DATA DICTIONARY run analysis.R

Column Names 6

Including six activities

"WALKING"

"WALKING_UPSTAIRS"

"WALKING_DOWNSTAIRS"

"SITTING", "STANDING"

"LAYING"

Row Names 79

t_Body_Acc_XYZ

the acceleration signal was then separated into body and gravity acceleration signals

t_Gravity_Acc_XYZ :

the acceleration signal was then separated into body and gravity acceleration signals

t_Body_Acc_Jerk_XYZ

the body linear acceleration and angular velocity were derived in time to obtain Jerk signals

t_Body_Gyro_XYZ

the body body gyroscope 3-axial signals (mean)

t_Body_Gyro_Jerk-XYZ :

the body linear acceleration and angular velocity were derived in time to obtain Jerk signals

t_Body_Acc_Mag :

the body magnitude of these three-dimensional signals were calculated using the Euclidean norm

t_Gravity_Acc_Mag :

the gravity magnitude of these three-dimensional signals were calculated using the Euclidean norm

t_Body_Acc_Jerk_Mag :

the body acceleration jerk magnitude of these

three-dimensional signals were calculated using the Euclidean norm

t_Body_Gyro_Mag

the body gyroscope magnitude of these three-dimensional signals were calculated using the Euclidean norm

t_Body_Gyro_Jerk_Mag

the body gyroscope jerk magnitude of these three-dimensional signals were calculated using the Euclidean norm

f_Body_Acc_XYZ :

a Fast Fourier Transform (FFT) was applied to some of these signals producing(the 'f' to indicate frequency domain signals)

f_Body_Acc_Jerk_XYZ :

a Fast Fourier Transform (FFT) was applied to t Body Acc Jerk XYZ

f_Body_Gyro_XYZ :

a Fast Fourier Transform (FFT) was applied to t_Body_Gyro_XYZ

f_Body_Acc_Mag :

a Fast Fourier Transform (FFT) was applied to t_Body_Acc_Mag

f_Body_Acc_Jerk_Mag :

a Fast Fourier Transform (FFT) was applied to t_Body_Acc_Jerk_Mag

f_Body_Gyro_Mag

a Fast Fourier Transform (FFT) was applied to t_Body_Gyro_Mag

f_Body_Gyro_Jerk_Mag

a Fast Fourier Transform (FFT) was applied to t_Body_Gyro_Jerk_Mag