M3P21 Geometry II: Algebraic Topology

Lectured by Dr Christian Urech Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	\mathbf{Intr}	roducti	ion			
	0.1	Introd	uction			
	0.2	Some	underlying geometric notions			
		0.2.1	Homotopy and homotopy type			
		0.2.2	Cell complexes			
1	The fundamental group					
	1.1	Basic	constructions			
		1.1.1	Paths and homotopy			
		1.1.2	The fundamental group of the circle			
		1.1.3	Induced homomorphisms			
	1.2	Seifert	-van Kampen theorem			
		1.2.1	Free products with amalgamation			
		1.2.2	The Seifert-vanKampen theorem			
		1.2.3	Applications to CW-complexes			
	1.3	Coveri	ing spaces			
		1.3.1	Lifting properties			
		1.3.2	The classification of covering spaces			
		1.3.3	Deck transformations and group actions			
2	Hor	nology	28			
_	2.1		cial and singular homology			
	2.1	2.1.1	Δ -complexes			
		2.1.1	Simplicial homology			
		2.1.2				
		2.1.3	0			
		2.1.4 $2.1.5$	10			
		Z.1.0	Exact sequences and excision			

0 Introduction

0.1 Introduction

Lecture 1 Friday 11/01/19

Combines topological spaces with algebraic objects, which are groups.

- How to show that a torus is not homeomorphic to a sphere?
- How to show that $\mathbb{R}^n \ncong \mathbb{R}^m$ if $n \neq m$?

Content is fundamental groups and homology. We will follow chapter one and two from

• A Hatcher, Algebraic topology, 2002

The following are prerequisites.

- Point set topology. Topological spaces, continuous maps, product and quotient topologies, Hausdorff spaces, etc.
- Basic group theory. Normal subgroups and quotients, isomorphism theorems, free groups, presentation of groups, etc.

0.2 Some underlying geometric notions

0.2.1 Homotopy and homotopy type

Let X, Y be topological spaces and I = [0, 1].

Definition. A homotopy is a continuous map $F: X \times I \to Y$. For every $t \in I$ we obtain a continuous map

$$f_t: X \rightarrow Y$$

 $x \mapsto f_t(x) = F(x,t)$

Definition. Two continuous maps $f_0, f_1 : X \to Y$ are **homotopic** if there exists a homotopy $F : X \times I \to Y$ such that

$$f_0(x) = F(x,0), \qquad f_1(x) = F(x,1),$$

for all $x \in X$. We write $f_0 \cong f_1$. (Exercise: this is an equivalence relation)

Definition. Let $A \subseteq X$ be a subspace. A **retraction** of X onto A is a continuous map $r: X \to A$ such that

- r(X) = A, and
- $r \mid_A = id_A$.

Example. If $X \neq \emptyset$, $p \in X$, then X retracts to p by the constant map $X \to \{p\}$.

Definition. A **deformation retraction** of X onto $A \subseteq X$ is a retraction that is homotopic to the identity. That is, there is a continuous map

$$F: \quad X \times I \quad \to \quad A \\ (x,t) \quad \mapsto \quad f_t(x) \quad ,$$

such that $f_0 = id_X$ and $f_1 : X \to A$ is the deformation retraction.

Example. The closed n-dimensional n-disc

$$D^n = \{ x \in \mathbb{R}^n \mid |x| \le 1 \}$$

deformation retracts to $(0,\ldots,0)\in\mathbb{R}^n$. Let $f_t(x)=t\cdot x$. t=1 gives $f_1=id_{D^n}$ and t=0 gives $f_0:D^n\to(0,\ldots,0)$.

Example. Let S^n be the *n*-sphere,

$$\partial D^{n+1} = S^n = \{ x \in \mathbb{R}^n \mid |x| = 1 \}.$$

The cylinder $S^n \times I$ deformation retracts to $S^n \times \{0\}$, by defining $f_t(x,r) = (x,t \cdot r)$.

An observation is if X is a topological space, and $f: X \to \{p\}$ for $p \in X$ is a deformation retraction of X to p, then X is path-connected. Indeed, if $F: X \times I \to X$ is a homotopy from id_X to f and $x \in X$ is a point, then this gives a path

$$\begin{array}{ccc}
I & \to & X \\
t & \mapsto & F(x,t)
\end{array}$$

that connects x to p. This implies that not all retractions are deformation retractions.

Example. A retraction that is not a deformation retraction. Take a space that is not path-connected and retract it to a point. Let $X = \{0,1\}$ with discrete topology. $x \mapsto 0$ is a retraction, but not a deformation retraction because X is not path-connected.

Definition. A continuous map $f: X \to Y$ is a **homotopy equivalence** if there is a continuous map $g: Y \to X$ such that $fg \cong id_Y$ and $gf \cong id_X$. If there exists a homotopy equivalence between X and Y, X and Y are **homotopy equivalent** or they have the same **homotopy type**.

Lemma 0.1. A deformation retraction $f: X \to A$ is a homotopy equivalence.

Proof. Let $i: A \hookrightarrow X$ be the inclusion map. Then $fi = id_A$ and $if = f \cong id_X$ by definition.

Example. The disc with two holes is equivalent to $O \cdot O$.

Example. \mathbb{R}^n deformation retracts to a point, by $f_t(x) = t \cdot x$.

Definition.

- X is **contractible** if it is homotopy equivalent to a point.
- A continuous map is **nullhomotopic** if it is homotopy equivalent to a constant map.

0.2.2 Cell complexes

Example. The torus $S^1 \times S^1$ is the union of a point, two open intervals, and the open disc $Int(D^2)$.

These are called **cells**. Can think of discs D^n glued together.

Lecture 2 Tuesday 15/01/19

Definition. A CW-complex, or cell complex, is a topological space X such that there exists a decomposition

$$X = \bigcup_{n \in \mathbb{N}} X^n,$$

where the X^n are constructed inductively in the following way.

- X^n is a discrete set.
- For each $n \ge 0$ there is an collection of closed n-discs $\{D_{\alpha}^n\}$ together with continuous maps $\phi_{\alpha}: \partial D_{\alpha}^n \to X^{n-1}$, such that

$$X^n = \frac{X^{n-1} \sqcup \bigsqcup_{\alpha} D^n_{\alpha}}{\sim},$$

where $x \sim \phi_{\alpha}(x)$ for all $x \in \partial D_{\alpha}^{n}$ for all α .

• A subset $U \subseteq X$ is open if and only if $U \cap X^n$ is open for all n.

Remark.

• As a set,

$$X^n = X^{n-1} \sqcup \bigsqcup_{\alpha} e_{\alpha}^n,$$

where each e_{α}^{n} is homeomorphic to an open n-disc. These e_{α}^{n} are called the n-cells of X.

• If $X = X^m$ for some m, then X is called **finite dimensional**. The minimal m such that $X = X^m$ is the **dimension** of X.

Example.

- [0,1] is a CW-complex.
- \mathbb{R} is a CW-complex.
- S^1 is a CW-complex.
- A graph is a CW-complex.
- $S^n = D^n/\partial D^n$ is a CW-complex. See worksheet 1.

Can also decompose CW-complexes.

- The sphere S^2 is one 0-cell, one 1-cell, and two 2-cells.
- The torus $S^1 \times S^1$ is one 0-cell, two 1-cells, and one 2-cell.
- The Möbius strip is two 0-cells, three 1-cells, and one 2-cell.
- The Klein bottle is one 0-cell, two 1-cells, and one 2-cell.

Definition. If X is a CW-complex with finitely many cells the **Euler characteristic** $\chi(X)$ of X is the number of even cells minus the number of odd cells.

Fact. $\chi(X)$ does not depend of the choice of cells decomposition.

Example.

- $\chi(S^n) = 0$ if n is odd and $\chi(S^n) = 2$ if n is even.
- $\bullet \ \chi\left(S^1\times S^1\right)=0.$

This is the generalisation of the following observation by Leonhard Euler. Let P be a convex polyhedron, where

- V is the number of vertices of P,
- \bullet E is the number of edges of P, and
- F is the number of faces of P.

Then V - E + F = 2.

Example. A topological space that is not a CW-complex. $X = \{0, 1\}$ with trivial topology does not contain any closed points.

Fact. CW-complexes are always Hausdorff.

1 The fundamental group

1.1 Basic constructions

1.1.1 Paths and homotopy

Let X be a topological space. A **path** is a continuous map $f: I \to X$, where I = [0, 1].

Definition. Two paths f_0, f_1 are **homotopic** if there exists a homotopy between f_0 and f_1 preserving the endpoints, that is a continuous map

$$F: I \times I \to X$$

$$(s,t) \mapsto f_t(s)$$

such that

$$f_t(0) = f_0(0), \qquad f_t(1) = f_0(1),$$

for all $t \in I$, and

$$F(s,0) = f_0(s), \qquad F(s,1) = f_1(s),$$

for all $s \in I$.

Example. Let $X \subseteq \mathbb{R}^n$ be a convex set. Then all the paths in X are homotopic if they have the same endpoints.

Proof. Let $f_0, f_1: I \to X$ be two paths such that $f_0(0) = f_1(0)$ and $f_0(1) = f_1(1)$. Define

$$f_t(s) = (1 - t) f_0(s) + t f_1(s)$$
.

Lemma 1.1. Being homotopic is an equivalence relation on the set of paths with fixed endpoints. We will write $f_0 \cong f_1$ for two homotopic paths f_0 and f_1 .

Proof.

- f is homotopic to f.
- If f_0 is homotopic to f_1 by a homotopy f_t , then f_1 is homotopic to f_0 by the homotopy f_{1-t} .
- If f_0 is homotopic to f_1 by a homotopy f_t and $f_1 = g_0$ is homotopic to g_1 by a homotopy g_t , then f_0 is homotopic to g_1 by the homotopy

$$h_t = \begin{cases} f_{2t} & 0 \le t \le \frac{1}{2} \\ g_{2t-1} & \frac{1}{2} \le t \le 1 \end{cases}.$$

Then

$$H: I \times I \rightarrow X$$

 $(s,t) \mapsto h_t(s)$

is continuous because its restriction to the closed subsets $I \times [0, 1/2]$ and $I \times [1/2, 1]$ is continuous, since if the restriction to two closed subsets is continuous then the restriction to the union of these subsets is continuous.

Let X be a topological space and I = [0,1]. If $f: I \to X$ is a path, [f] is the class of all paths on X homotopic to f.

Definition. Let $f, g: I \to X$ be two paths such that f(1) = g(0). The **product path** $f \cdot g$ is the path

$$\left(f\cdot g\right)\left(s\right) = \begin{cases} f\left(2s\right) & 0 \leq s \leq \frac{1}{2} \\ g\left(2s-1\right) & \frac{1}{2} \leq s \leq 1 \end{cases}.$$

Lecture 3 Wednesday 16/01/19

A convention is that whenever we write $f \cdot g$ we implicitly assume f(1) = g(0).

Lemma 1.2. Let f_0, f_1, g_0, g_1 be paths on X such that $f_1 \cong f_0$ and $g_0 \cong g_1$. Then $f_0 \cdot g_0 \cong f_1 \cdot g_1$.

Proof.

$$\begin{array}{ccc}
I \times I & \to & X \\
(s,t) & \mapsto & (f_t \cdot g_t)(s)
\end{array}$$

is a homotopy between $f_0 \cdot g_0$ and $f_1 \cdot g_1$.

Remark. Let $\phi:[0,1]\to[0,1]$ be continuous such that $\phi(0)=0$ and $\phi(1)=1$. If $f:I\to X$ is a path, then $f\phi\cong f$. This is a **reparametrisation**.

Proof. Define

$$\phi_t(s) = (1 - t)\phi(s) + ts,$$

then $f\phi_t$ is a homotopy between $f\phi$ and f.

For $x \in X$, let the **constant path** at x be

$$\begin{array}{cccc} c_x: & I & \to & X \\ & s & \mapsto & x \end{array}.$$

For a path $f: I \to X$, define

$$\begin{array}{cccc} f^{-1}: & I & \to & X \\ & s & \mapsto & f\left(1-s\right) \end{array}.$$

Lemma 1.3. Let $f, g, h : I \to X$ be paths. Then

- 1. $(f \cdot g) \cdot h \cong f \cdot (g \cdot h)$,
- 2. $f \cdot c_{f(1)} \cong f$ and $c_{f(0)} \cdot f \cong f$, and
- 3. $f \cdot f^{-1} \cong c_{f(0)}$ and $f^{-1} \cdot f \cong c_{f(1)}$.

Proof.

1. $((f \cdot g) \cdot h) \phi = f \cdot (g \cdot h)$, where

$$\phi(s) = \begin{cases} \frac{s}{2} & s \in [0, \frac{1}{2}] \\ s - \frac{1}{4} & s \in [\frac{1}{2}, \frac{3}{4}], \\ 2s - 1 & s \in [\frac{3}{4}, 1] \end{cases}$$

so $(f \cdot g) \cdot h \cong f \cdot (g \cdot h)$ by reparametrisation.

2. Again reparametrisation, by

$$\psi(s) = \begin{cases} 2s & s \in \left[0, \frac{1}{2}\right] \\ 1 & s \in \left[\frac{1}{2}, 1\right] \end{cases}, \qquad \chi(s) = \begin{cases} 0 & s \in \left[0, \frac{1}{2}\right] \\ 2s - 1 & s \in \left[\frac{1}{2}, 1\right] \end{cases}.$$

3. Define

$$H(s,t) = \begin{cases} f(\max\{1-2s,t\}) & s \in [0,\frac{1}{2}] \\ f(\max\{2s-1,t\}) & s \in [\frac{1}{2},1] \end{cases}.$$

H is continuous, and

$$H(s,0) = f^{-1} \cdot f, \qquad H(s,1) = c_{f(1)}.$$

The inverse is similar.

Definition. A loop with basepoint $x_0 \in X$ is a path $f: I \to X$ such that $f(0) = f(1) = x_0$.

Definition. Denote by $\pi_1(X, x_0)$ the set of homotopy classes [f] of loops $f: I \to X$ with basepoint x_0 .

Proposition 1.4. $\pi_1(X, x_0)$ is a group with product $[f][g] = [f \cdot g]$ and neutral element $c_{x_0} : I \to X$, the constant path at x_0 .

Proof. Follows directly from Lemma 1.2 and Lemma 1.3.

Definition. $\pi_1(X, x_0)$ is the fundamental group of X at x_0 .

Example. Let $X \subseteq \mathbb{R}^n$ be a convex set and $x_0 \in X$. Then $\pi_1(X, x_0) = 0$.

Proof. X is convex gives that all loops are homotopic to each other.

Example.

- The fundamental group of a space X with the trivial topology is trivial, since X is simply-connected, because all maps $f: I \to X$ are continuous, so path-connected and all paths are homotopic.
- The fundamental group of a space X with the discrete topology is trivial, since $f: I \to X$ continuous gives f constant.

Assume $x_0, x_1 \in X$ such that x_0 and x_1 are in the same path component of X. Let $h: I \to X$ be a path such that $h(0) = x_0$ and $h(1) = x_1$. Define

$$\beta_h: \quad \pi_1\left(X, x_1\right) \quad \to \quad \pi_1\left(X, x_0\right) \\ \left[f\right] \quad \mapsto \quad \left[h \cdot f \cdot h^{-1}\right] \ .$$

This is well-defined by Lemma 1.2.

Proposition 1.5. $\beta_h : \pi_1(X, x_1) \to \pi_1(X, x_0)$ is an isomorphism.

Proof. It is a homomorphism.

$$\beta_h\left[f\cdot g\right] = \left[h\cdot f\cdot g\cdot h^{-1}\right] = \left[h\cdot f\cdot h^{-1}\right]\left[h\cdot g\cdot h^{-1}\right] = \beta_h\left[f\right]\cdot\beta_h\left[g\right],$$

and $\beta_h[c_{x_1}] = [c_{x_1}]$. It is bijective with $(\beta_h)^{-1} = \beta_{h^{-1}}$.

If X is path-connected, we often write $\pi_1(X)$ instead of $\pi_1(X, x_0)$.

Definition. X is simply-connected if it is path-connected and $\pi_1(X) = 0$.

Proposition 1.6. X is simply-connected if and only if there exists a unique homotopy class of paths between any two points of X.

