

United International University (UIU)

Dept. of Computer Science & Engineering (CSE) Final-Term Exam::Trimester::Summer 2022

Course Code: CSE 425 Course Title: Microprocessor, Microcontroller and Interfacing Sec: (A, B) Total Marks: 40 Duration: 2 hour

Any examinee found adopting unfair means would be expelled from the trimester/ program as per UIU disciplinary rules.

Question 1: Answer all the questions.

(14 Marks)

a. For microprocessor 80286, the value of the DS register is 30H. The offset value is 21H. G bit is set to 1. Now consider the following table and answer the questions:

[3+2+3]

Index	Address	
5 H	Base: A07000H limit: 0FFFH access right: 1H	
6Н	Base: A06000H limit: 0FFFH access right: 0H	
7H	Base: A05000H limit: 0FFFH access right: 2H	
8Н	Base: A04000H limit: 0FFFH access right: 1H	
9 H	Base: A03000H limit: 0FFFH access right: 0H	
AH	Base: A02000H limit: 0FFFH access right: 2H	

Index	Address	
5H	Base: B70000H limit: 0FFFH access right: 1H	
6H	Base: B60000H limit: 0FFFH access right: 0H	
7H	Base: B50000H limit: 0FFFH access right: 2H	
8H	Base: B40000H limit: 0FFFH access right: 2H	
9H	Base: B30000H limit: 0FFFH access right: 1H	
AH	Base: B20000H limit: 0FFFH access right: 0H	

- I. Which entry, table and requested privilege level are selected?
- II. Calculate the starting and ending physical address of the segment.
- III. **Calculate** the physical address of the offset value.
- b. **Explain briefly** how virtual memory solves the limited physical memory problem.

[2]

c. Consider the following fetch cycle in an 8086 BIU:

[4]

[Fetch, Fetch, Fetch, Fetch, Fetch, Fetch, Fetch]

When the first instruction is being executed, two instructions are fetched and saved in the instruction queue. If the 2nd instruction is a 'MOV <address>' instruction and the 5th is a 'JUMP <7th instruction address>', then *draw* the corresponding BIU and EU's cycle.

Question 2: Answer all the questions

(8 Marks)

[3]

a.

Describe the phenomenon in the above picture. Explain briefly why it occurs.

b. Master (index:3H) receives 4 byte data (char 'FaiL') from the slave (index:9H). **Draw** the corresponding sequence diagram. [5]

[6]

a. An SAP has following instruction sets:

Instruction Syntax	Op-code of the Instructions
LDA <address></address>	1H
ADD <address></address>	3Н
SUB <address></address>	5H
LDB <address></address>	7H
OUT	9Н
HLT	8H
	Table i : Opcode

Machine Code	A Register (Initial value 1H)	B Register (Initial value 6H)
75H		
59H		
17H		
36H		
92H		
81H		

Now, **Determine** the A and B register value after execution of each instruction in table ii

b. Write an assembly code and corresponding machine code for evaluating the following expression. Use the opcode given in **Question 3.a**:

-20 - 12 - 5.

Question 4: Answer all the questions.

(8 Marks)

4

- a. An electrical sensor has the four inputs A, B, X and Y where the value of these inputs can be either 0 or 5V. [2 + 2 The output of the sensor depends on these four inputs where the output voltage relation is $Vout = A + \frac{1}{2}B + \frac{1}{4}X + \frac{1}{8}Y$. Now, answer the followings:
 - i) Explain in detail if the above sensor is an Analog or a digital sensor.
 - ii) If Vout = 1.25V, then **determine** this sensor's input reading.
- b. An ADC on an Arduino system converts an input analog signal to the output digital signal as shown in **Fig.** [2+2] **4(c)**. The quantization levels are shown in the figure.

Fig. 4(c)

Now, answer the following questions:

- i) If the analog voltage is 2.7V, then **determine** the converted digital binary output for a 3.5V Arduino system.
- ii) In Fig. 4(c), we can see that the digital signal is not as accurate as the analog signal, explain briefly what you should do to get a more accurate digital signal, similar to the analog signal