

integrated MAX6190-MAX6195/MAX6198

Precision, Micropower, Low-Dropout Voltage References

General Description

The MAX6190–MAX6195/MAX6198 precision, micropower, low-dropout voltage references offer high initial accuracy and very low temperature coefficient through a proprietary curvature-correction circuit and laser-trimmed precision thin-film resistors.

These series-mode bandgap references draw a maximum of only $35\mu\text{A}$ quiescent supply current, making them ideal for battery-powered instruments. They offer a supply current that is virtually immune to input voltage variations. Load-regulation specifications are guaranteed for source and sink currents up to $500\mu\text{A}$. These devices are internally compensated, making them ideal for applications that require fast settling, and are stable with capacitive loads up to 2.2nF.

Selector Guide

PART	OUTPUT VOLTAGE (V)	INITIAL ACCURACY (mV)	TEMPERATURE COEFFICIENT (ppm/°C)
MAX6190A	1.250	±2	<5
MAX6190B	1.250	±4	<10
MAX6190C	1.250	±6	<25
MAX6191A	2.048	±2	<5
MAX6191B	2.048	±5	<10
MAX6191C	2.048	±10	<25
MAX6192A	2.500	±2	<5
MAX6192B	2.500	±5	<10
MAX6192C	2.500	±10	<25
MAX6193A	3.000	±2	<5
MAX6193B	3.000	±5	<10
MAX6193C	3.000	±10	<25
MAX6198A	4.096	±2	<5
MAX6198B	4.096	±5	<10
MAX6198C	4.096	±10	<25
MAX6194A	4.500	±2	<5
MAX6194B	4.500	±5	<10
MAX6194C	4.500	±10	<25
MAX6195A	5.000	±2	<5
MAX6195B	5.000	±5	<10
MAX6195C	5.000	±10	<25

Typical Operating Circuit appears at end of data sheet.

♦ ±2mV (max) Initial Accuracy

- **♦** 5ppm/°C (max) Temperature Coefficient
- ♦ 35µA (max) Supply Current
- ♦ 100mV Dropout at 500µA Load Current
- ♦ 0.12µV/µA Load Regulation
- ♦ 8µV/V Line Regulation

Applications

Features

Hand-Held Instruments
Analog-to-Digital and Digital-to-Analog Converters
Industrial Process Control
Precision 3V/5V Systems
Hard-Disk Drives

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX6190AESA+	-40°C to +85°C	8 SO
MAX6190BESA+	-40°C to +85°C	8 SO
MAX6190CESA+	-40°C to +85°C	8 SO
MAX6191AESA+	-40°C to +85°C	8 SO
MAX6191BESA+	-40°C to +85°C	8 SO
MAX6191CESA+	-40°C to +85°C	8 SO
MAX6192AESA+	-40°C to +85°C	8 SO
MAX6192BESA+	-40°C to +85°C	8 SO
MAX6192CESA+	-40°C to +85°C	8 SO

Ordering Information continued at end of data sheet.

Pin Configuration

⁺Denotes a lead(Pb)-free /RoHS-compliant package.

Precision, Micropower, Low-Dropout Voltage References

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND	Operating Temperature Range40°C to +85°C
IN0.3V to +13.5V	Junction Temperature+150°C
OUT0.3V to (V _{IN} + 0.3V)	Storage Temperature Range65°C to +150°C
Output Short Circuit to GND or IN (V _{IN} < 6V)Continuous	Lead Temperature (soldering, 10s)+300°C
Output Short Circuit to GND or IN (V _{IN} ≥ 6V)60s	Soldering Temperature (reflow)+260°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin SO (derate 5.88mW/°C above +70°C)471mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6190

