MAP 433 : Introduction aux méthodes statistiques. Cours 5

7 mars 2014

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables Págression

Régression non-linéaire

Aujourd'hui

- 1 Méthode d'estimation dans le modèle de régression
 - Modèle de régression, notion de « design »
 - Régression à design déterministe
 - La droite des moindres carrés
 - Régression linéaire multiple
 - Le cas gaussien
 - Modèle linéaire gaussien
- 2 Sélection de variables
 - Backward Stepwise Regression
 - LASSO
- 3 Régression non-linéaire
- 4 Bilan provisoire : modèles paramétriques dominés

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

riables

Régression non-linéaire

Influence d'une variable sur une autre

■ Principe : on part de l'observation d'un *n*-échantillon

$$Y_1,\ldots,Y_n \ (Y_i\in\mathbb{R})$$

- A chaque observation Y_i est associée une observation auxiliaire $X_i \in \mathbb{R}^k$.
- On suspecte l'échantillon

$$X_1,\ldots,X_n \quad (X_i \in \mathbb{R}^k)$$

de contenir la « majeure partie de la variabilité des Y_i ».

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe

La droite des moindres carrés Régression inéaire multiple Le cas gaussier Modèle linéaire

Sélection de

Régression non-linéaire

Modélisation de l'influence

■ Si X_i contient toute la variabilité de Y_i , alors Y_i est mesurable par rapport à X_i : il existe $r: \mathbb{R}^k \to \mathbb{R}$ telle que

$$Y_i = r(\boldsymbol{X}_i),$$

mais peu réaliste (ou alors problème d'interpolation numérique).

 Alternative : représentation précédente avec erreur additive : on postule

$$Y_i = r(\boldsymbol{X}_i) + \xi_i,$$

 ξ_i erreur aléatoire centrée (pour des raisons d'identifiabilité).

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe La droite des moindres carrés

Sélection de

Régression

Motivation : meilleure approximation L^2

Meilleure approximation L^2 . Si $\mathbb{E}\left[Y^2\right] < +\infty$, la meilleure approximation de Y par une variable aléatoire X-mesurable est donnée par l'espérance conditionnelle $\mathbb{E}\left[Y|X\right]$:

$$\mathbb{E}\left[\left(Y - r(\boldsymbol{X})\right)^{2}\right] = \min_{h} \mathbb{E}\left[\left(Y - h(\boldsymbol{X})\right)^{2}\right]$$

où

$$r(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \ \mathbf{x} \in \mathbb{R}^k.$$

• On appelle $r(\cdot)$ fonction de régression de Y sur X.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe La droite des moindres carrés

Modèle linéaire gaussien Sélection de

Régression

Bilan

Régression

On définit :

$$\xi = Y - \mathbb{E}[Y|X] \implies \mathbb{E}[\xi] = 0.$$

On a alors naturellement la représentation désirée

$$Y = r(X) + \xi, \quad \mathbb{E}\left[\xi\right] = 0$$

si l'on pose

$$r(x) = \mathbb{E}\left[Y|X = x\right], x \in \mathbb{R}^k$$

On observe alors un *n*-échantillon

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

οù

$$Y_i = r(\boldsymbol{X}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0$$

avec comme paramètre la fonction $r(\cdot)$ + un jeu d'hypothèses sur la loi des ξ_i .

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe

La droite des moindres carrés Régression linéaire multiple Le cas gaussien

Sélection de

Régression non-linéaire

Modèle de régression à design aléatoire

Définition

Modèle de régression à design aléatoire = donnée de l'observation

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

avec $(Y_i, X_i) \in \mathbb{R} \times \mathbb{R}^k$ i.i.d., et

$$Y_i = r(\boldsymbol{\vartheta}, \boldsymbol{X}_i) + \xi_i, \ \mathbb{E}\left[\xi_i | \boldsymbol{X}_i\right] = 0, \ \boldsymbol{\vartheta} \in \Theta \subset \mathbb{R}^d.$$

- **x** \rightsquigarrow $r(\vartheta, \mathbf{x})$ fonction de régression, connue au paramètre ϑ près.
- **X**_i = variables explicatives, co-variables, prédicteurs; $(X_1, ..., X_n) = \text{design}.$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle

Modèle de régression, notion de
≪ design ≫ Régression à design déterministe La droite des moindres carrés Régression linéaire multiple Le cas gaussien Modèle linéaire

Sélection de variables

Régression non-linéaire

Modèle alternatif : signal+bruit

■ Principe : sur un exemple. On observe

$$Y_i = r(\vartheta, i/n) + \xi_i, \quad i = 1, \dots, n$$

où $r(\vartheta, \cdot) : [0, 1] \to \mathbb{R}$ est une fonction connue au paramètre $\vartheta \in \Theta \subset \mathbb{R}^d$ près, et les ξ_i sont i.i.d., $\mathbb{E}\left[\xi_i\right] = 0$.

- But : reconstruire $r(\vartheta, \cdot)$ c'est-à-dire estimer ϑ .
- Plus généralement, on observe

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, i = 1, \ldots, n$$

où x_1, \ldots, x_n sont des points de \mathbb{R}^k déterministes.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation
dans le modèle
de régression

Modèle de

régression, notion de
≪ design ≫
Régression à design
design
design
design
design
des des des
moindres carrés
Régression
linéaire multiple

Sélection de

Régression non-linéaire

Modèle de régression à design déterministe

Définition

Modèle de régression à design déterministe = donnée de l'observation

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec $Y_i \in \mathbb{R}, x_i \in \mathbb{R}^k$, et

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0, \ \vartheta \in \Theta \subset \mathbb{R}^d.$$

- x; déterministes, donnés (ou choisis) : plan d'expérience, points du « design ».
- Hypothèses sur les ξ_i : à débattre. Pour simplifier, les ξ_i sont i.i.d. (hypothèse restrictive).
- Attention! Les Y_i ne sont pas identiquement distribuées.

