Discrete and Continuous Probability Distributions

• Note:

- f(x) continuous pdf
- F(x) continuous cdf

· Discrete Probability Distribution

- P(X = x) = p(x)
 - Properties of p(x)
 - 1. $p(x) \ge 0$ for all x
 - 2. $\sum_{\kappa} p(x) = 1$

· Continuous Probability Distribution

- $P(a \le X \le b) = \int_a^b f(x) dx$
- Properties of f(x)
 - 1. $f(x) \ge 0$ for all x
 - 2. $\int_{-\infty}^{\infty} f(x) dx = 1$
- For a random variable X with the following density function:
 - $f(x) = \int kx + c$, $a \le x \le b$ 0, otherwise
 - To find the value of k find where $\int_{a}^{b} kx + c dx = 1$
- $P(a \le X \le b) = F(b) F(a)$
 - · Same premise as for normal distributions
 - · Different from the discrete case which is:
 - $P(a \le X \le b) = F(b) F(a 1)$
- F'(x) = f(x)
 - Essentially, you convert from cdf to pdf by finding the derivative of F(x)
 - And you convert from pdf to cdf by finding the integral of f(x) for all values of x

· Percentiles of a Continuous Distribution

- p A number between 0 and 1 that represents a percentile. A percentile is the point at which 100p percent of values falls at or below. Eq. 0.5 represents the 50th percentile
- η (p) is the function that gives the value for x that when put into F(x) = p. So when p = 0.5, $\dot{F}(x) = 0.5$, which means that value of x is where 50% of the sum of the probabilities for the values of x between a and x equals 50%, which is the median.
- p = F[η (p)] = $\int_{0}^{\eta(\phi)} f(y) dy$
 - Or if you can find the inverse of F(x)
 - Note: The inverse of a function (for a function f(x) represented by f⁻¹(x)) is the function that if you put the outcome of the function into, it will give you the value you originally put into the function to get that outcome.
 - η (p) = F^{-1} (p)

Expected Values

- The expected value or mean value of a continuous random variable X with pdf f(x):
 - $\mu = \mu_x = E(X) = \int_{-\infty}^{\infty} x.f(x) dx$
- If X is a continuous random variable with pdf f(x) and h(x) is any function of x, then:
 - $E[h(x)] = \int_{-\infty}^{\infty} h(x).f(x) dx$

Variance and Standard Deviation

- The variance of a continuous random variable X with pdf f(x) and mean value μ is:
- $\sigma_x^2 = \text{Var}(X) = \text{E}[(X \mu)^2] = \int_0^\infty (x \mu)^2 .f(x) dx$ The standard deviation of X is $\sigma_x = \sqrt{\text{Var}(X)}$
- - $Var(X) = E(X^2) [E(X)]^2$

Normal Distribution

- Even when individual variables themselves are not normally distributed, sums and average of the variables will under suitable condition have approximately a normal distribution (Central Limit Theorum)
- · A continuous random variable X is said to have a Normal (or Gaussian) distribution with parameters μ and σ , where $-\infty < \mu < \infty$ and $\sigma > 0$, if the pdf of X is: $f(x;\mu,\sigma) = \underbrace{\frac{1}{\sigma \sqrt{12\pi}}}_{\sigma} e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} - \infty < \alpha < \infty$

- Denoted as $X \sim N(\mu, \sigma^2)$
- · Normal density is symmetric; the median and mean coincide
- The value of σ is the distance from μ to the inflection point of the curve
- Large values of σ yield density curves the are quite spread out, and so you may observe a value of X quite far from μ .

Standard Normal Distribution

- To calculate $P(a \le X \le b)$ when $X \sim N(\mu, \sigma^2)$:
 - $\int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{1}{2}\left(\frac{2c}{\sigma}M\right)^{2}} dx$
 - You can use specialised approximations for solve this
 - · Otherwise use the standard normal distribution discussed previously
- The normal distribution with parameter values $\mu = 0$ and, of = 1 is called the standard normal distribution.
- A random variable that has a standard normal distribution is called a standard normal random variable denoted as Z
 - The pdf of Z is:
 - $f(z; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}z^2} \infty < z < \infty$
 - The cdf of Z denoted as $\varphi(z)$ is:
 - $P(Z < z) = \int_{-\infty}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} dy$

Log-Normal Distribution

- A continuous random variable X is said to have a log-normal distribution with parameters μ and σ , where $-\infty < \mu < \infty$ and $\sigma > 0$, if:
 - $ln(X) \sim N(\mu, \sigma^2)$
- The pdf of X:

•
$$f(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}$$
 $-\infty < x < \infty$

- · The cdf of X:
 - $f(x; \mu, \sigma') = \bigoplus \left(\frac{e_n(\infty) \mu}{\sigma} \right)$

· Transformations of Random Variables

- Where Y ~ $N(\mu, \sigma^2)$:
 - $Pr(X \le x) = Pr(e^y \le x) = Pr(Y \le ln(x))$
 - · Where Pr is probability
- · It can be shown that:
 - $E(X^n) = e^{n\mu + \frac{1}{2}n^2\sigma^n}$
 - So that:
 - E(X) = e^{M+ of}2
 - $Var(X) = e^{2\mu + \sigma^2} (e^{\sigma^2} 1)$

