dm22s1

Topic 01: Module Overview

Part 04: Review

Dr Bernard Butler

Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie)

Autumn Semester, 2022

Outline

Selected questions

• What are the main stages in the Data Mining pipeline?

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"
 - Using data-intensive machine learning procedures to derive insights

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"
 - Using data-intensive machine learning procedures to derive insights
 - Opening the Postprocessing the results, to answer questions
- Explain the roles played by the following in Data Mining

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"
 - Using data-intensive machine learning procedures to derive insights
 - Operation Postprocessing the results, to answer questions
- Explain the roles played by the following in Data Mining
 - Big Data

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"
 - Using data-intensive machine learning procedures to derive insights
 - Postprocessing the results, to answer questions
- Explain the roles played by the following in Data Mining
 - Big Data
 - Artificial Intelligence

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"
 - Using data-intensive machine learning procedures to derive insights
 - Ostprocessing the results, to answer questions
- Explain the roles played by the following in Data Mining
 - Big Data
 - Artificial Intelligence
 - Machine Learning

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"
 - Using data-intensive machine learning procedures to derive insights
 - Ostprocessing the results, to answer questions
- Explain the roles played by the following in Data Mining
 - Big Data
 - Artificial Intelligence
 - Machine Learning
 - Oeep Learning

- What are the main stages in the Data Mining pipeline?
 - Obtaining data in the form of observations and attributes of those observations
 - Preprocessing the data, also known as "exploratory data analysis"
 - Using data-intensive machine learning procedures to derive insights
 - Ostprocessing the results, to answer questions
- Explain the roles played by the following in Data Mining
 - Big Data
 - Artificial Intelligence
 - Machine Learning
 - Oeep Learning

• Compare and contrast the following terms

- Compare and contrast the following terms
 - Artificial Intelligence vs. Deep Learning

- Compare and contrast the following terms
 - Artificial Intelligence vs. Deep Learning from notes
 - Oata Scientist vs. Data Engineer

- Compare and contrast the following terms
 - Artificial Intelligence vs. Deep Learning from notes
 - Data Scientist vs. Data Engineer
 - from notes

• Give 3 reasons for the growth of data mining

- Give 3 reasons for the growth of data mining
 - Needed to support moves towards automation (reducing costs, improving quality...)

- Give 3 reasons for the growth of data mining
 - Needed to support moves towards automation (reducing costs, improving quality...)
 - Growth of big data and the opportunity to monetise it

- Give 3 reasons for the growth of data mining
 - Needed to support moves towards automation (reducing costs, improving quality...)
 - Growth of big data and the opportunity to monetise it
 - Showledge discovery and its potential to solve evolving problems

DM generations

• Contrast the first generation of data mining approaches with those used in 2022, under the following headings

DM generations

- Contrast the first generation of data mining approaches with those used in 2022, under the following headings
 - Where data comes from
 - How the data is processed
 - How the results of that processing are used
 - Describe the technological trends in your answer.

DM generations

- Contrast the first generation of data mining approaches with those used in 2022, under the following headings
 - Where data comes from
 - Transaction systems, to Unstructured web/social data
 - How the data is processed
 - In-database + Offline extracts, to pipelined streaming engines
 - How the results of that processing are used
 - operations and reporting, to knowledge discovery and integrated controls
 - Describe the technological trends in your answer.
 - see notes

- Compare batch and streaming approaches to data mining, giving 2 advantages and 1 disadvantage of each.
 - batch
 - streaming

- Give two scenarios where each of the two appraches might be preferred (other factors being equal).
 - batch:
 - streaming:

- Give two scenarios where each of the two appraches might be preferred (other factors being equal).
 - batch:
 - reports for 3rd parties: compliance, accounting
 - streaming:

- Give two scenarios where each of the two appraches might be preferred (other factors being equal).
 - batch:
 - reports for 3rd parties: compliance, accounting
 - streaming:
 - fraud detection, textual stream classification

• What types of expertise are needed to become an effective data scientist?

- What types of expertise are needed to become an effective data scientist?
 - see notes, discuss Conway and Kolassa models...

- What types of expertise are needed to become an effective data scientist?
 - see notes, discuss Conway and Kolassa models...
- What is the role of *citizen data scientists* in Data Science teams?

