Transmission Media

Radhika Sukapuram

October 13, 2020

Radhika Sukapuram Lecture 12 October 13, 2020 1 / 26

Transmission media

- A transmission medium is the physical path between transmitter and receiver
- For guided media, electromagnetic waves are guided along a solid medium, such as copper twisted pair, copper coaxial cable, and optical fiber.
- For unguided media, wireless transmission occurs through the atmosphere, outer space, or water.

Radhika Sukapuram Lecture 12 October 13, 2020 2 / 26

Data transmission

- characteristics and quality of a data transmission are determined by
 - the characteristics of the medium
 - the characteristics of the signal
- Guided media: the medium is more important
- Unguided media: the bandwidth of the signal produced by the transmitting antenna is more important than the medium in determining transmission characteristics

Radhika Sukapuram Lecture 12 October 13, 2020 3 / 26

Unguided media

- A key property of signals transmitted by antenna is directionality
- signals at lower frequencies are omni- directional
- At higher frequencies, it is possible to focus the signal into a directional beam

4 / 26

Radhika Sukapuram Lecture 12 October 13, 2020

Key considerations in data transmission system design

- Data rate
- Distance

Need to achieve the highest data rates over the longest distances

Radhika Sukapuram Lecture 12 October 13, 2020 5 / 26

Factors determining data rates and distance

- Bandwidth: The greater the bandwidth, the _____ the data rate that can be achieved (greater/lesser)
- Transmission impairments: For guided media, from high impairments to low impairments — twisted pair, coaxial cable, optical fiber
- Interference: from competing signals in overlapping frequency bands can distort or cancel out a signal
 - For guided media, 1) alien crosstalk interference due to nearby cables
 2) internal crosstalk adjacent conductors under the same cable sheath
 3) electromagnetic coupling from unguided transmission
- Number of receivers: Shared link with multiple attachments each attachment introduces some attenuation and distortion on the line, limiting distance and/or data rate

Radhika Sukapuram Lecture 12 October 13, 2020 6 / 26

Electromagnetic Spectrum for Telecommunications


```
ELF = Extremely low frequency MF = Medium frequency UHF = Ultrahigh frequency VF = Voice frequency HF = High frequency SHF = Superhigh frequency VLF = Very low frequency VHF = Very high frequency EHF = Extremely high frequency LF = Low frequency
```

Radhika Sukapuram Lecture 12 October 13, 2020 7 / 26

Guided Transmission media

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multipair cables)	0 to 1 MHz	0.7 dB/km@1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	186 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km

 $THz = terahertz = 10^{12}Hz$

- For guided transmission media, the transmission capacity, in terms of either data rate or bandwidth, depends on 1) the distance and 2) whether the medium is point-to-point or multipoint
- 3 commonly used guided transmission media: twisted pair, coaxial cable, optical fiber

Twisted pair

- Two insulated copper wires arranged in a regular spiral pattern
- A number of these pairs are bundled together into a cable by wrapping them in a tough protective sheath
- The twisting tends to decrease the crosstalk interference between adjacent pairs in a cable
- Neighboring pairs in a bundle different twist lengths to reduce the crosstalk interference

Twisted pair: explanation

- The currents induced in each wire by an external source depends on the distance of the wire from the source
- Twisting ensures that both the wires are on an average at equal distance from the source
- Thus both the wires are affected equally
- It is the difference in voltage between the two wires that is amplified
 - since noise affects both the wires nearly equally, its effect is minimized

Twisted pair: applications

- The most common guided transmission medium for analog and digital singals
- Telephone network individual residential telephones are connected to the local telephone exchange by a twisted-pair wire (subscriber loops)
- Individual office telephones are connected to a private branch exchange (PBX) through a twisted pair (64 kbps)
- Ethernet operates over twisted pair to connect PCs over a Local Area Network (100 Mbps to 1Gpbs)
- Long distance connections (more than 4 Mbps)

11 / 26

Radhika Sukapuram Lecture 12 October 13, 2020

Twisted pair: transmission characteristics

- Amplifiers are required for every 5 to 6 km and repeaters every 2 to 3 km
- Attenuation is a strong function of frequency
- Susceptible to cross-talk
- Immune to interference from low frequencies (AC power transmitted at 60 Hz)
- Shielded twisted pair protects from high frequency disturbers (example: walkie-talkies at 30 Mhz) and supports higher data rates
- Shielding refers to electromagnetic shielding

Foil / Unshielded Twisted Pair (F/UTP)

There is a foil or braid shield inside the jacket covering all wires (as a group). This configuration is sometimes designated as screened twisted pair

Figure source: Wikipedia

Radhika Sukapuram Lecture 12 October 13, 2020 13 / 26

Unshielded Foil Twisted Pair (U/FTP)

