BUNDESREPUBLIK DEUTSCHLAND

REC'D	17	DEC	2004	
WIPO		PCT		

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 041 187.5

Anmeldetag:

25. August 2004

Anmelder/Inhaber:

BASF Aktiengesellschaft, 67056 Ludwigshafen/DE

Bezeichnung:

Verfahren zum Reaktiv-Färben von Leder

IPC:

C 09 B, D 06 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 6. Oktober 2004 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Verfahren zum Reaktiv-Färben von Leder

Die vorliegende Erfindung betrifft ein Verfahren zum Färben von Leder und neue Farbstoffe, die zum Reaktiv-Färben von Leder besonders geeignet sind.

5

Die Färbung von gegerbtem Leder erfolgt derzeit mit sauren Farbstoffen, Direktfarbstoffen, Schwefelfarbstoffen oder basischen Farbstoffen. Die Erzielung hoher Farbintensitäten und hoher Farbbeständigkeiten, insbesondere Nass- und Schweißechtheiten, ist mit diesen Farbstoffen schwierig und für mittlere bis hohe Farbtiefen bis heute noch nicht befriedigend gelöst worden.

10

Um die Nass- und Schweißechtheit zu verbessern, wird das Leder häufig mit kationischen Komplexierungsmitteln behandelt, die den Farbstoff komplexieren und so die Löslichkeit im Kontakt mit Wasser vermindern. Die erzielbaren Nass- und Schweißechtheiten und Abriebbeständigkeiten sind jedoch für intensive Farbnuancen noch nicht ausreichend. Ferner neigen daraus gefertigte Lederartikel beim Gebrauch zu Abfärbungen. Das Erzielen hoher Echtheiten bei mittleren bis hohen Farbtiefen erfordert zudem eine sehr sorgfältige Farbstoffauswahl und die Abstimmung des eingesetzten Farbstoffs mit den eingesetzten Lederhilfsmitteln, weiterhin geeignete Fettungsmittel und Nachgerbstoffauswahl. Zudem ist es in der Regel zur Erzielung der gewünschten Echtheiten erforderlich, Farbstoff und Fettungsmittel und in einigen Fällen auch den Nachgerbstoff in getrennter Flotte zu applizieren, was aufgrund des erforderlichen Flottenwechsels eine Verlängerung der Gesamtprozessdauer und zudem einen verstärkten Anfall von Abwasser zur Folge hat.

25

30

20

35

40

Verschiedentlich wurde versucht, die Farb- und Nassechtheit des gefärbten Leders durch Reaktivfärben zu verbessern. Unter Reaktivfärben versteht man die Verwendung von Farbstoffen, die funktionelle Gruppen aufweisen, welche mit den funktionellen Gruppen des Leders eine kovalente chemische Bindung ausbilden können.

AE 20030337 RW/135 25.08.2004

10

20

25

30

35

40

2

So beschreiben T.C. Mullen in the Leather Manufacturer 1964, S. 18 ff. und in J. Soc. Leather, Trades, Chem. 46, 1962, S. 162 ff. sowie M.L. Fein et al. in J. Am. Leather Chem. Assoc. 65, 1970, S.584-591 die Verwendung von Reaktivfarbstoffen, die als Reaktivanker eine Dichlortriazin-Gruppe aufweisen. Die erzielten Fixierausbeuten, d.h. der Anteil an chemisch gebundenem Farbstoff, sind mit etwa 70 bis 75 % jedoch nur mäßig und lösen die oben geschilderten Probleme nicht. Zudem ist das Verfahren auf mit Chrom gegerbte Leder beschränkt.

Um diese Nachteile zu überwinden, schlägt die DE-A 3529294 vor, für die Lederfärbung Farbstoffe zu verwenden, die wenigstens eine 1,3,5-Triazinylgruppe, an die ein Substituent mit einem quartären Stickstoffatom gebunden ist, aufweisen. Eigene Untersuchungen der Anmelderin an N-Acetyllysin als Modellsystem haben jedoch gezeigt, dass unter den dort beschriebenen Färbebedingungen eine Ausbildung von kovalenten Bindungen zwischen Farbstoff und der Aminogruppe des N-Acetyllysins nicht in signifikantem Ausmaß erfolgt.

K. Rosenbusch et al. in Das Leder 19, 1968, S. 284 beschreiben die Verwendung von Remazol®-Farbstoffen, die eine Vinylsulfongruppe oder eine Gruppe, aus welcher bei Einwirkung von Alkalien eine Vinylsulfongruppe freigesetzt wird, aufweisen, zum Färben von Sämisch-Leder. Um eine ausreichende Fixierung zu erreichen sind jedoch lange Färbedauern bei einem pH-Wert von 10 erforderlich. Aufgrund der angewendeten Färbebedingungen, d.h. hoher pH-Wert in Verbindung mit langen Färbezeiten von 7 h und länger kann dieses Verfahren nur zum Färben von Sämischleder eingesetzt werden, das bekanntermaßen gegenüber Alkalien beständig ist. Bei anderen Ledersorten führen die beschriebenen Färbebedingungen zu einer Schädigung des Leders. Eigene Untersuchungen der Anmelderin zeigen zudem, dass bei Einsatz von Remazol®-Farbstoffen, die eine Vinylsulfongruppe aufweisen, eine zufriedenstellende Fixierung nicht erreicht wird.

Zusammenfassend lässt sich sagen, dass durch die bekannte Verfahren zur Lederfärbung mit Reaktivfarbstoffen bei mittleren bis hohen Farbtiefen gute Fixierausbeuten von 85 % und höher nicht erreicht werden. Zur Erreichung hoher Nass- und Schweißechtheiten und einer guten Migrationsstabilität sind die im Stand der Technik erreichten Fixierausbeuten von 70 bis 75 % nicht ausreichend, da der nicht gebundene Farbstoffanteil mühsam ausgewaschen werden muss, um die hier geschilderten Probleme zu lösen. Auf die hier geschilderten Nachteile der Lederfärbung mit Reaktiv-Farbstoffen wird auch in The Leather Manufacturer 1964, S.18-23, hingewiesen. Es verwundert daher nicht, dass sich die Lederfärbung mit Reaktivfarbstoffen nicht durchgesetzt hat. Vielmehr werden heute andere Wege gesucht, Farbstoffe kovalent im Leder zu binden, beispielsweise durch Vorbehandlung des Leders mit polyfunktionellen Aldehyden, die

wenigstens eine reaktive Gruppe aufweisen, welche mit einer reaktiven Gruppe des Farbstoffs unter Bindungsbildung reagieren können (siehe DE 100 44 642 A1)

Aufgrund der hier beschriebenen Nachteile sind die Verfahren insbesondere nicht zur Herstellung von Lederartikeln für spezielle Segmente wie für Schuhe, Bekleidung, Automobil, Handschuh und Möbel geeignet, die in mittlerer und hoher Farbtiefen über hohe Echtheiten, insbesondere Wasch-, Schweiß-, Reib- und Migrationsechtheiten verfügen.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zum Färben von Leder bereitzustellen, bei dem auch bei mittleren und hohen Farbtiefen (Farbintensitäten) hohe Echtheiten, insbesondere Nass-, Schweiß- und Reibechtheiten sowie eine hohe Migrationsechtheit erzielt werden. Zudem sollte das Verfahren unter Bedingungen durchgeführt werden können, die nicht oder nur in geringem Umfang zu einer Schädigung des Leders führen. Insbesondere sollte das Verfahren zur Herstellung Lederartikeln für spezielle Segmente wie für Schuhe, Bekleidung, Automobil, Handschuh und Möbel geeignet sein, die besonders in mittlerer und hoher Farbtiefen über hohe Echtheiten, insbesondere Wasch-, Schweiß-, Reib- und Migrationsechtheiten, verfügen.

Es wurde überraschenderweise gefunden, dass bei Verwendung von Farbstoffen F, die wenigstens eine funktionelle Gruppe der nachfolgend definierten Formel A aufweisen, in wässriger Flotte bei pH-Werten von wenigstens pH 7,5 diese Aufgabe gelöst wird. Die Färbung und Fixierung geht dabei so rasch vonstatten, dass nur kurze Färbedauern von 4 h und weniger erforderlich sind um eine hinreichende Farbintensität und eine hohe Fixierung von 85 % und darüber zu erreichen.

Demnach betrifft die vorliegende Erfindung ein Verfahren zum Färben von Leder mit wenigstens einem Farbstoff F, der wenigstens eine unter alkalischen Bedingungen aktivierbare Gruppe der Formel A;

aufweist, worin

20

25

30

35 die Bindung zum Rest des Farbstoffmoleküls darstellt;

X für einen elektronenziehenden Rest steht,

k für 1, 2 oder 3 steht,

n 0 oder 1 bedeutet, und

B für eine Gruppe CH=CH₂ oder eine Gruppe CH₂-CH₂-Q steht, worin Q eine unter alkalischen Bedingungen abspaltbare Gruppe steht,

5

umfassend die Behandlung des Leders mit einer wässrigen Flotte, enthaltend wenigstens einen Farbstoff F, bei einem pH-Wert von wenigstens 7,5, in der Regel im Bereich von 8 bis 11, vorzugsweise im Bereich von 8,5 bis 10,5 und speziell im Bereich von 8,5 bis 10.

10

Hier und im Folgenden steht der Ausdruck Alkyl in der Regel für einen linearen oder verzweigten Kohlenwasserstoffrest mit 1 bis 6 und vorzugsweise mit 1 bis 4 C-Atomen (C_1 - C_6 - bzw. C_1 - C_4 -Alkyl) wie Methyl, Ethyl, Propyl, Isopropyl und dergleichen. Halogenalkyl steht für Alkyl, wie vorstehend definiert, worin die Wasserstoffatome teilweise oder vollständig durch Halogenatome, insbesondere durch Fluoratome ersetzt sind, wie in Trifluormethyl, Trichlormethyl, Pentafluorethyl, und dergleichen. Alkoxy steht für einen über ein Sauerstoffatom gebundenen Alkylrest, wie vorstehend definiert. Gegebenenfalls substituiertes Phenyl bedeutet, dass der Phenylrest einen oder mehrere, z.B. 1, 2, 3 oder 4 Substituenten aufweisen kann, die beispielsweise ausgewählt sind unter Halogen, Alkyl, Alkoxy, Nitro, Cyano, COOH, SO₃H und dergleichen. Halogen steht insbesondere für Fluor, Chlor oder Brom.

20

25

Elektronenziehende Reste X sind solche, die einen –M- und/oder einen –I-Effekt auf den aromatischen Rest, an den sie gebunden sind, ausüben. Hierzu zählen beispielsweise Fluor oder Chlor, CN, NO_2 sowie Gruppen der Formeln -C(O)-R¹ und S(O)2R², worin R¹ und R² unabhängig voneinander für OH, Alkyl, Halogenalkyl, Alkoxy oder gegebenenfalls substituiertes Phenyl stehen. Sofern der Rest A mehrere Gruppen aufweist (k >1), dann können die Gruppen X gleich oder verschieden sein. Vorzugsweise steht wenigstens eine der Gruppen X für eine Hydroxysulfonyl-Gruppe (SO $_3$ H).

30

Die Variable k steht vorzugsweise für 1 oder 2, d.h. der Rest A weist 1 oder 2 elektronenziehende Reste X auf. Vorzugsweise steht n in Formel A für 0, d.h. der Rest A ist von Benzol abgeleitet. Sofern n für 1 steht, ist der Rest A von Naphthalin abgeleitet. In diesen Fällen kann sich die Gruppe SO_2 -B an dem gleichen Benzolkern wie die wenigstens eine Gruppe X befinden oder an dem anderen Benzolkern.

35

40

Unter einer unter alkalischen Bedingungen abspaltbaren Gruppe Q versteht man Reste, die unter alkalischen Bedingungen, d.h. bei pH-Werten von 7,5 oder darüber unter Eliminierung unter Ausbildung einer Vinylsulfongruppe abgespalten werden. Beispiele für derartige Gruppen sind Halogen, z.B. Chlor, Brom oder lod, weiterhin -O-SO₃H, -S-SO₃H, Dialkylamino, quartäres Ammoniumreste wie Tri-C₁-C₄-alkylammonium, Benzyl-

di- C_1 - C_4 -alkylammonium oder N-gebundenes Pyridinium, sowie Reste der Formeln $R^3S(O)_2$ -, $R^4S(O)_2$ -O-, $R^5C(O)$ -O-. Hierin stehen R^3 , R^4 und R^5 unabhängig voneinander für Alkyl, Halogenalkyl oder gegebenenfalls substituiertes Phenyl, wobei R^5 auch Wasserstoff bedeuten kann. Bevorzugt steht Q für eine Gruppe -O-(CO)CH₃ und insbesondere für -O-SO₃H.

Erfindungsgemäß bevorzugt steht B in Formel A für $CH=CH_2$, eine Gruppe $CH_2-CH_2-O-C(O)CH_3$ oder eine Gruppe $CH_2-CH_2-O-SO_3H$. Insbesondere ist Rest A ausgewählt ist unter den nachfolgenden Resten A1 bis A12:

10

$$HO_3S$$
 $-SO_2$ -CH=CH₂
(A2)

$$+\text{O}_3\text{S}$$
 $-\text{SO}_2\text{-CH}_2\text{-CH}_2\text{-O-SO}_3\text{-}$
(A1)

$$HO_3S$$
 $-SO_2$ -CH=CH₂
 HO_3S (A3)

$$HO_3S$$
 $-- SO_2$ - CH_2 - CH_2 - O - SO_3 H
 HO_3S (A4)

$$HO_3$$
S (A5) SO_2 -CH=CH₂

$$+ O_3S$$
 $- O_3H$
 $+ O_3H$
 $+$

$$+O_3S$$
 $-SO_3H$ (A8)
 $+SO_2-CH_2-CH_2-O-SO_3H$

Besonders bevorzugt hierunter sind Farbstoffe, worin der wenigstens eine Rest A die Formel A1, A2 oder A9 aufweist.

Zweckmäßigerweise weist der im erfindungsgemäßen Verfahren eingesetzte Farbstoff, 1, 2 oder 3, vorzugsweise 1 oder 2 der vorgenannten Reste A auf. Dieser Rest A kann, muss aber nicht Bestandteil des Farbstoffchromophors sein und ist vorzugsweise über eine Gruppe -NH- oder -N=N- mit dem Farbstoffmolekül verbunden.

10

15

20

In der Regel weist der Farbstoff F eine oder mehrere, z.B. 1 bis 10, insbesondere 2 bis 8 funktionelle Gruppen je Farbstoffmolekül auf, die dem Farbstoff F Wasserlöslichkeit verleihen. Hierbei handelt es sich in der Regel um anionische bzw. saure funktionelle Gruppen, die im wässrigen Medium bei einem schwach saure oder alkalischen pH-Wert, in der Regel bei pH-Werten oberhalb 4, unter Bildung anionischer Gruppen dissoziieren. Beispiele für derartige Gruppen sind Hydroxysulfonylgruppen (-SO₃H), Carboxylgruppen (COOH) und Hydroxysulfonyloxygruppen (-O-SO₃H) sowie die Anionen dieser Gruppen. Diese anionischen/sauren Gruppen können an die Gruppe A und/oder an andere Teile des Farbstoffmoleküls gebunden sein. Sofern diese Gruppen im Farbstoff auch die zur Neutralisation erforderlichen Gegenionen umfasst. Geeignete Gegenionen sind insbesondere Alkalimetallionen, speziell Natrium-, Kalium- und Lithiumlonen sowie Ammoniumionen, z.B. Ammoniumionen, die sich von Mono-, Di- oder Triethanolamin ableiten.

25

30

Für das erfindungsgemäße Verfahren sind auch Metallkomplexe, vorzugsweise Übergangsmetallkomplexe der vorgenannten Farbstoffe F, insbesondere Komplexe der Übergangsmetalle der Gruppen VI bis X des Periodensystems und hierunter insbesondere des Cu, Cr, Fe, Ni, Co, Mn, Zn und Cd geeignet. Das Molverhältnis von Übergangsmetall zu Farbstoffmolekül in diesen Metallkomplexen liegt üblicherweise im Bereich von 2:1 bis 1:2. In der Regel erfolgt in diesen Farbstoffen die Komplexierung der Metallionen nicht über die vorgenannten anionischen Gruppen sondern über deproto-

10

20

25

30

35

7

nierte Hydroxylgruppen, über Aminogruppen, Iminogruppen, Stickstoffatome, die in ein aromatischen π -Elektronensystem eingebunden sind, oder über Azogruppen.

Typische im erfindungsgemäßen Verfahren Farbstoffe F sind aus der Gruppe der folgenden Farbstoffklassen ausgewählt: Farbstoffe der Phthalocyanin-Reihe, Antrachinon-Farbstoffe, Azofarbstoffe, Formazanfarbstoffe, Triphenyldioxazinfarbstoffe und Triarylmethanfarbstoffe.

Derartige Farbstoffe F sind zum Teil aus dem Stand der Technik bekannt, z.B. aus WO 94/18381, EP-A 356 931, EP-A 559 617, EP-A 201 868, DE-A 195 23 245, DE-A 197 31 166, EP 745 640, EP-A 889 098, EP-A 1 097 971, EP-A 880 098 oder können in Analogie zu bekannten Herstellungsverfahren für strukturell ähnliche Farbstoffe, wie sie aus dem hier zitierten Stand der Technik sowie aus EP 602 562, EP-A 597 411, EP-A 592 105 óder DE 43 196 74 bekannt sind, hergestellt werden.

Zur Herstellung der Farbstoffe F wird man in der Regel eine Aminoverbindung der Formel B

$$\begin{array}{c|c}
H_2N & (X)_k \\
& & \\
B - S & O
\end{array}$$
(B)

mit einem Farbstoff-Vorprodukt, dass eine nucleophil verdrängbare Gruppe aufweist, in an sich bekannter Weise zur Reaktion bringen. Beispiele für nucleophil verdrängbare Gruppen sind Halogen, insbesondere Chlor oder Brom, das an einen Aromaten gebunden ist wie in Halogentriazin-Resten, oder in Form einer Halogensulfonyl-Gruppe oder einer Halogencarbonylgruppe vorliegt. Verfahren hierzu sind aus dem hier zitierten Stand der Technik bekannt oder können in analoger Weise zur Herstellung der Farbstoffe F angewendet werden. Alternativ kann man die Aminoverbindung B auch zunächst diazotieren und dann auf ein entsprechendes Farbstoffvorprodukt kuppeln. Das bei der Reaktion der Aminoverbindung B bzw. ihres Diazoniumsalzes mit dem Farbstoff-Vorprodukt erhaltene Reaktionsprodukt kann bereits der Farbstoff F sein oder seinerseits ein Vorprodukt für den Farbstoff F darstellen, das in Analogie zu bekannten Verfahren zum Farbstoff F weiterverarbeitet wird.

Es versteht sich von selber, dass im erfindungsgemäßen Verfahren sowohl reine Farbstoffe als auch Farbstoffmischungen eingesetzt werden können. Bei der Lederfärbung gibt es neben den bereits erwähnten Anforderungen an hohe Echtheiten auch Anforderungen an die Qualität der Färbung, beispielsweise Durchfärbung, Farbton, Reinheit, Egalität der Färbung, Abdeckung der Narbenbeschädigung sowie Farbtongleichheit

R

von Fleisch- zu Narbenseite. Eigene Erfahrungen der Erfinder der vorliegenden Erfindung zeigen, dass es für das anwendungstechnische Gesamtprofil von Vorteil sein kann, Farbstoffmischungen einzusetzen.

Bei Farbstoffmischungen kann es sich sowohl um Mischungen handeln, die durch Vermischen verschiedener Farbstoffe F hergestellt werden, als auch um Mischungen, die bei der Herstellung der Farbstoffe F anfallen. Vorzugsweise ist der Anteil der Farbstoffe F in diesen Mischungen wenigstens 70 Gew.-%, insbesondere wenigstens 90 Gew.-% und besonders bevorzugt wenigstens 99 Gew.-%, bezogen auf den farbigen, organisch chemischen Anteil im Farbstoff. Neben den Farbstoffen F können die im erfindungsgemäßen Verfahren eingesetzten Farbstoffmischungen auch konventionelle Lederfarbstoffe enthalten, die keine Gruppe A aufweisen. Der Anteil derartiger Farbstoffe wird in der Regel weniger als 30 Gew.-%, insbesondere weniger als 10 Gew.-% und speziell nicht mehr als 5 Gew.-% .-%, bezogen auf den farbigen, organisch chemischen Anteil im Farbstoff, ausmachen.

Sofern es sich bei den Farbstoffen F um Mischungen von Farbstoffen F mit ähnlichen Farbtönen handelt, beträgt die Menge des individuellen Farbstoffs in der Regel wenigstens 10 Mol-%, insbesondere wenigstens 20 Mol-%, bezogen auf die Gesamtmenge an Farbstoff F in der Mischung. Hierunter bevorzugt sind Mischungen aus zwei Farbstoffen F, wobei die Einzelkomponenten ein Molverhältnis 9:1 bis 1:9 und insbesondere im Bereich von 2:8 bis 8:2 aufweisen.

Außerdem sind Mischungen von Farbstoffen von Interesse, in denen die Farbstoffe F unterschiedliche Farbtöne aufweisen. Eine Ausführungsform hierbei ist das Nuancieren von Farbstoffen, beispielsweise von Schwarz-Farbstoffen mit andersfarbigen Farbstoffen, beispielsweise mit roten, grünen oder blauen Farbstoffen. Sofern einen Farbstoff ein oder mehrere weiterere Farbstoffe zu Zwecken des Nunancierens zugesetzt werden beträgt die Menge der nuancierenden Farbstoffe in der Regel 0,1 bis 15 Mol-%, bezogen auf den farbigen, organisch chemischen Anteil im Farbstoff. Eine weitere Ausführungsform sind Farbstoffmischungen für die sogenannte Trichromiefärbung. Hierin enthält die Farbstoffmischung 3 oder mehr Farbstoffe F mit unterschiedlichen Farbtönen. In diesem Fall macht die Einzelkomponente in der Regel wenigstens 1 Mol%, insbesondere wenigstens 5 Mol-%, beispielsweise 5 bis 90 Mol.-%, bezogen auf die Gesamtmenge an Farbstoff F in der Mischung aus.

Hierbei ist zu berücksichtigen, dass Farbstoffe herstellungsbedingt anorganische Salze und überdies Stellmittel enthalten können. Der Anteil an derartigen Bestandteilen, im Folgenden auch als nichtfarbige Bestandteile bezeichnet, wird in der Regel nicht mehr als 60 Gew.-% betragen und liegt häufig im Bereich von 10 bis 50 Gew.-%, bezogen auf das Gesamtgewicht von farbigen und nichtfarbigen Bestandteilen des Farbstoffs.

20

25

30

35

C

In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei dem Farbstoff F um einene Azofarbstoff und vorzugsweise um einen Azofarbstoff, der ausgewählt ist unter den Farbstoffen der allgemeinen Formeln I bis XV und deren Metallkomplexen:

- 5 $Dk^{1}-N=N-[P-N=N-]_{p}Kk^{1}[-N=N-Dk^{2}]_{m}$ (I)
 - $Dk^{1}-N=N-Napht^{1}[-N=N-Tk^{1}]_{r}[-N=N-Kk^{1}]_{k}[-N=N-Dk^{2}]_{n}$ (II)
- $Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-Tk^{2}-N=N-Napht^{2}-N=N-Dk^{2}$ (III)
- 10 $Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-N=N-Kk^{2}-N=N-Dk^{2}$ (IV)
 - $Dk^{1}-N=N-[P-N=N-]_{p}Napht^{1}[-N=N-R]_{r}-NH-Tr^{1}-NH-Dk^{2}$ (V)
 - $Dk^{1}-N=N-P-NH-Tr^{1}-NH-R-N=N-Dk^{2}$ (VI)
 - $Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-P-NH-Tr^{1}-NH-Dk^{2}$ (VII)
- Dk¹-N=N-Napht¹-NH-Tr¹-NH-P-NH-Tr²-NH-Napht²-N=N-Dk² (VIII)
- $Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-Tk^{1}-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2}$ (IX)
 - $Dk^{1}[-N=N-L]_{k}-NH-Tr^{1}-NH-M-N=N-Napht^{1}-N=N-P-NH-Tr^{2}-NH-[R-N=N-]_{n}Dk^{2}$ (X)
- $Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-NH-Tr^{1}-NH-Dk^{2}$ (XI)
 - $Dk^{1}-N=N-[P-N=N-]_{p}R-N=N-Kk^{1}[-N=N-Dk^{2}]_{n}$ (XII)
 - $Dk^1-N=N-Pyr-A$ (XIII)
 - $Kk^3-N=N-Tk^1-N=N-Kk^1-N=N-A$ (XIV)
 - $Dk^{1}-N=N-P-N=N-Kk^{1}-N=N-R-N=N-Dk^{2}$ (XV)

35 worin:

30

k, n, p und r unabhängig voneinander für 0 oder 1 stehen, wobei k+n+r in Formel II = 1, 2 oder 3 ist;

40 m 0, 1 oder 2 bedeutet;

Dk¹, Dk² unabhängig voneinander für einem von einem aromatischen Amin abgeleiten Rest stehen oder eine Gruppe der Formel A bedeutet, wobei in den Formeln I - XII und XV jeweils wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht

5

Kk¹, Kk² unabhängig voneinander für einen ein-, zwei- oder dreiwertigen aromatischen, von Benzol, Napthalin, Pyrazol, Chinolin, Diphenylamin, Diphenylmethan, Pyrimidin, Pyridin oder Diphenylether abgeleiteten Rest stehen,

10

metnan, Pyrimidin, Pyridin oder Dipnenyletner abgeleiteten Rest stenen, der gegebenenfalls einen oder mehrere der folgenden Reste als Substituenten aufweisen kann: SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, Halogen, C₁-C₄-Alkyl, C₁-C₄-Hydroxyalkyl, Carboxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, C₁-C₄-Alkylaminocarbonyl, C₁-C₄-Dialkylaminocarbonyl) amino, C₁-C₄-Alkylaminocarbonyloxy, C₁-C₄-Dialkylaminocarbonyloxy, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Dialkylaminocarbonyloxy, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Alkoxycarbonylamino, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Alkoxycarbonylamino, C₁-C₄-Alkylaminocarbonylamino,

20

Alkylsulfonylamino, Phenylsulfonyl, Phenylsulfonylamino, Formamid, ein Rest der Formel SO₂NR⁵⁶R⁵⁷, worin R⁵⁶ und R⁵⁷ unabhängig voneinander für Wasserstoff, C₁-C₄-Alkyl, Formyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkyloxycarbonyl, NH₂-CO oder C₁-C₄-Alkylaminocarbonyl stehen, C₁-C₄-

Carboxy-C₁-C₄-alkylamino, Phenylcarbonylamino, C₁-C₄-Alkylsulfonyl, C₁-

C₄-Hydroxyalkylsulfonyl, C₁-C₄-Alkylaminosulfonyl, C₁-C₄-

25

30

35

Alkylaminosulfonylamino, Di-C₁-C₄-alkylaminosulfonylamino, Phenylsulfonylamino, das am Phenylring einen oder zwei Substituenten, ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen aufweisen kann, oder 5-oder 6-gliedriges Heterocyclyl, das gegebenenfalls durch 1, 2 oder 3 der folgenden Reste: OH, Halogen, C₁-C₄-Alkyl oder Phenyl, substituiert ist, wobei 5-gliedriges aromatisches Heterocyclyl gegebenenfalls am Stickstoff eine Phenylgruppe oder Naphthylgruppe trägt, die gegebenenfalls einen oder

zwei der folgenden Reste aufweisen kann: OH, SO₃H, C₁-C₄-Alkyl,

und/oder C₁-C₄-Alkoxy;

Kk³

für einen von Benzol, Pyrimidin, Pyridin oder Naphthalin abgeleiteten einwertigen Rest steht, der gegebenenfalls 1 oder 2 Hydroxysulfonylgruppen aufweist und gegebenenfalls 1, 2 oder 3 weitere Substituenten, ausgewählt unter SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, Halogen, C₁-C₄-Alkyl, C₁-C₄-Hydroxyalkyl, Carboxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, C₁-C₄-Alkylaminocarbonyl, C₁-C₄-Alkylcarbonylamino, N-(C₁-C₄-Alkylcarbonyl)-N-(C₁-C₄-

40

alkylcarbonyl)amino, C₁-C₄-Alkylaminocarbonyloxy, C₁-C₄-

Dialkylaminocarbonyloxy, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Dialkylaminocarbonylamino, Phenylaminocarbonyloxy, Phenylaminocarbonylamino, C_1 - C_4 -Alkoxycarbonylamino, C_1 - C_4 -Hydroxy- C_1 - C_4 -alkylamino, Carboxy-C₁-C₄-alkylamino, Phenylcarbonylamino, C₁-C₄-Alkylsulfonyl, C₁-C₄-Hydroxyalkylsulfonyl, C₁-C₄-Alkylsulfonylamino, Phenylsulfonyl, Phenylsulfonylamino, Formamid, ein Rest der Formel SO₂NR⁵⁶R⁵⁷, worin R⁵⁶ und R⁵⁷ unabhängig voneinander für Wasserstoff, C₁-C₄-Alkyl, Formyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkyloxycarbonyl, NH₂-CO oder C₁-C₄-Alkylaminocarbonyl stehen, C₁-C₄-Alkylaminosulfonylamino, Di-C₁-C₄alkylaminosulfonylamino, Phenylsulfonylamino, das am Phenylring einen oder zwei Substituenten, ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen aufweisen kann, oder 5- oder 6-gliedriges Heterocyclyl, das gegebenenfalls durch 1, 2 oder 3 der folgenden Reste: OH, Halogen, C₁-C₄-Alkyl oder Phenyl, substituiert ist, wobei 5-gliedriges aromatisches Heterocyclyl gegebenenfalls am Stickstoff eine Phenylgruppe oder Naphthylgruppe trägt, die gegebenenfalls einen oder zwei der folgenden Reste aufweisen kann: OH, SO₃H, C₁-C₄-Alkyl, und/oder C₁-C₄-Alkoxy;

20

5

10

Tk¹, Tk² unabhängig voneinander für einen zweiwertigen aromatischen Rest stehen, der von Benzol, Diphenylamin, Diphenyl, Diphenylmethan, 2-Phenylbenzimidazol, Phenylsulfonylbenzol, Phenylaminosulfonylbenzol, Stilben oder Phenylaminocarbonylbenzol abgeleitetet ist, die gegebenenfalls einen oder mehrere der folgenden Reste als Substituenten aufweisen können: SO₃H, COOH, OH, NH₂, NO₂, Halogen, C₁-C₄-Alkyl;

25

30

35

unabhängig voneinander für einen zweiwertigen aromatischen Rest L, M, P und R stehen, der von Benzol oder Naphthalin abgeleitetet ist, die gegebenenfalls einen oder mehrere, z.B. 1, 2, 3, 4 oder 5 der folgenden Reste als Substituenten aufweisen können: SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Hydroxyalkyl, Carboxy- C_1 - C_4 -alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino, C_1 - C_4 -Alkylaminocarbonyl, C_1 - C_4 -Dialkylaminocarbonyl, C₁-C₄-Alkylcarbonylamino, N-(C₁-C₄-Alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)amino, C₁-C₄-Alkylaminocarbonyloxy, C₁-C₄-Dialkylaminocarbonyloxy, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Dialkylaminocarbonylamino, Phenylaminocarbonyloxy, Phenylaminocarbonylamino, C₁-C₄-Alkoxycarbonylamino, C₁-C₄-Hydroxy-C₁-C₄-alkylamino, Carboxy-C₁-C₄-alkylamino, Phenylcarbonylamino, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylaminosulfonyl, C₁-C₄-Hydroxyalkylsulfonyl, C₁-C₄-Alkylsulfonylamino, Phenylsulfonyl, Phenylsulfonylamino, Formamid, ein Rest der Formel SO₂NR⁵⁶R⁵⁷, worin R⁵⁶ und R⁵⁷ unabhängig voneinander

für Wasserstoff, C₁-C₄-Alkyl, Formyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-

Alkylaxiosulfonylamino, Di-C₁-C₄-Alkylaminocarbonyl stehen, C₁-C₄-Alkylaminosulfonylamino, Di-C₁-C₄-alkylaminosulfonylamino, Phenylsulfonylamino, das am Phenylring einen oder zwei Substituenten, ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen aufweisen kann, oder 5- oder 6-gliedriges Heterocyclyl, das gegebenenfalls durch 1, 2 oder 3 der folgenden Reste: OH, Halogen, C₁-C₄-Alkyl oder Phenyl, substituiert ist, wobei 5-gliedriges aromatisches Heterocyclyl gegebenenfalls am Stickstoff eine Phenylgruppe oder Naphthylgruppe trägt, die gegebenenfalls einen oder zwei der folgenden Reste aufweisen kann: OH, SO₃H, C₁-C₄-Alkyl, und/oder C₁-C₄-Alkoxy;

10

5

Napht¹, Napht² unabhängig voneinander für einen von Naphthalin abgeleiteten zweiwertigen Rest stehen, der 1 oder 2 Hydroxysulfonylgruppen aufweist und gegebenenfalls 1, 2 oder 3 weitere Substituenten, ausgewählt unter OH, NH₂, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino C₁-C₄-Alkylsulfonylamino, Phenylsulfonylamino, 4-Methylphenylsulfonylamino, C₁-C₄-Alkylaminosulfonyl, Di-C₁-C₄-alkylaminosulfonyl, Phenylaminosulfonyl, 4-Methylphenylaminosulfonyl und Resten NHC(O)R^x, worin R^x für Wasserstoff, C₁-C₄-Alkyl, Maleinyl oder Phenyl, aufweisen kann;

20

für Pyrazol-1,4-diyl steht, das mit dem Stickstoffatom an die Gruppe A gebunden ist und gegebenenfalls einen oder 2 Substituenten aufweist, die ausgewählt sind unter Halogen, C₁-C₄-Alkyl, Hydroxy oder C₁-C₄-Alkoxy;

25 Tr¹, Tr²

Pyr

unabhängig voneinander für einen 1,3,5-Triazin-2,4-diyl-Rest stehen, der gegebenenfalls noch ein Halogenatom, eine Methylgruppe oder eine Methoxygruppe als Substituenten aufweist.

30

35

Hier und im Folgenden steht C_1 - C_4 -Alkyl (sowie die Alkylteile in C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylamino, Di- C_1 - C_4 -alkylamino, C_1 - C_4 -Alkylaminosulfonyl, C_1 - C_4 -Alkylaminosulfonyl, Di- C_1 - C_4 -Alkylaminosulfonyl und C_1 - C_4 -Alkylaminosulfonylamino und dergleichen für einen linearen oder verzweigten aliphatischen Kohlenwassertoffrest wie Methyl, Ethyl, N-Propyl, Isopropyl, n-Butyl und dergleichen.

 C_1 - C_4 -Hydroxyalkyl steht für C_1 - C_4 -Alkyl, das eine OH-Gruppe trägt wie 2-Hydroxyethyl. Dementsprechend steht C_1 - C_4 -Hydroxyalkylamino für C_1 - C_4 -Alkylamino, das im Alkylrest eine OH-Gruppe trägt wie 2-Hydroxyethylamino.

10

20

25

30

35

40

13

 C_1 - C_4 -Carboxyalkyl steht für C_1 - C_4 -Alkyl, das eine Carboxylgruppe (COOH-Gruppe) trägt wie Carboxymethyl (CH $_2$ COOH) und 2-Carboxyethyl (CH $_2$ COOH). Dement-sprechend steht C_1 - C_4 -Carboxyalkylamino für C_1 - C_4 -Alkylamino, das im Alkylteil eine Carboxylgruppe (COOH-Gruppe) trägt wie Carboxymethylamino (NH-CH $_2$ COOH) und 2-Carboxyethylamino (NH-CH $_2$ COOH).

5- oder 6-gliedriges Heterocyclyl weist in der Regel 1, 2 oder 3 Heteroatome, ausgewählt unter Stickstoff, Sauerstoff und Schwefel, insbesondere 1 oder 2 Stickstoffatome und gegebenenfalls ein Sauerstoff- oder Schwefelatom als Ringglieder auf und kann gesättigt, ungesättigt oder aromatisch sein. Beispiele für gesättigtes Heterocyclyl sind Morpholinyl, Piperidinyl, Piperazinyl und Pyrrolidinyl. Beispiele für aromatisches Heterocyclyl sind Pyridinyl, Pyrazolyl, Oxazolyl, Thiazolyl etc.

Die Farbstoffe der Formeln I bis XV können sowohl in freier Form, in Form ihrer Salze und - sofern zwei durch eine Diazogruppe -N=N- verbundene Reste jeweils einen in ortho-Position zur Diazogruppe angeordneten Rest OH, COOH oder NH₂ aufweisen - als Metallkomplexe eingesetzt werden.

In den Farbstoffen der Formeln I bis XIII und XV sind die Reste DK¹ und DK² von aromatischen Aminen DK1-NH2 bzw. DK2-NH2 abgeleitet, die im Folgenden auch als Diazoniumkomponenten bezeichnet werden. Bei den Aminen DK¹-NH₂ bzw. DK²-NH₂ handelt es sich in der Regel um gegebenenfalls substituiertes Anilin, gegebenenfalls substituiertes a- oder β -Naphtylamin oder um gegebenenfalls substituierte Aminochinoline. Dementsprechend stehen in der Regel die Reste DK1 und DK2 unabhängig voneinander für von Benzol, Naphthalin oder Chinolin abgeleitete Reste, worin Naphthalin, Chinolin und Benzol gegebenenfalls einen oder mehrere, z.B. 1, 2 oder 3 Substituenten aufweisen. Beispiele für Substituenten sind die folgenden Reste: SO₃H, COOH, OH, NH₂, NO₂, CN, CONH₂, Halogen, C₁-C₄-Alkyl, C₁-C₄-Hydroxyalkyl, Carboxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, C₁-C₄-Alkylaminocarbonyl, C_1 - C_4 -Dialkylaminocarbonyl, C_1 - C_4 -Alkylaminocarbonyloxy, C_1 - C_4 -Dialkylaminocarbonyloxy, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Dialkylaminocarbonylamino, Phenylaminocarbonyloxy, Phenylaminocarbonylamino, C₁- C_4 -Alkoxycarbonylamino, C_1 - C_4 -Alkylcarbonylamino, N-(C_1 - C_4 -Alkylcarbonyl)-N-(C_1 - C_4 alkylcarbonyl)amino, C₁-C₄-Hydroxy-C₁-C₄-alkylamino, Carboxy-C₁-C₄-alkylamino, Phenylcarbonylamino, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Hydroxyalkylsulfonyl, C_1 - C_4 -Alkylaminosulfonyl, C₁-C₄-Alkylsulfonylamino, Phenylsulfonyl, Phenylsulfonylamino, Formamid, SO₂NR⁵⁶R⁵⁷, worin R⁵⁶ und R⁵⁷ unabhängig voneinander für Wasserstoff, C₁-C₄-Alkyl, Formyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkyloxycarbonyl, NH₂-CO, C₁-C₄-Alkylaminocarbonyl stehe, oder 5- oder 6-gliedriges Heterocyclyl, das gegebenenfalls durch 1, 2 oder 3 der folgenden Reste: OH, Halogen, C1-C4-Alkyl oder Phenyl, substitu-

iert ist, wobei 5-gliedriges aromatisches Heterocyclyl gegebenenfalls am Stickstoff eine

DK8

5

10

20

14

Phenylgruppe oder Naphthylgruppe trägt, die gegebenenfalls einen oder zwei der folgenden Reste aufweisen kann: OH, SO₃H, C₁-C₄-Alkyl, und/oder C₁-C₄-Alkoxy;

Als Amine Dk1-NH2 bzw. Dk2-NH2 kommen weiterhin auch 4-Amino-1-phenylpyrazole in Betracht, worin der Pyrazolring als auch der Phenylring einen oder mehrere, z.B. 1, 2 oder 3 Substituenten der vorgenannten Art oder eine Gruppe B-SO₂- aufweisen, worin B die zuvor genannten Bedeutungen aufweist. In diesen Fällen steht Dk1 bzw. Dk2 insbesondere für Pyrazol-4-yl, das in der 1-Position einen Phenylrest oder eine Gruppe der Formel A aufweist und gegebenenfalls 1 oder 2 Substituenten trägt, die ausgewählt sind unter Halogen, C₁-C₄-Alkyl, Hydroxy, COOH, Hydroxysulfonyl oder C₁-C₄-Alkoxy.

Vorzugsweise stehen Dk¹ und Dk² unabhängig voneinander für Reste, die von einem gegebenenfalls substituiertes Anilin, einem gegebenenfalls substituiertes a- oder β -Naphtylamin abgeleitet sind, oder für eine Gruppe A.

Beispiele für geeignete Amine Dk¹-NH₂ bzw. Dk²-NH₂ sind die im folgenden angegebenen Verbindungen DK1 bis DK39:

DK6 DK5 **DK12 DK11 DK10** DK9

DK7

O NH

NH₂

DK13

DK14

DK15

DK16

DK17

NH₂

NH₂

O₂N NH₂

HN SO₃H

SO₃H

DK18

DK19

DK20

DK21

DK22

Q N NH₂

NH₂

Q-N-NO

5

DK23

DK24

DK25

DK26

NH₂

HO₃S

H₂N—SO₃H

CH₂

DK27

DK28

DK29

DK30

NH₂ CH₃

H₂N-SO₃H

NH₂ OMe

DK31

DK32

DK33

DK34

HO₃S OMe

HO₃S OH COOH

DK36

DK37

5

10

15

20

Die Reste Q in den Formeln DK21 bis DK25 bedeuten Wasserstoff C_1 - C_4 -Alkyl, Carbo-xy- C_1 - C_4 -alkyl, C_1 - C_4 -Hydroxyalkyl, C_1 - C_4 -Alkoxy oder Phenylcarbonyl.

Geeignete Diazokomponenten sind weiterhin die im folgenden angegebenen Naphthylamine DK40 bis 59: 4-Amino-3-hydroxynahpthalin-1-sulfonsäure (DK40), 4-Amino-3-hydroxy-6-nitronahpthalin-1-sulfonsäure (DK41), 6-Amino-4-hydroxynaphthalin-2-sulfonsäure (Gammasäure, DK42), 4-Amino-5-hydroxynaphthalin-1-sulfonsäure (Chikago-S-Säure, DK43), 4-Amino-5-hydroxynaphthalin-2,7-disulfonsäure (H-Säure DK44), 4-Amino-5-hydroxynaphthalin-1,7-disulfonsäure (K-Säure, DK45), 8-Aminonaphthalin-2-sulfonsäure (Clevesäure 7, DK46), 6-Aminonaphthalin-1-sulfonsäure (DK47), 4-Aminonaphthalin-2,7-sulfonsäure (DK48), 5-Aminonaphthalin-2-sulfonsäure (DK49), 7-Amino-4,8-dihydroxynaphthalin-2-sulfonsäure (DK50), 2-Amino-5-hydroxynaphthalin-1,7-disulfonsäure (DK51), 3-Amino-5-hydroxynaphthalin-2,7-disulfonsäure (DK52), 3-Amino-1,5-disulfonsäure (DK53), 7-Aminonaphthalin-1-sulfonsäure (DK54), 4-Aminonaphthalin-1-sulfonsäure (DK55), 5-Aminonaphthalin-1-sulfonsäure (DK56), 7-Aminonaphthalin-1,3,5-trisulfonsäure (DK57), 4-Amino-3-hydroxy-7-[(4-methylphenyl)sulfonylamino]nahpthalin-1-sulfonsäure (DK58) und 7-Amino-4-hydroxynaphthalin-2-sulfonsäure (I-Säure, DK59),

Beispiele für geeignete Monoamine Dk¹-NH₂ bzw. Dk²-NH₂ sind weiterhin die im folgenden angegebenen Verbindungen DK60 bis DK83:

NH₂ O CH

25

DK60

DK61

DK62

DK63

DK64

Als Reste Kk¹ und Kk² kommen grundsätzlich alle ein-, zwei- oder dreiwertigen, als Reste Kk3 alle einwertigen aromatischen Reste in Betracht, die sich von einem gegebenenfalls substituierten Benzol, Naphthalin, Pyrazol, Diphenylamin, Diphenylmethan, Pyridin, Pyrimidin oder Diphenylether ableiten, die noch 1, 2 oder 3 freie Positionen aufweisen, auf die sukzessive ein-, zwei- oder dreimal eine Diazoniumverbindung gekuppelt werden kann. Die den Resten Kk1, Kk2 und Kk3 zugrundeliegenden Verbindungen werden im folgenden auch als Kupplungskomponente bezeichnet.

Geeignet Kupplungskomponenten sind beispielsweise von Benzol abgeleitete Verbindungen der allgemeinen Formel Kk-A, von Naphthalin abgeleitete Verbindungen der Formel Kk-B, von Chinolin abgeleitete Verbindungen der Formel Kk-C, von Pyrazol abgeleitete Verbindungen der Formel Kk-D, von Diphenylmethan abgeleitete Verbindungen der Formel Kk-E von Diphenylamin abgeleiteten Verbindungen der Formel Kk-

DK80

5

10

15

F, von Pyridin abgeleitete Verbindungen der Formel Kk-G und von Pyridon abgeleitete Verbindungen der Formel Kk-H:

$$R^{11}$$
 R^{14} R^{15} R^{18} R^{19} R^{13} R^{12} R^{16} R^{17} R^{17} R^{20} R^{20} R^{20}

5

R²⁵ (Kk-E)

R³⁰ H R²⁸ (Kk-F)

R⁴⁹ R⁵⁰ (Kk-G)

In der Formel Kk-A stehen R¹¹ für NH₂, OH, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-C₁-C₄-alkylamino, Hydroxy-C₁-C₄-alkylamino, Carboxy-C₁-C₄-alkylamino, C₁-C₄-Alkylcarbonylamino oder Phenylamino, R¹² für Wasserstoff, NH₂, OH, C₁-C₄-Alkoxy, Hydroxy-C₁-C₄-alkylamino, Carboxy-C₁-C₄-alkylamino, C₁-C₄-Alkylamino, Di-C₁-C₄-alkylamino und R¹³ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-

Alkylaminocarbonyloxy, C_1 - C_4 -Dialkylaminocarbonyloxy, C_1 - C_4 -Alkylaminocarbonylamino, C_1 - C_4 -Dialkylaminocarbonylamino, Phenylaminocarbonyloxy, Phenylaminocarbonylamino, C_1 - C_4 -Alkoxycarbonylamino, SO_3H , C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Hydroxyalkylsulfonyl, COOH, CI, Br, F, $SO_2NR^{56}R^{57}$, NO_2 , oder NH_2 , wobei R^{56} und R^{57} unabhängig voneinander für Wasserstoff, C_1 - C_4 -Alkyl, Formyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkyloxycarbonyl, NH_2 -CO, C_1 - C_4 -Alkylaminocarbonyl ste-

hen.

In Formel Kk-B stehen R^{14} und R^{15} unabhängig voneinander für Wasserstoff oder weisen eine der als R^{11} genannten Bedeutungen auf, wobei R^{15} auch für SO_3H stehen kann. R^{16} steht für Wasserstoff, OH, SO_3H , C_1 - C_4 -Alkylsulfonylamino, C_1 - C_4 -Alkylaminosulfonyl, C_1 - C_4 -Alkylaminosulfonylamino, Di- C_1 - C_4 -alkylaminosulfonylamino, C₁- C_4 -Alkoxycarbonylamino, Phenylsulfonylamino, das am Phenylring einen oder zwei Substituenten, ausgewählt unter C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder Halogen aufweisen kann. R^{17} steht für Wasserstoff, OH oder eine Gruppe SO_3H .

30

25

10

25

30

35

40

19

In Formel Kk-C stehen R^{18} bis R^{20} unabhängig voneinander für Wasserstoff, OH oder C_1 - C_4 -Alkyl.

In Formel Kk-D steht R^{21} für Wasserstoff, Phenyl oder Naphthyl, wobei die 2 letztgenannten Gruppen 1, 2 oder 3 Substituenten aufweisen können, die ausgewählt sind unter Wasserstoff, OH, Halogen, C_1 - C_4 -Alkyl, SO_3 H, NO_2 und der zuvor definierten Gruppe B- SO_2 -. In einer Ausführungsform der Erfindung steht R^{21} für eine der zuvor definierten Gruppen A und insbesondere für eine der Gruppen A1 bis 12. R^{22} bedeutet Wasserstoff, COOH oder C_1 - C_4 -Alkyl.

In Formel Kk-E bedeuten R^{23} und R^{25} unabhängig voneinander Wasserstoff, COOH, Hydroxy oder C_1 - C_4 -Alkyl. R^{24} und R^{26} stehen unabhängig voneinander Wasserstoff, Hydroxy oder C_1 - C_4 -Alkyl,

In Formel Kk-F bedeuten R^{27} und R^{29} unabhängig voneinander Wasserstoff, SO_3H , COOH, Hydroxy oder C_1 - C_4 -Alkyl. R^{28} und R^{30} stehen unabhängig voneinander Wasserstoff, Hydroxy oder C_1 - C_4 -Alkyl,

In Formel Kk-G bedeuten R⁴⁸, R⁴⁹, R⁵⁰ und R⁵¹ unabhängig voneinander Wasserstoff, SO₃H, COOH, NH₂, CN, Hydroxy oder C₁-C₄-Alkyl.

