DRAFT FINAL

Amended Closure/Post-Closure Plan, Hazardous Waste Storage Area (Building 560)

Rickenbacker Air National Guard Base Columbus, Ohio

Prepared For

Air Force Center for Environmental Excellence
Technology Transfer Division
Brooks Air Force Base
San Antonio, Texas

and

20000906 145

Rickenbacker Air National Guard Base Columbus, Ohio

Approved for Public Release Distribution Unlimited

DRAFT FINAL

AMENDED CLOSURE/POST-CLOSURE PLAN HAZARDOUS WASTE STORAGE AREA BUILDING 560

at

RICKENBACKER AIR NATIONAL GUARD BASE COLUMBUS, OHIO

February 1997

Prepared for:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
TECHNOLOGY TRANSFER DIVISION
BROOKS AIR FORCE BASE
SAN ANTONIO, TEXAS

AND

RICKENBACKER AIR NATIONAL GUARD BASE COLUMBUS, OHIO

Prepared by:

Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado 80290

EXECUTIVE SUMMARY

This amended closure/post-closure plan describes the proposed closure approach for the former hazardous waste storage area (HWSA) at Building 560, Rickenbacker Air National Guard Base (ANGB), Ohio. The former HWSA is located at the edge of the shop area in the northern section of the base. The HWSA was a permitted storage facility that received wastes generated during base activities from 1983 to 1986. Wastes stored in the HWSA consisted primarily of acids and spent desiccants. Waste was stored in small containers placed on pallets inside Building 560 and in larger, 55gallon drums outside the building (within the fenced yard). Additionally, 15 underground storage tanks (USTs) were previously located at Building 560/HWSA. These USTs were used for the storage of waste fuel, waste oils, and deicing fluid. The Air Force Base Conversion Agency (AFBCA) has been granted "No Further Response Action Plan" (NFRAP) status for the tanks. Residual contamination in soil and groundwater is addressed as part of the closure approach presented in this closure/postclosure plan. This amended closure/post-closure plan was prepared in compliance with the Ohio Administrative Code (OAC) Chapter 3745 Part 66 and the Code of Federal Regulations (CFR), Title 40 Part 265, Subpart G.

The HWSA was initially proposed to be closed as a landfill (i.e., installation of a cap) with engineered groundwater remediation via extraction and treatment (E&T) to be conducted during the post-closure period. This proposed closure approach, as described in a March 1993 amended closure/post-closure plan, was approved by the Ohio Environmental Protection Agency (Ohio EPA) on July 13, 1993. However, after further review of existing site characterization data, the AFBCA questioned the effectiveness of the proposed groundwater remediation approach.

Subsequently, Parsons Engineering Science, Inc. (Parsons ES) was contracted by the Air Force Center for Environmental Excellence (AFCEE) to determine whether other remedial approaches and/or technologies could be used in lieu of the proposed closure approach, especially the engineered groundwater E&T system. The emphasis of this effort was to evaluate the potential for natural chemical attenuation processes to minimize contaminant mass, mobility, persistence, and toxicity. The findings of this focused evaluation and revised closure recommendations were documented in an October 1995 amended closure/post-closure plan. On August 26, 1996, after review of the October 1995 plan, Ohio EPA informed the AFBCA (and AFCEE/Parsons ES) that reliance on natural chemical attenuation processes as the sole remedial action for closure would not be approved. Ohio EPA recommended at that time that other remedial technologies be considered to supplement natural attenuation processes to achieve closure of the HWSA.

A revised amended closure/post-closure plan for the HWSA was submitted to Ohio EPA by the AFBCA on October 11, 1996. The proposed closure approach described in the October 1996 plan included:

• Decontamination of Building 560 by cleaning the building and drum wash pad (completed April 1996);

- Removal of remaining USTs (completed February 1995);
- Limited *in situ* remediation of organic soil contamination via passive or forced air injection bioventing;
- Natural oxidation of residual dissolved fuel hydrocarbons and natural reductive dehalogenation of residual dissolved chlorinated hydrocarbons;
- In situ remediation of residual dissolved chlorinated hydrocarbons via groundwater amendment (passive or active oxygenation), as necessary;
- Continued monitoring and site access controls as part of post-closure commitments; and
- Eventual total site exposure control by installation of taxiway (proposed as future land use).

This proposed closure approach is intended to supersede the closure approach presented in the approved 1993 closure/post-closure plan. Additional site assessment activities are being undertaken by the AFBCA to optimize final designs for the engineered components of the proposed closure approach and to establish long-term closure objectives for the site. Should this proposed closure approach prove insufficient to meet closure objectives, the AFBCA would consider implementation of alternate, high-cost contingency actions (e.g., cap installation).

TABLE OF CONTENTS

	<u>Page</u>
EXEC	UTIVE SUMMARY ES-1
SECTI	ON 1 - FACILITY DESCRIPTION 1-1
1.1 1.2 1.3 1.3	Introduction1-1Report Organization1-2Rickenbacker Air National Guard Base1-6Environmental Setting1-61.3.1 Meteorology1-61.3.2 Regional Geology1-61.3.3 Regional Soils1-81.3.4 Regional Surface Water Hydrology1-81.3.5 Regional Groundwater Use1-8
SECTI	ON 2 - HAZARDOUS WASTE STORAGE AREA 2-1
2.1 2.2	Site Description
SECTI	ON 3 - HAZARDOUS WASTES STORED AT THE HAZARDOUS WASTE STORAGE AREA
SECTI	ION 4 - DESCRIPTION OF INVESTIGATIONS
4.1 4.2 4.3 4.4	Previous Investigations
SECT	ION 5 - PROPOSED CLOSURE APPROACH
5.1	Summary of Decontamination of Building 5605-25.1.1 Building and Pad Decontamination Activities5-25.1.2 Documenting Complete Decontamination5-25.1.3 Wastewater Management5-4
5.2 5.3	Underground Storage Tank Removal 5-4 Remediation of Contaminated Soils 5-5
5.4	Intrinsic Remediation of Residual Groundwater Contamination
	5.4.1 Geochemical Indicators of BTEX Biodegradation
	5.4.1.1 Dissolved Oxygen

6.1.1 Soil Gas Sampling Frequency and Locations. 6-2 6.1.2 Soil Gas Sampling Procedures. 6-2 6.2 Compliance Soil Sampling. 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16					<u>Page</u>
5.4.1.4 Sulfate 5-22 5.4.1.5 Methane 5-22 5.4.1.6 Reduction/Oxidation Potential 5-25 5.4.1.7 Volatile Fatty Acids 5-25 5.4.1.8 Alkalinity 5-27 5.4.1.9 pH 5-27 5.4.1.10 Temperature 5-27 5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-30 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-31 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Comerabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Basis for Design 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials <td< td=""><td></td><td></td><td>5.4.1.3</td><td>Ferrous Iron</td><td>5-20</td></td<>			5.4.1.3	Ferrous Iron	5-20
5.4.1.5 Methane 5-22 5.4.1.6 Reduction/Oxidation Potential 5-25 5.4.1.7 Volatile Fatty Acids 5-25 5.4.1.8 Alkalinity 5-27 5.4.1.9 pH 5-27 5.4.1.10 Temperature 5-27 5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2 Degradation of Chlorinated Solvents 5-30 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-31 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-33 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Basis for Design 5-38 5.7.1.2 Expressed Assimilative Capacity 5-38 5.7.1.2 Surface Water Control 5-34 5.4 5-30 5.4.2.2 Telectron Acceptor Reactions (Reductive Debations) 5-33 5.4.2.1 Telectron Acceptor Reactions (Reductive Debations) 5-32 5.4.2.2 Telectron Donor Reactions (Reductive Debations) 5-3			5.4.1.4		
5.4.1.6 Reduction/Oxidation Potential 5-25 5.4.1.7 Volatile Fatty Acids 5-25 5.4.1.8 Alkalinity 5-27 5.4.1.9 pH 5-27 5.4.1.10 Temperature 5-27 5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-30 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.4.2.4 Discussion 5-33 5.4.2.5 Electron Donor Reactions 5-34 5.4.2.3 Cometabolism 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.5 Electron Donor Reactions (Reductive Defactoringency Plan 5-34 5.4.2.1 Discussion 5-32 5.4.2.2 Electron Donor Reactions (Reductive 5-36 5.7.1.1 Basis for Design 5-36<			5.4.1.5		
5.4.1.7 Volatile Fatty Acids 5-25 5.4.1.8 Alkalinity 5-27 5.4.1.9 pH 5-27 5.4.1.10 Temperature 5-27 5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-30 5.4.2.1 Electron Donor Reactions 5-32 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.6 Contingency Plan 5-34 5.7 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47			5.4.1.6		
5.4.1.8 Alkalinity 5-27 5.4.1.9 pH 5-27 5.4.1.10 Temperature 5-27 5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2 Degradation of Chlorinated Solvents 5-30 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-31 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.2 Asphalt Cover 5-43 5.7.2.1 Basis of Design 5-43 5.7.2.2 Cover Materials 5-44 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50			5.4.1.7		
5.4.1.9 pH 5-27 5.4.1.10 Temperature 5-27 5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2 Degradation of Chlorinated Solvents 5-30 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-31 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.2.1 Basis of Design 5-43 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-43 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 5.7.2.6 Installation Procedures </td <td></td> <td></td> <td>5.4.1.8</td> <td>Alkalinity</td> <td> 5-27</td>			5.4.1.8	Alkalinity	5-27
5.4.1.10 Temperature 5-27 5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2.1 Degradation of Chlorinated Solvents 5-30 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-31 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.6 Contingency Plan 5-34 5.7 Taxiway Cover 5-38 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-43 5.7.2.1 Basis of Design 5-43 5.7.2.2 Cover Materials 5-43 5.7.2.1 Subsurface Drainage Control 5-50 5.7.2.4 Subsurface Drainage Cont			5.4.1.9	pH	5-27
5.4.1.11 Discussion 5-27 5.4.1.12 Expressed Assimilative Capacity 5-28 5.4.2 Degradation of Chlorinated Solvents 5-30 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-31 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.5 Installation Procedures 5-43 5.7.2.1 Basis of Design 5-43 5.7.2.2 Cover Materials 5-44 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 5.7.2.6 Installation Procedures 5-50 6.1 Soil Gas Sampling 6-1 6.1.			5.4.1.10	Temperature	5-27
5.4.1 2 Expressed Assimilative Capacity 5-28 5.4.2 Degradation of Chlorinated Solvents 5-30 5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) 5-31 5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.2.1 Basis of Design 5-43 5.7.2.2 Cover Materials 5-43 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 5.7.2.6 Installation Procedures 6-1 6			5.4.1.11	Discussion	5-27
5.4.2 Degradation of Chlorinated Solvents 5-30				Expressed Assimilative Capacity	5-28
S.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation) S-31		5.4.2	Degradati	ion of Chlorinated Solvents	5-30
5.4.2.2 Electron Donor Reactions 5-32 5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-43 5.7.1.4 Surface Water Control 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-4 6.2.2 Borehole Installation Procedures			5.4.2.1	Electron Acceptor Reactions (Reductive	
5.4.2.3 Cometabolism 5-32 5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-36 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.2.1 Basis of Design 5-43 5.7.2.1 Basis of Design 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-2 6.1.2 Soil Gas Sampling Procedures 6-2			<i>-</i>	Dehalogenation)	5-31
5.4.2.4 Discussion 5-33 5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-43 5.7.1.4 Surface Water Control 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.2 Soil Gas Sampling Prequency and Locations 6-2 6.2 Compliance Soil Sampling 6-2 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 S				Electron Donor Reactions.	5-32
5.5 Engineered Groundwater Remediation 5-34 5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.2 Soil Gas Sampling Procedures 6-2 6.2.1 Sampling Locations 6-2					
5.6 Contingency Plan 5-34 5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.2.1 Installation Procedures 5-43 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-44 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 <td>- -</td> <td></td> <td></td> <td>Discussion</td> <td> 5-33</td>	- -			Discussion	5-33
5.7 Cover Alternatives 5-36 5.7.1 Taxiway Cover 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2.1 Basis of Design 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-14		Engine	eered Grou	Indwater Remediation	5-34
5.7.1 Taxiway Cover. 5-38 5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records		Contin	igency Plai	n	5-34
5.7.1.1 Basis for Design 5-38 5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16	5.7	Cover	Alternativ	es	5-36
5.7.1.2 Cover Materials 5-39 5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16		5.7.1	Taxiway	Cover	5-38,
5.7.1.3 Subsurface Drainage System 5-42 5.7.1.4 Surface Water Control. 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover. 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16				Basis for Design	5-38
5.7.1.4 Surface Water Control. 5-43 5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover. 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16				Cover Materials	5-39
5.7.1.5 Installation Procedures 5-43 5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16				Subsurface Drainage System	5-42
5.7.2 Asphalt Cover 5-44 5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16					
5.7.2.1 Basis of Design 5-44 5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16		<i>5</i> 7 0		Installation Procedures	5-43
5.7.2.2 Cover Materials 5-47 5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16		5.7.2	Asphalt C		
5.7.2.3 Cover Configuration 5-50 5.7.2.4 Subsurface Drainage Control 5-50 5.7.2.5 Surface Water Control 5-50 5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16				Basis of Design	5-44
5.7.2.5 Surface Water Control				Cover Materials	5-47
5.7.2.5 Surface Water Control				Cover Configuration	5-50
5.7.2.6 Installation Procedures 5-50 SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES 6-1 6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16				Subsurface Drainage Control	5-50
SECTION 6 - SAMPLING PLAN AND ANALYTICAL PROCEDURES. 6-1 6.1 Soil Gas Sampling. 6-1 6.1.1 Soil Gas Sampling Frequency and Locations. 6-2 6.1.2 Soil Gas Sampling Procedures. 6-2 6.2 Compliance Soil Sampling . 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16				Surface Water Control	5-50
6.1 Soil Gas Sampling	-		5.7.2.6	Installation Procedures	5-50
6.1 Soil Gas Sampling 6-1 6.1.1 Soil Gas Sampling Frequency and Locations 6-2 6.1.2 Soil Gas Sampling Procedures 6-2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16	SECTI	ION 6 -	SAMPLII	NG PLAN AND ANALYTICAL PROCEDURES	6-1
6.1.1 Soil Gas Sampling Frequency and Locations. 6-2 6.1.2 Soil Gas Sampling Procedures. 6-2 Compliance Soil Sampling. 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16	6.1	Soil G	as Samplin	ισ	6-1
6.1.2 Soil Gas Sampling Procedures 6-2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16		6.1.1	Soil Gas S	Sampling Frequency and Locations	6-2
6.2 Compliance Soil Sampling 6-3 6.2.1 Sampling Locations 6-14 6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16			Soil Gas S	Sampling Procedures	6-2
6.2.1 Sampling Locations	6.2		iance Soil	Sampling	6.3
6.2.2 Borehole Installation Procedures 6-14 6.2.3 Sampling Records 6-16		6.2.1	Sampling	Locations	6_1/
6.2.3 Sampling Records			Borehole	Installation Procedures	6_14
			Sampling	Records	6 16
6.2.4 Management of Excavated Soils and Soil Cuttings 6.16		6.2.4	Managem	ent of Excavated Soils and Soil Cuttings	6 16
6.2.5 Equipment Decontamination Procedures			Fauinmen	of Decontamination Procedures	6 17
6.2.6 Survey of Borehole Locations			Survey of	Borehole Locations	6_12

		<u>Page</u>
	6.2.7 Borehole Abandonment	6-18
6.3	Groundwater Sampling	
	6.3.1 Preparation for Sampling	6-19
	6.3.2 Equipment Decontamination	6-19
	6.3.3 Sampling Procedures.	6-20
	6.3.4 Preparation of Location.	6-20
	6.3.5 Water Level/ Total Depth Measurements and Detection of	6 01
	Immiscible Liquids	
	6.3.6 Groundwater Monitoring Well/ Point Purging	
	6.3.8 Onsite Chemical Parameter Measurement	6-22
	6.3.9 LNAPL Sampling	6-23
	6.3.10 Sampling Records	6-23
6.4	Sample Handling	
•••	6.4.1 Sample Labels	
	6.4.2 Sample Preservation	
	6.4.3 Sample Shipment	
	6.4.4 Chain-of-Custody Control	6-27
6.5	Quality Assurance/Quality Control Procedures and Sampling and	
	Potential Interferences	6-28
6.6	Calibration Procedures and Frequency for Field Test Equipment	6-31
6.7	Determining Contaminant Migration Rates	6-31
SEC	TION 7 - HEALTH AND SAFETY PLAN	7-1
7.1	Program Health and Safety Officer	7-1
7.2	Site-Specific Employee Training and Medical Monitoring	7-1
7.3	Site Hazards	7-2
	7.3.1 Chemical Hazards	7-2
	7.3.2 Physical Hazards	
	7.3.2.1 Electrical Safety	
	7.3.2.1.1 General Electrical Safety Rules	7-3
	7.3.2.1.2 Holding and Locking Out Electrical	
	Circuits	
	7.3.2.2 Fire Safety	7-4
	7.3.2.3 Motor Vehicles and Heavy Equipment	7-5
	7.3.2.4 Electrical Line Clearance and Thunderstorms	
	7.3.2.5 Slip, Trip and Fall Hazards	7-6
	7.3.2.6 Excavation Activities	
	7.3.2.7 Subsurface Hazards	
	0	
7.4	7.3.2.9 Heat Stress and Cold-Related Illness	1-1
,. ,	Procedures During An Emergency	י די
	Troopers During All Dillorgolley	/-/

		<u>Page</u>
	7.4.1 Evacuation Routes and Procedures, Safe Distances, and	
	Places of Refuge	7-8
	7.4.2 Decontamination of Personnel During an Emergency	7-8
	7.4.3 Emergency Site Security and Control	7-8
7.5	Procedures for Emergency Medical Treatment and First Aid	7-8
	7.5.1 Chemical Exposure	7-8
	7.5.2 Personal Injury	7-9
	7.5.3 Fire or Explosion	7-9
7.6	Personal Protective Equipment	7-9
7.7	Site Control Measures	7-11
	7.7.1 Site Operation Zones	7-11
	7.7.1.1 Exclusion Zone (Contamination Zone)	7-11
	7.7.1.2 Contamination-Reduction Zone	7-12
	7.7.1.3 Support Zone	7-12
	7.7.2 Site Security	7-12
	7.7.3 Site Communication	7-12
	7.7.4 Safe Work Practices	7-13
7.8	Personnel and Equipment Decontamination Procedures	7-14
7.9	Equipment Decontamination	7-16
SEC' 8.1 8.2	TION 8 - SCHEDULE AND CERTIFICATION FOR CLOSURE Proposed Schedule for Closure Activities Certification of Closure	8-1
SEC	TION 9 - POST-CLOSURE PLAN	
9.1	Access Control	
9.2	Site Survey	11 1
9.3	Amendment of The Post-Closure Plan	1-1
9.4	Post-Closure Field Activities	
	9.4.1 Monitoring Well Installation	
	9.4.2 Groundwater Monitoring	2
	9.4.3 Sampling and Analysis	2
	9.4.4 System Inspection and Maintenance	۷
	9.4.5 Site Inspection and Maintenance	4
9.5	Post-Closure Notices	6
	9.5.1 Annual Groundwater Monitoring System Reports	6
	9.5.2 Record of Hazardous Waste Disposal	
	9.5.3 Deed Restriction Notation and Certification	/
	9.5.4 Post-Closure Certification	/
	9.5.5 Survey Plat	/
9.6	Post-Closure Contact	/
		0

	<u>Page</u>
SECT	ION 10 - COST ESTIMATES FOR CLOSURE
SECT	ION 11 - REFERENCES1
APPE	NDICES
B - Su C - Sc D - La Ir	ammary of Analytical Data, 1988-1990 ammary of Previous Investigations, Including 1991 Analytical Data bil Boring Logs, Well Installation Diagrams, and CPT/LIF Data Sheets aboratory Reports from USEPA, 1995 AFCEE-Sponsored Natural Attenuation avestigation ammary of Analytical Data, August 1995-March 1996
	LIST OF TABLES
<u>No</u> .	<u>Title</u> <u>Page</u>
3.1 4.1 4.2 4.3 4.4	Summary of Wastes Stored at HWSA
5.1 5.2 5.3 5.4	BTEX and Chlorinated VOCs Detected in Groundwater February- March 1995
6.1 6.2	Groundwater
6.3 6.4	Practical Quantitation Limits for Soil Gas
6.5 6.6 6.7 10.1 10.2	Practical Quantitation Limits for Soil and Groundwater. 6-9 QA/QC Sampling Program 6-29 Calibration of Equipment for Field Screening 6-32 Cost Estimates for Proposed Closure Actions 10-2 Cost Estimates for Contingency Actions 10-3

LIST OF FIGURES

No.	<u>Title</u>	<u>Page</u>
1.1	Rickenbacker ANGB Location	1-3
1.2	Site Location	1-4
1.3	Site Layout	1-5
1.4	Annual Wind Roses for the Base	1-7
2.1	Hazardous Waste Storage Area Vicinity	
4.1	Site Sampling Locations	4-5
4.2	Groundwater Potentiometric Surface March 1995	4-12
4.3	Groundwater Potentiometric Surface December 1995	4-13
4.4	Groundwater Potentiometric Surface March 199c	4-14
4.5	Estimated Extent of Total BTEX Concentrations $> 5 \mu g/L$ in	
	Groundwater	
4.6	Chlorinated VOCs in Groundwater	4-25
5.1	Conceptual Bioventing Layout	
5.2	Dissolved Oxygen Concentrations in Groundwater	5-13 •
5.3	Estimated Extent of $NO_2 + NO_3$	5-19
5.4	Estimated Extent of FE^{2+} Concentrations >2 mg/L in	
	Groundwater	
5.5	Sulfate Isopleth Maps for Groundwater	
5.6	Estimated Extent of Methane > 1 mg/L in Groundwater	
5.7	Redox Potential in Groundwater	
5.8	Conceptual Biosparging System	
5.9	Details of Contingency Taxiway Cover	
5.10	Details of Contingency Asphalt Cover	
6.1	Geologic Boring Log	6-15
6.2	Groundwater Sampling Record	6-25
7.1	Temporary Decontamination Pad	7-15
8.1	Schedule for Implementation of Interim Action and Closure of the	
	Former HWSA	8-2
9.1	Proposed Post-Closure Sampling Locations Including Proposed	
	Additional Monitoring Wells	9-3

SECTION 1

FACILITY DESCRIPTION

1.1 INTRODUCTION

This amended closure/post-closure plan is submitted by Rickenbacker Air National Guard Base (ANGB, the Base), in compliance with the Ohio Administrative Code (OAC) Chapter 3745 Part 66, and Code of Federal Regulations (CFR) Title 40 Part 265, Subpart G. As part of the Installation Restoration Program (IRP), Rickenbacker ANGB has identified the former hazardous waste storage area (HWSA) at Building 560 for closure. Initially, Rickenbacker proposed to close the HWSA as a landfill with groundwater remediation to be conducted during the post-closure period. This closure approach consisted of engineered groundwater remediation with an extraction and treatment system, followed by installation of a cap. This proposed closure approach, as described in a March 1993 amended closure/post closure plan, was approved by the Ohio Environmental Protection Agency (Ohio EPA) on July 13, 1993.

In January 1995, the Air Force Base Conversion Agency (AFBCA), which took over responsibility of closure of the HWSA in September 1994, informed Ohio EPA that the effectiveness of the approved groundwater extraction and treatment system was To determine whether other remedial approaches and/or being questioned. technologies could be used in lieu of the proposed closure approach, especially the engineered groundwater extraction and treatment system, Parsons Engineering Science, Inc. (Parsons ES) was contracted by the Air Force Center for Environmental Excellence (AFCEE) in February 1995 to perform an investigation at the HWSA to determine if natural chemical attenuation processes in site groundwater are occurring, and, if so, whether these processes are sufficient to minimize contaminant mass, mobility, persistence, and toxicity. The findings of this evaluation and revised closure recommendations were documented in an October 1995 amended closure/post closure plan. On August 26, 1996, after review of this amended closure/post closure plan, Ohio EPA informed the AFBCA (and Parsons ES) that reliance on natural chemical attenuation processes as the sole remedial action for closure would not be approved. Ohio EPA recommended at that time that other remedial technologies be considered to supplement natural attenuation processes to achieve closure of the HWSA.

This version of the amended closure/post closure plan describes the additional engineered remedial actions that are proposed to be implemented at the former HWSA to supplement natural chemical attenuation processes, which have been documented to be occurring in site groundwater. This proposed closure approach is intended to supersede the closure approach presented in the approved 1993 closure/post closure plan.

The HWSA is located at Base Building 560, which was regulated under US Environmental Protection Agency (USEPA) Interim Status Permit #OH3571924544. Building 560 was decontaminated in April 1996 in preparation for closure, as described in Section 5 of this report and in a June 1996 technical report (AFCEE, 1996). Building 560 housed water demineralization equipment prior to being converted to hazardous waste storage in 1983. The HWSA (Building 560) was then used from 1983 until 1986 for the storage of drummed wastes generated at the Base.

Environmental investigations were conducted at the HWSA in 1989, 1990, and 1991 to determine the nature and extent of contamination at the site. To more completely define the extent of contamination and to document the potential feasibility of relying on natural chemical attenuation processes as a potential remedial approach for groundwater-remediation, additional field work was conducted in February and March of 1995. Results of severalOngoing quarterly groundwater sampling events, which were completed in August and December 1995 and March 1996, also were considered when evaluating potential remedial approaches for groundwaterhave been completed.

1.2 REPORT ORGANIZATION

This amended closure/post closure plan consists of 11 sections, including this introduction, and 5 appendices. A general site background, including an overview of the environmental setting, is provided in the remainder of this section. Section 2 presents more detailed information on the site background, including a review of recently-completed closure activities related to Building 560 and a number of underground storage tanks (USTS) located on or adjacent to the site. presents a summary of the wastes that were stored at the site, in tabular form. Section 4 summarizes the scope of environmental investigation activities conducted at the site to date, and presents available data to characterize physical conditions and the nature and extent of residual contamination in soil and groundwater. The proposed closure approach, including a description of the various remedial technologies and approaches, is presented in Section 5. Section 6 presents the proposed sampling and analytical plan for soil and groundwater during closure activities and post-closure monitoring. Section 7 describes the personnel health and safety procedures for closure and post-closure activities. Section 8 presents a schedule for closure activities. Post-closure activities are summarized in Section 9. An estimate of closure and post-closure costs is provided Section 11 presents references used in preparing this amended in Section 10. closure/post closure plan.

Appendix A tabulates the analytical data collected at the site from 1988 through 1990. Appendix B presents relevant text and figures from the 1988-1990 investigations, and a summary of the 1991 sampling results. Boring logs, monitoring well construction details, and 1995 conepenetrometer (CPT) logs are presented in Appendix C. Appendix D presents the laboratory reports for analytical data collected in early 1995 as part of the natural chemical attenuation investigation sponsored by the AFCEE. Appendix E summarizes the field and analytical results collected at the site in August 1995, December 1995, and March 1996. Analytical data from early investigations are presented on a site map in sheets attached at the end of the appendices.

1.3 RICKENBACKER AIR NATIONAL GUARD BASE

Rickenbacker ANGB is located 12 miles southeast of Columbus, and 0.5 mile east of Lockbourne, Ohio (Figure 1.1). The Base covers approximately 2,100 acres in Franklin and Pickaway Counties and is located on a glacial till plain between the Big Walnut and Walnut Creek drainage basins. The area has been used as an air base under the custody of various government branches, including the Army Air Corps and the Air National Guard since 1942. Access to the Base is restricted through a continually guarded entrance.

The former HWSA is located at the edge of the shop area in the northern section of the Base (Figure 1.2). The HWSA was a permitted storage facility that received wastes generated during Base activities from 1983 to 1986, when it was closed. The HWSA encompasses a fenced, grass-covered area measuring 170 feet by 95 feet and includes a 10-foot by 20-foot steel building on a concrete slab identified as Building 560 (Figure 1.3). Wastes were stored in drums placed on pallets inside Building 560 and outside within the fenced yard.

Closure activities for eleven USTs associated with Building 560/HWSA (Tanks #51 through #57, #106, #160, #161, and #162) were conducted in May through August 1994. These tanks were used previously to store petroleum, diesel, and kerosene. Four additional USTs (Tanks #47 through 50) at the HWSA were removed in February 1995. These USTs were used for the storage of waste fuel, waste oils, and deicing fluid. The activities that generated the wastes stored in the HWSA include degreasing operations at Base shops, aircraft cleaning, and general maintenance activities (painting, paint stripping, etc.).

1.3 ENVIRONMENTAL SETTING

The environmental setting of the Base is described in this subsection, with an emphasis on the identification of natural features that may influence the migration of hazardous-waste-related contaminants from this facility.

1.3.1 Meteorology

The climate of Columbus, Ohio is continental, characterized by cold winters, hot summers, and moderate rainfall (Pierce, 1959). The mean annual temperature is 52 degrees Fahrenheit (°F). The coldest month is January, with a mean temperature of 30°F; the warmest month is July, with a mean temperature of 74°F. Precipitation at the Base falls primarily during the summer months, with June being the wettest month and October being the driest month. The mean annual precipitation at the Base is 38 inches. The prevailing wind directions on the Base are from the southwest to northnorthwest, as illustrated on Figure 1.4.

1.3.2 Regional Geology

The Base is located in the Glaciated Central Lowlands Province, just west of the Appalachian Plateau Province. The geology of the area is characterized by up to 200 feet of Pleistocene sandy and gravelly glacial outwash and silty and clayey glacial till filling a preglacial bedrock valley (Schmidt and Goldthwaite, 1958). Bedrock

NOTE THESE WIND ROSES SHOW THE TOTAL % OF WINDS BY SPEED GROUP AND DIRECTION BASED ON TRUE BEARING.

Sources: ES, 1993.

FOR THE BASE

HWSA Amended Closure/Post-Closure Plan Rickenbacker ANGB, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

underlying the valley fill consists of Devonian-age limestones and shales of the Columbus and Delaware Formations.

1.3.3 Regional Soils

Soils mapped at the Base are of the Kokomo and Crosby Series (Soil Conservation Service, 1976). The soils are characterized as deep, very poorly drained, slowly to moderately slowly permeable soils formed in glacial tills on uplands. The Crosby series soils are formed on slopes with up to 6-percent grade, while the Kokomo series soils form on gentler 0- to 2-percent slopes on the higher landscape positions. The Crosby soils exhibit permeabilities of 0.06 to 0.6 inches per hour (in/hr) in unleached horizons. The Kokomo soils have permeabilities of 0.2 to 2.0 in/hr.

1.3.4 Regional Surface Water Hydrology

Rickenbacker ANGB occupies the drainage divide between Big Walnut Creek and Walnut Creek. Surface drainage from the Base is controlled through an extensive storm drain network, which includes corrugated metal and concrete drainage pipes and open drainage ditches. All of the surface runoff is routed through oil/water separators before being released into surrounding surface streams, which ultimately discharge into Walnut Creek and Big Walnut Creek. Walnut Creek is the nearest permanent stream to the HWSA and is located approximately 1.5 miles east of the site.

1.3.5 Regional Groundwater Use

Groundwater is the primary source of drinking water in this area. Although there are six water supply wells located on the Base,— these wells are no longer used as a source of potable water. The Base and the nearby Village of Lockbourne receive their water supply from the City of Columbus. The depths of the ANGB former drinking water wells range from 201 to 232 feet below ground surface (bgs). The wells are screened in the glacial sands and gravels immediately above the shale bedrock. Static water levels in the drinking water wells range from 36 to 56 feet bgs. Testing of water from the wells for priority pollutants indicated no detectable contamination (Ecology and Environment, 1986).

Homes along the rural roads surrounding the Base are served by individual domestic water wells. These wells are completed in sand and gravel aquifers between 20 and 100 feet bgs.

SECTION 2

HAZARDOUS WASTE STORAGE AREA

2.1 SITE DESCRIPTION

The site is located in the central area of the Base (Figure 1.2). The HWSA measures 170 feet by 95 feet, and is surrounded by a chain-link fence with a locking gate (Figure 1.3). A majority of the site is unpaved and vegetated with grasses. There is a paved driveway that leads to the now-decontaminated Building 560, and the floor of the building is paved with concrete. The area surrounding the site is very level and also is vegetated with grasses. To the north and east of the site is a gravel road, and beyond the road are railroad tracks that are no longer in use. The area to the south and west is currently used as a storage yard for stockpiled telephone poles and drummed material. To the south and east of the site are office buildings and parking lots. Beyond the buildings to the east are the Base runways. These runways receive air traffic consisting of various military aircraft and private aircraft associated with the Rickenbacker Port Authority.

2.2 SITE HISTORY

The area where the HWSA was constructed had various other uses in the past. Historical aerial photographs, maps, and drawings indicate that the site had been used for a storage yard, probably for drummed lube oils. When the Base was first constructed in 1942, individual buildings were heated with coal. The coal storage area for the Base was located west of the HWSA, adjacent to the railroad tracks (Figure 2.1). The smokestack for a coal-burning furnace is still standing approximately 180 feet from the HWSA.

Records indicate Buildings 551 and 552 also were formerly located on this site. Fuel pumping operations were managed from these two buildings. One of the buildings housed the valve controls for fuel hydrants used to off-load fuel from rail cars. The foundation of Building 551 is still present at the site (Figure 1.3). Excavations and soil sampling were conducted adjacent to this foundation in 1990. These investigations indicated that the fill material surrounding that structure was not contaminated.

From 1974 to 1983, Building 560 (Figure 1.3) housed water demineralization equipment. In 1983, the building was converted to a hazardous waste storage facility. The conversion included sealing off all floor drains that led to storm sewers, connecting remaining drains to the sanitary sewer, and installing emergency eye-wash and shower fixtures.

Hazardous wastes were containerized and brought to the site from other areas of the Base. Drum contents were sampled to characterize wastes for disposal or reuse. Wastes were then turned over to the Defense Property Disposal Office (DPDO) for disposal or recycling. The DPDO is now known as the Defense Reutilization and Marketing Office (DRMO).

Building 560 (Figure 1.3) was used to store small (5 gallons or less) containers that usually held acids or spent desiccants. Other materials stored at this site were containerized in 55-gallon drums. As many as 165 containers at one time were stored on pallets in the grass area outside Building 560. Section 3 summarizes types and quantities of waste that were stored at the site from 1983 until 1986.

Building 560 consists of an empty 15' x 15' pre-engineered metal structure and an adjacent 4' x 4' concrete drum wash pad located inside a 95' x 100' fenced area. The HWSA was active from 1983 to 1986. During this period, small container (5 gallons or less) were stored inside the building while 55-gallon drums were stored outside the building within the fenced area which included the concrete drum wash pad.—The materials stored at the HSWA during this period consisted primarily of acids and spent desiceants.

Closure activities recently conducted at the site include:

- Decontamination of Building 560 and the adjacent concrete drum wash pad;
- Collection and analysis of building and concrete pad rinseate samples to confirm achievement of clean standards;
- Testing and disposal of containerized wash/rinse wastewater generated during decontamination activities; and
- Preparation of a report documenting the closure activities.

Details on the planned (and executed) closure activities associated with Building 560 are presented in Section 5 of this amended closure/post closure plan.

Four 12,000-gallon USTS (Tanks #53-57) and ten 25,000-gallon USTs (Tanks #47 through #52, #106, #160, #161, and #162) were previously located at the site. These USTs were removed in 1994 and 1995 (see Sections 1.2 and 5.2). The AFBCA receivedrequested that a "No Further Response Action Plan" status from the Ohio Department of Commerce, Division of State Fire Marshal, Bureau of Underground Storage Tank Regulation (BUSTR) in March 1996, be granted for the tanks only. Residual contamination in soils and groundwater are to be addressed as part of the closure approach presented in this closure/post closure plan.

SECTION 3

HAZARDOUS WASTES STORED AT THE HAZARDOUS WASTE STORAGE AREA

Wastes from operations on the Base were stored at the HWSA from 1983 to 1986. No wastes have been stored at the site since 1986. Table 3.1 contains a summary of the types and amounts of waste stored at the HWSA.

TABLE 3.1 SUMMARY OF WASTES STORED AT THE HAZARDOUS WASTE STORAGE AREA HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

		Quantity (by year)								
	USEPA Haz.	1983	1984	1985	1986					
Waste Description	Waste No.	(gals)	(gals)	(gals)	(lbs)					
	· · · · · · · · · · · · · · · · · · ·		i							
PD 680 (Stoddard Solvent,	D001	1,155	1,450	110	2,429					
Flammable Aliphatic Petroleum Distillate	D001	1,133	1,450	110	2,127					
Petroleum Distiliate		· · · · · · · · · · · · · · · · · · ·								
Carbon-Removing Compound	F001,	590	870							
(Methylene Chloride,	F004				_					
Creosols, Phenols)										
Highly Aromatic Naptha	D001	500	290							
Methyl Ethyl Ketone	F005	285	525	## The state of th	1,050					
Paint Remover	F005	200	540							
Bromochloromethane		200	385							
<u> </u>										
Sulfuric Acid	D002	25	25							
Paint Thinner	D001	20	20							
Ethanolamine and Benzyl Alcohol	D001	220								
	D006	495								
Oily Water and Cleaning Solutions	D006, D007,	493								
Containing Lead, Cadmium, Chromium, and Nickel	D007,									
Cirolitani, and Nickei	D000									
Hydraulic Fluid		0	360							
Synthetic Oil			440							
Inspection Penetrant			150							
mspeedon i encuant										
Organic Peroxide	D002			1						
Spent Desiccant (Cobalt chloride) a		50	40	10						

^{a/} Quantities for desiccant for all years are shown in pounds.

SECTION 4

DESCRIPTION OF INVESTIGATIONS

Early environmental investigations were conducted at the HWSA in 1988, 1990, and 1991. The activities conducted during, and the results of, these early investigations are presented in detail in the following documents: Field Investigation Report (ES, 1990), Pre-Closure Sampling Report, Hazardous Waste Storage Area, (ES, 1992b), Addendum to the Pre-Closure Sampling Report, Hazardous Waste Storage Area, (ES, 1992a), and Groundwater Survey October, 1991. A brief overview of the activities conducted during each of these investigation events is included here, and additional details from these documents are presented in Appendices A, B, and C. Additional fieldwork was conducted in February and March 1995 to evaluate the potential for naturally-occurring chemical attenuation processes to effect in situ remediation of residual dissolved contamination at the HWSA. These data are important to establish the role natural chemical attenuation may play in remediation/closure activities at the site. The results of this investigation, as are necessary to support the proposed closure approach, are presented in this amended closure/post closure plan. Additionally, data collected during groundwater sampling events in August 1995, December 1995, and March 1996 These data are important to evaluate site-specific (Appendix E) are presented. hydrogeologic conditions and observed trends in dissolved contamination that may be attributable to natural chemical attenuation processes.

4.1 PREVIOUS INVESTIGATIONS

During the investigations conducted from 1988 through 1991, surface soil, subsurface soil, and groundwater samples were collected and analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals. The list of the analytes included in these sampling efforts is included in Table 4.1. A total of 15 boreholes were completed, 12 monitoring wells were installed, and 31 soil samples were collected during pre-closure sampling activities (ES, 1990; ES, 1992a; ES 1992b). The borings (including wells) ranged in depth from 10 to 27 feet bgs.

The analytical results from the investigations conducted prior to 1995 are compiled in tables included in Appendices A and B. Laboratory reports for the data are included in appendices of the pre-closure sampling reports (ES, 1992a and 1992b). The data are listed by depth of sample and by sample matrix. These analytical data are also illustrated on eight sheets that are contained in this amended closure/post closure plan. Sheets 1 through 5 illustrate results of analyses of soil samples by depth interval at the

TABLE 4.1

LIST OF TARGET ANALYTES FOR PREVIOUS INVESTIGATIONS (1989-1991) HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

Base/Neutral Extractable Semi	ivolatile Organic Compounds (USEPA Method SW 8270)
Acenaphthene	Fluoranthene
Acenaphthylene	Fluorene
Anthracene	
	Hexachlorobenzene
Benzo(b)fluoranthene	Hexachlorobutadiene
Benzo(k)fluoranthene	Hexachloroethane
Benzo(a)pyrene	Hexachlorocyclopentadiene
Benzo(a)anthracene	
Benzo(ghi)perylene	Indeno(1,2,3-cd)pyrene
Benyl Alcohol *	Isophorone
Bis(2-chloroethyl)ether	
Bis(2-chloroethoxy)methane	Naphthalene
Bis(2-ethylhexyl)phthalate	Nitrobenzene
Bis(2-chloroisopropyl)ether	N-Nitrosodiphenylamine
4-Bromophenyl phenyl ether	2-Nitroaniline
Butylbenzlphthalate	3-Nitroaniline
•	4-Nitroaniline
2-Chloronaphthalene	N-Nitroso-Dimethylamine *
4-Chloroaniline	N-Nitroso-di-n-dipropylamine
4-Chlorophenyl phenyl ether	
Chrysene	2-Methylnaphthalene
Dibenzo(a,h)anthracene	Phenanthrene
Dibenzofuran	Pyrene
Di-n-octylphthalate	
1,3-Dichlorobenzene	1,2,4-Trichlorobenzene
1,2-Dichlorobenzene	
1,4-Dichlorobenzene	
3,3'-Dichlorobenzidine	
Diethyl phthalate	
Dimethyl phthalate	
2,4-Dinitrotoluene	
2,6-Dinitrotoluene	
Di-n-octylphthalate	

TABLE 4.1 (CONTINUED)

LIST OF TARGET ANALYTES FOR PREVIOUS INVESTIGATIONS (1989-1991)

HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

Volatile Organic	Compounds (USEPA Methods SW 8240/8260)	
Acrolein *	1,2-Dichloroethane	
Acetone	trans-1,2-Dichloroethene	
Acrylonitrile *	trans-1,3-Dichloropropene	
Benzene	Ethylbenzene	
Bromomethane		
Bromodichloromethane	2-Hexanone	
Bromoform		
2-Butanone	Methylene Chloride	
	4-Methyl-2-pentanone	
Carbon disulfide		
Carbon tetrachloride	Styrene	
Chlorobenzene		
Chloroethane	1,1,2,2-Tetrachloroethane	
Chloroform	Tetrachloroethene	
2-Chloroethyl vinyl ether *	Toluene	
Chloromethane	1,1,1-Trichloroethane	
	1,1,2-Trichloroethane	
Dibromochloromethane	Trichloroethene	
1,2-Dichloropropane	Trichlorofluoromethane *	
1,3-Dichlorobenzene *		
cis-1,3-Dichloropropene	Vinyl chloride	
1,2-Dichlorobenzene *	Vinyl Acetate *	
1,4-Dichlorobenzene *		
1,1-Dichloroethene	Xylenes	

Metals (USEPA Methods SW6010 and SW7470/7471)								
Antimony	Mercury							
Arsenic	Nickel							
Beryllium	Selenium							
Cadmium	Silver							
Chromium	Thallium							
Copper	Zinc							
Lead								

^{*} These compounds are not on the Target Compound List (TCL) of the method but were included in the laboratory report.

site. Sheet 1 illustrates the results of the soil samples obtained from 0 to 2 feet bgs. Sheets 2 through 5 illustrate the results of soil samples obtained from 3 to 5 feet, 8 to 10 feet, 13 to 15 feet and greater than 15 feet bgs, respectively. Sheet 6 illustrates analytical results for VOCs and SVOCs in groundwater, and Sheet 7 illustrates analytical results for filtered metal analyses in groundwater. Sheet 8 illustrates all of the sample locations at the site, without the associated data. These data are used in Section 4.3.24.4.2 to describe the nature and extent of residual contamination at the site.

4.2 EARLY 1995 NATURAL CHEMICAL ATTENUATION INVESTIGATION

To determine if natural chemical attenuation processes are occurring at the HWSA, and if so, to evaluate whether these processes can play a significant role in groundwater remediation, additional data were necessary to evaluate near-surface geology, aquifer properties, and the nature and extent of soil and groundwater contamination. Site characterization activities included performing CPT with laser-induced fluorescence (LIF); sampling and analyzing soils from CPT pushes; installing groundwater monitoring points; sampling and analyzing groundwater from newly installed monitoring points and previously installed monitoring wells; and measuring and estimating hydrogeologic parameters (static groundwater levels, groundwater gradient, groundwater flow direction, and hydraulic conductivity). The field methods for all site activities are described in detail in the Draft Work Plan for a Treatability Study in Support of the Intrinsic Remediation (Natural Attenuation) Option at Site 1 (Hazardous Waste Storage Area), Rickenbacker ANGB (Parsons ES, 1995a). Sampling locations for the 1995 site activities are presented on Figure 4.1.

The objective of these field activities was to collect the following physical and chemical data:

- Depth from measurement datum to the water table or potentiometric surface in monitoring wells;
- Rate of change of water elevation following rapid depression or elevation of water level in a monitoring well (to be used to estimate hydraulic conductivity);
- Location of potential groundwater recharge and discharge areas;
- Stratigraphy of subsurface media;
- Nature and extent of residual petroleum and chlorinated aliphatic hydrocarbon contamination in soils;
- Total organic compound (TOC) in select soil samples.

- Nature and extent of benzene, toluene, ethylbenzene, and xylenes (BTEX), trimethylbenzene (TMB), total petroleum hydrocarbon (TPH), and chlorinated aliphatic hydrocarbons in groundwater;
- Concentrations of dissolved oxygen (DO), nitrate, ferrous iron, sulfate, methane, chloride, ammonia, and TOC in groundwater; and
- Temperature, specific conductance, reduction/oxidation (redox) potential, total alkalinity, and pH of groundwater.

An overview of these early 1995 site activities is presented in the following paragraphs. A more detailed discussion of field methods is provided in the work plan (Parsons ES, 1995a).

Subsurface conditions at the site were characterized by the US Army Corps of Engineers (USACE) and Parsons ES on February 21 through February 24, 1995, using a CPT coupled with a LIF testing device. Seventeen CPT pushes were performed at the locations labeled LIF-1 through LIF-17 (Figure 4.1). LIF was performed simultaneously at these locations to evaluate the presence of residual or mobile (freephase) hydrocarbons in the soil and groundwater. The purpose of the CPT/LIF sampling at the site was to determine subsurface stratigraphy and to help delineate the extent of fluorescing contamination. Graphical results of each CPT/LIF push were plotted at the conclusion of each penetration and were available minutes after the completion of each hole. The graphs showed cone resistance, sleeve friction, soil classification, fluorescence intensity, and maximum fluoresced wavelength. The realtime availability of the CPT information allowed the USACE and Parsons ES to make investigative decisions based on the most current information. Final CPT logs are presented in Appendix C.

The CPT apparatus also was used to collect three undisturbed soil samples at three monitoring point locations. Sample SS-1 was collected from 10 to 10.7 feet bgs during the placement of monitoring point ESMP-14. Sample SS-2 was collected from 14 to 14.7 feet bgs during the placement of ESMP-16. Sample SS-3 was collected from 10 to 10.7 feet bgs adjacent to ESMP-12, following the placement of the monitoring point. Additional soil samples specified in the work plan (Parsons ES, 1995a) were not collected because the sampling attachments were broken during the sampling process.

Static groundwater levels were measured in all site wells prior to purging for groundwater sampling and at the conclusion of the field effort on March 1, 1995. Measurements were obtained at all site wells and monitoring points. Two rising head slug tests were performed on each of four monitoring wells: MW-4, MW-6, MW-9, and MW-12 (Figure 4.1).

Thirty-four 0.5-inch inside diameter (ID) groundwater monitoring points were installed at 17 locations in February to March 1995. Clusters of 3 monitoring points were installed at locations ESMP-8 and ESMP-14. Clusters of 2 monitoring points

were installed at locations ESMP-1, ESMP-2, ESMP-3, ESMP-4, ESMP-5, ESMP-6, ESMP-7, ESMP-9, ESMP-10, ESMP-11, ESMP-13, ESMP-15, and ESMP-16. Single monitoring points were installed at locations ESMP-12 and ESMP-17. monitoring points were installed in clusters, the shallowest screen was placed across or just below the observed water table. Screens for deeper monitoring points within the same cluster were placed approximately 7 to 10 feet below the next shallowest point in the cluster. At the locations with paired monitoring point clusters, the point with the shallowest screened interval was designated with the suffix "S", while the point with the deeper screened interval was designated with the suffix "D". At the locations with three monitoring points, the point with the shallowest screened interval was designated with the suffix "S", the point with the intermediate screened interval was designated with the suffix "D", and the deepest point in the cluster was labeled "DD". All installed monitoring points are shown on Figure 4.1. Those groundwater monitoring locations that are currently being used to conduct quarterly monitoring events are Completion details for the monitoring points and the existing -shown in relief. monitoring wells are summarized in Table 4.2.

Two previously installed monitoring wells (MW-1 and MW-7) were destroyed during the 1995 removal of the USTs immediately prior to the field work conducted for this study. Groundwater samples were collected from the remaining 10 monitoring wells identified on Figure 4.1. Groundwater samples also were collected from 31 of the 34 newly installed 0.5-inch monitoring points. Samples were not collected from points ESMP-3S, ESMP-8D, and ESMP-11S because they produced an insufficient volume of groundwater. Groundwater was monitored for temperature and DO during purging. Groundwater samples were analyzed in the field by USEPA personnel for pH, conductivity, reduction/oxidation (redox) potential, total alkalinity, hydrogen sulfide, ferrous iron, chloride, sulfate, nitrogen, carbon dioxide, and ammonia. Results are not available for these field parameters from monitoring points ESMP-1S, ESMP-2S, ESMP-3S, ESMP-6S, ESMP-8S, ESMP-10S, ESMP-11S, ESMP-12S, and ESMP-14DD because sufficient groundwater could not be collected for these analyses. Sampling at monitoring points which were purged dry occurred after allowing time for groundwater to recover to approximately 90 percent of the initial water level. volume from these points was enough to fill sample bottles for BTEX analysis but was generally insufficient to allow collection of a full suite of samples. methane, ethene, fuel hydrocarbon compounds, and VOCs were performed at the USEPA's National Risk Management Research Laboratory (NRMRL) in Ada, Oklahoma. Free-phase hydrocarbons were encountered as mobile light non-aqueousphase liquid (LNAPL) in monitoring well MW-5, and a sample of the product was collected for analysis of the mass fraction of BTEX.

All groundwater derived from purging and sampling was contained and transferred to 55-gallon drums. The drums were labeled with the date, contents, generation location, and generators. Drums were left onsite to be disposed of by the appropriate Base personnel.

MONITORING POINT AND EXISTING WELL COMPLETION DETAILS AMENDED CLOSURE/POST-CLOSURE PLAN HAZARDOUS WASTE STORAGE AREA RICKENBACKER ANGB, OHIO TABLE 4.2

																						_		
Depth to Base of Screen (ft btoc)	11.70	18.80	11.42	22.50	12.55	22.19	12.58	18.44	12.51	22.54	15.80	23.51	11.75	23.59	10.72	22.81	29.74	11.81	21.85	15.84	22.07	15.78	22.82	15.73
Depth to Top of Screen (ft btoc)	8.42	15.52	8.14	19.22	9.27	18.91	9:30	15.16	9.23	19.26	12.52	20.23	8.47	20.31	7.44	19.53	26.46	8.53	18.57	12.56	18.79	12.50	19.54	12.45
Total Depth (ft btoc) ^{b/}	11.70	18.80	11.42	22.50	12.55	22.19	12.58	18.44	12.51	22.54	15.80	23.51	11.75	23.59	10.72	22.81	29.74	11.81	21.85	15.84	22.07	15.78	22.82	15.73
Screen Length (feet)	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28
PVC Casing ID (inches)	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Ground Elevation (ft msl)	741.60	741.60	741.20	741.20	741.80	741.80	742.60	742.60	741.50	741.50	741.00	741.00	740.80	740.80	740.80	740.90	740.80	741.60	741.60	741.50	741.50	740.80	740.80	741.30
Datum Elevation (ft msl)	741.67	741.72	741.18	741.29	742.23	742.22	742.70	742.69	741.51	741.56	740.98	741.05	740.85	740.80	740.92	740.89	740.83	741.79	741.70	741.56	741.54	740.76	740.80	741.43
Northing	662614	662615	662568	695299	662524	662526	662467	662467	662345	662346	662411	662412	662330	662331	662261	662261	662299	662143	662143	662265	662265	662341	662343	662762
Easting	1845016	1845015	1845023	1845025	1844958	1844959	1844996	1844997	1844891	1844893	1845105	1845105	1845181	1845179	1845049	1845050	1845052	1845034	1845036	1844945	1844942	1845124	1845123	1844991
Installation Date	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2,23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/23/95	2/24/95
Location	ESMP-1S	ESMP-1D	ESMP-2S	ESMP-2D	ESMP-3S	ESMP-3D	ESMP-4S	ESMP-4D	ESMP-5S	ESMP-5D	ESMP-6S	ESMP-6D	ESMP-7S	ESMP-7D	ESMP-8S	ESMP-8D	ESMP-8DD	ESMP-9S	ESMP-9D	ESMP-10S	ESMP-10D	ESMP-11S	ESMP-11D	ESMP-12S

MONITORING POINT AND EXISTING WELL COMPLETION DETAILS AMENDED CLOSURE/POST-CLOSURE PLAN HAZARDOUS WASTE STORAGE AREA RICKENBACKER ANGB, OHIO TABLE 4.2 (Continued)

Base	c)				••								_	_		_					
Depth to Base	of Screen (ft btoc)	16.18	21.48	17.70	24.58	29.71	17.52	24.90	15.57	22.65	15.62	16.91	20.10	18.30	18.04	17.99	18.44	18.27	20.16	19.77	20.06
Depth to Top	of Screen (ft btoc)	12.90	18.20	14.42	21.30	26.43	14.24	21.62	12.29	19.37	12.34	16.9	10.10	8.30	8.04	66°L	8.44	8.27	10.16	<i>11.</i> 6	10.06
Total	Depth (ft btoc) ^{b/}	16.18	21.48	17.70	24.58	29.71	17.52	24.90	15.57	22.65	15.62	16.91	20.10	18.30	18.04	17.99	18.44	18.27	20.16	19.77	20.06
Screen	Length (feet)	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	10	10	10	10	10	10	10	10	10	10
PVC	Casing ID (inches)	0.50	0.50	0.50	0.50	0.50	0.50	0.50	05.0	0.50	0.50	2	2	2	2	7	2	2	2	2	2
Ground	Elevation (ft msl)	741.40	741.40	741.40	741.00	741.00	740.20	740.20	740.30	740.30	739.90	741.10	741.60	741.80	741.60	741.70	740.40	741.60	740.30	741.40	740.80
Datum	Elevation (ft msl)	741.38	741.38	741.17	741.18	741.13	740.37	740.28	740.33	740.33	739.87	743.36	743.96	745.15	744.97	745.18	743.89	745.25	742.64	744.15	743.02
	Northing	662515	662515	662475	662474	662476	662479	662478	662598	662601	662495	662544	665299	662691	662617	662524	662431	662643	662544	662429	662394
	Easting	1845072	1845071	1845102	1845103	1845103	1845143	1845145	1845132	1845130	1845192	1845118	1844999	1844979	1845051	1844991	1845159	1845083	1845165	1845017	1845120
Installation	Date	2/24/95	2/24/95	2/24/95	2/24/95	2/24/95	2/24/95	2/24/95	2/24/95	2/24/95	2/24/95	7/29/88	8/10/88	1/29/90	1/31/90	1/30/90	1/30/90	2/9/90	10/14/91	10/12/91	10/12/91
	Location	ESMP-13S	ESMP-13D	ESMP-14S	ESMP-14D	ESMP-14DD	ESMP-15S	ESMP-15D	ESMP-16S	ESMP-16D	ESMP-17S	MW-2	MW-3	MW-4	MW-5	9-MW	8-MM	6-MM	MW-10	MW-11	MW-12

a' ft msi = feet above mean sea level.

b' ft btoc = feet below top of casing.

4.3 1995/1996 GROUNDWATER MONITORING EVENTS

IT Corporation (1996) collected field and analytical data in August 1995, December 1995, and March 1996 to compare against data collected in February/March 1995 as part of the natural chemical attenuation investigation. These data may be particularly useful in evaluating contaminant trends over time, as well as identifying physical site conditions that may impact the effectiveness of natural chemical attenuation processes. Groundwater wells sampled as part of these monitoring events are shown in relief on Figure 4.1.

4.4 SUMMARY OF SITE CONDITIONS

4.4.1 Geology and Hydrogeology

Site geology and hydrogeology has been characterized from data compiled from all site investigations. These data consisted of stratigraphic information recorded during borehole/monitoring well installation and CPT investigations as well as hydrogeologic data such as water level measurements and slug tests.

Twelve monitoring wells and 15 soil borings were completed at the HWSA during pre-closure sampling activities. The borings (including wells) ranged in depth from 10 to 27 feet bgs. Soil from the ground surface down to 8 feet bgs consists of a mediumbrown, silty clay, with trace amounts of pebbles. This unit grades into a grayish silty clay till present from 8 to 14 feet bgs, with moisture encountered at 10 feet bgs. This moist, silty clay layer is immediately underlain by the shallow water-bearing zone. Wet, fine to medium-grained, brown, sandy gravel is present from 14 to 18 feet bgs. The water-bearing zone has some interbedded thin layers of fine, well-sorted brown sands and fine- to medium-grained gray sandy gravel. Upon equilibration in most monitoring wells, the static water level was approximately 10 feet bgs. The shallow water-bearing zone is separated from a second water-bearing zone by a confining-layer of hard, dense gray clay from 18 to 19 feet bgs. Immediately below this eonfining layer is a 6-foot-thick fine to medium-grained gray, sandy gravel interbedded with thin layers of fine-grained, well-sorted brown sands and dense gray clays. Whether these sand layers represent two distinct water-bearing zones or become one continuous unit away from the HWSA is unknown. The 6-foot-thick sand and gravel interval is underlain by a hard dense gray clay to at least 27 feet bgs (cross-section B-B', Appendix B).

Soil boreholes elsewhere on the Base penetrated over 40 feet of silty clay soil beneath the stratigraphic unit represented by the second water-bearing zone. This clay unit acts as a barrier to vertical migration of contaminants toward the aquifer formerly used for the Base water supply, which is more than 100 feet bgs.

Groundwater is confined in the sand aquifer by the till layer and generally attains a static level of approximately 10 feet bgs in the monitoring wells. The groundwater potentiometric surface as interpreted from the water level measurements collected in

1990 from the monitoring wells is illustrated in Figure B.3, in Appendix B. On the basis of these data, the groundwater flow direction was previously interpreted as being toward the southeast, with a gradient of approximately 0.02 foot per foot (ft/ft). The *Pre-Closure Sampling Report* and the *Addendum to the Pre-Closure Sampling Report* (Engineering-Science, Inc., 1992a and 1992b) present further discussion of site hydrogeology.

The monitoring points installed in February 1995 provide greater areal coverage than was previously available. Various interpretations of groundwater elevation data collected in 1995 and 1996 implied a localized groundwater depression in the vicinity of the HWSA. IT Corporation (1996) recognized that accurate potentiometric surface maps could not be prepared using data collected at monitoring points/wells screened across geologically dissimilar units. Although it is inappropriate to use only monitoring wells to construct a potentiometric surface map (IT Corporation, 1996), available data from sampling locations screened across hydrogeologically similar units can be used. Specifically, sampling points or wells screened across the gray silty clay unit (about 8 to 14 feet bgs) can be expected to have groundwater elevations that differ from the underlying sandy gravel. Although the groundwater table occurs at approximately 10 feet bgs, the gray silty clays are less permeable than deeper waterbearing units. Sampling points or wells screened across the sandy gravel unit (about 14 to 18 feet bgs) are believed to be within the shallow, more permeable flow zone. These wells also would be expected to yield sufficient water to permit purging and sampling, as evidenced by recent sampling events (IT Corporation, 1996). Sampling points or wells screened below the thin dense clay layer in the sandy, gray clays occurring below 19 feet bgs also may exhibit different flow characteristics than encountered in shallower units. Those sampling points or wells screened across two different units are likely to reflect hydrogeologic characteristics similar to the more permeable zone.

Figures 4.2 through 4.4 present the potentiometric surface maps constructed from data collected at both shallow- and deep-screened sampling locations in March 1995, December 1995, and March 1996. The data generally suggest a potential preferential flow path toward the northeast. However, additional data from the northeast and southwest are necessary to verify this conclusion. Additional assessment activities will be undertaken at the site to address this issue, particularly as it relates to optimizing final remedial design and establishing long-term closure objectives. Contaminant distribution data presented in subsequent discussions further support this interpretation.

Hydraulic conductivities were estimated from the rising head slug tests conducted in early 1995; the results are summarized in Table 4.3. Values for the hydraulic conductivity ranged from 0.13 feet per day (ft/day) to 2.79 ft/day. The average hydraulic conductivity at the HWSA, as determined from these tests, is 1.03 ft/day. Using a reported hydraulic gradient of 0.02 ft/ft and assuming an effective porosity of about 0.3, the linear advective velocity of groundwater at the HWSA is about 25 feet

K:\AFCEE\722450\RCKBCKR\96DN0902, 10/03/96 at 15:49

4-12

K:\AFCEE\722450\RCKBCKR\96DN0903, 10/03/96 at 15:50

TABLE 4.3
HYDRAULIC CONDUCTIVITY (K) VALUES FROM SLUG TESTS, MARCH 1995
HAZARDOUS WASTE STORAGE AREA
AMENDED CLOSURE/POST-CLOSURE PLAN
RICKENBACKER ANGB, OHIO

Well	K (ft/min)	K (ft/day)
MW-4	5.23E-04	0.75
MW-4	4.59E-04	0.66
MW-6	1.94E-03	2.79
MW-6	9.01E-04	1.30
MW-9	8.77E-04	1.26
MW-9	6.56E-04	0.94

MW-12	9.88E-05	0.14
MW-12	8.98E-05	0.13

Average K	7.17E-04	1.03
Minimum K	8.98E-05	0.13
Maximum K	1.94E-03	2.79

per year (ft/yr). In comparison, IT Corporation (1996) estimated linear groundwater velocity at the site to range from less than 3.6 to about 33 ft/yr.

4.4.2 Extent of Contamination

4.4.2.1 Soil

The network of boreholes and wells has defined the extent of soil contamination attributable to HWSA operations. Analytical data for the investigations prior to 1995 are summarized in Appendices A and B. Results of previous investigations at the HWSA indicate that VOCs, SVOCs, and metals are present in the surface and subsurface soils at the site.

The network of borings and wells installed before 1995 defined the extent of soil contamination potentially attributable to HWSA operations. The horizontal extent of VOCs in soil is defined by the non-detect results for MW-4, MW-10, MW-11, and MW-12 (see attached sheets). The vertical extent of VOCs in soil was defined by soil borings AB11, AB12, AB14, and AB15. VOCs were initially detected in only two of the deeper, saturated soil samples: benzene was detected at 6 micrograms per kilogram (μ g/kg) at 21-23 feet bgs, and trichloroethene (TCE) was detected at 4J μ g/kg at 25-27 feet bgs.

Because the extent of shallow SVOC soil contamination extends beyond HWSA boundaries at the southwest corner, this contamination probably originated offsite. This conclusion is based upon the occurrence of the highest SVOC concentrations in soil samples SS-3 and SS-4 collected outside the site fence near the western corner of the HWSA (see attached sheets). However, the vertical extent of SVOC soil contamination is similar to that defined for VOCs in soil. No SVOCs were detected in soil samples collected from below 20 feet bgs.

Background sampling for metals in soils was conducted during previous site investigations for the IRP. Seven sampling locations were used to determine background metals concentrations. The extent of metals in soils at the site was defined by the network of borings and surface soils samples. Metal concentrations in excess of established background concentrations were detected sporadically in soil samples from the HWSA (see attached sheets). Table 4.4 presents a comparison of the detected concentrations of metals in onsite soils to USEPA (19946) soil screening levels (SSLS) established for the residential exposure scenario. A few of the detected compounds exceed those levels designed to be protective of onsite residents via incidental ingestion of soil (arsenic, beryllium) and leaching from soils into onsite groundwater used as a potable water source (arsenic, cadmium, chromium, nickel, and thallium). The residential exposure scenario is not proposed to reflect current or reasonable future land use scenarios for the HWSA.

Possible sources of nonsite-related contaminants are a former coal-fired power plant and coal storage pile west of the site, and the maintenance storage area southwest of the

TABLE 4.4

COMPARISON OF METALS DETECTED IN SOIL

TO USEPA SOIL SCREENING LEVELS (SSLs)

HAZARDOUS WASTE STORAGE AREA

AMENDED CLOSURE/POST-CLOSURE PLAN

RICKENBACKER ANGB, OHIO

		 	RICKENDACKEI		
				cific values for	Migration to groundwater
				ce soils	pathway levels
	Soil	Detected	(mg	g/kg)	(mg/kg)
	Interval	Range			With 10
Compound	(feet bgs)	(mg/kg/)	Ingestion	Inhalation	DAF
Arsenic	0-2	15.6 - 42	0.4^a	380 ^a	15 ^b
Beryllium	0-2	0.39 - 0.96	0.1ª	690°	180 ^b
Cadmium	0-2	0.37 - 9.1	39°	920 ^a	6 ^b
Copper	0-2	45.3 - 73.1	2,900 ^d	_e	-
Lead	0-2	22.4 - 187	400^{f}	-	-
Mercury	0-2	2.6	23°	7 ^{b,c}	3 ^b
Nickel	0-2	60	1,600°	6,900 ^a	21 ^b
Silver	0-2	1.8 - 7.2	390°	-	-
Zinc	0-2	179 - 522	23,000°	-	42,000 ^{b,c}
			_		, _b
Arsenic	3-5	16.8 - 29	0.4 ^a	380 ^a	15 ^b
Beryllium	3-5	0.45 - 1.0	0.1ª	690°	180 ^b
Cadmium	3-5	0.35 - 6.9	39°	920ª	6^{b}
Copper	3-5	49.3	2,900 ^d	-	- .
Chromium	3-5	28.6	390°	140ª	19 ^b
Lead	3-5	20.7 - 382	400 ^f	-	- _
Thallium	3-5	1.1 - 1.2	-	-	0.4 ^b
Zinc	3-5	166	23,000°	-	42,000 ^{b,c}
Arsenic	8-10	15.7 - 26	0.4ª	380ª	15 ^b
Beryllium	8-10	0.54 - 0.79	0.1^a	690°	180 ^b
Cadmium	8-10	0.33 - 0.55	39°	920 ^a	6 ^b
Lead	8-10	22.8	400^{f}	-	. -
Selenium	8-10	1.7	390°	-	3 ^b
Thallium	8-10	10.5	-	-	0.4^{b}
Arsenic	13-15	15.8	0.4ª	380ª	15 ^b
Beryllium	13-15	0.67 - 0.75	0.1^a	690ª	180 ^b
Cadmium	13-15	0.37 - 0.72	39°	920ª	6^{b}
Copper	13-15	38.5 - 57.4	2,900 ^d	-	-
Lead	13-15	25.5 - 37	400 ^f	-	-
Mercury	13-15	0.096	23°	7 ^{b,c}	3 ^b
Arsenic	14-16	16.9	0.4ª	380ª	15 ^b
Copper	15-17	51.3	2,900 ^d	-	-

TABLE 4.4

COMPARISON OF METALS DETECTED IN SOIL

TO USEPA SOIL SCREENING LEVELS (SSLs)

HAZARDOUS WASTE STORAGE AREA

AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGR OHIO

			RICKENBACKE	R ANGB, OHIO	
			Pathway-spe	ecific values for	Migration to groundwater
			surfa	ice soils	pathway levels
	Soil	Detected	(m	ıg/kg)	(mg/kg)
	Interval	Range			With 10
Compound	(feet bgs)	(mg/kg/)	Ingestion	Inhalation	DAF
Copper	17-19	42.8	2,900 ^d	-	-
Mercury	17-19	0.17	23°	7 ^{b,c}	3 ^b
Arsenic	21-23	61.2	0.4 ^e	380°	15 ⁱ
Copper	21-23	42.9 - 46	$2,900^{d}$	-	-
Mercury	21-23	0.087	23°	7 ^{b,c}	3 ^b
Beryllium	25-27	0.72	0.1ª	690ª	180 ^b
Mercury	25-27	0.16	23°	7 ^{b,c}	3 ^b

^{a/} Calculated values correspond to a cancer risk level of 1 in 1,000,000.

NOTE: Arsenic, cadmium, mercury, nickel, selenium, and zinc have the potential for soil-plant-human exposure.

Source: USEPA Soil Screening Guidance, 1996.

b/ SSL for pH of 6.8.

c/ Calculated values correspond to a noncancer hazard quotient of 1.

d Calculated using EPA SSL Guidance, 1996 ingestion equation using the Heast value for the essential nutrient copper.

e/ No toxicity criteria available for that route of exposure.

A preliminary remediation goal of 400 mg/kg has been set for lead based on Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities, OWSER Directive #9355.4-12, Office of Solid Waste and Emergency Response, U.S. EPA, Washington, DC, July 14, 1994.

site. The association of SVOCs and metals is common in contamination from the outfall of coal burning. The HWSA is downwind of the coal-fired boiler smokestack and storage pile and the contaminants are believed to originate from the coal burning and storage.

4.4.2.2 Groundwater

The horizontal extent of VOCs in groundwater prior to 1995 was defined by the nondetect results obtained for water samples from groundwater screening and groundwater results for MW-4, MW-9, MW-10, MW-11 and MW-12, and by the very low concentrations of VOCs detected in groundwater samples from MW-8 (Sheet 6).

The elevated concentrations of chlorinated VOCs in the groundwater may indicate that residual non-aqueous-phase liquids (NAPLs) may be present at the HWSA. The highest concentration of a compound denser than water detected in groundwater prior to 1995 was 2,000 micrograms per liter (μ g/L) of TCE. This concentration was measured at MW-6 (Appendix A, p. A-14; Sheet 5). A higher concentration of TCE (9,580 μ g/L) was detected in this well in 1995. Concentrations of compounds must be within about 1 percent of the solubility limit of that compound before the presence of NAPL would be suspected (USEPA, 1993). The solubility of TCE is 1,100,000 μ g/L; therefore, the concentration of TCE would need to approach about 11,000 μ g/L before a NAPL source was suspected. The solubility limits for other compounds present at the site are shown in Appendix A, Table A.1.

Groundwater samples were collected from the 10 remaining monitoring wells and from 31 of the 34 monitoring points installed in February 1995. Groundwater samples also were collected from 19 monitoring wells and points in August 1995, December 1995, and March 1996 as part of the quarterly groundwater monitoring program (IT Corporation, 1996). The results of the analyses performed on these samples are discussed in the following sections both to further define the extent of contamination and to document the potential for natural chemical attenuation.

The areal distribution of dissolved BTEX in groundwater for February/March 1995, August 1995, December 1995, and March 1996 is presented on Figure 4.5. There are several samples from monitoring wells or monitoring points that contained low concentrations ($<5~\mu g/L$) of BTEX compounds that are not included in the extent of the plume as illustrated in Figure 4.5. These data points are not included in the extent of the plume because they are below regulatory groundwater standards. The results of analyses performed on samples collected on all of these samples are summarized in Table 4.5. Laboratory reports are included in Appendices D and E.

The maximum observed total BTEX concentration in February/March 1995 was 963.26 μ g/L in the sample collected from monitoring point ESMP-13S. This sample also exhibited the highest observed benzene concentration of 424.18 μ g/L. The vertical extent at this location was defined by the sample collected from ESMP-13D where total

TABLE 4.5
BTEX AND CHLORINATED VOCS DETECTED IN GROUNDWATER
FEBRUARY-MARCH, 1995
HAZARDOUS WASTE STORAGE AREA
AMENDED CLOSURE/POST-CLOSURE PLAN
RICKENBACKER ANGB, OHIO

	_				_		_		_		_		_	_																	_,		_	_	_		_					٠,	\neg
PCE (ug/L)) di	Q.	Q	QN	£	ΩN	ΩN	ΩN	Ą	ΩN	ND	Ω	Q.	ΩN	S	Ω.	NA	Q.	ΩŽ	ΩN	ΩN	QN	9	Q.	QN !	Q	QN	Q	ND	Q	QN	ND	ND	QN	£	QN							
TCE (ug/L)	201	2 5	Q.	Q	95.60	20.00	14.00	9.00	1.00	6.50	ND	QN	ND	ND	ND	ND	ND	Ω	S	Ð	S	ΩN	ΔN	NA	ΝΩ	ΩN	NΩ	ND	ND	Q	QN	BCL	QN	2	Ð	BCL	BCL	QN	1.00	1.00	ΩN	Ω	QN
1,2-DCA (ue/L)			Q	2	Ω	QN	ND	QN	QN	QN	ND	Q	ND	ΩN	QN	Q.	NA	Ω	ΩN	ΩN	ΩN	QQ	Ð	Ð	Q.	QN !	Q	QN	Q	ΩN	Ð	QN	QN	QN	Ω	QN							
C-1,2-DCE	(2.84)	QV.	QN	2	BCL"	ΩN	ND	QN	BCL	1.30	ND	ON	ND	ND	ND	ND	QN	NA	QN	ΩN	Q	QN	QN	QΝ	Q.	QZ	QN	Q	ND	QN	QN	ND	QN	ND	QN	QN	QN						
T-1,2-DCE	(2.63)	2 1	ON.	Ð	1.00	ND	ND	ΩN	ND	NA	ND	ND	ΩN	ΩN	ND	Ð	Q	Q	Q	ΩN	ΩN	NΩ	ΩŽ	ND	ΩN	ΩN	ΩN	ΩN	Q.														
1,1-DCE	(FØ 2)		Q	Q.	ND	ND	QN	QN	ΩN	ND	QN	ND	QN	ND	QN	ND	QN	QN	ND	ND	ND	ND	ND	NA	ND	Ð	ΩN	ND	ΩN	£	QN	ΩN	QN	QN	Ð	ND	ND	QN	QN	QN	ND	QN	ΩN
Vinyl Chloride	17.64	2	QZ Z	QN	ND	ND	QN	QN	QN	ND	QN	QN	QN	1.00	QN	QN	QN	16.00	15.00	15.00	19.00	ND	ND	NA	1.70	2.00	ND	2.00	1.9.1	Q	QN	QZ	QN	ND	QN	ND	ND	ND	QN	QN	QN	ND	ND
Total BTEX	(7.84)	BLQ	BLQ	NA	1.05	ND	QN	QN	NA	BLQ	ΩN	QN	Q.	BLQ	QN	QN	QN	2.48	ND	dN	ND	BLQ	ND	3.13	BLQ	NA	ND	ND	ΩN	BLQ	0.00	BLQ	QN	ND	Q.	BLQ	BLQ	QN	BLQ	NA	Ð	QN	QN
Total Xylenes	(7 AH)	Q	Q	NA	QN	ΩN	ΩN	ΩN	ΑN	QN	Q	QN	Q.	QN	QN	QN	ΩN	ΩN	QN	ΩN	ND	BLQ	ND	ND	QΝ	NA	ND	QN	ΩN	QN	BLQ	ΩN	ΩŽ	ΩN	ΩN	BLQ	ND	BLQ	BLQ	Ϋ́	QN	QN	QN
o-Xylene	(7,61)	Q	QZ	ΑN	Q	Q	QN	QN	NA	Ð	QN	ΩN	QN	S	QN	QX	Ð	Ð	Q	QN	QN	QN	QN	ND	QN	NA	ND	QN	QN	QN	GN	Q	Q	Ω	QN	QN	QN	Ð	£	¥	Ð	QN	Ð
m-Xylene	(1/A/A)	Q	ΩN	ΑN	QX	S	QN	QN	NA	QX	Ω	Q	QΝ	QN	QZ	QN	Q	ΩN	QN	QN	QN	QN	QN	QN	QN	NA	QN	DN	DN	Q	£	ΩN	Ω	Ω	ND	BLQ	QN	BLQ	BLQ	ΑΝ	QN	QX	Q.
p-Xylene	(HR/F)	QN	ΩN	ΝA	ND	QN	QN	QN	ΑN	QN	QN	Q	ΩN	ND	ND	QN	ND	ND	QX	QN	QN	BLQ	QZ QZ	ΩN	QX	NA	ΩN	ND	QN	ND	BLQ	ΩN	ΩN	ND	ND	Q	QN	QN	BLQ	AN	ND	QX	ΩN
Ethylbenzene	(mg/L)	QN	BLQ	NA	QN	QZ	QN	QN	AN	QN	S	Ω	S	QN	g	BLQ	Q2	QN	QN	NA	QN	QN	QN	QN	BLQ	ΩŽ	Ω	DN	QN	ΩN	BLQ	ð	QN	ΑN	QN	Q	QN						
Toluene	(HB/L)	BLQ	BLQ	NA	1.05	Ð	QX	Q	Ϋ́N	BLO	Q	Q	QX	BLO	QN	ΩN	QN	2.48	QN.	QN	Q.	BLQ	Q.	3.13	BLQ	NA	ΩN	ΩN	Ð	BLQ	BLQ	1.30	Ð	ND	QN	BLQ	BLQ	BLQ	BLO	ΑN	Ω	Q	S
Benzene	(µg/L)	-QN	ND	NAç	Q	S	GZ	QN	Ϋ́	QN	QX	Q	Q	Q	QX	Q	QX	QX	QN	QN	QN	QN	QZ	QX	QN	NA	QN	QN	QN	BLQ	BLQ	ND	QN	QN	QN	₽ Q	Q.	QN	Q	Ϋ́	2	QN	9
Sample	Date	2/28/95	2/28/95	2/28/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	8/1/95	12/1/95	3/1/96	2/27/95	2/27/95	2/28/95	2/28/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	2/27/95	8/1/95	12/1/95	3/1/96	2/27/95	2/28/95	2/28/95	2/27/95	2/27/95	8/1/95	12/1/95	3/1/96
Sample	Location	ESMP-1S	ESMP-1D	ESMP-2S	FSMP-2D	ESMP-2D	FSMP-2D	ESMP-2D	FSMP-3S	ESMP-3D	ESMP-3D	ESMP-3D	FSMP-3D	FSMP-4S	FSMP.4S	FSMP-4S	FSMP-4S	FSMP-4D	ESMP-4D	FSMP-4D	FSMP-4D	FSMP-5S	ESMP-5D	ESMP-6S	ESMP-6D	ESMP-6D(D)	ESMP-6D	ESMP-6D	ESMP-6D	ESMP-7S	ESMP-7D	ESMP-8S	ESMP-8S	ESMP-8S	ESMP-8S	ESMP-8D(D)	ESMP-9S	ESMP-9D	FSMP-10S	ESMP-10S(D)	ESMP-10S(D)	ESMP-10S(D)	ESMP-10S(D)

TABLE 4.5
BTEX AND CHLORINATED VOCS DETECTED IN GROUNDWATER
FEBRUARY-MARCH, 1995
HAZARDOUS WASTE STORAGE AREA
AMENDED CLOSURE/POST-CLOSURE PLAN
RICKENBACKER ANGB, OHIO

Ħ	μg/L)	Д	ام	۵	۵	Д	Q	D	Ω	Q.	Q.	Q.	Q	Q.	Q	٥	٩	٩	٩	9	٥	٥	٥	ם	۵	Q.	Q.	Q	Q.	ID.	٥	۵	۵	Ð	D	Ω	Ω	Ω	ID QI	Q	Ω	Д	Ð
	gн)	z	Z	Z	z	z	z	Z	z	z	Z	Z	Z	z	Z	Z	Z	Z	Z	2	Z	Z		Z	z	Z	Z	Z	Z	2	2	Z	_	Z	Z	Z		Z	_	Z		Z	_
TCE	(μg/L)	ΩN	QN	BCL	45.6	ND	ND	ND	QN	QN	QN	ND	ND	QN	BLC	QN	QN	QX	QN	QX	ΩN	QN	QX	Q.	GN	QN	QN	QN	TOB	TOE	hCl.	3	ND	I	QN	QN	QN.	QN	QN	QN	GN	QN	QN
1,2-DCA	(μg/L)	ΩN	QN	220.00	Q	ND	ND	ND	ND	ND	ND	ND	ND	QN	ND	Q.	QZ.	Ð	Q.	ΩN	ND	Q	QN	QN	QN	ND	ND	QN	ND	ND	ND	ND	ND	ND	ND	QN	QQ.	ND	ND	ND	ND	ND	ND
C-1,2-DCE	(μg/L)	QN	Q.	QN	228	QN	ND	ON	ΩN	QN	ND	ND	2.20	2.10	ND	Ð	QN	QN	QN	QN	BCL	QZ	QN	QN	BCL	ND	QN	QN	4913.00	ND	ND	QN	QN	BLC	ND	ND	QN	ND	ND	QN	ND	QN	QN
T-1,2-DCE	(μg/L)	Ω	Ð	Q	300	430.00	410.00	440.00	ND	ND	ND	ND	UD	ND	ND	Q.	4.2 J	5.80	QX	QN	ND	QN	QN	QN	ND	ND	ND	ND	152.00	, 7730.00	2900.00	4500.00	Ω	ΩN	ND	ΩN	ΩN	ND	ΩN	ΩN	ΩN	QN	QN
1,1-DCE	(μg/L)	QN	ΩN	Ð	1.3	ND	ND	ND	QN	ND	ND	ND	ND	ND	ND	ΩN	ΩN	ΩN	QN	ΩN	ND	ΩN	ΩN	ND	ND	ND	ΩN	ND	QN	QN	QN	QN	QΝ	QN	QΝ	QN	ND						
Vinyl Chloride	(μg/L)	Q	QN	QV	2.7	ΩN	ND	62.00	QN	QN	QN	ND	00'1	1.00	QΝ	QΝ	ΩN	QN	QΝ	QΝ	QN	ΩN	QN	ND	ND	ND	ND	ND	1570.00	930.00	00.069	1200.00	ND	ND	ND	ND	QN	ND	QN	ND	QN	QN	ND
Total BTEX	(μg/L)	BLQ	BLQ	2.44	963.26	430.00	509.00	440.00	дη	NA	αN	NA	да	NA	ВГО	QΝ	ND	QN	80'1	ВГÓ	471.33	53.00	00'99	18.00	95.36	ND	QN	QN	ND	ND	Q	R	BLQ	BLQ	QN	QN	ΩN	BLQ	ND	ΩN	QN	753.03	395.00
Total Xylenes	(μg/L)	QN	BLQ	Q	279.58	100.00	90.00	34.00	αN	NA	QN	NA	ND	NA	QN	QN	ΩN	QN	для	дВ	153.65	7.00	15.00	QN	62.03	ND	QN	QN	QN	ND	ΩN	Q	BLQ	BLQ	ND	ND	QN	BĽQ	ΩN	ΩN	ND	375.93	210.00
o-Xylene	(μg/L)	QN	ND	ΩN	86.8	Ϋ́Α	ND	ND	ND	NA	ON	NA	QN	NA	ND	QN	Ð	QN	BLQ	QN	91.43	Ð	QN	ND	31.63	ND	ND	ND	ND	QN	ND	Q	BLQ	BLQ	ND	ND	ND	ND	ND	ND	QN	55.48	ND
m-Xylene	(μg/L)	Q.	ΩN	QN	163.61	NA	ND	ND	ND	NA	QN	NA	UN	NA	ND	QN	ΩN	ΩN	BLQ	BLQ	18.02	ΩN	QN	QN	7.8	QN	ΩN	ND	ND	ND	ΩN	Q	BLQ	BLQ	ND	QN	QN	BLQ	ND	ND	ND	91.23	ND
p-Xylene	(μg/L)	QN	BLQ	Q	106.99	NA	ND	ON	ND	NA	ND	NA	ND	NA	ND	QN	ND	QN	BLQ	ND	44.2	ND	QN	QN	22.6	ND	ND	ND	ND	ND	ND	Q	BLQ	BLQ	ND	ND	ΩN	BLQ	ND	ND	ND	229.22	QN
Ethylbenzene	(μg/L)	ND	BLQ	BLQ	237.09	130.00	140.00	120.00	BLQ	NA	ND	NA	QN	NA	QN	QN	Q	QN	BLQ	QN	228.5	23.00	13.00	QN	26.87	ND	ND	ND	ΩN	ND	ΩN	QN	BLQ	BLQ	QN	QN	Đ.	BLQ	QN	QN	QN	317.97	170.00
Toluene	(µg/L)	BLQ	BLQ	2.44	22.41	ND	8.9 J	8.2 J	QN	NA	QN	NA	BĽQ	NA	BLQ	ΩN	S	QN	1.08	BLQ	BLQ	QN	Ð.	Ð	BLQ	ND	ND	ND	ND	ND	ND	QN	BLQ	ÒΊΒ	QN	ΩN	QN	BĽQ	QN	QN	Ω	41.94	15.00
Benzene	(µg/L)	QN	BLQ	QN	424.18	200.00	270.00	280.00	QX	NA	ND	ΑN	QN	AN	ND	ND	QQ	Ω	BLQ	ΩN	81.68	23.00	38.00	18.00	6.46	QN	QN	QN	QN	QN	QN	ΩN	BLQ	BLQ	QN	QN	ΩN	BLQ	QN	QN	QN	17.19	QN
Sample	Date	2/27/95	2/27/95	3/1/65	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	2/28/95	2/28/95	2/28/95	2/28/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	3/1/95	8/1/95	12/1/95	3/1/96	3/1/95	8/1/95	12/1/95	3/1/6	2/28/95	56/1/8	12/1/95	3/1/96	3/1/95	2/28/95	56/1/8	12/1/95	3/1/96	3/1/65	8/1/8	12/1/95	3/1/96	3/1/95	8/1/95
Sample	Location	ESMP-10D	ESMP-11D	ESMP-12S	ESMP-13S	ESMP-13S	ESMP-13S	ESMP-13S	ESMP-13D	ESMP-13D(D)	ESMP-14S	ESMP-14S(D)	ESMP-14D	ESMP-14D(D)	ESMP-14DD	ESMP-14D	ESMP-14D	ESMP-14D	ESMP-15S	ESMP-15D	ESMP-16S	ESMP-16S	ESMP-16S	ESMP-16S	ESMP-16D	ESMP-16D	ESMP-16D	ESMP-16D	ESMP-17S	ESMP-17S	ESMP-17S	ESMP-17S	MW-2	MW-3	MW-3	MW-3	MW-3	NIW-4	MW4	MW-4	MW-4	MW-5	MW-5

TABLE 4.5
BTEX AND CHLORINATED VOCS DETECTED IN GROUNDWATER
FEBRUARY-MARCH, 1995
HAZARDOUS WASTE STORAGE AREA
AMENDED CLOSURE/POST-CLOSURE PLAN
RICKENBACKER ANGB, OHIO

	_								_	_	_									,	_		_	_	-
	PCE	(μg/L)	QN	ND	ΩN	ND	ΩN	ND	ΩN	ND	QN	QN	QN	ND	ΩN	QN	QN.	S	ΩN	QN	ND	QN	ND	QN	ΩN
	TCE	(μg/L)	QN	ND	ACL"	770.00	ΩN	ND	0856	BCL	QN	ΩN	QN	QN ON	Q.	QN	S	ΩN	QN	BCL	QN	QV	ND	QN	BCL
	1,2-DCA	(μg/L)	ND	ND	ND	ND	QN	ND	QN	QN	ND	QN	ND	QN	QN	QN	Q.	ON.	QN	QN	QN	ΩN	QN	QN	QN
	C-1,2-DCE	(μg/L)	QN	QN	873	QN	QN	QN	794	ND	ND	ND	QN	QN	QN	QN	ND	ND	QN	ND	QN	ND	QN	QN	QN
	T-1,2-DCE	(μg/L)	ND	QN	47.3	ND	QN	ND	43.2	ND	ND	QN	ND	ND	QN	ND	ND	ND	ND	ND	ND	ND	ND	ND	QN
	1,1-DCE	(μg/L)	ND	ND	6.5	ND	QN	ND	6.5	ND	ΔN	ΔN	QΝ	ΩN	QΝ	QΝ	ΩN	GN	QΝ	QN	QΝ	QN	ND	ND	QN
Vinyl	Chloride	(μg/L)	QN	QN	23.1	QN	28.00	QΝ	21.9	QN	ND	QN	ΩN	ND	ND	ND	QN	QN	ND	ND	ND	ND	ND	ND	QN
Total	BTEX	(μg/L)	342.00	59.00	1.67	ND	ND	ND	NA	BLQ	ND	ND	ND	ND	ND	QN	QN	ND	ND	NA	DTG	QN	ND	ND	NA
Total	Xylenes	(μg/L)	190.00	100.00	BLQ	QN	QN	QN	NA	QN	QN	QN	QN	ΩN	QN	QN	QN	ΩN	ΩN	NA	QN	QN	ND	ND	NA
	o-Xylene	(μg/L)	QN	QN	QN	QN	QΝ	GN	ΨN	QΝ	QN	QN	QN	GN	QΝ	QN	ΩN	QN	ΔN	NA	QN	QN	ND	DN	NA
	m-Xylene	(μg/L)	QN	ND	BLQ	ND	QN	ND	NA	ND	ND	ND	ND	QN	ND	ND	QN	QN	ND	NA	QN	ΩN	ND	ND	NA
	p-Xylene	(μg/L)	ND	ND	BLQ	ND	ND	ND	ΑN	ND	QN	QN	ND	ΩN	ND	ND	NΩ	ΩN	ND	NA	QN	ND	ND	ND	NA
	Ethylbenzene	(µg/L)	140.00	24.00	да	QN	QN	QΝ	NA	QN	QΝ	ΩN	ND	QN	QΝ	ΩN	Ω	ΩN	QN	NA	QN	QN	QN	QN	NA
	Toluene	(μg/L)	12 J	4.8 J	для	QN	QN	QN	۸N	QN	QN	QN	QN	ΩN	ΩN	ΩN	ΩN	ΩN	ΩN	ΝA	BLQ	ΩN	ND	QN	NA
	Benzene	(μg/L)	ΩN	ND	1.67	ΩN	QN	QX	AN	BLQ	ΩN	QN	QN	QN	QN	ΩN	QN	Ð	ΩŽ	ΑΝ	QN	S	QN	QN	NA
	Sample	Date	12/1/95	3/1/96	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	\$6/1/8	12/1/95	3/1/96	3/1/95	3/1/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95
	Sample	Location	NIW-5	MW-5	MW-6	MW-6	MW-6	MW-6	MW-6(D)	MW-8	MW-8	MW-8	MW-8	9-WM	MW-10	MW-11	MW-11	MW-11	MW-11	MW-11(D)	MW-12	MW-12	MW-12	MW-12	MW-12(D)

• ND= Not detected
b BLQ Below limit of quantitation

° NA= Not analyzed
^d BCL= Below calibration limit (1.0 μg/L)
° ACL= Above calibration limit (5000 μg/L)

BTEX was not measured above detection limits. The ESMP-13 cluster is located adjacent to the 4 former 25,000-gallon USTs in the direction of groundwater flow. The next highest total BTEX concentrations were observed in the sample collected from MW-5, where free product has been removed in the past and where the free product thickness in February 1995 was measured as 0.35 foot. The total BTEX concentration in this sample in February/March 1995 was 753.03 μ g/L, with a benzene concentration of 17.19 μ g/L. A sample of the product also was collected from MW-5, and analysis yielded a total BTEX concentration of 627 μ g/L with a nondetectable quantity of benzene, indicating a severely weathered product. The ESMP-16 cluster is located approximately 50 feet downgradient from MW-5. The total BTEX concentration at ESMP-16S in February/March 1995 was 471.33 μ g/L, with a benzene concentration of 89.18 μ g/L. In the sample collected from ESMP-16D, the total BTEX concentration was 95.36 μ g/L, with a benzene concentration of 6.46 μ g/L.

In August 1995, the maximum concentration of total BTEX was 430 μ g/L in ESMP-13S. This is a decrease of about 55 percent from the concentration observed in February/March 1995. In December 1995, the maximum concentration of total BTEX was 509 μ g/L at the same sampling location. Although this represents an increase from August 1995 levels, this is still about 45 percent less than that measured in February/March 1995. In March 1996, the maximum total BTEX concentration was only 440 μ g/L at ESMP-13S. Similar to the August 1995 data set, this represents a decrease of about 55 percent from the February/March 1995 levels (or at least relatively no change since August 1995).

Figure 4.5 illustrates that the dissolved BTEX plume does not appear to be expanding in areal extent over the last year. Because concentrations of total BTEX are generally decreasing throughout the plume without significant horizontal or lateral migration, field-scale data suggest that natural chemical attenuation processes, specifically biodegradation, are operating at this site.

Chlorinated VOCs were measured in groundwater roughly coincident with elevated BTEX concentrations during all of the 1995 and completed 1996 sampling events (Figure 4.6). The distribution of the chlorinated VOCs in the groundwater is believed to be the result of multiple release events while the HWSA was being used to store Chlorinated VOCs were detected in samples collected from waste oils and fuels. ESMP-2D, ESMP-3S, ESMP-3D, ESMP-4S, ESMP-4D, ESMP-6D, ESMP-10S, ESMP-12S, ESMP-13S, ESMP-14D, ESMP-17S, MW-3, and MW-6. Concentrations of TCE ranged from 1 µg/L (MW-3, ESMP-3S, ESMP-10S) to about 9,600 µg/L in Concentrations of 1,1the sample from MW-6 in February/March 1995. dichloroethene (1,1-DCE) ranged from 1.3 µg/L (ESMP-13S) to 11.7 µg/L (ESMP-17S) in February/March 1995. Concentrations of trans-1,2-DCE range from 1 μg/L (ESMP-2D) to 300 μg/L (ESMP-13S) and concentrations of cis-1,2-DCE range from 1 $\mu g/L$ (ESMP-2D) to 4,913 $\mu g/L$ (ESMP-17S). Cis-1,2-DCE is known to be the transformation product of TCE biodegradation. 1,2-dichloroethane (1,2-DCA) was encountered at one location in February/March 1995 (ESMP-12S) at a concentration of

220 μ g/L. Concentrations of vinyl chloride, a degradation product of DCE, range from 1 μ g/L (ESMP-4S, ESMP-14S) to 1,570 μ g/L (ESMP-17S) in February/March 1995.

In comparison, chlorinated VOC analytical data collected in August 1995 indicated a maximum TCE concentration of 9,580 μ g/L at MW-6. This is almost identical to the maximum concentration of TCE detected at the sample location in February/March 1995. In December 1995, the maximum TCE concentration was only 180 μ g/L, measured at MW-6. This represents a concentration reduction of about 99 percent from August 1995. In March 1996, the maximum concentration of TCE detected at the site (MW-6) was 770 μ g/L. This represents an increase from the December 1995 levels, although a decrease of about 92 percent from earlier 1995 data.

Because DCE is a biotransformation product of TCE, it may be useful to track contaminant trends of this compound over time. In February/March 1995, the maximum concentration of cis-1,2-DCE was 5,065 μ g/L (ESMP-17S). In August 1995, the maximum concentration of DCE increases to 7,730 μ g/L (ESMP-17S). This represents an increase (or production) of about 34 percent. In December 1995, DCE concentrations were reduced to about 4,500 μ g/L. In March 1996, DCE concentrations had been reduced to 2,900 μ g/L (ESMP-17S). These reductions may be attributable to reductions in the parent compound TCE or subsequent transformations to vinyl chloride. This line of evidence will be further explored in Section 5.

The February/March 1995 maximum concentration of vinyl chloride, the least chlorinated of the VOCS detected at the site, was 1,570 μ g/L (ESMP-17S). In August 1995, the maximum concentration of vinyl chloride, which was measured at the same sampling location, was 930 μ g/L. In December 1995, the maximum concentration of vinyl chloride increased to 1,200 μ g/L. The production of vinyl chloride could indicate that further dechlorination of TCE and DCE is occurring at the site. In March 1996, vinyl chloride decreased at ESMP-17S TO 690 μ g/L. More recent data suggest that the concentration of vinyl chloride appears to be decreasing over time. This line of evidence will be revisited in Section 5.

Results of the analyses performed on samples collected during all of these more recent sampling events are summarized in Table 4.5. Laboratory reports are presented in Appendix E.

SECTION 5

PROPOSED CLOSURE APPROACH

This section describes the actions proposed to be implemented at the HWSA to facilitate closure of the unit. To implement closure of both contaminated soils and groundwater, the following activities have been completed or are proposed to be completed:

- Decontamination of Building 560 by cleaning the building and the drum wash pad (completed April 1996);
- Removal of the remaining four USTs (completed February 1995);
- Limited *in situ* remediation of organic soil contamination via passive or air injection bioventing;
- Natural oxidation of residual dissolved BTEX and natural reductive dehalogenation of residual dissolved chlorinated VOCs (in progress);
- In situ remediation of residual dissolved chlorinated VOCs via groundwater amendment (passive or active oxygenation), if necessary;
- Continued monitoring and site access controls as part of post-closure commitments; and
- Eventual exposure control by installation of taxiway (proposed as future land use).

Additional assessment activities will be completed to optimize the final design of the closure approach and to establish long-term performance standards/closure objectives for the site. Should these proposed actions prove insufficient to meet closure objectives, the AFBCA has retained will reconsider installation of a cap and implementation of a groundwater extraction and treatment system as possible high-cost contingency actions.

5.1 SUMMARY OF DECONTAMINATION OF BUILDING 560

5.1.1 Building and Pad Decontamination Activities

Acids and spent desiccants were the most common types of waste stored in Building 560. The decontamination of Building 560 was completed as part of the IRP in April 19965. Details of the decontamination activities, including analytical results from post-decontamination sampling, are presented in a recent technical report (AFCEE, 1996). The following briefly summarizes these activities.

The decontamination plans for the building included:

- Removing all items inside the building to facilitate decontamination activities;
- · Vacuuming the building to remove dust, dirt, and debris;
- Washing the floor, walls, shelving of the building and the drum wash pad with a
 hot water pressure washer, scrub brushes, and an all-purpose household-type
 detergent; and
- Triple rinsing all surfaces with hot water.

Specific information on personnel safety and equipment decontamination procedures, that were followed as part of this activity is presented in Section 7 of this report.

All wash and rinse water generated during decontamination activities were collected using a wet/dry vacuum and transferred to a skid-mounted storage tank for testing and disposal. After rinsing with the hot water, rinseate samples to be tested analytically to determine the effectiveness of the decontamination activities were collected. These rinseate samples were collected by pouring high performance liquid chromatography (HPLC) water over the target media. The accumulated HPLC water was then collected for analysis. Until analytical results were received, the storage tank for the decontamination liquids was managed in compliance with all applicable hazardous waste tank requirements of the Ohio Administrative Code (OAC) 3745-66-90 through 3745-66-991.

5.1.2 Documenting Complete Decontamination

HPLC rinseate samples were submitted to a laboratory and analyzed using the methods listed in Table 5.1. Note that only representative analytes for each method with their respective reporting limits (laboratory method detection limits [MDLs]) are provided. The building floor, walls, shelving, and drum wash pad were to be considered clean if the HPLC rinseate from the cleaning operation meets the following standards:

TABLE 5.1 HPLC RINSEATE ANALYTE LIST

HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

Compound	Reporting Limit (μg/L)
SW8240 - GC/M	S Volatile Organics
Acetone	0.8
Benzene	0.3
Chlorobenzene	0.1
Chloromethane	0.7
Chloroform	0.5
	0.5
1,1-Dichloroethane	0.3
cis-Dichloroethene	0.2
trans-Dichloroethene	
Dichloromethane	0.8
Ethylbenzene	0.3
Methyl ethyl ketone (2-butanone)	2
1,1,2,2-Tetrachloroethane	0.6
Tetrachloroethene	0.5
1,1,1-Trichloroethane	0.5
1,1,2-Trichloroethane	0.5
Trichloroethene	0.2
Toluene	0.6
Vinyl Chloride	0.6
m/p-Xylenes	0.4
o-Xylene	0.3
SW8270 - GC/MS	Semivolatile Organics
Acenaphthalene	10
Anthracene	10
m, p, and o-Dichlorobenzene	10
Flourene	10
Fluoranthene	10
Hexachlorobenzene	10
2-Methylnaphthalene	10
Naphthalene	10
Phenanthrene	10
Phenol	10
Pyrene	10
1,2,4-Trichlorobenzene	10
	orine Pesticides and PCBs
4,4'-DDE	0.02
4,4'-DDT	0.1
Dieldrin	0.02
Endrin	0.05
Heptachlor	0.02
PCB-1221	0.5
PCB-1221 PCB-1232	0.5
	1
Toxaphene	
Cadmium	0.5
Chromium	1
Cobalt	20
Lead	2
Nickel	20

Source: Halliburton NUS, 1996

- The federal public drinking water maximum contaminant level (MCL) for as promulgated in 40 CFR 141.11 and OAC 3745-81-11 for inorganics and 40 CFR 141.12 and OAC 3745-81-12 for organics;
- If an MCL is not available for a particular contaminant, then fifteen times the federal maximum contaminant level goal (MCLG) as promulgated in 40 CFR 141.50 shall be used as the clean standard; or
- If the product of fifteen times the MCL or MCLG exceeds 1 mg/L or if neither an MCL nor an MCLG is available for a particular contaminant, 1 mg/L shall be used as the clean standard.

If the MCL or MCLG is less than the contaminant's analytical detection limit using methods found in the USEPA SW846 document (*Test Methods for Evaluation Solid Waste: Physical/Chemical Methods*), fifteen times the SW846 analytical detection limit shall be used as the clean standard.

Only a few of the analytes listed in Table 5.1 were detected in the HPLC rinseate samples at concentrations slightly above the laboratory MDL. No compounds werewas detected at concentrations in the rinseate water above the "clean" standards listed above. Consequently, the decontamination of Building 560 and the concrete pad are considered complete. Analytical results and supporting documentation are provided elsewhere. (AFCEE, 1996).

5.1.3 Wastewater Management

All wash and rinse water generated during the above-described decontamination procedures were pumped into a temporary holding tank. A representative sample of containerized water was collected and analyzed for volatiles, semi-volatiles, pesticides/PCBS, metals, and pH. Because none of the analytes exceeded the "clean" standards listed above, the containizered waste did not need to be managed as a listed hazardous waste. On May 13, 1996, the AFBCA requested the city of Columbus to approve a 300-gallon wastewater discharge to the Columbus sewer system. After receiving approval from the City of Columbus on May 30, 1996, the AFBCA discharged the wastewater to the sanitary sewer located near Building 560 on June 4, 1996.

5.2 UNDERGROUND STORAGE TANK REMOVAL

The four former USTs present adjacent to the site were removed on February 16 and 17, 1995 by Ogden Environmental and Energy Services, Inc. (Ogden, 1995). The following summary describes tasks performed during the tank removal process. All applicable guidelines of the Ohio Department of Commerce, Division of State Fire Marshal, Bureau of Underground Storage Tank Regulations were followed.

On February 16, 1995, the contents of the four 25,000-gallon USTs were inspected and sampled. Following sampling and prior to tank removal, the contents of the tanks were pumped out, transported offsite, and recycled. During the excavation process, a water line located near the western end of the USTs was damaged, resulting in flooding of the excavation. Two monitoring wells (MW-1 and MW-7) were also removed during the excavation process.

The water that had entered the USTs was treated onsite by Petro's mobile water treatment unit before it was discharged to the closest sanitary sewer inlet. The water pipe was disposed offsite on February 28, 1995 at the AthensHathens-Hocking Reclamation Center. Soils surrounding the USTs were excavated and stockpiled to allow for tank removal. Excavated soils were visually examined and screened for VOC contamination using a photoionization detector (PID). Contaminated soil was segregated and placed in roll-off containers for analysis and proper disposal. Soil that was not contaminated (based on field screening) was placed on 6-mil polyethylene sheeting in the former HWSA and returned to the excavation following UST removal. Concrete encountered in the excavation was placed in roll-offs for analysis and disposal. Following removal from the excavation, the USTs were decontaminated and transported offsite for recycling.

Two soil samples and one water sample were collected from the excavation following the removal of the USTs. One soil sample also was collected from each of the three roll-offs in which the contaminated soil from the excavation was placed. After characterization of the soil, the contents of the roll-offs were disposed of in an appropriate manner (Ogden, 1995).

Following UST removal activities, the damaged water line was repaired, and the excavation was backfilled. Prior to backfilling, a layer of fine gravel was placed in the bottom of the excavation. Backfilling of the excavation was completed with the stockpiled soil from the excavation. The site was then compacted, graded, seeded, and covered with straw mulch.

