PPGCOMP - FURG | 23148P - Data Visualization and Exploratory Data Analysis | 02/2024

This notebook contains the solution for Task 08 of the course 23148P - Data Visualization and Exploratory Data Analysis - 02/2024 of the Graduate Program in Computing at FURG (PPGCOMP-FURG).

Professor: Dr. Adriano Velasque Werhli.

Student: Vitor Avelaneda.

• Contact: avelaneda.vitor@gmail.com

The repository with the notebooks can be accessed here!

Task:

Using the data set produce a graph, or more, showing some interesting relationship among the variables. Explore the data set and produce graphs that need a minimum of verbal explanation. You'll present the graph.

Solution

Verify the installation of necessary packages.

```
In [1]: if (!requireNamespace("dplyr", quietly = TRUE)) install.packages("dplyr")
   if (!requireNamespace("tidyr", quietly = TRUE)) install.packages("tidyr")
   if (!requireNamespace("ggplot2", quietly = TRUE)) install.packages("ggplot2")
```

Load necessary packages.

```
In [2]: library(dplyr)
        library(ggplot2)
        library(tidyr)
       Anexando pacote: 'dplyr'
       Os seguintes objetos são mascarados por 'package:stats':
           filter, lag
       Os seguintes objetos são mascarados por 'package:base':
           intersect, setdiff, setequal, union
       Os seguintes objetos são mascarados por 'package:stats':
           filter, lag
       Os seguintes objetos são mascarados por 'package:base':
           intersect, setdiff, setequal, union
```

Read the CSV file

```
In [3]: covid_data <- read.csv("./owid-covid-data.csv")
head(covid_data)</pre>
```

	iso_code	continent	location	date	total_cases	new_cases	new_cases_smoothed	total_deaths	new_deaths	new_deaths_smoothed	
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	AFG	Asia	Afghanistan	2020- 01-03	NA	0	NA	NA	0	NA	
2	AFG	Asia	Afghanistan	2020- 01-04	NA	0	NA	NA	0	NA	
3	AFG	Asia	Afghanistan	2020- 01-05	NA	0	NA	NA	0	NA	
4	AFG	Asia	Afghanistan	2020- 01-06	NA	0	NA	NA	0	NA	
5	AFG	Asia	Afghanistan	2020- 01-07	NA	0	NA	NA	0	NA	
6	AFG	Asia	Afghanistan	2020- 01-08	NA	0	0	NA	0	0	
4											>

Filter data for time series (BRA and ARG)

```
In [4]:
    time_series_data <- covid_data %>%
        filter(iso_code %in% c("BRA", "ARG")) %>%
        mutate(
            total_vaccinations_per_million = total_vaccinations / le6
        ) %>%
        select(
            iso_code, date, new_cases_per_million, stringency_index,
            total_cases_per_million, total_deaths_per_million, total_vaccinations_per_million
        ) %>%
        mutate(date = as.Date(date)) %>%
        na.omit()
```

Transform data to long format for the plot

```
In [5]: time_series_long <- time_series_data %>%
    pivot_longer(
```

```
cols = c(
   new_cases_per_million, stringency_index,
   total_cases_per_million, total_deaths_per_million, total_vaccinations_per_million
),
names_to = "variable",
values_to = "value"
)
```

Plot time series

```
In [6]: p \leftarrow ggplot(time series long, aes(x = date, y = value, color = iso code)) +
          geom line() +
          facet grid(variable ~ ., scales = "free y", switch = "y") +
          labs(
            title = "COVID Time Series: Brasil e Argentina",
            x = "Data",
            y = NULL
            color = "Country"
          ) +
          theme minimal() +
          theme(
            legend.position = "right",
            strip.placement = "outside",
            strip.text.y = element text(angle = 0),
            panel.spacing = unit(0.5, "lines"),
            axis.text.y = element text(size = 10),
            panel.grid.major.y = element line(color = "gray80"),
            panel.background = element rect(fill = "lightgray", color = NA),
            plot.background = element rect(fill = "white", color = NA)
```


Save the plot as PDF with adjusted dimensions

```
In [7]: ggsave("serie_temporal.pdf", plot = p, width = 10, height = 10)
```