MATH 310: Numerical Analysis Details for Homework #7 due Wednesday, Oct 28 at 9 am

- 1. Show that the sequence $p_n = 10^{-2^n}$ converges quadratically to zero.
- 2. Show that the sequence $p_n = 10^{-n^k}$ does not converge quadratically to zero, regardless of the size of the exponent k > 1.
- 3. (a) Show that the sequence $p_n = \frac{1}{n^2}$ for $n \ge 1$ converges linearly to 0.
 - (b) Show that the sequence $p_n = \frac{1}{n^k}$ for $n \ge 1$ converges linearly to 0, for any integer $k \ge 1$.
- 4. Write a program or script that computes the errors in the Bisection method, Newton's Method, and the secant method for finding an estimate to $\alpha = \sqrt{7}$ by finding a zero of $f(x) = x^2 7$. Then use the table of errors you generate to see if you can detect the rates of convergence for each of these. Write a few paragraphs, explaining your results. You will be graded on your commentary.
- 5. The 'fixed slope' method. Another way of modifying Newton's method is to substitute a non-zero constant g for the $f'(x_n)$ in the formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{q},$$

where g is some reasonable value. This of course saves us the evaluation of a derivative and can be quite a reasonable algorithm in some situations.

Answer the following questions for finding a root α to $f(x) = 2 - e^{-x}$.

- (a) Give the exact value of the root α , and use MATLAB or a calculator to give an estimate of α .
- (b) Give the iterative function $\varphi(x)$ for this algorithm. At this point this should be a function of g. Then compute symbolically the derivative $\varphi'(x)$.
- (c) Suppose you choose g = 1 and your initial guess is $x_0 = 2$. Perform a few iterations of this algorithm (by hand is fine) and determine if the algorithm converges to the root α .
- (d) By mimicking the error analysis we performed in class, give an expression for the error e_{k+1} as a function of $\varphi'(x)$ and e_k . Simplify.
- (e) Now suppose that you start with $x_0 = 0$ as your initial guess. Can you find a positive number a such that the fixed slope method converges for g > a and diverges for g < a? Explain. (In class we saw that the fixed slope method converges for g = 2 and diverges for g = .5. This gives you a range of values) For you answer, either a theoretical one or empirical one is okay, but you should know you will be graded on your analysis.