CS 480

Introduction to Artificial Intelligence

February 17, 2022

Announcements / Reminders

- Midterm: February 24th!
 - Online section: please make arrangements. Contact Mr.
 Charles Scott (scott@iit.edu) if in doubt
- Written Assignment #01:
 - due: TODAY!, 11:00 PM CST
- Written Assignment #02: will be posted this weekend
- Programming Assignment #01:
 - due: March 6th, 11:00 PM CST

Grading TA assignment:

https://docs.google.com/spreadsheets/d/1avK4P4MDjKZQceG82mSZd0wkYEDH07_DpQqYJHDQctw/edit?usp=sharing

Plan for Today

Propositional logic

Propositional Logic: Laws/Theorems

Equivalence	Law / Theorems
$p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$	Commutative laws
$ (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r) $ $ (p \land q) \land r \Leftrightarrow p \land (q \land r) $	Associative laws
$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distributive laws
$\neg (p \land q) \Leftrightarrow \neg q \lor \neg p$ $\neg (p \lor q) \Leftrightarrow \neg q \land \neg p$	De Morgan's laws
$ \begin{array}{c} p \wedge (p \vee q) \Leftrightarrow p \\ p \vee (p \wedge q) \Leftrightarrow p \end{array} $	Absorption laws
$\neg (\neg p) \Leftrightarrow p$	Double Negation law (involution)
$ \begin{array}{c} p \wedge p \Leftrightarrow p \\ p \vee p \Leftrightarrow p \end{array} $	Idempotent laws
$p \lor \neg p \Leftrightarrow T$	Law of Excluded Middle (Negation law)
$p \land \neg p \Leftrightarrow \bot$	Contradiction (Negation law)
$\begin{array}{c} p \wedge T \Leftrightarrow p \\ p \vee \bot \Leftrightarrow p \end{array}$	Identity laws
$\begin{array}{c} p \wedge \bot \Leftrightarrow \bot \\ p \vee T \Leftrightarrow T \end{array}$	Domination laws
$\neg p \lor q \Leftrightarrow p \Rightarrow q$	Implication law
$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$	Contraposition law
$ (p \land q) \lor (\neg q \land \neg p) \Leftrightarrow (p \Leftrightarrow q) $ $ (p \Rightarrow q) \land (q \Rightarrow p) \Leftrightarrow (p \Leftrightarrow q) $	Equivalence law
IIIINOIS INSCICULE OF TECHNOLOPY	4

Deduction

Laws/theorems in propositional logic can be used to prove additional theorems through a process known as deduction:

```
is a tautology:
Prove that ((\neg m \lor n) \land \neg n) \Rightarrow \neg m
((\neg m \land \neg n) \lor (n \land \neg n)) \Rightarrow \neg m
                                                                 by Distributive law p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)
((\neg m \land \neg n) \lor \bot) \Rightarrow \neg m
                                                                 by Negation law (contradiction) p \land \neg p \Leftrightarrow \bot
(\neg m \land \neg n) \Rightarrow \neg m
                                                                 by Identity law p \lor \bot \Leftrightarrow p
                                                                 by Implication law \neg p \lor q \Leftrightarrow p \Rightarrow q
\neg(\neg m \land \neg n) \lor \neg m
(\neg\neg m \lor \neg\neg n) \lor \neg m
                                                                 by De Morgan's law \neg (p \land q) \Leftrightarrow \neg q \lor \neg p
(m \lor n) \lor \neg m
                                                                 by Double Negation law \neg (\neg p) \Leftrightarrow p
                                                                 by Associative law (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)
\mathbf{m} \vee (\mathbf{n} \vee \neg \mathbf{m})
m \vee (\neg m \vee n)
                                                                 by Commutative law p \lor q \Leftrightarrow q \lor p
(m \lor \neg m) \lor n
                                                                 by Associative law (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)
T \vee n
                                                                 by Law of Excluded Middle p \lor \neg p \Leftrightarrow T
n \vee T
                                                                 by Commutative law p \lor q \Leftrightarrow q \lor p
Т
                                                                 by Domination Law p \vee T \Leftrightarrow T
```

Deduction

Laws/theorems in propositional logic can be used to prove additional theorems

througha process known as deduction:

Note that we only manipulated symbols at the syntactic level!

