## 10. Named Continuous Distributions in R

Principles of Data Science with R

Dr. Uma Ravat PSTAT 10

## **Summary:**

- Named discrete distributions
  - Discrete uniform
  - Binomial Distribution

#### Next:

- Named continuous distributions
  - Uniform Distribution
  - Normal Distribution

#### Recall

- A random variable is discrete when we can count the number of outcomes.
- A random variable is continuous when the outcomes can be measured.
  - A continuous rvtakes all values in an interval of real numbers.

#### **Examples of continuous RVs**

- Height
- Weight
- Time
- Temperature

## **Probability from histogram**

- Below is a histogram of the distribution of heights of US adults.
- The proportion of data that falls in the shaded bins gives the probability that a randomly sampled US adult is between 180 cm and 185 cm (about 5'11" to 6'1").



# From histograms to continuous distributions

Since height is a continuous numerical variable, its **probability density function** is a smooth curve.



## Probabilities from continuous distributions

Therefore, the probability that a randomly sampled US adult is between 180 cm and 185 cm can also be estimated as the shaded area under the curve.



## By definition...

Since continuous probabilities are estimated as "the area under the curve", the probability of a person being exactly 180 cm (or any exact value) is defined as 0.



What does this say about  $\mathbb{P}(X \leq 180)$  vs.  $\mathbb{P}(X < 180)$ ?

#### Distribution of a continuous RV

- is specified by its Probability Density Function (p.d.f.)
- The pdf can be represented by
  - a function f(x), the density function or
  - its graph, the density curve
- the probabilities are given by the area under the graph between specified values
  - If X is a continuous r.v., then P(X = x) = 0 for all values x.
- The total area under a density curve is always equal to 1.

# **Continuous Probability Distributions**

1. The Uniform Distribution

2. The Normal Distribution

- All values are equally likely to occur
- the pdf has a uniform shape (looks the same) across the entire range of values.

- All values are equally likely to occur
- the pdf has a uniform shape (looks the same) across the entire range of values.



• The mean of the distribution?

## Probability calculations: By hand

$$P(X < 5), P(X \le 5), P(3 \le X \le 5), P(3 < X \le 5), P(3 \le X < 5), P(X > 5), P(X \ge 5)$$

Area under the density curve -> Area of rectangles



## Probability calculations: Using R:

$$P(X < 5), P(X \le 5), P(3 \le X \le 5), P(3 < X \le 5), P(3 \le X < 5)$$

punif(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)

 $P(X \leq q)$  is the area under the density curve to the **left** of q



## Probability calculations: Using R:

$$P(X > 5), P(X \ge 5)$$

- punif(q, min = 0, max = 1, lower.tail = FALSE, log.p = FALSE)
- 1 punif(q, min = 0, max = 1)

 $P(X \ge q)$  is the area under the density curve to the **right** of q



# The continuous Uniform distribution on [a,b]

$$X \sim \text{UNIF}(a, b)$$
 then

- The probability density function (p.d.f) is given by  $f(x) = \frac{1}{b-2}$ , if  $a \le x \le b$ 
  - area under the density curve is 1
  - p.d.f in R: dunif(x, min = a, max = b, log = FALSE)
- mean:  $E(X) = \mu = \frac{a+b}{2}$
- probability calculations
  - By hand: Area under the density curve -> Area of rectangles
  - By R: punif(q, min = a, max = b, lower.tail = TRUE, log = FALSE)
- generating samples from uniform distribution: runif

```
runif(5) # default is a = 0, b = 1
```

## [1] 0.7278344 0.5644525 0.2314485 0.1840383 0.6267331

# Example: Uniform Distribution. Time Spent Waiting for a Bus

A bus arrives at a stop every 10 minutes. A student is equally likely to arrive at the stop at any time. How long will the student have to wait?

- Let X denote the waiting time until the next bus arrives.
- X is a continuous uniform random variable, measured from 0 to 10 minutes.
- p.d.f is  $f(x) = \frac{1}{10}$ , if  $0 \le x \le 10$

What is the probability the waiting time, X,

- 1. 5 minutes or less?
- 2. between 5 and 7 minutes?
- 3. more than 6 minutes?

