

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)»

	\mathbf{y}	ТВЕРЖДАЮ
38	аведующий кафедрой 806	Крылов С.С.
	(№ каф.)	(подпись) (инициалы, фамилия
	_	20 г
	ОТЧЕТ	
О НАУЧНО-	ИССЛЕДОВАТЕЛЬСКОЙ	РАБОТЕ
	по теме:	
Генерация синтетическог	го набора данных для решег	ния задачи получения
карты гл	убины по спутниковому сн	имку
Научный руководитель		C C 1/
к.т.н., доцент		С.С. Крылов
Исполнитель		Савельев А.С.
r ionojinki i ojib		CABCIIDED A.C.

СОДЕРЖАНИЕ

Содержание	2
1 Аннотация	4
1.1 Понятие синтетического набора данных	4
1.2 Актуальность и практическая значимость	4
1.3 Цели и задачи	5
1.4 Образ результата	5
2 Текст выступления	6
2.1 Понятие синтетического набора данных	6
2.2 Актуальность и практическая значимость	6
2.3 Обзор существующих решений и подходов	7
2.4 Цели и задачи	7
2.5 Архитектура модели	7
2.6 Алгоритмы генерации	8
2.7 Стек технологий	8
2.8 Образ результата	8
3 План-проспект	9
3.1 Разработка алгоритма процедурной генерации геометрии	9
3.2 Разработка алгоритма процедурной генерации материалов	9
3.3 Автоматизация процесса генерации	9
3.4 Распараллеливание алгоритма для выполнения на вычислительного	M
кластере	9

3.5	Обучение	готовой	модели	прогнозирования	глубины	на	
сген	нерированном	датасете			•••••	10	
Библи	ография					11	

1 АННОТАЦИЯ

1.1 Понятие синтетического набора данных

Синтетические данные - это искусственные данные, которые имитируют реальные наблюдения и используются для обучения моделей машинного обучения, когда получить реальные данные сложно, дорого, затратно по времени, опасно или вовсе невозможно.

Синтетические данные генерируются быстрее, дешевле и, при необходимости, в полностью контролируемой среде.

1.2 Актуальность и практическая значимость

Отличительная особенность генерации синтетических данных - возможность автоматизировать процесс разметки и генерации карт.

Рендер движок делает возможным извлечение карт цвета, нормалей, затенения, глубины и других карт для отрисавонного изображения 3D-сцены.

Данная методология «сбора» данных переживает своё становление и находится на этапе внедрения в традиционный производственный пайплайн.

Для генерации датасета спутниковых снимков методология будет использоваться впервые.

1.3 Цели и задачи

Цель: Разработка программного обеспечения для генерации синтетического датасета спутниковых снимков и карт их глубины, а также автоматизация процесса сбора и накопления данных.

Задачи:

- Разработка алгоритма процедурной генерации геометрии
- Разработка алгоритма процедурной генерации текстур
- Автоматизация процесса рендеринга, сборки и накопления данных
- Обучение готовой модели прогнозирования глубины на сгенерированном датасете

1.4 Образ результата

- Программное обеспечение для генерации набора данных
- Программное обеспечение для автоматизации сбора и накопления данных, генерируемых на вычислительном кластере

2 ТЕКСТ ВЫСТУПЛЕНИЯ

2.1 Понятие синтетического набора данных

Синтетические данные - это искусственные данные, которые имитируют реальные наблюдения и используются для обучения моделей машинного обучения, когда получить реальные данные сложно, дорого, затратно по времени, опасно или вовсе невозможно.

Синтетические данные генерируются быстрее, дешевле и, при необходимости, в полностью контролируемой среде.

2.2 Актуальность и практическая значимость

Генерация синтетических датасетов стала возможной благодаря появлению И распространению 3D-пакетов игровых движков, предоставляющих разработчику открытый алгоритмизации К И автоматизации доступ К инструментам работы 3D-графикой И изображениями.

Отличительная особенность генерации синтетических данных возможность автоматизировать процесс разметки и генерации карт.

Рендер движок делает возможным извлечение карт цвета, нормалей, затенения, глубины и других карт для отрисавонного изображения 3D-сцены.

Данная методология «сбора» данных переживает своё становление и находится на этапе внедрения в традиционный производственный пайплайн.

Для генерации датасета спутниковых снимков методология будет использоваться впервые.

