USN						l
0011						l

RV COLLEGE OF ENGINEERING Autonomous Institution affiliated to VTU I Semester B.E. February -2024 Examinations DEPARTMENT OF MATHEMATICS

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (2022 SCHEME)

(Non-Integrated Course)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, and 9 and 10.

PART-A (Objective type for one or two marks)
(True & false and match the following questions are not permitted)

		(True & false and match the following questions are not permitted)			
1	1.1	Given $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$, then the eigen values of the matrix A^{-2} are	1		
	1.2	The reduced system of set of linear equations is $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$. Then the solution of the system is	1		
	1.4	Angle between radius vector and tangent to the curve $r = e^{-\theta}$ is	2		
	1.5	If rank of the matrix $A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ k & 13 & 10 \end{bmatrix}$ is 2, then the value of $k = \underline{\hspace{1cm}}$.	2		
	1.6	The Maclaurin series expansion for $\cosh x$ is			
	1.7	If $x = r \cos \theta$, $y = r \sin \theta$, then $J\left(\frac{x,y}{r,\theta}\right) = \underline{\qquad}$.	2		
	1.8	If $w(x,y) = x^2y$ then $\frac{\partial^2 w}{\partial x \partial y}$ at the point $(-1,1) =$			
	1.9	Evaluate $\int_0^1 \int_2^3 xy dy dx$.			
	1.10	Sketch the domain of integral $\int_{2}^{5} \int_{1}^{3} x(x^{2} + y^{2}) dy dx$.			
	1.11	If $f(0) = 0$, $f(\frac{1}{4}) = 2.45$, $f(\frac{2}{4}) = 3.97$, $f(\frac{3}{4}) = 5.58$ and $f(1) = 5.78$, then $\int_0^1 f(x) dx = $	2		
	1.12	Given $y(2) = -2$, $y(4) = 4$, $y(6) = 10$, $y(8) = 12$, $y(10) = 14$, then $\nabla^3 y(8) = \underline{\hspace{1cm}}$.	2		

PART-B

		UNIT-I			
		UNII-I			
2	a	Investigate for what values of λ and μ the system of linear equations $2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$ has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.	5		
	b	The currents I_1 , I_2 , I_3 in an electrical network follow the linear equations $8I_1 - 3I_2 + 2I_3 = 20$, $4I_1 + 11I_2 - I_3 = 33$, $2I_1 + I_2 + 4I_3 = 12$. Compute I_1 , I_2 , I_3 using Gauss-Seidel iteration method. Perform four iterations.			
	С	Eigen values and eigen vectors are used to calculate the theoretical limit of how much information can be carried via a communication channel. Identify the dominant eigen value and corresponding eigen vectors of the matrix $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking the initial approximation $\begin{bmatrix} 1 \\ 0.8 \\ 0.8 \end{bmatrix}$. Perform 5 iterations.	6		

	UNIT-II				
3	a	Find the slope of the tangent to the parabola $\frac{2a}{r} = 1 - \cos \theta$ at $\theta = \frac{2\pi}{3}$.	8		
	b	Obtain the circle for curvature of the curve $\sqrt{x} + \sqrt{y} = 4$ at the point where it cuts the line passing through the origin making an angle 45° with x-axis.	8		
		OR			
4	a	Show that the radius of curvature at any point (r, θ) on the Cardiod $r = a(1 - \cos \theta)$ varies as \sqrt{r} .	8		
	b	Expand $f(x) = \tan^{-1} x$ in ascending powers of x upto the term containing x^5 , hence obtain the expansion of $\sin^{-1} \left(\frac{2x}{1+x^2}\right)$.	8		

		UNIT-III	
5	a	Prove that $v=e^{a\theta}\cos(a\log r)$ is the solution of the Laplace equation $v_{rr}+\frac{1}{r}v_r+\frac{1}{r^2}v_{\theta\theta}=0.$	8
	b	If $u = x^2 + y^2 + z^2$, $v = x + y + z$ and $w = xy + yz + zx$, prove that $J(u, v, w)$ vanishes identically. Also find the relation between the given functions.	8
		OR	
6	a	(i) If $z = f(y - 3x) + g(y + 2x) + \sin x - y \cos x$, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cos x.$ (ii) Find $\frac{du}{dt}$ given $u = \sin\left(\frac{x}{y}\right)$ where $x = e^t$, $y = t^2$.	8
	b	The temperature T at any point (x, y, z) in space is $T = 600xyz^2$. Find the highest temperature on the unit sphere using Lagrange multiplier.	8

		UNIT-IV	
7	a	Evaluate $\iint_R xy dx dy$ dx dy where R is the triangular bounded by the axes of coordinates and the line $\frac{x}{2} + \frac{y}{3} = 1$.	8
	b	Show that $\int_0^{\frac{\pi}{2}} \int_0^{a \sin \theta} \int_0^{\frac{a^2 - r^2}{a}} r \ dz \ dr d\theta = \frac{5\pi a^3}{64}$.	8
		OR	
8	a	Using double integral find the area enclosed by the curve $r = a(1 + \cos \theta)$ and lying above the initial line.	8
	b	Change the order of integration and evaluate $\int_{1}^{0} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$.	8

	UNIT-V									
9	a	In an experiment, the values of the output y were recorded for input x from to 3.5 at intervals of 0.5. Estimate by using appropriate interpolation formula the values of y for input (i) $x = 1.2$, (ii) $x = 3.4$ (iii) $x = 3.8$.								
		x	1.0	1.5	2.0	2.5	3.0	3.5		8
		у	177	166	146	130	115	102		
	b	Fit a cubic poly	ynomial for t	the followi	ng data ar	nd hence	find f ((5) and $f(6)$	5).	8
		x 1	2	3	7					0
		f(x) 2	4	8	128					
		OR								
10	a	Numerical int antennas. Estin Simpson's 3/8 sub intervals.	mate the va	lue of the	integral	$\int_0^2 e^{-x^2} dx$	dx usin	g Simpson	's 1/3,	8
	b	The following data defines the sea-level concentration of dissolved oxygen for fresh water as a function of temperature:								
		<i>T</i> (°C)	0	8	15	2	.5	32		8
		$O_2 (mg/L)$	14.621	11.843	9.870	8.4	118	7.305		
		Calculate the amount of oxygen when temperature 10°C and 35°C.								

Signature of Scrutinizer:	Signature of Chairman
Name:	Name: