Unidad académica: Facultad de Ciencias Exactas y Naturales.

Programa académico: Física.

Materia: Física Computacional II.

Objetivo general y objetivos específicos:

- Ampliar en el estudiante la cognición de la Física apoyada en la programación.
- Desarrollar la creatividad del estudiante, el pensamiento independiente y la capacidad para investigar y solucionar problemas.
- Que el estudiante adquiera la suficiente capacidad para deducir esquemas numéricos básicos y plantear el algoritmo de solución. Usando correctamente y con cierta soltura los métodos computacionales estudiados.

Objetivos Conceptuales:

- Potencializar en el estudiante habilidades investigativas introduciendolos en las técnicas numéricas y de aproximación para la resolución de problemas.
- Que el estudiante reconozca la importancia de los métodos estudiados a partir de las aplicaciones a problemas conocidos y en la solución de problemas nuevos.
- Entender el trabajo de investigación en física computacional como un trabajo altamente grupal y dependiente de otras personas.

Contenido resumido:

Programación en c++ y paquetes para diferentes tareas computacionales. Programación orientada a objetos. Ecuaciones diferenciales parciales.

BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad:

- Gay J. Bronson, C++ for Engineers and Scientists (fourth edition).
- Bruce Eckel, Thinking in C++, (2012), http://arco.esi.uclm.es/~david.villa/pensarC++.html
- P. J. Deitel and H. M. Deitel, C++ How to Program.
- Richard L. Burden, J. Douglas Faires, Numerical Analysis, Ninth Edition.
- Titus A. Beu, Introduction to Numerical Programming: A practical guide for Scientists and Engineers using Python and C/C++, (2014), CRC Press, Boca Raton.
- Rubin H Landau, Manuel J. Páez, Cristian Bordeianu, Computational Physics, 3rd Ed, (2015), Wiley V C H, Weinheim, Germany.
- Simon Sirca, Martin Horvat, Computational Methods for Physicists, (2012), Springer.
- Glenn Cowan, Statistical Data Analysis (1998), Clarendon Press Oxford.
- https://www.asc.ohio-state.edu/physics/ntg/6810/readings/Hjorth-Jensen_lectures201
 5.pdf

_

Actividades de asistencia obligatoria:

la totalidad del curso es de asistencia obligatoria.

EVALUACIÓN		
Actividad	Porcentaje	Semana
Parcial 1	20	6
Parcial 2	20	12
Parcial 3	20	13
Seguimiento (tareas, quizzes,	20	durante todo el curso (16 semanas)
otros)		
Proyecto final	20	15