$$Math. - ES 2 - S2 - Analyse$$

mercredi 24 mai 2017 - Durée 3 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

- 1. On considère la matrice $A = \begin{pmatrix} 0 & 1 \\ y 4 & 2x \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Déterminer une condition nécessaire et suffisante pour que A soit diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.
- **2.** On note $E_1 = \{u \in \mathbb{R}_+ / u^2 \notin \mathbb{N}\}$ et E_2 son complémentaire dans \mathbb{R}_+ . Prouver que E_2 est un ensemble dénombrable.
- 3. Soient (Ω, \mathcal{A}) un espace probabilisable et f définie de \mathbb{R}_+ dans \mathbb{R} par :

$$\forall u \ge 0, \ f(u) = \begin{cases} 0 & \text{si } u^2 \notin \mathbb{N} \\ \frac{\lambda}{2u^2} & \text{si } u^2 \in \mathbb{N} \end{cases}$$

Déterminer λ pour qu'il existe une probabilité $\mathbb P$ telle que f soit la loi de probabilité d'une variable aléatoire X définie sur Ω et à valeurs dans $\mathbb R_+$. Préciser $X(\Omega)$.

- **4.** Déterminer $X^2(\Omega)$ et la loi de probabilité de X^2 .
- **5.** Déterminer l'espérance $\mathbb{E}(X^2)$ de la variable aléatoire X^2 .
- **6.** Déterminer la fonction génératrice de la variable aléatoire X^2 . Retrouver alors la valeur de $\mathbb{E}(X^2)$ obtenue à la question précédente.
- 7. Soit Y une variable aléatoire définie sur Ω , indépendante de la variable aléatoire X, et suivant la loi définie par :

$$\forall u \in \mathbb{R}_+, \ \mathbb{P}(Y = u) = \begin{cases} 0 & \text{si} \quad u^2 \notin \mathbb{N} \\ \frac{\lambda}{2^{u+1}} & \text{si} \quad u^2 \in \mathbb{N} \end{cases}$$

Soit alors Z la variable aléatoire définie sur Ω par $Z=X^2+Y$. Déterminer la fonction génératrice de Z. En déduire sa loi de probabilité.

8. Déterminer enfin la probabilité pour que la matrice $A = \begin{pmatrix} 0 & 1 \\ Y - 4 & 2X \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ soit diagonalisable.

Exercice 2

On pose, lorsque cela est possible :

$$f(x) = \int_{1}^{+\infty} \frac{dt}{t^x \sqrt{t^2 - 1}}$$

- 1. Déterminer l'ensemble de définition I de f.
- **2.** En justifiant son existence, calculer $\int_0^{+\infty} \frac{dx}{e^x + e^{-x}}$.
- **3.** Calculer f(1). On pourra utiliser l'application $\varphi: u > 0 \mapsto \operatorname{ch}(u)$.
- **4.** Calculer f(2). On pourra remarquer que la dérivée de $x \mapsto \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}$ est égale à $x \mapsto \frac{1}{\operatorname{ch}^2(x)}$.
- **5.** Vérifier que f est positive sur I.
- 6. Montrer que f est décroissante sur I.
- 7. Prouver que f est de classe C^1 sur I et préciser l'expression de f'(x). Retrouver alors le résultat de la question précédente.
- **8.** Soit $x \in I$. Démontrer la relation suivante :

$$f(x+2) = \frac{x}{x+1}f(x)$$

On pourra effectuer, en la justifiant, une intégration par parties.

- **9.** Soit $p \in \mathbb{N}^*$. Donner l'expression de f(2p) à l'aide de factorielles.
- 10. Pour tout réel x > 0, on pose

$$\varphi(x) = xf(x)f(x+1)$$

Prouver que $\varphi(x+1) = \varphi(x)$. Calculer $\varphi(n)$ pour tout $n \in \mathbb{N}^*$.

- 11. En utilisant la question précédente, déterminer un équivalent de f(x) quand $x \to 0^+$.
- 12. Vérifier que $\forall n \in \mathbb{N}^*, \ f(n)f(n+1) = \frac{\pi}{2n}$. En déduire que :

$$f(n) \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$$

13. En utilisant des parties entières, prouver que :

$$f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$$

- 14. Déduire des questions précédentes le tableau des variations de f sur I et tracer sa courbe représentative dans un repère orthonormé.
- **15.** Prouver que la fonction φ est constante sur \mathbb{R}^{+*} .