Querying Semantic Web Data with SPARQL (and SPARQL 1.1)

Marcelo Arenas

PUC Chile

Semantic Web

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

[Tim Berners-Lee et al. 2001.]

Specific goals:

- Build a description language with standard semantics
 - Make semantics machine-processable and understandable
- Incorporate logical infrastructure to reason about resources
- ▶ W3C proposals: Resource Description Framework (RDF) and SPARQL

An example of an RDF graph: DBLP

```
: <http://dblp.13s.de/d2r/resource/authors/>
     conf: <http://dblp.13s.de/d2r/resource/conferences/>
   inPods: <a href="http://dblp.13s.de/d2r/resource/publications/conf/pods/">http://dblp.13s.de/d2r/resource/publications/conf/pods/>
      swrc: <http://swrc.ontoware.org/ontology#>
        dc: <http://purl.org/dc/elements/1.1/>
       dct: <http://purl.org/dc/terms/>
        conf:pods
                                                  "Optimal Aggregation ..."
swrc:series
                                                                                          : Amnon_Lotem
                                                               dc:title
                               dct:PartOf
                                                                         dc:creator
       inPods:2001
                                                  inPods:FaginLN01
                                                                        dc:creator
                                                                                           :Moni_Naor
                                                                                          :Ronald_Fagin
```

Querying RDF: SPARQL

- ► SPARQL is the W3C recommendation query language for RDF (January 2008).
 - ► SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query Language
- SPARQL is a graph-matching query language.
- A SPARQL query consists of three parts:
 - ▶ Pattern matching: optional, union, filtering, . . .
 - Solution modifiers: projection, distinct, order, limit, offset, . . .
 - Output part: construction of new triples,

SELECT ?Author

```
SELECT ?Author
WHERE
{
}
```

Outline of the talk

- RDF and SPARQL
- ▶ New features in SPARQL 1.1
 - Entailment regimes for RDFS and OWL
 - Navigational capabilities: Property paths
 - An operator to distribute the execution of a query
- Take-home message

Outline of the talk

- RDF and SPARQL
- ▶ New features in SPARQL 1.1
 - Entailment regimes for RDFS and OWL
 - Navigational capabilities: Property paths
 - An operator to distribute the execution of a query
- Take-home message

I : set of IRIs

B : set of blank nodes

L : set of literals

! set of IRIs

B : set of blank nodes

L : set of literals

 $(s, p, o) \in (I \cup B) \times I \times (I \cup B \cup L)$ is called an RDF triple

l : set of IRIs

 ${f B}$: set of blank nodes

L : set of literals

$$(s, p, o) \in (I \cup B) \times I \times (I \cup B \cup L)$$
 is called an RDF triple

A finite set of RDF triples is called an RDF graph

Proviso

- We do not consider blank nodes in RDF graphs
 - ▶ $(s, p, o) \in I \times I \times (I \cup L)$ is called an RDF triple
- We consider blank nodes in queries
 - ► Each blank node is assumed to start with _:, for example _:b and _:b1

SPARQL: An algebraic syntax

V: set of variables

Each variable is assumed to start with ?

Triple pattern: $t \in (I \cup B \cup V) \times (I \cup V) \times (I \cup B \cup L \cup V)$

Examples: $(?X, name, john), (?X, name, ?Y), (?X, name, _:b)$

Basic graph pattern (bgp): Finite set of triple patterns

Examples: {(?X, knows, ?Y), (?Y, name, john)}, {(?X, knows, _:b), (_:b, name, john)}

SPARQL: An algebraic syntax (cont'd)

Recursive definition of SPARQL graph patterns:

- Every basic graph pattern is a graph pattern
- ▶ If P_1 , P_2 are graph patterns, then $(P_1 \text{ AND } P_2)$, $(P_1 \text{ OPT } P_2)$, $(P_1 \text{ UNION } P_2)$ are graph pattern
- ▶ If P is a graph pattern and R is a built-in condition, then (P FILTER R) is a graph pattern

SPARQL query:

▶ If P is a graph pattern and W is a finite set of variables, then (SELECT W P) is a SPARQL query

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$\mu : \mathbf{V} \longrightarrow (\mathbf{I} \cup \mathbf{L})$$

The evaluation of a graph pattern results in a set of mappings.