Question : Comment estimer ϑ dans ce modèle?

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation
dans le modèle
de régression
Modèle de
régression,
notion de
design
Régression à
design

Régression à design déterministe
La droite des moindres carrés Régression linéaire multiple
Le cas gaussien
Modèle linéaire

Sélection de variables

Régression non-linéaire

Bilan

Régression gaussienne

Modèle de régression à design déterministe :

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \ \vartheta \in \Theta \subset \mathbb{R}^d.$$

- Supposons : $\xi_i \sim \mathcal{N}(0, \sigma^2)$, i.i.d.
- On a alors le modèle de régression gaussienne. Comment estimer ϑ ? On sait expliciter la loi de l'observation $Z = (Y_1, \ldots, Y_n) \Longrightarrow$ appliquer le principe du maximum de vraisemblance.
- La loi de Y_i :

$$\mathbb{P}^{Y_i}(dy) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y - r(\vartheta, \mathbf{x}_i))^2\right) dy$$

$$\ll dy.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation
dans le modèle
de régression
Modèle de régression,
notion de
≪ design ≫
Kégression à
design
déterministe
La droite des
moindres carrès
Régression
linéaire multiple
Le cas gaussien
Modèle linéaire

Sélection de variables

Régression non-linéaire

EMV pour régression gaussienne

- Le modèle $\{\mathbb{P}_{\vartheta}^n = \text{loi de } (Y_1, \dots, Y_n), \vartheta \in \mathbb{R}^k\}$ est dominé par $\mu^n(dy_1 \dots dy_n) = dy_1 \dots dy_n$.
- D'où

$$\frac{d \mathbb{P}_{\vartheta}^{n}}{d\mu^{n}}(y_{1},\ldots,y_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(y_{i} - r(\vartheta, \boldsymbol{x}_{i}))^{2}\right)$$

$$= \frac{1}{(\sqrt{2\pi\sigma^{2}})^{n}} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (y_{i} - r(\vartheta, \boldsymbol{x}_{i}))^{2}\right).$$

La fonction de vraisemblance

$$\mathcal{L}_n(\vartheta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - r(\vartheta, \boldsymbol{x}_i))^2\right)$$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

design >> Régression à design déterministe
La droite des moindres carrés Régression linéaire multiple
Le cas gaussien

Sélection de variables

Régression non-linéaire

Estimateur des moindres carrés

Maximiser la vraisemblance en régression gaussienne = minimiser la somme des carrés :

$$\sum_{i=1}^n (Y_i - r(\vartheta, \mathbf{x}_i))^2 \to \min_{\vartheta \in \Theta}.$$

Définition

Estimateur des moindres carrés : tout estimateur $\widehat{\vartheta}_{n}^{\text{mc}}$ t.q. $\widehat{\vartheta}_{n}^{\text{mc}} \in \arg\min_{\vartheta \in \Theta} \sum_{i=1}^{n} \left(Y_{i} - r(\vartheta, \boldsymbol{x}_{i}) \right)^{2}$.

- L'EMC est un M-estimateur. Pour le modèle de régression gaussienne : EMV = EMC.
- Existence, unicité.
- Propriétés remarquables si la régression est linéaire : $r(\vartheta, \mathbf{x}_i) = \vartheta^T \mathbf{x}_i$.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation
dans le modèle
de régression

Modèle de
régression,
notion de

notion de

design >

Régression à
design
déterministe
La droite des
moindres carrés
Régression
linéaire multiple
Le cas gaussien
Modèle linéaire

Sélection de variables

Régression non-linéaire

Droite de régression

■ Modèle le plus simple $r(\vartheta, x) = a + bx$

$$Y_i = a + bx_i + \xi_i, \quad i = 1, \ldots, n$$

avec $\vartheta = (a, b)^T \in \Theta = \mathbb{R}^2$ et les (x_1, \dots, x_n) donnés.

L'estimateur des moindres carrés :

$$\widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}} = (\hat{a}, \hat{b}) = \arg\min_{(a,b) \in \mathbb{R}^2} \sum_{i=1}^{n} (Y_i - a - bx_i)^2.$$

Solution explicite existe toujours, sauf cas pathologique quand tous les x_i sont les mêmes (Poly, page 112).

MAP 433 : Introduction aux méthodes statistiques. Cours 5

l'estimation lans le modèle le régression Modèle de

Modèle de égression, notion de ≪ design ≫ Régression à Jesign

La droite des moindres carrés Régression linéaire multiple Le cas gaussien Modèle linéaire

Sélection de variables

Régression non-linéaire

Régression linéaire simple

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe

La droite des moindres carrés

linéaire multiple Le cas gaussien Modèle linéaire

Sélection de variables

Régression non-linéaire

Régression linéaire simple

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe

La droite des moindres carrés

linéaire multiple Le cas gaussien Modèle linéaire

Sélection de variables

Régression non-linéaire

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\vartheta, \mathbf{x}_i) = \vartheta^T \mathbf{x}_i$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \vartheta^T \mathbf{x}_i + \xi_i, \quad i = 1, \dots, n$$

où
$$\vartheta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$ig| oldsymbol{Y} = \mathbb{M} artheta + oldsymbol{\xi}$$

avec $\mathbf{Y} = (Y_1 \cdots Y_n)^T$, $\boldsymbol{\xi} = (\xi_1 \cdots \xi_n)^T$ et \mathbb{M} la matrice $(n \times k)$ dont les lignes sont les x_i .

