CIRCUITOS DIGITAIS

CIRCUITOS COMBINACIONAIS

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Principais diferenças entre C.C. e C.S.

Circuitos Combinacionais

- A saída é formada por uma combinação de operações realizadas (unicamente) sobre as entradas.
- Ex.: Somadores, multiplexadores, codificadores, decodificadores, ULAs, etc.

Circuitos Sequenciais

- São circuitos capazes de "lembrar" estados anteriores.
- Isso é possível pois esses circuitos permitem realimentação (a saída também serve de entrada)
- Caracteristicamente guiados pelo clock (síncronos ou assíncronos)
- Ex.: latches, flip-flops

Principais diferenças entre C.C. e C.S.

Circuitos combinacionais:

Circuitos sequenciais:

 Exemplo 1 – Projete um circuito que ligue uma lâmpada apenas quando dois interruptores estiverem ligados

1º Passo – Defina as entradas e as saídas

 2º Passo – Defina valores para os estados das estradas e saídas

$$L = 0$$

$$L = 1$$

$$A = 0$$

$$3 = 0$$

$$A = 1$$

$$\mathsf{B}=\mathsf{1}$$

3º Passo – Obtenha a(s) função(ões) booleana(s)

$$L = 0$$

$$L = 0$$

$$L = 0$$

$$L = 1$$

$$B = 0$$

$$A = 0$$

$$B = 1$$

$$A = 1$$

$$B = 0$$

$$A = 1$$

$$B = 1$$

- 3º Passo Obtenha a(s) função(ões) booleana(s)
- → Tabela Verdade

Α	В	L
0	0	0
0	1	0
1	0	0
1	1	1

- 3º Passo Obtenha a(s) função(ões) booleana(s)
- → Tabela Verdade

Α	В	L
0	0	0
0	1	0
1	0	0
1	1	1

Soma de Produtos

$$L = AB$$

4º Passo – Simplifique a equação se necessário

Α	В	L
0	0	0
0	1	0
1	0	0
1	1	1

Soma de Produtos

$$L = AB$$

 5º Passo – Implemente um circuito baseado em portas

$$L = AB$$

- Exemplo 2 Detector de número impar de interruptores ligados
- Projete um circuito que ligue uma lâmpada quando um número ímpar de três interruptores estiverem ligados.

1º Passo – Defina as entradas e as saídas

 2º Passo – Defina valores para os estados das estradas e saídas

$$L = 0$$

$$L = 1$$

$$A = 0$$

$$B = 0$$

$$C = 0$$

$$A = 1$$

$$B = 1$$

- 3º Passo Obtenha a(s) função(ões) booleana(s)
- → Tabela Verdade

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$L = A'B'C + A'BC' + AB'C' + ABC$$

4º Passo – Simplifique a equação se necessário

L = A'B'C + A'BC' + AB'C' + ABC

 5º Passo – Implemente um circuito baseado em portas

L = A'B'C + A'BC' + AB'C' + ABC

 5º Passo – Implemente um circuito baseado em portas

L = A'B'C + A'BC' + AB'C' + ABC

PODEMOS FAZER DE OUTRO JEITO!

4º Passo – Simplifique a equação se necessário

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Detectar número ímpar de 1s em n entradas → porta XOR de n entradas

De onde vem a XOR?

L = A'B'C + A'BC' + AB'C' + ABC

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$L = A'B'C + A'BC' + AB'C' + ABC$$

 $L = A'(B'C + BC') + A(B'C' + BC)$

$$A'B + AB' = A \times B'$$

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$A'B' + AB = A \times B$$

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	L
0	0	0	0
0	0	1	7
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$A'B + AB' = A \times B'$$

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$A'B + AB' = A \times B'$$

Α	В	С	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Exemplo 3 - Contador de número de 1s

 Projete um circuito que conta o número de 1s presentes em três entradas, A, B e C; e, como saída, fornece esse número em binário, por meio de duas saídas Y e Z.

 Por exemplo, a entrada 110 tem dois 1s. Nesse caso, o circuito deve produzir 10 como saída (2 em binário).

