EXERCISE 1 (F): SCOREBOARD

Given the following loop taken from a high level program:

The program has been compiled in MIPS assembly code assuming that registers \$4 and \$7 have been initialized with values 0 and 4N respectively. The symbols BASEA, BASEB and BASEC are 16-bit constant. The processor clock cycle is 0.5 ns.

```
L1: lw $2, BASEA ($4)
addi $2, $2, INC1
lw $3, BASEB ($4)
addi $3, $3, INC2
add $5, $2, $3
sw $5, BASEC ($4)
addi $4, $4, 4
bne $4, $7, L1
```

We assume the original program be executed on a CPU with dynamic scheduling based on the SCOREBOARD technique with:

- 2 LOAD/STORE Functional Units (LDU1, LDU2) with latency 2 cycles
- 2 ALU/BR Functional Units (ALU1, ALU2) with latency 1 cycle
- Register File has 2 Read Ports and 1 Write Port
- Check structural hazards in ISSUE phase
- Check RAW hazards and RF READ in READ OPERANDS phase
- Check WAR e WAW and RF WRITE n WRITE BACK phase
- No forwarding
- Static branch prediction for backward branches: branch always taken

Please complete the scoreboard table by assuming all cache hits:

INSTRUCTION	ISSUE	READ OPERANDS	EXEC COMPLETE	WRITE BACK	Hazard Type	UNIT
L1:lw \$2,BASEA(\$4)	1	2	4	5	(CNTR hazard ok)	LDU1
addi \$2, \$2, INC1	2	6	7	8	RAW in \$2 (WAW \$2 ok)	ALU1
lw \$3,BASEB(\$4)	3	4	6	7		LDU2
addi \$3,\$3,INC2	4	8	9	10	RAW in \$3 (WAW \$3 ok)	ALU2
add \$5,\$2,\$3	9	11	12	13	Struct ALU/BR FU+ RAW \$3	ALU1
sw \$5,BASEC(\$4)	10	14	16	17	RAW \$5	LDU1
addi \$4,\$4,4	11	12	13	15	WAR \$4	ALU2
bne \$4,\$7, L1	14	16	17	18	Struct ALU/BR FU + RAW \$4	ALU1
EXIT:						

- Given a clock frequency of 2 GHz, calculate the following metrics:
 - Instruction Count per iteration (IC) = 8
 - CPI = # cycles / IC = 18 / 8 = 2.25
 - Throughput (expressed in MIPS): MIPS = f_{CLOCK} / (CPI * 10^6) = $(2 * 10^9)$ / $(2.25 * 10^6)$ = 888.88

EXERCISE 1 (G): SCOREBOARD

We assume the original program be executed on a CPU with dynamic scheduling based on the SCOREBOARD technique with:

- 2 LOAD/STORE Functional Units (LDU1, LDU2) with latency 2 cycles
- 3 ALU/BR Functional Units (ALU1, ALU2, ALU3) with latency 1 cycle
- Register File has 4 Read Ports and 2 Write Ports
- Check structural hazards in ISSUE phase
- Check RAW hazards and RF READ in READ OPERANDS phase
- Check WAR e WAW and RF WRITE n WRITE BACK phase
- Forwarding
- Static branch prediction for backward branches: branch always taken

Please complete the scoreboard table by assuming all cache hits:

ISTRUZIONE	ISSUE	READ OPERANDS	EXEC COMPLETE	WRITE BACK	Hazards Type	FORWARDING	UNIT
L1:1w \$2,BASEA(\$4)	1	2	4	5	(CNTR hazard ok)		LDU1
addi \$2, \$2, INC1	2	5	6	7	RAW \$2 (WAW \$2 ok)	Forw \$2	ALU1
lw \$3,BASEB(\$4)	3	4	6	7	(RF write ok)		LDU2
addi \$3,\$3,INC2	4	7	8	9	RAW in \$3 (WAW \$3 ok)	Forw \$3	ALU2
add \$5,\$2,\$3	5	9	10	11	RAW \$2, RAW \$3	Forw \$3	ALU3
sw \$5,BASEC(\$4)	6	11)	13	14	RAW \$5	Forw \$5	LDU1
addi \$4,\$4,4	8	9	10	12	Struct ALU/BR FU + WAR \$4		ALU1
bne \$4,\$7, L1	10	11	12	13	Struct ALU/BR FU (RAW \$4 ok)	Forw \$4	ALU2
EXIT:							

• Calculate the speedup with respect to the previous Scoreboard (EX 1.F):

Speedup = (Exec. Time Scoreboard 1.F) / (Exec. Time Scorebord New) = 18/14= 1,29

EXERCISE 2 (D): SCOREBOARD

Given the following loop expressed in a high level language:

```
for (i =0; i < N; i ++)
    vectC[i] = vectA[i] + vectB[i];</pre>
```

The program has been compiled in MIPS assembly code assuming that registers \$t6 and \$t7have been initialized with values 0 and 4N respectively. The symbols VECTA, VECTB and VECTC are 16-bit constant. The processor clock frequency is **1 GHz**.

INSTRUCTION	Comment
FOR1:beq \$t6,\$t7, END	# if (\$t6 == \$t7) goto END
lw \$t2,VECTA(\$t6)	# \$t2 <- VECTA [\$t6];
lw \$t3,VECTB(\$t6)	# \$t3 <- VECTB [\$t6];
add \$t2,\$t2,\$t3	# \$t2 <- \$t2 + \$t3;
sw \$t2,VECTC(\$t6)	# VECTC[\$t6] <- \$t2;
addi \$t6,\$t6,4	# \$t6 <- \$t6 + 4;
j FOR1	# goto FOR1;
END:	

Assuming the program be executed by a CPU with dynamic scheduling based on SCOREBOARD with:

- 2 LOAD/STORE units (LDU1, LDU2) with latency 4 cycles when cache hits
- 2 ALU/BR/J units (ALU1, ALU2) with latency 2 cycles
- Register File has 2 Read Ports and 1 Write Port
- Check structural hazards in ISSUE phase
- Check RAW hazards and RF READ in READ OPERANDS phase
- Check WAR e WAW and RF WRITE in WRITE BACK phase
- Forwarding
- Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN) with Branch Target Buffer

Please complete the SCOREBOARD TABLE by assuming all cache HITS:

ISTRUZIONE	PRED. T / NT	ISSUE	READ OPERANDS	EXECUTION COMPLETE	WRITE BACK	HAZARDS TYPE	Forwarding	UNIT
FOR1:beq \$t6,\$t7, FOR2	NT	1	2	4	5	(CNTR hazard ok)		ALU1
lw \$t2,VECTA(\$t6)	-	2	3	7	8	(CNTR hazard ok)		LDU1
lw \$t3,VECTB(\$t6)	-	3	4	8	9			LDU2
add \$t2,\$t2,\$t3	-	4	9	11	12	RAW \$2, RAW \$t3	Forw \$t3	ALU2
sw \$t2,VECTC(\$t6)	-	9	12	16	17	STRUCT LDU1, RAW \$t2	Forw \$t2	LDU1
addi \$t6,\$t6,4	-	10	11	13	14	(WAR \$t6 OK)		ALU1
j FOR1	Т	13	14	16	17*	STRUCT ALU2		ALU2

^(*) JUMP does not write the RF in Write Back phase

- Given a clock frequency of 2 GHz, calculate the following metrics:
 - Instruction Count (IC) = 7
 - CPI = # cycles / IC = 17 / 7 = 2.43
 - IPC = 1 / CPI = 0.41
 - Throughput (expressed in MIPS): MIPS = f_{CLOCK} / (CPI * 10⁶) = (2 * 10⁹) / (2.43 * 10⁶) = 823

EXERCISE 2 (E): SCOREBOARD with DATA CACHE MISSES

Assuming the program be executed by a CPU with dynamic scheduling based on SCOREBOARD with:

- 2 LOAD/STORE units (LDU1, LDU2) with Latency 4 cycles
- 2 ALU/BR/J units (ALU1, ALU2) with Latency 2 cycles
- Register File has 2 Read Ports and 1 Write Port
- DATA MEMORY with latency 10 cycles when DATA CACHE MISS
- Check structural hazards in ISSUE phase
- Check RAW hazads in READ OPERANDS phase
- Check WAR e WAW in WRITE BACK phase
- Forwarding
- Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN) with Branch Target Buffer

Please complete the SCOREBOARD TABLE by assuming all data cache MISSES:

ISTRUZIONE	PRED. T / NT	ISSUE	READ OPERANDS	EXECUTION COMPLETE	MEM ACCESS COMPLETE	WRITE BACK	HAZARDS TYPE	Forwarding	UNIT
FOR1:beq \$t6,\$t7, FOR2	NT	1	2	4	-	5	(CNTR hazard ok)		ALU1
lw \$t2,VECTA(\$t6)	-	2	3	7	17	18	(CNTR hazard ok)		LDU1
lw \$t3,VECTB(\$t6)	-	3	4	8	18	19			LDU2
add \$t2,\$t2,\$t3	-	4	19	21	-	22	RAW \$2, RAW \$t3	Forw \$t3	ALU2
sw \$t2,VECTC(\$t6)	-	19	22	26	36	37	STRUCT LDU1, RAW \$t2	Forw \$t2	LDU1
addi \$t6,\$t6,4	-	20	21	23	-	24	(WAR \$t6 OK)		ALU1
j FOR1	Т	23	24	26	-	27	STRUCT ALU2		ALU2

• Calculate the performance impact of the data cache misses with respect to the previous case (EX 4):

(Exec. Time Scoreboard 4) / (Exec. Time Scorebord 5) = 17/37 = 0.46