is a tautology:
by Distributive law $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
by Negation law (contradiction) $p \land \neg p \Leftrightarrow \bot$
by Identity law $p \lor \bot \Leftrightarrow p$
by Implication law $\neg \ p \lor q \Leftrightarrow p \Rightarrow q$
by De Morgan's law \neg $(p \land q) \Leftrightarrow \neg q \lor \neg p$
by Double Negation law $\neg (\neg p) \Leftrightarrow p$
by Associative law $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
by Commutative law $p \vee q \Leftrightarrow q \vee p$
by Associative law $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
by Law of Excluded Middle $p \lor \neg p \Leftrightarrow T$
by Commutative law $p \lor q \Leftrightarrow q \lor p$
by Domination Law $p \lor T \Leftrightarrow T$

Propositional Logic and KB-Agents

Propositional Logic:
Syntax

Propositional Logic:
Semantics

Propositional Logic: Inference and Proof Systems

KB-Agents: Inference algorithms

Interpretation

The truth value assignment to propositional sentences is called an interpretation (an assertion about their truth in some possible world / model).

Definition: A mapping $I: \Sigma \to \{\text{true}, \, \text{false}\}$, which assigns a truth value to every proposition variable, is called an interpretation.

Sentence: $(p \lor q) \land (\neg q \lor r)$

Interpretation i: $p^i = true$, $q^i = false$, $r^i = true$

Truth Values and Truth Tables

Propositional logic sentences can have a truth value assigned to them:

- Atomic sentences:
 - either true or false
- Compound / complex sentence truth value can be established using a truth table:

p	q	¬ p	p ^ q	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \Rightarrow \mathbf{q}$	$\mathbf{p} \Leftrightarrow \mathbf{q}$
true	true	false	true	true	true	true
true	false	false	false	true	false	false
false	true	true	false	true	true	false
false	false	true	false	false	true	true

Evaluation is the process of determining the truth values of compound/complex sentences given a truth assignment for the truth values of proposition constants/atomic sentences. Consider the following truth assignment i:

$$p^i = true, q^i = false, r^i = true$$
 Assignment

Let's evaluate the following complex sentence $(p \lor q) \land (\neg q \lor r)$:

Evaluation is the process of determining the truth values of compound/complex sentences given a truth assignment for the truth values of proposition constants/atomic sentences. Consider the following truth assignment i:

$$p^i = true, q^i = false, r^i = true$$
 Assignment

Let's evaluate the following complex sentence $(p \lor q) \land (\neg q \lor r)$:

$$(p \lor q) \land (\neg q \lor r) \rightarrow (true \lor false) \land (\neg false \lor true)$$
 Subsitute

Evaluation is the process of determining the truth values of compound/complex sentences given a truth assignment for the truth values of proposition constants/atomic sentences. Consider the following truth assignment i:

$$p^i = true, q^i = false, r^i = true$$
 Assignment

Let's evaluate the following complex sentence $(p \lor q) \land (\neg q \lor r)$:

$$(p \lor q) \land (\neg q \lor r) \rightarrow (true \lor false) \land (\neg false \lor true)$$
 Subsitute
 $(true \lor false) \land (\neg false \lor true)$ Disjunction

$$p^{i} = true, \ q^{i} = false, \ r^{i} = true \qquad \text{Assignment}$$
 Let's evaluate the following complex sentence $(p \lor q) \land (\neg q \lor r)$:
$$(p \lor q) \land (\neg q \lor r) \rightarrow (true \lor false) \land (\neg false \lor true) \qquad \text{Disjunction}$$

$$(true \lor false) \land (\neg false \lor true) \qquad \text{Disjunction}$$

$$true \land (\neg false \lor true) \qquad \text{Negation}$$

$$p^{i} = true, \ q^{i} = false, \ r^{i} = true \qquad \text{Assignment}$$
 Let's evaluate the following complex sentence $(p \lor q) \land (\neg q \lor r)$:
$$(p \lor q) \land (\neg q \lor r) \rightarrow (true \lor false) \land (\neg false \lor true) \qquad \text{Disjunction}$$

$$true \lor (\neg false \lor true) \qquad \text{Negation}$$

$$true \land (true \lor true) \qquad \text{Disjunction}$$

$$p^{i} = true, \ q^{i} = false, \ r^{i} = true \qquad \qquad \text{Assignment}$$
 Let's evaluate the following complex sentence $(p \lor q) \land (\neg q \lor r)$:
$$(p \lor q) \land (\neg q \lor r) \rightarrow (true \lor false) \land (\neg false \lor true) \qquad \text{Disjunction}$$

$$true \lor false \lor true) \qquad \qquad \text{Negation}$$

$$true \land (true \lor true) \qquad \qquad \text{Disjunction}$$

$$true \land (true \lor true) \qquad \qquad \text{Disjunction}$$

$$true \land (true \lor true) \qquad \qquad \text{Disjunction}$$

Let's evaluate the following complex sentence
$$(p \lor q) \land (\neg q \lor r)$$
:
$$(p \lor q) \land (\neg q \lor r) \rightarrow (true \lor false) \land (\neg false \lor true) \text{ Subsitute}$$

