

R מעבדה בניתוח נתונים עם עבודת סיום קורס

HR Analytics: Job Change of Data Scientists

Predict who will move to a new job

מגישים:

רותם לוי 311577126 אלון קרסניצקי 204498091

מרצה הקורס:

אבי זכאי

תוכן עניינים

.1	3	3.
.2	5 EDA – סטטיסטיקה תיאורית	5.
.3	שלב המידול	32
.4	36	36
.5	מסקנות	38

רשימת תרשימים וטבלאות

7	Figure 1 – city
8	Figure 2- city development index
9	Figure 3- Gender
10	Figure 4 - relevent experience
11	Figure 5 - enrolled university
12	Figure 6 - education level
13	Figure 7 - major discipline
	Figure 8 - Experience
15	Figure 9 - company size
16	Figure 10 - company type
17	Figure 11 - last new job
18	Figure 12 - training hours
19	Target13 Figure
20	Figure 14 - City & target - correlation
21	Figure 15 - city development index & target - correlation
22	Figure 16 - Gender & target – correlation
23	Figure 17 - relevant experience & target – correlation
24	Figure 18 - enrolled university & target – correlation
25	Figure 19 - education level & target – correlation
26	Figure 20 - major discipline & target – correlation
27	Figure 21 - experience & target – correlation
28	Figure 22 - company size & target – correlation
29	Figure 23 - company type & target – correlation
30	Figure 24 - last new job & target – correlation
31	Figure 25 - training hours & target – correlation
33	Figure 26 - Decision Tree Model
34	Figure 27 - Random Forest Model
35	Figure 28 - Cross Validation KNN
36	Figure 29 - Logistic Regression - Prediction
36	Figure 30 - Decision Tree - Prediction
37	Figure 31 - Random Forest - Prediction
37	Figure 32 - KNN - Prediction

<u>חלק ב'</u>

1. תיאור הבעיה

חברה הפעילה התחום ה Big Data רוצה להעסיק מדעני נתונים. כדי להתקבל לחברה על המועמדים לעבור הכשרות וקורסים.

החברה רוצה לדעת מי מבין המועמדים האלה באמת רוצה לעבוד תקופה ממושכת בחברה לאחר ההכשרה – במטרה להפחית בעלויות גיוס העובדים וההכשרה שלהם. הדבר משפיע על איכות ההכשרה, תכנון הקורסים וסיווג המועמדים.

תיאור משתנה המטרה:

• target: 0 - Not looking for job change, 1 - Looking for a job change (Categorical)

תיאור הפיצ'רים:

- Enrollee id : Unique ID for candidate (Categorical)
- city: City code (Categorical)
- city_ development _index : Development index of the city (Numeric)
- gender: Gender of candidate (Categorical)
- Relevant experience: Relevant experience of candidate (Categorical)
- Enrolled university: Type of University course enrolled if any (Categorical)
- Education level: Education level of candidate (Categorical)
- Major discipline: Education major discipline of candidate (Categorical)
- experience: Candidate total experience in years (Numeric)
- Company size: No of employees in current employer's company (Categorical)
- Company type : Type of current employer (Categorical)
- Last new job: Difference in years between previous current job (Numeric)
- Training hours: training hours completed (Numeric)

```
Rows: 19,158
Columns: 14
$ 1..enrollee_id
                          <int> 8949, 29725, 11561, 33241, 666, 21651, 28806, 402...
                          <fct> city_103, city_40, city_21, city_115, city_162, c...
$ city
$ city_development_index <db1> 0.920, 0.776, 0.624, 0.789, 0.767, 0.764, 0.920, ...
                          <fct> Male, Male, NA, NA, Male, NA, Male, Male, Male, N...
$ gender
$ relevent_experience
                          <fct> Has relevent experience, No relevent experience, ...
                          <fct> No Enrollment, No Enrollment, Full time, NA, No E...
$ enrolled_university
$ education_level
                          <fct> Graduate, Graduate, Graduate, Graduate, Masters, ...
$ major_discipline
                          <fct> STEM, STEM, STEM, Business Degree, STEM, STEM, NA...
                          <db7> 21, 15, 5, 0, 21, 11, 5, 13, 7, 17, 2, 5, 21, 2, ...
$ experience
                          <fct> NA, 50-99, NA, NA, 50-99, NA, 50-99, <10, 50-99, ...
$ company_size
                          <fct> NA, Pvt Ltd, NA, Pvt Ltd, Funded Startup, NA, Fun...
$ company_type
                          <db7> 1, 5, 0, 0, 4, 1, 1, 5, 1, 5, 0, 1, 3, 0, 0, 5, 0...<int> 36, 47, 83, 52, 8, 24, 24, 18, 46, 123, 32, 108, ...
$ last_new_job
$ training_hours
$ target
                          <fct> 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0...
```

