Applied Machine Learning Lecture 3: Pre-processing steps and hyperparameters tuning

Selpi (selpi@chalmers.se)

The slides are further development of Richard Johansson's slides

January 28, 2020

Overview

Converting features to numerical vectors

Dealing with missing values

Feature Selection

Hyperparameters Tuning

Imbalanced Classes

Review and Closing

the first step: mapping features to numerical vectors

- scikit-learn's learning methods works with features as numbers, not strings
- they can't directly use the feature dicts we have stored in X
- converting from string to numbers is the purpose of these lines:

```
vec = DictVectorizer()
Xe = vec.fit_transform(X)
```

types of vectorizers

a DictVectorizer converts from attribute-value dicts:

a CountVectorizer converts from texts (after splitting into words) or lists:

➤ a TfidfVectorizer is like a CountVectorizer, but also uses TF*IDF (downweighting common words)

what goes on in a DictVectorizer?

- each feature corresponds to one or more columns in the output matrix
- easy case: boolean and numerical features:

what goes on in a DictVectorizer?

- each feature corresponds to one or more columns in the output matrix
- easy case: boolean and numerical features:

- for string features, we reserve one column for each possible value: one-hot encoding
 - ▶ that is, we convert to booleans

```
X

{ 'bt':'B', 'gen':'F' }

{ 'bt':'B', 'gen':'M' }

{ 'bt':'O', 'gen':'F' }

**The standard of the standard o
```

code example (DictVectorizer)

code example (DictVectorizer)

```
from sklearn.feature_extraction import DictVectorizer
X = [{'f1':'B', 'f2':'F', 'f3':False, 'f4':7},
    {'f1':'B', 'f2':'M', 'f3':True, 'f4':2},
    {'f1':'0', 'f2':'F', 'f3':False, 'f4':9}]
vec = DictVectorizer()
Xe = vec.fit_transform(X)
print(Xe.toarray())
print(vec.get_feature_names())
the result:
 ΓΓ 1. 0. 1. 0. 0. 7.7
 [1. 0. 0. 1. 1. 2.]
  Γ 0. 1. 1. 0. 0. 9.]]
 ['f1=B', 'f1=0', 'f2=F', 'f2=M', 'f3', 'f4']
```

Overview

Converting features to numerical vectors

Dealing with missing values

Feature Selection

Hyperparameters Tuning

Imbalanced Classes

Review and Closing

Dealing with missing values

- Remove rows/columns that contain missing values (the easiest, but ...)
- ► Replace the missing values with some values; the process is called imputation (more strategic)

Imputation of missing values

- Derived data from the same feature (univariate feature imputation)
 - (e.g., mean, median, most-frequent)
- Derived data from several features
- ► See scikit-learn Imputation of missing values

Overview

Converting features to numerical vectors

Dealing with missing values

Feature Selection

Hyperparameters Tuning

Imbalanced Classes

Review and Closing

Challenges with large number of features

- Imagine working with two data sets, one with 500 features, the other 10 features. Assume number of samples are moderate and the same in both data sets.
- ▶ What are the potential challenges with more features?

Challenges with large number of features

- Imagine working with two data sets, one with 500 features, the other 10 features. Assume number of samples are moderate and the same in both data sets.
- What are the potential challenges with more features?
- Finding key information/feature(s) becomes more difficult
- ▶ Higher complexity ⇒ bad for generalization
- Training takes longer time

Challenges with large number of features

- Imagine working with two data sets, one with 500 features, the other 10 features. Assume number of samples are moderate and the same in both data sets.
- What are the potential challenges with more features?
- Finding key information/feature(s) becomes more difficult
- ightharpoonup Higher complexity \Rightarrow bad for generalization
- Training takes longer time
- ► To solve these issues: try feature selection method

Selecting Features: Brute Force

for every possible set of features S: train and evaluate the model based on Sreturn the set S_{max} that gave the best result

Feature Selection: Overall Ideas

filter methods:

Feature Selection: Overall Ideas

filter methods:

wrapper methods:

Feature Selection: Overall Ideas

filter methods:

wrapper methods:

embedded methods:

[Source: Wikipedia]

Association between a feature and the output (idea)

Feature Ranking Example (document categories)

