MATH172 Galois Theory Notes

Xuehuai He September 28, 2023

Contents

Rings! Or why $x^2 - 2$ has roots.	2
Ring	2
Phase I: ID, UFD, PID, ED, Fields	3
Zero divisors	3
Integral domain	3
Unit, irreducibles	3
Unique factorization domain	3
Ideals	4
Principal Ideal Domain	4
Prime Ideal	4
Maximal Ideal	4
Noetherian Rings	5
Quotient Rings	5
Ring homomorphism	6
First ring isomorphism theorem	6
Quotient by prime ideal is ID	6
Quotient by maximal ideal is field	7
Euclidean Domain	7
Why do we care about Euclidean domains?	8
Greatest common divisors & Euclidean algorithm	8
Prime elements	9
Prime implies irreducible in ID	9
Prime implies maximal in PID	9
Irreducible implies prime in UFD	9
PIDs are UFDs	10
Phase I summary	11
Field extensions	11
Phase II: Field extensions	11
F[x]/(p(x)) contains a copy of F	12

F[x]/(p(x)) field if $p(x)$ irreducible	12
Field extension, degree of extension	12
To summarize so far!	13
Irreducibility – a survey	14
Eisenstein's Criterion	15
Gauss' Lemma	15
Algebraic and transcendental	16
Algebraic extension	16
Finite extensions are algebraic	16

Rings! Or why $x^2 - 2$ has roots.

Definition 1. A **ring** is a set R together with associative binary *operations* + and \times s.t.:

 $\forall s, r, t \in R$

 $\leftarrow \text{ map from } R \times R \mapsto R$

- (R, +) is an **abelian** group with identity 0
- There exists 1 ∈ R s.t. r × 1 = 1 × r = r
 r(s+t) = rs + rt and (s+t)r = sr + tr

 \leftarrow this is optional

Proposition 1. $0 \times 1 = 0$ (in fact, $0 \times r = 0 \ \forall \ r \in R$)

Proof. Try it! □

Definition 2. If \times is commutative, then R is a commutative ring.

Non-example 1. N is not a ring.

Example 2. $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ are all rings;

- $\mathbb{Z}/n\mathbb{Z}$ is a finite ring
- $M_n(\mathbb{R})$, the set of $n \times n$ real matrices, is a **noncommutative** ring
- Polynomial ring: $\mathbb{Q}[x] = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in \mathbb{Q}\}$ is a commutative ring
- $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ is a commutative ring

← square brackets just mean "polynomials in..."

Phase I plan:

$$ID \supseteq UFD \supseteq PID \supseteq ED \supseteq Fields$$

Definition 3. Suppose R is a ring and $a, b \in R$ with ab = 0 but $a, b \neq 0$; then a, b are called **zero divisors**.

Example 3.

- In $\mathbb{Z}/6\mathbb{Z}$, $\bar{4} \times \bar{3} = \bar{0}$
- In $M_2(\mathbb{R})$, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Definition 4. A commutative ring without zero divisors is called an <u>integral domain</u> (ID)

Why do we want ID? Cancellation properties.

• If R is an ID, $a, b, c \in R$, $a \ne 0$ and ab = ac, then

$$ab - ac = 0 \implies a(b - c) = 0 \implies b - c = 0 \implies b = c$$

Definition 5. Suppose R is an ID. An element $a \in R$ is called a **unit** if $a \neq 0$ and there exists $b \in R$ s.t. ab = 1.

 \leftarrow notation: $b = a^{-1}$

An element $r \in R$ is called **irreducible** if $r \neq 0$, r is NOT a unit, and whenever r = ab for some $a, b \in R$ then a or b must be a unit.

• If r and s are irreducibles with r = us, then r and s are called **associates**.

Example 4.

- All "prime integers" are irreducibles in ℤ;
- 2,3, $1 + \sqrt{-5}$, $1 \sqrt{-5}$ are irreducibles in $\mathbb{Z}[\sqrt{-5}]$.
 - Note: $2 \times 3 = (1 + \sqrt{-5})(1 \sqrt{-5}) = 6$ says that 6 can be factored in more than one way. This means that $\mathbb{Z}[\sqrt{-5}]$ is NOT an UFD.

Definition 6. An integral domain R is called a <u>unique factorization domain</u> (UFD) if each nonzero, nonunit $a \in R$ can be written as a product of irreducibles **in a unique way** up to associates.

If *a* is a nonzero, nonunit element of UFD *R* and $a = r_1 r_2 \dots r_m = s_1 \dots s_n$ where r_i, s_j are irreducible, then after reordering $r_i = u_i s_i$ for any *i* and units u_i , and m = n.

← After reordering, there are the same amounts of factors and all factors are the same up to units.

Definition 7. Suppose R is a comm ring. A subset $I \subseteq R$ is called an **ideal** if $(I, +) \le (R, +)$ and $ir, ri \in I$ for all $i \in I$ and for all $r \in R$.

Why do we want ideals? Such that R/I is a well-defined ring.

Example 5. $\{0\}$ and R are ideals of R.

Example 6. If R is commutative and $a \in R$, then $(a) = \{ar \mid r \in R\}$ is called the **principal ideal** generated by a.

Definition 8. A **principal ideal domain** is an integral domain where all ideals are principal ideals.

Example 7. The only ideals of $(\mathbb{Z}, +)$ are of the form $n\mathbb{Z} = (n)$.

Non-example 8. $\mathbb{Z}[x]$ is a UFD but NOT a PID because the ideal $(2, x) = \{2r + xs \mid r, s \in \mathbb{Z}[x]\}$ is not principal.

