

Série C - session 2008 : problème 1 - corrigé

Partie A: Utilisation des propriétés géométriques des transformations

1 - a) Construction

b) Nature de la transformation $R = R_B \circ R_O$.

R est la composée de 2 rotations dont la somme des angles est : $\theta = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$

R est une rotation d'angle $\theta = \frac{2\pi}{3}$.

c) Détermination du centre de R

Décomposons R_B et R_O en produit de réflexions

Décomposition de R_O , rotation de centre O et d'angle $\frac{\pi}{3}$, en deux réflexions S_{D1} et S_{D2}

Soit

$$R_{O} = S_{D2} \circ S_{D1}$$
 telle que
 $\int (D_{1}) \cap (D_{2}) = O$
 $\int (D_{1}, D_{2}) = \frac{1}{2} \frac{\pi}{3} = \frac{\pi}{6}$

Décomposition de R_B, rotation de centre B et d'angle $\frac{\pi}{3}$, en deux réflexions S_{D3} et S_{D4}.

Soit

$$R_{B} = S_{D4} \circ S_{D3} \qquad \text{telle que}$$

$$\begin{cases} (D_{4}) \cap (D_{3}) = B \\ (D_{3}, D_{4}) = \frac{1}{2} \frac{\pi}{3} = \frac{\pi}{6} \end{cases}$$

Ainsi

$$R = R_B \circ R_O = S_{D4} \circ S_{D3} \circ S_{D2} \circ S_{D1}.$$

On prend

$$(D_3) = (D_2) = (OB)$$
 (axe des deux centres de rotation)

Alors (D₁) est une droite passant par O et (D₁, (OB)) = $\frac{\pi}{6}$

On a

$$(D_1) = (OG)$$

Ensuite, (D₄) est une droite passant par B et ((OB), (D₄)) = $\frac{\pi}{6}$

On a

$$(D_4) = (BG)$$

D'où

$$R = R_B \circ R_O = S_{(BG)} \circ S_{(OB)} \circ S_{(OB)} \circ S_{(OG)} = S_{(BG)} \circ S_{(OG)}$$

R est la composée de 2 réflexions, $S_{(BG)}$ et $S_{(OG)}$, d'axes sécants en G.

Donc, R est une rotation de centre G.

2 - a) Construction du pont H, barycentre des points pondérés $S = \{ (0,2) ; (B,1) ; (C,1) \}$

On a
$$2\overrightarrow{HO} + \overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{0}$$

Soit I le milieu de [CB], on a : $\overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HI}$

$$2\overrightarrow{HO} + 2\overrightarrow{HI} = \overrightarrow{O}$$
; H est le milieu de [OI]

b) ensemble (C) des points M : $2\overrightarrow{MO}^2 + \overrightarrow{MC}^2 + \overrightarrow{MB}^2 = 2\overrightarrow{AO}^2$

En introduisant le barycentre H du système S, on a :

$$2\overrightarrow{MO}^2 + \overrightarrow{MC}^2 + \overrightarrow{MB}^2 = 4\overrightarrow{MH}^2 + (2\overrightarrow{HO}^2 + \overrightarrow{HC}^2 + \overrightarrow{HB}^2)$$

$$2\overrightarrow{MO}^2 + \overrightarrow{MC}^2 + \overrightarrow{MB}^2 = 2\overrightarrow{AO}^2$$

$$\overrightarrow{HH}^2 = \frac{1}{4} [2\overrightarrow{AO}^2 - (2\overrightarrow{HO}^2 + \overrightarrow{HC}^2 + \overrightarrow{HB}^2)]$$

Si l'ensemble (${\it C}$) n'est pas vide ou réduit à { ${\it H}$ }, alors (${\it C}$) est un cercle de centre ${\it H.f.}$

On a
$$OC = OB = OA$$
 et $OC^2 + OB^2 = 2 OA^2$, donc $O \in (C)$.

Ainsi, (C) est le cercle de centre H de rayon HO.

c) Montrons que (C) passe par I.

OH = IH alors
$$I \in (C)$$

Construction (voir figure)

Partie B. Utilisation des nombres complexes

1 - Affixe des points O, A, B, C, et G.

$$z_0 = 0$$
 ; $z_A = 1$; $z_B = i$; $z_C = \frac{\sqrt{3}}{2} + \frac{i}{2}$

G est le centre de gravité du triangle équilatéral OCB, on a : $z_G = \frac{1}{3}[z_0 + z_C + z_B] = \frac{\sqrt{3}}{6} + \frac{i}{2}$

2 - a) Une mesure de l'angle $(\overrightarrow{OG}, \overrightarrow{OA})$ et la valeur du rapport $\frac{OA}{OG}$

$$\frac{z_A}{z_G} = \frac{1}{\frac{\sqrt{3}}{6} + \frac{i}{2}} = \sqrt{3} \left(\frac{1}{2} - i \frac{\sqrt{3}}{2} \right)$$

$$(\overrightarrow{OG}, \overrightarrow{OA}) = arg(\frac{z_A}{z_G}) = arg[\sqrt{3}(\frac{1}{2} - i\frac{\sqrt{3}}{6})] = -\frac{\pi}{3} + 2k\pi$$

$$\frac{\mathsf{OA}}{\mathsf{OG}} = \left| \frac{\mathsf{z}_\mathsf{A}}{\mathsf{z}_\mathsf{G}} \right| = \left| \sqrt{3} \left(\frac{1}{2} - \mathrm{i} \frac{\sqrt{3}}{2} \right) \right| = \sqrt{3}$$

b) Eléments caractéristiques de la similitude plane directe S

$$S(O) = O$$
 et $S(G) = A$

Le centre est O

$$k = \frac{OA}{OG} = \sqrt{3}$$

$$\theta = \frac{-\pi}{3} + 2k\pi$$

c) Expression complexe de S.

C'est de la forme

$$z'-z_O = k e^{i\theta} (z-z_O)$$

On a

$$z' = \left(\frac{\sqrt{3}}{2} - \frac{3i}{2}\right)z$$