Nichtparametrische Regression durch tiefe neuronale Netzwerke mit ReLU Aktivierungsfunktion

Minh Duc Bui

January 16, 2020

Inhaltsverzeichnis I

- Einleitung
 - Ziel der Arbeit
 - Nichtparametrische Regression
 - Konvergenzrate
- Beschreibung des Modells
 - Definition eines neuronalen Netzwerkes
 - Rahmenbedingungen des Modells
 - Aktivierungsfunktion
 - Netzwerkparameter
 - Dünnbesetzte Parameter
 - Hierarchische Komposition der Regressionsfunktion
 - Glattheit einer kompositionalen Funktion
 - Empirisches Risiko
- 3 Hauptresultat
 - Obere Schranke des L₂-Fehler

Inhaltsverzeichnis II

- ullet Folgerungen aus Theorem 1
- Untere Schranke des L₂-Fehler
- Beweisidee zum Haupttheorem

Ziel der Arbeit Nichtparametrische Regression Konvergenzrate

Einleitung

Ziel der Arbeit

Annahme: Multivariates nichtparametrisches Regressionsmodel und die Regressionsfunktion besteht aus einer Komposition von Funktionen. Betrachten ein *sparsly connected* tiefes neuronales Netzwerk mit einer ReLU Aktivierungsfunktion.

Ziele:

- Für eine bestimmte gewählte Netzwerkarchitektur, eine obere Schranke für den L_2 -Fehler beweisen
- Untere Schranke f
 ür L₂-Fehler angeben
- Minimax-Konvergenzrate für Schätzer aus solchen Netzwerken

Nichtparametrische Regression I

- ullet Zufallsvektor (\mathbf{X},Y) mit Werten in $\mathbb{R}^d imes \mathbb{R}$, wobei $\mathbb{E} Y^2 < \infty$
- $Y = f(\mathbf{X}) + \epsilon$, wobei Störgröße standardnormalverteilte und unabhängig von \mathbf{X} Zufallsvariable
- Minimiere $\mathbb{E}[L(Y, f'(\mathbf{X}))]$, wobei $L : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$ messbare Funktion
- Wähle $L(y,s) = (y-s)^2$ quadratische Verlustfunktion, es folgt $\mathbb{E}[|Y-f'(\mathbf{X})|^2]$

Nichtparametrische Regression II

- $m: \mathbb{R}^d \to \mathbb{R}, \ m = \mathbb{E}(Y|\mathbf{X} = \mathbf{x})$ nennt man Regressionsfunktion
- $\mathbb{E}(|f'(\mathbf{X}) Y|^2) = \mathbb{E}(|f'(\mathbf{X}) m(\mathbf{X}))|^2) + \mathbb{E}(|m(\mathbf{X}) Y)|^2)$
- $\mathbb{E}(|f'(\mathbf{X}) m(\mathbf{X})|^2)$ nennt man L_2 -Fehler von f'
- Regressionsfunktion minimiert L₂-Fehler, aber nicht berechenbar

Nichtparametrische Regression III

- Gegebene Beobachtungen $D_n = (\mathbf{X}_1, Y_1, ..., \mathbf{X}_n, Y_n)$, wobei $(\mathbf{X}, Y), (\mathbf{X}_1, Y_1), ..., (\mathbf{X}_n, Y_n)$ u.i.v. Zufallsvariablen
- Ziel: $f_n(\mathbf{x}) = f_n(\mathbf{x}, D_n)$ konstruieren, sodass die L_2 -Fehler

$$\mathbb{E}(|f_n(\mathbf{X}) - f_0(\mathbf{X})|^2) = \int |f_n(\mathbf{x}) - f_0(\mathbf{x})|^2 P_X(dx)$$

minimal

Konvergenzrate I

- Definiere L_2 Fehler als $R(f_n, f_0) := \int |f_n(\mathbf{X}) f_0(\mathbf{X})|^2 P_X(dx)$
- Analyse der optimalen Konvergenzrate des L₂-Fehler gegeben einer Verteilungsklasse
- Optimal in diesem Kontext heißt, falls die Rate der Minimax-Konvergenzrate des L₂ Fehlers entspricht

Konvergenzrate II

- Klassische Annahme der nichtparametrischen Statistik: Regressionsfunktion ist β -glatt
- ullet Optimale Konvergenzrate liegt bei $n^{-rac{2eta}{2eta+d}}$
- Hochdimensionale Probleme verursachen langsame Konvergenzrate, das nennt man Fluch der Dimension