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design

La droite des moindres carrés Régression linéaire multiple

linéaire multiple Le cas gaussien Modèle linéaire gaussien

Sélection de variables

Régression non-linéaire

EMC en régression linéaire multiple

■ Estimateur des moindres carrés en régression linéaire multiple : tout estimateur $\widehat{\vartheta}_n^{\,mc}$ satisfaisant

$$\sum_{i=1}^{n} (Y_i - (\widehat{\vartheta}_n^{mc})^T x_i)^2 = \min_{\vartheta \in \mathbb{R}^k} \sum_{i=1}^{n} (Y_i - \vartheta^T x_i)^2.$$

En notation matricielle :

$$\begin{split} \| \boldsymbol{Y} - \mathbb{M} \, \widehat{\vartheta}_{n}^{\, \text{mc}} \|^{2} &= \min_{\vartheta \in \mathbb{R}^{k}} \| \boldsymbol{Y} - \mathbb{M} \, \vartheta \|^{2} \\ &= \min_{v \in V} \| \boldsymbol{Y} - v \|^{2} \end{split}$$

où $V = \operatorname{Im}(\mathbb{M}) = \{ v \in \mathbb{R}^n : v = \mathbb{M} \, \vartheta, \, \vartheta \in \mathbb{R}^k \}.$ Projection orthogonale sur V.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Aodèle de égression, iotion de ≪ design ≫ Régression à lesign léterministe

a droite des noindres carrés

Régression linéaire multiple Le cas gaussien Modèle linéaire gaussien

Sélection de variables

Régression non-linéaire

Géométrie de l'EMC

L'EMC vérifie

$$\mathbb{M}\,\widehat{\vartheta}_{\mathsf{n}}^{\,\mathtt{mc}} = P_V oldsymbol{Y}$$

où P_V est le projecteur orthogonal sur V.

■ Mais $\mathbb{M}^T P_V = \mathbb{M}^T P_V^T = (P_V \mathbb{M})^T = \mathbb{M}^T$. On en déduit les équations normales des moindres carrés :

$$\boxed{\mathbb{M}^T \, \mathbb{M} \, \widehat{\vartheta}_{\mathsf{n}}^{\, \mathsf{mc}} = \mathbb{M}^T \, \mathbf{Y}.}$$

- Remarques.
 - L'EMC est un Z-estimateur.
 - Pas d'unicité de $\widehat{\vartheta}_{\mathbf{n}}^{\,\,\mathrm{mc}}$ si la matrice $\mathbb{M}^{\,\,\mathrm{T}}\,\mathbb{M}$ n'est pas inversible.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

viodele de régression, notion de ≪ design ≫ Régression à design déterministe

moindres carrés Régression linéaire multiple Le cas gaussien

Sélection de

Régression non-linéaire

Géométrie de l'EMC

Proposition

Si $\mathbb{M}^T \mathbb{M}$ (matrice $k \times k$) inversible, alors $\widehat{\vartheta}_n^{\text{mc}}$ est unique et

$$\widehat{\boldsymbol{\vartheta}}_{\mathsf{n}}^{\,\mathsf{mc}} = \left(\,\boldsymbol{\mathbb{M}}^{\,\mathsf{T}}\,\boldsymbol{\mathbb{M}}\,\right)^{-1}\,\boldsymbol{\mathbb{M}}^{\,\mathsf{T}}\,\boldsymbol{Y}$$

- Contient le cas précédent de la droite de régression simple.
- Résultat géometrique, non stochastique.
- $\mathbb{M}^T \mathbb{M} \ge 0$; $\mathbb{M}^T \mathbb{M}$ inversible $\iff \mathbb{M}^T \mathbb{M} > 0$;

$$\mathbb{M}^T \mathbb{M} > 0 \iff \operatorname{rang}(\mathbb{M}) = k \iff \dim(V) = k.$$

$$\mathbb{M}^T \mathbb{M} > 0 \implies n \ge k.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

> Modèle de égression, otion de ≪ design ≫ Régression à esign éterministe

moindres carrés Régression linéaire multiple Le cas gaussien

Sélection de variables

Régression non-linéaire

Géométrie de l'EMC

Soit $\mathbb{M}^T \mathbb{M} > 0$. Alors, la matrice $n \times n$

$$A = \mathbb{M} \left(\mathbb{M}^T \mathbb{M} \right)^{-1} \mathbb{M}^T$$

est dite matrice chapeau (hat matrix).

Proposition

Si $\mathbb{M}^T \mathbb{M} > 0$, alors A est le projecteur sur V :

$$A = P_V$$

 $et \operatorname{rang}(A) = k$.

Preuve:

- $A = A^T$, $A = A^2$, donc A est un projecteur.
- $\operatorname{Im}(A) = V$, donc $A = P_V$; $\operatorname{rang}(P_V) = \dim(V) = k$.
- « Chapeau », car A génère la prévison de $\mathbb{M} \vartheta$ notée $\widehat{\mathbf{Y}}$:

$$\widehat{\mathbf{Y}} = \mathbb{M} \, \widehat{\vartheta}_{\mathbf{n}}^{\,\,\mathrm{mc}} = A \mathbf{Y}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Modèle de
régression,
notion de
≪ design ≫
Régression à
design
déterministe

moindres carrés Régression linéaire multiple

gaussien Sélection de

Régression non-linéaire

Bilan

Régression gaussienne

Régression gaussienne : on suppose $\xi \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$. Alors on a plusieurs proriétés remarquables :

■ Estimateur des moindres carrés $\widehat{\vartheta}_n^{\,\text{mc}}$ et estimateur du maximum de vraisemblance coïncident.

Preuve : écriture de la fonction de vraisemblance.

• On sait expliciter la loi exacte (non-asymptotique!) de $\widehat{\vartheta}_n^{\,\text{mc}}$.

Ingrédient : loi des vecteurs gaussiens sont caractérisés par leur moyenne et matrice de variance-covariance.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation
dans le modèle
de régression
Modèle de
régression,
notion de
« design »
Régression à
design

La droite des moindres carrés Régression linéaire multiple Le cas gaussien Modèle linéaire gaussien

Sélection de variables

Régression non-linéaire

Cadre gaussien : loi des estimateurs

- Hyp. 1 : $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$.
- Hyp. 2 : $\mathbb{M}^T \mathbb{M} > 0$.

