Zusammenfassung

Mihir Mahajan, Alfred Nguyen, Noah Kiefer Diaz ${\rm May}\ 24,\ 2022$

Contents

1	Dis	krete V	Wahrscheinlichkeitsräume	2
	1.1	Grund	llagen	2
		1.1.1	Definition 1	2
		1.1.2	Lemma 8	2
		1.1.3	Satz 9 Siebformel	3
		1.1.4	Wahl der Wahrscheinlichkeiten	3
	1.2	Bedin	gte Wahrscheinlichkeiten	3
		1.2.1	Definition 12	3
		1.2.2	Baba Beispiele	4
		1.2.3	Satz 18 (Satz von der totalen Wahrscheinlichkeit)	4
		1.2.4	Satz 19 (Satz von Bayes)	4
2 3				
J	3.1		llagen	4
	$3.1 \\ 3.2$		tungswert und Varianz	5
	0.2	3.2.1	Definition 29	5
		3.2.1	Satz 32 Monotonie des Erwartungswerts	5
		3.2.3	Rechenregeln für Erwartungswert	5
		3.2.4	Satz 33 (Linearität des Erwartungswerts, einfache Ver-	J
		5.2.4	sion)	5
		3.2.5	Satz 34	5
		3.2.6	Satz 35	5
		3.2.0 $3.2.7$	Satz 36	5
		3.2.8	Varianz	6
	3.3	-	ere Zufallsvariablen	6
	ა.ა	3.3.1		6
		0.0.1	hypergeometrische Verteilung	U

3.3.2	Gemeinsame Dichte	6
3.3.3	Unabhängigkeit von Zufallsvariablen	7
3.3.4	Zusammengesetzte Zufallsvariablen	7
3.3.5	Momente zusammengesetzter Zufallsvariablen	7

Diskrete Wahrscheinlichkeitsräume 1

Grundlagen 1.1

Definition 1 1.1.1

- Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge $\Omega = \{\omega_1, ..., \omega_n\}$ von Elementarereignissen gegeben
- Jedem Ereignis ω_{i4} ist eine Wahrscheinlichkeit $0 \leq Pr[\omega_i] \leq 1$ zuge-

$$\sum_{\omega \in \Omega} Pr[\omega] = 1$$

- \bullet Die Menge $E\subseteq \Omega$ heißt Ereignis. $Pr[E]=\sum_{\omega\in E}Pr[\omega]$
- \bullet \bar{E} ist komplement zu E

Man kann standard Mengenoperationen auf Ereignisse machen, also bei Ereignissen A, B dann auch $A \cup B, A \cap B$

1.1.2 Lemma 8

Für Ereignisse $A, B, A_1, A_2, ..., A_n$ gilt

- $Pr[\emptyset] = 0, Pr[\Omega] = 1$
- $0 \le Pr[A] \le 1$
- $Pr[\bar{A}] = 1 Pr[A]$
- Wenn $A \subseteq B$ so folgt $Pr[A] \leq Pr[B]$
- Additionssatz: Bei paarweise disjunkten Ereignissen gilt:

$$Pr[\bigcup_{i=1}^{n} A_i] = \sum_{i=1}^{n} Pr[A_i]$$

Insbesondere gilt also:

$$Pr[A \cup B] = Pr[A] + Pr[B]$$

Und für unendliche Menge von disjunkten Ereignissen:

$$Pr[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} Pr[A_i]$$

1.1.3 Satz 9 Siebformel

Lemma 8, gilt nur für disjunkte Mengen. Das geht auch für nicht disjunkte!

- 1. Zwei Mengen $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$
- 2. Drei Mengen $Pr[A_1 \cup A_2 \cup A_3] = Pr[A1] + Pr[A2] + Pr[A3] Pr[A1 \cap A2] Pr[A1 \cap A3] Pr[A_2 \cap A_3] + Pr[A_1 \cap A_2 \cap A_3]$
- 3. n Mengen Veranschaulichen an Venn-Diagramm
 - (a) Alle aufaddieren
 - (b) Paarweise schnitte subtrahieren
 - (c) Dreifache schnitte dazuaddieren
 - (d) 4- fache schritte subtrahieren
 - (e) ...
- 4. für nerds: $Pr[\bigcup_{i=0}^n A_i] = \sum_{\emptyset \subset I \subset [n]} (-1)^{|I|+1} Pr[\bigcap_{i \in I} A_i]$

1.1.4 Wahl der Wahrscheinlichkeiten

Prinzip von Laplace (Pierre Simon Laplace (1749–1827)): Wenn nichts dagegen spricht, gehen wir davon aus, dass alle Elementarereignisse gleich wahrscheinlich sind. $Pr[E] = \frac{|E|}{|\Omega|}$

1.2 Bedingte Wahrscheinlichkeiten

1.2.1 Definition 12

A und B seien Ereignisse mit Pr[B] > 0. Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert als: $Pr[A|B] := \frac{Pr[A \cap B]}{Pr[B]}$

Umgangssprachlich: Pr[A|B] beschreibt die Wahrscheinlichkeit, dass A eintritt wenn B eintritt.

