ชื่อรหัสเถขที่นั่งเถขที่นั่งหน้า

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2555

วิชา PDT 232 Welding Technology I สอบวันพฤหัสบดี ที่ 6 ธันวาคม พ.ศ. 2555 นักศึกษา ทลบ. อุตสาหการ ปีที่ 2 เวลา 13.00 – 16.00 น.

คำชี้แจง

- ข้อสอบวิชานี้มีจำนวน 12 หน้า (รวมใบปะหน้า)
- 2. ข้อสอบมีทั้งหมด 2 หมวด
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำตำราและเอกสารทุกชนิคเข้าห้องสอบได้
- 4. อนุญาตให้ใช้เครื่องคำนวณตามระเบียบมหาวิทยาลัยฯ ได้

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

อาจารย์ปรัชญา	เพียสุระ
ผู้ออกข้อสอบ	
โทร. 8554	

ข้อสอบชุคนี้ได้ผ่านกรรมการวิชาการภาควิชาฯ เป็นที่เรียบร้อยแล้ว

(รศ.สันติรัฐ นั้นสะอาง)

ปฏิบัติหน้าที่หัวหน้าภาควิชาครุศาสตร์อุตสาหการ

ชื่อ		รหัส	เลขที่นั่ง	หน้าที่2
ตอนที่ 1 จงเลือกค์	กาตอบที่ถูกต้องที่สุคเพียงข้อเ	คียวแล้ว กากบาท(X) ลงในศ	าระคาษคำตอบ (50 คะแเ	1น)
1. ข้อใคกล่าวถูกเ	- ท้อง			
ก. การ Brazing	g ชิ้นงานจะเกิดการหลอมละ	ลาย		
ข.การ Solderir	ng ชิ้นงานจะเกิดการหลอมละ	ะลาย		
ค. การ Brazing	g ให้ความร้อนมากกว่า 840 F	แต่ Soldering		
ง. การ Solderi	ng ให้ความร้อนมากกว่า 840	F		
2. การบัคกรือ่อน	(Soldering)ใช้อะไรเป็นตัวบ	ระสาน		
ก. น้ำกรค	ข. ตะกั่ว	ค. หัวแร้ง	ง. ทองเหลือง	
3. การBrazing แต่	ละ Soldering ใช้ปฏิกิริยาใคใ	นการยึดติดชิ้นงาน		
ก. Capollary a	ction V. Capillary action	ค. Heating action	1. Capiry action	
4. ข้อใคไม่ใช่สม	บัติที่คีของการ Brazing			
ก.ต่อโลหะได้เ	หลายชนิคแม้จะไม่ใช่ชนิคเด็	ขวกัน		
ข. รอยต่อจะแร	ขึ้งแรงกว่าลวคเชื่อม แต่น้อยเ	าว่าชิ้นงาน		
ค. ทำการเชื่อม	เได้รวดเร็ว			
ง. จุดต่อที่แคบ	เยากต่อการเชื่อมคัวยกระบวง	มการอื่นๆ สามารถทำได้		
5. เปลวไฟที่ใช้ใ	นการ Brazing เป็นเปลวชนิค	ใค		
ก. Neautral Fl	am U. Oxidizing Flam	ก. Cabudizing Flam	1. Cutting Flam	
6. ข้อใคไม่ใช่หนึ่				
ก. ป้องกันการ	เกิดออกซิเคชั่นในระหว่างกา	รให้ความร้อน		
ข. ทำให้แรงตึ	งผิวของโลหะประสานสูง			
	งผิวของโลหะประสานสูง			
	อาคผิวของชิ้นงาน			
7. ฟลักซ์ชนิดใด	ที่ใช้สำหรับการ Brazing ,Mi	d Steel and Cast Iron		
ก. Boric Acid		V.Borate Acid		
ก. Borax		1. Sodiumsyar	nice	
•	งไม่นิยมใช้อะเซติลีนในการ	บัคกรีแข็ง		
ก. มีความร้อน	•	ข. เปลวไฟไม่เ	•	
	ปฏิกิริยากับแนวเชื้อม	ง. แก๊สมีกลิ่นเ	หมิ่น	
	ป็นแก๊สที่ได้จากส่วนผสมขอ -			
ก. อะเซติลีน			และ คาราจีคืน	
	าิลีน และ พาราคีน		ทิ่ลีน และ โพรพาคืน	
	azing ทองแคงควรใช้โลหะป			
กลวดเงิบ	ข. ลวดทองเหลือง	ค. ลวดนิเกิล	ง. สวดทองแต	ลง

