L2 Informatique

Boughattas Sedki

U-Paris

29 novembre 2023

 $\chi_u(\lambda)$ est un polynôme de degré $n=\dim(E)$ en λ , de terme de plus haut degré donné par $(-1)^n\lambda^n$. Le terme de degré (n-1) est $(-1)^{n-1}\operatorname{Tr}(u)\lambda^{n-1}$ et le terme de degré 0 est $\det(u)$. L'ensemble des racines du polynôme

 χ_u dans \mathbb{K} est $\mathsf{Sp}_{\mathbb{K}}(u)$, l'ensemble des valeurs propres de u.

Si $F_1, F_2,, F_n$ sont n sous-espaces vectoriels de E, on dit que la somme $\sum_{i=1}^{n} F_i$ est une somme directe si

$$\forall u \in F_1 + F_2 + ... + F_n, \exists! (u_1, u_2, ..., u_n) \in F_1 \times ... \times F_n \text{ tel que } u = \sum_{i=1}^n u_i.$$

On note la somme $\bigoplus_{i=1}^{n} F_i$ si les F_i sont en somme directe.

Proposition 1

Les sous-espaces propres sont en somme directe :

$$\sum_{\lambda\in\operatorname{\mathbf{Sp}}(u)}E_{\lambda}(u)=\underset{\lambda\in\operatorname{\mathbf{Sp}}(u)}{\oplus}E_{\lambda}(u).$$

Proposition 2

Dimension d'un sous-espace propre. Soit λ une valeur propre et soit $m(\lambda)$ la multiplicité de λ comme racine du polynôme caractéristique. On a alors :

$$1 \leq \dim(E_{\lambda}(u)) \leq m(\lambda).$$

Une matrice $A \in M_n(\mathbb{K})$ est diagonalisable s'il existe une matrice inversible P et une matrice diagonale D dans $M_n(\mathbb{K})$ tels que $D = P^{-1}AP$.

Théorème 2

Un endomorphisme est diagonalisable si et seulement s'il existe une base de *E* formée de vecteurs propres de *u*.

Un endomorphime $u \in \mathcal{L}(E)$ est diagonalisable s'il existe une base \mathcal{B} de E telle que $\mathsf{Mat}_{\mathcal{B}}(u)$ est diagonale.

Théorème 3

Un endomorphisme est diagonalisable si et seulement s'il existe une base de *E* formée de vecteurs propres de *u*.

Un endomorphisme $u \in \mathcal{L}(E)$ est diagonalisable si et seulement si $E = \bigoplus_{\lambda \in \mathbf{Sp}(u)} E_{\lambda}(u)$.

Un polynôme de $\mathbb{K}[X]$ est *scindé* s'il peut s'écrire comme le produit de polynômes de degré 1.

Soit $u \in \mathcal{L}(E)$, alors u est diagonalisable si et seulement si

- Son polynôme caractéristique χ_u est scindé;
- Pour toute valeur propre $\lambda \in \operatorname{Sp}(u)$ la dimension de l'espace propre associé à λ est égale à la multiplicité de λ comme racine du polynôme caractéristique :

$$\dim(E_{\lambda}(u)) = m(\lambda).$$

Soit E un espace vectoriel de dimension n. Un endomorphisme $u \in \mathcal{L}(E)$ qui admet exactement n valeurs propres distinctes est diagonalisable.