Complete details of the UST removal activities and analytical results for all samples collected during UST removal are presented in the Closure Report prepared by Ogden Environmental and Energy Services, Inc. and submitted to the Air Force Base Conversion Agency on August 11, 1995.

5.3 REMEDIATION OF CONTAMINATED SOILS

Remediation of residual soil contamination in the source area by passive or forced air injection bioventing may be necessary to support a risk-based closure of the HWSA. Remediation of soil contamination would assure that no hypothetical onsite receptor could be exposed to unacceptable concentrations of contamination remaining in site soils. Remediation of soil contamination may also enhance the natural remediation of residual groundwater contamination at the site by removing a potential source of contaminant mass.

Bioventing is an innovative technology that uses either barometric pressure changes or low rates of air injection to supply oxygen to soil bacteria employed in the biodegradation of fuel hydrocarbons. A bioventing pilot test would need to be completed at the HWSA as part of closure activities to assess whether this low-cost source reduction technology could be used to remediate contaminated soil. This test is planned as part of additional assessment activities to be completed in 1997. Bioventing would only be effective on soil VOCs and SVOCs; elevated concentrations of metals would not be effectively remediated by this approach. However, remediation of fuel hydrocarbon contamination in source area soils may be sufficient to reduce the cumulative risks posed by residual contamination to acceptable levels. Futhermore, remediation of this fraction of soil contamination would likely enhance the remediation of groundwater. No metals were detected in groundwater samples (Section 4).

Based on the extent of shallow VOC contamination at the site, a single vent well and 3 vapor monitoring points would be sufficient to effect remediation of source area soils. Pilot testing would consist of respiration testing, an air permeability test, and an oxygen influence test in accordance with the procedures described in the AFCEE protocol documents (Hinchee *et al.*, 1992; Downey and Hall, 1994). A conceptual layout of either a passive or **forced** air injection bioventing system is presented in Figure 5.1.

5.4 INTRINSIC REMEDIATION OF RESIDUAL GROUNDWATER CONTAMINATION

Intrinsic remediation is an innovative remedial approach that relies on natural contaminant attenuation processes to reduce contaminant mass, concentration, mobility, persistence, and toxicity in groundwater. Mechanisms for natural attenuation of petroleum hydrocarbons such as BTEX include advection, dispersion, dilution from recharge, sorption, volatilization, and biodegradation. Similar natural attenuation processes can operate on chlorinated compounds, provided appropriate environmental conditions are present. Ohio EPA may consider the use of intrinsic remediation as a component of the remedial process, if sufficient evidence that these processes are operative and progressing are provided (proposed-rule 3745 300 15). These processes may play a significant role in minimizing the mass, concentration, mobility, persistence, and toxicity of contaminants over time. Provided these processes are sufficient to at least minimize downgradient migration and/or interrupt potential exposure pathways, intrinsic remediation may serve to complement other remedial strategies (e.g., exposure controls, soil remediation).

Of these natural attenuation processes, biodegradation is the only mechanism working to transform contaminants into innocuous byproducts. Intrinsic bioremediation occurs when indigenous microorganisms work to bring about a reduction in the total mass of contamination in the subsurface without the addition of nutrients. Patterns and rates of intrinsic remediation can vary markedly from site to site depending on governing physical and chemical processes. AFCEE sponsored a quantitative

K:\AFCEE\722450\RCKBCKR\96DN0908, 10/09/96 at 11:16

assessment of the potential for natural chemical attenuation to reduce dissolved petroleum and chlorinated hydrocarbon concentrations in groundwater to acceptable levels. The objective of this particular section of the amended closure/post closure plan is to evaluate whether natural chemical attenuation processes are occurring at this site, and if so, whether these processes are progressing so that acceptable levels can be achieved within a reasonable timeframe.

5.4.1 Geochemical Indicators of BTEX Biodegradation

Microorganisms obtain energy for cell production and maintenance by facilitating thermodynamically advantageous redox reactions involving the transfer of electrons from electron donors to available electron acceptors. This results in the oxidation of the electron donor and the reduction of the electron acceptor. Electron donors at the site are natural organic carbon and fuel hydrocarbon compounds. Fuel hydrocarbons are completely degraded or detoxified if they are utilized as the primary electron donor for microbial metabolism (Bouwer, 1992). Electron acceptors are elements or compounds that occur in relatively oxidized states, and include oxygen, nitrate, ferric iron, sulfate, and carbon dioxide.

The driving force of BTEX degradation is electron transfer and is quantified by the Gibbs free energy of the reaction ($\Delta G^{\circ}r$) (Stumm and Morgan, 1981; Bouwer, 1994; Godsey, 1994). The value of $\Delta G^{\circ}r$ represents the quantity of free energy consumed oryielded to the system during the reaction. Although thermodynamically favorable, most of the reactions involved in BTEX oxidation cannot proceed abiotically because of the lack of activation energy. Microorganisms are capable of providing the necessary activation energy; however, they will facilitate only those redox reactions that have a net yield of energy (i.e. $\Delta G^{\circ}r < 0$). Microorganisms preferentially utilize electron acceptors while metabolizing fuel hydrocarbons (Bouwer, 1992). DO is utilized first as the prime electron acceptor. After the DO is consumed, anaerobic microorganisms use electron acceptors in the following order of preference: nitrate, ferric iron hydroxide, sulfate, and finally carbon dioxide.

Depending on the types and concentrations of electron acceptors present (e.g., nitrate, sulfate, carbon dioxide), pH conditions, and redox potential, anaerobic biodegradation can occur by denitrification, ferric iron reduction, sulfate reduction, or methanogenesis. Other, less common anaerobic degradation mechanisms such as manganese or nitrate reduction may dominate if the physical and chemical conditions in the subsurface favor use of these electron acceptors. Anaerobic destruction of the BTEX compounds is associated with the accumulation of fatty acids, production of methane, solubilization of iron, and reduction of nitrate and sulfate (Cozzarelli *et al.*, 1990; Wilson *et al.*, 1990). Environmental conditions and microbial competition ultimately determine which processes will dominate. Vroblesky and Chapelle (1994) show that the dominant terminal electron accepting process can vary both temporally and spatially in an aquifer with fuel hydrocarbon contamination.

Site groundwater data for electron acceptors such as nitrate and sulfate suggest that intrinsic remediation of hydrocarbons in the shallow aquifer by denitrification and sulfate reduction is occurring. In addition, data for ferrous iron (Fe²⁺) and methane suggest that anaerobic degradation is proceeding via ferric iron reduction and methanogenesis. Because both site and background concentrations of DO are low, aerobic degradation is not believed to contribute significantly to the attenuation of BTEX in site groundwater. Geochemical parameters for site groundwater are discussed in the following sections.

5.4.1.1 Dissolved Oxygen

Dissolved oxygen (DO) concentrations were measured at monitoring wells and monitoring points at the time of groundwater sampling during the 1995 and 1996 sampling events. The results are summarized in Table 5.2 and presented in Figure 5.2. DO is generally found in low concentrations throughout the source area, suggesting that anaerobic processes are favored. A DO concentration greater than 1 mg/L is considered necessary to support aerobic processes. DO concentrations greater than 1 mg/L were measured at several locations, none of which are in the immediate proximity of the BTEX plume (Figure 5.2). DO is an important, initial electron acceptor at this site until residual contamination effectively reduce do concentrations.

The stoichiometry of BTEX mineralization to carbon dioxide and water caused by aerobic microbial biodegradation is presented in Table 5.3. The average mass ratio of oxygen to total BTEX is approximately 3.14 to 1. This translates to the mineralization of approximately 0.32 mg of BTEX for every 1.0 mg of DO consumed. Considering MW-11, with a February/March 1995 DO concentration of 3.9 mg/L, as representative of background DO concentrations in the vicinity, the shallow groundwater at this site has the capacity to assimilate 1.25 mg/L (1250 μ g/L) of total BTEX through aerobic biodegradation. This estimate of the assimilative capacity of DO is potentially conservative because subsequent sampling events indicate that background concentrations of DO may be higher than measured in February/March 1995.

5.4.1.2 Nitrate/Nitrite

Concentrations of nitrate/nitrite [as nitrogen (N)] were measured in groundwater samples collected in 1995 and 1996. The results are presented in Figure 5.3. Reduced nitrate/nitrite (as N) concentrations less than or equal to 0.1 mg/L were measured in an area encompassing the area of highest total BTEX concentrations (Figure 5.3) The highest measured nitrate/nitrite concentration of 9.1 mg/L was measured in February/March 1995 in monitoring well MW-11. The samples with the highest nitrate/nitrite concentrations are relatively removed from the area of highest BTEX concentration and are thought to represent the background nitrate concentrations for BTEX biodegradation at the site.

TABLE 5.2 GROUNDWATER GEOCHEMICAL DATA HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

	្ព		T		2					۵,				5	_	9				Š	7	2				6	2			6			_	6	4	4	2	15	,	15	_	5
N.	(mg/L)	0.00		2	0.25	0.1	NA	0.1	QN	0.2	IN	0.1	£	0.15	N N	0.0	IN	MD	Z	<.05	0.1	5.9	IN	QN	Z	0.4	0.12	0.0	g	0.29	0.1	NA	NA	0.1	NA	0.3	0.32	0'>	NA	0.0	0.37	0.2
Ś	(mg/L)	021	190	3			NA	216				186				220				150	228	168				124	208	NA				100	NA	NA	NA	188	NA	150	NA	192		
Ethene	(mg/L)	ATIA	2	2 2	£	£	NA	£	Æ	QN.	QV.	MD	ND	ND	ND	0.001	0.004	ND	Q.	ND	QN	QN	ND	ND ND	ND	QN	ND	QN	Q	£	S	NA	NA	QN	NA	QN	QN	QN	NA	ΩN	QN	QN.
Methane	(mg/L)	8500	0.00	0.074	0.075	0.132	NA	0.067	0.063	0.039	0.049	0.109	0.414	0.344	ND	0.015	0.039	0.164	0.139	0.002	0.106	0.079	80.0	80.0	0.082	0.017	0.478	0.003	£	Q	QZ	NA	NA	900.0	NA	0.015	0.016	0.008	NA	0.003	QN	Ę
100	(mg/L)	3.3	2,5	23			ΑN	1.6				2.7				5.6				1.7	2.0	4.1				4.4	5.0	5.1				ΑN	NA	1.3	1.3	7.2	4.8	1.6	NA	2.9		
NO ₂ +NO ₃	(mg/L)	\$0.07	600	0.03	0.1		NA	0.05	0.04	ND		0.08	0.03	' ND		0.08	0.04	ND		7.94	0.07	0.09	0.1	ON		1.78	60.0	0.23	0.21	ND		NA	NA	0.07	NA	5.75	5.95	80.0	NA	2.75	0.93	1.6
Sulfate	(mg/L)	717	5,4.7	44.5	47		NA A	52.8	50	90		144	227	290		87.1	6.96	120		55.8	38.5	61.5	55.8	53		32.7	54.5	NA	27.8	29		NA	NA	54.5	55	48.1	NA	99	NA	44.2	42.7	40
Chloride	(mg/L)	10.2	7 -	9.2	7.8		NA	10.9	9.2	7.2		5.1	6.1	8.3		7.31	6.00	4.50		4.91	9.04	10.3	10.0	8.3		8.24	18.8	NA	3.7	1.5		NA	NA	7.26	7.33	7.2	NA	6.3	NA	5.05	2.90	2.30
Ferrous	(mg/L)	0.1	- 1	15	Ę	1.6	NA	1.0	1.3	1:1	1.0	8.0	NA	0.5	.29D	0.1	0.7	0.3	0.3	<0.05	1.9	6.0	1.3	1.4	1.5	0.1	1.6	NA	0.4	0.4	0.3	3.1	NA	NA	NA	0.1	NA	8.0	NA	0.3	NA	0.3
Hydrogen Sulfide	(mg/L)	NIA 8/	V.	0.007	0.003	0.001	NA	NA	9000	0.024	0.002	NA	0.648	0.390D	389D	NA	0.113	0.039	0.017	NA	<0.1	<0.1	900'0	NA	0.007	NA	<0.1	NA	0.3	0.2	9.0	<0.1	NA	NA	NA	NA	NA	<0.1	NA	NA	0.421	0.164
Total Alkalinity	(mg/L)	322	244	350	350		NA	389	381	390		378	486	650		394	400	400		293	370	385	379	380		296	212	NA	331.0	280.0		380	NA	NA	ΑΝ	254	NA	393	NA	314	301	340
Redox	(mV)	100.0	62.3	-59.0	-63.0	NA	NA	-16.7	-51.0	-31.0	NA	23.1	83.0	127.0	NA	140.0	57.0	52.0	AN	200.0	-45.8	-24.4	-31.0	-11.0	ΑΝ	199.0	-53.5	NA	156.0	125.0	NA	-93.8	-89.5	NA	NA	115.0	NA	2.7	NA	152.0	159.0	65.0
Dissolved	(mg/L)	70	0.0	0.0	NA	6.1	NA	0:0	1.3	2.7	4.9	NA	8.0	2.3	4.3	0.7	1.4	1.9	4.2	8.0	0.3	0.1	1.3	NA	4.8	0.2	9.4	NA	6.7	3.5	9.5	NA	NA	0.5	NA	ΑN	NA	0.0	NA	NA	6.4	3.1
Conductivity	(mmhos/cm)	202	741	740	731	543	NA	810	798	808	582	596	NA	1235	612	874	905	936	636	730	751	840	839	810	609	632	703	NA	578.0	601.0	375.0	779	781	NA	NA	662	NA	803	817	299	687	099
	표	133	77.	6.10	7.25	7.35	NA	7.06	6.78	8.31	7.29	86.9	85.9	69.8	7.25	7.02	99'9	8.62	7.20	7.30	7.07	7.18	6.70	7.02	7.31	7.33	7.29	ΝΑ	7.5	9.8	7.8	7.10	7.08	NA	AN	7.13	AN	7.11	7.10	7.22	7.31	8.53
Water	(C)		÷:::	17.1	11.7	10.3	ΑN	12.4	16.4	122	11.8	NA	23.6	12.2	8.4	10.2	17.5	12.2	9.7	12.1	13.9	13.5	19.8	13.6	13	8.2	12.5	ΝA	25.3	10.3	7	NA	NA	14.4	ΝA	NA	ΑN	12.8	NA	NA	22.7	=
Samule	Sample	30/00/0	20/00/0	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	8/1/95	12/1/95	3/1/96	2/27/95	2/27/95	2/28/95	8/1/95	12/1/95	3/1/96	2/28/95	2/28/95	2/27/95	8/1/95	12/1/95	3/1/96	2/27/95	2/27/95	2/27/95	2/27/95	2/28/95	2/28/95	2/28/95	2/28/95	2/27/95	8/1/95	12/1/95
Samula			ESMP-1D		FSMP-2D					ESMP-3D				ESMP-4S	ESMP-4S	ESMP-4D					ESMP-5D	ESMP-6D	ESMP-6D	ESMP-6D	ESMP-6D	ESMP-7S	ESMP-7D	ESMP-8S	ESMP-8S	ESMP-8S	ESMP-8S	ESMP-8D	ESMP-8D(D)	ESMP-8DD	ESMP-8DD(D)	ESMP-9S	ESMP-9S(D)	ESMP-9D	ESMP-9D(D)	ESMP-10S	ESMP-10S	ESMP-10S

TABLE 5.2 GROUNDWATER GEOCHEMICAL DATA HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

Sample Temp Conductivity Date (*C) nH (umbos/cm)	Conductivity (umhos/cm)	Conductivity (umhos/cm)		Dissolved Oxygen (me/L)	Redox Potential (mV)	Total Alkalinity (me/L)	Hydrogen Sulfide (me/L)	Ferrous Iron (me/L)	Chloride (me/L)	Sulfate (me/L)	NO ₂ +NO ₃ Nitrogen (mg/L)	TOC (mg/L)	Methane (me/L)	Ethene (mg/L)	CO ₂	NH3
				41		1	,		, ,			,	, ,		, ,	, ,
NA 7.01 823 0.1 -30.0	7.01 823 0.1 -30.0	823 0.1 -30.0	-30.0		426		<0.1	1.8	8.21	36.1	0.11	3.9	0.012	Q	296	90.0
2/27/95 14 7.09 786 1.1 -70.1 376	7.09 786 1.1 -70.1	786 1.1 -70.1	-70.1	1	E Z	۔ او	0.1 VA	2.5	5.11	57.8	80.0	2.6	0.105	Q ×	220	0.07
8.1 7.21 841 0.3 -136.0	7.21 841 0.3 -136.0	841 0.3 -136.0	-136.0	1	i m	. 98	0.1	3.2	23.5	38.3	60.0	27.6	7.83	0.001	330	0.43
17.2 6.96 NA 0.4 -125.0	6.96 NA 0.4 -125.0	NA 0.4 -125.0	-125.0	_		374	0.011	2.7	16.0	60.9	0.04		19.163	0.002		0.039
12.5 7.36 762 NA	7.36 762 NA	762 NA		0.06-		390	0.003	2.5	17.0	1.8	ND		15.36	ND		0.22
7.46 555 5.6	7.46 555 5.6	555 5.6		NA			0.03	1.88D					QV	0.005		0.5
NA NA NA	NA NA NA	NA NA	\dashv	NA		NA	NA	NA	23.3	38.2	NA	NA	NA	NA	NA	NA
11.1 7.14 775 0.5	7.14 775 0.5	775 0.5		-136.0		364	0.1	1.5	17.0	54.9	0.09	2.1	0.11	QN	170	0.07
NA NA NA	NA NA NA	NA NA		NA		NA	NA	NA	17.8	57.9	0.09	2.1	0.114	Q	NA	0.07
11.6 7.28 760 0.2	7.28 760 0.2	760 0.2	1	-115.0		440	<0.1	3.2	7.29	19.2	0.09	3.1	0.462	B	288	0.13
NA NA NA NA	NA NA NA	NA NA	1	AN		NA	NA	NA	NA	NA NA	60.0	3.1	NA	W	NA	0.12
12.1 7.09 767 0.2	7.09 767 0.2	767 0.2	\dashv	-116.0	┙	393	<0.1	1.4	17.0	58.7	0.11	3.2	0.106	Ð	214	60.0
6.73 46 0.7	6.73 46 0.7	46 0.7	1	0.68-		350	0.044	1.6	15.3	48.6	0.05		0.138	g		QQ
11.5 7.43 759 NA	7.43 759 NA	759 NA	-	-41.0		360	0.015	1.3	9.1	51	QN		0.117	g		ND ND
10.7 7.42 531 6.3	7.42 531 6.3	531 6.3	\dashv	NA			0.005	1.4					0.119	R		QN ON
NA NA NA	NA NA NA	NA NA		Ϋ́Α		Ϋ́Α	Ϋ́	NA	16.3	57.1	0.11	3.6	ΝΑ	NA	NA	80.0
11.8 7.55 731 0.2	7.55 731 0.2	731 0.2		-95.0	_	185	<0.1	1.1	16.1	206	0.32	97.0	0.136	QN	136	0.19
NA	NA NA NA	NA	_	ΝΑ		NA	NA	NA	15.6	506	NA	NA	0.129	S	NA	NA
9.3 8.22 764 1.2	8.22 764 1.2	764 1.2		72.1		103	NA	9.0	20.1	264	0.41	114.2	0.007	ND	06	0.1
2150 0.0	7.00 2150 0.0	2150 0.0		-143.0		522	<0.1	14.8	53.3	208	<0.05	523.0	3.067	ND	510	1.22
19.1 6.82 NA 0.4	6.82 NA 0.4	NA 0.4	1	-134.0		430	0.012	2.94D	21.2	939	0.05		5.344	Q		0.65
5 12.5 7.15 1978 NA	7.15 1978 NA	1978 NA	+	-111.0	-Τ	260	0.024	2.05D	19.0	910	QN .		9.278	QN		0.053
9 7.38 1435 6.1	7.38 1435 6.1	1435 6.1	1	YZ S	Γ		0.146	2.41D	,	1			4.7	٤!		9.0
13.8 6.94 2070 0.0	6.94 2070 0.0	2070 0.0	\dagger	-170.0	_[443	0.5	5.7	19.5	938	<0.05	61.3	1.15	2	422	0.75
8/1/95 19 6.74 44 0.8 -126.	6.74 44 0.8	1114	\dagger	-120.	_[_	424	0.028	2.34D	AN C	NA OVC	Y E		0.357			NO.
10.5 7.41 820 6.8	7.41 820 6.8	820 6.8	\dagger	N V	1		0.008	2.4	2.7	}			0.251	2 2		0.4
NA 6.95 2080 NA	6.95 2080 NA	2080 NA	H	-172.0	آ	NA	NA A	NA	20.7	895	<0.05	AN AN	1.182	Ð	NA	0.74
7.24 773 0.2	7.24 773 0.2	773 0.2	-	-125.0	آــا	380	<0.1	4.5	7.26	41	60.0	2.0	2.296	0.057	190	0.29
17.9 6.97 NA 0.5	6.97 NA 0.5	NA 0.5		-113.		368	0.017	2.7	5.60	38.3	0.04		2.73	0.057		ON
7.48 751 NA	7.48 751 NA	751 NA	_	-99.0		360	NA	2.2	3.60	48	ND ON		1.775	0.056		0.13
10.2 7.57 518 5.3	7.57 518 5.3	518 5.3		NA			0.004	3.3					2.576	0.004		0.1
0.5	7.16 832 0.5	832 0.5		212.0		389	NA	<0.05	7.79	61.2	60:0	5.3	0.661	QN.	256	0.05
1.8	7.08 943 1.8	943 1.8	_	212.0		368	NA	<0.05	21.1	127	0.1	4.6	0.003	QN	276	90.0
17 6.70 776 1.8	6.70 776 1.8	776 1.8	<u> </u>	157.0	_	387	0.078	0.4	16.0	72	0.05		Ð	₽		Q.
NA	7.18 922 NA	922 NA	_	82.0	<u> </u>	420	0.013	0.0	12.0	87	1.2		QX	Ð		0.2
7.38 631 13.4	7.38 631 13.4	631 13.4	-	ž	,		0.032	0.1					Ą	呈		0.1
2/28/95 NA 7.10 961 NA 213	7.10 961 NA	961 NA		213	0.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10.7 6.95 859 1.5	6.95 859 1.5	859 1.5		210.		402	NA	<0.05	19.0	103	0.15	7.2	0.002	Ð	316	0.09
8/1/95 18.4 6.52 800 2.0 231.0	6.52 800 2.0	800 2.0		231.0		446	0.051	0.1	2.2	68	0.05		Ð.	QQ.		ΩΩ
10.1 7.06 863 NA	7.06 863 NA	863 NA	-	217.0		390	0.003	0.0	1.7	84	0.1		Ð	Ð		0.11

GROUNDWATER GEOCHEMICAL DATA HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO TABLE 5.2

	NH,	(mg/L)	0.01	60'0	0.45	0.11	1.4	0.3	Ϋ́	ΝΑ	£	0.2	£	Ą	0.1	£	Ð	0.1	0.27	ΑN	0.49	<.05	£	0.12	£	<.05	£	£	£	Ą
	CO ²	(mg/L)		NA	478				NA	226				NA	208				412	NA	258	95				300				Ϋ́N
	Ethene	(mg/L)	QN	NA	Ð	QN QN	Ð	ON ON	Ð	QN	QN	Ð	Ð	NA	£	£	Ð	£	Q	NA	Ð	Ð	£	£	£	Ð	Ð	Ð	QN	NA
	Methane	(mg/L)	ND	NA	7.693	0.33	2.493	0.186	7.178	0.013	QN	ΩN	QN ON	NA	0.015	Ð	Ð	0.081	0.004	NA	0.04	дотв	Ð	QN	Ð	0.001	QN	Ð	æ	NA
	TOC	(mg/L)		NA	139.6				NA	5.5				5.6	13.4				7.6	7.6	5.7	1.0				3.5				3.6
NO ₂ +NO ₃	Nitrogen	(mg/L)		0.15	80.0	0.11	0.1		NA	NA	0.2	1.3		NA	90:0	0.04	0.17		80.0	NA	0.07	9.1	1.7	2.9		0.57	NA	0.44		ΑN
	Sulfate	(mg/L)		NA	25'9	19.4	22		NA	NA	129.0	140.0		NA	20	15.7	15		496	498	296	44.8	49.7	41		187	NA	98		91.7
	Chloride	(mg/L)		NA	8.0	3.8	8.3		NA	NA	9.4	5.6		NA	8.0	1.9	1.5		18.9	20.0	23.4	59.5	2.70	2.40		8.61	NA	9.2		13.3
Ferrous	Iron	(mg/L)	0.0	NA	16.5	2.6	2.08D	.56D	NA	<0.05	0.4	0.2	0.0	NA	<0.05	0.4	0.1	0.1	2.4	NA	2.2	<0.05	0.2	0.0	0.0	0.3	1.1	0.17	0.11	ΝΑ
Hydrogen	Sulfide	(mg/L)	0.001	NA	NA	0.365	0.019D	.041D	NA	NA	0.27	60.0	0.019	NA	NA	0.261	0.056	0.067	NA	NA	<0.1	NA	0.118	0.003	0.002	NA	0.091	0.005	0.002	NA
Total	Alkalinity	(mg/L)		NA	416	391	470		NA	387	409	340		ΝA	391	383	410		480	NA	390	211	275	240		347	480	380		NA
Redox	Potential	(mV)	NA	NA	-115.0	NA	NA		NA	181.0	41.0	151.0	NA	178.0	209.0	233.0	57.0	NA	19.1	NA	-92.1	194.0	178.0	241.0	NA	38.6	143	142	NA	NA
Dissolved	Oxygen	(mg/L)	12.8	NA	NA	NA	NA		NA	0.4	1.1	4.1	9.6	NA	4.1	4.3	NA	8.9	0.2	NA	0.0	3.9	4.7	5.8	5.2	9.0	1.0	NA	6.2	NA
	Conductivity	(mp/soyum)	446	NA	942	NA	NA		NA	1017	833	616	456	1057	719	753	746	483	1596	NA	1172	566	260	554	594	854	834	668	625	ΝA
		Hd	7.35	NA	7.07	NA	NA		NA	96.9	6.57	8.44	7.38	6.93	7.34	69'9	7.44	7.42	6.82	NA	7.11	7.38	7.01	8.40	7.28	7.04	6.81	6.93	7.38	ΝΑ
Water	Temp.	(၃)	7.4	NA	NA	NA	NA		NA	10.5	17.5	11.1	9.7	NA	10.3	18.8	10.6	7.5	8.9	NA	13.2	11.4	18.2	12.4	9.4	12.4	17.4	14.1	9.6	NA
	Sample	Date	3/1/6	3/1/65	3/1/95	8/1/8	12/1/95	3/1/96	3/1/65	2/28/95	56/1/8	12/1/95	3/1/96	2/28/95	2/28/95	8/1/95	12/1/95	3/1/96	3/1/95	3/1/95	3/1/95	2/28/95	56/1/8	12/1/95	3/1/6	2/28/95	8/1/85	12/1/95	3/1/6	2/28/95
	Sample	Number	MW-4	MW-4(D)	MW-5	MW-5	MW-5	MW-5	MW-5(D)	MW-6	MW-6	MW-6	MW-6	MW-6(D)	MW-8	MW-8	MW-8	MW-8	6-WM	MW-9(D)	MW-10	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12	MW-12(D)

 $^{u'}$ NA = not available. $^{b'}$ ND = not detected. $^{c'}(D)$ = duplicate sample. $^{c'}$ BLQ = below lower limit of quantitation (0.001 $\mu g/L)$.

Coupled Benzene Oxidation Reactions	ΔG° _r (kcal/mole Benzene)	ΔG° _r (kJ/mole Benzene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$7.5O_2 + C_6H_6 \Rightarrow 6CO_{2,g} + 3H_2O$	-765.34	-3202	3.07:1
Benzene oxidation /aerobic respiration			
$6NO_3 + 6H^+ + C_6H_6 \Rightarrow 6CO_{2,g} + 6H_2O + 3N_{2,g}$	-775.75	-3245	4.77:1
Benzene oxidation / denitrification			
$30H^+ + 15MnO_2 + C_6H_6 \Rightarrow 6CO_{2,g} + 15Mn^{2+} + 18H_2O$	-765.45	-3202	10.56:1
Benzene oxidation / manganese reduction	1		
$3.75 \text{ NO}_3^- + \text{C}_6\text{H}_6 + 7.5 \text{ H}^+ + 0.75 \text{ H}_2\text{O} \Longrightarrow 6 \text{ CO}_2 + 3.75 \text{ NH}_4^+$ Benzene oxidation / nitrate reduction	-524.1	-2193	2.98:1
$60H^+ + 30Fe(OH)_{3,a} + C_6H_6 \Rightarrow 6CO_2 + 30Fe^{2+} + 78H_2O$	-560.10	-2343	21.5:1
Benzene oxidation / iron reduction			
$7.5 H^{+} + 3.75 SO_{4}^{2-} + C_{6} H_{6} \Rightarrow 6 CO_{2,g} + 3.75 H_{2} S^{o} + 3H_{2} O$	-122.93	-514.3	4.61:1
Benzene oxidation / sulfate reduction			
$4.5H_2O + C_6H_6 \Rightarrow 2.25CO_{2,8} + 3.75CH_4$	-32.40	-135.6	0.77:1
Benzene oxidation / methanogenesis			
$15C_2Cl_4 + 12H_2O + C_6H_6 \Rightarrow 15C_2HCl_3 + 6CO_2 + 15H^+ + 15Cl$	-358.59	-1500	31.8:1
Benzene oxidation/ Tetrachloroethylene reductive dehalogenation			
$15C_2HCl_3 + 12H_2O + C_6H_6 \Rightarrow 15C_2H_2Cl_2 + 6CO_2 + 15H^+ + 15CI$	-350.04	-1465	25.2:1
Benzene oxidation/ Trichloroethylene reductive dehalogenation			
$15C_2H_2Cl_2 + 12H_2O + C_6H_6 \Rightarrow 15C_2H_3Cl + 6CO_2 + 15H^+ + 15Cl$	-278.64	-1166	18.6:1
Benzene oxidation/ cis-Dichloroethylene reductive dehalogenation			
$15C_2H_3Cl + 12H_2O + C_6H_6 \Rightarrow 15C_2H_4 + 6CO_2 + 15H^+ + 15Cl$ Benzene oxidation/ Vinyl chloride reductive dehalogenation	-327.37	-1370	11.9:1

Coupled Toluene Oxidation Reactions	ΔG° _r (kcal/mole Toluene)	ΔG° _r (kJ/mole Toluene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$9O_2 + C_6H_5CH_3 \Rightarrow 7CO_{2g} + 4H_2O$ Toluene oxidation /aerobic respiration	-913.76	-3823	3.13:1
$7.2NO_3 + 7.2H^+ + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 7.6H_2O + 3.6N_{2,g}$ Toluene oxidation / denitrification	-926.31	-3875	4.85:1
$36H^{+} + 18\underline{MnO_{2}} + C_{6}H_{5}CH_{3} \Rightarrow 7CO_{2,g} + 18Mn^{2+} + 22H_{2}O$ Toluene oxidation / manganese reduction	-913.89	-3824	10.74:1
$72H^{+} + 36Fe(OH)_{3,a} + C_{6}H_{5}CH_{3} \Rightarrow 7CO_{2} + 36Fe^{2+} + 94H_{2}O$ Toluene oxidation / iron reduction	-667.21	-2792	21.86:1
$9H^+ + 4.5SO_4^2 + C_6H_5CH_3 \Rightarrow 7CO_{2g} + 4.5H_2S^o + 4H_2O$ Toluene oxidation / sulfate reduction	-142.86	-597.7	4.7:1
$5H_2O + C_6H_5CH_3 \Rightarrow 2.5CO_{2g} + 4.5CH_4$ Toluene oxidation / methanogenesis	-34.08	-142.6	0.78:1
$18C_2Cl_4 + 14H_2O + C_6H_5CH_3 \Rightarrow 18C_2HCl_3 + 7CO_2 + 18H^+ + 18Cl$ Toluene oxidation/ Tetrachloroethylene reductive dehalogenation	-425.66	-1781	32.4:1
$18C_2HCl_3 + 14H_2O + C_6H_5CH_3 \Rightarrow 18C_2H_2Cl_2 + 7CO_2 + 18H^+ + 18CI$ Toluene oxidation/ Trichloroethylene reductive dehalogenation	-415.40	-1738	25.7:1
$18C_2H_2Cl_2 + 14H_2O + C_6H_3CH_3 \Rightarrow 18C_2H_3Cl + 7CO_2 + 18H^+ + 18Cl$ Toluene oxidation/ cis-Dichloroethylene reductive dehalogenation	-329.72	-1380	18.9:1
$18C_2H_3Cl + 14H_2O + C_6H_5CH_3 \Rightarrow 18C_2H_4 + 7CO_2 + 18H^+ + 18Cl$ Toluene oxidation/ Vinyl chloride reductive dehalogenation	-388.22	-1624	12.1:1

Coupled Ethylbenzene Oxidation reactions	ΔG° _r kcal/mole Ethylbenzene	ΔG° _r kJ/mole Ethylbenzene	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$10.5O_2 + C_6H_5C_2H_5 \Rightarrow 8CO_{2,g} + 5H_2O$ Ethylbenzene oxidation /aerobic respiration	-1066.13	-4461	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_5C_2H_5 \Rightarrow 8CO_{2,g} + 9.2H_2O + 4.2N_{2,g}$ Ethylbenzene oxidation / denitrification	-1080.76	-4522	4.92:1
$46 H^{+} + 22 \underline{MnO_{2}} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2,g} + 22 \underline{Mn^{2+}} + 28 H_{2}O$ Ethylbenzene oxidation / manganese reduction	-1066.27	-4461	11.39:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ Ethylbenzene oxidation / iron reduction	-778.48	-3257	22.0:1
$10.5 H^{+} + 5.25 SO_{4}^{2} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2,8} + 5.25H_{2}S^{o} + 5H_{2}O$ Ethylbenzene oxidation / sulfate reduction	-166.75	-697.7	4.75:1
$5.5H_2O + C_6H_5C_2H_5 \Rightarrow 2.75CO_{2g} + 5.25CH_4$ Ethylbenzene oxidation / methanogenesis	-39.83	-166.7	0.79:1
$21C_2Cl_4 + 16H_2O + C_6H_5C_2H_5 \Rightarrow 21C_2HCl_3 + 8CO_2 + 21H^+ + 21CI$ Ethylbenzene oxidation/ Tetrachloroethylene reductive dehalogenation	-496.67	-2078	32.8:1
$21C_2HCl_3 + 16H_2O + C_6H_5C_2H_5 \Rightarrow 21C_2H_2Cl_2 + 8CO_2 + 21H^+ + 21CI$ Ethylbenzene oxidation/ Trichloroethylene reductive dehalogenation	-484.70	-2028	26.0:1
$21C_2H_2Cl_2 + 16H_2O + C_6H_5C_2H_5 \Rightarrow 21C_2H_3Cl + 8CO_2 + 21H^+ + 21Cl$ Ethylbenzene oxidation/ cis-Dichloroethylene reductive dehalogenation	-384.74	-1610	19.2:1
$21C_2H_3Cl + 16H_2O + C_6H_5C_2H_5 \Rightarrow 21C_2H_4 + 8CO_2 + 21H^+ + 21Cl$ Ethylbenzene oxidation/ Vinyl chloride reductive dehalogenation	-452.99	-1895	12.3:1

Coupled m-Xylene Oxidation Reactions	ΔG° _r (kcal/mole <i>m</i> -xylene)	ΔG° _r (kJ/mole <i>m</i> -xylene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$10.5O_2 + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,g} + 5H_2O$ m-Xylene oxidation /aerobic respiration	-1063.25	-4448	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,g} + 9.2H_2O + 4.2N_{2,g}$ m-Xylene oxidation / denitrification	-1077.81	-4509	4.92:1
$46 H^{+} + 22 \underline{MnO_{2}} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8 CO_{2,g} + 22 Mn^{2+} + 28 H_{2}O$ $m\text{-Xylene oxidation / manganese reduction}$	-1063.39	-4449	11.39:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ $m-Xylene oxidation / iron reduction$	-775.61	-3245	22:1
$10.5 H^{+} + 5.25 SO_{4}^{2} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8CO_{2,8} + 5.25 H_{2}S^{\circ} + 5 H_{2}O$ $m\text{-Xylene oxidation / sulfate reduction}$	-163.87	-685.6	4.75:1
$5.5 H_2O + C_6 H_4 (CH_3)_2 \Rightarrow 2.75 CO_{2,g} + 5.25 CH_4$ $m\text{-Xylene oxidation / methanogenesis}$	-36.95	-154.6	0.79:1 2
$21C_2Cl_4 + 16H_2O + C_6H_4(CH_3)_2 \Rightarrow 21C_2HCl_3 + 8CO_2 + 21H^+ + 21Cl_2$ m-Xylene oxidation/ Tetrachloroethylene reductive dehalogenation	-493.79	-2066	32.8:1
$21C_2HCl_3 + 16H_2O + C_6H_4(CH_3)_2 \Rightarrow 21C_2H_2Cl_2 + 8CO_2 + 21H^+ + 21CI$ m-Xylene oxidation/ Trichloroethylene reductive dehalogenation	-481.82	-2016	26.0:1
$21C_2H_2Cl_2 + 16H_2O + C_6H_4(CH_3)_2 \Rightarrow 21C_2H_3Cl + 8CO_2 + 21H^+ + 21CI$ m-Xylene oxidation/ cis-Dichloroethylene reductive dehalogenation	-381.86	-1598	19.2:1
$21C_2H_3Cl + 16H_2O + C_6H_4(CH_3)_2 \Rightarrow 21C_2H_4 + 8CO_2 + 21H^+ + 21Cl$ m-Xylene oxidation/ Vinyl chloride reductive dehalogenation	-450.11	-1883	12.3:1

Coupled Naphthalene Oxidation Reactions	ΔG° _r (kcal/mole naphthalene)	ΔG° _r (kJ/mole naphthalene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$12O_2 + C_{10}H_8 \Rightarrow 10CO_2 + 4H_2O$	-1217.40	-5094	3.00:1
Naphthalene oxidation /aerobic respiration			
$9.6NO_3^+ + 9.6H^+ + C_{10}H_8 \Rightarrow 10CO_2 + 8.8H_2O + 4.8N_{2,g}$	-1234.04	-5163	4.65:1
Naphthalene oxidation / denitrification			
$24MnO_2 + 48H^+ + C_{10}H_8 \Rightarrow 10CO_2 + 24Mn^{2+} + 28H_2O$	-1217.57	-5094	16.31:1
Naphthalene oxidation / manganese reduction			
$48Fe(OH)_{3,a} + 96H^{+} + C_{10}H_{8} \Rightarrow 10CO_{2} + 48Fe^{2+} + 124H_{2}O$	-932.64	-3902	40.13:1
Naphthalene oxidation / iron reduction			
$6SO_4^{2-} + 12H^+ + C_{10}H_8 \Rightarrow 10CO_2 + 6H_2S^0 + 4H_2O$	-196.98	-824.2	4.50:1
Naphthalene oxidation / sulfate reduction			
$8H_2O + C_{I0}H_8 \Rightarrow 4CO_2 + 6CH_4$	-44.49	-186.1	1.13:1
Naphthalene oxidation / methanogenesis			
$24C_2Cl_4 + 20H_2O + C_{10}H_8 \Rightarrow 24C_2HCl_3 + 10CO_2 + 24H^+ + 24CI$	-566.59	-2371	31.1:1
Naphthalene oxidation/ Tetrachloroethylene reductive dehalogenation			
$24C_2HCl_3 + 20H_2O + C_{10}H_8 \Rightarrow 24C_2H_2Cl_2 + 10CO_2 + 24H^+ + 24CI$	-552.91	-2313	24.6:1
Naphthalene oxidation/ Trichloroethylene reductive dehalogenation			
$24C_2H_2Cl_2 + 20H_2O + C_{10}H_8 \Rightarrow 24C_2H_3Cl + 10CO_2 + 24H^+ + 24Cl$	-438.67	-1835	18.2:1
Naphthalene oxidation/ cis-Dichloroethylene reductive dehalogenation			
$24C_2H_3Cl + 20H_2O + C_{10}H_8 \Rightarrow 24C_2H_4 + 10CO_2 + 24H^+ + 24Cl$	-516.67	-2162	11.6:1
Naphthalene oxidation/ Vinyl chloride reductive dehalogenation			

Coupled 1,3,5-Trimethylbenzene Oxidation Reactions	ΔG° _r (kcal/mole 1,3,5-TMB)	ΔG° _r (kJ/mole 1,3,5-TMB)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$12O_2 + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 6H_2O$	-1213.29	-5076	3.20:1
1,3,5-Trimethylbenzene oxidation /aerobic respiration			
$9.6NO_3^- + 9.6H^+ + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 10.8H_2O + 4.8N_{2,g}$	-1229.93	-5146	4.96:1
1,3,5-Trimethylbenzene oxidation / denitrification			
$24MnO_2 + 48H^+ + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 30H_2O + 24Mn^{2+}$	-1213.46	-5077	17.40:1
1,3,5-Trimethylbenzene oxidation / manganese reduction			
$48Fe(OH)_{3,a} + 96H^{+} + C_{6}H_{3}(CH_{3})_{3} \Rightarrow 9CO_{2} + 48Fe^{2+} + 126H_{2}O$	-928.53	-3885	42.80:1
1,3,5-Trimethylbenzene oxidation / iron reduction	:		
$6SO_4^{2-} + 12H^+ + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 6H_2O + 6H_2S^o$	-192.87	-807.0	4.80:1
1,3,5-Trimethylbenzene oxidation / sulfate reduction			
$6H_2O + C_6H_3(CH_3)_3 \Rightarrow 3CO_2 + 6CH_4$	-40.39	-169.0	0.90:1
1,3,5-Trimethylbenzene oxidation / methanogenesis			
$24C_{2}Cl_{4} + 18H_{2}O + C_{6}H_{3}(CH_{3})_{3} \Rightarrow 24C_{2}HCl_{3} + 9CO_{2} + 24H^{+} + 24CI$	-562.48	-2353	33.2:1
1,3,5-Trimethylbenzene oxidation/ Tetrachloroethylene reductive dehalogenation			
$24C_2HCl_3 + 18H_2O + C_6H_3(CH_3)_3 \Rightarrow 24C_2H_2Cl_2 + 9CO_2 + 24H^+ + 24CI$	-548.80	-2296	26.3:1
1,3,5-Trimethylbenzene oxidation/Trichloroethylene reductive dehalogenation			
$24C_2H_2Cl_2 + 18H_2O + C_6H_3(CH_3)_3 \Rightarrow 24C_2H_3Cl + 9CO_2 + 24H^+ + 24Cl$	-434.56	-1818	19.4:1
1,3,5-Trimethylbenzene oxidation/ cis-Dichloroethylene reductive dehalogenation			
$24C_2H_3Cl + 18H_2O + C_6H_3(CH_3)_3 \Rightarrow 24C_2H_4 + 9CO_2 + 24H^+ + 24Cl$	-512.56	-2145	12.4:1
1,3,5-Trimethylbenzene oxidation/ Vinyl chloride reductive dehalogenation			

Coupled 1,2,4-Trimethylbenzene Oxidation Reactions	ΔG° _r (kcal/mole 1,2,4-TMB)	ΔG° _r (kJ/mole 1,2,4-TMB)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$12O_2 + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 6H_2O$	-1212.92	-5075	3.20:1
1,2,4-Trimethylbenzene oxidation /aerobic respiration			
$9.6NO_3^- + 9.6H^+ + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 10.8H_2O + 4.8N_{2,g}$	-1229.56	-5144	4.96:1
1,2,4-Trimethylbenzene oxidation / denitrification			
$24\underline{MnO_2} + 48H^+ + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 30H_2O + 24Mn^{2+}$	-1213.09	-5076	17.4:1
1,2,4-Trimethylbenzene oxidation / manganese reduction			
$48Fe(OH)_{3,a} + 96H^{+} + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 48Fe^{2+} + 126H_2O$	-928.16	-3883	42.8:1
1,2,4-Trimethylbenzene oxidation / iron reduction			
$6SO_4^{2-} + 12H^+ + C_6H_3(CH_3)_3 \Rightarrow 9CO_2 + 6H_2O + 6H_2S^0$	-192.50	-805.4	4.80:1
1,2,4-Trimethylbenzene oxidation / sulfate reduction			
$6H_2O + C_6H_3(CH_3)_3 \Rightarrow 3CO_2 + 6CH_4$	-40.02	-167.4	0.90:1
1,2,4-Trimethylbenzene oxidation / methanogenesis			
$24C_2Cl_4 + 18H_2O + C_6H_3(CH_3)_3 \Rightarrow 24C_2HCl_3 + 9CO_2 + 24H^+ + 24Cl$	-562.11	-2352	33.2:1
1,2,4-Trimethylbenzene oxidation/ Tetrachloroethylene reductive dehalogenation			
$24C_2HCl_3 + 18H_2O + C_6H_3(CH_3)_3 \Rightarrow 24C_2H_2Cl_2 + 9CO_2 + 24H^+ + 24CI$	-548.43	-2295	26.3:1
1,2,4-Trimethylbenzene oxidation/ Trichloroethylene reductive dehalogenation			
$24C_2H_2Cl_2 + 18H_2O + C_6H_3(CH_3)_3 \Rightarrow 24C_2H_3Cl + 9CO_2 + 24H^+ + 24Cl$	-434.19	-1817	19.4:1
1,2,4-Trimethylbenzene oxidation/ cis-Dichloroethylene reductive dehalogenation			
$24C_2H_3Cl + 18H_2O + C_6H_3(CH_3)_3 \Rightarrow 24C_2H_4 + 9CO_2 + 24H^+ + 24Cl$	-512.19	-2143	12.4:1
1,2,4-Trimethylbenzene oxidation/ Vinyl chloride reductive dehalogenation			

Coupled Chlorobenzene Oxidation Reactions	ΔG° _r (kcal/mole Chlorobenzene)	ΔG° _r (kJ/mole Chlorobenzene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$7O_2 + C_6H_5Cl \Rightarrow 6CO_2 + H^+ + 2H_2O + CI$ Chlorobenzene oxidation /aerobic respiration	-731.62	-3061	2.00:1
$5.6NO_3^+ + 4.6H^+ + C_6H_5Cl \Rightarrow 6CO_2 + 4.8H_2O + 2.8N_{2,g} + CI$ Chlorobenzene oxidation / denitrification	-741.33	-3102	3.10:1
$14\underline{MnQ}_2 + 27H^+ + C_6H_3Cl \Rightarrow 6CO_2 + 16H_2O + 14Mn^{2+} + Cl$ Chlorobenzene oxidation / manganese reduction	-731.72	-3062	10.9:1
$28\underline{Fe(OH)}_{3,a} + 55H^{+} + C_{6}H_{5}Cl \Rightarrow 6CO_{2} + 72H_{2}O + 28Fe^{2+} + CI$ Chlorobenzene oxidation / iron reduction	-565.51	-2366	26.8:1
$3.5SO_4^{2-} + 6H^+ + C_6H_5Cl \Rightarrow 6CO_2 + 2H_2O + 3.5H_2S^o + CI$ Chlorobenzene oxidation / sulfate reduction	-136.38	-570.6	3.00:1
$5H_2O + C_6H_5Cl \Rightarrow 2.5CO_2 + 3.5CH_4 + H^+ + CI$ Chlorobenzene oxidation / methanogenesis	-47.43	-198.4	0.80:1
$14C_2Cl_4 + 12H_2O + C_6H_5Cl \Rightarrow 14C_2HCl_3 + 6CO_2 + 15H^+ + 15Cl$ Chlorobenzene oxidation/ Tetrachloroethylene reductive dehalogenation	-351.99	-1473	20.7:1
$14C_2HCl_3 + 12H_2O + C_6H_3Cl \Rightarrow 14C_2H_2Cl_2 + 6CO_2 + 15H^+ + 15C\Gamma$ Chlorobenzene oxidation/ Trichloroethylene reductive dehalogenation	-344.01	-1439	16.4:1
$14C_2H_2Cl_2 + 12H_2O + C_6H_5Cl \Rightarrow 14C_2H_3Cl + 6CO_2 + 15II^+ + 15Cl$ Chlorobenzene oxidation/ cis-Dichloroethylene reductive dehalogenation	-277.37	-1161	12.1:1
$14C_2H_3Cl + 12H_2O + C_6H_5Cl \Rightarrow 14C_2H_4 + 6CO_2 + 15H^+ + 15Cl$ Chlorobenzene oxidation/ Vinyl chloride reductive dehalogenation	-322.87	-1351	7.75:1

Coupled Vinyl Chloride Oxidation Reactions	ΔG°, (kcal/mole vinyl chloride)	ΔG° _r (kJ/mole vinyl chloride)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$2.5O_2 + C_2H_3Cl \Rightarrow 2CO_2 + H_2O + H^+ + CI$	-288.98	-1209	1.29:1
Vinyl Chloride oxidation /aerobic respiration			
$2NO_3^- + H^+ C_2H_3Cl \Rightarrow 2CO_2 + 2H_2O + Cl^- + N_{2,g}$	-292.44	-1224	2.00:1
Vinyl Chloride oxidation / denitrification			
$5MnO_2 + 9H^+ + C_2H_3Cl \Rightarrow 2CO_2 + 6H_2O + 5Mn^{2+} + Cl$	-289.01	-1209	7.02:1
Vinyl Chloride oxidation / manganese reduction			
$10Fe(OH)_{3,a} + 19H^{+} + C_{0}H_{3}(CH_{3})_{3} \Rightarrow 2CO_{2} + 10Fe^{2+} + 26H_{2}O + CI$	-229.65	-960.9	17.3:1
Vinyl Chloride oxidation / iron reduction			
$1.25SO_4^{2-} + 1.5H^+ + C_2H_3Cl \Rightarrow 2CO_2 + H_2O + 1.25H_2S^0 + CI$	-76.40	-319.7	1.94:1
Vinyl Chloride oxidation / sulfate reduction			
$1.5H_2O + C_2H_3Cl \Rightarrow .75CO_2 + 1.25CH_4 + H^+ + CI$	-44.62	-186.7	0.44:1
Vinyl Chloride oxidation / methanogenesis			
$5C_2Cl_4 + 4H_2O + C_2H_3Cl \Rightarrow 5C_2HCl_3 + 2CO_2 + 6H^+ + 6CI$	-153.39	-641.8	13.4:1
Vinyl Chloride oxidation/ Tetrachloroethylene reductive dehalogenation			
$5C_2HCl_3 + 4H_2O + C_2H_3Cl \Rightarrow 5C_2H_2Cl_2 + 2CO_2 + 6H^+ + 6CI$	-150.54	-629.9	10.6:1
Vinyl Chloride oxidation/ Trichloroethylene reductive dehalogenation			
$5C_2H_2Cl_2 + 4H_2O + C_2H_3Cl \Rightarrow 5C_2H_3Cl + 2CO_2 + 6H^+ + 6Cl$	-126.74	-530.3	7.82:1
Vinyl Chloride oxidation/ cis-Dichloroethylene reductive dehalogenation			

5-19

In the absence of microbial cell production, the stoichiometry of BTEX mineralization to carbon dioxide, water, and nitrogen caused by denitrification is presented in Table 5.3. The average mass ratio of nitrate to total BTEX is approximately 4.9 to 1. This translates to the mineralization of approximately 0.20 mg of BTEX for every 1.0 mg of nitrate consumed. On the basis of a background nitrate/nitrite concentration of 9.1 mg/L, the shallow groundwater at this site has the capacity to assimilate 1.90 mg/L $(1,900 \mu g/L)$ of total BTEX through denitrification.

5.4.1.3 Ferrous Iron

Ferrous iron (Fe²⁺) concentrations were measured in groundwater samples collected in 1995 and 1996. The results are presented in Figure 5.4. Measured concentrations of ferrous iron range from <0.05 mg/L to 16.5 mg/L. The highest concentrations of ferrous iron are found in two of the three sample locations with the highest total BTEX concentrations. The correlation between the area of highest BTEX concentrations and the area of elevated ferrous iron concentrations suggests that ferric iron (Fe³⁺) hydroxide is being reduced to ferrous iron during biodegradation of BTEX compounds. Background levels of ferrous iron were below the detection limit of 0.05 mg/L, while concentrations were as high as 14.8 mg/L (ESMP-16S) and 16.5 mg/L (MW-5) at two of the wells with high BTEX concentrations.

The stoichiometry of BTEX oxidation to carbon dioxide, ferrous iron, and water by iron reduction through anaerobic microbial biodegradation is presented in Table 5.3. On average, 37.5 moles of ferric iron hydroxide are required to metabolize one mole of total BTEX. Conversely, an average of 37.5 moles of ferrous iron are produced for each mole of total BTEX consumed. On a mass basis, this translates to approximately 21.8 mg ferrous iron produced for each 1 mg of total BTEX metabolized. Given a background ferrous iron concentration of less than 0.05 mg/L and a February/March 1995 maximum detected ferrous iron concentration of 14.8 mg/L, the shallow groundwater was expressing the capacity to assimilate approximately 0.68 mg/L (680 μ g/L) of total BTEX through iron reduction. This is a conservative estimate of the assimilative capacity of iron because this calculation is based on observed ferrous iron concentrations and not on the amount of ferric hydroxide available in the aquifer and solid soil matrix. Therefore, iron assimilative capacity could be much higher.

Recent evidence suggests that the reduction of ferric iron to ferrous iron cannot proceed at all without microbial mediation (Lovley and Phillips, 1988; Lovley et al., 1991; Chapelle, 1993). None of the common organic compounds found in low-temperature, neutral, reducing groundwater could reduce ferric oxyhydroxides to ferrous iron under sterile laboratory conditions (Lovley et al., 1991). This means that the reduction of ferric iron requires microbial mediation by microorganisms with the appropriate enzymatic capabilities. Because the reduction of ferric iron cannot proceed without microbial intervention, the elevated concentrations of ferrous iron that were measured in the contaminated groundwater at the site are very strong indicators of microbial activity.

5-21

5.4.1.4 Sulfate

Concentrations of sulfate were measured in groundwater samples collected in 1995. Sulfate concentrations range from 6.57 mg/l to 938 mg/l. Figure 5.5 is an isopleth map showing the areal extent of sulfate in groundwater during different 1995 sampling events. The lowest measured concentration of sulfate occurs at MW-5, which is the location where free product has been measured both historically and in 1995. A depleted sulfate concentration also occurs at ESMP-13S, which contained the highest concentration of total BTEX in 1995. This high background sulfate concentration represents a significant potential for sulfate reduction as a pathway for biodegradation of the BTEX measured at this location. The correspondence between depleted sulfate and high BTEX at MW-5 and ESMP-13S is an indication the anaerobic biodegradation of BTEX compounds is occurring in the shallow groundwater through the microbially mediated process of sulfate reduction.

The stoichiometry of BTEX mineralization to carbon dioxide, sulfur, and water by sulfate reduction through anaerobic microbial biodegradation is presented in Table 5.3. The average mass ratio of sulfate to total BTEX is approximately 4.7 to 1. This translates to the mineralization of approximately 0.21 mg of total BTEX for every 1.0 mg of sulfate consumed. Assuming a background sulfate concentration of 1443 mg/L, as measured at ESMP-4S in February/March 1995, a conservative estimate of the assimilative capacity of the shallow groundwater at this site is 28.86 mg/L (28,860 μ g/L) of total BTEX through sulfate reduction. Because biomass accumulation is not considered, the actual assimilative capacity attributable to sulfate could be somewhat higher.

5.4.1.5 Methane

Methane concentrations were measured in groundwater samples collected in 1995 and 1996. The results are presented in Figure 5.6. Methane concentrations range from below the quantification limit of 0.001 mg/l to 19.2 mg/l. Elevated concentrations of methane correspond well with the relatively high concentrations of total BTEX measured at MW-5, ESMP-13S, and ESMP-16S. These relations are a strong indication that anaerobic biodegradation of BTEX compounds is occurring via methanogenesis at the site. This is consistent with the electron acceptor data discussed above, with a lack of DO throughout the area, and the correlation of high BTEX concentrations with depleted nitrate/nitrite, elevated ferrous iron and methane, and reduced sulfate.

The stoichiometry of BTEX oxidation to carbon dioxide and methane by methanogenesis is presented in Table 5.3. On average, approximately 1 mg of total BTEX is degraded for every 0.78 mg of methane produced. Given a February/March 1995 detected methane concentration of 7.83 mg/L at ESMP-13S, the shallow groundwater has the expressed capacity to assimilate approximately 10.0 mg/L (10,000 μ g/L) of total BTEX through methanogenesis. This is a conservative estimate

5-23

of the assimilative capacity through methanogenesis because these calculations are based on observed methane concentrations and not on the amount of carbon dioxide (the electron acceptor in methanogenesis) available in the aquifer. As methanogenesis produces more carbon dioxide than it consumes, an unlimited supply of carbon dioxide is theoretically available once the process of methanogenesis has been initiated. Therefore, methanogenesis is limited by the rate of reaction rather than the source of electron receptors. This estimate of assimilative capacity also conservatively assumes that all of the produced methane remains in solution; however, this assumption is not realistic as the solubility limit of methane in water is approached.

5.4.1.6 Reduction/Oxidation Potential

Redox potentials were measured at groundwater monitoring wells and points in February 1995. The results are summarized in Table 5.2. Redox potential is a measure of the relative tendency of a solution to accept or transfer electrons. redox potential of a groundwater system depends on which electron acceptors are being reduced by microbes during BTEX oxidation. The redox potential at the site ranges from 212 millivolts (mV) to -136 mV. The distribution of redox potentials is illustrated on Figure 5.7. Locations with high BTEX concentrations, low sulfate and nitrate/nitrite concentrations, and elevated ferrous iron and methane concentrations correspond with low redox potential. Several locations where BTEX was not detected but that also have low redox potential are directly downgradient of the BTEX plume: Comparison of these locations with previously discussed figures indicates a correlation between the low redox measurement and at least one of the chemical indicators discussed above. Redox potential is below -100 mV at monitoring wells and monitoring points at the site where total BTEX concentrations are greatest.

5.4.1.7 Volatile Fatty Acids

At monitoring points ESMP-13S and ESMP-13D groundwater samples were collected in February/March 1995 for volatile fatty acid analysis by USEPA scientists. This test is a gas chromatograph/mass spectrometry (GC/MS) method wherein the samples are compared to a standard mixture containing a total of 58 phenols, aliphatic acids, and aromatic acids. Compounds in the standard mixture are generally considered to result from microbial processes that break down petroleum hydrocarbons. USEPA scientists reported that the sample from ESMP-13S contained 14, and the sample from ESMP-13D contained 6 of the compounds in the standard mixture. ESMP-13S is the location with the consistently highest reported total BTEX concentration. ESMP-13D is adjacent to ESMP-13S but deeper; both monitoring points are generally downgradient from MW-5 where free product is encountered. The presence of these volatile fatty acid compounds is another indication that biodegradation of BTEX compounds is occurring at the site. Laboratory results for volatile fatty acids are included in Appendix D.

5.4.1.8 Alkalinity

Total alkalinity (as calcium carbonate) was measured in groundwater samples collected in 1995 and 1996. Alkalinity is a measure of the ability of groundwater to buffer changes in pH caused by the addition of biologically generated acids. Total alkalinity at the site is in the moderate range for groundwater, varying from 212 mg/L (ESMP-7D) to 426 mg/L (ESMP-10D). This amount of alkalinity should be sufficient to buffer potential changes in pH caused by biologically mediated BTEX oxidation reactions.

5.4.1.9 pH

pH was measured in groundwater samples collected in 1995 and 1996. The pH of a solution is the negative logarithm of the hydrogen ion concentration [H⁺]. Groundwater pH measured at the site ranges from 6.9 to 8.2. This range of pH is within the optimal range for BTEX-degrading microbes.

5.4.1.10 Temperature

Groundwater temperature was measured at groundwater monitoring points and monitoring wells in 1995 and 1996. Temperature affects the types and growth rates of bacteria that can be supported in the groundwater environment, with higher temperatures generally resulting in higher growth rates. Temperatures in the shallow aquifer varied from 8.2 degrees Celsius (°C) to 15.3°C. These are moderate temperatures for shallow groundwater, suggesting that bacterial growth rates should not be inhibited.

5.4.1.11 Discussion

Numerous laboratory and field studies have shown that hydrocarbon-degrading bacteria can participate in the degradation of many of the chemical components of jet fuel and gasoline, including the BTEX compounds (e.g., Jamison et al., 1975; Atlas, 1981, 1984, 1988; Gibson and Subramanian, 1984; Reinhard et al., 1984; Young, 1984; Bartha, 1986; Wilson et al., 1986, 1987, and 1990; Barker et al., 1987; Baedecker et al., 1988; Lee, 1988; Chiang et al., 1989; Grbic-Galic, 1989 and 1990; Cozzarelli et al., 1990; Leahy and Colewell, 1990; Altenschmidt and Fuchs, 1991; Alvarez and Vogel, 1991; Baedecker and Cozzarelli, 1991; Ball et al., 1991; Bauman, 1991; Borden, 1991; Brown et al., 1991; Edwards et al., 1991 and 1992; Evans et al., 1991a and 1991b; Haag et al., 1991; Hutchins and Wilson, 1991; Hutchins et al., 1991a and 1991b; Beller et al., 1992; Bouwer, 1992; Edwards and Grbic-Galic, 1992; Thierrin et al., 1992; Malone et al., 1993; Davis et al., 1994). Biodegradation of fuel hydrocarbons can occur when an indigenous population of hydrocarbon-degrading microorganisms is present in the aquifer and sufficient concentrations of electron acceptors and nutrients, including fuel hydrocarbons, are available to these organisms.

Comparison of the distribution of BTEX, electron acceptor, and biodegradation byproducts at the site provides strong qualitative evidence of biodegradation of BTEX compounds. The distributions of these suggest that five electron acceptors are active in the biodegradation of BTEX compounds at the site: DO, ferric iron (indicated by the presence of ferrous iron), sulfate, nitrate, and carbon dioxide (indicated by the presence of methane). Typically, zones of elevated methane concentration, depleted sulfate concentration, depleted nitrate concentration, and elevated ferrous iron concentration coincide with the location of the BTEX plume.

5.4.1.12 Expressed Assimilative Capacity

The data presented in the preceding sections suggest that mineralization of BTEX compounds is occurring through the microbially mediated processes of aerobic respiration, iron reduction, sulfate reduction, nitrate reduction, and methanogenesis. On the basis of the stoichiometry presented in Table 5.3, the expressed BTEX assimilative capacity of groundwater at the HWSA during several different sampling events is presented in Table 5.4. The changes in the assimilative capacity over time suggest that biodegradation reactions are progressing, and that residual hydrocarbon contamination is being mineralized.

A closed system with two liters of water can be used to help visualize the physical meaning of assimilative capacity. Assume that the first liter contains no fuel hydrocarbons, but it contains fuel degrading microorganisms and has an assimilative capacity of exactly "x"µg of fuel hydrocarbons. The second liter has no assimilative capacity; however, it contains fuel hydrocarbons. As long as these two liters of water are kept separate, biodegradation of the fuel hydrocarbons will not occur. If these two liters are combined in a closed system, biodegradation will commence and continue until the fuel hydrocarbons are depleted, the electron acceptors are depleted, or the environment becomes acutely toxic to the fuel degrading microorganisms. Assuming a non-lethal environment, if fewer than "x" µg of fuel hydrocarbons were in the second liter, all of the fuel hydrocarbons will eventually degrade given a sufficient time; likewise, if greater than "x" µg of fuel hydrocarbons were in the second liter of water, only "x" µg of fuel hydrocarbons would ultimately degrade.

The groundwater beneath a site is an open system, which continually receives additional electron receptors from the flow of the aquifer and the percolation of precipitation. This means that the assimilative capacity is not a fixed entity as it is in a closed system, and therefore cannot be compared directly to contaminant concentration in the groundwater. Rather, the expressed assimilative capacity of groundwater is intended to serve as a qualitative tool. Although the expressed assimilative capacity at this site is greater than the highest measured total BTEX concentration, the fate of BTEX in groundwater and the potential impact to receptors is dependent on the relationship between the kinetics of biodegradation and the solute transport velocity (Chappelle, 1994). This significant expressed assimilative capacity is a strong indicator

5.4

ESTIMATE OF EXPRESSED ASSIMILATIVE CAPACITY OF SATURATED SOIL AND GROUNDWATER AMENDED CLOSURE/POST-CLOSURE PLAN HAZARDOUS WASTE STORAGE AREA RICKENBACKER ANGB, OHIO

BTEX	Assimilative	Capacity ^b	(µg/L)
Utilized	Electron Acceptor	Mass	(μg/L)
	Background	Concentration ^{a/}	(ηg/L)
			Electron Acceptor

	February/ March 1995	arch 1995	
Dissolved Oxygen	3,900	3,900	1,248
Nitrate	9,100	9,050	1,901
Ferrous iron	50	14,750	219
Sulfate	144,000	137,430	28,860
Methane ^{c/}	1	7,829	10,005
TCE	9,580	9,579	1,533
DCE ^{old}	920	4,145	219
		Total Assimilative Capacity	44,443
5-:		Maximum BTEX	696
29			
	August 1995	1995	

9			
	August 1995	1995	
Dissolved Oxygen	4,700		1,376
Nitrate	1,700	1,650	347
Ferrous iron	240	2,700	124
Sulfate	227,000	220,910	46,391
Methane ^{c/}	0	19,163	24,489
TCE ^{4/}	770	770	123
DCE ^{e/d/}	0	7,730	409
		Total Assimilative Capacity	73,259
		Maximum BTEX	430

	Background	Electron Acceptor	Assimilative
Electron Acceptor	Concentration ^w (μg/L)	Mass (µg/L)	Capacity ^{b/} (μg/L)
	December 1995	r 1995	
Dissolved Oxygen	5,800	5,300	1,696
Nitrate	2,900	2,900	609
Ferrous iron ^{c/}	20	2,520	116
Sulfate	290,000	288,200	60,522
Methane ^{c/}	0	15,360	19,629
LCE^{q_j}	180	180	29
DCE^{cdd}	28	4,472	236
		Total Assimilative Capacity	82,837
		Maximum BTEX	410

demand.

^{2/} Background concentrations determined using data from wells MW-11 and ESMP-4S.

b/ Calculated based on the ratio of the total mass of electron acceptor required to oxidize a given mass of total benzene, toluene, ethylbenzene, and xylenes (BTEX), assuming no other source of oxidizing

of This represents the reduced form of the electron acceptor. Assimilative capacity is expressed only as an estimate.

d Chlorinated VOCs can be used as alternate electron acceptors in the oxidation of BTEX compounds. Background concentrations for VOC were determined from MW-6.

that biodegradation is occurring; however, it is not an indication that biodegradation will proceed to completion before potential downgradient receptors are impacted.

At the HWSA, the groundwater appears to have sufficient assimilative capacity to degrade the observed dissolved BTEX and limit plume migration. However, a small but unknown quantity of LNAPL is available to continually replenish dissolved BTEX concentrations. As the LNAPL is body is highly weathered and believed to be of very limited extent, and the configuration of the groundwater surface suggests that dissolved BTEX will be inhibited from migrating offsite, natural attenuation of BTEX in groundwater is considered to be sufficient to remediate the low concentrations of BTEX observed at the site.

5.4.2 Degradation of Chlorinated Solvents

Chlorinated solvents can be transformed, directly or indirectly, by biological processes (e.g., Bouwer et al., 1981; Wilson and Wilson, 1985; Miller and Guengerich, 1982; Nelson et al., 1986; Bouwer and Wright, 1988; Little et al., 1988; Mayer et al., 1988; Arciero et al., 1989; Cline and Delfino, 1989; Freedman and Gossett, 1989; Folsom et al., 1990; Harker and Kim, 1990; Alvarez-Cohen and Mccarty, 1991a, 1991b; Destefano et al., 1991; Henry, 1991; Mccarty et al., 1992; Hartmans and de Bont, 1992; Mccarty and Semprini, 1994; Vogel, 1994). Biodegradation of chlorinated aliphatic hydrocarbons (CAHs), while similar in principle to biodegradation of BTEX, typically results from a more complex series of processes.

Whereas BTEX is biodegraded in essentially one step by acting as an electron donor/carbon source, CAHs may undergo several types of biodegradation involving several steps. CAHS may undergo biodegradation through three different pathways: use as an electron acceptor, use as an electron donor, or cometabolism, which is degradation resulting from exposure to a catalytic enzyme fortuitously produced during an unrelated process. At a given site, one or all of these processes may be operating, although at many sites the use of CAHs as electron acceptors appears to be the most likely.

In a pristine aquifer, native organic carbon is utilized as an electron donor and DO is utilized first as the prime electron acceptor. Where anthropogenic carbon (e.g., fuel hydrocarbons or low-molecular-weight CAHs) is present, it also will be utilized as an electron donor. After the DO is consumed, anaerobic microorganisms typically use native electron acceptors (as available) in the following order of preference: nitrate, ferric iron oxyhydroxide, sulfate, and finally carbon dioxide. Evaluation of the distribution of these electron acceptors can provide evidence of where and how CAH biodegradation is occurring. In addition, because CAHs may be used as electron acceptors or electron donors (in competition with other acceptors or donors), isopleth maps showing the distribution of these compounds will also provide evidence on the types of biodegradation processes acting at a site.

As with BTEX, the driving force behind redox reactions resulting in CAH degradation is electron transfer. Although thermodynamically favorable, most of the reactions involved in CAH reduction and oxidation cannot proceed abiotically because of the lack of activation energy. Microorganisms are capable of providing the necessary activation energy; however, they will facilitate only those reduction/oxidation (redox) reactions that have a net yield of energy (i.e. $\Delta G^{\circ}_{r} < 0$). A more complete description of the main types of biodegradation reactions affecting CAHs is presented in the following subsections.

5.4.2.1 Electron Acceptor Reactions (Reductive Dehalogenation)

Under anaerobic conditions, biodegradation of chlorinated solvents usually proceeds through a process called reductive dehalogenation. During this process, the halogenated hydrocarbon is used as an electron acceptor, not as a source of carbon, and a halogen atom is removed and replaced with a hydrogen atom. In general, reductive dehalogenation occurs by sequential dehalogenation from TCE to DCE to vinyl chloride to ethene. Depending upon environmental conditions, this sequence may be interrupted, with other processes then acting upon the products. During reductive dehalogenation, all three isomers of DCE can theoretically be produced; however, Bouwer (1994) reports that under the influence of biodegradation, *cis*-1,2-DCE is a more common intermediate than *trans*-1,2-DCE, and that 1,1-DCE is the least prevalent intermediate of the three DCE isomers. Reductive dehalogenation of chlorinated solvent compounds is associated with the accumulation of daughter products and an increase in chloride.

Reductive dehalogenation affects each of the chlorinated ethenes differently. Of these compounds, PCE is the most susceptible to reductive dehalogenation because it is the most oxidized. Conversely, vinyl chloride is the least susceptible to reductive dehalogenation because it is the least oxidized of these compounds. The rate of reductive dehalogenation also has been observed to decrease as the degree of chlorination decreases (Vogel and Mccarty, 1985; Bouwer, 1994). Murray and Richardson (1993) have postulated that this rate decrease may explain the accumulation of vinyl chloride in TCE plumes that are undergoing reductive dehalogenation.

In addition to being affected by the degree of chlorination of the CAH, reductive dehalogenation can also be controlled by the redox conditions of the site groundwater system. In general, reductive dehalogenation has been demonstrated under anaerobic nitrate- and sulfate-reducing conditions, but the most rapid biodegradation rates, affecting the widest range of CAHs, occur under methanogenic conditions (Bouwer, 1994). Dehalogenation of PCE and TCE to DCE can proceed under mildly reducing conditions such as nitrate reduction or iron (III) reduction (Vogel et al., 1987), while the transformation of DCE to vinyl chloride, or the transformation from vinyl chloride to ethene requires more strongly reducing conditions (Freedman and Gossett, 1989; Destefano et al., 1991; Bebrunin et al., 1992).

Because CAH compounds are used as electron acceptors, there must be an appropriate source of carbon for microbial growth in order for reductive dehalogenation to occur (Bouwer, 1994). Potential carbon sources can include low-molecular-weight compounds (e.g., lactate, acetate, methanol, or glucose) present in natural organic matter, or fuel hydrocarbons such as BTEX.

5.4.2.2 Electron Donor Reactions

Under aerobic conditions some CAH compounds can be utilized as the primary substrate (i.e., electron donor) in biologically mediated redox reactions (Mccarty and Semprini, 1994). In this type of reaction, the facilitating microorganism obtains energy and organic carbon from the degraded CAH. In contrast to reactions in which the CAH is used as an electron acceptor, only the least oxidized CAHs can be utilized as electron donors in biologically mediated redox reactions. Davis and Carpenter (1990) describe the aerobic oxidation of vinyl chloride in groundwater. Mccarty and Semprini (1994) describe investigations in which vinyl chloride was shown to serve as a primary These authors also document that dichloromethane has the potential to function as a primary substrate under either aerobic or anaerobic environments. In addition, Bradley and Chapelle (1996) show evidence of oxidation of vinyl chloride under iron-reducing conditions so long as there is sufficient bioavailable iron (III). Murray and Richardson (1993) write that microorganisms are generally believed to be incapable of growth using TCE and PCE. Aerobic metabolism of vinyl chloride may be characterized by a loss of vinyl chloride mass, a decreasing molar ratio of vinyl chloride to other CAH compounds, and the presence of chloromethane.

5.4.2.3 Cometabolism

When a CAH is biodegraded through cometabolism, it serves as neither an electron acceptor nor a primary substrate in a biologically mediated redox reaction. Instead, the degradation of the CAH is catalyzed by an enzyme or cofactor that is fortuitously produced by organisms for other purposes. The organism receives no known benefit from the degradation of the CAH; rather the cometabolic degradation of the CAH may in fact be harmful to the microorganism responsible for the production of the enzyme or cofactor (Mccarty and Semprini, 1994).

Cometabolism is best documented in aerobic environments, although it potentially could occur under anaerobic conditions. It has been reported that under aerobic conditions chlorinated ethenes, with the exception of PCE, are susceptible to cometabolic degradation (Murray and Richardson, 1993; Vogel, 1994; Mccarty and Semprini, 1994). Vogel (1994) further elaborates that the cometabolism rate increases as the degree of dehalogenation decreases.

In the cometabolic process, TCE is indirectly transformed by bacteria as they use BTEX or another substrate to meet their energy requirements. Therefore, TCE does not enhance the degradation of BTEX or other carbon sources, nor will its cometabolism interfere with the use of electron acceptors involved in the oxidation of

those carbon sources. It is likely that depletion of suitable substrates (BTEX or other organic carbon sources) may limit cometabolism of CAHs.

5.4.2.4 Discussion

At the HWSA, the principal BTEX degradation processes include methanogenesis, iron reduction, sulfate reduction, and nitrate/nitrite reduction. The occurrence of these processes indicates that environmental conditions at the HWSA site may be suitable to support rapid reductive dehalogenation of highly chlorinated compounds such as TCE and DCE. However, the accumulation of vinyl chloride is possible under these conditions, because the rate of anaerobic dechlorination of vinyl chloride can slow dramatically.

Previous investigations at the HWSA have documented chlorinated solvent contamination consisting of TCE, 1,1-DCE, trans-1,2-DCE, VC, and 1,1,1-TCA. TCE, cis- and trans-1,2-DCE, 1,1-DCE, 1,2-DCA, vinyl chloride, and ethene were measured in groundwater samples collected from site monitoring wells and monitoring points in 1995 and 1996. Results are presented in Section 4. On the basis of the widespread use of TCE as a solvent in metal degreasing, the limited use of the other chlorinated compounds in non-industrial applications, and the presence of these compounds together on-site, it is probable that highly chlorinated solvents such as TCE are undergoing anaerobic biodegradation via reductive dehalogenation to less chlorinated solvents (DCE and vinyl chloride).

Equally as important, vinyl chloride is apparently undergoing a final transformation to ethene. The highest concentration of ethene was detected in the groundwater sample from monitoring point ESMP-17S. This groundwater sample also contained the highest concentration of vinyl chloride. Ethene was also detected at two other monitoring points (ESMP-13S and ESMP-4S), both of which contained measurable concentrations of chlorinated VOCs. These data suggest that vinyl chloride is being effectively mineralized to ethene, rather than accumulating in the subsurface. However, additional data downgradient from ESMP-17S are necessary to assess the effectiveness of natural chemical attenuation processes at bringing about complete dechlorination to ethene. Installation of additional monitoring points is recommended as part of closure activities to confirm the extent of dissolved contamination near ESMP-17 and the impact of natural chemical attenuation processes on vinyl chloride.

Applicable interim status requirements described in OAC rule 3745-66-13(b)(2) will be maintained during closure activities to prevent threats to human health and the environment. These applicable requirements include the following:

Maintenance of site security through the upkeep of the existing fence, prevention
of unauthorized entry, and preventing unnecessary physical contact with or
disturbance of contaminated media;

- Training personnel involved with the site in proper hazardous waste management procedures (see Section 7);
- Maintaining communication regarding the site with local police, fire, and spill response authorities; and
- Continued groundwater monitoring to verify continued decontamination and interruption of potential exposure pathways.

In the event that natural chemical attenuation processes and/or exposure controls are determined insufficient to achieve acceptable levels in groundwater, implementation of a groundwater oxygenation system at the leading edge of the dissolved chlorinated plume could be considered. The following section generally describes the basic elements of a groundwater oxygenation system (such as air sparging).

5.5 ENGINEERED GROUNDWATER REMEDIATION

If natural chemical attenuation processes are determined to be insufficient to transform residual vinyl chloride to ethene, oxygenation of the groundwater to promote degradation and volatilization could be considered. Oxygenation of groundwater could be completed using either a passive chemical oxidant system or an active system such as air sparging. The objective of both approaches is to introduce oxygen into the contaminated aquifer material and groundwater. Treatment may occur either through volatilization or through biodegradation stimulated by adding oxygen. An increase in DO in groundwater would promote rapid aerobic oxidation of vinyl chloride.

Figure 5.8 presents a conceptual layout of a sparging system. Although sparging has been applied at numerous sites, the current understanding of sparging performance and effectiveness is limited. One potential concern is the tendency for injected or introduced oxygen to form channels in the aquifer. When one of these channels intercepts a monitoring well, the air then bubbles up through the well, stripping contaminants and oxygenating the well water. As a result, the well quickly appears clean, although much of the surrounding aquifer may remain untreated.

Assuming the leading edge of the dissolved chlorinated plume is about 80 feet in lateral extent, approximately 10 wells may be needed to deliver chemical oxidants such as peroxide or oxygen to the subsurface. A pilot study of the potential feasibility of using either passive or engineered oxygenation would need to be completed if additional site characterization data suggest that natural chemical attenuation processes need to be supplemented.

5.6 CONTINGENCY PLAN

Should the proposed remedial/closure approach fail to retard dissolved contaminant migration and/or achieve the long-term closure objectives for this site, there should be no significant impact on the land use plans for the site. No

K:\AFCEE\722450\RCKBCKR\96DN0909, 10/03/96 at 15:26

non-industrial land use has been proposed; the site will soon become part of taxiway to be constructed by the Portland Authority. Exposure controls will have to maintained to prevent potential receptors (e.g., onsite workers) from coming into direct contact with impacted media.

Contingency actions would only be necessary if potential receptors may be subject to unacceptable exposure and/or to expedite attainment of long-term closure objectives. Contingency actions would only need to be considered for implementation if the following events occurred:

- The proposed soil remediation approach was not sufficient to reduce the risk associated with direct and indirect exposure to onsite soils, accounting for the long-term use of the land; or
- The results of at least two (2) consecutive groundwater assessment/monitoring events indicated that site-related contaminants were migrating beyond site boundaries at concentrations that could pose a potential risk to downgradient receptors; or
- The results of at least two (2) consecutive groundwater assessment/monitoring events indicated that biodegradation of contaminants are not proceeding at rates sufficient to either limit mobility or minimize mass/toxicity; and
- The proposed engineered groundwater approach (e.g., sparging) was not sufficient to promote contaminant mass/toxicity reductions or limit mobility.

If any of these events occur, an additional assessment event will be conducted to determine the existing extent of contamination and to locate the highest zone of contamination. Once again, the failure of the proposed remedial/closure approach will not impact the current or proposed uses of the HWSA, unless groundwater must be extracted for long-term potable uses or saturated soils must be excavated (without appropriate personal protective equipment).

5.7 COVER ALTERNATIVES

The previous sections describe the closure activities deemed appropriate to pursue a risk-based closure of the HWSA. However, if additional site data such as pilot test results suggest that these approaches will not achieve the desired level of risk reduction at the site, possible contingency actions could include installation of a cover prior to taxiway construction and limited groundwater extraction and treatment. This level of remediation would be deemed excessive by **mostmore** environmental professionals given the levels of contamination encountered at this site and the current and future uses of the land and groundwater. However, for completeness, the following sections generally prescribe the two types of covers that could be considered for implementation at this site in the event that additional action is necessary to protect potential receptors.

Responsibility for closure of the former HWSA was transferred on September 30, 1994 to the AFBCA. Large portions of the original base have been transferred to the Rickenbacker Port Authority. A long-term lease is currently being negotiated for all of this property, including the area immediately surrounding the former HWSA. lease is anticipated to be signed by the conclusion of calendar year 19976. Future land use of the former HWSA area as an aircraft taxiway/parking area has been identified in the land reuse plan. Additionally, the lease specifies excavation restrictions at the HWSA site. Redevelopment of the area and construction of additional infrastructure is constrained by the available funding and the schedule designated by the Rickenbacker Port Authority. Therefore, any contingency closure activities such as the construction of a long-term engineered cover must be performed in conjunction conduction with the future land use of the site. Because Rickenbacker Port Authority has not yet scheduled redevelopment in this area, the detailed design and construction of a compatible engineered cover must be considered only as long-term contingency actions. The area that may require coverage with low-permeability materials would extend to cover all site-related contaminated soils to the existing fenceline.

Any contingency cover construction willmay need to meet the specifications of an alternative hazardous waste unit cover approved by the Ohio EPA. Because this section only conceptually describes potential contingency actions involving covers, no detailed design information is provided. Should such a cover be required, the design of all cover components would be subject to approval by the Ohio EPA. One possible contingency cover approach, called the taxiway cover herein, would tie directly into a proposed airport taxiway and would be constructed of compatible materials and grade to match the taxiway, with Ohio EPA approval of the cover specifications. The taxiway cover also would include a subsurface drainage system and a secondary hydraulic barrier to minimize the potential for surface water to infiltrate contaminated soils below the cover.

A second possible contingency cover approach would involve capping the affected area with an asphalt cover. This approach is similar to the taxiway cover with the exception that asphalt would be used as the primary hydraulic barrier instead of concrete. This approach may be suitable if contingency actions are required in advance of construction of the proposed airport taxiway. In this way, the asphalt cover could be easily converted to the taxiway cover in the future, if necessary.

The following sections present a general rationale for selection, the materials required for implementation, the primary functional components, and the installation requirements for each of the contingency covers. No detailed design elements have been included, because closure is proposed to be implemented using the methods described previously.

5.76.1 Taxiway Cover

5.76.1.1 Basis for Design

The taxiway cover may be a suitable contingency action to implement at the former HWSA based on the most probable future land use of site as an airport taxiway as indicated by representatives of the Rickenbacker Port Authority. The proposed concrete cover over the affected site area would be designed and constructed to tie into the remainder of the proposed airport taxiway, creating a continuous concrete surface that can be used for aircraft operations. A typical landfill-type cover (i.e., a raised mound with surface vegetation) over the affected area was not selected because of the relatively small area (approximately 16,000 square feet, or 0.3 acre) requiring cover and because it would break up the continuity of the taxiway.

The effectiveness of the contingency taxiway cover is expected to be high. The permeability of mature, good-quality concrete is typically on the order of 1 x 10⁻¹⁰ cm/sec (Portland Cement Association, 1990). The measured hydraulic conductivity of quality concrete is critically affected by the water-cement ration of the mix, and is expected to range from 1 x 10⁻¹⁰ cm/sec to 4 x 10⁻⁹ cm/sec for water-cement ratios of 0.4 to 0.7, respectively. In comparison, Resource Conservation and Recovery Act [RCRA] cover requirements standards require a minimum of at least a 24-inch-thick layer of compacted clay soil with a maximum hydraulic conductivity of 1 x 10⁻⁷ cm/sec, combined with a geomembrane that is at least 20-mils thick.

The concrete mix specification and QA/QC of cover construction will be fully developed in the detailed design of any contingency cover, which will then be submitted to Ohio EPA as part of an amended closure plan. The design specifications will require demonstrating that the concrete layer is equivalent to the RCRA standard of 24 inches of compacted clay with a permeability not exceeding 1×10^{-7} cm/sec. Therefore, in the event that such a contingency cover is required, the taxiway cover specifications would likely describe a minimum of 14 inches of concrete with a hydraulic conductivity notno exceeding 1×10^{-8} cm/sec. This would be substantially more protective than the RCRA equivalent of 24 inches of material with a permeability not exceeding 1×10^{-7} cm/sec.

Because of the extreme loading conditions expected to be placed on the airport taxiway, the concrete mix would be designed to have high strength and low shrinkage characteristics. A minimum concrete thickness of 14 inches is anticipated for structural compatibility with the taxiwayeontingency cover. The design of the taxiway cover would ensure that the number of control joints over the affected area would be minimized, and that the necessary joints would be placed strategically to reduce the potential for concrete cracking. All of the control joints would be constructed with backer rod and caulking sealant to prevent water infiltration. In order to control the limited quantity of water that may infiltrate through the concrete cover, a subsurface drainage system and underlying secondary hydraulic barrier would be installed. These

components of the taxiway cover would ensure that surface water infiltration into the contaminated subgrade soils would be minimized. Because water would be collected in the subsurface drain system, the quantity of infiltration, hence the effectiveness of the concrete cover, could be monitored.

Periodic inspections and possibly maintenance of the cover would be required. However, because of the small cover area, these activities could be accomplished with relative ease. Maintenance of the cover may involve sealing of joints and possibly replacement of part of the concrete surfacing. Compaction of the subgrade soils prior to placement of the subsurface drain and the concrete cover would limit settlement-related maintenance requirements. Proper functioning of the subsurface drain would limit the impact of freeze-thaw effects on the cover.

Other benefits of the taxiway cover include limited cut and fill activities, minimal to no offsite waste disposal requirements, and ease of construction. In comparison to a standard RCRA cover, the quantity of fill and the grading requirements for the taxiway cover would be negligible. Because construction methods and final surface grade elevations already would be established for the remainder of the airport taxiway, installation of the concrete cover would be significantly easier than installation of a standard RCRA cover.

5.76.1.2 Cover Materials

The layers for the taxiway cover include the same materials to be used for the remainder of the airport taxiway, with the addition of materials used to control subsurface drainage. The materials included in the cross-section of the proposed taxiway cover are presented on Figure 5.9 and include the following, listed in order of placement (i.e., from bottom to top):

- Geomembrane (flexible, impermeable membrane liner),
- Geonet (fabricated drainage net),
- Geotextile (filter fabric),
- Base course (aggregate), and
- Concrete.

The uppermost layer would consist of at least 14 inches of concrete. This layer would act as a hydraulic barrier, restricting precipitation infiltration from reaching the

TOE DRAIN AND DRAINAGE SWALE DETAIL

NOT TO SCALE

FIGURE 5.9

DETAILS OF CONTINGENCY TAXIWAY COVER

HWSA Amended Closure/Post-Closure Plan Rickenbacker ANGB, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

subsurface soils. A minimum of 14 inches of concrete will be placed with hydraulic conductivity not exceeding 1 x 10⁻⁸ cm/sec. To meet this specification, a maximum water-cement ratio will be met in the concrete mix (as specified in the detailed design for the cover). Verification of concrete hydraulic conductivity will be performed by collection of representative concrete core samples, and laboratory testing using astm d-5084 (measurement of hydraulic conductivity of saturated porous materials using a flexible wall perimeter). At least two representative core samples will also be collected across the completed control joints for laboratory testing of hydraulic conductivity using ASTM D-5084. The specified concrete mix will be consistent with the materials placed for the remainder of the proposed taxiway.

Prior to placement of the cover materials, the existing ground surface will be compacted to provide a stable base for the overlying cover. The finished subgrade surface will be smooth and evenly graded, and will be free of protruding particles or objects that may be unsuitable for installation of the overlying geomembrane. Consideration would be given to the overall surface drainage and taxiway grading plan. The minimum 1-percent slope of the subgrade would be established to allow for adequate functioning of the subsurface drainage system. This slope may be modified based on the required design capacity of the subsurface drain.

The top two layers of the taxiway cover (i.e., base course and concrete) would match the design specifications of the remainder of the proposed airport taxiway. Because the final taxiway design has not yet been specified, the discussions presented for these two layers are brief. Details regarding the design of the airport taxiway are expected to be presented by the Rickenbacker Port Authority by spring 1996. The remaining layers of the taxiway cover alternativecontingency option are described with respect to the materials used and their primary function in the following paragraphs.

Geomembrane

A geomembrane, or flexible membrane liner (FML), would be placed immediately above the graded, compacted surface soils and would function as a hydraulic barrier, restricting infiltration from reaching the underlying contaminated soils. The geomembrane would be specified to meet the Ohio EPA regulatory requirements for geosynthetic cover materials (i.e., 60-mil, linear-low-density polyethylene). In addition, the specifications for the geomembrane would be based on the strength requirements for construction-related and long-term loading conditions. Neither chemical compatibility nor settlement-related stresses at the site are expected to impact the design life of the geomembrane.

Geonet

Above the geomembrane, a geonet fabric would be placed to provide a drainage layer that promotes lateral transport of water to the downgradient edges of the affected area. This drainage layer would reduce the potential for buildup of hydraulic head on

the geomembrane, thereby minimizing the potential for downward transport of water into the contaminated subsurface soils. The geonet would be specified based on the estimated infiltration rate through the concrete and the slope of the graded surface on which the geomembrane and the overlying layers would be placed. Because of the relatively small area that requires lateral drainage, procurement and installation of the geonet should be less expensive in comparison to a sand drainage layer. In addition, geonet is proven to function as well as sand and is considered easier to install. Specification of the geonet would consider a reduced-flow capacity attributable to vertical loading from the overlying cover materials.

Geotextile

A geotextile would be placed above the geonet and below the base course layer in order to prevent fine-grained soil particles from migrating into the geonet. This would prevent clogging of the geonet, allowing it to maintain functionality over the design lifetime of the cover. The combination of the geotextile and the geonet would serve as a protective layer for the geomembrane, which otherwise could be subject to potential puncturing from the overlying base course materials. The geotextile would be specified for the final design on the basis of the particle-size gradation of the overlying base course and the strength requirements required by construction-related and long-term loading conditions. Specification of the geotextile would ensure adequate permeability and soil-filtering characteristics.

Base Course

Immediately below the concrete, a minimum of 7 inches of compacted granular base course would be placed. This layer would provide a stable foundation for the concrete surface, and also would act as a drain to move water away from the concrete to minimize the potential for freeze-thaw effects. The base course materials would be consistent with the stabilized subbase materials to be used for the remainder of the airport taxiway.

Concrete

The uppermost layer would consist of 14 inches of reinforced concrete. This layer would act as a hydraulic barrier, restricting precipitation infiltration from reaching the subsurface soils.

5.76.1.3 Subsurface Drainage System

Infiltration through the concrete layer of the proposed cover is expected to be minimal. However, small amounts of water may infiltrate through construction joints or may be transported laterally from surrounding areas. The concrete-mix specification and control joint design will be fully developed in the detailed design of this contingency cover, as needed. In order to control these waters for purposes of

minimizing hydraulic head buildup on the geomembrane and the effects of freeze-thaw, a subsurface drainage system would be incorporated into the cover design.

The subsurface drainage system, consisting of geotextile and geonet and perimeter toe drains, would be designed to direct any infiltrating water to the downgradient edges of the cover system, where it would be conveyed by toe drains to underground piping for discharge into the nearest stormwater sewer or drainage channel. Any permitting requirements that would need to be considered as a result of this potential approach will be identified and satisfied if implementation of this contingency option becomes necessary. Grading of the existing ground surface and installation of a geonet blanket over the geomembrane would promote drainage to the downgradient edges of the cover system. Toe drains, as shown on Figure 5.9, would be installed on the southeastern and northeastern edges of the cover system. The toe drains would consist of perforated plastic piping placed at a minimum 0.5-percent slope within gravel-filled trenches. The toe drains would join at the eastern corner of the cover system, where the drainage would combine and drop into an underground pipe that would convey the water to the nearest storm sewer or drainage channel.

5.76.1.4 Surface Water Control

The grade of the concrete cover would be consistent with the remainder of the airport taxiway, allowing for surface drainage to be controlled based on the design of the entire taxiway. It is assumed that during the design of the airport taxiway, a surface water drainage plan will be completed. The surface water drainage plan for the airport taxiway should ensure that no drop structures or drainage swales are installed within the boundaries of the cover system. It is recommended that this plan account for the presence of the proposed cover system by directing surface flow away from the cover. It is expected that the airport taxiway will be designed to eliminate ponding by establishment of an adequate grade that directs surface runoff to control structures such as drop boxes and drainage swales. A minimum of 1-percent slope of the engineered cover will be basis of design for surface water control above the HWSA. The minimum slope of the finished cover will be maintained throughout the post-closure period. Any decreases in the slope due to settling or other deterioration of the cover will be promptly corrected as part of post-closure maintenance of the contingency cover.

5.76.1.5 Installation Procedures

Installation of the contingency taxiway cover would include site preparation, installation of the subsurface drainage system, and installation of the layers consistent with the remainder of the airport taxiway (i.e., base course and concrete surfacing). Installation of the airport taxiway layers would follow procedures established for the remainder of the taxiway; therefore, this report does not discuss this construction activity in detail. Installation of the subsurface drain would include the following construction activities: site preparation; trenching for perimeter toe drains and transport

piping to the nearest storm sewer; installation of toe drain materials and related piping; and installation of the geomembrane, geonet, and geotextile layers. The construction activities associated with installation of the subsurface drain system are discussed in the following subsection.

Site preparation for the taxiway cover would consist of clearing the surface of vegetation, sharp objects, and other debris. Building 560 and the associated foundation and pavement would be removed from the site. The site would then be graded and compacted using standard earthmoving equipment.

Trenching from the eastern corner of the cover to the nearest storm sewer and along the southeastern and northeastern edges of the proposed cover for the toe drain would be required. This work would be performed using conventional trenching and earthmoving equipment. Materials excavated during the trenching would be characterized and either disposed of or used as fill material during the site grading activities. Construction of the toe drains would include laydown of the geosynthetics that line the toe drain trenches, installation of perforated plastic piping, and backfilling of the trenches with gravel. QA/QC activities would be required to ensure satisfactory trench and piping grades and to ensure that installation of the geosynthetics meets applicable manufacturers' requirements. Piping to the storm sewer would be installed following standard construction and QA/QC procedures for this type of work.

Material quality and installation of the geomembrane, geonet, and geotextile would conform to QA/QC guidelines set forth in EPA/600/R-93/182, Quality Assurance and Quality Control for Waste Containment Facilities (USEPA, 1993) and to the design specifications developed for the site work. Following placement of the geosynthetics, installation of the materials associated with the airport taxiway would be performed. Design specifications would ensure that the subsurface drain geosynthetics are not damaged during the taxiway construction activities. Specifications would also include requirements for surface water controls to minimize run-on to the site during construction activities. All construction activities associated with installation of the taxiway cover would conform to OSHA guidelines.

5.76.2 Asphalt Cover

5.76.2.1 Basis of Design

An asphalt cover could be a potential contingency approach for closure of the former HWSA in the event that the taxiway cover is deemed inappropriate, unnecessary, or delayed. Specific factors influencing the selection include the ease with which the alternative could be converted to an airport taxiway, the proven effectiveness of asphalt in similar applications, and the relatively small area that requires covering. This subsection discusses these factors in detail.

Because the site is likely to be used as an airport taxiway at some time in the future, special consideration was given to cover system alternatives that could be easily

converted to this type of land use. Conversion of the proposed asphalt cover would involve removal of the asphalt surfacing, possible replacement of the base course layer that functions as foundation material, and installation of concrete surfacing consistent with the remainder of the proposed airport taxiway. In contrast, conversion of a standard RCRA cover would involve complete removal of not only the cover materials, but also of the general backfill materials used to establish an adequate cover grade. In addition, following removal of the cover and fill materials, a subsurface drainage system (as described for the taxiway cover) would need to be installed prior to laydown of the foundation base course and concrete surfacing. Under the contingency asphalt cover approach, the subsurface drainage system incorporated into the design and installation of the cover could be salvaged and reused in the conversion to a concrete taxiway cover.

The effectiveness of asphalt as a hydraulic barrier is well understood, from extensive research and numerous full-scale applications (Asphalt Institute, 1976 and 1989; Battelle Pacific Northwest Laboratories, 1994). The primary factor that impacts the effectiveness of asphalt as a hydraulic barrier is aging, which can lead to cracking. Aging processes occur due to the exposure of the asphalt to ultraviolet light, freezethaw effects, and dynamic loading. The first factor, exposure to ultraviolet light, would be controlled at the site by application of a seal coat on the surface of the asphalt. The seal coat would protect the underlying asphalt and act as a sacrificial layer to oxidation processes. Periodic inspections of the cover would allow reapplication of seal coating as necessary. The freeze-thaw effects on the asphalt cover are expected to be minimal due to surface water and subsurface water control inherent in the design. Establishment of an adequate surface grade would ensure that no ponding occurs, and the subsurface drainage system would function to conduct subsurface water away from the bottom of the cover system. The seal coat also would minimize the infiltration of water into the asphalt layer. Dynamic loading (e.g., vehicle traffic) on the cover would be controlled by establishing vehicle access weight restrictions in the area. Traffic on this cover would be restricted to passenger vehicles such as cars and trucks. Aircraft traffic would not be allowed on the asphalt cover area. The lack of significant dynamic loading would ensure the integrity of the barrier should micro-cracks occur.

The effectiveness of asphalt is well-established for similar applications. In 1990, following regulatory approval from the Washington State Department of Ecology, a similar engineered cover with asphalt surfacing and an underlying geomembrane was installed for a site in Tacoma, Washington. Six months after installation, a rainstorm equivalent to a 100-year storm event occurred in the area. Monitoring of the subsurface showed that there was no leakage through the asphalt cover. Cores taken from the cover were measured to have permeabilities on the order of 10⁻⁹ cm/sec (Schlect, 1991). More recently, asphaltic concrete was chosen as the primary hydraulic barrier for the engineered cover at Operable Unit 4 at Rocky Flats Environmental Technology Site, near Denver, Colorado. Asphalt was chosen for this cover based primarily on its extremely low permeability and its durability for long time periods (Parsons ES, 1995b).

Design of an asphalt cover at the site would involve development of an appropriate mix specification that places an emphasis on low permeability, flexibility, and strength. Based on extensive research, it is well documented that mixes having higher asphalt contents (6 to 9 percent) and smaller-size aggregates are generally more flexible and have lower permeabilities than typical roadway paving mixes. Consideration would be given to these variables during design specification of the asphalt mix to be used for the cover. In addition, compaction control during placement can be used to positively impact the strength and permeability of the asphalt cover. An asphalt cement that is more applicable for hydraulic linings would be chosen over roadway asphalt cements based on the need for superior flexibility and resistance to weathering.

Because of the relatively small area that requires covering, installation of a standard RCRA cover is judged to be impractical. Startup efforts for installation of a RCRA cover would be significantly more intensive than for an asphalt cover. A borrowsource investigation and a laboratory testing program would be required to identify an adequate source of clay. There are no known sources local to the site that have a supply of acceptable clay for RCRA liner applications. Identification of an asphalt contractor who has access to acceptable materials and the appropriate level of experience and determination of a design mix for the asphalt concrete that meets appropriate requirements for strength and permeability are not expected to pose any difficulties. Typical requirements for installation of a RCRA cover include construction of a test pad to define adequate placement methods for the compacted clay portion of the cover. Assuming standard dimensions, the test pad would cover an area approximately one-tenth the size of the entire cover. QA testing during installation of a RCRA cover would require significantly greater time and expense than that for an asphalt cover. It is estimated that an asphalt cover would be installed in less than 50 percent of the time required for installation of a RCRA cover.

The design of the asphalt cover would include the requirement that the cover consist of a continuous pad without overlapping cold joints, which would minimize the amount of infiltration through the cover. Similar to the taxiway cover, a subsurface drainage system and secondary hydraulic barrier would be installed. These components of the proposed asphalt cover would ensure that surface water infiltration into contaminated subgrade soils at the HWSA would be minimal. Other benefits of the asphalt cover are similar to those described for the taxiway cover, including limited cut-and-fill activities, minimal to no offsite disposal requirements, and ease of construction.

In summary, installation and QA/QC efforts required for installation of a cover with a compacted clay component are significantly higher than for the proposed asphalt cover. As discussed above, use of an appropriate asphalt mix specification would allow construction of a durable cover with extremely low permeability. The asphalt cover would require traditional construction placement techniques and would include the traditional, well-established QA/QC methods commonly utilized in roadway construction. Maintenance of an asphalt cover would be relatively simple, with the primary activities consisting of periodic inspections and reapplications of the surface

seal coat. Because of the relatively small area that requires covering, the disadvantages involved with the installation of a standard RCRA cover at the site are judged to outweigh any limited benefits that a RCRA cover may have over a simple asphalt cover.

5.76.2.2 Cover Materials

The materials for the asphalt cover are the same as those for the taxiway cover with the exception of the surface layer, which would be asphalt instead of concrete. The asphalt would function as a hydraulic barrier, restricting infiltration from reaching the subsurface soils. The layers of the proposed asphalt cover are presented on Figure 5.10 and include the following:

- Geomembrane (FML),
- Geonet (fabricated drainage net),
- Geotextile (filter fabric),
- Base course, and
- Asphalt (including seal coat).

This subsection discusses the layers of the asphalt cover. For each of the layers, a description of the materials to be used and the primary function of the layer is provided.

Prior to placement of the cover materials, the existing ground surface would be graded to a minimum slope of 1 percent and compacted. As described for the taxiway cover, the grading plan would be designed to minimize the amount of cut and fill required, attempting to use the existing ground contours to the maximum extent practical. The minimum 1-percent slope of the subgrade will be established to allow for adequate functioning of the subsurface drainage system. This slope may be modified on the basis of the required design capacity of the subsurface drain.

Geomembrane

A geomembrane (FML) would be placed immediately above the graded, compacted ground surface, and would function as a hydraulic barrier, restricting infiltration from reaching the underlying contaminated soils. As with the taxiway cover, the geomembrane will be specified to meet the Ohio EPA regulatory requirements for geosynthetic cover materials (i.e., 60-mil, linear-low-density polyethylene). In addition, the specifications for the geomembrane will be determined from the strength requirements for construction-related and long-term loading conditions. Neither chemical compatibility nor settlement-related stresses at the site are expected to impact the design life of the geomembrane.

TYPICAL SECTION

NOT TO SCALE

TOE DRAIN AND DRAINAGE SWALE DETAIL NOT TO SCALE

FIGURE 5.10

DETAILS OF CONTINGENCY ASPHALT COVER

HWSA Amended Closure/Post-Closure Plan Rickenbacker ANGB, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

Geonet

As described for the taxiway cover, a geonet fabric would be placed above the geomembrane to provide a drainage layer that promotes lateral transport of water to the downgradient edges of the cover system. The geonet would be specified on the basis of the estimated infiltration rate through the asphalt and the slope of the graded surface on which the geomembrane and the overlying layers will be placed. Specification of the geonet also would consider the reduction in flow capacity attributable to vertical loading from the overlying cover materials.

Geotextile

A geotextile would be placed above the geonet and below the base course layer in order to prevent fine-grained soil particles from migrating into the geonet. This would prevent clogging of the geonet, allowing it to maintain functionality over the design lifetime of the cover. The combination of the geotextile and the geonet would serve as a protective layer for the geomembrane, which otherwise could be subject to potential puncturing from the overlying base course materials. The geotextile would be specified for the final design on the basis of the particle-size gradation of the overlying base course and the strength requirements dictated by construction-related and long-term loading conditions. Specification of the geotextile would ensure adequate permeability and soil-filtering characteristics.

