Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Collecting, Labeling, and Validating Data

Welcome

The importance of data

"Data is the hardest part of ML and the most important piece to get right...

Broken data is the most common cause of problems in production ML systems"

- Scaling Machine Learning at Uber with Michelangelo - Uber

"No other activity in the machine learning life cycle has a higher return on investment than improving the data a model has access to."

- Feast: Bridging ML Models and Data - Gojek

Introduction to Machine Learning Engineering for Production

Overview

Outline

- Machine learning (ML) engineering for production: overview
- Production ML = ML development + software development
- Challenges in production ML

Traditional ML modeling

Production ML systems require so much more

ML modeling vs production ML

	Academic/Research ML	Production ML	
Data	Static	Dynamic - Shifting	
Priority for design	Highest overall accuracy	Fast inference, good interpretability	
Model training	Optimal tuning and training	Continuously assess and retrain	
Fairness	Very important	Crucial	
Challenge	High accuracy algorithm	Entire system	
		I	

Production machine learning

Machine learning development

Modern software development

Managing the entire life cycle of data

- Labeling
- Feature space coverage
- Minimal dimensionality
- Maximum predictive data
- Fairness
- Rare conditions

Modern software development

Accounts for:

- Scalability
- Extensibility
- Configuration
- Consistency & reproducibility
- Safety & security

- Modularity
- Testability
- Monitoring
- Best practices

Production machine learning system

Challenges in production grade ML

- Build integrated ML systems
- Continuously operate it in production
- Handle continuously changing data
- Optimize compute resource costs

Introduction to Machine Learning Engineering for Production

ML Pipelines

Outline

- ML Pipelines
- Directed Acyclic Graphs and Pipeline Orchestration Frameworks
- Intro to TensorFlow Extended (TFX)

ML pipelines

Infrastructure for automating, monitoring, and maintaining model training and deployment

Production ML infrastructure

CD Foundation MLOps reference architecture

Directed acyclic graphs

Scoping Data Modeling Deployment

- A directed acyclic graph (DAG) is a directed graph that has no cycles
- ML pipeline workflows are usually DAGs
- DAGs define the sequencing of the tasks to be performed, based on their relationships and dependencies.

Pipeline orchestration frameworks

- Responsible for scheduling the various components in an ML pipeline DAG dependencies
- Help with pipeline automation
- Examples: Airflow, Argo, Celery, Luigi, Kubeflow

TensorFlow Extended (TFX)

End-to-end platform for deploying production ML pipelines

Sequence of components that are designed for scalable, high-performance machine learning tasks

TFX production components

TFX Hello World

Key points

- Production ML pipelines: automating, monitoring, and maintaining end-to-end processes
- Production ML is much more than just ML code
 - ML development + software development
- TFX is an open-source end-to-end ML platform

Collecting Data

Importance of Data

Outline

- Importance of data quality
- Data pipeline: data collection, ingestion and preparation
- Data collection and monitoring

The importance of data

"Data is the hardest part of ML and the most important piece to get right... Broken data is the most common cause of problems in production ML systems"

- Scaling Machine Learning at Uber with Michelangelo - Uber

"No other activity in the machine learning life cycle has a higher return on investment than improving the data a model has access to."

- Feast: Bridging ML Models and Data - Gojek

ML: Data is a first class citizen

- Software 1.0
 - Explicit instructions to the computer
- Software 2.0
 - Specify some goal on the behavior of a program
 - Find solution using optimization techniques
 - Good data is key for success
 - Code in Software = Data in ML

Everything starts with data

- Models aren't magic
- Meaningful data:
 - maximize predictive content
 - remove non-informative data
 - feature space coverage

Garbage in, garbage out

$$f(\overline{\mathbb{W}}) = \overline{\mathbb{W}}$$

Data pipeline

Data collection and monitoring

Key Points

- Understand users, translate user needs into data problems
- Ensure data coverage and high predictive signal
- Source, store and monitor quality data responsibly

Collecting Data

Example Application: Suggesting Runs

**Example application: Suggesting runs

Users	Runners	
User Need	Run more often	
User Actions	Complete run using the app	
ML System Output	What routes to suggestWhen to suggest them	
ML System Learning	 Patterns of behaviour around accepting run prompts Completing runs Improving consistency 	

***Key considerations

- Data availability and collection
 - What kind of/how much data is available?
 - O How often does the new data come in?
 - Is it annotated?
 - If not, how hard/expensive is it to get it labeled?
- Translate user needs into data needs
 - Data needed
 - Features needed
 - Labels needed

**Example dataset

		FEATURES				
	Runner ID	Run	Runner Time	Elevation	Fun	
EXAMPLES	AV3DE	Boston Marathon	03:40:32	1,300 ft	Low	LABELS
	X8KGF	Seattle Oktoberfest 5k	00:35:40	0 ft	High	
	BH9IU	Houston Half-marathon	02:01:18	200 ft	Medium	

Get to know your data

- Identify data sources
- Check if they are refreshed
- Consistency for values, units, & data types
- Monitor outliers and errors

Dataset issues

- Inconsistent formatting
 - Is zero "0", "0.0", or an indicator of a missing measurement
- Compounding errors from other ML Models

Monitor data sources for system issues and outages

Measure data effectiveness

- Intuition about data value can be misleading
 - Which features have predictive value and which ones do not?
- Feature engineering helps to maximize the predictive signals
- Feature selection helps to measure the predictive signals

Translate user needs into data needs

Translate user needs into data needs

Runner demographics Time of day Run completion rate Pace **Features Needed** Distance ran Elevation gained Heart rate

Translate user needs into data needs

Labels Needed

- Runner acceptance or rejection of app suggestions
- User generated feedback regarding why suggestion was rejected
- User rating of enjoyment of recommended runs

Key points

- Understand your user, translate their needs into data problems
 - What kind of/how much data is available
 - What are the details and issues of your data
 - What are your predictive features
 - What are the labels you are tracking
 - What are your metrics

Collecting Data

Responsible Data: Security, Privacy & Fairness

Outline

- Data Sourcing
- Data Security and User Privacy
- Bias and Fairness

Avoiding problematic biases in datasets

Example: classifier trained on the Open Images dataset

Source Data Responsibly

Data security and privacy

- Data collection and management isn't just about your model
 - Give user control of what data can be collected
 - Is there a risk of inadvertently revealing user data?
- Compliance with regulations and policies (e.g. GDPR)

Users privacy

- Protect personally identifiable information
 - Aggregation replace unique values with summary value
 - Redaction remove some data to create less complete picture

How ML systems can fail users

- Representational harm
- Opportunity denial
- Disproportionate product failure
- Harm by disadvantage

Commit to fairness

- Make sure your models are fair
 - Group fairness, equal accuracy
- Bias in human labeled and/or collected data
- ML Models can amplify biases

Biased data representation

Reducing bias: Design fair labeling systems

Accurate labels are necessary for supervised learning

- Labeling can be done by:
 - Automation (logging or weak supervision)
 - Humans (aka "Raters", often semi-supervised)

Types of human raters

Key points

- Ensure rater pool diversity
- Investigate rater context and incentives
- Evaluate rater tools
- Manage cost
- Determine freshness requirements