$$(true \lor false) \land (\neg false \lor true) \text{ Disjunction}$$

$$true \land (\neg false \lor true) \text{ Negation}$$

$$true \land (true \lor true) \text{ Disjunction}$$

$$true \land true \land true \text{ Conjunction}$$

$$true \land true \text{ Interpretation}$$

Complex Sentence: Truth Table

Consider a complex sentence R built with N propositional variables p_1 , p_2 , p_3 , ..., p_{N-1} , p_N and logical connectives $(\neg, \lor, \land, \Rightarrow, \Leftrightarrow)$. Here is a corresponding truth table for sentence R.

	N Propositional Variables						Complex	
	p_1	p_2	p_3		p_{N-1}	p_N	sentence R	
	true	true	true		true	true	false	
Ş	true	true	true		true	false	true	X
ent	true	true	false		false	true	false	of
$2^{ m N}$ Truth Assignments				•••				$2^{ m N}$ Interpretations of
Ļ	false	false	true		true	false	true	Ē
2	false	false	true		false	true	true	2
	false	false	false		false	false	false	

Complex Sentence: Truth Table

Consider a complex sentence R built with N propositional variables p_1 , p_2 , p_3 , ..., p_{N-1} , p_N and logical connectives $(\neg, \lor, \land, \Rightarrow, \Leftrightarrow)$. Each truth assignment is a different possible world.

	N Propositional Variables						Complex	
	p_1	p_2	p_3		p_{N-1}	p_N	sentence R	
(5	true	true	true		true	true	false	
del	true	true	true	···	true	false	true	X
Mo	true	true	false		false	true	false	of
Possible Worlds (Models)				•••				Interpretations of
SSi	false	false	true		true	false	true	
	false	false	true		false	true	true	2^{N}
2^{N}	false	false	false		false	false	false	

Sentence: Syntactic / Semantic Levels

Each propositional logic "exists" on two levels:

 Syntactic: where a sentence is just a legal arrangement of language symbols. Sentence

$$(p \vee q) \wedge (\neg q \vee r)$$

WITHOUT interpretation HAS NO MEANING

- we can manipulate symbols, but we CANNOT reason
- Semantic: where a sentence has a truth value is assigned to it (interpretation):

$$(p \lor q) \land (\neg q \lor r)$$
 where $p^i = true$, $q^i = false$, $r^i = true$

HAS MEANING (through interpretation) \rightarrow it is true

Sentence: Syntactic / Semantic Levels

Each propositional logic "exists" on two levels:

 Syntactic: where a sentence is just a legal arrangement of language symbols. Sentence

 $(cool \lor funny) \Rightarrow popular$

WITHOUT interpretation HAS NO MEANING

- we can't tell if a given person is popular here
- Semantic: where a sentence has a truth value is assigned to it (interpretation):

```
(cool \lor funny) \Rightarrow popular where cool = true, funny = false
```

HAS MEANING → we can deduce that a person is popular

Sentence Semantical Equivalence

Two propositional logic sentences F and G are called <u>semantically</u> equivalent if they take on the same interpretation for all truth value assignments. If that is the case $F \equiv G$.

Example: sentence $\neg a \lor b$ is equivalent to sentence $a \Rightarrow b$. Proof with a truth table:

a	b	¬ a	$\neg a \lor b$	\Leftrightarrow	$a \Rightarrow b$
true	true	false	true		true
true	false	false	false		false
false	true	true	true		true
false	false	true	true		true

Sentence Classes

SATISFIABLE

A sentence is satisfiable if it is true for AT LEAST ONE interpretation.

In plain English:

"You can find AT LEAST one
assignment of logical values of
true and false to individual
propositional variables that will
make this sentence true."

Example:

$$p \Rightarrow q$$

(LOGICALLY) VALID/TAUTOLOGY

A sentence is (logically) valid if it is true for ALL interpretations.

Also called a tautology.

In plain English:

"This sentence is ALWAYS true regardless of value assignment to individual propositional variables."

Example:

$$p \lor \neg p$$

p	¬р	p ∧ ¬ p
true	false	true
true	false	true
false	true	true
false	true	true

UNSATISFIABLE/CONTRADICTION

A sentence is unsatisfiable if it is NOT true for ANY interpretation. Also called a contradiction.

In plain English:

"This sentence is ALWAYS false regardless of value assignment to individual propositional variables."