מטרת המחקר:

מטרת המחקר היא לחזות אילו מבין המועמדים לעבודה עתידים להישאר בה לאורך זמן. במהלך המחקר אנו נבנה מודלים שונים אשר יחזו האם העובד לא מחפש שינוי עבודה (0) או שהעובד כן מחפש שינוי עבודה (1).

במהלך המחקר נבחן מספר מודלים שונים ומניפולציות שונות על הנתונים וננסה לראות אילו תכונות הן המשפיעות ביותר על האם העובד מחפש / לא מחפש שינוי עבודה.

מטרת המחקר היא (חיזוי), לבנות מודל שיחזה האם מועמד מסוים מחדש שינוי עבודה. המטרה הנוספת במחקר היא לדעת (הסקה סטטיסטית) אילו תכונות / פיצ'רים קשורים למשתנה המטרה – לכך שהאם העובד יחפש עבודה אחרת.

Logistic Regression, KNN, Decision Tree & במהלך המחקר אנו נבדוק מספר מודלים שונים כמו Random Forest

ונבדוק איזה מודל הוא הטוב ביותר לחיזוי הבעיה ואילו תכונות משפיעות הכי הרבה על ההחלטה.

2. סטטיסטיקה תיאורית – EDA

General:

summery:

```
> summary(df)
 enrollee_id
                     city
                               city_development_index
                                                       gender
Min.
      : 1
                city_103:4355
                               Min. :0.4480
                                                     Female: 1238
1st Qu.: 8554
               city_21 :2702
                               1st Qu.:0.7400
                                                     Male :13221
                               Median :0.9030
Median :16983
               city_16 :1533
                                                     other: 191
                                     :0.8288
                                                     NA's : 4508
      :16875
                city_114:1336
                               Mean
Mean
                               3rd Qu.:0.9200
3rd Qu.:25170
                city_160: 845
       :33380
                city_136: 586
                                      :0.9490
Max.
                               Max.
                (Other) :7801
             relevent_experience
                                   enrolled_university
                                                            education_level
                               Full time
                                           : 3757
Has relevant experience:13792
                                                                    :11598
                                                      Graduate
No relevant experience: 5366
                                No Enrollment:13817
                                                                    : 2017
                                                      High School
                                                      Masters
                                Part time
                                           : 1198
                                                                    : 4361
                                NA's
                                                386
                                                                       414
                                                      Phd
                                             :
                                                      Primary School:
                                                                       308
                                                      NA's
                                                                       460
       major_discipline experience
                                         company_size
                                                                   company_type
            : 253
                       Min. : 0.0
                                      50-99
                                              :3083
                                                      Early Stage Startup: 603
Business Degree:
                                      100-500 : 2571
                 327
                       1st Qu.: 4.0
                                                      Funded Startup
                                                                       :1001
                       Median: 9.0
                                              :2019
Humanities : 669
                                      10000+
                                                                         : 521
                                                      NGO
                       Mean :10.1
                  223
                                      10-49
                                                                        : 121
No Major
                                               :1471
                                                      Other
                 381
                                                                         : 955
                                                      Public Sector
                       3rd Qu.:16.0
                                      1000-4999:1328
Other
STEM
               :14492
                       Max.
                              :21.0
                                      (Other) :2748
                                                      Pvt Ltd
                                                                         :9817
               : 2813
NA's
                       NA's
                              :65
                                      NA's
                                               :5938
                                                      NA's
                                                                         :6140
 last_new_job training_hours
                              target
             Min. : 1.00
Min. :0
                              0:14381
              1st Qu.: 23.00
1st Qu.:1
                              1: 4777
Median :1
              Median : 47.00
Mean :2
              Mean : 65.37
3rd Qu.:3
              3rd Qu.: 88.00
              Max. :336.00
Max. :5
NA's
       :423
```

