

## Índice

1 Objetivos de Aprendizaje

2 Motivación

3 Construcción de los Arboles Random

## Objetivos de Aprendizaje

- Ser capaces de explicar la intuición tras el algoritmo de Random Forest.
- Ser capaces de formalizar matemáticamente el algoritmo.
- Ser capaces de explicar el rol del bagging en el algoritmo.
- Entender las ventajas que aporta frente a un Arbol de Decisión Simple

### Motivación

Mejorar los árboles de decisión:

- Mejorar la calidad de las predicciones.
- Mejorar la eficiencia a través de la paralelización.

# Recapitulando

|                  | Alt | <br>Lleno | <br>Tipo     | Estim | Esp? |
|------------------|-----|-----------|--------------|-------|------|
|                  |     |           |              |       |      |
| x{1}             | Si  | <br>Algo  | <br>Frances  | 0-10  | Si   |
| x{2}             | Si  | <br>Lleno | <br>Thai     | 30-60 | No   |
| x{3}             | No  | <br>Algo  | <br>Burger   | 0-10  | Si   |
| $x^{\{4\}}$      | Si  | <br>Lleno | <br>Thai     | 10-30 | Si   |
| $x^{\{5\}}$      | Si  | <br>Lleno | <br>Frances  | >60   | No   |
| x{6}             | No  | <br>Algo  | <br>Italiano | 0-10  | Si   |
| x <sup>{7}</sup> | No  | <br>Nada  | <br>Burger   | 0-10  | No   |
| x{8}             | No  | <br>Algo  | <br>Thai     | 0-10  | Si   |
| x{9}             | No  | <br>Lleno | <br>Burger   | >60   | No   |
| $x^{\{10\}}$     | Si  | <br>Lleno | <br>Italiano | 10-30 | No   |
| $x^{\{11\}}$     | No  | <br>Nada  | <br>Thai     | 0-10  | No   |
| $x^{\{12\}}$     | Si  | <br>Lleno | <br>Burger   | 30-60 | Si   |
|                  |     |           |              |       |      |



5/13 imagen: Crisminisi et al. 2011

## Construyendo el Arbol

|                          | Lleno | HacerEsp |
|--------------------------|-------|----------|
| (1)                      |       |          |
| X <sup>{1}</sup>         | Algo  | Si       |
| $x^{\{2\}}$              | Lleno | No       |
| <b>x</b> <sup>{3}</sup>  | Algo  | Si       |
| $x^{\{4\}}$              | Lleno | Si       |
| $x^{\{5\}}$              | Lleno | No       |
| <b>x</b> <sup>{6}</sup>  | Algo  | Si       |
| x <sup>{7}</sup>         | Nada  | No       |
| x <sup>{8}</sup>         | Algo  | Si       |
| <b>x</b> <sup>{9}</sup>  | Lleno | No       |
| <b>x</b> <sup>{10}</sup> | Lleno | No       |
| $x^{\{11\}}$             | Nada  | No       |
| $X^{\{12\}}$             | Lleno | Si       |
|                          |       |          |



Ganancia de Información o Indice Gini

## ¿Cómo tratar los atributos continuos en DT?

- Preprocesado (no supervisado):
  - binning por amplitud: (max-min)/numBins
  - bining por frecuencia: todos las alternativas mismo número de instancias
- Supervisado:





## Construyendo el Arbol

#### ¿Cómo mejoramos los DTs?

$$X^{train} = \{x^{\{1\}}, x^{\{2\}}, ... x^{\{n\}}\} \ n = 5(5^{instancias})$$
  
 $F = \{f_1, f_2, ..., f_j\} \ j = 3(3_{atributos})$   
¿Cuál es el valor  $x_3^{\{2\}}$ ?

| Xtrain           | $f_1$ | $f_2$ | $f_3$ |
|------------------|-------|-------|-------|
| x <sup>{1}</sup> | 1     | 0     | 2     |
| x{2}             | 3     | 6     | 1     |
| x{3}             | 0     | 2     | 4     |
| $x^{\{4\}}$      | 8     | 9     | 0     |
| x{5}             | 5     | 5     | 1     |
|                  |       |       |       |

| ytrain |
|--------|
| 0      |
| 1      |
| 0      |
| 1      |
| 0      |
|        |

Seleccionamos aleatoriamente 2 atributos. P.e.  $f_1, f_3$ 

8/13

EHU

#### Random Forest

#### **Algorithm 1** Random Forrest

```
for t \in \mathcal{T} do
```

Selecciona una muestra  $Z^*$  de tamaño N  $\in \mathcal{X}^{train}$  (booststraping|bagging)

Genera un Arbol de Decisión a partir de  $Z^*$  hasta max Profundidad o min Tamaño Nodo

Selecciona j atributos  $f \in F$  aleatoriamente Elige el mejor umbral (empleando IG o Gini)

Divide en las ramas

#### end for

Genera un modelo conjunto (ensemble) combinando los rdos a través de la media  $prob(c|v) = \frac{1}{T}\sum_{t=1}^T p_t(c|v)$ 

### Random Forest



## Mejoras

¿Cuáles crees que son las mejoras frente a DT?.

¿Crees que es menos eficiente?

¿Crees que reduce el sobreajuste (overfitting)? Es decir, ¿generaliza mejor?

### ¿Y si las instancias son textos?

#### ¿Cómo construríais los árboles para un detector de Spam?

- ¿Cómo representaríais vuestros emails? (tf-idf o one-hot BOW)
- ¿qué repercusiones tendría cada representación?

## Bibliografía

- "Computer Graphics and Vision. Vol. 7, Nos. 2–3 (2011) 81–227", A. Criminisi, J. Shotton and E. Konukoglu
- Vídeo con un ejemplo de cómo aplicar el índice Gini https://es.coursera.org/lecture/ build-decision-trees-syms-neural-networks/ gini-index-example-rPvWM