CS310M: Automata Theory (Minor) Topic 5: Minimizing DFA

Paritosh Pandya

 $\label{local-control} Indian\ Institute\ of\ Technology,\ Bombay \\ Course\ URL:\ https://cse.iitb.ac.in/\simpandya58/CS310M/automata.html$

Autumn, 2021

There can be multiple DFAs recognizing the same language.

• Which one is preferable? Why?

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.
- Conversion of Regular Expression to DFA gives rise to large automata which may not be "optimal" in size.

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.
- Conversion of Regular Expression to DFA gives rise to large automata which may not be "optimal" in size.
- Optimal: smallest in size possible for the same language minimal sized DFA

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.
- Conversion of Regular Expression to DFA gives rise to large automata which may not be "optimal" in size.
- Optimal: smallest in size possible for the same language minimal sized DFA
- Is there a unique minimal sized DFA? Minimal DFA

word x separates state p from state q iff $\hat{\delta}(p,x) \in F \land \hat{\delta}(q,x) \notin F$ or vice versa.

· G separates (1,3) · a separates (0,1) · 3,4,5 cannot be separated I. c. 324, 325,425

Equivalent States in a DFA

$$p \approx q \stackrel{\mathrm{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p,x) \in F \Leftrightarrow \hat{\delta}(q,x) \in F)$$

Equivalent States in a DFA

$$p \approx q \stackrel{\mathrm{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p,x) \in F \Leftrightarrow \hat{\delta}(q,x) \in F)$$

Equivalent Automaton

DFA Minimization (2)

$$p \approx q \stackrel{\text{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

DFA Minimization (2)

$$p \approx q \stackrel{\text{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

Proposition \approx is an equivalence relation, i.e.

(a)
$$\forall p. \ p \approx p$$
, (b) $\forall p, q. \ p \approx q \ \Rightarrow \ q \approx p$

(c)
$$\forall p, q, r. p \approx q \land q \approx r \Rightarrow p \approx r$$

(Exercise: Check that above properties are true.)

DFA Minimization (2)

$$p \approx q \stackrel{\text{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

Proposition \approx is an equivalence relation, i.e.

(a)
$$\forall p. \ p \approx p$$
, (b) $\forall p, q. \ p \approx q \ \Rightarrow \ q \approx p$

(c)
$$\forall p, q, r. \ p \approx q \land q \approx r \Rightarrow p \approx r$$

(Exercise: Check that above properties are true.)

 \approx partitions Q into equivalence classes.

Let [p] denote the equivalence class of p.

Example The classes are $\{0\}$, $\{1,2\}$ and $\{3,4,5\}$.

Quotient Automaton

```
Given DFA M = (Q, \Sigma, \delta, [q_0], F) and \approx as before, the Quotient automaton is M/\approx \stackrel{\mathrm{def}}{=} (Q', \Sigma, \delta', [q_0], F'), where Q' = \{[p] \mid p \in Q\} \delta'([p], a) = [\delta(p, a)] F' = \{[f] \mid f \in F\}
```

Quotient Automaton

```
Given DFA M = (Q, \Sigma, \delta, [q_0], F) and \approx as before, the Quotient automaton is M/\approx \stackrel{\mathrm{def}}{=} (Q', \Sigma, \delta', [q_0], F'), where Q' = \{[p] \mid p \in Q\} \delta'([p], a) = [\delta(p, a)] F' = \{[f] \mid f \in F\}
```

Well-formedness

Lemma (Congruence) $p \approx q \Rightarrow \forall a \in \Sigma. \ \delta(p, a) \approx \delta(q, a).$ Lemma $p \in F \Leftrightarrow [p] \in F'$

Quotient Automaton

```
Given DFA M = (Q, \Sigma, \delta, [q_0], F) and \approx as before, the Quotient automaton is M/\approx \stackrel{\mathrm{def}}{=} (Q', \Sigma, \delta', [q_0], F'), where Q' = \{[p] \mid p \in Q\} \delta'([p], a) = [\delta(p, a)] F' = \{[f] \mid f \in F\}
```

