

MOTOROLA INC.

SMALL-SIGNAL TRANSISTOR DATA

Selector Guides
Plastic-Encapsulated TO-92 Transistors
Microminature Products
Metal Transistors
Multiple Transistors
Field-Effect Transistors

RF Transistors

Package Outline Dimensions and

Reliability and Quality Assurance

Application Literature

2

3

5

6

8

MOTOROLA

SMALL-SIGNAL TRANSISTORS

Prepared by Technical Information Center

This publication presents technical information for the several product families that comprise the Motorola small-signal transistor line. The families include both bipolar and field-effect transistors. These are available in a variety of packages; metal can, plastic, and microminiature. Complete device specifications and typical performance curves are given on individual data sheets, which are grouped by the various families.

A quick comparison of performance characteristics is presented in the easy-to-use selector guides in the first section. The tables will assist in the selection of the proper transistor for a specific application.

Separate sections are included to describe package outline drawings, and to clarify the mysteries of high reliability processing and testing.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor devices any license under the patent rights to the manufacturer.

Second Printing Series A © MOTOROLA INC., 1983 "All Rights Reserved" Macro-T, Macro-X and TMOS are trademarks of Motorola Inc.

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ALPHANUMERIC INDEX

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
2N638 2N656 2N657 2N697 2N699 2N703 2N703JAN 2N706 2N706A 2N706B	4-2 4-2 4-3 4-4 4-5 4-5 4-6 4-6 4-6	1-29 1-17 1-17 1-19 - - 1-44	2N2060JTX 2N2060JTXV 2N2102 2N2193A 2N2218 2N2218A 2N2218AJAN 2N2218AJTX 2N2218AJTXV 2N2218AJTXV	5-2 5-2 4-28 4-29 4-30 4-30 4-30 4-30 4-30 4-30	1-44 1-44 1-48 1-19 1-19 1-19 1-19 1-19 1-19
2N706JAN 2N708 2N708JAN 2N708JTX 2N718 2N718A 2N718AJAN 2N718AJTX 2N718AJTX 2N718AJTXV	4-6 4-8 4-8 4-8 4-9 4-10 4-10 4-10 4-10 4-12	1-44 - 1-44 1-44 1-18 - 1-44 1-44	2N2218JTX 2N2218JTXV 2N2219 2N2219A 2N2219AJAN 2N2219AJTX 2N2219AJTXV 2N2219AJTXV 2N2219JAN 2N2219JTX	4-30 4-30 4-30 4-30 4-30 4-30 4-30 4-30	1-19 1-19 1-19 1-19 1-19 1-19 1-19 1-19
2N834 2N835 2N860A 2N869A 2N869AJAN 2N869AJTX 2N869AJTXV 2N910 2N914 2N914	4-13 4-13 - 4-14 4-14 4-14 4-17 4-18 4-18	- 1-29 1-15 1-15 1-15 1-15 - 1-15 1-15	2N2219JTXV 2N2221 2N2221A 2N2221AJAN 2N2221AJTX 2N2221AJTXV 2N2221JAN 2N2221JTX 2N2221JTXV 2N2221JTXV	4-30 4-30 4-30 4-30 4-30 4-30 4-30 4-30	1-19 - 1-18 1-18 1-18 1-18 1-44 1-44 1-44 1-18
2N914JTX 2N915 2N916 2N916JAN 2N918 2N918JAN 2N918JANS 2N918JANTXV 2N918JTX 2N918JTXV	4-18 4-19 4-20 4-20 4-21 4-21 - - 4-21 4-21	1-15 - 1-18 1-17 1-17 1-17 1-17 1-17 1-17	2N2222A 2N2222AJAN 2N2222AJTX 2N2222AJTXV 2N2222JAN 2N2222JTX 2N2222JTXV 2N2223 2N2223A 2N2223A	4-30 4-30 4-30 4-30 4-30 4-30 4-30 5-2 5-2 4-36	1-18 1-18 1-18 1-18 1-18 1-18 1-18 1-26 1-26
2N930 2N930A 2N930JAN 2N930JTX 2N956 2N1131A 2N1132 2N1132A 2N1132JAN 2N1132JAN	4-22 4-22 4-22 4-22 4-10 - 4-24 4-24	1-16 1-16 1-16 1-16 1-18 1-19 1-19 1-19 1-19	2N2297 2N2368 2N2369 2N2369A 2N2369AJAN 2N2369AJANS 2N2369AJTX 2N2369AJTX 2N2369AJTXV 2N2453	4-37 4-38 4-38 4-38 4-38 - 4-38 4-38 5-5 5-5	1-15 1-15 1-15 1-15 1-15 1-15 1-15 1-26 1-26
2N1613 2N1613JAN 2N1613JTX 2N1613JTXV 2N1613JTXV 2N1613LJTXV 2N1711 2N1893 2N2060 2N2060A 2N2060JAN	4-26 4-26 4-26 4-26 - 4-10 4-27 5-2 5-2 5-2	1-18 1-18 1-18 1-18 1-18 1-18 1-26 1-26 1-44	2N2480 2N2480A 2N2481 2N2481JAN 2N2481JTX 2N2484 2N2484JAN 2N2484JTX 2N2484JTX 2N2484JTX 2N2501	5-2 5-2 4-43 4-43 4-43 4-47 4-47 4-47 4-47 4-47	1-26 1-26 - 1-44 1-44 1-16 1-16 1-16 1-16

Devices with no page number shown are available from Motorola although not represented in this book. Please contact your nearest Motorola representative for further information.

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
2N2539 2N2604 2N2605 2N2605JAN 2N2605JANTXV 2N2605JTX 2N2608 2N2608 2N2608JAN 2N2609 2N2609JAN	4-51 - 4-52 · 4-52 - 4-52 6-2 - 6-2	1-16 1-16 1-16 1-16 1-16 1-30 1-44 1-31	2N2906JTXV 2N2907 2N2907A 2N2907AJAN 2N2907AJANS 2N2907AJTX 2N2907AJTXV 2N2907JAN 2N2907JTX 2N2907JTX	4-57 4-57 4-57 4-57 4-57 4-57 4-57 4-57	1-19 1-19 1-19 1-19 1-19 1-19 1-19 1-19
2N2639 2N2640 2N2641 2N2642 2N2643 2N2644 2N2652 2N2652A 2N2720 2N2721	5-7 5-7 5-7 5-7 5-7 5-9 5-9 5-10 5-10	1-26 1-26 1-26 1-26 1-26 1-26 1-26 1-26	2N2913 2N2914 2N2915 2N2916 2N2917 2N2918 2N2919 2N2920 2N2920 2N2944 2N2944A	5-15 5-15 5-15 5-15 5-15 5-15 5-15 4-60 4-61	1-26 1-26 1-26 1-26 1-26 1-26 1-26 1-26
2N2722 2N2723 2N2785 2N2800 2N2843 2N2844 2N2857 2N2857 2N2857JAN 2N2857JTX 2N2857JTX	5-11 5-12 5-13 4-53 6-3 6-3 7-2 -	1-26 - - - - 1-38 1-44 1-44	2N2944AJAN 2N2944AJTX 2N2944AJTXV 2N2945 2N2945A 2N2945AJAN 2N2945AJTX 2N2945AJTXV 2N2946	4-61 4-61 4-60 4-61 4-61 4-61 4-61 4-60 4-61	1-44 1-44 1-44 1-20 1-20 1-44 1-44 1-44 1-20 1-20
2N2894 2N2895 2N2896 2N2897 2N2903 2N2903A 2N2904 2N2904A 2N2904AJAN 2N2904AJTX	4-54 4-55 4-55 4-55 5-14 - 4-57 4-57 4-57 4-57	1-15 1-18 1-18 1-18 1-26 1-26 1-19 1-19 1-19	2N2946AJAN 2N2946AJTX 2N2946AJTXV 2N2959 2N3011 2N3012 2N3013 2N3013JAN 2N3013JTX 2N3014	4-61 4-61 4-61 4-65 4-66 4-67 4-68 4-68 4-68 4-68	1-44 1-44 1-44 1-44 - - - 1-44 1-44
2N2904AJTXV 2N2904JAN 2N2904JTX 2N2904JTXV 2N2905 2N2905A 2N2905AJAN 2N2905AJTX 2N2905AJTXV 2N2905AJTXV 2N2905AJTXV	4-57 4-57 4-57 4-57 4-57 4-57 4-57 4-57	1-19 1-19 1-19 1-19 1-19 1-19 1-19 1-19	2N3019 2N3019JAN 2N3019JTX 2N3019JTXV 2N3020 2N3020JAN 2N3020JTX 2N3020JTXV 2N3043 2N3044	4-70 4-70 4-70 4-70 4-70 4-70 4-70 5-17	1-18 1-18 1-18 1-18 1-18 - - - 1-26 1-26
2N2905JAN 2N2905JTX 2N2905JTXV 2N2906 2N2906A 2N2906AJAN 2N2906AJTX 2N2906AJTXV 2N2906JAN 2N2906JAN 2N2906JTX	4-57 4-57 4-57 4-57 4-57 4-57 4-57 4-57	1-19 1-19 1-19 1-19 1-19 1-19 1-19 1-19	2N3045 2N3046 2N3047 2N3048 2N3053 2N3053A 2N3073 2N3114 2N3133 2N3135	5-17 5-17 5-17 5-17 4-73 4-73 4-74 4-76 4-77	1-26 1-26 1-26 1-26 1-19 - 1-17

