Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт перспективной инженерии Департамент цифровых, робототехнических систем и электроники

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №3

дисциплины «Искусственный интеллект и машинное обучение» Вариант 12

Выполнил:

Рябинин Егор Алексеевич 2 курс, группа ИВТ-б-о-23-2, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения (подпись) Проверил: Доцент департамента цифровых, робототехнических систем и электроники института перспективной инженерии Воронкин Роман Александрович (подпись)

Отчет защищен с оценкой	<u>.</u>	Дата защиты_	

Тема: Основы работы с библиотекой matplotlib.

Цель: исследовать базовые возможности библиотеки matplotlib языка программирования Python.

Порядок выполнения работы:

Ссылка на репозиторий GitHib:

https://github.com/EgorGorilla/Lab3_Artificial-Intelligence-and-Machine-

Learning

1. Задания практической работы.

Задание 1. Построение простого графика

Напишите код, который строит график функции у = x^2 на интервале [-10,10]. Добавьте заголовок, подписи осей и сетку.

```
% [20] import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
x = np.linspace(-10,10)
y = x**2
plt.plot(x,y)
plt.title("График функции y = x^2")
plt.xlabel("x")
plt.ylabel("x")
plt.ylabel("y")
```

Рисунок 1 – Задание 1. Построение простого графика

Рисунок 2 – Результат работы программы к заданию №1

Задание №2. Настройка стилей и цветов

Постройте три линии на одном графике:

- у = х (синяя. пунктирная линия),
- y = x^2 (зеленая, штрих-пунктирная линия),
- y = x^3 (красная, сплошная линия).

Добавьте легедну и сделайте оси одинакового масштаба

```
x = np.linspace(-1,1)
y = x**2
y1 = x**3
y2 = x
plt.plot(x,y,"g-.",label="x = y^2")
plt.plot(x,y1,"r", label="x = y^3")
plt.plot(x,y2,"b--", label="x = y")
plt.xlabel("x")
plt.ylabel("y")
plt.title("Графики функций y = x, y = x^2, y = x^3")
plt.legend()
plt.grid()
plt.axis("equal")
```

Рисунок 3 – Задание №2. Настройка стилей и цветов

Рисунок 4 – Результат работы программы к заданию №2

Задание №3. Использование различных типов графиков

Сгенерируйте 50 случайных точек и постройте диаграмму рассеяния (scatter plot), где цвет точек зависит от их координаты по оси x, а размер точек зависит от координаты по оси y.

```
[76] x = np.random.uniform(-10, 10, 50)

y = np.random.uniform(-10, 10, 50)

colors = x

sizes = (y - min(y)) / (max(y) - min(y)) * 200 + 50

plt.figure(figsize=(8, 6))

plt.scatter(x, y, c=colors, s=sizes, cmap='viridis', alpha=0.7, edgecolors='k')

plt.title('Диаграмма рассеяния (scatter plot)')

plt.xlabel('x')

plt.ylabel('y')

plt.grid()

plt.colorbar(label='X')
```

Рисунок 5 – Задание №3. Использование различных типов графиков

Рисунок 6 – Результат выполнения программы к заданию №3

Задание №4. Гистограмма распределения

Сгенерируйте 1000 случайных чисел из нормального распределения с параметрами μ = 0, σ = 1 и постройте их гистограмму с 30 бинами. Добавьте вертикальную линию в среднем значении.

```
[87] norm = np.random.normal(0,1,1000)
plt.hist(norm,bins=30,color='blue',edgecolor='black',alpha=0.7)
plt.axvline(np.mean(norm), color='red')
```

Рисунок 7 – Задание №4. Гистограмма распределения

Рисунок 8 – Результат работы программы к заданию №4

Задание №5. Столбчатая диаграмма

Создайте столбчатую диаграмму, которая показывает количество студентов, получивших оценки:

- "Отлично" 20 человек,
- "Хорошо" 35 человек,
- "Удовлетворительно" 30 человек,
- "Неудовлетворительно" 15 человек.

