广东科学推理刷题本

+化学生物知识

——刘文超 Vin

目录

2020年 0809 广东(乡镇)	3
2019年 0413 广东(乡镇)	8
2018年 0415 广东	11
2017年 0408 广东	. 15
2016年 0423 广东(乡镇)	. 18
2015年 0322 广东(县级)	. 21
2015年 0322 广东(乡镇)	
参考答案	
化学知识	
第一单元 走进化学世界	
第二单元 《我们周围的空气》知识点	
第三单元 《自然界的水》知识点	
第四单元 物质的组成、构成及分类	. 33
第五单元 《化学方程式》知识点	
第六单元 碳和碳的氧化物	
第七单元 燃烧及其利用	
第八单元 金属知识点	
第九单元 《溶液》知识点	
第十单元 《酸和碱》知识点	
第十一单元 《盐 化肥》知识点	
第十二单元 化学与生活	
生物知识	
第一章 生物体的结构层次	
第二章 生物与环境	
第三章 生物圈中的绿色植物	
第四章 生物圈中的人	
第五章 动物的运动和行为	
第六章 生物的生殖发育与遗传	
第七章 生物的多样性	
第八章 生物技术	
第九章 健康地生活	. 70

2020年 0809 广东(乡镇)

- 66 、 农技站为了贮存种子,拟采用以下做法,其中最可行的是()。
- A.将种子浸泡在含水的容器中
- B.将种子置放在含氧量低于 1%的干燥地窖中
- C.将种子置于 15 摄氏度左右的低温环境中
- D.将种子封闭在完全避光的黑暗环境中
- 67、 援藏干部小吴发现,夏天在藏区的高山上能看到一条横在半山腰的线,这条线之上冰雪璀璨闪耀,线下则只有裸露岩坡或草丛树林。当地人告诉他,这就是"雪线"。如果气候稳定,雪线每年大致在同一个高度上,如果气候或降雪量发生变化,雪线就会发生变化。

则小吴最不可能观察到的现象是()。

- A.气候变暖, 降雪量增加, 雪线上移
- B.气候变暖, 降雪量减少, 雪线上移
- C.气候变冷,降雪量减少,雪线下移
- D.气候变冷,降雪量增加,雪线上移
- 68、 一般来说,海水会从密度大的地方向密度小的地方流动,而海水的密度主要受到温度和盐度的影响。

则以下判断正确的是()。

- A. 越热越咸的海水, 密度越大
- B.越冷越咸的海水, 密度越大
- C. 越冷越淡的海水, 密度越大
- D.越热越淡的海水,密度越大
- 69 、 在生活中,我们可以用紫色的蝴蝶兰花溶液作为酸碱指示剂,其遇酸性溶液显红色,遇碱性溶液则显黄色。

下列说法正确的是()。

- A.在盐水中滴入蝴蝶兰花溶液,溶液呈红色
- B.在纯净水中滴入蝴蝶兰花溶液,溶液呈无色
- C.在苏打水中滴入蝴蝶兰花溶液,溶液呈黄色
- D.在酸或碱性溶液滴入蝴蝶兰花溶液后,变色的过程属于物理变化
- 70、 下列物质与其用途搭配正确的是()。
- ①臭氧——用作氧化剂
- ②二氧化碳——用作干燥剂
- ③氦气——用作燃料
- ④液氮——用作制冷剂
- A.(1)(4)
- B.23
- C.(1)(2)
- D.(3)(4)
- 71、 甲、乙两人在森林中走散了。为了找到对方,两人都打开了定位器。甲所看到的定位信息显示,乙目前在甲位置的东偏北 37 度方向。如果定位信息无误,则乙看到甲的位置信息应是甲在乙位置的()。
- A.西偏南 37 度
- B.西偏南 53 度
- C.西偏北 37 度

D.西偏北 53 度

- 72、 有甲、乙、丙三个轻质小球,已知甲与乙相互吸引,甲与丙相互排斥,则以下说法正确的是()。
- A.若乙带正电, 丙可能带正电
- B.若乙带正电, 丙可能不带电
- C. 若丙带负电, 乙可能带负电
- D. 若丙带负电, 乙可能不带电
- 73、 如图所示,肖大伯家有两口水缸摆在一起(①和③、②和④是同一口水缸)。在同一天内,①② 表示水缸在日光直射下,③④表示水缸在月光直射下。如果忽略其他因素影响,则下列说法**不正确**的是

- A.③④水分蒸发的速度相同
- B.①③水分蒸发的速度不同
- C.②水分蒸发的速度最快
- D.③水分蒸发的速度最慢
- 74、 下列关于生活现象的说法, 正确的是 ()。
- A.不锈钢容器比铁容器更持久耐用是因为所用合金材料永远不会生锈
- B.氮气常用作食品防腐剂是因为其不与食品反应, 无毒且容易获得
- C.小苏打可使面团蓬松多孔是因为其在面团发酵过程中会汽化
- D.洗洁精能除去油污是因为洗洁精与油污发生了化学反应,使油粒分解
- 75、 一般而言,在北半球地转偏向力会使风向右偏离其原始的路线。图中显示的是位于北半球的甲地的等压线分布情况,则甲地的风向最可能是()。

76、 夏季,从冰箱内拿出一个装有冰块的杯子,则在杯内物体变为常温的过程中,杯壁温度随着时间变化的图像最有可能接近()。

- 77、 实验员小张计划配制浓度为 8%的氯化钠溶液,在配制过程中,他使用托盘天平称量氯化钠的质量,使用量筒称量水的体积。但由于操作失误,最终配制的溶液浓度偏小,则以下可能导致这一结果的是()。
- A.称量前未调平衡, 天平指针偏右
- B.称量时, 使用了已生锈的砝码
- C.用量筒取水时, 仰视读数
- D.将水倒入烧杯时,一部分洒在外面

78 、 如果将等量的氧气和氮气混合,注入一个密闭容器,则静置较长一段时间后,容器内氧元素(用 O 代表)和氮元素(用 N 代表)的分布最可能接近()。

NONONO	000000	NNNNN	NNNNN
ONONON	0N00N0	NONNON	NNNNN
NONONO	N0NN0N	ONOONO	000000
ONONON	NNNNN	OOOOOO	000000
A	В	C	D

79 、 如图所示是某仓库报警器的电路示意图,热传感器 R_1 安装在仓库内部,监控机 A 和报警电铃安装在监控室内。热传感器 R_1 的阻值会随着温度的升高而减小,当仓库发生火情时,下列说正确的是()。

- A.监控机 A 两端的电流增大
- B.报警电铃两端的电压减小
- C. 电阻器 R_2 两端的电压不变
- D.电源的电压降低
- 80 、 小张乘坐的小船在平静的湖面上匀速行驶,他在甲板上竖直跳起后下落,则下落点()
- A.在起跳点
- B.在起跳点前
- C.在起跳点后
- D.位置不确定
- 81、 如图所示,乙、丙两个正方体漂浮在装有溶液的容器内保持静止状态,且上表面与液面持平,正方体甲下表面与乙物体的上表面密切接触,球体丁与丙之间用细绳牵连,则下列说法正确的是()。

- A.液体对物体甲有浮力作用
- B.丙受到的浮力大于丁受到的浮力
- C.乙受到的浮力大于甲乙两物体的重力之和
- D.细绳的牵引力等于丙受到的浮力减去丁的重力
- 82 、 某可燃物的着火点为 t, 如图所示,则该物质燃烧火势从大到小的点依次是()。

A.1)23

- B.(2)(4)(5)
- C.(3)(4)(5)
- D.(5)(4)(2)
- 83、 如图所示,仓库工人计划用小车运送三箱货物,第一次先用大小为 F 的力将一箱货物从 A 仓库推到 B 仓库,第二次用同样大小的力将两箱货物从 A 仓库拉到 B 仓库。则在货物的移动过程中,关于两次做功的情况下列说法正确的是()。

- A.工人第一次做的功比第二次多
- B.工人第一次做的功比第二次少
- C.工人第一次做的功与第二次一样多
- D.无法确定
- 84、 如图所示,小球用橡皮筋固定在天花板上。如果让小球从 A 点落下, B 点是橡皮筋的自然长度, C 点是小球达到的最低点。则下列说法正确的是()。

- A.在 B 点时,小球的重力等于橡皮筋的张力
- B.小球在 C 点受到 2 个力的作用
- C.小球在 C 点受力平衡
- D.小球在 A 点的重力势能等于动能
- 85 、 李先生驾车外出,用导航计算得知出发地到目的地的直线距离是 20km,路途中经过测速点时,他看到车内记速表显示为 60km/h,半小时后到达目的地,导航显示路程是 33km。由此可以判断 ()。
- ①李先生驾车的位移是 20km
- ②李先生驾车的位移是 33km
- ③整个路途中,李先生驾车的平均速度为 60km/h
- ④经过测速点时的瞬时速度是 60km/h
- A.(1)(3)
- B.23
- C.(2)(4)
- D.1)4)

县级卷子只有10道科学推理题目,其中9道与乡镇重合,另外一道,补充如下:

84、 如图所示是一辆公交车在平直道路上行驶的位移(s)-时间(t) 图像,则下列选项中最能 准确 反映公交车速度(v)-时间(t)图像的是()。

2019年0413广东(乡镇)

- 46 、 风能是一种清洁的可再生能源,很早就被人们所利用。下列关于利用风能发电的说法不正确的是 ()。
- A.风力发电场可以建在海上
- B.风力发电是将风的动能转换为电能
- C.风力发电的能量最终来源于太阳能
- D.风力发电的过程中不会有能量的损失
- 47、 人在短时间内从低海拔处上升至高海拔处时,环境气压变化大,但鼓膜内的气压不变,鼓膜会感觉不适。这时,可通过做咀嚼运动或大口呼吸缓解,其原理是()。
- A.通过转移人的注意力,减少不适感
- B.吸入更多的氧气, 使机体的新陈代谢加快
- C.疏通咽鼓管, 使外耳道与鼓室之间的气压平衡
- D.提高鼓膜的震动频率,缓解不适症状
- 48、 下图是具有起钉功能的锤子,要使锤子起钉时更省力,最科学的做法是()。

- A.适当延长把手 BC 的长度
- B.适当延长起钉部位 OA 的长度
- C.增加锤子的重量
- D.增加把手的重量
- 49、 将瘪了的乒乓球放在热水里一段时间后,乒乓球便会恢复原来的圆形状态,其原理是()。
- A.乒乓球内部气体溢出,内部气体减少
- B.乒乓球受热后球壁变软,恢复原来形状
- C.乒乓球内部气体受热膨胀, 挤压乒乓球内壁
- D.水蒸气流入乒乓球内部,乒乓球内部压强增大
- 50 、 如图所示,货车停在某处卸货时货物从倾斜的货箱滑下。那么,下列关于货车车轮所受的摩擦力说法正确的是()。

- A.货车车轮与地面之间没有摩擦力
- B.货车车轮所受摩擦力的方向水平向右
- C.货车车轮所受摩擦力的方向水平向左
- D.货车车轮与地面之间的摩擦力大小和方向都不确定
- 51、 如图所示,将一只充了气的密封小气球放在针筒壁内,封闭针筒孔后向外抽拉针筒推杆,忽略摩擦力的影响,则在这一过程中()。

- A.小气球体积会变大
- B.针筒内的压强保持不变
- C.小气球受到的合力为零

- D.针筒内的气体温度会升高
- 52、 物质的用途与性质密切相关,下列说法正确的是()。
- A.木炭能作为炼钢的原料, 是利用了木炭的可燃性
- B.钨常用作灯丝,是因为钨在高温下化学性质稳定
- C.活性炭可以除去水中杂质,是因为其具有很强的吸附能力
- D.铝制品的表面可以不做防锈处理,是因为铝的金属活动性不强
- 53 、 办公室里的四盏灯型号相同,电路如下图所示。如果逐一打开这四盏灯,在电源的输出电压不变的情况下,下列说法正确的是()。

- A.打开的灯越多,通过各灯的电流变得越大
- B.打开的灯越多, 各灯两端的电压变得越小
- C.打开的灯越多,通过电源的电流变得越大
- D.打开的灯越多, 各灯变得越暗
- 54 、 冬天气温很低的时候往玻璃杯里倒开水,杯壁较厚的玻璃杯更容易发生炸裂,这是因为()。
- A.内壁与外壁受热不均
- B.开水遇到玻璃后温度迅速降低
- C.空气对杯壁的压力超过杯壁的承受范围
- D. 倒水对水的冲击力将玻璃杯击破
- 55、 如图所示,甲、乙两个大小相同的实心金属球放置在光滑水平面上,甲球以水平向右的速度碰撞静止的乙球。已知甲球质量大于乙球,则有关碰撞后的情形。下列说法正确的是()。

- A.甲球可能静止
- B.乙球可能静止
- C. 甲球可能向左运动
- D.甲球一定向右运动
- 56、细胞膜能够防止细胞外物质自由进入细胞,保证细胞内环境的相对稳定。这是因为()。
- A.细胞膜具有流动性
- B.细胞膜具有选择透过性
- C.细胞膜主要由氨基酸构成

- D.细胞膜具有维持细胞形状的功能
- 57 、 人们在乘坐小船时,应尽量坐下,站立会降低小船的稳定性,其根本原因是()。
- A.人和船的整体重量增加
- B.人和船的整体重心变高
- C.船的行驶速度增加
- D.水流被动幅度变大
- 58、"后驱"是指发动机的动力通过传动轴传递给后轮,从而推动车辆前进的一种驱动形式,当后驱车在水平公路上匀速前进时,下列说法正确的是()。
- A.前轮和后轮受到的摩擦力均向前
- B.前轮和后轮受到的摩擦力均向后
- C.前轮受到的摩擦力向前,后轮受到的摩擦力向后
- D.前轮受到的摩擦力向后,后轮受到的摩擦力向前
- 59 、 如图所示,将点燃的一高一矮两只蜡烛放入圆筒,圆筒顶端不封闭,并从圆筒侧壁缓慢注入二氧化碳气体。则最可能发生的情况是()。

- A.高蜡烛先熄灭
- B.矮蜡烛先熄灭
- C.两只蜡烛的火苗没有变化
- D.两支蜡烛的火苗都变矮并逐渐熄灭
- **60** 、 为了整治超速,交警采用了一套系统。在某一路段,系统会自动记录车辆进入和离开的时间,从而判断该车辆是否超速。这种方法是计算车辆的()。
- A.平均速率
- B.瞬时速率
- C.加速度
- D.位移

2018年0415广东

76 、 如图所示,质量为 m 的物体 A 在水平力 F 的作用下,恰好沿竖直墙壁匀速下滑,当水平力增大为 2F 时,物体 A 逐渐减速,最后保持静止。则静止时物体 A 所受摩擦力的大小()。

- A.为原来的 2 倍
- B.小于 F
- C.大于 mg
- D.等于 2F

77 、 地表某相对独立的生态系统,其主要物种及数量如图所示,则下列说法必然正确的是()。

- A.物种 A 是该生态系统生产者
- B.物种 B 是该生态系统的初级消费者
- C.该生态系统的能量流动是从A到E
- D.该生态系统的最终能量来源是太阳能
- 78、现在,人们常利用碘化银实现人工降雨。通过高炮将含有碘化银的炮弹打入云雾厚度比较大的高空中,碘化银因为炮弹的爆炸在高空扩散,促使降雨产生(如图所示)。下列说法正确的是()。

- A.利用碘化银人工降雨需要选择炎热的天气才能实现
- B.银是重金属,利用碘化银人工降雨会对环境造成极大破坏
- C.碘化银在高空形成极细的粒子,云中的水分在其周围凝聚,形成降雨
- D.碘化银作为催化剂,让高空中固态的水液化,实现人工降雨
- 79 、 用手推车将两箱货物 A 和 B 拉到仓库存储,途中要经过一段斜坡(如图所示),已知货物 A 和 B 的质量均为 m,斜坡的斜度为 30° 。当手推车匀速经过斜坡时,货物 A 和 B 均处于静止状态,则受力情况正确的是()。

- A.货物 B 所受的合外力方向沿斜面向上
- B.货物 B 对货物 A 的作用力大小为 0.5mg
- C.货物 A 所受的摩擦力比货物 B 所受的摩擦力大
- D.手推车对货物 A 的支持力等于对货物 B 的支持力
- 80 、 下图是两种不同导体 (R_1 、 R_2) 的伏安特性曲线,则以下选项无法确定的是 ()。

- $A. R_1$ 、 R_2 的电阻之比为 1: 4
- $B. R_1$ 、 R_2 的额定功率相同
- C.并联在电路中时, R_1 、 R_2 电流比为 4: 1
- D.串联在电路中时, R_1 、 R_2 电压比为 1: 4
- 81、 用如图所示的杠杆提升物体。从 B 点垂直向下用力,在将物体匀速提升到一定高度的过程中,用力的大小将 ()。

- A.保持不变
- B.逐渐变小
- C.逐渐变大
- D.先变大,后变小
- 82、 在检查视力时,检查者通常从面前的平面镜中看身后的视力表(如图所示)。下列说法正确的是()。

- A.视力表在平面镜中的像与检查点相距 7 米
- B.平面镜中的像略小于视力表本身
- C.平面镜中的像与视力表上下颠倒
- D.平面镜中的成像是真像
- 83、 一颗种子在地下生根发芽,最终破土而出,长成一株小树苗。在这个过程中,其有机物总量()。

- A.逐渐增加
- B.先增加后减少
- C.先减少后增加
- D. 先保持不变,后逐渐增加
- 84 、 以下关于惯性的分析,正确的是()。
- A.滚动的足球受地面摩擦,滚动速度逐渐减慢,惯性也随之减小
- B.月球绕地球转动,其惯性与地球对它的引力相关
- C.自由落体在下落过程中速度增大,惯性也增加
- D.桌面上静止不动的乒乓球也有惯性
- 85、 现有三个同样的玻璃瓶,分别装有空气、氧气和氢气。以下能将三瓶气体区分开来的是()。
- A.观察气体的颜色
- B.倒入澄清石灰水
- C.插入燃着的木条
- D.闻气体的气味

