Завдання 1 з премету Спецкурс для ОМ-3

Коломієць Микола

2 травня 2023 р.

ЗМІСТ

1	Завдання 1	2
2	Завдання 2	4
3	Завдання 3	5
4	Завдання 4	6

Завдання

 Нехай С — непорожня замкнена опукла підмножина гільбертового простору Н. Доведіть, що

$$||P_C x - P_C y||^2 \le ||x - y||^2 - ||(x - P_C x) - (y - P_C y)||^2, \ \forall x, y \in H$$

$$\|P_{C}x - P_{C}y\|^{2} = \|P_{C}x - x - P_{C}y + y + x - y\|^{2} =$$

$$\|x - y - ((x - P_{C}x) - (y - P_{C}y))\|^{2} =$$

$$= \|x - y\|^{2} - 2(x - y, (x - P_{C}x) - (y - P_{C}y)) + \|(x - P_{C}x) - (y - P_{C}y)\|^{2}$$
Порівняємо з правою частиною нерівності:
$$\|x - y\|^{2} - 2(x - y, (x - P_{C}x) - (y - P_{C}y)) + \|(x - P_{C}x) - (y - P_{C}y)\|^{2} \le$$

$$\|x - y\|^{2} - \|(x - P_{C}x) - (y - P_{C}y)\|^{2}$$

$$\|(x - P_{C}x) - (y - P_{C}y)\|^{2} \le (x - y, (x - P_{C}x) - (y - P_{C}y))$$

$$\|(x - P_{C}x) - (y - P_{C}y)\|^{2} = ((x - P_{C}x) - (y - P_{C}y), (x - P_{C}x) - (y - P_{C}y)) =$$

$$= (x - y, (x - P_{C}x) - (y - P_{C}y)) - (P_{C}x - P_{C}y, (x - P_{C}x) - (y - P_{C}y))$$

$$(x - y, (x - P_{C}x) - (y - P_{C}y)) - (P_{C}x - P_{C}y, (x - P_{C}x) - (y - P_{C}y))$$

$$(x - y, (x - P_{C}x) - (y - P_{C}y)) =$$

$$(x - y, (x - P_{C}y, (x - P_{C}x) - (y - P_{C}y)) =$$

$$(P_{C}x - P_{C}y, (x - P_{C}x) - (y - P_{C}y) =$$

$$= (P_C x - P_C y, x - y) - ||P_C x - P_C y||^2 \stackrel{?}{\geq} 0$$

Якщо застосувати другий пункт теореми 2 з лекції 2 при

$$1)z = P_C x, x = x, y = P_C y, 2)z = P_C y, x = y, y = P_C x$$
:

Отримаємо:

$$(P_C x - x, P_C y - P_C x) \ge 0, (P_C y - y, P_C x - P_C) \ge 0$$

І якщо складемо їх отримаємо нашу нерівеість:

$$(P_C x - P_C y, x - y) \ge ||P_C x - P_C y||^2$$
, що і завершує доведення.

Завдання

Нехай $\{e_n\}_{n\in\mathbb{N}}$ — зліченна ортонормована система елементів гільбертового простору H та

 ${
m C}=$ з.л.о. $\{e_n\}$. Доведіть, що

$$P_C x = \sum_{n=1}^{\infty} (x, e_n) e_n, x \in H$$

Завдання

Доведіть, що для гіперплощини $L = \{y \in H : (x_0, y) = c\} (x_0 \neq 0, c \in A)$

R) проекція $P_L x$ обчислюється за формулою

$$P_L x = x - ((x_0, x) - c) \frac{x_0}{\|x_0\|^2}$$

Завдання

Нехай С — непорожня замкнена опукла підмножина гільбертового простору $H,x\in H\setminus C.$

Доведіть, що $\exists p \in H \ \backslash \{0\}$ такий, що

$$\sup_{y \in C} (p, y) < (p, x)$$

Покладемо
$$p=x-P_Cx\neq 0$$
. Для довільного $y\in C$ маємо $0\geq (x-P_Cx,y-P_Cx)=(p,y-x+p)=(p,y-x)+\|p\|^2.$ Звідки $\sup_{y\in C}(p,y)-(p,x)\leq -\|p\|^2<0$, що і треба було довести.