Example:

 $p \land \neg p$

p	¬p	$\mathbf{p} \wedge \neg \mathbf{p}$
true	false	false
true	false	false
false	true	false
false	true	false

Propositional Logic and KB-Agents

Propositional Logic:
Syntax

Propositional Logic:
Semantics

Propositional
Logic:
Inference and
Proof Systems

KB-Agents: Inference algorithms

Inference: The idea

The idea:

Given everything (expressed as sentences) that we know, can we infer if some query (another sentence) is true or not (satisfied or not)?

(Automated) Proof System

In AI we are interested in taking existing knowledge (sentences in \overline{KB}) and from that:

- deriving new knowledge (new sentences)
- answering questions (query sentences)

In Propositional Logic this means showing that some sentence Q follows from a Knowledge Base KB where:

- Q some query sentence
- KB knowledge base (a sentence made of sentences)

If it is raining, I will need an umbrella. It is raining. Therefore, I will need an umbrella.

If it is raining, then I will need an umbrella. It is raining. Therefore, I will need an umbrella.

If it is raining, then I will need an umbrella. It is raining. Therefore, I will need an umbrella.

Propositional Logic: An Argument

An argument \boldsymbol{A} in propositional logic has the following form:

```
A: P1
PREMISES
P2
...
PN
∴ C conclusion
```

An argument A is said to be valid if the implication formed by taking the conjunction of the premiseses (antecedent) and the conclusion C (consequent),

 $(P1 \land P2 \land P3 \land ... \land PN) \Rightarrow C$ is a tautology.

Propositional Logic: An Argument

An argument A in propositional logic has the following form:

A: P1
PREMISES
P2
...
PN
∴ C CONCLUSION

Premises are taken for granted (assumed to be true).

If it is raining, then I will need an umbrella.

It is raining.

Therefore, I will need an umbrella.

If it is raining, then I will need an umbrella.

It is raining. ← PREMISES

Therefore, I will need an umbrella. ← conclusion

```
p = "It is raining."

q = "I will need an umbrella."

PREMISE1 = "If it is raining, then I will need an umbrella."

PREMISE2 = "It is raining."

CONCLUSION = "I will need an umbrella."
```

```
If p then q is true

and p is true.

Therefore, q is true.

← conclusion
```

```
p = "It is raining."

q = "I will need an umbrella."

PREMISE1 = "If it is raining, then I will need an umbrella."

PREMISE2 = "It is raining."

CONCLUSION = "I will need an umbrella."
```

Inference Rules: Modus Ponens


```
p = "It is raining."

q = "I will need an umbrella."

PREMISE1 = p \Rightarrow q

PREMISE2 = p

CONCLUSION = q
```

$$\begin{array}{c} p \Rightarrow q \\ \hline p \\ \hline \\ \vdots \quad q \end{array} \longrightarrow \begin{array}{c} \text{PREMISES} \\ \hline \\ \text{CONCLUSION} \end{array}$$

```
p = "It is raining."

q = "I will need an umbrella."

p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p = p =
```

IF PREMISES ARE TRUE,
THEREFORE THE
CONCLUSION MUST
ALSO BE TRUE

Inference: Modus Ponens


```
p = "It is raining."

q = "I will need an umbrella."

PREMISE1 = p \Rightarrow q

PREMISE2 = p

CONCLUSION = q
```

PROPOSITION	AL VARIABLES	IMPLICATION
p	q	$p \Rightarrow q$
true	true	true
true	false	false
false	true	true
false	false	true

$$\begin{array}{c} p \Rightarrow q \\ \hline p \end{array} \qquad \begin{array}{c} \\ \hline \end{array}$$
 PREMISES
$$\begin{array}{c} \\ \\ \end{array}$$

$$\begin{array}{c} \\ \\ \end{array}$$
 CONCLUSION

```
p = \text{``It is raining.''} q = \text{``I will need an umbrella.''} PREMISES = PREMISE1 \text{ AND PREMISE2} = (p \Rightarrow q) \land p
```

CONCLUSION = q

PROPOSITION	PROPOSITIONAL VARIABLES		PREMISE	PREMISES	CONCLUSION
p	q	P1: $p \Rightarrow q$	P2: p	$P1 \wedge P2:(p \Rightarrow q) \wedge p$	q
true	true	true	true	true	true
true	false	false	true	false	false
false	true	true	false	false	true
false	false	true	false	false	false

PROPOSITION	PROPOSITIONAL VARIABLES		PREMISE	PREMISES	CONCLUSION
p	q	P1: $p \Rightarrow q$	P2: p	$P1 \wedge P2:(p \Rightarrow q) \wedge p$	q
true	true	true	true	true	true
true	false	false	true	false	false
false	true	true	false	false	true
false	false	true	false	false	false

