MEDIBILIDAD DE LAS FUNCIONES INTEGRABLE RIEMANN

JUAN FERRERA

Primero introducimos el concepto de oscilación de una función en un punto.

Definición Sea $f:[a,b] \to \mathbb{R}$, sea $x_0 \in (a,b)$. Definimos la oscilación de f en x_0 como

$$o(f, x_0) = \lim_{\delta \downarrow 0} \left(\sup\{ |f(y) - f(x)| : x, y \in (x_0 - \delta, x_0 + \delta) \} \right)$$

Es claro que este límite siempre existe, porque el paréntesis, que está acotado inferiormente por 0, decrece con δ . La demostración de la siguiente proposición es inmediata y se deja como ejercicio.

Proposición f es continua en x si y solo si o(f,x)=0

Teorema (Lebesgue): Sea $f:[a,b] \to \mathbb{R}$ acotada. f es integrable Riemann si y solo si su conjunto de puntos de discontinuidad tiene medida 0.

Demostración: Suponemos que $|f(x)| \leq M$ para todo $x \in [a, b]$. Sea D el conjunto de puntos de discontinuidad de f. Suponemos primero que D tiene medida 0. Fijo $\varepsilon > 0$. Denoto

$$D_{\varepsilon} = \{ x \in (a, b) : o(f, x) \ge \varepsilon \}$$

Es inmediato ver su complementario es un abierto. En efecto, si $x_0 \in (a,b)$ verifica $o(f,x_0) < \varepsilon$, entonces existe $\delta_0 > 0$ tal que

$$\sup\{|f(y) - f(x)| : x, y \in (x_0 - \delta_0, x_0 + \delta_0)\} < \varepsilon.$$

Para todo $x_1 \in (x_0 - \delta, x_0 + \delta)$, tomando $\delta_1 = \delta_0 - |x_1 - x_0|$ tenemos que

$$\sup\{|f(y) - f(x)| : x, y \in (x_1 - \delta_1, x_1 + \delta_1)\} < \varepsilon$$

y por tanto $o(f, x_1) < \varepsilon$.

Tenemos entonces que D_{ε} es un compacto de medida 0 ($D_{\varepsilon} \subset D$). Por tener medida cero, existe un recubrimiento por una cantidad numerable de intervalos abiertos $D_{\varepsilon} \subset \bigcup_n I_n$, tal que $\sum_n \mu(I_n) < \varepsilon$. Ahora bien, como D_{ε} es compacto, puedo extraer un subrecubrimiento finito. Es decir $D_{\varepsilon} \subset I_1 \cup \cdots \cup I_N$ con $\mu(I_1) + \cdots + \mu(I_N) < \varepsilon$.

Date: January 26, 2022 (1095).

Tomando, además de a y b, todos los extremos de los intervalos I_N obtengo una partición del intervalo [a,b] que llamo \mathcal{P} . Denoto por \mathcal{P}_1 aquellos intervalos de la partición contenidos en algún I_j , y por \mathcal{P}_2 los otros, que en particular no cortan a D_{ε} .

Para cada intervalo $I \in \mathcal{P}_2$, hacemos el siguiente procedimiento. Para todo $x \in I$ tomamos un intervalo I_x que lo contiene, tal que $|f(y) - f(z)| < \varepsilon$ para todo $y, z \in I$. Esto es posible porque como $x \in I$, tenemos que $x \notin D_{\varepsilon}$. Como I es compacto, un número finito de estos intervalos I_x recubren I. Ahora, quitando trozos a los intervalos si hace falta, construyo con ellos una partición del intervalo I.

Repito este procedimiento para todos los intervalos de \mathcal{P}_2 , y costruyo así una partición \mathcal{P}_2^* que tiene la propiedad de que la unión de sus intervalos es igual a la unión de los intervalos de \mathcal{P}_2 , pero ahora, para cada $I \in \mathcal{P}_2^*$ se tiene que

$$\sup_{y \in I} f(y) - \inf_{y_I} f(y) \le \varepsilon$$

Llamo $\mathcal{P}^* = \mathcal{P}_1 \cup \mathcal{P}_2^*$. Recordando la notación que se usa para definir la integral de Riemann, tenemos que

$$U(f, \mathcal{P}^*) - L(f, \mathcal{P}^*) = \sum_{I \in \mathcal{P}^*} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \mu(I) =$$

$$\sum_{I \in \mathcal{P}_1} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \mu(I) + \sum_{I \in \mathcal{P}_2^*} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \mu(I) \le$$

$$2M\varepsilon + \varepsilon(b - a).$$

Por tanto el criterio de Cauchy para la integrabilidad Riemann nos garantiza que f es integrable Riemann.

Ahora vemos el recíproco. Supongamos que f es integrable Riemann. Escribimos

$$D = \bigcup_{n=1}^{\infty} D_{\frac{1}{n}}.$$

Basta ver que cada $D_{1/n}$ tiene medida 0. Fijado $\varepsilon > 0$, sabemos que existe una partición \mathcal{P} de [a,b] tal que

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \frac{\varepsilon}{n}$$

puedo suponer sin pérdida de generalidad que ningún punto de $D_{1/n}$ es extremo de un intervalo de la partición. Denoto por \mathcal{P}_1 los intervalos de \mathcal{P} que cortan a $D_{1/n}$. Tenemos que

$$\frac{\varepsilon}{n} > \sum_{I \in \mathcal{P}} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \mu(I) \ge \sum_{I \in \mathcal{P}_1} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \mu(I) \ge \frac{1}{n} \sum_{I \in \mathcal{P}_1} \mu(I)$$

Luego

$$\sum_{I\in\mathcal{P}_1}\mu(I)<\varepsilon$$

Como la familia \mathcal{P}_1 es un recubrimiento de $D_{1/n}$ y ε es arbitrario, deducimos que $\mu(D_{1/n})=0$.

En el caso de que hubiésemos definido la Integral de Riemann para funciones definidas en \mathbb{R}^n , la demostración anterior puede adaptarse fácilmente a ese contexto.

Corolario: Toda función integrable Riemann es medible.