Course code	Course Name	L-T-P - Credits	Year of Introduction
AU205	AUTOMOTIVE CHASSIS	3-1-0-4	2016

Prerequisite : Nil Course Objectives

- To study about various components of Automobile chassis with their constructional details and understanding the concept of working various components.
- To know the application of the components in various automobiles

Syllabus

Introduction- Types of automobiles- chassis layout - Frames and body- chassis - Frames - integral body. Design features of a body - Body accessories - Drive axles - Differential - Suspension - Wheels and Tyres - Wheel geometry- Steering mechanisms - Braking system

Expected outcome.

• After this course the student will be able to explain the constructional details and the structure of drive line, steering, braking system and suspension system in a vehicle.

Text Books:

- 1. Kripal Singh, Automobile Engineering, Vol I and Vol II, Standard Publisher, New Delhi, 2006
- 2. P.S. Gill, A Textbook Of Automobile Engineering-II, S.K. Khataria & Sons., 2nd Edition, 2012
- 3. R.K. Rajput, A Text–Book of Automobile Engineering, Laxmi Publications Private Limited, 2007 3
- 4. N.K. Giri, Automotive Mechanics, Kanna Publishers, 2007

References:

- 1. Heldt P.M., Automotive Chassis, Chilton Co., New York, 1990
- 2. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.
- 3. Heinz Haisler, Advanced Vehicle Technology, Butterworth, London, 2005.

Course Plan					
Module	Contents	Hours	Sem.ExamMarks		
I	Introduction: Profile of Automobile Industry, Types of	9			
	automobiles, general considerations relating to chassis				
	layout and power plant Location, relative merits &				
	demerits of different layouts, description of different types				
	of chassis layout. Frames and body: Role and requirement				
	of a chassis frame. loads acting on frames				
	2014		15%		
II	Types of chassis – Light, medium and heavy duty vehicle	9			
	chassis, ladder chassis, Types of Frames (conventional,				
	integral construction and perimeter frame) materials, cross				
	members and X members, frame sections, defects in				
	frames, frame repairs, frame alignment. integral body.				
	Design features of a body – Types of bodies, coach built,				
	convertibles. Body accessories, bumpers				
			15%		
	FIRST INTERNAL EXAMINATION				
III	Torque reaction, driving thrust, Hotchkiss drive, torque	9	15%		
	tube drive, propeller shaft, universal joints, types,				

	Construction and Design of Drive Axles, Types of Loads					
	acting on drive axles, Full – Floating, Three–Quarter					
	Floating and Semi–Floating Axles, Axle Housings and					
	Types, Differential principle and types, Differential					
	housings, Non–Slip differential, Differential locks, double					
	reduction and twin speed final drives, multi axle vehicles	0	1.50/			
	Suspension: Objectives, types of springs, spring materials,	9	15%			
	leaf spring – Single and Multileaf, helper springs, coil					
	spring, torsion bar, rubber & pneumatic suspension,	V A /				
IV	Hydro-elastic suspension, shock absorbers - types and	TIVI				
1 4	constructional details. Wheels and tyres: Types of wheel,	AT				
	construction of wired wheel, disc wheel, tyre type &	AL				
	construction, aspect ratio, specification of tyres, tyre	/ A had				
	rotation, static & rolling properties of pneumatic tyres					
SECOND INTERNAL EXAMINATION						
	Types of Front Axles and Stub Axles, Front Wheel	9	20%			
	Geometry, viz., Castor, Camber, King Pin Inclination and					
	Toe-in, Condition for True Rolling Motion of Wheels during					
T 7	Steering, Ackerman's and Davis Steering Mechanisms,					
\mathbf{V}	Steering Linkages, Different Types of Steering Gear					
	mechanisms, Slip Angle, Over–Steer and Under–Steer,					
	Reversible and Irreversible Steering, Power and Power-					
	Assisted Steering					
	Theory of Automobile Braking, Stopping Distance Time and	9	20%			
	Braking Efficiency, Effect of Weight Transfer during					
	Braking, Theory of Drum Brakes, Leading and Trailing					
	Shoes, Braking Torque, Constructional Details of Drum					
VI	Brake and its Activators, Disc Brake Theory, Types and					
, _	Construction, Hydraulic Braking System, Mechanical					
	Braking System, Pneumatic Braking System, Power–Assisted					
	Braking System, Servo Brakes, Retarders, Types and					
	Construction, Anti–Lock Braking Fundamentals.					
END SEMESTER EXAM						

Question Paper Pattern

Maximum marks: 100 Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.