ชื่อ			รหัส	เลขที่นั่ง หน้าที่3
11. f	การ Brazing ชนิดใคที่ใช้แก่	า๊สไฮโครเจน หรือ แก๊สเฉิ่	อยในการควบคุมบรรยา	ากาศ
	n. Furnace Brazing		V. Induction Brazing	3
	ก. Dip Brazing		1. Infrared Brazing	
12. f	าารบัคกรีชนิคใคที่ใช้เกลือ	เหลวในการให้ความร้อนก็	าับชิ้นงานในการหลอม _ี	ละลายโลหะเติม
	ก. Molten Metal Bath	Dip Brazing	V. Chemical Bath D	ip Brazing
	ก. Salt Bath Dip Braz	_	4. Oil Bath Dip Braz	_
13. '	'ให้ความร้อน โดยการเหนื่	ยวนำไฟฟ้าในชิ้นงานบัคก์	รี โดยนำชิ้นงานวางไว้ใ	น Coil ที่เป็นทองแดง" เป็น
การ I	Brazing ชนิดใด			
	fl. Furnace Brazing	V. Induction Brazing	ค. Dip Brazing	1. Infrared Brazing
14. ຄໍ	าต้องการ Brazing ชิ้นงาน	ที่มีขนาคเล็กและจำนวนม	ากควรใช้วิธีการใค	
	fl. Furnace Brazing	_		1. Infrared Brazing
15. ก	ระบวนการ Brazing แบบ	ใคที่หลังจาก Brazing แล้ว	รอยต่อมีลักษณะเป็นเนื้	อเคียวกันทั้งชิ้นงาน
	fl. Furnace Brazing		V. Induction Brazing	g
	ค. Chemical Bath Dip	Brazing	1. Molten Metal Bat	th Dip Brazing
16.	ข้อใคไม่ใช่ข้อคีของการเชื่	อม Gas Tungsten Arc Wel	ding	
	ก. เขตอิทธิพลความรัย	อน (HAZ) มีบริเวณแคบ		
	ข. ไม่มีแสลก			
	ค. สามารถมองเห็นบ่	อหลอมละลายได้ง่าย		
	ง. ใช้เฉพาะการเชื่อมโ	โลหะบางเท่านั้น		
17. l	นกระบวนการเชื่อม Gas I	Sungsten Arc Welding ใช้เ	เก๊สชนิคใคในการปกคว	กุมแนวเชื่อม
	n. Active Gas	V. Tubine Gas	ค. Inert Gas	1. Freeon Gas
18.	ในการเชื่อม Gas Tungsten	Arc Welding อุปกรณ์ใคที่	าใช้เป็นตัวบังคับให้ <u>แก๊</u> ส	rที่ออกมาปกคลุมแนวเชื่อม
ได้อย	ข่างเหมาะสม			
	n. Correct nut	V. Nozzle	ค. Cup	1. Rod Guide
19.	Nozzle ทำมาจากวัสคุย	อะไร		
	ก. ทองแคง	ข. เซรามิก	ค. เหล็กเหนียว	ง. อลูมิเนียม
20. ľ	พราะเหตุไคอุปกรณ์ประก	อบหัวทอชจึงต้องใช้ทองแ	คงเป็นวัสคุในการผลิต	
	ก. เพราะมีราคาถูก		ข. นำไฟฟ้าได้ดี	
	ง. สามารถระบายความ	มร้อนได้ค ื	ง. น้ำหนักเบา	
21.	ทั้งสะเตนอิเล็ก โทรคชนิค	EWTh-1 มีส่วนผสมของธ	าตุใคที่เพิ่มเข้ามา	
	ก. Lanthanum 1%	U. Cerium 1%	ก. Thorium 1%	1. Cerium 1%
22.	ชาตุ Zirconium มีผลอย่าง	lรเมื่อผสมเข้าไปในทั้งสะเ	ตนอิเล็ก โทรค	
	n. Arc stability and St	arting	V. Deoxidization	
	n Higher Temperatu	re	Burn off	

ชื่อ		รหัส	เลขที่นั่ง หน้าที่4
23. ถ้าต้องการเชื่อม อลูม์	เนียมจะต้องใช้ทั้งสเตนชนิคใก	ભે	
ก. EWTh-1	ข. EWTh-2	ค. EWP	۹. EWG
24. ถ้าต้องการใช้ทั้งสะเต	ทนชนิค EWP ควรลับปลายทั้งส	สเตนแบบไค	
ก. ปลายตัด	ข.ปลายมน	ค. ปลายแหลม	เ ง. ปลายมุมป้าน
25. ถ้าต้องการใช้ทั้งสะเต	คนชนิค EWTh-2 ควรลับปลาย	บทั้งสเตนแบบใค	
ก. ปลายตัค	ข.ปลายมน	ค. ปลายแหลม	ı
26. มุมของทั้งสะเตนจะเ	ป็นตัวกำหน คปัจจัยใคข องรอย	เชื่อม	
ก. ความกว้างแส	าะอัตราการหลอมละลายลึก	ข. ความกว้างเ	เละความสูงของแนวเชื่อม
ค. ความกว้างแส	าะเขตอิทธิพลความร้อน	ง. ความกว้างแ	เละรูปร่างแนวเชื่อม
27. ในการเชื่อม GTAW	^ง ถ้ากระแสในการเชื่อมเป็นแบ	บ DCEP ความร้อน	ในการเชื่อมจะเป็นแบบใค
ก. ความร้อนที่ก็	ง ขึ้นงาน 30 % ความร้อนที่อิเล็กโ	ไทรค 70 %	
ข. ความร้อนที่ใ	ง ขึ้นงาน 70 % ความร้อนที่อิเล็กโ	ไทรค 30 %	
ค. ความร้อนที่ริ่	ง ขึ้นงาน 40 % ความร้อนที่อิเล็กโ	ไทรค 60 %	
ง. ความร้อนที่ชิ่	้นงาน 50 % ความร้อนที่อิเล็กโ	ทรค 50 %	
28. ถ้าใช้กระแสเชื่อมแบ	บบ DCEP รูปร่างของแนวเชื่อม	จะเป็นแบบใค	
ก. Deep and Na	arrow V. Shallow and wide	ค. Shallow an	d Narrow 1. Medium
29. เพราะเหตุใดเวลาเริ่ม	เต้นอาร์กจึงต้องวางหัวทอชให้	ขนานกับชิ้นงานที่เ	ชื่อม
ก. ทั้งสะเตนจะ	ได้ไม่ติดที่ชิ้นงาน	ข. ทำให้ชิ้นงา	นสะอาค
ง. ช่วยทำให้ทั้ง	สะเตนไม่หัก	ง. ทำให้ชิ้นงา	นไม่มีจุคบกพร่อง
30. ถ้าต้องการเชื่อมอะสุ	าูมิเนียม โคยใช้ GTAW ควรเลือ	อกใช้กระแสไฟฟ้าข	ชนิดใดที่เหมาะสมที่สุด
n. DCEN	U. DCEP	ค. AC	DCEN or AC
31. อุปกรณ์ใคในหัวทอ	ร์ช เป็นตัวช่วยยึคทั้งสะเตนอิเล็	ร์กโทรค	
n. Collets	V. Touch Cup	ค. Handle	1. Nozzle
32. ข้อใคไม่ใช่ข้อคีของ	เการใช้ Ar เป็น Shielding gas		
n. Smoother,	quieter arc action	V. Lower Cos	st
ค. High therma	al conductivity	1. Easier arc	starting
33. ข้อใคเป็นสาเหตุที่ทำ	าให้อิเล็กโทรคเกิคการสึกหรอ		
ก. รอยต่อแคบเ	กินไป	ข. ใช้อัตราการ	รไหลของแก๊สปกคลุมไม่เหมาะสม
ง. ระยะอาร์คสูง	งเกิน ไ ป	ง. การอาร์คไม	ม่สม่ำเสมอ
34. ข้อใคเป็นสาเหตุที่ทำ	าให้รอยเชื่อมเกิดโพรงอากาศ		
ก. ใช้อัตราการ	ใหลแก๊สมากเกินไป	ข. มีคราบน้ำม่	ันที่ชิ้นงาน
ง. ระยะอาร์คสูง	งเกินไป	ง. การอาร์คไม	ม่ สม ่ำเสมอ