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$\mu : \mathbf{V} \longrightarrow (\mathbf{I} \cup \mathbf{L})$$

The evaluation of a graph pattern results in a set of mappings.

Semantics of SPARQL: Basic graph patterns

Additional notation: $\sigma: \mathbf{B} \to (\mathbf{I} \cup \mathbf{L})$ is an instance mapping.

Semantics of SPARQL: Basic graph patterns

Additional notation: $\sigma : \mathbf{B} \to (\mathbf{I} \cup \mathbf{L})$ is an instance mapping.

Let P be a basic graph pattern

var(P): set of variables mentioned in P

Definition

The evaluation of P over an RDF graph G, denoted by $[P]_G$, is the set of mappings μ :

- $ightharpoonup dom(\mu) = var(P)$
- ▶ there exists an instance mapping σ such that $\mu(\sigma(P)) \subseteq G$

```
\begin{array}{c|ccccc} \text{graph} & \text{bgp} & \text{evaluation} \\ (R_1, \text{ name, john}) & & \hline{?X} & \hline{?Y} \\ (R_1, \text{ email, J@ed.ex}) & (?X, \text{ name, } ?Y) & \mu_1: & R_1 & \text{john} \\ (R_2, \text{ name, paul}) & & \mu_2: & R_2 & \text{paul} \\ \end{array}
```

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If
$$?X \in dom(\mu_1) \cap dom(\mu_2)$$
, then $\mu_1(?X) = \mu_2(?X)$.

Example

	? <i>X</i>	? <i>Y</i>	? <i>Z</i>	? <i>V</i>
ι_1 :	R_1	john		
<i>ι</i> ₂ :	R_1		J@edu.ex	
<i>ı</i> 3:			P@edu.ex	R_2

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If
$$?X \in dom(\mu_1) \cap dom(\mu_2)$$
, then $\mu_1(?X) = \mu_2(?X)$.

Example

 $\mu_1 : \\
\mu_2 : \\
\mu_3 :$

?X	? <i>Y</i>	? <i>Z</i>	? <i>V</i>
R ₁ R ₁	john	J@edu.ex P@edu.ex	R_2

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If
$$?X \in dom(\mu_1) \cap dom(\mu_2)$$
, then $\mu_1(?X) = \mu_2(?X)$.

Example

 μ_1 : μ_2 : μ_3 :

 $\mu_1 \cup \mu_2$:

? <i>X</i>	7 <i>Y</i>	77	? <i>\</i> /
: /\	: /	; Z	. v
R_1	john		
R_1		J@edu.ex	
		P@edu.ex	R_2
R_1	john	J@edu.ex	

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If
$$?X \in dom(\mu_1) \cap dom(\mu_2)$$
, then $\mu_1(?X) = \mu_2(?X)$.

Example

 R_1 john μ_1 : R_1 J@edu.ex μ_2 : P@edu.ex μ_3 : R_1 J@edu.ex john

 $\mu_1 \cup \mu_2$:

 R_2

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If
$$?X \in dom(\mu_1) \cap dom(\mu_2)$$
, then $\mu_1(?X) = \mu_2(?X)$.

Example

	? <i>X</i>	? <i>Y</i>	? <i>Z</i>	? <i>V</i>
μ_1 :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
$\mu_1 \cup \mu_2$:	R_1	john	J@edu.ex	
$\mu_1 \cup \mu_3$:	R_1	john	P@edu.ex	R_2

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If
$$?X \in dom(\mu_1) \cap dom(\mu_2)$$
, then $\mu_1(?X) = \mu_2(?X)$.

Example

	? <i>X</i>	?Y	? <i>Z</i>	? <i>V</i>
μ_{1} :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
$\mu_1 \cup \mu_2$:	R_1	john	J@edu.ex	
$\mu_1 \cup \mu_3$:	R_1	john	P@edu.ex	R_2

 \blacktriangleright μ_2 and μ_3 are not compatible

Sets of mappings and operations

Let Ω_1 and Ω_2 be sets of mappings.

