

Notas de aula II – - A unidade da informação

O que vamos estudar nesta Aula:

- > Modelo simplificado do computador> Definição conceitual do BIT: Dígito Binário.
- Definição de Memória computacional.
- > Tipos de dados memorizados e suas características computacionais.
- > O processo de memorização computacional.
- > Unidades de medida de armazenamento de dados.
- > Armazenamento de dados sobre variáveis e proposições lógicas.

- Representação prática do bit em circuitos digitais.
- Relação de crescimento das variáveis e proposições lógicas e suas representações em circuitos digitais.
- Modelagem das variáveis e proposições lógicas: Tabela

Verdade. Prof. Alessandro Bertolani Oliveira

O que vamos estudar nesta Aula:

- > Sistema numérico Binário.
- Sistema numérico Binário versus
 Tabela verdade.
- Sistema Numérico Binário x Decimal: Notação em base numérica.
- Sistema Numérico Binário x Decimal: Modelagem do BIT por circuitos digitais.
- Transformação Binário x Decimal:

- Mudança de base numérica.
- Transformação Decimal x Binário:
 Mudança de base numérica.
- Mudança de base numérica em circuitos digitais.
- Escala de unidade da informação:Múltiplos padronizados do bit.
- > Padrão: ASCII.
- Padrão: ASCII Estendido.
- > Padrão: BYTE.

O que vamos estudar nesta Aula:

- Aplicações e exemplos dos múltiplos padronizados do BIT.
- > Padrão: UTC
- ▶ Padrão: UTC 8 16 32.

- Aplicações e exemplos dos múltiplos padronizados UTC.

A unidade da informação

O modelo simplificado do computador:

ENTRADA
(Usuário)

PROCESSAMENTO
(ULA)

SAÍDA
(Objetivo)

- Valores escolhidos pelo usuário do programa.
- > Dados do problema.
- Memorização: Variável.
- Tipos: Inteiro / Real /Caractere / Lógica
- > Alocação de memória

- Atividades executadas pelo computador.
- Algoritmo: Sequência de
 Passos (Instruções): Ações
 + Decisões = Objetivo.
- Processamento: Cálculos sobre as Variáveis.
- Processo de Seleção eRepetição de Dados:Proposições Lógicas.

- > Exibir: Objetivos do problema.
- Mostrar ao usuário na tela as soluções encontradas do problema.
- Memorizar esses Dados processados pelo programa em Informação.

Prof. Alessandro Bertolani Oliveira

A unidade da informação

Definição de Memorização Computacional:

É o processo de armazenamento das variáveis (Dados de entrada) / informações (Dados de saída) de um problema computacional em modo:

- > Temporário Volátil (RAM)
- > Permanente Não Volátil (HD)

Memória volátil – DDR5

Memória não volátil – SSD

Características dos dados memorizados:

Tipos de dados: valores que são armazenados computacionalmente:

ightharpoonup Inteiro ($\in \mathbb{Z}$): Alunos / Matrícula / Horas / etc...

➤ Real (∈ R): Salário / Preço / Delta / etc...

Caractere (Símbolo): Nome / Rua / CPF/ etc...

FOMULÁRIO I

1976

UNIVERSIDADE VILA VELHA INTRODUÇÃO À CIÊNCIA DA COMPUTAÇÃO DESCRIÇÃO DE PROFICIÊNCIA ACADÊMICA

_	_	_	_	
ш	r	ч	7	
т.	v	•	v	

Dados do Aluno							
					3 -]	FORMAÇÃO - NÍVEL	MÉDIO (ano):
					CPF	7:	
		Nº		Bairro:			
Município:			CEP:			Telefone:	
Renda Individual (R\$):							
Renda Familia	ar Total	(R\$):	:		Qı	uantidade de indivíduos:	
Possui casa própria?							NÃO
Dados de Proficiência							
rá estudou Lógica de Programação (Lógica Estruturada) ? SIM SIM						NÃO	
Sabe programar em alguma linguagem? SIM Qual(is)? (Exemplo: Python, Java, c#, outros) NÃ							NÃO
	uturada <u>) ?</u>	uturada <u>) ?</u>	UF: Renda Familiar Total (R\$) uturada) ?	Renda Familiar Total (R\$): SIM [uturada] ?	Renda Familiar Total (R\$): SIM uturada) ? SIM	Nº Bairro: UF: CEP: Renda Familiar Total (R\$): SIM uturada) ?	CEP: Telefone:

Tipos de dados: valores em um Formulário de pesquisa

Dúvidas sobre o processo de Memorização:

- 1. Qual desses quatro (4) tipos de variáveis (dados) ocupa o "menor" espaço de memória ?
- 2. Como armazenar as variáveis do tipo: Inteiro / Real / Caractere / Lógica na memória do computador ?
- 3. Qual a unidade de medida da memória computacional?
- 4. Como os Dados: valores extremamente altos são processados no ambiente de memorização computacional ? Por exemplo: Endereço IP de Site na Internet (IP: *Internet Protocol*).

