Soccer Game Prediction

Chloe Atchabahian Anson Lee

Introduction

- Goal: Predict outcome of a soccer match!
- Database from kaggle.com
 - o 25000 matches
 - o Data on each player and team
 - Due to missing data, 4000 of these matches were pruned from the final dataset.
- Logistic regression
- SVM
- Neural network.

Data Preprocessing

- Matches Table
 - Score
 - Date
 - Every player on home and away teams
- Stats on each player
 - FIFA stats
 - Birthday
 - Weight/height
- Feature Vectors
 - Team attributes
 - Every player Attributes
- Y values
 - one-hot encoding of the winner
 - Home win: [1, 0, 0]
 - Away win: [0, 0, 1]
 - Draw: [0, 1, 0]
- Benchmark: Bookkeeper odds
 - 10 different bookkeepers
 - o 53% accurate

database.sqlite (313,09 MB)		平口>
Table	Total Rows	Total Columns
Country	11	2
League	n	3
Match	25979	115
Player	11080	7
Player_Attributes	183978	42
Team	299	5
Team_Attributes	1458	25

PCA

- Large number of features initially
- Principal Component Analysis (PCA) model was used to reduce the dimension of the features and increase the speed of learning.
- 730 features in original feature space to
 - o 399 features in the minmax X matrix
 - 472 features in normalized X matrix
 - 95% of the variance maintained!

Logistic Regression

- Attempts on regularization
- Multinomial algorithm was used instead of the original one-versus-all method;
- Polynomial feature transformation was also attempted,
 - Nystroem method for kernel approximation

Degree vs accuracy

Logistic Regression

Multinomial, OVR, L1 and L2 vs Accuracy

Support Vector Machines

- Regularization
- C > 1 is observed to run significantly longer
- Kernel SVM's to capture non-linear patterns by transforming the feature vector.

Linear Kernel SVM

Support Vector Machines

Degree vs accuracy

Support Vector Machines

Neural Networks

- Many different structures tried
- Average accuracy was 30-40%
- Best performance was with K nodesOverfitting
- Not enough data for this to work.

Neural Network Performance

Analysis of Results

- 2 of 3 Algorithms worked. Below are best results
 - Logistic Regression:
 - Degree 1; C = 0.01; 53% accurate
 - Degree 2; C= 1; 53% accurate
 - Degree 3; C=1; 54% accurate
 - SVM:
 - Linear Kernel; C=0.01; 53-54% accurate
 - Polynomial Kernel; C=1; 52% accurate
 - RBF Kernel; C=1; 53% accurate
 - Neural Networks
 - K neurons; 6 hidden layers; 45% accurate
 - 48 neurons; 6 hidden layers; 43% accurate

Conclusion

- Imbalanced f-scores for Logistic and SVM models
- Larger C for polynomial and RBF kernel can be helpful
 - Risk running much slower
- Success for logistic regression and SVM
 - both reached the 53% threshold.
- Failure for neural networks
 - Many different combinations of layers and nodes were tried, but none could cross 50% accuracy.