CHECK WHETHER V IS A SUBSPACE OR NOT? COLUMN SPACE: LINEAR SYSTEM: MATRIX WITH ORTHONORMAL COLS: LEAST SQUARE SOLUTION: Nguyen Ngoc Linh Chi Check V contains vector-0 **Theorem:** a system of linear equations Ax = b is $A \in \mathbb{R}^{m \times n}$ (A **don't** have to be square matrix) has • Ax = b is **inconsistent** \rightarrow b is not in column space of LINEAR ALGEBRA – STATISTICS – MACHINE LEARNING cheat-sheet Check combination of vectors in $V \in V$ consistent if; only if b lies in column space of A, or A; orthonormal vectors columns if its Gram matrix is I $A \rightarrow project b$ onto column space of $A \rightarrow solve Ax = a$ ABSTRACT DEFINITION OF SUBSPACE: augmented matrix have same rank p (projection of b onto A) EOUIVALENT STATEMENT: $D = \begin{vmatrix} 2 & 1 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & -1 & -1 & Dz = \begin{vmatrix} 3 & 1 & 1 \\ 0 & -1 & -1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & -1 \end{vmatrix}$ $v = \begin{vmatrix} 2 & 3 & 1 \\ 1 & 0 & -1 \end{vmatrix}$ Orthogonal matrices: Let V be non-empty subset of \mathbb{R}^N . Then V is said to be **COLUMN SPACE**; **LINEAR SYSTEM**: • A vector $u \in \mathbb{R}^N$ is least square solution: |b|※ A is invertible (A has an inverse, is singular) $\overline{A \in R^{n \times n}}$ has orthonormal columns (m = n)a subspace of $\mathbb{R}^{\hat{N}}$ if; only if for \forall pair vector $(u, v) \in \overline{\text{We have equation } Ax = b}$: ★ There exists matrix such that AB = BA = I... $|Au| \le ||b - Av|| \ \forall \ v \in \mathbb{R}^n$ **1.** Properties: *Q* is orthogonal matrix Consistent \rightarrow b is linear combination of cols(A) \rightarrow b \in Q^{-1} is also orthogonal matrix $V \rightarrow cu + dv \in V$. ★ Transpose of A (A^T) is an invertible matrix • **Theorem:** let Ax = b be a linear system. Then x is a LINEAR INDEPENDENCE * Ax = 0 has only trivial solution (x = 0) least square solution to Ax = b if; only if x is a solution $\overline{c_1u_1 + c_2u_2 + \cdots + c_ku_k} = 0$. S is called linearly The linear system is **inconsistent** • det(0) = +1★ The reduced row echelon form of A is In to $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ independent set if $c_1 = c_2 = \cdots = c_k = 0$ is $ONLY \rightarrow rank(A|b) = rank(A) + 1$ • If λ is an eigenvalue of Q, then $|\lambda| = 1$ $\# \det(A) \neq 0$ • If linear system is consistent then solution set of The rows of A form a basis for ℝ^N • If $Q_1 \& Q_2$ are $n \times n$ orthogonal SPAN-DIMENSION-LINEAR INDEPENDENCE: matrix, Ax = b is **same** as $A^T Ax = A^T b$ 1 0 1 A is invertible $\rightarrow Au_1, Au_2, ..., Au_k$ are linearly if there exists a set $u_1, u_2, ..., u_v$ that spans V, then Q_1Q_2 is also orthogonal matrix ★ The columns of A form a basis for R^N Answer: x = Dx/D; x = Dy/D; x = Dz/DOR FACTORIZATION: * A has a full rank, rank(A) = n independent **LU FACTORISATION:** . Rows of A are an orthogonal matrix **Step 1:** We have A as a $m \times n$ matrix, treat each column **REDUNDANCY:** $u_1, u_2, ..., u_k$ are vector taken from Let A be m x n matrix. If there exists a linearly independent set NOTE: $A \in \mathbb{R}^{m \times n}$ has orthonormal cols (m > n) is as a vector $A = (u_1, u_2, u_3)$ * Ax = 0 has a unique solution for each b $\in \mathbb{R}^N$ \mathbb{R}^N . If u_k is a linear combination of $u_1, u_2, ..., u_{k-1} \rightarrow$ Reduce A to row-echelon form, obtaining U matrix u_1, u_2, \dots, u_p in V, then $dim(V) \ge p$ Step 2: find orthonormal basis (w_1, w_2, w_3) (unit NOT orthogonal matrix * The null space(\hat{A}) = {0} u, is redundant <u>Check Whether Vector Set Is Independent or Not?</u> If dim(V) = p, then there exists a set p + 1 vectors in (should be Upper triangular matrix) vector of orthogonal basis) $(A^TA = I AND AA^T \neq I)$ * The nullity(A) = 0★ The R/C of A are linearly independent $E_K E_{K-1} \dots E_2 E_1 A = U$ V that spans V. **Step 3:** Write each of (u_1, u_2, u_3) as a linear $\begin{array}{l} E_{K}E_{K-1} \dots E_{2}E_{1}K = 0 \\ \Rightarrow A = E_{1}^{-1}E_{2}^{-1} \dots E_{K-1}^{-1}E_{K}^{-1}U \\ E_{1}^{-1}E_{2}^{-1} \dots E_{K-1}^{-1}E_{K}^{-1} = L \text{ (lower triangular matrix)} \end{array}$ $\text{Ex } S = \{u + v, v + w, u + w, u + v + w\}$ Product of orthogonal matrices: If $A_1, A_2, A_3, ..., A_k$ are **orthogonal matrices**; of equal combination of (w_1, w_2, w_3) . They should be in form The columns/rows of A span ℝ^N NULL-SPACE OF A MATRIX: (u, v, w) are linearly independent) ★ The column/row space of A span R^N Step 1: we put vector in S in homogenous equation: Let A be $m \times n$ matrix. Ax = 0 be a homogenous size, then product: $A = A_1 A_2 ... A_k$ is **orthogonal** like this: Instead of solving Ax = B, solve by A = LU★ The dimension of column/row space if A is n $u_1 = a_1 \times w_1, u_2 = b_1 \times w_1 + b_2 \times w_2.$ $c_1(u+v) + c_2(v+w) + c_3(u+w) + c_4(u+v+w)$ Step 1: solve Ly = B with y = Ax♦ Only vector normal to column/row space = 0 $u_1 = c_1 \times w_1 + c_2 \times w_2 + c_3 \times w_3$. (w) = 0Step 2: solve Ax = yLinear equation with orthogonal matrix: MATRIX MULTIPLICATION: Step 4: write A = QR (Q is orthogonal matrix), R is also solution space of \mathbb{R}^n , null-space (A) **Step 2:** $(c_1 + c_3 + c_4)u + (c_1 + c_2 + c_4)v + (c_2 + c_4)v + (c_4 + c_4)v$ APPLICATION PROBLEM (DEFLECTION): $Ax = b \rightarrow x = A^{-1}b = A^{T}b$ * Let $A = (a_{ij})_{m \times p}$ and $B = (b_{ij})_{p \times n}$ triangular matrix. + entries $\mathcal{P}Dim(null - space(A)) = nullitv(A)$ $c_3 + c_4)w = 0$ We know that, by Hooke's Law: y = Df \Re Pre-multiplication A to B → AB BEST APPROXIMATION: $\operatorname{prank}(A) + \operatorname{nullity}(A) = n.$ → This equation only has 1 trivial solution: The results are given: * Post-multiplication A to B \rightarrow BA \Rightarrow rank(A) = # pivot columns of A, nullity (A) = # non- p is best approximation of $u \in V$ if • $A = (u_1, u_2, u_3) = (w_1, w_2, w_3) \begin{bmatrix} 0 & b_2 & c_2 \end{bmatrix}$ $\Rightarrow c_1 + c_3 + c_4 = c_1 + c_2 + c_4 = c_2 + c_3 + c_4 = 0$ * AB will be $m \times n$ matrix, whose entry (i, j) is 0.5 (u, v, w is independent) $d(u, p) \le d(u, v) \ \forall v \in V$: p is projection pivot columns of A 0.3 $a_{i1}b_{1i} + a_{i2}b_{2i} + \dots + a_{in}b_{ni} = \sum_{k}^{p} a_{ik}b_{ki}$ QR factorisation + LEAST SQUARE solution: ORTHOGONAL basis (GRAM-SCHMIDT process): NOTE: linear equation has only trivial solution \mathfrak{S} nullspace $(A) = nullspace(A^TA)$ ★ If A; B are diagonal matrices of same size, then AB Ex 2 0.1 0.3 0.7 NOTE: Q: orthogonal matrix $\rightarrow 0^T Q = I$ independent. If not → dependent \mathfrak{S} nullity $(A) = nullity (A^T A)$ For a line, span{u} Ex 3 2 1 0 0.7 0.3 0.1 We have $A = QR \rightarrow$ compute solution for Least Square **BASIS:** $S \subseteq V$ with $|S| = \dim(V)$ \mathfrak{S} nullity(A) \neq nullity(A^TA) For plane, $u_1 = v_1 \& v_2 = \frac{u_2 \cdot v_1}{||v_1||^2} \cdot v_1$ INVERSE OF A MATRIX: Step 1: $D_{3\times x}f_{3\times 3} = y_{3\times 3} \Rightarrow D(u \ v \ w) = (y_1 \ y_2 \ y_3)$ Let $S = \{u_1, u_2, \dots, u_n\}$ be subset in vector space V. S is w rank $(A) = rank(A^TA)$ solution: $A^TAx = A^Tb$, $x = R^{-1}O^Tb$ * Scalar product: $(cA)^{-1} = \frac{1}{4}A^{-1}$ **EIGENVALUE & EIGENVECTOR:** called a basis \leftrightarrow S is linearly independent, S spans V. $\Rightarrow rank(A) = rank(AA^T)$ (u = (1, 0, 1), v = (0, 1, 2),• $Au = \lambda u$. λ is called **eigenvalue**: u is **eigenvector** Basis for a vector space |V| = smallest possible # RANK VS. NULLITY: * Inverse; transpose: $(A^T)^{-1} = (A^{-1})^T$ $v_3 = u_3 - \left(\frac{u_3 \cdot v_1}{||v_1||^2} \cdot v_1 + \frac{u_3 \cdot v_2}{||v_2||^2} \cdot v_2\right)$ w = (2,1,0)associated with eigenvalue λ * Inverse of inverse: $(A^{-1})^{-1} = A$ vectors that can span V $(Rank(A) = \#pivot\ columns)$ Step 2: we will find a, b, c such that If U; W: subspaces in \mathbb{R}^N , there exists $a = \#leading\ entries\ in\ R$ • The eigenvalue of a diagonal matrix are all entries $*(AB)^{-1} = B^{-1} \times A^{-1}$ $au + bv + cw = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. For example: * $(A_1 A_2 A_3 ... A_N)^{-1} = A_N^{-1} A_{N-1}^{-1} ... A_1^{-1}$ * $(A^{-1})^N = A^{-N}$ basis S_1 for $V \& S_2$ for W such that $S_1 \cap S_2$ is a basis Nullity(A) = #non - pivot cols = #arbitrary $(v_1, v_2 \text{ like in the plane})$ on main diagonal for $V \cap W$, $S_1 \cup S_2$ is a basis for V + WNOTE: if you are asked to find **orthonormal** then have • λ is an **eignvalue of** A *then*: parameters in Ax = 0to make each vector in **orthogonal** become **unit** λ^n is an eigenvalue of $A^n \to A^n u = \lambda^n u$ * If A is invertible; $AC = AB \rightarrow C = B$ $\begin{pmatrix} 1 & 0 & 2 & | & 1 & | & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 & | & 1 & | & 0 \\ 1 & 2 & 0 & | & 0 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 0.5 & | & -1 & | & 0.5 \\ 0 & 1 & 0 & | & -0.25 & | & 0.5 & | & 0.25 \\ 0 & 0 & 1 & | & 0.25 & | & 0.5 & | & -0.25 \end{pmatrix}$ COORDINATE VECTORS: SOLUTION FOR Ax = b WITH NULL-SPACE: MATRIX TRANSPOSITION: Let $S = \{u_1, u_2, \dots, u_n\} = \text{basis (V) } \& v \in V \leftrightarrow$ $1/\lambda$ is eigenvalue of A^{-1} (A is invertible) Let x_h be general solution for Ax = 0, let x_n be **vector** * Let $A = (a_{ij})_{m \times n}$. transpose of A is A^T • $n \times n$ matrix has eigenvalues $\lambda_1, \lambda_2, ...$, eigenvectors $v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$ solution to equation: Ax = b, general solution to Ax = MATRIX-VECTOR PRODUCT: <math>f(x) = AxThe coefficient $c_1, c_2, ..., c_k$ Vector $(v_s) = (c_1, c_2...)$ is $b ext{ is } x_b + x_n$ Step 4: combine step 2& 3, we will have: $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots$ If $\overrightarrow{x} \in \mathbb{R}^n$; $\overrightarrow{x} = c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + \dots$, $\forall k \in$ * (n × m) matrix whose (i, j) entry is aii $(Ax)^T(Ay) = x^TA^TAy = x^Ty$ co-ordinate vector of v relative to basis S. \mathbb{Z} : $A^k \vec{x} = c_1 \lambda_1^k \overrightarrow{v_1} + c_2 \lambda_2^k \overrightarrow{v_2} + \cdots$ * A symmetrical matrix if $A = A^{T}$, $(A^{T})^{T} = A$ $D\begin{pmatrix} 1\\0\\0 \end{pmatrix} = D\left(\frac{1}{2}u - \frac{1}{4}v + \frac{1}{4}w\right)$ $||Ax|| = ((Ax)^T (Ax))^{\frac{1}{2}} = (x^T x)^{\frac{1}{2}} = ||x||$ If S is a basis for v then every vector $v \in V$ has a unique **Orthogonality**: FIND AN EIGENVALUE OF A MATRIX: $*(A + B)^{T} = A^{T} + B^{T} & (aA)^{T} = aA^{T}$ co-ordinate vectors relative to V $S = \{u_1, \dots, u_n\} \text{ orthogonal basis, } \forall \ w \in V \colon$ • Eigenvalue of A: λ that makes matrix $(\lambda I - A)$ $*(AB)^T = B^TA^T (NOT A^TB^T)$ ||Ax - Ay|| = ||x - y|| $w = \frac{w \cdot u_1}{||u_1||^2} \cdot u_1 + \frac{w \cdot u_2}{||u_2||^2} \cdot u_2 + \cdots$ V can have different basis → different co-ordinate $singular \rightarrow \det(\lambda I - A) = 0$ * A is invertible $\rightarrow A^T$ is invertible $D\begin{pmatrix} 0\\1 \end{pmatrix} = D\left(-1u + \frac{1}{2}v + \frac{1}{2}w\right)$ $\angle(Ax,Ay) = \cos^{-1}\left(\frac{(Ax)^T(Ay)}{||Ax||||Ay||}\right) = \angle(x,y)$ • $\det(\lambda I - A)$: Characteristic polynomial A * \forall square matrix, then $\frac{1}{2}(A+A^T)$ is symmetric **EUCLIDIAN VECTORS:** $|uv| \le ||u|| \times ||v||$ • $det(\lambda I - A) = 0$: Characteristic equation $\frac{|u| + |u|}{|u| + |u|} \le |u| + |v| \longrightarrow d(u, w) \le d(u, v) + \text{coordinate vector}(w_s) = \left(\frac{w \cdot u_1}{|u_1|^2}, \frac{w \cdot u_2}{|u_2|^2}, \dots\right)$ DETERMINANT OF SPECIAL MATRICES: $D\begin{pmatrix}0\\0\\1\end{pmatrix} = D\left(\frac{1}{2}u + \frac{1}{4}v - \frac{1}{4}w\right)$ $Q\vec{x}Q\vec{y} = \vec{x}\vec{y}$ EIGENSPACE: $\begin{bmatrix} a_1^T a_1 & a_1^T a_2 & \cdots & a_1^T a_n \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$ • $(\lambda I - A)x = 0$: singular \rightarrow system has infinite d(v,w)ORTHOGONAL PROJECTION: $\begin{vmatrix} a_{2}^{T} a_{1} & a_{2}^{T} a_{2} & \cdots & a_{2}^{T} a_{n} \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix} = \begin{vmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 2 & 0 & \ddots & \vdots \end{vmatrix} = I_{n}$ DIMENSION: solution $Du = y_1, Dv = y_2, Dw = y_3$ Let V be a subspace of \mathbb{R}^N : $w \in \mathbb{R}^N$ then if Let V be a vector space having a basis with k vectors. • The solution space $(\lambda I - A)x = 0$: eigen-space of A $\{u_1, u_2, ..., u_n\}$ is an orthogonal basis for V, then $\begin{bmatrix} a_n^T a_1 & a_n^T a_2 & ... & a_n^T a_n \end{bmatrix}$ LINEAR SPAN: $S = \{u_1, u_2, ..., u_n\}$ be a set of vectors in \mathbb{R}^N . set $|V| > k \Rightarrow$ linearly dependent [0 0 ... 1] associated with eigenvalue $\lambda(E_{\lambda}) \rightarrow E_{\lambda} = ALL$ projection of w onto V is p: $|V| < k \rightarrow \text{cannot span V}$ $A^{T}A = I$ (left inverse), $m > n \rightarrow AA^{T} \neq I$ eigenvectors of A containing all linear combination of $\{u_1, u_2, ..., u_n\}$ is $p = \frac{w.u_1}{||u_1||^2}.u_1 + \frac{w.u_2}{||u_2||^2}.u_2 + \cdots$ The **dimension** of vector space dim(k) = # vectors in A has a linearly independents columns: • E_1 is called a null-space of $(\lambda I - A)$ **linear span** of S/linear span of $\{u_1, u_2, ..., u_n\}$ basis of v • For each λ , we find $E_{\lambda} = span\{u_1, u_2, ...\}$ $Ax = 0 \rightarrow A^T Ax = x = 0$ $span(S) = \{c_1u_1 + c_2u_2 + \dots + c_ku_k | c \in \mathbb{R}\}\$ FIND DISTANCE FROM A POINT TO A LINE/PLANE: ORTHONORMAL VECTORS: $R_2 + kR_3$ $R_1 \leftrightarrow R_3$ Dim(0) = 0**Diagonalisation:** To check if $span(S) \neq \mathbb{R}^N$, check whether augmented matrix formed by S; any $x \in \mathbb{R}^N$ is inconsistent flast $W \le V$ is subspace of $V \to \dim(W) \le \dim(V)$ • P diagonalise $A \leftrightarrow \exists P \mid P^{-1}AP = D$, D is a For a line, we only have 1 basis: • The vectors have unit norm $||a_i|| = 1$ **ROW SPACE; COLUMN SPACE:** $A \xrightarrow{ERO} B$ **Step 1:** projection $p = \frac{w.u}{||u.u||^2} \cdot u$ diagonal matrix with entries are $\lambda_1, \lambda_2, ...$ column is a pivot column) • Mutually orthogonal: $a_i^T \times a_i = 0$ S_2 with $\{u_1, u_2, ..., u_n\} \in span(S_1)$; • Column space (A) \neq Column space (B) • $n \times n$ matrix A is diagonalizable if; only if A has n**Step 2:** compute distance d = ||w - p||• For ex, a set of orthogonal $\{u_1, u_2, u_3, u_4\} \rightarrow$ span linearly independent eigenvectors /n distinct $\{v_1, v_2, \dots, v_n\} \in span(S_2)$ • Row space(A) = row space(B)For a plane, we have 2 bases, however, alternative $\{u_4\} = \forall$ vectors orthogonal to span $\{u_1, u_2, u_3\}$

 $2 \times 2: \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible $\rightarrow det(A) = ad - bc$ Triangular/diagonal matrix

→det(A) = product of all diagonal entries

Square matrix $A \rightarrow \det(A) = \det(A^T)$ Square matrix vs 2 same rows or cols det = 0

WAYS TO DETERMINE DETERMINANT:

Elementary Row Operations:

 $det(E_1) = k \quad det(E_2) = -1 \quad det(E_3) = 1$ Cofactor expansion:

(i,j) - cofactor of $A = A_{ij} = (-1)^{i+j} \det(M_{ij})$

 $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \\ 6 & 5 & 7 \end{vmatrix} = 1(-1)^{1+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} +$

 $2(-1)^{1+2}\begin{vmatrix} 4 & 2 \\ 6 & 7 \end{vmatrix} + 3(-1)^{1+3}\begin{vmatrix} 4 & 3 \\ 6 & 5 \end{vmatrix} = -15 \neq 0 \text{ span}(S_2) \text{ AND Span}(S_2) \subseteq \text{span}(S_1)$

PROPERTIES OF DETERMINANT:

 $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \end{pmatrix}$. cofactor matrix of A:

 $A_{11} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \quad A_{12} = -\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

3 0 0

-1 4 2

-2 2 4

 $det(cA) = c^n det(A), det(AB) = det(A) det(B).$

3 - 1 - 2

0 4 2

0 2 4

 $\det(A^{-1}) = \frac{1}{\det(A)} \& \det(A) = \det(A^{T})$

SUBSET; SPAN:

ADJOINT MATRIX: $adj(A) = (cofactor of A)^T$

If A is invertible then $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$

Implicit: $V = \{(x, y) | ax + by = 0\}$

into explicit way to compare

 $\rightarrow V \cap W$ is subspace of \mathbb{R}^N

 $\rightarrow V \cup W$ is NOT subspace of \mathbb{R}^N

Let V be subset of \mathbb{R}^N . If there exists a set of vectors S = column(A) $\{u_1, u_2, ..., u_n\}$ such that span(S) = V then V is said RANK OF A MATRIX: to be a subspace of \mathbb{R}^N V; W is subspaces of \mathbb{R}^N Cofactor matrix of A is The adjoint matrix of A is: $\rightarrow (V + W)$ is subspace of \mathbb{R}^N

Matrix M: $v_1 v_2 v_3 ... v_n |u_1| u_2 |... |u_n|$

 $Span(S_1) \subseteq span(S_2)$, then prove that each vector in S_1 linear combination of vectors in S_2 There are 2 main representation of a subset:

row space of B = basis row space of A columns of A; B respectively. With each Ab; belongs to column space of A

Want to prove that subset = span (S) then we transfer $\frac{\text{FIND A BASIS OF COLUMN SPACE OF A:}}{\text{FIND A BASIS OF COLUMN SPACE OF A:}}$ Find REDCUED row-echelon form of A is B, then • A set of vectors $\{\overline{v_1}, ...\}$ are mutually **orthogonal** is • $(W^{\perp})^{\perp} = W \otimes \dim(W) + \dim(W^{\perp}) = n$ choose pivot column of B & take corresponding every pair of vectors is orthogonal $\vec{v_i} \times \vec{v_j} = 0, \forall i \neq j$ $Rank(0) = 0, Rank(I_n) = n$ $*m \times n \text{ matrix}. rank(A) \leq \min(m, n)$

• Column space $(A) = row space (A^T)$

* rank(A) = dim(row space of A)

* Rank $(AB) \leq \min\{rank(A), rank(B)\}$

 $* = \dim(CS \ of \ A) = rank(A^T)$

FIND A BASIS FOR A ROW SPACE:

 $Span(S_1) = span(S_2) \rightarrow$ prove $Span(S_1) \subseteq \bullet Row space(A) = column space(A^T)$ Find REDUCED row-echelon form is B, then basis of

 $ax + by + cz = d, \vec{n} = (a, b, c)$

Step 1: projection w onto n, $p = \frac{w \cdot n}{||\mathbf{n}||^2} \cdot n$ row space of B = usis tow space of B. COLUMN SPACE: Let $a_1, a_2, ..., a_k \otimes b_1, b_2, ..., b_k$ be Step 2: take length of p: d = ||p||Orthogonal/orthonormal:

ORTHOGONAL/ORTHONORMAL SET: $\bullet \text{ Orthogonal/orthonormal set is a basis for } \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \, \mathsf{W} = \mathrm{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W^\perp \cap W = \{\vec{0}\} \& \mathsf{W} = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{span} \, \{\mathsf{w}_1 \ldots, \mathsf{w}_n\}, \vec{\mathsf{v}} \in \mathbb{R}^N \bullet W = \mathsf{w} \in \mathbb{R}^N \bullet W = \mathsf{w} \}$ They are set of non-zero vectors * $m \times n$ matrix, $rank(A) = min(m, n) \rightarrow full rank$ Linearly independent set

|orthogonal/orthonormal set| = N

method: we can use "already known" orthogonal

 $0 \forall \vec{w} \in W$

projections

Properties: Let W be a subspace of \mathbb{R}^n $W^{\perp} \leftrightarrow \vec{v}. \vec{w_1} = 0 \ \forall i$

 $(row(A))^{\perp} = null(A) \& (col(A))^{\perp} = null(A^{T})$ • If $|S| > n \rightarrow$ NEVER HAPPEN

• $\dim(E_{\lambda})$: geometric multiplicity of λ_i • Then for each λ_i , dim $(E_1) \leq r_i$ **Step 3:** Let $S = S_1 \cup S_2 \cup S_3 \dots \cup S_k$, |S| is number of vectors in S. all eigenvalues of A

eigenvalues

ORTHOGONAL complements & ORTHOGONAL CHECK WHETHER A IS DIAGONALIZABLE?