2.3 Обзор существующих решений и подходов

На данный момент работа High-Resolution Synthetic RGB-D Datasets for Monocular Depth Estimation является единственным задокументированным случаем генерации синтетического датасета для задачи прогнозирования карты глубины по исходному изображению

2.4 Цели и задачи

Цели: Разработка программного обеспечения для генерации синтетического датасета спутниковых снимков и карт их глубины, а также автоматизация процесса сбора и накопления данных.

Задачи:

- Разработка алгоритма процедурной генерации геометрии
- Разработка алгоритма процедурной генерации текстур
- Автоматизация процесса рендеринга, сборки и накопления данных
- Обучение готовой модели прогнозирования глубины на сгенерированном датасете

2.5 Архитектура модели

Архитектура модели прогнозирования карты глубины находится в разработке. На данный момент главной референсной моделью является модель HiMODE

2.6 Алгоритмы генерации

Генерация ландшафта: Шум Перлина

Генерация текстур: Шум Уорли			
Инстанциирование растительности и водоёмов: Poison Disk			
Генерация рек: Система Линденмайера			
Генерация урбанистических структур: Рекурентная система Линденмайера			
2.7 Стек технологий			
Разработка:			
- Python			
- Blender 3D			
Развёртывание:			
- Git			
- Docker			
2.8 Образ результата			
- Программное обеспечение для генерации набора данных			
- Программное обеспечение для автоматизации сбора и накопления данных,			
генерируемых на вычислительном кластере			

3 ПЛАН-ПРОСПЕКТ

3.1 Разработка алгоритма процедурной генерации геометрии

Используя инструменты Blender Geometry Nodes разработать алгоритмы генерации ландшафта, лесов и растительности, рек и водоёмов, урбанистических структур.

3.2 Разработка алгоритма процедурной генерации материалов

Используя инструменты Blender Shader Editor разработать алгоритмы генерации текстур для сгенерированной геометрии

3.3 Автоматизация процесса генерации

С помощью Blender Python API разработать скрипт, автоматизирующий процесс генерации сэмпла данных по заданным параметрам.

3.4 Распараллеливание алгоритма для выполнения на вычислительном кластере.

Распараллеливание алгоритма для выполнения на вычислительном кластере.

3.5 Обучение готовой модели прогнозирования глубины на сгенерированном датасете

Разработка и обучение модели прогнозирования глубины по входным картам цвета в высоком разрешении и карты глубины в низком разрешении.

БИБЛИОГРАФИЯ

- 1. Synthetic data generation for machine learning. Получено 02 01 2023 г., из altexsoft: https://www.altexsoft.com/blog/synthetic-data-generation/
- 2. Blender 3.4 Python API Documentation. Получено 02 01 2023 г., из Blender Docs: https://docs.blender.org/api/current/index.html
- 3. Blender Geometry nodes Documentation. Получено 02 01 2023 г., из Blender Docs: https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/index.ht ml
- 4. Blender Shader editor Documentation. Получено 02 01 2023 г., из Blender Docs: https://docs.blender.org/manual/en/latest/editors/shader editor.html
- 5. Fragment shaders guide. Получено 02 01 2023 г., из The book of shaders: https://thebookofshaders.com/
- 6. High-Resolution Synthetic RGB-D Datasets for Monocular Depth Estimation. Получено 02 01 2023 г., из arxiv.org: https://arxiv.org/abs/2305.01732
- 7. *HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model.* Получено 02 01 2023 г., из arxiv.org: https://arxiv.org/abs/2305.01732
- 8. Realtime Synthesis of Eroded Fractal Terrain for Use in Computer Games.
 Получено 02 01 2023 г., из mit.edu: https://web.mit.edu/cesium/Public/terrain.pdf
- 9. Interactive Terrain Modeling Using Hydraulic Erosion. Получено 02 01 2023 г., из cgg.mff: https://cgg.mff.cuni.cz/~jaroslav/papers/2008-scaerosim/2008-scaerosiom-fin.pdf

10. Landscape generation using procedural generation techniques. Получено 02 01 2023 г., из Amazon: https://s3.eu-central-l.amazonaws.com/ucu.edu.ua/wp-content/uploads/sites/8/2021/07/Melnychuk-Vladyslav_188572_assignsubmission_file_VladyslavMelnychuk.pdf