Statistics coursework

Xinyu Zhong Queens' College

March 7, 2024

Contents

1	Introduction	2
2	Geometric relationship	2
3	Best estimator for α	3

Abstract

1 Introduction

2 Geometric relationship

This section corresponds to the question **i**. I am going to compute the geometric relationship between α , β , θ and x. alpha and β are the coordinates of the lighthouse on the map. i.e. the lighthouse is at position alpha along a straight coastline and a distance β out to sea.

Given that the angle which the light emits are uniformly distributed between $-\pi/2$ and $\pi/2$, we can write the probability density function of the angle as:

$$f(\theta) = \frac{1}{\pi} \quad \text{for} \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
 (1)

The geometric relationship between α , β , θ and x is shown in the figure 1.

$$\tan \theta = \frac{\alpha - x}{\beta}$$

from which we derive the infinitesimal relationship between θ and x as:

$$dx = \beta \sec^2 \theta d\theta \tag{2}$$

We know the relationship between θ and x is given by:

$$p_{\theta}(\theta)d\theta = p_x(x)dx \tag{3}$$

Therefore

$$p_x(x) = p_{\theta}(\theta) \frac{d\theta}{dx}$$

$$= \frac{1}{\pi} \frac{1}{\beta \sec^2 \theta}$$

$$= \frac{1}{\pi \beta} \cos^2 \theta$$

$$= \frac{1}{\pi \beta} \frac{\beta^2}{\beta^2 + (x - \alpha)^2}$$

$$= \frac{\beta}{\pi (\beta^2 + (x - \alpha)^2)}$$

Figure 1: Geometric relationship between α , β , θ and x

3 Best estimator for α

This section corresponds to the question iii. First, it could be shown that the