Inference Rules: Summary

Rules of Inference:

Modus Ponens	Modus Tollens	Hypothetical Syllogism (Transitivity)	Conjunction
$\frac{P \Rightarrow Q}{P}$	$\begin{array}{c} \mathbf{P} \Rightarrow \mathbf{Q} \\ \neg \ \mathbf{Q} \end{array}$	$ \begin{array}{c} \mathbf{P} \Rightarrow \mathbf{Q} \\ \mathbf{Q} \Rightarrow \mathbf{R} \end{array} $	P Q
∴ Q	∴ ¬P	$\therefore \mathbf{P} \Rightarrow \mathbf{R}$	∴ P ∧ Q
Addition	Simplification	Disjunctive Syllogism	Resolution
Addition P	Simplification $ P \wedge Q $	Disjunctive Syllogism $ \begin{array}{ccc} P \lor Q \\ \lnot P & \checkmark \end{array} $	Resolution $ \begin{array}{c} P \lor Q \\ \neg P \lor R \end{array} $

Tautological forms:

Modus Ponens: $((P \Rightarrow Q) \land P) \Rightarrow Q \mid Modus Tollens: ((P \Rightarrow Q) \land \neg Q) \Rightarrow \neg P$

Hypothetical Syllogism: $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$

Disjunctive Syllogism: $((P \lor Q) \land \neg P) \Rightarrow \neg Q$

Addition: $P \Rightarrow P \lor Q \mid Simplification: (P \land Q) \Rightarrow P$

Conjunction: (P) \land (Q) \Rightarrow (P \land Q) | **Resolution:** ((P \lor Q) \land (\neg P \lor R)) \Rightarrow (Q \lor R)

Argument Validity: Truth Table Proof

```
p \Rightarrow q
p \Rightarrow \neg r
\neg p \Rightarrow \neg r
\therefore \neg r
```

p	q	r	P1:p⇒q	P2: q ⇒¬ r	$P3:\neg p \Rightarrow \neg \mathbf{r}$	P1∧P2∧P3	$(P1 \land P2 \land P3) \Longrightarrow \neg \mathbf{r}$
true	true	true	true	false	true	false	true
true	true	false	true	true	true	true	true
true	false	true	false	true	true	false	true
true	false	false	false	true	true	false	true
false	true	true	true	false	false	false	true
false	true	false	true	true	true	true	true
false	false	true	true	true	false	false	true
false	false	false	true	true	true	true	true

Argument Validity: Truth Table Proof

$$\begin{array}{ll} \mathbf{p} \Rightarrow \mathbf{q} & A \Leftrightarrow ((\mathbf{p} \Rightarrow \mathbf{q}) \land (\mathbf{p} \Rightarrow \neg \mathbf{r}) \land (\neg \mathbf{p} \Rightarrow \neg \mathbf{r}) \Rightarrow \neg \mathbf{r}) \\ \mathbf{p} \Rightarrow \neg \mathbf{r} & \text{An argument A is valid if it is a tautology.} \end{array}$$

$$\frac{\neg p \Rightarrow \neg r}{\therefore \neg r}$$

p	q	r	P1:p⇒q	P2:q⇒¬r	$P3:\neg p \Rightarrow \neg \mathbf{r}$	P1∧P2∧P3	$(P1 \land P2 \land P3) \Longrightarrow \neg \mathbf{r}$
true	true	true	true	false	true	false	true
true	true	false	true	true	true	true	true
true	false	true	false	true	true	false	true
true	false	false	false	true	true	false	true
false	true	true	true	false	false	false	true
false	true	false	true	true	true	true	true
false	false	true	true	true	false	false	true
false	false	false	true	true	true	true	true

Argument Validity: Truth Table Proof

$$\begin{array}{ll} \mathbf{p} \Rightarrow \mathbf{q} & \mathbf{A} \Leftrightarrow ((\mathbf{P1}) \wedge (\mathbf{P2}) \wedge (\mathbf{P3}) \Rightarrow \neg \ \mathbf{r}) \\ \mathbf{p} \Rightarrow \neg \ \mathbf{r} & \text{An argument A is valid if it is a tautology.} \end{array}$$

 $\neg p \Rightarrow \neg r$ Argument A is valid, because it is a tautology

 $\therefore \neg \mathbf{r}$ (always true regardless of \mathbf{p} , \mathbf{q} , \mathbf{r} truth assignments)

p	q	r	P1:p⇒q	P2:q⇒¬r	$P3:\neg p \Rightarrow \neg r$	P1∧P2∧P3	A
true	true	true	true	false	true	false	true
true	true	false	true	true	true	true	true
true	false	true	false	true	true	false	true
true	false	false	false	true	true	false	true
false	true	true	true	false	false	false	true
false	true	false	true	true	true	true	true
false	false	true	true	true	false	false	true
false	false	false	true	true	true	true	true

Logical Entailment

A set of sentences (called premises) logically entails a sentence (called a conclusion) if and only if every truth assignment that satisfies the premises also satisfies the conclusion.

