Listu Muximales e Ideales Primos

1. Pruebe que un anillo K es un campo si, y solo si $\langle 0 \rangle$ es ideal maximal de K.

4.	Sea	f: A	\longrightarrow	<i>B</i> υ	ın ep	oimo	orfismo. I	Pru€	ebe lo	o sig	uien	te:											
		 a) Si M es ideal maximal de A con ker(f) ⊆ M, entonces f(M) es ideal maximal de B; b) Si N es ideal maximal de B, entonces f⁻¹(N) es ideal maximal de A; 																					
	b)	Si A	V es	ideal	l max	xima	al de B ,	ento	onces	f^{-1}	(N)	es i	deal	max	xima	l de	A;						
	<i>c</i>)	conj	unto	de	idea	les	f(M) maxima s ideales	les o	de A	que	e co	ntier											

6. Sea M un ideal propio de A. Pruebe que M es maximal si, y solo si para cada ideal I de A, o bien $I\subseteq M$ ó I+M=A.

Dem:

=>) Supongu que Mes maximal. Seu I un ideal de A. S. I = M se sigue el resultado. Supongu que I \$M, entonces I a E I M, como Mes maximal, entonces <M,a> = A, luego I me My reA m ra+m=1. Seu be A, entonces:

Portunto, I+M=A

- €) Suponga lo Jicho. Proburemos que M es muximal. Seu $\alpha \in A \setminus M$, entonces $\langle \alpha \rangle \neq M$, luego $M + \langle \alpha \rangle = A$, i.e. $\exists f \in A$ y $m \in M$ for $m + r\alpha = 1 \in \langle M, \alpha \rangle = A$. Por tunto M es muximal. g.e. α .
- 7. Sea A un anillo el cual tiene un único ideal maximal M. Pruebe que los únicos elementos idempotentes de A son el 0 y el 1.

Dam:

Seu u E A m a² = a Tenemos 2 casos: a E M & a E A I M.

- 1) Si $a \notin M$, enfonces $\langle a \rangle = A$ (pues M es el unico maximal de A), luego $1 \in \langle a \rangle$, i.e $\exists r \in A$ $\square 1 = ra = \rangle a = ra = 1 = \rangle a = 1$.
- 2) S_i $\alpha \in M \Rightarrow 1-\alpha \notin M$, luego $<1-\alpha> = A \Rightarrow Como 1-\alpha es idempotente, pues: <math display="block">(1-\alpha)^2 = 1-2\alpha+\alpha^2$

$$= 1 - 2\alpha + \alpha = 1 - \alpha$$

9.0.4.

8. Para un anillo A, pruebe que

$$A^* = A - \cup \{M \mid \text{maximal de } A\}.$$

Dem:

Probaremos la doble contención.

1) Sea a E A*, entonces a & M, Y M : deal maximal de A => a E A \nemM, donde

W = {M | Mes maximal de A}

2)

- 9. Un ideal I de un anillo A se dice que es **minimal** si $I \neq \langle 0 \rangle$ y no existe un ideal $J \neq \langle 0 \rangle$ contenido propiamente en I. Pruebe lo siguiente:
 - a) Un ideal I de un anillo A es minimal si, y solo si I es ideal principal;
 - b) El anillo de enteros \mathbb{Z} no tiene ideal minimales.

Dem:

De a):

 \Rightarrow) Suponyu que I es minimal. Seu ac Il(0), como $\langle a \rangle \subseteq I$ y $\langle a \rangle \neq \langle o \rangle$, entonces por Ser I minimal $\Rightarrow \langle a \rangle = I \Rightarrow I$ es ideal principal.

€) Suponya que Ies ideal principal, entonces } a∈Allo] Π I = (a). Seu Jideal de A π (o) ¥ J ⊆ I Como J ≠ (o), } b∈ J (lo) ⊆ I =>] r∈ A π b = ar

10. Sea $A = \mathfrak{F}(\mathbb{R}, \mathbb{R})$. Pruebe que el conjunto $\{f \in A \mid f(1) = f(-1) = 0\}$ es un ideal de A que no es ideal primo.

