The System of Units

We define a new time unit T such that a wave number $\tilde{\nu}$ has the same numerical value as the corresponding angular wave frequency $\omega = \tilde{\nu} 2\pi c$ (c is the speed of light).

	SI	New
$ ilde{ u}$	$1\mathrm{cm}^{-1}$	$1\mathrm{cm}^{-1}$
ω	$1.8836515673088531 \times 10^{11} \text{ s}^{-1}$	$1T^{-1}$
Time $Unit(SI)$	1 s	$1.8836515673088531\times 10^{11}\mathrm{T}$
${\rm Time}\ {\rm Unit}({\rm New})$	$5.308837458876145 \times 10^{-12}$ s	1T

Table 1: The Defining Relationship: $\omega = 2\pi c\nu$. $c = 2.997\,924\,58 \times 10^{10}\,\mathrm{cm\,s^{-1}}$.

With the time unit defined, we further define a new energy unit E such that Planck's constant \hbar is 1ET. Planck's constant in SI is $1.054\,571\,817\times10^{-34}\,\mathrm{J}\,\mathrm{s}$. Once E is defined, for $\tilde{\nu}=1\,\mathrm{cm}$, we will have the corresponding angular frequency $\omega=1\,\mathrm{cm}^{-1}$ and the energy $\mathcal{E}=\hbar\omega=1\,\mathrm{ET}\times1\,\mathrm{T}^{-1}=1\,\mathrm{E}$.

	SI	New
\hbar	$1.054571817 \times 10^{-34} \mathrm{J s}$	$1\mathrm{E}\cdot\mathrm{T}$
$Time\ Unit(SI)$	1 s	$1.8836515673088531\times 10^{10}\mathrm{T}$
$Time\ Unit(New)$	$5.308837458876145\times10^{-12}\mathrm{s}$	1T
Energy $Unit(SI)$	1 J	$5.0341165706272096 \times 10^{22} \mathrm{E}$
Energy $Unit(New)$	$1.986445855931795 \times 10^{-23} \text{J}$	1E

Table 2: The Defining Relationship: $\hbar = 1.054571817 \times 10^{-34} \text{J s} = 1 \text{ET}$.

With the two units defined, we calculate the value of Boltzmann's constant in this system of units.

	SI	New
Energy Unit(SI)		$5.0341165706272096 \times 10^{22} \mathrm{E}$
Energy $Unit(New)$	$1.986445855931795 \times 10^{-23} $	1E
$k_{ m B}$	$1.380649 \times 10^{23} \mathrm{JK^{-1}}$	$0.6950348009119888\mathrm{EK^{-1}}$

Table 3: The Defining Relationship: $k_{\rm B}=1.380\,649\times10^{-23}\,{\rm J\,K^{-1}}=1.380\,649\times10^{-23}\,{\rm J\,K^{-1}}\times15.034\,116\,570\,627\,209\,6\times10^{22}\,\frac{\rm E}{\rm J}=0.695\,034\,800\,911\,988\,8E\,K^{-1}.$

Now we list the necessary unit conversion coefficients from atomic units to this new set of units

	a.u.	New
Mass	1 a.u.	$1.627096855727954 \times 10^{11}\mathrm{M}$
Mass	$6.145915631756325 \times 10^{-12}$ a.u.	$1\mathrm{M}$
Length	1 a.u.	$5.29177210903 \times 10^{-9} \text{ cm}$
Energy	1 a.u.	$2.1947463068 \times 10^5 \text{ E}$

Table 4: The Defining Relationship: .