PREMISES ⊨ CONCLUSION

Logical Entailment

Definition: A sentence KB entails a sentence Q (or Q follows from KB) if every model of KB is also a model of Q. We write:

$$KB = Q$$

In other words:

- For every interpretation in which KB is true, Q is also true
- "Whenever KB is true, Q is also true"

Entailment: Deriving Conclusions

You can prove if:

$$KB = Q$$

is true in a number of ways:

- Model checking (enumeration)
- Truth table proof (enumeration)
- Proof by resolution

You can also prove related sentences:

- prove that $KB \land \neg Q$ is unsatisfiable (by contradiction)
- prove that $KB \Rightarrow Q$ is a tautology

Model / "Possible World"

A model (a "possible world) is a single truth assignment / interpretation.

If a sentence U is true in model K, K satisfies U.

M(U): set of ALL models of U (that satisfy U)

Now:

 $KB \vdash Q$ if and only if $M(KB) \subseteq M(Q)$

KB ⊨ Q is true if and only if in EVERY model in which KB is true, Q is also true.

Logical Entailment with Truth Table

Model	p	q	r	P1:p⇒q	P2:q⇒¬ r	$P3:\neg p \Rightarrow \neg r$	KB	Q
M1	true	true	true	true	false	true	false	false
M2	true	true	false	true	true	true	true	true
M3	true	false	true	false	true	true	false	false
M4	true	false	false	false	true	true	false	true
M5	false	true	true	true	false	false	false	false
M6	false	true	false	true	true	true	true	true
M7	false	false	true	true	true	false	false	false
M8	false	false	false	true	true	true	true	true

Entailment: Model Checking

$$\begin{array}{c}
\mathbf{p} \Rightarrow \mathbf{q} & \text{KB} \\
\mathbf{p} \Rightarrow \neg \mathbf{r} \\
\neg \mathbf{p} \Rightarrow \neg \mathbf{r} \\
\hline
\neg \mathbf{r} & \mathbf{0}
\end{array}$$

$$KB \Leftrightarrow (p \Rightarrow q) \land (p \Rightarrow \neg r) \land (\neg p \Rightarrow \neg r) \mid Q \Leftrightarrow \neg r$$

Models where KB is true: $M(KB) = \{M2, M6, M8\}$

Models where Q is true: $M(Q) = \{M2, M4, M6, M8\}$

Model	p	q	r	P1:p⇒q	P2: q ⇒¬ r	$P3:\neg p \Rightarrow \neg r$	KB	Q
M1	true	true	true	true	false	true	false	false
M2	true	true	false	true	true	true	true	true
M3	true	false	true	false	true	true	false	false
M4	true	false	false	false	true	true	false	true
M5	false	true	true	true	false	false	false	false
M6	false	true	false	true	true	true	true	true
M7	false	false	true	true	true	false	false	false
M8	false	false	false	true	true	true	true	true

Entailment: Model Checking

$$\begin{array}{c}
\mathbf{p} \Rightarrow \mathbf{q} & \text{KB} \\
\mathbf{p} \Rightarrow \neg \mathbf{r} \\
\neg \mathbf{p} \Rightarrow \neg \mathbf{r} \\
\hline
\cdot \mathbf{r} & \mathbf{0}
\end{array}$$

$$KB \Leftrightarrow (p \Rightarrow q) \land (p \Rightarrow \neg r) \land (\neg p \Rightarrow \neg r) \mid Q \Leftrightarrow \neg r$$

Models where KB is true: $M(KB) = \{M2, M6, M8\}$

Models where Q is true: $M(Q) = \{M2, M4, M6, M8\}$

$$\therefore \neg r \qquad Q$$

 $M(KB) \subseteq M(Q)$ so Q follows KB

Model	p	q	r	P1:p⇒q	P2:q⇒¬ r	$P3:\neg p \Rightarrow \neg r$	KB	Q
M1	true	true	true	true	false	true	false	false
M2	true	true	false	true	true	true	true	true
M3	true	false	true	false	true	true	false	false
M4	true	false	false	false	true	true	false	true
M5	false	true	true	true	false	false	false	false
M6	false	true	false	true	true	true	true	true
M7	false	false	true	true	true	false	false	false
M8	false	false	false	true	true	true	true	true

