IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) An adaptive line enhancer comprising an adaptive Gray-Markel lattice notch filter having an adaptive notch frequency, said adaptive Gray-Market lattice notch filter having a transfer function:

5

$$H_{lattice} = \frac{N(z)}{D(z)} = (\frac{1+\alpha}{2}) \frac{1+2k_0z^{-1}+z^{-2}}{1+k_0(1+\alpha)z^{-1}+\alpha z^{-2}}$$

in which the notch frequency is determined according to a notch frequency variable k,

characterized in that <u>said adaptive line enhancer further comprises</u>

means for determining a value of k for the n+1th sample period is

determined according to the following equation:

$$k(n+1) = k(n) - \operatorname{sgn}[y(n)] \operatorname{sgn}[UPDATEFN] \times \mu$$

15

in which y(n) is a notch filter output, μ is an adaptation constant, and UPDATEFN has a transfer function in the z-transform domain of:

20 $\frac{(\alpha-1)(k(n)-1)z^{-1}}{1+k(n)(1+\alpha)z^{-1}+\alpha z^{-2}}$

5

10

 $\frac{in\ which where}{in\ which}$ α determines a bandwidth and k(n) is a variable for determining a current notch frequency.

- 2. (Currently Amended) An-The adaptive line enhancer according to as claimed in claim 1, in which the Gray-Markel lattice notch filter is a wave digital lattice filter.
- 3. (Currently Amended) An—The adaptive line enhancer according to as claimed in claim 2, in which the wave digital lattice filter comprises:

_____a first dynamic adapter (310)—having a first input from

<u>coupled to receive</u> an input <u>signal of the adaptive line enhancer</u>, a

second input and an adaptive coefficient input; from

<u>a bandwidth determining block (335), coupled to said</u>

____a first summing block (320) for receiving summing the

adaptive coefficient input of said first dynamic adapter;

input signal and a first output from the first dynamic adapter (310) and summing the same,;

_____an amplifier block (325) for amplifying the an output of first summing block (320) and for supplying said amplified output to an output of the adaptive line enhancer; and,

a second dynamic adapter (315) for receivinghaving a first input from coupled to a third output of the first dynamic adapter (310), a first output providing coupled to a second input to of the first dynamic adapter, a second output, a third output providing an input to coupled, in feedback, to a second input of the second dynamic adapter (315), and an adaptive coefficient input.

	4. (Currently Amended) An The adaptive line enhancer according
	toas claimed in claim 3, in which the first and second dynamic
	adapters (310, 315) compriseeach comprises:
	a first input;
5	a second input;
	an adaptive coefficient input;
	a first subtracter (240) for subtracting the second input
	from the first input—;
	a multiplier (250) for multiplying the an output of the
10	first subtracter by the adaptive coefficient input;
	a second subtracter (260) for subtracting the second input
	from the an output of the multiplier, and
	a third subtracter (270) for subtracting the first input
	from the output of the multiplier, in which
15	wherein a first output is provided by the an output of the second
	subtracter—(260), a second output is provided by the an output of
	the third subtracter $(270)_L$ and a third output is provided by the

output of third subtracter having been delayed by a delay block (280).

	5. (Currently Amended) An The adaptive line enhancer according
	toas claimed in claim 3, in which the adaptive line enhancer
	further comprises:
	a first signum function block for providing the adaptive
5	coefficient input for the second dynamic adapter (315) is provided
	by a, said first signum function block (345) being coupled to
	receive for receiving the second output from the second dynamic
	adapter (315), ;
	a second signum block (350) for receiving the amplified
10	output from the amplifier block—(325),;
	a first multiplier (355) for multiplying the outputs of
	the first and second signum blocks,
	an adaptation speed determining block (365)—for generating
	an output to determine a speed at which the desired frequency is
15	locked on to, onto;
	a second multiplier (360) for multiplying the outputs of
	the first multiplier (355)—and the adaptation speed determining
	block -(365), :
	a second summing block (370) for summing the an output of
20	the second multiplier (360)—and the an output of a notch frequency
	determining block-(340),;

an amplitude limiting block $\frac{(375)}{}$ for clipping an output k(n+1) of the second summing block (370) within a range]-1 1 $\frac{1}{}$ and

____a delay block (380) for delaying an output of the amplitude limiting block (375), an output of the delay block (380) comprising the adaptive coefficient input and the an updated value of the notch frequency determining block.

6. (Currently Amended) A method for adaptive line enhancement, comprising the step of:

_____adaptive line enhancing an adaptive Gray-Markel lattice notch filter with an adaptive notch frequency, said adaptive Gray-Market lattice notch filter having a transfer function:

$$H_{lattice} = \frac{N(z)}{D(z)} = (\frac{1+\alpha}{2}) \frac{1+2k_0z^{-1}+z^{-2}}{1+k_0(1+\alpha)z^{-1}+\alpha z^{-2}}$$

25

5

10

in which the notch frequency is determined according to a notch frequency variable k,

characterized in that <u>said method further comprises the step of:</u>

<u>determining</u> a value of k for the n+1th sample period is

determined according to the following equation:

15
$$k(n+1) = k(n) - \text{sgn}[y(n)] \text{sgn}[UPDATEFN] \times \mu$$

in which y(n) is a notch filter output, μ is an adaptation constant, and UPDATEFN has a transfer function in the z-transform domain of:

20

$$\frac{(\alpha-1)(k(n)-1)z^{-1}}{1+k(n)(1+\alpha)z^{-1}+\alpha z^{-2}}$$

in which α determines a bandwidth and k(n) determines a current notch frequency.

- 7. (Currently Amended) A—The method for adaptive line enhancement according to as claimed in claim 6, in which the Gray-Markel lattice notch filter is a wave digital lattice filter.
- 8-10. (Cancelled).