Lemma 2. If $I \subseteq R$ is an ideal and $1 \in I$, then I = R.

Proof. Try it!

Proposition 3. If $I \subseteq R$ is an ideal containing a unit of R then I = R.

Proof. If $u \in I$ is a unit then $u^{-1} \in R$, so $uu^{-1} = 1 \in I$. Then the result follows from Lemma 2.

Definition 9. A **field** is a commutative ring whose each nonzero element is a *unit*.

Corollary 4. If *R* is an ID whose ideals are (0) and *R*, then *R* is a **field**.

Proof. Suppose $a \in R \setminus \{0\}$ and consider (a). Since $a \in (a)$, (a) = R. Hence, we must have that $1 \in (a)$, which means 1 = ar for some $r \in R$.

Definition 10. Suppose R is an integral domain. A *proper* ideal $P \subseteq R$ is called **prime** of whenever $ab \in P$ for some $a, b \in R$, then a or $b \in P$.

Non-example 9. (6) is not a prime ideal of \mathbb{Z} since $2 \times 3 \in (6)$ but neither $2, 3 \notin (6)$.

Non-example 10. (2) is not a prime ideal of $\mathbb{Z}[\sqrt{-5}]$ since $6 \in (2)$, but we observe that $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ while $1 \pm \sqrt{-5} \notin (2)$.

Example 11. (2) is a prime ideal of \mathbb{Z} .

Definition 11. A proper ideal $M \subseteq R$ is called **maximal** if whenever $I \subseteq R$ such that $M \subseteq I \subseteq R$ is an ideal containing M, then either I = M or I = R.

Proposition 5. Every proper ideal is contained in **a** maximal ideal.

- ← Prove this (be convinced)!
 Also known as *aR*.
- \leftarrow Ideals generated by n
- ← Observe that (2, x) is an ideal made of polynomials with even constant terms. This cannot be principal, since if we only have 2 and not x, we do not have nonzero polynomials with zero const terms.
- ← The converse is also true. The only ideals in a field are 0 and the field.
- ← Observe that in $\mathbb{Z}[\sqrt{-5}]$, we have $6 = (1 + \sqrt{-5})(1 \sqrt{-5}) = 2 \times 3$, so it is not a UFD!
- ← This might not be unique in non-local rings.

Proof. TBD.

Proposition 6. Suppose *R* is a commutative ring.

- (0) is prime *if and only if R* is an integral domain.
- (0) is maximal *if and only if R* is a field.

← By def of prime, if ab = 0, then either a = 0 or b = 0, which means there are NO zero divisors.

(The following is kind of on a tangent)

Definition 12. A commutative ring R with unity is called **Noetherian** if, whenever $I_1 \subseteq I_2 \subseteq ...$ is an ascending sequence of (proper) ideals of R, there exists an n > 0 such that $I_n = I_{n+1} = ...$ are the same ideals thereafter.

Theorem 7. *R* is Noetherian *if and only if* all ideals of *R* are finitely generated.

Corollary 8. All Principal Ideal Domains are Noetherian.

← The chain stops ascending!

← Since all ideals are generated by 1 elt.

(Tangent ends here)

Definition 13. Suppose R is a commutative ring with $1 \neq 0$ and $I \subseteq R$ is an ideal. Then the **quotient ring** of R by I is the set

$$R/I = \{r + I \mid r \in R\}$$

with addition and multiplication defined representative-wise.

Remark. The **coset criterion** of ideals: let *I* be an ideal; the cosets r + I, s + I are the same *if and only if* $r - s \in I$.

Example 12.

- In $\mathbb{Z}/(6)$ aka. $\mathbb{Z}/6\mathbb{Z}$, we have $2 + (6) = \{..., -10, -4, 2, 8, 14, ...\} = 26 + (6)$ due to $2 26 \in (6)$;
- In $\mathbb{Q}[x]/(x^2-2)$, we have

$$\{3x^2 - 47x + 1 + q(x)(x^2 - 2) \mid q(x) \in \mathbb{Q}[x]\} = \{-47x + 7 + q(x)(x^2 - 2) \mid q(x) \in \mathbb{Q}[x]\}$$
 due to $3x^2 - 47x + 1 - (-47x + 7) \in (x^2 - 2)$.

Remark. Let *I* be an ideal of *R*. Then $(I, +) \subseteq (R, +)$.

Definition 14. R/I is a group under (r+I)+(s+I)=(r+s)+I and the operation + is well-defined. We also define that (r+I)(s+I)=(rs)+I. We claim that multiplication in R/I is also well-defined.

Proof. Let $r_1 + I = r_2 + I$ and $s_1 + I = s_2 + I$. By coset criterion, $r_1 - r_2 = i$, $s_1 - s_2 = j$ for some $i, j \in I$. Hence $r_1s_1 = (r_2 + i)(s_2 + j) = r_2s_2 + is_2 + jr_2 + ij$ where the latter three terms are all in the ideal I. Thus, $(r_1s_1) + I = (r_2s_2) + I$. □

From R, R/I inherits nice properties:

- $0 + I = 0_{R/I}$
- $1 + I = 1_{R/I}$
- Multiplication is commutative and distributive over addition in R/I, so it is also a comm. ring with identity.

Definition 15. A function $\varphi : R \to S$ between rings is called a **ring homomorphism** if the following are satisfied:

- $\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$
- $\varphi(r_1r_2) = \varphi(r_1)\varphi(r_2)$

Theorem 9. First ring isomorphism theorem

If $\varphi : R \mapsto S$ is a ring homomorphism, then $R / \ker(\varphi) \cong \varphi(R)$.

