Applied Cryptography

Fall 2020

- 1. Consider the prime p = 9929 and the primitive element 2.
 - a) Show the steps of the Diffie-Hellman between Alice and Bob for a = 1983 and b = 2014.
 - b) What is the value of the agreed secret key?
- 2. Consider the RSA public and private key pairs: (e, n) = (17, 902801) and $(d, n, p, q, \phi) = (423953, 902801, 911, 991, 900900)$.
 - Given $M_1 = 500000$, compute $C_1 = M_1^e \pmod{n}$.
 - Given $C_2 = 707631$, compute $M_2 = C_2^d \pmod{n}$.
- 3. RSA with three primes would also work: n = pqr, $\phi(n) = (p-1)(q-1)(r-1)$, $\gcd(e, \phi(n)) = 1$, and $d = e^{-1} \pmod{\phi(n)}$.
 - a) Setup an example RSA public/private key pair using primes 29, 31, 37, and e = 17.
 - b) Encrypt m = 10000 and then decrypt the ciphertext.
 - c) Explain why RSA with three primes algorithm is not preferred.