ML - Homework 5

Tong Thi Van Anh

October 2022

1 Exercise 1

With
$$t \in \{0, 1\}$$
, $y(x) = \sigma(w^T x)$ and $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$\Rightarrow y(x) = \sigma(w^T x) = \frac{1}{1 + e^{-w^T x}}$$

$$L(w) = -\sum_{i=1}^{N} \left(t_i \log(y_i) \right) + (1 - t_i) \log(1 - y_i)$$

$$\sigma'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \cdot \left(1 - \frac{1}{1 + e^{-z}} \right)$$

$$= \sigma(z) (1 - \sigma(z)).$$

For each (x_i, y_i) , we have the loss function:

$$l = -(t_i \log(y_i) + (1 - t_i) \log(1 - y_i))$$

$$\begin{split} \frac{\partial l}{\partial w_j} &= \frac{\partial l}{\partial y_i} \frac{\partial y_i}{\partial w_j} \\ &= - \bigg(t_i \frac{1}{y_i} - (1 - t_i) \frac{1}{1 - y_i} \bigg) \frac{\partial}{\partial w_j} \sigma(w^T x_i) \\ &= - \bigg(t_i \frac{1}{\sigma(w^T x_i)} - (1 - t_i) \frac{1}{1 - \sigma(w^T x_i)} \bigg) \sigma(w^T x_i) (1 - \sigma(w^T x_i)) \frac{\partial}{\partial w_j} w^T x_i \\ &= - (t_i (1 - \sigma(w^T x_i)) - (1 - t_i) \sigma(w^T x_i)) x_{ij} \\ &= - (t_i - y_i) x_{ij}. \end{split}$$

$$\Rightarrow \frac{\partial L}{\partial w} = - \sum_{i=1}^{N} (t_i - y_i) x_i = X^T (t - y)$$

2 Exercise 5

2.1 Binary Cross Entropy: Convex

Using the result from Exercise 1, we find the Hessian of the loss function:

$$H_{jk} = \frac{\partial^2 L}{\partial w_j \partial w_k}$$

$$= -\sum_{i=1}^N -\frac{\partial y_i}{\partial w_k} x_{ij}$$

$$= \sum_{i=1}^N y_i (1 - y_i) x_{ij} x_{ik}$$

$$\Rightarrow H = \sum_{i=1}^N y_i (1 - y_i) x_i^2$$

For $y_i \in [0, 1]$, we have: $y_i(1 - y_i) \in [0, 1/4]$. Therefore, $H \ge 0 \Rightarrow$ Convex.

2.2 MSE: Non-Convex

The loss function:

$$L = -\sum_{i=1}^{N} (t_i - y_i)^2$$

For each (x_i, y_i) , we have:

$$l = -(t_i - y_i)^2$$

$$\begin{split} \frac{\partial l}{\partial w_j} &= \frac{\partial l}{\partial y_i} \frac{\partial y_i}{\partial w_j} \\ &= -(-2)(t_i - y_i) \frac{\partial}{\partial w_j} \sigma(w^T x_i) \\ &= 2(t_i - y_i) \sigma(w^T x_i) (1 - \sigma(w^T x_i)) \frac{\partial}{\partial w_j} w^T x_i \\ &= 2(t_i - y_i) y_i (1 - y_i) x_{ij} \\ &\Rightarrow \frac{\partial L}{\partial w} = 2 \sum_{i=1}^{N} (t_i - y_i) y_i (1 - y_i) x_i \\ &= 2 \sum_{i=1}^{N} (y_i^3 - y_i^2 - t_i y_i^2 + t_i y_i) x_i \end{split}$$

Calculating the Hessian matrix:

$$H_{jk} = \frac{\partial^2 L}{\partial w_j \partial w_k}$$

$$= 2 \sum_{i=1}^{N} (3y_i^2 - 2y_i - 2t_i y_i + t_i) \frac{\partial y_i}{\partial w_k} x_{ij}$$

$$= 2 \sum_{i=1}^{N} (3y_i^2 - 2y_i - 2t_i y_i + t_i) y_i (1 - y_i) x_{ij} x_{ik}$$

$$\Rightarrow H = 2 \sum_{i=1}^{N} (3y_i^2 - 2y_i - 2t_i y_i + t_i) y_i (1 - y_i) x_i^2$$

As $y_i(1-y_i) \in [0,1/4]$ and $x_i^2 \ge 0$, we consider:

$$A = \sum_{i=1}^{N} (3y_i^2 - 2y_i - 2t_i y_i + t_i)$$

Since $t_i \in \{0, 1\}$, we have 2 cases:

When $t_i = 0$:

$$A = \sum_{i=1}^{N} (3y_i^2 - 2y_i)$$
$$= \sum_{i=1}^{N} 3y_i(y_i - 2/3)$$

If y_i is in range [0, 2/3], $A \ge 0$ $(H \ge 0)$; if y_i is in range [2/3, 1], $A \le 0$ $(H \le 0)$. It shows that the function is not convex.

When $t_i = 1$:

$$A = \sum_{i=1}^{N} (3y_i^2 - 2y_i - 2y_i + 1)$$
$$= \sum_{i=1}^{N} (3y_i^2 - 4y_i + 1)$$
$$= \sum_{i=1}^{N} 3(y_i - 1/3)(y_i - 1)$$

If y_i is in range [0, 1/3], $A \le 0$ $(H \le 0)$; if y_i is in range [1/3, 1], $A \ge 0$ $(H \ge 0)$. It shows that the function is not convex.

Hence, MSE loss function for logistic regression is non-convex.