It is always helpful(and mistakes are avoided) to **draw a picture** of the density and **shade the desired area** under the curve while doing probability calculations.

#### 1. 5 minutes or less?



```
punif(5, min = 0, max = 10)
```

#### 2. between 5 and 7 minutes?



```
punif(7, min = 0, max = 10) - punif(5, min = 0, max = 10)
```

3. more than 6 minutes?



```
## [1] 0.4
# or
punif(6, min = 0, max = 10, lower.tail = FALSE)
```

punif(10, min = 0, max = 10) - punif(6, min = 0, max = 10)

## Named Continuous distribution: Normal distribution

- Uni modal and symmetric, bell shaped curve
- Many variables are nearly normal, but none are exactly normal
- Denoted as  $\mathbb{N}(\mu, \sigma)$  → Normal with mean  $\mu$  and standard deviation  $\sigma$



- For example;
  - the heights of people,
  - the weights of similar animals,
  - measurements on machine produced items

## Heights of males



"The male heights on OkCupid very nearly follow the expected normal distribution – except the whole thing is shifted to the right of where it should be. Almost universally guys like to add a couple inches."

"You can also see a more subtle vanity at work: starting at roughly 5' 8", the top of the dotted curve tilts even further rightward. This means that guys as they get closer to six feet round up a bit more than usual, stretching for that coveted psychological benchmark."

# Heights of females



"When we looked into the data for women, we were surprised to see height exaggeration was just as widespread, though without the lurch towards a benchmark height."

 $\{ \texttt{http:} / / \texttt{blog.okcupid.com/index.php/the-biggest-lies-in-online-dating} / \}$ 

## **Normal Distribution**

If 
$$X \sim \mathbb{N}(\mu, \sigma)$$

- $\mu$  and  $\sigma$  are parameters for the normal distribution denoting the mean and standard deviation respectively.
- The probability density function (p.d.f) is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$



- The total area that lies under the curve is 1 or 100%
- $\mathbb{N}(\mu = \mathbb{1}, \sigma = \mathbb{1})$  is called the standard normal distribution

# A Family of Density Curves with same mean $(\mu = 1)$



# A Family of Density Curves the same standard deviation (s = 1)





->

->

## **Properties of the Normal Distribution**



- The mean, median, and mode are equal
- Bell shaped and is symmetric about the mean
- The total area that lies under the curve is 1 or 100%
- Probabilities are calculated as area under the curve between specific values, generally using the c.d.f
- As the curve extends farther and farther away from the mean, it gets closer and closer to the x axis but never touches it.
- The curve is approximately 6 standard deviations across.

# 68-95-99.7 (1-2-3 SD) Rule for Normal distribution

- For nearly normally distributed data,
  - about 68% falls within 1 SD of the mean,
  - about 95% falls within 2 SD of the mean,
  - about 99.7% falls within 3 SD of the mean.
- It is possible for observations to fall 4, 5, or more standard deviations away from the mean, but these occurrences are very rare if the data are nearly normal.



# Describing variability using the 68-95-99.7 Rule

SAT scores are distributed nearly normally with mean 1500 and standard deviation 300.

- $\sim$  68% of students score between 1200 and 1800 on the SAT.
- $\sim 95\%$  of students score between 900 and 2100 on the SAT.
- $\sim 99.7\%$  of students score between 600 and 2400 on the SAT.



## Normal Distribution Functions in R

```
p.d.f: dnorm(x, mean, sd)
```

```
• c.d.f (\mathbb{P}(X \leq q)): pnorm(q, mean, sd)
```

Quantile: qnorm(p, mean, sd)

• simulation/sample generation: rnorm(n, mean, sd)

# Plot the standard normal density N(0,1)



```
dnorm(1) # pdf at x = 1
```

```
## [1] 0.2419707
```

## Plot the cdf of the standard normal RV N(0,1)



**15th percentile:** That x such that area to the left of x is 0.15  $P(X \le x) = 0.15$  or c.d.f at x = 0.15

## Percentiles, Quantiles

**15th percentile:** That x such that area to the left of x is 0.15

$$P(X \le x) = 0.15 \text{ c.d.f at } x = 0.15$$



```
pnorm(-1) # cdf(-1) \sim 0.15 or P(X < -1) \sim 0.15
```

```
## [1] 0.1586553
```

round(qnorm(0.1586555),2) # 15% percentile is -1(inverse cdf)

## Recall: 5 number summary and Box plots

## Summarizing numerical data: 5 number summary

Min, 1st quatile, Median, 3rd quartiles, Max

```
c(min(x), quantile(x,0.25), median(x),
quantile(x,0.75), max(x))
```

summary()

# 5 number summary and box plot

```
library(tidyverse)
x <- na.omit(starwars$height)
c(min(x), quantile(x,0.25), median(x),
  quantile(x, 0.75), max(x))
##
      25%
              75%
## 66 167 180 191 264
summary(x)
##
     Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
     66.0 167.0 180.0
                          174.4 191.0
##
                                           264.0
```



Inter quartile range = Middle 50% of the distribution

```
Whiskers: 1.5*interquartile range below 1st quartile(25th percentile) and above the 3rd quartile(75th percentile) iqr = quantile(x,0.75) - quantile(x,0.25) iqr1.5 = 1.5*iqr lower = quantile(x,0.25) - iqr1.5 upper = quantile(x,0.75) + iqr1.5 boxplot_points = c(lower,quantile(x,0.25), quantile(x,0.50), quantile(x,0.75), upper) names(boxplot_points) <- c("lower", "25th percentile", "median", "75th percentile", "upper") print(boxplot_points)
```

| ## | lower 25th perc | entile | median | 75th percentile | upper |
|----|-----------------|--------|--------|-----------------|-------|
| ## | 131             | 167    | 180    | 191             | 227   |

# Visualizing numerical data: box plot





Height

#### Back to normal distributions

## Is your Data Normal? qqnorm() and qqline()

- Visual check for normality:
  - The Normal Q Q plot, or quantile quantile plot, is a graphical tool to help us assess if a set of data plausibly came from a normal distribution.

#### Normal Q-Q plots:

- Quantiles from take sample data, plotted against quantiles calculated from a theoretical distribution.
- If the points fall on approximately a straight line, we can assume normality

• In R, In R, we create Q Q plots using qqnorm()

Checking for normality: Is our data normally distributed library(palmerpenguins)

```
qqnorm(penguins$bill_length_mm)
qqline(penguins$bill_length_mm, col = "red")
```



```
library(palmerpenguins)
qqnorm(penguins$bill_depth_mm)
qqline(penguins$bill_depth_mm, col = "red")
```



# Probability calculation: Shade the required area

$$X \sim N(1, 1.5)$$
, what is  $P(X \le 2)$ 



```
pnorm(2, mean = 1, sd = 1.5)
```

## Simulating normal variates (observations)

Generate a sample of size 10 from N(1,1.5)



```
set.seed(10262022)
rnorm(10, mean = 1, sd = 1.5)
```

```
## [1] 0.32833073 1.33860079 -1.35139136 1.78558872 0.99898
## [7] 1.71126107 1.01991149 -0.01380774 0.26431305
```

#### We did:

PDF, plotting pdf, cdf, probability calculations by hand and using R for Continuous uniform, normal distributions.

```
binomial distribution Binom(size, prob)
```

- dbinom(x, size, prob)
- pbinom(q, size, prob)
- rbinom(n, size, prob)

#### uniform distribution Unif(min, max)

- dunif(x, min, max)
- punif(q, min, max)
- runif(n, min, max)

#### normal distribution N(mean, sd)

- dnorm(x, mean, sd)
- pnorm(q, mean, sd)
- rnorm(n, mean, sd)