Example 13. If R is a ring and I is an ideal, then $\pi: R \to R/I$ where $r \mapsto r + I$ is a surjective homomorphism where $\ker(\pi) = I$. This is the *canonical projection* onto R/I.

Corollary 10. If I is a maximal ideal, then R/I is a field.

Recall Proposition 6. We now have a stronger statement:

Proposition 11. Suppose R is a commutative ring & $P \subseteq R$ is an ideal. Then R/P is an integral domain *if and only if* P is prime.

Proof. R/P is an integral domain *if and only if* whenever $(a+P)(b+P) = 0_{R/P}$ then one of a+P or b+P must already be $0_{R/P}$. This happens *if and only if* whenever ab+P=P then a+P or b+P in P, which happens *if and only if* whenever $ab \in P$ then one of $a,b \in P$, which is the definition of a prime ideal.

Example 14. The map $\varphi: \mathbb{Z}[x] \to \mathbb{Z}$ where $p(x) \mapsto p(0)$ is a surjective ring homomorphism with $\ker(\varphi) = (x)$. By the First Isomorphism Theorem 9, $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$. As such, we conclude that (x) is a prime ideal since \mathbb{Z} is an integral domain.

Lemma 12. Suppose R is a comm. ring with $M \subseteq R$ being an ideal. There is a bijective correspondence between the ideals of R/M and the ideals of R containing M.

- ← Observe that kernels are ideals! And ideals are kernels of some homomorphism too.
- ← The *if and only if* version comes in Proposition 14.

← btw, $(x) \subseteq (x, 2)$. the latter is the set of polynomials whose <u>constant</u> term is even, so it is also a proper ideal of $\mathbb{Z}[x]$. This is an excellent example where Prime \Rightarrow Maximal.

Proof. Consider the projection $\pi: R \to R/M$ where $r \mapsto r + M$. It is enough to show:

$$\pi(\pi^{-1}(J)) = J$$
 for all ideals $J \subseteq R/M$, and $\pi^{-1}(\pi(I)) = I$ for all ideals $M \subseteq I \subseteq R$

To prove the first statement, observe that, if J is an ideal of R/M, then $\pi^{-1}(J) = \{r \in R \mid r + M \in J\}$ and so

$$\pi(\pi^{-1}(J)) = {\pi(r) \in R \mid r + M \in J} = {r + M \mid r + M \in J} = J$$

Next, to prove the second statement, first suppose $M \subseteq I \subseteq R$ is an ideal. Let $a \in I$. Then $a + M \in \{\alpha + M \mid \alpha \in I\} = \pi(I)$. This implies that $a \in \pi^{-1}(\pi(I))$, and so $I \subseteq \pi^{-1}(\pi(I))$.

Conversely, suppose $r \in \pi^{-1}(\pi(I))$. This is the same as saying $\pi(r) = r + M \in \pi(I) = \{\alpha + M \mid \alpha \in I\}$. Hence, for any $r \in \pi^{-1}(\pi(I))$, there exists some $a \in I$ such that r + M = a + M. Thus, $r - a \in M \subseteq I$ by coset conditions. Since $a \in I$, we have $a + (r - a) \in I$, meaning that $r \in I$ for any $r \in \pi^{-1}(\pi(I))$. This means that $\pi^{-1}(\pi(I)) \subseteq I$.

Hence, $I = \pi^{-1}(\pi(I))$.

Consequently, for any ideals $J \subseteq R/M$, we know that $\pi^{-1}(J) \subseteq R$ is an ideal containing M. And if $M \subseteq I \subseteq R$ is an ideal, we know $\pi(I) \subseteq R/M$ is an ideal. Since $\pi(\pi^{-1}(J)) = J$ and $I = \pi^{-1}(\pi(I))$ for any I, J, the correspondence is a bijection.

Proposition 13. Suppose R is a comm. ring with an identity and $I \subseteq R$ is an ideal. Then R/I is a field *if and only if* I is maximal.

Proof. If I is maximal, then there are no other proper ideals strictly containing I. Hence, by Lemma 14, we have that R/I only have ideals (0) and R/I itself. This happens if and only if R/I is a field.

Corollary 14. If *R* is a commutative ring with identity and $M \subseteq R$ is maximal, then *M* is prime.

Proof. Maximal \implies quotient is a field \implies quotient is an ID \implies prime.

Definition 16. An integral domain R is an **Euclidean domain** if there exists a norm $N: R \to \mathbb{Z}_{\geq 0}$ with N(0) = 0 such that for all $a, b \in R$ with $b \neq 0$, there exists $q, r \in R$ for which

$$a = bq + r$$

with N(r) < N(b) or r = 0.

← To see why this is okay, see Homework 2 Sec. 7.3 P. 24

← Think about why this contains *M*!

← Hence <u>maximal</u> <u>implies prime</u>, but prime does not necessarily implies maximal.

Example 15. \mathbb{Z} is a ED with N(a) = |a|.

Example 16. $\mathbb{Q}[x]$ is a ED with $N(p(x)) = \deg(p(x))$.

Example 17. Every field *F* is a ED with $N(a) = 0 \, \forall \, a \in F$.

Non-example 18. $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a PID that is not an ED.

- ← Because in a field everything divides!
- ← This is one of the only good examples!

Why do we care about Euclidean domains?

Remark. Greatest common divisors exist and are relatively quick to compute.

Definition 17. If $a, b \in R$, then gcd(a, b) = c means

- 1. c divides a and b; that is, a = cr, b = cs for some $r, s \in R$
- 2. If $c' \in R$ with c'|a and c'|b, then it must be true that c'|c.