 $(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ОИТРИТ							
			MAX6190A	1.248	1.250	1.252	
Output Voltage	Vout	T _A = +25°C	MAX6190B	1.246	1.250	1.254	V
			MAX6190C	1.244	1.250	1.256	1
O		MAX6190A	'		2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	MAX6190B			4	10	ppm/°C
Coomercial (Note 1)		MAX6190C			8	25	1
Line Regulation	ΔV _{OUT} / ΔV _{IN}	2.5V ≤ V _{IN} ≤ 12.6\	1		8	80	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ IOU	r ≤ 500μA		0.12	0.5	\//
Load Regulation	Δl _{OUT}	Sinking: -500µA ≤	lour ≤ 0		0.15	0.6	- μV/μΑ
Short-Circuit Current	Isc	Short to GND			4		mA
Short-olledit Garrent	150	Short to IN	Short to IN		4		IIIA
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C	1000hrs at +25°C		50		ppm/ 1000hrs
DYNAMIC							
Naise Valtage		0.1Hz to 10Hz			25		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			65		μVRMS
Ripple Rejection	V _{OUT} /V _{IN}	$V_{IN} = 5V \pm 100 \text{mV}$, f = 120Hz		86		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} =	50pF		30		μs
Capacitive-Load Stability Range	Cout	(Note 3)		0		2.2	nF
INPUT	•						
Supply Voltage Range	VIN	Guaranteed by lin	Guaranteed by line-regulation test			12.6	V
Quiescent Supply Current	I _{IN}				27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$2.5V \le V_{IN} \le 12.6V$			0.8	2	μA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6191

 $(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT				'			1
			MAX6191A	2.046	2.048	2.050	
Output Voltage	Vout	T _A = +25°C	MAX6191B	2.043	2.048	2.053	V
			MAX6191C	2.038	2.048	2.058	1
0		MAX6191A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	MAX6191B			4	10	ppm/°C
Coemeient (Note 1)		MAX6191C			8	25	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			10	100	μV/V
Lood Doculation	ΔV _{OUT} /	Sourcing: 0 ≤ IOUT	≤ 500µA		0.12	0.55	\//
Load Regulation	Δlout	Sinking: -500µA ≤ I	Sinking: -500μA ≤ I _{OUT} ≤ 0		0.18	0.70	- μV/μΑ
Short-Circuit Current	I _{SC}	Short to GND			4		mA
Short-Girealt Garrent	150	Short to IN	Short to IN		4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC				'			
NI=i== V=Ik====	_	0.1Hz to 10Hz			40		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			105		μV _{RMS}
Ripple Rejection	Vout/Vin	$V_{IN} = 5V \pm 100 \text{mV},$	f = 120Hz		84		dB
Turn-On Settling Time	t _R	To 0.1%, Cout = 5	0pF		30		μs
Capacitive-Load Stability Range	C _{OUT}	(Note 3)		0		2.2	nF
INPUT				'			
Supply Voltage Range	VIN	Guaranteed by line	e-regulation test	2.5		12.6	V
Quiescent Supply Current	I _{IN}				27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$2.5V \le V_{ N} \le 12.6V$		0.8	2	μΑ/V	

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6192

 $(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
			MAX6192A	2.498	2.500	2.502	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6192B	2.495	2.500	2.505	V
			MAX6192C	2.490	2.500	2.510	_
		MAX6192A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	MAX6192B			4	10	ppm/°C
Coomoioni (Note 1)		MAX6192C			8	25	1
Line Regulation	ΔV _{OUT} / ΔV _{IN}	(V _{OUT} + 0.2V) ≤ V _{IN} ≤	12.6V		15	140	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5	500μΑ		0.14	0.60	μV/μΑ
Load negulation	Δlout	Sinking: -500μA ≤ I _{OU}	T ≤ 0		0.18	0.80	μν/μΑ
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	$\Delta V_{OUT} \le 0.2\%$, $I_{OUT} =$	= 500µA		100	200	mV
Short-Circuit Current	Isc	Short to GND	Short to GND		4		mA
Chort Choult Current	130	Short to IN			4		1117 (
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC							
Naiss Valtage	00117	0.1Hz to 10Hz			60		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			125		μVRMS
Ripple Rejection	V _{OUT} /V _{IN}	$V_{IN} = 5V \pm 100 \text{mV}, f =$	120Hz		82		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} = 50p	F		85		μs
Capacitive-Load Stability Range	Cout	(Note 3)		0		2.2	nF
INPUT							
Supply Voltage Range	VIN	Guaranteed by line-re	gulation test	Vout + 0).2	12.6	V
Quiescent Supply Current	I _{IN}				27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			0.8	2	μΑ/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6193

