Partie 4:

Les systèmes réels : cas des systèmes radio

Stratégie : gestion optimale des ressources fréquentielles et de la puissance

- 1) Choix de la modulation
 - Cas bande fréquentielle limitée (haut débit)
 - Cas consommation limitée (bas débit)
- 2) Défauts supplémentaires

Rappel:

Intérêt d'augmenter le nombre d'états = moins d'occupation spectrale

=> Intérêt de choisir M assez grand : PSK8 , QAM16,...QAM256 ...

Cas des faisceaux hertziens numériques

système de transmission radioélectrique comportant, en général, des stations relais entre le point de départ du signal et son point d'arrivée, en visibilité directe

Applications : sécurisation du réseau de transport de télécommunications, liaisons vers sites isolés, interconnexion d'équipements de réseaux des opérateurs (ex : liens BTS-BSC), interconnexion de sites d'entreprises, télévision numérique

Fréquences: 2, 4, 6, 7, 8, 10, 11, 13 et 15 GHz

Modulations: PSK4, PSK8, QAM16, QAM64...

Cas des systèmes cellulaires 'haut' débit (pour données)

2.5 G : Edge

Modulation PSK-8

PSK 8 constellation

3G / 4G

Modulations complexes basées sur QAM-M

Modulation QPSK

- intérêt de la modulation QPSK : meilleur rapport puissance/bande occupée (courbes M=2 et M=4 confondues)
- Problème QPSK : sauts de phase de π => passage par amplitude nulle

Modulation OQPSK

- Offset QPSK
- = modulation QPSK avec les deux trains binaires en phase et en quadrature décalés de T_{bit}
- => limitation des sauts de phase possibles de π à $\pi/2$

Modulation O-QPSK avec mise en forme sinusoïdale

Modulation à enveloppe constante

Modulation MSK

• variation linéaire de la phase pendant T_{bit} lors d'une transition :

avec
$$\theta \in \{\pi/4, 3\pi/4, -\pi/4, -3\pi/4\}$$

$$\begin{cases} \text{pour kT} \leq t < (k+1)\text{T}, \\ s(t) = \cos(2\pi f_c t + \phi(t)) \text{ où } \phi(t) = b_k \frac{\pi t}{2T} + \phi_H \end{cases}$$

 $b_k = \pm 1$, ϕ_H assure la continuité de la phase

• = modulation de fréquence avec $\Delta f = 1/2T_{bit}$, indice de modulation 0,5 'Minimum shift keying'

Modulation GMSK

= Gaussian-filtered Minimum Shift Keying

Principe:

Applications des modulations OQPSK, MSK et GMSK

- Satellite communications: OQPSK

Zigbee : réseau sans fil courte portée, basse consommation (ex application : domotique) MSK à 1 Msymb/s
 Zigbee

- Bluetooth: GFSK, indice entre 0.28 et 0.35

- DECT (Digital Enhanced Cordless Telephone) : GMSK

- GSM (Global System for Mobile communications) : GMSK

Cas LoRa: réseau sans fil longue portée

Modulation LoRa: CSS Chirp Spread Spectrum

Frequency domain

Spectrum of the chirp pulse with bandwidth B

Chirp de durée T: fréquence variant linéairement dans bande B de f_{min} à f_{max}

Un chirp transporte SF bits : $D_b=SF/T$, 2^{SF} symboles possibles

Information codée par le décalage de l'origine du balayage de fréquence (modulo B)

Relation : $B \times T = 2^{SF} = > B = (D_b \times 2^{SF})/SF$ étalement de spectre

fréquence 1

Effets du canal de transmission réel

S : surface de captation ou surface

effective

Atténuation du canal radio en espace libre : rôle des antennes

puissance reçue à la distance r :

P: puissance émise

$$P_R = \frac{P}{4\pi r^2} g_R$$

puissance / unité de surface pour une source isotrope

gain de l'antenne émettrice dans la direction

Bilan de liaison radio en espace libre

gain de l'antenne réceptrice :
$$g_R = \frac{4\pi}{\lambda^2} S$$

$$P_{R} = g_{E}.g_{R}.P.\left(\frac{\lambda}{4\pi r}\right)^{2}$$

Puissance isotrope rayonnée équivalente (PIRE) : g_E.P

$$\left(\frac{P_{R}}{P}\right)_{dB} = g_{E_{dB}} + g_{R_{dB}} + 20\log\left(\frac{\lambda}{4\pi r}\right)$$
 affaiblissement en espace libre entre 2 antennes isotropes