Gamma Distribution/Exponential Distribution

Exponential Distribution

- A continuous random variable X is said to have an exponential distribution if the pdf of X is:
 - $f(x; \lambda) = \lambda e^{-\lambda x}, x > 0$
 - The distribution of inter-arrival times in a Poisson Process with rate λ events per unit time
 - A cdf of:
 - $1 e^{\lambda x} x > 0$
 - E[X] = 1/入
 - $Var(X) = 1/\lambda^2$

Gamma Distribution

- The gamma distribution is a generalisation of the exponential distribution
- A continuous random variable X is said to have a gamma distribution if the pdf of X is:

•
$$f(x;\alpha,\beta) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta} x < 0$$

- Where $\Gamma(\alpha)$ is the gamma function
- And $\alpha > 0$ and $\beta > 0$
- The exponential distribution results from taking $\alpha = 1$ and $\beta = 1/\lambda$
- When g = 1, X is said to have a standard gamma distribution
- Gamma Function
 - For α < 0, the gamma function $\Gamma(\alpha)$ is defined by:

•
$$\Gamma(\alpha) = \int_{\alpha}^{\infty} x^{\alpha-1} e^{-x} dx$$

- $\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$ 1. For any $\alpha > 1$, $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
 - 2. For any positive integer n, r(n) = (n 1)!
 - 3. $\Gamma(1/2) = \pi$

Hypothesis testing

- We use confidence intervals when our goal is to estimate a population parameter such as the true proportion p (categorical) or mean L (quantitative) of a population
- We use tests of significance when the goal is to assess the evidence provided by the data about some claim concerning a population
- We make a claim (the null hypothesis H_n) and test it against an alternative claim (the alternative hypothesis - H_△)
- · We assess if the null hypothesis is really true, how likely would we be to observe an event as large as, or as small as, what we actually observed. (P-value)

Hypothesis Testing About a Population Mean

- For a categorical proportion p, remember to use z values (Normal distribution)
- For a quantitative variable X with population mean μ and population standard deviation σ , we want to test the hypotheses that:
 - H :μ=μο
 - H : M > Mo
- The test statistic:

•
$$T_{n-1} \sim t = \underbrace{\overline{x} \cdot \mu_o}_{s/\sqrt{n}}$$

- Where \overline{x} and s are calculated from the sample data
- This has a t-distribution with n 1 degrees of freedom
- The P-value for testing H₀ against:
 - $H_A: \mu > \mu_0$ is $P(T \ge t)$
 - H_a: µ < µ_o is P(T ≤ t)
 - $H_0: \mu \neq \mu_0$ is $2P(T \geq |t|)$ this is used when H_0 wasn't set up as directional
- Using R, the P-value is:
 - $P(T \ge t) = 1 pt((\bar{x} \mu)/(s/\sigma), (n-1))$
- The level of significance is associated with a critical value.
 - An alternative way of doing the hypothesis test is to compare the value or t we calculated to the critical t-value associated with the level of significance we want to assess for.
 - If it is greater than t_{cvit} we would reject H_o; if less, we would fail to reject H_o
- The P-value gives us the probability of rejecting the null hypothesis when in fact is it true

Comparing Two Population Means

- Population 1: $(\mu_1, \sigma_1^2) \rightarrow (\bar{X}_1, s_1^2)$ Population 2: $(\mu_2, \sigma_2^2) \rightarrow (\bar{X}_2, s_2^2)$
- Underlying Model
 - Every test is based on a underlying model for the data generation process
 - · In this case:
 - $Y_{i,j} = \mu + g_i + \varepsilon_{i,j}$, $\varepsilon_{i,j} \sim N(0, \sigma_i^2)$, $j = 1, ..., n_i$ Where g_i is the effect of being in a certain group

 - And ∈_{i,j} is some random variance

Comparing Two Population Means

- 1. Must both be SRS's from two distinct populations.
 - a) So the samples must be independent
 - b) And measuring the same response variable for both samples
- 2. Both must be normally distributed
 - The means and sd's of the population is unknown, but in practice it is enough that the distribution have similar shapes with no strong outliers
- 3. For observations with moderate skewness and no outliers, the sum of the two sample sizes should be at least 15
- 4. For observations from a population with strong skewness and no outliers, the sum of the two sample sizes should be at least 40
- Two-Sample t-Procedure
 - Two-Sample t-Statistic
 - We take variation into account and standardise the observed difference x̄, x̄, by subtracting its mean, M₁-M₂, and dividing the result by its standard error (two-sample tstatistic)

• t =
$$\underbrace{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}_{\sqrt{\frac{S_1}{n_1} + \frac{S_2}{n_2}}}$$

• Where you don't know μ just use $(\overline{x}_1 - \overline{x}_2)$

- The two-sample t-statistic has approximately a t distribution. It does not have exactly a t distribution if the populations are both exactly normal.
 - In practice, however, the approximation is very accurate
- You can use software to use the statistic t with accurate critical values
- Otherwise without software, use the statistic t with critical values from the t-distribution with degrees of freedom equal to the smaller of $n_1 - 1$ and $n_2 - 1$.
 - The significance test gives a P-value equal to or greater than the true P-value
- Two-Sample Confidence Interval

•
$$(\widetilde{x}_1 - \widetilde{x}_2) \pm t^* \sqrt{\frac{S_1}{n_1} + \frac{S_2}{n_2}}$$

 t* is the critical value for confidence level c for the t distribution with degrees of freedom from either software, or the smaller of n₁ - 1 and n₂ - 1