Proposition

- (i) $\widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}} \sim \mathcal{N} \big(\vartheta, \sigma^2 \big(\, \mathbb{M}^{\,\mathsf{T}} \, \mathbb{M} \, \big)^{-1} \big)$
- (ii) $\|\mathbf{Y} \mathbb{M} \, \widehat{\vartheta}_{\mathbf{n}}^{\,\,\text{mc}} \|^2 \sim \sigma^2 \chi^2(\mathbf{n} \mathbf{k})$ loi du Chi 2 à $\mathbf{n} \mathbf{k}$ degrés de liberté
- (iii) $\widehat{\vartheta}_{\mathsf{n}}^{\,\,\mathrm{mc}}$ et $\mathbf{Y} \mathbb{M}\,\widehat{\vartheta}_{\mathsf{n}}^{\,\,\mathrm{mc}}$ sont indépendants.
 - Preuve: Thm. de Cochran (Poly, page 18). Si $\boldsymbol{\xi} \sim \mathcal{N}(0, \mathrm{Id}_n)$ et A_j matrices $n \times n$ projecteurs t.q. $A_j A_i = 0$ pour $i \neq j$, alors: $A_j \boldsymbol{\xi} \sim \mathcal{N}(0, A_j)$, indépendants, $\|A_j \boldsymbol{\xi}\|^2 \sim \chi^2(\mathrm{Rang}(A_j))$.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

destimation
dans le modèle
de régression
Modèle de
régression,
notion de
de design >>
Régression à
design
déterministe
La droite des
moindres carrés
Régression
linéaire multiple
Le cas gaussien
Modèle linéaire
gaussien

Régression non-linéaire

Preuve de la proposition

• (i)
$$\widehat{\vartheta}_{\mathsf{n}}^{\,\mathrm{mc}} = \vartheta + \left(\mathbb{M}^T \, \mathbb{M} \right)^{-1} \, \mathbb{M}^T \, \boldsymbol{\xi}.$$
On vérifie : $\mathbb{E}[\widehat{\vartheta}_{\mathsf{n}}^{\,\mathrm{mc}}] = \vartheta$,
$$\mathbb{E}\left[\left(\mathbb{M}^T \, \mathbb{M} \right)^{-1} \, \mathbb{M}^T \, \boldsymbol{\xi} \left(\left(\mathbb{M}^T \, \mathbb{M} \right)^{-1} \, \mathbb{M}^T \, \boldsymbol{\xi} \right)^T \right]$$

$$= \sigma^2 \big(\mathbb{M}^T \, \mathbb{M} \big)^{-1}.$$

■ (ii)

$$\begin{aligned} \boldsymbol{Y} - \mathbb{M} \, \widehat{\boldsymbol{\vartheta}}_{\mathsf{n}}^{\,\mathsf{mc}} &= \mathbb{M} \left(\boldsymbol{\vartheta} - \widehat{\boldsymbol{\vartheta}}_{\mathsf{n}}^{\,\mathsf{mc}} \right) + \boldsymbol{\xi} \\ &= - \mathbb{M} \left(\mathbb{M}^{\,\mathsf{T}} \, \mathbb{M} \right)^{-1} \mathbb{M}^{\,\mathsf{T}} \, \boldsymbol{\xi} + \boldsymbol{\xi} \\ &= \sigma (\mathsf{Id}_{n} - A) \boldsymbol{\xi}', \, \, \boldsymbol{\xi}' \sim \mathcal{N}(0, \mathsf{Id}_{n}). \end{aligned}$$

• (iii) le vecteur $(\widehat{\vartheta}_{n}^{\,mc}, \mathbf{Y} - \mathbb{M}\,\widehat{\vartheta}_{n}^{\,mc})$ est gaussien. On calcule explicitement sa matrice de variance-covariance.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Sélection de

Régression

Bilan

Propriétés de l'EMC : cadre gaussien

Estimateur de la variance σ^2 :

$$\widehat{\sigma}_n^2 = \frac{\|\mathbf{Y} - \mathbb{M}\,\widehat{\vartheta}_n^{\,\text{mc}}\|^2}{n - \mathbf{k}} = \frac{1}{n - \mathbf{k}} \sum_{i=1}^n \left(Y_i - (\widehat{\vartheta}_n^{\,\text{mc}})^T \, \mathbf{x}_i\right)^2$$

D'après la dernière Proposition :

- $\widehat{\sigma}_n^2/\sigma^2 \sim \chi^2(n-k)$ loi du Chi 2 à n-k degrés de liberté
- C'est un estimateur sans biais :

$$\mathbb{E}_{\vartheta}\left[\widehat{\sigma}_{n}^{2}\right] = \sigma^{2}.$$

• $\widehat{\sigma}_n^2$ est indépendant de $\widehat{\vartheta}_n^{\,\mathrm{mc}}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

égression,
iotion de

≪ design ≫

kégression à
lesign
léterministe

a droite des
noindres carrés

Régression

Modèle linéaire gaussien Sélection de

Régression

Propriétés de l'EMC : cadre gaussien

■ Lois des coordonnées de $\widehat{\vartheta}_{n}^{\,mc}$:

$$(\widehat{\vartheta}_{\mathsf{n}}^{\,\mathtt{mc}})_{j} - \vartheta_{j} \sim \mathcal{N} ig(0, \sigma^{2} b_{j}ig)$$

où b_j est le jème élément diagonal de $(\mathbb{M}^T \mathbb{M})^{-1}$.

$$\frac{(\widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}})_{j} - \vartheta_{j}}{\widehat{\sigma}_{n} \sqrt{b_{j}}} \sim t_{n-k}$$

loi de Student à n-k degrés de liberté.

$$t_q = \frac{\xi}{\sqrt{\eta/q}}$$

où $q \geq 1$ un entier, $\xi \sim \mathcal{N}(0,1)$, $\eta \sim \chi^2(q)$ et ξ indépendant de η .