Armazenamento de valores lógicos:

- O armazenamento de uma variável lógica ou uma proposição lógica é dado através do armazenamento de um Dígito Binário BIT (Blnary digiT).
- ➤ Um bit: 0 ou 1 é o menor valor que pode ser armazenado na memória do computador. Sua representação em circuito:

CHAVE 1	LED
0	0
1	1

A unidade da informação

Número de variáveis lógicas:

LED = CH1 E CH2

LED = CH1 E CH2 E CH3

CHAVE 1	CHAVE 2	LED
0	0	0
0	1	0
1	0	0
1	1	1

CHAVE 1	CHAVE 2	CHAVE 3	LED
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

CONJUNÇÃO (^):LED = CH1 E CH2 E CH3

CHAVE 1	CHAVE 2	CHAVE 3	LED
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

MOE 177

A unidade da informação

Número de variáveis lógicas:

LED = CH1 OU CH2

LED = CH1 OU CH2 OU CH3

CHAVE 1	CHAVE 2	LED
0	0	0
0	1	1
1	0	1
1	1	1

CHAVE 1	CHAVE 2	CHAVE 3	LED
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

DISJUNÇÃO (V):LED = CH1 V CH2 V CH3

CHAVE 1	CHAVE 2	CHAVE 3	LED
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Número de variáveis lógicas:

Número de Linhas = 2^n , onde n = Número de Variáveis Lógicas ou Proposições Simples.

n	1	2	3	4	5	6	7	8	9	10	
2^n	2	4	8	16	32	64	128	256	512	1024	•••

A modelagem e combinação de todos os resultados possíveis das variáveis lógicas damos o nome de **Tabela Verdade**.

CHAVE 1	LED
0	0
1	1

Tabela Verdade de uma (1) Variável Lógica – CHAVE 1

Sistema Numérico Binário:

George Boole

Matemático

George Boole foi um matemático, filósofo britânico, criador da álgebra booleana, fundamental para o desenvolvimento da computação moderna. Wikipédia

Nascimento: 2 de novembro de 1815, Lincoln, Reino Unido

Falecimento: 8 de dezembro de 1864, Ballintemple, Cork, Irlanda

Cônjuge: Mary Everest Boole (de 1855 a 1864)

Filhas: Ethel Lilian Voynich, Alicia Boole Stott, Lucy Everest Boole, Mary

Boole Hinton, Margaret Taylor

Nacionalidade: Inglês, Britânico

Sistema Numérico Binário:

BIT 0	BASE 10
0	0
1	1

Uma (1) Variável Lógica

BIT 1	BIT 0	BASE 10
0	0	0
0	1	1
1	0	2
1	1	3

Duas (2) Variáveis Lógicas

BIT 2	BIT 1	BIT 0	BASE 10
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Três (3) Variáveis Lógicas

Prof. Alessandro Bertolani Oliveira

Sistema Numérico Binário:

BIT 3	BIT 2	BIT 1	BIT 0	BASE 10
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Quatro (4) Variáveis Lógicas

.....assim sucessivamente.

Sistema Numérico Binário x Decimal: Notação por base.

$$234_{10} = 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$$

$$234_{10} = 200 + 30 + 4 = 234$$

2 ²	2 ¹	2 ⁰	BASE 2	BASE 10
0	0	0	$0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 0 \times 4 + 0 \times 2 + 1 \times 1 = 0 + 0 + 0$	0
0	0	1	$0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 0 \times 4 + 0 \times 2 + 1 \times 1 = 0 + 0 + 1$	1
0	1	0	$0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 0 \times 4 + 1 \times 2 + 0 \times 1 = 0 + 2 + 0$	2
0	1	1	$0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 0 \times 4 + 1 \times 2 + 1 \times 1 = 0 + 2 + 1$	3
1	0	0	$1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 1 \times 4 + 0 \times 2 + 0 \times 1 = 4+0+0$	4
1	0	1	$1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1 \times 4 + 0 \times 2 + 1 \times 1 = 4+0+1$	5
1	1	0	$1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1 \times 4 + 1 \times 2 + 0 \times 1 = 4+2+0$	6
1	1	1	$1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 1 \times 4 + 1 \times 2 + 1 \times 1 = 4 + 2 + 1$	7

Sistema Numérico Binário x Decimal:

BIT 2 = 4	BIT 1 = 2	BIT 0 = 1	BASE 10
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Três (3) Variáveis Lógicas

Display de 7 LEDS

Transformação Binário x Decimal: Mudança de base numérica.

2 ²	2 ¹	2 ⁰	BASE 2	BASE 10
0	0	0	$0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 0 \times 4 + 0 \times 2 + 0 \times 1 = 0 + 0 + 0$	0
0	0	1	$0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 0 \times 4 + 0 \times 2 + 1 \times 1 = 0 + 0 + 1$	1
0	1	0	$0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 0 \times 4 + 1 \times 2 + 0 \times 1 = 0 + 2 + 0$	2
0	1	1	$0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 0 \times 4 + 1 \times 2 + 1 \times 1 = 0 + 2 + 1$	3
1	0	0	$1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 1 \times 4 + 0 \times 2 + 0 \times 1 = 4 + 0 + 0$	4
1	0	1	$1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1 \times 4 + 0 \times 2 + 1 \times 1 = 4+0+1$	5
1	1	0	$1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 1 \times 4 + 1 \times 2 + 0 \times 1 = 4+2+0$	6
1	1	1	$1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 1 \times 4 + 1 \times 2 + 1 \times 1 = 4 + 2 + 1$	7

Como fazer a mudança de Base 2 para Base 10 ?

Transformação Binário x Decimal: Mudança de base numérica.

Como fazer a mudança de Base 2 para Base 10 ?

Basta somar os BITs que estão Ligados (1).

BIT 2 = 4	BIT 1 = 2	BIT 0 = 1	BASE 10
1	0	1	?
4	0	1	5

$$101_2 = 5_{10}$$

$$011_2 = 3_{10}$$

Transformação Binário x Decimal: Mudança de base numérica.

Como fazer a mudança de Base 2 para Base 10 ?

Basta somar os BITs que estão Ligados (1).

BIT 3 = 8	BIT 2 = 4	BIT 1 = 2	BIT 0 = 1	BASE 10
1	0	0	1	?
8	0	0	1	9

$$1001_2 = 9_{10}$$

$$1110_2 = 14_{10}$$

Transformação Binário x Decimal: Mudança de base numérica.

Como fazer a mudança de Base 2 para Base 10 ?

Somar os BIT's que estão Ligados (1).

1	0	0	0	1	1	BASE 10
32	16	8	4	2	1	32 + 2 + 1 = 35

$$100011_2 = 35_{10}$$

Tente você agora ? $101000_2 = ?_{10}$

Transformação Decimal x Binário: Mudança de base numérica.

Agora ao contrário: Como fazer a mudança de Base 10 para Base 2?

Somar os BITs que estão Ligados (1).

A unidade da informação

Agora ao contrário: Como fazer a mudança de Base 10 para Base 2 ?

Faça a sequência algorítmica a seguir:

PASSO 1: Dividir o número sucessivas vezes por 2.

PASSO 2: Parar a divisão em 1.

PASSO 3: Juntar os 0's e 1's da Direita para Esquerda.

A unidade da informação

Agora ao contrário: Como fazer a mudança de Base 10 para Base 2 ?

Outros exemplos:

Escala de unidade da informação: Múltiplos padronizados do bit.

> PADRÃO DE 7 bits:

ASCII (do inglês *American Standard Code for Information Interchange):* "Código Padrão Americano para o Intercâmbio de Informação") — geralmente pronunciado [áski] — é um código binário (cadeias de bits: 0s e 1s) que codifica um conjunto de **128 sinais**:

- 95 sinais gráficos (letras do alfabeto latino, sinais de pontuação e sinais matemáticos) e
- 33 sinais de controle,
 utilizando portanto apenas 7 bits para representar todos os seus símbolos.

Escala de unidade da informação: Múltiplos padronizados do bit.

ASCII (1977/1986)

	A3011 (1377/1300)															
	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	_F
0_	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	НТ	LF	VT	FF	CR	S0	SI
0	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	000B	000C	000D	000E	000F
1_	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
16	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	001C	001D	001E	001F
2_	SP	!		#	\$	%	&	- 1	()	*	+	,	-		/
32	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	002A	002B	002C	002D	002E	002F
3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
48	0030	0031	0032	0033	0034	0035	0036	0037	0038	0039	003A	003B	003C	003D	003E	003F
4_	@	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
64	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	004A	004B	004C	004D	004E	004F
5_	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	[\]	^	
80	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	005A	005B	005C	005D	005E	005F
6_		а	b	С	d	e	f	g	h	i	j	k	1	m	n	0
96	0060	0061	0062	0063	0064	0065	0066	0067	0068	0069	006A	006B	006C	006D	006E	006F
7_	р	q	r	s	t	u	V	W	Х	у	z	{		}	~	DEL
112	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	007F
	2 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 007A 007B 007C 007D 007E 007F															

ASCII - PADRÃO DE 7 BIT's:

Escala de unidade da informação: Múltiplos padronizados do bit.

Bin	Oct	Dec	Hex	Sinal	Bin	Oct	Dec	Hex	Sinal	Bin	Oct	Dec	Hex	Sinal
0010 0000	040	32	20	(espaço)	0100 0000	100	64	40	@	0110 0000	140	96	60	•
0010 0001	041	33	21	į.	0100 0001	101	65	41	Α	0110 0001	141	97	61	a
0010 0010	042	34	22	"	0100 0010	102	66	42	В	0110 0010	142	98	62	b
0010 0011	043	35	23	#	0100 0011	103	67	43	С	0110 0011	143	99	63	С
0010 0100	044	36	24	S	0100 0100	104	68	44	D	0110 0100	144	100	64	d
0010 0101	045	37	25	%	0100 0101	105	69	45	Е	0110 0101	145	101	65	е
0010 0110	046	38	26	&	0100 0110	106	70	46	F	0110 0110	146	102	66	f
0010 0111	047	39	27		0100 0111	107	71	47	G	0110 0111	147	103	67	g
0010 1000	050	40	28	(0100 1000	110	72	48	Н	0110 1000	150	104	68	h
0010 1001	051	41	29)	0100 1001	111	73	49	- 1	0110 1001	151	105	69	i
0010 1010	052	42	2A	*	0100 1010	112	74	4A	J	0110 1010	152	106	6A	j
0010 1011	053	43	2B	+	0100 1011	113	75	4B	K	0110 1011	153	107	6B	k
0010 1100	054	44	2C	,	0100 1100	114	76	4C	L	0110 1100	154	108	6C	-1
0010 1101	055	45	2D	-	0100 1101	115	77	4D	М	0110 1101	155	109	6D	m
0010 1110	056	46	2E		0100 1110	116	78	4E	N	0110 1110	156	110	6E	n
0010 1111	057	47	2F	- 1	0100 1111	117	79	4F	0	0110 1111	157	111	6F	0
0011 0000	060	48	30	0	0101 0000	120	80	50	Р	0111 0000	160	112	70	р
0011 0001	061	49	31	1	0101 0001	121	81	51	Q	0111 0001	161	113	71	q
0011 0010	062	50	32	2	0101 0010	122	82	52	R	0111 0010	162	114	72	r
0011 0011	063	51	33	3	0101 0011	123	83	53	S	0111 0011	163	115	73	s
0011 0100	064	52	34	4	0101 0100	124	84	54	Т	0111 0100	164	116	74	t
0011 0101	065	53	35	5	0101 0101	125	85	55	U	0111 0101	165	117	75	u
0011 0110	066	54	36	6	0101 0110	126	86	56	٧	0111 0110	166	118	76	v
0011 0111	067	55	37	7	0101 0111	127	87	57	W	0111 0111	167	119	77	w
0011 1000	070	56	38	8	0101 1000	130	88	58	Х	0111 1000	170	120	78	х
0011 1001	071	57	39	9	0101 1001	131	89	59	Υ	0111 1001	171	121	79	у
0011 1010	072	58	3A	:	0101 1010	132	90	5A	Z	0111 1010	172	122	7A	z
0011 1011	073	59	3B	:	0101 1011	133	91	5B	[0111 1011	173	123	7B	{
0011 1100	074	60	3C	<	0101 1100	134	92	5C	١	0111 1100	174	124	7C	1
0011 1101	075	61	3D	=	0101 1101	135	93	5D]	0111 1101	175	125	7D	}
0011 1110	076	62	3E	>	0101 1110	136	94	5E	۸	0111 1110	176	126	7E	~
0011 1111	077	63	3F	?	0101 1111	137	95	5F	_					

