Quiz 4

Name:	Solution	Date:	I participated today:
1.	n-qubit system?		ormation a quantum operation has on an
		$2^n \times 2^n$	
2.	When applying controlled Z, does it matter which qubit is the target and which is the other words, does there exist some state $ \psi_1,\psi_2\rangle$ such that $CZ(\psi_1,\psi_2)$ does not pro same state as $CZ(\psi_2,\psi_1)$?		_
	The controlled Z is symmetrical; it flips the phase of the superposition term where both qubits are a $ 1\rangle$. Therefore, it does not matter which is which. (Try proving this mathematically if you like.)		
3.	implement any possible	Boolean function. For example,	complete if its members can be used to the sets $\{AND, NOT\}$ and $\{NAND\}$ are ally complete set of quantum logic gates?
	• •	{CCNOT}. (Try implementing Ale qubits can be initialized to 1)	ND, NOT, and NAND using CCNOT; it is as well as $ 0\rangle$.)
	gates that can get arbitr		ate set, which is a set of quantum logic ntum state with a finite number of steps. NOT, H} is.
4.	In the superdense coding single qubit. How is this		encode two bits of information into a
		• •	of qubits, which means that the state of

the encoding process only requires operations on one of the qubits, the information is really

encoded in the two-qubit state.