Recap: (1) îterated elimination of dominated strategies (2) Preservation of equilibrium

- (3) stability & security coincide for matrix games
- (4) limited to pure strategies PSNE may not exist

	L	R			
L	-1,1	1,-1			
R	1,-1	ارا-			

Mixed strategies

Probability distribution over the set of strategies

Consider a finite set A define $\Delta A = \{ p \in [0,1]^{|A|} : \sum_{a \in A} p_a = 1 \}$

set of all probability distributions over A.

Ti is a mixed strategy of player i

$$\sigma_i \in \Delta(s_i)$$
, i.e., $\sigma_i : S_i \rightarrow [o,i] \land t. \sum \sigma_i(s_i) = 1$.
 $s_i \in S_i$

We are discussing non-cooperative games, The players choose their strategies independently

The joint probability of picking S_1 and 2 picking $S_2 = T_1(S_1) T_2(S_2)$ utility of player i at a mixed strategy profile (T_i, T_{-i}) is

$$U_{i}\left(\mathcal{T}_{i},\mathcal{T}_{i}\right) = \sum_{A_{1} \in S_{1}} \sum_{A_{2} \in S_{2}} \cdots \sum_{A_{n} \in S_{m}} \mathcal{T}_{i}(A_{1}) \mathcal{T}_{2}(B_{2}) \cdots \mathcal{T}_{n}(A_{n}) \quad \mathcal{U}_{i}\left(A_{1}, A_{2}, \cdots, A_{m}\right)$$

we are overloading u; to denote the utility at pure and mixed streetegies.

Utility at a mixed strategy is The expectation of The utilities at pure strategies.

at pure strategies. So, all the rules of expectation holds, e.g., linearity.

Example:			4/5	1/5				
			L	R				
	² / ₃	L	-1,1	1,-1				
	1/3	R	1,-1	ارا-	Ţ			
$U_1(\sigma_1,\sigma_2) =$	$\frac{2}{3} \cdot \frac{4}{5}$.	(-1) +	$\frac{2}{3} \cdot \frac{1}{5}$. +	$\frac{1}{3} \cdot \frac{4}{5}$	1 + 1	3 · \frac{1}{5} · ((- ı)

mature of mixed strategies

$$u_{i}\left(\lambda\,\sigma_{i}+\left(i-\lambda\right)\sigma_{i}^{'}\,,\,\,\underline{\sigma}_{i}\right)=\,\lambda\,u_{i}\left(\sigma_{i}\,,\underline{\sigma}_{i}\right)+\left(i-\lambda\right)\,u_{i}\left(\sigma_{i}^{'}\,,\underline{\sigma}_{i}\right).$$