Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2020-21

Αναπαράσταση Μη Αριθμητικών Δεδομένων

(κείμενο, ήχος και εικόνα στον υπολογιστή)

http://mixstef.github.io/courses/csintro/

Μ. Στεφανιδάκης

Αναπαράσταση δεδομένων

Δεδομένα: ανεξάρτητα από τύπο και προέλευση, στον υπολογιστή υπάρχουν σε μία μορφή: 0 και 1

- Ψηφιοποίηση
 - Διαδικασία μετατροπής συνεχών τιμών σε διακριτά σύμβολα
- Αναπαράσταση
 - Διαδικασία αντιστοίχισης συμβόλων σε δυαδικούς αριθμούς
- Κωδικοποίηση
 - Αποθήκευση δυαδικών αριθμών σε σειρές bits

Η ερμηνεία της αναπαράστασης

 Αναπαράσταση δεδομένων

- Κάπου στη μνήμη του υπολογιστή...
 - Βρίσκεται αποθηκευμένη η σειρά bits
 0100110111010001
- Πόσα σύμβολα αναπαριστά;
 - Πόσα bits ανά σύμβολο;
- Ποιος ο τύπος των δεδομένων;
- Ποια συγκεκριμένη ποσότητα συμβολίζει;
- Πώς θα το χειριστεί ο υπολογιστής;

Στα ερωτήματα αυτά μπορεί να απαντήσει μόνο ο προγραμματιστής της εφαρμογής που

χειρίζεται τα δεδομένα!

Αναπαράσταση με δυαδικούς αριθμούς

• Αναπαράσταση δεδομένων

- Σειρά από *n* bits
 - Δυαδικός αριθμός με n bits (n≥1) μπορεί να αναπαραστήσει 2ⁿ διαφορετικά σύμβολα
- Μη αριθμητικά δεδομένα
 - Κείμενο, εντολές μηχανής, ήχος, εικόνα...
 - Σύνολο διαφορετικών αντικειμένων (συμβόλων)
 - Αντιστοίχιση κάθε συμβόλου σε μοναδικό δυαδικό αριθμό
 - "Αναπαράσταση"
 - Η ακριβής αντιστοίχιση ορίζεται σε ένα πρότυπο (standard)

Το απλουστευμένο μοντέλο μνήμης

• Αναπαράσταση δεδομένων

)

Με διεύθυνση των n bits, πόσες διαφορετικές θέσεις μνήμης μπορούμε να προσπελάσουμε;

- Πώς βλέπει ένα πρόγραμμα τη μνήμη
 - Συστοιχία αποθηκευτικών θέσεων
 - Σε κάθε θέση αποθηκεύεται (συνήθως) 1 byte
 - Κάθε θέση διαθέτει μοναδική διεύθυνση
 - Επιλογή θέσης κατά την προσπέλαση (ανάγνωση-εγγραφή)

Το απλουστευμένο μοντέλο μνήμης

• Αναπαράσταση δεδομένων

Θέματα αποθήκευσης δυαδικών αριθμών

• Αναπαράσταση δεδομένων

θ Πώς σχετίζεται η σειρά αποθήκευσης των bytes με τα «Ταξίδια του Γκιούλιβερ»;

- Όταν
 - Ένας δυαδικός αριθμός χρειάζεται περισσότερα από ένα bytes για να αποθηκεύσει τα ψηφία του
- Παράδειγμα: 3FC (hex) = 11 1111 1100
 Χρειάζονται 2 bytes!

0000 0011, 1111 1100

περισσότερο λιγότερο σημαντικό σημαντικό byte byte

• Προφανώς σε συνεχόμενες θέσεις μνήμης Αλλά: ποιο byte αποθηκεύεται πρώτο;

Θέματα αποθήκευσης δυαδικών αριθμών

• Αναπαράσταση δεδομένων

αποθηκεύοντας το 03FC

00000011 11111100

1

Το ίδιο ισχύει και για αριθμούς με περισσότερα από 2 bytes

"little-endian"

Το λιγότερο σημαντικό byte στη θέση μνήμης με μικρότερη διεύθυνση

"big-endian"

Το περισσότερο σημαντικό byte στη θέση μνήμης με μικρότερη διεύθυνση

Αρχικές αναπαραστάσεις κειμένου

- Αναπαράσταση δεδομένων
- Κείμενο

- Οι πρώτες αναπαραστάσεις κειμένου
 - Στον υπολογιστή
 - 6-7 bits ανά χαρακτήρα
 - Πόσοι διαφορετικοί χαρακτήρες;
- Μη εκτυπώσιμοι χαρακτήρες
 - Χαρακτήρες ελέγχου
 - Ιδιαίτερα χρήσιμοι για τις συσκευές εξόδου της εποχής (εκτυπωτές, τηλέτυπα...)
 - Νέα γραμμή (LINE FEED LF)
 - Επιστροφή κεφαλής εκτύπωσης (CARRIAGE RETURN CR)
 - Καμπανάκι (BELL) κλπ

