Department of Electrical and Electronics Engineering

SAP-PBL

Course Code: 19EE502

WAVEFORM GENERATOR

Team members:

1.SUMAN SHETTY 4NM19EE072

2.SAMPATH KUMAR 4NM19EE060

3.SIDDALINGAYYA MATH 4NM19EE068

Introduction

- A function generator is an electronic device that can produce a variety of different waveforms like sinusoidal, triangular, rectangular, square waveforms
- > The circuit works on the principle of just using op amp.
- The LM324 is a quad op amp, meaning it's composed of 4 independent op amp.
- In this function generator the first op amp produces a square wave. After that, the circuit uses 2 integrator circuits to convert the square wave into triangle and sine wave signals
- > The waveforms of these frequencies may be adjusted from 1hertz to a 10 kHz
- The analog function generator and digital function generators are types of function generators

SAP - PBL

Block Diagram

Component Description

SI. No.	Components used	Rating	Quantity
1	LM324 op amp		1
2	Resistor	10kΩ	1
3	Resistor	100kΩ	3
4	Resistor	22kΩ	2
5	Resistor	220kΩ	1
6	Ceramic Capacitor	0.1ųF	3
8	Potentiometer	220kΩ	1
9	Potentiometer	100kΩ	1
10	General PCB		1
11	DSO		
12	RPS		

Working Principle

This circuit consist of three stages,

- Stage 1
- In this stage Astable multivibrator produces square wave as an output
- Let's assume that capacitor is completely discharged
- Voltage at the inverting terminal is greater than or equal to voltage at

the non-inverting terminal, output will change its state.

- The capacitor now sees a negative voltage,-V(sat)
- across its plates
- This reversal of the output voltage causes the capacitor to discharge toward the new value of Vout at a rate dictated by their RC time constant

C1

0.1µF

100kΩ R3

VEE

100 %

-10.3V

U2A

Key=A

Contd:

- Stage 2
- It is an Op-Amp integrator with DC gain control
- During the positive half-cycle of the square wave input, a constant current I flows through the input resistor R1
- Since the current flowing into the op-amp internal circuitry is zero, effectively all of the current flows through the feedback capacitor $C_{\rm f}$. This current charges the capacitor.
- Since the capacitor connected to the virtual ground, the voltage across the capacitor is the output voltage of the op-amp.
- Since the capacitor connected to the virtual ground, the voltage across the capacitor is the output voltage of the op-amp.

Contd.

- Stage 3 is also op amp integrator with DC gain control
- It takes triangle wave from previous stage output as input and it integrates to produce sine wave
- As the amplifier act as a low pass filter, the high-frequency harmonics are greatly reduced
- The output sine wave only consists of low-frequency harmonics and the output will of low amplitude.

Results and Discussion

SAP PBL

Results and Discussion

SAP PBL

Results and Discussion

Troubleshooting(if any)

Initially we were not able to get square wave output, when we rechecked the circuit we found that there was one wrong connection and they were corrected.

Conclusion

- The circuit we designed produced output as square wave in first stage, Triangular wave in second wave and sine wave in third stage
- The wave form which we generated is similar to the one which we have simulated using NI multisim

Reference

- http://www.learningaboutelectronics.com/Articles/Function-generator-circuit.php
- https://www.elprocus.com/what-is-function-generator-circuit-diagram-its-specifications/
- https://www.electronics-tutorials.ws/opamp/op-amp-multivibrator.html
- https://circuitdigest.com/tutorial/op-amp-integrator-circuit-working-construction-applications

Thank You