2. Kurvenanpassung

Inhaltsübersicht

2. Kurvenanpassung

- 2.1 Approximation
- 2.2 Interpolation
- 2.3 Kennfeldinterpolation

- Analytische Darstellung einer Messkennlinie erfordert Modellbildung:
 Wie lässt sich der Zusammenhang der Größen beschreiben?
- Tatsächliches Modell ist in der Praxis oft unbekannt, daher liegt Messkennlinie nicht in analytischer Form, sondern nur als Menge von n Messpunkten (u_k, y_k) , $k \in \{0, ..., n-1\}$ vor
- Gesucht: analytische Form der Messkennlinie, welche die gemessenen Punkte geeignet berücksichtigt
- Dadurch auch Bestimmung von Zwischenwerten (u, k) möglich
- Weitere Anpassungen der Messkennlinie: siehe Kap. 3

2 Kurvenanpassung

- Zwei Ansätze zur Konstruktion einer analytischen Kennlinie:
 - Interpolation: analytische Kennlinie verläuft exakt durch alle Messpunkte
 - Z. B. mittels Polynomen: y = p(u):
 Benötigt werden dazu bei
 n Messpunkten Polynome
 i. a. vom Grad deg{p(u)} = n − 1
 - Daher nur für wenige Messpunkte sinnvoll (d. h. kleine n)
 - Bei großen n: Anfälligkeit für oszillierendes Verhalten
 - Störungen an einem Messpunkt beeinflussen direkt die Kennlinie an dieser Stelle
 - Siehe Kap. 2.2

2 Kurvenanpassung

- Zwei Ansätze zur Konstruktion einer analytischen Kennlinie:
 - Approximation: Suche nach einer möglichst einfachen Funktion, welche die Messpunkte möglichst gut berücksichtigt
 - Ansatz: Fehler zwischen
 Messpunkten und der
 analytischen Funktion minimieren
 - Auch für große n gut anwendbar
 - Siehe Kap. 2.1

■ Approximation mittels einer endlichen Reihe analytischer Funktionen $\varphi_i(u), i \in \{0, ..., m-1\}$:

$$\hat{y}(u) = \sum_{i=0}^{m-1} a_i \varphi_i(u)$$

- An den Messpunkten gilt: $\hat{y}_k = \hat{y}(u_k) = \sum_{i=0}^{m-1} a_i \varphi_i(u_k) \approx y_k$, d.h. Approximation muss die Messpunkte nicht exakt treffen
- Bestimmung der Koeffizienten a_i: Minimierung eines Gütemaßes Q:
 z. B. Summe der Approximationsfehlerquadrate
 (siehe Least-Squares-Schätzer):

$$Q = \sum_{k=0}^{n-1} (y_k - \hat{y}_k)^2 = \sum_{k=0}^{n-1} \left(y_k - \sum_{i=0}^{m-1} a_i \varphi_i(u_k) \right)^2 \to \min$$

• Vorteil: Bildung einer analytischen Kennlinie bereits mit wenigen Basisfunktionen $\varphi_i(u)$, d. h. kleinen m, möglichst: $m \ll n$

Approximation mit orthonormalen Funktionensystemen

- Wiederholung orthonormale Funktionensysteme:
 - Beispiel: Vektoren im dreidimensionalen Raum \mathbb{R}^3 :
 - Repräsentation durch Komponenten in den drei Raumrichtungen $\mathbf{a} = (a_0, a_1, a_2)^{\mathrm{T}}$
 - Mögliche Basis: Einheitsvektoren

$$\boldsymbol{e}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \, \boldsymbol{e}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \, \boldsymbol{e}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

• $\{e_0, e_1, e_2\}$ bildet orthonormale Basis:

$$\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \sum_{k=0}^{n-1} e_{i,k} \cdot e_{j,k} = \delta_i^j = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$$

- Vorteil: Erweiterung um eine weitere Dimension erfordert nur Ergänzung einer Komponenten (z. B. a_n) und ändert nicht die bisherigen Komponenten
- Damit Darstellung des Vektors a:

$$a = a_0 e_0 + a_1 e_1 + a_2 e_2 = \sum_{i=0}^{2} a_i e_i$$

Approximation mit orthonormalen Funktionensystemen

Anwendung für Messkennlinien: Orthonormale Funktionensysteme:

$$\langle \varphi_i, \varphi_j \rangle = \sum_{k=0}^{n-1} \varphi_i(u_k) \cdot \varphi_j^*(u_k) = \delta_i^j$$

d. h. Orthonormalität an den Stützstellen: Funktionswerte $\varphi_i(u_k)$ an den Stützstellen u_k sind orthonormale, n-dimensionale Vektoren

- Im Folgenden Annahme: Stützstellen sind äquidistant verteilt
- Gütemaß:

$$Q = \sum_{k=0}^{m-1} \left(y_k - \sum_{i=0}^{m-1} a_i \varphi_i(u_k) \right) \left(y_k - \sum_{j=0}^{m-1} a_j \varphi_j(u_k) \right)^* \to \min$$

Approximation mit orthonormalen Funktionensystemen

■ Bestimmung der Koeffizienten a_j : Ableitung des Gütemaßes nach a_j :

$$\frac{\partial Q}{\partial a_j} = -2 \sum_{k=0}^{n-1} \left(y_k - \sum_{i=0}^{m-1} a_i \varphi_i(u_k) \right) \varphi_j^*(u_k)
= -2 \left(\sum_{k=0}^{n-1} y_k \varphi_j^*(u_k) - \left(\sum_{k=0}^{n-1} \sum_{i=0}^{m-1} a_i \varphi_i(u_k) \varphi_j^*(u_k) \right) \right) = 0$$

$$\sum_{k=0}^{n-1} y_k \varphi_j^*(u_k) - \left(\sum_{i=0}^{m-1} a_i \sum_{k=0}^{n-1} \varphi_i(u_k) \varphi_j^*(u_k)\right) = 0$$

$$= \delta_i^j$$

$$\Rightarrow a_j = \sum_{k=0}^{n-1} y_k \varphi_j^*(u_k)$$

D. h. Koeffizienten a_j hängen nur von den zugehörigen Basisfunktionen $\varphi_j(u_k)$ ab, auch bei Zufügung weiterer Basisfunktionen

Approximation mit orthonormalen Funktionensystemen

Resultierender quadratischer Fehler:

$$Q = \sum_{k=0}^{n-1} \left(y_k - \sum_{i=0}^{m-1} a_i \varphi_i(u_k) \right) \left(y_k - \sum_{j=0}^{m-1} a_j \varphi_j(u_k) \right)^*$$

$$= \sum_{k=0}^{n-1} y_k^2 - \sum_{i=0}^{m-1} a_i \sum_{k=0}^{n-1} \varphi_i(u_k) y_k^* - \sum_{j=0}^{m-1} a_j^* \sum_{k=0}^{n-1} \varphi_j^*(u_k) y_k$$

$$= a_i^* \qquad = a_j$$

$$+ \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} a_i a_j^* \sum_{k=0}^{n-1} \varphi_i(u_k) \varphi_j^*(u_k)$$

$$= \delta_i^j$$

$$Q = \sum_{k=0}^{n-1} y_k^2 - \sum_{i=0}^{m-1} |a_i|^2$$

D. h. mit wachsendem Grad m der Funktionenreihe wird der Approximationsfehler geringer

Approximation mit der Fourier-Reihe

Fourier-Reihe mit periodischen Funktionen:

$$F_i(u) = \frac{1}{\sqrt{n}} \cdot \exp\left(j2\pi i \frac{u - u_a}{u_e - u_a}\right)$$

