Processamento de Imagens e Computação Gráfica

Filtragem no Domínio do Espaço

Profa. Beatriz Trinchão Andrade

Departamento de Computação · UFS beatriz@dcomp.ufs.br

Sumário

Introdução

Filtragem Espacial

Filtros de Suavização

Filtros de Suavização Lineares

Filtros de Estatística de Ordem

Filtro da Mediana

Outros Filtros de Estatística de Ordem

Filtros Espaciais de Aguçamento

Fundamentos

Derivadas de Segunda Ordem

Laplaciano

Composição com Laplaciano

Derivadas de Primeira Ordem

Gradiente

Combinação de Filtros Espaciais de Realce

Sumário Introdução

Filtragem Espacial

Filtros de Suavização

Filtros de Suavização Lineares

Filtros de Estatística de Ordem

Filtro da Mediana

Outros Filtros de Estatística de Ordem

Filtros Espaciais de Aguçamento

Fundamentos

Derivadas de Segunda Ordem

Laplaciano

Composição com Laplaciano

Derivadas de Primeira Ordem

Gradiente

Combinação de Filtros Espaciais de Realce

Introdução

- Operações de vizinhança trabalham com:
 - ► Valores nos pixels na vizinhança
 - Valores correspondentes de uma subimagem com dimensões da vizinhança
- Subimagem
 - Filtro, máscara, kernel, template ou janela
- Valores na subimagem: coeficientes

Introdução

Sumário

Introdução

Filtragem Espacial

Filtros de Suavização

Filtros de Suavização Lineares

Filtros de Estatística de Ordem

Filtro da Mediana

Outros Filtros de Estatística de Ordem

Filtros Espaciais de Aguçamento

Fundamentos

Derivadas de Segunda Ordem

Laplaciano

Composição com Laplaciano

Derivadas de Primeira Ordem

Gradiente

Combinação de Filtros Espaciais de Realce

- Movimentação do filtro ponto-a-ponto na imagem
- ► A cada ponto (x,y), a resposta do filtro no ponto é calculada
- ▶ Filtragem espacial linear
 - Soma dos produtos dos coeficientes do filtro e pixels correspondentes na área afetada pela máscara
- Exemplo para uma máscara 3 × 3:

$$R = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \cdots + w(0,0)f(x,y) + \cdots + w(1,0)f(x+1,y) + w(1,1)f(x+1,y+1),$$

w(0,0) coincide com f(x,y)

- Máscaras de tamanho $m \times n$
 - m = 2a + 1
 - ▶ n = 2b + 1
 - ▶ a e b: números inteiros positivos
- ▶ Filtragem linear de imagem $M \times N$ por máscara $m \times n$:

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)$$

Máscara deve ser aplicada para x = 0, 1, 2, ..., M - 1 e y = 0, 1, 2, ..., N - 1

- Expressões usadas:
 - Convolução de uma máscara com uma imagem
 - ► Kernel de convolução

- ► Filtros espaciais não lineares
 - Mecânica similar
 - Baseada condicionalmente nos valores dos pixels na vizinhança
 - Não usa soma dos produtos
- Exemplo: filtro da Mediana

- Centro da máscara próximo da borda da imagem.
 Alternativas:
 - Limitar movimentação da máscara para área válida (imagem filtrada menor que original)
 - Filtrar pixels apenas com a parte da máscara contida na imagem
 - Adicionar linhas e colunas com valores constantes ou replicados das bordas, e removê-las depois da filtragem

Sumário

Introdução

Filtragem Espacial

Filtros de Suavização

Filtros de Suavização Lineares

Filtros de Estatística de Ordem

Filtro da Mediana

Outros Filtros de Estatística de Ordem

Filtros Espaciais de Aguçamento

Fundamentos

Derivadas de Segunda Ordem

Laplaciano

Composição com Laplaciano

Derivadas de Primeira Ordem

Gradiente

Combinação de Filtros Espaciais de Realce

Filtros de Suavização

- Borramento
 - ► Pré-processamento
 - Remoção de detalhes pequenos antes da extração de objetos maiores
 - ► Conectar pequenas descontinuidades em linhas e curvas
- Redução de Ruído
 - Borramento e filtragem não linear

- Resposta é a média dos pixels contidos na vizinhança da máscara
- Também chamados de filtros passa-baixas
- Substituem o valor de cada pixel por uma média da vizinhança
- Transições se tornam mais suaves na imagem resultante
- Borram arestas
- Eliminam detalhes pequenos em relação ao tamanho da máscara

	1	1	1
1 ×	1	1	1
	1	1	1

	1	2	1
×	2	4	2
	1	2	1

- ► Filtro da esquerda: média padrão (box filter)
- Filtro da direita
 - Média ponderada
 - ▶ Pixel do centro tem maior contribuição
 - Contribuição é reduzida com aumento da distância do centro
 - Diagonais são mais reduzidas
 - Efeito?