Base Course

Immediately below the asphalt surfacing, a minimum of 6 inches of granular base course would be placed. This layer would provide a stable foundation for the asphalt concrete surface and would also act as a drain to move water away from the asphalt to minimize the potential for freeze-thaw effects. The base course materials for the asphalt cover would be similar those typically specified for highway base courses. The specifications for the base course would include requirements for particle-size gradation and aggregate durability.

Asphalt

The uppermost layer of the cover would consist of a minimum of 6 inches of roller-compacted asphalt. This layer would act as a hydraulic barrier, restricting precipitation infiltration from reaching the subsurface soils. The asphalt design mix would have a relatively high asphalt content and smaller aggregate sizes than typical roadway asphalt. The mix specification combined with proper placement would ensure that the asphalt cover has a permeability lower than the RCRA standard of 10⁻⁷ cm/sec for compacted clay covers. The mix specification also would account for the relevant requirements for strength and flexibility of the asphalt. Specifications for the cover installation would include the appropriate compaction methods and QA/QC requirements.

Following placement of the asphalt, a seal coat would be applied to the surface to minimize the effects of oxidation.

5.76.2.3 Cover Configuration

The asphalt cover would be situated in the same position as the taxiway cover and would be placed as one continuous pad with no construction joints. The proposed cover would extend a minimum of 2 feet beyond the existing fence which lines the perimeter of the affected area. The proposed cover would be approximately 100 feet by 170 feet (approximately 0.3 acre).

5.76.2.4 Subsurface Drainage Control

The subsurface drainage system for the asphalt cover would be the same as described for the taxiway cover.

5.76.2.5 Surface Water Control

The surface water control measures for the asphalt cover would include designing a cover grade to promote runoff, installation of drainage swales to collect the runoff and direct it to the nearest storm sewer, and construction of berms to limit runon from surrounding areas. The grading of the cover would follow the natural ground surface to the maximum extent practicable while still promoting runoff to the downgradient edges of the cover (i.e., the southeastern and northeastern edges). The minimum grade of the cover would be determined from design criteria for storm water flow events. This design storm event also would allow determination of design flow volumes to be used for drainage swale sizing around the cover and to offsite facilities.

Figure 5.10 presents the proposed configuration of a concrete-lined swale, and shows the conceptual tie-in to the cover system. Drainage swales would be constructed on the downgradient edges of the cover. Temporary berms upgradient from the affected area would be constructed as necessary to control runon to the site during construction. Details of the swale specifications and other surface water control measures would be finalized during the final design of any contingency option.

5.76.2.6 Installation Procedures

Installation of the asphalt cover would include installation of the subsurface drainage system and installation of the compacted base course foundation and asphalt surfacing. The procedures and equipment needed for site preparation and installation of the subsurface drainage system would be consistent with those described for the taxiway cover. Installation procedures for the base course foundation and the asphalt surfacing are described below.

Placement of the base course foundation for the asphalt cover would involve spreading and compaction with standard earthmoving and compaction equipment.

Because the base course would be placed directly on top of the geotextile layer, the design specifications would require that extreme care be taken not to damage the geotextile during placement and compaction. QA/QC during placement of the base course would ensure that a minimum 95 percent of the maximum dry density (per American Society for Testing and Materials D698) is achieved by compaction.

Placement of the asphalt surfacing would be performed using standard paving construction equipment and methods. QA/QC testing during placement would ensure that the minimum specified density for the asphalt is achieved. Following placement of the asphalt surfacing, a seal coat would be applied using standard methods for roadways.

SECTION 6

SAMPLING PLAN AND ANALYTICAL PROCEDURES

This sampling and analytical plan has been developed to establish a general protocol for compliance soil and quarterly groundwater sampling at the HWSA during the site closure and during post-closure monitoring. In addition, this plan outlines soil gas testing of both the soil remediation and groundwater oxygenation systems that will occur during site closure activities at the HWSA. Section 6.1 below describes the soil gas sampling that will be performed during the operation of the soil remediation and groundwater oxygenating systems sampling. Section 6.2 discusses compliance soil that will be performed after two years of operation of the soil remediation and groundwater Section 6.3 discusses oxygenation system to confirm soil contaminant loss. groundwater sample collection procedures that will be used in all quarterly sampling events. Section 6.4 outlines sampling handling procedures. and Section 6.5 discusses OA/OC sample collection and potential interferences. Section 6.6 presents procedures for calibrating field equipment. Section 6.7 briefly describes a methodology for determining horizontal and vertical contaminant migration rates.

All field sampling activities will be recorded in a bound, sequentially paginated field notebook in permanent ink. All sample collection entries will include the date, time, sample locations and numbers, notations of field observations, and the sampler's name and signature.

6.1 SOIL GAS SAMPLING

Soil gas will be used as an indicator of subsurface hydrocarbon contamination and to assess the effectiveness of *in situ* soil remediation (e.g., bioventing) and groundwater oxygenation (i.e., biosparging) operations in removing source contamination at the site. The use of soil gas to delineate potential subsurface contamination and to determine effectiveness of source reduction technologies has several economic and technical advantages over more traditional drilling and soil sampling techniques. The labor and equipment cost can be significantly less than a conventional drilling and sampling team. Many new hydraulically driven, multi-purpose probes can be used for soil gas sampling. These probes can be advanced as quickly as conventional augers and do not produce drill cuttings which can require expensive analysis and disposal. Further, soil gas sampling can represent the average chemistry of several cubic feet of soil as compared to a discrete soil sample, which can only describe a few cubic inches of the subsurface. This is of particular importance in risk-based remediation projects where

the extent of contamination and the degree of contaminant removal can most accurately be determined by using multiple soil gas sampling locations.

6.1.1 Soil Gas Sampling Frequency And Locations

The test equipment and methods that will be required to conduct field soil gas sampling as part of the closure activities at this site are described fully in Addendum One To Test Plan And Technical Protocol For A Field Treatability Test For Bioventing - Using Soil Gas Surveys To Determine Bioventing Feasibility And Natural Attenuation Potential (Downey and Hall, 1994). In summary, soil gas sampling will be conducted initially to establish a soil gas chemistry baseline prior to implementation of the soil remediation and groundwater oxygenation systems at the site. Field screening analytical samples will be collected at least oncetwice per year during system operation to assess contaminant removal rates, radius of influence, and oxygenation of contaminated saturated and unsaturated soils. Soil gas sampling will be performed at least annually every 6 months during operation of both systems to measure contaminant reduction, oxygen utilization, and biodegradation rates.

Once soil gas contaminant concentrations and respiration rates indicate contaminant mass loss via biodegradation, confirmatory soil and groundwater (part of the regularly planned quarterly groundwater monitoring schedule) samples will be collected to verify the effectiveness of the remediation systems. Proposed soil and groundwater remediation/closure actions are expected to significantly decrease contaminant mass in soil and groundwater underlying the HWSA in approximately 2 years. Results of soil gas sampling for both the soil remediation and groundwater oxygenation operations will be provided to Rickenbacker ANGB, AFCEE, and the Ohio EPA to update all parties involved in the remediationclosure process.

6.1.2 Soil Gas Sampling Procedures

Soil gas sampling will be conducted at several newly installed MPS (and groundwater monitoring, air sparging, and vent wells with unsaturated screen when possible). Gaseous concentrations of carbon dioxide (CO_2) and oxygen (O_2) will be measured in the field using an O_2/CO_2 analyzer. The analyzer will generally have an internal battery-powered sampling pump and range settings of 0 to 25 percent for both O_2 and CO_2 . Before analyzing samples, the analyzer must be calibrated and the battery charge checked in accordance with the manufacturer's instructions. Typically, the analyzer will be calibrated daily using atmospheric conditions of O_2 (20.9 percent) AND CO_2 (0.05 percent) and a gas standard containing 0.0 percent O_2 and 5.0 percent CO_2 . Calibration of field equipment is discussed further in Section 6.6.

Total volatile hydrocarbon (TVH) concentrations also will be measured at the HWSA. The TVH analyzer used at the site will be capable of measuring hydrocarbon concentrations in the range of 1 to 20,000 parts per million, volume per volume (ppmv). The analyzer is also capable of distinguishing between methane and non-

methane hydrocarbons. The TVH analyzer will be calibrated daily in accordance with the manufacturer's instructionsusing a 4,000 ppmv hexane calibration gas.

All soil gas samples taken during monitoring at the site will be collected using 3-liter Tedlar bags and a vacuum chamber. The soil gas samples will be analyzed by attaching the O₂/CO₂ and TVH analyzers directly to the Tedlar bag. Sample locations identified for analytical, compound-specific analysis will be re-sampled using 3-liter Tedlar bags and a vacuum chamber. The samples will then be transferred to 1-liter SUMMA canisters for compound-specific analysis by a fixed-base laboratory using U.S. Environmental Protection Agency (USEPA) Analytical Method TO-143. The soil gas sample protocol for laboratory analysis and field-screening is presented in Tables 6.1 and 6.2, respectively. Practical quantitation limits (PQLs) for laboratory soil gas samples are presented in Table 6.3 and sample container, volume, preservation techniques, and holding times are shown in Table 6.4.

Field quality assurance/quality control (QA/QC) procedures for soil gas will include collection of one field duplicate for every 10 samples collected (e.g., frequency of 10 percent), use of analyte-appropriate containers, and chain-of-custody procedures for sample handling and tracking. All samples to be transferred to the analytical laboratory for analysis will be clearly labeled to indicate sample number, location, matrix (e.g., soil gas), and analyses requested. Samples will be preserved in accordance with the analytical method to be used.

All field sampling activities will be recorded in a bound, sequentially paginated field notebook in permanent ink. All sample collection entries will include the date, time, sample locations and numbers, notations of field observations, and the sampler's name and signature.

The analytical laboratory will conduct one matrix spike analysis, one laboratory control sample, and one laboratory blank test for each specific analysis requested for soil gas (i.e., required only once for soil gas because only one analytical method will be used).

6.2 COMPLIANCE SOIL SAMPLING

Compliance soil sampling will be performed as part of the closure activities to ensure that soil remedial action has significantly reduced soil contaminant mass. A total of nine soil samples will be collected at the HWSA as part of the compliance sampling program. Eight samples will be collected from four boreholes within the soil treatment area and one QA/QC sample will be collected. The following sections describe borehole installation, soil sampling, procedures for equipment decontamination, and datum surveying procedures to be used as part of the soil sampling field effort. The analytical protocol for compliance soil samples is presented in Tables 6.1 and 6.2. Requirements for soil sample containers, volumes, preservation, and holding times are presented in Table 6.4 and PQLs for soil sample analysis are presented in Table 6.5.

TABLE 6.1

LABORATORY ANALYTICAL PROTOCOL FOR GROUNDWATER, SOIL, AND SOIL GAS SAMPLES

HAZARDOUS WASTE STORAGE AREA AMMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

MATRIX/ANALYSIS	METHOD/REFERENCE
GROUNDWATER	
Sulfate	E300 or SW9056
Nitrate	E300 or SW9056
Nitrite	E300 or SW9056
Chloride	E300 or SW9056
Alkalinity	E310.1
Methane, Ethane, and Ethene	RSKSOP175, or SW3810, modified
Total Organic Carbon	EPA 415.1, or SW9060
Aromatic and Chlorinated	SW8260A
Hydrocarbons (BTEX),	
Trimethylbenzene Isomers,	
Chlorinated Compounds	
Semivolatile Organics	SW8270B
Total Volatile Petroleum	SW8015, modified (Gasoline)
Hydrocarbons	
SOIL	
Total Organic Carbon	SW9060
Moisture	EPA 160.3
Aromatic and Chlorinated	SW8260A
Hydrocarbons (BTEX)	
Trimethylbenzene Isomers,	
Chlorinated Compounds	
Semivolatile Organics	SW8270B
Total Volatile Hydrocarbons	SW8015, modified (Gasoline)
Biologically Available Iron (IIII)	Under development
SOIL GAS	
Fuel and Chlorinated VOCs	TO-14
FREE PRODUCT	
Aromatic Hydrocarbons	SW8020

TABLE 6.2 FIELD ANALYTICAL PROTOCOL FOR GROUNDWATER, SOIL, AND SOIL GAS SAMPLES

HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

MATRIX/ANALYSIS	METHOD/REFERENCE			
GROUNDWATER				
Ferrous Iron (Fe+2)	Colorimetric, Hach Method 8146			
Manganese	Colorimetric, Hach Method 8034			
Sulfide	Colorimetric, Hach Method 8131			
Nitrate	Titrimetric, Hach Method 8039 and 8192			
Nitrite	Titrimetric, Hach Method 8040			
Redox Potential	A2580B, direct reading meter			
Oxygen	Direct reading meter			
pН	SW9040/9045, direct reading meter			
Conductivity	SW9050, direct reading meter			
Temperature	Direct reading meter			
Alkalinity (Carbonate [CO3-2]	Titrimetric, Hach Method 8221			
and Bicarbonate [HCO3-1])				
Carbon Dioxide	CHEMetrics Method 4500			
Chloride	Hach Model 8P			
AmmoniaDiss. Gas in Water	CHEMetrics Method 4500			
SOIL				
Total Organic Vapors	Headspace with direct reading meter			
SOIL GAS				
Total Volatile Hydrocarbons	GasTech analyzer, or equivalent			
Oxygen, Carbon Dioxide	GasTech analyzer, or equivalent			

TABLE 6.3 PRACTICAL QUANTITATION LIMITS FOR SOIL GAS HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

		Soil Gas
Parameter/Method	Analyte	PQL ^{a/} (ppbv b/)
Volatile Organics	1,1,1-Trichloroethane	0.5
TO-14	1,1,2,2-Tetrachloroethane	0.5
	1,1,2-Trichloroethane	0.5
	1,1-Dichloroethane	0.5
	1,1-Dichloroethene	0.5
	1,2,4-Trimethylbenzene	0.5
	1,3-Butadiene	2.0
	2-Butanone (MEK)	2.0
	2-Hexanone	2.0
	2-Propanol	2.0
	1,2-Dichloroethane	0.5
	1,2-Dichlorobenzene	0.5
	1,2-Dichloropropane	0.5
	1,3,5-Trimethylbenzene	0.5
	1,3-Dichlorobenzene	0.5
	1,4-Dichlorobenzene	0.5
	Chlorotoluene	0.5
	4-Ethyltoluene	2.0
	4-Methyl-2-pentanone	2.0
	Acetone	2.0
	Benzene	0.5
	Bromodichloromethane	2.0
	Bromoform	2.0
	Bromomethane	0.5
	Carbon Disulfide	2.0
	Carbon Tetrachloride	0.5
	Chlorobenzene	0.5
	Chloroethane	0.5
	Chloroform	0.5
	Chloromethane	0.5
,	Chloroprene	2.0
	Cis-1,2-Dichloroethene	0.5
	Cis-1,3-Dichloropropene	0.5
	Cyclohexane	2.0

TABLE 6.3 (Continued)

PRACTICAL QUANTITATION LIMITS FOR SOIL GAS

HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

		Soil Gas
Parameter/Method	Analyte	PQL ^{a/}
TILL (1) (2)		(ppbv b/)
Volatile Organics	Dibromochloromethane	2.0
TO-14 (Cont)	Ethanol	2.0
	Ethylbenzene	0.5
	Ethylene Dibromide	0.5
	Freon 11	0.5
	Freon 12	0.5
	Freon 114	0.5
	Heptane	2.0
	Hexachlorobutadiene	0.5
	Hexane	2.0
	m,p-Xylene	0.5
	Methyl t-Butyl Ether (MTBE)	2.0
	Methylene Chloride	0.5
	Propylene	2.0
-	o-Xylene	0.5
	Styrene	0.5
	Tetrachloroethene	0.5
	Tetrahydrofuran	2.0
	Tricholoroethene	0.5
	Toluene	0.5
	Trans-1,2-Dichloroethene	2.0
	Trans-1,3-Dichloropropene	0.5
	Vinyl Acetate	2.0
·	Vinyl Chloride	0.5

SOURCE: Air Toxics Ltd., Folsom, California.

ppbv = parts per billion, volume per volume.

^{a/}_{b/} PQLs = practical quantitation limits. PQLs are equal to the laboratory reporting limits.

TABLE 6.4

REQUIREMENTS FOR CONTAINERS, PRESERVATION TECHNIQUES, SAMPLE VOLUMES, AND HOLDING TIMES

HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

Parameter	Analytical Methods	Container ^{a/}	Preservation ^{b/c/}	Minimum Sample Volume or Weight	Maximum Holding Time
Alkalinity	E310.1	P, G	4°C ^d	50 mL ^{e/}	14 days
Common Anions	SW9056	P, G	None required	50 mL	28 days for $Cl^{-l'}$ and $SO_4^{-2g'}$; 48 hours for $NO_3^{-l'}$ and $NO_2^{-l'}$
Methane, Ethane, and Ethene	SW3810, modified	G, Teflon- lined cap	4°C	3 x 40 mL	14 days
Total Organic Carbon	SW9060, modified	G, wide mouth	4°C	200 mL	28 days
Aromatic and Chlorinated Hydrocarbons	SW8260A	G, Teflon- lined septum, T	4° C, 0.008% $Na_2S_2O_3^{ij}$ (HCl ^{k/} to pH < 2 for volatile aromatics by SW8240 and SW8260)	2 x 40 mL or 4 ounces	14 days (water and soil); 7 days if unpreserved by acid
Semivolatile Organics including PAHs	SW8270B	G, Teflon- lined cap, T	4°C, 0.008% Na ₂ S ₂ O ₃	1 liter or 8 ounces	7 days until extraction and 40 days after extraction (water); 14 days until extraction and 40 days after extraction (soil)
Total Volatile Petroleum Hydrocarbons	SW8015, modified (Gasoline)	G, Teflon- lined Septum, T	4°C	2 x 40 mL or 4 ounces	14 days
Conductance	SW9050	P,G	None required	NA ^{I/}	Analyze immediately
Volatile Organics	TO-14	Summa	None required	l-liter	14 days

^{a/} Polyethylene (P); glass (G); brass sleeves in the sample barrel, sometimes called California brass (T).

b/ No pH adjustment for soil.

Preservation with 0.008 percent Na₂S₂O₃ is only required when residual chlorine is present.

 $^{^{}d/}$ $^{\circ}$ C = Degrees Celsius

 $^{^{}e'}$ mL = Milliliter

^{f/} Cl = Chloride

 $^{^{}g/}SO_4 =$ Sulfate

 $^{^{}h/}$ NO₃ = Nitrate

 $^{^{}i\prime}$ NO_2 = Nitrite

 $Na_2S_2O_3 = HCI =$ Sodium thiosulfate

Hydrochloric acid

^ν NA = Not applicable

TABLE 6.5 PRACTICAL QUANTITATION LIMITS FOR SOIL AND GROUNDWATER

		W	/ater		Soil
Parameter/Method	Analyte	PQL ^{a/}	Unit	PQL	Unit
Volatile Organics	1,1,1,2-Tetrachloroethane	0.5	μg/L ^{b/}	0.003	mg/kg ^{c/}
SW5030A/SW8260A	1,1,1-Trichloroethane	0.8	μg/L	0.004	mg/kg
(W ^d /, S ^e /)	1,1,2,2-Tetrachloroethane	0.4	μg/L	0.002	mg/kg
	1,1,2-Trichloroethane	1.0	μg/L	0.005	mg/kg
	1,1-Dichloroethane	0.4	μg/L	0.002	mg/kg
	1,1-Dichloroethene	1.2	μg/L	0.006	mg/kg
	1,1-Dichloropropene	1.0	μg/L	0.005	mg/kg
	1,2,3-Trichlorobenzene	0.3	μg/L	0.002	mg/kg
	1,2,3-Trichloropropane	3.2	μg/L	0.02	mg/kg
	1,2,4-Trichlorobenzene	0.4	μg/L	0.002	mg/kg
	1,2,4-Trimethylbenzene	1.3	μg/L	0.007	mg/kg
	1,2-Dichloroethane	0.6	μg/L	0.003	mg/kg
	1,2-Dichlorobenzene	0.3	μg/L	0.002	mg/kg
	1,2-Dibromo-3-Chloropropane	2.6	μg/L	0.01	mg/kg
	1,2-Dichloropropane	0.4	μg/L	0.002	mg/kg
	1,2-Dibromoethane	0.6	μg/L	0.003	mg/kg
	1,3,5-Trimethylbenzene	0.5	μg/L	0.003	mg/kg
	1,3-Dichlorobenzene	1.2	μg/L	0.006	mg/kg
	1,3-Dichloropropane	0.4	μg/L	0.002	mg/kg
	1,4-Dichlorobenzene	0.3	μg/L	0.002	mg/kg
	1-Chlorohexane	0.5	μg/L	0.003	mg/kg
	2,2-Dichloropropane	3.5	μg/L	0.02	mg/kg
	2-Chlorotoluene	0.4	μg/L	0.002	mg/kg
	4-Chlorotoluene	0.6	μg/L	0.003	mg/kg
	Benzene	0.4	μg/L	0.002	mg/kg
	Bromobenzene	0.3	μg/L	0.002	mg/kg
	Bromochloromethane	0.4	μg/L	0.002	mg/kg
	Bromodichloromethane	0.8	μg/L	0.004	mg/kg
	Bromoform	1.2	μg/L	0.006	mg/kg

TABLE 6.5 (Continued) PRACTICAL QUANTITATION LIMITS FOR

SOIL AND GROUNDWATER

		l w	/ater	T s	Soil
Parameter/Method	Analyte	PQL ^{a/}	Unit	PQL	Unit
Volatile Organics (Cont)	Bromomethane	1.1	μg/L	0.005	mg/kg
SW5030A/SW8260A	Carbon Tetrachloride	2.1	μg/L	0.01	mg/kg
(W, S)	Chlorobenzene	0.4	μg/L	0.002	mg/kg
	Chloroethane	1.0	μg/L	0.005	mg/kg
	Chloroform	0.3	μg/L	0.002	mg/kg
	Chloromethane	1.3	μg/L	0.007	mg/kg
.a	Cis-1,2-Dichloroethene	1.2	μg/L	0.006	mg/kg
	Cis-1,3-Dichloropropene	1.0	μg/L	0.005	mg/kg
	Dibromochloromethane	0.5	μg/L	0.003	mg/kg
	Dibromomethane	2.4	μg/L	0.01	mg/kg
	Dichlorodifluoromethane	1.0	μg/L	0.005	mg/kg
	Ethylbenzene	0.6	μg/L	0.003	mg/kg
	Hexachlorobutadiene	1.1	μg/L	0.005	mg/kg
	Isopropylbenzene	0.5	μg/L	0.008	mg/kg
	m-Xylene	0.5	μg/L	0.003	mg/kg
	Methylene Chloride	0.3	μg/L	0.002	mg/kg
	n-Butylbenzene	1.1	μg/L	0.005	mg/kg
	n-Propylbenzene	0.4	μg/L	0.002	mg/kg
	Naphthalene	0.4	μg/L	0.002	mg/kg
	o-Xylene	1.1	μg/L	0.005	mg/kg
	p-Isopropyltoluene	1.2	μg/L	0.006	mg/kg
	p-Xylene	1.3	μg/L	0.007	mg/kg
	Sec-Butylhenzene	1.3	μg/L	0.007	mg/kg
	Styrene	0.4	μg/L	0.002	mg/kg
	Tricholoroethene	1.0	μg/L	0.01	mg/kg
	Tert-Butylhenzene	1.4	μg/L	0.007	mg/kg
	Tetrachloroethylene	1.4	μg/L	0.007	mg/kg
	Toluene	1.1	μg/L	0.005	mg/kg
	Trans-1,2-Dichloroethene	0.6	μg/L	0.003	mg/kg
·	Trans-1,3-Dichloropropene	1.0	μg/L	0.005	mg/kg
	Trichlorofluoromethane	0.8	μg/L	0.004	mg/kg

TABLE 6.5 (Continued) PRACTICAL QUANTITATION LIMITS FOR

SOIL AND GROUNDWATER

		W	ater		Soil
Parameter/Method	Analyte	PQL ^{a/}	Unit	PQL	Unit
Semivolatile Organics	1,2,4-Trichlorobenzene	10.0	μg/L	0.7	mg/kg
Base/Neutral Extractables	1,2-Dichlorobenzene	10.0	μg/L	0.7	mg/kg
SW3510B/SW8270B (W)	1,3-Dichlorobenzene	10.0	μg/L	0.7	mg/kg
SW3550A/SW8270B (S)	1,4-Dichlorobenzene	10.0	μg/L	0.7	mg/kg
	2,4-Dinitrotoluene	10.0	μg/L	0.7	mg/kg
	2,6-Dinitrotoluene	10.0	μg/L	0.7	mg/kg
	2-Chloronaphthalene	10.0	μg/L	0.7	mg/kg
	2-Methylnaphthalene	10.0	μg/L	0.7	mg/kg
	2-Nitroaniline	50.0	μg/L	3.3	mg/kg
	3-Nitroaniline	50.0	μg/L	3.3	mg/kg
	3.3'-Dichlorobenzidine	20.0	μg/L	1.3	mg/kg
	4-Bromophenyl Phenyl Ether	10.0	μg/L	0.7	mg/kg
	4-Chloroaniline	20.0	μg/L	1.3	mg/kg
	4-Chlorophenyl Phenyl Ether	10.0	μg/L	0.7	mg/kg
	4-Nitroaniline	50.0	μg/L	3.3	mg/kg
	Acenaphthylene	10.0	μg/L	0.7	mg/kg
	Acenapthene	10.0	μg/L	0.7	mg/kg
	Anthracene	10.0	μg/L	0.7	mg/kg
	Benz (a) Anthracene	10.0	μg/L	0.7	mg/kg
	Benzo (a) Pyrene	10.0	μg/L	0.7	mg/kg
	Benzo (b) Fluoranthene	10.0	μg/L	0.7	mg/kg
	Benzo (g,h,i) Perylene	10.0	μg/L	0.7	mg/kg
	Benzyl Alcohol	20.0	μg/L	1.3	mg/kg
	Bis (2-Chlorethyl) Ether	10.0	μg/L	0.7	mg/kg
	Bis (2-Chloroethoxy) Methane	10.0	μg/L	0.7	mg/kg
	Bis (2-Chloroisopropyl) Ether	10.0	μg/L	0.7	mg/kg
	Bis (2-Ethylhexyl) Phthalate	10.0	μg/L	0.7	mg/kg
	Butyl Benzylphthalate	10.0	μg/L	0.7	mg/kg

TABLE 6.5 (Continued) PRACTICAL QUANTITATION LIMITS FOR SOIL AND GROUNDWATER

Semivolatile Organics	Chrysene	10.0	μg/L	0.7	mg/kg
Base/Neutral Extractables	Di-n-Butylphthalate	10.0	μg/L	0.7	mg/kg
SW3510B/SW8270B (W)	Di-n-Octylphthalate	10.0	μg/L	0.7	mg/kg
SW3550A/SW8270B (S)	Dibenz (a,h) Anthracene	10.0	μg/L	0.7	mg/kg
(Cont)	Dibenzofuran	10.0	μg/L	0.7	mg/kg
,	Diethyl Phthalate	10.0	μg/L	0.7	mg/kg
	Dimethly Phthalate	10.0	μg/L	0.7	mg/kg
	Fluoranthene	10.0	μg/L	0.7	mg/kg
	Fluorene	10.0	μg/L	0.7	mg/kg
	Hexachlorobenzene	10.0	μg/L	0.7	mg/kg
	Hexachlorobutadiene	10.0	μg/L	0.7	mg/kg
	Hexachlorocyclopentadiene	10.0	μg/L	0.7	mg/kg
	Hexachloroethane	10.0	μg/L	0.7	mg/kg
	Indeno (1,2,3-cd) Pyrene	10.0	μg/L	0.7	mg/kg
	Isophorone	10.0	μg/L	0.7	mg/kg
	n-Nitrosodiphenylamine	10.0	μg/L	0.7	mg/kg
	n-Nitrosodi-n-Propylamine	10.0	μg/L	0.7	mg/kg
	Naphthalene	10.0	μg/L	0.7	mg/kg
	Nitrobenzene	10.0	μg/L	0.7	mg/kg
	Phenanthrene	10.0	μg/L	0.7	mg/kg
	Pyrene	10.0	μg/L	0.7	mg/kg
Semivolatile Organics	2,4,5-Trichlorophenol	50.0	μg/L	3.3	mg/kg
Acid Extractables	2,4,6-Trichlorophenol	10.0	μg/L	0.3	mg/kg
SW3510B/SW8270B (W)	2,4-Dichlorophenol	10.0	μg/L	0.3	mg/kg
SW3550A/SW8270B (S)	2,4-Dimethylphenol	10.0	μg/L	0.3	mg/kg
	2,4-Dinitrophenol	50.0	μg/L	3.3	mg/kg
	2-Chlorophenol	10.0	μg/L	0.3	mg/kg
	2-Methylphenol	10.0	μg/L	0.3	mg/kg
	2-Nitrophenol	10.0	μg/L	0.3	mg/kg

TABLE 6.5 (Continued) PRACTICAL QUANTITATION LIMITS FOR

SOIL AND GROUNDWATER

HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

			Vater	S	Soil
Parameter/Method	Analyte	PQL ^{a/}	Unit	PQL	Unit
Semivolatile Organics	4,6-Dinitro-2-Methylphenol	50.0	μg/L	3.3	mg/kg
Acid Extractables	4-Chloro-3-Methylphenol	20.0	μg/L	1.3	mg/kg
SW3510B/SW8270B (W)	4-Methylphenol	10.0	μg/L	0.3	mg/kg
SW3550A/SW8270B (S)	4-Nitrophenol	50.0	μg/L	1.6	mg/kg
(Cont)	Benzoic Acid	50.0	μg/L	1.6	mg/kg
	Pentachlorophenol	50.0	μg/L	3.3	mg/kg
	Phenol	10.0	μg/L	0.3	mg/kg
	Vinyl Chloride	1.1	μg/L	0.009	mg/kg
Gasoline Range Organics	Total Volatile Petroleum	100	μg/L	1.0	mg/kg
SW8015 Modified (W)	Hydrocarbons				
Methane	Methane	2.0	μg/L	NA ^{f/}	NA
SW3810 Modified	Ethane	4.0	μg/L	NA	NA
(W)	Ethene	2.0	μg/L	NA	NA
Common Anions	Chloride	0.2	mg/L ^{g/}	0.2	mg/kg
SW9056	Nitrate	0.1	mg/L	0.1	mg/kg
	Nitrite	0.4	mg/L	0.1	mg/kg
	Sulfate	0.2	mg/L	0.2	mg/kg
E310.1	Alkalinity	10.0	mg/L	NA	NA
E353.1	Nitrogen, Nitrate/Nitrite	0.1	mg/L	NA	NA
SW9060	Total Organic Carbon	1.0	mg/L	10.0	mg/kg

SOURCE: AFCEE QAPP, Version 1.1, February 1996

^{a/} PQLs = practical quantitation limits. PQLs are equal to the project reporting limits.

b/ μg/L = micrograms per liter.
c/ mg/kg = milligrams per kilogram.

d/ W = water.

e/ S = soil.

 $_{g/}^{f/}$ NA = not applicable. $_{g/}^{g/}$ mg/L = milligrams per liter.

6.2.1 Sampling Locations

A total of four sampling locations will be used during the compliance sampling event at the HWSA site. One borehole will be placed adjacent to both of the proposed vertical vent wells, and one borehole will be placed approximately 50 feet downgradient of each vent well. The exact locations of the boreholes will be determined in the field based on the location of underground utilities and other potential interferences. Two samples will be collected from each borehole, one above the groundwater level and one below, for a total of eight samples. One QA/QC field replicate also will be collected from one of the boreholes.

6.2.2 Borehole Installation Procedures

Soil sampling in unconsolidated soils will be accomplished using a Geoprobe hydraulic sampling rig or a similar sampling rig. The Geoprobe, or similar rig, will be used to advance a sampler containing a butylene liner to the desired sampling depth. Once the desired sampling depth is attained, the end point of the sampler will be retracted and the sampler will be filled with soil. Following retrieval of the sampler, the liner will be removed, and its ends capped with Teflon squares and plastic caps. All sampling equipment will be decontaminated prior to use and between uses, as described in Section 6.2.5. If subsurface conditions are such that the planned installation technique does not produce acceptable results another technique deemed more appropriate to the type of soils present will be used. Any alternate soil sampling procedure used must be approved by the field hydrogeologist and will be appropriate for the subsurface lithologies present at the site.

The field hydrogeologist will be responsible for observing all borehole installation and sampling activities, maintaining a detailed log of the target sample interval, photographing representative samples, and properly labeling and storing samples. An example of the proposed geologic boring log form is presented in Figure 6.1. The descriptive log will contain:

- Sample interval (top and bottom depth);
- Sample recovery;
- Presence or absence of contamination (e.g., staining, odor or elevated headspace screening readings);
- Soil or rock description of the target sampling interval, including relative density, color, major textural constituents, minor constituents, porosity, relative moisture content, plasticity of fines, cohesiveness, grain size, structure or stratification, relative permeability, and any other significant observations; and
- The depth of lithologic contacts and/or significant textural changes, measured and recorded to the nearest 0.1 foot (1 inch) if present within the target interval.

GEOLOGIC BORING LOG

BORING NO.:	CONTRACTOR:	 DATE SPUD:	
	. RIG TYPE:		
	DRLG METHOD:		
LOCATION:	BORING DIA.:		
GEOLOGIST:	DRLG FLUID:	 WEATHER:	
COMENTS:			
COMILIA 13.		 	

Elev	Depth	Pro-	US		S	ample	Sample	Penet	m/1	71/ 1	TOTAL	TPH
(ft)	(ft)	file	cs	Geologic Description	No.	Depth (it)	Type	Kes	(HU(ppm)	ILY(ppm)	BTEX(ppm)	(ppm
	- 1 -											
							,,,,,,,,,,	Ì			-	├─
												-
	-5-											
												-
												
			•									l
	-10-											\vdash
		1										
		ļ										
											•	
	-15-	l										
		- 1				1						
		1	1				1					
		-				·						
	-20-											
			- 1									
		ŀ										
		1										
	-25-		ļ									
												_
			j									
ł		İ	1									
			- 1									_
	-30-	1	l									
ł		Ì	ļ				.					
Ì		;	- 1									
			1									
ł	$\overline{}$. 1	ł	j			1					

NOTES

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 6.1

GEOLOGIC BORING LOG

HWSA

Amended Closure/Post-Closure Plan Rickenbacker ANGB, Ohio

PARSONS

ENGINEERING SCIENCE, INC.

Denver, Colorado

6.2.3 Sampling Records

In order to provide complete documentation of the sampling event, detailed records will be maintained by the field hydrogeologist. At a minimum, these records will include the following information:

- Sample location (facility name);
- Sample identification;
- Sample location map or detailed sketch;
- Date and time of sampling;
- Sampling method;
- · Field observations of
 - Sample appearance,
 - Sample odor;
- Weather conditions;
- Sampler's Identification;
- Any other relevant information.

6.2.4 Management Of Excavated Soils And Soil Cuttings

All excavated soil will be stored in roll-off boxes. Material will be separated on the basis of visual field screening and inspection, with material that appears to be clean placed in one box and material that appears to be contaminated placed in another. Material in the boxes will be sampled as they are filled, with at least three samples per roll-off; one from the bottom third, one from the middle third, and one from the top third. Additional samples will be taken if there is a visible change in the soil type or degree of contamination. Samples from each roll-off will be composited for laboratory analysis. Samples will be taken following the procedures outlined below, screened in the field for VOCs, and analyzed in a laboratory for the compounds associated with the HWSA (Table 6.1). Samples also will be analyzed for characteristics of hazardous waste (OAC 3745-51-20 through 24). Analytical results will be used to determine appropriate disposal for the soil.

Soil sampling of excavated soils and soil cuttings will proceed in accordance with Θ Ohio EPA and RCRA regulations and the requirements of the Ohio Department of Commerce, Division of State Fire Marshal, Bureau of Underground Storage Tank Regulation (BUSTR).

Each soil sample will be collected with a stainless steel trowel and evenly divided between two clean glass jars. One jar, intended for laboratory analysis, will be sealed with a Teflon[®]-lined lid. These samples will be packed in a cooler with ice and transported to the laboratory under the chain-of-custody procedures described in Section 6.3.

The second of the two jars will not be sent to the laboratory, but will be screened in the field for the presence of organic vapors. This jar will be sealed with aluminum foil and allowed to equilibrate for at least five minutes. The concentration of organic vapors in the headspace of the jar will then be tested using a photoionization detector (PID). If the air temperature is below 40°F, these samples will be set aside in a heated room and checked for vapors using the PID after they have warmed. The PID will be calibrated daily in accordance with the manufacturer's instructions.

6.2.5 Equipment Decontamination Procedures

Water to be used in equipment cleaning will be obtained from one of the base's onsite water supplies. Rickenbacker ANBG personnel will assist field personnel in locating a suitable source. Water use approval will be verified by contacting the appropriate facility personnel. Only potable water will be used for decontamination. A decontamination water blank will be collected from the potable water source. The field hydrogeologist will make the final determination as to the suitability of site water for these activities.

Prior to arriving at the site, and between each borehole installation, the Geoprobe® rods, samplers, tools and other downhole equipment will be decontaminated using a hot-water wash. During borehole installation operations, the rig, samplers, and any other downhole equipment will be decontaminated at a temporarythe decontamination pad-that is adjacent to Building 560. constructed prior to soil sampling. Wastewater generated during equipment decontamination will be disposed of in accordance with applicable regulations.

All sampling tools will be cleaned with a clean water/phosphate-free detergent mix, a clean water rinse, isopropyl alcohol rinse, and a final distilled water rinse. Materials that cannot be cleaned to the satisfaction of the field scientist will not be used. All decontamination activities will be conducted in a manner so that the excess water will be controlled and not allowed to flow into any open borehole.

Fuel, lubricants, and other similar substances will be handled in a manner consistent with accepted safety procedures and standard operating practices. The Geoprobe® Rig will not be allowed onsite unless it is free from leaks in all hydraulic and fuel lines, and is free of any exterior oil and grease.

Surface runoff such as miscellaneous spills and leaks, precipitation, and spilled decontamination fluids will not be allowed to enter any boring. Berms around the

borehole and surficial bentonite packs, as appropriate, will be used to prevent cross-contamination.

Water used to decontaminate sampling equipment will be stored at the site in a tank appropriate for this use. When all decontamination water has been collected, or when the tank is full, a composite sample will be taken from the tank by collecting samples at 1-foot horizontal intervals. The samples will be analyzed to determine whether it can be discharged to the Columbus Sewer District system or must be transported off-site for treatment at a facility permitted to treat the constituents found. The analyses performed will be determined by the requirements of the Columbus Sewer District or the off-site treatment facility and by the constituents expected in the used decontamination water.

6.2.6 Survey Of Borehole Locations

The horizontal location of the new boreholes will be located by field personnel after completion of sampling procedures. Horizontal locations will be measured relative to previously installed groundwater wells that have established coordinates (i.e., previously surveyed by a registered surveyor). Horizontal distances will be recorded to the nearest 0.1 foot by measuring the distance from each borehole to three established locations (monitoring wells or other previously surveyed locations deemed more appropriate by field personnel). These distances will be used to locate each borehole on any additional maps generated as part of the risk-based investigation.

6.2.7 Borehole Abandonment

Geoprobe® sampling operations will produce boreholes that are approximately 2.5 inches in diameter. These holes will be abandoned by filling with pelletized bentonite. The bentonite will be hydrated in place with potable water at 2-foot intervals to ensure proper hydration and subsequent sealing of the borehole. The concrete at the site will be patched with ready-mix concrete troweled to match the existing surface elevations.

6.3 GROUNDWATER SAMPLING

The following sections describe the scope of work required for collecting quarterly groundwater samples from the 27 monitoring wells in the long term monitoring well/point network (Figure 9.1) during closure and post-closure activities. During closure activities, quarterly groundwater samples will be performed at the 19 monitoring wells shown in relief on Figure 4.1. Following the installation of 8 additional monitoring wells (Section 9.4.1), one assessment sampling event will be performed at these 27 monitoring wells. Subsequent to closure (i.e., during post-closure monitoring), quarterly sampling will be performed at a total of 12 monitoring wells (Figure 9.1). All water samples collected from groundwater monitoring wells/ points will be obtained using a thoroughly decontaminated peristaltic pump and dedicated tubing.

Groundwater sampling will be conducted by qualified scientists and technicians trained in the conduct of well sampling, records documentation, and chain-of-custody procedures. Detailed groundwater sampling and sample handling procedures are presented in following sections.

Groundwater laboratory and field analytical protocols are shown in Tables 6.1 and 6.2, respectively. Requirements for sample containers, volumes, holding times, and preservation techniques are shown in Table 6.4 and PQLs for groundwater analysis are presented in Table 6.5.

6.3.1 Preparation For Sampling

All equipment to be used for sampling will be assembled and properly cleaned prior to the beginning of all sampling events. As required, field analytical equipment will be calibrated according to the manufacturer's specifications prior to field use. This applies to equipment used for onsite chemical measurements such as pH, electrical conductivity, and temperature.

In addition, all record keeping materials will be gathered prior to leaving the office. A brief organizational meeting will be held to ensure proper communication between project management staff and field personnel.

6.3.2 Equipment Decontamination

All portions of sampling and test equipment that will contact the sample will be thoroughly cleaned before each use. This equipment may include water-level probe and cable, oil/water interface probe and cable, test equipment for onsite use, and other equipment or portions thereof that will contact the samples. Based on the chemical constituents present at the mogas site, the following decontamination protocol will be used:

- Clean with potable water and phosphate-free laboratory detergent (Liquinox® or equivalent);
- Rinse with potable water;
- Rinse with distilled or deionized water:
- Rinse with reagent-grade isopropanol;
- Rinse with distilled or deionized water; and
- Air dry the equipment prior to use.

Water used to decontaminate sampling equipment will be stored at the site in a tank appropriate for this use. When all decontamination water has been collected, or when the tank is full, a composite sample will be taken from the tank by collecting samples at

1-foot horizontal intervals. The samples will be analyzed to determine whether it can be discharged to the Columbus sewer district system or must be transported off-site for treatment at a facility permitted to treat the constituents found. The analyses performed will be determined by the requirements of the Columbus sewer district or the off-site treatment facility and by the constituents expected in the used decontamination water.

Any deviations from these procedures will be documented in the field scientist's field notebook and on the groundwater sampling form. If pre-cleaned dedicated sampling equipment is used, the decontamination protocol specified above will not be required. Laboratory-supplied sample containers will be cleaned and sealed by the laboratory and therefore will not need to be cleaned in the field. Equipment field blanks and equipment rinseate samples will be collected to assure that all containers and field equipment are free of contamination.

6.3.3 Sampling Procedures

Special care will be taken to prevent contamination of the groundwater and extracted samples. The two primary ways in which sample contamination can occur are through contact with improperly cleaned equipment and by cross-contamination through insufficient decontamination of equipment between wells/points. To prevent such contamination, the peristaltic pump and water level probe and cable used to determine static water levels and total well depth will be thoroughly cleaned before and after field use and between uses at different sampling locations according to the procedures presented in Section 6.3.2. In addition to the use of properly cleaned equipment, a clean pair of new, disposable nitrile gloves will be worn each time a different well or station is sampled. New, clean tubing will be used for the peristaltic pump for each well sampled. Wells will be sampled sequentially from areas suspected to be least contaminated to areas suspected to be more contaminated. Plastic will be placed around each of the wells to be sampled and sampling equipment will not be allowed to come in contact with the ground surface at any time during the sampling event.

The following sections describe activities that comprise groundwater sample acquisition, and will be performed in the order as presented below. Exceptions to this procedure will be noted in the field scientist's field notebook.

6.3.4 Preparation Of Location

Prior to starting the sampling procedure, the area around the well or sampling location will be cleared of foreign materials, such as brush, rocks, and debris. These procedures will prevent sampling equipment from inadvertently contacting debris around the monitoring well. New, clean plastic (4 to 6 mil) we be placed around the well to prevent the contamination of both the ground surface and any equipment that may come into contact with the ground surface. In addition, the well/point will be inspected for integrity, including the protective cover, lock, external surface seal, pad, stick-up, well cap, datum reference, internal surface seal, and any dedicated equipment.

6.3.5 Water Level/-and Total Depth Measurements and Detection of Immiscible Liquids

Prior to removing any water from the well, the static water level will be measured. Where possible, an oil/water interfaceAn electrical water level probe will be used to measure the depth to groundwater below the datum to the nearest 0.01 foot. If the total depth of the well is not known or is suspected to be inaccurate, total well depth will be measured by slowly lowering the water level probe to the bottom of the well. Total well depth will be measured to the nearest 0.01 foot. If an immiscible liquid (most likely a light nonaqueous phase liquid [LNAPL]) is encountered during water level measurement, LNAPL thickness also will be measured. Based on water level and total depth information, the volume of water to be purged from the well can be calculated. Total depth will only be measured when absolutely necessary to minimize the amount of sediment disturbance in the well. If LNAPL is present in site monitoring wells, total well depth will not be measured. Based on water level and total depth information, the volume of water to be purged from the well can be calculated.

Some of the monitoring wells/monitoring points located at the HWSA are too narrow for using the oil/water interface probe for determining the presence of immiscible liquids. For these wells/points, detection of immiscible liquids (LNAPLs) will be possible during purging using a peristaltic pump. Initial purging at these wells/points will be performed at the air/water interface in order to detect floating immiscible liquids.

6.3.6 Groundwater Monitoring Well/ Point Purging

The static groundwater inside each well will be purged using a peristaltic pump. The well will be purged at a very low flow rate [10 milliliters per minute (ml/min) to 1,000 ml/min]. The objective of micropurging is to remove a small volume of water at a low flow rate from a discrete portion of the screened interval of the well without disturbing stagnant water within the casing. Therefore, the well purge rate must never be greater than the recharge rate of the well. During purging, the water level in the well will be monitored to ensure that no drawdown in the well occurs. The water level monitoring will allow the sampling technician to control pumping rates to minimize drawdown. As long as no drawdown is observed during pumping, it may be assumed that the low pumping rate within the discrete, screened portion of the well has not pulled stagnant casing water into the sample.

The pH, temperature, dissolved oxygen, and specific conductivity will be continuously monitored during well purging using a flow-through cell. The flow-through cell will be attached directly to the discharge tubing of the peristaltic pump using Teflon®-lined polyethylene tubing. New tubing will be used at each well. Purging will continue until the parameters have stabilized (less than 0.2 standard pHph units or a 10-percent change for the other parameters over a 5-minute period) and the

water is clear and free of fines. Research conducted on low-flow micropurging has found that dissolved oxygen and specific conductance readings are the most useful field indicator parameters for stabilization of background water chemistry during purging (Barcelona, et. al., 1994). The research also concluded that stabilization of dissolved oxygen and specific conductance shows some correlation to stabilization of VOC concentrations in "formation" waters.

All purge water will be placed in DOT-approved 55-gallon containers and stored in a secure area pending proper disposal

6.3.7 Sample Extraction

A peristaltic pump with new tubing for each well will be used to extract groundwater samples from the wells at the HWSA. If depth to groundwater exceeds approximately 21 feet it will be necessary to extract a sample using a dedicated bailer because of the vacuum lift limitations of a peristaltic pump. Both types of extraction equipment will be lowered into the water gently to prevent splashing and extracted gently to prevent creation of an excessive vacuum in the well. The sample will be transferred directly to the appropriate sample container. The water sample will be transferred from the bottom of the bailer using a bottom emptying device to allow a controlled flow into the sample container. Water from the peristaltic pump can be directly discharged into the sample container. The water should be carefully poured down the inner walls of the sample bottle to minimize aeration of the sample. Sample containers for VOC analysis will be filled at approximately 200 ml/min and all other sample collection rates will not exceed 400 ml/min. Volatile samples will be collected first, followed by any other analytical samples. Samples for field parameter analysis will be collected last.

Unless other instructions are given by the analytical laboratory, sample containers will be completely filled so that no air space remains in the container. Excess water collected during sampling will be placed into the 55-gallon containers used for well purge waters and disposed of in accordance with applicable regulationsas directed by Rickenbacker ANGB personnel.

6.3.8 Onsite Chemical Parameter Measurement

Because many chemical parameters of a groundwater sample can change significantly within a short time following sample acquisition, these parameters will be measured in the field using Hach® or Chemetrics® test kits. Table 6.21 lists the fieldehemical analytical protocol for groundwater samples. The following discussion describes the field procedures for obtaining the onsite chemical parameter measurements. For information on individual instrument calibration procedures, field personnel will maintain a copy of the specific calibration procedures on site, and these procedures will be available for inspectionplease refer to the manufacture calibration procedure-for the instrument.

Groundwater quality measurements such as temperature, pHph, specific conductivity, dissolved oxygen, and reduction/oxidation (redox) potential will be continuously monitored during well purging using a flow-through cell. The flow-through cell will be attached directly to the discharge tubing of the peristaltic pump using Teflon®-lined polyethylene tubing. A new piece of tubing will be used for each well. All groundwater quality measuring equipment will be decontaminated following the procedures described herein. The groundwater quality measuring equipment will be ealibrated between each well following the manufacturer's recommended calibration procedures.— The measurements observed immediately before groundwater sampling begins will be considered the final measurements for the sample, and will be recorded in the field notebook and on the point-specific sampling form.

Groundwater quality measurements such as nitrate, nitrite, manganese, ferrous iron, sulfate, sulfide, and alkalinity will be measured in the field using Hach®, Chemetrics®, or similar field analysis methods. Groundwater samples for these measurements will be collected after all sample containers for laboratory analyses have been collected. Two 250-ML bottles of groundwater will be collected and capped for field analysis. The field analysis of groundwater samples should begin immediately after collection. Direct sunlight, contact with air, and high temperatures may greatly affect the concentrations of the analytes in question. If possible, analyses will be run indoors, and groundwater samples will be capped and stored in a cooler with a temperature maintained at 4°C when not in use. Duplicate analyses will be run at a frequency of 1025 percent, or one duplicate sample for every tenfour field analyses (see Section 6.6). One blank (distilled water) analysis will be performed for each sampling round.

6.3.9 LNAPL Sampling

If a sufficient thickness of LNAPL is detected in on-site monitoring wells, a sample of LNAPL will be obtained using either a peristaltic pump or a disposable Teflon® bailer. The tubing or bailer will be gently lowered into the well in an attempt to minimize agitation. The sample will be collected in a 40 milliliter glass bottle and submitted for laboratory analysis in accordance with Table 6.1. Excess water obtained during sample collection will be containerized, tested, and disposed of in accordance with applicable regulations.

6.3.109 Sampling Records

In order to provide complete documentation of the sampling event, detailed records will be maintained by the field scientist. At a minimum, these records will include the following information:

- Sample location (facility name);
- Sample identification;
- Sample location map or detailed sketch;

- Date and time of sampling;
- Sampling method;
- Field observations of
 - Sample appearance,
 - Sample odor;
- Weather conditions;
- Water level prior to purging;
- Total well depth;
- Purge volume;
- Water level after purging;
- Well condition;
- Sampler's identification;
- Field measurements of pH, temperature, and specific conductivity; and
- Any other relevant information.

Groundwater sampling activities will be recorded on a groundwater sampling form or in the field scientist's field notebook. Figure 6.2 shows an example of the groundwater sampling record.

6.4 SAMPLE HANDLING

6.4.1 Sample Labels

The sample label will be firmly attached to the sample sleeve immediately after sample collection, and the following information will be legibly and indelibly written on the label:

- Facility name;
- Sample identification;
- Sample type (e.g., groundwater)
- Sample depth (soil only);

			(number)
	OR SAMPLING: [X] Regular San		, ,
DATE AND	TIME OF SAMPLING:	, 1996 a.m./p.m.	
	OLLECTED BY: of _		
	:		
DATUM FO	OR WATER DEPTH MEASUREM.	ENT (Describe):	
MONITORI	ING WELL CONDITION:		
	[] LOCKED:	[] UNLOCKED	
	WELL NUMBER (IS - IS NOT)		
		IS:	
	INNER PVC CASING CONDIT		·
		ENT DATUM (IS - IS NOT) APPARENT	
		ED BY SAMPLE COLLECTOR	
		QUIRED REPAIR (describe):	
Check-off	-		
1[]		ORE USE WITH	
	Items Cleaned (List	t):	
2[]	PRODUCT DEPTH		FT. BELOW DATUM
	Measured with:		
	WATER DEPTH		FT. BELOW DATUM
	Measured with:		
3[]		E WELL EVACUATION (Describe):	
	Appearance:	·	
	Odor:		
	Other Comments:		
4 []	WELL EVACUATION:		
		** t t	
	Volume Removed:_		
		Vater (slightly - very) cloudy	
		Vater level (rose - fell - no change)	
	V	Vater odors:	
	0	Other comments:	

FIGURE 6.2

GROUNDWATER SAMPLING RECORD

HWSA Amended Closure/Post-Closure Plan Rickenbacker ANGB, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

			ing Well No.	(Cont'd)
5[]	SAMPL	E EXTRACTION M	IETHOD:	
		[] Pump, typ		
		[] Other, des	cribe	
		Sample obtaine	ed is [X] GRAB; []	COMPOSITE SAMPLE
6[]	ON-SIT	E MEASUREMENT		A.C. and a side
		Temp:	<u>C</u>	Measured with: Measured with:
		pH: Conductivity: _		Measured with:
		Dissolved Oxy	gen:	Measured with:
		Redox Potentia		Measured with:
		Salinity:		Measured with: Measured with:
		Nitrate:	,	Measured with:
		Ferrous Iron: _		Measured with:
		Other:		
	a			
7[]	SAMPL	E CONTAINERS (r	naterial, number, size):_	
8[]	ON-SIT	E SAMPLE TREAT	MENT:	
~ []				
	[]	Filtration:		Containers: Containers:
				Containers:
	[]	Preservatives a	idded:	
	į J	1 Teser varives a		
			•••	Containers:
			Method	Containers: Containers:
				Containers:
			-	
9[]	CONTA	INER HANDLING	:	
		L .	er Sides Labeled	
		* -	er Lids Taped ers Placed in Ice Chest	
		[] Contain	ers Placed in Ice Chest	
10[]	OTHER	COMMENTS:		FIGURE 6.2
	 			(Continued)
				GROUNDWATER
				SAMPLING RECORD
				HWSA
	•			Amended Closure/Post-Closure Plan
				Rickenbacker ANGB, Ohio
				PARSONS ENGINEERING SCIENCE, INC.
				Denver, Colorado

- Preservatives added;
- · Sampling date;
- Sampling time;
- Sample collector's initials; and
- Requested analyses.

6.4.2 Sample Preservation

Samples will be properly prepared for transportation to the laboratory by placing the samples in an adequately padded cooler containing ice to maintain an approximate shipping temperature of 4 degrees centigrade (°C). Additional sample preservation techniques are presented in Table 6.4.

6.4.3 Sample Shipment

After the samples are sealed and labeled, they will be packaged for transport to the EPA-approved analytical laboratory. Samples will be shipped priority overnight via Federal Express[®]. The following packaging and labeling procedures will be followed:

- Package sample so that it will not leak, spill, or vaporize from its container;
- Label shipping container with:
 - Sample collector's name, address, and telephone number;
 - Laboratory's name, address, and telephone number;
 - Description of sample;
 - Quantity of sample; and
 - Date of shipment.

The packaged samples will be delivered to the laboratory as soon as possible after sample acquisition, and in accordance with analytical method-specific holding times.

6.4.4 Chain-Of-Custody Control

After the samples have been collected, chain-of-custody procedures will be followed to establish a written record of sample handling and movement between the sampling site and the laboratory. Each shipping container will have a chain-of-custody form completed in triplicate by the sampling personnel. One copy of this form will be kept by the sampling team and the other two copies will be sent to the laboratory. One of the laboratory copies will become a part of the permanent record for the sample and

will be returned with the sample analytical results. The chain-of-custody will contain the following information:

- Sample identification number;
- Sample collector's printed name and signature;
- Date and time of collection;
- Place and address of collection;
- Sample matrix;
- Analyses requested;
- Signatures of individuals involved in the chain of possession; and
- Inclusive dates of possession.

The chain-of-custody documentation will be placed inside the shipping container so that it will be immediately apparent to the laboratory personnel receiving the container, but will not be damaged or lost during transport. The shipping container will be sealed so that it will be obvious if the seal has been tampered with or broken.

6.5 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND SAMPLING AND POTENTIAL INTERFERENCES

Field QA/QC procedures will include collection of field duplicates and rinseate, field and trip blanks; decontamination of all equipment that contacts the sample medium before and after each use; use of analyte-appropriate containers; and chain-of-custody procedures for sample handling and tracking. All samples to be transferred to an onsite or offsite analytical laboratory for analysis will be clearly labeled to indicate sample number, location, matrix (e.g., groundwater), and analyses requested. Samples will be preserved in accordance with the analytical methods to be used and packaged in coolers with ice to maintain a temperature of approximately 4 °C.

All field sampling activities will be recorded in a bound, sequentially paginated field notebook in permanent ink. All sample collection entries will include the date, time, sample locations and numbers, notations of field observations, and the sampler's name and signature. Field QC samples will be collected in accordance with the program described below, and as summarized in Table 6.62.

QA/QC sampling will include collection and analysis of duplicate samples, rinseate blanks, field/trip blanks, and matrix spike samples. Internal laboratory QC analyses will involve the analysis of laboratory control samples (LCSS) and laboratory method blanks—(LMBS). QA/QC objectives for each of these samples, blanks, and spikes are described below.

TABLE 6.6 QA/QC SAMPLING PROGRAM HAZARDOUS WASTE STORAGE AREA AMMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB, OHIO

QA/QC Sample Types	Frequency to be Collected and/or Analyzed	Analytes or Analytical Methods
		VOCs, TPH
Duplicates/Replicates	10% of Samples per Matrix a/	VOCs
Rinseate Blanks	10% of Groundwater Samples a/	VOCs
Field Blanks	5% of Groundwater Samples a/	VOCs
Trip Blanks	One per shipping cooler containing VOC samples	VOCs
Matrix Spike Samples	Once per sampling event	VOCs
Laboratory Control Sample	Once per method per medium	Laboratory Control Charts
	,	(Method Specific)
Laboratory Method Blank	Once per method per medium	Laboratory Control Charts
	•	(Method Specific)

a/ Rounded to the next highest whole number.

One duplicate sample will be collected for every 10 or fewer samples collected, both for groundwater and soils. Volume permitting, duplicate samples will be collected at locations where low to moderate levels of contamination are believed to be present.

One rinseate sample will be collected for every 10 or fewer groundwater samples collected from existing wells. Improperly decontaminated sampling equipment represents the primary field sampling inaccuracy resulting in a potential analytical interference. Equipment rinseate blanks are used to measure contamination introduced to a sample set as a result of improperly decontaminated equipment. Equipment rinseate blanks consist of distilled water (or equivalent) poured or pumped through the sampling device following decontamination. If disposable bailers are used for this sampling event, the rinseate sample will consist of a sample of distilled water poured into a new disposable bailer and subsequently transferred into a sample container provided by the laboratory.

A field blank will be collected for every 20 or fewer groundwater samples (both from groundwater monitoring point and existing groundwater monitoring well sampling events) to assess the effects of ambient conditions in the field. The field blank will consist of a sample of distilled water poured into a laboratory-supplied sample container while sampling activities are underway. The field blank will be analyzed for VOCS.

A trip blank will be analyzed to assess the effects of ambient conditions on sampling results during the storage and transportation of samples. The trip blank which will be prepared by the laboratory will be used to verify potential interferences resulting from ambient conditions or improper storage and handling. A trip blank will be transported inside each cooler which contains samples for VOC analysis. Trip blanks will be analyzed for VOCS.

Matrix spikes will be prepared in the laboratory and used to establish matrix effects for samples analyzed for VOCS.

LCSS and LMBS will be prepared internally by the laboratory and will be analyzed each day samples from the site are analyzed. Samples will be reanalyzed in cases where the LCS or LMB are out of the control limits. Control charts for LCSS and LMBS will be developed by the laboratory and monitored for the analytical methods used.

Potential interferences resulting from laboratory analysis will be determined by laboratory confirmation of matrix effects and analysis of laboratory method blanks.

Method required quality control samples such as matrix spikes (MS) and surrogate spikes are used to indicated the accuracy of the analytical protocol in relation to the sample matrix. When the accuracy for MSs and surrogate spikes meets the method specified requirements, the quality control spikes fail specified

requirements, a matrix effect must be confirmed. Confirmation is done by evaluating quality control samples designed to show only instrument control, unrelated to matrix. This quality control sample is a laboratory control sample (LCS). When the LCS has met it's quality control requirements, and the MS and or the surrogate spike fails, a matrix affect is assumed.

Laboratory method blanks are designed to detect contamination of the field samples in the laboratory environment. Method blanks verify that interferences caused by contaminants in solvents, reagents, glassware, or in other sample processing hardware are known and minimized. The laboratory method blank will be American Society for Testing and Materials Type II water (or equivalent) for water samples, and a purified solid matrix (Ottawa sand or equivalent) for soil samples. The concentration of target compounds in the blanks must be less than the PQL. Exceptions are not made for common laboratory contaminants. If the blank contaminant concentration is not less than the specified limit, then the source of contamination will be identified, and corrective action will be taken.

6.6 CALIBRATION PROCEDURES AND FREQUENCY FOR FIELD TEST EQUIPMENT

Instruments and equipment used to gather, generate, or measure environmental data in the field will be calibrated with sufficient frequency and in such a manner that accuracy and reproducibility of results are consistent with the manufacturer's specifications. Field instruments may include a pH meter, digital thermometer, O_2/CO_2 meter, TVH meter, photoionization detector, specific conductivity meter, dissolved oxygen meter, oxidation reduction potential meter, and Hach® spectrophotometer. A summary of calibration frequency and acceptance criteria is presented in Table 6.7.

6.7 DETERMINING CONTAMINANT MIGRATION RATES

Biodegradation rate constants are necessary to accurately estimate contaminant migration rates at the HWSA. Biodegradation of both fuel hydrocarbons and CAHs can generally be approximated using first-order kinetics. In order to calculate first-order biodegradation rate constants, the apparent degradation rate must be normalized for the effects of dilution and volatilization. Two methods can be employed for determining first-order rate constants. One method involves using either biologically recalcitrant compounds normally found in BTEX plumes (i.e., the trimethyl and tetramethyl benzene isomers) or the carbon core of the CAH compounds as a conservative tracer. In these types of methods, the measured tracer and contaminant concentrations are taken from a minimum of two points along a flow path. A simple proportional equation is used to estimate the theoretical concentration resulting from biodegradation alone for every point along a flow path on the basis of the measured contaminant concentration and the contaminant/tracer ratios between consecutive points along the flow path. The

TABLE 6.7 CALIBRATION OF EQUIPMENT FOR FIELD SCREENING HAZARDOUS WASTE STORAGE AREA RICKENBACKER ANGB, OHIO

Reporting Limit	0.02 µmhos/cm	pH units		၁့	pe ^{d/} units	20.0 mg∕L ^e /	0.5 mg/L
Corrective Action ^{a/}	If calibration is not achieved, check meter, standards, and probe; recalibrate	If calibration is not achieved, check meter, buffer solutions, and probe; replace if necessary; repeat calibration	Correct problem, recalibrate	Correct problem, repeat measurement	Correct problem, recalibrate	Correct problem by standard solutions, and optical cell; replace if necessary; repeat calibration check	Correct problem by checking meter, standard solutions, replace if necessary; repeat calibration check
Acceptance Criteria	± 5%	± 0.05 pH units for every buffer	± 0.1 pH units	± 1.0°¢⁄	Two successive readings ± 10 millivolts	70 % ∓	+5%
Minimum Frequency	Once per day at beginning of testing	Once per day at beginning of testing	At each sample location	Once per day at beginning of testing	Once per day at beginning of testing	Once per day	Once per day at beginning of testing
QC Check	Calibration with potassium chloride standard	2-point calibration with pH buffers	pH 7 buffer	Check against a mercury thermometer	Calibration with one standard	Accuracy check, (3 concentration points)	Calibration check with one standard, and zero meter with sodium sulfate solution
Applicable Parameter	Conductance	pH (water)		Temperature	Oxidation- reduction potential	Alkalinity	Dissolved oxygen
Method	SW9050	SW9040		E170.1	ASTNF/ D1498	Hach TM 8221	E360.1

6-32

TABLE 6.7 (Continued) CALIBRATION OF EQUIPMENT FOR FIELD SCREENING HAZARDOUS WASTE STORAGE AREA RICKENBACKER ANGB, OHIO

			,	Acceptance	Corrective	Reporting
Method	1	QC Check	Minimum Frequency	Criteria	Action	Limit
HACHTM		Calibration check with one standard, and zero	Once per day at beginning of	±5%	Correct problem by	0.07 mg/L
8039	(NO ₃)	meter w/sodium sultate solution	testing		checking meter, standard	
					solutions, replace if	
					necessary; repeat	
					calibration check	
		Accuracy check, (3 concentration points)	Once per day	≠ 50 %	Correct problem by	
					checking meter, standard	
					solutions, and optical cell;	
					replace if necessary; repeat	
					calibration check	
HACHTM		Calibration check with one standard	Once per day at beginning of	7 € 50 %	Correct problem by	0.01 mg/L
0+08	(NO <u>,</u>)		testing		checking meter, standard	
3					solutions, and optical cell;	
					replace if necessary; repeat	
	-				calibration check	
		Accuracy check, (3 concentration points)	Once per day	± 50 %	Correct problem by	
					checking meter, standard	
					solutions, and optical cell;	
					replace if necessary; repeat	
					calibration check	
Hach		Calibration check with one standard	Once per day at beginning of	± 50 %	Correct problem by	0.024 mg/L
8146	(Fe ⁻ ⁺)		testing		checking meter, standard	
					solutions, and optical cell;	
					replace if necessary; repeat	
					calibration check	
		Accuracy check, (3 concentration points)	Once per day	± 50 %	Correct problem by	
					checking meter, standard	
					solutions, and optical cell;	
					replace if necessary; repeat	
					candration check	

CALIBRATION OF EQUIPMENT FOR FIELD SCREENING HAZARDOUS WASTE STORAGE AREA RICKENBACKER ANGB, OHIO TABLE 6.7 (Continued)

ese ese cse cse cse			Acceptance	Corrective	Reporting
Manganese Nanganese Nolatile Hydrocarbon S	heck	Minimum Frequency	Criteria	Action_	Limit
HTM Sulfide (S-') F Volatile	one standard	Once per day at beginning of	≠ 50 %	Correct problem by	0.024 mg/L
HTM Sulfide (S-')		testing		checking meter, standard	
HTM Sulfide (S-2)				solutions, and optical cell;	
HTM Sulfide (S-')				replace if necessary; repeat	
HTM Sulfide (S-²) P				calibration check	
HTM Sulfide (S-') (F Volatile r Hydrocarbon s	centration points)	Once per day	± 50 %	Correct problem by	
HTM Sulfide (S'-) (F Volatile 17 Hydrocarbon S S				checking meter, standard	
HTM Sulfide (S-') P				solutions, and optical cell;	
HTM Sulfide (S-')				replace if necessary; repeat	
HTM Sulfide (S-') P				calibration check	
Volatile Hydrocarbon S	one standard	Once per day at beginning of	≠ 50 %	Correct problem by	NA ^f
Volatile Hydrocarbon S		testing		checking meter, standard	
Volatile Hydrocarbon S				solutions, and optical cell;	
Volatile Hydrocarbon S				replace if necessary; repeat	
Volatile Hydrocarbon S				calibration check	
Volatile Hydrocarbon S	centration points)	Once per day	∓ 50 %	Correct problem by	
Volatile Hydrocarbon s				checking meter, standard	
Volatile Hydrocarbon S				solutions, and optical cell;	
Volatile Hydrocarbon S				replace if necessary; repeat	
Volatile Hydrocarbon S				calibration check	
Hydrocarbon s	e standard	Once per day at beginning of	± 10 %	Correct problem by	, _ų vudd
S 17.12.4:12		testing		checking meter; repeat	
1/0104:10				calibration check	
rid volatile Cambration with isobutylene standard	lene standard	Once per day at beginning of	± 10 %	Correct problem by	vmqq
Organics		testing		checking meter and lamp;	
				repeat calibration check	

All corrective actions will be documented. a/ All correct
b/ C =
c/ ASTM =
d/ pe =
e/ mg/L =
f/ NA =

[°]C = degrees Celsius.

ASTM = American Society for Testing and Materials.

pe = potential platinum electrode.

mg/L = milligrams per liter.

not applicable. total volatile hydrocarbons. 8' TVH =
h ppmv =
i' PID =

parts per million, volume per volume. photoionization detector.

other method, proposed by Busckeck and Alcantar (1995) involves interpretation of a steady-state contaminant plume and is based on the one-dimensional steadystate analytical solution to the advection-dispersion equation presented by Bear (1979). In summary, this method involves coupling the regression of contaminant concentration (plotted on a logarithmic scale) versus distance downgradient (plotted on a linear scale) to an analytical solution for one-dimensional, steadystate, contaminant transport that includes advection, dispersion, sorption, and biodegradation. All of these methods are fully described in two AFCEE technical protocols (Wiedemeier et al., 1995; Wiedemeier et al., in progress). Once the biodegradation rate constants are defined for the site from each assessment sampling event, these data can be coupled to estimates of contaminant retardation and groundwater flow velocity to yield site-specific contaminant migration rates. Subsequent groundwater assessment reports submitted for the HWSA will use these types of quantitative techniques to evaluate contaminant migration rates and assess the effectiveness of natural attenuation processes at complementing engineered remedial techniques.

SECTION 7

HEALTH AND SAFETY PLAN

The purpose of this plan is to outline the protection standards and mandatory safety practices for all personnel involved in closure activities for the HWSA at Rickenbacker ANGB. The provisions of this plan are mandatory for all onsite investigations related to this closure plan. Any supplemental plans used by subcontractors will conform to this plan as a minimum. This plan provides general health and safety guidance for site operations. Specific health and safety guidance is deferred to individual task program managers and health and safety officers.

7.1 PROGRAM HEALTH AND SAFETY OFFICER

The task health and safety officer will be responsible for developing a site specific training program to be presented to all personnel working at the site. The training will be conducted before work commences, and will include the following topics:

- Names of personnel responsible for site health and safety;
- Acute effects of compounds at the site;
- OSHA regulations;
- Safety, health and other hazards at the site;
- Work practices by which employees can minimize risk from hazards;
- Decontamination procedures; and
- Proper use of personnel protection equipment.

The task health and safety officer will also conduct daily briefings to discuss specific procedures and hazards which will be encountered that day and will ensure that field practices are consistent with the guidelines provided in OSHA's 29 CFR 1910.120, 1910.132, 1910.1200, and 1926, USEPA's Occupational Health and Safety Manual, and Chapter 9 of the USEPA's Standard Operating Safety Guidelines. The task health and safety officer is also responsible for maintaining all employee training and medical monitoring documentation.

7.2 SITE-SPECIFIC EMPLOYEE TRAINING AND MEDICAL MONITORING

All field team members will have received the 40-hour Occupational Safety and Health Administration (OSHA) training as specified in Title 29 Code of Federal

Regulations 1910.120, a current 8-hour annual refresher course and site-specific training. All field team members will be on appropriate and current medical monitoring programs. All personnel engaged in site supervisory positions will have completed the 8-hour OSHA supervisory training as specified in 29 CFR 1910.120(E). Additional training may be required for personnel involved in Level B (supplied air) respiratory protection, should that level of protection be necessary. Weekly safety briefings will be conducted if necessary.

7.3 SITE HAZARDS

7.3.1 Chemical Hazards

A number of products containing hazardous chemicals may be encountered during the implementation of this closure plan. Hazardous chemicals suspected to be present at the HWSA include fuel hydrocarbons and chlorinated solvents in soils and groundwater. If other compounds are discovered, the health and safety plan will be amended. The health hazard qualities of chemicals that may be encountered must be communicated to onsite employees.

7.3.2 Physical Hazards

In addition to the potential exposure to hazardous substances during the implementation of the closure plan, other physical hazards or hazardous conditions may be expected at the site due to the use of heavy equipment during soil gas surveys, monitoring well installation, installation and testing of both the soil and groundwater remedial systems, and groundwater and soils investigation. These include possible risks of injury while working with electrical equipment, in or around abandoned or moving equipment, and/ or heat stress and cold-related exposures. Work areas should therefore be cordoned off to protect both public and operational personnel. Additional information concerning task specific physical hazards are deferred to the task health and safety plans.

7.3.2.1 Electrical Safety

Some of the equipment used during implementation is operated by electricity. Maintenance and day-to-day activities require personnel to handle and control this equipment. Unless safe work practices are strictly observed, serious injury or death can result.

Ordinary 120 volt (v) electricity may be fatal. Extensive studies have shown that currents as low as 10 to 15 milliamps (MA) can cause loss of muscle control and that 12 V may, on good contact, cause injury. Therefore, all voltages should be considered dangerous. All electricity should be treated cautiously by trained personnel.

Electricity kills by paralyzing the nervous system and stopping muscular action. Frequently, electricity may hit the breathing center at the base of the brain and interrupt the transmission of the nervous impulses to the muscles responsible for breathing. In other cases, the electrical current directly affects the heart, causing it to cease pumping blood. Death follows from lack of oxygen in the body. It cannot be determined which action has taken place, therefore, a victim must be freed from the live conductor

promptly by use of a dry stick or other nonconductor or by turning off the electricity to at least this point of contact. Never use bare hands to remove a live wire from a victim or a victim from an electrical source. Artificial respiration or CPR should be applied immediately and continuously until breathing is restored, or until a doctor or emergency medical technician arrives.

7.3.2.1.1 General Electrical Safety Rules

- As long as you are not grounded, (i.e., as long as current cannot pass through your body to the ground) you are safe. While working on electrical circuits, do not touch the switch box cabinet or any other object, such as a pipe, that will give electric current a path through your body. Do not stand in water and, if possible, place a rubber mat under your feet.
- Allow only authorized people to work on electrical panels.
- Keep rubber mats in front of electrical panels.
- Treat all electrical wires and circuits as "live," unless certain they are not.
- Use approved rubber gloves.
- Electrical control panels should never be opened unless the job requires it.
- No part of the body should be used to test a circuit.
- Always work from a firm base as loss of balance may cause a fall onto energized busses or parts, which should be covered with a good electrical insulator such as a rubber blanket.
- No safety device should be made inoperative by removing guards, using oversized fuses, or blocking or bypassing protective devices, unless it is absolutely essential to the repair or maintenance activity, and then only after alerting operating personnel and the maintenance supervisor.
- All tools should have insulated handles, be electrically grounded, or be double insulated.
- Jewelry should never be worn when working on electric circuits.
- Use fuse pullers to change fuses.
- Never use metal ladders, metal tape measures, or other metal tools around electrical equipment.
- Keep wires from becoming a tripping hazard.
- When performing electrical work, even simply energizing a piece of equipment, observe "no smoking" signs.

• When working around electrical equipment, keep your mind on the potential hazards at all times.

7.3.2.1.2 Holding and Locking Out Electrical Circuits

The most important safety requirement in electrical maintenance is to have and adhere to a good system for holding and locking out electrical circuits when equipment is being repaired. Unexpected operation of electrical equipment that can be started by automatic or manual remote control may cause injuries to persons who happen to be close enough to be struck.

When motors or electrical equipment require repair, the circuit should be opened at the switch box, and the switch should be padlocked in the "off" position.

All personnel involved in maintenance work should be instructed in the following lockout procedure:

- · Alert the affected personnel.
- Before starting work on an engine, motor line shaft, or other power transmission equipment, or power driven machine, make sure it cannot be set in motion without your permission.
- Place your own padlock on the control switch, lever, or valve, even though someone may have already locked the control. You will not be protected unless you put your own padlock on it.
- When through working at the end of your shift, remove your padlock; never permit someone else to remove it for you; and be sure you are not exposing another person to danger by removing your padlock.
- After repair, clear personnel from area before closing the breaker.

Further information concerning lockout/tag out procedures can be found in 29 CFR Part 169.

7.3.2.2 FIRE SAFETY

Fuel and solvents have been released into the soils at the HWSA and vapors escaping from the soils may be flammable or explosive (if in a confined space). Therefore, precautions should be taken when performing field work (drilling or well construction/installation) to ensure that combustible or explosive vapors have not accumulated, or that an ignition source is not introduced into a flammable atmosphere. An explosivity meter will be used during construction to monitor work in areas where a potentially explosive atmosphere exists. Tools used in areas with potentially explosive atmospheres will be of nonsparking design and materials.

OSHA standards for fire protection and prevention are contained in 29 CFR Subpart F, 1926.150 through 1926.154. Of particular concern are:

• Proper storage of flammables;

- Adequate numbers and types of fire extinguishers;
- Use of intrinsically safe or explosion proof equipment where appropriate;
- · Monitoring for development of an explosive atmosphere; and
- Prevention of explosive atmospheres by placing flammable equipment in well-ventilated enclosures.

7.3.2.3 Motor Vehicles and Heavy Equipment

Working with large motor vehicles and heavy equipment could be a major hazard at the HWSA. Injuries can result from equipment dislodging and striking unsuspecting personnel, and impacts from flying objects or overturning of vehicles. Vehicles and heavy equipment design and operation will be in accordance with 29 CFR, Subpart 0, 1926.600 through 1926.602. In particular, the following precautions will be used to help prevent injuries and accidents:

- Drill rig brakes, hydraulic lines, light signals, fire extinguishers, fluid levels, steering, tires, horn, and other safety devices will be checked and recorded routinely throughout the project.
- Do not back up large construction motor vehicles unless the vehicle has a reverse signal alarm (audible above the surrounding noise level) and backup warning lights, or when an observer signals it is safe to do so.
- Heavy equipment or motor vehicle cabs will be kept free of all nonessential items and all loose items will be secured.
- Construction and heavy equipment will be provided with necessary safety equipment including seat belts, rollover protection, emergency shutoff during rollover, backup warning lights, and audible alarms.
- Blades and buckets will be lowered to the ground and parking brakes will be set before shutting off any heavy equipment or vehicle.

Typical hazards associated with drilling activities include suspended loads dropping on employees, being caught between a load and a stationary object, or being struck by counterweights. They can be prevented or their impact minimized by the safe operation of drilling equipment, wearing protective equipment including a hard hat and safety boots, and routinely inspecting drilling/cone penetrometer equipment to identify unsafe conditions (e.g., frayed ropes).

7.3.2.4 Electrical Line Clearance and Thunderstorms

Extra precautions will be exercised when drilling near overhead electrical lines. The minimum clearance between overhead electrical lines of 50 kilovolts (Kv) or less and the drill rig is 10 feet. For lines rated over 50 Kv, the minimum clearance between the lines and any part of the rig is 10 feet plus 0.4 inches for each Kv over 50 Kv. Because the power rating of overhead lines is not typically known, a 20-foot

minimum distance will be maintained between the drill rig and overhead power lines. Drilling operations must cease during thunderstorms.

Onsite surveillance of the drilling subcontractor should be provided to ensure that personnel meet these requirements. If deficiencies are noted, work will be stopped and corrective actions implemented. Reports of health and safety deficiencies and the corrective actions taken will be forwarded to the installation manager.

7.3.2.5 Slip, Trip and Fall Hazards

The HWSA site could contain a number of slip, trip and fall hazards for site workers, such as:

- · Holes, pits, or ditches;
- Slippery surfaces;
- Steep grades;
- · Uneven grades; and
- Sharp objects.

Site personnel will be instructed to look for potential safety hazards and immediately inform the site health and safety officer (SHSO) or the site manager about any new hazards. If the hazard cannot be immediately removed, actions must be taken to warn site workers about the hazard.

7.3.2.6 Excavation Activities

Prior to initiation of any excavation activities the location, if any, of underground installations such as sewers, telephone, water, fuel, and electric lines must be determined. The walls and faces of all excavations in which personnel are exposed to danger from moving ground must be guarded by a shoring system, sloping of the ground, or by some other equivalent means.

Excavations (greater than 4 feet deep) must be inspected by a competent person, as defined in OSHA, after every rainstorm or other hazard increasing occurrence, and the protection against slides and cave-ins will be increased if necessary. All OSHA requirements concerning excavation activities, contained in 29 CFR 1926.651, must be followed.

7.3.2.7 Subsurface Hazards

Before ground penetration activities are initiated, efforts must be made to determine whether underground installations, (e.g., sewers, telephone, water, fuel, and electric lines) will be encountered and, if so, where such underground installations are located. Utility companies or the base engineer will be contacted by the field team leader prior to commencing intrusive operations and the necessary clearances obtained.

7.3.2.8 Noise-Induced Hearing Loss

Work onsite will involve the use of heavy equipment such as a drill rig, compressor, generator, and excavation equipment. The unprotected exposure of site workers to this noise or to aircraft noise during activities near runways or aircraft can result in noise induced hearing loss. The SHSO will ensure that either ear muffs or disposable foam earplugs are made available to, and used by, all personnel in the vicinity of the operation of heavy equipment, aircraft noise, or other sources of high intensity noise.

7.3.2.9 Heat Stress and Cold-Related Illness

Adverse weather conditions are important considerations in planning and conducting site operations. Hot or cold weather can cause physical discomfort, loss of efficiency, and personal injury. Of particular importance is heat stress resulting when temperatures are moderate or when employees are wearing impermeable clothing.

Heat stress: Heat stress can result when protective clothing decreases natural body ventilation. Heat stress can occur even when temperatures are moderate if employees are wearing impermeable protective clothing.

Cold-related illness: If work on this project is conducted in the winter months, thermal injury due to cold exposure can become a problem for field personnel. Cold exposure symptoms, including hypothermia and frostbite, should be monitored when workers are exposed to low temperatures for extended periods of time.

7.4 PERSONNEL ROLES, LINES OF AUTHORITY, AND COMMUNICATION PROCEDURES DURING AN EMERGENCY

When an emergency occurs, decisive action is required. Rapidly made choices may have far reaching, long-term consequences. Delays of minutes can create life threatening situations. Personnel must be ready to respond to emergency situations immediately. All personnel should know their own responsibilities during an emergency, know who is in charge during an emergency, and know the extent of that person's authority. This section outlines personnel roles, lines of authority, and communication procedures during emergencies.

In the event of an emergency situation at a site, the site manager and the SHSO will assume total control and will be responsible for onsite decision making. These individuals have the authority to resolve all disputes about health and safety requirements and precautions. They will also be responsible for coordinating all activities until emergency response teams (ambulance, fire department, etc.) arrive onsite.

The site manager will ensure that the necessary air force personnel, field personnel, and agencies are contacted as soon as possible after the emergency occurs. All onsite personnel must know the location of the nearest telephone and the location of the emergency telephone number.

7.4.1 Evacuation Routes and Procedures, Safe Distances, and Places of Refuge

In the event of emergency conditions, employees will evacuate the area as instructed, transport injured personnel, or take other measures to mitigate the situation. Evacuation routes and safe distances will be decided upon and posted prior to initiating work.

7.4.2 Decontamination of Personnel During an Emergency

Procedures for leaving a contaminated area must be planned and implemented prior to going onsite. Work areas and decontamination procedures must be established based on expected site conditions. If a member of the field crew is exposed to chemicals, the emergency procedures outlined below should be followed:

- Another team member (buddy) should assist or remove the individual from the immediate area of contamination to an upwind location if it is safe to do so.
- Precautions should be taken to avoid exposure of other individuals to the chemical.
- If the chemical is on the individual's clothing, the clothing should be removed if it is safe to do so.
- Administer first aid and transport the victim to the nearest medical facility, if necessary.

If uninjured employees are required to evacuate a contaminated area in an emergency situation, emergency decontamination procedures should be followed. At a minimum these procedures would involve moving into a safe area and removing protective equipment. Care should be taken to minimize contamination of the safe area and personnel. Contaminated clothing should be placed in plastic garbage bags or other suitable containers. Employees should wash or shower as soon as possible.

7.4.3 EMERGENCY SITE SECURITY AND CONTROL

For this project, the site manager (or designated representative) must know who is onsite and who is in the work area. Personnel access into the work area should be controlled. In an emergency situation, only necessary rescue and response personnel should be allowed into the exclusion zone.

7.5 PROCEDURES FOR EMERGENCY MEDICAL TREATMENT AND FIRST AID

7.5.1 Chemical Exposure

In the event of chemical exposure (skin contact, inhalation, ingestion) the following procedures should be implemented:

• Another team member (buddy) should assist or remove the individual from the immediate area of contamination to an upwind location if it is safe to do so.

- Precautions should be taken to avoid exposure of other individuals to the chemical.
- If the chemical is on the individual's clothing, the clothing should be removed if it is safe to do so.
- If the chemical has contacted the skin, the skin should be washed with copious amounts of water, preferably under a shower.
- In case of eye contact, an emergency eye wash should be used. Eyes should be washed for at least 15 minutes.
- If necessary, the victim should be transported to the nearest hospital or medical center. If necessary, an ambulance should be called to transport the victim.

7.5.2 Personal Injury

In the event of personal injury:

- Field team members trained in first aid can administer treatment to an injured worker.
- The victim should be transported to the nearest hospital or medical center. If necessary, an ambulance should be called to transport the victim.
- The field supervisor is responsible for the completion of an accident report form.

7.5.3 Fire or Explosion

In the event of fire or explosion, personnel will evacuate the area immediately and administer necessary first aid to injured employees. Personnel will proceed to a safe area and telephone the emergency support services. Upon contacting the emergency support services, the caller should state his/her name, nature of the hazard (fire, high combustible vapor levels), the location of the incident, and whether there were any physical injuries requiring an ambulance. Do not hang up until emergency support services has all of the additional information they may require.

7.6 PERSONAL PROTECTIVE EQUIPMENT

The personal protection level prescribed for the project is OSHA Level D (no respiratory or chemical protective clothing), with a contingency for the use of OSHA Level C or B as site conditions require. Unless certain compounds are ruled out through use of appropriate air monitoring techniques such as dräger tubes, portable sampling pumps, or an onsite gas chromatograph (gc), Level C respiratory protection [air-purifying respirator (apr)] cannot be used. Level C protection may only be used on this project when vapors in air are adequately identified and quantified and Level C respirator-use criteria are met. Level B (supplied air) respiratory protection must be used on this project in the presence of unknown vapor constituents or if benzene is detected at or above 1 ppmv. This is based on the toxicity and warning properties

(high odor threshold) for benzene. Air monitoring must be conducted in the worker breathing zone when the potential occurrence of these compounds exists.

Ambient air monitoring of organic gases/vapors (using photoionization detectors such as an HNU or PHOTOVAC tip or by colorimetric analysis with DRÄGER tubes) will be used to select the appropriate level of personal protection. If the portable air monitoring equipment indicates organic vapor concentrations of 0-5 ppmv, site workers will continue air monitoring in a Level D ensemble. If organic vapors reach 5-25 ppmy for more than 30 seconds, and/or benzene concentrations exceed 1 ppmy, site workers will evacuate the area or upgrade to Level B ensemble, if trained to do so. If benzene concentrations are less than 1 ppmv in the breathing zone, the site crews may continue in Level D ensemble with periodic air monitoring. If organic vapor concentrations reach 25-50 ppmv for greater than 30 seconds and benzene concentrations exceed 1 ppmv, site crews will evacuate the site or upgrade to Level b ensemble. If benzene concentrations are less than 1 ppmv, and vapors are in the range of 25-50 ppmv, site workers will don full facepiece air-purifying respirators (APR) equipped with organic vapor cartridges (NIOSH approved), and continue periodic monitoring. If organic vapor concentrations reach 50-500 ppmv for greater than 30 seconds, site crews will evacuate the site or upgrade to Level B ensemble. If organic vapor concentrations exceed 500 ppmv for greater than 30 seconds, site crews will evacuate the site. The site health and safety officer will determine when changes in the level of respiratory protection are appropriate.

The following personal protective ensemble is required only when handling contaminated samples or equipment.

Mandatory Equipment	Optional Equipment
Vinyl or Latex Inner Gloves	Air Purifying Respirator (equipped with
Neoprene or Silver Shield/Outer Gloves	organic vapor/high Efficiency Particulate
Steel-Toed, Steel Shank Work Boots	Air [HEPA] Catridges)
	Self-Contained Breathing Apparatus (SCBA) or Air-Line Respirator in Pressure-Demand Mode
	Leather or Rubber Safety Boots
	Disposable Tyvek/Coveralls
	Outer Disposable Boot Covers
	Saranex/Suits
	Chemical Goggles
	Hard Hat

Each field team shall have the following items readily available:

- Copy of this health and safety plan, including a separate list of emergency contacts;
- First aid kit;

- · Eye wash bottle;
- · Paper towels;
- Duct tape;
- Water; and
- Plastic garbage bags.

7.7 SITE CONTROL MEASURES

The following site control measures will be followed in order to minimize potential contamination of workers, protect the public from potential site hazards, and to control access to the site. Site control involves the physical arrangement and control of the operation zones (i.e., site organization) and the methods for removing contaminants from workers and equipment. Site organization is discussed in this section.

7.7.1 Site Operation Zones

Any time respirators are worn, the following operation zones will be established on the site or around a particular site feature (such as the drill rig):

- Exclusion zone (or contamination zone)
- Contamination-reduction zone
- Support zone.

If protective clothing, such as gloves and/or TYVEK suits, are worn but respirators are not worn (Level D-modified), the field crew will establish a decontamination area to avoid spreading contaminants offsite. The field team leader and/or site safety officer will be responsible for establishing the size and distance between zones at the site or around the site feature. Professional judgment is required to assure safe working distances for each zone are balanced against practical work considerations.

7.7.1.1 Exclusion Zone (Contamination Zone)

The exclusion zone is the place within which active investigation or cleanup operations occur. Within the exclusion zone, prescribed levels of protection must be worn by all personnel. The hotline, or exclusion zone boundary, is initially catablished based upon the presence of actual wastes or apparent spilled material, or through air monitoring, and is designated to encompass all physical indicators of hazardous substances (e.g., drums, ponds, tanks, liquid runoff defoliated areas). The hotline may be readjusted based upon subsequent observations and measurements. This boundary should be physically secure and posted or well-defined by physical and geographic boundaries.

Under some circumstances, the exclusion zone may be subdivided into zones based upon environmental measurements or expected onsite work conditions. An exclusion

zone will be established around the drill rig or other appropriate site features if Level C or B protection is required.

7.7.1.2 Contamination-Reduction Zone

Between the exclusion zone and the support zone is the contamination-reduction zone. This zone provides an area to prevent or reduce the transfer of hazardous materials which may have been picked up by personnel or equipment leaving the exclusion area. All decontamination activities occur in this area.

7.7.1.3 Support Zone

The support zone is the outermost area of the site and is considered a noncontaminated or clean area. The support zone contains the command post for field operations, first aid stations, and other investigation and cleanup support. Normal work clothes are appropriate apparel within this zone; potentially contaminated personnel clothing, equipment, etc., are not permitted.

7.7.2 Site Security

The site is currently surrounded by a 6-foot chain-link fence with locking gate. It is anticipated that this fence will remain throughout the course of the closure (Figure 1.3see Sheet 9). Access to the site is limited further by overall base security. A guard is on duty 24 hours per day at the Base gate.

Warning signs stating:

"DANGER - UNAUTHORIZED PERSONNEL KEEP OUT,"

or similar language will be posted around the permanent and temporary fencing. These site security measures meet the requirements of 40 CFR 265.14.

Site security will be enforced by the site health and safety officer who will ensure that only authorized personnel are allowed in the work area and that entry personnel have the required level of PPE, are trained under the requirements of 29 CFR 1910.120, and are on a current medical monitoring program.

Site security is necessary to prevent exposure of unauthorized, unprotected individuals in the work area. The areas immediately surrounding the work area will be clearly marked through use of warning signs, traffic cones, barrier tape, rope, or other suitable means.

7.7.3 Site Communication

Internal site communication is necessary to alert field team members in the exclusion zone and contamination-reduction zone of emergency conditions, to convey safety information, and to communicate changes or clarification in the work to be performed. For internal site communication, the field team members will use prearranged hand signals (and responses). Radios and/or compressed air horns may also be used for communication.

External site communication is necessary to coordinate emergency response teams and to maintain contact with essential offsite personnel. A telephone will be available for use in external site communication.

7.7.4 Safe Work Practices

To ensure a strong safety awareness program during field operations, personnel shall have adequate training, this health and safety plan must be communicated to the employees, and standing work orders developed and communicated to the employees. Sample standing orders for personnel entering the contamination-reduction zone and exclusion zone are as follows:

- No smoking, eating, drinking;
- No matches/lighters in the zone;
- Check in/check out at access control points;
- Use the buddy system;
- Wear appropriate PPE;
- Avoid walking through puddles or stained soil;
- Discovery of unusual or unexpected conditions will result in immediate evaluation and reassessment of site conditions and health and safety practices;
- Conduct safety briefings prior to onsite work;
- Conduct daily/weekly safety meetings as necessary; and
- Take precautions to reduce injuries from heavy equipment and other tools.

The following guidelines will be followed while working onsite:

- <u>Heavy Equipment</u> Only qualified operators will be allowed to operate heavy equipment. Subcontractors will be required to use the safe work guidelines included in the OSHA general industry (29 CFR 1910) and construction industry (29 CFR 1926) Standards.
- Trench Shoring Any trenches for human entry that are more than 5 feet deep will be shored or have the sides laid back in accordance with 29 CFR 1926 Subpart P. All trenching and shoring will be inspected on a daily basis by the SHSO.
- Power Lines When operating heavy equipment such as drilling rigs near power lines, workers will take care to ensure that the boom or rigging always maintains a safe distance (20-foot minimum) from power lines. Any underground utility lines must also be located, and appropriate measures taken before any excavation work or drilling is done.

- <u>Swing Radius</u> All swing equipment, such as cranes or backhoes, will have the swing radius guarded to prevent workers from being struck by the rotating machinery.
- <u>Electrical Equipment</u> All electrical equipment will be properly grounded and class approved for the location.
- <u>Machine Guarding</u> All machinery onsite will be properly guarded to prevent contact with rotating shafts, blades, or gears.
- <u>Flammable Materials</u> When work involves flammable materials, adequate ventilating and control of all ignition sources will be maintained. Preventative measures may include:
 - Nonsparking tools, no welding,
 - Explosion-proof equipment (intrinsically safe),
 - Class-approved electrical equipment,
 - Grounding and bonding of static electricity sources, and
 - No smoking or open lights.

7.8 PERSONNEL AND EQUIPMENT DECONTAMINATION PROCEDURES

An exclusion zone, contamination-reduction zone, and support zone will be established whenever field personnel are using Level C or B respiratory protection. Decontamination station layout will be made on a site-specific basis and will be designed to accommodate the particular PPE worn by employees and the types of chemical hazards encountered. Defined access and egress points will be established and personnel will enter and exit only through these points. A schematic of the decontamination pad used as part of Building 560 decontamination activities (SECTION 5) is presented in Figure 7.1.

If personnel are in Level D-modified protection (no respirator but using protective gloves and/or suits and other equipment), a portable decontamination station will be set up at the site at the site actively under investigation. The decontamination station will include provisions for collecting disposable personal protective equipment (PPE) (such as Tyvek® suits, gloves, etc.); washing boots, gloves, vinyl rainsuits (if used), and field instruments and tools; and washing hands, face, and other exposed body parts. Onsite personnel will shower upon return to their hotel or homes at the end of the work day. Refuse from decontamination will be bagged and left onsite for proper disposal.

7.9 EQUIPMENT DECONTAMINATION

Decontamination of drilling rigs and testing equipment will be conducted at a location onsite where the rinseate can be collected. High-pressure steam cleaning of drilling rigs and cone penetrometer testing equipment will be necessary prior to the start of the drilling operation, between borehole locations, and before the drill rig leaves the project site. All sampling equipment will be decontaminated prior to use, between samples, and between sampling locations. Sampling equipment should be thoroughly washed with detergent, followed by clean water rinse, solvent (methanol) rinse, and a distilled water rinse. Adequate time will be allowed for solvent evaporation before equipment reuse.

SECTION 8

SCHEDULE AND CERTIFICATION FOR CLOSURE

8.1 PROPOSED SCHEDULE FOR CLOSURE ACTIVITIES

Table 8.1 presents the schedule for the implementation of this closure plan. Each of the tasks is considered a major activity, and the Ohio EPA will be notified at least 5 days prior to initiating each task except for planned quarterly groundwater sampling. The engineer of record for the project will visit the site during approximately the 20-, 60- and 95-percent completion points of the installation and testing of both the source area soil remediation and groundwater amendment systems; and, if necessary, during the implementation of pre-closure contingency actions.

Time has been allowed in the schedule for the review and approval of all permit applications by-BUSTR, Ohio EPA, and other appropriate regulatory agencies. The AFBCA anticipates requesting site closure from Ohio EPA by the end of the year 2000; however, scheduled implementation of remedial action and site closure rely on timely review and approval of required tasks.

8.2 CERTIFICATION OF CLOSURE

Rickenbacker ANGB will submit certification of closure to the Director of the Central District Office of the OEPA, and to the Regional administrator of the USEPA. The certification will be signed by an agent of the owner/operator and by an independent, qualified, Ohio-registered professional engineer.

In accordance with Ohio Revised Code, OAC 3745-50-42(D), the signatories to the certification of closure will make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Table Name Control C		Sche	edule for Ir	Schedule for Implementation	Figure 8.1	Figure 8.1 n of Interim Action and Closure of the Former HWSA	ormer HWSA		
Control Advances Control Adv					Rickenbacker A	NGB, Ohio			
10 10 10 10 10 10 10 10	Task Name	Start	Finish	Duration	96.	26.	86.	66.	00.
1314	Quarterly Groundwater Monitoring	10/2/96		1046d					
Project Pro	Review/Approval of Amended Closure/Post Closure Plan	10/11/96		131d		-			
Figure 2012 Figure 2012 Figure 2012 Figure 2013	Installation of Additional Monitoring Wells	4/14/97		21d		•			
Find state Fi	Preliminary Evaluation of Health Based Performance Require			131d	••••••				
Programme Programs of Freed Strates Envisor (1974 cm) COTAMITY COTAMITY </td <td>Installation/Testing of Source Area Soil Remediation System</td> <td>76/6/9</td> <td></td> <td>90g</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Installation/Testing of Source Area Soil Remediation System	76/6/9		90g					
Project: Regulatory Review of Test Results	8/18/97		42d		 				
Regulatory floring of Test Results EVENT 157 Feb. 428 Operation of Approval Letter Remobility Species of Francisco and American Progress EVENTS 157 Feb. 4224 Operation of Approval Letter Remobility Results of Approval Letter Remobility Results on Approval 1117/1000 17300 17304 Regulatory Results on Approval 1117/1000 17300 17304 17304 Result Cheeving Approval 1107/1000 17304 17304 17304 Past - Cheave Addington Page permit 107/1000 17304 17304 Past - Cheave Addington Page permit 107/1000 17304 Page - Cheave Addington Page Permit 107/1000 17304 Propertion Page - Cheave Page Permit Page Permit <td>Installation/Testing of Groundwater Amendment System</td> <td>16/6/9</td> <td></td> <td>50d</td> <td>••••••</td> <td></td> <td></td> <td></td> <td></td>	Installation/Testing of Groundwater Amendment System	16/6/9		50d	••••••				
Figure Indiany Personal of Final DesignAs Bullis, and Oakh Int 61/697 1701429 171594 171594 171594 171594 171594 171594 171594 171594 171595	Regulatory Review of Test Results	8/18/97		42q	•••••	→			
Equation of Approved Internetial Systems 61'699 65'104 Equation of Remodal Progress 111'17'59 41'700 11'04 Regulatory Remove & Approval 11'17'59 41'700 10'100 10'100 Final Cheave Activities (Chi Jurah) or par permit 10'100 10'100 10'100 10'100 Post - Closure Activities (Chi Jurah) or par permit 10'100 10'100 10'100 10'100 Project. Project Relief Up Task Rolled Up Progress Rolled Up Progress Psychology Willestone Milestone Rolled Up Milestone Rolled Up Milestone Milestone F-XAPPSWNINPROJCOVER MPP Rolled Up Milestone Rolled Up Milestone Rolled Up Milestone Rolled Up Milestone	Regulatory Review/Approval of Final Design, As-Builts, and O.			42d		 			
Figuration of Reminds of Progress 677689 1171689 6774 Regulation of Reminds of Contributions of Cont	Operation of Approved Interim Remedial Systems	8/18/97		521d	••••••				
Regulatory Review & Approval 1177369 417700 1104 Implementation of Confingency Actions, Il necessary 4718,00 1071300 107300	Evaluation of Remedial Progress	8/16/99		P/29					
Implementation of Contingency Actions, If necessary Action 1730 1740 170130		11/17/99		110d)	
O years) or per permit 1001600 10116000 10116000 10116000 10116000 10116000 10		4/18/00		129d	••••••				—
1071800 1071800 78284	Final Closure Certification	10/13/00		19					-
Task Progress Rolled Up Task Rolled Up Milestone Milestone Mulestone Duration is calculated by a 5 day work week Wed 10/2/96	Post - Closure Activities (30 years) or per permit	10/16/00		7828d	•••••		•••••		•
Task Progress Rolled Up Task Rilestone Milestone Duration is calculated by a 5 day work week Rolled Up Milestone Wed 10/2/96									
Task Summary Wed 10/2/96 Progress Rolled Up Task Rolled Up Milestone Milestone Rolled Up Milestone Duration is calculated by a 5 day work week Rolled Up Progress Rolled Up Milestone Wed 10/2/96									
Progress Rolled Up Task Rolled Up Milestone Milestone Duration is calculated by a 5 day work week	<u> </u>	ssk			ummary	Rollec	d Up Progress		
Duration is calculated by a 5 day work week		ogress	1		colled Up Task				
Duration is calculated by a 5 day work week		llestone			colled op willestone	>			
	F:\APPS\WINPROJ\COVER.MPP			Dura	ition is calculated by	a 5 day work week			

The certification will be submitted to the OEPA and USEPA within 60 days of completion of closure activities, via registered mail. The certification will include a report detailing the closure activities. These activities consist of pre-closure sampling, UST removal, post-removal sampling, groundwater remediation system design and construction, building decontamination and removal, cover construction, and post-closure care. The report will also document that the hazardous waste storage area has been closed in accordance with the Specifications of the approved Closure Plan. Additionally, this document will incorporate all laboratory records and correspondence regarding the closure activity after the OEPA approval.

SECTION 9

POST-CLOSURE PLAN

The following plan summarizes activities to be completed at the site during the post-closure life of the HWSA. The post-closure life of the HWSA may last up to 30 years unless approval of a shorter post-closure care period is granted by the Ohio EPA.

Activities to be conducted during the post-closure period of the facility include post-closure notices, groundwater monitoring, remediation system monitoring and maintenance, site inspection and maintenance, and periodic reporting and amendment of the Post-Closure Plan, if necessary.

9.1 ACCESS CONTROL

During closure activities, the site will be secured with a chain-link fence, with padlocked gates to limit access in compliance with OAC 3745-68-9. The fence will be removed prior to construction of the taxiway or implementation of contingency actions, if necessary. Limiting access to the site will be unnecessary following construction of the taxiway.

9.2 SITE SURVEY

The location and dimensions of the fenced area (HWSA) will be determined by a registered professional surveyor with reference to permanently installed and protected onsite benchmarks. The survey data will be used to prepare and maintain a survey plat of the HWSA, which will be kept on the Base.9.3 Amendment of the Post-Closure Plan

9.3 AMENDMENT OF THE POST-CLOSURE PLAN

Whenever changes in the operating plans or facility design affect the post-closure plan, or events occur during the post-closure life of the facility, including partial or final closure, the post-closure plan will be modified by the procedures established in OAC 3745-66-18.

9.4 POST-CLOSURE FIELD ACTIVITIES

Many of the activities to be completed as a part of the post-closure plan will be field-related activities. These activities are described in detail below.

A groundwater monitoring system, in accordance with OAC 3745-65-90 (D), will be implemented at the site during closure activities and remain in use throughout the

duration of the post-closure life of the facility. This system, which will comply with OAC 3745-65-91 (A, B, C) and 3745-65-92 (A, E) is described in greater detail below.

