

# **Project Team**

# **Lizzie Friend**



Project Manager, SME, Product Manager, Dataset Generation

# **Emanuel Mejia**



Application Developer, Dataset Generation

# **Jacob Schamp**



EDA Lead, ML Engineer, Model Evaluator, Dataset Generation

# **Zach Zimmerman**



Lead ML Engineer, Model
Deployment, Data
Infrastructure

**Mission Statement:** ShelterAID Public Health Resources Map uses computer vision technology to help improve safety and public health outcomes for people living in unsheltered homelessness.

# **Problem & Project Overview**



Problem Solution MVP

It's hard to help people experiencing unsheltered homelessness if you can't find them.

ShelterAID helps public health agencies **find**, **count**, **and support** people living in unsheltered homelessness in their cities.

We will provide a web application that allows credentialed users to input a satellite image, then run the model to detect shelters in the image.

# **MVP Demo**



- Simple proof-of-concept application that allows a user to:

  - Select parameters and run the model
  - Return an image with detected shelter locations

- Users can answer the question:

How many shelters are in this image/location?



# **Dataset Generation**



No dataset existed or could be located → First project team task was creating one

# Step 1: Find Step 2: Create Step 3: Label Step 4: Export Annotated and processed using Roboflow Annotated and processed using Roboflow formats

- Used <u>HUD</u>

  <u>Point-in-Time Count</u>
  data to select cities
- Used public data, partner data, and news to help locate camps

- Overall range 200m -2,000m above sea level
- 204 images from five states, 14 cities

- 1,740 annotations (1,455 shelters, 285 camps)
- Documented definitions/guidelines and peer-reviewed

- 153 train/41 validate/10 test
- YOLOv7pytorch and YOLOv8

# **Exploratory Analysis**



Shelters vary in size, shape, color, orientation, location w/in surrounding context, visibility/occlusion, and many other factors.

### **Annotations Heatmap**



### **Sample Labeled Shelters**



# **Modeling Approach**



Trained four models, all leveraging transfer learning by building on existing models that were pretrained for object detection.

### Model 1

# **Faster RCNN Baseline**

- Faster RCNN +
   MobileNet backbone
   pretrained on COCO
   dataset
- Replaced classification head with custom
   FasterRCNN predictor
- 10 epochs in batches of 4

# Model 2

# **Faster RCNN Tuned**

- Faster RCNN +
   MobileNet backbone
   pretrained on COCO
   dataset
- Hyperparameter tuning (grid search)
- Preprocessing and augmentation steps

### Model 3

# YOLOv7

- YOLOv8 model trained on the COCO dataset
- 100 epochs, auto-batching
- Cosine learning rate adjustment

# Model 4

# **YOLOv8**

- YOLOv8 model trained on the COCO dataset
- 100 epochs, auto-batching
- Cosine learning rate adjustment
- Resized images (stretch to 640X640)

# **Evaluation Strategy**



# True Positives Defined by Intersection Over Union (IoU) Threshold

- IoU = Compares ground truth bounding box to predicted bounding box ("how correct is this prediction?")
- True Positive: IoU over 0.25 (25% overlap)

# **Primary Evaluation Metric: Recall**

- Recall = (True Positives) / (True Positives + False Negatives)
- We are prioritizing reducing the number of false negatives, allowing for some false positives:
  - ShelterAID's goal is to FIND encampments
  - False negatives result in vulnerable people never receiving aid
  - False positives result in resources temporarily deployed to the wrong location

# **Secondary Evaluation Metric: Precision**

Precision = (True Positives) / (True Positives + False Positives)

# **Ground Truth**



Prediction

### **Ground Truth**



Prediction

# **Model 2 Performance: Faster RCNN**



### **Moderate Recall + Low Precision**

Recall: **0.40**Precision: **0.10** 

- Fairly effective at identifying shelters, but many false positives from re-identifying the same shelter many times
- Re-identifications (especially those at the wrong size) are likely reducing precision







# **Model 3 Performance: YOLOv7**



### Poor recall + Poor Precision

- Recall: **0.0007** 

- Precision: **0.00332** 

- Most often predicted zero shelters
- Predictions were very far off from labels
- Possible reason: the model may have been trained exclusively on at-level images (as opposed to aerial imagery)





# **Model 4 Performance: YOLOv8**



### **Moderate Recall + Moderate Precision**

- Recall: **0.483** 

- Precision: **0.552** 

- Often finds most of the shelters in an image, and successfully identifies large clusters (if not always precisely)
- Sometimes mis-identifies debris
- Great at finding tents, less successful at identifying tarp shelters





# **Model 4 Performance: YOLOv8**







# Model 4 Performance: YOLOv8 Test Set







# **Model Performance**



Evaluated all four models with these metrics.