$KB \Rightarrow Q$ is a Tautology Proof

 $p \Rightarrow q$ $p \Rightarrow \neg r$ $\neg p \Rightarrow \neg r$ $\therefore \neg r$

$KB \Rightarrow Q$ is true for ALL
models / interpreations

 $KB \Rightarrow Q$ is a tautology

p	q	r	P1:p⇒q	$P2:q \Rightarrow \neg r$	$P3:\neg p \Rightarrow \neg r$	KB	$KB \Rightarrow Q$
true	true	true	true	false	true	false	true
true	true	false	true	true	true	true	true
true	false	true	false	true	true	false	true
true	false	false	false	true	true	false	true
false	true	true	true	false	false	false	true
false	true	false	true	true	true	true	true
false	false	true	true	true	false	false	true
false	false	false	true	true	true	true	true

Enumeration: Issues

Consider a complex sentence R built with N propositional variables p_1 , p_2 , p_3 , ..., p_{N-1} , p_N and logical connectives $(\neg, \lor, \land, \Rightarrow, \Leftrightarrow)$. Each truth assignment is a different possible world.

		N	Propo	Complex				
	p_1	p_2	p_3		p_{N-1}	p_N	sentence R	
(5	true	true	true		true	true	false	
del	true	true	true	···	true	false	true	R
(Models)	true	true	false	···	false	true	false	of
ssible Worlds (I				•••			•••	Interpretations
SSi	false	false	true		true	false	true	
Pos	false	false	true		false	true	true	2^{N}
2^{N}	false	false	false	•••	false	false	false	

Logical Entailment

Definition: A sentence KB entails sentence Q (or Q follows from KB) if every model of KB is also a model of Q. We write:

$$KB \vdash Q$$

One more way to look at it:

If KB entails Q,

- "the truth of KB guarantees truth of Q"
- "the falsity of KB guarantees falsity of Q"

Implication | Equivalence | Entailment

IMPLICATION

A sentence is satisfiable if it is true for AT LEAST ONE interpretation.

In plain English:
true implies true
true DOES NOT imply false
false implies true
false implies false

Notation:

$$KB \Rightarrow Q$$

EQUIVALENCE

A sentence is (logically) valid if it is true for ALL interpretations.

Also called a tautology.

In plain English:
true equivalent to true
true NOT equivalent to false
false NOT equivalent to true
false equivalent to false

Notation:

 $KB \Leftrightarrow Q$

KB	Q	KB ⇔ Q
true	true	true
true	false	false
false	true	false
false	false	true

ENTAILMENT

A sentence is unsatisfiable if it is NOT true for ANY interpretation. Also called a contradiction.

In plain English:
true follows from true
false DOES NOT follow from true
true DOES NOT follow from false
false DOES NOT follow from false

Notation:

KB = Q

KB	Q	KB ⊨ Q
true	true	true
true	false	false
false	true	false
false	false	false

Entailment: Deriving Conclusions

You can prove that:

$$KB = Q$$

is true in a number of ways:

- Model checking (enumeration)
- Truth table proof (enumeration)
- Proof by resolution

You can also prove related sentences:

- prove that $KB \land \neg Q$ is unsatisfiable (by contradiction)
- prove that $KB \Rightarrow Q$ is a tautology

$$KB \equiv (p \Rightarrow q) \land (p \Rightarrow \neg r) \land (\neg p \Rightarrow \neg r)$$
 | $Q \equiv \neg r$

Prove that $(KB \Rightarrow Q) \Leftrightarrow T$ (Show that $KB \Rightarrow Q$ is a tautology) Prove that $(KB \land \neg Q) \Leftrightarrow \bot$ (Show that $KB \land \neg Q$ is a contradiction) Proof by model checking
Show that all models that are true
for Q are also true for KB

N	Iodel	p	q	r	p⇒q	$q \Rightarrow \neg r$	$\neg p \Rightarrow \neg r$	KB	Q	$KB \Rightarrow Q$	$KB \land \neg Q$
	M1	true	true	true	true	false	true	false	false	true	false
	M2	true	true	false	true	true	true	true	true	true	false
	M3	true	false	true	false	true	true	false	false	true	false
	M4	true	false	false	false	true	true	false	true	true	false
	M5	false	true	true	true	false	false	false	false	true	false
	M6	false	true	false	true	true	true	true	true	true	false
	M7	false	false	true	true	true	false	false	false	true	false
	M8	false	false	false	true	true	true	true	true	true	false

$$KB \equiv (p \Rightarrow q) \land (p \Rightarrow \neg r) \land (\neg p \Rightarrow \neg r)$$
 | $Q \equiv \neg r$