• Messbereich $[u_a, u_e]$ mit n äquidistanten Stützstellen im Abstand Δu :

Die Fourier-Reihe ist ein orthonormales Funktionensystem in diesem Messbereich:

$$\langle F_i(u_k), F_j(u_k) \rangle = \frac{1}{n} \sum_{k=0}^{n-1} \exp\left(j2\pi i \frac{u_k - u_a}{u_e - u_a}\right) \exp\left(-j2\pi j \frac{u_k - u_a}{u_e - u_a}\right)$$

Approximation mit der Fourier-Reihe

- Beweis der Orthonormalität:
 - Stützstellenabstand Δu,
 Intervallbreite

$$u_{\rm e} - u_{\rm a} = n \cdot \Delta u$$
:

$$u_k = u_a + k \cdot \Delta u \implies \frac{u_k - u_a}{u_e - u_a} = \frac{k}{n}$$

Eingesetzt:

$$\langle F_i(u_k), F_j(u_k) \rangle = \frac{1}{n} \sum_{k=0}^{n-1} \exp\left(j2\pi i \frac{u_k - u_a}{u_e - u_a}\right) \exp\left(-j2\pi j \frac{u_k - u_a}{u_e - u_a}\right)$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \exp\left(j2\pi (i - j) \frac{k}{n}\right) = \delta_i^j$$

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Approximation mit Walsh-Funktionen

- Nachteil der Fourier-Reihe: komplexe Exponentialfunktionen
- Einfacheres orthonormales Funktionensystem: Walsh-Funktionen wal(i, u): Definitionsbereich [0,1], Funktionswerte -1 und +1
- Regeln zur Erzeugung der Walsh-Funktionen: siehe Literatur
- Walsh-Funktionen: verallgemeinerte Frequenz, siehe Kap. 8

Approximation mit Walsh-Funktionen

 Orthonormalität: Einfach zu erkennen durch Summation über äquidistant verteilte Stützstellen:

$$\langle \operatorname{wal}(i, u), \operatorname{wal}(j, u) : \rangle = \sum_{k=0}^{n-1} \operatorname{wal}(i, u_k) \cdot \operatorname{wal}(j, u_k) = \delta_i^j$$

Least-Squares-Schätzer

- Approximation ohne Verwendung orthonormaler Basisfunktionen
- Ziel: Minimierung der quadratischen Summe der Approximationsfehler (Least-Squares-Fehler):

$$Q = \sum_{k=0}^{n-1} (y_k - \hat{y}_k)^2 = \sum_{k=0}^{n-1} \left(y_k - \sum_{i=0}^{m-1} a_i \varphi_i(u_k) \right)^2$$

= $(y - \hat{y})^{\mathrm{T}} (y - \hat{y}) \rightarrow \min$

Vektorieller Ansatz für n Messpunkte:

$$\widehat{\mathbf{y}} = \begin{bmatrix} \widehat{y}_0 \\ \vdots \\ \widehat{y}_{n-1} \end{bmatrix} = \begin{bmatrix} \varphi_0(u_0) & \cdots & \varphi_{m-1}(u_0) \\ \vdots & \ddots & \vdots \\ \varphi_0(u_{n-1}) & \cdots & \varphi_{m-1}(u_{n-1}) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ \vdots \\ a_{m-1} \end{bmatrix} = \mathbf{\Phi} \mathbf{a}$$

Eingesetzt in Least-Squares-Fehler:

$$Q = (\mathbf{y} - \widehat{\mathbf{y}})^{\mathrm{T}} (\mathbf{y} - \widehat{\mathbf{y}}) = (\mathbf{y} - \mathbf{\Phi} \mathbf{a})^{\mathrm{T}} (\mathbf{y} - \mathbf{\Phi} \mathbf{a})$$
$$= \mathbf{y}^{\mathrm{T}} \mathbf{y} - 2\mathbf{a}^{\mathrm{T}} \mathbf{\Phi}^{\mathrm{T}} \mathbf{y} + \mathbf{a}^{\mathrm{T}} \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \mathbf{a} \rightarrow \min$$

Notwendige Bedingung für Minimum:

$$\frac{\mathrm{d}Q}{\mathrm{d}a} = -2\mathbf{\Phi}^{\mathrm{T}}\mathbf{y} + 2\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi} \ a = 0 \ \Rightarrow \ a = (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{y}$$

Least-Squares-Schätzer

- Gesuchter Parametervektor ist also: $a = (\Phi^T \Phi)^{-1} \Phi^T y$ mit der Pseudoinversen (Moore-Penrose-Pseudoinversen) $(\Phi^T \Phi)^{-1} \Phi^T$
- Bedeutung des LS-Schätzers:
 - Wird oft benutzt, um aus stark verrauschten Messungen
 Kennlinienfunktionen zu bestimmen: Regressionsanalyse (s. unten)
 - Optimalfilter (siehe Kap. 6): Bestmögliche Approximation für die gegebenen Funktionen $\varphi_i(u)$
 - Berücksichtigung von Vorwissen: Signalmodell, bestimmt durch Wahl der Funktionen $\varphi_i(u)$ und damit Aufbau der Matrix Φ
 - Funktionaler Zusammenhang $\hat{y} = \sum_{i=0}^{m-1} a_i \varphi_i(u)$: damit wird Extrapolation (Vorhersage von Werten außerhalb des Messbereichs, z. B. künftige Werte eines Zeitsignals) möglich, mögliche Anwendung: Prozessüberwachung (siehe Kap. 4)
 - Anwendungen zur Parameterschätzung (siehe z. B. Kap. 8.2)

Regressionsanalyse

- Ziel: Herstellung eines funktionalen Zusammenhangs zwischen Variablen
- Meist Verwendung von Polynomen als Funktionen und Minimierung der quadratischen Summe der Approximationsfehler (Least-Squares-Fehler), s. o.; auch andere Modell-Funktionen und Optimierungsziele können verwendet werden
- Im Folgenden: lineare Regression

 (d. h. Polynom vom Grad 1) und
 Minimierung der quadratischen Summe der Approximationsfehler
- Modell-Funktion: Gerade: $\hat{y}(u) = a_0 + a_1 u$ mit unbekannten Parametern a_0 , a_1

Regressionsanalyse

Gütefunktion:

$$Q = \sum_{k=0}^{n-1} (y_k - \hat{y}(u_k))^2 = \sum_{k=0}^{n-1} (y_k - a_0 - a_1 u_k)^2$$

