Introduzione all'elettrotecnica

Appunti di Elettrotecnica

Indice

1	Fon	damenti: Tensione e Corrente	2
	1.1	Corrente Elettrica	2
		1.1.1 Definizione	2
		1.1.2 Natura Fisica	3
		1.1.3 Tipi di Corrente	3
	1.2	Tensione Elettrica	3
		1.2.1 Definizione	3
		1.2.2 Natura Fisica	4
	1.3	Relazione tra Tensione e Corrente	4
		1.3.1 Potenza Elettrica	4
		1.3.2 Esempi Pratici	5
	1.4	Misura di Tensione e Corrente	5
		1.4.1 Strumenti di Misura	5
		1.4.2 Rappresentazione Grafica	6
	1.5	Riepilogo delle Grandezze Fondamentali	6
_	_	W 01	
2	_	ge di Ohm	7
	2.1	Teoria	7
	2.2	Esercizi Svolti	7
3	Con	nponenti Fondamentali dei Circuiti	8
	3.1	Teoria	8
		3.1.1 Generatore di Tensione Ideale	8
		3.1.2 Generatore di Corrente Ideale	8
		3.1.3 Resistore	9
		3.1.4 Confronto tra i Componenti	10
			10
			_
4			2
	4.1	Teoria	
		4.1.1 Definizione di Nodo	
			12
		1	12
			13
		()	14
	4.0	()	14
	4.2	9	15
		4.2.1 Convenzioni Fondamentali	15

		4.2.2	Convenzione degli Utilizzatori	5
		4.2.3	Convenzione dei generatori	6
		4.2.4	Esempi Pratici	6
		4.2.5	Riepilogo delle Regole	8
5	Res	istenze	e in Serie	9
	5.1	Teoria		9
	5.2	Eserciz	zi Svolti	9
6	Res	istenze	e in Parallelo 2	0
	6.1	Teoria		20
	6.2	Eserciz	zi Svolti	20
7	Par	titore d	di Tensione e Partitore di Corrente 2	2
	7.1	Partito	ore di Tensione	22
		7.1.1	Teoria	22
		7.1.2	Esercizi Svolti	23
	7.2	Partito	ore di Corrente	24
		7.2.1	Teoria	24
		7.2.2		25
	7.3	Confro	onto tra Partitore di Tensione e di Corrente	27
8	Circ	cuiti M	listi (Serie-Parallelo)	8
	8.1	Teoria		28
	8.2	Eserciz	zi Svolti	28
		_		
1	F	onda	amenti: Tensione e Corrente	
1.	1 (Corre	nte Elettrica	

1.1.1 Definizione

La corrente elettrica è il flusso ordinato di cariche elettriche attraverso un conduttore. Rappresenta la quantità di carica che attraversa una sezione del conduttore nell'unità di tempo.

Definizione matematica:

$$I = \frac{Q}{t} \tag{1}$$

dove:

- I = Corrente elettrica (Ampere, A)
- Q = Carica elettrica (Coulomb, C)
- t = Tempo (secondi, s)

Unità di misura:

- Ampere (A): unità fondamentale del Sistema Internazionale
- 1 A = 1 C/s (un coulomb al secondo)

• Sottomultipli comuni:

- milliampere: $1 \,\mathrm{mA} = 10^{-3} \,\mathrm{A}$

- microampere: $1 \mu A = 10^{-6} A$

1.1.2 Natura Fisica

La corrente elettrica è costituita dal movimento di:

• Elettroni nei conduttori metallici (verso opposto alla corrente convenzionale)

• Ioni nelle soluzioni elettrolitiche

• Lacune ed elettroni nei semiconduttori

Convenzione: La corrente convenzionale va dal polo positivo al polo negativo (direzione opposta al movimento degli elettroni).

1.1.3 Tipi di Corrente

Corrente Continua (DC):

• Flusso costante in intensità e direzione

• Esempio: batterie, alimentatori DC

• Simbolo: \equiv o DC

Corrente Alternata (AC):

• Flusso variabile periodicamente nel tempo

• Esempio: rete elettrica domestica

 Simbolo: \sim o AC

1.2 Tensione Elettrica

1.2.1 Definizione

La **tensione elettrica** (o differenza di potenziale) è l'energia necessaria per spostare una carica elettrica tra due punti di un circuito. Rappresenta la "spinta" che muove le cariche elettriche.

Definizione matematica:

$$V = \frac{W}{Q} \tag{2}$$

dove:

• V = Tensione (Volt, V)

• W = Lavoro o Energia (Joule, J)

 $\bullet \ Q =$ Carica elettrica (Coulomb, C)

Unità di misura:

- Volt (V): unità derivata del Sistema Internazionale
- 1 V = 1 J/C (un joule per coulomb)
- Multipli e sottomultipli comuni:

- kilovolt: $1 \text{ kV} = 10^3 \text{ V}$

- millivolt: $1 \,\mathrm{mV} = 10^{-3} \,\mathrm{V}$

- microvolt: $1 \mu V = 10^{-6} V$

1.2.2 Natura Fisica

La tensione elettrica:

- È sempre una differenza di potenziale tra due punti
- Rappresenta l'energia per unità di carica
- È analoga alla pressione in un sistema idraulico
- Esiste anche in assenza di corrente (circuito aperto)

Analogia idraulica:

- \bullet Tensione \leftrightarrow Pressione dell'acqua
- \bullet Corrente \leftrightarrow Flusso d'acqua
- Resistenza \leftrightarrow Restringimento del tubo

1.3 Relazione tra Tensione e Corrente

1.3.1 Potenza Elettrica

La potenza elettrica è il prodotto tra tensione e corrente:

$$P = V \cdot I \tag{3}$$

dove:

- P = Potenza (Watt, W)
- V = Tensione (Volt, V)
- I = Corrente (Ampere, A)

Interpretazione:

- La potenza rappresenta l'energia trasferita nell'unità di tempo
- $1 W = 1 V \cdot 1 A$
- Nei resistori, la potenza è sempre dissipata (trasformata in calore)

1.3.2 Esempi Pratici

Esempio 0.1: Una batteria eroga una carica di 360 C in 2 minuti. Calcolare la corrente. *Soluzione:*

$$t = 2 \min = 120 \text{ s}$$

 $I = \frac{Q}{t} = \frac{360}{120} = 3 \text{ A}$

Esempio 0.2: Per spostare una carica di 0.5 C tra due punti sono necessari 6 J di energia. Calcolare la tensione.

Soluzione:

$$V = \frac{W}{Q} = \frac{6}{0.5} = 12 \,\text{V}$$

Esempio 0.3: Una lampadina funziona a 230 V e assorbe una corrente di 0.26 A. Calcolare la potenza dissipata.

Soluzione:

$$P = V \cdot I = 230 \cdot 0.26 = 59.8 \,\mathrm{W} \approx 60 \,\mathrm{W}$$

1.4 Misura di Tensione e Corrente

1.4.1 Strumenti di Misura

Voltmetro:

- Misura la tensione (differenza di potenziale)
- Si collega in **parallelo** al componente
- Resistenza interna molto alta (idealmente infinita)
- Non deve alterare la corrente del circuito

Amperometro:

- Misura la corrente
- Si collega in **serie** al circuito
- Resistenza interna molto bassa (idealmente nulla)
- Non deve alterare la tensione del circuito

1.4.2 Rappresentazione Grafica

Amperometro in serie

1.5 Riepilogo delle Grandezze Fondamentali

Grandezza	Simbolo	Unità	Formula
Carica elettrica	Q	Coulomb (C)	-
Corrente	I	Ampere (A)	$I = \frac{Q}{t}$
Tensione	V	Volt (V)	$V = \frac{W}{Q}$
Resistenza	R	Ohm (Ω)	$R = \frac{V}{I}$
Potenza	P	Watt (W)	$P = V \cdot I$

2 Legge di Ohm

2.1 Teoria

La legge di Ohm è una delle leggi fondamentali dell'elettrotecnica e stabilisce la relazione tra tensione, corrente e resistenza in un circuito elettrico.

Formula:

$$V = R \cdot I \tag{4}$$

dove:

- V = Tensione (Volt)
- $R = \text{Resistenza (Ohm, } \Omega)$
- I = Corrente (Ampere, A)

Dalla formula principale si possono ricavare:

$$I = \frac{V}{R} \tag{5}$$

$$R = \frac{V}{I} \tag{6}$$

2.2 Esercizi Svolti

Esercizio 1.1: Calcolare la corrente che attraversa una resistenza di $100\,\Omega$ alimentata da una tensione di $12\,V$.

Solutione:

$$I = \frac{V}{R} = \frac{12 V}{100 \Omega} = 0.12 A = 120 mA$$

Esercizio 1.2: Una lampadina attraversata da una corrente di $0.5\,A$ ha ai suoi capi una tensione di $230\,V$. Calcolare la resistenza della lampadina.

Soluzione:

$$R = \frac{V}{I} = \frac{230 \, V}{0.5 \, A} = 460 \, \Omega$$

Esercizio 1.3: Calcolare la tensione ai capi di un resistore da $2.2 k\Omega$ attraversato da una corrente di 5 mA.

Soluzione:

$$V = R \cdot I = 2200 \,\Omega \cdot 0.005 \,A = 11 \,V$$

3 Componenti Fondamentali dei Circuiti

3.1 Teoria

3.1.1 Generatore di Tensione Ideale

Un generatore di tensione ideale è un dispositivo che mantiene una differenza di potenziale costante ai suoi capi, indipendentemente dalla corrente che lo attraversa.

Caratteristiche:

- ullet Fornisce una tensione costante V
- La corrente erogata dipende dal carico collegato
- Resistenza interna nulla (ideale)
- Simbolo: batteria o generatore

Rappresentazione grafica:

Equazione caratteristica:

$$V = \text{costante}$$
 (7)

Comportamento:

- A circuito aperto: $I = 0, V = V_{nominale}$
- Con carico: $V = V_{nominale}, I = \frac{V}{R_{carico}}$
- In cortocircuito (teorico): $I \to \infty$ (nella realtà limitato dalla resistenza interna)

3.1.2 Generatore di Corrente Ideale

Un generatore di corrente ideale è un dispositivo che eroga una corrente costante, indipendentemente dalla tensione ai suoi capi.