In Formel Kk-H bedeuten R^{52} , R^{53} , R^{54} und R^{55} unabhängig voneinander Wasserstoff, SO_3H , COOH, NH_2 , CN, Hydroxy oder C_1 - C_4 -Alkyl.

Beispiele für Kupplungskomponenten der Formel Kk-A sind die vorgenannten Anilinverbindungen DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, DK39, weiterhin Salicylsäure (Kk1), 3-Aminophenol (Kk2), Resorcin (Kk3), 3-Phenylaminophenol (Kk4), 1,3-Diaminobenzol (Kk5), 3-Acetylamino-Anilin (Kk6), 2-Nitro-Anilin (Kk7), 3-(Diethylamino)phenol (Kk8), 3-(Morpholin-1-yl)phenol (Kk9), 3-(Diethylamino)ańilin (Kk10), N-Acetyl-3-(diethylamino)anilin (Kk11), N-(3-Hydroxyphenyl)glycin (Kk12), 3-(2-Hydroxyethyl)aminophenol (Kk13), 2,4-Diaminotoluol (Kk14), 2,4-Diaminobenzolsulfonsäure (Kk15), 2,4-Diamino-1-nitrobenzol (Kk16), N-(3-Amino-6-methylphenyl)glycin (Kk17), 2,4-Diamino-5-methylbenzolsulfonsäure (Kk18), 2,4-Diamino-1hydroxybenzol (Kk54), 2,4-Diamino-1-methoxybenzol (Kk55), 2,4-Diamino-1chlorobenzol (Kk56), 1,2,4-Triaminobenzol (Kk57), 3-(Dimethylamino)-anilin (Kk58), 3-(Dimethylamino)-1-nitrobenzol (Kk59), 2-(N,N-Diethylamino)-4-acetylamino-1methoxybenzol (Kk60), 2-(N,N-Diethylamino)-4-amino-1-methoxybenzol (Kk61), 2,4-Diamino-1-benzolsulfonamid (Kk62), 2-Amino-4-acetylamino-1-methoxybenzol (Kk63), 2-Amino-4-acetylamino-1-chlorbenzol (Kk64), 2,4-Diamino-1-methylsulfonylbenzol,

(Kk65), 2,4-Diamino-1-ethylsulfonylbenzol, (Kk66) und 2,4-Diamino-1-(2-hydroxyethyl)sulfonylbenzol (Kk67).

Beispiele für Kupplungskomponenten der Formel Kk-B sind 2-Naphthol (Kk19), 2-Phenylaminonaphthalin (Kk20), 4-Methyl-1-Naphthol (Kk21), 8-Methoxycarbonylamino-5 2-naphthol (Kk22), 8-Acetylamino-2-naphthol (Kk23), 8-Methylaminosulfonyl-2naphthol (Kk24), 8-Dimethylaminosulfonylamino-2-naphthol (Kk25), 6-[(4-Methylphenyl)sulfonyl]amino-4-hydroxynaphthalin-2-sulfonsäure (Kk26), 8-Phenylaminonaphthalin-1-sulfonsäure (Kk27), 6-Amino-4-hydroxynaphthalin-2-sulfonsäure (DK42), 4-Amino-5-hydroxynaphthalin-1-sulfonsäure (DK43), 7-Amino-4-10 hydroxynaphthalin-2-sulfonsäure (DK59), 4-Amino-5-hydroxynaphthalin-2,7disulfonsäure (DK44), 4-Amino-5-hydroxynaphthalin-1,7-disulfonsäure (DK45), 8-Aminonaphthalin-2-sulfonsäure (DK46), 6-Aminonaphthalin-1-sulfonsäure (DK47), 4-Aminonaphthalin-2,7-sulfonsäure (DK48), 4-Hydroxynaphthalin-2,7-disulfonsäure (Kk28), 3-Hydroxynaphthalin-2,7-disulfonsäure (Kk29), 4-(Phenylcarbonyl)amino-5hydroxynaphthalin-2,7-disulfonsäure (Kk30), 4,6-Dihydroxynaphthalin-2-sulfonsäure (Kk31), 4,5-Dihydroxynaphthalin-2,7-disulfonsäure (Kk32), 4-(Phenylcarbonyl)amino-5hydroxynaphthalin-1-sulfonsäure (Kk33), 4-Hydroxynaphthalin-1-sulfonsäure (Kk34), 4,5-Dihydroxynaphthalin-1-sulfonsäure (Kk35), 5-Aminonaphthalin-2-sulfonsäure (DK49), 7-Hydroxynaphthalin-1,3-disulfonsäure (Kk36), 7-Amino-4,8-20 dihydroxynaphthalin-2-sulfonsäure (DK50), 8-Hydroxynaphthalin-1-sulfonsäure (Kk37), 2-Amino-5-hydroxynaphthalin-1,7-disulfonsäure (DK51), 3-Amino-5-hydroxynaphthalin-2,7-disulfonsäure (DK52), 3-Amino-1,5-disulfonsäure (DK53), 4,6-Dihydroxy-7hydroxycarbonylnaphthalin-2-sulfonsäure (Kk38), 7-Aminonaphthalin-1-sulfonsäure (DK54), 4-Aminonaphthalin-1-sulfonsäure (DK55), 5-Aminonaphthalin-1-sulfonsäure 25 (DK56) 7-Aminonaphthalin-1,3,5-trisulfonsäure (DK57) und 4-Acetylamino-5hydroxynaphthalin-2,7-disulfonsäure (Kk39).

Beispiele für Kupplungskomponenten Kk-C sind 2,4-Dihydroxychinolin (Kk40) und 8-Hydroxychinolin (Kk41).

Beispiele für Kupplungskomponenten Kk-D sind 3-Methyl-5-hydroxypyrazol (Kk42), 1-Phenyl-3-methyl-5-hydroxypyrazol (Kk43), 1-[4-(2-Hydroxysulfonyloxyethyl)-2-hydroxysulfonylphenyl]-3-methyl-5-hydroxypyrazol (Kk44), 1-[4-(2-Hydroxysulfonylphenyl]-3-methyl-5-hydroxypyrazol (Kk44), 1-[4-(2-Hydroxysulfonylphenyl

- Hydroxysulfonyloxyethyl)-2-hydroxysulfonylphenyl]-5-hydroxypyrazol-3-carbonsäure (Kk45), 1-[4-Hydroxysulfonylphenyl]-5-hydroxypyrazol-3-carbonsäure (Kk46) und 1-[6-Hydroxysulfonylphenyl]-5-hydrox-3-methylypyrazol (Kk47), 1-[4-Hydroxysulfonylphenyl]- 3-methyl-5-hydroxypyrazol (Kk48).
- 40 Ein Beispiel für Kupplungskomponenten Kk-E ist 4,4'-Dihydroxydiphenylmethan-3,3'-dicarbonsäure (Kk49).

Ein Beispiel für eine Kupplungskomponente Kk-F ist 4,4'-Dihydroxydiphenylamin (Kk50).

5 Ein Beispiel für eine Kupplungskomponente Kk-G ist 2,6-diamino-pyridin (Kk51).

Beispiele für Kupplungskomponenten Kk-H sind 1-Methyl-2-pyridon (Kk52) und 3-Cyano-4-methyl-6-hydroxy-1-ethylpyridon (Kk53).

Geeignete Reste Kk³ sind insbesondere einwertige von einem gegebenenfalls substituierten Benzol oder Naphthalin abgeleitete Reste, z.B. die von den Kupplungskomponenten Kk-A und Kk-B abgeleiteten einwertige Reste wie die von den Anilinverbindungen DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, DK39, DK42 bis DK83, Kk1 bis Kk48 und Kk51 bis Kk67 abgeleiteten Reste.

Bei den Resten Tk^1 und Tk^2 handelt es sich um zweiwertige aromatische Reste, die sich von aromatischen Diaminen der Formeln $Tk^1(NH_2)_2$ bzw. $Tk^2(NH_2)_2$ ableiten. Diese Diamine werden im Folgenden auch als Tetraazokomponente bezeichnet.

Geeignete Tetraazokomponenten sind beispielsweise von Benzol abgeleitete Verbindungen der allgemeinen Formel Tk-A, von Diphenyl abgeleitete Verbindungen der Formel Tk-B, von Phenylbenzimidazol abgeleitete Verbindungen der Formel Tk-C, von Diphenylmethan abgeleitete Verbindungen der Formel Tk-D, von Diphenylamin abgeleitete Verbindungen der Formel Tk-E, von Phenylsulfonylbenzol abgeleiteten Verbindungen der Formel Tk-F, von Phenylaminosulfonylbenzol abgeleiteten Verbindungen der Formel Tk-G, von Stilben abgeleiteten Verbindungen der Formel Tk-H und von Phenylaminocarbonylbenzol abgeleiteten Verbindungen der Formel Tk-J:

$$H_{2}N$$
 $H_{2}N$
 $H_{3}N$
 $H_{2}N$
 $H_{2}N$
 $H_{3}N$
 $H_{2}N$
 $H_{3}N$
 $H_{2}N$
 $H_{3}N$
 H

$$R^{36}$$
 R^{37} R^{38} H R^{39} H_2N NH_2 H_2N NH_2

20

25

$$R^{40}$$
 SO_2 R^{41} H_2N NH_2

$$H_2N$$
 H_2
 H_3
 H_4
 H_4

5

In Formel Tk-A steht R³¹ beispielsweise für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, COOH oder SO₃H. Vorzugsweise sind die beiden NH₂-Gruppen in para-Position zueinander angeordnet. Beispiele für Verbindungen der Formel Tk-A sind 1,4-Diaminobenzol (Tk1), 1,4-Diamino-2-methoxybenzol (Tk2), 2,5-Diaminobenzoesäure (Tk3) und 2,5-Diaminobenzolsulfonsäure (Tk4).

In Formel Tk-B stehen R³² und R³³ unabhängig voneinander beispielsweise für Wasserstoff, OH, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, COOH oder SO₃H. Vorzugsweise sind die beiden NH₂-Gruppen in der 4- und der 4'-Position angeordnet. Beispiele für Verbindungen der Formel Tk-B sind 4,4'-Diaminobiphenyl (Tk5), 4,4'-Diamino-3,3'-dimethylbiphenyl Tk6), 4,4'-Diamino-3,3'-dimethoxybiphenyl (Tk7), 4,4'-Diamino-3,3'-dihydroxybiphenyl (Tk8), 4,4'-Diamino-3-hydroxysulfonylbiphenyl (Tk9), 4,4'-Diamino-3,3'-bis(hydroxysulfonyl)biphenyl (Tk10) und 4,4'-Diamino-3,3'-dicarboxybiphenyl (Tk11).

20

15

In Formel Tk-C stehen R^{34} und R^{35} unabhängig voneinander beispielsweise für Wasserstoff, OH, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy. Ein Beispiel für eine Verbindung der Formel Tk-C ist 6-Amino-2-[4-aminophenyl]benzimidazol (Tk12).

25

In Formel Tk-D stehen R^{36} und R^{37} unabhängig voneinander beispielsweise für Wasserstoff, OH, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, COOH oder SO_3 H. Vorzugsweise sind die beiden NH_2 -Gruppen in der 4- und der 4'-Position angeordnet. Beispiele für Verbindungen Tk-D sind Bis(4-aminophenyl)methan (Tk13), Bis(4-amino-3-carboxyphenyl)methan (Tk14) und Bis(4-amino-3-methylphenyl)methan (Tk15).

30

In Formel Tk-E stehen R^{38} und R^{39} unabhängig voneinander beispielsweise für Wasserstoff, OH, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, COOH oder SO_3 H. Vorzugsweise sind die beiden NH_2 -Gruppen in der 4- und der 4'-Position angeordnet. Ein Beispiel für eine Verbindung Tk-E ist (4-Aminophenyl)(4'-amino-2'-hydroxysulfonylphenyl)amin oder 4,4'-diaminodiphenylamin-2-sulfonsäure (Tk16).

In Formel Tk-F stehen R^{40} und R^{41} unabhängig voneinander beispielsweise für Wasserstoff, OH, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, COOH oder SO₃H. Vorzugsweise sind die beiden NH₂-Gruppen in der 4- und der 4'-Position angeordnet. Ein Beispiel für eine Verbindung Tk-F ist Bis-(4-aminophenyl)sulfon (Tk17).

5

In Formel Tk-G stehen R^{42} und R^{43} unabhängig voneinander beispielsweise für Wasserstoff, OH, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, COOH oder SO_3 H. Vorzugsweise sind die beiden NH_2 -Gruppen in der 4- und der 4'-Position angeordnet. Ein Beispiel für eine Verbindung Tk-G ist N-(4'-Aminophenyl)-4-aminobenzolsulfonamid (Tk18).

10

In Formel Tk-H stehen R^{44} und R^{45} unabhängig voneinander beispielsweise für Wasserstoff, C_1 - C_4 -Alkyl, COOH oder SO_3 H. Vorzugsweise sind die beiden NH_2 -Gruppen in der 4- und der 4'-Position angeordnet. Ein Beispiel für eine Verbindung Tk-H ist 1,2-Bis-(4-amino-2-hydroxysulfonylphenyl)ethen (Flavonsäure, Tk19).

5

In Formel Tk-J stehen R^{46} und R^{47} unabhängig voneinander beispielsweise für Wasserstoff, OH, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, COOH oder SO_3 H. Vorzugsweise sind die beiden NH_2 -Gruppen in der 4- und der 4'-Position angeordnet. Ein Beispiel für eine Verbindung Tk-J ist N-(4'-Aminophenyl)-4-aminobenzoesäureamid (Tk20).

20

Bevorzugte Reste Napht¹ und Napht² gehorchen der allgemeinen Formel Napht-II:

$$\mathbb{R}^1$$
 \mathbb{R}^2 (Napht-II) $(SO_3^-)_s$ $(SO_3^-)_t$

worin R^1 und R^2 unabhängig voneinander Wasserstoff, OH, NH_2 oder $NHC(O)R^3$ bedeuten, worin R^3 für Wasserstoff, C_1 - C_4 -Alkyl, Maleinyl oder Phenyl steht, und wenigstens einer der Reste R^1 und R^2 von Wasserstoffverschieden ist, \cdots die Bindungen zu den Azogruppen darstellen, s und t für 0 oder 1 stehen. Vorzugsweise hat die Summe s+t den Wert 1 oder 2.

30

35

Beispiele für geeignete Reste Napht¹ bzw. Napht² umfassen die nachfolgend aufgeführten Reste II-1 bis II-14:

2-Hydroxysulfonyl-4-hydroxynaphthalin-3,6-diyl (II-1),

6-Amino-2-hydroxysulfonyl-4-hydroxynaphthalin-3,5-diyl (II-2),

1-Hydroxysulfonyl-5-hydroxynaphthalin-4,6-diyl (II-3),

4-Amino-1-hydroxysulfonyl-5-hydroxynaphthalin-3,6-diyl (II-4),

2-Hydroxysulfonyl-4-hydroxynaphthalin-3,7-diyl (II-5),

7-Amino-2-hydroxysulfonyl-4-hydroxynaphthalin-3,8-diyl (II-6),

5-Hydroxy-2,7-bishydroxysulfonylnaphthalin-4,6-diyl (II-7),

4-Amino-5-hydroxy-2,7-bishydroxysulfonylnaphthalin-3,6-diyl (II-8),

5-Hydroxy-1,7-bishydroxysulfonylnaphthalin-4,6-diyl (II-9),

4-Amino-5-hydroxy-1,7-bishydroxysulfonylnaphthalin-3,6-diyl (II-10),

5 2-Hydroxysulfonylnaphthalin-5,8-diyl (II-11),

2-Amino-5-hydroxy-1,7-bishydroxysulfonylnaphthalin-3,6-diyl (II-12),

5-Hydroxy-2,7-bishydroxysulfonylnaphthalin-3,6-diyl (II-13),

3-Amino-5-hydroxy-2,7-bishydroxysulfonylnaphthalin-4,6-diyl (II-14),

2-Hydroxysulfonylnaphthalin-5,8-diyl (II-15) und

10 1-Hydroxysulfonylnaphthalin-5,8-diyl (II-16).

Bei den Resten L, M, P und R handelt es sich um zweiwertige, von Benzol oder Naphthalin abgeleitete Reste, z.B. von den Kupplungskomponenten der Formeln Kk-A und Kk-B abgeleitete Reste sowie von den vorgenannten Diazokomponenten abgeleitete Reste, die noch eine freie Position aufweisen, auf die eine Diazoniumverbindung gekuppelt werden kann. Beispiele hierfür sind die Anilinverbindungen DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, DK39, und DK60 bis DK83 sowie die Naphthylamine DK42 bis DK59.

20 Unter den vorgenannten Verbindungen der Formeln I bis XV sind die Farbstoffe der allgemeinen Formeln IIa, IIIa und IVa besonders bevorzugt:

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}[-N=N-Kk^{1}]_{k}[-N=N-Dk^{2}]_{n}$$
 (IIa)

25 $Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Tk^{2}-N=N-Napht^{2}-N=N-Dk^{2}$ (IIIa)

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Napht^{2}-N=N-Dk^{2}$$
 (IVa)

35

In den Formein IIa, IIIa und IVa haben Dk^1 , Dk^2 , $Napht^1$, $Napht^2$, Kk^1 , TK^1 , Tk^2 und Kk^1 die zuvor genannten Bedeutungen, wobei einer oder beide Reste Dk^1 und Dk^2 für einen Rest der Formel A, wie zuvor definiert, stehen und insbesondere eine der Reste A1 bis A12 bedeuten. Die Zahlen n und k stehen für 0 oder 1, wobei n+k=1 oder 2 ist. Derartige Verbindungen sind neu, wenn Tk^1 in Formel IIa nicht für einen von Diphenylamin abgeleiteten Rest steht, wenn k=0 ist. Derartige Verbindungen und deren Mischungen sind daher ebenfalls Gegenstand der vorliegenden Erfindung.

Eine besonders bevorzugte Ausführungsform der Farbstoffe II bzw. Ila sind die Farbstoffe der allgemeinen Formel IIb

40
$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Kk^{1}[-N=N-Dk^{2}]_{n}$$
 (IIb)

worin A, Dk², Napht¹ und Kk¹ die zuvor genannten Bedeutungen aufweisen, n für 0 oder 1 steht, und worin Tk¹ für einen von Diphenyl, Diphenylmethan, 2-Phenylbenzimidazol, Phenylsulfonylbenzol, Phenylaminosulfonylbenzol, Diphenylamin, Stilben oder Phenylaminocarbonylbenzol abgeleiteten, zweiwertigen Rest steht, der gegebenenfalls einen oder mehrere der folgenden Reste als Substituenten aufweisen kann: SO₃H, COOH, OH, NH₂, NO₂, Halogen, C₁-C₄-Alkyl, wobei Tk¹ nicht für einen von Diphenylamin abgeleiteten Rest steht, wenn n = 0 ist, und wobei Rest Dk² auch für einen Rest der Formel A, wie zuvor definiert, stehen kann. Farbstoffe der allgemeinen Formel IIb und insbesondere deren Mischungen sind ein besonders bevorzugter Gegenstand der vorliegenden Erfindung.

5

10

Unter den erfindungsgemäßen Farbstoffen der allgemeinen Formeln IIa, IIb, IIIa und IVa sind solche Farbstoffe besonders bevorzugt, worin wenigstens eine der Gruppen Tk¹ und/oder Tk² für einen Rest der Formel

steht, worin --- die Bindungen zu den Azogruppen darstellen.

20 Unter den Verbindungen der allgemeinen Formeln IIa, IIb, IIIa und IVa sind solche Farbstoffe besonders bevorzugt, worin Napht¹ und/oder Napht² für einen bivalenten Rest der oben definierten allgemeinen Formel Naphth-II stehen und insbesondere die dort aufgeführten konkreten Bedeutungen besitzen.

Unter den Verbindungen der allgemeinen Formeln IIa, IIb, IIIa und IVa sind solche Farbstoffe besonders bevorzugt, worin einer oder beide der Reste Dk¹ und Dk² für einen der zuvor definierten Reste A1 bis A12 stehen.

In den Farbstoffen der allgemeinen Formel IIb steht Kk¹ beispielsweise für einen von den Kupplungskomponenten der Formeln Kk1 bis Kk67, DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, DK39 oder DK42 bis DK83 abgeleiteten Rest. Unter den Farbstoffen der Formel IIa, IIb und IIIa sind insbesondere solche bevorzugt, worin Kk¹ von einer Verbindung Kk-A abgeleitet ist.

35

30

Besonders bevorzugt sind Mischungen der Farbstoffe der allgemeinen Formel IIb. Die Mischungen der Farbstoffe IIb bestehen aus wenigstens zwei, z.B. 2, 3 oder 4 individuellen Farbstoffen IIb. Die Menge des individuellen Farbstoffs IIb beträgt wenigstens 10 Mol% und insbesondere wenigstens 20 Mol-%, bezogen auf die Gesamtmenge an

Farbstoff F. Bevorzugt sind Mischungen aus zwei Farbstoffen F, worin die Einzelkomponenten im Molverhältnis im Bereich von 9:1 bis 1:9, insbesondere im Bereich von 2:8 bis 8:2 und besonders bevorzugt im Bereich von 3:7 bis 7:3 liegen. Eine besonders bevorzugte Ausführungsform sind Mischungen von Farbstoffen Ilb, worin die individuellen Farbstoffe sich nur in dem Rest Kk¹ unterscheiden.

Die Herstellung der erfindungsgemäß zur Anwendung kommenden Azofarbstoffe der allgemeinen Formeln I bis XV und ihrer Metallkomplexe erfolgt in an sich bekannter Weise durch eine mehrstufige Diazotierung/Kupplungs-Sequenz, wobei der Farbstoff durch sukzessives Diazotieren/Kuppeln aufgebaut werden, d.h. die Verknüpfung der einzelnen Bausteine Diazogruppen oder NH-Gruppen erfolgt sukzessive, oder durch eine konvergente Synthese, d.h. Molekülgruppen des Farbstoffs, die bereits Diazogruppen oder NH-Gruppen aufweisen, werden generiert und anschließend über eine weitere Diazotierung/Kupplung mit einem weiteren Molekülteil des Farbstoffs, das ebenfalls bereits eine oder mehrere Diazogruppen aufweist, verknüpft, gegebenenfalls vermittels einer Kupplungs- oder Tetraazokomponente.

Beim sukzessiven Diazotieren/Kuppeln wird beispielsweise zunächst die Diazonium-komponenten Dk¹ bzw. Dk² diazotiert und auf eine Gruppe Napht¹, bzw. Napht², Kk¹ oder Kk² oder auf eine Gruppe P oder R gekuppelt, anschließend wird das Reaktionsprodukt erneut diazotiert, und auf einen weiteren Kupplungspartner gekuppelt und dieser Vorgang gegebenenfalls wiederholt, bis der Farbstoff aufgebaut ist. Alternativ kann bei der sukzessiven Synthese auch das Reaktionsprodukt der ersten Kupplung mit einer oder mehreren Diazoniumverbindungen nacheinander umgesetzt werden.

Beim sukzessiven Kuppeln kann man auch zunächst eine Tetrazokomponente $Tk^{1}(NH_{2})_{2}$ bzw. $Tk^{2}(NH_{2})_{2}$ in das entsprechende Tetrazoniumsalz überführen und nacheinander mit Kupplungspartnern Kk^{1} , P, Napht¹, Napht² etc. umsetzen und anschließend weitere Diazotierungs/Kupplunsgreaktionen durchführen.

Mischungen zweier oder mehrerer Farbstoffe F kann man sowohl durch Vermischen der gewünschten Mischungspartner herstellen, als auch durch Einsatz von Mischungen der zur Herstellung der Farbstoffe F eingesetzten Ausgangsmaterialien. Mischungen von Azofarbstoffen I bis XV kann man beispielsweise dadurch herstellen, dass man bei der Herstellung Mischungen wenigstens zweier Amine Dk¹-NH₂, Dk²-NH₂ oder A-NH₂, Mischungen wenigstens zweier Kupplungskomponenten H-Kk¹ bzw. H-Kk², Mischungen wenigstens zweier Tetrazokomponenten (H₂N)₂-Tk¹ bzw. (H₂N)₂-Tk² oder Mischungen wenigstens zweier verschiedener Verbindungen Napth¹H₂ bzw. Napth²H₂ einsetzt. Selbstverständlich kann man auch Mischungen aus 3 oder mehr Komponenten einsetzen.

5

5

10

25

20

30

35

10

20

25

30

35

40

27

Entsprechend dem gewünschten Mischungsverhältnis der Farbstoffe F in der Mischung wird man bei der Herstellung des Farbstoffs F eine Mischung des jeweiligen Ausgangsmaterials einsetzen, in welchem das individuelle Ausgangsmaterial in einer Menge von wengistens 10 Mol-%, insbesondere wenigstens 20 mol-%, besonders bevorzugt wenigstens 30 Mol-%, bezogen auf die Mischung vorliegt. Bei Mischungen zweier Ausgangsmaterialien, z.B. bei einer Mischung zweier Kupplungskomponenten H-Kk(1) bzw. H-Kk(2), oder bei Mischungen zweier Diazokomponenten oder bei Mischung zweier Tetrazokomponenten liegt das Molverhältnis der Einzelbestandteile der Mischung im Bereich von 9:1 bis 1:9, insbesondere im Bereich von 8:2 bis 2:8 und besonders bevorzugt im Bereich von 3:7 bis 7:3.

Die Herstellung der Azofarbstoffe der allgemeinen Formeln I bis XV wird nunmehr exemplarisch anhand der Herstellung der Farbstoffe der allgemeinen Formel IIb erläutert. Die hierzu angewendeten Methoden lassen sich in an sich bekannter Weise zum Aufbau anderer Azofarbstoffe der allgemeinen Formeln I bis XV modifizieren. Farbstoffe der allgemeinen Formel II b können bespielsweise hergestellt werden, indem man in einem ersten Schritt die der Tetrazokomponente Tk1 zugrundeliegende Diamino-Verbindung Tk1(NH2)2 tetrazotiert und anschließend zunächst auf die dem Rest Napht1 zugrundeliegende Naphthalinverbindung Napht¹H₂ gekuppelt. Anschließend kuppelt man auf die so erhaltene Diazonium-Verbindung H-Napht¹-N=N-Tk¹-N₂⁺ eine Diazoniumverbindung Dk¹-N₂⁺ bzw. A-N₂⁺, wobei man die Verbindung Dk¹-N=N-Napht¹-N=N-Tk¹-N₂⁺ bzw. A-N=N-Napht¹-N=N-Tk¹-N₂⁺ erhält. Diese Verbindung kuppelt man auf die eine Kupplungskomponente Kk¹H, wobei man die Verbindung der Formel IIb mit n = 0 erhält. Alternativ kann man die Diazonium-Verbindung H-Napht¹-N=N-Tk¹-N₂⁺ auf die eine Kupplungskomponente Kk¹H kuppeln, wobei man die Verbindung, H-Napht¹-N=N-Tk¹-N=N-Kk¹ erhält. Hierauf kuppelt man eine Diazoniumverbindung $Dk^1-N_2^+$ bzw. $A-N_2^+$, wobei man den Farbstoff der Formel IIb mit n = 0 erhält.

Farbstoffe der Formel IIb kann man außerdem herstellen, indem man die Verbindung $Dk^1-N_2^+$ bzw. $A-N_2^+$ auf eine Verbindung Napht 1H_2 kuppelt, wobei man die Verbindung der Formel $Dk^1-N=N-N$ apht ^1-H bzw. A-N=N-Napht ^1-H erhält. Auf diese Verbindung kuppelt man dann das der Tetrazokomponente Tk^1 zugrundeliegende Tetrazotierungsprodukt der Diamino-Verbindung $Tk^1(NH_2)_2$, wobei man die Verbindung $Dk^1-N=N-N$ apht $^1-N=N-Tk^1-N_2^+$ bzw. A-N=N-Napht $^1-N=N-Tk^1-N_2^+$ erhält. Diese Verbindung kuppelt man auf die eine Kupplungskomponente Kk^1H , wobei man den Farbstoff der Formel IIb mit n=0 erhält.

Farbstoffe der allgemeinen Formel IIb können außerdem hergestellt werden, indem man in einem ersten Schritt die der Tetrazokomponente Tk¹ zugrundeliegende Diamino-Verbindung Tk¹(NH₂)₂ tetrazotiert und anschließend zunächst auf die Kupplungs-

28

komponente Kk¹H kuppelt. Hierbei erhält man die Verbindung $^{\dagger}N_2$ -Tk¹-N=N-Kk¹, welche man dann auf die Verbindung Napht¹H₂ kuppelt, wobei man die Verbindung der Formel H-Napht¹-N=N-Tk¹-N=N-Kk¹ erhält. Hierauf kuppelt man eine Diazoniumverbindung Dk¹-N₂⁺ bzw. A-N₂⁺, wobei man die Verbindung der Formel IIb mit n = 0 erhält. Alternativ kann man die Verbindung $^{\dagger}N_2$ -Tk¹-N=N-Kk¹ auf die Verbindung Dk¹-N=N-Napht¹-H bzw. A-N=N-Napht¹-H kuppeln, wobei man den Farbstoff der Formel IIb mit n = 0 erhält.

In einer weiteren Reaktionsstufe kann man dann auf die Verbindung der Formel IIb mit 10 n = 0 eine Verbindung Dk²-N₂⁺ kuppeln, wobei man die Farbstoffe der Formel IIb mit n = 1 erhält.

Farbstoffe der allgemeinen Formel IIb mit n = 1 kann man auch herstellen, indem man zunächst eine Verbindung der Formel Dk₂-NH₂ diazotiert und anschließend auf die Kupplungskomponente Kk¹H kuppelt, wobei man die Verbindung der Formel Kk¹-N=N-Dk² erhält. Auf diese Verbindung kuppelt man dann die Verbindung Dk¹-N=N-Napht¹-N=N-Tk¹-N₂⁺ bzw. A-N=N-Napht¹-N=N-Tk¹-N₂⁺, wobei man die Farbstoffe der Formel IIb mit n = 1 erhält.

Farbstoffe der allgemeinen Formel IIb mit n = 1 kann man auch herstellen, indem man die der Tetrazokomponente Tk¹ zugrundeliegende Diamino-Verbindung Tk¹(NH₂)₂ tetrazotiert und auf die Verbindung Kk¹-N=N-Dk² kuppelt, wobei man die Verbindung †N₂-Tk¹-N=N-Kk¹-N=N-Dk² erhält. Diese Verbindung kuppelt man dann auf die Verbindung Dk¹-N=N-Napht¹H, wobei man die Farbstoffe der Formel IIb mit n = 1 erhält.

Zur Herstellung der bevorzugten Mischungen der Farbstoffe der allgemeinen Formel IIb, in denen sich die individuellen Farbstoffe IIb bezüglich ihres Restes HKk¹ unterscheiden, setzt man vorzugsweise eine Mischung wenigstens zweier verschiedener Kupplungskomponenten Kk¹ ein, worin die individuellen Bestandteile wie oben angegeben sind.

Sofern die Farbstoffe einen Triazin-Rest Tr¹ und/oder Tr² aufweisen, umfasst die Herstellung der Farbstoffe auch die Umsetzung einer Triazinverbindung der Formel C

$$R^b$$
 N
 R^c
(C)

worin R^a und R^c für Halogen, insbesondere für Chlor und R^b für Halogen, Methyl oder Methoxy steht, mit zwei Aminokomponenten. Die Aminokomponenten sind z.B. die als

35

25

Diazokomponenten genannten Monoaminverbindungen Dk¹-NH₂ bwz. Dk²-NH₂, die als Tetrazokomponente genannten Diaminverbindungen Tk¹(NH₂)₂ bzw. Tk²(NH₂)₂ sowie Molekülteile des Farbstoffs, die eine primäre Aminogruppe aufweisen.

- Derartige Verfahren sind aus dem Stand der Technik für anionische Azofarbstoffe bekannt und können analog auf die Herstellung der Farbstoffe I bis XV übertragen werden.
- Die Diazotierung und die Kupplung der dabei erhaltenen Diazonium- bzw. der Tetrazoniumverbindung erfolgt üblicherweise in einem wässrigen Reaktionsmedium unter pH Kontrolle in an sich bekannter Weise.
 - Sofern die umgesetzten Molekülbauteile bereits eine Gruppe A aufweisen, die einen Rest B der Formel CH₂CH₂-Q trägt, dann wird der pH-Wert der Reaktionsmischung vorzugsweise einen Wert von pH 8 nicht übersteigen, da anderenfalls eine Abspaltung der Gruppe Q unter Ausbildung einer Vinylgruppe erfolgt.
 - Bei Kupplungen Diazonium-Komponente oder einer Tetrazonium-Komponente auf eine Naphthalin-Verbindung der Formeln II bzw. Kk-B, die sowohl eine OH-Gruppe als auch eine Aminogruppe trägt und wenigstens zwei mögliche Kupplungsstellen aufweist, ist zu berücksichtigen, dass pH-Werten von höchstens 3 die erste Kupplung regioselektiv in ortho-Position zur Aminogruppe erfolgt, wohingegen bei pH-Werten von pH ≥6, vorzugsweise pH ≥8 eine regioselektive Kupplung in der ortho-Position der OH-Gruppe erfolgt.
 - Die Umsetzung eines Amins mit einer Triazinverbindung C erfolgt üblicherweise bei sauren pH-Werten, vorzugsweise unter pH7 und insbesondere im Bereich von pH 1 bis pH 4.
 - Die für die Diazotierung/Kupplung bzw. die Umsetzung mit Triazinen erforderlichen Reaktionstemperaturen liegen in der Regel im Bereich von 0°C bis 50°C und insbesondere im Bereich von 0 bis 30°C. Die erforderlichen Reaktionszeiten liegen üblicherweise im Bereich von 5 min bis 2 h und insbesondere im Bereich von 20 min. bis 1 h.
 - Die Umsetzungen erfolgen üblicherweise stöchiometrisch, d.h. die Reaktionspartner werden in der gewünschten Stöchiometrie miteinander umgesetzt. Die einzelnen Reaktanden können jedoch sowohl im Überschuss als auch im Unterschuss, bezogen auf die gewünschte Stöchiometrie eingesetzt werden. Die Abweichung von der gewünschten Stöchiometrie wird in der Regel nicht mehr als 20 mol-% und insbesondere nicht mehr als 10 mol-% betragen. Mit anderen Worten, bei der Umsetzung einer Diazoni-

20

25

30

35

10

5

20

25

30

35

30

umkomponente mit einem Kupplungspartner wird das Molverhältnis der beiden Komponenten im Bereich von 1:1,2 bis 1,2:1 und insbesondere im Bereich von 1,1:1 bis 1:1,1 liegen. Bei der Umsetzung einer Tetrazoniumverbindung mit 2 Moläquivalenten eines Kupplungspartners wird man diesen dementsprechend in einer Menge von 1,6 bis 2,4 mol und insbesondere in einer Menge von 1,8 bis 2,2 mol pro mol Tetrazoniumverbindung einsetzen.

Im Anschluss an die Diazotierungs/Kupplungssequenz kann man zur Herstellung der Übergangsmetallkomplexe das gewünschte Übergangsmetallsalz in Form eines geeigneten, vorzugsweise wasserlöslichen Salzes in der stöchiometrisch gewünschten Menge geben und gegebenenfalls auf die zur Komplexierung erforderliche Temperatur, z.B. auf Temperaturen im Bereich von 40 bis 100°C erwärmen.

Die Gewinnung des Farbstoffs aus der wässrigen Reaktionsmischung erfolgt in an sich üblicher Weise, beispielsweise durch Eindampfen, insbesondere durch Sprühtrocknung der wässrigen Reaktionsmischung, durch Aussalzen des Farbstoffs und Trocknen des Pressguts. Das vorzugsweise noch feuchte Pressgut kann man erneut lösen, vorzugsweise in Wasser und man kann eine Dia- und/oder Ultrafiltration durchführen, um die bei der Herstellung anfallenden anorganischen Salze abzureichern und/oder die Lösung bezüglich des Farbstoffs anzureichern. Anschließend kann man den so aufgereinigten Farbstoff durch Sprühtrocknung aus der Lösung gewinnen.

Zur Herstellung einer Flüssigmarke bzw. einer Flüssigformulierung der Farbstoffs kann der Farbstoffpresskuchen, bzw. das beim Eindampfen oder Sprühtrocknen erhaltene Farbstoffpulver aufgelöst werden, beispielsweise in Wasser, einem Wasser/Lösungsmittelgemisch, einer wässrigen Säure oder einer wässrigen Base, wobei die wässrige Säure und die wässrige Base ebenfalls Lösungsmittel enthalten können. Als Lösungsmittel kommen dabei insbesondere mit Wasser mischbare Lösungmittel wie C1-C4-Alkanole, organische Carbonsäure wie Ameisensäure, Essigsäure und Propionsäure, Alkanolamine, Dialkanolamine und Trialkanolamine wie Ethanolamin, Diethanolamin, Triethanolamin, weiterhin, Amide wie Formamid, Acetamid, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Dimethylsulfoxid und dergleichen in Betracht. Es ist auch möglich, direkt aus der Reaktionslösung eine Flüssigformulierung des Farbstoffs herzustellen. oder durch Ultrafiltration und Sprühtrocknung. Gegebenenfalls ist es dann für eine ausreichend hohe Farbstoffkonzentration und für die Stabiliät der Flüssigeinstellung erforderlich, eine Dia- und/oder Ultrafiltrationsproezß durchzuführen, um die bei der Herstellung anfallenden anorganischen Salze abzureichern und die Lösung aufzukonzentrieren.

Das erfindungsgemäße Verfahren umfasst einen Färbeschritt bei einem pH-Wert von wenigstens 7,5. Hierzu wird das zu färbende Leder in einer wässriger Flotte, die einen

10

5

20

25

30

35

40

31

pH-Wert von wenigstens 7,5 und vorzugsweise von wenigstens 8,0 aufweist und die wenigstens einen Farbstoff F der oben bezeichneten Art enthält, behandelt. Üblicherweise wird der pH der Flotte einen Wert von pH 11 und vorzugsweise pH 10,5 nicht überschreiten. Insbesondere liegt der pH-Wert der Flotte im Bereich von 8,5 bis 10. Durch den alkalischen pH-Wert wird eine Fixierung des Farbstoffs auf dem Leder erreicht, da unter diesen Bedingungen die Gruppe A mit den Aminogruppen des Leders unter Ausbildung einer kovalenten Bindung reagiert.

Um den für die Fixierung alkalischen pH-Wert zu erhalten, können beliebige Alkalien und Puffersysteme eingesetzt werden. Beispielhaft zu nennen sind Alkalimetallcarbonate und -hydrogencarbonate wie Natriumcarbonat, Kaliumcarbonat und Natriumhydrogencarbonat, weiterhin Alkalimetallhydroxide wie Natronlauge, Natriummetasilikat, Pyrophosphate wie Natrium- oder Kaliumpyrophosphat, Trikaliumphosphat, Trinatriumphosphat, Borax/Natronlauge-Puffer und Phosphat-Puffer.

Die zur Fixierung des Farbstoffs erforderlichen Temperaturen betragen vorteilhafterweise nicht mehr als 60°C, insbesondere nicht mehr als 50°C, und besonders bevorzugt nicht mehr als 40°C, so dass ein schonendes Färben des Leders möglich ist. In der Regel wird man die Färbung bei Temperaturen von wenigstens 10°C, vorzugsweise wenigstens 20°C, insbesondere wengistens 30°C durchführen um eine hinreichende Reaktionsgeschwindigkeit zu erzielen und somit den Färbevorgang zu beschleunigen. Grundsätzlich sind jedoch auch niedrigere Temperaturen möglich. Für organisch gegerbte Leder ist der bevorzugte Temperaturbereich 15 bis 50°C und besonders 30 bis 40°C. Für mit Metalloxiden gegerbte Leder ist ein Temperaturbereich von 15 bis 60°C und besonders 30 bis 50°C bevorzugt.

Für eine ausreichende Fixierung sind in der Regel abhängig vom pH-Wert und der Temperatur Behandlungsdauern von 0,5 h bis 4 h erforderlich. Die erforderlichen Behandlungsdauern kann der Fachmann anhand einfacher Routineexperimente für den jeweils eingesetzten Farbstoff ermitteln. Insbesondere bei stark alkalischen pH-Werten im Bereich von 9,5 bis 11, insbesondere bei 9,5 bis 10,5 beträgt die Färbedauer vorzugsweise nicht mehr als 2 h, z.B. 0,5 bis 2 h.

Bei der Färbung können auch Salze, beispielsweise Glaubersalz zugesetzt werden.

Neben den erfindungsgemäß zur Anwendung kommenden Farbstoffen F kann die Flotte auch konventionelle Säure- oder Direktfarbstoffe enthalten. Ihr Anteil wird jedoch vorzugsweise nicht mehr als 10 Gew.-%, insbesondere nicht mehr als 5 Gew.-%, bezogen auf die Gesamtmenge an Farbstoffen in der Flotte betragen (jeweils gerechnet als rein organisch-chemischer, farbiger Bestandteil des Farbstoffs).

10

20

25

30

32

Üblicherweise wird der Farbstoff F je nach gewünschter Farbtiefe in einer Menge von wenigstens 0,2 Gew.-%, häufig wenigstens 0,5 Gew.-% und insbesondere wenigstens 1 Gew.-%, bezogen auf das Falzgewicht des eingesetzten Leders bzw. Halbfertigprodukts, eingesetzt, wobei die hier angegebenen Menge auf den Farbstoff einschließlich Synthesesalze und gegebenenfalls vorhandenes Stellmittel beziehen. Bezogen auf die farbigen, chemisch-organischen Bestandteile, wird man den Farbstoff üblicherweise in einer Menge von wenigstens 0,1 Gew.-%, häufig wenigstens 0,3 Gew.-% und insbesondere wenigstens 0,5 Gew.-%, bezogen auf das Falzgewicht des eingesetzten Leders bzw. Halbfertigprodukts, einsetzen. In der Regel wird man den Farbstoff, gerechnet als Mischung aus organisch-chemischen Bestandteilen + Synthesesalze und gegebenenfalls vorhandenes Stellmittel, in einer Menge bis 20 Gew.-%, bzw in einer Menge von bis zu 15 Gew.-%, gerechnet als farbige organisch-chemische Bestandteile und bezogen auf das Falzgewicht einsetzen, wobei auch größere Farbstoffmengen eingesetzt werden können. Zur Erreichung mittlerer bis hoher Farbtiefen wird man den Farbstoff F in Abhängigkeit seines molaren Extinktionskoeffizienten und seines Molekulargewichts in der Regel in einer Menge von 2 bis 20 Gew.-%, häufig 3 bis 20 Gew.-% und insbesondere in einer Menge von 4 bis 20 Gew.-%, bezogen auf das Falzgewicht des Leders bzw. Halbfertigprodukts und gerechnet als Mischung aus organischchemischen Bestandteilen + Synthesesalze und gegebenenfalls vorhandenes Stellmittel, bzw. in einer Menge von1 bis 15 Gew.-%, häufig 1,5 bis 10 Gew.-% und insbesondere 2 bis 10 Gew.-%, bezogen auf das Falzgewicht des Leders bzw. Halbfertigprodukts und gerechnet als farbige organisch-chemische Bestandteile, einsetzen.

Die wässrige Flotte kann übliche anionische Färbehilfsmittel, nichtionische oberflächenaktive Substanzen sowie für die Nachgerbung üblicherweise eingesetzte Wetend-Chemikalien, beispielsweise Gerbstoffe, z.B. polymere Nachgerbstoffe, synthetische Nachgerbstoffe, pflanzliche Gerbstoffe (Vegetabilgerbstoffe) sowie Fettungsmittel (Fettlicker) und Hydrophobiermittel enthalten.

Als Nachgerbstoffe kommen für das erfindungsgemäße Verfahren alle handelsüblichen Systeme in Frage, z.B.:

- 1. Vegetabilgerbstoffe wie Mimosa, Kastanie, Quebracho;
- 2. Mineralgerbstoffe wie Chrom-, Eisen-, Aluminium- und Zirkongerbstoffe;
 - 3. Füllstoffe, z.B. Schichtsilikate, Saccharide, Polysaccharide wie Stärke und Mehl;
- 4. synthetische Gerbstoffe (Syntane), z.B. die in in EP 0459 168, EP 0 520 182, US 5,342,916 und US 5,186 846 beschriebenen Substanzen wie:

10

5

20

25

30

- a. Napthalinsulfonsäure-Formaldehyd Kondensationsprodukte,
- b. Phenoisulfonsäure-Formaldehyd Kondensationsprodukte,
- c. Cokondensationsprodukte von Napthalinsulfonsäure und/oder Phenolsulfonsäure mit Hydroxyarylsulfonen wie Bis(hydroxyphenyl)sulfon und Formaldehyd,
- d. Cokondensationsprodukte von Napthalinsulfonsäure und/oder Phenolsulfonsäure mit Oligosulfonen (Mischungen mehrkerniger über Sulfonbrücken verküpfter Aromaten, die z.B. mit –OH oder –SO₃H substituiert sein können) und Formaldehyd,
- e. Cokondensatsationsprodukte von Napthalinsulfonsäure, Phenolsulfonsäure mit Formaldehyd und mit N-haltigen Verbindungen sowie gegebenenfalls mit Hydroxyarylsulfonenen oder mit Oligosulfonenen. Beispiele für N-haltige Verbindungen sind Harnstoff, Melamin, Melamin-Derivate wie Hydroxy-C2-C20-alkyl-melamine, Bis-hydroxy-C2-C20-alkyl-melamine oder Tris-hydroxy-C2-C20-alkyl-melamine, Hydroxyaryl-melamine oder Melamine mit ein bis drei Polyalkylenoxid-Ketten an den N-Atomen, Melem (2,5,8-Triamino-1,3,4,6,7,9,9b-heptaazaphenalen) oder Melem-Derivate wie Hydroxy-C2-C20-alkylmeleme oder Meleme mit Polyalkylenoxid-Seitenketten an den N-Atomen, Guanamine (in 6-Stellung substituierte 2,4-Diamino-1,3,5-triazine) wie Benzoguanamin, Acetoguanamin, Caprinoguanamin oder Isobutyroguanamin; Derivate von Guanaminen wie N-Hydroxy-C2-C20-alkyl-guanamine, sowie Guanamine mit ein oder zwei Polyalkylenoxid-Ketten an den N-Atomen, und Dicyandiamid,
 - f. Mischungen der unter 4.a bis 4.e genannten Substanzen mit Cr(III) Verbindungen;
- 5. Harzgerbstoffe; z.B.:
 - a. Sulfithaltige Kondensationsprodukte aus Naphthalinsulfonsäure und Formaldehyd,
 - Sulfithaltige Kondensationsprodukte aus Phenyolsulfonsäure und Formaldehyd,
 - c. Mischungen aus 5.a. und 5.b.;
- Polymergerbstoffe, die anionischer, kationischer oder amphoterer Natur sein können. Anionische Polymergerbstoffe können z.B. Carboxylgruppen tragen, kationische Polymergerbstoffe können z.B. Aminogruppen tragen und amphotere Polymergerbstoffe tragen sowohl kationische als auch anionische Gruppen. In Abhängigikeit vom pH-Wert können amphotere Polymere entweder anionischen oder kationischen Charakter aufweisen. Beispiele für Polymergerbstoff sind:

10

5

20

25

30

35

40

34

- a. Homo- und Copolymere der Acrylsäure und der Methacrylsäure,
- b. Homo- und Copolymere der Acrylsäure und/oder der Methacrylsäure mit C_1 - C_{30} -Alkylacrylaten und/oder C_1 - C_{30} -Alkylmethacrylaten,
- c. funktionalisierte Copolymere von C_1 - C_{30} -Alkylacrylaten und/oder C_1 - C_{30} -Alkylmethacrylaten mit kationischen oder anionischen bzw. sauren Gruppen tragenden Monomeren,
- d. Copolymere von ethylenisch ungesättigten Dicarbonsäureanhydriden wie Maleinsäureanhydrid mit C₃-C₄₀-alpha-Olefinen wie Propen, 1-Buten, 1-Hexen, 1-Octen, Diisobuten, 1-Decen und dergleichen,
- e. Dicarbonsäureanhydrid-Styrol-Copolymere
- f. Homo- und Copolymere ethylenisch ungesättigter Nitrile wie Acrylnitril und Methacrylnitril, gegebenenfalls mit weiteren monoethylenisch ungesättigten Monomeren wie Acrylsäure, Methacrylsäure, Acrylamid, Methacrylamid oder C₁-C₁₀-Alkyl(meth)acrylaten

Beispiele für Polymergerbstoffe sind in EP-A 1335029 und WO 96/15276 angegeben, auf die diesbezüglich Bezug genommen wird.

7. Aldehyde wie z.B.:

- a. Formaldehyde,
- b. Glutardialdehyde,
- c. Oligoaldehyde wie sie in WO 03/095681 beschrieben werden,
- d. Aldehydgenerierende Gerbstoffe wie sie in Bibiothek des Leders Band
 3, Umschau Verlag, 1984, Seite 26-27 beschrieben werden, z.B. Oxazolidine und Phosphoniumverbindungen;
- 8. Dispergiermittel wie in US 5, 186 846 beschrieben, z.B.:
 - a. Naphthalinsulfonsäure Formaldehyd Kondensationsprodukte und
 - b. Ligninsulfonate.