 $(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ОUТРUТ	'						1
			MAX6193A	2.998	3.000	3.002	
Output Voltage	Vout	T _A = +25°C	MAX6193B	2.995	3.000	3.005	V
			MAX6193C	2.990	3.000	3.010	
0.1.17/11		MAX6193A	-		2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	MAX6193B			4	10	ppm/°C
Coefficient (Note 1)		MAX6193C			8	25	
Line Regulation	$\Delta V_{OUT}/$ ΔV_{IN}	2.5V ≤ V _{IN} ≤ 12.6V	,		20	150	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT}	- ≤ 500µA		0.14	0.60	\//^
Load Regulation	Δ l $_{ m OUT}$	Sinking: -500µA ≤	l _{OUT} ≤ 0		0.18	0.80	μV/μΑ
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	Ιουτ = 500μΑ			100	200	mV
Short-Circuit Current	Isc	Short to GND	Short to GND		4		mA
Short Sheart Suiterit	130	Short to IN	Short to IN		4		1117 \
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC				I .			
NI-i V-II		0.1Hz to 10Hz			75		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			150		μVRMS
Ripple Rejection	V _{OUT} /V _{IN}	$V_{IN} = 5V \pm 100 \text{mV},$	f = 120Hz		80		dB
Turn-On Settling Time	t _R	To 0.1%, Cout = 5	50pF		100		μs
Capacitive-Load Stability Range	Cout	(Note 3)		0		2.2	nF
INPUT	ı			1			
Supply Voltage Range	VIN	Guaranteed by line	e-regulation test	V _{OUT} + 0).2	12.6	V
Quiescent Supply Current	I _{IN}				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			0.8	2	μA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6194

 $(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INPUT				,			1
			MAX6194A	4.498	4.500	4.502	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6194B	4.495	4.500	4.505	V
			MAX6194C	4.490	4.500	4.510	
O		MAX6194A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	MAX6194B			4	10	ppm/°C
Coefficient (Note 1)		MAX6194C			8	25	1
Line Regulation	ΔV _{OUT} / ΔV _{IN}	(V _{OUT} + 0.2V) ≤ V	IN ≤ 12.6V		25	160	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ IOUT	r ≤ 500μA		0.16	0.80	\//
Load Regulation	Δl _{OUT}	Sinking: -500µA ≤	lour ≤ 0		0.22	1.00	μV/μA
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	ΔV _{OUT} ≤ 0.2%, l _O	υτ = 500μΑ		100	200	mV
Short-Circuit Current	Isc	Short to GND Short to IN			4		mA
Short-Girean Garrent	150				4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC				<u>'</u>			
Naisa Valtaga	0.5	0.1Hz to 10Hz			110		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			215		μVRMS
Ripple Rejection	V _{OUT} /V _{IN}	$V_{IN} = 5V \pm 100 \text{mV}$, f = 120Hz		76		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} =	50pF		180		μs
Capacitive-Load Stability Range	C _{OUT}	(Note 3)		0		2.2	nF
ОUТРUТ				<u>'</u>			1
Supply Voltage Range	VIN	Guaranteed by lin	e-regulation test	V _{OUT} + 0).2	12.6	V
Quiescent Supply Current	I _{IN}				27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{ N} \le 12.6V$			0.8	2	μA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6195

 $(V_{IN} = 5.5V, I_{OUT} = 0nA, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INPUT							
			MAX6195A	4.998	5.000	5.002	
Output Voltage	Vout	T _A = +25°C	MAX6195B	4.995	5.000	5.005	V
			MAX6195C	4.990	5.000	5.010	1
0.1.17.11		MAX6195A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	MAX6195B			4	10	ppm/°C
Coemoleni (Note 1)		MAX6195C			8	25	1
Line Regulation	ΔV _{OUT} / ΔV _{IN}	(V _{OUT} + 0.2V) ≤ V _{IN} ≤	12.6V		25	160	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ IOUT ≤ 5	500μΑ		0.17	0.85	μV/μΑ
Load Regulation	Δlout	Sinking: -500µA ≤ I _{OU}	T ≤ 0		0.24	1.10	μν/μΑ
Dropout Voltage (Note 4)	VIN - VOUT	$\Delta V_{OUT} \le 0.2\%$, $I_{OUT} =$	= 500μA		100	200	mA
Short-Circuit Current	Isc	Short to GND			4		- mA
Short-Oilean Garrent	150	Short to IN	Short to IN		4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC				1			
Niciae Voltage		0.1Hz to 10Hz			120		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			240		μV _{RMS}
Ripple Rejection	V _{OUT} /V _{IN}	$V_{IN} = 5.5V \pm 100 \text{mV}, f$	= 120Hz		72		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} = 50p	F		220		μs
Capacitive-Load Stability Range	Cout	(Note 3)		0		2.2	nF
OUTPUT							
Supply Voltage Range	VIN	Guaranteed by line-re	gulation test	Vout + 0).2	12.6	V
Quiescent Supply Current	I _{IN}				27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			0.8	2	μA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6198

