Pre-reading Lecture 32

Nodes

Edges

For **simplicity**: Draw undirected edges... they are actually directed.

Parent

Children

Inner

nodes

Leaf nodes

Subtree

Subtree

Subtree

Path of length 3

Path of length 2

Levels

(determined by length of path from root node)

Depth of a node

Equal to its level.

Depth/Height of a tree

Depth/Height of a tree

Depth/Height of a tree

Depth/Height of a tree

Depth/Height of a tree

Width of a tree

Number of nodes in the level with most nodes.

Summary of Tree Notation

- The node with no parent is the root (one per tree)
- A node with no child is a leaf
- Each node is either an inner node, or it is a root and/or leaf
- Every node that is not a leaf is a parent node
- Every node is the root node of its subtree
- Every node except the root is a child
- Height/Depth of a tree is also its maximum level
- Width: number of nodes in the level with the highest number of nodes

We will only talk about binary trees

Binary tree

Every node has at most two children.

Note: Every subtree is a Binary Tree

Unbalanced Binary Tree

Balanced Binary Tree

For every node

|height(left subtree) - height(right subtree)| ≤ 1