Exercise 2. Data analysis

Sasha D. Hafner

04 March, 2024

R data.table solution

Overview

In this exercise you will analyze emission of methane from pig slurry samples incubated in a laboratory experiment. Multiple bottles were used as reactors in a completely crossed factorial experiment with 2 temperatures and 2 headspace gases. Measurement data were kindly provided by Frederik Dalby.

My suggestion

I recommend using response feature analysis with calculated total emission as the response variable, fitting a linear model using lm() in R or ols() in Python. But you could use other responses.

1. Read and check data

Read in the data in the file slurry_emis.csv. Check the data. The relevant columns are

- reactor: bottle key
- ch4: methane concentration in bottle exhaust in ppmv
- flow: rate of gas flow through the bottle in L/min
- day: time of measurement from setup in d
- gas: headspace gas
- temp: incubation temperature

Load packages

```
library(data.table)
library(rmarkdown)
library(ggplot2)
```

Function

```
source('../functions-R/dfsumm.R')
```

Load data

```
dat <- fread('../data/slurry_emis.csv')</pre>
```

Check data

```
dat
##
        reactor
                    ch4
                             co2
                                       flow day gas temp
##
             R1 11.374
                         338.300 0.06300000
                                              5 co2
                                                      20
     1:
##
     2:
             R2
                 9.638
                         348.235 0.07300000
                                              5 co2
                                                      20
##
    3:
            R3
                 5.221 320.180 0.08200000
                                              5 co2
                                                      20
##
    4:
             R4
                  7.200
                         313.690 0.08100000
                                              5 co2
                                                      20
##
                16.000 371.500 0.08400000
    5:
            R5
                                                      30
                                              5 co2
##
   ---
           R12 59.150 1002.000 0.06121372 283
## 350:
                                                      20
## 351:
           R13 48.320 858.300 0.06754617 283
                                                 ar
                                                      30
## 352:
           R14 49.970 865.400 0.06860158 283
                                                      30
## 353:
           R15 45.260 837.200 0.06860158 283
                                                      30
           R16 105.800 895.000 0.05910290 283
## 354:
                                                      30
summary(dat)
                                                               flow
##
     reactor
                            ch4
                                              co2
   Length:354
                                 1.95
                                         Min.
                                                : 74.9
                                                          Min.
                                                                 :0.00000
                      Min. :
                       1st Qu.: 23.12
                                         1st Qu.: 224.2
                                                          1st Qu.:0.05865
##
  Class : character
                                        Median : 818.6
  Mode :character
                      Median : 51.34
                                                          Median: 0.06555
##
                       Mean
                            : 187.11
                                         Mean : 856.3
                                                          Mean
                                                                 :0.06441
##
                       3rd Qu.: 200.97
                                         3rd Qu.:1164.5
                                                          3rd Qu.:0.06966
##
                       Max.
                              :1342.00
                                        Max.
                                                :3578.4
                                                          Max.
                                                                 :0.08400
##
                       NA's
                              :6
                                         NA's
                                                :6
##
        day
                       gas
                                            temp
  Min. : 5.0
                   Length:354
                                       Min.
                                              :20.00
   1st Qu.: 39.0
                   Class : character
                                       1st Qu.:20.00
##
  Median :115.0
                  Mode :character
                                       Median :30.00
## Mean :123.7
                                       Mean
                                             :25.06
  3rd Qu.:200.0
                                       3rd Qu.:30.00
## Max.
         :283.0
                                       Max.
                                             :30.00
##
dfsumm(dat)
##
## 354 rows and 7 columns
## 354 unique rows
##
                                    ch4
                                            co2
                                                   flow
                                                            day
                                                                      gas
                        reactor
## Class
                      character numeric numeric integer character integer
## Minimum
                                   1.95
                                           74.9
                                                            5
                                                                               20
                             bg
                                                      0
                                                                       ar
## Maximum
                             R9
                                   1340
                                           3580
                                                  0.084
                                                            283
                                                                      co2
                                                                               30
## Mean
                           <NA>
                                    187
                                            856
                                                0.0644
                                                            124
                                                                     <NA>
                                                                             25.1
## Unique (excld. NA)
                                    345
                             17
                                            321
                                                     61
                                                             22
                                                                        2
                                                                                2
## Missing values
                                      6
                                                              0
                                                                        0
                                                                                0
                              0
                                              6
                                                      0
## Sorted
                                                                    FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                  FALSE
                                                           TRUE
                                                                            FALSE
##
dim(dat)
## [1] 354
table(dat[, reactor])
```

##

```
R1 R10 R11 R12 R13 R14 R15 R16
##
                                         R2
                                             RЗ
                                                 R4
                                                     R5
                                                         R6
                           22 22
                                                                      22
##
     3
        22
            22
               22
                   21
                       22
                                     22
                                         22
                                             22
                                                 22
                                                     22
                                                         22
                                                              22
                                                                  22
```

2. Data analysis

Use an appropriate approach to determine if the data show that incubation temperature and headspace gas affect methane emission. Quantify any effect.

