|                                  | 1   Mechanistic Interpretability (MI)       |  |  |
|----------------------------------|---------------------------------------------|--|--|
| Mechanistic Interpretability on  | 2   Modular Arithmetic                      |  |  |
| (MULTI-TASK) IRREDUCIBLE INTEGER | 3   Grokking on $\mathcal{T}_{	ext{miiii}}$ |  |  |
| Identifiers                      |                                             |  |  |
|                                  | 4   Embeddings                              |  |  |
| Noah Syrkis                      |                                             |  |  |
| January 20, 2025                 | 5   Neurons                                 |  |  |
|                                  | 6   The $\omega$ -Spike                     |  |  |



Figure 1:  $\mathbb{N} < p^2$  multiples of 13 or 27 (left) 11 (mid.) or primes (right)

"This disgusting pile of matrices is actually just an astoundingly poorly written, elegant and consice algorithm" — Neel Nanda $^1$ 

<sup>&</sup>lt;sup>1</sup>Not verbatim, but the gist of it

▶ Sub-symbolic nature of deep learning obscures model mechanisms

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation
- ▶ MI is about reverse engineering these models, and looking closely at them

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation
- ▶ MI is about reverse engineering these models, and looking closely at them
- ▶ Many low hanging fruits / practical botany phase of the science

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation
- ▶ MI is about reverse engineering these models, and looking closely at them
- ▶ Many low hanging fruits / practical botany phase of the science
- ▶ How does a given model work? How can we train it faster? Is it safe?

▶ Grokking [1] is "sudden generalization"

$$h(t) = h(t-1)\alpha + g(t)(1-\alpha) \qquad (1.1)$$

$$\hat{g}(t) = g(t) + \lambda h(t) \tag{1.2}$$

- ▶ Grokking [1] is "sudden generalization"
- ▶ MI (often) needs a mechanism

$$h(t) = h(t-1)\alpha + g(t)(1-\alpha) \qquad (1.1)$$

$$\hat{g}(t) = g(t) + \lambda h(t) \tag{1.2}$$

- ▶ Grokking [1] is "sudden generalization"
- ▶ MI (often) needs a mechanism
- ▶ Grokking is thus convenient for MI

$$h(t) = h(t-1)\alpha + g(t)(1-\alpha) \qquad (1.1)$$

$$\hat{g}(t) = g(t) + \lambda h(t) \tag{1.2}$$

- ▶ Grokking [1] is "sudden generalization"
- ▶ MI (often) needs a mechanism
- ▶ Grokking is thus convenient for MI
- ▶ Lee et al. (2024) speeds up grokking by boosting slow gradients as per Eq. 1
- ► For more see Appendix A

$$h(t) = h(t-1)\alpha + g(t)(1-\alpha) \qquad (1.1)$$

$$\hat{g}(t) = g(t) + \lambda h(t) \tag{1.2}$$

# 1.2 | Visualizing

▶ MI needs creativity ...



Figure 2: Top singular vectors of  $\mathbf{U}_{W_{E_{\mathcal{T}_{\mathrm{nanda}}}}}$ (top), varying  $x_0$  and  $x_1$  in sample (left) and
freq. (right) space in  $W_{\mathrm{out}_{\mathcal{T}_{\mathrm{miiii}}}}$ 

#### 1.2 | Visualizing

▶ MI needs creativity ... but there are tricks:



Figure 2: Top singular vectors of  $\mathbf{U}_{W_{E_{\mathcal{T}_{\mathrm{nanda}}}}}$ (top), varying  $x_0$  and  $x_1$  in sample (left) and
freq. (right) space in  $W_{\mathrm{out}_{\mathcal{T}_{\mathrm{miiii}}}}$ 

### 1.2 | Visualizing

- ▶ MI needs creativity ... but there are tricks:
  - ► For two-token samples, plot them varying one on each axis (Figure 2)
  - ▶ When a matrix is periodic use Fourier
  - ► Singular value decomp. (Appendix C).
  - ► Take away: get commfy with esch-plots



Figure 2: Top singular vectors of  $\mathbf{U}_{W_{E_{\mathcal{T}_{\mathrm{nanda}}}}}$ (top), varying  $x_0$  and  $x_1$  in sample (left) and
freq. (right) space in  $W_{\mathrm{out}_{\mathcal{T}_{\mathrm{miiii}}}}$ 

