Tut 2

Section 1.1

1

a

• $\varphi' = \frac{\partial f}{\partial x_1}$ $\psi' = \frac{\partial g}{\partial x_1}$

 \mathbf{b}

• $\frac{\partial (af+bg)}{\partial x_1} = (a\varphi + b\psi)'$ (Taking parital derivative with repect to x1 implease treat all other arguments as constant which means tha f and φ and equivelent and g and ψ are equivelent)

• = $a\varphi' + b\psi'$ (Result for single veriable derivatives) • = $a\frac{\partial f}{x_1} + b\frac{\partial (g)}{x_1}$ (1.a)

 \mathbf{c}

• $\frac{\partial fg}{\partial x_1} = (\varphi \psi)'$ (Partial derivate of mulitveriate function and derivative of single veriable function are equivelant)

• = $\varphi'\psi + \varphi\psi'$ (Product rule for single veriable functions) • = $g\frac{\partial f}{\partial x_1} + f\frac{\partial g}{\partial x_1}$ (1.a , communitivity of addition and multipaction of reals)

2

a

• $\begin{pmatrix} t \\ t^2 \end{pmatrix}$ and $\begin{pmatrix} t^2 \\ t \end{pmatrix}$

Intersections at t = {0,1}
Finding the derivates

$$-\begin{pmatrix}1\\2t\end{pmatrix}\text{ and }\begin{pmatrix}2t\\1\end{pmatrix}$$
• Checking orthogonality at intersections

$$- \text{ at } t = 0$$

$$* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$

$$* \text{ orthognal}$$

$$- \text{ at } t = 1$$

*
$$\binom{1}{2} \cdot \binom{2}{1} = 4 \neq 0$$

* Not orthogonal

 \mathbf{b}

•
$$\binom{t}{t^2}$$
 and $\binom{s}{\frac{1}{2} - s^2}$
• intersections

Intersections

same x coordinate t = s
same y coordinate t² = ½ - t² so t = ±½

Finding derivatives

(1) and (1) / (-2t)

Checking orthogonality of vectors.

$$-\begin{pmatrix} 1\\2t \end{pmatrix}$$
 and $\begin{pmatrix} 1\\-2t \end{pmatrix}$

Sheeking of thoganality
$$- \operatorname{at} - \frac{1}{2}$$

$$- \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0$$

$$- \operatorname{Orthoganal}$$

$$- \operatorname{at} \frac{1}{2}$$

- Orthoganar
- at
$$\frac{1}{2}$$

* $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$

* Orthoganal

6

a

7

 \mathbf{b}

•
$$(a\vec{F} + b\vec{G})' = \left(a\begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix} + b\begin{pmatrix} g_1 \\ \vdots \\ g_m \end{pmatrix}\right)'$$

$$\bullet = \begin{pmatrix} af_1 \\ \vdots \\ af_m \end{pmatrix} + \begin{pmatrix} bg_1 \\ \vdots \\ bg_m \end{pmatrix} \\
\bullet = \begin{pmatrix} af_1 + bg_1 \\ \vdots \\ af_m + bg_m \end{pmatrix}'$$

$$\bullet = \begin{pmatrix} af_1 + bg_1 \\ \vdots \\ af_m + bg_m \end{pmatrix}$$

$$\bullet = \begin{pmatrix} \frac{\partial af_1 + bg_1}{\partial x_1} & \cdots & \frac{\partial af_1 + bg_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial af_m + bg_m}{\partial x_1} & \cdots & \frac{\partial af_m + bg_m}{\partial x_m} \end{pmatrix}$$

$$\bullet = \begin{pmatrix} \frac{\partial af_1}{\partial x_1} + \frac{\partial bg_1}{\partial x_1} & \cdots & \frac{\partial af_1}{\partial x_n} + \frac{\partial bg_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial af_m}{\partial x_1} + \frac{\partial bf_m}{\partial x_1} & \cdots & \frac{\partial af_m}{\partial x_n} + \frac{\partial bg_m}{\partial x_n} \end{pmatrix}$$

$$\bullet = \begin{pmatrix} \frac{\partial af_1}{\partial x_1} & \cdots & \frac{\partial af_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial af_m}{\partial x_1} & \cdots & \frac{\partial af_n}{\partial x_n} \end{pmatrix} + \begin{pmatrix} \frac{\partial bg_1}{\partial x_1} & \cdots & \frac{\partial bg_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial bg_m}{\partial x_1} & \cdots & \frac{\partial bg_m}{\partial x_n} \end{pmatrix}$$

$$\bullet = \begin{pmatrix} a\frac{\partial f_1}{\partial x_1} & \cdots & a\frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ a\frac{\partial f_m}{\partial x_1} & \cdots & a\frac{\partial f_n}{\partial x_n} \end{pmatrix} + \begin{pmatrix} b\frac{\partial g_1}{\partial x_1} & \cdots & b\frac{\partial g_m}{\partial x_n} \\ \vdots & \vdots & \vdots \\ b\frac{\partial g_m}{\partial x_1} & \cdots & b\frac{\partial g_m}{\partial x_n} \end{pmatrix}$$

$$\bullet = a\vec{F'} + b\vec{G'}$$