Each pair of wires is individually shielded with metallic foil

Figure source:https://pactech-inc.com/difference-futp-vs-uftp-cat6a-cables/

Shielded Foil Twisted Pair (S/FTP)

There is a shield around each individual pair, as well as around the entire group of wires. This is referred to as fully shielded twisted pair or shielded/foil twisted pair

Figure source: Wikipedia

Radhika Sukapuram Lecture 12 October 13, 2020 15 / 26

	Category 5e Class D	Category 6 Class E	Category 6A Class E _A	Category 7 Class F	Category 7 _A Class F _A
Bandwidth	100 MHz	250 MHz	500 MHz	600 MHz	1,000 MHz
Cable type	UTP	UTP/FTP	UTP/FTP	S/FTP	S/FTP
Insertion loss (dB)	24	21.3	20.9	20.8	20.3
NEXT loss (dB)	30.1	39.9	39.9	62.9	65
ACR (dB)	6.1	18.6	19	42.1	44.1

UTP = Unshielded twisted pair

FTP = Foil twisted pair

S/FTP = Shielded/foil twisted pair

American National Standards Institute (ANSI) has come up with the above categories and classes.

16 / 26

- Insertion loss: the amount of attenuation across the link from the transmitting system to the receiving system
 - Attenuation in decibels is a linear function of distance
 - Attenuation is also a function of frequency

Radhika Sukapuram Lecture 12 October 13, 2020 17 / 26

- Near-end crosstalk (NEXT) loss: the coupling of the signal from one pair of conductors to another pair
 - Near-end: coupling that takes place when the transmit signal entering the link couples back to the receive conductor pair at that same end of the link
 - Higher dB values are better
 - NEXT loss is not a function of distance.
 - The higher the frequency, the higher the NEXT loss

Twisted pair: parameters

Insertion loss

$$A_{dB} = 10 \log_{10} \frac{P_t}{P_r}$$

NEXT loss

$$NEXT_{dB} = 10\log_{10}\frac{P_t}{P_c}$$

Attenuation-to-crosstalk ratio (ACR)

$$ACR_{dB} = NEXT_{dB} - A_{dB}$$

ACR is a measure of how much larger the received signal strength is compared to the crosstalk on the same pair

19 / 26

Question

Smaller values of NEXT loss correspond to

- (A) decreasing amount of crosstalk
- (B) increasing amount of crosstalk
- (C) neither of the above

Radhika Sukapuram Lecture 12 October 13, 2020 20 / 26

Question

Which of the following is true of ACR?

- (A) A positive value is required for successful operation
- (B) A negative value is required for successful operation

Radhika Sukapuram Lecture 12 October 13, 2020 21 / 26

Attenuation and crosstalk

$$\begin{aligned} 10\log_{10}\frac{P_{t}}{P_{c}} &> 10\log_{10}\frac{P_{t}}{P_{r}} \\ \log_{10}P_{t} &- \log_{10}P_{c} &> \log_{10}P_{t} - \log_{10}P_{r} \\ \log_{10}P_{r} &> \log_{10}P_{c} \\ P_{r} &> P_{c} \end{aligned}$$

 ${\sf Received\ power} > {\sf Cross\ talk}$

 Radhika Sukapuram
 Lecture 12
 October 13, 2020
 22 / 26

	Category 5e Class D	Category 6 Class E	Category 6A Class E _A	Category 7 Class F	Category 7 _A Class F _A
Bandwidth	100 MHz	250 MHz	500 MHz	600 MHz	1,000 MHz
Cable type	UTP	UTP/FTP	UTP/FTP	S/FTP	S/FTP
Insertion loss (dB)	24	21.3	20.9	20.8	20.3
NEXT loss (dB)	30.1	39.9	39.9	62.9	65
ACR (dB)	6.1	18.6	19	42.1	44.1

UTP = Unshielded twisted pair

FTP = Foil twisted pair

S/FTP = Shielded/foil twisted pair

Communication is possible for frequencies greater than 250 MHz due to cross-talk cancellation.

Coaxial cable

- Diameter from 1 to 2.5 cm
- Can be used over longer distances and support more stations on a shared line than twisted pair

24 / 26

Coaxial cable - applications

- Television distribution (cable TV)
- Long-distance telephone transmission using FDM, a coaxial cable can carry over 10,000 voice channels simultaneously
- Short-run computer system links
- Local area networks

Coaxial cable: transmission characteristics

- Used to transmit analog and digital signals
- Frequency characteristics are superior to those of twisted pair cables
- Less susceptible to interference and crosstalk than twisted pair because of shielded concentric construction
- Constraints on performance: attenuation, thermal noise, and intermodulation noise (the last only when several channels are used, such as in FDM)
- Amplifiers are needed every few kilometers and repeaters every kilometer
- Spacing decreases if higher frequencies (analog) / higher data rates (digital) are used

Radhika Sukapuram Lecture 12 October 13, 2020 26 / 26