- ► Filtro da esquerda: média padrão (box filter)
- Filtro da direita
 - Média ponderada
 - ▶ Pixel do centro tem maior contribuição
 - Contribuição é reduzida com aumento da distância do centro
 - Diagonais são mais reduzidas
 - Efeito? Redução do borramento

Implementação de um filtro baseado em média ponderada:

$$g(x, y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}$$

- ▶ x e y variam em 1 a M e 1 a N, respectivamente
- Denominador só precisa ser calculado uma vez
- Resultado varia de acordo com o tamanho do filtro
 - ► Exemplo com máscaras em imagem 500 × 500

Imagem original e com máscara n=3

Máscaras com n = 5 e n = 9

Máscaras com n = 15 e n = 35

Visão geral

- Observações:
 - Redução de aliasing
 - Redução de ruídos
 - Eliminação de objetos menores que o tamanho da máscara
 - Objetos com cor próxima à do fundo tendem a desaparecer
 - Efeito do padding
- Aplicação importante na segmentação:
 - ▶ Reduz ruído e deixa objetos grandes mais homogêneos
 - Tamanho da máscara estabelece o tamanho relativo dos objetos que desaparecerão com o fundo

Imagem do Hubble (n=15 e limiarização)

Imagem do Hubble (n=15 e limiarização)

- ► Máscara 15×15
- Limiarização em 25% do maior valor encontrado na imagem borrada
- ► Representação das maiores e mais brilhantes áreas da imagem

Filtros de Estatística de Ordem

- ► Filtros não lineares
- Baseados na ordenação dos pixels afetados pela máscara
- ► Valor do centro é determinado pelo resultado da ordenação
- Filtro da mediana
 - Mais conhecido
 - Substitui o pixel central pela mediana na ordenação
 - Bons resultados com certos tipos de ruídos randômicos, como o sal-e-pimenta
 - Borram menos que filtros lineares

Filtro da Mediana

- \blacktriangleright Mediana ξ de um conjunto de valores
 - Metade dos valores do conjunto é maior ou igual a ξ
 - lacktriangle Metade dos valores do conjunto é menor ou igual a ξ
- ► Exemplo com vizinhança 3×3: mediana é o 5º maior valor

Filtro da Mediana

- Valores similares são agrupados
 - Exemplo
- Força pontos diferentes dos outros para as extremidades
- ▶ Filtro da mediana com n×n
 - ▶ Elimina clusters isolados com área menor que $n^2/2$ (metade da área do filtro)

Filtro da Mediana

▶ Raio-X ruidoso de uma placa, filtro da média e da mediana

Outros Filtros de Estatística de Ordem

- Filtro máximo:
 - Usa o elemento de maior valor na ordenação
 - Encontra pontos brilhantes na imagem
 - Exemplo: máscara 3×3 : $R = max\{z_k|k=1,2,...,9\}$
- Filtro mínimo:
 - Usa o elemento de menor valor na ordenação
 - ▶ Exemplo: máscara 3×3 : $R = min\{z_k | k = 1, 2, ..., 9\}$

Sumário

Introdução

Filtragem Espacial

Filtros de Suavização

Filtros de Suavização Lineares

Filtros de Estatística de Ordem

Filtro da Mediana

Outros Filtros de Estatística de Ordem

Filtros Espaciais de Aguçamento

Fundamentos

Derivadas de Segunda Ordem

Laplaciano

Composição com Laplaciano

Derivadas de Primeira Ordem

Gradiente

Combinação de Filtros Espaciais de Realce

Filtros Espaciais de Aguçamento

- Destaque de detalhes na imagem
- Realce de detalhes que foram borrados
- Uso em sistemas militares e imageamento médico

Filtros Espaciais de Aguçamento

- ► Se a suavização é análoga à integração, o aguçamento pode ser conseguido através da diferenciação
- Resposta do operador derivativo é proporcional ao grau de descontinuidade da imagem no ponto avaliado