Proof.

- \implies There exists a path between any two points. Let f,g be two paths from x_0 to x_1 for $x_0,x_1\in X$. $f\cdot g^{-1}\cong g\cdot g^{-1}$ gives $f\cong f\cdot g^{-1}\cdot g\cong g\cdot g^{-1}\cdot g\cong g$.
- \iff X is path-connected. $x_1 = x_0$ gives that all loops at x_0 are homotopic to each other, so $\pi_1(X) = 0$.

1.1.2 The fundamental group of the circle

Goal is to show that $\pi_1(S^1) \cong \mathbb{Z}$.

Lecture 4 Friday

Definition. A covering space of a space X is a space \widetilde{X} and a continuous map $p:\widetilde{X}\to X$ such that for 18/01/19 each $x\in X$ there is an open $x\in U\subseteq X$ such that

- $p^{-1}(U) = \bigcup_{i \in J} \widetilde{U_i}$, where $\widetilde{U_i} \subseteq \widetilde{X}$ is open,
- $\widetilde{U_i} \cap \widetilde{U_j} = \emptyset$ if $i \neq j$, and
- $p\mid_{\widetilde{U_i}}:\widetilde{U_j}\to U$ is a homeomorphism for all $j\in J$.

Such a U is called **evenly covered**. The \widetilde{U}_j are called **sheets**.

Example.

$$p: \ \mathbb{R} \ \to \ S^1$$
$$s \ \mapsto \ \left(\cos\left(2\pi s\right), \sin\left(2\pi s\right)\right) \ .$$

Definition. Let $p:\widetilde{X}\to X$ be a covering space. A **lift** of a continuous map $f:Y\to X$ is a continuous map $\widetilde{f}:Y\to\widetilde{X}$ such that $p\widetilde{f}=f$, so

$$Y \xrightarrow{\widetilde{f}} X$$

$$Y \xrightarrow{f} X$$

Proposition 1.7 (Unique lifting property). Let $p: \widetilde{X} \to X$ be a covering space and $f: Y \to X$ be a continuous map. If there are two lifts $\widetilde{f}_1, \widetilde{f}_2: Y \to \widetilde{X}$ of f such that $\widetilde{f}_1(y) = \widetilde{f}_2(y)$ for some $y \in Y$ and if Y is connected, then $\widetilde{f}_1 = \widetilde{f}_2$.

Proof. Let $y \in Y$ and $U \subseteq X$ be an evenly covered neighbourhood of f(y). Then

$$p^{-1}\left(U\right) =\bigcup_{j}\widetilde{U_{j}}.$$

Let $\widetilde{U_1}$ be the sheet such that $\widetilde{f_1}(y) \in \widetilde{U_1}$, and let $\widetilde{U_2}$ be the sheet such that $\widetilde{f_2}(y) \in \widetilde{U_2}$. Let $N \subseteq Y$ be open and $y \in N$ such that $\widetilde{f_1}(N) \subseteq \widetilde{U_1}$ and $\widetilde{f_2}(N) \subseteq \widetilde{U_2}$. We have $p\widetilde{f_1} = p\widetilde{f_2}$.

$$\widetilde{f}_{1}\left(y\right) = \widetilde{f}_{2}\left(y\right) \qquad \Longleftrightarrow \qquad \widetilde{U}_{1} = \widetilde{U}_{2} \qquad \Longleftrightarrow \qquad \widetilde{f}_{1}\mid_{N} = \widetilde{f}_{2}\mid_{N}.$$

Let

$$A = \left\{ y \in Y \mid \widetilde{f}_1(y) = \widetilde{f}_2(y) \right\},\,$$

so A is open and $Y \setminus A$ is open. Thus $A \neq \emptyset$ gives A = Y.

Proposition 1.8 (Homotopy lifting property). Let $p: \widetilde{X} \to X$ be a covering space and $F: Y \times I \to X$ be a continuous map such that there exists a lift $\widetilde{f}_0: Y \times \{0\} \to \widetilde{X}$ of $F\mid_{Y \times \{0\}}$. Then there is a unique lift $\widetilde{F}: Y \times I \to \widetilde{X}$ of F such that $\widetilde{F}\mid_{Y \times \{0\}} = \widetilde{f}_0$.

Proof. Let $y_0 \in Y$ and $t \in I$. There are open $y_0 \in N_t \subseteq Y$ and $t \in (a_t, b_t) \subseteq I$ such that $F(N_t \times (a_t, b_t)) \subseteq U \subseteq X$, where $U \subseteq X$ is open and evenly covered. Compactness of I gives that there exist

$$0 = t_0 < \dots < t_m = 1,$$

and there exists $y_0 \in N \subseteq Y$ open such that $F(N \times [t_i, t_{i+1}]) \subseteq U_i \subseteq X$, where $U_i \subseteq X$ is open and evenly covered. We inductively construct a lift $\widetilde{F}|_{N \times I}$ of $F|_{N \times I}$.

- $\widetilde{F}|_{N\times[0,0]} = \widetilde{f}_0|_{N\times[0,0]}$ exists.
- Assume the lift has been constructed on $N \times [0, t_i]$. Let $\widetilde{U_i} \subseteq \widetilde{X}$ be such that $p \mid_{\widetilde{U_i}} : \widetilde{U_i} \to U_i$ such that $\widetilde{F}(y_0, t_i) \subseteq \widetilde{U_i}$. After shrinking N, may assume $\widetilde{F}(N \times \{t_i\}) \subseteq \widetilde{U_i}$. Define \widetilde{F} on $N \times [t_i, t_{i+1}]$ to be composition of F with the homeomorphism $p^{-1} : U_i \to \widetilde{U_i}$.

After finitely many steps we obtain a lift $\widetilde{F}: N \times I \to \widetilde{X}$, where $y_0 \in N \subseteq Y$ is open, so for each $y \in Y$ there is a neighbourhood $N_y \subseteq Y$ such that $F|_{N_y \times I}: N_y \times I \to X$ lifts. For all $y \in Y$, $\{y\} \times I$ is connected and can be lifted, so Proposition 1.7 gives that the lift of $N \times I$ is unique. Thus there is a unique lift $\widetilde{F}: Y \times I \to \widetilde{X}$.

Example. Let X be a topological space and A be discrete. Then $p: X \times A \to X$ is a covering space. This is the **trivial covering**. (Exercise: show the unique lifting property and the homotopy lifting property for the trivial covering)

Corollary 1.9. Let $f: I \to X$ be a path, $f(0) = x_0$, and $p: \widetilde{X} \to X$ be a covering space. For each $\widetilde{x_0} \in p^{-1}(x_0)$, there is a unique lift $\widetilde{f}: I \to \widetilde{X}$ such that $\widetilde{f}(0) = \widetilde{x_0}$.

Proof. Proposition 1.8 for Y a point.

Theorem 1.10. Let $x_0 = (1,0) \in S^1$. $\pi_1(S^1, x_0)$ is the infinite cyclic group generated by the homotopy class of the loop

$$\begin{array}{ccc} \omega: & I & \to & S^1 \\ & s & \mapsto & \left(\cos\left(2\pi s\right), \sin\left(2\pi s\right)\right) \end{array}.$$

Remark.

• $[\omega]^n = [\omega_n]$, where

$$\omega_{n}\left(s\right)=\left(\cos\left(2\pi ns\right),\sin\left(2\pi ns\right)\right).$$

•

$$\begin{array}{ccc} p: & \mathbb{R} & \to & S^1 \\ & s & \mapsto & \left(\cos\left(2\pi s\right), \sin\left(2\pi s\right)\right) \end{array}$$

is a covering space.

• ω_n lifts to

$$\widetilde{\omega_n}: I \to \mathbb{R} \\ s \mapsto ns,$$

such that $\widetilde{\omega_n}(0) = 0$ and $\widetilde{\omega_n}(1) = n$.

Proof of Theorem 1.10.

- If $f: I \to S^1$ be a loop at x_0 , then the homotopy lifting property gives that there exists a lift $\widetilde{f}: I \to \mathbb{R}$ such that $\widetilde{f}(0) = 0$. Since $p\left(\widetilde{f}(1)\right) = f(1) = x_0$, then $\widetilde{f}(1) = n$ for some $n \in \mathbb{Z}$. $\widetilde{\omega_n}: I \to \mathbb{R}$ is another path such that $\widetilde{\omega_n}(0) = 0$ and $\widetilde{\omega_n}(1) = n$, so $\widetilde{f} \cong \widetilde{\omega_n}$. Let $F: I \times I \to \mathbb{R}$ be a homotopy equivalence between \widetilde{f} and $\widetilde{\omega_n}$. Then $pF: I \times I \to S^1$ gives a homotopy between $p\widetilde{f} = f$ and $p\widetilde{\omega_n} = \omega_n$.
- Let $m, n \in \mathbb{Z}$ and assume $\omega_m \cong \omega_n$. Let $F: I \times I \to S^1$ be a homotopy.

$$F\left(0,t\right)=\omega_{m}\left(t\right),\qquad F\left(1,t\right)=\omega_{n}\left(t\right),\qquad F\left(s,0\right)=F\left(s,1\right)=x_{0},$$

for all $s,t\in I$. The unique lifting property gives that $\widetilde{\omega_n},\widetilde{\omega_m}:I\to\mathbb{R}$ are unique lifts such that $\widetilde{\omega_n}(0)=0=\widetilde{\omega_m}(0)$. The homotopy lifting property gives that F lifts uniquely to a homotopy $\widetilde{F}:I\times I\to\mathbb{R}$ between $\widetilde{\omega_n}$ and $\widetilde{\omega_m}$, and $\widetilde{F}(s,1)\in\mathbb{Z}$ for all $s\in I$. Thus $\widetilde{F}(s,1)=n=m$, so $\omega_m\cong\omega_n$ if and only if n=m.

Lecture 5

Tuesday 22/01/19

Lecture 6 Wednesday

23/01/19

Lecture 5 is a problem class.

Theorem 1.11. Every non-constant polynomial $p \in \mathbb{C}[z]$ has a root in \mathbb{C} .

Proof. May assume

$$p(z) = z^n + a_1 z^{n-1} + \dots + a_n.$$

Assume p has no roots in \mathbb{C} . For each $r \in \mathbb{R}_{>0}$ we obtain a loop

$$f_r: I \to \mathbb{C}$$

$$s \mapsto \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|},$$

so $|f_r(s)| = 1$. $f_r(0) = 1$ and $f_r(1) = 1$, so f_r is a loop based at 1. f_0 is the constant loop at 1. $f_r(s)$ depends continuously on r, so $f_r \cong f_0$ for all $r \in \mathbb{R}_{\geq 0}$ and $[f_r] = [f_0] = 0 \in \pi_1(S^1)$. Fix $r \in \mathbb{R}_{\geq 0}$ such that r > 1 and $r > |a_1| + \cdots + |a_n|$. For |z| = r we have

$$|z^n| > (|a_1| + \dots + |a_n|) |z^{n-1}| \ge |a_1 z^{n-1}| + \dots + |a_n| \ge |a_1 z^{n-1} + \dots + |a_n|.$$

Hence, for $0 \le t \le 1$ the polynomial $p_t(z) = z^n + t(a_1 z^{n-1} + \dots + a_n)$ has no root z with |z| = r. Define

$$F_r\left(t,s\right) = \frac{p_t\left(re^{2\pi is}\right)/p_t\left(r\right)}{\left|p_t\left(re^{2\pi is}\right)/p_t\left(r\right)\right|}.$$

 $F_r\left(0,s\right)=\omega_n\left(s\right)$ and $F_r\left(1,s\right)=f_r\left(s\right)$, so $\left[\omega_n\right]=\left[f_r\right]=0\in\pi_1\left(S^1\right)$. Theorem 1.10 gives that n=0, so p is constant.

See Hatcher Theorem 1.9 and Theorem 1.10 for more applications.

Proposition 1.12. Let X, Y be topological spaces, $x_0 \in X$, and $y_0 \in Y$. Then

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$
.

Proof. A map

$$f: Z \rightarrow X \times Y$$

 $z \mapsto (g(z), h(z))$

is continuous if and only if $g: Z \to X$ and $h: Z \to Y$ are continuous. For Z = I,

 $\left\{ \text{ loops in } X \times Y \text{ based at } (x_0, y_0) \right\} \qquad \Longleftrightarrow \qquad \left\{ \text{ loops in } X \text{ based at } x_0 \right\} \times \left\{ \text{ loops in } Y \text{ based at } y_0 \right\}.$

Two loops

$$f_1: I \rightarrow X \times Y$$
 $f_2: I \rightarrow X \times Y$ $s \mapsto (g_1(s), h_1(s))$, $s \mapsto (g_2(s), h_2(s))$

are homotopic if and only if $g_1 \cong g_2$ and $h_1 \cong h_2$, so there is a bijection

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

 $f_1 \cdot f_2 = (g_1 \cdot g_2, h_1 \cdot h_2)$ and the constant loop is mapped to the constant loop, so this is also a group isomorphism.

Example. The torus $S^1 \times S^1$ has

$$\pi_1\left(S^1\times S^1\right)\cong\pi_1\left(S^1\right)\times\pi_1\left(S^1\right)\cong\mathbb{Z}^2.$$

1.1.3 Induced homomorphisms

Let X, Y be topological spaces, $x_0 \in X$, and $\phi: X \to Y$. An observation is that ϕ induces a homomorphism

$$\phi_*: \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0)) [f] \mapsto [\phi f]$$

 ϕ_* is well-defined, since if f_t is a homotopy between the loops f_0 and f_1 based at x_0 , then ϕf_t is a homotopy of loops between ϕf_0 and ϕf_1 . Moreover,

$$\phi (f \cdot g) = (\phi f) \cdot (\phi g),$$

and ϕ maps the constant path at x_0 to the constant path at $\phi(x_0)$, so ϕ is a homomorphism.

Proposition 1.13.

1. Let $\psi: X \to Y$ and $\phi: Y \to Z$ be continuous maps between topological spaces, $x_0 \in X$, and

$$\psi_* : \pi_1(X, x_0) \to \pi_1(Y, \psi(x_0)), \qquad \phi_* : \pi_1(Y, \psi(x_0)) \to \pi_1(Z, \phi\psi(x_0)),$$

$$(\phi\psi)_* : \pi_1(X, x_0) \to \pi_1(Z, \phi\psi(x_0)).$$

Then $(\phi \psi)_* = \phi_* \psi_*$.

2. Let $id_X: X \to X$ be the identity then

$$(id_X)_*: \pi_1(X, x_0) \to \pi_1(X, x_0)$$

is the identity.

Proof.

1. Let $f: I \to X$ be a loop at x_0 , then

$$(\phi\psi)_*([f]) = [(\phi\psi)f] = [\phi(\psi f)] = \phi_*([\psi f]) = \phi_*\psi_*([f]).$$

2. $(id_X)_*([f]) = [id_X f] = [f]$.

These two observations yield in particular that if $\phi: X \to Y$ is a homeomorphism with inverse $\psi: Y \to X$, then

$$\phi_*: \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0))$$

is an isomorphism with inverse ψ_* .

Proposition 1.14. Let $\phi: X \to Y$ be a homotopy equivalence. Then

Lecture 7 Friday 25/01/19

$$\phi_* : \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0))$$

is an isomorphism for all $x_0 \in X$.

Recall that if $x_0, x_1 \in X$ and $h: I \to X$ is a path such that $h(0) = x_0$ and $h(1) = x_1$, then we obtain an isomorphism

$$\beta_h: \quad \pi_1\left(X, x_1\right) \quad \to \quad \pi_1\left(X, x_0\right) \\ \left[f\right] \quad \mapsto \quad \left[h \cdot f \cdot h^{-1}\right] \ .$$

Lemma 1.15. Let $\phi_t: X \to Y$ be a homotopy and $x_0 \in X$. Define the path

$$h: I \to Y s \mapsto \phi_s(x_0) ,$$

where $h(0) = \phi_0(x_0)$ and $h(1) = \phi_1(x_0)$. Then $(\phi_0)_* = \beta_h(\phi_1)_*$, that is the following diagram commutes.

