Treap

Big O:

- space O(n)
- time
 - search worst O(n), average $O(\log(n))$
 - insert worst O(n), average $O(\log(n))$
 - delete worst O(n), average $O(\log(n))$

Advantages:

- Treap is same shape regardless of history
 - security: cant tell history
 - efficient sub tree sharing
 - useful for sets

Notes:

- heap invariant (children less or equal to parent)?
- formed by inserting nodes highest priority first into a BST without rebalancing
- each node has priority (heap) and key (BST)