Bin	Oct	Dec	Hex	Abrev	Notação com circunflexo	Código escape	Nome
0000 0000	000	00	00	NUL	^@	\0	Nulo (inglês Null)
0000 0001	001	01	01	SOH	^A		Início de cabeçalho (inglês Start of Header)
0000 0010	002	02	02	STX	^B		Início de texto (inglês Start of Text)
0000 0011	003	03	03	ETX	^C		Fim de texto (inglês End of Text)
0000 0100	004	04	04	EOT	^D		Fim de transmissão (inglês End of Transmission)
0000 0101	005	05	05	ENQ	^E		Consulta; inquirição (inglês Enquiry)
0000 0110	006	06	06	ACK	^F		Confirmação (inglês Acknowledge)
0000 0111	007	07	07	BEL	^G	\a	Campainha; sinal sonoro (inglês Bell)
0000 1000	010	80	80	BS	^H	\b	Espaço atrás; retorno de 1 caractere (inglês Back-space)
0000 1001	011	09	09	HT	4	\t	Tabulação horizontal (inglês Horizontal Tabulation)
0000 1010	012	10	0A	LF	^J	\n	Alimentação de linha; mudança de linha; nova linha (inglês Line Feed)
0000 1011	013	11	0B	VT	^K	\v	Tabulação vertical (inglês Vertical Tabulation)
0000 1100	014	12	0C	FF	^L	\f	Alimentação de formulário (inglês Form Feed)
0000 1101	015	13	0D	CR	^M	\r	Retorno do carro; retorno ao início da linha (inglês Carriage Return)
0000 1110	016	14	0E	SO	^N		Mover para fora; deslocamento para fora (inglês Shift Out)
0000 1111	017	15	0F	SI	^0		Mover para dentro; deslocamento para dentro (inglês Shift In)
0001 0000	020	16	10	DLE	^P		escape do linque de dados; escape de conexão (inglês Data-Link Escape)
0001 0001	021	17	11	DC1	^Q		Controle de dispositivo 1 (inglês Device Control 1)
0001 0010	022	18	12	DC2	^R		Controle de dispositivo 2 (inglês Device Control 2)
0001 0011	023	19	13	DC3	^S		Controle de dispositivo 3 (inglês Device Control 3)
0001 0100	024	20	14	DC4	^T		Controle de dispositivo 4 (inglês Device Control 4)
0001 0101	025	21	15	NAK	^ U		Confirmação negativa (inglês Negative-Acknowledge)
0001 0110	026	22	16	SYN	^V		Estado ocioso síncrono; espera síncrona (inglês Synchronous Idle)
0001 0111	027	23	17	ETB	^W		Bloco de fim de transmissão (inglês End of Transmission Block)
0001 1000	030	24	18	CAN	^X		Cancelar (inglês Cancel)
0001 1001	031	25	19	EM	^Υ		Fim de mídia; fim do meio (inglês End of Medium)
0001 1010	032	26	1A	SUB	^Z		Substituir (inglês Substitute)
0001 1011	033	27	1B	ESC]^		Escapar (inglês Escape)
0001 1100	034	28	1C	FS	^\		Separador de arquivos (inglês File Separator)
0001 1101	035	29	1D	GS	^]	\e	Separador de grupos (inglês Group Separator)
0001 1110	036	30	1E	RS	AA		Separador de registros (inglês Record Separator)
0001 1111	037	31	1F	US	^_		Separador de unidades (inglês Unit Separator)
0111 1111	177	127	7F	DEL	^?		Deletar (inglês Delete)

ASCII - PADRÃO DE 7 BIT's:

Escala de unidade da informação: Múltiplos padronizados do bit.

> PADRÃO DE 7 bits:

1963 - O Código Padrão Americano para Intercâmbio de Informações (ASCII) foi desenvolvido sob os cuidados de um comitê da *American Standards Association* (ASA).

O ASA tornou-se o Instituto de Padrões dos Estados Unidos da América.

Por fim; o American National Standards Institute (PADRÃO: ANSI).

O ASCII foi usado pela primeira vez comercialmente como um código do dispositivo eletrônico: "tele impressora: FAX" de sete bits para a rede TWX (*TeletypeWriter eXchange*) da *American Telephone & Telegraph* (AT & T).

Escala de unidade da informação: Múltiplos padronizados do bit.

- > 1963: ASCII PADRÃO DE 7 bits.
- > ~1968: Extended ASCII PADRÃO DE 8 bits.
- 1965: BYTE PADRÃO DE 8 bits. (IBM)
- > 1991: UNICODE: Universal Coded Character Set PADRÃO DE 8 bits.
 - > 2009: UTF-8: Unicode Transformation Format 8-bytes.
 - ➤ UTF-16: Unicode Transformation Format 16-bytes.
 - ➤ UTF-32: Unicode Transformation Format 32-bytes.
 - 2019 (Março): Unicode 12.0: <u>137.993 caracteres</u> + 150 <u>scripts</u> + símbolos múltiplos + conjunto de <u>emoji</u>.

Escala de unidade da informação: Múltiplos padronizados do bit.

2018: UTF-8: "Specifying the document's character encoding", HTML 5.2, World Wide Web Consortium, 14 December 2017, retrieved 2018-06-03

https://www.w3.org/TR/html5/index.html#contents

ECMAScript® 2020: https://tc39.github.io/ecma262/#sec-intro

Escala de unidade da informação: Múltiplos padronizados do bit.

> BYTE (B): PADRÃO DE 8 Bits:

O termo byte foi cunhado por Werner Buchholz em junho de 1956, durante a fase inicial do Projeto: computador IBM Stretch, que tinha endereçado as instruções bit e *Variable Field Length* (VFL) com um tamanho (variável) de byte codificado na instrução.

PADRÃO DE 8 BIT'S = 1 BYTE

A unidade da informação

Como representar um número "muito grande" utilizando pouco espaço

de memória? RESPOSTA: Sistema Numérico Hexadecimal (Base 16)

BASE HEXADECIMAL = 16 SÍMBOLOS = 0, 1, 2, 3, ..., 9, A, B, C, D, E, F PADRÃO DE 8 BIT's = 1 BYTE = CODIFICADO POR 16 SÍMBOLOS.

