NPEX 2022 Deep learning for Speech

Day 1 Practice: Speech Feature extraction and Metric

Human Speech as Waveform

I LOVE SPEECH

- 1. Waveform (음성 파일)
- 2. Utterance (발화 텍스트)
- 3. Alignment (위치 정렬)
- **Styles**: reading, conversational, spontaneous, multi-speaker, command & control, keyword
- Variances: disfluency, stuttering, mic quality, channels, far field, reverb, echo, accents, Lombard effect, gender, age, locale, ...
- Noises: outdoor, room, school, subway, car, ...

같은 데이터, 세 가지 다른 표현방식

Waveform – Spectrogram – Text

Spectrogram

Sampling rate

- 몇 개의 프레임이 1초에 들어 있는가?
- Ex) 10초 길이 음성, 16kHz sampling
- Nyquist Theorem: 최고 주파수의 2배 이상으로 샘플링해야 손실이 없다.

STFT (Short-Time Fourier Transform)

- 짧은 구간에 대해 FFT를 적용
- 주파수(frequency) 성분이 각각 얼마나 포함되어 있는지
- Ex) 25ms window, 10ms stride
- 17# window = 17# frame
- 가청 주파수: ~20kHz
- 음성인식에 보통 사용되는 주파수: ~ 8kHz

Audio Pre-processing

• Pre-emphasis: 연속적인 저주파 성분을 제거해 더 특징을 선명하게 잡아냄

Original

$$y(t) = x(t) - \alpha x(t-1), \qquad \alpha = 0.95 \text{ or } 0.97$$

After Pre-emphasis

- Silence removal: 중간에 나올 수 있는 묵음(소리가 없는 부분)을 제거
- Dithering: 16-bit/32-bit sampling 과정에서 생길 수 있는 양자화 노이즈를 보정

Mel-Spectrogram

Mel Spectrogram

• 달팽이관: 저주파수에는 촘촘하게(민감하게), 고주파수에는 넓게 반응

Mel Filter Bank를 이용해 Spectrogram에 적용

•
$$M(mel) = 2595 \log_{10} \left(1 + \frac{F(Hz)}{700} \right)$$

•
$$F(Hz) = 700 \left(e^{\frac{m}{1127}} - 1 \right)$$

Log-Mel-spectrogram

• 사람과 유사하게 데시벨 (dB) 단위로 변환

• $dB = 10 \log_{10} A$

1,500Hz

Tokenizer

Tokenizer

컴퓨터가 이해할 수 있는 형태(=숫자)로 <u>자연어 문장을</u> 변환

- 1. 최소단위로 쪼개고
- 2. 각 단위에 맞는 숫자(index)열로 변환
- Word tokenizer = 단어가 최소단위
- Grapheme tokenizer (=English character tokenizer): 글자가 최소단위

- Ex) I HAVE A CAT \rightarrow [9, 0, 8, 1, 22, 5, 0, 1, 0, 3, 1, 20]
- Sub-word (or, word-piece) tokenizer: 부분단어가 최소단위
 - ae, the, ish, ...
 - 실제로 가장 많이 사용되는 tokenization

Edit Distance

• Edit distance (= Levenshtein distance)

두 문자열A, B가 있을 때, A에 최소 몇 번의 연산을 거쳐야 B와 동일하게 만들 수 있는가?

• Edit 연산의 종류

1. Insertion

ex) to -> too

(o 삽입)

2. Deletion

ex) two -> to

(w 삭제)

3. Substitution

ex) sea -> see

(a -> e로 대체)

- Edit distance를 구하는 방법 중 가장 쉬운 방법 : Wagner-Fischer Algorithm
- 왜 음성인식은 Edit distance 를 지표로 사용하는가? → 예측한 답과 정답의 길이가 다르기 때문.

 $Error Rate = \frac{|Insertion| + |Deletion| + |Substitution|}{|Reference|}$

Character Error Rate (CER), Word Error Rate (WER)

• Character Error Rate (띄어쓰기 무시)

	I	А	М	А	R	М	Υ
I							
M							
R							
M							
Υ							

CER = 2/7

Word Error Rate

	WE	ARE	GOOD	AT	KOREAN	AND	ENGLISH
WER							
GOOD							
AT							
KOREN							
ENGLISH							

WER = 4/7

Character Error Rate (CER), Word Error Rate (WER)

• Character Error Rate (띄어쓰기 무시)

	I	Α	М	Α	R	М	Υ
- 1	0	1	2	3	4	5	6
М	1	2	1	2	3	4	5
R	2	2	2	2	2	3	4
M	3	3	2	3	3	2	3
Υ	4	4	3	3	4	3	2

• 비교하는 두 문자가 같은 경우

이 표어는 구 군사기 로는 경구
: 왼쪽 위에 있는 숫자 그대로
비교하는 두 문자가 서로 다른 경우
: 왼쪽, 왼쪽 위, 위에 있는 숫자 중 가장 작은 숫자 + 1
1. 왼쪽 숫자 + 1: Insertion
2. 왼쪽 위 숫자 + 1: Substitution
3. 위쪽 숫자 + 1: Deletion

$$CER = 2/7$$

Word Error Rate

	WE	ARE	GOOD	AT	KOREAN	AND	ENGLISH
WER	1	2	3	4	5	6	7
GOOD	2	2	2	3	4	5	6
AT	3	3	3	2	3	4	5
KOREN	4	4	4	3	3	4	5
ENGLISH	5	5	5	4	4	4	4

WER = 4/7

Thank You!

NPEX 2022 Deep learning for Speech