Definition

Join: extends mappings in Ω_1 with compatible mappings in Ω_2

▶ $\Omega_1 \bowtie \Omega_2 = \{\mu_1 \cup \mu_2 \mid \mu_1 \in \Omega_1, \mu_2 \in \Omega_2 \text{ and } \mu_1, \mu_2 \text{ are compatible}\}$

Difference: selects mappings in Ω_1 that cannot be extended with mappings in Ω_2

• $\Omega_1 \setminus \Omega_2 = \{\mu_1 \in \Omega_1 \mid \text{there is no mapping in } \Omega_2 \text{ compatible with } \mu_1\}$

Sets of mappings and operations

Definition

Union: includes mappings in Ω_1 and in Ω_2

Left Outer Join: extends mappings in Ω_1 with compatible mappings in Ω_2 if possible

$$\blacktriangleright \ \Omega_1 \bowtie \Omega_2 = (\Omega_1 \bowtie \Omega_2) \cup (\Omega_1 \smallsetminus \Omega_2)$$

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

```
Definition
```

```
[(P_1 \text{ AND } P_2)]_G =
[(P_1 \text{ UNION } P_2)]_G =
[(P_1 \text{ OPT } P_2)]_G =
[(\text{SELECT } W P)]_G =
```

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

```
((?X, name, ?Y) OPT (?X, email, ?E))
```

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

? <i>X</i>	? <i>Y</i>
R_1	john
R_2	paul

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

?X	? <i>Y</i>
R_1	john
R_2	paul

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

?X	? <i>Y</i>
R_1	john
R_2	paul

?X	?E
R_1	J@ed.ex

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

?X	? <i>Y</i>
R_1	john
R_2	paul

? <i>X</i>	?E
R_1	J@ed.ex

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

?X	? <i>Y</i>
R_1	john
R_2	paul

?X	?Y	?E

?X	?E
R_1	J@ed.ex

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

((?X, name, ?Y) OPT (?X, email, ?E))

? <i>X</i>	? <i>Y</i>
R_1	john
R_2	paul

?X	? <i>Y</i>	? <i>E</i>
R_1	john	J@ed.ex

?X	?E
R_1	J@ed.ex

▶ from the Join

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

((?X, name, ?Y) OPT (?X, email, ?E))

?X	? <i>Y</i>
R_1	john
R_2	paul

?X	?Y	?E
R_2	paul	

?X	?E
R_1	J@ed.ex

▶ from the Difference

Example

```
(R_1, \text{ name, john})
(R_1, \text{ email, J@ed.ex})
(R_2, \text{ name, paul})
```

((?X, name, ?Y) OPT (?X, email, ?E))

?X	? <i>Y</i>
R_1	john
R_2	paul

?X	?Y	? <i>E</i>
R_1	john	J@ed.ex
R_2	paul	

?X	?E
R_1	J@ed.ex

▶ from the Union

Filter expressions (value constraints)

Filter expression: (P FILTER R)

- P is a graph pattern
- R is a built-in condition

We consider in R:

- equality = among variables and RDF terms
- unary predicate bound
- ▶ boolean combinations (∧, ∨, ¬)

A mapping μ satisfies a condition R ($\mu \models R$) if:

A mapping μ satisfies a condition R ($\mu \models R$) if:

- ▶ R is ?X = c, $?X \in dom(\mu)$ and $\mu(?X) = c$
- ▶ R is ?X = ?Y, ?X, $?Y \in dom(\mu)$ and $\mu(?X) = \mu(?Y)$
- ▶ R is bound(?X) and ? $X \in dom(\mu)$

A mapping μ satisfies a condition R ($\mu \models R$) if:

- ▶ R is ?X = c, $?X \in dom(\mu)$ and $\mu(?X) = c$
- ▶ R is ?X = ?Y, ?X, $?Y \in dom(\mu)$ and $\mu(?X) = \mu(?Y)$
- ▶ R is bound(?X) and ? $X \in dom(\mu)$
- usual rules for Boolean connectives

