The Last Challenge Attack:

Exploiting a Vulnerable Implementation of the Fiat-Shamir Transform in a KZG-based SNARK

Oana Ciobotaru, Maxim Peter, Vesselin Velichkov

OpenZeppelin

ZKProof 6 Berlin, May 22-24, 2024

The Last Challenge Attack: Historical Context

Background of the Finding

- Finding discovered as part of a Linea PLONK verifier audit.
- Initial theoretical concern regarding the underlying Fiat-Shamir (FS) transform implementation.
- The finding was proven exploitable in practice, making it a critical vulnerability.
- Promptly communicated and fixed.
 https://github.com/Consensys/gnark/security/advisories/ GHSA-7p92-x423-vwj6

The Last Challenge Attack: Historical Context

Background of the Finding

- Finding discovered as part of a Linea PLONK verifier audit.
- Initial theoretical concern regarding the underlying Fiat-Shamir (FS) transform implementation.
- The finding was proven exploitable in practice, making it a critical vulnerability.
- Promptly communicated and fixed.
 https://github.com/Consensys/gnark/security/advisories/ GHSA-7p92-x423-vwj6

Extension

The attack may affect any SNARK implementation which uses KZG as the polynomial commitment scheme.

Can you solve this system?

Linear system of **2** equations with **2** unknowns*

$$\begin{cases} F + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \dots + u^{n-1} \cdot z_n \cdot W_n = A \\ W_1 + u \cdot W_2 + \dots + u^{n-1} \cdot W_n = B \end{cases}$$

with W_1 , W_2 the unknowns, the rest are known values.

* An attacker would need to solve the above system in the context of elliptic curve points in the first source group w.r.t a pairing. The scalars are elements of the corresponding scalar field.

Solution

A solution (W_1, W_2) exists if and only if $u \neq 0$ and $z_1 \neq z_2$.

Can you solve this system?

Linear system of **2** equations with **2** unknowns*

$$\begin{cases} F + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \dots + u^{n-1} \cdot z_n \cdot W_n = A \\ W_1 + u \cdot W_2 + \dots + u^{n-1} \cdot W_n = B \end{cases}$$

with W_1, W_2 the unknowns, the rest are known values.

* An attacker would need to solve the above system in the context of elliptic curve points in the first source group w.r.t a pairing. The scalars are elements of the corresponding scalar field.

Solution

A solution (W_1, W_2) exists if and only if $u \neq 0$ and $z_1 \neq z_2$.

You have just learned about the core of the Last Challenge Attack!

The Last Challenge Attack (LCA) in a Nutshell

Main Idea

- Overview: Targets incorrect implementations of the Fiat-Shamir (FS) transform for KZG-based SNARK verifiers*.
- Concrete setting: The last FS challenge u is computed incorrectly as independent of certain components of the argument** π .
- Outcome: Enables a malicious SNARK prover to compute an argument π' for a false statement, while π' is accepted with high probability as valid by the affected SNARK verifier.

^{*} In fact, LCA may apply to any batched KZG-based protocol in which the FS transform has not been implemented correctly with respect to the KZG proof batching challenge.

^{**} For the purposes of this talk, "argument" and "proof" are used interchangeably.

Talk Outline

- Setting: Scaling Ethereum
- 2 The Fiat-Shamir Transform
- The KZG Multipoint Evaluation Scheme
- The Last Challenge Attack
- Implications
- Onclusions

Setting: Scaling Ethereum

- L2 ZK-Rollups execute transactions off-chain.
- (SNARK) prover \mathcal{P} provides a succinct ZK argument π on L1.
- ullet π testifies that transactions were executed correctly.
- (SNARK) verifier $\boldsymbol{\mathcal{V}}$ verifies on L1 the correctness of $\boldsymbol{\pi}$.
- The state of L2 on L1 (and the state of L1) are updated accordingly.

Interactive vs. Non-interactive Arguments

The Fiat-Shamir (FS) Transform

- By default, computing π is an interactive process between the prover \mathcal{P} and the verifier \mathcal{V} .
- The FS transform turns that into a non-interactive process via an idealised random oracle model (ROM).
- In practice, the non-interactive prover and non-interactive verifier independently compute the same unpredictable challenges as the hash of the computation transcript up to that point.

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier). It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier).

It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

gen(d)

Choose $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2) \in \mathbb{G}_1^d \times \mathbb{G}_2^2$.

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier).

