Euclids Theorem

Tim Lichtnau

2021

Abstract

We present a formalization of Euclid's Theorem from an algebraic and order-theoretic approach. The PDF-document contains some feature which allow us to unhide suppressed information visible via a mouseover event. At this time, this extra works not for all PDF-viewers, but surely for Adobe Reader or Foxit Reader.

Contents

1	Sets and classes	1
2	Order relations 2.1 Partial orders	2
3	Monoids 3.1 Divisibility theory 3.2 Finiteness 3.3 Groups	
4	Rings	4
5	Wellfounded orders	5
6	The ring of integers	6
7	Euclids Theorem	7

1 Sets and classes

[synonym subset/-s] Let X denote a set.

Definition. A subset of X is a set Y such that every element of Y is an element of X.

Axiom 1. Let Y be a class. Assume every element of Y is an element of

X. Then Y is a set.

Axiom 2. Every element of every set is setsized.

2 Order relations

Let $Y \subseteq X$ stand for Y is a subset of X.

Definition. X is nonempty iff there exists an element of X.

Signature 3. An order is a notion.

Let O denote a order.

Signature 4. |O| is a set.

Let O stand for |O|.

Signature 5. Let $x, y \in O$. xOy is an atom.

Let $x \leq y$ stand for xOy.

Definition. An order on X is a order O such that |O| = X.

Definition. Let $N \subseteq O$. O restricted to N is an order T on N such that (xTy iff xOy) for all $x, y \in N$.

Let $O|_N$ stand for O restricted to N.

Definition. A suborder of O is an order T such that $|T| \subseteq |O|$ and $T = O|_{|T|}$.

Definition. Let $N \subseteq O$. An upper bound of N by O is an element x of O such that $n \le x$ for all $n \in N$.

2.1 Partial orders

Definition. O is reflexive iff $x \le x$ for any $x \in O$.

Definition. O is antisymmetric iff

 $x \le y \le x => x = y$ for any $x, y \in O$.

Definition. O is transitive iff

 $x \le y \le z \implies x \le z$ for any $x, y, z \in O$.

Definition. O is partial iff O is reflexive and antisymmetric and transitive.

Lemma 1. Let O be a partial order. Let $X \subseteq |O|$. $O|_X$ is a partial order.

3 Monoids

```
Signature 6. A magma is a notion.
Let M,G denote magma.
Signature 7. |M| is a set.
Signature 8. Let x, y \in |M|. x \cdot_M y is an element of |M|.
Let M stand for |M|. Let x \cdot y stand for x \cdot_M y.
[synonym element/-s] [synonym inverse/-s]
Definition. Let X be a set. M is based on X iff |M| = X.
Definition. G is associative iff (x \cdot y) \cdot z = x \cdot (y \cdot z) for all x, y, z \in G.
Definition. G is abelian iff x \cdot y = y \cdot x for all x, y \in G.
Definition.
                A neutral element of G is an element e of G such that
(e \cdot x = x \text{ and } x = x \cdot e) \text{ for all } x \in G.
Lemma 2.
               (uniqNeut) Let e and e' be neutral elements of G. Then
e=e'.
Proof. e' = e \cdot e' = e.
                                                                              Definition. A Monoid is an associative Magma with a neutral element.
Let M denote a Monoid.
Definition. Let x, y \in M. x divides y in M iff there exists k \in M such
that k \cdot x = y.
Lemma 3. (transitiveDiv) Let k, m, n \in M. Suppose n divides m in
M and m divides k in M. Then n divides k in M.
Proof. Take an l \in M such that l \cdot n = m.
Take an p \in M such that p \cdot m = k.
Then k = p \cdot m = p \cdot (l \cdot n) = (p \cdot l) \cdot n. Thus n divides k in M.
```

3.1 Divisibility theory

3.2 Finiteness

Let X denote a set.

Signature 9. X is finite is an atom.

Axiom 10. (FiniteMultiplication) Let M be an abelian Monoid. Let X be a finite subset of M. Then X has an upper bound by |.

3.3 Groups

Signature 11. e_M is a neutral element of M.