# Model 1

### **Faster RCNN Baseline**

- Recall: **0.331**
- Precision: **0.154**

# **Performance Summary:**

- Many false positives
- Repeat re-identification

# Model 2

### **Faster RCNN Tuned**

- Recall: **0.40**
- Precision: **0.10**

# **Performance Summary:**

- Many false positives
- Repeat re-identification
- Degraded precision

# Model 3

### YOLOv7

- Recall: **0.0007**
- Precision: **0.00332**

# **Performance Summary:**

- Very poor performing
- Often zero predictions

# Model 4

### YOLOv8

- Recall: **0.483**
- Precision: **0.552**

### **Performance Summary:**

- Improved recall and precision
- Very good at certain shelter types

# **Technical Challenges**



1

## **Encampments vs. Shelters**

- Initially planned two classes: shelter, encampments
- Encampments were very difficult to concretely define
- Models aso performed very poorly for encampments
- Reassessed the problem and primary user need → decided to drop encampments and move ahead with one class

2

### **Model Performance**

- First round recall < 40%
- Many missed shelters, many overlapping predictions on same shelter, erratic encampment predictions
- Tested other models and attempted to train from scratch.
- Assessed metrics and primary use case → adjusted IoU from 50% to 25%

3

### **Limited Dataset**

- 204 total images, 1,455 labeled shelters → likely not enough
- Tested this by downsampling our final model (YOLOv8) by 30%, performance decreased
   → more data collection could lead to further improvement

# Roadmap Items



1

# **Additional Model Improvement**

- Additional tuning
- Additional experimentation with augmentation and preprocessing steps
- Test additional pretrained models

2

# **Additional Data Collection**

- Collect more data using iterative, strategic, feedback loop, including:
  - Assess model performance
  - Analyze gaps
  - Collect more data
  - Train new model
  - Assess model performance
  - Etc.

3

# **Product Expansion (Sat Imagery)**

- Build infrastructure to ingest large satellite imagery w/geocoding
  - Tile image
  - Run model on each tile
  - Return predictions
  - Geocode predictions
  - Return addresses and descriptive statistics (counts, etc.)

# **Project Mission**

ShelterAID Public Health Resources Map uses computer vision technology to help improve safety and public health outcomes for people living in unsheltered homelessness.



### **FIND**

Find people experiencing unsheltered homelessness in their communities.

### COUNT

Estimate the size of the unsheltered population and measure trends over time.

### SUPPORT

Provide needed resources and support quickly, especially in emergencies.





# Thank you

Lizzie Friend | Slack: Lizzie Friend

Emanuel Mejia | Slack: Emanuel Mejia

Jacob Schamp | Slack: Jacob Schamp

Zach Zimmerman | Slack: Zachary Zimmerman

Special thanks to our classmates, instructors Korin and Puya, and to the <u>Denver Department of Public Health & Environment</u> for providing guidance, data, and expertise.

Appendix: <u>Dataset Details</u> / <u>Users & Use Cases</u> / <u>Project Page</u>

# Appendix: Dataset Details

- 204 total images
- 22 total nulls (goal 10%)
- 14 cities
- 5 states
- Heights from sea level ranging from 200m-2,000m
- Taking into account varying city elevations, most were between 200-550m above ground
- Varied heights within each city

| City/Area       | State      | Height (sea level) | Positives | Nulls | Total |
|-----------------|------------|--------------------|-----------|-------|-------|
| Denver/Boulder  | Colorado   | 1,600-2,000m       | 44        | 4     | 48    |
| Seattle/Tacoma  | Washington | 250-550m           | 38        | 3     | 41    |
| Los Angeles     | California | 200-500m           | 19        | 3     | 22    |
| SF/Oakland/Berk | California | 200-450m           | 18        | 2     | 20    |
| Long Beach      | California | 200-500m           | 18        | 2     | 20    |
| San Diego       | California | 200-500m           | 16        | 2     | 18    |
| Portland        | Oregon     | 250-550m           | 11        | 2     | 13    |
| San Jose        | California | 200-500m           | 7         | 1     | 8     |
| Sacramento      | California | 200-500m           | 7         | 1     | 8     |
| Phoenix         | Arizona    | 400-750m           | 4         | 2     | 6     |
| Total           |            | -                  | 182       | 22    | 204   |

# **Appendix: Target User & Use Cases**



- In the US there are **50** state health departments, over **3,000** county departments, and many municipal programs.
- Our product will be targeted toward programs in areas that have urban centers and large unsheltered populations, including:
  - Encampment assessment teams who strive to visit all encampments in a city to ensure safety for its residents
  - Communicable disease epidemiologists who need to conduct rapid investigations during outbreaks
  - **Immunization** teams and **mobile healthcare** vans who bring services to people who need them
  - Agency directors who need to advocate for increased funding for new or expanded support programs
  - Housing programs who provide emergency shelters in extreme heat or cold





Homelessness in US Cities and Downtowns