

목차

1. 개요

- 연구 개요
- 데이터 소개
- -데이터전처리및 EDA

Random Forest Model –

Linear Regression <mark>Mode</mark>l

개요 ______01

비트코인은 주식과는 달리 국제 정세/사회적 이슈에 대해 반응하는 가격변 동의 폭이 극단적으로 발생하기 때문에, 보다 안정적인 투자와 극심한 경제 위기의 대비를 위해 비트코인 가격을 예측하는 모델의 연구와 개선이 필요

따라서, 본 연구에서는 2017년 ~ 2021년 동안의 비트코인 가격 데이터를 활용하여, 비트코인의 가격을 예측하고, 가격에 영향을 주는 요인으로는 어떤 것들이 존재하는 지 파악하고자 함.

예측 + 가격에 영향을 주는 변수와 그 영향력을 파악하는 것이 본 연구의 목적이므로,

변수의 중요도(영향력)를 파악할 수 있는 Linear Regression 및 Random Forest 모델을 활용할 예정

데이터 소개

출처: https://kr.investing.com

```
# 데이터셋 로드
bt = pd.read_csv('.../data/bt_history.csv', index_col = 'Date', parse_dates = True)
gld = pd.read_csv('../data/GLD_price.csv', index_col = 'Date', parse_dates = True)
nk = pd.read_csv('../data/nikkei.csv', index_col = 'Date', parse_dates = True)
sh = pd.read_csv('../data/shanghai.csv', index_col = 'Date', parse_dates = True)
kospi = pd.read_csv('.../data/kospi.csv', index_col = 'Date', parse_dates = True)
nasdaq = pd.read_csv('../data/nasdaq.csv', index_col = 'Date', parse_dates = True)
```

•bt_history : 비트코인 가격 데이터 - [Close, Open, High, Low, Volume] •GLD_price : 국제 금 시세 + 달러~원 환율 데이터

•nikkei : 닛케이 지수 데이터

•shanghai 상하이종합지수 데이터

•kospi : 코스피지수 데이터 •nasdaq: 나스닥지수 데이터

조사 기간은 <2017-01-01 ~ 2021-05-07>로 동일함

bt.head(3)									
	Close	Open	High	Low	Volue_K	Volume			
Date									
2017-01-01	995.4	963.4	1001.6	956.1	41.15	41150.0			
2017-01-02	1017.0	995.4	1031.7	990.2	64.95	64950.0			
2017-01-03	1033.3	1017.0	1035.5	1006.5	54.79	54790.0			

nk.head(3) sh.head(3)		kospi.head(3)		nasdaq.head(3)		gld.head(3)				
	Nikkei		Shanghai		KOSPI		Nasdaq		GLD_Price	USD_KRW
Date		Date		Date		Date		Date		
2017-01-04	19594.16	2017-01-03	3135.92	2017-01-02	2026.16	2017-01-03	5429.08	2017-01-02	1151.67	1209.0
2017-01-05	19520.69	2017-01-04	3158.79	2017-01-03	2043.97	2017-01-04	5477.01	2017-01-03	1151.35	1206.0
2017-01-06	19454.33	2017-01-05	3165.41	2017-01-04	2045.64	2017-01-05	5487.94	2017-01-04	1164.23	1203.0

jnai KOSPI	Nasdaq
NaN NaN	NaN
NaN 2026.16	NaN
5.92 2043.97	5429.08
3.79 2045.64	5477.01
5.41 2041.95	5487.94
10 10 10 10 10 10 10 10 10 10 10 10 10 1	

Pd.concat(axis=1, join='outer')를 사용해 하나의 데이터프레임으로 병합

```
df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1588 entries, 2017-01-01 to 2021-05-07
Freq: D
Data columns (total 12 columns):
     Column
                Non-Null Count
                                Dtype
                 1588 non-null
     Close
                                 float64
     Open
                1588 non-null
                                 float64
                                 float64
     High
                 1588 non-null
                                 float64
     Low
                 1588 non-null
     Volue_K
                1588 non-null
                                 float64
     Volume
                 1588 non-null
                                 float64
               1071 non-null
     GLD_Price
                                 float64
     USD_KRW
                1071 non-null
                                 float64
     Nikkei
                1088 non-null
                                 float64
                1055 non-null
                                 float64
     Shanghai
     KOSPI
                1067 non-null
                                 float64
                1094 non-null
     Nasdag
                                 float64
dtypes: float64(12)
memory usage: 161.3 KB
```

- 전체 1588개 행(datetime index)으로 이루어짐
- 12개 컬럼으로 구성됨
- 일별 데이터들의 집합
- 각 항목마다 관측주기가 동일하지 않기 때문에 결측치가 다수 존재
- 변수들은 모두 연속형(float)으로 저장됨 (범주형 변수 x)