Proof. For $t \in I$, define the path

$$h_t: I \to X s \mapsto h(ts) ,$$

where $h_t(0) = \phi_0(x_0)$ and $h_t(1) = h(t) = \phi_t(x_0)$. Let f be a loop at x_0 . Define

$$F_t = h_t \cdot (\phi_t f) \cdot h_t^{-1}.$$

Then F_t is a loop at $\phi_0(x_0)$, which is continuous in t. So F_t is a homotopy of loops between

$$F_0 = h_0 \cdot (\phi_0 f) \cdot h_0^{-1} \cong \phi_0 f, \qquad F_1 = h_1 \cdot (\phi_1 f) \cdot h_1^{-1} = h \cdot (\phi_1 f) \cdot h^{-1}.$$

Hence

$$(\phi_0)_*([f]) = [\phi_0 f] = [h \cdot (\phi_1 f) \cdot h^{-1}] = \beta_h([\phi_1 f]) = \beta_h(\phi_1)_*([f]).$$

Lemma 1.15 implies in particular the following.

Corollary 1.16. If $\psi: X \to X$ is continuous and $\psi \cong id_X$, then

$$\psi_*: \pi_1(X, x_0) \to \pi_1(X, \psi(x_0))$$

is an isomorphism for all $x_0 \in X$.

Proof. By Lemma 1.15 there is a path h from $\psi(x_0)$ to x_0 such that

so $\psi_* = \beta_h$ hence an isomorphism.

Proof of Proposition 1.14. Let $\phi: X \to Y$ be a homotopy equivalence. Let $\psi: Y \to X$ be a homotopy inverse of ϕ , that is $\phi \psi \cong id_Y$ and $\psi \phi \cong id_X$.

$$\pi_{1}\left(X,x_{0}\right) \xrightarrow{\phi_{*}} \pi_{1}\left(Y,\phi\left(x_{0}\right)\right) \xrightarrow{\psi_{*}} \pi_{1}\left(X,\psi\phi\left(x_{0}\right)\right) \xrightarrow{\phi_{*}} \pi_{1}\left(Y,\psi\phi\psi\left(x_{0}\right)\right).$$

Have to show that ϕ_* is bijective. The observation above gives that $(\psi\phi)_* = \psi_*\phi_*$ is an isomorphism, so ϕ_* is injective and ψ_* is surjective. Similarly $(\phi\psi)_* = \phi_*\psi_*$ is an isomorphism, so ψ_* is injective and ϕ_* is surjective.

Lemma 1.17. Let X be a topological space and $x_0 \in X$. Assume

$$X = \bigcup_{\alpha \in \Lambda} A_{\alpha},$$

such that

- the A_{α} are all open and path-connected,
- $x_0 \in A_\alpha$ for all $\alpha \in \Lambda$, and
- all the intersections $A_{\alpha} \cap A_{\beta}$ are path-connected for all $\alpha, \beta \in \Lambda$.

If f is a loop in X at x_0 , then we can write $[f] = [h_1] \dots [h_m]$, such that the h_i are loops at x_0 , and each contained in a single A_{α_i} .

Proof. f is continuous, so for all $s \in I$ there is an open neighbourhood V_s such that $f(V_s)$ such that $f(V_s) \subseteq A_\alpha$ for some α . We can choose V_s to be an interval (a_s, b_s) such that $f([a_s, b_s]) \subseteq A_\alpha$. I is compact gives that a finite number of such intervals cover I, so there is a partition

$$0 = s_0 < \dots < s_m = 1,$$

such that $f([s_{i-1}, s_i]) \subseteq A_{\alpha_i}$ for some α_i . Let f_i be the path obtained by restricting f to $[s_{i-1}, s_i]$, and rescaling. $f \cong f_1 \cdots f_m$ for $f_i \subseteq A_{\alpha_i}$ and $A_{\alpha_i} \cap A_{\alpha_j}$ is path-connected. Let g_i be a path from x_0 to $f(s_i)$ in $A_{\alpha_i} \cap A_{\alpha_{i+1}}$. Let g_0, g_m be the constant loops at x_0 . $h_i = g_{i-1} \cdot f_i \cdot g_i^{-1}$ is a loop based at x_0 and $h_i \subseteq A_{\alpha_i}$. Thus

$$f \cong (g_0 \cdot f_1 \cdot g_1^{-1}) \cdot \cdots \cdot (g_{m-1} \cdot f_m \cdot g_m^{-1}),$$

so $[f] = [h_1] \dots [h_m].$

Lecture 8 Tuesday 29/01/19

Example. Möbius strip M deformation retracts to S^1 . Thus $\phi: M \to S^1$ is a homotopy equivalence, so $\pi_1(M) \cong \pi_1(S^1) \cong \mathbb{Z}$.

Example. There is no deformation retraction of S^1 to a point $p \in S^1$ because $\pi_1(S^1) \ncong \pi_1(p)$.

Example. There is no retraction of the disc D^2 to its boundary $S^1 \subseteq D^2$.

Proof. Assume there is a retraction $r: D^2 \to S^1$, consider the embedding $i: S^1 \hookrightarrow D^2$. Then $ri = id_{S^1}$. Thus

$$\begin{array}{ccc} \pi_1 \left(S^1 \right) & \stackrel{i_*}{\longrightarrow} & \pi_1 \left(D^2 \right) & \stackrel{r_*}{\longrightarrow} & \pi_1 \left(S^1 \right) \\ \mathbb{Z} & & \mathbb{Z} & & \mathbb{Z} \end{array},$$

so $r_*i_*(\pi_1(S^1)) = 0$ but $r_*i_* = (ri)_* = id_{\pi_1(S^1)}$, a contradiction.

Theorem 1.18 (Brouwer fixed point theorem). Let $h: D^2 \to D^2$ be a continuous map. Then h has a fixed point, that is there exists $x \in D^2$ such that h(x) = x.

Proof. Assume $h(x) \neq x$ for all $x \in D^2$. Define $r: D^2 \to S^1$ by defining r(x) to be the intersection of the ray starting at h(x) towards x with S^1 . r is continuous, and if $x \in S^1$, then r(x) = x, so r is a retraction, a contradiction.

Lemma 1.17 gives that if $U_1, U_2 \subseteq X$ are open and path-connected such that $U_1 \cup U_2 = X$ and $U_1 \cap U_2$ is path-connected and $x_0 \in U_1 \cap U_2$, then every $[f] \in \pi_1(X, x_0)$ can be factorised as $[f] = [g_1][h_1] \dots [g_n][h_n]$ such that the g_i are loops at x_0 contained in U_1 and the h_i are loops at x_0 contained in U_2 . In other words, $i_1 : U_1 \hookrightarrow X$ and $i_2 : U_2 \hookrightarrow X$, so

$$(i_1)_*: \pi_1(U_1, x_0) \to \pi_1(X, x_0), \qquad (i_2)_*: \pi_1(U_2, x_0) \to \pi_1(X, x_0).$$

Lemma 1.17 gives that $(i_1)_*(\pi_1(U_1,x_0)) \cup (i_2)_*(\pi_1(U_2,x_0))$ generate $\pi_1(X,x_0)$.

Proposition 1.19. $\pi_1(S^n) = 0 \text{ if } n \geq 2.$

Proof. Let $U_1 = S^n \setminus \{(1,0,\ldots,0)\}$ and $U_2 = S^n \setminus \{(-1,0,\ldots,0)\}$. Then $U_1 \cong \mathbb{R}^n$ and $U_2 \cong \mathbb{R}^n$, by stereographic projection. $U_1 \cup U_2 = S^n$ and $U_1 \cap U_2$ is path-connected. Let $x_0 \in U_1 \cap U_2$. $\pi_1(U_1,x_0) = 0$ and $\pi_1(U_2,x_0) = 0$, so Lemma 1.17 gives that $\pi_1(S^n,x_0)$.

1.2 Seifert-van Kampen theorem

1.2.1 Free products with amalgamation

Definition. If S is a set, then F_S is the **free group** on S. We can write any group G as a quotient of some free group F_S ,

$$G = \frac{F}{\langle \langle R \rangle \rangle},$$

where $\langle \langle R \rangle \rangle$ is the **normal closure** of $R \subseteq F_S$, the smallest normal subgroup of F_S containing R. We write $G = \langle S \mid R \rangle$. This is called a **presentation** of G.

Let G_0, G_1, G_2 be groups, and $f_1: G_0 \to G_1$ and $f_2: G_0 \to G_2$ be homomorphisms.

Definition. A group H together with homomorphisms $h_1: G_1 \to H$ and $h_2: G_2 \to H$ such that $h_1f_1 = h_2f_2$ is an **amalgamated product** of G_1 and G_2 over G_0 if it satisfies the following universal property. For every group G and all homomorphisms $h'_1: G_1 \to G$ and $h'_2: G_2 \to G$ such that $h'_1f_1 = h'_2f_2$, there exists a unique homomorphism $\alpha: H \to G$ such that $h'_1 = \alpha h_1$ and $h'_2 = \alpha h_2$.

Theorem 1.20. Given $f_1: G_0 \to G_1$ and $f_2: G_0 \to G_2$. Then there exists an amalgamated product, unique up to isomorphism. We denote it by $G_1 * G_2$.

Proof. Worksheet 2.

Lecture 9 Wednesday 30/01/19

 $G_0 = \{id\}$ is the **free product**. We write $G_1 * G_2$ instead of $G_1 * G_2$. Let $G_1 = \langle S_1 | R_1 \rangle$ and $G_2 = \langle S_2 | R_2 \rangle$. Then $G_1 * G_2 = \langle S_1 \sqcup S_2 | R_1 \cup R_2 \rangle$, with injections $G_i \hookrightarrow G_1 * G_2$ for i = 1, 2. More generally,

$$G_1 * G_2 \cong \frac{G_1 \underset{G_0}{*} G_2}{N}.$$

where N is the normal closure of the set

$$\left\{ f_1(g) f_2(g)^{-1} \mid g \in G_0 \right\} \subseteq G_1 * G_2.$$

1.2.2 The Seifert-vanKampen theorem

Theorem 1.21 (Seifert-van Kampen). Let X be a topological space and $U_1, U_2 \subseteq X$ be open and path-connected such that $X = U_1 \cup U_2$ and $U_1 \cap U_2$ is path-connected and let $x_0 \in U_1 \cap U_2$. Then

$$\pi_1(X, x_0) \cong \pi_1(U_1, x_0) \underset{\pi_1(U_1 \cap U_2, x_0)}{*} \pi_2(U_2, x_0) \cong \frac{\pi_1(U_1, x_0) * \pi_1(U_2, x_0)}{N},$$

where N is the normal closure of the set

$$\left\{ \left(j_{1}\right)_{*}\left(\omega\right)\left(j_{2}\right)_{*}\left(\omega\right)^{-1}\mid\omega\in\pi_{1}\left(U_{1}\cap U_{2},x_{0}\right)\right\} ,$$

and $j_i: U_1 \cap U_2 \hookrightarrow U_i$.

Proof. Consider the natural homomorphism

$$\Phi: \pi_1(U_1, x_0) * \pi_1(U_2, x_0) \to \pi_1(X, x_0).$$

 Φ is surjective by Lemma 1.17. $N \subseteq Ker(\Phi)$. Want to show that $N = Ker(\Phi)$. A **factorisation** of an element $[f] \in \pi_1(X, x_0)$ is a formal product $[f_1] \dots [f_k]$ such that

- each f_i is a loop at x_0 in one of the U_i and $[f_i] \in \pi_1(U_i, x_0)$ is its homotopy class, and
- the loop $f_1 \cdot \cdots \cdot f_k$ is homotopic to f in X.

A factorisation of [f] is a word in $\pi_1(U_1, x_0) * \pi_1(U_2, x_0)$ that is mapped to [f] by Φ . Two factorisations of [f] are **equivalent** if they are related by finitely many of the following two moves.

- If $[f_i]$ and $[f_{i+1}]$ lie in the same group $\pi_1(U_i, x_0)$, exchange $[f_i][f_{i+1}]$ with $[f_i \cdot f_{i+1}]$. These are the relations in $\pi_1(U_i, x_0) * \pi_1(U_i, x_0)$.
- If f_i is a loop in $U_1 \cap U_2$, consider $[f_i]$ as an element in $\pi_1(U_1, x_0)$ instead of $\pi_1(U_2, x_0)$, and vice versa. These are the relations in $\pi_1(U_1, x_0) * \pi_1(U_2, x_0) / N$.

Given $[f] \in \pi_1(X, x_0)$, we want to show that any two factorisations of [f] are equivalent. Let $[f_1] \dots [f_k]$ and $[f'_1] \dots [f'_l]$ be two factorisations of [f], so the two loops $f_1 \dots f_k$ and $f'_1 \dots f'_k$ are homotopic. Let $F: I \times I \to X$ be a homotopy. By compactness, there exist

$$0 = s_0 < \dots < s_m = 1, \qquad 0 = t_0 < \dots < t_n = 1,$$

such that $R_{i,j} = [s_{i-1}, s_i] \times [t_{j-1}, t_j]$ and $F(R_{ij}) \subseteq U_1$ or $F(R_{ij}) \subseteq U_2$. May assume $0 = s_0 < \cdots < s_m = 1$ subdivides the products $f_1 \cdot \cdots \cdot f_k$ and $f'_1 \cdot \cdots \cdot f'_l$. Relabel the R_{ij} to R_1, \ldots, R_{mn} .

mn-m+1		mn
:	٠	:
1		m

A path γ in $I \times I$ from left to right gives a loop $F \mid_{\gamma}$ in X at x_0 . Let γ_r be the path separating the first r rectangles from the others, so

$$F \mid_{\gamma_0} \cong f_1 \cdot \dots \cdot f_k, \qquad F \mid_{\gamma_{mn}} = f'_1 \cdot \dots \cdot f'_l.$$

Let v be a grid point. Choose a path g_v in X from x_0 to F(v), such that g_v is contained in $U_1 \cap U_2$ if $F(v) \in U_1 \cap U_2$ and in a single U_i otherwise. This gives us a factorisation of $[F|_{\gamma_r}]$ into loops only contained in U_1 or U_2 . The factorisations associated to γ_r and γ_{r+1} are equivalent, because the homotopy between $F|_{\gamma_r}$ and $F|_{\gamma_{r+1}}$ by pushing γ_r through R_r takes place within a single U_i .

 $\textbf{Theorem 1.22} \ (\textbf{Seifert-van Kampen}, \, \textbf{strong version}). \ \textit{Let} \ \textit{X} \ \textit{be a path-connected topological space such that}$

Lecture 10 Friday 01/02/19

- $X = \bigcup_{\alpha} A_{\alpha}$,
- A_{α} , $A_{\alpha} \cap A_{\beta}$, and $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ are open and path-connected for all α, β, γ , and
- $x_0 \in \cap_{\alpha} A_{\alpha}$.

Then

$$\pi_1(X, x_0) \cong \frac{*\pi_1(A_\alpha, x_0)}{N},$$

where $N \subseteq *\pi_1(A_\alpha, x_0)$ is the normal closure of the set

$$\left\{ \left(i_{\alpha\beta}\right)_{*}\left(\omega\right)\left(i_{\beta\alpha}\right)_{*}\left(\omega\right)^{-1}\mid\omega\in\pi_{1}\left(A_{\alpha}\cap A_{\beta}\right)\right\} ,$$

and $i_{\alpha\beta}: A_{\alpha} \cap A_{\beta} \hookrightarrow A_{\alpha}$ is the inclusion.