9.4.1 Monitoring Well Installation

Nineteen existing monitoring wells or points currently are used to conduct quarterly monitoring at the site (refer to Figure 4.1). These sampling locations have been used to define the nature and extent of contamination at the site prior to closure activities. However, additional sampling points will be required to monitor the performance of the groundwater oxygenation system and to confirm the downgradient extent of chlorinated contamination in groundwater.

A total of 8 additional wells (3 shallow and 5 deep) will be installed and sampled as part of closure and post-closure activities. Three additional shallow/deep well clusters will be installed in the vicinity of ESMP-17s to assess the extent of dissolved contamination, and to monitor the performance of the groundwater oxygenation system. A deep well will be installed in the vicinity of ESMP-2, ESMP-3, and ESMP-4 to monitor dissolved chlorinated compounds. Finally, a deep well will be installed in the vicinity of ESMP-13, ESMP-14, and ESMP-15 to monitor the ongoing transformation of TCE to DCE to vinyl chloride. These wells will be used to supplement four existing wells (MW-4, MW-6, MW-8 AND MW-12) during closure and post-closure activities. Ongoing monitoring of those 15 sampling locations currently used to complete quarterly groundwater monitoring also may be sampled, as needed.

A total of 12 permanent monitoring wells will be sampled as a part of the post-closure activities. The locations of existing and proposed new wells to be monitored during post-closure activities are shown on Figure 9.1. These wells will be drilled to depths of approximately 19 feet bgs, screened across the deeper portions of the shallow aquifer, and completed as described in OAC 3745-65-91 (C). These wells will be sampled using methods described in Section 6. The purpose of these wells is to monitor site-related contamination over time, and to evaluate the effectiveness of the implemented closure activities.

9.4.2 Groundwater Monitoring

The 12 wells comprising the long-term monitoring network to be used during post-closure monitoring (Figure 9.1) will be sampled quarterly for the parameters listed in Table 6.1. Results of these groundwater monitoring activities will be submitted to the OEPA in an annual report as required by OAC 3745-65-93. When the implemented closure activities have effectively reduced residual contaminant concentrations to levels that no longer pose an unacceptable risk to potential receptors, given the planned use of the site, the post-closure plan will be amended and a petition for a risk-based closure will be submitted.

9.4.3 Sampling and Analysis

During closure activities, gGroundwater samples will be collected from the 19 existing wells currently included in the quarterly monitoring program (Figure 4.1)quarterly during the closure activities. Following the installation of the additional

8 wells, one assessment sampling event will be performed at these wells and the original 19 wells. After closure of the site, quarterly sampling will be performed at the 12 wells shown on Figure 9.1 as part of post-closure monitoringgroundwater samples will be collected quarterly from those 8 wells and 4 previously installed wells as a part of the post closure activities. All samples collected will be analyzed for parameters described in Table 6.1 using the methods described in Section 6. Samples will be collected and groundwater elevations will be determined.

9.4.4 System Inspection and Maintenance

Inspection and maintenance of all closure systems will be conducted concurrently with the quarterly sampling activities or as specified by system-specific operation and maintenance schedules. The inspection program will be recorded in a dedicated field book.

For the soil remediation system (whether passive or air injection), system inspections may be required about every month to evaluate performance. The following activities will typically be performed during a system check:

- Record air injection pressures and flow rates for each of the injection wells, if applicable;
- · Measure injection blower operating temperature and inlet vacuum, if applicable;
- Assess the condition of the air inlet filter element and replace as necessary;
- Measure DO content in specified monitoring points; and
- Note any unusual operating characteristics (e.g., clogged lines, tripped breakers, or damaged vent well).

All maintenance activities will be recorded on a checklist and will become part of the site record.

In addition to the monitoring described above, in situ respiration and radius of influence tests should be performed annually at all vent wells (VWs) and at the discrete vapor monitoring points (MPs) at the site. Soil gas samples collected from these locations will be analyzed for VOCS. This testing and sampling will be used to assess remedial progress and to assure that biodegradation is continuing in accordance with the bioventing technical protocol (Hinchee et al., 1992). If, at the end of the 1 or 2 years of operation, it appears that the majority of the VOC contamination at the site has been biodegraded based on respiration rates and soil gas samples, compliance soil samples will be collected. Samples will be analyzed for VOCs and SVOCs using USEPA methods. Soil samples will be compared to available site data to determine if contaminant levels have been remediated to levels that reduce potentially unacceptable risks.

For the groundwater oxygenation system, system inspections ideally should be performed every other week. the following activities will typically be performed during a system check:

- Record air injection pressure or check chemical addition rates;
- · Measure the injection blower flow rate and operating temperature, if appropriate;
- Assess the condition of the air inlet filter elements and/or chemical oxidants and replace as necessary; and
- Note any unusual operating characteristics (e.g., clogged lines, tripped breakers, ripped chemical sacks).

All maintenance activities will be recorded on a checklist and will become part of the site record. In addition to field monitoring, quantitative testing of system performance will be completed semiannually. These tests will be used to track progress in soil gas, soil, and groundwater toward *in situ* remediation. The following data should be collected during these testing events:

- Dissolved oxygen levels in the groundwater at various depths upgradient and downgradient from the system;
- · Soil gas TVH concentrations before and after periodic system shut down; and
- Soil gas oxygen and carbon dioxide during a short-term respiration test.

These results will be used to determine contaminant removal rates and estimated treatment time. In addition, *in situ* respiration and oxygen radius-of-influence tests will be performed semiannually at the site. This testing and sampling will be used to assess remedial progress and to assure that biodegradation is continuing. When 1-year6-month sampling results indicate that remediation is progressing as planned or asymptotic treatment levels have been attained, the system will be deactivated.

For the groundwater monitoring network, the inspection program will consist of checking each well for the following:

- · Damaged protective casings;
- · Damaged well casings;
- · Missing or damaged well covers, caps, or locks;
- Presence of foreign objects in wells;
- Heaving of the wells;
- · Damaged concrete pads;
- Subsidence of the wells;

- Silting of the wells; and
- Other signs of unauthorized use, abuse, vandalism, or deterioration.

If any of the above circumstances are observed, they will be noted in the dedicated field log book. The missing or damaged items will be repaired or replaced within 30 days, as appropriate. A record of any observations and repair/replacement activities will be included in the annual report.

9.4.5 Site Inspection and Maintenance

During each of the quarterly groundwater monitoring events, the site will be inspected and regular maintenance and repair activities will be completed. The following items will be inspected for damage due to use, abuse, wear, vandalism, or weathering:

- The fence, gate, and padlocks;
- The permanently installed benchmarks;
- The cover and drain system; and
- The site building.

If damage to any of these items is noted during the quarterly inspections, the damaged items will be immediately repaired or replaced. All damage and repair or maintenance actions will be noted in a field logbook and in the annual report to the Ohio EPA.

9.5 POST-CLOSURE NOTICES

9.5.1 Annual Groundwater Monitoring System Reports

Groundwater sampling reports will be submitted to the Ohio EPA annually during closure activities and the post-closure life of the facility. These reports will include the following information:

- Results of site inspection and maintenance activities;
- Groundwater elevation data;
- An evaluation of the groundwater surface elevations;
- Results of groundwater analyses;
- An evaluation of the analytical results;
- A determination of the rate and extent of contaminant migration; and
- Any other pertinent data or information.

9.5.2 Record of Hazardous Waste Disposal

As stipulated in OAC 3745-66-19, a record of the type, location, and quantity of hazardous wastes disposed of at the site will be submitted to the Ohio EPA and the local zoning authority no later than 60 days after the certification of closure.

9.5.3 Deed Restriction Notation and Certification

A notation will be recorded on the deed to the facility property in accordance with OAC 3745-66-19. A certification stating that the above-described notation was made and a copy of the document in which the notation was placed will be submitted to the director within sixty days of certification of closure.

9.5.4 Post-Closure Certification

A certification stating that the post-closure care period for the facility was performed in accordance with the specifications in the approved post closure plan will be submitted, by registered mail, to the Ddirector of the Central District Office of the OEPA, and to the Regional Administrator of the USEPA within 60 days of the completion of the established post-closure period. This certification will be signed by an agent of the owner/operator and by an independent, qualified, Ohio-registered professional engineer. This certification will include the exact wording found in OAC 3745-50-42 (D), which states:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate information submitted. Based on my inquiry of the person or persons that manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

The certification will include a report detailing the closure activities. These activities consist of pre-closure sampling, UST removal, post-removal sampling, groundwater remediation system design and construction, if required, building decontamination and removal, cover construction, and post-closure care. The report will also document that the former HWSA has been closed in accordance with the specifications of the approved closure plan. Additionally, this document will incorporate all laboratory records and correspondence regarding the closure activity after the OEPA approval.

9.5.5 Survey Plat

A survey plat of the facility will be submitted to the Ohio EPA and the local zoning authority no later than the submission of the certification of closure. The survey plat will contain a note, prominently displayed, that states the obligation of the owner/operator to restrict disturbance of the facility in accordance with OAC 3745-66-10 to 3745-66-20.

9.6 POST-CLOSURE CONTACT

The post-closure contact for the referenced site is:

Mr. Alan Friedstrom
AFBCA/DA RickenbackerAFBDA/MWR
7556 South Perimeter RoadBuilding 548
Columbus, OH 43217-5910Rickenbacker ANGB, Ohio 43217-5001
Telephone: (614) 492-8065 Ext. 134673

SECTION 10

COST ESTIMATES FOR CLOSURE

Rickenbacker Air National Guard Base is exempt from filing a closure cost estimate (40 CFR 265.142 and .143) because it is owned and operated by the federal government. However, preliminary cost estimates have been provided to support potential subsequent decisions regarding the need for contingency actions at the HWSA. Tables 10.1 and 10.2 provide cost estimates for proposed closure activities and potential high-cost contingency actions, respectively. estimates include basic costs that exist for both approaches, such as groundwater monitoring, closure permitting and well installation. Estimates do not include costs for any post-closure activities, such as quarterly groundwater sampling, which may be required by the Ohio EPA. Costs for the decontamination of building 560 and the removal of the USTs are not included in these estimates.

The proposed closure approach as prescribed in this report includes implementation of several tasks, including engineered remediation. The following tasks represent activities that were not originally scoped in previous versions of this plan:

- · Installation/testing of soil remediation and groundwater oxygenation systems;
- Installation of a total of 8 additional wells;
- One time sampling of 20 additional wells during scheduled quarterly groundwater sampling;
- Operation and maintenance of soil and groundwater remediation systems for two years; and
- Compliance soil sampling in the year 2000.

TABLE 10.1

COST ESTIMATES FOR PROPOSED CLOSURE ACTIONS HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB,OHIO

	More Passive Approaches	More Engineered Approaches
Capital Costs		
Installation of 8 new wells to confirm nature and extent of contamination, and monitor remedial progress	£22.400	¢22.400
Initial sampling of all wells (31 existing and 8 new)	\$22,400 \$31,100	\$22,400 \$31,100
Preliminary health-based performance evaluation with regulatory support	\$56,000	\$56,000
Installation and testing Passive venting system Air injection bioventing system	\$15,000	\$48,000
Installation and testing of interim groundwater remedial system to oxygenate leading edge of plume Passive addition of chemical oxidant (6 wells) Air sparging with 4 wells	\$30,000	\$33,660
Compliance soil sampling	\$11,700	\$11,700
Closure Permitting	\$72,000	\$72,000
Operation, Maintenance and Monitoring Costs (Annual)		
Quarterly Monitoring of 19 existing and 8 new wells (4 years)*	\$88,440	\$88,440
Soil gas monitoring (2 years)	\$13,540	\$13,540
Operate and Maintain soil remediation system (2 years)	\$2,000	\$13,200
Operate and Maintain groundwater remediation system (2 years)	\$4,000	\$13,200
Present Worth of Remedial Actions	\$568,310	\$641,894

Present worth calculations based on a discount factor of 7 percent.

^{*} Cost does not include any post closure activities

TABLE 10.2

COST ESTIMATES FOR CONTINGENCY ACTIONS HAZARDOUS WASTE STORAGE AREA AMENDED CLOSURE/POST-CLOSURE PLAN RICKENBACKER ANGB,OHIO

Capital Costs	
Installation of 8 new wells to confirm nature and extent, and monitor	
remedial progress	\$22,400
Initial sampling of all wells (31 existing and 8 new)	\$31,100
Preliminary health-based performance evaluation with regulatory support	\$56,000
Installation of onsite extraction system	
(4 extraction wells)	\$60,000
Installation of onsite groundwater treatment system	\$885,000
Design and Installation of cover (120' x 240')	\$75,000
Closure Permitting	\$72,000
Operation, Maintenance and Monitoring Costs (Annual)	
Quarterly Monitoring of 19 existing and 8 new wells (4 years)*	\$88,440
Operate and Maintain onsite groundwater extraction system (2years)	\$44,100
Operate and Maintain onsite groundwater treatment system (2 years)	\$570,900
Present Worth of Remedial Actions	\$2,612,693

Present worth calculations based on a discount factor of 7 percent.

^{*} Cost does not include any post closure activities

SECTION 11

REFERENCES

- Air Force Center for Environmental Excellence, 1996, Technical Report: Decontamination of Building 560, Rickenbacker ANGB, OH. June. Final. Prepared for human systems center/PKVBC.
- Alvarez-Cohen, L.M. and McCarty, P.L., 1991a, Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture: Applied Environmental Microbiology, v. 57, no. 1, p. 228-235.
- Alvarez-Cohen, L.M., and McCarty, P.L., 1991b, Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells: Applied Environmental Microbiology, v. 57, no. 4, p. 1031-1037.
- Arciero, D., Vannelli, T., Logan, M., and Hooper, A.B., 1989, Degradation of trichloroethylene by the ammonia-oxidizing bacterium *Nitrosomonas europaea*: Biochem. Biophys. Res. Commun., vol. 159, p. 640-643.
- Asphalt Institute, 1976, Asphalt in Hydraulics, Manual Series No. 12 (MS-12).
- Asphalt Institute, 1989, The Asphalt Handbook, Manual Series No. 4 (MS-4), 1989 Edition.
- Battelle Pacific Northwest Laboratories, 1994, Hanford Permanent Isolation Barrier Program: Asphalt Technology Data and Status Report FY 1994 (PNL-10194). Prepared for U.S. Department of Energy, Hanford, Washington.
- Bouwer, E.J., 1994, Bioremediation of chlorinated solvents using alternate electron acceptors, in Handbook of Bioremediation, Lewis Publishers, Boca Raton, FL.
- Bouwer, E.J., Rittman, B.E., and McCarty, P.L., 1981, Anaerobic degradation of halogenated 1- and 2-carbon organic compounds: Environ. Sci. Technol., vol. 15, no. 5, p. 596-599.
- Bouwer, E.J. and Wright, J.P., 1988, Transformations of trace halogenated aliphatics in anoxic biofilm columns: J. Contam. Hydrol., vol. 2, p. 155-169.
- Bradley, P.M., and Chapelle, F.H., 1996, Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer sediments: Environmental Science and Technology, v. 40, p. 2084-2086.

- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, N.Y.
- Cline, P.V., and Delfino, J.J., 1989, Transformation kinetics of 1,1,1-trichloroethane to the stable product 1,1-dichloroethene, In: Biohazards of Drinking Water Treatment. Lewis Publishers, Inc. Chelsea, MI. p. 47-56.
- Davis, J.W., and Carpenter, C.L., 1990, Aerobic biodegradation of vinyl chloride in groundwater samples: Applied and Environmental Microbiology, v. 56, p. 3878.
- De Bruin, W.P., Kotterman, M.J.J., Posthumus, M.S., Schraa, G., and Zehnder, A.J.B., 1992, Complete biological reductive transformation of tetrachloroethene to ethane: Applied and Environmental Microbiology, v. 58, no. 6, p. 1966-2000.
- DeStefano, T.D., Gossett, J.M., and Zinder, S.H., 1991, Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis: Applied Environmental Microbiology, v. 57, no. 8, p. 2287-2292.
- Downey, D.C., and Hall, J.F. 1994. Addendum One to Test Plan and Technical Protocol for a Field Treatability test for Bioventing Using Soil Gas Surveys to Determine Bioventing Feasibility and Natural Attenuation Potential. Prepared for the Air Force Center For Environmental Excellence, Brooks Air Force Base, San Antonio, Texas.
- Ecology and Environment, Inc., 1986, Site Inspection Report, Lockbourne/Rickenbacker ANG Base, Landfill Investigation, Draft Report.
- Engineering-Science, Inc., 1990a, Rickenbacker Air National Guard Base, Columbus, Ohio: Site Inspection Report-Final, April 1990.
- Engineering-Science, Inc., 1990b, Field Investigation Report-Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio, October 1990.
- Engineering-Science, Inc., 1992a, Addendum to the Pre-closure Sampling Report, Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio, January 1992.
- Engineering-Science, Inc., 1992b, Pre-closure Sampling Report, Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio, March 1992.
- Engineering-Science, Inc., 1992c, Determination of Phase-Separated Extent at the Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio, March 1992.
- Engineering-Science, Inc., 1993, Amended Closure/Post-Closure Plan, Hazardous Waste Storage Area, (Building 560): Rickenbacker Air National Guard Base, Columbus, Ohio, March 1993.
- Folsom, B.R., Chapman, P.J., and Pritchard, P.H., 1990, Phenol and trichloroethylene degradation by *Pseudomonsa cepacia* G4: Kinetics and

- interactions between substrates: Appl. Environ. Microbiol., vol. 56, no. 5, p. 1279-1285.
- Freedman, D.L., and Gossett, J.M., 1989, Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied Environmental Microbiology, v. 55, no. 4, p. 1009-1014.
- Godsey, E.M., 1994, Microbiological and geochemical degradation process, *in* Proceedings of the Symposium on Intrinsic Bioremediation in Ground Water, Denver, CO, August 30-September 1, 1994, U.S. Environmental Protection Agency, p. 35-40.
- Harker, A.R., and Kim, Y., 1990, Trichloroethylene degradation by two independent aromatic-degrading pathways in *Alcaligenes eutrophus* JMP134: Appl. Environ. Microbiol., vol. 56, no. 4, p. 1179-1181.
- Hartmans, S., and de Bont, J.A.M., 1992, Aerobic vinyl chloride metabolism in Mycobacterium aurum Li: Applied Environmental Microbiology, v. 58, no. 4, p. 1220-1226.
- Hazardous Materials Technical Center (HMTC), 1987, Installation Restoration Program: Phase I, Records Search, Rickenbacker Air National Guard Base, Columbus, Ohio, June 1987.
- HAZWRAP Support Contractor Office, 1988, Rickenbacker Air National Guard Base, Columbus, Ohio; Site Inspection, Remedial Investigation, Feasibility Study, Remedial Design Work Plan, June 1988.
- HAZWRAP Support Contractor Office, 1990a, Field Investigation Report, Hazardous Waste Storage Area, Rickenbacker ANGB, October, 1990.
- HAZWRAP Support Contractor Office, 1990b, Rickenbacker ANGB, Columbus, Ohio; Determination of Phase-Separated Hydrocarbon Extent at The Hazardous Waste Storage Area, Draft, October, 1990.
- HAZWRAP Support Contractor Office, 1990c, Rickenbacker ANGB, Columbus, Ohio; Pre-Closure Sampling Report, Hazardous Waste Storage Area, Draft, October, 1990.
- HAZWRAP Support Contractor Office, 1990d, Rickenbacker ANGB, Columbus, Ohio; Plans and Specifications for Underground Storage Tank Removal, Advance Final, October, 1990.
- Henry, S.M., 1991, Transformation of Trichloroethylene by Methanotrophs from a Groundwater Aquifer, Ph.D. Thesis, Standard University, Palo Alto, California.
- Henson, J.M., Yates, M.V., and Cochran, J.W., 1989, Metabolism of chlorinated methanes, ethanes, and ethylenes by a mixed bacterial culture growing on methane. Journal of Industrial Microbiology, v. 4, p.29-35.
- Hinchee, R.E., Ong, S.K., Miller, R.N., Downey, D.C., and Frandt, R. 1992. Test Plan and Technical Protocol for a Field Treatability Test for Bioventing.

- Prepared for The Air Force Center for Environmental Excellence, Brooks Air Force Base, San Antonio, Texas. January.
- International Technology Corporation, 1996, Comparative Analysis of Nature and Extent of Groundwater Contamination, Site 1 Hazardous Waste Storage Area. July.
- Johnson, R.L., 1993. Enhancing Biodegradation with *In Situ* Air Sparging: A Conceptual Model, *Air Sparging rfor Site Remediation*, Robert E. Hichee, Ed., Lewis Publishers.
- Little, C.D., Palumbo, A.V., Herbes, S.E., Lidstrom, M.E., Tyndall, R.L., and Gilmer, P.J., 1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium: Appl. Environ. Microbiol., vol. 54, no. 4, p. 951-956.
- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, v. 54, no. 6, p.1472-1480.
- Lovley D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environmental Science and Technology, v. 26, no. 6, p.1062-1067.
- Martin Marietta Energy Systems, Inc., 1987, Statement of Work for Site Inspection, Remedial Investigation, Feasibility Study, and Remedial Design at Rickenbacker Air National Guard Base, Columbus, Ohio, August 31, 1987.
- Mayer, K.P., Grbic-Galic, D., Semprini, L., and McCarty, P.L., 1988, Degradation of trichloroethylene by methanotrophic bacteria in a laboratory column of saturated aquifer material. Water Science Technology, v. 20, no. 11/12, p. 175-178.
- McCarty, P.L., 1994, An overview of anaerobic transformation of chlorinated solvents, *in* Proceedings of the Symposium on Intrinsic Bioremediation in Ground Water, Denver, CO, August 30-September 1, 1994, U.S. Environmental Protection Agency, p. 135-142.
- McCarty, P.L., Roberts, P.V., Reinhard, M., and Hopkins, G., 1992, Movement and transformations of halogenated aliphatic compounds in natural systems, In: Fate of Pesticides and Chemicals in the Environment. Ed., J.L. Schnoor. John Wiley & Sons, Inc. New York, New York. p. 191-209.
- McCarty, P.L., and Semprini, L., 1994, Ground-Water Treatment for Chlorinated Solvents, In: Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL.
- Miller, R.E., and Guengerich, F.P., 1982, Oxidation of trichloroethylene by liver microsomal cytochrome P-450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry, v. 21, p. 1090-1097.
- Murray, W.D. and Richardson, M., 1993, Progress toward the biological treatment of C₁ and C₂ halogenated hydrocarbons: Critical Reviews in Environmental Science and Technology, v. 23, no. 3, p. 195-217.

- Nelson, M.J.K., Montgomery, S.O., O'Neille, E.J., and Pritchard, P.H., 1986, Aerobic metabolism of trichloroethylene by a bacterial isolate. Applied Environmental Microbiology, v. 52, no. 2, p. 949-954.
- Ogden Environmental and Energy Services Co., Inc., 1995, Closure Report, Under Storage Tank Closure, Rickenbacker Air National Guard Abse, Columbus, Ohio, Building 560-HWSA (Group 3A), August, 1995.
- Parsons Engineering Science, Inc., 1995a, Draft Work Plan for a Treatability Study in Support of the Intrinsic Remediation (Natural Attenuation) Option at Site 1 (Hazardous Waste Storage Area, Rickenbacker Air National Guard Base, Lockbourne, Ohio, February 1995.
- Parsons Engineering Science, 1995b, Design Basis Document for the OU4 Solar Evaporation Pond IM/IRA Project. Prepared for US Department of Energy. Rocky Flats Environmental Technology Site, Golden, Colorado.
- Pierce, L.J., 1959, The Climate of Ohio; in Climates of the States, Volume 1 Eastern States; Water Information Center, Inc., 1974, pp. 300-317.
- Portland Cement Association, 1990, Design and Control of Concrete Mixtures. Illinois: Portland Cement Association (pp.7-8).
- Schlect, E.D., 1991, Tacoma Landfill Cap is Tough and Impermeable. Asphalt 11. Prepared for the Asphalt Institute.
- Schmidt, J.J., and Goldthwait, R.P., 1958, The Ground-Water Resources of Franklin County, Ohio: Bulletin 30, Ohio Department of Natural Resources, Division of Water, 1958.
- Schobert, Harold H., ed, Coal Science II, 1989 Symposium of the American Chemical Society.
- Soil Conservation Service, 1976, Soil Survey of Franklin County, Ohio; USDA, Soil Conservation Service, 188 p. and 69 sheets.
- Speight, James G., The Chemistry and Technology of Coal, Marcel Dekker, NY.
- Stumm, W., and Morgan, J.J., 1981, Aquatic Chemistry, John Wiley & Sons, New York, NY.
- Swaine, Dalway J., 1990, Trace Elements of Coal, London, Boston: Butterworth.
- Tsien, H.C., Brusseau, G.A., Hanson, R.S., and Wacket, L.P., 1989, Biodegradation of trichloroethylene by *Methylosinus trichosporium OB3b*. Applied Environmental Microbiology, v. 55, no. 12, p. 3155-3161.
- U.S. Environmental Protection Agency, 1986, Test Methods for Evaluating Solid Wastes, SW-846, November, 1986.
- U.S. Environmental Protection Agency, 1989, Final Covers on Hazardous Waste Landfills and Surface Impoundments, EPA 530-SW-89047, July 1989.

- U.S. Environmental Protection Agency, 1992, Guidance Document on the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.
- U.S. Environmental Protection Agency, 1993, Seminar of Characterizing and Remediating Dense Nonaqueous Phase Liquids at Hazardous Sites, Office of Research and Development. EPA/600/K-93/003.
- U.S. Environmental Protection Agency, 1993, Quality Assurance and Quality Control for Waste Containment Facilities, EPA/600/R-93/182. Risk Reduction Engineering Laboratory, Office of Research and Development, Cincinnati, Ohio.
- U.S. Environmental Protection Agency, 1996, Soil Screening Guidance: Technical Background Document, EPA/540/R-95/128. Office of Solid Waste and Emergency Response.
- Vogel, T.M., and McCarty, P.L., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions: Applied and Environmental Microbiology, v. 49, no. 5, p. 1080-1083.
- Vogel, T.M., Criddle, C.S., and McCarty, P.L., 1987, Transformations of halogenated aliphatic compounds: Environmental Science and Technology, vol. 21, no. 8, p. 722-736.
- Vogel, T.M., 1994, Natural Bioremediation of Chlorinated Solvents, In: Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL. 1994.
- Wilson, J.T., and Wilson, B.H., 1985, Biotransformation of trichloroethylene in soil. Applied Environmental Microbiology, v. 49, no. 1, p. 242-243.
- Wilson, B.H., Wilson, J.T., Kanpbell, D.H., and Bledsoe, B.E., 1994, Traverse City: Geochemistry and intrinsic bioremediation of BTEX compounds, *in* Proceedings of the Symposium on Intrinsic Bioremediation in Ground Water, Denver, CO, August 30-September 1, 1994, U.S. Environmental Protection Agency, p. 94-102.

APPENDIX A SUMMARY OF ANALYTICAL DATA, 1988-1990

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

			-					
0		SURFACE SOIL SAMPLE	S	. Anthraceno	8	-	սց/kց	330
2		SURFACE SOIL SAMPLE	SV	Fluoranthono	1500		ug/kg	ဥ္ပ
5	.	SURFACE SOIL SAMPLE	S	Pyreno	1500		սղ/kg	330
50	-	SURFACE SOIL SAMPLE	SS	Bonzo(a) Anthraceno	740		ug/kg	330
Š	1-	SURFACE SOIL SAMPLE	S	Chrysono	770		ug/kg	ဗ္ဗ
5		SURFACE SOIL SAMPLE	S	Bonzo(b) Fluoranlhono	750		ng/kg	330
Š	_	SURFACE SOIL SAMPLE	SV	Banzo(k) Fluoranthane	530		ug/kg	දි
5	-	SURFACE SOIL SAMPLE	S	Bonzo(a)Pyrene	88		ng/kg	330
5	_	SURFACE SOIL SAMPLE	SS	Indono(1,2,3-cd)Pyrana	440		ug/kg	၁၁
S	_	SURFACE SOIL SAMPLE	SV	Benzo(g,h,l)Parylena	380		ug/kg	000
5	-	SURFACE SOIL SAMPLE	×	Anilmony	9.4	2	mg/kg	9
Ġ	_	SURFACE SOIL SAMPLE	Σ	Arsenic	9.6		mg/kg	-
5	_	SURFACE SOIL SAMPLE	×	Boryllium	0.45	6	mg/kg	0.5
Ö	_	SURFACE SOIL SAMPLE	Σ	Cadmlum	0.68		mg/kg	0.5
S	_	SURFACE SOIL SAMPLE	Σ	Chromium	14.4	3	mg/kg	-
5		SURFACE SOIL SAMPLE	≆	Copper	15.0	•	mg/kg	2.5
OUT		SURFACE SOIL SAMPLE	*	Load	110		mg/kg	0.3
OUT		SURFACE SOIL SAMPLE	∑	Mercury	660.0	Ø	Dy/BE	0.1
PO		SURFACE SOIL SAMPLE	æ	Nickol	14.1		mg/kg	₹
50	.	SURFACE SOIL SAMPLE	Σ	Selenlum	0.2	>	mg/kg	0.5
5		SURFACE SOIL SAMPLE	×	Silvor	0.75	5	mg/kg	-
S	-	SURFACE SOIL SAMPLE	Σ	Thallium	0.53	CWND	mg/kg	-
9	_	SURFACE SOIL SAMPLE	×	Zinc	90.0	3	mg/kg	2
	 						,	;
S	-	SURFACE SOIL SAMPLE	SV SV	ALL SEMI-VOLATILES	Q.	¥ Z	ng/kg	₹Z
5	<u> </u>	SURFACE SOIL SAMPLE	×	Antimony	*	3	mg/kg	9
2	<u>=</u>	SURFACE SOIL SAMPLE	Z	Arsenic	13.1	CN8	mg/kg	-
ಠ	=	SURFACE SOIL SAMPLE	≆	Boryllium	P	3	mg/kg	0.5
ŏ	5	SURFACE SOIL SAMPLE	≆	Cadmlum	0.19	>	DX/BE	0.5
ō	5	SURFACE SOIL SAMPLE	≆	Chrombm	9.1	3	mg/kg	_
ŏ	5	SURFACE SOIL SAMPLE	Œ	Coppor	15,3	•	mg/kg	2.5
ŏ	5	SURFACE SOIL SAMPLE	≆	Pead	22.9		mg/kg	0.3
ō	5	SURFACE SOIL SAMPLE	×	×	0.082	28	mg/kg	0.1
0	5	SURFACE SOIL SAMPLE	≆	Nickol	15.2		mg/kg	•
O	5	SURFACE SOIL SAMPLE	×	S	0.2	BW	mg/kg	0.5
O	OUT	SURFACE SOIL SAMPLE	≆		99.0	5	mg/kg	•
0	5	SURFACE SOIL SAMPLE	×	Tha	0.47	CWND	mg/kg	
ō	Ŀ	THE CALLACT CALCALLE	7	7/1/2	-			•

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

.

1

:]:

H. resemble

SURFACE SOIL SAMPLE
SURFACE SOIL SAMPLE
SUHFACE SOIL SAMPLE
SURFACE SOIL SAMPLE

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

E	330	000			0000		0000	9			0.5	-			0.1	7	0.5	-	0	9 2			က် 	9	£ 0.	g 0.5	G 0.5	1 0	49 2.5	Kg 0.3	kg 0.1	b	kg 0.5	ko 1	L L
	ug/kg	ug/kg	ոց/kg	սց/kg	Ug/kg	սց/kฏ	ug/kg	mg/kg					mg/kg	mg/kg	1 mg/kg	mg/kg	mg/kg	mg/kg	J mg/kg	mg/kg	ma/kg	J mg/kg	I mg/kg												
מושה שוושעה						•	7	CND	BNJ		2	3	•		60		>	>	CWNO	₹	•		: : د	3	3		83	₹	•		>		Š	>	r MN N
2 2020	200	280	570 J	260	290 µ	520	260	4.0	10.8	0.98	0.23	14.7	10.6	52.9	0.09	21.4	0.2	0.79	0.54	8		0 1	8	5.4	15.2	0.67	0.22	14.1	17.8	60.4	0.056	24.1	0.18	0.74	0.48
	Phonanthrono	Fluoranthene	Pyrana	Bonzo(a) Anthracono	Chrysene	Bonzo(b) Fluoranthono	Benzo(a)Pyrene	Antlmony	Arsenic	Baryllum	Cadmium	Chrombm	Copper	Load	Mercury	Nickol	Solonlum	Silvor	Thallium	Zlnc	i	rinoraninana	Pyrone	Antimony	Arsonic	Boryllium	Cadmiun	Chromhm	Copper	Lead	Mercury	Nickol	Solonlum	Silvar	Thalllum
T CORD I VO	S	S	S	S	S	S	λs	Σ	Σ	Σ	¥	Σ	×	Σ	Σ	×	Σ	Σ	Σ	Σ	i	۸ :	S	×	Σ	Σ	×	Σ	Σ	Σ	Σ	Σ	Σ	₹	Σ
	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE		SURFACE SOIL SAMPLE			SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE												
	OUT	DOUT	OUT	OUT	OUT	DOUT	TUO	OUT	DOOT	OUT	DOOT	TUO	OUT	OUT	OUT	OUT	DOUT	OUT	OUT	OUT		5 !	100	100	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT
	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	•	7-0	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
- CHIO	A-6	9-Y	9-Y	A-0	A-0	A-6	A-6	A6	A-6	A-6	9-Y	A-6	A-6	A-6	A-6	A-6	9-Y	9-Y	9-V	9-Y	,	-	A-7	V-7	A-7	A-7	A-7								A-7
	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	SU-23	1	SU-23		30.12	SU-24	SU-24	SU-24	SU-24	SU-24	SU-24	SU-24						

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

SAMPLE . C	GRID 🥒	DEPTH IN	IN/OUT	DESCRIPTION CATE	сатевопу	ANALYSIS Fon F	RESULTS. a	QUAUFIER	UNITS	DETECTION
SU-25	8-2	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthone	150	۵	บดู/หฏ	330
1	8-2	0-2	Z	SURFACE SOIL SAMPLE	S	Pyreno	150	7	ug/kg	330
SU-25	B-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	3.0	7NO	mg/kg	9
SU-25	8-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	17.3	-	mg/kg	0.5
SU-25	B-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Boryllum	09.0		mg/kg	0.5
SU-25	B-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmlum	0.47		mg/kg	_
SU-25	B-2	0-2	z	SURFACE SOIL SAMPLE	Σ	Chrombin	14.5	_	mg/kg	2.5
SU-25	B-2	0-2	z	SURFACE SOIL SAMPLE	Σ	Copper	23.3	3	mg/kg	0.3
SU-25	B-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Lead	22.4	ž	mg/kg	0.1
SU-25	8-2	0-2	z	SURFACE SOIL SAMPLE	Σ	Marcury	0.059	5	mg/kg	-
SU-25	8-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	24.4		mg/kg	0.5
SU-25		0-2	Z	SURFACE SOIL SAMPLE	Z	Solonium	0.31	BW	mg/kg	-
ı	8-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silvar	0.62	5	mg/kg	
SU-25	8-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Thalllum	0.21	BNWJ	mg/kg	8
SU-25		0-2	ĸ	SURFACE SOIL SAMPLE	Σ	Zinc	94	2	mg/kg	2
SU-20	0-4		Z	SURFACE SOIL SAMPLE	S S	Phonanthrono	220		นฎ/หม	000
SU-20		0-2	z	SURFACE SOIL SAMPLE	S	Fluoranthene	1100		ug/kg	330
SU-26	B-4	0-2	<u>z</u>	SURFACE SOIL SAMPLE	SV	Pyrena	1100		ug/kg	930
	8-4	1	Z	SURFACE SOIL SAMPLE	SV	Benzo(a) Anthracone	520		ng/kg	330
SU-26		0-2	Z	SURFACE SOIL SAMPLE	SV	Chrysono	200		ug/kg	330
SU-26	8-4	0-5	Z	SURFACE SOIL SAMPLE	SV	Benzo(b) Fluoranthene	1000		սը/kg	000
SU-26	8-4	1	Z	SURFACE SOIL SAMPLE	SV	Ввпхо(а)Ругепе	510		ug/kg	330
SU-26	8-4	0-2	Z	SURFACE SOIL SAMPLE	S	Indono(12,3-cd)Pyrene	330	7	ug/kg	330
SU-26	9-4	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(g,h,l)Perylene	330	7	ug/kg	330
SU-26	B-4	0-2	Ξ.	SURFACE SOIL SAMPLE	Σ	Anthrony	6.4	3	та/ка	8
SU-26	8-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsonic	12.5	7	mg/kg	0.5
SU-26	B-4	1	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.49	Ø	mg/kg	0.5
SU-26	8-4	0-2	z	SURFACE SOIL SAMPLE	Σ	· Cadmlum	7.		mg/kg	-
SU-26	8-4	0-2	z	SURFACE SOIL SAMPLE	X	Chromkim	18.6	×	mg/kg	
SU-26	8-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Соррог	31.6	•	mg/kg	2.5
SU-26	B-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Lead	90.7		mg/kg	0.3
SU-26	8-4	0-2	Z		Σ	Mercury	2.6	ס	mg/kg	0.1
SU-26	8-4		Z		≆	Nickol	20.2		mg/kg	4
SU-26	B-4	0-2	Z		Œ	Sol	0.74	BW	mg/kg	0.5
SU-20	84	1	Z		×	Sliver	7.2	5	mg/kg	•
SU-26	8-4	0-2	z		Σ	Thallium	0.58	CWND	mg/kg	-
SU-2d	B-4	0-2	N.	SURFACE SOIL SAMPLE	M	Zlnc	203	₹	mg/kg	2

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

RESULTS QUAUFIER UNITS UMIT	ND NA UG/kg		NJ mg/kg	mg/kg	U mg/kg	z	•			23.5 mg/kg	69	U mg/kg	CWNU	89.3 NJ mg/kg 2	ND NA Ug/kg NA	4.0 UNJ mg/kg	BNJ mg/kg	mg/kg	mg/kg	z	•	mg/kg	U mg/kg		0.48 B mg/kg 0.5		O SA LIMINI TO A SA
LON	ALL SEMI-VOLATILES	Antimony	Arsenic	Beryllium	Cadmlum	Chromhm	Соррог	Lead	Morcury	Nickel	Salonlum	Silvar	Thallium	Zluc	ALL SEMI - VOLATILES	Antimony	Arsenic	Borylllun	Cadmlum	Chromium	Copper	Load	Marcury	Nicko	Salenlum	Silvar	Thalllum
	SS	Z	Σ	Σ	2	∑.	₹	Σ	Σ		Σ	Σ	₹	X	S	∑	×	×	×	Σ	Σ	2	Σ	Σ	\$	X	*
	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE														
	Z	Z	Z	Z	Z	Z	Z	Z	z	<u>z</u>	Z	Z	z	Z			_								<u>z</u>	Z	Z
	0-2	0-2	0-5	0-5	0-5	0-2	0-5	0-2	0-2	0-2	0-5	0-2	0-2	0-5	0-5	0-5	02	0-2	0-2	0-2	02	02	0-2	0-2	0-2	0-2	0-2
	8-4-						8-4				8-4	B-4	8-4	B-4												8-5	8-8
	SU-27	SU-20	SU-28	SU-28	SU-20	SU-28	SU-20	SU-20	SU-28	SU-20	30-20	SU-28	SU-20	20-2d													

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

	330	330	occ B	000 03	OCC 03	330	9	c0 0.5	6.0	1	KO 1	kg 2.5	ka 0.3					
ug/kg	սց/kg	y/an	ug/kg	ng/k	Ug/kg	l ug/kg	1 mg/kg		mg/ku	J mg/kg	N mg/kg	mg/kg	mg/kg		J mg/kg	J mg/kg mg/kg		
			7	ت	د.		35	₹									D WB	
260	220	140	81	180	130	1.0	4.7	11.9	0.93	0.22	11.1	20.0	32.1		0.050	0.050	0,050 21.5 0.34	0.050 21.5 0.34 0.77
Pyrona	Fluoranthene	Benzo(a) Anthraceno	Chrysone	Benzo(b) Fluorantheno	Benzo(k) Fluoranthene	Bonzo(a)Pyrene	Antimony	Arsenic	Baryllium	Cadmium	Chromhm	Coppor	Lond		Marcury	Nickel	Mickel Solonlum	Mickel Nickel Solonlum Silver
S	S	SV	S	SV	SV	SV	Σ	×	≆	₹	X	¥	×	2	=	≅ ≊	X X	222
SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE		SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE
Z	Z	Z	Z	Z	Z	Z	z	Z	Z	z	Z	Z	Z	Z		Z	ZZ	ZZZ
0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-5	0-2	0-2	0-2	0-2		0-2	0-2	0 - 5
B 1.6	B-6	8-6	8-8	B6	B-8				8-0					8-8		8-8	B 10	8 1 1 8 1 1 8
SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29	SU-29		SU-29	SU-29 SU-29	SU-29 SU-29 SU-29

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

7

1

1

						_	_	
OUT	SURFAC	SURFACE SOIL SAMPLE	S	Fluorenthene	170	7	ug/kg	330
<u> </u>	URFAC	SURFACE SOIL SAMPLE	SS	Pyrana	210	7	սց/kը	တင္လ
out s	URFAC	SURFACE SOIL SAMPLE	S	Bonzo(a) Anthracene	55	٦	บฎ/หม	930
-	JRFAC	SURFACE SOIL SAMPLE	SS	Chrysona	140	7	ug/kg	ဝင္လ
	JRFAC	SURFACE SOIL SAMPLE	SS	Benzo(b) Fluoranthone	220	٠ .	ug/kg	000
	URFAC	SURFACE SOIL SAMPLE	SS	Benzo(k) Fluoranthene	<u>8</u>	- -	ng/kg	8
	URFAC	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	230	- ۲	ug/kg	330
	UBFAC	SURFACE SOIL SAMPLE	SS	Indano(12,3-cd)Pyrana	200	7	ng/kg	330
out s	JRFA(SURFACE SOIL SAMPLE	S	Benzo(g,h,l)Perylene	220	7	ug/kg	တ္တဲ့ မ
	JRFA	SURFACE SOIL SAMPLE	Σ	Antimony	6.4	2 :	mg/kg	•
_	RFA	SURFACE SOIL SAMPLE	Σ	Arsenic	9.0	CNB	mg/kg	Q.5
our su	RFA(SURFACE SOIL SAMPLE	Σ	Boryllium	0.49	c ;	mg/kg	0,5
<u></u>	HFA.	SURFACE SOIL SAMPLE	Σ	Cadmium	0.23	>	mg/kg	-
<u></u>	RFA	SURFACE SOIL SAMPLE	Σ	Chrombm	14.4	3	mg/kg	-
<u> </u>	JF.A.	SURFACE SOIL SAMPLE	Σ	Coppor	7	•	mg/kg	2.5
)	FA	SURFACE SOIL SAMPLE	×	Load	65.1		mg/kg	0.3
OUT SUF	ΨŽ	SURFACE SOIL SAMPLE	Σ	Marcury	0.052	ס	та/ка	0.1
<u></u>	FĀ	SURFACE SOIL SAMPLE	×	Nickol	13.9	•	mg/kg	₹
<u>-</u>	FA	SURFACE SOIL SAMPLE	X	Solonlum	90.0	BW	mg/kg.	0.5
-	1FA	SURFACE SOIL SAMPLE	Σ	Silvor	0.81	ֹב	mg/kg	_
OUT SUF	FA	SURFACE SOIL SAMPLE	≆	Thallium	0.54	MCN2 NCN2	mg/kg	-
-	질	SURFACE SOIL SAMPLE	Σ	Zinc	76.3	₹	mg/kg	2
	T.	SUBEACE SOIL SAMPLE	\ <u>S</u>	ALL SEMI-VOLATILES	Ç	Ϋ́	na/ka	X
	RFA	SURFACE SOIL SAMPLE	2	Antimony	5,3	CNU	mg/kg	9
	RFA	SURFACE SOIL SAMPLE	X	Arsonic	6.9	BNWJ	mg/kg	0.5
	JRFA	SURFACE SOIL SAMPLE	Σ	Boryllium	0.66		mg/kg	0.5
	JRFA	SURFACE SOIL SAMPLE	Σ	Cadmiun	0.53	83	mg/kg	-
	URFA	SURFACE SOIL SAMPLE	Σ	Chromiun	12.8	2	mg/kg	-
	JRFA	SURFACE SOIL SAMPLE	Σ	Сорра	13	•	mg/kg	2.5
	URFA	SURFACE SOIL SAMPLE	Σ	Lead	40.0		mg/kg	0.3
	JRFA	SURFACE SOIL SAMPLE	Σ	Marcury	0.084	2	mg/kg	
	URFA	SURFACE SOIL SAMPLE	≆	Nickol	16		mg/kg	•
	SURFA	SURFACE SOIL SAMPLE	×	Selenturn	0.59	80	mg/kg	0.5
	SURFA	SURFACE SOIL SAMPLE	≆	Silvar	0.07	5	mg/kg	_
OUT S	SURFA	SURFACE SOIL SAMPLE	₹	Thalllum	0.50	WUND	mg/kg	-
TIGUES ICO DOLLA PLICA						•	_	

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

											_			
DETECTION	Y.	9	0.5	0.5	-	-	2.5	0.0	0.1	4	0.5		-	2
UNITS	ug/kg	та/ка	mg/kg											
QUAUFIER	٧	CNO	2		8	2	•		כ		≯	כ	MUN'U	3
RESULTS Q	N O	4.9	10.1	0.73	0.49	16.2	22.6	41.6	0.061	27.3	0.10	0.01	0.48	113
ANALYSIS	. ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmlum	Chrombm	Copper	Load	Marcury	Nickel	Selenium	Silvar	Thallium	Zinc
САТЕВОПУ	S	Σ	₹	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	×	Σ	Σ
резспртом	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE
IN/OUT	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
DEPTH	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	. 0-2	0-2	0-2	0-2	0-2	0-2
GRID 🗲		C-2												C-2
SAMPLE #	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32	SU-32

	!								
SU-33 C-		0-2	SURFACE SOIL SAMPLE	SS	Phonanthrono	83		ug/kg	330
cc	4	N-2		S	Anthracono	100	3	ug/kg	330
SU-33 C-	-4	0-2	SURFACE SOIL SAMPLE	S	Fluoranthene	1900		ug/kg	330
		0-2 IN	SURFACE SOIL SAMPLE	SV	Pyrene	2300	-	ug/kg	330
		0-2 IN	SURFACE SOIL SAMPLE	SV	Benzo(a) Anthracene	1400		ug/kg	330
SU-33 C-	<u></u>	0-2 IN	SURFACE SOIL SAMPLE	SV	Chrysene	1400		ug/kg	330
	_	0-2 IN	SURFACE SOIL SAMPLE	SV	Bonzo(b) Fluorantheno	1400		ug/kg	330
SU-33 C-	_	0-2 IN	SURFACE SOIL SAMPLE	SV	Banzo(k) Fluoranthene	1200		ug/kg	330
	_	0-2 IN	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	1300		ug/kg	000
SU-33 C-VS	_	0-2 IN	SURFACE SOIL SAMPLE	SV	Indeno(1,2,3-cd)Pyrene	8		ug/kg	330
	_	0-2 IN	SURFACE SOIL SAMPLE	SV	Dibonz(a,h) Anthracone	240	7	ug/kg	330
su-as		0-2 IN	SURFACE SOIL SAMPLE	SV	Banzo(g,h,l)Parylana	200		ug/kg	330
SU-33 C	_	0-2 IN	SURFACE SOIL SAMPLE	Σ	Antimony	10	TNS	mg/kg	9
SU-33 C-	_	0-2 IN	SURFACE SOIL SAMPLE	Σ	Arsonic	20		mg/kg	0.5
SU-33 C-	~	0-2 IN	SURFACE SOIL SAMPLE	Σ	Berylllum	0.75		mg/kg	0.5
SU-33 C	*	0-2 IN	SURFACE SOIL SAMPLE	Σ	Cadmlum	0.63		mg/kg	-
SU-33 C		0-2 IN	SURFACE SOIL SAMPLE	Σ	Chromium	13.2		mg/kg	-
su-aa C	_	0-2 IN	SURFACE SOIL SAMPLE	×	Copper	25.5	2	mg/kg	2.5
SU-33 C	C-4	0-2 IN	SURFACE SOIL SAMPLE	X	Load	112	?	mg/kg	0.3
SU-33 C	_	0-2 IN	I SURFACE SOIL SAMPLE	Σ	Mercury	0.064	D	mg/kg	0.1
su-as	C-4	0-2 IN	SURFACE SOIL SAMPLE	Σ	Nickel	24.5		mg/kg	₹
SU-33 C	4	0-2 IN	SURFACE SOIL SAMPLE	Σ	Salonlum	0.49	BW	mg/kg	0.5
SU-33	4	0-2 IN	SURFACE SOIL SAMPLE	×	Slivar	0.03	ס	mg/kg	-
SU-33 C	C-4	0-2	N SURFACE SOIL SAMPLE	×	Thalllum	0.19	BNWJ	mg/kg	_
SU-33 C	4-	0-2	V SURFACE SOIL SAMPLE	Σ	Zinc	124	3	mg/kg	2

∀ Z	•		5.0	-	_	2.5	0.3	0.1	*	0.5	_	-	2	330	3 5	3 6	000	99	33	330	9	0.5	0.5	-	-	2.5	0.3	0.1	*	0.5	-	-
ua/ka	ma/ka	m //kg	mo/kg	ma/ka	ma/ka	mo/kg	mg/kg	110/kg	04/01	מא/אמ	ug/ka	ug/kg	ug/kg	ug/kg	mg/kg	mg/ku	mg/kg															
¥	N N	Ž	3	5	7 2	•	***	5	_	BW	ֹכ	rwn0	Z		,	7	7	7	7	7	NO O	CWNB		B	2	•		2	·	2	5	CWNO
02	4.3	15.0	0.53	0.0	11.5	20.6	19.5	0.057	24.0	0.39	0.7	0.52	75.5	230	8	340	180	210	250	500	4.5	7.9	0.79	0.23	14.3	17	27.1	0.062	19.7	0.5	0.74	0.54
	Antimony	Araenic	Borvillum	Cadmium	Chromium	Copper	Load	Mercury	Nickel	Selenlum	Silver	Thallium	Zinc	Phenanthrene	Fluorauthana	Pyrono	Benzo(a) Anthracene	Chrysene	Benzo(b) Fluoranthone	· Banzo(a)Pyrana	Anllmony	Arsanic	Beryllum	Cadmium	Chromium	Coppor	Lead	Mercury	Nickol	Solonium	Silvor	Thalllum
<u>۸</u>	*	*	×			Σ	Σ	Σ	≆	Σ	Σ	Σ	M	S	78	200	S	SV	SV	SS	Σ	Ξ	Σ	Σ	Σ	Σ	×	Σ	≨	Σ	₹	*
しいしょく こうりょうくしこう	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE																		
Z	Z	Z	Z	Z	Z	2	Z	Z	Z	Z	Z	Z	Z		Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z	Z	Z	<u>z</u> :	Z	Z	Z :	<u>z</u> :
0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2		02	0-2	- 1	0-2	0-2	0-2	0-2	0-2	0-2	0-2	02	0-2	02	0-2	0-2	0-2	0-2	0-2	0 -2	2-0
C-5	0-5	C-5	0-5	C-5	C-5	C-5	C-5	0	0-0	0-0	0-0	θ-0	9-0			0-0	9-0				9-U	9 · 0	9-0	9-0	\$ C	ָ ט נ						
SU-34	SU-34	SU-34	SU-34	SU-34	SU-34	SU-34	SU-34	SU-34	SU-34	1	1	SU-34	SU-34	SU-35	SU-35	SU-35	SU-35	SU-35	SU-35	SU-35	SO-35	SU-35	SU-38	SU-35	SU-35	SO-35	SU-35	SU-35	SU-35	SU-35	200	200

0 ETECTION UNITS	BW mg/kg	
	• MB	⊃ ⊋ ;
NA UNWU UNWU UNWU UNWU UNWU UNWU UNWU UN		5
ND NA 4.1 UNJ 9.9 B 9.3	20.6	0.54
ANALYSIS ALL SEMI-VOLATILES Anilmony Assonic Boryllium Cadmlum Cadmlum Coppor Lead Morcury Nickol Silvor Thaillum Zinc Antimony Arsonic Boryllium Cadmlum Cadmlum Clyromhum Clyromhum Clyromhum Clyromhum Clyromhum Clyromhum Clyromhum	Nickol Solonlum	Silvar Thallium Zing
CATEGORY SS SAMMANAMAN SM	ΣΣ	X
SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE
100 100 100 100 100 100 100 100 100 100	TUO	100 100
DEPTH	0-2	0 0 0
GRID CO	0 0	8 8 8 1 1 1
SAMPLE SU SU SU SU SU SU SU SU SU S	SU-37 SU-37	SU-37 SU-37 SU-37

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

]

LMIT	000	330	930	330	000	330	ဝင္ပင	330	930	000	000	330	330	9	0.5	0.5	-	-	2.5	0.3	0.1	4	0.5	-	_	8
UNITS	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	սց/kց	ug/kg	นฐ/หญ	ug/kg	ug/kg	սց/kg	ոց/kը	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	та/ка	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka
	7	۵		<u>-</u>										Z S			å		•	•	2	•	. BW	ס	CWNU	r.×
	170	23	2000	900	2300	2100	010	980	790	230	040	260	48	4.0	13.8	0.62	76.0	13.7	22.9	37.4	0.062	23.3	0.32	0.81	0.55	91.9
	Aconaphiliono	Fluorena	Phenanthrene	Anthracono	Fluoranthone	Pyrono	Benzo(a) Anthracene	Chrysono	Bonzo(b) Fluoranthono	Bonzo(k) Fluoranthono	Веп20(а)Ругепе	Indeno(1,2,3-cd)Pyrene	Benzo(g,h,l)Perylene	Antlmony	Arsenic	Borylllum	Cadmlum	Chrombin	Copper	Load	Morcury	Nickol	Spientum	Silver	Thalllum	Zlinc
	S	S	SV	SV	SV	S	SV	S	SV	SV	SV	SV	S	×	Σ	Σ	Z	Σ	Σ	Σ	×	X	×	Σ	Σ	×
	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE								
	TUO	007	OUT	OUT	100	OUT	TUO	TOO	TUO	TUO	TUO	OUT	DOOT	OUT	TUO	OUT	TUO	DOOT	OUT	TUO	TUO	OUT	OUT	OUT	OUT	OUT
	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	02	0-2	0-2	0-2	0-2
-	0-1	0-1	-1	<u>-</u>	0-1	0-1	D-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	1-0	0-1	0-1	D-1	1-0	0-1	0-1	0-1	0-1	0-1	0-1
	SU-30	SU-38	SU-30	SU-30	SU-30	SU-30	SU-30	sO-30	SU-38	SU-30	SU-30	sn-3a	SU-30	SU-30	SU-30	su-38	SU-30	SU-38	SU-38	SU-30						

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS – SOIL

1.

SAMPLE #	GRID €	ОЕРТН	וא/סטד	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS	avAUFIER	UNITS	DETECTION
SU-39	0-2	010	2	SUBFACE SOIL SAMPLE) V	en en en	Ş	ura.	110/kg	5
- 1	0-2	0-2	2	SURFACE SOIL SAMPLE	×	Antimony	5.1	225	mg/kg	9
SU-39	D-2	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsonic	12.1	E	mg/kg	0.5
SU-39	D-2	0-2	Z	SURFACE SOIL SAMPLE	₹	Beryllium	0.03		mg/kg	0.5
SC-08	0-2	0-2		SURFACE SOIL SAMPLE	Σ	Cadmlum	0.38	'n	mg/kg	•-
SU-39	0-2	0-2	ĭ	SURFACE SOIL SAMPLE	Σ	Chrombin	22.0		mg/kg	-
SU-39	۵	0-2		SURFACE SOIL SAMPLE	Σ	Coppor	30.6	•	mg/kg	2.5
SU-39		0-2		SURFACE SOIL SAMPLE	Σ	Load	73.4	•	mg/kg	0.3
SU-39	۵	0-2		SURFACE SOIL SAMPLE	Σ	Morcury	0.058	כ	mg/kg	0.1
SU-39	٥	0-5		SURFACE SOIL SAMPLE	*	Nickel	26.4	•	mg/kg	4
SU-38	D-2	0-2		SURFACE SOIL SAMPLE	Σ	Solonlum	0.29	BW	mg/kg	0.5
1		ŀ		SURFACE SOIL SAMPLE	×	Silvar	0.03	כ	mg/kg	-
1		0-2		SURFACE SOIL SAMPLE	Σ	Thalifum	99.0	BNWJ	mg/kg	-
SU-39		0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc	196	L•N	mg/kg	2
SU-40	<u>.</u>	0-2		SURFACE SOIL SAMPLE	SS	Phonanthrone	8	2	սղ/kը	000
SU-40	6	0-5		SURFACE SOIL SAMPLE	S	Fluoranthene	8	7	ug/kg	330
SU-40	0-3	1		SURFACE SOIL SAMPLE	S	Pyrone	340	7	սց/kը	330
SU-40	_	0-5		SURFACE SOIL SAMPLE	S	Chrysene	310	7	ug/kg	330
SU-40		0-2		SURFACE SOIL SAMPLE	S	Banzo(b) Fluoranthene	980	7	ug/kg	330
SU-40	0-3	1		SURFACE SOIL SAMPLE	S	Bonzo(k) Fluoranthone	170	7	ug/kg	330
SU-40	03	0-5		SURFACE SOIL SAMPLE	SV	Benzo(a)Pyrene	31	2	ug/kg	330
SU-40	0-3			SURFACE SOIL SAMPLE	Σ	Antimony	5.2	CND	mg/kg	9
SU-40		0-5		SURFACE SOIL SAMPLE	Σ	Arsenic	19.6		mg/kg	0.5
SU-40	4			SURFACE SOIL SAMPLE	2	Baryillum	0.70		mg/kg	0.5
SU-40	0-3	02		SURFACE SOIL SAMPLE	Σ	Cadmlum	0.39	œ m	mg/kg	-
SU-40	0-3	1		SURFACE SOIL SAMPLE	×	Chromiun	22.7		mg/kg	
SU-40	0-3	0-2		SURFACE SOIL SAMPLE	Σ	Copper	38.1	•	mg/kg	2.5
SU-40		1		SURFACE SOIL SAMPLE	Σ	Load	44.3	٠	mg/kg	0.3
SU-40		1			Σ	Morcury	4.000	8	mg/kg	0.1
SU-40		1			Σ	Nicko	30.5	•	mg/kg	4
SU-40		1			Σ	Solonlum	0.32	BW	mg/kg	0.5
SU-40	6	1			¥	Silver	00.0	5	mg/kg	-
SU-40	0-3	0-2		SURFACE SOIL SAMPLE	×	Thalllurn	0.95	BNWJ	mg/kg	-
SU-40	0-3	0-5	Z	SURFACE SOIL SAMPLE	Œ	Zinc	139	7.Z	mg/kg	8

-

7

								_		_		_	_	_		_		٧.		_	0	9	v,	٠ć.	-	-	2.5	0.0	0.1	4	0.5	-	-	~
ITS DETECTION	330	330	330	ဗ္ဗ	330	5	0.5	0.5	_		2.5	0.3	0.1	•	0.5					86	330		0.5	9.0			- 73	•	•		•			
3 S	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kŋ		ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	тд/ки	mg/kg																		
QUAUFIER	7	٦	7	7	7	ZNO.		63	5		•	•	2	•	2	2	BNWJ	7.2		7	7	TND		8	÷		•	•	ס	•	8	ח	rwno 0	7•X
RESULTS QL	330	300	200	240	170	5.1	17.0	0.38	0.24	12.8	25.0	39.2	0.081	21.5	0.22	0.03	9.0	6.70	!	8	6	5.3	16.7	0.53	0.26	16	32.6	35	0.067	30.9	0.30	0.07	0.61	109
ANALYSIS FOR RE	Fluoranthono	Pyrono	Chrysono	Bonzo(b) Fluoranthono	Bonzo(a)Pyrono	Antimony	Arsenic	Beryllium	Cadmium	Chromhm	Copper	Load	Morcury	Nickel	Solonlum	Silvar	Thallium	Zinc	-	Fluoranthana	Pyrana	Antimony	Arsonic	Beryllium	Cadmium	Chromium	Coppor	Lead	Marcury	Nickol	Salenium	Silvar	Thaillum	Zinc
CATEGORY	S	S	S	SV	SV	Σ	X	×	Σ	₹	×	Σ	Σ	×	×	×	Z	W		SV	S	Σ	Σ	Z	×	Σ	X	×	Σ	Σ	×	Σ	≆	Σ
DESCRIPTION	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE		SURFACE SOIL SAMPLE														
IN/OUT	Z	Z	Z	Z	Z	z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	<u>z</u>		z	Z	Z	Z	Z	Z	Z.	z	Z	Z	z	Z	<u>z</u>	Z	N.
DEPTH	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2		0-2	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2
GRID #	D-4	0-4	0-4	D-4	D-4	0-4	D-4	D4	0-4	D-4	0-4		0-4	0-4	04	0-4	1-0	0-4		0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	05	0-5	0-5
SAMPLE . C	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41	SU-41		SU-42														

.

AMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	NITS UMIT
SU-43	9-0	0-2	Z	SURFACE SOIL SAMPLE	SS	ALL SEMI-VOLATILES	2	¥X	սց/kg	¥ Z
SU-43	9-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antlmony	4.7	75	mg/kg	8
SU-43	9-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	6.3	B	mg/kg	0.5
SU-43	9-Q	0-2	Z	SURFACE SOIL SAMPLE	Σ	Boryillum	0.50		mg/kg	0.5
SU-43			z	SURFACE SOIL SAMPLE	≨	Cadmlum	0.22	5	mg/kg	-
SU-43	9-Q		Z	SURFACE SOIL SAMPLE	×	Chrombin	17.5		mg/kg	-
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Copper	29.2	•	mg/kg	2.5
SU-43	9-0		Z	SURFACE SOIL SAMPLE	2	Load	26.4	•	mg/kg	0.3
SU-43	9-Q	0-2	Z	SURFACE SOIL SAMPLE	×	Mercury	0.00	5	mg/kg	0.1
SU-43	0-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	31.0	•	mg/kg	•
SU-43	9-0		Z	SURFACE SOIL SAMPLE	Σ	Salenlum	0.25	m	mg/kg	0.5
SU-43	9-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silvar	92.0	>	mg/kg	-
SU-43	00		Z	SURFACE SOIL SAMPLE	Σ	Thalllum	0.54	CWND	mg/kg	-
SU-43	9-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc	116	?•X	mg/kg	2

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

17

w l	330	1600	33	180	330	ဝင္ပ	330	330	ဝင္ထ	တ္ထင္က	330	330	330	000	330	\$	0.5	0.5	_	_	2.5	0.3	0.1	∢	0.5	-	-	2
	ug/kg	ոց/kը	ug/kg	սց/kg	սց/kց	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	սց/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mq/kg											
_	7	7	7	7	7	<u> </u>	-	7	٦	7	7	7	7	7	2	3	æ	Ø	•		•	•)	•	3	ס	CWNO	?. 2
_	0	24	2	90	10	8	17	18	39	35	36	40	20	20	20	4.7	7.0	0.47	1.0	7	45.3	77	0.055	17.9	0.17	0.77	0.45	60.3
	2-Chlorophonol	3-Nitroaniline	Aconaphilieno	4 - Nitroaniino	Phonantheno	bls(2-Chlorathyt)athar	Anthracene	Fluoranthone	Pyrene	Benzo(a) Anthracone	Chrysone	Bonzo(b) Fluoranthene	Bonzo(a)Pyrene	Indono(1,2,3-cd)Pyrene	Benzo(g,h,l)Perylene	Anlimony	Arsenic	Beryllum	Cadmium	Chromhm	Copper	Lead	Morcury	Nickol	Salonlum	Silver	Thallium	Zing
	S	S	S	S	SV	SV	SV	SV	S	S	SV	S	S	S	SV	×	Σ	Σ	Σ	Σ	Σ	Σ	Σ	≊	×	×	Z	2
	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SHIREACE SOIL SAMPLE					
	TUO	DOOT	DOC	OUT	TUO	OUT	TUO	TUO	DOUT	DO	TUO	DOUT	DOUT	DOCT	TUO	TUO	DOUT	TUO	DO	OUT	TUO	OUT	700	TUO	TUO	OUT	DOUT	7110
_	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	6-10
	0-7	0-7	0-7	D-7	0-7	0-7	0-7	D-7	D-7	0-7	D-7	0-7	1-0	D-7	0-7	D-7	D-7	0-7	D-7	0-7	0-7	0-7	0-7	0-7	D-7	0-7	0-7	7-10
	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	SU-44	611.44

UMIT	330	တ္ထင္က	330	330	330	330	33	330	330	330	330	330	ø	0.5	0.5		-	2.5	0.3	0.1	7	0.5	_	_	~
QUAUFIER: UNITS 1	սց/kց	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	תמ/עת	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg·	mg/kg	mg/kg	ma/ka								
		7	-				-			_	••		ZYS	B	כ	4		•	•	2	.•	*5	5	CWND	ž
	11000	2200	23000	25000	15000	17000	20000	14000	15000	10000	3500	0098	4.3	4.0	0.25	6.1	12.5	11.9	32.4	0.053	13.8	0.19	0.71	0.5	43.9
	Phonanthreno	Anthracono	Fluoranthono	Pyrono	Bonzo(a) Anthracono	Chrysona	Benzo(k) Fluoranthene	Banzo(b) Fluoranthene	Benzo(a)Pyrene	Indeno(1,2,3-cd)Pyreno	Dibenz(a,h) Anthracene	Banzo(g,h,l)Porylana	Antimony	Arsenic	Baryllium	Cadmium	Chrombin	Copper	Lead	Mercury	Nickel	Salanlurn	Silvor	Thalllum	Zinc
	SS	SV	SV	SV	SV	S	S	>s	S	S	28	S	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	≥	Σ
	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE						
	OUT	OUT	OUT	TUO	TUO	OUT	DOOT	OUT	TUO	DOUT	TUO	TUO	OUT	DUC	DOCT	OUT	TUO	OUT	TUO	OUT	DOOT	OUT	OUT	OUT	OUT
	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-5	0-2	0-2	0-2	0-5
	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2	E-2						
	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45	SU-45						

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

S Year

X	930	200	80	330	99	9 0 0	230	8	930	8	<u>ရှိ</u>	330	9	0.5	0.5	-	-	2.5	0.3	<u></u>	₹	0.5	-	_	~
UMIT	7		.,	.,		••	••	••	••																
UNITS	ug/kg	ոն/kը	սց/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	սց/kg	ug/kg	սն/kը	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	ша/ка	mg/kg							
		7	•								7		- CNO	8	8	•		•	•	ס	•	BW		CWNO	ž
RESULTS QUAUFIER	5100	970	7500	11000	2000	6700	0400	0009	0099	4000	1900	4700	4.2	7.2	0.40	1.0	13.0	10.4	54.9	0.056	19.7	0.23	1.0	0.51	113
ANALYSIS FOR RES	Phonanthrone	Anthracono	Fluoranthone	Pyrene	Bonzo(a) Anthracono	Chrysono	Bonzo(b) Fluoranthono	Benzo(k) Fluoranthone	Banzo(a)Pyrana	Indono(1,2,3 - cd)Pyrana	Dibonz(a,h) Anthracono	Benzo(g,h,l)Perylene	Antimony	Arsonic	Boryillum	Cadınlum	Chromkim	Copper	Load	Morcury	Nickof	Solentum	Silver	Thallium	Zinc
CATEGORY	SS	SV	SV	ΛS	SV	SV	SV	S	SV	SV I	SV	S	×	⊻	Σ	×	₹	×	Z	×	æ	×	×	×	×
DESCRIPTION CA	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE						
IN/OUT		TUO	TUO	TUO	DO	TUO	TUO	OUT	TUO	TUO	DOO	TUO	TUO	TUO	TUO	DOC	TUO	TUO	TUO	OUT	TUO	OUT	DOUT	DOUT	OUT
DEPTH IN	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
G * GRID	ر ا س	С-	m -13	П 3	E-3	E-3	E-3	E-3	E-3	E-3	E-3	E-3	E-3	E-3	C-13	E-3									
SAMPLE # GI	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46	SU-46						
°																									

THE REAL PROPERTY.

LANDER DETECTION J UG/KG 330 J UG/KG 330 UNJ MG/KG 0.5 MG/KG 0.5 MG/KG 0.3 MG/KG 0.3 UMJ/KG 0.3 UMJ/KG 0.3 UMJ/KG 330 J UG/KG	D UNWU
UNITS UN	D UNWU
% E	Š
OND CONTRIBUTION OF THE BRANCH	0 0 0 0
160 130 4.7 14.4 0.59 0.59 0.59 0.44 0.77 0.056 0.49 110 170 130 130 130 130 130 130 130 130 130 13	0.59 0.6 0.6 0.56
FOR Search Benzo(b) Fluorantheno Antimony Arsenic Boryllium Cadmium Cadmium Coppor Load Mercury Nickel Solonlum Zinc Phonanthreno Phonanthreno Benzo(a) Pyreno Gadmium Cadmium Cadmium Cadmium Cadmium Cadmium Coppor Lead Mercury Nickel	Selonlum Silvar Thaillum Zing
S S S S S S S S S S S S S S S S S S S	2222
SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE
100 PUO	00 00 00 00 00 00 00 00 00 00 00 00 00
CE C C C C C C C C C C C C C C C C C C	
	1 M M M M 1 1 1 1
SAMPLE SUL-17 SUL-18 SU	SU-18 SU-18 SU-18

SAMPLE	GRID ≰	DEPTH	IN/OUT	DESCRIPTION C	CATEGORY	ANALYSIS FOR F	RESULTS C	QUAUFIER	UNITS	DETECTION
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	S	Phonanthrene	240		ug/kg	330
SU-49	B4	0-2	z	SURFACE SOIL SAMPLE	S	Fluoranthono	450		ug/kg	330
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	SS	Pyrono	48		ug/kg	330
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	SV	Bonzo(a) Anthracene	220	7	ug/kg	330
SU-49	B-4	1	Z	SURFACE SOIL SAMPLE	SV	Chrysene	250	٠,	ng/kg	330
SU-49	B-4	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	8	7	ug/kg	930
SU-49	8-4	02	Z	SURFACE SOIL SAMPLE	SV	Banzo(b) Fluoranthene	320	7	ug/kg	000
SU-49	8-4	0-2	z	SURFACE SOIL SAMPLE	SV	Bonzo(a)Pyrana	220	7	ug/kg	330
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	SV	Indono(1,2,3-cd)Pyrono	140	ה	ug/kg	330
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	×	Antlmony	4.9	TNO	mg/kg	0
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsonic	16.0	S	mg/kg	0.5
SU-49	B-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Boryllium	0.49	æ	mg/kg	0.5
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmum	0.05	•	mg/kg	-
SU-49	8-4	0-2	<u>z</u>	SURFACE SOIL SAMPLE	Σ	Chrombm	15.4	-	mg/kg	-
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Соррог	32.7	•	mg/kg	2.5
SU-49	B-4	0-2	<u>z</u>	SURFACE SOIL SAMPLE	×	Lead	43.7	•	mg/kg	0.0
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Mercury	0.08	ב	mg/kg	0.1
SU-49	B-4	0-2	z	SURFACE SOIL SAMPLE	X	Nickel	31.6	•	mg/kg	4
SU-49	B-4	•	z	SURFACE SOIL SAMPLE	Σ	Solonium	0.59	Mg	mg/kg	0.5
SU-48	84	1	Z	SURFACE SOIL SAMPLE	X	Silvar	0.0	כ	mg/kg	-
SU-49	8-4	0-2	Z	SURFACE SOIL SAMPLE	×	Thalifum	0.58	CWND	mg/kg	•
SU-49	B-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Zinc	190	Ç.Z	mg/kg	2
100	1		3	CHICAGO	=	1	2		=	
	!	1		ממבים שמים	> ;		2 !	£ :	ממ/אמ	£ :
AB1 = 001		1	≅ ∶	AUGER BORING	S	ALL SEMI-VO	QN	AN A	ug/kg	Y X
	1	3-5	Ξ.	AUGER BORING	×	Antimony	0.4	NNO	mg/kg	Ø
AB1-551	1	1	z	AUGER BORING	Σ	Arsonic	22.9	2	mg/kg	-
1	ı	1	Z	_	¥	Baryllum	0.59		mg/kg	0.5
1	1	ī	Z		₹	Cadmlum	0.47	63	mg/kg	0.5
1	8-2	3-2	Z	AUGER BORING	×	Chromium	17.3	•	mg/kg	-
1	1		Z	AUGER BORING	Σ	Coppor	34.7		mg/kg	2.5
AB1-551	1	1	×	AUGER BORING	X	Lead	22		mg/kg	0.3
AB1-551	B-2	1	ĸ		×	Mercury	0.059	כ	mg/kg	0.1
AB1-551	8-2	ı	≚	AUGER BORING	≆	Nickol	35.3		mg/kg	*
AB1-551	1	1	Z		≆	Solonlum	0.2	LWNU	mg/kg	0.5
AB1-551	B-2	t	Z	AUGER BORING	Σ	Silvar	0.70	כ	mg/kg	-
AB1-551	1	ï	z	AUGER BORING	×	Thalllum	1.2	NB NB	mg/kg	-
AB1-551	8-2	3-5	Z	AUGER BORING	X	Zlnc	101		mg/kg	2

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

1

Ē	۰	S	S	၁၁	9	_	0.5	0.5	-	2.5	0.3	0.1	₹	0.5	_	-	2		n	တင္ပင	9	-	0.5	0.5	_	2.5	0.3		-	0.5	-	-	2
018	ug/kg	ug/kg	ug/kg	սց/kg	mg/kg	.mg/kg	mg/kg		ng/kg	บฏ/หฏ	mg/kg	то/ка	та/ка	mg/kg	mg/kg	mg/kg	mg/kg																
				<u>-</u>	SND BND	2	<u>m</u>	m			•	<u> </u>		BNWJ	j D	NS NS		•	7		RND	2	B	m				ח		CWND	5		
	0029	0009	12000	130	4.7	16.1	0.35	0.35	10.0	25.6	22.0	0.050	53	0.52	0.77	0.47	92.1			1200	4.6	10.0	0.57	0.34	14.9	30.3	17.9	0.057	37.6	0.19	0.75	-:	- 10
	Elhylbenzone	m/p-Xylana	o-Xylana	Naphthalono	Anlimony	Arsonlc	Beryllium	Cadmlum	Chromium	Copper	Load	Mercury	Nickol	Salanlum	Silver	Thallium	Zinc		Bonzone	Naphilhalono	Antlinony	Arsonic	Borylllum	Cadmlum	Chromium	Copper	Load	Mercury	Nickel	Selenium	Silver	Thallfum	Zine
	>	>	>	SV	Z	Σ	×	Ξ	Σ	×	×	×	×	×	Σ	¥	W		>	ss	ž	Σ	Z	¥	×	×	×	X	₹	æ	Σ	æ	<u>=</u>
	AUGER BORING		AUGER BORING																														
	Z	Z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z		<u>z</u>	Z	z	Z	Z	Z	Z	Z	Z	Z	z	z	Z	Z	z
	0 - 10	0-10	0-10	0-10	0-10	0-10	0-10	0-10	0-10	8-10	8-10	0-10	01-0	01-0	0-10	01-0	01-0		3-5	3-5	3-5	3-5	3-5	3 - 5	3-6	3-5	3-5	3-5	3-2	3-5	1	ı	2 - 5
	8-2	B-2	B-2	8-2	8-2	B-2	B-2	B-2	8-2	B-2	B-2	8-2	8-2	B-2	B-2	9-2	B-2		8-4	B-4	8-4	8-4	8-4	8-4	0-4	8-4	8-4	8-4	8-4	8-4	8-4	8-4	7-8
	AB1-552	A81-SS2	AB1-552	AB1-552	AB1-552	A81-552	AB1-552	AB1-552	AB1-552	AB1-552		AB2-581	AB2-SS1	AB2-551	AB2-SS1	S	AR2-551																

AB2-SS2 B	3-4	9-10	Z	AUGER BORING	>	ALL VOLATILES	Q.	AX V	ug/kg	A N
AB2-552 B	8-4	0-10	Z	AUGER BORING	SS	Naphthalone	1000	-	ug/kg	330
A82-552 B	8-4	8-10	Z	AUGER BORING	Z	Antlmony	4.7	UNR	mg/kg	9
AB2-552 B	B-4 (0-10	Z	AUGER BORING	≆	Arsenic	13.7	7	mg/kg	-
AB2-SS2 B	8-4	0-10	Z	AUGER BORING	Œ	Boryllum	0.35	Ø	mg/kg	0.5
A02-552 B	_	0-10	Z	AUGER BORING	×	Cadmlum	0.35	8	mg/kg	0.5
	B-4	8-10	Z	AUGER BORING	Σ	Chrombm	13.4		mg/kg	-
AB2-SS2 B	_	0-10	Z	AUGER BORING	×	Coppor	25.9		mg/kg	2.5
AB2-552 E	_	8-10	Z	AUGER BORING	Σ	Load	15.3		mg/kg	6.0
AB2-552 E	14	8-10	Z	AUGER BORING	×	Mercury	0.005	5	mg/kg	0.1
AB2-SS2 E	8-4	0-10	Z	AUGER BORING	Z	Nickel	. 25.9		mg/kg	4
AB2-552	B-4	0-10	Z	AUGER BORING	×	Salanium	0.59	2	mg/kg	0.5
AB2-552 E	4	9-10	z	AUGER BORING	Σ	Silvar	0.77	ס	mg/kg	-
AB2-552	8-4	0-10	Z	AUGER BORING	Σ	Thallfum	0.72	Na RA	mg/kg	-
AB2-552 E	B-4	0-10	Z	AUGER BORING	×	Zinc	04		mg/kg	2
		-								
A83-SS1	8-5	3-5	Z	AUGER BORING	>	ALL VOLATILES	2	¥Z	ug/kg	ΥN
AB3-SS1	B-5	3-5	z	AUGER BORING	S	ALL SEMI-VOLATILES	ON.	¥	08/80	٧×
AB3-581	9-5	3-5	Z	AUGER BORING	¥	Antlmony	4.7	RNO	mg/kg	9
A83-581	8-5	3-5	Z	AUGER BORING	Σ	Arsenic	20.4	3	mg/kg	-
AB3-581	B-5	3-5	Z.	AUGER BORING	X	Boryllum	0.50		mg/kg	0.5
AB3-581	B-5	3-5	Z	AUGER BORING	X	Cadmlum	0.50		mg/kg	0.5
AB3-SS1	8-5	3-5	Z	AUGER BORING	×	Chromium	17.4	•	mg/kg	-
AB3-5S1	8-5	3-5	Z	AUGER BORING	Œ	Copper	24.9		mg/kg	2.5
AB3-SS1	B-5	3-5	z	AUGER BORING	×	Lead	20.1		mg/kg	0.3
_	8-5	3-5	Z	AUGER BORING	Σ	Mercury	90.0	>	mg/kg	0.1
_	B-5	3-5	Z	AUGER BORING	₹	Nickel	25.2		mg/kg	4
	B-5	3-5	Z	AUGER BORING	Œ	Selenium	0.32	ZWB	mg/kg	0.5
AB3-551	8-5	3-5	z	AUGER BORING	Σ	Silvar	77.0	5	mg/kg	-
AB3-581	B~5	3-5	Z	AUGER BORING	×	Thallium	0.59	- RM	mg/kg	-
AB3-5S1	8-5	3-2	Z.	AUGER BORING	X	Zinc	82.6		mg/kg	2

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

1

The second second

-	-							_	
9 - 0	8 – 10	Z	AUGER BORING	>	Acetone	250	٥	ug/kg	8
Ī	0-10	Z	AUGER BORING	>	Elhylbonzone	20		ug/kg	2
8-8	0-10	Z	AUGER BORING	>	m/p-Xylana	90	-	ug/kg	S
8-8	0-10	Z	AUGER BORING	>	o-Xylono	51	-	ug/kg	S
B - 6	0-10	z	AUGER BORING	S	Naphthalano	000		սց/kը	330
-SS2 B-6	0-10	Z	AUGER BORING	S	Phonantheno	160	7	սը/kg	330
-SS2 B-6	0-10	Z	AUGER BORING	S	Fluoranthene	3	٦	ug/kg	330
AB4-SS2 B-6	0-10	Z	AUGER BORING	SS	Pyrana	22	7	ug/kg	330
AB4-SS2 B-0	0-10	Z	AUGER BORING	Σ	Antlmony	7.5	RND	mg/kg	9
AB4-SS2 B-6	0-10	Z	AUGER BORING	Σ	Arsonic	16.3	₹	mg/kg	_
-SS2 B-6	8-10	Z	AUGER BORING	×	Baryllium	0.79		mg/kg	0.5
AB4-SS2 B-8	0-10	Z	AUGER BORING	×	Cadmlum	0.45	8	та/ка	0.5
AB4-SS2 B-0	0-10	Z	AUGER BORING	×	Chrombm	10.0		mg/kg	-
AB4-SS2 B-0	0-10	Z	AUGER BORING	×	Coppor	20.4		mg/kg	2.5
AB4-SS2 B-0	8-10	Z	AUGER BORING	Σ	Load	20.3	•	mg/kg	0.3
-882 8-6	0-10	Z	AUGER BORING	Σ	Mercury	0.050	ר	mg/kg	0.1
-SS2 B-0	0-10	Z	AUGER BORING	Σ	Nickel	27.0	-	mg/kg	4
AB4-552 B-6	0-10	Z	AUGER BORING	Σ	Solonlum	0.35	BNWJ	mg/kg	0.5
AB4-SS2 B-6	8-10	Z	AUGER BORING	Σ	Silvar	0.74	ס	mg/kg	
A84-552 B-6	0-10	Z	AUGER BORING	×	Thalllum	0.46	288	mg/kg	-
SS2 B-6	0-10	Z	AUGER BORING	≆	Zinc	6'06		mg/kg	2
AB5-551 C-2	1 5	Z	AUGER BORING	>	ALL VOLATILES	Q	¥.	นถ/หถ	N.
<u>د</u>	ı	Z	AUGER BORING	SV	ALL SEMI-VOLATILES	ON.	¥	ug/kg	Ϋ́
AB5-551 C-2	3-5	Z	AUGER BORING	×	Antimony	4.5	HND	mg/kg	9
AB5-551 C-2	3-5	Z	AUGER BORING	Σ	Arsenic	13.9	3	mg/kg	-
ABS-551 C-2	3-5	Z	AUGER BORING	≊	Baryillum	0.67	,	mg/kg	0.5
AB5-551 C-2	3-5		AUGER BORING	×	Cadmium	0.45	æ	mg/kg	0.5
AB5-SS1 C-2	1		AUGER BORING	≊	Chromium	16.5		mg/kg	-
AB5-551 C-2	3-2	Z	AUGER BORING	Z	Coppor	29.4		mg/kg	2.5
ABS-551 C-2		z	AUGER BORING	Z	Lead	10.1		mg/kg	0.0
AB5-551 C-2		Z	AUGER BORING	∑	Marcury	0.050	>	mg/kg	0.1
AB5-551 C-2	3-5	Z	AUGER BORING	≊.	Nickel	31.1		mg/kg	4
AB5-SS1 C-2	3-5	Z	AUGER BORING	Σ	Salentum	0.2	CWN8	mg/kg	0.5
ABS-SS1 C-2	3-5		AUGER BORING	Σ	Silvar	0.74	5	mg/kg	-
<u>د</u>	-		AUGER BORING	×	Thalllum	0.53	- 2	mg/kg	- 1
AB5-SS1 C-2	3-5	Z	AUGER BORING	Σ	Zinc	06.3		mg/kg	2

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

AB5 - SS2 AB5 - SS2 AB5 - SS2 AB5 - SS2 AB5 - SS2 C - 2 AB5 - SS2 C - 2 C - 3 C	-2 0-10								
· · · · · · · · · · · · · · · · · · ·		Z	AUGER BORING	>	ALLYOLATILES	CX	ΨZ	no/ka	₩.
	-2 8-10	Z	AUGER BORING	S	ALL SEMI-VOLATILES	S	Ž	ua/ka	Z Z
	-2 8-10	Z	AUGER BORING	×	Antimony	7.4	CND	mo/kg	9
	-2 8-10	Z	AUGER BORING	×	Arsonic	4.4	2	ma/ka	
	-2 8-10	z	AUGER BORING	Σ	Boryllum	0.33	60	ma/kg	0.5
	-2 0-10	z	AUGER BORING	Σ	Cadmium	0.22	83	· mg/kg	0.5
	-2 0-10	Z	AUGER BORING	Σ	Chromium	11.6		ma/ka	-
	-2 8-10	Z	AUGER BORING	Σ	Соррег	27.1		ma/kg	2.5
	-2 8-10	Z	AUGER BORING	Σ	Lead			mg/kg	0.3
	-2 0-10	Z	AUGER BORING	Σ	W		2	ma/ku	0.1
	-2 8-10	z	AUGER BORING	Σ	Nickel	24.0		ma/ka	4
	-2 8-10	Z	AUGER BORING	Σ	Salonlum	0.55	BNWJ	Da/ka	6.0
	-2 0-10	Z	AUGER BORING	Σ	Silvar)	E V	
	-2 8-10	Z	AUGER BORING	Σ	Thalllum		28	a/kg	
SS2 C-	-2 8-10	N	AUGER BORING	Σ	Zinc			mg/kg	. ~
								\ \ \	
	<u>د</u>	<u>z</u>	AUGER BORING	>	ALL VOLATILES	QN	¥	ug/kg	×
_	-4 3-5	z	AUGER BORING	SV	ALL SEMI-VOLATILES	ON.	¥	ua/ka	Y X
	-C	Z	AUGER BORING	Σ	Antimony	4.5	UNB	E CA/KG	9
	<u>.</u>	Z	AUGER BORING	X	Arsenic	22.2	2	ma/ka	-
		Z	AUGER BORING	Σ	Boryllium	0.33	Ø	ma/ka	2.0
_		z	AUGER BORING	Σ		3.3		mg/kg	0.5
AB6-551 C-4	<u>۲</u>	Z	AUGER BORING	Σ	Chrombm	16.5		mg/kg	-
		z	AUGER BORING	Σ	Copper			ma/kg	C.
		Z	AUGER BORING	X			•	mo/kg	
		Z.	AUGER BORING	Σ	×		5	mo/ka	. 0
_	_	Z	AUGER BORING	×				ma/ka	. 4
	-4 3-5	Z	AUGER BORING	×	S		PNW3	ma/ka	יני
	_	Z	AUGER BORING	×			2	mo/ka	
_	4	Z	AUGER BORING	X	<u> </u>		2	mo/kg	
SS1 C-	-4 3-5	Z	AUGER BORING	×	Zinc			mo/ka	- ^

4

all places of

	2	Ϋ́	9	-	0.5	0.5	 (2.5	0.3	 	F !	0.5			~	1	^	ž	9	-	0.5	0.5	_	2.5	0.3	0.1	4	0.5	_	-	~
	ug/kg	ug/kg	mg/kg	Dx/6L	mg/kg	mg/kg	mg/kg	mg/kg		ng/kg	ug/kg	mg/kg	ma/ka																		
-	7	¥ X	UNB	3	5		-		-)		BNWJ	>	DNB BNC			3	¥ X	UNB	₹		6 3				>		3	5	BNC	
	-	Q	9.0	20.3	0.22	0.49	12.4	25.7	14.0	90'0	20.3	0.53	0.64	0.39	05.7		8	<u>Q</u>	5.1	10.2	0.63	0.30	17.0	30.0	17.6	0.061	35.0	0.2	0.03	0.73	00 7
	Benzene	ALL SEM-VOLATILES	Antimony	Arsonic	Beryllun	Cadmium	Chrombin	Coppor	Lead	Marcury	Nickol	Solonium	Silvor	Thalllurn	Zinc		Methylene Chloride	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllum	Cadmium	Clirombin	Coppor	Lead	Morcury	Nickol	Salenlum	Silvor	Thalllum	Zing
	>	SV	×	Σ	Σ	2	Œ	≆	×	≆ :	Σ	Σ	X	Σ	Σ		>	SV	Σ	Z	Σ	Σ	₹	×	×	×	×	Z	Σ	≆	
	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	. AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING		AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	סואוסטם משטווא
	Z	Z	Z	Z	Z	Z	N.	Z	Z	Z	Z	Z	z	Z	N		OUT	TUO	TUO	TUO	DOOT	DOOT	TUO	OUT	DOUT	DOUT	DOUT	DOUT	TUO	TUO	5
	8 - 10	0-10	8-10	8~10	0-10	0-10	8-10	8-10	0-10	0-10	0-10	8-10	0-10	0-10	0-10		3-5	3-5	3-5	3-6	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	
	Q-4	C-4	0-14	C - 4	- C-4	C-4	C-4	C-4	C-4	C-4	C-4	C-4	C-4	C-4	C-4		C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	,
_	AB6-552	AB6-552	A86-552	AB6-552	AB6-552	AB6-552	A86-552	AB6-552	AB6-552	AB6-552	AB6-SS2	AB6-552	AB6-552	AB6-552	AB6-552		AB7-551	AB7-551	AB7-551	AB7-551	AB7-551	A87-SS1	AB7-551								

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

¥ Z	NA	9	-	0.5	0.5	_	2.5	0.3	0.1	₹	0.5	-		2		ž	¥ Z	9	,	0.5	0.5	_	2.5	0.3	0.1	4	0.5	-	-	2
ug/kg	ug/kg	mg/kg	1	ng/kg	ug/kg	mg/kg																								
¥	AX.	UNB	2	63				·	2		BNWJ	>	ZWB		=======================================	₹	¥	UNR	7	B					D		CWNB	2	28	
	2	4.4	21	0.33	0.55	11.5	23.0	16.7	0.057	25.7	0.34	0.72	0.54	62.9	<u>.</u>	2	2 2	4.5	16.0	0.45	0.60	13.6	20	15.7	0.057	30	0.25	0.74	0.63	02.2
	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmium	Chrombm	Coppor	Prog	Mercury	Nickel	Solonlum	Silvor	Thallium	Zinc	1	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmlum	Chromium	Copper	Load	Mercury	Nickel	Selonlum	Silver	Thallium	Zinc
>	S	*	2	×	Σ	₹	Σ	≆	×	Σ	Σ	Σ	Σ	Σ	-	>	S	Σ	Σ	Σ	Σ	Σ	×	×	Σ	Σ	Σ	Σ	Σ	×
AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING		AUGEH BOHING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING
O	TUO	TOO	TUO	OUT	DOC	DOO	TUO	OUT	OUT	OUT	DOUT	our	OUT	DOUT		Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z	2
8-10	0-10	0-10	0-10	8-10	0-10	0-10	0-10	0-10	0-10	8-10	0-10	0-10	0-10	0-10	,	3-5	35	3-5	3-5	3-6	3-5	3-6	3-5	3-5	3-5	3-5	3-5	3-5	3-5	100
C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7	C-7		0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	D-2	0-2	D-2	D-2	0-2	D-2	2-0
AB7-552		AB7-552	AB7-552	AB7-552	AB7-SS2	AB7-552	AB7-SS2	AB7-552	AB7-552	AB7-SS2	AB7-SS2	AB7-SS2	AB7-552	AB7-552		AB0-551	A80-551	AB6-551	A80-551	AB0-551	AB8-551	AB0-551	AB0-551	AB0-551	AB8-551	A88-SS1	AB0-551	AB0-551	AB0-551	ABALGG

UMIT	¥ X	¥	9	-	0.5	0.5		2.5	0.0	7.5	,	e.		- (7	Ą	٧z	В	-	0.5	0.5	-	2.5	0.3	0.1	₹ '	0.5	_	_
##	ug/kg	ug/kg	mg/kg	mg/kg.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	gy/gr	מאיטיין ווי	Dx/Su	mg/kg		mg/kg	na/kn	ua/ka	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RESULTS QUAUFIER UNITS	Ą	¥	BND	2	Ø	B	<u> </u>		;	5	-	CWNS	2	2		ΨN	Y Z	BND	2	80	Ø			ທ	ס		25	5	288
sults au	Q	ON	S	17.4	0.37	0.37	15.9	30.2	14.9	0.059	27.7	0.35	0.02	4.0	93.7	Š	2	7	20.7	0.49	0.49	16.9	27.7	27.7	0.00	30.6	0.21	0.01	0.48
FOR	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsenic	Beryllium	Cadmlum	Chromkm	Coppor	Lead	Mercury	Nickol	Solonium	Silver	maller	Zinc	32 (14) (2)	ALL SEMI_VOI ATILES	Acceleration	Aranic	Beryllum	Cadmium	Chromium	Соррес	Lead	Marcury	Nicket	Solentum	Silver	Thallium
CAŤEGORY	>	25	Σ	Σ	×	Σ	Σ	×	Σ	Σ	Σ.	Σ	Σ	Σ	Σ	3	> 3	3 2	ξ 3	. ≥	**	Σ	Σ	Σ	≨	Z	Σ	Σ	≥
DESCRIPTION CA	ALIGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING		AUGER BORING	אווייספ אשטאא	Augen Boring	ALIGEB BOBING	ALIGER BORING	AUGER BORING							
IN/OUT	2	. 2	<u> </u>	<u> </u>	Z	Z	<u>z</u>	z	Z	<u>z</u>	Z	<u>z</u>		<u>z</u>	Z.		<u>z</u>	<u>z</u> :	<u>z</u> :	2 2				-		Z	Z		2
DEPTH	Ç	0 0	2 5	1 5	9-10	0-10	0-10	0-10	0-10	8-10	0-10	0-10	0-10	01-0	0-10		31.5	010	2 .	ה ע ו	י ני	2 1	100	3-5	3-5	3-5	3-5	3-5	7
•		א מ ט ב	2 1	2 - 0	3 6	0-2	D-2	0-2	D-2	0-2	0-2	0-2	0-2	0-2	0-2			4-0	0-4	7 .		1 1	0 0	4-0	0-4	0-4	D-4	0-4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SAMPLE . GRID		ABG-552	ABB - SSZ	700 - 00 V	ABA - 582	AB0 - SS2	ABB-552	AB0-552	AB0-552	AB0-552	ABB-552	AB0-882	AB0-552	AB0-552	AB0-552		AB9-551	A89-551	AB9-551	122 - 524	AB91901	1001004	AB9-881	AR9 - SS1	AB9-551	A89-SS1	AB9-551	AB9-551	A DO C.C.

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS – SOIL

\int	¥	¥	6	_	0.5	0.5		2.5	0.3	0.1	₹	0.5	_	-	~		¥ Z	₹ Z	ø	-	0.5	0.5	-	2.5	0.3	0.1	*	0.5	-	-	2
	սց/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	пу/ка	mg/kg	ту/ка		սն/kը	ug/kg	mg/kg	тр/ка											
	¥ X	٧X	78	3		<u>B</u>		. 		D	-	CK D	5	SN8			₹ Z	ž	RND	7		8		•		>	1.51.5	TNO	>	SNB SNB	
	2	Q	9	10.1	0.64	0.51	17.3	24.9	19.5	0.00	20.7	0.21	0.84	0.74	6.08		Q Z	2	4.7	21	0.50	0.35	17.0	29.4	17.6	90.0	20.6	0.19	0.76	0.58	80.5
	ALLVOLATILES	ALL SEMI-VOLATILES	Anilmony	Arsonic	Boryllum	Cadınlum	Chromium	Coppor	Load	Mercury	Nickel	Solonlum	Silvar	Thallium	Zluc		ALL VOLATILES	ALL SEMI - VOLATILES	Antimony	Arsonic	Beryllum	Cadmlum	Chromium	Copper	Lead	Morcury	Nickal	Selonium	Silver	Thalllum	Zinc
_	>	SV	Σ	Σ	Σ	×	Σ	Σ	Σ	Σ	₹	Σ	Σ	Σ	Σ		>	S	Σ	×	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ
	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING		AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING
_	<u>z</u>	Z	Z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	z	N		Z	Z	Z	Z	Z	Z	Z	z	Z	Z	Z	Z	z	Z	Z
-	0-10	0-10	0-10	0-10	0-10	0-10	0-10	0-10	0-10	01-0	0-10	0-10	0-10	0-10	0-10	:	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5
-	4-0	0-4	0-4	0-1	0-4	0-4	0-4	D-4	0-4	0-4	0-4	0-4	D-4	D-4	0-4		0-5	0-5	0-5	0-5	0-5	0-5	0-5	D-5	0-5	0-5	05	0-5	D-5	D-5	0-5
	AB9-552	AB9-552	AB9-552	AB9-552	AB9-5S2	AB9-552	AB9-552	A89-552	A89-SS2	AB9-552	AB9-SS2	AB9-552	AB9-552	AB9-552	AB9-552		AB10-551	AB10-SS1	AB10-551	AB10-SS1	AB10-SS1	AB10-551	AB10-SS1	AB10-551							

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

						_											
оетеспои имг	5	S		AN AN	9	-	0.5	0.5	-	2.5	0.3	0.1	•	0.5	_		2
UNITS	By/Bn	ug/kg	ממ/גם	ug/kg	mg/kg												
IVAUFIER	ſ	7	つ	¥N.	ZN2		B	ס	•	3	7.X	D		BW	כ	BNWJ	3
RESULTS QUADRIER	8	9	9	QN	3.9	0.0	0.38	0.10	6.5	21.7	1.4	0.064	14.5	0.28	0.63	0.12	32.0
ANALÝSIS FOR R	o-Xylene	1,3-Dichlorobonzone	1,2/1,4 - Dichlorobonzone	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmlum	Chrombin	Copper	Load	Marcury	Nickol	Solonium	Silvar	Thallium	Zinc
CATEGORY	>	>	>	S	×	Σ	Σ	Σ	Σ	Σ	×	Σ	Σ	≆	Σ	≆	M
DESCRIPTION C	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING
IN/OUT	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
DEPTH IN/OL	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23
GRID .	C-S	C-5	0-5	C-5	0-15	0-12	C-5										
SAMPLE .	AB12-SS7	AB12-SS7	AB12-SS7	AB12-SS7	AB12-SS7	AB12-SS7	AB12-557	AB12-SS7	AB12-557	AB12-557	AB12-SS7	AB12-SS7	AB12-557	AB12-557	AB12-SS7	AB12-557	AB12-557

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

DETECTION	×	¥N	9	_	0.5			2.5	0.3	0.1	*	9.0	-		2	¥ X	¥.	9	-	0.5	0.5	-	2.5	0.3	0.1	7	0.5	-	-	2
UNITS	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	mg/kg		mg/kg	mg/kg																					
QUAUFIER	¥ Z	Ϋ́Z	CND	8	æ	2		3	ž			BW	כ	CWNU	NU	¥ Z	Y Y	CNO		80	80		2	7.2	5		m	2	ONW	₹
RESULTS	Q.	QN	4.2	5.0	0.31	0.2	6.7	42.0	10.2	0.17	9.0	0.32	0.69	0.11	47.9	ON	ON.	1.0	9.5	0.10	0.008	4.0	42,9	10.1	0.053	0.0	0.24	0.29	0.085	65.1
ANALYSIS	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmlum	Chromium	Copper	Load	Marcury	Nickol	Selentum	Silvor	Thalllum	Zinc	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsanic	Boryllium	Cadmium	Chromium	Copher	Lead	Morcury	Nickol	Selonium	Silvar	Thalllum	Zinc
CATEGORY	>	SV	Z	Σ	Σ	×	≆	Z	Σ	Σ	Σ	Σ	Σ	Σ	Σ	>	SV	≨	Σ	Σ	₹	Σ	Σ	×	Σ	≊	Σ.	Σ	Σ	₹
DESCRIPTION	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING
IN/OUT	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z	Z	Z.	Z	Z	Z	Z	Z
ОЕРТН	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	17-19	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23	21-23
GRID €	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3	C-3			C-3	C-3	C-3	C-3	C-3
SAMPLE #	AB13-SS5	AB13-SSS	AB13-SSS	AB13-SSS	AB13-SSS	AB13-SSS	AB13-SSS	AB13-885	AB13-SSS	AB13-SS5	AB13-SSS	AB13-SSS	AB13-SS5	AB13-SS5	AB13-SS5	AB13-SS7	AB13-557	AB13-SS7	AB13-SS7	AB13-557	AB13-SS7	AB13-SS7	AB13-557	AB13-SS7	AB13-557	AB13-SS7	AB13-SS7	AB13-557	AB13-SS7	AB13-SS7

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

T W	8		Ϋ́	9	-	0.5		-	2.5		0.1	4	0.5	-	-	2		3	- NA	9	-	3 0.5	0.5	_	2.5	0.3	0.1	4	0.5	-		7
	na/ka	ug/kg	ug/kg	mg/kg	mű/kg	mg/kg	mg/kg	mg/kg	mg/kg	! !	սց/kg	ug/kg	mű/kg	mg/kg		тр/кр	mg/kg															
			¥	75			ם		3	ž	В		MΩ	כ	MND	N.J		7	٧	Z			83		3	ž			BW	כ	NNO	2
	640	250	ON.	4.8	14.8	0.73	0.23	10.2	23.7	15.0	0.090	27.2	0.21	0.0	0.11	76.0		•	9	2.6	14.5	0.72	0.13	10.4	19.9	13.2	0.16	30,3	0.31	0.43	0.094	60.0
	Acetone	Elhylbanzono	ALL SEMI-VOLATILES	Anlimony	Arsonic	Beryllium	Cadmlum	Chrombin	Coppor	Load	Morcury	Nickol	Solonlum	Slivor	Thalllum	Zinc		Trichioroguana	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmium	Clromium	Coppor	Load	Mercury	Nickel	Solonfum	Silver	Thalllum	Zinc
	>	>	S	Σ	≆	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Z	Σ	Σ	X	•	>	SV	Σ	×	Σ	≆	Σ	Σ	Σ	Σ	Ξ	Σ	Σ	X	X
	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING		AUGEN BOHING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING	AUGER BORING
-	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z		Z	Z	z	Z	Z	z	z	Z	Z	Z	Z	Z	<u>z</u>	Z	Z
	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	-	13-15	-	13-15	13-15		17-67	25-27	25-27	25-27	25-27	25-27	25-27	25-27	25-27	25-27	25-27	25-27	25-27	25-27	25-27
	0-5	0-5	0-5	0-5	0-5	D-5	05	0-5	0-5	0-5	05	0-5	0-5	0-5	0-5	0-5		1	0-5	ı	1	1		1	1	1	1	ı	1	0-5	1	0-5
	AB15-553	AB15-553	AB15-553	AB15-SS3	AB15-553	AB15-SS3	AB15-553	AB15-553	AB15-SS3	AB15-553	AB15-553	AB15-553	AB15-553	AB15-553	1	AB15-SS3		000-0104	AB15-550	AB15-550	AB15-550	AB15-550	AB15-550	AB15-550	AB15-550	AB15-550	AB15-550	AB15-550	A815-550	AB15-550		AU15-558

RICKENBACKER ANG B HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

			_							
MW4-552	8-1	0-10	DOUT	MONITORING WELL	>	ALL VOLATILES	QX N	¥ Z	המ/אם	X
MW4-SS2	8-1	8-10	TUO	MONITORING WELL	SV	ALL SEMI-VOLATILES	Q	A X	ug/kg	Ϋ́
MW4-552	8-1	0-10	TUO	MONITORING WELL	Σ	Antimony	3.2	S S	mg/kg	9
MW4-552	8-1	0-10	TUO	MONITORING WELL	Σ	Arsonic	17.4		mg/kg	-
MW4-SS2	8-1	0-10	TUO	MONITORING WELL	Σ	Beryllium	0.39	•	mg/kg	0.5
MW4-552	B-1	0-10	OUT	MONITORING WELL	Σ	Cadmlum	0.24	6 0	пу/ка	0.5
MW4-SS2	8-1	0-10	TUO	MONITORING WELL	Σ	Chrombm	9.1		mg/kg	_
MW4-552	91	0-10	OUT	MONTOPING WELL	×	Copper	20.7	₹	mg/kg	2.5
MW4-SS2	8-1	0-10	DOUT	MONITORNG WELL	Σ	Load	15.7	?	mg/kg	0.0
MW4-552	8-1	0-10	OUT	MONITORNG WELL	×	Mercury	0.057	5	тау/ка	0.1
MW4-552	8-1	0-10	DOUT	MONITORNG WELL	Σ	Nickel	24		mg/kg	*
MW4-552	1-0	0-10	DOCT	MONITORING WELL	Σ	Solonlum	0.10	AG	mg/kg	0.5
MW4-552	8-1	8 - 10	OUT	MONITORING WELL	Σ	Silver	0.52	5	mg/kg	-
MW4-552	1-8	01-0	OUT	MONITORING WELL	Σ	Thallium	0.34	CWN8	mg/kg	-
-582	B-1	0-10	OUT	MONITORING WELL	¥	Zinc	10	3	mg/kg	2
MW4-SS3	1-0	13-15	OUT	MONITORING WELL	>	ALL VOLATILES	Q.	¥	ug/kg	Y X
MW4-553	8-1	13-15	OUT	MONITORING WELL	SS	ALL SEMI-VOLATILES	Q.	AN	ug/kg	¥
MW4-553	B-1	13-15	TUO	MONITORING WELL	Σ	Antimony	3.4	ZYS	mg/kg	9
MW4-553	B-1	13-15	DOUT	MONITORING WELL	Σ	Arsanic	9.1		mg/kg	_
MW4-553	8-1	13-15	TUO	MONITORING WELL	Σ	Baryllium	0.43		mg/kg	0.5
MW4-553	B-1	13-15	TUO	MONITORING WELL	Σ	Cadrulum	09.0		mg/kg	0.5
MW4-553	8-1	13-15	TUO	MONITORING WELL	×	Chromium	11.2	-	mg/kg	_
MW4-553	B-1	13-15	OUT	MONITORING WELL	Σ	Соррог	19.7	7	mg/kg	2.5
MW4-553	8-1	13-15	OUT	MONITOPING WELL	×	Load	15.1	ž	mg/kg	0.3
MW4-553	<u>-</u> 8	13-15	DOUT	MONITORING WELL	Σ	Mercury	0.057	Þ	mg/kg	0.1
MW4-553	B-1	13-15	DOUT	MONITOPING WELL	Σ	Nickol	25.2		mg/kg	•
MW4-553	8-1	13-15	TUO	MONITORING WELL	X	Salonlum	0.57	}	mg/kg	0.5
MW4-SS3	B-1	13-15	OUT	MONITORING WELL	Σ	Silvar	0.58	5	mg/kg	_
MW4-SS3	8-1	13-15	PUO	MONITORING WELL	Σ	Thallium	0.27	BNWJ	mg/kg	_
MW4-553	8-1	13-15	100	MONITORING WELL	×	Zinc	- 10	N	17/VW	. • `

UMIT	Y Y	¥X	9	-	0.5	0.5	-	2.5	0.0	0.1	4	0.5	-	-	2		20	S	S	330	330	9	-	0.5	0.5	-	2.5	0.3	0.1	4	0.5	-	-	c
1	ug/kg	ug/kg	ing/kg	mg/kg	шд/ка	mg/kg	Da/bui	mg/kg	Ing/kg	rng/kg	mg/kg	mg/kg.	լող/kg	mg/kg	mg/kg		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ш9/ка	mg/kg	mg/kg	2/60
QUALLFIER UNITS	¥Z	Y.	UNB	2		8		•	SS	5	٠	7+2	2	B				•		7		HND	3	8	83		•	2	כ		BNSJ	D	D	
RESULTS Q	ON	Q.	4.5	20	0.57	0.23	10.5	26.2	10.0	0.055	26	0.51	0.75	0.31	02		7400	1900	1000	8	460	4.2	0.3	0.32	0.21	9.0	57.4	17.6	0.050	13.7	0.10	0.7	0.050	2.5.0
FOR	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsonic	Beryllium	Cadmlum	Chrombm	Copper	Load	Mercury	Nickol	Solonlum	Silvor	Thaillum	Zinc		Elhylbonzono	m/p-Xylene	o-Xylene	Naphthalono	2 - Mothylnaphthalene	Antimony	Arsonic	Boryllium	Cadmium	Chrombm	Соррег	Load	Mercury	Nickel	Salenlum	Silvar	Thalllum	Zinc
CATEGORY	>	S	Σ	Σ	Σ	Σ	Σ	Σ	×	Σ	Σ	×	×	Σ	M		>	>	>	SV	28	Σ	Σ	Σ	Σ	Σ	×	Σ	Σ	×	Σ	Σ	×	~
DESCRIPTION	MONITORNG WELL	MONITORNO WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	MONITOPING WELL	MONITORING WELL		MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITOPING WELL	MONITORING WELL	MONITORNG WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	LIEW GNISCHINGM											
IN/OUT	Z	Z	Z	Z	Z	z	Z	Z	Z	z	z	Z	Z	z	Z		Z	Z	Z	Z	Z	Z	z	z	Z	Z.	Z	Z	Z	Z	Z	Z	Z	2
	8 - 10	0 - 10	01-0	0-10	0-10	0-10	8-10	8-10	0-10	0-10	8-10	8-10	0-10	0-10	0-10	. !	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15
GRID . DEPTH	B-4	B-4	B-4	8-4	8-4	8-4	8-4	8-4	8-4	8-4	8-4	B-4	8-4	8-4	0-4		8-4	8-4	8-4	8-4	8-4	B-4	8-4	8-4	84	8-4	8-4	B4	8-4	8-4	8-4	9-4	8-4	7-8
SAMPLE #	MW5-882	MWS-SS2	MW5-SS2	MWS-SS2	MWS-SS2	MW5-552	MW5-882	MW5-552	MW5-582	MW5-882	MWS-SS2	MW5-882	MW5-882	MW5-552	MWS-582		MW5-883	MW5-553	MW5-553	MW5-5S3	MW5-583	MW5-5S3	MW5-553	MW5-5S3	MW5-5S3	MW5-553	MW5-553	MW5-553	MW5-883	MW5-553	MW5-553	MW5-SS3	MW5-553	MWS COT

The state of the s

Plane . . .