2017年 0408 广东

76、 下列能正确反映自由落体速度随时间变化的图像是()。

- 77、 有一家四口,包括一对夫妻和他们的两个亲生子女,四人的 ABO 血型各不相同。已知儿子有一次受伤时,是爸爸献的血,那么,以下信息可以确定的是()。
- A.爸爸的血可以献给家里所有人使用
- B.妈妈的血不能献给家里所有人使用
- C.女儿有可能是 AB 型血
- D. 儿子只可能是 A 型或 B 型血
- 78 、 在下面的电路图中,c、d 是两个不同的灯泡,e、f 均为安培表。当开关 g 闭合时(如图 1),e 显示读数为 1.3A,f 显示读数为 0.9A。如果将断开的开关 g 与灯泡 c 的位置互换(如图 2),则以下情况不会出现的是()。

A.f 的读数变为 0A

B.e 的读数变小

C.c 比原来亮

D.d 比 c 亮

79 、 下列关于蔬菜大棚内氧气和二氧化碳含量变化的说法,不正确的是()。

A.在无光的环境下, 植物只进行呼吸作用, 二氧化碳含量增加

B.在有光的环境下,植物同时进行光合作用和呼吸作用,氧气含量增加

C.光线逐渐增强时, 植物的光合作用逐渐增强, 氧气含量增加

D.光线逐渐减弱时,植物的光合作用和呼吸作用也逐渐减弱,氧气含量降低

80、 小王用塑料圆筒做了一个简易哨子(如下图),他从吹气口吹气的同时,慢慢往下拉,可以听到哨声()。

- A.逐渐变小声
- B.音调越来越高
- C.音调越来越低
- D.没有变化

81、 两块完全相同的平面玻璃砖相互垂直放置(如下图),一束单色光从左侧水平射入左边的玻璃砖,从右边的玻璃砖射出,则出射光线相对入射光线()。

- A.向上偏折
- B.向下偏折
- C.在同一条直线上
- D.平行

82 、 为节约用电,有生产商为楼道照明开发出"光控开关"和"声控开关"。"光控开关"在天黑时自动闭合, 天亮时自动断开;"声控开关"在有人走动发出声音时自动闭合,无人走动时自动断开。若将这两种开关配 合使用,就可以使楼道照明变得更加节能。为达到这个目的,楼道照明的电路安装简图是()。

83、 下图是某地市区与郊区之间的热力环流图。根据该图,为保证市区空气质量,下列说法正确的是()。

- A.化工厂可以建设在郊区
- B.绿化带应该建设在郊区外
- C.绿化带可以建设在市区内
- D.化工厂应该建设在郊区与市区之间
- 84 、 如图所示,两物体 M、N 用绳子连接,绳子跨过固定在斜面顶端的滑轮(不计滑轮的质量和摩擦力),N 悬于空中,M 放在斜面上,均处于静止状态,当用水平向右的拉力 F 作用于物体 M 时,M、N 仍静止不动,则下列说法正确的是()。

- A.绳子的拉力始终不变
- B.M 受到的摩擦力方向沿斜面向上

C.物体 M 所受到的合外力变大

D.物体 M 总共受到 4 个力的作用

85 、 下图是某辆汽车的位移 x 随着时间 t 变化而变化的图像, 下列说法中正确的是()。

A.在 a 到 b 的时间段内, 汽车的加速度不断增大

B.在 b 到 c 的时间段内, 汽车做匀速运动

C.在 c 到 d 的时间段内, 汽车的速度保持不变

D.在 d 时间点, 汽车回到出发地

2016年 0423 广东 (乡镇)

76、 如图所示,一个装有水的杯子中悬浮着一个小球,杯子放在斜面上,该小球受到的浮力方向是()。

- $A. F_1$
- B. F_2
- C^{F_3}
- D. F_4
- 77 、 如图所示,物体沿斜面匀速滑下时,它的()。

A.动能增加, 重力势能减少, 机械能不变

- B.动能不变, 重力势能减少, 机械能不变
- C.动能增加,重力势能不变,机械能减少
- D.动能不变, 重力势能减少, 机械能减少

78 、 如图所示,实心蜡球漂浮在杯中的水面上,当向杯中不断慢慢加入酒精时,以下不可能出现的情况是()。(已知:水的密度>蜡球的密度>酒精的密度)

- A.蜡球向下沉一些, 所受浮力增大
- B.蜡球向下沉一些, 所受浮力不变
- C.蜡球悬浮于液体中, 所受浮力不变
- D.蜡球沉到杯底, 所受浮力变小
- 79 、 用一个开关控制办公室里的两盏灯,最合理的电路图是()。

80、 下图表示了在温度变化时,加酶洗衣粉和普通洗衣粉去污力的变化情况。曲线 A 表示加酶洗衣粉的变化情况,曲线 B 表示普通洗衣粉的变化情况。则下列说法正确的是()。

- A.加酶洗衣粉的去污力与温度成正比关系
- B.加酶洗衣粉对温度的敏感性比普通洗衣粉小
- C.在较高温度时加酶洗衣粉的去污力低于普通洗衣粉

- D.在较低温度时加酶洗衣粉中酶的活性受到抑制
- 81、 如图所示,4个外形相同的铅球、铁球、铝球、木球静止在水中,其中能判断是实心还是空心的是 ()。

- A.木球和铅球
- B.铝球和铅球
- C.木球和铝球
- D.铅球和铁球
- 82 、 如图所示, 当 S1, S2 闭合时, 以下说法正确的是()。

A.仅有灯 L3 亮

B.灯 L2、L3 亮,它们是串联的

C.灯 L1、L3 亮,它们是串联的

D.灯 L2、L3 亮,它们是并联的

83、 如图所示,将弹簧测力计一端固定,另一端钩住长方体木块 A,木块下面是一长木板。实验时拉着长木板沿水平地面向左运动,读出弹簧测力计示数即可测出木块 A 所受摩擦力大小。在木板运动的过程中,以下说法正确的是()。

- A.木块 A 受到的是静摩擦力
- B.木块 A 会相对地面匀速运动
- C.木块 A 所受摩擦力的方向向左
- D.拉动速度变大时,弹簧测力计示数变大
- 84、 如图所示,在一个装着水的杯子里放进一块冰,则在冰块融化的过程中,杯子水面高度的变化情况应当是()。

- A.一直上升
- B. 先下降后上升
- C.先上升后下降
- D.一直不变
- 85 、 如图所示, 地面上有一架天平, 天平左端系有一个 50g 的物体, 右端通过绳子连接一组滑轮。滑轮组合中, O、Q 为定滑轮, P 为动滑轮, 下端系有一个 100g 的物体。要使天平两端平衡, 需要的操作是()。

- A.在 A 处挂上重 15g 的物体
- B.在 B 处挂上重 25g 的物体
- C.在 C 处挂上重 50g 的物体
- D.在 D 处挂上重 70g 的物体

2015年0322广东(县级)

81、 如下图所示,木框里面有两个平面镜相互垂直。一束入射光射入木框内,经两个平面镜反射出去。则入射光与出射光的位置关系是()。

- A.平行关系
- B.垂直关系
- C.相交关系,交角为锐角
- D.相交关系,交角为钝角
- 82、 如下图所示,一支试管口朝下插入水中,管内封闭有一定量的空气,恰好悬浮在水中。当水的温度升高时,下列说法正确的是()。

- A.试管下沉
- B.试管上浮
- C.试管先下沉后上浮
- D.试管静止不动
- 83 、 如下图所示,小球 A 从斜面上由静止状态开始向下滑,撞击静止于水平木板上的木块 B,下列说法正确的是()。

- A.小球 A 对木块 B 的作用力等于木板对木块 B 的摩擦力与木块 B 的重力相加
- B.若木板的表面光滑且足够长,小球 A 和木块 B 将一直保持匀速运动
- C.小球 A 在斜面上向下滑的过程中,以木板为参照物,小球是静止的

D.小球 A 对木块 B 的作用力等于小球 A 的重力

84 、 在下图所示的电路中,电源电压保持不变,闭合开关 S_1 、 S_2 后,电路正常工作。开关 S_1 闭合,开关 S_2 由闭合到断开时,下列说法正确的是()。

- A.电流表 A_1 的示数不变
- B.电流表 A_2 的示数不变
- C.电压表 V_1 的示数不变
- D.电压表 V_2 的示数不变
- 85 、 下图是 A、B 两种物质的溶解度曲线,下列说法正确的是()。

- A.A 物质的溶解度大于 B 物质的溶解度
- B.温度越高,则A、B两种物质的溶解度越大
- C.将 t1℃时 A 物质的饱和溶液降温, A 物质变为不饱和溶液
- D.将 t2℃时 B 物质的饱和溶液降温至 t1℃时,没有 B 析出

2015年0322广东(乡镇)

81、 检查视力时,要求眼睛与视力表的距离为5米,如下图所示,人面对平面镜而坐,背后为视力表。视力表到平面镜的距离3米,那么人到镜子的距离应为()。

A.2 米

B.2.5 米

C.5 米

D.8 米

82 、 在下图所示的电路中,电源电压保持不变, $R_{1}=R_{2}=R_{3}$,则下列情况中电流表 A 的示数最大的是 ()。

A.开关 S_1 和 S_2 都断开

B.开关 S_1 和 S_2 都闭合

C.开关 S_1 断开、开关 S_2 闭合

D.开关 S_1 闭合、开关 S_2 断开

83 、 下图是蹦极运动过程的简化示意图,弹性绳一端固定在 O 点,另一端系住运动员,运动员从 O 点自由下落,到达 A 点处弹性绳自然伸直,在 B 点处运动员受到的重力与弹性绳对运动员的拉力相等,C 点是运动员所能到达的最低点,运动员从 O 点到 C 点的运动过程中忽略空气阻力,则()。

A.从O至A过程中运动员速度一直减小

B.从A至B过程中运动员速度一直减小

C.从 B 至 C 过程中运动员速度一直减小

D.从 C 至 A 过程中运动员速度一直减小

84 、 下图是 A、B 两种物质的溶解度曲线,下列说法正确的是()。

A.A 物质的溶解度大于 B 物质的溶解度

B.温度越高,则A、B两种物质的溶解度越大

C.将 tl℃时 A 物质的饱和溶液降温, A 物质变为不饱和溶液

D.将 t2℃时 B 物质的饱和溶液降温至 t1℃时,没有 B 析出

85、 如下图所示,将一根蜡烛的下端插入一根小铁钉,使蜡烛能直立漂浮,有一部分露出水面,当把蜡烛露出水面以上的部分截掉后,则剩余部分将()。

A.重新露出水面

B.不会露出水面

C.会下沉

D.静止不动

参考答案

2020年 0809 广东(乡镇) BDBCA ADABA BCACA BDCBD 补 C

2019年0413广东(乡镇) DCACB ACCAD BBDBA

 2018年0415广东
 BDCDB AACDC

 2017年0408广东
 BBCDC CCCAD

 2016年0423广东(乡镇)
 CDAAD DDCDB

2015 年 0322 广东(县级) ABBDD 2015 年 0322 广东(乡镇) ABCDA

化学知识

第一单元 走进化学世界

- 1、化学是研究物质的**组成、结构、性质**以及**变化规律**的基础科学。
- 2、我国劳动人民商代会制造青铜器,春秋战国时会炼铁、炼钢。
- 3、绿色化学-----环境友好化学(化合反应符合绿色化学反应)
- ①四特点 P6 (原料、条件、零排放、产品)
- ②核心:利用化学原理从源头消除污染
- 4、蜡烛燃烧实验
 - (1) 火焰: 焰心、内焰(最明亮)、外焰(温度最高)
 - (2) 比较各火焰层温度: 用一火柴梗平放入火焰中,现象: 两端先碳化; 结论: 外焰温度最高。
 - (3) 检验产物 H₂O: 用干冷烧杯罩火焰上方, 烧杯内有水雾
 - CO2: 取下烧杯, 倒入澄清石灰水, 振荡, 变浑浊
 - (4) 熄灭后:有白烟(为石蜡蒸气),点燃白烟,蜡烛复燃。说明石蜡蒸气燃烧。
- 5、吸入空气与呼出气体的比较
- 结论: 与吸入空气相比,呼出气体中 O2 的量减少, CO2 和 H2O 的量增多 (吸入空气与呼出气体成分是相同的)
- 6、学习化学的重要途径——科学探究
- 一般步骤: 提出问题→猜想与假设→设计实验→实验验证→记录与结论→反思与评价 化学学习的特点: 关注物质的性质、变化、变化过程及其现象;
- 7、化学实验(化学是一门以实验为基础的科学)
- 一、常用仪器及使用方法
- (一) 用于加热的仪器——试管、烧杯、烧瓶、蒸发皿、锥形瓶

可以直接加热的仪器是——试管、蒸发皿、燃烧匙

只能间接加热的仪器是一一<u>烧杯、烧瓶、锥形瓶(垫石棉网—受热均匀)</u>

可用于固体加热的仪器是——试管、蒸发皿

可用于液体加热的仪器是——试管、烧杯、蒸发皿、烧瓶、锥形瓶

不可加热的仪器——量筒、漏斗、集气瓶

(二)测容器--量筒

量取液体体积时,量筒必须放平稳。视线与刻度线及量筒内液体凹液面的最低点保持水平。 量筒不能用来加热,不能用作反应容器。量程为10毫升的量筒,一般只能读到0.1毫升。

(三)称量器——托盘天平 (用于粗略的称量,一般能精确到 0.1 克。)

注意点: (1) 先调零

- (2) 称量物和砝码的位置为"左物右码"。
- (3) 称量物不能直接放在托盘上。
- 一般药品称量时,在两边托盘中各放一张大小、质量相同的纸,在纸上称量。潮湿的或具有腐蚀性的药品 (如氢氧化钠),放在加盖的玻璃器皿(如小烧杯、表面皿)中称量。
 - (4) 砝码用镊子夹取。添加砝码时,先加质量大的砝码,后加质量小的砝码(先大后小)
 - (5) 称量结束后,应使游码归零。砝码放回砝码盒。
- (四)加热器皿--酒精灯
- (1) 酒精灯的使用要注意"三不": ①不可向燃着的酒精灯内添加酒精; ②用火柴从侧面点燃酒精灯, 不

可用燃着的酒精灯直接点燃另一盏酒精灯;③熄灭酒精灯应用灯帽盖熄,不可吹熄。

- (2) 酒精灯内的酒精量不可超过酒精灯容积的 2/3 也不应少于 1/4。
- (3)酒精灯的火焰分为三层,外焰、内焰、焰心。用酒精灯的外焰加热物体。
- (4)如果酒精灯在燃烧时不慎翻倒,酒精在实验台上燃烧时,应及时用<u>沙子盖灭</u>或<u>用湿抹布</u>扑灭火焰,不能用水冲。
- (五)夹持器--铁夹、试管夹

铁夹夹持试管的位置应在试管口近 <u>1/3</u> 处。 试管夹的长柄,不要把拇指按在<u>短柄</u>上。试管夹夹持试管时,应将试管夹从试管底部往上套,夹持部位在距试管口近 1/3 处,用手拿住

(六) 分离物质及加液的仪器——漏斗、长颈漏斗

过滤时,应使漏斗下端管口与承接烧杯内壁紧靠,以免滤液飞溅。

长颈漏斗的下端管口要插入液面以下,以防止生成的气体从长颈漏斗口逸出。

- 二、化学实验基本操作
- (一) 药品的取用
- 1、药品的存放:
- 一般固体药品放在<u>广口瓶</u>中,液体药品放在<u>细口瓶</u>中(少量的液体药品可放在<u>滴瓶</u>中),金属钠存放在<u>煤油</u>中,白磷存放在水中
- 2、药品取用的总原则
- ①取用量:按实验所需取用药品。如没有说明用量,应取<u>最少量</u>,固体以<u>盖满试管底部</u>为宜,液体以 $1\sim2mL$ 为宜。
- 多取的试剂不可放回原瓶,也不可乱丢,更不能带出实验室,应放在指定的容器内。
- ② "三不":任何药品不能用手拿、舌尝、或直接用鼻闻试剂(如需嗅闻气体的气味,应用手<u>在瓶口轻轻扇</u>动,仅使极少量的气体进入鼻孔)
- 3、固体药品的取用
- ①粉末状及小粒状药品: 用药匙或 V 形纸槽
- ②块状及条状药品: 用镊子夹取
- 4、液体药品的取用
- ①液体试剂的倾注法: 取下瓶盖,<u>倒放</u>在桌上,(以免药品被污染)。标签应<u>向着手心</u>,(以免残留液流下而腐蚀标签)。拿起试剂瓶,将瓶口<u>紧靠</u>试管口边缘,缓缓地注入试剂,倾注完毕,盖上瓶盖,标签<u>向外</u>,放回原处。
- ②液体试剂的滴加法:

滴管的使用: a、先赶出滴管中的空气, 后吸取试剂

- b、滴入试剂时,滴管要保持垂直悬于容器口上方滴加
- c、使用过程中,始终保持橡胶乳头在上,以免被试剂腐蚀
- d、滴管用毕,立即用水洗涤干净(滴瓶上的滴管除外)
- e、胶头滴管使用时千万不能伸入容器中或与器壁接触,否则会造成试剂污染
- (二)连接仪器装置及装置气密性检查

装置气密性检查: 先将导管的一端<u>浸入水中</u>,用手紧贴<u>容器外壁</u>,稍停片刻,若导管口<u>有气泡冒出</u>,松开手掌,导管口部有水柱上升,稍停片刻,水柱并不回落,就说明装置不漏气。

- (三)物质的加热
- (1) 加热固体时,试管口应略下倾斜,试管受热时先均匀受热,再集中加热。
- (2) 加热液体时,液体体积不超过试管容积的 <u>1/3</u>,加热时使试管与桌面约成 <u>450</u>角,受热时,先使试管 <u>均匀受热</u>,然后给试管里的液体的<u>中下部</u>加热,并且不时地上下移动试管,为了避免伤人,加热时切不可 将试管口对着自己或他人。
- (四)过滤

操作注意事项:"一贴二低三靠"

