IN THE CLAIMS:

1

2

Please amend the claims as follows:

1 .	1. (Currently Amended) A method of correcting resonance position or the external
2	decay time of a waveguide micro-resonator comprising physically altering by deposition or
3	growth of material a thin film on the core of the waveguide micro-resonator so as to change the
4	coupling efficiency and shape of the waveguide micro-resonator resonance.
l	2. (Canceled)
l	3. (Currently Amended) The method of claim 1, wherein said altering of the material
2	further occurs in the cladding of the waveguide micro-resonator.
1	4. (Original) The method of claim 1, wherein reaction products of a deposition or
2	growth have different chemical compositions from that of the core.
1	5. (Original) The method of claim 1, wherein said altering comprises a wet chemica
2	reaction.
l	6. (Original) The method of claim 1, wherein said altering comprises a thermal
2	reaction at temperatures above 100°C.
1	7. (Original) The method of claim 1, wherein reaction products of a growth are
2	removed after the reaction associated with said growth.
l	8. (Original) The method of claim 1, wherein reaction products of a growth are left

between the core and the cladding after the reaction associated with said growth.

- 9. (Original) The method of claim 1, wherein reaction products of a deposition or growth have refractive indices that range from that of the core to that of the cladding.
- 1 10. (Original) The method of claim 1, wherein reaction products of a deposition have a graded refractive index profile from that of the core to that of the cladding.
- 1 11. (Original) The method of claim 1, wherein said altering results in a change in optical path length in said waveguide micro-resonator.
 - 12. (Canceled)

1

1

2

3

- 13. (Withdrawn) A method of correcting the position of or the shape of resonance of a waveguide micro-resonator comprising focusing a large amount of electromagnetic energy onto the resonator.
- 1 14. (Withdrawn) The method of claim 13, wherein said electromagnetic energy 2 transfers a large amount of thermal energy to the cavity core of said waveguide micro-3 resonator.
- 1 15. (Withdrawn) The method of claim 13, wherein one or more materials comprising 2 the waveguide micro-resonator undergoes a physical or mechanical change.
- 1 16. (Withdrawn) The method of claim 13, wherein one or more materials comprising
 2 the waveguide micro-resonator core undergoes a physical or mechanical change, or an index
 3 change.

17. (Withdrawn) The method of claim 16, wherein one or more materials comprising the waveguide micro-resonator core undergoes an index change as a result of photosensitivity.

1

2

1

2

1

2

3

- 1 18. (Withdrawn) The method of claim 16, wherein one or more materials comprising
 2 the waveguide micro-resonator core undergoes an index change as a result of a long lasting
 3 photo-refractive effect.
- 1 19. (Withdrawn) The method of claim 13, wherein said electromagnetic energy
 2 transfers a large amount of thermal energy to a region surrounding the waveguide micro3 resonator cavity.
- 20. (Withdrawn) The method of claim 13, wherein one or more materials surrounding the waveguide micro-resonator undergoes a physical change from non-chemical origins.
- 21. (Withdrawn) The method of claim 13, wherein one or more materials surrounding the waveguide micro-resonator undergoes a mechanical change.
 - 22. (Withdrawn) The method of claim 13, wherein one or more materials surrounding the waveguide micro-resonator undergoes an index change as a result of photosensitivity.
 - 23. (Withdrawn) The method of claim 13, wherein one or materials surrounding the waveguide micro-resonator undergoes an index change as a result of a long lasting photo-refractive effect.
- 24. (Withdrawn) The method of claim 13, wherein said electromagnetic energy induces a change in optical path length in said waveguide micro-resonator.

