Lecture 7: The Metropolis-Hastings Algorithm

Nick Whiteley

What we have seen last time: Gibbs sampler

• Key idea: Generate a Markov chain by updating the component of (X_1, \ldots, X_p) in turn by drawing from the full conditionals:

$$X_j^{(t)} \sim f_{X_j|X_{-j}}(\cdot|X_1^{(t)},\dots,X_{j-1}^{(t)},X_{j+1}^{(t-1)},\dots,X_p^{(t-1)})$$

- Two drawbacks:
 - Requires that it is possible / easy to sample from the full conditionals.
 - Can yields a slowly mixing chain if (some of) the components of (X_1, \ldots, X_p) are highly correlated.

What we will see today: Metropolis-Hastings algorithm

- Key idea: Use rejection mechanism, with a "local proposal":
 We let the newly proposed X depend on the previous state of the chain X^(t-1).
- Samples $(\mathbf{X}^{(0)}, \mathbf{X}^{(1)}, \ldots)$ form a Markov chain (like the Gibbs sampler).

5.1 Algorithm

The Metropolis-Hastings algorithm

Algorithm 5.1: Metropolis-Hastings

Starting with $\mathbf{X}^{(0)} := (X_1^{(0)}, \dots, X_p^{(0)})$ iterate for $t = 1, 2, \dots$

- 1. Draw $\mathbf{X} \sim q(\cdot | \mathbf{X}^{(t-1)})$.
- 2. Compute

$$\alpha(\mathbf{X}|\mathbf{X}^{(t-1)}) = \min \left\{ 1, \frac{f(\mathbf{X}) \cdot q(\mathbf{X}^{(t-1)}|\mathbf{X})}{f(\mathbf{X}^{(t-1)}) \cdot q(\mathbf{X}|\mathbf{X}^{(t-1)})} \right\}.$$

3. With probability $\alpha(\mathbf{X}|\mathbf{X}^{(t-1)})$ set $\mathbf{X}^{(t)} = \mathbf{X}$, otherwise set $\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}$.

Illustration of the Metropolis-Hastings method

Basic properties of the Metropolis-Hastings algorithm

• The probability that a newly proposed value is accepted given $\mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)}$ is

$$a(\mathbf{x}^{(t-1)}) = \int \alpha(\mathbf{x}|\mathbf{x}^{(t-1)})q(\mathbf{x}|\mathbf{x}^{(t-1)}) \ d\mathbf{x}.$$

ullet The probability of remaining in state ${f X}^{(t-1)}$ is

$$\mathbb{P}(\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)} | \mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)}) = 1 - a(\mathbf{x}^{(t-1)}).$$

 The probability of acceptance does not depend on the normalisation constant:

If
$$f(\mathbf{x}) = C \cdot \pi(\mathbf{x})$$
, then

$$\alpha(\mathbf{X}|\mathbf{X}^{(t-1)}) = \min \left\{ 1, \frac{\pi(\mathbf{X}) \cdot q(\mathbf{X}^{(t-1)}|\mathbf{X})}{\pi(\mathbf{X}^{(t-1)}) \cdot q(\mathbf{X}|\mathbf{X}^{(t-1)})} \right\}$$

The Metropolis-Hastings Transition Kernel

Lemma 5.1

The transition kernel of the Metropolis-Hastings algorithm is

$$\begin{split} K(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}) &= \alpha(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}) q(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}) \\ &+ (1 - a(\mathbf{x}^{(t-1)})) \delta_{\mathbf{x}^{(t-1)}}(\mathbf{x}^{(t)}), \end{split}$$

where $\delta_{\mathbf{x}^{(t-1)}(\cdot)}$ denotes Dirac-mass on $\{\mathbf{x}^{(t-1)}\}$.

5.2 Convergence properties

Theoretical properties

Proposition 5.1

The Metropolis-Hastings kernel satisfies the *detailed balance* condition

$$K(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}) f(\mathbf{x}^{(t-1)}) = K(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}) f(\mathbf{x}^{(t)}).$$

Thus $f(\mathbf{x})$ is the invariant distribution of the Markov chain $(\mathbf{X}^{(0)},\mathbf{X}^{(1)},\ldots)$. Furthermore the Markov chain is reversible.

Example 5.1: Reducible Metropolis-Hastings

Consider the target distribution

$$f(x) = (\mathbb{I}_{[0,1]}(x) + \mathbb{I}_{[2,3]}(x))/2.$$

and the proposal distribution $q(\cdot|\mathbf{x}^{(t-1)})$:

$$X|X^{(t-1)} = x^{(t-1)} \sim \mathsf{U}[x^{(t-1)} - \delta, x^{(t-1)} + \delta]$$

Reducible if $\delta \leq 1$: the chain stays either in [0,1] or [2,3].

