Slant is NP-Complete

and Some Variations are in P

Jayson Lynch, Jack Spalding-Jamieson (Presenting)

July 2024

The puzzle "Slant" AKA "Gokigen Naname"

▶ Start with: Grid and numbers on vertices.

The puzzle "Slant" AKA "Gokigen Naname"

▶ Start with: Grid and numbers on vertices.

- Want: Diagonals filling cells, with constraints.
- ► Constraints:
 - ► Number label = incident diagonal count
 - No cycles

The puzzle "Slant" AKA "Gokigen Naname"

Start with: Grid and numbers on vertices.

- ▶ Want: Diagonals filling cells, with constraints.
- ► Constraints:
 - ► Number label = incident diagonal count
 - No cycles

Time complexity of solving an $n \times n$ Slant puzzle?

Terminology

- ▶ **Vertex constraints:** Number label = incident diagonal count
- **Cycle constraint:** No cycles

Invalid solutions:

Degree 2 vertex constraint unsatisfied.

Red diagonals form a cycle.

- Constraints:
 - ► Number label = incident diagonal count
 - No cycles

- Constraints:
 - ► Number label = incident diagonal count
 - No cycles

- Constraints:
 - ► Number label = incident diagonal count
 - No cycles

- Constraints:
 - ► Number label = incident diagonal count
 - No cycles

Orientation of the puzzle

Rotate slant puzzles 45° from now on.

Orientation of the puzzle

Rotate slant puzzles 45° from now on.

The two grid graphs forming the solution space

The diagonals become potential edges from two complementary (dual) grid graphs.

Extending partial solutions

Theorem

A partially-filled Slant board w/o vertex constraints and no cycles can be extended to a solution.

Greedily fill: If one choice for a cell induces a cycle, the other cannot.

NP-Hardness: Two-step reduction idea

Facts:

- Hamiltonian Cycle is NP-complete for planar, bipartite, 3-regular graphs.
- Hamiltonian Cycle is NP-complete for grid graphs. Reduction from planar, bipartite, 3-regular graphs.

Additional gadget: Forced edge

Goal: Mimic behaviour of Hamiltonian Cycle in each gadget

Goal: Mimic behaviour of Hamiltonian Cycle in each gadget

Goal: Mimic behaviour of Hamiltonian Cycle in each gadget

Green vertices will emulate the grid graph in the Hamiltonian Cycle problem.

Goal: Mimic behaviour of Hamiltonian Cycle in each gadget

Green vertices will emulate the grid graph in the Hamiltonian Cycle problem.

NP-Hardness: Emulating the gadgets

NP-Hardness: Filling the void

Problem 1: Backbone around a face would create a cycle

Problem 2: Vertices in face itself are not connected to rest of graph

Solution: One incision along each face + partial fill result.

Results not talked about here + Open questions

In the paper:

- ► The problem's complexity remains essentially the same for both dense and sparse representations.
- ► The constraints break into a specific 5-way matroid intersection—two partition matroid pairs representing *b*-matchings in the dual grid graphs, and one planar matroid.

Results not talked about here + Open questions

In the paper:

- ► The problem's complexity remains essentially the same for both dense and sparse representations.
- ► The constraints break into a specific 5-way matroid intersection—two partition matroid pairs representing *b*-matchings in the dual grid graphs, and one planar matroid.

Open problems:

- ► The NP-Hardness construction uses all 5 of these matroids. Is the problem still hard with only 4 of them?
- ► Is the problem ASP-hard? #P-hard?
- ► Complexity of other puzzle variations involving non-grid graphs, via duality representation?

Results not talked about here + Open questions

In the paper:

- ► The problem's complexity remains essentially the same for both dense and sparse representations.
- ► The constraints break into a specific 5-way matroid intersection—two partition matroid pairs representing *b*-matchings in the dual grid graphs, and one planar matroid.

Open problems:

- ► The NP-Hardness construction uses all 5 of these matroids. Is the problem still hard with only 4 of them?
- ► Is the problem ASP-hard? #P-hard?
- ► Complexity of other puzzle variations involving non-grid graphs, via duality representation?

Fin.