Example. Let $S^1 \vee S^1$ be the wedge product. Fix $x \in S^1$ and $y \in S^1$. Then

$$S^1 \vee S^1 = \frac{S^1 \sqcup S^1}{x \sim y} = \overset{b}{\mathcal{O}} \cdot \overset{a}{\mathcal{O}}.$$

Let

$$A = O \cdot (, \quad B =) \cdot O, \quad A \cap B =) \cdot (.$$

 $\pi_1(A) \cong \langle b \rangle \cong \mathbb{Z}, \ \pi_1(B) \cong \langle a \rangle \cong \mathbb{Z}, \ \text{and} \ \pi_1(A \cap B) = \{id\}. \ A, \ B, \ \text{and} \ A \cap B \ \text{are open and path-connected.}$ Van Kampen gives

$$\pi_1\left(S^1\vee S^1\right)\cong\pi_1\left(A\right)*\pi_1\left(B\right)\cong\mathbb{Z}*\mathbb{Z}\cong F_{\{a,b\}}.$$

More generally, let $X = S_{a_1}^1 \vee \cdots \vee S_{a_n}^1$. By induction,

$$\pi_1(X) = \mathbb{Z} * \cdots * \mathbb{Z} \cong F_{\{a_1,\dots,a_n\}}.$$

Similarly, let $X = \bigvee_{\alpha \in \Lambda} S_{\alpha}^1$. Strong version of van Kampen gives

$$\pi_1(X) = \underset{\alpha \in \Lambda}{*} \mathbb{Z} = F_{\Lambda}.$$

Example. Let T be a torus and $x_0 \in T$. Let

 $A = T \setminus \{ \text{small closed disc } D \}, \qquad B = \{ \text{open set that contains } D \text{ and } x_0 \}.$

- A is homotopy equivalent to $S^1 \vee S^1$, so $\pi_1(A) \cong F_{\{a,b\}}$.
- B is homeomorphic to D^2 , so $\pi_1(B) = \{id\}$.
- $A \cap B$ is homotopy equivalent to S^1 , so $\pi_1(A \cap B) \cong \mathbb{Z}$.

A, B, and $A \cap B$ are open and path-connected. Van Kampen gives

$$\pi_1(T) \cong \frac{\pi_1(A)}{\langle\langle i_*(\pi_1(A \cap B))\rangle\rangle},$$

where $i:A\cap B\hookrightarrow A$. Then

$$i_*: \pi_1(A \cap B) = \langle \omega \rangle \rightarrow \pi_1(A)$$

 $\omega \mapsto aba^{-1}b^{-1}$,

SO

$$\pi_1(T) \cong \frac{F_{\{a,b\}}}{\langle\langle aba^{-1}b^{-1}\rangle\rangle} = \langle a, b \mid aba^{-1}b^{-1}\rangle \cong \mathbb{Z}^2.$$

1.2.3 Applications to CW-complexes

Let X be a path-connected topological space. Let Y be the space obtained by attaching 2-cells $\{e_{\alpha}^2\}$ to X along maps $\phi_{\alpha}: \partial D^2 = S^1 \to X$. Consider the loops

$$\begin{array}{cccc} \phi_{\alpha}': & I & \rightarrow & X \\ & s & \mapsto & \phi_{\alpha} \left(\cos \left(2\pi s\right), \sin \left(2\pi s\right)\right) \end{array},$$

based at $\phi_{\alpha}'(0)$. Let γ_{α} be a path from x_0 to $\phi_{\alpha}'(0)$ for each α . Then $\gamma_{\alpha} \cdot \phi_{\alpha} \cdot \gamma_{\alpha}^{-1}$ is a loop at x_0 . After attaching e_{α}^2 , the loop $\gamma_{\alpha} \cdot \phi_{\alpha} \cdot \gamma_{\alpha}^{-1}$ is homotopic to the constant loop at x_0 . Let $N \subseteq \pi_1(X, x_0)$ be the normal closure of all the elements of the form $[\gamma_{\alpha} \cdot \phi_{\alpha} \cdot \gamma_{\alpha}^{-1}]$. The inclusion $i: X \hookrightarrow Y$ yields

$$i_*: \pi_1(X, x_0) \to \pi_1(Y, x_0)$$
,

and $N \subseteq Ker(i_*)$.

Proposition 1.23. This inclusion $i: X \hookrightarrow Y$ induces a surjection

$$i_*: \pi_1(X, x_0) \to \pi_1(Y, x_0),$$

and $Ker(i_*) = N$, so

$$\pi_1(Y, x_0) \cong \frac{\pi_1(X, x_0)}{N}.$$

Proof. Construct a space Z from Y by attaching a strip $I \times I$ to Y by identifying the lower edge $I \times \{0\}$ with the path γ_{α} and the right edge $\{1\} \times I$ with an arch on e_{α}^2 . Attach all the left edges of the strips with each other. Z deformation retracts to Y. Choose a point $y_{\alpha} \in e_{\alpha}^2$ for each α , such that y_{α} is not contained in X or in the attached strip. Let

$$A = Z \setminus \bigcup_{\alpha} \{y_{\alpha}\}, \qquad B = Z \setminus X.$$

- \bullet A deformation retracts to X.
- B is homotopy equivalent to a point.
- $A \cap B$ is homotopy equivalent to

{paths
$$\gamma_{\alpha}$$
 from x_0 to loops ϕ'_{α} } = $\overset{\phi'_{\alpha}}{O} \overset{\gamma_{\alpha}}{\cdot} \overset{x_0}{\cdot} \overset{\gamma_{\alpha}}{\cdot} \overset{\phi'_{\alpha}}{\circ}$.

A, B, and $A \cap B$ are open and path-connected. Van Kampen gives

$$\pi_1(Y) \cong \pi_1(Z) = \frac{\pi_1(A)}{\langle \langle j_* (\pi_1(A \cap B)) \rangle \rangle},$$

where $j:A\cap B\hookrightarrow A$ is the inclusion. So $\langle\langle j_*\left(\pi_1\left(A\cap B\right)\right)\rangle\rangle$ is exactly N. Thus $\pi_1\left(A\right)=\pi_1\left(X\right).$

Lecture 11 Tuesday 05/02/19

Corollary 1.24. For every group G there exists a two-dimensional CW-complex X_G such that $\pi_1(X_G) = G$.

Proof. Let $G = \langle \{g_{\alpha}\} \mid \{r_{\beta}\} \rangle$ be a presentation of G, that is

$$G = \frac{F_{\{g_{\alpha}\}}}{\langle\langle\{r_{\beta}\}\rangle\rangle}.$$

Seen last time that $\pi_1 \left(\bigvee_{g_{\alpha}} S_{g_{\alpha}}^1 \right) = F_{\{g_{\alpha}\}}$. Each word r_{β} defines a loop in $\bigvee_{g_{\alpha}} S_{g_{\alpha}}^1$. Attach 2-cells to $\bigvee_{g_{\alpha}} S_{g_{\alpha}}^1$ along the loops defined by the relations $\{r_{\beta}\}$. Call this new CW-complex Y. Proposition 1.23 gives that

$$\pi_1(Y, x_0) \cong \frac{\pi_1(X, x_0)}{\langle \langle \{r_\beta\} \rangle \rangle} \cong \frac{F_{\{g_\alpha\}}}{\langle \langle \{r_\beta\} \rangle \rangle} \cong G.$$

Remark. Let $X = \bigcup_n X^n$ be a CW-complex, path-connected. Proposition 1.23 can be used to show the following two facts.

- The inclusion $X^1 \hookrightarrow X$ induces a surjective homomorphism $\pi_1(X^1) \to \pi_1(X)$.
- The inclusion $X^2 \hookrightarrow X$ induces an isomorphism $\pi_1(X^2) \to \pi_1(X)$.

1.3 Covering spaces

1.3.1 Lifting properties

Let X be a topological space. Recall that a **covering space** is $p: \widetilde{X} \to X$ such that each $x \in X$ has an open neighbourhood U such that

$$p^{-1}\left(U\right) =\bigcup_{\alpha}\widetilde{U_{\alpha}},$$

where U_{α} are pairwise disjoint and $p|_{\widetilde{U_{\alpha}}}:\widetilde{U_{\alpha}}\to U$ is a homeomorphism for all α .

Example.

Let $f: Y \to X$ be a continuous map. A **lift** of f is a continuous map $\widetilde{f}: Y \to \widetilde{X}$ such that $p\widetilde{f} = f$, where $p: \widetilde{X} \to X$ is a covering space. Let Y be connected.

- Unique lifting property states that if two lifts \widetilde{f}_1 and \widetilde{f}_2 of f coincide at one point, then they coincide on all of Y.
- Homotopy lifting property states that if $f_t: Y \to X$ is a homotopy and $\widetilde{f_0}: Y \to \widetilde{X}$ is a lift of f_0 then there exists a unique homotopy $\widetilde{f_t}: Y \to \widetilde{X}$ of $\widetilde{f_0}$ that lifts f_t .

Remark.

- If Y is a point, this is called the **path lifting property**. Let $f: I \to X$ be a path with $f(0) = x_0$. If $\widetilde{x_0} \in p^{-1}(x_0)$, then there is a unique path $\widetilde{f}: I \to \widetilde{X}$ lifting f and starting at $\widetilde{x_0}$.
- In particular, the lift of a constant path is constant.
- This implies in particular that the lift of a homotopy of paths is again a homotopy of paths. The endpoints $f_t(0)$ and $f_t(1)$ define constant paths as t varies.

Fix $x_0 \in X$ and $\widetilde{x_0} \in \widetilde{X}$ such that $p(\widetilde{x_0}) = x_0$, so

$$p_*: \pi_1\left(\widetilde{X}, \widetilde{x_0}\right) \to \pi_1\left(X, x_0\right).$$

To every element in $\pi_1(X, x_0)$ we can associate a homotopy class of paths in \widetilde{X} starting at $\widetilde{x_0}$.

Proposition 1.25.

- 1. $p_*: \pi_1\left(\widetilde{X}, \widetilde{x_0}\right) \to \pi_1\left(X, x_0\right)$ is injective.
- 2. $p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_0}\right)\right) \subseteq \pi_1\left(X,x_0\right)$ consists of the homotopy classes of loops at x_0 whose lifts to \widetilde{X} starting at $\widetilde{x_0}$ are loops.

Proof.

- 1. Let $\widetilde{f}_0: I \to \widetilde{X}$ be a loop at $\widetilde{x_0}$ such that $\left[\widetilde{f}_0\right] \in Ker\left(p_*\right)$, so $p\widetilde{f}_0 = f_0$ is homotopic to the constant loop at x_0 . Let $f_t: I \to X$ be a homotopy between f_0 and the constant loop. Homotopy lifting property and remark gives that f_t lifts to a homotopy \widetilde{f}_t of paths between \widetilde{f}_0 and the constant loop, so $\left[\widetilde{f}_0\right] = id \in \pi_1\left(\widetilde{X}, \widetilde{x_0}\right)$ and p_* is injective.
- 2. Let $f: I \to X$ be a loop at x_0 that lifts to a loop \widetilde{f} at $\widetilde{x_0}$. Then $p\widetilde{f} = f$, so $p_*\left(\left[\widetilde{f}\right]\right) = [f]$. On the other hand, if $f: I \to X$ is a loop at x_0 such that there exists a loop $\widetilde{f}: I \to \widetilde{X}$ at $\widetilde{x_0}$ with $p_*\left(\left[\widetilde{f}\right]\right) = [f]$, then f is homotopic to $p\widetilde{f}$. Homotopy lifting property gives that there exists a loop $\widetilde{f}': I \to \widetilde{X}$ at x_0 such that $p\widetilde{f}' = f$.

Let $p:\widetilde{X}\to X$ be a covering space. Let $U\subseteq X$ be an evenly covered neighbourhood of $x\in X$. Let

Lecture 12 Wednesday 06/02/19

$$p^{-1}(U) = \bigsqcup_{\alpha \in \Lambda} \widetilde{U_{\alpha}}.$$

Then the cardinality $|p^{-1}(x)|$ of $p^{-1}(x)$ is exactly the cardinality of $|\Lambda|$. The set of sheets is in bijection with $p^{-1}(x)$. So the cardinality of $p^{-1}(x)$ is locally constant. If X is connected, the cardinality of $p^{-1}(x)$ is constant.

Notation. Let X, Y be topological spaces, $x \in X$, and $y \in Y$. A continuous map

$$f:(X,x)\to (Y,y)$$

is a continuous map $f: X \to Y$ such that f(x) = y.

Proposition 1.26. Let X, \widetilde{X} be path-connected and

$$p: \left(\widetilde{X}, \widetilde{x_0}\right) \to (X, x_0)$$

be a covering space. Then the number of sheets of p equals the index of $p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_0}\right)\right)$ in $\pi_1\left(X,x_0\right)$.

Proof. Let g be a loop in X at x_0 and \widetilde{g} be its lift to \widetilde{X} starting at $\widetilde{x_0}$. Let $H = p_* \left(\pi_1 \left(\widetilde{X}, \widetilde{x_0} \right) \right)$ and let $[h] \in H$. Then $h \cdot g$ lifts to a path $\widetilde{h} \cdot \widetilde{g}$ in \widetilde{X} starting at $\widetilde{x_0}$ with the same endpoint as \widetilde{g} , because \widetilde{h} is a loop, by Proposition 1.25. Define

so Φ is well-defined. Want to show that Φ is bijective.

- Φ is surjective because \widetilde{X} is path-connected. Let \widetilde{g} be a path in \widetilde{X} from $\widetilde{x_0}$ to any point $\widetilde{x_0'} \in p^{-1}(x_0)$, then $g = p \cdot \widetilde{g}$ and $\Phi(H[g]) = \widetilde{x_0'}$.
- Φ is injective, since if $\Phi(H[g_1]) = \Phi(H[g_2])$ then the lift $\widetilde{g_1} \cdot \widetilde{g_2}^{-1}$ of $g_1 \cdot g_2^{-1}$ defines a loop in \widetilde{X} at $\widetilde{x_0}$. Proposition 1.25 gives $[g_1][g_2]^{-1} \in H$, so $H[g_1] = H[g_2]$.

We say that a topological space X has a certain property (P) locally if for each point $x \in X$ and each neighbourhood U of x there is an open neighbourhood $V \subseteq U$ having this property (P).

Example. X is locally path-connected or X is locally simply-connected.

Proposition 1.27. Let

$$p: \left(\widetilde{X}, \widetilde{x_0}\right) \to (X, x_0)$$

be a covering space and

$$f: (Y, y_0) \to (X, x_0)$$

a continuous map, where Y is path-connected and locally path-connected. Then there is a lift

$$\widetilde{f}: (Y, y_0) \to \left(\widetilde{X}, \widetilde{x_0}\right)$$

if and only if $f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$.

$$(Y, y_0) \xrightarrow{\widetilde{f}} (X, \widetilde{x_0})$$

$$\downarrow^p \cdot (X, x_0)$$

Proof.

- \implies Clear, because $f = p\widetilde{f}$ implies $f_* = p_*\widetilde{f}_*$.
- \Leftarrow Assume $f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$. For each $y \in Y$ choose a path γ from y_0 to y, so $f\gamma$ is a path in X from x_0 to f(y). By path lifting, we can lift $f\gamma$ to a path $\widetilde{f\gamma}$ in \widetilde{X} starting at $\widetilde{x_0}$. Define the map

$$\widetilde{f}: (Y, y_0) \to \left(\widetilde{X}, \widetilde{x_0}\right) \\ y \mapsto \widetilde{f\gamma}(1) .$$

$$\widetilde{x_0} \xrightarrow{\widetilde{f}} \widetilde{f\gamma} \widetilde{f}(y) \\ \downarrow p \\ y_0 \xrightarrow{\gamma} y \xrightarrow{f} x_0 \xrightarrow{f\gamma} f(y)$$

- This map is well-defined, that is does not depend on the choice of γ . Let γ' be another path from y_0 to y. Then $h_0 = (f\gamma') \cdot (f\gamma)^{-1}$ is a loop at x_0 and $[h_0] \in f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$. Proposition 1.25 gives that can lift h_0 to a loop $\widetilde{h_0}$ at $\widetilde{x_0}$. The first half of $\widetilde{h_0}$ is $\widetilde{f\gamma'}$ and the second half is $\widetilde{f\gamma}^{-1}$, so $\widetilde{f\gamma}(1) = \widetilde{f\gamma'}(1)$. Thus \widetilde{f} is well-defined.
- We have $p\widetilde{f} = f$, so \widetilde{f} lifts f.
- It remains to show that \widetilde{f} is continuous. Let $y \in Y$ and let U be an evenly covered neighbourhood of f(y). Let \widetilde{U} be the sheet above U such that $\widetilde{f}(y) \in \widetilde{U}$, so $p \mid_{\widetilde{U}} : \widetilde{U} \to U$ is a homeomorphism. Let $V \subseteq Y$ be a path-connected neighbourhood of y such that $f(V) \subseteq U$. Fix a path γ from y_0 to y. Let $y' \in V$ be arbitrary and η be a path from y to y', so $\gamma \cdot \eta$ is a path from y_0 to y'. Then $(f\gamma) \cdot (f\eta)$ is a path in U from x_0 to f(y'). $\widetilde{f\eta} = (p \mid_{\widetilde{U}})^{-1} f\eta$, so $\widetilde{f} \mid_{V} = (p \mid_{\widetilde{U}})^{-1} f$. Thus $\widetilde{f} \mid_{V} : V \to \widetilde{U}$ is continuous, so \widetilde{f} is continuous.

