Concours en Mathématiques Physique Correction de l'Epreuve de Mathématiques II

Exercice

1)

 $x\mapsto P(x)Q(x)(1-x^2)^{\alpha}$ est continue sur] -1,1[et en plus, il existe $c\in\mathbb{R}^+$ tel que $\forall x\in]-1,1[\ ,|P(x)Q(x)(1-x^2)^{\alpha}|\leq c(1-x^2)^{\alpha}$

or

$$(1-x^2)^{\alpha} \sim 2^{\alpha}(1-x)^{\alpha}$$
 quand $x \longrightarrow 1$
 $(1-x^2)^{\alpha} \sim 2^{\alpha}(1+x)^{\alpha}$ quand $x \longrightarrow -1$

donc $(1-x^2)^{\alpha}$ est intégrable sur] -1, 1[pour tout $\alpha > -1$ d'où $x \mapsto P(x)Q(x)(1-x^2)^{\alpha}$ est intégrable sur] -1, 1[.

$$\begin{split} (P,Q)_{\alpha} &= \int_{-1}^{1} P(x)Q(x)(1-x^{2})^{\alpha}dx = \int_{-1}^{1} Q(x)P(x)(1-x^{2})^{\alpha}dx = (Q,P)_{\alpha} \\ (\lambda_{1}P_{1} + \lambda_{2}P_{2},Q)_{\alpha} &= \int_{-1}^{1} (\lambda_{1}P_{1} + \lambda_{2}P_{2})Q(x)(1-x^{2})^{\alpha}dx = \lambda_{1}(P_{1},Q)_{\alpha} + \lambda_{2}(P_{2},Q)_{\alpha} \\ (P,P)_{\alpha} &= \int_{-1}^{1} P(x)P(x)(1-x^{2})^{\alpha}dx \geq 0. \\ (P,P)_{\alpha} &= 0 \Longrightarrow P = 0 \text{ sur }] - 1,1[\text{ d'où } P \text{ est le polynôme nul } . \end{split}$$

Ainsi $(,)_{\alpha}$ est un produit scalaire.

3)

$$\frac{\partial^{n}}{\partial x^{n}}((1-x^{2})^{\alpha+n}) = \frac{\partial^{n}}{\partial x^{n}}((1-x)^{\alpha+n}(1+x)^{\alpha+n})$$

$$= \sum_{k=0}^{n} C_{n}^{k} \frac{\partial^{k}}{\partial x^{k}}((1-x)^{\alpha+n}) \frac{\partial^{n-k}}{\partial x^{n-k}}((1+x)^{\alpha+n})$$

$$= \sum_{k=0}^{n} C_{n}^{k}(\alpha+n)...(\alpha+n-k+1)(\alpha+n)...(\alpha+k+1)(-1)^{k}(1-x)^{\alpha+n-k}(1+x)^{\alpha+k}$$

$$= (1-x^{2})^{\alpha} J_{n}^{\alpha}(x)$$

où

$$J_n^{\alpha}(x) = \sum_{k=0}^n C_n^k(\alpha+n)...(\alpha+n-k+1)(\alpha+n)...(\alpha+k+1)(-1)^k(1-x)^{n-k}(1+x)^k$$

est un polynôme de degré n.

$$(J_n^{\alpha}, J_m^{\alpha})_{\alpha} = \int_{-1}^1 J_n^{\alpha}(x) J_m^{\alpha}(x) (1 - x^2)^{\alpha} dx$$

on a $n \neq m$, supposons que n < m.

$$(J_n^{\alpha}, J_m^{\alpha})_{\alpha} = \int_{-1}^1 J_n^{\alpha}(x) \frac{\partial^m}{\partial x^m} ((1 - x^2)^{\alpha + m}) dx$$

après une intégration par parties on trouve :

$$(J_n^{\alpha}, J_m^{\alpha})_{\alpha} = -\int_{-1}^1 (J_n^{\alpha})'(x) \frac{\partial^{m-1}}{\partial x^{m-1}} ((1-x^2)^{\alpha+m}) dx$$

et après n intégrations par parties on trouve :

$$(J_n^{\alpha}, J_m^{\alpha})_{\alpha} = (-1)^n \int_{-1}^1 (J_n^{\alpha})^{(n)}(x) \frac{\partial^{m-n}}{\partial x^{m-n}} ((1-x^2)^{\alpha+m}) dx$$
$$= (-1)^n (J_n^{\alpha})^{(n)} \int_{-1}^1 \frac{\partial^{m-n}}{\partial x^{m-n}} ((1-x^2)^{\alpha+m}) dx = 0$$

