1 prove that the longest common subsequence (LCS) problem has an optimal substructure property

Sequence X & < 21, 72, ..., 2m> 0122 stack, substantible property & your sequence property &

atily petron 21-25% i=0,1,..., mo(2+2 3+724 $\times_i = \langle \chi_i, \chi_i,...\chi_n \rangle$ of suppose of the petron of

optimal Structure property (3/2442-)

X=(x, x, ... xn), T= < T, Yz, ... Tn > 9 ~ 13607- 21371/, 8= (8, 72, ... 7n) 4 ~ 13607- 21371/,

1. Xm= Yn 0100, 3k= Xm= In 0 R 3k-12 Xm-1 Pt In-19 LCS

2. 2m + 7n 9+ 8x + 2m = 8 > 2 m-1 3+ 79 LCS

3 2m + 7n 2+ 3x + 7n & 27+ 2l2+ /n-1=1 LCS

prove

- (1) In=Yn Old 2003 LCS 2 DRP32 Bu & (In=Yn) 0522011.
- (3) 3 + 1 2m old 82 2m-12+ 79 LCS 7+ 51271. K210(47+2)

 2m-1 9+ 7 91 LCS 7+ 22+ 3+2+02, 2 sequence 2 2m2+ 7=1 commoncequence >+4102 >+52+13+44
- (3) (3) 112号

EX) (L)
$\chi = \chi + \zeta +$
n weight
7=A, t, T, C, G, A
Im = Yn (A) 2011 THAT ZEL OFFICE SEGUENCE ATISTEDIE
7m-1 Ph , Yn-1 >121 = 38 HE apart & MH H21 AZ H LCS
Oluk.
m of 30 h
(2) X=,A,C,A,G,T
Y = 4, t, t, C, G, A]
2 x キ スn (A) ○(配
又名又m-134 YSI 岩色色化进工、 叶叶 名k 共4元 本以101
In-12t Yel Common sequence
24th By otold X2LY9
LCS 71-01-47-41-20.
2. Design an algorithm that solves the following problem with $\frac{2}{2}$ n -2 comparisons.
Input: 2^m distinct Integers, where $m \ge 2$
Outfut: muximum and minimum, this Algorithms mad 2n-3 companison
cossure that n=2
$ \begin{array}{c c} \hline 5 & 1 & 6 & 2 \\ \hline 9 & 1 & 9 \\ \hline \end{array} $
max [3] n-1
min N-3
05e 2n-3
Divide and conquet

Divide the anay by half since length of Amory 17 is 25 power.
Ex) 5 1 62 > 51 62
compare each base since the oil two numbes they know which one
is bigger / Aron (to, 1) to is max, I is min
from 6,2) 6 is max, lismin.
1041 6,3
tien compare each max and min from both contag
/
the Time complexity is $f(n) = \Gamma(n) + \Gamma(n) + \Gamma(n) + \Gamma(n)$
= 2 T(n/2) +2
ue solve ton = 2 T(1/2)+2
= $t(0) = 2T(\frac{1}{2})+2 = 2(2T(\frac{1}{4})+2)+2$
m+T, 2 $m-1$
= 1 ((1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
<u> </u>
$N = 2^{m}$
$T(m) = n \cdot T(n) \cdot (n \cdot 2 + n \cdot 2) \cdot (n \cdot 2 + n \cdot 2)$
50 $T(n) = n \cdot T(2) + 2 + 2^{2} \cdot 2^{m-1}$
$\frac{2(1-2)}{2}$
$= \int_{2}^{\infty} \frac{1}{1} \left(\frac{1}{2} \right) + \frac{2(1-2^{mt})}{1}$
<u> </u>
= ~ 2 †2·2
2+h
$lackbox{}{}$
$=\frac{n}{2}\cdot 1+n-2$
<u> </u>
$=\frac{3}{2}$ 0 $=$ 2
- 2 11 - 2