Christian B. Mendl, Irene López Gutiérrez, Keefe Huang

Exercise 13.2 (Bloch sphere representation of the phase damping channel)

Phase damping models decoherence in realistic physical situations and is described by the quantum channel

$$\mathcal{E}_{\mathsf{PD}}(\rho) = \sum_{k=0}^{1} E_k \rho E_k^{\dagger},$$

with operation elements

$$E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\lambda} \end{pmatrix}, \quad E_1 = \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix}$$

and "scattering" probability $\lambda \in [0,1]$. We assume $0 < \lambda < 1$ in the following

- (a) A quantum channel \mathcal{E} is called *unital* if $\mathcal{E}(I) = I$. Show that the phase damping channel is unital.
- (b) Recall that an arbitrary density operator ρ for a mixed state qubit can be represented as

$$\rho = \frac{I + \vec{r} \cdot \vec{\sigma}}{2},$$

with $\vec{r} \in \mathbb{R}^3$ the *Bloch vector* of ρ and $\vec{\sigma}$ the vector of Pauli matrices. Compute the Bloch vector \vec{r}' of the output state $\rho' = \mathcal{E}_{PD}(\rho)$ of the phase damping channel in dependence of \vec{r} . Also provide a short geometric interpretation.

- (c) In which case(s) does $\mathcal{E}_{PD}(\rho)$ describe a pure quantum system?
- (d) Compute the density matrix after n repeated applications of the phase damping operation, $\mathcal{E}_{PD}(\dots \mathcal{E}_{PD}(\mathcal{E}_{PD}(\rho)))$, and take the limit $n \to \infty$. You may work with a symbolic 2×2 matrix representation of ρ , or its Bloch representation and part (b).

Solution

(a) Since $\lambda \in (0,1)$, $\sqrt{1-\lambda}$ and $\sqrt{\lambda}$ are both real numbers. Inserting the identity matrix leads directly to

$$\mathcal{E}_{\mathrm{PD}}(I) = E_0 E_0^\dagger + E_1 E_1^\dagger = \begin{pmatrix} 1 & 0 \\ 0 & 1 - \lambda \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

(b) We first note that

$$\begin{split} E_0 X E_0^\dagger &= \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\lambda} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\lambda} \end{pmatrix} = \sqrt{1-\lambda} \, X, \\ E_1 X E_1^\dagger &= \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix} = 0 \quad \text{(zero matrix)}, \end{split}$$

and similarly $E_0YE_0^\dagger=\sqrt{1-\lambda}\,Y$ and $E_1YE_1^\dagger=0$. Analogous to (a), one computes that $\mathcal{E}(Z)=Z$. Now inserting the Bloch representation of ρ with $\vec{r}=(r_1,r_2,r_3)$ leads to

$$\mathcal{E}_{\mathsf{PD}}(\rho) = \frac{1}{2} \left(\mathcal{E}_{\mathsf{PD}}(I) + \sum_{\alpha = 1}^{3} r_{\alpha} \, \mathcal{E}_{\mathsf{PD}}(\sigma_{\alpha}) \right) = \frac{1}{2} \left(I + \sqrt{1 - \lambda} \, r_{1} \, X + \sqrt{1 - \lambda} \, r_{2} \, Y + r_{3} \, Z \right) = \frac{I + \vec{r}' \cdot \vec{\sigma}}{2}$$

with
$$\vec{r}' = (\sqrt{1-\lambda} \, r_1, \sqrt{1-\lambda} \, r_2, r_3).$$

Thus the x- and y-components of \vec{r} shrink by the factor $\sqrt{1-\lambda}$, while the z-component does not change. In other words, the Bloch vector approaches its projection onto the z-axis.

(c) The Bloch vector \vec{r} of any density matrix ρ satisfies $\|\vec{r}\| \leq 1$, with equality if and only if ρ describes a pure state (see exercise 11.2). According to (b), the quantum channel \mathcal{E}_{PD} scales the first and second entry of the input Bloch vector \vec{r} by the factor $\sqrt{1-\lambda} < 1$. Thus the Bloch vector \vec{r}' of $\mathcal{E}_{PD}(\rho)$ has unit length, $\|\vec{r}'\| = 1$, precisely if $\vec{r}' = \vec{r} = (0,0,\pm 1)$ (north or south pole of the Bloch sphere). The corresponding density matrices for these cases are $\rho = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\rho = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, describing a quantum system in state $|0\rangle$ and $|1\rangle$, respectively.

(d) According to (b), the Bloch vector after n repeated applications of the channel is equal to

$$\left(\sqrt{1-\lambda}^n r_1, \sqrt{1-\lambda}^n r_2, r_3\right) \stackrel{n \to \infty}{\to} (0,0,r_3)$$

since $\sqrt{1-\lambda} < 1$ by assumption. The matrix representation of the limiting density matrix is thus

$$\rho^{(\infty)} = \frac{1}{2} \begin{pmatrix} 1 + r_3 & 0 \\ 0 & 1 - r_3 \end{pmatrix},$$

that is, the phase damping channel "damps" the off-diagonal entries to zero.

Note: physically, $\rho^{(\infty)}$ represents a (classical) ensemble of the basis states $|0\rangle$ and $|1\rangle$, without any quantum superposition of these states.