5) a)

$$J_n^{\alpha}(x) = \sum_{k=0}^n C_n^k(\alpha + n)...(\alpha + n - k + 1)(\alpha + n)...(\alpha + k + 1)(-1)^k (1 - x)^{n-k} (1 + x)^k$$

$$\Longrightarrow J_n^{\alpha}(1) = (\alpha + n)....(\alpha + 1)(-1)^n 2^n.$$
5) b)

$$J_n^{\alpha}(x) = (1 - x^2)^{-\alpha} \frac{\partial^n}{\partial x^n} ((1 - x^2)^{\alpha + n})$$

 $x \mapsto (1-x^2)^{-\alpha}$ est paire et $x \mapsto \frac{\partial^n}{\partial x^n}((1-x^2)^{\alpha+n})$ est la dérivée n^{ieme} d'une fonction paire donc elle a la parité de n d'où $J_n^{\alpha}(-x) = (-1)^n J_n^{\alpha}(x)$.

5) c)

$$J_n^{\alpha}(-1) = (-1)^n J_n^{\alpha}(1) = (\alpha + n)....(\alpha + 1)2^n$$

 A_{α} est linèaire et

$$\mathcal{A}_{\alpha}(P)(x) = -(1-x^2)^{-\alpha}(-2x(\alpha+1)(1-x^2)^{\alpha}\frac{\partial P}{\partial x} + (1-x^2)^{\alpha+1}\frac{\partial^2 P}{\partial x^2})$$

$$=2x(1+\alpha)\frac{\partial P}{\partial x}-(1-x^2)\frac{\partial^2 P}{\partial x^2}$$

Ainsi, si P est un polynôme de degré $\leq N$, alors il en est de même pour $\mathcal{A}_{\alpha}(P)$. d'où \mathcal{A}_{α} est un endomorphisme de $\mathbb{R}_{N}[X]$.

6) b)

$$(\mathcal{A}_{\alpha}(P), Q)_{\alpha} = -\int_{-1}^{1} \frac{\partial}{\partial x} ((1 - x^{2})^{\alpha+1} \frac{\partial P}{\partial x}) Q(x) dx$$

$$= \int_{-1}^{1} (1 - x^{2})^{\alpha+1} \frac{\partial P}{\partial x} \frac{\partial Q}{\partial x} (x) dx$$

$$= -\int_{-1}^{1} \frac{\partial}{\partial x} ((1 - x^{2})^{\alpha+1} \frac{\partial Q}{\partial x}) P(x) dx$$

$$= (\mathcal{A}_{\alpha}(Q), P)_{\alpha}.$$

7) a)

$$\mathcal{A}_{\alpha}(P) = \lambda P$$

$$\iff$$

$$2x(1+\alpha)\frac{\partial P}{\partial x} - (1-x^2)\frac{\partial^2 P}{\partial x^2} = \lambda P$$

D'où P vérifit l'équation différentielle :

$$(1 - x^2)y'' - 2(1 + \alpha)xy' + \lambda y = 0$$

7) b)

Soient $n \in \{0, 1..., N\}$ et $\lambda_n^{\alpha} = n(n-1) + 2(\alpha+1)n$. Montrons qu'il existe $\Phi \in (\mathbb{R}_N[X])^*$ tel que $\mathcal{A}_{\alpha}\Phi = \lambda_n^{\alpha}\Phi$.

Cherchons Φ sous la forme $\Phi(x) = \sum_{k=0}^{m} a_k x^k$ avec $m \in \{0, 1..., N\}$.

