第9章 d: 隐函数的求导公式

数学系 梁卓滨

2017-2018 学年 II

Outline

1. 隐函数的求导法: 一个方程的情形

2. 隐函数的求导法: 方程组的情形

3. 隐函数定理

We are here now...

1. 隐函数的求导法: 一个方程的情形

2. 隐函数的求导法: 方程组的情形

3. 隐函数定理

公式 设 y = y(x) 满足 F(x, y) = 0,

公式 设 y = y(x) 满足 F(x, y) = 0, 即 F(x, y(x)) = 0,

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$:: F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

$$\therefore 0 = \frac{d}{dx} F(x, y(x)) =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

$$\therefore 0 = \frac{d}{dx} F(x, y(x)) = F_x +$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$:: F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) = F_x + F_y \cdot \frac{dy}{dx}$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) = F_x + F_y \cdot \frac{dy}{dx}$$

$$\therefore \quad \frac{dy}{dx} = -\frac{F_x}{F_y}$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} =$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一 注意
$$\sin y + e^x - xy^2 = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} =$$

F(x, y) = 0

例设
$$y = f(x)$$
 满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,
 $F(x, y) = 0$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} =$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} =$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -$$

方法一 注意
$$\sin y + e^x - xy^2 = 0$$
, 令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{(\sin y + e^x - xy^2)_y'}$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二 注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二 注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y'$$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x - y^2 - 2xy \cdot y'$$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二 注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x - y^2 - 2xy \cdot y'$$

$$= e^x - y^2 + (\cos y - 2xy)y'$$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x - y^2 - 2xy \cdot y'$$

$$= e^x - y^2 + (\cos y - 2xy)y'$$

F(x, y) = 0,所以

例设 y = f(x) 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

例设 y = f(x) 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

则
$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

则
$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

例 设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
,令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

則
$$F(x, y) = 0$$
,所以
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

$$=-\frac{\frac{2x}{x^2+y^2}+3y}{}$$

例 设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

则
$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

$$\frac{2x}{x^2 + y^2} + 3y$$

$$= -\frac{\frac{2x}{x^2 + y^2} + 3y}{\frac{2y}{x^2 + y^2} + 3x}$$

例 设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

则
$$F(x, y) = 0$$
,所以
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

$$dx F_y (\ln(x^2 + y^2) + \frac{2x}{3} + \frac{2y}{3})$$

$$= -\frac{\frac{2x}{x^2 + y^2} + 3y}{\frac{2y}{x^2 + y^2} + 3x}$$

$$= -\frac{2x + 3x^2y + 3y^3}{2y + 3xy^2 + 3x^3}$$

公式 设 z = z(x, y) 满足 F(x, y, z) = 0,

公式 设 z = z(x, y) 满足 F(x, y, z) = 0,即 F(x, y, z(x, y)) = 0,

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = , \frac{\partial z}{\partial y} =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$, 即 $F(x, y, z(x, y)) = 0$, 则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明
$$: F(x, y, z(x, y)) = 0$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明
$$:: F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明
$$: F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

$$\therefore \quad \frac{\partial Z}{\partial x} = -\frac{F_X}{F_Z},$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

∴
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
, $= \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

例设z = f(x, y)满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 解

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 解令 $F(x, y, z) = x + y + xz - e^z + 1$, $F(x, y, z) = 0$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + y + xz - e^z + 1)_y'}{(x + y + xz - e^z + 1)_z'}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
= -

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0-0}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0-0+0}{0+0+x-e^z+0} = -\frac{1}{x-e^z}$$

例设z = f(x, y)满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设z = f(x, y)满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解

$$F(x, y, z) = 0$$

$$\frac{\partial z}{\partial x} = -\frac{r_x}{F_z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_-} =$$

$$\mathbb{H} \diamondsuit F(x, y, z) = 2\sin(x + 2y - 3z) - x - 2y + 3z,$$

 $F(x, y, z) = 0$

$$\frac{\partial Z}{\partial X} = -\frac{F_X}{F_Z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F} =$$

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= -

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{-1}{-6\cos(x+2y-3z)}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= ---

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{-6\cos(x+2y-3z)+3}{-6\cos(x+2y-3z)+3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)}{-6\cos(x+2y-3z)+3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= ---

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= -----

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$-6\cos(x+2y-3z)+3$$

例设 z = f(x, y) 满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial y}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$4\cos(x+2y-3z)$$

$$\mathbf{H}$$
 令 $F(x, y, z) = 2\sin(x + 2y - 3z) - x - 2y + 3z$,则 $F(x, y, z) = 0$,所以

例设 z = f(x, y) 满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial y}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$4\cos(x+2y-3z)-2$$

$$-6\cos(x+2y-3z)+3$$

例设
$$z = f(x, y)$$
满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解

$$\frac{\partial Z}{\partial x} =$$

$$\frac{\partial Z}{\partial y} =$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$

$$\frac{\partial Z}{\partial X} =$$

$$\frac{\partial z}{\partial y} =$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial v} = -\frac{F_y}{F_z} =$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$

$$= -\frac{1 + xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{2}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{1}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{2}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{2}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1 + xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1}{1 + xe^{z - y - x}}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1 - xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1 - xe^{z - y - x}}{1 + xe^{z - y - x}} = 1$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1 - xe^{z - y - x}}{1 + xe^{z - y - x}} = 1$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = -\frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}dx + dy$$

例 设 $\Phi(u, v)$ 具有连续偏导数,函数 z = z(x, y) 满足

$$\Phi(cx - \alpha z, cy - bz) = 0$$
, 证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

例 设 $\Phi(u, v)$ 具有连续偏导数,函数 z = z(x, y) 满足

$$Φ(cx - az, cy - bz) = 0$$
, 证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

例 设 $\Phi(u, v)$ 具有连续偏导数,函数 z = z(x, y) 满足

$$\Phi(cx - \alpha z, cy - bz) = 0$$
, 证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

$$\frac{\partial Z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial Z}{\partial y} = -\frac{F_y}{F_z} = \frac{\partial Z}{\partial y} = -\frac{F_y}{F_z} = \frac{\partial Z}{\partial y} = \frac{\partial Z}{\partial y}$$

$$\Phi(cx - az, cy - bz) = 0$$
, 证明:
$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

$$\frac{\partial Z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial Z}{\partial y} = -\frac{F_y}{F_z} = \frac{\partial Z}{\partial z}$$

例 设 $\Phi(u, v)$ 具有连续偏导数,函数 z = z(x, y) 满足 $\Phi(cx - \alpha z, cy - bz) = 0$,证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

 $\mathbf{m} \diamondsuit F(x, y, z) = \Phi(cx - az, cy - bz)$,则

 $F_{x} =$

$$F_{y} = F_{z} = \frac{\partial z}{\partial x} = -\frac{F_{x}}{F_{z}} = \frac{\partial z}{\partial y} = -\frac{F_{y}}{F_{z}} = -\frac{F_{y}}{$$

例 设 $\Phi(u, v)$ 具有连续偏导数,函数 z = z(x, y) 满足 $\Phi(cx - \alpha z, cy - bz) = 0$,证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

解令 $F(x, y, z) = \Phi(cx - az, cy - bz)$,则

$$F_X = \Phi_u \cdot u_X + \Phi_V \cdot V_X$$
$$F_y =$$

$$F_z =$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{F_$$

$$\Phi(cx - \alpha z, cy - bz) = 0$$
, 证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

$$\mathbf{H} \diamondsuit F(x, y, z) = \Phi(cx - az, cy - bz)$$
,则

$$F_{x} = \Phi_{u} \cdot u_{x} + \Phi_{v} \cdot v_{x} = c\Phi_{u}$$

$$F_{y} = F_{z} = F_{z} = F_{z}$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{F_$$

$$\Phi(cx-az, cy-bz)=0, \text{ } \mathbb{I}\mathbb{I}\mathbb{I}\mathbb{I}$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial v} = c.$$

 $\mathbf{K} \diamondsuit F(x, y, z) = \Phi(cx - \alpha z, cy - bz)$,则

$$F_{X} = \Phi_{u} \cdot u_{X} + \Phi_{V} \cdot V_{X} = c\Phi_{u}$$

$$F_y = \Phi_u \cdot u_y + \Phi_v \cdot \nu_y$$

$$F_z =$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial z}{\partial x} = -\frac{F_y}{F_z} = -\frac{F_$$

$$\Phi(cx - \alpha z, cy - bz) = 0$$
, 证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial v} = c.$$