• Notwendige Bedingung für optimale Parameter a_0 , a_1 :

$$\frac{dQ}{da_0} = -2 \sum_{k=0}^{n-1} (y_k - a_0 - a_1 u_k) = 0$$

$$\Rightarrow a_1 \sum_{k=0}^{n-1} u_k + n \, a_0 = \sum_{k=0}^{n-1} y_k$$

$$\frac{dQ}{da_1} = -2 \sum_{k=0}^{n-1} u_k (y_k - a_0 - a_1 u_k) = 0$$

$$\Rightarrow a_1 \sum_{k=0}^{n-1} u_k^2 + a_0 \sum_{k=0}^{n-1} u_k = \sum_{k=0}^{n-1} u_k y_k$$

$$\Rightarrow a_0 = \frac{1}{n} \sum_{k=0}^{n-1} y_k - a_1 \frac{1}{n} \sum_{k=0}^{n-1} u_k,$$

$$a_1 = \frac{n \sum_{k=0}^{n-1} u_k y_k - \sum_{k=0}^{n-1} u_k \sum_{k=0}^{n-1} y_k}{n \sum_{k=0}^{n-1} u_k^2 - (\sum_{k=0}^{n-1} u_k)^2}$$

Regressionsanalyse

 Gleiches Ergebnis (natürlich) bei Anwendung der oben beim LS-Schätzer dargestellten Vorgehensweise:

$$\hat{y} = a_0 + a_1 u = \sum_{i=0}^{m-1} a_i \varphi_i(u)$$

$$\Rightarrow \varphi_0(u) = 1, \qquad \varphi_1(u) = u$$

$$\Rightarrow \hat{y} = \begin{bmatrix} \hat{y}_0 \\ \vdots \\ \hat{y}_{n-1} \end{bmatrix} = \begin{bmatrix} \varphi_0(u_0) & \cdots & \varphi_{m-1}(u_0) \\ \vdots & \ddots & \vdots \\ \varphi_0(u_{n-1}) & \cdots & \varphi_{m-1}(u_{n-1}) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ \vdots \\ a_{m-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & u_0 \\ \vdots & \vdots \\ 1 & u_{n-1} \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \mathbf{\Phi} \mathbf{a}$$

Prüfung auf Übereinstimmung: Übung zu Hause...

Regressionsanalyse

- Diskussion:
 - Analoge Vorgehensweise bei Polynomen höherer Ordnung: $\hat{y} = a_0 + a_1 u + a_2 u^2 + \dots + a_{m-1} u^{m-1}$
 - Unterschied zur Approximation mit orthonormalen Funktionen: Alle Koeffizienten a_i müssen neu berechnet werden, wenn die Ordnung des Polynoms erhöht wird
 - Terme $\frac{1}{n}\sum_{k=0}^{n-1}u_k$, $n\sum_{k=0}^{n-1}u_k^2 \left(\sum_{k=0}^{n-1}u_k\right)^2$:

 Mittelwert und mit $\frac{n-1}{n}$ gewichtete Varianz der Größe u, siehe Kap. 4

Polynominterpolation

Ansatz: Polynom

$$\hat{y}(u) = \sum_{i=0}^{n-1} a_i u^i = \mathbf{a}^T \mathbf{p} = \mathbf{p}^T \mathbf{a}$$
mit $\mathbf{a} = (a_0, ..., a_{n-1})^T$, $\mathbf{p} = (1, u, u^2, ..., u^{n-1})^T$

• $\hat{y}(u)$ soll die gegebenen Messpunkte (u_k, y_k) exakt wiedergeben: Eindeutige Lösung durch Gleichungssystem aus n Gleichungen für n Koeffizienten:

$$y_k(u_k) = \sum_{i=0}^{n-1} a_i u_k^i, \qquad k \in \{0, ..., n-1\}$$

In Matrixschreibweise:

$$\mathbf{y} = \begin{bmatrix} y_0 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & u_0 & \cdots & u_0^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u_{n-1} & \cdots & u_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_{n-1} \end{bmatrix} = \mathbf{V} \mathbf{a}$$

mit y: Messvektor, V: Vandermonde-Matrix

- Lösung durch Invertierung: $a = V^{-1}y$
- Resultierende Interpolationsgleichung: $\hat{y}(u) = p^T V^{-1} y$

Polynominterpolation

- Voraussetzung für Invertierbarkeit von V: Determinante $|V| \neq 0 \Leftrightarrow$ Stützstellen u_k sind paarweise verschieden
- Rang: rg(V) = r = n

Polynominterpolation

- Geschlossene Bestimmung der Determinanten durch rekursive Zerlegung in Unterdeterminanten:
 - Äquivalenzumformung für die Spalten $i \in \{2, ..., n\}$:

$$(i-1)$$
. Spalte $-(i-2)$. Spalte $\cdot u_0$:

$$|V| = \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 1 & u_1 - u_0 & \cdots & u_1^{n-1} - u_1^{n-2} u_0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u_{n-1} - u_0 & \cdots & u_{n-1}^{n-1} - u_{n-1}^{n-2} u_0 \end{vmatrix}$$

- 2. Spalte -1. Spalte $\cdot u_0$ (n-1). Spalte -(n-2). Spalte $\cdot u_0$
- Entwicklung nach der ersten Zeile, Herausziehung der Terme $(u_j u_0)$ für $j \in \{1, ..., n-1\}$:

$$|\mathbf{V}| = (u_1 - u_0) \cdots (u_{n-1} - u_0) \begin{vmatrix} 1 & u_1 & \cdots & u_1^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u_{n-1} & \cdots & u_{n-1}^{n-2} \end{vmatrix}$$

Polynominterpolation

■ Wieder Äquivalenzumformung für die Spalten $i, i \in \{2, ..., n-1\}$: (i-1). Spalte -(i-2). Spalte $\cdot u_0$:

$$|\mathbf{V}| = (u_1 - u_0) \cdots (u_{n-1} - u_0) \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 1 & u_2 - u_1 & \cdots & u_2^{n-1} - u_2^{n-2} u_1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u_{n-1} - u_1 & \cdots & u_{n-1}^{n-1} - u_{n-1}^{n-2} u_1 \end{vmatrix}$$

■ Entwicklung nach der ersten Zeile, Herausziehung der Terme $(u_i - u_0)$ für $j \in \{2, ..., n - 1\}$:

$$|\mathbf{V}| = (u_1 - u_0) \cdots (u_{n-1} - u_0) \cdot \\ \cdot (u_2 - u_1) \cdots (u_{n-1} - u_1) \begin{vmatrix} 1 & u_2 & \cdots & u_2^{n-3} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u_{n-1} & \cdots & u_{n-1}^{n-3} \end{vmatrix}$$

Usw.