MAP 433 : Introduction aux méthodes statistiques. Cours 5

d'estimation dans le modèle de régression Modèle de régression, notion de ≪ design ≫

≪ design ≫ Régression à design déterministe La droite des moindres carrés Régression linéaire multiple Le cas gaussien Modèle linéaire gaussien

Sélection de variables

Régression

Bilan

Exemple de données de régression

MAP 433: Introduction aux méthodes statistiques. Cours 5

Modèle linéaire gaussien

cours4_data1.pdf

Résultats de traitement statistique initial

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2 <i>e</i> - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> - 14 * **
map	324.390	65.422	4.958	1.02 <i>e</i> - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

MAP 433: Introduction aux méthodes statistiques. Cours 5

Modèle linéaire

gaussien

Questions statistiques

Sélection de variables. Lesquelles parmi les 10 variables : age, sex, bmi, map, tc, ldl, hdl, tch, ltg, glu sont significatives? Formalisation mathématique : trouver (estimer) l'ensemble $N = \{j : \vartheta_i \neq 0\}$.

Prévison. Un nouveau patient arrive avec son vecteur des 10 variables $\mathbf{x}_0 \in \mathbb{R}^{10}$. Donner la prévison de la réponse Y =état du patient dans 1 an.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe La droite des moindres carrés Régression linéaire multiple Le cas gaussien

Modèle linéaire gaussien Sélection de variables

Régression

RSS (Residual Sum of Squares)

Modèle de régression

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \quad i = 1, \ldots, n.$$

Résidu : si $\widehat{\vartheta}_n$ est un estimateur de ϑ ,

$$\widehat{\xi}_i = Y_i - r(\widehat{\vartheta}_n, \mathbf{x}_i)$$
 résidu au point i .

RSS: Residual Sum of Squares, somme résiduelle des carrés. Caractérise la qualité d'approximation.

$$RSS(=RSS_{\widehat{\vartheta}_n}) = \|\widehat{\xi}\|^2 = \sum_{i=1}^n (Y_i - r(\widehat{\vartheta}_n, \mathbf{x}_i))^2.$$

■ En régression linéaire : $|RSS = ||\mathbf{Y} - \mathbb{M} \, \widehat{\vartheta}_n \, ||^2$.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode l'estimation lans le modèle le régression

Sélection de variables

Backward Stepwise Regression LASSO

Régression non-linéaire

Sélection de variables : Backward Stepwise Regression

- On se donne un critère d'élimination de variables (plusieurs choix de critère possibles...).
- On élimine une variable, la moins significative du point de vue du critère choisi.
- On calcule l'EMC $\widehat{\vartheta}_{n,k-1}^{\mathrm{mc}}$ dans le nouveau modèle, avec seulement les k-1 paramétres restants, ainsi que le RSS : $\mathrm{RSS}_{k-1} = \|\mathbf{Y} \mathbb{M} \, \widehat{\vartheta}_{n,k-1}^{\mathrm{mc}}\|^2$.

On continue à éliminer des variables, une par une, jusqu'à la stabilisation de RSS : $RSS_m \approx RSS_{m-1}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

élection de

Backward Stepwise Regression

Régression non-linéaire

Données de diabète : Backward Regression

■ Sélection "naïve" : {sex,bmi,map,ltg}

Sélection par Backward Regression :

Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2e - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **
map	324.390	65.422	4.958	1.02 <i>e</i> – 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables Backward

Stepwise Regression LASSO

Régression ion-linéair

Données de diabète : Backward Regression

Backward Regression : Itération 2.

Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	152.133	2.573	59.128	< 2e - 16
sex	-240.835	60.853	-3.958	0.000104
bmi	519.905	64.156	5.024	8.85 <i>e</i> – 05
map	322.306	65.422	4.958	7.43 <i>e</i> – 07
tc	-790.896	416.144	-1.901	0.058
ldl	474.377	338.358	1.402	0.162
hdl	99.718	212.146	0.470	0.639
tch	177.458	161.277	1.100	0.272
ltg	749.506	171.383	4.373	1.54 <i>e</i> - 05
glu	67.170	65.336	1.013	0.312

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Sélection de variables Backward Stepwise Regression

Régression Ion-linéaire

Données de diabète : Backward Regression

Backward Regression : Itération 5 (dernière).

Variables sélectionnées :

{sex,bmi,map,tc,ldl,ltg}

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.572	59.159	< 2e - 16
sex	-226.511	59.857	-3.784	0.000176
bmi	529.873	65.620	8.075	6.69 <i>e</i> – 15
map	327.220	62.693	5.219	2.79 <i>e</i> – 07
tc	-757.938	160.435	-4.724	3.12 <i>e</i> – 06
ldl	538.586	146.738	3.670	0.000272
ltg	804.192	80.173	10.031	< 2e - 16

MAP 433 : Introduction aux méthodes statistiques. Cours 5

l'estimation lans le modèle le régression

élection de

Backward Stepwise Regression LASSO

Régression ion-linéaire

Sélection de variables : Backward Regression

Discussion de Backward Regression:

- Méthode de sélection purement empirique, pas de justification théorique.
- Application d'autres critères d'élimination en Backward Regression peut amener aux résultats différents.
 Exemple. Critère C_p de Mallows-Akaike : on élimine la variable j qui réalise

$$\min_{j} \left(\mathrm{RSS}_{m,(-j)} + 2\widehat{\sigma}_{n}^{2} m \right).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode l'estimation lans le modèle le régression

Sélection de

Backward Stepwise Regression

Régression non-linéaire

Sélection de variables : LASSO

LASSO = Least Absolute Shrinkage and Selection Operator

■ Estimateur LASSO : tout estimateur $\widehat{\vartheta}_n^L$ vérifiant

$$\widehat{\vartheta}_{n}^{L} \in \arg\min_{\vartheta \in \mathbb{R}^{k}} \left(\sum_{i=1}^{n} \left(Y_{i} - \vartheta^{T} \mathbf{x}_{i} \right)^{2} + \lambda \sum_{j=1}^{k} |\vartheta_{j}| \right) \text{ avec } \lambda > 0.$$

- Si $\mathbb{M}^T \mathbb{M} > 0$, l'estimateur LASSO $\widehat{\vartheta}_n^L$ est unique.
- Estimateur des moindres carrés pénalisé. Pénalisation par $\sum_{j=1}^{k} |\vartheta_j|$, la norme ℓ_1 de ϑ .