Κώδικας ASCII

- Αναπαράσταση δεδομένων
- Κείμενο

- Βασικό αρχικό πρότυπο αναπαράστασης κειμένου
 - 7 bits ανά χαρακτήρα

STANDARD ASCII ΚΩΔΙΚΑΣ

hex	char	hex	char	hex	char
20		40	@	60	,
21		41	Α	61	а
22	"	42	В	62	b
23	#	43	С	63	С
24	\$	44	D	64	d
25	%	45	Е	65	е
26	&	46	F	66	f
27	í	47	G	67	g
28	(48	Н	68	h
29)	49		69	i
2A	*	4A	J	6A	j
2B	+	4B	K	6B	k
2C	,	4C	L	6C	
2D	-	4D	М	6D	m
2E		4E	N	6E	n
٦٢	1	4 -	0	er.	

1

ASCII: American Standard Code for Information Interchange

Κείμενο σε κώδικα ASCII

- Αναπαράσταση δεδομένων
- Κείμενο

•

Με 7 bits ανά χαρακτήρα και χρήση bytes, 1 bit μένει αχρησιμοποίητο. Πόσοι επιπλέον χαρακτήρες με το bit αυτό;

- 7 bits ανά χαρακτήρα
 - 128 χαρακτήρες
 - Αναπαράσταση με τους αριθμούς 0...127
- Κανονικοί χαρακτήρες (εκτυπώσιμοι)
 - 32...47, 58...64, 91...96, 123...126 = σημεία στίξης κ.ά. (32 = SPACE)
 - -48...57 = ψηφία 0...9
 - 65...90 = κεφαλαία λατινικά (A-Z)
 - $97...122 = \pi ε ζ ά λατινικά (a-z)$
- Χαρακτήρες ελέγχου (μη εκτυπώσιμοι)
 - 0...31, 127 πιο γνωστά: 9 (TAB), 13/10
 (CR/LF, σήμανση "νέας γραμμής")

Κείμενο σε κώδικα ASCII

- Αναπαράσταση δεδομένων
- Κείμενο

ו דו			
	$\cap \cap \cap$	ነ ድ1ላ	
$\prod \alpha_{\parallel}$		G U Y	

H	a	٧	e		a		n	i	C	Ф		d	a	У	į
72	97	118	101	32	97	32	110	105	99	101	32	100	97	121	33

- Στις γλώσσες προγραμματισμού
 - string" (συμβολοσειρά)
 - Σε γλώσσες όπως η C, το 0 (αριθμητικό)
 συμβολίζει το τέλος του string
 - Ο υπολογιστής μπορεί να κάνει πράξεις (π.χ. σύγκριση) με τα strings

Εφόσον η κωδικοποίηση είναι με 1 byte ανά χαρακτήρα, δεν τίθεται θέμα "little-" ή "bigendian"

Επεκτάσεις κώδικα ASCII

- Αναπαράσταση δεδομένων
- Κείμενο

Χρησιμοποιώντας τον ISO-8859-1 δεν είναι δυνατή η αναπαράσταση των ελληνικών!

- Χρήση του 1 επιπλέον bit του byte
 - 128 + 128 χαρακτήρες, αριθμοί 0...255
 - 0...127 αντιστοιχούν στον αρχικό ASCII
 - 127...255: επεκταμένα αλφάβητα
- Επέκταση αλφαβήτων (πρότυπα)
 - Χαρακτήρες που δεν υπάρχουν στον ASCII
 - Διαφορετικά ανά γλώσσα! Π.χ.:
 - ISO-8859-1: Δυτική Ευρώπη (Å, Ñ, Æ,ä, ø κλπ)
 - ISO-8859-7: Νέα Ελληνικά
 - ...και πολλά άλλα πρότυπα για τις υπόλοιπες γλώσσες
 - Επίσης: μη πρότυπες λύσεις
 - Για Windows, Mac ...

Κώδικας ISO-8859-7

- Αναπαράσταση δεδομένων
- Κείμενο

	x0	хl	x2	хЗ	x4	x5	хб	x7	x8	x9	хA	хB	хC	хD	хE	хF
0x																
1x								unus	sed							
2x	SP	1	"	#	\$	%	8.	1	()	ж	+		-		1
3х	0	1	2	3	4	5	6	7	8	9	:	;	٧	=	^	?
4x	@	Α	В	С	D	Е	F	G	н	1	J	к	L	М	N	0
5x	Р	Q	R	s	Т	U	٧	w	x	Υ	z	[١	1	^	_
бх		а	ь	c	d	e	f	g	h	i	j	k	1	m	n	0
7 x	р	q	r	5	ŧ	u	v	w	×	У	z	{	1	}	~	
8x								unus								
9x								unu	seu							
Ax	NBSP	•	•	£	€	Др	1	§		©		#	7	SHY		_
В×		±	2	3	1		Α		Έ	Ή	1	*	ô	¥2	Υ	Ω
Cx	ί	Α	В	Г	Δ	Е	z	н	Θ	1	к	٨	М	N	Ξ	0
Dx	П	Р		Σ	Т	Υ	Ф	x	Ψ	Ω	Ϊ	Ÿ	ά	έ	ή	ί
Ex	ΰ	α	β	γ	6	ε	ζ	η	θ	ι	к	λ	μ	υ	ξ	0
Fx	π	ρ	ς	σ	τ	U	φ	х	Ψ	ω	ï	Ü	ó	ú	ώ	