SÍMBOLOS

- 10 pela letra = A
- 11 pela letra = B
- 12 pela letra = C
- 13 pela letra = D
- 14 pela letra = E
- 15 pela letra = F

A unidade da informação

Como representar um número "muito grande" utilizando pouco espaço

de memória? RESPOSTA: Sistema Numérico Hexadecimal (Base 16)

SISTEMA NUMÉRICO DECIMAL

- Base 10: 0, 1, 2, ...9 (10 Símbolos)
- Nível de APP, GUI e Sistemas.
- Desenvolvimento de Software.

SISTEMA NUMÉRICO HEXADECIMAL

- Base 16: 0, 1, 2, ...9, A, B, C, D, E, F (16 Símbolos)
- Sistema Operacional (SO).
- Endereço de Memória (BYTE = 8 bits): RAM, HD, Cache, Registradores.

SISTEMA NUMÉRICO BINÁRIO

- Base 2: 0 ou1 (2 Símbolos)
- Nível de Hardware.
- BIT (Blnary digiT)

SISTEMA NUMÉRICO COMPUTACIONAI

Escala de unidade da informação: Múltiplos padronizados do bit.

BYTE (Conjunto de 8 bits): São usados no endereçamento de memória (Hexadecimal) aplicado aos elementos de:

- ➤ **WEB**: Domínio de Site: URL (*Uniform Resource Locator*): <u>IP Address</u>.
- ➤ HARDWARE: <u>MAC ADDRESS</u> de uma máquina.
- Linguagem de Programação: Variáveis, Constantes e Proposições.
- Linguagem de Programação: Estrutura de Dados.
- Padronização de Cores: Tripleto Hexadecimal (WEB COLOR).
- Entre outros....

Escala de unidade da informação: Múltiplos padronizados do bit.

Tripleto hexadecimal ou **web colors** é um número de seis dígitos formado por **três bytes** em hexadecimal. É utilizado em documentos HTML, CSS e em outras aplicações em computação.

Os bytes representam as porções das cores vermelho, verde e azul (RGB). Cada byte usa a faixa de 00h a FFh (notação hexadecimal) ou de 0 a 255 em notação decimal. O tripleto hexadecimal é formado pela concatenação dos **três bytes em hexadecimal**:

Byte 1: valor de vermelho.

Byte 2: valor de verde.

Byte 3: valor de azul.

Número de cores que podem ser representadas pelo sistema tripleto (3 BYTES):

256 x 256 x 256 = 16.777.216 CORES

Escala de unidade da informação: Múltiplos padronizados do bit.

Tripleto hexadecimal ou web colors. Prof. Alessandro Bertolani Oliveira

Escala de unidade da informação: Múltiplos padronizados do bit.

BYTE (Conjunto de 8 bits): Na WEB, com o endereçamento de domínio de uma URL por exemplo em IPv4 e IPv6:

Exemplo de armazenamento em memória de endereços de máquina: Domínio WEB (URL).

Escala de unidade da informação: Múltiplos padronizados do bit.

BYTE (Conjunto de 8 bits): Em Hardware, com o endereçamento de máquinas:

Exemplo de armazenamento em memória de endereços de máquina: IP Address.

Escala de unidade da informação: Múltiplos padronizados do bit.

BYTE (Conjunto de 8 bits): Na Linguagem de Programação, o formato de um (1) BYTE (Rodar o Programa: Table Extended ASCII) é:

Um (1) Caractere ASCII 'H': $01001000_2 = 72_{10}$ é armazenado em exatamente um (1) Byte.

Escala de unidade da informação: Múltiplos padronizados do bit.

BYTE (Conjunto de 8 bits): Na Linguagem de Programação, o formato das variáveis são:

Caractere: Símbolos individuais do padrão ASCII estendido.

TAMANHO EM Bytes: 1 byte.

> *** Inteiro: Números inteiros entre -2147483648 e 2147483647.

TAMANHO EM Bytes: 4 Bytes.

➤ *** Real: reais entre (aproximadamente) 10⁻³⁸ e 10³⁸.

TAMANHO EM Bytes: 4 Bytes.

***Esse medida tem variações para os tipos Inteiro e Real.

Escala de unidade da informação: Múltiplos padronizados do bit.

BYTE (Conjunto de 8 bits): Na Linguagem de Programação, a estrutura de

Dados Vetor (Rodar o Programa: Matrícula) é:

PAUTA							
ALUNO MATRÍCULA ENDEREÇO DE MEMÓ							
ALUNO 1	INTEIRO	HEXADECIMAL					
ALUNO 2	INTEIRO	HEXADECIMAL					
ALUNO 3	INTEIRO	HEXADECIMAL					
ALUNO 48	INTEIRO	HEXADECIMAL					
ALUNO 49	INTEIRO	HEXADECIMAL					
ALUNO 50	INTEIRO	HEXADECIMAL					

Exemplo de armazenamento em memória de Estruturas de dados: VETOR (Array).

Escala de unidade da informação: Múltiplos padronizados do bit.