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
2N3227 2N3244 2N3245 2N3249 2N3250 2N3250A 2N3250AJAN 2N3250AJTX 2N3250AJTX 2N3250AJTXV 2N3251	4-38 4-78 4-78 4-82 4-86 4-86 4-86 4-86 4-86 4-86	1-15 1-16 1-16 1-19 1-19 1-19 1-19 1-19	2N3485AJAN 2N3485AJTX 2N3486 2N3486A 2N3486AJAN 2N3486AJTX 2N3494 2N3495 2N3496 2N3497	4-57 4-57 4-57 4-57 4-57 4-57 4-108 4-108 4-108 4-108	1-19 1-19 1-19 1-19 1-19 1-18 1-18 1-18
2N3251A 2N3251AJAN 2N3251AJTX 2N3251AJTXV 2N3252 2N3252 2N3253 2N3253JAN 2N3253JANTX 2N3253JANTX 2N3299 2N3300	4-86 4-86 4-86 4-86 4-91 4-91 4-91 4-96 4-96	1-19 1-19 1-19 1-15 1-15 1-15 1-15 1-15	2N3498 2N3498JAN 2N3498JTX 2N3498JTXV 2N3499 2N3499JAN 2N3499JTX 2N3499JTXV 2N3500 2N3500JAN	4-111 4-111 4-111 4-111 4-111 4-111 4-111 4-111 4-111	1-17 1-17 1-17 1-17 1-17 1-17 1-17 1-17
2N3301 2N3302 2N3303 2N3307 2N3308 2N3330 2N3330 2N3330JTX 2N3331 2N3331	4-96 4-96 - 4-97 4-97 6-4 - 6-5	1-18 1-15 1-17 1-30 1-44 1-44 1-31	2N3500JTX 2N3500JTXV 2N3501 2N3501JAN 2N3501JTX 2N3501JTXV 2N3506 2N3506JAN 2N3506JTX 2N3506JTXV	4-111 4-111 4-111 4-111 4-111 4-117 4-117 4-117 4-117	1-17 1-17 1-17 1-44 1-44 1-15 1-15 1-15 1-15
2N3369 2N3370 2N3425 2N3436 2N3437 2N3438 2N3439 2N3439 2N3439JAN 2N3439JTX 2N3439JTX	5-19 6-6 6-6 6-6 4-99 4-99 4-99 4-99	1-31 1-31 - 1-32 1-31 1-31 1-17 1-17 1-17	2N3507 2N3507JAN 2N3507JTX 2N3507JTXV 2N3508 2N3509 2N3510 2N3511 2N3546 2N3553	4-117 4-117 4-117 4-117 4-119 4-119 4-121 4-121 4-7-7	1-15 1-15 1-15 1-15 1-15 1-15 1-15 1-15
2N3440 2N3440JAN 2N3440JTX 2N34440JTXV 2N34444 2N3444JAN 2N3444JANTX 2N3458 2N3459 2N3459	4-99 4-99 4-99 4-91 4-91 4-91 6-7 6-7 6-7	1-17 1-17 1-17 1-17 1-15 1-15 1-15 1-32 1-31	2N3553JAN 2N3553JTXV 2N3553JTXV 2N3634 2N3634JAN 2N3634JTX 2N3635 2N3635JAN 2N3635JTX 2N3636	4-127 4-127 4-127 4-127 4-127 4-127 4-127 4-127	1-44 1-44 1-44 1-16 1-16 1-16 1-16 1-16
2N3467 2N3467JAN 2N3467JTX 2N3467JTXV 2N3468 2N3468JAN 2N3468JTX 2N3468JTXV 2N3468JTXV 2N3485 2N3485	4-105 4-105 4-105 4-105 4-105 4-105 4-105 4-105 4-57 4-57	1-16 1-16 1-16 1-16 1-16 1-16 1-16 1-16	2N3636JAN 2N3636JTX 2N3637 2N3637JAN 2N3637JTX 2N3647 2N3648 2N3673 2N3677 2N3700	4-127 4-127 4-127 4-127 4-127 4-121 4-121 4-133 4-70	1-16 1-16 1-18 1-18 1-18 1-15 1-15 1-15 1-19 -

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
2N3712 2N3724 2N3724A 2N3725 2N3725A 2N3726 2N3727 2N3727 2N3734 2N3735 2N3736	4-134 4-135 - 4-135 - 5-20 5-20 4-139 4-139 4-139	1-17 1-15 1-15 1-15 1-15 1-26 1-27 1-15 1-15	2N3821JTXV 2N3822 2N3822JAN 2N3822JTX 2N3822JTXV 2N3823 2N3823 2N3823JAN 2N3823JTX 2N3823JTX 2N3823JTXV	6-11 6-11 - - 6-13 - - - 6-11	1-44 1-32 1-44 1-44 1-44 1-34 1-44 1-44
2N3737 2N3742 2N3743 2N3743JAN 2N3743JTX 2N3762 2N3762JAN 2N3762JTX 2N3762JTXV 2N3763	4-139 4-141 4-143 4-143 4-143 4-147 4-147 4-147 4-147	1-15 1-17 1-18 1-18 1-18 1-16 1-16 1-16 1-16	2N3838 2N3839 2N3866 2N3866A 2N3866AJAN 2N3866AJTX 2N3866AJTXV 2N3866JAN 2N3866JTX 2N3866JTXV	5-25 7-2 7-9 7-9 7-9 7-9 7-9 7-9	1-27 1-38 1-38 1-44 1-44 1-44 1-44 1-44 1-44
2N3763JAN 2N3763JANTXV 2N3763JTX 2N3764 2N3764JAN 2N3764JTX 2N3764JTXV 2N3765 2N3765 2N3765JAN 2N3765JTX	4-147 4-147 4-147 4-147 4-147 4-147 4-147 4-147	1-16 1-16 1-16 - 1-44 1-44 1-44 - 1-44	2N3903 2N3904 2N3905 2N3906 2N3909 2N3909A 2N3946 2N3947 2N3948 2N3959	2-2 2-2 2-7 2-7 6-14 6-14 4-156 4-156 7-13 7-15	1-2 1-2 1-2 1-2 1-30 1-31 1-18 1-18 1-42 1-39
2N3796 2N3797 2N3798 2N3799 2N3806 2N3807 2N3808 2N3809 2N3810 2N3810A	6-8 6-8 4-153 4-153 5-22 5-22 5-22 5-22 5-22 5-22 5-22	1-33 1-31 1-16 1-16 1-27 1-27 1-27 1-27 1-27	2N3960 2N3960JAN 2N3960JTX 2N3960JTXV 2N3962 2N3963 2N3964 2N3965 2N3966 2N3970	7-15 - - - 4-162 4-162 4-162 4-162 6-15 6-16	1-39 1-44 1-44 1-44 1-16 1-16 1-16 1-16 1-29
2N3810JAN 2N3810JTX 2N3810JTXV 2N3811 2N3811A 2N3811JAN 2N3811JTX 2N3811JTX 2N3811JTXV 2N38113	5-22 5-22 5-22 5-22 5-22 5-22 5-22 5-22	1-44 1-44 1-27 1-27 1-27 1-44 1-44 1-27 1-27	2N3971 2N3972 2N3993 2N3993A 2N3994 2N3994 2N4013 2N4014 2N4015 2N4016	6-16 6-16 6-17 6-17 6-17 6-17 4-164 4-164 5-26 5-26	1-29 1-30 1-28 1-28 1-28 1-28 1-15 1-15 1-27
2N3814 2N3815 2N3816 2N3816A 2N3817 2N3817A 2N3819 2N3821 2N3821 2N3821JAN 2N3821JTX	5-22 5-22 5-22 5-22 5-22 5-22 6-11 6-11	1-27 1-27 1-27 1-27 1-27 1-27 1-34 1-31 1-44 1-44	2N4026 2N4027 2N4028 2N4029 2N4030 2N4031 2N4032 2N4033 2N4033JAN 2N4033JTX	4-168 4-168 4-168 4-168 4-168 4-168 4-168 4-168 4-168	1-19 1-19 1-19 1-16 1-16 1-19 1-16 1-16