Example 19. Say we want to compute the gcd of 47 and 10.

$$47 = 4 \times 10 + 7$$
 $10 = 1 \times 7 + 3$
 $7 = 2 \times 3 + \boxed{1}$
 $3 = 3 \times 1$
 $\leftarrow \text{ circled is gcd}(47, 10)$
 $\leftarrow \text{ final line with no remainders}$

← Using recursive application of Euclidean algorithm.

- All other common divisors divide the gcd.
- ← This is a much faster algorithm than factoring!

This also works for finding gcds in $\mathbb{Q}[x]$ with polynomials long division and norm $\deg(p(x))$.

Remark. If F is a field, then F[x] is a Euclidean domain.

Remark. Euclidean domains are PIDs.

← Just use long division!

Proof. Suppose R is a ED and $I \subseteq R$ is an idea;. Consider $\{N(a) \mid a \in I \setminus \{0\}\}$. This set has a <u>minimal element</u> by properties of natural numbers (or is an empty set *if* and only if I = (0)).

Let $d \in I$ be an element of $\underline{\text{minimum norm}}$ (hence $N(d) \leq N(a)$ for all $a \in I$). We claim that (d) = I. Proof:

Since $d \in I$, we have $rd \in I$ for any $r \in R$. This implies that $(d) \subseteq I$.

Then let $a \in I$. Since R is a ED, we first assumes that there exists $q, r \in R$, $r \neq 0$ such that a = qd + r and N(r) < N(d). But we notice that r = a - qd must be in I as both $a, qd \in I$, contradicting the minimality of N(d). Thus, it must be that r = 0. This implies a = qd and thus $a \in (d)$ for all $a \in I$. Consequently, $I \in (d)$, and therefore I = (d).

Definition 18. Suppose R is an integral domain and $p \in R \setminus \{0\}$. Then p is a **prime element** if (p) is a prime ideal.

Proposition 15. An element $p \in R$ is prime *if and only if* whenever p|ab then p|a or p|b.

Proof. p is prime means that (p) is a prime ideal. This is true *if and only if* whenever $ab \in (p)$ then $a \in (p)$ or $b \in (p)$. This is the same as saying if ab = kp for some $k \in R$ then a = lp or b = lp for some $l \in R$. This is to say that whenever p|ab then p|a or p|b.

Proposition 16. In an integral domain, all prime elements are irreducibles.

Proof. Suppose R is an ID and $p \in R$ is prime. If p = ab for some a, b in R, then, WLOG, p|a. That is, a = pk for some $k \in R$. Hence, p = pkb. Since in an ID cancellation rule holds, kb = 1, meaning that b is a unit. Thus, p is irreducible by definition Definition 5.

Proposition 17. In PIDs, all *nonzero* prime ideals are maximal.

Proof. Suppose R is a PID and $(p) \subseteq R$ is a prime ideal. If $(p) \subseteq (m) \subseteq R$ is an ideal, then $p \in (p) \subseteq (m)$ hence p = rm for some $r \in R$. Since p|rm, we have p|r or p|m.

If p|r, this implies that r = pk for some $k \in R$. Substituting into p = rm, we get p = pkm. By cancellation, we get km = 1, meaning that m is a unit. Hence, (m) = R.

If p|m, we have m=pl for some $l \in R$, meaning that $m \in (p)$. Hence, $(m) \subseteq (p)$, but we also defined that $(p) \subseteq (m)$, so (m) = (p).

Therefore, (p) has to be the maximal ideal.

Proposition 18. In an UFD, irreducible implies prime.

Proof. Let R be a UFD and $p \in R$ be irreducible. Let $a, b \in R$ such that p|ab. Hence, pr = ab for some $r \in R$. Since R is a UFD, let $a = q_1 \dots q_n, b = s_1 \dots s_m$ be the factorization. Since the factorizations are unique and each of the q_i, s_j are irreducible, if p|ab, then p must be an associate with one of the q_i, s_j . Therefore, either p|a or p|b, implying prime.

Example 20. Q is a field, so $\mathbb{Q}[x]$ is a ED. Since EDs are UFDs, irreducible \implies prime. We see that $x^2-2 \in \mathbb{Q}[x]$ is an irreducible element, which means that (x^2-2) is a prime ideal, meaning that it is a maximum ideal, meaning that $\mathbb{Q}[x]/(x^2-2)$ is a field. We observe that it is a field containing \mathbb{Q} and $(\sqrt{2})$.

[←] In fact, this is the smallest field containing Q and $(\sqrt{2})$.

Lemma 19. In a PID, irreducible elements are prime.

Proof. Suppose $p \in R$ is irreducible in the principal ideal domain R. If p|ab for some $a,b \in R$, we want to show that either p|a or p|b, hereby showing that p is prime. Hence, we consider the ideal (a,p)=d, which is necessarily principal for some $d \in R$. Since $a, p \in (d)$, we have a=dr and p=ds for some $r,s \in R$. As p is irreducible, we get that one of d and s is a unit.

We first assume that s is a unit, in which case $d = ps^{-1}$, and so $a = ps^{-1}r$ implying that p|a.

In another case, d is a unit, in which case (a, p) = (d) = R and so 1 = ak + pl for some $k, l \in R$. Multiplying by b, we get b = abk + pbl. Since p|ab, we have b = abk + pbl = pmk + pbl for some $m \in R$. Hence, b = p(mk + bl), meaning that p|b.

Therefore, whenever p|ab, either p|a or p|b. Hence, in a PID, p is prime whenever it is irreducible.