It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

gen(d)

Choose $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2) \in \mathbb{G}_1^d \times \mathbb{G}_2^2$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier).

It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

gen(d)

Choose $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2) \in \mathbb{G}_1^d \times \mathbb{G}_2^2$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$$open(\{cm_j\}_{j=1}^t, z, \{s_j\}_{j=1}^t)$$

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier).

It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

gen(d)

Choose $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2) \in \mathbb{G}_1^d \times \mathbb{G}_2^2$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$open(\{cm_j\}_{j=1}^t, z, \{s_j\}_{j=1}^t)$

1 O Round 1: V_{KZG} sends uniformly random $\gamma \in \mathbb{F}$ to P_{KZG} .

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier).

It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

gen(d)

Choose $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2) \in \mathbb{G}_1^d \times \mathbb{G}_2^2$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$open(\{cm_j\}_{i=1}^t, z, \{s_j\}_{i=1}^t)$

- **1 Outsign** 1 **Outsign Outsign Outsign**
- ② Round 2: P_{KZG} computes poly $h(X) = \sum_{j=1}^{t} \gamma^{j-1} \cdot \frac{f_j(x) f_j(z)}{X z}$.

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier).

It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

gen(d)

Choose $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2) \in \mathbb{G}_1^d \times \mathbb{G}_2^2$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$open(\{cm_j\}_{i=1}^t, z, \{s_j\}_{i=1}^t)$

- **1** O Round 1: V_{KZG} sends uniformly random $\gamma \in \mathbb{F}$ to P_{KZG} .
- ② Round 2: P_{KZG} computes poly $h(X) = \sum_{j=1}^{t} \gamma^{j-1} \cdot \frac{f_j(x) f_j(z)}{X z}$.

Using the srs, P_{KZG} computes and sends to V_{KZG} the

KZG proof $\pi_{KZG} = W$, where $W = h(x) \cdot g_1$.

It assumes parties P_{KZG} (sender/prover) and V_{KZG} (recipient/verifier).

It requires a pairing friendly elliptic curve and, hence, an associated secure pairing e, a scalar field \mathbb{F} , two pairing source groups \mathbb{G}_1 , \mathbb{G}_2 (among others).

gen(d)

Choose $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2) \in \mathbb{G}_1^d \times \mathbb{G}_2^2$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$open(\{cm_j\}_{i=1}^t, z, \{s_j\}_{i=1}^t)$

- **1** Round 1: V_{KZG} sends uniformly random $\gamma \in \mathbb{F}$ to P_{KZG} .
- ② Round 2: P_{KZG} computes poly $h(X) = \sum_{j=1}^t \gamma^{j-1} \cdot \frac{f_j(x) f_j(z)}{X z}$.

 Using the srs, P_{KZG} computes and sends to V_{KZG} the KZG proof $\pi_{KZG} = W$, where $W = h(x) \cdot g_1$.
- Nound 3: V_{KZG} computes $F = \sum_{j=1}^{t} \gamma^{j-1} \cdot \operatorname{cm}_j (\sum_{j=1}^{t} \gamma^{j-1} \cdot s_j) \cdot g_1$. V_{KZG} outputs acc if and only if $e(F + z \cdot W, g_2) = e(W, x \cdot g_2)$.

Let $n \geq 2$; assume parties P_{KZG} and V_{KZG} and proceed as follows:

gen(d)

Choose (secret) random $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2)$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

Let $n \geq 2$; assume parties P_{KZG} and V_{KZG} and proceed as follows:

gen(d)

Choose (secret) random $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2)$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

```
open((\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})
```

Let $n \geq 2$; assume parties P_{KZG} and V_{KZG} and proceed as follows:

gen(d)

Choose (secret) random $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2)$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$open((\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})$

1 Orange Solution $\{\gamma_i\}_{i\in[n]}\in\mathbb{F}^n$ to P_{KZG} .

Let $n \geq 2$; assume parties P_{KZG} and V_{KZG} and proceed as follows:

gen(d)

Choose (secret) random $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2)$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$open((\{cm_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})$

- **1** Round 1: V_{KZG} sends uniformly random $\{\gamma_i\}_{i\in[n]} \in \mathbb{F}^n$ to P_{KZG} .
- ② Round 2: P_{KZG} computes polys $\{h_i(X) = \sum_{i=1}^{t_i} \gamma_i \cdot \frac{f_{i,j}(x) f_{i,j}(z_i)}{X z_i}\}_{i \in [n]}$.