Let W be a subspace of Rn. set of all vectors that are \bullet $det(\lambda I - A) = (\lambda - \lambda_1)^{r_1} \dots (\lambda - \lambda_i)^{r_i} \dots$

orthogonal to W is called **orthogonal complement** • $r_1 + r_2 + \cdots + r_n = n$ (order of matrix A)

of W, denoted W^{\perp} . That is, $W^{\perp} = \{\vec{v} \in \mathbb{R}^n | \vec{v}. \vec{w} = \textit{Step 2}: \text{ For each } \lambda_i, \text{ we find a basis for eigenspace } E_{\lambda} \}$

• If $|S| < n \rightarrow$ A is NOT diagonalizable • If $|S| = n \rightarrow A$ is diagonalizable. • Let A: $m \times n$ matrix. Then orthogonal complement Equality happens: $|S_{\lambda i}| = \dim(E_{\lambda i}) = r_i$ of row space of A is null space of A; orthogonal $\leftrightarrow |S| = |S_1 \cup ... \cup S_k| = r_1 + r_2 + \cdots + r_n = n$ complement of column space of A is null space of A^T : \leftarrow **geometric multiplicity** = **algebraic multiplicity** for

Step 1: Find eigenvalues $det(\lambda I - A) = 0$

r_i: algebraic multiplicity of eigenvalue λ_i

ORTHOGONAL diagonalise SYMMETRIC matrix: LINEAR DIFFERENTIAL EQUATION: Show that $V \cap W$ is a subspace of \mathbb{R}^n Let A; B be $\mathbf{n} \times \mathbf{n}$ matricies. a) Show that AB = 0 if; only if column space of B is a • A square matrix A is orthogonally diagonalizable \leftrightarrow • Differential equation: X' = AXUse abstract definition of subspace \exists orthogonal matrix Q such that $Q^TAQ = D$ is a \bullet If λ is an egienvalue of A, associated with x_1 is **Step 1**: Show that $V \cap W$ non empty, true because 0 subspace of nullspace of A vectorspace then $X_1 = e^{\lambda_1} x_1 \rightarrow \text{general solution is: always belong in } V \cap W$ For this part of problem let columns of B be $b_1...b_n$ • If a matrix A is orthogonally diagonalizable, then $k_1 e^{\lambda_1} x_1 + k_2 e^{\lambda_2} x_2 (x_1, x_2)$ are vectors. Then we use | **Step 2:** Let u; v be any two vectors in $V \cap W$; let a; b be | Then $B = [b_1 \dots b_n]$. $AB = 0 \Leftrightarrow A[b_1 \dots b_n] = [b_1 \dots b_n]$ initial condition to find (k_1, k_2) $[Ab_1...Ab_n] = 0 \Leftrightarrow Ab_i = 0 \Leftrightarrow All \ elements \ o$ A is symmetric (NOTE: Q is orthogonal matrix). any real numbers. $u: v \in V$, $au + bv \in V$. Similarly, $au + bv \in W$. Thus column space of B must be contained in null space of A. $\rightarrow Q^T A Q = D; \rightarrow A = Q D Q^T (since Q^T =$ FUNDAMENTAL SET: Sauare matrix A: b) Show that if AB = 0, then sum of ranks of A: B cannot $Q^{-1}) \rightarrow A^T = (QDQ^T)^T = (Q^T)^T D^T Q^T = QDQ^T =$ $au + bv \in V \cap W$. • \exists (fundamental solution set) Y' = AYin By abstract definition of subspaces, $V \cap W$ is a exceed n. n linearly independent functions Eigenvectors of a symmetric matrix corresponding to fundamentall set Ssubspace of \mathbb{R}^n $AB = 0 \rightarrow CS(B)$ is a subspace of nullspace of A If V; W: subspaces, \exists basis S_1 for V; basis S_2 for W such rank(B) = dim(CS(B)) S is an n-dimensional vector space of functions METHOD for ORTHOGONAL diagonalization of a that $S_1 \cup S_2$ is basis $V + W \& S_1 \cap S_2$ is basis $V \cap W$ $\rightarrow dim(Null(A)) \ge dim(rank(B)).$ If vector Y₀ is specified, initial value problem is to $\{u_1, u_2, ..., u_k\}$ be a basis for $V \cap W$. By adding in $\rightarrow dim(Null(A)) + dim(rank(A)) = n$ and construct a unique Y such that $Y' = AY \otimes Y(0) = Y_0$ vectors successively, there exists vectors dim(Null(B)) + dim(rank(B)) = n.PROPERTIES OF COMPLEX VECTORS: $\{v_1, v_2, ..., v_m\} \in V | \{u_1, ... u_k, v_1, ..., v_m\} \text{ is a basis for }$ $\bullet \, \overline{ku} = \overline{k} \, \overline{u} \, \& \, \overline{u+v} = \overline{u} + \overline{v}$ $\rightarrow n - dim(rank(A)) \ge dim(rank(B))$ V; there exists vectors $\{w_1, w_2, ..., w_n\} \in$ 3. For repeated eigenvalues (when dimension of $\bullet \overline{u - v} = \overline{u} - \overline{v}$ $\rightarrow n > dim(rank(A) + dim(rank(B)))$ $V | \{u_1, \dots u_n, w_1, \dots, w_n\}$ is a basis for V. • $u.v = u_1.\overline{v_1} + u_2.\overline{v_2} + \cdots + u_n.\overline{v_n}$ Let A be an $m \times m$ non-singular matrix: B be an $V + W = \text{span} \{u_1, ... u_n, v_1, ..., v_m, w_1, ..., w_n\}$ → apply Gram-Schmidt orthogonalization to find an $|u| = \sqrt{v \cdot v} = \sqrt{|v_1|^2 + |v_2|^2 + \cdots + |v_n|^2}$ $m \times n$ matrix. Prove that AB; B have same null space Consider vector equation **4.** These orthogonal bases of eigenspaces form an $| \bullet u. v = \overline{v.u}$ (asymmetric property) Step 1: Null space(B) is a subset of null space (AB). $\sum_{i=0}^{k} a_i u_i + \sum_{i=0}^{m} b_i v_i + \sum_{i=0}^{n} c_i w_i = 0 (1)$ $\rightarrow \sum_{i=0}^{k} a_i u_i = -\left(\sum_{i=0}^{m} b_i v_i + \sum_{i=0}^{n} c_i w_i\right)$ $\in V \cap W$ If v is in null space of B, then Bv = 0; hence, ABv = 0 $\bullet u. kv = \bar{k}(u.v)$ 0. Thus, v is also in null space of AB. 5. Normalize, dividing each vector of basis by its REVIEW ABOUT COMPLEX NUMBER: Step 2: Null space(AB) contained in null space(B) The polar form of a complex number: If v is in null space of AB \rightarrow ABv = 0, matrix A is $z = r(\cos\theta + i\sin\theta) = a + bi = re^{i\theta}$ **6.** We have: $Q^TAQ = Q^{-1}AQ = D$, where D is non-singular; A(Bv) = 0. It follows that Bv = 0; hence Complex exponential form: v is also in null space of B $e^{a+ib} = e^a \times e^{ib} = e^a(\cos b + i\sin b)$ $\rightarrow \dim(CS(AB)) = \dim(CS(B))$ COMPLEX EIGENVALUE: $\lambda = a + ib$ $\bullet X_n = AX_{n-1} = A^{n-1}.X_1$, A is a matrix EIGNEVALUES; IDENTITY MATRIX • If λ is an eigenvalue of A; x is eigenvector associated A is a diagonalizable $n \times n$ matrix; has only 1; -1 as • D is a diagonal matrix; diagonal entries of D is with λ , then $\bar{\lambda}$ is an eigenvalue of A; \bar{x} is eigenvector $\rightarrow \{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_m, w_1, w_2, \dots, w_n\}$ are eigenvalues. Show that $A^2 = I_n$. associated with $\bar{\lambda}$ linearly independent, basis of V + WSince A diagonalizable has +1 eignevals $A = PDP^{-1}$ Then we have: $A^n = PD^nP^{-1}$. D is diagonal matrix • Furthermore, we all know that $e^{\lambda t}x$ and $e^{\bar{\lambda}t}\bar{x}$ are $\underline{\text{Let }x_1,x_2,...}$ independent vectors in \mathbb{R}^n . $\rightarrow A^2 = (PDP^{-1})(PDP^{-1}) = PD^2P^{-1}$ both conjugate solutions of $Y' = AY \rightarrow \text{linear}$ If A is invertible matrix $\rightarrow Ax_1, Ax_2$ $(D^2 = I_2) \rightarrow A^2 = I_n$ combination of $e^{\lambda t}x$ and $e^{\bar{\lambda}t}\bar{x} = a$ solution to this linearly independent (1) THE EXPONENTIAL OF A MATRIX • I have 3 kinds of tiles: 1 × 1red-colored tiles (1R), equation (if we don't have initial condition) $c_1Ax_1 + c_2Ax_2 + \dots + c_nAx_n = 0$ $e^{A} = I + A + \frac{1}{2!}A^{2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!}A^{n}$ 1×2 blue-colored tiles (2B); 1×2 green-colored • Consider following linear combination $\rightarrow A(c_1x_1 + c_2x_2 + \dots + c_nx_n) = 0$ $\to A^{-1}A(c_1x_1 + c_2x_2 + \dots + c_nx_n) = 0$ $e^{\lambda t}x$ and $e^{\overline{\lambda}t}\overline{x}$: • Let b_n = # different ways to tile a 1 × n pavement. $\rightarrow c_1 x_1 + c_2 x_2 + \dots + c_n x_n = 0$ $Y_1 = \frac{1}{2} \left(e^{\lambda t} x + e^{\overline{\lambda} t} \overline{x} \right) = Re \left(e^{\lambda t} x \right) \in R$ Step 1: Diagonalise matrix $\rightarrow c_1 = c_2 = \cdots = c_n \text{ uniquely } = 0 \rightarrow (1)$ Step 2: $A^n = P \begin{pmatrix} 2^n & 0 \\ 0 & 4^n \end{pmatrix} P^{-1}$ = $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2^n & 0 \\ 0 & 4^n \end{pmatrix} \begin{pmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ RANK. NULLITY: $Y_2 = \frac{1}{2} (e^{\lambda t} x - e^{\overline{\lambda} t} \overline{x}) = Im(e^{\lambda t} x) \in R$ $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be cols of A; B. Show: $Ab_i \in$ $Y_1 + Y_2 = e^{\lambda t}x = e^{(a+ib)t}x$ Column Space(A) **Step 1:** find relation between b_{n+1} , b_n , b_{n-1} Step 3: convert into exponential form: $= e^{at}(\cos bt + i \sin bt)(\operatorname{Re}(x) + i\operatorname{Im}(x))$ We have already known b_n ways to tile $1 \times n$ Application (Complex Eigenvalue): $= b_{i1}a_1 + b_{i2}a_2 + \cdots$ $e^{A} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} e^{2} & 0 \\ 0 & e^{4} \end{pmatrix} \begin{pmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ pavement. Now if we want to tile $1 \times (n+1)$ then: $\lambda = 2 \pm 5i$, $Y_0 = {3 \choose 3}$, $E_{\lambda} = span\left\{{i \choose 2}\right\}$ Step 4: using matrix multiplication to calculate: we can add on 1R, or take out 1R from b_n make it b_{n-1} ; $\rightarrow AB = Ab_i$ is the column space (A) $e^{A} = \frac{1}{2} \begin{pmatrix} e^{4} + e^{2} & e^{4} - e^{2} \\ e^{4} - e^{2} & e^{4} + e^{2} \end{pmatrix}$ add 2G/2B. since they are 3 ways (1 for b_n ; 2 for b_{n-1}) Let $x = \binom{i}{2} \rightarrow e^{\lambda t} x = e^{(2+5i)t} x$ $\underline{Show that} rank(AB) \leq rank(A)$ Ab_i is the column of $AB, Ab_i \subseteq CS(A)$ $= e^{2t}(\cos 5t + i\sin 5t)\binom{i}{2}$ RECURRENCE OF DETERMINANT: $C = span\{Ab_1..\} \subseteq D = span\{a_1..a_n\}$ $\begin{aligned} &= \left(-e^{2t} \sin 5t\right) + i \left(\frac{2t}{2e^{2t} \cos 5t}\right) \\ &= \left(\frac{e^{2t} \cos 5t}{2e^{2t} \cos 5t}\right) + i \left(\frac{e^{2t} \cos t}{2e^{2t} \sin 5t}\right) \\ &Y_1 = Re(e^{\lambda t}x) = \left(\frac{e^{2t} \sin 5t}{2e^{2t} \cos 5t}\right) \text{ and} \\ &Y_2 = Im(e^{\lambda t}x) = \left(\frac{e^{2t} \cos 5t}{2e^{2t} \sin 5t}\right). \end{aligned}$ $X_n = \begin{pmatrix} b_n \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} b_n \\ b_n + 2b_{n-1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} b_{n-1} \\ b_n \end{pmatrix}$ $\dim(span\{Ab_1..\}) \le \dim(span\{a_1..\})$ 1 3 $\dim(CS(AB)) \le \dim(CS(A))$ $rank(AB) \leq rank(A)$ $\underline{\text{Show that } rank(AB)} \leq rank(B)$ $P = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}.$ $P = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}.$ $rank(AB) = rank(AB)^T = rank(B^TA^T)$ $\leq rank(B^T) = rank(B)$ The general solution is $c_1Y_1 + c_2Y_2$. When t = 0 then $rank(A) + rank(B) - n \le rank(AB) \le$ $c_1\begin{pmatrix}0\\2\end{pmatrix}+c_2\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}3\\3\end{pmatrix}\rightarrow c_1\&c_2$ $\min\{rank(A); rank(B)\}$ Let d_n be $\det(A_n)$ PROBLEM 2: x'' + ax' + bx = 0: NULLSPACE: Using cofactor expansion, we have: Show nullspace of A = nullspace $A^{T}A$ **Step 1:** Let y = x' and z = x. $d_n = 3d_{n-1} - d_{n-2}$ Let u; vector of nullspace of A, $Au = 0 \rightarrow A^T Au = 0$ Step 2: We have: y' + ay + bz = 0. **EUCLIDIAN NRM DISTANCE:** $X_n = \begin{pmatrix} 1 & 1 & 1 & 2^n & 0 \\ 2 & -1 & 0 & (-1)^n & 2/3 & -1/3 \end{pmatrix}$ $= \begin{pmatrix} 2/3 \times 2^n + 1/3 \times (-1)^n \\ 2/3 \times 2^{n+1} + 1/3 \times (-1)^{n+1} \end{pmatrix}.$ Let v be vector of nullspace $A^{T}A$ Step 3: Find another equation relating to z', y, z, wThe Euclidian norm of a vector $a \in \mathbb{R}^{P}$ is denoted as $Av = (b_1 \ b_2 \dots b_m)^T; A^T Av = 0$ $\to (A^T v)(Av) = v^T A^T A v = 0$ $\rightarrow b_1^2 + b_2^2 + \dots + b_m^2 = 0 \rightarrow Av = 0$ Then solve as usual. \rightarrow nullspace of A^TA is subspace of nullspace of A Explain why every vector in *nullspace* of B is also in Euclidian distance between two vectors $a,b \in \mathbb{R}^l$ EXERCIES: IDEMPOTENT MATRICES: nullspace of AB. Is this also true for every vector in A matrix A is said to be idempotent when: $A^2 = A$ nullspace of A $||a-b||_2 == \left|\sum (a_i - b_i)^2\right|$ A idempotent $\leftrightarrow (I - A)$ is idempotent Suppose a vector x is in nullspace of B, then we get A is idempotent \rightarrow (I + A) is invertible Bx = 0. By matrix multiplication, $ABx = 0 \rightarrow x$ is SUBSPACES: also in nullspace of AB. DOT PRODUCT AND PROJECTION: This is NOT true for every vector in nullspace of A. The dot product of two P-dimensional vectors a= Let V: W: subspaces of \mathbb{R}^n . Define: rate = rate in - rate out $V + W = \{v + w | v \in V \text{ and } w \in W\}$ (1) Take A = [1,0;0,0], B = [1,1;0,0]; x = (0,1). Then Show that V + W is a subspace of \mathbb{R}^n Ax = 0, but x is not in nullspace of AB. We have $Ax^2 + Bxy + Cy^2 = k \in \mathbb{R}$. general form of $V = span\{v_1, ...\}, W = span\{w_1, ...\}$ $V + W = \{v + w | v \in V \text{ and } w \in W\}$ $(x-a \quad y-b)\begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix}\begin{pmatrix} x-a \\ y-b \end{pmatrix} = 0$ $= \{a_1 v_1 + \dots + a_m v_m + b_1 w_1 + \dots + b_n w_n\}$

diagonal matrix

A, so A is symmetric.

symmetric matrix.

eigenspace > 1

orthogonal basis.

REAL LIFE PROBLEM:

(APPLICATION)TILES:

For example

ANSWER

• $b_1 = 1$; $b_2 = 3$

Question: Find b_n

Step 3: set up A^n :

 $\underline{\text{Set up}} A^n = PD^n P^{-1}$

Alternative method:

When n = 1:

 $X_n = \begin{pmatrix} s2^n + t(-1)^n \\ u2^{n+1} + v(-1)^{n+1} \end{pmatrix}$

 $\rightarrow s = 2/3 \& t = 1/3$

CONIC EQUATION:

Problem 1: rate of change:

length.

orthogonal basis of \mathbb{R}^n .

diagonal with eigenvalues of A

• $A = PDP^{-1}$ with $D = P^{-1}AP$

so $D^n = (all\ diagonal\ entries)^n$

then total ways is: $b_{n+1} = b_n + 2b_{n-1}$

Step 2: set up $X_n = AX_{n-1} = A^{n-1}X_1$

Find eigenvalue: $\lambda(\lambda - 1) - 2 = 0$

 $\underline{\text{Find } D} = P^{-1}AP \text{ should be } \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$

Find eigenvalues of A.

different eigenvalues are orthogonal.