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
2N4033JTXV 2N4036 2N4037 2N4057A 2N4091 2N4092 2N4093 2N4117 2N4117A 2N4118	4-168 4-170 4-170 - 6-18 6-18 6-18 6-20 6-20 6-20	1-16 1-16 1-19 1-29 1-29 1-29 1-29 1-32 1-32 1-32	2N4410 2N4416 2N4416A 2N4427 2N4449JAN 2N4449JTX 2N4453 2N4453 2N4453JAN 2N4453JTX 2N4453	2-35 6-42 6-42 7-18 - - 4-14 4-14 4-14 5-28	1-34 1-34 1-42 1-44 1-44 1-44 1-44 1-27
2N4118A 2N4119 2N4119A 2N4123 2N4124 2N4125 2N4126 2N4208 2N4209 2N4220	6-20 6-20 6-20 2-12 2-12 2-16 2-16 4-172 4-172 6-22	1-32 1-32 1-32 1-2 1-2 1-2 1-15 1-15 1-31	2N4854JAN 2N4854JTX 2N4854JTXV 2N4855 2N4856 2N4856A 2N4856JAN 2N4856JTX 2N4856JTXV 2N4856JTXV	5-28 5-28 5-28 5-28 6-49 6-49 6-49 6-49 6-49	1-44 1-44 1-44 1-27 1-28 1-28 1-44 1-44 1-29
2N4220A 2N4221 2N4221A 2N4222 2N4222A 2N4223 2N4224 2N4234 2N4234 2N4235 2N4236	6-22 6-22 6-22 6-22 6-25 6-25 6-25 4-174 4-174	1-31 1-31 1-32 1-32 1-32 1-34 1-34 1-18 1-18	2N4857A 2N4857JAN 2N4857JTX 2N4857JTXV 2N4858 2N4858A 2N4858JAN 2N4858JTX 2N4858JTXV 2N4858JTXV	6-49 6-49 6-49 6-49 6-49 6-49 6-49 6-49	1-44 1-44 1-44 1-29 1-29 1-44 1-44 1-29
2N4237 2N4238 2N4239 2N4260 2N4261 2N4261JAN 2N4261JTX 2N4264 2N4265 2N4338	4-179 4-179 4-179 4-183 4-183 4-183 4-183 2-20 2-20 6-29	1-17 1-17 1-17 1-17 1-17 1-17 1-17 1-3 1-3	2N4859A 2N4859JAN 2N4859JTX 2N4859JTXV 2N4860 2N4860A 2N4860JAN 2N4860JTX 2N4860JTXV 2N4860JTXV	6-49 6-49 6-49 - 6-49 6-49 6-49 6-49	1-28 1-44 1-44 1-44 1-29 - 1-44 1-44 1-29
2N4339 2N4340 2N4341 2N4342 2N4351 2N4352 2N4360 2N4391 2N4392 2N4393	6-29 6-29 6-29 6-30 6-31 6-35 6-39 6-40 6-40 6-40	1-31 1-31 1-32 1-30 1-33 - 1-30 1-29 1-29	2N4861A 2N4861JAN 2N4861JTX 2N4861JTXV 2N4890 2N4924 2N4925 2N4926 2N4927 2N4927	6-49 6-49 6-49 - 4-195 4-196 4-197 4-197 4-198	1-29 1-44 1-44 1-44 - 1-17 - 1-17 1-17
2N4398 2N4400 2N4401 2N4402 2N4403 2N4404 2N4405 2N4406 2N4407 2N4409	2-25 2-25 2-30 2-30 4-186 4-186 4-191 4-191 2-35	1-32 1-2 1-2 1-2 1-16 1-16 1-16 1-16	2N4929 2N4930 2N4930JAN 2N4930JTX 2N4930JTXV 2N4931 2N4931JAN 2N4931JTX 2N4931JTX 2N4937	4-198 4-198 4-198 4-198 4-198 4-198 4-198 4-198 4-198 5-30	1-18 1-18 1-18 1-18 1-18 1-18 1-18 1-18

Devices with no page number shown are available from Motorola although not represented in this book. Please contact your nearest Motorola representative for further information.

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
2N4938 2N4939 2N4940 2N4941 2N4942 2N4957 2N4957JAN 2N4957JTX 2N4957JTX 2N4957JTXV	5-30 5-30 5-30 5-30 5-30 7-20 7-20 7-20 7-20 7-20 7-20	1-27 1-27 1-27 1-27 1-27 1-41 1-44 1-44 1-44	2N5363 2N5364 2N5400 2N5401 2N5415 2N5415 2N5415JAN 2N5415JTX 2N5415JTXV 2N5416 2N5416JAN	2-59 2-59 2-59 4-99 4-99 4-99 4-99 4-99	1-32 1-32 1-5 1-5 1-18 1-18 1-18 1-18 1-18
2N4959 2N5022 2N5023 2N5031 2N5032 2N5058 2N5059 2N5086 2N5087 2N5088	7-20 4-200 4-200 7-28 7-28 4-202 4-202 2-36 2-36 2-41	1-41 1-16 1-16 1-41 1-41 1-17 1-17 1-4 1-4	2N5416JANTXV 2N5416JTX 2N5457 2N5458 2N5459 2N5460 2N5461 2N5462 2N5463 2N5464	4-99 4-99 6-58 6-58 6-58 6-59 6-59 6-59 6-59 6-59	1-18 1-18 1-31 1-31 1-31 1-30 1-30 1-30 1-30
2N5089 2N5108 2N5109 2N5109JAN 2N5109JTX 2N5109JTXV 2N5146 2N5160 2N5179 2N5208	2-41 7-31 7-34 7-34 7-34 7-34 7-39 7-41 2-42	1-4 1-38 1-40 1-44 1-44 1-23 1-43 1-38 1-3	2N5465 2N5484 2N5485 2N5486 2N5550 2N5551 2N5555 2N5556 2N5557 2N5557	6-59 6-62 6-62 6-62 2-62 2-62 6-64	1-31 1-33 1-34 1-34 1-5 1-5 1-5 1-32 1-31
2N5209 2N5210 2N5222 2N5223 2N5224 2N5225 2N5225 2N5226 2N5227 2N5227 2N5228 2N5229	2-47 2-47 2-48 2-51 2-52 2-54 2-55 2-56 2-57 4-203	1-4 1-4 1-3 - - - - - 1-20	2N5581 2N5581JAN 2N5581JTX 2N5581JTXV 2N5582 2N5582JAN 2N5582JTX 2N5582JTXV 2N5582JTXV 2N5583	4-30 4-30 4-30 4-30 4-30 4-30 4-30 4-30	1-19 1-19 1-19 1-19 1-19 1-19 1-19 1-19
2N5230 2N5231 2N5245 2N5246 2N5247 2N5265 2N5266 2N5267 2N5267 2N5268 2N5269	4-203 4-203 6-51 6-51 6-51 6-53 6-53 6-53 6-53 6-53 6-53	1-20 1-20 1-34 1-34 1-34 1-30 1-30 1-30 1-30 1-31	2N5639 2N5640 2N5653 2N5654 2N5668 2N5669 2N5670 2N5679 2N5680 2N5681	6-66 6-68 6-68 6-70 6-70 6-70 4-210 4-210	1-29 1-29 1-29 1-34 1-34 1-32 1-18 1-18
2N5270 2N5320 2N5321 2N5322 2N5323 2N5358 2N5359 2N5360 2N5361 2N5362	6-53 4-206 4-206 4-208 4-208 	1-31 - - - 1-31 1-31 1-31 1-31	2N5682 2N5771 2N5793 2N5793JAN 2N5793JTX 2N5793JTXV 2N5794 2N5794JAN 2N5794JTX 2N5794JTX	4-210 2-66 5-32 5-32 5-32 5-32 5-32 5-32 5-32 5-32	1-17 1-3 1-27 1-44 1-44 1-27 1-44 1-44