Proposition 20. PIDs are UFDs.

Proof. Suppose R is a PID and $a \in R$ is nonzero, nonunit. If a is irreducible, we are done. If not, we write $a = p_1q_1$ for some $p_1, q_1 \in R$ nonunit. If p_1, q_1 are irreducibles, we are done. If not, then WLOG say $q_1 = p_2q_2$ for some nonunits p_2, q_2 . We would like to show that this splitting process terminates.

Observe that $(q_1) \subseteq (q_2)$ since $q_2|q_1$. Hence, the chain of splitting results in the chain of ideals $(q_1) \subseteq (q_2) \subseteq (q_3) \subseteq \dots$

Now consider the ideal $\bigcup_{i=1}^{\infty}(q_i)$. Since this is a PID, we have $\bigcup_{i=1}^{\infty}(q_i)=(q)$ for some $q\in R$. Since $q\in\bigcup_{i=1}^{\infty}(q_i)$, it is contained in some (q_n) for some $n\geq 1$. This implies that $(q)\subseteq (q_n)$, but we also know that $(q_n)\subseteq (q)$, hence $(q)=(q_n)$. Hence, this process terminates, and there exists an n in this chain such that q_n is irreducible. Therefore, R is a factorization domain.

Now we want to prove the <u>uniqueness</u>. That is, if $p_1 \dots p_n = q_1 \dots q_m$ for irreducibles p_i, q_j and $n \le m$ WLOG, then we want to show that m = n and that $p_i = u_i q_i$ with units u_i up to reordering for all i. We do so by induction on n.

¹The proof that this is an ideal is as follows:

We first prove that $\bigcup_{n=1}^{\infty} I_n$ is a subgroup of R under addition. Let $r, s \in \bigcup_{n=1}^{\infty} I_n$, where $r \in I_k$ and $s \in I_{k+i}$ for some $k, i \in \mathbb{N}$. Since $I_1 \subseteq I_2 \subseteq ...$ are ideals of R, we know that $r \in I_k$ implies that $r \in I_{k+i}$. Thus, $r - s \in I_{k+i}$ due to I_{k+i} being an ideal. As $I_{k+i} \subseteq \bigcup_{n=1}^{\infty} I_n$, we have $r - s \in \bigcup_{n=1}^{\infty} I_n$, which means that $\bigcup_{n=1}^{\infty} I_n$ is closed under additive inverse. Hence, $\bigcup_{n=1}^{\infty} I_n$ is a subgroup of R under addition. Then, we prove that for any $t \in R$, $r \in \bigcup_{n=1}^{\infty} I_n$, we would have $tr, rt \in \bigcup_{n=1}^{\infty} I_n$. Since $r \in \bigcup_{n=1}^{\infty} I_n$,

Then, we prove that for any $t \in R$, $r \in \bigcup_{n=1}^{\infty} I_n$, we would have $tr, rt \in \bigcup_{n=1}^{\infty} I_n$. Since $r \in \bigcup_{n=1}^{\infty} I_n$, it must be true that $r \in I_k$ for some $k \in \mathbb{N}$. Hence, $tr, rt \in I_k$ due to I_k being an ideal. Therefore, $tr, rt \in \bigcup_{n=1}^{\infty} I_n$ for any $t \in R$, $r \in \bigcup_{n=1}^{\infty} I_n$.

 $tr, rt \in \bigcup_{n=1}^{\infty} I_n$ for any $t \in R, r \in \bigcup_{n=1}^{\infty} I_n$. In conclusion, since $\bigcup_{n=1}^{\infty} I_n$ is a subgroup of R under addition with the property that $tr, rt \in \bigcup_{n=1}^{\infty} I_n$ for any $t \in R, r \in \bigcup_{n=1}^{\infty} I_n$, it is an ideal of R.

(*Base case*) If $p_1 = q_1 \dots q_m$ and p_1 irreducible, then $q_2 \dots q_m$ are all units. Hence, m = 1 and $p_1 = q_1$.

(*Inductive step*) Say we have already proven the statement for n = k. Then consider $p_1p_2...p_{k+1} = q_1q_2...q_m$. Since R is a PID where irreducible implies prime, p_1 is a prime element dividing the product of primes $q_1q_2...q_m$, so we say WLOG $p_1|q_1$. This means that $q_1 = u_1p_1$ for some $u \in R$, but since q_1 is not reducible, it forces u_1 to be a unit. Hence, we apply cancellation on both sides and get $p_2...p_{k+1} = (u_1q_2)...q_m$.

By inductive hypothesis, m-1=k and p_i,q_i are associates up to reordering for any i. Hence, the factorization must be <u>unique</u>.

Field extensions

We observe that the polynomial $x^2 - 2 \in \mathbb{Q}[x]$ is irreducible. If we have $x^2 - 2 = p(x)q(x)$ where p, q nonunits, then $\deg(p) + \deg(q) = 2$ and we cannot have any 0+2 combinations due to constants being units, we only have $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$, but $x \pm \sqrt{2} \notin \mathbb{Q}[x]$!

Since $\mathbb{Q}[x]$ is a UFD, the irreducible element $(x^2 - 2)$ is prime, and since $\mathbb{Q}[x]$ is a PID, $(x^2 - 2)$ is maximal which means that $\mathbb{Q}[x]/(x^2 - 2)$ is a field.

Phase II plan: Field extensions!

