Swift observations of 2I/Borisov

Lucy/Zexi Xing (The University of Hong Kong, Auburn University),
Dennis Bodewits (Auburn University),
John Noonan (University of Arizona),
Michele Bannister (Queen's University Belfast, University of Canterbury)

UVOT/Swift

UVOT:

Telescope aperture: 30cm

FoV: 17 by 17 arcmin

Plate scale: 1 arcsec/pixel for

lenticular filters

Waverange: 1600-8000A

Colors: figure below

Table 1. Summary of the observing log

	Start Time	End Time	$r_{ m h}$	$\mathrm{d}r_{\mathrm{h}}$	Δ	S-T-O	UVW1 $T_{\rm exp}$	$V T_{\rm exp}$
			(AU)	(km/s)	(AU)	(°)	(s)	(s)
Sep 27 UT	2019-09-27T03:06:26.000	2019-09-27T14:38:55.000	2.56	-23.54	3.1	17.31	8204.59 (8204.59)	3099.12 (2712.24)
Nov 01 UT	2019-11-01T14:07:07.000	2019-11-02T01:37:46.000	2.17	-14.43	2.42	24.24	7203.27 (5486.77)	3097.79 (1935.43)
Dec 01 UT	2019-12-01T03:17:14.000	$2019\hbox{-}12\hbox{-}01\mathrm{T}21\hbox{:}16\hbox{:}55.000$	2.01	-3.0	2.04	28.12	8147.0 (5071.03)	3091.99 (385.74)

UVW1/V Filter

H₂O <- OH <- UVW1(total) - <u>UVW1(solar reflection)</u> [derived by V(total)]

Observation

Table 1.	Summary	of the	observing	log
----------	---------	--------	-----------	-----

	Start Time	End Time	$r_{ m h}$ $dr_{ m h}$		Δ	S-T-O	UVW1 $T_{\rm exp}$	$V T_{\rm exp}$
			(AU)	(km/s)	(AU)	(°)	(s)	(s)
Sep 27 UT	2019-09-27T03:06:26.000	2019-09-27T14:38:55.000	2.56	-23.54	3.1	17.31	8204.59 (8204.59)	3099.12 (2712.24)
Nov 01 UT	2019-11-01T14:07:07.000	2019-11-02T01:37:46.000	2.17	-14.43	2.42	24.24	7203.27 (5486.77)	3097.79 (1935.43)
Dec 01 UT	2019-12-01T03:17:14.000	2019-12-01T21:16:55.000	2.01	-3.0	2.04	28.12	8147.0 (5071.03)	3091.99 (385.74)

- Carried out every observation by **multiple exposures** to remove smearing
- **Discarded** exposures heavily contaminated by background stars
- Aligned and co-added the left exposures to increase SNR

Reduction Procedure

(α =0.093 for un-reddened solar spectrum)

$$C_{\text{OH}} = C_{\text{UVW1}} - \alpha \cdot C_{\text{V}}$$

- 2 aperture photometry
- subtract V from UVW1 image

β can be estimated by a model of OH spectrum

Nmol within the aperture

5 got Nmol for a series of annuli within the aperture (80 000km)

column density profile

6 adjust reddening (α)to fit vectorial model

water production rate

Results

Midtime	$\Delta T_{\rm peri}$	rFoV	Filter	C_{filter}	$m_{ m filter}$	$Flux_{filter}$	C_{OH}	reddening
	(days)	(arcsec/km)		$(\operatorname{cts}\operatorname{s}^{-1})$	(mag)	$({\rm erg}{\rm s}^{-1}cm^{-2})$	$(\mathrm{cts}\mathrm{s}^{-1})$	(%)
2019-09-27T08:52:40.500	-72.2	36/8.1E+04	V	$1.5 {\pm} 0.4$	17.4 ± 0.3	(3.7 ± 1.0) E-13	$0.0 {\pm} 0.1$	0
			UVW1	0.14 ± 0.07	19.7 ± 0.6	$(1.4\pm0.4)E-12$		
2019-11-01T19:52:26.500	-36.7	46/8.1E+04	V	7.4 ± 0.6	15.7 ± 0.1	(1.8 ± 0.2) E-12	0.4 ± 0.1	7
			UVW1	1.0 ± 0.1	17.5 ± 0.1	(5.4 ± 0.5) E-12		
2019-12-01T12:17:04.500	-7.0	54/8.0E+04	V	5.1 ± 1.1	16.1 ± 0.2	(1.2±0.3)E-12	1.4 ± 0.1	18
		*	UVW1	1.7 ± 0.1		(2.7±0.6)E-12		
						(

g-factor $(\operatorname{erg} \operatorname{s}^{-1} \operatorname{mol}^{-1})$	N _{mol} (mol)	(mol s^{-1})	(km^2)	active radius (km)	Afρ (m)	phase cor (0 deg)	(m)
3.7E-16 5.5E-16		(0.1±2.5)E+26 (4.6±1.5)E+26	0.0±0.4 0.5±0.2	0.03 ± 0.55 0.20 ± 0.03	0.46 ± 0.04 0.49 ± 0.02	0.55 0.46	0.84±0.06 1.05±0.05
5.5E-16		(1.1±0.1)E+27	1.1±0.1	0.30±0.01	0.41±0.03	0.43	0.95±0.07
	(0.0_0.0),	(======================================				0.00	

