Kinship: Multistate models and parity

Hal Caswell University of Amsterdam

IBED 128 May 2023

Multistate kinship models: age and something else²

s = number of 'stages'

 $\omega = \text{number of age classes}$

Joint age×stage structure of kin of type **k**:

$$\widetilde{\mathbf{k}}(x) = \begin{pmatrix} k_{11} \\ \vdots \\ k_{s1} \\ \hline \vdots \\ k_{1\omega} \\ \vdots \\ k_{s\omega} \end{pmatrix}$$

²Caswell 2020, Demographic Research

The GKP kinship network¹

¹Keyfitz and Caswell 2005

Multistate model: vec-permutation construction³

 \mathbf{U}_i = transition matrix for age class i $i = 1, \dots, \omega$

= age advancement matrix for stage j j = 1, ..., s

= fertility matrix for age class i $i = 1, ..., \omega$

= offspring assignment matrix for stage j j = 1, ..., s

$$\widetilde{\mathbf{U}} = \mathbf{K}_{s,\omega}^{\mathsf{T}} \mathbb{D} \mathbf{K}_{s,\omega} \mathbb{U}$$
 $\widetilde{\mathbf{F}} = \mathbf{K}_{s,\omega}^{\mathsf{T}} \mathbb{H} \mathbf{K}_{s,\omega} \mathbb{F}$

$$\mathsf{F} = \mathsf{K}_{s,\omega}^{\scriptscriptstyle\mathsf{T}} \, \mathbb{H} \, \mathsf{K}_{s,\omega} \, \mathbb{F}$$

Dynamics:

$$\widetilde{\mathbf{k}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{k}}(x) + \widetilde{\beta}(x)$$
 $\widetilde{\mathbf{k}}(0) = \widetilde{\mathbf{k}}_0$

³Caswell 2018, Ecological Monographs

The joint age×stage distribution of mothers in the stable population is

$$\widetilde{\boldsymbol{\pi}} = \frac{\left(\mathbf{1}_{s\omega}^{\mathsf{T}}\widetilde{\mathbf{F}}\right)^{\mathsf{T}} \circ \widetilde{\mathbf{w}}}{\left\|\left(\mathbf{1}_{s\omega}^{\mathsf{T}}\widetilde{\mathbf{F}}\right)^{\mathsf{T}} \circ \widetilde{\mathbf{w}}\right\|} \qquad \boldsymbol{s}\omega \times 1. \tag{1}$$

The marginal age distribution of mothers

$$oldsymbol{\pi}^{\mathrm{age}} = \left(oldsymbol{\mathsf{I}}_{\omega} \otimes oldsymbol{\mathsf{I}}_{oldsymbol{s}}^{\mathsf{\scriptscriptstyle T}}
ight) \widetilde{oldsymbol{\pi}} \qquad oldsymbol{s} imes \mathsf{1}.$$

Multistate age×parity

Stage (parity) transition structure: parity 0 to parity 5+

$$\mathbf{U}_{i} = \begin{pmatrix} 1 - f_{1} & 0 & 0 & 0 & 0 & 0 \\ f_{1} & 1 - f_{2} & 0 & 0 & 0 & 0 \\ 0 & f_{2} & 1 - f_{3} & 0 & 0 & 0 \\ 0 & 0 & f_{3} & 1 - f_{4} & 0 & 0 \\ 0 & 0 & 0 & f_{4} & 1 - f_{5} & 0 \\ 0 & 0 & 0 & 0 & f_{5} & 1 \end{pmatrix} \qquad i = 1, \dots, \omega$$

where

 p_j = probability of reproduction in parity class j

Symbol	Kin	initial condition \mathbf{k}_0	Subsidy $\beta(x)$
$\tilde{\phi}$	Focal	$\widetilde{m{\phi}}_0$	0
ã Ď	daughters	0	$\widetilde{\mathbf{F}}\widetilde{\boldsymbol{\phi}}(x)$
	granddaughters	0	$\widetilde{\mathbf{Fa}}(x)$
$\widetilde{\widetilde{\mathbf{d}}}$	great-granddaughters	0	$\widetilde{Fb}(x)$
ď	mothers	$\widetilde{\boldsymbol{\pi}}$	0
ĝ ⊩	grandmothers	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{age}} \widetilde{\mathbf{d}}(i)$	0
ĥ	great-grandmothers	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{age}} \widetilde{\mathbf{g}}(i)$	0
m	older sisters	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{age}} \widetilde{\mathbf{a}}(i)$	0
ñ	younger sisters	Ó	$\widetilde{\mathbf{Fd}}(x)$
p	nieces via older sisters	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{age}} \widetilde{\mathbf{b}}(i)$	$\widetilde{F}\widetilde{m}(x)$
q r	nieces via younger sisters	Ó	$\widetilde{\mathbf{F}}\widetilde{\mathbf{n}}(x)$
ř	aunts older than mother	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{age}} \widetilde{\mathbf{m}}(i)$	0
ŝ	aunts younger than mother	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{age}} \widetilde{\mathbf{n}}(i)$	$\widetilde{F}\widetilde{g}(x)$
ĩ	cousins: aunts older than mother	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{lage}} \widetilde{\mathbf{p}}(i)$	$\widetilde{\mathbf{Fr}}(x)$
ữ	cousins: aunts younger than mother	$\sum_{i} \boldsymbol{\pi}_{i}^{\text{lage}} \widetilde{\mathbf{q}}(i)$	$\widetilde{F}\widetilde{s}(x)$

