First Exercise

Second Exercise

First we tried a few models,

- 1. Sales ~ Adv + Prom + Index
- 2. Sales \sim Adv + Prom + Adv(-1) + Prom(-1) + Index
- 3. Sales \sim Adv(-1) + Prom (-1) + Index
- 4. $Log(Sales) \sim Adv + Prom + Adv(-1) + Prom(-1) + Index$

We noted that intuitively advertising and promotion should have a lag effect, yet the Durbin Watson test favoured model #1 (naïve model). However, we noted that the sample size is small hence Durbin-Watson may not be reliable. So we investigate the correlogram for autocorrelation.

There is no pattern between the autocorrelation and partial correlation plots, hence we concluded that the model is stationary. We then proceed to interpret the model.

Durbin Watson is also within the acceptable range 1.5 < 1.568 < 2.5.

T-statistics are also either <-2 or >2 (>95% C.I.)

Interpretation

- 1. If Ms Franklin had \$1000 to spend on either advertising or promotion, she should spend it on promotion because 1 unit of promotion will give a greater increment of sales than 1 unit of advertising, even after taking into account the lag variables
- 2. Yes I agree that the meatloaf is counter-cyclical. This is indicated by the inverse relationship between log sales and index as seen in the negative value of the index's coefficient.
- 3. No, the policy was not followed as seen from the dataset

obs	sales	prom	adv	index
1	504.72	15.6	30	100
2	406.59	22.2	36	102
3	398.55	0	45	104
4	587.76	0	57	104
5	598.92	0	39	104
6	703.62	31.8	21	100
7	387.24	21.3	12	98
8	365.67	3.9	6	96
9	388.71	0	6	98
10	372.96	8.4	30	103
11	603.3	45.3	30	105
12	614.73	50.1	33	107
13	484.38	39.6	6	107
14	227.76	4.2	33	107
15	329.13	0	6	108
16	308.25	0	3	105
17	433.86	0	45	103
18	514.98	13.8	48	108
19	404.7	17.7	U	110
20	245.43	0	15	112
21	433.2	17.4	9	113
22	627.24	37.8	54	112
23	647.61	42.3	36	113
24	342.81	11.4	39	114

4. We find seasonality in the sales of the meatloat mix, based on the trend of the raw data. Seasonal peaks are at multiples of 6 months.