Polynominterpolation

Ergebnis:

$$|V| = (u_1 - u_0)(u_2 - u_0)(u_3 - u_0) \cdots (u_{n-1} - u_0) \cdot (u_2 - u_1)(u_3 - u_1) \cdots (u_{n-1} - u_1) \cdot (u_3 - u_2) \cdots (u_{n-1} - u_2) \cdot (u_{n-1} - u_{n-2})$$

- Produkt aller möglichen Differenzen zwischen den Stützstellen u_k
- Inversion von V ist daher möglich, wenn die Stützstellen nicht nahe zueinander liegen

Interpolation durch Lagrange-Polynome

- Nachteil der Polynominterpolation: relativ großer Aufwand für die Invertierung der Gleichung y = Va
- Abhilfe: Verwendung von Lagrange-Polynomen
- Ansatz: direkte Gewichtung von Polynomen $l_i(u)$ mit Messwerten y_i :

$$\hat{y}(u) = \sum_{i=0}^{n-1} y_i l_i(u) = \mathbf{l}^{T} \mathbf{y}$$
mit $\mathbf{y} = (y_0, ..., y_{n-1})^{T}$, $\mathbf{l} = (l_0(u), ..., l_{n-1}(u))^{T}$

- Dadurch Vermeidung von weiteren Berechnungen der Koeffizienten
- Vergleich mit Polynominterpolation $(\hat{y}(u) = p^T V^{-1} y)$:

$$\boldsymbol{l}^{\mathrm{T}} = \boldsymbol{p}^{\mathrm{T}} \boldsymbol{V}^{-1} \Rightarrow \boldsymbol{l} = (\boldsymbol{V}^{-1})^{\mathrm{T}} \boldsymbol{p}$$

Daraus folgt (ohne Beweis):

$$l_{i}(u) = \prod_{j=0, j\neq i}^{n-1} \frac{u - u_{j}}{u_{i} - u_{j}}$$

$$= \frac{(u - u_{0}) \cdots (u - u_{i-1}) \cdot (u - u_{i+1}) \cdots (u - u_{n-1})}{(u_{i} - u_{0}) \cdots (u_{i} - u_{i-1}) \cdot (u_{i} - u_{i+1}) \cdots (u_{i} - u_{n-1})}$$

Interpolation durch Lagrange-Polynome

$$l_i(u) = \prod_{j=0, j\neq i}^{n-1} \frac{u - u_j}{u_i - u_j}$$

$$= \frac{(u - u_0) \cdots (u - u_{i-1}) \cdot (u - u_{i+1}) \cdots (u - u_{n-1})}{(u_i - u_0) \cdots (u_i - u_{i-1}) \cdot (u_i - u_{i+1}) \cdots (u_i - u_{n-1})}$$

- Daraus folgt: $l_i(u_i) = \delta_i^j$
- Damit erhält man an den Stützstellen u_i :

$$\hat{y}(u_j) = \sum_{i=0}^{n-1} y_i l_i(u_j) = \sum_{i=0}^{n-1} y_i \delta_i^j = y_j$$

d. h. die Stützstellen werden (wie gefordert) exakt interpoliert

Interpolation durch Lagrange-Polynome

- Beispiel: 3 Messpunkte (Stützstellen)
 (u_a, y_a), (u_m, y_m), (u_e, y_e)
 mit u_m u_a = u_e u_m = h
 (äquidistante Abtastung)
 - Lagrange-Polynome:

$$l_0(u) = \frac{(u - u_{\rm m})(u - u_{\rm e})}{(u_{\rm a} - u_{\rm m})(u_{\rm a} - u_{\rm e})}$$

$$= \frac{1}{2h^2}(u - u_{\rm m})(u - u_{\rm e})$$

$$l_1(u) = \frac{(u - u_{\rm a})(u - u_{\rm e})}{(u_{\rm m} - u_{\rm a})(u_{\rm m} - u_{\rm e})}$$

$$= -\frac{1}{h^2}(u - u_{\rm a})(u - u_{\rm e})$$

$$l_2(u) = \frac{(u - u_{\rm a})(u - u_{\rm m})}{(u_{\rm e} - u_{\rm a})(u_{\rm e} - u_{\rm m})}$$

$$= \frac{1}{2h^2}(u - u_{\rm a})(u - u_{\rm m})$$

Interpolation durch Lagrange-Polynome

- Beispiel: 3 Messpunkte (Stützstellen)
 (u_a, y_a), (u_m, y_m), (u_e, y_e)
 mit u_m u_a = u_e u_m = h
 (äquidistante Abtastung)
 - Einsetzen in Interpolationsgleichung:

$$\hat{y}(u) = \sum_{i=0}^{2} y_i l_i(u)$$

$$= \frac{y_a}{2h^2} (u - u_m)(u - u_e)$$

$$-\frac{y_m}{h^2} (u - u_a)(u - u_e) + \frac{y_e}{2h^2} (u - u_a)(u - u_m)$$

■ Falls Stützstellen auf einer Geraden $(y_m = \frac{y_e}{2})$: $\hat{y}(u) = u \cdot \frac{y_e}{2h}$

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Interpolation durch Newton-Polynome

Ansatz: Verwendung von Newton-Polynomen:

$$\hat{y}(u) = a_0 + a_1(u - u_0) + a_2(u - u_0)(u - u_1) + \cdots + a_{n-1}(u - u_0)(u - u_1) \cdots (u - u_{n-2})$$

Rekursive Bestimmung der Koeffizienten aus den Interpolationsbedingungen:

$$u_0$$
: $y_0 = a_0$
 u_1 : $y_1 = a_0 + a_1(u_1 - u_0)$
 \vdots
 u_{n-1} : $y_{n-1} = a_0 + a_1(u_{n-1} - u_0) + a_2(u_{n-1} - u_0)(u_{n-1} - u_1) + \cdots$
 $+a_{n-1}(u_{n-1} - u_0)(u_{n-1} - u_1) \cdots (u_{n-1} - u_{n-2})$

 Vorteil: leichte Erweiterbarkeit beim Hinzufügen von Stützstellen, einfachere Basispolynome (als Lagrange-Polynome)

Interpolation durch Newton-Polynome

- Geschlossene Bestimmung der Koeffizienten für konstanten Stützstellenabstand h:
 - Dazu Einführung des Differenzenoperators: $\Delta y_i = y_{i+1} y_i$:
 - Es gelten das Distributivgesetz und das Kommutativgesetz bzgl. einer Konstanten
 - Höhere Differenzen: $\Delta^j y_i = \Delta^{j-1}(\Delta y_i) = \Delta^{j-1}(y_{i+1} y_i),$ z. B. $\Delta^2 y_i = \Delta(\Delta y_i) = \Delta(y_{i+1} - y_i) = \Delta y_{i+1} - \Delta y_i$ $= (y_{i+2} - y_{i+1}) - (y_{i+1} - y_i) = y_{i+2} - 2y_{i+1} + y_i$
 - Für den Differenzenoperator gilt: $y_i = (1 + \Delta)^i y_0$
 - Beweis mittels vollständiger Induktion:
 - Anfang i = 1: $y_1 = (1 + \Delta)y_0 = y_0 + (y_1 y_0) = y_1$
 - Schluss von $i \to i + 1$: $y_{i+1} = (1 + \Delta)^{i+1} y_0 = (1 + \Delta) \underbrace{(1 + \Delta)^i y_0}_{= (1 + \Delta) y_i}$ = $(1 + \Delta) y_i$ = $y_i + (y_{i+1} - y_i) = y_{i+1}$

hael Heizmann, III I, KII, alle Rechte einschließlich Kopler- und Weitergaberechte bei u