2. Find eigenspace for each eigenvalue.

METRIC, MEASUREMENT, MEASURE:	INVERSE PROB:	Univariate statistics:	DISPERSION: Dispersion refers to degree of	POISSON \approx BINOMIAL : Let $X \sim B(n, p)$. $n \rightarrow$	STATISTICAL SAMPLING
<u>METRIC</u> : unit of measurement providing way to	$P(A B) = \frac{P(A \cap B)}{P(B A)P(A)} = \frac{P(B A)P(A)}{P(B B)P(B)}$	Discover associations between a variable of interest	<u>variation</u> (numerical spread/ compactness) RANGE = $max - min$ data values	∞ and $p \to 0$; $\lambda = np$ remains a constant as $n \to \infty$.	SAMPLING: foundation of statistical analysis.
objectively quantify performance <u>MEASUREMENT</u> : act of obtain data associated vs		and potential predictors. It is strongly recommended	INTEROUADTHE DANCE IOD difference between	$\rightarrow X \sim P(np): \lim_{\substack{n \to \infty \\ n \to 0}} P(X = x) = \frac{e^{-np}(np)^x}{x!}$	<u>ESTIMATORS:</u> measures used to estimate unknown population parameters
metric	To a constant of D being in decondant and the surface	to start with simple univariate methods before moving	first; third quartiles: (Q3 – Q1) (use 50% data)		POINT ESTIMATE: single number derived from sample
	Nom	to complex multivariate predictors. Most of univariate statistics are based on linear model	SKEWNESS: describes lack of symmetry of data.	The approximation is good when $n \ge 20$; $p \le 0.05$ OR $n \ge 100$: $np < 10$. If p is close to 1, we can still use	that is used to estimate value of population parameters
metric.	$A \& B $ independent $\Leftrightarrow P(A \cap B) = P(A)P(B)$	which is one of main model in machine learning	*CS < 0 left-skewed data; $CS > 0$ right-skewed	Poisson distribution to approximate binomia	UNBIASED ESTIMATOR: Let $\widehat{\Theta}$ be estimator of
DATA CLASSIFICATION by measurement		RANDOM VECTORS & RANGE SPACE	∗ CS > 1 suggests high degree of skewness.	probabilities.	θ (random var. based on sample). If $E(\widehat{\Theta}) = \theta$, $\widehat{\Theta}$ is
scales: CATEGORICAL (NOMINAL) DATA - sorted into		Let E be an experiment; S a sample space. (X,Y) a two-		NORMAL \approx BINOMIAL Use when: $n \to \infty$ and $p \to 0$; $n \to \infty$ and $p \to 0.5$	unbiased estimator of θ
categories according to specified	INDEPENDENCE VS. MUTUALLY EXCLUSIVE	dimensional random vector. range space is $R_{X,Y} = \{(x,y) x = X(s), y = Y(s), s \in S\}$	* CS < 0.5 suggests relative symmetry KURTOSIS: refers to peakedness (high, narrow,	When n is small; p is not extremely close to 0 or 1	\overline{X} is an unbiased estimator of $\mu \to E(\overline{X}) = \mu$
characteristics.			or flatness)/(short, flat-top) of histogram	-F. F	1 \(\sum_{\text{cr}} = \frac{1}{2} \)
ORDINAL DATA - can be ordered or ranked	are NOT same thing.	X; Y are independent iff $f_{X,Y}(x,y) = f_X(x)f_Y(y)$	COEFFICIENT OF KURTOSIS CK: measures	Use normal approximation only if $\underline{np} > 5$; $\underline{n(1-p)} > 5$	$n-1$ \angle
according to some relationship to 1 another.	$A \& B \underline{independent} \Leftrightarrow P(A \cap B) = P(A)P(B)$	\leftrightarrow V: V are independent iff $f = - (x x) - f(x)$	degree of kurtosis of population CK <3 → data is flat and wide degree of dispersion	CONTINUITY CORRECTION: X is binomial random	A biased estimator of σ^2 is $T = \frac{1}{n} \sum (X_i - \bar{X})^2$
INTERVAL DATA - ordinal but have constant	$A \& B$ mutually exclusive $\Leftrightarrow P(A \cap B) = 0$ If $A \& B$ are mutually exclusive $\&$ non-trivial (positive prob)	X_1, X_2, \dots, X_n are independent iff	CK > 3 → data is nat and wide degree of dispersion	variable mean $\mu = np, \sigma^2 = np(1-p) = npq$.	A SAMPLING EXPERIENCE: Sample size increases.
arbitrary zero points.	then A & B cannot be independent	$f_{X_1,X_2,}(x_1,x_2,,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)f_{X_n}(x_n)$	OUTLIERS: Mean; Range are sensitive to outliers	Then as $n \to \infty$: $Z = \frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1)$	average of sample means is all still close to expected
	DAIDWICE INDEDENDENT EVENTS:	PERCENTILES: kth percentile is value at or below which at least k percent of observations lie.	$\frac{\text{HOW DO WE IDENTIFY POTENTIAL OUTLIERS?}}{\text{z} - \text{scores} > +3 \text{ or } < -3$	VF(- F)	value;
DATA RELIABILITY: VALIDITY:	A set of events A_1, A_2, \dots, A_n are said to be pairwise	COMPUTING PERCENTILES:	Extreme outliers are > 3 IQR to left Q1 or right Q3	$*X \sim B(n, p): P(X = k) \approx P\left(k - \frac{1}{2} < X < k + \frac{1}{2}\right)$	Standard deviation of sample means becomes smaller,
(1st) <u>RELIABILITY</u> : Data is accurate; consistent	Independent $\Leftrightarrow P(A,A,1) = P(A,P(A,1)$	Find kth percentile for variable in sample size n	Mild outliers are between $1.5 * IQR$; $3 * IQR$ to left	$*X \sim B(n, p)$: $P(a \le X \le b) \approx$	meaning that means of samples are clustered closer
(2 nd) <u>VALIDITY</u> : Data correctly measures what it is supposed to measure.	MUTUALLY INDEPENDENT EVENTS:	Rank of kth percentile = $nk/100 + 0.5$	of Q1 or right of Q3	$X \sim N(\mu, \sigma)$: $P(a - 0.5 \le X \le b + 0.5)$	together around true expected value. SAMPLING DIST.: Sampling dist. of mean is dist. of
A tire pressure gage that consistently	A set of events $A_1,, A_n$ are said to be <u>mutually</u> independent/independent	QUANTILE: $q - th$ quantile of random variable X is	WHAT DO YOU DO WITH OUTLIERS?	$*X \sim B(n, p)$: $P(a < X < b) \approx$	means of all possible samples of fixed size n from some
reads several pounds of pressure × ✓	$\Leftrightarrow P(A_1A_2A_k) = P(A_1)P(A_2)P(A_k)$	z_q :	*Remove them if they are different from rest	$X \sim N(\mu, \sigma)$: $P(\alpha + 0.5 < X < b - 0.5)$ GAMMA FUNCTION : (α is a complex number with	population. <u>Standard deviation of Sampling dist. of</u>
below true value	A_1, A_2, \dots, A_n are mutually independent	$P(X < z_0) = q = \Phi(z_0) = \frac{1}{z_0} \int_{-\infty}^{z_0} e^{-y^2/2} dy$	*Correct error in data entry	positive real part). Gamma function $\Gamma(.)$ is defined by	mean is called standard error of mean = σ/\sqrt{n}
Number of calls to customer service	$\Leftrightarrow P(A,A,A,A,A) = P(A,P(A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,$	V 211 0 = 00	DATA MODELLING: DIST. FITTING : Sample data limits our ability to predict uncertain events:	r ^o	*As n increases, standard error↓, sampling error↓. SAMPLING DISTRIBUTION related to SAMPLE
desk (counted correctly) used to ✓ × assess customer dissatisfaction	t or t		potential values outside range of sample data are	$\Gamma(\alpha) = \int_0^{\infty} y^{\alpha - 1} e^{-y} dy; \ \Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$	SAMPLING DISTRIBUTION related to SAMPLE MEAN:
6 1 10 1	Delication in dependence / pair-wise independence	75th percentile, 03: 100th percentile, 04.	not included; better to identify underlying	$*\Gamma(1) = \int_{0}^{\infty} e^{-y} dy = 1$	
X X	PARTITION: If B_1, B_2, B_n are <u>mutually exclusive</u>	VARIANCE ~ average of squared deviations from	probability dist. from which sample data come by	* For integer, $\alpha = 1, 2,, n \rightarrow \Gamma(n) = (n-1)!$	Sample mean $\bar{X} = \frac{1}{n} \sum X_i$
PERMUTATION: A permutation of set of	$(R_iR_i = \emptyset, i \neq i)$ exhaustive $(R_i \sqcup R_0 \sqcup \sqcup \sqcup R_i = S)$	mean. If sample data is also population data, then $n =$	"fitting" theoretical dist. to data; verifying goodness of fit statistically	χ^2 DISTRIBUTION: chi-square or χ^2 distribution with r	Infinite population or from a finite population with
objects is ordering of objects in row. $n \times$	$\rightarrow R$ R R a partition of S	N to compute population variance	PROB. DIST.: characterization of possible values	degree of freedom is distribution of a sum of square of n	replacement having mean μ_X ; variance σ_X^2 , sample
$(n-1) \times \times 1 = n!$ r - permutations of set of n elements are:	RILLE OF TOTAL PROR. If R R R is partition	(nonular moscure of rick)			<u>distribution of sample mean \bar{X}</u> has mean; variance is:
		STANDARD ERROR: $SE(X) = \sqrt{V(X)}/\sqrt{n}$	probability of assuming these values 3 PERSPECTIVES FOR DEVELOPING	Let $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z^2 \sim \chi^2(1) \to \left(\frac{X - \mu}{\sigma}\right)^2 \sim \chi^2(1)$	$*\mu_{\overline{X}} = \mu_X \; ; \; \sigma_{\overline{X}}^2 = \frac{\sigma_X^2}{n}$
$P(n,r) = \frac{n!}{(n-r)!}$	$P(A) = \sum P(B_i A) = \sum P(B_i) P(A B_i)$	STANDARDIZED VALUES, Z-SCORE, provides	• theoretical arguments	$Y = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n) \to \sum_{i=1}^{n} Z_i^2 \sim \chi(n)$	$*E(\overline{X}) = E(X)$
REMARK: $P(n,2) + P(n,1) = n^2$		relative measure of distance observation is from mean			$*V(\overline{X}) = V(X)/n$
<u>COMBINATION:</u> r – combination of set of n	BAYES'S THEOREM: Let $B_1,, B_n$ be partition of S.	_	using subjective values; expert judgement	* For large n, $\chi^2(n) \sim N(n, 2n)$ approximately.	$*E(\overline{X} - \overline{Y}) = \mu_{\overline{X} - \overline{Y}} = \mu_{\frac{1}{2}} - \mu_{\frac{1}{2}}$
elements	$P(B_k A) = \frac{P(B_k)P(A B_k)}{P(B_k)P(A B_k)}$	z – score for <i>ith</i> observation $z_i = \frac{x_i - x}{z_i}$	Why do we need to know about distribution?	* If $(Y_1; Y_2;; Y_n)$ are <u>independent chi-square random</u>	$*V(\bar{X} - \bar{Y}) = \sigma_{\bar{X} - \bar{Y}}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$
$\binom{n}{r} = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$	$P(B_k A) = \frac{P(B_1)P(A B_1)}{P(B_1)P(A B_1)} \frac{P(B_1)P(A B_1)P(A B_1)}{P(B_1)P(A B_1)} \frac{P(A B_1)P(A B_1)}{P(A B_1)P(A B_1)} $		*Helps you to understand underlying process that generates sample data. *Useful in building	<u>variables</u> with $n_1, n_2,, n_k$ degree of freedom $\rightarrow Y_1 + Y_2 + \cdots + Y_k$ has χ^2 distribution with $n_1 + \cdots + n_k$	n_1 n_2
BINOMIAL COEFFICIENTS: For any $n \in \mathbb{Z}^+$,	$= \frac{P(B_k)P(A B_k)}{\sum_{i=1}^{n} P(B_i)P(A B_i)} \to \frac{P(A B)}{P(A^c B)} = \frac{P(B A)}{P(B A^c)} \times \frac{P(A)}{P(A^C)}$	measure of dispersion in data relative to mean:	decision models with theoretical dist. of data.	n. degrees of freedom	SAMPLING DISTRIBUTION relate to SAMPLE VARIANCE:
we have:	$\sum_{i=1}^{n} P(B_i)P(A B_i) P(A^c B) P(B A^c) P(A^c)$ CHEBYSHEV'S THEOREM : Proportion of values that lie	CV = (standard deviation)/mean	* Helps to compute probabilities of occurrence of	b , b ,	
$(x+y)^n = x^n + \binom{n}{1} x^{n-1} y^1 + \cdots$	within k (k > 1) standard doviations of mean are at least	Provides relative measure of risk to return	outcomes to assess risk; make decisions GOODNESS OF FIT: fitting data to probability dist.	$\sum_{i=1}^{\kappa} Y_i \sim \chi^2 \left(\sum_{i=1}^{\kappa} n_i \right)$	Sample variance $S^2 = \frac{1}{n-1} \sum_{i} (X_i - \bar{X})^2$
	1 _ 1/\(\bullet^2\)	Useful when comparing variability of two or more		i=1 $i=1$ $i=1$	Let S ² be sample variance of a random sample of size n
$= \sum_{i=0}^{n} \binom{n}{i} x^{n-i} y^{i} = v \sum_{i=0}^{n} \binom{n}{n-i} x^{n-i} y^{i}$				χ^2 - TABLE: χ^2 - table contains values of $\chi^2(n, \alpha)$ for various n: $P(Y \ge \chi^2(n; \alpha)) = \alpha; Y \sim \chi^2(n)$	taken from a normal population with $E(X) = \mu$; $V(X) = \sigma^2$
NUMBER OF ELEMENTS IN POWER SET: $n \ge 1$	Why is this useful? Able to use mean; standard deviation	n i loggi li	samples; only for non-parametric data) <u>ANDERSON-DARLING</u> (puts more weight on		
0, if set S has n elements, $N(\wp(S))$, total #	to find percentage of total observations that fall within	COVARIANCE is measure of linear association	differences between tails of dist.)	CTUDENT + DISTRIBUTION:	$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$
. (*		between two variables, X; Y.	SHAPIRO'S WILKINS NORMALITY TEST (test data against normal dist.) \rightarrow P-value > 0.05 implies that	$*n \to \infty \to \lim_{t \to \infty} f_x(t) = \frac{1}{t} e^{-z^2/2}$	n-1 is degrees of freedom.
n	classify data to convert it into useful information for		against normal dist.) → <u>P-value > 0.05</u> implies that dist. of data is not significantly different from		SAMPLING ERROR:
$\sum \binom{n}{k} = \binom{n}{0} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n$	pur poses of understanding; analysing business	NEGATIVE covariance → inverse relationship Magnitude → degree of association	normal dist. In other words, we can assume data is	*The t-table shows $P(T > t) = \alpha$	SAMPLING (STATISTICAL) ERROR: samples are only
K=0		$*\sigma_{YY} = \text{Cov}(X,Y) = E[(X - \mu_Y)(Y - \mu_Y)]$	normal.	In table degree of freedom df = 10 : $\alpha = 0.05$	subset of total population SAMPLING ERROR depends on size of sample relative
	Symmetrical unimodal mean = median = mode	-E[(V-E(V))(V-E(V))]	STANDARD NORMAL: X is called as standard	\rightarrow retrieve t	to nonulation
$\underline{\text{REMARK:}} \binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$	Negatively skewed (left skewed, tails off toward right),	*Cov(X,Y) = E(XY) - E(X)E(Y)	normal random variable when $\mu = 0$; $\sigma = 1$; $Z = 2$, $Z \sim N(0,1)$	If random sample was selected from a normal population	NON-SAMPLING ERROR: sample does not adequately
NUMBER OF INTEGER SOLUTIONS: # non-	mean < median < mode <u>Positive skewed (right skewed, tails off toward left),</u> mode < median < mean	$= E(XY) - \mu_Y \mu_Y$	L -1V(0,1)	$*Z = \frac{(X - \mu)}{2} \sim N(0.1); U = \frac{(n-1)S^2}{2} \sim v^2(n-1)$	represent target population, results from poor sample design or choosing wrong population frame. (e.g.,
negative integer solutions of equation $x_1 + \dots + x_n = r$ OR # r-combinations with		THE CHAIN OF CHAIN	Probability density $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$		design or choosing wrong population frame. (e.g.,
$x_2 + \cdots + x_n = r$ OR # r-combinations with repetition allowed that can be selected from a	Measures of Dispersion (Range, Variance, Standard	*Cov(X,Y) = Cov(Y,X) $ *Cov(aX + b, cY + d) = ac Cov(X,Y)$	Distribution function $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$ * $P(Z \ge 0) = P(Z \le 0) = 0.5$	* \bar{X} and \bar{S}^2 are independent, so are Z and U	convenience sample) EMPIRICAL RULES: For normally distributed data set,
set of n objects		$*V(aX + bY) = a^2V(X) + b^2V(Y) +$	$\sqrt{2\pi}^{J-\infty}$	$*T = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{Z}{\sqrt{U/(n-1)}} \sim t(n-1)$	proportion of values that lie within k
(r+n-1)! $(n+r-1)$	Measures of Association (Covariance; Correlation)	24b GOV (X, 1)	* $Y \sim N(\mu, \sigma^2) \to X = \frac{Y - \mu}{\sigma} \sim N(0, 1)$	S/\sqrt{n} $\sqrt{U/(n-1)}$ FISHERS F-DISTRIBUTION: (ratio between two estimate	(k > 1) standard deviations of mean follow empirical
				of var.). Random samples of size n_1 and n_2 are selected	li ules:
ARRANGING IN A CIRCLE:		\rightarrow Cov(X, Y) = 0 \rightarrow E(XY) = E(X)E(Y) CORRELATION is measure of linear association	* $X \sim N(0,1) \rightarrow Y = aX + b \sim N(b, a^2)$	from 2 normal population with variances σ_1^2 and σ_2^2	Application of Empirical Rule - Process Capability Index (C_p) is measure of how well manufacturing process can
For n distinct objects arranged in a circle, there are	data, i.e. defects or errors in quality control applications or	between two variables, X; Y (not dependent on units of		$U = \frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1 - 1)$	achieve specifications
n!/n = (n-1)!		measurement)	$\rightarrow P(a < X \le b) = P\left(\frac{a - \mu}{\sigma} < Z \le \frac{b - \mu}{\sigma}\right)$		Using sample of output, measure dimension of interest;
CONDITIONAL PROBABILITY of B given that A	—Seeks to predict future by examining historical data	RANGE: -1 (Strong negative); 1 (Strong positive	$ * P(a < Z < b) = \Phi(b) - \Phi(a) $	$V = \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$	compute total variation using third empirical rule. $C_p =$
is P(A o P)	detecting patterns or relationships in these data; then	linear relationship); 0 indicates no linear relationship;		σ_2^2 II/n S^2/σ^2	(upper spec.–lower spec.)
$P(B A) = \frac{P(A \cap B)}{P(A)}$	extrapolating relationships forward in time	Also known as: Pearson product moment correlation		$\rightarrow F = \frac{U/n_1}{V/n_2} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$	total variation
	Predictive analysis can predict risks; find relationships in data not readily apparent with traditional analysis	or rearson's correlation coefficient $Cov(X,Y)$	* $P(Z > a) = 2 - 2\Phi(a)$ NORMAL DIST.: $f(x)$ is bell-shaped curve		ESTIMATING SAMPLING ERROR EMPIRICAL RULE Using empirical rule for 3 standard deviations away
$\rightarrow \begin{pmatrix} P(A \cap B) = P(A)P(B A) \\ P(A \cap B) = P(B)P(A B) \end{pmatrix}$	—Using advantaged techniques, predictive analysis can	$Cor(X,Y) = \rho_{X,Y} = \rho = \frac{\sqrt{V(Y)}\sqrt{V(Y)}}{\sqrt{V(Y)}}$	Properties: 1. Symmetric; 2. Mean = Median =	$*F \sim F(n,m) \to \frac{1}{F} \sim F(n,m)$	from mean, ~99.7% of sample means should be
GENERAL MULTIPLICATION RULE:	help detect hidden pattern in large quantities of data to	* If V. V are independent then a = 0	Mode;	Table F-distribution gives value of $F(n_1, n_2, \alpha)$ such that	between:
$P(A_1 A_2 \dots A_n) =$	segment; group data into coherent sets to predict behaviour; detect trends	On other hand, $\rho_{X,Y} = 0$ does not imply independence.	3. Range of X is unbounded; 4. Empirical rules apply (i.e. area under density)	$*P(F > F(n_1, n_2, \alpha)) = \alpha \text{ when } F \sim F(n_1, n_2)$	[2.55, 7.45] - n = 10; [3.65, 6.35] - n = 25
$P(A_1)P(A_2 A_1)P(A_3 A_1A_2)$	PRESCRIPTIVE ANALYSIS: optimise model (minimise)	A V A	function within ± 2 standard deviation is 95.4%,	$*F(n_1, n_2; \alpha) = \frac{1}{F(n_1, n_2, 1 - \alpha)}$	[4.09, 5.91] - n = 100; [4.76, 5.24] - n = 500
$P(A_n A_1A_2 \dots A_{n-1})$	expenditure, maximise benefit/profit)		within ±3 standard deviation is 99.7%)	$F(n_1, n_2, 1 - \alpha)$	* n increases, standard error↓, sampling error ↓.