Calculate methane flow rate

First we need mass-based methane concentration. From ideal gas law pv = nRT we get Mn / v = p / RT. Assume 20 degress C and 1 atm (would be good to check if these were really our data). Temperature should be at the point of flow rate measurement, right? And $gas_constant = 8.2057E-5$ for the universal gas constant in atm m^3k mol⁻¹ K^{-1} . So first, concentration in g/m3:

```
dat[, cmch4 := ch4 * 1.0 / 1E6 / 8.2057E-5 / (273.15 + 20)]
dat.
##
                                         flow day gas temp
        reactor
                     ch4
                               co2
                                                                    cmch4
##
     1:
             R1
                  11.374
                          338.300 0.06300000
                                                 5 co2
                                                         20 0.0004728329
##
     2:
             R2
                   9.638
                          348.235 0.07300000
                                                 5 co2
                                                         20 0.0004006650
##
     3:
             R3
                   5.221
                          320.180 0.08200000
                                                 5 co2
                                                         20 0.0002170442
     4:
                   7.200
##
             R4
                          313.690 0.08100000
                                                 5 co2
                                                         20 0.0002993140
##
     5:
             R5
                  16.000
                          371.500 0.08400000
                                                         30 0.0006651421
                                                   co2
##
   350:
            R12
                  59.150 1002.000 0.06121372 283
                                                    ar
                                                         20 0.0024589473
  351:
                  48.320
                          858.300 0.06754617 283
                                                         30 0.0020087292
##
            R13
                                                    ar
  352:
                  49.970
                                                         30 0.0020773220
##
            R.14
                          865.400 0.06860158 283
                                                    ar
## 353:
            R15
                  45.260
                          837.200 0.06860158 283
                                                         30 0.0018815208
                                                    ar
## 354:
            R16 105.800
                          895.000 0.05910290 283
                                                         30 0.0043982523
                                                    ar
And flow in g/d:
dat[, qch4 := cmch4 * flow / 1000 * 1400]
dat
##
                                                                    cmch4
        reactor
                     ch4
                               co2
                                         flow day gas temp
                                                                                   qch4
##
     1:
                  11.374
                          338.300 0.06300000
                                                 5 co2
                                                         20 0.0004728329 4.170386e-05
##
     2:
             R2
                          348.235 0.07300000
                                                         20 0.0004006650 4.094796e-05
                   9.638
                                                 5 co2
             R3
                   5.221
                          320.180 0.08200000
                                                         20 0.0002170442 2.491667e-05
##
     3:
                                                 5 co2
                                                         20 0.0002993140 3.394220e-05
##
                   7.200
     4:
             R4
                          313.690 0.08100000
                                                 5 co2
##
     5:
                  16.000
                          371.500 0.08400000
                                                 5 co2
                                                         30 0.0006651421 7.822071e-05
##
##
   350:
            R12
                  59.150 1002.000 0.06121372 283
                                                         20 0.0024589473 2.107298e-04
                                                    ar
   351:
                  48.320
                          858.300 0.06754617 283
                                                         30 0.0020087292 1.899548e-04
            R13
                                                    ar
   352:
            R14
                  49.970
                          865.400 0.06860158 283
                                                         30 0.0020773220 1.995106e-04
                                                    ar
## 353:
            R15
                  45.260
                          837.200 0.06860158 283
                                                    ar
                                                         30 0.0018815208 1.807054e-04
## 354:
            R16 105.800
                          895.000 0.05910290 283
                                                         30 0.0043982523 3.639293e-04
                                                    ar
```

Get integration function

```
source('../functions-R/mintegrate.R')
```

Integrate

```
dim(dat)
## [1] 354    9
dat <- dat[!is.na(qch4), ]
dim(dat)
## [1] 348    9
dat[, ech4 := mintegrate(day, qch4), by = .(reactor, gas, temp)]
dattot <- dat[, .(ech4 = mintegrate(day, qch4, value = 'total')), by = .(reactor, gas, temp)]</pre>
```

Plot

```
ggplot(dattot, aes(gas, ech4, colour = factor(temp))) +
geom_jitter(height = 0, width = 0.2)
```


ggplot(dat, aes(day, qch4, colour = factor(temp), lty = factor(gas), group = reactor)) +
 geom_line()

Replication

```
table(dattot[, .(gas, temp)])
##
       temp
## gas 20 30
##
       4 5
    ar
##
    co2 4 4
table(dattot[, .(reactor, gas, temp)])
## , , temp = 20
##
##
         gas
## reactor ar co2
##
      bg
##
      R1
##
      R10 1
##
      R11 1
##
      R12 1
      R13 0
##
      R14 0 0
##
      R15 0 0
##
##
      R16 0 0
##
      R2
          0 1
      R3
         0 1
##
      R4
##
```

```
##
      R5
          0 0
##
      R6
          0 0
##
      R7
##
      R8
           0 0
              0
##
      R9
##
## , , temp = 30
##
##
         gas
## reactor ar co2
##
      bg
           1
##
      R1
           0
               0
##
      R10 0
               0
##
      R11 0
               0
##
      R12 0
               0
##
      R13 1
               0
##
      R14 1
               0
##
      R15 1
##
      R16 1
              0
##
      R2
              0
##
      R3
           0
              0
##
      R4
           0
##
      R5
           0
               1
##
      R6
           0
               1
##
      R7
           0 1
##
      R8
           0
              1
##
      R9
           0
               0
Drop background.
dattot <- dattot[!reactor == 'bg', ]</pre>
table(dattot[, .(gas, temp)])
##
       temp
        20 30
## gas
##
         4 4
    ar
ggplot(dattot, aes(gas, ech4, colour = factor(temp))) +
geom_jitter(height = 0, width = 0.2)
```