1. 결측치 처리(보간법 사용)

```
def fmissing(df):
    for col in df.columns:
        df[col] = df[col].interpolate()
    print(f'No. of Missing Values after interpolation:\(\psi_{\text{df.isnull().sum()}}'\)
fmissing(df)
No. of Missing Values after interpolation:
Close
             0
Open
High
Low
Volue_K
Volume
GLD_Price
USD_KRW
Nikkei
Shanghai
KOSPI
Nasdag
dtype: int64
```

2. 나머지 결측치 처리(dropna 사용)

df.head()												
Date	Close	Open	High	Low	Volue_K	Volume	GLD_Price	USD_KRW	Nikkei	Shanghai	KOSPI	Nasdaq
2017- 01-01	995.4	963.4	1001.6	956.1	41.15	41150.0	NaN	NaN	NaN	NaN	NaN	NaN
2017- 01-02	1017.0	995.4	1031.7	990.2	64.95	64950.0	1151.67	1209.0	NaN	NaN	2026.16	NaN
2017- 01-03	1033.3	1017.0	1035.5	1006.5	54.79	54790.0	1151.35	1206.0	NaN	3135.92	2043.97	5429.08
2017- 01-04	1135.4	1033.3	1148.5	1022.3	156.27	156270.0	1164.23	1203.0	19594.16	3158.79	2045.64	5477.01
2017- 01-05	989.3	1135.4	1150.6	874.5	240.01	240010.0	1172.59	1188.0	19520.69	3165.41	2041.95	5487.94
보간법을	보간법을 사용했으므로 맨 앞 3번째까지는 여전히 결측치로 존재											

데이터 전처리

3. 불필요 변수 제거

- 타겟 : Close(종가)
- Close = Open = High = Low는 각각 상관계수가 1
- 각각에 영향을 미치는 것이 아니라 함께 움직인다고 판단, 삭제
- 그 외에 입력변수들 끼리 어느정도 상관성이 존재하는 것을 확인(다중공선성 존재)

4. 분석에 사용될 "df" 데이터프레임 생성

df.head()								
	Close	Volume	GLD_Price	USD_KRW	Nikkei	Shanghai	KOSPI	Nasdaq
Date								
2017-01-04	1135.4	156270.0	1164.23	1203.000000	19594.1600	3158.79	2045.640000	5477.010000
2017-01-05	989.3	240010.0	1172.59	1188.000000	19520.6900	3165.41	2041.950000	5487.940000
2017-01-06	886.2	194290.0	1176.25	1193.500000	19454.3300	3154.32	2049.120000	5521.060000
2017-01-07	888.9	130660.0	1176.45	1197.666667	19416.1075	3159.96	2049.006667	5524.646667
2017-01-08	900.9	76910.0	1176.65	1201.833333	19377.8850	3165.60	2048.893333	5528.233333

5. "df" 데이터프레임을 모델의 학습/검정용 데이터셋으로 분할

분할 비율은 일반적인 비율인 7:3으로 설정

```
x = df.iloc[:, 1:]
y = df['Close']

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state = 33)
```

입력변수

- 1. 비트코인 거래량
- 2. 국제 금 시세
- 3. 원-달러 환율
- 4. 닛케이 종합지수
- 5. 상해종합지수
- 6. 코스피종합지수
- 7. 나스닥 종합지수

선형회귀

랜덤포레스트

종속변수

Close (종가)

2. Linear Regression Model

- 회귀모델의 생성
- 회귀 진단
- 정규화 방법의 적용
- 최적의 모델 선택
- 결과 해석

Linear Regression Model

02

회귀 모델의 생성

1. 선형회귀로 적합하기 위해 상수항으로 이루어진 컬럼을 추가

x_train_add = sm.add_constant(x_train)

x_test_add = sm.add_constant(x_test)