# 2 | Modular Arithmetic

- ▶ "Seminal" MI paper by Nanda et al. (2023) focuses on modular addition (Eq. 2)
- ▶ Their final setup trains on p = 113
- ▶ They train a one-layer transformer
- ightharpoonup We call their task  $\mathcal{T}_{nanda}$

$$(x_0 + x_1) \operatorname{mod} p, \quad \forall x_0, x_1 \tag{2}$$

# 2 | Modular Arithmetic

- ▶ "Seminal" MI paper by Nanda et al. (2023) focuses on modular addition (Eq. 2)
- ▶ Their final setup trains on p = 113
- ▶ They train a one-layer transformer
- $\blacktriangleright$  We call their task  $\mathcal{T}_{nanda}$
- ▶ And ours, seen in Eq. 3, we call  $\mathcal{T}_{\text{miiii}}$

$$(x_0 + x_1) \operatorname{mod} p, \quad \forall x_0, x_1 \tag{2}$$

$$(x_0 p^0 + x_1 p^1) \operatorname{mod} q, \quad \forall q$$

# 2 | Modular Arithmetic

- $ightharpoonup \mathcal{T}_{\mathrm{miiii}}$  is non-commutative ...
- $\blacktriangleright$  ... and multi-task: q ranges from 2 to  $109^1$
- $ightharpoonup \mathcal{T}_{\mathrm{nanda}}$  use a single layer transformer
- ▶ Note that these tasks are synthetic and trivial to solve with conventional programming
- ▶ They are used in the MI literature to turn black boxes opaque

<sup>&</sup>lt;sup>1</sup>Largest prime less than p = 113

# $3 \mid \text{Grokking on } \mathcal{T}_{\text{miii}}$

- ▶ The model groks on  $\mathcal{T}_{\text{miiii}}$  (Figure 3)
- ▶ Needed GrokFast [2] on compute budget
- ▶ Final hyperparams are seen in Table 1

| rate           | λ             | wd            | d   | lr               | heads |
|----------------|---------------|---------------|-----|------------------|-------|
| $\frac{1}{10}$ | $\frac{1}{2}$ | $\frac{1}{3}$ | 256 | $\frac{3}{10^4}$ | 4     |

Table 1: Hyperparams for  $\mathcal{T}_{miii}$ 



Figure 3: Training (top) and validation (bottom) accuracy during training on  $\mathcal{T}_{\text{miiii}}$ 

▶ The position embs. of Figure 4 reflects that  $\mathcal{T}_{\text{nanda}}$  is commutative and  $\mathcal{T}_{\text{miiii}}$  is not



Positional embeddings

Figure 4: Positional embeddings for  $\mathcal{T}_{nanda}$   $(top) \ and \ \mathcal{T}_{miii} \ (bottom).$ 

- ▶ The position embs. of Figure 4 reflects that  $\mathcal{T}_{nanda}$  is commutative and  $\mathcal{T}_{miii}$  is not
- ▶ Maybe: this corrects non-comm. of  $\mathcal{T}_{miii}$ ?
- ▶ Corr. is 0.95 for  $\mathcal{T}_{nanda}$  and -0.64 for  $\mathcal{T}_{miiii}$



Positional embeddings



Figure 4: Positional embeddings for  $\mathcal{T}_{nanda}$   $(top) \ and \ \mathcal{T}_{miji} \ (bottom).$ 

- ▶ For  $\mathcal{T}_{nanda}$  token embs. are essentially linear combinations of 5 frequencies ( $\omega$ )
- $\blacktriangleright$  For  $\mathcal{T}_{\text{miiii}}$  more frequencies are in play
- ightharpoonup Each  $\mathcal{T}_{ ext{miiii}}$  subtask targets unique prime
- ▶ Possibility: One basis per prime task





Figure 5:  $\mathcal{T}_{nanda}$  (top) and  $\mathcal{T}_{miiii}$  (bottom) token embeddings in Fourier basis

▶ Masking  $q \in \{2, 3, 5, 7\}$  yields we see a slight decrease in token emb. freqs.

- ▶ Masking  $q \in \{2, 3, 5, 7\}$  yields we see a slight decrease in token emb. freqs.
- $\blacktriangleright$  Sanity check:  $\mathcal{T}_{\text{baseline}}$  has no periodicity
- ▶ The tok. embs. encode a basis per subtask?



