Clustering and mixture models

Sriram Sankararaman

The instructor gratefully acknowledges Fei Sha, Ameet Talwalkar, Kai-Wei Chang, Eric Eaton, and Jessica Wu whose slides are heavily used, and the many others who made their course material freely available online.

Outline

- M-means
- Question mixture models
- 3 GMMs and Incomplete Data

Clustering

Setup Given $\mathcal{D} = \{\boldsymbol{x}_n\}_{n=1}^N$ and K, we want to output

- $\{\mu_k\}_{k=1}^K$: prototypes (or centroids) of clusters
- $A(\underline{x_n}) \in \{1, 2, \dots, K\}$: the cluster membership, i.e., the cluster ID assigned to $\overline{x_n}$

Toy Example Cluster data into two clusters.

Applications

- Identify communities within social networks
- Find topics in news stories
- Group similiar sequences into gene families

K-means example

K-means clustering

Intuition Data points assigned to cluster $\underline{\underline{k}}$ should be close to $\underline{\underline{\mu}_k}$, the prototype.

K-means clustering

Intuition Data points assigned to cluster k should be close to μ_k , the prototype.

Distortion measure (clustering objective function, cost function)

2nk

$$r_{nk} = 1$$
 if and only if $A(x_n) = k$

$$\int \{x_n k\}, \{\mu_k\} = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} x_n - \mu_k \|_{2n}^{2n} - \mu_k \|_{2n}^{2n} = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} x_n - \mu_k \|_{2n}^{2n} = \sum_{n=1}^{\infty} x_n + \mu_n \|_{2n}^{2n}$$

K-means clustering

K-means objective

$$argmin_{\{r_{nk}\},\{\boldsymbol{\mu}_k\}}J(\{r_{nk}\},\{\boldsymbol{\mu}_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$

where $r_{nk} \in \{0,1\}$ is an indicator variable

$$r_{nk} = 1$$
 if and only if $A(\boldsymbol{x}_n) = k$

- Is a non-convex objective function.
- Minimizing the K-means objective function is NP-hard.

Llyod's algorithm for minimizing the K-means objective Often simply called the K-means algorithm

Minimize cost function alternative optimization between $\{r_{nk}\}$ and $\{\mu_k\}$ Step ${\bf 0}$ Initialize $\{\mu_k\}$ to some values

Llyod's algorithm for minimizing the K-means objective Often simply called the K-means algorithm

Minimize cost function alternative optimization between $\{r_{nk}\}$ and $\{\mu_k\}$

- ullet Step $oldsymbol{0}$ Initialize $\{oldsymbol{\mu}_k\}$ to some values
- Step 1 Assume the current value of $\{\mu_k\}$ fixed, minimize J over $\{r_{nk}\}$, which leads to the following cluster assignment rule

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\boldsymbol{x}_n - \boldsymbol{\mu}_j\|_2^2 \\ 0 & \text{otherwise} \end{cases}$$

Llyod's algorithm for minimizing the K-means objective Often simply called the K-means algorithm

Minimize cost function alternative optimization between $\{r_{nk}\}$ and $\{\mu_k\}$ • Step 0 Initialize $\{\mu_k\}$ to some values

- Step 1 Assume the current value of $\{\mu_k\}$ fixed, minimize J over $\{r_{nk}\}$, which leads to the following cluster assignment rule

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\boldsymbol{x}_n - \boldsymbol{\mu}_j\|_2^2 \\ 0 & \text{otherwise} \end{cases}$$

• Step 2 Assume the current value of $\{r_{nk}\}$ fixed, minimize J over $\{\mu_k\}$, which leads to the following rule to update the prototypes of the clusters

$$\Rightarrow \mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}} = \#$$
 the assigned to k

Step 3 Stop if the objective function J stays the same or return to Step 1

Remarks

- Prototype μ_k is the mean of data points assigned to the cluster k, hence 'K-means'
- The procedure reduces \underline{J} in both Step 1 and Step 2 and thus makes improvements on each iteration

Application: vector quantization

- ullet Replace data point with associated prototype $oldsymbol{\mu}_k$
- In other words, compress the data points into i) a codebook of all the prototypes; ii) a list of indices to the codebook for the data points
- ullet Lossy compression, especially for small K

large K

& mole x

Clustering pixels and vector quantizing them. From left to right: Original image, quantized with large K, medium K, and a small K. Details are missing due to the higher compression (smaller K).

