

概述

TP4054是一个完善的单片锂离子电池恒流/恒压线形电源管理芯片。它薄的尺寸和小的外包装使它便于便携用。更值得一提的是,TP4054专门设计适用于USB的供电规格。得益于内部的MOSFET结构, 在应用上不需要外部电阻和阻塞二极管。在高能量运行和高外围温度时,热反馈可以控制充电电流以降低芯片温度。

充电电压被限定在4.2V, 充电电流通过外部电阻调节。在达到目标充电电压后, 当充电电流降低到设定值的1/10时, TP4054就会自动结束充电过程。TP4054还可被设置于停止工作状态, 使电源供电电流降到 25uA。

TP4054确保电池接反时芯片自动进入保护状态,确保IC不被击穿导致电池自放电引起事故。 其余特 性包括: 充电电流监测,输入低电压闭锁,自动重新充电和充电已满及开始充电的标志。

特点

- ◆瞬间耐压11V
- ◆可编程使充电电流可达500mA
- ◆不需要MOSFET,传感电阻和阻塞二极管
- ◆小的尺寸实现对锂离子电池的完全线形充电管理
- ◆恒电流/恒电压运行和热度调节使得电池管理效力最高,没有热度过高的危险
- ◆从USB接口管理单片锂离子电池
- ◆精度达到±1%的4.2V预设充电电压
- ◆充电电流输出监控
- ◆充电状态指示标志
- ◆1/10充电电流终止
- ◆停止工作时提供25µA电流
- ◆2.9V涓流充电阈值电压
- ◆软启动限制浪涌电流电流
- ◆电池反接保护

应用

- ◆ 手机、PDA、MP3
- ◆ 蓝牙应用

TP4054采用SOT-23-5L封装

典型应用电路

基本电路

典型电路

USB/适配器电源锂充电器

功能齐全的单锂电池充电器

V_{IN}=5V

1K

VCC

FROG

BAT

3

2K

GND

2

10μF

带反向输入保护的锂充电器

管脚描述

管脚号	管脚名	描述
1	CHRG	漏极开路充电状态输出。
2	GND	接地端。
3	BAT	充电电流输出端。
4	VCC	提供正电压输入。
5	PROG	充电电流编程,充电电流监控和关闭端。

引脚功能

CHRG(引脚1):漏极开路充电状态输出。当充电时,CHRG端口被一个内置的N沟道MOSFET置于低电位。当充电完成时,CHRG呈现高阻态。当TP4054检测到低电锁定条件时,CHRG呈现高阻态。当在BAT引脚和 地之间接一1uF的电容,就可以完成电池是否接好的指示,当没有电池时,LED灯会快速闪烁。

GND (引脚2):接地端。

BAT (引脚3): 充电电流输出端。给电池提供充电电流并控制浮动电压最终达到4.2V。电池接反时,内部保护电路保护VBAT的ESD二极管不被烧坏,同时GND与BAT之间形成大约0.7mA电流。

VCC(引脚4):提供正电压输入。为充电器供电。VCC可以为4.25V到6.5V并且必须有至少1µF的旁路电容。如果BAT引脚端电压与VCC的压差降到30mV以内时,TP4054进入停工状态,并使BAT电流降到2µA以下。

PROG (引脚5): 充电电流编程,充电电流监控和关闭端。充电电流由一个精度为1%的接到地的电阻控制PROG脚。在恒定充电电流状态时,此端口提供1V的电压。在所有状态下,此端口电压都可以用下面的公式测算充电电流: IBAT = (V_{PROG}/R_{PROG})×1000。PROG端口也可用来关闭充电器。把编程电阻同地端分离可以通过上拉的2µA电流源拉高PROG端口电压。当达到1.21V的极限停工电压值时,充当器进入停止工作状态,充电结束,输入电流降至25µA。此端口夹断电压大约2.4V。给此端口提供超过夹断电压的电压,将获得1.5 mA的高电流。再使PROG和地端结合将使充电器回到正常状态。

特性曲线

充电电流与PROG引脚电压的关系曲线

PROG引脚电压与PROG上拉电流关系曲线

浮充电压与充电电流关系

浮充电压与电源电压关系

I-V曲线

充电电流与电源电压关系

充电电压与充电电流关系

涓流电流与电源电压关系

工作原理

TP4054是一款采用恒定电流/恒定电压算法的单节锂离子电池充电器。它能够提供最大500mA左右 的充电电流(借助一个热设计良好的PCB布局)和一个内部P沟道功率MOSFET和热调节电路。无需隔离二极管或外 部电流检测电阻器。

正常充电循环

当Vcc引脚电压升至UVLO门限电平以上且在PROG引脚与地之间连接了一个精度为1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果BAT引脚电平低于2.9V,则充电器进入涓流充电模式。在该模式中,TP4054提供约1/10的设定充电电流,以便将电流提升至一个安全的电平,从而实现满电流充电。

当BAT引脚电压升至2.9V以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电第暖流。当BAT引脚电压达到最终浮充电压(4.2V)时,则进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的1/10时,充电循环结束。

充电电流的设定

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定的。电流充电电流是PROG引脚输出电流的1000倍。设定电阻器和充电电流采用下列公式来计算:

$$R_{PROG} = \frac{1000V}{I_{CHG}}, I_{CHG} = \frac{1000V}{R_{PROG}}$$

从BAT引脚输出的充电电流可通过监视PROG引脚电压随时确定,公式如下:

$$I_{\scriptscriptstyle BAT} = \frac{V_{\scriptscriptstyle PROG}}{R_{\scriptscriptstyle PROG}} \bullet 1000$$

