

# Introduction to Association Rules









### APA YANG AKAN KITA PELAJARI



#### **Associations and applications**

- What is Association Rules
- Association Rules Intuition
- Association Rules
  Algorithm
- Applications of Association
- Association Rules Cases





## **Unsupervised Learning Process**









## Apa itu Association Rules Mengapa Kita Pelajari di Data Science?









Association Rules Learning: The unsupervised learning technique that checks for the dependency of one data item on another data item and maps accordingly so that it can be more





### **Association Rules Use Cases**





Market Basket Analysis



Recommendation Systems



**Customer Behavior** 





### **Market Basket Transaction**



| Purchase ID | Items                       |
|-------------|-----------------------------|
| 1           | Bread, Milk                 |
| 2           | Bread, Diaper, Beer, Snacks |
| 3           | Milk, Diaper, Beer, Soda    |
| 4           | Bread, Milk, Diaper, Beer   |
| 5           | Bread, Milk, Diaper, Soda   |

#### **Association Rules:**

{Bread} -> {Snacks}

{Bread, Beer} -> {Snacks}

{Bread, Milk} -> {Diaper, Soda}

{Milk, Bread} -> {Soda, Beer}





## **Itemset**





Itemset = {Bread, Egg, Milk}





# Association Rules Evaluation



#### **Metrics for Evaluation:**

- 1. Support
- 2. Confidence





## **Support**



# The relative frequency that the rules show up

$$Support(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Total\ number\ of\ transactions}$$

{Bread, Diaper} => Beer

S({Bread, Diaper, Beer}) = 2/5

Support Count = 2

| Purchase ID | Items                       |
|-------------|-----------------------------|
| 1           | Bread, Milk                 |
| 2           | Bread, Diaper, Beer, Snacks |
| 3           | Milk, Diaper, Beer, Soda    |
| 4           | Bread, Milk, Diaper, Beer   |
| 5           | Bread, Milk, Diaper, Soda   |





# Measure of the reliability of a rule by likeliness of occurrence of consequent



$$Confidence(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Transactions\ containing\ X}$$

| Purchase ID | Items                       |
|-------------|-----------------------------|
| 1           | Bread, Milk                 |
| 2           | Bread, Diaper, Beer, Snacks |
| 3           | Milk, Diaper, Beer, Soda    |
| 4           | Bread, Milk, Diaper, Beer   |
| 5           | Bread, Milk, Diaper, Soda   |

{Bread, Diaper} => Beer

C({Bread, Diaper, Beer}) = 2/3





# Association Rules Mining



# From given the dataset, find the rules that:

- Support >= min support threshold
- Confidence >= min confidence threshold





# Mining Association Rules



#### 1. Frequent Itemset Generation

Generate all itemsets whose support >= min support

#### 1. Rule Generation

 Generate high confidence rules from each frequent itemset





# Association Rules Algorithm



- 1. Apriori
- 2. Eclat





## **Apriori Steps**



- 1. Set minimum Support and Confidence threshold Repeat until there are no new frequent itemsets:
- Takes all subset in the loop in the transactions which have bigger Support than minimum Confidence
- 2. Take all the rules of these subsets which have bigger confidence than minimum confidence
- 3. Sort the rules by decreasing lift

Lift = (Confidence(X-> Y) / Support(Y))