CÁLCULO NUMÉRICO EM COMPUTADORES

Sistemas de Equações Lineares

Prof^a. Juliana Eyng, Dr^a.

PARTE 3 - AULA 4

- Quando o sistema de equações lineares A x = b possuir algumas características especiais, tais como:
 - Ordem n elevada (n é o número de equações);
 - A matriz dos coeficientes possuir grande quantidade de elementos nulos (matriz esparsa);
 - Os coeficientes puderem ser gerados através de alguma lei de formação;
- em geral, será mais eficiente resolvê-lo através de um método iterativo, desde que a convergência seja possível.

- Se baseiam na construção de sequências de aproximações. A cada passo, os valores calculados anteriormente são utilizados para reforçar a aproximação
- Geralmente são utilizados os seguintes critérios de parada para as iterações:
 - Limitação no número de iterações
 - Determinação de uma tolerância para a exatidão da solução;

- Podem não convergir para a solução exata;
- Podem ser inviáveis quando o sistema é muito grande ou mal-condicionado;
- Exemplos de Métodos Iterativos:
 - Método de Gauss-Jacobi
 - Método de Gauss-Seidel
- Geram uma sequência de vetores {x}^k, a partir de uma aproximação inicial {x}⁰. Sob certas condições essa sequência converge para a solução, caso ela exista

- Critérios de parada para os métodos iterativos:
 - x^k seja suficientemente próximo de x^{k-1}
 (x^k x^{k-1}) < que uma dada tolerância
 repetir este processo até que a norma do erro entre
 2 vetores solução seja suficientemente pequena.
 - Nota: a norma de um vetor e com n componentes e dada por: $||e||_1 = |e_1| + |e_2| + |e_3| + ... + |e_n|$
 - Número de iterações

 Exemplo: Resolver o seguinte sistema pelo método de Jacobi.

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \end{cases} \begin{cases} x_1^{k+1} = (1 + x_2^k + x_3^k) / 3 \\ x_2^{k+1} = (5 - x_1^k - x_3^k) / 3 \\ x_3^{k+1} = (4 - 2x_1^k + 2x_2^k) / 4 \end{cases}$$

- □ Valor Inicial: $(x_1^0, x_2^0, x_3^0) = (0,0,0)$
- □ Solução do sistema S = {1,1,1}.

k	X ₁ ^k	X ₂ ^k	X ₃ ^k
0	0	0	0
1	0,333	1,667	1
2	1,222	1,222	0,667
3	1,296	0,704	1
4	0,901	0,901	0,704
5	0,868	1,132	1
6	1,044	1,044	1,132

Note que, neste exemplo, o processo iterativo é do tipo oscilatório, onde as variáveis aumentam e diminuem alternativamente. Este efeito prejudica a convergência, tornando o processo lento.

Cada coordenada do vetor correspondente à nova aproximação é calculada a partir da respectiva equação do sistema, utilizando-se as demais coordenadas do vetor aproximação da iteração anterior.

$$x_i^{k+1} = (b_i - \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j^k) / a_{ii}$$

- Critérios de parada:
 - máxima diferença absoluta entre valores novos e antigos de todas as variáveis.

$$\operatorname{Max}\left\{\left|x_{i}^{k+1}-x_{i}^{k}\right|\right\} \leq \varepsilon$$

máxima diferença relativa entre valores novos e antigos de todas as variáveis.

$$\mathbf{Max} \left\{ \left| \frac{\mathbf{x}_{i}^{k+1} - \mathbf{x}_{i}^{k}}{\mathbf{x}_{i}^{k+1}} \right| \right\} \leq \varepsilon$$

- Critérios de parada:
 - maior resíduo dentre todas as equações

$$\operatorname{Max}\left\{\left|R_{i}^{k+1}\right|\right\} \leq \varepsilon$$

onde

$$R_i^{k+1} = b_i - \sum_{j=1}^n a_{ij} x_j^{k+1}$$

Exemplo: Resolver o seguinte sistema pelo método de Gauss-Seidel:

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \end{cases} \begin{cases} x_1^{k+1} = (1 + x_2^k + x_3^k) / 3 \\ x_2^{k+1} = (5 - x_1^{k+1} - x_3^k) / 3 \\ x_3^{k+1} = (4 - 2x_1^{k+1} + 2x_2^{k+1}) / 4 \end{cases}$$

□ Valor inicial $(x_1^0, x_2^0, x_3^0) = (0,0,0)$

k	X ₁ ^k	X ₂ ^k	X ₃ ^k
0	0	0	0
1	0,333	1,555	1,611
2	1,388	0,666	0,638
3	0,768	1,197	1,214
4	1,137	0,882	0,872
5	0,918	1,069	1,075

Cada coordenada do vetor correspondente à nova aproximação é calculada a partir da respectiva equação do sistema, utilizando-se as coordenadas do vetor aproximação da iteração anterior, quando essas ainda não foram calculadas na iteração corrente, e as coordenadas do vetor aproximação da iteração corrente, no caso contrário.

$$x^{k+1} = (b_i - \sum_{\substack{j=1\\j < i}}^{i-1} a_{ij} x_j^{k+1} - \sum_{\substack{j=i+1\\j > i}}^{n} a_{ij} x_j^{k}) / a_{ii}$$

Note que, no mesmo exemplo, o processo iterativo correspondente a aplicação do Método de Gauss-Seidel também é um processo oscilatório, porém neste caso tem-se um processo de convergência um pouco mais rápido, por que no método de Gauss-Seidel são tomados os valores disponíveis mais atualizados.

- Para definir um critério de convergência para este método, precisamos de 2 conceitos novos:
 - No sistema Ax = b, sejam

$$S_i = \sum_{\substack{j=1 \ i \neq i}}^n |a_{ij}|$$
, para $i=1, 2, ..., n$.

- Daí, diz-se que ele é <u>diagonal</u> <u>dominante</u> se ocorrer:
 - i) $|a_{ii}| \ge S_i$ para todo i, e:
 - ii) $|a_{ii}| > S_i$ para, pelo menos, um i.

- Um sistema é diagonal dominante se as equações podem ser ordenadas de tal forma que cada elemento da diagonal principal é maior em módulo do que a soma dos módulos dos outros coeficientes na mesma linha.
- Um sistema é irredutível se as sua equações não puderem ser reordenadas de modo a se obter a solução para algumas variáveis sem resolver o sistema todo

- Critério (teorema da convergência para GS)
 - Se um sistema Ax=b for diagonal dominante e irredutível, então o método de Gauss-Seidel tem convergência garantida.