Lecture 13 Friday 08/02/19

1.3.2 The classification of covering spaces

Definition. A covering space $p: \widetilde{X} \to X$ is a **universal cover** if \widetilde{X} is simply-connected.

Definition. A topological space X is **semilocally simply-connected** if each $x \in X$ has a neighbourhood U such that

$$i_*: \pi_1(U, x) \to \pi_1(X, x)$$

is trivial, where $i:U\hookrightarrow X$ is the inclusion.

Example. Let $X = \bigcup_n C_n \subseteq \mathbb{R}^2$ be the Hawaiian earrings, where $C_n \subseteq \mathbb{R}^2$ is the circle of radius 1/n and centre (1/n, 0). Then X is not semilocally simply-connected.

Proposition 1.28. If $p: \widetilde{X} \to X$ is a universal cover, then X is semilocally simply-connected.

Proof. Let $U \subseteq X$ be an evenly covered neighbourhood of $x_0 \in X$, $\widetilde{U} \subseteq \widetilde{X}$ be a sheet over U, and $\gamma \subseteq U$ be a loop at x_0 , so γ lifts to a loop $\widetilde{\gamma} \subseteq \widetilde{U}$ at $\widetilde{x_0}$. $\widetilde{\gamma}$ is homotopic to the constant loop at $\widetilde{x_0}$. Compose this homotopy with p gives that γ is homotopic to the constant loop at x_0 in X, so

$$\pi_1(U, x_0) \to \pi_1(X, x_0)$$

is trivial.

Theorem 1.29. Let X be path-connected, locally path-connected, and semilocally simply-connected. Then there exists a universal cover $p: \widetilde{X} \to X$.

Remark. If

$$p: \left(\widetilde{X}, \widetilde{x_0}\right) \to (X, x_0)$$

is a universal cover, each point $\widetilde{x} \in \widetilde{X}$ can be joined to $\widetilde{x_0}$ by a unique homotopy class of paths, by Proposition 1.6.

 $\left\{ \text{points in } \widetilde{X} \right\} \iff \left\{ [\gamma] \mid \gamma \text{ is a path in } \widetilde{X} \text{ starting at } \widetilde{x_0} \right\} \iff \left\{ [\gamma] \mid \gamma \text{ is a path in } X \text{ starting at } x_0 \right\},$

by the homotopy lifting property.

Proof. Let $x_0 \in X$, and

$$\widetilde{X} = \{ [\gamma] \mid \gamma \text{ is a path in } X \text{ starting at } x_0 \}, \qquad \begin{array}{ccc} p: & \widetilde{X} & \to & X \\ & [\gamma] & \mapsto & \gamma \, (1) \end{array}.$$

Have to

- 1. give \widetilde{X} a topology,
- 2. show that $p: \widetilde{X} \to X$ is a covering, and
- 3. show that \widetilde{X} is simply-connected.

Recall that a basis for a topology on a set Y is a collection \mathcal{B} of subsets such that

- $Y = \bigcup_{U \in \mathcal{B}} U$, and
- if $U_1, U_2 \in \mathcal{B}$ and $y \in U_1 \cap U_2$ then there exists $V \in \mathcal{B}$ such that $y \in V$ and $V \subseteq U_1 \cap U_2$.

A basis defines a topology on Y, by $A \subseteq Y$ is open if and only if A is the union of elements of \mathcal{B} . A map $f: Z \to Y$ is continuous if and only if $f^{-1}(U)$ is open for all $U \in \mathcal{B}$.

1. Let \mathcal{U} be the collection of all path-connected open sets $U \subseteq X$ such that $\pi_1(U) \to \pi_1(X)$ is trivial. Then $X = \bigcup_{U \in \mathcal{U}} U$ because X is semilocally simply-connected. Let $U_1, U_2 \in \mathcal{U}$ and $y \in U_1 \cap U_2$, and let $y \in V \subseteq U_1 \cap U_2$ be path-connected and open.

$$V \hookrightarrow U_1 \hookrightarrow X$$

$$\pi_1(V) \xrightarrow{\text{trivial}} \pi_1(X)$$

so $V \in \mathcal{U}$ gives that \mathcal{U} is a basis for the topology on X. For $U \in \mathcal{U}$ and γ a path in X from x_0 to a point in U, we define

$$U_{[\gamma]} = \{ [\gamma \cdot \eta] \mid \eta \text{ a path in } U \text{ such that } \eta(0) = \gamma(1) \} \subseteq \widetilde{X}.$$

 $U_{[\gamma]}$ only depends on the class $[\gamma]$, so $p\mid_{U_{[\gamma]}}:U_{[\gamma]}\to U$ is bijective. Surjective because U is path-connected and injective because all paths η in U with the same endpoint are homotopic. Claim that $\{U_{[\gamma]}\}$ forms a basis on \widetilde{X} .

- $\bigcup_{U \in \mathcal{U}, \gamma} U_{[\gamma]} = \widetilde{X}$, because $\bigcup_{U \in \mathcal{U}} U = X$.
- Observe that if $[\gamma'] \in U_{[\gamma]}$ then $U_{[\gamma]} = U_{[\gamma']}$. If $\gamma' = \gamma \cdot \eta$ for η a path in U, then elements in $U_{[\gamma']}$ have the form $[\gamma \cdot \eta \cdot \mu]$, so $U_{[\gamma']} \subseteq U_{[\gamma]}$. Elements in $U_{[\gamma]}$ have the form $[\gamma \cdot \mu] = [\gamma \cdot \eta \cdot \eta^{-1} \cdot \mu] = [\gamma' \cdot \eta^{-1} \cdot \mu]$, so $U_{[\gamma]} \subseteq U_{[\gamma']}$. Consider $U_{[\gamma]}$ and let $[\gamma''] \in U_{[\gamma]} \cap V_{[\gamma']}$, so $U_{[\gamma]} = U_{[\gamma'']}$ and $V_{[\gamma']} = V_{[\gamma'']}$. Let $W \in \mathcal{U}$ such that $W \subseteq U \cap V$ and such that $Y''(1) \in W$, so $W_{[\gamma'']} \subseteq U_{[\gamma'']} \cap V_{[\gamma'']}$ and $[\gamma''] \in W_{[\gamma'']}$. This proves the claim.

2. $p\mid_{U_{[\gamma]}}:U_{[\gamma]}\to U$ is a homeomorphism. It is bijective, let $V_{[\gamma']}\subseteq U_{[\gamma]}$ be an element of the basis, so $p\left(V_{[\gamma']}\right)=V\in\mathcal{U}.\ p^{-1}\left(V\right)\cap U_{[\gamma]}=V_{[\gamma']}.$ Thus $p:\widetilde{X}\to X$ is continuous. If $U\in\mathcal{U}$, then

$$p^{-1}\left(U\right) = \bigsqcup_{\left[\gamma\right]} U_{\left[\gamma\right]},$$

so $p: \widetilde{X} \to X$ is a covering space.

3. Let $\widetilde{x_0} \in \widetilde{X}$ be the class of the constant path at x_0 . Let $[\gamma] \in \widetilde{X}$ be arbitrary. $\gamma:[0,1] \to X$ and $\gamma(0) = x_0$. Let γ_t be the path in X defined by

$$\gamma_{t}\left(s\right) = \begin{cases} \gamma\left(s\right) & s \in \left[0, t\right] \\ \gamma\left(t\right) & s \in \left[t, 1\right] \end{cases}.$$

Then

$$\widetilde{\gamma}: I \to \widetilde{X}$$
 $t \mapsto [\gamma_t]$

is a path in \widetilde{X} from $\widetilde{x_0}$ to $[\gamma]$, so \widetilde{X} is path-connected. Recall that $p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_0}\right)\right)$ consists of the classes of loops at x_0 in X that lifts to loops in \widetilde{X} at $\widetilde{x_0}$. Let $[\gamma] \in p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_0}\right)\right)$. Then γ lifts to a loop at $\widetilde{x_0}$ by $t \mapsto [\gamma_t]$. Because it is a loop we have $\widetilde{x_0} = [\gamma_1] = [\gamma]$, so γ is homotopic to the constant loop. Thus $p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_0}\right)\right) = \{id\}$, so \widetilde{X} is simply-connected.

Lecture 14 is a problem class.

Let
$$p: \widetilde{X} \to X$$
 be a covering space, so $p_*\left(\pi_1\left(\widetilde{X}, \widetilde{x_0}\right)\right) \subseteq \pi_1\left(X, x_0\right)$.

Lecture 14 Tuesday 12/02/19 Lecture 15 Wednesday 13/02/19

Proposition 1.30. Let X be path-connected, locally path-connected, and semilocally simply-connected. Then for every subgroup $H \subseteq \pi_1(X, x_0)$ there is a covering space $p: X_H \to X$ such that $p_*(\pi_1(X_H, \widetilde{x_0})) = H$ for some basepoint x_0 .

Proof. Let \widetilde{X} be as constructed above. Define $X_H = \widetilde{X}/\sim$, where $[\gamma] \sim [\gamma']$ if $\gamma(1) = \gamma'(1)$ and $[\gamma \cdot (\gamma')^{-1}] \in H$. This is an equivalence relation.

- $[\gamma] \sim [\gamma]$ because $id \in H$.
- $[\gamma] \sim [\gamma']$ gives $[\gamma'] \sim [\gamma]$ because H contains all its inverses.
- $[\gamma] \sim [\gamma']$ and $[\gamma'] \sim [\gamma'']$ gives $[\gamma] \sim [\gamma'']$ because H is closed under product.

Let $U_{[\gamma]}, U_{[\gamma']}$ be basis neighbourhoods. If $[\gamma] \sim [\gamma']$ then $[\gamma \cdot \eta] \sim [\gamma' \cdot \eta]$, so p is a covering space, and $p^{-1}(U) = \bigcup_{\gamma} U_{[\gamma]}$. Let $\widetilde{x_0} \in X_H$ be the equivalence class of the constant path c_{x_0} at x_0 . Let γ be a loop in X at x_0 such that $[\gamma] \in p_*(\pi_1(X_H, \widetilde{x_0}))$. Again $t \mapsto [\gamma_t]$ is a lift of γ at $\widetilde{x_0}$.

$$t\mapsto [\gamma_t] \text{ is a loop in } X_H \quad \Longleftrightarrow \quad [\gamma_1]=[\gamma]=[c_{x_0}] \text{ in } X_H \quad \Longleftrightarrow \quad [\gamma]\sim [c_{x_0}] \quad \Longleftrightarrow \quad \gamma\in H.$$

Definition. We say that two covering spaces $p_1:\widetilde{X_1}\to X$ and $p_2:\widetilde{X_2}\to X$ are **isomorphic** if there exists a homeomorphism $f:\widetilde{X_1}\to\widetilde{X_2}$ such that

$$\widetilde{X_1} \xrightarrow{f} \widetilde{X_2}$$
 X
 $\downarrow p_2$
 X

Proposition 1.31. Let X be path-connected and locally path-connected and $x_0 \in X$. Two path-connected covering spaces $p_1: \widetilde{X}_1 \to X$ and $p_2: \widetilde{X}_2 \to X$ are isomorphic via an isomorphism $f: \widetilde{X}_1 \to \widetilde{X}_2$ mapping a basepoint $\widetilde{x}_1 \in p_1^{-1}(x_0)$ to a basepoint $\widetilde{x}_2 \in p_2^{-1}(x_0)$ if and only if

$$(p_1)_* \left(\pi_1\left(\widetilde{X_1},\widetilde{x_1}\right)\right) = (p_2)_* \left(\pi_1\left(\widetilde{X_2},\widetilde{x_2}\right)\right).$$

Proof.

 \implies If

$$f: \left(\widetilde{X_1}, \widetilde{x_1}\right) \to \left(\widetilde{X_2}, \widetilde{x_2}\right)$$

is an isomorphism, then $p_1 = p_2 f$, so

$$(p_1)_* \left(\pi_1\left(\widetilde{X}_1, \widetilde{X}_1\right)\right) \subseteq (p_2)_* \left(\pi_1\left(\widetilde{X}_2, \widetilde{X}_2\right)\right),$$

and $p_2 = p_1 f^{-1}$, so

$$(p_2)_* \left(\pi_1\left(\widetilde{X_2},\widetilde{x_2}\right)\right) \subseteq (p_1)_* \left(\pi_1\left(\widetilde{X_1},\widetilde{x_1}\right)\right).$$

← Assume

$$\left(p_{1}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{1}},\widetilde{x_{1}}\right)\right)=\left(p_{2}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{2}},\widetilde{x_{2}}\right)\right).$$

By lifting criterion in Proposition 1.27, we can lift p_1 to a continuous map

$$\widetilde{p_1}: \left(\widetilde{X_1}, \widetilde{x_1}\right) \to \left(\widetilde{X_2}, \widetilde{x_2}\right),$$

and p_2 to a continuous map

$$\widetilde{p_2}:\left(\widetilde{X_2},\widetilde{x_2}\right)\to\left(\widetilde{X_1},\widetilde{x_1}\right),$$

so $p_1\widetilde{p_2} = p_2$ and $p_2\widetilde{p_1} = p_1$.

$$(\widetilde{X}_1, \widetilde{x}_1) \xrightarrow{\widetilde{p_1}} (\widetilde{X}_2, \widetilde{x}_2) \xrightarrow{\widetilde{p_2}} (X, x_0)$$

 $\widetilde{p_1}\widetilde{p_2}$ fixes the point $\widetilde{x_2} \in \widetilde{X_2}$. By the unique lifting property in Proposition 1.7, $\widetilde{p_1}\widetilde{p_2} = id_{\widetilde{x_2}}$. Similarly, $\widetilde{p_2}\widetilde{p_1} = id_{\widetilde{x_1}}$, so $\widetilde{p_1}$ is an isomorphism.

Fix $x_0 \in X$, $\widetilde{x_1} \in p_1^{-1}(x_0)$, and $\widetilde{x_2} \in p_2^{-1}(x_0)$. A basepoint preserving isomorphism

Lecture 16 Friday 15/02/19

$$f: \left(\widetilde{X}_1, \widetilde{x}_1\right) \to \left(\widetilde{X}_2, \widetilde{x}_2\right)$$

is an isomorphism such that $f(\widetilde{x_1}) = \widetilde{x_2}$.

Theorem 1.32 (Galois correspondence). Let X be path-connected, locally path-connected, and semilocally simply-connected, and $x_0 \in X$. Then

1. there is a bijection

$$\left\{\begin{array}{c} path\text{-}connected\ covering\ spaces\ p:\left(\widetilde{X},\widetilde{x_0}\right)\to (X,x_0)\\ up\ to\ basepoint\ preserving\ isomorphisms \end{array}\right\} \qquad \Longleftrightarrow \qquad \left\{\begin{array}{c} subgroups\\ H\subseteq \pi_1\left(X,x_0\right) \end{array}\right\},$$

2. if we ignore the basepoints, this correspondence gives a bijection

$$\left\{\begin{array}{c} path\text{-}connected\ covering\ spaces\ p:\widetilde{X}\to X\\ up\ to\ isomorphisms \end{array}\right\} \qquad \Longleftrightarrow \qquad \left\{\begin{array}{c} conjugacy\ classes\ of\ subgroups\\ H\subseteq \pi_1\left(X,x_0\right) \end{array}\right\}.$$

Proof.

