CS711: Introduction to Game Theory and Mechanism Design Jul-Nov 2018

Project: Assignment 2

Question 1:

1.a:

Note that $f(P') \in \{b, a\}$. Assume for contradiction that f(P') = a. Consider another

P_1'	P_2
b	С
a	b
С	a

Table 1.1: consider new preference profile $P^{''}$

preference profile $P'' = (P'_1, P_2)$. So, $f(P'') \in \{b, c\}$. Since f(P') = a, f(P'') = a else agent 2 will manipulate at P'' via P'. Since f(P) = a, Agent 1 will manipulate at P'' via P. This is a contradiction.

Since f is strategy-proof, it implies that $f(P_1', P_2') = b$.

1.b:

Suppose that these preferences are generated from a single-peaked preference domain with the intrinsic ordering of the alternatives being a < b < c.

Earlier conclusion does *not* hold in this case.

explanation: since from single-peaked preference domain, a is more preferred than b. **proving:** f(P') = a, f(P'') = b, agent 1 will manipulate from P''toP f(P'') = c, agent 2 will manipulate from P''toP' implies f(P') = a

Question 2:

The set of alternatives is the set of all subsets of objects: $S: S \subseteq X$. If there are at least 2 projects then, the set of alternatives is at least 3. Now, consider two alternatives S and T such that $S \subsetneq T$. By definition of the preference ordering, any agent is either indifferent between S and T or likes T to S. Hence, the preference ordering where S is ranked higher than T can never arise. This is a restriction of the domain, and the Gibbard-Satterthwaite result *cannot* apply here.

Question 3:

Yes, the median voter SCF is group strategy-proof. We can prove this is similar to the proof that shows that the median voter SCF is strategy-proof.

A group of agents can shift a median if they can shift their peak to the other side of the median, and this will shift the outcome to the other side, which this agent will not like.