LAW OF LARGE NUMBER LLN: Let	CONFIDENCE INTERVALS FOR SPECIAL CASES:	USING C.I. FOR DECISION MAKING:	HYPOTHESIS on μ: KNOWN σ:NORMAL	REJECTION REGION: P-VALUE for	Wilcoxon signed-rank test (quantitative ~ cte)
$(X \cdot X_{-} \cdot X_{-})$ he a random sample of size n with	CI for PROPORTION: Let $\hat{p} = x/n$ (sample proportion), where x	1. Required volume for bottle-filling process is 800;		NORMAL distribution: $Z \sim N(0,1)$	The Wilcoxon signed-rank test is a non-parametric
mean μ ; variance σ^2 . Then, $\forall \varepsilon \in \mathbb{R} \to (P(\bar{X} - \mu >$		sample mean is 796 mls. We obtained confidence interval		H_1 Rejection region p-value	statistical hypothesis test used when comparing
Then, $\forall \epsilon \in \mathbb{R} \to (F(x - \mu > \epsilon) \to 0 \text{ as } n \to \infty)$	is number in sample having desired characteristic; n is sample size.			1 7	
	1.6	for population mean of [790.12, 801.88]. Should machine		u \ 11/	two related samples, matched samples, or repeated
CENTRAL LIMIT THEOREM:	$\hat{p}(1-\hat{p})$	adjustments be made? Although sample mean is less than	$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$< z < -z_{\alpha}$ $P(Z < - z)$	measurements on a single sample to assess
Let $(X_1; X_2;; X_n)$ be a random sample of size n	$\hat{p}\pm z_{rac{lpha}{2}}rac{\hat{p}(1-\hat{p})}{n}$	800, sample does not provide sufficient evidence to draw	σ/\sqrt{n}	\neq $z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$ $ 2P(Z > z)$	whether their population mean ranks differ (i.e. it is
with mean μ ; variance σ^2 .	•	that conclusion that population mean is less than 800	HYPOTHESIS on μ : UNKNOWN σ NORMAL	t – distribution: $T \sim t(n)$	a paired difference test). It is equivalent to one-
$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \Leftrightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$	Suppose that we wish to determine number of voters to poll to	because 800 is contained within confidence interval.	<u>population</u>	H ₁ Rejection region p-value	sample test of difference of paired samples.
$Z = \frac{1}{\sigma / \sqrt{n}} \sim N(0,1) \Leftrightarrow X \sim N(\mu, \frac{1}{n})$	ensure sampling error of at most ± 2%. With no information, use π	2 1300 voters found that 692 voted for particular	To test: $\mu(>,<,=)\mu_0$	$t > t > t_{n,\alpha}$ $t > t_{n,\beta}$ $t > t_{n,\beta}$	It can be used as an alternative to paired Student's
(a - a)	$= 0.5$ (proportion who poll): $n \ge (1.96)^2 (0.5)(1 - 0.5)/0.02^2$	candidate in two-person race. This represents proportion	When H_0 is true, we have test statistic:		t-test, t-test for matched pairs, or t-test for
$\rightarrow P(\bar{X} > a) = P\left(Z > \frac{a - \mu}{\sigma / \sqrt{n}}\right)$	Use sample proportion from preliminary sample as estimate of π	of 53.23% of sample.	$\bar{X}-\mu_0$	$<$ $t < -t_{n,\alpha}$ $P(T < - t)$	dependent samples when population cannot be
σ/\sqrt{n}			$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}} \sim t(n - 1)$	\neq $t > t_{n,\alpha/2}$ or $t < -t_{n,\alpha/2} 2P(T > t)$	assumed to be normally distributed.
Normal distribution provides an excellent	or set π = 0.5 for conservative estimate to guarantee required	Could we conclude that candidate will likely win election?	TWO-SIDED TEST ~ CONFIDENCE INTERVAL:	T-TEST: Paired two-sample for means	It has lower sensitivity compared to t-test. May be
approximation to sampling distribution of mean	precision (maximizes qty of $\pi(1 - \pi)$).	95% confidence interval for proportion is [0.505, 0.559]	$100(1-\alpha)\%$ confidence interval contains μ_0	TEST FOR EQUALITY OF VARIANCES	problematic to use when sample size is small
\bar{X} if $n \ge 30$.	CI of μ ; KNOWN σ with σ	This suggests that population proportion of voters who	t / t / t is not located within	between 2 samples using new type of test. F-	Null hypothesis H_0 : difference between pairs
*If $(X_1; X_2;; X_n)$ are (approximately) $N(\mu, \sigma^2)$,	NORMAL population or $n > 30$ $\bar{X} \pm z_{\alpha/2} \frac{\delta}{\sqrt{n}}$	favour this candidate is highly likely to exceed 50%, so it		test	
then \bar{X} is (approximately) $N(\mu, \sigma^2/n)$ regardless of		is safe to predict winner.	rejection region $\rightarrow H_0$ will NOT be rejected.	To use this test, we must assume that both	follows a symmetric distribution around zero.
sample size n .	CI of μ ; UNKNOWN σ with NORMAL population & $n < 30$ $\bar{X} \pm t_{(n-1,\alpha/2)} \frac{S}{\sqrt{n}}$	3. What if sample proportion is 0.515; confidence interval	HYPOTHESIS on $\mu_1 - \mu_2$ with KNOWN σ_1^2 ; σ_2^2 :	samples are drawn from normal	Mann-Whitney U test (quantitative ~ categorial
*If sample size is large enough, then sampling dist.	NORMAL population & $n < 30$	for population proportion is [0.488, 0.543]? Even though	NORMAL population or $n_1, n_2 > 30$:	populations.	2 level): also called Mann-Whitney-Wilcoxon /
	CI of μ ; UNKNOWN σ with	sample proportion is larger than 50%, sampling error is	To test: $\mu_1 - \mu_2(>, <, =) \delta_0$	$\bullet H_0: \sigma_1^2 - \sigma_2^2 = 0; H_1: \sigma_1^2 - \sigma_2^2 \neq 0$	Wilcoxon rank-sum test / Wilcoxon-Mann-
of mean ~normally distributed regardless of dist. of	CI of μ ; UNKNOWN σ with NORMAL population or $n > 30$ $\bar{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$	large; confidence interval suggests that it is reasonably	When H_0 is true, we have test statistic:		Whitney test is a nonparametric test of null
population \sim sample mean = population mean	TOTAL TELEPOPULATION OF THE VIE		$(\bar{X}_1 - \bar{X}_2) - \delta_0$	• F-test statistic: $F = s_1^2/s_2^2$	hypothesis that two samples come from same
<u> ₱ If population ~ normally distributed</u> , sampling	CI of $\mu_1 - \mu_2$; KNOWN $\sigma_1^2 \neq \sigma_2^2$	likely that true population proportion could be less than	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - \delta_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0,1)$	F-DIST. has two degrees of freedom, 1	population against an alternative hypothesis,
dist. ~ normal distr. for any sample size.	NORMAL population or $n > 30$ $(\bar{X}_1 - \bar{X}_2) \pm z_{\alpha/2}$ $\frac{ z_1 }{ z_1 } + \frac{ z_2 }{ z_2 }$	likely that true population proportion could be less than 50%, so you cannot predict winner. PREDICTION INTERVALS is 1 that provides range for	$\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$	associated with numerator of F-statistic,	especially that a particular population tends to
INTERVAL ESTIMATES: 100(1 - a)%	NORMAL population of $n > 30$ $1 - 27 = 0.72 \sqrt{n_1 \cdot n_2}$	PREDICTION INTERVALS is 1 that provides range for	HYPOTHESIS TEST ON σ_1^2 , σ_2^2 : To test: $\sigma_1^2 = \sigma_2^2$	$n_1 - 1$; 1 associated with denominator	have larger values than other.
probability interval is any interval [A, B] such that		predicting value of new observation from same	We can use test statistic	, n ₂ - 1.	It can be applied on unknown distributions
probability of falling between; B is $1 - a$.	CI of $\mu_1 - \mu_2$; UNKNOWN $(\bar{y} \bar{y}) + \bar{z}$	population.	S_1^2	Population with larger variance will be	contrary to e.g. a t-test has to be applied only on
probability intervals are centred on mean/ median.	$ \begin{array}{l} \text{CI of } \mu_1 - \mu_2 \text{ ; UNKNOWN} \\ \sigma_1^2 \neq \sigma_2^2 \text{ with } n > 30 \end{array} \qquad (\overline{X}_1 - \overline{X}_2) \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} $	While confidence interval is associated with sampling dist.	$F = \frac{S_1^2}{S^2} \sim F(n_1 - 1, n_2 - 1)$	assigned numerator	
CONFIDENCE INTERVALS is range of values		of statistic, but prediction interval is associated with dist.	32	ANALYSIS OF VARIANCE (ANOVA): Used	normal distributions.
between which value of population parameter is	CI of $\mu_1 - \mu_2$; UNKNOWN $\sigma_1^2 \neq \sigma_2^2$; NORMAL population;	of random variable itself.	H ₁ Rejection region	to compare means of two or more	LINEAR MODEL: Given n random samples
believed to be, along with probability that interval	n < 30: Define		$\sigma_1^2 > \sigma_0^2 F > F_{n_1 - 1, n_2 - 1, \alpha}$	population groups; fairly robust to	$(y_1, x_{1i}, \dots, x_{pi})$ linear regression models relation
correctly estimates true (unknown) population		$\bar{x} \pm t_{\alpha/2, n-1} \left(s \sqrt{1 + \frac{1}{n}} \right)$	$\sigma_1^2 < \sigma_0^2$ $F < F_{n_1-1,n_2-1,1-\alpha}$	departures from normality	between observations y_i and independent
	$S_p^2 = \frac{\sum (X_i - \bar{X})^2 + \sum (Y_i - \bar{Y})^2}{n_1 + n_2 + 2} = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$x = \frac{\alpha}{2}, n-1 \left(\frac{3}{\sqrt{1 + n}} \right)$	$\sigma_1^2 \neq \sigma_0^2 F < F_{n_1-1,n_2-1,1-\alpha/2}; F > F_{n_1-1,n_2-1,\alpha/2}$	H_0 : $\mu_1 = \mu_2 = \cdots = \mu_m$	variables x_i^p is $y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \epsilon_i$
parameter.		CONFIDENCE interval VS PREDICTION interval:	HYPOTHESIS on $\mu_1 - \mu_2$ with UNKNOWN	H ₁ :at least 1 mean is different from others	The β 's are regression coefficients
$P(\widehat{\Theta}_L < \theta < \widehat{\Theta}_U) = 1 - \alpha$	is pooled sample variance, an estimator for $\sigma^2 = \sigma_1^2 = \sigma_2^2$	For 95% confidence interval means if we randomly		ANOVA measures variation between	β_0 is intercept or bias
The interval computed $\widehat{\Theta}_L < \theta < \widehat{\Theta}_U$ is called $(1 - \theta)$	$100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is	1 1 1 1 0 50 1 51 1 1	$\frac{\sigma_1^2}{\sigma_1^2}$; $\frac{\sigma_2^2}{\sigma_2^2}$: $\frac{n_1}{n_2}$ > 30	groups relative to variation within groups.	ϵ_i are residuals
α)100% confidence interval for θ . fraction (1 – α)		desired values in ranges of 95% confidence level	μ_1 $\mu_2(>, <, =)$		Regression analysis is tool for building
is called confidence coefficient or degree of	$(\bar{\mathbf{v}} \bar{\mathbf{v}})$		When H_0 is true, we have test statistic:	large enough based on level of significance	mathematical; statistical models that characterize
confidence	$(\bar{X}_1 - \bar{X}_2) \pm t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	For 95% prediction interval means that when there is	$(X_1 - X_2) - \delta_0$		· ·
*For 95% confidence interval, if we chose 100		new data coming, there is 95% chance that having	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - \delta_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim N(0,1)$	chosen; exceeds critical value, we would	relationships between dependent (ratio) variable;
different samples, leading to 100 different interval	$CI \text{ of } \mu_1 - \mu_2$; KNOWN	desired values in 95% prediction level	HYPOTHESIS on $\mu_1 - \mu_2$ with UNKNOWN $\sigma_1^2 =$	reject H ₀ .	1 or more independent, or explanatory variables
estimates, we would expect that 95% of them would	$(X_1 - X_2) + Z_1 = S_1 = + -$	HYPOTHESIS TESTING		ANOVA Assumptions: Independence,	(ratio or categorical), all of which are numerical.
contain true population mean.	$\sigma_1^2 = \sigma_2^2$ with n_1 ; $n_2 \ge 30$	Null hypothesis: What you do not want to see	σ_2^2 : NORMAL population: n_1 , $n_2 < 30$	Normality; homogeneity of variances:	<u>Simple linear regression</u> involves single independent
* Explain difference as level of confidence decreases		Alternative hypothesis: what you want to see	To test: $\mu_1 - \mu_2(>, <, =) \delta_0$	1. Randomly; independently obtained	variable >< <u>multiple linear regression</u>
	CI of $\mu_D = \mu_1 - \mu_2$ with NORMAL population, $n < 30$ $\overline{D} \pm t_{n-1;\alpha/2} \frac{S_D}{\sqrt{n}}$	HYPOTHESIS TESTING PROCEDURE:	When H_0 is true, we have test statistic:	(validated if random samples are chosen)	Residuals are observed errors associated with
from 95% to 90%.		Step 1: Null; Alternative hypothesis (what you want to	$T = \frac{(\bar{X}_1 - \bar{X}_2) - \delta_0}{S_p \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$	2. Normally distributed;	estimating value of dependent variable using
When level of confidence decreases from 95% to	CI of $\mu_D = \mu_1 - \mu_2$ with $\overline{D} \pm z_{\alpha/2} \frac{S_D}{\sqrt{z}}$	test). equal part is always in null hypothesis	$I = \frac{1}{c} \frac{1}{(n_1 + 1/n_2 - 2)}$	3. Have equal variances	regression line: $e_i = Y_i - \hat{Y}_i$
90%, range of <u>CI increase</u> → <u>rejection area</u>	$n > 30$ $D \perp 2\alpha/2 \sqrt{n}$		$(-1)^{C_2}$	If sample sizes are equal, violation of third	Help detect outliers that bias regressions analysis.
decreases.	CI of σ^2 ; KNOWN μ with $\left(\sum (X_i - \mu)^2 \sum (X_i - \mu)^2\right)$	Step 2: Determine level of significance (α) ; power (β) .	$S_p = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$ is	assumption does not have serious effects,	Errors associated with individual observation
<u>CI for μ with KNOWN σ:</u> z_{α} is number with an		H_0 is true H_0 is false		but with unequal sample sizes, it can.	Residual analysis; Regression assumption
upper-tail probability of σ for standard normal	NORMAL population $\chi_{n;\alpha/2}^2$, $\chi_{n;1-\alpha/2}^2$	Reject Provided Hill Correct decision	pooled sample variance	Comparing sample means of two	Residual = Actual Y value — Predicted Y value
distribution Z.	CI of σ^2 ; UNKNOWN μ with $(n-1)S^2$ $(n-1)S^2$	P(reject $H_0 H_0$ true) P(reject $H_0 H_0$ false)	HYPOTHESIS TEST ON PAIR SAMPLES:	populations, use t-test rather than ANOVA	Standard residual = residual/standard deviation
\overline{V} V V V	NORMAL population $\frac{1}{\chi^2_{n-1;\alpha/2}}, \frac{1}{\chi^2_{n-1;1-\alpha/2}}$	$= \alpha$ $= 1 - \beta$	For paired sample, define:	PEARSON CORRELATION TEST:	
$P(Z > z_{\alpha}) = \alpha \to \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right); Z$		Not Correct decision Type II error	$D_i = X_i - Y_i; \mu_D = \mu_1 - \mu_2$	Test association between 2 quantitative	Rule of thumb: Standard residuals outside of $\pm 2 \ or \ \pm 3$ are potential outliers.
$\overline{\overline{Y}} = u$	CI of σ_1^2/σ_2^2 ; UNKNOWN μ_1 ; μ_2 : NORMAL population		To test: $\overline{D}(>,<,=)\mu_{D,0}$	variables:	
$=\frac{X-\mu}{S/\sqrt{n}} \sim N(0,1)$	$S_1^2 = 1 \qquad \sigma_1^2 = S_1^2 = 1$	100116,000116,000116,000116,000116,000116,000116	When H_0 is true, we have test statistic:	The test calculates Pearson correlation	An independent variable (IV), also called
S/\sqrt{n}	$\frac{S_1^2}{S_2^2} \frac{1}{F_{n_1 - 1, n_2 - 1, \alpha/2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} \frac{1}{F_{n_1 - 1, n_2 - 1, 1 - \alpha/2}}$		$*n < 30$, D_i are normally distributed	coefficient; p-value for testing non-	predictors. It is a variable that stands alone and
We have $P\left(-z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$		Step 3: Identify test statistic, distribution; rejection criteria.		correlation. Let x; y be two quantitative	isn't changed by other variables you are trying to
we have $\Gamma\left(-z_{\alpha/2} \ge \frac{1}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$	PAIRWISE ASSOCIATION TEST: On left is used non-parametric	Level of significance = α ↓ Represents critical value	$\rightarrow T = \frac{D - \mu_{D,0}}{S_D / \sqrt{n}} \sim t(n-1)$	variables, where n samples are observed.	measure. For example, someone's age might be an
$\rightarrow P(\bar{X} - z_{\alpha/2} \times \sigma/\sqrt{n} \le \mu \le \bar{X} + z_{\alpha/2} \times \sigma/\sqrt{n})$	test of pairwise correlation (robust to non-normal	$H_0: \mu = 3$ $\alpha/2$	S_D/\sqrt{n}	linear regression coefficient is	independent variable. Other factors (such as what
$\rightarrow \Gamma(\Lambda - Z_{\alpha/2} \land 0) \lor \eta = \mu \leq \Lambda + Z_{\alpha/2} \land 0) \lor \eta = 0$	population/samples)		$*n \ge 30 \to Z = \frac{\overline{D} - \mu_{D,0}}{S_D / \sqrt{n}} \sim N(0,1)$	$\sum (\gamma_{\cdot} - \bar{\gamma})(\nu_{\cdot} - \bar{\nu})$	they eat, how much they go to school, how much
	guantitative ~ categorical	H ₁ : μ ≠ 3 Two-tail test 0 Rejection region is	$\approx n \ge 30 \rightarrow Z = \frac{1}{S_D / \sqrt{n}} \sim N(0,1)$	$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$	television they watch) aren't going to change a
SAMPLE SIZE FOR ESTIMATING μ : For margin of	quantitative ~ categorical	$H_0: \mu = 3$	HYPOTHESIS TEST ON σ^2 :	$\sqrt{\sum(x_i-\bar{x})^2}\sqrt{\sum(y_i-\bar{y})^2}$	person's age. In fact, when you are looking for some
				The day II has a statistic to \sqrt{r} ?	kind of relationship between variables you are
error a confidence α sample size $n > \left(\frac{z_{\alpha/2} \times \sigma}{z_{\alpha/2}}\right)^2$	1 sample 2 samples >=2 samples	H ₁ : µ>3	To test: $\sigma^2 (> < -) \sigma^2$	Tunder H_0 , test statistic $T = \sqrt{n} - 2$	
error e, confidence u , sample size $n \ge \begin{pmatrix} e \end{pmatrix}$	1 sample 2 samples >=2 samples	H ₁ : μ > 3 Upper-tail test	$\underline{\text{To test:}} \sigma^2(>, <, =) \sigma_0^2$	Under H_0 , test statistic $t = \sqrt{n-2} \frac{r}{\sqrt{1-r^2}}$	
error e , confidence α , sample size $n \ge \left(\frac{z_{\alpha/2} \times \sigma}{e}\right)^2$ CONFIDENCE INTERVALS; SAMPLE SIZE	1 sample 2 samples >=2 samples	Upper-tail test 0	We can use test statistic	follows Student distribution with $n-2$	trying to see if independent variable causes some
error e, confidence u , sample size $n \ge \begin{pmatrix} e \end{pmatrix}$	1 sample 2 samples >=2 samples	Upper-tail test 0 H ₀ : μ = 3	We can use test statistic	follows Student distribution with $n-2$ degree of freedom	trying to see if independent variable causes some kind of change in other variables, or dependent
CONFIDENCE INTERVALS; SAMPLE SIZE	1 sample 2 samples >=2 samples Norm.? 1 sample Wilcoxon 2 samples Mann-T-test Mann-Whitney ANOVA Friedman Fr	Upper-tail test 0 $H_0: \mu = 3$ $H_1: \mu < 3$		follows Student distribution with $n-2$ degree of freedom NON-PARAMETRIC TEST OF PAIRWISE	trying to see if independent variable causes some kind of change in other variables, or dependent variables.
CONFIDENCE INTERVALS; SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified	1 sample 2 samples >=2 samples Norm.? 1 sample Wilcoxon 2 samples Mann- One way Friedman	Upper-tail test 0 H_0 : $\mu = 3$ H_1 : $\mu < 3$ Lower-tail test 0	We can use test statistic	follows Student distribution with $n-2$ degree of freedom NON-PARAMETRIC TEST OF PAIRWISE ASSOCIATION; When to use it? Observe data	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It
CONFIDENCE INTERVALS; SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E).	1 sample 2 samples >=2 samples Norm.? 2 samples Wilcoxon 2 samples Mann-T-test Whitney ANOVA Friedman Frie	H ₀ : $\mu = 3$ H ₂ : $\mu < 3$ Cower-tail test Step 4: Compute test statistic value based on your data.	We can use test statistic $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$ H ₁ Rejection region	follows Student distribution with $n-2$ degree of freedom NON-PARAMETRIC TEST OF PAIRWISE ASSOCIATION: When to use it? Observe data distribution: presence of outliers;	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For
CONFIDENCE INTERVALS; SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E).	1 sample 2 samples >=2 samples Norm.?	H ₀ : $\mu = 3$ H ₁ : $\mu < 3$ Step 4: Compute test statistic value based on your data. Step 5: Conclusion.	We can use test statistic $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$ $H_1 \text{Rejection region}$ $\sigma_1^2 > \sigma_0^2 \chi^2 > \chi_{n-1,\alpha}^2$	follows Student distribution with $n-2$ degree of freedom NON-PARAMETRIC TEST OF PAIRWISE ASSOCIATION; When to use it? Observe data	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable
CONFIDENCE INTERVALS; SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$	1 sample 2 samples >=2 samples Norm.? 1 sample Wilcoxon 2 samples Mann-T-test Whitney Mann-T-test Whitney Mann-T-test Mann-T-test Whitney Mann-T-test Ma	H ₀ : $\mu = 3$ H ₂ : $\mu < 3$ Cower-tail test Step 4: Compute test statistic value based on your data.	$ \frac{\text{We can use test statistic}}{\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}} \sim \chi^2(n-1) $ $ \frac{H_1}{\sigma_1^2 > \sigma_0^2} \frac{\chi^2 > \chi^2_{n-1,\alpha}}{\chi^2 < \sigma_0^2} \frac{\chi^2 > \chi^2_{n-1,1-\alpha}}{\chi^2 < \sigma_0^2} \frac{\chi^2 > \chi^2_{n-1,1-\alpha}}{\chi^2 < \sigma_0^2} \frac{\chi^2}{\chi^2} > \frac{\chi^2}{\chi^2_{n-1,1-\alpha}} $	follows Student distribution with $n-2$ degree of freedom NON-PARAMETRIC TEST OF PAIRWISE ASSOCIATION: When to use it? Observe data distribution: presence of outliers;	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several
CONFIDENCE INTERVALS; SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$	1 sample 2 samples >=2 samples Norm.?	H ₀ : $\mu = 3$ H ₁ : $\mu < 3$ Step 4: Compute test statistic value based on your data. Step 5: Conclusion.		follows Student distribution with $n-2$ degree of freedom NON-PARAMETRIC TEST OF PAIRWISE ASSOCIATION; When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian.	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{F^2}$	1 sample 2 samples >=2 samples Norm.? 1 sample Wilcoxon 2 samples Mann-Ttest	H ₀ : μ = 3 H ₁ : μ < 3 Lower-tail test 0 Step 4: Compute test statistic value based on your data. Step 5: Conclusion. $p - VALUE$: If $p - value > \alpha$, do not reject H_0 , else reject H_0	$ \frac{\text{We can use test statistic}}{\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}} \sim \chi^2(n-1) $ $ \frac{H_1}{\sigma_1^2 > \sigma_0^2} \frac{\chi^2 > \chi^2_{n-1,\alpha}}{\chi^2 < \sigma_0^2} \frac{\chi^2 > \chi^2_{n-1,1-\alpha}}{\chi^2 < \sigma_0^2} \frac{\chi^2 > \chi^2_{n-1,1-\alpha}}{\chi^2 < \sigma_0^2} \frac{\chi^2}{\chi^2} > \frac{\chi^2}{\chi^2_{n-1,1-\alpha}} $	follows Student distribution with $n-2$ degree of freedom MON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION: When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population:	1 sample 2 samples >=2 samples Norm.? 1 sample Wilcoxon 2 samples Mann-T-test Mann	Upper-tail test $H_0: \mu = 3$ $H_0: \mu = 3$ Step 4: Compute test statistic value based on your data. Step 5: Conclusion. $P - VALUE: \text{ If } p - \text{ value} > \alpha, \text{ do not reject } H_0, \text{ else reject } H_0$ IMPROVING POWER OF TEST		follows Student distribution with $n-2$ degree of freedom NON-PARAMETRIC TEST OF PAIRWISE ASSOCIATION; When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population:	1 sample 2 samples >=2 samples Norm.? 1 sample	H ₀ : $\mu = 3$ Lower-tail test 0 H_1 : $\mu < 3$ Lower-tail test 0 0 Step 4: Compute test statistic value based on your data. Step 5: Conclusion. $D - VALUE$: If $D - Value > \alpha$, do not reject H_0 , else reject H_0 IMPROVING POWER OF TEST Power of test = $1 - b$		follows Student distribution with $n-2$ degree of freedom NON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION: When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of monotonicity of relationship between two datasets	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually when you are looking for a relationship between
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population:	1 sample 2 samples >=2 samples >=2 samples 1 sample Wilcoxon 2 samples Mann-Ttest Mann-Ttest Whitney One way Friedman 1 sample Wilcoxon 2 samples Mann-Ttest M	H ₀ : μ = 3 H ₁ : μ < 3 Step 4: Compute test statistic value based on your data. Step 5: Conclusion. p - VALUE: If p - value > α , do not reject H_0 , else reject H_0 MPROVING POWER OF TEST Power of test = 1 - b • probability of not committing type II error		follows Student distribution with $n-2$ degree of freedom NON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION; When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of monotonicity of relationship between two datasets Like other correlation coefficients, this one	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population: $\beta \pm z_{\alpha/2} \left(\frac{\beta(1-\beta)}{n} \right)$;	1 sample 2 samples >=2 samples Norm.? 1 sample Wilcoxon 2 samples Mann-T-test Mann	H ₀ : μ = 3 H ₁ : μ < 3 Step 4: Compute test statistic value based on your data. Step 5: Conclusion. p – VALUE: If p – value > α , do not reject H_0 , else reject H_0 IMPROVING POWER OF TEST Power of test = 1 – b • probability of not committing type II error • should be high to make valid conclusion		follows Student distribution with $n-2$ degree of freedom NON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION; When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of monotonicity of relationship between two datasets Like other correlation coefficients, this one varies between -1 ; $+1$ with 0 implying no	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually when you are looking for a relationship between
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population: $\beta \pm z_{\alpha/2} \left(\frac{\beta(1-\beta)}{n} \right)$;	1 sample 2 samples >=2 samples >=2 samples 1 sample	Upper-tail test $H_0: \mu = 3$ $H_1: \mu < 3$ Step 4: Compute test statistic value based on your data. Step 5: Conclusion. $p - VALUE: \text{If } p - \text{value} > \alpha, \text{ do not reject } H_0, \text{ else reject } H_0$ IMPROVING POWER OF TEST Power of test = 1 - b probability of not committing type II error should be high to make valid conclusion How to ensure sufficient power?		follows Student distribution with $n-2$ degree of freedom NON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION: When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of monotonicity of relationship between two datasets Like other correlation coefficients, this one varies between -1 ; $+1$ with 0 implying no correlation.	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually when you are looking for a relationship between two things you are trying to find out what makes dependent variable change way it does.
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population:	1 sample 2 samples >=2 samples >=2 samples 1 sample	H ₀ : μ = 3 Lower-tail test α β β : μ < 3 β β : α β β : α β β : α β β : α β β : Compute test statistic value based on your data. Step 5: Conclusion. ρ ρ ρ ρ ρ ρ ρ ρ		follows Student distribution with $n-2$ degree of freedom MON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION: When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of monotonicity of relationship between two datasets Like other correlation coefficients, this one varies between -1 ; $+1$ with 0 implying no correlation. Correlations of -1 or $+1$ imply an exact	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually when you are looking for a relationship between two things you are trying to find out what makes dependent variable change way it does. Standard error — variability between observed;
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population: $\beta \pm z_{\alpha/2} \left(\frac{\beta(1-\beta)}{n} \right)$;	1 sample 2 samples >=2 samples >=2 samples 1 sample	H ₀ : $\mu = 3$ H_1 : $\mu < 3$ Lower-tail test A A A A A A A A		follows Student distribution with $n-2$ degree of freedom MON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION; When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of monotonicity of relationship between two datasets Like other correlation coefficients, this one varies between -1 ; $+1$ with 0 implying no correlations of -1 or $+1$ imply an exact monotonic relationship.	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually when you are looking for a relationship between two things you are trying to find out what makes dependent variable change way it does. Standard error — variability between observed; predicted Y values. This is formally called standard
CONFIDENCE INTERVALS: SAMPLE SIZE Determine appropriate sample size needed to estimate population parameter within specified level of precision (+ E). $\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ Sample size of mean: $n \ge \left(z_{\alpha/2} \right)^2 \frac{\sigma^2}{E^2}$ Sample size for population: $\beta \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\beta(1-\beta)}{n}}$;	1 sample 2 samples >=2 samples >=2 samples 1 sample	H ₀ : μ = 3 Lower-tail test α β β : μ < 3 β β : α β β : α β β : α β β : α β β : Compute test statistic value based on your data. Step 5: Conclusion. ρ ρ ρ ρ ρ ρ ρ ρ		follows Student distribution with $n-2$ degree of freedom MON—PARAMETRIC TEST OF PAIRWISE ASSOCIATION: When to use it? Observe data distribution: presence of outliers; distribution of residuals is not Gaussian. Spearman rank-order correlation (quantitative ~ quantitative): measure of monotonicity of relationship between two datasets Like other correlation coefficients, this one varies between -1 ; $+1$ with 0 implying no correlation. Correlations of -1 or $+1$ imply an exact	trying to see if independent variable causes some kind of change in other variables, or dependent variables. A dependent variable, called a target variable. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got night before you took test, or even how hungry you were when you took it. Usually when you are looking for a relationship between two things you are trying to find out what makes dependent variable change way it does. Standard error — variability between observed;