Als Gerbstoffe können außerdem alle handelsüblichen Gerbstoffe wie beispielsweise Chromgerbstoffe, mineralische Gerbstoffe, Syntane, Polymergerbstoffe und vegetabile Gerbstoffe eingesetzt werden, wie sie z.B. in Ullmann's Encyclopedia of Industrial Chemistry, Band A 15 Seite 259 bis 282 und insbesondere Seite 268 ff, 5. Auflage, (1990), Verlag Chemie Weinheim, beschreiben werden. Handelsübliche Gerbstoffe können auch Mischungen der unter 1.-8. genannten Gerbstoffklassen sein.

Als Fettungsmittel können alle in der Lederherstellung üblichen Fettungsmittel eingesetzt werden, insbesondere alle handelsüblichen Fettungsmittel. Fettungsmittel enthalten naturgemäß mindestens eine hydrophobe Substanz, die auf einem Kohlenwasserstoff basiert, beispielsweise auf einem natürlichen oder synthetischen Wachs, einem nativem oder synthetischen Öl oder auf einem nativen oder synthetischen Fett. Als Kohlenwasserstoffbasis für Fettungsmittel kommen auch Polyisobuten-basierte Sub-

stanzen in Betracht. Die im folgenden näher erläuterte Kohlenwasserstoffbasis der Fettungsmittel kann chemisch modifiziert sein, beispielsweise:

- 1. sulfatiert
- 2. sulfoniert
- sulfitiert
 - 4. sulfoxidiert
 - 5. sulfochloriert
 - ethoxyliert oder generell verestert

Die Fettungsmittel können als Kohlenwasserstoffbasis auch Mischungen nichfunktionalisierter Bestandteile, Mischungen von funktionalisierten Bestandteilen mit
nicht-funktionalisierten Bestandteile oder Mischungen funktionalisierter Bestandteile
enthalten.

20

25

30

40

5

Zu den für Fettungsmittel geeigneten natürlichen Wachse zählen Bienenwachs, Korkwachs, Montanwachse und Carnaúbawachs.

Zu den für Fettungsmittel geeigneten synthetischen Wachsen zählen:

- Polyethylenwachse und Ethylencopolymerwachse, wie sie beispielsweise durch radikalische Polymerisation von Ethylen oder radikalische Copolymerisation von Ethylen mit beispielsweise (Meth)acrylsäure oder durch Ziegler-Natta-Katalyse erhältlich sind;
- Polyisobutylenwachse
- Paraffingemische, d.h. Gemische von Kohlenwasserstoffen, die 12 oder mehr Kohlenstoffatome aufweisen und üblicherweise einen Schmelzpunkt im Bereich von 25 bis 45 °C aufweisen. Derartige Paraffingemische können beispielsweise in Raffinerien oder Crackern anfallen und sind dem Fachmann als Paraffingatsch und Sasolwachse bekannt; sowie
- Montanesterwachse.

Zu den für Fettungsmittel geeigneten synthetischen Ölen zählen insbesondere Weißöl, Paraffinöl, funktionalisierte Paraffine wie beispielsweise chlorierte oder sulfochlorierte Paraffine sowie Polyalkylenglykole wie beispielsweise Polyethylenglykol.

Zu den für Fettungsmittel geeigneten natürlichen Fetten zählen insbesondere bei Zimmertemperatur feste native Triglyceride wie Lanolin, Schellackwachs sowie deren Gemische.

Beispiele für Polyisobuten basierte Fettungsmittel sind in WO 03/023070 beschrieben.

Weiter Beispiele für Fettungsmittel sind in WO 03/023069 beschrieben.

Neben der Kohlenwasserstoffbasis können Fettungsmittel auch oberflächenaktive Substanzen enthalten. Hierzu zählen alle in Fettungsmitteln, Gerbstoffen, Hydrophobiermitteln und in anderen Hilfsmitteln für die Lederherstellung enthaltenen Emulgatoren. Die oberflächenaktiven Substanzen können nichtionischer, anionischer, kationischer oder auch zwitterionischer Natur sein. Zweckmässigerweise werden in den erfindungsgemässen Fettungsmitteln nichtionische oder anionische Substanzen als Emulgatoren eingesetzt, vorzugsweise Fettalkohole (d. h. Alkoholgemische mit 10 bis 25 C-Atomen) oder oxalkylierte Fettalkohole mit 5 bis 100 Alkylenoxidgruppen als nichtionische Emulgatoren oder deren Sulfate oder Phosphate als anionische Emulgatoren, insbesondere die Natrium, Kalium- oder Ammoniumsalze der anionischen Emulgatoren.

Als Hydrophobiermittel können im erfindungsgemäßen Verfahren alle für die Lederherstellung bekannten Hydrophobiermittel eingesetzt werden, insbesondere handelsübliche Systeme, wie sie in M. Hollstein: Bibliothek des Leders, Band 4 – Entfetten, Fetten, Hydrophobieren von Leder, 1983 beschrieben werden.

Die kommerziel verfügbaren Produkte enthalten insbesondere eine oder mehrere der im folgenden aufgeführten Komponenten:

- Copolymere von alpha-Olefinen mit Dicarbonsäureanhydriden wie Maleinsäureanhydrid
- 2. Paraffine
- 3. Weißöle
- 4. einfache Silicone
- 5. funktionalisierte Silikone
- 6. Emulgatoren

Desweiteren können Hydrophobiermittel sämtliche Komponenten enthalten, die für Fettungsmittel beschrieben sind.

Neben anderen Fettungsmittelbestandteilen sind siliconbasierte Hydrophobiermittel und Hydrophobiermittel auf der Basis von Copolymeren von alpha-Olefinen mit Dicarbonsäureanhydriden umfangreich beschrieben worden, z.B. in EP-A 213480, WO 95/22627, WO 98/04748, EP-A 1087021 und WO 01/68584. Weitere Beispiele für Hydrophobiermittel findet man in WO 93/17130 und EP-A 372746.

20

25

Art und Menge von eingesetzten, Gerbmitteln, Fettungsmitteln und Hydrophobiermitteln hängen von der Art des herzustellenden Lederartikels, der Art der Gerbung (Mineralgerbung oder metallfreie Gerbung), dem gewünschtem haptischem Profil und gefordertem physikalischem Verhalten in an sich bekannter Weise ab.

5

Dementsprechend setzt man zur Herstellung des Leders Gerbstoffe in den folgenden Mengen ein:

Polymergerbstoff (als Lösung eingestellt) in Mengen bis zu 20 Gew.-%, häufig 3-8 Gew.% und/oder

10 Synthane (als Pulver gerechnet) in Mengen bis zu 30 Gew.-%, häufig 4-12 Gew.-%, und/oder

Harzgerbstoff (als Pulver gerechnet) bis zu 15 Gew.-%, häufig 3-6 Gew.-% und/oder bis zu 30 Gew.% vegetabilem Gerbstoff, häufig 4-12 Gew%

wobei die Gesamtmenge an Gerbstoff üblicherweise bis 40 Gew.-%, z.B. 4 bis 40 Gew.-% und häufig 10 bis 40 Gew.-% beträgt, wobei alle Angaben auf das Feuchtgewicht des Leders bezogen sind.

5

20

25

Fettungs und Hydrophobiermittel werden üblicherweise in den folgenden Mengen eingesetzt: bis zu 20 Gew.-% Fettungsmittel, häufig 6-12 Gew.-% und bis zu 20 Gew.-% Hydrophobiermittel, häufig 4-8 Gew.-%, jeweils auf das Feuchtgewicht des Leders bezogen.

Die Färbung kann sowohl einstufig als auch in 2 Stufen durchgeführt werden. Bei einer zweistufigen Färbung wird man zunächst in einer ersten Stufe das Leder mit der farbstoffhaltigen Flotte bei pH-Werten unterhalb 7,5, z.B. pH 3 bis 7,4 und vorzugsweise bei pH-Werten im Bereich von 4 bis 7,4 behandeln. Dieser Schritt dient zur gleichmäßigen Verteilung des Farbstoffs im Lederquerschnitt. Anschließend wird man in der zweiten Stufe bei pH-Werten von wenigstens 8, z.B. 8 bis 11, insbesondere 8,5 bis 10,5 und speziell 8,5 bis 10 den Farbstoff in der oben beschriebenen Weise fixieren. Es ist auch möglich die Färbung in einem Einstufenverfahren durchzuführen ohne eine Verteilungsstufe der Fixierstufe vorzuschalten.

35

40

30

Gegebenenfalls wird man im Anschluss an die Färbung einen Waschprozess durchführen, um nicht chemischen gebundenen Farbstoff sowie im Farbstoff enthaltene Verunreinigungen, beispielsweise Farbstoffe, die keine Gruppe A enthalten, zu entfernen. Dieser Waschprozess ist jedoch nicht zwingend erforderlich, da in vielen Fällen bereits eine quantitative oder nahezu quantitative Fixierung des Farbstoffs vorliegt. Sofern man einen Waschprozess nachschaltet, wird man nach dem Färben das Leder 1 oder mehrere Male, z.B. 1 bis 6 mal und insbesondere 1 bis 4 mal mit Wasser waschen. Die Menge an Wasser wird in der Regel nicht mehr als 300 Gew.-%, bezogen auf das Falzgewicht des Halbfertigprodukts, z.B. 100 bis 300 Gew.-% betragen. Die Wasch-

10

20

25

30

35

38

dauer des einzelnen Waschschritts wird üblicherweise 5 bis 60 min. und insbesondere 10 bis 30 min. betragen.

Im Waschprozeß können auch nichtionische, anionische, kationische oder auch zwitterionische Hilfsmittel eingesetzt werden. Bevorzugt sind handelsübliche ionische Hilfsmittel z.B auf Basis von Polyvinylformamiden, Polyvinylpyrollidonen, Vinylpyrollidon/Vinylimidazol- Copolymeren oder auf Kondensaten von Dicarbonsäure oder Dicarbonsäureanhydride mit Aminen oder von Napthalinsulfonsäure mit Formaldehyd basieren können. Derartige Hilfsmitte werden beispielsweise in EP 0459 168, EP 0 520 182, US 5,342,916 und US 5,186 846 beschrieben.

Der Einsatz von Hilfsmitteln ist dann besonders sinnvoll, wenn im Farbstoff farbige Nebenprodukte enthalten sind oder wenn während der Fixierung farbige Nebenprodukte entstanden sind. Die Hilfsmittel stellen sicher, daß nicht mehr als dreimal, möglicherweise nur zweimal oder im Idealfall nur einmal gewaschen werden muß, um alle farbigen Nebenkomponenten quantitativ oder nahezu quantitav zu entfernen.

Die Lederfärbung inklusive Nachgerbung, Fettung und Nachbehandlung erfolgt im übrigen in an sich bekannter Weise, beispielsweise durch Färben im Walkfass oder in der Haspel. Derartige Verfahren sind ausführlich im Stand der Technik beschrieben, z.B. in: "Bibliothek des Leders", Band 3 (Gerbmittel, Gerbung und Nachgerbung) [1985], Band 4 (Entfetten, Fetten und Hydrophobieren bei der Lederherstellung) [1987] & Band 5 (Das Färben von Leder) [1987] Umschau Verlag; "Leather Technicians Handbook", 1983, von J. H. Sharphouse, publiziert von Leather Producers Association; und "Fundamentals of Leather Manufacturing", 1993, von E. Heidenmann, publiziert von Eduard Roether KG.

Die Färbung wird üblicherweise nach der Vorgerbung, d.h. vor, während oder nach der Nachgerbung durchgeführt. Die Färbung kann sowohl im gleichen Bad wie die Nachgerbung als auch in einem separaten Bad erfolgen. Vorzugsweise erfolgt die Färbung vor der Nachgerbung. Vorzugsweise erfolgt nach der Färbung und vor der Nachgerbung und Fettung einer oder mehrere der oben beschriebenen Waschschritte.

Dem Färbe- und Nachgerbvorgang schließt sich in der Regel ein Fettungsvorgang an, um die gewünschten haptischen Eigenschaften des Leders einzustellen. Nachgerbung und Fettung können jedoch auch in einem Prozessschritt durchgeführt werden. Der Verfahrensschritt Fettung kann an beliebiger Stelle des Wetendprozesses durchgeführt werden, bevorzugt ist die Durchführung am Ende des Wetendprozesses.

In der Regel wird man sowohl die Fettung als auch die Nachgerbung am Ende des Prozesses durch Absäuern fixieren, d.h. nach Färbung und gegebenenfalls Nachger-

bung und Fettung folgt ein abschliessendes Absäuern. Üblicherweise wird man zum Absäuern den pH Wert des wässrigen Behandlungsbads durch Zugabe einer Säure, insbesondere Ameisensäure, auf einen Wert unterhalb 3,7 einstellen.

Mit dem erfindungsgemäßen Verfahren können grundsätzlich alle Ledertypen, d.h. nicht nachgegerbte Halbfertigprodukte wie Metalloxid-gegerbtes Leder (wet-blue bei Chromoxid-Gerbung und wet-white bei Aluminiumoxid-Gerbung) und organisch, z.B. Aldehyd-gegerbtes Leder (wet-white) bwz. pflanzlich gegerbtes Leder, sowie nachgegerbte Halbfertigprodukte wie Borke oder Crustleder gefärbt werden.

10

Das erfindungsgemäße Verfahren ermöglicht insbesondere die Herstellung von gefärbten Ledern für beliebige Lederartikel, beispielsweise aus den Bereichen Schuh, Bekleidung, Automobil, Handschuh und Möbel. Das erfindungsgemäße Verfahren erlaubt auch die Herstellung von Taschenleder und von Reptilienleder für Accessoirs. Die Einstellung der für den jeweiligen Lederartikel geforderten haptischen, mechanischen und physikalischen Eigenschaften erfolgt in an sich bekannter Weise durch eine für den jeweiligen Artikel geeignete Auswahl von Hilfsmitteln, Fettungsmitteln, Hydrophobiermitteln und Nachgerbstoffen.

Das nach dem erfindungsgemäßigen Verfahren gefärbte Leder zeichnet sich auch bei sehr hoher Farbtiefe durch ein exzellentes Echtheitsniveau aus. Besonders herausragend sind Reibechtheiten und insbesondere Wasch-, Schweiß- und Migrationsechtheiten, was bei konventionell gefärbten Ledern nicht oder nur in sehr viel geringerem Ausmaß erreicht werden kann. Die nach dem erfindungsgemäßen Verfahren gefärbten Leder zeigen in Migrationsechtheitstests selbst bei hoher Feuchtigkeit und hohen Temperaturen, d.h. oberhalb 50° C, z.B. 60 bis 100°C keine oder nahezu keine Anschmutzung des Kontaktmaterials.

Qualitative und quantitative Bestimmung über UV/VIS Spektroskopie und HPLC zeigen, dass mit den erfindungsgemäßen Farbstoffen Fixiergrade zwischen 85 und 100% und häufig oberhalb 90 % erreicht werden.

Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne sie einzuschränken:

35 Herstellungsbeispiele:

Beispiel 1a:

$$H_2N$$
 H_2N
 HO_3S
 O_2N
 O_2N
 O_2N
 O_2N
 O_3S
 O_2N
 O_2N
 O_3S
 O_2N
 O_3S
 O_3H
 O_3S
 O_3H
 O_3S
 O_3H
 O_3S
 O_3H
 O_3S
 O_3H

1) 1 mol MSP (3-(2-Sulfatoethylsulfonyl)-6-aminobenzolsulfonsäure) wurde im Eiswasser suspendiert und bei pH < 1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert. 1 mol Gammasäure wurde in 25 gew.-%iger Natronlauge gelöst und dann durch Zugabe von 21 gew.-%iger Salzsäure der pH-Wert unter 1 gestellt. Die Gammasäure fällt aus. Zu dieser Suspension wurde die diazotierte MSP eingestürzt. Die Reaktionsmischung wurde bei pH < 1 eine Stunde nachgerührt bis kein diazotiertes MSP bzw. freie Gammasäure mehr erkennbar war. Danach wurde der pH-Wert durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung auf 3 bis 8 angehoben.

2) 1 mol 4,6-Dinitro-2-aminophenol wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH < 1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde 0,20-0,30 mol Chrom(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgesalzen und abgesaugt.

In zu Beispiel 1a analoger Weise können die Metallkomplexe der Farbstoffen der allgemeinen Formel Dk-N=N-Napht-N=N-A erhalten werden (= Farbstoffe der allgemeinen Formel II mit r = k = 0, n=1), worin Dk für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39 bis DK41 oder DK58 oder für einen von A1 bis A12 abgeleiteten Rest steht, Napht für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N- erfolgt in ortho-Position zur Aminogruppe der Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14. Beispiele hierfür sind in der nachfolgenden Tabelle 1 angegeben.

Beispiel 2a:

10

15

25

Die Umsetzung erfolgte nach der in Beispiel 1a beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Chromsalzen folgte.

In zu Beispiel 2a analoger Weise können die Farbstoffe der allgemeinen Formel Dk-N=N-Napht-N=N-A erhalten werden (= Farbstoffe der allgemeinen Formel II mit r = k = 0, n=1), worin Dk für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest steht, Napht für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht und A einen der Reste A1 bis A12 bedeutet.
Die Kupplung des Restes A-N=N- erfolgt in ortho-Position zur Aminogruppe der Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14. Beispiele hierfür sind in der nachfolgenden Tabelle 1 angegeben.

Tabelle 1:

Beispiel-Nr.	Dk	Napht	Α	Metall
1a	DK5	DK42	A1	Cr
1b	DK41	DK42	A1	Cr
1c	DK41	DK44	A1	Cr
1d	DK5	DK44	A1	Cr
1e	DK3	DK44	A1	Cr
1f	DK5	DK43	A7	Cr
2a	DK5	DK42	A1	-
2b	DK5	DK44	A1	-
2c	DK12	DK44	A1	-
2d	A1	DK59	A1	-
2e	A1	DK44	A1	-
2f	A7	DK44	A7	
2g	A4	DK44	A4	-
2h	A6	DK44	A6	-
2i	A1	DK44	A6	-
	A1	DK45	A1	-
2k	A6	DK45	A6	-

Beispiel 3:

15

20

25

42

1) 1 mol 4,6-Dinitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert. 1 mol Gammasäure wurde in 25 gew.-%iger Natronlauge gelöst und dann durch Zugabe von 21 gew.-%iger Salzsäure der pH-Wert unter 1 gestellt. Die Gammasäure fällt aus. Zu dieser Suspension wurde die diazotierte 4,6-Dinitro-2-aminophenol eingestürtzt. Die Reaktionsmischung wurde bei pH<1 eine Stunde nachgerührt bis kein diazotiertes 4,6-Dinitro-2-aminophenol bzw. freie Gammasäure erkennbar war. Danach wurde der pH-Wert durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung auf 3 bis 8 angehoben.

2) 1 mol MSP wurde im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde wurde NaCl zugegeben und der dadurch ausgefallener Farbstoff abgesaugt.

In zu Beispiel 3 analoger Weise können die Farbstoffe der allgemeinen Formel Dk-N=N-Napht-N=N-A bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel II mit r = k = 0, n=1), worin Dk für einen von den Diazokomponenten DK1 bis DK83 abgeleiteten Rest steht, Napht für einen der bivalenten Reste II-2, II-4, II-6, II-10, II-12 und II-14 steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N- erfolgt in ortho-Position zur Hydroxylgruppe der Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14.

Beispiel 4a:

$$HO_3SO - OSO_3H$$
 $HO_3SO - OSO_3H$
 SO_3H
 SO_3H

Methode A

5

15

20

- 1) 1 mol Trichlor-1,3,5-triazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Suspension von Trichlortriazin bei einem pH-Wert von 1-4 zugetropft und 30 min nachgerührt.
- 2) 1 mol MSP wurde im Eiswasser suspendiert und zu der in Schritt 1) erhaltenen Re aktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkar bonat zwischen 5-8 gestellt und 1 Stunde nachgerührt.
 - 3) 1 mol 5-Nitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde 0,20-0,30 mol Chrom(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgesalzen und abgesaugt.

Methode B

- 1) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Suspension von Trichlortriazin bei einem pH-Wert von 1-4 zugetropft und 30 min nachgerührt.
- 25 2) 1 mol 5-Nitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.</p>
- 3) 1 mol MSP wurde im Eiswasser suspendiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5-8 gestellt und 1 Stunde nachgerührt. Nach beendeter Umsetzung wurde 0,20-0,30 mol Chrom(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stun-

de nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgesalzen und abgesaugt.

In zu Beispiel 4a analoger Weise können die Metallkomplexe von Farbstoffen der allgemeinen Formel Dk-N=N-Napht-NH-Tr-NH-A erhalten werden (= Farbstoffe der allgemeinen Formel V mit r = p = 0), worin Dk für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, Dk39-Dk41, Dk58 abgeleiteten Rest steht, Napht für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11 und II-13 steht, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes Dk-N=N- erfolgt in ortho-Position zur Hydroxylgruppe der Reste II-1, II-3, II-5, II-7, II-9, II-11 und II-13.

Beispiel 5a:

5

5

10

Die Umsetzung erfolgte nach der in Beispiel 4a beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Chromsalzen folgte.

Beispiel 5b:

$$HO_3S$$
 HO_3S
 HO_3S
 HO_3S
 HO_3S
 HO_3S

20

25

30

Methode A:

- 1) 1 mol 5-Nitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und mit einer Lösung von 1 mol Clevesäure-7 in 25 gew.-%iger Natronlauge umgesetzt. Der pH-Wert wurde unter 3 gehalten.
- 2) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert. Zu dieser Suspension tropft man die in der Schritt 1) erhaltene Reaktionsmischung bei einem pH-Wert von 1-4 und wird es 30 min nachgerührt.
- 3) 1 mol MSP wurde im Eiswasser suspendiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkar-

bonat zwischen 5-8 gestellt und 1 Stunde nachgerührt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

Methode B:

- 1) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert.
 1 mol MSP wurde im Eiswasser suspendiert und zu der Suspension von Trichlortriazin bei einem pH-Wert von 1-4 zugegeben und 30 min nachgerührt.
- 2) 1 mol 5-Nitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit
 überschüssigem Natriumnitrit und Salzsäure diazotiert und mit einer Lösung von 1 mol Clevesäure-7 in 25 gew.-%iger Natronlauge umgesetzt. Der pH-Wert wurde unter 3 gehalten.
- 3) Das in Schritt 2) erhaltenen Produkt wurde zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5-8 gestellt und 1 Stunde nachgerührt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.
 - In zu den Beispielen 5a und 5b analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-Napht-NH-Tr-NH-Dk² bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel V mit r = p = 0), worin Dk¹ und Dk² jeweils für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Napht für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 und II-16 steht, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes Dk¹-N=N- erfolgt in ortho-Position zur Hydroxylgruppe der Reste II-1, II-3, II-5, II-7, II-9, II-11 und II-13.

20

25

Beispiel 6a:

Methode A:

- 1) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert. 1 mol Gammasäure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Suspension von Trichlortriazin bei einem pH-Wert von 1-4 zugetropft und 30 min nachgerührt.
- 2) 1 mol Anthranilsäure wurde im Eiswasser suspendiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5 und 8 gestellt und 1 Stunde nachgerührt.
- 3) 1 mol H-Säure wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.
- 4) 1 mol MSP wurde im Eiswasser suspendiert, bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

20 Methode B:

- 1) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert. 1 mol Gammasäure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Suspension von Trichlor-triazin bei einem pH-Wert von 1 bis 4 zugetropft und 30 min nachgerührt.
- 2) 1 mol Anthranilsäure wurde im Eiswasser suspendiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5 und 8 gestellt und 1 Stunde nachgerührt.
- 3) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und mit 1,1-1,5 mol Acetanhydrid acetyliert.
- 4) 1 mol MSP wurde im Eiswasser suspendiert und bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von Natrumkarbonat zwischen 4 und 7 gestellt und gehalten. Nach beendeter Kupplung wurde der pH-Wert durch Zugabe von 21 gew.%iger Salzsäure unter 1 gestellt und die Reaktionsmischung wurde auf 85-95°C erwärmt. Hierbei wurde die Acetylgruppe abgespalten.

35

5) Das in Schritt 4) erhaltene Produkt wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von Natrumkarbonat zwischen 4 und 7 gestellt und gehalten. Nach beendeter Umsetzung wurde die Rektionsmischung ultrafiltriert und getrocknet.

In zu Beispiel 6a analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-P-N=N-Napht¹-NH-Tr-NH-Dk bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel V mit r = 0, p = 1 und P = Napht²), worin Dk für einen von den Diazokomponenten DK1 bis Dk83 abgeleiteten Rest steht, P und Napht¹ unabhängig voneinander für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 und II16 oder für einen von den Diazokomponenten DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, oder DK39 abgeleiteten Rest stehen, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Reste A-N=N- und A-N=N-Napht²-N=N- erfolgt in ortho-Position zur Hydroxylgruppe in Napht² bzw. Napht¹. Beispiele hierfür sind in der Nachfolgenden Tabelle 2 angegeben.

Tabelle 2:

20

5

10

Beispiel Nr.	Α	Р	Napht ¹	Dk	Metall
6a	A1	DK44	DK42	DK4	-
6b	A1	DK39	DK43	DK5	Cr
6c	A1	DK4	DK42	DK17	Cr
6d	A1	DK27	DK59	DK4	Cr
6e	A7	DK44	DK42	DK4	-
6f	A2	DK44	DK42	DK4	-
6g	A4	DK44	DK42	DK4	-
6h	A6	DK27	DK59	DK4	-

Beispiel 7:

- 1) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert und zu dieser Suspension wurde 1 mol Paraminsäure bei einem pH-Wert von 1-4 zugegeben und 30 min nachgerührt.
- 2) 1 mol Anthranilsäure wurde im Eiswasser suspendiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5 und 8 gestellt und 1 Stunde nachgerührt. Der Reaktionsprodukt wurde durch Zugabe von überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert.</p>

10

3) 1 mol K-Säure wurde in 25 gew.-%iger Natronlauge gelöst und und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde unter 2 gehalten.

4) 1 mol MSP wurde im Eiswasser suspendiert und durch Zugabe von überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde die diazotierte MSP zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

20

25

In zu Beispiel 7 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-R-NH-Tr-NH-Dk bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel V mit p = 0, r = 1), worin Dk für einen von den Diazokomponenten DK1 bis DK83 abgeleiteten Rest steht, Napht¹ einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht, R für DK21, worin Q = H, oder für einen von Kk5 und Kk14 bis Kk16 abgeleiteten bivalenten Rest steht, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Rest A-N=N- erfolgt in ortho-Position zur Hydroxylgruppe in Napht¹.

Beispiel 8:

35

1) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und mit einer wässrigen Lösung von 1 mol Metamin umgesetzt. Der pH-Wert wurde unter 3 gehalten.

- 2) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert und zu dieser Suspension wurde die bei Schritt 1) erhaltene Reaktionsmischung bei einem pH-Wert von 1 bis 4 zugegeben und 30 min gegeben.
- 3) 1 mol Paraminsäure wurde im Eiswasser suspendiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5-8 gestellt und es wurde 1 Stunde nachgerührt. Das Reaktionsprodukt wurde durch Zugabe von überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert.</p>

4) 0,5 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde für eine Stunde unter 2 gehalten, danach durch Zugabe von Natriumkarbonat zwischen 3-8 gestellt und eine Stunde gehalten. Nach beendeter Umsetzung wurde die Rektionsmischung ultrafiltriert und getrocknet.

In zu Beispiel 8 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-R-NH-Tr-NH-P-N=N-Napht-N=N-P-NH-Tr-NH-R-N=N-A bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel X mit Dk¹ = Dk² = A, k=n=1), worin Napht für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht, P für DK21, worin Q = H, oder für einen von Kk5 und Kk14 bis Kk16 abgeleiteten bivalenten Rest steht, R für einen von DK22 bis DK25 abgeleiteten bivalenten Rest oder für einen bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 steht, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist und A einen der Reste A1 bis A12 bedeutet.

Beispiel 9a:

10

20

25

30

1) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu einer Suspension von 1 mol Anthranilsäure und Eiswasser gegeben. Die Reaktionsmischung wurde bei pH<2 und T<10°C 1 Stunde nachgerührt.

- 2) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und mit einer Lösung von 1 mol Clevesäure-7 in 25 gew.-%iger Natronlauge umgesetzt. Der pH-Wert wurde unter 3 gehalten.
- 3) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert und zu dieser Suspension wurde die bei Schritt1) erhaltenen Reaktionsmischung bei einem pH-Wert von 1 bis 4 zugegeben und 30 min nachgerührt.
- 4) Das in Schritt 2) erhaltene Produkt wurde zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5-8 gestellt und es wurde 1 Stunde nachgerührt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 9a analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-P-NH-Tr-NH-R-N=N-Dk² bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel VI), worin Dk¹ und Dk² jeweils für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, P und R für einen von DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, DK39 oder DK60 bis DK83 abgeleiteten bivalenten Rest oder für einen bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 stehen, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Rest A-N=N- erfolgt in ortho-Position zur Hydroxylgruppe in II-1, II-3, II-5, II-7, II-9, II-11 und II-13. Beispiele für derartige Farbstoffe sind in Tabelle 3 angegeben.

5

.10

20

Tabelle 3:

	P	R	Dk ²	Metall
A1	DK46	DK4	DK17	-
41	DK42	DK4	DK19	-
DK5	DK42	DK4	A1	Cr
DK4	DK43	DK4	A1	Co
DK40	DK59	DK22	A1	Cr
DK5	DK44	DK22	A1	Cr
A7	DK46	DK4	DK17	-
DK5	DK42	DK4	A4	Cr
	N1 DK5 DK4 DK40 DK5	DK42 DK5 DK42 DK4 DK43 DK40 DK59 DK5 DK44 A7 DK46	DK42 DK4 DK5 DK42 DK4 DK4 DK43 DK4 DK40 DK59 DK22 DK5 DK44 DK22 A7 DK46 DK4	A1 DK42 DK4 DK19 DK5 DK42 DK4 A1 DK4 DK43 DK4 A1 DK40 DK59 DK22 A1 DK5 DK44 DK22 A1 A7 DK46 DK4 DK17

Beispiel 10:

10

15

20

30

1) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert und zu dieser Suspension wurde 1 mol H-Säure die vorher in 25 gew.-%iger Natronlauge gelöst wurde bei einem pH-Wert von 1 bis 4 zugegeben und 30 min nachgerührt.

2) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

3) 0,5 mol 4,4-Diaminodiphenylsulfamid wurde in Wasser suspendiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 10 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht-NH-Tr-NH-Tk-NH-Tr-NH-Napht-N=N-A bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel IX mit DK¹ = Dk² = A), worin Napht für einen bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11 oder II-13 steht, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist, Tk für einen von einer Tetrazokomponenten Tk1 bis Tk20 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Rest A-N=N- erfolgt in ortho-Position zur Hydroxylgruppe in Napht.

Beispiel 11a:

1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol I-Säure wurde

in 25 gew.-%iger Natronlauge gelöst und zu der Lösung des tetrazotierten 4,4-Diaminodiphenylsulfamid getropft. Der pH-Wert wurde hierbei durch Zugabe von Salzsäure unter 3 gehalten.

- 2) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde das Reaktionsgemisch zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
 - 3) 1 mol Metamin wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
 - 4) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert. Zu dieser Suspension wurde 1 mol Anthranilsäure zudosiert und bei einem pH-Wert von 1-4 30 min nachgerührt.
- 5) Das in Schritt 4) erhaltene Produkt wurde zu der in Schritt 3) erhaltenen Reaktions mischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5 und 8 gestellt und 1 Stunde nachgerührt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 11b:

30

$$HO_3SO - O$$
 SO_3H
 H_2N
 SO_3H
 $N=N$
 $N=N$

- 1) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol I-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.
- 2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und zu der in Schritt

20

25

30

35

53

- 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.
- 3) 1 mol Metamin wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.
- 4) 1 mol Trichlortriazin wurde bei einer Temperatur von 0-5°C im Wasser suspendiert.
 Zu dieser Suspension wurde 1 mol Anthranilsäure zudosiert und bei einem pH-Wert
 von 1-4 30 min nachgerührt.
 - 5) Das in Schritt 4) erhaltene Produkt wurde zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Danach wurde der pH-Wert durch Zugabe von Natrumkarbonat zwischen 5 und 8 gestellt und 1 Stunde nachgerührt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu den Beispielen 11a und 11b analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht-N=N-Tk-N=N-P-NH-Tr-NH-Dk bzw. ihre Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel VII mit DK¹ = A), worin Dk für einen von den Diazokomponenten DK1 bis DK83 abgeleiteten Rest steht, Napht für einen bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11 oder II-13 steht, Tr ein 2-Chlor-1,3,5-triazin-4,6-diyl-Rest ist, Tk für einen von einer Tetrazokomponenten Tk1 bis Tk20 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Rest A-N=N- erfolgt bei der in Beispiel 11a angegebenen Reaktionsführung in ortho-Position zur Hydroxylgruppe in Napht und in ortho-Position zur Aminogruppe in Napht bei der in Beispiel 11b angegebenen Reaktionsführung.

Beispiel 12a:

$$HO_3SO - O_1$$
 SO_3H
 $N = N$
 $N = N$

Methode A

1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Lösung des tetrazotierten 4,4-

Diaminodiphenylsulfamid getropft. Der pH-Wert wurde hierbei durch Zugabe von Salzsäure unter 3 gehalten.

- 2) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde das Reaktionsgemisch zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 15 gew.-%iger wässriger Sodalösung zwischen 3 und 8 gehalten.
- 3) 1 mol Metaminsäure wurde zu der in Schritt 2) erhaltenen Reaktionsmischung ge-10 geben und der pH-Wert wurde durch Zugabe von 15 gew.-%iger Sodalösung zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

Methode B:

5

- 1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids getropft. Der pH-Wert wurde unter 3 gehalten.
- 2) 1 mol Metaminsäure wurde zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit 25 und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde die Reaktionsmischung zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.
- In zu Beispiel 12a analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Tk-N=N-Kk erhalten werden (= Farbstoffe der allgemeinen Formel Il mit r = k = 1, n=0), worin Kk für einen von den Kupplungskomponenten Kk1 bis Kk67, DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, 35 DK33, DK36, DK38, DK39 oder DK42 bis DK83 abgeleiteten Rest steht, Napht1 für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht, Tk für einen von einer Tetrazokomponenten Tk1 bis Tk20 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N- erfolgt in ortho-Position zur Hydroxylgruppe in Napht¹. Beispiele hierfür sind in der Tabelle 4 zu-40 sammengestellt.

Tabelle 4

Beispiel Nr.	Α	Napht ¹	Tk	Kk
12a	A1	DK44	Tk18	Kk15
12b	A1	DK44	Tk18	Kk5
12c	A1	DK44	Tk18	Kk2
12d	A1	DK44	Tk18	Kk3
12e	A1	DK44	Tk18	Kk6
12f	A1	DK44	Tk18	Kk1
12g	A1	DK44	Tk18	Kk4
12h	A1	DK44	Tk18	Kk7
12i	A1	DK44	Tk18	Kk9
12j	A1	DK44	Tk18	Kk10
12k	A1	DK44	Tk18	Kk14
121	A1	DK44	Tk18	Kk16
12m	A1	DK44	Tk18	Kk26
12n	A1	DK44	Tk18	Kk27
120	A1	DK44	Tk18	Kk40
12p	A1	DK44	Tk18	Kk46
12q	A1	DK44	Tk18	Kk48
12r	A1	DK44	Tk18	Dk4
12s	A1	DK44	Tk18	Dk11
12t	A1	DK44	Tk18	Dk18
12u	A1	DK44	Tk18	Dk29
12v	A1	DK44	Tk18	Dk30
12z	A1	DK44	Tk18	Dk39
12aa	A1	DK44	Tk16	Kk5
12ab	A1	DK44	Tk16	Kk3
12ac	A1	DK44	Tk16	Kk4
12ad	A1	DK44	Tk16	Dk4
12ae	A1	DK44	Tk19	Kk5
12af	A1	DK45	Tk18	Kk5
12ag	A2	DK44	Tk18	Kk5
12ah	A7	DK44	Tk18	Kk15
12ai	A4	DK44	Tk18	Kk15
12aj	A5	DK45	Tk18	Kk10
12ak	A9	DK45	Tk18	Kk14
12al	A10	DK45	Tk18	Kk16
12am	A11	DK45	Tk18	Kk26

			56	
Beispiel Nr.	Α	Napht ¹	Tk	Kk
12an	A1	DK44	Tk18	Kk11
12ao	A1	A1 DK44		Kk51
12ap	A1	DK44	Tk18	Kk52
12aq	A1	DK44	Tk18	Kk53
12ar	A1	DK44	Tk18	Kk54
12as	A1	DK44	Tk18	Kk55
12at	A1	DK44	Tk18	Kk56
12au	A1	DK44	Tk18	Kk57
12av	A1	DK44	Tk18	Kk58
12aw	A1	DK44	Tk18	Kk59
12ax	A1	DK44	Tk18	Kk60
12ay	A1	DK44	Tk18	Kk61
12az	A1	DK44	Tk18	Kk62
12ba	A1	DK44	Tk18	Kk63
12bb	A1	DK44	Tk18	Kk64
12bc	A1	DK44	Tk18	DK66
12bd	A1	DK45	Tk18	Kk1
12be	A1	DK45	Tk18	Kk2
12bf	A1	DK45	Tk18	Kk3
12bg	A1	DK45	Tk18	Kk4
12bh	A1	DK45	Tk18	Kk6
12bi	A1	DK45	Tk18	Kk7
12bj	A1	DK45	Tk18	Kk10
12bk	A1	DK45	Tk18	Kk11
12bl	A1	DK45	Tk18	Kk14
12bm	A1	DK45	Tk18	Kk15
12bn	A1	DK45	Tk18	Kk16
12bo	A1	DK45	Tk18	Kk51
12bp	A1	DK45	Tk18	Kk53
12bq	A1	DK45	Tk18	Kk54
12br	A1	DK45	Tk18	Kk55
12bs	A1	DK45	Tk18	Kk56
12bt	A1	DK45	Tk18	Kk61
12bu	A1	DK45	Tk18	Kk62
12bv	A1	DK45	Tk18	Kk63
12bw	A1	DK45	Tk18	Kk64
12bx	A1	DK45	Tk18	DK66
12by	A1	DK44	Tk16	Kk10
12bz	A1	DK44	Tk16	Kk11

Beispiel Nr.	Α	Napht ¹	Tk	Kk
12ca	A1	DK44 T		Kk14
12cb	A1	DK44	Tk16	Kk15
12cc	A1	DK44	Tk16	Kk16
12cd	A1	DK44	Tk16	Kk51
12ce	A1	DK44	Tk16	Kk53
12ce	A1	DK44	Tk16	Kk54
12cg	A1	DK44	Tk16	Kk55
12cg 12ch	A1	DK44	Tk16	Kk56
	A1	DK44	Tk16	Kk61
12ci	A1	DK44	Tk16	Kk62
12cj	A1	DK44	Tk16	Kk63
12ck	A1	DK44	Tk16	Kk64
12cl		DK44	Tk16	DK66
12cm	A1	DK44	Tk19	Kk2
12cn	A1		Tk19	Kk3
12co	A1	DK44		Kk10
12cp	A1	DK44	Tk19	Kk11
12cq	A1	DK44	Tk19	Kk14
12cr	A1	DK44	Tk19	
12cs	A1	DK44	Tk19	Kk15
12ct	A1	DK44	Tk19	Kk16
12cu	A1	DK44	Tk19	Kk51
12cv	A1	DK44	Tk19	Kk53
12cw	A1	DK44	Tk19	Kk54
12cx	A1	DK44	Tk19	Kk55
12cy	A1	DK44	Tk19	Kk56
12cz	A1	DK44	Tk19	Kk61
12da	A1	DK44	Tk19	Kk62
12db	A1	DK44	Tk19	Kk63
12dc	A1	DK44	Tk19	Kk64
12dd	A1	DK44	Tk19	DK66
12de	A1	DK44	Tk20	Kk2
12df	A1	DK44	Tk20	Kk3
12dg	A1	DK44	Tk20	Kk5
12dh	A1	DK44	Tk20	Kk10
12di	A1	DK44	Tk20	Kk11
12dj	A1	DK44	Tk20	Kk14
12dk	A1	DK44	Tk20	Kk15
12dl	A1	DK44	Tk20	Kk16
12dm	A1	DK44	Tk20	Kk51

		1	7-51	
Beispiel Nr.	Α	Napht ¹	Tk	Kk
12dn	A1	DK44	Tk20	Kk53
12do	A1	DK44	Tk20	Kk54
12dp	A1	DK44	Tk20	Kk55
12dq	A1	DK44	Tk20	Kk56
12dr	A1	DK44	Tk20	Kk61
12ds	A1	DK44	Tk20	Kk62
12dt	A1	DK44	Tk20	Kk63
12du	A1	DK44	Tk20	Kk64
12dv	A1	DK44	Tk20	DK66
12dw	A1	DK45	Tk16	Kk2
12dx	A1	DK45	Tk16	Kk3
12dy	A1	DK45	Tk16	Kk5
12dz	A1	DK45	Tk16	Kk10
12ea	A1	DK45	Tk16	Kk11
12eb	A1	DK45	Tk16	Kk14
12ec	A1	DK45	Tk16	Kk15
12ed	A1	DK45	Tk16	Kk16
12ee	A1	DK45	Tk16	Kk51
12ef	A1	DK45	Tk16	Kk53
12eg	A1	DK45	Tk16	Kk54
12eh	A1	DK45	Tk16	Kk55
12ei	A1	DK45	Tk16	Kk56
12ej	A1	DK45	Tk16	Kk61
12ek	A1	DK45	Tk16	Kk62
12el	A1	DK45	Tk16	Kk63
12em	A1	DK45	Tk16	Kk64
12en	A1	DK45	Tk16	DK66
12eo	A1	DK45	Tk19	Kk2
12ep	A1	DK45	Tk19	Kk3
12eq	A1	DK45	Tk19	Kk5
12er	A1	DK45	Tk19	Kk10
12es	A1	DK45	Tk19	Kk11
12et	A1	DK45	Tk19	Kk14
12eu	A1	DK45	Tk19	Kk15
12ev	A1	DK45	Tk19	Kk16
12ew	A1	DK45	Tk19	Kk51
12ex	A1	DK45	Tk19	Kk53
12ey	A1	DK45	Tk19	Kk54
12ez	A1	DK45	Tk19	Kk55

m to tal Ma		Napht ¹	Tk	Kk
Beispiel Nr.	A		Tk19	Kk56
12fa	A1	DK45	<u> </u>	
12fb	A1	DK45	Tk19	Kk61
12fc	A1	DK45	Tk19	Kk62
12fd	A1	DK45	Tk19	Kk63
12fe	A1	DK45	Tk19	Kk64
12ff	A1	DK45	Tk19	DK66
12fg	A1	DK45	Tk20	Kk2
12fh	A1	DK45	Tk20	Kk3
12fi	A1	DK45	Tk20	Kk5
12fj	A1	DK45	Tk20	Kk10
12fk	A1	DK45	Tk20	Kk11
12fl	A1	DK45	Tk20	Kk14
12fm	A1	DK45	Tk20	Kk15
12fn	A1	DK45	Tk20	Kk16
12fo	A1	DK45	Tk20	Kk51
12fp	A1	DK45	Tk20	Kk53
12fq	A1	DK45	Tk20	Kk54
12fr	A1	DK45	Tk20	Kk55
12fs	A1	DK45	Tk20	Kk56
12ft	A1	DK45	Tk20	Kk61
12fu	A1	DK45	Tk20	Kk62
12fv	A1	DK45	Tk20	Kk63
12fw	A1	DK45	Tk20	Kk64
12fx	A1	DK45	Tk20	DK66
12fy	A1	DK44	Tk16	Kk65
12fz	A1	DK44	Tk16	Kk66
12ga	A1	DK44	Tk16	Kk67
12gb	A1	DK45	Tk16	Kk65
12gc	A1	DK45	Tk16	Kk66
12gd	A1	DK45	Tk16	Kk67
12ge	A1	DK44	Tk18	Kk65
12gf	A1	DK44	Tk18	Kk66
12gg	A1	DK44	Tk18	Kk67
12gh	A1	DK45	Tk18	Kk65
12gi	A1	DK45	Tk18	Kk66
12gj	A1	DK45	Tk18	Kk67
12gk	A1	DK44	Tk19	Kk65
12gl	A1	DK44	Tk19	Kk66
12gm	A1	DK44	Tk19	Kk67

Beispiel Nr.	Α	Napht1	Tk	Kk
12gn	A1	DK45	Tk19	Kk65
12go	A1	DK45	Tk19	Kk66
12gp	A1	DK45	Tk19	Kk67
12gq	A1	DK44	Tk20	Kk65
12gr	A1	DK44	Tk20	Kk66
12gs	A1	DK44	Tk20	Kk67
12gt	A1	DK45	Tk20	Kk65
12gu	A1	DK45	Tk20	Kk66
12gv	A1	DK45	Tk20	Kk67

Beispiel 12gw:

Methode A

- 1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Lösung des tetrazotierten 4,4-Diaminodiphenylsulfamid getropft. Der pH-Wert wurde hierbei durch Zugabe von Salzsäure unter 3 gehalten.
- 2) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde das Reaktionsgemisch zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 15 gew.-%iger Sodalösung zwischen 3 und 8 gehalten.

10

15

3) 0,45 mol Metaminsäure und 0,55 mol 2,4-Diamino-1-methoxybenzol wurde gleichzeitig zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 15 gew.-%iger Sodalösung zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde die Reaktionsmischung ultrafiltriert und sprühgetrocknet.

Methode B:

- 1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und
 Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids getropft. Der pH-Wert wurde unter 3 gehalten.
- 2) 0,45 mol Metaminsäure und 0,55 mol 2,4-Diamino-1-methoxybenzol wurden gleich zeitig zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

3) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde die Reaktionsmischung zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 12gw analoger Weise können die in Tabelle 4a angegebenen Farbstoffmischungen der allgemeinen Formel A-N=N-Napht¹-N=N-Tk-N=N-Kk (Formel IIb mit n
= 0) hergestellt werden, wobei die Kupplung des Restes A-N=N- ortho zur Hydroxylgruppe in Napht¹ erfolgt.

Tabelle 4a:

Beispiel Nr.	Α	Napht ¹	Tk	Kk *)
12gw	A1	DK44	Tk18	Kk15:Kk55 (45:55)
12gz	A1	DK44	Tk18	Kk15:Kk56 (30:70)
12ha	A1	DK44	Tk18	Kk15:Kk66 (80:20)
12hb	A1	DK44	Tk18	Kk5:Kk10 (10:90)
12hc	A1	DK44	Tk18	Kk5:Kk14 (15:85)
12hd	A1	DK44	Tk18	Kk5:Kk15 (60:40)
12he	A1	DK44	Tk18	Kk5:Kk55 (75:25)
12hf	A1	DK44	Tk18	Kk5:Kk56 (40:60)
12hh	A1	DK44	Tk18	Kk5:Kk67 (20:80)
12hi	A1	DK44	Tk18	Kk5:DK66 (50:50)
12hj	A1	DK45	Tk18	Kk15:Kk55 (45:55)
12hk	A1	DK45	Tk18	Kk15:Kk56 (30:70)
12hl	A1	DK45	Tk18	Kk15:Kk66 (80:20)
12hm	A1	DK45	Tk18	Kk5:Kk10 (10:90)
12hn	A1	DK45	Tk18	Kk5:Kk14 (15:85)
12ho	A1	DK45	Tk18	Kk5:Kk15 (60:40)
12hp	A1	DK45	Tk18	Kk5:Kk55 (75:25)
12hq	A1	DK45	Tk18	Kk5:Kk56 (40:60)
12hr	A1	DK45	Tk18	Kk5:Kk67 (20:80)
12hs	A1	DK45	Tk18	Kk5:DK66 (50:50)
12ht	A1	DK44	Tk16	Kk5:Kk15 (45:55)
12hu	A1	DK44	Tk16	Kk15:Kk55 (45:55)
12hv	A1	DK44	Tk19	Kk15:Kk55 (45:55)
12hw	A1	DK44	Tk20	Kk15:Kk55 (45:55)

* Der in Klammern angegebene Wert gibt das Molverhältnis der jeweiligen Kupplungskomponenten zueinander an.

Beispiel 13a:

5

15

20

- 1) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.
- 2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.
- 3) 1 mol Metaminsäure wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 13a analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Tk-N=N-Kk erhalten werden (= Farbstoffe der allgemeinen Formel II mit r = k = 1, n=0), worin Kk für einen von den Kupplungskomponenten Kk1 bis KK64, DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, DK39 oder DK42 bis DK83 abgeleiteten Rest steht, Napht für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht, Tk für einen von einer Tetrazokomponenten Tk1 bis Tk20 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N- erfolgt in ortho-Position zur Aminogruppe in Napht¹. Beispiele hierfür sind in der nachfolgenden Tabelle 5 angegeben.

