

# **Chapter VII: Cluster analysis**

# Knowledge Discovery in Databases

Luciano Melodia M.A. Evolutionary Data Management, Friedrich-Alexander University Erlangen-Nürnberg Summer semester 2021





# **Chapter VII: Cluster analysis**

Cluster analysis: basic concepts.

Partitioning methods.

Hierarchical methods.

Density-based methods.

Grid-based methods.

Evaluation of clustering.

Summary.



# What is cluster analysis?

### Cluster: A collection of data objects within a larger set that are.

Similar (or related) to one another within the same group and, dissimilar (or unrelated) to the objects outside the group.

# Cluster analysis (or clustering, data segmentation, . . .).

Define similarities among data based on the characteristics found in the data (input from user!). Group similar data objects into clusters.

### Unsupervised learning:

No predefined classes.

I.e., learning by observation (vs. learning by examples: supervised).

### **Typical applications:**

As a stand-alone tool to get insight into data distribution.

As a preprocessing step for other algorithms.



# Clustering for data understanding and applications

### Biology:

Taxonomy of living things: kingdom, phylum, class, order, family, genus, and species.

#### Information retrieval:

Document clustering.

#### Land use:

Identification of areas of similar land use in an earth-observation database.

### Marketing:

Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs.

### City planning:

Identifying groups of houses according to their house type, value, and geographical location.

### Earthquake studies:

Observed earthquake epicenters should be clustered along continent faults.

#### Climate:

Understanding earth climate, find patterns of atmosphere and ocean.



# Quality: what is good clustering?

# A good clustering method will produce high-quality clusters.

High intra-class similarity:

Cohesive within clusters.

Low inter-class similarity:

Distinctive between clusters.

#### The quality of a clustering method depends on:

the similarity measure used by the method,

its implementation, and

its ability to discover some or all of the hidden patterns.



# Measure the quality of clustering

# Dissimilarity/similarity metric:

Similarity is expressed in terms of a distance function, typically a metric: d(x, y).

The definitions of distance functions are usually rather different for interval-scaled, Boolean, categorical, ordinal, ratio, and vector variables (see chapter 2).

Weights should be associated with different variables based on applications and data semantics.

### Quality of clustering:

There is usually a separate "quality" function that measures the "goodness" of a cluster. It is hard to define "similar enough" or "good enough."

The answer is typically highly subjective.



# **Considerations for cluster analysis**

# Partitioning criteria:

Single level vs. hierarchical partitioning.

Often, multi-level hierarchical partitioning is desirable.

### Separation of clusters:

Exclusive (e.g., one customer belongs to only one region) vs.

Non-exclusive (e.g., one document may belong to more than one class).

#### Similarity measure:

Distance-based (e.g., Euclidian, road network, vector) vs.

Connectivity-based (e.g., density or contiguity).

#### Clustering space:

Full space (often when low-dimensional) vs.

Subspaces (often in high-dimensional clustering).



# Requirements and challenges

# Scalability:

Clustering all the data instead of only on samples.

# Ability to deal with different types of attributes:

Numerical, binary, categorical, ordinal, linked, and mixture of these.

# Constraint-based clustering:

User may give inputs on constraints.

Use domain knowledge to determine input parameters.

# Interpretability and usability.

#### Others:

Discovery of clusters with arbitrary shape.

Ability to deal with noisy data.

Incremental clustering and insensitivity to input order.

High dimensionality.



# Major clustering approaches

# Partitioning approach:

Construct various partitions and then evaluate them by some criterion.

E.g., minimizing the sum of square errors.

Typical methods: k-means, k-medoids, CLARA, CLARANS.

### Hierarchical approach:

Create a hierarchical decomposition of the set of data (or objects) using some criterion.

Typical methods: AGNES, DIANA, BIRCH, CHAMELEON.

### **Density-based approach:**

Based on connectivity and density functions.

Typical methods: DBSCAN, OPTICS, DENCLUE.

### Grid-based approach:

Based on a multiple-level granularity structure.

Typical methods: STING, WaveCluster, CLIQUE.



# Major clustering approaches (II)

# Model-based approach:

A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other.

Typical methods: EM, SOM, COBWEB.

### Frequent-pattern-based approach:

Based on the analysis of frequent patterns.

Typical methods: p-Cluster.

#### User-guided or constraint-based approach:

Clustering by considering user-specified or application-specific constraints.

Typical methods: COD (obstacles), constrained clustering.

### Link-based clustering:

Objects are often linked together in various ways.