2. 최소제곱법(OLS)을 적용한 선형 회귀 모델의 적합

학습데이터에 대해 84.6%의 설명력을 가짐

다른 변수가 고정되었을 때, 해당 변수의 1단위 증가가 종속변수에 미치는 변화량

- 현재 단위: 달러
- 따라서 계수: 1단위 증가당 변화하는 달러의 양을 의미

정규화 방법의 적용

```
alphas = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]
for a in alphas:
    model = ElasticNet(alpha=a).fit(x_train_add,y_train)
    score = model.score(x_train_add, y_train)
    pred_y = model.predict(x_test_add)
    mse = mean_squared_error(y_test, pred_y)
    print("Alpha:{0:.4f}, R2:{1:.2f}, MSE:{2:.2f}, RMSE:{3:.2f}".format(a, score, mse, np.sqrt(mse)))
Alpha: 0.0001, R2: 0.85, MSE: 21550635.55, RMSE: 4642.27
Alpha: 0.0005, R2: 0.85, MSE: 21550635.28, RMSE: 4642.27
Alpha: 0.0010, R2: 0.85, MSE: 21550634.95, RMSE: 4642.27
Alpha:0.0050, R2:0.85, MSE:21550632.27, RMSE:4642.27
Alpha:0.0100, R2:0.85, MSE:21550628.93, RMSE:4642.27
Alpha: 0.0500, R2: 0.85, MSE: 21550602.20, RMSE: 4642.26
Alpha:0.1000, R2:0.85, MSE:21550568.81, RMSE:4642.26
Alpha: 0.5000, R2: 0.85, MSE: 21550302.80, RMSE: 4642.23
Alpha:1.0000, R2:0.85, MSE:21549973.06, RMSE:4642.19
elastic_cv=ElasticNetCV(alphas=alphas, cv=10)
model = elastic_cv.fit(x_train_add, y_train)
print(model.alpha_)
1.0
elastic=ElasticNet(alpha=1.0).fit(x_train_add, y_train)
ypred_elastic = elastic.predict(x_test_add)
|score_elastic = elastic.score(x_test_add, y_test)
mse_elastic = mean_squared_error(y_test, ypred_elastic)
print("Final Result: ElasticNet R2:{0:.3f}, MSE:{1:.2f}, RMSE:{2:.2f}"
.format(score_elastic, mse_elastic, np.sqrt(mse_elastic)))
Final Result: ElasticNet R2:0.857, MSE:21549973.06, RMSE:4642.19
```

```
• Ridge: 각 계수의 영향력을 줄이는 방법(0으로 수렴)
```

- Lasso: 각 계수의 영향력을 줄이면서 변수를 제거하는 효과
- ElasticNet: Ridge + Lasso
- <- 위 과정을 Ridge/Lasso/ElasticNet에 대해 수행

print("<<<<dhodel Comparison>>>>")
print("#n---- Base LR ----")
print("[Regression] R2:0.856, MSE:",round(mse2, 3), "RMSE:",round(np.sqrt(mse2), 2))
print("#h---- Normalize Methods ----")
print("[Ridge] R2:{0:.3f}, MSE:{1:.2f}, RMSE:{2:.2f}".format(score_ridge, mse_ridge, np.sqrt(mse_ridge)))
print("[Lasso] R2:{0:.3f}, MSE:{1:.2f}, RMSE:{2:.2f}".format(score_lasso, mse_lasso, np.sqrt(mse_lasso)))
print("[ElasticNet] R2:{0:.3f}, MSE:{1:.2f}, RMSE:{2:.2f}".format(score_elastic, mse_elastic, np.sqrt(mse_elastic)))

<<<<dhodelign="right"><<<<dhodelign="right"><<<<dhockspan="right">

<<<<dhockspan="right">

<</td>

</t

-> 최종 모델: ElasticNet

1. 실제 Close 데이터 vs 예측값의 비교

	Actual	Predicted
Actual	1.000000	0.926554
Predicted	0.926554	1.000000

- 실제 예측 데이터의 상관계수가 0.9265에 달함
- 예측이 실제와 비슷하게 이루어진다는 결론 도출

2. 최종 모델의 설명력 및 계수 확인

[ElasticNet] R2:0.857, MSE:21549973.06, RMSE:4642.19

elastic.coef_ array([0.00000000e+00, -5.98047335e-04, -1.66276938e+01, 9.46618940e+01, 6.60884352e-01, -2.24187182e+00, 2.55759251e+01, 3.33091515e+00])

- 최종 ElasticNet Model의 R-squared 값은 0.857
- 베이스 선형회귀모델보다 성능이 개선
- 하지만 여전히 높은 MSE

선형회귀모델 분석결과

비트코인 가격 방정식

```
elastic.coef_
```

```
array([ 0.0000000e+00, -5.98047335e-04, -1.66276938e+01, 9.46618940e+01, 6.60884352e-01, -2.24187182e+00, 2.55759251e+01, 3.33091515e+00])
```

비트코인 가격 =

0 - 0.00059*거래량 - 16.62769*금시세 + 94.66189*원달러환율 + 0.66088*닛케이지수 - 2.24187*상해종합지수 + 25.57592*코스피지수 + 3.33092*나스닥지수