- "一贴": 滤纸紧贴漏斗的内壁
- "二低": (1) 滤纸的边缘低于漏斗口 (2) 漏斗内的液面低于滤纸的边缘
- "三靠": (1)漏斗下端的管口紧靠烧杯内壁
 - (2) 用玻璃棒引流时,玻璃棒下端轻靠在三层滤纸的一边
 - (3) 用玻璃棒引流时, 烧杯尖嘴紧靠玻璃棒中部

过滤后,滤液仍然浑浊的可能原因有:

- ①承接滤液的烧杯不干净 ②倾倒液体时液面高于滤纸边缘 ③滤纸破损
- (五)蒸发 注意点: (1) 在加热过程中, 用玻璃棒不断搅拌
- (作用:加快蒸发,防止由于局部温度过高,造成液滴飞溅)
- (2) 当液体<u>接近蒸干</u>(或<u>出现较多量固体</u>) 时停止加热,利用<u>余热</u>将剩余水分蒸 发掉,以避免固体因受热而迸溅出来。
- (3) 热的蒸发皿要用<u>坩埚钳</u>夹取,热的蒸发皿如需立即放在实验台上,要垫上<u>石</u>棉网。
- (六) 仪器的洗涤:
- (1) 废渣、废液倒入废物缸中,有用的物质倒入指定的容器中。
- (2) 玻璃仪器洗涤干净的标准: 玻璃仪器上附着的水, 既不聚成水滴, 也不成股流下
- (3)玻璃仪器中附有油脂: 先用热的纯碱(Na2CO3)溶液或洗衣粉洗涤,再用水冲洗。
- (4) 玻璃仪器附有难溶于水的碱、碱性氧化物、碳酸盐: 先用稀盐酸溶解,再用水冲洗。
- (5) 仪器洗干净后,不能乱放,试管洗涤干净后,要倒插在试管架上晾干。

第二单元 《我们周围的空气》知识点

- 1、第一个对空气组成进行探究的化学家:拉瓦锡(第一个用天平进行定量分析)。
- 2、空气的成分和组成

空气成分	0_2	N_2	CO_2	稀有气体	其它气体和杂质
体积分数	21%	78%	0.03%	0. 94%	0.03%

- (1) 空气中氧气含量的测定
- a、可燃物要求: 足量且产物是固体: 选择红磷
- b、装置要求: 气密性良好
- c、现象: 有大量白烟产生, 广口瓶内液面上升约 1/5 体积
- d、结论: 空气是混合物; O_2 约占 1/5,可支持燃烧; N_2 约占 4/5,不支持燃烧, 也不能燃烧, 难溶于水
- e、探究:
 - ①液面上升小于 1/5 原因:装置漏气,红磷量不足,未冷却完全
 - ②能否用铁、铝代替红磷?不能 原因:铁、铝不能在空气中燃烧
 - 能否用碳、硫代替红磷? 不能 原因: 产物是气体,不能产生压强差
- (2) 空气的污染及防治: 对空气造成污染的主要是<u>有害气体($CO \times SO_2 </u>$
- (3) 空气污染的危害、保护:
- 危害:严重损害人体健康,影响作物生长,破坏生态平衡.全球气候变暖,臭氧层破坏和酸雨等
- 保护:加强大气质量监测,改善环境状况,使用清洁能源,工厂的废气经处理过后才能排放,积极植树、

造林、种草等

(4) 目前环境污染问题:

臭氧层破坏(氟里昂、氮的氧化物等) 温室效应(CO₂、CH₄等) 酸雨(NO₂、SO₂等) 白色污染(塑料垃圾等)

6.氧气

(1)氧气的化学性质:特有的性质:支持燃烧,供给呼吸

(2)氧气与下列物质反应现象

物质	现象
碳	在空气中保持红热,在氧气中发出白光,产生使澄清石灰水变浑浊的气体
磷	产生大量白烟
硫	在空气中发出微弱的淡蓝色火焰,而在氧气中发出明亮的蓝紫色火焰,产生有刺激性气味的气体
镁	发出耀眼的白光,放出热量,生成白色固体
铝	及田雁歌的日元, 以 田於重,工 以 自己固件
铁	剧烈燃烧,火星四射,生成黑色固体(Fe ₃ O ₄)
石蜡	在氧气中燃烧发出白光,瓶壁上有水珠生成,产生使澄清石灰水变浑浊的气体

^{*}铁、铝燃烧要在集气瓶底部放少量水或细砂的目的:防止溅落的高温熔化物炸裂瓶底

(3)氧气的制备:

工业制氧气——分离液态空气法(原理:氮气和氧气的沸点不同 物理变化)

实验室制氧气原理

 $2H_2O_2 \stackrel{MnO2}{=} 2H_2O + O_2 \uparrow$

 $2KMnO_4$ $\stackrel{\triangle}{\longrightarrow} K_2MnO_4 + MnO_2 + O_2 \uparrow$

 $2KC10_3 \frac{MnO2}{\wedge} 2KC1 + 30_2$

(4) 气体制取与收集装置的选择

发生装置: 固固加热型、固液不加热型 收集装置: 根据物质的密度、溶解性

- (5) 制取氧气的操作步骤和注意点(以高锰酸钾制取氧气并用排水法收集为例)
 - a、步骤: 查—装—定—点—收—移—熄
 - b、注意点
- ①试管口略向下倾斜: 防止冷凝水倒流引起试管破裂
- ②药品平铺在试管的底部:均匀受热
- ③铁夹夹在离管口约 1/3 处
- ④导管应稍露出橡皮塞: 便于气体排出
- ⑤试管口应放一团棉花: 防止高锰酸钾粉末进入导管
- ⑥排水法收集时,待气泡均匀连续冒出时再收集(刚开始排出的是试管中的空气)
- ⑦实验结束时,先<u>移导管再熄灭酒精灯</u>:防止水倒吸引起试管破裂
- ⑧用排空气法收集气体时,导管伸到集气瓶底部
- (6) 氧气的验满: 用带火星的木条放在集气瓶口

检验: 用带火星的木条伸入集气瓶内

- 7、催化剂(触媒):在化学反应中能<u>改变</u>其他物质的化学反应速率,而本身的<u>质量和化学性质</u>在反应前后都没有发生变化的物质。(一变两不变)催化剂在化学反应中所起的作用叫催化作用。
- 8、常见气体的用途:
- ①氧气: 供呼吸 (如潜水、医疗急救) 支持燃烧 (如燃料燃烧、炼钢、气焊)
- ②氮气: 惰性保护气(化性不活泼)、重要原料(硝酸、化肥)、液氮冷冻

^{*}铁、铝在空气中不可燃烧。

③稀有气体 (He、Ne、Ar、Kr、Xe 等的总称):

保护气、电光源 (通电发不同颜色的光)、激光技术

- 9、常见气体的检验方法
- ①氧气: 带火星的木条
- ②二氧化碳: 澄清的石灰水
- ③氢气:将气体点燃,用干冷的烧杯罩在火焰上方;

或者,先通过灼热的氧化铜,再通过无水硫酸铜

10、氧化反应:物质与氧(氧元素)发生的化学反应。

剧烈氧化: 燃烧

缓慢氧化:铁生锈、人的呼吸、事物腐烂、酒的酿造

共同点: ①都是氧化反应 ②都放热

第三单元 《自然界的水》知识点

一、水

- 1、水的组成:
- (1) 电解水的实验
 - A.装置---水电解器
 - B.电源种类---直流电
 - C.加入硫酸或氢氧化钠的目的----增强水的导电性
 - D.化学反应: 2H₂O=== 2H₂↑+O₂↑

产生位置 负极 正极

体积比

2 : 1

质量比

1 . 8

F.检验: O2---出气口置一根带火星的木条----木条复燃

H2---出气口置一根燃着的木条-----气体燃烧,产生淡蓝色的火焰

- (2) 结论: ①水是由氢、氧元素组成的。
 - ②一个水分子是由2个氢原子和1个氧原子构成的。
 - ③化学变化中,分子可分而原子不可分。

例:根据水的化学式 H_2O ,你能读到的信息

化学式的含义

 H_2O

①表示一种物质

水这种物质

②表示这种物质的组成

水是由氢元素和氧元素组成的

③表示这种物质的一个分子

一个水分子

④表示这种物质的一个分子的构成 一个水分子是由两个氢原子和一个氧原子构成的

- 2、水的化学性质
- (1) 通电分解 2H₂O === 2H₂↑+O₂↑
- (2) 水可遇某些氧化物反应生成碱(可溶性碱),例如: $H_2O + CaO == Ca(OH)_2$
- (3) 水可遇某些氧化物反应生成酸,例如: $H_2O + CO_2 == H_2CO_3$
- 3、水的污染:
- (1) 水资源
 - A. 地球表面 71%被水覆盖,但供人类利用的淡水小于 1%

- B. 海洋是地球上最大的储水库。海水中含有 80 多种元素。海水中含量最多的物质是 H_2O , 最多的金属元素是Na, 最多的元素是O。
 - C. 我国水资源的状况分布不均, 人均量少
- (2) 水污染
- A、水污染物: 工业"三废"(废渣、废液、废气); 农药、化肥的不合理施用 生活污水的任意排放
- B、防止水污染:工业三废要经处理达标排放、提倡零排放;生活污水要集中处理达标排放、提倡零排放; 合理施用农药、化肥,提倡使用农家肥;加强水质监测。
- (3) 爱护水资源: 节约用水, 防止水体污染
- 4、水的净化
- (1) 水的净化效果由低到高的是 <u>静置、吸附、过滤、蒸馏</u>(均为<u>物理</u>方法),其中净化效果最好的操作是 蒸馏;既有过滤作用又有吸附作用的净水剂是活性炭。
- (2) 硬水与软水

A.定义 硬水是含有较多<u>可溶性钙、镁化合物</u>的水; 软水是不含或含较少可溶性钙、镁化合物的水。

- B. 鉴别方法: 用肥皂水,有浮渣产生或泡沫较少的是硬水,泡沫较多的是软水
- C. 硬水软化的方法: 蒸馏、煮沸
- D. 长期使用硬水的<u>坏处</u>: 浪费肥皂,洗不干净衣服;锅炉容易结成水垢,不仅浪费燃料,还易使管道变形甚至引起锅炉爆炸。
- 5、其他

水是最常见的一种溶剂,是相对分子质量最小的氧化物。

水的检验:用无水硫酸铜,若由白色变为蓝色,说明有水存在;CuSO₄+5H₂O = CuSO₄ • 5H₂O

水的吸收:常用浓硫酸、生石灰、固体氢氧化钠、铁粉。

- 二、氢气 H₂
- 1、物理性质:密度最小的气体(向下排空气法);难溶于水(排水法)
- 2、化学性质:

可燃性(用途: 高能燃料; 氢氧焰焊接, 切割金属)

 $2H_2+O_2$ 点燃 点燃前,要验纯

现象:发出淡蓝色火焰,放出热量,有水珠产生

还原性(用途: 冶炼金属)

 $H_2 + CuO \stackrel{\triangle}{===} Cu + H_2O$ 氢气"早出晚归"

现象: 黑色粉末变红色, 试管口有水珠生成

(小结: 既有可燃性,又有还原性的物质 H2、C、CO)

3、氢气的实验室制法

原理: $Zn + H_2SO_4 = ZnSO_4 + H_2$ ↑ $Zn + 2HCl = ZnCl_2 + H_2$ ↑

不可用浓盐酸的原因 浓盐酸有强挥发性;

不可用浓硫酸或硝酸的原因 浓硫酸和硝酸有强氧化性 。

4、氢能源 三大优点无污染、放热量高、来源广

三、分子与原子

	分子	原子	
定义	分子是保持物质化学性质最小的微粒	原子是化学变化中的最小微粒。	
性质	体积小、质量小; 7	下断运动;有间隙	

联系	分子是由原子构成的。分子、原子都是构成物质的微粒。
区别	化学变化中,分子可分,原子不可分。

化学反应的实质: 在化学反应中分子分裂为原子, 原子重新组合成新的分子。

第四单元 物质的组成、构成及分类

组成:物质(纯净物)由元素组成 原子: 金属、稀有气体、碳、硅等。 分子: 如氯化氢由氯化氢分子构成。 H_2 、 O_2 、 N_2 、 Cl_2 。 离子: NaCl 等离子化合物,如氯化钠由钠离子(Na^+)氯离子(Cl^-)构成 混合物(多种物质) 化合物:「有机物 CH₄、C₂H₅OH、C₆H₁₂O₆、淀粉、蛋白质 氧化物 H₂O CuO CO₂ HCl H₂SO₄ HNO₃ NaOH Ca(OH)₂ KOH NaCl CuSO₄ Na₂CO₃

1、原子的构成

(1) 原子结构示意图的认识

- (2) 在原子中核电荷数=质子数=核外电子数
- 决定元素种类 质子数(核电荷数)
- (3) 原子的质量主要集中在 原子核 上 三决定√决定元素化学性质 最外层电子数
- (4) 相对原子质量≈质子数+中子数

人 决定原子的质量 原子核

说明: 最外层电子数相同其化学性质不一定都相同(Mg, He 最外层电子数为 2) 最外层电子数不同其化学性质有可能相似(He, Ne 均为稳定结构)

2、元素

(1) 定义: 具有相同核电荷数(质子数)的一类原子的总称

·种元素与另一种元素的本质区别: 质子数不同 注意:

*由同种元素组成的物质不一定是单质,(如由 O2、O3 组成的混合物或金刚石与石墨的混合 物)不可能是化合物。

(2) 表示方法——元素符号——拉丁文名称的第一个字母大写

a、书写方法:

表示某种元素 如 O: 氧元素 b、意义 一个氧原子 表示该种元素的一个原子

注意: *有些元素符号还可表示一种单质 如 Fe、He 、C 、Si

*在元素符号前加上数字后只能有微观意义,没有宏观意义,如 3O:只表示 3 个氧原子 c、有关元素周期表 *发现:门捷列夫

- 7 横行 (7 个周期) 各周期电子层数相同,核电荷数逐渐增加 18 纵行(16 族)各族最电外层电数相同,电子层数逐渐增加(化学性质相似)

*注:原子序数=质子数

d、分类

金属元素:如 Mg、Al,最外层电子数特点: 非金属元素:如 N、C,最外层电子数特点:≥4 稀有气体元素:如 He、Ne。最外层电子数特点:2

e、元素之最: 地壳: O、Si、Al、Fe

细胞: O、C、H

- 3、离子: 带电的原子或原子团
- (1) 表示方法及意义:如 Fe³⁺:一个铁离子带 3 个单位正电荷
- (2) 离子结构示意图的认识

注意: 与原子示意图的区别: 质子数=电子数则为原子结构示意图

*原子数≠电子数为离子结构示意图

质子数>电子数:则为阳离子,如 Al3+

质子数<电子数:则为阴离子,O2-

同种元素的原子与离 子比较:

- ①质子数相等
- ②电子数及最外层电 子数不同,
- ③电子层数可能相同

(3) 与原子的区别与联系

粒子的种类		1) = 1/2/3/		离 子	
		原 子	阳离子	阴离子	
17	粒子结构	质子数=电子数	质子数>电子数	质子数<电子数	
区 别	粒子电性	不显电性	显正电性	显负电性	
カリ	符号	用元素符号表示	用阳离子符号表示	用阴离子符号表示	

- 二、物质的组成的表示:
- 1、化合价
- a、写法及意义: Mg: 镁元素化合价为+2 价 MgCl₂: 氯化镁中镁元素化合价为+2 价
- b、几种数字的含义

Fe²⁺ 每个亚铁离子带两个单位正电荷 <u>3</u> Fe²⁺: <u>3</u> 个亚铁离子

2H₂O 两个水分子, 每个水分子含有 2 个氢原子

- c、化合物中各元素正、负化合价的代数和为零
- d、化合价是元素的原子在形成化合物时表现出来的性质, 所以单质分子中元素化合价为 0
- 2、化学式
- (1) 写法:

a 单质: 金属、稀有气体及大多数固态非金属通常用元素符号表示它们的化学式; 而氧气、氢气、氮 气、氯气等非金属气体的分子由两个原子构成,其化学式表示为 O2、H2、N2、Cl2。

b 化合物: 正价在前, 负价在后(NH₃, CH₄除外)

- (2) 意义: 如化学式 H₂O 的意义: 4点 化学式 Fe 的意义: 3点
- (3) 计算:
 - a、计算相对分子质量=各元素的相对原子质量×原子个数之和
 - b、计算物质组成元素的质量比: 相对原子质量×原子个数之比

c、计算物质中某元素的质量分数

第五单元 《化学方程式》知识点

- 一、质量守恒定律:
- 1、内容:参加化学反应的各物质的质量总和,等于反应后生成的各物质的质量总和。
 - 说明: ①质量守恒定律只适用于化学变化,不适用于物理变化;
 - ②不参加反应的物质质量及不是生成物的物质质量不能计入"总和"中;
 - ③要考虑空气中的物质是否参加反应或物质(如气体)有无遗漏。
- 2、微观解释: 在化学反应前后,原子的种类、数目、质量均保持不变(原子的"三不变")。
- 3、化学反应前后 1) 一定不变 ∫ 宏观: 反应物生成物总质量不变; 元素种类、质量不变 微观:原子的种类、数目、质量不变
 - 2) 一定改变 ƒ 宏观: 物质的种类一定变 (微观: 分子种类一定变
 - 3) 可能改变: 分子总数可能变
- 二、化学方程式
- 1、遵循原则: ①以客观事实为依据 ② 遵守质量守恒定律
- 2、书写: (注意: a、配平 b、条件 c、箭号)
- 3、含义 以 2H2+O2 点燃2H2O 为例
- ①宏观意义: 表明反应物、生成物、反应条件 氢气和氧气在点燃的条件下生成水
- ②微观意义: 表示反应物和生成物之间分子 每2个氢分子与1个氧分子化合生成2
- (或原子) 个数比

个水分子

- (对气体而言,分子个数比等于体积之比)
- ③各物质间质量比(系数×相对分子质量之比)每4份质量的氢气与32份质量的氧气完全化合生成36份 质量的水
- 4、化学方程式提供的信息包括
- ①哪些物质参加反应(反应物);
- ②通过什么条件反应:
- ③反应生成了哪些物质(生成物);
- ④参加反应的各粒子的相对数量;
- ⑤反应前后质量守恒,等等。
- 5、利用化学方程式的计算
- 三、化学反应类型
- 1、四种基本反应类型
- ①化合反应: 由两种或两种以上物质生成另一种物质的反应
- ②分解反应: 由一种反应物生成两种或两种以上其他物质的反应
- ③置换反应:一种单质和一种化合物反应,生成另一种单质和另一种化合物的反应
- ④复分解反应:两种化合物相互交换成分,生成另外两种化合物的反应
- 2、氧化还原反应

「氧化反应: 物质得到氧的反应 【还原反应: 物质失去氧的反应

r 氧化剂: 提供氧的物质

 \cup 还原剂: 夺取氧的物质(常见还原剂: H_2 、C、CO)

3、中和反应: 酸与碱作用生成盐和水的反应

第六单元 碳和碳的氢化物

- 一、碳的几种单质
- 1、金刚石(C)是自然界中最硬的物质,可用于制钻石、刻划玻璃、钻探机的钻头等。
- 2、石墨(C)是<u>最软</u>的矿物之一,有优良的<u>导电性</u>,<u>润滑性。可用于制铅笔芯、干电池的电极、电车的滑</u> 块等

金刚石和石墨的物理性质有很大差异的原因是:碳原子的排列不同。

- CO 和 CO₂ 的化学性质有很大差异的原因是:分子的构成不同。
- 3、无定形碳:由石墨的微小晶体和少量杂质构成.主要有:焦炭,木炭,活性炭,炭黑等.