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
2N5795 2N5795JAN 2N5795JTX 2N5795JTXV 2N5796 2N5796 2N5796JAN 2N5796JTX 2N5796JTXV 2N5829 2N5835	5-33 5-33 5-33 5-33 5-33 5-33 5-33 5-33	1-27 1-44 1-44 1-27 1-44 1-44 1-44 1-41 1-39	3N201 3N202 3N203 3N204 3N205 3N206 3N209 3N211 3N212 3N213	6-84 6-84 6-89 6-89 6-91 6-96 6-96 6-96	1-36 1-36 1-36 1-36 1-36 1-36 1-36 1-36
2N5836 2N5837 2N5859 2N5861 2N5943 2N5947 2N6255 2N6256 2N6304 2N6305	7-49 7-49 4-215 4-218 7-61 7-67 7-71 7-74 7-77	1-39 1-39 - 1-15 1-39 1-39 1-42 1-42 1-40	BC107,108,109 BC140 Series BC141 Series BC160,-6,-10,-16 BC161,-6,-10,-16 BC177,178,179 BC393 BC394 BCW20 BCW29	- - - - - - - - - 3-2	- - - - - - 1-7 1-8
2N6426 2N6427 2N6428 2N6428A 2N6429 2N6429A 2N6430 2N6431 2N6431 2N6432 2N6433	2-67 2-67 2-71 2-71 2-71 2-71 4-221 4-221 4-222 4-222	1-4 1-4 1-4 - 1-4 1-17 1-17 1-18 1-18	BCW30 BCW31 BCW32 BCW33 BCW60A BCW60B BCW60C BCW60D BCW61A BCW61B	3-2 3-3 3-3 3-4 3-4 3-4 3-6 3-6	1-8 1-7 1-7 1-7 1-7 1-7 1-7 1-7 1-8 1-7
2N6501 2N6502 2N6503 2N6515 2N6516 2N6517 2N6518 2N6519 2N6520 2N6603	5-34 5-34 5-34 2-73 2-73 2-73 2-73 2-73 2-73 7-82	1-23 1-27 1-27 1-5 1-5 1-5 1-5 1-5 1-5	BCW61C BCW65A BCW65B BCW65C BCW66F BCW66G BCW67 BCW67A BCW67B	3-6 3-6 3-8 - - 3-9 - 3-10 3-10 3-10	1-7 1-7 1-7 1-7 1-7 1-6 1-6 - 1-8
2N6603JAN 2N6603JTXV 2N6604 2N6604JAN 2N6604JTXV 2N6659 2N6660 2N6661 3N128 3N155	7-82 7-82 7-86 7-86 7-86 6-72 6-72 6-72 6-75 6-78	1-44 1-44 1-39 1-44 1-44 1-35 1-35 1-35 1-34	BCW67C BCW68 BCW68F BCW68G BCW68H BCW69 BCW70 BCW71 BCW72 BCW72	3-10 3-10 3-10 3-10 - 3-11 3-11 3-12 3-12	1-7 - 1-7 1-7 - 1-7 1-7 1-6 1-6
3N155A 3N156 3N156A 3N157A 3N157A 3N158A 3N158A 3N158A 3N169 3N170 3N171	6-78 6-78 6-78 6-79 6-79 6-79 6-79 6-82 6-82 6-82	1-33 1-33 1-33 1-33 1-33 1-33 1-33 1-33	BCX17 BCX18 BCX19 BCX20 BCX51 BCX52 BCX53 BCX55 BCX55 BCX56	3-13 3-13 - - 3-14 3-14 3-14 3-15 3-15 3-15	1-7 1-8 1-6 - 1-13 1-13 1-13 1-13 1-13

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
BCX68 BCX69 BCX70G BCX70H BCX70J BCX70K BCX71G BCX71H BCX71J	3-16 3-17 3-18 3-18 3-18 3-18 3-20 3-20 3-20 3-20 3-20	1-13 1-13 1-6 1-6 1-6 1-7 1-7 1-7	BSX45,-6,-10,-16 BSX47,-6,-10 BZX84C BZX84C4V7 BZX84C5V1 BZX84C5V6 BZX84C6V2 BZX84C6V8 BZX84C7V5 BZX84C8V2	3-36 3-36 3-36 3-36 3-36 3-36 3-36 3-36	1-12 1-12 1-12 1-12 1-12 1-12 1-12
BCY58,VII,VIII,IX,X BCY59,VII,VIII,IX,X BCY70,71,72 BCY78,VII,VIII,IX,X BCY79,VII,VIII,IX,X BCY66 BCY67 BDT70 BDT71 BF246		- - - - - - - 1-30	BZX84C9V1 BZX84C10 BZX84C11 BZX84C12 BZX84C13 BZX84C15 BZX84C16 BZX84C18 BZX84C20 BZX84C20	3-36 3-36 3-36 3-36 3-36 3-36 3-36 3-36	1-12 1-12 1-12 1-12 1-12 1-12 1-12 1-12
BF246A BF246B BF246C BFQ17 BFQ18A BFQ19 BFR30 BFR31 BFR90 BFR91	3-22 3-23 3-24 3-25 3-25 7-90 7-93	1-30 1-30 1-30 1-14 1-14 1-11 1-11 1-39 1-39	BZX84C24 BZX84C27 BZX84C30 BZX84C33 J107 J108 J109 J110 J111 J111	3-36 3-36 3-36 3-36 6-101 6-101 6-101 6-104 6-104	1-12 1-13 1-13 1-13 1-30 1-30 1-30 1-30 1-29 1-29
BFR92 BFR92S BFR93 BFR93S BFR96 BFR C96 BFS17 BFS17S BFW43,44 BFW92A	3-26 3-26 3-27 3-27 7-96 7-96 3-28 3-28 - 7-96	1-10 1-10 1-10 1-10 1-39 - 1-10 1-10	J113 J174 J175 J176 J177 J201 J202 J203 J270 J271	6-104 6-105 6-105 6-105 6-106 6-106 6-106 6-107 6-107	1-30 - - - 1-31 1-31 1-31
BFX29 BFX84,85,86 BFX89 BFY90 BS107 BS107A BS170 BSS63 BSS64 BSS71,72,73	7-101 7-101 6-98 6-98 6-99 3-29 3-30	1-40 1-40 1-35 - 1-35 1-10 1-10	J300 J304 J305 J308 J309 J310 JF1033B JF1033S JF1033Y MBAL99	6-108 6-109 6-109 6-110 6-110 6-112 6-112 6-112 6-112 3-38	1-34 1-34 1-34 1-34 1-34 1-34
BSS74,75,76 BSS77,78 BSS79B BSS79C BSS80B BSS80C BSS82C BSV52 BSX19,20 BSX39	3-31 3-32 3-33 3-34 - 3-35	- 1-6 1-6 1-7 - 1-7 1-8 - 1-8	MBAS16 MBAV70 MBAV74 MBAV99 MBAW56 MD708 MD708A MD708AF MD708B MD708BF	3-39 3-40 3-41 3-42 3-43 5-38 5-38 5-38 5-38 5-38	1-11 1-11 1-11 1-11 1-11 1-24 1-24 1-24

