Heart Diagnosis Requirement Predictor

A Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of

Bachelors Degree in Computer Science & Engineering

by

Sujoy Das

gau-c-17/054

Prastuti Koch

gau-c-17/289

Shivam Gupta

gau-c-17/071

Supervised by: Sanjib Narzary Assistant Professor

Department of Computer Science and Engineering
CENTRAL INSTITUTE OF TECHNOLOGY KOKRAJHAR
September 2020

Abstract

Abstract text here....

Approval

The Project Report "Heart Diagnosis Requirement Predictor" submitted by Sujoy Das (gau-c-17/054), Prastuti Koch (gau-c-17/289) and Shivam Gupta (gau-c-17/071) to the Department of Computer Science & Engineering, Central Institute of Technology, Kokrajhar, has been accepted as satisfactory for the partial fulfillment of the requirements for the degree of Bachelor of Technology in Computer Science & Engineering and approved as to its style and contents.

Board of Examiner's Name,	Signature, and Date:	
(Board Member 1)	(Board Member 2)	(Board Member 3)
Date:	Date:	Date:
Supervisor's Signature and D	Pate:	
Sanjib Narzary		
Sanjin Ivai zary		
Date:		

Declaration

We, hereby, declare that the work presented in this Thesis / Project is the outcome of the investigation performed by us under the supervision of Sanjib Narzary, Assistant Professor, Department of Computer Science & Engineering, Central Institute of Technology, Kokrajhar. We also declare that no part of this Project and thereof has been or is being submitted elsewhere for the award of any degree or Diploma.

Signature and Date:
Sujoy Das
Date:
Prastuti Koch
Date:
Shivam Gupta
Date:

Dedicated to ...

Acknowledgments

Acknowledgement text here...

Table of Contents

List	of I	Figures	1
List	of T	Tables	2
1:	Int	roduction	3
1	1.1	Motivation	3
1	1.2	Sensors	3
		1.2.1 Thermostats and HVAC controls	3
		1.2.2 Example Figure	4
		1.2.3 Example Referencing	4
1	1.3	Chapter Summary	4
2:	Lit	erature Review	5
2	2.1	Background Study	5
		2.1.1 Android-based Home Automation	5
2	2.2	Chapter Summary	5
3:	Sys	stem Design	6
		3.0.1 Pin Definition	6
3	3.1	Parameter	6
3	3.2	Chapter Summary	8

4:	Im	plementation	9	
	4.1	Implementation	9	
		4.1.1 Configuration Code	9	
	4.2	Chapter Summary	10	
5:	Co	nclusion	11	
	5.1	Limitations	11	
	5.2	Future Works	11	

List of Figures

1.1	NodeMCU Microcontroller	2
2.1	Android-based home automation system	4
3.1	Pin Definition of NodeMCU	(

List of Tables

3.1	Pin Description of NodeMCU												7
3.2	Parameters of NodeMCU												7

1 Introduction

Introduction text here...

1.1 Motivation

Motivation text here...

1.2 Sensors

- 1. ESP8266 12E wi-fi/Node MCU
- 2. 4/8/16 channel Relay Board
- 3. USB TTL Serial Adapter
- 4. PIR Motion sensors

1.2.1 Thermostats and HVAC controls

Common thermostats and HVAC controls are:

- Humidity sensing and control
- Temperature sensors and controllers
- Weather stations and sensors

1.2.2 Example Figure

An example figure insertion is presented in Figure 1.1.

Figure 1.1: NodeMCU Microcontroller

1.2.3 Example Referencing

An example of inserting references in latex [?] [?].

1.3 Chapter Summary

In this chapter,

2 Literature Review

Chapter introductory text here ...

2.1 Background Study

Refer all background study like here [?]. Few more references inserted here [?] [?]. Web sites can also be put as reference like here [?].

2.1.1 Android-based Home Automation

An example of Android-based home automation system [?] is presented in Figure 2.1.

Figure 2.1: Android-based home automation system

2.2 Chapter Summary

In this chapter,

3 System Design

Chapter introductory text here ...

3.0.1 Pin Definition

In the Figure 3.1, the pin definition of NodeMCU [?] is shown and in the Table 3.1 a detailed pin description is given.

Figure 3.1: Pin Definition of NodeMCU

3.1 Parameter

The NodeMCU parameters are listed in Table 3.2.

Table 3.1: Pin Description of NodeMCU

Pin	Name	Type	Function
1	VDDA	P	Analog Power 3.02 3.6 V
2	LNA	I/O	RF Antenna Interface. Chip Output
			Impedance= 50Ω No matching required but we
			recommend that the π -type matching network is
			retained.
3	VDD3P3	P	Analog Power 3.02 3.6 V
4	VDD3P3	P	Analog Power 3.02 3.6 V
5	VDD3P3	P	Analog Power 3.02 3.6 V
6	•••	•••	

Table 3.2: Parameters of NodeMCU

Categories	Items	Values								
Wi-Fi Parameters	certificates	FCC/CE/TELEC/SRRC								
	WiFi Protocols	802.11 b/g/n								
	Frequency Range	2.4G-2.5G (2400M-2483.5M)								
	TX Power	802.11 b: +20 dBm								
	IATOWEI	802.11 g: +17 dBm								
		802.11 n: +14 dBm								
	DV Concitivity	802.11 b: -91 dbm (11 Mbps)								
	RX Sensitivity	802.11 g: -75 dbm (54 Mbps)								
		802.11 n: -72 dbm (MCS7)								
	Types of Antenna	PCB Trace, External, IPEX								
		Connector, Ceramic Chip								
Hardware Parameters	TX Power	UART/SDIO/SPI/I2C/								
	IXIOWCI	I2S/IR Remote Control								
		GPIO/PWM								
	Operating Voltage	3.0 3.6V								
	Operating Current	Average value: 80mA								
	Operating Temperature	-40 125								
	Range									
	Ambient Temperature	Normal temperature								
	Range									
	Package Size	5x5mm								
	External Interface	N/A								

3.2 Chapter Summary

In this chapter, ...

4 Implementation

Chapter introductory text here ...

4.1 Implementation

...

4.1.1 Configuration Code

Sample configuration code is presented in

Listing 4.1: NodeMCU Configuration Code

```
1 #define BLYNK_PRINT Serial
2 #include <ESP8266WiFi.h>
3 #include <BlynkSimpleEsp8266.h>
4
5 char auth[] = "YourAuthToken";
6
7 char ssid[] = "YourNetworkName";
8 char pass[] = "YourPassword";
9 void setup()
10 {
11 Serial.begin(115200);
12 Blynk.begin(auth, ssid, pass);
13 }
14 void loop()
15 { Blynk.run(); }
```

4.2 Chapter Summary

In this chapter, ...

5 Conclusion

Conclusion text here ...

5.1 Limitations

...

5.2 Future Works

•••