- 1. To a covering space $p: \left(\widetilde{X}, \widetilde{x_0}\right) \to (X, x_0)$ we associate the subgroup $p_*\left(\pi_1\left(\widetilde{X}, \widetilde{x_0}\right)\right) \subseteq \pi_1\left(X, x_0\right)$. Proposition 1.30 and Proposition 1.31 show that this is well-defined on the isomorphism classes and it is bijective.
- 2. Let $p: \widetilde{X} \to X$ be a covering space and $\widetilde{x_1}, \widetilde{x_2} \in p^{-1}(x_0)$. Let $H_i = p_* \left(\pi_1\left(\widetilde{X}, \widetilde{x_i}\right)\right) \subseteq \pi_1(X, x_0)$, for i = 1, 2. Let $\widetilde{\gamma}$ be a path from $\widetilde{x_1}$ to $\widetilde{x_2}$. Let $\gamma = p\widetilde{\gamma}$ be a loop at x_0 . Let $[f] \in \pi_1(X, x_0)$. Then $[f] \in H_1$ if and only if the lift \widetilde{f} is a loop at $\widetilde{x_1}$. $\widetilde{\gamma}^{-1} \cdot \widetilde{f} \cdot \widetilde{\gamma}$ is a loop at $\widetilde{x_2}$ gives $p_* \left(\widetilde{\gamma}^{-1} \cdot \widetilde{f} \cdot \widetilde{\gamma}\right) = \gamma^{-1} \cdot f \cdot \gamma$, so $[\gamma]^{-1}[f][\gamma] \in H_2$. Thus $[\gamma]^{-1}H_1[\gamma] \subseteq H_2$. Similarly, $[\gamma]H_2[\gamma]^{-1} \subseteq H_1$. Conversely, let $H_1 \subseteq \pi_1(X, x_0)$ as above and $[\delta] \in \pi_1(X, x_0)$ be an arbitrary element. Let $\widetilde{\delta}$ be a lift of δ such that $\widetilde{\delta}(0) = \widetilde{x_0}$ and define $x_3 = \widetilde{\delta}(1)$. Then the same construction yields $p_* \left(\pi_1\left(\widetilde{X}, \widetilde{x_3}\right)\right) = [\delta]^{-1}H_1[\delta]$.

1.3.3 Deck transformations and group actions

Definition. Let $p:\widetilde{X}\to X$ be a covering space. A **deck-transformation** is an isomorphism from \widetilde{X} to itself.

The group of deck-transformations is denoted by $G\left(\widetilde{X}\right)$.

Example.

• Let

$$p: \quad \mathbb{R} \quad \to \quad S^1 \subset \mathbb{C} \\ t \quad \mapsto \quad e^{2\pi i t} \quad .$$

 $f: \mathbb{R} \to \mathbb{R}$ such that p(f(t)) = p(t) if and only if $e^{2\pi i f(t)} = e^{2\pi i t}$, if and only if f(t) = t + n, so $G(\mathbb{R}) \cong \mathbb{Z}$.

• Let

$$\begin{array}{cccc} p: & S^1 & \to & S^1 \\ & z & \mapsto & z^n \end{array}.$$

Then $G(S^1) \cong \mathbb{Z}/n\mathbb{Z}$.

An observation is that if \widetilde{X} is path-connected then $f \in G\left(\widetilde{X}\right)$ is uniquely determined by where it sends a single point.

$$\widetilde{X} \xrightarrow{f'} \widetilde{X}$$
 X
 X
 X
 X
 X
 X
 X

If f(x) = f'(x) for a single x, by unique lifting f = f'. So the identity is the only deck-transformation with a fixed point.

Definition. A covering space $p:\widetilde{X}\to X$ is **normal**, or **regular**, or **Galois**, if for each $x\in X$ and every pair $\widetilde{x},\widetilde{x'}\in p^{-1}\left(x\right)$ there is an $f\in G\left(\widetilde{X}\right)$ such that $f\left(\widetilde{x}\right)=\widetilde{x'}$.

Example.

- $p: \mathbb{R} \to S^1$ is normal.
- $p: S^1 \to S^1$ is normal.

Proposition 1.33. Let

$$p: \left(\widetilde{X}, \widetilde{x_0}\right) \to (X, x_0)$$

be a path-connected covering space, and X be path-connected and locally path-connected. Then $p: \widetilde{X} \to X$ is normal if and only if $H = p_* \left(\pi_1 \left(\widetilde{X}, \widetilde{x_0} \right) \right) \subseteq \pi_1 \left(X, x_0 \right)$ is a normal subgroup.

Proof. Let $\widetilde{x_1} \in p^{-1}(x_0)$, let $\widetilde{\gamma}$ be a path from $\widetilde{x_0}$ to $\widetilde{x_1}$ and $\gamma = p(\widetilde{\gamma})$. Then $[\gamma]$ conjugates H to $p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_1}\right)\right)$ so $[\gamma]H[\gamma]^{-1}=H$, if and only if $H=p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_1}\right)\right)$, by Proposition 1.31 if and only if $f\left(\widetilde{x_0}\right)=\widetilde{x_1}$. So $G\left(\widetilde{X}\right)$ acts transitively on $p^{-1}\left(x_0\right)$ if and only if $H\subseteq\pi_1\left(X,x_0\right)$ is a normal subgroup. Let $x_0'\in X$ be another point and h a path from x_0 to $\widetilde{x_0}$. Let \widetilde{h} be a lift of h such that $\widetilde{h}\left(0\right)=\widetilde{x_0}$. Set $\widetilde{x_0}=\widetilde{h}\left(1\right)$ and $p\left(\widetilde{x_0'}\right)=x_0'$. Then

$$\pi_1\left(\widetilde{X},\widetilde{x_0}\right) \xrightarrow{\beta_{\widetilde{h}}} \pi_1\left(\widetilde{X},\widetilde{x_0'}\right)
\downarrow p_* \qquad \qquad \downarrow p_* \qquad \vdots
\pi_1\left(X,x_0\right) \xrightarrow{\beta_h} \pi_1\left(X,x_0'\right)$$

 $H \subseteq \pi_1(X, x_0)$ is normal if and only if $p_*\left(\pi_1\left(\widetilde{X}, \widetilde{x_0'}\right)\right) \subseteq \pi_1(X, x_0')$ is normal, as before if and only if $G\left(\widetilde{X}\right)$ acts transitively on $p^{-1}(x_0')$.

Proposition 1.34. Let

$$p:\left(\widetilde{X},\widetilde{x_0}\right)\to (X,x_0)$$

be a covering space, and X, \widetilde{X} be path-connected and locally path-connected. Let $H = p_* \left(\pi_1 \left(\widetilde{X}, \widetilde{x_0} \right) \right)$ and $N(H) \subseteq \pi_1 \left(X, x_0 \right)$ be the normaliser of H. Then $G\left(\widetilde{X} \right)$ is isomorphic to N(H)/H. In particular,

- if \widetilde{X} is normal, then $G\left(\widetilde{X}\right) \cong \pi_1\left(X, x_0\right)/H$, and
- if \widetilde{X} is the universal cover, then $G\left(\widetilde{X}\right) \cong \pi_1\left(X, x_0\right)$.

Proof. Exercise: read the proof of this in Hatcher.

Lecture 17 Tuesday 19/02/19

Example. Let $X = S^1 \vee S^1$, so $\pi_1(X) = F_{\{a,b\}}$. Then the following are covering spaces.

• A normal covering space

$$\widetilde{X} = \overset{a}{O} \overset{\widetilde{x_0}}{\cdot} \overset{b}{O} \cdot \overset{a}{O} \to \overset{a}{O} \cdot \overset{b}{O} = X, \qquad p_* \left(\pi_1 \left(\widetilde{X}, \widetilde{x_0} \right) \right) = \left\langle a, b^2, bab^{-1} \right\rangle \overset{2}{\subseteq} F_{\{a,b\}}.$$

In general, a two-oriented graph is a covering space of X.

• Not a normal covering space

$$\widetilde{X} = \overset{a}{\mathcal{O}} \cdot \overset{b}{\mathcal{O}} \overset{\widetilde{x_0}}{\cdot} \overset{a}{\mathcal{O}} \cdot \overset{b}{\mathcal{O}} \to \overset{a}{\mathcal{O}} \cdot \overset{b}{\mathcal{O}} = X, \qquad p_* \left(\pi_1 \left(\widetilde{X}, \widetilde{x_0} \right) \right) = \left\langle b^2, bab^{-1}, a^2, aba^{-1} \right\rangle.$$

• A normal covering space

Universal cover is a tree.

Example. Let $T = S^1 \times S^1$, so $\pi_1(T) = \mathbb{Z}^2$. This is abelian, so all covering spaces are normal. Universal cover is

$$\begin{array}{ccc} \mathbb{R}^2 & \to & S^1 \times S^1 \\ (s,t) & \mapsto & \left(e^{2\pi i s}, e^{2\pi i t}\right) \end{array},$$

since \mathbb{R}^2 is simply connected. (Exercise: check that it is a covering space) More generally, if $p: \widetilde{X} \to X$ and $q: \widetilde{X} \to X$ are covering spaces then

$$\widetilde{X} \times \widetilde{Y} \rightarrow X \times Y$$
 $(x,y) \mapsto (p(x), q(y))$

is again a covering space. For example,

$$\begin{array}{ccc} S^1 \times S^1 & \rightarrow & S^1 \times S^1 \\ (z_1, z_2) & \mapsto & (z_1^n, z_2^m) \end{array}.$$

Example. Worksheet 3 exercise 7. Let

$$\mathbb{RP}^n = \frac{\mathbb{R}^{n+1} \setminus \{0\}}{\sim} = \frac{S^n}{\sim}$$

be the **projective** n-space, the space of all lines through the origin in \mathbb{R}^{n+1} , where $x \sim -x$. Let $p: S^n \to \mathbb{RP}^n$ be the quotient map. Claim that this is a covering space. Let $[x] \in \mathbb{RP}^n$. Then $p^{-1}([x]) = \{\pm x\}$. Let U be an open neighbourhood of x such that $U \cap (-U) = \emptyset$, so $p(U) = \{[x] \mid x \in U\}$. Then $p^{-1}(p(U)) = U \cup (-U)$ is open and disjoint. Thus $p|_{U}: U \to p(U)$ is a homeomorphism, so it is a covering space.

• $n \geq 2$ gives that S^n is simply-connected, so $S^n \to \mathbb{RP}^n$ is a universal cover. Then

$$\{id\} = p_* (\pi_1 (S^n)) \stackrel{2}{\subseteq} \pi_1 (\mathbb{RP}^n),$$

so $|\pi_1(\mathbb{RP}^n)| = 2$. Thus $\pi_1(\mathbb{RP}^n) \cong \mathbb{Z}/2\mathbb{Z}$.

• n=1 gives $\mathbb{RP}^1=S^1$, so

$$p: S^1 \to S^1$$

$$z \mapsto z^2$$

is a covering space.

2 Homology

Higher homotopy groups $\pi_n(X, x_0)$ are groups of basepoint preserving homotopies of continuous $\phi: I^n \to X$ such that $\phi(\partial I^n) = x_0$.

Lecture 18 Wednesday 20/02/19

Example.

$$\pi_1\left(S^n\right) = \begin{cases} \mathbb{Z} & n = 1\\ 0 & \text{otherwise} \end{cases}, \qquad \pi_2\left(S^n\right) = \begin{cases} \mathbb{Z} & n = 2\\ 0 & \text{otherwise} \end{cases},$$

$$\pi_3\left(S^n\right) = \begin{cases} \mathbb{Z} & n = 2, 3\\ 0 & \text{otherwise} \end{cases}, \qquad \pi_i\left(S^2\right) = \begin{cases} \frac{\mathbb{Z}}{2\mathbb{Z}} & i = 4, 5\\ \frac{\mathbb{Z}}{12\mathbb{Z}} & i = 6 \end{cases}.$$

Homology is more suitable. The following is the plan.

- Simplicial homology.
- Singular homology.
- Technical machinery to show that they coincide.
- Applications.

2.1 Simplicial and singular homology

2.1.1 Δ -complexes

Definition. Let $m, n \geq 0$.

- An n-simplex in \mathbb{R}^m is the convex hull of a set V of n+1 points in \mathbb{R}^m that are not all contained in an affine (n-1)-dimensional subspace of \mathbb{R}^m .
- The standard *n*-simplex is the convex hull of the standard basis $\{e_1, \ldots, e_{n+1}\}$ in \mathbb{R}^{n+1} ,

$$\{(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}\mid x_i\geq 0,\ x_0+\cdots+x_n=1\}.$$

- An **ordered** *n*-simplex is an *n*-simplex with an ordering on the vertices. We denote it by $[v_0, \ldots, v_n]$, where v_0, \ldots, v_n are the vertices in ascending order.
- The standard ordered *n*-simplex is the ordered *n*-simplex $[e_1, \ldots, e_{n+1}]$ in \mathbb{R}^{n+1} . It is denoted by Δ^n .
- Let $[v_0, \ldots, v_{n+1}]$ be an *n*-simplex in \mathbb{R}^m and let $L \subseteq \mathbb{R}^m$ be the affine subspace spanned by v_0, \ldots, v_n . Then there exists a unique affine morphism

$$\begin{array}{ccc}
L & \to & \mathbb{R}^{n+1} \\
v_i & \mapsto & e_{i+1}
\end{array},$$

for $i = 0, \ldots, n$. This gives a homeomorphism from $[v_0, \ldots, v_n]$ to Δ^n that preserves this ordering.

• For $n \ge 1$, the **faces** of an ordered *n*-simplex $[v_0, \ldots, v_n]$ are the ordered (n-1)-simplices

$$[v_0,\ldots,\widehat{v_i},\ldots,v_n]$$
.

 \hat{v}_i means we omit the vertex v_i .

- The union of all the faces of a simplex Δ is the **boundary** $\partial \Delta$.
- The **interior** of Δ is $\mathring{\Delta} = \Delta \setminus \partial \Delta$.

Example. Let $\Delta^2 = [e_1, e_2, e_3]$. Then $\partial \Delta^2 = [e_1, e_2] \cup [e_1, e_3] \cup [e_2, e_3]$.

Definition. Let X be a topological space. A Δ -complex structure on X is a collection of continuous maps $\sigma_{\alpha}: \Delta^{n(\alpha)} \to X$ for $\alpha \in A$ and $n(\alpha) \in \mathbb{N}$ such that

- 1. the restriction $\sigma_{\alpha} \mid_{\mathring{\Delta}^{n(\alpha)}}$ is injective for all $\alpha \in A$ and for each $x \in X$ there is a unique $\alpha \in A$ such that $x \in \sigma_{\alpha} \left(\mathring{\Delta}^{n(\alpha)}\right)$,
- 2. the restriction of σ_{α} to a face of $\Delta^{n(\alpha)}$ is equal to σ_{β} for some $\beta \in A$ and $n(\beta) = n(\alpha) 1$, and
- 3. $U \subseteq X$ is open if and only if $\sigma_{\alpha}^{-1}(U)$ is open in $\Delta^{n(\alpha)}$ for all $\alpha \in A$.

An observation is that

$$\sigma: \bigsqcup_{\alpha \in A} \Delta^{n(\alpha)} \to X$$

induced by the σ_{α} is a quotient map, since it is surjective by 1 and $U \subseteq X$ is open if and only if $\sigma^{-1}(U)$ is open by 3.

Remark. One can show that an X with a Δ -complex structure is a CW-complex.

Example.

- Torus or Klein bottle is two Δ^2 , three Δ^1 , and one Δ^0 .
- S^2 is a tetrahedron.
- Dunce hat, by identifying all the three faces of the standard 2-simplex with each other, has one Δ^2 , one Δ^1 , and one Δ^0 .

2.1.2 Simplicial homology

Let X be a Δ -complex. The group of n-chains $\Delta_n(X)$ is the free abelian group on the n-simplices $\sigma_\alpha: \Delta^{n(\alpha)} \to X$, where $n(\alpha) = n$. So an element in $\Delta_n(X)$ is of the form

$$\sum_{\alpha \in A, \ n(\alpha)=n} c_{\alpha} \cdot \sigma_{\alpha},$$

where $c_{\alpha} \in \mathbb{Z}$ and all but finitely many of the c_{α} are zero.

Example. Let K be a Klein bottle.

