Introduction to Computational Fluid Dynamics using OpenFOAM and Octave

Dr. Lakshman Anumolu (Sr. Research Engineer)
Kumaresh Selvakumar (PhD candidate)

(Session-7)

Instructions: Wed, Fri (4:30-5:30PM IST), Sat (4PM-5PM IST)

Query sessions: Sundays 9:00AM-9:30AM IST

Quick Recap

What Did We Discuss?

Taylor Series

$$\rho(x^*) = \rho(x_i) + \frac{(x^* - x_i)}{1!} \left(\frac{d\rho}{dx}\right)_i + \frac{(x^* - x_i)^2}{2!} \left(\frac{d^2\rho}{dx^2}\right)_i + \frac{(x^* - x_i)^3}{3!} \left(\frac{d^3\rho}{dx^3}\right)_i + \cdots$$

$$\left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} \qquad \left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}}$$

What Did We Discuss?

$$\frac{d\rho}{dx} = -c\rho$$

$$x_{i-1}$$
 x_i x_{i+1} x_{i+2}

$$\Delta x < \frac{2}{c}$$

$$\frac{2}{c} = \frac{2}{4} = 0.5$$

$$\rho_{i+1} = \rho_i (1 - c \Delta x)$$

Current Session

Overview

- Stability Analysis (contd.)
- Introduction to C++ for OpenFOAM

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$
 Advection equation

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + c \left(\frac{\partial u}{\partial x}\right)_i^n = 0$$

$$\chi_{i-1} \qquad \chi_i \qquad \chi_{i+1} \qquad \chi_{i+2}$$

$$\left(\frac{d\rho}{dx}\right)_i \approx \frac{\rho(x_{i+1}) - \rho(x_i)}{\Delta x_i} \qquad \left(\frac{d\rho}{dx}\right)_i \approx \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_i}$$

$$\frac{1}{x_{i-1}} \frac{1}{x_i} \frac{x_{i+1}}{x_{i+1}} \frac{x_{i+2}}{x_{i+2}}$$

$$\frac{\left(\frac{\partial u}{\partial x}\right)_i^n}{\Delta x_i} \approx \frac{u_{i+1}^n - u_i^n}{\Delta x_i} \quad \text{Simple forward difference scheme}$$

$$\frac{\left(\frac{\partial \rho}{\partial x}\right)_i^n}{\Delta x_i} \approx \frac{u_{i+1}^n - u_i^n}{\Delta x_i} \quad \text{Simple forward difference scheme}$$

$$\frac{\left(\frac{\partial \rho}{\partial x}\right)_i^n}{\Delta x_i} \approx \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x_i} \quad \text{Central difference}$$

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_{i+1}^n - u_i^n}{\Delta x_i} \quad \text{Simple forward difference scheme}$$

$$\left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x_i} \quad \text{Central difference}$$

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_{i+1}^n - u_i^n}{\Delta x_i} \quad \text{Simple forward difference scheme}$$

$$\left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x_i} \quad \text{Central difference}$$

Time level: n + 1

Time level: *n*

 x_{i-1} x_i x_{i+1} x_{i+2} x_{i-1} x_i x_i x_{i+1} x_{i+2}

Time level: n + 1

Time level: *n*

 x_{i-1} x_i x_{i+1} x_{i+2} x_{i-1} x_i x_i x_{i+1} x_{i+2}

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \longrightarrow \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_i^n - u_{i-1}^n}{\Delta x_i} \quad \text{Upwind}$$

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \longrightarrow \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_i^n - u_{i-1}^n}{\Delta x_i}$$
 Upwind

$$CFL: \frac{c\Delta t}{\Delta x}$$

CFL = 0.1

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \longrightarrow \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_i^n - u_{i-1}^n}{\Delta x_i}$$
 Upwind

$$CFL: \frac{c\Delta t}{\Delta x}$$

CFL = 1.5

What did we discuss?

- Proper discrete approximations need to be chosen based on the velocity field
- CFL number is critical to ensure numerical stability

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \longrightarrow \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_i^n - u_{i-1}^n}{\Delta x_i}$$
 Upwind

Introduction to C++ for OpenFOAM

b6_sample.cpp

Next Session

- Rate of convergence
- Introduction to C++ for OpenFOAM

Thank you