Suppose F is a field and $p(x) \in F[x]$ nonzero. Recall that F[x] is a ED with the norm function $\deg(a(x))$ and long division of polynomials. Let $a(x) + (p(x)) \in F[x]/(p(x))$. By the division algorithm, we have a(x) = p(x)q(x) + r(x) for $q(x), r(x) \in F[x]$ and $\deg(r(x)) < \deg(p(x))$ or r(x) is the zero polynomial.

Now we see that since $a(x) - r(x) \in (p(x))$, they are in the same coset! Hence a(x) + (p(x)) = r(x) + (p(x)). We observe that every element of F[x]/(p(x)) can be represented by a polynomial of a degree less than deg(p(x)). In other words, if deg(p(x)) = n, then F[x]/(p(x)) is of the form

$$F[x]/(p(x)) = \left\{ \overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}} \mid a_0, a_1, \dots, a_{n-1} \in F \right\}$$

= Span_F{\bar{1}, \bar{x}, \dots, x^{\bar{n}-1}}

In fact, F[x]/(p(x)) is (partly) just a **vector space** over F...

We shall observe that it does not matter if we are using F or \bar{F} .

Consider $\varphi: F \hookrightarrow F[x]/(p(x))$ where $a \mapsto \bar{a}$. We observe this is an **injective** map: whenever $\deg(p(x)) = n > 0$, we have $\varphi(a) = \varphi(b)$ if and only if $\bar{a} = \bar{b}$, which happens if and only if $a - b \in (p(x))$; but the difference of two constants always have $\deg 0$ and cannot be in (p(x)) unless it is a straight zero, which tells us that $\bar{a} = \bar{b}$ if and only if a = b. In other words, F[x]/(p(x)) contains an isomorphic copy of F, its field of scalars! Namely, $F[x]/(p(x)) = \{\bar{a} \in F[x]/(p(x)) \mid a \in F\}$.

...Hence, F[x]/(p(x)) is a vector space **of dimension** n over the scalar field F that also contains an isomorpic copy of F.

Moreover, if p(x) is irreducible, then (p(x)) is prime since this is an ED, and hence, it is also a maximal ideal, meaning that F[x]/(p(x)) is a field containing an isomorphic copy of F.

Definition 19. Suppose $F \subseteq K$ are fields. Then K is called a **field extension** of F.

• Notation: K/F or $\frac{K}{F}$ (the lattice notation)

The dimension of K as a vector space over F is called the **degree** of the extension.

• Notation: [K : F]

But does my field *F* always have an extension? Here is a systematic way to get extensions:

Example 21. If $p(x) \in F[x]$ is an irreducible polynomial of degree $n \ge 1$ over the field F, then F[x]/(p(x)) is a **field extension** of F of degree n.

- $\leftarrow a(x)$ is a coset rep
- ← We can do division algorithm since this is an ED
- ← The expression under the bar functions like r(x)! Also note that span is just the set of linear combinations.
- ← Why is this not the vector space over F/(p(x)) but just F? See the next paragraph.

- ← all thanks to Euclidean domains!
- ← Please, this is NOT a quotient. DO NOT CONFUSE THOSE!!

 $\leftarrow \text{ Since } \varphi(F) \cong F,$ and $\varphi(F) \subseteq$ F[x]/(p(x))

Furthermore, if $p(x) = a_0 + a_1 x + \dots + a_n x^n$, then \bar{x} is a **root** of

$$\varphi(p(x)) = \bar{a}_0 + \bar{a}_1 y + \dots + \bar{a}_n y^n \in (F[x]/(p(x)))[y]$$

because, plugging in $y = \bar{x}$, we get

$$\bar{a}_0 + \bar{a}_1 \bar{x} + \dots + \bar{a}_n \bar{x}^n = \overline{p(x)} = \bar{0} \in F[x]/(p(x))$$

Hence, the isomorphic copy of the polynomial p(x) has **roots** in the field extension F[x]/(p(x)).

So, what the hell is F[x]/(p(x))? We have already shown that the field extension F[x]/(p(x)) does indeed contain a root of p(x). Now we think about it **the other way around**: if we want to find an extension of F that contains a root of p(x), we would eventually get this one!

Suppose $p(x) \in F[x]$ is irreducible. Let K/F be an extension, and $\alpha \in K$ a root of p(x). Denote by $F(\alpha) \subseteq K$ the **smallest** subfield of K that contains both F and α . Consider the map $\varphi : F[x] \to F(\alpha) \subseteq K$ where $q(x) \mapsto q(\alpha)$ is simply the evaluation at α map. We note that $p(x) \in \ker(\varphi) = (d(x))$ since an ED is a PID; this implies that p(x) = u(x)d(x). As p(x) is irreducible, u(x) must be a unit, which means p(x) and d(x) are associates and $\ker(\varphi) = (p(x))$. Therefore,

$$F[x]/(p(x)) = F[x]/\ker(\varphi) \cong \varphi(F[x]) \subseteq F(\alpha)$$

by first isomorphism theorem. However, $F(\alpha) \subseteq K$ the **smallest** subfield of K that contains both F and α , so $\varphi(F[x])$ cannot be smaller than that. Hence, it must be true that $\varphi(F[x]) = F(\alpha)$.

Therefore, $F(\alpha)$ is simply F[x]/(p(x)).

← Observe that $\varphi(F[x])$ is a field: $\ker(\varphi)$ is a maximal ideal

← We think about modding out by

find roots.

(p(x)) as making it equal to zero, which is how we

To summarize so far!

Suppose $p(x) \in F[x]$ is an irreducible polynomial with coefficients in the field F.

• F[x]/p(x) is a **field** containing an isomorphic copy of F in which $\overline{x} = x + (p(x))$ is a **root** of (the image of) $p(y) \in (F[x]/(p(x)))[y]$.