Caratteristiche:

- \bullet Fornisce una corrente costante I
- La tensione ai suoi capi dipende dal carico collegato
- Resistenza interna infinita (ideale)
- Meno comune nella pratica rispetto al generatore di tensione

Rappresentazione grafica:

Simbolo standard

Equazione caratteristica:

$$I = \text{costante}$$
 (8)

Comportamento:

• A circuito aperto: $V \to \infty$ (teorico), $I = I_{nominale}$

• Con carico: $I = I_{nominale}, V = R_{carico} \cdot I$

• In cortocircuito: V = 0, $I = I_{nominale}$

3.1.3 Resistore

Un **resistore** è un componente passivo che si oppone al passaggio della corrente elettrica, dissipando energia sotto forma di calore.

Caratteristiche:

• Valore espresso in Ohm (Ω)

• Componente passivo (non genera energia)

• Segue la Legge di Ohm: $V = R \cdot I$

• Dissipa potenza: $P = V \cdot I = R \cdot I^2 = \frac{V^2}{R}$

Rappresentazione grafica:

9

Equazione caratteristica (Legge di Ohm):

$$V = R \cdot I \tag{9}$$

Comportamento:

• Relazione lineare tra tensione e corrente

• La potenza dissipata è sempre positiva

• Non dipende dal verso della corrente (componente simmetrico)

3.1.4 Confronto tra i Componenti

Caratteristica	Gen. Tensione	Gen. Corrente	Resistore
Tipo	Attivo	Attivo	Passivo
Grandezza costante	V	I	R
Relazione V - I	$V = \cos t$.	$I = \cos t$.	$V = R \cdot I$
Resistenza interna	0Ω (ideale)	$\infty \Omega$ (ideale)	R
Potenza	Fornita	Fornita	Dissipata

3.1.5 Esempi di Circuiti con i Tre Componenti

Esempio 1: Circuito con Generatore di Tensione

Calcoli:

$$\begin{split} I &= \frac{V}{R} = \frac{12}{100} = 0.12\,A = 120\,mA \\ V_R &= 12\,V \quad \text{(tutta la tensione cade sulla resistenza)} \\ P_R &= V \cdot I = 12 \cdot 0.12 = 1.44\,W \quad \text{(dissipata)} \end{split}$$

Esempio 2: Circuito con Generatore di Corrente

Calcoli:

$$\begin{split} I &= 50\,mA = 0.05\,A \quad \text{(costante)} \\ V_R &= R \cdot I = 200 \cdot 0.05 = 10\,V \\ V_g &= V_R = 10\,V \quad \text{(tensione ai capi del generatore)} \\ P_R &= V_R \cdot I = 10 \cdot 0.05 = 0.5\,W \end{split}$$

Esempio 3: Confronto tra Generatori

Osservazioni:

- \bullet Con il generatore di tensione, la corrente dipende da R
- \bullet Con il generatore di corrente, la tensione dipende da R
- Il resistore si comporta identicamente in entrambi i casi

4 Nodi nei Circuiti Elettrici

4.1 Teoria

4.1.1 Definizione di Nodo

Un **nodo** è un punto di connessione in un circuito elettrico dove si incontrano due o più componenti. Più precisamente, un nodo è un punto (o insieme di punti collegati da conduttori ideali) dove convergono almeno tre rami del circuito.

4.1.2 Come Riconoscere i Nodi

Per identificare correttamente i nodi in un circuito:

- 1. Punti di giunzione: Cercare i punti dove si collegano tre o più elementi
- 2. Conduttori ideali: Tutti i punti collegati da un filo (senza resistenze intermedie) formano lo stesso nodo
- 3. Non sono propriamente nodi: I punti dove si collegano solo due elementi non sono propriamente nodi (semplice passaggio di corrente), ma si possono trattare anche quelli come nodi

Proprietà dei nodi:

- In un nodo, la somma algebrica delle correnti è zero (Prima Legge di Kirchhoff o KCL)
- Tutti i punti di un nodo hanno lo stesso potenziale elettrico
- I nodi sono fondamentali per l'analisi dei circuiti

4.1.3 Esempi di Identificazione dei Nodi

In questo circuito misto:

- Nodo A: Punto superiore dove si dividono le correnti verso R_2 , R_3 e R_4 (4 rami: da R_1 e verso le tre resistenze in parallelo)
- Nodo B: Punto inferiore dove si ricongiungono le correnti (4 rami: dalle tre resistenze in parallelo e verso la batteria)
- Totale: 2 nodi principali

4.1.4 Definizione di Maglia

Una maglia (o ciclo) è un percorso chiuso in un circuito elettrico che:

- Parte da un nodo e ritorna allo stesso nodo
- Non passa due volte per lo stesso ramo
- Forma un percorso continuo attraverso i componenti del circuito

Come Riconoscere le Maglie:

- 1. Identificare un punto di partenza (un nodo qualsiasi)
- 2. Seguire un percorso attraverso i componenti del circuito
- 3. Verificare di tornare al punto di partenza senza ripercorrere lo stesso ramo
- 4. Ogni percorso chiuso distinto costituisce una maglia diversa

Esempi di Identificazione delle Maglie Esempio 1: Circuito Serie (1 maglia)

In questo circuito c'è una sola maglia che include la batteria e tutte e tre le resistenze. Esempio 2: Circuito Misto (2 maglie principali)

In questo circuito misto:

- Maglia A (blu): Batteria $\rightarrow R_1 \rightarrow R_2 \rightarrow$ Batteria
- Maglia B (rossa): Batteria $\rightarrow R_1 \rightarrow R_3 \rightarrow$ Batteria
- $\bullet\,$ Esiste anche una maglia interna $R_2\text{-}R_3,$ ma è combinazione delle prime due

Proprietà importanti delle maglie:

- Il numero di maglie indipendenti in un circuito è dato da: M = R N + 1 dove R è il numero di rami e N il numero di nodi
- Le maglie sono fondamentali per applicare la Seconda Legge di Kirchhoff (KVL)
- In circuiti complessi, scegliere le maglie giuste semplifica l'analisi

4.1.5 Prima Legge di Kirchhoff (KCL)

Nei nodi vale la Legge di Kirchhoff delle Correnti:

$$\sum_{k=1}^{n} I_k = 0 (10)$$

ovvero: La somma algebrica delle correnti entranti in un nodo è uguale alla somma delle correnti uscenti.

Esempio applicativo sul circuito parallelo precedente (Nodo A):

$$I_{entrante} = I_1 + I_2 + I_3$$
 oppure: $I_{tot} = I_1 + I_2 + I_3$

dove I_{tot} entra nel nodo e I_1 , I_2 , I_3 escono verso le rispettive resistenze.

4.1.6 Seconda Legge di Kirchhoff (KVL)

Oltre alla legge delle correnti, Kirchhoff formulò anche la **Legge delle Tensioni** (KVL - Kirchhoff's Voltage Law):

$$\sum_{k=1}^{n} V_k = 0 (11)$$

ovvero: La somma algebrica delle tensioni lungo una maglia chiusa è uguale a zero.

Definizione di maglia: Una maglia è un percorso chiuso in un circuito che parte da un punto e ritorna allo stesso punto senza passare due volte per lo stesso ramo.

Come applicare la KVL:

- 1. Scegliere un verso di percorrenza della maglia (orario o antiorario)
- 2. Assegnare il segno positivo alle tensioni che si incontrano dal + al seguendo il verso scelto
- 3. Assegnare il segno negativo alle tensioni che si incontrano dal al +
- 4. La somma algebrica deve essere zero

Esempio applicativo sul circuito serie:

In un circuito serie con una batteria V e tre resistenze R_1 , R_2 , R_3 :

$$V - V_1 - V_2 - V_3 = 0 (12)$$

oppure:

$$V = V_1 + V_2 + V_3 \tag{13}$$

dove la tensione della batteria è positiva (genera tensione) e le cadute di tensione sulle resistenze sono negative (consumano tensione).

Proprietà della KVL:

- Vale per qualsiasi percorso chiuso in un circuito
- È indipendente dal verso di percorrenza scelto
- È fondamentale per l'analisi delle maglie nei circuiti complessi
- Deriva dal principio di conservazione dell'energia

4.2 Assegnazione di Tensioni e Correnti nei Circuiti

4.2.1 Convenzioni Fondamentali

Quando si analizza un circuito elettrico, è fondamentale assegnare correttamente tensioni e correnti seguendo convenzioni standard.

Convenzione per le Correnti:

- La corrente si assegna con un verso arbitrario prima di risolvere il circuito
- Si indica con una freccia sul ramo del circuito
- Se il risultato del calcolo è **positivo**, il verso assegnato è corretto
- Se il risultato è **negativo**, il verso reale è opposto a quello assegnato
- Nei **generatori**, la corrente esce dal polo positivo (interno al generatore)
- Nei **resistori**, la corrente fluisce dal potenziale maggiore al minore

Convenzione per le Tensioni:

- \bullet La tensione si indica con i segni + e ai capi del componente
- Per i **generatori**: il polo + è quello a potenziale maggiore
- Per i **resistori**: il + si mette dove entra la corrente (convenzione degli utilizzatori)
- La tensione si misura sempre tra due punti (differenza di potenziale)

4.2.2 Convenzione degli Utilizzatori

Per i componenti passivi (resistori), si usa la convenzione degli utilizzatori:

Regola: La corrente entra dal polo positivo ed esce dal polo negativo.

4.2.3 Convenzione dei generatori

Per i generatori (batterie, generatori di tensione), si usa la **convenzione dei generatori**: la corrente convenzionale esce dal polo positivo del generatore e rientra nel polo negativo.

Regola: Internamente al generatore, la corrente va dal polo - al polo + (il generatore "pompa" cariche).

Nel circuito esterno, la corrente esce dal – ed entra nel +.

4.2.4 Esempi Pratici

Esempio 1: Circuito Serie - Assegnazione Completa

Spiegazione:

- La corrente I esce dal polo + della batteria
- \bullet Attraversa R_1 e R_2 nello stesso verso
- Su R_1 : il + è a sinistra (dove entra I), il a destra
- Su R_2 : il + è a sinistra (dove entra I), il a destra
- Vale la KVL: $V_g V_1 V_2 = 0 \Rightarrow V_g = V_1 + V_2$

Calcoli: Se $R_1 = 100 \Omega$ e $R_2 = 200 \Omega$:

$$R_{eq} = 300 \Omega$$

$$I = \frac{12}{300} = 0.04 A = 40 \, mAV_1 \qquad = 100 \cdot 0.04 = 4 \, V$$

$$V_2 = 200 \cdot 0.04 = 8 \, V$$

Esempio 2: Circuito Parallelo - Divisione Correnti

Spiegazione:

- Al nodo A: $I_{tot} = I_1 + I_2 + I_3$ (KCL)
- Tutte le resistenze hanno la stessa tensione V = 9V
- Su ogni resistore: il + è in alto (nodo A), il in basso (nodo B)
- Ogni corrente fluisce dall'alto (potenziale maggiore) verso il basso

Calcoli: Se $R_1 = 90 \Omega$, $R_2 = 180 \Omega$, $R_3 = 270 \Omega$:

$$I_1 = \frac{9}{90} = 100 \, mA$$
 (verso corretto: verso il basso)
 $I_2 = \frac{9}{180} = 50 \, mA$
 $I_3 = \frac{9}{270} = 33.3 \, mA$
 $I_{tot} = 100 + 50 + 33.3 = 183.3 \, mA$

Esempio 3: Applicazione della KVL con Segni

Consideriamo una maglia con batteria e resistori:

Applicazione KVL (senso orario):

- Partendo dal polo della batteria e percorrendo la maglia in senso orario:
- Attraverso la batteria: $+V_g$ (si va da a +)
- Attraverso R_1 : $-V_1$ (si va da + a -)

• Attraverso R_2 : $-V_2$ (si va da + a -)

Equazione KVL:

$$+V_g - V_1 - V_2 = 0 \quad \Rightarrow \quad V_g = V_1 + V_2$$
 (14)

Calcoli:

$$I = \frac{15}{300 + 200} = 30 \, mA$$

$$V_1 = 300 \cdot 0.03 = 9 \, V$$

$$V_2 = 200 \cdot 0.03 = 6 \, V$$
Verifica: $15 = 9 + 6 \quad \checkmark$

4.2.5 Riepilogo delle Regole

- 1. Assegnare arbitrariamente i versi delle correnti
- 2. Applicare la convenzione degli utilizzatori/generatori sui resistori: + dove entra la corrente
- 3. Applicare KCL ai nodi: $\sum I_{entranti} = \sum I_{uscenti}$
- 4. **Applicare KVL** alle maglie: percorrere la maglia e sommare algebricamente le tensioni
- 5. Interpretare i risultati: valori negativi indicano versi opposti

5 Resistenze in Serie

5.1 Teoria

Due o più resistenze sono collegate in serie quando sono attraversate dalla stessa corrente.

Resistenza equivalente:

$$R_{eq} = R_1 + R_2 + R_3 + \ldots + R_n \tag{15}$$

Proprietà:

- La corrente è la stessa in tutti i componenti: $I_{tot} = I_1 = I_2 = I_3$
- $\bullet\,$ La tensione totale è la somma delle tensioni parziali: $V_{tot} = V_1 + V_2 + V_3$
- La resistenza equivalente è sempre maggiore della resistenza più grande

5.2 Esercizi Svolti

Esercizio 2.1: Calcolare la resistenza equivalente di tre resistori in serie: $R_1 = 100 \,\Omega$, $R_2 = 220 \,\Omega$, $R_3 = 330 \,\Omega$.

Soluzione:

$$R_{eq} = R_1 + R_2 + R_3 = 100 + 220 + 330 = 650 \,\Omega$$

Esercizio 2.2: Un circuito serie è formato da tre resistori: $R_1 = 1 k\Omega$, $R_2 = 2.2 k\Omega$, $R_3 = 4.7 k\Omega$. Il circuito è alimentato da una tensione di 24 V. Calcolare:

- 1. La resistenza equivalente
- 2. La corrente totale
- 3. La tensione ai capi di ciascun resistore

Soluzione:

1)
$$R_{eq} = 1000 + 2200 + 4700 = 7900 \Omega = 7.9 k\Omega$$

2) $I = \frac{V_{tot}}{R_{eq}} = \frac{24 V}{7900 \Omega} = 3.04 mA$
3) $V_1 = R_1 \cdot I = 1000 \cdot 0.00304 = 3.04 V$
 $V_2 = R_2 \cdot I = 2200 \cdot 0.00304 = 6.69 V$
 $V_3 = R_3 \cdot I = 4700 \cdot 0.00304 = 14.27 V$

Verifica: $V_1 + V_2 + V_3 = 3.04 + 6.69 + 14.27 = 24 V \checkmark$

6 Resistenze in Parallelo

6.1 Teoria

Due o più resistenze sono collegate in parallelo quando hanno gli stessi punti di collegamento, quindi la stessa tensione ai loro capi.

Resistenza equivalente:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$
 (16)

Per due resistenze in parallelo:

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2} \tag{17}$$

Proprietà:

- La tensione è la stessa su tutti i componenti: $V_{tot} = V_1 = V_2 = V_3$
- \bullet La corrente totale è la somma delle correnti parziali: $I_{tot}=I_1+I_2+I_3$
- La resistenza equivalente è sempre minore della resistenza più piccola

6.2 Esercizi Svolti

Esercizio 3.1: Calcolare la resistenza equivalente di due resistori in parallelo: $R_1 = 100 \Omega$, $R_2 = 150 \Omega$.

Soluzione:

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{100 \cdot 150}{100 + 150} = \frac{15000}{250} = 60 \,\Omega$$

Esercizio 3.2: Calcolare la resistenza equivalente di tre resistori in parallelo: $R_1 = 300 \Omega$, $R_2 = 600 \Omega$, $R_3 = 900 \Omega$.