 $\mathbf{R} \diamondsuit F(x, y, z) = \Phi(cx - az, cy - bz)$,则

$$F_X = \Phi_u \cdot u_X + \Phi_V \cdot V_X = c\Phi_u$$

$$F_y = \Phi_u \cdot u_y + \Phi_v \cdot v_y = c\Phi_v$$

$$F_z =$$

$$\frac{\partial Z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial Z}{\partial x} = -\frac{F_y}{F_y} = \frac{\partial Z}{\partial x} = \frac{\partial$$

$$\frac{\partial Z}{\partial V} =$$

$$Φ(cx - az, cy - bz) = 0$$
, 证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

$$\mathbf{H} \diamondsuit F(x, y, z) = \Phi(cx - az, cy - bz)$$
,则

$$F_X = \Phi_u \cdot u_X + \Phi_V \cdot V_X = c\Phi_U$$

$$F_Y = \Phi_u \cdot u_Y + \Phi_V \cdot V_Y = c\Phi_V$$

$$F_Z = \Phi_U \cdot u_Z + \Phi_V \cdot V_Z$$

$$=\Phi_u\cdot u_z+\Phi_V\cdot V_z$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{\partial z}{\partial y} = \frac{F_y}{F_z} = \frac{F_y}{F_z}$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

 \mathbf{H} 令 $F(x, y, z) = \Phi(cx - \alpha z, cy - bz)$,则

$$F_X = \Phi_u \cdot u_X + \Phi_V \cdot V_X = c\Phi_u$$

$$F_y = \Phi_u \cdot u_y + \Phi_v \cdot v_y = c\Phi_v$$

$$\Phi_{u} \cdot u_{y} + \Phi_{v} \cdot v_{y} = c\Phi_{v}$$

$$F_z = \Phi_u \cdot u_z + \Phi_v \cdot v_z = -\alpha \Phi_u - b \Phi_v$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial v} = c.$$

 \mathbf{H} 令 $F(x, y, z) = \Phi(cx - az, cy - bz)$,则

$$F_X = \Phi_u \cdot u_X + \Phi_V \cdot V_X = c\Phi_u$$

$$F_y = \Phi_u \cdot u_y + \Phi_v \cdot v_y = c\Phi_v$$

$$F_z = \Phi_u \cdot u_z + \Phi_v \cdot v_z = -\alpha \Phi_u - b \Phi_v$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{c\Phi_u}{a\Phi_u + b\Phi_v}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

$$\frac{\partial Z}{\partial V} =$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial v} = c.$$

 \mathbf{H} 令 $F(x, y, z) = \Phi(cx - az, cy - bz)$,则

$$F_X = \Phi_u \cdot u_X + \Phi_V \cdot V_X = c\Phi_u$$

$$F_y = \Phi_u \cdot u_y + \Phi_v \cdot v_y = c\Phi_v$$

$$F_z = \Phi_u \cdot u_z + \Phi_v \cdot v_z = -\alpha \Phi_u - b \Phi_v$$

$$\frac{\partial Z}{\partial x} = -\frac{F_X}{F_Z} = \frac{c\Phi_u}{a\Phi_u + b\Phi_V}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{c\Phi_v}{a\Phi_u + b\Phi_v}$$

$$\frac{\partial Z}{\partial V} =$$

$$b\frac{\partial Z}{\partial y} =$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c.$$

解令
$$F(x, y, z) = \Phi(cx - \alpha z, cy - bz)$$
,则
$$F_X = \Phi_u \cdot u_X + \Phi_v \cdot v_X = c\Phi_u$$

$$F_y = \Phi_u \cdot u_y + \Phi_v \cdot v_y = c\Phi_v$$

$$F_z = \Phi_u \cdot u_z + \Phi_v \cdot v_z = -a\Phi_u - b\Phi_v$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{c\Phi_u}{a\Phi_u + b\Phi_v}$$

$$\frac{\partial z}{\partial x} = -\frac{F_y}{F_z} = \frac{c\Phi_v}{a\Phi_v}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{c\Phi_v}{a\Phi_u + b\Phi_v}$$
$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = \frac{ac\Phi_u}{a\Phi_u + b\Phi_v} + \frac{bc\Phi_v}{a\Phi_u + b\Phi_v}$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial v} = c.$$

$$u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} = C.$$
解令 $F(x, y, z) = \Phi(cx - \alpha z, cy - bz)$,则

$$F_{X} = \Phi_{U} \cdot u_{X} + \Phi_{V} \cdot V_{X} = c\Phi_{U}$$

$$F_y = \Phi_u \cdot u_y + \Phi_v \cdot v_y = c\Phi_v$$

$$F_{z} = \Phi_{u} \cdot u_{z} + \Phi_{v} \cdot v_{z} = -a\Phi_{u} - b\Phi_{v}$$

$$\frac{\partial z}{\partial x} = -\frac{F_{x}}{F_{z}} = \frac{c\Phi_{u}}{a\Phi_{u} + b\Phi_{v}}$$

$$\frac{\partial z}{\partial x} = -\frac{F_{y}}{F_{z}} = \frac{c\Phi_{v}}{a\Phi_{v} + b\Phi_{v}}$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{c\Phi_u}{a\Phi_u + b\Phi_v}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{c\Phi_v}{a\Phi_u + b\Phi_v}$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = \frac{ac\Phi_u}{a\Phi_u + b\Phi_v} + \frac{bc\Phi_v}{a\Phi_u + b\Phi_v} = c$$

例设z = f(x, y)满足 $z = x + ye^z$, 求 $\frac{\partial^2 z}{\partial x \partial y}$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$, 求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

$$\mathbf{F}(x, y, z) = x + ye^z - z$$
, 则 $F(x, y, z) = 0$, 所以

$$\frac{\partial z}{\partial x} = -\frac{r_x}{F_z} = \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{\partial z}{\partial y} = \frac{r_x}{F_z} = \frac{r_x}{r_z}$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^{z} - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial}{\partial$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^{z} - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z}$$
$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) =$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial^2 z}{\partial y} = -\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = -\frac{\partial}$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial y} = \frac{\partial^2 z$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) =$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) =$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^{z} - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) =$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \left(-\frac{1}{ye^z - 1}\right)_y'$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \left(-\frac{1}{ye^z - 1}\right)_y' = \frac{(ye^z - 1)_y'}{(ye^z - 1)^2}$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \left(-\frac{1}{ye^z - 1}\right)_y' = \frac{(ye^z - 1)_y'}{(ye^z - 1)^2}$$

$$= \frac{e^z + y(e^z)_y'}{(ye^z - 1)^2}$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解 $F(x, y, z) = x + ye^z - z$,则 F(x, y, z) = 0,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \left(-\frac{1}{ye^z - 1}\right)_y' = \frac{(ye^z - 1)_y'}{(ye^z - 1)^2}$$

$$= \frac{e^z + y(e^z)_y'}{(ye^z - 1)^2} = \frac{e^z + ye^z \cdot \frac{\partial z}{\partial y}}{(ye^z - 1)^2}$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \left(-\frac{1}{ye^z - 1}\right)_y' = \frac{(ye^z - 1)_y'}{(ye^z - 1)^2}$$

$$= \frac{e^z + y(e^z)_y'}{(ye^z - 1)^2} = \frac{e^z + ye^z \cdot \frac{\partial z}{\partial y}}{(ye^z - 1)^2} = \frac{e^z + ye^z \cdot \left(-\frac{e^z}{ye^z - 1}\right)}{(ye^z - 1)^2}$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \left(-\frac{1}{ye^z - 1}\right)_y' = \frac{(ye^z - 1)_y'}{(ye^z - 1)^2}$$

$$= \frac{e^z + y(e^z)_y'}{(ye^z - 1)^2} = \frac{e^z + ye^z \cdot \frac{\partial z}{\partial y}}{(ye^z - 1)^2} = \frac{e^z + ye^z \cdot \left(-\frac{e^z}{ye^z - 1}\right)}{(ye^z - 1)^2}$$

$$= \frac{-e^z}{(ye^z - 1)^2}$$

例设
$$z = f(x, y)$$
满足 $z = x + ye^z$,求 $\frac{\partial^2 z}{\partial x \partial y}$

解
$$F(x, y, z) = x + ye^z - z$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x + ye^z - z)_x}{(x + ye^z - z)_z} = -\frac{1}{ye^z - 1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + ye^z - z)_y}{(x + ye^z - z)_z} = -\frac{e^z}{ye^z - 1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \left(-\frac{1}{ye^z - 1}\right)_y' = \frac{(ye^z - 1)_y'}{(ye^z - 1)^2}$$

$$= \frac{e^z + y(e^z)_y'}{(ye^z - 1)^2} = \frac{e^z + ye^z \cdot \frac{\partial z}{\partial y}}{(ye^z - 1)^2} = \frac{e^z + ye^z \cdot \left(-\frac{e^z}{ye^z - 1}\right)}{(ye^z - 1)^2}$$

$$= \frac{-e^z}{(ye^z - 1)^3} = \frac{e^z}{(1 + x - z)^3}$$

We are here now...

1. 隐函数的求导法: 一个方程的情形

2. 隐函数的求导法: 方程组的情形

3. 隐函数定理

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \\ a_{21}x + a_{22}y = b_2 & (2) \end{cases}$$

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \times a_{22} \\ a_{21}x + a_{22}y = b_2 & (2) \times a_{12} \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

二元线性方程组

$$\begin{cases} a_{11} a_{22} x + a_{12} a_{22} y = a_{22} b_1 & (1) \times a_{22} \\ a_{21} x + a_{22} y = b_2 & (2) \times a_{12} \end{cases}$$

二元线性方程组

$$\begin{cases} a_{11} a_{22} x + a_{12} a_{22} y = a_{22} b_1 & (1) \times a_{22} \\ a_{21} a_{12} x + a_{22} a_{12} y = a_{12} b_2 & (2) \times a_{12} \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

二元线性方程组

$$\begin{cases} a_{11} a_{22} x + a_{12} a_{22} y = a_{22} b_1 & (1) \times a_{22} \\ a_{21} a_{12} x + a_{22} a_{12} y = a_{12} b_2 & (2) \times a_{12} \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \\ a_{21}x + a_{22}y = b_2 & (2) \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \times a_{21} \\ a_{21}x + a_{22}y = b_2 & (2) \times a_{11} \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \times a_{21} \\ a_{21}a_{11}x + a_{22}a_{11}y = a_{11}b_2 & (2) \times a_{11} \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

二元线性方程组

$$\begin{cases} a_{11} a_{21} x + a_{12} a_{21} y = a_{21} b_1 & (1) \times a_{21} \\ a_{21} a_{11} x + a_{22} a_{11} y = a_{11} b_2 & (2) \times a_{11} \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

二元线性方程组

$$\begin{cases} a_{11} a_{21} x + a_{12} a_{21} y = a_{21} b_1 & (1) \times a_{21} \\ a_{21} a_{11} x + a_{22} a_{11} y = a_{11} b_2 & (2) \times a_{11} \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

$$y = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}}$$

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \\ a_{21}x + a_{22}y = b_2 & (2) \end{cases}$$

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

$$y = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}}$$

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \\ a_{21}x + a_{22}y = b_2 & (2) \end{cases}$$

(1)×
$$a_{22}$$
-(2)× a_{12} ,消去 y ,得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}} = \frac{a_{11} a_{12}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

$$y = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} = \frac{1}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \\ a_{21}x + a_{22}y = b_2 & (2) \end{cases}$$

$$(1) \times a_{22} - (2) \times a_{12}$$
, 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}} = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

$$y = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} = \frac{a_{11}a_{12}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

二元线性方程组

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (1) \\ a_{21}x + a_{22}y = b_2 & (2) \end{cases}$$

(1) ×
$$a_{22}$$
 – (2) × a_{12} , 消去 y , 得:

$$x = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}} = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

$$(2) \times a_{11} - (1) \times a_{21}$$
, 消去 x , 得:

$$y = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases}$$
 $x =$, $y =$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = -- \qquad , \quad y = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 0 & 5 \\ 3 & 8 \end{vmatrix}} = --$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = - - , \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = - -$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = , y =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{1}{1} \qquad , \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = -\frac{1}{1}$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = , y =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{1}{1}$$
,
$$y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{1}{1}$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = , y =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1}$$
,
$$y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{1}{1}$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = , y =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} \qquad , \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1}$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = , y =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1}$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = , y =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

练习 利用二阶行列式求解下面二元线性方程组

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x =$$

第 9 章 *d*: 隐函数的求导公式 15/33

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

练习 利用二阶行列式求解下面二元线性方程组

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$$
2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = \frac{\begin{vmatrix} 1 & 16 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = - , \quad y = \frac{1}{1} = -1$$

鱼蟹鱼

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$$
2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = \frac{\begin{vmatrix} 1 & 16 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = - , \quad y = \frac{\begin{vmatrix} 7 & 1 \\ 2 & -1 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = - \end{cases}$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$$
2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = \frac{\begin{vmatrix} 1 & 16 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{-3}{3}, \quad y = \frac{\begin{vmatrix} 7 & 1 \\ 2 & -1 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{-3}{3}$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

$$\begin{cases} 2x + 5y = 0 & \begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix} & 20 \end{cases}$$

$$\begin{cases} 2x + 5y = 0 & \begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix} \\ -20 & \end{vmatrix}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = \frac{\begin{vmatrix} 1 & 16 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{1}{3}$$
,
$$y = \frac{\begin{vmatrix} 7 & 1 \\ 2 & -1 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{1}{3}$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$$

2.
$$\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = \frac{\begin{vmatrix} 1 & 16 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{21}{3} , y = \frac{\begin{vmatrix} 7 & 1 \\ 2 & -1 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{3}{3}$$

$$y = \frac{\begin{vmatrix} 7 & 1 \\ 2 & -1 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \end{vmatrix}} =$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 6 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 1 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 1 & 8 \end{vmatrix}} = \frac{-20}{1} = -20$$

2. $\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = \frac{\begin{vmatrix} 1 & 16 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{21}{3} , y = \frac{\begin{vmatrix} 7 & 1 \\ 2 & -1 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{-9}{3}$

练习 利用二阶行列式求解下面二元线性方程组 1. $\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

$$\int 2x + 5y = 0 \qquad = \begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix} = \begin{vmatrix} -20 & -20 \\ -20 & -20 \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}$$

1.
$$\begin{cases} 2x + 3y = 0 \\ 3x + 8y = 4 \end{cases} x = \frac{\begin{vmatrix} x + 3 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \end{vmatrix}} = \frac{8}{1} = \frac{1}{3} = \frac{$$

练习 利用二阶行列式求解下面二元线性方程组

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} x = \begin{vmatrix} 0 & 5 \\ 4 & 8 \\ \hline \begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix} = \frac{-20}{1} = -20, \quad y = \begin{vmatrix} 2 & 0 \\ 3 & 4 \\ \hline \begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix} = \frac{8}{1} = 8$$

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} \Rightarrow x = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, y = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

1.
$$\begin{cases} 2x + 5y = 0 \\ 3x + 8y = 4 \end{cases} \quad x = \frac{\begin{vmatrix} 0 & 5 \\ 4 & 8 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{-20}{1} = -20, \quad y = \frac{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}} = \frac{8}{1} = 8$$

2. $\begin{cases} 7x + 16y = 1 \\ 2x + 5y = -1 \end{cases} x = \frac{\begin{vmatrix} 1 & 16 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{21}{3} = 7, \ y = \frac{\begin{vmatrix} 7 & 1 \\ 2 & -1 \end{vmatrix}}{\begin{vmatrix} 7 & 16 \\ 2 & 5 \end{vmatrix}} = \frac{-9}{3} = -3$

$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial x}} \\ G(x, y, u, v) = 0 & \Longrightarrow \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \xrightarrow{\frac{\partial}{\partial x}} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \stackrel{\frac{\partial}{\partial x}}{\Longrightarrow} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial x}} \\ G(x, y, u, v) = 0 & \Longrightarrow \end{cases} \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial x}} \\ G(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial x}} \end{cases} \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 & \stackrel{\frac{\partial}{\partial x}}{\Longrightarrow} \\ G(x, y, u, v) = 0 & \stackrel{\frac{\partial}{\partial x}}{\Longrightarrow} \end{cases} \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \stackrel{\frac{\partial}{\partial x}}{\Longrightarrow} \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$

$$\Rightarrow u_x = \begin{vmatrix} -F_x & F_v \\ -G_x & G_v \end{vmatrix}, \quad v_x = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial x}} \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$

$$\Rightarrow u_x = \begin{vmatrix} -F_x & F_v \\ -G_x & G_v \end{vmatrix}, \quad v_x = \begin{vmatrix} F_u & -F_x \\ G_u & -G_x \end{vmatrix}$$

$$\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$$

假设函数
$$u = u(x, y), v = v(x, y)$$
 满足方程组
$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0. \end{cases}$$

问题: 如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \Rightarrow \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$
$$\Rightarrow u_x = -\frac{\begin{vmatrix} F_x & F_v \\ G_x & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \quad v_x = -\frac{\begin{vmatrix} F_u & F_x \\ G_u & G_x \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}$$

假设函数 u = u(x, y), v = v(x, y) 满足方程组 $\begin{cases} F(x, y, u, v) = 0, \\ G(x, v, u, v) = 0. \end{cases}$

问题:如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial x}$?

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial x}} \\ G(x, y, u, v) = 0 & \Longrightarrow \end{cases} \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$

$$\Rightarrow u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}, \quad v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$

$$1 \ \partial(F, G)$$

假设函数 u = u(x, y), v = v(x, y) 满足方程组 $\begin{cases} F(x, y, u, v) = 0, \\ G(x, v, u, v) = 0. \end{cases}$

问题:如何计算 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$?

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial X}} \begin{cases} F_u \cdot u_x + F_v \cdot v_x = -F_x \\ G_u \cdot u_x + G_v \cdot v_x = -G_x \end{cases}$$

$$\Rightarrow u_x = -\frac{\begin{vmatrix} F_x & F_v \\ G_x & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \quad v_x = -\frac{\begin{vmatrix} F_u & F_x \\ G_u & G_x \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}$$

$$= -\frac{1}{J} \frac{\partial (F, G)}{\partial (x, v)} \qquad = -\frac{1}{J} \frac{\partial (F, G)}{\partial (u, x)} \stackrel{\text{def}(F, G)}{\text{def}(F, G)}$$

$$\begin{cases} F(x, y, u, v) = 0 & \stackrel{\frac{\partial}{\partial y}}{\Longrightarrow} \\ G(x, y, u, v) = 0 & \stackrel{\frac{\partial}{\partial y}}{\Longrightarrow} \end{cases}$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \xrightarrow{\frac{\partial}{\partial y}} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ \end{cases}$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \stackrel{\frac{\partial}{\partial y}}{\Longrightarrow} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial y}} \\ G(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial y}} \end{cases} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \stackrel{\frac{\partial}{\partial y}}{\Longrightarrow} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\Rightarrow u_y =$$
 ———, $v_y =$ ———

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \stackrel{\frac{\partial}{\partial y}}{\Longrightarrow} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\begin{cases} F(x, y, u, v) = 0 & \stackrel{\frac{\partial}{\partial y}}{\Longrightarrow} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G(x, y, u, v) = 0 \end{cases} \Rightarrow \begin{cases} G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\Rightarrow u_y = \frac{\begin{vmatrix} -F_y & F_v \\ -G_y & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \quad v_y = \frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}$$

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial y}} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\Rightarrow u_y = \begin{vmatrix} -F_y & F_v \\ -G_y & G_v \end{vmatrix}, \quad v_y = \begin{vmatrix} F_u & -F_y \\ G_u & -G_y \end{vmatrix}$$

$$\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$$

$$\begin{cases} F(x, y, u, v) = 0 & \stackrel{\frac{\partial}{\partial y}}{\Longrightarrow} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\Rightarrow u_y = -\frac{\begin{vmatrix} F_y & F_v \\ G_y & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \quad v_y = -\frac{\begin{vmatrix} F_u & F_y \\ G_u & G_y \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}$$

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial y}} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\Rightarrow u_y = -\frac{\begin{vmatrix} F_y & F_v \\ G_y & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \quad v_y = -\frac{\begin{vmatrix} F_u & F_y \\ G_u & G_y \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}$$

$$= -\frac{1}{J} \frac{\partial (F, G)}{\partial (y, v)}$$

$$\begin{cases} F(x, y, u, v) = 0 & \xrightarrow{\frac{\partial}{\partial y}} \begin{cases} F_u \cdot u_y + F_v \cdot v_y = -F_y \\ G_u \cdot u_y + G_v \cdot v_y = -G_y \end{cases}$$

$$\Rightarrow u_y = -\frac{\begin{vmatrix} F_y & F_v \\ G_y & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \quad v_y = -\frac{\begin{vmatrix} F_u & F_y \\ G_u & G_y \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}$$

$$= -\frac{1}{J} \frac{\partial (F, G)}{\partial (y, v)} \qquad = -\frac{1}{J} \frac{\partial (F, G)}{\partial (u, y)}$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

总结 设
$$u = u(x, y), v = v(x, y)$$
 满足方程组

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

$$u_x =$$

$$\nu_{\chi} =$$

$$u_v =$$

$$\nu_y =$$

总结设
$$u = u(x, y), v = v(x, y)$$
满足方程组

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

$$u_x = v_x = v_x$$

$$u_V = v_V = v_V$$

总结 设
$$u = u(x, y), v = v(x, y)$$
 满足方程组

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$

$$\xrightarrow{\frac{\partial}{\partial x}} \begin{cases} \frac{\partial}{\partial y} + \frac{\partial}{\partial y} \cdot u_x + \frac{\partial}{\partial y} \cdot v_x = 0 \\ \frac{\partial}{\partial y} + \frac{\partial}{\partial y} \cdot v_x = 0 \end{cases}$$

$$u_x =$$

$$\nu_{\chi} =$$

$$u_v =$$

$$y =$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$

$$\begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

$$u_x = v_x = v_x$$

$$u_{V} = v_{V} = v_{V}$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \xrightarrow{\frac{\partial}{\partial x}} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$

$$\xrightarrow{\frac{\partial}{\partial x}} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

所以

$$u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$

$$v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$

$$u_y =$$

$$v_y =$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\longleftrightarrow} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

所以

$$u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$
$$u_{y} = -\frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$

$$v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$

$$v_{y} = -\frac{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \Rightarrow \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$
$$\stackrel{\frac{\partial}{\partial x}}{\Longrightarrow} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

所以

$$u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(x, v)}, \quad v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$
$$u_{y} = -\frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{y} \end{vmatrix}}$$
$$v_{y} = -\frac{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{y} \end{vmatrix}}$$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$
$$\stackrel{\frac{\partial}{\partial x}}{(G_x + G_u \cdot u_x + G_v \cdot v_x)} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

所以

$$u_{x} = -\frac{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}$$
$$u_{y} = -\frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}$$

 $u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(x, v)}, \quad v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(u, x)}$ $v_{y} = -\frac{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{y} \end{vmatrix}}$

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\longleftrightarrow} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

所以

$$u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(x, v)}, \quad v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(y, v)}, \quad v_{y} = -\frac{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{y} \end{vmatrix}}$$

第 9 章 d: 隐函数的求导公

● 點点

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \begin{cases} F_x + F_u \cdot u_x + F_v \cdot v_x = 0 \\ G_x + G_u \cdot u_x + G_v \cdot v_x = 0 \end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\longleftrightarrow} \begin{cases} F_y + F_u \cdot u_y + F_v \cdot v_y = 0 \\ G_y + G_u \cdot u_y + G_v \cdot v_y = 0 \end{cases}$$

所以

$$u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(x, v)}, \quad v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(u, x)}$$

$$u_{y} = -\frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(y, v)}, \quad v_{y} = -\frac{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \frac{\partial(F, G)}{\partial(u, y)}$$

第 9 章 d: 隐函数的求导公

例设 $\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\Longrightarrow}$$

$$u_x = v_x = v_x$$

$$u_y = v_y = v_y$$

例设 $\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial y}
\end{cases}$$

$$u_x = v_x = v_x$$

$$u_y = v_y = v_y$$

例设 $\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$u_x = v_x = v_x$$

$$u_y = v_y = v_y$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\stackrel{\partial}{\partial y}} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0
\end{cases}$$

$$u_x = v_x = v_x$$

$$u_y = v_y =$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\rightleftharpoons} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

$$u_x = v_x = v_x$$

$$u_y = v_y =$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\Rightarrow y} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix}$$

$$u_x = v_x = v_x$$

$$u_y = v_y = v_y$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\frac{\partial}{\partial y} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^{u} + \sin v & u \cos v \\ e^{u} - \cos v & u \sin v \end{vmatrix}$$

$$u_{x} = \frac{1}{J}$$

$$v_{x} = \frac{1}{J}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{\Rightarrow y} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

$$\xrightarrow{e^{u}} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix}$$

$$u_{x} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J} \qquad v_{x} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J}$$

$$u_{y} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J} \qquad v_{y} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \ \frac{\partial u}{\partial x}, \ \frac{\partial u}{\partial y}, \ \frac{\partial v}{\partial x}, \ \frac{\partial v}{\partial y} \end{cases}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\frac{\partial}{\partial y} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix}$$

