# Model-based Reinforcement Learning

Ayça Özçelikkale

Dept. of Electrical Engineering, Uppsala University

| Course | M | lap |
|--------|---|-----|
| Course |   | up  |

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-Q

Dyna-Q+

**PILCO** 

Discussions

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-G

Dyna-Q+

PILCO

Discussions

### Overview of the Course

- ▶ Planning by Dynamic Programing
- Model-free prediction and control with tabular methods
- Function Approximation: We can use function approximation
  - to approximate value functions (last lecture)
  - to parametrize policies (next lecture)
  - ▶ to model the environment<sup>†</sup>
- Model-based RL
  - ► Tabular Model-based RL Methods: Dyna-Q and Dyna-Q+ (today's lecture)
  - General Model-based RL Methods:<sup>†</sup>
    - Motivating Example: PILCO
- Policy-Gradient Methods

5hp course: You're not responsible to know the details of algorithms/methods but you should be aware of the general ideas and advantages/disadvantages

# Reminder: Function Approximation

#### Linear Approximation

- Value Function:  $\hat{v}(s, \mathbf{w}) = \sum_{i=1}^{d} w_i x_i(s)$
- Action-Value Function:  $\hat{q}(s, a, \mathbf{w}) = \sum_{i=1}^{d} w_i x_i(s, a)$

How to find the "best" approximation? We combine two ideas:

- Stochastic Gradient Descent
  - Update: step size × prediction error × gradient of (action-)value function approx.

$$\Delta \mathbf{w} = \alpha((\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w}))\nabla \hat{\mathbf{v}}(S, A, \mathbf{w})$$
$$\Delta \mathbf{w} = \alpha((\mathbf{q}_{\pi}(S, A) - \hat{\mathbf{q}}(S, A, \mathbf{w}))\nabla \hat{\mathbf{q}}(S, A, \mathbf{w})$$

- Replace  $v_{\pi}(s, \mathbf{w})$  or  $q(s, a, \mathbf{w})$  with an appropriate update target:
  - ▶ MC for predicting  $v_{\pi}(s, \mathbf{w})$ :  $G_t$
  - ► TD(0) for predicting  $v_{\pi}(s, \mathbf{w})$ :  $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$
  - Sarsa for predicting  $q_{\pi}(s, a, \mathbf{w})$ :  $R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w})$

# Group Exercise: Function Approximation

Consider a corridor environment of 2 rooms. The environment is represented with 2 non-terminal states  $\mathcal{S} = \{1,2\}$  and one terminating state 3. The actions are LEFT (ActL) and RIGHT (ActR).

We obtain the following episode:

| t | $S_t$              | $A_t$ | $R_{t+1}$ |
|---|--------------------|-------|-----------|
| 0 | Room 1             | ActR  | +1        |
| 1 | Room 2             | ActR  | +3        |
| 2 | Room 3 (terminate) | -     | -         |

The features are given by

$$x_1(s) = 0.5$$
$$x_2(s) = s$$

Let  $\gamma=1$ ,  $\alpha=1$ . The weight vector is initialized as  $\mathbf{w}=\mathbf{0}$ . Using the above episode data and gradient Monte-Carlo with function approximation determine  $\mathbf{w}_{final}$  after the updates.

### What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-G

Dyna-Q-

PILCO

Discussions

### What is a "Model"?

Model: Anything the agent can use to predict how the environment will respond to a given action

Given a state s and an action a,

- lacksquare A model produces a prediction of the next state and the next reward:  $(s,a) o (\hat{s'},\hat{r})$ .
- A model for state-transition produces a prediction of the next state:  $(s,a) \rightarrow \hat{s'}$ .

#### Classification of Models:

**Distribution Model (Probabilistic Models):** Models that provide the **probabilities** for all possibilities, i.e.  $p(s', r|s, a) \forall s, a$ .

**Sample Model:** Models that provide one sample from the possible outcomes for a given (s, a) (according to the associated probabilities).

Self-study Exercise: Consider the experiment of throwing a fair die. What is the distribution model? How does the output of the sample model look like?

## Comparison of Distribution Models and Sample Models

- ▶ Both type of models can be used to create "simulated" experience
- Sample models are easier to obtain in most cases.
- Distribution models are stronger in the sense that they can be always used to produce samples but the vice-a-versa is typically more difficult.

**Self-study Exercise:** Consider an environment where  $\forall s, a$ , there is only one s', r pair possible, i.e. the environment is deterministic. You know all possible (s, a) pairs. Given this a priori information, can you find the distribution model from the sample model?

### What is Model-based RL?

A RL approach that uses predictions of the environment response explicitly is called a **model-based RL** approach.

- Prediction can be just a prediction of next state and next sample but it can also be the expected next reward or full distribution of the states and rewards.
- Only sampling from the experience such as in Q-learning does not count as using a prediction explicitly.

The computational process that uses a model to create/improve a policy is called planning.

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-G

Dyna-Q-

PILCO

Discussions

# Motivation: Why model-based RL?

Why should we be interested in model-based RL?

- Intuition: Explicitly predicting the future "should" help!
- Model-based approaches have been used successfully before in classic control in various scenarios including robotic control tasks and industrial process control in factories.
  - ▶ Model building in RL ↔ system identification in classical control
  - Models can be easy to construct for scenarios where a representation of the system can be build using laws of physics where only a few parameters need to be found using data.
- Model-based RL approaches are "sample" efficient

# Example: Illustration of the Sample Efficiency of Model-based Approaches -PILCO (probabilistic inference for learning control)

Main Ideas for PILCO: Model-based approach with uncertainty quantification + policy optimization

#### Example: Cart Pole Task

swing the pendulum up and balance it on upright position by applying a horizontal force to the cart



Cart Pole



Interaction time required to balance the cart pole (Note the logarithmic scale for time!)

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

### Archetypical Model-based RL Approach

Dyna-G

Dyna-Q-

PILCO

Discussions

# Archetypical Model-based RL Approach

#### **Setting and Notation:**

We focus on the state-transitions  $(s, a) \rightarrow s'$  in the deterministic case.

Suppose that Model(S, A) is the model that the agent uses for predicting the new state:  $\hat{s'} = Model(S, A)$ 

Let d(x,y) measure how much x is different from y, for instance  $d(x,y) = ||x-y||^2$ .

#### Algorithm:

<u>Initialization:</u> Collect the dataset  $\mathcal{D} = \{(s_i, a_i, s_i')\}$  by running, for instance, a random policy.

### repeat:

Learn model Model(s, a) using min  $\sum_{i} d(\hat{s'_i}, s'_i)$ 

Plan using Model(s,a) to find the action  $a_j$  for the current state  $s_j$ .

Execute the action  $a_j$  and get  $s'_j$ .

Add  $(s_j, a_j, s_i')$  to  $\mathcal{D}$ .

## Archetypical Model-based RL Approach: Remarks

- Variations where the Learn model and Plan steps are not repeated at every step can be used.
- lacksquare Stochastic case: We can work with  $p_{f w}(s'|s,a)$  instead of a deterministic mapping.
- These ideas can be also extended to the cases where reward(s, a) is also estimated.

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

### Dyna-Q

Dyna-Q+

PILCO

Discussions

# Overview of Dyna-Q



### Tabular Dyna-Q for deterministic environments

Initialize Q(s,a) and Model(s,a) for all s,a. Loop forever

- (a) S ← current (nonterminal) state
- (b) Decide on action A using an exploration policy, such as  $\epsilon$ -greedy.
- (c) Take action A, observe the resulting reward R and state S'
- (d) Q-update:  $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) Q(S,A)]$
- (e) Update model:  $Model(S, A) \leftarrow R, S'$
- (f) Planning Update: Repeat n times
  - Choose a random previously observed state S
  - Choose a random action A previously taken in S
  - ▶ Get the resulting reward R and state S' from the model:  $R, S' \leftarrow Model(S, A)$
  - Q-update:  $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) Q(S,A)]$

# Example: Dyna Maze

- Actions: up, down, right, and left
  - if obstacle/edge, the agent remains where it is.
- ightharpoonup Reward is zero on all transitions, except those into the goal state, on which it is +1.



| WITHOUT PLANNING (n=0) |  |  |  |  | ) | WITH PLANNING ( $n=50$ ) |   |     |   |   |   |   |   |   |   |   |   |
|------------------------|--|--|--|--|---|--------------------------|---|-----|---|---|---|---|---|---|---|---|---|
|                        |  |  |  |  |   | П                        | G | ] [ |   | - | - | + | + | - | + |   | G |
|                        |  |  |  |  |   |                          | 1 |     |   |   |   | ŧ | + | + | + |   | ł |
| S                      |  |  |  |  |   |                          |   |     | S |   |   | + | + | - | + |   | ł |
|                        |  |  |  |  |   |                          |   |     |   |   |   | + | + | - | + | - | ŧ |
|                        |  |  |  |  |   |                          |   |     |   |   |   | + | 1 |   | - | + | + |
|                        |  |  |  |  | П |                          |   |     |   |   | - | 1 | - | - | + | 1 | - |

Policy at halfway during the second episode

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-G

Dyna-Q+

PILCO

Discussions

# Motivation: What if the environment changes?

Model bias: (Naive) model based methods inherently assume that the learned model is an accurate description of the real environment.



# Dyna-Q+

**Main Idea for Dyna-Q+:** In the planning update, change reward from R to  $R+\kappa\sqrt{\tau}$ , where  $\tau$  is the time passed since the last time this state-action pair is tried.

- This encourages the agent to test all admissible state transitions even if the reward observed for them were low previously. (exploration!)
- Trying all these state transitions has a "cost" but "curiosity" may help, especially if the model changes as in the previous example.

### Dyna-Q+

Initialize Q(s,a)=0 for all s,a. Initialize  $Model(s,a) \leftarrow r=0,s$  for all s,a. Initialize all s,a as previously observed/taken with  $t_v(S,A)=0$ . Initialize agent's internal time t=0.

