TA: Kyle Hansen (kylehansen@math.ucsb.edu)

Office: South Hall, 6431 V

OH: M 11-12pm / **ML:** Th 1-3pm

3A: Week 1 Tangents, Velocity, and Limits

Name:

"The moving power of mathematical invention is not reasoning, but imagination." -Augustus De Morgan

Collaborators:

Section Day/Time:

Tangents, Velocity, and Limits

Equation of a Tangent Line

A line tangent to curve f(x) intersecting the y-axis at point b and having slope m can be expressed in slope-intercept form: y = mx + b.

1. Draw the lines tangent to the corresponding values of x, and complete the chart on the right with appropriate estimates.

x	slope at $f(x)$	equation of line tangent to $f(x)$
2		
4		
6		
8		

2. A kite's height in meters above the ground at time t is modeled by the function $f(t) = -(t-2)^3 + (t+2)^2 + 20$, where t is measured in seconds. Use the table provided to estimate the vertical velocity of the kite at the given points using points close to t.

t	f(t+0.001)	f(t - 0.001)	estimated velocity of kite at time t
0			
2			
4			
6			

3. Compute the following limits:

a)
$$\lim_{z \to 3} \frac{z^2}{(z-2)^2}$$

b)
$$\lim_{x \to 1} x^3 - \frac{x+2}{x^2 + x - 2}$$

c)
$$\lim_{a \to 1^{-}} \frac{\ln(a-1)}{1-a}$$

Discuss: Does $\lim_{a\to 1} \frac{\ln(a-1)}{1-a}$ exist? Why or why not?

d) Suppose
$$\lim_{y\to 2} g(y) = 3$$
 and $\lim_{y\to 4} g(y) = 2$. Find $\lim_{y\to 2} [g(y^2)\cdot g(y)^2]$

Asymptotes

Let $a \neq \pm \infty$. A function f has a vertical asymptote at x = a if $\lim_{x \to a^{+/-}} f(x) = a$

Discuss: By looking at a function of the form $f(x) = \frac{g(x)}{h(x)}$ where p(x) and q(x) are polynomials, how do you think we can find where the vertical asymptotes are?

4. Find all vertical asymptotes, and sketch a possible graph for each of the following functions:

a)
$$f(x) = \frac{x^{2020} - 2019}{(x-5)(x+2)}$$

b)
$$g(x) = \csc(x) = \frac{1}{\sin(x)}$$

Discuss: Give our definition of a vertical asymptote, how do you think a horizontal asymptote would be defined? Can you think of any functions with a horizontal asymptote?