Tabelle 5:

35

Beispiel Nr.	Α	Napht ¹	Tk	Kk

			63	
Beispiel Nr.	Α	Napht ¹	Tk	Kk
13a	A1	DK44	Tk18	Kk15
13b	A1	DK44	Tk18	Kk5
13c	A1	DK44	Tk18	Kk2
13d	A1	DK44	Tk18	Kk3
13e	A1	DK44	Tk18	Kk6
13f	A1	DK44	Tk18	Kk1
13g	A1	DK44	Tk18	Kk4
13h	A1	DK44	Tk18	Kk7
13i	A1	DK44	Tk18	Kk9
13j	A1	DK44	Tk18	Kk10
13k	A1	DK44	Tk18	Kk14
131	A1	DK44	Tk18	Kk16
13m	A1	DK44	Tk18	Kk26
13n	A1	DK44	Tk18	Kk27
130	A1	DK44	Tk18	Kk40
13p	A1	DK44	Tk18	Kk46
13q	A1	DK44	Tk18	Kk48
13r	A1	DK44	Tk18	Dk4
13s	A1	DK44	Tk18	Dk11
13t	A1	DK44	Tk18	Dk18
13u	A1	DK44	Tk18	Dk29
13v	A1	DK44	Tk18	Dk30
13z	A1	DK44	Tk18	Dk39
13aa	A1	DK44	Tk16	Kk5
13ab	A1	DK44	Tk16	Kk3
13ac	A1	DK44	Tk16	Kk4
13ad	A1	DK44	Tk16	Dk4
13ae	A1	DK44	Tk19	Kk5
13af	A1	DK45	Tk18	Kk5
13ag	A2	DK44	Tk18	Kk5
13ah	A7	DK44	Tk18	Kk15
13ai	A4	DK44	Tk18	Kk15
13aj	A1	DK44	Tk16	Kk15
13ak	A1	DK44	Tk16	Kk34
13al	A7	DK44	Tk18	Kk3
13am	A7	DK44	Tk18	Kk5
13an	A6	DK45	Tk18	Kk10
13ao	A8	DK45	Tk18	Kk14
13ap	A11	DK45	Tk18	Kk16

			64	
Beispiel Nr.	Α	Napht ¹	Tk	Kk ·
13aq	A12	DK45	Tk18	Kk26
13ar	A1	DK44	Tk18	Kk11
13as	A1	DK44	Tk18	Kk51
13at	A1	DK44	Tk18	Kk52
13au	A1	DK44	Tk18	Kk53
13av	A1	DK44	Tk18	Kk54
13aw	A1	DK44	Tk18	Kk55
13ax	A1	DK44	Tk18	Kk56
13ay	A1	DK44	Tk18	Kk57
13az	A1	DK44	Tk18	Kk58
13ba	A1	DK44	Tk18	Kk59
13bb	A1	DK44	Tk18	Kk60
13bc	A1	DK44	Tk18	Kk61
13bd	A1	DK44	Tk18	Kk62
13be	A1	DK44	Tk18	Kk63
13bf	A1	DK44	Tk18	Kk64
13bg	A1	DK44	Tk18	DK66
13bh	A1	DK45	Tk18	Kk1
13bi	A1	DK45	Tk18	Kk2
13bj	A1	DK45	Tk18	Kk3
13bk	A1	DK45	Tk18	Kk4
13bl	A1	DK45	Tk18	Kk6
13bm	A1	DK45	Tk18	Kk7
13bn	A1	DK45	Tk18	Kk10
13bo	A1	DK45	Tk18	Kk11
13bp	A1	DK45	Tk18	Kk14
13bq	A1	DK45	Tk18	Kk15
13br	A1	DK45	Tk18	Kk16
13bs	A1	DK45	Tk18	Kk51
13bt	A1	DK45	Tk18	Kk53
13bu	A1	DK45	Tk18	Kk54
13bv	A1	DK45	Tk18	Kk55
13bw	A1	DK45	Tk18	Kk56
13bx	A1	DK45	Tk18	Kk61
13by	A1	DK45	Tk18	Kk62
13bz	A1	DK45	Tk18	Kk63
13ca	A1	DK45	Tk18	Kk64
13cb	A1	DK45	Tk18	DK66
13cc	A1	DK44	Tk16	Kk10

			65	
Beispiel Nr.	Α	Napht ¹	Tk	Kk
13cd	A1	DK44	Tk16	Kk11
13ce	A1	DK44	Tk16	Kk14
13cf	A1	DK44	Tk16	Kk16
13cg	A1	DK44	Tk16	Kk51
13ch	A1	DK44	Tk16	Kk53
13ci	A1	DK44	Tk16	Kk54
13cj	A1	DK44	Tk16	Kk55
13ck	A1	DK44	Tk16	Kk56
13cl	A1	DK44	Tk16	Kk61
13cm	A1	DK44	Tk16	Kk62
13cn	A1	DK44	Tk16	Kk63
13co	A1	DK44	Tk16	Kk64
13cp	A1	DK44	Tk16	DK66
13cq	A1	DK44	Tk19	Kk2
13cr	A1	DK44	Tk19	Kk3
13cs	A1	DK44	Tk19	Kk10
13ct	A1	DK44	Tk19	Kk11
13cu	A1	DK44	Tk19	Kk14
13cv	A1	DK44	Tk19	Kk15
13cw	A1	DK44	Tk19	Kk16
13cx	A1	DK44	Tk19	Kk51
13cy	A1	DK44	Tk19	Kk53
13cz	A1	DK44	Tk19	Kk54
13da	A1	DK44	Tk19	Kk55
13db	A1	DK44	Tk19	Kk56
13dc	A1	DK44	Tk19	Kk61
13dd	A1	DK44	Tk19	Kk62
13de	A1	DK44	Tk19	Kk63
13df	A1	DK44	Tk19	Kk64
13dg	A1	DK44	Tk19	DK66
13dh	A1	DK44	Tk20	Kk2
13di	A1	DK44	Tk20	Kk3
13dj	A1	DK44	Tk20	Kk5
13dk	A1	DK44	Tk20	Kk10
13dl	A1	DK44	Tk20	Kk11
13dm	A1	DK44	Tk20	Kk14
13dn	A1	DK44	Tk20	Kk15
13do	A1	DK44	Tk20	Kk16
13dp	A1	DK44	Tk20	Kk51

Deignial Nig	A	Napht ¹	Tk	Kk
Beispiel Nr.	<u></u>	DK44	Tk20	Kk53
13dq	A1		Tk20	Kk54
13dr	A1	DK44		Kk55
13ds	A1	DK44	Tk20	
13dt	A1	DK44	Tk20	Kk56
13du	A1	DK44	Tk20	Kk61
13dv	A1	DK44	Tk20	Kk62
13dw	A1	DK44	Tk20	Kk63
13dx	A1	DK44	Tk20	Kk64
13dy	A1	DK44	Tk20	DK66
13dz	A1	DK45	Tk16	Kk2
13ea	A1	DK45	Tk16	Kk3
13eb	A1	DK45	Tk16	Kk5
13ec	A1	DK45	Tk16	Kk10
13ed	A1	DK45	Tk16	Kk11
13ee	A1	DK45	Tk16	Kk14
13ef	A1	DK45	Tk16	Kk15
13eg	A1	DK45	Tk16	Kk16
13eh	A1	DK45	Tk16	Kk51
13ei	A1	DK45	Tk16	Kk53
13ej	A1	DK45	Tk16	Kk54
13ek	A1	DK45	Tk16	Kk55
13el	A1	DK45	Tk16	Kk56
13em	A1	DK45	Tk16	Kk61
13en	A1	DK45	Tk16	Kk62
13eo	A1	DK45	Tk16	Kk63
13ep	A1	DK45	Tk16	Kk64
13eq	A1	DK45	Tk16	DK66
13er	A1	DK45	Tk19	Kk2
13es	A1	DK45	Tk19	Kk3
13et	A1	DK45	Tk19	Kk5
13eu	A1	DK45	Tk19	Kk10
13ev	A1	DK45	Tk19	Kk11
13ew	A1	DK45	Tk19	Kk14
13ex	A1	DK45	Tk19	Kk15
13ey	A1	DK45	Tk19	Kk16
13ez	A1	DK45	Tk19	Kk51
13fa	A1	DK45	Tk19	Kk53
13fb	A1	DK45	Tk19	Kk54
13fc	A1	DK45	Tk19	Kk55

Beispiel Nr.	Α	Napht ¹	Tk	Kk
13fd	A1	DK45	Tk19	Kk56
13fe	A1	DK45	Tk19	Kk61
13ff	A1	DK45	Tk19	Kk62
13fg	A1	DK45	Tk19	Kk63
13fh	A1	DK45	Tk19	Kk64
13fi	A1	DK45	Tk19	DK66
13fj	A1	DK45	Tk20	Kk2
13fk	A1	DK45	Tk20	Kk3
13fl	A1	DK45	Tk20	Kk5
13fm	A1	DK45	Tk20	Kk10
13fn	A1	DK45	Tk20	Kk11
13fo 🤟	A1	DK45	Tk20	Kk14 .
13fp	A1	DK45	Tk20	Kk15
13fq	A1	DK45	Tk20	Kk16
13fr	A1	DK45	Tk20	Kk51
13fs	A1	DK45	Tk20	Kk53
13ft	A1 ·	DK45	Tk20	Kk54
13fu	A1	DK45	Tk20	Kk55
13fv	A1	DK45	Tk20	Kk56
13fw	A1	DK45	Tk20	Kk61
13fx	A1	DK45	Tk20	Kk62
13fy	A1	DK45	Tk20	Kk63
13fz	A1	DK45	Tk20	Kk64
13ga	A1	DK45	Tk20	DK66
13gb	· A1	DK44	Tk16	Kk65
13gc	A1	DK44	Tk16	Kk66
13gd	A1	DK44	Tk16	Kk67
13ge	A1	DK45	Tk16	Kk65
13gf	A1	DK45	Tk16	Kk66
13gg	A1	DK45	Tk16	Kk67
· 13gh	A1	DK44	Tk18	Kk65
13gi	A1	DK44	Tk18	Kk66
13gj	A1	DK44	Tk18	Kk67
13gk	A1	DK45	Tk18	Kk65
13gl	A1	DK45	Tk18	Kk66
13gm	A1	DK45	Tk18	Kk67
13gn	A1	DK44	Tk19	Kk65
13go	A1	DK44	Tk19	Kk66
13gp	A1	DK44	Tk19	Kk67

Beispiel Nr.	Α	Napht1	Tk	Kk
13gq	A1	DK45	Tk19	Kk65
13gr	A1	DK45	Tk19	Kk66
13gs	A1	DK45	Tk19	Kk67
13gt -	A1	DK44	Tk20	Kk65
13gr	A1	DK44	Tk20	Kk66
13gs	A1	DK44	Tk20	Kk67
13gt	A1	DK45	Tk20	Kk65
13gu	A1	DK45	Tk20	Kk66
13gv	A1	DK45	Tk20	Kk67

Beispiel 13gw

- 1) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.
- 2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und
 Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und zu der in Schritt
 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.
 - 3) 0,45 mol Metaminsäure und 0,55 mol 2,4-Diamino-1-methoxybenzol wurden zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

15

In zu Beispiel 13gw analoger Weise können die in Tabelle 5a angegebenen Farbstoff-mischungen der allgemeinen Formel A-N=N-Napht¹-N=N-Tk-N=N-Kk (Formel IIb mit n = 0) hergestellt werden, wobei die Kupplung des Restes A-N=N- ortho zur Aminogruppe in Napht¹ erfolgt.

Tabelle 5a:

Beispiel	Α	Napht1	Tk	Kk *)	
13gw	A1	DK44	Tk18	Kk15:Kk55 (45:55)	
13gz	A1	DK44	Tk18	Kk15:Kk56 (30:70)	•
13ha	A1	DK44 ·	Tk18	Kk15:Kk66 (80:20)	
13hb	A1	DK44	Tk18	Kk5:Kk10 (10:90)	
13hc	A1	DK44	Tk18	Kk5:Kk14 (15:85)	
13hd	A1	DK44	Tk18	Kk5:Kk15 (60:40)	

Beispiel	Α	Napht ¹	Tk	Kk *)
13he	A1	DK44	Tk18	Kk5:Kk55 (75:25)
13hf	A1	DK44	Tk18	Kk5:Kk56 (40:60)
13hh	A1	DK44	Tk18	Kk5:Kk67 (20:80)
13hi	A1	DK44	Tk18	Kk5:DK66 (50:50)
13hj	A1	DK45	Tk18	Kk15:Kk55 (45:55)
13hk	A1	DK45	Tk18	Kk15:Kk56 (30:70)
13hl	A1	DK45	Tk18	Kk15:Kk66 (80:20)
13hm	A1	DK45	Tk18	Kk5:Kk10 (10:90)
13hn	A1	DK45	Tk18	Kk5:Kk14 (15:85)
13ho	A1	DK45	Tk18	Kk5:Kk15 (60:40)
13hp	· A1	DK45 .	Tk18	Kk5:Kk55 (75:25)
13hq	A1	DK45	Tk18	Kk5:Kk56 (40:60)
13hr	A1	DK45	Tk18	Kk5:Kk67 (20:80)
13hs	A1	DK45	Tk18	Kk5:DK66 (50:50)
13ht	A1	DK44	Tk16	Kk5:Kk15 (45:55)
13hu	A1	DK44	Tk16	Kk15:Kk55 (45:55)
13hv	A1	DK44	Tk19	Kk15:Kk55 (45:55)
13hw	A1	DK44	Tk20	Kk15:Kk55 (45:55)

^{*} Der in Klammern angegebene Wert gibt das Molverhältnis der jeweiligen Kupplungskomponenten zueinander an.

5 Beispiel 14:

1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol Metaminsäure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids getropft. Der pH-Wert der Reaktionsmischung wurde durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung zwischen 2-3 gehalten.

- 2) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert der Reaktionsmischung wurde durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung zwischen 2-4 gehalten.
- 3) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 15:

10

 $HO_3SO - O$ SO_3H $NH_2 OH$ N = N - S $NH_2 OH$ N = N - S $NH_2 OH$ $NH_3 OH$

- 1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol Metaminsäure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids getropft. Der pH-Wert der Reaktionsmischung wurde durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung zwischen 2-3 gehalten.</p>
 - 2) 1 mol MSP wurde im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.
 - 3) Die in Schritt 2) erhaltene Reaktionsmischung wurde zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 16a:

1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids zugetropft. Der pH-Wert der Reaktionsmischung wurde durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung zwischen 2 und 3 gehalten.

5

- 2) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) 1 mol Resorcin wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben
 und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und
 8 gehalten.
 - 4) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

20

Beispiel 17a:

1) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.

- 2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) 1 mol Resorcin wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

4) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 18:

- 1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids getropft. Der pH-Wert der Reaktionsmuschung wurde durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung zwischen 2 und 3 gehalten.
- 2) 1 mol MSP wurde im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.
- 3) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst und danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst und zu dieser Lösung wurde das diazotierte p-Nitroanilin innerhalb von 30 min bei einer Tem-

5

10

30

35

peratur von unter 10°C zugetropft wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.

4) Die in Schritt 3) erhaltene Reaktionsmischung wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 19:

10

15

20

- 1) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu dem diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.
- 2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

- 3) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst und danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst und zu dieser Lösung wurde das diazotierte p-Nitroanilin innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.
- 4) Die in Schritt 3) erhaltene Reaktionsmischung wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.
- 35 Beispiel 20:

1) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst und danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst und zu dieser Lösung wurde das diazotierte p-Nitroanilin innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.

- 2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 5 gehalten.
- 3) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu dem diazotiertem MSP gegeben. Der pH-Wert wurde unter 2 gehalten.
- 4) Die in Schritt 3) erhaltene Reaktionsmischung wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

30

35

In zu den Beispielen 16a und 18 analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-Napht¹-N=N-Tk-N=N-Kk-N=N-Dk² bzw. deren Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel II mit r = k = n = 1), worin Dk¹ und Dk² jeweils für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Kk für einen von den Kupplungskomponenten Kk2, Kk3, Kk5, Kk6, Kk14, Kk15, Kk16, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht, Napht¹ für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht, Tk für einen von einer Tetrazokomponenten Tk1 bis Tk20 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes Dk¹-N=N-erfolgt in ortho-Position zur Hydroxygruppe in Napht¹. Beispiele hierfür sind die in der nachfolgenden Tabelle 6 angegebenen Farbstoffe und Metallkomplexe.

Tabelle 6:

Beispiel Nr.	Dk ¹	Napht ¹	Tk	Kk	Dk ²	Metail
16a	A1	DK44	Tk18	Kk3	DK17	-
16b	A1	DK44	Tk18	Kk3	DK5	Fe
16c	A1	DK44	Tk18	Kk3	DK5	Cr
16d	A1	DK44	Tk18	Kk3	DK40	-
16e	DK17	DK44	Tk18	Kk3	A1	-
16f	DK17	DK44	Tk18	Kk3	A7	-
16g	DK17	DK44	Tk18	Kk5	A7	-
16h	DK5	DK44	Tk18	Kk3	A1	Fe
16i	DK5	DK44	Tk18	Kk3	A1	Cr
16j	DK5	DK44	Tk16	Kk5	A12	
16k	DK17	DK45	Tk16	Kk3	A10	-

Tabelle 7

Beispiel Nr.	Dk ¹	Napht ¹	Tk	Kk	Dk²	Metall
17a	A1	DK44	Tk18	Kk3	DK17	-
17b	A1	DK44	Tk18	Kk3	DK5	Fe
17c	A1	DK44	Tk18	Kk3	DK5	Cr
17d	A1	DK44	Tk18	Kk3	DK40	-
17e	DK17	DK44	Tk18	Kk3	A1	-
17f	DK17	DK44	Tk18	Kk3	A7	
17g	DK17	DK44	Tk18	Kk5	A1	-
17h	DK5	DK44	Tk18	Kk3	A1	-

17i	DK5	DK44	Tk18	Kk3	A5	-
17j	A1	DK44	Tk18	Kk3	A1	<u> </u>
17k	DK5	DK44	Tk16	Kk5	A9	
171	DK17	DK45	Tk16	Kk3	A11	-

Beispiel 21:

5

10

15

20

25

- 1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids zugetropft. Der pH-Wert der Reaktionsmischung wurde durch Zugabe von 15 gew.-%iger Natriumkarbonatlösung zwischen 2 und 3 gehalten.
- 2) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) 0,5 mol Resorcin wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 21 analoger Weise können die Farbstoffe der allgemeinen Formel [A-N=N-Napht¹-N=N-Tk-N=N]₂-Kk erhalten werden (= Farbstoffe der allgemeinen Formel III mit Dk¹ = Dk² = A, Napht¹ = Napht² und Tk¹ = Tk²), worin Kk für einen von den Kupplungskomponenten Kk2, Kk3, Kk5, Kk6, Kk14, Kk15, Kk16, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht, Napht¹ für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 und II-14 steht, Tk für einen von einer Tetrazokomponenten Tk1 bis Tk20

abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N- erfolgt in ortho-Position zur Hydroxygruppe in Napht¹.

Beispiel 22:

5

10

15

- 1) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu dem diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.
- 2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

25

30

3) 0,5 mol Resorcin wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben und der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 22 analoger Weise können die Farbstoffe der allgemeinen Formel [A-N=N-Napht¹-N=N-Tk-N=N]₂-Kk erhalten werden (= Farbstoffe der allgemeinen Formel III mit Dk¹ = Dk² = A, Napht¹ = Napht² und Tk¹ = Tk²), worin Kk für einen von den Kupplungskomponenten Kk2, Kk3, Kk5, Kk6, Kk14, Kk15, Kk16, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht, Napht¹ für einen der bivalenten Reste Il-2, Il-4, Il-6, Il-8, II-10, II-12 und II-14 steht, Tk für einen von einer Tetrazokomponenten Tk1 bis Tk20 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N- erfolgt in ortho-Position zur Aminogruppe in Napht¹.

Beispiel 23:

$$SO_3H$$
 O
 OSO_3H
 OSO_3H

- 1) 1 mol Gammasäure wurde in 25 gew.-%iger Natronlauge gelöst, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu einer wässrigen Lösung von 1 mol Anthranilsäure zugetropft. Der pH-Wert der Reaktionsmischung wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 5 und 10 gehalten.
- 2) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Zu dieser Reaktionsmischung gab man die in Schritt 1) erhaltenen Reaktionsmischung. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 15 3) 1 mol MSP wurde im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 23 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Napht²-N=N-Kk erhalten werden (= Farbstoffe der allgemeinen Formel XII mit p = 1, n= 0, P = Napht¹, R = Napht²), worin Kk für einen von den Kupplungskomponenten Kk1bis Kk48 oder Kk51 bis Kk67 abgeleiteten bivalenten Rest steht, Napht1 und Napht2 jeweils für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13 oder II-15 stehen und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes Napht¹-N=N- erfolgt in ortho-Position zur Hydroxygruppe in Napht².

Beispiel 24:

5

10

20

1) 1 mol Gammasäure wurde in 25 gew.-%iger Natronlauge gelöst, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu einer wässrigen Suspension von 1 mol 3-Phenylaminophenol zugetropft. Der pH-Wert der Reaktionsmischung wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 5 und 10 gehalten.

- 2) 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der Clevesäure-7 Lösung gegeben, wobei der pH-Wert unter 2 gehalten wurde
- 3) Die in Schritt 2) Reaktionsmischung wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Zu dieser Reaktionsmischung gibt man die in Schritt 1) erhaltenen Reaktionsmischung. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.
- In zu Beispiel 24 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Napht²-N=N-Kk erhalten werden (= Farbstoffe der allgemeinen Formel XII mit p = 1, n= 0, P = Napht¹, R = Napht²), worin Kk für einen von den Kupplungskomponenten Kk1 bis Kk48 oder Kk51 bis Kk67 abgeleiteten bivalenten Rest steht, Napht¹ und Napht² jeweils für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13 oder II-15 stehen und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N-Napht¹-N=N- erfolgt in ortho-Position zur Hydroxygruppe in Napht².

:.

80

Beispiel 25:

1) 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der Lösung der Clevesäure-7 gegeben, wobei der pH-Wert unter 2 gehalten wurde.

2) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde die in der Schritt 1) erhaltene Reaktionsmischung mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der Lösung der H-Säure gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 1 und 4 gehalten.

3) 1 mol 5-Nitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und anschließend zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde 0,20-0,30 mol Chrom(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 26:

Die Herstellung erfolgte analog der in Beispiel 25 angegebenen Vorschrift, wobei im letzten Schritt keine Metallkomplexierung durchgeführt wurden.

In zu den Beispielen 25 und 26 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Napht²-N=N-Dk und deren Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel I mit p = m = 1, P = Napht¹, Kk¹ = Napht²), worin Dk für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39 bis DK41 und DK58 abgeleiteten Rest steht, Napht¹ für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 steht, Napht² für einen der

20

15

bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N-Napht¹-N=N- erfolgt in ortho-Position zur Aminogruppe in Napht².

5 Beispiel 27:

10

1) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert. Gleichzeitig wurde 1 mol H-Säure in 25 gew.-%iger Natronlauge gelöst und danach durch Zugabe von 21 gew.-%iger Salzsäure die H-Säure gefällt. Die H-Säure Suspension wurde zu der diazotierte p-Nitroanilin gegeben und der pH-Wert unter 2 gehalten. Nach 1 Stunde ist die Umsetzung beendet.

15

2) 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Dazu wurde die Clevesäure-7 Lösung gegeben, wobei der pH-Wert unter 2 gehalten wurde.

20

3) Die in der Schritt 2) erhaltene Reaktionsmischung mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu dem in Schritt 1) erhaltenen Produkt gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 5 und 8 gehalten und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

25

30

In zu Beispiel 27 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Napht²-N=N-Dk erhalten werden (= Farbstoffe der allgemeinen Formel I mit p = m = 1, P = Napht¹, Kk¹ = Napht²), worin Dk für einen von den Diazo-komponenten DK1 bis DK83 abgeleiteten Rest steht, Napht¹ für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 steht, Napht² ür einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N-Napht¹-N=N- erfolgt in ortho-Position zur Hydroxygruppe in Napht².

Beispiel 28a:

5

10

1) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst. Zu dieser Lösung wurde die diazotierte H-Säure innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.

2) 1 mol 4,6-Dinitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

20

15

3) 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der Clevesäure-7 Lösung gegeben, wobei der pH-Wert unter 2 gehalten wurde.

.

25

4) Die in Schritt 3) erhaltene Reaktionsmischung wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Zu dieser
Reaktionsmischung gab man die in Schritt 2) erhaltenen Reaktionsmischung. Der pHWert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von
NaCI ausgefällt und abgesaugt

30

In zu Beispiel 28a analoger Weise können die Metallkomplexe von Farbstoffen der allgemeinen Formel A-N=N-Napht 1 -N=N-Napht 2 -N=N-Kk-N=N-Dk erhalten werden (= Farbstoffe der allgemeinen Formel XII mit p = n = 1, P = Napht 1 , R = Napht 2), worin Dk für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39

bis DK41 oder DK58 abgeleiteten Rest steht, Napht¹ für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 steht, Napht² für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 steht, Kk für einen von Kk2, Kk3, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N-Napht¹-N=N- erfolgt in ortho-Position zur Hydroxygruppe in Napht².

Beispiel 28b:

5

10 Die Umsetzung erfolgte nach der in Beispiel 28a beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

In zu Beispiel 28b analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Napht²-N=N-Kk-N=N-Dk erhalten werden (= Farbstoffe der allgemeinen Formel XII mit p = n = 1, P = Napht¹, R = Napht²), worin Dk für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest steht, Napht¹ für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 steht, Napht² für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 steht, Kk für einen von Kk2, Kk3, Kk5, Kk6, Kk14, Kk15, Kk16, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N-Napht¹-N=N- erfolgt in ortho-Position zur Hydro-xygruppe in Napht².

Beispiel 29a:

25

30

20

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_3N
 O_4N
 O_4N

1) 1 mol 4,6-Dinitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst und zu dieser Lösung wurde das diazotierte 4,6-Dinitro-2-aminophenol innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.

2) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

5

3) 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der Clevesäure-7 Lösung gegeben, wobei der pH-Wert unter 2 gehalten wurde.

10

4) Die in Schritt 3) erhaltene Reaktionsmischung wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Zu dieser
Reaktionsmischung gab man die in Schritt 2) erhaltenen Reaktionsmischung. Der pHWert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von
NaCl ausgefällt und abgesaugt

In zu Beispiel 29a analoger Weise können die Metallkomplexe von Farbstoffen der allgemeinen Formel A-N=N-Napht¹-N=N-Napht²-N=N-Kk-N=N-Dk erhalten werden (= Farbstoffe der allgemeinen Formel XII mit p = n = 1, P = Napht¹, R = Napht²), worin Dk für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39 bis DK41 oder DK58 abgeleiteten Rest steht, Napht¹ für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 steht, Napht² für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 steht, Kk für einen von Kk2, Kk3, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N-Napht¹-N=N- erfolgt in ortho-Position zur Hydro-xygruppe in Napht².

Beispiel 29b:

Die Umsetzung erfolgte nach der in Beispiel 29a beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

In zu Beispiel 29b analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht¹-N=N-Napht²-N=N-Kk-N=N-Dk erhalten werden (= Farbstoffe der allgemeinen Formel XII mit p = n = 1, P = Napht¹, R = Napht²), worin Dk für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest steht, Napht¹ für einen der bivalenten Reste II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 steht, Napht² für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 steht, Kk für einen von Kk2, Kk3, Kk5, Kk6, Kk14, Kk15, Kk16, Kk49 oder

Kk50 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Die Kupplung des Restes A-N=N-Napht¹-N=N- erfolgt in ortho-Position zur Hydro-xygruppe in Napht².

5 Beispiel 30:

1) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Reaktionsmischung des tetrazotierten 4,4-Diaminodiphenylsulfamids zugetropft. Der pH-Wert wurde unter 3 gehalten.

2) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

3) 1 mol MSP wurde im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol K-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.

4) Das in Schritt 3) erhaltene Produkt wurde zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 30 analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-Napht¹-N=N-Tk-N=N-Napht²-N=N-Dk² bzw. deren Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel IV), worin Dk¹ und Dk² jeweils für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Napht¹ und Napht² jeweils für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 stehen und Tk für einen bivalenten, von Tk1 bis Tk20 abgeleiteten Rest steht. Die Kupplung der Reste Dk¹-N=N- erfolgt in ortho-Position zur Hydroxygruppe in Napht¹ und die Kupplung der Reste Dk²-N=N--erfolgt in ortho-Position zur Aminogruppe in Napht².

10

15

20

30

Beispiel 31:

$$O_2N - OH - NH_2 OH - NH$$

5

1) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst und danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert. Hierzu gab man 1-mol H-Säure, wobei der pH-Wert unter 2 gehalten wurde.

10

2) 1 mol 4,4-Diaminodiphenylsulfamid wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

15

3) 1 mol MSP wurde in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol K-Säure wurde in 25 gew.-%iger Natronlauge gelöst und zu der Lösung des diazotierten MSP gegeben. Der pH-Wert wurde unter 2 gehalten.

20

4) Die in Schritt 3) erhaltene Reaktionsmischung wurde in die in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 31 analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-Napht¹-N=N-Tk-N=N-Napht²-N=N-Dk² bzw. deren Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel IV), worin Dk¹ und Dk² jeweils für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Napht¹ und Napht² jeweils für einen der bivalenten Reste II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 stehen und Tk für einen bivalenten, von Tk1 bis Tk20 abgeleiteten Rest steht. Die Kopplung der Reste Dk¹-N=N- und Dk²-N=N- erfolgt jeweils in ortho-Position zur Aminogruppe in Napht¹ bzw. Napht².

35

Beispiel 32:

5

10

15

20

25

30

$$H_3C$$
 SO_3H O_2N O_2N O_2N O_2N O_3H O_2N O_3H O_2N O_3H O_3SO_3H O_3H O_3SO_3H O_3H O_3H

1 mol 4,6-Dinitro-2-aminophenol wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und mit 1 mol 4-(ß-Sulfatoethylsulfonyl)pyrazolsäure-2 gekuppelt (Kk44). Der pH-Wert wurde zwischen 2 und 7 gehalten. Nach beendeter Kupplung wurde 0,20-0,30 mol Chrom(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Anschließend wurde die Reaktionsmischung bei 40°C eingedampft.

In zu Beispiel 32 analoger Weise können die Metallkomplexe von Farbstoffen der allgemeinen Formel Dk-N=N-Pyr-A erhalten werden (= Farbstoffe der allgemeinen Formel XIII), worin Dk für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39 bis DK41 oder DK58 abgeleiteten Rest steht, Pyr für 5-Hydroxy-3-methylpyrazol-1,4-diyl oder für 5-Hydroxy-3-carboxypyrazol-1,4-diyl steht und A einen der Reste A1 bis A12 bedeutet, der über den Stickstoff von Pyr gebunden ist.

Beispiel 33:

Die Umsetzung erfolgte nach der in Beispiel 32 beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Chromsalzen folgte.

In zu Beispiel 33 analoger Weise können die Farbstoffe der allgemeinen Formel Dk-N=N-Pyr-A erhalten werden (= Farbstoffe der allgemeinen Formel XIII), worin Dk für einen von den Diazokomponenten DK1 bis DK83 abgeleiteten Rest steht, Pyr für 5-Hydroxy-3-methylpyrazol-1,4-diyl oder für 5-Hydroxy-3-carboxypyrazol-1,4-diyl steht und A einen der Reste A1 bis A12 bedeutet, der über den Stickstoff von Pyr gebunden ist.

Beispiel 34a:

1) 1 mol 5-Nitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst und zu dieser Lösung wurde die diazotierte 5-Nitro-2-aminophenol innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.

5

15

20

2) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert, und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 35a:

Die Umsetzung erfolgte nach der in Beispiel 34a beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

Beispiel 36:

25

- 1) 1 mol MSP wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge gelöst und zu dieser Lösung wurde die diazotierte MSP innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 3 und 8 hielt.
- 2) 1 mol 5-Nitro-2-aminophenol wurde im Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu

der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 37:

5

Die Umsetzung erfolgte nach der in Beispiel 36 beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

In zu den Beispielen 34a und 36 analoger Weise können die Metallkomplexe von Farbstoffen der allgemeinen Formel Dk-N=N-Kk-N=N-A erhalten werden (= Farbstoffe der allgemeinen Formel I mit p = 0 und m = 1), worin Dk für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39 bis DK41 oder DK58 abgeleiteten Rest steht, Kk für einen von Kk2, Kk3, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Beispiele hierfür sind in der Tabelle 8 angegeben.

20 Tabelle 8

Beispiel Nr.	Dk	Kk	Α	Metall
34a	DK1	Kk3	A1	Fe
34b	DK2	Kk3	A1	Fe
34c	DK3	Kk3	A1	Fe
34d	DK4	Kk3	A1	Fe
34e	DK4	Kk3	A1	Fe
34f	DK5	Kk3	A1	Fe
34g	DK6	Kk3	A1	Fe
34h	DK7	Kk3	A1	Fe
34i	DK8	Kk3	A1	Fe
34j	DK9	Kk3	A1	Fe
34k	DK13	Kk3	A1	Fe
341	DK14	Kk3	A1	Fe
34m	DK27	Kk3	A1	Fe
34n	DK39	Kk3	A1	Fe
340	DK40	Kk3	A1	Fe
34p	DK41	Kk3	A1	Fe
34q	DK58	Kk3	A1	Fe
34r	DK5	Kk49	A1	Fe

Beispiel Nr.	Dk	Kk	Α	Metall
34s	DK5	Kk50	A1	Fe
34t	DK5	Kk3	A1	Cr
34u	DK5	Kk49	A1	Со
34v	DK5	Kk50	A1	Cr
34z	DK4	Kk3	A3	Fe
34aa	DK5	Kk3	A6	Fe
34ab	DK6	Kk3	A10	Fe
34ac	DK7	Kk3	A11	Fe

In zu den Beispielen 35a und 37 analoger Weise können die Farbstoffe der allgemeinen Formel Dk-N=N-Kk-N=N-A erhalten werden (= Farbstoffe der allgemeinen Formel I mit p = 0 und m = 1), worin Dk für einen von den Diazokomponenten DK1 bis DK83 abgeleiteten Rest steht, Kk für einen von Kk2, Kk3, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Beispiele hierfür sind in Tabelle 9 angegeben.

Beispiel Nr.	Dk	Kk	Α
35a	DK1	Kk3	A1
35b	DK2	Kk3	A1
35c	DK3	Kk3	A1
35d	DK4	Kk3	A1
35e	DK5	Kk3	A1
35f	DK6	Kk3	A1
35g	DK7	Kk3	A1
35h	DK8	Kk3	A1
35i	DK9	Kk3	A1
35j	DK10	KK3	A1
35k	DK12	KK3	A1
351	DK13	Kk3	A1
35m	DK14	Kk3	A1
35n	DK17	Kk3	A1
350	DK27	Kk3	A1
35p	DK28	Kk3	A1
35q	DK32	Kk3	A1
35r	DK39	Kk3	A1
35s	DK40	Kk3	A1
35t	DK41	Kk3	A1

Beispiel Nr.	Dk	Kk	Α
35u	DK42	Kk3	A1
35v	DK46	Kk3	A1
35z	DK47	Kk3	A1
35aa	DK58	Kk3	A1
35ab	DK5	Kk49	A1
35ac	DK5	Kk50	A1
35ad	DK47	Kk49	A1
35ae	DK47	Kk50	A1
35af	DK4	Kk3	A4
35ag	DK5	Kk3	A7
35ah	DK6	Kk3	A9
35ai	DK7	Kk3	A12

Beispiel 38a:

5

Methode A:

- 1) 1 mol 4,6-Dinitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst und zu dieser Lösung wurde das diazotierte 4,6-Dinitro-2-aminophenol innerhalb von 30 min bei einer Temperatur > 10°C zugetropft wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.
- 2) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüs sigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in
 Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe

von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 h nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

5 Methode B:

- 1) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst und danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst. Zu dieser Lösung wurde das diazotierte p-Nitroanilin innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.
- 5

10

20

30

- 2) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten.
- 3) 1 mol 4,6-Dinitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

25 Beispiel 39a:

Die Umsetzung erfolgte nach der in Beispiel 38 beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

Beispiel 40a:

Methode A:

- 1) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst. Zu dieser Lösung wurde das diazotierte p-Nitroanilin innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.
- 2) 1 mol 4,6-Dinitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

5

10

3) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

20 Methode B:

1) 1 mol MSP wurde im Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge gelöst. Zu dieser Lösung wurde das diazotierte MSP innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 6 und 7 hielt.

25

- 2) 1 mol 4,6-Dinitro-2-aminophenol wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) 1 mol p-Nitroanilin wurde in 21 gew.-%iger Salzsäure gelöst, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 41a:

40

Die Umsetzung erfolgte nach den in Beispiel 40 beschriebenen Methoden mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

In zu den Beispielen 38a und 40a analoger Weise können die Metallkomplexe von

- Farbstoffen der allgemeinen Formel

 N=N-A

 erhalten werden (= Farbstoffe der allgemeinen Formel I mit p = 0 und m = 2), worin Dk¹ und Dk² jeweils für einen von den Diazokomponenten DK1 bis DK83 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39 bis DK41 oder DK58 abgeleiteten Rest steht,
- 10 Kk für einen von Kk2 oder Kk3 abgeleiteten trivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Beispiele hierfür sind in Tabelle 10 angegeben.

Beispiel Nr.	Dk ¹	Kk	Dk ²	Α	Me
38a	DK1	KK3	DK17	A1	Fe
38b	DK1	KK3	DK5	A1	Fe
38c	DK1	KK3	DK10	A1	Fe
38d	DK2	KK3	DK17	A1	Fe
38e	DK4	KK3	DK17	A1	Cu
38f	DK4	KK3	DK12	A1	Co
38g	DK4	KK3	DK56	A1	Cr
38h	DK5	KK3	DK9	A1	Fe
38i	DK5	KK3	DK10	A1	Fe
38j	DK5	KK3	DK12	A1	Fe
38k	DK5	KK3	DK17	A1	Fe
381	DK5	KK3	DK19	A1	Fe
38m	DK5	KK3	DK27	A1	Fe
38n	DK5	KK3	DK28	A1	Fe
380	DK5	KK3	DK30	A1	Fe
38p	DK5	KK3	DK32	A1	Fe
38q	DK5	KK3	DK35	A1	Fe
38r	DK5	KK3	DK41	A1	Fe
38s	DK5	KK3	DK46	A1	Fe
38t	DK5	KK3	DK47	A1	Fe
38u	DK5	KK3	DK58	A1	Fe
38v	DK5	KK3	DK12	A5	Fe
38z	DK5	KK3	DK17	A9	Fe
40a	DK1	KK3	DK17	A1	Fe

Beispiel Nr.	Dk ¹	Kk	Dk ²	Α	Me
40b	DK1	KK3	DK5	A1	Fe
40c	DK1	KK3	DK10	A1	Fe
40d	DK2	KK3	DK17	A1	Fe
40e	DK4	KK3	DK17	A1	Cu
40f	DK4	KK3	DK12	A1	Co
40g	DK4	KK3	DK56	A1	Cr
40h	DK5	KK3	DK9	A1	Fe
40i	DK5	KK3	DK10	A1	Fe
40j	DK5	KK3	DK12	A1	Fe
40k	DK5	KK3	DK17	A1	Fe
401	DK5	KK3	DK19	A1	Fe
40m	DK5	KK3	DK27	A1	Fe
40n	DK5	KK3	DK28	A1	Fe
40o	DK5	KK3	DK30	A1	Fe
40p	DK5	KK3	DK32	A1	Fe
40q	DK5	KK3	DK35	A1	Fe
40r	DK5	KK3	DK41	A1	Fe
40s	DK5	KK3	DK46	A1	Fe
40t	DK5	KK3	DK47	A1	Fe
40u	DK5	KK3	DK58	A1	Fe
40v	DK5	KK3	DK12	A4	Fe
40z	DK5	KK3	DK17	A11	Fe

In zu den Beispielen 39a und 41a analoger Weise können die Farbstoffe der allgemei-

 $Dk \stackrel{1}{-} N = N - Kk - N = N - Dk^2$

nen Formel N=N-A erhalten werden (= Farbstoffe der allgemeinen Formel I mit p = 0 und m = 2), worin Dk^1 und Dk^2 jeweils für einen von den Diazokomponenten DK1 bis DK83 abgeleiteten Rest stehen, Kk für einen von Kk2, Kk3 oder Kk5 abgeleiteten trivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Beispiele hierfür sind in der Tabelle 11 angegeben.

10 Tabelle 11:

Beispiel Nr.	Dk ¹	Kk	Dk²	Α
39a	DK1	KK3	DK17	A1
39b	DK1	KK3	DK5	A1
39c	DK1	KK3	DK10	A1

Beispiel Nr.	Dk ¹	Kk	Dk ²	Α
39d	DK2	KK3	DK17	A1
39e	DK4	KK3	DK17	A1
39f	DK4	KK3	DK12	A1
39g	DK4	KK3	DK56	A1
39h	DK5	KK3	DK9	A1
39i	DK5	KK3	DK10	A1
39j	DK5	KK3	DK12	A1
39k	DK5	КК3	DK17	A1
391	DK5	KK3	DK19	A1
39m	DK5	KK3	DK27	A1
39n	DK5	KK3	DK28	A1
390	DK5	КК3	DK30	A1
39p	DK5	КК3	DK32	A1
39q	DK5	KK3	DK35	A1
39r	DK5	KK3	DK41	A1
39s	DK5	KK3	DK46	A1
39t	DK5	KK3	DK47	A1
39u	DK5	ККЗ	DK58	A1
39v	DK5	КК3	DK12	A7
39z	DK5	KK3	DK17	A12
41a	DK1	KK3	DK17	A1
41b	DK1	KK3	DK5	A1
41c	DK1	KK3	DK10	A1
41d	DK2	KK3	DK17	A1
41e	DK4	KK3	DK17	A1
41f	DK4	KK3	DK12	A1
41g	DK4	KK3	DK56	A1
41h	DK5	KK3	DK9	A1
41i	DK5	KK3	DK10	A1
41 j	DK5	KK3	DK12	A1
41k	DK5	KK3	DK17	A1
411	DK5	KK3	DK19	A1
41m	DK5	КК3	DK27	A1
41n	DK5	КК3	DK28	A1
41o	DK5	КК3	DK30	A1
41p	DK5	KK3	DK32	A1
41q	DK5	KK3	DK35	A1
41r	DK5	KK3	DK41	A1
41s	DK5	КК3	DK46	A1

Beispiel Nr.	Dk ¹	Kk	Dk ²	Α
41t	DK5	KK3	DK47	A1
41u	DK5	KK3	DK58	A1

Beispiel 42a:

Methode A:

5

10

- 1) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst. Zu dieser Lösung wurde die diazotierte H-Säure innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.
- 2) 1 mol 5-Nitro-2-aminophenol wurde in Eiswasser suspendiert, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
 - 3) 1 mol MSP wurde im Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCI ausgefällt und abgesaugt.

Methode B:

- 1) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und mit 1,1-1,5 mol Acetanhydrid acetyliert.
- 2) 1 mol MSP wurde im Eiswasser suspendiert und bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe

25

von Natrumkarbonat zwischen 4 und 7 gehalten. Nach beendeter Kupplung wurde der pH-Wert durch Zugabe von 21 gew.%iger Salzsäure unter 1 gestellt und die Reaktionsmischung wurde auf 85-95°C erhitzt. Hierdurch wurde die Acetylgruppe abgespalten.

5

3) Das in Schritt 2) erhaltene Produkt wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu einer wässrigen Lösung von 1 mol Resorcin gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

10

4) 1 mol 5-Nitro-2-aminophenol wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 43a:

20

Die Umsetzung erfolgte nach den in Beispiel 42a beschriebenen Methoden mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

Beispiel 44:

25

30

1) 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP im Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der Lösung der Clevesäure-7 gegeben, wobei der pH-Wert unter 2 gehalten wurde.

2) Der in Schritt 1) erhaltene Produkt wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH < 1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde das Reaktionsgemisch zu einer wässrigen Lösung von 1 mol Resorcin zugegeben. Der

pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.

3) 1 mol 5-Nitro-2-aminophenol wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 45:

5

5

10

Die Umsetzung erfolgte nach der in Beispiel 44 beschriebene Methode mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

Beispiel 46a:

$$O_2N$$
 O_2N
 O_3N
 O_3N

20

30

35

Methode A:

- 25
- 1) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge gelöst. Zu dieser Lösung wurde das diazotierte MSP innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 6 und 8 hielt.
- 2) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) 1 mol 5-Nitro-2-aminophenol wurde in Eiswasser suspendiert, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der in Schritt 3) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung

gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Methode B:

10

20

25

35

- 1) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge gelöst. Hierzu wurde das diazotierte MSP innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 6 und 8 hielt.
 - 2) 1 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst und mit 1,1-1,5 mol Acetanhydrid acetyliert.
 - 3) 1 mol 5-Nitro-2-aminophenol wurde in Eiswasser suspendiert, danach mit überschüssigem Natriumnitrit bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von Natrumkarbonat zwischen 4 und 7 gehalten. Nach beendeter Kupplung wurde der pH-Wert durch Zugabe von 21 gew.%iger Salzsäure unter 1 gestellt und die Reaktionsmischung wurde auf 85-95°C erhitzt, wobei die Acetylgruppe abgespalten wurde.
 - 4) Das in Schritt 3) erhaltene Produkt wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde 0,40-0,60 mol Eisen(III)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

Beispiel 47a:

Die Umsetzung erfolgte nach den in Beispiel 46a beschriebenen Methoden mit dem Unterschied, dass keine Umsetzung mit Eisensalzen folgte.

Beispiel 48:

O₂N OH OH SO₃H SO₃H SO₃H SO₃H SO₃H

- 1) 1 Mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge gelöst. Hierzu wurde die diazotierte MSP innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 6 und 8 hielt.
- 2) 1 mol 5-Nitro-2-aminophenol wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu einer 25 gew.-%iger Natronlauge Lösung von 1 mol Clevesäure-7 zugegeben, wobei der pH-Wert unter 2 gehalten wurde.
- 15

5

- 3) Das in Schritt 2) erhaltene Produkt wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend wurde zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.
- In zu den Beispielen 42a, 44 und 46a analoger Weise können die Metallkomplexe von Farbstoffen der allgemeinen Formel Dk¹-N=N-Napht-N=N-Kk-N=N-Dk² erhalten werden (= Farbstoffe der allgemeinen Formel I mit P = Napht, p = 1 und m = 1), worin Dk¹ und DK² entweder für einen von den Diazokomponenten DK1 bis DK9, DK13, DK14, DK26, DK27, DK39 bis DK41 oder DK58 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Kk für einen von Kk2 oder Kk3 abgeleiteten bivalenten Rest steht und Napht ein bivalenter Rest der Formeln II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 ist. Beispiele hierfür sind in der Tabelle 12 angegeben.

Beispiel Nr.	Dk ¹	Napht	Kk	Dk ²	Me
42a	A1	DK44	Kk3	DK1	Fe
42b	A1	DK44	Kk3	DK4	Cu
42c	A1	DK44	Kk3	DK5	Fe
42d	A7	DK44	Kk3	DK5	Fe
42e	A1	DK44	Kk3	DK40	Fe
42f	A1	DK44	Kk3	DK58	Cr
42g	A1	DK57	Kk3	DK5	Fe
42h	DK1	DK44	Kk3	A1	Fe
42i	DK2	DK44	Kk3	A1	Fe

Beispiel Nr.	Dk ¹	Napht	Kk	Dk ²	Me
42 j	DK4	DK44	Kk3	A1	Fe
42k	DK5	DK44	Kk3	A1	Fe
421	DK27	DK44	Kk3	A1	Fe
42m	DK41	DK44	Kk3	A1	Fe
42n	A3	DK44	Kk3	DK5	Fe
420	A9	DK44	Kk3	DK40	Fe
46a	DK1	DK44	Kk3	A1	Fe
46b	DK2	DK44	Kk3	A1	Fe
46c	DK4	DK44	Kk3	A1	Fe
46d	DK5	DK44	Kk3	A1	Fe
46e	DK27	DK44	Kk3	A1	Fe
46f	DK41	DK44	Kk3	A1	Fe
46g	A1	DK44	Kk3	DK1	Fe
46h	A1	DK44	Kk3	DK4	Cu
46i	A1	DK44	Kk3	DK5	Fe
46j	A7	DK44	Kk3	DK5	Fe
46k	A1	DK44	Kk3	DK40	Fe
461	A1	DK44	Kk3	DK58	Cr
46m	A1	DK57	Kk3	DK5	Fe

In zu den Beispielen 43a, 45, 47a und 48 analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-Napht-N=N-Kk-N=N-Dk² erhalten werden (= Farbstoffe der allgemeinen Formel I mit P = Napht, p = 1 und m = 1), worin Dk¹ und DK² für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Kk für einen von Kk2, Kk3, Kk5, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und Napht ein bivalenter Rest der Formeln II-1, II-3, II-5, II-7, II-9, II-11, II-13, II-15 oder II-16 ist. Beispiele hierfür sind in Tabelle 13 angegeben.

