# ${ m CH5440} \ { m ASSIGNMENT~4}$

Prem Sagar S April 9, 2017

# Problem 1

## Part a

The number of model constraints is unknown. It has to be less than 28, the maximum number of variables.

The IPCA gives a converged solution for different choices of number of constraints. The eigen values for each choice of number of constraints are presented in table 1. The SCREE plot for each of these can predict the right number of constraints clearly. They are presented in figure 1.

If we choose less number of constraints than the actual, since the last m eigen values are small, including extra eigen vectors to obtain the constraint matrix affects very little. But if we choose more constraints than the true constraints, some of the eigen vectors that may actually contribute to the constraint matrix might be excluded. This can be seen in the SCREE plots for m=15 and m=20, where the separation between the dominant PCs and noise is reducing. However, the last m eigen values are all not equal to 1, but they are significantly lower than the rest.

Thus, from the SCREE plots it is clearly possible to estimate the number of constraints to be 11. (The least 11 eigen values)

## Part b

The first seventeen variables are indepent.

$$A\bar{Z} = 0$$

$$A_D\bar{Z_D} + A_I\bar{Z_I} = 0$$

$$\bar{Z_D} = -(A_D^T A_D)^{-1} A_D^T A_I \bar{Z_I}$$

$$= B\bar{Z_I}$$

where B is the regression matrix.

The maximum absolute difference between true regression matrix and estimated regression matrix for different choice of number of constraints is below. The estimation of the regression matrix is best when the right number of constraints is chosen. This was also evident from the fact that the convergence tolerance had to be kept high for the remaining choices and they took way more number of iterations to converge than m=11.

| m=8               | m=10              | m=11              | m=12              | m=20              |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1851965.93324290  | 2371631.77667389  | 4417507.27111028  | 2648680.29547111  | 2623302.38646008  |
| 875657.668282495  | 1265832.77415886  | 2116885.85210932  | 1420415.99479632  | 1488632.73471233  |
| 145665.953409263  | 294871.890894447  | 565810.907271507  | 259427.922641556  | 330116.275868767  |
| 116803.050042759  | 178913.250622527  | 316209.033910630  | 191825.649431976  | 138553.332145231  |
| 56840.4674728384  | 89920.3271813423  | 204865.029028996  | 149162.041305520  | 102534.460616476  |
| 30928.3149624901  | 83709.0638556466  | 105732.277027884  | 62486.7012784825  | 74751.3149420528  |
| 17506.8800858548  | 32063.8175315455  | 60815.0982666470  | 58477.6774362228  | 60091.7496529112  |
| 11939.7977448139  | 20247.1304705885  | 44897.0487591439  | 31940.6919627730  | 45095.3883788547  |
| 8614.79064372355  | 15285.0260334702  | 28355.4745834380  | 21459.6506617463  | 20217.1667057180  |
| 6497.25441332932  | 12488.3873577761  | 22038.6500158883  | 17084.2428517215  | 17185.9957456354  |
| 4663.93233387900  | 11017.7675035197  | 18176.0310243797  | 14358.7421219805  | 13144.7042111218  |
| 3800.61311828857  | 6481.22326709634  | 10484.0784680069  | 9135.12587368575  | 12048.3419608154  |
| 3008.00071090766  | 5064.91764994853  | 8446.09576172402  | 5163.79891484780  | 8847.52728792830  |
| 1961.04306847472  | 2906.32103495848  | 5790.24466167593  | 3957.82526661569  | 6858.32680509848  |
| 1327.92093367081  | 1797.93576425417  | 3461.79627284864  | 2890.93547000044  | 5612.87875195548  |
| 899.642173440407  | 1441.92671783497  | 2577.74083230488  | 2155.96138950565  | 4470.72000716899  |
| 677.989313827669  | 1183.51225564389  | 2141.91234370968  | 1256.73721958837  | 3921.53320118824  |
| 4.34149152073016  | 6.10372731094158  | 8.61075138509408  | 6.55106306139646  | 5.47373971167707  |
| 1.88014024947449  | 2.59106223625699  | 4.39483365805475  | 5.28224337988179  | 4.53587326022490  |
| 1.50476861458314  | 2.08004834412172  | 4.08159271559063  | 3.76262388436638  | 3.99463955999016  |
| 1.27656222547369  | 1.64755147909944  | 2.69909460126619  | 2.55661604312312  | 3.36334367113611  |
| 0.849256202950845 | 1.59617496807225  | 2.36754362285925  | 2.34963570223197  | 2.97902543314791  |
| 0.699476927715203 | 1.36980673420588  | 1.97431208027464  | 1.88145937616793  | 2.91554471500974  |
| 0.688245140432243 | 1.29376120787409  | 1.82974666133203  | 1.38921782423494  | 2.34531035410630  |
| 0.340918072437973 | 1.15129279106469  | 1.59315661458567  | 1.02500435162413  | 2.12512686660007  |
| 0.327874098602211 | 0.975936220449357 | 1.39955024279149  | 0.941255469542402 | 1.74641435368103  |
| 0.299138808887262 | 0.801200691095789 | 1.10419965859166  | 0.866186677988422 | 1.49212058720544  |
| 0.194835330792776 | 0.452437057623951 | 0.818985376533508 | 0.558441783146040 | 0.846519228973717 |