ชื่อ			รหัส	เลขที่นั่ง	หน้าที่ร	
35. อัตราการไหลของแก๊สน้	อยเกินไปจะส่	งผลอย่างไรต่ย	อแนวเชื่อม			
ก. ไม่เกิคการหลอม	ละลายลึ๊ก		ข. แนวเชื่อมมีขนา	เคที่แคบเกินไป		
ค. เกิคเป็น โพรงอาก	าศที่แนวเชื่อม	J	ง. เกิคฟิล์มออกไข	ง. เกิดฟิล์มออกไซด์ที่แนวเชื่อม		
36. ข้อใคคือข้อคีของกระบา	วนการเชื่อม G	as Metal Arc	Welding			
ก. สามารถเชื่อมได้	เร็ว		ข. มีแสลกปกคลุว	มแนวเชื่อม		
ค. สามารถเชื่อมได้	์ เฉพาะวัสคุห เ	มา	ง. เขตอิทธิพลควา	ามร้อนมากว่ากระบวนก	กรอื่น	
37. เพราะเหตุใคในกระบวน	การเชื่อมแบบ	J Gas Metal A	rc Welding จึงต้องเชื่อ	มในที่อากาศหมุนเวียน		
ก. เกิครั้งสืมากกว่าก	าระบวนการเจิ๋	ชื่อมอื่น	ข. เกิดแก๊สพิษ			
ค. มีความร้อนที่มาก	1		ง. มีสะเก็คไฟมาก	I		
38. การถ่ายเทน้ำโลหะประเ	าอบไปค้วยอง	เค์ประกอบต่อ	ไปนี้ยกเว้นข้อใค			
ก. Electrode Diame	eter		1. Electrode com	position		
ก. Shielding gas			1. Base Metal			
39. การถ่ายเทน้ำโลหะชนิด	ใคให้อัตรากา	รหลอมละลาย	ลึกมากที่สุด			
ก. Shot Circuiting	Transfer		ข. Globular Tran	sfer		
ค. Spray Transfer			 Pulsed Transfer 	r		
40. การถ่ายเทน้ำโลหะชนิด	ใคที่ให้อัตราศ	าารถ่ายเทน้ำ โส	าหะมากที่สุด			
n. Shot Circuiting	Transfer		ข. Globular Tran	sfer		
ก. Spray Transfer			থ. Pulsed Transfe			
41. การถ่ายเทน้ำโลหะชนิด	ใคที่เป็นการร	วมข้อคืของทั้ง	าสองโหมคการถ่ายเทร	น้ำโลหะมารวมกัน		
n. Shot Circuiting	Transfer		ข. Globular Tran	sfer		
ค. Spray Transfer			 Pulsed Transfer 	г		
42. ถ้าต้องการให้การถ่ายเท	เน้ำโลหะเป็นเ	เบบ Globular	Transfer ควรใช้แก๊สา	ไกคลุมชนิคใค		
ก. CO ₂ ข.						
43. ถ้าต้องการให้การถ่ายเท	น้ำโลหะเป็นแ	เบบ Spray Tra	nsfer ควรใช้แก๊สปกค	เลุมชนิคใคเ		
ก. CO ₂ ข.			_			
44. ถ้าต้องการให้การถ่ายเท	น้ำโลหะเป็นแ	เบบ Short Circ	cuit Transfer ควรใช้แ	ก๊สปกคลุมชนิค		
-			$4. CO_2 + Ar$			
45. กระแสไฟฟ้าชนิคใคที่ใ	ช้ในการถ่ายเ	ทน้ำโลหะแบบ	Spray Transfer			
		ค. AC	1. DCEN or AC			
46. ข้อใคไม่ใช่แรงที่ทำให้เก็						
ก. แรงกวาคเนื่องจา			•			
ข. แรงจากความเร่ง			ลก			
ค. แรงจากกระแสไ						
ง. แรงตึงผิวของหย	เคการถ่ายโอน	เน้ำโลหะ				