Φ vérifit l'équation différentielle :

$$(1 - x^2)y'' - 2(1 + \alpha)xy' + \lambda_n^{\alpha} y = 0$$

ceci donne:

$$(k+2)(k+1)a_{k+2} = (k(k-1) + 2(\alpha+1)k - \lambda_n^{\alpha})a_k \text{ pour } 0 \le k \le m-2$$

$$(-(m-1)(m-2) - 2(\alpha+1)(m-1) + \lambda_n\alpha)a_{m-1} = 0$$

$$(-m(m-1) - 2(\alpha+1)m + \lambda_n^{\alpha})a_m = 0$$

On choisit m = n, ceci impose $a_{n-1} = 0$. d'où

si n est paire, on prend $a_1=0$ et $a_0\neq 0$ et la relation de récurrence fournit un élément $\Phi\in \mathbb{R}_N[X]$ non nul tel que $\mathcal{A}_\alpha\Phi=\lambda_n^\alpha\Phi.$ si n est impaire, on prend $a_0=0$ et $a_1\neq 0$ et la relation de récurrence fournit un élément $\Phi\in \mathbb{R}_N[X]$ non nul tel que $\mathcal{A}_\alpha\Phi=\lambda_n^\alpha\Phi.$ d'où λ_n^α est une valeur propre de $\mathcal{A}_\alpha.$

Remarquons que

$$J_n^0(x) = n! \sum_{k=0}^n (C_n^k)^2 (-1)^k (1-x)^{n-k} (1+x)^{n+k}$$

et

$$\mathcal{A}_0(J_n^0) = -\frac{\partial}{\partial x}((1-x^2)\frac{\partial J_n^0}{\partial x})$$

un calcul directe donne

$$A_0(J_n^0) = (n^2 + n)J_n^0 = \lambda_n^0 J_n^0$$

d'où J_n^0 est le vecteur propre associé à la valeur propre λ_n^0 .

Problème

Partie I

1) a)

Posons
$$U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
 et $V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$

$${}^{t}VU = u_{1}v_{1} + ... + u_{n}v_{n}$$
 et $A = U {}^{t}V = (u_{i}v_{j})_{1 \le i,j \le n} \in \mathcal{M}_{n}(\mathbb{R})$

 ${}^tVU \neq 0 \Longrightarrow$ il existe i tel que $u_iv_i \neq 0 \Longrightarrow A \neq 0$ et un mineur d'ordre 2 de A est du type $\begin{vmatrix} u_iv_j & u_iv_k \\ u_lv_j & u_lv_k \end{vmatrix} = 0$ donc $\operatorname{rg}(A) = 1$.

1) b) i)

$$\operatorname{rg}(A) = 1 \Longrightarrow \operatorname{il}$$
 existe $U \neq 0$ tel que $\forall X \in \mathcal{M}_{n,1}(\mathbb{R})$, $AX \in \operatorname{Vect}(U)$ \Longrightarrow $\forall X \in \mathcal{M}_{n,1}(\mathbb{R})$ il existe $\alpha_X \in \mathbb{R}$ tel que $AX = \alpha_X U$.

$$\mathbf{i}^{eme} \text{ligne} \rightarrow \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = E_i , AE_i = \begin{pmatrix} \sum_{j=1}^n a_{1j}e_{j1} \\ \sum_{j=1}^n a_{2j}e_{j2} \\ \vdots \\ \sum_{j=1}^n a_{nj}e_{jn} \end{pmatrix} = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{pmatrix} = A_i$$

 $A_i = AE_i \Longrightarrow \text{il existe } \alpha_i \text{ tel que } A_i = AE_i = \alpha_i U.$

1) b) iii)

$$V = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \text{ et } U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

$$U {}^tV = (u_i\alpha_j)_{1 \le i,j \le n} = A \text{ et } {}^tVU = \alpha_1u_1 + \ldots + \alpha_nu_n = \text{ tr } (A) \ne 0.$$

1) c)

à partir de a) et b) on a l'équivalence : $A \in \mathcal{M}_n(\mathbb{R})$ de trace non nulle est de rang 1 si et seulement s' il existe U et V tel que ${}^tVU \neq 0$ et $A = U {}^tV$.