活性炭、木炭具有强烈的吸附性,焦炭用于冶铁,炭黑加到橡胶里能够增加轮胎的耐磨性。

二、.单质碳的化学性质:

单质碳的物理性质各异,而各种单质碳的化学性质却完全相同!

- 1、常温下的稳定性强
- 2、可燃性:

完全燃烧(氧气充足),生成 CO_2 : $C+O_2$ 点燃 CO_2

不完全燃烧 (氧气不充足),生成 CO: 2C+O₂ 点燃 2CO

3、还原性: C+2CuO 高温 2Cu+CO₂ ↑ (置换反应) 应用: 冶金工业 现象: 黑色粉末逐渐变成光亮红色,石灰水变浑浊。

2Fe₂O₃+3C <u>高温</u>4Fe+3CO₂↑

三、二氧化碳的制法

- 1、实验室制取气体的思路: (原理、装置、检验)
- (1) 发生装置: 由反应物状态及反应条件决定:

反应物是固体, 需加热, 制气体时则用高锰酸钾制 O₂ 的发生装置。

反应物是固体与液体,不需要加热,制气体时则用制 H2的发生装置。

(2) 收集方法: 气体的密度及溶解性决定:

难溶于水用排水法收集

CO 只能用排水法

密度比空气大用向上排空气法

CO₂ 只能用向上排空气法

密度比空气小用向下排空气法

- 2、二氧化碳的实验室制法
- 1) 原理: 用石灰石和稀盐酸反应: CaCO₃+2HCl==CaCl₂+H₂O+CO₂ ↑
- 2) 选用和制氢气相同的发生装置
- 3) 气体收集方法: 向上排空气法
- 4)验证方法: <u>将制得的气体通入澄清的石灰水,如能浑浊,则是二氧化碳。</u> 验满方法: 用点燃的木条,放在集气瓶口,木条熄灭。证明已集满二氧化碳气体。
- 3、二氧化碳的工业制法:

煅烧石灰石: CaCO₃ <u>高温</u> CaO+CO₂ ↑

生石灰和水反应可得熟石灰: CaO+H2O=Ca(OH)2

四、二氧化碳的性质

1、物理性质: 无色,无味的气体,密度比空气大,能溶于水,高压低温下可得固体----干冰

- 2、化学性质:
- 1)一般情况下不能燃烧,也不支持燃烧,不能供给呼吸
- 2)与水反应生成碳酸: CO₂+H₂O==H₂CO₃ 生成的碳酸能使紫色的石蕊试液变红,

 $H_2CO_3 == H_2O + CO_2 \uparrow$ 碳酸不稳定,易分解

- 3)能使澄清的石灰水变浑浊: CO₂+Ca(OH)₂==CaCO₃ ↓ +H₂O 本反应用于检验二氧化碳。
- 4) 与灼热的碳反应: C+CO₂ <u>高温</u>2CO

(吸热反应,既是化合反应又是氧化还原反应,CO2是氧化剂,C是还原剂)

- 3、用途:灭火(灭火器原理: Na₂CO₃+2HCl==2NaCl+H₂O+CO₂↑) 既利用其物理性质,又利用其化学性质 干冰用于人工降雨、制冷剂 温室肥料
- 4、二氧化碳多环境的影响:过多排放引起温室效应。
- 五、一氧化碳
- 1、物理性质: 无色, 无味的气体, 密度比空气略小, 难溶于水
- 2、有毒:吸进肺里与血液中的血红蛋白结合,使人体缺少氧气而中毒。
- 3、化学性质: (H₂、CO、C 具有相似的化学性质: ①可燃性 ②还原性)
- 1) 可燃性: 2CO+O₂ 点燃 2CO₂ (可燃性气体点燃前一定要检验纯度)
- H₂和 O₂的燃烧火焰是:发出淡蓝色的火焰。
- CO 和 O₂ 的燃烧火焰是:发出蓝色的火焰。
- CH4和 O2的燃烧火焰是:发出明亮的蓝色火焰。
- 鉴别: $\underline{H_2$ 、CO、 CH_4 可燃性的气体: **看燃烧产物** (不可根据火焰颜色) (水煤气: H_2 与 CO 的混合气体 $C+H_2O$ $\stackrel{\text{\tiny all}}{=}$ H_2+CO)
- 2) 还原性: CO+CuO ← Cu+CO₂ (非置换反应) 应用: 冶金工业 现象: 黑色的氧化铜逐渐变成光亮红色,石灰水变浑浊。

 Fe_2O_3+3CO <u>高温</u>2 $Fe+3CO_2$ (现象: 红棕色粉末逐渐变成黑色,石灰水变浑浊。)

除杂: CO[CO₂] <u>通入石灰水</u> 或氢氧化钠溶液: CO₂+2NaOH==Na₂CO₃+H₂O

CO₂[CO] 通过灼热的氧化铜 CO+CuO — Cu+CO₂

CaO[CaCO₃]<u>只能煅烧(不可加盐酸)</u> CaCO₃ <u>高温</u>CaO+CO₂ ↑

注意: 检验 CaO 是否含 CaCO₃ <u>加盐酸</u>: CaCO₃+2HCl==CaCl₂+H₂O+CO₂ ↑ (CO₃²-的检验: <u>先加盐酸,然后将产生的气体通入澄清石灰水</u>。)

第七单元 燃烧及其利用

- 一、燃烧和灭火
- 1、燃烧的条件: (缺一不可)
- (1) 可燃物 (2) 氢
 - (2) 氧气(或空气) (3) 温度达到着火点
- 2、灭火的原理: (只要消除燃烧条件的任意一个即可)
- (1)消除可燃物 (2)隔绝氧气(或空气) (3)降温到着火点以下
- 3、影响燃烧现象的因素:可燃物的性质、氧气的浓度、与氧气的接触面积

使燃料充分燃烧的两个条件:

- (1) 要有足够多的空气
- (2) 燃料与空气有足够大的接触面积。
- 4、爆炸:可燃物在有限的空间内急速燃烧,气体体积迅速膨胀而引起爆炸。
- 一切可燃性气体、可燃性液体的蒸气、可燃性粉尘与空气(或氧气)的混合物遇火种均有可能发生爆炸。
- 二、燃料和能量
- 1、三大化石燃料:煤、石油、天然气(混合物、均为不可再生能源)
- (1) 煤: "工业的粮食"(主要含碳元素); 煤燃烧排放的污染物: SO₂、NO₂(引起酸雨)、CO、烟尘等
- (2) 石油: "工业的血液"(主要含碳、氢元素); 汽车尾气中污染物: CO、未燃烧的碳氢化合物、氮的氧化物、含铅化合物和烟尘
- (3) 天然气是气体矿物燃料(主要成分:甲烷),是较清洁的能源。
- 2、两种绿色能源: 沼气、乙醇
- (1) 沼气的主要成分: 甲烷

甲烷的化学式: CH4 (最简单的有机物,相对分子质量最小的有机物物理性质:无色,无味的气体,密度比空气小,极难溶于水。

化学性质: 可燃性 CH_4+2O_2 <u>点燃</u> CO_2+2H_2O (发出蓝色火焰)

(2) 乙醇 (俗称:酒精, 化学式:C₂H₅OH)

化学性质: 可燃性 C₂H₅OH+ 3O₂ <u>点燃</u>2CO₂+3H₂O

工业酒精中常含有有毒的甲醇 CH₃OH, 故不能用工业酒精配制酒!

- 乙醇汽油: 优点(1)节约石油资源(2)减少汽车尾气
 - (3) 促进农业发展 (4) 乙醇可以再生
- 3、化学反应中的能量变化

放热反应: 如所有的燃烧

吸热反应:如 C+CO₂ <u>高温</u>2CO

- 4、新能源: <u>氢能源、太阳能、核能、风能、地热能、潮汐能</u> 氢气是最理想的燃料:
- (1) 优点:资源丰富,放热量多,无污染。
- (2) 需解决问题: ①如何大量廉价的制取氢气? ② 如何安全地运输、贮存氢气?

第八单元 金属知识点

一、金属材料

- 2、金属的物理性质: (1) 常温下一般为固态 (汞为液态), 有金属光泽。
 - ((2) 大多数呈银白色(铜为紫红色,金为黄色)
 - (3) 有良好的导热性、导电性、延展性
- 3、金属之最:
- (1) 铝: 地壳中含量最多的金属元素

- (2) 钙: 人体中含量最多的金属元素
- (3) 铁: 目前世界年产量最多的金属(铁>铝>铜)
- (4) 银:导电、导热性最好的金属(银>铜>金>铝)
- (5) 铬: 硬度最高的金属
- (6) 钨:熔点最高的金属
- (7) 汞:熔点最低的金属
- (8) 锇:密度最大的金属
- (9) 锂:密度最小的金属
- 4、金属分类:

黑色金属:通常指铁、锰、铬及它们的合金。
重金属:如铜、锌、铅等有色金属
存色金属:如钠、镁、铝等;

有色金属:通常是指除黑色金属以外的其他金属。

5、合金:由一种金属跟其他一种或几种金属(或金属与非金属)一起熔合而成的具有金属特性的物质。

★:一般说来,合金的熔点比各成分低,硬度比各成分大,抗腐蚀性能更好

合金	铁的合金		铜合金			钛和钛	形状记
白 並	生铁	钢	黄铜	青铜:	焊锡	合金	忆金属
成分	含碳量	含碳量	铜锌	铜锡	铅锡		钛镍合
成分	2% [~] 4. 3%	0.03%~2%	合金	合金	合金		金
夕沪	不锈钢: 含	含铬、镍的钢	此紀	斗/市/	熔点		
备注	具有抗	腐蚀性能	系	为纯铜	低		

注: 钛和钛合金: 被认为是 21 世纪的重要金属材料, 钛合金与人体有很好的"相容性", 因此可用来制造人造骨等。

∫(1)熔点高、密度小

(2) 可塑性好、易于加工、机械性能好

(3) 抗腐蚀性能好

- 二、金属的化学性质
- 1、大多数金属可与氧气的反应
- 2、金属 + 酸 → 盐 + H₂ ↑
- 3、金属 + 盐 → 另一金属 + 另一盐 (条件: "前换后, 盐可溶")

Fe + CuSO₄ == Cu + FeSO₄ ("湿法冶金"原理)

三、常见金属活动性顺序:

K Ca Na Mg Al Zn Fe Sn Pb (H) Cu Hg Ag Pt Au

金属活动性由强逐渐减弱

在金属活动性顺序里:

- (1)金属的位置越靠前,它的活动性就越强
- (2)位于**氢前面的金属**能置换出盐酸、稀硫酸中的**氢**(不可用浓硫酸、硝酸)
- (3)位于前面的金属能把位于后面的金属从它们的**盐溶液**中置换出来。(除K、Ca、Na)

四、金属资源的保护和利用

- 1、铁的冶炼
- (1) 原理:在高温下,利用焦炭与氧气反应生成的一氧化碳把铁从铁矿石里**还原**出来。 $3CO + Fe_2O_3$ 高温 $2Fe + 3CO_2$
- (2) 原料:铁矿石、焦炭、石灰石、空气

常见的铁矿石有磁铁矿(主要成分是 Fe_3O_4)、赤铁矿(主要成分是 Fe_2O_3)

- 2、铁的锈蚀
- (1) 铁生锈的条件是: 铁与 O_2 、水接触(铁锈的主要成分: $Fe_2O_3 \cdot XH_2O$) (铜生铜绿的条件: 铜与 O_2 、水、 CO_2 接触。铜绿的化学式: $Cu_2(OH)_2CO_3$)
- (2) 防止铁制品生锈的措施:
- ①保持铁制品表面的清洁、干燥
- ②表面涂保护膜:如涂油、刷漆、电镀、烤蓝等
- ③制成不锈钢
- (3)铁锈很疏松,不能阻碍里层的铁继续与氧气、水蒸气反应,因此铁制品可以全部被锈蚀。因而铁锈应及时除去。
- (4)而铝与氧气反应生成致密的氧化铝薄膜,从而阻止铝进一步氧化,因此,铝具有很好的抗腐蚀性能。
- 3、金属资源的保护和利用:

保护金属资源的途径:

①防止金属腐蚀

②回收利用废旧金属

③合理开采矿物

④寻找金属的代用

意义: 节约金属资源,减少环境污染

第九单元 《溶液》知识点

- 一、溶液的形成
- 1、溶液
- (1)溶液的概念:一种或几种物质分散到另一种物质里形成的<u>均一的、稳定的混合物</u>, 叫做溶液
- (2) 溶液的基本特征:均一性、稳定性的混合物
- 注意: a、溶液不一定无色,如 CuSO₄ 为蓝色 FeSO₄ 为浅绿色 Fe₂(SO₄)₃ 为黄色
 - b、溶质可以是固体、液体或气体; 水是最常用的溶剂
 - c、溶液的质量 = 溶质的质量 + 溶剂的质量 溶液的体积 ≠ 溶质的体积 + 溶剂的体积
 - d、溶液的名称:溶质的溶剂溶液(如:碘酒——碘的酒精溶液)
- 3、饱和溶液、不饱和溶液

- 无水,量多的为溶剂

- (1) 概念:
- (2) 判断方法: 看有无不溶物或继续加入该溶质, 看能否溶解
- (3) 饱和溶液和不饱和溶液之间的转化

- 注: ①Ca(OH)2 和气体等除外,它的溶解度随温度升高而降低
 - ②最可靠的方法是:加溶质、蒸发溶剂
- (4) 浓、稀溶液与饱和不饱和溶液之间的关系

- ①饱和溶液不一定是浓溶液
- ②不饱和溶液 不一定是稀溶液,如饱和的石灰水溶液就是稀溶液
- ③在一定温度时,同一种溶质的饱和溶液一定要比它的不饱和溶液浓
- (5)溶解时放热、吸热现象

溶解吸热:如NH4NO3溶解

溶解放热:如 NaOH溶解、浓 H₂SO₄溶解

溶解没有明显热现象:如 NaCl

- 二、溶解度
- 1、固体的溶解度
- (1) 溶解度定义: 在一定温度下,某固态物质在 100g 溶剂里达到饱和状态时所溶解的质量 **四要素**: ①条件: 一定温度②标准: 100g 溶剂③状态: 达到饱和④质量: 单位: 克(2) 溶解度的含义:

20℃时 NaCl 的溶液度为 36g 含义: <u>在 20℃时,在 100 克水中最多能溶解 36 克 NaCl</u> 或在 20℃时,NaCl 在 100 克水中达到饱和状态时所溶解的质量为 36 克

(3) 影响固体溶解度的因素: ①溶质、溶剂的性质(种类) ②温度

大多数固体物的溶解度随温度升高而升高;如 KNO₃ 少数固体物质的溶解度受温度的影响很小;如 NaCl 极少数物质溶解度随温度升高而降低。如 Ca(OH)₂

(4) 溶解度曲线

- (1) t₃℃时 A 的溶解度为 80g
- (2) P点的的含义 在该温度时, A和C的溶解度相同
- (3) N 点为 t_3 ℃时 A 的不饱和溶液 ,可通过 加入 A 物质,降温, 蒸发溶剂 的方法使它变为饱和
- (4) t₁℃时 A、B、C、溶解度由大到小的顺序 C>B>A
- (5) 从 A 溶液中获取 A 晶体可用降温结晶 的方法获取晶体。
- (6) 从 A 溶解度是 <u>80g</u>。
- (7) t₂℃ 时 A、B、C 的饱和溶液各 W 克,降温到 t₁℃会析出晶体的有 <u>A 和 B</u> 无晶体析出的有 <u>C</u> ,所得溶液中溶质的质量分数由小到大依次为 <u>A<C<B</u>
- (8)除去A中的泥沙用 过滤 法;分离A与B(含量少)的混合物,用 结晶 法
- 2、气体的溶解度
- (1) 气体溶解度的定义: 在压强为 101kPa 和一定温度时,气体溶解在 1 体积水里达到饱和状态时的气体体积。
 - (2) 影响因素: ①气体的性质 ②温度(温度越高,气体溶解度越小)
 - ③压强(压强越大,气体溶解度越大)
- 3、混合物的分离
- (1) 过滤法: 分离可溶物 + 难溶物
- (2) 结晶法: 分离几种可溶性物质

结晶的两种方法 【蒸发溶剂,如 NaCl (海水晒盐) 降低温度 (冷却热的饱和溶液,如 KNO₃)

三、溶质的质量分数

1、公式:

2、在饱和溶液中:

溶质质量分数
$$C\% = \frac{S}{100+S} \times 100\% (C < S)$$

- 3、配制一定溶质质量分数的溶液
- (1) 用固体配制:
 - ①步骤: 计算、称量、溶解
 - ②仪器:天平、药匙、量筒、滴管、烧杯、玻璃棒
- (2) 用浓溶液稀释 (稀释前后,溶质的质量不变)
 - ①步骤: 计算、量取、稀释
 - ②仪器:量筒、滴管、烧杯、玻璃棒

第十单元 《酸和碱》知识点

一、酸、碱、盐的组成

一酸是由<u>氢元素和酸根</u>组成的化合物 如:硫酸(H₂SO₄)、盐酸(HCl)、硝酸(HNO₃) 碱是由<u>金属元素和氢氧根</u>组成的化合物 如:氢氧化钠、氢氧化钙、氨水(NH₃•H₂O) 盐是由<u>金属元素元素(或铵根)和酸根</u>组成的化合物 如:氯化钠、碳酸钠 一酸、碱、盐的<u>水溶液</u>可以导电(原因:溶于水时离解形成自由移动的阴、阳离子) 二、酸

1、浓盐酸、浓硫酸的物理性质、特性、用途

	浓盐酸	浓硫酸
颜色、状态	"纯净": 无色液体 工业用盐酸: 黄色(含 Fe³+)	无色粘稠、油状液体
气味	有刺激性气味	无
特性	挥发性 (敞口置于空气中,瓶口有白雾)	吸水性 脱水性 强氧化性 腐蚀性
用途	①金属除锈 ②制造药物 ③人体中含有少量盐酸,助消化	①金属除锈 ②浓硫酸作干燥剂 ③生产化肥、精炼石油

- 2、酸的通性(具有通性的原因: 酸离解时所生成的阳离子全部是 H+)
- (1) 与酸碱指示剂的反应: 使紫色石蕊试液变红色,不能使无色酚酞试液变色
- (2) 金属 + 酸 → 盐 + 氢气
- (3) 金属氧化物 + 酸 → 盐 + 水
- (4) 碱 + 酸 → 盐 + 水
- (5) 盐 + 酸 → 另一种盐 + 另一种酸 (产物符合复分解条件)
- 3、三种离子的检验

	试剂
C1	AgNO3 及 HNO3

SO ₄ ²⁻	①Ba(NO3)2及HNO3②HC1及BaCl2
CO ₃ ²⁻	HC1 及石灰水

三、碱

1、氢氧化钠、氢氧化钙的物理性质、用途

	氢氧化钠	氢氧化钙
颜色、状态	白色固体,极易溶于水(溶解放热)	白色粉末, 微溶于水
俗名	烧碱、火碱、苛性钠(具有强腐蚀性)	熟石灰、消石灰
制法	Ca (OH) 2+Na2CO3== CaCO3 ↓ +2NaOH	$CaO + H_2O == Ca (OH)_2$
用途	①氢氧化钠固体作干燥剂 ②化工原料:制肥皂、造纸	①工业:制漂白粉 ②农业:改良酸性土壤、配波尔多
)11 <i>/</i> ©	③去除油污:炉具清洁剂中含氢氧化钠	液 ③建筑:

- 2、碱的通性(具有通性的原因: 离解时所生成的阴离子全部是 OH-)
- (1) 碱溶液与酸碱指示剂的反应: 使紫色石蕊试液变蓝色,使无色酚酞试液变红色
- (2) 非金属氧化物+碱 → 盐+水
- (3) 酸+碱 → 盐+水
- (4) 盐+碱 → 另一种盐+另一种碱(反应物均可溶,产物符合复分解条件)

四、非金属氧化物与金属氧化物

	非金属氧化物	金属氧化物	
	(1) 大多数可与水反应生成酸	(1) 少数可与水反应生成碱	
	$CO_2+H_2O== H_2CO_3$	$Na_2O +H_2O== 2NaOH$	
化	$SO_2+H_2O== H_2SO_3$	K ₂ O +H ₂ O== 2KOH	
学	$SO_3+H_2O== H_2SO_4$	$BaO + H_2O == Ba (OH)_2$	
性		$CaO + H_2O == Ca (OH)_2$	
质	(2) 酸性氧化物+碱 → 盐+水	(2) 碱性氧化物+酸 → 盐+水	
	$CO_2 +Ca (OH)_2 = CaCO_3 \downarrow +H_2O$	$Fe_2O_3+6HC1== 2FeC1_3+3H_2O$	
	(不是复分解反应)		

注: 难溶性碱受热易分解(不属于碱的通性)

如 $Cu(OH)_2$ 無 $CuO + H_2O$ 2 $Fe(OH)_3$ 無 $Fe_2O_3 + 3H_2O$

- 五、中和反应 溶液酸碱度的表示法——pH
- 1、定义:酸与碱作用生成盐和水的反应
- 2、实质: OH-+H+== H₂O
- 3、应用:
- (1) 改变土壤的酸碱性。(2) 处理工厂的废水。(3) 用于医药。
- 4、溶液酸碱度的表示法——pH

(2) pH 的测定: 最简单的方法是使用 pH 试纸

用玻璃棒(或滴管)蘸取待测试液少许,滴在 pH 试纸上,显色后与标准比色卡对照,读出溶液的 pH (读 数为整数)

(3) 酸碱性与酸碱度关系:

指示剂	pH 值	石蕊	酚酞
酸性	<7	变红色	无色

- 1 11111	生	=7	紫色	无色
碱·l	生	> 7	变蓝色	变红色

(4) 酸雨: 正常雨水的 pH 约为 5.6 (因为溶有 CO₂); pH<5.6 的雨水为酸雨

第十一单元 《盐 化肥》知识点

一、**常见的盐** 定义:能解离出金属离子(或 NH₄+)和酸根离子的化合物

物质	俗称	物理性质	用途
氯化钠	食盐	白色粉末,	(1)作调味品(2)作防腐剂
		水溶液有咸味,	(3)消除积雪(降低雪的熔点)
		溶解度受温度	(4) 农业上用 NaCl 溶液来选种
		影响不大	(5)制生理盐水(0.9% NaCl 溶液)
			Na ⁺ 维持细胞内外的水分分布,促进
			细胞内外物质交换
			Cl 促生盐酸、帮助消化,增进食欲
碳酸钠	纯碱(因水溶液呈碱	白色粉末状固	用于玻璃、造纸、纺织、洗涤、食品
Na ₂ CO ₃	性)苏打	体,易溶于水	工业等
碳酸氢钠	小苏打	白色晶体,	制糕点所用的发酵粉
NaHCO ₃		易溶于水	医疗上,治疗胃酸过多
备注	1、粗盐中由于含有氯	〔化镁、氯化钙等杂	表质,易吸收空气中的水分而潮解。
	(无水氯化钙可用作	干燥剂)	,
	2、碳酸钠从溶液中析	出时,会结合一定	数目的水分子,化学式为 Na ₂ CO ₃ •10H ₂ O。
	碳酸钠晶体 Na ₂ CO ₃ • 10H ₂ O (纯净物),俗称天然碱、石碱、口碱。		
	风化:常温时在空气中放置一段时间后,失去结晶水而变成粉末。(化学变化)		
	$3 \cdot 2Na \text{ H } CO_3 \xrightarrow{\triangle} Na_2CO_3$	O_3 + H_2O + CO_2 \uparrow	
	NaHCO ₃ +HC1===NaC1+	H ₂ O+ CO ₂ ↑	

二、精盐提纯——去除不溶性杂质,得到的精盐中还含有氯化镁、氯化钙等可溶性杂质。

实验步骤:溶解、过滤、蒸发

实验仪器

^	нн			
	实验步骤	实验仪器	其中玻璃棒的作用	
	溶解	烧杯、玻璃棒	加速溶解	
	过滤	铁架台(带铁圈)、漏斗、烧杯、玻璃棒	引流	
	蒸发	铁架台(带铁圈)蒸发皿、酒精灯、玻璃棒	使液体受热均匀,防止液体飞 溅	

三、盐的化学性质

盐 (可溶) + 金属 1 → 金属 2 + 新盐 (金属 1 比金属 2 活泼, K、Ca、Na 除外)

盐 + 酸 → 新盐 + 新酸 (满足复分解反应的条件)

盐 + 碱 → 新盐 + 新碱 (反应物需都可溶,且满足复分解反应的条件)

盐 + 盐 → 两种新盐(反应物需都可溶,且满足复分解反应的条件)

注: ①复分解反应的条件: <u>当两种化合物互相交换成分,生成物中有沉淀或有气体或有水生成时,复分解反应才可以发生</u>。

②常见沉淀: AgCl ↓ BaSO₄ ↓ Cu(OH)₂ ↓ Fe(OH)₃ ↓ Mg(OH)₂ ↓ BaCO₃ ↓ CaCO₃ ↓ 生成气体: H⁺与 CO₃²⁻; NH₄⁺与 OH⁻ 生成水: H⁺与 OH⁻

- ③反应实质: 离子结合成 H₂O: H+与 OH-
 - ↑: H+与 CO₃2-; NH₄+与 OH-
 - ↓: Ag^{+} 与 Cl^{-} ; $CO_{3}^{2^{-}}$, $Ba^{2^{+}}$ 与 $CO_{3}^{2^{-}}$; $SO_{4}^{2^{-}}$, $Ca^{2^{+}}$ 与 $CO_{3}^{2^{-}}$
- 四、酸、碱、盐的溶解性
- 1、酸: 大多数都可溶(除硅酸 H₂SiO₃ 不溶)
- 2、碱: 只有氨水、氢氧化钠、氢氧化钾、氢氧化钡和氢氧化钙可溶于水,其余均为沉淀
- 3、盐: 钾盐、钠盐、硝酸盐、铵盐都可溶;

硫酸盐除 BaSO4 难溶,Ag2SO4、CaSO4 微溶外,其余多数可溶;

氯化物除 AgCl 难溶外,其余多数均可溶;

碳酸盐除碳酸钾、碳酸钠、碳酸铵可溶,其余都难溶。

注: BaSO4、AgCl 不溶于水,也不溶于酸。

五、特殊离子鉴别:

- H⁺ 1、指示剂; 2、活泼金属; 3、金属氧化物; 4、碱; 5、某些盐: CO₃²⁻盐
- OH 1、指示剂; 2、非活泼金属; 3、碱; 4、某些盐: Fe³⁺、Cu²⁺盐
- Cl⁻ 用 Ag NO₃ 溶液,生成不溶于硝酸的 AgCl 沉淀
- SO₄²⁻ 用 Ba(NO₃)₂溶液,生成不溶于硝酸的 BaSO₄沉淀;或用 HCl 和 BaCl₂
- CO32⁻ 用 HCl 能产生使 Ca (OH)2 变浑浊的气体
- Fe³⁺ 用 OH⁻能生成红褐色沉淀
- Cu²⁺ 用 OH⁻能生成蓝色沉淀
- NH_4^+ 用 OH^- 能生成 NH_4OH ,不稳定,分解出 NH_3 ,能使湿润的红色石蕊试纸变蓝
- Mg²⁺ 用 OH⁻ 能生成白色沉淀
- Ca²⁺ 用 CO₃²⁻ 能生成白色沉淀

六、化学肥料

- 1、农家肥料:营养元素含量少,肥效慢而持久、价廉、能改良土壤结构
- 2、化学肥料 (氮肥、钾肥、磷肥)
- (1) 氮肥 作用:促进植物茎、叶生长茂盛、叶色浓绿(促苗)。

缺氮: 叶黄 a、常用氮肥:

含N量	使用注意事项	
NH ₄ HCO ₃ 17.7%	易分解,施用时深埋	铵态氮肥防晒防潮,且均不 能与碱性物质(如草木灰、
NH4NO3 35%	易爆,结块不可用铁锤砸	熟石灰等)混合施用
(NH ₄) ₂ SO ₄ 21.2%	长期使用会使土壤酸化、板 结	
NH ₄ C1 26. 2%	长期使用会使土壤酸化、板 结	
CO (NH ₂) ₂ 46.7%	含氮量最高的氮肥(有机物)	
NH3· H20	加水稀释后施用	不稳定,易放出 NH₃ ↑
NaNO3		

b、NH₄⁺的检验

试剂:碱(NaOH、Ca(OH)2等)、湿润的红色石蕊试纸

NH₄NO₃ + NaOH=NaNO₃ +NH₃ ↑ +H₂O

- c、生物固氮: 豆科植物的根瘤菌将氮气转化为含氮的化合物而吸收
- (2) 钾肥 作用:促使作物生长健壮、茎杆粗硬,抗倒伏(壮秆)。 缺钾:叶尖发黄

常用钾肥 $\left\{egin{array}{ll} KCl & \ddot{q}$ 草木灰:农村最常用钾肥(主要成分为 K_2CO_3), 呈碱性 K_2SO_4 :长期使用会使土壤酸化、板结

(3) 磷肥 作用:促进植物根系发达,穗粒增多,饱满(催果) 缺磷:生长迟缓,产量降低,根系不发达

常用磷肥 磷矿粉 Ca₃(PO₄)₂

钙镁磷肥 (钙和镁的磷酸盐)

过磷酸钙 Ca(H2PO4)2 和 CaSO4

不能与碱性物质混合施用, 如草木灰、熟石灰

重过磷酸钙 Ca(H₂PO₄)₂

(4) 复合肥: 含 N、P、K 中的两种或三种 KNO₃

NH₄H₂PO₄ 不能与碱性物质混合施用

(NH₄) ₂HPO₄

- 3、使用化肥、农药对环境的影响
- (1) 土壤污染: 重金属元素、有毒有机物、放射性物质
- (2) 大气污染: N₂O、NH₃、H₂S、SO₂
- (3) 引起水体污染: N、P过多,导致水体富营养化,赤潮、水华等现象
- 4、合理使用化肥
 - (1) 根据土壤情况和农作物种类选择化肥 2、农家肥和化肥合理配用五、氮、磷、钾三种化肥的区别方法

	氮 肥	钾肥	磷肥
看外观	白 色	晶 体	灰白色粉末
加入水	全 部 洋	容 于 水	大多数不溶于水
灼烧	可燃烧,熔化起泡冒烟	不燃烧,跳动、爆裂声	
加 Ca (OH) 2	放出氨气	不放出氨气	

第十二单元 化学与生活

课题 1 人类重要的营养物质

六大营养素:蛋白质、糖类、油脂、维生素、无机盐和水(无机盐和水可被人体直接吸收) 一、蛋白质

1、功能: 是构成细胞的基本物质,是机体生长及修补受损组织的主要原料。成人每天需 60-70g

46

- 2、存在: 动物肌肉、皮肤、毛发、蹄、角的主要成分 植物的种子(如花生、大豆)
- 3、构成:由多种氨基酸(如丙氨酸、甘氨酸等)构成
- 4、人体蛋白质代谢

- 5、几种蛋白质(维持生长发育,组织更新)
- (1) 血红蛋白: 由血红素(含 Fe²⁺)和蛋白质构成

作用:运输 O2和 CO2的载体

血红蛋白+O2 氧合血红蛋白

CO 中毒机理: 血红蛋白与 CO 结合能力比与 O_2 结合能力强 200 倍,导致缺氧而死。 吸烟危害: CO、尼古丁、焦油等

(2) 酶: 生物催化剂

特点: 高效性、选择性、专一性

淀粉酶 麦芽糖酶

例: 淀粉(能使碘变蓝) →麦芽糖 →葡萄糖(人体可直接吸收的糖)

6、蛋白质的变性(不可逆):破坏蛋白质的结构,使其变质

引起变质的因素 「物理:高温、紫外线等

【化学:强酸、强碱、甲醛、重金属盐(Ba²⁺、Hg²⁺、Cu²⁺、Ag⁺等)

应用:用甲醛水溶液(福尔马林)制作动物标本,使标本长期保存。

- 二、糖类 是生命活动的主要供能物质(60%—70%)
- 1、组成: 由 C、H、O 三种元素组成。又叫做碳水化合物
- 2、常见的糖
- (1) 淀粉 $(C_6H_{10}O_5)$ n: 存在于植物种子或块茎中。如稻、麦、马铃薯等。

簡
$$(C_6H_{10}O_5)$$
 n → $C_6H_{12}O_6$ → 血糖 → 糖原(肌肉和肝脏中) 水

(2) 葡萄糖 $C_6H_{12}O_6$ (人体可直接吸收的糖)

(3) 蔗糖 $C_{12}H_{22}O_{11}$: 主要存在于甘蔗、甜菜中. (白糖、冰糖、红塘中的主要成分是蔗糖)

三、油脂

- 1、分类 植物油脂:油 动物油脂:脂肪
- 2、功能: 提供大量能量 39.3KJ/g 每日摄入 50g-60g
- 3、脂肪:维持生命活动的备用能源
- ★糖类和脂肪在人体内经氧化放出热量,为机体活动和维持恒定的体温提供能量。
- 四、维生素 多数在人体中不能直接合成, 需从食物中摄取
 - 1、存在: 水果、蔬菜、鱼类等
 - 2、作用:调节新陈代谢、预防疾病、维持身体健康

课题 2 化学元素与人体健康

一、组成人体的元素 50多种

- 二、人体中的常量元素
- 1、钙 99%在于骨骼和牙齿中
- (1) 成人体内约含钙 1.26g, 主要以 $Ca_{10}(PO_4)_6(OH)_2$ 晶体的形式存在
- (2) 来源: 奶类、绿色蔬菜、水产品、肉类、豆类
- (3) 钙 过多:结石、骨骼变粗 过少:青少年→佝偻病、发育不良 老年人→骨质疏松
- (4) 补钙产品: 钙中钙; 葡萄糖酸钙;
- 2、钠和钾
- (1) Na⁺ 存在于<u>细胞外</u>液 人体内含钠 80g—120g K⁺ 存在于<u>细胞内</u>液 成人每千克含钾约 2g
- (2) 作用:维持人体内的水分和维持体液恒定的 pH (如血液的 pH7.35-7.45)
- 三、人体中的微量元素 必需元素(20多种) Fe、Zn、Se、I、F等