주요 변수 분석

- 1) 원달러환율이 상승할수록,
- 2) 한-일-미 주식의 종합지수가 상승할 수록,

비트코인 가격이 상승하였고

- 1) 금 시세가 상승할 수록
- 2) 중국 주식 지수가 상승할 수록

비트코인 가격이 하락한다는 결론을 도출

3. Random Forest Model

- 랜덤포레스트 모델의 생성
- 교차검증을 통한 최적의 파라미터 튜닝
- 변수중요도 파악
- 결과해석

Random Forest Model 03
gression Model 02

```
nTreeList = range(10, 1000, 10)
mseOos1 = []
for iTrees in nTreeList:
    depth = None
    maxFeat = 3
    rf = ensemble.RandomForestRegressor(n_estimators=iTrees,
                   max_depth=depth, max_features=maxFeat,
                   oob_score=False, random_state=531)
    rf.fit(x_train, y_train)
    prediction = rf.predict(x_test)
    mseOos1.append(mean_squared_error(y_test, prediction))
    print(iTrees, ': ',mean_squared_error(y_test, prediction))
print('<< LeastWoo DE >>#0')
  int(min(mseOos1))
<< LeastMse RF >>
                        iTrees = 150
1066831.738765832
```

<< LeastMse RF >>
1248347.6702583968

- Max_features: 결합할 의사결정나무의 개수, 일반적으로 회귀의 경우 "변수 / 3"으로 지정 -> 2/3으로 나누어 진행
- Max_features = 3 / n_estimators = 150일 때 MSE값이 가장 낮았음

결과 해석

- 실제 값과 예측 값이 거의 동일하게 분포(상관계수: 0.99647)
- MSE값도 선형회귀_1973만 -> 랜덤포레스트_106만으로 대폭 감소
- $\sqrt{MSE} = 1032$ (달러)로, 수만 달러 단위에 해당하는 비트코인 가격에 대해 낮은 오차를 보임.

- 선형회귀와 동일하게 코스피지수가 비트코인 가격에 큰 영향을 주는 것으로 파악
- 전반적으로 주식 지수들의 영향력이 높았는데, 이는 다중공선 성과 관련이 있을 것으로 예상
- 주식 지수를 제외하고 영향력이 높았던 변수는 "금시세"
- 원-달러 환율은 선형회귀만큼의 비중을 차지하지는 않음
- 거래량은 여전히 미미한 영향

4. 결론

- 시사점
- 최근 데이터 적용
- 한계점 및 보완점

코스피

- 최근 비트코인을 비롯한 암호화폐들은 지속적인 하락세를 보이고 있음.
- 코스피 지수 역시 5월 24일 기준 사흘째 하락하며 약세를 보이고 있음.
- 따라서 이전 분석 결과와 같이 "코스피와 비트코인이 비례함"을 알 수 있음.

출렁이는 비트코인 가격 단위 달러 6만3347 6만 5만 4만 3만 3만7056 2만9112 2만 1 2021년 1월 1일 5월 23월(오후 2시 30분)

- 반면 변동성이 큰 암호화폐를 대신해 안정적인 자산으로의 관심이 증가하는 추세이며, 금은 대표적인 안전자산임.
- 2021년 1월 부터 기록된 위 두 그래프는 "비트코인과 금 가격이 서로 반비례함"을 보여줌.

Prediction: current_data

- 랜덤포레스트 모델의 예측값은 약 "37451.38 달러"로, 오차는 373.52달러에 불과함
- 이는 실제 값과 0.98%만 차이나는 것으로, 모델이 과적합되지 않고 새로운 데이터에 예측을 잘 수행함을 의미

- Sparse한 데이터 성능이 나쁘지는 않았으나, 과적합의 위험성에서 자유롭다고 할 수는 없을 듯 함(x 1588개)
- 시계열 분석방법의 부재 본 연구에서 활용한 선형회귀, 랜덤포레스트 기법은 지도학습이므로, Y를 도출하기 위해 X 가 주어져야 함, 하지만 이러한 방법으로는 "**내일 가격이 오를지 내릴지**"에 대한 해답을 찾기는 힘듦.
- 데이터의 비선형성 비트코인 가격 데이터는 불규칙하며 비선형적인 분포를 따른다는 점에서 선형 회귀에 적합하지는
 않을 것임. 또한 입력 변수간의 다중공선성 역시 선형회귀모델의 신뢰성을 다소 저하한 바 있음.
- 따라서 딥러닝 기반의 시계열 분석 모델의 적용이 필요할 것임.
- 추가로 주식 지수, 거래량, 환율, 금 시세 등의 데이터뿐만 아니라 매일 발생하는 이슈들에 대한 감성 분석까지 도달한다면 보다 유의미하고 차원 높은 예측모델을 생성할 수 있을 것이라 예상

