ECON 6090-Microeconomic Theory. TA Section 9

Omar Andujar

December 6, 2024

In Section notes

Savage's Subjective Expected Utility

- (.) X: set of outcomes
- (.) S: set of states
- (.) F: set of acts $\{f|f:S\to X\}$
- (.) \mathcal{P} : Distribution over states (prior)
- (.) \succsim : preference relation over F
- (.) $u: X \to \mathbb{R}$. Utility function.
- (.) $A = 2^S$. Set of all possible subsets of S.

Example:

$$S = \{1, 2, 3\}$$

$$A = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \emptyset\}$$

Where $1 \in S$ is a sample, and $\{1, 2\} \in A$ is an event.

Some definitions

1. $\forall h, f \in F$,

$$f|_A h(s) = \begin{cases} f(s) & s \in A \\ h(s) & s \notin A \end{cases}$$

 $2. \ \forall x, y \in X,$

$$xAy = \begin{cases} x & s \in A \\ y & s \notin A \end{cases}$$

- 3. $\forall f, g \in F, f \succsim_A g$, if for some $k, f|_A k \succsim_A g|_A k$.
- 4. Event A is null if $\forall f, g \in F, f \succsim_A g$.
- 5. Sets are ordered $A \succsim B$ if and only if there exist an outcome $x \succ y$ such that $xAy \succsim xBy$.

Savage Axioms:

P1 The preference relation \succeq on F is rational (complete and transitive).

P2 If
$$f|_A h \succ g|_A h$$
, then $f|_A k \succ g|_A k \ \forall k \in F$.

(.) Preferences on acts only depend on where they differ. Example:

$$S = \{sunny(w_1), rainy(w_2)\}\$$

 $X = \{hiking, sleeping, working\}$

$$f = \begin{cases} hiking & w_1 \\ sleeping & w_2 \end{cases}$$

$$g = \begin{cases} working & w_1 \\ hiking & w_2 \end{cases}$$

$$q = \begin{cases} sleeping & w_1 \\ sleeping & w_2 \end{cases}$$

If
$$A = \{w_1\}, f|_A g \succ g|_A g \implies f|_A q \succ g|_A q$$

P3 $\forall x, y \in X$, A non-null, $x \succsim_A y \iff x \succsim y$

P4 For outcomes $x \succ y$, $x' \succ y'$ and sets A,B:

$$xAy \gtrsim xBy \iff x'Ay' \gtrsim x'By'$$

Note that $xAy \gtrsim xBy \implies A \gtrsim B$.

- **P**5 There exist outcomes $x \succ y$.
- **P6** (Small-event continuity) If $f \gtrsim g$ then for any consequence x there is a partition of S such that on each S_i , $f|_{S_i}h \gtrsim g$ and $f \gtrsim g|_{S_i}h$.
- **P7** If f and g are acts and A is an event such that $f(s) \succsim_A g$ for every $s \in A$, then $f \succsim_A g$; and if $f \succsim_A g(s)$ for every $s \in A$, then $f \succsim_B g$.

If \succeq satisfies axioms P1-P5, we get the theorem that establishes the existence of a SEU,

$$f \succsim g \iff \int u(f(s))dp \ge \int u(g(s))dp$$

Exercises

Subjective Expected Utility

2014 Final

(a) The individual's decision problem is,

$$SEU(x) = \max_{x \in \mathbb{R}} \pi(S)u(w - px + Rx) + (1 - \pi(S))u(w - px)$$

Notice that SEU(X) is concave in x. Since ris averse $\iff u(.)$ is concave. That also means that $E(U(x)) \leq U(E(X))$ (Jensen's Inequality).

(b) From the problem we can infer that x = 0 is optimal.

$$\Rightarrow \frac{\partial SEU(x)}{\partial x}|_{x=0} = 0$$

$$u'(w - px + Rx)\pi(S)(R - p) - u'(w - px)(1 - \pi(S))p|_{x=0} = 0$$

$$\Rightarrow \frac{u'(w)}{u'(w)} = \frac{(1 - \pi(S))p}{\pi(S)(R - p)}$$

$$\Rightarrow \pi(S) = \frac{p}{R}$$

(c) Assuming that "going short" is prohibited. That is, $x \ge 0$, a new individual that chooses 0 means,

$$\frac{\partial SEU(x)}{\partial x}|_{x=0} \le 0$$

$$\implies \pi(S) \le \frac{p}{R}$$

Otherwise, if $\frac{\partial SEU(x)}{\partial x}|_{x=0} > 0$, we can choose x > 0 and increase our subjective expected utility. Meaning that x = 0 is not the maximizer.