The total sum of squares, also called total squared MULTIPLE LINEAR REGRESSION: criterion measures for model selection 1. Linearity (of relationship between Y & Xs): sum of deviations from mean y: $SS_{tot} = \sum (y_i - \bar{y})^2$ Residual vs. fitted - Find straight horizontal line The regression sum of squares, also called explained version (AICc) 2. Normality of Errors = Errors (e; residuals) are sum of squares: $SS_{reg} = \sum (\hat{y}_i - \bar{y})^2$ normally distributed: where $\hat{y_i} = \beta x_i + \beta_0$ is estimated value of $\hat{y_i}$ given Normal O-O plot - Look for linear relationship value of experience x_i 3. Homoscedasticity = Constant / Equal variance of The sum of squares of residuals, also called residua errors (e) for all values of X = Impact of X on Y is sum of squares RSS is: $SS_{res} = \sum (y_i - \hat{y_i})^2$ criterion in R? same for all X values: R^2 is explained sum of squares of errors. It is Residual vs. fitted: Scale-location - Look for straight nls(model2) / ... variance by regression divided by total variance horizontal line $R^{2} = \frac{\text{explained SS}}{\text{total SS}} = \frac{SS_{reg}}{SS_{tot}} = 1 - \frac{SS_{res}}{SS_{tot}}$ 4. Independence of errors = There is no correlation between errors (e) calculated from regression Adjusted R-squared - adjusts R² for sample size model - Need additional plot/test number of X variables. * Residual time series plot Why use adjusted R Square? R-squared has * Durbin-Watson test model is (close to) "TRUE" model • For cross-sectional data, this is usually not major additional problems that adjusted R-squared is designed to address relationship between Y; X(s) Problem 1: Add predictor to model, R-squared Panel/time-series data need to check increases, even if due to chance alone. It never Issues 2, 3; 4 are often interrelated • Cross-sectional data – data is collected only once, decreases – model with more terms appear to have usually ok for multiple regression/time series better fit simply because it has more terms. from different individuals/entities suitable for your model(s): data!!! • Panel/time-series data - data is collected multiple Problem 2: If model has too many predictors; higher INTERPRET REGRESSION ANALYSIS RESULT? order polynomials, it begins to model random noise times from each individual/entity MULTICOLLINEARITY: occurs when there are in data. This is known as overfitting model; is strong correlations among independent variables; produces misleadingly high R-squared values; value of all Xs = 0 essened ability to make predictions, adjusted Rthey can predict each other better than dependent Coefficient of X = impact of X on Y;squared increases only if new term improves model variable. Becomes difficult to isolate effect of 1 independent variable on dependent variable, signs more than would be expected by chance. It of coefficients may be opposite of what they should decreases when predictor improves model by less be, making it difficult to interpret regression than expected by chance, adjusted R-squared can be (all 0 or not) coefficients; p-values can be inflated. <u>Correlations</u> <u>negative</u>, but it's usually not, always < R - squared **Test:** Let $\hat{\sigma}^2 = SS_{res}/(n-2)$ be an estimator of exceeding ± 0.7 may indicate multicollinearity **OVERFITTING:** fitting model too closely to sample variance of ϵ , two in denominator stems from two data at risk of not fitting it well to population in estimated parameters: intercept and coefficient. usually defined in two ways uata at risk of not fitting it well to population in which we are interested. R2-value will increase if we fit higher order polynomial functions to data \rightarrow make it difficult to explain phenomena rationally. In multiple regression, if we add too many terms to model, then model may not adequately predict other values from population. Overfitting can be mitigated by using good logic intuition, theory; parsimony $\stackrel{\text{\tiny Cover}}{\bullet}$ 0 by adding more data PRINCIPLE OF PARSIMONY: Good models are seen as $\frac{SS_{res}}{(n-2)} \sim \chi^2_{n-1}$ and $\frac{SS_{res}}{\partial z} \sim \chi^2_{n-2}$ and $\frac{SS_{res}}{\partial z} \sim \chi^2_{n-2}$ and $\frac{SS_{res}}{\partial z} \sim \chi^2_{n-2}$ models: therefore "Pseudo" R2 McFadden's Pseudo R² not severely violated PRINCIPLE OF PARSIMONY: Good models are as Using F-distribution, compute probability of squares of residuals; observing a value greater than F under H_0 : P(x > | SSR / SST(Sum of square total) = Pearson Correlationsimple as possible **INTERACTIONS:** occurs when effect of 1 variable is $F|H_0$: survival function (1-Cumulative Coefficient R (Y, Predicted Y from model) $^2 = {}^{\circ}R''$ dependent on another variable. We can test for distribution function) at x of given F-distribution interactions by defining new variable as product of Notice p-value (Significance F): When p-value is two variables, $X_3 = X_1 \times X_2$; testing whether this less than threshold (significance level), justifies of Y variable is significant, leading to alternative model. rejection of null hypothesis. <u>Null hypothesis is</u> $SSR = SS_{reg} = \sum_{i} (\hat{y}_i - \bar{y})^2$ $\underline{SST} = \sum_{i} (Y - \text{mean } Y)^2 = \text{Total variance of } Y$ $SST = SS_{tot} = \sum_{i} (y_i - \bar{y})^2$ Difference between correlation: interaction: rejected when p < 0.05; not rejected when p > 0.05. Whether two variables are associated says nothing $Rejecting H_0$ indicates X explains variation in Y about whether they interact in their effect on third HOW TO FIND MODEL BEST FIT WITH DATA? variable. interaction between two variables means Method 1. USE R2 CHANGE (FOR NESTED MODELS effect of 1 of those variables on third variable is not LINEAR REGRESSION): Find most parsimonious constant— effect differs at different values of other. model by using R2; Rationale - Parsimonious model **REGRESSION STATISTIC:** Multiple R - |r|, is preferred if it fits data (at least) equal to more where r is sample correlation coefficient r varies complex model; Two models are considered as 1) /(n-p-1); from -1 to +1 (r is negative if slope is negative). "nested" if one is constrained version of other n =sample size, p =no. of predictors 1) $Y = b_0 + b_1 * X_1 + b_2 * X_2 + b_2 * X_2 + e$ **Goodness of fit:** of a statistical model describes how (2) Y = b0 + b1 * X1 + b2 * X2 + ewell it fits a set of observations. Measures of $\stackrel{\checkmark}{\Rightarrow}$ (2) nested in (1) because they are same if b3=0 goodness of for typically summarizes discrepancy \rightarrow (2) is more "parsimonious" than (1); estimate less between observed values and values under model in no. of coefficients (= parameters) equation. We will consider explained variance also We prefer Model (2) over Model (1) if R2 change known as co-efficient of determination, denoted between Models (2); (1) are not statistically independent variables for regression model? (4 − 1) materials + year experience = 3 variables. $R^2(R-squared)$ significant (= simpler but equally well fit data)

R² (R-squared) is measure of "fit" of line to data. How to compare nested models in r?

A value of 1.0 indicates perfect fit; all data points lm(model2)

would lie on line; larger value of R² better fit.

called SSE such that $SS_{tot} = SS_{reg} + SS_{res}$.

The mean of y: $\bar{y} = \frac{1}{n} \sum y_i$

of residuals unexplained by regression, SS_{res} , also

value of R^2 will be between 0%; 100% 1) Fit each Model (1); Model (2) $\rightarrow lm \text{ (model 1)}$

The total sum of squares SS_{tot} is sum of squares 3) If test cannot reject H0 (= No R2 difference) choose

2) Use F-test to test R2 change is statistically different

Method 2. USE INFORMATION CRITERION (IC; FOR

NON-NESTED MODELS): Find best-performing model

by using information criterion; Rationale - Best-

performing model is preferred, considering its

complexity: fit to data: Commonly used information

(e.g., $Y = \beta_0 + \beta_1 \times X + \epsilon$)

 \rightarrow aov (model 1, model 2)

(2); otherwise stay with (1)

Step 1: model data: $y_i = \beta x_i + \beta_0 + \epsilon_i$

error SSE/Ordinary Least Squares OLS

estimate β , β_0 , and σ^2

 β : slope or coefficients or parameter of model

 ϵ_i : i - th error, or residual with $\epsilon \sim \mathcal{N}(0, \sigma^2)$

 β_0 : intercept or bias is second parameter of model

 $\beta = \frac{1/n\left(\sum x_i y_i - \overline{y}\overline{x}\right)}{1/n\left(\sum x_i - \overline{x}\right)} = \frac{\text{Cov}(x, y)}{Var(x)}$

FOUR MAJOR ASSUMPTIONS OF SIMPLE

Step 2: fit: estimate model parameters. goal is to \mathbb{R}^2 value \uparrow , order of polynomial \uparrow ;

Minimises mean squared error MSE/Sum squared explained by regression, SS_{reg} plus sum of squares

Akaike Information Criterion (AIC) or its adjusted Baysian Information Criterion (BIC) \Rightarrow AIC/BIC are Where $\beta \in \mathbb{R}^{P+1}$ is a vector of weights that defined transformed values of a function of residuals; smaller P+1 parameters of model. From now we have P regressors and intercept. Minimise Mean Squared Error MSE loss: $MSE(\beta) = \frac{1}{N} \sum_{i} (y_i - y(x_i, \beta))^2$ 1. Fit candidate models \rightarrow e.g., lm(model1) / $= \frac{1}{N} \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$ $X = [x_0^T, x_1^T, \dots, x_N^T] \text{ be an } N \times P + 1 \text{ metric of } N$ 2. For each model, calculate AIC or BIC → AIC(model1) / AIC(model2) / AIC(...) or use BIC 3. Choose model having smallest value of AIC or BIC samples of P inputs features with one column of one and let be $y = [y_1, y_2, ..., y_n]$ be a vector of N targets. ICs are statistical measures: assume one candidate mean squared error MSE loss is $MSE(\beta) = \frac{1}{N} \big| \big| y - X\beta \big| \big|_2^2$ The β that minimise MSE can be found by: - "True model" - a model that represents true, exact In practice, you CANNOT check this assumption: MULTIPLE REGRESSION categorical independent You need to choose model fit measures mo variable/factor: ANALYSIS of COVARIANCE (ANCOVA) Analysis of covariance (ANCOVA) is a linear model that blends ANOVA and linear regression. ANCOVA (v) Intercept (also called constant) = Mean value of Y evaluates whether population means of a dependent variable (DV) are equal across levels of a categorical t-value = statistical test on each coefficient; constant (0 while statistically controlling for effects of other quantitative or continuous variables that are not of F-statistic = statistical test on all coefficients; constar primary interest, known as covariates (CV). Regression as analysis of variance: ANOVA conducts Pseudo R2 (for nonlinear regression; also can be F-test to determine whether variation in Y is due to "adjusted"). Model fit in context of nonlinear models is These are mathematically different from R2 in linear ANOVA test for significance of regression: I_0 : population slope coefficient = 0 1) Degrees of improvement from intercept-only mode H_1 : population slope coefficient $\neq 0$ One way AN(C)OVA: 2) Use same idea of linear R2: variance of Y explained ANOVA: one categorical independent variable, one by X - Efron's Pseudo R2 - Efron's Pseudo R2 works ok for simple regression where linearity assumption is ANCOVA: ANOVA with some co-variates. Two way AN(C)OVA: Ancova with two categorical R2 - Measure of fit for linear regression model. independent variables, two factors, proportion of variance in dependent variable MULTIPLE COMPARISONS: explained by exploratory variable(s) = 1 - (Sum of Note that under null hypothesis distribution of pvalues is uniform. Statistical measures: True Positive (TP) equivalent to a hit, test correctly concludes presence of an effect. $\underline{SSR} = \sum (Y - \text{predicted } Y)^2 = \text{Unexplained variance}$ True Negative (TN). test correctly concludes absence of False Positive (FP) equivalent to a false alarm, Type error, test improperly concludes presence of an effect Thresholding at p-value < 0.05 leads to FP False Negative (FN) equivalent to a miss, Type II error test improperly concludes absence of an effect. Bonferroni correction for multiple comparisons as number of predictors in model increases. Adjusted The Bonferroni correction is based on idea that if an R2 calculates "accurate R2" by penalizing R2 with experimenter is testing P hypotheses, then one way of number of predictors; sample size = $1 - [(1 - R^2) * (n - R^2)]$ maintaining familywise error rate (FWER) is to test each individual hypothesis at a statistical significance level of 1/P times desired maximum overall level. Example: A study to predict number of home runs So, if desired significance level for whole family of tests scored in a softball league with 32 teams of 9 players, is α (usually 0.05), then Bonferroni correction would based on different material used to make bat (alloy. test each individual hypothesis at a significance level of composite, aluminium, hybrid); player's experience α/P . For example, if a trial is testing P = 8 hypotheses playing in league. *What is appropriate number of with a desired $\alpha = 0.05$, then Bonferroni correction would test each individual hypothesis at $\alpha = 0.05/8$ =

MULTIPLE REGRESSION:

learning algorithm.

Multiple linear regression is most basic supervised

 $\beta = (X^T X)^{-1} X^T \gamma$

 $Y = \beta_0 + \beta_1 X + \varepsilon$

Given a set of regression, we assume model that generates data involves only a linear combination of Extending each sample with an intercept $x_i := [i, x_i] \in$ RP+1 allows us to use a more general notation based on errors. linear algebra and write it as a simple dot product: independent variable (IV) often called a treatment, X =

multiple comparisons FDR-controlling procedures are designed to control expected proportion of rejected null hypotheses that were incorrect rejections ("false discoveries"). FDRcontrolling procedures provide less stringent control of Type I errors compared to familywise error rate (FWER) controlling procedures (such as Bonferroni correction), which control probability of at least one Type I error. Thus, FDR-controlling procedures have greater power, at cost of increased rates of Type Brain volumes study The study provides brain volumes of grey matter (gm), white matter (wm) and cerebrospinal fluid) (csf) of 808 anatomical MRI scans. Fetch demographic data demo.csv and tissue volume data (gm. csv, wm. csv, csf. csv). Merge tables. Compute Total Intra-cranial (tiv) volume. 4. Compute tissue ratios: gm/tiv, wm/tiv. Descriptive analysis per site in excel file. Visualize site effect of gm ratio using violin plot: 7. Visualize age effect of gm ratio using scatter plot: $aae \times am$. 8. Linear model (Ancova): $gm_ratio \sim age + group + site$ Multivariate statistics: Multivariate statistics include all statistical techniques for analysing samples made of two or more variables. The data set $(N \times P \ matrix \ X)$ is a collection of N independent $[x_1, \dots, x_i, \dots, x_N]$ of length P $\begin{bmatrix} -\mathbf{x}_1^T - \end{bmatrix} \begin{bmatrix} x_{11} & \cdots \end{bmatrix}$

