APKeep: Realtime Verification for Real Networks

Peng Zhang*, Xu Liu*, Hongkun Yang⁺, Ning Kang*, Zhengchang Gu*, Hao Li*

* Xi'an Jiaotong University, +Google

Background

Network outages are common

human misconfiguration, software bugs, etc.

Post-effect troubleshooting is slow

manually find the root cause after outages using simple tools

The cost can be quite expensive

service down for hours/days, heavy loss of revenue

Network Verification

automatically check network correctness with formal methods

Realtime Network Verification

Realtime Network verification

VeriFlow [NSDI'13], NetPlumber [NSDI'13], AP Verifier [ICNP'13], Delta-net[NSDI'17]

Check correctness of data plane state after each update in real time

correctness: reachability, no loops, no blackholes, isolation, ... real time: verify each update in small amount of time (<1ms)

Equivalence Class (EC): a set of packets with the same forwarding behavior

等价类

0.0.0.0/1

IP header space EC1 EC2

Data plane state

Incremental update and verification [VeriFlow, NSDI'13] [AP Verifier, ICNP'13] [Delta-net, NSDI'17]

Update the ECs

增量更新

IP header space

Data plane state

Incremental update and verification [VeriFlow, NSDI'13] [AP Verifier, ICNP'13] [Delta-net, NSDI'17]

Update the ECs >> Update the model

Data plane state

Incremental update and verification [VeriFlow, NSDI'13] [AP Verifier, ICNP'13] [Delta-net, NSDI'17]

能在这条有向图上流动的EC

B

lead to error

C

13

A

D

Data plane state

Realtime Verification for "Real" Networks

Realtime Verification for "Real" Networks

Requirement 1: Network model should be **expressive** of common functionalities

Realtime Verification for "Real" Networks

Various functionalities beyond forwarding - filtering (ACL), rewriting (NAT), traffic policy, ...

Requirement 1: Network model should be **expressive** of common functionalities

Multiple fields other than IP prefix

5-tuples used by ACL, traffic policy, NAT, etc.

Requirement 2: Update of ECs should be scalable for multi-field rules

Scalability Issue due to Multi-Field Rules

11

10

EC3

(1) ECs based on Ranges: fast for single-dimensional forwarding rules

EC1 EC2

Forwarding rules 为简化,设定IP Addr 2bits

R1. **dstIP**=00: forward port2

R2. **dstIP**=10: forward port2

ACL rules ACL规则: 匹配tuple

R3. **dstIP**=0*, **dstPort**=0: deny

R4. **dstIP**=**, **dstPort**<2: permit

00 | 01

Network	#fw rules	#acl rules	# of ECs
Stanford	3.84×10^{3}	686	15,100,968
Purdue	3.52×10^{6}	2707	>104,743,229

in deltaNet

00 01

EC4 EC5

Explosion of ECs

10

- Memory overflow
- Long verification time

01

/11

EC6

10

00 \

11

01

EC7

10 11

EC8

90

EC9

01 10 11

EC10

Scalability Issue due to Multi-Field Rules

(2) ECs based on Atomic Predicates [AP Verifier, ICNP'13]: minimum # of ECs

Forwarding rules

R1. **dstIP**=00: forward port2

R2. **dstIP**=10: forward port2

ACL rules

R3. **dstIP**=0*, **dstPort**=0: deny

R4. **dstIP=****, **dstPort**<2: permit

ECs从10->4

deltaNet是利用匹配规则,所以会导致很多具有相同行为的EC被认为是不同的EC

 $\bar{x}_1 \bar{x}_2 \bar{y}_1 \bar{y}_2 \vee \bar{x}_1 \bar{x}_2 y_1 \vee x_1 \bar{x}_2 y_1$

可以理解为逻辑电路里的"卡诺图"

Network	#fw rules	#acl rules	# of ECs
Stanford	3.84×10^{3}	686	515
Purdue	3.52×10^{6}	2707	4160

challenging to update atomic predicate fast

- An update potentially affects all atomic predicates
- Checking all atomic predicates is expensive (~10ms)