A mapping μ satisfies a condition R ($\mu \models R$) if:

- ▶ R is ?X = c, $?X \in dom(\mu)$ and $\mu(?X) = c$
- ▶ R is ?X = ?Y, ?X, $?Y \in dom(\mu)$ and $\mu(?X) = \mu(?Y)$
- ▶ R is bound(?X) and ? $X \in dom(\mu)$
- usual rules for Boolean connectives

Definition

FILTER: selects mappings that satisfy a condition

$$[\![(P \text{ FILTER } R)]\!]_G = \{\mu \in [\![P]\!]_G \mid \mu \models R\}$$

Outline of the talk

- RDF and SPARQL
- ▶ New features in SPARQL 1.1
 - Entailment regimes for RDFS and OWL
 - Navigational capabilities: Property paths
 - An operator to distribute the execution of a query
- Take-home message

SPARQL 1.1

A new version of SPARQL was released in March 2013: SPARQL 1.1

Some new features in SPARQL 1.1:

- Entailment regimes for RDFS and OWL
- Navigational capabilities: Property paths
- ▶ An operator (SERVICE) to distribute the execution of a query

Also in this version: Nesting of SELECT expressions, aggregates and some forms of negation (NOT EXISTS, MINUS)

Outline of the talk

- RDF and SPARQL
- ▶ New features in SPARQL 1.1
 - Entailment regimes for RDFS and OWL
 - Navigational capabilities: Property paths
 - An operator to distribute the execution of a query
- Take-home message

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf (rdfs:sp), subClassOf (rdfs:sc), domain (rdfs:dom), range (rdfs:range), type (rdfs:type).

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf (rdfs:sp), subClassOf (rdfs:sc), domain (rdfs:dom), range (rdfs:range), type (rdfs:type).

How do we evaluate a query over RDFS data?

A simple SPARQL query: (Messi, rdfs:type, person)

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when answering queries over RDF.

For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined as for first-order logic.

This notion can also be characterized by a set of inference rules.

An inference system for RDFS

Sub-property :
$$\frac{(\mathcal{A}, \ \mathsf{rdfs:sp}, \ \mathcal{B}) \ (\mathcal{B}, \ \mathsf{rdfs:sp}, \ \mathcal{C})}{(\mathcal{A}, \ \mathsf{rdfs:sp}, \ \mathcal{C})}$$

$$\frac{(\mathcal{A}, \ \mathsf{rdfs:sp}, \ \mathcal{B}) \ (\mathcal{X}, \ \mathcal{A}, \ \mathcal{Y})}{(\mathcal{X}, \ \mathcal{B}, \ \mathcal{Y})}$$
Subclass :
$$\frac{(\mathcal{A}, \ \mathsf{rdfs:sc}, \ \mathcal{B}) \ (\mathcal{B}, \ \mathsf{rdfs:sc}, \ \mathcal{C})}{(\mathcal{A}, \ \mathsf{rdfs:sc}, \ \mathcal{C})}$$

$$\frac{(\mathcal{A}, \ \mathsf{rdfs:sc}, \ \mathcal{B}) \ (\mathcal{B}, \ \mathsf{rdfs:type}, \ \mathcal{A})}{(\mathcal{X}, \ \mathsf{rdfs:type}, \ \mathcal{B})}$$
Typing :
$$\frac{(\mathcal{A}, \ \mathsf{rdfs:dom}, \ \mathcal{B}) \ (\mathcal{X}, \ \mathcal{A}, \ \mathcal{Y})}{(\mathcal{X}, \ \mathsf{rdfs:type}, \ \mathcal{B})}$$

$$\frac{(\mathcal{A}, \ \mathsf{rdfs:range}, \ \mathcal{B}) \ (\mathcal{X}, \ \mathcal{A}, \ \mathcal{Y})}{(\mathcal{Y}, \ \mathsf{rdfs:type}, \ \mathcal{B})}$$

Entailment in RDFS

Theorem (H03,MPG09,GHM11)

The previous system of inference rules characterize the notion of entailment in RDFS (without blank nodes).

