Codage canal pour canaux à perturbations

1. Introduction

- ▶ Le codage source transforme une source quelconque en une source à entropie maximale afin d'obtenir une efficacité aussi haute que possible.
- ▶ En présence d'un canal avec perturbations on ajoute quelques symboles appelés « symboles de contrôle » avant transmission afin d'indiquer au destinataire la présence d'erreurs voire de lui donner la possibilité de les corriger, on parle alors de codes détecteurs d'erreurs et de codes correcteurs d'erreurs.
- ▶ Lorsqu'il s'agit de détection d'erreurs, il faut prévoir un canal de retour permettant la répétition du message, ce canal peut être de faible capacité.

2. Classification des codes correcteurs d'erreurs

Lorsque le processus de détection ou de correction opère sur des blocs de n symboles, on dit qu'on a affaire à des codes en blocs, la suite des n symboles constituant un mot.

Lorsque le traitement a lieu de manière continue, on dit qu'on a affaire à des codes convolutifs.

Il existe deux types de codes en blocs :

- les codes groupe sont ceux pour lesquels les mots sont considérés comme étant des éléments dans un espace vectoriel, à savoir des vecteurs,
- Les codes cycliques sont ceux considérés comme étant des éléments d'une algèbre, à savoir les polynômes.

3. Théorème de Shannon pour les canaux à perturbations

C'est un théorème d'existence :

Pour une source à débit d'information R bit/s et un canal de capacité C bit/s si R<C, il y aura un code ayant des mots d'une longueur n, de sorte que la probabilité d'erreur de décodage P_F soit :

$$P_E = 2^{-nE(R)}$$

Où:

n est la longueur du mot-code et E(R) est une fonction non-négative appelée exposant de l'erreur

Quel que soit le niveau des perturbations d'un canal, on peut toujours y passer des messages avec une probabilité d'erreur aussi faible que l'on veut.

En pratique si R<0.5C, il existe des codes qui permettent P_F très faible.

4. Codes-groupe

Code en blocs où les n symboles constituant un mot sont considérés comme étant un vecteur dans un espace n-dimensionnel.

Les composantes d'un mot-code sont représentées sous forme matricielle : $W=[a_1, a_1, \dots a_n]$;

On se restreint aux codes binaires $a_i \in (0,1)$

Il y a donc la possibilité de créer $N=2^n$ mots-codes

Afin de détecter la présence d'erreurs, on procède comme suit :

On partage l'ensemble W en deux sous ensembles complémentaires V et F,

On attribue un sens à tous les éléments de V (ce sont donc des mots codes) tandis que les éléments de F sont dépourvus de sens.

Supposons Card(V)=2k=S avec k<n

L'information moyenne transmise par mot-code est I=log(S)=k tandis que l'information moyenne par symbole est $i_k=k/n$ Il y a bien sûr une perte d'information moyenne (si V=W alors I=n et $i_k=1$)

Exemple pour n=3 Card(W)=2³=8, en bleu les mots-code, en blanc les mots dépourvus de sens.

 a_2

- (a) Aucune détection et donc correction n'est possible,
- (b) Les erreurs sont détectées mais pas corrigées
- (c) Les erreurs sont détectées et peuvent être corrigées

On notera v_i les mots-codes et v'_i les mots réceptionnés.

$$V_i = [a_{i1}, a_{i2}, ..., a_{in}]$$

$$v'_{i}=[a'_{i1}, a'_{i2}, \ldots, a'_{in}]$$

Si v_i= v'_i la transmission est sans erreur

Les mots-codes comme éléments des classes voisines

On considère le sous ensemble V (sous espace vectoriel de W qui a une structure de groupe) et on attribue un sens à ces éléments v. Par rapport à V, on peut former les classes voisines comme suit :

- la première classe est formée d'éléments de v de V ayant un sens commençant avec l'élément nul
- dans la deuxième classe, on choisit comme élément un des mots (dépourvus de sens) ayant le plus petit nombre de composantes « 1 »qui ne figurent pas dans la première classe, on note ε1 cet élément
- le restant des éléments de la deuxième classe sera formé en additionnant modulo 2 l'élément ε1 aux éléments de la première classe comme suit:

0	v_1	v_2	V_{s-1}
ε1	v ₁ +ε1	v ₂ +ε 1	$V_{s-1}+\epsilon 1$
ε2	v ₁ +ε 2	v ₂ +ε 2	$V_{s-1}+\epsilon 2$

On continue l'opération jusqu'à ce que tous les éléments de W soient traités

Exemple : soit card(W)= 2^3 =8 mots dont 2^1 ont un sens. Dans ce cas les classes voisines sont données dans le tableau suivant :

000	111	
001	110	
010	101	
100	011	

A la réception du mot 100, on décidera que le mot transmis était 000, il y a donc eu une erreur sur le 1^{er} bit