Definition eines neuronalen Netzwerkes Rahmenbedingungen des Modells Glattheit einer kompositionalen Funktion Empirisches Risiko

Beschreibung des Modells

Definition eines neuronalen Netzwerkes

Definition

Sei $L \in \mathbb{N}_0$, $\mathbf{p} = (p_0, ..., p_{L+1})^T \in \mathbb{N}^{L+2}$. Ein neuronales Netzwerk mit Netzwerkarchitektur (L, \mathbf{p}) und verschobener Aktivierungsfunktion $\sigma_{\mathbf{v}_i} : \mathbb{R}^{p_i} \to \mathbb{R}^{p_i}$ ist eine Funktion $g : \mathbb{R}^{p_0} \to \mathbb{R}^{p_{L+1}}$ mit

$$g: \mathbb{R}^{\rho_0} \to \mathbb{R}^{\rho_{L+1}}, \ \mathbf{x} \mapsto g(\mathbf{x}) = W_{L+1} \cdot \sigma_{\mathbf{v}_L}(W_L \cdot \sigma_{\mathbf{v}_{L-1}}(\cdots W_2 \cdot \sigma_{\mathbf{v}_1}(W_1 \cdot \mathbf{x})\cdots)), \tag{1}$$

wobei $W_l \in \mathbb{R}^{p_l \times p_{l-1}}, \ l=1,...,L+1$ Gewichtsmatrizen und $\mathbf{v}_l \in \mathbb{R}^{p_l}$ Verschiebungsvektoren heißen. L nennen wir die Anzahl der hidden Layer/Tiefe des neuronalen Netzwerkes und \mathbf{p} heißt width vector.

Anschauliche Betrachtung

Figure: Graphische Darstellung eines neuronalen Netzwerkes mit width vector $\mathbf{p} = (4, 3, 2, 1)$

Definition eines neuronalen Netzwerkes Rahmenbedingungen des Modells Glattheit einer kompositionalen Funktion Empirisches Risiko

Rahmenbedingungen des Modells

Aktivierungsfunktion

Figure: Die ReLU Funktion

Figure: Die Sigmoid Funktion

ReLU Aktivierungsfunktion:

$$\sigma: \mathbb{R} \to \mathbb{R}; \quad x \mapsto \sigma(x) = \max(0, x) = (x)_+$$

Aktivierungsfunktion: Vorteile ReLU I

Produziert viele inaktive hidden units

Figure: Ein *sparse* Netzwerk mit ReLU Aktivierungsfunktion. Die roten Linien illustrieren die Verbindungen zu den aktiven Knoten.

Aktivierungsfunktion: Vorteile ReLU II

- Häufiges Probleme bei anderen Aktivierungsfunktionen, ist das Problem des Verschwinden des Gradienten
 - Stellt ein großes Hindernis im Lernalgorithmus dar und führt häufig zu Ungenauigkeiten des Modells
- Nützliche Besonderheit der Funktion ist, dass sie eine Projektion ist

$$\sigma \circ \sigma = \sigma$$
.

Netzwerkparameter I

• Netzwerkparameter im Betrag kleiner 1 halten, indem wir im Lernalgorithmus die Netzwerkparameter in jeder Iteration auf [-1,1] projizieren:

$$F(\mathit{L}, \mathbf{p}) := \{ f \text{ in der Form (1)} : \max_{j=0,\dots,L} \|\mathit{W}_j\|_{\infty} \vee |\mathbf{v}_j|_{\infty} \leq 1 \}$$

Dünnbesetzte Parameter I

 Größere Netzwerke können komplexere Aufgaben lösen, haben jedoch Neigung zum Overfitting

Figure: Problem des Overfittings durch tiefe neuronale Netzwerke ohne Regulierungen.