 $U, V \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que ${}^tVU \neq 0$.

2) a)

$$\Psi(\alpha X + Y) = \ ^tV(\alpha X + Y) = \alpha \ ^tVX + \ ^tVY = \alpha \Psi(X) + \Psi(Y)$$

donc Ψ est linéaire.

2) b)

$$L = \ker(\Psi)$$

 Ψ est une forme linéaire non nulle, car $\Psi(U) \neq 0$, donc dim(ker Ψ) = dim(L) = n-1.

2) c)

On a
$${}^tVU \neq 0 \Longrightarrow U \notin L$$
.
 $\forall X \in L$, $AX = U {}^tVX$, or ${}^tVX = 0 \Longrightarrow AX = 0$.

$$AU = U \ ^tVU = \ ^tVUU$$

U est un vecteur propre associé à la valeur propre $\ ^tVU.$

2) e

On a
$$\forall X \in L$$
 , $AX = 0$ et $AU = {}^tVUU$

 $Sp(A) = \{0, {}^tVU\}$ avec 0 est une valeur propre de multiplicité n-1 et tVU est une valeur propre simple.

A est alors diagonalisable et semblable à la matrice D et il existe P inversible tel que $A = P^{-1}DP$.

2) f)

$$\det(I+A) = \det(I+P^{-1}DP) = \det(P^{-1}(I+D)P) = \det(I+D) = 1 + {}^{t}VU.$$

2) g)

L'inverse de I+A existe si et seulement si $1+{}^tVU\neq 0$. En remarquant que $A^2={}^tVUA$, on a :

$$(I+A)(I+\alpha A) = (I+\alpha A)(I+A) = I \Longleftrightarrow \alpha = \frac{-1}{1+{}^tVU}.$$

Partie II

Question préliminaire

Soient $A \in \mathcal{S}$ et $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tels que ${}^t XX = {}^t YY = 1$ et ${}^t XY = 0$.

$${}^{t}XAY = {}^{t}X {}^{t}AY = {}^{t}({}^{t}YAX)$$

or ${}^tYAX \in \mathbb{R} \Longrightarrow {}^t({}^tYAX) = {}^tYAX$, d'où ${}^tXAY = {}^tYAX$.

$$S \subset \{A \in \mathcal{M}_n(\mathbb{R}) \text{ tel que } {}^tXAY = {}^tYAX, \forall X, Y \in \mathcal{M}_n(\mathbb{R})$$

vérifiants ${}^tXX = {}^tYY = 1 \text{ et } {}^tXY = 0\}$

Soit $A \in \mathcal{M}_n(I\!\! R)$ telle que :

$${}^{t}XAY = {}^{t}YAX$$
, $\forall X, Y \in \mathcal{M}_{n}(\mathbb{R})$ vérifiants ${}^{t}XX = {}^{t}YY = 1$ et ${}^{t}XY = 0$

Choisissons

$$\mathbf{i}^{eme} \text{ligne} \rightarrow \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = X \text{ et } \quad \mathbf{j}^{eme} \text{ligne} \rightarrow \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = Y \text{ avec } i \neq j$$

on a

$${}^{t}XX = {}^{t}YY = 1 \text{ et } {}^{t}XY = 0.$$

Si
$$A = (a_{i,j})_{1 \le i \le n}$$
, alors ${}^tXAY = a_{i,j}$ et ${}^tYAX = a_{j,i}$.

Si $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$, alors $tXAY = a_{i,j}$ et $tYAX = a_{j,i}$. Ainsi, pour tout i, j tel que $i \ne j$ on a $a_{i,j} = a_{j,i}$, d'où tA = A.