Look at \log transformation. Looks like constant variance assumption would be better. We can compare with and without.

```
ggplot(dattot, aes(gas, log10(ech4), fill = factor(temp))) +
  geom_boxplot()
```


Statistical comparisons

```
dattot[, temp := factor(temp)]
dattot[, gas := factor(gas)]
mod1 <- aov(ech4 ~ temp*gas, data = dattot)</pre>
summary(mod1)
##
              Df Sum Sq Mean Sq F value
                                            Pr(>F)
## temp
              1 0.6689 0.6689 1243.624 1.73e-13 ***
               1 0.0001 0.0001
                                            0.6621
## gas
                                    0.201
## temp:gas
               1 0.0037 0.0037
                                    6.900
                                            0.0221 *
## Residuals
              12 0.0065 0.0005
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(mod1)
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
## Fit: aov(formula = ech4 ~ temp * gas, data = dattot)
##
## $temp
              diff
                        lwr
                                   upr p adj
## 30-20 0.4089365 0.3836708 0.4342022
```

```
## $gas
##
                diff
                             lwr
                                        upr
                                                 p adj
  co2-ar 0.00519578 -0.02006991 0.03046147 0.6620896
##
## $`temp:gas`
##
                        diff
                                     lwr
                                                  upr
## 30:ar-20:ar
                  0.37847576
                             0.32978775
                                          0.42716376 0.0000000
                -0.02526494 -0.07395294
## 20:co2-20:ar
                                          0.02342306 0.4454034
## 30:co2-20:ar
                  0.41413226
                             0.36544426
                                          0.46282026 0.0000000
## 20:co2-30:ar
                -0.40374070 -0.45242870 -0.35505270 0.0000000
## 30:co2-30:ar
                  0.03565650 -0.01303150
                                          0.08434450 0.1856289
## 30:co2-20:co2  0.43939720  0.39070920
                                          0.48808520 0.0000000
plot(mod1, ask = FALSE)
```

Residuals vs Fitted

Constant Leverage: Residuals vs Factor Levels

confint(mod1)

##

##

##

\$temp

Factor Level Combinations

```
##
                        2.5 %
                                  97.5 %
                  0.01518798 0.06571935
## (Intercept)
## temp30
                  0.34274468 0.41420684
## gasco2
                 -0.06099602 0.01046614
## temp30:gasco2  0.01039006  0.11145282
Now with transformation.
mod2 <- aov(log10(ech4) ~ temp*gas, data = dattot)</pre>
summary(mod2)
##
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
## temp
                   6.205
                            6.205 6538.4 < 2e-16 ***
## gas
                1
                   0.153
                           0.153
                                   160.7 2.61e-08 ***
## temp:gas
                   0.210
                            0.210
                                    221.8 4.22e-09 ***
                1
## Residuals
               12 0.011
                            0.001
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
TukeyHSD(mod2)
##
     Tukey multiple comparisons of means
```

95% family-wise confidence level

lwr

diff

30-20 1.245461 1.211902 1.27902

Fit: aov(formula = log10(ech4) ~ temp * gas, data = dattot)

upr p adj

```
## $gas
##
                diff
                            lwr
                                       upr p adj
## co2-ar -0.1952774 -0.2288367 -0.1617181
##
## $`temp:gas`
##
                       diff
                                    lwr
                                                upr
                  1.0160713
## 30:ar-20:ar
                            0.95140119 1.08074145 0.0000000
## 20:co2-20:ar -0.4246669 -0.48933704 -0.35999678 0.0000000
## 30:co2-20:ar
                  1.0501834
                             0.98551329
                                        1.11485355 0.0000000
## 20:co2-30:ar -1.4407382 -1.50540836 -1.37606810 0.0000000
## 30:co2-30:ar
                 0.0341121 -0.03055803 0.09878223 0.4320347
## 30:co2-20:co2 1.4748503 1.41018020 1.53952046 0.0000000
plot(mod2, ask = FALSE)
```

Residuals vs Fitted

Fitted values aov(log10(ech4) ~ temp * gas)

Constant Leverage: Residuals vs Factor Levels

Factor Level Combinations

confint(mod2)

```
## 2.5 % 97.5 %

## (Intercept) -1.4277061 -1.3605874

## temp30 0.9686113 1.0635313

## gasco2 -0.4721269 -0.3772069

## temp30:gasco2 0.3916604 0.5258976
```

Back-transform.

10^confint(mod2) - 1

```
## (Intercept) -0.9626497 -0.9564074
## temp30 8.3027490 10.5752757
## gasco2 -0.6628113 -0.5804409
## temp30:gasco2 1.4641118 2.3565847
```