Properties of the K-means algorithm

- Does the K-means algorithm converge (i.e., terminate)?
 - Yes.
- How long does it take to converge ?
 - ▶ In the worst case, exponential in the number of data points.
 - In practice, very quick.

Properties of the K-means algorithm

How good is the K-means solution?

- Converges to a local minimum.
- The solution depends on the initialization.
- In practice, run many times with different initializations and pick the best.
- K-means++ is a neat approximation algorithm that has theoretical guarantees on the final value of the objective.
 - Still no guarantee that you will reach the global minimum
 - You are guaranteed to get reasonably close (approximation guarantee on the final value).

Other practical issues

Choosing K

- Increasing K will always decrease the optimal value of the K-means objective.
 - Analogous to overfitting in supervised learning.
- Information criteria that effectively regularize more complex models.

K-medoids

- K-means is sensitive to outliers.
- In some applications we want the prototypes to be one of the points.
- Leads to K-medoids.

K-medoids

- Step 0 Initialize $\{\mu_k\}$ by randomly selecting K of the N points
- **Step 1** Assume the current value of $\{\mu_k\}$ fixed, assign points to clusters:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}\|_{2}^{2} \\ 0 & \text{otherwise} \end{cases}$$

• Step 2 Assume the current value of $\{r_{nk}\}$ fixed, update the prototype of cluster k. In K-medoids, the prototype for a cluster is the data point that is closest to all other data points in the cluster

$$k* = \arg\min_{m:r_{mk}=1} \sum_{n} r_{nk} \|\boldsymbol{x}_n - \boldsymbol{x}_m\|_2^2$$

$$\boldsymbol{\mu}_k = \boldsymbol{x}_{k*}$$

ullet Step 3 Stop if the objective function J stays the same or return to Step 1

Outline

RSS Linear regression

- 1 K-means
- Question mixture models
- 3 GMMs and Incomplete Data

Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points stay close to their cluster centers

• How can we model $p(\boldsymbol{x})$ to reflect this?

Data points seem to form 3 clusters

$$\uparrow(x) \sim \mathcal{N}(\mu, z)$$

$$\times \times \times \times \times \times$$

$$\times \times \times \times \times$$

Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points stay close to their cluster centers

• How can we model p(x) to reflect this?

- Data points seem to form 3 clusters
- We cannot model p(x) with simple and known distributions
- The data is not a Guassian as we have 3 distinct concentrated regions

Gaussian mixture models: intuition

- We can model each region with a distinct distribution
- Common to use Gaussians, i.e., Gaussian mixture models (GMMs) or mixture of Gaussians (MoGs).

Gaussian mixture models: intuition

- We can model each region with a distinct distribution
- Common to use Gaussians, i.e., Gaussian mixture models (GMMs) or mixture of Gaussians (MoGs).
- We don't know cluster
 assignments (label) or
 parameters of Gaussians or
 mixture components!
- We need to learn them all from our unlabeled data

$$\mathcal{D} = \{\boldsymbol{x}_n\}_{n=1}^N$$

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for $oldsymbol{x}$

$$p(\mathbf{x}) = \sum_{k=1}^{K} \omega_k N(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- \bullet K: the number of Gaussians they are called (mixture) components
- ullet μ_k and Σ_k : mean and covariance matrix of the k-th component

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for $oldsymbol{x}$

- \bullet K: the number of Gaussians they are called (mixture) components
- ullet μ_k and Σ_k : mean and covariance matrix of the k-th component
- ω_k : mixture weights they represent how much each component contributes to the final distribution. It satisfies two properties:

$$\omega_{k}>0$$
 $\sum_{k}\omega_{k}=1$

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for $oldsymbol{x}$

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- \bullet K: the number of Gaussians they are called (mixture) components
- ullet μ_k and Σ_k : mean and covariance matrix of the k-th component
- ω_k : mixture weights they represent how much each component contributes to the final distribution. It satisfies two properties:

$$\forall k, \ \omega_k > 0, \quad \text{and} \quad \sum_k \omega_k = 1$$

The properties ensure p(x) is a properly normalized probability density function.