Tabelle 13

Beispiel Nr.	Dk ¹	Napht	Kk	Dk ²
43a	A1	DK44	Kk3	DK1
43b	A1	DK44	Kk3	DK4
43c	A1	DK44	Kk3	DK5
43d	A7	DK44	Kk3	DK5
43e	A1	DK44	Kk3	DK9
43f	A1	DK44	Kk3	DK10
43g	A1	DK44	Kk3	DK12

Beispiel Nr.	Dk ¹	Napht	103	DL2
<u></u>		Napht	Kk	Dk ²
43h	A1	DK44	Kk3	DK28
43i	A1	DK44	Kk3	DK32
43j	A1	DK44	Kk3	DK37
43k	A1	DK44	Kk3	DK40
431	A1	DK44	Kk3	DK46
43m	A1	DK44	Kk3	DK58
43n	A1	DK57	Kk3	DK5
430	DK1	DK44	Kk3	A1
43p	DK2	DK44	Kk3	A1
43q	DK4	DK44	Kk3	A1
43r	DK5	DK44	Kk3	A1
43s	DK8	DK44	Kk3	A1
43t	DK10	DK44	Kk3	A1
43u	DK12	DK44	Kk3	A1
43v	DK17	DK44	Kk3	A1
43z	DK27	DK44	Kk3	A1
43aa	DK28	DK44	Kk3	A1
43ab	DK32	DK44	Kk3	A1
43ac	DK41	DK44	Kk3	A1
43ad	DK46	DK44	Kk3	A1
43ae	DK47	DK44	Kk3	A1
43af	DK28	DK44	Kk3	A3
43ag	DK32	DK45	Kk3	A7
43ah	DK41	DK45	Kk3	A8
43ai	DK46	DK45	Kk3	A11
47a	DK1	DK44	Kk3	A1
47b	A1	DK44	Kk3	DK4
47c	A1	DK44	Kk3	DK5
47d	A7	DK44	Kk3	DK5
47e	A1	DK44	Kk3	DK9
47f	A1	DK44	Kk3	DK10
47g	A1	DK44	Kk3	DK12
47h	A1	DK44	Kk3	DK28
47i	A1	DK44	Kk3	DK32
47j	A1	DK44	Kk3	DK37
47k	A1	DK44	Kk3	DK40
471	A1	DK44	Kk3	DK46
47m	A1	DK44	Kk3	DK58
47n	A1	DK57	Kk3	DK5

	,			
Beispiel Nr.	Dk ¹	Napht	Kk	Dk ²
470	A1	DK44	Kk3	DK1
47p	DK2	DK44	Kk3	A1
47q	DK4	DK44	Kk3	A1
47r	DK5	DK44	Kk3	A1
47s	DK8	DK44	Kk3	A1
47t	DK10	DK44	Kk3	A1
47u	DK12	DK44	Kk3	A1
47v	DK17	DK44	Kk3	A1
47z	DK27	DK44	Kk3	A1
47aa	DK28	DK44	Kk3	A1
47ab	DK32	DK44	Kk3	A1
47ac	DK41	DK44	Kk3	A1
47ad	DK46	DK44	Kk3	A1
47ae	DK47	DK44	Kk3	A1
47af	DK28	DK44	Kk3	A2
47ag	DK32	DK45	Kk3	A6
47ah	DK41	DK45	Kk3	A9
47ai	DK46	DK45	Kk3	A10

Beispiel 49a:

- 1) 1 mol 4,4'-Diaminobiphenyl-3,3'-Dicarbonsäure wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und mit 1 mol Salycilsäure bei einem pH-Wert von 5 bis 11 umgesetzt.
- 2) 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert >12 gelöst. Zu dieser Lösung wurde das in Schritt 1) erhaltene Reaktionsprodukt innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 9 hielt.
- 15 3) 1 Mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. Anschließend wurde der diazotierte MSP zu der in Schritt 2) erhaltenen Reaktionsmischung gegeben wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 5 und 8

hielt. Nach beendeter Umsetzung wurde 1 mol Kupfer(II)-sulfat zu der Reaktionsmischung gegeben und 1 Stunde bei 70°C nachgerührt. Der Farbstoff wurde durch Zugabe von NaCl ausgefällt und abgesaugt.

5 Beispiel 50a:

Die Umsetzung erfolgte nach der in Beispiel 49a beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Kupfersalzen folgte.

10 Beispiel 51:

- 1) 1 mol 4,4-Diaminobenzanilid wurde mit überschüssigem Natriumnitrit und Salzsäure
 bei pH<1 und einer Temperatur von 0-5°C tetrazotiert und mit 1 mol Salycilsäure bei einem pH-Wert von 5-11 umgesetzt.
 - 2) 1 Mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 1 mol Resorcin wurde in 50 gew.-%iger Natronlauge gelöst. Hierzu wurde die diazotierte MSP innerhalb von 30 min bei einer Temperatur von unter 10°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 6 und 8 hielt.

- 3) Das in Schritt 2) erhaltene Produkt wurde zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 5 und 8 hielt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.
- In zu den Beispielen 49a, 50a und 51 analoger Weise können die Farbstoffe der allgemeinen Formel Kk³-N=N-Tk-N=N-Kk¹-N=N-A und deren Metallkomplexe erhalten werden (= Farbstoffe der allgemeinen Formel XIV), worin Kk³ für einen von den Kupplungskomponenten Kk1 bis Kk48 oder Kk51 bis Kk67 abgeleiteten Rest oder für Dk42 bis Dk83 steht, Tk für einen von TK1 bis Tk20 abgeleiteten bivalenten Rest steht, Kk¹ für einen von Kk2, Kk3, Kk5, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und A einen der Reste A1 bis A12 bedeutet. Beispiele hierfür sind in Tabelle 14 angegeben.

Tabelle 14:

Beispiel Nr.	Kk ³	Tk	Kk ¹	Α	Me
49a	Kk1	Tk11	Kk3	A1	Cu
49b	Kk40	Tk11	Kk3	A1	Cu
49c	Dk46	Tk8	Kk3	A1	Cu
50a	DK44	Tk16	Kk3	A1	
50b	DK44	Tk18	Kk3	A1	
50c	Kk39	Tk18	Kk3	A1	

Beispiel 52a:

HO,S

5

10

1) 2 mol H-Säure wurde in 25 gew.-%iger Natronlauge gelöst, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu einer wässrigen Lösung von 1 mol 3,3'-Dihydroxydiphenylamin gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 10 gehalten.

SO₂H

15

2) 2 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3-8 gehalten. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

20

In zu Beispiel 52a analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-P-N=N-Kk¹-N=N-R-N=N-Dk² und deren Metallkomplexe erhalten werden (Farbstoffe der allgemeinen Formel XV), worin Dk¹ und DK² für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Kk für einen von Kk2, Kk3, Kk5, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und P

und R jeweils für einen bivalenten Rest der Formeln II-1, II-3, II-5, II-7, II-9, II-11 und II-13 abgeleiteten zweiwertigen Rest stehen. Beispiele hierfür sind in Tabelle 15 angegeben.

5 Tabelle 15:

Beispiel Nr.	Dk ¹	Р	Kk ¹	R	Dk ²	Metall
52a	A1	DK44	Kk50	DK44	A1	
52b	A1	DK44	Kk50	DK44	A1	Cu
52c	A1	DK44	Kk50	DK44	A1	Co
52d	A1	DK44	Kk49	DK44	A1	Cu
52e	A1	DK44	Kk49	DK44	A1	Co

Beispiel 53a:

15

20

- 1) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu einer alkalischen Lösung von 1 mol Clevesäure-7 gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 2) 1 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu einer alkalischen Lösung von 1 mol 8-Aminonaphthalin-1-sulfonsäure (Dk56) gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 3) Das in Schritt 1) erhaltene Produkt wurde bei pH<1 und einer Temperatur von 0-5°C mit überschüssigem Natriumnitrit und Salzsäure diazotiert und innerhalb von 30 Minuten zu einer alkalischen Lösung von 1 mol 3,3'-Dihydroxydiphenilamine gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten.
- 4) Das in Schritt 2) erhaltene Produkt wurde bei pH<1 und einer Temperatur von 0-5°C
 mit überschüssigem Natriumnitrit und Salzsäure diazotiert und zu der in Schritt 3) er-

haltenen Reaktionsmischung gegeben, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 5 und 8 hielt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 53a analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-P-N=N-Kk¹-N=N-R-N=N-Dk² und deren Metallkomplexe erhalten werden (Farbstoffe der allgemeinen Formel XV), worin Dk¹ und DK² für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht, Kk für einen von Kk2, Kk3, Kk5, Kk49 oder Kk50 abgeleiteten bivalenten Rest steht und P und R jeweils für einen bivalenten Rest der Formeln II-15 oder II-16 oder für einen von den Diazokomponenten DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK22 bis DK27, DK29, DK30, DK33, DK36, DK38, oder DK39 abgeleiteten zweiwertigen Rest stehen. Beispiele hierfür sind in Tabelle 16 angegeben.

Tabelle 16:

Beispiel Nr.	Dk ¹	Р	Kk ¹	R	Dk ²	Metall
53a	A1	DK46	Kk50	DK56	A1	
53b	A1	DK4	Kk49	DK46	A1	Cu
53c	A1	DK4	Kk49	DK46	A1	Co
53d	A1	DK4	Kk50	DK46	A1	Cu

Beispiel 54:

20

25

30

1) 2 mol Anthranilsäure wurde in Schwefelsäure (96%) bei einer Temperatur von 70-80°C gelöst und mit 0,5-0,6 mol Formaldehyd umgesetzt. Nach 2 Stunden bei 70-80°C wurde die Reaktionsmischung durch Zugabe von Eis auf etwa 0°C gekühlt und das erhaltene Produkt mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert. 1,8-2,2 mol Resorcin wurde in 50 gew.-%iger Natronlauge bei einem pH-Wert > 12 gelöst und zu dieser Lösung wurde die tetrazotierte Verbindung innerhalb von 30 Minuten bei einer Temperatur von unter 5°C zugetropft, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert oberhalb 8 hielt.

2) 2 mol MSP wurde in Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und zu der in Schritt 1) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde die Reaktionslösung auf 80°C erwärmt und 2 mol CuSO₄ zugegeben. Anschließend wurde die erhaltene Reaktionsmischung eingedampft wobei man den komplexierten Farbstoff erhielt.

Beispiel 55:

10

5

Die Umsetzung erfolgte nach der in Beispiel 54 beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Kupfersalzen folgte.

5

Beispiel 56:

1) 2 mol Anthranilsäure wurde in Schwefelsäure (96%) bei einer Temperatur von 70-80°C gelöst und mit 0,5-0,6 mol Formaldehyd umgesetzt. Nach 2 Stunden bei 70-80°C wurde die Reaktionsmischung durch Zugabe von Eis auf etwa 0°C gekühlt und das erhaltene Produkt mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C tetrazotiert.

20

- 2) 2 mol MSP wurde im Eiswasser suspendiert, mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert. 2 mol Resorcin wurde in 50 gew.-%iger Natronlauge gelöst. Hierzu tropfte man das diazotierte MSP innerhalb von 30 min bei einer Temperatur von unter 10°C, wobei man durch Zugabe von 10 gew.-%iger Natronlauge den pH-Wert zwischen 6 und 8 hielt.
- 3) Die in Schritt 1) erhaltene Reaktionsmischung wurde in die in Schritt 2) erhaltenen Reaktionsmischung gegeben. Der pH-Wert wurde durch Zugabe von 10 gew.-%iger Natronlauge zwischen 3 und 8 gehalten. Nach beendeter Umsetzung wurde die Reaktionslösung auf 80°C erwärmt und man gab 2 mol CuSO₄ zu. Anschließend wurde die erhaltene Reaktionsmischung zur Trockne eingeengt, wobei man den komplexierten Farbstoff erhielt.

Beispiel 57:

Die Umsetzung erfolgte nach der in Beispiel 56a beschriebenen Methode mit dem Unterschied, dass keine Umsetzung mit Kupfersalzen folgte.

- In zu den Beispielen 54 und 56 analoger Weise können die Metallkomplexe der Farbstoffe der allgemeinen Formel Dk¹-N=N-Kk¹-N=N-Tk¹-N=N-Kk²-N=N-Dk² erhalten werden (Farbstoffe der allgemeinen Formel IV), worin Dk¹ und DK² für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A steht Tk¹ für einen von Tk3, Tk4, Tk8 bis Tk11, Tk14, Tk16 oder Tk19 abgeleiteten bivalenten Rest steht, und Kk¹ sowie Kk² unabhängig voneinander für einen von Kk2, Kk3, Kk5, Kk49 oder Kk50 abgeleiteten bivalenten Rest oder für einen bivalenten Rest der Formeln II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 stehen.
 - In zu den Beispielen 55 und 57 analoger Weise können die Farbstoffe der allgemeinen Formel Dk¹-N=N-Kk¹-N=N-Tk¹-N=N-Kk²-N=N-Dk² erhalten werden (Farbstoffe der allgemeinen Formel IV), worin Dk¹ und DK² für einen von den Diazokomponenten DK1 bis DK83 oder für einen von A1 bis A12 abgeleiteten Rest stehen, wobei wenigstens einer der Reste Dk¹ oder Dk² für einen Rest der Formel A, Tk¹ für einen von Tk1 bis Tk20 abgeleiteten bivalenten Rest steht, und Kk¹ sowie Kk² unabhängig voneinander für einen von Kk2, Kk3, Kk5, Kk49 oder Kk50 abgeleiteten bivalenten Rest oder für einen bivalenten Rest der Formeln II-2, II-4, II-6, II-8, II-10, II-12 oder II-14 stehen.

Beispiel 58:

25

30

35

- 1) 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der Lösung der Clevesäure-7 gegeben, wobei der pH-Wert unter 2 gehalten wurde.
- 2) Das in Schritt 1) erhaltene Produkt wurde mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend mit 1 mol Metamin bei einem pH-Wert von 3-8 umgesetzt. Nach beendeter Umsetzung wurde der Farbstoff durch Zugabe von NaCl ausgefällt und abgesaugt.

In zu Beispiel 58 analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Napht-N=N-Kk erhalten werden (= Farbstoffe der allgemeinen Formel I mit P = Napht, p = 1 und m = 0), worin Napht für einen von den DK42 bis DK59 abgeleiteten Rest steht, Kk für einen von Kk1 bis Kk48 oder Kk51 bis Kk67 abgeleiteten Rest steht und A einen der Reste A1 bis A12 bedeutet. Beispiele hierfür sind in Tabelle 17 angegeben.

Tabelle 17:

Beispiel Nr.	Α	Napht	Kk
58a	A1	Dk46	Kk5
58b	A1	Dk46	Kk27
58c	A1	Dk44	Kk27

5

Beispiel 59a:

15 1 mol Clevesäure-7 wurde in 25 gew.-%iger Natronlauge gelöst. Gleichzeitig wurde 1 mol MSP in Eiswasser suspendiert und mit überschüssigem Natriumnitrit und Salzsäure bei pH<1 und einer Temperatur von 0-5°C diazotiert und anschließend zu der Lösung der Clevesäure-7 gegeben, wobei der pH-Wert unter 2 gehalten wurde. Nach beendeter Umsetzung wurde der Farbstofflösung sprühgetrocknet.

20

25

In zu Beispiel 59a analoger Weise können die Farbstoffe der allgemeinen Formel A-N=N-Kk erhalten werden (= Farbstoffe der allgemeinen Formel I mit p = m = 0), worin Kk für einen von Kk1 bis Kk48, Kk51 bis Kk67 oder von DK3, DK4, DK6, DK7, DK11, DK13, DK14, DK15, DK18, DK21 bis DK27, DK29, DK30, DK33, DK36, DK38, DK39, oder Dk42 bis Dk83 abgeleiteten Rest steht und A einen der Reste A1 bis A12 bedeutet. Abhängig vom pH-Wert der Reaktion, kann die Kupplung des Rest A-N=N- sowohl in ortho-Position zur Hydroxylgruppe als auch in ortho-Position zur Aminogruppe in Dk42 bis Dk57 und in Dk59 erfolgen. Beispiele hierfür sind in Tabelle 18 angegeben.

30 Tabelle 18:

Beispiel Nr.	Α	Napht
59a	A1	DK47

Beispiel Nr.	Α	Napht
59b	A1	Kk32
59c	A1	DK44
59d	A1	Kk15
59e	A1	DK42
59f	A7	DK42
59g	A7	DK47
59h	A7	Kk46
59i	A7	DK52
59j	A4	DK52
59k	A4	DK47

15

20

Färbevorschriften:

Alle Angaben in Teilen sind als Gewichtsteile zu verstehen. Alle Angaben bezüglich Gerbstoffen, Hydrophobiermitteln, Fettlickern und Hilfmsitteln beziehen sich auf handelsübliche Produkte (Handelsware). Die Angaben bezüglich Farbstoff beziehen sich auf die Gesamtmenge an farbigen, organisch-chemischen Bestandteilen, gegebenenfalls herstellungbsedingt vorhandenen Salzen (Synthesesalze) und gegebenenfalls vorhandenen Stellmitteln.

Die Fixierausbeute wurde qualitativ mittels HPLC- und quantitativ mittels UV-VIS-spektroskopische Untersuchung der Färbeflotte bestimmt. Hierzug werden 5 ml Proben nach der Färbung (pH <7), nach 60 min, 120 min, 180 min Fixierung (pH>7) und von jede Waschwasserflotte genommen und mit 1 ml Ameisensärelösung auf pH 3-4 gestellt. Die Proben wurden mittels HPLC auf Farbstoff und seine Hydrolyseprodukte hin untersucht. Die Untersuchung erfolgte an HPLC Säulen Nucleodur C18 Gravity 3µ, CC70/2 und Hypersil 120-5 ODS, CC100/2 von der Firma Macherey-Nagel. Als Eluenten dienten Acetonitril / Puffer (1,6 g Tetrabutyammoniumhydrogensulfat, 6 g Dikaliumhydrogenphosphat – trihydrat in 1 L Wasser).

Die Bestimmung der Echtheiten erfolgte nach den folgenden, international anerkannten Normen:

Schweißechtheit: in Anlehnung an Veslic C4260

25 Waschechtheit: in Anlehnung an DIN EN ISO 15703

Migrationsechtheit: in Anlehnung an DIN EN ISO 15701, sowie durch 16 h Lagern bei

85 °C in einer Feuchte von 95 % unter ansonsten analogen Bedin-

gungen zu DIN EN ISO 15701

Reibechtheit: in Anlehnung an DIN EN ISO 105 - X12 (Crockmeter, Reibung mit

Baumwollgewebe) sowie in Anlehnung an DIN EN ISO 11640 (Ves-

lic, Reibung mit Filz)

Maeser: in Anlehnung an ASTM D 2099

5 Penetrometer: in Anlehnung an DIN EN ISO 5403

Wasserdampfdurchlässigkeit: in Anlehnung an DIN EN ISO 14268

Dauerbiegefestigkeit: in Anlehnung an DIN EN ISO 5402

Stichausreißversuch: in Anlehnung an DIN 5331

Weiterreißversuch: in Anlehnung an DIN EN ISO 3377

10 Zugfestigkeit: in Anlehnung an DIN EN ISO 3376

Färbevorschrift 1:

20

25

30

40

- a) Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,1 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 2d 60 Minuten bei pH 4,4 und 30°Cgefärbt. Durch portionsweise Zugabe von 100 Teilen 15%-ige Sodalösung wurde bei 40°C der pH-Wert zwischen 10,0 und 10,2 zur Fixierung des Farbstoffs 60 Minuten lang unter Walken gehalten. Anschließend folgte 6 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,7 eingestellt.
- b) Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser, 2 Teilen Polymergerbstoff und 2 Teilen eines naturbasierten Fettlickers 30 Minuten bei 35°C nachgegerbt. Anschließend gab man zur Flotte 15 Teile eines flüssigen, synthetischen Gerbstoffs, 6 Teile Polymergerbstoff, 10 Teile Tara (Vegetabilgerbstoff) und walkte 120 Minuten. Anschließend wurde das Leder in der gleichen Flotte mit 8 Teilen eines fischölbasierten Fettlickers sowie 2 Teilen eines lecitinbasierten Fettlickers durch 2 stündiges Walken bei 35 °C gefettet. Schließlich säuerte man mit 2 Teilen konzentrierter Ameisensäure auf pH 3,6 ab und walkte zweimal 10 Minuten und einmal 30 Minuten. Das gefärbte, nachgegerbte und gefettete Leder wurde noch mit 15°C kalten Wasser 10 Minuten gespült und anschließend ausgereckt, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.
- Es wurde eine brillantes farbtiefes rotes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 2:

a) Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,1 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2

Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 2a 60 Minuten bei pH 4,4 und 30°Cgefärbt. Durch portionsweise Zugabe von 15 Teilen festem Soda wurde bei 40°C der pH-Wert bei 10,0 zur Fixierung des Farbstoffs 60 Minuten lang unter Walken gehalten. Anschließend folgte 4 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,7 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde eine brillantes farbtiefes rotes Leder erhalten, das über hervorragende 10 Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 3:

5

20

30

35

40

a) Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,1 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 24 60 Minuten bei pH 4,4 und 30°C gefärbt. Durch portionsweise Zugabe von 100 Teilen 15-%ige Sodalösung wurde bei 50°C der pH-Wert bei 10,0 zur Fixierung des Farbstoffs 60 Minuten lang unter Walken gehalten. Anschließend folgte 4 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,7 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde eine brillantes farbtiefes rotes Leder erhalten, das über hervorragende 25 Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 4:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,1 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 58a 60 Minuten bei pH 4,4 und 30°Cgefärbt. Durch portionsweise Zugabe von 100 Teilen 15-%ige Sodalösung wurde bei 40°C der pH-Wert bei 10,0 zur Fixierung des Farbstoffs 90 Minuten lang unter Walken gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,7 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde eine brillantes farbtiefes rotes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

*

Färbevorschrift 5:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,1 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 58b 60 Minuten bei pH 4,4 und 30°Cgefärbt. Durch portionsweise Zugabe von 100 Teilen 15-%ige Sodalösung wurde bei 40°C der pH-Wert bei 10,0 zur Fixierung des Farbstoffs 60 Minuten lang unter Walken gehalten. Gleichzeitig mit der Sodalösungzugabe wurde in 3 Portionen insgesamt 15 Teile Glaubersalz zugesetzt. Anschließend folgte 5 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,7 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

5

10

20

25

Es wurde eine brillantes farbtiefes rotes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 6:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 59a 60 Minuten bei pH 4,1 und 30°Cgefärbt. Durch portionsweise Zugabe von 100 Teilen eines Borax-Puffers wurde bei 40°C der pH im Bereich 7,9 und 9,0 zur Fixierung des Farbstoffs 180 Minuten lang unter Walken gehalten. Anschließend folgte 5 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,6 Teilen Ameisensäure wurde ein pH von 4,3 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

35

40

Es wurde eine brillantes farbtiefes rotes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 7:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 59e 60 Minuten bei pH 4,1 und 30°C gefärbt. Durch einmalige Zugabe von 30 Teilen einer 15%-igen Sodalösung wurde bei 40°C der pH im Bereich 9,4 – 9,9 zur Fixierung des Farbstoffs 180 Minuten lang unter Walken gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser

und 0,7 Teilen Ameisensäure wurde ein pH von 4,5 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde eine brillantes farbtiefes rotes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 8:

5

10

20

25

30

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 2b 60 Minuten bei pH 4,1 und 30°Cgefärbt. Durch portionsweise Zugabe von 100 Teilen eines Borax-Puffers wurde bei 40°C der pH im Bereich 8,0 und 9,0 zur Fixierung des Farbstoffs 180 Minuten lang unter Walken gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,5 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein farbtiefes blaues Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 9:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 2k 30 Minuten bei pH 4,2 und 30°Cgefärbt. Durch einmalige Zugabe von 30 Teilen einer 15%-igen Sodalösung wurde bei 40°C der pH im Bereich 9,4 – 9,9 zur Fixierung des Farbstoffs 180 Minuten lang unter Walken gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,8 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein farbtiefes blaues Leder erhalten, das über hervorragende Wasch-, 35 Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 10:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 100 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 11a 30 Minuten bei

pH 4,2 und 30°Cgefärbt. Durch portionsweise Zugabe von 20 Teilen einer 15%-igen Sodalösung wurde bei 40°C der pH im Bereich 8,6 – 9,3 zur Fixierung des Farbstoffs 180 Minuten lang unter Walken gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,8 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein farbtiefes bordeaux-farbenes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

10

5

Färbevorschrift 11:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 12ae 45 Minuten bei pH 4,3 und 30°Cgefärbt. Durch portionsweise Zugabe von 40 Teilen einer 7%-igen Natriumbicarbonatlösung wurde bei 40°C der pH im Bereich 7,3 – 8,2 zur Fixierung des Farbstoffs 240 Minuten lang unter Walken gehalten. Anschließend folgte 6 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,2 Teilen Ameisensäure wurde ein pH von 3,9 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein brillantes farbtiefes blaues Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

25

35

20

Färbevorschrift 12:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 13c 30 Minuten bei pH 4,1 und 30°Cgefärbt. Durch portionsweise Zugabe von 40 Teilen einer 7%-igen Natriumbicarbonatlösung wurde zur Fixierung der pH bei 7,9 - 8,1 eingestellt und 60 Minuten lang gewalkt, anschließend wurde in drei Portionen 15 Teile Glaubersalz zugesetzt und weitere 120 Minuten bei pH 8,1 – 9,0 gewalkt. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 3,8 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein farbtiefes dunkelgrünes Leder erhalten, das über hervorragende Wasch-, 40 Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 13:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 12n 45 Minuten bei pH 4,2 und 30°C gefärbt. Durch portionsweise Zugabe von 20 Teilen einer 15%-igen Sodalösung wurde zur Fixierung der pH zwischen 8,4 - 9,2 eingestellt und 120 Minuten lang gewalkt. Anschließend folgte 2 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,1 Teilen Ameisensäure wurde ein pH von 3,9 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß- und Migrationsechtheit verfügt.

5

10

20

25

35

40

Färbevorschrift 14:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 5 Teilen Farbstoff aus Beispiel 13i 60 Minuten bei pH 4,2 und 30°C gefärbt. Durch portionsweise Zugabe von 21 Teilen einer 15%-igen Sodalösung wurde zur Fixierung der pH zwischen 8,8 - 9,3 eingestellt und 180 Minuten lang gewalkt. Anschließend folgte 6 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,5 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein farbtiefes dunkelgrünes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 15:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser und 5 Teilen Farbstoff aus Beispiel 59e 60 Minuten bei pH 4,1 und 30°C gefärbt. Durch portionsweise Zugabe von 21 Teilen einer 15%-igen Sodalösung wurde zur Fixierung der pH zwischen 8,8 - 9,3 eingestellt und 180 Minuten lang gewalkt. Anschließend folgte 6 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,5 eingestellt. Anschließend wurde wie in Färbevorschrift 1 unter b) beschrieben fortgefahren.

Es wurde ein brillante farbtiefes rotes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

5 Färbevorschrift 16:

10

20

25

35

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 0,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Die Entsäuerungsflotte hatte dann einen pH-Wert von 5,0. Danach wurde das Leder mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen. Das derart neutralisierte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten setzte man 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zu und es wurde weitere 60 Minuten gewalkt. Schließlich säuert man mit 0,5 % Ameisensäure auf pH 4,0 ab und walkte einmal 10 Minuten und einmal 30 Minuten.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser, 2 Teilen eines Dispergiermittels, 5 Teilen Farbstoff aus Beispiel 59f und 0,2 Teilen Natriumbicarbonat wurde 90 Minuten bei pH 4,8 und 35°C gefärbt. Durch portionsweise Zugabe von 40 Teilen einer 15%-igen Sodalösung wurde zur Fixierung der pH zwischen 9,0 - 9,3 eingestellt und 180 Minuten lang bei 40°C gewalkt. Anschließend folgte 6 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser

und 0,7 Teilen Ameisensäure wurde ein pH von 4,5 eingestellt.

In neuer Flotte, bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches Öl), 0,5 Teilen eines lanolinbasierten Lickers wurde das Leder durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,5 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 10 Minuten gespült und anschließend ausgereckt, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

Es wurde ein brillante farbtiefes rotes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

40 Färbevorschrift 17:

10

20

25

120

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach wies die Entsäuerungsflotte einen pH-Wert von 6,3 auf. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 5 Teilen Farbstoff aus Beispiel 35g wurde 60 Minuten bei pH 5,6 und 30°C gefärbt. Durch portionsweise Zugabe von 13 Teilen einer 15%-igen Sodalösung stellte man den pH-Wert der Flotte zwischen 8,5 - 9,1 ein und walkte 180 Minuten bei 40°C. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,5 Teilen Ameisensäure wurde ein pH von 4,8 eingestellt. Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuert man mit 0,5 Teilen Ameisensäure auf pH 4,4 ab und walkte einmal 10 Minuten und einmal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 100 Teilen Wasser wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlickers (Basis sulfitiertes Fischöl und synthetisches Öl), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,5 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 10 Minuten gespült und anschließend ausgereckt, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

Es wurde ein farbtiefes braunes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 18:

25 Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach wies die Entsäuerungsflotte einen pH-

Wert von 6,5 auf. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 5 Teilen Farbstoff aus Beispiel 35h wurde 45 Minuten bei pH 5,9 und 30°C gefärbt. Durch portionsweise Zugabe von 15 Teilen einer 15%-igen Sodalösung stellte man den pH-Wert der Flotte zwischen 8,8 - 9,6 ein und walkte 120 Minuten bei 50°C. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,5 Teilen Ameisensäure wurde ein pH von 5,1 eingestellt.

10

5

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuert man mit 1,0 Teilen Ameisensäure auf pH 4,1 ab und walkte einmal 10 Minuten und einmal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen Wasser wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches ÖI), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,3 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 10 Minuten gespült und anschließend ausgereckt, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

25

20

Es wurde ein farbtiefes dunkelbraunes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

35

40

Färbevorschrift 19:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Die Entsäuerungsflotte wies dann einen pH-Wert von 6,6 auf. Danach wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 5 Teilen Farbstoff aus Beispiel 12a wurde 60 Minuten bei pH 6,0 und 30°C gefärbt. Durch portionsweise Zugabe von 18 Teilen einer 15%-igen Sodalösung wurde der pH-Wert der Flotte zwischen 8,8 - 9,8 eingestellt. Anschließend wurde 120 Minuten bei 50°C gewalkt. An-

schließend folgte 2 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,5 Teilen Ameisensäure wurde ein pH von 5,0 eingestellt.

- Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließ-lich säuert man mit 1,0 Teilen Ameisensäure auf pH 4,1 ab und walkte einmal 10 Minuten, einmal 30 und zweimal 20 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen Wasser wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches ÖI), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,4 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 10 Minuten gespült und anschließend ausgereckt, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.
- 20 Es wurde ein schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 20:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach wies die Entsäuerungsflotte einen pH-Wert von 6,4 auf. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 4,25 Teilen Farbstoff aus Beispiel 17h wurde 90 Minuten bei pH 5,7 und 30°C gefärbt. Durch portionsweise Zugabe von 16 Teilen einer 15%-igen Sodalösung wurde der pH-Wert der Flotte zwischen 8,6 - 9,3 eingestellt und es wurde 180 Minuten bei 50°C gewalkt. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,7 eingestellt.

35

25

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuerte man mit 0,5 Teilen Ameisensäure auf pH 4,7 ab und walkte einmal 10 Minuten und einmal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen Wasser bei 40°C wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches ÖI), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,7 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 10 Minuten gespült und anschließend ausgereckt, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

5

10

Es wurde ein schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 21:

20 Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach war der pH-Wert der Entsäuerungsflotte 6,4. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 10 Teilen Farbstoff aus Beispiel 25 wurde 45 Minuten bei pH 5,4 und 30°C gefärbt. Durch portionsweise Zugabe von 20 Teilen einer 15%-igen Sodalösung wurde der pH-Wert der Flotte zwischen 8,4 - 9,1 eingestellt und es wurde 120 Minuten bei 50°C gewalkt. Anschließend folgte 2 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,6 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuerte man mit 0,5 Teilen Ameisensäure auf pH 4,7 ab und walkte einmal 10 Minuten und einmal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen

Wasser bei 40°C wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches Öl), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,7 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 15 Minuten gespült und anschließend ausgereckt, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 22:

5

10

20

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit einer Flotte aus 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 10 Teilen Farbstoff aus Beispiel 32 60 Minuten bei pH 4,3 und 30°C gefärbt. Durch portionsweise Zugabe von 27 Teilen einer 15%-igen Sodalösung wurde dann bei 40°C in der Flotte ein pH-Wert im Bereich 8,7 und 9,3 eingestellt und 180 Minuten unter Walken gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,2 eingestellt. Die Nachgerbung/Fettung/Mechanische Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

25 Es wurde eine farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 23:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit einer Flotte aus 150 Teilen Wasser, und 10 Teilen Farbstoff aus Beispiel 40b 60 Minuten bei pH 4,3 und 30°C gefärbt. Durch portionsweise Zugabe von 27 Teilen einer 15%-igen Sodalösung wurde bei 40°C in der Flotte ein pH-Wert im Bereich 8,7 und 9,3 zur Fixierung des Farbstoffs eingestellt und 180 Minuten lang unter Walken gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 0,7 Teilen Ameisensäure wurde ein pH von 4,3 eingestellt. Die Nachgerbung/Fettung/mechanischen Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

Es wurde eine farbtiefes braunes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 24:

5 Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach wies die Entsäuerungsflotte einen pH-Wert von 6,4 auf. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

20

25

35

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 4,25 Teilen Farbstoff aus Beispiel 42g wurde 60 Minuten bei pH 6,1 und 30°C gefärbt. Durch portionsweise Zugabe von 23 Teilen einer 15%-igen Sodalösung wurde in der Flotte ein pH-Wert zwischen 8,7 - 9,5 eingestellt und es wurde 180 Minuten bei 50°C gewalkt. Anschließend folgte 4 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuerte man mit 2,0 Teilen Ameisensäure auf pH 3,8 ab und walkte einmal 10 Minuten und dreimal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen Wasser bei 40°C wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches ÖI), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,3 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 15 Minuten gespült und anschließend ausgereckt, vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

Es wurde ein farbtiefes braunes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

40 Färbevorschrift 25:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit einer Flotte aus 150 Teilen Wasser und 4,25 Teilen Farbstoff aus Beispiel 43a 60 Minuten bei pH 4,2 und 30°C gefärbt. Durch portionsweise Zugabe von 30 Teilen einer 15%-igen Sodalösung wurde bei 40°C in der Flotte ein pH-Wert im Bereich 8,5 und 9,4 eingestellt und 180 Minuten lang unter Walken gehalten. Anschließend folgte 2 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,4 Teilen Ameisensäure wurde ein pH von 4,0 eingestellt. Die Nachgerbung/Fettung/mechanischen Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

5

10

20

Es wurde eine braunes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 26:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Die Entsäuerungsflotte wies dann einen pH-Wert von 6,2 auf. Danach wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 4,0 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 15 Minuten gespült und anschließend ausgereckt, vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

10 Färbevorschrift 27:

5

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach hatte die Entsäuerungsflotte einen pH-Wert von 6,2. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 14,3 Teilen Farbstoff aus Beispiel 6c wurde 60 Minuten bei pH 5,3 und 30°C gefärbt. Durch portionsweise Zugabe von 28 Teilen einer 15%-igen Sodalösung stellte man in der Flotte einen pH-Wert zwischen 8,7 - 9,3 ein und walkte 180 Minuten lang bei 50°C. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 4,6 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuerte man mit 1,8 Teilen Ameisensäure auf pH 4,0 ab und walkte einmal 10 Minuten und dreimal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen Wasser bei 40°C wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches Öl), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,3 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 15 Minuten gespült und anschließend ausgereckt, vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

35

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 28:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten 5 Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit einer Flotte aus 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 11,5 Teilen Farbstoff aus Beispiel 6d 60 Minuten bei pH 4,3 und 30°C gefärbt. Durch portionsweise Zugabe von 30 Teilen einer 15%-igen Sodalösung wurde bei 40°C der pH-Wert 180 Minuten unter Walken im 10 Bereich 8,8 und 9,2 gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 4,4 eingestellt. Die Nachgerbung/Fettung/mechanischen Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-. Schweiß-, Reib- und Migrationsechtheit verfügt.

20 Färbevorschrift 29:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 14,3 Teilen Farbstoff aus Beispiel 9f 60 Minuten bei pH 4,3 und 30°C gefärbt. Durch portionsweise Zugabe von 30 Teilen einer 15%-igen Sodalösung wurde bei 40°C der pH der Flotte 180 Minuten unter Walken im Bereich 8,7 und 9,2 gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 4,5 eingestellt.

25

Die Nachgerbung/Fettung/mechanischen Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

35

40

Färbevorschrift 30:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit einer Flotte aus 150 Teilen Wasser und 11,5 Teilen Farbstoff aus Beispiel 1f 60 Minuten bei pH 4,3 und 30°C gefärbt. Durch portionsweise Zugabe von 30 Teilen einer 15%-igen Sodalösung

wurde bei 40°C der pH-Wert der Flotte zur Fixierung des Farbstoffs 180 Minuten unter Walken im Bereich 8,8 und 9,4 gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 4,6 eingestellt.

Die Nachgerbung/Fettung/mechanischen Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

10

20

Färbevorschrift 31:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit einer Flotte aus 150 Teilen Wasser und 14,3 Teilen Farbstoff aus Beispiel 12q 60 Minuten bei pH 4,3 und 30°C gefärbt. Durch portionsweise Zugabe von 30 Teilen einer 15%-igen Sodalösung wurde bei 40°C der pH-Wert der Flotte zur Fixierung des Farbstoffs 180 Minuten unter Walken im Bereich 8,6 und 9,3 gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 4,6 eingestellt.

Die Nachgerbung/Fettung/mechanischen Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, 25 Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 32:

ter b) beschrieben durchgeführt.

30

35

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde in der neuen Flotte aus 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 8 Teilen Farbstoff aus Beispiel 12s der pH sofort durch portionsweise Zugabe von 30 Teilen einer 15%-igen Sodalösung auf > 8,5 gestellt und unter Walken bei 40°C im Bereich 8,7 und 9,2 zur Fixierung des Farbstoffs 220 Minuten gehalten. Anschließend folgte 3 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure wurde ein pH von 4,5 eingestellt.

40 Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 33:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach hatte die Entsäuerungsflotte einen pH-Wert von 6,4. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

5

10

20

25

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 8 Teilen Farbstoff aus Beispiel 12t wurde durch portionsweise Zugabe von 23 Teilen einer 15%-igen Sodalösung der pH sofort auf >8,5 gestellt und zur Fixierung des Farbstoffs 240 Minuten bei 50°C unter walken zwischen 8,7 - 9,5 gehalten. Anschließend folgte 4 mal eine 10 minütige Waschoperation in 200 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,1 Teilen Ameisensäure wurde ein pH von 4,2 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuerte man mit 2,0 Teilen Ameisensäure auf pH 3,8 ab und walkte einmal 10 Minuten und dreimal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen Wasser bei 40°C wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches ÖI), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,3 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem Wasser 15 Minuten gespült und anschließend ausgereckt, vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

35

40

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 34:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 mm wurde in einem mit 200 Teilen Wasser gefüllten Wackerfass 20 Minuten bei 30°C gewaschen. Danach wurde mit einer Flotte aus 150 Teilen Wasser, 2 Teilen eines Dispergiermittels und 7 Teilen Farbstoff aus Beispiel 12u

60 Minuten bei pH 4,3 und 30°C gefärbt. Durch portionsweise Zugabe von 30 Teilen einer 15%-igen Sodalösung wurde bei 40°C der pH-Wert der Flotte zur Fixierung des Farbstoffs 200 Minuten lang unter Walken im Bereich von 8,7 und 9,2 gehalten. Nach Flottenwechsel wurde durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure ein pH von 4,5 eingestellt.

Die Nachgerbung/Fettung/mechanischen Arbeiten wurden wie in Färbevorschrift 1 unter b) beschrieben durchgeführt.

Es wurde ein farbtiefes schwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheit verfügt.

Färbevorschrift 35:

5

10

5

20

25

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 200 Teilen Wasser und 0,1 Teilen Ameisensäure gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat, 1,5 Teil Natriumbicarbonat und 1 Teil eines Dispergiermittels bestehenden Flotte 120 Minuten bei 35°C neutralisiert. Danach hatte die Entsäuerungsflotte einen pH-Wert von 6,4. Anschließend wurde mit 200 Teilen Wasser 10 Minuten bei 35°C gewaschen.

In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 7 Teilen Farbstoff aus Beispiel 13n wurde 60 Minuten bei pH 6,3 und 30°C gefärbt. Durch portionsweise Zugabe von 23 Teilen einer 15%-igen Sodalösung wurde zur Fixierung der pH-Wert der Flotte zwischen 8,7 - 9,5 eingestellt und es wurde 210 Minuten lang bei 50°C gewalkt. Nach Flottenwechsel wurde durch Zugabe von 200 Teilen Wasser und 1,0 Teilen Ameisensäure ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 30 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Schließlich säuerte man mit 2,0 Teilen Ameisensäure auf pH 3,8 ab und walkte einmal 10 Minuten und dreimal 30 Minuten. Nach einer 10 minütigen Waschoperation mit 200 Teilen Wasser bei 40°C wurde das Leder in neuer Flotte bestehend aus 100 Teilen Wasser, 4,5 Teilen eines Mischlicker (Basis sulfitiertes Fischöl und synthetisches ÖI), 0,5 Teilen eines lanolinbasierten Lickers durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,5 Teilen konzentrierte Ameisensäure auf pH 3,3 ab und walkt 40 Minuten. Das gefärbte und gefettete Leder wurde noch mit 15°C kaltem

40

Wasser 15 Minuten gespült und anschließend ausgereckt, vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

Färbevorschrift 36:

5

10

20

25

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einem mit 300 Teilen Wasser gefüllten Wackerfass 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser, 2 Teilen Natriumformiat, 1 Teil Natriumacetat und 2,2 Teilen Natriumbicarbonat bestehenden Flotte 120 Minuten bei 40°C neutralisiert. Die Entsäuerungsflotte hatte dann einen pH-Wert von 7,2. Zur Entsäurungsflotte wurden 10,5 Teile Farbstoff 12bj gegeben und 30 Minuten bei pH 6,9 und 40°C gefärbt. Durch portionsweise Zugabe von 8 Teilen Soda stellte man den pH-Wert der Flotte zwischen 9,2 – 9,7 ein und walkte 75 Minuten bei 40°C. Anschließend folgte 2 mal eine 20 minütige Waschoperation in 300 Teilen Wasser bei 40°C. Durch Zugabe von 200 Teilen Wasser und 1,2 Teilen Ameisensäure wurde ein pH von 3,9 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 2 Teilen eines Polymergerbstoffs 30 Minuten bei 30°C nachgegerbt. Anschließend versetzte man die Flotte mit 2 Teilen eines hydrophobierenden Fettungsmittels. Nach einer Walkzeit von weiteren 30 Minuten wurden 5 Teile eines Sulfongerbstoffs und 4 Teile eines Harzgerbstoffs zugesetzt und weitere 60 Minuten gewalkt. Zur Nachgerbflotte wurden 4,5 Teilen eines Mischlickers (Basis sulfitiertes Fischöl und synthetisches Öl) und 0,5 Teilen eines lanolinbasierten Lickers zugegeben und das Leder durch 40 minütiges Walken bei 55°C gefettet. Anschließend säuerte man mit 1,6 Teilen konzentrierte Ameisensäure auf pH 3,6 ab und walkte 45 Minuten. Das gefärbte und gefettete Leder wurde noch mit 300 Teilen 20°C kaltem Wasser 10 Minuten gewaschen und anschließend ausgereckt, 1,5 Minuten bei 70°C vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und gespannt.

Es wurde ein tiefschwarzes Leder erhalten, das über hervorragende Wasch-, Schweiß-, Reib- und Migrationsechtheiten verfügt.

