4-13

4-21

(a)

Like 4-20, I assume that output remains **0** if **E=0** when generating the last bit.

Present	Next(E=0)	Next(E=1)	Output
000	001	001	0
001	010	010	1
010	011	011	1
011	100	100	1
100	101	101	1
101	110	110	1
110	111	111	1
111	111	000	0

(c)

4-22

Present	Х	Next	z	S
000	0	000	0	0
000	1	001	1	0
001	0	000	0	0
001	1	010	1	0
010	0	000	0	0
010	1	011	1	0
011	0	000	0	0
011	1	100	1	0
100	0	000	0	0
100	1	101	1	0
101	0	000	0	1
101	1	000	0	1

(c)

4-25

(a)

X means 0 or 1.

(b)

X means 0 or 1.

Present	R	Α	RESET	Next	E
000	0	0	0	000	0
000	1	0	0	001	0
000	X	1	0	100	1
000	X	X	1	000	0
001	1	0	0	001	0
001	1	1	0	010	0
001	0	X	0	100	1
001	X	X	1	000	0
010	1	1	0	010	0
010	0	1	0	011	0
010	X	0	0	100	1
010	X	X	1	000	0
011	0	1	0	011	0
011	0	0	0	000	0
011	1	X	0	100	1
011	X	X	1	000	0
100	X	X	0	100	1
100	X	X	1	000	0

4-29

(a)

(c)

I would apply the first technique, the circuit is simple, independent and suitable for a toy. If an error happens and the circuit begins to loop between 010 and 101, the child just needs to reset the circuit. The error brings no harm.

(d)

I think the circuit needs no modification.

(e)

I would apply both the second and the third technique. Since an error happening on the engine of an airliner could kill hundreds of passengers. A signal for error is needed to tell the engineer to check the circuit and the circuit should be able to reset itself when an error happens.

(f)

4-58

(a)

A timing violation at **28ns**.

Two timing violations: one at 16ns and one at 24ns.

4-59

(a)

 $t_d = 0.04$ ns + 0.04ns = 0.08ns

(b)

 $t_d = 0.04$ ns + 0.01ns + 0.02ns = 0.07ns

(c)

 $t_d = 0.08$ ns + 0.04ns + 0.04ns = 0.16ns

(d)

 $t_d = 0.08$ ns + 0.04ns + 0.01ns +0.02ns = 0.15ns

(e)

 $f=rac{1}{0.15ns}=6.67 imes10^3MHz$