Thus, a triple t can be deduced from an RDF graph G ($G \models t$) iff t can be deduced from G by applying the inference rules a finite number of times.

An entailment regime for RDFS in SPARQL 1.1

Basic graph patterns are evaluated by considering RDFS entailment.

Definition

The evaluation of a bgp P over an RDF graph G, denoted by $[\![P]\!]_G$, is the set of mappings μ :

- ▶ $dom(\mu) = var(P)$
- ▶ there exists an instance mapping σ such that for every $t \in P$: $G \models \mu(\sigma(t))$

An entailment regime for RDFS in SPARQL 1.1

Basic graph patterns are evaluated by considering RDFS entailment.

Definition

The evaluation of a bgp P over an RDF graph G, denoted by $[\![P]\!]_G$, is the set of mappings μ :

- ▶ $dom(\mu) = var(P)$
- ▶ there exists an instance mapping σ such that for every $t \in P$: $G \models \mu(\sigma(t))$

The semantics of AND, UNION, OPT, FILTER and SELECT are defined as before.

RDFS entailment is only used at the level of bgps

- SPARQL 1.1 can be used to query not only data but also schema information
 - ► For example: (?X, rdfs:sc, person)

- ► SPARQL 1.1 can be used to guery not only data but also schema information
 - ► For example: (?X, rdfs:sc, person)
- Basic graph patterns can also be evaluated by considering OWL entailment.
 - $G \models \mu(\sigma(t))$ has to be defined according to the semantics of **OWL**

What are the consequences of considering entailment only at the level bgps?

Example

Let G be a graph consisting of (john, rdfs:type, student) together with:

```
 \left(\begin{array}{c} (\mathsf{student}, \mathsf{rdfs:sc}, u) \\ (u, \mathsf{owl:union}, l) \\ (l, \mathsf{rdf:first}, \mathsf{undergrad}) \\ (l, \mathsf{rdf:rest}, r) \\ (r, \mathsf{rdf:first}, \mathsf{grad}) \\ (r, \mathsf{rdf:rest}, \mathsf{rdf:nil}) \end{array} \right) \mathsf{axiom} \ \mathsf{student} \sqsubseteq (\mathsf{undergrad} \sqcup \mathsf{grad})
```

What should be the answer to

```
P = ((?X, rdfs:type, undergrad) UNION (?X, rdfs:type, grad))?
```

▶ Under the current semantics: $[P]_G = \emptyset$

- ▶ It is possible to define a certain-answers semantics for SPARQL 1.1.
 - Previous example shows that this semantics does not coincide with the official semantics of SPARQL 1.1

- ▶ It is possible to define a certain-answers semantics for SPARQL 1.1.
 - Previous example shows that this semantics does not coincide with the official semantics of SPARQL 1.1

But what happens if we focus on the case of RDFS?

► The semantics do not coincide as the following operator can be expressed in the language:

$$[[(P_1 \text{ MINUS } P_2)]]_G = [[P_1]]_G \setminus [[P_2]]_G$$

- ▶ It is possible to define a certain-answers semantics for SPARQL 1.1.
 - Previous example shows that this semantics does not coincide with the official semantics of SPARQL 1.1

But what happens if we focus on the case of RDFS?

► The semantics do not coincide as the following operator can be expressed in the language:

$$[\![(P_1 \, \mathsf{MINUS} \, P_2)]\!]_G = [\![P_1]\!]_G \setminus [\![P_2]\!]_G$$

Open issues

- How natural is the semantics of SPARQL 1.1? Is it a good semantics? Why?
- ▶ Under which (natural) restrictions these two semantics coincide?