Interpolation durch Newton-Polynome

- Geschlossene Bestimmung der Koeffizienten für konstanten Stützstellenabstand h:
 - Ausmultiplizieren von $y_i = (1 + \Delta)^i y_0$:

$$y_{i} = y_{0} + \frac{i}{1!} \Delta y_{0} + \frac{i(i-1)}{2!} \Delta^{2} y_{0} + \cdots + \frac{i(i-1)\cdots(i-j+1)}{j!} \Delta^{j} y_{0} + \cdots + \frac{i!}{i!} \Delta^{i} y_{0}$$

Rekursive Bestimmung der Koeffizienten aus den Interpolationsbedingungen bei konstantem Stützstellenabstand h:

Interpolation durch Newton-Polynome

- Geschlossene Bestimmung der Koeffizienten für konstanten Stützstellenabstand h:
 - Vergleich:

$$\frac{i(i-1)\cdots(i-j+1)}{j!}\Delta^{j}y_{0} = a_{j}i(i-1)\cdots(i-j+1)h^{j}$$

$$\Rightarrow a_{j} = \frac{\Delta^{j}y_{0}}{j!h^{j}}$$

Damit also Interpolationsgleichung für konstanten Stützstellenabstand h:

$$\hat{y}(u) = y_0 + \frac{\Delta y_0}{h}(u - u_0) + \frac{\Delta^2 y_0}{2h^2}(u - u_0)(u - u_1) + \cdots + \frac{\Delta^{n-1} y_0}{(n-1)! h^{n-1}}(u - u_0)(u - u_1) \cdots (u - u_{n-2})$$

Interpolation durch Newton-Polynome

• Differenzenschema für $\Delta^j y_0$ für konstanten Stützstellenabstand h:

u	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
0	y_0				
		$\begin{array}{l} \rangle \ \Delta y_0 \\ = y_1 - y_0 \end{array}$			
h	y_1		$\begin{array}{l} \left. \begin{array}{l} \Delta^2 y_0 \\ = \Delta y_1 - \Delta y_0 \end{array} \right.$		
		$\begin{array}{l} \rangle \ \Delta y_1 \\ = y_2 - y_1 \end{array}$		$\begin{array}{l} \rangle \ \Delta^3 y_0 \\ = \Delta^2 y_1 - \Delta^2 y_0 \end{array}$	
2 <i>h</i>	y_2		$\begin{array}{l} \rangle \ \Delta^2 y_1 \\ = \Delta y_2 - \Delta y_1 \end{array}$		$\begin{array}{l} \rangle \ \Delta^4 y_0 \\ = \Delta^3 y_1 - \Delta^3 y_0 \end{array}$
		$\begin{array}{l} \rangle \ \Delta y_2 \\ = y_3 - y_2 \end{array}$		$\begin{array}{l} \rangle \ \Delta^3 y_1 \\ = \Delta^2 y_2 - \Delta^2 y_1 \end{array}$	
3 <i>h</i>	y_3		$\begin{array}{l} \rangle \ \Delta^2 y_2 \\ = \Delta y_3 - \Delta y_2 \end{array}$		
		$\begin{array}{l} \rangle \ \Delta y_3 \\ = y_4 - y_3 \end{array}$			
4h	y_4				

Interpolation durch Newton-Polynome

Interpolationsgleichung für nicht konstanten Stützstellenabstand:

$$\begin{split} \hat{y}(u) &= a_0 + a_1(u - u_0) + a_2(u - u_0)(u - u_1) + \cdots \\ &+ a_{n-1}(u - u_0)(u - u_1) \cdots (u - u_{n-2}) \end{split}$$
 mit $a_j = \Delta^j y_0$,
$$\Delta^{j+1} y_k = \frac{\Delta^j y_{k+1} - \Delta^j y_k}{u_{k+j+1} - u_k}, \quad \Delta^0 y_k = y_k \end{split}$$

Interpolation durch Newton-Polynome

• Verallgemeinertes Differenzenschema für $\Delta^j y_0$ für nicht konstanten Stützstellenabstand

u	у	Δy	$\Delta^2 y$	$\Delta^3 y$
$\overline{u_0}$	$\Delta^0 y_0 = y_0$			
		$\rangle \Delta y_0 = \frac{y_1 - y_0}{u_1 - u_0}$		
u_1	$\Delta^0 y_1 = y_1$		$\rangle \Delta^2 y_0 = \frac{\Delta y_1 - \Delta y_0}{u_2 - u_0}$	
		$\rangle \Delta y_1 = \frac{y_2 - y_1}{u_2 - u_1}$		
u_2	$\Delta^0 y_2 = y_2$		$\rangle \Delta^2 y_1 = \frac{\Delta y_2 - \Delta y_1}{u_3 - u_1}$	
		$\rangle \Delta y_2 = \frac{y_3 - y_2}{u_3 - u_2}$		
u_3	$\Delta^0 y_3 = y_3$			

Interpolation durch Newton-Polynome

- Vorgehen beim Hinzufügen einer Stützstelle (u_n, y_n) :
 - 1. Möglichkeit: Erweiterung des Differenzenschemas
 - 2. Möglichkeit: Rekursiver Ansatz:
 - Ausgangspunkt: aus n-1 Stützstellen berechnetes Polynom $\hat{y}_{n-1}(u)$ mit Grad n-1
 - Zufügung eines Polynoms für (u_n, y_n) : $\hat{y}_n(u) = \hat{y}_{n-1}(u) + a_n(u - u_0)(u - u_1) \cdots (u - u_{n-1})$
 - Neuer Punkt (u_n, y_n) muss interpoliert werden:

$$y_n = \hat{y}_{n-1}(u_n) + a_n(u_n - u_0)(u_n - u_1) \cdots (u_n - u_{n-1})$$

$$\Rightarrow a_n = \frac{y_n - \hat{y}_{n-1}(u_n)}{(u_n - u_0)(u_n - u_1) \cdots (u_n - u_{n-1})}$$

Interpolation durch Newton-Polynome

- Beispiel: 3 Messpunkte (Stützstellen) $(u_a, y_a), (u_m, y_m), (u_e, y_e)$ mit $u_m u_a = u_e u_m = h$ (äquidistante Abtastung), $u_a = 0, y_a = 0, u_m = h, u_e = 2h$
 - Differenzenschema:

u	у	Δy	$\Delta^2 y$
0	y_0		
		$\rangle \Delta y_0$	
h	y_1		$\Delta^2 y_0$
		$\rangle \Delta y_1$	
2h	y_2		

Interpolationsfunktion:

$$\hat{y}(u) = y_0 + \frac{\Delta y_0}{h}(u - u_0) + \frac{\Delta^2 y_0}{2h^2}(u - u_0)(u - u_1)$$

Interpolation durch Newton-Polynome

■ Beispiel: 3 Messpunkte (Stützstellen) $(u_a, y_a), (u_m, y_m), (u_e, y_e)$ mit $u_m - u_a = u_e - u_m = h$ (äquidistante Abtastung), $u_a = 0, y_a = 0, u_m = h, u_e = 2h$