In analoger Weise wurden die in Tabelle 19 angegebenen Färbungen durchgeführt:

35 Tabelle 19

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
1a	4	5	schwarz
1b	11	7	schwarz
1b	26	14,1	schwarz
1c	4	6,7	schwarz

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
1d	19	11,3	schwarz
1e	30	6,4	
1f	19	9,5	schwarz
	35	<u> </u>	schwarz
2a		7,9	rot
2b	5	4,7	blau
2c	6	5,8	blau
2d	9	18,6	rot
2e	25	14,6	blau
2f	12	12,4	blau
2g	34	12,0	violett
2h	35	7,9	blau
2i	26	18,6	blau
2 j	4	14,6	blau
2k	19	12,4	blau
3	30	12,0	violett
4a	31	6,3	dunkelbraun
5a	34	7,8	braun
6a	9	17,4	blau
6b	1	5,2	schwarz
6b	16	8,3	schwarz
6c	15	8,8	schwarz
6d	13	8,9	schwarz
6d	17	12,0	schwarz
6e	9	17,4	blau
6f	9	17,4	blau
6g	9	17,4	blau
6h	9	17,4	rot
7	18	6,7	blau
8	21	9,2	blau
9a	2	17,1	rot
9b	17	11,4	rot
9c	14	9,5	schwarz
9c	22	16,7	schwarz
9d	33	15,4	braun
9e	33	15,4	schwarz
9f	34	4,9	schwarz
9g	2	17,1	rot
9h	14	9,5	schwarz
10	24	7,9	blau
L	_L		

134

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
11a	27	12,0	bordeaux
11b	21	10,2	bordeaux
12a	3	2,3	schwarz
	28	8,4	schwarz
	34	17,9	schwarz
	21	10,0	schwarz
12b	5	2,4	schwarz
	23	8,4	schwarz
	32	16,9	schwarz
	18	4,7	schwarz
	27	10,5	schwarz
	33	18,7	schwarz
12c	6	9,8	dunkelgrün
•	16	9,8	dunkelgrün
12d	1	18,1	dunkelgrün
	29	4,6	dunkelgrün
12e	20	3,3	dunkelgrün
12f	35	11,7	dunkelgrün
12g	7	15,4	dunkelgrün
12h	8	5,0	grün
	24	5,2	grün
12i	7	2,7	dunkelgrün
	7	15,4	dunkelgrün
	17	5,1	dunkelgrün
12j	4	2,7	schwarz
	10	15,4	schwarz
•	31	5,1	schwarz
12k	12	10,0	schwarz
	19	10,0	schwarz
121	15	15,1	grün
12m	26	8,8	schwarz
12n	15	15,1	schwarz
120	26	8,8	dunkelgrün
12p	13	6,5	schwarz
12q	14	8,3	schwarz
12r	22	15,1	schwarz
12s	1	8,3	schwarz
12t	3	12,0	schwarz
12u	11	3,8	schwarz

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
12v	22	4,7	schwarz
12z	33	9,0	dunkelgrün
12aa	13	7,6	dunkelblau
12ab	6	6,2	dunkelblau
12ac	2	7,9	dunkelblau
12ad	7	5,3	dunkelblau
12ae	9	8,8	blau
12af	8	7,4	schwarz
12ag	4	7,9	schwarz
12ah	14	8,8	schwarz
12ai	5	10,1	schwarz
12aj	23	5,9	schwarz
12ak	17	14,3	schwarz
12al	31	13,2	schwarz
12am	1	19,3	schwarz
12an	4	1,8	schwarz
12ao	11	5,7	grün
12ap	28	3,8	grün
12aq	20	6,4	grün
12ar	13	12,5	schwarz
12as	26	10,5	schwarz
12at	35	7,7	schwarz
	7	10,2	schwarz
	19	14,3	schwarz
	36	3,5	schwarz
12au	15	4,6	schwarz
12av	16	2,3	schwarz
12aw	6	3,1	grün
12ax	34	8,6	schwarz
12ay	18	17,3	schwarz
12az	31	2,8	schwarz
12ba	8	5,1	schwarz
12bb	10	6,2	schwarz
12bc	33	11,3	schwarz
12bd	1	7,1	dunkelgrün
12be	25	13,7	dunkelgrün
12bf	29	18,1	dunkelgrün
12bg	21	4,4	dunkelgrün
12bh	12	3,5	dunkelgrün

136

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
12bi	17	6,2	grün
12bj	2	2,1	schwarz
12bk	23	3,6	grün
12bl	30	5,2	schwarz
12bm	27	8,9	schwarz
12bn	14	5,6	grün
12bo	32	3,1	grün
12bp	22	14,5	grün
12bq	24	9,6	schwarz
12br	9	5,4	schwarz
12bs	7	7,5	schwarz
12bt	5	2,9	schwarz
12bu	3	9,8	schwarz
12bv	19	4,9	schwarz
12bw	8	1,8	schwarz
12bx	10	5,7	schwarz
12by	33	3,8	blau
12bz	1	6,4	blau
12ca	25	12,5	blau
12cb	29	10,5	blau
12cc	21	7,7	blau
12cd	12	4,6	blau
12ce	17	2,3	blau
12cf	2	3,1	blau
12cg	23	8,6	blau
12ch	30	17,3	blau
12ci	27	2,8	blau
12cj	14	5,1	blau
12ck	32	6,2	blau
12cl	22	12,5	blau
12cm	24	10,5	blau
12cn	9	7,7	blau
12co	7	4,6	blau
12cp	5	2,3	blau
12cq	3	3,1	blau
12cr	19	8,6	blau
12cs	35	17,3	blau
12ct	15	2,8	blau
12cu	16	5,1	blau
<u></u>			<u> </u>

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
12cv	6	6,2	blau
12cw	34	11,3	blau
12cx	18	7,1	blau
12cy	31	13,7	blau
12cz	4	18,1	blau
12da	11	4,4	blau
12db	28	3,5	blau
12dc	20	6,2	blau
12dd	13	2,1	blau
12de	26	3,6	grün
12df	35	5,2	grün
12dg	15	8,9	schwarz
12dh	16	5,6	schwarz
12di	6	3,1	schwarz
12dj	25	14,5	schwarz
12dk	29	9,6	schwarz
12dl	21	5,4	grün
12dm	12	7,5	grün
12dn	17	2,9	grün
12do	2	9,8	schwarz
12dp	23	4,9	schwarz
12dq	30	1,8	schwarz
12dr	27	5,7	schwarz
12ds	14	3,8	schwarz
12dt	32	6,4	schwarz
12du	22	12,5	schwarz
12dv	24	10,5	schwarz
12dw	9 .	7,7	blau
12dx	7	4,6	blau
12dy	5	2,3	blau
12dz	3	3,1	blau
12ea	19	8,6	blau
12eb	35	17,3	blau
12ec	15	2,8	blau
12ed	16	5,1	blau
12ee	6	6,2	blau
12ef	14	5,6	blau
12eg	32	3,1	blau
12eh	22	14,5	þlau

138

12ei 24	Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
12ej				
12ek				<u> </u>
12el				
12em			<u> </u>	
12en	<u></u>	<u> </u>		
12e0 35 3,8 blau 12ep 15 6,4 blau 12eq 16 12,5 blau 12er 6 10,5 blau 12es 34 7,7 blau 12et 18 4,6 blau 12eu 31 2,3 blau 12ev 4 3,1 blau 12ev 4 3,1 blau 12ex 28 17,3 blau 12ex 28 17,3 blau 12ex 29 20 2,8 blau 12ez 13 5,1 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fa 15 6,2 blau 12fa 14 13,7 blau 12fa 14 13,7 blau 12fa 14 13,7 blau 12fa 15 6,2 18,1 blau 12fa 14 13,7 blau 12fa 15 6,2 7,7 blau 12fa 15 7,1 5,3 7,4 7,4 7,4 7,5 7,				
12ep 15 6,4 blau 12eq 16 12,5 blau 12er 6 10,5 blau 12es 34 7,7 blau 12et 18 4,6 blau 12eu 31 2,3 blau 12ev 4 3,1 blau 12ew 11 8,6 blau 12ew 11 8,6 blau 12ew 11 8,6 blau 12ew 20 2,8 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6<			<u> </u>	
12eq 16 12,5 blau 12er 6 10,5 blau 12es 34 7,7 blau 12et 18 4,6 blau 12eu 31 2,3 blau 12ev 4 3,1 blau 12ew 11 8,6 blau 12ex 28 17,3 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fc 6 7,1 blau 12fe 32 18,1 blau 12fe 32 18,1 blau 12fg 24 4,6 grün 12fg 24 4,6				
12er 6 10,5 blau 12es 34 7,7 blau 12et 18 4,6 blau 12eu 31 2,3 blau 12ev 4 3,1 blau 12ew 11 8,6 blau 12ex 28 17,3 blau 12ey 20 2,8 blau 12ey 20 2,8 blau 12ey 20 2,8 blau 12ey 20 2,8 blau 12fa 15 6,2 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12fg 24 4,6 grün 12fg 24 4,6<	L '			
12es 34 7,7 blau 12et 18 4,6 blau 12eu 31 2,3 blau 12ev 4 3,1 blau 12ew 11 8,6 blau 12ex 28 17,3 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12ff 22 7,7 blau 12ff 9 2,3 grün 12fi 7 3,1 schwarz 12fi 19 2,8				
12et 18 4,6 blau 12eu 31 2,3 blau 12ev 4 3,1 blau 12ew 11 8,6 blau 12ex 28 17,3 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fi 19 2,8 schwarz 12fn 19 2,8 schwarz 12fn 18 6,2 grün <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
12eu 31 2,3 blau 12ev 4 3,1 blau 12ew 11 8,6 blau 12ex 28 17,3 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fg 24 4,6 grün 12fi 7 3,1 schwarz 12fi 7 3,1 schwarz 12fi 7 3,1 schwarz 12fi 19 2,3 grün 12fi 19 2,8 schwarz 12fi 19 2,8 schwarz				blau
12ev 4 3,1 blau 12ew 11 8,6 blau 12ex 28 17,3 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fi 7 3,1 schwarz 12fi 5 8,6 schwarz 12fi 19 2,8 schwarz 12fn 19 2,8 schwarz 12fn 18 6,2 grün 12fo 31			L	blau
12ew 11 8,6 blau 12ex 28 17,3 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fi 3 17,3 schwarz 12fi 19 2,8 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fo 31 5,6 grün <t< td=""><td></td><td></td><td></td><td>blau</td></t<>				blau
12ex 28 17,3 blau 12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fi 7 3,1 schwarz 12fi 9 2,8 schwarz 12fi 19 2,8 schwarz 12fn 18 6,2 grün 12fn 18 6,2 grün 12fo 31 5,6 grün 12fq 1 14,5 schwarz			3,1	blau
12ey 20 2,8 blau 12ez 13 5,1 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fn 18 6,2 grün 12fn 18 6,2 grün 12fo 31 5,6 grün 12fq 11 14,5 schwarz 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz <				blau
12ez 13 5,1 blau 12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fn 18 6,2 grün 12fn 18 6,2 grün 12fo 31 5,6 grün 12fq 1 14,5 schwarz 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12ft 13 8,2 schwarz			17,3	blau
12fa 15 6,2 blau 12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fn 19 2,8 schwarz 12fn 18 6,2 grün 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12ft 13 8,2 schwarz	1 -		2,8	blau
12fb 16 11,3 blau 12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12ft 13 8,2 schwarz			5,1	blau
12fc 6 7,1 blau 12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fn 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12ft 13 8,2 schwarz		15	6,2	blau
12fd 14 13,7 blau 12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz			11,3	blau
12fe 32 18,1 blau 12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz		6	7,1	blau
12ff 22 7,7 blau 12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fd	14	13,7	blau
12fg 24 4,6 grün 12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz		32	18,1	blau
12fh 9 2,3 grün 12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12ff	22	7,7	blau
12fi 7 3,1 schwarz 12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	· · · · · · · · · · · · · · · · · · ·	24	4,6	grün
12fj 5 8,6 schwarz 12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz			2,3	grün
12fk 3 17,3 schwarz 12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fi	7	3,1	schwarz
12fl 19 2,8 schwarz 12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fj	5	8,6	schwarz
12fm 34 5,1 schwarz 12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fk	3	17,3	schwarz
12fn 18 6,2 grün 12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fl	19	2,8	schwarz
12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fm	34	5,1	schwarz
12fo 31 5,6 grün 12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fn	18	6,2	
12fp 4 3,1 grün 12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fo	31	5,6	
12fq 11 14,5 schwarz 12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fp	4	3,1	
12fr 28 9,6 schwarz 12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fq	11	14,5	
12fs 20 5,4 schwarz 12ft 13 8,2 schwarz	12fr	28		
12ft 13 8,2 schwarz	12fs	20		
	12ft	13		
	12fu	15	1,9	schwarz

139

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
12fv	16	2,6	schwarz
12fw	6	14,3	schwarz
12fx	5	6,7	schwarz
12fy	1	5,9	blau
12fz	14	3,2	blau
12ga	36	4,6	blau
12gb	15	17,9	blau
12gc	27	6,8	blau
12gd	4	2,4	blau
12ge	20	10,1	schwarz
12gf	9	6,6	schwarz
12gg	3	7,5	schwarz
12gh	33	3,5	schwarz
12gi	15	11,2	schwarz
12gj	7	8,6	schwarz
12gk	11	3,6	blau
12gl	2	19	blau
12gm	4	10,9	blau
12gn	8	5,6	blau
12go	15	6,1	blau
12gp	16	4,8	blau
12gq	7	3,1	schwarz
12gr	13	9,9	schwarz
12gs	21	12,6	schwarz
12gt	30	13,5	schwarz
12gu	36	14,8	schwarz
12gv	25	2,8	schwarz
12gw	15	15,1	schwarz
	29	4,8	schwarz
12gz	26	8,8	schwarz
12ha	15	15,1	schwarz
	8	5,5	schwarz
12hb	26	8,8	schwarz
	11	6,1	schwarz
12hc	13	6,5	schwarz
	24	11,2	schwarz
12hd	14	8,3	schwarz
	35	4,1	schwarz
12he	22	15,1	schwarz

140

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
	16	7,5	schwarz
12hf	1	8,3	schwarz
12111	33	4,6	schwarz
12hh	3	12,0	
121111	27	6,1	schwarz
12hi	11	3,8	schwarz
12hj	22	4,7	schwarz
12hk	33		schwarz
·	13	9,0	schwarz
12hi		7,6	schwarz
12hm	6	6,2	schwarz
12hn	2	7,9	schwarz
12ho	7	5,3.	schwarz
12hp	9	8,8	schwarz
12hq	8	7,4	schwarz
12hr	4	7,9	schwarz
12hs	14	8,8	schwarz
12ht	5	10,1	blau
12hu	23	5,9	blau
12hv	17	14,3	blau
12hw	31	13,2	schwarz
13a	2	2,3	schwarz
	6	8,4	schwarz
	11	17,9	schwarz
	17	10,0	schwarz
13b	9	2,4	schwarz
	25	8,4	schwarz
	21	4,7	schwarz
	21	10,5	schwarz
	21	18,7	schwarz
13c	25	11,0	dunkelgrün
13d	17	10,8	dunkelgrün
13e	30	17,0	dunkelgrün
13f	34	11,5	dunkelgrün
13g	7	11,2	dunkelgrün
13h	3	8,4	schwarz
	24	8,4	schwarz
13i	16	8,4	dunkelgrün
13j	27	11,4	schwarz
13k	10	6,6	schwarz
	L	<u> </u>	

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
	10	13,2	schwarz
131	12	15,1	grün
13m	15	8,8	schwarz
13n	15	8,8	schwarz
130	1	8,2	dunkelgrün
13p	19	2,9	schwarz
13q	21	4,5	schwarz
13r	4	6,7	schwarz
13s	20	15,0	schwarz
13t	5	4,6	schwarz
13u	17	6,7	schwarz
13v	19	8,2	schwarz
13z	8	2,9	dunkelgrün
13aa	9	4,5	dunkelblau
13ab	10	6,7	dunkelblau
13ac	11	7,7	dunkelblau
13ad	18	9,1	dunkelblau
13ae	16	8,3	blau
13af	14	5,9	schwarz
13ag	15	11,0	schwarz
13ah	14	8,8	schwarz
13ai	6	10,9	schwarz
13aj	7	11,1	dunkelblau
13ak	15	9,7	dunkelblau
13al	12	8,4	dunkelgrün
13am	13	7,6	schwarz
13an	23	5,9	schwarz
13ao	17	14,3	schwarz
13ap	31	13,2	schwarz
13aq	1	19,3	schwarz
13ar	4	1,8	schwarz
13as	11	5,7	grün
13at	28	3,8	grün
13au	20	6,4	grün
13av	13	12,5	schwarz
13aw	26	10,5	schwarz
13ax	35	7,7	schwarz
13ay	15	4,6	schwarz
13az	16	2,3	schwarz

142

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
13ba	6	3,1	schwarz
13bb	34	8,6	schwarz
13bc	18	17,3	schwarz
13bd	31	2,8	schwarz
13be	8	5,1	schwarz
13bf	10	6,2	schwarz
13bg	33	11,3	schwarz
13bh	1	7,1	dunkelgrün
13bi	25	13,7	dunkelgrün
13bj	29	18,1	dunkelgrün
13bk	21	4,4	dunkelgrün
13bl	12	3,5	dunkelgrün
13bm	17	6,2	dunkelgrün
13bn	2	2,1	schwarz
13bo	23	3,6	dunkelgrün
13bp	30	5,2	grün
13bq	27	8,9	schwarz
13br	14	5,6	grün
13bs	32	3,1	grün
13bt	22	14,5	grün
13bu	24	9,6	schwarz
13bv	9	5,4	schwarz
13bw	7	7,5	schwarz
13bx	5	2,9	schwarz
13by	3	9,8	schwarz
13bz	19	4,9	schwarz
13ca	8	1,8	schwarz
13cb	10	5,7	schwarz
13cc	33	3,8	blau
13cd	1	6,4	blau
13ce	25	12,5	blau
13cf	29	10,5	blau
13cg	21	7,7	blau
13ch	12	4,6	blau
13ci	17	2,3	blau
13cj	2	3,1	blau
13ck	23	8,6	blau
13cl	30	17,3	blau
13cm	27	2,8	blau

143

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
13cn	14	5,1	blau
13co	32	6,2	blau
13cp	22	12,5	blau
13cq	24	10,5	blau
13cr	9	7,7	blau
13cs	7	4,6	blau
13ct	5	2,3	blau
13cu	3	3,1	blau
13cv	19	8,6	blau
13cw	35	17,3	blau
13cx	15	2,8	blau
13cy	16	5,1	blau
13cz	6	6,2	blau
13da	34	11,3	blau
13db	18	7,1	blau
13dc	31	13,7	blau
13dd	4	18,1	blau
13de	11	4,4	blau
13df	28	3,5	blau
13dg	20	6,2	blau
13dh	13	2,1	grün
13di	26	3,6	grün
13dj	35	5,2	schwarz
13dk	15	8,9	schwarz
13dl	16	5,6	schwarz
13dm	6	3,1	schwarz
13dn	25	14,5	schwarz
13do	29	9,6	grün
13dp	21	5,4	grün
13dq	12	7,5	grün
13dr	17	2,9	schwarz
13ds	2	9,8	schwarz
13dt	23	4,9	schwarz
13du	30	1,8	schwarz
13dv	27 ·	5,7	schwarz
13dw	14	3,8	schwarz
13dx	32	6,4	schwarz
13dy	22	12,5	schwarz
13dz	24	10,5	blau

144

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
13ea	9	7,7	blau
13eb	7	4,6	blau
13ec	5	2,3	blau
13ed	3	3,1	blau
13ee	19	8,6	blau
13ef	35	17,3	blau
13eg	15	2,8	blau
13eh	16	5,1	blau
13ei	6	6,2	blau
13ej	14	5,6	blau
13ek	32	3,1	blau
13el	22	14,5	blau
13em	24	9,6	blau
13en	9	5,4	blau
13eo	7	7,5	blau
13ep	5	2,9	blau
13eq	3	1,8	blau
13er	19	5,7	blau
13es	35	3,8	blau
13et	15	6,4	blau
13eu	16	12,5	blau
13ev	6	10,5	blau
13ew	34	7,7	blau
13ex	18	4,6	blau
13ey	31	2,3	blau
13ez	4	3,1	blau
13fa	11	8,6	blau
13fb	28	17,3	blau
13fc	20	2,8	blau
13fd	13	5,1	blau
13fe	15	6,2	blau
13ff	16	11,3	blau
13fg	6	7,1	blau
13fh	14	13,7	blau
13fi	32	18,1	blau
13fj	22	7,7	grün
13fk	24	4,6	grün
13fl	9	2,3	schwarz
13fm	7	3,1	schwarz

145

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
13fn	5	8,6	schwarz
13fo	3	17,3	schwarz
13fp	19	2,8	schwarz
13fq	34	5,1	grün
13fr	18	6,2	grün
13fs	31	5,6	grün
13ft	4	3,1	schwarz
13fu	11	14,5	schwarz
13fv	28	9,6	schwarz
13fw	20	5,4	schwarz
13fx	13	8,2	schwarz
13fy	11	8,6	schwarz
13fz	28	17,3	schwarz
13ga	20	2,8	schwarz
13gb	1	5,9	blau
13gc	14	3,2	blau
13gd	36	4,6	blau
13ge	15	17,9	blau
13gf	27	6,8	blau
13gg	4	2,4	blau
13gh	20	10,1	schwarz
13gi	9	6,6	schwarz
13gj	3	7,5	schwarz
13gk	33	3,5	schwarz
13gl	15	11,2	schwarz
13gm	7	8,6	schwarz
13gn	11	3,6	blau
13go	2	19	blau
13gp	4	10,9	blau
13gq	8	5,6	blau
13gr	15	6,1	blau
13gs	16	4,8	blau
13gt	7	3,1	schwarz
13gr	13	9,9	schwarz
13gs	21	12,6	schwarz
13gt	30	13,5	schwarz
13gu	36	14,8	schwarz
13gv	25	2,8	schwarz
13gw	15	15,1	schwarz

146

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
	29	4,8	schwarz
13gz	26	8,8	schwarz
13ha	15	15,1	schwarz
-	8	5,5	schwarz
13hb	26	8,8	schwarz
	11	6,1	schwarz
13hc	13	6,5	schwarz
	24	11,2	schwarz
13hd	14	8,3	schwarz
	35	4,1	schwarz
13he	22	15,1	schwarz
	16	7,5	schwarz
13hf	1	8,3	schwarz
-	33	4,6	schwarz
13hh	3	12,0	schwarz
	27 .	6,1	schwarz
13hi	11	3,8	schwarz
13hj	22	4,7	schwarz
13hk	33	9,0	schwarz
13hl	13	7,6	schwarz
13hm	6	6,2	schwarz
13hn	2	7,9	schwarz
13ho	7	5,3	schwarz
13hp	9 ^	8,8	schwarz
13hq	8 .	7,4	schwarz
13hr	4	7,9	schwarz
13hs	14	8,8	schwarz
13ht	5	10,1	blau
13hu	23	5,9	blau
13hv	17	14,3	blau
13hw	31	13,2	schwarz
14	2	6,9	schwarz
15	3	3,9	schwarz
16a	8	10,0	grün
16b	22	7,3	schwarz
16c	16	10,0	schwarz
16d	24	10,9	dunkelgrün
16e	30	11,1	dunkelgrün
16f	28	11,1	grün

147

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
16g	23	12,4	schwarz
16h	31	12,4	schwarz
16i	26	12,4	schwarz
16j	15	3,6	dunkelblau
16k	27	12,3	dunkelblau
17a	13	8,4	grün
17b	28	14,4	schwarz
17c	32	14,4	schwarz
17d .	35	12,4	dunkelgrün
17e	34	8,4	dunkelgrün
17f	33	14,4	grün
17g	4	3,4	schwarz
	4	13,6	schwarz
	19	3,4	schwarz
	19	13,6	schwarz ·
17h	18	5,8	schwarz
17i	35	19,8	schwarz
17j	17	9,7	grün
17k	14	7,6	dunkelblau
171	26	17,3	dunkelblau
18	16	8,6	dunkelgrün
19	15	6,8	dunkelgrün
20	31	5,9	dunkelgrün
21	29	3,9	dunkelgrün
22	30	10,0	dunkelgrün
23	22	7,3	blau
24	21	10,0	rot
25	18	7,3	schwarz
26	13	8,2	braun
27	34	11,1	braun
28a	33	8,4	braun
28b	32	7,6	braun
29a	11	6,9	braun
29b	2	10,9	braun
30	1	11,1	blau
31	5	8,8	blau
32	4	10,4	schwarz
33	12	11,2	rot
34a	28	4,2	braun

148

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
	28	8,4	braun
	28	16,8	braun
34b	21	4,2	dunkelbraun
	21	8,4	dunkelbraun
	21	16,8	dunkelbraun
34c	5	8,8	braun
34d	4	10,4	braun
34e	12	11,2	braun
34f	9	10,2	braun
	18	10,2	braun
34g	5	14,4	braun
	7	7,7	braun
	24	14,4	braun
34h	7	5,5	braun
34i	13	7,7	dunkelbraun .
34j	29	7,7	dunkelbraun
34k	11	9,2	braun
341	15	4,9	braun
34m	9	7,0	braun
34n	8	6,3	braun
340	32	11,1	braun
34p	14	13,1	dunkelbraun
34q	12	12,5	dunkelbraun
34r	13	7,8	braun
34s	27	8,4	braun
34t	11	7,7	dunkelbraun
34u	18	9,1	hellbraun
34v	16	8,3	dunkelbraun
34z	7	4,6	braun
34aa	14	5,7	braun
34ab	21	18,6	braun
34ac	28	12,2	braun
35a	14	5,9	braun
35b	1	4,2	dunkelbraun
·	1	8,4	dunkelbraun
	1	16,8	dunkelbraun
35c	6	8,1	dunkelbraun
35d	19	5,4	hellbraun
35e	2	7,2	rotbraun

149

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
	2	14,4	rotbraun
	2	20	rotbraun
	27	7,2	rotbraun
	27	14,4	rotbraun
	27	20	rotbraun
35f	33	14,4	braun
35g	26	12,4	braun
35h	31	9,4	dunkelbraun
35i	34	7,9	braun
35j	15	8,8	braun
35k	27	6,3	braun
351	22	8,8	braun
35m	18	8,9	braun
35n	12	5,7	hellbraun
35o	26	8,2	braun
35p	24	3,9	braun
35q	29	6,4	braun
35r	18	5,7	braun
35s	30	4,1	braun
	30	17,6	braun
	26	4,1	braun
	26	17,6	braun
35t	28	7,4	braun
35u	25	8,9	dunkelbraun
35v	24	4,7	hellbraun
35z	11 .	4,7	hellbraun
35aa	23	8,8	dunkelbraun
35ab	11	16,6	hellbraun
35ac	12	6,8	braun
35ad	14	6,8	braun
35ae	20	7,4	braun
35af	34	4,8	braun
35ag	33	4,8	braun
35ah	18	4,2	braun
35ai	29	17,9	braun
36	10	7,4	braun
37	16	7,4	braun
38a	20	7,4	braun
38b	3	8,8	braun

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
38c	9	16,6	braun
38d	7	15,4	braun
38e	6	5,6	gelbbraun
38f	4	5,2	hellbraun
38g	12	13,3	dunkelbraun
38h	10	5,6	braun
	35	5,6	braun
38i	25	16,6	braun
38j	33	15,4	braun
38k	34	4,9	braun
381	24	7,9	braun
38m	27	12,0	braun
38n	31	10,0	braun
38o	26	7,7	braun
38p	31	9,2	braun
38q	34	4,9	braun
38r	15	7,0	braun
38s	27	12,4	braun
38t	22	9,4	braun
38u	18	7,9	braun
38v	17	11,3	braun
38z	3	18,2	braun
39a	12	8,8	braun
39b	26	6,3	braun
39c	23	5,6	braun
39d	3	8,8	braun
39e	34	6,4	braun
39f	12	6,4	braun
39g	4	5,6	braun
39h	7	4,4	braun
39i	8	13,3	braun
39j	5	10,6	braun
	20	10,6	braun
39k	14	10,2	braun
391	17	10,2	braun
39m	34	14,6	braun
39n	15	7,3	braun
390	19	7,3	braun
39p	17	11,0	braun

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
39q	11	9,2	braun
39r	15	4,9	braun
39s	9	7,0	braun
39t	8	6,3	braun
39u	32	11,1	braun
39v	18	7,4	braun
39z	16	11,0	braun
40a	10	7,4	braun
40b	20	7,4	braun
40c	13	8,8	braun
40d	16	8,4	braun
40e	17	8,0	gelbbraun
40f	21	8,8	hellbraun
40g	25	8,9	dunkelbraun
40h	24	4,7	braun
40i	11	7,3	braun
40 j	12	4,7	braun
40k	24	4,2	braun
	24	8,4	braun
	24	16,8	braun
401	29	16,8	braun
40m	25	12,4	braun
40n	16	14,1	braun
400	34	8,6	braun
40p	1	12,0	braun
40q	28	4,2	braun
40r	22	8,6	braun
40s	24	9,0	braun
40t	27	9,0	braun
40u	11	5,9	braun
40v	2	12,7	braun
40z	21	4,5	braun
41a	13	8,8	braun
41b	9	8,6	braun
41c	21	9,0	braun
41d	32	8,8	braun
41e	30	6,2	braun
41f	33	8,6	braun
41g	24	9,0	braun

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
41h	29	7,4	braun
41i	9	4,2	braun
711	9	8,4	braun
	9	16,8	braun
41j	30	16,8	braun
41k	15	12,4	braun
411	14	12,4	<u> </u>
	17		braun
41m	<u> </u>	14,0	braun
41n	18	9,8	braun
410	27	4,2	braun
41p	24	12,1	braun
41q	27	12,4	braun
41r	11	12,4	braun
41s	13	11,8	braun
41t	9	14,2	braun
41u	10	14,0	braun
42a	12	2,4	braun
42b	25	4,6	braun
42c	16	6,8	dunkelbraun
42d	31	8,7	braun
42e	17	8,8	braun
	19	8,8	braun
42f	32	8,6	dunkelbraun
42g	25	9,0	braun
42h	14	11,0	braun
42i	33	8,6	braun
42j	24	9,0	braun
42k	16	8,8	braun
	16	16,8	braun
421	10	14,0	braun
42m	12	2,4	braun
42n	4	15,0	braun
420	23	18,6	braun
43a	25	4,6	braun
43b	16	6,8	braun
43c	31	8,7	braun
43d	8	4,4	braun
43e	5	4,6	braun
43f	29	5,4	braun
		_L	1

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
43g	32	10,8	braun
43h	11	14,1	braun
	33	14,4	braun
43i	17	12,2	braun
43j	19	12,2	braun
43k	7	11,0	braun
431	9	12,2	braun
43m	5	11,0	braun
43n	22	8,8	braun
	22	16,8	braun
430	28	2,4	grün
43p	34	4,6	grün
43q	21	4,8	grün
43r	20	8,7	grün
43s	18	6,9	Grün
	18	15,1	grün
43t	15	12,2	grünbraun
43u	25	8,7	grün
43v	1	11,0	braun
43z	26	5,4	grün
43aa	14	5,4	grün
43ab	2	11,1	grün
43ac	13	10,0	grün
43ad	27	12,7	braun
43ae	30	16,8	braun
43af	11	5,4	grün
43ag	24	11,9	grün
43ah	23	10,5	grün
43ai	29	2,7	braun
44	15	12,4	braun
45	14	12,4	braun
46a	17	14,0	olivgrün
46b	18	9,8	grün
46c	10	8,8	grün
46d	21	7,4	grün
46e	32	7,4	grün
46f	13	8,2	grün
46g	4	7,4	braun
46h	15	5,6	hellbraun

154

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
46i	21	7,4	braun
46j	32	7,4	braun
46k	26	5,6	braun
461	23	12,1	dunkelbraun
46m	12	14,6	braun
47a	6	6,8	grün
47b	24	8,7	braun
47c	11	8,7	braun
47d	28	2,4	braun
47e	34	4,6	braun
47f	16	10,6	braun
47g	24	10,6	braun
47h	34	4,8	braun
47i	33	4,8	braun
47j	18	4,2	braun
47k	29	17,9	braun
471	1	11,0	braun
47m	10	8,8	braun
47n	1	11,0	braun
470	16	10,6	braun
47p	24	10,6	grün
47q	2	11,1	grün
47r	19	10,1	grün
47s	10	8,8	grün
47t	20	8,8	grün
47u	16	10,6	grün
47v	24	10,6	grün
47z	10	8,8	grün
47aa	28	2,4	grün
47ab	34	4,6	grün
47ac	10	8,8	grün
47ad	28	2,4	grün
47ae	34	4,6	grün
47af	9	4,8	grün
47ag	32	12,6	grün
47ah	7	11,6	grün
47ai	20	7,8	grün
48	23	12,0	braun
49a	16	10,6	braun

155

Farbstoff Beispiel-Nr.	Färbevorschrift Nr.	Gew. Teile (%)	Farbe des Leders
49b	24	10,6	braun
49c	28	10,4	braun
50a	33	4,8	rotbraun
50b	31	16,4	rostrot
50c	29	17,9	rotbraun
51	30	12,0	gelbbraun
52a	23	7,8	braun
52b	23	7,8	braun
52c	30	14,4	braun
52d	19	7,8	braun
52e	22	7,8	braun
53a	27	7,8	braun
53b	9	6,6	braun
53c	21	6,6	braun
53d	14	10,2	braun
54	17	10,2	braun
55	34	14,6	braun
56	15	7,3	braun
57	19	7,3	braun
58a	17	11,0	rot
58b	11	9,2	rot
58c	15	4,9	rot
59a	9	7,0	rot
59b	8	6,3	bordeaux
59c	32	11,1	rot
59d	10	7,4	gelb
59e	20	7,4	rot
59f	13	8,8	rot
59g	16	8,4	rot
59h	17	8,0	gelbbraun
59i	21	8,8	rot
59j	25	8,9	rot
59k	24	8,8	beige

Im folgenden wird das erfindungsgemäße Verfahren exemplarisch anhand von Artikelrezepturen zur Herstellung gefärbter Leder für die wichtigsten Artikelsegmente Schuh, Bekleidung, Automobil, Handschuh und Möbel näher erläutert. Das erfindungsgemäße Verfahren ist jedoch nicht auf diese 5 Ledersegmente beschränkt; z.B. ist es gemäß

erfindungsgemäßen Verfahren ebenfalls möglich Taschenleder und Reptilienleder für Accessoirs herzustellen.

In den folgenden Artikelrezepturen sind alle Angaben in Teilen als Gewichtsteile zu verstehen. Alle Angaben beziehen sich auf Handelsware. Die Angaben bezüglich Farbstoff beziehen sich auf die Gesamtmenge an farbigen, organisch-chemischen Bestandteilen, gegebenenfalls herstellungbsedingt vorhandenen Salzen (Synthesesalze) und gegebenenfalls vorhandenen Stellmitteln. In den Artikelrezepturen wurden die folgenden Abkürzungen für die Chemikalien des Wetendprozesses verwendet.

10

5

Hauptinhaltsstoffe der handelsüblichen Fettungsmittel (F):

- F1: wässrige Emulsion von Pflanzenölen und sulfitierten Fischölen.
- F2: wässrige Zubereitung auf Basis des Natriumsalzes eines anionsichen Vinylpolymerisats und einem nichtionischen Tensid (ethoxylierte Ölsäure).
- F3: wässrige Zubereitung auf Basis modifizierter Fettsäuren.
- F4: wässrige Zubereitung auf Basis synthetischer Öle und Phosphorsäureestern ethoxylierter Fettalkohole, enthaltend, Fettalkoholsulfonate und Butyldiglykol.
- F5: wässrige Zubereitung auf Basis bisulfitierter Fischöle (Natriumsalze) und den Hydrolysaten sulfochlorierter Paraffinöle, ethoxiliertem Isotridecanol.
- 20 F6: wässrige Zubereitung auf Basis der Natriumsalze sulfonierter pflanzlicher Öle und modifizierter synthetischer Öle und Polymer.
 - F7: wässrige Zubereitung auf Basis sulfatierter Fettsäureester.
 - F8: wässrige Zubereitung auf Basis von nichtionischen Tensiden, sulfitierten Ölen (Natriumsalz).
- 25 F9: Mischung von Tensiden auf Basis von Paraffinsulfonat, Alkylphosphat und Monoalkylsulfat in Form einer Zubereitung der Ammoniumsalze in Lösungsmittel/Wasser.

40

Hauptinhaltsstoffe der handelsüblichen Hydrophobiermittel (H):

- H1: wässrige Zubereitung auf Basis von Paraffinen, funktionalisierten Polysiloxanen, N- Oleoylsarkosin-Na-Salz.
- H2: wässrige Zubereitung auf Basis von Paraffinen, modifizierten Silikonen, N-Oleoylsarkosin-Na-Salz
- H3: wässrige Zubereitung auf Basis von Paraffinen und anionischen Tensiden.
- 35 H4 wässrige Zubereitung auf Basis von funktionalisierten Polysiloxanen und einem Emulgatorsystem
 - H5: wässrige Zubereitung auf Basis von modifiziertem Silikon mit einem Salz eines Vinylpolymeren.
 - H6: wässrige Zubereitung auf Basis von funktionalisiertem Polysiloxan mit anionischen Tensiden.
 - H7: wässrige Zubereitung auf Basis von funktionalisiertem Polysiloxan.

H8: wässrige Zubereitung auf Basis von Paraffinen und den Natriumsalzen anionischer Tenside.

Der im folgenden bei den Nachgerbstoffen und bei den Hilfsmitteln verwendete Begriff "Mischung" kann sowohl bedeuten, dass die Mischung durch Vermischen der Komponenten bei Raumtemperatur und Normaldruck als auch durch Mischen bei erhöhten Temperaturen und Drücken für einen kurzen bis längeren Zeitraum hergestellt wird.

Hauptinhaltsstoffe der handelsüblichen Nachgerbstoffe (G):

- 10 G1: Kondensationsprodukt aus Phenolsulfonsäure, Formaldehyd und Anilin in Form des Natriumsalzes.
 - G2: Wässrige Zubereitung des Natriumsalzes eines Kondensationsprodukt aus Phenolsulfonsäure, Formaldehyd und Anilin.
 - G3: Wässrige Zubereitung einer Mischung eines Natrium-/Ammoniumsalzes eines Kondensationsprodukts aus Phenolsulfonsäure, Formaldehyd, Melamin, Harnstoff, und Anilin mit einem amphoteren Copolymerisat auf Basis von Acrylsäure und einem basischen Monomeren.
 - G4: wässrige Zubereitung des Ammoniumsalzes eines Kondensationsprodukts von Phenol, Phenolsulfonsäure und Formaldehyd.
- 20 G5: Natriumsalz eines Kondensationsprodukts auf Basis von Dihydroxydiphenylsulfon, Phenolsulfonsäure, Harnstoff und Formaldehyd.
 - G6: wässrige Lösung eines Natrium-/Ammoniumsalzes eines Kondensationsprodukts auf Basis von Dihydroxydiphenylsulfon, Phenolsulfonsäure, Harnstoff und Formaldehyd.
- 25 G7: hochmolekulares Kondensationsprodukt auf Basis von Dihydroxydiphenylsulfon, Phenolsulfonsäure, Harnstoff und Formaldehyd in Form des Natriumsalzes.
 - G8: Wässrige Zubereitung auf Basis einer Mischung des Natrium-/Ammoniumsalzes eines niedermolekularen Kondensationsprodukt auf Basis von Dihydroxydiphenylsulfon, Harnstoff und Formaldehyd mit einem niedermolekularen Kondensationsprodukt aus Diphenylsulfon mit Formaldehyd.
 - G9: Fettgerbstoff auf Basis eines modifizierten Paraffins (C₁₆-C₃₄-Alkyl-Sulfochlorid).
 - G10: Wässrige Zubereitung auf Basis eines Copolymers von Acrylsäure mit Acrylnitril und einem Amin.
 - G11: Mischung eines Naphthalinsulfonsäure-Melamin-Kondensats mit Hydroxymethansulfonat und Harnstoff.
 - G12: 24 gew.-%ige Lösung von Glutardialdehyd in Wasser.
 - G13: 50 gew.-%ige Lösung von Glutardialdehyd in Wasser.
 - G14: Wässrige, lösungsmittelhaltige Zubereitung auf Basis eines aldehydbasierten polymeren Gerbmittels (Kondensationsprodukt von Formaldehyd und und Glutardialdehyd).
 - G15: Wässrige Zubereitung auf Basis eines Copolymers von Acrylsäure mit Acrylnitril.

5

35

- G16: Wässrige Zubereitung auf Basis einer niedermolekularen Polyacrylsäure (Mn < 8000, Zahlenmittel).
- G17: Wässrige Zubereitung auf Basis einer hochmolekularen Polyacrylsäure (Mn > 40000, Zahlenmittel).
- 5 G18: Wässrige Zubereitung auf Basis von Polymethacrylsäure.
 - G19: Wässrige Zubereitung eines Copolymeren aus Maleinsäure und Styrol
 - G20: Chromsyntan (Mischung eines Kondensationsprodukts auf Basis eines aromatischen Oligosulfons und einer Chrom-Zubereitung)
 - G21: Tara.
- 10 G22: Mimosa.
 - G23: Kastanie.
 - G24: schwach maskierter Chromgerbstoff mit einem Gehalt an Cr₂O₃ von 24 Gew.-% und einer Basiszität von 40 %.
 - G25: flüssige Zubereitung von Tetrakis(hydroxymethyl)phosphoniumchlorid und -sulfat
 - G26: 4,4-Dimethyl-1,3-oxazolidin.
 - G27: 1-Aza-3,7-dioxybicyclo-5-ethyl[3.3.0]octan.
 - G28: Mischung eines Polykondensationsprodukts auf Basis von Harnstoff und Formaldehyd mit einem Polykondensationsprodukt auf Basis von Phenol und Formaldehyd.
 - G29; 30 gew.-%ige wässrige Formaldehydlösung.
- 20 G30: Mineralgerbstoffmischung auf Basis von Aluminiumhydroxid in einer Menge von 14 Gew.-% (gerechnet als Al₂O₃) und 3 Gew.-% Chromsalze (gerechnet als Cr₂O₃)

Hauptinhaltsstoffe der handelsüblichen Hilfmittel (HM):

25

40

- HM1: Mischung von Hydroxymethansulfonat mit dem Natriumsalz eines Kondensationsprodukts aus Naphthalinsulfonsäure, Harnstoff und Formaldehyd.
- HM2: Mischung ethoxilierter Alkylamine (C₁₆-C₁₈).

- HM3: wässrige Zubereitung eines teilhydrolysierten Poly-N-vinylformamid, schwach kationisch.
- HM4: wässrige Zubereitung eines anionisch modifizierten Copolymerisats.
- HM5: Hydroxymethylierter Harnstoff.
- HM6: Mischung auf Bais aromatischer Sulfonsäuren als Natriumsalze, Phenol, Formaldehyd und Harnstoff.
- 35 HM7: wässrige Zubereitung eines kationischen, aminogruppenhaltigen Polykondensats.

Die Bestimmung der Echtheiten erfolgte nach den folgenden, international anerkannten Normen:

159

Schweißechtheit: in Anlehnung an Veslic C4260

Waschechtheit: in Anlehnung an DIN EN ISO 15703

Migrationsechtheit: in Anlehnung an DIN EN ISO 15701, sowie durch 16 h Lagern bei

85 °C in einer Feuchte von 95 % unter ansonsten analogen Bedin-

gungen zu DIN EN ISO 15701

Reibechtheit: in Anlehnung an DIN EN ISO 105 - X12 (Crockmeter, Reibung mit

Baumwollgewebe) sowie in Anlehnung an DIN EN ISO 11640 (Ves-

lic, Reibung mit Filz)

Maeser: in Anlehnung an ASTM D 2099

10 Penetrometer: in Anlehnung an DIN EN ISO 5403

Wasserdampfdurchlässigkeit: in Anlehnung an DIN EN ISO 14268

Dauerbiegefestigkeit: in Anlehnung an DIN EN ISO 5402

Stichausreißversuch: in Anlehnung an DIN 5331

Weiterreißversuch: in Anlehnung an DIN EN ISO 3377 Zugfestigkeit: in Anlehnung an DIN EN ISO 3376

Schuhoberlederrezeptur 1:

20 Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 150 Teilen Wasser, 2 Teilen Natriumformiat und 1 Teil Natriumacetat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden 2 Teilen Natriumbicarbonat zugegeben und 10 Minuten bei 40°C neutralisiert. Danach hatte die Entsäuerungsflotte einen pH-Wert von 7,3. Zur Entsäuerungsflotte wurden 4,6 Teile Farbstoff 1e zugegeben und 30 Minuten bei pH 6,8 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 6 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und es wurde 60 Minuten lang bei 40°C gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 30 Minuten lang gewaschen. In einer Flotte aus 300 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 0,5 Teilen Ameisensäure innerhalb von 30 Minuten ein pH von 6,5 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 200 Teilen Wasser und 5 Teilen des fettenden und gerbenden Hydrophobiermittels H5 20 Minuten bei 40°C nachgegerbt. Durch Zusatz von 0,5 Teilen Ameisensäure wurde innerhalb von 20 Minuten ein pH-Wert von 5,0 eingestellt. Mit 3 Teilen des Polymergerbstoffs G15 wurde 30 Minuten bei 40°C nachgegerbt. Anschließend versetzte man die Flotte mit einer Mischung aus 5 Teilen des Hydrophobiermittels H2 und 0,3 Teilen des Hilfsmittels HM 4. Nach einer Walkzeit von weiteren 60 Minuten wird durch portionsweise Zugabe von

4. Nach einer Walkzeit von Weiteren 60 Minuten wird durch portionsweise Zugabe von insgesamt 2,5 Teilen Ameisensäure innerhalb von 60 Minuten auf einen pH-Wert von

35

pH-Wert von 3,7 abgesäurt. In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure wurde 10 Minuten bei 30°C gewalkt. Anschließend wurde durch Zusatz von 5 Teilen Chromgerbstoff G 24 90 Minuten nachchromiert. Man erhielt einen pH-Wert von 3,6. Zum Schluß wurde zweimal in jeweils 300 Teilen Wasser jeweils 10 Minuten bei 30°C gewaschen.

Das so gefärbt, nachgegerbt und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 3 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein hydrohphobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

Schuhoberlederrezeptur 2:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 150 Teilen Wasser, 2 Teilen Natriumformiat und 1 Teil Natriumacetat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden 2 Teilen Natriumbicarbonat zugegeben und 10 Minuten bei 40°C neutralisiert. Danach hatte die Entsäuerungsflotte einen pH-Wert von 7,3. Zur Entsäuerungflotte wurden 7,5 Teile Farbstoff 2f zugegeben und 30 Minuten bei pH 6,8 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und 60 Minuten lang bei 40°C gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 30 Minuten lang gewaschen. In einer Flotte aus 300 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 0,5 Teilen Ameisensäure innerhalb von 30 Minuten ein pH von 6,5 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 200 Teilen Wasser und 5 Teilen des fettenden und gerbenden Hydrophobiermittels H5 20 Minuten bei 40°C nachgegerbt. Durch Zusatz von 0,5 Teilen Ameisensäure wurde innerhalb von 20 Minuten ein pH-Wert von 5,0 eingestellt. Mit 3 Teilen des Polymergerbstoffs G15 wurde 20 Minuten bei 40°C nachgegerbt. Danach wurden zur Flotte 5 Teile Nachgerbstoff G1 zugegeben und weitere 30 Minuten gewalkt. Anschließend versetzte man die Flotte mit einer Mischung aus 6 Teilen des Hydrophobiermittels H2 und 0,3 Teilen des Hilfsmittels HM4. Nach einer Walkzeit von weiteren 60 Minuten wird durch portionsweise Zugabe von insgesamt 2,5 Teilen Ameisensäure innerhalb von 60 Minuten auf einen pH-Wert von 3,6 abgesäurt. In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure wurde 10 Minuten bei 30°C gewalkt. Anschlie-

5

10

20

25

35

ßend wurde durch Zusatz von 5 Teilen Chromgerbstoff G24 90 Minuten nachchromiert. Man erhielt einen pH-Wert von 3,6. Zum Schluß wurde zweimal in jeweils 300 Teilen Wasser jeweils 10 Minuten bei 30°C gewaschen.

- Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, bei 60°C 3 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.
- 10 Es wurde ein hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten.

In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 150 Teilen Wasser, 2 Teilen Natriumformiat und 1 Teil Natriumacetat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden 2 Teilen Natriumbicarbonat zugegeben und 10 Minuten bei 40°C neutralisiert. Danach hatte die Entsäuerungsflotte einen pH-Wert von 7,3. Zur Entsäuerungflotte wurden 5,1 Teile Farbstoff 3 zugegeben und 30 Minuten bei pH 6,8 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 6 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und es wurde 60 Minuten lang bei 40°C gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 30 Minuten lang gewaschen. In einer Flotte aus 300 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 0,5 Teilen Ameisensäure innerhalb von 30 Minuten ein pH von 6,5 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 200 Teilen Wasser und 5 Teilen des fettenden und gerbenden Hydrophobiermittels H5 20 Minuten bei 40°C nachgegerbt. Durch Zusatz von 0,5 Teilen Ameisensäure wurde innerhalb von 20 Minuten ein pH-Wert von 5,0 eingestellt. Mit 3 Teilen des Polymergerbstoffs G15 wurde 20 Minuten bei 40°C nachgegerbt. Danach wurden zur Flotte 5 Teile Nachgerbstoff G11 zugegeben und weitere 30 Minuten gewalkt. Anschließend versetzte man die Flotte mit einer Mischung aus 6 Teilen des Hydrophobiermittels H2 und 0,3 Teilen des Hilfsmittels HM4. Nach einer Walkzeit von weiteren 60 Minuten wird durch portionsweise Zugabe von insgesamt 2,5 Teilen Ameisensäure innerhalb von 60 Minuten auf einen pH-Wert von 3,6 abgesäurt. In einer frisch angesetzten Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure wurde 10 Minuten bei 30°C gewalkt. An-

35

20

25

schließend wurde durch Zusatz von 5 Teilen Chromgerbstoff G24 90 Minuten nachchromiert. Man erhielt einen pH-Wert von 3,7. Zum Schluß wurde zweimal in jeweils 300 Teilen Wasser jeweils 10 Minuten bei 30°C gewaschen.

- Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, bei 60°C 3 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.
- 10 Es wurde ein hydrohphobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

20

25

Schuhoberlederrezeptur 4:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,3 – 1.4 mm wurde in einer Flotte aus 300 Teilen Wasser 15 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 10 Minuten bei 35°C gewalkt. Die Flotte hatte einen pH-Wert von 4,2 – 4,6. Zur Flotte wurden 8,5 Teile Farbstoff 4d zugegeben und 60 Minuten bei pH 5,5 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 3 Teilen Natriumbicarbonat wurde innerhalb von 20 Minuten ein pH-Wert von 7,3 – 7,8 eingestellt. Zur Fixierung wurde der pH-Wert der Flotte durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat zwischen 9,2 - 9,6 eingestellt und 60 Minuten lang bei 35°C gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser und 1,5 Teilen HM3 insgesamt 50 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 70 Minuten bei 40°C ein pH von 4.3-4.6 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser, 6 Teilen Polymergerbstoff G18 und 1,5 Teilen des Fettungsmittels F6 30 Minuten bei 35°C nachgegerbt. Nach Zugabe von 10 Teilen Nachgerbstoff G18 und einer Walkzeit von 60 Minuten wurden zur Ausgerbung 10 Teile Vegetabilgerbstoff G22 und 10 Teile Nachgerbstoff G4 zugegeben und 60 Minuten bei 35°C gewalkt. Zur Flotte wurden 5,5 Teile Fettungsmittel F6 zugegeben und 90 Minuten bei 35°C gefettet. Zur Fixierung des Fettungsmittels wurde nach Zugabe von 100 Teile 40°C heißem Wasser und einer Walkzeit von 20 Minuten innerhalb von 50 Minuten durch Zugabe von Ameisensäure ein pH-Wert von 3.5 eingestellt. Anschließend wird 15 Minuten lang gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, bei 45°C 4 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und vakuumgetrocknet.

Es wurde ein wetwhite Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, wetwhite Schuhoberleder herstellen.

Schuhoberlederrezeptur 5:

10

20

25

35

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,3 – 1.4 mm wurde in einer Flotte aus 300 Teilen Wasser 15 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 10 Minuten bei 35°C gewalkt. Die Flotte hatte einen pH-Wert von 4,2 – 4,6. Zur Flotte wurden 10 Teile Farbstoff 5b zugegeben und 60 Minuten bei pH 5,5 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 3 Teilen Natriumbicarbonat wurde innerhalb von 20 Minuten ein pH-Wert von 7,3 – 7,8 eingestellt. Zur Fixierung wurde der pH-Wert der Flotte durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat zwischen 9,2 - 9,6 eingestellt und 60 Minuten lang bei 35°C gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen . In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 70 Minuten bei 40°C ein pH von 4.3-4.6 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser, 6 Teilen Polymergerbstoff G18 und 1,5 Teilen Fettungsmittel F6 30 Minuten bei 35°C nachgegerbt. Nach Zugabe von 10 Teilen Nachgerbstoff G18 und einer Walkzeit von 60 Minuten wurden zur Ausgerbung 10 Teile Vegetabilgerbstoff G22 und 10 Teile Nachgerbstoff G4 zugegeben und 60 Minuten bei 35°C gewalkt. Zur Flotte wurden 5,5 Teile Fettungsmittel F6 zugegeben und 90 Minuten bei 35°C gefettet. Zur Fixierung des Fettungsmittels wurde nach Zugabe von 100 Teilen 40°C heißem Wasser und einer Walkzeit von 20 Minuten innerhalb von 50 Minuten durch Zugabe von Ameisensäure ein pH-Wert von 3.5 eingestellt. Anschließend wird 15 Minuten lang gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, bei 45°C 4 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und vakuumgetrocknet.

Es wurde ein wetwhite Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes wetwhite Schuhoberleder herstellen.

Schuhoberlederrezeptur 6:

10

20

25

35

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 150 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden 1,5 Teilen Natriumbicarbonat zugegeben und 10 Minuten bei 40°C neutralisiert. Nach Zugaben von weiteren 1,5 Teilen Natriumbicarbonat und 3 Teilen HM4 wurde weitere 15 Minuten gewalkt. Danach hatte die Entsäuerungsflotte einen pH-Wert von 7,6. Zur Entsäuerungflotte wurden 9 Teile Farbstoff 6c gegeben und 90 Minuten bei pH 7,2 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,3 - 9,9 eingestellt und 60 Minuten lang bei 40°C gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,5 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 4 Teilen Polymergerbstoff G15 30 Minuten bei 45°C nachgegerbt. Nach Zusatz von 5 Teilen Vegetabilgerbstoff G22 und 3 Teilen Harzgerbstoff G11 wurden weitere 40 Minuten gewalkt. Anschließend versetzte man zur Fettung die Flotte mit einer Mischung aus 6 Teilen des Hydrophobiermittels H1 und 0,4 Teilen des Hilfsmittels HM4. Nach einer Walkzeit von weiteren 90 Minuten wurden 70 Teile 60°C heißes Wasser zugesetzt, 10 Minuten gewalkt und anschließend durch portionsweise Zugabe von insgesamt 5 Teilen Ameisensäure innerhalb von 60 Minuten auf einen pH-Wert von 3,4 abgesäurt.