ชื่อ		รหัส	เลขที่นั่ง	หน้าที่6
47. ในการถ่ายเทน้ำโลหะแบบ หลุดออกจากลวดเชื่อม	Short Circuit Transfe	r จะมีแรงชนิคใคที่จะ	เป็นตัวช่วยในการตัดให้น้ำ	าโลหะ
n. Tensile Shear	V. Shear Force	ค. Torsion	1. Pinch force	
48. การถ่ายเทน้ำโลหะชนิคใคที	ให้อัตราการหลอมล	ะลายลึกสูงที่สุด		
n. Shot Circuiting Tran	nsfer	ข. Globular T	ransfer	
ค. Spray Transfer		থ. Pulsed Tran	sfer	
49. ถ้าใช้ความเร็วในการเชื่อมเร็	วเกินไปลักษณะของ	แนวเชื่อมที่ได้จะเป็นเ	เบบใค	
ก. แนวสูงเกินไป	ข. เกิดแนวเชื่อมเป็	นแบบหยคน้ำ		
ค. แนวเชื่อมเป็นแบบก	ลม ง. แนวเชื่อ	อมแคบเกินไป		
50. สิ่งที่ต้องคำนึงถึงเป็นสิ่งแรก	ในงานเชื่อมคือเรื่องย	าะไร		
ก. เครื่องมือและอุปกรถ	์ในการเชื่อม ค	. วัสคุในการเชื่อม		
ค. ความปลอคภัย	1			

ชื่อ	รหัส	เลขที่นั่ง	หน้าที่7

ตอนที่ 2 จงตอบคำถามต่อไปนี้ (60 คะแนน)

1.จากรูปภาพจงอธิบายสาเหตุการเกิดค่าความแข็งที่แตกต่างกันในแต่ละบริเวณตั้งแต่ Weld Metal, HAZ และ Base Metal และทำการอธิบายว่าเหตุใคเมื่อทำการPre heat บริเวณHAZ จึงมีความกว้างมากกว่า No Preheat และ ควรจะต้องทำการ Preheat หรือไม่ โดยใช้รูปภาพและกราฟในการอธิบาย (10 คะแนน)

•••••			•••••				••••••
					•••••		••••••
•••••	•••••	•••••			•••••	••••••	•••••
	•••••	•••••			••••••		•••••
	••••••	•••••		•••••	••••••	••••••••••	•••••
	••••••	•••••			•••••••••••		
	•••••••••••				••••••		
							•••••
						•••••	
	••••••	•••••	••••••	••••••	••••••	••••••	

	เรขบขาเทศของกร	ะบานการเลอมแร	บบ GMAW มาอยา	งละ 3 ข้อ (5 คะแนน)	
	***************************************				•••••
					••••••
					•••••
			•••••		••••••
					•••••
					•••••
		•••••			
					•••••
•••••					
2. จงบอกโค๊คสึ่ง	กังสะเตน และกา	รใช้งานของทั้งสะ	เตนอิเล็กโทรค (5 เ	คะแนน)	
		ode สี		,	
			ode ਕੋਂ		
	_				
				Code สี	
Pure Tu	ingsion Electrode	und Thornated En	onoue (E (Ins)		•••••
การใช้งาน	ım Tungsten (FV	VZr) Code a			••••••
การใช้งาน Zirconiu					
การใช้งาน Zirconiu การใช้งาน					
การใช้งาน Zirconiu การใช้งาน	ıracteristic ของเค		7 มาโคยละเอียค (4		
การใช้งาน Zirconiu การใช้งาน	ıracteristic ของเค	เรื่องเชื่อม GMAW พราลทา voltage power s	7 มาโคยละเอียค (4 source		
การใช้งาน Zirconiu การใช้งาน	aracteristic ของเค	เรื่องเชื่อม GMAW พราลทา voltage power s	7 มาโคยละเอียค (4		
การใช้งาน Zirconiu การใช้งาน	aracteristic ของเค	เรื่องเชื่อม GMAW พราลทา voltage power s	7 มาโคยละเอียค (4 source		
การใช้งาน Zirconiu การใช้งาน	racteristic UDUIA	เรื่องเชื่อม GMAW พราลทา voltage power s OPERA	7 มาโคยละเอียค (4 source		
การใช้งาน Zirconiu การใช้งาน	aracteristic ของเค	รื่องเชื่อม GMAW ISTANT VOLTAGE POWER S OPERA	7 มาโคยละเอียค (4 source		
การใช้งาน Zirconiu การใช้งาน	aracteristic ของเค	เรื่องเชื่อม GMAW พราลทา voltage power s OPERA	7 มาโคยละเอียค (4 source		

10		รหัส	เลขที่นั่ง	หน้าที่
วิ จงเติมคำลงในช่องว่างใ	ห้สมบูรณ์ (10 คะแนน))		
CURRENT TYPE	DCEN	DCEP	AC (BALANCED)	
ELECTRODE POLARITY				
ELECTRON AND ION FLOW PENETRATION	S. C. TROUS	STONE OF THE PARTY	S. C. L. C. MO	Š
OXIDE CLEANING ACTION				
HEAT BALANCE IN THE ARC (APPROX.)				
PENETRATION		And an analysis of the state of		7
ELECTRODE CAPACITY e.g.,	. 1/8 in. (3.2 mm) 400 A	e.g., 1/4 in. (6.4 mm) 120 A	e.g., 1/8 in. (3.2 mm) 225	 :
แต่ละ โหมคมาอย่างละ Short Circuiting Transfer				
Globular Transfer				
Spray Transfer				••••••
				••••••
				•••••
				•••••

ชื่อ		รหัส	เลขที่นั่ง	หน้าที่ 10
7 Processes	Variable ของการเชื่อม GMAW มี	อะไรบ้างบอกมาอย่างน้อย	5 ช้อ (5 คะแนน)	
-	กำดับขั้นตอนในการปฏิบัติงานเชื่อ องมือและอุปกรณ์	บม Gas Metal Arc Welding	รู โดยละเอียค มีหัวข้อดังนี้	
	• • • • • • • • • • • • • • • • • • •	เชื่อม		
	ามปลอคภัยในการเชื่อม/ข้อควรร			
11 8		(10 1100000)		
•••••				•••••
•••••				••••••
•••••				•••••
				•••••
				•••••

***************************************		•••••••••••		••••••
•••••				•••••
•••••				•••••
				•••••
•••••				•••••

•••••				••••••
***************************************			•••••••••••••••••••••••••••••••••••••••	••••••

ชื่อ	รหัส	หน้าที่เ	
🛾 จงอธิบายลำคับขั้นตอนในการปฏิบัติงานเชื่อม Gas Tungsten Arc Welding สำหรับในงาน การเชื่อมต่อมุม			
โดยละเอียด มีหัวข้อดังนี้			
- เครื่องมือและอุปกรณ์			
- ลำคับขั้นตอนการทำงาน เทคนิคการเชื่อม			
- ความปลอดภัยในการเชื่อม/ข้อควรระวัง	(10 กะแนน)		
		······	