The False discovery rate (FDR) correction for

FORECASTING TECHNIQUES:	Holt-winter model for forecasting time series	AGGLOMERATIVE CLUSTERING METHODS:	LOGISTIC REGRESSION is variation of linear	MONTE CARLO:	
Qualitative; Judgmental techniques rely on	Seasonality; Trend:	SINGLE LINKAGE CLUSTERING (NEAREST- NEIGHBOR): Distance between groups is defined as	regression in which dependent variable is	Monte Carlo simulation: is process of generating	
experience; intuition. Historical analogy approach obtains forecast	HOLT-WINTERS ADDITIVE MODEL applies to time	distance between closest pair of objects, where only		random values for uncertain inputs in model, computing	
through comparative analysis with prior situations;		pairs consisting of 1 object from each group are	Seeks to predict probability that output variable	output variables of interest; repeating this process for	
Delphi method questions anonymous panel of	a _T is smoothed estimate of level at time T	considered. At each stage, closest 2 clusters are merged	will fall into category based on values of		
experts 2-3 times in order to reach convergence of	b _T is smoothed estimate of change in trend value at	COMPLETE LINKAGE CLUSTERING: distance between	independent (predictor) variables.	1. Develop visual model	
opinion on forecasted variable; Indicators are measures that are believed to influence behaviour of	1			2. Determine probability dist. that describes uncertain	
variable we wish to forecast. Indicators are often	component at T	objects, 1 from each group AVERAGE LINKAGE CLUSTERING: Uses mean values	into category. Generally used when dependent		
combined quantitatively into index , single measure	HOLT MINTERS MILLTIDLICATIVE MODEL andica	for each variable to compute distance between	variable is binary—takes on two values, 0 or 1 Classification using logistic regression:	3. Identify output variables you wish to predict 4. Set number of trials or repetitions for simulations	
that weights multiple indicators thus providing		clusters WARD'S HIERARCHICAL CLUSTERING: Uses sum of	Estimate prob. p that observation belongs to		
measure of overall expectation; Leading indicators: series of measure change before		squares criterion	category 1, $P(Y = 1)$, and, consequently,	6. Interpret results	
variable change; Lagging indicators: series of	Regression forecasting with Causal variable: In many forecasting applications, other independent			Market basket analysis, for example, is used determine	
measures that follow change of variable.	variables besides time, i.e. economic indexes or	categorical outcome into 1 of two or more categories based on various data attributes	P(Y = 0). Then use <u>cutoff value</u> , typically 0.5, with which	groups of items consumers tend to purchase together. Association rules provide information in form of if then	
STATICALLY FORECASTING MODELS: Time Serie-stream of historical data, daily	demographic factors, may influence time series.	*For each record in database, we have categorical		(antecedent consequent) statements. In other situations,	
Have components such as:	• • • • • • • • • • • • • • • • • • • •	variable of interest; number of additional predictor variables.	categories.	historical data are not available; we can draw upon	
1. random behaviour; 2. trend: is gradual upward or	econometric models, seek to identify factors that explain statistically patterns observed in variable	*For given set of predictor variables, we would like to	<u>Dependent variable is called logit</u> , which is natural	properties of common prob. dist. to help choose	
downward movement of time series; 3. seasonal	being forecast, usually with regression analysis	assign best value of categorical variable.		representative dist. that has shape that would most reasonably represent analyst's understanding about	
effects: is 1 that repeats at fixed intervals of time, typically year, month,; 4. cyclical effects: describe	Dractice of foregoting Judgmental, qualitative	<u>MEASURING CLASSIFICATION:</u> Find probability of making misclassification error; summarize results in		uncertain variable.	
ups; downs over much longer time frame, i.e. several	methods are used for forecasting sales of product	classification matrix, which shows number of cases	$ln(p/(1-p)) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$	<u>Uniform or triangular dist.</u> are often used in absence of	
years	lines; broad company; industry forecasts. Simple	that were classified either correctly or incorrectly. USING TRAINING; VALIDATION DATA:	logit function can be solved for p:	data.	
Stationary time series have only random behaviour.		Data mining projects typically involve large volumes of	$p = 1/(1 + \exp(-(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)))$	Sampling methods:	
based on idea of averaging random fluctuations in	used for long term forecasts.	data. data can be partitioned into:	ASSOCIATION RULE MINING, often called	Monte Carlo sampling selects random variates independently over entire range of possible values of	
time series to identify underlying direction in which	DATA MINING:	• training data set – has known outcomes; is used to	<u>affinity analysis</u> , seeks to uncover associations and/or correlation relationships in large data sets.	distribution. Monte Carlo sampling is more	
time series is changing. Simple moving average	PARALLEL CO-ORDINATES CHART consists of set of	"teach" data-mining algorithm <u>validation data set</u> – used to fine-tune model	Association rules identify attributes that occur	representative of reality; should be used if you are	
most recent k observations. Larger values of k result	vertical axes, 1 for each variable selected. For each observation, line is drawn connecting vertical axes.	■ test data set – tests accuracy of model	together frequently in given data set.	interested in evaluating model performance under	
in smoother forecast models since extreme values	point at which line crosses axis represents value for	CLASSIFYING NEW DATA: after classification scheme	Market basket analysis, for example, is used	various what-if scenarios. Confidence interval for Mean:	
have less impact	that variable.	is chose; best model is developed based on existing data, we use predictor variables as inputs to model to		Each time you run simulation, you will obtain slightly	
EXPONENTIAL SMOOTHING MODEL:	<u>SCATTERPLOT matrix</u> combines several scatter	prodict output	purchase together. Association rules provide information in form of if	different results.	
Simple : $\hat{y} = \alpha y_{x-1} + (1 - \alpha)\hat{y}_{x-2}$ α is called smoothing factor/coefficient/constant.	charts into 1 panel, allowing user to visualize pairwise relationships between variables.	CLASSIFICATION TECHNIQUES/MODELS: k-NEAREST NEIGHBOURS (K-NN) ALGORITHM	then (antecedent consequent) statements	Confidence interval: $\bar{x} + z_{\alpha/2}(s/\sqrt{n})$	
		*Finds records in database that have similar	MEASURING STRENGTH OF ASSOCIATIONS:	Because Monte Carlo simulation will generally have very	
recent observed value versus last expected value;	variables selected.	numerical values of set of predictor variables	SUPPORT for (association) rule is percentage (or	large number of trials, we may use standard normal z	
$\alpha \in [0,1]$: regulates importance of most recent	DIRTY DATA : Real data sets that have missing	*Measure Euclidean distance between records in training data set. nearest neighbour to record in	number) of transactions that include all items	value instead of t-dist. in confidence interval formula. Flaws of averages: evaluation of model output using	
previous values;	values or errors, are called "dirty"; need to be "cleaned" before analysing them.	training data set is 1 that that has smallest distance	CONFIDENCE of (association) rule is ratio of	average value of input is not necessarily equal to average	
$\alpha \approx 0$: assign an almost constant weight to all past	*Approaches for handling missing data.	from it. $*If k = 1$, then $1 - NN$ rule classifies record in same	number of transactions that include all items in	value of outputs when evaluated with each of input	
observations;	& Eliminate records that contain missing data	cotogony ac ita nooroot noighbour	consequent as well as antecedent (namely	values.	
$\alpha \approx 1$: assign an almost constant weight to all recent observations.		*k - NN rule finds k-Nearest Neighbours in training		In newsvendor example, quantity sold is limited to smaller of demand; purchase quantity, so even when	
Double Rewrite simple exponential smoothing:	observations, i.e. mean or median value	data set to each record we want to classify; then assigns classification as classification of majority of k		demand exceeds purchase quantity, profit is limited.	
$F_{t+1} = a_t = \alpha A_t + (1 - \alpha)F_t$	XLMiner has capability to deal with missing data in	nearest neighbours.	confidence = P(consequent antecendent) P(antecedence; consequent)	Using average values in models can conceal risk.	
$\rightarrow r_{t+k} = a_t + b_t K$	Transform menu in Data Analysis aroun.	*Typically, various values of k are used; then results	$= \frac{P(consequent)}{P(consequent)}$	Monte Carlo using simulation using Fitted	
→ Level: $a_t = \alpha A_t + (1 - \alpha)(a_{t-1} + b_{t-1})$ → Trend: $b_t = \beta(a_t - a_{t-1}) + (1 - \beta)b_{t-1}$	* Try to understand whether missing data are simply	inspected to determine which is best. HOW TO CHOOSE VALUE K?	EXPECTED confidence is number of transactions	Distribution:	
Predicted value $F_{(t+k)}$ is a function of last estimates	random events or there is logical reason.	Selecting value of K in K-nearest neighbour is most	that include consequent divided by total number	Sampling from empirical data has some drawbacks. Empirical data may not adequately represent true	
of level a. + linear trend b. * k	*Eliminating sample data maiscriminately could	critical problem. <u>Small value of K</u> means that noise will have higher influence on result i.e., probability of	of transactions.	underlying population because of sampling error.	
$\beta \in [0,1]$: modulates importance of most recent		overfitting is very high. <u>Large value of K</u> makes it	Higher lift ratio, stronger association rule; value	Using empirical dist. precludes sampling values outside	
value of trend; with respect to smoothed trend of	CLUSTER ANALYSIS, also called DATA	computationally expensive: defeats basic idea behind	· · · · · · · · · · · · · · · · · · ·	range of actual data.	
$\beta \approx 0$: assign almost weight to trends in past	SEGMENTATION , is collection of techniques that	KNN (that points that are near might have similar classes).	Example: supermarket database has 100,000	Steps for "Fitting" theoretical dist.; computing goodness of fit:	
$R \approx 1$ most recently exhibited trend is pre-dominant	seek to group or segment collection of objects (observations or records) into subsets or clusters,		point-of-sale transactions; 2000 include both; B	Character and the belief of the control of the cont	
Regression-based forecasting for Time Series	such that those within each cluster are more closely	To optimize results, we can use <u>CROSS VALIDATION</u> .		For instance, normal or power law model. This task is	
with Linear trend: Simple linear regression can be	related to 1 another than objects assigned to	We can test KNN algorithm with different values of K. Model which gives good accuracy can be considered to	murchased "	informal; descriptive statistics like histogram; skewness	
applied to forecasting using time as independent variable.	different clusters.	be optimal choice.	Support = 900 /100 000 = 0 009	indicator of observed data can be valuable hints;	
AUTOCORRELATION: When autocorrelation is	amount of similarity whereas those in different	DISCRIMINANT ANALYSIS is technique for classifying	Confidence = 800/2000 = 0.40	Estimate model parameters: Each theoretical model has parameters, for instance,	
present, successive observations are correlated with	clusters will be dissimilar	Uses predefined classes based on set of linear	Expected confidence = 5000/100000 = 0.05	mean; standard deviation for normal model. This task	
1 another; for example, large observations tend to follow other large observations; small observations	CLUSTER ANALYSIS METHODS:	discriminant functions of predictor variables	Lift = 0.40/0.05 = 8 The lift ratio indicates how much more likely we	consists of estimating most likely model parameters for	
also tend to follow 1 another.	,	Based on training data set, technique constructs set of linear functions of predictors, known as <u>discriminant</u>	are to encounter event. B are nurchased as	empirical dataset;	
In such cases, other approaches, called	partitioned into particular cluster in single step.	<u>functions</u> :	compared to entire population of transactions.	Determine significance level:	
AUTOREGRESSIVE MODELS, are more appropriate.	Instead, series of partitions takes place, which may run from single cluster containing all objects to n clusters, each containing single object. <i>Hierarchical</i>	$L = b_1 X_1 + b_2 X_2 + \cdots + b_n X_n + C$ b_i are discriminant coefficients (weights), X_i are input	Cause; Effect modelling:	This tricky step establishes how good observed data match theoretical model with estimated parameters. If	
		$\underline{b_i}$ are discriminant coefficients (weights), X_i are input variables (predictors), c is constant (intercept)			
provide better forecasts than ones we have	clustering may be represented by two-aimensional	MAXIMUM NUMBER OF FUNCTIONS = number of	and effect models that relate lagging; leading	threshold, goodness-of-fit hypothesis is accepted,	
A	laiaaram known as aenaroaram wnich illustrates	groups—1, or number of variables in analysis,	measures. <u>Lagging measures</u> tell us what often external	otherwise it is rejected	
described.	yusions or aivisions made at each successive stage of	WThe weights of determining discriminant functions	business results such has happened; are as profit,	Estimate model parameters: The maximum likelihood estimation method (MLE) is	
Multiple regression models with categorical					
Multiple regression models with categorical variables for seasonal components;		are computed by maximizing variance between groups	market share, or customer satisfaction.		
Multiple regression models with categorical variables for seasonal components; <u>HOLT-WINTER MODEL</u> , similar to exponential monthly models in the proceeding constants are	AGGLOMERATIVE clustering methods proceed by series of fusions of n objects into groups.	are computed by maximizing variance between groups relative to variance within groups.	market share, or customer satisfaction. Leading measures predict what will happen: are	most popular method to estimate dist. parameters from	
Multiple regression models with categorical variables for seasonal components; <u>HOLT-WINTER MODEL</u> , similar to exponential monthly models in the proceeding constants are	AGGLOMERATIVE clustering methods proceed	are computed by maximizing variance between groups relative to variance within groups.	market share, or customer satisfaction. Leading measures predict what will happen: are	most popular method to estimate dist. parameters from	

l	No Seasonality	Seasonality		Determine significance level:	LINEAR OPTIMISATION MODELS	Š:	Reduced Cost: How much objective function	Model development: Let x _i be number of 110-inch	
	Simple moving average of		end smoothina mode	Fit normal distribution, use	Building linear optimization mod	dels:	coefficient needs to be reduced for nonnegative	rolls to cut using pattern. xi needs to be whole	
	exponential smoothing	or multiple regres						number (general integer variable) because each roll that is cut generated different number of end	
Trend	Double exponential smoothing		ctive or Holt-winter	lower than threshold (usually fixed to 0.05) then normality	values that model seeks to determine Step 2. Identify objective function		positive. If variable is positive in optimal solution its	items. <i>The</i> only constraints are end-item demand,	
		multiplicative mo		hypothesis is rejected.	seek to minimize or maximize.	quarity we	reduced cost is zero. If objective coefficient of any	non-negativity; integer restriction	
	Population of size N	Sample of n obs	ervations	Fit arbitrary distribution, use	Step 3. Identify all appropriate		1 variable that has positive value in current	$Min \ 5x_1 + 5x_2 + 8x_2 + 2x_4 + 11x_5 + 11x_6$	
	$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\mu = \frac{\sum_{i=1}^{n} x_i}{n}$		Kolmogorov-Smirnov test: If p- value is lower than given	limitations, requirements, or other	er restrictions	solution changes but stays within range specified by Allowable Increase; Allowable Decrease,	$1x_3 + 9x_4 + 2x_5 + 7x_6 \ge 500 (12 in. rolls)$ $7x_1 + x_2 + x_3 + x_4 > 715 (15 in rolls)$	
	$\sigma^{2} = \frac{(\sum_{i=1}^{N} (x_{i} - \mu)^{2})}{N}$	$s^2 = \frac{(\sum_{i=1}^{N} (x_i)^{i})^{n}}{n!}$	$-\bar{r})^2$	threshold, goodness-of-fit	practical or technological consider	erations or by	optimal decision variables will stay same;	$3x_2 + 3x_3 + 2x_5 \ge 630 (30 \text{ in. rolls})$	
Variance	$\sigma^2 = \frac{(2l_1 = 1(x_1 - \mu))}{N}$	$s^2 = \frac{(2l_i=1)^{n}}{n-1}$	1	hypothesis is rejected.	management policy.		however, objective function value will change.	$x_i \in \mathbb{Z}$	
Corror	$cov(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \mu_X)}{N}$	$(y_i - \mu_v)$ $\sum_{i=1}^{r}$	$\frac{1}{x_{i} - \mu_{x}(y_{i} - \mu_{y})}$				sensitivity analysis for constraints.	Workforce scheduling model is practical, yet highly complex, problem in many businesses i.e.	
Co-var.	$cov(X,Y) = \frac{1}{N}$	cov(X,Y) = -	n – 1	projecting; summarizing company's cash inflows: outflows	math expressions Linear ontimization model (often		will change as right-hand side of constraint is	food service, hospitals; airlines.	
Co-	$ \rho_{xy} = \frac{\text{cov}(X,Y)}{\sigma_x \sigma_y} $	$r_{xy} = \frac{\text{cov}(X, Y)}{2}$	<u>)</u>	expected during planning	program/LP) has 2 basic propertie		increased by 1. Whenever constraint has positive	Typically, huge number of possible schedules	
relation	$\sigma_x \sigma_y$	$s_x s_y$		horizon.	1. objective function; all constrai			exist; customer demand varies by day of week; time of day, further complicating problem of	
	trics; Forecast Accuracy:			Most cash budgets are based on sales forecasts. Because of			When constraint involves limited resource, shadow price represents economic value of	assigning workers to time slots.	
	olute deviation: focus on		ion: focus on variance	inherent uncertainty in sales			having additional unit of that resource.		
mean value		of errors	L (A E)2	forecasts, Monte Carlo simulation			Using sensitivity analysis:		
MA	$AD = \frac{\sum_{t=1}^{n} A_t - F_t }{n}$	$MSE(MSD) = \frac{\sum_{i=1}^{n} x_i}{x_i}$	$\frac{1}{2} \frac{(A_t - F_t)^2}{m}$				If change in objective function coefficient remains		
	rics, smaller values \rightarrow better		π	cash budgets.	nonnegative).		within Allowable Increase; Allowable Decrease ranges, then optimal values of decision variables		
	n square error focus on		error: cannot be used	1	How simplex method works? si	implex method	will not change. However, you must recalculate		
	•	if time series contains 0 (d	vision by 0)				value of objective function using new value of	1	
					contribution to objective funct		coefficient. If change in objective function coefficient exceeds		
RMS	$E = \sqrt{\frac{\sum_{t=1}^{n} (A_t - F_t)^2}{n}}$	$MAPE = \frac{\sum_{t=1}^{n} \left \frac{A_t}{A_t} \right }{m}$	$\frac{A_t}{}$ × 100				Allowable Increase or Allowable Decrease limits		
	<u> </u>	п					then you must re-solve model to find new optimal		
	DISCRETE RANDOM VAI		CONTINUOUS RAN	- h	coefficient to constraint coefficient.		values. If change in right-hand side of constraint remains		
Probabili	$f(x_i) = p(x_i) = p_i = 1$	$P(X = x_i)$	$P(a < X \le b) =$	$\int_{a}^{b} f_{X}(x) dx, a < b \in \mathbb{R}$			within Allowable Increase; Allowable Decrease		
Mass/	$f(x_i) \ge 0 \ \forall x_i \ and \ \sum_{x_i}$	$f(x_i)=1;$	D(a < V < b) =	$P(a < X \le b) = P(a \le X < b)$	centres have capacity of 280,000	0 minutes per	ranges, then shadow price allows you to predict		
Density	$\sum_{i}^{x_i}$		P(a < x < b) =	$P(a < X \le b) = P(a \le X < b)$	year. Gross margin/unit; machining	0	how objective function value will change >		
Function	$P(X \in E) = \sum_{x_i \in E} f(x_i)$		$=P(a\leq X\leq b)$	$= \int_a^b f(x) dx; \int_{-\infty}^{\infty} f(x) dx = 1$	Cross		Multiply change in right-hand side (positive if increase, negative if decrease) by value of shadow		
	$x_i \in E$				margin/unit 0.3 1.3 0.		price. However, you must re-solve model to find		
	$F(x) = P(X \le x) = \sum_{i=1}^{n} x_i $	$f(t) = \sum P(X = t)$	$F(x) = \int f(t) dt$	dt	Minute/unit 1 2.5 1		new values of decision variables.		
Cumulati	t≤	x t≤x	J-∞	dt ts, we have $f(x) = \frac{d}{dx}F(x)$	How many units of each produc	ct type snould	If change in right-hand side of constraint exceeds Allowable Increase or Allowable Decrease limits		
Distribution	($= F(b) - F(a^{-})$	If derivative exis	ts, we have $f(x) = \frac{d}{dx}F(x)$	produce to maximize gross profit m Objective: Maximize gross profit ma		then you cannot predict how objective function		
Function	If only <i>possible values are</i>	e integers and if a and b a	D(1)	$= P(a < X \le b) = F(b) - F(a)$	$= 0.3 X_1 + 1.3 X_2 + 0.75 X_3$	$x_3 + 1.2X_4$	value will change using shadow price → You must		
	$integers$, $P(a \le X \le b) =$	$P(X = a, a + 1, \dots, b)$			Constraints: $X_1, X_2, X_3, X_4 \ge 0$		re-solve problem to find new solution. INTEGER OPTIMIZATION:		
	= F(b) - F(a-1)				$1X_1 + 2.5 X_2 + 1.5X_3 + 2X_4 \le$ Clips have highest marginal prof	200,000	Solving models vs. General Integer Variable:		
	$\mu_X = E(X) = \sum_{x} xf(x)$ $E[g(X,Y)] = \sum_{x} \sum_{y} g$	$(X^2) = \sum x^2 f(x)$	$\mu_X = E(X) = \int x$	$xf(x) dx; E(X^2) = \int x^2 f(x) dx$	resource consumed.	nt per unit or	Decision variables that we force to be integers are		
Mean/	$\sqrt{2}$	(,,,) (,,,,)	, , , , , , , , , , , , , , , , , ,) (°°	i-laximum possible production of ci	nps	called general integer variables.		
Expectation Expected	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y)$	$(x,y)f_{X,Y}(x,y)$	E[g(X,Y)] =	$\int_{0}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$	= 280,000 minutes ÷ minutes/unit		Algorithms for integer optimization models first solve LP relaxation (no integer restrictions		
values	$*E(a_0 + a_1X_1 + \cdots) = 0$		$*b = 0 \rightarrow E(aX)$	a = aE(X)	= $280,000 \div 2 = 140,000$ Profit for maximum production of c		imposed); gradually enforce integer restrictions		
values	* a ; b constant, E ($a + b$		$* a = 1 \rightarrow E(X +$		= gross margin/unit * max possible	production	using systematic searches.		
Expectatio			ſ		= \$1.20 * 140,000 = \$168,000		Sensitivity analysis for Integer Optimization: Because integer models are discontinuous by their		
Mean	$L[g(x)] = \sum_{g(x) \in X} g(x) f(x)$		$E[g(X)] = \int g(x)$		Outcomes: Unique ontimal solution: there is ex:	actly 1 colution	very nature, sensitivity information cannot be		
of Function		$= E(x^k)$ is called k^{th} mor			that will result in maximum ((or minimum)	generated in same manner as for linear models		
Variance	$\sigma_X^2 = V(X) = E[(X - \mu_X)]$	$[(x - \mu_X)^2] = \sum_{x} (x - \mu_X)^2 F_X(x)$	$\sigma_X^2 = V(X) = E[C]$	$[X - \mu_X]^2] = \int (x - \mu_X)^2 f_X(x) dx$	objective		To investigate changes in model parameters, it is	i	
loint Dro	$f_{YY}(x,y) = P(X=x,Y)$	V = V	1	Cp Cq	Alternative (multiple) optimal solution is maximized (or minimized) by	ution: objective more than 1	Example 1: A company makes 110-inch wide rolls	;	
Mass/) A,1 (· · /) (· · · /	· /	$P(a \le X \le b; c \le$	$\leq Y \leq d$) = $\int f_{X,Y}(x,y)dy dx$	combination of decision variables	s, all of which	of thin sheet metal; slices them in smaller rolls of	1	
Density	$\sum_{x} \sum_{y} f_{X,Y}(x,y) = \sum_{x} f_{X,Y}(x,y)$	$\sum_{x} P(X=x,Y=y) = 1$	400 400						
Function	x y x	у	$\int_{-\infty} \int_{-\infty} f_{X,Y}(x,y)$	dy dx = 1	docroscod without bound (i.e. t	to infinity for	A cutting pattern is configuration of number of smaller rolls of each type that are cut from raw	,	
	$f_{\nu}(x) = P(X - x) = \sum_{i=1}^{n} f_{\nu}(x) = P(X - x) =$	$\sum_{i=1}^{n} P(X-x,Y-y)$	f (x) \(\int_{\infty}^{\infty} \) f \(\int_{\infty} \)		maximization problem or negative	ve infinity for	stock. Six different cutting patterns are used.		
	$f_X(x) = P(X = x) = \sum_{i=1}^{n} f_X(x) = f_X(x$	$\frac{1}{y}$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x) dx$	<i>x</i> , <i>y</i>) <i>ay</i>	minimization problem)		Size of End Item		
Margina		$=\sum_{x}f_{X,Y}(x,y)$	$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x) dx$	r v)dr	Infeasibility: no feasible solution ex Sensitivity analysis for Decision V		Pattern 12in. 15in. 30in. Scrap 1 0 7 0 5in.		
Distribution	on	$-\sum_{y}j_{X,Y}(x,y)$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$	x, y jux	Sensitivity Analysis allows us to ur		2 0 1 3 5in.		
	$\to f_Y(y) = P(Y = y) =$	$=\sum f_{y,y}(x,y)$			optimal objective value; opti		3 1 0 3 8in.		
	(1 - y) =	<u>x</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			variables are affected by change		4 9 0 0 2in.		
	$\sum f_{(Y Y)}(x y) = 1 \text{ ar}$	$nd \sum f_{(Y X)}(y x) = 1$	for (xlar)dx =	$-1 \cdot \int_{-\infty}^{\infty} f_{v,v}(y x)dy = 1$	function coefficients, impact of for certain decision variables, or impac		5 2 1 2 11in.		
Condition	al $\left \frac{\sum_{i}^{n} \left(A_{i} \right) \left(A_{i} \right)}{x} \right ^{n}$	$\sum_{y} f(I A) \cup I^{(x)} = 1$	$\int_{-\infty}^{\infty} J_{X Y}(x y)dx =$	$= 1; \int_{-\infty}^{\infty} f_{Y X}(y x) dy = 1$	constraint resource limitations or r		6 7 1 0 11in. Demands for coming week are 500 12-inch rolls,		
Probabili			$f_{\text{aver}}(\gamma x) = f_X$	$f_Y(x,y)$, if $f_Y(y) > 0, y \in Y$	Sensitivity Analysis applies to chan	ges in only 1 of	715 15-inch rolls; 630 30- inch rolls.	1	
Mass	X and Y independent \Leftrightarrow	$f_{X,Y} = f_X(x)f_Y(y)$ for som		,. 🔾 ,	model parameters at time; all other	rs are assumed	Problem is to develop model that will determine		
Function			$f_X(x) > 0 \to f_{X,Y}$	$(x,y) = f_{(Y X)}(y x)f_X(x)$	to remain at their original values		how many 110-inch rolls to cut into each of six	4	
	$y \text{ is constant } \rightarrow f_{(X Y)}($	$(x y) \ge 0$					patterns to meet demand; minimize scrap.		
					1		<u>I</u>		

