Homework Solutions Applied Regression Analysis

WEEK 4

Exercise Four: F-Tests

1. Carry out F-tests for the significance of the straight-line regression of Y on X

$$F_{\text{regression}} = \frac{SS_{reg} / df}{SS_{res} / df} = \frac{12.7}{4.65 / 16} = 43.7$$
, p-value<0.001

We reject the null (β_1 =0); there is evidence of a significant linear relationship between Y and X.

2. Carry out an overall F-test for the significance of the quadratic regression of Y on X and a test for the significance of the addition of x^2 to the model

For this question, we must calculate the overall F-statistic, as well as the partial F-statistic for the addition of x^2 :

Overall Regression
$$F_{\text{regression}} = \frac{SS_{\text{reg}} / df}{SS_{\text{res}} / df} = \frac{16.6 / 2}{0.75 / 15} = 166.8$$
, p-value<0.001
Test for addition of X^2 $F_{\text{add } X^2} = \frac{SS_{X|X^2} / df}{SS_{\text{res}} / df} = \frac{3.9}{0.75 / 15} = 79.1$, p-value<0.001

The overall F-test (p<0.001) indicates that we can reject the null (H_0 : β_1 = β_2 =0) and conclude that the quadratic regression of Y on X is significant.

The partial F-test (p<0.001) indicates that we can reject the null (H_0 : β_2 =0) and conclude that x^2 contributes significantly to the model.

3. For the straight-line regression of lnY on X, carry out F-tests for the significance of the overall regression

$$F_{\text{regression}} = \frac{SS_{\text{reg}} / df}{SS_{\text{res}} / df} = \frac{42.75}{0.15 / 16} = 4556, \text{ p-value} \le 0.001$$

We reject the null (β_1 =0); there is evidence of a significant linear relationship between InY and X.