Sampling Distributions

Plan for today: SHIFT

How likely is the score?

How likely is the sample?

Population of TREATED mice

Population of TREATED mice

Distribution of Sample Means

$$\mu = ?$$
 $\sigma = 20$

Distribution of Samples Means

- 1. Piles up around µ
- 2. Appears normal in shape

Empirical Sampling Distribution

Sample # (n =2)	X1	X2	Mean	
1	2	2	2	1 2 3 4 5 6 7 8 9
2	2	4	3	$\mu = 5$
3	2	6	4	Population
4	2	8	5	ropalation
5	4	2	3	
6	4	4	4	
7	4	6	5	
8	4	8	6	
9	6	2	4	
10	6	4	5	
11	6	6	6	
12	6	8	7	
13	8	2	5	
14	8	4	6	0 6
15	8	6	7	1 2 3 4 5 6 7 8 9 μ=5
16	8	8	8	

Distribution of Samples Means

- 1. Piles up around µ
- 2. Normal in shape

The larger the sample size, the closer to μ

Does treatment work? Sample 1

Does treatment work? Sample 2

The law of large numbers

• The larger the sample size (n) the more probable that the sample mean (M) would be similar to the population mean (μ)

Each sample mean is an element in hypothetical Sampling Distribution

- 1. Mean of Sampling distribution piles around the mean of the population
- Looks normal
- 3. What is the standard deviation?

Central Limit Theory

• For any population with mean μ and standard deviation σ , the distribution of sample means for sample size n will have a mean of μ and standard deviation of $\frac{\sigma}{\sqrt{n}}$ and will approach normality as n approaches infinity

Central Limit Theory

Each sample mean is an element in hypothetical Sampling Distribution

- 1. Mean of Sampling distribution is the mean of the population
- 2. Normal in shape

$$\sigma_M = \frac{\sigma}{\sqrt{n}}$$
 - Standard Error

- 1. SD in (hypothetical) distribution of sample means
- 2. Average sampling error
- 3. Expected difference between M and μ

Tells us how well the sample mean estimates the population mean.

Sample 1: What is standard error?

Sample 1: What is standard error?

Consequences of CLT

Check

μ

 σ_{M}

Standard Error and Sample size

What can we do with all of this?

- Law of large numbers
- Central Limit Theorem
- Consequences of CLM
- Properties of Normal Distribution

How "normal" the sample mean is Is it within the middle 95%?