

The Case for Cross Laminated Timber: Part 2

Opportunities and Challenges for a New Class of Timber Product

Presented by Regional Director WoodWorks for Non-residential Construction

Learning Objectives

- Review answers to common questions regarding the design and construction of CLT structures, including those related to cost and designing for exposed conditions.
- Evaluate the fire characteristics of CLT, including the benefits of charring, effects of lamination, flame spread and more.
- Discuss current seismic approaches that can be used for CLT buildings as well as the future of seismic testing.
- Consider the acoustic and moisture performance of CLT assemblies and how they inform the design of a project.

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2012

Outline

- CLT Design
 - Fire
 - Lateral
 - Acoustic
 - Building Enclosure
- Including.....
 - Information available in the CLT Handbook
 - Information from additional resources
 - Answers to Frequently Asked Questions

Fire Design

- Fire Design
 - Building Types
 - Fire Resistance
 - Interior Finish
 - Connections

Fire and Life Safety – Building Types

• Type V are generally combustible such as wood although V permits any material permitted by code

All structural elements can be combustible construction:

- Exterior walls
- Floor
- Roof
- Interior walls

Fire and Life Safety – Building Types

• Type VB is unprotected construction and requires no fire rating on any building elements.

TABLE 601
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)

	TY	PE I	TY	TYPE II		E III	TYPE I∀	TYPE∀	
BUILDING ELEMENT	А	В	Ad	В	A ^d	В	нт	Ad	В
Primary structural frame ^g (see Se <i>c</i> tion 202)	32	2ª	1	ń	1	ń	нт	1	ń
Bearing walls Exterior ^{f, g} Interior	3 3ª	2 2ª	1 1	0	2 1	2 0	2 1/HT	1	0 0
Nonbearing walls and partitions Exterior		See Table 602							
Nonbearing walls and partitions Interior ^e	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and secondary members (see Section 202)	2	2	1	0	1	0	ТН	1	0
Roof construction and secondary members (see Section 202)	1 ¹ / ₂ ^b	1 b. c	140	0°	1 b, c	0	HT	1 ^{b, c}	0

Fire and Life Safety – Building Types

• Type VA is protected construction and requires a 1hr rating for all structural elements with some exceptions for roofs.

FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)

FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)									
	TYI	PE I	TY	PE II	TYP	E III	TYPE Ⅳ	TYPEV	
BUILDING ELEMENT	Α	В	Ad	В	A ^d	В	нт	A ^d	В
Primary structural frame ⁸ (see Section 202)	3ª	Zª	1	Ų	1	Ü	нт	1	Ų
Bearing walls Exterior ^{£ §} Interior	3 3a	2 2ª	1 1	0	2 1	2 0	2 1/HT	1 1	0
Nonbearing walls and partitions Exterior	See Table 602								
Nonbearing walls and partitions Interior ^e	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0
Roof construction and secondary members (see Section 202)	1 ¹ / ₂ ^b	1 b. c	1 th c	0°	1 b, c	0	HT	1 b. c	0

Fire and Life Safety – Building Types

• Type III is noncombustible exterior and combustible interior. Fire-retardant-treated wood framing is permitted in the exterior walls.

Structural elements that can be CLT:

- Floor
- Roof
- Interior walls

Fire and Life Safety – Building Types

 Type III requires a 2hr fire rating at exterior walls for both protected and unprotected construction, 1hr rated most everywhere else for IIIA and no where else for IIIB.

TABLE 601
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)

	TYI	PE I	TY	PE II	TYP	E III	TYPE IV	TYPE∀	
BUILDING ELEMENT	А	В	Ad	В	Ad	В	нт	Ad	В
Primary structural frame ^a (see Section 202)	3ª	2ª	1	0	1	0	HT	1	0
Bearing walls Exterior ^{f. g} Interior	3 3ª	2 2ª	1 1	0	2 1	2 0	2 1/HT	1 1	0
Nonbearing walls and partitions Exterior					See T	`able 602			
Nonbearing walls and partitions Interior ^e	0	0	0	0	0	0	See Section 602.4.6	0	0
Floor construction and secondary members (see Section 202)	2	2	1	0	1	0	нт	1	0
Roof construction and secondary members (see Section 202)	1 ¹ / ₂ ^b	1 b, o	1 th o	0°	1 b, °	0	НТ	1 b. c	0

Fire and Life Safety – Building Types

 Type IV are generally combustible with the exception of the exterior walls and requires that there are no concealed spaces.

