Fundamentos de Programación Grado en Ingeniería del Software

Presentación de la asignatura

Jorge García - jorgarcia@us.es - F1.56

Señal Enviada Señal Recibida

Fuente de Información

Destinatario

Mensaje

Mensaje

Objetivos

- Aprender los fundamentos de la programación
- Aprender a escribir programas modulares y legibles en dos lenguajes de programación distintos: Python y Java
- Dar los primeros pasos en el desarrollo software

Índice

- Organización
- Metodología
- Evaluación

ORGANIZACIÓN

Profesores

Grupo	Teoría	Laboratorio
1	Jorge García Gutiérrez	Jorge García Gutiérrez Cristina Rubio Escudero Belén Vega Márquez

Las tutorías de los profesores se pueden consultar en: http://www.lsi.us.es/personal/personal2.php?tipo=1

Tutorías de Jorge García:

- lunes de 12:30 a 14:30,
- miércoles y viernes de 9:30 a 11:30

Clases de teoría

Grupo	Aula	C1	C2
1	A0.12	Miércoles De 12:40 a 14:30	Miércoles de 08:30 a 10:20

Clases de laboratorio

Tres subgrupos de laboratorio:

Subgrupo 1: aula F1.31. Profesor: Jorge García

Subgrupo 2: aula F1.32. Profesora: Cristina Rubio

Subgrupo 3: aula F1.33. Profesora: Belén Vega

Grupo	Aulas	A partir del 19/10
1	A4.32 F1.30 F1.32	Lunes de 10:40 a 12:30

Herramientas de desarrollo

IDE:

- Integrated Development Environment
- Visual Studio Code

Notebook:

- Entorno web de computación interactiva
- Inspirado en los notebooks de Mathematica y Sage

Los notebooks de Jupyter

Visual Studio Code

Instalación de herramientas

(ver la guía de instalación de herramientas de la asignatura para una lista de pasos más detallada)

1

https://www.anaconda.com/download/

https://code.visualstudio.com/docs/python/python-tutorial

Curso 0 de Fundamentos de Programación

Curso de Programación (5 temas)

Autoevaluación para cada tema

Bibliografía

• Libros:

- S. Chazallet. Python 3. Los fundamentos del lenguaje (2º edición). Ediciones ENI. 2016 [BIBLIOTECA]
- A.E. Downey. Think Python 2e. O'Reilly. 2015

[WEB: http://greenteapress.com/wp/think-python-2e/]

- C. Dierbach. Introduction to Computer Science Using Python:
 A Computational Problem-Solving Focus. Wiley. 2012.
- J.V. Guttag. Introduction to Computation and Programming using Python (second edition). The MIT Press. 2015.
- M. Lutz. Learning Python. O'Reilly. 2013
- C.R. Severance. Python for Everybody. Exploring Data Using Python 3. 2016

[WEB: http://www.pythonlearn.com/]

Tutoriales online:

– Tutorials Point [WEB: https://www.tutorialspoint.com/python3/]

stackoverflow to the rescue!

METODOLOGÍA

Propuesta de distribución de tiempo de estudio

20% a apuntes, documentación, ...

80% a escribir programas y probarlos

Autoevaluación: ¿cómo sé que un ejercicio está bien resuelto?

Es modular: una buena descomposición en funciones simples

Es legible: la solución es fácil de comprender y explicar

Y además, funciona!!!

Dos formas de aprender a programar

- Será la base de nuestro aprendizaje
- Completaremos proyectos que:
 - Sean interesantes
 - Sea fácil comprender su alcance
 - Usen diferentes elementos de Python
 - Tengan un tamaño razonable

- Tendrá un papel secundario en nuestra metodología:
 - Sesiones de teoría para organizar conceptos
 - Cierre de bloques vinculados a la evaluación

Tipos de contenidos

- Notebooks de ejercicios
- Proyectos de laboratorio

Notebooks de teoría

Notebooks de teoría

Bloques teóricos

- 1. Introducción a Python
- 2. Expresiones, tipos predefinidos, entrada/salida
- 3. Instrucciones condicionales y bucles
- 4. Funciones
- 5. Secuencias, listas y tuplas
- 6. Diccionarios y conjuntos

Notebooks de ejercicios

Proyectos de laboratorio

Material disponible en GitHub https://github.com/fupus

Ritmo de trabajo en clase

No es saber, es saber buscar

Y lo más importante ...

... la constancia

Ritmo de trabajo en casa

FP → 12 crs. ECTS

1 cr ECTS → 25 horas de trabajo del alumno

12 crs ECTS → 300 horas de trabajo total

72 horas de teoría y 48 de laboratorio → 130 horas de docencia

¡¡170 horas de trabajo autónomo!!

Asignatura anual → 2 cuatrimestres → 9 meses aprox. → 36 semanas

¡¡4 horas de trabajo autónomo por semana!!

EVALUACIÓN

Evaluación

Evaluación continua:

```
Nota_Cuatrimestre1 = 0.1 \times (C1 + C2 + C3) + 0.6 \times P1 + 0.1*PRY1 (sobre 10 puntos)
Nota_Cuatrimestre2 = 0.1 \times (C4 + C5 + C6) + 0.6 \times P2 + 0.1*PRY2 (sobre 10 puntos)
Nota_EC = (Nota_Cuatrimestre1 + Nota_Cuatrimestre2) / 2 (sobre 10 puntos)
Ci = Nota cuestionario, Pi = Examen práctico
```

El estudiante aprueba la asignatura por evaluación continua si se cumplen los tres requisitos siguientes:

- La calificación de cada uno de los dos cuatrimestres es igual o superior a 4 puntos
- La calificación de la evaluación continua es igual o superior a 5 puntos
- Tener APTO en los dos proyectos.

Si no se supera la evaluación continua

Evaluación ordinaria:

<u>Examen final</u>: un único examen sobre el ordenador para resolver la implementación de ejercicios prácticos sobre 10 puntos, que se realizará en el horario establecido por el centro.

Fechas provisionales de las pruebas de evaluación continua

- Cuestionario 1: miércoles 5 de octubre
 - -12:30 [aula A3.10]
- Cuestionario 2: miércoles 9 de noviembre
 - 12:30 [aula A3.10]
- Cuestionario 3: miércoles 14 de diciembre
 - 12:30 [aula A3.10]
- Prueba de laboratorio: jueves 19 de enero

TAREA 0

- Descargar documentos de instalación
- Preparar el entorno para poder trabajar en nuestros portátiles o en casa.

