COMP2711 Homework3

LIU, Jianmeng 20760163

Question 1:

From 32b - 21a = 19, we have:

$$32b - 21a \equiv 19 \pmod{21}$$
$$32b \equiv 19 \pmod{21} \quad (*)$$

To solve this congruence, we need to find a multiple inverse of 32 modulo 21. Notice that gcd(32, 21) = 1, so by using the Euclidean algorithm, we have:

$$32 = 1 \cdot 21 + 11$$
$$21 = 1 \cdot 11 + 10$$
$$11 = 1 \cdot 10 + 1$$

Reverse the steps(extended Euclidean algorithm), we have:

$$1 = 11 - 1 \cdot 10$$

$$= 11 - 1 \cdot (21 - 1 \cdot 11)$$

$$= 2 \cdot 11 - 1 \cdot 21$$

$$= 2 \cdot (32 - 1 \cdot 21) - 1 \cdot 21$$

$$= 2 \cdot 32 - 3 \cdot 21$$

Thus,

$$2 \cdot 32 - 3 \cdot 21 \equiv 1 \pmod{21}$$
$$2 \cdot 32 \equiv 1 \pmod{21}$$

which means 2 is a multiple inverse of 32 modulo 21. To solve (*), we multiply 2 on both sides,

$$2 \cdot 32b \equiv 2 \cdot 19 \pmod{21}$$

$$b \equiv 38 \pmod{21} \equiv 17 \pmod{21}$$

Thus, b = 17 + 21k, where $k \in \mathbb{Z}$. Since $b \in \mathbb{Z}_{42}$, only k = 0 and k = 1 are valid, which gives b = 17 or b = 38.

- When b = 17, $32 \cdot 17 21a = 19$, we get $a = 25 \in \mathbb{Z}_{42}$.
- When b = 38, $32 \cdot 38 21a = 19$, we get $a = 57 \notin \mathbb{Z}_{42}$.

Therefore, there exists only one pair of a, b, where a = 25, b = 17.

Question 2:

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
19	1.4	15	16	17	10	10	20	91	22	23	24	25

(a) From the table above, the original message in integers is:

(b) According to (a), calculate f(p) for each number p, we can easily get the ciphertext in integers:

(c) According to (b) and the table above:

(d) Since $f(p) = (5p + 8) \mod 26$, we have $5p \equiv f(p) - 8 \pmod{26}$. By extended Euclidean algorithm, it's not difficult to find that a multiple inverse of 5 modulo 26 is 21.

Thus,
$$p \equiv 21 \cdot [f(p) - 8] \equiv 21 \cdot f(p) + 14 \pmod{26}$$
.

Therefore, $g(c) = (21c + 14) \mod 26$.

Question 3:

We first let $m = 9 \cdot 14 \cdot 5 = 630$, $M_1 = m/9 = 70$, $M_2 = m/14 = 45$, $M_3 = m/5 = 126$.

By using extended Euclidean algorithm, we know:

4 is an inverse of M_1 modulo 9, since $4 \cdot 70 \equiv 4 \cdot 7 \equiv 1 \pmod{9}$

5 is an inverse of M_2 modulo 14, since $5 \cdot 45 \equiv 5 \cdot 3 \equiv 1 \pmod{14}$

1 is an inverse of M_3 modulo 5, since $1 \cdot 126 \equiv 1 \cdot 1 \equiv 1 \pmod{5}$

So the solutions to the system are those x such that:

$$x \equiv 4 \cdot 70 \cdot 4 + 8 \cdot 45 \cdot 5 + 3 \cdot 126 \cdot 1$$

= 3298
 $\equiv 148 \pmod{630}$

Therefore, the solutions are those x such that $x \equiv 148 \pmod{630}$, which can also be written as $x = 148 + 630k, k \in \mathbb{Z}$.