Outline of the talk

- RDF and SPARQL
- ▶ New features in SPARQL 1.1
 - Entailment regimes for RDFS and OWL
 - Navigational capabilities: Property paths
 - An operator to distribute the execution of a query
- Take-home message

SPARQL provides limited navigational capabilities

SPARQL provides limited navigational capabilities

(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George)))

SPARQL provides limited navigational capabilities

(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George)))

SPARQL provides limited navigational capabilities

(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George)))

A possible solution: Property paths

A possible solution: Property paths

(SELECT ?X ((?X, (friendOf)*, ?Y) AND (?Y, name, George)))

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

$$exp := a \mid exp/exp \mid exp|exp \mid exp^*$$

where $a \in \mathbf{I}$

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

$$exp := a \mid exp/exp \mid exp|exp \mid exp^*$$

where $a \in \mathbf{I}$

Other expressions are allowed:

^exp : inverse path

 $!(a_1|\ldots|a_n)$: an IRI which is not one of a_i $(1 \le i \le n)$

$$[a]_G = \{(x,y) \mid (x,a,y) \in G\}$$

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)

- exp is a property path
- $\triangleright x$ (resp. y) is either an element from I or a variable

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)

- exp is a property path
- \triangleright x (resp. y) is either an element from \blacksquare or a variable

Example

- $(?X, (rdfs:sc)^*, person)$: Verifies whether the value stored in ?X is a subclass of person
- ► (?X, (rdfs:sp)*, ?Y): Verifies whether the value stored in ?X is a subproperty of the value stored in ?Y

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

- ▶ The domain of μ is $\{?X,?Y\}$, and
- $\qquad \qquad (\mu(?X),\mu(?Y)) \in \llbracket exp \rrbracket_G$

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

- ▶ The domain of μ is $\{?X,?Y\}$, and
- $(\mu(?X), \mu(?Y)) \in [[exp]_G]$

Other cases are defined analogously.

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

- ▶ The domain of μ is $\{?X,?Y\}$, and
- $(\mu(?X), \mu(?Y)) \in [\![exp]\!]_G$

Other cases are defined analogously.

Example

• $((?X, KLM/(KLM)^*, ?Y)$ FILTER $\neg(?X = ?Y))$: It is possible to go from ?X to ?Y by using the airline KLM, where ?X, ?Y are different cities

SPARQL 1.1: Entailment regimes and property paths

List the pairs a, b of cities such that there is a way to travel from a to b.

SPARQL 1.1: Entailment regimes and property paths

List the pairs a, b of cities such that there is a way to travel from a to b.

In SPARQL 1.1: (?X, transportation_service*,?Y)

Navigational capabilities in SPARQL 1.1: Some observations

 Previous query can be expressed in SPARQL 1.1 as the intermediate form of navigation involves RDFS vocabulary.

Not expressible: List pairs a, b of persons that are connected through a path of nodes certified by certifying_agency [RK13]:

Navigational capabilities in SPARQL 1.1: Some observations (cont'd)

- Some proposals solve the aforementioned issues: nSPARQL [PAG10], nested monadically defined queries [RK13], triple algebra [LRV13]
 - RDFS entailment can be handled in these proposals by using navigational capabilities

Navigational capabilities in SPARQL 1.1: Some observations (cont'd)

- Some proposals solve the aforementioned issues: nSPARQL [PAG10], nested monadically defined queries [RK13], triple algebra [LRV13]
 - RDFS entailment can be handled in these proposals by using navigational capabilities

Open issues

- ► How can OWL entailment be handled in these proposals?
- What navigational capabilities should be added to SPARQL 1.1?
- There is a need for query languages that can return paths

Outline of the talk

- RDF and SPARQL
- ▶ New features in SPARQL 1.1
 - Entailment regimes for RDFS and OWL
 - Navigational capabilities: Property paths
 - An operator to distribute the execution of a query
- Take-home message

RFD graphs can be interconnected

Querying interconnected RDF graphs

Retrieve the authors that have published in PODS and were born in Oklahoma:

```
SELECT ?Author
WHERE
                         ?Author .
 ?Paper
           dc:creator
 ?Paper
          dct:PartOf ?Conf .
 ?Conf
         swrc:series
                          conf:pods .
 SERVICE <http://dbpedia.org/sparql> {
   ?Person owl:sameAs
                           ?Author .
   ?Person
              dbo:birthPlace dbpedia:Oklahoma . }
}
```

Federation in SPARQL 1.1

New rule to generate graph patterns:

▶ If P is a graph pattern and $c \in (I \cup V)$, then (SERVICE c P) is a graph pattern.

