

Classificação de Dados

Parte 3

Prof. Guilherme Palermo Coelho

Roteiro

- Ensembles:
 - Motivação e Definições;
 - ► A questão da Diversidade;
 - ► Etapas de Construção.

- Até o momento, vimos diferentes tipos de classificadores de dados;
- Não é possível afirmar que um deles será **sempre o melhor** para todos os problemas de classificação:
 - Classificadores com estruturas diferentes;
 - Formas de construção do modelo diferentes;
 - Representação do modelo diferente;
 - Resultados com características diferentes.

Classificadores diferentes:

Classificadores diferentes:

Por que não combinar as saídas dos classificadores?

Classificadores diferentes: saídas combinadas por voto majoritário

> Spoiler: também é possível criar ensembles de estimadores

Ensembles

Estrutura geral:

- ► Cada componente recebe a mesma entrada e gera uma saída;
- As saídas individuais (rótulos) são combinadas em uma única resposta para o problema.

Ensembles

- Estudos mostraram que a combinação de diferentes componentes pode levar a ganhos significativos na capacidade de generalização do sistema;
 - Capacidade de generalização: responder bem a dados não vistos durante o treinamento;
- Exigência para os componentes:
 - Devem apresentar boa qualidade individualmente;
 - Devem apresentar diversidade de erro;
 - ▶ Não devem errar da mesma maneira.

A Questão da Diversidade

A Questão da Diversidade

Diversidade de erro:

A Questão da Diversidade

- Formas de estimular a diversidade de erro:
 - Inicializar os algoritmos de treinamento com *parâmetros diferentes* (desde que seja possível forma menos eficiente);
 - ▶ Utilizar componentes com *arquiteturas diferentes* (ex.: redes neurais com número diferente de neurônios nas camadas intermediárias);
 - Utilizar componentes baseados em paradigmas diferentes (ensemble heterogêneo);
 - ► Fornecer *dados de treinamento* (ligeiramente) *diferentes* para cada componente;
 - ► Treinar todos os componentes em conjunto, estimulando a diversidade.

A Questão da Diversidade - Bagging

- Uma das estratégias mais adotadas para estímulo de diversidade é conhecida como bagging;
- Supondo um conjunto D de dados, com k = |D| amostras, para cada um dos k componentes do ensemble é feita uma amostragem em D de k amostras (com reposição);
 - ► Este tipo de amostragem é conhecido como "bootstrap";
 - Como a amostragem é feita com reposição, algumas amostras poderão ser repetidas em cada conjunto de treinamento, enquanto que outras podem não estar presentes;
 - ► Cada componente "aprende" aspectos ligeiramente diferentes do problema → diversidade.

Etapas de Construção

- Etapas de construção de um ensemble:
 - ► **Geração** (treinamento) de "candidatos" a componentes;
 - Seleção dos componentes (opcional);
 - Definição da estratégia de combinação;
- Caso seja necessário ajustar parâmetros para a estratégia de combinação, recomenda-se a utilização de uma parte do conjunto dos dados não utilizada no treinamento;
 - O mesmo vale para a etapa de seleção;
 - ▶ É preciso muitos dados!

- Em problemas de classificação, o voto majoritário é uma das abordagens mais diretas:
 - Para cada nova amostra dos dados, conta-se as indicações de rótulos (votos) de cada componente do ensemble;
 - Atribui-se à amostra o rótulo que obteve o maior número de votos.

- Em problemas de classificação, o voto majoritário é uma das abordagens mais diretas:
 - Para cada nova amostra dos dados, conta-se as indicações de rótulos (votos) de cada componente do ensemble;
 - Atribui-se à amostra o rótulo que obteve o maior número de votos.

- Em problemas de *estimação*, a média simples é uma abordagens mais diretas:
 - Para cada nova amostra dos dados, soma-se as estimativas de cada modelo e divide-se pelo número de modelos.
- Alternativa: média ponderada.
 - Atribuir pesos às estimativas de cada modelo.

Referências Bibliográficas

Referências Bibliográficas

- Han, J. & Kamber, M. "Data Mining: Concepts and Techniques", Elsevier, 2006.
- Witten, I. H., Frank E. & Hall, M. A. "Data Mining: Practical Machine Learning Tools and Techniques", Elsevier, 2011.
- Coelho, G. P. "Geração, Seleção e Combinação de Componentes para Ensembles de Redes Neurais Aplicadas a Problemas de Classificação". Dissertação de Mestrado, Faculdade de Engenharia Elétrica e de Computação (FEEC), Unicamp, 2006.