

Byte 1

Byte 2

Byte 3d

Byte 4

Versão Classe de tráfego

Rótulo de fluxo

Tamanho da carga

Próximo cabeçalho

Limite de saltos

Endereço IP de origem

40 bytes

Tamonto da memagen

o Do tamonto móri mos e mísmos da memogen rempe deven re respectados, por ino, muitos
vergo é precino que o receptos quebe os memogen em quadros e envie uma memagen em
voir os partes.

Premporização de mensagon

· Controle de fluxo

Lo Proceno de apreniamento da torca de tramminão de dochos

· Tempo limite da resporta

Lo Do hosto da rede mon protocolos de rede que especificam quanto tempo esperar pelos respectos e que cujas executor re ocorrer um tempo Dimite de resporter.

· Métado de acemo

Lo Chambo um dispositivo dereja transmita em una LAN rem fio, e recenório que a place de interface de rude (NiC) da WLAN determine re a média rem fio esta disposivel.

Decomment et comments

o Unicost

LT As informações stão rendo transmitidos para um úsico dispositivo final.

· Multicost

Lo As informações estão rendo transmitidos para um ou mais dispositivos finás.

o Breakost

Lo As informações estão sendo tramentidos para todos os dispositiros finais

- Uma das primeiras etapas para enviar uma mensagem é codificá-la. Durante o processo de codificação, a informação é convertida de sua forma original em uma forma aceitável para transmissão.
- 2. As mensagens enviadas através de uma rede de computadores devem estar no formato correto para serem entregues e processadas. Parte do processo de formatação é identificar corretamente a origem da mensagem e seu destino.
- 3. O controle de fluxo é o gerenciamento da taxa de transmissão. Tempo limite de resposta é quanto tempo esperar por respostas. Os métodos de acesso determinam quando alguém pode enviar uma mensagem. Estes são os três componentes do timing da mensagem.
- 4. Mensagens multicast são endereçadas para transmissão para um ou mais dispositivos finais em uma rede. As mensagens de Broadcast são endereçadas para transmissão a todos os dispositivos na rede. Mensagens unicast são endereçadas para transmissão para um dispositivo na rede.

A tabela lista os vários tipos de protocolos necessários para habilitar as comunicações em uma ou mais redes.

Tipo de Protocolo	Descrição
Protocolos de comunicação em rede	Os protocolos permitem que dois ou mais dispositivos se comuniquem através de um ou mais redes. A família de tecnologias Ethernet envolve uma variedade de protocolos como IP, Transmission Control Protocol (TCP), HyperText Protocolo de transferência (HTTP) e muito mais.
Protocolos de segurança de rede	Protocolos protegem os dados para fornecer autenticação, integridade dos dados e criptografia de dados. Exemplos de protocolos seguros incluem o Secure Shell (SSH), SSL (Secure Sockets Layer) e TLS (Transport Layer Security).
Protocolos de roteamento	Protocolos permitem que os roteadores troquem informações de rota, compare caminho e, em seguida, selecionar o melhor caminho para o destino remota. Exemplos de protocolos de roteamento incluem Open Shortest Path First (OSPF) e Border Gateway Protocol (BGP).
Protocolos de descoberta de serviço	Protocolos são usados para a detecção automática de dispositivos ou serviços. Exemplos de protocolos de detecção de serviços incluem Host dinâmico Protocolo de Configuração (DHCP) que detecta serviços para endereço IP alocação e Sistema de Nomes de Domínio (DNS) que é usado para executar conversão de nome para endereço IP.

s Production de rude Los Sãos responsarios por uma noviedade de funcios recerviros para comunicações de rede entre dispositiros

. وحمد نالم

	Função	Descrição
	Endereçamento	Identifica o remetente e o destinatário pretendido da mensagem usando um esquema de endereçamento definido. Exemplos de protocolos que fornecem incluem Ethernet, IPv4 e IPv6.
_	Confiabilidade	Esta função fornece mecanismos de entrega garantidos em caso de mensagens são perdidos ou corrompidos em trânsito. O TCP fornece entrega garantida.
	Controle de fluxo	Esta função garante que os fluxos de dados a uma taxa eficiente entre dois dispositivos de comunicação. O TCP fornece serviços de controle de fluxo.
	Sequenciamento	Esta função rotula exclusivamente cada segmento de dados transmitido. A usa as informações de sequenciamento para remontar o informações corretamente. Isso é útil se os segmentos de dados forem perdido, atrasada ou recebida fora de ordem. O TCP fornece serviços de sequenciamento.
	Detecção de erros	Esta função é usada para determinar se os dados foram corrompidos durante transmissão. Vários protocolos que fornecem detecção de erros incluem Ethernet, IPv4, IPv6 e TCP.
	Interface de aplicação	Esta função contém informações usadas para processo a processo comunicações entre aplicações de rede. Por exemplo, ao acessar uma página da Web, protocolos HTTP ou HTTPS são usados para se comunicar entre o processos da Web do cliente e do servidor.

- 1. BGP e OSPF são protocolos de roteamento. Eles permitem que os roteadores troquem informações de rota para alcançar redes remotas.
- 2. Protocolos de detecção de serviços, como DNS e DHCP, permitem a detecção automática de serviço. O DHCP é usado para descobrir serviços para alocação automática de endereços IP e DNS para serviços de resolução de endereços Nome-para-IP.
- 3. O seqüenciamento identifica ou rotula exclusivamente cada segmento transmitido com um número de seqüência que é usado pelo receptor para remontar os segmentos na ordem correta.
- 4. Transmission Control Protocol (TCP) gerencia a conversa entre dispositivos finais e garante a entrega confiável de informações.

- Auxilios no projeto de protocolos

- Cormentar a corconência porque produtos de diferentes fornecedores podem Tubalhos juntos. - Impedis que alterajos de tecnología ou capacitode em uma camada afetem contos

comodos ocima on abairos.

- Forneces una linguagen comun para descere funçois a capacidodes de rode.

Principais Mobelog

Modelo OSI (open Systems interconnection) La Modelo conscitual dividido em comodos.

PCI