Dünnbesetzte Parameter II

Lösungsansatz:

- Einführen von dünnbesetzten Netzwerkparameter
- Falls $||W_j||_0$ die Anzahl der Nicht-Nullen Einträge von W_j bezeichnet, dann definieren wir ein *s-sparse* Netzwerk als

$$F(L, \mathbf{p}, s) := F(L, \mathbf{p}, s, F)$$

$$:= \{ f \in F(L, p) : \sum_{j=0}^{L} \|W_j\|_0 + |\mathbf{v}_j|_0 \le s, \||f|_{\infty}\|_{\infty} \le F \},$$

Hierarchische Komposition der Regressionsfunktion I

- Für β -glatte Regressionsfunktion $f_0:[0,1]^d\to\mathbb{R}$ gilt eine Minimax-Konvergenzrate von $n^{-2\beta/2\beta+d}$
- Müssen zusätzliche strukturelle Annahmen an die Regressionsfunktion treffen

Hierarchische Komposition der Regressionsfunktion II

 Heuristische Idee: Performen gut bei komplexen Objekten, die durch einfache Objekte in einer iterativen Weise aufgebaut werden können

Figure: Beispiel einer hierarchischen Struktur: Aus Linien werden Buchstaben gebaut, aus Buchstaben werden Wörter geformt und zum Schluss werden die Wörter zu Sätzen zusammengesetzt.

Hierarchische Komposition der Regressionsfunktion III

• Regressionsfunktion f_0 , die aus einer Komposition von Funktionen besteht, das heißt

$$f_0 = g_q \circ g_{q-1} \circ ... \circ g_1 \circ g_0$$

mit
$$g_i : [a_i, b_i]^{d_i} \to [a_{i+1}, b_{i+1}]^{d_{i+1}}$$

- Einzelnen Komponenten von g_i bezeichnen wir mit $g_i = (g_{ij})_{j=1,...,d_{i+1}}^T$
- $t_i \le d_i$ als maximale Anzahl an Variablen, an denen die einzelnen g_{ij} abhängen
- Klassischer Ansatz: g_{ij} in der Hölderklasse mit Glattheitsindex β_i

Hierarchische Komposition der Regressionsfunktion IV

Der Ball der β -Hölder Funktionen mit Radius K ist definiert als

$$C_r^{\beta}(D, K) = \left\{ f : D \subset \mathbb{R}^r \to \mathbb{R} : \right.$$

$$\sum_{\alpha : |\alpha| < \beta} \|\partial^{\alpha} f\|_{\infty} + \sum_{\alpha : |\alpha| = \lfloor \beta \rfloor} \sup_{\substack{\mathbf{x}, \mathbf{y} \in D \\ \mathbf{x} \neq \mathbf{y}}} \frac{|\partial^{\alpha} f(\mathbf{x}) - \partial^{\alpha} f(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|_{\infty}^{\beta - \lfloor \beta \rfloor}} \le K \right\}$$

wobei $\partial^{\alpha} = \partial^{\alpha_1}...\partial^{\alpha_r}$ ein Multi-Index mit $\alpha = (\alpha_1, ..., \alpha_r) \in \mathbb{N}^r$ und $|\alpha| := |\alpha|_1$.

Hierarchische Komposition der Regressionsfunktion V

Annahme: f_0 aus einer Komposition von Funktionen in der Klasse

$$\begin{split} G(q,\mathbf{d},\mathbf{t},\beta,K) := \{ \mathit{f}_0 = \mathit{g}_q \circ ... \circ \mathit{g}_0 : \mathit{g}_i = (\mathit{g}_{ij})_j : \\ [\mathit{a}_i,\mathit{b}_i]^{\mathit{d}_i} &\to [\mathit{a}_{i+1},\mathit{b}_{i+1}]^{\mathit{d}_{i+1}}, \ \mathit{g}_{ij} \in \mathit{C}_{t_i}^{\beta_i}([\mathit{a}_i,\mathit{b}_i]^{t_i},K), \\ \text{für beliebige } |\mathit{a}_i|,|\mathit{b}_i| \leq K \} \end{split}$$

mit
$$\mathbf{d} := (d_0, ..., d_{q+1}), \ \mathbf{t} := (t_0, ..., t_q), \ \beta := (\beta_0, ..., \beta_q)$$
 besteht.

Glattheit einer kompositionalen Funktion

- $f_0 = g_q \circ g_{q-1} \circ ... \circ g_1 \circ g_0$
- Berechne Glattheit von f_0 , die wiederum durch die Glattheit der Funktionen g_i induziert wird
- Sogenannte effektive Glattheitsindex

$$eta_i^* := eta_i \prod_{I=i+1}^q (eta_I \wedge 1), \qquad \quad (eta_I \wedge 1) := \min(eta_I, 1)$$

$$\bullet \ \phi_n := \max_{i=0,\dots q} n^{-\frac{2\beta_i^*}{2\beta_i^* + t_i}}.$$