Soluzione:

$$\frac{1}{R_{eq}} = \frac{1}{300} + \frac{1}{600} + \frac{1}{900}$$
$$= \frac{6+3+2}{1800} = \frac{11}{1800}$$
$$R_{eq} = \frac{1800}{11} = 163.6 \,\Omega$$

Esercizio 3.3: Un circuito parallelo è formato da tre resistori: $R_1 = 1 k\Omega$, $R_2 = 2 k\Omega$, $R_3 = 4 k\Omega$. Il circuito è alimentato da una tensione di 12 V. Calcolare:

- 1. La resistenza equivalente
- 2. La corrente in ciascun resistore
- 3. La corrente totale

Solutione:

1)
$$\frac{1}{R_{eq}} = \frac{1}{1000} + \frac{1}{2000} + \frac{1}{4000}$$

$$= \frac{4+2+1}{4000} = \frac{7}{4000}$$

$$R_{eq} = \frac{4000}{7} = 571.4 \Omega$$
2)
$$I_1 = \frac{V}{R_1} = \frac{12}{1000} = 12 \, mA$$

$$I_2 = \frac{V}{R_2} = \frac{12}{2000} = 6 \, mA$$

$$I_3 = \frac{V}{R_3} = \frac{12}{4000} = 3 \, mA$$
3)
$$I_{tot} = I_1 + I_2 + I_3 = 12 + 6 + 3 = 21 \, mA$$

Verifica: $I_{tot} = \frac{V}{R_{eq}} = \frac{12}{571.4} = 21 \, mA \, \checkmark$

7 Partitore di Tensione e Partitore di Corrente

7.1 Partitore di Tensione

7.1.1 Teoria

Il **partitore di tensione** è una configurazione fondamentale in elettrotecnica che permette di ottenere una tensione ridotta da una tensione di alimentazione maggiore, utilizzando resistenze in serie.

Configurazione:

Formula del Partitore di Tensione:

La tensione ai capi di una resistenza in un circuito serie è proporzionale al suo valore rispetto alla resistenza totale:

$$V_1 = V_{in} \cdot \frac{R_1}{R_1 + R_2} \tag{18}$$

$$V_2 = V_{in} \cdot \frac{R_2}{R_1 + R_2} = V_{out} \tag{19}$$

Formula generale per n resistenze:

$$V_k = V_{in} \cdot \frac{R_k}{\sum_{i=1}^n R_i} \tag{20}$$

Proprietà:

- La somma delle tensioni parziali è uguale alla tensione totale: $V_1 + V_2 = V_{in}$
- La corrente è la stessa in tutte le resistenze
- Il partitore funziona solo a vuoto o con carichi ad alta impedenza
- La tensione su ciascuna resistenza è proporzionale al suo valore

7.1.2 Esercizi Svolti

Esercizio 5.1: Dato un partitore di tensione con $V_{in} = 12 V$, $R_1 = 300 \Omega$, $R_2 = 100 \Omega$. Calcolare V_{out} (tensione su R_2).

Soluzione:

$$V_{out} = V_{in} \cdot \frac{R_2}{R_1 + R_2} = 12 \cdot \frac{100}{300 + 100} = 12 \cdot \frac{100}{400} = 12 \cdot 0.25 = 3 V$$

$$V_1 = V_{in} \cdot \frac{R_1}{R_1 + R_2} = 12 \cdot \frac{300}{400} = 9 V$$

Verifica: $V_1 + V_{out} = 9 + 3 = 12 V \checkmark$

Corrente nel circuito:

$$I = \frac{V_{in}}{R_1 + R_2} = \frac{12}{400} = 30 \, mA$$

Esercizio 5.2: Progettare un partitore di tensione per ottenere $V_{out} = 5 V$ da $V_{in} = 15 V$, con $R_2 = 1 k\Omega$. Calcolare R_1 .

Soluzione:

Dalla formula del partitore:

$$V_{out} = V_{in} \cdot \frac{R_2}{R_1 + R_2}$$

$$5 = 15 \cdot \frac{1000}{R_1 + 1000}$$

$$\frac{5}{15} = \frac{1000}{R_1 + 1000}$$

$$\frac{1}{3} = \frac{1000}{R_1 + 1000}$$

$$R_1 + 1000 = 3000$$

$$R_1 = 2000 \Omega = 2 k\Omega$$

Verifica:

$$V_{out} = 15 \cdot \frac{1000}{2000 + 1000} = 15 \cdot \frac{1000}{3000} = 15 \cdot \frac{1}{3} = 5 V \quad \checkmark$$

Esercizio 5.3: Dato un partitore con tre resistenze in serie: $R_1 = 100 \,\Omega$, $R_2 = 200 \,\Omega$, $R_3 = 300 \,\Omega$, alimentato da $V_{in} = 24 \,V$. Calcolare le tensioni su ciascuna resistenza.

Soluzione:

$$R_{tot} = 100 + 200 + 300 = 600 \Omega$$

$$V_1 = 24 \cdot \frac{100}{600} = 24 \cdot \frac{1}{6} = 4 V$$

$$V_2 = 24 \cdot \frac{200}{600} = 24 \cdot \frac{1}{3} = 8 V$$

$$V_3 = 24 \cdot \frac{300}{600} = 24 \cdot \frac{1}{2} = 12 V$$

Verifica: $V_1 + V_2 + V_3 = 4 + 8 + 12 = 24 V \checkmark$

7.2 Partitore di Corrente

7.2.1 Teoria

Il **partitore di corrente** è una configurazione che permette di dividere una corrente tra più resistenze in parallelo, in modo inversamente proporzionale ai loro valori.