Massive links can be used to cluster objects: SimRank, LinkClus.



# **Chapter VII: Cluster analysis**

Cluster analysis: basic concepts.

Partitioning methods.

Hierarchical methods.

Density-based methods.

Grid-based methods.

Evaluation of clustering.

Summary.



# Partitioning algorithms: basic concept

### Partitioning method:

Partition a database D of n objects  $o_j, j \in \{1, \ldots, n\}$  into a set of k-clusters  $C_i$ ,  $1 \le i \le k$  such that the sum of squared distances to  $c_i$  is minimized (where  $c_i$  is the centroid or medoid of cluster  $C_i$ ):

$$\min \sum_{i=1}^{\kappa} \sum_{o \in C_i} d(o, c_i)^2. \tag{1}$$

# Given k, find a partition of k clusters that optimizes the chosen partitioning criterion.

Globally optimal: exhaustively enumerate all partitions.

Heuristic methods: k-means and k-medoids algorithms.

k-means (MacQueen'67, Lloyd'57/'82):

Each cluster is represented by the center of the cluster.

k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw'87):

Each cluster is represented by one of the objects in the cluster.



# The *k*-means clustering method

### Given k, the k-means algorithm is implemented in four steps:

- 1. Partition the database into k non-empty subsets.
  - E.g. the first  $\frac{n}{k}$  objects, then the next  $\frac{n}{k}$  objects, . . .
- 2. Compute the centroids of the **clusters** of the current partitioning.

The centroid is the center, i.e. mean point, of the cluster. For each attribute (or dimension), calculate the average value.

- 3. Assign each object to the cluster with the nearest centroid.
  - That is, for each object calculate distance to each of the *k* centroids and pick the one with the smallest distance.
- 4. If any object has changed its cluster, go back to step 2. Otherwise stop.

#### Variant:

Start with arbitrarily chosen k objects as initial centroids in step 1. Continue with step 3.



# An example of k-means clustering



The initial data set.





#### Comments on the k-means method

# Strength:

Efficient:  $\mathcal{O}(tkn)$ , where n is # objects, k is # of clusters, and t is the # of iterations.

Normally, k,  $t \ll n$ .

Comparing: PAM:  $\mathcal{O}(k(n-k)^2)$ , CLARA:  $\mathcal{O}(ks^2+k(n-k))$ .

Comment: Often terminates at a local optimum.

#### Weakness:

Applicable only to objects in a continuous n-dimensional space.

Using the *k*-modes method for categorical data.

In comparison, *k*-medoids can be applied to a wide range of data.

Need to specify k, the number of clusters, in advance.

There are ways to automatically determine the best k (see Hastie et al., 2009).

Sensitive to noisy data and outliers.

Not suitable to discover clusters with non-convex shapes.



#### Variations of the *k*-means method

#### Most of the variants of the k-means differ in:

Selection of the initial *k* subsets (or centroids).

Dissimilarity calculations.

Strategies to calculate cluster centroids.

### Handling categorical data: *k*-modes:

Replacing centroids with modes.

See Chapter 2: mode = value that occurs most frequently in the data.

Using new dissimilarity measures to deal with categorical objects.

Using a frequency-based method to update modes of clusters.

A mixture of categorical and numerical data: k-prototype method.



# What is the problem of the k-means method?

### The *k*-means algorithm is sensitive to outliers!

Since an object with an extremely large value may substantially distort the distribution of the data.

#### *k*-medoids:

Instead of taking the mean value of the objects in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.





# The *k*-medoids clustering method

# *k*-medoids clustering:

Find representative objects (medoids) in clusters.

**PAM** (Partitioning Around Medoids, Kaufmann & Rousseeuw, 1987):

Starts from an initial set of *k* medoids and iteratively replaces one of the medoids by one of the non-medoids, if it improves the total distance of the resulting clustering. PAM works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity).

# Efficiency improvement on PAM:

CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples.

CLARANS (Ng & Han, 1994): Randomized re-sampling.