Добавьте подписи к осям и заголовок.

```
[92] marks = ["Отлично", "Хорошо", "Удовлетворительно", "Неудовлетворительно"]
guys = [20,35,30,15]
plt.bar(marks,guys,color=['green','yellow','orange','red'])
plt.xlabel("Оценки")
plt.ylabel("Количество студентов")
plt.title("Успеваемость студентов")
```

Рисунок 9 – Задание №5. Столбчатая диаграмма

Рисунок 10 – Результат работы программы к заданию №5

Задание №6. Круговая диаграмма

Используя данные предыдущей задачи, постройте круговую диаграмму с процентными подписями секторов.

```
[102] marks = ["Отлично", "Хорошо", "Удовлетворительно", "Неудовлетворительно"]

guys = [20,35,30,15]

plt.figure(figsize=(6,6))

plt.pie(guys,labels=marks,autopct='%1.1f%%',colors=['green','yellow','orange','red'],startangle=140)

plt.title("Успеваемость студентов")
```

Рисунок 11 — Задание №6. Круговая диаграмма Успеваемость студентов

Рисунок 12 – Результат работы программы к заданию №6

У Задание №7. Трехмерный график поверхности

Используя mpl_toolkits.mplot3d, постройте 3D-график функции $z=sin(\sqrt{x^2+y^2})$ на сетке значений х,у в диапазоне [-5,5].

```
[165] from mpl_toolkits.mplot3d import Axes3D
x = np.linspace(-5,5,100)
y = np.linspace(-5,5,100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
fig = plt.figure(figsize=(8,6))
a = fig.add_subplot(111,projection='3d')
a.plot_surface(X,Y,Z,cmap='viridis')
a.set_xlabel('x')
a.set_ylabel('y')
a.set_zlabel('z')
a.set_zlabel('z')
a.set_title('3D-график z = sin(V(x² + y²))')
```

Рисунок 13 — Задание №7. Трехмерный график поверхности 3D-график $z = \sin(\sqrt{(x^2 + y^2)})$

Рисунок 14 – Результат работы программы к заданию №7

У Задание №8. Множественные подграфики [subplots]

Постройте четыре графика в одной фигуре (2х2 сетка):

- 1. Линейный график y=x
- 2. Парабола $y=x^2$
- 3. Синус y = sin(x)
- 4. Косинус y = cos(x)

Добавьте заголовки к каждому подграфику.

```
[106] x = np.linspace(-10,10)
    fig,axes = plt.subplots(2,2,figsize=(10,8))
    axes[0,0].plot(x,x,color='blue')
    axes[0,0].set_title('y = x')
    axes[0,1].plot(x,x**2,color='green')
    axes[0,1].set_title('y = x^2')
    axes[1,0].plot(x,np.sin(x),color='red')
    axes[1,0].set_title('y = sin(x)')
    axes[1,1].plot(x,np.cos(x), color='purple')
    axes[1,1].set_title('y = cos(x)')
```

Рисунок 15 – Задание №8. Множественные подграфики [subplots]

Рисунок 16 – Результат работы программы к заданию №8

Задание №9. Тепловая карта (imshow)

Создайте случайную матрицу 10x10 с элементами от 0 до 1 и визуализируйте её как тепловую карту с цветовой шкалой.

```
/ [108] matrix = np.random.rand(10,10)

plt.imshow(matrix,cmap='viridis',aspect='auto')

plt.colorbar()

plt.title("Тепловая карта (imshow)")
```

Рисунок 17 – Задание №9. Тепловая карта (imshow)

Рисунок 18 – Результат работы программы к заданию №9

2. Индивидуальные практические задания.

Задача на построение линейных графиков в Matplotlib

Вариант 12. Изменение уровня освещенности в течении дня

Фиксировался уровень освещенность в люксах (lx) на улице в зависимости от времени суток:

- Время суток (часы): [0,3,6,9,12,15,18,21,24]
- Освещенность (lx): [0,5,500,15000,40000,35000,10000,100,0]

Используйте заливку области под графиком.

```
hours = [0, 3, 6, 9, 12, 15, 18, 21, 24]
lx = [0, 5, 500, 15000, 40000, 35000, 10000, 100, 0]
plt.plot(hours, lx, color='orange', linewidth=2)
plt.fill_between(hours, lx, color='orange', alpha=0.5)
plt.xlabel("Время суток (часы)")
plt.ylabel("Освещенность (lx)")
plt.title("Изменение уровня освещенности в течение дня")
```