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
MD708F MD918 MD918A MD918AF MD918B MD918BF MD918F MD982 MD982F MD984	5-38 5-39 5-39 5-39 5-39 5-39 5-39 5-42 5-42 5-42	1-24 1-24 1-24 1-24 1-24 1-24 1-24 1-24	MD3467 MD3467F MD3725 MD3725F MD3762 MD3762F MD4260 MD4261 MD4957 MD5000	5-72 5-72 5-76 5-76 5-79 5-79 5-82 5-82 7-104 5-83	1-25 1-25 1-25 1-25 1-25 1-25 1-25
MD985 MD985F MD986 MD986F MD1120 MD1120F MD1121 MD1121F MD1121F MD1122F	5-44 5-46 5-46 5-47 5-47 5-47 5-47 5-47 5-47	1-24 1-24 1-24 1-24 1-24 1-24 1-24 1-24	MD5000A MD5000B MD6001 MD6001F MD6002 MD6002F MD6003 MD6003F MD6100 MD6100F	5-83 5-84 5-84 5-84 5-84 5-84 5-84	1-25 1-25 1-25 1-25 1-25 1-25 1-25 1-25
MD1123 MD1129 MD1129F MD1130 MD1130F MD1132 MD1132F MD132F MD2060F MD2218 MD2218A	5-49 5-51 5-51 5-49 5-49 5-53 5-53	1-24 1-24 1-24 1-24 1-24 1-24 1-24 1-24	MD7000 MD7001 MD7001F MD7002 MD7002A MD7002B MD7003 MD7003A MD7003AF MD7003B	5-88 5-89 5-91 5-91 5-91 5-92 5-92 5-92 5-92	1-25 1-25 1-25 1-25 1-25 1-25 1-25 1-25
MD2218AF MD2218F MD2219 MD2219A MD2219AF MD2219F MD2369 MD2369A MD2369AF MD2369AF MD2369B	5-54 5-54 5-54 5-54 5-54 5-59 5-59 5-59	1-24 1-24 1-24 1-24 1-24 1-24 1-24 1-24	MD7003F MD7004 MD7004F MD7005 MD7005F MD7007 MD7007A MD7007B MD7007BF MD7007F	5-92 - - - - 5-94 5-94 5-94 5-94	1-25 1-25 1-25 1-25 1-26 1-26 1-26 1-26 1-26
MD2369BF MD2369F MD2904 MD2904A MD2904AF MD2904F MD2905 MD2905A MD2905AF MD2905AF	5-59 5-59 5-62 5-62 5-62 5-62 5-62 5-62 5-62 5-62	1-24 1-24 1-24 1-24 1-24 1-24 1-25 1-25 1-25	MD7021 MD7021F MD8001 MD8002 MD8003 MFE120 MFE121 MFE122 MFE130 MFE131	5-96 5-98 5-98 5-98 6-113 6-113 6-113 6-147	1-26 1-26 1-26 1-26 1-26 1-36 1-36 1-36 1-36
MD3250 MD3250A MD3250AF MD3250F MD3251 MD3251A MD3251AF MD3251F MD3409 MD3410	5-67 5-67 5-67 5-67 5-67 5-67 5-67 5-71	1-25 1-25 1-25 1-25 1-25 1-25 1-25 1-25	MFE132 MFE140 MFE521 MFE823 MFE825 MFE910 MFE930 MFE960 MFE990 MFE2000	6-147 6-117 - 6-122 6-123 6-124 6-126 6-126 6-126 6-129	1-36 1-36 1-36 1-33 1-33 1-35 1-35 1-35 1-35

Devices with no page number shown are available from Motorola although not represented in this book. Please contact your nearest Motorola representative for further information.

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
MFE2001 MFE2004 MFE2005 MFE2006 MFE2010 MFE2011 MFE2012 MFE3001 MFE3002 MFE3003	6-129 6-130 6-130 6-132 6-132 6-132 6-134 6-135 6-136	1-34 1-29 1-29 1-29 1-29 1-28 1-28 - 1-29 1-33	MM3006 MM3007 MM3008 MM3009 MM3726 MM3903 MM3904 MM3905 MM3906 MM4000	4-229 4-229 4-230 4-230 4-231 4-232 4-232 4-234 4-234 4-236	1-17 1-17 1-17 1-17 1-17 - 1-19 1-19 1-1
MFE3004 MFE3005 MFE4007 MFE4009 MFE4012 MFE9200 MFQ930C MFQ930C MFQ960C MFQ990C MHQ918	6-137 6-137 - - 6-139 6-142 6-142 6-142 5-99	1-34 - 1-30 1-30 1-30 1-35 1-23 1-23 1-23 1-23	MM4001 MM4002 MM4003 MM4005 MM4006 MM4007 MM4018 MM4019 MM4036 MM4037	4-236 4-236 4-237 4-237 4-237 7-120 7-122 4-238 4-238	1-18 1-18 1-18 - - - - - 1-19 1-19
MHQ2221 MHQ2222 MHQ2369 MHQ2483 MHQ2484 MHQ2906 MHQ2907 MHQ3467 MHQ3546 MHQ3798	5-100 5-100 5-102 5-103 5-103 5-104 5-104 5-106 5-107 5-108	1-22 1-22 1-22 1-22 1-22 1-22 1-22 1-22	MM4049 MM4052 MM4208 MM4209 MM4257 MM4258 MM5005 MM5006 MM5007 MM5262	7-124 4-240 4-241 4-241 4-243 4-243 4-246 4-246 4-246 4-246 4-247	1-39 - - - - 1-15 1-18 1-18 1-15
MHQ3799 MHQ4001A MHQ4002A MHQ4013 MHQ4014 MHQ6001 MHQ6002 MHQ6100 MHQ6100A MHQ6100A	5-108 5-109 5-109 5-110 5-110 5-112 5-112 5-113 5-113	1-22 1-22 1-22 1-22 1-22 1-22 1-22 1-22	MM5415 MM5416 MM6427 MM8000 MM8001 MM8002 MM8009 MMBA811C5 MMBA811C6 MMBA811C7	4-248 4-249 7-134 7-134 7-136 3-44 3-44 3-44	- 1-40 1-40 - 1-38 1-7 1-7
MHW590 MHW591 MHW592 MHW593 MM420 MM421 MM852 MM1505 MM1748 MM1748A	7-108 7-111 7-117 7-123 4-223 4-223 4-224 4-225 4-225	1-41 1-41 1-41 1-41 1-17 1-17 1-17 1-15 1-15	MMBA811C8 MMBA812M3 MMBA812M4 MMBA812M5 MMBA812M6 MMBA8132M7 MMBA813S2 MMBA813S3 MMBA813S4 MMBB601T	3-44 3-45 3-45 3-45 3-45 3-45 - -	1-7 1-7 1-7 1-7 1-7 1-7 1-7 1-7
MM1941 MM2005 MM2258 MM2259 MM2260 MM3000 MM3001 MM3002 MM3003 MM3005	4-226 4-227 4-227 4-227 4-228 4-228 4-228 4-228 4-228 4-228	1-17 - - - - 1-17 1-17 1-17	MMBB709S MMBB709T MMBC1009F1 MMBC1009F2 MMBC1009F3 MMBC1009F4 MMBC1009F5 MMBC1321Q2 MMBC1321Q2 MMBC1321Q3 MMBC1321Q4	3-46 3-46 3-46 3-46 3-46 3-47 3-47	1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
MMBC1321Q5 MMBC1621B2 MMBC1621B3 MMBC1621B4 MMBC1622D6 MMBC1622D7 MMBC1622D7 MMBC1622D8 MMBC1623L3 MMBC1623L4 MMBC1623L4	3-47 3-48 3-48 3-48 3-49 3-49 3-50 3-50 3-50	1-8 1-8 1-8 1-8 1-7 1-7 1-7 1-7 1-7 1-7	MMBT2222 MMBT2222A MMBT2369 MMBT2484 MMBT2907 MMBT2907A MMBT3640 MMBT3903 MMBT3904 MMBT3906	3-89 3-89 3-91 3-92 3-93 3-93 3-95 3-96 3-96 3-98	1-7 1-6 1-8 1-9 1-7 1-7 1-8 1-7 1-6 1-7
MMBC1623L6 MMBC1623L7 MMBC1653N2 MMBC1653N3 MMBC1653N4 MMBC1654N5 MMBC1654N6 MMBC1654N7 MMBD101 MMBD101 MMBD352	3-50 3-50 3-51 3-51 3-51 3-52 3-52 3-52 3-52 3-53 3-54	1-6 1-6 1-9 1-9 1-9 - 1-9 1-9 1-12	MMBT3960 MMBT3960A MMBT4124 MMBT4125 MMBT4260 MMBT4261 MMBT4401 MMBT4403 MMBT5086 MMBT5087	3-100 3-101 - 3-102 3-103 3-104 3-104	1-8 1-8 1-7 1-8 1-8 1-8 1-7 1-7 1-7
MMBD501 MMBD914X MMBD2835X MMBD2836X MMBD2837X MMBD2838X MMBD6050X MMBD6100 MMBD7000 MMBD7000 MMBF4391	3-55 3-56 3-57 3-57 3-58 3-58 3-59 3-60 3-61 3-62	1-12 1-11 1-11 1-11 1-11 1-11 1-11 1-11	MMBT5088 MMBT5089 MMBT5401 MMBT5550 MMBT6427 MMBT6428 MMBT6429 MMBT6517 MMBT6520 MMBT6520	3-105 3-105 3-106 3-107 3-108 3-109 3-109 3-110 3-111 3-112	1-9 1-9 1-9 1-9 1-9 1-9
MMBF4392 MMBF4416 MMBF4860 MMBF5457 MMBF5459 MMBF5460 MMBF5484 MMBF5486 MMBFJ310	3-62 3-63 3-64 3-66 3-67 3-68 3-69 3-70 3-71	1-11 1-10 1-11 1-11 1-11 1-11 1-10 1-10	MMBTA05 MMBTA13 MMBTA14 MMBTA20 MMBTA42 MMBTA43 MMBTA55 MMBTA56 MMBTA63	3-113 3-114 3-114 3-115 3-116 3-116 3-117 3-117 3-117	1-10 1-10 1-9 1-9 1-7 1-9 1-10 1-10
MMBFU310 MMBJ930 MMBPU131 MMBR901 MMBR930 MMBR931 MMBR931 MMBR2060 MMBR2857 MMBR4957	3-72 3-88 3-73 3-74 3-75 3-76 3-77 3-78 3-79 3-80	1-10 - 1-13 1-10 1-10 1-10 1-10 1-10 1-10	MMBTA64 MMBTA70 MMBTA92 MMBTA93 MMBTH10 MMBTH24 MMBTH81 MMBV105G MMBV109 MMBV2097	3-118 3-119 3-120 3-120 3-121 3-122 3-123 3-124 3-125 3-126	1-9 1-7 1-9 1-9 1-8 1-8 1-12 1-12
MMBR5031 MMBR5179 MMBS5060 MMBS5061 MMBS5062 MMBT404 MMBT404A MMBT918 MMBT918 MMBT918R	3-81 3-82 3-83 3-83 3-83 3-84 3-84 3-86 -	1-10 1-10 1-13 1-13 1-13 1-9 1-9 1-8 -	MMBV2098 MMBV2109 MMBV2100 MMBV2101 MMBV2102 MMBV2103 MMBV2104 MMBV2105 MMBV2106 MMBV2107	3-126 3-126 3-126 3-126 3-126 3-126 3-126 3-126 3-126 3-126	1-12 - 1-12 - 1-12 - - -