 $(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							1
			MAX6198A	4.094	4.096	4.098	
Output Voltage	V _{OUT}	$T_A = +25^{\circ}C$	MAX6198B	4.091	4.096	4.101	V
			MAX6198C	4.086	4.096	4.106	1
0.1.17.11		MAX6198A	-		2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	MAX6198B			4	10	ppm/°C
Coemoleti (Note 1)		MAX6198C			8	25	1
Line Regulation	ΔV _{OUT} / ΔV _{IN}	(V _{OUT} + 0.2V) ≤ V _{IN} ≤	12.6V		25	160	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5	00μΑ		0.15	0.70	\//^
Load Regulation	Δlout	Sinking: -500µA ≤ I _{OU}	T ≤ 0		0.20	0.90	- μV/μΑ
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	$\Delta V_{OUT} \le 0.2\%$, $I_{OUT} =$	500μΑ		100	200	mV
Short-Circuit Current	I _{SC}	Short to GND	Short to GND		4		mA
Short Girean Garrent	150	Short to IN	Short to IN		4		1117 \
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC							
Nieiee Welkere	_	0.1Hz to 10Hz			100		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			200		μVRMS
Ripple Rejection	V _{OUT} /V _{IN}	$V_{IN} = 5V \pm 100 \text{mV}, f =$	120Hz		77		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} = 50pF	=		160		μs
Capacitive-Load Stability Range	Cout	(Note 3)		0		2.2	nF
INPUT				1			
Supply Voltage Range	VIN	Guaranteed by line-re	gulation test	Vout + 0).2	12.6	V
Quiescent Supply Current	I _{IN}				27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			0.8	2	μΑ/V

Note 1: Temperature Coefficient is measured by the "box" method; i.e., the maximum ΔV_{OUT} is divided by the maximum Δt.

Note 2: Thermal Hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MIN} to T_{MAX}.

Note 3: Not production tested. Guaranteed by design.

Note 4: Dropout voltage is the minimum input voltage at which V_{OUT} changes ≤ 0.2% from V_{OUT} at V_{IN} = 5.5V (V_{IN} = 5.5V for MAX6195).

Precision, Micropower, Low-Dropout Voltage References

Typical Operating Characteristics

 $(V_{IN} = 5V \text{ for MAX6190/1/2/3/4/8}, V_{IN} = 5.5V \text{ for MAX6195}; I_{OUT} = 0nA; T_A = +25^{\circ}C; unless otherwise noted.) (Note 5)$

Precision, Micropower, Low-Dropout Voltage References

Typical Operating Characteristics (continued)

 $(V_{IN} = 5V \text{ for MAX6190/1/2/3/4/8}, V_{IN} = 5.5V \text{ for MAX6195}; I_{OUT} = 0nA; T_A = +25^{\circ}C; unless otherwise noted.) (Note 5)$

Precision, Micropower, Low-Dropout Voltage References

Typical Operating Characteristics (continued)

 $(V_{IN} = 5V \text{ for MAX6190/1/2/3/4/8}, V_{IN} = 5.5V \text{ for MAX6195}; I_{OUT} = 0nA; T_A = +25^{\circ}C; unless otherwise noted.) (Note 5)$

Note 5: Many of the *Typical Operating Characteristics* of the MAX6190 family are extremely similar. The extremes of these characteristics are found in the MAX6190 (1.2V output) and the MAX6195 (5.0V output) devices. The *Typical Operating Characteristics* of the remainder of the MAX6190 family typically lie between these two extremes and can be estimated based on their output voltage.