Structural elements that can be CIT:

- Floor
- Roof
- Interior walls

Fire and Life Safety – Building Types

• Type IV are generally combustible with the exception of the exterior walls that can be CLT or FRT when the rating is 2hr or less.

Structural elements that can be CLT under 2015 IBC:

- Floor
- Roof
- Interior walls
- Exterior walls

Fire and Life Safety – Building Types

 Type IV - Fire resistance requirements do NOT apply to HT Construction except at the Exterior Walls

TABLE 601
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)

TIRE-RESISTANCE RATING REQUIREMENTS FOR ESTEDING ELEMENTS (IDUIS)										
	TYI	PE I	TY	PE II	TYP	EIII	TYPE IV	TYPE∀		
BUILDING ELEMENT	Α	В	Ad	В	Ad	В	HT	A ^d	В	
Primary structural frame ⁸ (see Section 202)	3ª	2ª	1	0	1	0	HT	1	0	
Bearing walls Exterior ^{f, g} Interior	3 3ª	2 2ª	1 1	0	2 1	2 0	2 1/HT	1 1	0	
Nonbearing walls and partitions Exterior					See T	able 602				
Nonbearing walls and partitions Interior ^e	0	0	0	0	0	0	ee Section 602.4.0	0	0	
Floor construction and secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0	
Roof construction and secondary members (see Section 202)	1 ¹ / ₂ ^b	1 ^{h, o}	1 h.o	0°	1 ^{h, c}	0	ITT	1 ^{h, n}	0	

Fire and Life Safety – Building Types

TABLE 503
ALLOWABLE BUILDING HEIGHTS AND AREAS^{N b}
Building height limitations shown in feet above grade plane. Story limitations shown as stories above grade plane
Building area limitations shown in square feet, as determined by the definition of "Area, building," per story

					TYPE	OF CONSTRU	CTION			
	1	TY	PET	TYI	EII	TYP	EIII	TYPE IV	TYPE V	
GROUP		A	В	A	В	A	В	HT	A	В
	HEIGHT (feet)	UL	160	65	55	65	55	65	50	40
				IES(S) A (A)						
A-1	BUSINI	ECC				3	2	3	2	1
						14,000	8,500	16,000	11,600	5,500
A-2	Busines	s Occur	pancy			3	2	3	2	1
	NFPA 13			. 003 3	1 1	14,000	9,500	16,000	11,600	6,000
A-3			(IGL2 ID)	, 703.3.	1.1	3	2	3	2	1
	Modifica	ations				14,000	9,500	15,000	11,500	6,000
A-4	6 stories	•				3	2	3	2	1 0000
		,				14,000	9,500	15,000	11,500	6,000
A-5	85 feet					╙	UL	╙	UL	UL
_	135,000	sa. ft./	floor ma	ax		- OL	3		3	
В						28,500	19,000	5 36,000	18,000	9,000
_	405,000		totai m	dX.		3	2	30,000	10,000	3,000
E	No Fire	walls				23,500	14,500	25,500	18,500	9,500
	S	UL	11	4	2	3	2	4	2	3,500
F-1	A	UL	υĹ	25,000	15,500	19,000	12,000	33,500	14,000	8,500
T 0	S	UL	11	5	3	4	3	- 5	3	2
F-2	A	UL	UL	37,500	23,000	28,500	18,000	60,600	21,000	13,00
	1 - 1	-		٠.	٠.		٠.	-		

