Run Time & Performance

Kurt Schmid

intro

Profiling Code

Analysis

Big-Oh

Timing Programs

Program Growth

Notes o Scale

Run Time & Performance

Kurt Schmidt

Dept. of Computer Science, Drexel University

June 5, 2017

Examples are taken from Kernighan & Pike, *The Practice of Programming*, Addison-Wesley, 1999

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

Intro

Performance

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes o

Objective: To learn when and how to optimize the performance of a program.

The first principle of optimisation is don't.

- Knowing how a program will be used, and the environment it runs in, is there any benefit to making it faster?
- Which areas of the program should we focus on?

Strategy

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes or Scale

- Use the simplest, cleanest algorithms and data structures appropriate for the task
- Enable compiler options to generate the fastes possible code
 - Modern compilers optimise by default
 - Modern compilers are very good at their jobs
- Then, measure performance to see if changes are needed

Strategy (cont.)

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Analysis
Big-Oh
Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

- Assess what changes to the program will have the most effect
 - Use a profiler to find hotspots in your code
- Make changes incrementally, re-assess
 - Consider alternative algorithms
 - Tune the code
 - Consider a lower-level language
 - Maybe just for time-sensitive components
 - Always retest your code!

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

Profiling Code

Profiler - gprof

Run Time & Performance

Kurt Schmic

Intr

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes of

- A profiler watches your program run
- Reports back a bunch of information, including
 - How much time was spent in each function
 - How many times each function was called
- Use this information to find bottlenecks (areas worth improvement) in your code
- Profilers exist for most common languages, including Java, Python, and Haskell
- We will use gprof, which can be run with programs compiled with a gnu compiler

Using gprof

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes or Scale ■ Use the -p option to compile extra information into your program:

```
$ gcc -p driver.c quicksort.c -o mySort
```

Now run the program once, to generate metrics:

```
$ ./mySort < ins.10000 > /dev/null
```

Note, a new data file has appeared:¹

```
$ ls -ot | head -n3
total 3864
-rw-r--r- 1 kschmidt 747 Aug 4 16:05 gmon.out
-rwxrwxr-x 1 kschmidt 9102 Aug 4 16:05 mySort
```

¹It's raw data. Don't look at it yet

Reading the gprof Report

Run Time & Performance

Kurt Schmid

Intr

Profiling Code

Run-time
Analysis
Big-Oh
Ranking of Functions

Timing Programs

Program Growth

Notes on Scale Supply gprof w/the name of the executable to see report on stdout:

```
$ gprof mySort
```

Report contains 2 tables of data, with description of the information:

```
Each sample counts as 0.01 seconds.
      %
          cumulative self
                                   self
                                          total
     time
           seconds seconds calls us/call us/call name
     61.41
           0.25 0.25
                              500
                                   503.60 805.76 quicksort
     36.85 0.40 0.15 45721062
                                    0.00
                                            0.00
                                                swap
earnible 1.23 0.41
                      0.01
                                                 main
emphh ...
```

Reading the gprof Report (cont.)

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time Analysis

Timing

Program Growth

Notes on Scale

granul	larity:	each s	ample hit	covers 2	byte(s)	for 2.45	5% of	0.41	sec
index	% time	self	children	called	name				
					<	spontaneo	ous>		
[1]	100.0	0.01	0.40		main	Γ ₁]			
			0.15	500/500			[2]		
					٦				
			66	66956	a.	nicksort	[2]		
		0.05	0.15		-		[2]		
				-			-		
[2]	98.8	0.25	0.15	500+6666	1956 qui	cksort [2	.]		
		0.15	0.00 45	721062/45	721062	swap [3]			
			66	66956	q.	uicksort	[2]		
							_		
		0.15	0.00 45	721062/45	721062	quicksor	t [2]		
[3]	37.0		0.00 45			-			

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time Analysis

Big-On Banking of Functions

Timing Programs

Program Growth

Notes on Scale

Run-time Analysis

Asymptotic Run Time

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time

Analysis

Ranking of Functions

Timing Programs

Program Growth

Notes of Scale

- We would like to be able to compare algorithms, for arbitrarily large inputs
- We want to evaluate the growth of algorithms vs. input
 - We don't care about, e.g., processor speed, the leading coefficient, nor lower-order terms
 - E.g., linear search. If the array size doubles, so does the run-time $\implies \Theta(n)$
 - Selection sort is a quadratic sort, $\Theta(n^2) \Longrightarrow$ doubling input size will quadruple run time (for large n)
 - Accessing an element of an array is a constant-time operation, $\Theta(1)$, regardless of size of array

