Batch-effect Assessment on Networks Using GTEx

Matt's Lab Meeting
Yun Zhang
3-16-2016

Batch-effect on gene networks

- Technical effects: when, where
- ▶ Biological effects: types of death (if used **ventilator**), **gender**, ethnicity
- Continuous effect: composition of cellular types
- How much of the reported findings is due to batch-effects?
- Does an edge in a gene network really represent a biological mechanism? Or is it just due to similar composition of cellular types?

GTEx: data preprocessing

- GTEx: Genotype Tissue Expression data
- Focused on the lung tissue samples:
 - ▶ 133 samples
- RNA-seq
- Variance-stabilizing transformation on the count data
- Filtered out low expression and small variation genes
 - Filtered data: 175 genes

Interaction networks: three main strategies

Figure 1. Approaches for inferring interaction networks. Schematic of the process of inferring a network structure from data, showing three approaches for measuring dependence among variables: correlation-based, information theoretic and Bayesian.

Figure credit: Villaverde, A. F., & Banga, J. R. (2014). Reverse engineering and identification in systems biology: strategies, perspectives and challenges. *Journal of The Royal Society Interface*, 11(91), 20130505.

Analysis plan

- Network algorithms:
 - Correlation network: WGCNA
 - Mutual information network: ARACNE
 - Bayesian network: bnlearn
- Potential batch-effects:
 - Discrete: gender, ventilator, experiment date
 - Continuous: composition of cellular types

Correlation network

- WGCNA: Weighted Gene Co-expression Network Analysis
 - Weight of an edge between two genes is based on correlation measures
 - ► Gene modules and their corresponding eigengenes
- Investigate potential batch-effects
 - Gender
 - Ventilator
- Adjust known/unknown batch-effects using existing methods
 - ComBat for known effects
 - Surrogate Variable Analysis (SVA) for unknown effects

Gene modules identified by WGCNA

Suspects of gene modules induced by batch-effects

Correlation between eigengenes and trait variables

Gene expression profile of suspicious gene modules

WGCNA network with gene modules

Edge visibility: weight > 0.5

Batch-Effect Adjustment Using ComBat (One Batch-Effect A Time)

Batch-Effect Adjustment Using ComBat (Combined Batch-Effects)

Correlation between eigengenes and trait variables

Batch-effect adjustment using SVA (Bad Example)

Adjust for gender

Adjust for ventilator

Correlation between eigengenes and trait variables

Mutual information network

- ► ARACNE: Algorithm for the Reconstruction of Accurate Cellular Networks
 - Mutual information (MI) measures the degree of statistical dependency between two variables
 - Weight of an edge between two genes is based on MI
- Investigate potential batch-effects
 - ▶ 4 suspicious gene clusters due to potential batch-effects

Gene cluster	Potential batch-effect
Cluster 1	Bronchial epithelium (spatial: which part of the lung) (changes in cellular composition)
Cluster 2	Gender
Cluster 3	Sequencing date
Cluster 4	Ventilator

ARACNE network with suspicious gene clusters

ARACNE network with suspicious gene clusters

Edge visibility: weight > 0.1

Bayesian network

- Bayesian network
 - A Bayesian network is a representation of a joint probability distribution
 - Directed acyclic graph (DAG)
 - ▶ Weight of each edge is signed (+/-) from the parent gene to the child gene
- bnlearn: R package of learning Bayesian networks
 - ► Hill-climbing greedy search algorithm
- Investigate potential batch-effects
 - ▶ 4 suspicious gene clusters due to potential batch-effects

Bayesian network with suspicious gene clusters

Edge visibility: |weight| > 0.3

Conclusion

- All currently existing batch-effect correction methods focus on adjusting batch-effects at the gene level analyses, e.g. gene differential expression
- We conducted the first assessment of batch-effect on gene networks
- Batch-effect has impact on all types of network algorithm
- When we obtain a network, we should be cautious in interpreting the gene interactions (edges). Whether an edge is presented due to a real biological function between two genes? Edges may be presented purely due to some batch-effects.

Future work

- Simulations
 - ▶ Typical batch-effect on 2 or more groups, e.g. date, gender, etc.
 - Composition effect, e.g. % bronchial epithelium (changes in cellular composition)
- Batch-effect correction algorithms
 - ComBat + known batch variables
 - SVA + regression
 - Regression + known batch variables
 - PCA + regression