4. Übungsblatt

1. In den Programmiersprachen C++ und Java werden Oktalkonstanten durch eine führende 0 und Hexadezimalkonstanten durch den Präfix 0x markiert. Geben Sie zwei DEAs M_1 und M_2 mit totalen Überführungsfunktionen vollständig an, so dass gilt:

$$L(M_1) =_{\text{def}} \{ w \mid w \text{ ist eine Oktalkonstante} \}$$
 und $L(M_2) =_{\text{def}} \{ w \mid w \text{ ist eine Hexadezimalkonstante} \}.$

Geben Sie dazu die Überführungsfunktion auch in Tabellenform an, und zeichnen Sie zusätzlich eine graphische Darstellung der Automaten M_1 und M_2 .

2. Eine Menge von Sprachen über einem Alphabet wird *Sprachklasse* genannt. Sie kennen z.B. schon die Klasse der Typ3-Sprachen oder die Klasse der kontextfreien Sprachen.

Man sagt, dass eine Sprachklasse \mathcal{C} unter der binären Operation ∇ abgeschlossen ist, wenn für zwei beliebige Sprachen $L, L' \in \mathcal{C}$ gilt, dass für die Sprache $L \nabla L \in \mathcal{C}$ gilt. Beweisen Sie, dass die Klasse der kontextfreien Sprachen unter der Vereinigung abgeschlossen ist. Kann man Ihre Beweisidee auf die regulären Sprachen übertragen? Begründen Sie Ihre Aussage oder finden Sie gegebenenfalls einen Ausweg.

- 3. Geben Sie einen Algorithmus (Pseudocode) an, der für einen gegebenen deterministischen endlichen Automaten M berechnet, ob die akzeptierte Sprache $L(M)=\emptyset$ ist.
- 4. Sei die Sprache

$$L_3 =_{\text{def}} \{ w \in \{a, b\}^* \mid ab \text{ kommt nicht als Teilstring in } w \text{ vor,}$$
$$|w|_b \text{ ungerade und}$$
$$|w|_a \text{ gerade } \}$$

gegeben, wobei $|w|_v =_{\text{def}}$ Anzahl des Auftretens des Buchstabens v in w. Konstruieren Sie einen endlichen Automaten M_3 mit maximal fünf Zuständen mit $L(M_3) = L_3$.

Hinweis: Versuchen Sie L_3 einfacher zu beschreiben.

Besprechung der Aufgaben am 17. Mai 2021 in den jeweiligen Übungsgruppen.