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Sélection de variables Backward Stepwise Regression LASSO

Régression non-linéaire

Sélection de variables : LASSO

- Deux utilisations de LASSO :
 - **Estimation de** ϑ : alternative à $\widehat{\vartheta}_{\mathbf{n}}^{\,\mathrm{mc}}$ si k>n.
 - Sélection de variables : on ne retient que les variables qui correspondent aux coordonnées non-nulles du vecteur $\widehat{\vartheta}_n^L$.
- LASSO admet une justification théorique : sous certaines hypothèses sur la matrice M,

$$\lim_{n\to\infty} \mathbb{P}\{\widehat{N}_n = N\} = 1,$$

où
$$N = \{j : \vartheta_j \neq 0\}$$
 et $\widehat{N}_n = \{j : \widehat{\vartheta}_{n,j}^L \neq 0\}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables
Backward
Stepwise
Regression

Régression

Bilan provisoire : modèles

Application de LASSO: "regularization path"

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables
Backward
Stepwise
Regression
LASSO

Régression

Données de diabète : LASSO

Application aux données de diabète.

L'ensemble de variables sélectionné par LASSO :

```
{sex,bmi,map,tc,hdl,ltg,glu}
```

■ Backward Regression:

```
{sex,bmi,map,tc,ldl,ltg}
```

Sélection naïve :

```
{sex,bmi,map,tc}
```

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables
Backward
Stepwise
Regression

Régression non-linéaire

Prévision

Modèle de régression

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \quad i = 1, \ldots, n.$$

Régression linéaire : $r(\vartheta, \mathbf{x}_i) = \vartheta^T \mathbf{x}_i$. Exemple : \mathbf{x}_i vecteur de 10 variables explicatives (age, sex, bmi,...) pour patient i.

- **Problème de prévision**: Un nouveau patient arrive avec son vecteur des 10 variables $\mathbf{x}_0 \in \mathbb{R}^{10}$. Donner la prévison de la valeur de fonction de régression $r(\vartheta, \mathbf{x}_0) = \vartheta^T \mathbf{x}_0$ (=état du patient dans 1 an).
- Soit $\widehat{\vartheta}_n$ un estimateur de ϑ . Prévision par substitution : $\widehat{\widehat{Y}} = r(\widehat{\vartheta}_n, \mathbf{x}_0).$
- Question statistique : quelle est la qualité de la prévision ? Intervalle de confiance pour $r(\vartheta, \mathbf{x}_0)$ basé sur \widehat{Y} ?

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables
Backward
Stepwise
Regression

Régression non-linéaire

Prévision : modèle linéaire gaussienne

- Traitement sur l'exemple : $r(\vartheta, \mathbf{x}) = \vartheta^T \mathbf{x}$, régression linéaire gaussienne et $\widehat{\vartheta}_n = \widehat{\vartheta}_n^{\,\mathrm{mc}}$. $\Longrightarrow \widehat{Y} = \mathbf{x}_0^T \, \widehat{\vartheta}_n^{\,\mathrm{mc}}$
- Hyp. 1 : $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$.
- Hyp. 2 : $\mathbb{M}^T \mathbb{M} > 0$.

Proposition

- (i) $\widehat{Y} \sim \mathcal{N}(\mathbf{x}_0^T \vartheta, \sigma^2 \mathbf{x}_0^T (\mathbb{M}^T \mathbb{M})^{-1} \mathbf{x}_0)$
- (ii) $\widehat{Y} \mathbf{x}_0^T \vartheta$ et $\mathbf{Y} \mathbb{M} \, \widehat{\vartheta}_n^{\, \mathrm{mc}}$ sont indépendants.

Rappel : $\|\mathbf{Y} - \mathbb{M} \, \widehat{\vartheta}_{\mathbf{n}}^{\,\,\mathrm{mc}} \|^2 \sim \sigma^2 \chi^2(\mathbf{n} - \mathbf{k})$ loi du Chi 2 à $\mathbf{n} - \mathbf{k}$ degrés de liberté.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables
Backward
Stepwise
Regression

Régression

Prévision : modèle linéaire gaussienne

D'après la Proposition,

$$\eta := rac{\widehat{Y} - \mathbf{x}_0^T artheta}{\sqrt{\sigma^2 \mathbf{x}_0^T ig(\ \mathbb{M}^T \ \mathbb{M} ig)^{-1} \mathbf{x}_0}} \sim \mathcal{N}(0, 1).$$

