Name: Alisha Shahane StudentID: 200311941 UnityID: asshahan

CSC 591 ADBI

## **HW Solution (Bayesian Parameter Estimation)**

#### 1) Derive formula for posterior distribution of $\mu$

Prior distribution of  $\mu$  is:  $p(\mu) {\sim N} \big( \mu_{0,} \sigma_0^2 \big)$  (given)

$$\label{eq:posterior} \dot{\cdot} \ p(\mu) = \ e^{\left[\frac{1}{-2\sigma_0^2}(\mu-\,\mu_0)^2\right]}$$

Samples are drawn from a normal distribution  $N(\mu, \sigma^2)$  whose mean is not known but variance is known.

We can say the likelihood of samples having mean  $\mu$  is,  $p(\mu \mid X) \sim p(X \mid \mu) * p(\mu)$ 

$$p(X \mid \mu) = p(x_1 \mid \mu) * p(x_2 \mid \mu) * .... p(x_n \mid \mu)$$

$$\therefore p(X \mid \mu) \sim \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{\left(\frac{-1}{2\sigma^2}\right)\sum_i (x_i - \mu)^2}$$

Since the variance is known,  $\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n$  is a constant. This is why we can ignore it from further derivation.

$$\therefore p(X \mid \mu) \sim e^{\left(\frac{-1}{2\sigma^2}\right)\sum_i(x_i - \mu)^2}$$

Substituting this in  $p(\mu \mid X) \sim p(X \mid \mu) * p(\mu)$  we get,

$$p(\mu \mid X) \sim e^{\left[\frac{-1}{2\sigma^2}\sum_i(x_i-\mu)^2\right]} \ * \ e^{\left[\frac{-1}{2\sigma_0^2}(\mu-\,\mu_0)^2\right]}$$

$$p(\mu \mid X) \sim e^{\left[\frac{-1}{2\sigma^2} \sum_i (x_i^2 - 2x_i \mu + \mu^2)\right]} * e^{\left[\frac{-1}{2\sigma_0^2} \left(\mu^2 - 2\mu\mu_0 + \mu_0^2\right)\right]}$$

$$p(\mu \mid X) \sim e^{\left[\frac{-1}{2\sigma^2} \sum_i (x_i^2 - 2x_i \mu + \mu^2) + \frac{-1}{2\sigma_0^2} (\mu^2 - 2\mu\mu_0 + \mu_0^2)\right]}$$

$$p(\mu \mid X) \sim \exp\left[-\frac{1}{2}\left(\frac{\sum_{i} x_{i}^{2}}{\sigma^{2}} - 2\mu\left(\frac{\mu_{0}}{\sigma_{0}^{2}} + \frac{\sum_{i} x_{i}}{\sigma^{2}}\right) + \mu^{2}\left(\frac{1}{\sigma_{0}^{2}} + \frac{n}{\sigma^{2}}\right) + \frac{\mu_{0}^{2}}{\sigma_{0}^{2}}\right)\right]$$

Ignoring constant terms, we can write  $p(\mu \mid X)$  as,

$$p(\mu \mid X) \sim exp \left[ -\frac{1}{2} \left( -2\mu \left( \frac{\mu_0}{\sigma_0^2} + \frac{\sum_i x_i}{\sigma^2} \right) + \ \mu^2 \left( \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \right) \right) \right]$$

## 2) Show that the posterior distribution is the Gaussian, p( $\mu$ | X) ~ N( $\mu_n$ , $\sigma_n^2$ )

We can show this by simplifying equation obtained in problem 1.

We need to convert it to a form which is comparable to following form,

$$p(\mu \mid X) \sim e^{\left(\left(\frac{-1}{2\sigma_n^2}\right)(\mu - \mu_n)^2\right)}$$

Comparing coefficients in (a) with this we get –

$$\begin{split} -\frac{1}{2\sigma_n^2} &= -\frac{1}{2} \Big( \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \Big) & \text{and,} \\ -\frac{\mu_n}{2\sigma_n^2} &= -\frac{1}{2} \Big( \frac{\mu_0}{\sigma_0^2} + \frac{\Sigma_i \, x_i}{\sigma^2} \Big) & \text{After simplifying we get,} \end{split}$$

$$\begin{split} \sigma_n^2 &= \left(\frac{\sigma^2 \sigma_0^2}{\sigma^2 + n \sigma_0^2}\right) \quad \text{and,} \\ \mu_n &= \left(\frac{\mu_0 \sigma^2 + \sigma_0^2 \sum_i x_i}{n \sigma_0^2 + \sigma^2}\right) \end{split}$$

