ENGN 2220: Mechanics of Solids Handout on isotropic, linear elastic constitutive equations

In terms of the Lamé moduli, G and λ

Stress in terms of strain:

$$\sigma = 2G\epsilon + \lambda \operatorname{(tr}\epsilon) \mathbf{1}$$
 $\sigma_{ij} = 2G\epsilon_{ij} + \lambda \epsilon_{kk} \delta_{ij}$

Strain in terms of stress:

$$\boldsymbol{\epsilon} = \frac{1}{2G} \left[\boldsymbol{\sigma} - \frac{\lambda}{2G + 3\lambda} (\operatorname{tr} \boldsymbol{\sigma}) \mathbf{1} \right] \qquad \epsilon_{ij} = \frac{1}{2G} \left[\sigma_{ij} - \frac{\lambda}{2G + 3\lambda} \sigma_{kk} \delta_{ij} \right]$$

In terms of the shear and bulk moduli, G and K

Stress in terms of strain:

$$\sigma = 2G\epsilon' + K(\operatorname{tr}\epsilon)\mathbf{1}$$
 $\sigma_{ij} = 2G\epsilon'_{ij} + K\epsilon_{kk}\delta_{ij}$

Strain in terms of stress:

$$\boldsymbol{\epsilon} = \frac{1}{2G} \left[\boldsymbol{\sigma} - \frac{3K - 2G}{9K} (\operatorname{tr} \boldsymbol{\sigma}) \mathbf{1} \right] \qquad \epsilon_{ij} = \frac{1}{2G} \left[\sigma_{ij} - \frac{3K - 2G}{9K} \sigma_{kk} \delta_{ij} \right]$$

In terms of the Young's modulus E and Poisson's ratio ν Stress in terms of strain:

$$\boldsymbol{\sigma} = \frac{E}{1+\nu} \left[\boldsymbol{\epsilon} + \frac{\nu}{1-2\nu} \left(\operatorname{tr} \boldsymbol{\epsilon} \right) \mathbf{1} \right] \qquad \qquad \sigma_{ij} = \frac{E}{1+\nu} \left[\epsilon_{ij} + \frac{\nu}{1-2\nu} \epsilon_{kk} \delta_{ij} \right]$$

Strain in terms of stress:

$$\boldsymbol{\epsilon} = \frac{1}{E} \left[(1 + \nu) \, \boldsymbol{\sigma} - \nu \, (\text{tr} \boldsymbol{\sigma}) \, \mathbf{1} \right] \qquad \epsilon_{ij} = \frac{1}{E} \left[(1 + \nu) \, \sigma_{ij} - \nu \sigma_{kk} \delta_{ij} \right]$$

Expanded:

$$\epsilon_{11} = \frac{1}{E} \left[\sigma_{11} - \nu \left(\sigma_{22} + \sigma_{33} \right) \right], \qquad \epsilon_{12} = \frac{1 + \nu}{E} \sigma_{12}$$

$$\epsilon_{22} = \frac{1}{E} \left[\sigma_{22} - \nu \left(\sigma_{33} + \sigma_{11} \right) \right], \qquad \epsilon_{23} = \frac{1 + \nu}{E} \sigma_{23}$$

$$\epsilon_{33} = \frac{1}{E} \left[\sigma_{33} - \nu \left(\sigma_{11} + \sigma_{22} \right) \right], \qquad \epsilon_{13} = \frac{1 + \nu}{E} \sigma_{13}$$

Isotropic, linear thermoelasticity in terms of E, ν , and α Stress in terms of strain and temperature:

$$\boldsymbol{\sigma} = \frac{E}{1+\nu} \left[\boldsymbol{\epsilon} + \frac{\nu}{1-2\nu} (\operatorname{tr} \boldsymbol{\epsilon}) \mathbf{1} - \frac{1+\nu}{1-2\nu} \alpha \Delta T \mathbf{1} \right]$$

$$\sigma_{ij} = \frac{E}{1+\nu} \left[\epsilon_{ij} + \frac{\nu}{1-2\nu} \epsilon_{kk} \delta_{ij} - \frac{1+\nu}{1-2\nu} \alpha \Delta T \delta_{ij} \right]$$

Strain in terms of stress and temperature:

$$\boldsymbol{\epsilon} = \frac{1}{E} \left[(1 + \nu) \, \boldsymbol{\sigma} - \nu \, (\text{tr} \boldsymbol{\sigma}) \, \mathbf{1} \right] + \alpha \Delta T \mathbf{1} \qquad \epsilon_{ij} = \frac{1}{E} \left[(1 + \nu) \, \sigma_{ij} - \nu \sigma_{kk} \delta_{ij} \right] + \alpha \Delta T \delta_{ij}$$

Isotropic, linear thermoelasticity under plane stress conditions $\sigma_{13} = \sigma_{23} = \sigma_{33} = 0$ Stress in terms of strain and temperature:

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1 - \nu \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix} - \frac{E\alpha\Delta T}{1 - \nu} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Strain in terms of stress and temperature:

$$\begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 1+\nu \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} + \alpha \Delta T \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Isotropic, linear thermoelasticity under plane strain conditions $\epsilon_{13} = \epsilon_{23} = \epsilon_{33} = 0$ Stress in terms of strain and temperature:

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & 1-2\nu \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix} - \frac{E\alpha\Delta T}{1-2\nu} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Strain in terms of stress and temperature:

$$\begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix} = \frac{1+\nu}{E} \begin{bmatrix} 1-\nu & -\nu & 0 \\ -\nu & 1-\nu & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} + (1+\nu)\alpha\Delta T \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Relations between elastic moduli

	G	K	E	ν	λ
G, K			$\frac{9KG}{3K+G}$	$\frac{3K - 2G}{2(3K + G)}$	$\frac{3K\nu}{1+\nu}$
G, E		$\frac{GE}{3(3G-E)}$		$\frac{E - 2G}{2G}$	$\frac{G(E-2G)}{3G-E}$
G, ν		$\frac{2G(1+\nu)}{3(1-2\nu)}$	$2G(1+\nu)$		$\frac{2G\nu}{1-2\nu}$
G,λ		$\lambda + \frac{2}{3}G$	$\frac{G(3\lambda + 2G)}{\lambda + G}$	$\frac{\lambda}{2(\lambda+G)}$	
K, E	$\frac{3EK}{9K - E}$			$\frac{3K - E}{6K}$	$\frac{3K(3K-E)}{9K-E}$
K, ν	$\frac{3K(1-2\nu)}{2(1+\nu)}$		$3K(1-2\nu)$		$K - \frac{2}{3}G$
E, ν	$\frac{E}{2(1+\nu)}$	$\frac{E}{3(1-2\nu)}$			$\frac{E\nu}{(1+\nu)(1-2\nu)}$