Rules for integrands involving Bessel functions

1. $\int u \operatorname{BesselJ}[n, a+bx] dx$

1. $\int BesselJ[n, a+bx] dx$

1. $\int BesselJ[n, a+bx] dx$ when $\frac{n+1}{2} \in \mathbb{Z}^+$

1: $\int BesselJ[1, a+bx] dx$

- Rule:

$$\int BesselJ[1, a+bx] dx \rightarrow -\frac{BesselJ[0, a+bx]}{b}$$

Program code:

2:
$$\int BesselJ[n, a+bx] dx$$
 when $\frac{n-1}{2} \in \mathbb{Z}^+$

Basis: BesselJ[n, a+bx] == $-\frac{2 \frac{\partial_x BesselJ[n-1,a+bx]}{b}}{b}$ + BesselJ[n-2, a+bx]

Rule: If $\frac{n-1}{2} \in \mathbb{Z}^+$, then

$$\int BesselJ[n, a+bx] dx \rightarrow -\frac{2 BesselJ[n-1, a+bx]}{b} + \int BesselJ[n-2, a+bx] dx$$

Program code:

```
\label{local_local_local} Int[BesselJ[n_,a_.+b_.*x_],x_Symbol] := \\ -2*BesselJ[n-1,a+b*x]/b + Int[BesselJ[n-2,a+b*x],x] /; \\ FreeQ[\{a,b\},x] && IGtQ[(n-1)/2,0] \\ \end{aligned}
```

X: $\int BesselJ[n, a+bx] dx$ when $n \in \mathbb{Z}^-$

- Derivation: Algebraic simplification
- Basis: If $n \in \mathbb{Z}$, then BesselJ $[n, z] = (-1)^n$ BesselJ [-n, z]
- Note: This rule not necessary since *Mathematica* automatically simplifies BesselJ [n, a + b x] to $(-1)^n$ BesselJ [-n, z] if $n \in \mathbb{Z}^-$.
- Rule: If n ∈ Z⁻, then

$$\int BesselJ[n, a+bx] dx \rightarrow (-1)^n \int BesselJ[-n, a+bx] dx$$

Program code:

(* Int[BesselJ[n_,a_.+b_.*x_],x_Symbol] :=
 (-1)^n*Int[BesselJ[-n,a+b*x],x] /;
FreeQ[{a,b},x] && ILtQ[n,0] *)

- 2: $\int BesselJ[n, a+bx] dx$
- Rule:

Program code:

Int[BesselJ[n_,a_.+b_.*x_],x_Symbol] :=
 (a+b*x)^(n+1)*HypergeometricPFQ[{(n+1)/2},{(n+3)/2,n+1},-1/4*(a+b*x)^2]/(2^n*b*Gamma[n+2]) /;
FreeQ[{a,b,n},x]

- 2. $\int (dx)^m BesselJ[n, bx] dx$
- 3. $\int (c + dx)^m$ BesselJ[n, a + bx] dx
- 2. $\int u \operatorname{BesselK}[n, a + b x] dx$
- 3. $\int u \operatorname{BesselY}[n, a+bx] dx$