Well-formedness

Lemma (Congruence)
$$p \approx q \quad \Rightarrow \quad \forall a \in \Sigma. \quad \delta(p, a) \approx \delta(q, a).$$

Lemma $p \in F \quad \Leftrightarrow \quad [p] \in F'$

Lemma
$$\hat{\delta}'([p],x) = [\hat{\delta}(p,x)].$$

Proof: By structural induction on x ,

Correctness of Quotient Construction

Theorem $L(M/\approx) = L(M)$. Proof:

Data Structure for \approx relation

E0] {1,2}, {3,45}

	0	1	2	3	4	5
0	•					
1	4					
2	✓					
3	>	\	V	•		
4	V	V	V			
5	V	V	V			

Minimization algorithm

Patihan Refinement Algorithm.

Algorithm [Hopcroft 1971]

- **1** Make pairs table with $(p, q) \in Q \times Q$ and $p \leq q$.
- **4** Mark (p, q) if $p \in F \land q \notin F$ or vice versa.
- Repeat following steps until no change occurs.
 - Pick each unmarked state (p, q).
 - ② If $(\delta(p, a), \delta(q, a))$ is marked for some $a \in \Sigma$ then mark (p, q).
- **4** For each pair, $p \approx q$ **iff** (p, q) is unmarked.

Minimization algorithm

Algorithm [Hopcroft 1971]

- Make pairs table with $(p,q) \in Q \times Q$ and $p \leq q$.
- ightharpoonup Mark (p,q) if $p \in F \land q \notin F$ or vice versa. ightharpoonup
 - Repeat following steps until no change occurs.
 - Pick each unmarked state (p, q).
 - **2** If $(\delta(p, a), \delta(q, a))$ is marked for some $a \in \Sigma$ then mark (p, q).
 - For each pair, $p \approx q$ iff (p, q) is unmarked.

Termination: In each pass at least one new pair must get marked.

Theorem (p,q) is marked iff $\exists x \in \Sigma^* . \hat{\delta}(p,x) \in F \land \hat{\delta}(q,x) \notin F$ or vice versa. iff $p \not\approx q$.

Example

	0	ı	2_	3
0	a	\		
1	V	6		
2		$_{\circ}$	0	
3	√ ₆		$_{\circ}$	0
-	(G,1	9	9	1,3

Example

	0	1	2	3	4	5
0	,					
1	V6					
2	Vo	Vi				
3		Vo	16			
4	V.		V2	Vo	•	
5	V.	V		√	1/1	

Phage 2. (0,3) => (1,1) Unmels! (1,5) => (0,3) Umsld. (2,5) => (3,0) Unm!,

Example

Minimize using the algorithm.

	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Proof of Theorem (1)

```
We prove (p, q) is marked implies
\exists x \in \Sigma^* . \hat{\delta}(p, x) \in F \land \hat{\delta}(q, x) \notin F or vice versa.
Pray: By Ind. on phase number
Base step. PX9 => C- Separates (P,2)
Ind. Step PX4 => 39,p',q'. (P,2) $\frac{4}{9},\frac{1}{9} \tag{9},\frac{1}{9} \tag{9},\frac{1}{9} \tag{9},\frac{1}{9} \tag{9}
                          3y. 8(P,7)CF88(9,7)4F ON W.

=> 8(P,97)CF88(9,9)4FONW
```

Proof of Theorem (2)

```
We prove \exists x \in \Sigma^*.\hat{\delta}(p,x) \in F \land \hat{\delta}(q,x) \notin F or vice versa.
      implies (p,q) is marked
Assure or separates (P,q) & or is sharkest
Prog by Ind. on IXI
Base step X= = = PV02
Ind. step (x-94) => S(P, 94) CF & S(9, 94) FF Or W
                       >> $( s(P,Q, y) CF 8$(8(2,9), y) AF W
                      => S(P,9), S(P,0) is marked

=> (P,9) gets mand in new phore
```

CS310M: Automata Theory (Minor)