#### Loop forever

- (a) S ← current (nonterminal) state
- (b) Decide on action A using an exploration policy, such as  $\epsilon$ -greedy.
- (c) Take action a, observe the resulting reward R and state S'
- (d) Q-update:  $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) Q(S,A)]$
- (e) Update model:  $Model(S,A) \leftarrow R,S'$ . Record the last time of the visit  $t_v(S,A)$
- (f) Planning Update: Repeat n times
  - Choose a random previously observed state S
  - Choose a random action A previously taken in S
  - ▶ Get the resulting reward R and state S' from the model:  $R, S' \leftarrow Model(S, A)$
  - $\blacktriangleright \text{ Let } \tau = t t_{v}(S, A)$
  - Q-update:  $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \kappa \sqrt{\tau} + \gamma \max_a Q(S',a) Q(S,A)]$
- (g) Increment t.

Self-study Exercise: This implementation uses an internal time variable t. Can you implement the Dyna-Q+ idea without explicitly defining such a variable?

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-G

Dyna-Q+

#### **PILCO**

Discussions

# A Quick and Dirty Look at PILCO

Main Ideas for PILCO: Model-based RL with uncertainty quantification + policy optimization

#### **Dynamical Model:**

$$s_t = f(s_{t-1}, a_{t-1})$$

- $s_t \in \mathbb{R}^D$ : continuous valued states
- $ightharpoonup a_t \in \mathbb{R}^F$ : continuous valued controls/actions
- $f(\cdot)$ : the unknown transition dynamics, i.e. latent function

### Policy<sup>†</sup>:

Action is given by  $a_t=\pi(s_t,\theta)$  where  $\pi$  is the policy/controller and  $\theta$  is the unknown parameters of the policy.

### **Objective:**

Find the policy  $\pi$  that minimizes the expected cost of following  $\pi$  for T steps:

$$J^{\pi}(\theta) = \sum_{t=0}^{T} \mathbb{E}_{s_t}[c(s_t)]$$

Example cost function:  $c(s) = 1 - \exp(\|s - s_{target}\|^2/\sigma_c^2)$ 

# Model Uncertainty Quantification in PILCO

In PILCO, a probabilistic function approximator is used to model the uncertainty about the latent function. Why is this a good idea?

### Figure Axes:

y- axis: Latent function  $f(s_t, a_t)$ x- axis: State-action pairs  $(s_t, a_t)$ 



There are multiple plausible deterministic function approximators





Probabilistic function approximator encodes our uncertainty about f(.)

# PILCO: Algorithm

```
<u>Initialization</u>: Initialize dataset \mathcal D by running a random policy. Parametrize policy with \theta, i.e. \pi(\theta). Initialize \theta. repeat:
```

Learn model: Using the tuples  $(s_t, s_{t-1}, a_{t-1})$  from  $\mathcal{D}$  find  $\hat{\rho}(s_t|s_{t-1}, a_{t-1})$ . repeat: Model-based policy search

Using  $\hat{p}(s_t|s_{t-1},a_{t-1})$ , perform policy evaluation Perform policy improvement.

<u>until:</u> convergence; return  $\theta^*$ .

Execute actions for trial/episode using  $\pi(\theta^*)$ .

Add new data to  $\mathcal{D}$ .

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-G

Dyna-Q+

PILCO

#### Discussions

# Exploration vs Exploitation Trade-offs

- **Exploration:** Gather more information
- Exploitation: Make the best decision given the current information

Example: What to cook for tonight?

Exploration: "Try a new recipe" versus Exploitation: "Cook your favorite dish"

### Exploration ideas we have seen so far:

- ▶ Dyna-Q+
- $ightharpoonup \epsilon$ -greedy
- optimistic initialization

Question: How does this trade-off relate to model uncertainty?

What is Model-based Reinforcement Learning?

Motivation: Why model-based RL?

Archetypical Model-based RL Approach

Dyna-G

Dyna-Q+

PILCO

Discussions

- Main idea for Model-based RL: Having an explicit model for the environment may help.
- Advantages -Model based approaches are typically promising from the following aspects:
  - sample efficiency
  - transfer learning (ex: same dynamics with different reward or same task under similar dynamics)
  - explanability
- Disadvantages
  - tend to have lower asymptotic performance
  - possibly can be unstable due errors in learned model (uncertainty quantification!)
  - additional computational complexity/memory, possibly more tunable parameters

- Different Model-Based Approaches:
  - Dyna type of approaches: use "imagined" data from the model to improve policy (a model-free method is used on the "imagined" data from the model)
  - Use model and its derivatives directly to optimize the RL objective
  - Model-based predictive control type of approaches (directly predict what will happen in the next time steps and choose the best)
- In general, for model based approaches we need to think about: Exploration vs Exploitation Trade-offs, Exploration for the Model vs Task, Model-bias, Quantification of model uncertainty

### References

- ▶ Sutton, Barto, Reinforcement Learning: An Introduction
- Sutton, R. S., Integrated architectures for learning, planning, and reacting based on approximating dynamic programming., Proc. of International Workshop on Machine Learning (ICML), 1990.
- Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: a model-based and data-efficient approach to policy search, Proc, of International Conference on Machine Learning (ICML) 2011.