#### Deena 20104016

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
import seaborn as sns
```

#### **Problem Statement**

#### LINEAR REGRESSION

```
In [2]:
    a = pd.read_csv("18_world-data-2023.csv")
    a
```

Out[2]:

|  |     | Country     | Density\n(P/Km2) | Abbreviation | Agricultural<br>Land( %) | Land<br>Area(Km2) | Armed<br>Forces<br>size | Birth<br>Rate | Calling<br>Code | ( |
|--|-----|-------------|------------------|--------------|--------------------------|-------------------|-------------------------|---------------|-----------------|---|
|  | 0   | Afghanistan | 60               | AF           | 58.10%                   | 652,230           | 323,000                 | 32.49         | 93.0            |   |
|  | 1   | Albania     | 105              | AL           | 43.10%                   | 28,748            | 9,000                   | 11.78         | 355.0           |   |
|  | 2   | Algeria     | 18               | DZ           | 17.40%                   | 2,381,741         | 317,000                 | 24.28         | 213.0           |   |
|  | 3   | Andorra     | 164              | AD           | 40.00%                   | 468               | NaN                     | 7.20          | 376.0           |   |
|  | 4   | Angola      | 26               | AO           | 47.50%                   | 1,246,700         | 117,000                 | 40.73         | 244.0           |   |
|  | ••• |             |                  |              |                          |                   |                         |               |                 |   |
|  | 190 | Venezuela   | 32               | VE           | 24.50%                   | 912,050           | 343,000                 | 17.88         | 58.0            |   |
|  | 191 | Vietnam     | 314              | VN           | 39.30%                   | 331,210           | 522,000                 | 16.75         | 84.0            |   |
|  | 192 | Yemen       | 56               | YE           | 44.60%                   | 527,968           | 40,000                  | 30.45         | 967.0           |   |
|  | 193 | Zambia      | 25               | ZM           | 32.10%                   | 752,618           | 16,000                  | 36.19         | 260.0           |   |
|  | 194 | Zimbabwe    | 38               | ZW           | 41.90%                   | 390,757           | 51,000                  | 30.68         | 263.0           |   |
|  |     |             |                  |              |                          |                   |                         |               |                 |   |

195 rows × 35 columns

#### **HEAD**

```
In [3]: a.head()
```

Out[3]: Country Density\n(P/Km2) Abbreviation Agricultural Land Armed Birth Calling Car

|   |             |     |    | Land( %) | Area(Km2) | Forces<br>size | Rate  | Code  |  |
|---|-------------|-----|----|----------|-----------|----------------|-------|-------|--|
| 0 | Afghanistan | 60  | AF | 58.10%   | 652,230   | 323,000        | 32.49 | 93.0  |  |
| 1 | Albania     | 105 | AL | 43.10%   | 28,748    | 9,000          | 11.78 | 355.0 |  |
| 2 | Algeria     | 18  | DZ | 17.40%   | 2,381,741 | 317,000        | 24.28 | 213.0 |  |
| 3 | Andorra     | 164 | AD | 40.00%   | 468       | NaN            | 7.20  | 376.0 |  |
| 4 | Angola      | 26  | АО | 47.50%   | 1,246,700 | 117,000        | 40.73 | 244.0 |  |

5 rows × 35 columns

# Data Cleaning and Preprocessing

In [30]: d=a.head(10) d

Out[30]:

|   | Country                   | Density\n(P/Km2) | Abbreviation | Agricultural<br>Land( %) | Land<br>Area(Km2) | Armed<br>Forces<br>size | Birth<br>Rate | Calling<br>Code | Сар |
|---|---------------------------|------------------|--------------|--------------------------|-------------------|-------------------------|---------------|-----------------|-----|
| 0 | Afghanistan               | 60               | AF           | 58.10%                   | 652,230           | 323,000                 | 32.49         | 93.0            |     |
| 1 | Albania                   | 105              | AL           | 43.10%                   | 28,748            | 9,000                   | 11.78         | 355.0           |     |
| 2 | Algeria                   | 18               | DZ           | 17.40%                   | 2,381,741         | 317,000                 | 24.28         | 213.0           |     |
| 3 | Andorra                   | 164              | AD           | 40.00%                   | 468               | NaN                     | 7.20          | 376.0           |     |
| 4 | Angola                    | 26               | AO           | 47.50%                   | 1,246,700         | 117,000                 | 40.73         | 244.0           |     |
| 5 | Antigua<br>and<br>Barbuda | 223              | AG           | 20.50%                   | 443               | 0                       | 15.33         | 1.0             |     |
| 6 | Argentina                 | 17               | AR           | 54.30%                   | 2,780,400         | 105,000                 | 17.02         | 54.0            | Ві  |
| 7 | Armenia                   | 104              | AM           | 58.90%                   | 29,743            | 49,000                  | 13.99         | 374.0           |     |
| 8 | Australia                 | 3                | AU           | 48.20%                   | 7,741,220         | 58,000                  | 12.60         | 61.0            |     |
| 9 | Austria                   | 109              | AT           | 32.40%                   | 83,871            | 21,000                  | 9.70          | 43.0            |     |
|   |                           |                  |              |                          |                   |                         |               |                 |     |

10 rows × 35 columns

In [5]: a.describe()

Out[5]:

Birth Rate

Calling Fertility Infant Life mortality per Latit

Code Rate mortality expectancy ratio thousand

|       | Birth Rate | Calling<br>Code | Fertility<br>Rate | Infant<br>mortality | Life<br>expectancy | Maternal<br>mortality<br>ratio | Physicians<br>per<br>thousand | Latit   |
|-------|------------|-----------------|-------------------|---------------------|--------------------|--------------------------------|-------------------------------|---------|
| count | 189.000000 | 194.000000      | 188.000000        | 189.000000          | 187.000000         | 181.000000                     | 188.000000                    | 194.000 |
| mean  | 20.214974  | 360.546392      | 2.698138          | 21.332804           | 72.279679          | 160.392265                     | 1.839840                      | 19.092  |
| std   | 9.945774   | 323.236419      | 1.282267          | 19.548058           | 7.483661           | 233.502024                     | 1.684261                      | 23.961  |
| min   | 5.900000   | 1.000000        | 0.980000          | 1.400000            | 52.800000          | 2.000000                       | 0.010000                      | -40.900 |
| 25%   | 11.300000  | 82.500000       | 1.705000          | 6.000000            | 67.000000          | 13.000000                      | 0.332500                      | 4.544   |
| 50%   | 17.950000  | 255.500000      | 2.245000          | 14.000000           | 73.200000          | 53.000000                      | 1.460000                      | 17.273  |

## To display heading

Out[7]: <seaborn.axisgrid.PairGrid at 0x143e2befdf0>



In [8]: sns.displot(a['Density\n(P/Km2)'])

Out[8]: <seaborn.axisgrid.FacetGrid at 0x143e403eb20>



In [9]: sns.heatmap(a.corr())

Out[9]: <AxesSubplot:>



### TO TRAIN THE MODEL - MODEL BUILDING

```
In [31]:
          x = d[['Birth Rate']]
          y = d['Birth Rate']
In [32]:
          # to split my dataset into training and test data
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [33]:
          from sklearn.linear_model import LinearRegression
          lr = LinearRegression()
          lr.fit(x_train,y_train)
Out[33]: LinearRegression()
In [34]:
          coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[34]:
                    Co-efficient
          Birth Rate
                           1.0
In [35]:
          prediction= lr.predict(x_test)
          pp.scatter(y_test,prediction)
Out[35]: <matplotlib.collections.PathCollection at 0x143e803fe50>
```

```
In [36]: lr.score(x_test,y_test)

Out[36]: 1.0

RIDGE & LASSO

In [37]: from sklearn.linear_model import Ridge,Lasso rr=Ridge(alpha=10) rr.fit(x_train,y_train)

Out[37]: Ridge(alpha=10)

In [38]: rr.score(x_test,y_test)
```

11.3corc(x\_cc3c,)

Out[38]: 0.9998544326854026

In [39]:
 la=Lasso(alpha=10)
 la.fit(x\_train,y\_train)

Out[39]: Lasso(alpha=10)

In [40]: la.score(x\_test,y\_test)

Out[40]: 0.9927103369905057