RPROG与充电电流的关系确定可残空下表:

RPROG(K)	IBAT(mA)
1.4	600
2	500
2.2	400
3	300
5	200
10	100

电池反接保护功能

TP4054具备锂电池反接保护功能,档锂电池正负极反接于LTC4054ES5-4.2TR电流输出引脚,TP4054会停机显示故障状态,无充电电流。反接情况下,电源电压应在标准电压5V左右,不应超过 8V。过高的电源电压在反接电池电压情形下,芯片压差会超过10V,故在反接情况下电源电压不宜过高。

充电状态指示器 (CHRG)

TP4054有一个漏极开路状态指示输出端 "CHRG"。当充电器处于充电状态时,CHRG被拉到低电平,在其它状态,CHRG处于高阻态。当电池没有接到充电器时,CHRG输出脉冲信号表示没有安装电池。当电池连接端BAT管脚的外接电容为10uF时CHRG闪烁周期约0.5-2秒。当不用状态指示功能时,将不用的状态指示输出端接到地。

带电池充电指示灯状态	CHRG
正常充电状态	常亮
电池充满状态	灭
电池反接, 电源欠压	灭
无电池上电	闪烁

热限制

如果芯片温度试图升至约120℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流。该功能可防止TP4054过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏TP4054的风险。

在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。有关SOT-23功率方面的考虑将在"热考虑"部分做进一步讨论。

结构框图

最大额定值 (注1)

符号	符号说明	范围	单位
V _{CC}	输入电压	Vss-0.3~Vss+7	V
V_{PROG}	PROG端电压	Vss-0.3~Vss+0.3	V
V_{BAT}	BAT端电压	Vss-0.3~7	V
V _{CHRG}	CHRG端电压	Vss-0.3~Vss+10	V
P _{DMAX}	功耗	250	mW
I _{BAT}	BAT端电流	500	mA
I _{PROG}	PROG端电流	800	μΑ
V_{ESD}	人体模式ESD能力	4	kV
Latch-Up	Pin脚之间的阻抗电流	400	mA
T _{OPA}	工作外围温度	-40~+85	$^{\circ}$
T _{STR}	存储温度	-65~+125	$^{\circ}$

注1: 超出最大范围器件可能损毁。推荐工作范围内器件可以工作,但不保证其特性。电气特性表明的直流和交流特性是在特定条件下测得,其特性可以保证。此特性假定器件在推荐工作范围内工作。未示出特性不保证其性能。 典型值是最佳性能点。

电气特性

测试条件为25℃

符号	符号说明	条件	最小值	典型值	最大值	单位
V _{CC}	输入电压		4.2		6.5	V
Icc		充电模式(R _{PROG} =10KΩ)		300	2000	μA
	输入电流	待机模式		200	500	μA
	物 八 电 流	关断模式(R _{PROG} 不接, V _{CC} <v<sub>BAT或V_{CC}<v<sub>UV)</v<sub></v<sub>		25	50	μA
V_{FLOAT}	输出控制电压	0°C <ta<85°c,ibat=40ma< td=""><td>4.158</td><td>4.2</td><td>4.242</td><td>V</td></ta<85°c,ibat=40ma<>	4.158	4.2	4.242	V
. 20/11		R _{PROG} =10K, 电流模式	93	100	107	mA
		R _{PROG} =2K, 电流模式	465	500	535	mA
1	 BAT端电流	V _{BAT} =4.2V,待机模式	0	-2.5	-6	μA
I _{BAT}	BAI 编电流	关断模式		6	10	μA
		V _{BAT} = - 4V, 电池反接模式		0.7		mA
		V _{CC} =0V,睡眠模式		6	10	μA
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 2K$	40	50	60	mA
V_{TRIKL}	涓流充电极限电压	R _{PROG} =10K,V _{BAT} 上升	2.8	2.9	3.0	V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =10K	60	80	110	mV
V _{UV}	电源低电闭锁阈值电压	Vcc从低升高	3.7	3.8	3.93	V
V _{UVHYS}	电源低电阈值迟滞电压		150	200	300	mV
V_{MSD}	手动关闭阈值电压	PROG脚上升	1.15	1.21	1.30	V
		PROG脚上升	0.9	1.0	1.1	V
V _{ASD}	VCC-VBAT停止工作阈值电压	Vcc从低到高	70	100	140	mV
	VCC-VBAT行业工作网值电压	V _{cc} 从高到低	5	30	50	mV
 .	C/10终端阈值电流	R _{PROG} =10K	0.085	0.10	0.115	mA/
I _{TERM}	C/TO终端网值电流	R _{PROG} =2K	0.085	0.10	0.115	mA
V_{PROG}	PROG端电压	R _{PROG} =10K, 电流模式	0.93	1.0	1.07	V
V_{CHRG}	CHRG端最小输出电压	I _{CHRG} =5mA		0.35	0.6	V
ΔV_{RECG}	电池再充电迟滞电压	V _{FLOAT} -V _{RECHRG}		100	200	mV
t _{RECHG}	充电比较器滤波时间	V _{BAT} 从高到低	0.8	1.8	4	mS
t _{TERM}	终止比较器滤波时间	I _{BAT} 跌至I _{CHG} / 10以下	0.63	1.4	3	mS
I _{PROG}	PROG脚上拉电流			2		μA

封装说明: SOT-23-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950 (BSC)		0.037 (BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
r	00	80	00	80