01:640:481 - Likelihood Ratio Test

Pranav Tikkawar

December 9, 2024

- 1. Recall $\text{Exp}(\theta)$ population has PDF: $f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$. Suppose x_1, x_2, \ldots, x_n are observed sample values. Do the computation to find the value of θ (in terms of x_1, x_2, \ldots, x_n) where the likelihood function is maximized.
 - (a) Remember, this value is the MLE estimator $\hat{\theta}_{MLE}$ and this is a computation we have done earlier, and the answer is \bar{x} . We are doing it again to review it. Steps: Write $L(\theta)$ and take \ln then differentiate with respect to θ , set to 0.

Solution:

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{x_i}{\theta}}$$

$$= \frac{1}{\theta^n} e^{-\frac{\sum_{i=1}^{n} x_i}{\theta}}$$

$$\ln L(\theta) = -n \ln \theta - \frac{\sum_{i=1}^{n} x_i}{\theta}$$

$$\frac{d}{d\theta} \ln L(\theta) = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2} = 0$$

$$\frac{n}{\theta} = \frac{\sum_{i=1}^{n} x_i}{\theta^2}$$

$$\theta = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}$$

- 2. This continues the previous question. A random sample of size n is used to test the null hypothesis that the parameter $\lambda = \theta_0$ against the alternative that it doesn't equal θ_0 .
 - (a) Here, the likelihood function $L(\theta) =$
 - (b) Here, max of likelihood function over parameters that are in the null hypothesis, $L_{\omega} =$
 - (c) Here, max of likelihood function over all parameters (i.e., that in the null and alternative hypothesis), $L_{\Omega} =$
 - (d) Using the above, determine the likelihood ratio statistic $\lambda(x_1, x_2, \dots, x_n)$.
 - (e) Use the previous part to show that the critical region of LRT has the form $\bar{x}e^{-\frac{\bar{x}}{\theta_0}} \le K$

Solution: (a)

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{x_i}{\theta}}$$
$$= \frac{1}{\theta^n} e^{-\frac{\sum_{i=1}^{n} x_i}{\theta}}$$

(b)

$$L_{\omega} = \frac{1}{\theta_0^n} e^{-\frac{\sum_{i=1}^n x_i}{\theta_0}}$$

(c)

$$L_{\Omega} = \frac{1}{\bar{x}^n} e^{-n}$$

(d)

$$\lambda(x_1, x_2, \dots, x_n) = \frac{L_{\omega}}{L_{\Omega}}$$

$$= \frac{\frac{1}{\theta_0^n} e^{-\frac{\sum_{i=1}^n x_i}{\theta_0}}}{\frac{1}{\bar{x}^n} e^{-n}}$$

$$= \left(\frac{\bar{x}}{\theta_0}\right)^n e^{n - \frac{n\bar{x}}{\theta_0}}$$

(e) To show that the critical region of LRT has the form $\bar{x}e^{-\frac{\bar{x}}{\theta_0}} \leq K$, we can see that

$$\left(\frac{\bar{x}}{\theta_0}\right)^n e^{n - \frac{n\bar{x}}{\theta_0}} \le k$$
$$(\bar{x}e^{1 - \frac{\bar{x}}{\theta_0}})^n < \theta_0^n k$$
$$\bar{x}e^{1 - \frac{\bar{x}}{\theta_0}} < \theta_0 k^{1/n}$$
$$\bar{x}e^{-\frac{\bar{x}}{\theta_0}} < \theta_0 k^{1/n}e^{-1}$$

Thus if we take $K = \theta_0 k^{1/n} e^{-1}$, we get the desired form of $\bar{x} e^{-\frac{\bar{x}}{\theta_0}} \leq K$.