Table 1: Eigen values for different choices of number of constraints



Figure 1: SCREE plots for different choices of number of constraints

| Constraints | $\max(\operatorname{abs}[R-\hat{R}])$ |
|-------------|---------------------------------------|
| 8           | 1.0000                                |
| 9           | 1.0001                                |
| 10          | 1.0109                                |
| 11          | 0.0059                                |
| 12          | 0.6242                                |
| 15          | 5.7526                                |
| 20          | 1.7498                                |

Table 2: Maximum absolute difference between true and estimated regression matrices

# Problem 2

#### Part a

The corrupted samples are removed and the constraint matrix is obtained applying PCA to the remaing samples giving a constraint matrix  $\hat{A}_0$ .

Maximum absolute error between true regression matrix and the regression matrix estimated by removing corrupted samples =0.007564108

#### Part b

The corrupted data is sampled with the variable average, i.e, for each missing data, the mean value of that variable obtained from the uncorrupted data is imputed. Now PCA is applied to obtain a constraint matrix  $\hat{A}_{mean}$ .

Maximum absolute error between true regression matrix and the regression matrix estimated by imputing mean= 8.214714

## Part c

Now using  $\hat{A}_{mean}$ , the missing data is estimated just like we do a regression. The new data set  $Y_1$  is again used to obtain a new constraint matrix  $\hat{A}_1$ . This is imputed to get a new data set  $Y_2$  and then subsequently  $\hat{A}_2$  and so on. This is done until the maximum error between the true and estimated regression matrices reach a value below that obtained for the mean imputed data. A reasonable value for tolerance can be chosen and thus, the loop can be stopped.

Choosing the loop end criterion to be err PCA<0.9\*err mean, the algorithm converged after 9 iterations.

The maximum absolute error between true regression matrix and the regression matrix estimated by PCA imputation= 0.005962763

```
PCA on uncorrupted data:
Max \ error \ with \ PCA \ on \ autoscaled \ data = 7.564108e-03
PCA on mean imputed data:
Max error with mean imputed data = 8.214714e+00
Data matrix iteratively imputed by PCA:
Max error with iteration 0 PCA imputed data = 4.385424e-02
Max error with iteration 1 PCA imputed data = 6.184575e-03
Max error with iteration 2 PCA imputed data = 5.989214e-03
Max error with iteration 3 PCA imputed data = 5.965460e-03
Max error with iteration 4 PCA imputed data = 5.963029e-03
Max error with iteration 5 PCA imputed data = 5.962788e-03
Max error with iteration 6 PCA imputed data = 5.962765e-03
Max error with iteration 7 PCA imputed data = 5.962763e-03
Max error with iteration 8 PCA imputed data = 5.962762e-03
Max error with iteration 9 PCA imputed data = 5.962762e-03
Solution has converged!
```

#### Part d

The same procedure is followed from a through instead with IPCA.

- Maximum absolute error between true regression matrix and the regression matrix estimated by removing corrupted samples = 0.007294555. This has improved slightly, although it can still be improved further with lower tolerance, but requires lot of computation time.
- Maximum absolute error between true regression matrix and the regression matrix estimated by imputing mean= 0.5816338. This has significantly better than what usual PCA did to the mean imputed data.
- The maximum absolute error between true regression matrix and the regression matrix estimated by IPCA imputation= 0.005599. This too converged in about 9 iterations giving a slightly better estimate than PCA. Again, much better results can be obtained with lower tolerance requiring more computation time.

```
IPCA on uncorrupted data:
Max \ error \ with \ IPCA \ on \ autoscaled \ data = 7.294555e-03
IPCA on mean imputed data:
Max error with mean imputed data = 5.816338e-01
Data matrix iteratively imputed by IPCA:
Max error with iteration 0 IPCA imputed data = 1.877488e-02
Max error with iteration 1 IPCA imputed data = 5.730123e-03
Max error with iteration 2 IPCA imputed data = 5.669772e-03
Max error with iteration 3 IPCA imputed data = 5.606442e-03
Max error with iteration 4 IPCA imputed data = 5.599965e-03
\it Max\ error\ with\ iteration\ 5\ IPCA\ imputed\ data = 5.599306e-03
Max error with iteration 6 IPCA imputed data = 5.599243e-03
Max error with iteration 7 IPCA imputed data = 5.599237e-03
Max error with iteration 8 IPCA imputed data = 5.599236e-03
\it Max\ error\ with\ iteration\ 9\ IPCA\ imputed\ data = 5.599236e-03
Solution has converged!
```

Table 3: Summary of maximum absolute difference between true and estimated regression matrix

| Data Samples used                      | PCA         | IPCA        |
|----------------------------------------|-------------|-------------|
| Corrupted samples removed              | 0.007564108 | 0.007294555 |
| After imputing mean of variable data   | 8.214714    | 0.5216338   |
| After iteratively imputing by PCA/IPCA | 0.005962    | 0.005599    |