3) Show the derivation and the final estimate for  $\mu_n$  and  $1/\sigma_n^2$ 

From problem 2 we have,

$$\sigma_n^2 = \left(\frac{\sigma^2 \sigma_0^2}{\sigma^2 + n \sigma_0^2}\right)$$

Therefore,

$$\begin{aligned} 1/\sigma_n^2 &= \left(\frac{\sigma^2 + n\sigma_0^2 \ \sigma^2\sigma_0^2}{\sigma^2\sigma_0^2}\right) \\ \mu_n &= \left(\frac{\mu_0\sigma^2 + \sigma_0^2 \sum_i x_i}{n\sigma_0^2 + \sigma^2}\right) \end{aligned}$$

4) If the mean of the posterior density (which is the MAP estimate),  $\mu_n$  is written as the weighted average of the prior mean,  $\mu$ 0, and the sample (likelihood) mean,  $X^-$ , then what are the formulas for the weights?

From problem 3 we have formula for mean of posterior distribution which is,

$$\mu_n = \left(\frac{\mu_0 \sigma^2 + \sigma_0^2 \sum_i x_i}{n \sigma_0^2 + \sigma^2}\right)$$

In this,  $\sum_i x_i$  can be replaced by  $n\overline{x}.$ 

Therefore,

$$\mu_n = \left(\frac{\mu_0\sigma^2 + \,\sigma_0^2 n\overline{x}}{n\sigma_0^2 + \sigma^2}\right) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 + \frac{\sigma_0^2 n}{n\sigma_0^2 + \sigma^2} \overline{x}$$

From this we can get weights  $w_0$  and  $w_1$  for  $\mu_0$  and  $\overline{x}$  respectively,

$$w_0 = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}$$
$$w_1 = \frac{\sigma_0^2 n}{n\sigma_0^2 + \sigma^2}$$

# 5) Are the weights in Question #4 directly or inversely proportional to their variances (justify)?

$$w_0 \propto \sigma^2$$
 and  $w_0 \propto 1/{\sigma_0}^2$ 

Weight of prior mean is directly proportional to sample variance, and inversely proportional to prior variance.

$$w_1 \propto \sigma_0^2$$
 and  $w_1 \propto 1/\sigma^2$ 

Weight of sample mean is directly proportional to prior variance, and inversely proportional to sample variance.

Therefore, the weights are inversely proportional to their variances.

#### 6) Do the weights in Question #4sum up to 1 (justify)?

From problem 4,

$$\begin{split} w_0 + w_1 &= \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} + \frac{\sigma_0^2 n}{n\sigma_0^2 + \sigma^2} \\ & \therefore \ \, w_0 + w_1 = \frac{n\sigma_0^2 + \sigma^2}{n\sigma_0^2 + \sigma^2} = 1 \end{split}$$

$$\therefore \ \mathbf{w}_0 + \mathbf{w}_1 = 1$$

The weights sum up to 1.

#### 7) Is each weight between 0 and 1 (justify)?

$$w_0 = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} = \frac{1}{\frac{n\sigma_0^2}{\sigma^2} + 1}$$

If n = 0, then  $w_0 = 1$  and as n increases  $w_0$  tends to zero 0.

$$w_1 = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} = \frac{1}{1 + \frac{\sigma^2}{n\sigma_0^2}}$$

Similarly, if  $\sigma^2 = 0$ , then  $w_1 = 1$  and as  $\sigma^2$  increases  $w_1$  tends to 0. Hence, both  $w_1$  and  $w_2$  are between 0 and 1.