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
MMBV2108 MMBV2109 MMBV3102 MMBV3401 MMBZ5226 MMBZ5227 MMBZ5228 MMBZ5228 MMBZ5229 MMBZ5230 MMBZ5231	3-126 1-12 3-126 1-12 3-127 1-12 3-128 1-12 3-129 1-12 3-129 1-12 3-129 1-12 3-129 1-12 3-129 1-12 3-129 1-12 3-129 1-12		MPF161 MPF201 MPF202 MPF203 MPF209 MPF211 MPF212 MPF213 MPF230 MPF231	6-150 6-150 6-150 6-91 6-155 6-155 6-155 6-160 6-160	1-30 1-36 1-36 1-36 1-36 1-36 1-36
MMBZ5232 MMBZ5233 MMBZ5234 MMBZ5235 MMBZ5236 MMBZ5237 MMBZ5238 MMBZ5238 MMBZ5240 MMBZ5240 MMBZ5241	3-129 3-129 3-129 3-129 3-129 3-129 3-129 3-129 3-129 3-129	1-12 1-12 1-12 1-12 1-12 1-12 1-12 1-12	MPF232 MPF256 MPF521 MPF820 MPF910 MPF930 MPF960 MPF971 MPF971 MPF990	6-160 6-161 6-162 6-166 6-124 6-168 6-168 6-169 6-169 6-168	- 1-36 - 1-35 1-35 1-35 1-28 1-28 1-28
MMBZ5242 MMBZ5243 MMBZ5244 MMBZ5245 MMBZ5246 MMBZ5247 MMBZ5248 MMBZ5249 MMBZ5249 MMBZ5250 MMBZ5251	3-129 3-129 3-129 3-129 3-129 3-129 3-129 3-129 3-129 3-129	1-12 1-12 1-12 1-12 1-12 1-12 1-12 1-12	MPF1010 MPF2608 MPF2609 MPF3330 MPF3821 MPF3822 MPF3823 MPF3824 MPF3970 MPF3971	6-173 6-173 6-174 6-175 6-175 6-176 6-176 6-177	1-35 1-30 1-31 1-30 1-31 1-32 1-34 - 1-29 1-29
MMBZ5252 MMBZ5253 MMBZ5254 MMBZ5255 MMBZ5256 MMBZ5256 MMBZ5257 MMCM918 MMCM930 MMCM2221 MMCM2222	3-129 3-129 3-129 3-129 3-129 3-129 - -	1-12 1-13 1-13 1-13 1-13 1-13 - - -	MPF3972 MPF4091 MPF4092 MPF4093 MPF4117 MPF4117A MPF4118 MPF4118A MPF4119 MPF4119	6-177 - - 6-179 6-180 6-180 6-180 6-180 6-180	1-30 1-29 1-29 1-29 1-32 1-32 1-32 1-32 1-32
MMCM2369 MMCM2484 MMCM2857 MMCM2906 MMCM2907 MMCM3798 MMCM3799 MMCM3903 MMCM3904 MMCM3905	-		MPF4220 MPF4220A MPF4221 MPF4221A MPF4222 MPF4222A MPF4223 MPF4224 MPF4339 MPF4391	6-182 6-182 6-182 6-182 6-182 6-183 6-183 6-183	1-31 1-31 1-32 1-32 1-32 1-32 1-34 1-34 1-31 1-29
MMCM3906 MMCM3960A MPF102 MPF108 MPF109 MPF111 MPF112 MPF130 MPF131 MPF131	 6-143 6-144 6-145 6-146 6-147 6-147	- 1-34 1-34 1-31 1-31 - - -	MPF4392 MPF4393 MPF4416 MPF4416A MPF4856 MPF4856A MPF4857 MPF4857 MPF4858 MPF4858	6-184 6-188 6-188 6-189 6-189 6-189 6-189 6-189 6-189	1-29 1-29 1-34 1-34 1-28 1-28 1-29 1-29 1-29

