Types and λ -calculus

Problem Sheet 4

- * 1. Put in all the implicit parentheses required by the official syntax of types for the following examples:
 - (a) $a \rightarrow b \rightarrow a$
 - (b) $\forall bc. (b \rightarrow c) \rightarrow c$
 - (c) $\forall ab. (c \rightarrow c \rightarrow d) \rightarrow a \rightarrow b$
 - (d) $\forall a. (a \rightarrow b) \rightarrow a \rightarrow b$

The following is the induction principle for the set \mathbb{T} of monotypes.

Suppose Φ is a property of monotypes. Then if the following can both be proven:

- For all type variables a, $\Phi(a)$.
- For all monotypes B and C, if $\Phi(B)$ and $\Phi(C)$ then $\Phi(B \to C)$.

It follows that $\forall A \in \mathbb{T}$. $\Phi(A)$.

- ** 2. Prove, by induction on *A*, that $A(\sigma_1 \sigma_2) = (A\sigma_1)\sigma_2$.
- ** 3. Prove, by induction on M, that:

if
$$x \in FV(M)$$
 then $FV(M\lceil N/x \rceil) = (FV(M) \setminus \{x\}) \cup FV(N)$.

Hint: You will want to use Lemma 6.1 of the notes.

Hint: In the application case, consider splitting on whether x is free in the operator only, the operand only, or both.

The following is the induction principle for the set \rightarrow_{β} of pairs of terms (a binary relation on terms).

Suppose $\Phi(M,N)$ is a property of pairs of terms. Then if the following can all be proven:

- For all terms P and Q, $\Phi((\lambda x. P)Q, P[Q/x])$.
- For all terms P, Q and Q', if $\Phi(Q,Q')$ then $\Phi(PQ,PQ')$.
- For all terms P, Q and P', if $\Phi(P, P')$ then $\Phi(PQ, P'Q)$.
- For all terms P and P', if $\Phi(P, P')$ then $\Phi(\lambda x. P, \lambda x. P')$.

It follows that $\forall (M,N) \in \rightarrow_{\beta} . \Phi(M,N)$.

** 4. Prove, by induction on $M \to_{\beta} N$, that: $M \to_{\beta} N$ implies $FV(N) \subseteq FV(M)$.