

House Price Prediction

Predicting HDB Flat Resale Prices
-Ng Geok Teng-

Overview

Introduction

Problem Statement

Exploratory Data Analysis

Understand the characteristics of the features

Discussion & Conclusion

Understand selected model performance and future exploration

Data

Introducing Data used

Modelling

Include exploring using Lasso for feature selection.

Introduction:

Problem Statement

- An entrepreneur wanted to set up a new property agency in Singapore.
- She collected a list of flat-related data, but did not know how to use the data to predict HDB resale flat prices nor how to quantitatively understand how the data impact prices.

Objectives

- Develop a predictive model for the entrepreneur
- Show the relationship between key features and the price

HDB resale flat prices up 10.3% in 2022, slower than 12.7% increase in 2021

THESTRAITSTIMES

Price growth of HDB resale flats slows in December, analysts expect prices to stabilise in 2023

Locations...

Flat types...

-	*	\$365,500	\$516,500	\$800,000	*
				\$000,000	^
	*	\$355,000	\$475,000	\$680,000	\$820,000
-	-	*	\$640,000	\$855,000	\$1,045,000
-	*	\$353,000	\$500,000	\$720,000	\$790,900
*	*	\$368,000	\$765,000	\$875,000	-
-	*	\$386,500	\$471,900	\$610,000	\$750,000
-	-	*	*	*	*
-	*	\$460,000	\$680,000	*	-
	- * *	- * * * - *	- * \$353,000 * * \$368,000 - * \$386,500	- * \$353,000 \$500,000 * \$368,000 \$765,000 - * \$386,500 \$471,900 - * *	- * \$353,000 \$500,000 \$720,000 * \$368,000 \$765,000 \$875,000 - * \$386,500 \$471,900 \$610,000 - * * *

Sources: 1. CNA, 2. ST, 3. HDB stats

- The index from 1Q1990 to 3Q2014 is rebased to the new base period at 1Q2009.
- 3) The index from 4Q2014 onwards is computed using the stratified hedonic regression method.

4) The 4Q2022 index is a flash estimate

Data

77 Data Features -----**Unit-related** Floor area, flat Address, postal, town name, street name, planning area, model, flat type, longitude & latitude storey Transaction **Facilities** Presence of malls, Transaction year, hawkers, primary & month, resale price secondary schools, transportation **Block-related** ΠП Block number, block age, ПП building age, max level, number of units sold Full list of data in Kaggle Challenge page

Data Cleaning and Feature selection

- There is 77 features originally
- Missing values were addressed,
 Duplicate data were confirmed
 absent
- Similar features and redundant features were removed (Number of features left: 71 features)
- Data values and Data types were checked and corrected appropriately (e.g. Converting Boolean feature to '0' and '1')
- Further selection of features after careful analysis
 (Number of features left: 52 features)

Data: How is Missing Data Addressed

Columns with missing values:

	col	num_nulls	perc_null
45	Mall_Nearest_Distance	829	0.01
46	Mall_Within_500m	92789	0.62
47	Mall_Within_1km	25426	0.17
48	Mall_Within_2km	1940	0.01
50	Hawker_Within_500m	97390	0.65
51	Hawker_Within_1km	60868	0.40
52	Hawker_Within_2km	29202	و.19

829 Flats have no record of any nearby mall:

• fillna(4000) (replace NaN with 4km) for Mall_Nearest_Distance because generally most MRT stations has a mall, and the maximum distance a flat is away from nearest MRT station is 3.54km.

Analysis discovered that the data contained NaN is because there is **zero** mall/ hawker within specified distance.

fillna(0) for features Mall_Within_500km, 1km and 2km

Data: How are features filtered out

Exploratory Data Analysis (EDA)

Unit - Flat area, Flat Model, Flat types, Flat Storey

Time – Transaction Year Month

Observation & Remarks

- The fluctuation in HDB resale prices over the years demonstrated poor consistency in seasonality and trend.
- In fact, the prices reflects impact of key events across the years, such as cooling measures¹ implemented by the government in 2013 and 2018.

Facilities - School, Transport, Mall, Hawker

Transport

- All flats have a bus stop within 500m
- Flats near specific schools tend to have higher resale prices:

Hawker & Mall

Hawker & Mall related features appeared to have weak correlation with resale price (|r|<0.2)

School

Flats near specific schools tend to have higher resale prices:

E.g. Methodist Girls' School

Block- Rent, Dwelling Units, HDB Age, Hawker, Max Floor levels

Location-Longitude, Latitude, Town, Planning Area

- Resale prices range vary greatly among the areas.
- Meanwhile, some particular town/ planning areas observed distinctly low or high resale price

Modelling

Modelling Approach

Boolean features

Numerical represented as '1' and 0'

Categorical features

Apply OneHotEncoding

Numerical features

Apply <u>StandardScaler</u>

Regression Models

Linear Regression, Ridge Regression, Lasso Regression

Modelling Approach

8 Boolean features

32 Numerical features

11 Categorical features

Among these categorical features, 2 of them have notably high number of unique elements:

• address: 9157

• bus_stop_name: 1657

This may post computational memory issue...

Models	Algorithm	Features used	
А	Linear Regression	Exclude address Resulting 2855 number of	
В	Ridge Regression	features post-processing for modelling	
С	Lasso	Include address Resulting 11964 number of features post-processing for modelling	

Due to the size of the data post-processing, unable to run Linear Regression or RidgeCV or LassoCV with address included

Model Performance Evaluation

Models	Algorithm	Features used	R2 score	RMSE score
Α	Linear Regression	Exclude address	Train:0.944 Test:0.941	Train: 3966.9 Test: 34668.3
В	Ridge Regression (Utilise GridSearchCV to explore different alpha values)	Resulting 2855 number of features post-processing for modelling	Train:0.944 Test:0.941	Train: 33954.6 Test: 34644.8
С	Lasso Regression	Include address Resulting 11964 number of features post-processing for modelling	Train:0.956 Test:0.951	Train: 30249.5 Test: 31768.7

Best Performing Model

Discussion & Conclusion

Model C Performance

Model C Performance

Features used to train Lasso Regression

~480 features are related to the flat's location: 'address' 'street_name' 'bus_stop_name'

Features with coefficient that distinctly more/less than

others

Model C Performance

Example: AMK Ave 2

- · Multiple MRT train stations, schools and parks in the area
- Coefficient: 173358 (among top 20 coefficient values)
- In other words, if all else constant, a flat from ANG MO KIO AVE 2 would have \$173,358 higher in resale price

- We can confidently recognise that location has important influence on flat resale price
- It account for various facilities available in the vicinity
- However, as seen in earlier EDA, other potential significant factors include key events like implementation of cooling measures.
- As such, in order to maintain accurate prediction of the HDB prices, it will require periodic training of the models with more recent data and explore expert's recognized pricing factors as well.

End