Table 1 - summery data

Data Frame:

```
> str(df)
               19158 obs. of 14 variables:
: int 8949 29725 11561 33241 666 21651 28806 402 27107 699
'data.frame':
$ enrollee_id
                        : Factor w/ 123 levels "city_1", "city_10",..: 6 78 65 15 51 58 50 84
$ city
6 6 ...
: Factor w/ 3 levels "Female","Male",...: 2 2 NA NA 2 NA 2 2 2 NA ...
                        : Factor w/ 2 levels "Has relevant experience",..: 1 2 2 2 1 1 1 1 1
$ relevent_experience
                        : Factor w/ 3 levels "Full time", "No Enrollment", ...: 2 2 1 NA 2 3 2
$ enrolled_university
2 2 2 ...
                        : Factor w/ 5 levels "Graduate", "High School", ...: 1 1 1 1 3 1 2 1 1
$ education_level
1 ...
                        : Factor w/ 6 levels "Arts", "Business Degree", ..: 6 6 6 2 6 6 NA 6 6
$ major_discipline
6 ...
                        : num 21 15 5 0 21 11 5 13 7 17 ...
$ experience
                        : Factor w/ 8 levels "<10","10-49",..: NA 6 NA NA 6 NA 6 1 6 5 ...
: Factor w/ 6 levels "Early Stage Startup",..: NA 6 NA 6 2 NA 2 6 6
$ company_size
$ company_type
$ last_new_iob
                        : num 1500411515...
                        : int 36 47 83 52 8 24 24 18 46 123 ...
$ training_hours
                        : Factor w/ 2 levels "0", "1": 2 1 1 2 1 2 1 2 1 ...
$ target
```

Table 2 - variables

number of NA in each Colum:

```
sapply(df, function(x) sum(is.na(x)))
         enrollee_id
                                        city_development_index
                   0
              gender
                                                enrolled_university
                        relevent_experience
                4508
     education_level
                            major_discipline
                                                          experience
                 460
                                        2813
                                                                  65
        company_size
                                company_type
                                                        last_new_job
                                                                 423
                5938
                                        6140
      training_hours
                                      target
```

Table 3 - NA's

<u>סטטיסטיקה תיאורית של הפיצ'רים:</u>

city:

Figure 1 – city

city development index:

Figure 2- city development index

summary(df\$city_development_index)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.4480 0.7400 0.9030 0.8288 0.9200 0.9490

Gender:

Figure 3- Gender

```
> ft
   Gender Freq Rel.Freq
1   Male 13221   90.25 > summary(df$gender)
2 Female 1238   8.45 Female Male other NA's
3   other 191   1.30   1238   13221   191   4508
```

relevent experience:

Figure 4 - relevent experience

enrolled university:

Figure 5 - enrolled university

```
> ft
 enrolled university Freq Rel.Freq
       No Enrollment 13817
1
                               73.60
2
           Full time 3757
                               20.01
3
           Part time 1198
                               6.38
> summary(df\u00e4enrolled_university)
    Full time No Enrollment Part time
                                                   NA's
         3757
                      13817
                                     1198
                                                    386
```

education level:

Figure 6 - education level

```
> ft
  education level Freq Rel.Freq
                                 62.03
1
           Graduate 11598
2
                                 23.32
                       4361
            Masters
3
                                 10.79
       High School
                       2017
4
                 Phd
                        414
                                   2.21
5
                         308
                                  1.65
   Primary School
summary(df$education_level)
   Graduate
           High School
                           Masters
                                           Phd Primary School
                                                                  NA's
     11598
                  2017
                              4361
                                           414
                                                                   460
                                                       308
```

major discipline:

Figure 7 - major discipline

> ft major discipline Freq Rel.Freq 1 88.66 STEM 14492 2 Humanities 669 4.09 3 0ther 381 2.33 4 327 2.00 Business Degree 5 1.55 253 Arts 1.36 6 No Major 223

summary(df\$major_discipline)