Configurazione:

Formula del Partitore di Corrente:

La corrente che attraversa una resistenza in un circuito parallelo è inversamente proporzionale al suo valore:

$$I_1 = I_{in} \cdot \frac{R_2}{R_1 + R_2} \tag{21}$$

$$I_2 = I_{in} \cdot \frac{R_1}{R_1 + R_2} \tag{22}$$

Nota importante: La corrente maggiore scorre nella resistenza minore! Formula generale per n resistenze:

$$I_k = I_{in} \cdot \frac{R_{eq}}{R_k} \tag{23}$$

dove R_{eq} è la resistenza equivalente del parallelo.

Proprietà:

- $\bullet\,$ La somma delle correnti parziali è uguale alla corrente totale: $I_1+I_2=I_{in}$
- La tensione è la stessa su tutte le resistenze
- La corrente si distribuisce in modo inversamente proporzionale alle resistenze
- La resistenza più piccola conduce la corrente maggiore

7.2.2 Esercizi Svolti

Esercizio 5.4: Dato un partitore di corrente con $I_{in}=120\,mA,\,R_1=200\,\Omega,\,R_2=400\,\Omega.$ Calcolare I_1 e I_2 .

Soluzione:

$$I_1 = I_{in} \cdot \frac{R_2}{R_1 + R_2} = 120 \cdot \frac{400}{200 + 400} = 120 \cdot \frac{400}{600} = 120 \cdot \frac{2}{3} = 80 \, mA$$

$$I_2 = I_{in} \cdot \frac{R_1}{R_1 + R_2} = 120 \cdot \frac{200}{600} = 120 \cdot \frac{1}{3} = 40 \, mA$$

Verifica: $I_1 + I_2 = 80 + 40 = 120 \, mA = I_{in} \checkmark$

Osservazione: $R_1 < R_2$ quindi $I_1 > I_2$ (la corrente maggiore passa nella resistenza minore)

Esercizio 5.5: Dato un partitore di corrente con tre resistenze: $R_1 = 100 \,\Omega$, $R_2 = 150 \,\Omega$, $R_3 = 300 \,\Omega$, alimentato da $I_{in} = 330 \,mA$. Calcolare le correnti in ciascuna resistenza.

Soluzione:

Prima calcoliamo la resistenza equivalente:

$$\frac{1}{R_{eq}} = \frac{1}{100} + \frac{1}{150} + \frac{1}{300} = \frac{6+4+2}{600} = \frac{12}{600} = \frac{1}{50}$$

$$R_{eq} = 50 \Omega$$

Ora calcoliamo le correnti usando la formula generale:

$$I_{1} = I_{in} \cdot \frac{R_{eq}}{R_{1}} = 330 \cdot \frac{50}{100} = 330 \cdot 0.5 = 165 \, mA$$

$$I_{2} = I_{in} \cdot \frac{R_{eq}}{R_{2}} = 330 \cdot \frac{50}{150} = 330 \cdot \frac{1}{3} = 110 \, mA$$

$$I_{3} = I_{in} \cdot \frac{R_{eq}}{R_{3}} = 330 \cdot \frac{50}{300} = 330 \cdot \frac{1}{6} = 55 \, mA$$

Verifica: $I_1 + I_2 + I_3 = 165 + 110 + 55 = 330 \, mA = I_{in} \checkmark$

Osservazione: $R_1 < R_2 < R_3$ quindi $I_1 > I_2 > I_3$ (ordine inverso rispetto alle resistenze)

Esercizio 5.6: Un circuito ha $I_{in}=60\,mA,\,R_1=1\,k\Omega,\,R_2=2\,k\Omega.$ Calcolare:

- 1. Le correnti I_1 e I_2
- 2. La tensione comune V
- 3. La potenza dissipata in ciascuna resistenza

Soluzione:

1)
$$I_1 = 60 \cdot \frac{2000}{1000 + 2000} = 60 \cdot \frac{2}{3} = 40 \, mA$$

 $I_2 = 60 \cdot \frac{1000}{3000} = 60 \cdot \frac{1}{3} = 20 \, mA$
2) $R_{eq} = \frac{1000 \cdot 2000}{3000} = \frac{2000000}{3000} = 666.7 \, \Omega$
 $V = I_{in} \cdot R_{eq} = 0.06 \cdot 666.7 = 40 \, V$
(oppure: $V = I_1 \cdot R_1 = 0.04 \cdot 1000 = 40 \, V$)
3) $P_1 = I_1^2 \cdot R_1 = (0.04)^2 \cdot 1000 = 1.6 \, W$
 $P_2 = I_2^2 \cdot R_2 = (0.02)^2 \cdot 2000 = 0.8 \, W$

7.3 Confronto tra Partitore di Tensione e di Corrente

Caratteristica	Partitore di Tensione	Partitore di Corrente
Configurazione	Serie	Parallelo
Grandezza divisa	Tensione	Corrente
Grandezza comune	Corrente	Tensione
Proporzionalità	Diretta $(V_k \propto R_k)$	Inversa $(I_k \propto \frac{1}{R_k})$
Formula	$V_k = V_{in} \cdot \frac{R_k}{R_{tot}}$	$I_k = I_{in} \cdot \frac{R_{eq}}{R_k}$
Resistenza maggiore	Riceve tensione maggiore	Riceve corrente minore

