Learning Objectives

<u>Describe</u> the four possible decisions in the *Null* Hypothesis Statistical Testing (NHST) framework

• <u>Identify</u> factors that increase the likelihood of rejecting the null hypothesis (H_0)

Justify decisions to manage error

Visualize statistical power

$$(1 - \beta) = \underline{Power}$$

- Research seeks at least 80% power
 - Not 40-60%!!

- Visualize in G*Power (or Laken's Shiny)
 - Most common tool for calculating power
 - Normal distribution (or z-distribution)
 - What is/are the z-score for: $\alpha_{2-tail} = .05$

Happiness Therapy

- X number of participants attend happiness therapy
 - Pre-test (on a scale of 1 to 10, how happy are you right now)
 - Post-test (on a scale of 1 to 10, how happy are you right now)
 - (Post-test Pre-test) = positive numbers are consistent with the therapy working!
- H_0 : Participants attending therapy will report similar levels of happiness following therapy
 - Differences in happiness will be due to chance
- H_1 : Participants attending therapy will show different levels of happiness after therapy
 - Therapy changes happiness levels (in addition to chance)

Red = H_0 Distribution (If H_0 were true) Blue = H_1 Distribution (If H_1 were true)

Red = H_0 Distribution (If H_0 were true) Blue = H_1 Distribution (If H_1 were true)

When H_0 is true (we're sampling from the red distribution), Type I errors occur 5% of the time.

When H_1 is true (sampling from blue distribution), Type II errors occur 15% of time.

Red = H_0 Distribution (If H_0 were true) **Blue** = H_1 Distribution (If H_1 were true)

When H_0 is true, we correctly fail to reject H_0 95% of the time. $(95\% = 1 - \alpha)$ When H_1 is true, we correctly reject H_0 85% of the time. (85% = 1 – β)

Red = If H_0 is true Blue = If H_1 is true

$$\alpha_{2-tail} = .05$$
 $\beta = .15$
Power = .85

$$\bar{X}$$
 - μ = 3 units $\sigma_{\bar{X}}$ = 1 unit

Power when effect size is smaller!

Red = If H_0 is true **Blue** = If H_1 is true

$$\alpha_{2-tail} = .05$$
 $\beta = .83$
Power = .17.

$$\overline{X}$$
 - μ = 1 unit (was 3) $\sigma_{\overline{X}}$ = 1 unit

Power when variability is greater!

Red = If
$$H_0$$
 is true
Blue = If H_1 is true

$$\alpha_{2-tail} = .05$$
 $\beta = .29$
Power = .71

$$\overline{X}$$
 - μ = 3 units $\sigma_{\overline{X}}$ = 2 units (was 1)

Power when 1-tail (vs. 2-tail) test!

Red = If H_0 is true **Blue** = If H_1 is true

$$\alpha_{1-tail} = .05$$
 $\beta = .09$
Power = .91.

$$\bar{X}$$
 - μ = 3 units $\sigma_{\bar{X}}$ = 1 unit

Power when α is large!

Red = If H_0 is true **Blue** = If H_1 is true

$$\alpha_{1-tail} = .20$$

$$\beta = .01$$
Power = .99

$$\overline{X}$$
 - μ = 3 units $\sigma_{\overline{X}}$ = 1 unit

3 Common Types of Power

- 1. a priori − Before data, find N given:
 - $-\alpha$, (1 β), expected effect size

- 2. post hoc After data, find power given:
 - $-\alpha$, N, observed effect size

- 3. Sensitivity Before/after data, find detectable effect size given:
 - $-\alpha$, (1β) , N

Setting Power

• **Exp. 1**: "We sought to collect 80 participants... Sensitivity analysis indicated with power set at .80, we could detect an effect size as small as $d_z = .317$ "

- 3. Sensitivity power b/c we don't know the size of the effect
 - $\alpha = .05$
 - $(1-\beta) = .80$
 - N = 80

Setting Power

• Exp. 2: "Based on the observed effect size of d_z = .430 in Experiment 1, we sampled from 48 participants to set power at .80"

- 1. Use *a priori* power after getting an estimate of effect size in Exp. 1
 - $\alpha = .05$
 - $(1-\beta) = .80$
 - Effect size = d_z = .430

Support the Guardian

Fund independent journalism with \$13 per month

News

Opinion

Sport Culture

Lifestyle

World ▶ Europe **US** Americas Asia Australia Middle East Africa Inequality

More

Hillary Clinton

• This article is more than 8 years old

Coin tosses used to determine county delegates in Clinton-Sanders race

Obscure party rule can be called upon to decide a tied result - and its use shows how close the Democratic race is

Were the coins 'rigged'?

 Coin flips were used to decide the allocation of 6 delegates in Iowa (2016)

 If we're testing whether these coin flips were somehow rigged, what are our hypotheses?

- How can we test these hypotheses?
 - What is our expectation given H_0 ?
 - One-tail test or two-tail test?
 - What level of Type I error should we accept?

The Binomial Distribution with n = 6 and p = 0.5