Multistate age×parity

Notice that column sums of ${\bf U}$ equal 1, so mortality will be included in the age advancement matrix ${\bf D}$

$$\mathbf{D}_j = \left(egin{array}{ccc} 0 & 0 & 0 & 0 \ p_1 & 0 & 0 & 0 \ 0 & p_2 & [p_3] \end{array}
ight) \qquad j=1,\ldots,s$$

where p_i is $1 - q_i$ in parity stage j

An example

Slovakia 1960 - 2014

	1960	2014	
TFR	3.6	1.5	-63%
Life expectancy	62	80	+29%

Output data structure

Marginal distributions

Joint age×stage structure of kin of type k:

$$\widetilde{\mathbf{k}}(x) = \begin{pmatrix} k_{11} \\ \vdots \\ k_{s1} \\ \hline \vdots \\ k_{1\omega} \\ \vdots \\ k_{s\omega} \end{pmatrix}$$

marginal age and parity vectors

$$\mathbf{k}^{\mathrm{age}}(x) = (\mathbf{I}_{\omega} \otimes \mathbf{1}_{s}^{\mathsf{T}}) \widetilde{\mathbf{k}}(x) \qquad \omega \times 1$$
$$\mathbf{k}^{\mathrm{stage}}(x) = (\mathbf{1}_{\omega}^{\mathsf{T}} \otimes \mathbf{I}_{s}) \widetilde{\mathbf{k}}(x) \qquad s \times 1.$$

Sisters (aunts to Focal's daughters)

older sisters

$$\widetilde{\mathbf{m}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{m}}(x) + \mathbf{0}$$

$$\widetilde{\mathbf{m}}_0 = \sum_i \pi_i^{\text{age}} \widetilde{\mathbf{a}}(i).$$

younger sisters

$$\widetilde{\mathbf{n}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{n}}(x) + \widetilde{\mathbf{F}}\widetilde{\mathbf{d}}(x)$$
 (2)
 $\widetilde{\mathbf{n}}_0 = \mathbf{0}.$ (3)

$$\widetilde{\mathbf{n}}_0 = \mathbf{0}.$$
 (3)

Slovakia: marginal parity structure of aunts

Aunts (aunts to Focal)

aunts older than Mother

$$\widetilde{\mathbf{r}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{r}}(x) + \mathbf{0}$$
 $\widetilde{\mathbf{r}}_0 = \sum_i \pi_i^{\text{age}} \widetilde{\mathbf{m}}(i).$

aunts younger than Mother

$$\widetilde{\mathbf{s}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{s}}(x) + \widetilde{\mathbf{F}}\widetilde{\mathbf{g}}(x)$$
 $\widetilde{\mathbf{s}}_0 = \sum_i \pi_i^{\text{age}} \widetilde{\mathbf{n}}(i).$

Slovakia: proportional parity structure of aunts

Marginal parity structure of sisters

<ロ > → □ > → □ > → □ > → □ ● → ○ ○ ○

Parity structure of sisters over time

Slovakia: proportional parity structure of sisters

Parity structure of aunts over time

Proportion low parity (0 and 1) sisters

Lots of kin

Proportion low parity (0 and 1) aunts

Other age-stage possibilities?

Marital status⁴

⁴Keyfitz, N. 1988. A Markov chain for calculating the durability of marriage. Math. Pop. Studies 1:101-121.

Other age-stage possibilities?

Health, employment⁵

Figure 1: Multi-state model of healthy working life expectancy

Other age-stage possibilities?

- location
- SES variables (education,...)
- ?

What is needed to incorporate these into the kinship model?

⁵Parker et al. 2020. Lancet Public Health 5:e395-403.