FONCTION LOGARITHME NEPERIEN (Ln)

1 - Définition :

On appelle une fonction logarithme népérien toute expression ayant pour forme ln(u(x)) avec u(x) étant une fonction (polynôme ou rationnelle ou irrationnelle ou exponentielle ou ln ou circulaire).

 $\underline{\mathbf{NB}}: u(x)$ représente toute écriture ou expression se trouvant après la fonction ln tout en sachant qu'elle est toujours attachée avec cette fonction.

Exemples:

- $f(x) = \ln\sqrt{2x+1} \text{ avec } u(x) = \sqrt{2x+1}$
- $f(x) = \ln x^2 + 2x \text{ avec } u(x) = x^2$
- \Rightarrow $g(x) = 2x \ln x \text{ avec } u(x) = x$

2- Ensemble de définition d'une fonction logarithme népérien (In) :

L'ensemble de définition d'une fonction In dépend de la forme qu'elle dispose :

•
$$\underline{1}^{\operatorname{er}} \operatorname{cas} : f(x) = \operatorname{ln}(u(x))$$

f(x) existe ssi u(x) > 0

Exemple: f(x) = ln(2x + 1) avec u(x) = 2x + 1

$$f(x)$$
 existe ssi $2x + 1 > 0 \Rightarrow 2x > -1 \Rightarrow x > -\frac{1}{2}$ alors $E_f = \left[-\frac{1}{2}; +\infty\right]$

•
$$2^e \cos : f(x) = ln\sqrt{u(x)}$$

f(x) existe ssi u(x) > 0

Exemple: $f(x) = ln\sqrt{x-1}$ avec u(x) = x-1

$$f(x)$$
 existe ssi $x-1>0 \Rightarrow x>1$ alors $E_f=[1;+\infty[$

$$\underline{3^e \text{ cas}} : f(x) = \ln|u(x)|$$

f(x) existe ssi $u(x) \neq 0$

Exemple:
$$f(x) = ln|-x+1|$$
 avec $u(x) = -x+1$

$$f(x)$$
 existe ssi $-x + 1 \neq 0 \Rightarrow -x \neq -1 \Rightarrow x \neq 1$ alors $E_f =]-\infty$; $1[u]1$; $+\infty[$

Lorsqu'on a ce genre de cas, l'ensemble de définition va dépendre de la nature de l'entier n (pair ou impair) : $\begin{cases} si \ n \ est \ pair \ alors \ u(x) \neq 0 \\ si \ n \ est \ impair \ alors \ u(x) > 0 \end{cases}$

* Exemple 1: $f(x) = x + x \ln x^2$ avec u(x) = x et n = 2 (n est pair)

f(x) existe ssi $x \neq 0 \Rightarrow x \neq 0$ alors $E_f =]-\infty$; O[u]O; $+\infty$

* Exemple 2: $f(x) = x + 1 + ln(x - 2)^3$ avec u(x) = x - 2 et n = 3 (n est impair)

f(x) existe ssi $x - 2 > 0 \Rightarrow x > 2$ alors $E_f =]2$; $+\infty$

3- Notion des limites classiques d'une fonction logarithme népérien (In)

Les limites classiques ont pour but de faciliter la résolution d'une limite.

a)
$$\lim_{x\to 0} \ln x = -\infty$$

b)
$$\lim_{x\to 0} (x^n \ln x \text{ ou } x \ln x) = 0 \text{ (avec } n > 1)$$

c)
$$\lim_{x\to 0} \frac{\ln x}{x} = -\infty$$

d)
$$\lim_{x\to 0} \frac{x}{\ln x} = 0$$

e)
$$\lim_{x\to +\infty} \ln x = +\infty$$

f)
$$\lim_{x \to +\infty} (x^n \ln x \text{ ou } x \ln x) = +\infty$$

g)
$$\lim_{x\to +\infty} (\frac{\ln x}{x} \text{ ou } \frac{\ln x}{x^n}) = 0 \text{ (avec } n > 1)$$

h)
$$\lim_{x \to +\infty} \left(\frac{x}{\ln x} \text{ ou } \frac{x^n}{\ln x} \right) = +\infty$$

i)
$$\lim_{x\to 0} (\frac{\ln(x+1)}{x} \text{ ou } \frac{\ln(ax+1)}{ax}) = 1$$

j)
$$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$$

<u>NB</u>: La limite quand x tend vers moins l'infini d'une fonction ln $(\lim_{x\to-\infty} lnx)$ n'existe pas. A moins qu'il y ait la présence d'une valeur absolue.