Fire and Life Safety – Building Types

TABLE 503—continued ALLOWABLE BUILDING HEIGHTS AND AREAS^{8, b}

			ALLO	TAULE D'OIL	DINGHEIO	113 AND AN	LAS			
					TYPE	OF CONSTRU	CTION			
	1 1	TY	PE I	TYF	EΠ	TYF	E III	TYPE IV	TYF	PEV
GROUP		A	В	A	В	A	8	HT	A	В
011001	HEIGHT (feet)	UL	160	65	55	65	55	65	50	40
						HES(S) A (A)				
ı RI	ESIDE	NTIA	_		D	4 18,500	2 12,500	4 20,600	3 14,000	1 9,000
4.0	2 Occupa FPA 13 Si	,	c IDC 00	12211	D	4 24,000	4 16,000	20,500	3 12,000	7,000
	odificatio		3 IDC 70	13.3.1.1	o	4 24,000	4 16,000	4 20,600	3 12,000	2 7,000
	tories					4 UL	4 UL	UL.	3 UL	3 UL
R	feet ,875 sq.	ft /floo	may		D	4 24,000	4 16,000	4 20,600	3 12,000	2 7,000
	,675 sq. 0,625 sq				D	3 26,000	2 17,600	4 25,600	3 14,000	1 9,000
s No	Fire wa	lls			0	4 39,000	3 26,000	5 38,500	4 21,000	2 13,500
U	S A	UL UL	6 36,600	4 19,000	2 8,500	3 14,000	2 8,500	4 18,000	2 9,000	1 5,600

Fire and Life Safety - AMMR

[A] 104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, at least the equivalent of that prescribed in this code in quality, strength, effectiveness, fire resistance, durability and safety.

Fire and Life Safety – AMMR

[A] 104.11.2 Tests. Whenever there is insufficient evidence of compliance with the provisions of this code, or evidence that a material or method does not conform to the requirements of this code, or in order to substantiate claims for alternative materials or methods, the *building official* shall have the authority to require tests as evidence of compliance to be made at no expense to the jurisdiction. Test methods shall be as specified in this code or by other recognized test standards. In the absence of recognized and accepted test methods, the *building official* shall approve the testing procedures. Tests shall be performed by an *approved agency*. Reports of such tests shall be retained by the *building official* for the period required for retention of public records.

[A] 104.11.1 Research reports. Supporting data, where necessary to assist in the approval of materials or assemblies not specifically provided for in this code, shall consist of valid research reports from approved sources.

Fire Resistance

Fire protection based on

- ASTM E119 test performed by AWC or test reports from FPInnovations, OR...
- Calculate fire resistance per NDS Ch. 16

ASTM E119 Fire Endurance Test

- 5-Ply CLT (approx. 7" thick)
- 5/8" Type X GWB each side
- Sought 2 hour rating
- RESULTS: 3 hours 6 minutes

Fire Resistance Testing

Full Scale E119 Testing was done to prove min 2hr resistance to allow CLT as an exception in Type IV construction.

http://www.awc.org/Code-Officials/2012-IBC-Challenges/NGC-CLT-Report.pdf

Fire Resistance Calculation

Full Scale E119 Testing was done to prove the calculation methods.

The advantage to a calculated method is versatility (not relying on a UL assembly to include your exact assembly).

http://www.awc.org/Code-Officials/2012-IBC-Challenges/Preliminary-CLT-Fire-Test-Report-FINAL-July2012.pdf

Fire Resistance

SECTION 721 CALCULATED FIRE RESISTANCE

721.1 General. The provisions of this section contain procedures by which the *fire resistance* of specific materials or combinations of materials is established by calculations. These procedures apply only to the information contained in this section and shall not be otherwise used. The calculated *fire resistance* of concrete, concrete masonry and clay masonry assemblies shall be permitted in accordance with ACI 216.1/TMS 0216. The calculated *fire resistance* of steel assemblies shall be permitted in accordance with Chapter 5 of ASCE 29. The calculated *fire resistance* of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AF&PA National Design Specification for Wood Construction (NDS).

