# Shiyu Wang

1.

a. XOR



# b. NAND



c. 
$$F = (A \cdot (B + CD))'$$



2.

a.  

$$xyz + x'y + xyz'$$
  
 $= y(xz + x' + xz')$   
 $= y(x' + x(z + z'))$   
 $= y(x' + x \cdot T)$   
 $= y(x' + x)$   
 $= y \cdot T$   
 $= y$ 

b.  

$$(x + y)' \cdot (x' + y')$$
  
 $= (x' \cdot y') \cdot (x' + y')$   
 $= (x' \cdot y' \cdot x') + (x' \cdot y' \cdot y')$   
 $= (x' \cdot y') + (x' \cdot y')$   
 $= x' \cdot y'$ 

c.  

$$A'C' + ABC + AC'$$
  
 $= (A'C' + AC') + ABC$   
 $= (C' \cdot (A' + A)) + ABC$   
 $= (C' \cdot T) + ABC$   
 $= C' + ABC$ 

d.  

$$(A + B)' \cdot (A' + B')'$$
  
 $= (A' \cdot B') \cdot (A \cdot B)$   
 $= F$ 

1) Output: F = B'C'D' + A'B'C + AC'D + BC'D' + A'B'CD'

| #  | A | В | С | D | Output |
|----|---|---|---|---|--------|
| 0  | 0 | 0 | 0 | 0 | 1      |
| 1  | 0 | 0 | 0 | 1 | 0      |
| 2  | 0 | 0 | 1 | 0 | 1      |
| 3  | 0 | 0 | 1 | 1 | 1      |
| 4  | 0 | 1 | 0 | 0 | 1      |
| 5  | 0 | 1 | 0 | 1 | 0      |
| 6  | 0 | 1 | 1 | 0 | 0      |
| 7  | 0 | 1 | 1 | 1 | 0      |
| 8  | 1 | 0 | 0 | 0 | 1      |
| 9  | 1 | 0 | 0 | 1 | 1      |
| 10 | 1 | 0 | 1 | 0 | 0      |
| 11 | 1 | 0 | 1 | 1 | 0      |
| 12 | 1 | 1 | 0 | 0 | 1      |
| 13 | 1 | 1 | 0 | 1 | 1      |
| 14 | 1 | 1 | 1 | 0 | 0      |
| 15 | 1 | 1 | 1 | 1 | 0      |

$$F(A, B, C, D) = \sum (0, 2, 3, 4, 8, 9, 12, 13)$$

### 2) K-map



3) Minimized form Y = C'D' + AC'D + A'B'C

# 4) NAND form Y = ((C'D')' (AC'D)' (A'B'C)')'

### 5) Circuit



4.



F = A'C'D + A'BC + ABC' + ACD

#### 5. A< B

| $A_0A_1 \setminus B_0B_1$ | 00 | 01 | 11             | 10 |
|---------------------------|----|----|----------------|----|
| 00                        | 0  | 1  | <mark>1</mark> | 1  |
| 01                        | 0  | 0  | 1              | 1  |
| 11                        | 0  | 0  | 0              | 0  |
| 10                        | 0  | 0  | 1              | 0  |

 $F_1 = A_0'B_0 + A_0'A_1'B_1 + A_1'B_0B_1$ 

#### A > B

| $A_0A_1 \setminus B_0B_1$ | 00 | 01 | 11 | 10             |
|---------------------------|----|----|----|----------------|
| 00                        | 0  | 0  | 0  | 0              |
| 01                        | 1  | 0  | 0  | 0              |
| 11                        | 1  | 1  | 0  | <mark>1</mark> |
| 10                        | 1  | 1  | 0  | 0              |

 $F_2 = A_0 B_0' + A_0 A_1 B_1' + A_1 B_0' B_1'$ 

#### A = B

| $A_0A_1 \setminus B_0B_1$ | 00 | 01 | 11 | 10 |
|---------------------------|----|----|----|----|
| 00                        | 1  | 0  | 0  | 0  |
| 01                        | 0  | 1  | 0  | 0  |
| 11                        | 0  | 0  | 1  | 0  |
| 10                        | 0  | 0  | 0  | 1  |

 $\overline{F_3} = A_0'A_1'B_0'B_1' + A_0'A_1B_0'B_1 + A_0A_1B_0B_1 + A_0A_1'B_0B_1'$ 



Question 5.slx is fully tested and attached.

6.

a)



Question 6 a.slx is fully tested and attached.

b)



Question 6 b.slx is fully tested and attached.