### 8) What can you say about $\mu_n$ w.r.t values of $\mu_0$ and $\overline{X}$ .

Since the weights sum up to 1, both cannot be zero at a time. In corner case, one if the weights in 1 and other is 0. Thus, range  $\mu_n$  will be,

 $\mu_n$  lies between [min( $\mu_0, \overline{X}$ ), max( $\mu_0, \overline{X}$ )]

## 9) If $\sigma^2$ is known, then for the new instance $x^{new}$ , show that $p(x^{new} \mid X) \sim N(\mu_n, \sigma_n^2 + \sigma^2)$

If variance is known,

$$p(x^{\text{new}} \mid X) = \int_{-\infty}^{\infty} p(x^{\text{new}} \mid \mu) p(\mu, X) d\mu$$

Substituting values from problem 1 and 2,

$$p(x^{\mathrm{new}}\mid X\,) = \frac{1}{\sigma^2\sigma_n^2\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\left(\left(\frac{-1}{2\sigma^2}\right)(x^{\mathrm{new}}-\mu)^2\right)} e^{\left(\left(\frac{-1}{2\sigma_n^2}\right)\left(\mu-\mu_n\right)^2\right)} d\mu$$

After simplifying the equation,

$$p(x^{\text{new}} \mid X) = \frac{1}{(\sigma^2 + \sigma_n^2)\sqrt{2\pi}} e^{\left(\left(\frac{-1}{2}\right) \frac{(x^{\text{new}} - \mu_n)^2}{\sigma^2 + \sigma_n^2}\right)}$$

Comparing with equation for Gaussian function,

$$\sigma = \, \sigma^2 + \, \sigma_n^2 \qquad \text{and} \qquad \qquad \mu = \, \mu_n$$

Hence,

$$p(x^{\text{new}} \mid X) \sim N(\mu_n, \sigma^2 + \sigma_n^2)$$

10) Generate a plot that displays  $p(x)^{n}(6,1.5^{2})$ , prior  $p(\mu)^{n}(4,0.8^{2})$  and posterior  $p(\mu \mid X)^{n}(\mu_{n}, \sigma_{n}^{2})$  for n=20 sample points. What are the values for  $\mu_{n}$  and  $\sigma_{n}^{2}$ ?

Given, 
$$n = 20$$

$$\overline{x} = 6 \text{ (likelihood)}$$

$$\sigma^2 = 1.5^2 \text{ (likelihood)}$$

$$\mu_0 = 4 \text{ (prior)}$$

$$\sigma_0^2 = 0.8^2 \text{ (prior)}$$

From question 2 we have,

$$\sigma_n^2 = \left( \frac{\sigma^2 \sigma_0^2}{\sigma^2 + n \sigma_0^2} \right) \qquad \text{and} \qquad \mu_n = \left( \frac{\mu_0 \sigma^2 + \sigma_0^2 \sum_i x_i}{n \sigma_0^2 + \sigma^2} \right)$$

Substituting these values,

$$\begin{split} \sigma_n^2 &= \left(\frac{\sigma^2 \sigma_0^2}{\sigma^2 + n \sigma_0^2}\right) = \left(\frac{2.25 * 0.64}{2.25 + 12.8}\right) = \left(\frac{1.44}{15.05}\right) = 0.0957 \\ \mu_n &= \left(\frac{\mu_0 \sigma^2 + \sigma_0^2 n \overline{x}}{n \sigma_0^2 + \sigma^2}\right) = \left(\frac{(4 * 2.25) + (0.64 * 120)}{2.25 + 12.8}\right) = \frac{85.8}{15.05} = 5.7 \end{split}$$

Posterior = Prior \* likelihood  
Therefore, p(
$$\mu \mid X$$
) ~ N( $\mu_n$ ,  $\sigma_n^2$ ) ~ N(6,1.5<sup>2</sup>) \* N(4,0.8<sup>2</sup>)  
p( $\mu \mid X$ ) ~ N(5.7, 0.0957)

Plot: (Python script attched named 'asshahan\_hw\_q10.py')



#### References:

1] "Conjugate Bayesian analysis of the Gaussian distribution" by Kevin P Murphy, <a href="https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf">https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf</a>

2] "Sum of normally distributed random variables", https://en.wikipedia.org/wiki/Sum of normally distributed random variables

3] "Posterior Predictive Distribution", <a href="http://people.stat.sc.edu/Hitchcock/stat535slidesday18.pdf">http://people.stat.sc.edu/Hitchcock/stat535slidesday18.pdf</a>