Сюда относятся модальности «необходимо», «возможно», «случайно», «невозможно» и др.
- Деонтические модальности оценивают ситуации с точки зрения некоторого кодекса норм — юридических или этических.

В зависимости от того, под каким углом зрения осуществляется модальная квалификация, выделяют следующие виды модальностей.

- Алетические модальности оценивают ситуации или связь признаков с предметами с точки зрения некоторого множества законов (физических, биологических, математических и т. п.) Сюда относятся модальности «необходимо», «возможно», «случайно», «невозможно» и др.
- Деонтические модальности оценивают ситуации с точки зрения некоторого кодекса норм — юридических или этических. Сюда относятся модальности «обязательно», «разрешено», «запрещено» и др.

 Аксиологические модальности оценивают ситуации с точки зрения некоторой системы ценностей.

Аксиологические модальности оценивают ситуации с точки зрения некоторой системы ценностей. Сюда относятся модальности «хорошо», «плохо», «прекрасно», «хуже», «равноценно» и др.

- Аксиологические модальности оценивают ситуации с точки зрения некоторой системы ценностей. Сюда относятся модальности «хорошо», «плохо», «прекрасно», «хуже», «равноценно» и др.
- Временные модальности соотносят ситуацию с временным рядом, указывая, когда имела место ситуация или как соотносятся ситуации во времени.

- Аксиологические модальности оценивают ситуации с точки зрения некоторой системы ценностей. Сюда относятся модальности «хорошо», «плохо», «прекрасно», «хуже», «равноценно» и др.
- Временные модальности соотносят ситуацию с временным рядом, указывая, когда имела место ситуация или как соотносятся ситуации во времени. Сюда относятся модальности «было», «всегда будет», «иногда», «а затем» и др.

- Аксиологические модальности оценивают ситуации с точки зрения некоторой системы ценностей. Сюда относятся модальности «хорошо», «плохо», «прекрасно», «хуже», «равноценно» и др.
- Временные модальности соотносят ситуацию с временным рядом, указывая, когда имела место ситуация или как соотносятся ситуации во времени. Сюда относятся модальности «было», «всегда будет», «иногда», «а затем» и др.
- Эпистемические модальности оценивают ситуации с позиций некоторой познавательной системы, такой как научная теория, или с миром знаний, мнений, убеждений, верований некоторого познающего субъекта.

- Аксиологические модальности оценивают ситуации с точки зрения некоторой системы ценностей. Сюда относятся модальности «хорошо», «плохо», «прекрасно», «хуже», «равноценно» и др.
- Временные модальности соотносят ситуацию с временным рядом, указывая, когда имела место ситуация или как соотносятся ситуации во времени. Сюда относятся модальности «было», «всегда будет», «иногда», «а затем» и др.
- Эпистемические модальности оценивают ситуации с позиций некоторой познавательной системы, такой как научная теория, или с миром знаний, мнений, убеждений, верований некоторого познающего субъекта. Сюда относятся модальности «доказано», «опровергнуто», «знает», «сомневается», «уверен», «верит», «убеждён» и др.

#### Алетическая логика

Для примера рассмотрим простую неклассическую логику, расширяющую классическую логику предикатов.

Для примера рассмотрим простую неклассическую логику, расширяющую классическую логику предикатов.

Логическая система, базирующаяся на операторах «возможно, что» и «необходимо, чтобы», называется алетической логикой.

Для примера рассмотрим простую неклассическую логику, расширяющую классическую логику предикатов.

Логическая система, базирующаяся на операторах «возможно, что» и «необходимо, чтобы», называется алетической логикой. Для обозначения модальностей вводится символика:

Для примера рассмотрим простую неклассическую логику, расширяющую классическую логику предикатов.

Логическая система, базирующаяся на операторах «возможно, что» и «необходимо, чтобы», называется алетической логикой. Для обозначения модальностей вводится символика:

• «□» — обозначает модальность «необходимо». Формула вида  $\square \mathfrak{A}$  читается «необходимо, чтобы  $\mathfrak{A}$ » или «Я необходимо».

