

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Frequency Mixing

Frequency Mixing

- > Pros:
 - > Improved Sensitivity of Receiver
 - > Selectivity of Receiver
 - > Stability
 - Multi-band Consistency
- > Cons:
 - > Interference

Performance Metrics

- Gain
 - $>V_{im}/V_{sm}$
- ➤ Noise Figure

$$\geqslant \frac{(S/N)_i}{(S/N)_o}$$

- > Selectivity
 - > Interference Suppression except for IF
- Nonlinear Interference
 - > Suppression for Cross- and inter-modulation Interference
- > Stability
 - > Stability of Oscillator

Mixer - Classification

```
Diode Mixer
Device:
                 BJT Mixer
                 Multplier Mixer
                 FET Mixer
Feature:
                 Diode Mixer
                 Balanced Mixer
                 Ring Mixer
Time domain:
                Superposition-type
                Multiplication-type
```

Superposition-type Mixer

Superposition-type Mixer (Diode)

Balanced Mixer
Ring Mixer

➤ Principle: Non-linear (cf. AM)

By Power Series
By Switching Function

Exp: Power Series, Square law for $v_D = v_0 + v_s$

$$(v_0 + v_s)^2 = v_0^2 + v_s^2 + 2v_0v_s$$

Obtain
$$(\omega_0 + \omega_s)$$
 and $(\omega_0 - \omega_s)$

Superposition-type Mixer (Transistor)

- \triangleright V_s Linear
- Transconductance changes

Linear Time Varying

Transistor Transcharacteristic

Multiplication-type Mixer

> Principle:

AM:

$$v_s(t) = V_s(1 + m_a \cos \Omega t) \cos \omega_s t$$

$$v_0(t) = V_0 \cos \omega_0 t$$

$$v_o v_s(t) = \frac{1}{2} V_0 V_s(1 + m_a \cos \Omega t) [\cos(\omega_o + \omega_s)t + \cos(\omega_o - \omega_s)t]$$

Obtain:
$$(\omega_0 + \omega_s)$$
 & $(\omega_0 - \omega_s)$

Mixer - Classification

Mixing Interference

Combined Frequency Interference $-f_s$ & f_0

(Interference Whistle)

> Definition:
$$|\pm n_s f_s \pm n_0 f_0| = f_i \pm F$$
 (Whistle)

Combined Frequency Interference $-f_s$ & f_0

Exp: Modulated signal $f_s = 931kHz$, Local frequency $f_0 = 1396kHz$, analyze the reason to hear the whistle.

Solution:
$$2f_s - f_0 = 2 \times 931 - 1396 = 466kHz = f_i + F(F = 1kHz)$$

Combined Side-Channel Interference - f_n & f_0

- ➤ Definition: $|\pm n_n f_n \pm n_0 f_0| \approx f_i$
- > Special Case: Side-Channel Interference $f_n pprox f_i$ Interference Interference $f_n \sim f_i$ Mirror Frequency Interference $f_n f_0 = f_i$

Cross-Modulation Interference - f_n & f_0

- > Interference: Signal & Interference Co-exist (Multiplicative)
- > Reason: Non-linear (Cube)

> Comparison:

Combined Side-Channel Interference: Additive

Inter-Modulation Interference - f_{n1} f_{n2} & f_0

- \triangleright Definition: $|\pm n_{n1}f_{n1} \pm n_{n2}f_{n2} \pm n_0f_0| \approx f_i$
- > Reason: Non-linear (Square & above)

> Comparison:

Cross-Modulation Interference: One f_n , Multiplicative

Inverse Mixing Interference – f_0

> Reason:

Oscillator has interference

Blocking Interference

> Reason:

Srong interference makes transistor into non-linear state with degrading output SNR

Summary

