Xueguang Lu

Problem Set 1, CS 5800 Spring 2017

Due: Tuesday, 1/17, 11AM

Problem 1. For each of the following statement, say if it is true or false. If true, give a value for the constant c in the definition of Big-Oh such that the definition is satisfied. Recall that we write x^{y^z} for $x^{(y^z)}$.

1.
$$\log(n^2) = O(\log n)$$
. true, $C = 3$

2.
$$n^2 = O(\binom{n}{2})$$
. true, $C = 1$.

$$(3.)$$
 $n = O(2^{\sqrt{\log n}}).$ false

4.
$$\log(n \cdot \log n) = O(\log n)$$
. true, $C = 2$.

5.
$$2^{2^{100}\log n} = n^{O(1)}$$
. true, $C = 2^{100}$

6.
$$2^{n^2} = 2^{O(n)}$$
. false.

7.
$$(2^n)^2 = 2^{O(n)}$$
. true, $C = 3$

Problem 2. Return a list of the following functions separated by the symbol \equiv or \ll , where $f \equiv g$ means $f = \Theta(g)$ and $f \ll g$ means f = O(g). You do not need to justify your answer. For example, if the functions are $\log n$, n, 5n, 2^n a correct answer is $\log n \ll n \equiv 5n \ll 2^n$. All logarithms are in base 2. One point for each correct symbol.

1	n
١.	71.

2.
$$n^4$$

4.
$$n \log n$$

$$(6.) n^{1/\sqrt{\log n}}$$

7.
$$\log n!$$

8.
$$2^{n+10}$$

10.
$$\log \log^2 n$$

10.
$$\log \log^2 n$$

11.
$$(n+1000)^2$$

12.
$$2^{n+\log n}$$

13.
$$\log^2 n$$

14.
$$\log^2(n\log n)$$

15.
$$13^{\log n}$$

16.
$$\log \log n$$

17.
$$n^2$$

18.
$$(1.01)^n$$

19.
$$n^{\log n}$$

20.
$$2^n$$

Tog(nlogn) < n'Htogn 1 < n < nlogn < logn!

<< n2 = (n+1000)2 < 13 logn < n4 < n logn << 1.01

<< 2" = 2 n+logn