Dem:

Seu $I = \{f \in A \mid f(1) = f(-1) = 0\}$ Cluramente $f = 0 \in I$. Seun $f, g \in I$ y $h \in A$, entonces: (f + g)(1) = f(1) + g(1) = 0 + 0 = 0 = (f + g)(-1) = f(1) + g(1) = 0 + 0 = 0 = (f + g)(-1) = f(1) + g(1) = 0 + g(1) = 0 = (f + g)(-1) = f(1) + g(1) = (f + g)(1) = (f + g)(1)

Pero no es primo, pues t, y e A dulus como:

$$f(x) := \begin{cases} 0 & \text{Si } x \leq 0 \\ 1 & \text{Si } x > 0 \end{cases}$$

$$g(x) := \begin{cases} 1 & \text{Si } x \leq 0 \\ 0 & \text{Si } x > 0 \end{cases}$$

 $\forall x \in \mathbb{R}$, cumplen que $(fy)(1) = (fy)(-1) = 0 \Rightarrow fy \in \mathbb{Z}$, pero tanto f como g no están en

I

9.0.CL

11. Pruebe que en el anillo $\mathbb{Z}/n\mathbb{Z}$ (n > 1), los ideales maximales son los ideales principales de la forma $\langle p \rangle = p(\mathbb{Z}/n\mathbb{Z}) = p\mathbb{Z}/n\mathbb{Z}$, donde p es divisor primo de n.

- 12. Sea $f:A\longrightarrow B$ un epimorfismo. Pruebe lo siguiente:
 - a) B es un campo si, y solo si ker(f) es un ideal maximal de A;
 - b) B es un dominio entero si, solo si ker(f) es un ideal primo de A;

Dem:

De a):

- =>) Supongu uue B es cumpo. Seu orhora I: Jeul Je A m Kert £ I = A, como Kert £ I en tonces <math>J(I) es iJeul Je B, pero como Kert £ $I \Rightarrow \langle o \rangle £ f(I) = B$. Como B es cumpo enlonces f(I) = B, luego $\exists f \in I m f(I) = I_B = f(I_A) = A \in Kert = I = A$. Let $I \in I$, pues $I \in I$, luego I = A, as: Kert es muximal de A.
- €) Suponyu que Kortes maximul de A. Probaiemos que $\langle o \rangle$ es maximal de B. Seu Jideol de B \sqcap $\langle o \rangle \not= J \subseteq B \Rightarrow Kort \not= f'(J) \subseteq A$, como Kert es maximal $\Rightarrow f'(J) = A$, luego $|A \in f'(J) \Rightarrow f(|A| = |B \in J \Rightarrow J = B$. Por tunto, $\langle o \rangle$ es maximal de $B \Rightarrow B$ es campo.

De b):

- 13. Sean P_1 , P_2 ideales de un anillo A, y sea $\{P_\alpha\}_\alpha$ una cadena de ideales primos de A. Pruebe lo siguiente:
 - a) Si P_i no está contenido en P_j $(i, j \in \{1, 2\}, i \neq j)$, entonces $P_1 \cap P_2$ no es un ideal primo de A;
 - b) $\bigcup_{\alpha} P_{\alpha}$ y $\bigcap_{\alpha} P_{\alpha}$ son ambos ideales primos de A.