1º Passo – Defina as entradas e as saídas

Entradas : A, B e C

Saídas: Y e Z

 2º Passo – Defina valores para os estados das estradas e saídas

A saída será um valor em binário

- 3º Passo Obtenha a(s) função(ões) booleana(s)
- → Tabela Verdade

Entradas		S	(Números de 1s)	Saídas	
Α	В	С		Υ	Z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

Entradas		S	(Números de 1s)	Saídas	
Α	В	С		Υ	Z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

MINTERMOS:

$$Y = A'BC + AB'C + ABC' + ABC$$

4º Passo – Simplifique a equação se necessário
 Y = A' B C + A B' C + A B C' + A B C

A equação de Y pode ser simplificada

$$Y = BC + AC + AB$$

Entradas		S	(Números de 1s)	Saídas	
Α	В	O		Υ	Z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

MINTERMOS:

4º Passo – Simplifique a equação se necessário
 Z = A' B' C + A' B C' + A B' C' + A B C

4º Passo – Simplifique a equação se necessário
 Z = A' B' C + A' B C' + A B' C' + A B C

Entradas		S	(Números de 1s)	Saídas	
Α	В	O		Υ	Z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

MINTERMOS:

Entradas		S	(Números de 1s)	Saídas	
Α	В	O		Υ	Z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

$$Z = A xor B xor C$$

 5º Passo – Implemente um circuito baseado em portas

Exemplo 4 - Comparador

- Projete um circuito que compare dois números binários de 2 bits A e B e retorne 1 na saída X caso A>B. Caso A<B ou A=B, a saída X será 0.
- Por exemplo, se A = 10₂ (2₁₀) e B = 01₂ (1₁₀), temos que A>B, então X será 1.

1º Passo – Defina as entradas e as saídas

- Entradas : A₁, A₀, B₁ e B₀
- Saída: X

 2º Passo – Defina valores para os estados das estradas e saídas

A saída será 1 se A>B, caso contrário será 0

- 3º Passo Obtenha a(s) função(ões) booleana(s)
- → Tabela Verdade

	Entra	adas	Saída	
A ₁	A ₀	B ₁	B ₀	X (A>B)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Circuitos Digitais – Prof. Marc

A ₁	A ₀	B ₁	B ₀	X (A>B)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$X = \overline{A_1}A_0\overline{B_1}\ \overline{B_0} + A_1\overline{A_0}\ \overline{B_1}\ \overline{B_0} + A_1\overline{A_0}\ \overline{B_1}B_0 + A_1A_0\overline{B_1}\ \overline{B_0} + A_1A_0\overline{B_1}B_0 + A_1A_0B_1\overline{B_0}$$

4º Passo – Simplifique a equação se necessário

A ₁	A_0	B ₁	B_0	X (A>B)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Circuitos Digitais – Prof. Marc Slide **47**

4º Passo – Simplifique a equação se necessário

$$X = A_0 \overline{B_1} \overline{B_0} + A_1 A_0 \overline{B_0} + A_1 \overline{B_1}$$

 5º Passo – Implemente um circuito baseado em portas

Exemplo 5 - Museu

 Um museu tem três salões, cada um com um sensor de movimento (m0, m1 e m2) que fornece uma saída 1 quando é detectado algum movimento. À noite, a única pessoa no museu é o guarda da segurança que caminha de salão a salão.

• Exemplo 5 - Museu

 Crie um circuito que soa um alarme (colocando a sua saída A em 1) apenas quando, em algum momento, um movimento é detectado em mais de um salão (isto é, em dois ou três salões), significando que deve haver um ou mais intrusos no museu.

- 1º Passo Defina as entradas e as saídas
 - Entradas : m₀, m₁ e m₂ (sensores de movimento)
 - Saída : A (alarme)
- 2º Passo Defina valores para os estados das estradas e saídas
 - $m_i = 0 \rightarrow sem movimento$
 - $m_i = 1 \rightarrow com movimento$
 - A saída será 1 se um movimento é detectado em mais de um salão

3º Passo – Obtenha a(s) função(ões) booleana(s)

→ Tabela Verdade

m ₀	m ₁	m ₂	Α
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $A = m_0'm_1m_2 + m_0m_1'm_2 + m_0m_1m_2' + m_0m_1m_2$

4º Passo – Simplifique a equação se necessário

m ₀	m ₁	m ₂	Α
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A equação de A pode ser simplificada

$$A = m_1 m_2 + m_0 m_2 + m_0 m_1$$

 5º Passo – Implemente um circuito baseado em portas