Empirisches Risiko

- Gegeben $D_n = (\mathbf{X}_1, Y_1, ..., \mathbf{X}_n, Y_n)$, wobei $(\mathbf{X}, Y), (\mathbf{X}_1, Y_1), ..., (\mathbf{X}_n, Y_n)$ u.i.v. Zufallsvariablen
- Netzwerkfunktion f konstruieren, sodass das empirische Risiko $\frac{1}{n}\sum_{i=1}^{n}(Y_i-f(\mathbf{X}_i))^2$ minimal ist
- Für einen beliebigen Schätzer $\widehat{f}_n \in F(L,\mathbf{p},s,F)$ definieren wir

$$\Delta_n(\widehat{f}_n, f_0) := \mathbb{E}_{f_0} \left[\frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{f}_n(\mathbf{X}_i))^2 - \inf_{f \in F(L, \mathbf{p}, s, F)} \frac{1}{n} \sum_{i=1}^n (Y_i - f(\mathbf{X}_i))^2 \right].$$

Obere Schranke des L₂-Fehler Untere Schranke des L₂-Fehler Beweisidee zum Haupttheorem

Hauptresultat

Obere Schranke des L₂-Fehler I

Theorem

Betrachte ein d-variates nichtparametrisches Regressionsmodell, wobei die Regressionsfunktion eine Komposition aus Funktionen besteht und dabei in der Klasse $G(q, \mathbf{d}, \mathbf{t}, \beta, K)$ liegt. Sei nun \widehat{f}_n ein Schätzer, der Funktionen in der Netzwerkklasse $F(L, (p_i)_{i=0,\dots,L+1}, s, F)$ schätzt, wobei die Netzwerkklasse die folgenden Bedingungen erfüllt:

Obere Schranke des L2-Fehler II

Theorem

- (i) Die zur Schätzung verwendeten neuronalen Netzwerke erlauben Funktionswerte, die mindestens so groß sind wie die maximalen Funktionswerte der Regressionsfunktion f_0 : $F \geq \max(K,1)$
- (ii) Für die Anzahl der Layer soll gelten: $\sum_{i=0}^{q} \log_2(4t_i \vee 4\beta_i) \log_2 n \leq L \lesssim n\phi_n$
- (iii) Die Größe der Layer muss mindestens mit Rate $n\phi_n$ in n gegen unendlich gehen: $n\phi_n \lesssim \min_{i=1,...,L} p_i$
- (iv) Anzahl der nicht verschwindende Einträge der Gewichtsmatrizen und Verschiebungsvektoren muss mit Rate $n\phi_n\log(n)$ in n gegen unendlich gehen: $s\asymp n\phi_n\log n$

Obere Schranke des L₂-Fehler III

Theorem

Dann existieren Konstanten C und C', die nur abhängen von q, **d**, **t**, β , F, sodass, wenn $\Delta_n(\widehat{f}_n, f_0) \leq C\phi_n L \log^2(n)$ gilt, dann

$$R(\widehat{f}_n, f_0) \le C' \phi_n L \log^2(n) \tag{2}$$

und falls $\Delta_n(\widehat{f}_n, f_0) \geq C\phi_n L \log^2(n)$, dann

$$\frac{1}{C'}\Delta_n(\widehat{f}_n, f_0) \le R(\widehat{f}_n, f_0) \le C'\Delta_n(\widehat{f}_n, f_0). \tag{3}$$

Folgerungen aus Theorem I

- Aus $\phi_n:=\max_{i=0,\dots q} n^{-\frac{2\beta_i^*}{2\beta_i^*+t_i}}$ können wir sehen, dass Rate nicht mehr von ursprünglichen Inputdimension d abhängt, sondern von t_i
- Aus der Bedingung (iv) können wir folgern, dass wir ein sparse Netzwerk vorliegen haben müssen
- Flexible Möglichkeit eine gute Netzwerkarchitektur zu wählen, solange die Anzahl der aktiven Parameter s die Bedingung (iv) erfüllt

Untere Schranke des L₂-Fehler

Theorem

Betrachte ein d-variates nichtparametrisches Regressionsmodell mit Beobachtungen \mathbf{X}_i aus einer Wahrscheinlichkeitsverteilung mit einer Lebesque Dichte auf $[0,1]^d$, welche mit einer oberen und unteren positiven Konstante beschränkt ist. Für eine beliebige nicht-negative ganze Zahl q, beliebige Dimensionsvektoren \mathbf{d} und \mathbf{t} , die $t_i \leq \min(d_0,...,d_{i-1})$ für alle i erfüllen, ein beliebiger Glattheitsvektor β und alle hinreichend großen Konstanten K>0, existiert eine positive Konstante c, sodass

$$\inf_{\widehat{f}_n} \sup_{f_0 \in G(q,\mathbf{d},\mathbf{t},\beta,\mathcal{K})} R(\widehat{f}_n,f_0) \ge c\phi_n,$$

wobei das inf über alle Schätzer \hat{f}_n genommen wird.

