Leonardo Leite

IME - USP

26 de maio de 2014

Orientador: Marco Aurélio Gerosa

Coorientador: Fabio Kon

Conteúdo

- Introdução
- 2 Definição da pesquisa
- Trabalhos relacionados
- 4 O CHOReOS Enactment Engine
- 6 Avaliação
- 6 Conclusões

Implantação de sistemas

O processo de implantação manual se torna moroso e propenso a erros, principalmente na implantação de sistemas distribuídos.

Implantação de sistemas

Processo de implantação automatizada

- Reprodutível
- Confiável
- Fácil de ser executado
- Entrega contínua
- DevOps

Implantação de sistemas

Processo de implantação automatizada

• Abordagens ad-hoc vs baseadas em middleware

Composições de serviços web

- Interfaces acessíveis por máquinas
- Automação de fluxos de negócios
- Aeroporto do Futuro

Composições de serviços web

Desafios na implantação em grande-escala

- Processo
- Falhas
- Disponibilidade
- Escalabilidade
- Heterogeneidade
- Múltiplas organizações
- Adaptabilidade

Computação em nuvem

SaaS PaaS laaS

Computação em nuvem

Implicações na implantação

- Não se conhece os IPs antes da implantação
- Servidores são efêmeros

Definição da pesquisa

Contexto

Composições de serviços web de grande escala.

Questão

O quanto e como soluções de implantação baseadas em middleware trazem benefícios no dado contexto quando confrontadas com soluções *ad-hoc*?

Objetivo

Projetar, implementar e avaliar um middleware que forneça suporte à implantação automatizada de composições de serviços web de grande escala.

Trabalhos relacionados

Trabalhos relacionados

Trabalho	ADL	Escala	Composições	Nuvem	Heterog.
Chef	Х	-	-	-	-
Capistrano	Х	-	-	-	-
Nix	X	X	\checkmark	X	-
Darwin/Regis	\checkmark	X	\checkmark	X	X
Olan	\checkmark	X	\checkmark	X	X
Quema et al.	\checkmark	\checkmark	\checkmark	X	X
J2EE app deployment	\checkmark	X	\checkmark	X	X
Globus Toolkit	\checkmark	X	\checkmark	X	X
Dynasoar	-	X	X	X	?
Open Knowledge	\checkmark	X	\checkmark	X	X
TOSCA	\checkmark	X	\checkmark	\checkmark	\checkmark
Juju	-	X	X	\checkmark	\checkmark
Cloud Foundry	-	?	X	\checkmark	\checkmark
Enactment Engine	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

O CHOReOS Enactment Engine

O EE e os modelos de computação nuvem

Atores

Ambiente de execução do EE

Processo de implantação implementado pelo EE

Estrutura da descrição arquitetural de uma coreografia

Exemplo de descrição arquitetural de uma coreografia

```
airportBusCompanySpec =
 new DeployableServiceSpec (AIRPORT_BUS_COMPANY_NAME,
   ServiceType.SOAP.
   PackageType.COMMAND_LINE,
   resourceImpact,
   serviceVersion,
  AIRPORT_BUS_COMPANY_JAR_URL,
  AIRPORT_BUS_COMPANY_PORT.
  AIRPORT_BUS_COMPANY_ENDPOINT,
   numberOfReplicas);
airportBusCompanySpec.setRoles(
  Collections.singletonList(AIRPORT_BUS_COMPANY_ROLE));
airportBusCompanySpec.addDependency(
  new ServiceDependency(AIRPORT_NAME, AIRPORT_ROLE));
```

Interface remota

```
public interface EnactmentEngine {
    public String createChoreography(ChoreographySpec chor);
    public Choreography getChoreography (String chorld) throws
        ChoreographyNotFoundException;
    public Choreography deployChoreography(String chorld) throws
        DeploymentException, ChoreographyNotFoundException;
    public void updateChoreography(String chorld, ChoreographySpec
        spec) throws DeploymentException,
        ChoreographyNotFoundException;
```

Pontos de extensão

- Provedores de infraestrutura
- Políticas de seleção de nós
- Tipos de pacotes
- Tipos de serviços

Tratando falhas de terceiros

Invoker

- -task: Callable<T>
- -trialTimeout
- -trials: int
- -pauseBetweenTrials: int
 -timeUnit: TimeUnit
- +invoke(): T

Tratando falhas de terceiros

Reserva de nós ociosos

Como abordagens de implantação baseadas em middleware auxiliam o implantador em relação aos desafios listados?