Conclusion:

$$S = \{ A \in \mathcal{M}_n(\mathbb{R}) \text{ tel que } {}^t X A Y = {}^t Y A X , \forall X, Y \in \mathcal{M}_n(\mathbb{R})$$
vérifiants ${}^t X X = {}^t Y Y = 1 \text{ et } {}^t X Y = 0 \}$

A)

1)

On a: $*\langle A, B \rangle = \operatorname{tr}(A^{t}B) = \operatorname{tr}(B^{t}A) = \langle B, A \rangle$

 $* \langle \alpha A_1 + A_2, B \rangle = \operatorname{tr} \left((\alpha A_1 + A_2)^{t} B \right) = \alpha \operatorname{tr} \left(A_1^{t} B \right) + \operatorname{tr} \left(A_2^{t} B \right) = \alpha \langle A_1, B \rangle + \langle A_2, B \rangle$

 $*\langle A, A \rangle = \operatorname{tr}(A^{t}A)$

On prend $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le i \le n}}$,

$$A^{t}A = (c_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$$
 tel que $c_{i,j} = \sum_{k=1}^{n} \underline{a_{i,k}} a_{j,k}$

tr
$$(A^{t}A) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{n} (a_{i,k})^{2} \ge 0$$

 $\implies \langle A, A \rangle \ge 0.$

*
$$\langle A, A \rangle = 0 \iff \sum_{i=1}^{n} \sum_{k=1}^{n} (a_{i,k})^2 = 0 \iff$$

$$a_{i,k} = 0$$
, $\forall i \in \{1, 2, ..., n\}$ et $k \in \{1, 2, ..., n\} \iff A = 0$

d'où (,) est un produit scalaire.

 $A \in \mathcal{S}^+ \Longrightarrow A$ est semblable à une matrice diagonale

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \text{ avec } \lambda_i \ge 0.$$

 \Longrightarrow

$$\operatorname{tr} (A) = \lambda_1 + \dots + \lambda_n \text{ et } \operatorname{tr} (A^2) = (\lambda_1)^2 + \dots + (\lambda_n)^2.$$
$$||A||^2 = \langle A, A \rangle = \operatorname{tr} (A^t A) = \operatorname{tr} (A^2) = (\lambda_1)^2 + \dots + (\lambda_n)^2 \le (\lambda_1 + \dots + \lambda_n)^2.$$

 \Longrightarrow

$$||A||^2 \le (\operatorname{tr}(A))^2.$$

2) b)

$$||A||^2 = \langle A, A \rangle = \text{tr } (A^t A) = \sum_{i=1}^n \sum_{j=1}^n (a_{i,j})^2 = \sum_{i,j=1}^n (a_{i,j})^2.$$

2) c)

$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}, \ B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}, \ AB = (c_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}, \ \text{avec } c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

$$||AB||^2 = \sum_{i,j=1}^n (c_{i,j})^2 = \sum_{i,j=1}^n (\sum_{k=1}^n a_{i,k} b_{k,j})^2$$

or

$$\left(\sum_{k=1}^{n} a_{i,k} b_{k,j}\right)^{2} \le \left(\sum_{k=1}^{n} (a_{i,k})^{2}\right) \left(\sum_{k=1}^{n} (b_{k,j})^{2}\right)$$

_

$$||AB||^{2} \leq \sum_{i,j=1}^{n} \left(\left(\sum_{k=1}^{n} (a_{i,k})^{2} \right) \left(\sum_{k=1}^{n} (b_{k,j})^{2} \right) \right)$$

$$\leq \left(\sum_{i=1}^{n} \left(\sum_{k=1}^{n} (a_{i,k})^{2} \right) \right) \left(\sum_{j=1}^{n} \left(\sum_{k=1}^{n} (b_{k,j})^{2} \right) \right)$$

$$\leq ||A||^2 ||B||^2$$
.

$$||AB|| \le ||A|| ||B||$$

3)

$$||U \ ^tV||^2 = \langle U \ ^tV, U \ ^tV \rangle = \ \operatorname{tr} \ (U \ ^tV \ V \ ^tU) = V \ ^tV \ \operatorname{tr} \ (U \ ^tU) = U \ ^tU \ V \ ^tV.$$

 \Rightarrow

$$||U|^t V|| = \sqrt{tVV} \sqrt{tUU}.$$

4

$$\langle A, B \rangle = \operatorname{tr} (A {}^{t}B) = -\operatorname{tr} (AB)$$

 $\langle B, A \rangle = \operatorname{tr} (B {}^{t}A) = \operatorname{tr} (BA) = \operatorname{tr} (AB)$
 $\langle A, B \rangle = \langle B, A \rangle \Longrightarrow \operatorname{tr} (AB) = -\operatorname{tr} (AB)$

d'où

$$\operatorname{tr}(AB) = 0 \text{ et } \langle A, B \rangle = 0.$$

B) .