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
MPF4859 MPF4859A MPF4860 MPF4860A MPF4861 MPF4861A MPF6659 MPF6660 MPF6661 MPF9200	6-189 1-29 6-189 1-28 6-189 1-29 6-189 1-29 6-189 1-29 6-189 1-29 6-72 1-35 6-72 1-35 6-72 1-35 1-35		MPS706 MPS706A MPS708 MPS750 MPS751 MPS751A MPS834 MPS835 MPS918 MPS929	2-84 2-84 2-86 2-83 2-83 - 2-88 2-90 2-92 2-94	1-2 1-2 1-2 - - - 1-3
MPQ918 MPQ1000 MPQ1500 MPQ2221 MPQ2221A MPQ2222 MPQ2222A MPQ2369 MPQ2483 MPQ2484	5-114 5-115 5-116 5-100 - 5-100 5-102 5-117 5-117	1-22 1-22 1-22 1-22 1-22 1-22 1-22 1-22	MPS929A MPS930 MPS930A MPS2222 MPS2222A MPS2369 MPS2714 MPS2716 MPS2907 MPS2907	2-94 2-94 2-97 2-97 2-101 2-103 2-104 2-104	1-2 1-3 - 1-2
MPQ2906 MPQ2906A MPQ2907 MPQ2907A MPQ3303 MPQ3467 MPQ3546 MPQ3724 MPQ3725 MPQ3725A	5-104 - 5-104 - 5-119 5-120 5-107 - 5-121 5-121	1-22 1-22 1-22 1-22 1-22 1-22 1-22 1-22	MPS2925 MPS3390 MPS3391 MPS3391A MPS3392 MPS3393 MPS3394 MPS3395 MPS3396 MPS3397	2-108 2-109 2-108 2-108 2-108 2-108 2-108 2-108 2-108	
MPQ3762 MPQ3798 MPQ3799 MPQ3904 MPQ3906 MPQ6001 MPQ6002 MPQ6100 MPQ6100A MPQ6426	5-123 5-125 5-125 5-127 5-128 5-130 5-130 5-133 5-133	1-22 1-22 1-22 1-22 1-22 1-23 1-23 1-23	MPS3398 MPS3402 MPS3403 MPS3404 MPS3405 MPS3563 MPS3565 MPS3566 MPS3566 MPS3567 MPS3568	2-108 2-110 2-110 2-111 2-111 2-92 2-112 2-113 2-114 2-114	1-3
MPQ6427 MPQ6501 MPQ6502 MPQ6600 MPQ6600A MPQ6700 MPQ6842 MPQ7041 MPQ7042 MPQ7043	5-135 5-130 5-130 5-133 5-133 5-137 5-141 5-144 5-144	1-23 1-23 1-23 1-23 1-23 1-23 1-23 1-23	MPS3569 MPS3638 MPS3638A MPS3640 MPS3644 MPS3645 MPS3693 MPS3693 MPS3694 MPS3702	2-114 2-115 2-115 2-117 2-119 2-119 2-120 - 2-122	1-3 1-3 1-3 1-3 1-3 1-3 1-2
MPQ7051 MPQ7052 MPQ7053 MPQ7091 MPQ7092 MPQ7093 MPS404 MPS404A MPS650 MPS651	5-145 5-145 5-147 5-147 5-147 5-147 2-79 2-79 2-83 2-83	1-23 1-23 1-23 1-23 1-23 1-5 1-5 1-5 1-2	MPS3703 MPS3704 MPS3705 MPS3706 MPS3707 MPS3710 MPS3711 MPS3866 MPS3866A MPS3903	2-122 2-123 2-123 2-123 2-124 2-124 2-124 2-125 2-125	1-2 - - - - - 1-3 -

Devices with no page number shown are available from Motorola although not represented in this book. Please contact your nearest Motorola representative for further information.

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
MPS3904 MPS3905 MPS3906 MPS4248 MPS4249 MPS4250 MPS4250A MPS4257 MPS4257 MPS4258 MPS4274	2-127 - 2-133 - 2-133 - 2-135 - 2-135 1-4 2-135 1-4 2-135 1-4 2-137 - 2-137 1-3 2-139 -		MPS6576 MPS6580 MPS6601 MPS6602 MPS6651 MPS6652 MPS6714 MPS6715 MPS6716 MPS6717	2-161 2-162 2-163 2-163 2-163 2-163 2-168 2-168 2-169 2-169	1-2 - 1-2 - 1-2 1-2 1-2 1-2 1-2
MPS4275 MPS4354 MPS4355 MPS4356 MPS5133 MPS5138 MPS5139 MPS5172 MPS5179 MPS6172	2-139 - - 2-140 2-141 2-142 2-143 2-144	- - - - - 1-2 1-3	MPS6724 MPS6725 MPS6726 MPS6727 MPS6728 MPS6729 MPS6733 MPS6734 MPS6735 MPS693	2-170 2-170 2-171 2-171 2-172 2-172 2-173 2-173 2-173 2-174	1-4 1-4 1-2 1-2 1-2 1-2 1-5 1-5
MPS6507 MPS6511 MPS6512 MPS6513 MPS6514 MPS6515 MPS6516 MPS6517 MPS6518 MPS6518	2-146 2-147 2-148 2-148 2-148 2-148 2-148 2-148 2-148 2-148 2-148	- - 1-2 1-2 1-2 - 1-2 1-2 1-2	MPS8097 MPS8098 MPS8099 MPS8598 MPS8599 MPSA05 MPSA06 MPSA09 MPSA10 MPSA12	2-175 2-176 2-176 2-176 2-176 2-181 2-181 2-186 2-187 2-188	1-4 1-2 1-2 1-2 1-2 1-2 1-2 1-4
MPS6520 MPS6521 MPS6522 MPS6523 MPS6530 MPS6531 MPS6532 MPS6533 MPS6534 MPS6535	2-149 2-149 2-149 2-150 2-150 2-150 2-151 2-151 2-151	1-4 1-4 1-4 1-4 1-2 1-2 - 1-2	MPSA13 MPSA14 MPSA16 MPSA17 MPSA18 MPSA20 MPSA25 MPSA25 MPSA25 MPSA27 MPSA28	2-189 2-189 2-190 2-190 2-192 2-196 2-197 2-197 2-197 2-199	1-4 1-4 1-5 1-5 1-4 1-2 1-4 1-4 1-4
MPS6539 MPS6540 MPS6541 MPS6543 MPS6544 MPS6547 MPS6548 MPS6560 MPS6561 MPS6561	2-152 2-153 2-154 - 2-156 - 2-156	1-3 1-3 - 1-3 - 1-3 - 1-2 - 1-2	MPSA29 MPSA42 MPSA43 MPSA44 MPSA45 MPSA55 MPSA56 MPSA62 MPSA63 MPSA64	2-199 2-201 2-201 2-203 2-203 2-181 2-181 2-206 2-206 2-206	1-4 1-5 1-5 1-5 1-5 1-2 1-2 1-4 1-4
MPS6563 MPS6565 MPS6566 MPS6568A MPS6569A MPS6570A MPS6571 MPS6573 MPS6574 MPS6575	2-157 2-157 2-158 2-158 2-158 2-160 2-161 2-161 2-161		MPSA70 MPSA75 MPSA76 MPSA77 MPSA92 MPSA93 MPSD01 MPSD04 MPSD05 MPSD51	2-207 2-208 2-208 2-208 2-210 2-210 - - 2-212	1-2 1-4 1-4 1-5 1-5 1-5 1-4 -