Further theoretical properties

- The Markov chain $(\mathbf{X}^{(0)}, \mathbf{X}^{(1)}, \ldots)$ is irreducible if $q(\mathbf{x}|\mathbf{x}^{(t-1)}) > 0$ for all $\mathbf{x}, \mathbf{x}^{(t-1)} \in \operatorname{supp}(f)$: every state can be reached in a single step. (less strict conditions can be obtained, see e.g.(see Roberts & Tweedie, 1996)
- The chain is aperiodic, if there is positive probability that the chain remains in the current state, i.e. $\mathbb{P}(\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}) > 0$,

An ergodic theorem

Theorem 5.1

If the Markov chain generated by the Metropolis-Hastings algorithm is irreducible, then for any integrable function $h:E\to\mathbb{R}$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}^{(t)}) \to \mathbb{E}_f (h(\mathbf{X}))$$

for every starting value $\mathbf{X}^{(0)}$.

Interpretation: We can approximate expectations by their empirical counterparts using a single Markov chain.

5.3 Random-walk Metropolis5.4 Choosing the proposal distribution

Random-walk Metropolis: Idea

- In the Metropolis-Hastings algorithm the proposal is from $\mathbf{X} \sim q(\cdot|\mathbf{X}^{(t-1)}).$
- A popular choice for the proposal is $q(\mathbf{x}|\mathbf{x}^{(t-1)}) = g(\mathbf{x} \mathbf{x}^{(t-1)})$ with g being a *symmetric* distribution, thus

$$\mathbf{X} = \mathbf{X}^{(t-1)} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim g.$$

Probability of acceptance becomes

$$\min\left\{1, \frac{f(\mathbf{X}) \cdot g(\mathbf{X} - \mathbf{X}^{(t-1)})}{f(\mathbf{X}^{(t-1)}) \cdot g(\mathbf{X}^{(t-1)} - \mathbf{X})}\right\} = \min\left\{1, \frac{f(\mathbf{X})}{f(\mathbf{X}^{(t-1)})}\right\},$$

- We accept . . .
 - every move to a more probable state with probability 1.
 - moves to less probable states with a probability $f(\mathbf{X})/f(\mathbf{x}^{(t-1)}) < 1$.

Random-walk Metropolis: Algorithm

Random-Walk Metropolis

Starting with $\mathbf{X}^{(0)} := (X_1^{(0)}, \dots, X_p^{(0)})$ and using a symmetric random walk proposal g, iterate for $t = 1, 2, \dots$

- 1. Draw $\epsilon \sim g$ and set $\mathbf{X} = \mathbf{X}^{(t-1)} + \epsilon$.
- 2. Compute

$$\alpha(\mathbf{X}|\mathbf{X}^{(t-1)}) = \min\left\{1, \frac{f(\mathbf{X})}{f(\mathbf{X}^{(t-1)})}\right\}.$$

3. With probability $\alpha(\mathbf{X}|\mathbf{X}^{(t-1)})$ set $\mathbf{X}^{(t)} = \mathbf{X}$, otherwise set $\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}$.

Popular choices for g are (multivariate) Gaussians or t-distributions (the latter having heavier tails)

Example 5.2: Bayesian probit model (1)

- Medical study on infections resulting from birth by Cesarean section
- 3 influence factors:
 - indicator whether the Cesarian was planned or not (z_{i1}) ,
 - ullet indicator of whether additional risk factors were present at the time of birth (z_{i2}) , and
 - indicator of whether antibiotics were given as a prophylaxis (z_{i3}) .
- Response variable: number of infections Y_i that were observed amongst n_i patients having the same covariates.

# birt	:hs	planned	risk factors	antibiotics
infection	total			
y_i	n_i	z_{i1}	z_{i2}	z_{i3}
11	98	1	1	1
1	18	0	1	1
0	2	0	0	1
23	26	1	1	0
28	58	0	1	0
0	9	1	0	0
8	40	0	0	0

Example 5.2: Bayesian probit model (2)

• Model for Y_i :

$$Y_i \sim \text{Bin}(n_i, \pi_i), \qquad \pi = \Phi(\mathbf{z}_i'\boldsymbol{\beta}),$$

where $\mathbf{z}_i = [1, z_{i1}, z_{i2}, z_{i3}]^T$ and $\Phi(\cdot)$ being the CDF of a N(0,1).

- Prior on the parameter of interest β : $\beta \sim N(\mathbf{0}, \mathbb{I}/\lambda)$.
- The posterior density of β is

$$f(\boldsymbol{\beta}|y_1, \dots, y_n) \propto \left(\prod_{i=1}^N \Phi(\mathbf{z}_i'\boldsymbol{\beta})^{y_i} \cdot (1 - \Phi(\mathbf{z}_i'\boldsymbol{\beta}))^{n_i - y_i} \right) \cdot \exp\left(-\frac{\lambda}{2} \sum_{j=0}^3 \beta_j^2 \right)$$

Example 5.2: Bayesian probit model (3)

Use the following random walk Metropolis algorithm (50,000 samples).