=> Les antennes 'concentrent' l'énergie dans la direction voulue : elles augmentent la puissance reçue

• Antennes dipôle, omindirectionnelles ou à panneau réflecteur : application pour les mobiles

Antennes directives de faisceau hertzien : à réflecteur de type parabolique

antenne parabolique

antenne Cassegrain

- gains d'environ 22 à 24 dB pour un diamètre égal à 5 λ ,
- gain de 40 à 50 dB pour les faisceaux hertziens terrestres
- gain jusqu'à 70 dB pour les satellites (réflecteur de type Cassegrain)

• Antennes directives à cornet (pas de réflecteur) : liaisons courtes à f > 10 GHz

• Antennes Yagi, à multiéléments verticaux placés en parallèle et un réflecteur :

réception TV et FM

Types d'antennes (4)

Antennes 'patch'

Vue de dessus

Utilisation d'un patch parasite pour augmenter la bande passante

cf Techniques de l'ingénieur, E 3284

Atténuation dans l'air

Ajout de bruit par les composants électroniques : facteur de bruit

$$F = \frac{(S/B)_e}{(S/B)_s}$$

Mise en cascade de quadripôles : formule de Friis

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots$$

Les trajets multiples

Pas un seul trajet direct : réflexions, réfraction (indice variable selon l'altitude, les perturbations atmosphériques ...), diffraction, diffusion

=> Trajets multiples

Trajets multiples => canal sélectif en fréquence

Ex: 2 trajets

Trajet radio indirect après réflexion sur le sol

Selon lien fréquence / délai entre les 2 trajets, interférences destructives possibles !

Problème des trajets multiples : canal sélectif en fréquence, variable au cours du temps

Techniques d'égalisation

=> traitements numériques supplémentaires pour compenser les distorsions du canal, techniques adaptatives

Etalement de spectre par saut de fréquence

= Frequency Hopping Spreading Spectrum

 $\underline{\mathsf{Ex}}: \mathbf{Bluetooth}$

Gamme de fréquences : bande ISM 2,4 GHz

Technique: FHSS (1600 sauts/s parmi 79 canaux de 1 MHz

Modulation multi-porteuses: OFDM

<u>Principe</u>: modulation QAM multi-porteuses

Découpage du canal fréquence en petites sous-bandes où réponse fréquentielle ≈ simple coefficient complexe qui ne dépend pas de la fréquence

<u>Rmq</u>: Si évanouissement, perte d'une partie des infos numériques seulement (transmises dans la sous-bande où il y a pb)

Modulation multi-porteuses: OFDM

Principe: modulation QAM multi-porteuses

• Simple calcul de Transformée de Fourier Inverse dans le domaine numérique

$$s(t) = \left[\sum_{k=0}^{N-1} c_k \exp(j2\pi f_k t)\right] \times \exp(j2\pi f_0 t) \text{ où } f_k = \frac{k}{T_S}$$

- TNT
- ADSL
- 4G / 5G

. . .

- Espacement des sous-porteuses variable : 15 kHz en 4G, variable 15, 30, 60 et 120 kHz en 5G
- Nombre max de sous-porteuses 1200 en 4G, 3300 en 5G

Techniques MIMO

= Mutiple Input - Multiple Output

 $\underline{\text{Ex}}$: Wi-Fi IEEE 802.11n: 2,4 GHz ou 5GHz, D_{bmax} = 300 Mbit/s

Beamforming (cas 5G)

Sur la liaison descendante : focalisation du 'faisceau' radio vers le mobile récepteur

Principe: réseaux d'antennes sur la station de base, avec contrôle du déphasage à l'entrée de chaque antenne => balayage du diagramme de rayonnement

Source: Webinaire 5G Anritsu

Bilan final

- Connaître les contraintes des systèmes de transmission numérique réels
- Connaître les trajets multiples et leurs effets
- Connaître le principe de quelques techniques de modulation avancées
- Avoir bien compris la 'force' du numérique
- information contenue en des instants discrets, ensemble discret de valeurs possibles (décision à prendre en réception lors des instants d'échantillonnage)
- pas de perte d'information si canal à bande limitée
- traitement numérique pour minimiser l'influence du bruit, des trajets multiples

• • •

=> révolution du numérique , Internet des Objets, IoT