Federation in SPARQL 1.1

New rule to generate graph patterns:

▶ If P is a graph pattern and $c \in (I \cup V)$, then (SERVICE c P) is a graph pattern.

We will define the semantics of this new operator.

- ▶ This corresponds with the official semantics for (SERVICE c P) with $c \in I$
- ► (SERVICE ?X P) is allowed in the official specification of SPARQL 1.1. but its semantics is not defined

Semantics of SERVICE

ep(\cdot): Partial function from I to the set of all RDF graphs

▶ If $c \in dom(ep)$, then ep(c) is the RDF graph associated with the endpoint accessible via c

Semantics of SERVICE

ep(\cdot): Partial function from **I** to the set of all RDF graphs

▶ If $c \in dom(ep)$, then ep(c) is the RDF graph associated with the endpoint accessible via c

Definition (BACP13)

The evaluation of $P = (SERVICE \ c \ P_1)$ over an RDF graph G is defined as:

- if $c \in \mathsf{dom}(\mathsf{ep})$, then $\llbracket P \rrbracket_G = \llbracket P_1 \rrbracket_{\mathsf{ep}(c)}$
- ▶ if $c \in I \setminus \text{dom(ep)}$, then $\llbracket P \rrbracket_G = \{\mu_\emptyset\}$ (where μ_\emptyset is the mapping with empty domain)
- ▶ if $c \in \mathbf{V}$, then

$$\llbracket P \rrbracket_G = \bigcup_{\mathsf{a} \in \mathsf{dom}(\mathsf{ep})} \left(\llbracket P_1 \rrbracket_{\mathsf{ep}(\mathsf{a})} \bowtie \{\mu_{c \to \mathsf{a}}\} \right),$$

where $\mu_{c \to a}$ is a mapping such that $dom(\mu_{c \to a}) = \{c\}$ and $\mu_{c \to a}(c) = a$

Are variables useful in SERVICE queries?

Consider the query:

 $(?X, service_address, ?Y)$ AND (SERVICE ?Y (?N, email, ?E))

Are variables useful in SERVICE queries?

Consider the query:

 $(?X, service_address, ?Y)$ AND (SERVICE ?Y (?N, email, ?E))

There is a simple strategy to compute the answer to this query.

Can this strategy be generalized?

How can we evaluate SERVICE queries?

We need some notion of boundedness

A variable ?X is bound in a graph pattern P if for every RDF graph G and every $\mu \in [\![P]\!]_G$, it holds that ?X \in dom(μ) and μ (?X) is mentioned in G

First attempt: Graph pattern P can be evaluated if for every sub-pattern (SERVICE ?X P_1) of P, it holds that ?X is bound in P

?Y is bound in (?X, service_address, ?Y) AND (SERVICE ?Y (?N, email, ?E))

The first attempt: Too restrictive

Consider the query:

```
(?X, service\_description, ?Z) UNION (?X, service\_address, ?Y) AND (SERVICE ?Y (?N, email, ?E)))
```

?Y is not bound in this query, but there is a simple strategy to evaluate it.

The first attempt: Not appropriate for nested SERVICE operators

Consider the query:

$$(?U_1, \text{related_with}, ?U_2)$$
 AND
$$\left[\text{SERVICE } ?U_1 \; \left((?N, \text{email}, ?E) \; \; \text{OPT} \right. \\ \left. \left(\text{SERVICE } ?U_2 \; (?N, \text{phone}, ?F)) \right) \right]$$

Solving the problems . . .

Notation: $\mathcal{T}(P)$ is the *parse* tree of P, in which every node corresponds to a sub-pattern of P

Parse tree of (?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))):

A more appropriate notion of boundedness

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE $?X\ P_1$), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- P₁ is service-bound

A more appropriate notion of boundedness

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- \triangleright P_1 is service-bound

Examples:

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- P₁ is service-bound

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- ▶ P₁ is service-bound

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- ▶ *P*₁ is service-bound

Examples:

((?Y, a, ?Z))

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- P₁ is service-bound

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- \triangleright P_1 is service-bound

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- ▶ P₁ is service-bound

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- ▶ *P*₁ is service-bound

Definition (BACP13)

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and ?X is bound in P_2
- ▶ P₁ is service-bound

A more appropriate notion of boundedness (cont'd)

But we still have a problem:

Proposition (BACP13)

The problem of verifying, given a graph pattern P, whether P is service-bound is undecidable.