4- Propriétés :

Elle dispose de plusieurs propriétés qui ont pour rôle de faciliter la résolution des équations ou à débloquer des expressions difficilement manipulables.

a)
$$ln(a \times b) = lna + lnb$$

b)
$$\frac{lna}{lnb} = lna - lnb$$

c)
$$ln(a)^n = nlna$$

d)
$$ln\left(\frac{1}{2}\right) = -lnc$$

e)
$$lna = lnb \Rightarrow a = b$$

f)
$$lne^u = u$$
 (Exemples : $lne^x = x$; $lne^2 = 2$)

Remarques:

 R_1 : ln0 n'existe pas (impossible)

 $R_2: ln1 = 0$

 R_3 : ln(-2) impossible car la fonction ln ne possède pas de valeur négative à moins qu'il y ait la présence d'une valeur absolue.

 ${\bf NB}$: Que le nom de fonction logarithme népérien ne t'intimide pas car au sein des propriétés, elle possède les mêmes réalités que celui des logarithmes (log) que t'as eu à étudier en classe de 4^e et 3^e .

5- La dérivée d'une fonction ln :

Soit une fonction f , définie par f(x) = lnu(x). Elle possède pour fonction dérivée f' ayant pour forme : $\left(lnu(x)\right)' = \frac{u'(x)}{u(x)}$

Exemples:

$$f(x) = ln(2x+1)$$
. forme: $lnu = \frac{u}{u}$ avec
$$\begin{cases} u = 2x+1 \\ et \\ u' = 2 \end{cases}$$
 d'où $f'(x) = \frac{2}{2x+1}$

$$g(x) = lnx$$
. forme: $lnu = \frac{u'}{u}$ avec
$$\begin{cases} u = x \\ et \\ u' = 1 \end{cases}$$
 d'où $g'(x) = \frac{1}{x}$

$$g(x) = \ln{(2x^2 + x)}. \text{ forme}: \ln{u} = \frac{u'}{u} \text{ avec} \begin{cases} u = 2x^2 + x \\ et \\ u' = 2(2x) + 1 = 4x + 1 \end{cases}$$
 d'où $g'(x) = \frac{4x + 1}{2x^2 + x}$

FONCTION EXPONENTIELLE (Exp)

1 - Définition :

On appelle une fonction exponentielle toute expression ayant pour forme $e^{u(x)}$ avec u(x) étant une fonction (polynôme ou rationnelle ou irrationnelle ou circulaire).

 $\underline{\text{NB}}:u(x)$ représente toute écriture ou expression se trouvant en haut (sous forme de degré) de la fonction exponentielle.

Exemples:

- $f(x) = e^{-x}$ avec u(x) = -x
- $ightharpoonup f(x) = e^{\cos x}$ avec $u(x) = \cos x$
- $g(x) = e^{\frac{x+1}{x}} \text{ avec } u(x) = \frac{x+1}{x}$

2- Ensemble de définition d'une fonction exponentielle (exp) :

L'ensemble de définition d'une fonction expo dépend de la nature que possède la fonction u(x):

• $\underline{1^{er} \cos}$: $f(x) = e^{ax+b}$ avec u(x) = ax + b (function polynôme)

f(x) existe $\forall x \in \mathbb{R}$

Exemple: $f(x) = e^{2x+1}$ avec u(x) = 2x + 1

f(x) existe ssi $\forall x \in \mathbb{R}$ alors $E_f =]-\infty$; $+\infty$

• $\underline{2^e \text{ cas}}: f(x) = e^{\frac{ax+b}{cx+d}} \text{ avec } u(x) = \frac{ax+b}{cx+d} \text{ (fonction rationnelle)}$

f(x) existe ssi $cx + d \neq 0$

Exemple: $f(x) = e^{\frac{x}{x-1}}$ avec u(x) = x-1

f(x) existe ssi $x - 1 \neq 0 \Rightarrow x \neq 1$ alors $E_f =]-\infty$; $1]u[1; +\infty[$