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$p(\boldsymbol{x},z) = p(z)p(\boldsymbol{x}|z)$$

where \underline{z} is a discrete random variable taking values between 1 and K.

$$P(x,z) = P(z) p(x|z)$$
Condition probability

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$p(\boldsymbol{x}, \boldsymbol{z}) = p(z)p(\boldsymbol{x}|z)$$

where z is a discrete random variable taking values between 1 and K. Denote

$$\omega_k = p(z=k)$$

Now, assume the conditional distributions are Gaussian distributions

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$p(\underline{x},\underline{z}) = p(z)p(x|z)$$

where z is a discrete random variable taking values between 1 and K. Denote

$$\omega_k = p(z=k)$$

Now, assume the conditional distributions are Gaussian distributions

$$p(\boldsymbol{x}|z=k) = N(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Then, the marginal distribution of $oldsymbol{x}$ is

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Namely, the Gaussian mixture model

GMMs: example

The conditional distribution between \boldsymbol{x} and z (representing color) are

$$p(\boldsymbol{x}|z=red) = N(\boldsymbol{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

$$p(\boldsymbol{x}|z=blue) = N(\boldsymbol{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(\boldsymbol{x}|z=green) = N(\boldsymbol{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

GMMs: example

The conditional distribution between $m{x}$ and z (representing color) are

$$p(\boldsymbol{x}|z = red) = N(\boldsymbol{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

$$p(\boldsymbol{x}|z = blue) = N(\boldsymbol{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(\boldsymbol{x}|z = green) = N(\boldsymbol{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

The marginal distribution is thus

$$= p(\mathbf{x}) = p(red)N(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(\underline{blue})N(\mathbf{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$+ p(\underline{green})N(\mathbf{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

Parameter estimation for Gaussian mixture models

The parameters in GMMs are $\theta = \{\omega_k | \mu_k, \Sigma_k\}_{k=1}^K$. To estimate, consider the simple (and unrealistic) case first.

We have labels z If we assume z is observed for every x, then our estimation problem is easier to solve. Our training data is augmented:

$$\mathcal{D}' = \{\boldsymbol{x}_n, \boldsymbol{z}_n\}_{n=1}^N$$

 z_n denotes the component where x_n comes from. \mathcal{D}' is the *complete* data and \mathcal{D} the *incomplete* data. How can we learn our parameters?

Parameter estimation for Gaussian mixture models

The parameters in GMMs are $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$. To estimate, consider the simple (and unrealistic) case first.

We have labels z If we assume z is observed for every x, then our estimation problem is easier to solve. Our training data is augmented:

$$\mathcal{D}' = \{\boldsymbol{x}_n, z_n\}_{n=1}^N$$

 z_n denotes the component where x_n comes from. \mathcal{D}' is the *complete* data and \mathcal{D} the *incomplete* data. How can we learn our parameters?

Given \mathcal{D}' , the maximum likelihood estimation of the θ is given by

$$\underline{\underline{\boldsymbol{\theta}}} = \arg \max \log P(\mathcal{D}') = \sum_{n} \log p(\boldsymbol{x}_n, z_n)$$

The *complete* likelihood is decomposable

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{n} \log p(z_{n}) p(\boldsymbol{x}_{n}|z_{n}) = \sum_{k} \sum_{n:z_{n}=k} \log p(z_{n}) p(\boldsymbol{x}_{n}|z_{n})$$

where we have grouped data by its values z_n . Let us introduce a binary variable $\gamma_n \in \{0,1\}$ to indicate whether $z_n = k$. We then have

The *complete* likelihood is decomposable

$$\sum_{n} \log p(\boldsymbol{x}_n, z_n) = \sum_{n} \log p(z_n) p(\boldsymbol{x}_n | z_n) = \sum_{k} \sum_{n: z_n = k} \log p(z_n) p(\boldsymbol{x}_n | z_n)$$

where we have grouped data by its values z_n . Let us introduce a binary variable $\gamma_{nk} \in \{0,1\}$ to indicate whether $z_n = k$. We then have

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log p(z=k) p(\boldsymbol{x}_{n}|z=k)$$

We use a "dummy" variable z to denote all the possible values cluster assignment values for x_n

assignment values for x_n $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n}$

We now have

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} [\log \omega_{k}] + [\log N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})]$$

Regrouping, we have

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

We now have

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \left[\log \omega_{k} + \log N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]$$

Regrouping, we have

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

The term inside the braces depends on k-th component's parameters. It can be shown that the MLE is:

$$\omega_k = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \hat{\boldsymbol{\mu}}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n$$

$$\boldsymbol{\Sigma}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

What's the intuition?