# PAM: A typical k-medoids algorithm



Arbitrarily choose k object as initial medoids

for k=2



10



Total cost = 20

Randomly select nonmedoid object orandom





10









# PAM (Partitioning Around Medoids)

### Use real objects to represent the clusters.

# Algorithm:

- 1. Arbitrarily choose *k* objects as the initial mediods.
- 2. Repeat.
- 3. Assign each remaining object to the cluster with the nearest mediod  $o_i$ .
- 4. Randomly select a non-medoid object  $o_h$ .
- 5. Compute the total cost  $TC_{ih}$  of swapping  $o_i$  with  $o_h$ .
- 6. If  $TC_{ih} < 0$  then swap  $o_i$  with  $o_h$  to form the new set of k medoids.
- 7. Until no change.

$$TC_{ih} = \sum_{j} C_{jih}$$

with  $C_{jih}$  as the cost for object  $o_j$  if  $o_i$  is swapped with  $o_h$ .

That is, distance to new medoid minus distance to old medoid.



# **PAM Clustering (II)**

#### Case 1:

 $o_j$  currently belongs to medoid  $o_i$ . If  $o_i$  is replaced with  $o_h$  as a medoid, and  $o_j$  is closest to  $o_h$ , then  $o_i$  is reassigned to  $o_h$  (same cluster, different distance).

$$C_{jih} = d(o_j, o_h) - d(o_j, o_i).$$
 (2)





# **PAM Clustering (III)**

#### Case 2:

 $o_j$  currently belongs to medoid  $o_t$ ,  $t \neq j$ . If  $o_i$  is replaced with  $o_h$  as a medoid, and  $o_j$  is still closest to  $o_t$ , then the assignment does not change.

$$C_{jih} = d(o_j, o_h) - d(o_j, o_i) = 0.$$
 (3)





# **PAM Clustering (IV)**

#### Case 3:

 $o_j$  currently belongs to medoid  $o_i$ . If  $o_i$  is replaced with  $o_h$  as a medoid, and  $o_j$  is closest to medoid  $o_t$  of one of the other clusters, then  $o_j$  is reassigned to  $o_t$  (new cluster, different distance).

$$C_{jih} = d(o_j, o_t) - d(o_j, o_i).$$
 (4)





# **PAM Clustering (V)**

#### Case 4:

 $o_j$  currently belongs to medoid  $o_t$ ,  $t \neq j$ . If  $o_i$  is replaced with  $o_h$  as a medoid (from a different cluster!), and  $o_i$  is closest to  $o_h$ , then  $o_i$  is reassigned to  $o_h$  (new cluster, different distance).

$$C_{jih} = d(o_j, o_t) - d(o_j, o_i).$$
 (5)





# **CLARA (Clustering Large Applications)**

(Kaufmann and Rousseeuw, 1990)

Built in statistical-analysis packages, such as S+.

Draws multiple samples of the data set, applies PAM on each sample, and gives the best clustering as the output.

# Strength:

Deals with larger data sets than PAM.

#### Weakness:

Efficiency depends on the sample size.

A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased.



# **CLARANS ("Randomized" CLARA)**

# A Clustering Algorithm based on Randomized Search (Ng & Han, 1994)

# Samples:

Drawn dynamically with some randomness in each step of the search.

### Clustering process:

Can be presented as searching a graph where each node is a potential solution, that is, a set of k medoids.

### If local optimum found,

start with new randomly selected node in search for a new local optimum.

More efficient and scalable than both PAM and CLARA.

Focusing techniques and spatial access structures may further improve its performance. (Ester et al., 1995)



# **Chapter VII: Cluster analysis**

Cluster analysis: basic concepts.

Partitioning methods.

Hierarchical methods.

Density-based methods.

Grid-based methods.

Evaluation of clustering.

Summary.



# **Hierarchical clustering**

Does not require the number of clusters k as an input, but needs a termination condition.





# **AGNES (Agglomerative Nesting)**

Introduced in (Kaufmann & Rousseeuw, 1990)

Implemented in statistical packages, e.g., S+.

Use the single-link method. (see below)

Merge nodes that have the least dissimilarity.

Go on in a non-descending fashion.

Eventually all nodes belong to the same cluster.





# Dendrogram: shows how clusters are merged

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a **dendrogram**.

A clustering of the data objects is obtained by **cutting** the dendrogram at the desired level, then each connected component forms a cluster.





# **DIANA (Divisive Analysis)**

Introduced in (Kaufmann & Rousseeuw, 1990)

Implemented in statistical analysis packages, e.g., S+.

Inverse order of AGNES.

Eventually each node forms a cluster of its own.