Рисунок 19 – Индивидуальное задание №1. Задача на построение линейных графиков в Matplotlib

Рисунок 20 – Результат работы программы к индивидуальному заданию №1

Задача на построение столбчатых диаграмм в Matplotlib

Вариант 12. Расход воды в разных городах

Средний расход воды на человека в день (литры):

- Города: ["Москва, "Берлин", "Лондон", "Париж", "Нью-Йорк"]
- Расход (л): [250, 160, 150, 140, 300]

Добавьте пунктирную линию, обозначающую средний расход по всем городам.

```
[121] city = ['Москва', 'Берлин', 'Лондон', 'Париж', 'Нью-Йорк']

rasxod = [250,160,150,150,300]

average_rasxod = np.mean(rasxod)

plt.bar(city,rasxod,color='lightblue')

plt.axhline(y=average_rasxod,color='red',linestyle='--')

plt.title('Расход воды в разных городах')

plt.xlabel('Города')

plt.ylabel('Расход воды (л)')
```

Рисунок 21 — Индивидуальное задание №2. Задача на построение столбчатых диаграмм в Matplotlib

Рисунок 22 – Результат работы программы к индивидуальному заданию №2

Задачи на вычисление определенного интеграла с помощью Matplotlib

В каждой задаче требуется:

- 1. Построить график подинтегральной функции.
- 2. Вычислить площадь под кривой на заданном отрезке как значение определенного интеграла.
- 3. Закрасить область под графиком, чтобы визуализировать интеграл.

Вариант 12. Площадь под модулем синуса

Определите интеграл f(x) = |sin(x)| на отрезке [0,1].

Дополнительные требования

- В каждой задаче используйте функцию fill_between() для закрашивания площади под кривой.
- Добавьте подписи осей и заголовок.
- При необходимости, отобразите оси Х и У для лучшей визуализации.

Рисунок 23 – Индивидуальное задание №3. Задача на вычисление определенного интеграла с помощью Matplotlib

Рисунок 24 – Результат работы программы к индивидуальному заданию №3

У Задачи на построение 3D-графиков с помощью Matplotlib

Во всех задачах требуется:

- 1. Построить трехмерный график фукнции f(x,y) в заданных пределах.
- 2. Использовать библиотеку Matplotlib для визуализации.
- 3. Оформить график: добавить заголовок, подписи осей и цветовую картку (если уместно).

Вариант 12. Двухгорбая поверхность (бигауссовский холм)

Постройте поверхность:
$$f(x,y) = e^{((x-1)^2+y^2)} + e^{-((x+1)^2+y^2)}$$
 на $x,y \in [-5,5]$

Дополнительные требования

- Используйте plot_surface() для плотных поверхностей.
- Используйте plot_wireframe() для каркасных моделей.
- Настройте цветовую карту через стар.
- Добавьте подписи осей и заголовки.

Рисунок 25 – Индивидуальное задание №4. Задача на построение 3D-графиков с помощью Matplotlib

Двухгорбая поверхность (бигауссовский холм)

Рисунок 26 — Результат работы программы к индивидуальному заданию №4 **Контрольные вопросы:**

1. Как осуществляется установка пакета matplotlib?

Установка пакета matplotlib осуществляется с помощью команды pip install matplotlib в командной строке или терминале.

2. Какая "магическая" команда должна присутствовать в ноутбуках Jupyter для корректного отображения графиков matplotlib?

Для корректного отображения графиков в ноутбуках Jupyter используется магическая команда %matplotlib inline.

3. Как отобразить график с помощью функции plot?

Для отображения графика с помощью функции plot нужно использовать команду plt.plot(x, y) и затем plt.show().

4. Как отобразить несколько графиков на одном поле?

Чтобы отобразить несколько графиков на одном поле, можно использовать функцию plt.subplot(rows, cols, index) перед каждым графиком.

5. Какой метод Вам известен для построения диаграмм категориальных данных?

Для построения диаграмм категориальных данных используется метод plt.bar() для столбчатых диаграмм или plt.boxplot() для коробчатых диаграмм.

6. Какие основные элементы графика Вам известны?

Основные элементы графика включают оси (x, y), метки осей, легенду, заголовок, сетку и данные.

