

Maestría en Sistemas Embebidos

Sistemas Digitales para las Comunicaciones

Docentes y datos de contacto

Docente:

Federico G. Zacchigna

Vías de comunicación:

Grupo de correos de SDC: sdc_m07@cursoscapse.com

Se deben reunir 3 condiciones:

- Asistencia
- Ejercicios
- Trabajos prácticos

Asistencia

Ejercicios

Trabajo práctico integrador

<u>Asistencia</u>

- Los alumnos deberán asistir al menos al 75% de las clases.
- En caso de ausencia se deberá justificar las misma.

Asistencia

Ejercicios

Trabajo práctico integrador

Ejercicios

- Habrá una serie de ejercicios a lo largo de la materia.
- Ejercicios para resolver interactuando entre todos.
- Ejercicios para resolver en clase.
- Ejercicios para resolver fuera del horario de clase.
- La mayoría de los ejercicios será de resolución grupal, pero entrega individual.
- Algunos ejercicios seleccionados serán de resolución y entrega individual.

Asistencia

Ejercicios

Trabajo práctico integrador

<u>Trabajos prácticos</u>

- Trabajos prácticos cortos a lo largo de la materia:
 - Individual.
 - Entrega: Utilizando un repositorio, incluyendo un README como informe, resumen o explicación. En las entregas que corresponda debe existir un script o makefile que permita compilar, simular o sintetizar.

Asistencia

Ejercicios

Trabajo práctico integrador

Trabajos prácticos

- Trabajo práctico final:
 - Individual o grupal de acuerdo al alcance.
 - Tema a elección del alumno y consensuado con el docente.
 - Entrega: Será mediante una presentación durante la última clase.

Asistencia

Ejercicios

Trabajo práctico integrador

Trabajos prácticos

- La fecha límite de las entregas será el domingo de la última semana de clases.
- Se aceptarán entregas con retraso, pero tendrán un impacto en la nota final.

- Un total de 8 clases de 3 horas cada una.
- Los días viernes de 19 a 22 hs.

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte !

Parte 6

- Régimen de cursada y aprobación.
- Cronograma tentativo.
- Vistazo general de un sistema de comunicación.

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte !

Parte 6

- Régimen de cursada y aprobación.
- Cronograma tentativo.
- Vistazo general de un sistema de comunicación:

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

- Régimen de cursada y aprobación.
- Cronograma tentativo.
- Vistazo general de un sistema de comunicación:

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

- Régimen de cursada y aprobación.
- Cronograma tentativo.
- Vistazo general de un sistema de comunicación:

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

- Régimen de cursada y aprobación.
- Cronograma tentativo.
- Vistazo general de un sistema de comunicación:

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

Parte 1: Capa física - Esquemas de modulación y sincronización.

- Canal:
 - Canal real, características y modelos de canal.
- Esquemas de modulación digital.
 - Banda base y banda pasante.
 - o Interferencia inter-símbolo.
- Demodulador:
 - Filtro adaptado y muestreo.
 - Ecualización.
 - Sincronización de portadora y de símbolo.
- Conversión analógica-digital y digital-analógica.
- Modelo equivalente de banda base.

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

Parte 2: Transceiver - Sistema, diagramas y simulación.

- Presentación del transceiver:
 - Arquitectura del sistema de comunicación.
 - Características.
- Modulador:
 - o Diagrama en bloques.
 - o TP: Armado y simulación.
- + Canal:
 - Modelo y diagrama en bloques.
 - o TP: Armado y simulación.
- + Demodulador:
 - Diagrama en bloques.
 - TP: Armado y simulación.

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

Parte 3: Transceiver - Implementación.

- Transceiver:
 - Arquitectura del sistema (repaso).
 - TP: Implementación en FPGA.
 - TP: Validación por visualización de señales.
 - TP: Caracterización.
- Presentación de temas para TP Final:
 - Posibles temas propuestos por los docentes.
 - Posibles temas propuestos por los alumnos.
 - Discusión.

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

Parte 4: Sistema de comunicación - Teoría de información.

- Introducción a los sistemas de comunicación digitales.
 - Fuente, mensaje, transmisor, receptor y canal.
 - Codificación.
- Codificación de fuente.
 - Fuentes: Información y propiedades.
 - Codificación de Huffman y Lempel-Ziv.
- Codificación de canal.
 - Modelos y capacidad de canal.
 - Detección y corrección de errores.
 - Códigos por bloque lineales y convolucionales.
 - Entrelazado y codificación de línea.

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

Parte 5: Tiempo extra.

- Tema nuevo:
 - o CORDIC
 - NCO
 - o PLL
 - o FFT
- Clase de consultas:
 - Consultas sobre tema teórico.
 - Consultas sobre ejercicios.
 - Consultas sobre TPs.
 - Consultas sobre TPF.
 - Hands on.

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte !

Parte 6

Parte 6: Presentaciones y cierre.

- Exposiciones de alumnos.
- Últimas consultas.
- Feedback.
- Cierre.

Repositorio y primer ejercicio

- Utilizamos GitHub y GitHub classroom para la entrega de las actividades.
- Resolvemos el ejercicio 1 en clase.

Ejercicio 1

Enunciado