- $\Delta_0(K) = \{n \cdot v \mid n \in \mathbb{Z}\} = \mathbb{Z} \cdot v \cong \mathbb{Z}.$
- $\Delta_1(K) = \{n_1 \cdot a + n_2 \cdot b + n_3 \cdot c \mid n_1, n_2, n_3 \in \mathbb{Z}\} = \mathbb{Z} \cdot a \oplus \mathbb{Z} \cdot b \oplus \mathbb{Z} \cdot c \cong \mathbb{Z}^3$.
- $\Delta_2(K) = \{n_1 \cdot U + n_2 \cdot V \mid n_1, n_2 \in \mathbb{Z}\} = \mathbb{Z} \cdot U \oplus \mathbb{Z} \cdot V \cong \mathbb{Z}^2$.
- $\Delta_n(K) = 0$ for $n \geq 3$.

Similarly for a torus T.

Define the **boundary homomorphism** by

$$\begin{array}{cccc} \partial_n: & \Delta_n\left(X\right) & \to & \Delta_{n-1}\left(X\right) \\ & \sigma_{\alpha} & \mapsto & \sum_{i=0}^{n} \left(-1\right)^i \sigma_{\alpha} \mid_{\left[v_0, \dots, \widehat{v_i}, \dots, v_n\right]} \end{array}.$$

Moreover, we define $\partial_0 = 0$.

Example. Let $\sigma: [v_0, v_1, v_2, v_3] \to X$. Then

$$\partial_{3}\left(\sigma\right)=\sigma\mid_{\left[v_{1},v_{2},v_{3}\right]}-\sigma\mid_{\left[v_{0},v_{2},v_{3}\right]}+\sigma\mid_{\left[v_{0},v_{1},v_{3}\right]}-\sigma\mid_{\left[v_{0},v_{1},v_{2}\right]}.$$

Lecture 19 Friday 22/02/19

Lemma 2.1. The composition

$$\Delta_n(X) \xrightarrow{\partial_n} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X)$$

is the zero map.

Proof. Let $\sigma: [v_0, \ldots, v_n] \to X$ be an *n*-simplex. Then

$$\partial_n (\sigma) = \sum_{i=0}^n (-1)^i \sigma \mid_{[v_0, \dots, \widehat{v_i}, \dots, v_n]},$$

so

$$(\partial_{n-1} \circ \partial_n) (\sigma) = \sum_{j < i} (-1)^i (-1)^j \sigma \mid_{[v_0, \dots, \widehat{v_j}, \dots, \widehat{v_i}, \dots, v_n]} + \sum_{j > i} (-1)^i (-1)^{j-1} \sigma \mid_{[v_0, \dots, \widehat{v_i}, \dots, \widehat{v_j}, \dots, v_n]} = 0.$$

If n=1, clear.

The following is the algebraic situation. A **chain complex** of abelian groups is a diagram (C, ∂) of the form

$$\dots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} \dots \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0,$$

where the C_i are abelian groups and the ∂_n are group homomorphisms such that $\partial_n \circ \partial_{n-1} = 0$ for all n. ∂_n are **boundary homomorphisms**. Elements in C_n are n-chains.

$$Z_n = Ker(\partial_n) \subseteq C_n, \qquad B_n = Im(\partial_{n+1}) \subseteq C_n.$$

Elements in Z_n are **cycles** and elements in B_n are **boundaries**. Since $\partial_{n+1} \circ \partial_n = 0$, we have that $B_n \subset Z_n$. The *n*-th homology group of this chain complex is defined by

$$H_n\left(C_{\cdot},\partial\right) = \frac{Z_n}{B_n}.$$

So, by Lemma 2.1

$$\dots \xrightarrow{\partial_{n+1}} \Delta_n(X) \xrightarrow{\partial_n} \dots \xrightarrow{\partial_1} \Delta_0(X) \xrightarrow{\partial_0} 0$$

is a chain complex. The n-th simplicial homology group is

$$H_n^{\Delta}(X) = \frac{Ker(\partial_n)}{Im(\partial_{n+1})}.$$

Example. Let $X = S^1$.

- $Ker(\partial_0) = \mathbb{Z}$ and $Im(\partial_1) = 0$, so $H_0^{\Delta}(X) \cong \mathbb{Z}$.
- $Ker(\partial_1) = \Delta_1(X)$ and $Im(\partial_2) = 0$, so $H_1^{\Delta}(X) \cong \mathbb{Z}$.
- $H_n^{\Delta}(X) = 0$ if $n \geq 2$.

Example. Let T be a torus.

- $Ker(\partial_0) = \mathbb{Z}$ and $Im(\partial_1) = 0$, so $H_0^{\Delta}(T) \cong \mathbb{Z}$.
- $\partial_2(U) = a + b c$ and $\partial_2(V) = a + b c$, and $\{a, b, a + b c\}$ is a basis for $\Delta_1(T)$. $Ker(\partial_1) = \Delta_1(T)$ and $Im(\partial_2) = \mathbb{Z} \cdot (a + b c)$, so $H_1^{\Delta}(T) \cong \mathbb{Z} \oplus \mathbb{Z}$.
- $H_2^{\Delta}(T) \cong \mathbb{Z}$. (Exercise)

Lecture 20 is a problem class.

Lecture 20 Tuesday 26/02/19 Lecture 21 Wednesday 27/02/19

2.1.3 Singular homology

A singular *n*-simplex in a topological space X is a continuous map $\sigma: \Delta^n \to X$. Let $C_n(X)$ be the free abelian group on the set of all singular simplices in X, that is elements in $C_n(X)$ are finite formal sums

$$\sum_{i} n_i \sigma_i, \qquad n_i \in \mathbb{Z},$$

where $\sigma_i: \Delta^n \to X$ are singular *n*-simplices. Elements in $C_n(X)$ are called **singular** *n*-chains. Define a boundary map

$$\partial_{n}: C_{n}(X) \rightarrow C_{n-1}(X)$$

$$\sigma \mapsto \sum_{i=0}^{n} (-1)^{i} \sigma \mid_{[v_{1},...,\widetilde{v_{i}},...,v_{n}]},$$

for a singular *n*-simplex σ . Extend it linearly to $C_n(X)$.

Lemma 2.2. $\partial_n \circ \partial_{n+1} = 0$.

Proof. Same proof as for Lemma 2.1.

We obtain a chain complex

$$\dots \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} \dots \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} 0.$$

Remark. Often we write ∂ instead of ∂_n .

We define the n-th singular homology group by

$$H_n(X) = \frac{Ker(\partial_n)}{Im(\partial_{n+1})}.$$

An observation is that if X and Y are homeomorphic then $H_n(X) \cong H_n(Y)$.

Proposition 2.3. Let X be a topological space and $X = \bigcup_{\alpha} X_{\alpha}$ be the decomposition into its path-connected components. Then

$$H_n(X) \cong \bigoplus H_n(X_\alpha)$$
.

Proof. A singular n-simplex $\sigma: \Delta^n \to X$ has a path-connected image. So

$$C_n(X) = \bigoplus_{\alpha} C_n(X_{\alpha}).$$

The boundary maps ∂_n preserve this decomposition, so $\partial_n(C_n(X_\alpha)) \subseteq C_{n-1}(X_\alpha)$ gives that $Ker(\partial_n)$ and $Im(\partial_{n+1})$ split as well as direct sums, so

$$H_{n}\left(X\right) = \frac{Ker\left(\partial_{n}\right)}{Im\left(\partial_{n+1}\right)} \cong \bigoplus_{\alpha} H_{n}\left(X_{\alpha}\right).$$

Proposition 2.4. If X is a path-connected, and as always $X \neq \emptyset$, topological space, then $H_0(X) \cong \mathbb{Z}$. Hence for X arbitrary $H_0(X)$ is a direct sum of \mathbb{Z} 's, one for each path-connected component.

Proof. $\partial_0 = 0$, so $H_0(X) = C_0(X) / Im(\partial_1)$. Define

$$\epsilon: C_0(X) \to \mathbb{Z}$$

 $\sum_i n_i \sigma_i \mapsto \sum_i n_i$.

 ϵ is surjective. Enough to show that $Ker(\epsilon) = Im(\partial_1)$. This implies by the isomorphism theorem $H_0(X) \cong \mathbb{Z}$. Let $\sigma: \Delta^1 \to X$ be a 1-simplex. Then

$$\partial_1 (\sigma) = \sigma \mid_{[v_1]} -\sigma \mid_{[v_0]},$$

so $\epsilon\left(\partial_{1}\left(\sigma\right)\right)=0$ gives $Im\left(\partial_{1}\right)\subseteq Ker\left(\epsilon\right)$. On the other hand, $\epsilon\left(\sum_{i}n_{i}\sigma_{i}\right)=0$ gives $\sum_{i}n_{i}=0$. The σ_{i} correspond to points $\sigma_{i}\left(\left[v\right]\right)$ in X. Choose a basepoint $x_{0}\in X$ and let

$$\sigma_0: \quad \begin{array}{ccc} \Delta^0 & \to & X \\ \Delta^0 & \mapsto & x_0 \end{array}$$

be the singular 0-simplex. Let τ_i be a path from x_0 to $\sigma_i([v])$. Consider τ_i as a singular 1-simplex τ_i : $[v_0, v_1] \to X$. We have $\partial_1 \circ \tau_i = \sigma_i - \sigma_0$, so

$$\partial_1 \left(\sum_i n_i \tau_i \right) = \sum_i n_i \left(\sigma_i - \sigma_0 \right) = \sum_i n_i \sigma_i - \sum_i n_i \sigma_0 = \sum_i n_i \sigma_i.$$

Thus $Ker(\epsilon) \subseteq Im(\partial_1)$.

Proposition 2.5. If X is a point, then

$$H_n\left(X\right) = \begin{cases} \mathbb{Z} & n = 0\\ 0 & n > 0 \end{cases}.$$

Proof. For each n there exists a unique singular n-simplex $\partial_n: \Delta^n \to X$, so $C_n(X) \cong \mathbb{Z}$ for all n.

$$\partial_{n}\left(\sigma_{n}\right) = \sum_{i=0}^{n} \left(-1\right)^{i} \sigma_{n-1} = \begin{cases} 0 & n \text{ odd} \\ \sigma_{n-1} & n \text{ even} \end{cases},$$

so $\partial_n = 0$ if n is odd and ∂_n is an isomorphism if n is even.

$$\dots \xrightarrow{\partial_2} C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} 0$$

$$\dots \xrightarrow{\sim} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\sim} 0$$

so $H_n = Ker(\partial_n)/Im(\partial_{n+1}) = 0$ if $n \ge 1$ and $H_0(X) \cong \mathbb{Z}$.

The reduced homology groups $\widetilde{H}_n(X)$ are the homology groups of the augmented chain complex

$$\dots \xrightarrow{\partial_2} C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} \mathbb{Z} \xrightarrow{\epsilon} 0,$$

where ϵ is as in proof of Proposition 2.4.

$$H_n(X) \cong \widetilde{H_n}(X), \qquad n \ge 1.$$

Seen in the proof of Proposition 2.4 that ϵ is surjective and $\epsilon \circ \partial_1 = 0$ gives $Im(\partial_1) \subseteq Ker(\epsilon)$, so ϵ induces a surjective homomorphism

$$\phi_{\epsilon}: H_0(X) = \frac{C_0(X)}{Im(\partial_1)} \to \mathbb{Z}.$$

Then $Ker(\phi_{\epsilon}) = Ker(\epsilon)/Im(\partial_{1}) = \widetilde{H_{0}}(X)$ gives $H_{0}(X)/\widetilde{H_{0}}(X) \cong \mathbb{Z}$, so

$$H_0(X) \cong \widetilde{H_0}(X) \oplus \mathbb{Z}.$$

Lecture 22 Friday 01/03/19

2.1.4 Homotopy invariance

Let (A, ∂) and (B, ∂) be two chain complexes. A **chain map** $f:(A, \partial) \to (B, \partial)$ is a collection of homomorphisms $f_n: A_n \to B_n$ such that $\partial \circ f_n = f_{n+1} \circ \partial$, that is the following diagram commutes.

$$\dots \xrightarrow{\partial} A_{n+1} \xrightarrow{\partial} A_n \xrightarrow{\partial} A_{n-1} \xrightarrow{\partial} \dots$$

$$\downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}} \qquad \cdot \dots$$

$$\dots \xrightarrow{\partial} B_{n+1} \xrightarrow{\partial} B_n \xrightarrow{\partial} B_{n-1} \xrightarrow{\partial} \dots$$

If X and Y are topological spaces and $f: X \to Y$ is a continuous map define the homomorphisms

$$f_{\#}: C_n(X) \rightarrow C_n(Y)$$

 $\sigma: \Delta^n \to X \mapsto f \circ \sigma: \Delta^n \to Y$,

and extend it linearly to $C_n(X)$.

$$\left(f_{\#}\circ\partial\right)\left(\sigma\right)=f_{\#}\left(\sum_{i=0}^{n}\left(-1\right)^{i}\sigma\mid_{\left[v_{0},...,\widehat{v_{i}},...,v_{n}\right]}\right)=\sum_{i=0}^{n}\left(f\circ\sigma\right)\mid_{\left[v_{0},...,\widehat{v_{i}},...,v_{n}\right]}=\left(\partial\circ f_{\#}\right)\left(\sigma\right)$$

gives $f_{\#} \circ \partial = \partial \circ f_{\#}$, so $f_{\#}$ defines a chain map

 $f_{\#}$ maps cycles to cycles, since $\alpha \in C_n(X)$ such that $\partial \circ \alpha = 0$ gives

$$(\partial \circ f_{\#})(\alpha) = (f_{\#} \circ \partial)(\alpha) = 0.$$

 $f_{\#}$ maps boundaries to boundaries, since

$$f_{\#} \circ (\partial \circ \beta) = \partial \circ (f_{\#} \circ \beta)$$
.

 $f_{\#}\left(Ker\left(\partial_{n}\right)\right)\subseteq Ker\left(\partial_{n}\right)$ and $f_{\#}\left(Im\left(\partial_{n+1}\right)\right)\subseteq Im\left(\partial_{n+1}\right)$ gives that $f_{\#}$ induces a homomorphism

$$f_*: H_n(X) \to H_n(Y)$$
.

The following are observations.

• $X \xrightarrow{g} Y \xrightarrow{f} Z$ gives $(f \circ g)_{\#} = f_{\#} \circ g_{\#}$, since

$$\Delta^n \xrightarrow{\sigma} X \xrightarrow{g} Y \xrightarrow{f} Z$$

gives $f \circ (g \circ \sigma) = (f \circ g) \circ \sigma$, so $(f \circ g)_* = f_* \circ g_*$.

• $(id_X)_* = id_{H_n(X)}$.

Theorem 2.6. If two continuous maps $f, g: X \to Y$ are homotopic, then $f_* = g_*: H_n(X) \to H_n(Y)$.

Corollary 2.7. If $f: X \to Y$ is a homotopy equivalence, then $f_*: H_n(X) \to H_n(Y)$ is an isomorphism.

Proof. Let $g: Y \to X$ be a continuous map such that $f \circ g \cong id_Y$ and $g \circ f = id_X$. Then $f_* \circ g_* = (f \circ g)_* = (id_Y)_* = id$. Similarly $g_* \circ f_* = id$, so f_* is an isomorphism.