- On replace σ^2 inconnu par $\widehat{\sigma}_n^2 = \|\mathbf{Y} \mathbb{M}\,\widehat{\vartheta}_n^{\,\mathrm{mc}}\|^2/(n-k)$.
- *t*-statistique :

$$t := \frac{\widehat{Y} - \mathbf{x}_0^T \vartheta}{\sqrt{\widehat{\sigma}_n^2 \mathbf{x}_0^T (\mathbb{M}^T \mathbb{M})^{-1} \mathbf{x}_0}} = \frac{\eta}{\sqrt{\chi/(n-k)}} \sim t_{n-k},$$

loi de Student à n-k degrés de liberté, car $\eta \sim \mathcal{N}(0,1)$, $\chi := \|\mathbf{Y} - \mathbb{M} \, \widehat{\vartheta}_{\mathbf{n}}^{\,\,\mathrm{mc}} \|^2/\sigma^2 \sim \chi^2(n-k)$ et $\eta \perp \!\!\! \perp \chi$.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode l'estimation lans le modèle le régression

variables
Backward
Stepwise
Regression
LASSO

Régression non-linéaire

Prévision : intervalle de confiance

$$\mathbb{P}\left(-q_{1-\frac{\alpha}{2}}(t_{n-k}) \leq \frac{\widehat{Y} - \mathbf{x}_0^T \vartheta}{\sqrt{\widehat{\sigma}_n^2 \mathbf{x}_0^T (\mathbb{M}^T \mathbb{M})^{-1} \mathbf{x}_0}} \leq q_{1-\frac{\alpha}{2}}(t_{n-k})\right)$$

$$= \mathbb{P}(-q_{1-\frac{\alpha}{2}}(t_{n-k}) \leq t \leq q_{1-\frac{\alpha}{2}}(t_{n-k})) = 1 - \alpha.$$

 \implies intervalle de confiance de niveau $1 - \alpha$ pour $r(\vartheta, \mathbf{x}_0) = \mathbf{x}_0^T \vartheta$ est $[r_L, r_U]$, où :

$$\begin{array}{lll} \textit{r}_{\textit{L}} & = & \widehat{Y} - q_{1-\frac{\alpha}{2}}(t_{n-k})\sqrt{\widehat{\sigma}_{n}^{2}\mathbf{x}_{0}^{T}\left(\mathbb{M}^{T}\,\mathbb{M}\right)^{-1}}\mathbf{x}_{0}, \\ \textit{r}_{\textit{U}} & = & \widehat{Y} + q_{1-\frac{\alpha}{2}}(t_{n-k})\sqrt{\widehat{\sigma}_{n}^{2}\mathbf{x}_{0}^{T}\left(\mathbb{M}^{T}\,\mathbb{M}\right)^{-1}}\mathbf{x}_{0}. \end{array}$$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Sélection de variables

Backward Stepwise Regression

Régression

Limites des moindres carrés et du cadre gaussien

- Calcul explicite (et efficace) de l'EMC limité à une fonction de régression linéaire.
- Modèle linéaire donne un cadre assez général :
 - Modèle polynomial,
 - Modèles avec interactions...
- Hypothèse de gaussianité = cadre asymptotique implicite.
- Besoin d'outils pour les modèles à réponse Y discrète.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode l'estimation lans le modèle le régression

Jariables
Backward
Stepwise
Regression

Régression

Régression linéaire non-gaussienne

Modèle de régression linéaire

$$Y_i = \vartheta^T \mathbf{x}_i + \xi_i, \quad i = 1, \dots, n.$$

- Hyp. 1': ξ_i i.i.d., $\mathbb{E}[\xi_i] = 0$, $\mathbb{E}[\xi_i^2] = \sigma^2 > 0$.
- $\underline{ \text{Hyp. 2'}} : \mathbb{M}^T \mathbb{M} > 0, \ \lim_n \max_{1 \leq i \leq n} \mathbf{x}_i^T (\mathbb{M}^T \mathbb{M})^{-1} \mathbf{x}_i = 0.$

Proposition (Normalité asymptotique de l'EMC)

$$\sigma^{-1}\big(\operatorname{\mathbb{M}}^T\operatorname{\mathbb{M}}\big)^{1/2}(\widehat{\vartheta}_n^{\,\operatorname{mc}}-\vartheta)\stackrel{d}{\longrightarrow} \mathcal{N}\big(0,\operatorname{Id}_k),\quad n\to\infty.$$

A comparer avec le cadre gaussien :

$$\sigma^{-1}(\mathbb{M}^T\mathbb{M})^{1/2}(\widehat{\vartheta}_{\mathbf{n}}^{\,\mathrm{mc}}-\vartheta)\sim \mathcal{N}(0,\mathrm{Id}_k)$$
 pour tout n .

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables

Backward
Stepwise

Regression LASSO

Régression non-linéaire

Régression non-linéaire

On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n),$$

οù

$$Y_i = r(\vartheta, x_i) + \xi_i, \quad i = 1, \ldots, n$$

avec

$$\mathbf{x}_i \in \mathbb{R}^k$$
, et $\mathbf{\vartheta} \in \Theta \subset \mathbb{R}^d$.

■ Si $\xi_i \sim_{\text{i.i.d.}} \mathcal{N}(0, \sigma^2)$,

$$\mathcal{L}_n(\vartheta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - r(\vartheta, \mathbf{x}_i))^2\right)$$

et l'estimateur du maximum de vraisemblance est obtenu en minimisant la fonction

$$\vartheta \leadsto \sum_{i=1}^n (Y_i - r(\vartheta, \mathbf{x}_i))^2.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode l'estimation lans le modèle le régression

sélection de variables

Régression non-linéaire

Moindre carrés non-linéaires

Définition

■ M-estimateur associé à la fonction de contraste $\psi: \Theta \times \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}$: tout estimateur $\widehat{\vartheta}_n$ satisfaisant

$$\sum_{i=1}^{n} \psi(\widehat{\vartheta}_n, \mathbf{x}_i, Y_i) = \max_{\mathbf{a} \in \Theta} \sum_{i=1}^{n} \psi(\mathbf{a}, \mathbf{x}_i, Y_i).$$

- Estimateur des moindres carrés non-linéaires : associé au contraste $\psi(a, \mathbf{x}, \mathbf{y}) = -(\mathbf{y} r(a, \mathbf{x}))^2$.
- Extension des résultats en densité → théorèmes limites pour des sommes de v.a. indépendantes non-équidistribuées.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Sélection de variables