### **Distance between clusters**

#### Minimum distance:

Smallest distance between an object in one cluster and an object in the other, i.e.,  $\operatorname{dist}_{\min}(C_i, C_j) = \min_{o_{ip} \in C_i, o_{iq} \in C_j} d(o_{ip}, o_{jq}).$ 

#### Maximum distance:

Largest distance between an object in one cluster and an object in the other, i.e.,  $\operatorname{dist}_{\max}(C_i, C_j) = \max_{o_{ip} \in C_i, o_{jq} \in C_j} d(o_{ip}, o_{jq}).$ 

### Average distance:

Average distance between an object in one cluster and an object in the other, i.e.,  $\operatorname{dist}_{\operatorname{avg}}(C_i, C_j) = \frac{1}{\eta_i \cdot \eta_i} \sum_{o_{ip} \in C_i, o_{iq} \in C_j} d(o_{ip}, o_{jq}).$ 

#### Mean distance:

Distance between the centroids of two clusters, i.e.,  $\operatorname{dist}_{\operatorname{mean}}(C_i, C_j) = d(c_i, c_j)$ .



# Distance between clusters (II)

# Nearest-neighbor clustering algorithm:

Uses minimum distance to measure distance between clusters.

# Single-linkage algorithm:

Terminates if distance between nearest clusters exceeds user-defined threshold.

### Minimal spanning-tree algorithm:

View objects (data points) as nodes of a graph.

Edges form a path between nodes in a cluster.

Merging of two clusters corresponds to adding an edge between the nearest pair of nodes.

Because edges linking clusters always go between distinct clusters,

resulting graph will be a tree.

Thus, agglomerative hierarchical clustering that uses minimum distance produces minimal spanning tree.



# Distance between clusters (III)

### Farthest-neighbor clustering algorithm:

Uses maximum distance to measure distance between clusters.

Good if true clusters are rather compact and approx. equal in size.

### Complete-linkage algorithm:

Terminates if maximum distance between nearest clusters exceeds user-defined threshold.



# **Extensions to hierarchical clustering**

### Major weakness of agglomerative clustering methods:

Can never undo what was done previously.

Do not scale well: Time complexity of at least  $\mathcal{O}(n^2)$ , where n is the number of objects.

# Integration of hierarchical and distance-based clustering:

BIRCH (1996): Uses CF-tree and incrementally adjusts the quality of sub-clusters.

CHAMELEON (1999): Hierarchical clustering using dynamic modeling.



# **BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)**

(Zhang, Ramakrishnan & Livny, SIGMOD'96)

### Incrementally construct a CF (Clustering Feature) tree:

A hierarchical data structure for multiphase clustering.

Phase 1: Scan DB to build an initial in-memory CF-tree.

A multi-level compression of the data that tries to preserve the inherent clustering structure of the data.

Phase 2: Use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree.

#### Scales linearly:

Finds a good clustering with a single scan and improves the quality with a few additional scans.

#### Weakness:

Handles only numerical data, and sensitive to the order of the data records.



# **Clustering feature in BIRCH**

### Clustering Feature CF = (n, LS, SS):

3D vector summarizing statistics about clusters.

n: number of data points.

LS: linear sum of N points  $\sum_{i=1}^{n} x_i$ . SS: sqaure sum of N points  $\sum_{i=1}^{n} x_i^2$ .





# Clustering feature in BIRCH (II)

#### Allows to derive many useful statistics of a cluster:

E.g. centroid: 
$$c_i = \frac{\sum_{i=1}^n o_i}{n} = \frac{LS}{n}$$
.

#### Additive:

For two disjoint clusters  $C_1$  and  $C_2$  with clustering features  $CF_1 = (n_1, LS_1, SS_1)$  and  $CF_2 = (n_2, LS_2, SS_2)$ , the clustering feature of the cluster that is formed by merging  $C_1$  and  $C_2$  is simply:  $CF_1 + CF_2 = (n_1 + n_2, LS_1 + LS_2, SS_1 + SS_2)$ .



#### **CF-Tree in BIRCH**

Height-balanced tree.

Stores the clustering features for a hierarchical clustering.

Non-leaf nodes store sums of the CFs of their children.

#### Two parameters:

Branching factor *B*: max # of children.

**Threshold** T: maximum diameter of sub-clusters stored at leaf nodes.

Diameter *D*: average pairwise distance within a cluster, reflects the tightness of the cluster around the centroid:

$$D = \sqrt{\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (o_i - o_j)^2}{n(n-1)}} = \sqrt{\frac{2nSS - 2LS^2}{n(n-1)}}.$$
 (6)



#### **CF-Tree structure**





# Thank you for your attention. Any questions about the seventh chapter?

Ask them now, or again, drop me a line: 
luciano.melodia@fau.de.