FUNCTION VALUES

Function Values

To represent the value of a function f(x) at x = a,

It denotes the value obtained when f is applied to a number a.

To evaluate the function, we simply substitute a to all the x's in the function.

Example 1: If
$$f(x) = x^2 - 5x + 6$$
, then $f(3) = ?$

(a)
$$f(3) = (3)^2 - 5(3) + 6$$

= $9 - 15 + 6$
 $f(3) = 0$

Example 1: If $f(x) = x^2 - 5x + 6$, find

(b)
$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right)^2$$

 $= \frac{1}{4} - \frac{5}{2} + 6$
 $= \frac{1 - 10 + 24}{4}$
 $f\left(\frac{1}{2}\right) = \frac{15}{4}$

(b)
$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 6$$
 (c) $f(x-1) = (x-1)^2 - 5(x-1) + 6$
 $= \frac{1}{4} - \frac{5}{2} + 6$

Example 1: If $f(x) = x^2 - 5x + 6$, find

(d)
$$\frac{f(x+h) - f(x)}{h} = \frac{[(x+h)^2 - 5(x+h) + 6] - [x^2 - 5x + 6]}{h}$$

$$= \frac{[x^2 + 2xh + h^2 - 5x - 5h + 6] - [x^2 - 5x + 6]}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 5x - 5h + 6 - x^2 + 5x - 6}{h}$$

$$= \frac{2xh + h^2 - 5h}{h}$$

$$= \frac{h(2x+h-5)}{h}$$

$$\frac{f(x+h) - f(x)}{h} = 2x + h - 5$$

Example 2: If $g(r) = \frac{r}{r+3}$, find

(a)
$$g(-2) = \frac{-2}{-2+3} = \frac{-2}{1} = -2$$

(b)
$$g(2a-3) = \frac{2a-3}{(2a-3)+3} = \frac{2a-3}{2a-3+3} = \frac{2a-3}{2a}$$

(c)
$$g\left(\frac{1}{a}\right) = \frac{\frac{1}{a}}{\frac{1}{a}+3} = \frac{\frac{1}{a}}{\frac{1+3a}{a}} = \frac{1}{a} \cdot \frac{a}{1+3a} = \frac{1}{1+3a}$$

Example 2: If $g(r) = \frac{r}{r+3}$, find

(d)
$$\frac{g(x+h) - g(x)}{h} = \frac{\frac{x+h}{(x+h)+3} - \frac{x}{x+3}}{h}$$

$$= \frac{1}{h} \cdot \frac{(x+h)(x+3) - x(x+h+3)}{(x+h+3)(x+3)}$$

$$= \frac{1}{h} \cdot \frac{x^2 + 3x + hx + 3h - x^2 - hx - 3x}{(x+h+3)(x+3)}$$

$$= \frac{1}{h} \cdot \frac{3h}{(x+h+3)(x+3)}$$

$$\frac{g(x+h) - g(x)}{h} = \frac{3}{(x+h+3)(x+3)}$$

Example 3: Given: $h(w) = 2 \cot w - \csc w$, find $h\left(\frac{2}{3}\pi\right)$

$$h\left(\frac{2}{3}\pi\right) = 2\cot\left(\frac{2}{3}\pi\right) - \csc\left(\frac{2}{3}\pi\right)$$
$$= 2\left(-\frac{1}{\sqrt{3}}\right) - \frac{2}{\sqrt{3}}$$
$$= -\frac{2}{\sqrt{3}} - \frac{2}{\sqrt{3}}$$
$$= -\frac{4}{\sqrt{3}}$$
$$h\left(\frac{2}{3}\pi\right) = -\frac{4\sqrt{3}}{3}$$

Example 4: If $h(x) = \sin \frac{x}{2}$, then

(a)
$$h(\pi) = \sin \frac{\pi}{2}$$

= $\sin 90^{\circ}$
 $h(\pi) = 1$

(b)
$$h\left(\frac{\pi}{2}\right) = \sin\frac{\pi/2}{2}$$

 $= \sin\frac{\pi}{4}$
 $= \sin 45^{\circ}$
 $h\left(\frac{\pi}{2}\right) = \frac{\sqrt{2}}{2}$

(c)
$$h(\pi + x) = \sin\left(\frac{\pi + x}{2}\right)$$

 $= \sin\left(\frac{\pi}{2} + \frac{x}{2}\right)$
 $= \sin\frac{\pi}{2}\cos\frac{x}{2} + \cos\frac{\pi}{2}\sin\frac{x}{2}$
 $= (1)\cos\frac{x}{2} + (0)\sin\frac{x}{2}$
 $h(\pi + x) = \cos\frac{x}{2}$