Interpolationsfunktion:

$$\hat{y}(u) = y_0 + \frac{\Delta y_0}{h}(u - u_0) + \frac{\Delta^2 y_0}{2h^2}(u - u_0)(u - u_1)$$

$$= y_a + \frac{(y_m - y_a)}{h}(u - u_a) + \frac{(y_e - 2y_m + y_a)}{2h^2}(u - u_a)(u - u_m)$$

$$= \frac{y_m}{h}u + \frac{(y_e - 2y_m)}{2h^2}u(u - h)$$

Identisch zum Ergebnis bei Interpolation durch Lagrange-Polynome

■ Falls Stützstellen auf einer Geraden $(y_m = \frac{y_e}{2})$: $\hat{y}(u) = u \cdot \frac{y_e}{2h}$, siehe Lagrange-Polynome

- Nachteil der Interpolation durch Polynome:
 - Bei großer Anzahl von Messpunkten hohe Grade von Interpolationspolynomen erforderlich
 - Dadurch stark oszillierendes Verhalten der Interpolationsfunktion möglich
- Alternative: Zuweisung von Polynomen niedrigen Grades
 (z. B. vom Grad 3: kubische Polynome) zu Teilintervallen

- Einfachstes Verfahren: Polynome vom Grad 1: Geradenstücke
 - Interpolationsfunktion: n-1 Geradenstücke in den Intervallen $[u_i, u_{i+1}]$ für $i \in \{0, ..., n-2\}$

- Nachteil: bereits 1. Ableitung (entspricht Empfindlichkeit, s. Kap. 3) ist an den Stützstellen nicht mehr stetig
- Für Kennlinieninterpolation daher nicht geeignet (s. Kap 3)

- Abhilfe: Interpolation mit Splines
- Splines: mechanisches Modell von dünnen Latten (engl. splines)
- Idee: durch gegebene Stützstellen wird eine dünne, homogene Latte gelegt, keine Momente in den Stützstellen
- Entstehende Biegelinie wird als Lösung der Interpolationsaufgabe verwendet
- Ansatz zur Bestimmung der Biegelinie: Berechnung der in der Latte gespeicherten Energie in Abhängigkeit von deren Krümmung, Minimum der Energie führt zur Biegelinie
- Näherung für Krümmung: zweite Ableitung s''(u)
- Technische Mechanik:

$$E = \frac{1}{2} \int_{u_0}^{n-1} (s''(u))^2 du$$

- Biegelinie: $\int_{u_0}^{n-1} (s''(u))^2 du \rightarrow \min$
- Wunsch nach stetiger Ableitung: s(u) muss mindestens einmal stetig differenzierbar sein
- Variationsrechnung liefert:
 - $s_i(u_i) = y_i$ für $i \in \{0,1,...,n-1\}$ (Interpolationsbedingung)
 - $s_i''(u_i + 0) = s_{i-1}''(u_i 0)$ für $i \in \{0, 1, ..., n 2\}$ (d. h. auch zweite Ableitung ist stetig)
 - $s_0''(u_0) = s_{n-2}''(u_{n-1})$
 - s''''(u) = 0 für $u \notin u_0, ..., u_{n-1}$ (d. h. s(u) ist in jedem Teilintervall ein kubisches Polynom: kubische Splines)
- Erweiterung zu Splines höherer Ordnung möglich, aber ohne physikalische Motivation

Spline-Interpolation

Kubische Splines:

Spline-Interpolation

- Berechnung:
 - Ansatz: allgemeines Polynom 3. Grades: $s_i(u) = a_i(u - u_i)^3 + b_i(u - u_i)^2 + c_i(u - u_i) + d_i$ für jedes Teilintervall $[u_i, u_{i+1}]$ der Länge $h_i = u_{i+1} - u_i$
 - Anwendung der Bedingungen (4 Gleichungen für 4 Unbekannte):

$$s_{i}(u_{i}) = d_{i} = y_{i}$$

$$s_{i}(u_{i+1}) = a_{i}h_{i}^{3} + b_{i}h_{i}^{2} + c_{i}h_{i} + d_{i} = y_{i+1}$$

$$s'_{i}(u_{i}) = c_{i}$$

$$s'_{i}(u_{i+1}) = 3a_{i}h_{i}^{2} + 2b_{i}h_{i} + c_{i}$$

$$s''_{i}(u_{i}) = 2b_{i} = y''_{i+1}$$

$$s''_{i}(u_{i+1}) = 6a_{i}h_{i} + 2b_{i} = y''_{i+1}$$

Daraus Bestimmung der Koeffizienten:

$$a_{i} = \frac{1}{6h_{i}}(y_{i+1}^{"} - y_{i}^{"}), \qquad b_{i} = \frac{1}{2}y_{i}^{"}$$

$$c_{i} = \frac{1}{h_{i}}(y_{i+1} - y_{i}) - \frac{1}{6}h_{i}(y_{i+1}^{"} + 2y_{i}^{"}), \qquad d_{i} = y_{i}$$

- Berechnung:
 - Bestimmung der 2. Ableitungen y_i'' , y_{i+1}'' :
 - Dazu Nutzung der Stetigkeit der 1. Ableitung an den Stützstellen: $s'_i(u_{i+1}) = s'_{i+1}(u_{i+1})$
 - $s_i'(u_{i+1}) = 3a_i h_i^2 + 2b_i h_i + c_i$ $= 3\frac{1}{6h_i} (y_{i+1}'' y_i'') h_i^2 + 2\frac{1}{2} y_i'' h_i + \frac{1}{h_i} (y_{i+1} y_i) \frac{1}{6} (y_{i+1}'' + 2y_i'')$ $= \frac{1}{h_i} (y_{i+1} y_i) + \frac{h_i}{2} (y_{i+1}'' + y_i'') \frac{1}{6} (y_{i+1}'' + 2y_i'')$ $= \frac{1}{h_i} (y_{i+1} y_i) + \frac{h_i}{6} (2y_{i+1}'' + y_i'')$
 - $s'_{i+1}(u_{i+1}) = c_{i+1} = \frac{1}{h_{i+1}}(y_{i+2} y_{i+1}) \frac{1}{6}h_{i+1}(y''_{i+2} + 2y''_{i+1})$

Spline-Interpolation

Gleichsetzen:

$$h_{i}y_{i}'' + 2(h_{i} + h_{i+1})y_{i+1}'' + h_{i+1}y_{i+2}''$$

$$= \frac{6}{h_{i+1}}(y_{i+2} - y_{i+1}) - \frac{6}{h_{i}}(y_{i+1} - y_{i})$$

■ Mit $y_0'' = y_{n-1}'' = 0$ folgen also n-2 lineare Gleichungen für die unbekannten 2. Ableitungen $y_1'', y_2'', ..., y_{n-2}''$:

$$\begin{bmatrix} 2(h_0 + h_1) & h_1 & 0 & \cdots & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & h_{n-3} & 2(h_{n-3} + h_{n-2}) \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ \vdots \\ y_{n-2}'' \end{bmatrix}$$

$$= \begin{bmatrix} \frac{6}{h_1}(y_2 - y_1) - \frac{6}{h_0}(y_1 - y_0) \\ \frac{6}{h_2}(y_3 - y_2) - \frac{6}{h_1}(y_2 - y_1) \\ \vdots \\ \frac{6}{h_{n-2}}(y_{n-1} - y_{n-2}) - \frac{6}{h_{n-3}}(y_{n-2} - y_{n-3}) \end{bmatrix}$$

