CS2842 Computer Systems – Lecture V

Representing Numerical Data

Dr. Sapumal Ahangama Department of Computer Science and Engineering

BINARY CODED DECIMAL

BCD

Stored as a digit-by-digit binary representation of the original decimal integer

Decimal	Binary	BCD
68	= 0100 0100	= 0110 1000
	$= 2^6 + 2^2 = 64 + 4 = 68$	$= 2^2 + 2^1 = 6$ $2^3 = 8$
99	= 0110 0011	= 1001 1001
(largest 8-bit	$= 2^6 + 2^5 + 2^1 + 2^0 =$	$= 2^3 + 2^0$ $2^3 + 2^0$
BCD)	= 64 + 32 + 2 + 1 = 99	= 9 9
255	= 1111 1111	= 0010 0101 0101
(largest 8-bit	= 2 ⁸ - 1 = 255	$= 2^1 2^2 + 2^0 2^2 + 2^0$
binary)		= 2 5 5

VALUE RANGE

- ▶ Binary: 4 bits can hold 16 different values (0 to 15)
- ▶ BCD: 4 bits can hold only 10 different values (0 to 9)
- ▶ BCD range of values <conventional binary representation

No. of Bits	BCD Range		Binary Range	
4	0-9	1 digit	0-15	1+ digit
8	0-99	2 digits	0-255	2+ digits
12	0-999	3 digits	0-4,095	3+ digits
16	0-9,999	4 digits	0-65,535	4+ digits
20	0-99,999	5 digits	0-1 million	6 digits
24	0-999,999	6 digits	0-16 million	7+ digits
32	0-99,999,999	8 digits	0-4 billion	9+ digits
64	0-(10 ¹⁶ -1)	16 digits	0-16 quintillion	19+ digits

CONVENTIONAL BINARY VS. BCD

- Binary representation generally preferred
 - Greater range of value for given number of bits
 - Calculations are easier
- BCD often used in business applications to maintain decimal rounding and decimal precision
 - 0.2₁₀ = .001100110011... (Conventional Binary)
 - \rightarrow 0.2₁₀ = 0.0010 (BCD)

EXAMPLE

A Simple BCD Multiplication

EXPONENTIAL NOTATION

Also called Scientific Notation

EXPONENTIAL NOTATION

- Example: 12345 × 10⁰
- ▶ 4 specifications required for a number
 - Sign ("+" in example)
 - Magnitude or mantissa(12345)
 - Sign of the exponent ("+")
 - Magnitude of the exponent (5)
- Plus
 - Base of the exponent (10)
 - Location of decimal point (or other base) radix point
- \rightarrow 0.12345 x 10⁵
- ightharpoonup 123450000 \times 10⁻⁴

FORMAT SPECIFICATION

For integers

SMMMMMMM

- For floating point numbers,
 - Must be divided: to sub parts
 - Part of the space is reserved for the exponent and its sign
 - The remainder is allocated to the mantissa and its sign
 - The base of the exponent and the implied location of the binary point are standardized as part of the format

FORMAT SPECIFICATION

For floating point numbers,

Increased range of values (two digits of exponent) traded for decreased precision (two digits of mantissa)

FORMAT

- Mantissa: sign-magnitude format with sign digit
- Assume decimal point located at beginning of mantissa
- Excess-N notation: Complementary notation
 - Pick middle value as offset where N is the middle value
 - Excess-50 notation

Representation	0	49	50	99
Exponent being represented	-50	-1	0	49
	_	ncreasing	value	+

MAGNITUDE RANGE

$$0.00001 \times 10^{-50} < \text{number} < 0.99999 \times 10^{+49}$$

- Larger range than the integers
- Represent fractions

OVERFLOW AND UNDERFLOW

- Underflow,
 - The number is a decimal fraction of magnitude too small to be stored

Regions of Overflow and Underflow

EXAMPLES

$$05324657 = 0.24657 \times 10^{3} = 246.57$$
 $54810000 = -0.10000 \times 10^{-2} = -0.0010000$
 $55555555 = -0.55555 \times 10^{5} = -55555$
 $04925000 = 0.25000 \times 10^{-1} = 0.025000$

Convert 246.8035 to floating point representation

FLOATING POINT CALCULATIONS

- Addition and subtraction
 - Exponent and mantissa treated separately
 - Exponents of numbers must agree
 - Align decimal points
 - Least significant digits may be lost
 - Mantissa overflow requires exponent again shifted right

ADDITION AND SUBTRACTION

(1)0019850

05210019(850)

ADDITION AND SUBTRACTION

```
05199520 = 0.99520 \times 10^{1} = 9.9520

04967850 = 0.67850 \times 10^{-1} = 0.06785

10.01985 = 0.1001985 \times 10^{2}
```

MULTIPLICATION AND DIVISION

$$05220000 \times 04712500$$

$$52 + 47 - 50 = 49$$

 $0.20000 \times 0.12500 = 0.025000000$
 04825000

05220000 is equivalent to 0.20000 \times 10², 04712500 is equivalent to 0.12500 \times 10⁻³ $0.0250000000 \times 10^{-1} = 0.25000 \times 10^{-2}$

FLOATING POINT IN THE COMPUTER

- 4, 8, or 16 bytes can be used to represent a floating point numbers
- Typical floating point format
 - ▶ 32 bits provide range $\sim 10^{-38}$ to 10^{+38}
 - ▶ 8-bit exponent = 256 levels
 - Excess-128 notation
 - •23/24 bits of mantissa: approximately 7 decimal digits of precision

FLOATING POINT IN THE COMPUTER

IEEE 754 STANDARD

- Defines formats for 32-bit and 64-bit floating point arithmetic
 - Facilitates the portability of programs between different computers that support the standard
- ▶ 32 bits,
 - I sign bit
 - \triangleright 8 bits exponent (2⁻¹²⁶ to 2¹²⁷)
 - ▶ 23 bits mantissa
 - Normalized

IEEE 754 STANDARD

± 0	\cap
	U
not 0	$\pm 2^{-126} \times 0.M$
any	$\pm 2^{E-127} \times 1.M$
± 0	± ∞
not 0	NaN (Not a Number)
	any ± 0

CONVERSION: BASE 10 AND BASE 2

- Convert 253.75₁₀ to binary floating point form
 - Multiply number by 100 => 25375
 - Convert to binary equivalent II0 0011 0001 IIII
 - Arr 1.1000 1100 0111 11 \times 2¹⁴

PROGRAMMING CONSIDERATIONS

- Integer advantages
 - ▶ Easier for the computer to perform
 - Potential for higher precision
 - Faster to execute
 - Fewer storage locations to save time and space
- Most high-level languages provide 2 or more formats
 - Short integer (16 bits)
 - Long integer (64 bits)

PROGRAMMING CONSIDERATIONS

Real numbers

- Variable or constant has fractional part
- Numbers take on very large or very small values outside integer range
- Program should use least precision sufficient for the task
- Packed decimal attractive alternative for business applications

THANK YOU

REFERNCES

Chapter 5: REPRESENTING NUMERICAL DATA -The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach -4th Edition, Irv Englander -John Wiley and Sons