所以
$$J = \begin{vmatrix} e^u - \cos v & u \sin v \end{vmatrix}$$

$$u_x = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J} \qquad v_x = \frac{\begin{vmatrix} e^u + \sin v & 1 \\ e^u - \cos v & 0 \end{vmatrix}}{J}$$

$$u_y = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{y} = 0 \\
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix}$$

$$u_{x} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J}$$

$$v_{x} = \frac{\begin{vmatrix} e^{u} + \sin v & 1 \\ e^{u} - \cos v & 0 \end{vmatrix}}{J}$$

$$u_{y} = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{J}$$

$$v_{y} = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{J}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \ \vec{x} \ \frac{\partial u}{\partial x}, \ \frac{\partial u}{\partial y}, \ \frac{\partial v}{\partial x}, \ \frac{\partial v}{\partial y} \end{cases}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{y} = 0 \\
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix}$$

$$u_{x} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J}$$

$$v_{x} = \frac{\begin{vmatrix} e^{u} + \sin v & 1 \\ e^{u} - \cos v & 0 \end{vmatrix}}{J}$$

$$u_{y} = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{J}$$

$$v_{y} = \frac{\begin{vmatrix} e^{u} + \sin v & 0 \\ e^{u} - \cos v & 1 \end{vmatrix}}{J}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\frac{\partial}{\partial y} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix} = ue^u(\sin v - \cos v) + u$$

$$u_{x} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J}$$

$$v_{x} = \frac{\begin{vmatrix} e^{u} + \sin v & 1 \\ e^{u} - \cos v & 0 \end{vmatrix}}{J}$$

$$u_{y} = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{J}$$

$$v_{y} = \frac{\begin{vmatrix} e^{u} + \sin v & 0 \\ e^{u} - \cos v & 1 \end{vmatrix}}{J}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{=} \begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{y} = 0 \\
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial y}}{=} \begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix} = ue^u(\sin v - \cos v) + u$$

$$u_x = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{J} = \frac{\sin v}{e^u(\sin v - \cos v) + 1}, v_x = \frac{\begin{vmatrix} e^u + \sin v & 1\\ e^u - \cos v & 0 \end{vmatrix}}{J}$$

$$u_y = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{J}$$

$$v_y = \frac{\begin{vmatrix} e^u + \sin v & 0\\ e^u - \cos v & 1 \end{vmatrix}}{J}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix} = ue^u(\sin v - \cos v) + u$$

$$u_{x} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{\int} = \frac{\begin{vmatrix} e^{u} - \cos v & u \sin v \end{vmatrix}}{\begin{vmatrix} e^{u} + \sin v & 1 \\ e^{u} - \cos v & 0 \end{vmatrix}} = \frac{\begin{vmatrix} e^{u} + \sin v & 1 \\ e^{u} - \cos v & 0 \end{vmatrix}}{\int} = \frac{\begin{vmatrix} e^{u} + \sin v & 0 \\ e^{u} - \cos v & 1 \end{vmatrix}}{\int}$$

$$u_{y} = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{\int}$$

$$v_{y} = \frac{\begin{vmatrix} e^{u} + \sin v & 0 \\ e^{u} - \cos v & 1 \end{vmatrix}}{\int}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{=} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix} = ue^u(\sin v - \cos v) + u$$

$$u_X = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{\int_{-e^u(\sin v - \cos v) + 1}^{\sin v} v_X} = \frac{\begin{vmatrix} e^u + \sin v & 1 \\ e^u - \cos v & 0 \end{vmatrix}}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \sin v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v - \cos v) + 1}^{-e^u(\sin v - \cos v) + 1} v_X} = \frac{e^u + \cos v}{\int_{-e^u(\sin v -$$

$$u_{x} = \frac{1}{\int} = \frac{\sin v}{e^{u}(\sin v - \cos v) + 1}, v_{x} = \frac{1}{\int}$$

$$u_{y} = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{\int} = \frac{-\cos v}{e^{u}(\sin v - \cos v) + 1}, v_{y} = \frac{\begin{vmatrix} e^{u} + \sin v & 0 \\ e^{u} - \cos v & 1 \end{vmatrix}}{\int}$$

例设
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \cos v \end{cases}, \ \vec{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

$$\begin{cases}
e^{u} + u \sin v = x \\
e^{u} - u \cos v = y
\end{cases}
\begin{cases}
(e^{u} + \sin v)u_{x} + u \cos v \cdot v_{x} = 1 \\
(e^{u} - \cos v)u_{x} + u \sin v \cdot v_{x} = 0
\end{cases}$$

$$\stackrel{\frac{\partial}{\partial x}}{=} \begin{cases}
(e^{u} + \sin v)u_{y} + u \cos v \cdot v_{y} = 0 \\
(e^{u} - \cos v)u_{y} + u \sin v \cdot v_{y} = 1
\end{cases}$$

所以
$$J = \begin{vmatrix} e^u + \sin v & u \cos v \\ e^u - \cos v & u \sin v \end{vmatrix} = ue^u(\sin v - \cos v) + u$$

$$u_{x} = \frac{\begin{vmatrix} 1 & u \cos v \\ 0 & u \sin v \end{vmatrix}}{\int_{I}} = \frac{\sin v}{e^{u(\sin v - \cos v) + 1}}, v_{x} = \frac{\begin{vmatrix} e^{u} + \sin v & 1 \\ e^{u} - \cos v & 0 \end{vmatrix}}{\int_{I}} = \frac{-e^{u + \cos v}}{u e^{u(\sin v - \cos v) + u}}$$

$$u_{y} = \frac{\begin{vmatrix} 0 & u \cos v \\ 1 & u \sin v \end{vmatrix}}{I} = \frac{\frac{-\cos v}{e^{u(\sin v - \cos v) + 1}}, v_{y} = \frac{\begin{vmatrix} e^{u} + \sin v & 0 \\ e^{u} - \cos v & 1 \end{vmatrix}}{I} = \frac{\frac{e^{u} + \sin v}{ue^{u(\sin v - \cos v) + u}}}{I}$$

We are here now...

1. 隐函数的求导法: 一个方程的情形

2. 隐函数的求导法: 方程组的情形

3. 隐函数定理

假设 f(x, y) 是光滑的二元函数,其零点集 $\{f = 0\}$ 是平面上点集。

- 1. $\{f=0\}$ 的形状通常是一条曲线,为什么?
- 2. 如何求曲线 $\{f = 0\}$ 上每一点处的切线?

假设 f(x, y) 是光滑的二元函数, 其零点集 $\{f = 0\}$ 是平面上点集。

- 1. $\{f=0\}$ 的形状通常是一条曲线,为什么?
- 2. 如何求曲线 $\{f = 0\}$ 上每一点处的切线?

• 关于第一个问题, $\{f=0\}$ 的形状可以任意复杂。

假设 f(x, y) 是光滑的二元函数, 其零点集 $\{f = 0\}$ 是平面上点集。

- 1. $\{f=0\}$ 的形状通常是一条曲线,为什么?
- 2. 如何求曲线 $\{f = 0\}$ 上每一点处的切线?

• 关于第一个问题, $\{f=0\}$ 的形状可以任意复杂。事实上,任意一个闭集,都是某个光滑函数的零点集。

假设 f(x, y) 是光滑的二元函数, 其零点集 $\{f = 0\}$ 是平面上点集。

- 1. $\{f=0\}$ 的形状通常是一条曲线,为什么?
- 2. 如何求曲线 $\{f = 0\}$ 上每一点处的切线?