Let $n \geq 2$; assume parties P_{KZG} and V_{KZG} and proceed as follows:

gen(d)

Choose (secret) random $x \in \mathbb{F}$. Output $srs = (g_1, x \cdot g_1, \dots, x^{d-1} \cdot g_1, g_2, x \cdot g_2)$.

com(f, srs)

Output $cm = f(x) \cdot g_1$.

$open((\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})$

- **1 Orange** 1: V_{KZG} sends uniformly random $\{\gamma_i\}_{i\in[n]}\in\mathbb{F}^n$ to P_{KZG} .
- ② Round 2: P_{KZG} computes polys $\{h_i(X) = \sum_{j=1}^{t_i} \gamma_i \cdot \frac{f_{i,j}(x) f_{i,j}(z_i)}{X z_i}\}_{i \in [n]}$.

Using the srs, P_{KZG} computes and sends to V_{KZG} the

KZG MES proof
$$\pi_{KZG} = (W_i)_{i=1}^n$$
, where $W_i = h_i(x) \cdot g_1$.


```
\begin{aligned} & open((\{cm_{i,j}\}_{j\in[t_j]})_{i\in[u]}, \{z_i\}_{i\in[u]}, (\{s_{i,j}\}_{j\in[t_j]})_{i\in[u]}) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

$open((\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})$

3: Round 3:

 V_{KZG} chooses random $u \in \mathbb{F}$.

$$V_{KZG}$$
 computes $\{F_i\}_{i\in[n]},\,F_i=\sum_{j=1}^{t_i}\gamma_i\cdot\mathsf{cm}_{i,j}-(\sum_{j=1}^{t_i}\gamma_i\cdot s_{i,j})\cdot g_1$

$open((\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})$

Round 3:

 V_{KZG} chooses random $u \in \mathbb{F}$.

$$V_{\text{KZG}}$$
 computes $\{F_i\}_{i \in [n]}$, $F_i = \sum_{j=1}^{t_i} \gamma_i \cdot \mathsf{cm}_{i,j} - (\sum_{j=1}^{t_i} \gamma_i \cdot s_{i,j}) \cdot \mathsf{g}_1$

 V_{KZG} outputs ${\it acc}$ if and only if the following holds:

$$\begin{split} e(F_1 + \ldots + u^{n-1} \cdot F_n + z_1 \cdot W_1 + \ldots + u^{n-1} \cdot z_n \cdot W_n, g_2) = \\ &= e(W_1 + \ldots + u^{n-1} \cdot W_n, x \cdot g_2). \end{split}$$

$open((\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})$

Round 3:

 V_{KZG} chooses random $u \in \mathbb{F}$.

$$V_{KZG}$$
 computes $\{F_i\}_{i \in [n]}$, $F_i = \sum_{j=1}^{t_i} \gamma_i \cdot \mathsf{cm}_{i,j} - (\sum_{j=1}^{t_i} \gamma_i \cdot s_{i,j}) \cdot \mathsf{g}_1$

 V_{KZG} outputs acc if and only if the following holds:

$$\begin{split} e(F_1 + \ldots + u^{n-1} \cdot F_n + z_1 \cdot W_1 + \ldots + u^{n-1} \cdot z_n \cdot W_n, g_2) = \\ &= e(W_1 + \ldots + u^{n-1} \cdot W_n, x \cdot g_2). \end{split}$$

Quick Note (We Come Back To It Later!)

Last challenge u defined in Round 3 is only computed and used by V_{KZG} .

$open((\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}, \{z_i\}_{i\in[n]}, (\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]})$

Round 3:

 V_{KZG} chooses random $u \in \mathbb{F}$.

$$V_{ ext{KZG}}$$
 computes $\{F_i\}_{i \in [n]}, F_i = \sum_{j=1}^{t_i} \gamma_i \cdot \mathsf{cm}_{i,j} - (\sum_{j=1}^{t_i} \gamma_i \cdot s_{i,j}) \cdot g_1$

 V_{KZG} outputs **acc** if and only if the following holds:

$$e(F_1 + \ldots + u^{n-1} \cdot F_n + z_1 \cdot W_1 + \ldots + u^{n-1} \cdot z_n \cdot W_n, g_2) =$$

$$= e(W_1 + \ldots + u^{n-1} \cdot W_n, x \cdot g_2).$$

Quick Note (We Come Back To It Later!)

Last challenge u defined in Round 3 is only computed and used by V_{KZG} .

Lemma: Security of KZG MES in the AGM

KZG MES has completeness and knowledge-soundness in the algebraic group model under the Q-DLOG assumption.

(See proof of Lemma 6 from ePrint 2024/398 for full details.)

Properties of the Non-interactive Version of KZG MES

Let P_{KZGN} , V_{KZGN} be the non-interactive version of KZG MES prover, verifier.

The non-interactive version of KZG MES:

- is obtained by applying the FS transform;
- can be proven secure in the ROM.

Properties of the Non-interactive Version of KZG MES

Let P_{KZGN} , V_{KZGN} be the non-interactive version of KZG MES prover, verifier.