Definition. A submonoid of M is a monoid N such that $N \subseteq M$ and $\mathbf{e}_N = \mathbf{e}_M$ and $(x \cdot_N y = x \cdot_M y)$ for any $x, y \in N$.

Let \mathbf{e} stand for \mathbf{e}_M .

Definition. Let $x \in M$. An inverse of x in M is an element y of M such that $x \cdot y = \mathbf{e}_M$ and $y \cdot x = \mathbf{e}_M$.

Lemma 5. (uniqInv) Let M be a Monoid. Let $x, y, y' \in M$. Assume y and y' are inverses of x in M. Then y = y'.

Proof.
$$y = \mathbf{e} \cdot y = (y' \cdot x) \cdot y = y' \cdot (x \cdot y) = y' \cdot \mathbf{e} = y'$$
.

Definition. A Group is a Monoid G such that every element of G has an inverse in G.

Let G denote a Group.

Signature 12. Let $x \in G$. x_G^{-1} is an inverse of x in G.

4 Rings

[synonym ring/-s]

[synonym divisor/-s] [synonym unit/-s]

Signature 13. A Ring is a notion.

Let R denote a ring.

Signature 14. |R| is a set.

Let R stand for |R|.

Signature 15. Ab(R) is an abelian group based on R.

Signature 16. Mu(R) is a Monoid based on R.

Let x+y stand for $x \cdot_{\operatorname{Ab}(R)} y$. Let $x \cdot y$ stand for $x \cdot_{\operatorname{Mu}(R)} y$. Let R is commutative stand for $\operatorname{Mu}(R)$ is abelian.

```
Definition. 0 = \mathbf{e}_{Ab(R)}.
Definition. 1 = e_{Mu(R)}.
Axiom 17.
                  (DistribI) Let x, y, z \in \mathbb{R}. x \cdot (y+z) = (x \cdot y) + (x \cdot z).
Axiom 18. (DistribII) Let x, y, z \in R. (x+y)\cdot z = (x\cdot z) + (y\cdot z).
Definition. Let x \in \mathbb{R}. -x = x_{Ab(\mathbb{R})}^{-1}.
Let x-y stand for x+(-y).
Lemma 6. Let x \in \mathbb{R}. 0 \cdot x = 0.
Proof. 0 = (0 \cdot x) - (0 \cdot x)
=((0+0)\cdot x)-(0\cdot x)
= ((0\cdot x) + (0\cdot x)) - (0\cdot x)
= (0 \cdot x) + ((0 \cdot x) - (0 \cdot x))
= (0 \cdot x) + 0.
                                                                                               Lemma 7. (Minus) Let k, q \in \mathbb{R}. Then -(k \cdot q) = (-k) \cdot q.
Proof. (k \cdot q) + ((-k) \cdot q) = (k - k) \cdot q = 0 \cdot q = 0.
(k \cdot q) is an inverse of ((-k) \cdot q) in Ab(R).
                                                                                               Lemma 8. (MDistrib) Let x, y, z \in \mathbb{R}. (x-y)\cdot z = (x\cdot z)\cdot (y\cdot z).
Proof. We have (x+(-y))\cdot z = (x\cdot z)+((-y)\cdot z) (by DistribII).
(x \cdot z) + ((-y) \cdot z) = (x \cdot z) - (y \cdot z) (by Minus).
                                                                                               Let R denote a commutative ring. Let R stand for Mu(R).
Lemma 9. (divDif) Let k, m, n \in \mathbb{R}. Assume k divides m in \mathbb{R} and k
divides n in R. Then k divides m-n in R.
```

5 Wellfounded orders

Proof. Take $x \in \mathbb{R}$ such that $x \cdot k = m$.

Definition. Let $N\subseteq |O|$. A minimum of N with O is an element x of N such that $y{\le}x=>x=y$ for all $y\in N$.

Definition. O is wellfounded iff O is a partial order and for all nonempty subsets S of |O| there exists a minimum of S with O.

[synonym predecessor/-s]

Definition. A minimum of O is a minimum of |O| with O.