[Wikipedia]

Κείμενο σε κώδικα ISO-8859-7

- Αναπαράσταση δεδομένων
- Κείμενο

• Παράδειγμα

Г	3	l	α		σ	0	ם	į
195	229	233	225	32	243	239	245	33

- Επέκταση κώδικα ASCII
 - 0...127 όπως στον ASCII
 - 128...159 πρόσθετοι χαρακτήρες ελέγχου
 - 160...255 ελληνικά και σχετικά σύμβολα

Οι αναπαραστάσεις αλφαβήτων με 1 byte ανά χαρακτήρα έχουν (σχεδόν) καταργηθεί

Πρότυπο Unicode

- Αναπαράσταση δεδομένων
- Κείμενο

Με περισσότερα από 1 bytes ανά χαρακτήρα τίθεται θέμα σειράς αποθήκευσης των bytes!

- Για την αναπαράσταση όλων των αλφαβήτων
 - Καλύπτει ιδεογράμματα, φωνητικές
 αναπαραστάσεις (~100.000 χαρακτήρες)
 - Θα μπορούσε να καλύψει πάνω από 1 εκ.
 χαρακτήρες!
 - Κάθε χαρακτήρας αναπαρίσταται με περισσότερα από ένα bytes
- Το πρότυπο Unicode περιέχει επίσης
 - Πληροφορία ισοδύναμων ή παρόμοιων χαρακτήρων
 - Οδηγίες συνδυασμών τόνων/διακριτικών και γραμμάτων

Ελληνικά και Unicode

- Αναπαράσταση δεδομένων
- Κείμενο

Κείμενο σε Unicode

- Αναπαράσταση δεδομένων
- Κείμενο

δεκαεξαδικό

]	r	ß	L	α		σ	0	ប	į
9	15	949	953	945	32	963	959	965	33
0 3	93	03B5	03B9	03B1	0020	03C3	03BF	03C5	0021

Κωδικοποίηση big-endian

Κωδικοποίηση little-endian

Unicode σε κωδικοποίηση UTF-8

- Αναπαράσταση δεδομένων
- Κείμενο

Η κωδικοποίηση UTF-8 έχει επικρατήσει σε όλα τα προγράμματα που χειρίζονται κείμενα Unicode Αναπαράσταση μεταβλητού μήκους

Unicode	Κωδικοποίηση UTF-8
007F	0xxxxxxx
807FF	110xxxxx 10xxxxxx
800FFFF	1110xxxx 10xxxxxx 10xxxxxx
1000010FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

- Το βασικό λατινικό αλφάβητο (ASCII)χρησιμοποιεί 1 byte ανά χαρακτήρα
 - Προς τα πίσω συμβατότητα
- Τα ελληνικά, 2 bytes
- Αλφάβητα Άπω Ανατολής, 3+ bytes

Ήχος: Ψηφιοποίηση και Αποθήκευση

- Αναπαράσταση δεδομένων
- Κείμενο
- Ήχος

Εικόνα: από τον αναλογικό στον ψηφιακό κόσμο

Παράδειγμα: απλή αναπαράσταση pixels με 16,7 εκ. χρώματα

- 3 bytes/pixel (24bits): R(ed) G(reen) B(lue)
 - 256 στάθμες ανά συνιστώσα χρώματος
 - 256x256x256 = 16.777.216 χρώματα
 - εικόνες με μεγαλύτερο βάθος χρώματος
 - 32 έως 48 bits

Εναλλακτικά: διανυσματικά γραφικά

- Αναπαράσταση δεδομένων
- Κείμενο
- Ήχος
- Εικόνα

- Περιγραφή σχημάτων
 - Ως σύνολο ευθύγραμμων και καμπύλων τμημάτων
 - Με συντεταγμένες
 - Εύρεση σημείων μέσω μαθηματικού τύπου
- Εύκολη αλλαγή μεγέθους γραφικών
 - Χωρίς παραμόρφωση των σχημάτων

Αναπαράσταση βίντεο

- Αναπαράσταση δεδομένων
- Κείμενο
- Ήχος
- Εικόνα
- Βίντεο

- "Κινούμενη εικόνα" (καρέ)
 - όπως αναπαριστούμε τις απλές εικόνες
 - αλλά: με χρήση συμπίεσης
 - Για μείωση όγκου δεδομένων
 - Γειτονικά καρέ έχουν πολλές ομοιότητες

Κωδικοποίηση εντολών μηχανής

- Αναπαράσταση δεδομένων
- Κείμενο
- Ήχος
- Εικόνα
- Βίντεο
- Εντολές Μηχανής

