ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

2η εργαστηριακή άσκηση MATLAB/SIMULINK

ΟΝΟΜΑ: ΧΡΟΝΗΣ ΣΑΚΟΣ

A.M: 03116168

EEAMHNO: 60

Σκοπός της 2ης εργαστηριακής άσκησης είναι ο έλεγχος ενός ανεστραμμένου εκρεμμούς. Η γραμμική περιγραφή του συστήματος δίνεται από τις εξισώσεις :

$$\dot{x}_{o\lambda} = \begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \\ \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 20.6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -0.5 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0.5 \end{bmatrix} u \quad , \qquad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ x \\ \dot{x} \end{bmatrix}$$

Α)Στόχος μας είναι μέσα από έλεγχο ανατροφοδότησης κατάστασης να επαναφέρουμε το βαγονάκι στην αρχική του θέση, όταν μια εξωτερική διαταραχή επιδρά σε αυτό. Οι προδιαγραφές που πρέπει να ικανοποιούνται είναι ότι, εντός 2 sec οι απόλυτες τιμές των συνιστωσών του x να γίνουν και να παραμείνουν μικρότερες του 0.015 καθώς επίσης ο συντελεστής απόσβεσης να είναι 0.5 για τους δύο πρωτεύοντες πόλους του κλειστού συστήματος.

Το δοθέν σύστημα είναι ασταθές, όμως είναι ελέγξιμο, οπότε μπορούμε να τοποθετήσουμε τους πόλους του κλειστού συστήματος όπου επιθυμούμε.

	sI-A = s -1 00 s -1 0
	-20,6 5 0 0 = 5: -20,6 5 0
	0 0 5 -1 0,5 0 5
	0,5005
	$= s^{2}(s^{2}-20,6)$
	= 5 (8-10,6)
	Δύο πόλοι 600 5=0 μαι δύο ευγμετρικοί 620 ±1/20
	$C = [B AB A^2B A^3B]$
	AB=[0 1 00][0][-1]
	70,60001.0
	0 0 0 1 0 0,5
	-0,5 0 0 0 0,5 0
	.2 () 3 (
- 100 100 100 100 100	$A^2 = \begin{bmatrix} 20,6 & 0 & 0 & 0 \\ & & & & \\$
	0 20,6 0 0 0 0
	-0,5 0 0 0 0 -0,5 0 0
	0 -0,5 0 0
	$A^2B = \begin{bmatrix} 0 \\ A^3B = \begin{bmatrix} -20,6 \\ \end{bmatrix}$
	-20,6
	0,5
	[0,5]
	e= 0 -1 0 -20,6 det le] +0
	-1 0 -20,6 0 0 0,5 0 0,5 apa sivar er ez gypp
	0,5 0 0,5 0

Επιλέγουμε έναν διπλό πόλο στο -15 ώστε να μην επηρεάζει την απόκριση του συστήματος, ενώ για τους επικρατούντες πόλους παίρνουμε ζ= 0.5 και Wn=4.

co EUIGNAUS A SOCK CUBIUS OS	to Einor;
(5+15) (5+2-3,464j) (5+2+3,464j)	=
(5+13) (512 3, 10 13) (3 1 21 31 10 13)	
$=(5^2+305+225)(5^2+45+16)$	
= 5443+1652+3053+12052+480s+5	22552+ 8005+3
= 54 + 34 53 + 36152 + 13805 + 3600	
100000000000000000000000000000000000000	
àpa ad=[3600 1380 361 34]	
cas ogenhelen dura ignoragen as wis	Carayurdus
Evan.	
54-20,652=0	
apa a0= 0 0 - 20,6 0	

Παρακάτω ακολουθούν οι γραφικές παραστάσεις των theta, theta', x, x',u (με τη σειρά) όπως προέκυψαν από τις προσομειώσεις στο Simulink για διάρκεια 10sec.

Β)Ψάχνουμε κατάλληλο Κ ώστε να ελαχιστοποιεί το τετραγωνικό κριτήριο κόστους :

$$J = \frac{1}{2} \int_0^\infty \left(x_{o\lambda}^T(t) x_{o\lambda}(t) + u^2(t) \right) dt$$

Χρησιμοποιούμε την εξίσωση Ricatti και βρίσκοντας τη μήτρα P και το βέλτιστο κέρδος Kr επιλύουμε το πρόβλημα.

μήτρα Ρ:

Р	1	2	3	4
1	301.2173	66.6024	11.5847	28.9734
2	66.6024	14.8439	2.6079	6.5185
3	11.5847	2.6079	2.7261	3.2159
4	28.9734	6.5185	3.2159	7.5848

<u>βέλτιστο κέρδος:</u> Kr = [-52.1157 -11.5847 -1.0000 -2.7261]

Τα τελικα X που προκύπτουν μετά από simulation διάρκειας 10 sec είναι:

X = [-1.6174e-04, 2.5517e-04, 0.0072, -0.0018]

Στη συνέχεια ακολουθούν οι γραφικές παραστάσεις των theta, theta', x, x',u όπως προέκυψαν από την προσομείωση στο Simulink.

Γ) Θα μετακινήσουμε το βαγονάκι σε μια επιθυμητή θέση επιλέγοντας κατάλληλη είσοδο υ. Επειδή το σφάλμα μόνιμης κατάστασης για οποιαδήποτε είσοδο ειναι μεγάλο, θα προσθέσουμε ένα μπλοκ κέρδους ώστε το σύστημα να ακολουθεί την είσοδό μας. Στο σύστημα ανάδρασης επιλέγουμε επιθυμητή θέση χ=1.5 και κέρδος K3, όπου K3= K1(3). Επιλέγουμε το 3ο στοιχείο του K1 γιατί αυτό δίνει ομαλότερες αποκρίσεις των μεγεθών που ζητάμε.

Στη συνέχεια ακολουθούν οι αποκρίσεις των theta, theta', x, x',u όπως προέκυψαν από την προσομοίωση στο Simulink.

Δ)Σε αυτό το ερώτημα μπορούμε να μετρήσουμε μόνο την έξοδο του συστήματος, για αυτό θα χρησιμοποιήσουμε ένα παρατηρητή κατάστασης ώστε να εκτιμήσουμε το διάνυσμα κατάστασης και μέσω ανατροφοδότησης στο αρχικό, θα λάβουμε την επιθυμητή έξοδο. Το δοθέν σύστημα είναι παρατηρήσιμο και ο παρατηρητής που θα χρησιμοποιήσουμε είναι της μορφής:

$$\dot{\hat{x}}(t) = (A - LC)\hat{x}(t) + LCx(t) + Bu(t)$$

όπου L η μήτρα των κερδών και A-LC η μήτρα που πρέπει να είναι ευσταθής.

Θα υπολογίσουμε τη μήτρα L ώστε το νέο σύστημα να έχει διπλό πόλο στο -1 και στο -2.

	0 606449000 600 -1 (810765) 404
No Zoi VEOS	0 606mpatos 600 - 2 (5indés)
	32 (-13)2-
aça xaç.	πολυώνγο: (5+1) ² ·(5+2) ² =
=(s ² +2	(S+L)(5 ² +45+4)
= <91	453+452+253+85+85+5+45+4
= 34.	+653+1352+125+4.
	EGTW L= [2, 22 23 29]
ENIBUS!	7
uai C=	1000
	0 0 10
	1000
	00101
and LC=	2,000
apa LC=	0 0 12 0
	l3 0 0 0
	0 0 24 0
A - 1-C = [2, 100
20	0,6 0 - 22 0
-5	l3 0 0 L
	0,5 0 - 24 0
-T-(A-LC) = s+l1 -1 0 0
ipa 51-(-20,6 S l2 O
	l3 0 5 - 1
	0,5 0 24 5

Το νέο σύστημα θα έχει την ακόλουθη μορφολογία :

Οι γραφικές παραστάσεις των theta, theta', x, x'(με τη σειρά) όπως προέκυψαν από την προσομοίωση στο Simulink είναι(για το α ερώτημα):

Στη συνέχεια ακολουθούν οι αντίστοιχες γραφικές παραστάσεις για το β ερώτημα σε σύστημα με παρατηρητή :

E) Αλλάζουμε τις τιμές του συστήματος και παρατηρούμε ότι το σύστημα είναι εκ νέου ευσταθές. Οι γραφικές παραστάσεις που λαμβάνουμε για τις τιμές των theta, theta', x, x' μετά από προσομοίωση στο simulink είναι:

