

CSSE2010/CSSE7201 Learning Lab 13

AVR Timers

School of Information Technology and Electrical Engineering
The University of Queensland

Today

- AVR Timers
 - I/O registers involved
 - How to set up a timer
- Exercises

ATmega324A - Timer/Counter **Summary - From Lectures**

ATmega324A - Timer/Counter Summary - From Lectures

Timer/Counter 0 Pins: PB3 (OC0A) & PB4 (OC0B) 8-bit timer/counter **Supports PWM Modes of operation:** Normal, CTC, Fast-PWM and phase correct PWM Clock prescalar: No clock, F, F/8, F/64, F/256, F/1024 I/O Registers: **TCNTO** TCCROA, TCCROB OCROA, OCROB TIMSKO, TIFRO

Timer/Counter 1
Pins: PD5 (OC1A) & PD4 (OC1B
16-bit timer/counter
Supports PWM
Modes of operation: Normal, CTC, Fast-PWM, PC-PWM and PFC-PWM
Clock prescalar: No clock, F, F/8, F/64, F/256, F/1024
I/O Registers:
TCNT1H, TCNT1L
TCCR1A, TCCR1B, TCCR1C
OCR1AH, OCR1AL
OCR1BH, OCR1BL

TIMSK1, TIFR1

Timer/Counter 2 Pins: PD7 (OC2A) & PD6 (OC2B) 8-bit timer/counter **Supports PWM Modes of operation:** Normal, CTC, Fast-PWM and phase correct PWM Clock prescalar: No clock, F, F/8, F/32, F/64, F/128, F/256, F/1024 I/O Registers: TCNT2 TCCR2A, TCCR2B

OCR2A, OCR2B

TIMSK2, TIFR2

Recall from Lecture 15: ATmega324A – Timer/Counter Clock sources

- 3 timer/counters
 - **0**: 8 bit (0 to 255)
 - **1**: 16 bit (0 to 65535)
 - Clock sources: STOPPED, CLK, CLK/8, CLK/64, CLK/256, CLK/1024, external pin rising edge, external pin falling edge
 - CLK = system clock
 - **2**: 8 bit (0 to 255)
 - Clock sources: STOPPED, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024
 - CLK = system clock or external oscillator

Timer/Counter Registers TCNT – count values

- TCNT0
 - Memory address 0x46
 - IO register 0x26
- TCNT1 (16 bits)
 - TCNT1L memory address 0x84
 - TCNT1H memory address 0x85
- TCNT2
 - Memory address 0xB2

Output Compare Registers

- Each timer/counter has output compare registers (these are I/O registers)
 - These are for matching timer/counter values
- Actions can be taken when the value is reached, e.g.
 - Set output-compare match bit in register
 - Clear timer (reset to 0)
 - Toggle / set / clear external pin

Output Compare Registers

- Timer 0 (8 bit)
 - OCROA, OCROB
- Timer 1 (16 bit)
 - OCR1AH,OCR1AL (in C, access as 16-bit "variable" OCR1A)
 - OCR1BH,OCR1BL (in C: OCR1B)
- Timer 2 (8 bit)
 - OCR2A, OCR2B

Accessing 16-bit I/O registers

Example - set output compare register 1B (16-bits) to 4321:

In assembly language

```
ldi r16, high(4321)
sts OCR1BH, r16
ldi r16, low(4321)
sts OCR1BL, r16
```

- Note that processor requires high byte to be written first
- In C

```
\blacksquare OCR1B = 4321;
```


Setting up a 16-bit timer

3 control registers, e.g. for timer/counter 1 (n=1)

"n" replaced by 1, e.g. COM1A1 | COM1A0 | COM1B1 | COM1B0

	Bit	7	6	5	4	3	2	1	0
TCCR1A		COMnA1	COMnA0	COMnB1	COMnB0	-	-	WGMn1	WGMn0
	Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W
	Initial Value	0	0	0	0	0	0	0	0
	Bit	7	6	5	4	3	2	1	0
TCCR1B		ICNCn	ICESn	-	WGMn3	WGMn2	CSn2	CSn1	CSn0
	Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
	Initial Value	0	0	0	0	0	0	0	0
	Bit	7	6	5	4	3	2	1	0
TCCR1C		FOCnA	FOCnB	-	-	-	_	-	-
	Read/Write	R/W	R/W	R	R	R	R	R	R
	Initial Value	0	0	0	0	0	0	0	0

WGM (Waveform Generation Modes)

- Table 16-5 on page 138 of datasheet describes modes
- Two of interest:
 - 0: 0000 normal: 0 -> 1 -> ... -> 65535 -> 0 -> ...
 - 4: 0100 CTC Clear Timer on Compare match
 - Counter resets to 0 when reaches value in OCR1A register

Clock selection

	Bit	7	6	5	4	3	2	1	0
TCCR1B		ICNC1	ICES1		WGM13	WGM12	CS12	CS11	CS10
	Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
	Reset	0	0		0	0	0	0	0

• From Table 16-6 on page 139 of datasheet: (note n=1)

CSn2	CSn1	CSn0	scription					
0	0	0	No clock source (Timer/Counter stopped).	ock source (Timer/Counter stopped).				
0	0	1	clk _{I/O} /1 (No prescaling)	(No prescaling)				
0	1	0	clk _{I/O} /8 (From prescaler)	From prescaler)				
0	1	1	clk _{I/O} /64 (From prescaler)	/64 (From prescaler)				
1	0	0	clk _{I/O} /256 (From prescaler)	see p11 of datasheet - T1 p				
1	0	1	clk _{I/O} /1024 (From prescaler)	1024 (From prescaler)				
1	1	0	external clock source on Tn pin. Clock on falling edge. is port B, pin 1					
1	1	1	External clock source on Tn pin. Clock on rising edge.		17			

 \perp

Clock selection - code example

	Bit	7	6	5	4	3	2	1	0
TCCR1B		ICNC1	ICES1		WGM13	WGM12	CS12	CS11	CS10
	Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
	Reset	0	0		0	0	0	0	0

CS12	CS11	CS10	Description
0	1	1	clk _{I/O} /64 (From prescaler)

 Bit labels can be used in code expressions, e.g.

```
TCCR1B = (1 << CS11) | (1 << CS10);
```


Output Compare Actions - can toggle/clear/set pin

Bit 6 5 4 0 TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 WGM11 WGM10 Access R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0

From table 16-2 on page 136 of datasheet: (n=1)

e.g. OC1A pin – see p11 of datasheet

COMnA1/COMnB1	COMnA0/COMnB0	Description
0	0	Normal port operation, OCnA/OCnB disconnected.
0	1	Toggle OCnA/OCnB on Compare Match.
1	0	Clear OCnA/OCnB on Compare Match (Set output to low level).
1	1	Set OCnA/OCnB on Compare Match (Set output to high level).

Task 0

- To toggle an output compare pin 8 times per second (4Hz period), what
 - Clock prescale
 - Output compare

values do we need?

Task 1 - Output Compare Based Timer

- Consider lab13-1.c (on Blackboard)
- Code is to toggle OC1A pin (what pin is this?) 8 times per second (i.e. 4Hz period)
 - This pin is connected to an LED (e.g. LD0)
- Fill in the blanks to make the code work
 - Set up the hardware to do the work, software does nothing after that
- Build and test your code on the AVR board
- Look at the generated list (lss) file for assembly language equivalent

Task 2 – Count push button presses & display count on SSD with display multiplexing

- Consider lab13-2.c (on Blackboard)
- 7 segment display connected to port A, with CC (digit select) connected to port D, pin 0
- Push button connected to pin T0 (work out which pin this is)
 - Count number of rising edges on this pin
 - Use timer/counter 0
- Display tens place on left digit for 1ms, then ones place on right digit for 1ms
 - This is display multiplexing
 - Alternate fast enough it will appear that both digits are on (though brightness will be reduced)
- Fill in blanks in code, build & test
- Slow down the multiplexing rate so you can see the digits changing (e.g. 4 times per second)