Example 22. In $\mathbb{Q}[x]/(x^2-2)$, we have $x+(x^2-2)$ is a root of $y^2-\overline{2} \in (\mathbb{Q}[x]/(x^2-2))[y]$ because

$$(x + (x^2 - 2))^2 - (2 + (x^2 - 2))$$

= $x^2 - 2 + (x^2 - 2)$ by coset addition & multiplication
= $0 + (x^2 - 2)$ since $x^2 - 2 \in (x^2 - 2)$
= $\bar{0}$

13

September 28, 2023

Furthermore, if deg(p(x)) = n, then

$$F[x]/(p(x)) = \left\{ \overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}} \mid a_0, a_1, \dots, a_{n-1} \in F \right\}$$

is a vector space over *F* of dimension *n*.

Example 23.
$$\mathbb{Q}[x]/(x^2-2) = \{\bar{a}_0 + \bar{a}_1\bar{x} \mid a_0, a_1 \in \mathbb{Q}\} = \operatorname{Span}_{\mathbb{Q}}\{\bar{1}, \bar{x}\}$$

• If K/F is an extension and $\alpha \in K$ is a root of p(x), denote by $F(\alpha)$ the \leftarrow Read 'F adjoint α ' smallest field containing F and α .

$$K$$
 $F(\alpha)$

Figure 1: Field diagram

Then $F(\alpha) \cong F[x]/(p(x))$, and

$$F(\alpha) = \left\{ \overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}} \mid a_0, a_1, \dots, a_{n-1} \in F \right\}$$

= $F[\alpha]$ \leftarrow the polynomial of α over F

Example 24. $\mathbb{Q}(\sqrt{2}) = \{a_0 + a_1\sqrt{2} \mid a_0, a_1 \in \mathbb{Q}\} = \mathbb{Q}[\sqrt{2}]$

← The eval map $\varphi : F[x] \to F(\alpha)$ where $f(x) \mapsto f(\alpha)$ has in fact $\ker(\varphi) = (p(x))$ when α is a root of p(x).

Irreducibility - a survey

Proposition 21. If $p(x) \in F[x]$, then $\alpha \in F$ is a root *if and only if* $x - \alpha$ divides p(x).

Proof. Write $p(x) = (x - \alpha)q(x) + r(x)$ with $q(x), r(x) \in F[x]$ and $\deg(r(x)) = 0$ or r(x) = 0. Then $0 = p(\alpha) = 0 + r(\alpha)$ which forces r(x) = 0.

Corollary 22. A degree-2 or -3 polynomial over a field F is irreducible *if and only if* it has no roots in F.

Proposition 23. Suppose $p(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$ with root $\frac{c}{d}$ written in reduced from (i.e. $\gcd(c,d) = 1$). Then $(c|a_0 \text{ and } d|a_n)$.

Proof.

$$d^{n} \cdot p\left(\frac{c}{d}\right) = 0$$

$$0 = (a_{0}d^{n} + a_{1}d^{n-1}c + \dots + a_{n-1}dc^{n-1}) + a_{n}c^{n}$$

$$0 = a_0 d^n + (a_1 d^{n-1}c + \dots + a_{n-1} dc^{n-1} + a_n c^n)$$

Looking at the 2nd line, since d divides all of the ones in the (), it must also divide the last term $a_n c^n$. However, since gcd(c, d) = 1, it forces d to divide a_n .

Similarly, we make the same argument for c and a_0 using the 3rd line.

Lemma 24. $(R/I)[x] \cong R[x]/(I)$ where (I) = I[x].

Proof. Consider the surjective homomorphism $\pi: R[x] \to (R/I)[x]$.

Proposition 25 (Eisenstein's Criterion). Suppose $f(x) = 1x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}[x]$ is a monic polynomial and $p \in \mathbb{Z}$ is a **prime** such that $p \mid a_0, \ldots, a_{n-1}$ but $p^2 \nmid a_0$. Then f(x) is irreducible.

Proof. Assume BWOC that f(x) = a(x)b(x) for some nonunit $a(x), b(x) \in \mathbb{Z}[x]$, then

$$x^n = \bar{f}(x) = \bar{a}(x)\bar{b}(x)$$

in $(\mathbb{Z}/p\mathbb{Z})[x] \cong \mathbb{Z}[x]/p\mathbb{Z}[x]$ since all other terms are divisible by p. Since $\mathbb{Z}/p\mathbb{Z}$ does not contain any zero divisors, $\bar{a}(x)$, $\bar{b}(x)$ must have zero constant terms. Hence a(x), b(x) have constant terms that are multiples of p, so a(x)b(x) have constant term divisible by p^2 . This is a contradiction with $p^2 \nmid a_0$.

Lemma 26 (Gauss' Lemma). If $p(x) \in \mathbb{Z}[x]$ is reducible in $\mathbb{Q}[x]$, then it is reducible in $\mathbb{Z}[x]$.

Proof. Suppose p(x) = a(x)b(x) for $a(x), b(x) \in \mathbb{Q}[x]$. Then by multiplying by coefficient denominators, for some $m \in \mathbb{Z}$, we could write $m \cdot p(x) = c(x)d(x)$ for some $c(x), d(x) \in \mathbb{Z}[x]$. Now since $m \in \mathbb{Z}$, we could write $m = q_1q_2...q_n$ be a product of irreducibles in \mathbb{Z} .

Now in $(\mathbb{Z}/q_1\mathbb{Z})[x] \cong \mathbb{Z}[x]/(q_1\mathbb{Z})[x]$, we observe that $m \cdot p(x) = c(x)d(x) = q_1(q_2 \dots q_n)p(x)$, meaning that

$$\overline{c(x)}\,\overline{d(x)} = \overline{q_1(q_2\dots q_n)p(x)} = \overline{0}$$

Since $(\mathbb{Z}/q_1\mathbb{Z})[x] \cong \mathbb{Z}[x]/(q_1\mathbb{Z})[x]$ is an <u>integral domain</u>, WLOG, $\overline{c(x)} = \overline{0}$ if and only if $c(x) \in q_1\mathbb{Z}[x]$, meaning that all coefficients of c(x) are multiples or q_1 . Therefore, $\frac{1}{q_1}c(x) \in \mathbb{Z}[x]$.

 \leftarrow since q_1 is irreducible and hence prime in UFD

Now we repeat the process for all $q_1, q_2, ..., q_n$ and we are done.

Recall that if $F \subseteq K$ are fields, $\alpha \in K$ and $p(x) \in F[x]$ is irreducible with root α , then

$$F[\alpha] = F(\alpha) \cong F[x]/(p(x)) = \{ \overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}} \mid a_0, a_1 \dots, a_{n-1} \in F \}$$

We observe that this has a few implications. For instance, $F(\alpha)$ contains $\frac{1}{\alpha}$, meaning that it could also be written as a polynomial of α with coefficients in $F(\alpha)$!

 since it is a field containing the mult. inverse of α

Definition 20. Suppose K/F is a field extension and $\alpha \in K$. We say that α is **algebraic over** F if there exists $p(x) \in F[x]$ such that $p(\alpha) = 0$. If not, α is **transcendental**.

Definition 21. The extension K/F is an **algebraic extension** if **every** element $\alpha \in K$ is algebraic over F.

Example 25. π is transcendental over \mathbb{Q} but algebraic over \mathbb{R} (since it is a root of $x - \pi$).

Proposition 27. If K/F is a **finite extension**, then it is an algebraic extension.

← finite extension just means finite degree $[K:F] < \infty$

Proof. Call [K:F]=n and let $\alpha \in K$. Then the n+1 elements $\{1,\alpha,\alpha^2,\ldots,\alpha^n\}$ must be <u>linearly dependent</u>. Hence, by linear algebra, there exist $a_0,a_1,\ldots,a_n \in F$ not all zero such that the linear combination $a_0+a_1\alpha+a_2\alpha^2+\cdots+a_n\alpha^n=0$. Hence, α is a root of $a_0+a_1x+a_2x^2+\cdots+a_nx^n=0$.

 $\leftarrow \text{ since } n+1 > \\ \dim(K/F) = n$

Corollary 28. If K/F is an extension and $\alpha \in K$, then α is algebraic over F *if and only if* $[F(\alpha):F] < \infty$.

Proof.

 (\longleftarrow) Follows from prop.

(⇒) If α is algebraic, then there exists an irreducible polynomial p(x) with α as a root and of degree $n < \infty$. Then $F(\alpha) \cong F[x]/(p(x))$ is a n-dimensional vector space over F.

Another perspective: $F(\alpha) = \operatorname{Span}_F \{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}.$

← Review proof of $F(\alpha) \cong F[x]/(p(x))$.

Proposition 29. Suppose K/F is an extension & $\alpha \in K$ is algebraic over F. Then there exists a <u>unique</u>, <u>irreducible</u>, <u>and monic</u> polynomial $m_{\alpha,F}(x) \in F[x]$ that has α as a root.

Remark. We observe that m does depend on the base field F; $m_{\sqrt{2},\mathbb{Q}}(x) = x^2 - 2$, but $m_{\sqrt{2},\mathbb{Q}(\sqrt{2})}(x) = x^2 - \sqrt{2}$.

Proof. Since the subset of F[x] satisfying α is a root is nonempty, we can pick one with a **minimal degree**. By multiplying by an element of F if necessary, we can assume WLOG this polynomial is **monic**. Call it $m_{\alpha,F}(x)$.

Assume BWOC that m is the product of two other polynomials of lesser degree such that $m_{\alpha,F}(x) = a(x)b(x)$, then we plug in $0 = m_{\alpha,F}(\alpha) = a(\alpha)b(\alpha)$. Since there are no zero divisors in F[x], WLOG $a(\alpha) = 0$, contradicting the minimality of $m_{\alpha,F}$. Hence $m_{\alpha,F}$ is **irreducible**.

 $\leftarrow \text{ So } F(\alpha) \cong F[x]/(m_{\alpha,F}(x))$

Then, BWOC if $p(x) \in F[x]$ with α as a root and is monic and irreducible, there exist $q(x), r(x) \in F[x]$ such that $p(x) = m_{\alpha,F}(x)q(x) + r(x)$ where $\deg(r) < \deg(m_{\alpha,F})$ or r(x) = 0. Then, we observe that $p(\alpha) = 0 = m_{\alpha,F}(\alpha)q(m_{\alpha,F}) + r(\alpha) = 0 + r(\alpha)$. Thus, $r(\alpha) = 0$, so $\deg(r) \ge \deg(m_{\alpha,F})$ unless r(x) = 0 by minimality. Hence we must have r(x) = 0, so $m_{\alpha,F}|p$. This contradicts the assumption that p is monic and irreducible. Therefore, $m_{\alpha,F}$ is the **only** minimal, monic and irreducible polynomial where α is a root.

Definition 22. $m_{\alpha,F}(x)$ is the **minimal** polynomial of α over F.