Question 4:

Note that $1027_{10} = 2^{10} + 2^1 + 2^0 = (100\ 0000\ 0011)_2$, compute:

$$8^{2^{0}} \equiv 8 \pmod{22}$$

$$8^{2^{1}} \equiv (8^{2}) \equiv 20 \pmod{22}$$

$$8^{2^{2}} \equiv (20^{2}) \equiv 4 \pmod{22}$$

$$8^{2^{3}} \equiv (4^{2}) \equiv 16 \pmod{22}$$

$$8^{2^{4}} \equiv (16^{2}) \equiv 14 \pmod{22}$$

$$8^{2^{5}} \equiv (14^{2}) \equiv 20 \pmod{22}$$

$$8^{2^{6}} \equiv (20^{2}) \equiv 4 \pmod{22}$$

$$8^{2^{6}} \equiv (4^{2}) \equiv 16 \pmod{22}$$

$$8^{2^{8}} \equiv (16^{2}) \equiv 14 \pmod{22}$$

$$8^{2^{8}} \equiv (14^{2}) \equiv 20 \pmod{22}$$

$$8^{2^{9}} \equiv (14^{2}) \equiv 20 \pmod{22}$$

$$8^{2^{10}} \equiv (20^{2}) \equiv 4 \pmod{22}$$

According to repeated squaring method, we know that

$$8^{1027} = 8^{2^{10}} \cdot 8^{2^1} \cdot 8^{2^0}$$
$$\equiv 4 \cdot 20 \cdot 8 \pmod{22}$$
$$\equiv 2 \pmod{22}$$

Therefore, $8^{1027} \equiv 2 \pmod{22}$

Question 5:

To eliminate y, we multiply the first congruence by 15, the second by 18:

$$\begin{cases} 315x + 270y \equiv 195 \equiv 58 \pmod{137} & (1) \\ 576x + 270y \equiv 162 \equiv 25 \pmod{137} & (2) \end{cases}$$

(2) - (1), we get:

$$261x \equiv -33 \pmod{137}$$

Factorize both sides, we get:

$$3^2 \cdot 29x \equiv -3 \cdot 11 \pmod{137}$$
 (*)

As $116 \cdot 13 = 2^2 \cdot 13 \cdot 29 \equiv 1 \pmod{137}$, we know that a multiple inverse of 29 modulo 137 is $2^2 \cdot 13$.

Multiple both sides of (*) by $2^2 \cdot 13$, we get:

$$3^{2} \cdot (2^{2} \cdot 13 \cdot 29)x \equiv -2^{2} \cdot 3 \cdot 11 \cdot 13 \pmod{137}$$
$$3^{2} \cdot x \equiv 65 \pmod{137} \quad (**)$$

As $99 \cdot 18 = 2 \cdot 3^4 \cdot 11 \equiv 1 \pmod{137}$, we know that a multiple inverse of 3^2 modulo 137 is $2 \cdot 3^2 \cdot 11$. Multiple both sides of (**) by $2 \cdot 3^2 \cdot 11$, we get:

$$3^2 \cdot 2 \cdot 3^2 \cdot 11 \cdot x \equiv 65 \cdot 2 \cdot 3^2 \cdot 11 \pmod{137}$$

 $x \equiv 129 \pmod{137}$

Since $0 \le x \le 136$, x = 129 is the only solution.

Bring x = 129 back to $21x + 18y \equiv 13 \pmod{137}$, we get:

$$18 \cdot y \equiv 44 \pmod{137}$$
$$2 \cdot 3^2 \cdot y \equiv 44 \pmod{137}$$

Apply the similar method while finding x, as $99 \cdot 18 = 2 \cdot 3^4 \cdot 11 \equiv 1 \pmod{137}$, we know that a multiple inverse of $2 \cdot 3^2$ modulo 137 is $3^2 \cdot 11$, multiple it on both sides:

$$2 \cdot 3^2 \cdot 3^2 \cdot 11 \cdot y \equiv 44 \cdot 3^2 \cdot 11 \pmod{137}$$

 $y \equiv 109 \pmod{137}$

Since $0 \le y \le 136$, y = 109 is the only solution.

Therefore, the system has only one solution, x = 129, y = 109.