The non-interactive version of KZG MES:

- is obtained by applying the FS transform;
- can be proven secure in the ROM.

Reminder 1: All challenges are computed by both P_{KZGN} , V_{KZGN} as the hash of the entire communication transcript up to that point in the protocol.

Properties of the Non-interactive Version of KZG MES

Let P_{KZGN} , V_{KZGN} be the non-interactive version of KZG MES prover, verifier.

The non-interactive version of KZG MES:

- is obtained by applying the FS transform;
- can be proven secure in the ROM.

Reminder 1: All challenges are computed by both P_{KZGN} , V_{KZGN} as the hash of the entire communication transcript up to that point in the protocol.

Reminder 2: Last challenge u is actually only computed and used by V_{KZGN} !

Properties of the Non-interactive Version of KZG MES

Let P_{KZGN} , V_{KZGN} be the non-interactive version of KZG MES prover, verifier.

The non-interactive version of KZG MES:

- is obtained by applying the FS transform;
- can be proven secure in the ROM.

Reminder 1: All challenges are computed by both P_{KZGN} , V_{KZGN} as the hash of the entire communication transcript up to that point in the protocol.

Reminder 2: Last challenge u is actually only computed and used by V_{KZGN} !

Assume reducing computational costs is important, including unnecessary hashing!

Properties of the Non-interactive Version of KZG MES

Let P_{KZGN} , V_{KZGN} be the non-interactive version of KZG MES prover, verifier.

The non-interactive version of KZG MES:

- is obtained by applying the FS transform;
- can be proven secure in the ROM.

Reminder 1: All challenges are computed by both P_{KZGN} , V_{KZGN} as the hash of the entire communication transcript up to that point in the protocol.

Reminder 2: Last challenge u is actually only computed and used by V_{KZGN} !

Assume reducing computational costs is important, including unnecessary hashing!

Dilemma

Does non-interactive KZG MES still remain secure (i.e., knowledge-sound) if the non-interactive verifier (i.e., a variation on V_{KZGN}) computes u as the hash of only a part of the full transcript (e.g., excluding some π_{KZG} components)?

The Last Challenge Attack

Let P'_{KZGN} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

The Last Challenge Attack

Let P_{KZGN}^{\prime} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

The Last Challenge Attack

Let P_{KZGN}^{\prime} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

Steps 1–3			
Bootstrapping:			

Let P'_{KZGN} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

- O Bootstrapping:
 - P'_{KZGN} simulates single instance single evaluation point KZG for arbitrary $f(X) \in \mathbb{F}[X]$ evaluated at arbitrary $\mathbf{z} \in \mathbb{F}$.

Let P'_{KZGN} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

- O Bootstrapping:
 - P'_{KZGN} simulates single instance single evaluation point KZG for arbitrary $f(X) \in \mathbb{F}[X]$ evaluated at arbitrary $\mathbf{z} \in \mathbb{F}$.
 - Using the inputs to the KZG pairing check, P'_{KZGN} produces $A, B \in \mathbb{G}_1$ such that $e(A, g_2) = e(B, x \cdot g_2)$.

Let P'_{KZGN} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

- O Bootstrapping:
 - P'_{KZGN} simulates single instance single evaluation point KZG for arbitrary $f(X) \in \mathbb{F}[X]$ evaluated at arbitrary $\mathbf{z} \in \mathbb{F}$.
 - Using the inputs to the KZG pairing check, P'_{KZGN} produces $A, B \in \mathbb{G}_1$ such that $e(A, g_2) = e(B, x \cdot g_2)$.
- ${\color{red} 2} \ {\color{blue} P'_{KZGN}}$ sets green-font variables to domain-respecting arbitrary values:

Let P'_{KZGN} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

- O Bootstrapping:
 - P'_{KZGN} simulates single instance single evaluation point KZG for arbitrary $f(X) \in \mathbb{F}[X]$ evaluated at arbitrary $\mathbf{z} \in \mathbb{F}$.
 - Using the inputs to the KZG pairing check, P'_{KZGN} produces $A, B \in \mathbb{G}_1$ such that $e(A, g_2) = e(B, x \cdot g_2)$.
- ${\color{red} 2} \ {\color{blue} P'_{KZGN}}$ sets green-font variables to domain-respecting arbitrary values:
 - $(\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}$, $\{z_i\}_{i\in[n]}$, $(\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]}$ —> inputs to open!

Let P'_{KZGN} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

- O Bootstrapping:
 - P'_{KZGN} simulates single instance single evaluation point KZG for arbitrary $f(X) \in \mathbb{F}[X]$ evaluated at arbitrary $\mathbf{z} \in \mathbb{F}$.
 - Using the inputs to the KZG pairing check, P'_{KZGN} produces $A, B \in \mathbb{G}_1$ such that $e(A, g_2) = e(B, x \cdot g_2)$.
- ${\color{red} 2} \ {\color{blue} P'_{KZGN}}$ sets green-font variables to domain-respecting arbitrary values:
 - $(\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}$, $\{z_i\}_{i\in[n]}$, $(\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]}$ —> inputs to open!
 - $\pi'_{KZG} = (W_1, W_2, W_3, \ldots, W_n) \longrightarrow n \ge 2!$

Let P_{KZGN}^{\prime} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

Steps 1-3

- O Bootstrapping:
 - P'_{KZGN} simulates single instance single evaluation point KZG for arbitrary $f(X) \in \mathbb{F}[X]$ evaluated at arbitrary $\mathbf{z} \in \mathbb{F}$.
 - Using the inputs to the KZG pairing check, P'_{KZGN} produces $A, B \in \mathbb{G}_1$ such that $e(A, g_2) = e(B, x \cdot g_2)$.
- ${\color{red} 2} \ {\color{blue} P'_{KZGN}}$ sets green-font variables to domain-respecting arbitrary values:
 - $(\{\mathsf{cm}_{i,j}\}_{j\in[t_i]})_{i\in[n]}$, $\{z_i\}_{i\in[n]}$, $(\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]}$ —> inputs to open!
 - $\pi'_{KZG} = (W_1, W_2, W_3, \ldots, W_n) \longrightarrow n \ge 2!$

 P'_{KZGN} aims to create π'_{KZG} for a false statement!

Let P_{KZGN}^{\prime} be a malicious non-interactive prover as per below.

Let V'_{KZGN} be the variation on V_{KZGN} verifier computing u as the hash of the full transcript excluding the first two components of π_{KZG} .

Steps 1-3

- O Bootstrapping:
 - P'_{KZGN} simulates single instance single evaluation point KZG for arbitrary $f(X) \in \mathbb{F}[X]$ evaluated at arbitrary $\mathbf{z} \in \mathbb{F}$.
 - Using the inputs to the KZG pairing check, P'_{KZGN} produces $A, B \in \mathbb{G}_1$ such that $e(A, g_2) = e(B, x \cdot g_2)$.
- ${\color{red} 2} \ {\color{blue} P'_{KZGN}}$ sets green-font variables to domain-respecting arbitrary values:
 - $(\{cm_{i,j}\}_{j\in[t_i]})_{i\in[n]}$, $\{z_i\}_{i\in[n]}$, $(\{s_{i,j}\}_{j\in[t_i]})_{i\in[n]}$ —> inputs to open!
 - $\pi'_{KZG} = (W_1, W_2, W_3, \ldots, W_n) \longrightarrow n \ge 2!$

 P'_{KZGN} aims to create π'_{KZG} for a false statement!

3 Using $(\{cm_{i,j}\}_{j \in [t_i]})_{i \in [n]}$ and $(\{s_{i,j}\}_{j \in [t_i]})_{i \in [n]}$, P'_{KZGN} deterministically computes $F_1, \ldots, F_n \in \mathbb{G}_1$ following *Round 3* of KZG MES.

Steps 4-6

 V'_{KZGN} computes u as the hash of the full transcript excluding W_1 , W_2 . This is deviation from the FS transform!

Steps 4–6

 $igcup V'_{KZGN}$ computes u as the hash of the full transcript excluding W_1 , W_2 . This is deviation from the FS transform!