对人体有害的元素 Hg、Cr、Pb、Ag、Ba、Al、Cu等

	5 7 7 1 1 1 1 1 1 7 7 A 1						
元素	对人体的作用 摄入量过高、过低对人体的						
Fe	血红蛋白的成分,能帮助氧气的运	缺铁会引起贫血					
	输						
Zn	影响人体发育	缺锌会引起食欲不振,					
	_/	生长迟缓,发育不良					
Se	有防癌、抗癌作用	缺硒可能引起表皮角质化和癌症。如					
		摄入量过高,会使人中毒					
I (碘)	甲状腺素的重要成分 缺碘会引起甲状腺肿大,幼儿缺碘						
		影响生长发育,造成思维迟钝。过量					
	7 7	也会引起甲状腺肿大					
F (氟)	能防治龋齿	缺氟易产生龋齿,过量会引起氟斑牙					
		和氟骨病					
New Horse a label of the first transfer							

课题 3 有机合成材料

一、有机化合物

是否含有碳元素 「 无机化合物

人 有机化合物(不包括 CO、CO₂和 Na₂CO₃、CaCO₃等碳酸盐)

1、生活中常见的有机物

 CH_4 (最简单的有机物、相对分子质量最小的有机物)、 C_2H_5OH (乙醇,俗名:酒精)、 CH_3COOH (乙酸,俗名:醋酸)、 $C_6H_{12}O_6$ (葡萄糖)、蔗糖、蛋白质、淀粉等

- 2、有机物数目庞大的原因:原子的排列方式不同
- 3、 有机物 f 有机小分子 如: CH_4 、 C_2H_5OH 、 CH_3COOH 、 $C_6H_{12}O_6$ 等 (根据相对分子质量大小) 有机高分子化合物(有机高分子)如: 蛋白质、淀粉等
- 二、有机合成材料

有机高分子材料

(2) 高分子材料的结构和性质

(3) 鉴别聚乙烯塑料和聚氯烯塑料(聚氯烯塑料袋有毒,不能装食品):

点燃后闻气味,有刺激性气味的为聚氯烯塑料。

(4) 鉴别羊毛线和合成纤维线:

物理方法: 用力拉, 易断的为羊毛线, 不易断的为合成纤维线;

化学方法: 点燃,产生焦羽毛气味,不易结球的为羊毛线;无气味,易结球的为合成纤维线。

- 2、"白色污染"及环境保护
- (1) 危害: ①破坏土壤,污染地下水
 - ②危害海洋生物的生存;
 - ③如果焚烧含氯塑料会产生有毒的氯化氢气体,从而对空气造成污染
- (2) 解决途径
 - ①减少使用不必要的塑料制品;
 - ②重复使用某些塑料制品,如塑料袋、塑料盒等;
 - ③使用一些新型的、可降解的塑料,如微生物降解塑料和光降解塑料等;
 - ④回收各种废弃塑料
- (3) 塑料的分类是回收和再利用的一大障碍

生物知识

第一章 生物体的结构层次

一、显微镜各部分的名称和作用:

, NR	:	上川:						
名 称	作	刊	图示					
目鏡	接近眼睛的镜头	放大标本和	说明:					
物镜	接近玻片的镜头	成像	1、显微镜的成像原理: (放大原理) 光线→反光镜→遮光器→通光孔→标本(要透明)→物镜(第一次放大成倒立的实像)→镜					
镜 筒	上面装目镜,下面连	转换器						
转换器	上面装有 1~3 个倍镜,用于调换物镜	数不同的物	(2)物镜越长放大倍数越小,成"反比"关系(2)物镜越长放大倍数越大,成"正比"关系					
载物台	放置玻片标本的地方		3、在高倍物镜下,看到的视野是小而暗,细胞 是大而少;而在低倍物镜下,看到的视野是					
通光孔	在载物台中央,使光	线通过	大而亮,细胞是小而多。 4、物镜放大倍数越大,物镜与玻片的距离越小;					
压片夹	固定玻片标本	定玻片标本 物镜放大倍数越小,物镜与玻片的距离越大。						
遮光器	上面有大小不同的光 光线强弱。(光线强时 光线弱时,调大光圈	,调小光圈;	目鏡					
反光镜	反射光线,调节光线 (光线强时,用平面时,用凹面镜)		粗准焦 螺旋 細准焦 螺旋 物镜 数物台					
粗准焦 螺 旋	转动时,镜筒升降的 大	调节	镜臂 通光孔 遮光器 压片夹 反光镜					
细准焦 螺 旋	转动时,镜筒升降的 小	幅度 距	普通光学显微镜示意图					

二、有关显微镜与实验方面的知识:

题序	内容
1	制作洋葱表皮临时装片的步骤:擦片→滴液【清水】→撕洋葱表皮→展开洋葱表皮→盖盖玻片→染色【稀碘液】→吸水。【注:被染料染成深色的结构是细胞核】 【其过程可简化为:擦、滴、撕、展、盖、染、吸。】

2	制作人的口腔上皮细胞临时装片的步骤:擦片→滴液【0.9%生理盐水】→ 刮口腔上皮细胞→涂口腔上皮细胞→盖盖玻片→染色【稀碘液】→吸水。 【其过程可简化为:擦、滴、刮、涂、盖、染、吸。】
3	在显微镜视野内看到的物像是:倒像。【即:上下倒翻、左右相反的放大虚像】如:玻片上的字母为"b"字,而在显微镜视野中看到的物像则是"q"字。
4	用显微镜观察玻片标本时,若 <u>光线过暗</u> 时,应 <u>调大光圈和凹面镜。若光线过强</u> 时,应 <u>调</u> 小光圈和平面镜。
5	用显微镜观察时,若发现视野中的细胞偏 <u>左下方</u> ,为使物像刚好在视野的中央,应将玻片 <u>往左下方</u> 移动。如果物像是在视野的左下方,若将玻片往右上方移动,其物像将被 <u>移</u> 出视野外。【这是因为视野中物像的位置与玻片标本移动的方向相反】
6	<u>判断显微镜视野中出现的污点</u> :可先移动目镜和物镜,污点如果不移动,说明污点是在 <u>玻片上</u> ,其他与此类推。【污点存在部位有可能在目镜、物镜或玻片上】
7	<u>盖盖玻片的正确方法</u> :用镊子 <u>夹住盖玻片的一边</u> ,将 <u>另一边先接触</u> 载玻片上的 <u>水滴</u> ,然后 <u>缓慢地放下,以免产生气泡</u> 。

三、细胞的基本结构和功能:

_ 、 > μ	1115117	E777	日刊刊刊中	-71 line •				- 4/				
	结		构	功]		能			图	示	
植	细	胞	壁	位于细胞最外	卜层,	具有保	护和支持	作用。				
物细胞的	细	胞	膜	紧贴于细胞堡 护和控制物质 (细胞膜在显	进出	细胞的	作用。	具有保			Se Pari	一 细胞壁
的基本结构和	细	胞	质	位于细胞膜以 泡【液泡中含 酸、糖类和色素 细胞质具有流 换,是细胞生	与细胞 《等物》 动性,)液,细胞质】;线料能加速组	回液中又含 立体和叶约 时胞内外的	含有有机 绿体等。				一细胞 一细胞核 一细胞泡 一细泡
和功能	细	胞	核	位于细胞中, 的控制中心。 (DNA),与遗	具有	育储存、	复制遗	传物质		植物细胞	结构简图	细胞质
动物	勿细胞 构和:		本结	由细胞膜、细能:与植物细				7成。功		0		细胞核
	勿细胞 E结构			相同点	膜、	细胞质	田胞都具 和细胞核 线粒体。	亥,在细	1k	物细胞结构	物简图	——细胞膜
	区:	别		不同点		勿细胞没 口叶绿体	と有细胞 :。	壁,液	4)	J10J3W005617	利用团	
ㅎㅎN B . L. ON 라크 시 / T/egle/나 Ie/A / 네트 /												

在自然界中,除病毒外(无细胞结构的生物),一切生物体(包括人体)都是由细胞构成的,所以说:"细胞是生物体结构和功能的基本单位"。

四、细胞内的能量转换器:

叶绿体(光合作用的场所)	进行光合作用,将无机物合成有机物并产生氧气,同时,将吸收的光能转变成化学能,储存在它所制造的有机物中。
线粒体(呼吸作用的场所)	细胞里的有机物在线粒体中被氧化分解成为二氧化碳和水,并将储存在有机物中的能量释放出来,供细胞生命活动利用。

六、细胞分裂的概念、过程和意义:

七、细胞分化与分裂的区别和联系:

	受精卵在发育过程中,一些细胞各自具有	图示
细胞分化的	了不同的功能,它们 <u>在形态、结构上</u> 也逐	
概 念	渐发生了变化,这个过程叫做细胞分化。	O-U
	细胞分化的结果形成了各种不同的组织。	
细胞分化的	细胞分裂→细胞生长→细胞分化→形成	0
过 程	组织。	0-0-0
细胞分化与	细胞分裂:是细胞在数量上的增加。	$\bigcirc - \bigcirc$
分裂的区	细胞分化:则是细胞在形态、结构和生理	细胞分裂 细胞分化
别	<u>功能上的变化</u> 。	яле <i>л</i> те

八、构成高等植物体及人或高等动物体的结构层次:

第二章 生物与环境

- 一、生物与环境的相互关系:
- (一)、环境(非生物因素)对生物的影响:

非生物因素: 指阳光、温度、水分、空气、土壤、湿度等多种因素。

- (二)生物与生物之间的相互影响:生物因素:指影响某种生物生活的其他生物(包括捕食、竞争、寄生、合作、共生等)
- (三) 生物对环境的适应与影响及它们之间的关系:

生物对环境的适应	生物对环境的适应是普遍存在的,每种生物的形态结构都与生活环境相适应。如:沙漠中的仙人掌叶变成了刺,可减少水分的蒸腾,以适应干旱的生活环境;企鹅体内有很多的脂肪,有保温作用,以适应严寒的气候;还有,动物的拟态和保护色等,都是对生活环境的一种适应。
生物对环境的影响	生物在适应环境的同时,也在影响着环境。如:植物的蒸腾作用,可提高空气湿度,增加降雨量等。蚯蚓生活在土壤中,既可疏松土壤,又可增加土壤肥力;又如:"大树底下好乘凉";"千里之堤,溃于蚁穴"等。
生物与环境 之间的关系	生物既能适应环境,也能影响和改变环境;反过来,环境也能影响和改变生物。

- 二、生态系统的组成与联系:
- 1、概念:在一定的地域内,生物与环境所形成的统一整体,叫做生态系统。
- 2、组成: 非生物部分: 指阳光、温度、水分、空气、土壤、湿度等。

生物部分: 生产者 (绿色植物)、消费者 (动物)、分解者 (细菌和真菌)。

三、生态系统的结构和功能:

食物链:在生态系统中,生产者与消费者之间、消费者与消费者之间,由于食物关系而形成链条式的营养联系,叫做食物链。如:草→昆虫→食虫鸟→蛇→鹰。

(注)、有关食物链的书写要点:

- 1、每条食物链的起点必须是绿色植物。2、在食物链中,每个箭头都必须指向取食者(或捕食者)。
- 2、在食物链的组成成分中,不包括分解者和非生物成分,它只反映出生产者与消费者、消费者与消费者之间,由于捕食与被捕食而发生的联系。
- 3、数食物链时,要从起始端(绿色植物)数起,每条食物链都<u>要数到底</u>,不能漏数,但也不能将一个箭头看作一条食物链。

四: 生态系统具有一定的自动调节能力:

生物的种类和数量越多,营养结构越复杂,自动调节的能力就越强;

第三章 生物圈中的绿色植物

一、双子叶植物种子的结构和功能:(双子叶植物,如:大豆、花生、油菜、南瓜等)

	结构		功能	图示
十	种皮	保护种子	的内部结构	种皮胚芽)
豆豆		胚 芽	将来发育成茎和叶	压轴 压根 > 胚
种		胚 轴	将来发育成连接根与茎的部位	3 pt
子	胚	胚 根	将来发育成根	(两片)
		7 11	有两片(肥厚),贮存营养物质(主	大豆种子的结构图
		子叶	要是蛋白质和脂肪)	

二、单子叶植物种子的结构和功能:(单子叶植物,如:玉米、小麦、水稻、高粱等)

	结构		功能	图示	
	果皮 与种皮	保护种	子的内部结构	果皮与种皮 胚乳	
玉	胚乳	贮存营	养物质(主要是淀粉)	子叶)	
米		胚芽	将来发育成茎和叶	上 (一片) 胚芽	
种子			胚轴	将来发育成连接根与茎的部位	E 轴 E 根
,		胚根	将来发育成根		
		子叶	只有一片(不肥厚),将胚乳的营养 物质转运给胚吸收利用	玉米种子纵切示意图	

三、种子萌发的条件:

内在条	件(自身条件)	胚是完整而且是活的,并富含有机物和渡过休眠期的。
外在条	件(外界条件)	需要适量的水分、适宜的温度和充足的空气。

☆温馨提示☆

- (1) 种子的主要部分是胚,因为它是新植物的幼体。
- (2) 我们平时吃的面粉和大米都是来自于小麦和水稻种子的胚乳。
- (3) 我们平时吃的花生仁和花生油都是来自于花生种子的子叶。
- (4) 市场上卖的绿豆芽主要是来自于绿豆种子的胚轴。
- (5) 玉米、水稻和小麦等的种子,由于它们具有果皮,所以,严格地说应称为果实而不是种子。

四、植物根尖的结构和功能:

结构	特 点 和 功 能	
成熟区	内有导管,部分表皮细胞向外突起形成许多根毛。	成熟区
(根毛	它是根吸收水分和无机盐的主要部位。(属于输导组织)	
区)		伸长区
44.12.15	细胞迅速伸长,是根生长最快的部位,并开始形成导管,	
伸长区	能吸收少量的水分和无机盐。(属于营养组织)	分生区{
	•	根性

根 冠 位于根尖的顶端,细胞大,排列不规则, <u>有保护作用</u> 。(属	分生区	生区	
[™] 于保护组织)	冠	位于根尖的顶端,细胞大,排列不规则,有保护作用。(属	

五、果实和种子的形成:

总结:被子植物的一生:种子的萌发→植株的生长→开花、传粉、受精→结果。

六、植物叶片的基本结构和功能:

七、绿色植物的光合作用:

(属于输导组织)

光合作用的概念	绿色植物通过叶绿体利用光能,把二氧化碳和 (主要是淀粉)并释放氧气的过程,叫做光程。	
光合作用的公式	光 能 二氧化碳+水 一般 一二氧化碳+水 一般 一般 一种。	二氧化碳一、二氧气
光合作用的实质	合成有机物,贮存能量。	水一有机物
光合作用的意义	为植物本身及人和一切生物提供食物、能量和 持了大气中氧和二氧化碳成分的相对稳定。	印氧的重要来源,同时,还保

- 八、光合作用的原理在农业生产上的应用:
- 1、合理密植、立体种植及在菜棚内夜晚增加光照和补充二氧化碳浓度,其目的都是为了提高植物光合作用的效率,促进有机物的形成,从而提高产量。
- 2、卷心白菜外面的叶子是绿色的,而里面的叶子是黄白色的,这是因为缺少"光照"而影响"叶绿素"的形成,这说明了"叶绿素"的形成需要"光"。

九、植物的呼吸作用:

呼吸作用的概念	植物吸收空气中的氧,将体内的有机物转化成二氧化碳和水,同时,将储
* ">***********************************	存在有机物中的能量释放出来的过程,叫做呼吸作用。
呼吸作用的公式	有机物(贮能)+氧 线粒体 二氧化碳+水+能量
呼吸作用的实质	分解有机物、释放能量
呼吸作用的意义	为植物体的生命活动提供动力(或能量)

- 十、呼吸作用的原理在生产、生活中的应用:
- 1、种子的贮存要彻底晒干,以降低呼吸作用,有利于保存。
- 2、水果贮存也要降低呼吸作用,如:在水果外面包塑料袋,目的是抑制水果的呼吸作用,减少有机物的消耗,有利于保鲜。还有萝卜和地瓜的空心;湿谷堆放一段时间会发热等现象都与呼吸作用有关;经常给植物松土和排水的目的是促进植物根部的呼吸作用。
- 3、夏天,用冰箱贮存蔬菜和水果来达到保鲜,其原理是:温度低蔬菜和水果的呼吸作用减弱,有机物消耗少的缘故。

十一、植物蒸腾作用的概念、过程和意义:

蒸腾作用的概念	指植物体内的水分,以水蒸气的形式 散失到体外的过程。植物体主要是通过叶 片的气孔来蒸腾水分的。	**
蒸腾作用的过程	土壤中的水分→根、茎、叶中的导管→叶 肉细胞间隙→叶面的气孔→大气中(气 体)	水经过树干
蒸腾作用的意义	(1)降低了植物叶片的温度,以免被阳光 灼伤。 (2)促进根对水分和无机盐的吸收及植 物体内水分和无机盐的运输。 (3)提高大气湿度,增加降雨量,促进生 物圈水的循环。	根从土壤中吸收水分 蒸腾作用促进水和无机 盐的吸收示意图

- 十二、蒸腾作用的原理在农业生产上的应用:
- 1、为了提高幼苗的成活率,要选择在阴天或傍晚移栽;移栽后要遮阳或移栽时要去掉植物体部分的枝和叶等,其目的都是为了降低植物体的蒸腾作用,减少水分的散失,以提高幼苗的成活率。
- 2、夏天,我们走进森林时,有一种凉爽的感觉,这是与植物的蒸腾作用有关。
- 3、植物在白天光合作用、呼吸作用和蒸腾作用都是同时进行的,晚上主要是进行呼吸作用和少量的蒸腾作用。

4、根从土壤中吸收的水分主要用于蒸腾作用,小部分用于植物体的生理活动。

第四章 生物圈中的人

- 一、食物中的"六大营养成分"包括:糖类(淀粉)、蛋白质、脂肪、维生素、水和无机盐。其中,糖类、蛋白质、脂肪和维生素是属于有机物,水和无机盐是属于无机物。(缺乏维生素和无机盐的病症 P₆₇)
- 二、人体消化系统的组成和功能:

消化系统由消化道和消化腺组成。小肠是消化和吸收的主要器官。

- 三、消化和吸收
- 1、食物的消化:

消化的概念	食物在消化管内,被水解成可吸收的小分子物质的过程,叫做消化。
	淀粉 ──────────────────────────────────
食物消化的 最终产物	蛋白质 胃液 多肽 胰液、肠液 氨基酸 胃中 小肠
	脂肪 <u>胆汁</u> 脂肪微粒 <u>胰液、肠液</u> 甘油十脂肪酸 小肠

2、营养物质的吸收:

吸	收 的 概 念	营养物质通过消化管内壁进入循环系统的过程,叫做吸收。
28K - 44	口腔、咽、食道	没有吸收作用
消的化吸	胃	吸收少量的水分和酒精。
管收各情	小肠	吸收葡萄糖、氨基酸、甘油和脂肪酸及大部分的水分、无机盐
段况		和维生素。
12 00	大肠	吸收少量的水分、无机盐和部分维生素。

- 3、小肠与消化、吸收功能相适应的结构特点:
- (1) 小肠很长,增加了消化和吸收的表面积
- (2) 小肠内表面有许多环形皱襞和小肠绒毛————与消化和吸收功能相适应
- (3) 小肠绒毛内壁有丰富的毛细血管和毛细淋巴管—
- (4) 小肠绒毛壁和毛细血管壁都很薄

与吸收功能相适应

- (5) 小肠内含有多种消化液(如: 胆汁、胰液和肠液)能消化淀粉、脂肪和蛋白质 与消化功能相适应
- 四、人体内物质的运输
- (一)血液循环系统的组成和功能:

组成:由心脏和血管所组成,在心脏和血管内还流动着血液。功能:运输养料和废物。

- 1、血液的成份:由血浆和血细胞(红细胞、白细胞和血小板) 所组成。
- (1) 血浆: 是淡黄色半透明的液体。(约占 55%)
- ①成分:水(约占 $91\%^92\%$)、蛋白质(约占7%)、葡萄糖(约占0.1%)、尿素、无机盐 CO_2 等(约占0.9%)。

- ②功能:运载血细胞、运输养料和废物。
- (2) 血细胞: ①红细胞: 呈两面略凹的圆饼状、成熟的红细胞没有细胞核、数量最多。功能: 主要是运输氧和部分二氧化碳。
 - ②白细胞:比红细胞大,有细胞核,数量最少。
- 功能:吞噬病菌、防御和保护作用。
 - ③血小板:形态最小而且不规则、无细胞核,数量少。
- 功能:促进止血和加速凝血作用。
- 2、动脉血与静脉血的主要区别:
- (1) 动脉血:含氧多,颜色鲜红的血,叫做动脉血。
- (2) 静脉血:含氧少、颜色暗红的血,叫做静脉血。

(二)人体内三种血管的主要区别:

类 别	动脉	静脉	毛细血管
概念	将血液从心脏送到身体各 部分去的血管	将血液从全身各部分收回 到心脏的血管	连通于最小动脉和最小 静脉之间的血管
管壁的结构 特点	管壁厚、弹性大、管腔较小	管壁薄、弹性小、管腔较大、 (四肢静脉内具有静脉瓣)	管壁极薄(仅由一层上皮细胞构成);管腔最小(只允许红细胞单行通过);血
血流的 速 度	快速 (喷泉式射出)	较慢 (缓慢流出)	流速度最慢,这有利于血 液与组织细胞之间进行 物质交换。
血流的 方 向	心脏→全身各处	全身各处→心脏	动脉端→静脉端
图示			

(三)、血液循环

血液循环的概念:指血液在心脏和全身血管中进行的循环流动,叫做血液循环。

1、心脏的位置:

心脏位于胸腔中部,略偏左下方,夹在两肺之间;它是血液循环系统的主要器官。

2、心脏的结构和功能:

	7 - C-DL 1 13-1 1 - 0.1 1 C .						
	心壁		机构成, <u>左心室的壁最厚</u> 、心房的壁最 i心脏输送血液的远近有关)	图示			
心		左心房	与肺静脉相连通,内流动脉血。	上腔静脉			
脏	四	左心室	与主动脉相连通,内流动脉血。	肺动脉			
的	个	右心房	与上、下腔静脉相连通,内流静脉血。	有心身			
结	腔	右心室	与肺动脉相连通,内流静脉血				
构	瓣	房室瓣	(在心房与心室之间)只能朝向心室开	下腔静脉			
	膜	动脉瓣	(在心室与动脉之间)只能朝向动脉开	右心室			
功能	促进	性血液循环,	是血液循环的" <u>动力器官</u> "	心脏的结构图			

(四)血液循环:包括体循环和肺循环两个途径。

- 1、体循环的途径和血液成分的变化:
- (1) 体循环途径: 血液从左心室→主动脉→各级动脉→全身毛细血管网→各级静脉→上、下腔静脉→流回右心房。
- (2) 血液成分的变化:由动脉血→静脉血。(3) 发生变化的部位:全身毛细血管处。
- 2、肺循环的途径和血液成分的变化:
- (1) 肺循环途径:

血液从右心室→肺动脉→肺部毛细血管网→肺静脉→进入左心房。

(2) 血液成分的变化:由静脉血→动脉血。(3) 发生变化的部位:肺泡处毛细血管。

五、呼吸系统的组成和功能:

呼吸系统由呼吸道(鼻、咽、喉、气管、支气管)和肺组成。

功能: 呼吸道是气体进出肺的通道,有温暖、清洁、湿润空气的作用。肺: 是气体交换的场所。

(一) 呼吸运动及其原理:

类别	肋间肌 和膈肌	胸廓	膈顶	肺	肺内气压	气体进出肺泡	气体变化
吸气	收缩	扩大	下降	扩张	下降	外界气体被吸入肺泡	含氧较多
呼气	舒张	缩小	回升	缩小	上升	肺泡内的气体被呼出体外	含二氧化碳 较多

(二) 呼吸的全过程:

- (三)肺泡与气体交换相适应的结构特点:
- 1、肺泡数目多、总面积大。/
- 2、肺泡周围缠绕着大量的毛细血管和弹性纤维; 肺泡壁和毛细血管壁紧贴在一起, 有利气体通过。
- 3、肺泡壁和毛细血管壁都很薄,都只由一层上皮细胞构成(共两层),这种结构特点有利于肺泡与血液之间进行气体交换。

六、人体代谢废物的排出:

(一)人体代谢废物的排泄途径:

排泄: 指人体将二氧化碳、尿素、多余的水分和无机盐等排出体外的过程。

排泄的途径:呼吸、排汗、排尿。

排遗:指把消化道内不能消化的食物残渣排出体外的过程。(如:粪便)

(二)、尿的形成与排出:

1、泌尿系统的组成:由肾脏、输尿管、膀胱和尿道所组成。其中,"<u>肾脏"是泌尿系统的主要器官,其功</u>能:是形成尿液。

肾单位的结构和功能: (动脉血) 入球小动脉 肾小球 肾小体 肾小球:滤过作用—形成原尿。 肾小囊 肾单位 出球小动脉 (动脉血 肾单位 肾小囊:储存原尿 重吸收作用 肾小管:重吸收作用——形成尿液 毛细血管 血液・〇 (静脉血) 尿液 尿的形成示意图

2、尿液的形成过程:

3、尿的排出:肾脏─→输尿管─→膀胱^{尿液} 尿道(排出体外)

☆温馨提示☆

- (1) 尿液的形成过程:包括肾小球的滤过作用和肾小管的重吸收作用两个过程。
- (2)血液流经入球小动脉,再由出球小动脉流出,其成份的变化是;由出球小动脉流出的血液中,尿酸、尿素、水分、无机盐和葡萄糖的含量明显减少。
- (3) 原尿与血液相比,就是原尿中不含大分子蛋白质和血细胞。
- (4) 原尿与血浆相比,就是原尿中没有大分子蛋白质。
- (5) 尿液与原尿相比,就是尿液中没有葡萄糖。如果尿液中含有大分子蛋白质和血细胞,说明肾小球患有急性炎症。如果尿液中含有葡萄糖,说明人体患有糖尿病或胰岛素分泌不足,使血糖浓度过高引起的。

七、神经系统的组成和功能:

1、神经系统的组成:

(1)、"大脑皮层"是调节人体各种生理活动的最高中枢:

大脑皮层具有的功能区有:语言中枢、运动中枢、视觉中枢、听觉中枢、感觉中枢,其中"语言中枢"是人类所特有的功能区。躯体运动中枢是管理躯体对侧的运动,如:大脑皮层左侧运动中枢受损,则右侧躯体的运动就会受到障碍;躯体感觉中枢也是管理躯体对侧的感觉。

- (2)、小脑的主要功能: 使运动协调、准确,维持身体平衡。
- (3) 脑干的主要功能: 呼吸、心跳、血压等生命中枢。
- 2、神经系统结构和功能的基本单位:神经元(又叫神经细胞)

功能: 受到刺激,产生并传导冲动(或兴奋)。

- 3、人体神经调节的基本方式 ——"反射"
- 参与反射活动的神经结构是 ——"反射弧"。
- (1) 反射弧的结构: 一个完整的反射弧包括: 感受器→传入神经元→神经中枢→传出 神经元→效应器五部分。(如右图所示)
- (2) 反射的概念:指人体通过神经系统对外界刺激 产生规律性的反应,叫做反射。如:膝跳反射等。

神经元模式图

(3) 反射的类型:

类 型	概念	举 例
非条件反射(简单反射)	<u>是生来就有的先天性反射,其反射中枢是位于</u> <u>脑干和脊髓</u> 的低级中枢。(属于低级的神经活动方式)。	冷得发抖、热得出汗、强光 耀眼、缩手反射等
条 件 反 射 (复杂反射)	是出生以后,在生活过程中逐渐形成的后天性 反射,其反射中枢是位于大脑皮层的高级中枢。(属于高级的神经活动方式)。	老马识途、猴子打蓝球、看 到杨梅分泌唾液、听说杨梅 分泌唾液等。

注: 人类条件反射最突出的特征: 能对语言、文字等抽象刺激建立人类所特有的条件反射。如: 谈虎色变、看到"杨梅"二字分泌唾液等。

八、眼球的结构和视觉的形成:

内膜

在世

1、眼球的结构和功能:

能

眼		外	膜	【用限: 尤巴透明,富含件经木梢。
球	п	21	乃矢	巩膜: 白色坚韧, 保护眼球内部结构。
的	眼			虹膜: 棕黑色,中央有瞳孔,能调节瞳孔的大小。(瞳孔: 似照相机的光圈)
结	球			睫状体:含有平滑肌,能调节晶状体曲度的大小,使眼睛能看清远近
构	壁	中	膜	的物体。
和		,	/15/	
功				脉络膜:有丰富的血管和色素细胞,有营养眼球和形成暗室,便于成像。
-5/J				(似照相机的暗箱)

工名 活明 宣令抽放士业

视网膜:成像的部位。具有感光细胞,能接受光线刺激,产生神经冲

		动,内有视觉感受器。(似照相机的胶卷)
	晶状体	似双凸透镜,有弹性,对折光起主要作用。(似照相机的镜头)
	玻璃体	透明胶状的物质,充满眼球内,使眼球具有一定的形态。
由角	自膜、房水	、晶状体和玻璃体组成了眼球的折光系统,具有折射、调焦和成像作用。

2、视觉的形成:

3、听觉的形成:

- (1) 物像是在视网膜上形成,视觉是在大脑皮层的视觉中枢形成;听觉是在大脑皮层的听觉中枢形成。
- (2) 若视神经或视觉中枢受损,会引起眼睛失明。
- (3) 人若感冒患咽喉炎时,要经常用盐水嗽口,以防病菌通过咽鼓管进入中耳产生中耳炎。
- (4)遇到巨大声响时,要迅速张口(或闭口并用双手堵耳),使鼓膜内外的气压保持平衡,以免震破鼓膜;不要用尖锐的器具挖耳朵,以防戳破鼓膜。

九、外分泌腺与内分泌腺的主要区别:(主要看其是否具有导管以及分泌物的排出方式)

外分泌腺:具<u>有导管</u>的腺,<u>分泌物种类不同,量多,并通过导管排出</u>。如:汗腺、胃腺、肠腺、唾液腺、皮脂腺等。

内分泌腺:<u>没有导管</u>的腺,<u>分泌物是激素,量少,并直接进入</u>毛细血管的<u>血液中</u>,随血液循环送至全身。如:垂体、甲状腺、胰岛、性腺、肾上腺等。

十、生长激素、甲状腺激素和胰岛素的来源、生理作用及其缺乏症:

1、生长激素是由垂体分泌的,其生理作用是:调节人体的生长、发育。

幼年:分泌过少,易患"侏儒症"。

分泌异常 幼年:分泌过多,易患"巨人症"。

成人:分泌过多,易患"肢端肥大症"。

2、甲状腺激素是由甲状腺分泌的,其生理作用是:促进生长发育,促进新陈代谢,提高神经系统的兴奋性。

幼年:分泌不足,易患"呆小症"。

******* 成人:分泌过多,易患"甲状腺机能亢进症"。(简称"甲亢")

3、胰岛素是由胰岛分泌的,其生理作用是:促进血糖合成糖元,加速血糖分解,降低血糖的浓度。

胰岛素分泌不足: 易患"糖尿病"。糖尿病患者注射"胰岛素制剂"效果显著。

注: 碘的生理作用、缺乏症及其治疗办法:

- (1) 生理作用: 碘是制造甲状腺激素的主要原料, 人体内缺碘, 会引起甲状腺肿大。
- (2) 缺乏症:易患"地方甲状腺肿"。(或叫"大脖子病",但该病不是由缺乏激素引起的。)
- (3) 治疗办法: 经常食用海带、紫菜或加碘食盐等。

第五章 动物的运动和行为

- 一、动物的运动方式: 行走、奔跑、跳跃、飞行、游泳、蠕动等。
- 二、动物的行为:
- 1、从动物行为的获得的途径上分为: 先天性行为和后天学习行为。
- (1)、先天性行为: <u>是生来就有的一种本能行为</u>, 是由遗传物质所决定的。如: 蜘蛛结网、蜜蜂筑巢、动物捕食等。
- (2) 后天学习行为: <u>是依赖于生活经验或学习而获得的行为</u>,但它必须建立在先天性行为的基础上。如: 牛耕地,小狗表演杂技、猴子打蓝球等。
- 2、<u>从动物行为的功能上分可分为</u>:取食行为、领域行为、攻击行为、防御行为、繁殖行为、节律行为和社会行为、通讯行为等。重点掌握:(社会行为和通讯行为)。
- 三、人体运动的形成:
- (一)人体的运动系统:主要由骨、关节和肌肉组成。其生理功能是:运动、支持和保护等作用。人体运动的形成是以"骨为杠杆,关节为支点,骨骼肌收缩为动力"。
- 1、关节的基本结构和功能:

		关节头	表面覆盖着光滑的关节软骨,以	图示
关	关节面	\/ _H. +>	减少两骨之间的摩擦和缓冲震	AFSCALE)
节		关节窝	荡。	关 _{、关节头} ——关节囊
的			1织包绕整个关节,内壁分泌滑	节 关节软骨 关节腔
结			还有许多韧带,使关节更加牢固。	面关节窝
构	· 사 · 사 ·	关节腔内具有滑液,可减少摩擦,增强关		W/A
1-3	关节腔	节的灵活	f性 。	关节的基本结构
功能	关节在运动	力中起支点	作用。	人 [24]坐平知刊

- 2、骨骼肌的特性:【骨骼肌在运动中起动力作用】特性:骨骼肌具有收缩的特性。
- 3、骨骼肌在运动中的协作关系:
 - (1) 屈肘 肱二头肌收缩 肱三头肌舒张

人体的任何一个动作,都是由 多组肌群在神经系统的支配 下,相互配合共同合成的。

- (2) 伸肘 肱二头肌舒张 肱三头肌收缩
- (3) 用手直臂提起重物时: 肱二头肌和肱三头肌都同时收缩。
- (4) 两手自然下垂时: 肱二头肌和肱三头肌都同时舒张。

上臂肌肉协调示意图 (一)屈肘 (二)伸肘 1. 肱二头肌 2. 肱三头肌

第六章 生物的生殖发育与遗传

- 一、男性和女性生殖系统的主要结构和功能:
- 1、男性生殖系统:主要的性器官——睾丸。其功能是:产生精子,分泌雄性激素。
- 2、女性生殖系统:主要的性器官——卵巢。其功能是:产生卵细胞,分泌雌性激素。

【注:睾丸和卵巢既属于主要的性器官,又属于内分泌腺,叫性腺】

- (1)输卵管——是卵细胞受精的场所和输送卵细胞的管道。
- (2) 子宫——是胚胎发育的场所;
- 二、生殖的过程:
- 1、受精: 指精子与卵细胞相互融合成一个细胞(受精卵)的过程,叫做受精。
- 2、胎儿的发育:
- (1) 过程: 受精卵 (分裂)→胚胎 (发育) 胎儿
- (2) 营养: 在人体<u>胚胎发育初期</u>,其<u>营养物质是来自</u>卵细胞中的<u>卵黄。植入子宫内膜后</u>,其<u>营养物质</u>是通过脐带和胎盘来自母体。

- 三、动物的生殖和发育:
- (一) 昆虫的生殖和发育:
- 1、生殖:有性生殖。(卵生、体内受精) 2、发育:包括不完全变态发育和完全变态发育。
- (1) 不完全变态发育: 指昆虫的发育要经过卵、若虫、成虫三个时期的发育过程。
- 如:蝗虫、蟋蟀、蜻蜓和蝉等。
- (2) 完全变态发育: 指昆虫的发育要经过卵、幼虫、蛹、成虫四个时期的发育过程。
- 如:蚕、蚊、蝇和蝶类等。
- (二)两栖动物的生殖和发育:
- 1、生殖:有性生殖。(卵生、体外受精)
- 2、发育: 变态发育。
- 3、变态发育:指由受精卵发育成新个体的过程中,蝌蚪与成蛙的形态结构和生活习性差异很大的发育过程。即:受精卵→蝌蚪→幼蛙→成蛙
- (三) 鸟类的生殖和发育:
- 1、生殖:有性生殖。(卵生、体内受精)