I reported

UMIT		5	5	5	5	NA	9	-	5.0	6.0	1 0,	(g 2.5	(g 0.3	(g 0.1	4	kg 0.5	1 0	l By	kg 2			z		kg	kg 0.5	kg 0.5	kg 1	kg 2.5	kg 0.3	kg 0.1	γα γα	kg 0.5	ko 1	kg 1	, c
UNITS	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	тр/кр	malka			_		mg/kg	ma/ka									
QUAUFIER	7					A.	CN2	3		8		•	NSC	>		35	>	₽₩		•		×	UNB	2		-		•	ZS.	<u>,</u>		2	>	80	
RESULTS	90	2100	026	1000	1200	ON.	4.3	15.7	0.65	0.22	19	26.4	19.2	0.059	25.7	0.19	0.71	0.27	79.9	140		. S	ĸ	15.0	0.75	0.24	22.4	25.3	25.2	0.063	31.6	0.32	0.03	0.23	8 68
FOR	1,1,1 - Trichioroethane	Bonzono	Ellnylbenzono	m/p-Xylone	o-Xylana	ALL SEMI-VOLATILES	Antlinony	Arsonic	Beryllium	Cadmium	Chromium	Copper	Pread	Morcury	Nickol	Selonlum	Silver	Thallium	Zinc	Benzobe	Tolund	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllum	Cadmlum	Chromium	Соррег	Lead	Mercury	Nickel	Solonium	Silvar	Thalllum	Zine
САТЕВОВУ	>	>	>	>	>	SV	×	×	Z	Σ	2	≥	≥	≆	≨	Σ	≥	Σ	Σ	>	>	SV	Σ	Σ	Σ	×	Σ	≊	₹	×	≊	×	Σ	Σ	<u>=</u>
DESCRIPTION	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONTORNG WELL	MONITORING WELL	MONITORNG WELL	MONITORNO WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORNO WELL						
IN/OUT	OUT	TUO	OUT	OUT	DOUT	DOOT	OUT	TUO	DOUT	DOUT	DOOT	OUT	DOUT	OUT	DOC	OUT	OUT	OUT	OUT	TUO	DOUT	DOUT	DOUT	DOOT	OUT	OUT	OUT	DOO	OUT	OUT	OUT	OUT	100	100	100
DEPTH IN/OUT	8-10	8-10	8-10	8-10	8 – 10	8 - 10	8-10	810	8-10	8-10	8-10	0-10	8-10	0-10	0-10	0-10	8-10	8-10	0-10	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15
GRID	0-8	D-8	0-8	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	B-0	0-0	00	0-0	0-0	0-0	0-0	0 - 0	0-8	0-0	0-8	1	D-8	1	0-8	1	0-8	0-8	0-8	0-0	1	1	0-0
SAMPLE #	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-552	MW7-553	MW7-553	MW7-553	MW7-553	MW7-553	MW7-553	MW7-553	MW7-553	MW7-553	MW7-SS3	MW7-553	MW7-553	MW7-SS3	Eng- / MW	COOL LAW	MW7-553

-

dane.

UMIT	× ×	Ϋ́	9	-	0.5	0.5	-	2.5	0.3	0.1	7	0.5	_	-	2		22	¥Z	9	_	0.5	0.5	_	2.5	0.3	0.1	4	0.5	-	_	2
	ug/kg	ug/kg	mg/kg mg/kg	mg/kg	та/ка	mg/kg	mg/kg		ug/kg	սց/kg	mg/kg mg/kg	mg/kg	та/ка	mg/kg	mg/kg																
QUAUFIER UNITS	¥ X	Y Y	UNB	2		E		•	28.	5		ZSZ ZSZ	5	š			7	Š	UNB	SNB NB	כ	ב		•	SN	Þ		NSC	D	>	
RESULTS O	Q	QN	4.5	23	0.50	0.22	15.0	25.7	15.4	0.057	32.1	1.7	0.73	0.090	02.0		8	Q.	25	5.2	0.29	0.24	6.1	12	12.1	0.063	13.1	0.0	0.03	0.003	59.5
FOR B	ALL VOLATILES	ALL SEMI-VOLATILES	Anlinony	Arsenic	Borylllum	Cadmium	Chrombm	Coppor	Load	Morcury	Nickel	Selenium	Silvar	Thallium	Zinc		Benzone	ALL SEMI-VOLATILES	Antimony	Arsenic	Baryllium	Cadmlum	Chrombm	Copper	Lead	Marcury	Nickol	Selenium	Silver	Thallium	Zinc
САТЕВОВУ	>	S	₹	Σ	Σ	Σ	×	₹	Σ	×	Σ	Σ	Σ	Σ	Σ		>	S	₹	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	≊	Σ	Σ	X
DESCRIPTION C	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORNO WELL	MONITORING WELL		MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL
IN/OUT	TUO	DOUT	DOUT	DOOT	TUO	TUO	TUO	TUO	TUO	TUO	DOUT	OUT	DO	TUO	OUT		OUT	TUO	OUT	DOUT	OUT	OUT	OUT	OUT	TUO	OUT	DOUT	OUT	DOUT	TUO	OUT
OEPTH I	0-10	0-10	0-10	0-10	8-10	0 - 10	0-10	0 - 10	0-10	0-10	0-10	0-10	0-10	0-10	0-10		13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15
GRID #	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C- 10	C-10		C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	C-10	0-10	C-10	C-10
SAMPLE #	MW0-5S2	MW0-SS2	MW0-552	MW0-552	MW0-552	MW8-552	MW0-552	MW0-552	MW0-552	MW0-552	MW8-552	MWB-SS2	MW0-SS2	MW0-552	MW0-SS2		CSS-DWM	CSS-0WM	MW0-SS3	MW6-SS3	CSS-0WM	CSS-0MW	MW8-SS3	MW8-553	MW0-553	MW0-553	MW8-SS3	MW8-553	MW0-553	RW0-SS3	MW0-SS3

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS – SOIL

Y Z	A N	. "	0	_	0.5	0.5	-	2.5	0.3	0.1	4	0.5	-	-	2		¥	¥	ø		0.5	0.5	-	2.5	0.3	0.1	4	0.5	-	-	2
ug/kg	na/kn	07/04	mg/kg mg/kg	mg/kg	mg/kg		ug/kg	ug/kg	mg/kg	mg/kg	пд/ка	mg/kg	ша/ка	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	тд/кд	mg/kg	mg/kg										
N A	ΑN	ONI	200	₹	•	80			₹	כ		BS	D	80			٧	٧X	RNO	7		8			2	>		3	כ	B	
2	S	2 5	7.4	16.2	0.62	0.31	13.1	24.6	13.0	0.050	50	0.40	09.0	0.4	04.7		ON.	ON ON	4.2	22.2	0.72	0.21	13.6	24.9	18.4	0.062	33	0.21	0.60	0.49	07.1
ALL VOLATILES	ALL SEMI-VOLATILES	And	Aulmony	Arsenic	Boryllium	Cadmlum	Chromkum	Copper	Load	Marcury	Nickel	Selenium	Silvar	Thallium	Zinc		ALLVOLATILES	ALL SEMI-VOLATILES	Antimony	Arsenic	Boryllium	Cadmium	Chromum	Copper	. Lead	Mercury	Nickel	Selonlum	Silver	Thalllum	Zinc
>	75	; ;	ε	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	×	×		>	S	Σ	Σ	Σ	Σ	Σ	×	Σ	×	Σ	Σ	Σ	Σ	Σ
MONITORING WELL	MONITORING WELL	מוסטוובסטוויס אינוי	MONI OHING WELL	MONITORING WELL	MONITORING WELL	MONITOPING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL		MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITOPING WELL	MONITORING WELL												
OUT	LITO	5 2	000	OUT	DOUT	OUT	DOUT	TUO	OUT	our	DOUT	TUO	DOOT	OUT	OUT		OUT	DOUT	OUT	DOUT	OUT	DOUT	OUT	OUT	DOOT	DOCT	TUO	TUO	TUO	TUO	our
0-10		0 0	011	0-10	0-10	0-10	0-10	0-10	0-10	0-10	8-10	0-10	9-10	0-10	0-10		13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15
A-4	A - 4		¥-4	A-4	A-4	A-4	∀- ∀	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4		A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4
MW9-552	MW0-CC2	200 CHE	MW9-552 MW9-552	MW9-552	MW9-552		MW9-553	MW9-553	MW9-SS3	MW9-553	MW9-883	MW9~553	MW9-553	MW9-553	MW9-5S3	MW9-553	MW9-883	KW9-SS3	WW9-553	MW9-553	MW9-553										
1																١															

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

].

	ng/kg		J mg/kg 6	J mg/kg 1	mg/kg 0.5	mg/kg 0.5			mg/kg	U mg/kg 0.1	tng/kg.	mg/kg	U mg/kg 1	J mg/kg 1	J mg/kg 2	ug/kg		J mg/kg 6	J mg/kg 1	mg/kg 0.5	mg/kg 0.5	J mg/kg	mg/kg 2.5	J mg/kg 0.3	U mg/kg 0.1	100/600	P Gy/Su	U mg/kg 0.5
	D NA		9			2		eć.			<u></u>				109	 N QN	N QN	2.2	10.8	0.25	0.72	4.	9:	12.1	90.0	19.7		0.54
		S S	y 1.6	c 19.0	<u></u>	n 0.37					04 32.3	m 0.51	31 0.44	m 0.51														
The Same Control of William	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsonic	Beryllium	Cadmium	Chrombm	Copper	Load	Mercury	Nickol	Selonlum	Silver	Thaillum	Zinc	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsonic	Borylllum	Cadmium	Chromium	Copper	Pead	Marcury	Nickol		White is
	>	S	×	≊	Σ	2	Σ	×	Σ	∑.	≅	≊	Σ	Σ	×	>	SS −	₹ .	∑			₹ .	≖ -	≖ -	∑		_	_
	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITOPING WELL	MONITORING WELL	MONITOPING WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITOPING WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL						
	DOUT	OUT	TUO	TUO	TUO	TUO	TUO	DOOT	OUT	DOUT	TOO	TUO	TUO	TUO	DUT	OUT	דטס	DOUT	DOUT	OUT	OUT	TUO	OUT	TUO	TUO	DOUT	OUT	
	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-6	3-8	3-6	3-6	3-5	3-5	3-5	35	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13~15	13-15	13-15	
	8-A	9-V	A-8	9-Y	A-8	9-Y	9-W	A-8	A-0	A-8	A-0	A-0	0-A	A-8	A-0	A-0	A-0	A-0	A-8	A-0	A-0	A-8	A-0	A-0			A-0	
	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-551	MW10-533	MW10-553	MW10-553	MW10-553	MW10-553	MW10-553	MW10-553	MW10-553	MW10-553	MW10-553	MW10-553	MW10-553	

F-7	3-5	TUO	MONITORNG WELL	>	ALL VOLATILES	QV	N V	ug/kg	¥ Z
F-7		DOOT	MONITORING WELL	S	ALL SEMI-VOLATILES	2	¥ X	ug/kg	AN
F-7	3-5	DOUT	MONITORING WELL	Σ	Antimony	3.3	7	mg/kg	9
F-7		TUO	MONITORING WELL	*	Arsonic	17.9	٦	mg/kg	-
F-7		DOOT	MONITORING WELL	Σ	Boryllium	0.41		mg/kg	0.5
F-7		TUO	MONITORING WELL	Σ	Cadmlum	0.83		mg/kg	0.5
F-7	3-5	TUO	MONITORING WELL	×	Chroinhm	9.5	7	mg/kg	-
F-7		DOUT	MONITORING WELL	Σ	Copper	33.4		mg/kg	2.5
F-7		DOUT	MONITORING WELL	×	Load	16.2	7	mg/kg	0.3
F-7		DO	MONITORING WELL	Σ	Marcury	0.00	ס	mg/kg	0.1
F-7	3-5	OUT	MONITORING WELL	Σ	Nickol	20.2		mg/kg	4
F-7	3-5	OUT	MONITORING WELL	Σ	Solonium	0.38	ס	mg/kg	0.5
F-7	3-5	DOUT	MONITORNG WELL	Σ	Silvar	0.66	ס	mg/kg	-
F-7	3-5	TUO	MONITORING WELL	Σ	Thalllum	0.43	7	mg/kg	_
F-7	3-5	OUT	MONITORING WELL	Σ	Zinc	79.0	7	mg/kg	2
	:	į		3		9		1	
)	0 1	100	MONITORNG WELL	> ;	ALL VOLATILES	2	S	Dx/Gn	£ :
F-7	13-15	001	MONITORING WELL	SS	ALL SEMI-VOLATILES	<u>Q</u>	¥ X	սն/kg	AX.
F-7	13-15	TUO	MONITORING WELL	×	Antimony	2.7	7	mg/kg	9
F-7	7 13-15	DOUT	MONITORING WELL	×	Arsenic	13.4	2	mg/kg	-
F-7	7 13-15	TUO	MONITORING WELL	Σ	Boryllium	0.41		mg/kg	0.5
F-7	7 13-15	TUO	MONITORING WELL	Σ	Cadmlum	0.59		mg/kg	0.5
F-7	7 13-15	TUO	MONITORING WELL	×	Chromhm		٦	mg/kg	-
F-7	7 13-15	DOUT	MONITORING WELL	Σ	Copher	22		mg/kg	2.5
MW11-553 F-7	7 13-15	DOOT	MONITORING WELL	Σ	Load	15.2	7	mg/kg	0.3
MW11-553 F-7	7 13-15	DOUT	MONITORING WELL	¥	Marcury	90'0	>	mg/kg	0.1
	7 13-15	TUO	MONITORING WELL	×	Nickel	16.0		mg/kg	4
		TUO	MONITORING WELL	Σ	Solonlum	0.5	7	mg/kg	0.5
		TUO	MONITORNG WELL	Σ	Silver	0.63	>	mg/kg	
MW11-SS3 F-7	7 13-15	TUO	MONITORING WELL	Σ	Thallium	0.5	7	mg/kg	
-SS3 F-7	7 13-15	OUT	MONITORING WELL	∑	Zinc	70.3	ı	mg/kg	2

Ì

A X	¥	9	-	0.5	0.5	-	2.5	0.3	0.1	4	0.5	-	-	2
110/kg	gy/gn	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
AN.	ž	7	7			7			ב	-	7	5	7	7
S	2	1.4	20.7	0.64	0.52	15.0	26.7	17.7	0.00	32.1	0.30	0.40	0.30	90.2
ALL VILLA	ALL SEMI-VOLATILES	Antimony	Arsenic	Beryllum	Cadmlum	Chrombim	Copper	Load	Mercury	Nickel	Solonium	Silvor	Thalllum	Zinc
>	· AS	Σ	×	Z	≆	×	Z	Σ	Σ	Z	×	Σ	×	≆
LIEW GNEGTINOM	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL									
1	TOO	DOOT	OUT	OUT	DOO	TUO	OUT	OUT	TUO	DOUT	DOUT	DOUT	TUO	TUO
ויי	3-5	3-5	35	3-5	3-5	3-5	3-5	3-5	310	3-5	3-5	3-5	3-5	3-5
o I	л Ш 9	E - 8	E9	E-9	E-9	E-9	E-9	E-0	E-9	E-9	E-3	E-9	E-9	6-B
WW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551	MW12-551

RICKENBACKER ANG B HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

SAMPLE #	GRID #	r DEPTH IN/OUT	IN/OUT	DESCRIPTION C	САТЕВОПУ	ANALYSIS	RESULTS QUALFIER UNITS LIMIT	2VAUFIĘR	UNITS	DETECTION
MW12-553	81 1	13-15	OUT	MONITORING WELL	>	ALLVOLATILES	QX	A N	Da/kg	
MW12-553	E-9	13-15	TUO	MONITORNG WELL	S	Phonanthrono	300	7	ug/kg	380
MW12-553	E-9	13-15	TUO	MONITORING WELL	SV	Anthracono	82	7	ug/kg	300
MW12-553	6-H	13-15	TUO	MONITORING WELL	SV	Carbazolo	8	7	ug/kg	380
MW12-553	В-9	13-15	DOUT	MONITORNG WELL	SV	Fluoranthene	310	2	ug/kg	380
MW12-553	E-9	13-15	DOUT	MONITORNG WELL	SV	Pyrana	250		ug/kg	300
MW12-553	E-9	13-15	DOUT	MONITORNG WELL	SV	Bonzo(a) Anthracene	95	2	ug/kg	380
MW12-553	E - B	13-15	TUO	MONITORING WELL	SV	Chrysono	138	7	ug/kg	300
MW12-553	E-9	13-15	OUT	MONITORNG WELL	SV	Bonzo(b) Fluoranthono	110	7	ug/kg	300
MW12-553	E - 3	13-15	OUT	MONITORING WELL	S	Benzo(a)Pyrene	20	7	ug/kg	300
MW12-553	E-3	13-15	OUT	MONITORING WELL	Σ	Antimony	2.9	٦	mg/kg	9
MW12-553	E-9	13-15	DOUT	MONITORING WELL	Σ	Arsenic	*	7	mg/kg	_
MW12-553	E-9	13-15	OUT	MONITORING WELL	Σ	Beryllium	0.22		mg/kg	0.5
MW12-553	E - 9	13-15	TOO	MONITORNG WELL	Σ	Cadmlum	0.37		mg/kg	0.5
MW12-553	E-9	13-15	OUT	MONITORING WELL	×	Chrombin	5.0	7	mg/kg	-
MW12-553	E-9	13-15	TUO	MONITORING WELL	Σ	Coppor	30.5		mg/kg	2.5
MW12-553	E 1	13-15	OUT	MONITORING WELL	Σ	Lond	Ξ	3	mg/kg	0.3
MW12-953	о 1	13-15	OUT	MONITORING WELL	Σ	Mercury	0.05	2	mg/kg	5.0
MW12-553	E-9	13-15	OUT	MONITORING WELL	Σ	Nickel	9.7		mg/kg	*
MW12-553	E-9	13-15	TUO	MONITORING WELL	*	Selonlum	0.26	2	mg/kg	0.5
MW12-553	E-9	13-15	TUO	MONITORING WELL	Σ	Silver	0.47	כ	mg/kg	-
MW12-553	E-9	13-15	OUT	MONITORING WELL	X	Thaillum	0.26	7	mg/kg	-
MW12-553	E-9	13-15	OUT	MONITORNG WELL	≆	Zinc	50.1	7	mŋ/kg	2

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

							_	_		_		_	_	٦		_	<u> </u>		S	2	_	S	3	_	4	ιν.	_	-
	¥	9	_	0.5	0.5	_	2.5	0.3		•	0.5	•	-			V	2		0.5	0.5		2.5	0.3	0.1		0.5		
	ug/kg	mg/kg		2/61	מאואס ע	mg/kg	rng/kg	та/ка	mg/kg																			
	¥	7	7			7			5		7	7	<u> </u>	٦		- 52	<u> </u>	7			7			כ		٦	2	5
· · · · ·	ON N	2.5	12.6	0.5	0.63	12.4	19.2	23.1	90.0	10.6	00.0	n	0.40	179			2 2	10.8	0.41	9.0	10.3	27.2	20.0	0.05	15.5	0.5	0.50	0.5
NOT ANALIZED	ALL SEMI-VOLATILES	Anlimony	Arsonic	Beryllium	Cadmlum	Chrombm	Copper	Load	Mercury	Nickol	Solonlum	Silvor	Thalllum	Zinc		NOI ANACIZED	Animony	Arsenic	Beryllium	Cadmium	Chrombm	Copper	Load	Mercury	Nickel	Salenium	Silver	Thallium
>	S	Σ	Σ	Σ	2	×	×	×	Σ	×	≆	Σ	Σ	Σ	2	> 3	<u>}</u> ≥	×	×	Z	Σ	Σ	Σ	Σ	×	Σ	Σ	*
SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE		SURFACE SOIL SAMPLE	SUBFACE SOIL SAMPLE	SURFACE SOIL SAMPLE										
Z	Z	z	Z	Z	Z	Z	z	Z	Z	z	z	Z	Z	Z	į	3 5	100	OUT	DO	TUO	OUT							
0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2		y (0 0	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
0-2	C-2	1	C-2	C-2	i	י ני טיט	л 1 1 1	E-2																				
SSI	SSI	551	551	188	551	551	351	SSI	188	531	551	531	351	551	- 6	700	200	582	288	288	SS2	282	282	288	282	282	282	288

380				300 y			, 200 200	kg 6			kg 0.5				kg 0.1		kg 0.5	/kg 1	/kg	/kg 2		ug/kg 360	/kg 6	mg/kg 1	mg/kg 0.5	mg/kg 0.5	mg/kg	mg/kg 2.5	mg/kg 0.3	mg/kg 0.1		mg/kg 0.5	mg/kg	mg/kg 1
J ug/kg	J ug/kg		J vg/kg	J ug/kg	J ug/kg			J mg/kg	J mg/kg	mg/kg		J mg/kg	mg/kg	mg/kg	U mg/kg	. mg/kg		U mg/kg	U mg/kg	J mg/kg		on c	J mg/kg	5 mg	DE	Ē	gm L	E	gm —	ח				- T
10	210	170	04	001	150	170	94	8	12.4	0.45	-	12	49.2	30.6	0.05	14.9	0.49	0.67	0.49	162		7.0	3.3	7.5	0.2	2.2	12	24	86.5	0.05	0.5	0.4	0.57	70
NOT ANALYZED Phonanthrene				Chrysono			Indono(1,2,3-cd)Pyrono				Cadmium		Coppor	Pron				Silver		Zinc	NOT ANALYZED	Pyrone	Antimony	Arsonic	Beryllium	Cadmlum	Chromium	Copper	Load	Morcury	Nickel	Selonium	Silvar	
> %) S	>S		SV			SV Indo	×	Σ	Σ	Σ	Σ	Σ	Σ	×	≖	×	Œ	Z	Σ	>	SV	Σ	×	Σ	Σ	×	Σ	×	Σ	Σ	*	Σ:	2
SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	TO T
ם ב	100	TOO	OUT	DO	DOUT	TUO	OUT	DOUT	TUO	DO	OUT	DOUT	OUT	OUT	OUT	OUT	TUO	DOOT	OUT	OUT	OUT	OUT	OUT	OUT	TUO	OUT	TUO							
0 0	0-2	0 0	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-5	0-2	0-2	0-2	0-2	1	0-2	ı	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-2	1	1		0-2	
- I																			F-7													H-1		•
583	SSO	SS3	SS	583	SSD	SS3	SSD	SS3	SS3	SS3	883	583	583	SSJ	SS	SS3	SS3	553	553	SSO	554	884	554	554	SS4	554	SS4	554	884	554	SS4	554	554	

RICKENBACKER ANG B HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

1

]

														_																					3
95	2	SS :	350	SS.	9	_	0.5	0.5	-	2.5	0.0	0.0		0.5		- (2		35	8	SS S	8 9	95 °	φ,	- (v. 0	c.5	- (2.5	0.3		• •	; -		- (
2/01	Da/do	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	rng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	<u> </u>	ng/kg	ug/kg	ממ/גם	ug/kg	ממ/אמ	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	DX/Bm	mg/kg	מא/מע	7
	7	7	7	7	״	7			7			5		<u> </u>	D	٦ .	2		- -	- -	٦,	7	<u>.</u>	٠ .	- -					,	>	•	7 :	- 5	٠ ر
	8	90	20	20	8	19.5	0.69	0.74	15.4	32.2	39.0	0.00	24.1	0.43	0.55	0.43	199		76	16	8	<u>8</u>	8	0.1	16.2	0.40	6.0	14.0	53.0	<u>\$</u>	0.05	20.7	0.41	9.0	
NOT ANALYZED	Fluoranthene	Pyrene	Chrysene	Bonzo(b) Fluoranihono	Antlmony	Arsanic	Boryllum	Cadmlum	Chrombm	Copper	Lead	Morcury	Nickol	Selonlum	Silvor	Thalllum	Zinc	NOT ANALYZED	Phonanthrono	Anthracono	Fluoranthana	Pyrene	Benzo(b) Fluoranthene	Antimony	Arsonic	Berylllum	Cadmium	Сhrombm	Copper	Load	Mercury	Nicko	Salonium	Silvor	Hower:
> ;	SV	SV	S	SV	×	×	Σ		Σ	×	×	Σ	×	×	×	Σ	Σ	>	SV	SV	S	SS	SV	Σ	Σ	Σ	Σ	Σ	×	≨	≆	Z	Σ:	Σ į	
SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SUBFACE SOIL SAMPLE	SUBFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	STIBEACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SUBFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE		SURFACE SOIL SAMPLE		••		SURFACE SOIL SAMPLE																		
TUO	TUO	OUT	TUO	100	TUO	5 5	3 6	5 6	TNO	TUO	OUT	TUO	OUT	DOO	OUT	DOUT	OUT	DO	TUO	TUO	TUO	DOO	OUT	DOUT	DOUT	TUO	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	DOUT
0-2		ı	0-0	1 6	1		7 6	1 1		0-2	1	•	0-2			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	02	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-2
		E-3			יוני עני				יי ו ני ני								E-3				E-4													ш	
585	30.00	V.	0 0	ה מ מ	ה ער ה ע	000	200	0 0	ה ער ה ער	0 0	30.00	S (S)	\$35	588	588	555	555	886	556	886	556	886	556	556	\$86	556	556	928	556	556	256	556	586	988	900

Market B

																 														_	
DETECTION		ΑN	9	-	0.5	0.5	-	2.5	0.3	0.1	4	0.5	-	-	8		350	350	9	-	0.5	0.5	_	2.5	0.3	0.1	4	0.5	-	-	2
UNITS		ug/kg	mg/kg		ug/kg	ug/kg	mg/kg																								
avAuFien		¥ N	7	7		,	7			כ		7	ס	2	ر .		7	7	ד	7			7			5		7	5	7	J
NESULTS Q	 	QN	1.9	10.9	0.39	0.51	0.0	20.0	22.4	0.05	10.4	0.43	0.63	0.43	01.3		83	52	2.1	13.3	0.53	1.5	10.5	22.5	61.0	00.00	42.9	0.42	0.7	0.42	394
ANALYSIS: FOR n	NOT ANALYZED	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmium	Chromhm	Coppor	Load	Marcury	Nickel	Solonlum	Silvor	Thallium	Zinc	NOT ANALYZED	Fluoranthono	Pyrono	Antimony	Arsonic	Beryllium	Cadınlum	Chromium	Copper	Load	Morcury	Nickol	Selentum	Silvor	Thallium	Zinc
CATEGORY	>	SV	×	×	×	×	Σ	×	Σ	Σ	Σ	₹	Σ	Σ	×	>	S	S	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	×	Σ	≆	≨
DESCRIPTION C	SURFACE SOIL SAMPLE																														
IN/OUT	OUT	OUT	OUT	OUT	OUT	DOUT	DOOT	DOOT	OUT	DOUT	OUT	OUT	DOCT	OUT	OUT	OUT	OUT	OUT	DOUT	OUT	OUT	DOOT	DOC	DOUT	100	DOUT	DOOT	DOOT	OUT	DOCT	TU0
DEPTH	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5		1	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-5
GRID (E-5	E - 5	E-5	E . S	E-5	E-5	用 1 3	E-5	E-5	E-3	E-3	E-3									w	E-3									
SAMPLE /	587	282	287	587	287	587	587	282	587	287	282	557	282	282	287	880	550	880	880	888	888	250	088	888	888	880	888	888	SSB	SSB	SSB

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

]

	350	35	350	8	350	380	9	_	0.5	0.5	-	2.5	0.3	0.	4	0.5	-	-	~
TW %	•	••	••		••														
MESOLIS GOADTEN CONTS	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg												
	7	7	7	7	7	7	7	ה	- 1		7	_		ס		7	5	7	7
	310	300	430	200	330	520	1.0	15.0	0.60	1.7	14.9	32.3	2.68	0.05	27.8	0.43	9.0	0.43	441
NOT ANALYZED	Phonanthrono	Fluoranthene	Pyrana	Benzo(a) Anthracene	Chrysono	Bonzo(b) Fluoranthono	Antimony	Arsonic	Boryllum	Cadmium	Chromium	Coppor	Lead	Morcury	Nickel	Solonlurn	Silver	Thalllum	Zinc
>	SV	SV	SV	λs	λs	S	Σ	Σ	Σ	₹	Σ	Σ	Σ	Σ	Z	≊	Σ	Σ	2
SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE
DOUT	DO	DO	DO	TUO	DOOT	DOUT	DOUT	TUO	DOUT	TOO	TUO	OUT	TUO	OUT	DO	DOUT	DOUT	DOCT	TUO
0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
F-3	F-3	F_3	F-3	F-3	F-3	F-3	F-3	F-3	F-3	F - 3	F-3	F-3	F-3	F-3	F.	F-3	F3	F-3	F-3
888	888	828	888	888	888	888	888	888	888	889	889	888	888	888	888	888	888	888	888
σ																			

		-		-	-		-		
	0-2	DOUT	SURFACE SOIL SAMPLE	>	NOT ANALYZED				
	0-2	OUT	SURFACE SOIL SAMPLE	SV	Phonanthrono	23	7	ug/kg	8
	0-2	DOUT	SURFACE SOIL SAMPLE	SS	Fluoranthana	220	7	սց/kg	38
	0-2	OUT	SURFACE SOIL SAMPLE	S	Pyrana	8	7	ug/kg	88
	0-2	OUT	SURFACE SOIL SAMPLE	S	Bonzo(a) Anthracono	90	7	ug/kg	8
	0-2	OUT	SURFACE SOIL SAMPLE	>s	Chrysane	140	7	ug/kg	28
	ı	DOC	SURFACE SOIL SAMPLE	S	Banzo(b) Fluoranthone	32	3	ug/kg	200
	0-2	DO	SURFACE SOIL SAMPLE	S	Indono(1,2,3-cd)Pyrana	81	7	ug/kg	280
	ı	DOUT	SURFACE SOIL SAMPLE	≥	Antimony	1.9	7	mg/kg	Q.
	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	17.4	5	mg/kg	-
	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Borylllum	0.71		mg/kg	0.5
		DOUT	SURFACE SOIL SAMPLE	Σ	Cadmlum	=		mg/kg	0.5
	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Chromium	10.5	7	mg/kg	
	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Copper	34.1		mg/kg	2.5
_	1	OUT	SURFACE SOIL SAMPLE	×	Prod	50.2		mg/kg	0.0
	0-2	OUT	SURFACE SOIL SAMPLE	×	Mercury	0.05	D	mg/kg	0.1
_	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Nickol	31.0		mg/kg	•
4	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Salenium	0.47	7	mg/kg	0.5
4	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Silvor	0.64	כ	mg/kg	
7	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.47	7	mg/kg	-
- 4	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	274	ſ	mg/kg	2
					:			=	•
n	0-2	Z :	HAND BOHING	> :	Mothylene Chloride	0000	ζ.	US/KD	, ,
		Z	HAND BORING	> :	DUDIKY	110000	-	74/70	,
	0-2	<u>z</u>	HAND BORING	S	2-Malhyinaphilialone	1100	•	ng/kg	on '
C I	1	Z	HAND BORING	₹	Antimony	Q.	z	mg/kg	י פ
ទ	1	z	HAND BORING	Σ	Arsonic	15		mg/kg	0.5
5	1	Z	HAND BORING	Σ	Beryllium	0.70		mg/kg	0.1
6-	0-2	ĸ	HAND BORING	Σ	Cadmlum	4	g	mg/kg	-
C-3	0-2	ĸ	HAND BORING	Σ	Chromium	16.3		mg/kg	_
6	0-2	ĸ	HAND BORING	Σ	Coppor	19.7		mg/kg	•
6	0-2	Z	HAND BORING	×	Load	15.7		mg/kg	
r;	1	Z	HAND BORING	×	Mercury	QN.		та/ка	0.1
	- 1	Z	HAND BORING	Σ	Nickel	21.7		mg/kg	
-13	0-2	Z	HAND BORING	Σ	Solonium	QX	≯	mg/kg	0.5
61	0-2	Z	HAND BORING	Σ	Silver	QN		ma/kg	
6	0-2	×		≆	Thalllum			mg/kg	2
	0-2	Z	HAND BORING	≥	Zinc	72 E		1	

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

- 2	2	330	8	9	0.5		- ,		· v	0.1	-	0.5	- ;	<u> </u>	-	ĸ	เก	S	33	330	၁၁	ပ	0.5	0.1	-		- 1	· 2	<u>.</u>	. 0	;	9
		ဂ	ñ		J	J				•		_							,	-												
ug/kg	սց/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	DX/KG	na/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	המ/גם	ug/kg	ug/kg	ug/kg	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	DV/VO BC/kg	מייאליט ענ	ma/ka
∢				z	z	z	z :	z 2		•	z				z	6	×	D				z			o							
0	0	390	096	- Q	11.5	Ş	9	16.2	n: 5	2 02	27.0	2	2	NO NO	02.1	00	000	80	800	1600	2000	<u>Q</u>	17.6	0.04	6.9	10.4	22.7	9 !	Q i	C.63.	2 2	
30000	300000	ř	ă	۷.	=	~	~ ;	9 7	7	_	2.	_	_	_	0	120000	130000	1900000	_	=	~		<u>.</u>									
hlorida	o-Xylana	Naphlhalono	Ihalono	Anlimony	Arsonic	Boryllium	Cadmium	Chromkum	Copper	Morcury	Nickol	Salonlum	Silvor	Thallium	Zinc	Fihylbanzona	Chlorida	o-Xylana	hthalato	Naphthalono	hthalono	Antimony	Arsanic	Beryllium	Cadmium	Chromium	Coppor	Load	Marcury	NICKO		; ;
Matiylana Chlorida		Naph	2-Mallylnaphihalono	. ₹		.	Ö	ธิ์				C)				n Ivthv	Mathylana Chlorida		DI-n-butyl Phthalato	Nan	2 - Malhyinaphihalana	•				O						
ž			2 - K																			_	_		≥	≥	×	X	≆ :	Σ:	Σ :	
>	>	S	S	Z	Σ	Z	Σ	∑ ?	≨:	Σ ≥	Σ	×	≖	Σ	Σ	>	- >	• >	S	SV	S	×	Z	Σ	2	2	2	~	~ '	-	-	-
ING	ING	SNI	BORING	ING	BORING	SING	ING	SNIF	i NG	מוצים	BORING	RING	RING	RING	RING	0710	O CALL	BING	BORING	HING	BORING	BORING	RING	RING	PIING	BORING	BING	BORING	DHING	SHING	CHING	משנים מינים
HAND BORING	HAND BORING	HAND BORING	HAND BOF	HAND BORING	HAND BOF	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BOHING	HAND BO	HAND BORING	HAND BORING	HAND BORING	HAND BORING			HAND BORING	HAND BO	HAND BORING	HAND BO	HAND BC	HAND BORING	HAND BORING	HAND BORING	HAND BC	HAND BORING	HAND BC	HAND BORING	HAND BORING	HAND BORING	
I	x	. .	: :	: =	I	I	—	Ξ.	Ι.		- ^	_						-														
Z	Z				Z	Z	ž	z	Z	<u>z</u> 2	<u> </u>	Z	Z	Z	ĸ	-	£ 3	2 2	<u> </u>	Z	z	Z	Z	Z	z	Z	Z	z	Z	Z	z :	Ξ
12	- 1	. ;	1 61	0-2	1 2	0-2	-2	0-2	2-5	2 2	0 1 2	2-5	0-2		0-2			ט נו			•	3-5			3-5		3-5	3-5	1	1	3-5	1
-			- · · ·																							3	9	3	0			· ·
C-3	ָר ל ט			י י י	0 0	0 0	C-3	C-3	C-3	င္ပ (ט נ	S	3	0-3	- 1		ٔ زُ	יי טינ	, i		Ö			- 1	٦	5	S	ç	7	S	ပ်	S
1.5.5.2		2001	1 1	: 1	- 1	- 1	ı	11-552		1	11-555	31-552	- 1	31-552		1	1	100 - 10H		1	HB1-553	1	1	- 1	HB1-5S3	HB1-553	HB1-553	1	HB1-883	1	1	HBILDER
H					, E	9	H	HBI	HBI	HB !		H	HB1	H	E		S :	121		I	: =	Ξ	Ĭ	Ĭ	Ξ	Ξ	Ξ	至	I	Ξ	I	

															_					_	_			_			_	<u>.</u>	_	-	5	_	0	
DETECTION	X	330	330	φ	0.5	0.1	-	-	-	S	0.1	-	0.5		5	-	S	330	330	330	330	9	0.5	0.1			_	u)	0.1		0.5		2	
UNITS	ug/kg	ug/kg	ug/kg	mg/kg	тя/ка	 ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	mg/kg																							
QUALIFIER	¥ Z			z	z	z	z	z	z			z	≥			z	0					z			O			z			3			
RESULTS	Q	970	1900	Q.	12	2	ON N	14.1	19.5	27	Q	21.4	2	2	Q	1.98	C	3900	2400	2600	23000	Q	10.5	0.01	8.2	17.7	24.4	9.0	Q	20.0	ON.	Q	<u>Q</u>	05.5
ANALYSIS FOR	ALL VOLATILES	Naphthalene	2-Mothylnaphthalone	Antimony	Arsonic	Boryllum	Cadmium	Chromium	Coppor	Lead	Morcury	Nicko	Salonlum	Silvar	Thallium	Zinc	o-Xylana	Di-n-butyf Phthalato	Naphthalono	Phonanthrene	2-Mothylnaphthalane	Antlmony	Arsonic	Boryllium	Cadmlum	Chrombin	Copper	Load	Morcury	Nickel	Solonlum	Silvor	Thallium	Zinc
сатевову	>	SV	S	Σ	×	×	Σ	×	Σ	Σ	Σ	Σ	X	Σ	Σ	¥	>	SV	SV	S	S	Σ	Σ	Z	Σ	Σ	Σ	Σ	×	Σ	×	Σ	Σ	X
DESCRIPTION	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING
IN/OUT	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z	Z	N	Z	z	Z	Z	Z	Z	Z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	2
ОЕРТН	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	1	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	•	0-2	0-2	ı	1	1	1	1	0-5	0-5
GRID 🖡	9-0	- 1	9-D	0-0	0-0	9-D	0-0	9-D	0-0	0-0	0-0	1	0-0	0-0	9-D	0-0	0-0			9-0												9-O	9-0	9-D
SAMPLE #	HB2+3-SS1	- 5	HB2+3-551	HB2+3-551	HB2+3-551	HB2+3-551	HB2+3-551	HB2+3-SS1	HB2+3-SS1	HB2+3-551	HB2+3-SS1	-	HB2+3-SS1	HB2+3-SS1	HB2+3-SS1	HB2+3-SS1	HB2-552	HB2-SS2	HB2-552	HB2-SS2	HB2-SS2	HB2-552	HB2-552	HB2-552	HB2-552	HB2-552	HB2-SS2	HB2-SS2	HB2-552	HB2-552	•		HB2-SS2	HB2-552

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

The state of the s

The same

							_		_	
HB2-553	0-6	3-5	Z	HAND BORING	>	ALL VOLATILES	QN	¥.	ug/kg	NA A
HB2-553	C-8	3-5	Z	HAND BORING	S	Di-n-butyl Phihalato	2900		ug/kg	000
HB2-SS3	0-0	3-5	Z	HAND BORING	SS	Fluorena	48		ug/kg	330
HB2-553	9-D	1	Z	HAND BORING	SS	Naphthalono	570		ug/kg	99
HB2-5S3	0-0		Z	HAND BORING	S	Phonanthrono	700		ug/kg	330
HB2-553	0-8	3-5	Z	HAND BORING	S	2-Mothylnaphthalono	2000		ug/kg	330
HB2-553	0-6	3-5	Z	HAND BORING	Z	Antlmony	2	Z	mg/kg	9
HB2-553	0-6	3-5	Z.	HAND BORING	Σ	Arsonic	11.4	z	mg/kg	0.5
HB2-553	0-0	3-5	Z	HAND BORING	Σ	Boryllium	<u>Q</u>	z	mg/kg	0.1
HB2-553	0-6	3-5	Z	HAND BORING	Σ	Cadmlum	2	z	mg/kg	-
HB2-553	0-0	3-5	Z	HAND BORING	Σ	Chromium	10.1	z	mg/kg	-
HB2-5S3	0-0	3-5	z	HAND BORING	Σ	Copper	10.2	z	mg/kg	-
HB2-553	0-0	3-5	Z	HAND BORING	Σ	Load	0.2	ထ	mg/kg	S
HB2-553	0-0	3-5	Z	HAND BORING	Σ	Marcury	2		mg/kg	0.1
HB2-553	0 -0	3-5	Z	HAND BORING	Σ	Nickol	25	z	mg/kg	-
HB2-553	0-0	3-5	Z	HAND BORING	Σ	Solenium	2		mg/kg	5.0
HB2-SS3	0-0	3-2	Z	HAND BORING	Σ	Silvar	Q N		mg/kg	_
HB2-SS3	0-0	3-5	Z	HAND BORING	Σ	Thallium	ON N		mg/kg	9
HB2-SS3	8-0	3-5	Z	HAND BORING	Σ	Zinc	73.4	Z	mg/kg	-
		c	2	ONID CHAPT	>	ATT VOLATIES	S	AN	110/kg	AN
HB4 - 851	ם מ	2 0	2	HAND BORING	· AS	Pyrana	230		ug/kg	330
HB4-551	8-3	0-2	Z	HAND BORING	×	Antimony	QN	z	mg/kg	9
HB4-551	8-3	0-2	Z	HAND BORING	×	Arsenic	7.9	z	mg/kg	0.5
HB4-551	8-3	0-2	Z	HAND BORING	×	Beryllium	0.4	83	mg/kg	0.1
HB4-551	B-3	0-2	Z	HAND BORING	Σ	Cadmlum	2		mg/kg	-
HB4-551	B-3	0-2	Z	HAND BORING	Σ	Chrombin	10	g	mg/kg	-
HB4-551	B-3	0-2	Z	HAND BORING	Σ	Coppor	26		mg/kg	-
HB4-551	8-3	0-2	Z	HAND BORING	X	Lead	27	•	mg/kg	S
HB4-551	8-3	0-2	Z	HAND BORING	×	~	Q		mg/kg	0.1
HB4-551	B-3	0-2	Z	HAND BORING	≥		23	• .	mg/kg	-
HB4-SS1	B-3	0-2	Z	HAND BORING	Σ	89	2		mg/kg	0.5
HB4-SS1	ı	0-2	Z	HAND BORING	×		Q			- ;
1	B-3	0-2	Z	HAND BORING	Σ	Tha	2	z		10
HB4-551	8-3	0-5	Z	HAND BORING	Σ	Zinc	<u>8</u>		mg/kg	-

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

DETECTION	A X	Ϋ́	9	9.0	0.1	-	-	<u>-</u>	ro.	0.1	-	0.5	_	10	1		Y.	AN	9	0.5	0.1	-	-	-	S	0.1	-	0.5	-	10	-
UNITS	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
QUAUFIER	Y Y	A X	z	z	•	-	O		•	3	•	z		z			ΥN	¥Z	z	z	•		U	•	•	2	•	z		z	
RESULTS Q	Q.	Q	Q.	42	6.0	QN	15	30	20	Q	90	Q	ON	Q	131		Q	2	2	53	9.0	2	12	35	10	ON.	4	QN N	Q	Q	20
ANALYSIS. FOR	ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsenic	Baryllum	Cadmlum	Chrombm	Coppor	Lead	Mercury	Nickel	Solonlum	Silver	Thallium	Zinc		ALLVOLATILES	ALL SEMI-VOLATILES	Antlmony	Arsonic	Baryllium	Cadmium	Chrombra	Copper	Prog	Marcury	Nickol	Solonlurn	Silver	Thalllum	Zinc
сатевову	>	S	Σ	×	Σ.	X	Σ	Σ	Σ	Σ	Σ	\$	Σ	×	X		>	S	×	Σ	Σ	×	Σ	Σ	₹	×	Σ	≆	Σ	×	×
DESCRIPTION	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING		HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING
IN/OUT	Z	Z	Z	Z	Z	Z	Z	z	z	Z	Z	Z	z	Z	N		Z	Z	Z	Z	Z	Z	z	Z	Z	Z.	z	Z	Z	Z	z
DEPTH	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2		3-2	3-5	3-6	3-6	3-5	3-5	3-2	3-2	3-5	1	3-5	1	3-5	3-5	3-5
GRID .	8-3	B-3	8-3	8-3	B-3	8-3	B-3	8-3	8-3	8-3	B-3	8-3	8-3	B3	B-3	-	B-3	8-3	8-3	8-3	B-3	B-3	8-3	8-3	8-3	8-3	B-3	8-3	8-3	8-3	8-3
SAMPLE	HB4-552	HB4-552	HB4-552	HB4-552	HB4-552	HB4-SS2	HB4-552	HB4-552	H84-SS2	HB4-552	HB4-SS2	HB4-552	HB4-552	HB4-552	HB4-552	-	HB4-553	HB4-553	HB4-5S3	HB4-SS3	1	HB4-553	HB4-553	HB4-SS3	HB4-553	HB4-SS3	HB4-SS3	HB4-SS3	HB4-SS3	HB4-SS3	HB4-SS3

RICKENBACKER ANG B HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

	0-2	Z	HAND BORING	>	ALL VOLATILES	Q.	¥ X	ug/kg	×
	0-2	Z	HAND BORING	S	ALL SEMI-VOLATILES	Q.	¥X	ug/kg	¥ X
	0-2	Z	HAND BORING	Σ	Antimony	ON ON	z	mg/kg	9
	0-2	Z	HAND BORING	Σ	Arsenic	9.4		mg/kg	0.5
	0-2	Z	HAND BORING	Σ	Beryllum	0.5		mg/kg	0.1
	0-2	Z	HAND BORING	×	Cadmlum	QN		mg/kg	-
	0-2	Z	HAND BORING	Σ	Chrombin	10	-	mg/kg	-
	0-2	Z	HAND BORING	Σ	Coppor	23		mg/kg	-
	0-2	Z	HAND BORING	Z	Load	19	•	mg/kg	S
	0-2	Z	HAND BORING	Σ	Mercury	QN	ב	mg/kg	0.1
	0-2	z	HAND BORING	Σ	Nickel	25	_	mg/kg	_
	0-2	Z	HAND BORING	≨	Selonlum	ON	z	mg/kg	0.5
	0-2	Z	HAND BORING	2	Silver	QX QX		mg/kg	_
	0-2	Z	HAND BORING	×	Thalllum	QN		mg/kg	9
_	0-2	Z	HAND BORING	M	Zinc	63	z	mg/kg	-
								:	:
2	0-2	Z	HAND BORING	>	ALLVOLATILES	Q N	¥Z	ug/kg	ď.
2	0-2	Z	HAND BORING	S	ALL SEMI-VOLATILES	2	Y Z	นฎ/หม	¥ Z
2	0-2	<u>z</u>	HAND BORING	Σ	Antimony	2	z	mg/kg	9
2	0-2	Z	HAND BORING	Σ	Arsonic	1.7		mg/kg	0.5
2	0-2	Z	HAND BORING	≆	Beryllium	0.5		mg/kg	0.1
2	0-2	Z	HAND BORING	Σ	Cadmlum	Q N		mg/kg	-
0-5	0-2	Z	HAND BORING	Σ	Chromium	01		mg/kg	_
2	0-2	Z	HAND BORING	Σ	Copper	22		mg/kg	_
2	0-2	Z	HAND BORING	Σ	Lead	=	•	mg/kg	S
2	0-2	Z	HAND BORING	Σ	Mercury	QN.	ם	mg/kg	0.1
S	0-2	Z	HAND BORING	Σ	Nickol	18		mg/kg	
2	0-2	Z	HAND BORING	≆	Selonlum	2	z	mg/kg	0.5
S.	0-2	Z	HAND BORING	₹	Silvor	2		mg/kg	•
S	0-2	Z	HAND BORING	×	Tha	Q		mg/kg	5
2	0-2	Z	HAND BORING	≆	Zinc	79	2	החק/אם	•

														,				_												
NA.	¥	9	0.5	0.1	-	-	-	ິນ	0.1	-	0.5	-	9	-		¥ X	Ϋ́	8	0.5	0.1	-	-	-	S	0.1	-	0.5	-	10	1
ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	та/ка	mg/kg	mg/kg	mg/kg	mg/kg		ug/kg	ug/kg	mg/kg	mg/kg	ва/вш	mg/kg	mg/kg	ша/ка	mg/kg	mg/kg	та/ка	mg/kg	mg/kg	шд/ка	та/ка
٧X	¥	z						•	7.		z			Z		₹ Z	¥	z					•	•	ם		z			Z
QN	Q	QN	15	0.5	QN	12	32	10	Q	52	Q.	2	QN	98		<u>Q</u>	9	2	13	9.0	9	4-	52	15	QX	25	ON ON	2	Q.	85
ALLVOLATILES	ALL SEMI-VOLATILES	Antimony	Arsonic	Beryllium	Cadmium	Chrombm	Copper	Load	Mercury	Nickol	Solonium	Silvor	Thallium	Zinc		ALL VOLATILES	ALL SEMI-VOLATILES	Antimony	Arsenic	Baryllium	Cadmlum	Chromium	Соррег	Poad	Mercury	Nickol	Solonlum	Silvar	Thallum	Zinc
>	SV	×	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ		>	S	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	X
HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING		HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING	HAND BORING
Z	z	z	Z	Z	Z	Z	Z	z	Z	Z	Z	Z	Z	N		Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	. 0-5	0-5	0-5		3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-2	3-5	3-5	3-5	3-2
0~5	0-5	0-5	D-5	0-5	0-5	0-5	0-5	D-5	0-5	05	0-5	0-5	0-5	0-5				0-5		- 1	1	0-5	0-5	0-5	- 1	-	<u>-</u>	- 1		0-5
HB6-552	H86-SS2	HB6-552	HB6-552	HB6-552	HB6-552	HB6-552	HB0-552	HB6-552	HB6-552	HB6-552	HB6-552	HB6-552	HB6-552	HB0-SS2		HB6-553	HB6-553	HB6-SS3	HB6-533	HB6-553	HB6-553	HB6-553	HB6-SS3	HB6-553	HB6-553	HB6-553	HB6-553	HB6-SS3	HB6-553	HB6-SS3
	D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA Ug/kg	D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA UG/KG D-5 0-2 IN HAND BORING SV ALL SEMI-VOLATILES ND NA UG/KG	D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg D-5 0-2 IN HAND BORING SV ALL SEMI-VOLATILES ND NA ug/kg D-5 0-2 IN HAND BORING M Antimony ND N mg/kg	-SS2 D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA Ug/kg -SS2 D-5 0-2 IN HAND BORING SV ALL SEMI-VOLATILES ND NA Ug/kg -SS2 D-5 0-2 IN HAND BORING M Animony ND ND mg/kg -SS2 D-5 0-2 IN HAND BORING M Arsonic 15 mg/kg	-SS2 D-5 0-2 IN HAND BORING SV ALL SEMI-VOLATILES ND NA Ug/kg -SS2 D-5 0-2 IN HAND BORING M Aniimony ND ND MA mg/kg -SS2 D-5 0-2 IN HAND BORING M Assanic 15 mg/kg -SS2 D-5 0-2 IN HAND BORING M Assanic 15 mg/kg -SS2 D-5 0-2 IN HAND BORING M Boyllium 0.5 mg/kg	-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M Arsonic 15 N mg/kg -SS2 D-5 0-2 IN HAND BORING M Beryllium 0.5 mg/kg -SS2 D-5 0-2 IN HAND BORING M Cadmium ND mg/kg	-SS2 D5 IN HAND BORING V ALL VOLATILES ND NA ug/kg -SS2 D5 IN HAND BORING SV ALL SEMI-VOLATILES ND NA ug/kg -SS2 D5 IN HAND BORING M Antimony ND N mg/kg -SS2 D5 IN HAND BORING M Assonic 15 mg/kg -SS2 D5 IN HAND BORING M Beryllium 0.5 mg/kg -SS2 D5 IN HAND BORING M Cadmium ND mg/kg -SS2 D5 IN HAND BORING M Cadmium ND mg/kg -SS2 D5 IN HAND BORING M mg/kg mg/kg	-SS2 D5 IN HAND BORING V ALL VOLATILES ND NA ug/kg -SS2 D5 IN HAND BORING SV ALL SEMI-VOLATILES ND NA ug/kg -SS2 D5 IN HAND BORING M Antimony ND N mg/kg -SS2 D5 IN HAND BORING M Beryllium 0.5 mg/kg -SS2 D5 IN HAND BORING M Cadmium ND mg/kg -SS2 D5 IN HAND BORING M Cadmium ND mg/kg -SS2 D5 IN HAND BORING M Chrombim 12 mg/kg -SS2 D5 IN HAND BORING M Chrombim 12 mg/kg -SS2 D5 IN HAND BORING M Chrombim 12 mg/kg	-SS2 D5 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg -SS2 D5 IN HAND BORING SV ALL SEMI-VOLATILES ND NA ug/kg -SS2 D5 IN HAND BORING M Antimony ND N mg/kg -SS2 D5 IN HAND BORING M Baryllium 0.5 mg/kg -SS2 D5 IN HAND BORING M Cadmium ND mg/kg -SS2 D5 IN HAND BORING M Cadmium ND mg/kg -SS2 D5 IN HAND BORING M Chrombum 12 mg/kg -SS2 D5 IN HAND BORING M Coppor 32 mg/kg -SS2 D5 IN HAND BORING M mg/kg mg/kg -SS2 D5 IN HAND BORING M mg/kg mg/kg	-SS2	-SS2	-SS2 D5 IN HAND BORING V ALL VOLATILES ND NA ug/kg -SS2 D5 0-2 IN HAND BORING W ALL SEMI-VOLATILES ND NA ug/kg -SS2 D5 0-2 IN HAND BORING M Arsonic 15 N mg/kg -SS2 D5 0-2 IN HAND BORING M Baryllium 0.5 mg/kg -SS2 D5 0-2 IN HAND BORING M Cadmium ND mg/kg -SS2 D5 0-2 IN HAND BORING M Chrombium 12 mg/kg -SS2 D5 0-2 IN HAND BORING M Coppor 32 mg/kg -SS2 D5 0-2 IN HAND BORING M mg/kg -SS2 D5 IN HAND BORING M mg/kg - -SS2 D5 IN HAND BORING<	-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg N -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg N -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND N ug/kg N -SS2 D-5 0-2 IN HAND BORING M Arsanlc 15 mg/kg 0 -SS2 D-5 0-2 IN HAND BORING M Cohombum ND ng/kg 0 -SS2 D-5 0-2 IN HAND BORING M Coppor 12 mg/kg 0 -SS2 D-5 0-2 IN HAND BORING M Marcury ND u mg/kg -SS2 D-5 0-2 IN HAND BORING M Marcury ND u mg/kg -SS2 D-5 </th <th>-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M Arsanic 15 mg/kg -SS2 D-5 0-2 IN HAND BORING M Cadmium ND mg/kg -SS2 D-5 0-2 IN HAND BORING M Cadmium ND mg/kg -SS2 D-5 0-2 IN HAND BORING M Cappor 32 mg/kg -SS2 D-5 0-2 IN HAND BORING M Maicruy ND .u mg/kg -SS2 D-5 0-2 IN HAND BORING M Maicruy ND .u mg/kg -SS2 D-5 0-2 IN HAND BORING M mg/kg .u</th> <th>-SS2 D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg N -SS2 0-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg N -SS2 0-5 0-2 IN HAND BORING M Adulmony ND N mg/kg N -SS2 0-5 0-2 IN HAND BORING M Cadmium ND mg/kg N -SS2 0-5 0-2 IN HAND BORING M Cappor DS mg/kg N -SS2 0-5 0-2 IN HAND BORING M Cappor DS mg/kg N -SS2 0-5 0-2 IN HAND BORING M Marcauy ND n mg/kg -SS2 0-5 IN HAND BORING M Marcauy ND n mg/kg C -SS2 0-5 IN<</th> <th> SSZ D-5 O-2 IN</th> <th> SSZ</th> <th>-SS2 D-5 IN HAND BORING V ALL VOLATILES ND NA ug/kg NA -SS2 0-2 IN HAND BORING NA ALL SEMI-VOLATILES ND NA ug/kg NA NA ug/kg NA ug/kg NA NA ug/kg NA ug/kg NA ug/kg NA ug/kg NA NA ug/kg NA<</th> <th> SSZ D-5 D-5</th> <th>-SS2 D-5 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg NN -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg NN -SS2 D-5 0-2 IN HAND BORING M Addition ND N mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Adminory ND N mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Cappor 0.5 mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Cappor 0.5 mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Morcury ND mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Morcury ND ND mg/kg D- -SS2</th> <th>-SS2 D-5 O-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg P -SS2 D-5 0-2 IN HAND BORING SV ALL SEMI—VOLATILES ND NA ug/kg P -SS2 D-5 0-2 IN HAND BORING M Assonic 15 ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M Cadrium 0.5 mg/kg -SS2 D-5 0-2 IN HAND BORING M Capper 10 N mg/kg -SS2 D-5 0-2 IN HAND BORING M Capper 10 N mg/kg -SS2 D-5 0-2 IN HAND BORING M Morenty ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Morenty ND N mg/kg -SS2 D-5 IN</th> <th> SSZ D-5 O-2 IN</th> <th> SS2 D-5 O-2 IN</th> <th> SSZ D-5 O-2 IN HAND BORING N ALL VOLATILES ND NA Ug/kg NG NA NG NG NG NG NG NG</th> <th>-SS2 D5 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D5 0-2 IN HAND BORING M Cadmum ND NA ug/kg NG -SS2 D5 0-2 IN HAND BORING M Cadmum ND ND mg/kg -SS2 D5 0-2 IN HAND BORING M Cadmum ND mg/kg -SS2 D5 0-2 IN HAND BORING M Marchal ND mg/kg -SS2 D5 0-2 IN HAND BORING M Marchal ND Mg/kg -SS2 D5 0-2 IN HAND BORING M Marchal ND Mg/kg -SS2 D5 0-2 IN HAND BORING M</th> <th>-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg P -SS2 D-5 0-2 IN HAND BORING M Assanle 15 mg/kg -SS2 D-5 0-2 IN HAND BORING M Chandman ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Chandman ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Chandman ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Mercury ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND N mg/kg -SS2 D-5 0-2</th> <th>-SSZ D-5 O-2 IN HAND BORING V ALL VOLATIES ND NA ug/kg PA -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATIES ND NA ug/kg P -SSZ D-5 0-2 IN HAND BORING M Animony ND ND NA ug/kg -SSZ D-5 0-2 IN HAND BORING M Cappro 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M Cappro 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M Molecula 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M Molecula 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND Mg/kg -SSZ D-5 0-2 IN HAND BORING M</th> <th>-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg PM -SS2 D-5 0-2 IN HAND BORING M Adaenole 15 mg/kg Mg/kg -SS2 D-5 0-2 IN HAND BORING M Coppor 0.5 mg/kg Mg/kg -SS2 D-5 0-2 IN HAND BORING M Coppor 10 n mg/kg -SS2 D-5 0-2 IN HAND BORING M Coppor 10 n mg/kg -SS2 D-5 0-2 IN HAND BORING M Macroup ND mg/kg -SS2 D-5 0-2 IN HAND BORING M Macroup ND Mg/kg -SS2 D-5 0-2 IN HAND BORING M</th> <th>SSZ D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg NN -SSZ D-5 0-2 IN HAND BORING NA ALL SEMI-VOLATILES ND NA ug/kg NN -SSZ D-5 0-2 IN HAND BORING M Capan ND NA ug/kg ND -SSZ D-5 0-2 IN HAND BORING M Capan ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M Capan ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M Maccury ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M ALL VOLATILES ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND <td< th=""><th>SSZ D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg NA -SSZ D-5 0-2 IN HAND BORING M Cadmum ND NA mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Mg/kg ND Mg/kg -SSZ D-5 0-2 IN HAND BORING M ALL VOLATILES ND ND Mg/kg -SSZ D-5 0-2</th></td<></th>	-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M Arsanic 15 mg/kg -SS2 D-5 0-2 IN HAND BORING M Cadmium ND mg/kg -SS2 D-5 0-2 IN HAND BORING M Cadmium ND mg/kg -SS2 D-5 0-2 IN HAND BORING M Cappor 32 mg/kg -SS2 D-5 0-2 IN HAND BORING M Maicruy ND .u mg/kg -SS2 D-5 0-2 IN HAND BORING M Maicruy ND .u mg/kg -SS2 D-5 0-2 IN HAND BORING M mg/kg .u	-SS2 D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg N -SS2 0-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg N -SS2 0-5 0-2 IN HAND BORING M Adulmony ND N mg/kg N -SS2 0-5 0-2 IN HAND BORING M Cadmium ND mg/kg N -SS2 0-5 0-2 IN HAND BORING M Cappor DS mg/kg N -SS2 0-5 0-2 IN HAND BORING M Cappor DS mg/kg N -SS2 0-5 0-2 IN HAND BORING M Marcauy ND n mg/kg -SS2 0-5 IN HAND BORING M Marcauy ND n mg/kg C -SS2 0-5 IN<	SSZ D-5 O-2 IN	SSZ	-SS2 D-5 IN HAND BORING V ALL VOLATILES ND NA ug/kg NA -SS2 0-2 IN HAND BORING NA ALL SEMI-VOLATILES ND NA ug/kg NA NA ug/kg NA ug/kg NA NA ug/kg NA ug/kg NA ug/kg NA ug/kg NA NA ug/kg NA<	SSZ D-5 D-5	-SS2 D-5 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg NN -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg NN -SS2 D-5 0-2 IN HAND BORING M Addition ND N mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Adminory ND N mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Cappor 0.5 mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Cappor 0.5 mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Morcury ND mg/kg D- -SS2 D-5 0-2 IN HAND BORING M Morcury ND ND mg/kg D- -SS2	-SS2 D-5 O-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg P -SS2 D-5 0-2 IN HAND BORING SV ALL SEMI—VOLATILES ND NA ug/kg P -SS2 D-5 0-2 IN HAND BORING M Assonic 15 ND NA ug/kg -SS2 D-5 0-2 IN HAND BORING M Cadrium 0.5 mg/kg -SS2 D-5 0-2 IN HAND BORING M Capper 10 N mg/kg -SS2 D-5 0-2 IN HAND BORING M Capper 10 N mg/kg -SS2 D-5 0-2 IN HAND BORING M Morenty ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Morenty ND N mg/kg -SS2 D-5 IN	SSZ D-5 O-2 IN	SS2 D-5 O-2 IN	SSZ D-5 O-2 IN HAND BORING N ALL VOLATILES ND NA Ug/kg NG NA NG NG NG NG NG NG	-SS2 D5 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D5 0-2 IN HAND BORING M Cadmum ND NA ug/kg NG -SS2 D5 0-2 IN HAND BORING M Cadmum ND ND mg/kg -SS2 D5 0-2 IN HAND BORING M Cadmum ND mg/kg -SS2 D5 0-2 IN HAND BORING M Marchal ND mg/kg -SS2 D5 0-2 IN HAND BORING M Marchal ND Mg/kg -SS2 D5 0-2 IN HAND BORING M Marchal ND Mg/kg -SS2 D5 0-2 IN HAND BORING M	-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg P -SS2 D-5 0-2 IN HAND BORING M Assanle 15 mg/kg -SS2 D-5 0-2 IN HAND BORING M Chandman ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Chandman ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Chandman ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M Mercury ND N mg/kg -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND N mg/kg -SS2 D-5 0-2	-SSZ D-5 O-2 IN HAND BORING V ALL VOLATIES ND NA ug/kg PA -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATIES ND NA ug/kg P -SSZ D-5 0-2 IN HAND BORING M Animony ND ND NA ug/kg -SSZ D-5 0-2 IN HAND BORING M Cappro 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M Cappro 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M Molecula 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M Molecula 12 mg/kg -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND Mg/kg -SSZ D-5 0-2 IN HAND BORING M	-SS2 D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg PA -SS2 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg PM -SS2 D-5 0-2 IN HAND BORING M Adaenole 15 mg/kg Mg/kg -SS2 D-5 0-2 IN HAND BORING M Coppor 0.5 mg/kg Mg/kg -SS2 D-5 0-2 IN HAND BORING M Coppor 10 n mg/kg -SS2 D-5 0-2 IN HAND BORING M Coppor 10 n mg/kg -SS2 D-5 0-2 IN HAND BORING M Macroup ND mg/kg -SS2 D-5 0-2 IN HAND BORING M Macroup ND Mg/kg -SS2 D-5 0-2 IN HAND BORING M	SSZ D-5 0-2 IN HAND BORING V ALL SEMI-VOLATILES ND NA ug/kg NN -SSZ D-5 0-2 IN HAND BORING NA ALL SEMI-VOLATILES ND NA ug/kg NN -SSZ D-5 0-2 IN HAND BORING M Capan ND NA ug/kg ND -SSZ D-5 0-2 IN HAND BORING M Capan ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M Capan ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M Maccury ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M ALL VOLATILES ND N mg/kg 0.0 -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND <td< th=""><th>SSZ D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg NA -SSZ D-5 0-2 IN HAND BORING M Cadmum ND NA mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Mg/kg ND Mg/kg -SSZ D-5 0-2 IN HAND BORING M ALL VOLATILES ND ND Mg/kg -SSZ D-5 0-2</th></td<>	SSZ D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA ug/kg -SSZ D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA ug/kg NA -SSZ D-5 0-2 IN HAND BORING M Cadmum ND NA mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Cadmum ND Mg/kg NG -SSZ D-5 0-2 IN HAND BORING M Mg/kg ND Mg/kg -SSZ D-5 0-2 IN HAND BORING M ALL VOLATILES ND ND Mg/kg -SSZ D-5 0-2

1

+ 60.00

٠,	'n	ž	9	0.5	 	_	-	- (7 :	-	- 6	; -	- ç	2	7	v.) L	0	000	92	9	0.5	0.1	_	-	-	S	0.7		0.5		2
ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	27/04	III (Kg)	7 .	та/ка	ויט/גם	3 (2)	מאולים	D X AD	ug/kg	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		¥ X	z	z	z	z	B	z:	z		z 3	: 2	z 2	<u> </u>	z							z	z	z	z	z	z	8		z	₹	z	z
1700	1600	QX	ON N	7.0	Q Q	Q Z	4.5	12.7	0 :	200	13.3 C. X	2 5	2 2	2	56.1		0000	0001	20000	630	1200	Ω Z	16.9	2	O _N	0.4	17.2	8.8	DNO	22.2	Q	Q Z	2
Ethylbenzono	o-Xylana	ALL SEMI-VOLATILES	Antimony	Arsonic	Boryllium	Cadmium	Chrombin	Coppor	Coad	Mercury	Nickel	HIDINGIDS	Silvor	Engles	Zinc		DIST. 100	Einyibenzene	o-Xylene	Naphihalone	2 - Mothyin aphthalone	Anlimony	Arsanic	Beryllium	Cadmlum	Chrombm	Copper	Load	Mercury	Nickel	Salonium	Silvor	Thalllum
>	>	S	×	¥	Σ	×	×	×	×	Σ:	∑ :	Σ:	Σ:	Ξ	X.		- ;	> :	>	S	SV	Σ	Σ	Σ	Σ	Σ	Σ		Σ	Σ	×	Σ	≥
MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL		MONITORING WELL	MONITORING WELL	MONITOPING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORNG WELL	MONITORING WELL	MONITORING WELL	MONITORNG WELL	MONITORING WELL	LIEW GNECTINGN												
z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z	Z :	Z	Z	z	N		Z :	z	Z	Z	Z	Z	Z	Z	Z.	Z	Z	Z	Z	Z	Z	Z	2
13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15	13-15		14-16	14-16	14-16	14-16	14-10	14-16	14-18	14-16	14-16	14-16	14-18	14-16	14-16	14-16	14-18	14-16	44
0-0	0-0	0-0	010	C-6	C-6	0-0	C-6	C-6	0 - 0	0-0	9-D	C-6	0-0	9-O	9-D	,	٥	0 9 - 0	9-0	0-0	0-0	0-0	0-0	0-C	0-0	0 0	0-0	9-0	0-C	C-8	0-0	0-0	•
MW1-551	WW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551	MW1-551		MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	MW1-552	000

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

MANY2-SSI B-7 0-2 0-1 MONTORNG WELL MONTORNG WELL
Chepth
Depth Injour Description Category
Depth Injour Description Category
DEPTH IN/OUT DESCRIPTION CATEGORY FOR
DEPTH IN/OUT DESCRIPTION CATEGORY
10
7. 7 0 0 - 2 1 7 7 0 0 - 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7. 7. 0 0 - 2 - 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
MW2-SS1 MW2-SS2
SAMPLE ** MW2-SS1 MW2-SS2

22	S	¥	9	0.5	0.1	_	,-	_	22		_	0.5	_	9	-	ž	9	0.5	0.1	-	-	-	S	0.1	-	0.5	-	10	-
LIMIT																													
UNITS LIMIT	ug/kg	ug/kg	mg/kg	บถ/หถ	ma/kg	mg/kg																							
	•	¥	z	z							8	z			z	¥	z		z							``	z		
s QUALIFIER	رم	ON ON	2	8.8	2	Q.	0	24	28	<u>8</u>	9.2	Q.	Q	2	92	2	QZ QZ	15.3	Q.	Q.	13.1	20.5	15.6	Q	24.1	2	2	<u>Q</u>	07.1
RESULTS																													
,	Methylene Chloride	OLATILES	Antimony	Arsenic	Beryllium	Cadmium	Chromhm	Coppor	Lead	Mercury	Nickol	Solonium	Silver	Thalllum	Zinc	OLATILES	Antimony	Arsenic	Beryllium	Cadmium	Chromhm	Coppor	Lead	Mercury	Nickol	Salonfum	Silvor	Thallium	Zinc
FOR	Methylen	ALL SEMI-VOLATILES														ALL SEMI-VOLATILES													
САТЕВОВУ	>	SV	2	Σ	×	Σ	Σ	×	Z	Σ	Σ	Σ	Σ	Σ	¥	ò	2	×	Σ	\$	Σ	Σ	Σ	Σ	Σ	Σ	Σ	X	Σ
	NG WELL	NG WELL	NG WELL	NG WELL	NG WELL	NG WELL	MONITORING WELL	MONITORING WELL	NG WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL
DESCRIPTION	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITORING WELL	MONITOR	MONITOR	MONITORING WELL	MONITOR	MONITOR	MONITOR	MONITOR	MONTOR	MONITOR	MONITO													
IN/OUT	TUO	DOUT	TUO	TUO	TUO	OUT	DOOT	DOUT	OUT	OUT	OUT	DOUT	OUT	OUT	DUT	Z	2	Z	Z	Z	Z	Z	Z	z	Z	Z	Z	Z	Z
DEPTH II	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	3-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-2	0-2	0-2	0-2	0-2
GRID .	8-7	B-7	B-7	8-7	8-7	B-7	8-7	8-7	8-7	8-7	8-7	8-7	8-7	B-7	B-7	7-0	C-4	0-1	C-4	C-4	C-4	4-0	Q - 4	0 4-0	C-4	V-7	V-0	Q-1	C-4
SAMPLE # 0	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-553	MW2-5S3	WW3-SS1	WW3-551	MW3-551											

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

<u> </u>
ZZZZ

T. St. St.

UMIT	330	330	φ	0.5	0.7	_	-	-	S	0.1	-	0.5	-	2	-
UNITS	ոց/kg	ug/kg	mg/kg	mg/kg	mg/kg	та/ка	та/ка	mg/kg							
56/3888 L		•	z			g	<u> </u>		-						
RESULTS QUALIFIER	200	570	ON	19.7	0.0	0.3	22.4	20.1	35.3	9	20.3	QN	ON.	QN	5
FOR	Benzo(k) Fluoranthene	Fluoranthone	Antimony	Arsenic	Boryllum	Cadmlum	Chromkm	Copper	Lead	Morcury	Nickel	Salonlum	Silvar	Thalllum	Zinc
САТЕВОВУ	S	S	Z	Σ	2	Σ	×	×	Σ	×	Σ	≥	Σ	≆	Σ
DESCRIPTION C/	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE
IN/OUT	Z	Z	Z	Z	Z	Z	ĭ	Z	Z	<u>z</u>	Z	Z	Z	Z	Z
DEPTH II	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	02	0-2	0-2	0-2
GRID .	0-2,0-3	0-2,0-3	0-2,0-3	0-2,0-3	0-2,0-3	D-2,D-3	0-2,0-3	0-2,0-3	D-2,D-3	0-2,0-3	0-2,0-3	0-2,0-3	0-2,0-3	0-2,0-3	0-20-3
SAMPLE #	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 D-2,D-3	SU3+4-GS1 0-20-3

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS – SOIL

GRID # DEPTH IN/OUT		-						-	
B-3.C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Anthracono	280		UG/kg	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(n)	2100	-	ug/kg	330
B-3,C-3	0-2	z	SURFACE SOIL SAMPLE	SV	Benzo(a)Pyrene	2600		ug/kg	330
B-3,C-3	0-2	z	SURFACE SOIL SAMPLE	SV	Bonzo(b) Fluoranthone	3200		ug/kg	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Banzo(g.h.l)Porylana	1700		ng/kg	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Ξ.	2000		ug/kg	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Bis(2-othythoxyt)Phthalato	4100		ug/kg	330
B-3,C-3	02	Z	SURFACE SOIL SAMPLE	SV		2000		ng/kg	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Dibonz(a,h) Anthracono	360		ug/kg	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthone	4100		ug/kg	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Indeno(12.3 - cd) Pyrene	1700		ug/kg	330
B-3,C-3	02	Z	SURFACE SOIL SAMPLE	SV	Phonanthrono	4200		00/kg	330
B-3,C-3	0-2	z	SURFACE SOIL SAMPLE	S	Pyrono	2600		מא/מח	330
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	QN ON	z	աց/kը	9
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	1 Arsenic	17.7	S	mg/kg	0.5
B-3,C-3	2-0	Z	SURFACE SOIL SAMPLE	×	1 Boryllum	0.75		mg/kg	0.1
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Œ	1 Cadmlum	6.9	O	mg/kg	-
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	×	Chrombm	25.6		ша/ка	-
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Œ	Copper	67.9		mg/kg	•
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	×	Lead	107		mg/kg	S
B-3,C-3	0-5	Z	SURFACE SOIL SAMPLE	X	Marcury	Q.	naturine*	mg/kg	0.1
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	≆	Nickel	19.1		mg/kg	-
B-3,C-3	0-2	z	SURFACE SOIL SAMPLE	×	Solonlum	2	*	mg/kg	0.5
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	2	Silvor	QN		mg/kg	-
B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	2	M Thallium	QN		mg/kg	10
B-3,C-3	0-5	Z	SURFACE SOIL SAMPLE	2	M	433		mg/kg	-

-

	_								_	
	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	S	Bonzo(b) Fluoranthono	230		ug/kg	330
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	SV	DI-n-butyl Phihalate	940		ug/kg	330
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	SV	Fluoranthene	220		ug/kg	330
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	QN	z	mg/kg	80
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	2	Arsonic	15.2	-	mg/kg	0.5
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	×	Berylllum	6.0		mg/kg	0.1
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	≆	Cadmlum	0	Ø	mg/kg	-
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chrombin	22.1		mg/kg	-
SU7+8-GS E	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	≆	Coppor	23.1		mg/kg	-
SU7+0-GS 8	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Load	55.7		mg/kg	S
SU7+8-GS (B-4,C-4	0-2	z	SURFACE SOIL SAMPLE	×	Mercury	2		mg/kg	0.1
<u> </u>	-	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	20.0		mg/kg	-
-	B-4,C-4	0-2	z	SURFACE SOIL SAMPLE	Σ	Solonlum	Q		mg/kg	0.5
SU7+8-GS 1	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silvor	2		mg/kg	-
SU7+8-GS {	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Z	Thallium	ON.		mg/kg	5
SU7+8-GS 1	B-4,C-4	- 1	Z	SURFACE SOIL SAMPLE	×	Zinc	298	_	mg/kg	-
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	360		ua/ka	OCE
SU9+10-GS	0-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	SV	Bonzo(b) Fluoranthone	570		ua/ka	330
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	SV	Banzo(k) Fluoranthana	380		מט/גם	23
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	SV	Chrysone	420		ug/kg	330
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	040		ug/kg	000
	0-4.E-4	0-2	Z	SURFACE SOIL SAMPLE	SV	Phenanthreno	410		ug/kg	330
_	D-4.E-4	0-2	Z	SURFACE SOIL SAMPLE	S	Pyreno	930		ug/kg	330
	D-4.E-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	S S	z	mg/kg	9
SU9+10-GS	1	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	17.9		mg/kg	0.5
SU9+10-GS	0-4,8-4	0-2	Z	SURFACE SOIL SAMPLE	×	Baryllium	0.95		шд/ка	0.1
SU9+10-GS	D-4,E-4	0-2	Z	_	Σ	Cadmium	9.1	g	mg/kg	•
SU9+10-GS	D-4.E-4	0-2	Z	SURFACE SOIL SAMPLE	Z	Chrombun	20.1		mg/kg	•
SU9+10-GS	0-4.E-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Coppor	73.1		mg/kg	•
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Lead	72.0		mg/kg	S
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	≥	Mercury	QN		mg/kg	0.1
-	D-4.E-4	0-2	Z		Σ	Nickol	26.6		mg/kg	
-	D-4,E-4	0-2	Z		×	Sefonium	ON.	•	mg/kg	0.5
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	×	Silvar	Q.		ша/ка	
SU9+10-GS	Ť	0-2	Z		Σ	Thalllum	2		mg/kg	10
SU9+10-GS	D-4,E-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	ZInc	260		mg/kg	

...

1

	330	330	000	330	330	330	330	330	930	9	0.5	0.1	'	_	- 1	·s	0.1 1.0	-	0.5		10	-		330	9	0.5	0.1	-	-	-	S	0.1		0.5	-	9
	ua/ka	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	шд/ка	тд/кд	110/kg	na/ka	mg/kg																					
		-				•			-	z		1	g			_			S						z			g			-					
	230	920	460	8	540	6500	1400	1100	1000	2	17.71	0.78	8	19.5	29.7	32	S S	26.5	2	Q N	ON	113	430	04.40	Q	12.8	0.89	7.7	19.6	19.7	41.5	Q Q	14.8	Q	2	오 :
	Banzo(a)Pyrene	Banzo(b) Fluoranthana	Bonzo(k) Fluoranthene	Bis(2-ethylhoxyl)Phthalato	Chrysene	Di-n-butyl Phthalato	Fluorene	Phenenthrene	Pyrene	Antimony	Arsenic	Beryllium	Cadmorn	Chromum	Coppor	Load	Morcury	Nickel	Salonlum	Silvar	Thallom	Zinc	Banzo(h) Fluoranihana	Fluoranthana	Antimony	Arsenic	Boryllium	Cadmlum	Chrombin	Copper	Load	Morcury	Nickol	Selenium	Silver	Thaillum
_	NS:	> >s) S	_		S	SV	S	S	Σ	Σ	Σ	Σ:	Σ	∑ :	∑	Σ	Σ	Z	₹	Σ	Σ	>v:	28	∑ ∑	Σ	Σ	Σ	¥	Σ	Z.	×	×	Σ	≆ :	Σ:
	SUBFACE SOIL SAMPLE	SUBFACE SOIL SAMPLE	SUBFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	SUBFACE SOIL SAMPLE	SURFACE SOIL SAMPLE											
•	2	2	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	<u>z</u>	z	Z :	z	Z	Z	Z	Z	Z	Z	2	Z	Z	z	Z	Z	Z	Z	z	Z	2	Z	≅ :	<u>z</u>
	010	0 0	0-2	0-2	0-2	0-2	0-2	- 1	0-2	0-2	0-2	0-2	0-5	0-2	0-5	0-2	0-2	0-2	0-2	0-2	0-5	0-2	010	0-0	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-5	0-2	1	1	0 0
	5 0 5	15.0	-5.0	-5.D-	- 1	-5.0-	-5,0-	-2'D-	C-5,D-5	C-5,0-5	-2'D-	-0'5-	5.0-	-5,0-	5,0-	C-5,D-	C-5,0-	ပ်	ပ	ပ	ပ	C-5.0-5	5 U	3-6 C-	B-6,C-	8-6,C-5	B-6,C-5	Θ		8		8	Ξ.	Ω .	0	8-6,0-5
	SD-61+1118	12-6	SU11+12-GS	•	SU11+12-GS	SU11+12-GS	SU11+12-GS	+12	SU11+12-GS	SU11+12-GS	+12	SU11+12-GS	SU11+12-GS	SU11+12-GS	SU11+12-GS	+ 15	+ 12	+ 15	+12-	+ 12	SU11+12-GS	SU11+12-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS	SU13+14-GS		SU13+14-GS	SU13+14-GS	SU13+14-GS

:]

SAMPLE & GRID # DEPTH IN/OUT		_							
SU15+16-GS C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	S	Bonzo(b) Fluoranthene	840		กฎ/หฏ	330
SU15+16-GS C-6,D-6	.6 0-2	z	SURFACE SOIL SAMPLE	SV	Fluoranthono	740	-	ug/kg	၁၁
SU15+16-GS C-6,D-6	.6 0-2	Z	SURFACE SOIL SAMPLE	SV.	Pyrene	520		ug/kg	330
SU15+10-GS C-6,D-6		Z	SURFACE SOIL SAMPLE	Σ	Antlmony	9	z	mg/kg	9
SU15+16-GS C-6,D-8		Z	SURFACE SOIL SAMPLE	×	Arsonic	17.2		mg/kg	0.5
SU15+16-GS C-6,D-6		z	SURFACE SOIL SAMPLE	Z	Barylllum	0.75		mg/kg	1.0
SU15+16-GS C-6,D-6	-0 0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	7.7	g	mg/kg	-
SU15+16-GS C-6,D-6		Z	SURFACE SOIL SAMPLE	Σ	Chromum	23.9		та/ка	
SU15+16-GS C-6,D-6	-6 0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	30.7	-	mg/kg	
SU15+16-GS C-6,D-8	-8 0-2	z	SURFACE SOIL SAMPLE	Σ	Pead	52.1		mg/kg	S
SU15+16-GS C-6,D-8	-8 0-2	Z	SURFACE SOIL SAMPLE	Z	Mercury	ON N		mg/kg	0.1
SU15+16-GS C-6,D-6	-8 0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	26.4		mg/kg	-
SU15+16-GS C-6,D-6	-6 0-2	Z	SURFACE SOIL SAMPLE	Σ	Selenium	Q.	≩	mg/kg	0.5
SU15+16-GS C-6,D-6	-8 . 0-2	Z	SURFACE SOIL SAMPLE	Σ	Silvor	Q		mg/kg	-
SU15+16-GS C-6,D-6	-6 0-2	Z	SURFACE SOIL SAMPLE	Σ	Thalifurn	Q N		mg/kg	10
SU15+16-GS C-6.D-6	-6 0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc	135		mg/kg	-

24

Total State of the last of the

SAMPLE #	GRID / FII	Y FILTERED DATE	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS C	aUALIFIER	UNITS	DETECTION LIMIT
MWI	٠ ا ر	10.00	olamo S. selambar co. O.			2		,,,,	
MW1-GW1	9 0	19-500-80		> >	Acelone	120		מאלר	. 8
MW1-GW1	C-6	19-Sop-88		λS	ALL SEMI-VOLATILES	2	Y X	, do	Y Z
MW1-GW1	9-O	19-Sop-88		>	o-Xylono	20		ug/L	2
MW1-GW1	9-O	19-Sep-88	38 Groundwater Sample	Σ	Antimony	2		mg/L	90.0
MW1-GW1	0-e	19-Sep-88	38 Groundwater Sample	≊	Arsenic	0.34	-	mg/L	0.005
MW1-GW1	0-e	19-Sep-88		Σ	Boryllium	QV.	z	mg/L	0.001
MW1-GW1	9-0	19-Sep-88	_	Σ	Cadmlum	0.15		mg/L	0.01
MW1-GW1	9-0	19-Sep-88	_	Σ	Chromlum	0.52		mg/L	0.01
MW1-GW1	9-0	19 - Sep 88		Σ	Copper	0.88		mg/L	10.0
MW1-GW1	0-6	19-Sep-88	_	Σ	Load	0.82	-	mg/L	0.005
MW1-GW1	Q-6	19-Sep-88	_	Σ	Morcury	0.0003		mg/L	0.0002
MW1-GW1	9 0	19-Sop-88		×	Nickol	0.84		mg/L	0.01
MW1-GW1	ပို	19-Sop-88	38 Groundwater Sample	Σ	Solonium	2	F	mg/L	0.005
MW1-GW1	9 0	19-Sop-88	38 Groundwater Sample	Σ	Siver	2	z	mg/L	0.01
MW1-GW1	9-O	19-Sep-88	38 Groundwater Sample	≥	Thallium	2		mg/L	0.1
MW1-GW1	9-O	19-Sop-88	38 Groundwater Sample	Σ	Zinc	3.6		mg/L	0.01
MW1-GW1D	9- O	19 - Sop - 88	38 Groundwater Sample	>	Benzene	34		1/00	v.
MW1-GW1D	9-0	19-Sop-80		λS	2-Mollyinapthalono	13		ממ/ך	9
MW1-GW1D	9-0	19-Sop-88		Σ	Antimony	2		mg/L	90.0
MW1-GW1D	0 -0	19-Sop-88	38 Groundwater Sample	Σ	Arsonic	4.0		mg/L	0.005
MW1-GW1D	0-6	19-Sop-88			Beryllum	S	z	mg/L	0.001
MW1-GW1D	9-D	19-Sep-88			Cadmlum	0.18	•	mg/L	0.01
MW1-GW1D	9-0	19-Sep-88			Chromlum	99.0		mg/L	0.01
MW1-GW10	9-0	19-Sep-88	38 Groundwater Sample		Copper	=		mg/L	10.01
MW1-GW1D	9-0	19-Sop-88	88 Groundwater Sample		Load	0.99		mg/L	0.005
MW1-GW1D	0-0	19-Sop-88	_		Mercury	0.0003		mg/L	0.0002
MW1-GW1D	9-0	19-Sep-88	98 Groundwater Sample		Nickel	-		mg/L	0.01
MW1-GW1D	9-0	19-Sep-88	_	Σ	Solonium	2	-	mg/L	0.005
MW1-GW1D	90	19-Sep-88	88 Groundwater Sample		SNer	2	Z	mg/L	10.0
MW1-GW1D	9-0	19-Sap-88		Σ	Thallium	<u>8</u>		mg/L	0.1
MW1-GW1D	0-c	19-Sop-80	80 Groundwater Sample	Σ	Zinc	4.3		mg/L	0.01

]

]

į

PWO CANA	B_7		San-BB	Groundwater Sample	>	ALL VOLATILES	Q.	AN AN	ug/L	A A
MWZ CWM	7-8	2 \$		Groundwater Sample	S	ALL SEMI-VOLATILES	QN .	AN NA	ng/L	¥ Z
MW2 - GW1	N-7	191	9-Sep-88	Groundwater Sample	Σ	Antimony	ON		mg/L	90.0
MW2 - GW1	8-7	19	19-Sop-88	Groundwaler Sample	Σ	Arsonic	0.184	,	mg/L	0.005
WWD-GW1	B-7	5	19-Sop-88	Groundwaler Sample	Σ	Boryllium	2	z	mg/L	0.001
MW2-GW1	8-7	- 5	89-doS-61	Groundwater Sample	Σ	Cadmium	0.12		mg/L	0.01
MW2 - GW1	8-7	51	19-Sop-88	Groundwater Sample	Σ	Chromium	0.28		mg/L	0.01
MW2 - GW1	8-7	19	19-Sep-88	Groundwater Sample	Σ	Copper	0.66		mg/L	0.01
MW2 - GW1	8-7		19-Sop-88	Groundwater Sample	Σ	Load	0.55		mg/L]	0.005
MW2-GW1	8-7		19-Sop-88	Groundwater Sample	Σ	Mercury	0.0002		mg/L	0.0002
MW2 - GW1	8-7		19-Sop-88	Groundwater Sample	Σ	Nickol	0.45		1,6E	10.0
MW2 - GW1	B-7		19 - Soo - 88	Groundwater Sample	Σ	Solonium	2	> :	mg/L	0.003
WW2 - GW1	B-7		19-Sep-88	Groundwater Sample	Σ	Sivor	2	z	mg/L	0.0
MW2 - GW1	8-7		9-Sop-88	Groundwater Sample	Σ	Thallium	ON.		mg/L	0.0
MW2-GW1	B-7	-	9-Sop-08	Groundwater Sample	Σ	Zinc	2.4		mg/L	0.01
				-	>	Trichlorosiholan	44		טמ/ר	S
MW3-GWM	Q 4-0		22-Sop-88	Groundwater Sample	> 2	SHIT OVENER TO	2	AX	no/L	₹ Z
MW3-CWM	C-4	~_	22-Sop-88	Groundwater sample	À .	ארר ארואוים ארואוים אייווירים	2 2		1/000	90.0
MW3-GW1	0-14	~	22-Sop-88	Groundwater Sample	Σ	Supunity .	2.5		1/04	0.005
MW3-GW1	C-4		55-Sop-00	Groundwater Sample	Σ:	SIL SI	5		1,00	100.0
MW3-GW1	C-4	· ·	22-Sop-88	Groundwater Sample	Σ.	Boryllum	2 3		7/8111	
MW3-GW1	0-14	N	22-Sop-88	Groundwater Sample	Σ	Cadmium	90.0		1/8m 	5 6
MW3-GW1	C-4	~	22-Sop-88	Groundwater Sample	Σ	Chromium	0.16		ING/L	5 6
MW3-GW1	C-4		22-Sop-88	Groundwater Sample	Σ :	Copper			וויפער	5 6
MW3-GW1	Q4	.,	22-Sep-88	Groundwater Sample	×	Pag			mg/L	2000
MW3-GW1	C-4		22-Sop-88	Groundwater Sample	Σ	Morcury			J/BEI	2000
MW3-GW1	C-4		22-Sap-88	Groundwater Sample	Σ	Nickel				20.0
MW3-GW1	0-1		22-Sop-88	Groundwater Sample	Σ	Selonium	ŏ. •	ທ: 		0.003
MW3-GW1	C-4		22-Sap-88	Groundwater Sample	Σ	SNor		z 		
MW3-GW1	0-14		22-Sep-88	Groundwater Sample	Σ	Thallium			mg/L	
MW3-GW1	0-14		22-Sop-88	Groundwater Sample	Σ	zirc	0.94		_	5.5
MW3-GW1	0-14		17-Oct-88	Groundwater Sample	SV	Bis (2 - othylhexyl) phthalal	54	a	700/	2