We consider a (syntactic) sufficient condition for service-boundedness.

An appropriate notion: Service-safeness

The set of strongly bound variables in P, denoted by SB(P), is recursively defined as follows:

- ▶ if P is a bgp, then SB(P) = var(P)
- ▶ if $P = (P_1 \text{ AND } P_2)$, then $SB(P) = SB(P_1) \cup SB(P_2)$
- ▶ if $P = (P_1 \text{ UNION } P_2)$, then $SB(P) = SB(P_1) \cap SB(P_2)$
- ▶ if $P = (P_1 \text{ OPT } P_2)$, then $SB(P) = SB(P_1)$
- if $P = (P_1 \text{ FILTER } R)$, then $SB(P) = SB(P_1)$
- ▶ if $P = (SERVICE \ c \ P_1)$, then $SB(P) = \emptyset$

An appropriate notion: Service-safeness (cont'd)

Definition (BACP13)

A graph pattern P is service-safe if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and $?X \in SB(P_2)$
- P₁ is service-safe

If P is service-safe, then there is a strategy to evaluate P without considering all possible SPARQL endpoints.

An appropriate notion: Service-safeness (cont'd)

Definition (BACP13)

A graph pattern P is service-safe if for every node u of $\mathcal{T}(P)$ with label (SERVICE ?X P_1), it holds that:

- ▶ there exists a node v of $\mathcal{T}(P)$ with label P_2 such that v is an ancestor of u in $\mathcal{T}(P)$ and $?X \in SB(P_2)$
- ▶ P₁ is service-safe

If P is service-safe, then there is a strategy to evaluate P without considering all possible SPARQL endpoints.

Open issue

Is service-safeness the right condition to ensure that a query containing the SERVICE operator can be executed? Why?

Outline of the talk

- RDF and SPARQL
- ▶ New features in SPARQL 1.1
 - Entailment regimes for RDFS and OWL
 - Navigational capabilities: Property paths
 - An operator to distribute the execution of a query
- ▶ Take-home message

Take-home message

- ▶ RDF is the framework proposed by the W3C to represent information in the Web
- ► SPARQL is the W3C recommendation query language for RDF (January 2008)
- SPARLQ 1.1 is the new version of SPARQL (March 2013)
- ▶ SPARQL 1.1 includes some interesting and useful new features
 - Entailment regimes for RDFS and OWL, navigational capabilities and an operator to distribute the execution of a query
 - ▶ There are some interesting open issues about these features

Thank you!

Bibliography

- [BACP13] C. Buil-Aranda, M. Arenas, O. Corcho, A. Polleres: Federating queries in SPARQL 1.1: Syntax, semantics and evaluation. J. Web Sem. 18(1): 1-17 (2013)
- [GHM11] C. Gutierrez, C. A. Hurtado, A. O. Mendelzon, J. Pérez: Foundations of Semantic Web databases. J. Comput. Syst. Sci. 77(3): 520-541 (2011)
- [H04] P. Hayes: RDF Semantics. W3C Recommendation 10 February 2004

Bibliography (cont'd)

- [LRV13] L. Libkin, J. L. Reutter, D. Vrgoc: Trial for RDF: adapting graph query languages for RDF data. PODS 2013: 201-212
- [MPG09] S. Muñoz, J. Pérez, C. Gutierrez: Simple and Efficient Minimal RDFS. J. Web Sem. 7(3): 220-234 (2009)
- [PAG10] J. Pérez, M. Arenas, C. Gutierrez: nSPARQL: A navigational language for RDF. J. Web Sem. 8(4): 255-270 (2010)
- [RK13] S. Rudolph, M. Krötzsch: Flag & check: data access with monadically defined queries. PODS 2013: 151-162