Precision, Micropower, Low-Dropout Voltage References

Pin Description

PIN	NAME	FUNCTION
1, 3, 5, 7, 8	N.C.	No Connection. Not internally connected.
2	IN	Supply Voltage Input
4	GND	Ground
6	OUT	Reference Voltage Output

Detailed Description

The MAX6190-MAX6195/MAX6198 precision bandgap references use a proprietary curvature-correction circuit and laser-trimmed thin-film resistors, resulting in a low temperature coefficient of <5ppm/°C and initial accuracy of better than 0.1%. These devices can sink and source up to 500µA with <200mV of dropout voltage, making them attractive for use in low-voltage applications

Applications Information

Output/Load Capacitance

Devices in this family do not require an output capacitance for frequency stability. They are stable for capacitive loads from 0 to 2.2nF. However, in applications where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response. Many applications do not need an external capacitor, and this family can offer a significant advantage in these applications when board space is critical.

Supply Current

The quiescent supply current of these series-mode references is a maximum of $35\mu A$ and is virtually independent of the supply voltage, with only a $0.8\mu A/V$ variation with supply voltage. Unlike series references, shunt-mode references operate with a series resistor connected to the power supply. The quiescent current of a shunt-mode reference is thus a function of the input

voltage. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present all the time. In the series-mode MAX6190 family, the load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency can help reduce power dissipation and extend battery life.

When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to 200µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Output Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at $T_A = +25^{\circ}\text{C}$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 75ppm.

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 30µs to 220µs, depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.

Positive and Negative Low-Power Voltage Reference

Figure 1 shows a typical method for developing a bipolar reference. The circuit uses a MAX681 voltage doubler/inverter charge-pump converter to power an ICL7652, thus creating a positive as well as a negative reference voltage.

Precision, Micropower, Low-Dropout Voltage References

Figure 1. Positive and Negative References from Single 3V or 5V Supply

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX6193AESA+	-40°C to +85°C	8 SO
MAX6193BESA+	-40°C to +85°C	8 SO
MAX6193CESA+	-40°C to +85°C	8 SO
MAX6194AESA+	-40°C to +85°C	8 SO
MAX6194BESA+	-40°C to +85°C	8 SO
MAX6194CESA+	-40°C to +85°C	8 SO
MAX6195AESA+	-40°C to +85°C	8 SO
MAX6195BESA+	-40°C to +85°C	8 SO
MAX6195CESA+	-40°C to +85°C	8 SO
MAX6198AESA+	-40°C to +85°C	8 SO
MAX6198BESA+	-40°C to +85°C	8 SO
MAX6198CESA+	-40°C to +85°C	8 SO
MAX6198AESA/V+	-40°C to +85°C	8 SO

⁺Denotes a lead(Pb)-free /RoHS-compliant package.

N denotes an automotive qualified part.

Chip Information

PROCESS: BiCMOS

Typical Operating Circuit

_Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND	
TYPE	CODE	NO.	PATTERN NO.	
8 SO	S8+2	<u>21-0041</u>		

Precision, Micropower, Low-Dropout Voltage References

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	4/10	Added automotive grade part, added lead-free information, and made style changes	1–14

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

```
MAX6190AESA+T MAX6190BESA+ MAX6190BESA+T MAX6190CESA+T MAX6191AESA+T MAX6191BESA+T MAX6191CESA+ MAX6192AESA+T MAX6192BESA+T MAX6192CESA+T MAX6193AESA+ MAX6193AESA+T MAX6193BESA+T MAX6193CESA+T MAX6194AESA+ MAX6194AESA+T MAX6194BESA+T MAX6194CESA+ MAX6194CESA+T MAX6195AESA+T MAX6195BESA+T MAX6195CESA+ MAX6195CESA+T MAX6198AESA+T MAX6198BESA+T MAX6198CESA+ MAX6198CESA+ MAX6191CESA+T MAX6190CESA+ MAX6191AESA+ MAX6191BESA+ MAX6192AESA+ MAX6192BESA+ MAX6192CESA+ MAX6193BESA+ MAX6193CESA+ MAX6195AESA+ MAX6195BESA+ MAX6198AESA+ MAX6198BESA+ MAX6198AESA+V+ MAX6198AESA+V+ MAX6198AESA+V+T
```