Fire Resistance

Chapter 16 NDS

 Charring Rate and Char Depth

Fire Resistance

Net section properties

Interior Finish

Wood Interior Finish - Flame spread

- Building occupancy
- Location of the material in the building
- Sprinklers or no sprinklers

ASTM E84 or UL 723 Test Method IBC 803.1.1

Table 8
Hame spread classes according with IBC

Class	Flame Spread Index	Smoke Development Index
A	0-25	0-450
В	26-75	0-450
C	76-200	0-450

Interior Finish

Species	Flame Spread Index
Cedar, Alaska yellow	50
Cedar, Pacific Coast yellow	78
Cedar, Port Orford	60
Coder, Wastern Red	70 70
Cypress	145-150
Douglas-fir	70-100
Douglas-fir flooring, % in.	83-98
Sir America (Davide Silvari)	19

Classification in Codes are:

			60	
Class	Flame Spread Range	Example Locations	45	
			85	
I or A	0-25	Enclosed vertical exits	72	
II or B	26-75	Exit access corridors	98	
			120.215	
III or C	76-200	Other rooms and areas	105-230*	

Table 9
Flame gread indices for softwood lumber

	142
Pine, Southern Yellow	130-195
Pine, Sugar	95
Redwood	70
Spruce, Engelmann	55
Spruce, Northern	65
Spruce, Sitka	74

Interior Finish

TABLE 803.9
INTERIOR WALL AND CEILING FINISH REQUIREMENTS BY OCCUPANCY⁸

	INTERIOR WA	LE MIND CEILING I	INISH KEQUI	REMENTS BY OCCUPANG	1				
	SPRIM	IKLERED ¹		NONS	PRINKLERED				
GROUP	Interior exit stairways, interior exit ramps and exit passageways* b	Corridors and enclosure for exit access stairways and exit access ramps	Rooms and enclosed spaces ^c	Interior exit stairways, interior exit ramps and exit passageways ^{s, b}	Corridors and enclosure for exit access stairways and exit access ramps	Rooms and enclosed spaces ^c			
A-1 & A-2	В	В	С	A	A ^d	Be			
A-3 ^f , A-4, A-5	В	В	С	000 011					
B, E, M, R-1	В	С	С	803.3 Heavy ti					
R-4	В	С	С	Exposed portic	ons of struct	ural			
F	С	С	С	members comi	embers complying with the				
Н	В	В	Ce		, , ,				
I-1	В	С	С	requirements f	~	٠,٠			
I-2	В	В	Bh.i	IV construction	ı in Section (502.4			
I-3	A	Ąi	С	shall not be sub	piect to <i>inte</i>	rior finish			
I-4	В	В	B ^{h, i}	requirements.	.,				
R-2	С	С	С	requirements.					
R-3	С	С	С						
S	С	С	С	В	В	С			
U	No re	strictions		No restrictions					

Connections

Structural requirements and.....

Fire requirements

- HT doesn't identify specific protection requirements
- connection protection must be equivalent to construction type requirements

Metal Connectors

- strength compromised
- Reduced capacity in heated zone
- Thermal conductivity of connector itself

Connections

Connections

Figure 13
Examples of connections seen in CLT balloon construction

Connections

Figure 14

Concealed metal plates

Connections

Figure 9
CLT panel-to-panel half-lapped joint detail

Connections

www.awc.org

Fire ratings for connections are established by the fire rating of the system.

Type IV Construction does not have fire ratings for connections.

IBC 722.6.3.3 - 1hr of protection = 1-1/2" wood covering

Chapter 8 - Fire

- IBC Height and Areas
- ASTM E119 Test
- ASTM E84 Test
- Design Examples

Frequently Asked Questions:

- 1. What Building Type should I specify?
- 2. How tall can I go with CLT?
- 3. Can I expose CLT?
- 4. Are there approved fire rated assemblies?

Frequently Asked Questions:

- 1. What Building Type should I specify?
 - This will depend on the height and area you require and if your threshold for fire walls.
 - Types III, IV and V will all allow CLT to some degree.
 - The 2015 IBC holds an opportunity for expanded use that may be accessed by utilizing 104.10
- 2. How tall can I go with CLT?
- 3. Can I expose CLT?
- 4. Are there approved fire rated assemblies?