UK			China				poultry				
london	0.1925		china	0.0997			poultry		0.001	3	
uk	0.0755		chinese	0.0523	0.0523		meat		0.0008		
british	0.0596		beijing	0.0444).0444		chicken		0.0006		
stg	0.0555		yuan	0.0344	344		agriculture		0.0005		
britain	0.0469		shanghai	shanghai 0.0292		ı	avian		0.000)4	
plc	0.0357		hong	ong 0.0198		ı	broiler		0.0003		
england	0.0238		kong	0.0195		ı	veterinary		0.0003		
pence	0.0212		xinhua	0.0155	-	ı	birds		0.000)3	
pounds	0.0149		province	0.0117	0.0117		inspection		0.0003		
english 0.0126			taiwan	0.0108	.0108		pathogenic		0.0003		
coffee			elections				sports				
coffee	0.0111]	election	0.05	19	ĺ	soccer	0.	0681		
bags	0.0042	l	elections	0.034	42	ı	cup	0.	0515		
growers	0.0025	l	polls	0.033	39	ı	match	0.	0441		
kg	0.0019	l	voters	0.03	15	ı	matches	0.	0408		
colombia	0.0018	l	party	0.030	33	ı	played	0.	0388		
brazil	0.0016	l	vote	0.029	99	ı	league	0.	0386		
export	0.0014	l	poll	0.022	25	ı	beat	0.	0301		
exporters	0.0013	l	candidate	0.020)2	ı	game	0.	0299		
exports	0.0013		campaign	0.020)2	ı	games	0.	0284		
crop	0.0012		democrati	c 0.019	98	ı	team	0.	0264		

Figure 13.7: Features with high mutual information scores for six Reuters-RCV1 classes.

[Source: Manning & Schütze, Introduction to Information Retrieval]

Filter-based Feature Selection in scikit-learn

http://scikit-learn.org/stable/modules/feature_selection.html

- selectors:
 - ► SelectKBest
 - ► SelectPercentile
- feature scoring functions:
 - ► f_classif
 - mutual_info_classif
 - ► chi2

Example of a wrapper method: greedy forward selection

```
S = \text{empty set}
repeat:
find the feature F that gives the largest improvement when added to S
if there was an improvement add F to S
until there was no improvement
```

- ▶ the MLXtend library has an implementation
 - see SequentialFeatureSelector

Example of a wrapper method: backward selection

- ► See notebook
- Recursive Feature Elimination and Cross-Validation (RFECV)

Overview

Converting features to numerical vectors

Dealing with missing values

Feature Selection

Hyperparameters Tuning

Imbalanced Classes

Review and Closing

Hyperparameters vs parameters

- Hyperparameters
- often used to help estimate the model parameters
- specified by the users
- tuned for the problem at hand
- In Random forests: number of trees, number of features considered
- In Neural Networks: learning rate, number of hidden layers

Hyperparameters vs parameters

- Hyperparameters
- often used to help estimate the model parameters
- specified by the users
- tuned for the problem at hand
- In Random forests: number of trees, number of features considered
- In Neural Networks: learning rate, number of hidden layers

- Parameters
- are needed by the model for making predictions
- the values are estimated from data
- usually are not set by the users
- In Random forests: random seed used
- In Neural Networks: weights

How to tune the hyperparameters?

► Trial and error

In scikit-learn:

http://scikit-learn.org/stable/modules/grid_search.html

- ► GridSearchCV
- ► RandomizedSearchCV

Overview

Converting features to numerical vectors

Dealing with missing values

Feature Selection

Hyperparameters Tuning

Imbalanced Classes

Review and Closing

"Finding needle in haystack" problems

- ► Finding rare diseases
- Finding anomalies in travel pattern
- Differentiating crashes vs non-crashes situations

source

Evaluation of imbalance cases

```
def has_disease(patient):
    return False
```

Evaluation of imbalance cases

```
def has_disease(patient):
    return False
```

- a DummyClassifier will have a high accuracy
- better to use precision and recall (more later)
 - or sensitivity/specificity, or FPR/FNR, ...

Dealing with class imbalance

► Change parameter(s) of the learning algorithm

Dealing with class imbalance

- ► Change parameter(s) of the learning algorithm
- ► Change the data

Dealing with class imbalance

- Change parameter(s) of the learning algorithm
- ► Change the data
- Use appropriate performance metric(s)

Change the parameter(s) of the learning algorithm

► Example in scikit-learn: LinearSVC

class_weight: {dict, 'balanced'}, optional

Set the parameter C of class I to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y))

Changing the data

source

Changing the data

Or generate synthetic data using the existing data

Library for imbalanced-learn

- ▶ https://imbalanced-learn.readthedocs.io/
- ► See for example: BalancedRandomForestClassifier

Overview

Converting features to numerical vectors

Dealing with missing values

Feature Selection

Hyperparameters Tuning

Imbalanced Classes

Review and Closing

Review of pre-processing and hyperparameters tuning

- Explain different ways of selecting features
- Explain pros/cons of GridSearchCV and RandomizedSearchCV
- Explain different ways of dealing with imbalance classes

Next lecture

- Linear classifiers and regression models
- ► (Methods for) data collection and bias
- ► Annotating data