Лабораторная работа 3

Подбор модели семивариограммы

Таблица содержит значения мощности семи осадочных слоев в сантиметрах, измеренные в 20 точках, через каждые 100 м вдоль профиля. Для каждого профиля:

Таблица 4. Мощность (см) семи осадочных слоев в 20 точках, расположенных в 100 м друг от

друга по профилю.

друга по профилю.							
N_{2}	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6	Вариант 7
точки	Мощность слоя 1	Мощность слоя 2	Мощность слоя 3	Мощность слоя 4	Мощность слоя 5	Мощность слоя 6	Мощность слоя 7
1	8,1	4,1	6,7	7,7	8.3	12,1	5.2
2	15,8	6,8	9,2	10,6	9.8	14,2	5.4
3	18,2	8,2	11,9	14,9	11.2	16,2	6.1
4	25,4	9,4	13,1	16,1	12.2	18,3	3.1
5	29,9	11,9	15,9	18,9	14.2	20,1	5.4
6	35,2	14,2	18,3	23,3	13.2	22,3	6.4
7	38,4	16,4	20,7	25,7	12.4	24,1	7.2
8	44,8	18,8	23	29	11.5	26	6.5
9	47,8	19,8	25,3	32,3	8.7	28,5	4.5
10	53,5	22,5	26,2	34,2	9.8	30,3	3.3
11	57,4	23,4	29,4	38,4	10.5	32,2	2.2
12	65,1	25,1	32,1	42,1	12.6	34,5	5.5
13	68,8	28,8	35,3	46,3	13.5	36,1	6.2
14	72,6	29,6	32,6	47,6	14.9	38,1	6.6
15	79,2	32,2	39,7	52,7	13.8	39,9	5.5
16	82,4	33,4	42,9	55,8	14.3	42,3	4.3
17	88,6	36,6	41,2	56,2	15.7	44,3	6.3
18	93,7	38,7	42,3	58,3	16.7	46,2	5.5
19	99,5	40,5	44,4	61,4	15.4	48,2	4.2
20	104,8	41,8	48	64,8	17.2	50,2	4.8

Необходимо:

- 1. Нанести ряд данных на график; выполнить первичный визуальный анализ и сделать предположение о наличии тренда;
- 2. Сделать предварительный статистический анализ (вычислить описательные статистики: выборочное среднее, выборочную дисперсию, стандартное отклонение, минимум и максимум, коэффициент вариации; сделать вывод об однородности данных);
- 3. Проверить данные на наличие линейных трендов путем выполнения регрессионного анализа. При наличии тренда в исходных данных:
 - Записать уравнение модели тренда;
 - Вычислить коэффициент детерминации (величину достоверности аппроксимации) и сделать вывод;
 - Добавить линию тренда на график исходных данных;
 - Вычитая из исходных данных значения тренда найти ряд остатков регрессии. Для ряда остатков построить график и сделать предварительный статистический анализ.

- 4. Для исходных данных и ряда остатков вычислить и представить графически оценки ковариационной функции и оценки семивариограммы для первых десяти шагов (лагов) h.
 - Определить, оказывает ли влияние (и охарактеризовать его) присутствие тренда в исходных данных на вид оценок ковариационной функции и семивариограммы;
 - По оценкам ковариационной функции и семивариограммы ряда остатков исследовать зависимость между наблюдениями на основе понятия интервала корреляции (ранга);

Пусть X(1), ..., X(n) - n последовательных, полученных через равные промежутки времени наблюдений за случайным процессом. В качестве оценки семивариограммы рассмотрим статистику вида

$$\widetilde{\gamma}(h) = \frac{1}{2(n-h)} \sum_{s=1}^{n-h} (X(s+h) - X(s))^2,$$

 $h=\overline{0,n-1}$. Положим $\widetilde{\gamma}(-h)=\widetilde{\gamma}(h),\ h=\overline{0,n-1}$, и $\widetilde{\gamma}(h)=0$ для $|h|\geq n$.

В качестве оценки ковариационной функции рассмотрим статистику

$$\overline{R}(h) = \frac{1}{n-h} \sum_{s=1}^{n-h} (X(s+h) - \overline{\mu})(X(s) - \overline{\mu}),$$

$$h=\overline{0,n-1}\;,\;\overline{\mu}=\frac{1}{n}\sum_{j=1}^n X(j)\;.\; \text{Положим}\;\;\overline{R}(-h)=\overline{R}(h),\;\;h=\overline{0,n-1}\;,\;\;\text{и}\;\;\overline{R}(h)=0\;\;\text{для}\;\;|h|\geq n.$$

- 5. Визуальным методом подобрать модель семивариограммы для ряда остатков.
 - Записать аналитический вид модели с указанием всех параметров. Объяснить выбор параметров;
 - На одном рисунке представить графически оценку семивриограммы ряда остатков и предложенную модель семивариограммы.
- **6*.** Удалить периодичность из серии 7 и посмотреть, какую форму примет оценка семивариограммы.