- 关于第一个问题,{*f* = 0} 的形状可以任意复杂。事实上,任意一个闭集,都是某个光滑函数的零点集。
- 隐函数定理: 何时 $\{f = 0\}$ 是一条光滑曲线

$$f(x,y) = (3x^2 - y^2)^2 y^2 - (x^2 + y^2)^4$$

$$f(x,y) = (x^2 + y^2 + y)^2 - (x^2 + y^2)$$

 (0,0)处
 f_x(0,0) = f_y(0,0) = 0,不存 在切线

- (0,0) 处 f_x(0,0) = f_y(0,0) = 0,不存 在切线
- 其他点处偏导数不全为零,在 附近是光滑曲线

- (0,0) 处 f_x(0,0) = f_y(0,0) = 0,不存 在切线
- 其他点处偏导数不全为零,在 附近是光滑曲线

- (0,0) 处 f_x(0,0) = f_y(0,0) = 0,不存 在切线
- 其他点处偏导数不全为零,在 附近是光滑曲线

- (0,0)处 $f_{x}(0,0) = f_{y}(0,0) = 0$, 不存 在切线
- 其他点处偏导数不全为零。在 附近是光滑曲线

- (0,0)处
 f_x(0,0) = f_y(0,0) = 0,不存 在切线
- 其他点处偏导数不全为零,在 附近是光滑曲线

隐函数定理 1.1 设 f(x,y) 在点 $p_1(x_1,y_1)$ 附近有定义,具有连续偏导; $f(x_1,y_1)=0$;

隐函数定理 1.1 设 f(x,y) 在点 $p_1(x_1,y_1)$ 附近有定义,具有连续偏导; $f(x_1,y_1) = 0$; $f_V(x_1,y_1) \neq 0$ 。

隐函数定理 1.1 设 f(x,y) 在点 $p_1(x_1,y_1)$ 附近有定义,具有连续偏导; $f(x_1,y_1) = 0$; $f_V(x_1,y_1) \neq 0$ 。则存在

零点集 $\{f=0\}$ 在 p_1 附近的形状 $(y_1-\delta_1,y_1+\delta_1)=J_1$ y_1 y_2 y_3 y_4 y_4

隐函数定理 1.1 设 f(x,y) 在点 $p_1(x_1,y_1)$ 附近有定义,具有连续偏导; $f(x_1,y_1)=0$; $f_y(x_1,y_1)\neq 0$ 。则存在

• \boxtimes il $I_1 = (x_1 - \varepsilon, x_1 + \varepsilon)$ $\exists I_1 = (y_1 - \delta, y_1 + \delta),$

$${f = 0} \cap (I_1 \times J_1) =$$

$$(y_{1} - \delta_{1}, y_{1} + \delta_{1}) = J_{1} \begin{cases} y_{1} & 2\delta_{1} \\ y_{1} & f(p_{1}) = 0 \\ f_{y}(p_{1}) \neq 0 \end{cases} \quad (p_{1} \in \{f = 0\})$$

$$(x_{1} - \epsilon_{1}, x_{1} + \epsilon_{1}) = I_{1}$$

隐函数定理 1.1 设 f(x,y) 在点 $p_1(x_1,y_1)$ 附近有定义,具有连续偏导; $f(x_1,y_1) = 0$; $f_y(x_1,y_1) \neq 0$ 。则存在

- \boxtimes in $I_1 = (x_1 \varepsilon, x_1 + \varepsilon)$ $\exists I_1 = (y_1 \delta, y_1 + \delta)$,
- 函数 $\varphi: I_1 \to J_1$, $y = \varphi(x)$, 且具有连续导数

$$\{f=0\}\cap (I_1\times J_1)=$$

隐函数定理 1.1 设 f(x,y) 在点 $p_1(x_1,y_1)$ 附近有定义,具有连续偏导; $f(x_1,y_1) = 0$; $f_y(x_1,y_1) \neq 0$ 。则存在

- \boxtimes in $I_1 = (x_1 \varepsilon, x_1 + \varepsilon)$ $\exists I_1 = (y_1 \delta, y_1 + \delta)$,
- 函数 $\varphi: I_1 \to J_1$, $y = \varphi(x)$, 且具有连续导数

使得

$${f=0} \cap (I_1 \times J_1) = \operatorname{Graph}(\varphi).$$

隐函数定理 1.2 设 f(x,y) 在点 $p_2(x_2,y_2)$ 附近有定义,具有连续偏导; $f(x_2,y_2) = 0$; $f_x(x_2,y_2) \neq 0$ 。

零点集
$$\{f = 0\}$$
在 p_1 附近的形状

隐函数定理 1.2 设 f(x,y) 在点 $p_2(x_2,y_2)$ 附近有定义,具有连续偏导; $f(x_2,y_2) = 0$; $f_{x}(x_2,y_2) \neq 0$ 。则存在

• $\boxtimes iilde{i} I_2 = (x_2 - \varepsilon, x_2 + \varepsilon) \text{ and } J_2 = (y_2 - \delta, y_2 + \delta),$

零点集 $\{f=0\}$ 在 p_1 附近的形状

隐函数定理 1.2 设 f(x,y) 在点 $p_2(x_2,y_2)$ 附近有定义,具有连续偏导; $f(x_2,y_2) = 0$; $f_X(x_2,y_2) \neq 0$ 。则存在

• $\boxtimes illet I_2 = (x_2 - \varepsilon, x_2 + \varepsilon) \ \pi J_2 = (y_2 - \delta, y_2 + \delta),$

$${f = 0} \cap (J_2 \times I_2) =$$

零点集
$${f = 0}$$
在 p_1 附近的形状

 $2\varepsilon_2$

 $(p_2 \in \{f = 0\}) \ f(p_2) = 0$

隐函数定理 1.2 设 f(x,y) 在点 $p_2(x_2,y_2)$ 附近有定义,具有连续偏导; $f(x_2,y_2) = 0$; $f_X(x_2,y_2) \neq 0$ 。则存在

- \boxtimes in $I_2 = (x_2 \varepsilon, x_2 + \varepsilon)$ $\exists I_2 = (y_2 \delta, y_2 + \delta)$,
- 函数 $\psi: J_2 \to I_2$, $x = \psi(y)$, 且具有连续导数

$$\{f=0\}\cap (J_2\times I_2)=$$

零点集 $\{f=0\}$ 在 p_1 附近的形状 $I_2 = (x_2 - \varepsilon_2, x_2 + \varepsilon_2)$ $x_2 \longrightarrow x$ $(p_2 \in \{f=0\}) \quad f(p_2) = 0$ $f_x(p_2) \neq 0$ $2\delta_2$ $y_2 \Big\} J_2 = (y_2 - \varepsilon_2)$

隐函数定理 1.2 设 f(x,y) 在点 $p_2(x_2,y_2)$ 附近有定义,具有连续偏导; $f(x_2,y_2)=0$; $f_{\mathbf{x}}(\mathbf{x}_2,y_2)\neq 0$ 。则存在

- \boxtimes il $I_2 = (x_2 \varepsilon, x_2 + \varepsilon)$ $\exists I_2 = (y_2 \delta, y_2 + \delta)$,
- 函数 $\psi: J_2 \to I_2$, $x = \psi(y)$, 且具有连续导数

使得

$${f=0} \cap (J_2 \times I_2) = \operatorname{Graph}(\psi).$$

• 在 p 点附近, {f = 0} 是函数 $y = \varphi(x)$ 的图形

- 在 p 点附近, $\{f=0\}$ 是函数 $y=\varphi(x)$ 的图形
- 在 q 点附近, {f = 0} 是函数 $x = \psi(y)$ 的图形

- 由隐函数定理可知: 只要偏导数 f_x , f_y 不全为零,则 $\{f = 0\}$ 是光滑曲线.