Frequently Asked Questions:

- 1. What Building Type should I specify?
- 2. How tall can I go with CLT?
 - Depends on occupancy, use of sprinklers and structural design parameters
 - 6 Story Office Type IV or III
 - 6 Story S-2 (parking) Type IV
 - 5 Story Retail & Residential Type IV or III
 - Possibly taller with performance based design
- 3. Can I expose CLT?
- 4. Are there approved fire rated assemblies?

Frequently Asked Questions:

- 1. What Building Type should I specify?
- 2. How tall can I go with CLT?
- 3. Can I expose CLT?
 - Additional sacrificial laminations may be required to accommodate required fire resistance rating.
 - Most exposed CLT will have a Class B or C finish rating.
 - Type IV members are not subject to interior finish requirements.
- 4. Are there approved fire rated assemblies?

Frequently Asked Questions:

- 1. What Building Type should I specify?
- 2. How tall can I go with CLT?
- 3. Can I expose CLT?
- 4. Are there approved fire rated assemblies?
 - A calculated method has been established for fire ratings of Cross Laminated Timber.
 - The calculated method has been justified with full scale E119 fire tests.
 - Not having set approved fire assemblies gives designers more flexibility with their assemblies but may require more explanation with a building dept.

Lateral Design

CLT in Lateral Force Resisting Systems

CLT Panels can be used as structural diaphragms and shear walls.

Source: A Ceccotti in the US CLT Handbook

CLT in Lateral Force Resisting Systems

CLT Panels have a very high in-plane shear strength.

Cros	sLam In-Plan	e Shear Load	ling					
Panel d (in)	SLT3 3.90	SLT5 6.65	SLT7 9.41	SLT9 12.17				
	Vr (lbs/ft							
	6510 13019 19529 26038							

Source: The Cross Laminated Timber Design Guide from Structurlam

CLT in Lateral Force Resisting Systems

Product	Nordic X-Lam							
Application	Wall Panels and Lintels							
Appearance grades	Industrial or Architectural							
Stress grade	E1 (L 1950F _b and T No. 3/Stud)							
Layup Combinations 78-3s 105-3s 131-5s 175-5s 220-7s 244-7								
Loaded to major strength direction	3	4	5	7	9	10	12	
Compression, P _o (10 ³ lbf/ft)	44	59	66	89	119	149	178	
Tension, T _o (10 ³ lbf/ft)	34	45	50	68	91	113	136	
Effective area, A _{eff} (in. ² /ft)	24	33	37	50	66	83	99	
Effective inertia, l _{eff} (in. ⁴ /ft)	28	68	108	257	498	824	1638	
Radius of gyration, r _{eff} (in./ft)	1.0	1.4	1.7	2.3	2.7	3.2	4.1	
In-plane shear, V ₀ (lbf/in.)	304	396	597	792	912	1188	1584	
Loaded to minor strength direction								
Compression, P ₉₀ (10 ³ lbf/ft)	8,2	11	16	21	25	21	32	
Tension, T ₉₀ (10 ³ lbf/ft)	3,2	4,1	6,3	8,3	9,5	8,3	12	
Effective area, A _{eff} (in. ² /ft)	12	17	25	33	38	33	50	
Effective inertia, I _{eff} (in. ⁴ /ft)	1,0	2,6	30	68	153	68	257	
Radius of gyration, r _{eff} (in./ft)	0,3	0,4	1,1	1,4	2,0	1,4	2,3	
In-plane shear, V ₉₀ (lbf/in.)	304	396	597	792	912	1188	1584	

Source: Nordic CLT Guide

Connections Determine Lateral Strength

Similar to Wood Structural Panel Shear Walls

Source: SDPWS 2008

Connections Determine Lateral Strength

Similar to Wood Structural Panel Shear Walls

Source: US CLT Handbook

Fasteners and Brackets

Frequently Asked Questions:

1. How do you design connections for CLT?

Commercial Products

Figure 1: ABR105 - CLT Panel Connection

Figure 2: AE116 - CLT to Concrete

Table 1: Allowable Stress Design Values - CLT Panel Connection

Model 10	Gouge	Direction (n.)			Fastenet Schedule					Allowable band (Sec.), Eq. + 1.60					
		· arci		1,0	Perturbaling		Vertical Leg			100		1			
		W.	Wy		Chimitty	Type	Quantity	Type	200	50	- 5	15			
ABK9020 1	-	37%	37%	27%	18	CNAME	10	DAME	3085	7907	100	380			
	14			2716	10	SD10212	10	SD10212	1480	1200	1330	1010			
A8R105	11	41/4	47/4	3 1/16	14	CNA4x60	10	CNA4x60	1350	835	2300	1020			
	11		4/4	9/4	474	474	4/4	474 37%	14	SD10212	10	SD10212	1880	1235	2300
AE116	11	11 3 ⁵ / ₁₆	11/4	.7.		-7-		7	CNA4x60	18	CNA4x60	1720	1225	1550	650
				41/16	7	SD10212	18	SD10212	1850	1445	1850	1035			

- The allowable loads are based on the use of SPF Grade 2 Cross Laminated Timber (CLT) material conforming to APA PRG-320
- The allowane loads are based on the use of SPF Obset 2 cross Laminated Finites* (CL1) material conforming to APA WRG-120.
 Intrallations and factores childred as sumple patform framing. (L., install vertical law pattern dept of the Vall pasted, and horse).
 Allowable loads have been increased for wind or entrapsake loading with in on further increase allowed. Reduce for other load durequired by cook.
 A Naisz (CM4460 4 mm diameter x 60 mm in operprintary ring-shark nat.).
 Serverus (SD0127) 103 (En. shark diameter x 25 in. long Simpons Stong-Dive* wood screw.

Frequently Asked Questions:

- 1. What type of connections are recommended/approved for CLT?.
- Self-tapping screws will likely be the most common connector used in CLT construction. These are proprietary connectors and design values and requirements would be specified by the manufacturer. The manufacturer will be responsible for providing lateral and withdrawal connection values and any information needed to explain how to use provisions of the NDS (e.g. dowel bearing strength adjustments, dowel bending strengths of the self-tapping screws, and specific application of the NDS yield equations).
- Design values for proprietary fasteners and information on their approved use are available in Evaluation Reports or the manufacturer's literature.

Seismic Design

To provide ductile seismic resistance, CLT connections in seismic force resisting systems should be governed by fastener yielding and wood crushing NOT brittle failures.

Wind Design

- Wind design uses linear-elastic analysis methods
- Design resistance can be derived using standard methods
- Design is fairly straight forward

Seismic Design

Available design approaches:

Alternative Means until CLT system code recognized.

- ELF Seismic Performance Factors; R, Omega, Cd.
 - (under development)
 - (CLT handbook provides values considered to be conservative)
- Performance Based Seismic Design

CLT Handbook - Chapter 4

- Shear wall Performance
 - Prescribed vs. principles of mechanics
 - Based on connection design fasteners should yield
- Seismic design
 - Coefficients (R, Ωo, Cd)
 - Performance Based Design Pathways
- Literature review
- Numerical modeling
- Examples -
 - allowable capacity
 - system simulation
- R=2 conservative recommendation

Acoustic Design

Acoustics

Essential Knowledge – Principle for Good Sound Insulation Design

- Sufficient mass
- Soft surface of floor finishing
- Floating topping and finishing
- Suspended drywall ceiling
- Decouple

Acoustics

Perceivable sound pressure differential is 3dB

Important rule for the development of <u>cost-effective</u> solutions!

Acoustics

Sound Insulation of Bare CLT Floors and Walls

Number of layers	Thickness (in.)	Assembly type	STC	IIC					
3	3-3/4 to 4-1/2	Wall	32-34	N.A.					
5	5-1/3	Floor	39	23					
5	5-3/4 Flo		39	24					
Measured on field bare CLT wall and floor									
Number of layers	Thickness in.	Assembly type	FSTC	FIIC					
3	4-1/8	Wall	28	N.A.					
7	8-1/5	Floor	N.A	25-30					

Acoustics

Design Examples for >50 STC Walls

- 1 and 3 = 4-1/2 in. CLT; 2=1-1/8 in. Mineral wool in the gap
- STC 55:

Adding 5/8 in. gypsum board directly to both sides

- STC 60:

with the gypsum boards and double the thickness of the gap and mineral wool

- STC 58: 1 and 7 = 5/8 in. gypsum boards 3 and 5 = 2 in. by 3 in. wood studs at least 16 in. o.c. 2 and 6 = 2.5 in. mineral wool
- 4 = 4-1/2 in. CLT

Acoustics

Design Examples for >45 FSTC Walls

Top view of cross-section	Wall detail	FSTC
	1 & 5 = 5/8" Gypsum board	46
	2 & 4 = Resilient channels at 24" o.c.	
sociochinologistasia (3. 5-layer CLT of 7-1/4"	
	1 & 7 = 5/8" Gypsum board	47
A STATE OF THE PARTY OF THE PAR	2 & 6 = Resilient channels at 24" o.c	
	3 & 5 = 3-layer CLT of 3.07"	
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	4 = 1" air gap filled with mineral wool	

Acoustics

Design Examples for >45 FSTC Walls

Top view of cross-section	Wall detail FS					
	1 = 3-layer CLT of 4-1/8" 2 = 1/2" air gap 3 = 2" by 3" wood studs at 16" o.c. 4 = 2-1/2" mineral wool 5 = 5/8" gypsum board	47				
3 3 4 5 5 6 6 0 0	1 & 9 = 5/8" gypsum board 2 & 7 = 2" by 3" wood studs at 16" o.c. 3 & 8 = 2-1/2" mineral wool 4 & 6 = 1/2" air gap 5 = 3-layer CLT of 4-1/8"	50				

Acoustics

Design Examples for >45 FSTC and FIIC Floors

End view of cross-section	Floor detail	FSTC	FIIC
2	1 = Carpet, or floating flooring about 2/5" on 1/8" resilient underlayment of 0.16 to 0.37 lb./ft.² 2 = At least 5.12 lb./ft.² dry topping, e.g. 0.8-1" gypsum board, cement fibreboard 3 = Resilient underlayment, e.g. 2/5" rubber mat of 0.84 lb./ft.², ¾" texture felt of 0.27 lb./ft.², ½" low density wood fibreboard of 0.73lb./ft.² 4 = 5-layer CLT of 6-7/8"	~45	~45
	- Replace the dry topping by wet topping, e.g. 1.5" concrete of at least 15.6 lb./ft.²	~50	~50

Acoustics

Design Examples for >45 FSTC and FIIC Floors

End view of cross-section	Floor detail	FSTC	FIIC
	1 = Carpet, or flooring about 2/5" 2 = 1/8" resilient underlayment of 0.16 to 0.37 lb./ft.² 3 = 5-layer CLT of 6-7/8" 4 = Sound Isolation Clips of 4" high 5 = Metal hat channel at 16" o.c. 6 = Sound absorption material (such as glass fibre) of 4" 7 = Gypsum board of 5/8" 8 = Gypsum board of 5/8"	~50	~50
L • 7	- Replace 1) by hardwood flooring nailed to ¾" plywood - Replace 2) by thick resilient underlayment, e.g. 2/5" rubber mat of 0.84 lb./ft.² , ¾" texture felt of 0.27 lb./ft.² , ¾" low-density wood fibre board of 0.73 lb./ft.²	~53	~53
	Replace 1) by ceramic tile glued to $\%$ " and $\%$ " plywood - Replace 2) by thick resilient underlayment, e.g. 2/5" rubber mat of 0.84 lb./ft.² , $\%$ " texture felt of 0.27 lb./ft.² , $\%$ " low-density wood fibreboard of 0.73lb./ft.²	~53	~53

Chapter 9 - Sound

- STC and IIC rated assemblies
- FSTC and FIIC rated assemblies
- Recommendations for meeting IBC requirements

Frequently Asked Question:

1. Are their any substitutions for more common acoustic assembly materials?

Fermacell can be replaced with cement –fiber board as long as it has the same or higher density (32kg/m2).

Isover is very similar to Roxul (Rock wool).

