

Air Ground Cooperation

Rapporteur: Steven R. Bussolari
MIT Lincoln Laboratory

Two Major Areas of Research

- Autonomous operations
 - Aircraft autonomously choose trajectory and resolve conflicts
- Limited self-separation
 - Final approach spacing
 - Sequencing and merging
 - Extension of visual approach operations

Limited Self Separation

- Consensus: these applications are feasible
 - Simulations and analysis reflect reasonable understanding of basic phenomena.
 - Some treatment of off-nominal cases
 - Applications seeking implementation opportunities
- Issues raised during discussion
 - Implementation (avionics required)
 - Details of procedures and training required
 - Operational benefits cases
 - Robustness to off-nominal cases (esp. weather)
 - Operational benefit (enough to stimulate equipage?)

Autonomous Operations

- Consensus: Feasibility has yet to be firmly established
 - Research reflects basic operational cases
 - Complex and off-nominal cases not yet covered
- Issues raised during discussion
 - Off-nominal operations
 - Safety
 - Mixed operations

Segregated vs. Mixed Operations

- US papers reflected focus on mixed operations
 - Autonomous and managed aircraft within same airspace
- European papers reflected segregated airspace
 - Autonomous operations in separate airspace
- Does this reflect a fundamental difference in approach to the problem?

Fundamental Question

- What is the correct mix of air and ground automation?
 - Research efforts must provide information to allow a system engineering assessment
 - Treatment of off-nominal cases
 - Safety analysis
- JPDO process needs this information to formulate vision with appropriate technical underpinning
- Recommendation
 - Examine the results of the recent NASA DAG-TM simulation to determine lessons learned and shape future experiments to answer the question