0 0		2	-	'n	3	٧.	9	S	2	2	2	8	9	S	2	2	22	က	0.2	6	S	으	2	8	١
∞ ∓			-	8		0	•				•														
ug/L	, no,	ng/L	ng/L	ug/L	7/Bn	ug/L	Ug/L	מאר	ng/L	ug/L	ug/L	UG/L	ug/L	1/Bn	ממ/ר	ng/L	UB/L	ug/L	ממ/ך	ua/L	ממ/ך	U0/L	מס/ר	Na/L	,
D #						ר						_	B	_	_ _		<u></u>	S	-83	_	· >	_	-	7	3
35.3	0 0	0. 4	70.4	17.1	195	0.1	121	T.	1 0	. 0	678	40.2	4.0	2.3	0	7	4	7.7		23.6	1 7	8	0 0	3 5	2
																								= (
ullmorry	Arsonic Arstra	oryment a				Marchy	No.	mileolo.	Change	15 AT	7120	, wowild	Areanin		John Miller	Transfer of the state of the st		200	Morning	in a later	ואוכעס		7.511.017	7:1	2
Ā	C	a (š č	5				·	,	·		<	ς		- (, ,	י								
×:	Σ:	Σ:	Ξ:	Σ:	Σ:	Σ:	ξ:	ξ:	Σ:	Σ:	ε:	Ξ:	ε:	ε:	Σ:	Ξ:	Σ:	Σ:	٤:	Σ:	Σ:	Σ:	Σ:	Σ :	-
oldmi	oldmi	oldmi	oldme	oldmr	oldma	oldma	old ma	ampio	ampio	oldwo	ombio	ampio	ampio	oldwa	ample	oldmas	Samplo	Samplo	Sample	Sample	Sample	Sample	Sample	Samplo	
wator St	wator St	water St	water S	water S	walor S	Iwator S	water S	wator S	Swator S	Swalor S	Jwalor S	dwalor S	dwalor S	dwalor	dwater S	dwator S	dwalor	dwator	dwalor	dwater	dwater	dwalor	dwator	ıdwaler	
Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Grour	
 	2	<u>8</u>	<u></u>	8	8	8	8	8	06	06	8	8	8	06	96	06:	06-	-96 -	06-	-90	-06-	-30 -30	-90	-90	_
–Fob–9	-Fob-	-Fob-	-Fob-	-Fob-	-Fob-	-Fob-	-Fob-	3-Fob-	3-Fob-	3-Fob-	3-Fob-	5-Fob-	6-Fob-	6-Fob-	6-Fob-	6-Fob-	6-Fob-	6-Fob-	6-Fob-	6-Fob-	6-Fob.	36 -Fab.	6-Fab	36-Fab	
90				_	_	-	_	_																	
Z	Z	4	~	_	~																				
C - 6	9-0	9-0	9-0	0-0	9-O	0-0 0	0-6	9-0	0-6	9-0	0-6	0-0	0-0	0-C	0-C	C	9 0	0-0	S	0-6	0-0	0 1 0	0-6	9-0 0-8	,
\$	2	- X	W2	ZW.	¥2	¥2	:W2	- CW	2W.	. W.	3,472	3,42	3W2	3W2	3W2	3W2	SWS	GWZ	GW2	GWZ	GW2	GWZ	GW2	GWZ	·
1 2	× 1 ×	W1-G	W1-G	W1-G	W1-G	W1 - G	W1-G	1W1	W 1 – C	1W1 − C	1W1-C	1W1-C	W1-0	W1 – (4W1-	7W1-	WW1-	MW1	MW1	MW.I	MW1-	MW1-	NW I	MW1-	=
	NO 06-Fab-90 Groundwater Sample M Antimory 35,3 U ug/L	C-6 NO 06-Fob-90 Groundwater Sample M Antimory 35.3 U ug/L Arsenic 9.5 B ug/L C-6 NO 06-Fob-90 Groundwater Sample M Logit L ug/L	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L	C-6 NO 06-Feb-90 Groundwater Sample M Antlmory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmlum 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmlum 4.9 U ug/L	C-6 NO 06-Feb-90 Groundwater Sample M Antlmory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L	C-6 NO 06-Feb-90 Groundwater Sample M Antilmony 35,3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Arsenic 9.5 B ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmlum 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copper 171 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copper 173 ug/L	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmlum 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copport 171 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copport 171 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Load 195 U ug/L	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copport 171 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Morcury 0.1 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Morcury 0.1 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Morcury 0.1 ug/L C-6 NO 06-Feb-90 Groundwater Sample M Morcury 0.1 0.1	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chemium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chemium 70.4 ug/L ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copper 171 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 ug/L	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chopper 171 Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copper 171 Ug/L Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Maickal 171 Ug/L Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Maickal 121 Ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Maickal 121 Ug/L Ug/L C-6 NO 06-Feb-90 Groundwater Sample M N N N N N <	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chadmium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copper 171 ug/L ug/L C-6 NO 06-Feb-90 Groundwater Sample M Copper 171 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M N N N N N N N N N N N N N N N N	C-6 NO 06-Fab-90 Groundwater Sample M Antilmory 35.3 U ug/L C-6 NO 06-Fab-90 Groundwater Sample M Chromium 4.9 U ug/L C-6 NO 06-Fab-90 Groundwater Sample M Chromium 4.9 U ug/L C-6 NO 06-Fab-90 Groundwater Sample M Chromium 70.4 ug/L C-6 NO 06-Fab-90 Groundwater Sample M Copper 171 ug/L C-6 NO 06-Fab-90 Groundwater Sample M Marcury 0.1 ug/L C-6 NO 06-Fab-90 Groundwater Sample M Marcury 0.1 ug/L C-6 NO 06-Fab-90 Groundwater Sample M Marcury 0.1 ug/L C-6 NO 06-Fab-90 Groundwater Sample M Copper 0.1 ug/L C-6 NO 06-Fab-90 Gro	C-6 NO 06-Feb-90 Groundwater Sample M Antimony Arsenic 35.3 U ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Cadmium Arsenic 9.5 B ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Cadmium Arsenic 70.4 U ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Copport 171 ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Mercury 0.1 ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Nickel 121 ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Solonlum 5.5 U ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Solonlum 5.5 U ug/L by land C-6 NO 06-Feb-90 Groundwater Sample M Italiana 0.9 U ug/L by land <tr< td=""><td>C-6 NO 0.6-Feb-90 Groundwater Sample M Antilmony 35.3 U ug/L 11 C-6 NO 0.6-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L 11 C-6 NO 0.6-Feb-90 Groundwater Sample M Cadmlum 4.9 U ug/L 1 C-6 NO 0.6-Feb-90 Groundwater Sample M Coppor 171 ug/L 2 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 2 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 0 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 0 C-6 NO 0.6-Feb-90 Groundwater Sample M No 0.1 ug/L 0 C-6 NO 0.6-Feb-90 Groundwater Sample M N</td><td>C-6 NO 06-F6b-90 Groundwater Sample M Antilmony 35.3 U ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Cadmlum 4.9 U ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Cadmlum 70.4 U ug/L 1 C-6 NO 06-F6b-90 Groundwater Sample M Capper 1771 ug/L 2 C-6 NO 06-F6b-90 Groundwater Sample M Morrang Coppor 1771 ug/L 2 C-6 NO 06-F6b-90 Groundwater Sample M Morrang Morrang Coppor 1771 ug/L 2 C-6 NO 06-F6b-90 Groundwater Sample M Morrang Solentium 5.5 U ug/L C-6 NO 06-F6b-90 Groundwater Sample M Solentium 5.5 U ug/L C-6 NO<</td><td>C-6 NO 06-Feb-90 Groundwater Sample M Anilmony Arsenic 35.3 U ug/L bit 66 C-6 NO 06-Feb-90 Groundwater Sample M Cadmlum Arsenic 3.9 U ug/L bit 11 C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 4.9 U ug/L bit 11 C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 70.4 ug/L bit 2 C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 17.1 ug/L bit 0 C-6 NO 06-Feb-90 Groundwater Sample M Morrany 0.1 ug/L bit 0 C-6 NO 06-Feb-90 Groundwater Sample M Morrany 0.1 ug/L bit C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 0 ug/L bit C-6 NO 06-Feb-90 Groundwater Sam</td><td>C-6 NO 06-Feb-90 Groundwater Sample M Antilmony 35.3 U ug/L 11 C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 3.9 U ug/L 11 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L 2 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L 2 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L 2 C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Thaillum</td><td>C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 77.1 Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Solonium 5.5 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Solonium 5.5 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Antimory 9.1 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M</td><td>C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Arsenie 9.5 B ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Capper 4.3 U ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 4.3 U ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 Ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Mercury Coppor 17.1 Ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Mercury 0.1 Ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Solentum 5.5 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Assenic 5.5 U</td><td>C-6 NO 0G-Feb-90 Groundwater Sample M Ansenie 35.3 U ug/L 16 C-6 NO 0G-Feb-90 Groundwater Sample M Cadmlum 3.9 U ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Cadmlum 70.4 U ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Cadmlum 70.4 Ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 70.4 Ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 70.1 Ug/L 4 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 70.1 Ug/L 4 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 7.1 9.1 Ug/L 4 C-6 NO 0G-Feb-90 Groundwater Sample M Thailiam 5.5<</td><td>C-6 NO 06-Feb-90 Groundwater Sample M Arithmory 35.3 U ug/L 15 C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 15 C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 15 C-6 NO 06-Feb-90 Groundwater Sample M Cappor 171 ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Cappor 171 ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Morcang 171 ug/L 4 C-6 NO 06-Feb-90 Groundwater Sample M Morcang N N N N N N N N N N N N N N N N N N N N N N N N N N</td><td>C-6 NO 06-F6b-90 Groundwater Sample M Antimory 35.3 U ug/L 15 C-6 NO 06-F6b-90 Groundwater Sample M Assenie 9.5 B ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 10 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 4 C-6 NO 06-F6b-90 Groundwater Sample M Mickel 5.5 Ug/L 4 C-6 NO 06-F6b-90 Groundwater Sample M Mickel 5.5 Ug/L 4 C-6 NO 06-F6b-90 Groundwater Sample M Antimony 5.5</td><td> C-6</td><td>C-6 NO 06-Feb-90 Groundwater Sample M Antimony 35.3 U ug/L 16 C-6 NO 06-Feb-90 Groundwater Sample M Cardillum 4.9 U ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Cardillum 70.4 U ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Cardillum 70.4 U ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 U ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 U ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 Ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 Ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Antimory 0.1</td><td>C-6 NO 0.6-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L 50 C-6 NO 0.6-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 55 C-6 NO 0.6-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 55 C-6 NO 0.6-Feb-90 Groundwater Sample M Capanium 7.04 U ug/L 25 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 U ug/L 4.3 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 U ug/L 4.3 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 U ug/L 4.4 C-6 NO 0.6-Feb-90 Groundwater Sample M Antimory 0.1 U ug/L 4.2 C-6 NO 0.6-Feb-90 Groundwater Sample M Antimory</td></tr<>	C-6 NO 0.6-Feb-90 Groundwater Sample M Antilmony 35.3 U ug/L 11 C-6 NO 0.6-Feb-90 Groundwater Sample M Boryllium 3.9 U ug/L 11 C-6 NO 0.6-Feb-90 Groundwater Sample M Cadmlum 4.9 U ug/L 1 C-6 NO 0.6-Feb-90 Groundwater Sample M Coppor 171 ug/L 2 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 2 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 0 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 ug/L 0 C-6 NO 0.6-Feb-90 Groundwater Sample M No 0.1 ug/L 0 C-6 NO 0.6-Feb-90 Groundwater Sample M N	C-6 NO 06-F6b-90 Groundwater Sample M Antilmony 35.3 U ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Cadmlum 4.9 U ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Cadmlum 70.4 U ug/L 1 C-6 NO 06-F6b-90 Groundwater Sample M Capper 1771 ug/L 2 C-6 NO 06-F6b-90 Groundwater Sample M Morrang Coppor 1771 ug/L 2 C-6 NO 06-F6b-90 Groundwater Sample M Morrang Morrang Coppor 1771 ug/L 2 C-6 NO 06-F6b-90 Groundwater Sample M Morrang Solentium 5.5 U ug/L C-6 NO 06-F6b-90 Groundwater Sample M Solentium 5.5 U ug/L C-6 NO<	C-6 NO 06-Feb-90 Groundwater Sample M Anilmony Arsenic 35.3 U ug/L bit 66 C-6 NO 06-Feb-90 Groundwater Sample M Cadmlum Arsenic 3.9 U ug/L bit 11 C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 4.9 U ug/L bit 11 C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 70.4 ug/L bit 2 C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 17.1 ug/L bit 0 C-6 NO 06-Feb-90 Groundwater Sample M Morrany 0.1 ug/L bit 0 C-6 NO 06-Feb-90 Groundwater Sample M Morrany 0.1 ug/L bit C-6 NO 06-Feb-90 Groundwater Sample M Chromium Arsenic 0 ug/L bit C-6 NO 06-Feb-90 Groundwater Sam	C-6 NO 06-Feb-90 Groundwater Sample M Antilmony 35.3 U ug/L 11 C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 3.9 U ug/L 11 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L 2 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L 2 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 ug/L 2 C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Thaillum	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Chromium 77.1 Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Marcury 0.1 Ug/L C-6 NO 06-Feb-90 Groundwater Sample M Solonium 5.5 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Solonium 5.5 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Antimory 9.1 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M	C-6 NO 06-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Arsenie 9.5 B ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Capper 4.3 U ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 4.3 U ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Chromium 70.4 Ug/L 1 C-6 NO 06-Feb-90 Groundwater Sample M Mercury Coppor 17.1 Ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Mercury 0.1 Ug/L 0 C-6 NO 06-Feb-90 Groundwater Sample M Solentum 5.5 U ug/L C-6 NO 06-Feb-90 Groundwater Sample M Assenic 5.5 U	C-6 NO 0G-Feb-90 Groundwater Sample M Ansenie 35.3 U ug/L 16 C-6 NO 0G-Feb-90 Groundwater Sample M Cadmlum 3.9 U ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Cadmlum 70.4 U ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Cadmlum 70.4 Ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 70.4 Ug/L 17 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 70.1 Ug/L 4 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 70.1 Ug/L 4 C-6 NO 0G-Feb-90 Groundwater Sample M Mercury 7.1 9.1 Ug/L 4 C-6 NO 0G-Feb-90 Groundwater Sample M Thailiam 5.5<	C-6 NO 06-Feb-90 Groundwater Sample M Arithmory 35.3 U ug/L 15 C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 15 C-6 NO 06-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 15 C-6 NO 06-Feb-90 Groundwater Sample M Cappor 171 ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Cappor 171 ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Morcang 171 ug/L 4 C-6 NO 06-Feb-90 Groundwater Sample M Morcang N N N N N N N N N N N N N N N N N N N N N N N N N N	C-6 NO 06-F6b-90 Groundwater Sample M Antimory 35.3 U ug/L 15 C-6 NO 06-F6b-90 Groundwater Sample M Assenie 9.5 B ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 11 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 10 C-6 NO 06-F6b-90 Groundwater Sample M Chronium 70.4 Ug/L 4 C-6 NO 06-F6b-90 Groundwater Sample M Mickel 5.5 Ug/L 4 C-6 NO 06-F6b-90 Groundwater Sample M Mickel 5.5 Ug/L 4 C-6 NO 06-F6b-90 Groundwater Sample M Antimony 5.5	C-6	C-6 NO 06-Feb-90 Groundwater Sample M Antimony 35.3 U ug/L 16 C-6 NO 06-Feb-90 Groundwater Sample M Cardillum 4.9 U ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Cardillum 70.4 U ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Cardillum 70.4 U ug/L 17 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 U ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 U ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 Ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 Ug/L 0.0 C-6 NO 06-Feb-90 Groundwater Sample M Antimory 0.1	C-6 NO 0.6-Feb-90 Groundwater Sample M Antimory 35.3 U ug/L 50 C-6 NO 0.6-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 55 C-6 NO 0.6-Feb-90 Groundwater Sample M Cadmium 4.9 U ug/L 55 C-6 NO 0.6-Feb-90 Groundwater Sample M Capanium 7.04 U ug/L 25 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 U ug/L 4.3 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 U ug/L 4.3 C-6 NO 0.6-Feb-90 Groundwater Sample M Mercury 0.1 U ug/L 4.4 C-6 NO 0.6-Feb-90 Groundwater Sample M Antimory 0.1 U ug/L 4.2 C-6 NO 0.6-Feb-90 Groundwater Sample M Antimory

7

<u>.</u>

1

[Z:]		_	10		_		6	~	_	ນ	0	<u>.</u>	0	<u>o</u>	<u> </u>	2	2	9	5	6	۲.	9	S.	<u> </u>	2	8
DETECTION	09	¥	2		=	či		Ö	ব		-	_	~	ω	•						0	•				
UNITS	ug/L	ng/L	ng/L	ug/L	UB/L	ng/L	ng/L	ng/L	ug/L	√gv	ng/L	ח/פת	ng/L	ng/L	n8/r	ug/L	ug/L	ng/L	ng/L	ng/t	ng/L	ng/L	ng/L	ng/L	ng/L	Ng/
QUALIFIER (5	<u>в</u>	5	כ		_	S	ɔ		æ.	5	o O	-	j	BW	5	>	ב	D	≥	э	D	<u> </u>	5	ב	3
RESULTS QU	40.2	6.5	2.3	1.9	8	101	84.5	0.1	25	1.9	9.9	6.0	340	34.6	4.2	3.8	4.8	9.6	9	4	0.1	31.1	1.4	8.9	6.0	18
ANALYSIS FOR: RE:	Antimony	Arsenic	Baryllium	Cadmium	Chromlum	Coppor	Load	Morcury	Nickel	Selenium	Siver	Thallium	Zinc	Anlimony	Arsonic	Baryllium	Cadmium	Chromlum	Copper	Load	Marcury	Nickel	Solenium	Siver	Thallium	Zinc
CATEGORY F	×	×	×	Σ	Σ	×	×	×	×	×	Ξ	×	Σ	×	≥	×	×	Z	×	×	×	Σ	Σ	×	×	×
DESCRIPTION CAT	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwaler Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwaler Sample	Groundwater Sample							
DATE	07 - Feb-90	07-Fob-90	07 - Feb - 90	07 -Feb-90	07 -Fob-90	07 -Feb-90	07 - Fob-90	07-Fob-90	07 - Fob-90	07 - Fab-90	07 - Fab - 90	07 - Feb-90	07 - Fob - 90	07-Fob-90	07 - Fob-90	07 - Fob - 90	07 - Feb-90	07 - Fob - 90	07-Fob-90	07 - Fob-90	07 - Fab-90	07 - Feb-90	07 - Fab - 90	07 - Fob-90	07 - Feb - 90	07-Fob-90
YES/NO FILTERED	0	9	2	2	2	2	2	2	92	2	ON N	O _Z	2	YES												
GRID # FILTERED	8-7	8-7	8-7	8-7	B-7	8-7	8-7	8-7	8-7	8-7	B-7	8-7	B-7	B-7	B-7	8-7	B-7	8-7	8-7	8-7	8-7	B-7	8-7	B-7	8-7	8-7
SAMPLE # G	MW2 - GW2	MW2 - GW2	WW2-GW2	MW2-GW2	MW2-GW2	MW2-GW2	MW2 - GW2	MW2-GW2	WWZ - GWZ	MW2-GWZ	MW2-GW2	WW2 - GW2	MW2 - GW2	MW2-GW2	WWZ-GWZ	WWD-GWM	WWZ-GWZ	MW2 - GW2	MW2-GW2	MW2 - GW2	MW2 - GW2	MW2-GW2	MW2-GW2	MW2-GW2	MW2-GW2	MW2-GW2

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - GROUNDWATER

	2 6	2		, ;	2 ;	52	n (0.2	9	2	9	2	20	9	\$ \$	2 4	,	0	2 1	3,5	2 (0.2	0,	ດ ເ	2 \$	2 8	इ	
-	ug/L	1 1	ה ה	ng/r	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	UB/L	ua/L	6 :	ָ בּ	ug/L	ng/L	ng/L	ug/L	ug/L	ug/L	J/Bn	ug/L	۳ <u>8</u> /۲	υgν Γ	νgν γ	192	
		- -	- -	_	_	8	<u>-</u>	<u>_</u>	<u>_</u>	<u></u>	· 	_ _	_	· :	- -	m	<u> </u>	D	<u></u>	-		<u>_</u>	5	>	-	>	3	
	ر		•		_																							
_	۷; c	, i	ن: -	6:	3.7	7	9.7	0.1	3.6	1.7	9.9	0	3 4	3 ;	9.6	7	3.8	4.8	9.6	9	5,3	0.1	31.1	4.	8.9	6.0	-1	
	5 .		CVI	_	<u>.</u>		-		7						c,													
-	orry		EZ	En	E P	2000	poo	Z	ickel	1		5 1	E ;	7 Inc	nomy	sonic	- High	minu	mium	opper	Load	Micury	Nickel	enlum	SNor	allum	Zinc	
	Antim	Ars	Bony	Cadr	Chron	2	5	W	. Z			F	<u> </u>		Antir	₹	Ban	Ö	Chro	Ŭ		Ž		Sol		Ė		
-	Σ	Σ	≥	: 3	ΕΞ	٤:	Ξ:	ε:	٤:	ε:	Σ:	Σ	Σ	Σ	>	. ≥	= 2	ξ 2	ξ :	Σ 3	= =	Ξ :	٤ 3	ΞΞ	2	. ≥	. 2	;
																						_		0	5 (-	- 0	1
	ample	olomes	0000	old libra	sampio	Sample	Samplo	Samplo	Sample	Samplo	Samplo	Sample	Samplo	Samolo	old made	ordina of the co	Sampio	DIGERS	Sampic	Sample	Idenay.	Samp.	Sampl	Samp	d Hos	r Sampi	r Samp	June
	Iwalor S	Avalor S		Maior	Jwalor :	dwalor	dwater	dwater	dwalor	dwalor	dwalor	dwater	dwaler	devalor		lowater	dwater	dwator	dwalor	ndwalor	lo word	ndwate	ndwale	ndwale	udwala		anowala '	moware
	Ground	0.00		50.5	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Groun	Groun		5	של פנס פנס	Grou	Grou	Group	Grou	D Co.	Gro	Grou	O S	D J J	ე ე	อี เ	อีเอ
					8	2	<u>e</u>	06	8	06	8	- 06	8	2 6	3 1	8	6	-06-	-90	06-	- 6-	-90	-90	- 6	-90	 6-	<u>۔</u> 6	61
	91	יובר ליבר ליבר ליבר ליבר ליבר ליבר ליבר לי	71 08 1 1	-Fob-5	-Fob-	-Feb-	-Fob-	-Fob-	-Feb-	-Fob-	-Fob-	Fab	1		-100-	3-Fob-	3-Feb-	5-Fob-	6-Feb-	6-Fob-	6-Fob-	6-Fab-	6-Feb	6-Fab	6 – Fob	99-Feb)6 – Fob	06-Feb-90
		9 8	_	_			_								_	_	_											YES (
	<u> </u>	Ź:	ž	ž	Ž	Ž	Z	z	Z	z	. 2	: 2	.	۔ ۔	۷.	⋝	⋝	>	>	>	>	>-	>	>	~	<i>-</i> -	_	
	-	10	C-4	C-4	C-4	4	A - C	, V	7	¥ (,	,	١	Ö	01	0-14	C-4	Q-4	C	0	0-14	C	0	0-4	CO	0	0 1	C-4
								1 C	2 6	2 0	<u>, , , , , , , , , , , , , , , , , , , </u>	7 1	2	2	22	22	2	2 !	2 !	2	2	<u> </u>	\$? ?	\$	X 2	¥S	ZW
֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֡֝֝֝֝֡֝֝֝֡		13-GW	MD-CM	WO - C	30	. ≥	300	30	300		2010	2010	W3 - GV	W3-6W	W3-GV	W3-GV	21	2 2			2 2	ָר בּיי בּייבי	מין פון מין פון פון	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0-EW	AW3-G	AW3-G	MW3-GW2
2		Ž	È	2	2	2 3	2 3	٤	٤٤	ξ:	Σ:	Σ	Σ	Σ	Σ	Σ	: 3	= 3	2 2	: ≥	≥ ≥			_	. ~	_		
		Antimory 40.2 U ug/L	C-4 NO 06-Feb-90 Groundwater Sample M Anilmony 40.2 U ug/L 6	C-4 NO 06-Feb-90 Groundwater Sample M Anilmony 40.2 U ug/L B ug/L C-4 NO 06-Feb-90 Groundwater Sample M Beryllium 2.3 U ug/L	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U ug/L 6 ug/L C-4 NO 06-Feb-90 Groundwater Sample M Boryllium 2.3 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 1.9 U ug/L	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Arsenic 5.9 B ug/L C-4 NO 06-Feb-90 Groundwater Sample M Boryllium 1.9 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 1.9 U ug/L	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Arsenic 5.9 B ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 1.9 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Chromium 8.7 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Chromium 8.7 U ug/L	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Ansenic 5.9 B ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmlum 1.9 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Chromlum 8.7 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Coppor 7 B ug/L C-4 NO 06-Feb-90 Groundwater Sample M Coppor 7 B ug/L	C-4 NO 06-Feb-90 Groundwater Sample M Antimory Arsenic 40.2 5.9 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Ansenic Boryllium Cadmium 2.3 1.9 U ug/L C-4 NO 06-Feb-90 Groundwater Sample Groundwater Sample Capper M Chromium Capper Capper 1.9 7 U ug/L C-4 NO 06-Feb-90 Groundwater Sample Groundwater Sample Anceury M Coppor Capper Capper 7 7 B 9.7 9.1	C-4 NO 06-Feb-90 Groundwater Sample M Antimory Arsenic 40.2 5.9 U ug/L U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium Cadmium M 2.3 5.9 Cadmium U ug/L 06-Feb-90 C-4 NO 06-Feb-90 Groundwater Sample A M Chromium Chromium A 8.7 7 U ug/L A C-4 NO 06-Feb-90 Groundwater Sample A M Coppor Coppor 	C-4 NO 06-Feb-90 Groundwater Sample M Antimory Arsenic 40.2 5.9 U ug/L U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Chromium Coppor A 2.3 Coppor Coppor U ug/L A C-4 NO 06-Feb-90 Groundwater Sample Groundwater Sample A M Chromium Coppor A 7 Coppor Coppor Coppor 7 A Coppor Coppor Coppor Coppor A 1.3 Coppor Co	C-4 NO 06-Feb-90 Groundwater Sample M Antimory Arsenic C-4 Ansenic 5.9 5.9 B ug/L ug/L C-4 NO 06-Feb-90 Groundwater Sample Groundwater Sample An OG-Feb-90 M Chromium Coundwater Sample An OG-Feb-90 M Chromium Coundwater Sample An OG-Feb-90 M Chromium Coundwater Sample An OG-Feb-90 M Chromium Coundwater Sample An OG-Feb-90 M Coppor An OG-Feb-90 7 B Ug/L C-4 NO 06-Feb-90 Groundwater Sample Groundwater Sample An OG-Feb-90 M Coppor An OG-Feb-90 7 B Ug/L C-4 NO 06-Feb-90 Groundwater Sample Groundwater Sample M North North O.1 Ug/L C-4 NO 06-Feb-90 Groundwater Sample M North North O.1 Ug/L C-4 NO 06-Feb-90 Groundwater Sample M North O.1 Ug/L C-4 NO 06-Feb-90 Groundwater Sample M North	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Beryllium 5.3 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmlum 8.7 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Chromlum 8.7 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Chromlum 7 B ug/L C-4 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 U U C-4 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Moreury 0.1 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M N N 0.1 U	C-4 NO 06-Feb-90 Groundwater Sample M Antimony Atsenic 40.2 U ug/L bug/L bu	C-4 NO 06-Feb-90 Groundwater Sample M Anilmony Atsente 5.9 B ug/L bug/L bug	C-4 NO 06-Feb-90 Groundwater Sample M Antimony Aisenic S.9 B ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 2.3 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 1.9 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 3.7 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 3.7 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Morenty 0.1 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M Morenty 0.1 U ug/L C-4 NO 06-Feb-90 Groundwater Sample M No No 06-Feb-90 Groundwater Sample M No 06-Feb-90 Groundwater Sample M No 06-Feb-90 Groundwater Sample	C-4 NO 06-F6b-90 Groundwater Sample M Antitmony Assente 5.9 U ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	C-4 NO G6-F6b-90 Groundwater Sample M Antilmorry 40.2 U ug/L C-4 NO G6-F6b-90 Groundwater Sample M Cadmium 5.9 B ug/L C-4 NO G6-F6b-90 Groundwater Sample M Chadmium 1.9 U ug/L C-4 NO G6-F6b-90 Groundwater Sample M Chadmium 1.9 U ug/L C-4 NO G6-F6b-90 Groundwater Sample M Chadmium 7 B ug/L C-4 NO G6-F6b-90 Groundwater Sample M Moreury 7 B ug/L C-4 NO G6-F6b-90 Groundwater Sample M Moreury 0.1 U ug/L C-4 NO G6-F6b-90 Groundwater Sample M Short 6.6 U ug/L C-4 NO G6-F6b-90 Groundwater Sample M Short 6.6 U ug/L C-4 NO G6-F6b-90 Groundwater Sample M	C-4 NO 06-Feb-90 Groundwater Sample M Anilmony Assnic 5.9 B ug/L bug/L bug/	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 5.9 U ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	C-4 NO G6-Feb-90 Groundwater Sample M Antilmony Assaule 5.9 Ug/L bridge Miles Antilmony Assaule 6.9 Ug/L bridge Miles Antilmony Assaule 6.9 Groundwater Sample M Antilmony Assaule 6.9 Boylium 5.9 Ug/L bridge 15 Ug/L bridge Miles Miles	C-4 NO 06-Feb-90 Groundwater Sample M Antimony 40.2 U ug/L 10 C-4 NO 06-Feb-90 Groundwater Sample M Antimony 40.2 U ug/L 10 C-4 NO 06-Feb-90 Groundwater Sample M Chromium 8.7 U ug/L 22.3 U ug/L	C-4 NO Ge-Feb-90 Groundwater Sample M Antilmony Atsanic 40.2 U ug/L strain 10 C-4 NO Ge-Feb-90 Groundwater Sample M Antilmony Atsanic 40.2 U ug/L strain 5.9 B ug/L strain 10 ug/L	C-4 NO 06-Feb-90 Groundwator Sample M Antimony 40.2 U ug/L 10 C-4 NO 06-Feb-90 Groundwator Sample M Cadmlum 1.3 U ug/L 15 C-4 NO 06-Feb-90 Groundwator Sample M Chronium 1.3 U ug/L 25 C-4 NO 06-Feb-90 Groundwator Sample M Chronium 7 B ug/L 25 C-4 NO 06-Feb-90 Groundwator Sample M Morenty 2.3 U ug/L 25 C-4 NO 06-Feb-90 Groundwator Sample M Morenty 2.3 U ug/L 25 C-4 NO 06-Feb-90 Groundwator Sample M Morenty 2.3 U ug/L 42 C-4 NO 06-Feb-90 Groundwator Sample M Short N 0.1 U ug/L 42 C-4 NO 06-Feb-90 Groundwator Sample M Animony	C-4	C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U Ug/L 10 C-4 NO 06-Feb-90 Groundwater Sample M Antimory 40.2 U Ug/L 10 C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 1.3 U Ug/L 15 C-4 NO 06-Feb-90 Groundwater Sample M Cadmium 1.3 U Ug/L 15 C-4 NO 06-Feb-90 Groundwater Sample M Codmium 1.7 U Ug/L 10 C-4 NO 06-Feb-90 Groundwater Sample M Codmium 1.7 U Ug/L 10 C-4 NO 06-Feb-90 Groundwater Sample M Nickel 2.3 U Ug/L 40 C-4 NO 06-Feb-90 Groundwater Sample M Nickel 2.3 U Ug/L 40 C-4 NO	C-4

	9 0		20	2	2	n'	N	0	2	0	9	<u> </u>	9 9	9	2	o :	0 ;	25	n	0.2	9	S	0	2		
CIMIT	& ≂			_	~	,	0	•		•		••	_													
	ug/L ug/L		ر		_	٦	7	7	7	<u>۲</u>	۲	۲	۲ ا	7	٦٢	٦/	7	٩٢	9/۲	٩/٢	9/	9/	g/L	19/		
UNITS	/Bn)Bn	/Bn	/Bn	βn	Β'n	Ŝ	δ'n	β'n	βn	ñ	ñ	ັ	5	ž	Š	Ō	2	2	2	2	2	2	٠		
‰::::: ⊢	· -		>			S	<u></u>		BW	5	כ)	<u> </u>	כ	>	כ	>	· · · · ·	5	>	₹	2	כ	a	
RESULTS QUALIFIER																										
30 J	34.6	3.8	8.4	33	73	27.1	0.1	73	1.5	8.9	6.0	340	40.2	1.5	2.3	1.9	8.7	4.1	12.5	0.1	23.6	1.7	9.9	6.0	0	
SULT	Ä	•				N							•													
HE	<u> </u>	2 E			200	Load		, ko	E	SNor	E	Zinc	OT!	Arsonic	En	moje	mnic.	Copper	pool	Morgan	Nickel	Solonium	SNer	Thallium	Zinc	
	Antimony	Rocallium	Cadmium	Chromium	Coppor	ני ל	Mercury	Nicko	Solonlum	S	Thallium		Antimony	Ars	Boryllium	Cadmium	Chromium	٥	} _	M	Z	o Jour		, of		
ANALI SIS FOR					•																					
AN																										
						Ξ Ξ				= =	-	<u> </u>		<u> </u>	<u> </u>		<u> </u>	ΞΞ	Σ:	٤:	ξ 2	Ξ:	Σ :	£ 2	2 2	Σ
CATEGORY	∑:	≨ :	₹ 2	٤ ٦	2 4	2 4	. ح							-												
CATE		_		_			-		0	•	0	0 .		9 .	9 .	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>	<u>.</u>	90.	90	<u>el</u> .	oid .	0 -	믦
z	Sample	Sample	Sample	Sample	Sample	Sampl	Sampl	Samp	r Samp	r Samp	r Samp	r Sam	r Sami	r Samı	r Sam	ır Samı	K Sam	E SO IS	or Sam							
IIPTIO	Groundwater Sample	Groundwater Sample	Groundwalor Samplo	Groundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Groundwater Sample								
DESCHIPTION	Ground	Ground	Groun(Groun	Grou	Grou	Srou	Grou	Grou	Grou	Grou	Grou	Grou	Gro	g S	გ ე	Gro									
						_	_	_	_	_	_	_		_	0	_	0	-	0	0	0	0	0	8	06	90
'n	06 – Fob – 90	06-Fob-90	06-Fob-90	06-Feb-90	06-Feb-90	06-Fob-90	06-Feb-90	06-Fob-90	06-Feb-90	06-Fab-90	06-Fob-90	06-Fob-90	06 – Fob –90	06 – Fob –90	06-Fob-90	06-Fob-90	06—Fab—90	06-Fob-90	06-Fob-90	06-Fob-90	06-Fob-90	06-Fob-90	06-Fab-90	06-Fab-90	06 – Fob –90	06-Fob-90
DATE	96 - 5	06 - F	96 – F	96-F	06 – F	96 L	96 - F	- 90	90	90	- 90	_	_	_		_	_									
Č TË D	- Q	2	S S	2	2	9	2	2	2	9	<u>Q</u>	2	<u>8</u>	YES												
YES/NO FILTERED														81	01	01	~	2	- 2	2	2	2	2	ņ	.5	- Fi
	B-2	8-2	B-2	B-2	B-2	B-2	8-2	8-2	8-2	B-2	8-2	B-2	9-2	8-2	B-2	9-1	8-,	8	19-5	8-2	8	B-2	B-2	8-2	B-2	E.
GRID	-	=	=	=	-	-	-	-	-		5	- -	×	×	<u> </u>	¥	× ×	3	3	3	3	×	3	× 1	.w.	W.
SAMPLE !	WO - KWA	MW4 - GW1	MW4 - GW	MW4 - GW1	MW4 - GW	MW4-GW	MW4 - GW1	MW4-GW	MW4 - GW	WW4 - GW1	MW4 - GW	MW4 - GW	NO - VAVA	WWA - GW	WW4 - 0.	MW4 - GW	WWA - GW	WW4 - 5W	MW4 - GW	MW4 - GW	WAYA LOW					
∑	1 3	- ≥	∶≦	: ≤	₹	₹	₹	⋛	. ≥	3	: 3	: 5	€	: 5	ž	Σ	2	2	2	2	: 2	: 2	2	: 2	. 2	-

DETECTION	09	10	2	מי	9	25	ų	0.5	40	S	5	10	8	9	5	ß	S	10	25	n	0.2	9	, ro	01	2	ç
UNITS	uo/L	1/8n	ua/L	1/07	7/5n	מאיר	ug/L	Ug/L	ממ/ך	ממ/ר	ug/L	Ug/L	Ug/L	Ug/L	Ug/L	UQ/L	ng/L	ug/L	UB/L	מסע.	המ/ר	J/Bn	Vo/L	00/L	1/0n	, ,
JUALIFIER	5	BW	>	5				2		BW	כ	2		5	.	5	7	5	2	7	2	כ	5	5	D	ď
RESULTS QUALIFIER	35.3	9.2	3.9	4.9	32.6	101	84	0.1	83.6	13	9.1	0.9	455	40.2	1.5	2,3	6:1	8.7	4.1	3.1	0.1	23.6	1.7	9.9	6.0	ď
ANALYSIS	Antimony	. Arsonic	Boryllium	Cadmium	Chromium	Copper	Load	Mercury	Nickel	Solonium	SNor	Thallium	Zluc	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Load	Morcury	Nickol	Solanium	SNor	Thellium	Zing
сатевову	Σ	×	Σ	Σ	×	Σ	×	Σ	Σ	Σ	Σ	₹	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	2
DESCRIPTION	Groundwater Sample	Groundwaler Sample	Groundwater Sample																							
DATE	07-Feb-90	07 - Feb - 90	07-Feb-90	07-Fob-90	07-Fob-90	07-Feb-90	07-Feb-90	07-Feb-90	07-Fob-90	07-Fob-90	07-Fob-90	07 - Fob 90	07 Feb-90	07-Feb-90	07 Fob 90	07 - Fab - 90	07-Feb-90	07-Feb-90	07 -Fab-90	07-Fob-90	07-Feb-90	07-Fob-90	07 Feb 90	07-Fob-90	07-Feb-90	07-Feb-90
YES/NO.	2	O _N	Q Q	Q Q	Q Q	0	9	9	2	<u>Q</u>	9	0	<u>0</u>	YES												
GRID F	E-5	E-5	E-5	지 오 -	E-5	E-5	п 2-п	E-5	E-5	E-5	2-3	E-5	E5	E-5												
SAMPLE (MW6-GW1	MW6-GW1	MW6-GW1	MW6 - GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6-GW1	MWG-GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6 - GW1	MW6 - GW1	MW6 - GW1	MWG-GW1	MW6 - GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6-GW1	MW6-GW1

1

j

J

]

RESULTS QUALIFIER UNITS CLIMIT	- -		U ug/L	J/8n	ug/L. 10		ng/L 3				10 م				ر 5				25		L 0.2	ر	<u>ت</u>	٦	٦	-
RESULTS QUALIFIER UNITS	- -	ng/L	U ug/L	J/Bn /	ng/L	UB/L	ug/L	ug/L	19/2	٦/8	٦ ا	۲.	٦,		ر				•			ر	تے	7	7	ار
RESULTS QUALIFIER	34.6		-	_					۰	7	รั	გი	β'n	/Bn	/Bn	/Bn	l/ßn	/Bn	/Bn	/Bn	/Bn	/Bn	/Bn	Ŝ	√gn	√Bn
HESULTS	34.6						+	>	>	<u>}</u>	D D	>	,	>	B	-	<u> </u>	<u> </u>		٦	ֹכ	5)	D	<u> </u>	
Antimony	••	17.9	3.8	4.8	27	31	25.8	0.1	31.1	4.	8.9	6.0	2	40.2	6.9	2.3	1.9	8.7	4.1	4.9	0.1	23.6	1.7	9.9	6.0	8
FOR	Antimony	Arsenic	Beryllium :	Cadmlum	Chromium	Copper	Load	Morcury	Nickel	Solonium	Sivor	Thallium	Zinc	Antimony	Arsonic	Boryllium	Cadmium	Chromlum	Copper	Load	Morcury	Nickel	Solonium	SNor	Thallium	Zinc
	₹		ă	ບັ	ວົ			_	•	S		,		₹		6	O	ਹ					0)			
CATEGORY	Σ	Σ	Σ	Σ	×	Z	Σ	Σ	Σ	Σ	Σ	Σ	Z	Σ	×	×	×	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ
0.00.007.00001	Groundwater Sample	Broundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample																					
J	_	07 - Feb - 90 C	07-Feb-90 (07 - Feb - 90 (07 - Feb-90 (_		07 - Fob-90 (07 - Fab-90 (07 - Feb - 90	07-Feb-90	07 - Feb - 90	07 - Feb - 90	07-Feb-90	07 - Feb - 90	07-Feb-90	07-Feb-90	07 -Fab-90	07 - Feb - 90	07-Feb-90	07-Feb-90	07-Fob-90
1888881				<u> </u>																					YES	
GRID # FIL	0-8	D-8	0-8	0-8	B-0	0-8	9-Q	0-8	8-0	0B	D-8	0-8	D-8	0-8	D-8	D-8	0-8	0-8	0-8	0-0	0-8	D-8	0-8	0-8	0-8	D-8
SAMPLE # G	.×.	MW7 - GW1	MW7-GW1	MW7 - GW1	MW7 - GW1	MW7-GW1	MW7 - GW1	MW7 - GW1	MW7 - GW1	MW7-GW1	MW7-GW1	MW7 - GW1	MW7 - GW1	MW7-GW1	MW7 - GW1											

NO.																										
DETECTION		3 5	<u> </u>	o kr	, C	25.	, r.	0.2	40	, ro	5	5	8	9	5	ĸ	5	9	25	ר	0.2	40	, ru	0.01	2	! ;
UNITS	Von	1/65	1/00	1/01	765	7/85	1/07	ng/L	ua/L	מאר	מפער	ng/L	ng/L	ug/L	UB/L	ממ/ך	na/L	NO/L	na/r	ng/L	ro/c	7/00	no/L	na/L	1/8:) _ (a) :
QUALIFIER	3	BW	60	כי)			כ		&o	2	כ		5	BW	כ	ס	>	<u></u>		כ	ֹב	כ	ח	ח	, -
RESULTS C	40.2	1.7	r?	1.9	65	135	58.1	0.1	134	1.7	6.6	6.0	642	34.6	3.1	3.8	4.8	9,0	9	စ	0.1	31.1	1.4	8.9	0.0	č
ANALYSIS FOR	Antimony	Arsonic	Boryllum	Cadmium	Chromium	Copper	Load	Marcury	Nickel	Solonium	Siver	Thallium	Zinc	Antimony	Arsonic	Beryllium	Cadmium	Chromium	Copper	Load	Morcury	Nickol	Solonium	SNor	Thallium	71.7
САТЕВОПУ	Σ	×	Σ.	Σ	Σ	æ	×	Σ	×	Σ	Σ	Σ	Z	Σ	×	Σ	Σ	Σ	₹	Σ	×	₹	Σ	×	×	2
DESCRIPTION	Groundwater Sample																									
DATE	07 -Feb-90	07-Feb-90	07-Fab-90	07-Fob-90	07-Fob-90	07-Feb-90	07-Fab-90	07-Fob-90	07-Feb-90	07-Feb-90	07~Feb-90	07 - Feb 90	07-Feb-90	07-Feb-90	07 - Fob-90	07 - Fob-90	07 - Fob 90	07 - Fob-90	07 - Fab-90	07 - Fob -90	07 - Fob - 90	07 - Fob 90	07 - Fob - 90	07 - Fob 90	07 - Fob -90	07 - Fab - 90
YES/NO	OZ	ON N	0 2	0 2	<u>0</u>	ON ON	O _N	<u>Q</u>	<u>Q</u>	02	0	0	0	YES												
GRIO # F	C-10	0-10	C-10	0-10	0-10	C-10																				
SAMPLE #	MWB-GW1	MW8-GW1	MWB-GW1	MWB-GW1	MWB-GW1	MW8-GW1	MWB-GW1	MW8-GW1	MWB-GW1	MWB-GW1	MWB-GW1	MW8-GW1	MW8-GW1	MW3-GW1	MW8-GW1	MW8-GW1	MWB-GW1	MWB-GW1	MWB-GW1	MWB-GW1	MWB-GWI	MWB-GW1	MWB-GW1	MWB-GW1	MWB-GW1	MW8 - GW1

j

J

]

]

]

MW9-GW1	A-4	CZ	16-Fab-90	Groundwater Sample	- X	Antimom	40.2	ס	Va/L	80
MW9 - GW1	A - 4	2	16 - Fob - 90	Groundwater Saniele	Σ	Arsonic	8.4	BS	Ug/L	10
MW9-GW1	A-4	2	16-Fob-90	Groundwater Sample	Σ	Boryllium	2.3	8	ug/L	5
MW9-GW1	A-4	2	16-Fob-90	Groundwater Sample	Σ	Cadmlum	1.9	כ	ng/L	5
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	Σ	Chromlum	24	-	ug/L	10
MW9-GW1	A-4	2	16-Fob-90	Groundwater Sample	Σ	Copper	15	6	ug/L	25
MW9-GW1	A-4	Q Z	16-Feb-90	Groundwater Sample	Σ	Load	33.3		ug/L	n
MW9-GW1	A-4	8	16-Fob-90	Groundwater Sample	Σ	Morcury	0.1	ס	ug/L	0.2
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	Σ	Nickol	23.6		√Bn	40
MW9-GW1	A-4	ջ	16-Fob-90	Groundwater Sample	Σ	Solonlum	1.7	<u>~</u>	J/Bn	S
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	Σ.	Silvor	9.9	5	Ug/L	5
MW9-GW1	A-4	2	16-Fob-90		Σ	Thallium	6.0	>	UB/L	0
MW9-GW1	A-4	0	16-Fob-90		Σ	Zinc	62		ng/L	50
MW9-GW1	A-4	YES	16-Feb-90		Σ	Antimony	40.2	ָ כ	ng/L	9
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ	Arsonic	2	m	ng/L	<u></u>
MW9-GW1	A-4	YES	16-Fob-90	Groundwater Sample	Σ	Boryllum	2.3	> :	ng/L	in I
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ	Cadmium	1.9	>	ng/L	ν.
MW9-GW1	A-4	YES	16-Fob-90	Groundwater Sample	Σ	Chromium	8.7	5	J/80	9
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ	Coppor	4.4	>	ng/L	25
MW9-GW1	A-4	YES	16-Fob-90	Groundwater Sample	Σ	Load	3.6	; כּ	ng/L	ָרָה י
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ	Morcury	0.1	5	ng/L	0.2
MW9-GW1	A-4	YES	16-Fob-90	Groundwaler Sample	Σ	Nickol	23.6	D	שארר "	.
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	₹:	Solonium	7.7	<u>*</u> :	ug/L	ດ ເ
MW9-GW1	A-4	YES	16-Fob-90	Groundwaler Sample	Σ:	JONIO I	0.0	5 :	מש/ר	2 \$
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ:	I Dallum	5.0 5.0	5 6	ng/r	2 8
MW9 - GW1	A-4	YES	16-Fob-90	Groundwater Sample	Σ	Zinc	13	28	ng/L	8
CWST	, (08 - Feb - 90	Groundwater Sample	>	Acotono	100	3	na/L	5
MW1-GW2	0 0		06-Fab-90	Groundwater Sample	>	2-Butanone	8	5	ug/L	5
MW1-GW2	9-0		06-Feb-90	Groundwater Sample	>	Viryl Acetato	S	ס	ng/L	5
MW1-GW2	9-0		06-Feb-90	Groundwater Sample	>	Bonzeno	260	٥	ng/L	01
MW1-GW2	9-0 0		06-Fob-90	Groundwater Sample	>	2—Hexanone	S	ס	ng/L	01
MW1-GW2	9-O		06-Fob-90	Groundwater Sample	>	4-Mollyj-2-pontanone	ଞ	כ	ug/L	5
MW1-GW2	0-e		06-Fob-90	Groundwater Sample	>	Elhylbanzene	110		ng/L	10
MW1-GW2	0-O		06-Fob-90	Groundwater Sample	>	m/p-Xylene	32		l ug/L	5
MW1-GW2	9-0		06-Feb-90	Groundwater Sample	>	o-Xylana	86		760	의
MW2 - GW2	8-7		07 - Fob-90	Groundwater Sample	>	Acotono	8	כ		10
MW2 - GW2	8-7		07-Fob-90	Groundwater Sample	>	2-Butanone	\$			9
MW2-GW2	8-7		07-Fob-90	Groundwater Sample	>	Viryl Acotato	S.	כ		5
MW2-GW2	6-7		07-Fab-90	Groundwater Sample	>	2-Hexanone	S	¬		2
•						-	?	•		(

DETECTION	10	2	0	2	2	10			₽	10	2	10	10	2	0	10	2	2	2
200.00	ug/L	νg/L	ng/L	ng/L	ng/L	ug/L		ng/L	ng/L	ng/L	ug/L	₽9/L	חם/ן	1/0n	ug/L	ug/L	ug/L	ug/L	ug/L
UALIFIER	D	כ	ס		5	n	-	>	5	כ	D	D	5	1	כ	כ	-	כ	<u></u>
RESULTS QUALIFIER UNITS	100	9	<u>. </u>	7	22	20	95	3	18	20	20	20	8	8	5	20	78	22	20
ANALYSIS FOR	Acolono	2-Butanone	Vinyl Acotato	Trichloroethene	2-Hexanone	4-Mothyl-2-pontanone	•	Acolone	2-Butanone	Vinyl Acetate	2-Hexanone	4-Mothyl-2-pantanona	Acelono	Trans-12-Dichloroghang	2-Butanone	Vinyl Acotato	Trichloroothono	2-Hexanone	4-Mothyl-2-pentanone
CATEGORY	>	>	>	>	>	>		>	>	>	>	^	>	>	>	>	>	>	>
DESCRIPTION	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample		Groundwater Sample	Groundwater Semple	Groundwaler Sample	Groundwaler Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample				
DATE	06-Fob-90	06-Feb-90	06-Fob-90	06-Fob-90	06-Feb-90	06-Fob-90		08-rep-30	06-Fob-90	06-Fob-90	06-Fob-90	06-Fob-90	07 - Feb - 90	07 - Fob - 90	07 Fab-90	07-Feb-90	07-Fob-90	07-Fob-90	07 - Fob - 90
YES/NO FILTERED															.!				
GRID # F	C-4	C-4	C-4	C-4	O - 4	C - 4		B-2	B-2	B-2	8-2	8-2	u U) U	u w	n n	<u>Б</u> -6	E-6	E-6
SAMPLE . GRID . FILTERED	MW3 - GW2	MW3-GWZ	MW3-GWZ	MW3-GWZ	MW3-GW2	MW3-GWZ		MW4 - GW1	MW4-GW1	MW4 - GW1	MW4-GW1	MW4 - GW1	TANKE CONV.	WWG - GWM	MW6 - GW1	MW6-GW1	MW6-GW1	MWG-GW1	MW6 - GW1
L	Ц.	_					4								_				

0-7	07-Fob-90	Groundwater Sample	>	Chloromethane	100	D	ng/L	9
0-7	07-Fob-90	Groundwater Sample	>	Bromoothana	<u>8</u>		ug/L	0
0-7	07-Feb-90	Groundwater Sample	>	Vinyl Chloride	100	>	ոց/Ր	<u>o</u>
1-0	07-Fob-90	Groundwater Sample	>	Chloroethane	<u>\$</u>	5	ng/L	9
0-7	07-Fob-90	Groundwater Sample	>	Mothylono_Chlorklo	20	3	ug/L	9
0-7	07 - Fob - 90	Groundwater Sample	>	Aroloin	8	<u></u>	ng/L	0
0-7	07-Fob-90	Groundwater Sample	>	Acotono	1000	3	ng/L	9
2-0	07-Feb-90	Groundwater Sample	>	Arylonitile	8	5	ng/L	9
D-7	07-Fob-90	Groundwater Sample	>	Carbon Disulido	20	_D	ng/L ∣	9
D-7	07-Fob-90	Groundwater Sample	>	Trichlorofluoromothano	<u>\$</u>	כ	ng/L	9
0-7	07-Fob-90	Groundwater Sample	>	1,1-Dichloroethene	20	כ	ng/L	10
MW7 - GW1 D-7	07-Fob-90	Groundwater Sample	>	1,1-Dichloroethane	20	ס	UB/L	9
MW7-GW1 D-7	07 - Fob - 90	Groundwater Sample	>	Trans-12-Dichloroethene	20	D	ng/L	2
0-7	07-Fob-90	Groundwater Sample	>	Chloroform	20	э	ng/L	5
0-7	07 - Feb - 90	Groundwater Sample	>	1,2-Dichloroothane	20	D	ug/L	01
MW7 - GW1	07 - Fob - 90	Groundwater Sample	>	2-Butanone	100	ס	ng/L	01
	07 - Fob-90	Groundwater Sample	>	1,1,1 -Trichloroothano	20	כ	ng/L	0
	07 - Fob - 90	Groundwater Sample	>	Carbon Tetrachloride	20	D	UB/L	2
MW7-GW1 D-7	07-Feb-90		>	Virryl Acotato	200	כ	ug/L	2
MW7-GW1 D-7	07 -Fob-90		>	Bromodichloromothane	ß	5	ng/L	2
<u>.</u>	07-Feb-90	Groundwater Sample	>	1,2-Dichlorpropano	S	ס	ug/L	0
MW7-GW1 D-7	07-Feb-90	Groundwater Sample	>	cis-1,3-Dichlorpropene	20	5	ug/L	<u></u>
MW7 - GW1 D-7	07 - Feb - 90	Groundwater Sample	>	Trichloroethene	20	<u> </u>	ug/L	ç
MW7 - GW1 D-7	07-Feb-90	Groundwater Sample	>	Bonzono	200		ng/L	9
MW7-GW1 D-7	07-Fab-90	Groundwater Sample	>	Dibromochloromothane	20	>	ng/L	10
MW7 - GW1 D-7	07-Feb-90	Groundwater Sample	>	1,1,2 -Trichloroothano	20	>	Ug/L	9
MW7-GW1 0-7	07-Fob-90	Groundwater Sample	>	Imns-1,3-Dichlorpropene	SS.	ס	ng/L	0
	07-Fob-90	Groundwater Sample	>	2-Chloroethywinylether	100	ס	ug/L	2
MW7-GW1 0-7	07-Fob-90	Groundwater Sample	>	Вготогт	20	5	UB/L	2
MW7-GW1 D-7	07-Fob-90	Groundwater Sample	>	2-Hoxanone	200	>	ng/L	10
MW7-GW1 D-7	07 - Fab - 90	Groundwater Sample	>	4 - Mothyl-2 - pontanone	200	D	ng/L	2
MW7-GW1 D-7	07-Feb-90	Groundwater Sample	>	Totrachloroothone	S	2	ng/L	õ
MW7-GW1 0-7	07 - Fab-90	Groundwater Sample	>	1,122-Totrachioroothone	20	>	ng/L	5
MW7-GW1 D-7	07-Fob-90	Groundwater Sample	>	Toluene	20	כ	ng/L	2
MW7-GW1 D-7	07-Fob-90	Groundwater Sample	>	Chlorobenzene	22	ב ס	ng/L	5
MW7-GW1 D-7	07-Feb-90	Groundwater Sample	>	Ethylbonzono	8		ng/L	2
MW7-GW1 D-7	07 - Fob - 90	Groundwater Sample	>	Styrono	20	ח	ng/L	5
MW7-GW1 D-7	07-Fob-90	Groundwater Sample	>	m/p-Xylono	21	7	ng/t₋	5
MW7-GW1 D-7	07-Fab-90	Groundwater Sample	>	o-Xylene	2	•	ոց/և	0 :
MW7 - GW1 D-7	07-Fob-90	Groundwater Sample	>	1,3-Dichlorobenzene	02)	מש/ר	2 :
7-0 IMD-43	07_Fab_a0	Groundwater Sample	>	1.2/1.4 - Dichlorobanzane	08	_	7/00	2

; . ; j

1

]

SAMPLE # GI	YES/NO	o oate	DESCRIPTION	слтевот	ANALYSIS FOR	RESULTS: C	QUALIFIER	UNITS	DETECTION
MWB-GW1	0 0	07 -Fob-90	Groundwater Sample	>>	Mothylene_Chloride		3=	ug/L	5 5
MWB - GWM	1 1 0	07 - Feb-90	Groundwater Sample	- >	2~Butanone	8 8))	ng/L	2
MW8-GW1	C-10	07-Fab-90	Groundwater Sample	>	Virryl Acotato	20	Þ	ug/L	10
MWB-GW1	C-10	07-Fob-90	Groundwater Sample	>	2-Hoxanone	S :	ɔ :	0g/L 1,00	2 9
MWB-GW1	C-10	07-Fob-90	Groundwater Sample	>	4-Mathyt-2-pentanone	20		ng/L	2
MW9-GW1	A-4	16-Fob-90	Groundwater Sample	>	Acotono	8	Э	ng/L	0.
MW9-GW1	A-4	16-Fob-90	Groundwater Sample	>	2-Butanone	<u>§</u>	5	ng/L	<u></u>
MW9-GW1	A-4	16-Fob-90	Groundwater Sample	>	Viryl Acotato	20)	1/Bn	0 :
MW9-GW1	A - 4	16-Fob-90	Groundwater Sample	> >	2-Hoxanone	0. 0. 0. 0.)))	מש/ר מש/ר	<u> </u>
IMO-6MW	7	200							
8		07 - Fob - 90	Groundwater Sample	> :	Methylene_Chloride	. S	3 =	ug/L	2 5
8		07 - Fab - 90	Groundwaler Sample	> :	Acolono	3 5) =	7/65	2 5
<u>8</u> 8		07 -Fob-90	Groundwater Sample	> >	Section of the Sectio	3 5) =	1/07	2 5
3 8		07 - 100 - 90	Groundwaldr Sampile	> >	2 - Hoxanona	S 50) =	1/60	2 2
3 8	· · · · ·	07 - Feb - 90	Groundwater Sample	- >	4 - Methyl-2 - pontanone	20	ח	1/gn	0
MW1-GW2	9-0	06-Fob-90	Groundwater Sample	SV	3,3'-Dichlorobonzidine	8	ם	vg/L	10
MW2-GW2	8-7	07 - Fob-90	Groundwater Sample	SV	3,3'-Dichlorolxorzidiro	20	D	ug/L	10
MW3-GW2	C-4	06-Fob-90	Groundwater Sample	SV	ALL SEMI-VOLATILES	ON	r	ng/L	NA
MW4-GW1	B-2	06-Feb-90	Groundwater Sample	SV	3,3'-Dichlorobarzidino	20	D	ug/L	10
MW6-GW1	E-5	07 - Feb-90	Groundwater Sample	SV	3,3'-Dichlorobonzidine	20	ס	ug/L	10
MW7 – GW1	0-7	07 - Fab-90	Groundwater Sample	SV	3,3'-Dichloroborzidine	20	Э	ng/L	10
MW7 - GW1	0-10	07-Fob-90	Groundwater Sample	S	2-Mothylnaphthalono	ß		UB/L	2
MW7-GW1	C-10	07-Fob-90	Groundwater Sample	SV	3,3'-Dichloroberzidine	20	ר	ng/L	10
MW9-GW1	A-4	16-Fob-90	Groundwater Sample	SV	3,3'-Dichlorobonzidino	20	D	ng/L	10
6-0		07~Fob-90	Groundwater Sample	SV	2-Mothyknaphthaleno	23	; د	ng/L	10
0-0		07-Feb-90	Groundwater Sample	SV	3,3'-Dichloroborzidine	20	D	ng/L	10
6-0	8-7	17-Oct-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	QN	NA	ug/L	NA
MW4	8-2	17-Oct-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	NO	VV	יישיר	NA

1

The state of the s

GNID		YES/NO DATE DATE	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS C	QUALIFIER	UNITS	DETECTION
	E-5	17-0c1-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	QV	٧×	vg/L	¥ Z
	7-0 7-0	17 -Oct-91 17 -Oct-91	Groundwater Sample Groundwater Sample	S S	Naphihalono 2-Mothyinaphaleno	9 2	٠ د د	ug/L ug/L	
	A-8	17-0c1-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	Q	NA	Ug/L	¥.
	F-7	17-Oct-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	ON	VA V	UB/L	- AN
	F-7	17-Oct-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	QN	٧	Ug/L	Y Y
	E-9	17-Oct-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	QN	NA NA	vg/L	Y Y
	8-7	17-0cl-91	Groundwater Sample	>	1,1,1 -Trichloroethane	2	ſ	∆B0	
	C-4	17-Oct-91	Groundwater Sample	>	Trichloroethene	10		₩, 09/L	
	C-4	17-0ct-91	Groundwater Sample	>	Trichloroethone	B	ſ	Ug/L	
	B-2	17-Oct-91	Groundwater Sample	>	ALL VOLATILES	ON	Y.	Ug/L	NA
	п 5 - 5	17 - Oct-91 17 - Oct-91	Groundwater Sample Groundwater Sample	> >	1,2-Dichloroethene(total) Trichloroethone	190		J/Bn ng/L	
	0-7	17-0ct-91	Groundwater Sample	>	Vinyi	17		ng/L	
	7-0	17-0c(-91	Groundwater Sample	> >	Benzene	<u>.</u>	_	ng/L	
	0-7	17 - Oct-91	Groundwater Sample	> >	Ethyl	62	•		
	D-7	17-0ct-91	Groundwater Sample	>	(leta) analyX	36		ng/L	
-	C-10	17-0ct-91	Groundwater Sample	>	1,1,1 - Trichloroethana	3		Ug/L	
	A-4	17-Oct-91	Groundwater Sample	>	ALL VOLATILES	QN	NA	ng/L	Y Y
	A-8	17-Oct-91	Groundwater Sample	>	ALL VOLATILES	ON	NA	ug/L	NA
	F-7	17-0ct-91	Groundwater Sample	>	ALL VOLATILES	ON	NA	Ug/L	NA
	F-7	17-Oct-91	Groundwater Sample		ALL VOLATILES	ON	NA	Ug/L	NA
	E-9	17-Oct-91	Groundwater Sample	^	ALL VOLATILES	N	NA	ug/L	NA
					•				

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS — GROUNDWATER

]

Z																										_
DETECTION							••																			
UNITS	ug/L	Ug/L	UB/L	ng/L	UB/L	ng/L	Ug/L	ng/L	ug/L	ug/L	Ug/L	Ug/L	ng/L	Ug/L	Ug/L	Ug/L	ug/L	√Bn	ug/L	ug/L	ng/L	ng/L	ug/L	1/6n	ug/L	vg/L
	7	7			7					Œ	כ	Œ		ס	-,	Þ	כ	2	7	7	ס	כ	3	ס	Э	7
RESULTS AUALIFIER	20.2	22.5	5.1	80	101	347	528	0.17	196	4	က	4	1090	6	5.1	-	2	က	3.1	7.7	0.1	6	2.2	₆	2.2	4.7
	Antimony	Arsonle	Boryllium	Cadmium	Chromium	Copper	Load	Morcury	Nickel	Solonium	Sivor	Thallium	Zinc	Antimomy	Arsenia	Boryllium	Cadmium	Chromium	Coppor	Load	Morcury	Nickol	Salonium	Sivor	Thallium	Zinc
ANALYSIS						≥			Ξ	Σ.	~	Σ	_	~	≥	~		Σ	<u>~</u>	Σ	Σ		Σ		Σ	
CATEGORY	Σ	Σ	2	2	~	~		~	~	~	_	_	_	_	_	_					_					_
DESCRIPTION	Groundwater Sample	Groundwaler Sample	Groundwater Sample																							
DATE	17-0cl-91	17-0cl-91	17-Oct-91	17-0cl-91	17-0ct-91	17-0cl-91	17-Oct-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0ct-91	17-0c1-91	17-0c1-91	17-0cl-91	17-0cl-91	17-0cl-91	17-0ct-91	17-0ct-91	17-0cl-91	17-0cl-91	17-0ct-91	17-0ct-91	17-0ct-91	17-0ct-91
YES/NO:	Q Z	ON N	9	Q Z	0 N	S S	8	Q Q	02	2	2	O _N	9	YES												
GRID / F	8-7	8-7	B-7	8-7	8-7	0-7	0-7	8-7	B-7	B-7	8-7	8-7	8-7	8-7	8-7	B-7	8-7	B-7	B-7	8-7	8-7	B-7	B-7	B-7	6-7	8-7
SAMPLE #		MW-2	WW-2	WW-2	WW-2	MW-2																				

		_																								
	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L	ug/L	ng/L	υg/L	ng/L	ug/L	ng/L	ng/L	ng/L	ոց/L	ng/L	ng/L	ղ/ _{նո}	սց/L	սց/Լ	υg/L	ng/L	ug/L	1/0/1
	-	7			7					ш	5	<u>«</u>	•	⊃		ח	D)	<u> </u>	7	5	ֹח	3	>	>	
	29.5	6.9	3.7	4.6	96.7	208	109	. 0.29	202	ස	<u>.</u> ო	4	645	6	2		2	က	60	1.9	0.1	6	2.2	n	2.2	
	Antimony	Arsonic	Boryllium	Cadmium	Chromlum	Copper	Load	Morcury	Nickel	Selenium	Silvor	Thallium	Zinc	Antimony	Arsonic	Boryllium	Cadmium	Chromium	Coppor	Lond	Morcury	Nickol	Selenium	Siver	Thallium	7ine
	×	×	Σ	×	×	×	×	≥	≥	Σ	Σ	Σ.	×	Σ	≅	×	×	Σ	Σ			×	×		Σ	¥
	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Groundwaler Sample	Groundwater Sample	Grandwales Cample																	
	17-Oct-91	17-Oct-91	17-Oct-91	17-0ct-91	17-0cl-91	17-Oct-91	17-0ct-91	17-0ct-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	10-1-0						
	<u>Q</u>	ON.	2	2	QN N	ON ON	2	0 <u>N</u>	ON N	Q Z	QN ON	Q.	0 <u>2</u>	YES	\ \ \											
-	B-2	B-2	B-2	8-2	B-2	8-2	8-2	B-2	8-2	B-2	B-2	8-2	B-2	B-2	8-2	8-2	8-2	8-2	B-2	B-2	B-2	B-2	8-2	8-2	B-2	
	MW-4	WW-4	MW-4	MW-4	WW-4	MW 4	MW-4	MW-4	MW-4	WW-4	WW-4	WW-4	MW-4	MW-4												

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS – GROUNDWATER

												_														
DETECTION		•						•																	-12-22	
UNITS	ug/L	ng/L	ng/L	ug/L	UB/L	ug/L	ng/L	מס/ך	ng/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L I	ug/L	ng/L	Ug/L	ng/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	vg/L
UALIFIER	7	7							•	Œ.	5	αc		э	D	5	ס	ס	7	٦	ר	ס	3	כ	כ	
RESULTS QUALIFIER	24.8	2	12.1	18.9	247	868	647	0.55	730	B	г	4	3260	O	7		8	n	6.2	2	0.1	6	2:2	е	2.2	20.1
ANALYSIS FOR	Antimony	Arsonic	Baryllum	Cadmlum	Chromlum	Copper	Load	Morcury	Nickel	Solonlum	SNor	Thallium	Zinc	Antimony	Arsonic	Beryllium	Cadmlum	Chromlum	Copper	Load	Morcury	· Nickol	Solonium	Sivor	Thallium	Zinc
САТЁВОРУ	×	Σ	Z	Z	≆	×	Σ	Σ	Σ	×	Σ	Σ	Σ	×	Σ	Σ	Σ	Σ	Σ	×	Σ	Σ	Σ	Σ	Σ	₹
DESCRIPTION	Groundwater Sample	Groundwaler Sample	Groundwater Sample																							
DATE	17-0cl-91	17-0cl-91	17 -Oct-91	17-0cl-91	17-0ct-91	17-Oct-91	17-0ct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-0cl-91	17-0cl-91	17-0cl-91	17-0ct-91	17-0cl-91	17-Oc1-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-0ct-91
YES/NO FILTERED	O _N	9	02	ON ON	<u>8</u>	ON N	<u>Q</u>	ON N	<u>Q</u>	ON.	Q Z	Q Q	<u> </u>	YES												
GRID FI	E-5	E-5	E-5	E-5	E5	E-5	E-5	E-5	E-5	E-5	E5	E-5	R-3	E-5	E-5											
SAMPLE #	WW-6	MW-6	MW-6	WW-6	MW-6	WW-6	9-WW	MW-6	MW-6	MW-6	9-WM															

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - GROUNDWATER

Υ		_			_										_				_						
							•																		
1	7/60	ng/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	Ug/L	ng/L	ug/L						
-	,	7						_D		Œ	5	Œ		5		D	5)	5	7	כ	<u> </u>	3	<u></u>	ס
0	6.0	4.5	n	2.8	66.4	155	147	0.1	152	80	က	4	513	6	7.6	-	8	6	က	3.8	0.1	0	2.2	.	2.2
	Aigund	Arsonic	Boryllium	Cadmlum	Chromium	Copper	Lead	Morcury	Nickel	Selenium	Siver	Thallium	Zluc	Antimony	Arsonic	Beryllium	Cadmium	Chromlum	Copper	Load	Marcury	Nickel	Solenium	Siver	Thallium
77	141	×	Z	×	×	×	×	Σ	≥	Σ.	×	Σ	Σ	×	×	₹	×	Σ	Σ	×	Σ	×	×	Z	Z
of our control our control of our control	diduing languages	Groundwater Sample	Groundwaler Sample	Groundwater Sample																					
17_0.101	10012	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0ct-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0ct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-0cl-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-0cl-91
2	2	2	2	9	2	0 N	2	0 N	0 2	0 N	S S	2	<u>8</u>	YES											
,	<u> </u>	V D-7	D-7	0-7	0-7	D-7	D-7	D-7	D-7	0-7	D-7	D-7	D-7	D-7	D-7	0-7	D-7	2-0	D-7						
7 WY) L L	MW-7	WW-7	MW-7																					

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS – GROUNDWATER

						٠-						_									_				\neg
UB/L	ng/L	ng/L	₽/Gn	√gu	ng/L	ug/L	ug/L	ug/L	սց/Լ	ug/L	ug/L	ng/L	ug/L	ug/L	ug/L	J/Gn	ng/L	ug/L	ng/L	ug/L	ηg/L	υg/L	ng/L	νg/L	vg/L
7	7						>		Œ	5	Œ		>		D	5)	5	ح	כ	כ	3	ב ס	ס	ſ
28.7	58.9	£.5	9	96.5	175	132	0.1	169	8	n	4	550	6	12.1	-	2	8	ဂ	2.7	0.1	o	2.2	n	2:2	3.7
Antimony	Arsonic	Boryllum	Cadmlum	Chromium	Copper	Load	Morcury	Nickol	Salonlum	Sivor	Thallium	Zinc	Antimony	Arsonic	· Beryllium	Cadmium	Chromium	Copper	Lead	Morcury	Nickel	Solonium	Stror	Thallium	Zinc
Σ	Σ	Σ	Σ	×	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Z	Σ	Σ	Σ	Σ	Σ	Σ	Σ	₹	Σ	Σ	Σ	Σ	Σ
Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample	Groundwater Sample
17-0ct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0ct-91	17~Oct-91	17-0ct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-001-91	17-0cl-91	17-0cl-91	17-0c1-91	17-0cl-91	17-0c1-91	17-0c1-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91
Q.	ON N	Q.	0 N	Q N	9	9	8	Q N	9	0 N	ON N	0 2	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
A-8	A-8	A-8	A-8	A8	A-8	A-8	A-8	A-8	A-0	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8	A-8
MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW - 10	MW-10	MW-10	MW - 10	MW - 10	MW - 10	MW-10	MW - 10	MW-10	MW - 10	MW - 10	MW-10	MW-10	MW-10	MW-10	MW - 10	MW-10	MW-10
	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsenic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Beryllum 4.5	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Boryllum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 6	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Beryllum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 6 A-8 NO 17-Oct-91 Groundwater Sample M Chromlum 96.5	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Beryllum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromlum 6 A-8 NO 17-Oct-91 Groundwater Sample M Chromlum 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Copport 175	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Beryllum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromlum 6 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Load 132	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Beryllum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromium 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Beryllum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromium 66.5 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 A-8 NO 17-Oct-91 Groundwater Sample M Northwater 0.1 U	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 6 A-8 NO 17-Oct-91 Groundwater Sample M Chromium 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Northwell 169 R A-8 NO 17-Oct-91 Groundwater Sample M Northwell 169 R A-8 NO 17-Oct-91 Groundwater Sample M Northwell Northwell R Northwell	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Beryllum 4.5 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 6 A-8 NO 17-Oct-91 Groundwater Sample M Chromium 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Northwater Sample M Salonlum B R A-8 NO 17-Oct-91 Groundwater Sample	A-8 NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsenic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromium 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromium 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A A-8 NO 17-Oct-91 Groundwater Sample M Solonlum B A-8 NO 17-Oct-91 Groundwater Sample M Solonlum B A-8 NO 17-Oct-91	A-8 NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsenic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Chromlum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromlum 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Chromlum 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Solonlum B R A-8 NO 17-Oct-91 Groundwater Sample M Short 0 A-8 NO 17-Oct-91 Groundwater Sample M Short 0 A-8 NO 17-Oct-9	A-8 NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Capper 175 A-8 NO 17-Oct-91 Groundwater Sample M Copper 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Solonlum B R A-8 NO 17-Oct-91 Groundwater Sample M Solonlum 550 A-8 NO 17-Oct-91 Groundwater Sample M Thailiam 4 A-8 NO 17-Oct-	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 65.9 J A-8 NO 17-Oct-91 Groundwater Sample M Capper 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Cappor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Nickel 132 A-8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A-8 NO 17-Oct-91 Groundwater Sample M Solonlum 8 A-8 NO 17-Oct-91 Groundwater Sample M Thailiam 4 R A-8 NO 17-Oct-91 Groundwater Sample	A-8 NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Assonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmium 6 A-8 NO 17-Oct-91 Groundwater Sample M Cadmium 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Capper 175 A-8 NO 17-Oct-91 Groundwater Sample M Copper 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Norwall Norwall 17-Oct-91 Groundwater Sample M Thallum 8 A-8 NO 17-Oct-91 Groundwater Sample M Thallum 10 A-8 NO 17-Oct-91 Groundwater Sample M Thallum <	AB NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-B NO 17-Oct-91 Groundwater Sample M Arsenic 58.9 J A-B NO 17-Oct-91 Groundwater Sample M Cadmlum 65.5 A-B NO 17-Oct-91 Groundwater Sample M Chromlum 96.5 A-B NO 17-Oct-91 Groundwater Sample M Chromlum 96.5 A-B NO 17-Oct-91 Groundwater Sample M Marcury 0.1 U A-B NO 17-Oct-91 Groundwater Sample M Marcury 0.1 U A-B NO 17-Oct-91 Groundwater Sample M Short 169 A A-B NO 17-Oct-91 Groundwater Sample M Thalliam 4 A A-B NO 17-Oct-91 Groundwater Sample M Antimory A A-B YES	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsenic 56.3 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 6 A-8 NO 17-Oct-91 Groundwater Sample M Chromium 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Nickol 169 A A-8 NO 17-Oct-91 Groundwater Sample M Short N A A-8 NO 17-Oct-91 Groundwater Sample M Short A N A-8 NO 17-Oct-91 Groundwater Sample M Antimory A A A-8 <	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Asenic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 65.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 65.5 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Thallain 4 R A-8 NO 17-Oct-91 Groundwater Sample M Antimory Antimory A-	A-8 NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Assentic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 4.5 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 66.3 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 66.5 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 66.5 J J A-8 NO 17-Oct-91 Groundwater Sample M Assenting M Assenting N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsenic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 4.5 A-8 NO 17-Oct-91 Groundwater Sample M Copper 175 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 A-8 NO 17-Oct-91 Groundwater Sample M Morcury 0.1 A-8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A-8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A-8 NO 17-Oct-91 Groundwater Sample M Arisonic 17 A-8 NO 17-Oct-91 Groundwater Sample M Arisonic 12.1 A-8 NO 17-Oct-91 Groundwater Sample <td< th=""><th>A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 6.5 A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Cappor 175 A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Mickel 132 U A-8 NO 17-Oct-91 Groundwater Sample M Nickel 159 R A-8 NO 17-Oct-91 Groundwater Sample M Antimory 9 U A-8 NO 17-Oct-91 Groundwater Sample M Antimory Antimory Antimory Antimory</th><th>A-8 NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Assantic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Medal 132 A-8 NO 17-Oct-91 Groundwater Sample M Miskel 132 A-8 NO 17-Oct-91 Groundwater Sample M Niskel 132 A-8 NO 17-Oct-91 Groundwater Sample M Antimony 9.1 A-8 NO 17-Oct-91 Groundwater Sample M Antimony 9.1 A-8 NO 17-Oct-91 Groundwater Sample M<</th><th>A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Assenic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M N N N A-8 NO 17-Oct-91 Groundwater Sample M Associate N N N N N N N N N N N N N N N <</th><th>A8 NO 17-Oct-91 Groundwater Sample M Antimony Arsenic 28.7 J A8 NO 17-Oct-91 Groundwater Sample M Boryllun 4.5 J A8 NO 17-Oct-91 Groundwater Sample M Cappor 4.5 J A8 NO 17-Oct-91 Groundwater Sample M Cappor 175 A8 NO 17-Oct-91 Groundwater Sample M Cappor 175 A8 NO 17-Oct-91 Groundwater Sample M Nickel 175 A8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A8 NO 17-Oct-91 Groundwater Sample M Antimony 169 A8 NO 17-Oct-91 Groundwater Sample M Antimony 170 A8 NO 17-Oct-91</th></td<>	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Arsonic 58.9 J A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 6.5 A-8 NO 17-Oct-91 Groundwater Sample M Cadmlum 96.5 A-8 NO 17-Oct-91 Groundwater Sample M Cappor 175 A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Mickel 132 U A-8 NO 17-Oct-91 Groundwater Sample M Nickel 159 R A-8 NO 17-Oct-91 Groundwater Sample M Antimory 9 U A-8 NO 17-Oct-91 Groundwater Sample M Antimory Antimory Antimory Antimory	A-8 NO 17-Oct-91 Groundwater Sample M Antimory 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Assantic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Medal 132 A-8 NO 17-Oct-91 Groundwater Sample M Miskel 132 A-8 NO 17-Oct-91 Groundwater Sample M Niskel 132 A-8 NO 17-Oct-91 Groundwater Sample M Antimony 9.1 A-8 NO 17-Oct-91 Groundwater Sample M Antimony 9.1 A-8 NO 17-Oct-91 Groundwater Sample M<	A-8 NO 17-Oct-91 Groundwater Sample M Antimony 28.7 J A-8 NO 17-Oct-91 Groundwater Sample M Assenic 56.9 J A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Coppor 175 A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M Mercury 0.1 U A-8 NO 17-Oct-91 Groundwater Sample M N N N A-8 NO 17-Oct-91 Groundwater Sample M Associate N N N N N N N N N N N N N N N <	A8 NO 17-Oct-91 Groundwater Sample M Antimony Arsenic 28.7 J A8 NO 17-Oct-91 Groundwater Sample M Boryllun 4.5 J A8 NO 17-Oct-91 Groundwater Sample M Cappor 4.5 J A8 NO 17-Oct-91 Groundwater Sample M Cappor 175 A8 NO 17-Oct-91 Groundwater Sample M Cappor 175 A8 NO 17-Oct-91 Groundwater Sample M Nickel 175 A8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A8 NO 17-Oct-91 Groundwater Sample M Nickel 169 A8 NO 17-Oct-91 Groundwater Sample M Antimony 169 A8 NO 17-Oct-91 Groundwater Sample M Antimony 170 A8 NO 17-Oct-91

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - GROUNDWATER

The state of

i de la constante de la consta

							٠.																_			
ug/L	Na/L) i	J/Bn	ng/L	ng/L	Ug/L	ug/L	ng/L	ηβη.	υg/L	ug/L	√gv T	ηβη	ng/L	ng/L	ng/L	ug/L	սց/Լ	ng/L	ng/L	νg/L	սց/L	ng/L	ng/L	√Bn	γgo
7	-	,			-					Œ	, '	Œ		<u> </u>	2	5	<u> </u>	D	>	7	<u> </u>	5	3	o D	5	5
65.4	45.9	2 0	9.7	6.7	149	322	225	0.14	278	80	6	4	1090	o	4.1	-	2	6	n	2.2	0.1	o	2.2	е	2.2	က
Antimony	Arendic		Boryllum	Cadmium	Chromium	Copper	Lead	Morcury	Nickol	Solonium	Sivor	Thallium	Zinc	Antimony	Arsonic	Boryllium	Cadmlum	Chromium	Coppor	Lead	Morcury	Nickol	Salanlum	SNor	Thallium	Zinc
Σ	×	Ξ;	Σ	×	Z	×	×	Σ	×	Σ.	Σ	×	×	×	Σ	Σ.	~	∑	Σ	Σ	Σ	×	×	Σ	Σ	Σ
Groundwater Sample	Grandwoler Comple	ologiomagiai oguida	Groundwaler Sample	Groundwater Sample	Groundwaler Sample																					
17 - Oct - 91	17 0 17	16-13O- 21	17-0cl-91	17-0cl-91	17-0cl-91	17-0cl-91	17-0c1-91	17-0cl-91	17-Oc1-91	17-Oct-91	17-Ocl-91	17-0cl-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-0cl-91	17-Oct-91						
CZ	2	2	0	2	ON.	02	2	0 N	Q.	9	Q.	OZ	0X	YES	V F.S											
F-7) 	F-7	F7	F-7	r_1																				
MW-11		1	MW-11	1111																						

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS – GROUNDWATER

Acceptant Parent

THE PROPERTY OF

Post and the second

													_													\neg
DETECTION							•.																			
UNITS	ug/L	ug/L	UB/L	ng/L	ng/L	UB/L	ug/L	מש/ך	ug/L	ח/פח	սք/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	תם/ך	ng/L	no/L	ח/טח	ng/L	ng/L	ug/L	ug/L	ug/L
QUALIFIER	٦	7			- -			-		σc	ֹב	Œ.		>	۔	5	>		۔	7	>	>	3		> '	r
RESULTS at	33.9	12.9	4.9	6.5	97.1	328	185	0.18	178	80	e .	4	898	6	3.6		2	n	9.6 6.	2.4	0.1	<u></u>	2.2	က	2.2	6.2
ANALYSIS FOR RI	. Antimony	Arsonic	Boryllium	Cadmium	Chromlum	Coppor	Lead	Mercury	Nickol	Solonium	Sivor	Thallium	Zinc	Antimony	Arsonic	Boryllium	Cadmium	Chromlum	Copper	Lond	Morcury	Nickel	Selenium	SNor	Thallum	Zinc
CATEGORY	Σ	×	Σ	×	≥	×	×	Σ	Σ	Σ	Σ	Σ	≥	×	Σ.	Σ	Σ	Σ	Σ	₹	Σ	Σ	Z	Σ	×	∑
DESCRIPTION	Groundwater Sample																									
DATE	17-0ct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-0cl-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0cl-91	17-0cl-91	17-0cl-91	17-Oct-91	17-0ct-91	17-0ct-91	17-Oct-91	17 - Oct - 91
YES/NO FILTERED	2	Q.	0 N	0N	ON N	0X	Q _N	Q.	<u>Q</u>	Q.	02	2	Q.	YES	V F C											
GRID # FII	6 ப	E-9	E-9	E-9	E-9	— 6- 13	п 6-	E-9	E-3	E-9	6-11	61 11	臣-9	E-9	E-9	Щ 6-1	E-9	я 6-1	E-9	E-9	E-9	E-9	E-9	E-3	E-9	o u
SAMPLE .	MW-12	MW-12	MW-12	MW-12	MW-12	WW-12	MW-12	MW_12																		

TABLE A.1

SOLUBILITY CONSTANTS HAZARDOUS WASTE STORAGE AREA RICKENBACKER AIR NATIONAL GUARD BASE

	Water
Compound	Solubility (1)
Acetone	1000000 mg/L (2)
Benzene	1750 mg/L
Carbon Tetrachloride	757 mg/L
Chloroethane	N/A (3)
Chloroform	82000 mg/L
Creosol	31000 mg/L
1.1-Dichloroethane	280 mg/L
1,2-Dichloroethane	5500 mg/L
cis-1,2-Dichloroethene	3500 mg/L
trans-1,2-Dichloroethene	6300 mg/L
Ethylbenzene	152 mg/L
Dichloromethane	4600 mg/L
2-Butanone	268000 mg/L
Phenol	93000 mg/L
1,1,1,2—Tetrachloroethane	2900 mg/L
1,1,2,2—Tetrachloroethane	2900 mg/L
7 etrachloroethene	150 mg/L
Methylch!oroform	N/A
1,1,2-Trichloroethane	4500 mg/L
Trichloroethene	1100 mg/L
Vinyl Chloride	2670 mg/L
Xylenes	198 mg/L

- (1) Source Superfund Public Health Evaluation Manual, EPA/540/1-86/060, October 1986.
- (2) mg/L- milligrams per liter
- (3) Not available.

REVISED MARCH 1993

APPENDIX B

SUMMARY OF PREVIOUS INVESTIGATIONS, INCLUDING 1991 ANALYTICAL DATA

APPENDIX B

PREVIOUS INVESTIGATIONS

1.0 1988 FIELD INVESTIGATION

Engineering-Science (ES) completed the first phase of the field investigation at the Hazardous Waste Storage Area (HWSA) in October 1988. The purpose of the investigation was to determine if the soil or groundwater beneath the site had been contaminated due to spills or leaks form on-site storage containers.

The results of this investigation are presented in detail in the <u>Field Investigation</u>
Report - Hazardous Waste Storage Area: Rickenbacker Air National Guard Base,
Columbus, Ohio (1989), and the results are summarized in the following paragraphs.

1.1 SUMMARY OF ANALYTICAL RESULTS

The soil-gas survey identified with elevated concentrations of benzene, toluene and ortho-xylene (BTX). Concentration of total BTX in the soil gas ranged from undetectable to 29.8 ppm.

Analyses of the soil samples indicated elevated semi-volatile organic and metals concentrations. The characteristics of the semi-volatile organics found were typical of coal-tar derivatives and phthalates. Metals identified included cadmium, chromium, copper, lead and zinc.

Three of the auger borings made during soil sampling were completed as monitoring wells in the shallow aquifer. Water samples from two of these wells exhibited volatile organic concentrations in excess of Federal Maximum Contaminant Levels (MCLs). Water from MW1 contained 94 μ g/l benzene, 20 μ g/l xylenes and 13 μ g/l methylnapthalene. Water from MW3 contained 44 μ g/l trichloroethene. Samples from all wells had total unfiltered metals concentrations in excess of Federal Drinking Water Standards for arsenic, cadmium, chromium and lead.

2.0 1990 FIELD INVESTIGATION

The phase of the field investigation at the HWSA was completed in March 1990. The purpose of this additional field investigation was to determine the extent of contamination and to allow revision of the Closure Plan to affect a "clean" closure of the site.

The pre-closure sampling activities included soil sampling at the surface and at depth and the installation of six new monitoring wells in and around the HWSA (MW4 through MW9). The results of this investigation are presented in detail in the <u>Pre-Closure Sampling Report - Hazardous Waste Storage Area: Rickenbacker Air National Guard Base. Columbus, Ohio</u> (1992), and a summary of the results follows.

2.1 SUMMARY OF ANALYTICAL RESULTS

2.6.1 Metals

Total metals were found over the site with higher levels within the fenced area. Detected above background criteria were beryllium, cadmium, copper, lead, mercury, silver and zinc.

2.2 VOLATILE ORGANIC COMPOUNDS

Volatile organic compounds in samples from the 0-2 foot interval, were only analyzed for at six hand boring and two monitoring well locations. The only VOCs detected were 440,000 μ g/kg o-xylene at HB1.

Volatile organic compounds were detected at concentrations up to 1,900,000 μ g/kg in soils from the 3-5 foot interval. Elevated ethylbenzene and o-xylene concentrations were found in HB1, near Building 560, while benzene was detected in AB2.

Volatile organics were found in samples from the 8-10 foot interval at levels up to $27,000 \mu g/kg$ of o-xylene. The highest concentrations were found at AB1, AB14 and MW7. Specific compounds include: benzene, ethylbenzene, xylenes and 1,1,1-trichloroethane.

Samples from the 13-15 foot interval containing volatile organic compounds were found in the southern corner and along the northeast side of the area. These include:

benzene, ethylbenzene, toluene, xylenes, acetone, trichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, and vinyl chloride. The highest concentration was $1,000 \mu g/kg$ trans-1,2-dichloroethene at MW6.

At the greater than fifteen foot interval, sand and gravel is present to a depth of approximately 25' with a thin layer of clay from 18'-19'. Detected volatile and semi-volatile organics were confined to the southeast side of the area. Semi-volatile organics were found only at MW1 at a total concentration of 1,830 μ g/kg. The highest volatile organic concentrations were also found at this location. They were benzene, ethylbenzene, and o-xylene at concentrations of 1,900, 11,000, and 20,000 μ g/kg, respectively.

2.3 SEMI-VOLATILE ORGANIC COMPOUNDS

Semi-volatile organics were detected in the soils at various depths and ranged from non-detect to $4,630 \mu g/kg$.

2.6.2 Groundwater

Volatile and Semi-Volatile Organics

On the analytical results map (Sheet 6), both the 1990 and 1988 sampling data are shown. The only semi-volatile organic compound found in the groundwater was 2-methylnaphthalene at 5J μ g/L in MW8.

Volatile organics compounds were detected in MW1, MW3, MW6 and MW7, and include benzene, ethylbenzene, o-xylene, p-xylene, trichloroethene, and trans-1,2-dichloroethene. In addition, four feet of phase-separated hydrocarbons were floating in MW5. Fingerprint analysis of the liquid hydrocarbons identified it as a 30 to 40 percent weathered gasoline mixed with jet fuel.

Filtered Metals

Four metals were detected at all concentrations below the Federal Drinking Water Standards. These four metals were arsenic (found at 2.0 to 9.4 μ g/L), lead (found at 3.1 to 14.0 μ g/L), zinc (found at 5.0 to 35 μ g/L) and mercury (found at 0.11 μ g/L).

3.0 1991 FIELD INVESTIGATION

1

The third phase of the field investigation at the HWSA was completed in October 1991. Field activities conducted during this investigation include groundwater screening, monitoring well installation and soil sampling from the well borings, surface soil sampling, and groundwater sampling.

The additional sampling was conducted to fill data gaps existing after the original pre-closure sampling report. Specifically, these data gaps are:

- The anomalously high concentrations of semi-volatile organic compounds (SVOCs) found at the surface soils of the westernmost corner of the HWSA.
- The extent of VOCs previously detected in the groundwater.

The results of this investigation were reported in the Addendum to the Pre-Closure Sampling Report - Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio (1992) and a summary of the results follows.

The data obtained through the groundwater sampling indicate that petroleum hydrocarbon and chlorinated organic contamination is restricted to the area upgradient and downgradient of the four underground storage tanks (USTs) numbered 47, 48, 49, 50. Wells MW1 and MW5, where phase-separated hydrocarbons were observed, lie in the northern and furthest upgradient portion of this contaminant plume. In the downgradient direction, the dissolved organic plume does not extend to MW11 and MW12.

Volatile organic results of the groundwater sampling events indicate that chlorinated organics are present in MW3 and MW6. The compound 1,1,1-trichloroethane was found at an estimated concentration of 3 μ g/L in MW8 during the 1991 sampling event. This compound was also found in MW2 at an estimated quantity of 2 μ g/L. Although this compound was found in the associated trip blank, it is still possible that it is present at this site since it has been detected in the past.

No groundwater samples were collected from MW5 in either sampling event due to the presence of PSH. In 1990, MW1 had concentrations of dissolved benzene, ethylbenzene and xylenes; however, due to the presence of PSH in 1991, this well was

not resampled. Dissolved benzene, ethylbenzene and xylenes were found in MW7. No volatile organics were detected in MW4 and MW9.

The semi-volatile organic compounds, 2-methylnaphthalene and naphthalene were found in MW7 at estimated concentrations 2 and 6 μ g/L respectively.

Groundwater analyses indicate the presence of total metals in the water samples; however, the filtered aliquot analysis showed a decrease in metals concentrations. Therefore, the presence of metals is associated with the silt suspended in the water sample.

Four metals were detected in filtered groundwater samples, all at concentrations below the Federal Drinking Water Standards. These four metals were arsenic found at 2.9 to 12.1 μ g/L, copper at 3.1 to 6.2 μ g/L, lead at 1.9 to 7.7 μ g/L, and zinc at 3.7 to 20.1 μ g/L.

Soil Results

Five of the ten surface soil samples were collected at the fenceline surrounding the site, the remaining five from locations off site. One sample (SS3) was collected in duplicate. All surface soil samples were analyzed for SVOCs and the priority pollutant metals.

Samples with no detected SVOCs are SS1, SS2 and SS7. Samples SS3, SS9 and SS10 have the highest total SVOC concentrations, 1108, 2250 and 977 μ g/kg respectively. The SVOCs detected can be classified as coal tar derivatives.

Metals analysis from these surface soil samples were compared to background levels that were established for the Base during the Site Investigation for the Installation Restoration Program. Detected above background criteria were arsenic, cadmium, copper, lead, nickel, silver and zinc.

Soil boring samples were collected from two depths (3 to 5 feet and 13 to 15 feet) in each of the three soil borings. Each sample was analyzed for SVOCs, VOCs, and priority pollutant metals. SVOCs were not detected in either of the two samples from MW10 and MW11. The soil sample from the 13 to 15 foot horizon of MW12 had a total semi-volatile concentration of 1569 μ g/kg although no SVOCs were detected in the shallow soil sample (3 to 5 feet), or in the groundwater sample from this well. These compounds are coal tar derivatives.

No VOCs were detected in the soils from borings from MW10, MW11 and MW12.

Metals analysis from the soil samples obtained from the soil borings were also compared to the background levels for the Base. Detected above background criteria were arsenic, beryllium, cadmium, chromium, copper.

LEGEND:

1 R	B-HW-AB	1
-----	---------	---

- 2 RB-HW-AB2
- 3 RB-HW-AB3
- 4 RB-HW-AB4
- 5 RB-HW-AB5
- 6 RB-HW-AB6
- 7 RB-HW-AB7
- 8 RB-HW-AB8
- 9 RB-HW-AB9
- 10 RB-HW-AB10
- 11 RB-HW-AB11
- 12 RB-HW-AB12
- 13 RB-HW-AB13
- 14 RB-HW-AB14
- 15 RB-HW-AB15

ABANOONED SS.OOO GAL UST SEXXCONFO. Q

FIGURE B.3

CROSS-SECTION LOCAT

WATER SURFACE N

HAZARDOUS WASTE STO

RICKENBACKER ANG

FEBRUARY 1990

LEGEND:

- RB-HW-AB1
- RB-HW-AB2
- RB-HW-AB3
- RB-HW-AB4
- RB-HW-AB5
- **RB-HW-AB6**
- **RB-HW-AB7**
- **RB-HW-AB8**
- RB-HW-AB9
- RB-HW-AB10
- 10

RB-HW-AB11

12 RB-HW-AB12

11

- RB-HW-AB13 13
- 14 RB-HW-AB14
- 15 RB-HW-AB15

FIGURE B.3 **CROSS-SECTION LOCATION AND**

WATER SURFACE MAP HAZARDOUS WASTE STORAGE AREA

RICKENBACKER ANGB, OHIO

GROUNDWATER SURVEY RICKENBACKER ANGB, OHIO

October 1991

Prepared for:

Engineering Science Cleveland, Ohio

Project 533935

BURLINGTON ENVIRONMENTAL, MATHES DIVISION 4091 Venture Place Groveport, Ohio 43125

TABLE OF CONTENTS

•	Page
1 INTRODUCTION 2 SUMMARY 3 SAMPLING LOCATIONS 4 GROUNDWATER SAMPLING AND ANALYSIS 5 QUALITY CONTROL	1 2 2 3 5
APPENDIX A Gas Chromatograph Field Work Sheets APPENDIX B Gas Chromatograph Plots	
LIST OF TABLES	
Table 1 Groundwater Analytical Results	T - 1

GROUNDWATER SURVEY RICKENBACKER ANGB, OHIO

1. INTRODUCTION

Engineering Science (ES) requested that John Mathes & Associates, Inc., (Mathes) perform a groundwater survey at the site located at Rickenbacker ANGB, Ohio.

The purpose of this survey was to evaluate the potential presence, and estimate the extent of impact, of volatile organic compounds (VOCs) at the above mentioned facility. This survey was performed by obtaining and analyzing groundwater samples on site.

Mathes arrived at the facility on October 7, 1991. Groundwater sampling was performed from October 7 to October 9, 1991.

2 SUMMARY

a now

Twenty one groundwater samples from 17 probe hole locations were collected and analyzed. Three duplicate groundwater samples, and ten sample blanks were also analyzed. Samples were analyzed for the following chemicals:

- o benzene;
- o ethylbenzene;
- o m&p-xylene;
- o o-xylene;
- o toluene;
- o trichloroethylene;

The analytical results are summarized in Table 1. Site maps with sample locations are being prepared by ES.

3 SAMPLING LOCATIONS

Groundwater samples were collected on site at locations suspected by ES to be impacted with VOCs. Sampling locations were selected by ES based on on-site soil boring data previously obtained by ES, the location of underground utilities, groundwater flow, and vehicle accessibility.

Sampling locations were mapped by ES. At the request of ES, a sampling location map is not included in this report.

TABLE 1

GROUNDWATER ANALYTICAL RESULTS

RICKENBACKER ANGB, OHIO

					Concentration	(ng/L)		
Sample P I.D.	Probe Hole Number	Depth (Feet)	Benzene	Trichloroethylene	Toluene	Ethylbenzene	Total Xylenes	Comments
							•	
BLANK-01			ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-System Blank
BLANK-02	•	•	ND(1)	ND(1)	. ND(1)	ND(1)	ND(1)	QC-Probe Rod Blank
GW-01	PH-01	16.0	8	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-02	PH-02	21.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-02D	PH-02	21.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-Duplicate
GW-03	PH-03	20.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-04	PH-04	16.0	ND(1)	. 55	1385	393	. 259	Groundwater
BLANK-03	•	•	ND(1)	(1)QN	ND(1)	ND(1)	ND(1)	QC-System Blank
BLANK-04	•	•	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-System Blank
BLANK-05	•	•	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-Probe Rod Blank
GW-05	PH-05	20.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-06	PH-06	20.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-07	PH-07	20.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-08	PH-08	24.0	ND(1)	(1)QN	ND(1)	ND(1)	ND(1)	Groundwater
60-WS	PH-09	24.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater

Not detected at the detection limit in parentheses Quality Control
Micrograms per liter
Not Applicable

28

ug/L

TABLE 1

GROUNDWATER ANALYTICAL RESULTS

RICKENBACKER ANGB, OHIO

					Concentration	(ug/L)		
Sample P	Probe Hole	Depth (Feet)	Вепzепе	Trichloroethylene	Toluene	Ethylbenzene	Total Xylenes	Comments
							•	
GW-10	PH-10	24.0	ND(1)	ND(1)	ND(1)	ND(1)	· ND(1)	Groundwater
GW-11	PH-11	24.0	· ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-12	PH-12	24.0	ND(1)	(1)QN	ND(1)	ND(1)	ND(1)	Groundwater
GW-13	PH-13	24.0	168	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
BI ANK-06	. •	•	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-System Blank
GW-14	PH-14	18.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-14D	PH-14	18.0	ND(1)	ND(1)	ND(1)	ND(1)	. ND(1)	QC-Duplicate
BI ANK-07	•	•	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-System Blank
BI ANK-08	•	•	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-System Blank
BI ANK-09	•	•	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-Probe Rod Blank
GW-15	PH-06	22.0	ND(1)	ND(1)	ND(1)	ND(1)	(1)QN	Groundwaler
GW-16	PH-06	20.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-17	PH-06	18.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-18	PH-06	16.0	ND(1)	ND(1)	ND(1)	ND(1)	(1)QN	Groundwater
GW-19	PH-15	20.0	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-20	PH-16	20.0	4	ND(1)	ND(1)	ND(1)	ND(1)	Groundwater
GW-20D	PH-16	20.0	က	ND(1)	ND(1)	ND(1)	ND(1)	QC-Duplicate
GW-21	PH-17	20.0	172	ND(1)	ND(1)	9	(1)QN	Groundwater
RI ANK-10	•	•	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	QC-System Blank
טרטוזוי יי								

4 GROUNDWATER SAMPLING AND ANALYSIS

Twenty one groundwater samples and three duplicate groundwater samples were collected from 17 locations using the RECONSM System equipment. Samples were collected from a depth of 16 to 24 feet. Analytical results for the groundwater samples are presented in Table 1.

A hydraulic probe unit was used to drive and withdraw the groundwater sampling probes. A hydraulic hammer was used where necessary to assist in driving probes through unusually hard soil. The probes consisted of three-foot lengths of 0.75-inch-diameter threaded steel pipes with detachable drive points.

After the probe was inserted into the groundwater, the probe was withdrawn approximately one foot to create an annular space from which to collect a representative sample. A check valve attached to a length of polyethylene tubing was inserted through the probe into the water table. The sample was collected in the tubing, the tubing was pulled up, and the water in the tubing drained into a 40-milliliter (mL) glass vial sealed with a Teflon-lined septum screw cap. The sample was given to the GC technician for on-site analysis.

A Hewlett-Packard Model 5890A Series II gas chromatograph (GC) was used for the analysis of groundwater samples. Compound separation and detection were performed using a 30-meter wide-bore DB-624 volatile organic column and a flame-ionization detector (FID). Appendix A contains the GC field work sheets.

The groundwater samples were analyzed by modified U.S. Environmental Protection Agency (USEPA) Method 601/602. Modifications include use of a FID, a static headspace analysis, single-point calibration, and limited quality control measures.

Each sample vial was shaken for two minutes and heated at 70° C for 10 minutes to equlibrate the volatile components between the liquid and the air in the vial. An aliquot of up to 400 microliters of the headspace was collected by inserting a syringe through the septum of the vial and pulling the headspace sample into the syringe. The sample was then injected directly into the GC.

Concentrations were measured based on an external standard calibration. Known concentrations of benzene, ethylbenzene, meta & para-xylene, ortho-xylene, toluene, and trichloroethylene were injected as a calibration gas mixture into the GC. Compound peak area versus standard concentration was used to calculate sample concentrations.

Compound identification was based on comparison of target compound retention times with sample unknowns.

Analytical results for the groundwater sample analyzed by this technique will not necessarily be the same as those obtained by submitting the same groundwater sample for laboratory analysis. Different extraction techniques are used in each case and, although method sensitivities and accuracies are comparable, different results are possible.

The detection limit is the lowest concentration of a compound that can be practicably measured relative to the calibration standard. Detection limits are a function of the injection volume, as well as detector sensitivity. The detection limit is calculated from the current response factor, the sample size, and the estimated peak area that would have been detected under the given conditions. For this survey, the detection limit for each of the target compounds, was 1 microgram per liter (ug/L).

5 QUALITY CONTROL

Quality control is an essential part of an analytical test methodology. Quality control procedures increase the confidence in the analytical results and are used to evaluate the reproducibility of the data.

The GC was calibrated using a known concentration of each of the target compounds of interest at the beginning of the day before analysis of any samples. The USEPA recommends instrument calibration be performed at least once every 12 hours. The calibration helps to evaluate the operating conditions of the GC.

A chromatographic system blank is analyzed every 10 samples as a means of indication that sample carryover has not occurred. If sample carryover has occurred, the concentration detected in the system blank can be subtracted from any of the subsequent samples containing that compound. A probe rod blank is analyzed prior to sample collection to ensure that rods are free of contamination.

A duplicate sample, which is a second volume of soil-gas, groundwater, or soil collected from the same sample location, is analyzed once every 20 samples, or at least once daily for each survey. Three duplicate groundwater samples were collected at Probe Holes PH-2, PH-14, and PH-20. Duplicates are used to evaluate the reproducibility of the analytical data. The analytical results for each of the respective duplicate samples collected at Probe Holes PH-2, PH-14, and PH-20 were within the specified limit of plus or minus 20 percent.

Appendix A

1

Gas Chromatograph Field Work Sheets

RECON"SAMPLE ANALYSIS MORK SHEET

7
Task
1003
Phase
533435.
Project Number
Project Name Ricker backer ANGB
16-7-01
)ate

Equipment: GC Hewlett-Packard 5890 A Pressure (kPa) 100 arrier Gas: H2 V He C'Operator

Tomp. 2
Timo 2
Final Temp.

10 ...