Nach einer 10 minütigen Wäsche mit 200 Teilen Wasser bei 30°C wurde in einer frisch angesetzten Flotte aus 200 Teilen Wasser, 1 Teil Hydrophobiermittel H6 und 0,2 Teilen Hilfsmittel H4 20 Minuten bei 30°C gewalkt. Anschließend wurde durch Zusatz von 4 Teilen Chromgerbstoff G 24 über Nacht nachchromiert. Der Flotten pH-Wert betrug 3,4. Zum Schluß wurde zweimal in jeweils 200 Teilen Wasser jeweils 10 Minuten bei 30°C gewaschen.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, bei 50°C 6 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 50°C 2 Minuten vakuumgetrocknet.

Es wurde ein hydrohphobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

Schuhoberlederrezeptur 7:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 150 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden 1,5 Teilen Natriumbicarbonat zugegeben und 10 Minuten bei 40°C neutralisiert. Nach Zugaben von weiteren 1,5 Teilen Natriumbicarbonat und 3 Teilen HM4 wurde weitere 15 Minuten gewalkt. Danach hatte die Entsäuerungsflotte einen pH-Wert von 7,6. Zur Entsäuerungflotte wurden 11,5 Teile Farbstoff 7 zugegeben und 90 Minuten bei pH 7,2 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 10 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,3 - 9,9 eingestellt und 60 Minuten lang bei 40°C gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,6 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 4 Teilen Polymergerbstoff G15 30 Minuten bei 45°C nachgegerbt. Nach Zusatz von 5 Teilen Vegetabilgerbstoff G22 und 3 Teilen Harzgerbstoff G11 wurden weitere 40 Minuten gewalkt. Anschließend versetzte man zur Fettung die Flotte mit einer Mischung aus 6 Teilen des Hydrophobiermittels H1 und 0,4 Teilen des Hilfsmittels HM4. Nach einer Walkzeit von weiteren 90 Minuten wurden 70 Teile 60°C heißes Wasser zugesetzt, 10 Minuten gewalkt und anschließend durch portionsweise Zugabe von insgesamt 5 Teilen Ameisensäure innerhalb von 60 Minuten auf einen pH-Wert von 3,3 abgesäurt.

Nach einer 10 minütigen Wäsche mit 200 Teilen Wasser bei 30°C wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 3 Teilen Nachgerbstoff G24 über Nacht bei 30°C umgeladen. Nach einer 10 minütigen Wäsche in 200 Teilen Wasser bei 30°C wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 2 Teilen Hydrophobiermittel H6 20 Minuten bei 30°C gewalkt. Anschließend wurde durch Zusatz von 3 Teilen Chromgerbstoff G 24 90 Minuten lang fixiert. Der Flotten pH-Wert betrug 3,4. Zum Schluß wurde zweimal in jeweils 200 Teilen Wasser jeweils 10 Minuten bei 30°C gewaschen.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, bei 50°C 6 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 50°C 2 Minuten vakuumgetrocknet.

35

20

Es wurde ein hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

5

10

Schuhoberlederrezeptur 8:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungflotte 6,5 Teile Farbstoff 8 zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 7,1 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

25

20

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Polymergerbstoff G15 bei 45°C 40 Minuten nachgegerbt. Durch Zusatz von 3 Teilen Nachgerbstoff G1, 3 Teilen Vegetabilgerbstoff G22 und 3 Teilen Harzgerbstoff G11 wurde 60 Minuten bei 45°C nachgegerbt. Nach Zugabe von 70 Teilen 60°C heißem Wasser wurde 20 Minuten bei 60°C gewalkt und nach Zugabe von 2,5 Teilen Fettungsmittel F7 und 2,5 Teilen Fettungsmittel F4 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert.

30

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

35

Es wurde ein Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

40

Schuhoberlederrezeptur 9:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teilen Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 4 Teile Farbstoff 9b zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Polymergerbstoff G17 bei 45°C 40 Minuten nachgegerbt. Durch Zusatz von 3 Teilen Nachgerbstoff G7, 2 Teilen Vegetabilgerbstoff G22, 2 Teilen Vegetabilgerbstoff G23 und 3 Teilen Harzgerbstoff G11 wurde 60 Minuten bei 45°C nachgegerbt. Nach Zugabe von 70 Teilen 60°C heißem Wasser wurde 20 Minuten bei 60°C gewalkt und nach Zugabe von 2,5 Teilen Fettungsmittel F7 und 2,5 Teilen Fettungsmittel F4 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 15 Minuten gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

Schuhoberlederrezeptur 10:
Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten
Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10
Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und
1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach
wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat
zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5

5

10

20

25

30

35

30

35

40

168

Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 6,9 Teile Farbstoff 10 zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 7,2 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

- Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 5 Teilen Polymergerbstoff G18 bei 45°C 40 Minuten nachgegerbt. Durch Zusatz von 3 Teilen Nachgerbstoff G1, 2 Teilen Vegetabilgerbstoff G22 und 4 Teilen Polymergerbstoff G10 wurde 60 Minuten bei 45°C nachgegerbt. Nach Zugabe von 70 Teilen 60°C heißem Wasser wurde 20 Minuten bei 60°C gewalkt und nach Zugabe von 4,5 Teilen Fettungsmittel F5 und 0,5 Teilen Fettungsmittel F8 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 15 Minuten kalt gespült.
- Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.
- Es wurde ein Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

Schuhoberlederrezeptur 11:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 9 Teile Farbstoff 11b zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde

durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser, 1,5 Nachgerbstoff G13 und 2,5 Teilen Polymergerbstoff G16 bei 45°C 40 Minuten nachgegerbt. Durch Zusatz von 3 Teilen Nachgerbstoff G1, 3 Teilen Vegetabilgerbstoff G22 und 3 Teilen Harzgerbstoff G11 wurde 60 Minuten bei 45°C nachgegerbt. Nach Zugabe von 70 Teilen 60°C heißem Wasser wurde 20 Minuten bei 60°C gewalkt und nach Zugabe von 4,5 Teilen Fettungsmittel F5 und 0,5 Teilen Fettungsmittel F8 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 15 Minuten kalt gespült.

5

10

25

35

40

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

Schuhoberlederrezeptur 12:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teilen Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 8,5 Teile Farbstoff 12d zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser, 1,5 Teilen Nachgerbstoff G13 und 2,5 Teilen Polymergerbstoff G16 bei 45°C 40 Minuten nachgegerbt. Durch Zusatz von 8 Teilen Nachgerbstoff G2, 3 Teilen Polymer-

10

20

25

35

40

170

gerbstoff G19 und 3 Teilen Harzgerbstoff G11 wurde 60 Minuten bei 45°C nachgegerbt. Nach Zugabe von 70 Teilen 60°C heißem Wasser wurde 20 Minuten bei 60°C gewalkt und nach Zugabe von 4,5 Teilen Fettungsmittel F5 und 0,5 Teilen Fettungsmittel F8 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 15 Minuten kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Schuhoberlederrezeptur 13:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 8 Teile Farbstoff 12at zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser, 1 Teil Nachgerbstoff G13 und 3 Teilen Polymergerbstoff G16 bei 45°C 40 Minuten nachgegerbt. Durch Zusatz von 1,5 Teilen Hilfsmittel HM4, 3 Teilen Polymergerbstoff G19 und 3 Teilen Polymergerbstoff G10 wurde 60 Minuten bei 45°C nachgegerbt. Nach Zugabe von 70 Teilen 60°C heißem Wasser wurde 20 Minuten bei 60°C gewalkt und nach Zugabe von 1,5 Teilen Fettungsmittel F2 und 3,5 Teilen Hydrophobiermittel H3 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 10 Minuten kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

10

20

25

5

Schuhoberlederrezeptur 14:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,3 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 8 Teile Farbstoff 12bx zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

30

35

40

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1 Teil Nachgerbstoff G13 10 Minuten lang gewalkt. Durch Zusatz von 4 Teilen Chromgerbstoff G24, 2 Teilen Nachgerbstoff G1, 1 Teil Fettungmittel F1 wurde 40 Minuten bei 35°C nachgegerbt. Anschließend wurde 1 Teil Natriumformiat zugegeben und 20 min gewalkt. Nach Zugabe von 0,3 Teilen Natriumbicarbonat wurde noch weitere 90 Minuten nachgegerbt. Nach einer 10 minütigen Wäsche bei 35°C in 300 Teilen Wasser wurde in einer neuen Flotte aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bei 35°C 10 Minuten neutralisiert. Zur Neutralisationsflotte wurden 0,5 Teile Natriumbicarbonat gegeben und 30 Minuten gewalkt. Nach 30 minütiger Nachgerbung mit 5 Teilen Polymergerbstoff G18 wurde zur Ausgerbung 5 Teile Nachgerbstoff G5 und 3 Teile Nachgerbstoff G1 zugegeben. Nach einer Walkzeit von 40 Minuten wurde die Flotte mit 100 Teilen 60°C heißem Wasser verdünnt und 10 Minuten bei 60°C gewalkt. Nach Zugabe von 3,5 Teilen Fettungsmittel F1 und 3,5 Teilen Hydrophobiermittel H3 wurde 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt

20

25

35

40

172

4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 10 Minuten kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein Softy Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Softy Schuhoberleder herstellen.

Schuhoberlederrezeptur 15:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,3 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.7 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 8 Teile Mischfarbstoff 12gz zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1,5 Teilen Nachgerbstoff G14 10 Minuten lang gewalkt. Durch Zusatz von 6 Teilen Chromsyntan G20 und 1 Teil Fettungmittel F1 wurde 40 Minuten bei 35°C nachgegerbt. Anschließend wurde 1 Teil Natriumformiat zugegeben und 20 min gewalkt. Nach Zugabe von 0,3 Teilen Natriumbicarbonat wurde noch weitere 90 Minuten nachgegerbt. Nach einer 10 minütigen Wäsche bei 35°C in 300 Teilen Wasser wurde in einer neuen Flotte aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bei 35°C 10 Minuten neutralisiert. Zur Neutralisationsflotte wurden 0,5 Teile Natriumbicarbonat gegeben und 30 Minuten gewalkt. Nach 30 minütiger Nachgerbung mit 6 Teilen Polymergerbstoff G18 wurde zur Ausgerbung 6 Teile Nachgerbstoff G5 und 6 Teile Nachgerbstoff G3 zugegeben. Nach einer Walkzeit von 40 Minuten wurde die Flotte mit 100 Teilen 60°C heißem Wasser verdünnt und 10 Minuten bei 60°C gewalkt. Nach Zugabe von 3,5 Teilen Fettungsmittel F1 und 3,5 Teilen Hydrophobiermittel H3 wurde 60 Minuten

ten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 10 Minuten kalt gespült.

- Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.
- 10 Es wurde ein Softy Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Softy Schuhoberleder herstellen.

20

25

35

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.4 erreicht. Nach Zugabe von 1,5 Teilen HM2 wurde 5 Minuten bei 40°C gewalkt und anschließend zur Entsäuerungsflotte 7 Teile Mischfarbstoff 12hf zugegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 3,7 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser, 1,5 Teilen Aldehydgerbstoff G13 und 6 Teilen Polymergerbstoff G18 40 Minuten bei 45°C nachgegerbt. Anschließend wurden 8 Teile Nachgerbstoff G2, 2 Teile Polymergerbstoff G19 und 3 Teile Harzgerbstoff G11 zugegeben und 60 min bei 45°C ausgegerbt. Anschließend wurde die Flotte mit 70 Teilen 60°C heißem Wasser verdünnt und 20 Minuten bei 60°C gewalkt. Nach Zugabe von 6,5 Teilen Fettungsmittel F1 und 3,5 Teilen Fettungsmittel F3 wurde 60 Minuten bei 60°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde 10 Minuten kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, über Nacht bei Raumtempe-

ratur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein Softy Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Softy Schuhoberleder herstellen.

Schuhoberlederrezeptur 17:

5

10

20

25

30

35

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,5 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.6 erreicht. Zur Entsäuerungsflotte wurden 9 Teile Mischfarbstoff 12hr gegeben und 30 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9 Teilen festes Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch Zugabe von insgesamt 4 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 3,5 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 4 Teilen Aldehydgerbstoff G12 10 Minuten bei 35°C gewalkt. Danach wurden 6 Teile Chromgerbstoff G24 und 2 Teile Nachgerbstoff G1 zugegeben und 50 Minuten bei 35°C nachgegerbt. Anschließend fügte man zur Flotte 1 Teil Natriumformiat zu und ließ 10 Minuten walken. Nach Zugabe von 1,5 Teilen der Fettungsmittels F1 wurde 90 min bei 35°C gewalkt. Die Flotte wurde abgelassen und einmal mit 300 Teilen Wasser bei 45°C 10 Minuten lang gewaschen.

Anschließend wurde in einer frisch angesetzen Flotte aus 70 Teilen Wasser und 2 Teilen Hydrophobiermittel H3 15 Minuten bei 45°C vorgefettet. Danach wurden 2 Teile Natriumformiat, 1 Teil Natriumbicarbonat und 3 Teile Hilfsmittel HM4 zugesetzt und 30 Minuten gewalkt. Zur Neutralisationsflotte wurden 12 Teile Nachgerbstoff G6 gegegen, nach einer Walkszeit von 10 Minuten wurden 2 Teile Polymergerbstoff G19 hinzugefügt und noch weitere 50 Minuten ausgegerbt. Zur Nachgerbflotte wurden 4 Teile Fettungsmittel F4, 4 Teile Fettungsmittel F1 und 2 Teile Fettungsmittel F6 hinzugefügt und 60 Minuten bei 45°C gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäurt. Anschließend wurde die Flotte abgelassen und 5 Minuten kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55 °C 1 Minuten vakuumiert, über Nacht bei Raumtemperatur hängegetrocknet, konditioniert, gestollt, über Nacht gemillt und Spannrahmen getrocknet.

5

Es wurde ein Schuhoberleder mit Millnarben und ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder mit Millnarben herstellen.

10

Schuhoberlederrezeptur 18:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,1 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7.6 erreicht. Zur Entsäuerungsflotte wurden 7,5 Teile Farbstoff 13b gegeben und 30 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 75 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen.

ii e

20

25

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Aldehydgerbstoff G12 30 Minuten bei 45°C gewalkt. Danach wurden 5 Teile Nachgerbstoff G5 zugegeben und 30 Minuten bei 45°C nachgegerbt. Anschließend fügte man zur Flotte 1 Teil Fettungsmittel F1 und 1 Fettungsmittel F4 zu und fettete 40 Minuten bei 45°C vor. Anschließend wurden 70 Teile 55°C heißes Wasser zugefügt und 20 Minuten bei 55°C gewalkt. Durch portionsweise Zugabe von 1,5 Teilen Ameisensäure wurde innerhalb von 55 Minuten ein pH-Wert von 5,0 eingestellt. Die Flotte wurde abgelassen und einmal mit 300 Teilen Wasser bei 45°C 10 Minuten lang gewaschen.

Anschließend wurde in einer frisch angesetzen Flotte aus 100 Teilen Wasser und 2
Teilen Hydrophobiermittel H3 15 Minuten bei 45°C gewalkt. Danach wurden 2 Teile
Polymergestoff G19 zugegegen. Nach einer Walkszeit von 15 Minuten wurden 2 Teile
Polymergerbstoff G15 hinzugefügt und noch weitere 30 Minuten ausgegerbt. Zur
Nachgerbflotte wurden 2,5 Teile Fettungsmittel F1, 2,5 Teile Fettungsmittel F4, 1 Teil
Fettungsmittel F3 und 1 Teil Fettungsmittel F2 hinzugefügt und 60 Minuten bei 45°C
gefettet. Durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure wurde

10

30

35

176

innerhalb von 60 Minuten auf einen pH-Wert von 3,5 abgesäuert. Anschließend wurde die Flotte abgelassen und das Leder 5 Minuten kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und bei 40°C getrocknet, konditioniert, gestollt, über Nacht gemillt und Spannrahmen getrocknet.

Es wurde ein Floater Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Floater-Schuhoberleder herstellen.

Schuhoberlederrezeptur 19:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,1 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungsflotte wurden 5,9 Teile Farbstoff 13ae gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt.

Durch portionsweise Zugabe von insgesamt 6,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 - 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,6 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1 Teil Aldehydgerbstoff G13 und 3 Teilen Polymergerbstoff G16 60 Minuten bei 45°C gewalkt. Danach wurden 0,5 Teile Natriumbicarbonat zugegeben, nach einer Walkzeit von 30 Minuten wurden 5 Teile Polymergerbstoff G18 zugegeben und 30 Minuten bei 45°C nachgegerbt. Anschließend fügte man zur Flotte 0,8 Teile Hilfsmittel HM5, 3 Teile Polymergerbstoff G17 und 2 Teile Polymergerbstoff G19 und gerbte 60 Minuten bei 45°C aus. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F6, 1,5 Teile Hydrophobiermittel H3 und 1,5 Teile Fettungsmittel F2 zugegeben und 60 Minuten bei 45°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und kurz kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

- Es wurde ein rein polymer basiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, rein polymerbasiertes Schuhoberleder herstellen.
- 10 Schuhoberlederrezeptur 20:
 - Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,8 eingestellt. Zur Entsäuerungsflotte wurden 4,8 Teile Farbstoff 13dt gegeben und 35 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 6 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,4 9,9 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,3 eingestellt.
 - Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1,5 Teilen Hydrophobiermittel H3 20 Minuten gewalkt. Anschließend wurden 5 Teile Polymergerbstoff G18 zugegeben, nach einer Walkzeit von 40 Minuten erfolgte eine Zugabe von 1 Teil Hilfsmittel HM5 und 5 Teilen Polymergerbstoff G18. Nach weiteren 30 Minuten Walkzeit bei 45°C wurden 3 Teile Polymergerbstoff G19 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F6, 0,5 Teile Hydrophobiermittel H3 und 1,5 Teile Fettungsmittel F2 zugegeben und 60 Minuten bei 60°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,4 eingestellt. Danach wurde die Flotte abgelassen und kurz kalt gespült.
 - Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

35

20

Es wurde ein rein polymer basiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, rein polymerbasiertes Schuhoberleder herstellen.

5

10

Schuhoberlederrezeptur 21:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,2 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,8 eingestellt. Zur Entsäuerungsflotte wurden 7,7 Teile Mischfarbstoff 13hb gegeben und 35 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,5 – 10,0 eingestellt und bei 40°C 55 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,4 eingestellt.

20

25.

35

40

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1,5 Teilen Hydrophobiermittel H3 15 Minuten gewalkt. Anschließend wurden 5 Teile Polymergerbstoff G18 zugegeben, nach einer Walkzeit von 40 Minute erfolgte eine Zugabe von 1 Teil Hilfsmittel HM5, 3 Teilen Polymergerbstoff G17, 3 Teilen Vegetabilgerbstoff G23 und 2 Teilen Gerbstoff G11. Nach weiteren 30 Minuten Walkzeit bei 45°C wurden 3 Teile Polymergerbstoff G19 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F7 und 2 Teile Fettungsmittel F4 gegeben und 60 Minuten bei 60°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

Schuhoberlederrezeptur 22:

5

10

20

25

30

35

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,9 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,8 eingestellt. Zur Entsäuerungsflotte wurden 10,5 Teile Mischfarbstoff 13hp gegeben und 20 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,5 – 10,0 eingestellt und bei 40°C 70 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugaben von 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Polymergerbstoff G19 5 Minuten gewalkt. Anschließend wurden 6 Teile Nachgerbstoff G2 zugegeben, nach einer Walkzeit von 30 Minute erfolgte eine Zugabe von 5 Teilen Polymergerbstoff G18, 3 Teilen Polymergerbstoff G19 und 4 Teilen Nachgerbstoff G2. Nach weiteren 60 Minuten Walkzeit bei 45°C wurden 70 Teile Wasser zugegeben und 20 Minuten bei 65°C gewalkt. Zur Nachgerbflotte wurden 3 Teile Fettungsmittel F1 und 2 Teile Fettungsmittel F2 zugegeben und 60 Minuten bei 65°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,6 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbt, nachgegerbt und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaub und Spannrahmen getrocknet.

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

Schuhoberlederrezeptur 23:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach

wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte. wurden 6,1 Teile Mischfarbstoff 13hw gegeben und 15 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,2 eingestellt.

10

20

25

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1 Teil Aldehydgerbstoff G13 3 Minuten gewalkt. Nach Zugabe von 3 Teilen Polymergerbstoff G19 wurde weitere 30 Minuten gewalkt. Anschließend wurden 0,8 Teile Natriumbicarbonat zugegeben. Nach einer Walkzeit von 30 Minuten wurden 3 Teile Hydrophobiermittel H5 zugegeben, nach weiteren 30 Minuten Walkzeit wurde mit 5 Teilen Polymergerbstoff G18 30 Minuten lang nachgegerbt. Zur Nachgerbflotte wurden 5 Teile Hydrophobiermitte H1 und 0,5 Teile Hilfsmittel HM4 gegeben und 60 Minuten bei 45°C gefettet. Danach wurden 70 Teile Wasser zugegeben und 20 Minuten bei 65°C gewalkt. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen. Das Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure 10 Minuten lange bei 30 °C gewalkt. Durch Zugabe von 5 Teilen Chromgerbstoff G24 wurde die Hydrophobierung 90 Minuten lang bei 30°C fixiert. Anschließend wurde einmal mit 300 Teilen Wasser 10 Minuten lang gewaschen und danach in einer Flotte aus 300 Teilen Wasser und 0,2 Teilen Ameisensäure 10 Minuten lang gewalkt. Nach Ablassen der Flotte wurde kurz kalt gespült.

35

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

Es wurde ein hydrophobiertes Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Nubuk direkt Schuhoberleder herstellen.

Schuhoberlederrezeptur 24:

40 Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10

Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,5 eingestellt. Zur Entsäuerungsflotte wurden 9,2 Teile Farbstoff 14 gegeben und 25 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 40°C 50 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,3 eingestellt.

5

10

20

25

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Polymergerbstoff G19 15 Minuten gewalkt. Danach wurden 2 Teile Hydrophobiermittel H1 zugegeben. Nach einer Walkzeit von 15 Minuten wurde nach Zugabe von 5 Teilen Polymergerbstoff G18, 3 Teilen Nachgerbstoff G1 und 1 Teil Polymergerbstoff G19 30 Minuten lang nachgegerbt. Zur Nachgerbflotte wurden 4 Teile Hydrophobiermitte H1 und 0,3 Teile Hilfsmittel HM4 gegeben und 60 Minuten bei 45°C gefettet. Danach wurden 70 Teile Wasser zugegeben und 20 Minuten bei 65°C gewalkt. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen. Das Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure 10 Minuten lange bei 30°C gewalkt. Durch Zugabe von 5 Teilen Chromgerbstoff G24 wurde die Hydrophobierung 90 Minuten lang bei 30°C fixiert. Anschließend wurde einmal mit 300 Teilen Wasser und 0,2 Teilen Ameisensäure 10 Minuten lang gewaschen und danach in einer Flotte aus 300 Teilen Wasser und 0,2 Teilen Ameisensäure 10 Minuten lang gewalkt. Nach Ablassen der Flotte wurde kurz kalt gespült.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

- Es wurde ein hydrophobiertes Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Nubuk direkt Schuhoberleder herstellen.
- 40 Schuhoberlederrezeptur 25:

10

20

25

35

182

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,5 eingestellt. Zur Entsäuerungsflotte wurden 6,8 Teile Farbstoff 15 gegeben und 30 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 5 Teilen Ameisensäure innerhalb von 90 Minuten ein pH von 3,0 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 0,4 Teile Ameisensäure 10 min gewalkt. Danach wurden 1 Teil Nachgerbstoff G14 zugegeben und 30 Minuten gewalkt. Anschließend wurden 4 Teile Chromgerbstoff G24 und 2 Teile Nachgerbstoff G28 zugegeben. Nach einer Walkzeit von 30 Minuten wurde 0,5 Teile Natriumformiat zugegeben und 60 Minuten nachchromiert. Zur Flotte wurden 100 Teile Wasser gegeben und über Nacht gewalkt. Anschließend wurde die Flotte abgelassen.

Das Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser, 1,5 Teilen Natriumformiat und 0,5 Teilen Natriumbicarbonat 30 Minuten lange bei 30 °C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugesetzt. Nach einer Walkzeit von 15 Minuten wurden 2 Teile Hydrophobiermittel H1 zugesetzt und 15 Minuten gewalkt. Nach Zugabe von 5 Teilen Polymergerbstoff G18 und einer Walkzeit von 30 Minuten wurden zur Ausgerbung 4 Teile Nachgerbstoff G28 und 3 Teile Nachgerbstoff G11 zugesetzt und weitere 30 Minuten nachgegerbt. Zur Nachgerbflotte wurden 4 Teilen Hydrophobiermittel H1 und 0,3 Teile Hilfsmittel HM4 zugesetzt und 60 Minuten lang gefettet. Anschließend wurden zur Flotte 70 Teilen Wasser zugegeben und bei 65°C 20 Minuten lang gewalkt. Innerhalb von 45 Minuten wurde durch portionsweise Zugabe von insgesamt 3,5 Teilen Ameisensäure ein Flotten-pH-Wert von 3,5 eingestellt. Das Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure 10 Minuten lange bei 30 °C gewalkt. Durch Zugabe von 5 Teilen Chromgerbstoff G24 wurde die Hydrophobierung 90 Minuten lang bei 30°C fixiert. Anschließend wurde einmal mit 300 Teilen Wasser 10 Minuten lang gewaschen und danach in einer Flotte aus 300 Teilen Wasser und 0,2 Teilen Ameisensäure 10 Minuten lang gewalkt. Nach Ablassen der Flotte wurde kurz kalt gespült.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raum-

temperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

- Es wurde ein hydrophobiertes Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Nubuk direkt Schuhoberleder herstellen.
- 10 Schuhoberlederrezeptur 26:

20

25

30

35

- Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,9 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungflotte wurden 8,8 Teile Farbstoff 16i gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,1 9,7 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,2 eingestellt.
- Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1 Teil Nachgerbstoff G14 5 Minuten lang gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugegeben, nach einer Walkzeit von 15 Minute erfolgte die Zugabe von 5 Teilen Polymergerbstoff G18. Nach weiteren 40 Minuten Walkzeit bei 45°C wurden 3 Teile Vegetabilgerbstoff G22 und 3 Teile Nachgerbstoff G28 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F1 und 2,5 Teile Hydrophobiermittel H3 zugegeben und 60 Minuten bei 50°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.
 - Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

5

10

Schuhoberlederrezeptur 27:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,9 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungflotte wurden 9 Teile Farbstoff 17b gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,8 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser und 2 Teilen Ameisensäure wurde innerhalb von 60 Minuten ein pH von 4,3 eingestellt.

5

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1 Teil Nachgerbstoff G14 5 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugegeben, nach einer Walkzeit von 15 Minute erfolgte die Zugabe von 5 Teilen Polymergerbstoff G18. Nach weiteren 40 Minuten Walkzeit bei 45°C wurden 4 Teile Harzgerbstoff G28 und 4 Teile Harzgerbstoff G11 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F1 und 2,5 Teile Hydrophobiermittel H3 gegeben und 60 Minuten bei 55°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

30

35

40

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

Schuhoberlederrezeptur 28:

5

10

20

25

30

35

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,9 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungaflotte wurden 5 Teile Farbstoff 19 gegeben und 30 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 6,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,8 eingestellt und bei 40°C 65 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1 Teil Nachgerbstoff G14 5 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugegeben, nach einer Walkzeit von 15 Minuten erfolgte die Zugabe von 5 Teilen Polymergerbstoff G18. Nach weiteren 40 Minuten Walkzeit bei 45°C wurden 2 Teile Vegetabilgerbstoff G22 und 4 Teile Harzgerbstoff G28 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F1 und 2,5 Teile Hydrophobiermittel H3 zugegeben und 60 Minuten bei 60°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure wurde innerhalb von 50 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

Schuhoberlederrezeptur 29:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten
Rindsleders der Falzstärke 1,9 mm wurde in einer Flotte aus 200 Teilen Wasser 10
Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und

20

25

186

1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte wurden 7,1 Teile Farbstoff 22 gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,8 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,9 eingestellt. 10

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 2 Teilen Nachgerbstoff G29 20 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugegeben, nach einer Walkzeit von 15 Minute erfolgte die Zugabe von 5 Teilen Polymergerbstoff G18. Nach weiteren 40 Minuten Walkzeit bei 45°C wurden 4 Teile Harzgerbstoff G28 und 4 Teile Harzgerbstoff G11 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F1 und 2,5 Teile Hydrophobiermittel H3 zugegeben und 60 Minuten bei 55°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

Schuhoberlederrezeptur 30:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten 35 Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungflotte 40 wurden 7,2 Teile Farbstoff 24 gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt.

10

30

35

40

187

Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,8 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,0 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Nachgerbstoff G25 35 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugegeben, nach einer Walkzeit von 15 Minute erfolgte die Zugabe von 5 Teilen Polymergerbstoff G18. Nach weiteren 40 Minuten Walkzeit bei 45°C wurden 4 Teile Harzgerbstoff G28 und 4 Teile Harzgerbstoff G11 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F1 und 2,5 Teile Hydrophobiermittel H3 zugegeben und 60 Minuten bei 55°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

Schuhoberlederrezeptur 31:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungsflotte wurden 4,9 Teile Farbstoff 28a gegeben und 30 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 6,8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,5 – 10,0 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde

10

20

25

188

durch portionsweise Zugabe von insgesamt 1,5 Teilen Ameisensäure innerhalb von 50 Minuten ein pH von 5,5 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 5 Teilen Hydrophobiermittel H5 20 Minuten lang bei 45°C gewalkt. Anschließend wurden 5 Teile Polymergerbstoff G18 zugegeben, nach einer Walkzeit von 40 Minuten erfolgte die Zugabe von 5 Teilen Hydrophobiermittel H1 und 0,3 Teile Hilfsmittel HM4. Nach einer 60 minütigen Fettung bei 45°C wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Dann wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und in neu angesetzter Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure 5 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Chromgerbstoff G24 wurde 90 Minuten lang fixiert. Zum Schluß wurde zweimal mit 300 Teilen Wasser jeweils 10 Minuten bei 30°C gespült.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 2 Minuten vakuumgetrocknet.

Es wurde ein hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

Schuhoberlederrezeptur 32:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,9 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungsflotte wurden 9,1 Teile Farbstoff 30 gegeben und 40 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9,2 Teilen festes Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,3 – 9,8 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 150 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 50 Minuten ein pH von 4,3 eingestellt.

10

20

25

189

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser, 1,5 Teilen Nachgerbstoff G13 und 2 Teilen Polymergerbstoff G19 40 Minuten lang bei 45°C gewalkt. Anschließend wurden 0,7 Teile Natriumbicarbonat zugegeben und nach 20 minütiger Walkzeit ein pH-Wert von 5,5 erhalten. Danach wurden 3 Teile Hydrobiermittel H1 und 0,2 Teile Hilfsmittel HM4 zugeben und 20 Minuten gewalkt. Nach Zugabe von 6 Teilen Polymergerbstoff G18 wurde noch weitere 30 Minuten nachgegerbt. Zur Fettung wurden 5 Teile Hydrophobiermittel H1 und 0,3 Teile Hilfsmittel HM4 zugegeben und 60 Minuten gewalkt. Anschließend erfolgt die Zugabe von 70 Teilen Wasser. Nach einer Walkzeit von 10 Minuten bei 60°C wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und in neu angesetzter Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure 5 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Chromgerbstoff G24 wurde 90 Minuten lang fixiert. Zum Schluß wurde zweimal mit 300 Teilen Wasser jeweils 10 Minuten bei 30°C gewaschen.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 2 Minuten vakuumgetrocknet.

Es wurde ein hydrophobiertes Softy Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Softy Schuhoberleder herstellen.

Schuhoberlederrezeptur 33:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungflotte wurden 9,9 Teile Farbstoff 32 gegeben und 40 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 10,0 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,7 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,5 Teilen Ameisensäure innerhalb von 50 Minuten ein pH von 5,4 eingestellt.

10

20

25

35

40

190

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Polymergerbstoff G19 15 Minuten lang bei 45°C gewalkt. Anschließend wurden 1,5 Teile Hydrobiermittel H1 zugeben und 15 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Polymergerbstoff G18 wurde noch weitere 30 Minuten nachgegerbt, Anschließend wurden 2 Teile Vegetabilgerbstoff G22, 2 Teile Nachgerbstoff G1. 2 Teile Harzgerbstoff G28 und 3 Teile Nachgerbstoff G11 zugegeben und 30 Minuten gewalkt. Zur Fettung wurden 4,5 Teile Hydrophobiermittel H1 und 0,3 Teile Hilfsmittel HM4 zugegeben und 60 Minuten gewalkt. Anschließend erfolgt die Zugabe von 70 Teilen Wasser. Nach einer Walkzeit von 10 Minuten bei 60°C wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 50 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und und in neu angesetzter Flotte aus 150 Teilen Wasser und 0.5 Teilen Ameisensäure 10 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Chromgerbstoff G24 wurde 90 Minuten lang fixiert. Anschließend wurde einmal mit 300 Teilen Wasser 10 Minuten bei 30°C und einmal mit einer Flotte aus 300 Teilen Wasser und 0,2 Teilen Ameisensäure gewaschen. Zum Schluß wurde das Leder kurz gespült.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 2 Minuten vakuumgetrocknet.

Es wurde ein hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

Schuhoberlederrezeptur 34:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1.8-2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungsflotte wurden 6,8 Teile Farbstoff 34p gegeben und 40 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 7,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 40°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,3 eingestellt.

191

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser 1 Teil Nachgerbstoff G14 und 2 Teilen Polymergerbstoff G19 40 Minuten lang bei 45°C gewalkt. Danach wurden 0,8 Teile Natriumbicarbonat zugegeben und ein pH von 5,6 erreicht. Anschließend wurden 3 Teile Hydrobiermittel H5 und 0,15 Teile HM4 zugegeben und 20 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Polymergerbstoff G18 wurde noch weitere 30 Minuten nachgegerbt. Anschließend wurden 2 Teile Nachgerbstoff G1, 2 Teile Vegetabilgerbstoff G22 und 2 Teile Harzgerbstoff G28 zugegeben und 30 Minuten gewalkt. Zur Fettung wurden 5 Teile Hydrophobiermittel H1 und 0,15 Teile Hilfsmittel HM4 zugegeben und 60 Minuten gewalkt. Anschließend erfolgt die Zugabe von 70 Teilen Wasser. Nach einer Walkzeit von 10 Minuten bei 60°C wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 40 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und in neu angesetzter Flotte aus 150 Teilen Wasser und 0,5 Teilen Ameisensäure 10 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Chromgerbstoff G24 wurde 90 Minuten lang fixiert. Anschließend wurde einmal mit 300 Teilen Wasser 10 Minuten bei 30°C und einmal mit einer Flotte aus 300 Teilen Wasser und 0,2 Teilen Ameisensäure 10 Minuten bei 30°C gewaschen. Zum Schluß wurde das Leder kurz gespült.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 2 Minuten vakuumgetrocknet.

Es wurde ein hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

Schuhoberlederrezeptur 35:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1.8 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungsflotte wurden 8,1 Teile Farbstoff 36 gegeben und 50 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8,7 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 150 Teilen Wasser wurde

35

10

20

25

35

40

192

durch portionsweise Zugabe von insgesamt 1,5 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 5,3 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 3 Teilen Hydrophobiermittel H5 20 Minuten vorgefettet. Anschließend wurden 5 Teil Polymergerbstoff G18 zugegeben und 40 Minuten lang gewalkt. Nach Zugabe von 3 Teilen Polymergerbstoff G16 wurden weitere 30 Minuten nachgegerbt. Danach wurden 2 Teile Polymergerbstoff G19 zugegeben und 30 Minuten lang ausgegerbt. Zur Nachgerbflotte wurden 5 Teile Hydrophobiermittel H1 und 0,5 Teile Hilfsmittel HM4 gegeben und 60 Minuten lange gefettet. Anschließend erfolgt die Zugabe von 100 Teilen Wasser. Nach einer Walkzeit von 10 Minuten bei 60°C wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 55 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und in neu angesetzter Flotte aus 120 Teilen Wasser und 0,5 Teilen Ameisensäure 10 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Chromgerbstoff G24 wurde 90 Minuten lang fixiert. Anschließend wurde zweimal mit jeweils 300 Teilen Wasser 10 Minuten bei 30°C gewaschen.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet.

Es wurde ein rein Polymer basiertes hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, rein polymerbasiertes, hydrophobiertes Schuhoberleder herstellen.

Schuhoberlederrezeptur 36:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungsflotte wurden 5,7 Teile Farbstoff 35v gegeben und 50 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 6,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 150 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,5 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 5,3 eingestellt.

10

20

25

193

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 2 Teilen Hydrophobiermittel H5 20 Minuten vorgefettet. Anschließend wurden 5 Teil Polymergerbstoff G18 zu gegeben und 40 Minuten lang gewalkt. Nach Zugabe von 3 Teilen Nachgerbstoff G1 wurden weitere 30 Minuten nachgegerbt. Danach wurden 2 Teile Vegetabilgerbstoff G22 zugegeben und 30 Minuten lang ausgegerbt. Zur Nachgerbflotte wurden 5 Teile Hydrophobiermittel H1 und 0,5 Teile Hilfsmittel HM4 gegeben und 60 Minuten lange gefettet. Anschließend erfolgt die Zugabe von 100 Teilen Wasser. Nach einer Walkzeit von 10 Minuten bei 60°C wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 55 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und in neu angesetzter Flotte aus 120 Teilen Wasser und 0,5 Teilen Ameisensäure 10 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Chromgerbstoff G24 wurde 90 Minuten lang fixiert. Anschließend wurde zweimal mit jeweils 300 Teilen Wasser 10 Minuten bei 30°C gewaschen.

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet.

Es wurde ein hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

Schuhoberlederrezeptur 37:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Zur Entsäuerungsflotte wurden 7,8 Teile Farbstoff 38o gegeben und 50 Minuten bei pH 7,6 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8,1 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 150 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,5 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser 1,5 Teilen Nachgerbstoff G14, 1,5 Teile Polymergerbstoff G16 undd 1,5 Teile Nachgerbstoff G19 40 Minuten lang gewalkt. Nach Zugabe von 2 Teilen Vegetabilgerbstoff G22 und 3 Teilen Nachgerbstoff G28 wurde 60 Minuten lang ausgegerbt. Zur Nachgerbflotte wurden 6 Teile Hydrophobiermittel H1 und 0,5 Teile Hilfsmittel HM4 gegeben und 90 Minuten lange gefettet. Anschließend erfolgt die Zugabe von 100 Teilen Wasser. Nach einer Walkzeit von 10 Minuten bei 60°C wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 50 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und in neu angesetzter Flotte aus 120 Teilen Wasser und 0,5 Teilen Ameisensäure 5 Minuten lang gewalkt. Nach Zugabe von 5 Teilen Chromgerbstoff G24 wurde 90 Minuten lang fixiert. Anschließend wurde zweimal mit jeweils 300 Teilen Wasser 10 Minuten bei 30°C gewaschen.

25

35

40

5

10

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet.

Es wurde ein hydrophobiertes Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem 20 der Farbstoffe der Beispiel 1a bis 59k gefärbtes, hydrophobiertes Schuhoberleder herstellen.

Schuhoberlederrezeptur 38:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,0 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte wurden 9,2 Teile Farbstoff 40d gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 9,3 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,8 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3,5 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,8 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3 Teilen Nachgerbstoff G26 60 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugegeben, nach einer Walkzeit von 15 Minuten

erfolgte die Zugabe von 5 Teilen Polymergerbstoff G18. Nach weiteren 40 Minuten Walkzeit bei 45°C wurden 4 Teile Harzgerbstoff G28 und 4 Teile Harzgerbstoff G11 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F1 und 2,5 Teile Hydrophobiermittel H3 zugegeben und 60 Minuten bei 55°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

25

5

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

20 Schuhoberlederrezeptur 39:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 2,1 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte wurden 8 Teile Farbstoff 39I gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8,6 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,8 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3,5 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,8 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 3,5 Teilen Nachgerbstoff G27 50 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugegeben, nach einer Walkzeit von 15 Minuten erfolgte die Zugabe von 5 Teilen Polymergerbstoff G18. Nach weiteren 40 Minuten Walkzeit bei 45°C wurden 4 Teile Harzgerbstoff G28 und 4 Teile Harzgerbstoff G11 zugegeben und 60 Minuten bei 45°C nachgegerbt. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5

Teile Fettungsmittel F1 und 2,5 Teile Hydrophobiermittel H3 zugegeben und 60 Minuten bei 55°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure wurde innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

5

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 55°C 4 Minuten lang vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 55°C 3 Minuten vakuumgetrocknet, mit 220 er Schleifpapier zu Nubuk geschliffen, entstaubt und Spannrahmen getrocknet.

10

20

25

Es wurde ein Nubuk direkt Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Nubuk direkt Schuhoberleder herstellen.

Schuhoberlederrezeptur 40:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,8 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,3 Teilen Gerbstoff G1 und 1 Teilen Hilfsmittel HM7 bestehenden Flotte 60 Minuten bei 40°C gewalkt. Anschließend gab man zu der Flotte 1,5 Teile Natriumformiat und walkte 30 min. bei 40°C. Danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte wurden 8,0 Teile Farbstoff 13ae gegeben und 45 Minuten bei pH 7,0 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 7,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,5 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,6 eingestellt.

35

40

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 80 Teilen Wasser und 1 Teil Aldehydgerbstoff G13 und 3 Teilen Polymergerbstoff G16 60 Minuten bei 45°C gewalkt. Dann gab man 0,5 Teile Natriumbicarbonat zu, gab nach einer Walkzeit von 30 Minuten 5 Teile Polymergerbstoff G18 zu und gerbte weitere 30 Minuten bei 45°C nach. Anschließend fügte man zur Flotte 0,8 Teile Hilfmittel HM5, 3 Teile Polymergerbstoff G17 und 2 Teile Polymergerbstoff G19 und gerbte 60 Minuten bei 45°C aus. Anschließend wurden 70 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Zur Nachgerbflotte wurden 2,5 Teile Fettungsmittel F6, 1,5 Teile Hydrophobiermittel H3 und 1,5 Teile Fettungsmittel F2 zugegeben und 60 Minuten bei 55°C gefettet. Anschließend wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure wurde

innerhalb von 60 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, bei 60°C 2 Minuten vakuumiert, bei Raumtemperatur hängegetrocknet, konditioniert, gestollt und bei 60°C 2 Minuten vakuumgetrocknet.

Es wurde ein Schuhoberleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Schuhoberleder herstellen.

Möbellederrezeptur 1:

5

10

20

25

35

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,8 eingestellt. Anschließend wurden 1,5 Teile HM2 zugegeben und 5 Minuten gewalkt. Zur Entsäuerungsflotte wurden 10,5 Teile Farbstoff 41c gegeben und 30 Minuten bei pH 7,3 und 35°C gefärbt. Danach wurden 0,5 Teile Natriumbicarbonat zugegeben und 60 Minuten gewalkt. Durch portionsweise Zugabe von insgesamt 9,5 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,3 – 9,5 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,7 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 2 Teilen Nachgerbstoff G13 60 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G18 zugegeben. Nach einer Walkzeit von 60 Minuten erfolgte die Zugabe von 1,5 Teilen Natriumbicarbonat. Nach weiteren 20 Minuten Walkzeit bei 45°C wurden 2 Teile Fettungsmittel F1 und 0,2 Teile Hilfsmittel HM4 zugegeben und 20 Minuten vorgefettet. Zur Flotte wurden 5 Teile Nachgerbstoff G5, 3 Teile Vegetabilgerbstoff G22 und 2 Teile Harzgerbstoff G11 gegeben und 60 Minuten lang nachgegerbt. Zur Nachgerbflotte wurden 7 Teile Fettungsmittel F1 und 3 Teile Fettungsmittel F6 zugegeben und 60 Minuten bei 45°C gefettet. Anschließend wurde durch portionsweise Zugabe von 5 Teilen Ameisensäure innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein Möbelleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und 5 Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Möbelleder herstellen.

Möbellederrezeptur 2:

10

25

- Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 – 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 15 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 10 Minuten bei 35°C gewalkt. Die Flotte hatte einen pH-Wert von 4,2 – 4,6. Zur Flotte wurden 8,7 Teile Farbstoff 42g zugegeben und 40 Minuten bei pH 5,5 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 3 Teilen Natriumbicarbonat wurde innerhalb von 20 Minuten ein pH-Wert von 7,3 - 7,8 eingestellt. Zur Fixierung wurde der pH-Wert der Flotte durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat zwischen 9,2 - 9,6 eingestellt und 60 Minuten lang bei 35°C gewalkt. Nach Flottenwechsel wurde zweimal mit mit einer Flotte aus jeweils 300 Teilen Wasser und 1,5 Teilen Hilfsmittel HM3 insgesamt 60 20 Minuten lang bei 40°C gewaschen . In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten bei 40°C ein pH von 4.3-4.6 eingestellt.
 - Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser, 3 Teilen Polymergerbstoff G18 und 1,5 Teilen Fettungsmittel F6 30 Minuten bei 35°C nachgegerbt. Anschließend wurden 6 Teile Polymergerbstoff G18 und 10 Teile Nachgerbstoff G18 zugegeben und 60 Minuten bei 35°C gewalkt. Nach Zugabe von 1,5 Teilen Fettungsmittel F6 und einer Walkzeit von 30 Minuten wurden 6 Teile Polymergerbstoff G18 und 10 Teile Nachgerbstoff G8 zugegeben und 60 Minuten bei 35°C nachgegerbt. Zur Nachgerbflotte wurden 10 Teile Fettungsmittel F6 zugegeben und 60 Minuten bei 35°C gefettet. Zur Fixierung des Fettungsmittels wurde nach Zugabe von 100 Teile 45°C heißem Wasser und einer Walkzeit von 20 Minuten innerhalb von 50 Minuten durch Zugabe von Ameisensäure ein pH-Wert von 3.5 eingestellt. Anschließend wurde 15 Minuten lang mit 300 Teilen Wasser gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, naßgespannt, Spannrahmen getrocknet, konditioniert, gestollt, gemillt und gespannt.

Es wurde ein wetwhite Möbellederleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes wetwhite Möbelleder herstellen.

5 Möbellederrezeptur 3:

10

- Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,0 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 15 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 10 Minuten bei 35°C gewalkt. Die Flotte hatte einen pH-Wert von 4,4. Zur Flotte wurden 7,5 Teile Farbstoff 46e zugegeben und 45 Minuten bei pH 5,3 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 3 Teilen Natriumbicarbonat wurde innerhalb von 20 Minuten ein pH-Wert von 7,3 7,8 eingestellt. Zur Fixierung wurde der pH-Wert der Flotte durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat zwischen 9,5 10,0 eingestellt und 60 Minuten lang bei 35°C gewalkt. Nach Flottenwechsel wurde dreimal mit einer Flotte aus jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen . In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,5 Teilen Ameisensäure innerhalb von 60 Minuten bei 40°C ein pH von 4,7-5,0 eingestellt.
- Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 50 Teilen Wasser, 15 Teilen Hydrophobiermittel H5 und 15 Teilen Polymergerbstoff G18 90 Minuten bei 35°C nachgegerbt. Anschließend wurden 8 Teile Hydrophobiermittel H5 und 6 Teile Fettungsmittel F6 zugegeben und 150 Minuten bei 35°C gefettet. Danach wurden 100 Teile 45°C heißer Wasser zugegeben und 10 Minuten gewalkt. Anschließende wurde innerhalb von 40 Minuten durch Zugabe von 3 Teilen Ameisensäure ein pH-Wert von 3,5 eingestellt. Zum Schluß wurde kurz mit Wasser gespült.
- Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, naßgespannt, Spannrahmen getrocknet, konditioniert, gestollt, über Nacht gemillt, gestollt und gespannt.

Es wurde ein rein Polymer basiertes wetwhite Möbellederleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes, rein polymerbasiertes wetwhite Möbelleder herstellen.

- Möbellederrezeptur 4:
- Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach

wurden innerhalb von 30 Minuten portionsweise insgesamt 4 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von.7,7 eingestellt. Anschließend wurden 1,5 Teile HM2 zugegeben und 5 Minuten gewalkt. Zur Entsäuerungsflotte wurden 9 Teile Farbstoff 43ag gegeben und 30 Minuten bei pH 7,4 und 35°C gefärbt. Danach wurden 0,5 Teile Natriumbicarbonat zugegeben und 60 Minuten bei pH 7,5 gewalkt. Durch portionsweise Zugabe von insgesamt 9,8 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,3 – 9,8 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,8 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 4,6 eingestellt.

5

10

20

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 6 Teilen Nachgerbstoff G18 40 Minuten lang bei 45°C gewalkt. Der Flotten pH Wert betrug 5,0. Nach Zugabe von 0,8 Teilen Natriumbicarbonat und einer Walkzeit von 20 Minuten wurde ein Flotten pH Wert von 6,9 erreicht. Zur Nachgerbflotte wurden 2 Teile Fettungsmittel F1 und 0,2 Teile Hilfsmittel HM4 zugegeben und 20 Minuten bei 45°C vorgefettet. Zur Flotte wurden 3 Teile Nachgerbstoff G5, 3 Teile Vegetabilgerbstoff G22 und 2 Teile Harzgerbstoff G11 gegeben und 60 Minuten lang nachgegerbt. Zur Nachgerbflotte wurden 7 Teile Fettungsmittel F1 und 3 Teile Fettungsmittel F6 zugegeben und 60 Minuten bei 45°C gefettet. Anschließend wurde durch portionsweise Zugabe von 5 Teilen Ameisensäure wurde innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

35

40

Es wurde ein Möbelleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Möbelleder herstellen.