Figure 8:  $\mathcal{T}_{\text{baseline}}$  (top),  $\mathcal{T}_{\text{miiii}}$  (middle) and  $\mathcal{T}_{\text{masked}}$  (bottom) token embeddings in Fourier

9 of 18

#### 5 | Neurons

- Figure 9 shows transformer MLP neuron activations as  $x_0$ ,  $x_1$  vary on each axis
- $\blacktriangleright$  Inspite of the dense Fourier basis of  $W_{E_{\mathcal{T}_{\mathrm{miiii}}}}$  the periodicity is clear



Figure 9: Activations of first three neurons for

 $\mathcal{T}_{\mathrm{nanda}}$  (top) and  $\mathcal{T}_{\mathrm{miiii}}$  (bottom)

#### 5 | Neurons

- ► (Probably redundant) sanity check:

  Figure 10 confirms neurons are periodic
- $\blacktriangleright$  See some freqs.  $\omega$  rise into significance
- Lets  $\log |\omega > \mu_{\omega} + 2\sigma_{\omega}|$  while training



Figure 10: FFT of Activations of first three neurons for  $\mathcal{T}_{nanda}$  (top) and  $\mathcal{T}_{miii}$  (bottom)



Figure 11: Neurons as archive and algorithm.  $\mathcal{T}_{\text{basline}}$  on top, FFT on right.

Figure 12: Number of neurons with frequency  $\omega$  above the theshold  $\mu_{\omega} + 2\sigma_{\omega}$ 

# 6 | The $\omega$ -Spike

- ▶ Neurs. periodic on solving  $q \in \{2, 3, 5, 7\}$
- ▶ When we generalize to the reamining tasks, many frequencies activate (64-sample)
- ▶ Those  $\omega$ 's are not useful for memory and not useful after generalization

| time       | 256 | 1024 | 4096 | 16384 | 65536 |
|------------|-----|------|------|-------|-------|
| $ \omega $ | 0   | 0    | 10   | 18    | 10    |

Table 2: active  $\omega$ 's through training



Figure 13: Figure 12 (top) and validation

accuracy from Figure 3 (bottom)

# 6 | The $\omega$ -Spike

- ▶ GrokFast [2] shows time gradient sequences is (arguably) a stocastical signal with:
  - ► A fast varying overfitting component
  - ► A slow varying generealizing component
- $\blacktriangleright$  My work confirms this to be true for  $\mathcal{T}_{\mathrm{miiii}}$  ...
- ... and observes a strucutre that seems to fit *neither* of the two

6 | The  $\omega$ -Spike

- ► Future work:
  - ▶ Modify GrokFast to assume a third stochastic component
  - ▶ Relate to signal processing literature
  - ► Can more depth make tok-embedding sparse?

#### References

- [1] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra, "Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets," no. arXiv:2201.02177. arXiv, Jan. 2022. doi: 10.48550/arXiv.2201.02177.
- [2] J. Lee, B. G. Kang, K. Kim, and K. M. Lee, "Grokfast: Accelerated Grokking by Amplifying Slow Gradients," no. arXiv:2405.20233. Jun. 2024.
- [3] N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Steinhardt, "Progress Measures for Grokking via Mechanistic Interpretability," no. arXiv:2301.05217. arXiv, Oct. 2023.

# A | Stochastic Signal Processing

We denote the weights of a model as  $\theta$ . The gradient of  $\theta$  with respect to our loss function at time t we denote g(t). As we train the model, g(t) varies, going up and down. This can be thought of as a stocastic signal. We can represent this signal with a Fourier basis (Appendix B). GrokFast posits that the slow varying frequencies contribute to grokking. Higer frequencies are then muted, and grokking is indeed accelerated.

# B | Discrete Fourier Transform

Function can be expressed as a linear combination of cosine and sine waves. A similar thing can be done for data / vectors.

# C | Singular Value Decomposition

An  $n \times m$  matrix M can be represented as a  $U\Sigma V^*$ , where U is an  $m \times m$  complex unitary matrix,  $\Sigma$  a rectangular  $m \times n$  diagonal matrix (padded with zeros), and V an  $n \times n$  complex unitary matrix. Multiplying by M can thus be viewed as first rotating in the m-space with U, then scaling by  $\Sigma$  and then rotating by V in the n-space.