)ven Temp. Profile Temp. (C) Time

200

njector Temp. (C)

Detector FID Temp. (C) 300 Column DB-624 / 30 mater 0.53 ~ SE-54 / 15 meter 0.53

Sample I.D.	Probe Hole Number	Depth (ft)	Analysis Time	Inj, Vol., Multiplier VAC (ul) . In. Hg	Multiplier	vac in. Hg	Commence
\$ - A 1 - K - O 1		1	61:6	904	54.0	J	al-system BLANK
r 001 - 018	1	1	9:34	100	1.0	ı	CALIBRATION STO
BLANK-07		1	11:09	00 h	0.25	-	GC- ROD BLANK
10,7	PH-01	, 91	11:34	. 00 h	54.9	•	CROUND WATER
40.20	40- Hd	. اح	12:35	400	0.35	`	GROUNDWATER
0 40- >~ 9	40- Hd	7.74	84:41	700	34.0	·	al- Puplicate
.0.	PH-03	\$0,	۲۵:۳۱	. 004	St'0	1	GROWD VATER
ho-143	40-ftd	, 2)	15:35	20	٥/ح		C. Roundo wa Fe R
BLANK. 03		,	ht.31	00 h	St'0) 	ac-sistem blank
KT-01	3	,	16.36	100	1.0	١	ac. at check

-duplicate sample analysis Caquality control

A Partie

page 2 of 5

RECON"SAMPLE ANALYSIS WORK SHEET

Project Number 531935 Phase 1003 Task 77	Equipment: GC Rewlett-Packard 5890 A	Datector FID Temp. (C) 300	Column DB-624 / 30 mater 0.53 / SE-54 / 15 mater 0.53	
	Equipme		Temp. 2 Time 2	Final Temp.
Project Name Rickinbulker ANCB	Mick Crano	He Pressure (kPa) 100	ile Temp, 1 70° Time 1 10	(c) 200
te 10 - 8 - 91	Operator	rrier Gas: H2. He	en Temp, Profile Temp. (C)	jector Temp. (C) 200

inple I.D.	Probe Hole Number	Depth (ft)	Analysis Time	Inj. Vol. (ul)	Multipliar	VAC in, Hg	Comments
SLANK.04	j	J	\$١:ر	. 005	55.0	١	QC-SYSTEM BLANK
570-1008	,	١	١:٢٦)00	0.0	,	CALIBRATION STD.
CLANK-05	١	١	50.2	hco	C. 2-S	,	Qt-ROD BLANK
50-700	PH-05	٥٢,	LS:8	. 001-	٥, ٤٤٢	,	CROUND WATER
90·≥3	90-нJ	,04	b0:01	400	5.4.0	,	GROUND WATER
Lo-かう	10- Hg	, o ₂	10:33	aoh	0.75	١	GROUND WATER
\$0 - ^ ³	80- tld	,74	40;£1	. ooh	St.0)	GROUND WA FER
60-00	PH-09	.74	١٩: ٩٥	00 h	St.0	1	GROUND JATER
01->3	01- H J	34	んニ・エー	Q0H	0.75	١	GROUND WATER
1-~3	1H-11	、ケベ	lh:hi	, ooh	0.25	1	GROUND WATER
4-2	PH-12	, T4	15:13	400	0.25	1	GROUND WATER.
2 - 20	PH > 12	34.	ξ j-; SI	. 90 h	0.75)	CROUND WATER
			· · · · · · · · · · · · · · · · · · ·				

*duplicate ple analysis

RECON"SAMPLE ANALYSIS WORK SHEET

Start Column Co	1te 17 - 9-51	Project Name Rukishaker ANGB		Project Number 5'33935 Phase 1003 Task	5-33935	Phase	003	Task	77
ressure (kPa) 100 Temp. 2 Column DD-624 / 3 Tima 2 Final Temp.		Jick Cran	nbg	1pment: GC Hewle	tt-Packard 5	890 A			
Temp. 2 Time 2 Final Temp.	urrier Gas: H2 / 1	1		Detector		mp.(C)	300		
	<pre>/en Temp. Profile (C) ijector Temp. (C)</pre>	Temp. 1 70° Time 1 610 ii	Temp, 2 Time 2 Final Temp,	Column	35-54 / 30 m	eter 0	2 2		

	······································							,				
Comments	QCSYSTEM BLANK	CROUND WATER	al-puple case	QC-SYSTEM BLANK	QC-RT CHECK	•			•		•	
VAC in, Hg	1	,)	3	J							
Multipliar	٥,45	5.0	0.25	\$7'0	1.0		•				•	
Inj. Vol; Multiplier (ul) .	, 00h	400	400	, ooh	100					••		•
Analysis Time	16:00	16:29	16:41	H5:91	څه:در							
Depth (ft)	J	,81	,81	•	١							
Proba Hole Number		PH-14	h1-11∂	}	}							
ample I.D.	BLANK-06	H-~3	gh1-√9	רט אאארט.	\$1-01							

-duplicate sample analysis
>-quality control

page 4 of 5

recon^msample analysis work sheet

1

ressure (k	ے ان
ressure (kPa) 100 Temp. 2 Tima 2 Final Temp. 2 Final Temp. 2	ressure (kPa) 100 Temp. 2 Time 2 Time 2 Final Temp.
18ure (kPa) 100 70°	ressure (kPa) 100
ressure (kPa)	He Pressure (kPa) e Temp, 1 70° Time 1 10 sio
	He Pr Temp, 1 Time 1

ample I.D.	Probe Hole Number	Depth (ft)	Analysis Time	Inj. Vol; (ul) .	Multiplier	VAC in. Hg	Comments
ELANK . OF		1	נו:ל	, ooh	0.25	,	ac-system BLANK
5 TC- 1009.	\	1	ZH:L	100	1.0	3	CALIBKA TION STD
BLANK-09)	١	11:8	00 h	24.0	١	ac- Rop BLANK
57-15	9 H - O 6	7.5.	20:6	. 0017	24,0		CROUND WATER
91-19	90-HJ	,01	9:30	οθh	_>¢′0	J	GROUND WATER
(, V - 1)	90-Hd	18,	9:50	400	5۲.0	3	GROUND WATER
- 1k	Р.Н. об	, 91	11:01	. 00h	0.25	1	GROUND WATER
W- 13	PH-15	70%	hh:1,1	90h	54.0	3	CROUND WATER
04-70	91-Hd	705	19:14	400	0.75	١	CROUND WATER
0 08 3	91-Hd	70,	۲۴:۴۱	coh	ک۴۰۵	j	QC-PUPLICATÉ
 マー・ゲン	L1-f1 d	20	13:40	091	. St'0	J	CROUND WATER.
BLANK-10)	1	٦٠:۶٦	. ooh	0.25	\	ac-sistem BLANK

duplicate ple analysis

RECON^MSAMPLE ANALYSIS WORK SHEET

			٠.						•					
Phase 1003 Task	d 5890 A	Temp. (C) 300	30 matar 0.53 15 meter 0.53		Comments	ac-at check	•						•	
533935	-Packar	FID			VAC in, Hg	١								
1	Equipment: GC Hewlett-Packard 5890 A	Detector FID	Column DB-624 SE-54		Multipliar	.0.1				·			•	
Project Number	Equipment	•			Inj. Vol; (ul)	100								•
Rickonmiker ANGB	1		tmp, 2	J	Analysis Time	13:08				·				
1		(kPa) 100	c		Depth (ft)	١								
Project Name	Project Name	1 1	Temp, 1 Time 1		Proba Hole Number	j						-		
late 16-9-91	C Operator Nick	arrier Gas; H2 / He	ven Temp, Profile (C)	njector Temp. (C)	Sample I.D.	RT-03								

"duplicate sample analysis C"quality control Appendix B

Gas Chromatograph Plots

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N+]:
ISTD AMT [0.0000E+00 ]:
SAMPLE AMT [0.0000E+00 ]:
MUL FACTOR [2.5000E-01 ]:
RECALIBRATION CY/N*]:
NAME: BLANK-01
REPORT MEMO:
                OCT 7, 1991 09:19:48
            2
# RUN #
START
       0.781
0.945
```

BREAK

IIME

OP # 7

STOP

RUN# 2 OCT 7, 1991 09:19:48

SAMPLE NAME: BLANK-01

SIGNAL FILE: B:Q362ACB5.BHC

MATHES RECON MULTIMEDIA ANALYSIS

NO CALIB PEAKS FOUND

AREA%

.]

RT AREA TYPE WIDTH AREA% .781 8677 PU .079 6.07259 .945 27045 UU .215 18.92742

TOTAL AREA= 35722 MUL FACTOR=2.5000E-01 · DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/N*J:

ISTO AMT [0.0000E+00]:
SAMPLE AMT [0.0000E+00]:
MUL FACTOR [2.5000E-01]:
RECALIBRATION [Y/N*]:
NAME: BLANK-02
REPORT MEMO:

* RUN # 4 OCT 7, 1991 11:09:20 START IF 0.732 しょうしょ としゅいさん じょんし ア・ベンシンじゅんじゅんじ

RUN# 4 OCT 7, 1991 11:09:20

SAMPLE NAME: BLANK-02

SIGNAL FILE: 8:Q362C662.BHC

MATHES RECOM MULTIMEDIA ANALYSIS

NO CALIB PEAKS FOUND

AREA%

RT AREA TYPE WIDTH AREA% .732 9054 BU .144 25.00000

TOTAL AREA= 9054 MUL FACTOR=2.5000E-01

DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN [Y/N*]: ISTO AMT [0.0000E+00]: SAMPLE AMT [0.0000E+00]: MUL FACTOR [2.5000E-01]: RECALIBRATION EY/N*3: NAME: GW-02 REPORT MEMO: PH-02 * RUN # 6 OCT 7, 1991 12:35:37 START **>**IF <u>869.0</u> 2.826

* 'UC' # 7

Closing ...prel file B:03620A9A.BMC

RUH# 6 0CT 7, 1991 12:35:37

SAMPLE NAME: SU-02

PH-02

SIGNAL FILE: B:Q362DA9A.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

AREA WIDTH CAL# Ug/L NAME RT TYPE .000 .698 PB 70913 .061 2.826 PB 99953 .089 3R .000 INT. STD.

TOTAL AREA= 170866 MUL FACTOR=2.5000E-01

> ug∕L NAME 0.0000E+00 TOTAL XYLENES 1

```
DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN CYZH*J:
```

ISTO AMT [0.0000E+00]:
SAMPLE AMT [0.0000E+00]:
MUL FACTOR [2.5000E-01]:
RECALIBRATION [Y/N*]:
NAME: GU-02D
REPORT MEMO: PH-02

There is not a second to the first that the second

STOP

PUN# 7 0CT 7, 1991 12:48:59

SAMPLE NAME: GW-020

PH-02

SIGNAL FILE: B:Q3620DBC.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTD-AREA

D-AREA				COL #	ug/L	NAME	
RT T	YPE	AREA	WIDTH	CHLH	- .		
	PU	68409	.059		.000	_	
.100	. •	85853	.882	3R	.000	INT. S	TD.
2.826	PB		• • • -	•	000		
4 207	UP	5293	.155		.000		

TOTAL AREA= 159555 MUL FACTOR=2.5000E-01

> GRF# Ug/L NAME 1 0.0000E+00 TOTAL XYLENES

```
+ OP # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N+J:
ISTO AMT [0.0000E+60 ]:
SAMPLE AMT C0.0000E+00 ]:
MUL FACTOR [2.5000E-01 ]:
RECALIBRATION EY/N*J:
NAME: GW-03
REPORT MEMO: PH-03
          8 007 7, 1991 14:07:03
# RUN #
START
                                                 0.705
          0.838
                                     2.855
```

STOP

RUN# 8 OCT 7, 1991 14:07:03

SAMPLE NAME: GW-03

PH-03

SIGNAL FILE: B:Q362F008.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTD-AREA AREA WIDTH CAL#

-RREH RT TYPE AREA WIDIN --205 PU 183711 .062 .705 PU .000 6755 .062 .838 00

.000 INT. STD. 87170 .090 3R 2.855 PB

ug/L MAME

.000

TOTAL AREA= 177636 MUL FACTOR=2.5000E-01

> ug/L NAME GRP# 0.0000E+00 TOTAL XYLENES 1

DEFRULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN EY/N*]: ISTD AMT [0.0000E+00]: SAMPLE AMT [0.0000E+00]: MUL FACTOR C2.5000E-01 3: 2 RECALIBRATION CY/N*J: NAME: GW-04 REPORT MEMO: PH-04 10 OCT 7, 1991 15:35:13 * RUN # START IF 0.723 0.865 0.993 1.055 1:629 2.060 2.263 2.843 3.645 3.885 4.292 4.476 4.820 5.201 5.490 5.628 5.760 6.130 6.330 6.610 6.963 7.268 7.670

8.430

Closing signal :: 2 8:03830482.880

7.834

SAMPLE NAME: GW-04

PH-04

SIGNAL FILE: B:Q3630482.BNC

MATHES RECON MULTIMEDIA ANALYSIS

RT TYPE .723	9018 6165 196771 50451 16644 196771 166442 112840 97149 165499 165499 165499 176199 817443 745023 1091792 116104 449245 62069 1962069	WIDTH CR .021 .025 .029 .029 .041 .029 .041 .053 .050 .105 .085 .085 .085 .085 .085 .085 .114 .128 .128 .128 .128 .128 .128 .128 .128	2.5R		TOLLENE ETHYLBENZENE MAP- Xy/e~e
7.670 UU 7.894 UU 8.430 UP 9.204 PU	92864 88864 169007 38319	.333 .190 .237	-5 ?	- 205 .381 .000 123.556	
9.544 I UH	35276	.255		.000	

TOTAL AREA=7944448 MUL FACTOR=2.0000E+00

> GRP# Ug/L HAME 1 4.0956E+02 TOTAL XVLENES

```
* OP # 7
```

DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/N+3:

ISTO AMT C0.0000E+00]:
SAMPLE AMT C0.0000E+00]:
MUL FACTOR C1.0000E+01]: .25
RECALIBRATION CY/N*J:
NAME: BLANK-03
REPORT MEMO: PH-MEM

* RUN # 12 OCT 7, 1991 16:24:48
START

1 11111

PUN# 12 OCT 7, 1991 16:24:48

SAMPLE NAME: BLANK-03

SIGNAL FILE: 8:Q3631051.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO RUN PERKS STORED

```
+ OP # 7
```

DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN CYZN+J: ISTD AMT [0.0000E+00]: SAMPLE AMT E0.0000E+00 J: MUL FACTOR [1.0000E+00]: RECALIBRATION CY/N*J: HAME: RT-01 REPORT MEMO: * RUN # 14 OCT 7, 1991 16:49:03 START ΙF 0.873 1.965 2.169 2.595 2.805 3.948 4.857 7.274 7.684 9.173 STOP

(losing signa: -::e 8:03631600.8HC

SAMPLE NAME: RT-01

SIGNAL FILE: B:Q3631600.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTD-AREA						NAME
	TYPE	AREA	WIDTH	CHLH	ug/L	11.11.2
.873	SHB	27081440	.031		.000	
	PB	71068	.056		.000	
1.965	•	330730	.052	1	466.685	BENZENE
2.169	88	=	•	2	458.019	TCE
2.595	PB	66477	.058	_	.000	INT. STD.
2.805	PΒ	39011	.072	ER	= :	TOLUENE
3.948	PB	298462	.082	4	459.967	IOLOCIIC
4.857	FB	57835	.101		.000	
• •	PU	313070	.137	5	508.130	ETHYLBENZENE
7.274		=	143	6	529.990	M&P-XYLENE
7.684	UB	329346			540.284	O-XYLENE
9.173	PB	335121	.167	7	510.201	• ==

TOTAL AREA=2.8923E+07 MUL FACTOR=1.0000E+00

> GRP# Ug/L NAME 1 1.0703E+03 TOTAL XYLENES

PQR # 14-1-1

DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN EY/N+3:

ISTO AMT [0.0000E+00]: SAMPLE AMT E0.0000E+00]: MUL FACTOR [1.0000E+00]: .25 RECALIBRATION EY/N*]: NAME: BLANK-04 REPORT MEMO:

OCT 8, 1991 07:16:06 * RUN # 15

Closing signal file B:Q363E137.580

PUH# 15 OCT 8, 1991 07:16:06

SAMPLE NAME: BLANK-84

SIGNAL FILE: 8:0363E137.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO CALIB PEAKS FOUND

AREA%

X RT AREA TYPE WIDTH AREA% .847 10106 BU .141 25.00000

TOTAL AREA: 10106 MUL FACTOR:2.5000E-01

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/H+J:

ISTO AMT C0.0000E+00 J:
SAMPLE AMT C0.0000E+00 J:
MUL FACTOR C2.5000E-01 J:
RECALIBRATION CY/N*J:
NAME: BLANK-05
REPORT MEMO:

# RUN # 18 OCT 8, 1991 08:05:03
START

O.733
0.895
```

Closing signal file B:Q363ECB0.BNC

CS :

STOP

SAMPLE HAME: BLAHK-05

SIGNAL FILE: B:Q363ECB0.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO CALIB PERKS FOUND

AREA%

RT AREA TYPE WIDTH AREA% .733 2919 BU .065 5.36169 .895 8552 VU .098 18.63830

TOTAL AREA= 11471 MUL FACTOR=2.5000E-01

```
+ CP # 7

DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N+J:

ISTO AMT C0.0000E+00 J:
SAMPLE AMT C3.0000E+00 J:
MUL FACTOR C2.5000E-01 J:
RECALIBRATION CY/N+J:
NAME: GW-05
REPORT MEMO: PH-05

# RUN # 19 OCT 8, 1991 08:57:47

START

IF

0.6
```

CS

Closing signal file B:Q363F90C.EBC

ruha is ud. e, ist ostorar

SAMPLE MAME: GW-05

PH-05

SIGNAL FILE: B:Q363F90C.BNC

MATHES RECOM MULTIMEDIA RHALYSIS

ESTO-AREA

RT TYPE - AREA WIDTH CAL# Ug/L NAME

.681 PB 467700 .050 .000 2.750 PB 193914 .086 3R .000 INT.STD.

TOTAL AREA= 661614 MUL FACTOR=2.5000E-01

> GRP# Ug/L NAME . 1 0.0000E+00 TOTAL XYLENES

e de la composition della comp

```
+ GP # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N*J:
:C 80+30000.03 TMA 01ST
SAMPLE AMT [0.0000E+00 ]:
MUL FACTOR [2.5000E-01 ]:
RECALIBRATION CY/N*J:
NAME: GW-05
REPORT MEMO: PH-06
* RUN # 20 OCT 8, 1991 10:09:39
START
     >₹F
                        0.689
         0.831
                                                             2.773
```

Closing signal file B:036409E4.BNC

-cs

RUN# 27 OCT 8, 1991 15:43:63

SAMPLE NAME: 6W-13

PH-13

SIGNAL FILE: B:Q3645808.BNC

MATHES RECOM MULTIMEDIA AMALYSIS

.815 \ .944 \ 1.117 \ 1.247 \ 1.403 \ 1.605 \ 1.980 \ 2.179 \ 2.765 \ 3.131	REA 166080 166080 26657 160558 9268 174431 174431 174550 174431 174550 174550 174550 174550 1755	WIDTH .062 .064 .072 .069 .084 .105 .106 .109 .109	CAL# 1 3R	ug/L .000 .000 .000 .000 .000 .000 .000 .0	HAME BENZENE INT.STD.
	JU 22550				
	ງເງ 87859	.105			
		.106			
		.095	1		
		.109	3R	.000	INT.STD.
				.000	
				.000	
	~ ~ ~ ~	.097		.000	
· · · · · ·	~	.131		.000	
		.169		.000	
	py 9306	.119		.000	
	VV 7593	.363		.000	
	py 17465			-:1.355	-MAR-WILEHE
1	PB 41234	.205		.000	
8.022	89 1329	.049		.000	

TOTAL AREA=1842503 MUL FACTOR=2.5000E-01

> GRP# Ug/L NAME i 1.4368E+01 TOTAL XYLENES

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/H+J:
```

```
ISTO AMT [0.0000E+00]:
SAMPLE AMT [0.0000E+00]:
MUL FACTOR [2.5000E-01]:
RECALIBRATION [Y/N*]:
NAME: BLANK-06
REPORT MEMO:
```

```
REPORT MEMO:
* RUN # 28 OCT 8, 1991 16:00:04
START
      <u>_0.749</u>
      CS
```

Closing signal file 8:Q3645C05.BNC

STOP

SAMPLE NAME: BLANK-06

SIGNAL FILE: B:Q3645C05.BHC

MATHES RECOM MULTIMEDIA AMALYSIS

NO CALIB PEAKS FOUND

AREA%

X RT AREA TYPE WIDTH AREAX .749 5347 BB .096 25.00000

TOTAL AREA: 5347 MUL FACTOR:2.5000E-01

enne E

```
+ 02 # 7
DEFRULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/N*]:
ISTD AMT [0.0000E+00 ]:
SAMPLE AMT [0.0000E+00 ]:
MUL FACTOR [2.5000E-01]:
RECALIBRATION CY/N*]:
NAME: GW-14
REPORT MEMO: PH-14
          29 OCT 8, 1991 16:29:02
* RUN #
START
                                                                    0.690
                                       2.786
       4.145
      CS
```

Closing signal file B:Q3648107 BNC

ভাতে

SAMPLE NAME: GW-14

PH-14

SIGNAL FILE: B:Q36462CF.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

		9390	HIOIH	CALH	ug/L	NAME
RT	TYPE	HKLD	WIGHT	CHER		*****
600	PB	118099	.045		.000	
					999	INT.STD.
2.785	PB	87224	.002	210		4111.5.5.5
4 145		5427	.143		.000	

TOTAL AREA= 210750 MUL FACTOR=2.5000E-01

> GRP# Ug/L NAME 1 0.0000E+00 TOTAL MYLENES

Fig. = 19-005

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CYZN*J:
```

```
ISTO ANT C0.0000E+00 ]:
SAMPLE ANT C0.0000E+00 ]:
MUL FACTOR C2.5000E-01 ]:
RECALIBRATION CY/N*]:
NAME: GU-140
REPORT MEMO: PH-14
```


Closing signal file B:Q36465BC.BNC

STOP

661 8, 1991 15:31:56 ស្តមាន និម

SAMPLE MAME: GW-140

PH-14

SIGNAL FILE: B:Q36465BC.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

STO-AREA			COL #	ug/L	NAME
RT TYPE	AREH	HIDIH	UNL#	_	
689 FV	45786	810.		.000	
.00.	8905	057		.000	
.820 VV		107		.ଉଡେ	
.945 UV	9866		25	•	INT STO.
2.781 FB	98259	.085	3R	.000	1111.010.

TOTAL AREA= 162816 MUL FACTOR=2.5000E-01

> ug/L NAME GRP# 0.0000E+00 TOTAL XYLENES

DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN EY/N+3:

ISTO AMT C0.0000E+00 J:
SAMPLE AMT C0.0000E+00 J:
MUL FACTOR C2.5000E-01 J:
RECALIBRATION CY/N+J:
HAME: BLANK-07
REPORT MEMO:

REPORT MEMO: 31 OCT 8, 1991 16:54:08 # RUN # START 0.740 CS STOP.

Closing signal file B:Q36468B1.BRC

SAMPLE HAME: BLANK-07

SIGNAL FILE: 8:Q3646881.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO CALIB PEAKS FOUND

AREA%

X RT AREA TYPE WIOTH AREAX .740 1951 PV .861 25.00000

TOTAL AREA: 1951 MUL FACTOR:2.5000E-01

Region # 1719 11

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N*]:
```

```
ISTO AMT [8.0000E+00]:
SAMPLE AMT [8.0000E+00]:
MUL FACTOR [2.5000E-01]: 1
RECALIBRATION [Y/N*]:
NAME: RT-02
REPORT MEMO:
```


Closing signal file 8:03846B55.BNC

SAMPLE MAME: RT-02

j

SIGNAL FILE: B:Q3646B55.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA	}				- 41	HAME
RT	TYPE	AREA	WIDTH	CHLA	ug/L	RBIC
.870	SBB	32647792	.031		.000	
-	FP	74315	.057		.000	
1.968	PB	316195	.052	1	500.775	BENZENE
2.164			.059	2	506.960	TCE
2.594	۴V	74970	-	_	.000	INT.STD.
2.805	ŲΒ	35025	.075	3R	•	
3.956	PB	325717	.082	4	504.934	TOLUENE
4.871	. 6 65	78946	.100		.000	
	_	375398	.137	5	540.314	ETHYLBENZENE
7.303	PV		•	6	. 553.761	M&P-XYLENE
7.715	ŲВ	397295	.143	_		O-XYLENE
9.215	PB	411078	.168	7	554.828	D-VIEFUE

TOTAL AREA=3.4729E+07 MUL FACTOR=1.0000E+00

> GRP# UG/L NAME 1 1.1086E+03 TOTAL XYLENES

DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN CY/H+J:

ISTO AMT C0.0000E+00]:
SAMPLE AMT C0.0000E+00]:
MUL FACTOR C1.0000E+00]: .25
PECALIBRATION CY/N*]:
NAME: BLANK-08
REPORT MEMO: '

+ RUN # 33 OCT 9, 1991 07:13:21 START >IF CS STOP

Closing signal file B:Q3653212.BNC

RUN# 33 OCT 9, 1991 07:13:21

SAMPLE HAME: BLANK-08

SIGNAL FILE: B:Q3653212.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO RUN PEAKS STORED

;;i

DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN CYZH+J:

ISTO AMT C0.0000E+00]:
SAMPLE AMT C0.0000E+00]:
MUL FACTOR C2.5000E-01]:
RECALIBRATION CY/N*]:
NAME: BLANK-009
REPORT MEMO:

* RUN # 35 OCT 9, 1991 08:11:40 START 0.820 CS

Closing signal file B:Q3653FBD.BNC

STOP

RUN# 35 OCT 9, 1991 08:11:40

SAMPLE NAME: BLANK-009

SIGNAL FILE: B:Q3653FBQ.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO CALIB PEAKS FOUND

AREA%

* RT AREA TYPE WIDTH AREA% .820 10480 88 .257 25.00000

- TOTAL AREA= 10480 MUL FACTOR=2.5000E-01

Ex 41 = - 797

RUN# 20 OCT 8, 1991 10:09:39

SAMPLE NAME: GU-06

FH-06

SIGNAL FILE: B:Q36409E4.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

10 1111		0050	WIDTH	CALE	ug/L	MAITE
RT T	TYPE				.000	
.689	911	36673	.052		.000	
•	_	<u>-</u> ·	.136		.000	
.831	UB	12709	•		000	INT.STO.
2 273	PP	149907	.083	3R	.000	1111.515.

TOTAL AREA= 199289 MUL FACTOR=2.5000E-01

> GRP# Ug/L NAME 1 0.0000E+00 TOTAL XYLENES

```
+ 0P # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN [Y/N+]:
ISTO AMT [0.0000E+00 ]:
SAMPLE AMT [0.0000E+00 ]:
MUL FACTOR [2.5000E-01 ]:
RECALIBRATION [Y/N*]:
HAME: 'GU-07
REPORT MEMO: PH-07
                  OCT 8, 1991 10:33:26
           21
# RUN #
START
      >IF
                                                                      2.774
       CS
     STOP
```

Closing signal file B:Q3640F77 SHC

RUN# 21 OCT 8, 1991 10:33:26

SAMPLE NAME: 64-07

PH-07

SIGNAL FILE: 8:Q3640F77.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

RT TYPE AREA WIDTH CAL# UG/L NAME
.689 PB 43620 .063 .000
2.774 PB 189196 .085 3R .000 INT.STD.

TOTAL AREA= 232816 MUL FACTOR=2.5000E-01

> GRP# ug/L NAME . 1 0.000GE+00 TOTAL XYLENES

```
· DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/N*]:
```

```
ISTO AMT C0.0000E+00 ]:
SAMPLE AMT C0.0000E+00 ]:
MUL FACTOR C2.5000E-01 ]:
RECALIBRATION CY/N*]:
NAME: GW-08
REPORT MEMO: PH-08
```

RUN # 22 OCT 8, 1991 12:04:02

Closing signal tile B:03642483.BNC

Rank # 12 v...

RAME: GU-08

22

L FILE: B:Q3642483.BHC

HES RECON MULTIMEDIA ANALYSIS

,TO-AREA RT TYPE	AREA 99359	WIDTH .072		ug∕L .000	
.717 BV 2.807 PB 4.172 PB	114725 6823	.087	3R	.000 .000	INT.STD.

TOTAL AREA= 220908 MUL FACTOR=2.5000E-01

> GRP# Ug/L NAME 1 0.0000E+00 TOTAL XYLENES

```
* OP # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N+J:
ISTO AMT [0.0000E+00]:
SAMPLE AMT [0.0000E+00]:
MUL FACTOR C2.5000E-01 3:
RECALIBRATION [Y/N*]:
NAME: GW-09
REPORT MEMO: PH-09
                  OCT 8, 1991 13:40:10
           23
# RUN #
START
      >IF
                                                                      0.700
                                                                  2.842
       CS
     STOP
 Closing signal file 8:03643830 800
```

ogs 23 OCT 8, 1991 13:40:10

.AMPLE HAME: GU-09

PH-09

SIGNAL FILE: B:Q3643B3C.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

RT TYPE AREA WIDTH CAL# UQ/L NAME 700 PU 175726 .063 .000

.700 PV 175726 .063 .000 2.842 PB .164258 .090 3R .000 INT.STD.

TOTAL AREA= 339984 MUL FACTOR=2.5000E-01

GRP# UQYL NAME .
1 0.0000E+00 TOTAL XYLENES

```
+ OP # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/N+]:
ISTO AMT [0.0000E+00 ]:
SAMPLE AMT [0.0000E+00 ]:
MUL FACTOR [2.5000E-01 ]:
RECALIBRATION CY/N*]:
MAME: GW-18
REPORT MEMO: PH-18
                  OCT 8, 1991 14:12:57
           24
* RUN #
START
                                                                      0.789
         0.969
         1.280
        2.308
                                                            2.845
       CS
     STOP
 Closing signal (ile B:Q36442EA.BNC
```

and a large

RUN# 24 OCT 8, 1991 14:12:57

SAMPLE NAME: 6U-10

PH-10

SIGNAL FILE: 8:036442EA.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTD-AREA

RT	TYPE	AREA	WIDTH	CAL#	ug/L	NAME
.700	PB	489862	.063		.000	
.969	PP	4949	.108		.000	•
1.280	ΡV	4523	.104		.000	
2.308	V8	7467	.161		.000	
2.845	PB	148413	.092	3R	.000	INT.STD.

TOTAL AREA= 655214 MUL FACTOR=2.5000E-01

> GRP# Ug/L NAME 1 0.0000E+00 TOTAL XYLENES

Closing signal file B:Q3644990 800

'4 25 OCT 8, 1991 14:41:32

_E HAME: GW-11

1

SHAL FILE: B:Q364499D.BNC

ATHES RECON MULTIMEDIA AKALYSIS

ESTO-AREA

RT TYPE AREA WIOTH CAL# Ug/L NAME
.698 PB 321323 .058 .000
2.815 PB 139508 .089. 3R .000 INT.STD.

TOTAL AREA= 460831 MUL FACTOR=2.5000E-01

> GRP# UQ/L NAME . 1 0.0000E+00 TOTAL XYLENES

```
* OP # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/H+]:
ISTO AMT [0.0000E+00 ]:
SAMPLE AMT [0.0000E+00]:
MUL FACTOR C2.5000E-01 J:
RECALIBRATION [Y/N*]:
NAME: GW-12
REPORT MEMO: PH-12
                  OCT 8, 1991 15:12:02
# RUN #
           26
START
                                                                      0.682
        0.948
                                                 2.773
       -OS
```

Closing signal file 8:036450C3.BHC

Fried 🖆

STOP

RUN# 26 OCT 8, 1991 15:12:02

SAMPLE NAME: 6W-12

FH-12

SIGNAL FILE: 8:Q36450C3.BNC

MATHES RECOM MULTIMEDIA ANALYSIS

ESTO-AREA

RT	TYPE	AREA	WIDTH	CAL#	ug/L	NAME
.682	BU	303820	.861		.000	
.948	ŲŲ	7469	.132	•	.ଉଉଉ	
2.773	PB	113302	.088	3R	.000	INT.STD.

TOTAL AREA = 424591 MUL FACTOR = 2.5000E - 01

> GRP# Ug/L NAME 1 0.0000E+00 TOTAL XYLENES

Closing signal file B:Q3645898.800

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N+3:
ISTO AMT C0.0000E+00 ]:
SAMPLE AMT E0.0000E+00 J:
MUL FACTOR C2.5000E-01 J:
RECALIBRATION CY/N*J:
HAME: GGU-15
REPORT MEMO: PH-06
                 OCT 9, 1991 09:05:26
           36
# RUN #
START
     \simIF
                                                   0.822
        1.939
                                                           2.712
        3.725
        4.235
        5.446
       CS
```

Closing signal file B:03654058.8KC

PUN# 36 OCT 9, 1991 09:05:26

SAMPLE NAME: GGW-15

FH-06

SIGNAL FILE: B:Q3654C58.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO CALIB PEAKS FOUND AREA%

(EHX		TUDE	WIDTH	AREA%
RT	AREA		• • • • • • • • • • • • • • • • • • • •	9.73272
.686	172472	۴V	.075	
-	36464	UB	.071	5.44354
.822	-	PU	.118	.24333
1.939	4312			8.00836
2.712	141915	PB	.090	
	7100	PU	.129	.40065
3.725		บบ	.127	.37803
4.235	6699	• •		.79336
E 446	114059	68	.338	. 1 20-24

TOTAL AREA= 443021 MUL FACTOR=2.5000E-01

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/H+J:
```

```
ISTO AMT C0.0000E+00 ):
SAMPLE AMT C0.0000E+00 ):
MUL FACTOR C2.5000E-01 ):
RECALIBRATION CY/N*):
NAME: GU-16
REPORT MEMO: PH-06
```


Closing signal file 5:03655246.BMC

៩០០ខ

OCT 9, 1991 09:30:44 RUH# 37

SAMPLE HAME: GW-15

PH-06

SIGNAL FILE: B:Q3655246.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

ug/L HAME AREA WIDTH CAL# RT TYPE .000 .059 78113 .685 PB INT. STD. .000 104623 .087 3R P8 2.770

TOTAL AREA= 182736 MUL FACTOR=2.5000E-01

> ug/L NAME GRP# 0.0000E+00 TOTAL XYLENES 1

```
* OF # 7
```

```
DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN CY/N+J:
```

```
ISTO AMT C0.0000E+00 ]:
SAMPLE AMT C0.0000E+00 ]:
MUL FACTOR C2.5000E-01 ]:
RECALIBRATION CY/N*]:
NAME: GW-17
REPORT MEMO: PH-06
```


(losing signal file B:Q36556F6.880

RUH# 38 OCT 9, 1991 09:50:45

SAMPLE NAME: GW-17

PH-05

SIGNAL FILE: B:Q36556F6.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

AREH
RT TYPE AREA WIDTH CAL# Ug/L NAME
202 PB 106548 .075 .000

.702 PB 106548 .075 .000 INT. STD. 2.772 PB 101910 .089 3R .000 INT. STD.

TOTAL AREA= 208458 MUL FACTOR=2.5000E-91

> GRP# Ug/L NAME . 1 0.0000E+00 TOTAL XYLENES

ନାର୍ବ ଅଟେ ଅଟେ ପ୍ରତି

```
+ OP # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN CY/N+3:
ISTO AMT C0.0000E+00 ):
SAMPLE AMT 00.0000E+00 J:
MUL FACTOR [2.5000E-01 ]:
RECALIBRATION CY/N*J:
NAME: GU-18
REPORT MEMO: PH-06
* RUN # 39 . OCT 9, 1991 10:11:29
START
      ≻I F
                                                      0.705
       0.950
                                                2.780
```

Closing signal file 8:03655803.880

CS

STOP

SAMPLE MAME: GW-18

PH-06

SIGNAL FILE: B:03655803.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

ug/L NAME AREA WIDTH CAL# RI IYPE .000 .079 .705 118826 PV .000 .145 9454 UU .950 INT. STD. .000 .088 3R PB 115672 2.780

TOTAL AREA= 243952 MUL FACTOR=2.5000E-01

GRP# ug/L NAME
1 0.0000E+00 TOTAL XYLENES

≟ HAME: GU-19

AL FILE: 8:03657188.BNC

.HES RECON MULTIMEDIA ANALYSIS

\$TO-AREA
RT TYPE AREA WIDTH CAL# ug/L NAME
.721 PV 187355 .071 .000
2.812 PB 97062 .093 3R .000 INT. STD.

TOTAL AREA = 284417 MUL FACTOR = 2.5000E - 01

> GRP# Ug/L NAME . 1 0.0000E+00 TOTAL XYLENES

```
* OP # 7
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/N*):
ISTO AMT [0.0000E+00 ]:
SAMPLE AMT [0.0000E+80 ]:
MUL FACTOR [2.0000E+00]: .25
RECALIBRATION [Y/N*]:
NAME: GW-20
REPORT MEMO: PH-16
                  OCT 9, 1991 12:14:56
           43
* RUN #
START
          0.950
         1.262
          2.194
                                              2.796
       CS
      STOP
 (losing signal file 8:03657801.890
```

H# 43 00T 9, 1991 12:14:56

AMPLE NAME: 6U-20

H-16

SIGNAL FILE: B:Q36578C1.BNC

THATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA

RT	TYPE	AREA	HTGIW	CAL#	ug/L	NAME
	PB	136165	.851		.000	
	88	7752	.074		.000	
1.262		6856	.990		.000	
2.194	UB	12185	.110	1	4.373	BENZENE
	PB	106721	.089	. 3R	.000	INT. STD.

TOTAL AREA= 269679 MUL FACTOR=2.5000E-01

> GRP# UQ/L NAME 1 0.0000E+00 TOTAL XYLENES

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MARUAL RUN CYZR*J:
ISTO AMT [0.0000E+00 ]:
SAMPLE AMT CO.0000E+00 J:
MUL FACTOR C2.5000E-01 3:
RECALIBRATION CY/N*]:
HAME: GW-20D
REPORT MEMO: PH-16
          44 OCT :9, 1991 12:27:41
# RUN #
START
     >IF
                                                       0.712
        0.962
        1.272
        2.200
                                    2.801
       4.152
      -cs
```

Closing signal file B:Q365788E.BNC

contact assets

STOP

RUH# 44 OCT 9, 1991 12:27:41

SAMPLE HAME: GW-200

PH-16

SIGHAL FILE: B:Q36578BE.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTD-AREA

RT	TYPE	AREA	WIDTH	CAL#	ug/L	NAME
.712	28	100928	.068		.000	
.962	BP	3998	.077		.000	
1.272	PB	4420	.105		.099	
2.200	VΒ	8848	.115	1	3.176	BENZENE
2.801	PB	87658	.095	3R	.000	INT. STD.
4 152	UB	5715	.169		.000	

TOTAL AREA = 211567 MUL FACTOR = 2.5000E - 01

> GRP# ug/L NAME 1 0.000GE+00 TOTAL XYLENES

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN [Y/N+]:
ISTO ANT C0.0000E+00 ):
SAMPLE AMT C0.0000E+00 ]:
MUL FACTOR C2.5000E-01 ):
RECALIBRATION EY/N*]:
HAME: GW-21
PEPORT MEMO: PH-17
                OCT 9, 1991 12:40:11
           45
* RUH #
START
      -IF
                                                                        0.688
                B 815
                                          - 0.945
                                  1.251
            1.410
                        1.610
                            1.987
                                                                     □ 2.186
                                                                        2.775
          > 3.526
                                        3.765
         4.131
         4.346.
           4.679
         5.331
        CS.
          7.068
        STOP
```

Closing signal tile B:Q3657EAC.BNC

+ 08 # 7

N# 45 OCT 9, 1991 12:70:11

AMPLE MAME: GU-21

4H-17

SIGNAL FILE: 8:03657EAC BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA	1			001.4	ug/L	NAME
RT	TYPE	AREA	WIOTH	CHL#	.000	
.688	ΡU	528259	.047			
	νů	21105	.068		.000	
.815	υŬ	88922	.077		.000	
.945		71005	.082		.000	
1.251	UU	11038	.063		.000	
1.410	VV		.112		<u>.909</u>	
1.518	VV	58796	.100		.000	
1.987	UU	68374		1	172.029	BENZENE
2.186	VB	479313	.092	מכ		INT. STD.
2.775	PU	275309	.119	3R	.000	
3.144	. VV	235747	.103		.000	
3.278	ŲŲ	322150	.118			
3.526	ŲΫ	16869	.118		.000	
	ŬŬ	127435	.128		.000	
3.765		13022	.181		.000	
4.131	UU		.132		.000	•
4.346	VV	8604	.175		.000	
4.679		21776			.000	
5.331	PB	3104	.118		6.299	ETHYLBENZENE
7.068	VV	22007	.269	5	0.233	_

TOTAL AREA=2371934 MUL FACTOR=2.5000E-01

> GRP# ug/L NAME 1 0.0000E+00 TOTAL XYLENES

DEFAULT SAMPLE INFORMATION USE SAMPLE TABLE IN MANUAL RUN CYZH*J:

ISTO AMT [8.0000E+00]: SAMPLE AMT [0.0000E+00]: MUL FACTOR E2.5000E-01 3: RECALISRATION [Y/N*]: NAME: BLANK-10 REPORT MEMO:

OCT 9, 1991 12:57:13 46 * · RUN #

Closing signal file 8:03658288.880

RUN# 46 0CT 9, 1991 12:57:13

SAMPLE NAME: BLANK-10

SIGNAL FILE: B:Q36582AA.BNC

MATHES RECON MULTIMEDIA ANALYSIS

NO CALIB PEAKS FOUND

AREA%

RT AREA TYPE WIDTH AREA% .773 7486 PB .112 25.00000

TOTAL AREA= 7486 MUL FACTOR=2.5000E-01

