Arithmétique | CM: 7

Par Lorenzo

18 octobre 2024

1 Arithmétique modulaire : $(\mathbb{Z}/n\mathbb{Z})$

Définition 1.1. Soient $a, b \in \mathbb{Z}$. On dit que a et b sont **congrus modulo** n si $a-b \in n\mathbb{Z}$. On note alors $a \equiv b[n]$ ou encore $a \equiv b \mod n$.

Proposition 1.1.

- 1. On $a \ a \equiv b[n] \iff \exists k \in \mathbb{Z}, a = b + kn$.

 On note $\overline{b} := \{b + nk \mid k \in \mathbb{Z}\} = \{a \in \mathbb{Z} \mid a \equiv b[n]\}$. On l'appelle la classe de congruence.
- 2. Supposons que a = nq + r soit la division euclidienne de a par n. Alors $\overline{a} = \overline{r}$.
- 3. Il y a exactement n classes de congruence distinctes : les \overline{r} , pour $r \in \{0, 1, ..., n-1\}$. Elles sont disjointes 2 à 2.

Définition 1.2. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes de congruences. $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$ est un ensemble fini à n élements.

Démonstration 1.1.

À faire

Remarques 1.1. La congruence est un relation d'équivalence ainsi les classes congruences sont les classes d'équivalences pour la relation de congruence.

Ainsi $\mathbb{Z}/n\mathbb{Z}$ se réinterprète comme \mathbb{Z}/R avec $xRy \iff x \equiv y[n]$

1.1 L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$

Proposition 1.2.

Soient $a, a', b, b' \in \mathbb{Z}$ tels que $a \equiv a'[n]$ et $b \equiv b'[n]$ Alors $a + b \equiv a' + b'[n]$

Démonstration 1.2.

$$(a-a') = kn \ et \ (b-b') = k'n \ avec \ k, k' \in \mathbb{Z}$$

 $(a+b) - (a'+b') = a-a'+b-b' = kn+k'n = (k+k')n$

$$Donc \ a + b \equiv a' + b'[n]$$

Définition 1.3. Soient $a, b \in \mathbb{Z}$. On pose dans $\mathbb{Z}/n\mathbb{Z} : \overline{a} + \overline{b} = \overline{a+b}$ et $\overline{a} \times \overline{b} = \overline{a \times b}$

Proposition 1.3.

 $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif unitaire.

 $\overline{0}$ est l'élement neutre pour l'addition et $\overline{1}$ est l'élement neutre pour la multiplication.

Démonstration 1.3.

 λ faire

Example 1.1. On peut faire des tables d'addition et de multiplication dans $\mathbb{Z}/n\mathbb{Z}$. Par exemple la table de multiplication de $\mathbb{Z}/3\mathbb{Z}$

×	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	<u>1</u>	$\overline{2}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{1}$
	$\overline{1}$	$\begin{array}{c c} \overline{0} & \overline{0} \\ \overline{1} & \overline{0} \end{array}$	$ \begin{array}{c c} \overline{0} & \overline{0} & \overline{0} \\ \overline{1} & \overline{0} & \overline{1} \end{array} $

Lemme 1.1. Soient a et b dans \mathbb{Z} tels que $a \equiv b[n]$.

Pour tout $p \in \mathbb{N}^*, a^p \equiv b^p[n]$

Démonstration 1.4.

 \grave{A} faire

Remarques 1.2. En revanche on n'a pas $p \equiv q[n] \implies a^p \equiv a^q[n]$

Théorème 1.1. $\{\mathbb{Z}/n\mathbb{Z}, +, \times\}$ est un corps si et seulement si n est premier.

Démonstration 1.5.

À faire

2