UNICODE: A sigla *Universal Coded Character Set*, corresponde a uma codificação de caracteres de <u>largura variável</u>, de 1 até 4 bytes com até 8 bits (no máximo) por byte, gerando uma sequência de padrões denominados de Formato de Transformação Unicode (ou U*nicode* T*ransformation* F*ormat* - UTF).

Number of bytes	Bits for code point	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	7	U+0000	U+007F	0xxxxxxx			
2	11	U+0080	U+07FF	110xxxxx	10xxxxxx		
3	16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	21	U+10000	U+10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Exemplo variável do Padrão UTF – 8 estratificado por bytes.

Introdução à Tecnologia da Computação

A unidade da informação

Múltiplos padronizados do bit: UTF – 8.

	0	1	,	2	4	E	6	7	0	0	۸	В	-	D	E	E
	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	_F
0_	NUL 9999	SOH 6001	STX 0002	ETX 0003	EOT 0004	ENQ 0005	ACK 0006	BEL 0007	BS 0008	HT 0009	LF 000A	VT 000B	FF 000C	CR 000D	SO 666E	SI 000F
1_	DLE 0010	DC1 0011	DC2 0012	DC3	DC4 6614	NAK 0015	SYN 9916	ETB 0017	CAN 0018	EM 0019	SUB 001A	ESC 001B	FS	GS 001D	RS 001E	US 991F
2_	SP	!	9912	#	\$	%	&	991/	()	*	+	001C	-		/
_	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	002A	002B	002C	002D	002E	002F
3_	Ø 9939	1	2	3	4 9934	5 9935	6	7	8	9	: 003A	; 003B	< 003C	= 003D	> 003E	? 003F
4_	@	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	004A	004B	004C	004D	004E	004F
5_	P 0050	Q 0051	R 0052	S 0053	T 0054	U 0055	V 0056	W 6657	X 9958	Y 0059	Z 995A	[005B	\ 005C] 005D	A 005E	 005F
6_	0060	a 9961	b 0062	C 9963	d 9964	e 9965	f 9966	g 9967	h 9968	i 0069	j 006A	k 9968	1	m 996D	n 006E	O 996F
7_	р	q	r	S	t	u	V	W	X	у	Z	{		}	~	DEL
	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	007F
8_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-	+00	+01	+02	+03	+04	+05	+06	+07	+08	+09	+0A	+0B	+0C	+0D	+0E	+0F
	•				•					•					•	•
9_	+10	+11	+12	+13	+14	+15	+16	+17	+18	+19	+1A	+18	+10	+1D	+1E	+1F
																•
A_	+20	+21	+22	+23	+24	+25	+26	+27	+28	+29	+2A	+2B	+2C	+2D	+2E	+2F
В_	+30	+31	+32	+33	+34	+35	+36	+37	+38	+39	+3A	+38	+3C	+3D	+3E	+3F
2	2	2	LATIN	IPA	IPA	IPA	ACCENTS	ACCENTS	GREEK	GREEK						
c_	9999	9848	0080	9909	0100	0140	0180	0100	0200	0240	0280	0200	0300	0340	0380	03C0
2	CYRIL	CYRIL	CYRIL	CYRIL	CYRIL	Armeni	HEBREW	HEBREW	ARABIC	ARABIC	Arabic	Arabic	SYRIAC	Arabic	Тнаала	N'Ko
D_	0400	0440	0480	04C0	0500	0540	0580	05C0	0600	0640	9689	96C9	9799	9749	0780	07C0
3	INDIC	Misc.	Symbol	Kana	CJK	СЈК	CJK	СЈК	CJK	СЈК	ASIAN	HANGUL	HANGUL	HANGUL	PUA	Forms
E_	6899	1000	2000	3000	4000	5000	6000	7000	8000	9000	A000	8000	C000	D000	E000	Feee
4	SMP			SSP	SPU	4	4	4	5							
F_	10000	40000	80000	C0000	100000						2000000		4000000			

UTF - 8.

Características do UTF - 8:

- ✓ Tamanho variável.
- ✓ Predomina na WEB.
- ✓ Recomendada pela <u>W3C</u>(W3C) para XML e HTML.
- ✓ Atualização permanente com os padrões do universo WEB.
- ✓ Exemplo atual: <u>W3C Workshop on</u>

 <u>Web Games.</u>

Escala de unidade da informação: Múltiplos padronizados do bit.

Padrão WEB: É a codificação do padrão UTF na base 16 (Base Hexadecimal) para memorização dos diversos códigos de comunicação.

BASE HEXADECIMAL CONTÉM 16 SÍMBOLOS: 0 ate 9 + A até F.

Sistema Numérico Binário x Decimal x Hexadecimal:

BIT 3 = 8	BIT 2 = 4	BIT 1 = 2	BIT 0 = 1	BASE 10	BASE 16
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	10	А
1	0	1	1	11	В
1	1	0	0	12	С
1	1	0	1	13	D
1	1	1	0	14	Е
1	1	1	1	15	F

Prof. Alessandro Bertolani Oliveira

Escala de unidade da informação: Múltiplos padronizados do bit.