Для примера рассмотрим простую неклассическую логику, расширяющую классическую логику предикатов.

Логическая система, базирующаяся на операторах «возможно, что» и «необходимо, чтобы», называется алетической логикой. Для обозначения модальностей вводится символика:

- «□» обозначает модальность «необходимо». Формула вида  $\square \mathfrak{A}$  читается «необходимо, чтобы  $\mathfrak{A}$ » или «Я необходимо».
- «◊» обозначает модальность «возможно». Формула вида  $\Diamond \mathfrak{A}$  читается «возможно, что  $\mathfrak{A}$ » или « $\mathfrak{A}$  возможно».

Для примера рассмотрим простую неклассическую логику, расширяющую классическую логику предикатов.

Логическая система, базирующаяся на операторах «возможно, что» и «необходимо, чтобы», называется алетической логикой. Для обозначения модальностей вводится символика:

- «□» обозначает модальность «необходимо». Формула вида  $\square \mathfrak{A}$  читается «необходимо, чтобы  $\mathfrak{A}$ » или «Я необходимо».
- «◊» обозначает модальность «возможно». Формула вида  $\Diamond \mathfrak{A}$  читается «возможно, что  $\mathfrak{A}$ » или «Я возможно».

Имеет место следующее соотношение:

Для примера рассмотрим простую неклассическую логику, расширяющую классическую логику предикатов.

Логическая система, базирующаяся на операторах «возможно, что» и «необходимо, чтобы», называется алетической логикой. Для обозначения модальностей вводится символика:

- «□» обозначает модальность «необходимо». Формула вида  $\square \mathfrak{A}$  читается «необходимо, чтобы  $\mathfrak{A}$ » или «Я необходимо».
- «◊» обозначает модальность «возможно». Формула вида  $\Diamond \mathfrak{A}$  читается «возможно, что  $\mathfrak{A}$ » или «Я возможно».

Имеет место следующее соотношение:

$$\square \mathfrak{A} = \overline{\Diamond \overline{\overline{\mathfrak{A}}}}.$$

• Запишем утверждение: «Необходимо, чтобы Саша передал Маше книгу».

① Запишем утверждение: «Необходимо, чтобы Саша передал Маше книгу». Пусть P(x,y,z) — предикат «x передал y объект z». Введём также константы s — Саша, m — Маша, b — книга.

① Запишем утверждение: «Необходимо, чтобы Саша передал Маше книгу». Пусть P(x, y, z) — предикат «x передал y объект z». Введём также константы s — Саша, m — Маша, b — книга. Тогда исходное утверждение будет выглядеть так:  $\square P(s, m, b)$ .

- ① Запишем утверждение: «Необходимо, чтобы Саша передал Маше книгу». Пусть P(x, y, z) предикат «x передал y объект z». Введём также константы s Саша, m Маша, b книга. Тогда исходное утверждение будет выглядеть так:  $\square P(s, m, b)$ .
- Запишем утверждение: «Невозможно, чтобы Саша передал кому-нибудь что-нибудь».

- ① Запишем утверждение: «Необходимо, чтобы Саша передал Маше книгу». Пусть P(x, y, z) предикат «x передал y объект z». Введём также константы s Саша, m Маша, b книга. Тогда исходное утверждение будет выглядеть так:  $\square P(s, m, b)$ .
- ② Запишем утверждение: «Невозможно, чтобы Саша передал кому-нибудь что-нибудь». Это утверждение будет выглядеть так:  $\sqrt{\exists x \exists z \ P(s,x,z)}$ .

## Связь алетической логики с трёхзначной логикой Лукасевича

Связь алетической логики с трёхзначной логикой Лукасевича можно выразить следующей таблицей истинности:

# Связь алетической логики с трёхзначной логикой Лукасевича

Связь алетической логики с трёхзначной логикой Лукасевича можно выразить следующей таблицей истинности:

| Α   | $\Box A$ | <i> </i> |
|-----|----------|----------|
| 0   | 0        | 0        |
| 1/2 | 0        | 1        |
| 1   | 1        | 1        |