Prove that $(KB \Rightarrow Q) \Leftrightarrow T$ (Show that $KB \Rightarrow Q$ is a tautology)

 $KB \Rightarrow Q$ is true for all models, so KB entails Q

Prove that $(KB \land \neg Q) \Leftrightarrow \bot$ (Show that $KB \land \neg Q$ is a contradiction) Proof by model checking Show that all models that are true for Q are also true for KB

Model	p	q	r	p⇒q	$q \Rightarrow \neg r$	$\neg p \Rightarrow \neg r$	KB	Q	KB ⇒ Q	KB ∧ ¬ Q
M1	true	true	true	true	false	true	false	false	true	false
M2	true	true	false	true	true	true	true	true	true	false
M3	true	false	true	false	true	true	false	false	true	false
M4	true	false	false	false	true	true	false	true	true	false
M5	false	true	true	true	false	false	false	false	true	false
M6	false	true	false	true	true	true	true	true	true	false
M7	false	false	true	true	true	false	false	false	true	false
M8	false	false	false	true	true	true	true	true	true	false

$$KB \equiv (p \Rightarrow q) \land (p \Rightarrow \neg r) \land (\neg p \Rightarrow \neg r)$$
 | $Q \equiv \neg r$

Prove that $(KB \Rightarrow Q) \Leftrightarrow T$ (Show that $KB \Rightarrow Q$ is a tautology)

 $KB \Rightarrow Q$ is true for all models, so KB entails Q

Prove that $(KB \land \neg Q) \Leftrightarrow \bot$ (Show that $KB \land \neg Q$ is a contradiction)

 $KB \land \neg Q$ is false for all models, so KB entails Q

Proof by model checking Show that all models that are true for Q are also true for KB

Model	p	q	r	$p \Rightarrow q$	$q \Rightarrow \neg r$	$\neg p \Rightarrow \neg r$	KB	Q	$KB \Rightarrow Q$	$KB \land \neg Q$
M1	true	true	true	true	false	true	false	false	true	false
M2	true	true	false	true	true	true	true	true	true	false
M3	true	false	true	false	true	true	false	false	true	false
M4	true	false	false	false	true	true	false	true	true	false
M5	false	true	true	true	false	false	false	false	true	false
M6	false	true	false	true	true	true	true	true	true	false
M7	false	false	true	true	true	false	false	false	true	false
M8	false	false	false	true	true	true	true	true	true	false

$$KB \equiv (p \Rightarrow q) \land (p \Rightarrow \neg r) \land (\neg p \Rightarrow \neg r)$$
 $Q \equiv \neg r$

Prove that $(KB \Rightarrow Q) \Leftrightarrow T$ (Show that $KB \Rightarrow Q$ is a tautology)

 $KB \Rightarrow Q$ is true for all models, so KB entails Q

Prove that $(KB \land \neg Q) \Leftrightarrow \bot$ (Show that $KB \land \neg Q$ is a contradiction)

 $KB \land \neg Q$ is false for all models, so KB entails Q

Proof by model checking Show that all models that are true for Q are also true for KB $\frac{M(O)}{M4} \frac{M(CB)}{M2, M6, M8}$ $M(KB) \subseteq M(Q) \text{ so } KB \text{ entails } Q$

Model	p	q	r	p⇒q	$q \Rightarrow \neg r$	$\neg p \Rightarrow \neg r$	KB	Q	$KB \Rightarrow Q$	$KB \land \neg Q$
M1	true	true	true	true	false	true	false	false	true	false
M2	true	true	false	true	true	true	true	true	true	false
M3	true	false	true	false	true	true	false	false	true	false
M4	true	false	false	false	true	true	false	true	true	false
M5	false	true	true	true	false	false	false	false	true	false
M6	false	true	false	true	true	true	true	true	true	false
M7	false	false	true	true	true	false	false	false	true	false
M8	false	false	false	true	true	true	true	true	true	false

Model Checking as a Search Problem

Model checking can be considered a search problem. Searching a truth table for models in which KB entails Q (Q follows from KB). It is a $O(2^N)$ problem.

		N	Propo	KB ⊨ Q				
	p_1	p_2	p_3		p_{N-1}	p_N	KD · Q	
(5	true	true	true		true	true	false	
del	true	true	true	•••	true	false	true	
Mo	true	true	false		false	true	false	ons
Possible Worlds (Models)		•••	•••	•••	•••		•••	$2^{ m N}$ Interpretations
ssi	false	false	true		true	false	true	2^{N}
	false	false	true		false	true	true	
2^{N}	false	false	false	•••	false	false	false	