Starting with any $\beta^{(0)}$ iterate for t = 1, 2, ...:

- 1. Draw $\epsilon \sim N(\mathbf{0}, \Sigma)$ and set $\beta = \beta^{(t-1)} + \epsilon$.
- 2. Compute

$$\alpha(\boldsymbol{\beta}|\boldsymbol{\beta}^{(t-1)}) = \min \left\{ 1, \frac{f(\boldsymbol{\beta}|Y_1, \dots, Y_n)}{f(\boldsymbol{\beta}^{(t-1)}|Y_1, \dots, Y_n)} \right\}.$$

3. With probability $\alpha(\beta|\beta^{(t-1)})$ set $\beta^{(t)} = \beta$, otherwise set $\boldsymbol{\beta}^{(t)} = \boldsymbol{\beta}^{(t-1)}$

(for the moment we use $\Sigma = 0.08 \cdot \mathbb{I}$, and $\lambda = 10$).

Example 5.2: Bayesian probit model (4)

Convergence of the $\beta_j^{(t)}$ is to a distribution, not a value!

Example 5.2: Bayesian probit model (5)

Convergence of cumulative averages $\sum_{tau=1}^{t} \beta_i^{(\tau)}/t$ is to a value.

Example 5.2: Bayesian probit model (6)

Example 5.2: Bayesian probit model (7)

		Posterior mean	95% credi	ble interval
intercept	β_0	-1.0952	-1.4646	-0.7333
planned	β_1	0.6201	0.2029	1.0413
risk factors	β_2	1.2000	0.7783	1.6296
antibiotics	β_3	-1.8993	-2.3636	-1.471

Choosing a good proposal distribution

- Ideally: Markov chain with small correlation $\rho(\mathbf{X}^{(t-1)}, \mathbf{X}^{(t)})$ between subsequent values.
 - \rightsquigarrow fast exploration of the support of the target f.
- Two sources for this correlation:
 - the correlation between the current state $\mathbf{X}^{(t-1)}$ and the newly proposed value $\mathbf{X} \sim q(\cdot|\mathbf{X}^{(t-1)})$ (can be reduced using a proposal with high variance)
 - the correlation introduced by retaining a value $\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}$ because the newly generated value \mathbf{X} has been rejected (can be reduced using a proposal with small variance)
- Trade-off for finding the ideal compromise between:
 - fast exploration of the space (good mixing behaviour)
 - obtaining a large probability of acceptance
- For multivariate distributions: covariance of proposal should reflect the covariance structure of the target.

Example 5.3: Choice of proposal (1)

- Target distribution, we want to sample from: N(0,1) (i.e. $f(\cdot) = \phi_{(0,1)}(\cdot)$
- We want to use a random walk Metropolis algorithm with

$$\varepsilon \sim \mathsf{N}(0,\sigma^2)$$

- What is the optimal choice of σ^2 ?
- We consider four choices $\sigma^2 = 0.1^2, 1, 2.38^2, 10^2$.

Example 5.3: Choice of proposal (2) 9 9 9-

Example 5.3: Choice of proposal (3)

Example 5.3: Choice of proposal (4)

	Autocorrelation $\rho(X^{(t-1)}, X^{(t)})$		Probability of acceptance $\alpha(X, X^{(t-1)})$		
	Mean	95% CI	Mean	95% CI	
$\sigma^2 = 0.1^2$	0.9901	(0.9891,0.9910)	0.9694	(0.9677, 0.9710)	
$\sigma^2 = 1$	0.7733	(0.7676,0.7791)	0.7038	(0.7014, 0.7061)	
$\sigma^2 = 2.38^2$	0.6225	(0.6162, 0.6289)	0.4426	(0.4401, 0.4452)	
$\sigma^2 = 10^2$	0.8360	(0.8303, 0.8418)	0.1255	(0.1237, 0.1274)	

Suggests: Optimal choice is $2.38^2 > 1$.

Example 5.4: Bayesian probit model (revisited)

- So far we used: $Var(\epsilon) = 0.08 \cdot \mathbb{I}$.
- ullet Better choice: Let $\mathrm{Var}(\epsilon)$ reflect the covariance structure
- Frequentist asymptotic theory: $Var(\hat{\boldsymbol{\beta}}^{m.l.e}) = (\mathbf{Z}'\mathbf{D}\mathbf{Z})^{-1}$ \mathbf{D} is a suitable diagonal matrix
- Better choice: $Var(\epsilon) = 2 \cdot (\mathbf{Z}'\mathbf{D}\mathbf{Z})^{-1}$
- Increases rate of acceptance from 13.9% to 20.0% and reduces autocorrelation:

$\mathbf{\Sigma} = 0.08 \cdot \mathbf{I}$	β_0	eta_1	eta_2	β_3
Autocorrelation $\rho(\beta_j^{(t-1)}, \beta_j^{(t)})$	0.9496	0.9503	0.9562	0.9532
$\mathbf{\Sigma} = 2 \cdot (\mathbf{Z}' \mathbf{D} \mathbf{Z})^{-1}$	β_0	eta_1	eta_2	β_3

(in this example $\det(0.08 \cdot \mathbb{I}) = \det(2 \cdot (\mathbf{Z}'\mathbf{DZ})^{-1})$)