The LATEX Template for MCM Version v6.3.1

Summary

Keywords: keyword1; keyword2

The LATEX Template for MCM Version v6.3.1

-----{ LATEX Studio}-----

February 21, 2022

Summary

Keywords: keyword1; keyword2

Contents

1	Intr	oauction														3
	1.1	Background .									 			 		3
	1.2	Problem State	ment							 •	 			 		3
	1.3	Problem Anal	ysis								 			 		3
2	Assu	ımption														3
3	Data	a Processing														3
	3.1	Data Screenin	g							 •	 		 •	 		5
	3.2	Data Visualiza	ition							 •	 			 		5
	3.3	Mining Time	Series							 •	 			 		5
		3.3.1 Stabili	ty Test							 •	 			 		5
		3.3.2 White	Noise Test							 •	 	•	 •	 		5
4	PartModel Development										5					
	4.1	Time Series M	lodel ARIM.	A - Dat	a Fore	casti	ng			 •	 			 		5
		4.1.1 Train	the Model W	ith All	the Da	ata .				 •	 			 		5
		4.1.2 Model	Validating							 •	 			 		5
		4.1.3 Model	Prediction a	and Vis	ualiza	tion				 •	 		 •	 		5
		4.1.4 Batch	prediction of	f data						 •	 		 •	 		5
	4.2	Investment De	cision Mode	l - Dyn	amic l	Progr	amr	ning	g .	 •	 			 		5
		4.2.1 Buy as	nd Sell Stand	lard Set	tting					 •	 		 •	 		5
		4.2.2 Portfo	lio Optimal l	Ratio Id	dentific	cation	1.			 •	 			 		5
		4.2.3 Position	oning Standa	rd Iden	tificati	ion .				 •	 			 		5
		4.2.4 Daily	Portfolio De	termina	ations					 •	 			 		5
5	Part:Strategy Evaluation										5					
	5.1	Set Perturbation Terms							5							
	5.2	Comparison II	lustrates the	Best St	trategy	<i>7</i>					 			 		5

Team # 0000 Page 2 of 7

6	Part:Sensitivity Analysis										
	6.1	Assuming Changes In Commission	5								
	6.2	Visualization Results	5								
7	Evaluate of the Model										
	7.1	Strengths and weaknesses	5								
	7.2	Sensitivity Analysis	5								
8	Con	clusions	5								
9	A Memo										
Appendices											
Appendix A First appendix											
Appendix B Second appendix											

Team # 0000 Page 3 of 7

1 Introduction

1.1 Background

which means , to develop a model that uses only the past stream of daily prices to date to determine each day if the trader should buy, hold, or sell their assets in their portfolio.

1.2 Problem Statement

1.

2.

3.

4.

5.

6. Determine how sensitive the strategy is to transaction costs

1.3 Problem Analysis

2 Assumption

3 Data Processing

Team # 0000 Page 4 of 7

Team # 0000 Page 5 of 7

- 3.1 Data Screening
- 3.2 Data Visualization
- 3.3 Mining Time Series
- 3.3.1 Stability Test
- 3.3.2 White Noise Test

4 PartModel Development

- 4.1 Time Series Model ARIMA Data Forecasting
- 4.1.1 Train the Model With All the Data
- 4.1.2 Model Validating
- 4.1.3 Model Prediction and Visualization
- 4.1.4 Batch prediction of data
- 4.2 Investment Decision Model Dynamic Programming
- 4.2.1 Buy and Sell Standard Setting
- 4.2.2 Portfolio Optimal Ratio Identification
- 4.2.3 Positioning Standard Identification
- **4.2.4** Daily Portfolio Determinations

5 Part:Strategy Evaluation

- **5.1** Set Perturbation Terms
- **5.2** Comparison Illustrates the Best Strategy
- 6 Part:Sensitivity Analysis
- **6.1** Assuming Changes In Commission
- **6.2** Visualization Results
- 7 Evaluate of the Model
- 7.1 Strengths and weaknesses
- 7.2 Sensitivity Analysis
- 8 Conclusions
- 9 A Memo

References

Team # 0000 Page 6 of 7

[2] Lamport, Leslie, Lamport, Leslie, Lamport, Company, 1986.

[3] https://www.latexstudio.net/

Appendices

Appendix A First appendix

In addition, your report must include a letter to the Chief Financial Officer (CFO) of the Goodgrant Foundation, Mr. Alpha Chiang, that describes the optimal investment strategy, your modeling approach and major results, and a brief discussion of your proposed concept of a return-on-investment (ROI). This letter should be no more than two pages in length.

Dear, Mr. Alpha Chiang

Sincerely yours,

Your friends

Here are simulation programmes we used in our model as follow.

Input matlab source:

```
function [t,seat,aisle] = OI6Sim(n,target,seated)
pab = rand(1,n);
for i = 1:n
    if pab(i) < 0.4
        aisleTime(i) = 0;
    else
        aisleTime(i) = trirnd(3.2,7.1,38.7);
    end
end</pre>
```

Appendix B Second appendix

some more text **Input C++ source:**

#include <iostream>

Team # 0000 Page 7 of 7

```
#include <cstdlib>
#include <ctime>
using namespace std;
int table[9][9];
int main() {
    for(int i = 0; i < 9; i++) {</pre>
       table[0][i] = i + 1;
    srand((unsigned int)time(NULL));
    shuffle((int *)&table[0], 9);
    while(!put_line(1))
        shuffle((int *)&table[0], 9);
    for (int x = 0; x < 9; x++) {
        for (int y = 0; y < 9; y++) {
           cout << table[x][y] << " ";
        cout << endl;</pre>
    return 0;
}
```