Fundamentos

- Derivadas de primeira e segunda ordem
- ▶ Identificação de descontinuidades: caso com uma dimensão
- ► Função digital: derivada é definida em função de diferenças

Fundamentos

- Primeira derivada:
 - ▶ = 0 em segmentos planos
 - ▶ ≠ 0 em transições entre degraus ou rampas
 - $lackbox{}
 eq 0$ ao longo de rampas com curva constante
- Segunda derivada:
 - ▶ = 0 em segmentos planos
 - $ightharpoonup \neq 0$ em transições entre degraus ou rampas
 - ▶ = 0 ao longo de rampas com curva constante

Fundamentos

- Maior diferença possível de nível de cinza é finita
- Menor distância em que ela pode ocorrer é entre pixels adjacentes
- ▶ Definição básica de uma derivada parcial de primeira ordem:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Fundamentos

Similarmente, uma derivada de segunda ordem:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x).$$

Definições satisfazem as condições anteriores

Filtragem no Domínio do Espaço

Filtros Espaciais de Aguçamento

Fundamentos

Fundamentos

Fundamentos

Fundamentos

- Derivadas de primeira ordem:
 - Geralmente produzem arestas mais grossas na imagem (rampas)
 - ► Têm resposta mais forte a degraus no nível de cinza
- Derivadas de segunda ordem:
 - ► Geralmente produzem arestas mais finas na imagem (rampas)
 - ▶ Têm uma resposta mais forte a linhas finas e pontos isolados
 - Produzem resposta dupla em degraus no nível de cinza

Derivadas de Segunda Ordem

- Uso de derivadas de segunda ordem bidimensionais para realce de imagens
- Formulação discreta para a derivada de segunda ordem
- Construção de máscara com base na formulação
- Interesse em filtros isotrópicos: invariantes a rotação

- Operador derivativo isotrópico simples
- ▶ Definido para uma imagem f(x, y) como:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Na forma discreta:

$$\frac{\partial^2 f}{\partial^2 x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial^2 v^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y)$$

Laplaciano na forma discreta:

$$\frac{\partial^2 f}{\partial^2 x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$
$$\frac{\partial^2 f}{\partial^2 y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y).$$

└ Derivadas de Segunda Ordem

Laplaciano

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y).$$

Implementação como filtro linear:

0	1	0
1	-4	1
0	1	0

Resultados isotrópicos em rotações com incremento de 90°

Direção diagonal pode ser considerada com adição de mais termos à equação:

1	1	1
1	-8	1
1	1	1

- Cada termo diagonal traz um termo -2f(x,y), resultando em -8f(x,y)
- Resultados isotrópicos em rotações com incremento de 45°

▶ Implementações baseada no negativo do Laplaciano:

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

- ► Resultados similares aos correspondentes
- Atenção ao sinal na combinação da imagem filtrada com outras imagens

- Destaca descontinuidades
- Tira a ênfase de regiões com variação gradual de cor
- Linhas acinzentadas em fundo escuro
- Adição das imagens filtradas à original
 - Fundo preservado, com realce nas arestas
 - Laplace com centro negativo deve ser subtraído

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if the center coefficient of the} \\ & \text{Laplacian mask is negative} \\ f(x,y) + \nabla^2 f(x,y) & \text{if the center coefficient of the} \\ & \text{Laplacian mask is positive.} \end{cases}$$

 Imagem da Lua: original; aplicação do filtro laplaciano; resultado com ajuste na faixa dinâmica; soma da original com bordas

Composição com Laplaciano

 Simplificação: filtro laplaciano e soma à imagem em uma única máscara

$$g(x, y) = f(x, y) - [f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1)] + 4f(x, y)$$

$$= 5f(x, y) - [f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1)].$$

Composição com Laplaciano

Simplificação: implementação do filtro

-1	-1	-1
-1	9	-1
-1	-1	-1

Composição com Laplaciano

Simplificação: implementação do filtro

Derivadas de Primeira Ordem

- São implementadas através da magnitude do gradiente
- ► Gradiente para uma função f(x, y) (vetor coluna bidimensional):

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Magnitude do vetor:

$$\nabla f = \operatorname{mag}(\nabla \mathbf{f})$$

$$= \left[G_x^2 + G_y^2\right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