(有求偶→交配→筑巢→产卵→孵卵→育雏的过程)

- 2、发育:直接发育。即:受精卵→雏鸟→成鸟
- 注: 卵细胞: 包括卵黄膜、卵黄、胚盘。
- (四)昆虫、两栖动物、鸟类的生殖和发育比较

生物种类	生殖方式	发育方式
昆虫	有性生殖,体内受精,卵生	变态发育
两栖动物	有性生殖,体外受精,卵生	变态发育
鸟类	有性生殖,体内受精,卵生	非变态发育

- 四、植物的生殖方式: [包括无性生殖和有性生殖]
- 1、无性生殖和有性生殖的主要区别:[主要看它是否经两性生殖细胞的结合]

比较项目	无 性 生 殖	有 性 生 殖
两性细胞的结合	无	有
新个体的产生	母体直接产生	受精卵发育成新个体
繁殖速度	快	慢
后代的适应能力	弱	强

其因

DNA

染色体

优	点	繁殖速度快,能保持亲代的优良性状	能产生可遗传的变异,有利于生物的 进化
举	例	扦插、嫁接和压条等。	被子植物产生的种子、鸟类的繁殖等

- 五、生物的遗传和变异:(是通过生殖和发育实现的)
- 1、性状:指生物体的形态特征、生理特性和行为方式叫做性状。如:人的眼皮、耳垂、肤色或血型等(有看的到的,也有看不到的)。
- 2、相对性状:指同一种生物,同一性状的不同表现类型。如:人的单眼皮与双眼皮、狗的卷毛与直毛,花的白色与红色等。
- 3、遗传的概念:指生物的亲代与子代之间在性状上的相似性。如:"种瓜得瓜,种豆得豆"等。
- 4、概述染色体、DNA、基因的概念,存在部位和功能:
- (1) 染色体:
- ①概念:在细胞核中容易被碱性染料染成深色的物质,叫做染色体。染色体在人的体细胞中是成对存在,而在生殖细胞中则是成单存在。如:正常人体细胞中的染色体是 23 对,而在生殖细胞(精子或卵细胞)中,染色体则变为 23 条 (减半)。
 - ②组成:由 DNA 和蛋白质组成,其中,DNA 是染色体主要的组成成分。
- (2) DNA: 位于染色体上,一条染色体通常含有一个 DNA 分子, DNA 是主要的遗传物质。
- (3) 基因: 基因通过生殖细胞传给后代的。
 - ①概念:基因是 DNA 分子上具有遗传效应的片段。一个 DNA 分子中含有许许多多的基因。
- ②存在部位:位于 DNA 分子上,基因在体细胞中是成对存在,而在生殖细胞中,则是成单存在(减半)。
 - ③功能:决定生物的性状
- (4)细胞核、染色体、DNA 和基因它们之间的关系: (如右上图所示)
- 5、用基因传递的原理解释生物性状(一对相对性状)的遗传:
- 即:一对基因的遗传图解:

6、用遗传图解释人的性别决定:

7、禁止近亲结婚的遗传学原理:

亲缘关系越近,<u>致病隐性基因相同的越多</u>,结婚后,<u>所生子女得隐性遗传病的可能性就越大</u>。所以,我国婚烟法明确规定"禁止近亲结婚"。

- 8、变异的概念:指生物亲代与子代、子代与子代之间<u>在性状上的差异现象</u>,叫做变异。如:"一母生九子, 连母十个样"。
- 9、变异的类型:
- (1) 可遗传的变异:由遗传物质改变引起的变异,能够遗传给后代。如:色盲、多指症、色弱等。
- (2) 不可遗传的变异:由外界环境改变引起的变异,不能遗传给后代。如:经常晒太阳的人皮肤较黑、手上的伤疤、同品种的南瓜种子,种在肥沃土壤的结出的南瓜较大,种在贫瘠土壤的结出的南瓜较小等。

第七章 生物的多样性

- 一、生命的起源和生物的进化:
- (一)、生命的起源:

原始大气,不含氧气,生命起源于原始海洋。

2 生命化学进化的过程:

 \overline{E} 无机小分子 \overline{E} 有机小分子 \overline{E} 有机大分子 \overline{E} 大分子体系 \overline{E} 原始生命 (二)、生物的进化:

1、生物进化的证据 ——"生物化石"

∫ 越早形成的地层中,化石生物种类少,结构简单而低等。

 过 越晚形成的地层中,化石生物种类多,结构复杂而高等。

2、生物进化的历程:

- (2) 动物的进化历程: (由无脊椎动物→脊椎动物)
- ①无脊椎动物进化的历程:

原生动物→腔肠动物→扁形动物→线形动物→环节动物→软体动物→节肢动物。

- ②脊椎动物进化的历程: 鱼类→两栖类→爬行类→鸟类和哺乳类。
- 3、生物进化的原因:

自然选择学说: 指自然界中的生物,通过激烈的生存斗争,适者生存,不适者淘汰的过程。

- 4、生物进化的总趋势:由简单到复杂;由低等到高等;由水生到陆生。
- 5、人类的共同祖先是——森林古猿。
- 二、生物的多样性:
- 1、认识生物的多样性:

生物多样性:包括物种多样性(生物种类多样性)、遗传多样性(实质是基因多样性)和生态系统多样性。保护生物多样性最有效的措施是:建立自然保护区(就地保护)。

2、生物的分类单位从大到小依次是:界、门、纲、目、科、属、种7个等级,其中"种"是最基本的分类单位。分类单位越大,生物的种类越多,亲缘关系越远,共同特征越少。分类单位越小则反之。

三、各类植物的比较:

	类 别	主 要 特 征 生活环	不境 繁殖	列
孢	藻 类 植 物 (低等类群)	单细胞或多细胞, 大多数 <u>无根、茎、叶</u> 的分化。		芦、紫
子植	苔 藓 植 物 (原始高等类 群)	多细胞、 <u>有茎、叶的分化和假根</u> , 大多数 靠叶片吸收水分和无机盐。(植 活在阴 株矮小)	月湿 孢子 胡尸鲜、	
物	蕨 类 植 物 (高等类群)	有根、茎、叶的分化,体内有输 多数生导组织和机械组织。(这是蕨类 在阴湿 陆地	显的 孢子 厥、 页从	
种子	种 子 植 物(最高等类群)	裸 种子裸露,外面没有果皮 子 包被着;有发达的根、茎、 植 叶和种子;没有真正的花物 和果实。(植株高大)	上活 种子 银杉、水林 杏、雪松	
植物	能产生种子	被 种子不裸露,有果皮包被着;有根、茎、叶、花、果体、型、型、型、型、型、型、型、型、型、型、型、型、型、型、型、型、型、型、	上活 种子 水稻、花生豆、西瓜	

☆温馨提示☆

- (1) 藻类植物之所以低等,主要原因是:它没有根、茎、叶的分化,靠孢子繁殖后代。
- (2) 藻类植物光合作用效率最高,是大气中"氧"的主要来源(约占90%)。
- (3) 藻类植物可作为监测"水域污染"程度的指示植物。
- (4) 苔藓植物可作为监测"空气污染"程度的指示植物。(如:"二氧化硫"等有毒气体)。
- (5) 古代蕨类植物形成了现在的煤。
- (6) 裸子植物与被子植物的主要区别: ①胚珠是否裸露,有无子房壁包被;

②种子是否裸露,有无果皮包被。

- (7) 我国由于裸子植物种类最多, 所以被称为"裸子植物的故乡"。
- (8) 被子植物是植物界中最高等的类群,具体表现在:种子外面有"果皮"包被着。
- (9)被子植物指的是"绿色开花植物"。植物分类的主要依据是花、果实和种子。
- 四、无脊椎动物的共同特征:身体里没有脊椎骨的动物,称为无脊椎动物。
- 如:蛔虫、蚯蚓和蝗虫等。
- 1、无脊椎动物的主要类别:

	类 别	主 要 特 征	举 例
	原生动物	<u>身体微小</u> 、结构简单, <u>单细胞</u> (是动物界中最原始、最低等的动物)。	草履虫、疟原虫 和变形虫等
无	腔肠动物	多细胞,体壁两胚层,身体呈辐射对称 <u>有口无肛门</u> 。	水螅、海蜇、珊瑚 水母和海葵等
脊 椎	扁形动物	身体背腹扁平,由许多体节构成。	猪肉绦虫、涡虫、 和血吸虫等
作出	线形动物	<u>身体细长</u> ,前端 <u>有口</u> ,后端 <u>有肛门</u> ,有假体腔	蛲虫、蛔虫、钩虫等
动	环节动物	身体由许多相似的环节构成,有真体腔。	沙蚕、蚯蚓和水蛭等
物	软体动物	身体柔软,具有贝壳和外套膜。	河蚌、鱿鱼、蜗牛、乌 贼、鲍鱼和章鱼等
	节肢动物 (昆虫纲)	体表具 <u>有外骨骼,身体分为头、胸、腹三部分,</u> 胸部 <u>有三对足</u> ,一般有 <u>两对翅</u> 的动物,叫做昆虫。(昆虫在发育过程中有 <u>蜕皮</u> 现象)	蜜蜂、蜻蜓、蝇 蝗虫和蝴蝶等

☆温馨提示☆

- (1) 无脊椎动物主要掌握节肢动物中的昆虫纲。昆虫纲是动物界中种类最多、数量最大、分布最广的陆生 无脊椎动物。
- (2) 常见的单细胞生物:草履虫、变形虫、衣藻、眼虫、酵母菌、细菌和蓝藻等。(如右图所示)

酵母菌 草覆虫 衣藻 眼虫 变形虫

五、脊椎动物的共同特征:

身体里具有脊椎骨的动物称为脊椎动物。如: 鲫鱼、青蛙、蛇、鸽子、兔子等。

- 1、各类脊椎动物的主要特征:
- (1) 鱼类:水生,体表具有鳞片,用鳃呼吸,用鳍游泳,卵生,体外受精,变温。如:青鱼、海马和鲨鱼等。
- (2)两栖类: 幼体水生,用鳃呼吸,用鳍游泳,成体水、陆两栖,用肺呼吸和皮肤辅助呼吸,卵生,体外受精,变态发育,变温。如:青蛙、蟾蜍、大鲵(娃娃鱼)等。(两栖类是由水生向陆生过渡的中间类型)
- (3) 爬行类: 体表具有鳞片或甲,用肺呼吸,体内受精,卵生,变温。如: 壁虎和扬子鳄等。(真正的陆生脊椎动物)
- (4) 鸟类:被覆羽毛,前肢变为翼,心脏四腔,用肺呼吸和气囊辅助呼吸(双重呼吸),恒温,体内受精,卵生。如:麻雀、鸡和驼鸟等。
- (5) 哺乳类: 体表被毛,牙齿分化,心脏四腔,用肺呼吸,恒温,大脑发达,胎生、哺乳。如: 鲸、蝙蝠、海豚等。(哺乳类是动物界中最高等的一个类群)。

六、细菌、真菌、病毒的比较:

名称	结构特点	营养方式	生殖方式
细菌	<u>单细胞。</u> 由细胞壁、细胞膜、细胞质和 <u>无成形的细胞核</u> 构成。	(1)寄生,如:葡萄球菌和大肠杆菌等。 (2)腐生,如:枯草杆菌和乳酸菌等。 (3)自养,如:硫细菌和硝化细菌等。	分裂生殖
真菌	少数单细胞,多数多细胞。由细胞壁、细胞膜、细胞膜、细胞质和成形的细胞核构成。	(1) 腐生,如:酵母菌、霉菌(青霉、曲霉、根霉和毛霉)、蘑菇等。 (2) 寄生,如:头癣、灰指甲等。	多数孢子生殖,少数出芽生殖
病毒	由 <u>蛋白质</u> 组成的外壳 <u>和遗传物质 (DNA) 构成的核心</u> 所组成。(无细胞结构)	(1)寄生,(离开寄主就失去生命活动。) 如:流感、口蹄疫、艾滋病、花叶病等。	增殖 (复制)

第八章 生物技术

- 一、日常生活中的生物技术:
- 1、微生物在食品和酿造工业等方面的应用:
- (1) 细菌在生活和工业上的应用:
- ①乳酸菌与发酵:利用乳酸菌制作酸奶、泡菜和青贮饲料等。其发酵原理是:在无氧的条件下,将葡萄糖转化成乳酸和能量。
- ②醋酸杆菌与制醋:利用醋酸杆菌制作白醋、黑醋等。其制作原理是:利用醋酸杆菌,将葡萄糖转化为醋酸。
- ③甲烷细菌与沼气:利用甲烷细菌,在无氧的条件下,将有机物进行发酵,产生沼气,沼气的主要成分是甲烷。
- (2) 真菌在生活和工业上的应用:
- ①酵母菌与发酵:利用酵母菌制作馒头、包子和蛋糕等。其发酵原理是:酵母菌在有氧时,把葡萄糖转化成二氧化碳和水。
- ②酵母菌与酿酒:利用酵母菌酿造各种酒类。其酿造原理是:酵母菌在无氧时,把葡萄糖转化成二氧化碳、酒精和能量。
 - ③青霉菌与医药:利用青霉菌提取青霉素(抗生素),它是治疗细菌性传染病的特效药,如:肺炎等。
- ④霉菌与酱油等:利用霉菌制作酱油、豆豉和豆腐乳等。其制作原理是:将淀粉转化成葡萄糖,将蛋白质转化成氨基酸。
- 2、食品腐败的原因及如何保存食品:
- (1) 食品腐败的主要原因是: 微生物的大量生长、繁殖, 使食物腐败变质。
- (2) 保存方法: ①风干保存(如:鱼干等); ②高温灭菌保存(如:罐头食品等); ③低温保存(如:肉的冷冻、水果的低温保鲜等)。④用盐渍保存(如:咸鱼等);
- 二、现代生物技术:
- 1、转基因技术的概念和应用:
- (1) 概念:将一个生物体的基因,转移到另一个生物体 DNA 中的生物技术。叫做转基因技术。如:超级鼠和转基因大豆等。
- (2) 应用:①制药:利用转基因技术生产药物,如:生长激素,干扰素和凝血因子等。

- ②培育新品种:利用转基因技术,培育出农作物新品种,如:转基因番茄、转基因棉花和转基因烟草等。 2、克隆技术的概念和应用:
- (1)概念:将一个生物体的细胞或组织,在实验室培育成一个相同新个体的生物技术,叫做克隆技术。如:克隆羊"多莉"的诞生。
- (2) 应用: ①拯救物种 ②器官的移植等。
- 【注:转基因技术是现代生物技术的核心,克隆技术是属于无性生殖。】

第九章 健康地生活

- 一、传染病和免疫:
- 1、传染病: <u>由病原体(</u>细菌、真菌、病毒、寄生虫)<u>引起的,能在人与人之间或人与动物之间传播的疾</u>病,叫做传染病。传染病传染性最强的时间是在发病初期。
 - 2、传染病的主要特点:具有传染性和流行性。
 - 3、传染病流行的三个基本环节:
 - (1) 传染源: 能够散播病原体的人或动物。如: 患有传染病的人或动物等。
- (2) 传播途径: <u>指病原体离开传染源,到达健康人所经过的途径</u>。如:通过空气、饮水、饮食、生物媒介等都属于传播途径。
- (3) 易感人群: <u>指对某种传染病缺乏免疫力,容易感染疾病的人群</u>。如: 儿童、老人等。 在以上三个基本环节中,缺少任何一个环节,传染病就不会流行。
 - 4、预防措施:
- (1) 控制传染源: <u>对病人要做到</u>(早发现、早报告、早诊断、早隔离、早治疗), <u>阻止病原体的传播。</u>如: <u>对病人进行隔离治疗</u>; <u>对患有传染病的动物进行焚烧或深埋处理等</u>,这些举措都是属于控制传染源。
 - (2) 切断传播途径: 要搞好环境卫生(如: 室内通风和消毒等)和个人卫生等。
- (3)保护易感人群: <u>不让易感者与病人接触并进行预防接种</u>。如: 为了保护易感人群, <u>给儿童注射疫苗</u>, 这里注射的疫苗和举措分别属于抗原和保护易感人群。
- 二、人体免疫功能
- 1、人体免疫的概念:

免疫是人体的一种防御功能,是人体抵抗病原体侵袭的能力。

- 2、人体免疫的功能:
- (1) 自我稳定:清除体内衰老、死亡和损伤的细胞。
- (2) 防御功能:抵抗抗原的侵入,防止疾病的产生,维护人体健康。
- (3) 免疫监视:识别和清除体内产生的异常细胞。(如肿瘤细胞等)
- 3、人体三道防线的组成和功能:

人体的防线	组成	功能	免疫类型
第一道防线	皮肤、黏膜和呼吸道黏膜 上的纤毛	阻挡、杀死和清扫病原体	非特异性免疫 (指 <u>人生来就有</u>

第二道防线	体液中的杀菌物质(溶菌酶)和吞噬细胞(白细胞)	溶解、吞噬病原体	<u>的,对多种病原</u> <u>体都有防御作</u> <u>用</u>)
第三道防线	免疫器官和免疫细胞 (如: 脾脏和淋巴结等)	产生抗体,消灭病原体(抗原)	特异性免疫 <u>(指人出生以后</u> <u>才有的,对一种</u> <u>特定的病原体起</u> <u>作用)</u>

4、抗原与抗体的概念:

- (1) 抗原:指能引起人体产生抗体的物质(如:细菌、病毒等病原体或异物),叫做抗原。又如:注射的"疫苗"和"类病毒"以及"移植的器官"也是属于抗原。
- (2) 抗体:指病原体侵入人体后,刺激淋巴细胞,淋巴细胞就产生一种抵抗该病原体的特殊蛋白质(免疫球蛋白),叫做抗体。
- ① 抗体的特点: a、有专一性,如:麻疹抗体只能抵抗麻疹病毒,不能抵抗天花病毒。 其原理是: 抗原侵入人体 $\xrightarrow{\text{刺激}}$ 淋巴细胞 $\xrightarrow{\text{产生}}$ 抗体 $\xrightarrow{\text{消灭}}$ 新侵入人体的病原体。