APKeep

- Modular Network Model
- Scalable Update of ECs

The Modular Network Model

A Network Device

The Modular Network Model

将这些"物理意义上设备内部的table"理解成device

A Network Device

APKeep

- Modular Network Model
- Scalable Update of ECs

Equivalence Class in Modular Network Model

The model supports general representation of EC

Equivalence Class in Modular Network Model

predicate a: dstIP=10.0.0.0/16 ∧ dstPort !=22

The model supports general representation of EC

Fast Update of Minimum Number of ECs

快速增量叠加

APKeep fast updates the minimum number of ECs (atomic predicates) with three operations

^{*}Inspired by AP Verifier to compute atomic predicates

Example

Initial State without Rules

Initial State without Rules

ACL rules

R1. dstIP=0*, dstPort=0: deny

R2. dstIP=**, dstPort<2: permit

ACL rules

R1. dstIP=0*, dstPort=0: deny
R2. dstIP=**, dstPort<2: permit

Part of a changes behavior from *deny* to *permit*

ACL rules

R1. dstIP=0*, dstPort=0: deny
R2. dstIP=**, dstPort<2: permit

ACL rules

R1. dstIP=0*, dstPort=0: deny

R2. dstIP=**, dstPort<2: permit

ACL rules

R1. dstIP=0*, dstPort=0: deny
R2. dstIP=**, dstPort<2: permit

Merging Predicates

ACL rules

R1. dstIP=0*, dstPort=0: deny

R2. dstIP=**, dstPort<2: permit

Forwarding rules

R3. dstIP=00: forward port2

R4. dstIP=10: forward port2

Merging Predicates

ACL rules

R1. dstIP=0*, dstPort=0: deny
R2. dstIP=**, dstPort<2: permit

Forwarding rules

R3. dstIP=00: forward port2 R4. dstIP=10: forward port2

System Implementation

Evaluation – Dataset

8 Datasets from Stanford, Internet2, Purdue, and Delta-net

- 6 datasets with only IP forwarding rules
- 2 datasets with both IP forwarding rules and ACL rules

Network	Nodes	Links	Forwarding rules	ACL rules	Updates	
Airtel1	68	260	6.89×10^4	0	1.42×10^7	
Airtel2	68	260	9.84×10^4	0	5.05×10^{8}	
4Switch	12	16	1.12×10^6	0	1.12×10^6	IP forwarding rules only
Internet2	9	56	1.26×10^5	0	2.52×10^5	
Stanford*	16	74	3.84×10^3	0	7.68×10^3	
Purdue*	1,646	3,094	3.52×10^6	0	7.04×10^6	
Stanford	124	182	3.84×10^{3}	686	9.05×10^3	IP forwarding rules
Purdue	2,159	3,607	3.52×10^6	2,707	7.05×10^6	+ ACL rules

Evaluation – Verification Speed

Evaluation – Verification Speed

Evaluation – Verification Speed

Our multi-field extension of Delta-net

Notwork	Average time (µs)					
Network	AP Verifier	VeriFlow	NetPlumber	Delta-net ^{MF}	APKeep ⁻	APKeep
Airtel1	80	59	3,804	3	5	7
Airtel2	135	48	TO	4	4	6
4Switch	5,316	2,706	19,678	4	2,190	21
Internet2	1,660	144	2,123	3	9	12
Stanford*	1,953	468	8,700	9	98	94
Purdue*	777	648	MO	15	2	9
Stanford	2,072	4.8×10^{6}	9,532	MO	3.1×10^{5}	127
Purdue	ТО	TO	MO	MO	MO	13

Timeout: >24 hours

Memory overflow: >32GB

Conclusion

APKeep: checking correctness of data plane with real devices in real time

- Modular network model: expressive and extensible for real network devices
- ☐ Scalable update of ECs: fast updating the minimum number of ECs (<1ms)

Future work

- Checking operator intent beyond reachability
- Parallelizing the update of predicates

Thanks for your attention

Peng Zhang p-zhang@xjtu.edu.cn