Régression non-linéaire

Modèle à réponse binaire

On observe

$$(x_1, Y_1), \ldots, (x_n, Y_n), Y_i \in \{0, 1\}, x_i \in \mathbb{R}^k.$$

Modélisation via la fonction de régression

$$\mathbf{x} \leadsto p_{\mathbf{x}}(\vartheta) = \mathbb{E}_{\vartheta} \left[Y | \mathbf{X} = \mathbf{x} \right] = \mathbb{P}_{\vartheta} \left[Y = 1 | \mathbf{X} = \mathbf{x} \right]$$

Représentation

$$Y_i = p_{\mathbf{x}_i}(\vartheta) + (Y_i - p_{\mathbf{x}_i}(\vartheta))$$

= $r(\vartheta, \mathbf{x}_i) + \xi_i$

avec
$$r(\vartheta, \mathbf{x}_i) = p_{\mathbf{x}_i}(\vartheta)$$
 et $\xi_i = Y_i - p_{\mathbf{x}_i}(\vartheta)$.

■ $\mathbb{E}_{\vartheta}\left[\xi_{i}\right] = 0$ mais structure des ξ_{i} compliquée (dépendance en ϑ).

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

variables

Régression non-linéaire

Modèle à réponse discrète

• Y_i v.a. de Bernoulli de paramètre $p_{x_i}(\vartheta)$. Vraisemblance

$$\mathcal{L}_n(\vartheta, Y_1, \ldots, Y_n) = \prod_{i=1}^n p_{\mathbf{x}_i}(\vartheta)^{Y_i} (1 - p_{\mathbf{x}_i}(\vartheta))^{1 - Y_i}$$

- → méthodes de résolution numérique.
- Régression logistique (très utile dans les applications)

$$\rho_{\mathbf{x}}(\vartheta) = \psi(\mathbf{x}^{\mathsf{T}}\,\vartheta),$$

$$\psi(t)=rac{e^t}{1+e^t},\,\,t\in\mathbb{R}\,\,$$
 fonction logistique.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

ariables

Régression non-linéaire

Régression logistique et modèles latents

 Représentation équivalente de la régression logistique : on observe

$$Y_i = 1_{\left\{Y_i^{\star} > 0\right\}}, \quad i = 1, \dots, n$$

(les x_i sont donnés), et Y_i^* est une variable latente ou cachée.

$$Y_i^{\star} = \boldsymbol{\vartheta}^T \boldsymbol{x}_i + U_i, \quad i = 1, \dots, n$$

avec $U_i \sim_{i,i,d} F$, où

$$F(t)=rac{1}{1+e^{-t}},\,\,t\in\mathbb{R}\,.$$

$$\begin{split} \mathbb{P}_{\vartheta} \left[Y_{i}^{\star} > 0 \right] &= \mathbb{P}_{\vartheta} \left[\mathbf{x}_{i}^{T} \vartheta + U_{i} > 0 \right] \\ &= 1 - \mathbb{P}_{\vartheta} \left[U_{i} \leq -\mathbf{x}_{i}^{T} \vartheta \right] \\ &= 1 - \left(1 + \exp(-\mathbf{x}_{i}^{T} \vartheta) \right)^{-1} = \psi(\mathbf{x}_{i}^{T} \vartheta). \end{split}$$

MAP 433: Introduction aux méthodes statistiques. Cours 5

Régression non-linéaire

Bilan provisoire : modèles paramétriques dominés

■ Modèle de densité : on observe

$$X_1,\ldots,X_n\sim_{\text{i.i.d}} \mathbb{P}_{\vartheta}, \ \vartheta\in\Theta\subset\mathbb{R}^d$$
.

Estimateurs : moments, Z- et M-estimateurs, EMV.

Modèle de régression : on observe

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \quad i = 1, \dots, n, \quad \xi_i \text{ i.i.d.}, \quad \vartheta \in \Theta \subset \mathbb{R}^d.$$

Estimateurs:

- Si $r(\vartheta, \mathbf{x}) = \vartheta^T \mathbf{x}$, EMC (coïncide avec l'EMV si les ξ_i gaussiens)
- Sinon, *M*-estimateurs, EMV...
- Autres méthodes selon des hypothèses sur le « design »...

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode l'estimation lans le modèle le régression

Sélection de

Régression non-linéaire

Bilan provisoire (cont.) : précision d'estimation

 $\widehat{\vartheta}_n$ estimateur de ϑ : précision, qualité de $\widehat{\vartheta}_n$? Approche par région-intervalle de confiance

Pour $\alpha \in (0,1)$, on construit $\mathcal{C}_{n,\alpha}(\widehat{\vartheta}_n)$ ne dépendant pas de ϑ (observable) tel que

$$\mathbb{P}_{\vartheta}\left[\vartheta\in\mathcal{C}_{n,\alpha}(\widehat{\vartheta}_n)\right]\geq 1-\alpha$$

asymptotiquement lorsque $n \to \infty$, uniformément en ϑ ... La précision de l'estimateur est le diamètre (moyen) de $\mathcal{C}_{n,\alpha}(\widehat{\vartheta}_n)$.

■ Par exemple : $C_{n,\alpha}(\widehat{\vartheta}_n)$ = boule de centre $\widehat{\vartheta}_n$ et de rayon à déterminer

MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression

Sélection de variables

Régression non-linéaire

En pratique, une information non-asymptotique de type

$$\mathbb{E}\left[\|\widehat{\vartheta}_n - \vartheta\|^2\right] \leq c_n(\vartheta)^2,$$

ou bien asymptotique de type

$$v_n(\widehat{\vartheta}_n - \vartheta) \stackrel{d}{\longrightarrow} Z_{\vartheta}, \quad n \to \infty$$

(avec $v_n \to \infty$) permet « souvent » de construire un(e) région-intervalle de confiance.