Untere Schranke des L₂-Fehler

• Theorem 1 gibt uns obere Schranke für den L_2 -Fehler für einen Schätzer aus der Netzwerkklasse $F(L, \mathbf{p}, s, F)$ über der Klasse $G(q, \mathbf{d}, \mathbf{t}, \beta, K)$:

$$R(\widehat{f}_n, f_0) \leq C' \phi_n L \log^2(n)$$

• Untere Schranke für L_2 -Fehler über der Funktionsklasse $G(q, \mathbf{d}, \mathbf{t}, \beta, K)$:

$$\inf_{\widehat{f}_n} \sup_{f_0 \in G(q,\mathbf{d},\mathbf{t},\beta,K)} R(\widehat{f}_n,f_0) \geq c\phi_n$$

Einbettungseigenschaften einer Netzwerkfunktionsklasse

- Größenvergleich
- Komposition
- Layers hinzufügen/Netzwerktiefe angleichen
- Parallelisierung
- Beseitigung der inaktiven Knoten

Approximationsqualität neuronaler Netzwerke I

Theorem

Für jede beliebige Funktion $h \in C_r^{\beta}([0,1]^r,K)$ und jede beliebige ganze Zahl $m \ge 1$ und $N \ge (\beta+1)^r \lor (K+1)e^r$, existiert ein Netzwerk

$$\widetilde{f} \in F(L, (r, 6(r + \lceil \beta \rceil)N, ..., 6(r + \lceil \beta \rceil)N, 1), s, \infty)$$

mit der Tiefe

$$L = 8 + (m+5)(1 + \lceil \log_2(r \vee \beta) \rceil)$$

und die Anzahl an Parameter

$$s \le 141(r+\beta+1)^{3+r}N(m+6),$$

sodass

$$\|\widetilde{f} - h\|_{L^{\infty}([0,1]')} \le (2K+1)(1+r^2+\beta^2)6^rN2^{-m} + K3^{\beta}N^{-\frac{\beta}{r}}.$$

Approximationsqualität neuronaler Netzwerke II

- $f_0 = g_q \circ ... \circ g_0$ mit $g_{ij} \in C_{t_i}^{\beta_i}([a_i,b_i]^{t_i},K_i)$ und $K_i \geq 1$
- $f_0 = g_q \circ ... \circ g_0 = h_q \circ ... \circ h_0$ mit $h_{0j} \in C_{t_0}^{\beta_0}([0,1]^{t_0},1)$ und $h_{ij} \in C_{t_i}^{\beta_i}([0,1]^{t_i},(2K_{i-1})^{\beta_i})$ für i=1,...,q-1 und $h_{qj} \in C_{t_q}^{\beta_q}([0,1]^{t_q},K_q(2K_{q-1})^{\beta_q})$

Lemma

Sei h_{ij} wie oben definiert mit $K_i \geq 1$. Dann gilt für jede beliebige Funktion $h_i = (h_{ij})_i^{\top}$ mit $h_{ij} : [0,1]^{t_i} \rightarrow [0,1]$,

$$||h_{q} \circ ... \circ h_{0} - \widetilde{h}_{q} \circ ... \circ \widetilde{h}_{0}||_{L^{\infty}[0,1]^{d}}$$

$$\leq K_{q} \prod_{l=0}^{q-1} (2K_{l})^{\beta_{l+1}} \sum_{i=0}^{q} |||h_{i} - \widetilde{h}_{i}|_{\infty} ||_{L^{\infty}[0,1]^{d_{i}}}^{\prod_{l=i+1}^{q} \beta_{l} \wedge 1}.$$

Beweisidee zum Haupttheorem 1

• Für Stichprobenumfang $n \ge 3$ gilt:

$$\frac{1}{4}\Delta_{n}(\widehat{f}_{n}, f_{0}) - C'\phi_{n}L\log^{2}(n) \leq R(\widehat{f}_{n}, f_{0})$$

$$\leq 4 \inf_{f^{*} \in F(L, \mathbf{p}, s, F)} \|f^{*} - f_{0}\|_{\infty}^{2} + 4\Delta_{n}(\widehat{f}_{n}, f_{0}) + C'\phi_{n}L\log^{2}(n).$$
(4)

Untere Grenze in (3)

• Falls $C\phi_n L \log^2(n) \le \Delta_n(\widehat{f}_n, f_0)$ gilt und wir C = 8C' wählen, dann folgt für

$$C'\phi_n L \log^2(n) = \frac{1}{8} C\phi_n L \log^2(n) \le \frac{1}{8} \Delta_n(\widehat{f}, f_0).$$

• $R(\widehat{f}_n, f_0) \geq \frac{1}{8}\Delta_n(\widehat{f}_n, f_0)$

- ullet Schranke für den Approximationsfehler $\inf_{f^* \in F(L,\mathbf{p},s,F)} \|f^* f_0\|_{\infty}$
- Regressions funktion f_0 in der Form $f_0 = h_q \circ ... \circ h_0$ mit $h_i = (h_{ij})_j^{\top}, h_{ij}$ definiert auf $[0,1]^{t_i}$
- ullet Nach Theorem existiert Netzwerk \widetilde{h}_{ij} , sodass:

$$\|\widetilde{h}_{ij}-h_{ij}\|_{L^{\infty}([0,1]^{t_i})} \leq (2Q_i+1)(1+t_i^2+\beta_i^2)6^{t_i}Nn^{-1}+Q_i3^{\beta_i}N^{-\frac{\beta_i}{t_i}}.$$
(5)

• Transformation des Output x vom Netzwerk \hat{h}_{ij} zu $(1-(1-x)_+)_+$ mit neuem Netzwerk $\sigma(h_{ij}^*)$

ullet Es gilt $\sigma(h_{ij}^*)=(h_{ij}^*(\mathbf{x})ee 0)\wedge 1$ und

$$\|\sigma(h_{ij}^*)-h_{ij}\|_{L^{\infty}([0,1]^r)}\leq \|\widetilde{h}_{ij}-h_{ij}\|_{L^{\infty}([0,1]^r)}.$$

• Durch Parallelisierung und Komposition erhält man $f^* = \widetilde{h}_{q1} \circ \sigma(h_{q-1}^*) \circ ... \circ \sigma(h_0^*)$, wobei durch Hinzufügen von Layern, diese in Netzwerkklasse $F(L, \mathbf{p}, s)$ liegt und die Bedingungen aus Theorem erfüllen

$$\inf_{f^* \in F(L, \mathbf{p}, \mathbf{s})} \|f^* - f_0\|_{\infty}^2 \le C' \max_{i=0, \dots, q} c^{-\frac{2\beta_i^*}{t_i}} n^{-\frac{2\beta_i^*}{2\beta_i^* + t_i}}$$

Man kann zeigen, dass

$$\begin{split} \inf_{f^* \in F(L, \mathbf{p}, s, F)} \|f^* - f_0\|_{\infty}^2 &\leq \inf_{\widetilde{f} \in F(L, \mathbf{p}, s)} 4 \|\widetilde{f} - f_0\|_{\infty}^2 \\ &\leq 8C \max_{i=0, \dots, q} c^{-\frac{2\beta_i^*}{t_i}} n^{-\frac{2\beta_i^*}{2\beta_i^* + t_i}}. \end{split}$$

Man kann folgern, dass

$$\begin{split} R(\widehat{f}_{n}, f_{0}) &\leq 4 \inf_{f^{*} \in F(L, \mathbf{p}, s, F)} \|f^{*} - f_{0}\|_{\infty}^{2} + 4\Delta_{n}(\widehat{f}_{n}, f_{0}) + C'\phi_{n}L \log^{2}(n) \\ &\leq 32C \max_{i=0, ..., q} c^{-\frac{2\beta_{i}^{*}}{t_{i}}} n^{-\frac{2\beta_{i}^{*}}{2\beta_{i}^{*} + t_{i}}} + 4\Delta_{n}(\widehat{f}_{n}, f_{0}) + C'\phi_{n}L \log^{2}(n) \end{split}$$

- Bedingung aus (2): $\Delta_n(\widehat{f}_n, f_0) \leq \widetilde{C}\phi_n L \log^2(n)$
- Bedingung aus (3): $\Delta_n(\widehat{f}_n, f_0) \geq \widetilde{C}\phi_n L \log^2(n)$