Intuition

Since γ_{nk} is binary, the previous solution is nothing but

- For ω_k : count the number of data points whose $\underline{z_n}$ is k and divide by the total number of data points (note that $\sum_k \sum_n \gamma_{nk} = N$)
- For μ_k : get all the data points whose z_n is k, compute their mean
- For Σ_k : get all the data points whose z_n is k, compute their covariance matrix

This intuition is going to help us to develop an algorithm for estimating θ when we do not know z_n (incomplete data).

Parameter estimation for GMMs: incomplete data

When z_n is not given, we can guess it via the posterior probability

$$p(z_n = k | \mathbf{x}_n) = \frac{p(\mathbf{x}_n | z_n = k)p(z_n = k)}{p(\mathbf{x}_n)} = \frac{p(\mathbf{x}_n | z_n = k)p(z_n = k)}{\sum_{k'=1}^{K} p(\mathbf{x}_n | z_n = k')p(z_n = k')}$$

Parameter estimation for GMMs: incomplete data

When z_n is not given, we can guess it via the posterior probability

$$p(z_n = k | \mathbf{x}_n) = \frac{p(\mathbf{x}_n | z_n = k) p(z_n = k)}{p(\mathbf{x}_n)} = \frac{p(\mathbf{x}_n | z_n = k) p(z_n = k)}{\sum_{k'=1}^{K} p(\mathbf{x}_n | z_n = k') p(z_n = k')}$$

To compute the posterior probability, we need to know the parameters $\underline{\theta}!$

Let's pretend we know the value of the parameters so we can compute the posterior probability.

How is that going to help us?

Estimation with soft γ_{nk}

We define
$$\underline{\gamma_{nk}} = p(z_n = k | \boldsymbol{x}_n)$$

Estimation with soft γ_{nk}

We define $\gamma_{nk} = p(z_n = k | \boldsymbol{x}_n)$

- Recall that γ_{nk} was binary.
- ullet Now it's a "soft" assignment of $oldsymbol{x}_n$ to k-th component
- Each \boldsymbol{x}_n is assigned to a component fractionally according to $p(z_n = k | \boldsymbol{x}_n)$

Parameter estimation for GMMs: incomplete data

With the soft assignment γ_{nk} plugged into the complete data log likelihood, we now have:

Parameter estimation for GMMs: incomplete data

With the soft assignment γ_{nk} plugged into the complete data log likelihood, we now have:

$$\sum_{k} \sum_{n} \underline{\gamma_{nk}} [\log \omega_k + \log N(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

Regrouping, we have

$$\sum_{k} \sum_{n} \gamma_{nk} \log \omega_k + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

We now get the same expression for the MLE as before!

$$\underline{\underline{\omega}_k} = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \underline{\underline{\mu}_k} = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n$$

$$\underline{\boldsymbol{\Sigma}_k} = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

But remember, we're 'cheating' by using θ to compute $\gamma_{nk}!$

We can alternate between estimating γ_{nk} and using the estimated γ_{nk} to compute the parameters (same idea as with K-means!)

- Step 0: initialize $\underline{\theta}$ with some values (random or otherwise)
- Step 1: compute γ_{nk} using the current $\underline{\boldsymbol{\theta}}$
- ullet Step 2: update $\underline{m{ heta}}$ using the just computed γ_{nk}
- Step 3: go back to Step 1

Questions:

- Is this procedure reasonable, i.e., are we optimizing a sensible criteria?
- Will this procedure converge?

The answers lie in the *EM algorithm* — a powerful procedure for model estimation with unknown data.

Outline

- 1 K-means
- Question mixture models
- GMMs and Incomplete Data

Parameter estimation for GMMs: complete data

GMM Parameters

$$\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$$

Complete Data: We (unrealistically) assume z is observed for every x,

$$\underline{\mathcal{D}'} = \{\boldsymbol{x}_n, \underline{z}_n\}_{n=1}^N$$

MLE: Maximize the complete likelihood

$$\boldsymbol{\theta} = \arg \max \log P(\mathcal{D}') = \sum_{n} \log \underline{p(\boldsymbol{x}_n, z_n)}$$

Leads to closed-form solution!

Parameter estimation for GMMs: Incomplete data

GMM Parameters

$$\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$$

Incomplete Data

Our data contains observed and unobserved random variables, and hence is incomplete

- Observed: $\mathcal{D} = \{x_n\}$
- Unobserved (hidden): $\{z_n\}$

Goal Obtain the maximum likelihood estimate of θ :

$$\widehat{\boldsymbol{\theta}} = \arg \max \underline{\ell(\boldsymbol{\theta})} = \arg \max \log \underline{P(\mathcal{D})} = \arg \max \sum_{n} \log \underline{p(\boldsymbol{x}_n | \boldsymbol{\theta})}$$

$$= \arg \max \sum_{n} \log \sum_{\boldsymbol{z}_n} p(\boldsymbol{x}_n, \boldsymbol{z}_n | \boldsymbol{\theta})$$

The objective function $\ell(\boldsymbol{\theta})$ is called the *incomplete* log-likelihood.

Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood

Expectation-Maximization (EM) algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

- E-step: 'guess' values of the z_n using existing values of θ
- M-step: solve for new values of θ given imputed values for z_n (maximize complete likelihood!)

E-step: Soft cluster assignments

We define γ_{nk} as $p(z_n=k|\boldsymbol{x}_n,\boldsymbol{\theta})$

- ullet This is the posterior distribution of z_n given $oldsymbol{x}_n$ and $oldsymbol{ heta}$
- Recall that in complete data setting γ_{nk} was binary
- Now it's a "soft" assignment of x_n to k-th component, with x_n assigned to each component with some probability

E-step: Soft cluster assignments

057nx 51

We define $\underline{\gamma_{nk}}$ as $p(z_n=k|\boldsymbol{x}_n,\boldsymbol{\theta})$

- ullet This is the posterior distribution of z_n given $oldsymbol{x}_n$ and $oldsymbol{ heta}$
- Recall that in complete data setting γ_{nk} was binary
- Now it's a "soft" assignment of x_n to k-th component, with x_n assigned to each component with some probability

Given $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$, we can compute γ_{nk} using Bayes theorem:

$$\gamma_{nk} = p(z_n = k | \boldsymbol{x}_n)
= \frac{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}{p(\boldsymbol{x}_n)}
= \frac{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}{\sum_{k'=1}^{K} p(\boldsymbol{x}_n | z_n = k') p(z_n = k')} = \frac{\mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \omega_k}{\sum_{k'=1}^{K} \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_{k'}, \boldsymbol{\Sigma}_{k'}) \omega_{k'}}$$

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

$$\sum_{n} \log p(\mathbf{x}_{n}(\mathbf{z}_{n})) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

Previously γ_{nk} was binary, but now we define $\gamma_{nk} = p(z_n = k | \boldsymbol{x}_n)$ (E-step)

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

Previously γ_{nk} was binary, but now we define $\gamma_{nk} = p(z_n = k | \boldsymbol{x}_n)$ (E-step)

We get the same simple expression for the MLE as before!

$$\int \omega_k = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \boldsymbol{\mu}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n$$

$$\boldsymbol{\Sigma}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

Intuition: Each point now contributes some fractional component to each of the parameters, with weights determined by γ_{nk}

EM procedure for GMM

Alternate between estimating γ_{nk} and estimating θ

- Initialize θ with some values (random or otherwise)
- Repeat
 - ▶ E-Step: Compute $\gamma_{n\underline{k}}$ using the current $\underline{\boldsymbol{\theta}}$
 - ▶ M-Step: Update θ using the γ_{nk} we just computed
- Until Convergence

Example of GMM

Compare to K-means example

EM procedure for GMM

Questions to be answered next

- How does GMM relate to K-means?
- Is this procedure reasonable, i.e., are we optimizing a sensible criterion?
- Will this procedure converge?

GMMs and K-means

GMMs provide probabilistic interpretation for K-means

GMMs reduce to K-means under the following assumptions (in which case EM for GMM parameter estimation simplifies to K-means):

- Assume all mixture weights ω_k are equal
- Assume all Gaussians have $\sigma^2 I$ covariance matrices
- Further assume $\sigma \to 0$, so we only need to estimate μ_k , i.e., means
- GMMs are more general model.

K-means is often called "hard" GMM or GMMs is called "soft" K-means

The posterior γ_{nk} provides a probabilistic assignment for ${m x}_n$ to cluster k

EM algorithm

- The estimates of the parameter θ in each iteration increase the likelihood.
- EM algorithm converges but only to a local optimum.

Summary

Clustering

- Group similar instances
- K-means
 - Minimize a cost function that measures the sum of squared distances from the cluster prototypes.
 - Iterative algorithm for minimizing the cost function.
- Variants: K-medoids
- Probabilistic interpretation of K-means: Gaussian Mixture Model
- Can define a number of mixture models for other kinds of data.
- Probabilistic interpretation: GMMs
 - Generalization of K-means
 - Estimation using an iterative EM algorithm.