Arts	Business	Degree	Humanities	No Major
253		327	669	223
0ther		STEM	NA's	
381		14492	2813	

Experience:

Figure 8 - Experience

summary(df\$experience)

Min. 1s	st Qu.	Median	Mean 3	Brd Qu.	Max.	NA's
0.0	4.0	9.0	10.1	16.0	21.0	65

company size:

Figure 9 - company size

> ft company size Freq Rel.Freq 1 50-99 3083 23.32 2 3 100-500 2571 19.45 10000+ 2019 15.27 4 10-49 1471 11.13 5 1000-4999 1328 10.05 6 <10 1308 9.89 7 500-999 877 6.63 5000-9999 563 4.26

summary(df\$company_size)

<10	10-49	100-500	1000-4999	10000+
1308	1471	2571	1328	2019
50-99	500-999	5000-9999	NA's	
3083	877	563	5938	

company type:

Figure 10 - company type

> ft

company type Freq Rel	.Freq
1 Pvt Ltd 9817	75.41
2 Funded Startup 1001	7.69
3 Public Sector 955	7.34
4 Early Stage Startup 603	4.63
5 NGO 521	4.00
6 Other 121	0.93

> summary(df\$company_type)

Early Stage Startup	Funded Startup	NGO
603	1001	521
Other	Public Sector	Pvt Ltd
121	955	9817
NA's		
6140		

~ 16 ~

last new job:

Figure 11 - last new job

summary(df\$last_new_job)

Min. 1st	Qu.	Median	Mean 3	rd Qu.	Max.	NA's
0	1	1	2	3	5	423

training hours:

Figure 12 - training hours

summary(df\$training_hours)

Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 23.00 47.00 65.37 88.00 336.00

Target:

Target13 Figure

```
> ft
target Freq Rel.Freq
1 0 14381 75.07
2 1 4777 24.93
```

Relationships between the features and target:

City & target - correlation:

Figure 14 - City & target - correlation

> chisq.test(df\$city, df\$target)

Pearson's Chi-squared test

data: df\$city and df\$target
X-squared = 2998.8, df = 122, p-value < 2.2e-16</pre>

city development index & target - correlation:

Figure 15 - city development index & target - correlation

```
> t.test(df\scity_development_index \sim df\starget, mu = 0, alternative = "t wo.sided", var.equal = T)
```

Two Sample t-test

Gender & target – correlation:

Figure 16 - Gender & target – correlation

df\$gender	df\$target 0	1	Row Total
Female	912 1.656 0.737 0.081 0.062	326 5.504 0.263 0.096 0.022	1238 1238 0.085
Male	10209 0.204 0.772 0.906 0.697	3012 0.678 0.228 0.889 0.206	 13221 0.902
other	141 0.231 0.738 0.013 0.010	50 0.769 0.262 0.015 0.003	191 191 0.013
Column Total	11262 0.769	3388 0.231	14650 14650

> chisq.test(df\$gender, df\$target)

Pearson's Chi-squared test

data: df\$gender and df\$target
X-squared = 9.0422, df = 2, p-value = 0.01088

relevent experience & target – correlation:

Figure 17 - relevant experience & target – correlation

df\$relevent_experience	df\$target 0	1	Row Total
			ii
Has relevant experience	10831	2961	13792
	22.069	66.439	
	0.785	0.215	0.720
	0.753	0.620	
	0.565	0.155	
No relevant experience	3550	1816	5366
	56.724	170.766	
	0.662	0.338	0.280
	0.247	0.380	
	0.185	0.095	
- 1 3	14201		
Column Total	14381	4777	19158
	0.751	0.249	

> chisq.test(df\$relevent_experience, df\$target)

Pearson's Chi-squared test with Yates' continuity correction

data: df\$relevent_experience and df\$target
X-squared = 315.34, df = 1, p-value < 2.2e-16</pre>

enrolled university & target – correlation:

Figure 18 - enrolled university & target – correlation

df\$enrolled_university	df\$target 0	1	Row Total
Full time	 2326 88.321	 1431 267.923	 3757
	0.619 0.165	0.381	0.200
	0.124 	0.076 	
No Enrollment	10896 24.498	2921 74.314	13817
	0.789 0.772 0.580	0.211 0.628 0.156	0.736
Part time	 896 0.028	302 0.084	 1198
	0.748 0.063 0.048	0.252 0.065 0.016	0.064
Column Total	14118 0.752 	4654 0.248	 18772

> chisq.test(df\u00e4enrolled_university, df\u00e4target)

Pearson's Chi-squared test

data: df\$enrolled_university and df\$target
X-squared = 455.17, df = 2, p-value < 2.2e-16</pre>

education level & target – correlation:

Figure 19 - education level & target – correlation

df\$education_level	df\$target 0	1	Row Total
Graduate	8353 13.796 0.720 0.596 0.447	3245 41.405 0.280 0.694 0.174	11598 0.620
High School	1623 8.011 0.805 0.116 0.087	394 24.042 0.195 0.084 0.021	2017
Masters	3426 7.335 0.786 0.244 0.183	935 22.015 0.214 0.200 0.050	4361 0.233
Phd	356 6.657 0.860 0.025 0.019	58 19.980 0.140 0.012 0.003	414 0.022
Primary School	267 5.602 0.867 0.019 0.014	41 16.813 0.133 0.009 0.002	308
Column Total	14025	4673 0.250	18698

> chisq.test(df\$education_level, df\$target)

Pearson's Chi-squared test

data: df\$education_level and df\$target
X-squared = 165.66, df = 4, p-value < 2.2e-16</pre>

major discipline & target – correlation:

Figure 20 - major discipline & target – correlation

> chisq.test(df\$major_discipline, df\$target)

Pearson's Chi-squared test

data: df\$major_discipline and df\$target
X-squared = 12.207, df = 5, p-value = 0.03206

experience & target – correlation:

Figure 21 - experience & target – correlation

Two Sample t-test

```
data: df$experience by df$target
t = 24.808, df = 19091, p-value < 2.2e-16
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
2.550722 2.988359
sample estimates:
mean in group 0 mean in group 1
10.789734 8.020194</pre>
```

company size & target – correlation:

Figure 22 - company size & target – correlation

> chisq.test(df\$company_size, df\$target)

Pearson's Chi-squared test

data: df\$company_size and df\$target
X-squared = 45.532, df = 7, p-value = 1.078e-07

company type & target – correlation:

Figure 23 - company type & target – correlation

last new job & target – correlation:

Figure 24 - last new job & target – correlation

> t.test(df\$last_new_job ~ df\$target, mu = 0, altern
ative = "two.sided", var.equal = T)

Two Sample t-test

training hours & target – correlation:

Figure 25 - training hours & target – correlation

```
> t.test(df\$training_hours ~ df\$target, mu = 0, alte
rnative = "two.sided", var.equal = T)

Two Sample t-test

data: df\$training_hours by df\$target
t = 2.9871, df = 19156, p-value = 0.00282
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
1.029823 4.960731
sample estimates:
mean in group 0 mean in group 1
66.11376 63.11848
```

3. שלב המידול

הכנה לפני תחילת המידול:

- 1. כתיבת פונקציית חיזוי.
- 2. הורדת עמודות מרובות בערכים חסרים (מגדר, גודל חברה, סוג חברה, תחום עיקרי).
 - 3. הורדת שורות עם ערכים חסרים (NA.Omit).
 - 4. חלוקה לקבוצת אימון וקבוצת ביקורת.

המודלים:

Logistic Regression Model:

```
> summary(logistic)
Call:
glm(formula = target ~ . - city, family = binomial, data = training_set)
Deviance Residuals:
                 Median
   Min
             1q
                               3Q
                                      Max
-1.8376 -0.6823 -0.5335 -0.3303
                                   2.5823
Coefficients:
                                          Estimate Std. Error z value Pr(>|z|)
                                         3.6724114   0.1359105   27.021   < 2e-16 ***
(Intercept)
                                        -5.3345141 0.1684496 -31.668 < 2e-16 ***
city_development_index
relevent_experienceNo relevant experience 0.6210007
                                                    0.0517203 12.007
                                                                      < 2e-16 ***
                                                              -6.525 6.78e-11 ***
enrolled_universityNo Enrollment
                                        -0.3619029
                                                   0.0554612
                                                              -4.205 2.61e-05 ***
enrolled_universityPart time
                                        -0.3875530
                                                   0.0921555
                                        -0.9106392
                                                    0.0792596 -11.489 < 2e-16 ***
education_levelHigh School
education_levelMasters
                                        -0.2010428
                                                              -3.887 0.000101 ***
                                                   0.0517175
education_levelPhd
                                        -0.5505973
                                                   0.1760720
                                                              -3.127 0.001765 **
                                                              -6.090 1.13e-09 ***
education_levelPrimary School
                                        -1.4125714
                                                   0.2319653
                                        -0.0179727
                                                    0.0040527
                                                              -4.435 9.22e-06 ***
experience
last_new_job
                                         0.0221661 0.0148533
                                                              1.492 0.135610
                                        training_hours
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 16062 on 14410 degrees of freedom
Residual deviance: 14135 on 14399 degrees of freedom
ATC: 14159
Number of Fisher Scoring iterations: 4
```

Table 4 - Logistic Regression

Decision Tree Model:

> summary(tree)

```
Classification tree:
tree(formula = target ~ . - city, data = training_set)
Variables actually used in tree construction:
[1] "city_development_index" "relevent_experience"
Number of terminal nodes: 3
Residual mean deviance: 0.9838 = 14170 / 14410
Misclassification error rate: 0.2166 = 3121 / 14411
```

Table 5 - Decision Tree Model

Figure 26 - Decision Tree Model

Random Forest Model:

> summary(Random_forest)

```
Length Class Mode
call
                        -none- call
                     1
                        -none- character
type
                14411
predicted
                       factor numeric
                  900
err.rate
                       -none- numeric
confusion
                     6
                        -none- numeric
votes
                28822
                       matrix numeric
                14411
oob.times
                        -none- numeric
classes
                        -none- character
importance
                        -none- numeric
                        -none- NULL
importanceSD
                     0
localImportance
                     0
                        -none- NULL
proximity
                     0
                        -none- NULL
ntree
                     1
                       -none- numeric
                     1
mtry
                        -none- numeric
forest
                   14
                       -none- list
                14411
                        factor numeric
У
test
                     0
                        -none- NULL
                     0
                        -none- NULL
inbag
                     3
                        terms call
terms
> importance(Random_forest)
                       MeanDecreaseGini
```

city_development_index 437.50883 relevent_experience 57.77663 enrolled_university 66.15813 education_level 59.18746 experience 119.47218 last_new_job 44.13822 99.40828 training_hours

Table 6 - Random Forest Model

Table 7 - Random Forest Model – importance

Random_forest

Figure 27 - Random Forest Model

KNN Model:

- 1. הכנת קובץ נתונים ללא עמודות קטגוריאליות.
 - 2. ביצוע נרמול על כל העמודות (המספריות).
- . ביצוע Cross Validation לבחירת ערך ה C. ביצוע
 - 4. ביצוע המודל עם ערך ה K הרצוי

Figure 28 - Cross Validation KNN

K = 37 = 1ה א הטוב ביותר

Logistic Regression Model:

> accuracy_LR = confusion_Matrixs(confusion_logistic)

```
predictions 0 1
0 2573 690
1 146 194
[1] "accuracy:" "0.768"
[1] "sensitivity:" "0.2195"
[1] "specificity:" "0.9463"
[1] "F1Score:" "0.317"
[1] "PPV:" "0.5706"
[1] "NPV:" "0.7885"
```

Figure 29 - Logistic Regression - Prediction

Decision Tree Model:

> accuracy_Tree = confusion_Matrixs(confusion_tree)

```
test.predictions 0 1
0 2459 498
1 260 386
[1] "accuracy:" "0.7896"
[1] "sensitivity:" "0.4367"
[1] "specificity:" "0.9044"
[1] "F1Score:" "0.5046"
[1] "PPV:" "0.5975"
[1] "NPV:" "0.8316"
```