Frequently Asked Question:

1. Are there more tested assemblies available?

NRC has data on assemblies beyond those in the Handbook

Additional assemblies may be tested

Acousticians can estimate sound performance based on sound test data

Building Enclosure Design

Building Enclosure Design

- CLT wall assemblies should be built "breathable"
- Prevent rain infiltrations
- Wetting during transportation, construction and service should be minimized
- Studies show that in heating climate that no vapor barrier will be required at interior

Moisture Management

- Rain screen
 - cavity directly behind the cladding
 - allows improved drying
 - Openings in cladding at top and bottom
- Drained wall
 - Requires WRB
 - 1/16" air gap suggested
 - Drainage wrap recommended with foam insulation
 - OR groves cut in back side of foam insulation

Moisture Management

- Water Resistive Barrier
 - Essential part
 - Properly overlapped in a shingle fashion
 - integrate with flashings
 - Sealed at all penetrations

Energy Performance

Exterior Insulation

- Provides continuity (no break at floors)
- Shields CLT and air barrier from temp (less expansion and contraction)
- Capitalizes more thermal mass benefit
- Keeps it warmer (in cold climates)
- Lowers surface relative humidity
- Keeps it dryer (in hot humid)

Energy Performance

Energy Performance

Air-tight as a material, but not as a system

Recommend

- self-adhered sheet product air barrier membranes
- or thick liquid applied membrane on exterior of panels (exterior airbarrier approach)

Not recommended

loose-applied sheets (Housewraps)

Energy Performance

Sealants, tapes, & membranes applied on either side can't address this type of airflow path through the CLT lumber gaps

Airflow path more convoluted – lower leakage rates, but still a consideration

Roof Assemblies

Roof Assemblies

CLT Handbook -Chapter 10

- Properties of CLT
 - Water vapor sorption
 - Permeability
 - Liquid water absorption

Enclosure

- · Heat storage/transfer
- Air permeability
- Approaches to exterior water management
- Recommended Assemblies
- Moisture Control During Construction
- Preservative Treatment

Resources

Buildings in Marine to Cold Climate Zones in North America

Exterior-insulated wall assemblies

http://www.fpinnovations.ca/ResearchProgram/AdvancedBuildingSystem/designi ng-energy-efficient-building-enclosures.pdf

Resources

Buildings in Marine to Cold Climate Zones in North America

Chapter 3: Moisture, Air and Thermal Control

- Building as a System
- Climate Zones
- Interior Climate, HVAC Interaction
- Critical Barrier Concept
- Control of Rainwater Penetration
- Control of Air Flow
- Controlling Condensation
- **Construction Moisture**
- Controlling Heat Flow and Insulation
- Whole Building Energy Efficiency
- Computer Simulation Considerations for Wood-framed Enclosures

Resources

Buildings in Marine to Cold Climate Zones in North America

Chapter 4 - Energy Efficient Walls Exterior Insulated

- Material selection & quidance
- Control Functions
- **Critical Barriers**
- Effective Division Talalas

• E	.TTectiv	e R-v	alue 1a	ables						
Wood	Exterior			Exterior insi	ulation thicknes	ss				
framing	insulation	3 inches	4 inches	5 inches	6 inches	7 inches	8 inches			
_	[R-value/inch	R-value	[R-value	[R-value	[R-value	[R-value	[R-value			
	(RSI/cm)]	(RSI)]	(RSI)]	(RSI)]	(RSI)]	(RSI)]	(RSI)]	-	100	
044 1 1	R-4/inch	17.2	20.9	24.4	27.9	31.6	35.0			
3½-inch- thick CLT	(0.28/cm)	(3.0)	(3.7)	(4.3)	(4.9)	(5.6)	(6.2)	- COL	123. (12)	
panels	R-5/inch	19.8	24.4	28.7	32.9	37.3	41.5	M		
paneis	(0.34/cm)	(3.5)	(4.3)	(5.1)	(5.8)	(6.6)	(7.3)	- 20	-	Name of the last o
									The second	A STATE OF THE PARTY OF THE PAR

WoodWorks –Portal to CLT Information

Questions?

[contact info]

Project Assistance also available at help@woodworks.org