- 设 f(x, y) 是二元函数,其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知: 只要偏导数 f_x , f_y 不全为零,则 $\{f = 0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像。

- 设 f(x, y) 是二元函数, 其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知: 只要偏导数 f_x , f_y 不全为零,则 $\{f = 0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像。
- 此时, $\{f=0\}$ 的切线, 就是 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像的切线:

- 设 f(x, y) 是二元函数,其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知:只要偏导数 f_x , f_y 不全为零,则 $\{f=0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像。
- 此时, $\{f=0\}$ 的切线,就是 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像的切线:
 - $y = \varphi(x)$ 图像的斜率是
 - $x = \psi(y)$ 图像的斜率是

- 设 f(x, y) 是二元函数, 其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知:只要偏导数 f_x , f_y 不全为零,则 $\{f=0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像。
- 此时, $\{f=0\}$ 的切线,就是 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像的切线:
 - $y = \varphi(x)$ 图像的斜率是 $\varphi'(x)$
 - $x = \psi(y)$ 图像的斜率是

- 设 f(x, y) 是二元函数, 其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知: 只要偏导数 f_x , f_y 不全为零,则 $\{f = 0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像。
- 此时, $\{f=0\}$ 的切线,就是 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像的切线:
 - $y = \varphi(x)$ 图像的斜率是 $\varphi'(x) = -\frac{f_X}{f_Y}$
 - $x = \psi(y)$ 图像的斜率是

- 设 f(x, y) 是二元函数,其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知:只要偏导数 f_x , f_y 不全为零,则 $\{f=0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像。
- 此时, $\{f = 0\}$ 的切线, 就是 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像的切线:
 - $y = \varphi(x)$ 图像的斜率是 $\varphi'(x) = -\frac{f_x}{f_y}$,所以切线平行于 $(f_y, -f_x)$
 - $x = \psi(y)$ 图像的斜率是

- 设 f(x, y) 是二元函数, 其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知: 只要偏导数 f_x , f_y 不全为零,则 $\{f = 0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像。
- 此时, $\{f = 0\}$ 的切线, 就是 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像的切线:

•
$$y = \varphi(x)$$
 图像的斜率是 $\varphi'(x) = -\frac{f_x}{f_y}$,所以切线平行于 $(f_y, -f_x)$

•
$$x = \psi(y)$$
 图像的斜率是 $\frac{1}{\psi'(y)}$

- 由隐函数定理可知:只要偏导数 f_x , f_y 不全为零,则 $\{f=0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像。
- 此时, $\{f=0\}$ 的切线, 就是 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像的切线:

•
$$y = \varphi(x)$$
 图像的斜率是 $\varphi'(x) = -\frac{f_X}{f_Y}$,所以切线平行于 $(f_Y, -f_X)$

•
$$x = \psi(y)$$
 图像的斜率是 $\frac{1}{\psi'(y)} = -\frac{f_X}{f_Y}$

- 设 f(x, y) 是二元函数,其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知:只要偏导数 f_x , f_y 不全为零,则 $\{f=0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像。
- 此时, $\{f=0\}$ 的切线, 就是 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像的切线:

•
$$y = \varphi(x)$$
 图像的斜率是 $\varphi'(x) = -\frac{f_X}{f_y}$,所以切线平行于 $(f_y, -f_X)$

•
$$x = \psi(y)$$
 图像的斜率是 $\frac{1}{\psi'(y)} = -\frac{f_x}{f_y}$,所以切线平行于 $(f_y, -f_x)$

- 设 f(x, y) 是二元函数,其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知:只要偏导数 f_x , f_y 不全为零,则 $\{f = 0\}$ 是光滑曲线,并且局部上是光滑一元函数 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像。
- 此时, $\{f=0\}$ 的切线,就是 $y=\varphi(x)$ 或 $x=\psi(y)$ 的图像的切线:

•
$$y = \varphi(x)$$
 图像的斜率是 $\varphi'(x) = -\frac{f_X}{f_Y}$,所以切线平行于 $(f_Y, -f_X)$

•
$$x = \psi(y)$$
 图像的斜率是 $\frac{1}{\psi'(y)} = -\frac{f_x}{f_y}$,所以切线平行于 $(f_y, -f_x)$

• 总结: 若 f_x , f_y 不全为零,则光滑曲线 {f = 0} 上的切线平行于向量 (f_y , $-f_x$)

- 设 f(x, y) 是二元函数,其零点集 $\{f = 0\}$ 是平面上的点集。
- 由隐函数定理可知:只要偏导数 f_x , f_y 不全为零,则 $\{f=0\}$ 是光 滑曲线,并且局部上是光滑一元函数 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像。
- 此时, $\{f = 0\}$ 的切线, 就是 $y = \varphi(x)$ 或 $x = \psi(y)$ 的图像的切线:

•
$$y = \varphi(x)$$
 图像的斜率是 $\varphi'(x) = -\frac{f_X}{f_Y}$,所以切线平行于 $(f_Y, -f_X)$
• $x = \psi(y)$ 图像的斜率是 $\frac{1}{\psi'(y)} = -\frac{f_X}{f_Y}$,所以切线平行于 $(f_Y, -f_X)$

- 总结: 若 f_x , f_y 不全为零,则光滑曲线 {f = 0} 上的切线平行于向
- 量 $(f_v, -f_x)$

定理 设 f(x, y) 具有连续偏导数, $p(x_0, y_0)$ 满足 $f(x_0, y_0) = 0$,且偏 导数 $f_x(x_0, y_0)$ 和 $f_v(x_0, y_0)$ 不全为零。则

- 点集 {f = 0} 在 p 点附近是光滑曲线;

• 曲线 $\{f = 0\}$ 在 p 点处的切线平行于向量 $(f_v, -f_x)$ 。

设 f(x, y) 具有连续偏导数, c 是常数, 考虑平面点集 $\{f = c\}$ 。

设 f(x, y) 具有连续偏导数,c 是常数,考虑平面点集 $\{f = c\}$ 。与零点

集情形类似,有如下结论:

定理 设 $p(x_0, y_0)$ 满足 $f(x_0, y_0) = c$,且偏导数 $f_x(x_0, y_0)$ 和 $f_y(x_0, y_0)$ 不全为零。则

定理 设 $p(x_0, y_0)$ 满足 $f(x_0, y_0) = c$,且偏导数 $f_x(x_0, y_0)$ 和 $f_y(x_0, y_0)$ 不全为零。则

- 点集 $\{f = c\}$ 在 p 点附近是光滑曲线;
- 曲线 $\{f = c\}$ 在 p 点处的切线平行于向量 $(f_v, -f_x)$ 。

定理 设 $p(x_0, y_0)$ 满足 $f(x_0, y_0) = c$,且偏导数 $f_x(x_0, y_0)$ 和 $f_y(x_0, y_0)$ 不全为零。则

- 点集 $\{f = c\}$ 在 p 点附近是光滑曲线;
- 曲线 $\{f=c\}$ 在 p 点处的切线平行于向量 $(f_y, -f_x)$ 。

证明 令 F(x, y) = f(x, y) - c,则 $\{f = c\} = \{F = 0\}$,运用上一个结论即可。

定理 设 $p(x_0, y_0)$ 满足 $f(x_0, y_0) = c$,且偏导数 $f_x(x_0, y_0)$ 和 $f_y(x_0, y_0)$ 不全为零。则

- 点集 $\{f = c\}$ 在 p 点附近是光滑曲线;
- 曲线 $\{f=c\}$ 在 p 点处的切线平行于向量 $(f_v,-f_x)$ 。

证明 令 F(x, y) = f(x, y) - c,则 $\{f = c\} = \{F = 0\}$,运用上一个结论即可。

注 1 若 f_x 和 f_y 处处不全为零,则 $\{f = c\}$ 关于参数 c 构成平面上一族曲线。

定理 设 $p(x_0, y_0)$ 满足 $f(x_0, y_0) = c$,且偏导数 $f_x(x_0, y_0)$ 和 $f_y(x_0, y_0)$ 不全为零。则

- 点集 $\{f = c\}$ 在 p 点附近是光滑曲线;
- 曲线 $\{f=c\}$ 在 p 点处的切线平行于向量 $(f_v,-f_x)$ 。

证明 令 F(x, y) = f(x, y) - c,则 $\{f = c\} = \{F = 0\}$,运用上一个结论即可。

注 1 若 f_x 和 f_y 处处不全为零,则 {f = c} 关于参数 c 构成平面上一族曲线,称为函数 f(x, y) 的等值线。

定理 设 $p(x_0, y_0)$ 满足 $f(x_0, y_0) = c$,且偏导数 $f_x(x_0, y_0)$ 和 $f_y(x_0, y_0)$ 不全为零。则

- 点集 $\{f = c\}$ 在 p 点附近是光滑曲线;
- 曲线 $\{f = c\}$ 在 p 点处的切线平行于向量 $(f_y, -f_x)$ 。

证明 令 F(x, y) = f(x, y) - c,则 $\{f = c\} = \{F = 0\}$,运用上一个结论即可。

注 1 若 f_x 和 f_y 处处不全为零,则 {f = c} 关于参数 c 构成平面上一族曲线,称为函数 f(x,y) 的等值线。

注 2 等值线 $\{f = c\}$ 可视为空间曲线 $\begin{cases} z = f(x, y) \\ z = c \end{cases}$ 在 xoy 坐标面上