- Beispiel: Interpolation einer Sinusfunktion $y(u) = \sin\left(\frac{\pi}{2}u\right)$ im Intervall [-2;2] durch Lagrange-Funktionen und Spline-Funktionen
 - Stützstellen:

$$u = [-2; -1; 0; 1; 2]; y = [0; -1; 0; 1; 0]$$

Ergebnis der Lagrange-Interpolation:

$$\hat{y}_{L}(u) = -\frac{1}{3}u^3 + \frac{4}{3}u, \qquad -2 \le u \le 2$$

• Spline-Interpolation: y'' = [0; 3; 0; -3; 0], Interpolationsfunktion:

$$\hat{y}_{S}(u) = s(u) = \begin{cases} \frac{1}{2}u^{3} + 3u^{2} + \frac{9}{2}u + 1 & \text{für } u < -1 \\ -\frac{1}{2}u^{3} + \frac{3}{2}u & \text{für } -1 \le u < 1 \\ \frac{1}{2}u^{3} - 3u^{2} + \frac{9}{2}u - 1 & \text{für } u \ge 1 \end{cases}$$

■ Beispiel: Interpolation einer Sinusfunktion $y(u) = \sin\left(\frac{\pi}{2}u\right)$ im Intervall [-2; 2] durch Lagrange-Funktionen und Spline-Funktionen

Spline-Interpolation liefert in diesem Fall die bessere N\u00e4herung

Systemtheoretische Deutung der Interpolation

• Für äquidistante Stützstellen: Beobachtung lässt sich durch Multiplikation einer kontinuierlichen Funktion y(u) mit einer Impulsreihe (mit Δu : Stützstellenabstand) ausdrücken:

$$y_*(u) = y(u) \cdot \sum_{n=-\infty}^{\infty} \delta(u - n \Delta u)$$

- Dadurch verschwindet die abgetastete Funktion $y_*(u)$ für alle $u \neq n \Delta u, n \in \mathbb{Z}$
- Bestimmte Interpolationsverfahren können als Faltung dieses abgetasteten Signals $y_*(u)$ mit einem linearen, verschiebungsinvarianten Interpolationsfilter mit der Impulsantwort i(u) dargestellt werden:

$$\hat{y}(u) = \left[y(u) \cdot \sum_{n = -\infty}^{\infty} \delta(u - n \Delta u) \right] * i(u)$$

Fouriertransformierte:

$$\widehat{Y}(f) = \left[\frac{1}{\Delta u} \cdot \sum_{k=-\infty}^{\infty} Y\left(f - \frac{k}{\Delta u}\right)\right] \cdot I(f)$$

Systemtheoretische Deutung der Interpolation

- D. h. Faltung des Abtastsignals $y_*(u)$ mit der Impulsantwort i(u) entspricht im Frequenzbereich der Fourier-Transformation einer Multiplikation des periodisch fortgesetzten Spektrums Y(f) mit der Übertragungsfunktion I(f) des Interpolationsfilters
- Für Interpolationsfunktionen i(u) mit geeigneter Charakteristik (z. B. Tiefpassverhalten): Rekonstruktion des ursprünglichen Signals y(u) möglich (siehe Kap. 7)

Systemtheoretische Deutung der Interpolation

Beispiele:

Interpolationsart	Ordnung	i(u)	I(f)
Nächster-Nachbar-Interpolation	0	$\operatorname{rect}\left(\frac{u}{\Delta u}\right)$	$\Delta u \operatorname{sinc}(f \Delta u)$
Lineare Interpolation	1	$\Lambda\left(\frac{u}{\Delta u}\right)$	$\Delta u \operatorname{sinc}^2(f \Delta u)$
Ideale Interpolation	∞	$\operatorname{sinc}\left(\frac{u}{\Delta u}\right)$	$\Delta u \operatorname{rect}(f \Delta u)$

$$rect\left(\frac{x}{B}\right) = \begin{cases} 1 & \text{für } |x| < \frac{B}{2} \\ 0 & \text{sonst} \end{cases}$$

$$\Lambda\left(\frac{x}{B}\right) = \text{rect}\left(\frac{x}{B}\right) * \text{rect}\left(\frac{x}{B}\right) = \begin{cases} 1 - \left|\frac{x}{B}\right| & \text{für } |x| < B \\ 0 & \text{sonst} \end{cases}$$

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

2.3 Kennfeldinterpolation

- Bisher: Interpolation bzw. Approximation einer eindimensionalen Funktion
- Jetzt: zweidimensionale Interpolation
- Anwendung: z. B. Abhängigkeit der Ausgangsgröße y von der Messgröße u und einer systematischen Störgröße z, dazu Messung von Kennfeldwerten y_i an den (zweidimensionalen) Stützstellen (u_i, z_i)
- Zweidimensionale Polynominterpolation:

$$\hat{y}(u,z) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_{ij} u^i z^j$$

$$y(u,z) = f(u_i + \Delta u, z_j + \Delta z)$$

$$\approx f(u_i, z_j) + \frac{\partial f}{\partial u}(u_i, z_j) \Delta u + \frac{\partial f}{\partial z}(u_i, z_j) \Delta z + \frac{\partial^2 f}{\partial u \partial z}(u_i, z_j) \Delta u \Delta z$$

(mit abkürzender Schreibweise: $\frac{\partial f}{\partial u}(u_i, z_j) \coloneqq \frac{\partial f(u, z)}{\partial u}\Big|_{u_i, z_j}$)

Approximation der Ableitungen durch Differenzenquotienten:

$$y(u,z) \approx y(u_i,z_j) + \frac{\Delta y(u_i)}{\Delta u_i} \Delta u + \frac{\Delta y(z_j)}{\Delta z_j} \Delta z + \frac{\Delta^2 y(u_i,z_j)}{\Delta u_i \Delta z_j} \Delta u \Delta z$$

Bilineare Interpolation

$$\Delta y(u_i) = y(u_{i+1}, z_j) - y(u_i, z_j) = y_{10} - y_{00},$$

$$\Delta y(z_j) = y(u_i, z_{j+1}) - y(u_i, z_j) = y_{01} - y_{00},$$

$$\Delta y^2(u_i, z_j) = y(u_{i+1}, z_{j+1}) - y(u_{i+1}, z_j) - y(u_i, z_{j+1}) + y(u_i, z_j)$$

$$= y_{11} - y_{10} - y_{01} + y_{00}$$

■ Bei normierter Stützstellenweite $\Delta u_i = \Delta z_i = 1$:

$$y(u,z) \approx y(u_{i},z_{j}) + \frac{\Delta y(u_{i})}{\Delta u_{i}} \Delta u + \frac{\Delta y(z_{j})}{\Delta z_{j}} \Delta z + \frac{\Delta^{2} y(u_{i},z_{j})}{\Delta u_{i} \Delta z_{j}} \Delta u \Delta z$$

$$= y_{00} + (y_{10} - y_{00}) \Delta u + (y_{01} - y_{00}) \Delta z + (y_{11} - y_{10} - y_{01} + y_{00}) \Delta u \Delta z$$

$$= y_{00} (1 - \Delta u) (1 - \Delta z) + y_{10} \Delta u (1 - \Delta z) + y_{01} (1 - \Delta u) \Delta z + y_{11} \Delta u \Delta z$$

d. h. Gewichtung der Stützstellen in Abhängigkeit von ihrem Abstand zur Interpolationsstelle

2.3 Kennfeldinterpolation

 D. h. Gewichtung der Stützstellen in Abhängigkeit von ihrem Abstand zur Interpolationsstelle

 Lineare Interpolation:
 Unstetigkeiten der Steigung an den Intervallgrenzen

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

2.3 Kennfeldinterpolation

Rechnergestützte Kennfeldberechnung

- Gesucht: günstige Darstellung der Kennfeldinterpolation für die Implementierung auf einem Rechner
- Dazu meist Beschränkung der Berechnung auf ein festes Raster der Breite q_u bzw. q_z zwischen den Stützstellen
- Annahme: Intervallbreite von u und z besitzen die gleiche Auflösung 2^r bei vorgegebener Quantisierung q_u und q_z
- Damit Rasterung des Intervalls in Zweierpotenzen:

$$\Delta u_i = u_{i+1} - u_i = 2^r q_u, \quad \Delta z_j = z_{j+1} - z_j = 2^r q_z$$

•
$$y(u,z) \approx y(u_{i},z_{j}) + \frac{\Delta y(u_{i})}{\Delta u_{i}} \Delta u + \frac{\Delta y(z_{j})}{\Delta z_{j}} \Delta z + \frac{\Delta^{2} y(u_{i},z_{j})}{\Delta u_{i} \Delta z_{j}} \Delta u \Delta z$$

$$= y(u_{i},z_{j}) + \frac{y(u_{i+1},z_{j}) - y(u_{i},z_{j})}{2^{r}} \frac{\Delta u}{q_{u}} + \frac{y(u_{i},z_{j+1}) - y(u_{i},z_{j})}{2^{r}} \frac{\Delta z}{q_{u}} + \frac{y(u_{i},z_{j+1}) - y(u_{i},z_{j})}{2^{r}} \frac{\Delta u}{q_{u}} + \frac{y(u_{i},z_{j+1}) - y(u_{i},z_{j})}{2^{r}} \frac{\Delta u}{q_{u}} \frac{\Delta z}{q_{u}}$$

Rechnergestützte Kennfeldberechnung

Ordnen der Summanden nach den Stützstellen:

$$y(u,z) \approx y(u_{i},z_{j}) \left[1 - \frac{1}{2^{r}} \frac{\Delta u}{q_{u}} - \frac{1}{2^{r}} \frac{\Delta z}{q_{z}} + \frac{1}{2^{2r}} \frac{\Delta u}{q_{u}q_{z}} \right]$$

$$+ y(u_{i+1},z_{j}) \left[\frac{1}{2^{r}} \frac{\Delta u}{q_{u}} - \frac{1}{2^{2r}} \frac{\Delta u}{q_{u}q_{z}} \right]$$

$$+ y(u_{i},z_{j+1}) \left[\frac{1}{2^{r}} \frac{\Delta z}{q_{z}} - \frac{1}{2^{2r}} \frac{\Delta u}{q_{u}q_{z}} \right]$$

$$+ y(u_{i+1},z_{j+1}) \frac{1}{2^{2r}} \frac{\Delta u}{q_{u}q_{z}}$$

$$= \frac{1}{2^{2r}} \left[y(u_{i},z_{j}) \left(2^{r} - \frac{\Delta u}{q_{u}} \right) \left(2^{r} - \frac{\Delta z}{q_{z}} \right) + y(u_{i+1},z_{j+1}) \frac{\Delta u}{q_{u}q_{z}} \right]$$

$$+ y(u_{i+1},z_{j}) \frac{\Delta u}{q_{u}} \left(2^{r} - \frac{\Delta z}{q_{z}} \right) + y(u_{i},z_{j+1}) \frac{\Delta z}{q_{z}} \left(2^{r} - \frac{\Delta u}{q_{u}} \right) \right]$$

$$= \frac{1}{2^{2r}} \sum_{l=1}^{1} \sum_{n=1}^{1} k_{m,n} y(u_{i+m},z_{j+n})$$

Rechnergestützte Kennfeldberechnung

In Summenschreibweise:

$$y(u,z) = \frac{1}{2^{2r}} \sum_{m=0}^{1} \sum_{n=0}^{1} k_{m,n} \cdot y(u_{i+m}, z_{j+n})$$
mit $k_{m,n} = \left((m-1)2^r + (-1)^m \frac{\Delta u}{q_u} \right) \left((n-1)2^r + (-1)^n \frac{\Delta z}{q_z} \right)$

d. h. Gewichtung mit dem Produkt der gegenüberliegenden Teilintervalle

2.3 Kennfeldinterpolation

Rechnergestützte Kennfeldberechnung

Gewichtung mit dem Produkt der gegenüberliegenden Teilintervalle,

z. B.
$$k_{0,1} = \left(-2^r + \frac{\Delta u}{q_u}\right)\left(-\frac{\Delta z}{q_z}\right) = \frac{2^r q_u - \Delta u}{q_u} \cdot \frac{\Delta z}{q_z}$$

■ Produkt der Teilintervalle $(u_{i+1} - \Delta u)\Delta z$

• Je näher die Interpolationsstelle (u, z)

an einer Stützstelle rückt, desto

stärker geht diese in das Ergebnis

ein

Rechnergestützte Kennfeldberechnung

Summe der Koeffizienten:

$$\begin{split} \sum_{m=0}^{1} \sum_{n=0}^{1} k_{m,n} &= \left(-2^{r} + \frac{\Delta u}{q_{u}}\right) \left(-2^{r} + \frac{\Delta z}{q_{z}}\right) + \left(-2^{r} + \frac{\Delta u}{q_{u}}\right) \left(-\frac{\Delta z}{q_{z}}\right) \\ &+ \left(-\frac{\Delta u}{q_{u}}\right) \left(-2^{r} + \frac{\Delta z}{q_{z}}\right) + \left(-\frac{\Delta u}{q_{u}}\right) \left(-\frac{\Delta z}{q_{z}}\right) \\ &= 2^{2r} - 2^{r} \frac{\Delta u}{q_{u}} - 2^{r} \frac{\Delta z}{q_{z}} + \frac{\Delta u}{q_{u}} \frac{\Delta z}{q_{z}} + 2^{r} \frac{\Delta z}{q_{z}} - \frac{\Delta u}{q_{u}} \frac{\Delta z}{q_{z}} \\ &+ 2^{r} \frac{\Delta u}{q_{u}} - \frac{\Delta u}{q_{u}} \frac{\Delta z}{q_{z}} + \frac{\Delta u}{q_{u}} \frac{\Delta z}{q_{z}} \\ &= 2^{2r} \end{split}$$