- Processo
- Falhas
- Disponibilidade
- Escalabilidade
- Heterogeneidade
- Múltiplas organizações
- Adaptabilidade

Processo

- Automação
- Interface REST
- Descrição declarativa
- Infraestrutura virtualizada

Falhas

- Invoker
- Reservoir
- Degradação suave
- Idempotência

Disponibilidade

- Replicação
- Dados

Escalabilidade

- Concorrência
- Tratamento de falhas
- Evitar gargalos (Chef Server → Chef Solo)

O EE e os desafios de implantação em grande escala

Heterogeneidade

Extensibilidade

O EE e os desafios de implantação em grande escala

Múltiplas organizações

- Serviços legados
- Implantação multi-nuvem
- Federação

O EE e os desafios de implantação em grande escala

Adaptabilidade

- Atualização das coreografias
- Migração de serviços
- Replicação de serviços
- Implantação de infraestrutura de monitoramento

Avaliação

Comparação EE vs ad-hoc

EE

- Desenvolvimento: 45 min.
- Execução: 4 min.
- Tamanho: 180 LoC Java.

ad-hoc

- Desenvolvimento: 9 horas.
- Execução: 60 min.
- Tamanho: 100 LoC Shell Script, 220 LoC Java, e 85 LoC Ruby.

Dificuldades da abordagem ad-hoc

- Muitas tecnologias.
- Replicação de código.
- Passos manuais.
- Pouca paralelização.

Dificuldades da abordagem ad-hoc

Solução *ad-hoc* até poderia ficar melhor... mas poderia ficar quase tão complexa quanto o próprio EE!

Análise de desempenho

Cenário	Composições	Tamanho	Nós	Serviços/Nós
1	10	10	9	11 ou 12
2	10	100	90	11 ou 12
3	100	10	90	11 ou 12
4	10	10	5	20

Análise de desempenho

Topografia da coreografia sintética utilizada nos experimentos

Análise de desempenho

Cenário	Тетро	Composições	Serviços
	(s)	com sucesso	com sucesso
1	467.9 ± 34.8	10.0 ± 0	$100.0 \pm 0 \ (100\%)$
2	1477.1 ± 130.0	9.3 ± 0.3	$999.3 \pm 0.4 \ (99.9\%)$
3	1455.2 ± 159.1	98.9 ± 0.8	$998.5 \pm 1.3 \ (99.9\%)$
4	585.2 ± 38.1	10.0 ± 0.1	$100.0\pm0.1\;(100\%)$

Análise de escalabilidade

Efetividade do tratamento de falhas

Cada execução: 1 coreografia de 100 serviços.

Conclusões

Contribuições

- A implementação de um middleware que possibilita a implantação automatizada de composições de serviços.
- Uma comparação, baseada na literatura e em evidências empíricas, entre soluções de implantação automatizada com abordagens ad-hoc e baseadas em middleware.

Publicações

SBRC

Leonardo Leite, Nelson Lago, Marco Aurélio Gerosa e Fabio Kon. Um Middleware para Encenação Automatizada de Coreografias de Serviços Web em Ambientes de Computação em Nuvem. Em 31º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, 2013.

MiniPlop Brasil

Leonardo Leite. Fábrica dinâmica de dublês: testando classes que possuem dependências não injetáveis. Em *Miniconferência Latino-Americana de Linguagens de Padrões para Programação*, 2013.

SOCA

Leonardo Leite, Gustavo Oliva, Guilherme Nogueira, Marco Aurélio Gerosa, Fabio Kon e Dejan Milojicic. A systematic literature review of service choreography adaptation. Service Oriented Computing and Applications, 3(7):201–218, 2013.

Trabalhos futuros

- Análise multivariável de fatores que influenciam a escalabilidade.
- Experimentos com desenvolvedores.
- Algoritmos adaptativos para tratamento de falhas.
- Federação de instâncias do EE.
- Utilização de um balanceador de carga.
- Utilização de um barramento de serviços.
- Atualização dinâmica de composições de serviços.

Obrigado!

Leonardo Alexandre Ferreira Leite

http://www.ime.usp.br/~leofl leofl@ime.usp.br

CHOReOS Enactment Engine

http://ccsl.ime.usp.br/EnactmentEngine https://github.com/choreos/enactment_engine