例设
$$f(x,y) = (3x^2 - y^2)^2 y^2 - (x^2 + y^2)^4$$

- 在 desmos 上画出等值线 {f = c}
- 在 CalcPlot3D 上画出曲面 z = f(x, y), 平面 z = c, 及交线空间曲

线
$$\begin{cases} z = f(x, y) \\ z = c \end{cases}$$

例设
$$f(x, y) = (3x^2 - y^2)^2 y^2 - (x^2 + y^2)^4$$

- 在 desmos 上画出等值线 { f = c }
- 在 CalcPlot3D 上画出曲面 z = f(x, y),平面 z = c,及交线空间曲 线 $\begin{cases} z = f(x, y) \\ z = c \end{cases}$

(参考值
$$c = -2, -0.3, 0, 0.1$$
)

设 f(x, y, z) 是三元函数,其零点集 $\{f = 0\}$ 是空间中的点集。

导数 f_x , f_y , f_z 不全为零,则 $\{f=0\}$ 是光滑曲面,

元函数的图像。

准确来说,就是如下的隐函数定理:

隐函数定理 2.1

准确来说,就是如下的隐函数定理:

隐函数定理 2.1 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导; $f(x_0, y_0, z_0) = 0$; $f_Z(x_0, y_0, z_0) \neq 0$ 。

准确来说,就是如下的隐函数定理:

隐函数定理 2.1 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导; $f(x_0, y_0, z_0) = 0$; $f_z(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1=(x_0-\varepsilon,\,x_0+\varepsilon),\quad I_2=(y_0-\varepsilon,\,y_0+\varepsilon),\quad J=(z_0-\delta,\,z_0+\delta),$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.1 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导: $f(x_0, y_0, z_0) = 0$: $f_z(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1=(x_0-\varepsilon,\,x_0+\varepsilon),\quad I_2=(y_0-\varepsilon,\,y_0+\varepsilon),\quad J=(z_0-\delta,\,z_0+\delta),$$

$${f = 0} \cap (I_1 \times I_2 \times J) =$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.1 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导: $f(x_0, y_0, z_0) = 0$: $f_z(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1=(x_0-\varepsilon,\,x_0+\varepsilon),\quad I_2=(y_0-\varepsilon,\,y_0+\varepsilon),\quad J=(z_0-\delta,\,z_0+\delta),$$

• 函数 $\varphi: I_1 \times I_2 \to J$, $z = \varphi(x, y)$, 且具有连续偏导数

$${f = 0} \cap (I_1 \times I_2 \times J) =$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.1 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导: $f(x_0, y_0, z_0) = 0$: $f_z(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1=(x_0-\varepsilon,\,x_0+\varepsilon),\quad I_2=(y_0-\varepsilon,\,y_0+\varepsilon),\quad J=(z_0-\delta,\,z_0+\delta),$$

• 函数 $\varphi: I_1 \times I_2 \to J$, $z = \varphi(x, y)$, 且具有连续偏导数

$${f = 0} \cap (I_1 \times I_2 \times I) = \operatorname{Graph}(\varphi).$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.2 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导; $f(x_0, y_0, z_0) = 0$; $f_V(x_0, y_0, z_0) \neq 0$ 。则存在

$$I_1 = ($$
), $I_2 = ($), $J = ($

• 函数
$$\varphi: I_1 \times I_2 \to J$$
, ,且具有连续偏导数

$${f = 0} \cap (I_1 \times I_2 \times I) = \operatorname{Graph}(\varphi).$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.2 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导; $f(x_0, y_0, z_0) = 0$; $f_V(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1 = ($$
), $I_2 = ($), $J = ($

• 函数 $\varphi: I_1 \times I_2 \rightarrow J$, $y = \varphi(x, z)$, 且具有连续偏导数

$${f = 0} \cap (I_1 \times I_2 \times I) = Graph(\varphi).$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.2 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导; $f(x_0, y_0, z_0) = 0$; $f_V(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1 = (x_0 - \varepsilon, x_0 + \varepsilon), \quad I_2 = (z_0 - \varepsilon, z_0 + \varepsilon), \quad J = (y_0 - \delta, y_0 + \delta),$$

• 函数 $\varphi: I_1 \times I_2 \to J$, $y = \varphi(x, z)$, 且具有连续偏导数

$$\{f = 0\} \cap (I_1 \times I_2 \times I) = \operatorname{Graph}(\varphi).$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.3 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导: $f(x_0, y_0, z_0) = 0$: $f_{\times}(x_0, y_0, z_0) \neq 0$ 。则存在

$$I_1 = ($$

),
$$I_2 = ($$

),
$$J = ($$

• 函数
$$\varphi: I_1 \times I_2 \rightarrow J$$
,

- (

,且具有连续偏导数

$$\{f=0\} \cap (I_1 \times I_2 \times I) = \operatorname{Graph}(\varphi).$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.3 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导: $f(x_0, y_0, z_0) = 0$: $f_{\times}(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1 = ($$

),
$$I_2 = ($$

),
$$I = ($$

• 函数
$$\varphi: I_1 \times I_2 \to J$$
, $x = \varphi(y, z)$, 且具有连续偏导数

$$\{f = 0\} \cap (I_1 \times I_2 \times I) = \operatorname{Graph}(\varphi).$$

准确来说,就是如下的隐函数定理:

隐函数定理 2.3 设 f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 附近有定义,具有连续偏导: $f(x_0, y_0, z_0) = 0$: $f_x(x_0, y_0, z_0) \neq 0$ 。则存在

区间

$$I_1 = (y_0 - \varepsilon, y_0 + \varepsilon), \quad I_2 = (z_0 - \varepsilon, z_0 + \varepsilon), \quad J = (x_0 - \delta, x_0 + \delta),$$

• 函数 $\varphi: I_1 \times I_2 \rightarrow J$, $x = \varphi(y, z)$, 且具有连续偏导数

$${f = 0} \cap (I_1 \times I_2 \times I) = \operatorname{Graph}(\varphi).$$

例设
$$f(x,y) = (2x^2 + y^2 + z^2 - 1)^3 - \frac{1}{10}x^2z^3 - y^2z^3$$

- 求出 {f = 0} 上偏导数全为零的点(临界点)
- ◆ 在 CalcPlot3D 上画出曲面 {f = 0}
- 观察临界点附近是否光滑
- 观察曲面哪些部分可以表示成光滑二元函数 $z = \varphi(x, y)$, 或 $y = \psi(x, z)$, 或 $x = \gamma(y, z)$ 的图形

设 f(x, y, z) 具有连续偏导数, c 是常数, 考虑平面点集 $\{f = c\}$ 。

设 f(x, y, z) 具有连续偏导数,c 是常数,考虑平面点集 $\{f = c\}$ 。

定理 设 $p(x_0, y_0, z_0)$ 满足 $f(x_0, y_0, z_0) = c$,且偏导数 $f_x(x_0, y_0, z_0)$ 、 $f_y(x_0, y_0, z_0)$ 和 $f_z(x_0, y_0, z_0)$ 不全为零。则

设 f(x, y, z) 具有连续偏导数,c 是常数,考虑平面点集 $\{f = c\}$ 。

定理 设 $p(x_0, y_0, z_0)$ 满足 $f(x_0, y_0, z_0) = c$,且偏导数 $f_x(x_0, y_0, z_0)$ 、 $f_y(x_0, y_0, z_0)$ 和 $f_z(x_0, y_0, z_0)$ 不全为零。则 $\{f = c\}$ 在 p 点附近是光滑曲面,并且是某一个光滑二元函数的图像。

设 f(x, y, z) 具有连续偏导数, c 是常数, 考虑平面点集 $\{f = c\}$ 。

定理 设 $p(x_0, y_0, z_0)$ 满足 $f(x_0, y_0, z_0) = c$,且偏导数 $f_x(x_0, y_0, z_0)$ 、 $f_y(x_0, y_0, z_0)$ 和 $f_z(x_0, y_0, z_0)$ 不全为零。则 $\{f = c\}$ 在 p 点附近是光滑曲面,并且是某一个光滑二元函数的图像。

进一步,若偏导数处处不全为零,则 $\{f = c\}$ 是空间中光滑曲面(称为等值面)。