 P_{KZGN}^{\prime} exploits that by solving the following system where $W_1,\,W_2$ are the only unknowns:

$$\begin{cases} F + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \dots + u^{n-1} \cdot z_n \cdot W_n = A \\ W_1 + u \cdot W_2 + \dots + u^{n-1} \cdot W_n = B \end{cases}$$

and the rest are constants as follows (see also Steps 1–3):

$$\underbrace{e(\underbrace{F_1 + \ldots + u^{n-1} \cdot F_n}_{F} + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \ldots + u^{n-1} \cdot z_n \cdot W_n, g_2)}_{A} \stackrel{?}{=} \underbrace{e(\underbrace{W_1 + u \cdot W_2 + \ldots + u^{n-1} \cdot W_n}_{B}, x \cdot g_2)}.$$

Steps 4–6

 v'_{KZGN} computes u as the hash of the full transcript excluding w_1 , w_2 . This is deviation from the FS transform!

 P_{KZGN}' exploits that by solving the following system where $W_1,\,W_2$ are the only unknowns:

$$\begin{cases} F + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \dots + u^{n-1} \cdot z_n \cdot W_n = A \\ W_1 + u \cdot W_2 + \dots + u^{n-1} \cdot W_n = B \end{cases}$$

and the rest are constants as follows (see also Steps 1–3):

$$\underbrace{e(\underbrace{F_1 + \ldots + u^{n-1} \cdot F_n}_{F} + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \ldots + u^{n-1} \cdot z_n \cdot W_n, g_2)}_{F} \stackrel{?}{=} \underbrace{e(\underbrace{W_1 + u \cdot W_2 + \ldots + u^{n-1} \cdot W_n}_{B}, x \cdot g_2)}.$$

lacktriangledown P'_{KZGN} fills in the corresponding slots of π'_{KZG} with the values $W_1,\,W_2.$

Steps 4–6

 $lackbox{V}'_{KZGN}$ computes u as the hash of the full transcript excluding W_1 , W_2 . This is deviation from the FS transform!

 P_{KZGN}' exploits that by solving the following system where $W_1,\,W_2$ are the only unknowns:

$$\begin{cases} F + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \dots + u^{n-1} \cdot z_n \cdot W_n = A \\ W_1 + u \cdot W_2 + \dots + u^{n-1} \cdot W_n = B \end{cases}$$

and the rest are constants as follows (see also Steps 1–3):

$$\underbrace{e(\underbrace{F_1 + \ldots + u^{n-1} \cdot F_n}_{F} + z_1 \cdot W_1 + u \cdot z_2 \cdot W_2 + \ldots + u^{n-1} \cdot z_n \cdot W_n, g_2)}_{A} \stackrel{?}{=} \underbrace{e(\underbrace{W_1 + u \cdot W_2 + \ldots + u^{n-1} \cdot W_n}_{B}, x \cdot g_2)}.$$

- \bigcirc P'_{KZGN} fills in the corresponding slots of π'_{KZG} with the values W_1, W_2 .
- 0 V'_{KZGN} accepts proof π'_{KZG} as valid with probability 1.

Implications

Let \mathcal{P}' be a malicious SNARK prover with a P'_{KZGN} subcomponent. \mathcal{P}' can set itself as the owner of all the assets by changing the Merkle root (part of the PI) and steal all user funds.

Based on: https://vitalik.eth.limo/general/2021/01/05/rollup.html

Implications

Let \mathcal{P}' be a malicious SNARK prover with a P'_{KZGN} subcomponent. \mathcal{P}' can set itself as the owner of all the assets by changing the Merkle root (part of the PI) and steal all user funds.

 ${\bf Based\ on:\ https://vitalik.eth.limo/general/2021/01/05/rollup.html}$

Conclusions

- Introduced LCA, a new type of attack on specific incorrect implementations of the FS transform for KZG-based SNARKs.
- LCA exploits the fact that the last challenge defined by the FS transform is incorrectly computed as independent from some of the SNARK proof components.
- LCA is related but different from the weak FS transform attacks occurring when public input or public are parameters not fully incorporated into the transcript.

Takeaways

- FS challenges must depend on the entire transcript up to that point of the computation.
- Follow the protocol!

Challenges can be challenging, so mind your Fiat-Shamir-s!

Thank you!

ePrint 2024/398