1

Assignment 12

Surbhi Agarwal

Abstract—This document illustrates concepts of dimensions of image of a linear transformation and columnspace.

1 Problem

Given a 4×4 matrix **A**, let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by $\mathbf{Tv} = \mathbf{Av}$, where we think of \mathbb{R}^4 as the set of real 4×1 matrices. For which choices of **A** given below, do Image(**T**) and Image(**T**²) have respective dimensions 2 and 1? (* denotes a nonzero entry)

2 Solution

We can say,

$$\mathbf{T}(\mathbf{v}) = \mathbf{A}\mathbf{v} = \text{Image}(\mathbf{T}) = C(\mathbf{A})$$
 (2.0.1)
$$\mathbf{T}^{2}(\mathbf{v}) = \mathbf{A}^{2}\mathbf{v} = \text{Image}(\mathbf{T}^{2}) = C(\mathbf{A}^{2})$$
 (2.0.2)

where $C(\mathbf{A})$ and $C(\mathbf{A}^2)$ denote the columnspace of \mathbf{A} and \mathbf{A}^2 respectively. Therefore,

$$dimension(Image(T)) = dimension(C(A)) = rank(A)$$
(2.0.3)

dimension(Image(
$$\mathbf{T}^2$$
)) = dimension($C(\mathbf{A}^2)$) = rank(\mathbf{A}^2)
(2.0.4)

1.
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 The number of linearly independent columns in \mathbf{A} is 2

hence, $dim(Image(\mathbf{T})) = dim(C(\mathbf{A})) = 2$

$$\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The number of linearly independent columns in A^2 is 1 hence, $dim(Image(\mathbf{T}^2)) = dim(C(\mathbf{A}^2)) = 1$

... This option is true.

2.
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & * & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \end{pmatrix}$$
 The number of linearly independent columns in \mathbf{A} is 2 hence, $\dim(\operatorname{Image}(\mathbf{T})) = \dim(C(\mathbf{A})) = 2$

$$\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \end{pmatrix}$$

The number of linearly independent columns in A^2 is 1 hence, $\dim(\operatorname{Image}(\mathbf{T}^2)) = \dim(\operatorname{C}(\mathbf{A}^2)) = 1$

... This option is true.

The number of linearly independent columns in A is 2

hence, $dim(Image(\mathbf{T})) = dim(C(\mathbf{A})) = 2$

The number of linearly independent columns in A^2 is 2 hence, $dim(Image(\mathbf{T}^2)) = dim(C(\mathbf{A}^2)) = 2 \neq 1$

... This option is false.

Counter example:

For some non-zero $b, c \in \mathbb{R}$, let

The number of linearly independent columns in **A** is 1 hence, $dim(Image(\mathbf{T})) = dim(C(\mathbf{A})) = 1 \neq 2$

TABLE 1: Verifying with the options