Figure 30 - Decision Tree - Prediction

Random Forest Model:

```
> accuracy_RF = confusion_Matrixs(confusion_RF)
    test.predictions
        0   1
    0 2604 115
    1 713 171
[1] "accuracy:" "0.7702"
[1] "sensitivity:" "0.5979"
[1] "specificity:" "0.785"
[1] "F1Score:" "0.2923"
[1] "PPV:" "0.1934"
[1] "NPV:" "0.9577"
```

Figure 31 - Random Forest - Prediction

KNN Model:

Figure 32 - KNN - Prediction

5. מסקנות

• שלב הכנת הנתונים:

- סוגי הפיצ'רים: צורת ההתייחסות לפיצ'רים פעם כמספר ופעם כקטגוריהמשפיעה על החיזוי.
 - ערכים חסרים: ריבוי של ערכים חסרים משפיע מאוד על החיזוי. טיפול נכון בערכים אלה יכול לשפר מאוד את טיב החיזוי.
 - עמודות בעיתיות: חשוב לבחור בקפידה איזה עמודות חשובות, בין איזה
 עמודות יש קורלציה גבוהה ולטפל בהן, ולהתאים את העמודות למודל
 הנבחר.
- ס קיים קושי בבדיקת הקורלציה בין משתנים שאינם מאותו סוג (כמותי מול קטגוריאלי).

• שלב המידול:

- ∘ רגרסיה לוגיסטית
- ב הפיצ'ר city development index מאוד משפיע על משתנה בפיצ'ר הפיצ'ר.
 - עץ החלטה 🔈
- מודל זה מתעלם מרוב הפיצ'רים. הוא בוחר רק שני פיצ'רים.
 - .city development index הפיצ'ר העיקרי שמכריע הוא
 - יער אקראי о
 - לוקח את כל הפיצ'רים אך שוב ניתן לראות לפי מדד GINI שהפיצ'ר city development index הוא החזק ביותר.
 - חשוב לשים לב למספר העצים שממנו מורכב המודל.
 - KNN o
 - צריך השתמש רק בפיצ'רים הכמותיים.
 - חשוב לא לשכוח לנרמל את הנתונים.
- חשוב להריץ מספר מודלים על מנת לבחור את ה-K המתאים ביותר.

:כלליות

סשתנים חשובים: ○

- הפיצ'ר city development index מאוד משפיע על משתנה city development index המטרה בכל המודלים.
- הקורלציה בין city development index ו- גבוהה ולכן city לוותר על city.

ס המודל הטוב ביותר: ○

- של העץ הוא הטוב ביותר, זהו המודל הגרוע accuracy של מרות שה למרות שה מתבסס למעשה על פיצ'ר אחד בלבד.
- יער אקראי הוא מודל לא טוב, מכיוון שניתן לראות שהוא לא חוזה
 בצורה טובה את ערך הניבוי חיובי. (PPV)
- הרגרסיה הלוגיסטית חוזה בצורה טובה יחסית את שני ערכי הניבוי,אך עם זאת יכולת החיזוי הכללית שלה לא טובה.
- הוא המודל היציב ביותר לדעתנו, אך יש לציין כי במודל זה KNN אנו חוזים על פי הפיצ'רים הכמותיים בלבד, ומתעלמים מהאחרים.

שיפור תוצאות החיזוי: ○

- שיפול בערכים החסרים בצורה טובה יותר, השלמת הערכים החסרים בצורה חכמה בעזרת Imputation.
 - החלפת כל הפיצ'רים הקטגוריאליים לכמותיים או להיפך (Encode / Scale).
 - שינוי העמודות (הוספה / הורדת מימד).
 - **בחירת העמודות לחיזוי בצורה טובה יותר.**

_

סיכום:

- ס לפי התוצאות שקיבלנו נראה כי קשה מאוד לקבוע איזה מודל טוב יותר.
- כחלק מתהליך העבודה עשינו הרבה 'ניסוי ותהייה' בנושא התאמת
 הפיצ'רים, ניקוי הנתונים וניסיונות בבחירת המודלים שלדעתנו יתאימו.
- סיפול בערכים החסרים היה שלב הכרחי שהשפיע המון על המודלים. ⊙
 - . לבסוף קיבלנו מודלים עם מעל 0.7 אחוז חיזוי שזה נחשב טוב