7 測地線(1)

- 7.1 球面 S^n の測地線について調べる.
 - (1) \mathbb{R}^{n+1} の互いに直交する 2 つの単位ベクトル a, b を用いて

$$\gamma_{a,b}(t) = (\cos t)a + (\sin t)b, \qquad t \in (-\infty, \infty)$$

と定める. γ_{ab} が S^n の測地線であることを示せ. [ヒント:問題 5.4 を利用せよ.]

- (2) 速さ 1 の測地線 $\gamma: I \to S^n$ はある a, b を用いて $\gamma(t) = \gamma_{a,b}(t)$ と表されることを示せ. $[ヒント: 0 \in I$ と仮定して問題ない. そして測地線は $\gamma(0)$, $\dot{\gamma}(0)$ を指定すれば一意的.]
- 7.2 双曲平面 \mathbb{H}^2 の測地線について調べる.上半平面モデル $H^2 = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ を用いることにしよう.Riemann 計量は $g = y^{-2}(dx^2 + dy^2)$ で与えられる.
 - (1) $\gamma_0(t) = (0, e^t)$ で定義される曲線 $\gamma_0: (-\infty, \infty) \to H^2$ が測地線であることを示せ. 「ヒント:問題 3.2.]
 - (2) 点 (x,y) を複素数 z=x+iy と同一視する. 次の 3 種類の写像がそれぞれ H^2 の 等長変換を与えることを示せ.
 - (a) $\Phi(z) = \lambda z$ (λ は正の実数).
 - (b) $\Phi(z) = z + c$ (c は実数).
 - (c) $\Phi(z) = -1/z$.
 - (3) 速さ 1 の測地線 $\gamma: I \to H^2$ はある等長変換 Φ によって $\gamma = \Phi \circ \gamma_0$ と表されることを示せ.

[ヒント:長さ1の任意の接ベクトル $v \in T_{(0,1)}H^2$ に対し、 $\gamma(0) = (0,1)$ 、 $\dot{\gamma}(0) = v$ をみたす測地線 γ を $\Phi \circ \gamma_0$ の形で表せることを示せば十分である(なぜか?).任意の実数 c に対し、(2) で挙げた 3 種類の写像を合成して得られる

$$z \mapsto z + c \mapsto -\frac{1}{z+c} \mapsto -\frac{c^2+1}{z+c} \mapsto -\frac{c^2+1}{z+c} + c = \frac{cz+1}{z+c}$$

も等長変換であることを利用せよ.]

- 7.3 (1) (M,g) を連結な Riemann 多様体とし, $\Phi: M \to M$ を等長変換とする.ある点 $p \in M$ において $\Phi(p) = p$, $(d\Phi)_p = \mathrm{id}_{T_pM}$ ならば Φ は恒等変換であることを示せ. [ヒント: $A = \{q \in M \mid \Phi(q) = q, (d\Phi)_q = \mathrm{id}_{T_qM}\}$ とおく.仮定によって A は空集合ではない.A が開集合かつ閉集合であることを示す.]
 - (2) Euclid 空間 \mathbb{R}^n の等長変換が $\Phi(x) = Ax + b$ (A は n 次直交行列, b は \mathbb{R}^n のベクトル) の形に表されるものに限られることを示せ.
 - (3) 球面 S^n の等長変換が \mathbb{R}^{n+1} の直交変換の制限によって得られるものに限られることを示せ.
- 7.4 $\gamma: I \to M$ を速さ 1 の測地線とする(ただし $I \subset \mathbb{R}$ は 0 を含む区間). $p = \gamma(0)$ において $\dot{\gamma}(0)$, v_2 , ……, v_n が T_pM の正規直交基底となるように n-1 個のベクトル v_j ($2 \le j \le n$) をとる.各 j に対し, $e_j(t)$ を $e_j(0) = v_j$ をみたす γ に沿って定義された平行ベクトル場とする.すると各 $t \in I$ において $\dot{\gamma}(t)$, $e_2(t)$, ……, $e_n(t)$ は $T_{\gamma(t)}M$ の正規直交基底である.

逆に、速さ 1 の曲線 $\gamma: I \to M$ に沿って平行ベクトル場 $e_2(t)$ 、……、 $e_n(t)$ が定義されており、各 $t \in I$ に対し $\dot{\gamma}(t)$ 、 $e_2(t)$ 、……、 $e_n(t)$ が $T_{\gamma(t)}M$ の正規直交基底であるとする.そのとき γ は測地線であることを示せ.

- 7.5 Riemann 多様体 (M, g) の点 $p \in M$ において正規球 $B_{\varepsilon}(p)$ をとり,この正規球における正規座標系 $(x^1, ..., x^n)$ を考える.
 - (1) $(x^1,...,x^n)$ に関する Christoffel 記号 Γ^k_{ij} の点 p における値がすべて 0 であることを示せ. $[ヒント:任意の <math>a=(a^1,...,a^n) \in \mathbb{R}^n$ に対して $\gamma(t)=(a^1t,...,a^nt)$ は測地線である.これを測地線の方程式に代入する.]
 - (2) $(x^1,...,x^n)$ に関して $(\partial g_{ij}/\partial x^k)(p)=0$ であることを示せ. (実は g_{ij} の 2 次までの Taylor 展開は

$$g_{ij} = \delta_{ij} - \frac{1}{3} R_{ikjl}(p) x^k x^l + O(|x|^3)$$

で与えられる(第 12 回?). つまり Riemann 曲率テンソルは,正規座標系における g と Euclid 計量のずれの主要部を表している.)