- What types of expertise are needed to become an effective data scientist?
 - see notes, discuss Conway and Kolassa models...
- What is the role of *citizen data scientists* in Data Science teams?
 - original proposed to replace, now seen as adding to the data science team, with mentoring from senior data scientists

DM disadvantages

- List and describe 5 disadvantages of (increased adoption of) powerful data mining techniques, considering their effects on
 - individuals
 - groups of people
 - the planet

DM disadvantages

- List and describe 5 disadvantages of (increased adoption of) powerful data mining techniques, considering their effects on
 - individuals
 - making some jobs obsolete
 - biased/opaque decision making, e.g., for loan applications
 - groups of people
 - the planet

DM disadvantages

- List and describe 5 disadvantages of (increased adoption of) powerful data mining techniques, considering their effects on
 - individuals
 - making some jobs obsolete
 - biased/opaque decision making, e.g., for loan applications
 - groups of people
 - harmful effects on privacy
 - removing humans from decision making
 - the planet

DM disadvantages

- List and describe 5 disadvantages of (increased adoption of) powerful data mining techniques, considering their effects on
 - individuals
 - making some jobs obsolete
 - biased/opaque decision making, e.g., for loan applications
 - groups of people
 - · harmful effects on privacy
 - removing humans from decision making
 - the planet
 - energy usage in data centres
 - use of overly simplified models to represent complex systems

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?
 - Does it go beyond what is necessary?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?
 - Does it go beyond what is necessary?
 - Does it relate to protected individuals or groups?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?
 - Does it go beyond what is necessary?
 - Does it relate to protected individuals or groups?
 - Has consent been obtained, and can the data subjects withdraw consent at any time?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?
 - Does it go beyond what is necessary?
 - Does it relate to protected individuals or groups?
 - Has consent been obtained, and can the data subjects withdraw consent at any time?
 - What validation procedures and other controls are in place?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?
 - Does it go beyond what is necessary?
 - Does it relate to protected individuals or groups?
 - Has consent been obtained, and can the data subjects withdraw consent at any time?
 - What validation procedures and other controls are in place?
 - Can individuals be identified (even if pseudonymisation has been used)?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?
 - Does it go beyond what is necessary?
 - Does it relate to protected individuals or groups?
 - Has consent been obtained, and can the data subjects withdraw consent at any time?
 - What validation procedures and other controls are in place?
 - Can individuals be identified (even if pseudonymisation has been used)?
 - If the outputs affect individuals or groups, is there a procedure to review the findings?

- A colleague presents a proposal to use data mining to develop a case in support of a new business venture.
 - Identify at least 4 questions you might ask to decide whether the proposal is ethically sound.
 - How reliable is the data that has been obtained?
 - Is the data complete (in relation to the study aims)?
 - Does it go beyond what is necessary?
 - Does it relate to protected individuals or groups?
 - Has consent been obtained, and can the data subjects withdraw consent at any time?
 - What validation procedures and other controls are in place?
 - Can individuals be identified (even if pseudonymisation has been used)?
 - If the outputs affect individuals or groups, is there a procedure to review the findings?
 - Will the output be used to benefit the data processor at the expense of the data subjects or the wider community?

DIKW chain

• Decribe the main phases in the Data-to-Wisdom process, describing the transformations between each stage.

DIKW chain

- Decribe the main phases in the Data-to-Wisdom process, describing the transformations between each stage.
- see the lecture notes. Use examples for each phase and transformation.

- Compare and contrast CRISP-DM and Microsoft's Team Data Science Process (TDSP). In you answer, mention their
 - motivation
 - role of feedback loops
 - integration with software engineering processes more generally

- Compare and contrast CRISP-DM and Microsoft's Team Data Science Process (TDSP). In you answer, mention their
 - motivation
 - CRISP-DM was an attempt to introduce iterative development into waterfall-oriented organsiations
 - TDSP: link ML cycles into more modern devops practices
 - role of feedback loops
 - integration with software engineering processes more generally

- Compare and contrast CRISP-DM and Microsoft's Team Data Science Process (TDSP). In you answer, mention their
 - motivation
 - CRISP-DM was an attempt to introduce iterative development into waterfall-oriented organsiations
 - TDSP: link ML cycles into more modern devops practices
 - role of feedback loops
 - CRISP-DM: the whole process is a set of cycles, that drops deployment artefacts occasionally
 - TDSP: two separate cycles; deployment is itslf a process to be managed in parallel
 - integration with software engineering processes more generally

- Compare and contrast CRISP-DM and Microsoft's Team Data Science Process (TDSP). In you answer, mention their
 - motivation
 - CRISP-DM was an attempt to introduce iterative development into waterfall-oriented organsiations
 - TDSP: link ML cycles into more modern devops practices
 - role of feedback loops
 - CRISP-DM: the whole process is a set of cycles, that drops deployment artefacts occasionally
 - TDSP: two separate cycles; deployment is itslf a process to be managed in parallel
 - integration with software engineering processes more generally
 - CRISP-DM: bridge waterfall and agile (particularlyfeature-oriented cyclical development) practices
 - TDSP: full agiles, integrates particularly with devops resulting in *mlops*.