Dem:

De a):

Como P, \(P_2 \, P_2 \notin P, \) \(P_2 \) \(P_2 \) \(P_1 \) \(P_2 \) \(P_2 \) \(P_2 \) \(P_1 \) \(P_2 \) \(P_2 \) \(P_1 \) \(P_2 \) \(P_2 \) \(P_2 \) \(P_1 \) \(P_2 \) \(P_2 \) \(P_1 \) \(P_2 \) \(P_2 \) \(P_2 \) \(P_1 \) \(P_2 \) \

De b): Para & Pa. Como 1Pala es una cadena, entonces & Pa es un ideal de A. Seun a, b \in A \cap ab \in P, entonces \exists $\alpha \in$ A \cap ab \in P $\alpha => \alpha \in$ P $\alpha \in$ As:, Pes ideal primo de A.

Para APa = P. Seun a, b = A m ab eP => ab e Pa, Vare 1 => a = Pa o b e Pa. Vare 1. Como {Pola es una cadena, entoncels a eP o b eP (puesa o b están en el primer elemento de la cadena). Ast, Pes ideal primo.

14. Sea P un ideal primo de un anillo A tal que el anillo cociente A/P es finito. Pruebe que P es un ideal maximal de A.

9. Q. d.

15. Sean A_i anillos, $i=1,\ldots n$, y sea $A=\prod_{i=1}^n A_i$ con las operaciones usuales. Pruebe que un ideal propio I de A es un ideal maximal si, y solo si existe $i\in\{1,\ldots n\}$ tal que

$$I = A_1 \times A_{i-1} \times M_i \times A_{i+1} \times A_n,$$

donde M_i es un ideal maximal de A_i .

17. Sean A un anillo, I un ideal de A y P un ideal primo de A. Se dice que P es **ideal primo minimal** de I si $I \subseteq P$ y no existe ningún otro ideal primo P' de A tal que $I \subset P' \subset P$ con $I \neq P' \neq P$. Por abuso de lenguaje, se refiere al ideal primo minimal de $\langle 0 \rangle$ como el **ideal primo minimal** del anillo A. Bajo las notaciones anteriores, pruebe lo siguiente: a) Si $I \subseteq P$, entonces P contiene un ideal primo minimal de I; b) Cada ideal propio de A tiene al menos un ideal primo minimal de A; c) En el anillo $\mathbb Z$ de los números enteros, pruebe que los ideales minimales de un ideal no cero $n\mathbb{Z}$, son precisamente todos los ideales $p\mathbb{Z}$, donde p es número primo que divide a n.

19. Sea f: A → B un epimorfismo. Pruebe lo siguiente:
a) Si P es ideal primo (resp. primario) de A con ker(f) ⊆ P, entonces f(P) es ideal primo (resp. primario) de B;
b) Si N es ideal primo (resp. primario) de B, entonces f⁻¹(N) es ideal primo (resp. primario) de A;
c) La aplicación P → f(P) define una correspondencia uno a uno entre el con-

junto de ideales primos (resp. primarios) de A que contienen al kernel de f

sobre el conjunto de ideales primos (resp. primarios) de B.

00	D	. 1		,	1.	,	. 1		0	_1	- 111	rn 1	י ודיו	(-					1\						
22	Pru nilp	iebe oten		cad	a div	Visor	e de	cero	en	er a	nillo	∠ ./p)~ <i>Z</i> . (p nu	ımer	o pr	imo,	$n \geq$	2 1)	es					
,	. Sea	an I_1, \ldots, I_n ideales de un anillo A, P ideal primo de $A y M$ ideal maximal de A . uebe lo siguiente:																							
	Pru	Pruebe lo siguiente:																							

2				deal de rimos P_1												ıa ca	ntid	ad .						
2	25. S	ea n	un «	entero >	· 1 c	uya de	escon	nposio	ción e	en pr	imos	s dis	tinto	s es	n =	$= p_1^{k_1}$		$p_r^{k_r}$						
				a todo i																				

25. Sea n un entero > 1 cuya descomposición en primos distintos es $n=p_1^{k_1}\cdots p_r^{k_r}$ $(k_i > 0$ para todo i). Pruebe que existe un isomorfismo de anillos de $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{k_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_r^{k_r}\mathbb{Z}.$