Gradiente

- Componentes do vetor gradiente
 - São operadores lineares
 - Não são invariantes à rotação
- Magnitude do gradiente
 - Não é um operador linear
 - Invariante à rotação
- Uso comum do termo gradiente para se referir à magnitude do gradiente

Gradiente

Magnitude do gradiente:

$$\nabla f = \operatorname{mag}(\nabla \mathbf{f})$$

$$= \left[G_x^2 + G_y^2\right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

Aproximação da magnitude do gradiente:

$$\nabla f \approx |G_x| + |G_y|$$

Mais simples de computar, preserva mudanças relativas

Gradiente

► Aproximação digital considerando região 3 × 3:

$$G_{x} = (z_8 - z_5)$$

$$G_y = (z_6 - z_5)$$

Roberts (diferenças cruzadas):

•
$$G_x = (z_9 - z_5)$$

$$G_y = (z_8 - z_6)$$

z_1	z_2	z_3
z_4	z_5	z ₆
z ₇	z_8	Z9

Gradiente - Roberts

Gradiente pode então ser computado como:

$$\nabla f = \left[(z_9 - z_5)^2 + (z_8 - z_6)^2 \right]^{1/2}$$

Uso de valores absolutos

$$\nabla f \approx |z_9 - z_5| + |z_8 - z_6|$$

z_1	z_2	z_3
z_4	z_5	z_6
z ₇	z_8	Z9

Gradiente - Roberts

▶ Implementação com uso de duas máscaras:

-1	0	0	-1
0	1	1	0

Gradiente - Sobel

▶ Implementação com valores absolutos e máscara 3 × 3:

$$\nabla f \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

- Diferença entre terceira e primeira linhas aproximam a derivada na direção x
- Diferença entre terceira e primeira colunas aproximam a derivada na direção y
- Conhecida como operador de Sobel

Gradiente - Sobel

▶ Implementação com valores absolutos e máscara 3 × 3:

$$\nabla f \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

Máscara:

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Gradiente - Sobel

- ▶ Peso 2 dá maior contribuição ao ponto central, dando um pouco de suavidade ao resultado
- Todas as máscaras somam zero
 - Resposta 0 em áreas com cores constantes
 - Característica de filtro derivativo

Filtragem no Domínio do Espaço

Filtros Espaciais de Aguçamento

Derivadas de Primeira Ordem

Gradiente

- ► Frequentemente usado na indústria
 - Inspeção automatizada, detecção de defeitos
 - Sistemas de auxílio a humanos
 - Exemplo: inspeção de lentes de contato

Gradiente - Exemplo

- ► Aplicação de filtros de Sobel: inspeção
- Destaque de pequenos ruídos: imperfeições na lente, ou partículas no fluido
- Destaque de pequenas descontinuidades

Gradiente - Exemplo

Sumário

Introdução

Filtragem Espacial

Filtros de Suavização

Filtros de Suavização Lineares

Filtros de Estatística de Ordem

Filtro da Mediana

Outros Filtros de Estatística de Ordem

Filtros Espaciais de Aguçamento

Fundamentos

Derivadas de Segunda Ordem

Laplaciano

. Composição com Laplaciano

Derivadas de Primeira Ordem

Gradiente

Combinação de Filtros Espaciais de Realce

Combinação de Filtros Espaciais de Realce

- Até o momento foi dado foco à aplicação individual de métodos de realce
- Uma tarefa de realce frequentemente envolve a combinação de técnicas totalmente diferentes
- Exemplo de combinação

Escaneamento de ossos

- Detecção de doenças como infecções e tumores
- Baixa faixa dinâmica e alto nível de ruído
- ► Como destacar mais os detalhes?

Escaneamento de ossos

Escaneamento de ossos

- Estratégia:
 - Laplaciano pra destacar detalhes finos
 - Gradiente pra destacar arestas proeminentes
 - Versão borrada da imagem do gradiente é usada como máscara na imagem do Laplaciano
 - Aumento da faixa dinâmica com transformação dos níveis de cinza

(a)Original(b)Laplaciano (centro 8) com escala

(c)Adição das imagens (a) e (b): ruído (d)Sobel de (a)

(e) Sobel com filtro da média 5×5 (f) Produto de (c) com (e)

(g) Soma de (a) e (f) Transformação de potência de (g)

Referências:

- Capítulo 3 do Gonzalez e Woods. Digital Image Processing, 2a edição.
- Capítulo 4 do Gonzalez e Woods. Processamento Digital de Imagens, 1a edição.