• $3^e \cos : f(x) = e^{\sqrt{ax+b}} \ avec \ u(x) = \sqrt{ax+b} \ (fonction \ irrationnelle)$

f(x) existe ssi $ax + b \ge 0$

Exemple: $f(x) = e^{\sqrt{2x+1}}$ avec $u(x) = \sqrt{2x+1}$

f(x) existe ssi $2x + 1 \ge 0 \Rightarrow 2x \ge -1 \Rightarrow x \ge -\frac{1}{2}$ alors $E_f = \left[-\frac{1}{2}; +\infty \right]$

• $\frac{4^e \cos}{1}$: $f(x) = e^{|ax+b|}$ avec u(x) = |ax+b| (function valeur absolue)

f(x) existe $\forall x \in \mathbb{R}$

Exemple: $f(x) = e^{|x|}$ avec u(x) = |x|

f(x) existe $\forall x \in \mathbb{R}$ alors $E_f =]-\infty$; $+\infty$

3- Notion des limites classiques d'une fonction exponentielle (exp)

Les limites classiques ont pour but de faciliter la résolution d'une limite.

a)
$$\lim_{x\to-\infty}e^x=0$$

b)
$$\lim_{x \to -\infty} (x^n e^x \text{ ou } x e^x) = 0 \text{ (avec } n > 1)$$

c)
$$\lim_{x \to -\infty} \left(\frac{e^x}{x} \text{ ou } \frac{e^x}{x^n} \right) = 0 \text{ (avec } n > 1)$$

c)
$$\lim_{x \to -\infty} (\frac{e^x}{x} \text{ ou } \frac{e^x}{x^n}) = 0 \text{ (avec } n > 1)$$
 d) $\lim_{x \to 0} \frac{e^{ax} - 1}{ax} = a \text{ mais si } a = 1 \text{ alors } \lim_{x \to 0} \frac{e^x - 1}{x} = 1$

e)
$$\lim_{x \to \infty} e^x = +\infty$$

f)
$$\lim_{x \to +\infty} (x^n e^x \text{ ou } x e^x) = +\infty \text{ avec } (n > 1)$$

g)
$$\lim_{x \to +\infty} \left(\frac{e^x}{x} \text{ ou } \frac{e^x}{x^n} \right) = +\infty \text{ (avec } n > 1)$$
 h) $\lim_{x \to +\infty} \left(\frac{x}{e^x} \text{ ou } \frac{x^n}{e^x} \right) = 0$

h)
$$\lim_{x \to +\infty} \left(\frac{x}{e^x} \text{ ou } \frac{x^n}{e^x} \right) = 0$$

4- Propriétés :

Elle dispose de plusieurs propriétés qui ont pour rôle de faciliter la résolution des équations ou à débloquer des expressions difficilement manipulables.

a)
$$e^a \times e^b = e^{a+b}$$

b)
$$\frac{e^{a}}{b} = e^{a-b}$$

c)
$$(e^a)^n = e^{na}$$

d)
$$\left(\frac{1}{a}\right) = e^{-a}$$

e)
$$e^a = e^b \Rightarrow a = b$$

f)
$$e^{lnu} = u$$
 (Exemples: $e^{lnx} = x$; $e^{ln2} = 2$)

Remarques:

 R_1 : $e^{-\infty}$ n'existe pas (impossible) à moins s'il s'agit d'une limite.

$$R_2$$
: $e^0 = 1$

NB: Que le nom de fonction exponentielle ne t'intimide pas car au sein des propriétés, elle possède les mêmes réalités que celle des puissances de base a que t'as eu à étudier en classe de 5°; 4° et 3^e.

5- La dérivée d'une fonction exponentielle :

Soit une fonction f, définie par $f(x) = e^{u(x)}$. Elle possède pour fonction dérivée f' ayant pour forme: $(e^{u(x)})' = u'(x) \times e^{u(x)}$

Exemples:

$$f(x) = e^{2x+1}$$
. forme : $e^u = u' \times e^u$ avec $\begin{cases} u = 2x + 1 \\ et \\ u' = 2 \end{cases}$ d'où $f'(x) = 2e^{2x+1}$

$$g(x) = e^x$$
. forme : $e^u = u' \times e^u$ avec
$$\begin{cases} u = x \\ et \\ u' = 1 \end{cases}$$
 d'où $g'(x) = e^x$

$$g(x) = e^{2x^2 + x}. \text{ forme } : e^u = u' \times e^u \text{ avec } \begin{cases} u = 2x^2 + x \\ et \\ u' = 4x + 1 \end{cases} \text{ d'où } g'(x) = (4x + 1)e^{2x^2 + x}$$