Möbellederrezeptur 5:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 4 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Anschließend wurden 1,5 Teile HM2 zugegeben und 5 Minuten gewalkt. Zur Entsäuerungsflotte wurden 8 Teile Farbstoff 47ac gegeben und 30 Minuten bei pH 7,5 und 35°C gefärbt. Danach

wurden 0,5 Teile Natriumbicarbonat zugegeben und 60 Minuten bei pH 7,6 gewalkt. Durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,5 – 9,9 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3,0 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,7 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 1 Teile Nachgerbstoff G13 60 Minuten lang bei 45°C gewalkt. Anschließend wurden 6 Teile Polymergerbstoff G18 zugegeben und 40 Minuten bei 45°C nachgegerbt. Der Flotten pH Wert betrug 4,2. Nach Zugabe von 1,5 Teilen Natriumbicarbonat und einer Walkzeit von 20 Minuten wurde ein Flotten pH Wert von 6,2 erreicht. Zur Nachgerbflotte wurden 2 Teile Fettungsmittel F1 und 0,2 Teile Hilfsmittel HM4 zugegeben und 20 Minuten bei 45°C vorgefettet. Zur Flotte wurden 3 Teile Nachgerbstoff G5, 3 Teile Vegetabilgerbstoff G22 und 2 Teile Harzgerbstoff G11 gegeben und 60 Minuten lang nachgegerbt. Zur Nachgerbflotte wurden 7 Teile Fettungsmittel F1 und 3 Teile Fettungsmittel F6 zugegeben und 60 Minuten bei 45°C gefettet. Der Flotten pH-Wert betrug 5,6. Anschließend wurde durch portionsweise Zugabe von 5 Teilen Ameisensäure wurde innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

30

20

25

35

40

5

10

Es wurde ein Möbelleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Möbelleder herstellen.

Möbellederrezeptur 6:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 4 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,7 eingestellt. Anschließend wurden 1,5 Teile HM2 zugegeben und 5 Minuten gewalkt. Zur Entsäuerungsflotte wurden 7 Teile Farbstoff 49b gegeben und 30 Minuten bei pH 7,5 und 35°C gefärbt. Danach wurden 0,5 Teile Natriumbicarbonat zugegeben und 60 Minuten bei pH 7,6 gewalkt. Durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat wurde zur Fixie-

10

25

30

35

40

202

rung der pH-Wert der Flotte zwischen 9,5 – 9,9 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3,0 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,7 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 1 Teile Nachgerbstoff G13 40 Minuten lang bei 45°C gewalkt. Anschließend wurden 6 Teile Polymergerbstoff G18 zugegeben und 40 Minuten bei 45°C nachgegerbt. Der Flotten pH Wert betrug 4,2. Danach wurde 1 Teil Natriumbicarbonat zugegeben und 20 Minuten gewalkt. Zur Nachgerbflotte wurden 2 Teile Fettungsmittel F1 gegeben und 20 Minuten bei 45°C vorgefettet. Zur Flotte wurden 10 Teile Nachgerbstoff G3 gegeben und 90 Minuten gewalkt. Anschließend wurde mit 6 Teilen Fettungsmittel F1 und 2 Teilen Fettungsmittel F6 60 Minuten bei 45°C gefettet. Duch portionsweise Zugabe von 5 Teilen Ameisensäure wurde innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditio-20 niert, gestollt und gemillt.

Es wurde ein Möbelleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Möbelleder herstellen.

Möbellederrezeptur 7:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte wurden 5,5 Teile Farbstoff 52e gegeben und 40 Minuten bei pH 7,5 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 7 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,2 – 9,6 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 150 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2,0 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 5,2 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser, 3 Teilen Polymergerbstoff G18 und 1,5 Teilen Polymergerbstoff G19 20 Minuten lang bei 45°C gewalkt. Zur Nachgerbflotte wurden 1 Teil Fettungsmittel F6 und 0,5 Teile Fettungsmittel F2 gegeben und 20 Minuten bei 45°C vorgefettet. Zur Flotte wurden 3 Teile Polymergerbstoff G18, 6 Teile Nachgerbstoff G8 und 2 Teile Vegetabilgerbstoff G22 gegeben und 60 Minuten nachgegerbt. Anschließend wurde mit 6 Teilen Fettungsmittel F6, 2 Teilen Fettungsmittel F2 und 1 Teil Fettungsmittel F3 60 Minuten bei 45°C gefettet. Nach Zugabe von 100 Teile Wasser und einer Walkszeit von 10 Minuten wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein Möbelleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Möbelleder herstellen.

20

25

10

Möbellederrezeptur 8:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte wurden 6 Teile Farbstoff 53b gegeben und 50 Minuten bei pH 7,5 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 7 Teilen festes Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,5 – 10,0 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 150 Teilen Wasser und 2,2 Teilen Ameisensäure wurde innerhalb von 60 Minuten ein pH von 4,9 eingestellt.

35

40

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 2 Teilen Nachgerbstoff G14 30 Minuten gewalkt. Danach wurden 5 Teilen Polymergerbstoff G18 zugegeben und 40 Minuten lang bei 45°C nachgegerbt. Zur Nachgerbflotte wurden 2 Teile Fettungsmittel F6 und 1 Teil Fettungsmittel F2 gegeben und 20 Minuten bei 45°C vorgefettet. Zur Flotte wurden 6 Teile Nachgerbstoff G2, 2 Teile Vegetabilgerbstoff G22 und 2 Teile Harzgerbstoff G28 gegeben und 60 Minuten

nachgegerbt. Anschließend wurde mit 8 Teilen Fettungsmittel F6, 2 Teilen Fettungsmittel F2 und 1 Teil Fettungsmittel F3 60 Minuten bei 45°C gefettet. Nach Zugabe von 100 Teile Wasser und einer Walkszeit von 10 Minuten wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

10

20

25

35

40

5

Es wurde ein Möbelleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Möbelleder herstellen.

Möbellederrezeptur 9:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,8 eingestellt. Zur Entsäuerungflotte wurden 5,7 Teile Farbstoff 58b gegeben und 60 Minuten bei pH 7,7 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,5 – 10,0 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 150 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2,3 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 5,0 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 2 Teilen Nachgerbstoff G14 30 Minuten gewalkt. Danach wurden 6 Teilen Polymergerbstoff G18 zugegeben und 40 Minuten lang bei 45°C nachgegerbt. Zur Nachgerbflotte wurden 2 Teile Fettungsmittel F1 gegeben und 20 Minuten bei 45°C vorgefettet. Zur Flotte wurden 4 Teile Nachgerbstoff G3 und 2 Teile Vegetabilgerbstoff G22 gegeben und 60 Minuten gewalkt. Nach Zugabe von 2 Teilen Polymergerbstoff G19 wurden noch weitere 20 Minuten nachgegerbt. Anschließend wurden zur Nachgerbflotte 6 Teilen Fettungsmittel F1, 4 Teile Fettungsmittel F6 und 1 Teil Fettungsmittel F3 gegeben und 60 Minuten bei 45°C gefettet. Nach Zugabe von 100 Teile Wasser und einer Walkszeit von 10 Minuten wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

5

15

Es wurde ein Möbelleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Möbelleder herstellen.

Autolederrezeptur 1: 10

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten

Rindsleders der Falzstärke 1,2-1,3 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1.5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,8 eingestellt. Anschließend wurden 1.5 Teile HM2 zugegeben und 5 Minuten gewalkt. Zur Entsäuerungsflotte wurden 4.7 Teile Farbstoff 59d gegeben und 30 Minuten bei pH 7,3 und 35°C gefärbt. Danach wurden 0.5 Teile Natriumbicarbonat zugegeben und 60 Minuten bei pH 7,4 gewalkt.

Durch portionsweise Zugabe von insgesamt 5 Teilen Natriumcarbonat wurde zur Fixie-20 rung der pH-Wert der Flotte zwischen 9,4 – 9,8 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,7 eingestellt.

25

35

30

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 1,5 Teilen Nachgerbstoff G13 60 Minuten lang bei 45°C gewalkt. Anschließend wurden 8 Teile Polymergerbstoff G18 zugegeben und 40 Minuten bei 45°C nachgegerbt. Nach Zugabe von 1,5 Teilen Natriumbicarbonat und einer Walkzeit von 20 Minuten wurde mit 2 Teile Fettungsmittel F1 und 0,2 Teile Hilfsmittel HM4 20 Minuten lang bei 45°C vorgefettet. Zur Flotte wurden 4 Teile Nachgerbstoff G5, 4 Teile Vegetabilgerbstoff G21 und 2 Teile Harzgerbstoff G11 gegeben und 60 Minuten lang nachgegerbt. Zur Nachgerbflotte wurden 7 Teile Fettungsmittel F1 und 3 Teile Fettungsmittel F6 zugegeben und 60 Minuten bei 45°C gefettet. Anschließend wurde durch portionsweise Zugabe von 5 Teilen Ameisensäure wurde innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder kurz kalt gespült.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein Autoleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reib-5 echtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Autoleder herstellen.

Autolederrezeptur 2:

10

20

25

30

35

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,1 – 1.2 mm wurde in einer Flotte aus 300 Teilen Wasser 15 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 10 Minuten bei 35°C gewalkt. Die Flotte hatte einen pH-Wert von 4,4. Zur Flotte wurden 7,2 Teile Farbstoff 56 zugegeben und 60 Minuten bei pH 4,5 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 3 Teilen Natriumbicarbonat wurde innerhalb von 20 Minuten ein pH-Wert von 7,1 – 7,6 eingestellt. Zur Fixierung wurde der pH-Wert der Flotte durch portionsweise Zugabe von insgesamt 8 Teilen Natriumcarbonat zwischen 9,6 - 9,7 eingestellt und 90 Minuten lang bei 35°C gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen . In einer Flotte aus 300 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 2 Teilen Ameisensäure innerhalb von 60 Minuten bei 40°C ein pH von 4.2 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 5 Teilen Polymergerbstoff G18 10 Minuten bei 35°C gewalkt. Anschließend wurden 1 Teil Fettungsmittel F6 und 0,5 Teile Fettungsmittel F2 zugegeben und 20 Minuten bei 35°C vorgefettet. Nach Zugabe von 5 Teilen Polymergerbstoff G18 und 10 Teilen Nachgerbstoff G8 wurde 60 Minuten nachgegerbt. Zur Nachgerbflotte wurden 1 Teil Fettungsmittel F6 und 0,5 Teile Fettungsmittel F2 zugegeben und 30 Minuten bei 35°C gefettet. Anschließend wurde mit 5 Teilen Polymergerbstoff G18 und 10 Teilen Nachgerbstoff G8 90 Minuten ausgegerbt. Nach Zugabe von 8 Teilen Fettungsmittel F6 und 2 Teilen Fettungsmittel F2 wurde 60 Minuten bei 35°C gefettet. Zur Fixierung wurde nach Zugabe von 100 Teile 45°C heißem Wasser und einer Walkzeit von 20 Minuten innerhalb von 60 Minuten durch Zugabe von 3 Teilen Ameisensäure ein pH-Wert von 3.5 eingestellt. Anschließend wurde das Leder 15 Minuten mit 300 Teilen Wasser gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, Spannrahmen getrocknet, konditioniert, gestollt, gemillt und Spannrahmen getrocknet.

Es wurde ein wetwhite Autoleder mit ausgezeichneten Wasch-, Schweiß-, Migrationsund Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes wetwhite Autoleder herstellen.

5 Autolederrezeptur 3:

10

30

35

40

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise organisch gegerbten Rindsleders der Falzstärke 1,1 – 1.2 mm wurde in einer Flotte aus 300 Teilen Wasser 15 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 10 Minuten bei 35°C gewalkt. Die Flotte hatte einen pH-Wert von 4,4. Zur Flotte wurden 3,5 Teile Farbstoff 54 zugegeben und 40 Minuten bei pH 4,5 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 3 Teilen Natriumbicarbonat wurde innerhalb von 20 Minuten ein pH-Wert von 7,6 eingestellt. Zur Fixierung wurde der pH-Wert der Flotte durch portionsweise Zugabe von insgesamt 5 Teilen Natriumcarbonat zwischen 9,6 - 9,7 eingestellt und 90 Minuten lang bei 35°C gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen . In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,5 Teilen Ameisensäure innerhalb von 60 Minuten bei 40°C ein pH von 5,0 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 50 Teilen Wasser, 15 Teilen Hydrophobiermittel H5 und 15 Teilen Polymergerbstoff G18 90 Minuten bei 35°C nachgegerbt. Anschließend wurden zur Nachgerbflotte 4 Teile Hydrophobiermittel H5, 6 Teile Fettungsmittel F6 und 4 Teile Fettungsmittel F2 gegeben und 150 Minuten bei 35°C gefettet. Zur Fixierung wurde nach Zugabe von 100 Teile 45°C heißem Wasser und einer Walkzeit von 10 Minuten innerhalb von 60 Minuten durch portionsweise Zugabe von 4 Teilen Ameisensäure ein pH-Wert von 3,5 eingestellt. Anschließend wurde das Leder 15 Minuten mit 300 Teilen Wasser gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht über Bock gelagert, anschließend ausgereckt, Spannrahmen getrocknet, konditioniert, gestollt uüber Nacht gemillt, gestollt und Spannrahmen getrocknet.

Es wurde ein rein Polymer basiertes wetwhite Autoleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes wetwhite Autoleder herstellen.

Autolederrezeptur 4:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1-1,2 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und

1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 3,5 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungsflotte wurden 5,2 Teile Farbstoff 51 gegeben und 30 Minuten bei pH 7,5 und 35°C gefärbt. Danach wurden 0,5 Teile Natriumbicarbonat zugegeben und 60 Minuten bei pH 7,6 gewalkt. Durch portionsweise Zugabe von insgesamt 7 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,3 – 9,9 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3,5 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,5 eingestellt.

5

10

20

25

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 3 Teilen Nachgerbstoff G12 10 Minuten lang bei 45°C gewalkt. Nach Zugabe von 1,5 Teilen Fettungsmittel F1 wurde 50 Minuten lang bei 45°C vorgefettet. Anschließend wurden 0,5 Teile Natriumbicarbonat zugegeben und 30 Minuten gewalkt. Zur Flotte wurden 5 Teile Polymergerbstoff G18 und 1,5 Teile Fettungsmittel F1 gegeben und 40 Minuten lang gewalkt. Zur Nachgerbflotte wurden 1,5 Teile Fettungsmittel F1 und 1,5 Teile Fettungsmittel F2 gegeben und 20 Minuten bei 45°C gefettet. Danach erfolgte die Zugabe von 8 Teilen Nachgerbstoff G6, 8 Teilen Nachgerbstoff G8 und 2 Teilen Polymergerbstoff G19. Nach einer Walkzeit von weiteren 60 Minuten wurden 3 Teile Fettungsmittel F1, 1.5 Teile Fettungsmittel F6 und 1,5 Teile Fettungsmittel F2 zugegeben und 90 Minuten bei 45°C gefettet. Anschließend wurde durch portionsweise Zugabe von 3,5 Teilen Ameisensäure wurde innerhalb von 50 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder mit 300 Teilen Wasser 15 Minuten lang gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein Autoleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Autoleder herstellen.

35

40

Autolederrezeptur 5:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 1,1-1,2 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 3,5 Teile Natriumbicarbonat

zugegeben und ein Neutralisations-pH-Wert von 7,5 eingestellt. Zur Entsäuerungsflotte wurden 4,7 Teile Farbstoff 48 gegeben und 30 Minuten bei pH 7,5 und 35°C gefärbt. Danach wurden 0,5 Teile Natriumbicarbonat zugegeben und 60 Minuten bei pH 7,6 gewalkt. Durch portionsweise Zugabe von insgesamt 6 Teilen festes Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,3 – 9,9 eingestellt und bei 35°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,5 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 5,5 eingestellt.

10

5

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 120 Teilen Wasser und 6 Teilen Polymergerbstoff G18 5 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Polymergerbstoff G19 zugesetzt. Nach einer Walkzeit von weiteren 5 Minuten wurden 1,5 Teilen Fettungsmittel F1 zugegeben und 30 Minuten lang bei 45°C gewalkt. Anschließend wurden 1,5 Teile Fettungsmittel F1 und 1 Teil Fettungsmittel F2 zugegeben und weitere 20 Minuten vorgefettet. Zur Flotte wurden 4 Teile Polymergerbstoff G18 gegeben und 20 Minuten lang gewalkt. Danach erfolgte die Zugabe von 8 Teilen Nachgerbstoff G6 und 8 Teilen Nachgerbstoff G8. Nach einer Walkzeit von weiteren 40 Minuten wurde 1 Teil Polymergerbstoff G19 zugesetzt und 20 Minuten lang ausgegerbt. Zur Nachgerbflotte wurden 6 Teile Fettungsmittel F1 und 2 Teile Fettungsmittel F2 gegeben und 90 Minuten bei 45°C gefettet. Anschließend wurde durch portionsweise Zugabe von 3,5 Teilen Ameisensäure wurde innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder mit 300 Teilen Wasser 15 Minuten lang gewaschen.

25

30

35

40

20

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein Autoleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Autoleder herstellen.

Bekleidungslederrezeptur 1:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Schafsleders der Falzstärke 0,7 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 150 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 20 Minuten portionsweise insgesamt 3 Teile Natriumbicarbonat zugegeben. Anschließend wurden 3 Teile Hilfsmittel HM4 zugeben und 10 Minuten gewalkt. Der pH der Flotte betrug 7,7. Zur Entsäuerungsflotte wurden 9 Teile Farbstoff

10

20

30

35

40

210

44 gegeben und 40 Minuten bei pH 7,4 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 10 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,6 – 9,8 eingestellt und bei 40°C 60 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 150 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 4 Teilen Ameisensäure innerhalb von 55 Minuten ein pH von 3,6 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 2 Teilen Nachgerbstoff G14 40 Minuten lang bei 45°C gewalkt. Anschließend wurden 2 Teile Natriumformiat zugesetzt. Nach einer Walkzeit von weiteren 20 Minuten wurden 2 Teile Natriumbicarbonat zugegeben und 20 Minuten lang bei 45°C gewalkt. Der pH der Flotte betrug 5,2. Zur Flotte wurden 8 Teile Nachgerbstoff G3 und 2 Teil Nachgerbstoff G11 gegeben und 40 Minuten lang gewalkt. Danach erfolgt die Zugabe von 6 Teile Fettungsmittel F1, 4 Teile Fettungsmittel F3 und 1 Teil Hydrophobiermittel H7. Nach einer Walkzeit von 20 Minuten wurden 4 Teile Polymergerbstoff G10 zugesetzt und 20 Minuten gewalkt. Anschließend erfolgte die Zugabe von 6 Teilen Fettungsmittel F1, 4 Teilen Fettungsmittel F3 und 1 Teil Hydrophobiermittel H7. Nach einer Fettungszeit von weiteren 40 Minuten wurde durch portionsweise Zugabe von 5 Teilen Ameisensäure innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder mit 300 Teilen Wasser 15 Minuten lang gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, hängegetrocknet, konditioniert, gestollt, gemillt und Spannrahmen getrocknet.

Es wurde ein Bekleidungsleder mit ausgezeichneten Wasch-, Schweiß-, Migrationsund Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Bekleidungsleder herstellen.

Bekleidungslederrezeptur 2:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Rindsleders der Falzstärke 0,8 –0,9 mm wurde in einer Flotte aus 200 Teilen Wasser 10 Minuten bei 35°C gewaschen und anschließend in einer aus 100 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 40°C gewalkt, danach wurden innerhalb von 25 Minuten portionsweise insgesamt 3,2 Teile Natriumbicarbonat zugegeben und ein Neutralisations-pH-Wert von 7,6 eingestellt. Zur Entsäuerungflotte wurden 8 Teile Mischfarbstoff 12hu gegeben und 40 Minuten bei pH 7,5 und 40°C gefärbt. Durch portionsweise Zugabe von insgesamt 8,7 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,6 – 9,8 eingestellt und bei 40°C 90

Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 5 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,3 eingestellt.

5

10

20

25

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser und 3 Teilen Nachgerbstoff G12 10 Minuten lang bei 30°C gewalkt. Nach Zugabe von 4 Teilen Chromgerbstoff G24 und 1,5 Teilen Hilfsmittel HM6 wurde 50 Minuten bei 30°C nachchromiert. Anschließend wurde 1 Teile Natriumformiat zugegeben und 90 Minuten gewalkt. Nach Zugabe von 100 Teilen Wasser wurde über Nacht nachchromiert. Anschließend wurde die Flotte abgelassen und mit 300 Teilen Wasser 10 Minuten lang bei 45°C gewaschen. In einer frisch angesetzten Flotte aus 100 Teilen Wasser, 1,5 Teilen Hydrophobiermittel H5 wurde 20 Minuten lang bei 45°C gewalkt. Anschließend wurden 5 Teile Polymergerbstoff G18 zugegeben, nach einer Walkzeit von 5 Minuten erfolgte die Zugabe von 2 Teilen Nachgerbstoff G5. Nach weiteren 30 Minuten Nachgerbzeit wurden 2 Teile-Polymergerbstoff G19 zugegeben, 10 Minuten gewalkt und anschließend 5 Teile Nachgerbstoff G5 zugeben. Nach weiteren 60 Minuten Nachgerbzeit wurden 4 Teile Hydrophobiermittel H8, 6 Teile Hydrophobiermittel H2, 7 Teile Hydrophobiermittel H7 und 0,8 Teile Hilfsmittel HM4 zugegeben und 60 Minuten bei 45°C gefettet. Anschließend wurden 100 Teile Wasser zugegeben und 10 Minuten bei 60°C gewalkt. Dann wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und und in neu angesetzter Flotte aus 300 Teilen Wasser und 0,15 Teilen Ameisensäure 15 Minuten lang gewaschen. In neu angesetzte Flotte aus 150 Teilen Wasser, 2 Teilen Hydrophobiermittel H7 und 0,2 Teilen Hilfsmittel HM4 wurde 20 Minuten bei 30°C gewalkt. Nach Zugabe von 5 Teilen des Mineralgerbstoffs G30 wurde 90 Minuten lang fixiert. Zum Schluß wurde einmal mit einer Flotte aus 300 Teilen Wasser und 0,2 Teilen Ameisensäure und einmal mit einer Flotte aus 300 Teilen Wasser und 0,1 Teilen Ameisensäure jeweils 10 Minuten bei 30°C gewaschen.

30

Das so gefärbte, nachgegerbte und hydrophobierte Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naßgespannt und Spannrahmen getrocknet, konditioniert, gestollt, gemillt und Spannrahmen getrocknet.

Es wurde ein hydrophobiertes Motorrad-Bekleidungsleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Bekleidungsleder für Motoradbekleidung herstellen.

40 Handschuhlederrezeptur 1:

10

20

25

30

212

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Ziegenleders der Falzstärke 0,5-0,7 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 120 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 3,1 Teile Natriumbicarbonat zugegeben. Anschließend wurden 3 Teile Hilfsmittel HM2 zugeben und 5 Minuten gewalkt. Der pH der Flotte betrug 7,8. Zur Entsäuerungsflotte wurden 10 Teile Mischfarbstoff 13hi gegeben und 40 Minuten bei pH 7,4 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 9 Teilen Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,6 – 9,8 eingestellt und bei 35°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit einer Flotte aus jeweils 300 Teilen Wasser und 1,5 Teilen Hilfsmittel HM3 insgesamt 50 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 3 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 3,4 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 1,5 Teilen Nachgerbstoff G13 60 Minuten lang bei 40°C gewalkt. Anschließend wurden 1,5 Teile Natriumformiat zugesetzt. Nach einer Walkzeit von weiteren 20 Minuten wurde 1 Teil Natriumbicarbonat zugegeben und 30 Minuten lang bei 40°C gewalkt. Zur Flotte wurden 6 Teile Polymergerbstoff G18 gegeben und 40 Minuten lang gewalkt. Danach wurden 6 Teilen Nachgerbstoff G3 zugegeben und 30 Minuten nachgegerbt. Anschließend wurden 5 Teile Hydropobiertmittel H3, 2 Teile Polymergerbstoff G19, 10 Teile Nachgerbstoff G9, 4 Teile Fettungsmittel F9 und 1 Teil Natriumcarbonat zugegeben und 120 Minuten nachgegerbt. Durch portionsweise Zugabe von 3,5 Teilen Ameisensäure wurde innerhalb von 45 Minuten ein pH-Wert von 3,5 eingestellt. Anschließend wurden 3 Teile Hydrophobiermittel H4 zugegeben und 20 Minuten gewalkt. Danach wurde die Flotte abgelassen und das Leder zweimal mit einer Flotte aus jeweils 300 Teilen Wasser und 0,2 Teile Ameisensäure 15 Minuten lang gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naß gespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein Handschuhleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Handschuhleder herstellen.

Handschuhlederrezeptur 2:

40 Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Ziegenleders der Falzstärke 0,5-0,7 mm wurde in einer Flotte aus 300 Teilen Wasser 10

Minuten bei 30°C gewaschen und anschließend in einer aus 120 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 3,1 Teile Natriumbicarbonat zugegeben. Anschließend wurden 3 Teile Hilfsmittel HM2 zugeben und 5 Minuten gewalkt. Der pH der Flotte betrug 7,8. Zur Entsäuerungsflotte wurden 8 Teile Mischfarbstoff 13gz gegeben und 40 Minuten bei pH 7,4 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen festes Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,6 – 9,8 eingestellt und bei 35°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde zweimal mit einer Flotte aus jeweils 300 Teilen Wasser und 1,5 Teilen Hilfsmittel HM3 insgesamt 50 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,3 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 5,8 eingestellt.

10

20

25

40

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 150 Teilen Wasser und 4 Teilen Hydrophobiermittel H3 20 Minuten gewalkt. Anschließend wurden 8 Teilen Polymergerbstoff G18 zugesetzt und 40 Minuten nachgegerbt. Danach wurden 8 Teile Nachgerbstoff G2 zugesetzt und 30 Minuten lang bei 40°C gewalkt. Anschließend wurden 4 Teile Hydropobiermittel H3, 0,5 Teile Hilfsmittel HM4, 8 Teile Nachgerbstoff G9, 3 Teile Fettungsmittel F9 und 0,8 Teile Natriumcarbonat zugegeben und 120 Minuten nachgegerbt. Durch portionsweise Zugabe von 3,5 Teilen Ameisensäure wurde innerhalb von 35 Minuten ein pH-Wert von 3,5 eingestellt. Anschließend wurden 3 Teile Hydrophobiermittel H7 und 3 Teile Hilfsmittel HM4 zugegeben und 20 Minuten gewalkt. Danach wurde die Flotte abgelassen und das Leder zweimal mit einer Flotte aus jeweils 300 Teilen Wasser und 0,2 Teile Ameisensäure 15 Minuten lang gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naß gespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein Handschuhleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Handschuhleder herstellen.

35 Handschuhlederrezeptur 3:

Ein Lederstück von 100 Gewichtsteilen eines auf übliche Weise chromgegerbten Ziegenleders der Falzstärke 0,5-0,7 mm wurde in einer Flotte aus 300 Teilen Wasser 10 Minuten bei 30°C gewaschen und anschließend in einer aus 120 Teilen Wasser und 1,5 Teilen Natriumformiat bestehenden Flotte 5 Minuten bei 35°C gewalkt, danach wurden innerhalb von 30 Minuten portionsweise insgesamt 3,1 Teile Natriumbicarbonat zugegeben. Anschließend wurden 3 Teile Hilfsmittel HM2 zugeben und 5 Minuten ge-

10

20

25

30

214

walkt. Der pH der Flotte betrug 7,8. Zur Entsäuerungsflotte wurden 8,2 Teile Mischfarbstoff 12hb gegeben und 40 Minuten bei pH 7,4 und 35°C gefärbt. Durch portionsweise Zugabe von insgesamt 8 Teilen festes Natriumcarbonat wurde zur Fixierung der pH-Wert der Flotte zwischen 9,6 – 9,8 eingestellt und bei 35°C 90 Minuten lang gewalkt. Nach Flottenwechsel wurde dreimal mit jeweils 300 Teilen Wasser insgesamt 60 Minuten lang bei 40°C gewaschen. In einer Flotte aus 200 Teilen Wasser wurde durch portionsweise Zugabe von insgesamt 1,2 Teilen Ameisensäure innerhalb von 60 Minuten ein pH von 5,7 eingestellt.

Das derart gefärbte Leder wurde in einer frisch angesetzten Flotte aus 100 Teilen Wasser, 1 Teil Hydrophobiermittel H1 und 0,2 Teilen Hilfsmittel HM4 20 Minuten lang gewalkt. Anschließend wurden 10 Teile Hydrophobiermittel H5 zugesetzt und 5 Minuten gewalkt. Danach wurden 10 Teile Polymergerbstoff G18 zugesetzt und 55 Minuten lang nachgegerbt. Zur Nachgerbflotte wurden 5 Teile Hydrophobiermittel H5, 8 Teile Hydrophobiermittel H1 und 0,8 Teile Hilfsmittel HM4 zugegeben und 120 Minuten gefettet. Nach Zugabe von 100 Teilen Wasser und einer Walkzeit von 20 Minuten wurde durch portionsweise Zugabe von 4 Teilen Ameisensäure innerhalb von 50 Minuten ein pH-Wert von 3,5 eingestellt. Danach wurde die Flotte abgelassen und das Leder zweimal mit einer Flotte aus jeweils 300 Teilen Wasser und 0,2 Teile Ameisensäure 15 Minuten lang gewaschen.

Das so gefärbte, nachgegerbte und gefettete Leder wurde über Nacht auf Bock gelagert, anschließend ausgereckt, naß gespannt und Spannrahmen getrocknet, konditioniert, gestollt und gemillt.

Es wurde ein rein Polymer basiertes hydrophobiertes Handschuhleder mit ausgezeichneten Wasch-, Schweiß-, Migrations- und Reibechtheiten erhalten. In analoger Weise kann man ein mit einem der Farbstoffe der Beispiel 1a bis 59k gefärbtes Handschuhleder herstellen.

Patentansprüche

Verfahren zum Färben von Leder mit wenigstens einem Farbstoff F, der wenigs-1. tens eine unter alkalischen Bedingungen aktivierbare Gruppe der Formel A;

5

aufweist, worin

- die Bindung zum Farbstoffmolekül bedeutet,
- für einen elektronenziehenden Rest steht, X
- für 1, 2 oder 3 steht, k
- 0 oder 1 bedeutet, und n
- für eine Gruppe CH=CH2 oder eine Gruppe CH2-CH2-Q steht, worin Q eine В unter alkalischen Bedingungen abspaltbare Gruppe steht,

15

umfassend die Behandlung des Leders mit einer wässrigen Flotte, enthaltend wenigstens einen Farbstoff F, bei einem pH-Wert von wenigstens 7,5.

20

Verfahren nach Anspruch 1, wobei wenigstens einer der Reste X in Formel A für 2. eine Gruppe SO₃H steht.

Verfahren nach Anspruch 1 oder 2, worin B in Formel A für CH=CH₂, eine Grup-3. pe CH₂-CH₂-O-SO₃H oder eine Gruppe CH₂-CH₂-O-C(O)CH₃ steht.

25

Verfahren nach einem der vorhergehenden Ansprüche, worin die Gruppe A über 4. eine Gruppe -NH- oder -N=N- an das Farbstoffmolekül gebunden ist.

30

Verfahren nach Anspruch 4, wobei der Farbstoff F ausgewählt ist unter Farbstof-5. fen der Phthalocyanin-Reihe, Antrachinon-Farbstoffen, Azofarbstoffen, Formazanfarbstoffen, Dioxazin-Farbstoffen, Actidin-Farbstoffen, Xanthen-Farbstoffen, Polymethin-Farbstoffen, Stilbenfarbstoffen, Schwefelfarbstoffen und Triarylmethanfarbstoffen.

Verfahren nach einem der vorhergehenden Ansprüche, worin n = 0 ist. 6.

35

25,08,2004 RW/135 AE 200030337

2

7. Verfahren nach Anspruch 6, worin der Rest A ausgewählt ist unter den nachfolgenden Resten A1 bis A12:

10 8. Verfahren nach einem der vorhergehenden Ansprüche, worin der Farbstoff F ausgewählt ist unter den Farbstoffen der allgemeinen Formeln I bis XV:

(A11)

HO₃S

(A12)

SO,-CH,-CH,-O-COCH,

HO₃S

HO₃S

 $Dk^{1}-N=N-[P-N=N-]_{n}Kk^{1}[-N=N-Dk^{2}]_{m}$ **(I)** $Dk^{1}-N=N-Napht^{1}[-N=N-Tk^{1}]_{r}[-N=N-Kk^{1}]_{k}[-N=N-Dk^{2}]_{r}$ **(II)** $Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-Tk^{2}-N=N-Napht^{2}-N=N-Dk^{2}$ 5 (III) $Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-N=N-Kk^{2}-N=N-Dk^{2}$ (IV)Dk1-N=N-[P-N=N-], Napht1[-N=N-R], NH-Tr1-NH-Dk2 **(V)** 10 Dk1-N=N-P-NH-Tr1-NH-R-N=N-Dk2 (VI) Dk1-N=N-Napht1-N=N-Tk1-N=N-P-NH-Tr1-NH-Dk2 (VII) Dk1-N=N-Napht1-NH-Tr1-NH-P-NH-Tr2-NH-Napht2-N=N-Dk2 (VIII) 15 Dk¹-N=N-Napht¹-NH-Tr¹-NH-Tk¹-NH-Tr²-NH-Napht²-N=N-Dk² (IX) $Dk^{1}[-N=N-L]_{k}-NH-Tr^{1}-NH-M-N=N-Napht^{1}-N=N-P-NH-Tr^{2}-NH-[R-N=N-]_{n}Dk^{2}$ (X) 20 $Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-NH-Tr^{1}-NH-Dk^{2}$ (XI) $Dk^{1}-N=N-[P-N=N-]_{D}R-N=N-Kk^{1}[-N=N-Dk^{2}]_{D}$ (XII) (XIII) Dk1-N=N-Pyr-A 25 $Kk^{3}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-A$ (XIV) Dk1-N=N-P-N=N-Kk1-N=N-R-N=N-Dk2 (XV) 30 worin: unabhängig voneinander für 0 oder 1 stehen, wobei k+n+r in k, n, p und r Formel II = 1, 2 oder 3 ist; 35 0, 1 oder 2 bedeutet; m Dk¹, Dk² unabhängig voneinander für einem von einem aromatischen Amin abgeleiten Rest stehen oder eine Gruppe der Formel A bedeutet, wobei in den Formeln I - XII und XV jeweils wenigstens 40 einer der Reste Dk1 oder Dk2 für einen Rest der Formel A steht

Kk1, Kk2

5

10

15

20

25

930

Kk³

35

40

unabhängig voneinander für einen ein-, zwei- oder dreiwertigen aromatischen, von Benzol, Napthalin, Pyrazol, Chinolin, Diphenylamin, Diphenylmethan, Pyrimidin, Pyridin oder Diphenylether abgeleiteten Rest stehen, der gegebenenfalls einen oder mehrere der folgenden Reste als Substituenten aufweisen kann: SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, Halogen, C₁-C₄-Alkyl, C₁-C₄-Hydroxyalkyl, Carboxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, C₁-C₄-Alkylaminocarbonyl, C₁-C₄-Dialkylaminocarbonyl, C₁-C₄-Alkylcarbonylamino, N-(C₁-C₄-Alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)amino, C₁-C₄-Alkylaminocarbonyloxy, C₁-C₄-Dialkylaminocarbonyloxy, C₁-C₄-Alkylaminocarbonylamino, C₁-C₄-Dialkylaminocarbonylamino, Phenylaminocarbonyloxy, Phenylaminocarbonylamino, C₁-C₄-Alkoxycarbonylamino, C₁-C₄-Hydroxy-C₁-C₄-alkylamino, Carboxy-C₁-C₄-alkylamino, Phenylcarbonylamino, C₁-C₄-Alkylsulfonyl, Hydroxy- C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -Alkylaminosulfonyl, C_1 - C_4 -Alkylsulfonylamino, Phenylsulfonyl, Phenylsulfonylamino, Formamid, ein Rest der Formel SO₂NR⁵6R⁵7, worin R⁵6 und R⁵7 unabhängig voneinander für Wasserstoff, C1-C4-Alkyl, Formyl, C1-C₄-Alkylcarbonyl, C₁-C₄-Alkyloxycarbonyl, NH₂-CO oder C₁-C₄-Alkylaminocarbonyl stehen, C₁-C₄-Alkylaminosulfonylamino, Di-C₁-C₄-alkylaminosulfonylamino, Phenylsulfonylamino, das am Phenylring einen oder zwei Substituenten, ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen aufweisen kann, oder 5oder 6-gliedriges Heterocyclyl, das gegebenenfalls durch 1, 2 oder 3 der folgenden Reste: OH, Halogen, C1-C4-Alkyl oder Phenyl, substituiert ist, wobei 5-gliedriges aromatisches Heterocyclyl gegebenenfalls am Stickstoff eine Phenylgruppe oder Naphthylgruppe trägt, die gegebenenfalls einen oder zwei der folgenden Reste aufweisen kann: OH, SO₃H, C₁-C₄-Alkyl, und/oder C1-C4-Alkoxy;

Alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)amino, C₁-C₄-Alkylaminocarbonyloxy, C₁-C₄-Dialkylaminocarbonyloxy, C₁-C₄-Alkylaminocarbonylamino, C1-C4-Dialkylaminocarbonylamino, Phenylaminocarbonyloxy, Phenylaminocarbonylamino, C₁-C₄-Alkoxycarbonylamino, C₁-C₄-Hydroxy-C₁-C₄-alkylamino, Carboxy-C₁-C₄-alkylamino, Phenylcarbonylamino, C₁-C₄-Alkylsulfonyl, Hydroxy- C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -Alkylaminosulfonyl, C_1 - C_4 -Alkylsulfonylamino, Phenylsulfonyl, Phenylsulfonylamino, Formamid, ein Rest der Formel SO₂NR⁵⁶R⁵⁷, worin R⁵⁶ und R⁵⁷ unabhängig voneinander für Wasserstoff, C₁-C₄-Alkyl, Formyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkyloxycarbonyl, NH₂-CO oder C₁-C₄-Alkylaminocarbonyl stehen, C₁-C₄-Alkylaminosulfonylamino, Di-C₁-C₄-alkylaminosulfonylamino, Phenylsulfonylamino, das am Phenylring einen oder zwei Substituenten, ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen aufweisen kann, oder 5-

5

5

10

20

Tk1, Tk2

25

30

unabhängig voneinander für einen zweiwertigen aromatischen Rest stehen, der von Benzol, Diphenylamin, Diphenyl, Diphenylmethan, 2-Phenylbenzimidazol, Phenylsulfonylbenzol, Phenylaminosulfonylbenzol, Stilben oder Phenylaminocarbonylbenzol abgeleitetet ist, die gegebenenfalls einen oder mehrere der folgenden Reste als Substituenten aufweisen können: SO₃H, COOH, OH, NH2, NO2, Halogen, C1-C4-Alkyl;

oder 6-gliedriges Heterocyclyl, das gegebenenfalls durch 1, 2 oder 3 der folgenden Reste: OH, Halogen, C1-C4-Alkyl oder Phenyl, substituiert ist, wobei 5-gliedriges aromatisches Heterocyclyl

Naphthylgruppe trägt, die gegebenenfalls einen oder zwei der

folgenden Reste aufweisen kann: OH, SO₃H, C₁-C₄-Alkyl,

gegebenenfalls am Stickstoff eine Phenylgruppe oder

und/oder C₁-C₄-Alkoxy;

L, M, P und R unabhängig voneinander für einen zweiwertigen aromatischen Rest stehen, der von Benzol oder Naphthalin abgeleitetet ist, die gegebenenfalls einen oder mehrere, z.B. 1, 2, 3, 4 oder 5 der folgenden Reste als Substituenten aufweisen können: SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, Halogen, C₁-C₄-Alkyl, C₁-C₄-Hydroxyalkyl, Carboxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, C₁-C₄-Alkylaminocarbonyl, C₁-C₄-Dialkylaminocarbonyl, C₁-C₄-Alkylcarbonylamino, N-(C₁-C₄-Alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)amino, C₁-C₄-Alkylaminocarbonyloxy, C₁-C₄-Dialkylaminocarbonyloxy, C₁-C₄-

35

Alkylaminocarbonylamino, C₁-C₄-Dialkylaminocarbonylamino, Phenylaminocarbonyloxy, Phenylaminocarbonylamino, C₁-C₄-Alkoxycarbonylamino, C₁-C₄-Hydroxy-C₁-C₄-alkylamino, Carboxy-C₁-C₄-alkylamino, Phenylcarbonylamino, C₁-C₄-Alkylsulfonyl, Hydroxy-C₁-C₄-alkylsulfonyl, C₁-C₄-Alkylaminosulfonyl, C₁-C₄-Alkylsulfonylamino, Phenylsulfonyl, Phenylsulfonylamino, Formamid, ein Rest der Formel SO₂NR⁵⁶R⁵⁷, worin R⁵⁶ und R⁵⁷ unabhängig voneinander für Wasserstoff, C1-C4-Alkyl, Formyl, C1-C₄-Alkylcarbonyl, C₁-C₄-Alkyloxycarbonyl, NH₂-CO oder C₁-C₄-Alkylaminocarbonyl stehen, C₁-C₄-Alkylaminosulfonylamino, Di-C₁-C₄-alkylaminosulfonylamino, Phenylsulfonylamino, das am Phenylring einen oder zwei Substituenten, ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen aufweisen kann, oder 5oder 6-gliedriges Heterocyclyl, das gegebenenfalls durch 1, 2 oder 3 der folgenden Reste: OH, Halogen, C1-C4-Alkyl oder Phenyl, substituiert ist, wobei 5-gliedriges aromatisches Heterocyclyl gegebenenfalls am Stickstoff eine Phenylgruppe oder Naphthylgruppe trägt, die gegebenenfalls einen oder zwei der folgenden Reste aufweisen kann: OH, SO₃H, C₁-C₄-Alkyl, und/oder C₁-C₄-Alkoxy;

20

5

5

10

25

30

Pyr

Tr¹, Tr²

Napht¹, Napht² unabhängig voneinander für einen von Naphthalin abgeleiteten zweiwertigen Rest stehen, der 1 oder 2 Hydroxysulfonylgruppen aufweist und gegebenenfalls 1, 2 oder 3 weitere Substituenten, ausgewählt unter OH, NH₂, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino C₁-C₄-Alkylsulfonylamino, Phenylsulfonylamino, 4-Methylphenylsulfonylamino, C₁-C₄-Alkylaminosulfonyl, Di-C₁-C₄-alkylaminosulfonyl, Phenylaminosulfonyl, 4-Methylphenylaminosulfonyl und Resten NHC(O)R^x, worin R^x für Wasserstoff, C₁-C₄-Alkyl, Maleinyl oder Phenyl, aufweisen kann;

für Pyrazol-1,4-diyl steht, das mit dem Stickstoffatom an die Gruppe A gebunden ist und gegebenenfalls einen oder 2 Substituenten aufweist, die ausgewählt sind unter Halogen, C₁-C₄-Alkyl, Hydroxy oder C₁-C₄-Alkoxy;

unabhängig voneinander für einen 1,3,5-Triazin-2,4-diyl-Rest stehen, der gegebenenfalls noch ein Halogenatom, eine Methylgruppe oder eine Methoxygruppe als Substituenten aufweist,

40

10

15

30

35

40

7

und den Metallkomplexen dieser Farbstoffe.

- 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei man das Leder zunächst mit der wässrigen Flotte, enthaltend wenigstens einen Farbstoff F, bei einem pH-Wert im Bereich von 3 bis 6,5 behandelt und anschließend in der Flotte einen pH-Wert von wenigstens 7,5 einstellt.
 - Verfahren nach einem der Ansprüche 1 bis 7, wobei die Färbung als einstufiges Verfahren durchgeführt wird.
 - Verfahren nach einem der vorhergehenden Ansprüche, wobei die Färbung vor der Nachgerbung durchgeführt wird.
 - Verfahren nach einem der vorhergehenden Ansprüche, wobei die Färbung bei Temperaturen im Bereich von 10 bis 60°C erfolgt.
 - 13. Verwendung von Farbstoffen F, die wenigstens eine der in Anspruch 1 definierten, unter alkalischen Bedingungen aktivierbare Gruppe der Formel A aufweisen, und von deren Mischungen zum Färben von Leder bei pH ≥7,5.
- 2014. Farbstoffe F der allgemeinen Formeln IIa, IIIa oder IVa

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-[N=N-Kk^{1}]_{k}-N=N-Dk^{2}$$
 (IIa)

25 $Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-Tk^{2}-N=N-Napht^{2}-N=N-Dk^{2}$ (IIIa)

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Napht^{2}-N=N-Dk^{2}$$
 (IVa)

- worin Dk^1 , Dk^2 , $Napht^1$, $Napht^2$ und Kk^1 die zuvor genannten Bedeutungen aufweisen, k für 0 oder 1 steht, und worin Tk^1 und Tk^2 unabhängig voneinander für einen von Diphenyl, Diphenylmethan, 2-Phenylbenzimidazol, Phenylsulfonylbenzol, Phenylaminosulfonylbenzol, Diphenylamin, Stilben oder Phenylaminocarbonylbenzol abgeleiteten, zweiwertigen Rest stehen, der gegebenenfalls einen oder mehrere der folgenden Reste als Substituenten aufweisen kann: SO_3H , COOH, OH, NH_2 , NO_2 , Halogen, C_1 - C_4 -Alkyl, wobei Tk^1 in Formel IIa nicht für einen von Diphenylamin abgeleiteten Rest steht, wenn k=0 ist, und wobei einer oder beide Reste Dk^1 und Dk^2 für einen Rest der Formel A, wie in Anspruch 1 definiert, stehen.
- 15. Farbstoffe F der allgemeinen Formel Ilb,

10

20

25

30

8

 $A-N=N-Napht^1-N=N-Tk^1-N=N-Kk^1-[N=N-Dk^2]_n$

(IIb)

worin A, Dk^2 , Napht¹ und Kk^1 die zuvor genannten Bedeutungen aufweisen, n für 0 oder 1 steht, und worin Tk^1 für einen von Diphenyl, Diphenylmethan, 2-Phenylbenzimidazol, Phenylsulfonylbenzol, Phenylaminosulfonylbenzol, Diphenylamin, Stilben oder Phenylaminocarbonylbenzol abgeleiteten, zweiwertigen Rest steht, der gegebenenfalls einen oder mehrere der folgenden Reste als Substituenten aufweisen kann: SO_3H , COOH, OH, NH_2 , NO_2 , Halogen, C_1 - C_4 -Alkyl, wobei Tk^1 nicht für einen von Diphenylamin abgeleiteten Rest steht, wenn n=0 ist, und wobei Rest Dk^2 auch für einen Rest der Formel A, wie in Anspruch 1 definiert, stehen kann.

16. Farbstoffe nach Anspruch 14 oder 15, worin Tk¹ und/oder Tk² in den Formeln IIa, IIb, IIIa oder IVa für einen Rest der allgemeinen Formel

steht, worin ---- die Bindungen zu den Azogruppen darstellen.

17. Farbstoffe nach einem der Ansprüche 14 bis 16, worin Napht¹ und/oder Napth² für einen bivalenten Rest der allgemeinen Formel

stehen, worin R^1 und R^2 unabhängig voneinander Wasserstoff, OH, NH₂ oder NHC(O)R³ bedeuten, worin R³ für Wasserstoff, C₁-C₄-Alkyl, Maleinyl oder Phenyl steht, und wenigstens einer der Reste R¹ und R² von Wasserstoffverschieden ist, die Bindungen zu den Azogruppen darstellen, s und t für 0 oder 1 stehen und die Summe s + t den Wert 1 oder 2 hat.

- 18. Farbstoffe nach einem der Ansprüche 14 bis 17, worin einer oder beide der Reste Dk¹ und Dk² für einen der in Anspruch 7 definierten Reste A1 bis A12 stehen.
- 19. Gefärbtes Leder, erhältlich durch ein Färbeferfahren nach einem der Ansprüche
 35 1 bis 12.

20. Leder nach Anspruch 19, für die Segmente Handschuh, Schuh, Auto, Bekleidung oder Möbel.

Zusammenfassung

5

20

Die vorliegende Erfindung betrifft ein Verfahren zum Färben von Leder mit wenigstens einem Farbstoff F, der wenigstens eine unter alkalischen Bedingungen aktivierbare Gruppe der Formel A;

aufweist, worin

- 0 --- die Bindung zum Rest des Farbstoffmoleküls darstellt;
 - X für einen elektronenziehenden Rest steht,
 - k für 1, 2 oder 3 steht,
 - n 0 oder 1 bedeutet, und
- B für eine Gruppe CH=CH₂ oder eine Gruppe CH₂-CH₂-Q steht, worin Q eine unter alkalischen Bedingungen abspaltbare Gruppe steht,

umfassend die Behandlung des Leders mit einer wässrigen Flotte, enthaltend wenigstens einen Farbstoff F, bei einem pH-Wert von wenigstens 7,5. Die vorliegende Erfindung betrifft auch neue Farbstoffe, die zum Reaktiv-Färben von Leder besonders geeignet sind.

AE 20030337 RW/135 25.08.2004