1)

On note que:

$$(X {}^{t}X + Y {}^{t}Y)(X {}^{t}X + Y {}^{t}Y) = X {}^{t}X + Y {}^{t}Y$$

$$(X {}^{t}Y - Y {}^{t}X)(X {}^{t}Y - Y {}^{t}X) = -X {}^{t}X - Y {}^{t}Y$$

$$(X {}^{t}X + Y {}^{t}Y)(X {}^{t}Y - Y {}^{t}X) = X {}^{t}Y - Y {}^{t}X$$

$$(X {}^{t}Y - Y {}^{t}X)(X {}^{t}X + Y {}^{t}Y) = X {}^{t}Y - Y {}^{t}X.$$

Puis un calcul direct de $Q(\alpha)Q(-\alpha)$ donne le résultat.

2)

$$* {}^tQ(\alpha) = I - 2\sin^2\alpha(X {}^tX + Y {}^tY) + 2\sin\alpha\cos\alpha(Y {}^tX - X {}^tY) = Q(-\alpha).$$

$$Q(\alpha)Q(-\alpha) = I \Longrightarrow Q(\alpha) {}^tQ(\alpha) = I \Longrightarrow Q(\alpha) \in \mathcal{O}(n).$$

*
$${}^tPP = (I - 2X {}^tX)(I - 2X {}^tX = I - 4X {}^tX + 4X {}^tXX {}^tX$$
 or ${}^tXX = 1 \Longrightarrow {}^tPP = I \Longrightarrow P \in \mathcal{O}(n)$.

$$\langle A, V^{t}Z \rangle = \operatorname{tr} (\widehat{AZ^{t}V}) = {}^{t}VAZ.$$

3) b)

$$\forall \alpha \in \mathbb{R}, \ Q(\alpha) \in \mathcal{O}(n) \Longrightarrow \langle A, Q(\alpha) \rangle \leq \langle A, I \rangle \Longrightarrow \langle A, Q(\alpha) - I \rangle \leq 0$$
 d'où
$$-2\sin^2\alpha \langle A, X \ ^tX + Y \ ^tY \rangle + 2\sin\alpha\cos\alpha \langle A, X \ ^tY - Y \ ^tX \rangle \leq 0$$

$$\Longrightarrow \\ -2\sin^2\alpha (\ ^tXAX + \ ^tYAY) + 2\sin\alpha\cos\alpha (\ ^tXAY - \ ^tYAX) \leq 0$$

3) c)

 $\forall \alpha \in]0, \pi[,$

entrius Proportions dos etudes ingénisurs de .tox BIBLIQUE

$$-({}^{t}XAX + {}^{t}YAY) + \cot \alpha ({}^{t}XAY - {}^{t}YAX) \le 0$$

Puisque cot
g α décrit $\mathbb R$ quand α décrit
 $]0,\pi[,$ on a nécessairement

 ${}^tXAY - {}^tYAX = 0.$

Edga (+X 4 Y - +YAX) & *XAX+
- +YAY

Ainsi on a : $\forall X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tels que ${}^tXX = {}^tYY = 1$ et ${}^tXY = 0$,

$${}^{t}XAY = {}^{t}YAX$$

d'où $A \in \mathcal{S}$.

3) d)

$$P \in \mathcal{O}(n) \Longrightarrow \langle A, P \rangle \le \langle A, I \rangle \Longrightarrow \langle A, P - I \rangle \le 0.$$

 $\langle A, P - I \rangle \le 0 \Longrightarrow -2\langle A, {}^t XX \rangle \le 0 \Longrightarrow {}^t XAX \ge 0$

d'où
 $\forall~X\in\mathcal{M}_{n,1}(I\!\!R)$ tel que $~^tXX=1$, on a $~^tXAX\geq 0$

 $\forall X \in \mathcal{M}_{n,1}(IR), \ ^tXAX \geq 0$

et comme $A \in \mathcal{S}$, on obtient $A \in \mathcal{S}^+$.