Regola pratica:

• Partitore di tensione: La resistenza più grande "prende" più tensione

• Partitore di corrente: La resistenza più piccola "prende" più corrente

8 Circuiti Misti (Serie-Parallelo)

8.1 Teoria

I circuiti misti contengono sia collegamenti in serie che in parallelo. Per risolverli:

- 1. Identificare i gruppi di resistenze in serie o parallelo
- 2. Calcolare le resistenze equivalenti parziali
- 3. Procedere per semplificazioni successive fino ad ottenere R_{eq} totale

8.2 Esercizi Svolti

Esercizio 4.1: Dato il seguente circuito misto:

Calcolare:

- 1. La resistenza equivalente del parallelo $R_2 \parallel R_3$
- 2. La resistenza equivalente totale
- 3. La corrente totale I_{tot}
- 4. La tensione V_1 e V_{23}
- 5. Le correnti I_2 e I_3

Soluzione:

1)
$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{200 \cdot 300}{200 + 300} = \frac{60000}{500} = 120 \,\Omega$$

2) $R_{eq} = R_1 + R_{23} = 100 + 120 = 220 \,\Omega$
3) $I_{tot} = \frac{V_g}{R_{eq}} = \frac{24}{220} = 0.109 \,A = 109 \,mA$
4) $V_1 = R_1 \cdot I_{tot} = 100 \cdot 0.109 = 10.9 \,V$
 $V_{23} = R_{23} \cdot I_{tot} = 120 \cdot 0.109 = 13.1 \,V$
5) $I_2 = \frac{V_{23}}{R_2} = \frac{13.1}{200} = 65.5 \,mA$
 $I_3 = \frac{V_{23}}{R_2} = \frac{13.1}{300} = 43.7 \,mA$

Verifiche:

•
$$V_1 + V_{23} = 10.9 + 13.1 = 24 V \checkmark$$

•
$$I_2 + I_3 = 65.5 + 43.7 = 109.2 \, mA \approx I_{tot} \checkmark$$

Esercizio 4.2: Dato il seguente circuito misto:

Calcolare:

- 1. La resistenza equivalente del ramo serie $R_2 + R_3$
- 2. La resistenza equivalente totale
- 3. La corrente totale e le correnti nei due rami
- 4. Tutte le tensioni

Soluzione:

1)
$$R_{23} = R_2 + R_3 = 100 + 200 = 300 \Omega$$

2) $R_{eq} = \frac{R_1 \cdot R_{23}}{R_1 + R_{23}} = \frac{150 \cdot 300}{150 + 300} = \frac{45000}{450} = 100 \Omega$
3) $I_{tot} = \frac{V_g}{R_{eq}} = \frac{30}{100} = 0.3 A = 300 mA$
 $I_1 = \frac{V_g}{R_1} = \frac{30}{150} = 0.2 A = 200 mA$
 $I_{23} = \frac{V_g}{R_{23}} = \frac{30}{300} = 0.1 A = 100 mA$
4) $V_1 = V_g = 30 V$ (resistenza in parallelo)
 $V_2 = R_2 \cdot I_{23} = 100 \cdot 0.1 = 10 V$
 $V_3 = R_3 \cdot I_{23} = 200 \cdot 0.1 = 20 V$

Verifiche:

•
$$I_1 + I_{23} = 200 + 100 = 300 \, mA = I_{tot} \checkmark$$

•
$$V_2 + V_3 = 10 + 20 = 30 V = V_q \checkmark$$

Esercizio 4.3: Dato il seguente circuito misto più complesso:

Calcolare:

- 1. La resistenza equivalente totale
- 2. La corrente totale
- 3. Tutte le tensioni e correnti del circuito

Soluzione:

1)
$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{100 \cdot 150}{100 + 150} = \frac{15000}{250} = 60 \,\Omega$$

$$R_{eq} = R_1 + R_{23} + R_4 = 50 + 60 + 30 = 140 \,\Omega$$
2)
$$I_{tot} = \frac{V_g}{R_{eq}} = \frac{48}{140} = 0.343 \,A = 343 \,mA$$
3)
$$V_1 = R_1 \cdot I_{tot} = 50 \cdot 0.343 = 17.15 \,V$$

$$V_{23} = R_{23} \cdot I_{tot} = 60 \cdot 0.343 = 20.58 \,V$$

$$V_4 = R_4 \cdot I_{tot} = 30 \cdot 0.343 = 10.29 \,V$$

$$I_2 = \frac{V_{23}}{R_2} = \frac{20.58}{100} = 205.8 \,mA$$

$$I_3 = \frac{V_{23}}{R_3} = \frac{20.58}{150} = 137.2 \,mA$$

Verifiche:

•
$$V_1 + V_{23} + V_4 = 17.15 + 20.58 + 10.29 = 48.02 V \approx V_g \checkmark$$

•
$$I_2 + I_3 = 205.8 + 137.2 = 343 \, mA = I_{tot} \checkmark$$

Esercizio 4.4: Dato il seguente circuito misto più complesso:

