Data Science and Artificial Intelligence

Machine Learning

Bayesian learning

Lecture No. 2

Recap of Previous Lecture

Topics to be Covered

Topic

Bayesclassifier

Topic

Why It is not used /

Topic

Naive Bayes

Topic

Topic

STOP DOUBTING
YOURSELF.
WORK HARD AND
MAKE IT HAPPEN.

Summary of the last class

Summary of the last class

The mean
$$\Rightarrow P(x|C_1)$$

The mean $\Rightarrow P(x|C_2)$

The mean $\Rightarrow P(x|C_2)$

The mean $\Rightarrow P(x|C_2)$

The probability of error in MAP case ...

• hypothesis > in the pnevious Class

Using the sample of data

We try to predict the whole PDF of the

clota

The ML we try to create models of the data using

Various algo.

What is a hypothesis?

A hypothesis is a conjecture or proposed explanation that is based on insufficient facts or assumptions. It is only a conjecture based on certain known facts that have yet to be confirmed.

we have some Samples , using that we tay to make poedictions from whole data

What is a hypothesis space

So if we divide the sample into subsets and then create the predictions of the distribution of the whole data then we will get many different distributions....

> models

> huppothesis

the Combination of this is Called hypothesis space

So we have a hypothesis space...

New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities.

We can have two tasks

not Imp 1.

- 1. Most probable hypothesis
- 2. Most probable classification forcing new point

How to find the most probable hypothesis

• P(h) is prior probability of hypothesis h

- P(h) to denote the initial probability that hypothesis h holds, before observing training data.
- P(h) may reflect any background knowledge we have about the chance that h is correct. If we have no such prior knowledge, then each candidate hypothesis might simply get the same prior probability - generally P(h)> equal= Number of hypothesis

is prior probability of training data D

The probability of D given no knowledge about which hypothesis holds

is posterior probability of h given D

- P(h|D) is called the *posterior probability* of h, because it reflects our confidence that hholds after we have seen the training data D.
- The posterior probability P(h|D) reflects the influence of the training data D, in contrast to the prior probability P(h), which is independent of D.

is posterior probability of D given h

The probability of observing data D given some world in which hypothesis h holds.

Generally, we write P(x|y) to denote the probability of event x given event y.

How to find the most probable hypothesis

- · So to find the best hypothesis model . we simply take model on hypothesis and check its accuracy on whole data
- · Now the hypothesis which gives min everox will be the best-

How to find the most probable hypothesis

Sample > Subset > U1 , 012 > We have hypothesis What Ispnobabtoget the data

Only for Knowledge Brute-Force MAP Learning Algorithm

Which is the best hypothesis or most probable hypothesis

- The learner considers some set of candidate hypotheses H and it is interested in finding the most probable hypothesis h ∈ H given the observed data D
- Any such maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis h_{MAP} .
- We can determine the MAP hypotheses by using Bayes theorem to calculate the posterior probability of each candidate hypothesis.

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h|D)$$

$$= \underset{h \in H}{\operatorname{argmax}} \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h)$$

Only for Knowledge Brute-Force MAP Learning Algorithm

Which is the best hypothesis or most probable hypothesis

- If we assume that every hypothesis in H is equally probable
 i.e. P(h_i) = P(h_j) for all h_i and h_j in H
 We can only consider P(D|h) to find the most probable hypothesis.
- P(D|h) is often called the *likelihood* of the data D given h
- Any hypothesis that maximizes P(D|h) is called a maximum likelihood (ML) hypothesis, h_{ML} .

$$h_{ML} \equiv \underset{h \in H}{\operatorname{argmax}} P(D|h)$$

How to find the most probable classification...

So, we can say that we have divided the sample into subsets and got many hypothesis. Then these hypothesis Are used for decision.

We use the MAP rule for final classification and decision making.

Bayes optimum classifier :- any new point is tested from each hypothesis H1-> Ci Work on H2-> C2 MAP Rule · the the opp of each hypothesis is weighted by Bayes

Optimal

Classifier

The final nesult is

P(hilD)(C)

i hypothesis

m number of hypothesis

the class with max Coeff in expression is choosen

as nesulto

How to find the most probable classification...

Consider a hypothesis space containing three hypotheses, hl, h2, and h3.

- Suppose that the posterior probabilities of these hypotheses given the training data are .4, .3, and .3 respectively.
- Thus, hl is the MAP hypothesis.
- Suppose a new instance x is encountered, which is classified positive by hl, but negative by h2 and h3.
- Taking all hypotheses into account, the probability that x is positive is .4 (the probability associated with h1), and the probability that it is negative is therefore .6.
- The most probable classification (negative) in this case is different from the classification generated by the MAP hypothesis.

How to find the most probable classification...

Suppose our hypothesis space H has three functions h₁, h₂ and h₃

- $P(h_1 \mid D) = 0.4$, $P(h_2 \mid D) = 0.3$, $P(h_3 \mid D) = 0.3$

What is the MAP hypothesis?

h_o most probable hypothesis.

1ehypothesis with max P(h/p) is Ans.

- For a new instance x, suppose $h_1(x) = +1$, $h_2(x) = -1$ and $h_3(x) = -1$
- What is the most probable classification of x?

Bayes optimum classification...

```
H = {h1, h2, h3} P(
Training Data [D] P(
P(h1|D) = .4
```

$$P(h1|D) = .4$$

 $P(h2|D) = .3$
 $P(h3|D) = .3$

```
for new data point
 P(c1|h1) = 0 P(c2|h1) = 1 \Rightarrow h1 Redict C_2
P(c1|h2) = 1 P(c2|h2) = 0 7 h2 Priedic+ C1
  P(c1|h3) = 1 P(c2|h3) = 0 > h3 Paedic+C1
> find class of new data point> (Class C1/C2)
  Find \frac{3}{2}P(hi/b)(s^{\circ}) \Rightarrow ^{4}C_{2} + ^{3}C_{1} + ^{3}C_{1}
\Rightarrow ^{4}C_{2} + ^{6}C_{1} \Rightarrow ^{6}C_{1}
```


Computational complexity of Bayes optimum Classifier

The decision Rule of Bayes optimum dassifier Can also be written as

TP(hi/D) P(Cj/hi)

m number of hypothesis

Calculated for all classes

Class which has max value
of this 18 the 18 sult.

Bayes optimum classification...

$$P(h1|D) = .4$$

 $P(h2|D) = .3$
 $P(h3|D) = .3$

```
for new data point
P(c1|h1) = 0 P(c2|h1) = 1 > h1 Redict C_2
P(c1|h2) = 1 P(c2|h2) = 0 = h2 Priedic+ C1
P(c1|h3) = 1 P(c2|h3) = 0 > h3 Paedic+C1
          2/2 (h°/b) P(Ci/h°) → ·4x0+ ·3x1+·3x1→·6
For C27 ≥ P(hi/D)P(C1/hi) > ·4x1+·3x0+·3x0
```


Gibbs Algorithm

- An alternative, less optimal method is the Gibbs algorithm:
- 1. Choose a hypothesis *h* from H at random, according to the posterior probability distribution over H.
- 2. Use h to predict the classification of the next instance x.

Naïve Bayes Algorithm

The fundamental Naive Bayes assumption is that each feature makes an:

- ☐ Feature independence: The features of the data are conditionally independent of each other, given the class label.
- ☐ Features are equally important: All features are assumed to contribute equally to the prediction of the class label.

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

We have to calculate

.....

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook	P(O/Yes	P(O/No)
Sunny		
Overcas		
Rain		

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Temperat ure	P(T/Yes)	P(T/No)
Hot		
Mild		
Cold		

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Humidity	P(H/Yes)	P(H/No)
High		
Normal		

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Wind	P(W/Yes)	P(W/No)
Weak		
Strong		

Naïve Bayes Algorithm

Outlook	Temperatu re	Humidity	Wind
Sunny	Cool	High	Strong

Naïve Bayes Algorithm

Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fall
Yes	No	Yers	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A. Pass
- B. Fail

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook	P(O/Yes	P(O/No)	
Sunny			
Overcas			
Temperature	t P(T/Yes) P(T/N	0)
Hot			
Mild			
Humidity	P(H/Yes) P(H/N	lo)
High			
Normal			
Wind	P(W/Yes	s) P(W/N	No)
Weak			
Strong			

Naïve Bayes Algorithm

What if the dimension are continuous in nature

The numeric weather data with summary statistics											
outlook			temperature		humidity		windy			play	
	yes	no	yes	no	yes	no		yes	no	yes	no
sunny	2	3	83	85	86	85	false	6	2	9	5
overcast	4	0	70	80	96	90	true	3	3		
rainy 3 2	2	68	65	80	70						
		64	72	65	95						
		69	71	70	91						
		75		80							
		75		70							
	72		90								
	81		75								

The numeric weather data with summary statistics											
outlook			temperature		humidity		windy			play	
	yes	no	yes	no	yes	no		yes	no	yes	no
sunny	2	3	83	85	86	85	false	6	2	9	5
overcast	4	0	70	80	96	90	true	3	3		
rainy 3 2	3	2	68	65	80	70					
		64	72	65	95						
			69	71	70	91					
		75		80							
		75		70							
		72		90							
		81		75							

Q: Consider a classification problem with 10 classes $y \in \{1,2,...,10\}$, and two binary features $x1,x2 \in \{0,1\}$. Suppose:

Which class will naïve Bayes classifier produce on a test item with (x1=0,x2=1)?

- A. 1
- B. 3
- C. 5
- D. 8
- E. 10

THANK - YOU