4) a)

$$- {}^{t}(\Omega - I)(\Omega - I) = -({}^{t}\Omega - I)(\Omega - I)$$
$$= - {}^{t}\Omega\Omega + {}^{t}\Omega + \Omega - I$$
$$= \Omega + {}^{t}\Omega - 2I.$$

$$2C = \Omega + {}^{t}\Omega - 2I$$

$$2\langle A, C \rangle = \langle A, 2C \rangle = \langle A, \Omega + {}^{t}\Omega - 2I \rangle$$

$$= \langle A, \Omega - I \rangle + \langle A, {}^{t}\Omega - I \rangle = \langle A, \Omega - I \rangle + \text{tr} (A(\omega - I))$$

$$= \langle A, \Omega - I \rangle + \text{tr} ((\Omega - I) {}^{t}A) = \langle A, \Omega - I \rangle + \langle \Omega - I, A \rangle$$

$$= 2\langle A, \Omega - I \rangle$$

$$\Rightarrow \qquad \langle A, C \rangle = \langle A, \Omega - I \rangle$$

$$\Rightarrow \qquad 2\langle A, \Omega - I \rangle = \langle A, 2C \rangle = -\langle A, -{}^{t}(\Omega - I)(\Omega - I) \rangle =$$

$$- \text{tr} (A^{t}(\Omega - I)(\Omega - I)) = - \text{tr} ((\Omega - I)A {}^{t}(\Omega - I))$$

4) c)

$$\stackrel{* t}{\Longrightarrow} \stackrel{t((\Omega - I)A \ t(\Omega - I))}{\Longrightarrow} = (\Omega - I) \ tA \ t(\Omega - I) = (\Omega - I)A \ t(\Omega - I)$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = \frac{(\Omega - I)A \ t(\Omega - I)X}{(\Omega - I)X} \stackrel{!}{\Longrightarrow} 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = \frac{(\Omega - I)A \ t(\Omega - I)X}{(\Omega - I)X} \stackrel{!}{\Longrightarrow} 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

$$\stackrel{* tX(\Omega - I)A \ t(\Omega - I)X}{\Longrightarrow} = 0$$

 $(\Omega - I)A^{t}(\Omega - I) \in \mathcal{S}^{+}$ $\Longrightarrow \operatorname{tr} ((\Omega - I)A^{t}(\Omega - I)) \geq 0$ $\Longrightarrow \langle A, \Omega - I \rangle \leq 0$ \Longrightarrow

 $\langle A, \Omega \rangle \le \langle A, I \rangle.$ 5)

La question 4) \Longrightarrow $\mathcal{S}^+ \subset \bigcap_{\Omega \in \mathcal{O}(n)} \{ A \in \mathcal{M}_n(\mathbb{R}) \text{ tel que } \langle A, \Omega \rangle \leq \langle A, I \rangle \}$ La question 3) \Longrightarrow

 $\bigcap_{\Omega \in \mathcal{O}(n)} \{ A \in \mathcal{M}_n(\mathbb{R}) \text{ tel que } \langle A, \Omega \rangle \leq \langle A, I \rangle \} \subset \mathcal{S}^+$

d'où l'égalité.

6) a)

 Ψ est linéaire sur des espaces de dimension finie, donc Ψ est continue.

6) b)

$$\{A \in \mathcal{M}_n(\mathbb{R}) \text{ tel que } \langle A, \Omega \rangle \leq \langle A, I \rangle \} = \Psi^{-1}(] - \infty, 0])$$

c'est l'image réciproque d'un fermé par une application continue, donc c'est un fermé.

6) c)

 S^+ est l'intersection de fermés donc c'est un fermé.

6) d)

Soit $A \neq 0$, $A \in S^+$. $\forall t \in \mathbb{R}^+$, $tA \in S^+$ et

$$||tA|| = t||A|| \longrightarrow +\infty$$
 quand $t \longrightarrow +\infty$.

 \Longrightarrow

 S^+ est non borné

 \Rightarrow

 S^+ est non compact.