- Classification is a common objective in data mining. For each of the following "tribes" of machine learning, identify a classification technique they might favour, and descibe why that might be the case.
 - Analogizers
 - Bayesians
 - Connectionists

- Classification is a common objective in data mining. For each of the following "tribes" of machine learning, identify a classification technique they might favour, and descibe why that might be the case.
 - Analogizers
 - Support Vector Machines; Decision Trees
 - Bayesians
 - Connectionists

- Classification is a common objective in data mining. For each of the following "tribes" of machine learning, identify a classification technique they might favour, and descibe why that might be the case.
 - Analogizers
 - Support Vector Machines; Decision Trees
 - Bayesians
 - Logistic Regression (and variants)
 - Connectionists

- Classification is a common objective in data mining. For each of the following "tribes" of machine learning, identify a classification technique they might favour, and descibe why that might be the case.
 - Analogizers
 - Support Vector Machines; Decision Trees
 - Bayesians
 - Logistic Regression (and variants)
 - Connectionists
 - Feedforward artificial neural network

Regression versus Classification

- Regression and classification both learn from training data and can be used for prediction
 - How are they similar (at least 2 ways)?

• How are they different (2 ways)?

Regression versus Classification

- Regression and classification both learn from training data and can be used for prediction
 - How are they similar (at least 2 ways)?
 - learm from training data having both attributes and target
 - metrics can be computed to measure the quality of the learned parameters
 - in addition to parameters to be estimated, both need hyperparameters to be chosen
 - How are they different (2 ways)?

Regression versus Classification

- Regression and classification both learn from training data and can be used for prediction
 - How are they similar (at least 2 ways)?
 - learm from training data having both attributes and target
 - metrics can be computed to measure the quality of the learned parameters
 - in addition to parameters to be estimated, both need hyperparameters to be chosen
 - How are they different (2 ways)?
 - Target is numeric for regression and categorical for classification
 - Classification has a richer set of algorithms
 - · Results analysis for classification is more complicated

Classification versus Clustering

• Identify two ways in which classification and clustering differ.

Classification versus Clustering

- Identify two ways in which classification and clustering differ.
 - Classification learns from labeled data, clustering learns from unlabeled data.

Classification versus Clustering

- Identify two ways in which classification and clustering differ.
 - Classification learns from labeled data, clustering learns from unlabeled data.
 - Clustering is more often used for data exploration rather than prediction

Undesirable and Desirable Anomalies

 Give 2 examples of scenarios where anomalies are desirable and two where they are not. Justify your answer.

Undesirable and Desirable Anomalies

- Give 2 examples of scenarios where anomalies are desirable and two where they are not. Justify your answer.
 - undesirable anomalies: identifying faults in manufacturing or fraudulent transactions in banking

Undesirable and Desirable Anomalies

- Give 2 examples of scenarios where anomalies are desirable and two where they are not. Justify your answer.
 - undesirable anomalies: identifying faults in manufacturing or fraudulent transactions in banking
 - desirable anomalies: discovering new medical treatments or subatomic particles (leading to new theories)

Regression versus Time Series

• Regression and Time Series Analysis both try to predict numeric values from data. Identify 2 indications from the data that might suggest the use of time series analysis in preference to simple regression.

Regression versus Time Series

- Regression and Time Series Analysis both try to predict numeric values from data. Identify 2
 indications from the data that might suggest the use of time series analysis in preference to simple
 regression.
 - time series data is equispaced (in space and/or time)

Regression versus Time Series

- Regression and Time Series Analysis both try to predict numeric values from data. Identify 2
 indications from the data that might suggest the use of time series analysis in preference to simple
 regression.
 - time series data is equispaced (in space and/or time)
 - time series data is serially correlated (earlier data predicts later)

ARM and Recommendation Systems

- Describe at least two use cases where each of the following techniques might be useful
 - association rules mining (ARM)
 - recommender systems

ARM and Recommendation Systems

- Describe at least two use cases where each of the following techniques might be useful
 - association rules mining (ARM)
 - grouping transactions by product choices
 - grouping documents by word combinations
 - recommender systems

ARM and Recommendation Systems

- Describe at least two use cases where each of the following techniques might be useful
 - association rules mining (ARM)
 - grouping transactions by product choices
 - grouping documents by word combinations
 - recommender systems
 - cross-selling and up-selling in shopping sites
 - online dating