P	B	2		9	
_	_	-	-	_	v

SEAT No.:	
[Total	No. of Pages :2

[6263]-137 B.E. (E & TC)

FIBER OPTIC COMMUNICATION (2019 Pattern) (Semester-VIII) (404190)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Assume the suitable data, if necessary.
- 4) Neat diagrams must be drawn wherever necessary.
- Q1) a) Explain the following parameters associated with the photo detectors: quantum efficiency, responsivity, long cutoff wavelength.

For a Si photodetector calculate the long cutoff wavelength. [8]

- b) State and explain the requirements from photo detectors. Draw and explain the working of a photo transistor. [10]
- Q2) a) Explain the following parameters associated with the photo detectors: thermal noise, dark current roise, quantum noise and receiver sensitivity.

 [8]
 - b) Describe with the aid of suitable diagrams the avalanche photo diode (APD). Compare between the photodiodes: p-n and p-i-n photo detectors. Comment on their usefulness from link design perspective. [10]
- Q3) a) Explain the concept of wavelength division multiplexing (WDM) technique. Draw the block diagram of a WDM system and explain the function of each block. [8]
 - b) Write the optical power budget equation for a point-to-point link. A 40 km Fast Ethernet single mode link with 0.4 dB/km loss, at 1310 nm is used with two connector pairs and 5 splices between a transmitter of 8 dBm power and receiver with a sensitivity of -38 dBm.

Given: one Connector pair loss =0.75

dB& Per splice loss = 0.1dB. calculate:

- i) Total connector loss and total splice loss
- ii) Total link loss considering a safety margin of 6 dB.
- iii) Estimate the maximum total fiber distance for the fiber optic link.

[9]

OE

Q4)	a)	Explain with neat block diagram. [8]					
		i) Link power budget					
		ii) Rise time budget					
	b)	State the various types of amplifiers used in lightwave systems amplifiers. Compare between SOA and EDFA type of amplifiers. [9]					
Q 5)	a)	Define Optical Network. Explain the term optical node & light path with a suitable diagram relative to optical network.	l				
		Define network topology. State and explain types of network topologies with suitable diagram. [9]					
	b)	With suitable diagrams, explain the concept of FTTH and FTTP. State advantages of FTTH and FTTP. [9]					
		OR SC					
Q6)	a)	What is FTTX. What are the different categories of FTTX? Explain FTTX with respect to architecture, advantages. Compare the categories. [9]					
	b) (With suitable diagrams explain terrestrial and Submarine optical networks.					
	V	(9)					
<i>Q7</i>)	a)	Explain the various methods used to measure the fiber attenuation. Compare and comment on the accuracy of each of the methods. [8]					
	b)	Draw and explain with a block diagram the working of an OTDR. Draw the trace of an OTDR and explain the various events observed on the display of an OTDR. [9]	<u></u>				
		OR					
Q 8)	a)	State and explain the need of a BER tester. Explain the concept of eye diagram and the various parameters that can be measured from the eye diagram. [8]	•				
	h)	diagram. [8]					
	b)	Explain the following instruments used for the testing and measurement purpose in optical fiber networks: [9]					
		- visual fault indicator					
		- optical power meter					
		- OSA					
		O' 33°					
		M M M P					
		Explain the following instruments used for the testing and measurement purpose in optical fiber networks: - visual fault indicator - optical power meter - OSA					
[626	53]-1						