Example 4: If $h(x) = \sin \frac{x}{2}$, then

(d)
$$h(2\pi - \theta) = \sin\left(\frac{2\pi - \theta}{2}\right)$$

 $= \sin\left(\pi - \frac{\theta}{2}\right)$
 $= \sin\pi\cos\frac{\theta}{2} - \cos\pi\sin\frac{\theta}{2}$
 $= (0)\cos\frac{\theta}{2} - (-1)\sin\frac{\theta}{2}$
 $h(2\pi - \theta) = \sin\frac{\theta}{2}$

Example 5: If $R(t) = \cos(2t)$, find

(a)
$$R(0) = \cos(2)(0) = \cos 0^{\circ} = 1$$

(b)
$$R\left(\frac{2\pi}{3}\right) = \cos\left(2\cdot\frac{2\pi}{3}\right) = \cos\left(\frac{4\pi}{3}\right) = \cos 240^\circ = -\frac{1}{2}$$

(c)
$$R(\pi + \beta) = \cos(2[\pi + \beta])$$

 $= \cos(2\pi + 2\beta)$
 $= \cos 2\pi \cos 2\beta - \sin 2\pi \sin 2\beta$
 $= (1) \cos 2\beta - (0) \sin 2\beta$
 $R(\pi + \beta) = \cos 2\beta$

ODD AND EVEN FUNCTIONS

i. A function f is said to be an **EVEN** function if for every x in the domain of f,

$$f(-x) = f(x)$$

ii. A function f is said to be an **ODD** function if for every x in the domain of f,

$$f(-x) = -f(x)$$

Example 1:
$$f(x) = x^2 - 1$$

$$f(-x) = (-x)^2 - 1$$

$$= x^2 - 1$$

$$f(-x) = f(x) \qquad \therefore f(x) \text{ is even}$$

Example 2:

$g(x) = 3x^5 - 4x^3 - 9x$

$$g(-x) = 3(-x)^5 - 4(-x)^3 - 9(-x)$$
$$= -3x^5 + 4x^3 + 9x$$
$$= -(3x^5 - 4x^3 - 9x)$$

$$g(-x) = -g(x)$$

 $\therefore g(x)$ is odd

Example 3:

$$h(x) = x^3 + 2x^2 + 1$$
$$h(-x) = (-x)^3 + 2(-x)^2 + 1$$

$$= -x^3 + 2x^2 + 1$$

$$h(-x) \neq h(x) \neq -h(x)$$

h(x) is neither odd nor even

Practice Task (Lesson 2)

1. Given:
$$f(x) = 2x - 7$$
, find

a. $f(4)$
b. $f(-2)$
c. $f(2a)$
d. $f(2x - 7)$
e. $f(x + h)$

2. Given:
$$g(x) = \frac{x-2}{2x+3}$$
, find

a.
$$g(-2)$$
 d. $g\left(\frac{1}{2}\right)$
b. $g(2p)$
c. $g(a+1)$ e. $g\left(\frac{1}{x}\right)$

3. Given:
$$R(q) = \tan \frac{q}{8}$$
, find
 $a.R(2\pi)$
 $b.g(6\pi)$

S

A.

- 1. Given: $f(x) = x^2 3x + 2$, find:
 - a. f(3)
 - b.f(-x)
 - c. f(x + 2)
- 2. Given: $g(y) = \frac{y-1}{y+1}$, find:
 - a.g(2m)
 - b.g(a + 1)
 - $c.g\left(\frac{1}{x}\right)$
- 3. Given: $J(y) = \cos 3y$, find:
 - $a.J\left(\frac{\pi}{9}\right)$ $b.\left(\frac{\pi+x}{12}\right)$
- 4. If $h(w) = \frac{1}{w}$, find h(m) h(n).

- B. Evaluate the expression $\frac{g(x+h)-g(x)}{h}$ for the following functions:
 - $1. g(x) = 3x^2 2x$
 - $2. g(x) = \sqrt{4x 3}$
- C. Determine whether the function is odd, even or neither.

$$1. g(r) = r^2 - 1$$

$$2. y = \frac{4x^2 - 5}{2x^3 + x}$$

$$3. f(x) = \sqrt[3]{x}$$

$$4. f(z) = (z - 1)^2$$

$$5. H(m) = 4m^5 - 3m^3 - 2m$$