	,	MEAN; VARIANCE						
Discrete	$f_X(x) = P(X = x) = \begin{cases} 1/k & x = x_1, x_2, \dots, x_k \\ 0 & otherwise \end{cases}$	$E(X) = \frac{1}{k} \sum x_i$						
uniform distribution	$\sigma^2 = V(X) = \frac{1}{k} \sum_{i} (x_i - \mu)^2$	$\sigma^2 = \frac{1}{k} \sum_{i} x_i^2 - \mu^2$						
l		E(X) = (a+b)/2						
uniform distribution	$f_X(x) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$	$V(X) = (b-a)^2/12$						
	Experiment with 2 outcomes ("success"; "failure") $f_X(x) = P(X = x) = p^x (1 - p)^{1-x} \forall x \in (0,1)$	E(X) = p $V(X) = p(1-p)$						
Binomial	$n \in \mathbb{Z}^+; \ 0$	E(X) = np						
distribution	$f_X(x) = P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$	V(X) = np(1-p)						
	#trials before obtain k successes; $X \sim NB(k, p)$	E(X) = k/p						
distribution	$f_X(x) = P(X = x) = {x-1 \choose k-1} p^k (1-p)^{x-k}$	$V(X) = (1-p)k/p^2$						
Coomotrio	$0 f_X(x) = P(X = x) = (1 - p)^{x-1}p; q = 1 - pP(X > n) = (1 - p)^n = q^nMemoryless property of Geometric:$	#required trials until first success is achieved $E(X) = 1/p$ $V(X) = (1-p)/p^2$						
	$P(X > n + k X > n) = P(X > k) = q^{k}, n, k \ge 1$	Geom(p) = NB(1, p)						
	#failures until first success is achieved $Y = X - 1$ $P(Y = y) = (1 - p)^{y}p$	E(X) = (1 - p)/p $V(X) = (1 - p)/p^2$						
Poisson	# success in fixed interval/period/region $\lambda > 0$;	$E(X) = \lambda$						
	$X \sim Poisson(\lambda); x = 0,1,2,$ $f_X(x) = P(X = x) = e^{-\lambda} \lambda^x / x!$	$V(X) = \lambda$						
	$\lambda > 0; X \sim Exp(\lambda) \to f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$							
Exponential	$P(X > t) = e^{-\lambda t}$	$E(X) = 1/\lambda$ $V(X) = 1/\lambda^2$						
	Memoryless property of Exponential distribution: $P(X > s + t X > s) = P(X > t) = e^{-\lambda t}$	$V(\Lambda) = 1/\Lambda$						
	$\mu \in \mathbb{R}, \sigma > 0; X \sim N(\mu, \sigma^2); -\infty < x < \infty$	E(Y) =						
Normal distribution	$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$E(X) = \mu$ $V(X) = \sigma^2$						
	χ_{200} (20) n degree of freedom; $\Gamma(.)$ gamma func.; $Y \sim \chi^2(n)$	E(Y) = 2						
	$f_Y(y) = \frac{1}{2^{n/2}\Gamma(n/2)}e^{\frac{n}{2}-1}e^{-y/2} \ (y > 0)$	E(Y) = 2 $V(Y) = 2n$						
	$Z \sim N(0,1); U \sim \chi^2(n)$							
Student's t	$T = \frac{Z}{(\sqrt{U/n})} \sim t(n), -\infty < t < \infty$	E(T)=0						
distribution	$\Gamma\left(\frac{n+1}{2}\right) / +2\lambda^{(n+1)/2}$	$V(T) = \frac{n}{n-2}; n > 2$						
	$f_T(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{(n+1)/2}$							
	11 2() 1 11 2()	n						
The F— distribution	$F = \frac{U/n_1}{V/n_2}; f_F(x) = \frac{n_1^{n_1/2} n_2^{n_2/2} \Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma(n_1/2)\Gamma(n_2/2)} \left(\frac{n_1 + n_2}{2}\right)$	$\frac{x^{\frac{n_1}{2}-1}}{n_1+n_2}$						
					-	1 1		
objects is orde	N: A permutation of set of COVARIANCE: ering of objects in row. $n \times \mu_X (Y - \mu_Y)$	$\sigma_{X,Y} = \text{Cov}(X,Y) = E[(X - \frac{y^2 \text{ DISTRIBUTION: }}{\text{with n degree of freedom}} c$	hi-square or χ^2 distribution om is distribution of a sum o	nCl of μ; KNOWN σ wit fNORMAL population	th or $\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{2}}$		DISCRETE RANDOM VARIABLE	CONTINUOUS RANDOM VARIABLE
$(n-1) \times \times 1$		E(X)(Y - E(Y)) square of n independent	nt standard random variable	$n > 30$ CI of μ ; UNKNO	VII.	+	$f(x_i) = p(x_i) = p_i = P(X = x_i)$	$P(a < X \le b) = \int_{a}^{b} f_X(x) dx, a < b \in \mathbb{R}$
•	$P(n,r) = \frac{n!}{\mu_X \mu_Y}$	Let $X \sim \mathcal{N}(\mu, \sigma^2)$, then $X \sim \mathcal{N}(\mu, \sigma^2)$	$Z^2 \sim \chi^2(1) \rightarrow \left(\frac{\chi - \mu}{\sigma}\right)^2 \sim \chi^2(1)$		$n \& \bar{X} \pm t_{(n-1,\alpha/2)} \frac{S}{\sqrt{n}}$	Probability Mass/	$f(x_i) \ge 0 \ \forall x_i \ and \sum_{x_i} f(x_i) = 1; P(X \in E)$	$P(a < X < b) = P(a < X \le b)$
REMARK: $P(n,$	(aX + b.cY + b	$d) = acCov(X,Y) = Cov(Y,X)$ $\int_{Y}^{n} (X_i - \mu)^2$	$\sim \chi^2(n) \to \sum_{i=1}^n Z_i^2 \sim \chi(n)$	n < 30		Density	$=\sum_{x_i\in E}f(x_i)$	$= P(a \le X < b)$
elements	<u>N</u> : r – combination of set of n $*V(aX + bY) = a^2V$ 2abCov(X,Y)	i=1	V(n, 2n) approximately.	CI of μ ; UNKNOWN σ NORMAL population	with $\bar{X} \pm z_{\alpha/2} \frac{S}{\sqrt{z}}$	Function	$x_l \in E$	$= P(a \le X \le b) = \int_{a}^{b} f(x) dx; \int_{-\infty}^{\infty} f(x) dx$ $= 1$
$\binom{n}{r} =$	$\frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$ *\frac{\psi, Y}{\text{E(X)E(Y)}} \text{independent}{\text{E(X)E(Y)}}	$\rightarrow \text{Cov}(X, Y) = 0 \rightarrow \text{E}(XY) = \text{* If } (Y_1; Y_2;; Y_n)$	are independent chi-square	$\frac{n>30}{6Cl \ of \ \mu_1-\mu_2; \ KN}$	\sqrt{n} $(OWN (\bar{X}_1 - \bar{X}_2))$		$F(x) = P(X \le x) = \sum f(t) = \sum P(X = t)$	$F(x) = \int_{-\infty}^{\infty} f(t) dt$
BINOMIAL CO we have:	EFFICIENTS: For any $n \in \mathbb{Z}^+$, CORRELATION COE	EFICIENTS: freedom $\rightarrow V + V +$	ith $n_1, n_2,, n_k$ degree o $\cdot + Y_k$ has χ^2 distribution with	$\sigma_1^2 \neq \sigma_2^2$ NORMAL population		Cumulative	$P(a \le X \le b) = P(X \le b) - P(X < a)$	J_∞ d
$(x+y)^n = x$	$x^{n} + {n \choose 1} x^{n-1} y^{1} + \cdots$ Cor(X, Y) = μ	$\rho_{X,Y} = \rho = \frac{100 \cdot (0.77)}{\sqrt{1000}} \qquad n_1 + \dots + n_k \text{ degrees of } n_1 + \dots + n_k$	rreedom.	n > 30	$=-u/2\sqrt{n_1 \cdot n_2}$	Distribution Function	$= F(b) - F(a^{-})$ If only possible values are integers; if a; b are integers	If derivative exists, we have $f(x) = \frac{a}{dx}F(x)$ $\Rightarrow P(a \le X \le b) = P(a < X \le b)$
$=\sum_{n=1}^{n}\binom{n}{n}x^{n}$	*If X; Y are independent	$\frac{\mathbf{dent}}{\mathbf{dent}}, \text{ then } \rho_{X,Y} = 0.$ $\sum_{i=1}^{N} Y_i \cdot \mathbf{dent}$	$\sim \chi^2 \left(\sum_{i=1}^n n_i \right)$	$CI \ of \ \mu_1 - \mu_2 \ ; UNKNO$	$(\bar{X}_1 - \bar{X}_2)$ OWN $C^2 C^2$	unction	$P(a \le X \le b) = P(X = a, a + 1,, b)$	= F(b) - F(a)
<i>t</i> =0	I EMENTS IN DOWED SET.	χ^2 - TABLE: χ^2 - tabl	e contains values of $\chi^2(n,\alpha)$	$\sigma_1^2 \neq \sigma_2^2 \text{ with } n > 30$	$ \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} $		$= F(b) - F(a - 1)$ $\mu_X = E(X) = \sum x f(x); E(X^2) = \sum x^2 f(x)$	$\mu_{X} = E(X) = \int x f(x) dx; E(X^{2})$
0, if set S has	n elements, $N(\wp(S))$, total #STANDARD NORMA	$SE(X) = \sqrt{V(X)}/\sqrt{n}$ AL: X is called as standard $P(Y \ge \chi^2(n; \alpha)) = 0$		CI of $\mu_1 - \mu_2$; UNI	KNOWN $\sigma_1^2 \neq \sigma_2^2$; NORMAL	Mean/ Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y)$	j .
subsets of S is 2	normal random varial	ble when $\mu = 0$: $\sigma = 1$: 7, then $P(Y \ge \chi^2(n; 1 - \alpha))$	$(1) = \alpha; Y \sim \chi^{2}(n)$ TION RELATE TO SAMPLI	population; $n < 30$:	Denne	/	$\sum_{x} \sum_{y} g(x,y) \chi_{x} \chi(x,y)$	$= \int x^2 f(x) dx$
$\sum_{K=0}^{n} \binom{n}{k} = \binom{n}{0}$	$\binom{n}{n} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n Z^{-N(0,1)}$	VARIANCE:				Expected values		$E[g(X,Y)] = \int_{-\infty} \int_{-\infty} g(x,y) f_{X,Y}(x,y) dy dx$
							$*E(a_0 + a_1X_1 + \cdots) = a_0 + a_1E(x_1) + \cdots$	$*b = 0 \to E(aX) = aE(X)$