7. Как осуществляется управление текстовыми надписями на графике?

Для управления текстовыми надписями на графике используется метод plt.text(x, y, 'text') для добавления текста в указанные координаты.

8. Как осуществляется управление легендой графика?

Для управления легендой графика используется метод plt.legend().

9. Как задать цвет и стиль линий графика?

Цвет и стиль линий графика задаются с помощью параметров, таких как color, linestyle в функции plot(), например, plt.plot(x, y, color='r', linestyle='--').

10. Как выполнить размещение графика в разных полях?

Для размещения графиков в разных полях используется метод plt.subplot().

11. Как выполнить построение линейного графика с помощью matplotlib?

Линейный график строится с помощью функции plt.plot(x, y).

12. Как выполнить заливку области между графиком и осью? Между двумя графиками?

Заливка области между графиком и осью или между двумя графиками выполняется с помощью метода plt.fill_between(x, y1, y2).

13. Как выполнить выборочную заливку, которая удовлетворяет некоторому условию?

Для выборочной заливки, которая удовлетворяет определенному условию, используется метод plt.fill_between(x, y, condition).

14. Как выполнить двухцветную заливку?

Двухцветную заливку можно сделать с помощью plt.fill_between(x, y1, y2, where=condition, color='color1', alpha=0.5).

15. Как выполнить маркировку графиков?

Для маркировки графиков используются функции plt.text() или plt.annotate() для добавления меток на график.

16. Как выполнить обрезку графиков?

Обрезка графиков осуществляется с помощью метода plt.xlim() и plt.ylim() для ограничения диапазонов осей.

17. Как построить ступенчатый график? В чем особенность ступенчатого графика?

Ступенчатый график строится с помощью функции plt.step(x, y), и его особенность в том, что линии соединяют данные ступенями.

18. Как построить стековый график? В чем особенность стекового графика?

Стековый график строится с помощью функции plt.stackplot(x, y), и его особенность в том, что области под графиком накладываются друг на друга.

19. Как построить stem-график? В чем особенность stem-графика?

Стем-график строится с помощью plt.stem(x, y), его особенность в том, что он отображает данные в виде вертикальных линий с маркерами на вершинах.

20. Как построить точечный график? В чем особенность точечного графика?

Точечный график строится с помощью функции plt.scatter(x, y), и его особенность в том, что отображает данные в виде точек.

21. Как осуществляется построение столбчатых диаграмм с помощью matplotlib?

Столбчатая диаграмма строится с помощью plt.bar(x, height).

22. Что такое групповая столбчатая диаграмма? Что такое столбчатая диаграмма с errorbar элементом?

Групповая столбчатая диаграмма строится с использованием нескольких plt.bar() с раздвигом на оси х. Столбчатая диаграмма с элементом errorbar добавляется через plt.errorbar().

23. Как выполнить построение круговой диаграммы средствами matplotlib?

Круговую диаграмму можно построить с помощью метода plt.pie(data)

24. Что такое цветовая карта? Как осуществляется работа с цветовыми картами в matplotlib?

Цветовая карта — это способ отображения данных через цвета. В matplotlib она используется с помощью функций типа plt.imshow() или plt.contourf(), где можно задавать различные схемы цветов.

25. Как отобразить изображение средствами matplotlib?

Изображение отображается с помощью plt.imshow(image).

26. Как отобразить тепловую карту средствами matplotlib?

Тепловая карта отображается с помощью plt.imshow(data, cmap='hot')

27. Как выполнить построение линейного 3D-графика с помощью matplotlib?

Для построения линейного 3D-графика используется ax.plot(x, y, z) с осью 3D.

28. Как выполнить построение точечного 3D-графика с помощью matplotlib?

Для построения точечного 3D-графика используется ax.scatter(x, y, z) с осью 3D.

29. Как выполнить построение каркасной поверхности с помощью matplotlib?

Каркасную поверхность можно построить с помощью $ax.plot_wireframe(X, Y, Z).$

30. Как выполнить построение трехмерной поверхности с помощью matplotlib?

Трехмерную поверхность можно построить с помощью $ax.plot_surface(X, Y, Z)$ для 3D-графиков.

Вывод: в ходе практической работы мы исследовали базовые возможности библиотеки matplotlib языка программирования Python.