Lower Bound (Loose) - Little Omega

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time

Analysis Big-Oh

Ranking of Function

Timing Programs

Program Growth

Notes o Scale Consider function $T_n = 5n^2 + 17n - 12$

$$\lim_{n \to \infty} \frac{5n^2 + 17n - 12}{n} = \infty \implies T_n \in \omega(n)$$

- We say T_n is bound below (loosely) by n
- We say T_n grows *strictly faster* (asymptotically) than n
- \blacksquare T_n can not be bound above by n

More generally:

$$\lim_{n \to \infty} \frac{T_n}{f_n} = \infty \implies T_n \in \omega(f_n)$$

Upper Bound (Loose) – Little Oh

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time

Analysis

Ranking of Function

Timing Programs

Program Growth

Notes on Scale

$$\lim_{n \to \infty} \frac{5n^2 + 17n - 12}{n^3} = 0 \implies T_n \in \mathbf{O}(n^3)$$

- We say T_n is bound above (loosely) by n^3
- We say T_n grows *strictly more slowly* (asymptotically) than n^3
- \blacksquare T_n can not be bound below by n^3

More generally:

$$\lim_{n \to \infty} \frac{T_n}{f_n} = 0 \implies T_n \in \mathsf{o}(f_n)$$

Asymptotically Equivalent – Theta

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time

Analysis

$$\lim_{n \to \infty} \frac{5n^2 + 17n - 12}{n^2} = 5 \implies T_n \in \Theta(n^2)$$

- We say T_n grows like n^2 (asymptotically)
- \blacksquare T_n can bound below, and above, by n^2

More generally:

$$\lim_{n \to \infty} \frac{T_n}{f_n} = c, c \in \mathbb{R}^+ \implies T_n \in \Theta(f_n)$$

Note: This does not mean that T_n is polynomic

Notes on Asymptotic Equivalence

Run Time & Performance

Run-time Analysis

Just grow similarly

■ Consider $y = x + \sin x$

y grows like a line

■ Bound above by y = x + 1

Two equivalent functions needn't look the same

■ Bound below by y = x - 1

Clearly not a line

Quick Observations

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time

Analysis Big-Oh

Ranking of Function

Timing Programs

Program Growth

Notes on Scale

$$f \in \mathsf{o}(g) \iff g \in \omega(f)$$

$$T \in \Theta(f) \implies T \notin \mathbf{O}(f)$$

$$T\in\Theta(f)\implies T\notin\omega(f)$$

$$T \in \omega(f) \implies T \notin \Theta(f)$$

$$T \in \mathrm{O}(f) \implies T \notin \Theta(f)$$

Big-Oh, -Omega

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis
Big-Oh

Timing Programs

Program Growth

Notes on Scale Upper (lower) bound, may or may not be tight

$$\mathrm{O}(f) = \mathbf{o}(f) \cup \Theta(f)$$

$$\Omega(f) = \omega(f) \cup \Theta(f)$$

We have these observations:

$$\mathsf{o}(f)\subset \mathrm{O}(f)$$

$$\omega(f)\subset\Omega(f)$$

Finally,

$$T \in \Theta(f) \iff T \in \Omega(f) \land T \in \Omega(f)$$

Qualitative Statements

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis
Big-Oh

Timing Programs

Program Growth

Notes or Scale

T is O(f)

- \blacksquare "T grows no faster than f"
- \blacksquare "T is bound above by f"
- \blacksquare "f is an upper bound for T"

T is $\Omega(f)$

- \blacksquare "T grows no slower than f"
- \blacksquare "T is bound below by f"
- \blacksquare "f is a lower bound for T"

Ranking of Common Functions

Run Time & Performance

Kurt Schmic

Intr

Profiling Code

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes of Scale

For reference, here are some common functions, in increasing order:

$$\begin{array}{cccc} 1 \text{ (constant)} & & n^2 \\ \log n & & \vdots \\ \sqrt{n} & & n^p \\ n & & c^n \\ n \log n & & n^n \approx n! \end{array}$$

Note,
$$\log n \in \mathsf{o}(n^p), p \in \mathbb{R}, \forall p > 0$$

Run Time & Performance

Kurt Schmic

Intro

Profiling Cod

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

Timing Programs

Timing - time

Run Time & Performance

Kurt Schmi

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

- If we can't evaluate the algorithm, we can run the program with various inputs, time each run
- Various languages may provide their own mechanism for timing from within the program
- The time utility takes a program, with arguments, to run
 - You now know why you type date to see what the time is

Using the time Utility

Run Time & Performance

Kurt Schmic

Intr

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes oi Scale time [options] cmd [cmd_args]

options Options to modify behavior of time. Must precede cmd

cmd The program run you want to time

cmd_args Arguments, including options, to be passed to cmd

Note: This is a built-in in Bash, Tenex C-Shell, and others.

time example

Run Time & Performance

Kurt Schmid

Intr

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes or Scale

From our previous example:

```
$ time ./mySort < ins.10000 > /dev/null
```

- Output to screen is expensive
- We're not interested in that time

Output from time (to stderr):

```
real 0m7.572s
user 0m7.555s
sys 0m0.004s
```

Description of Output

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis
Big-Oh

Timing Programs

Program Growth

Notes oi Scale

- real The wall clock. Total time elapsed. Keeps ticking, even if your program is sliced out
- user The actual time your program spent running, in user mode
 - sys The actual time your program spent running, in kernel mode
- The sum of the user and sys times is probably what you want

Using Bash's time in a Script

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

Program Growth

Notes on Scale ■ The -p option be handier for parsing:

```
$ /usr/bin/time ./mySort < ins.10000 &> /dev/null
```

```
real 7.572
user 7.555
sys 0.004
```

Storing it in a variable takes some contortions:

```
real 7.572 user 7.555 sys 0.004
```

time Built-in v. Utility

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes or Scale

- There is a utility (not a shell built-in)
 - On tux, installed as /usr/bin/time
 - Can also report on other metrics
 - Output values and format can be customised (see -f)
- Bash, Tenex C Shell, and others have a built-in time command, which doesn't allow for customising the output format
 - The built-ins are a bit slicker, parsing up the command line
 - For e.g., the following produces no output (why?), but works fine w/the shell built-in

\$ /usr/bin/time ./mySort < ins.10000 &> /dev/null

Alternatives to Timing Program

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time
Analysis
Big-Oh
Ranking of Functions

Timing Programs

Program Growth

Notes oi Scale

- Computers have gotten fast
 - Makes it a little harder to grab good numbers
- Alternatively, we could be creative, use metrics from a profiler
 - E.g., we could count the number of calls to swap for various sized inputs to our sort
 - Or, we might use a function to compare elements in a sort, use a profiler to count the number of times items are compared
- We can use this data in the same way, plot it, see how it grows

Run Time & Performance

Kurt Schmic

Intro

Profiling Cod

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

Program Growth

Estimating Program Growth

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time
Analysis
Big-Oh
Ranking of Functions

Timing Programs

Program Growth

Notes or Scale

- Run your program on various-sized inputs, collect times
 - Get a good number of points
 - Discard very small results
 - Provide inputs large enough to get past lower-order noise
- Find an upper and lower bound
- Consider $\frac{T_n}{f_n}$ for various functions f
 - Identify upper and lower bounds
 - Try to pinch in, get the upper and lower bounds closer to each other
 - You might not get them to meet

Estimating Program Growth – e.g.

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes or Scale

Consider times T discovered for various input sizes n:

n	T(n)
10	3908.51
20	20657.40
30	55954.53
40	113992.17
50	198284.36
60	311920.28
70	457689.75
80	638156.74
90	855706.82
100	1112580.00

- *T*(*n*) appears to be increasing w/out bound
 - So, *T* is not constant
 - Maybe. We don't know this

Let's compare to f(n) = n

E.g. - Line is a Lower Bound

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

Program Growth

Notes (

n	T(n)/n
10	390.85
20	1032.87
30	1865.15
40	2849.80
50	3965.69
60	5198.67
70	6538.43
80	7976.96
90	9507.85
100	11125.80

- ightharpoonup T(n)/n also appears to be increasing, w/out bound
- lacksquare So, f(n) = n looks like a lower bound
 - I.e., $T(n) \in \Omega(n)$
 - If not tight, if it increases w/out bound, then $T(n) \in \omega(n)$

Let's try
$$f(n) = n^2$$
:

E.g. - Quadratic is a Lower Bound

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

Program Growth

Notes Scale

n	$T(n)/n^2$
10	39.09
20	51.64
30	62.17
40	71.25
50	79.31
60	86.64
70	93.41
80	99.71
90	105.64
100	111.26

- $ightharpoonup T(n)/n^2$ also appears to be increasing
- $f(n) = n^2$ looks like a lower bound
 - I.e., $T(n) \in \Omega(n^2)$
 - If not tight, if it increases w/out bound, then $T(n) \in \omega(n^2)$

Let's try
$$f(n) = n^3$$
:

E.g. - Cubic is an Upper Bound

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Function

Programs
Program

Growth

Notes c Scale

n	$T(n)/n^3$
10	3.91
20	2.58
30	2.07
40	1.78
50	1.59
60	1.44
70	1.33
80	1.25
90	1.17
100	1.11

- $\blacksquare T(n)/n^3$ is decreasing
- $f(n) = n^3$ looks like an upper bound
 - I.e., $T(n) \in O(n^3)$
 - If not tight, if the values tend towards 0, then $T(n) \in o(n^3)$
- We know that T grows no slower than a quadratic, and no faster than a cubic
- We might be able to improve one or both of those bounds

E.g. $-n^2 \log n$

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

Program Growth

Notes d Scale Consider $f_n = n^2 \log n$

n	$\frac{T(n)}{n^2 \log n}$
10	16.974
20	17.239
30	18.279
40	19.313
50	20.274
60	21.162
70	21.986
80	22.755
90	23.477
100	24.159

- \blacksquare $\frac{T(n)}{n^2 \log n}$ also seems to be increasing
- So, we have a new (better) lower bound

$$T(n) \in \Omega(n^2 \log n)$$

Let's try moving up a bit more:

Run-time Analysis Big-Oh

Timing Programs

Program Growth

Notes or Scale

$f_n =$	$n^{2.3}$
	$f_n =$

n	$T(n)/n^{2.5}$
10	19.589
20	21.024
30	22.411
40	23.558
50	24.528
60	25.369
70	26.112
80	26.781
90	27.388
100	27.947
	l

- lacksquare I'm comfortable saying $n^{2.3}$ is a lower bound
 - $\blacksquare \ T(n) \in \Omega(n^{2.3})$

Let's try moving up a bit more:

Analysis

Big-Oh

Timing Programs

Program Growth

Notes or Scale

Consider $f_n = n^{2.5}$

n	$T(n)/n^{2.5}$
10	12.360
20	11.548
30	11.351
40	11.265
50	11.217
60	11.186
70	11.164
80	11.148
90	11.136
100	11.126

- This looks like an upper bound
 - $\blacksquare T_n \in \mathrm{O}(n^2\sqrt{n})$
- Is it tight?
- Let's try something a little lower:

Analysis

Big-Oh

Timing Programs

Program Growth

Notes or Scale Consider $f_n = n^{2.4}$

n	$T(n)/n^{2.4}$
10	15.560
20	15.581
30	15.949
40	16.290
50	16.587
60	16.845
70	17.074
80	17.279
90	17.464
100	17.633

Increasing, so, lower bound

$$\blacksquare T_n \in \Omega(n^{2.4})$$

E.g. - Conclusion

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes or Scale

- We have T_n bound below by $n^{2.4}$ and bound above by $n^{2.5}$
- We maybe didn't find it exactly, but we have a very good idea how this algorithm grows
- Only push in each direction while you're comfortable w/the data
- None of this is proof
 - We need to choose input size sufficiently large to get past lower-order terms
 - No way to know
 - But, a program, on a given computer, has a practical upper limit on input size

Comparing Functions, Small n

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

- You are generally not going to be able to find tight bounds, using the method above
- E.g., you can show that $3n \ln n \in o(n^{1.1})$
 - Hint: Use L'Hopital's Rule
- However $3n \ln n > n^{1.1}$, $\forall 3 < n < 1.2 \times 10^{16}$
- = $\frac{3n \ln n}{n^{1.1}}$ will be increasing until around 66,000
- Remember, there's no such thing as a big number
- \blacksquare So, don't slice powers of n too finely

Run Time & Performance

Kurt Schmid

Intro

Profiling Cod

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

Notes on Scale

Leading Zeros

Run Time & Performance

Kurt Schmidt

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

Remember your Physics or Chemistry lab lessons

- As you divide by larger magnitudes, your data pick up leading zeros
 - These are *not* significant digits
 - Do not make a statement such as "There is only a difference of 0.00001"
 - This is meaningless, neither large nor small
- Scale the column:

n	$T(n)/n^2$	$T(n)/n^2(*10000)$
10000	0.000238	2.380
20000	0.0002576	2.576
30000	0.0002691	2.691
40000	0.0002764	2.764
50000	0.0002829	2.829
60000	0.0002856	2.856

Scaling, Scientific Notation

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Notes on Scale

The scale is irrelevant

- As long as it's consistent for a given column
- You can use scientific notation
 - Keep the exponent the same

n	T(n)/f(n)
10000	2.384 e-8
20000	1.288 e-8
30000	0.8970e-8
40000	0.6917e-8
50000	0.5659e-8
60000	0.4762e-8