Example.

$$H_n\left(\mathbb{R}^k\right) = \begin{cases} \mathbb{Z} & n = 0\\ 0 & \text{otherwise} \end{cases}, \qquad \widetilde{H}_n\left(\mathbb{R}^k\right) = 0.$$

Proof of Theorem 2.6. Let $F: X \times I \to Y$ be a homotopy from f to g and $\sigma: \Delta_n \to X$ be a singular n-simplex. Consider the map

$$\Delta^n \times I \xrightarrow{\sigma \times I} X \times I \xrightarrow{F} Y.$$

 $\Delta^n \times I$ is not a simplex. But we can subdivide $\Delta^n \times I$ into (n+1) simplices. In general, we can decompose $\Delta^n \times I$ into n+1 (n+1)-simplices

$$[v_0,\ldots,v_i,w_i,\ldots,w_n], \qquad i=0,\ldots,n.$$

Define **prism-operators**

$$P: C_{n}(X) \rightarrow C_{n+1}(Y)$$

$$\sigma \mapsto \sum_{i=0}^{n} (-1)^{i} F \circ (\sigma \times id) \mid_{[v_{0},...,v_{i},w_{i},...,w_{n}]},$$

for $\sigma: \Delta^n \to X$ a singular *n*-simplex.

$$\dots \xrightarrow{\partial} C_{n+1}(X) \xrightarrow{\partial} C_n(X) \xrightarrow{\partial} C_{n-1}(X) \xrightarrow{\partial} \dots$$

$$g_{\#} \downarrow f_{\#} \qquad P \qquad \qquad P$$

Claim that

$$\partial \circ P = g_{\#} - f_{\#} - P \circ \partial,$$

if and only if $g_{\#} - f_{\#} = \partial \circ P + P \circ \partial$. The claim implies the theorem, since if $\alpha \in C_n(X)$ is a cycle, then

$$g_{\#}\left(\alpha\right)-f_{\#}\left(\alpha\right)=\left(\partial\circ P\right)\left(\alpha\right)+\left(P\circ\partial\right)\left(\alpha\right)=\left(\partial\circ P\right)\left(\alpha\right),$$

so $g_{\#}(\alpha) - f_{\#}(\alpha)$ is a boundary. Thus $g_{\#}(\alpha)$ and $f_{\#}(\alpha)$ are in the same homology class, so $g_{*}([\alpha]) = f_{*}([\alpha])$, where $[\alpha]$ is the homology class of α . Let $\sigma: \Delta^{n} \to X$ be a singular n-simplex.

$$(\partial \circ P) (\sigma) = \partial \left(\sum_{i=0}^{n} (-1)^{i} F \circ (\sigma \times id) \mid_{[v_{0},...,v_{i},w_{i},...,w_{n}]} \right)$$

$$= \sum_{j \leq i} (-1)^{i} (-1)^{j} F \circ (\sigma \times id) \mid_{[v_{0},...,\widehat{v_{j}},...,v_{i},w_{i},...,w_{n}]}$$

$$+ \sum_{j \geq i} (-1)^{i} (-1)^{j+1} F \circ (\sigma \times id) \mid_{[v_{0},...,v_{i},w_{i},...,\widehat{w_{j}},...,w_{n}]}.$$

If i = j the two sums cancel except for

$$F \circ (\sigma \times id) \mid_{\widehat{[v_0, w_0, \dots, w_n]}} = g \circ \sigma = g_\#(\sigma)$$

and

$$-F \circ (\sigma \times id) \mid_{[v_0, \dots, v_n, \widehat{w_n}]} = -f \circ \sigma = -f_{\#}(\sigma).$$

The terms with $i \neq j$ sum up to $(P \circ \partial)(\sigma)$, since we have

$$(P \circ \partial) (\sigma) = \sum_{j < i} (-1)^{i} (-1)^{j} F \circ (\sigma \times id) \mid_{[v_{0}, \dots, \widehat{v_{j}}, \dots, v_{i}, w_{i}, \dots, w_{n}]}$$

$$+ \sum_{j > i} (-1)^{i} (-1)^{j+1} F \circ (\sigma \times id) \mid_{[v_{0}, \dots, v_{i}, w_{i}, \dots, \widehat{w_{j}}, \dots, w_{n}]}.$$

Remark. One can show that there are also induced homomorphisms $f_*:\widetilde{H_n}\left(X\right)\to\widetilde{H_n}\left(Y\right)$ invariant under homotopy. (Exercise)

Lecture 23 Tuesday 05/03/19

2.1.5 Exact sequences and excision

Let $A \subseteq X$ be a subspace. What is the relationship between $H_n(A)$, $H_n(X)$, $H_n(X/A)$?

Definition. A sequence of group homomorphisms of abelian groups

$$\dots \xrightarrow{\alpha_{n+1}} A_n \xrightarrow{\alpha_n} \dots$$

is **exact** at A_n if $Ker(\alpha_n) = Im(\alpha_{n+1})$. The sequence is **exact** if it is exact at A_n for all n.

An observation is if the sequence is exact, then

- $\alpha_n \alpha_{n+1} = 0$, so exact sequences are chain complexes, and
- the homology groups of this chain complex are all trivial.

Example.

- 1. $0 \to A \xrightarrow{\alpha} B$ is exact if and only if $Ker(\alpha) = 0$, if and only if α is injective.
- 2. $A \xrightarrow{\alpha} B \to 0$ is exact if and only if $Im(\alpha) = B$, if and only if α is surjective.
- 3. $0 \to A \xrightarrow{\alpha} B \to 0$ is exact if and only if α is an isomorphism.
- 4. $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ is exact if and only if α is injective, β is surjective, and $Ker(\beta) = Im(\alpha)$, hence β induces an isomorphism $C \cong B/Im(\alpha) = B/A$.

An exact sequence as in 4 is called a **short exact sequence**.

Definition. Let X be a topological space, $A \subseteq X$ a non-empty closed subspace. Then (X, A) is called a **good pair** if A has a neighbourhood in X that deformation retracts to A.

Example.

- (D^n, S^{n-1}) is a good pair, since S^{n-1} is a deformation retract of $D^n \setminus \{0\}$.
- Let $A = \{1/n \mid n \in \mathbb{N}\} \cup \{0\} \subseteq [0,1]$ then ([0,1],A) is not a good pair.

Theorem 2.8. Let (X, A) be a good pair, then there is an exact sequence

$$\dots \xrightarrow{\partial} \widetilde{H_1}(A) \xrightarrow{i_*} \widetilde{H_1}(X) \xrightarrow{j_*} \widetilde{H_1}\left(\frac{X}{A}\right) \xrightarrow{\partial} \widetilde{H_0}(A) \xrightarrow{i_*} \widetilde{H_0}(X) \xrightarrow{j_*} \widetilde{H_0}\left(\frac{X}{A}\right) \to 0,$$

where $i: A \hookrightarrow X$ is the inclusion and $j: X \to X/A$ is the quotient.

Corollary 2.9. $\widetilde{H_n}(S^n) \cong \mathbb{Z}$ and $\widetilde{H_i}(S^n) = 0$ if $i \neq 0$.

Proof. (D^n, S^{n-1}) is a good pair. Let n > 0. Recall that $D^n/S^{n-1} \cong S^n$, so

$$\dots \xrightarrow{\partial} \widetilde{H_{i}} \left(S^{n-1} \right) \xrightarrow{i_{*}} \widetilde{H_{i}} \left(D^{n} \right) \xrightarrow{j_{*}} \widetilde{H_{i}} \left(S^{n} \right) \xrightarrow{\partial} \widetilde{H_{i-1}} \left(S^{n-1} \right) \xrightarrow{i_{*}} \widetilde{H_{i-1}} \left(D^{n} \right) \xrightarrow{j_{*}} \widetilde{H_{i-1}} \left(S^{n} \right) \xrightarrow{\partial} \dots$$

$$0 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

Then $\widetilde{H}_{i}\left(S^{n}\right)\cong\widetilde{H}_{i-1}\left(S^{n-1}\right)$ for i>0, so

$$\dots \xrightarrow{\partial} \widetilde{H_1} \left(S^{n-1} \right) \xrightarrow{i_*} \widetilde{H_1} \left(D^n \right) \xrightarrow{j_*} \widetilde{H_1} \left(S^n \right) \xrightarrow{\partial} \widetilde{H_0} \left(S^{n-1} \right) \xrightarrow{i_*} \widetilde{H_0} \left(D^n \right) \xrightarrow{j_*} \widetilde{H_0} \left(S^n \right) \to 0$$

n > 0 and i > 0, so $\widetilde{H}_i(S^n) \cong \widetilde{H}_{i-1}(S^{n-1})$, and $\widetilde{H}_0(S^n) = 0$. We know that $\widetilde{H}_0(S^0) \cong \mathbb{Z}$ and $\widetilde{H}_n(S^0) = 0$, by Proposition 2.3 and Proposition 2.5. Doing induction on n, $\widetilde{H}_n(S^n) \cong \mathbb{Z}$ and $\widetilde{H}_i(S^n) = 0$ if $i \neq n$.

Corollary 2.10. There exists no retraction $r: D^n \to \partial D^n$.

Proof. Assume there exists such an $r: D^n \to \partial D^n$. Let $i: \partial D^n \to D^n$. Then $ri = id_{\partial D^n}$ gives $r_*i_* = (ri)_* = id$, so

$$\underbrace{H_{n-1}(\partial D^n) \xrightarrow{i_*} H_{n-1}(D^n) \xrightarrow{r_*} H_{n-1}(\partial D^n)}_{\mathbb{Z}} \ .$$

Thus $i_* = 0$ and $r_* = 0$, a contradiction.

Theorem 2.11 (Brouwer fixed point theorem). Every continuous map $f: D^n \to D^n$ has a fixed point.

Proof. Assume there exists a fixed point then construct as in dimension two a retraction $D^n \to \partial D^n$, a contradiction to Corollary 2.10.

Let X be a topological space and $A \subseteq X$ be a subspace. Define

$$C_n(X, A) = \frac{C_n(X)}{C_n(A)}.$$

Let $\partial: C_n(X) \to C_{n-1}(X)$ be the boundary map then $\partial(\sigma: \Delta^n \to A) \in \partial(C_n(A)) \subseteq C_{n-1}(A)$. So ∂ induces a homomorphism

$$\partial: C_n(X,A) \to C_{n-1}(X,A)$$
,

such that $\partial \circ \partial = 0$. This gives a chain complex

$$\cdots \to C_{n+1}(X,A) \xrightarrow{\partial} C_n(X,A) \xrightarrow{\partial} C_{n-1}(X,A) \to \cdots$$

- The homology groups $H_n(X,A)$ of this complex are the **relative homology groups**.
- The relative *n*-chains are $C_n(X, A)$.
- The **relative** *n*-cycles are $Ker(\partial) \subseteq C_n(X, A)$, of the form $[\alpha]$, for $\alpha \in C_n(X)$ such that $\partial(\alpha) \in C_{n-1}(A)$.
- The **relative** *n*-boundaries are $Im(\partial) \subseteq C_n(X, A)$, of the form $[\alpha]$, for $\alpha \in C_n(X)$ such that $\alpha = \partial \beta + \gamma$ for $\beta \in C_{n+1}(X)$ and $\gamma \in C_n(A)$.

A short exact sequence of chain complexes is

Lecture 24 Wednesday 06/03/19

$$0 \to (A_{\cdot}, \partial) \xrightarrow{i} (B_{\cdot}, \partial) \xrightarrow{j} (C_{\cdot}, \partial) \to 0,$$

for i, j chain maps, where

$$0 \to A_n \xrightarrow{i} B_n \xrightarrow{j} C_n \to 0$$

is a short exact sequence for all n, so

A short exact sequence of chain complexes always yields a long exact sequence of homology groups

$$\dots \xrightarrow{\partial} H_n(A) \xrightarrow{i_*} H_n(B) \xrightarrow{j_*} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{i_*} H_{n-1}(B) \xrightarrow{j_*} H_{n-1}(C) \xrightarrow{\partial} \dots$$

This is the **zig-zag lemma**. First we construct the **connecting map** $\partial: H_n(C) \to H_{n-1}(A)$. Let $c \in C_n$ be a cycle.

- j is surjective, so c = j(b) for some $b \in B_n$.
- $j(\partial(b)) = \partial(j(b)) = \partial c = 0$, so $\partial b \in Ker(j) \subseteq B_{n-1}$ gives that $\partial(b) = i(a)$ for some $a \in A_{n-1}$, by exactness.
- $\partial(a) = 0$, since $i(\partial(a)) = \partial(i(a)) = \partial(\partial(b)) = 0$ and i is injective, so $\partial(a) = 0$.

$$a \in A_{n-1}$$

$$\downarrow i$$

$$b \in B_n \xrightarrow{\partial} \in \partial (b) \in B_{n-1} :$$

$$\downarrow j$$

$$c \in C_n$$

Define

$$\partial: H_n(C) \rightarrow H_{n-1}(A)$$

 $[c] \mapsto [a]$.

This is well-defined.

- a is uniquely determined by $\partial(b)$ because i is injective.
- If we choose b' instead of b, then j(b') = j(b), so j(b'-b) = j(b') j(b) = 0 gives that $b'-b \in Ker(j) = Im(i)$, hence b'-b = i(a') for some $a' \in A_n$, so b' = b + i(a'). If we replace b by b' = b + i(a') this corresponds to replacing a by $a + \partial(a')$, because

$$i(a + \partial(a')) = i(a) + i(\partial(a')) = \partial(b) + \partial(i(a')) = \partial(b + i(a'))$$

and $[a] = [a + \partial (a')].$

• A different choice of c in its homology class has the form $c + \partial(c')$ for some $c' \in C_{n+1}$. Let $b' \in B_{n+1}$ such that j(b') = c'. Then

$$c + \partial(c') = c + \partial(j(b')) = j(b) + j(\partial(b')) = j(b + \partial(b')),$$

so b is replaced by $b + \partial(b')$ but $\partial(b) = \partial(b + \partial b')$, so $\partial(b)$ is unchanged and hence a is unchanged.

The map $\partial: H_n(C) \to H_{n-1}(A)$ is a homomorphism, since if $\partial([c_1]) = [a_1]$ and $\partial([c_2]) = [a_2]$ via elements b_1 and b_2 in B_n , then

$$j(b_1 + b_2) = j(b_1) + j(b_2) = c_1 + c_2,$$
 $i(a_1 + a_2) = i(a_1) + i(a_2) = \partial(b_1) + \partial(b_2) = \partial(b_1 + b_2),$ so $\partial([c_1] + [c_2]) = [a_1] + [a_2].$

Theorem 2.12. The sequence

$$\dots \xrightarrow{\partial} H_n(A) \xrightarrow{i_*} H_n(B) \xrightarrow{j_*} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{i_*} H_{n-1}(B) \xrightarrow{j_*} H_{n-1}(C) \xrightarrow{\partial} \dots$$

is exact.

Proof. Diagram chase, see Hatcher.

Let i be the inclusion and j be the quotient.

$$\begin{array}{cccc}
0 & 0 & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow \\
\dots & \xrightarrow{\partial} C_n(A) & \xrightarrow{\partial} C_{n-1}(A) & \xrightarrow{\partial} \dots \\
\downarrow^i & & \downarrow^i & \\
\dots & \xrightarrow{\partial} C_n(X) & \xrightarrow{\partial} C_{n-1}(X) & \xrightarrow{\partial} \dots \\
\downarrow^j & & \downarrow^j & \\
\dots & \xrightarrow{\partial} C_n(X,A) & \xrightarrow{\partial} C_{n-1}(X,A) & \xrightarrow{\partial} \dots \\
\downarrow^0 & \downarrow^0 & \downarrow^0 & \downarrow^0
\end{array}$$

This diagram commutes, so this is a short exact sequence of chain complexes. By zig-zag gives a long exact sequence of homology groups

$$\dots \xrightarrow{\partial} H_1(A) \xrightarrow{i_*} H_1(X) \xrightarrow{j_*} H_1(X,A) \xrightarrow{\partial} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X,A) \to 0.$$

What is $\partial: H_n(X,A) \to H_{n-1}(A)$? If $[a] \in H_n(X,A)$ is represented by a cycle $\alpha \in C_n(X)$, then $\partial([\alpha])$ is the class of the cycle $\partial(\alpha)$, so $\partial([\alpha]) = [\partial(\alpha)]$. We also obtain a short exact sequence of the augmented chain complex

so if $A \neq \emptyset$, then $\widetilde{H}_n(X,A) = H_n(X,A)$ for all n. We also have a long exact sequence

$$\cdots \rightarrow \widetilde{H_n}(A) \rightarrow \widetilde{H_n}(X) \rightarrow \widetilde{H_n}(X,A) \rightarrow \widetilde{H_{n-1}}(A) \rightarrow \widetilde{H_{n-1}}(X) \rightarrow \widetilde{H_{n-1}}(X,A) \rightarrow \cdots$$

An observation is if $x_0 \in X$ then $H_n(X, x_0) \cong \widetilde{H_n}(X)$ for all n. Another observation is that a continuous map $f: X \to Y$ such that $f(A) \subseteq B$ induces a chain map

$$f_{\#}:C_n(X,A)\to C_n(Y,B)$$
,

since $f_{\#}: C_n(X) \to C_n(Y)$ maps $C_n(A)$ to $C_n(B)$ so it is well-defined on the quotient.