```
DEFAULT SAMPLE INFORMATION
USE SAMPLE TABLE IN MANUAL RUN EY/H+J:
ISTO AMT C0.0000E+00 ):
SAMPLE AMT [0.0000E+00 ]:
MUL FACTOR [2.5000E-01 ]: 1
RECALIBRATION EY/N*J:
HAME: RT-03
REPORT MEMO:
              OCT 9, 1991 13:08:19
         47
# RUN #
START
      IF .
                                                                      0.87^{\circ}
                                                     1.974
                                                                    = 2.18
                                                  2.613
                    2.825
                                4.986
      CS
```

Closing signal file 8:03658544.800

STOP

RUN# 47 OCT 9, 1991 13:88:19

SAMPLE HAME: RT-03

SIGNAL FILE: B:Q3656544.BNC

MATHES RECON MULTIMEDIA ANALYSIS

ESTO-AREA	3					
RT	TYPE	AREA	WIOTH	CAL#	ug/L	NAME
.875	888	30938704	.032		.000	
1.974	PB	81848	.059		.000	
2.180	88	335924	.054	1	482.262	BENZENE
2.613	ខប	81725	.061	2	474.573	TCE
2.825	VB	32022	.076	3R	.000	INT. STD.
3.985	P8	334276	.085	4	453.932	TOLUEHE
4.906	PB	78471	.103		.000	
7.352	PU	386095	.141	5	442.059	ETHYLBENZENE
7.767	VВ	415050	.147	6	440.594	M&P-XYLENE
9.276	PB	430869	.171	7	427.554	O-XYLENE

TOTAL AREA=3.3115E+07 MUL FACTOR=1.0000E+00

> GRP# ug/L NAME 1 8.6815E+02 TOTAL XYLENES

APPENDIX C

SOIL BORING LOGS, WELL INSTALLATION DIAGRAMS, AND CPT/LIF DATA SHEETS

DRILLER	ROWS	ER KORXER		<u> </u>	ENGINEERING SCIENCE	BORING XI	RB	-01-KW1 (
INSPECTOR CHRIS YIRMI METHOD HOLLOW STEM RUGERING				DRILLING RECORD			SHEET 1 OF 2 LOCATION 75FT E OF BLOG 560		
LE LASE				PROJECT RICKENBACKER ANGB			INSIDE FENCED RREA		
T.	10,40	10 70'	TOC	PROJECT		PLOT PLAX	(
TTRO	9/16/88 1205	9/19/88		BEATHER STRRT	7/19/88 1400				
TIME	1	1 4		FIXISH .	7/20/88 1130				
PROTOVAC	DEPTH	RECOVERY		USCS	SOIL DESCRIPTION	WELL DE	SIGN	COMMENTS	
			\$\$				7 1	+ PROTECTIVE CASING AND	
								LOCK	
27	0	65	12	CL	BRN, SILTY CLAY W/TRACE OF GRAYEL, SAMP. DRY	kiiki.	////	2FT STICK-UP	
			48	OL.	DIA, OTEH DERI W IMIDE OF BRITTER, OHIII. BRE			2IX. DIA PYC RISER	
58	2	65	52 12		DRMP			CEHENT/	
			12					BENTONITE	
53		35	<u> </u>		•			GROUT	
	L		5						
16		100	7		MOIST				
<u> </u>	6	.	12 12					2FT BENTONI TE PELLET SEAL	
300		100	6		MOTTLED, (BRN-RED BRN-GRY) W/SOME GRAVEL,			PELLET SEHL	
			8 12		SAMP. HAS SLIGHT HYDROCARBON ODOR	****			
1100	8	100	5	İ	BRN, NO HOTTLING, VY HOIST			SAND PRCK	
		-	9						
800		100	10					10FT WELL	
	10		10		PAN AND ANDUATI TO A SUR COMP. CONT.	-		SCREEN	
560		100	13 5	CH	BRN-GRY, SANDY SILTY CLAY W/SOHE GRAYEL, SAHP. YY HOIST				
	12		9	ł					
1130	16	100	6	CL	BRN, SILTY CLRY W/SOME SAND AND GRAYEL, SAMP.				
SS1			9		YY HOIST			1	
1200	14	80	6		·]	
SS2			17	SW	GRY-WHT, F-HED SRKD, SRMP. WET AND HAS SHEEN OX			}	
400		100	19		WATER				
	16		18 27	SW	RED BRN, GRRYELLY CO. SAND, SAMP. WET	 		; !	
340		100	14					i	
	18		26 30	SW	GRY-WHT, HED. SAND, SAMP. WET			į 1	
STRXDARD		TEST KOLT			SUMMARY 0-10 SILTY CLRY SOME GRRYEL 10-1	2 SANDY SIL	TYCLAY	SOME GRAVEL	

SS = SPLIT SPOON A = RUGER CUTTINGS C = CORED

1

17-14-3 SILTY CLRY SOME SRAD RAD GRRYEL 14-3-19-5 SRAD

DRILLER BOWSER KORKER INSPECTOR CHRIS YIRMI KETHOO HOLLOW STEM RUGERING RIG TYPE			GERINS	PROJECT	ENGINEERING SCIENCE DRILLING RECORD RICKENBACKER RYGB	BORING NO R SHEET 2 LOCATION	_ DF
DATE TIME				PRDJECT I BERTHER- STRRT - FINISH -		KR19 TO19	
PROTOVAC DI	עדם	אַ	SPT	USCS	SOIL DESCRIPTION	WELL DESIGN	СОЖНЕН
100	18	100	10 18	SW	RED-BRN, SAHE AS ABOVE, SAMP. WET		WELL BOT
	20		24	SW	GRY, CO. SAND W/SOME GRAYEL, SAMP. WET		19FT
	20				BORING RUGERED TO 20FT		
_							
		·					
					÷		
					•		
		-					
						·	
		ITION TEST			SUHHARY		<u> </u>

Section 9

1	DRILLER	ROIS	R KORXER			ENGINEERING SCIENCE	BORIXG		B-01-KW2 _ OF
	INSPECTOR CHRIS VIRWI METHOD HOLLOW STEW RUGERING RIG TYPE			<u>akiriai</u>	PROJECT RICKENBACKER ANGB		LOCATION MEXT TO PUMPS ON HE MARSIN OF BLOG 560 GROUNDS		TO PUMPS ON HE
	· BL	10.591	TOC		PROJECT BEATHER		PLOT PL	LRX	
1	DATE	9/19/88 1459			STRRT FINISH	7/79/88 0815 7/79/88 1000			
	HOTOYRC	DEPTH	RECOVERY	SPT SS	USCS	SOIL DESCRIPTION	WELL	DESIGN	COMMENTS
			•	ออ.	·				PROTECTIVE CASING AND LOCK
	n	Ũ	75	8	CL	BRN, SILTY CLAY W/TRACE OF SAND AND GRAYEL, SAMP.			2FT STICK-UP 2IN. DIA PYC
1	\$\$1 \$\$2			9 7		HOIST		22.	RISER
	2	_2	75	10 5		÷			CEHENT/ BENTONITE GROUT
	\$\$1 \$\$2			6 5		← GRY			2FT BENTONITE
1	2 \$\$3	ų	100	5 4 3		FRN			PELLET SERL
	JUU	6		6 2		•			SAXD PACK
	NR .		XOKE	7 7		NO RECOYERY	_		
1		8	400	10 11			_		10FT WELL SCREEN
	0		100	5 8	CL	SAKE AS ABOVE, SAKP. VY MOIST	_		
E	n	10	100	· 8		1	_		·
			100	21 27			_		
	0	12	75	28 6		·	_		
		111		11 12 13		•	_		
., [14		13		BORING RUGERED TO 15FT		1	WELL BOTTOM 15FT
		16					<u> </u>	12.000	
						·			
		18							
13			TRIT KOIT Ibur = r		65 C=	SUMMARY <u>0-1451lty clay trace of sand and</u> cored	SRRYEL		

Notes: .

C = Cuttings

•	REV. DATE JAN 1989	
10 111 - 10	3.2 Page of	
BORING LOG BORING/WELL NO .: KB-HW- AG	1 Site. 4037	
to the House Contract of the American	1) - to STOCOBE ACER	_
No: (1 × 5) 0.3	es FAssoc Driller: D Wordt	
WATERAP Controctor: E-5 Inc. Drig Confroctor: 1. 77474	· 20 am) Borehole dia(s):	
HAZWRAP Controctor: E-5 Inc. Drig Controctor: J. Mathe Drig Storted: 1/22/90(15:00 em) Drig Ended: 1/22/90 (15	1 cm 75 TA	
Drig Storted: 1/22/90(15:00 pm) Drig Ended: 1/22/90 (15) Drig Method/Rig Type: Hollow Stem auger & John & Spe	Protection Level: 0	
Drig Method/Rig Type: Hollow Stern E-Log (YK) From to		
Logged by: GO Co-penter E-Log (YM) From	8	
	Uzcz Blows le iven. Tod o gebin B	11)
Will be to the second of the s	CS 1045 April 60 Note & Smol Cley	•
cin (1) e NA A Militario Lithologic Description	nz Bin Ci. M.	
Oce to the land the Recovery Lithologic Description		
7		
1 July 1 dack book	wn, 23 -	
Min in or CLAY silty. No odors.		
-XI: Silty. No odors.		
5 + 1		
Hard like to medium gr	(a)	
10 - LAY light to medium gr	(~y, 2 5 7 -	
10-Hand 11- G.124. No odor 3.	° - ' 7	
411111		
4 1 1 1		
<u> </u>		
15-1111		
		•
20-111111	1.1 1 +	
11111		
1111 11 .		
1		
1		
25 -		
7 !		-
711111		_
1		
704111111		-
30-11111		_
		L
$\frac{1}{1} \frac{1}{1} \frac{1}$		
		Ĺ
Lu- Thin wall tube R = Rock coring	Field G/C (Make/Mod.)	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G/C Oper.:	
5 - 5pm - 3point.		
C = Cuttings Notes:		

Notes: .

C = Cuttings

Drig Storted: 1/25/90 (13:20	pm) brig Elliett. 125/15 1. 5000	ON CMETS TA
Logged by: G.O. Carpenter	- stem auger: Jpl.t spoo	Protection Level: D
Logged by: G.O. Carpenter		
Dergnange note hand the recovery	Description	USC2 Bloms e iucu. rod
Der som som ob Rece	Lithologic Description	
	60000 m 14 11	
S TO CLAY	concrete frock debris. No odors.	8 1 4
10 0 0 CLAY	gray, sandy. Black stained, hydrocarbons Strong odor. Moist	5. 33 6
15_		
20-		
ا ا ا ا ا ا ا ا ا ا ا ا		
30-	TO = 10'	
]		
U = Thin well tube R =	Rock coring Fie	eld G/C (Make/Mod.)

LOG BORING/WELL NO .:

Rickenhecker ANGB

BORING

installation:

O = Other _

Notes: -

S = Split spoon(tube)

C = Cuttings

G/C Oper .: ---

C = Cultings

BORING LOG BOI	RING/WELL NO .: RE-HW-	ABC POUR	
i vallation: O. K back	er ANGB		Forene Area
Installation: Rickenback Project No.: CZ452.03 Clin HAZWRAP Controctor: E-5 Drig Storted: 1/25/90 (11:0)	INT/Project: RANGB/Ha	zardous Waste	O. Wricht
HATWRAP Controctor: E-5	Inc Drig Controctor: J.	VInther! 1550c Porchole	dio(s): C"
Dug Storted: 1/23/90 (11:00	Drig Ended: 1/23/50) 1 SOAM Soletione	TA
Drig Storted: 1/25/90 (11:0) Drig Method/Rig Type: Hollow Logged by: GO. Carpenter	stem avoer ! Sal	it Groon CMZ 13	ection Level:
Urig memory my 77 Married	E-Log (Y/N) From	10 P101	
	\ .	USCS Blog 5 10 in	
Depth (1) le ple Mô ol DIM 22 Pois S	`	in	Mell Moles Beworks c 9010 gebyy &
ولمنا لمعراقيا		وي من المن الم	well wole Remorks
in (1) le ole Manoleis covery	Lithologic Description	nz Blo Cio	Me Me Ke C
Depsomson to Rec	Etthologic Sossi		<u> </u>
			-
7		11.11	
		, 2	
M44911	brown silty.	ω / 3	
3 My 20 0 C222	16/2 - Jahris	110%) [4]	
5 11 11 11 220	brown, zity. pebble debris		
	No odors.		
	•		1
H/99/11			
Non Car	brown to gray	/, 3	
0 11 12 1 1 C 2 A 7	brown to gray	1005.	
411111	Janay.	12	
4	Moist.	'^	+
11111			<u> </u>
] []			}
15-			
]			ļ
			}
]		i i i	i
] !
			1
7			
7 .			
7			,
×5 -			
7			
30-1111	_		
	TO=10'		
	_		1
411111			
4			
		Field G/C(Make/Mod)
10-11111 4011 1000	= Rock coring	G/C Oper.:	
S = Split spoon(tube) 0	= Other	G/C Oper	
	otes:		

REV. DATE: JAN 1989

BORING LOG BORING/WELL NO .: RB-	HW-ABE Poge 0!
DOTTILLE	Sile: HOSA
Client/Project: CasyCoA/	Hazardous Waste Storage Area
- I Drin Contract	OF THE TARE HESOF
The Grand Man /00 (13:20 0 m) Drig Ended:	/22/90 (13:50 pm) Borehole dio(s): C
Dela Melhod/Rio Type: Hillary stem avaer!	50/2 5000 / CME 10 11
Logged Dy: CG. Carperte E-Log (Y/D) From	Protection Level:
Deringon ob Affic Recovery Rosp. Lithologic Description	USCS BIOMS CLOPHIC HOLE REMOVES CIEN
1 10 10 00 10 10 10 10 10 10 10 10 10 10	USCS Blows COPNIC WOIL REMOILS
Serin (note per Andrews Lithologic Description	1 Aza Blo Cio, Mer. Mo Ke. F.
00.30.30.00	
4	
4	_
List to medie	m brown 3
5 13 5 0 0 CLAY silty, w/ per	16/25/10×1
5 1 5 5 1 - 3/2 7/2 2/ 200	10/25 (10%).
oders.	
]]	
11:190	sk brown
MOB 100 CLAY Medium to all	11 010011
John Czar medium to da	bbles (10%) 3 -
No odors. A	1015t.
]	
1	
_1	
111111	
1	
'0 -	
1	
1 .	
><-	
4	
30-11111	
1111111	
] TD = 10'	
1	
	Field G/C (Moke/Mod.)
U = Thin wall tube R = Rock coring	
S = Split spoon(tube) O = Other	G/C Opti
C = Cuttings Notes:	

O = Other

Notes:

S = Split spoon (lube)

C = Cultings

G/C Oper .: __

	PING 10G BORING/WELL NO .: RB-HW-AB	10			o! <u> </u>	_
BO	KINO 2001	1e: //	W51	9		-
insid	(2) (2) (2) (3) (7) (1) (3) (2)	: Wa	3 tc	<u> </u>	ge Arca	
Proje	Drig Contractor: Drig Contractor. 3. 172 CACS					-
Dila	Storted: 1/23/90 (: _ m) Drig Ended: 1/23/90 (:	<u> </u>	Boreno	ole dio(s):		\dashv
Dela	Method/Rig Type:		F	rotection	Level: D	7
Log	ged by: G.C. Carpenter E-Log (Y/N) From 10					
	(m ² C)			₩· •	, ,,	8
•	(61) (a) (85) (b)	_ 6	اء	inic o	010 'c, 966, 'r	Elevili
ا ۱۳۰	Lithologic Description	USC.	Blon Ci	of Well	Morci Bework	 7
066.20	CALIBRATE ETHIOLOGIC				<u> </u>	
4			-			-
4			1			-
7	Man De CLAY No odors.	•	ュ			†
s ∄	Man odors.	1 1	3			
s T	1					Ĺ
].						-
1						-
4)	Silty. No odors.	4	3			-
, o X	This woodors.		3			ŀ
4	Moist.		3			ŀ
						t
1			.			
15						
			j			ŀ
4						Ļ
4			- 1			-
20-	1111					Ĺ
]						
_						
4					İ	-
25-						-
4						F
4		İ		}		+
4						
30-					į	
	TO = 10'	İ		Ì		-
-		}			1	-
-						}
-					1	
1	tt - This wall tube R = ROCK Corring			lod.)		_
	S = Split spoon(tube) O = Other G	/C Oper	.:			_ 🔻
	C : Cuttings Notes:					

A-11

Notes: .

C = Cuttings

1	TO= 23'	
U = Thin wall tube S = Split spaan(tube) C = Cuttings	R = Rock coring	Field G/C [Moke/Mod]

U= Thin wall tube	R = Rock coring	Field G/C (Make/Mod.)
	O = Other	G/C Oper.:
S = Spill spoon(love)	Notes:	

	Poge
BORING LOG BORING/WELL NO .: RB-HW-AB14	11/15/8
Installation: Rickenbacker ANGO	Whate literace (lea)
Installation: Rickenbacker ANGB Hazardous Project No.: CL452.03 Client/Project: RANGB Hazardous HAZWRAP Controctor: E-J Inc. Drig Controctor: J Mathe : 1 HAZWRAP Controctor: E-J Inc. Drig Ended: 1/25/90(15:30)	Donal Driller: O. Wright
UNTURAP Controctor: E-5 17.	Borehole dio(s): (-
HAZWRAP Controctor: E-5 Inc. Drig Controctor:) MZZZZZZ . A Drig Storted: 1/25/90 (14:00 Am) Drig Ended: 1/25/90 (15:30 Am) Drig Storted: 1/25/90 (14:00 Am)	OR I CMETS TA
	Protection Level: 0
Logged by: GO. Carpenter E-Log (Y/N) From 10	
Legges street Con	USCS Blows 16 inch. Tod
14) a Rose 1	USCS Blows 16 inch. Tod Good Geby B
10 11 11 11	15C2 Glows Groby Mell Moles Kemo, Elea
Den's Mole No. 1. 1 Process Lithologic Description	
06.30.30.60	
4	
4 1 1 1 1	!
CLAY - Erown, silty. No odors	
5 H 1 1 1 1	
H 09 0 10 0 1 = :/t/ (2/	
pabbles (10th). No odors.	12
10 - 10 mg 1	15
The of Clay-brown to dark gray, wilty. Pebbles (25%). No	7007
My by JO CLAY - brown to dark gray,	110
Silty. Pebbles (25%). No	2
15-13-13 0000 000 000 No.	
15- De Of Grarel - brown, sandy. No	10
Down sandy, to 18.5. White of Convel - brown sandy, to 18.5. White of the clay 18.5'-19'. No odore. Wet.	1 3 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30
This is a docar wat.	
Do Savel - brown, sandy. No	
	22
Militaria Gravel - brown sandy, to	
22' Fine well serted brown	3
25 - 10 0 5 5/2 22.5' - 23.0' Wet.	19
Ne odors.	\dashv \mid \mid \mid \mid
Grarel - brown, sandy, to	1 6
24: Gray with clay, to	
30- 1 25: No oders.	
1	
1	
TO = 25'	
7	
1 to This well tube R = Rock coring	dd G/C (Moke/Mod)
S = Split spoon(tube) O = Other G/O	Oper.:
C = Cuttings Notes:	

1	TO=27'	
U = Thin wall tube	R = Rock coring	Field G/C (Make/Mod.)
S = Split spoon(tube)	O = Other	G/C Oper.:
C = Cuttings	Notes:	

どれ

U = Thin wall tube S = Split spoon(tube) R = Rock coring ______

Field G/C (Make/Mod.) _______

C = Cuttings Notes:

111111					
U = Thin wall tube	R = Rock coring	Field G/C (Make/Mod)			
S = Split spoon(tube)	0 = Other	G/C Oper.:			
C = Cuttings	Notes:				

TO=16'

U = Thin wall tube	R = Rock coring	Field G/C (Moke/Mod.)
		G/C Oper.:
S = Split spoon(lube)	0 = Other	
C = Cuttings	Notes:	

TO = 16'

30.

<u> </u>	RING LOG BORING/WELL NO .: RB-HW- MW	フ	Page
	2016	116. 74 62 S	
		ou- War	te Stirner fired
		~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	1 1 1 1 1 2 1 C C C C M Drid Ended: 730/70 \		
	Walked/Big Tune: 4 11 . Trm Ouner Com	1000	CMETSTA
Unit	ged by: G.O. Carpenter E-Log (Y/B) From 10	<u></u>	Protection Level: 0
L 0 9	geo by.G.D. (ar pen cer)		
	1) 10 600		Geobuic Golo Geory &
	Lithologic Description	وي وي	Geobuic Golo Geoly &
clh.	Mile Pecover Lithologic Description	120 B101	CLOT MELL MO. BELL EV.
05151	1		
4			
4			
+		1 1 1	
-{}	CLAY Brown silty. No	3 4	
<u>ال</u> ک	179 XVIII Odors	-	
4			
إ			
+	ting of a brown spark of the	0	
-{}	Carton staining Lines		
10-4	CLAY brown, sandy. Hydro- carbon staining. Strong odors. Moist.	ا ما	
+			
4)	CLAY gray, =: 1ty. Hydrocarbo	7 9	
4	staining. Moist. Odors.	1 2	
4)	4 3 3 1 1 1		
15-4	JEJOP OLAY Gray sandy, to		
4	111 11 Wat Slight odo	·C: ` ;	
4	Consende gravel to	ツ . コー	
4	Gray sandy gravel to Wet. No odors.	i 1 1	
4	Wet. No odor .		1 i -
20-		[] [
4			
4			
4			
4			
25-			
4			
-			
4			
-			
30-			
-		1 1	
-	{		
-	TO=14'		
-	1		
		ield G/C (Make,	/Mod.)
	U: Thin wall tube R: Note Coming	5/C Oper.:	
	5 = Spill spoon(inde) O - Olice	,, o oper	
- 1	C = Cuttings Notes:		

	Page
BORING LOG BORING/WELL NO .: RG-HW-ML) 6
BORING LOG BORING/WELL NO. 753-74 Site:	HW5A
Installation: Ricken backer ANGB Site. Project No.: CL452.03 Client/Project: RANGB Hazardous	Claste Otoroge Acer
Project No.: CL452.03 CHEMY TOPLO CONTROLOGY T Mather	assec Driller: [Mayle
HATWRAP Confroctor: E-S Inc.	am) Borehole dio(s):
Drig Storted: 1/30/10(15:00 2 m) Drig Ended: 1/30/90(16:30-	2000 / CME 15TA
Drlo Method/Rig Type: Hellow stem auger : Opin	Protection Level: O
Drig Storted: 1/20/10 (15:00 pm) Drig Ended: 1/32/90 (16:30-10) Drig Method/Rig Type: Hellow =tem auger ! Dolit up Logged by: C.C. Co-peration E-Log (Y/A) From 10	
100 M 1	- A
3659	AZCZ Blonz Cobyle Mell Moles Beworks Clen (1
Depto (tiple No. of 17/14) in no. of Lithologic Description	USCE Blong Coby Mell Mole Beworks Clen 1
Lithologic Description	12. Bio Ch. 140 // 1
Dep 50 m 50 m 100 Rec Elimondia	
1	
1	
5 pebbles (10%). No	3 5
-XX 314 31 31 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
5 + 17 2 1 pebbles (10%). No	
odors.	
	1111 +
Mogo of Can brown to gray, sandy.	3
Webbles (est) and	1 1 7 1 1 1
	8
interbedded brown	2 12
Sands. No odors. Moist	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
1/19/3 % 0 0 0 0	
15 13 30 Gravel - gray, sandy.	3
15 13 Gravel - gray, sandy. Wet, no odors. Gray	14
Gandy clay From	
14:-14.5' , w/ pebbles	
(45%).	
20-11111	
11111	
4 .	
4	
4 1 1 1 1 1 1	
ا حم	
4111	
4	
]	
30-	
1	
1	
1 TO = 16	
Fiel	dd G/C (Make/Mod.)
R = Rock coring	C Oper.:
S = Split spoon(tube) O = Other	
C = Cuttings Notes:	

O = Other __

Notes: .

S = Split spoon(tube)

C = Cullings

C = Cuttings

ΙB	ORIN	G	LOG 30	RING/WELL NO.:	83-HV-KV11			Poge 1	_ o!
			ENBACKER A	NGB		Sit	le: HWS	4-560	
3.	sjest N	o.: CL115	5.40 Clie	ent/Project: HA	ZWRAP				
in é	 4ZWR42	Contractor	ENGINEERING	-SCIENCE Drig	Contractor: JDHN	MATHES &	ASSDC	Driller:	
		ed: 10/15		:35 Am) Drlg	Ended: 10/15/91	(10:3	D A m)	Borenole dio(s):	6'
				STEM AUGER	R/CME-45				
1.0	ecced by	y: RLPA			From	10		_ Protection	level: D
L		<u></u>)_,	00)					
•			NOTE OF P						
		KIE	, no.					Crophic Log	is olly &
262	(14) (14)	Puol.	ecovery (15C5 (10WS	Crophic of dolo	oler cemorks (11)
Cen 20	,.20,.00-	Mooi Mi	.eu 	Lithologic	Description		1 1	- 17 71 - 1	coret beworks (11)
ال				•				ИИ	L
]								ИN	-
11			וחכם עכת	N CILTY CI	AY, TRACE FI	NF	13		-
7	1 Y	72.3	LIMESTONE	GRAVELS,	אם אכ סספת נ	JR	25		-
5			STAINING.				19		<u> </u>
_]							16	\Box	F
							•		<u> </u>
11									Ļ
1		L. M	BROWN SIL	TY CLAY, D	RY, NO HC DDI	סת סת	9		Ļ
1.1	S N	\$5.1	STAIN, TRA	ACE GRAVEL	(FINE), GREY	MULILING	18		L
"° ¬	11						18]	L
- 11	.								L
11					•				
4.1		L	GREYISH-B	ROWN SILT,	CLAY W/TRAC	E SAND.	6		Γ
4 1	3 Y	35.1X	SAND, BRD	WN CDARSE,	AND GRAVEL,	WET AND	8		Ī
:5 -			SILTY, NO	HC DDDR DF	STAINING.		20	- - -	
									r
		1 1		•					i i
		1 -	3DH=18'.						F
			50n-10.						F
20 —		1 1 1							 -
					•				<u> </u>
41									-
1						•			-
41									-
25 —									-
_ 11		1 1							-
] [•					-
]									
] [
_ 1				•					
30 —									
11								1	Γ
11									Γ
				•					r
4									1
┇┇┍┸┸		<u>, , , , , , , , , , , , , , , , , , , </u>					/C/us/ = 4:		
		wall tube		ock coring			/C(Moke/W		
i		spoon(tube		ther	•	6/0 0;	per.:		\$115V11A
C =	= Cuttin	rçs	Notes:						RX RX

2

1

	MEN DATE: JAM 1040
WELL DEVELOPMENT LOG WELL NO .: RB-HW-MW4 POGE	<u></u>
I stellavoni a 6 / 6 - ALVA	
Project No: a/400 03 Client/Project: RANGB / Hazardout /Jas	te Sterege Acea
Dev. Contractor: John Mathe	2 6 M22OC
Dev. Sicri: 2/2/90 (11: 45 m) Dev. End: 2/2/90 (12: 00 m)	Dev. Rig (Y) N)
Developed by: J. Methes : Assoc. / GOC	DEV. KIN 10 117
•	
•	

Dev. Melnod 3L8 Pressure / suction pump, with	<u> </u>
200 gen pumping ability	
Equipment 31 & suction pump & black acapters have (1"	
Pre-Dev. SWL 10.25 Moximum drowdown during pumping 7.66 11 of Ronge and Average discharge rate 0.25 - 2.5 Rom 0.67 gpm	
Disposition of discharge water Callested in 55 gal record	druns

Time	Volume Removed (gal)	Woter Level ft.BTOC	Turbidity	Clority/ Color	Temp. °C	рН	Conductivity	Remarks
11:45	۵.5	17.90	high	brown	٧8	7.L	790	
11:50	5.0	17.90	lew	lyt	63	8.0	008	
12:00	3.5	17.90	v. 10w	brewn	61	7.8	790	Water becoming clearer
12:05	_	16.90			-	-	_	
13:00		12.10	_	-	-	-	_	
14:30	-	10.60	-	-	_	-	-	

MONITORING WELL CONSTRUCTION LO	S-Standard
WELL NO: as I T lossallation: Ricken to c	Ker ANGB I SHE HELLIN
Project No.: CL457.03 Client/Project: RANGB/	HEZARDOUS WASTE UTORAGE TITEL
HAZWRAP Controctor: "E-S "INC.	Dilg Controctor: John Minthes + 71330C.
Comp. Stort: - 1/31/90 (9:30_m	Comp. End: 1/31/70 . (10:30_m) Well Coord.:
Buill By: J. Mathes & Assec	Well Coord.:
20 10 10 10 10 10 10 10 10 10 10 10 10 10	
Eley	PROTECTIVE CSG
Heighl	Moterial/Type
Elev	Depth BGS 3.5' Weep Hole (Y/N)
Height	NO. 3 Type 14" Steel Pige
GS Elev. A A A A A A A A A A A A A A A A A A A	No. 3 Type My Steel Pipe
Depth BGS	SURFACE PAD Composition B Size Cement, 2'x2'x"
	Composition B Size
	•
	RISER PIPE
·I· · H II ·	Type Sch. 40 PVC
H H	Diometer
	Composition & Proportions 57 Eastenite
	Interval BGS
	CENTRALIZERS (Y/®)
···· · '	Depth(s)
И. И.	and the second s
· I · · · · · · · · · · · · · · · · · ·	054
	Bentinite Pellets
	Source J. Nather F Assoc Setup/Hydrotion time 10 min. Vol. Fluid Added 5 ga/
	Tremied (Y/R)
6	THYER BACY
3'	Type
	Ami Used
(-5.) -	Source
	Gr. Size Dist. Oc ×40
	• • • • • • • • • • • • • • • • • • • •
13' 10'	SCREEN - / A A A CO
	Type
	Slot Size: B Type O.O.
	Interval BGS 5-15"
15'	•
	SUMP (Y/A)
14	Bottom Cop (Y/N)
	• • • • • • • • • • • • • • • • • • •
	Note in Land
TD: /L'	Material
→ (C) +	Tremied (Y/N)
Borehole dia.	

	NEV MAIL JAN 1959
WELL DEVELOPMENT LOG WELL NO. AB- HW-MINS Poge _	<u>/ 01/</u>
Installation: Ricken backer ANGB Sile: HWS	A
Project No.: CL452.03 Client/Project: RANGB/ Hazardous Wate	Storage Area
HAZWRAP Conficcior: F. Two. Dev. Confractor: John Mathes	· Assoc.
Dev. Stort: 2/2/90 (11: 15 m) Dev. End: 2/2/90 (11: 25 m) Csg Dio
Developed by: J Mathes : Assuc. / GOC	Dev. Rig (M/N)

Equipment 318 - retired pump & hlock reopred haze (") Pre-Dev. SWL 12.(A Maximum drawdown during pumping 5.00 11 01 0.70 gpm Range and Average discharge rate 0.25-5 gem a.7 gpm	Dev. Method 318 Pressure / surtion pump, with a 200
	Equipment 318 -unting pumps black reopress hose (1")
Total quantity of water discharged by pumping The male	
located next to well.	Total quantity of water discharged by pumping

Time	Volume Removed (g a l)	Water Level 11.BTOC	Turbidity	Clarity/ Cotor	Temp.	ρН	Conductivity		Remorks	
11:15	5	17.60	N/A	amber	٤٥	8.2	C30	Greens	odor,	product
11:25	۵.5	1760	NA	amber	ر ا	8.1	600			
11:30	_	15.00	-	-	_	_	_			
12:05	_	13.50	_	_	-	-	-			
13.00	<u>.</u>	12.90	-	-		-	-			•
14:30	-	12.30	_	_	-	_	_			
			!							
		,						·		

F .

MONITORING WELL CONSTRUCTION LO	G-Standard
· WELL NO: mill Installation: Rickenhas	Ker ANGB SIE. HWOT
Project No.: CL452.03 Clien1/Project: RANGB/	Na zardous late Terce Arec
HAZWRAP Controctor: "E-5 Inc.	Drlg Controctor: John Mathes: 1/5501
) Comp. End: 1/30/90 (11:30_m)
Buill By: J. Mathes & Assec	Well Coord .: RB-HW- MWC.
Elev	PROTECTIVE CSG
Height ————————————————————————————————————	Moterial/Type 154ce/ -
Elev. ·	Diometer 4 Depth BGS 2.5' Weep Hole (Y/N)
Height	
GS Elev A A A	NO. 3 Type // Steel Pipe
GS Height O.00 Depth BGS	
	SURFACE PAD Composition B Size Conert, D'x2'xC'
I H	•
	DISER PIPE
	RISER MPE Type Do.L. 40 PYC Diometer 2
H H	Diometer 2"
I H H	Total Length (TOC to TOS)
	Composition & Proportions 57 Bentwite
	Composition a Troportions
	Tremied (Y/N) Interval BGSO.5'-1.0'
'H H '' .	CENTRALIZERS (Y/®) Depth(s)
	Type Pentarite Pellets
	Source J M-thes : Assoc.
	Setup/Hydrotion time 10 mm. Vol. Fluid Added 5 gal.
(°)	Tremied (Y/N)
2'	Type Vilica Vand
3 - 1	Amt Used Soo /b= (4 ocgs)
	Source T Mother 5 Arrow
	Gr. Size Dist. 20 = 40
	•
	Type Jch. 40 PVC
	Diometer
	Slot Size B Type 0.01"
	Interval BGS
<u>/s'</u> -	SUMP (Y (N)
16	interval BGS Length
	Bottom Cop (Y/N)
0	BACKER: DITIE /
_ TD: /L	BACKFILL PLUG " ALLO
1.0.7/- 1 =	Moterial None
	Setup/Hydrotion time
Borehole dia.	

	MEN DATE. JAH 1884
WELL DEVELOPMENT LOGI WELL NO .: RB-HW-MWC POGE	<u></u>
installation: Acction backer ANGB Sile: HUSA	
Project No.: C/ W.52 () 3 Client/Project: RANGO/ Hazardou- Waste	· Storage Area
HATWRAP Controctor: F- Truc Dev. Controctor: John Mathes	F 455 OC.
Dev. Stort: 2/2/90 (12: 20m) Dev. End: 2/2/90 (12: 45_m)	Dev. Rig (N)
Developed by: J. Mathes (H==oc / GOC	DEV. MIG 10 M7

Dev. Meinod 368 Pressure / suction pump, with a 200	
Equipment 348 suction prop i black neoperate bose (1")	
Pre-Dev. SWL 11.05' Maximum drawoown during pumping 6.40 11 01 0.30 Ronge and Average discharge rate 0.25-2.5 gem 0.3 gpm Total quantity of material bailed Total quantity of water discharged by pumping 7.5 gal Disposition of discharge water Calbeted in 55 gal secure drum	g pm

Time	Volume Removed (g o l)	Woser Level 11.BTOC	Turbidily	Clorily/ Color	Temp. °C	рН	Conductivity	F	Remorks	
12120	ಎ . 5	17.45	bu	brewn	60	7.7	300	allowed	+.	recharge
u:35	٥.5	17.45	1000	1:5h+ _brews	60	7.9	790	1.	••	••
12:45	2.5	17.45	1	brewnih eleenig	40	7.8	750	••	••	••
17:20	-	16.08	_	_	_	_	-			
13:00		-	-	-	-	_	_			
13:30	_	12:35	_		_	_				
14:30	-	12.20	_	_	_		_			
.!										
	i									

MONITORING WELL CONSTRUCTION LOG	Site: 403A
1	HAV (a/s
Project No. 1/400 03 Client/Project: RANGA	Drig Controctor: Juha Mather i Assu
Comp. Stort: " 1/30/90 (13:00_m)	
	. Well Coord .: RA-HW-MLJ7
Built By: J. Mather : Assoc	
• •	PROTECTIVE CSG - /
Elev	Moterial/Type 5
Height	Diameter
Elev	Diameter Y Depth BGS 2.5' Weep Hole (Y/N)
Height	SUARD POSTS (ON) No. 3 Type /4 Steel Pipe
GS Elev. AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	No. 3 Type 74 Steel 1. PE
GS Height 0.00	SURFACE PAD Composition B Size Coment, 2'x2'xC"
11.	Composition B Size CEMENT
	•
ИИ	
	RISER MPE
	RISER MPE Type Sch. 40 PVC Diometer 2"
1	Total Length (TOC to TOS)
	SROUT - A A .: 4
	Composition & Proportions .57 Bestonite
	Tremied (Y/18) Interval BGS
\mathbf{H}	CENTRALIZERS (Y/N)
· · · · · · · · · · · · · · · · · · ·	Depth(s)
	the state of the s
H. H	Type Bentonite Pellets
- 1 7 7	Setup/Hydrotion time 10 min. Vol. Fluid Added
6	Tremied (Y/N)
	Type Vilica Jand
3'	Amt Used 200 165 (4 bags)
	Tremied (Y/®) TM-+1 : Assoc
54.	
	Gr. Size Dist. 20×40
13' (0' :	SCREEN
	Type Val YO PYC
	Slot Size B Type O.O.
	Interval BGS 5 - 15
15' -	SUMP (Y/W)
	interval BGS Length
	Bottom Cap (Y/N)
0'	BACKEUI PIUG " /
	Moterial Wone
TD: 16	Setup/Hydrotion time
→ <u>∪'</u> 	Tremied (Y/N)
Borehole dia.	•

	MEN DATE. JAM 1949
WELL DEVELOPMENT LOGI WELL NO .: 28-HW-MW7 POGE_	<u>'</u> 01 <u>'</u>
Installation: Rickenbacker ANGB Site. HWSA	
Project No.: CL452.03 Chen1/Project: LANGB/116=05dous Wast	e Vitorage Arca
LUAZWEAR CONTROLOGY FOR THE Dev. Controctor: John Mather	; A330c.
Dev. Stort: 2/2/90 (10: 50 m) Dev. End: 2/2/90 (11: 00 m)	Csg Dio
Developed by: J. Mathes i Assoc / GOC	Dev. Rig (YN)
Developed of 3. MARKES - MOTOR / 12	

]

Dev. Melnod 3L8 Presence/suction pump, with a 200 gpm	_
Ecuipment 318 suction pump & black newporce hore (1")	_
Fre-Dev. SWL 12.45 Maximum drawdown during pumping (2.70 11 01 1.5 g) Range and Average discharge rate 10-5.0 g,m 1.5 gpm Total quantity of material bailed Total quantity of water discharged by pumping 15 gal Disposition of discharge water Collected in 55 gal secure draw	ρm
located next to well	_

Time	Volume Removed (gal)	Woler Level 11.8TOC	Turbidity	Clority/ Color	Temp. °C	рН	Conductivity	Remorks
10:50	5	19.15	10W	brown	レみ	7.4	740	
10:55	5	19.15	1.102	light been	<i>5</i> 9	7.0	740	Clearing
11/06	S	19.15	_	clear	58	7.0	760	Clear
11:05	-	15.00	_	-	-	-	-	
12:05		12.65	_	-	-	_	-	
13:00	-	12.55	_	_	-	_	-	
·								
1 .	1		1	Į	1		1	

MONITORING WELL CONSTRUCTION LOG-Standard						
Leadellation: Pick backer ANGO						
a in the resid Client/Project: RANGA Hazardous (Naste Storage Acco						
WATWRAP Controctor: 6:= 5 " Tac.	Und composition. John Mix Ches - 10000					
Comp. Sloit: " 1/30/90 · (15:00 m) Comp. End: 1/30/90. (12:30_m)					
	. Well Coord .: RG-HW-MUS					
Buill By: T Mather & Assoc						
	PROTECTIVE CSG					
Elev.	Moterial/Type Steel					
Height						
Elev.	Depth BGS Weep Hole (1/N)					
Height	NO3 Type /4" Steel Pipe					
GS Elev. GS Height 0.00 AAA						
Depih EGS	SURFACE PAD Composition B Size Coment, 2'x2'xC"					
	Composition & Size					
	RISER PIPE					
· I · · · · · · · · · · · · · · · · · ·	Type Jch 40 PYC					
.H H	Diameter 62"					
	IDIDI CENGINATOS IS TOST					
	Composition & Proportions 57 Restante					
	Composition & Froger					
	Tremied (Y/®) Interval BGS					
	CENTRALIZERS (Y/A) Depth(s)					
- H H	Depin(s)					
The state of the s						
	SEAL					
····] - " [/- [/]	Type Bentonite Pallets Source J. Mathes & Assoc.					
	Setup/Hydration time 10 Vol. Fluid Added					
	Tremied (Y/N)					
	FILTER PACK					
	Type (Tilice (Tend Amt Used 150 /b=. (3 bigs)					
	Ami Used					
5.	Source J. Mathos : 143300					
	Gr. Size Dist. 20 × 40					
	CCDEEN					
	Type Uch YO PYC					
	Diometer					
	Slot Size B Type O.O!"					
	Interval BGS					
15' -	<u>-</u> <u>SUMP</u> (Y/M)					
	interval BGSLength					
14	Bottom Cop (Y/N)					
	•••					
	RACKFILL PLUG NOWE					
TD: 14	Material					
··· · · · · · · · · · · · · · · · · ·	Tremied (Y/N)					
Parabata dia	•					

	
WELL DEVELOPMENT LOGI WELL NO .: RB-HW-MW8 POGE	<u> </u>
Installation: Rickenbacker ANGB Site: HWSA	
Project No.: 04452.03 Chent/Project: RANGB / Hazordous laste	Storage Area
HAZWRAP Controctor: E-5 INc. Dev. Controctor: John Mathes	: Assoc
Dev. Stort: 2/2/90 (9: 50 m) Dev. End: 2/2/90 (10: 25 m)	Csg Dio.:
Developed by: J. Mather ! Assoc / GOC	Dev. Rig (Y/N)
/	

Dev. Method 3L8 Pressure / curtisa pump, with a 200 gr	<u> </u>
Equipment 348 sention pump & black neopeens bose	[,]
Fre-Dev. SWL B.40' Maximum drawdown during pumping 980 ft at 0.43 Range and Average discharge rate 0.33-50900 0.43 gpm Total mignitive of material boiled	
Total quantity of water discharged by pumping 15 gal. Disposition of discharge water Callected in 55 gal. vecure drum Located 150 to well	

Time	Volume Removed (g o l)	Woser Level 11.BTOC	Turbidity	Clerity/ Color	Temp. °C	рΗ	Conductivity	Remarks
9:50	5	18.20	low	brewn	50	7.8	710	
10:10	5	12.20	v./ow	light brewn	51	٦.١	620	·
10:25	5	ا 8.20	r.10w	clearing	57	7.9	620	
10:35	-	14.35	_	-	-	_	-	
11:00		11.60	-	-	-		-	
12:05	~	10.73	_	_	-	-	_	
13:00	-	10.55	-	-	-	-	-	
14:30	-	10.53	-	-		_	_	
						1		

MONITORING WELL CONSTRUCTION LOG-Standard					
Legislation: A Laker Allacia					
The state of client/Project: DONGA HOTA TO TOUS Waste Utorage Tites					
Drid comincion. John / Recited					
() - () -					
Buill By: J. Mathes & Assoc	. Well Coord .: RB-HW-MU19				
Eley.	Moterial/Type 5tee/				
Height					
Elev.	Death BGSWeep Hole (1717)				
Height	SUARD POSTS (N). 1/4" Steel Pipe				
GS Elev. GS Height 0.00	No. 3 Type 1/4 Steel 1.00				
Depth EGS	SURFACE PAD Composition B Size Coment 2'x2'x("				
	Composition B Size				
	RISER PIPE				
1 · · · H H	Type Sch. 40 PVC				
· 1 · · · · · · · · · · · · · · · · · ·	Total Length (TOC to TOS) 8'				
. 11	GROUT Composition & Proportions 5% Bentonite				
	Tremied (Y/Θ) Interval BGS $0.5' - 1.0'$				
· · · · · · · · · · · · · · · · · · ·	CENTRALIZERS (Y/®)				
	Depth(s).				
	Contract to the contract of th				
	SEAL Of the Pollets				
I - H-H	SEAL Bentonite Pellets Source J. Mathes & Assoc				
	Setup/Hydrotion time Vol. Fluid Added Oct				
	Tremied (Y/B)				
2'	TYPE Jilica Sand				
3'	Type				
(3-1)	Tremied (Y/N) - 1/1- E D==cc				
-::: - <u></u>	Gr. Size Dist. 20 ×40				
	•				
	SCREEN Type Jeh. 40 PVC Diometer J" Slot Size B Type O.01" Interval BGS Jehnstein				
	Diometer				
	Slot Size B Type				
	INIEI VOI DOS				
\sightarrow	SUMP (Y/E)				
16'	interval BGSLength				
	Note in Plus None				
TD:/6'	Moterial				
-H[c"]+	Tremied (Y/N)				
Borehole dia.					

WELL DEVELOPMENT LOGI WELL NO .: 10-4W-MW9 POGE	<u>/ o1</u>
Installation: Rickenhacker ANGB Site: HWJA	
Project No.: CL452.0 3 Client/Project: RANGE / Hazardous Wast.	e Storage Area
WATWRAP CONTROLLOS FIT THE Dev. Confroctor: J. M. Mathe	. F A550C
Dev. Stort: 2/9/90 (13: 0Q m) Dev. End: 2/9/90 (13: 20m)	Csg Dio.:
Developed by: J. Mathes ! Assoc. / GOC	Dev. Rig (O/N)

. despera

Dev. Meinod Maryal 2" Teslan bailer		
Eculoment 2" 4-5lon bailer with		
Pre-Dev. SWL 17.05 Moximum drawdown during pumping 1.15 11 of Range and Average discharge rate 6,1-0.25 cm/ 0.1 gpm Total quantity of material bailed 2 gal.		— ĝpm
Total quantity of water discharged by pumping	drum	

Time	Volume Removed (gal)	Water Level f1.BTOC	Turbidity	Clarity/ Color	Temp. °C	рН	Cenductivity	Remorks
13:00	0.25	17.15	r. low	Clear	54	アユ	840	
13:05	1.0	18.15	_	**	53	7.3	950	
13:20	2.0	18.15	_	٠,	52	7.5	9/0	
13:25		17.50		_	-	- .	-	
H:05		17.63		-	· –	_	-	
			-					. :
								·
	[

r .~

MONITORING WELL	CONSTRUCTION LOG	- Double Cos	sed	
WELL NO.: MW-10	Installation: RICKENBA	CKER ANGB		Site: HWSA-560
project No.: CL115.40	Client/Project: HAZWRA	Ρ		
HAZWRAP Contractor: ENC	INEERING-SCIENCE	Drig Contractor:	MATHES &	
Comp. Stort: 10/14/91		Comp. End:	10/14/91	(13:55 Pm)
Built By:		Well Coord:		

	PROTECTIVE CSG
ELev. ——	Moterial/Type STEEL
Height	Diameter (Y (A)
ELev.	DCp 000
Height	GUARD POSTS (MN)
GS Elev. 0.00' PPD PUP	No. 3 Type STEEL
Depth BGS	SURFACE PAD
EN NA	Composition & Size 2'x2' CONCRETE
	SURFACE CSG
I KN NY	
	Type Total length
	GROUT: Setup/Hydration Time
	Composition & Proportions
	Interval BGS
	Tremied (Y/N)
	RISER PIPE
	RISER PIPE Type SCH 40 PVC
	Diameter 2' Total Length (TOC to_TOS). 11'
	CPOLIT
	Composition & Proportions.
3	Interval BGS 0-4' BGS
	Tremied (YAN)
	, . . .
	CENTRALIZERS(Y/N) Depth(s)
l N N	· · · · · · · · · · · · · · · · · · ·
4	SEAL Type
6	Setup/Hydration TimeVol. Fluid Added
	Tremied (Y/N)
<u> </u>	TypeVASH_DTTAVA_SANDS
	Amount Used 3 BAGS
	Source
10 10 -	Gr. Size Dist
	Tremied (Y.(N)
	SCREEN Type SCH 40 PVC
1B	Slot Size & Type 0.010"
1	STILLE (YAM)
	Interval BGSLength
18	Bottom Cop (Y/N)
	BACKFILL PLUG
	Material
TD. 18	Setup/Hydration Time Tremied (Y/N)
TD: 18 - 6° -	
'\'	
Borehole dio.	

0115W108

MONITORING WELL	CONSTRUCTION LOG	- Double Co				
WELL NO.: MW-11	Installation: RICKENBA	CKER ANGB		Site: HW	SA-560	
project No.: CL115.40	ect No.: CL115.40 Client/Project: HAZWRAP					
HAZWRAP Contractor: EN	SINEERING-SCIENCE	Drig Contractor:	MATHES &	ASSDC.		
Comp. Start: 10/15/91	(10:30 A m)	Comp. End:	10/15/91		(13:30	Pm)
Built By:		Well Coord:	:			

ELev	PROTECTIVE CSG Material/Type STEEL Diameter 4' Depth BGS 3' Weep Hole (Y/R)
GS Elev. GS Height 0.00' PPD 2 PP	CUARD POSTS (YYN) No. 3 Type STEEL
GS Height 0.00' PD D	SURFACE PAD Composition & Size 2'x2' CDNCRETE
	SURFACE CSG Type
	Diameter Total length GROUT: Setup/Hydration Time
	Composition & Proportions
	Interval BGS
	DICED DIDE
	Type SCH 40 PVC Diometer 2'
	Total Length. (TOC to .TOS)
3	Composition & Proportions
	Interval BCS
	CENTRALIZERS(Y/N) Depth(s)
3.5	SEAL Type 1/4" BENTONITE PELLETS
5.5	Source VYDMING Setup/Hydration Time
	Tremied (Y.N)
7.5	TypeDTTAVA VASHED SANDS
	Amount Used 3 BAUS Source
10 10 -	Gr. Size Dist Tremied (Y/N)
	SCREEN Type SCH 40 PVC
	Diameter 2' Slot Size & Type0.010'
17.5	SUMP (Y (N))
17.5	Interval BGS Length
	BACKFILL PLUG
TD: 17.5	Material Setup/Hydration Time
——————————————————————————————————————	Tremied (Y/S)
Borehole dia.	

]

FIGURE 4.2 REV. DATE: JAN 1989 CONSTRUCTION LOG - Double Cosed MONITORING WELL Site: HWSA-560 Installation: RICKENBACKER ANGB WELL NO .: MW-12 project No.: CL115.40 | Client/Project: HAZWRAP HAZWRAP Contractor: ENGINEERING-SCIENCE Drig Contractor: MATHES & ASSDC. (11:00 A m) (15:00 P m) Comp. End: 10/16/91 Comp. Stort: 10/15/91 Well Coord: .-Built By: PROTECTIVE CSG Moterial/Type STEEL ELev. Height Diometer ____ _Weep Hole (Y.N) Depth BGS __ ELev. Height GUARD POSTS (Y/N) No. 3 Type STEEL GS Elev. D.DO' SURFACE PAD Depth BGS Composition & Size 2'x2' CONCRETE SURFACE CSG Type _ _____Total length _ Diometer _ GROUT: Setup/Hydrotion Time . Composition & Proportions _ Interval BGS Tremied (Y/N) RISER PIPE SCH 40 PVC Type SCH
Diameter 2' Total Length (TOC to TOS) CROUT Composition & Proportions _ Interval. BGS Tremied (Y.N) CENTRALIZERS (Y/N) Depth(s) SEAL Type BENTONITE PELLETS Source VYDMING _____Vol. Fluid Added 2 GALLONS 2 Setup/Hydration Time _ 6 Tremied (YN) FILTER PACK DITTAVA SANDS 8 Type DTTAVA SAM Amount Used 3 BAGS Source _ Gr. Size Dist 10 10 Tremied (Y/N) SCREEN SCH 40 PVC Diameter 2 Slot Size & Type 0.010' 18 SUMP (Y (N))
Interval BCS. __ Length_ Bottom Cop (Y/N) 18 BACKFILL PLUG Material Setup/Hydration Time _ Tremied (Y/N) TD: 18 Borehole dia.

0115W128

MONITORING WELL CONSTRUCTION LOG-Standard				
WELL NO.: MW4 Installation: Rickenbacker ANGS Sile: HWJA				
	Hozardous Waste Titorage Area			
HAZWRAP Confractor: E-5 INC.	Drig Controctor: John Mather & Arrow			
· Comp. Stort: - 1/29/90 . (13:35_m	1) Comp. End: 1/27/90 . (15:00_m)			
Buill By: J. Mather : Assec / C	BOC . Well Coord .: RR-HW-MWY			
Eley.	PROTECTIVE CSG			
Height	Moterial/Type			
Elev.	Depth BGS 25 Weep Hole (Y/6)			
Height CS Elev ·	NO. 3 Type 14 Treel Pipe			
GS Height 0.00' A A A A	•			
Depin EGS	SURFACE PAD Composition B Size Coment 2'x2'xC"			
1. UH	Type Sch. 40 PVC			
	Diameter 2"			
H H	Total Length(TOC to TOS)			
	Composition & Proportions 5% Bentonite			
- I · · · · · · · · · · · · · · · · · ·	Composition & Proportions			
	Tremied (Y/N) Interval BGS			
	<u>.</u>			
	CENTRALIZERS (Y/N) Depth(s)			
	SEAL			
	Type Bentanite Pellets			
	Source J. Mather & Assoc Setup/Hydrotion time 10 min Vol. Fluid Added 5 and			
	Tremied (Y/M)			
C" 2'	Type Silica Sand			
3'				
	Tremied (Y/N) · · · - ·			
	Source I Mathe & Assoc.			
	Gr. Size Dist. 20×40			
	• • • • • • • • • • • • • • • • • • • •			
	Type USA 40 PVC			
	Diameter 2"			
··· · · · · · · · · · ·	Slot Size B Type O.01".			
	Interval BGS 5-6			
151 -	- SUMP (Y/D) · -			
	interval BGSLength			
丁二 //	Bottom Cop (Y/N)			
ا ا ا	BACKFILL PLUG " None			
TD: /C	Moterial Wone			
	Setup/Hydrotion time			
Borehole dia.	Tremied (Y/N)			

D

Rickenbacker ANG Site Characterization and Analysis Penetrometer System CPT; 2RKRF1 Probe Depth; Project;

U.S.Army Engineer Diskring Kansas City Geotechnical Branch

Probing date; 02-21-1995

Laser induced fluorescence of POL via fiber optics

22.5 12.51 Negrest MP: ESMPSS @

ESMP-SD @

Depth (feet) - 30 - 20 9 350 400 450 500 550 600 at Peak (nm) Wave length 1000 Fluorescence Intensity Norm. Counts - No BKGND SUB Fluorescence Intensity Norm. Counts - No BKGND SUB 80 800 CPT based SOIL CLASSIFICATION Peats Systys Clays Silt Mixtures Sands Mixtures Sands 9 Sleeve Friction f, (tons/ft) 1000 Cone Resistance q_c (tons/ft²) 2 466 2 466 2 466 100 0 . გ ဓ္က 9 Depth (feet)

LIF 2

22.07 Rickenbacker ANG Probe Depth; Project;

Characterization and Analysis Penetrometer System CPT; 3RKRF1

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date; 02-21-1995

Laser induced
fluorescence
of POL via
fluor optics

L1F3

Rickenbacker ANG Characterization CPT; 4RKRF1 Probe Depth; Project;

25.40

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date; 02-21-1995

Laser induced fluorescence of POL via fiber optics

ESMP-65

15.8

85MP-60

1-117

Rickenbacker ANG Probe Depth; Site Characterization and Analysis Penetrometer System CPT; Project;

26.35

U.S.Army Engineer District Ransas City Geotechnical Branch

02-22-1995

Probing date:

Laser induced fluorescence of POL via fiber optics

クト

. -2W53

1(.75

6RKRE1

Rickenbacker ANG Project;

26.32

Probe Depth;

Site
Characterization
and Analysis
Penetrometer System
CPT:

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date; 02-22-1995

Laser induced
fluorescence
of POL via
fiber optics

85mP- 115

ESMP- 11D

22,82

7117

Rickenbacker ANG 22.48 Probe Depth; Project;

Site Characterization and Analysis CPT; 8RKRF1 Penetrometer System CPT; 8RKRF1

U.S.Army Engineer Diskrict Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fluor optics

between Esmp-11

Probing date: 02-22-1995

七 117

Rickenbacker ANG Probe Depth; Project;

22.95

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date; 02-22-1995

Laser induced
fluorescence
of POL via
fiber optics

Site Characterization and Analysis and Analysis Penetrometer System CPT; 9RKRF1

22.54 Sh dws3

Rickenbacker ANG

20.48

Project;

Site Characterization CPT; 10RKRF1 Penetrometer System CPT; 10RKRF1 Probe Depth;

Probing date; 02-22-1995

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced fluorescence of POL via fiber optics

ESMP- 15

Rickenbacker ANG Probe Depth; Project;

23.40

Probing date; 02-22-1995

Laser induced
fluorescence
of POL via

U.S.Army Engineer District Kansas City Geotechnical Branch

Characterization and Analysis CPT; 13RKRF1

7117

23.19 Rickenbacker ANG Probe Depth; Project;

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date; 02-22-1995

Laser induced
fluorescence
of POL via
fiber optics

Characterization and Analysis Penetrometer System CPT; 14RKRF1

Project;

U.S.Army Engineer District Ransas City Geotechnical Branch

e; 02-22-1995

Probing of

Laser induced
fluorescence
of POL via
fiber optics

Rickenbacker ANG Characterization Characterization and Analysis Penetrometer System CPT; 15RKBF1 Probe Depth;

20.80

85MP-25

Rickenbacker ANG Site Characterization Characterization and Analysis Penetrometer System CPT; 17RKRF1 Probe Depth; Project;

22.86

titl @ 5/1-dw53

Probing date: 02-22-1995

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fiber optics

Project; U.S.Army Engineer District Ransas City Geotechnical Branch Laser induced fluorescence of POL via fiber optics

Probing date; 02-22-1995

Rickenbacker ANG **18RKRF1** Probe Depth;

Site Characterization CPT. Penetrometer System

59.62 591-dw53

BCMP-16D Rac

ナーゴフ

Project;

U.S.Army Engineer District Kansas City Geotechnical Branch

4: 02-23-1995

Probing ¢

Laser induced
fluorescence
of POL via
fiber optics

Rickenbacker ANG Characterization and Analysis Penetrometer System CPT; 35RKRF1 Probe Depth;

23.16

56-GW53

Rai

APPENDIX E

SUMMARY OF ANALYTICAL DATA, AUGUST 1995 - MARCH 1996

DRAFT

COMPARATIVE ANALYSIS OF NATURE AND EXTENT OF GROUNDWATER CONTAMINATION SITE 1 - HAZARDOUS WASTE STORAGE AREA (HWSA) RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

PREPARED FOR

U.S. Air Force Center for Environmental Excellence Brooks AFB, TX 78235

PREPARED BY

IT Corporation 11499 Chester Road Cincinnati, Ohio 45246 (513) 782-4700

IT Project No. 762970 Contract F41624-94-D-8047

Introduction

This report presents a comparative analysis of laboratory and field data from four groundwater sampling events at the Hazardous Waste Storage Area (HWSA) at Rickenbacker Air National Guard Base (RANGB or the Base). The objective of the report is to determine if the nature and extent of the groundwater contamination has changed substantially since the initial round of sampling and analyses were performed by Parsons Engineering Science, Inc. (ES) in February 1995. Analytical data from the February 1995 groundwater sampling event were presented in the Amended Closure/Post Closure Plan in October 1995 and serve as baseline data. Additional groundwater analytical data collected by IT Corporation (IT) in August 1995, December 1995, and March 1996 are compared to the February 1995 data to assess changes in water quality.

Description of Site

The HWSA (Site 1) was a permitted storage facility that received wastes generated during Base activities from 1983 to 1986, when it was closed. Wastes were stored in drums placed on pallets inside Building 560 and outside within the fenced yard. Four underground storage tanks (USTs) formerly located southeast of Building 560 were removed in February 1995. The activities that generated the wastes stored in the HWSA included degreasing operations at Base shops, aircraft cleaning, and general maintenance activities (painting, paint stripping, etc.). The groundwater at Site 1 contains benzene, toluene, ethylbenzene, xylenes (BTEX) and chlorinated volatile organic compounds (VOCs). Figure 1 presents the location of the physical structures and the groundwater sampling locations at Site 1.

Geology and Hydrogeology of Site 1

The geology beneath the site consists of up to 200 feet of sandy and gravely Pleistocene age glacial outwash and silty and clayey glacial till filling a preglacial bedrock valley. The glacial geologic units beneath the Base are differentiated by stratigraphic and hydrogeologic characteristics. The first hydrogeologic unit beneath the base is the Upper Water Bearing Zone (UWBZ). The UWBZ, which extends from ground surface to approximately 25 feet below ground surface, consists of permeable (sands and gravels) and low permeable (siit and clay) layers. Groundwater in the UWBZ is under unconfined to semiconfined conditions. The UWBZ is underlain by a continuous, dense, grey, silty clay unit. Soil borings indicate that the clay layer is at least 5 feet thick across the Base.

ES completed groundwater monitoring wells and groundwater monitoring points at various depths in the UWBZ to evaluate the lateral and vertical extent of the groundwater contamination. Table 1 presents the completion data for the monitoring wells and monitoring points at Site 1. The monitoring wells were completed with ten foot long screens which in some cases, straddled a one foot thick clay layer within the UWBZ. In addition, monitoring points were installed using 3-foot long screens and are placed at discreet depths within the UWBZ to evaluate the vertical distribution of contaminants.

ES used monitoring wells and monitoring points to prepare the potentiometric maps included in the Amended Closure/Post Closure Plan. The potentiometric maps presented in the Amended Closure/Post Closure Plan illustrate areas of groundwater mounding and depressions near the site. Because the monitoring wells and monitoring points do not have corresponding screened intervals, IT prepared groundwater potentiometric surface maps using only groundwater elevations obtained from the monitoring wells. Figures 2, 3, and 4 are potentiometric surface maps for the August 15, 1995, December 20, 1995, and March 18, 1996 groundwater elevation sampling events. These maps indicate a north-south trending groundwater trough in the vicinity of the site. The interpreted groundwater flow direction is generally from north to south. Table 2 presents the groundwater elevation data used to prepare the potentiometric surface maps.

The groundwater advective flow velocity was calculated to evaluate the contaminant migration rate beneath Site 1. The data used for this calculation was taken from the information presented in the Amended Closure/Post Closure Plan, the Site Investigation Report (SI), and from the quarterly sampling conducted by IT. The formula used to calculate the advective flow velocity is:

$$V = \frac{K}{n_{\bullet}} \frac{\Delta h}{\Delta L}$$

where:

V = average linear velocity (ft/d)

K = hydraulic conductivity (ft/d)

 n_e = effective porosity (dimensionless)

 $\frac{\Delta h}{\Delta L}$ = hydraulic gradient (dimensionless)

Table 3 summarizes the groundwater flow velocity estimates for Site 1.

Nature and Extent of Contamination

The principal contaminants in the groundwater beneath Site 1 are benzene, toluene, ethylbenzene, xylene (BTEX) compounds and chlorinated VOCs. The principal chlorinated VOCs are (cis- and trans-)1,2-dichloroethene, trichloroethene and vinyl chloride. The analytical results have been compared between sampling events to determine contaminant concentration and migration trends. Table 4 presents the sampling locations and parameters tested during the three quarterly sampling events. Tables 5, 6, 7 and 8 summarize the results of the four rounds of groundwater sampling conducted at Site 1. Figures 5, 6, and 7 present all of the compounds detected during the August 1995, December 1995, and March 1996 sampling events.

The vertical and horizontal extent of BTEX in groundwater has not changed significantly from the February, 1995 sampling event to the March, 1996 sampling event. However, total BTEX concentrations have decreased. The total BTEX concentration in MP-13S decreased from 963 μ g/L in February, 1995 to 440 μ g/L in March, 1996. The results of the sampling from MW-5 and MP-16S show similar results. The plume definition continues to be delineated by the lack of BTEX compounds detected in MP-17S, MW-8, MP-14D, MP-2D, MW-3, and MW-4. Figures 8, 9, and 10 present the BTEX plume location during the three quarterly sampling events. The following chart presents the trend in BTEX concentrations from February 1995 to March 1996.

Trichloroethene (TCE) detections were observed in groundwater along the west side of the site during the February 1995 sampling event. The highest concentration was detected in the sample collected from MW-6 at >5,000 μ g/L. Seven other locations contained TCE during the February 1995 sampling event at concentrations ranging from 1 μ g/L to 95.6 μ g/L. The concentrations of TCE decreased dramatically from February 1995 to August 1995. The TCE concentration in MW-6 decreased from >5,000 μ g/L to 770 μ g/L. Only one other sample contained detectable concentrations of TCE (MP-2D at 20 μ g/L) during the August 1995 sampling. The reductions in TCE continued to the point where, during the March 1996 sampling event, the concentrations of

TCE were 11 μ g/L in MW-6 and 9 μ g/L in MP-2D. These locations also show decreasing or non-detectable concentrations of TCE decomposition products (e.g. vinyl chloride and 1,2-dichloroethene isomers). The following chart presents the decreasing trend in TCE concentration over time.

Vinyl Chloride was detected at 10 sampling locations during the February 1995 sampling event at locations spread across the site. The highest concentrations were in MW-17S along the east side of the site and in MW-6. The concentration of vinyl chloride in MW-6 decreased from 23.1 μ g/L in February 1995 to below detection limit in March 1996. A reduction in vinyl chloride concentration is also apparent in the samples collected from MP-17S. However, the reduction is not as substantial. The concentrations of vinyl chloride in MP-17S from the four sampling events were 1,570 μ g/L (February 1995), 930 μ g/L (August 1995), 1,200 μ g/L (December 1995), and 690 μ g/L (March 1996). The following chart graphically presents this trend.

The other contaminants which have shown elevated concentrations are the cis- and trans- isomers of 1,2-dichloroethene (1,2-DCE). The cis- and trans- isomers of 1,2-DCE have been summed in the tables and maps. The total 1,2-DCE concentrations were distributed across the site at

essentially the same locations as the vinyl chloride. The maximum concentrations detected in the February 1995 sampling event were present at MP-17S (5,065 μ g/L), MW-6 (920 μ g/L), and MP-13S (528 μ g/L). Two other locations sampled during February 1995 contained detectable concentrations of total 1,2-DCE; however, in each case the concentration was minimal (i.e. <5 μ g/L). The trend in 1,2-DCE concentrations is generally toward lower concentrations. The 1,2-DCE that was present along the western portion of the site during the February 1995 sampling have generally decreased to less than detectable concentrations. The concentrations detected during the March 1996 sampling event in the eastern sampling locations (i.e. MP-13S, MP-17S and MP-14D) have decreased when compared to the concentrations detected during February 1995. The 1,2-DCE concentration trend is presented in the following graph.

Groundwater Remediation

Intrinsic remediation was selected as the remedial alternative for groundwater at the site. IT has collected data to evaluate the results of the selected groundwater remediation technology. Intrinsic remediation recognizes natural attenuation to reduce the BTEX contaminant concentrations. Natural attenuation refers to a combination of sorption, dispersion, and biodegradation that results in a reduction of contaminant concentrations. Chlorinated VOCs are degraded during intrinsic remediation through a process known as cometabolism. Chlorinated VOC degradation is accomplished from enzymes produced during the degradation of the BTEX compounds. Cometabolism rates generally increase as reducing conditions increase.

Several field and laboratory parameters are measured on a quarterly basis in conjunction with laboratory analyses of the contaminants of concern, to determine the effectiveness of the selected remediation technology. These parameters include dissolved oxygen, pH, temperature, conductivity, redox potential, total alkalinity, sulfides, ferrous iron, chloride, sulfates, nitrates

and nitrites, methane, ethene, ethane, and ammonia. Many of these parameters are used as "yardsticks" to determine if biological activities (as determined through the presence of aerobic and anaerobic respiration) are reducing contaminant concentrations. Tables 9, 10, 11 and 12 summarize the results of the natural attenuation parameter sampling.

Intrinsic Remediation Indicator Parameters

Dissolved oxygen (DO) is tested at each location where a groundwater sample is collected to determine if aerobic bioremediation is active in the groundwater. A DO concentration greater than 1 mg/L is considered necessary to support aerobic processes. Clear trends in DO are not apparent from the field readings. The data collected in February 1995 show only two locations with DO greater than 1 mg/L indicating that aerobic activity is probably not an important process. The data collected in August 1995 shows a similar situation in that the samples collected near the BTEX plume each show relatively low concentrations of DO. The DO meter used during the December 1995 sampling ceased working after only a few of the samples were analyzed. The samples that were analyzed were outside the BTEX plume; therefore, information on the DO character within the plume are not available for this sampling event. The results of the March 1996 sampling shows unusually high DO readings in each of the samples indicating a malfunctioning meter. An attempt was made to relate each of the readings back to the minimum reading from all locations to determine if a trend exists. The relative readings do not show correlation where aerobic and anaerobic processes would be likely to occur. Figures 11, 12, and 13 present the results of the DO readings from each of the quarterly sampling events.

Nitrate and nitrite concentrations (as nitrogen) were measured in groundwater samples collected during each round of groundwater sampling. The results of this sampling does not indicate a significant trend in nitrogen concentrations within the BTEX plume. Additional sampling of these parameters will be necessary to draw conclusions based on nitrogen concentrations. Figure 14 presents the results of the nitrogen sampling conducted in August 1995.

Ferrous iron concentrations were measured in groundwater samples collected during each groundwater sampling event. The results of this sampling are presented on Figure 15. The highest concentrations of ferrous iron are generally associated with samples collected from monitoring points MP-16S, MP-16D and MP-17S which are located near the center of the groundwater contamination. These elevated levels of ferrous iron suggest that ferric iron

hydroxide is being reduced to ferrous iron during anaerobic biodegradation of BTEX compounds.

Groundwater samples for sulfate analysis were collected during each sampling event. Figure 16 presents the results of the sulfate sampling conducted during the quarterly sampling events. The results of these sampling events show reduced concentrations of sulfates in the area of BTEX contamination. This situation suggests anaerobic biodegradation of BTEX compounds in the shallow groundwater through the microbially mediated process of sulfate reduction.

Methane, ethane and ethene analyses were conducted on groundwater samples collected during each round of groundwater sampling to determine if methanogensis is occurring at this site. Each of the sampling events show that the elevated levels of methane are generally associated with the location of the BTEX plume. These relations suggest that anaerobic biodegradation of BTEX compounds via methanogensis is occurring at this site. Figures 17, 18, and 19 present the results of the methane sampling.

Conclusions

The results of the three quarterly groundwater sampling events were compared to the sampling event conducted in February 1995 and used in the Amended Closure Plan submitted in October 1995. This comparison shows the extent of the BTEX plume has not changed substantially. However, the nature of the plume has changed in that the concentrations have decreased. Contamination from chlorinated VOCs including vinyl chloride, total 1,2-DCE and TCE continue to exist in the groundwater beneath the site. However, the extent and the concentration of the contaminants have decreased since February 1995.

The "yardstick" parameters for determining the effectiveness of intrinsic remediation show biological activity is likely to be remediating the BTEX plume beneath Site 1. Without verifiable dissolved oxygen data, it is difficult to determine if aerobic activity is occurring. But, the other natural attenuation parameter results suggest that anaerobic activity is present.

The fourth quarter groundwater sampling was conducted in June 1996. The nature and extent of contamination at the site will be reevaluated when this data and future quarterly sampling event data are available. However, the currently available data indicate no significant migration of

contaminants is occurring and contaminant concentrations are decreasing. Therefore, the selected remedial action of natural attenuation appears sufficient to reduce the risk to human health and the environment posed by the groundwater.

Monitoring Point and Existing Well Completion Details Hazardous Waste Storage Area Rickenbacker ANGB, Ohio Page 1 of 3

Northing (ff msl) (ff msl) (inches) (feet) 662614 741.67 741.60 0.50 3.28 662615 741.72 741.60 0.50 3.28 662568 741.18 741.20 0.50 3.28 662569 741.18 741.20 0.50 3.28 662569 742.23 741.80 0.50 3.28 66252 742.22 741.80 0.50 3.28 662467 742.22 741.80 0.50 3.28 662467 742.69 742.60 0.50 3.28 662345 741.51 741.50 0.50 3.28 662345 741.51 741.50 0.50 3.28 662346 741.56 741.60 0.50 3.28 662330 740.88 740.80 0.50 3.28 662331 740.85 740.80 0.50 3.28 662251 740.80 0.50 3.28 662251 740.89 740.80 0.50 3.28 662251 740.89 740.80 0.50 3.28 662251 740.89 740.80 0.50 3.28 662251 740.83 740.80 0.50 3.28 662251 740.83 740.80 0.50 3.28 662251 740.83 740.80 0.50 3.28	1 -	Installation			Datum Elevation	Ground Elevation	PVC Casing ID	Screen	Total Depth	Depth to Top of Screen	Depth to Base of Screen
1845016 662614 741,67 741,60 0.50 3.28 11.70 8.42 1845015 662615 741.72 741,60 0.50 3.28 11.42 8.14 1845025 662568 741.18 741.20 0.50 3.28 11.42 8.14 1845025 662569 741.29 741.80 0.50 3.28 12.55 9.27 1844958 662524 742.23 741.80 0.50 3.28 12.56 9.30 1844995 662467 742.60 0.50 3.28 12.56 9.30 1844997 662467 742.60 0.50 3.28 12.51 9.23 1844893 662346 741.51 741.50 0.50 3.28 12.51 9.23 1845105 662411 740.98 741.00 0.50 3.28 15.80 19.26 1845105 662412 741.66 741.00 0.50 3.28 15.80 20.23 1845049		ate	Easting	Northing	(ft msl) (a)	(ft msl)	(inches)	(feet)	(ft btoc) (b)	(ft btoc)	(ft btoc)
1845015 662615 741.72 741.60 0.50 3.28 18.80 15.52 1845023 662568 741.18 741.20 0.50 3.28 11.42 8.14 1845025 662569 741.18 741.20 0.50 3.28 12.55 9.27 1844958 662524 742.22 741.80 0.50 3.28 12.55 9.27 1844996 662467 742.22 741.80 0.50 3.28 12.58 9.30 1844891 662467 742.69 742.60 0.50 3.28 12.58 9.30 1844893 662346 741.51 741.50 0.50 3.28 12.51 9.23 1845105 662412 741.56 741.50 0.50 3.28 12.51 9.23 1845105 662412 740.86 740.80 0.50 3.28 23.51 20.23 1845104 662331 740.86 740.80 0.50 3.28 23.59 20.31	02	/23/95	1845016	662614	741.67	741.60	0.50	3.28	11.70	8.42	11.70
1845025 662568 741.18 741.20 0.50 3.28 11.42 8.14 1845025 662569 741/29 741.20 0.50 3.28 12.55 19.22 1844958 662562 742.22 741.80 0.50 3.28 12.55 9.27 1844969 662467 742.22 741.80 0.50 3.28 12.56 9.27 1844997 662467 742.60 0.50 3.28 12.51 18.91 1844891 662346 741.50 0.50 3.28 12.51 9.23 1844893 662346 741.56 741.50 0.50 3.28 12.51 9.23 1845105 662411 740.56 0.50 3.28 15.80 12.52 1845181 662336 740.80 0.50 3.28 15.80 12.52 1845181 662231 740.80 740.80 0.50 3.28 23.59 20.31 1845049 6622331 740.80	02	/23/95	1845015	662615	741.72	741.60	0.50	3.28	18.80	15.52	18.80
1844958 662564 741/29 741.20 0.50 3.28 22.50 19.22 1844958 662524 742.23 741.80 0.50 3.28 12.55 9.27 1844959 662526 742.22 741.80 0.50 3.28 12.58 9.30 1844996 662467 742.69 742.60 0.50 3.28 12.58 9.30 1844997 662467 742.69 742.60 0.50 3.28 12.61 18.91 1844897 662467 741.51 741.50 0.50 3.28 12.51 9.23 1844897 662346 741.56 741.50 0.50 3.28 12.51 9.23 1845105 662411 740.98 741.00 0.50 3.28 15.80 12.52 1845105 662346 740.80 0.50 3.28 15.80 12.52 1845104 662330 740.80 740.80 0.50 3.28 23.51 20.31	8	//23/95	1845023	662568	741.18	741.20	0.50	3.28	11.42	8.14	11.42
1844958 662524 742.23 741.80 0.50 3.28 12.55 9.27 1844959 662266 742.22 741.80 0.50 3.28 12.58 9.30 1844996 662467 742.60 742.60 0.50 3.28 12.58 9.30 1844997 662467 742.69 742.60 0.50 3.28 12.58 15.16 1844891 662346 741.51 741.50 0.50 3.28 12.51 9.23 1845105 662346 741.56 741.60 0.50 3.28 15.80 12.52 1845105 662411 740.98 741.00 0.50 3.28 23.51 20.23 1845105 662412 740.80 740.80 0.50 3.28 23.51 20.31 1845049 662261 740.80 0.50 3.28 23.59 20.31 1845050 662261 740.80 0.50 3.28 23.49 26.46 1845050	8	/23/95	1845025	662569	741/29	741.20	0.50	3.28	22.50	19.22	22,50
1844959 66256 742.22 741.80 0.50 3.28 22.19 18.91 1844996 662467 742.70 742.60 0.50 3.28 12.58 9.30 1844997 662467 742.69 742.60 0.50 3.28 12.51 9.23 1844891 662345 741.51 741.50 0.50 3.28 12.51 9.23 1844893 662346 741.56 741.50 0.50 3.28 12.51 9.23 1845105 662341 740.98 741.00 0.50 3.28 15.80 12.52 1845105 662412 740.80 740.80 0.50 3.28 17.75 8.47 1845105 662330 740.80 740.80 0.50 3.28 23.59 20.31 1845050 662261 740.80 0.50 3.28 22.81 19.53 1845052 662259 740.80 0.50 3.28 22.81 19.53 1845052	8	2/23/95	1844958	662524	742.23	741.80	0.50	3.28	12.55	9.27	12.55
1844996 662467 742.70 742.60 0.50 3.28 12.58 9.30 1844997 662467 742.69 742.60 0.50 3.28 12.51 15.16 1844891 662345 741.51 741.50 0.50 3.28 12.51 9.23 1844893 662346 741.56 741.50 0.50 3.28 12.51 9.23 1845105 662411 740.98 741.00 0.50 3.28 15.80 12.52 1845105 662412 741.05 741.00 0.50 3.28 17.75 8.47 1845181 662330 740.80 0.50 3.28 23.51 20.23 1845179 662331 740.80 0.50 3.28 23.59 20.31 1845050 662261 740.89 740.80 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 22.81 19.53 1845052	8	/23/95	1844959	662526	742.22	741.80	0.50	3.28	22.19	18.91	22.19
1844897 662467 742.69 742.60 0.50 3.28 18.44 15.16 1844891 662345 741.51 741.50 0.50 3.28 12.51 9.23 1844893 662346 741.56 741.50 0.50 3.28 15.80 12.52 1845105 662411 740.98 741.00 0.50 3.28 15.80 12.52 1845105 662412 741.05 741.00 0.50 3.28 11.75 8.47 1845105 662412 740.80 0.50 3.28 23.51 20.23 1845107 662330 740.80 0.50 3.28 11.75 8.47 1845049 662261 740.80 0.50 3.28 22.81 19.53 1845050 662259 740.89 740.80 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	2/23/95	1844996	662467	742.70	742.60	0.50	3.28	12.58	9.30	12.58
1844891 662345 741.51 741.50 0.50 3.28 12.51 9.23 1844893 662346 741.56 741.50 0.50 3.28 15.80 19.26 1845105 662412 741.05 741.00 0.50 3.28 15.80 12.52 1845105 662412 741.05 740.80 0.50 3.28 23.51 20.23 1845181 662330 740.80 740.80 0.50 3.28 11.75 8.47 1845049 662231 740.80 740.80 0.50 3.28 23.59 20.31 1845050 662261 740.89 740.90 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 22.81 19.53	8	//23/95	1844997	662467	742.69	742.60	0.50	3.28	18.44	15.16	18.44
1844893 662346 741.56 741.50 0.50 3.28 22.54 19.26 1845105 662411 740.98 741.00 0.50 3.28 15.80 12.52 1845105 662412 741.05 740.80 0.50 3.28 11.75 8.47 1845181 662330 740.80 740.80 0.50 3.28 11.75 8.47 1845049 662261 740.80 740.80 0.50 3.28 10.72 7.44 1845050 662261 740.89 740.90 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 20.74 26.46	8	2/23/95	1844891	662345	741.51	741.50	0.50	3.28	12.51	9.23	12.51
1845105 662411 740.98 741.00 0.50 3.28 15.80 12.52 1845105 662412 741.05 741.00 0.50 3.28 11.75 8.47 1845181 662330 740.85 740.80 0.50 3.28 11.75 8.47 1845049 662261 740.80 740.80 0.50 3.28 10.72 7.44 1845050 662261 740.89 740.90 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	1/23/95	1844893	662346	741.56	741.50	0.50	3.28	22.54	19.26	22.54
1845105 662412 741.05 741.00 0.50 3.28 23.51 20.23 1845181 662330 740.85 740.80 0.50 3.28 11.75 8.47 1845179 662331 740.80 740.80 0.50 3.28 23.59 20.31 1845049 662261 740.82 740.90 0.50 3.28 22.81 19.53 1845050 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	2/23/95	1845105	662411	740.98	741.00	0.50	3.28	15.80	12.52	15.80
1845181 662330 740.85 740.80 0.50 3.28 11.75 8.47 1845179 662331 740.80 740.80 0.50 3.28 23.59 20.31 1845049 662261 740.92 740.80 0.50 3.28 10.72 7.44 1845050 662261 740.89 740.90 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	1/23/95	1845105	662412	741.05	741.00	0.50	3.28	23.51	20.23	23.51
1845179 662331 740.80 740.80 0.50 3.28 23.59 20.31 1845049 662261 740.92 740.80 0.50 3.28 10.72 7.44 1845050 662261 740.89 740.90 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	2/23/95	1845181	662330	740.85	740.80	0.50	3.28	11.75	8.47	11.75
1845049 662261 740.92 740.80 0.50 3.28 10.72 7.44 1845050 662261 740.89 740.90 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	/23/95	1845179	662331	740.80	740.80	0.50	3.28	23.59	20.31	23.59
1845050 662261 740.89 740.90 0.50 3.28 22.81 19.53 1845052 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	2/23/95	1845049	662261	740.92	740.80	0.50	3.28	10.72	7.44	10.72
1845052 662259 740.83 740.80 0.50 3.28 29.74 26.46	8	7,73/95	1845050	662261	740.89	740.90	0.50	3.28	22.81	19.53	22.81
	8	1/23/95	1845052	662259	740.83	740.80	0.50	3.28	29.74	26.46	29.74

Table 1

Monitoring Point and Existing Well Completion Details Hazardous Waste Storage Area Rickenbacker ANGB, Ohio Page 2 of 3

Top Depth to Base	en of Screen	-	7 21.85	15.84	.9 22.07	00 15.78	54 22.82	15.73	16.18	20 21.48	17.70	30 24.58	43 29.71	24 17.52	52 24.90	15.57	37 22.65	34 15.62
tal Depth to Top	oth of Screen			15.84 12.56	.07 18.79	15.78 12.50	22.82 19.54	15,73 12.45	16.18 12.90	21.48 18.20	17.70 14.42	24.58 21.30	29.71 26.43	17.52 14.24	24.90 21.62	15.57 12.29	22.65 19.37	15.62 12.34
Screen Total	Length Depth (feet) (ff btoc) (b)			3.28 15.	3.28 22.07	3.28 15.	3.28 22.	3.28 15	3.28 16	3.28 21	3.28 17		3.28 29	3.28 17	3.28 24	3.28 15	3.28 22	3.28 15
PVC	Casing ID 1	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Ground	Elevation (ft msl)		741.60	741.50	741.50	740.80	740.80	741.30	741.40	741.40	741.40	741.00	741.00	740.20	740.20	740.30	740.30	739 90
Datum	Elevation (ft msl) (a)		741.70	741.56	741.54	740.76	740.80	741.43	741.38	741.38	741.17	741.18		740.37	740.28	740.33	740.33	739.87
	Northing			662265	662265	662341	662343	662762	662515	662515	662475	3 662474	3 662476	3 662479	5 662478	2 662598) 662601	2 662495
	Fasting	1845034	1845036	1844945	1844942	1845124	1845123	1844991	1845072	1845071	1845102	1845103		1845143	1845145	1845132		1845192
	Installation Date	02/23/95	02/23/95	02/23/95	02/23/95	02/23/95	02/23/95	02/24/95	02/24/95	02/24/95	02/24/95	02/24/95	_	02/24/95	02/24/95	02/24/95	02/24/95	02/24/95
	Contion	ESMP-9S	ESMP-9D	ESMP-10S	ESMP-10D	ESMP-11S	ESMP-11D	ESMP-12S	ESMP-13S	ESMP-13D	ESMP-14S	ESMP-14D	ESMP-14DD	ESMP-15S	ESMP-15D	ESMP-16S	ESMP-16D	ECMP-17C

Monitoring Point and Existing Well Completion Details Hazardous Waste Storage Area Rickenbacker ANGB, Ohio Page 3 of 3

				Datum	Ground	PVC	Screen	Total	Depth to Top	Depth to Base
	Installation			Elevation	Elevation	Casing ID	Length	Depth	of Screen	of Screen
Location	Date	Easting	Northing	(ft msl) (a)	(ft msl)	(inches)	(feet)	(ft btoc) (b)	(ft btoc)	(ft btoc)
MW-2	07/29/88	1845118	662544	743.36	741.10	2	10	16.91	6.91	16.91
MW-3	08/10/88	1844999	662299	743.96	741.60	2	10	20.10	10.10	20.10
MW-4	01/29/90	1844979	662691	745.15	741.80	2	10	18.30	8.30	18.30
MW-5	01/31/90	1845051	662617	744.97	741.60	8	10	18.04	8.04	18.04
MW-6	01/30/90	1844991	662524	745.18	741.70	8	10	17.99	7.99	17.99
MW-8	01/30/90	1845159	662431	743.89	740.40	7	10	18.44	8.44	18.44
MW-9	02/09/90	1845083	662643	745.25	741.60	7	10	18.27	8.27	18.27
MW-10	10/14/91	1845165	662544	742.64	740.30	7	10	20.16	10.16	20.16
MW-11	10/15/91	1845017	662429	744.15	741.40	2	10	19.77	9.77	19.77
MW-12	10/15/91	1845120	662394	743.02	740.80	2	10	20.06	10.06	20.06

⁽a) ft msl = feet above mean sea level.
(b) ft btoc = feet below top of casing.

Table 2 Groundwater Elevation Data Hazardous Waste Storage Area Rickenbacker ANGB, Ohio

 		08/	15/95	12/20	/95	03.	/18/96
	Datum		Elevation of		Elevation of		Elevation of
Well ID	Elevation	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater
	(ft msl)	Water (ft)	(ft msl)	Water (ft)	(ft msl)	Water (ft)	(ft msl)
						44.00	
MW-02	743.36	12.14	731.22	13.23	730.13	11.26	732.1
MW-03	743.96	10.46	733.5	13.05	730.91	8.6	735.36
MW-04	745.15	11.38	733.77	13.26	731.89	9.86	735.36
MW-05	744.97	13.37	731.6	NA (free product)	NA	NA	NA
MW-06	745.18	13.75	731.43	14. 9 6	730.22	13.06	732.12
MW-08	743.89	10.53	733.36	12.94	730.95	8.43	735.46
MW-09	745.25	8.05	7 37.2	13.55	731.7	NA	NA
MW-10	742.64	11.23	731.41	12.3	730.34	NA	NA
MW-11	744.15	12.19	731.96	13.55	730.6	11.64	732.51
MW-12	743.02	13.1	729.92	13.71	729.31	11.98	731.04
ESMP-1S	741.67	7.43	734.24	9.44	732.23	5.65	736.02
ESMP-1D	741.72	10.17	731.55	10.56	731.16	8.87	732.85
ESMP-2S	741.18	3.57	737.61	5.83	735.35	1.73	739.45
ESMP-2D	741.29	6.18	735.11	10.1	731.19	8.55	732.74
ESMP-3S	742.23	7.68	734.55	11.26	730.97	7.82	734.41
ESMP-3D	742.22	10.69	731.53	11.92	730.3	9.94	732.28
ESMP-4S	742.7	5.94	736.76	9.92	732.78	6.92	735.78
ESMP-4D	742.69	11.15	731.54	12.23	730.46	10.42	732.27
ESMP-5S	741.51	3.83	737.68	6.89	734.62	3.46	738.05
ESMP-5D	741.56	6.2	735.36	9	732.56	2.07	739.49
SMP-6S	740.98	10.79	730.19	NA	NA	NA	NA
ESMP-6D	741.05	9.69	731.36	10.69	730.36	8.87	732.18
ESMP-7S	740.85	6.02	734.83	5.33	735.52	3.69	737.16
ESMP-7D	740.8	5.96	734.84	8.62	732.18	5.57	735.23
ESMP-8S	740.92	3.76	737.16	6.73	734.19	2.87	738.05
ESMP-8D	740.89	6.17	734.72	8.85	732.04	NA	NA
ESMP-8DD	740.83	7.38	733.45	9.58	731.25	7.07	733.76
ESMP-9S	741.79	3.38	738.41	5.22	736.57	1.46	740.33
ESMP-9D	741.7	6.53	735.17	9.35	732.35	6.27	735.43
ESMP-10S	741.56	6.15	735.41	10.03	731.53	7.26	734.43
ESMP-10D	741.54	6.41	735.13	9.22	732.32	6.28	735.26
ESMP-11S	740.76	6.66	734.1	7.15	733.61	6.42	733.20
	740.76		733.69	9.04	733.01	6.69	
ESMP-11D ESMP-12S	740.6	7.11	733.69	ł	731.76	0.4	734.11
		2.57		6.23			742.03
ESMP-13S	741.38	10.34	731.04	10.9	730.48	9.34	732.04
ESMP-13D	741.38	10.06	731.32	10.56	730.82	9.1	732.28
ESMP-14S	741.17	10.13	731.04	10.31	730.86	9.16	732.01
ESMP-14D	741.18	9.89	731.29	10.37	730.81	8.92	732.26
ESMP-14DD	741.13	9.72	731.41	10.56	730.57	8.93	732.2
ESMP-15S	740.37	9.45	730.92	9.68	730.69	8.47	731.9
ESMP-15D	740.28	8.98	731.3	9.45	730.83	7.98	732.3
ESMP-16S	740.33	8	732.33	9.6	730.73	7.78	732.55
ESMP-16D	740.33	8.77	731.56	9.18	731.15	7.87	732.46
ESMP-17S	739.87	9.19	730.68	9.56	730.31	8.52	731.35

Table 3

Summary of Groundwater Velocity Calculations Hazardous Waste Storage Area Rickenbacker ANGB, Ohio

	Date of GW Elevation Measurement	Monitoring Wells	K ¹ (ft/d)	∆h² (ft)	ΔL ³ (ft)	n _e ⁴	V (ft/day)	V (ft/yr)
S/A	8/15/95	MW-9, MW-12	0.62	7.28	495	0.3	3.04E-02	1.10E+01
	12/20/95	MW-9, MW-12	0.62	2.39 ·	495	0.3	9.98E-03	3.60E+00
v	3/18/96	MW-4, MW-6	1.375	3.17	162	0.3	8.97E-02	3.30E+01
_	7/1/96	HC-MW1, HC-MW2	2.50E-07	24.34	80	0.3	2.54E-07	9.3 E-5

¹ Source of K is slug tests for MW-4, MW-6, MW-9, and MW-12. (Amended Closures/Post Closure Plan) For the clay layer between HC-MW-1 and HC-MW-2 the K value was taken form the source presented in the OEPA letter dated April 10, 1996 (Lindeburg, Michael, R., Civil Engineering Reference Manual, 4th Ed.)

² dh for MW-4, MW-6, MW-9, and MW-12 are presented in Table 2. dh for HC wells is from recent sampling.

³ dL for MW-4, MW-6, MW-12 is taken from Figure 1. DI for HC wells is the depth between the middle of each screened interval.

⁴ Amended Closure/Post Closure Plan

Table 4

Analytical Parameters Hazardous Waste Storage Area Rickenbacker ANGB, Ohio

	I				Natural	T
		ı	Metals	Metals	Attenuation	Field
Well	voc	svoc	(unfiltered)		Parameters ^(a)	Parameters ^(b)
		- 0.00	(driintorod)	(microu)	1 didilictors	Talameters
MW-3	Х				х	×
MW-4	Х	Х	x	X.	Х	X
MW-5	Χ			:	X	X
MW-6	Х				Х	X
MW-8	Х	Х	x	Х	X	х
MW-11	Х	Х	x	Х	Х	X
MW-12	Х	Х	x	Х	Х	X
ESMP-2D	. X		1		X	Х
ESMP-3D	· X				X	X
ESMP-4S	Х				Х	X
ESMP-4D	Х				Х	X
ESMP-6D	X				X	X
ESMP-8S	Х]		Х	X
ESMP-10S	Х		ĺ		. X	X
ESMP-13S	Х				Х	X
ESMP-14D	Х				Х	X
ESMP-16S	Х				Х	X
ESMP-16D	X				x	X
ESMP-17S	Х				Х	X

⁽a) Natural attenuation parameters included methane, ethene, ammonia, nitrogen, nitrite, nitrate, sulfate, alkalinity, and chloride.

⁽b) Field Parameters included pH, temperature, conductivity and the following natural attenuation parameters: ferrous iron, sulfide, alkalinity, dissolved oxygen, and oxidation reduction potential.

Organic Chemicals Detected in Groundwater February, 1995 Hazardous Waste Storage Area Rickenbacker ANGB, Ohio Page 1 of 2

	TCE	(µg/L)	2	2 2	2 5	95.60	1.00	6.50	Q	9	2	2	Ą	2	2	2	2	BCL	BCL	BCL	2	1.00	1.00	9	S	BCL	45.60	8	S	Q.
Total	1,2-DCE	(µg/L)	Ç	2 2	2 2	1.00	2	1.30	2	QN	2	Q	¥	S	S	2	2	Ð	2	S	2	2	2	2	2	2	528.00	2	2	Ñ
	1,1-DCE	(μg/L)	Ş	2	2	2	2	2	2	2	2	Q	ž	S	Q	2	2	8	2	2	S	S	2	2	2	2	1.30	2	2	Q Q
Vinyl	Chloride	(μg/L)	CN	Ş	2	2	2	2	1.00	16.00	2	2	ž	1.70	2.00	2	2	9	2	2	2	8	2	2	2	8	2.70	2	2	Q
Total	BTEX	(μg/L)	B 0	C	X	1.05	¥	BLQ	BLQ	2.48	BLQ	2	3.13	BLQ	¥	BLQ	0.00	BLQ	BLQ	BLQ	S	BLQ	¥	BLQ	BLQ	2.44	963.26	BLQ	¥.	2
Total	Xylenes	(µg/L)	Q	2	¥	2	¥	Q	ð	2	BLQ	2	2	2	¥	2	BLQ	2	BLQ	2	BLQ	BLQ	ž	Q	ВГО	2	279.58	2	ž	<u>Q</u>
	Ethylbenzene	(µg/L)	2	ВГО	ď	2	¥.	Q	9	2	BLQ	2	8	2	¥	Q	ВГО	Q	2	BLQ	Q.	Q	A A	2	BLQ	BLQ	237.09	BLQ	¥ X	2
	Toluene	(µg/L)	BLQ ^(b)	BLQ	¥	1.05	¥	ВГО	BLQ	2.48	BLQ	2	3.13	BLQ	ž	BLO	BLQ	1.30	BLQ	BLQ	BLQ	BLQ	¥	BLQ	BLQ	2.44	22.41	윤	¥	2
	Benzene	(µg/L)	ND ^(a)	Q	NA ^(c)	2	ž	2	2	2	2	2	2	2	Ą	BLQ	BLQ	2	2	2	2	2	¥	2	BLQ	2	424.18	2	¥	S
	Sample	Date	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/27/95	02/27/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/27/95	02/27/95	02/28/95	02/28/95	02/27/95	02/27/95	02/27/95	02/27/95	03/01/95	02/28/95	02/28/95	02/28/95	02/28/95
	Sample	Location	ESMP-1S	ESMP-1D	ESMP-2S	ESMP-2D	ESMP-3S	ESMP-3D	ESMP-4S	ESMP-4D	ESMP-5S	ESMP-5D	ESMP-6S	ESMP-6D	ESMP-6D(D)	ESMP-7S	ESMP-7D	ESMP-8S	ESMP-8DD	ESMP-9S	ESMP-9D	ESMP-10S	ESMP-10S(D)	ESMP-10D	ESMP-11D	ESMP-12S	ESMP-13S	ESMP-13D	ESMP-13D(D)	ESMP-14S

Table 5

Organic Chemicals Detected in Groundwater Hazardous Waste Storage Area Rickenbacker ANGB, Ohio February, 1995 Page 2 of 2

					Total	Total	Vinyl		Total	
Sample	Samole	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	Chloride	1,1-DCE	1,2-DCE	TCE
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
ESMP-14(D)	02/28/95	₹	≨	¥	¥	¥ V	QΝ	QN	9	2
ESMP-14D	02/28/95	Ş	BLQ	Ş	2	BLQ	1.00	2	2.20	2
ESMP-14D(D)	02/28/95	¥	Ą	¥	¥	¥	1.00	8	2.10	2
ESMP-14DD	02/28/95	2	BLQ	QN	2	BLQ	2	9	2	BLC
ESMP-15S	02/28/95	BLQ	1.08	BLQ	BLQ	1.08	2	2	2	£
ESMP-15D	02/28/95	S	BLQ	Q.	BLQ	BLQ	2	2	2	2
ESMP-16S	03/01/95	89.18	BLO	228.5	153.65	471.33	2	윤	2	윤
ESMP-16D	03/01/95	6.46	BLQ	26.87	62.03	95.36	2	2	2	2
ESMP-17S	02/28/95	BLQ	2	QV	2	BLO	1570.00	11.70	5065.00	B 당
MW-2	03/01/95	BLQ	BLQ	BLQ	BLQ	BLQ	2	운	2	2
MW-3	02/28/95	BLQ	BLQ	ВГО	BLQ	BLO	2	2	2	
MW-4	03/01/95	BLQ	BLQ	BLQ	BLQ	BLQ	8	2	2	2
MW-5	03/01/95	17.19	41.94	317.97	375.93	753.03	2	2	Q	2
MW-6	02/28/95	1.67	BLQ	BLQ	BLQ	1.67	23.1	6.5	920.00	ACL ⁽⁶⁾
MW-6(D)	02/28/95	₹	₹	Υ	¥	¥	21.9	6.5	837.00	9580
MW-8	02/28/95	BLQ	2	2	2	BLQ	呈	2	2	BCL
6-WW	03/01/95	2	£	Q	2	2	£	2	욷	ᄝ
MW-10	03/01/95	2	£	Q	윤	皇	2	2	윤	2
MW-11	02/28/95	Ş	2	9	2	2	皇	2	2	2
MW-11(D)	02/28/95	¥	¥	¥	¥	¥	2	2	운	ದ್ದ
MW-12	02/28/95	2	BLO	S	2	BLQ	2	<u> </u>	2	2
MW-12(D)	02/28/95	NA	Ϋ́	Ϋ́	¥	¥	2	2	2	BCL

(a) ND = not detected.

(b) BLQ = below limit of quantitation.

(c) NA = not analyzed.
(d) BCL = below calibration limit (1.0 μg/L).
(e) ACL = above calibration limit (5000 μg/L).

g:\wp51\do^{*}

Organic Chemicals Detected in Groundwater Hazardous Waste Storage Area Rickenbacker ANGB, Ohio August, 1995

					Total	Total	Vinyl			Methylene	
Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	Chloride	1,2-DCE (Total)	TCE	Chloride	Chloroform
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(mg/L)	(µg/L)
		•									
ESMP-2D	Aug-95	Q	9	ð	2	Q.	S	2	70	Q	Ş
ESMP-3D	Aug-95	2	2	2	2	2	QN	2	2	S	9
ESMP-4S	Aug-95	g	2	2	9	2	QN	2	2	Ę	2 5
ESMP-4D	Aug-95	2	2	Q	2	S	15	2	2	2	2 5
ESMP-6D	Aug-95	2	2	Q	Q.	2	Q	2	2	2	2 5
ESMP-8S	Aug-95	2	2	2	£	2	Q	2	Q	Q.	2
ESMP-10S	Aug-95	2	2	2	2	2	QN	2	2	Q	S
ESMP-13S	Aug-95	200	2	130	100	430	Q	430	2	S	2
ESMP-14D	Aug-95	2	2	S	2	2	Q	Q	2	2	2
ESMP-16S	Aug-95	23	9	23	7	53	Q N	12	2	2	2
ESMP-16D	Aug-95	7	Q	69	20	146	2	S	2	2	2
ESMP-17S	Aug-95	운	Q	Q	2	2	930 E	7730 E	2	2	. ~
ESMP-17S (DUPE)	Aug-95	2	2	Q.	2	8	Q	2	2	S	2
MW-3	Aug-95	2	2	S	<u>Q</u>	2	Q.	2	2	1.0	2 5
MW-4	Aug-95	2	2	Q	2	2	Ω	8	2) F	2 5
MW-5	Aug-95	2	12	170	210	395	QN	2	2	2	2 2
MW-6	Aug-95	2	2	S	2	2	ΩN	2	270	Z	9
MW-8	Aug-95	2	2	9	2	2	Ω	2	2	2	2
MW-11	Aug-95	2	2	2	2	S	Q	2	2	2	2
MW-12	Aug-95	2	Q.	Q	2	2	ΩN	2	2	2	2
MW-12 (DUPE)	Aug-95	2	Q	2	2	2	Q	2	2	S	9
MW-13	Aug-95	Q.	Q	2	2	2	Q	8	2	2	2
	22.6			2		ZZ.	Q.	2	QN	QN	

(a) ND = not detected.

(b) BLQ = below limit of quantitation.
(c) NA = not analyzed.
(d) BCL = below calibration limit (1.0 μg/L).
(e) ACL = above calibration limit (5000 μg/L).

Organic Chemicals Detected in Groundwater Hazardous Waste Storage Area Rickenbacker ANGB, Ohio December, 1995

					Total	Total	Vinyi						2-Methyl				Methylene
Sample	Sample F	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	Chloride	1,2-DCE(Total)	TCE	2-Butanone	Acetone	2 Hexanone	2-Pentanone	GRO	Lead (unf)	Lead(fil)	Chloride
Location	Date	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)
		g	2	2	S	S.	2	2	2	QN	QN	QN	Q	Q.	2	S	S
ESMP-2D	Dec-95	2	2	2	2	g	2	Q	14	2	2	Š	2	2	Ñ	Q	1.8.1
ESMP-2D (DUPE)	Dec-95	오	2	2	2	Ş	2	2	13	2	2	2	Q	9	Q	2	Q
ESMP-3D	Dec-95	ę	9	ð	Ş	Ş	ð	2	9	2	2	2	Q	<u>Q</u>	S	Ş	2
ESMP-4S	Dec-95	2	9	2	£	2	S	2	Ş	2	3.3 JB	Ş	Q	S	S	ş	1.5 JB
ESMP-4D	Dec-95	2	2	2	2	ę	5	2	Ş	2	2	S	Q	2	Q.	2	Q.
ESMP-6D	Dec-95	2	2	Ş	Ş	2	7	2	2	2	2	S	Q	2	Š	Ş	Q.
	Dec-95	2	2	2	2	9	2	<u>Q</u>	Ş	Ð	2	2	2	2	2	8	S
ESMP-10S	Dec-95	g	2	2	Ş	Ş	2	2	ş	£	2	2	2	9	2	2	Q
ESMP-13S	Dec-95	270	8.97	140	8	203	Ş	410	ę	2	2	Ş	Q	4.8 E/ 5D	Q	ð	2
ESMP-14D	Dec-95	욷	2	2	2	2	2	4.2.3	g	Ş	8	2	2	2	Q N	S	Q.
ESMP-16S	Dec-95	88	2	13	15	99	2	2	g	2	4.6 JB	Q	2	0.49	Q	2	2
ESMP-16D	Dec-95	2	2	S	Ş	2	2	2	2	Ş	2	2	S	0.064	Q.	2	2
ESMP-17S	Dec-95	2	S	Q	2		930 E/1200 D	1400 E/4500 D	Ş	2	63 JBD	2	2	1.1	2	Ş	1.7.3
ESMP-17S (DUPE)	Dec-95	2	õ	2	ð	2	2	ð	£	2	2	2	2	2	2	S	2
MW-3	Dec-95	2	2	2	2	2	S	2	Š	1.6 JB	2 JB	1.6 JB	2	2	2	Ş	2
	Dec-95	2	2	2	2	2	ð	8	2	3.9 JB	3.8 JB	3.1 JB	2.2 JB	2	2	2	Š
MW-5	Dec-95	운	123	140	8	345	2	Q	Ş	£	2	2	8	14 E/14 D	S	2	2
MW-6	Dec-95	2	2	ð	2	2	ð	78	180	Ş	1.8 JB	S	2	0.097	2	Q	2
MW-8	Dec-95	2	2	2	2	2	2	2	Š	2	2	2	2	2	5.70	5B	2
MW-11	Dec-95	욷	2	£	2	2	2	2	Š	2.2 JB	4.1.78	2	1.5.1	2	58	5B	2
MW-12	Dec-95	웆	Ş	2	2	2	2	<u>.</u>	õ	2	2	2	2	ᄝ	2	2	2
MW-12 (DUPE)	Dec-95	Ş	₽	Q.	S	g S	Q	Q	£	Ð	Q	QN	ND	Q.	ND	Q	Q.

(a) ND = not defected.
(b) BLQ = below limit of quantitation.
(c) NA = not analyzed.
(d) BCL = below calibration limit (1.0 μg/L).
(e) ACL = above calibration limit (5000 μg/L).

Organic Chemicals Detected in Groundwater Hazardous Waste Storage Area Rickenbacker ANGB, Ohio March, 1996

					Total	Total	Vinyl				
Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	Chloride	1,2-DCE (Total)	TCE	2-Butanone	Acetone
Location	Date	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ar and	90.01	9	9	9		:		!	,		
LSIMIL'ED	Wal-30	2	2	2	2	2	2	2	5 7	2	2
ESMP-3D	Mar-96	2	ð	2	2	2	ð	2	2	Q	7.2 J
ESMP-4S	Mar-96	S	Q	Q	2	S	õ	Q	2	2	QN
ESMP-4D	Mar-96	Q	2	õ	2	S	19	Q	2	S	2.1 J
ESMP-6D	Mar-96	ð	2	Q	S	2	1.9 J	QN	2	Q	1.7.1
ESMP-8S	Mar-96	2	S	2	2	Q	Q	Q	2	Q	2
ESMP-10S	Mar-96	2	2	Q	2	8	Q	S	2	Q	2
ESMP-13S	Mar-96	280	8.2.3	120	怒	440	62	440	2	Q	Q
ESMP-14D	Mar-96	2	Q	2	2	2	Q	5.80	2	Q	2
ESMP-16S	Mar-96	\$	2	Q	2	18	Q	Q	2	2	1.6 JB
ESMP-16D	Mar-96	2	2	S	2	Q	Q	2	욷	2	6.6 J
ESMP-17S	Mar-96	2	2	S	ᄝ	2	570 E/690 D	3066	2	S	55 JBD
ESMP-17S (DUPE)	Mar-96	2	2	S.	2	Q	029	2900	2	2	55 JB
MW-3	Mar-96	2	Ω	Q	2	2	2	2	2	S	7.7 J
MW4	Mar-96	ç	2	Q	S	S	Q	2	Ş	2)	7
MW-5	Mar-96	2	4.8 J	54	9	29	2	2	2	2	ΩN
MW-6	Mar-96	2	2	Q	8	2	8	Ω	£	2	1.7 J
MW-8	Mar-96	2	2	Q	8	8	g	2	2	Q.	4.4 J
MW-11	Mar-96	2	2	2	2	8	Q	2	2	2	7.6 J
MW-12	Mar-96	Q	2	Ð	2	2	2	2	2	2	2 3
MW-12 (DUPE)	Mar-96	2	Q	QN	QN	Q.	2	2	2	QN	1.7 J

(a) ND = not detected.

(b) BLQ = below limit of quantitation.

(c) NA = not analyzed. (d) BCL = below calibration limit (1.0 $\mu g/L$). (e) ACL = above calibration limit (5000 $\mu g/L$).

Table 9
Natural Attenuation Groundwater Geochemical Data
February, 1995
Hazardous Waste Storage Area
Rickenbacker ANGB, Ohio

		Water			Dissolved	Redox	Total	Hydrogen	Formula								
olomoo	1						100	ingeneral in	enoine -			NO2+NO3					
Sample	Sample	emp.		Conductivity	_	Potential	Alkalinity	Sulfide	<u>ro</u>	Chloride	Sulfate	Nitrogen	50	Methane	Ethene	S	Ä.
Number	Date	္ရ	Ŧ	(mp/soum)	(mg/L)	(m)	(mg/L)	(mg/L0	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L	(mg/L)	(mg/L)	(mg/L)
ESMD-10	02/28/05	7	7 23	703	0	9	ć	(6)	,								
	00,00,00	<u> </u>	7 7 7	3 3	2 (2 5	220	<u> </u>	- -	7.01	41.4	<0.05	3.3	0.058	2	130	0.22
ESMP-ZD	C6/87/70	12.4	7.16	761	0.0	-63.3	344	Ϋ́	6.	13.1	26.7	0.0	5.6	0.067	운	190	0.1
ESMP-3S	02/28/95	¥	¥ Z	¥	¥	¥	¥	Ϋ́	¥	ž	₹ Z	ž	¥	¥	¥	¥	¥
ESMP-3D	02/28/95	12.4	7.06	810	0.0	-16.7	389	¥.	-	10.9	52.8	0.05	1.6	0.067	2	216	0.11
ESMP-4S	02/28/95	¥	6.98	965	¥	23.1	378	¥.	0.8	5.1	44	0.08	2.7	0.109	2	186	0.1
ESMP-4D	02/28/95	10.2	7.02	874	0.7	140	394	¥ Z	0.1	7.31	87.1	0.08	2.6	0.015	0.001	220	0.06
ESMP-5S	02/27/95	12.1	7.3	730	0.8	200	293	¥	<0.05	4.91	55.8	7.94 /	1.7	0.002	2	150	<.05
ESMP-5D	02/27/95	13.9	7.07	751	0.3	45.8	370	0 .4	1.9	9.04	38.5	0.07	2	0.106	2	228	0.17
ESMP-6D	02/28/95	13.5	7.18	840	0.1	-24.4	385	6 0.1	6.0	10.3	61.5	0.09	4.1	0.079	2	168	5.92
ESMP-7S	02/28/95	8.2	7.33	632	0.2	199	296	¥	0.1	8.24	32.7	1.78	4.4	0.017	Q.	124	0.49
ESMP-7D	02/28/95	12.5	7.29	703	4.0	-53.5	212	0 .1	1.6	18.8	54.5	60.0	5	0.478	2 N	208	0.12
ESMP-8S	02/27/95	¥ X	ž	₹ Z	¥	¥	¥	¥	¥	Š	¥	0.23	5.1	0.003	2	¥	0.07
ESMP-8D	02/27/95	¥ X	7.1	622	¥	-93.8	380	~ 0.1	3.1	ž	¥	¥	¥	¥	¥	100	¥
ESMP-8D ^(c)	02/27/95	₹ Z	7.08	781	<u>~</u>	-89.5	¥	Ą	¥	ž	¥	¥	¥	¥	¥	¥	Ą
ESMP-8DD	_	14.4	₹	Š	0.5	Ą	¥	Ϋ́	¥	7.26	54.5	0.07	1.3	9000	2	¥	0.19
ESMP-8DD(D)	_	Ϋ́	≨	\$	ž	¥	¥	¥	¥	7.33	55	¥	1.3	¥	¥	Š	Ą
ESMP-9S	02/28/95	∀	7.13	799	¥	115	254	¥ X	0.1	7.2	48.1	5.75	7.2	0.015	Q.	188	0.34
ESMP-9S(D)	02/28/95	¥ Z	₹	Ϋ́	¥	¥	¥,	¥	¥	¥	ž	5.95	4.8	0.016	2	¥	0.32
ESMP-9D	02/28/95	12.8	7.11	803	0.0	2.7	393	6 0.1	0.8	6.3	65	90.0	9:1	0.008	2	150	<.05
ESMP-9D(D)	02/28/95	¥ Z	7.1	817	ž	¥	₹	¥	¥	¥	¥	¥	¥	¥	¥	¥	Υ Y
ESMP-10S	02/27/95	¥ X	7.22	299	¥	152	314	Ą	0.3	5.05	44.2	2.75	2.9	0.003	Q.	192	0.05
ESMP-100	02/27/95	₹	7.01	823		၉	426	-0 -	1.8	8.21	36.1	0.11	3.9	0.12	2	296	90.0
ESMP-11D	02/27/95	4	7.09	786	1.	-70.1	376	6 0.1	2.5	5.11	57.8	0.08	2.6	0.105	Q	220	0.07
ESMP-11D(D)	02/27/95	₹	₹	¥ Z	¥	¥	¥	¥	¥	2	58.9	≨	5.6	¥	¥	¥	¥
ESMP-13S	02/28/95	 T.	7.21	841	0.3	-136	386	0.1	3.2	23.5	38.3	0.09	27.6	7.83	0.001	330	0.43
ESMP-13S(D)	02/28/95	¥	¥ Z	¥	¥	ş	¥	¥	¥.	23.3	38.2	≨	₹	¥	₹	¥	¥
ESMP-13D	02/28/95	1.1	7.14	775	0.5	-136	364	0.1	1.5	17	54.9	0.09	2.1	0.11	9	170	0.07
ESMP-13D(D)	02/28/95	₹	¥	Ā	¥	≨	¥	¥	¥	17.8	6.73	60.0	2.1	0.114	2	¥	0.07
ESMP-14S	02/28/95	11.6	7.28	290	0.2	-115	440	-0°	3.2	7.29	19.2	0.09	3.1	0.462	Q.	288	0.13
ESMP-14S(D)	02/28/95	₹	₹	¥ X	Š	₹	¥	¥	¥	¥	¥	0.09	3.1	¥	₹	¥	0.12
ESMP-14D	02/28/95	12.1	7.09	167	0.2	-116	393	~0.1	1.4	17	58.7	0.11	3.2	0.106	2	214	0.09
g:\wp51\doc	g:\wp51\docs\costello\/62970\table9.xls	70\table9.x	S.									i				•	

Natural Attenuation Groundwater Geochemical Data Hazardous Waste Storage Area Rickenbacker ANGB, Ohio February, 1995 Page 2 of 2 Table 9

		Water			Dissolved	Redox	Total	Hydrogen	Ferrous		i i	NO ₂ +NO ₃					
Sample	Sample	Temp.		Conductivity	Oxygen	Potential	Alkalinity	Sulfide	Iron	Chloride	Sulfate	Nitrogen	700	Methane	Ethene	co ₂	NH3
Number	Date	<u>(</u>	둅	(mpyos/cm)	(mg/L)	(mV)	(mg/L)	(mg/L0	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L	(mg/L)	(mg/L)	(mg/L)
ESMP-14D(D)	02/28/95	Ϋ́	Ϋ́	ΑN	AN	Α̈́	AN	Ą	NA	16.3	57.1	0.11	3.6	NA	NA	¥	0.08
ESMP-15S	02/28/95	11.8	7.55	731	0.2	-95	185	٥.1 م	1.1	16.1	206	0.32	46	0.136	2	136	0.19
ESMP-15S(D)	02/28/95	¥	¥	¥	¥	ž	¥	¥	¥	15.6	206	¥	¥	0.129	2	¥ Z	¥
ESMP-15D	02/28/95	9.3	8.22	764	1.2	72.1	103	¥	9.0	20.1	264	0.41	114.2	0.007	S	06	0.1
ESMP-16S	03/01/95	11.9	7	2150	0.0	-143	522	40.1	14.8	53.3	208	<0.05	523	3.067	2	510	1.22
ESMP-16D	03/01/95	13.8	6.94	2070	0.0	-170	443	0.5	5.7	19.5	938	<0.05	61.3	1.15	S	422	0.75
ESMP-16D(D)	03/01/95	₹	6.95	2080	¥	-172	¥	¥	Š	20.7	895	<0.05	¥	1.182	Q	¥	0.74
ESMP-17S	02/28/95	11.3	7.24	773	0.2	-125	380	c 0.1	4.5	7.26	14	0.09		2.296	0.057	190	0.29
MW-2	03/01/95	10.8	7.16	832	0.5	212	389	¥	<0.05	7.79	61.2	0.09	5.3	0.661	S	256	0.05
MW-3	02/28/95	10.1	7.08	943	8.	212	368	¥	<0.05	21.1	127	0.1	4.6	0.003	2	276	90.0
MW-3(D)	02/28/95	¥	7.1	961	¥	213	¥	N N	¥	ž	¥	≨	¥	Ą	¥	¥	¥
MW4	03/01/95	10.7	6.95	859	1.5	210	405	Ϋ́	<0.05	19	103	0.15	7.2	0.002	Q.	316	0.09
MW-4(D)	03/01/95	Š	ž	Ą.	ž	¥	Ϋ́	¥	¥	¥	¥	0.15	¥	¥.	¥	₹	0.09
MW-5	03/01/95	Ϋ́	7.07	942	ž	-115	416	Ϋ́	16.5	œ	6.57	0.08	139.6	7.693	2	478	0.45
MW-5(D)	03/01/95	AN	¥	¥	¥	¥	¥	¥	¥	¥	Ϋ́	¥	¥	7.178	<u>R</u>	¥	Š
MW-6	02/28/95	10.5	96.9	1017	0.4	181	387	¥	<0.05	¥	¥	¥	5.5	0.013	2	526	¥
MW-6(D)	02/28/95	Ϋ́	6.98	1057	¥	178	¥	¥	¥	₹	¥	₹	5.6	¥.	¥	¥	¥
MW-8	02/28/95	10.3	7.34	719	4.1	509	391	¥	<0.05	æ	20	90.0	13.4	0.015	2	208	0.1
WW-9	03/01/95	8.9	6.82	1596	0.2	19.1	480	¥	2.4	18.9	496	0.08	9.7	0.004	2	412	0.27
MW-9(D)	03/01/95	¥	Š	¥ Ž	¥	¥	¥	¥	¥	20	498	₹	9.7	₹	¥	Ϋ́	¥
MW-10	03/01/95	13.2	7.11	1172	0.0	-92.1	390	<0.1	2.2	23.4	296	0.07	5.7	0.04	2	258	0.49
MW-11	02/28/95	11.4	7.38	566	3.9	194	211	¥.	<0.05	5.65	44.8	9.1	~	BLQ ^(d)	2	94	<.05
MW-12	02/28/95	12.4	7.04	854	9.0	38.6	347	¥	0.3	19.8	187	0.57	3.5	0.001	<u>Q</u>	300	<.05
MW-12(D)	02/28/95	¥	ž	NA	N A	NA	Ä	NA	W.	13.3	91.7	¥	3.6	NA	NA	٩	¥

(a) NA = not available.

(b) ND = not detected.

(c) (D) = duplicate sample. (d) BLQ = below lower limit of quantitation (0.001 μ g/L).

Natural Attenuation Groundwater Geochemical Data August, 1995 Hazardous Waste Storage Area Rickenbacker ANGB, Ohio Table 10

		Water			Dissolved	Redox	Total		Ferrous			NO ₂ +NO ₃	-			
Sample	Sample	Temp.		Conductivity	Oxygen	Potential	Alkalinity	Sulfide	Ion	Chloride	Sulfate	Nitrogen	Methane	Ethane	Ethene	N F
Number	Date	<u>(၃</u>	Hd	(muhos/cm)	(mg/L)	(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L	(mg/L)	(mg/L)	(mg/L)
ESMP-2D	Aug-95	17.1	6.76	740	9.0	-59	320	0.007	1.51	9.2	44.5	0.03	0.074	ð	2	2
ESMP-3D	Aug-95	16.4	6.78	798	1.3	5-	381	90.0	1.26	9.2	20	0.04	0.063	2	2	Q
ESMP-4S	Aug-95	23.6	6.58	¥	8.0	83	486	0.648	¥	6.1	227	0.03	0.414	2	2	S
ESMP-4D	Aug-95	17.5	99.9	902	1.4	22	400	0.113	0.65	9	96.3	0.04	0.039	ð	0.004	Q
ESMP-6D	Aug-95	19.8	6.7	839	1.3	-31	379	9000	1.32	9	55.8	0.1	0.08	Q.	2	Q Q
ESMP-8S	Aug-95	25.3	7.54	578	6.7	156	331	0.283	0.37	3.7	27.8	0.21	8	Q.	Q	2
ESMP-10S	Aug-95	22.7	7.31	289	6.4	159	301	0.421	¥	2.9	42.7	0.93	2	2	2	0.37
ESMP-13S	Aug-95	17.2	96.9	Ą	4.0	-125	374	0.011	2.72	16	60.9	0.04	19.163	900.0	0.002	0.39
ESMP-14D	Aug-95	16.1	6.73	46	0.7	-83 -83	320	0.044	1.58	15.3	48.6	0.05	0.138	2	2	2
ESMP-16S	Aug-95	19.1	6.82	¥	4.0	-134	430	0.012	2.94D	21.2	939	0.05	5.344	2	2	0.65
ESMP-16D D	Aug-95	19	6.74	4	0.8	-126	424	0.028	2.34D	ž	¥	ž	0.357	Q	2	Q
ESMP-17S	Aug-95	17.9	6.97	Ϋ́	0.5	-113	368	0.017	2.69	5.6	38.3	0.04	2.73	õ	0.057	Q Q
ESMP-4D(Dupe)	Aug-95	¥	¥	¥	¥	¥	200	¥	≨	¥	ž	¥.	ş	¥	¥	Ą
ESMP-6D(Bupe)	Aug-95	¥	¥	Ą	¥	¥	480	0.005	1.33	ž	¥	≨	Ϋ́	¥	¥	¥
ESMP-10S(Dupe)	Aug-95	¥	₹	₹ Z	¥	ž	400	0.386	¥	¥	¥	≨	¥	¥	¥	¥
ESMP-13S(Dupe)	Aug-95	¥	ž	ğ	ž	¥	460	0.009	2.84	₹	¥	≨	¥ Ž	ž	<u></u>	¥
MW-3	Aug-95	17	6.7	922	1.8	157	387	0.078	0.37	16	72	0.05	2	2	2	Q
MW-4	Aug-95	18.4	6.52	800	2.0	231	446	0.051	0.07	2.2	88	0.05	Q	8	2	Q
MW-5	Aug-95	¥	ž	¥ X	ž	¥	391	0.365	2.62	3.8	19.4	0.11	0.33	2	2	1.1
MW-6	Aug-95	17.5	6.57	833	1.1	4	409	0.27	0.43	9.4	129	0.17	2	ð	2	2
MW-8	Aug-95	18.8	69.9	753	4.3	233	383	0.261	0.42	6. 6.	15.7	0.04	ð	2	2	Q
MW-11	Aug-95	18.2	7.01	260	4.7	178	275	0.118	0.24	2.7	49.7	1.7	2	2	2	0.31
MW-12	Aug-95	17.4	6.81	834	1.0	143	480	0.091	1.1	Ą	NA NA	N A	S	Q.	2	Ą

⁽a) NA = not available.

⁽b) ND = not detected.

⁽c) (D) = duplicate sample. (d) BLQ = below lower limit of quantitation (0.001 $\mu g/L$).

D = Sample Diluted

Table 11 Natural Attenuation Groundwater Geochemical Data December, 1995 Hazardous Waste Storage Area Rickenbacker ANGB, Ohio

		Water			Dissolved	Redox	Total		Ferroise			OIA CIA				
Sample	Sample	Temp.		Conductivity	Oxygen	Potential	Alkalinity	Sulfide	lron	Chlorida	Culfata	1402+1403		i	ī	:
Number	Date	(၃)	Ŧ	(mmyos/cm)	(mg/L)	(Vm)	(ma/L)	(ma/L)	(I/om)	(ma/l)	Cunate (mg/l)	megonini	Methane	Ethene	Etnane	Ę,
								ì	1	11/20	1)(1)	(1)(E)	(mg/L	(mg/L)		(mg/L)
ESMP-2D	Dec-95	11.7	7.25	731	×	-63	350	0.003	ţ	0	1.	,				
ESMP-3D	Dec-95	12.2	8.31	808	2.7	7	9 6	2000	- ;	9 0	÷ 6	- -	0.075	2	2	0.25
ESMP-4S	Dec-95	12.2	8.69	1235	23	127	250	0.024	_ 6	7 6	20.50	2 !	0.039	2	2	0.2
ESMP-4D	Dec-95	12.2	8 62	936	-	2 2	3 5	0.090	54. Q	χ,	290	2	0.344	2	2	0.15
ESMP-6D	70-05	126	7 03	9 0	? ;	3 3		0.039	0.28	č. -	120	2	0.164	2	욷	9
ECMD 80	0000	2 6	7	0.0	Ž ,	-	380	¥	1.39	8.3	23	2	0.08	2	2	2
COINT-60	Cec-32	10.3	8.58	601	3.5	125	780	0.212	0.41	1.5	53	2	S	2	2	0.29
ESMP-10S	Dec-95	=	8.53	099	3.1	65	340	0.164	0.27	2.3	40	1.6	2	2	S	0.23
ESMP-13S	Dec-95	12.5	7.36	762	¥	06-	390	0.003	2.54	17	8,	2	15.36	Ę	7	200
ESMP-14D	Dec-95	11.5	7.43	759	ž	4	360	0.015	1.34	9.1	70	2	0 117	2	2	7 0
ESMP-16S	Dec-95	12.5	7.15	1978	¥	-111	260	0.024	2.050	φ		9	27.0	2 9	2 8	⊋ ;
ESMP-16D	Dec-95	12	7.11	1144	₹	-75	380	0.012	2 03	. 5	2 6	2 2	0.270	2 9	5000	0.53
ESMP-17S	Dec-95	12.5	7.48	751	¥	6	360	V	3 6	4 6	2 4	<u> </u>	45 1	2	0.002	0.48
MW-3	Dec-95	11.2	7.18	922	Ą		420		7 6	2. (÷ ;	€ ;	1.775	0.056		0.13
MW-4	Dec-95	10.1	7.06	863	Y X	217	2 0	200	2 00	<u>' '</u>	à à	7.7	2	2	<u>Q</u>	0.2
MW-5	Dec-95	Ą	Ą	Į V	. ×	; <u> </u>	9 5	2003	0.02	<u> </u>	z	 	2	2	2	0.11
MAV 6	30 00			<u> </u>	<u> </u>	<u> </u>	0,4	0.019D	2.08D	8.3 8.3	8	0.1	2.493	2	0.01	1.4
0-444	CEC-SO	= :	9.44	919	4.1	151		0.09	0.17	9.5	140	6.1	2	9	2	0.16
MVV-8	Dec-95	10.6	4.	746	ž	25	410	0.056	0.08	1.5	15	0.17	2	2	2	S
MW-11	Dec-95	12.4	8. 4.	554	5.8	241	240	0.003	0.02	2.4	14	2.9	2	Š	. 5	5
MW-12	Dec-95	14.1	6.93	899	NA	142	380	0.005	0.17	9.5	98	44		2	2	<u> </u>
												:	•	֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝	ב	2

⁽a) NA = not available.

⁽b) ND = not detected.

⁽c) (D) = duplicate sample.

⁽d) BLQ \approx below lower limit of quantitation (0.001 µg/L).

D = Sample Diluted

Table 12 Natural Attenuation Groundwater Geochemical Data Hazardous Waste Storage Area Rickenbacker ANGB, Ohio March, 1996

		Water			Dissolved	Redox		Ferrous				
Sample	Sample	Temp.		Conductivity	Oxygen	Potential	Sulfide	Iron	Methane	Ethene	ž	Ethane
Number	Date	(၃)	핍	(mp/soyum)	(mg/L)	(mV)	(mg/L)	(mg/L)	(mg/L	(mg/L)	(mg/L)	
ESMP-2D	Mar-96	10.3	7.35	543	6.1	ž	0.001	1.63	0.132	2	0.1	Q
ESMP-3D	Mar-96	11.8	7.29	582	4.9	¥	0.002	-	0.049	2	2	2
ESMP-4S	Mar-96	8.4	7.25	612	4.3	Ą X	0.389D	0.29D	2	2	2	2
ESMP-4D	Mar-96	9.7	7.2	989	4.2	Ϋ́	0.017	0.28	0.139	Q	2	2
ESMP-6D	Mar-96	5	7.31	609	4.8	¥	0.007	1.46	0.082	2	2	8
ESMP-8S	Mar-96	_	7.76	375	9.5	Ϋ́	0.559	0.32	2	Ω	0.1	2
ESMP-10S	Mar-96	9.3	7.58	439	6.7	¥	9.0	0.33	Ñ	Q	0.1	2
ESMP-13S	Mar-96	=	7.46	555	5.5	¥	0.03	1.88D	18.139	0.005	0.5	0.021
ESMP-14D	Mar-96	10.7	7.42	531	6.3	¥	0.005	1.41	0.119	S	S	9
ESMP-16S	Mar-96	6	7.38	1435	6.1	¥	0.146	2.41D	4.701	S	9.0	2
ESMP-16D	Mar-96	10.5	7.41	820	6.8	¥	0.008	2.35	0.251	2	0.4	Q Q
ESMP-17S	Mar-96	10.2	7.57	518	5.3	¥	0.004	3.27	2.576	0.004	0.1	0.003
MW-3	Mar-96	8.8	7.38	631	13.4	¥	0.032	0.05	2	2	0.1	2
MW4	Mar-96	7.4	7.35	446	12.8	¥	0.001	0.01	Q	2	0.1	8
MW-5	Mar-96						0.041D	0.56D	0.186	2	0.3	S
MW-6	Mar-96	7.6	7.38	456	9.6	₹	0.019	0.04	2	Ñ	ð	2
MW-8	Mar-96	7.5	7.42	483	6.8	₹	0.067	0.12	0.081	2	0.1	S
MW-11	Mar-96	9.4	7.28	594	5.2	¥	0.002	0.01	2	2	9	2
MW-12	Mar-96	9.6	7.38	625	6.2	¥	0.002	0.11	2	S	2	2
MW-12(Dupe)	Mar-96	¥	ž	ž	¥	₹	0.001	0.11	2	2	2	2
ESMP-17S(Dupe)	Mar-96	₹	₹	X X	Ą	NA	0.003	3.25	2.416	0.045	0.1	0.008

(a) NA = not available.

(b) ND = not detected.

(c) (D) = duplicate sample. (d) BLQ = below lower limit of quantitation (0.001 $\mu g/L$).

D = Sample Diluted

APPENDIX D

LABORATORY REPORTS FROM USEPA, 1995 AFCEE-SPONSORED NATURAL ATTENUATION INVESTIGATION

Ref: 95-DK9/vg May 9, 1995

Dr. Don Kampbell

R.S. Kerr Environmental Research Lab

U.S. Environmental Protection Agency

P.O. Box 1198

Ada, OK 74820

THRU: S.A. Vandegrift SV

Dear Don:

This report contains the results of my GC/MSD analysis of methylene chloride extracts of core samples and one free floating product sample (MW-5) from Rickenbacker ANGB for quantitation of benzene, trichloroethylene (TCE), tetrachloroethylene (PCE), toluene, ethylbenzene (EB), p-Xylene (p-X), m-Xylene (m-X), o-Xylene (o-X), 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), 1,2,4,5-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,3,4-tetramethylbenzene, naphthalene; 2-methylnaphthalene and 1-methylnaphthalene performed under Service Request #SF-1-118.

The analytical method was a modification of RSKSOP-124. Cool (38°C) on-column injection (0.5 μ l) was used with electronic pressure control set for a constant flow of 0.9 ml/min. A 30M X 0.25 mm Restek Stabilwax (Crossbonded Carbowax-PEG, 0.5 μ m film) capillary GC column with 9 inch long X 0.53 mm ID uncoated capillary precolumn was used. Quantitation was based on calibration curves of selected target ions (2 or 3 ions , total area) for each compound. A high level (5-250 μ g/ml), naphthalenes 0.1-50 ug/ml) and low level (0.05-5 μ g/ml) calibration curve was applied to each sample for quantitation. Complete reports detailing the acquisition method and calibration curves have been recorded. The soil samples were extracted by Mark Blankenship on March 6, 1995 and the free-floating product was received March 2, 1995. All samples were analyzed by GC/MSD on March 15-16, 1995.

If I can be of further assistance, please feel free to contact me.

STUCETETA

andth. La

xc: R.L. Cosby

J.L. Seeley 4

G.B. Smith

m-Xylene 4.77E+00 5.18E+00 7.63E+01 5.08E+01 N/A ND BLQ 7.00E-01	N/A	2.63E+02	5.30E-01
p-Xylene 4.87E+00 5.14E+00 2.80E+02 5.20E+01 N/A ND ND ND 3.14E-01	N/A	2.62E+02	4.97E-01
Ethylbenzene 4.79E+00 5.04E+00 2.59E+02 5.30E+01 N/A ND ND ND ND ND	N/A	2.62E+02	5.10E-01
Toluene 4.76E+00 5.06E+00 9.51E+00 N/A ND BLQ BLQ BLQ	N/A	2.57E+02	5.17E-01
PCE 4.71E+00 4.87E+00 ND 4.97E+01 N/A ND ND ND ND ND	N/A	2.38E+02	5.14E-01
1CE 4.60E+00 4.81E+00 ND 4.98E+01 N/A ND ND ND ND ND	A/N	2.39E+02	5.17E-01
Benzene 4.81E+00 5.17E+00 ND 5.36E+01 N/A ND ND 2.06E-01	N/A	2.46E+02	5.08E-01
Sample QC (5 ug/ml) 5.0 ug/ml MW-5 Free Product (ug/ml) 50 chk 0.1 ug/ml Naphthalenes Method Blank SF-1-118 SS-1 SS-2	10 ug/ml Naphthalenes	250 ug/ml	0.5 ug/ml

SF-1-118 Dr. D. Kampbell

•						QN						
1,2,4,5-MeBenzene	N/A	4.71E+00	1.98E+02	5.08E+01	NA	ND	ΩN	3.90E-02	ВГО	A/N	2.76E+02	4.97E-01
1,2,3-TMB	4.61E+00	4.92E+00	3.02E+02	5.25E+01	N/A	QN	Q.	1.35E-01	QN	N/A	2.70E+02	5.20E-01
1,2,4-TMB	4.64E+00	5.00E+00	7.68E+02	5.33E+01	N/A	QN	QN	4.87E-01	2.48E-02	N/A	2.76E+02	5.21E-01
1,3,5-TMB	4.70E+00	4.98E+00	4.20E+02	5.30E+01	N/A	QN	ND	1,21E-01	BLQ	A/N	2.71E+02	5.12E-01
o-Xvlene	4.81E+00	5.08E+00	5.32E+01	5,31E+01	N/A	QN	QN	6.56E-02	2.10E-02	A/N	2.62E+02	5.20F-01
Sample	(lw/ml)	5.0 lg/ml	MW-5 Free Product (ug/ml)	50 chk	0.1 ug/ml Naphthalenes	Method Blank SF-1-118	SS-1	88.2	1 5.00 1	10 ug/ml Nanhthalenes	250 ua/m!	0 5 10/ml

SF-1-118 Dr. D. Kampbell

GC/MSD (SIM)

Analyst: D.

1-MeNaphthalene	N/A	A/N	3.21E+00	N/A	9.93E-02	ΩN	QN	2.33E-02	ND	9.84E+00	A/N	N/A
2-MeNaphthalene	N/A	N/A	4.93E+00	N/A	1.00E-01	ND	ND	2.37E-02	ND	9.81E+00	N/A	N/A
Naphthalene	N/A	N/A	3.45E+01	N/A	1,00E-01	QN	N.	8,35E-02	QN.	9.79E+00	N/A	N/A
1,2,3,4-MeBenzene	N/A	5.12E+00	1.03E+03	5.44E+01	N/A	ΩN	BLQ	3.13E-02	ВГО	N/A	2.72E+02	5.05E-01
Sample	QC (5 ug/ml)	5.0 ug/ml	MW-5 Free Product (ug/ml)	50 chk	0.1 ug/ml Naphthalenes	Method Blank SF-1-118	SS-1	SS-2	SS-3	10 ug/ml Naphthalenes	250 ug/ml	0.5 ug/ml

1-118)	MEAN & TOC	1.514	0.799	1.409		
TOC (SR# SF-	TOTAL SOIL %TOC	i 1 1	0.856	1.462		
AFB FOR	SOLIDS %OC	0.010 1.505 0.015 1.497	0.798	1.458	1.020	
SOILS FROM RICKENBACHER AFB FOR TOC (SR# SF-1-118)	OIL FILT	0.010	0.058	0.004		7.7 MG/L 7.9 MG/L
SOILS FRC	SAMPLES	SS-1-1 SS-1-2	SS-2-1 SS-2-2	SS-3-1 SS-3-2	LECO	WP033-I

TRUE VALUES: LECO = 1.00 +/- 0.04% C WPO33-I = 7.70 MG/L OC

TPH, mg oil/Kg

250

C 50

2 50

& on Lampbeld

per Don Kampbell,
phore corversation
4/12/95

- % Moisture

Core S	amples MoisTure, %	TPH mg Oil/kg	Toc,?
55-1	13.7	< 50	1.5
55-2	17,2	< 50	0.8
55-3	13.3	250	1.4

	MW- 5	55	-)	55-2	55-3
	Mg/ml	-		mg/kg	
Benzene	< 5	<	5	< 5	< 5
Toluene	TO	•	,	7	5
Ethyl benzene	240			282	5
P-xylene	250)			198	1)
-xylene	76 (377	4		443	19
o-xylene	5)			41.	12
1,3,5 THYMB	388			76	5
1,2,4 TRIMB	740			309	16
1,2,3 TriMB	540			85	25
1,2,3,5 TeTra MB	440			2.5	< <i>5</i>
1,2,3, 4 TeTra MB	860			44	< 5
TCE	< 5			< 5	< 5
PCE	25	1		45	< 5
				1	
			BTE X	1 TPH	For Kampbell
	•		Extro	(frons	4/14/95

File: Ricken backer ANGP 722450.25

		Field Rickenbacke	r ANG, Ohio		** 1
Sample	Date	Carbon Dioxide mg/l	Total Alkalinity mg/l	Ferrous Iron mg/l	Hydrogen Sulfide mg/l
ES mp-5S	2-27-95	150	293	<.05	-
ES mp-5D	2-27-95	228	370	1.9	<.1
ES mp-10D	2-27-95	296	426	1.8	<.1
ES mp-10S	2-27-95	192	314	.3	-
ES mp-8D	2-27-95	100	380	3,1	<.1
ES mp-11D	2-27-95	220	376	2.5	<.1
ES mp-7S	2-28-95	124	296	.1	
ES mp-7D	2-28-95	208	212	1.6	<.1
ES mp-6D	2-28-95	168	385	.9	< 1
ES mp-9D	2-28-95	150	393	.8	<.1
ES mp-9S	2-28-95	188	254	.1	-
MW-12	2-28-95	300	347 •	.3	-
ES mp-3D	2-28-95	216	389	1.0	-
MW-6	2-28-95	226	387	<.05	
MW - 11	2-28-95	94	211	<.05	-
ES mp-4D	2-28-95	220	394	.1	-
ES mp-4S	2-28-95	186	378	.8	-
ES mp-14S	2-28-95	288	440	3.2	<.1
ES mp-14D	2-28-95	214	393	1.4	<.1
ES mp-2D	2-28-95	190	344	1.3	-
ES mp-1D	2-28-95	170	336	.1	-
MW-3	2-28-95	276	368	< 05	-
MW-8	2-28-95	208	391	<.05	-
ES mp-13S	2-28-95	330	386	3.2	.1

Sample	mg/L Cl	mg/L _SO ₄ =	mg/L NO ₂ + NO ₃ (N)	mg/L <u>NH</u> 3
ESMP-1D	10.2	41.4	<.05	0.22
ESMP-2D	13.1	56.7	0.09	0.10
ESMP-4D	7.31	87.1	0.08	0.06
ESMP-4S	5.10	144	0.08	0.10
ESMP-13D	17.0	54.9	0.09	0.07
ESMP-13D Field Dup	17.8	57.9	0.09	0.07
ESMP-13S	23.5	38.3	0.09	0.43
ESMP-13S Dup	23.3	38.2		
ESMP-14D	17.0	58.7	0.11	0.09
ESMP-14D Dup			0.11	0.08
ESMP-14D Field Dup	16.3	57.1	0.11	0.08
ESMP-14S	7.29	19.2	0.09	0.13
ESMP-14S Field Dup	- NO SA	MPLE -	0.09	0.12
ESMP-15D	20.1	264	0.41	0.10
ESMP-15S	16.1	206	0.32	0.19
ESMP-15S Dup	15.6	206		
ESMP-16D	19.5	938	<.05	0.75
ESMP-16D Field Dup	20.7	895	<.05	0.74
ESMP-16S	53.3	208	<.05	1.22
ESMP-17S	7.26	41.0	0.09	0.29
MW-2	7.79	61.2	0.09	0.05
MW-3	21.1	127	0.10	0.06
MW-4	19.0	103	0.15	0.09
MW-4 Dup			0.15	0.09
MW-5	8.00	6.57	0.08	0.45
MW-8	8.00	20.0	0.06	0.10
MW-9	18.9	496	0.08	0.27
MW-9 Dup	20.0	498	-	
MW-10	23.4	296	0.07	0.49
Blank	<.5	<.5	<.05	<.05
WP032	106	75.1	2.51	2.08
WP032 T.V.	106	75.0	2.81	2.30
Spike Rec.	101%	95%	98%	100%

<u>Sample</u>	_н_	Conductivity	Redox
ESMP-5S	7.30	730	200
ESMP-5D	7.07	751	-45.8
ESMP-10D	7.01	823	-30.0
ESMP-10S	7.22	667	152
ESMP-8D	7.10	779	-93.8
ESMP-8D Dup	7.08	781	-89.5
ESMP-11D	7.09	786	-70.1
ESMP-7S	7.33	632	199
ESMP-7D	7.29	703	-53.5
ESMP-6D	7.18	840	-24.4
ESMP-9D	7.11	803	2.70
ESMP-9D Dup	7.10	817	
ESMP-9S	7.13	799	115
MW-12	7.04	854	38.6
ESMP-3D	7.06	810	-16.7
MW-6	6.96	1017	181
MW-6 Dup	6.98	1057	178
MW-11	7.38	566	194
ESMP-4D	7.02	874	140
ESMP-4S	6.98	965	23.1
ESMP-14D	7.09	767	-116
ESMP-14S	7.28	760	- 115
ESMP-2D	7.16	761	-63.3 190
ESMP-1D	7.22	703	212
MW-3	7.08	943	212
MW-3 Dup	7.10	961 719	209
MW-8	7.34	719 775	-136
ESMP-13D	7.14	841	-136
ESMP-13S	7.21 7.24	773	-125
ESMP-17S	7.24	731	-95.0
ESMP-15S	8.22	764	72.1
ESMP-15D	7.16	832	212
MW-2	7.10	1172	-92.1
MW-10	7.11	942	-115
MW-5	7.00	2150	-143
ESMP-16S ESMP-16D	6.94	2070	-170
ESMP-16D Field D.		2080	-172
MW-9	6.82	1596	19.1
MW-4	6.95	859	210
4411 4			

GROUNDWATER SAMPLES FROM RICKENBACHER AFB FOR TOC & TIC (SR# SF-1-118)

SAMPLES	MG/L TC	MG/L OC	MG/L TIC	SAMPLES	MG/L TC	MG/L OC	MG/L TIC	1 0 0 0
MW-2	112.0	5.3	106.7	ESMP-15D	132.8			18.6
MW-03 .	ம	4.6	101.0	ESMP-15D DUP	132.8	115.0		17.8
MW-4	112.4	7.2	105.2	ESMP-15S	134.0			37.0
MW-5	197.2	139.6	57.6	ESMP-16D	156.4			95.1
MW-6		5.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ESMP-16S	594.0	523		71.0
MW-6 DUP	\$ L 3 1 1 C C C C C C C C C C C C C C C C C	5.6		ESMP-17S	104.0	2.0		102.0
MW-9	150.0	7.6	142.4		•			
MW-9 DUP	149.6	7.6	142.0	WPO32-II	10.2 MG/L			
MW-8	105.2	13.4	91.8		10.3 MG/L			
MW-10	100.4	5.7	94.7		10.9 MG/L			
MW-11	56.0	1.0	55.0		9.5 MG/L			
MW-12	8.86	3.5	95.3		9.8 MG/L			
MW-12 DUP	8.86	3.6	95.2					
ESMP-1D	92.0		88.7	WP033-I			٠	
ESMP-1D DUP	92.0		88.7		7.9 MG/L			
ESMP-2D	94.8		92.2					
ESMP-3D	108.4	1.6	106.8					
ESMP-4D	109.6	5.6	107.0					
ESMP-4S	109.2	2.7	106.5					
ESMP-5D	0.86		0.96					
ESMP-5D DUP	98.4		96.4					
ESMP-5S	82.0		80.3					
ESMP-6D	112.0		107.9					
ESMP-7D	83.6		78.6					
ESMP-7S	83.2		78.8					
ESMP-8DD	99.2		97.9					
ESMP-8DD DUP	9.66		98.3					
ESMP-8S		5.1						
ESMP-8S DUP			1 1 1 1 1 1 1 1 1 1					
ESMP-9D	108.0	1.6	106.4					
REP	92.6		88.4					
ESMP-9S REP 2	92.6	4	8.06					
ESMP-10D	122.4	m	118.5					
ESMP-10S	83.2		80.3					
ESMP-11D	100.4	7	97.8					
. ESMP-11D DUP	100.8		98.2					
ESMP-13D	97.2	0	95.1					
ESMP-13D DUP	97.2		95.1					
ESMP-13S	129.6		102.0					
ESMP-14D	0.96		92.8					
ESMP-14D REP 3	0.96		92.4					
	0.7	m	104.5					
	107.		104.5					
ESMP-14S REP 3	107.6		103.9					
	1, 1							

TRUE VALUE: WPO32-II = 9.9 MG/L WPO33-I = 7.7 MG/L

1234-TETBA	48,49 50,09 60,99 71,38 71,38 71,38 70 70 70 70 70 70 70 70 70 70 70 70 70	
1.2.3.5.TETBA	5.03.75 5.00.00 5.0	
1.2.4.5-TETBA	85.88 85.88 85.89 85.80	
12.3-TMB	52.88 53.88 53	
1.2.4-TMB	10.72 50.00 50.00 50.00 50.00 60	
1.3.5-TMB	5.7.5 8.0.00 8.000	
9-XYLENE	7.1.4.8	
m-XYLENE	101.59 50.40 80.40 81.00	
P-XYLENE	101.75 5.0.00 8.0.00 8.0.00 8.0.00 8.0.00 8.0.00 8.0.00 8.0.00 8.0.00 8.0.00 8.	
ETHYLBENZENE	101.85 59.45 59.45 59.45 81.00	
TOLUENE	101.31 52.37 50.30 80.00 81.00 8	
BENZENE	55.55 55.00 8 R.O. 8 8 R.O. 8 1.67 1.	
SampleName	00C, 08SERVED, PPB 0C, TRUE VALUE, PPB MW.2 MW.4 MW.4 MW.4 MW.5 MW.6 MW.9 MW.10 MW.11 10 PPB MW.12 ESMP-15 ESMP-30 ESMP-10 ESMP-10 ESMP-30 ESMP-30 ESMP-30 ESMP-30 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-10 ESMP-15 ESMP-16 ESMP-16 ESMP-16 ESMP-16	

Table 1. Quantitation Report for S.R. # SF-1-118 from Rickenbacker.

Concentration = ppb

Compound	MW-2	MW-03	MW-4	MW-6	MW-6	MW-6 Field Dup	MW-8	WW-9	MW-10	MW-11	MW-11 Lab Dup
VINYL CHLORIDE 1,1—DICHLOROETHENE T—1,2—DICHLOROETHENE C—1,2—DICHLOROETHENE 1,1,1—TRICHLOROETHANE CARBON TETRACHLORIDE BENZENE 1,2—DICHLOROETHANE TRICHLOROETHANE TRICHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TOLUENE TETRACHLOROETHENE TOLUENE TOLUENE TOLUENE TOLUENE TOLUENE TOLUENE TOLUENE TOLUENE	99999999999999	555155555555555	000000000000000000000000000000000000000	ON ON ON ON ON ON ON ON ON ON ON ON ON O	23.1 6.5 47.3 873 ND ND 2.3 CON ND ND ND ND ND ND ND ND ND ND ND ND ND	21.9 6.5 43.2 794 794 795 796 797 797 797 797 797 797 797 797 797	22222222122222	9999999999999999	222222222222222222222222222222222222222	2222222222222222	222222222222222222222222222222222222222
	MW-12	MW-12 Field Dun	ESMP 1D	ESMP 1S	ESMP 2D	ESMP 2S	ESWP 03	ESMP 3D	ESMP 4D	ESMP 4S	ESMP 6D
VINYL CHLORIDE 1,1 - DICHLOROETHENE T-1,2 - DICHLOROETHENE C-1,2 - DICHLOROETHENE CARBON TETRACHLORIDE BENZENE 1,2 - DICHLOROETHANE TRICHLOROETHANE TOLUENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE	222222222222222		999999999 99999	222222222122222		222222222222222222222222222222222222222	555 55555555555	5555±555555 155555	6.555555555555555555555555555555555555	0: N N N N N N N N N N N N N N N N N N N	22222222222222222
ND = None Detected	Bel	= Below Calibration Limit	ı Limit(1.0 ppb)		Dilution Dup =	Dup = Duplicate	**** = Abo	**** = Above Calibration Limit(5000 ppb)	Limit(5000 p	(qd	

Table 2. Quantitation Report for S.R. # SF-1-118 from Rickenbacker.

Concentration = ppb

Compound	ESMP 5S	ESMP 6D	ESMP 6D	ESMP 7D	ESMP 7S	ESMP 8DD	ESMP 8S	ESMP 9D	ESMP 9S	ESMP 10D	ESMP 10S
VINYL CHLORIDE 1,1—DICHLOROETHENE T—1,2—DICHLOROETHENE C—1,2—DICHLOROETHENE CHLOROFORM 1,1,1—TRICHLOROETHANE CARBON TETRACHLORIDE BENZENE 1,2—DICHLOROETHANE TRICHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE	2222222222222222	<u>7: 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</u>	29 D D D D D D D D D D D D D D D D D D D	<u> </u>	999999999999999	999999991199999	222222222 1022222 1022222	<u> </u>	99999999	9999999999999	5555555555 55555 55555 55555 55555 55555 55555 5555 5555
VINYL CHLORIDE 1,1—DICHLOROETHENE T—1,2—DICHLOROETHENE CHLOROFORM 1,1,1—TRICHLOROETHANE CARBON TETRACHLORIDE BENZENE 1,2—DICHLOROETHANE 1,2—DICHLOROETHANE TOLUENE TOLUENE TOLUENE TOLUENE TETRACHLOROETHENE CHLOROBENZENE ETHYLBENZENE ETHYLBENZENE m+p—XYLENE o—XYLENE	ESMP 108 Lab Dup NO NO NO NO NO NO NO NO NO NO NO NO NO	ND ND ND ND ND ND ND ND ND ND ND ND ND N	M	ESMP 13D ND ND ND ND ND ND ND ND ND ND ND ND ND	ESMP 13D ESM	T 5 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13S ESMP 14D 1.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	ESMP 14D Tield Dup 1.0 ND ND ND ND ND ND ND ND ND ND ND ND ND N	AND ON ON ON ON ON ON ON ON ON ON ON ON ON	C C C C C C C C C C C C C C C C C C C	Lab Dup NO NO NO NO NO NO NO NO NO NO NO NO NO N

Table 3. Quantitation Report for S.R. # SF-1-118 from Rickenbacker.

Concentration = ppb

QC0307F 200 ppb	207 203 191 195 200 198 219 224 210 197 197 197 202	
QC0307E 20 ppb	21.3 20.8 20.1 19.9 20.0 22.2 23.8 22.1 20.6 19.8 21.7 20.6 40.9 *	
QC0307D 200 ppb	Gracked Vial sample lost	(αρας
QC0307C 20 ppb	20.3 20.4 19.4 20.5 19.7 19.7 19.6 22.6 21.1 19.6 22.6 18.9 39.6 *	10B BL0307A BL0307B pb 10
QC0307B 200 ppb	222 226 202 202 201 219 229 220 220 221 221 211 420 **	BL0307A
QC0307A 20 ppb	22.3 23.0 20.2 19.0 22.0 22.7 21.8 19.6 22.8 20.9 21.2 21.2 21.2 21.4 42.8 *	200 2 200 p
ESMP 17S	1570 11.7 152 152 4913 ND ND ND ND ND ND ND ND ND ND ND ND ND	QC0310A 20 ppb 22.0 21.8 19.9 19.7 21.4 21.1 22.6 21.9 22.5 20.7 20.4 22.0 39.8 * 20.0
ESMP 16S	ND ND ND ND ND ND ND ND ND ND ND ND ND N	QCG307J 200 ppb 196 203 202 207 199 203 224 230 209 198 198 198 215 196 388 **
ESMP 16D	ND ND ND ND ND ND ND ND ND ND ND ND ND N	QCO3071 QCO307J 20 ppb 200 ppb 21.9 196 19.9 203 19.9 207 20.3 199 20.5 203 22.2 224 22.5 203 22.5 203 22.6 199 20.6 199 20.1 198 21.7 215 19.7 196 40.3 * 388 *** 19.6 208
ESMP 15S	222222222	0307G QC0307H 0pb 200 ppb 1,8 201 1,0 208 1,4 192 1,3 203 1,0 205 1,0
ESMP 16D	9999999999999	0
Compound	VINYL CHLORIDE 1,1—DICHLOROETHENE T—1,2—DICHLOROETHENE C—1,2—DICHLOROETHANE CARBON TETRACHLORIDE BENZENE 1,2—DICHLOROETHANE TOLUENE TETRACHLOROETHENE TOLUENE TETRACHLOROETHENE TOLUENE VINT. CHLORIDE 1,1-DICHLOROETHENE 1-1,2-DICHLOROETHENE C-1,2-DICHLOROETHENE C-1,2-DICHLOROETHANE CARBON TETRACHLORIDE BENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE TOLUENE T	

ANALYZED 3/7/95 SAMPLE	METHANE	ETHYLENE	units = mg/L
LAB BLANK ESMP-3D ESMP-5D ESMP-6D ESMP-7D ESMP-7S ESMP-8DD ESMP-8S ESMP-9D	ND 0.067 0.106 0.002 0.079 0.478 0.017 0.006 0.003 0.008 0.015	ND ND ND ND ND ND ND ND ND ND ND ND ND N	units = mg/L Lower quantitation limits: methane = 0.001 mg/L ethylene = 0.003 mg/L per Do-kampbell phone conv. 4/12/95
" FIELD DUP	0.016	ND	
ANALYZED 3/8/95 SAMPLE	METHANE	ETHYLENE	
LAB BLANK ESMP-10D ESMP-10S ESMP-11D MW6 MW11 MW12 ESMP-1D ESMP-2D ESMP-4D ESMP-4S ESMP-13D "FIELD DUP ESMP-14S ESMP-14D ESMP-15S "LAB DUP ESMP-16D "FIELD DUP ESMP-16S ESMP-17S	BLQ 0.012 0.003 0.105 0.013 BLQ 0.001 0.058 0.067 0.015 0.109 0.110 0.114 7.830 0.106 0.462 0.007 0.136 0.129 1.150 1.182 3.067 2.296	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
MW2 MW3 MW4 MW5 *LAB DUP MW8 MW9 MW10	0.661 0.003 0.002 7.693 7.178 0.015 0.004 0.040	ND ND ND ND ND ND ND ND	

Ref: 95-DF20

April 17, 1995

Dr. Don Kampbell

R.S. Kerr Environmental Research Lab U.S. Environmental Protection Agency

P.O. Box 1198 Ada, OK 74820

THRU: S.A. Vandegrift 9

Dear Don:

As requested in Service Request SF-1-118, GC/MS analysis for phenols and aliphatic/aromatic acids was done on one water sample labelled MW-5 from Rickenbacken ANGB. Liquid-liquid extraction was done by Mark Blankenship on April 6, 1995. The extract was analyzed by GC/MS on April 13, 1995. A SOP describing the extraction, derivatization and GC/MS analysis is in preparation.

Liquid-Liquid Extraction of Phenols and Aliphatic/Aromatic Acids.

For the extraction of the phenols and aliphatic/aromatic acids from the water sample, 100 ml of the water sample is placed in a dried, silanized 125 ml separatory funnel. Spike solutions if applicable were added to the sample at this time. The pH of the water is adjusted to 2.0 using 1:1 H₂SO₄. For a water blank without Na₃PO₄ added, a pH of 2 is reached with ten drops. For 100 ml of water sample preserved with Na₃PO₄, twenty drops of acid is required. Next 25 g of NaCl is added to the separatory funnel after which the liquid is swirled to dissolve the salt.

The water sample is extracted four times with 5 ml aliquots of acid free methylene chloride. To remove acids from methylene chloride and other solvents, 10 g of Celite Micro-Cel T-49 is added to one liter of GC/MS grade solvent. This mixture is stirred for one hour, allowed to settle and is filtered through a Millipore organic filter pad using Millipore vacuum apparatus. The methylene chloride extracts are collected in silanized 40 ml VOA vials. The total extract volume is recorded.

Phenol/Acid Derivatization to Form PFB Ethers and Esters.

A 200 μ l aliquot of the methylene chloride extract is delivered to a 2 ml screw cap vial containing 2.5 mg of dried potassium carbonate. Next 790 μ l of acid free acetonitrile, 10 μ l of 100 ppm benzoic acid-d $_{5}$ and 10 μ l of pentafluorobenzyl bromide is added to the vial. Benzoic acid-d $_{5}$ is the internal standard for the analysis. The vials are momentarily placed in a sonic bath to free the solid salt from the bottom of the vial. The screw caps of the vials are tightened and the vials are heated in a oven at 60°C for 2 hours. When the vials are removed from the oven, 500 μ l of 0.1M Hcl is added. The vials are shaken for 30 seconds and 200 μ l of the top organic layer is delivered to the liner of a 2 ml crimp cap autosampler vial.

Negative Ion Chemical Ionization GC/MS Analysis of PFB-Derivatives.

For negative ion chemical ionization GC/MS, a chemical ionization ion volume is placed in the ion source block of the Finnigan 4615 GC/MS. Methane gas is regulated using a needle valve until the ionizer pressure reaches 0.40 torr. With the ionizer at this pressure, the high vacuum pressure indicates 1.0x10⁻⁵ torr. The mass spectrometer is tuned using the calibration gas, FC-43, to obtain good peak shape for ions 414 and 633 m/z and a relative intensity of 100:14:4 for ions 633, 414 and 127 m/z. The ion source is heated at 150°C. The injector and transfer lines are held at 275°C.

The Hewlett Packard 7673 autoinjector delivered 0.5 μ l of the sample or standard to the GC injection port. A splitless injection for 1 minute was used for the analysis. The analytical column was a 60 meter, 0.25 mm J&W DB5-MS capillary column with 0.25 μ m film thickness. The column was temperature programmed from 50°C to 100°C at 30°C/min and then to 300°C at 6°C/min. The helium linear velocity measured with air was 36 cm/s when the oven temperature was 100°C and the helium head pressure on the column was 29 psi. The Finnigan 4615 GC/MS was scanned from 42 to 550 m/z in 0.5 sec.

Standard curves are prepared using a mixture containing thirteen phenols, twenty-five aliphatic acids and nineteen aromatic acids. Calibration curves for acetic acid was not prepared due to artefact levels of this acid in solvents. Derivatization of the standard solutions and samples was done in the same manner. Standards are prepared at 5, 10, 25, 50, 100, 500 and 1000 ppb. Quality assurance was maintained during the sample analysis by running check standards, derivatization blanks, extraction banks, extraction recovery check standards and spiked field samples.

Quantitative Results of Phenols and Aliphatic/Aromatic Acids.

Table I provides the concentrations of phenols and aliphatic/aromatic acids found in the water sample taken at the Rickenbacken ANGB site and quality assurance samples run at the same time as the samples. The lowest reported value of phenol or acid in this table is at or about 5 ppb.

Spike recoveries for each of the acids and phenols were determined in 50 ppb spikes of 100 ml of water blank. Recovery of the 50 ppb concentration was poor for low molecular weight aliphatic acids due to the poor extraction efficiencies of these acids from water. Higher molecular weight aliphatic acids and all the phenols and aromatic acids exhibit good recoveries.

Sample MW5 contained high levels of lower molecular weight acids and branched heptanoic and octanoic acids. The branched octanoic acids are present in the water sample at or above 1 ppm. These compounds are labelled in the attached chromatograms. One chromatogram shows the extracted ion profile of C_6 , C_7 , C_8 and C_9 branched chain acids. The extracted ion for each corresponds to the carboxylate ion of each acid. Also included please find extracted ion profiles for m/z ions 141 and 155. The 141 ion could correspond to octenoic acids, methylcyclohexanecarboxylic acids or dimethylcyclopentanecarboxylic acids. Compounds such as nonenoic acids or dimethyl-(or ethyl)cyclohexanecarboxylic acids could give carboxylic ions at 155 m/z.

Please note that a problem has occurred in the determination of benzoic acid. A larger amount of benzoic acid was found in the extraction blank than in the sample. We will determine the source of the benzoic acid artifact before the next acid/phenol sample queue is started.

If you should have any questions, please feel free to contact me.

Sincerely,

Dennis D. Fine

xc: J.L. Seeley

G.B. Smith

R.L. Cosby

APR-24-1955 11:37

Table 1. Quantitative Report and QC Data for Phenois and Aliphatic and Aromatic Acids for Samples from Rickenbacken ANGS (Service Request SF-1-118).

		Extraction 8bnk	60 ppb Extraction Recovery	MW45	
	The second secon	22	44	1594	
1	PROPANOIC ACID - PFE	5	14	76	
2	2-METHYLPROPANOC ACID - PFB	5	52	. 166	
3	TRIMETHYLACETIC ACID - PFB	11	11	121	
4	BUTYRIC ACID - PFB	***	41	187	
5	2-METHYLBUTYRC ACID - PFB		38	257	
6	3-METHYLBUTYRIC ACID - PFB		58	144	
7	3,3-DIMETHYLBUTYRIC ACID - PFB	N.F.	41	110	
8	PENTANOIC ACID - PFB	7		889	
9	2,3-DIMETHYLBUTYRIC ACID - PFB	N.F.	58		
10	Z-ETHYLBUTYRIC ACID - PFB	N.F.	57	20	·
11	2-METHYLPENTANOIC ACID - PFB	N.F.	59	44	
12	3-METHYLPENTANOIC ACID - PFB	N.F.	58	248	
	4-METHYLPENTANOIC ACID - PFB	N.F.	67	70	
14	HEXANOIC ACID - PFB	20	61	33	
	2-METHYLHEXANOIC ACID - PFB	N.F.	63	14	
16	PHENOL PFB		52	***	
17	CYCLOPENTANECARBOXYLIC ACID - PFB	N.F.	45	25	
	5-METHYLHEXANOIC ACID - PFB	N.F.	61	9	
18	a-CRESCL - PFB	N.F.	63	N.F.	
19		~~	64	1938	
20		6	64	400	
	HEPTANOC ACID - PFB	N.F.	. 61	N.F.	
-	m-CRESOL - PF8	N.F.	80	***	
23	p-CRESOL - PFB	N.F.	43	N.F.	
24	1-CYCLOPENTENE-1-CARBOXYLIC ACID - PFB	N.F.	63	N.F.	
25	O-ETHYLPHENOL - PFB	N.F.	59	20	
26	CYCLOPENTANEACETIC ACID - PFB	•	50	N.F.	
27	2,6-DIMETHYLPHENOL - PFB	N.F.	58	N.F.	
26	2,5-DIMETHYLPHENOL - PFB	N.F.		14	
28	CYCLOHEXANECARBOXYLIC ACIO - PFB	N.F.	61	N.F.	
30	3-CYCLOHEXENE-1-CARBOXYLIC ACID - PFB	***	55		
31	2,4-DIMETHYLPHENOL - PFB	N.F.	48	N.F. N.F.	
32	3,5-DIMETHYLPHENOL & M-ETHYLPHENOL - PFB	N.F.	131		
33	OCTANOIC ACID PFE	***	54	5	
34	2.3-DIMETHYLPHENOL - PFB	N.F.	62	N.F.	
35	P-ETHYLPHENOL - PFS	N,F.	67	N.F.	
36	BENZOIC ACID - PFB	88	71	18	
37	3,4-DIMETHYLPHENOL - PFB	N.F.	63	N.F.	
38	M-METHYLBENZOIC ACID - PFB	N.F.	45		
	1-CYCLOHEXENE-1-CARBOXYUC ACID - PFB	N.F.	59	N.F.	
39	CYCLOHEXANEACETIC ACID - PFB	N.F.	67	166	
40	2-PHENYLPROPANOIC ACID - PFB	N.F.	60	***	
41		N.F.	58	***	
	O-METHYLBENZOIC ACID - PFB	***	56	5	
	PHENYLACETIC ACID - PFB	N.F.	43	e	•
44		N.F.	42	•••	
45		N.F.	85	***	
	2,8-DIMETHYLBENZOIC ACIO - PFB	N.F.	43	***	
47		N.F.	56	7	
48			53	***	
40		N.F.	58 58	•••	
50		N.F.		***	
51			62	•••	
52	2,4-DIMETHYLBENZOIC ACID - PFB	N.F.		•••	
53	3.5-DIMETHYLBENZOIC ACID - PFB	N.F.	49	***	
54	THE RESERVE AND LOCAL PARTY.	N.F.			
55		N.F.			
36	10 P. C. C. C. C. C. C. C. C. C. C. C. C. C.	N.F.		u .	
57	THE PARTY OF THE P	N.F.		7	
	24,5 -TRMETHYLEENZOIC ACID - PFB	N.F.	81	144	
	• •				

indicates concentration of extract was below love st calibration standard (5 ppb).

N.F. Indicates not found.

Table I. Quantitative Report and QC Data for Phenols and Aliphatic and Aromatic Acids for Samples from Rickenbacker AFB (Service Request SF-1-118).

		101	С	oncentration	ррь	•	·		
	·	ECMP_ 135	ESMP-130	10 ppb Check Standard	100 ppb Check Standard	Standard Derivative Blank	Standard Derivative Blank	Extraction Method Blank	% Extraction Recovery of 50 ppb Spike
1	PROPANOIC ACID - PFB	840	19	17	116	11	16	14	11
2	2-METHYLPROPANOIC ACID - PFB	154	8	14	116	***	6	6	43
3	TRIMETHYL ACETIC ACID - PFB	•••	12	12	122	***	***	8	113
4	BUTYRIC ACID - PFB	144	7	15	114	8	11	9	33
5	2-METHYLBUTYRIC ACID - PFB	92	***	10	116	***	***	**	91
6	3-METHYLBUTYRIC ACID - PFB	112	***	10	116	•••	***	••	86
7	3,3-DIMETHYLBUTYRIC ACID - PFB	***	N.F.	11	118	N.F.	N.F.	N.F	119
8	PENTANOIC ACID PFB	43	***	13	113	***	***	7	99
9	2,3-DIMETHYLBUTYRIC ACID - PFB	5	N.F.	11	119	N.F.	N.F.	N.F	118
10	2-ETHYLBUTYRIC ACID - PFB	N.F.	N.F.	8	117	N.F.	N.F.	N.F	120
11	2-METHYLPENTANOIC ACID - PFB	9	N.F.	8	115	N.F.	N.F.	N.F	123
12	3-METHYLPENTANOIC ACID - PFB	5	N.F.	8	112	•••	N.F.	N.F	120
13	4-METHYLPENTANOIC ACID - PFB	***	N.F.	8	112	N.F.	N.F.	N.F	121
14	HEXANOIC ACID - PFB	29	7	12	115	5	5	**	136
15	2-METHYLHEXANOIC ACID - PFB	***	N.F.	8	113	N.F.	N.F.	N.F	130
16	PHENOL - PFB	***	***	12	99	***	***	**	113
17	CYCLOPENTANECARBOXYLIC ACID - PFB	5	N.F.	7	107	N.F.	N.F.	N.F	106
18	5-METHYLHEXANOIC ACID - PFB	***	***	11	110	***	***	***	144
19	o-CRESOL - PFB	N.F.	N.F.	11	127	N.F.	N.F.	N.F	124
20	2-ETHYLHEXANOIC ACID - PFB	285	***	12	123	***	***	***	126
21	HEPTANOIC ACID - PFB		***	[/] 10	116	***			131
22	m-CRESOL - PFB	N.F.	N.F.	11	126	N.F.	N.F.	N.F	123
23	p-CRESOL - PFB	N.F.	N.F.	11	127	N.F.	N.F.	N.F	123
24	1-CYCLOPENTENE-1-CARBOXYLIC ACID - PFB	N.F.	N.F.	11	113	N.F.	N.F.	N.F	96
25	o-ETHYLPHENOL - PFB	N.F.	N.F.	10	126	N.F.	N.F.	N.A	127
26	CYCLOPENTANEACETIC ACID - PFB	N.F.	N.F.	7	113	N.F.	N.F.	N.F	120
27	2,6-DIMETHYLPHENOL - PFB	N.F.	N.F.	9	127	N.F.	N.F.	N.A	118
28	2,5-DIMETHYLPHENOL - PFB	N.F.	N.F.	10	130	N.F.	N.F.	N.A	122
29	CYCLOHEXANECARBOXYLIC ACID - PFB	***	N.F.	7	111	N.F.	N.F.	N.F	120
30	3-CYCLOHEXENE-1-CARBOXYLIC ACID - PFB	N.F.	N.F.	11	120	•••	N.F.	**	117
31	2,4-DIMETHYLPHENOL - PFB	N.F.	N.F.	10	139	N.F.	N.F.	N.F	104
32	3,5-DIMETHYLPHENOL & M-ETHYLPHENOL - PFB	N.F.		10	132	N.F.	N.F.	N.F	126
33	OCTANOIC ACID - PFB	***	***	14	118	***	***		127
34	2,3-DIMETHYLPHENOL - PFB	N.F.		10	127	N.F.	N.F.	N.F	122 126
35	p-ETHYLPHENOL - PFB	N.F.	N.F.	10	130	N.F.	N.F.	N.F	159
36	BENZOIC ACID - PFB	36	33	95	161		23 N.F.	N.F	119
37	3,4-DIMETHYLPHENOL - PFB	N.F.	N.F.	10	135	N.F.	N.F.	N.F	105
38	m-METHYLBENZOIC ACID - PFB	20	N.F.	11	110	N.F.	N.F.	N.A	123
39	1-CYCLOHEXENE-1-CARBOXYLIC ACID - PFB	N.F.	N,F.		109	N.F.	N.F.	n.n A.n	127
40	CYCLOHEXANEACETIC ACID - PFB	N.F.		7	111	N.F.	N.F.	7/ R.N	118
41	2-PHENYLPROPANOIC ACID - PF8	N.F.		10	113	N.F. N.F.	N.F.	7.N 7.N	120
42	o-METHYLBENZOIC ACID - PFB	***	N.F.	10	118	N.F.	***	**	120
43	PHENYLACETIC ACID - PFB	. ***		10	112	N.F.	N.F.	N.F.	120
44	m - TOLYLACETIC ACID - PFB	N.F.		10	100 92	N.F.	N.F.	N.F	143
45	0-TOLYLACETIC ACID - PFB	N.F.		14	120	N.F.	N.F.	N.F	136
46	2,6-DIMETHYLBENZOIC ACID - PFB	N.F.		12 9	104	N.F.	N.F.	N.F	155
47	p-TOLYLACETIC ACID - PFB	N.F.		10	111	N.F.	N.F.	N.F	125
48	P-METHYLBENZOIC ACID - PFB	***	N.F.	11	106	N.F.	N.F.	N.F	127
49	3-PHENYLPROPANOIC ACID - PFB			11	111	N.F.	N.F.	N.F	120
50	2,5-DIMETHYLBENZOIC ACID - PFB	N.F.	N.F.	12	112	***	***	•••	125
51	DECANOIC ACID - PFB	•••		10	116	N.F.	N.F.	N.F	119
52	2,4-DIMETHYLBENZOIC ACID - PFB	***	N.F.	9	107	N.F.	N.F.	N.F	124
53	3,5-DIMETHYLBENZOIC ACID - PFB			10	114	N.F.	N.F.	N.F	121
54	2,3-DIMETHYLBENZOIC ACID - PFB	N.F.		10	113	N.F.	N.F.	N.F	116
55		N.F.		10	121	N.F.	N.F.	N.F	120
56	2,4,6 - TRIMETHYLBENZOIC ACID - PFB					N.F.	N.F.	N.F	117
57	3.4-DIMETHYLBENZOIC ACID - PFB	***		10	105	N.F.	N.F.	1.71 P.N	
58	2,4,5 - TRIMETHYLBENZOIC ACID - PFB	N.F.	N.F.	9	115	N.F.	M.F.	17.4	

^{***} Indicates concentration of extract was below lowest calibration standard (5 ppb).

N.F. Indicates not found.