Name	 	
GBA 464 – Quiz 3		

Questions 1 – 6:

Data files on Blackboard: flightData.csv, airportData.csv and carrierData.csv. The data for the three data files is described in the tables below. The data contains airline on-time information for all flights departing NYC in 2013.

flightData.csv	Field Description	
Year	Flight year	
Month	Flight month	
Day	Flight day of month	
Dep_time	Actual tme of flight departure	
Sched_dep_time	Scheduled time of flight departure	
Dep_delay	Time in minutes between scheduled and actual departure	
Arr_time	Actual time of flight arrival	
Sched_arr_time	Scheduled time of flight arrival	
Arr_delay	Time in minutes between scheduled and actual arrival	
Carrier	Two character airline code	
Flight	Flight Number	
Tailnum	Tail number of plane	
Origin	Three character airport code of flight origin	
Dest	Three character airport code of flight destination	
Air_time	Time in minutes flight spent in the air	
Distance	Distance in miles flight traveled	
Time_hour	Scheduled date and hour of flight as POSIXct date	
airportData.csv	Field Description	
Faa	Three character airport code	
Name	Name of airport	
State	State in which airport is located	
Lat	Latitude of airport location	
Lon	Longitude of airport location	
Alt	Altitude in feet of airport	
Tz	Timezone offset from GMT	
Dst	Daylight savings time:	
	A = Standard US DST, N = No DST, U = unknown	
Tzon	Time zone of airport	
carrierData.csv	Field Description	
Carrier_code	Two character airline code	
Airline	Name of airline	

1. What is the month of the year with the longest mean departure delay? What is the month of the year with the shortest mean departure delay? What is the month of the year with the longest mean arrival delay? What is the month of the year with the shortest mean arrival delay?

F

Merge the flightData datafile with the carrierData datafile.

2. Find each airline's mean departure delay by month.
In what month did Alaska Airlines have its longest monthly mean departure delay?
In what month did American Airlines have its longest monthly mean departure delay?
In what month did Hawaiian Airlines have its longest monthly mean departure delay?
In what month did Frontier Airlines have its longest monthly mean departure delay?

3. Complete the table below showing how many airlines had their longest monthly mean departure delay in each month.

Month	Number of airlines with longest monthly mean departure delay in month
January	2
February	
March	
April	
May	
June	
July	
August	0
September	
October	
November	
December	

F

A kpi for flight performance is **Gain**, defined as the amount of time a flight made up (or lost) in the air.

For example: a flight scheduled to depart at 6:08pm that actually departed at 6:32pm was scheduled to arrive at 7:28pm and actually arrived at 7:40pm. This flight "gained" 12 minutes in the air. In other words, its arrival time was 12 minutes earlier than would have been predicted by its actual departure time. A flight that left on time and arrived late would have a negative gain.

4. Which airlines have a negative average Gain for the entire time period of the data?

F

Which airlines have an average Gain for the entire time period of the data between 0 and 3 minutes?

Which airlines have an average Gain for the entire time period of the data between 3 and 5 minutes?

Which airlines have an average Gain for the entire time period of the data greater than 10 minutes

Gain/hour is also measured, defined as the flight's Gain per hour of air time.

Let GainRank be the ordinal ranking for the carriers by Gain (1 = carrier with highest value for Gain) and GainPerHourRank be the ordinal ranking for the carriers by Gain/Hour (1 = carrier with the highest value for Gain/Hour).

F

5. What is the GainRank and GainPerHourRank for Hawaiian Airlines? What is the GainRank and GainPerHourRank for Virgin America? What is the GainRank and GainPerHourRank for Alaska Airlines? What is the GainRank and GainPerHourRank for ExpressJet?

孠

Merge the flightData datafile on its 'dest' column with the airportData datafile.

6. Write a function that accepts two arguments: state and measure. State refers to the state in which the destination airport for each flight is located. Measure can be one of 5 functions: sum, mean, sd, median, range. The function should return the value of departure delay aggregated by the function selected for the state selected.

Examples:

Mean departure delay for all flights to California

```
> delay_state("California", mean)
[1] 11.00092
```

Range of departure delays for all flights to Florida

```
> delay_state("Florida", range)
[1] -30 960
```