PADRÃO DE 8 BITS = 1 BYTE = CODIFICADO POR 16 SÍMBOLOS.

16 SÍMBOLOS = BASE HEXADECIMAL: ENDEREÇO DE MEMÓRIA.

REGISTRADOR: BASE HEXADECIMAL CONTÉM 16 SÍMBOLOS: 0 ate 9 + A até F.

Introdução à Tecnologia da Computação

A unidade da informação

Escala de unidade da informação: Múltiplos padronizados do bit.

PADRÃO DE 8 BITS = 1 BYTE = CODIFICADO POR 16 SÍMBOLOS.

16 SÍMBOLOS = BASE HEXADECIMAL: ENDEREÇO DE MEMÓRIA.

Matriz (Array) de 8 x 8 LEDS.

Escala de unidade da informação: Múltiplos padronizados do bit.

PADRÃO DE 8 BITS = 1 BYTE = CODIFICADO POR 16 SÍMBOLOS.

16 SÍMBOLOS = BASE HEXADECIMAL: ENDEREÇO DE MEMÓRIA.

Matriz (Array) de 8 x 8 LEDS.

Introdução à Tecnologia da Computação

TO NOT THE TOTAL THE TOTAL

A unidade da informação

Como fazer a mudança de Base 10 para Base 16 ?

Faça a sequência algorítmica a seguir:

PASSO 1: Dividir o número sucessivas vezes por 16.

PASSO 2: Parar a divisão em um resto <= 15.

PASSO 3: Juntar os números da Direita para Esquerda fazendo a

substituição dos números:

- > 10 pela letra = A
- > 11 pela letra = B
- > 12 pela letra = C
- > 13 pela letra = D
- > 14 pela letra = E
- > 15 pela letra = F

Introdução à Tecnologia da Computação

A unidade da informação

Como fazer a mudança de Base 10 para Base 16 ?

Exemplos:

Como fazer a mudança de Base 10 para Base 16 ?

Exemplos:

$$43_{10} = 2B_{16}$$

Transformação Hexadecimal x Decimal: Exemplos de mudança de base.

	BASE 16	;	BASE 16	BASE 10
16 ²	16 ¹	16 ⁰	DASE 10	BASE 10
0	1	9	$0 \times 16^2 + 1 \times 16^1 + 9 \times 16^0 = 0 \times 256 + 1 \times 16 + 9 \times 1 = 0 + 16 + 9 = 25$	25
0	A	2	$0 \times 16^2 + A \times 16^1 + 2 \times 16^0 = 0 \times 256 + A \times 16 + 2 \times 1 = 0 + 160 + 2 = 162$	162
0	A	F	$0 \times 16^2 + A \times 16^1 + F \times 16^0 = 0 \times 256 + A \times 16 + F \times 1 = 0 + 160 + 15 = 175$	175
A	0	F	A $\times 16^2 + 0 \times 16^1 + F \times 16^0 = 10 \times 256 + 0 \times 16 + F \times 1$ = 2560 + 0 + 15 = 2575	2575
1	С	0	1 x 16^2 + C x 16^1 + 0 x 16^0 = 1 x 256 + C x 16 + 0 x 1 = 256 + 192 + 0 = 448	448

Como fazer a mudança de Base 16 para Base 10 ?

Transformação Hexadecimal x Decimal: Exemplos de mudança de base.

BASE 16		;	BASE 16	BASE 10	
16 ²	16 ¹	16 ⁰	DASE 10	DASE IU	
0	1	9	$0 \times 16^2 + 1 \times 16^1 + 9 \times 16^0 = 0 \times 256 + 1 \times 16 + 9 \times 1 = 0 + 16 + 9 = 25$	25	
0	A	2	$0 \times 16^2 + A \times 16^1 + 2 \times 16^0 = 0 \times 256 + A \times 16 + 2 \times 1 = 0 + 160 + 2 = 162$	162	
0	A	F	$0 \times 16^2 + A \times 16^1 + F \times 16^0 = 0 \times 256 + A \times 16 + F \times 1 = 0 + 160 + 15 = 175$	175	
A	0	F	A $\times 16^2 + 0 \times 16^1 + F \times 16^0 = 10 \times 256 + 0 \times 16 + F \times 1$ = 2560 + 0 + 15 = 2575	2575	
1	С	0	1 x 16^2 + C x 16^1 + 0 x 16^0 = 1 x 256 + C x 16 + 0 x 1 = 256 + 192 + 0 = 448	448	

Como fazer a mudança de Base 16 para Base 10 ?

Questionário de Teste: Google Forms.

FAVOR INSERIR NO FORMATO:

SEU NOME <SEU E-MAIL>

EXEMPLO:

FULANO DE TAL <FULANODETAL@GMAIL.COM>

Aprendendo a usar o Google Forms.