Die bedingten Wahrscheinlichkeiten Pr[|B] bilden für ein beliebiges Ereignis $B \subseteq \Omega$ mit Pr[B] > 0 einen neuen Wahrscheinlichkeitsraum über Ω .

1.2.2 Baba Beispiele

- 1. **TODO** Töchterproblem
- 2. **TODO** Ziegenproblem
- 3. **TODO** Geburtstagsproblem

1.2.3 Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Die Ereignisse $A_1, ..., A_n$ seien paarweise disjunkt und es gelte $B \subseteq A_1 \cup ... \cup A_n$

$$Pr[B] = \sum_{i=1}^{n} Pr[B|A_i] * Pr[A_i]$$
 analog für $n \to \infty$

1.2.4 Satz 19 (Satz von Bayes)

Es seien $A_1, ..., A_n$ paarweise disjunkt, mit $Pr[A_j] > 0$ für alle j. Außerdem sei $B \subseteq A_1 \cup ... \cup A_n$ ein Ereignis mit Pr[B] > 0. Dann gilt für beliebiges $i \in [n]$

$$Pr[A_i|B] = \frac{Pr[A_i \cap B]}{Pr[B]} = \frac{Pr[B|A_i] * Pr[A_i]}{\sum_{i=1}^{n} Pr[B|A_i] * Pr[A_i]}$$

2 Unabhängigkeit

Wenn das auftreten von Ereignissen unabhängig ist.

- $\bullet \ Pr[A\cap B] = Pr[A] * Pr[B]$
- Pr[A|B] = Pr[A]

3 Zufallsvariablen

3.1 Grundlagen

Anstatt der Ereignisse selbst sind wir oft an "Auswirkungen" oder "Merkmalen" der (Elementarereignisse) interessiert

Sei ein Wahrscheinlichkeitsraum auf der Ergebnismenge Ω gegeben. Eine Abbildung $X:\Omega\to R$ heißt (numerische) Zufallsvariable. Eine Zufallsvariable X über einer endlichen oder abzählbar unendlichen Ergebnismenge heißt diskret

3.2 Erwartungswert und Varianz

3.2.1 Definition 29

Zu einer Zufalls variablen X definieren wir den **Erwartungswert** E[X] durch $E[X] := \sum_{x \in W_X} x * Pr[X = x] = \sum x * f_X(x)$ sofern $\sum_{x \in W_X} |x| * Pr[X = x]$ konvergiert

3.2.2 Satz 32 Monotonie des Erwartungswerts

Seien X und Y Zufallsvariablen über dem Wahrscheinlichkeitsraum ω mit $X(\omega) \leq Y(\omega)$ für alle $\omega \in \Omega$. Dann gilt $\mathbb{E}[X] \leq \mathbb{E}[Y]$ $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) * Pr[\omega] \leq \sum_{\omega \in \Omega} Y(\omega) * Pr[\omega] = \mathbb{E}[Y]$

3.2.3 Rechenregeln für Erwartungswert

Oft betrachtet man eine Zufallsvariable X nicht direkt, sondern wendet noch eine Funktion darauf an: $Y := f(X) = f \circ X$, wobei $f: D \to R$ eine beliebige Funktion sei mit $W_X \subseteq D \subseteq R$. Beobachtung: f(X) ist wieder eine Zufallsvariable.

3.2.4 Satz 33 (Linearität des Erwartungswerts, einfache Version)

Für eine beliebige Zufallsvariable X und $a, b \in R$ gilt $\mathbb{E}[a*X+b]=a*\mathbb{E}[X]+b$

3.2.5 Satz 34

Sei X eine Zufallsvariable mit $W_x \subseteq \mathbb{N}_0$. Dann gilt $\mathbb{E}[X] = \sum_{i=1}^{\infty} Pr[X \ge i]$

3.2.6 Satz 35

Sei X eine Zufallsvariable und A ein Ereignis mit Pr[A] > 0. Die **bedingte Zufallsvariable** X|A besitzt die Dichte:

Euransvariable
$$X \mid A$$
 besitzt die Dichte. $f_{X\mid A}(x) := Pr[X = x \mid A] = \frac{Pr["X = x" \cap A]}{Pr[A]}$ Die Definition ist zulässig, da $\sum_{x \in W_x} f_{X\mid A}(x) = \sum_{x \in W_x} \frac{Pr["X = x" \cap A]}{Pr[A]} = 1$ Somit ist $\mathbb{E}[X\mid A] = \sum_{x \in W_x} x * f_{X\mid A}(x)$

3.2.7 Satz 36

TODO

3.2.8Varianz

1. Definition 38 Für eine Zufallsvariable X mit $\mu = E[X]$ definieren wir die Varianz Var[X] durch

$$Var[X] := E[(X\mu)^2] = \sum_{x \in W_X} (x\mu)^2 * Pr[X = x]$$

Die Größe
$$\sigma := \sqrt{Var[X]}$$

Var[X] heißt Standardabweichung von X.

- 2. Satz 39 Für eine beliebige Zufallsvariable X gilt $Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
- 3. Satz 41 Für eine beliebige Zufallsvariable X und $a, b \in \mathbb{R}$ gilt: $Var[a * X + b] = a^2 * Var[X]$

Mehrere Zufallsvariablen 3.3

Wie kann man mit mehreren Zufallsvariablen über demselben Wahrscheinlichkeitsraum rechnen, auch wenn sie, wie im obigen Beispiel, sehr voneinander abhängig sind? Wir untersuchen Wahrscheinlichkeiten der Art

$$Pr[X=x,Y=y]=Pr[\omega;X(\omega)=x,Y(\omega))=y\}]$$

hypergeometrische Verteilung

Allgemein nennt man Zufallsvariablen mit der Dichte $Pr[X = x] = \frac{\binom{b}{x} * \binom{a}{r-x}}{\binom{a+b}{x}}$

hypergeometrisch verteilt. Durch diese Dichte wird ein Experiment modelliert, bei dem r Elemente ohne Zurücklegen aus einer Grundmenge der Mächtigkeit a + b mit b besonders ausgezeichneten Elementen gezogen werden.

Gemeinsame Dichte 3.3.2

Die Funktion

 $f_{X,Y}(x,y) := Pr[X = x, Y = y]$ heißt gemeinsame Dichte der Zufallsvariablen X und Y.

Aus der gemeinsamen Dichte $f_{X,Y}$ kann man ableiten

$$f_X(x) = \sum_{y \in W_Y} f_{X,Y}(x,y)$$

$$f_Y(x) = \sum_{x \in W_X} f_{X,Y}(x,y)$$

 $\begin{array}{l} f_X(x) = \sum_{y \in W_Y} f_{X,Y}(x,y) \\ f_Y(x) = \sum_{x \in W_X} f_{X,Y}(x,y) \\ \text{Die Funktionen } \mathbf{f}_{\mathbf{X}} \text{ und } \mathbf{f}_{\mathbf{Y}} \text{ nennt man Randdichten.} \end{array}$

3.3.3 Unabhängigkeit von Zufallsvariablen

1. Definition 45 Die Zufallsvariablen $X_1,...,X_n$ heißen unabhängig, wenn für alle $(x_1,...x_n)\in W_{X_1}\times...\times W_{X_n}$ gilt:

$$Pr[X_1 = x_1, ..., X_n = x_n] = Pr[X_1 = x_1] * ... * Pr[X_n = x_n]$$

Analog: Gesamte Dichte ist Produkt aus einzelnen Dichten. Analog: Gesamte Verteilung ist Produkt aus einzelnen Verteilungen.

3.3.4 Zusammengesetzte Zufallsvariablen

1. Satz 49 Für zwei unabhängige Zufallsvariablen X und Y sei Z := X + Y . Es gilt $f_Z(z) = \sum_{x \in W_X} f_X(x) * f_Y(zx)$

3.3.5 Momente zusammengesetzter Zufallsvariablen

- 1. Satz 50 (Linearität des Erwartungswerts) Für Zufallsvariablen $X_1, ..., X_n$ und $X := a_1 X_1 + ... + a_n X_n$ mit $a_1, ... a_n \in R$ gilt $\mathbb{E}[X] = a_1 \mathbb{E}[X_1] + ... + a_n \mathbb{E}[X_n]$
- 2. Satz 52 (Multiplikativität des Erwartungswerts) Für unabhängige Zufallsvariablen $X_1, ..., X_n$ gilt E[X1*...*Xn] = E[X1]*...*E[Xn]
- 3. Definition 53 Zu einem Ereignis A heißt die Zufallsvariable $I_A = \begin{array}{cc} 1 & \text{falls A eintritt} \\ 0 & \text{sonst} \end{array}$

Indikatorvariable des Ereigniss A