Take $y \in \mathbb{R}$ such that $y \cdot k = n$. $(x-y) \cdot k = m-n$ (by MDistrib).

Definition. $\mathcal{M}(O) = \{ m \in O \mid m \text{ is a minimum of } O \}.$

Definition. Let $x \in O$. A predecessor of x by O is an element y of O

such that $y \leq x$.

Lemma 10. Let O be a wellfounded order. Let $x \in O$. Then there exists a predecessor y of x by O such that y is a minimum of O.

Proof. Define $X = \{z \in O \mid z \le x\}$. $X \subseteq O$. Take a minimum z of X with O. z is a minimum of O.

Definition. Let $x \in O$. A stranger of x in O is an element y of O such that x and y have no common predecessors by O.

Theorem. (StrangerTheorem) Let O be a wellfounded order. Assume every element of O has a stranger in O. Then $\mathcal{M}(O)$ has no upper bound by O.

6 The ring of integers

[synonym number/-s] **Signature 19.** \mathbb{Z} is a commutative ring. **Definition.** $\mathbb{N}_{>0}$ is a submonoid of $\mathrm{Mu}(\mathbb{Z})$. **Definition.** A positive number is an element of $\mathbb{N}_{>0}$. Let n, m denote positive numbers. **Lemma 11.** 1 is a positive number. **Axiom 20.** (MultEquiv) Assume n divides m in \mathbb{Z} and m divides nin \mathbb{Z} . Then n=m. **Lemma 12.** is a partial order. *Proof.* | is antisymmetric (by MultEquiv). Indeed (if x|y then x divides yin \mathbb{Z}) for all $x, y \in \mathbb{N}_{>0}$. Let n is nontrivial stand for $n \neq 1$. **Definition.** $\mathbb{N}_{>1} = \{x \in \mathbb{N}_{>0} \mid x \text{ is nontrivial } \}.$ **Axiom 21.** n+m is a nontrivial positive number. **Axiom 22.** Let S be a nonempty subset of $\mathbb{N}_{>1}$. Then there exists a minimum of S with |. **Definition.** $|_{>1}$ is | restricted to $\mathbb{N}_{>1}$. **Lemma 13.** (Wellfounding) $|_{>1}$ is a wellfounded order. *Proof.* $|_{>1}$ is a partial order. Every nonempty subset of $\mathbb{N}_{>1}$ has a minimum with |.

7 Euclids Theorem

```
Lemma 14.
                    (ExistenceOfStrangers) Every element of \mathbb{N}_{>1} has a
stranger in |_{>1}.
Proof. Let x \in \mathbb{N}_{>1}. Consider y = 1+x. y \in \mathbb{N}_{>1}. Let us show that x and
y have no common predecessor by |_{>1}.
Proof by contradiction. Assume the contrary. Take a common predecessor
k of x and y by |_{>1}. k divides (1+x) in \mathbb{Z} and k divides x in \mathbb{Z}. (1+x)-x=1.
Then k divides 1 in \mathbb{Z}(by divDif). 1 divides k in \mathbb{Z}. 1 and k are positive
numbers. Thus k = 1(by MultEquiv) . contradiction. qed.
Definition. Let p \in \mathbb{N}_{>1}. p is prime iff for all d \in \mathbb{N}_{>1} we have
(d|p) => d = p.
Definition. \mathbb{P} = \{ p \in \mathbb{N}_{>1} \mid p \text{ is prime } \}.
Theorem. (Euclid) \mathbb{P} is not finite.
Proof. Proof by contradiction. Assume \mathbb{P} is finite.
\mathbb{P}=\mathcal{M}(|_{>1}).
\mathcal{M}(|_{>1}) has no upper bound by |_{>1} (by Wellfounding, ExistenceOfS-
trangers, StrangerTheorem).
\mathcal{M}(|_{>1}) is a finite subset of \mathbb{N}_{>0}.
\mathbb{N}_{>0} is an abelian monoid.
Take an upper bound b of \mathcal{M}(|_{>1}) by | (by FiniteMultiplication).
b = 1. \mathcal{M}(|_{>1}) is nonempty.
contradiction.
```