

Understanding Machine Learning Model Expertise

Kiri L. Wagstaff

Jet Propulsion Laboratory, California Institute of Technology kiri.wagstaff@jpl.nasa.gov

HORSE Workshop September 20, 2017

© 2017, California Institute of Technology. Government sponsorship acknowledged. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

Machine learning is hot

- People tracking
- Music/clothing/product recommendation
- Fraud detection –my trip to Ireland
- Mars rovers

- Real world: the task is a moving target
- When can you trust a learned model?

Classification accuracy

Confusion matrices

Limitations on generalization

- What if data is not i.i.d.?
 - Spatial correlations
 - Temporal correlations
- What if validation set not representative of the future?
 - Has anyone ever applied a glass classifier to new glass samples?
- What if classes are imbalanced?
- What if costs are imbalanced?
- What if the reliability of each item is not equal?
 - Labels
 - → Feature values

What we really want to know:

"What was learned?"

"What WASN'T learned?"

Not just "How well does it work?"

Existing methods

- Mostly in the context of ensembles (which classifier should classify x?)
 - Find subset of examples that classifier gets right; use referees to arbitrate decisions [Ortega et al., 2001]
 - Delegating classifiers (cascade) [Ferri et al., 2004]
- ROC isometrics (when to abstain) [Vanderlooy et al., 2009]
- We want to know what a classifier learned
 - ► Look deeper at "behavior" [Sturm, 2013]

Visualize errors in context

Visualize errors in context

- What makes these items difficult?
 - Inadequate features? Mislabeled items? Erroneous values?

Characteristic evaluation

- Select a diverse set of "case studies" from the data set
- Goal: expose strengths and weaknesses
- Characteristic, not statistical

Characteristic evaluation with a DEMUD traversal

- ▶ DEMUD: Iterative discovery [Wagstaff et al., 2013]
 - Incremental SVD model of growing user knowledge
 - Selects most-different item given current model
 - Quickly discovers classes/sub-populations

Glass data set

Characteristic evaluation with a DEMUD traversal

- ► DEMUD: Iterative discovery [Wagstaff et al., 2013]
- Additional benefits
 - Minimizes redundancy
 - Provides per-item <u>explanations</u>
 - Finds sub-populations
 - Unlike clustering, they are prioritized
 - Don't need to specify how many

DEMUD explanations

- What is surprising about this item?
- DEMUD: Observations vs. expected values (SVD reconstruction)

DEMUD for error understanding

What is surprising about this item, given its class?

■ Top 5 anomaly types in the "Container" class

Item explanation	SVM	5-NN	RF-50	RF-100
Class accuracy	69%	62%	77%	77%
↑ AI,Fe	×	×	×	×
↓ Ca,Mg,Si; ↑ K,AI	V	V	V	V
↓K,Ca;↑Mg,Ba	×	×	×	×
↓ Mg,Fe; ↑ Na,Ca	V	V	×	×
↓ Mg,Fe; ↑ Si	V	V	V	V

Model is tolerant to this kind of deviation

Model cannot handle this kind of deviation

Container class

Container class

Dark Energy Survey

- Data set: galaxies classified by redshift (distance) bin
 - Low dimension (RGIZ magnitudes)
 - Large N (>3 million galaxies)
 - Wrong redshift bin = distorted model of dark matter distribution
- Goal: find:
 - Potentially mislabeled galaxies
 - Possible errors made by SkyNet (neural network) [Bonnett et al., 2

Summary

- Real-world problems require that we go beyond standard evaluation measures
 - Goal: understand behavior, strengths, weaknesses so we know when to trust a model (or the data)
- One idea: traverse and inspect behavior on subpopulations
 - DEMUD: prioritized traversal by outlier-ness and per-item explanations
 - Could help identify mislabeled items