$= N(\wp(S)) = 2^{ A } = P(S) $	Probability density $\phi(x) = \frac{1}{\sqrt{x}} e^{-x^2/2}$	Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$	$S_n^2 = \frac{\sum (X_i - \bar{X})^2 + \sum (Y_i - \bar{Y})^2}{2}$		*a; b constant, E (a + bX)		bE(X).	$** a = 1 \rightarrow E(X + b) = E(A + b) = E(A + b) = E(A + b)$	X) + b
$ \underbrace{\text{REMARK:}}_{r} \binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r} $	Distribution function $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\sqrt{2\pi}} e^{-y^2/2} dy$	Let S ² be sample variance of a random sample of size	$n_1 + n_2 + 2$	Expectation	$E[g(X)] = \sum_{X} g(X) f_X(X)$			$E[g(X)] = \int g(x)f_X(x) dx$:
NUMBER OF INTEGER SOLUTIONS: # non-	* D(7 > 0) - D(7 < 0) - 0 5	n taken from a normal population with $E(X) =$	$= \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	/ Mean	$ *g(x) = x^k \to E[g(X)] : $	$= E(x^k)$ is c	alled k th mon	nent of X and $E(X^2)$ is called s	second moment
negative integer solutions of equation $x_1 + \dots + x_n = r$ OP # r combinations with	$* Y \sim N(\mu, \sigma^2) \rightarrow X = \frac{Y - \mu}{\sigma} \sim N(0, 1)$	$\mu; V(X) = \sigma^2 $ $(n-1)^{2} \sum_{x} (Y - \bar{Y})^2$	is pooled sample variance, an estimator for $\sigma^2 = \sigma_1^2 =$	of Function			-		400
repetition allowed that can be selected from a	$*$ Y \sim N(0,1) \rightarrow Y = aX + b \sim N(b, a ²); a, b ∈ ℝ	$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$	σ_2^2		$\sigma_X^2 = V(X) = E[(X - \mu_X)^2]$	2] = $\sum (x -$	$-\mu_X)^2 F_X(x)$	$\sigma_X^2 = V(X) = E[(X-\mu_X)^2]$	= ∫ (x
set of it objects is	* $X \sim N(\mu, \sigma^2)$ $a = \mu$ $b = \mu$	n-1 is degrees of freedom.	$100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is	Variance				-	$-\mu_X^{-\infty}$ $= \mu_X^{-\infty}$ $= \mu_X^{-\infty}$
$\frac{(r+n-1)!}{r!(n-1)!} = \binom{n+r-1}{r}$		STUDENT t – DISTRIBUTION: $\stackrel{*}{=} n \rightarrow \infty \rightarrow \lim_{t \rightarrow \infty} f_{-t}(t) = \frac{1}{t} e^{-z^2/2}$	$(\bar{X}_1 - \bar{X}_2) \pm t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$		$*V(X) = E(X^2) - [E(X)]$	$]^2; V(X) =$	$0 \rightarrow P(X = 1)^2 V(Y)$	$*V(a+bX) = B^2V(X)$	
ARRANGING IN A CIRCLE:	* $P(a < Z < b) = \Phi(b) - \Phi(a)$ * $P(a < Z) = \Phi(a) \rightarrow P(a > Z) = 1 - \Phi(a)$	$ \begin{array}{l} $		-	$\mu_X) = 1; *V(aX + bY)$ $2abCov(X,Y)$	$=a^{2}V(X)$	$+b^2V(Y)+$	$*\sigma_X = SD(X) = \sqrt{V(X)}$	
For n distinct objects arranged in a circle, there	$*P(Z < a) = 2\Phi(a) - 1$	*The t-table shows $P(T > t_{n;\alpha}) = \alpha$	CI of $\mu_1 - \mu_2$; KNOW $(\bar{X}_1 - \bar{X}_2)$	Industry David		y)		$P(a \le X \le b; c \le Y \le d)$	
n!/n = (n-1)!	* $P(Z > a) = 2 - 2\Phi(a)$ QUANTILE: $q - th$ quantile of random variable X	In table degree of freedom df = 10; $\alpha = 0.05 \rightarrow$	$\sigma_1^2 = \sigma_2^2$ with n_1 and $n_2 \ge 30$ $\pm z_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	Joint Prob Mass/	$f_{X,Y}(x,y) = P(X = x, Y = \sum_{x} \sum_{y} f_{X,Y}(x,y) = \sum_{x} \sum_{y} f_{X,Y}(x,y)$	P(X=x,Y)	y' = y = 1	$=\int_{a}^{b}\int_{0}^{d}f_{X,Y}(x,y)dydx$	
CONDITIONAL PROBABILITY of B given that	is z_q :		$CI \text{ of } \mu_n = \mu_n - \mu_n \text{ with } \alpha$	Delisity	$\frac{1}{x}$ $\frac{1}{y}$ $\frac{1}{x}$ $\frac{1}{y}$	•		C00 C00	
$P(A \cap B)$	$P(X \le z_q) = q = \Phi(z_q) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_q} e^{-y^2/2} dy$	population then	NORMAL population, $\overline{D} \pm t_{n-1;\alpha/2} \frac{\overline{D}}{\sqrt{n}}$	Function				$\int_{-\infty} \int_{-\infty} f_{X,Y}(x,y) dy dx = 1$	L
$P(B A) = \frac{P(A \cap B)}{P(A)}$		$*Z = \frac{(\overline{X} - \mu)}{\sigma/\sqrt{n}} \sim N(0,1); U$	$n < 30$ $CI of \mu_D = \mu_1 - \mu_2 \text{ with } \overline{D} + \frac{S_D}{D}$	1	$f_X(x) = P(X = x) = \sum_{i=1}^{n} P(X_i = x)$	P(X=x,Y=x)	= y)	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$	
$\rightarrow \begin{pmatrix} P(A \cap B) = P(A)P(B A) \\ P(A \cap B) = P(B)P(A B) \end{pmatrix}$	POISSON \approx BINOMIAL: Let $X \sim B(n, p)$. $n \rightarrow \infty$ and $p \rightarrow 0$; $\lambda = np$ remains a constant as $n \rightarrow \infty$		L > 20 Δ ± 2α/2 Γ		y			J	
GENERAL MULTIPLICATION RULE:	$ \varphi^{-np}(nn)^{x} $	$=\frac{(n-1)S^2}{\sigma^2}\sim\chi^2(n)$	CI of σ^2 ; KNOWN μ with NORMAL population $\left(\frac{\sum (X_1 - \mu)^2}{\chi_{n_1;\alpha/2}^2}; \frac{\sum (X_1 - \mu)^2}{\chi_{n_1;1-\alpha/2}^2}\right)$	1Marginal Distribution		$=\sum f_{X,Y}($	(x,y)	$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$	
$P(A_1A_2 A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)$	Then $X \sim P(np)$: $\lim_{n \to \infty} P(X = x) = \frac{e^{-np}(np)^x}{x!}$	-1) $*\bar{X}$ and S^2 are independent, so are Z and U	NORMAL population $\chi^2_{n;\alpha/2}$, $\chi^2_{n;1-\alpha/2}$		$\to f_Y(y) = P(Y = y) = \sum_{i=1}^{n} f_Y(y) = \sum_{i=1$	$\int_{0}^{y} f(x,y)$			
$P(A_n A_1A_2A_{n-1})$	The approximation is good when $n \ge 20$; $p \le 0.05$	$\bar{X} = \bar{X} - \mu = Z$	CI of σ^2 ; UNKNOWN μ with NORMAL $\left(\frac{(n-1)S^2}{\chi^2_{n-1;\alpha/2}};\frac{(n-1)S^2}{\chi^2_{n-1;1-\alpha/2}}\right)$		7)7(7) = 1 (1 = 3) = 2) X,Y (X, Y)			
	OR $n \ge 100$; $np < 10$. If p is close to 1, we can still use Poisson distribution to approximate binomial	$*T = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{Z}{\sqrt{U/(n-1)}} \sim t(n-1)$			$\sum f_{(X Y)}(x y) = 1 \text{ and } $	$\sum f_{(Y X)}$	y x)=1	$\int_{X Y}^{\infty} f_{X Y}(x y) dx = 1; \int_{0}^{\infty} f(x y) dx = 1$	$f_{Y X}(y x)dy = 1$
$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B A)P(A)}{P(B)}$	probabilities.	FISHERS F-DISTRIBUTION: (ratio between two estimate of var.)	CI of σ_1^2/σ_2^2 ; UNKNOWN μ_1 ; μ_2 : NORMAL population	conaitionai	The conditional probability	y		$J_{-\infty}$ $J_{-\infty}$	
INDEPENDENT vs. MUTUALLY EXCLUSIVE:	NORMAL ≈ BINOMIAL	Random samples of size n_1 and n_2 are selected from		Prob Mass	X:		-	$f_{(X Y)}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$, if	$f_Y(y) > 0, y \in Y$
Two events A & B being <u>independent; mutually</u> exclusive are NOT same thing.	Use when: $n \to \infty$ and $p \to 0$; $n \to \infty$ and $p \to 0$.	2 normal population with variances σ_1^2 and σ_2^2	$\frac{S_1^2}{S_2^2} \frac{1}{F_{n_1-1, n_2-1, \alpha/2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} \frac{1}{F_{n_1-1, n_2-1, 1-\alpha/2}}$	Function	$X; Y $ independent $\Leftrightarrow f_{X,Y} :$	$= f_X(x)f_Y(y)$) for some x;	$f_X(x) > 0 \to f_{X,Y}(x,y) = f$	$(Y X)(y x)f_X(x)$
$A \& B$ independent $\Leftrightarrow P(A \cap B) =$	When n is small; p is not extremely close to 0 or 1,	$U = \frac{(n_1 - 1)S_1^2}{\sigma_*^2} \sim \chi^2(n_1 - 1), V$	HOW TO DO A HYPOTHESIS TEST Step 1: Null; Alternative hypothesis (what you want to		y $y \text{ is constant } \rightarrow f_{(X Y)}(x)$	(v) > 0			,
	approximation is fairly good. Use normal approximation only if $np > 5$; $n(1 -$	1			TEST ~ CONFIDENCE		PROBABILIT	Y MASS/DENSITY	MEAN:
0	p) > 5	$=\frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2)$	The equal part is always in null hypothesis	INTERVAL:	$_100(1-\alpha)\%$ confidence	e	FUNCTION		VARIANCE
If A & B are <u>mutually exclusive & non-trivial</u>	Continuity correction: Suppose X is a binomial	-1)	Step 2: Determine level of significance (α) ; power (β) . H_0 is true H_0 is false		$\limsup_{n \to \infty} \mu_0$, $-t_{\alpha/2} \le t \le t_{\alpha/2} \to t$ within rejection region $\to H_0$	Distrete	$f_X(x) = P(x)$	$\begin{array}{l} X = x \\ = x_1, x_2, \dots, x_t \end{array}$	$E(X) = \frac{1}{k} \sum x_i$
<i>(positive prob)</i> then A & B <i>cannot</i> be independent.	random variable mean $\mu = np$, variance $\sigma^2 = np(1-p) = npq$.	$\rightarrow F = \frac{U/n_1}{V/n_2} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$	Type I error Correct decision	will NOT be re		uniform distributi	$=\begin{cases} 1/\kappa & n \\ 0 & n \end{cases}$	$x_1 = x_1, x_2, \dots, x_k$ otherwise	σ^2
INDEPENDENCE VS. MUTUALLY EXCLUSIVE	Then as $n \to \infty$: $Z = \frac{X - np}{\sqrt{np(1 - p)}} \sim N(0, 1)$	$*F \sim F(n,m) \to \frac{1}{F} \sim F(n,m)$	$ \begin{array}{l} \text{Reje} \\ \text{ct } H_0 \\ \text{e} \\ \text{o} \end{array} $ P(reject $H_0 H_0 \text{ true})$ P(reject $H_0 H_0 \text{ false}) = 1 - \beta$		S on $\mu_1 - \mu_2$ with KNOWN	on	$\sigma^2 = V(X)$	$=\frac{1}{k}\sum_{i}(x_{i}-\mu)^{2}$	$=\frac{1}{k}\sum_{i}x_{i}^{2}-\mu^{2}$
Two events A & B being <u>independent; mutually</u> exclusive are NOT same thing.	V T \ T / 4	Table F-distribution gives value of $F(n_1, n_2, \alpha)$ such	Net		MAL population or n_1 , $n_2 > \mu_1 - \mu_2 > 0$	Continuo		к 🚄	
A & B independent $\Leftrightarrow P(A \cap B) = P(A)P(B)$	$*X \sim B(n, p)$: $P(X = k) \approx P\left(k - \frac{1}{2} < X\right)$	that	reject P(not reject H ₀ H ₀ t P(not reject H ₀ H ₀ fa	When H_0 is tr	ue, we have test statistic:	us	(1	$((b-a)) a \le x \le b$	E(X) = (a+b)/2
$A \& B$ mutually exclusive $\Leftrightarrow P(A \cap B) = 0$ If $A \& B$ are mutually exclusive & non-trivial	$\left\langle k + \frac{1}{2} \right\rangle$	$*P(F > F(n_1, n_2, \alpha)) = \alpha \text{ when } F \sim F(n_1, n_2)$	$ \begin{vmatrix} I & I & I & I & I & I & I & I & I & I$	$Z = \frac{(X)}{\sqrt{2}}$	$(\bar{X}_1 - \bar{X}_2) - \delta_0$ $(\bar{X}_1 - \bar{X}_2) - \delta_0$ $(\bar{X}_1 - \bar{X}_2) - \delta_0$ $\sim N(0,1)$	uniform distributi	$f_X(x) = \{$	$ \begin{array}{ll} (b-a) & a \le x \le b \\ 0 & \text{otherwise} \end{array} $	V(X)
(positive prob) then A & B cannot be	$*X \sim B(n, n)$: $P(a < X < h) \approx$	$*F(n_1, n_2; \alpha) = \frac{1}{F(n_1, n_2, 1 - \alpha)}$	Step 3: Identify test statistic, distribution; rejection	√σ;	$\frac{1}{1}/n_1 + \sigma_2^2/n_2$ S TEST ON σ_1^2 , σ_2^2 : To test	on			$= (b-a)^2/12$
independent. PAIRWISE INDEPENDENT EVENTS:	$X \sim N(\mu, \sigma)$: $P(a - 0.5 \le X \le b + 0.5)$	CONFIDENCE INTERVAL: $P(\widehat{\Theta}_L < \theta < \widehat{\Theta}_U) = 1 - \theta$	criteria. Level of significance = α Represents	$\sigma_1^2 = \sigma_2^2$	1 1E31 ON 01.02. 10 test	Bernoulli	Experiment "failure")	with 2 outcomes ("success";	E(X) = p
A set of events $A_1, A_2,, A_n$ are said to be	$*X \sim B(n, p)$: $P(a < X < b) \approx X \sim N(u, \sigma)$: $P(a + 0.5 < X < b - 0.5)$	$lpha$ The interval computed $\widehat{\Theta}_L < heta < \widehat{\Theta}_U$ is called (1 –	H_0 : $\mu = 3$ $\alpha/2$ critical value	We can use to		trials		$X = x) = p^x (1 - p)^{1 - x} \forall x$	
pairwise independent $\Leftrightarrow P(A_iA_i) =$	UNBIASED ESTIMATOR: Let e de estimator of	a) 1000/ confidence interval for 0 fraction (1 a) is	H₁: µ≠3 Two-tail test Rejection region is	$F = \frac{3}{\epsilon}$	$\frac{G_1^2}{h_2^2} \sim F(n_1 - 1, n_2 - 1)$			€ (0,1)	
$P(A_i)P(A_j)$	θ (random var. based on sample). If $E(\Theta) = \theta$, Θ is	called <u>confidence coefficient or degree of confidence</u>	$H_0: \mu = 3$ shaded		ction region	Binomial	$n \in \mathbb{Z}^+$;	$0= 0,1 n$	E(X) = np
MUTUALLY INDEPENDENT EVENTS: A set of events $A_1,, A_n$ are said to be <i>mutually</i>	unbiased estimator of θ \overline{X} is an unbiased estimator of $u \to E(\overline{X}) = u$	CI for μ with KNOWN σ : z_{α} is number with an uppertail probability of σ for standard normal distribution	H ₁ : μ > 3 Upper-tail test	$ \sigma_1^2\rangle$ $F>$	$F_{n_1-1,n_2-1,\alpha}$	distributi on	$f_X(x) = P($	$X = x) = \binom{n}{r} p^x (1$	V(X) = np(1-p)
independent/independent	An unbiased estimator of σ^2 is	Z. 1	H ₀ : μ = 3	-2 -		on .		$(p)^{n-x}$	
$\Leftrightarrow P(A_1 A_2 \dots A_k) = P(A_1) P(A_2) \dots P(A_k)$ A_1, A_2, \dots, A_n are <u>mutually independent</u>	$S^2 = \frac{1}{n-1} \sum_{i} (X_i - \bar{X})^2$; $E(S^2) = \sigma^2$	$P(Z > z_{\alpha}) = \alpha \rightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \text{ or } Z$	H ₁ : μ < 3 Lower-tail test	00	$F_{n_1-1,n_2-1,1-\alpha}$	Negative	#trials be $X \sim NB(k, p)$	fore obtain k successes;	E(X) = k/p
$\Leftrightarrow P(A_1 A_2 \dots A_k) = P(A_1) P(A_2) \dots P(A_k)$	A biased estimator of σ^2 is $T = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$	\ "_/	Step 4: Compute test statistic value based on your data.	$\left \begin{array}{cc} \sigma_1^2 \neq & F < \\ \sigma_2^2 & F \end{array} \right $	$F_{n_1-1,n_2-1,1-\alpha/2};F>$	binomial distributi		$X = x) = {x - 1 \choose k - 1} p^k (1$	V(X)
Total 2 ⁿ − n − 1 different cases. Mutually independence → pair-wise	SAMPLING DISTRIBUTION RELATED TO	$=\frac{X-\mu}{S/\sqrt{n}}\sim N(0,1)$	Step 5: Conclusion. $p - VALUE$: If $p - value > \alpha$, do not reject H_0 , else	HYPOTHESI	$1,n_2-1,\alpha/2$	on	744.7	$(k-1)^{p}$	$= (1-p)k/p^2$
<u>independence</u>	SAMPLE MEAN:	We have $P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$	reject H _o	UNKNOWN			_	.,	#required trials
Pair-wise independence → mutually independence	Sample mean $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$	$\sum_{\alpha \neq 1} \frac{\partial \alpha}{\partial x} = \partial $	PAIRWISE ASSOCIATION TEST: On left is used non- parametric test of pairwise correlation (robust to non-	$\sigma_1^2; \sigma_2^2; n_1, n_2$	$\frac{2}{10} > 30$			$X \sim Geom(p), x = 1, 2, 3,$ $X = x) = (1 - p)^{x-1}p; q$	until first success is achieved
PARTITION: If R. R. R are mutually	Infinite population or from a finite population with	_ 1	normal population)	When H_0 is tr	ue, we have test statistic:			= 1 - p	E(X) = 1/p
analysis $(DD - \phi, i + i)$, substitute $(D + i)$	replacement having mean μ_X ; variance σ_X^2 , sample distribution of sample mean \bar{X} has mean; variance	$= 1 - \alpha$ SAMPLE SIZE FOR ESTIMATING μ: For margin of	quantitative ~ categorical	$Z = \frac{(\bar{X})^2}{2}$	$(\overline{X}_1 - \overline{X}_2) - \delta_0$ $(\overline{X}_1 - \overline{X}_2) - \delta_0$ $(\overline{X}_1 - \overline{X}_2) - \delta_0$ (0,1)	Coometri		$= (1-p)^n = q^n$ s property of Geometric:	$V(X) = (1-n)/n^2$
$B_2 \cup \cup B_n = S$) $\rightarrow B_1, B_2,, B_n \text{ a partition of S.}$	is:	l '	1 sample 2 samples >=2 samples	\sqrt{S}	$\frac{1}{1}/n_1 + S_2^2/n_2$	Geometric distributi		$\frac{\text{s property of Geometric:}}{k X > n) = P(X > k)}$	$= (1-p)/p^2$
RULE OF TOTAL PROB. : If $B_1, B_2,, B_n$ is	$*\mu_{\overline{X}} = \mu_X; \ \sigma_{\overline{X}}^2 \qquad *E(\overline{X} - \overline{Y}) = \mu_{\overline{X} - \overline{Y}}$	confidence α , sample size is $n \ge \left(\frac{z_{\alpha/2} \times \sigma}{e}\right)^2$	1 sample Wilcoxon 2 samples Mann-Whitney ANOVA Friedman	UNKNOWN	S on $\mu_1 - \mu_2$ with $\sigma_1^2 = \sigma_2^2$: NORMAL	1 on		$= q^k, n, k \ge 1$	
partition n n	$=\frac{\sigma_X^2}{n} \qquad = \mu_1 - \mu_2 \\ *V(\overline{X} - \overline{Y}) = \sigma_{\overline{X} - \overline{Y}}^2$	CONFIDENCE INTERVALS; SAMPLE SIZE	quantitative ~ quantitative	population:	$n_1, n_2 < 30$				= NB(1, p) $E(X)$
$P(A) = \sum P(B_i A) = \sum P(B_i) P(A B_i)$	$*E(\overline{X}) = E(X) \qquad \sigma_1^2 \sigma_2^2$	Determine appropriate sample size needed to estimate population parameter within specified level	Norm.? Correlation Correlation	When H_{\circ} is tr	$\mu_2(>,<,=)\delta_0$ rue, we have test statistic:		#failures un X — 1	til first success is achieved $Y =$	=(1-p)/p
		of precision (± E).	Pearson Simple	\bar{X}_1 –	$(\bar{X}_2) - \delta_0$	J		$=(1-p)^{y}p$	$V(X) = (1-p)/p^2$
BAYES'S THEOREM: Let $B_1,, B_n$ be partition	LAW OF LARGE NUMBER LLN: Let $(X_1; X_2;; X_n)$ be a random sample of size n with	$\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ and $E \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$	regression Quantitative - quantitative + quantitative + Multiple	$I = \frac{1}{S_p \sqrt{1/2}}$	${n_1+1/n_2} \sim t(n_1+n_2-2)$	Poisse-	# success in	n fixed interval/period/region	
015.	mean μ ; variance σ^2 . Then, $\forall \varepsilon \in \mathbb{R} \to (P(X - \mathbb{R}))$	Sample size of mean: $n \ge (z_{\alpha/2})^2 \frac{\sigma^2}{r^2}$	quantitative - quantitative + regression quantitative - quantitative + categorical + ANCOVA	$S_n = \frac{(n_1 - n_2)^n}{n_1 - n_2}$	$\frac{1}{\sqrt{n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$ $\frac{1}{\sqrt{n_1 + 1/n_2}} \sim t(n_2 - 1)S_2^2$ $\frac{1}{\sqrt{n_1 + n_2 - 2}} \text{ is }$	Poisson random	$\lambda > 0$;	, ,, ,	$E(X) = \lambda$
$P(B_k A) $	$\mu > \varepsilon$) $\to 0$ as $n \to \infty$) CENTRAL LIMIT THEOREM: Let $(X_1; X_2;; X_n)$	Sample size for population: $\frac{E^2}{E^2}$	Logistic		$n_1 + n_2 - 2$ apple variance	variable		$u(\lambda); x = 0,1,2,$ $X = x) = e^{-\lambda} \lambda^x / x!$	$V(X) = \lambda$
	bec (n ₁ , n ₂ ,, n _η)	Danipic Size for population:	regression			Exponenti	// /-/ / (, /	$E(X) = 1/\lambda$
$-P(B_1)P(A B_1) + \dots + P(B_n)P(A B_n)$	be a random sample of size n with mean μ ; variance		categorical ~ categorical → Chi2	IIII O I IILSI.	5 IESI UN FAIR SAMFLES:				
$P(B_1)P(A B_1) + \dots + P(B_n)P(A B_n)$	be a random sample of size n with mean μ ; variance σ^2 .		categorical ~ categorical	IIII OTTILSI	3 TEST ON FAIR SAMPLES:	al	$\lambda > 0; X \sim E$	$f_Xp(\lambda) \to f_X(x)$	$V(X) = 1/\lambda^2$

$= \frac{P(B_k)P(A B_k)}{\sum_{i=1}^n P(B_i)P(A B_i)}$ $\rightarrow \frac{P(A B)}{P(A^c B)} = \frac{P(B A)}{P(B A^c)} \times \frac{P(A)}{A^c}$ CHEBYSHEV'S INEOUIALITY: Don't know how.	$Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \Leftrightarrow \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ $\to P(\overline{X} > a) = P\left(Z > \frac{a - \mu}{\sigma/\sqrt{n}}\right)$	$\beta \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\beta(1-\beta)}{n}}; n$ $\geq \left(z_{\frac{\alpha}{2}}\right)^2 \frac{\pi(1-\pi)}{E^2}; \pi \text{ is proportion}$	Reference for statistical analysis using SAS, Stata SPSS, R https://stats.idre.ucla.edu/other/mult-pkg/whatstat/# HYPOTHESIS on µ+KNOWN σ:NORMAL	$D_i = X_i - Y_i; \mu_D = \mu_1 - \mu_2$ To test: $\overline{D}(>, <, =) \mu_{D,0}$ When H_0 is true, we have test statistic: ** $n < 30 D$; are normally distributed	on	$P(X > t) = e^{-\lambda t}$ Memoryless property of Exponential distribution: P(X > s + t X > s) = P(X > t) $= e^{-\lambda t}$	
$P(X - \mu \ge k\sigma) \le \frac{1}{k^2} \to P(X - \mu \le k\sigma) $ $\ge 1 - \frac{1}{k^2}$	provination to sampling distribution of mean $x \in \mathbb{R}^n$ if $n \geq 30$. If $(X_1; X_2;; X_n)$ are (approximately) $N(\mu, \sigma^2)$, nen \overline{X} is (approximately) $N(\mu, \sigma^2/n)$ regardless of	<u>Suppose that we wish to determine number of voters to poll to ensure sampling error of at most ± 2%. With no</u>	When H_0 is true, we have test statistic: $Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{\tau}}$ $\sim N(0,1)$	$ \Rightarrow T = \frac{\overline{D} - \mu_{D,0}}{S_D/\sqrt{n}} \sim t(n-1) $ $ *n \ge 30 \rightarrow Z = \frac{\overline{D} - \mu_{D,0}}{S_D/\sqrt{n}} \sim N(0,1) $	Normal distributi on	$\begin{split} \mu &\in \mathbb{R}, \sigma > 0; X{\sim} N(\mu, \sigma^2); -\infty < x < \infty \\ f_X(x) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ n \ \ degree \ \ of \ freedom; \Gamma(.) \ \ gamma \ \ func; \end{split}$	$E(X) = \mu$ $V(X) = \sigma^2$
RANDOM VECTORS & RANGE SPACE Let E be an experiment; S a sample space (X, Y) a two-dimensional random vector. range (space is	AMMA FUNCTION: (α is a complex number with ositive real part). Gamma function $\Gamma(.)$ is defined y	estimate of π or set $\pi = 0.5$ for conservative estimate	population To test: $\mu(>,<,=)\mu_0$ When H_0 is true, we have test statistic: $T = \frac{\bar{\aleph} - \mu_0}{c \sqrt{\kappa}}$	2	χ ² distributi on	$f_Y(y) = \frac{1}{2^{n/2} \Gamma(n/2)} e^{\frac{n}{2} - 1} e^{-y/2} $ (y	E(Y) = 2 $V(Y) = 2n$
INDEPENDENT RANDOM VARIABLE: X; Y are independent iff $f_{YY}(x,y) = \frac{1}{2}$	$ ^{\sharp} \Gamma(1) = \int_0^{\infty} e^{-y} dy = 1 $	sample having desired characteristic; n sample size. $\hat{p}\pm z_{lpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$			Student's t distributi on	$Z \sim N(0,1); U \sim \chi^{2}(n)$ $T = \frac{Z}{(\sqrt{U/n})} \sim t(n), -\infty < t < \infty$ $f_{T}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^{2}}{n}\right)^{(n+1)/2}$ $I = \frac{1}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^{2}}{n}\right)^{(n+1)/2}$	$E(T) = 0$ $V(T) = \frac{n}{n-2}; n$ > 2
$A_1, A_2,, A_n$ are independent in $f_{X_1, X_2,}(X_1, X_2,, X_n) = f_{X_1}(X_1) f_{X_2}(X_2) f_{X_n}(X_n)$					The F— distributi on	$F = \frac{U/n_1}{V/n_2}; f_F(x)$	$\left(\frac{1+n_2}{2}\right)$
$ \begin{aligned} & \text{HYPOTHESIS TEST ON } \sigma^2; \text{To test: } \sigma^2(>,<,=) \\ & \text{We can use test statistic} \\ & x^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1) \\ & \frac{H_1}{\sigma_0^2} \text{ Rejection region} \\ & \frac{\sigma_1^2 > \sigma_0^2}{\sigma_1^2 \times 2} \frac{\chi^2 > \chi_{n-1,a}^2}{\chi_{n-1,a}^2 - \sigma_1^2} \\ & \frac{\sigma_1^2 < \sigma_0^2}{\chi^2} \frac{\chi^2 < \chi_{n-1,1-a}^2}{\chi_{n-1,a/2}^2} \text{ or } \chi^2 > \frac{\chi^2}{\chi_{n-1,a/2}^2} \\ & \text{SAMPLE TEST ON PROPORTION:} \\ & z = \frac{(\hat{p} - \pi_0)}{\sqrt{n_0(1 - \pi_0)}} \\ & \frac{\text{Calculator with Normal distribution:}}{\sqrt{n_0(1 - \pi_0)}} \\ & \text{Calculator with Normal distribution:} \\ & P(Z < 1.6) = \text{MODE } 3 \rightarrow \text{SHIFT } 1 \rightarrow 5 \rightarrow 1 \\ & \text{(P value)} \rightarrow 1.6 \\ & \text{REIECTION REGION; P-VALUE for} \\ & \text{NORMAL distribution: } Z \sim N(0,1) \\ & \frac{H_1}{N_0} \frac{\text{Rejection region}}{\sqrt{2} \times 2 - z_a} \frac{P(Z < - z)}{\sqrt{2} \times (2 - z)} \\ & \leq z > z_a \frac{P(Z < z)}{\sqrt{2} \times (2 - z)} \\ & \neq z > z_{a/2} \text{ or } z < -z_{a/2} 2P(Z > z) \\ & t - \text{distribution: } T \sim t(n) \\ & \frac{H_1}{N_0} \frac{\text{Rejection region}}{\sqrt{2} \times (1 - n_{a})} \frac{P(T < - t)}{\sqrt{2} \times (1 - t)} \\ & \neq t > t_{n,a/2} \text{ or } t < \frac{1}{2} + $	nt; p- nples llows m tion: ce of						
quantitative): measure of monotonicity relationship between two datasets Like other correlation coefficients, this one v between -1; +1 with 0 implying no correlation.							

Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as $x \uparrow, y \uparrow$ Negative correlations imply that as $x \uparrow, y \downarrow$ Wilcoxon signed-rank test (quantitative ~ cte) The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing two related samples, matched samples, or repeated measurements on a single sample to assess whether their population mean ranks differ (i.e. it is a paired difference test). It is equivalent to one-sample test of difference of paired samples. It can be used as an alternative to paired Student's ttest, t-test for matched pairs, or t-test for dependent samples when population cannot be assumed to be normally distributed. It has lower sensitivity compared to t-test. May be problematic to use when sample size is small Null hypothesis H_0 : difference between pairs follows a symmetric distribution around zero. Mann- Whitney U test (quantitative ~ categorial 2 level): also called Mann-Whitney-Wilcoxon/Wilcoxon rank-sum test/Wilcoxon-Mann-Whitney test is a nonparametric test of null hypothesis that two samples come from same population against an alternative hypothesis, especially that a particular population tends to have larger values than other. It can be applied on unknown distributions contrary to e.g. a t-test has to be applied only on normal distributions. Linear model: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ forthis X_i value Intercept = B

Given n random samples $(y_i, x_{1i}, ..., x_{pi})$ with