IITM Sangam Solution

Team dumb_terminals:

- 1. G. Kranthi Kiran
- 2. G. Mothy

Approach

- The aim of the problem was to predict the traffic_volume for indian metro city given features like the date-time, weather description, etc
- The data contained many duplicate time-indexes with different feature values but same traffic_volume.
- So we removed the duplicate time-indexes and then trained our model and while submission merged the same date values with same traffic_volume prediction.
- Baselined various statistical models like ARIMA, Prophet but regression models proved better than them as we had many weather related-features which we can't use in the statistical methods.
- Basic Date-Time features + some features were created.
- LightGBM proved best from all the models test locally.
- Evaluation was done using the metric given on the competition page.

Quality Checks/Errors Found

- The data contained many duplicate time-indexes with different feature values but same traffic_volume..
- So we removed the duplicate time-indexes and then trained our model and while submission merged the same date values with same traffic_volume prediction.

Data Preprocessing

- Removed the duplicate time-indexes from both train and test sets and used the remaining data to train and test our model.
- The predictions for the removed indexes would be same as we have unique date-time feature which would let us merge on that to get the predictions for the duplicate time-indexes.

Feature Engineering

- Date-Time Features
 - a. Hour
 - b. Day of week
 - c. Day of month
 - d. Month
 - e. Year
 - f. Week Number
 - g. ls_month_end
 - h. Is_week_end
- Date_Time was encoded in a way to capture the temporal sense of data or else LGB would normally treat this as a regression problem.
- Target Based Aggregate Features like mean, std, min, max, didn't increase the score so didn't include.
- Target Mean Encoding for Categorical features didn't increase the score too, so used LabelEncoding for Categorical Features.

Model Choice Explanation

- My past experience in using Boosting methods like LightGBM and XGBoost made me take the
 decision of using it as a model and as it Gradient Boosting Implementation.
- I tried other models linear and probabilistic but lightgbm gave better results than others both locally and on LB.
- As lightgbm trained and fitted faster I had more time to experiment stuff and get results quicker so chose LightGBM over Xgboost due to Xgboost's higher training time.

Important Features

- 1. Hour
- 2. Day of Week
- 3. Day of Year
- 4. Date_Time
- 5. Day of Month
- 6. Temperature
- 7. Week of Year
- 8. Wind Direction

Expected Error for submission

• Due to limited number of submission per day I didn't have time to properly tune the parameters of LightGBM model.

Metric according to the competition page i.e max(0, 100-rmse):

• Train Score: 99.7584

• Validation Score: 99.8087

• Public LeaderBoard Score: 99.9763

Thank You.