Motorola Part #	Data Sheet Page #	Selector Guide Page #	Motorola Part #	Data Sheet Page #	Selector Guide Page #
MPSD54 MPSD55 MPSH02 MPSH04 MPSH05 MPSH07 MPSH08 MPSH10 MPSH11 MPSH11	- 1-4 2-212 - 2-213 - 2-216 1-3 2-216 1-3 2-217 1-3 2-217 1-3 2-220 1-3 2-220 1-3 2-223 1-3		MQ3799A MQ6001 MQ6002 MQ7001 MQ7003 MQ7004 MQ7005 MQ7007 MQ7021 MRF207	5-84 5-84 5-89 5-92 - 5-94 5-96 7-139	1-23 1-23 1-23 1-23 1-23 1-23 1-23 1-23
MPSH20 MPSH24 MPSH30 MPSH31 MPSH32 MPSH34 MPSH55 MPSH69 MPSH69 MPSH81	2-224 2-227 2-230 2-230 2-231 2-234 2-235 2-235 2-235	1-3 1-3 1-3 - 1-3 1-3 1-3 1-3 - 1-3	MRF225 MRF227 MRF229 MRF230 MRF237 MRF313 MRF313A MRF402 MRF501 MRF501	7-142 7-144 7-147 7-147 7-151 7-153 7-153 7-155 7-157	1-42 1-42 1-42 1-42 1-42 1-43 1-43 1-40
MPSL01 MPSL51 MPSW01 MPSW05 MPSW06 MPSW10 MPSW13 MPSW14 MPSW42	2-238 2-239 2-240 2-240 2-243 2-243 2-244 2-245 2-245 2-248	1-5 1-5 1-2 1-2 102 102 1-5 1-4 1-4 1-5	MRF511 MRF515 MRF517 MRF525 MRF531 MRF532 MRF534 MRF536 MRF559 MRF5571	7-159 7-164 7-167 7-172 7-175 7-177 7-124 7-124 7-178 7-184	1-39 1-42 1-40 1-40 - - - 1-39 1-39 1-39
MPSW43 MPSW45 MPSW51 MPSW51A MPSW55 MPSW56 MPSW60 MPSW63 MPSW64 MPSW92	2-248 2-251 2-252 2-252 2-255 2-255 2-258 2-259 2-259 2-262	1-5 1-4 1-2 1-2 1-2 1-2 1-5 1-4 1-4	MRF572 MRF573 MRF580 MRF581 MRF586 MRF587 MRF604 MRF607 MRF626 MRF627	7-184 7-184 7-195 7-195 - - 7-204 7-206 7-208 7-196	1-39 1-39 1-39 1-39 1-39 1-39 1-42 1-42
MPSW93 MQ918 MQ930 MQ982 MQ1120 MQ1129 MQ2218 MQ2218A MQ2219 MQ2219A	2-262 - - 5-42 5-47 5-51 5-54 5-54 5-54 5-54	1-5 1-23 1-23 1-23 1-23 1-23 1-23 1-23 1-23	MRF628 MRF629 MRF630 MRF901 MRF904 MRF905 MRF911 MRF912 MRF914 MRF914	7-211 7-214 7-216 7-219 7-224 7-228 7-230 7-233 7-236 7-231	1-42 1-43 1-39 1-41 1-39 1-39 - 1-39
MQ2369 MQ2484 MQ2904 MQ2905A MQ3251 MQ3467 MQ3725 MQ3762 MQ3798 MQ3799	5-59 - 5-62 5-62 5-67 5-72 5-76 5-79 -	1-23 1-23 1-23 1-23 1-23 1-23 1-23 1-23	MRF961 MRF962 MRF965 MRF966 MRF967 MRF8003 MRF8004 MSD6100 MSD6102 MSD6150	7-96 7-96 7-96 7-241 7-241 7-249 7-251 2-265 2-266 2-267	1-39 1-39 1-40 1-36 1-36 1-42 1-42 1-5 1-5

Motorola Part #	12 5	Data Sheet Page #	Selector Guide Page #
MWA110 MWA120 MWA130 MWA210 MWA220 MWA230	16-16-16-16-16-16-16-16-16-16-16-16-16-1	7-253 7-253 7-253 7-261 7-261 7-261	1-41 1-41 1-41 1-41 1-41
IWA310 IWA320 IWA330 IWA110H		7-267 7-267 7-267	1-41 1-41 1-41
//WA120H //WA130H //WA210H		-	5527AI
/IWA220H /IWA230H /IWA310H /IWA320H		-	10.216
//WA330H //XR3866 //XR5160		3-130 3-131	1-14 1-14
MXR5583 MXR5943 MXT3904 MXT3906 MXTA14		3-132 3-133 3-134 3-136 3-138	1-14 1-14 1-13 1-13 1-14
MXTA27 MXTA42 MXTA43 MXTA44 MXTA64		3-139 3-140 3-140 3-141 3-142	1-14 1-14 1-14 1-14
MXTA77 MXTA92 MXTA93 PN2222 PN2222A	Paul	3-143 3-144 3-144 -	1-14 1-14 1-14 -
PN2907 PN2907A PN3644 PN3645 J308		- - - - 6-191	- - - 1-34
U309 U310		6-191 6-191	1-34 1-34
			15.
			100
			5063W
			COORTINATION OF THE STATE OF TH
			1. 12081

Motorola Part #	1 d	Data Sheet Page #	Selector Guide Page #
			Asia Sarahan
	- 4		\$6H291
			79/245
			. 472.50
			16H39M 359mak
			11147 704
			11148/07
	-0.0		12192 954
	60		10.1290
			1.5 45-986
	- 67		DOWNSTEE
			101421911
			919181919
			954, 5400
			148 84
			92115799
			16148 936
			10.598
	150		12 (2.5)
			246.200
			6.50/6.2/98.0
			Elegent.
	6.00		down-
	- 4		AL WOLLD'S
			DESCRIPTION OF THE PERSON OF T
			2 V/V 3-42/0
			SHWERN
			ALMSAN 15
			Arrest Mr.
			7
			AND THE PARTY.
			18 C 186
			1897914
			\$500 A \$50
			N.C. 1154 (1994)
			81 50 25
			6 08128
			COM
			45 -50
	-		0.15 (3)
	- 1		
			100
			-10.00
	- 1		41.085 QAR
	-		100025-041
			1 7 5 5 6 22 45 20 5 6 M
			60 46
			20 10 14
			the Links
	- 1		HE 1000A

Selector Guides

The following selector guides highlight transistors that have emerged as the best values in their various categories. Semi-conductors are manufactured by "batch" processes; therefore, each "batch" may yield devices with widely varying parameters, creating "families."

A large selection of plastic-encapsulated transistors is offered (TO-92, 1 Watt TO-92, SOT-23, SOT-89, Duals, and Quads).

For those applications where higher power dissipation and hermeticity are required, Motorola offers a full line of transistors in several metal-can packages.

FET's include devices developed for operation from dc to UHF in switching and amplifying applications.

A broad line of high frequency (RF) transistors with F_T's up to 8 GHz are included for amplifiers, oscillators, mixers and switching applications.

Devices which are qualified to JAN, JANTX, JANTXV, and JANS high reliability specifications are so noted in the applicable selector guides.

Table of Contents

	Page
Plastic-Encapsulated Transistors	1-2
General-Purpose	1-2
High-Speed Saturated Switching	1-3
RF/UHF/VHF Amplifiers and CATV	1-3
Darlington	1-4
Low-Noise Amplifier	1-4
3	1-5
	1-5
Choppers	1-5
Microminiature Products	1-6
SOT-23 — TABLES 1–17 General-Purpose Transistors — TABLE 1	1.0
Contract to the second	1-6 1-8
Switching Transistors — TABLE 2 Transistors, VHF/UHF Amplifiers, Mixers, Oscillators	1-0
— TABLE 3	1-8
Chopper Transistors — TABLE 4	1-9
Darlington Transistors — TABLE 5	1-9
Low-Noise Transistors — TABLE 6	1-9
High Voltage Transistors — TABLE 7	1-9
Driver Transistors — TABLE 8	1-10
RF Transistors — TABLE 9	1-10
RF JFETs — TABLE 10	1-10
General-Purpose FETs — TABLE 11	1-11
Chopper/Switches, Junction FETs — TABLE 12	1-11
Switching Diodes — TABLE 13	1-11
Tuning Diodes — TABLE 14	1-12
Zener Diodes — TABLE 15	1-12
Silicon Controlled Rectifier — TABLE 16	1-13
Silicon Programmable Unijunction Transistors —	
TABLE 17	1-13
SOT-89 — TABLE 18	
General-Purpose High-Voltage Darlingtons RF	1-13
Metal-Packaged Transistors	
Switching	1-15
	1-16
	1-17
High-Voltage/High-Current Amplifiers General-Purpose Amplifiers	1-17
Choppers	1-20
Multiples	1-21
Quad Transistors	1-22
Quad TMOS FETs	1-23
Dual Transistors	1-24
Field-Effect Transistors	1-28
Switches and Choppers	1-28
Low-Frequency/Low-Noise	1-30
MOSFETs	1-33
High-Frequency Amplifiers	1-34
Small-Signal TMOS	1-35
RF Transistors	1-37
UHF and Microwave Oscillators	1-38
GaAs Dual-Gate Field-Effect	1-38
Low-Noise	1-38
CATV, MATV, and Class A Linear	1-39
High-Speed Switches	1-39
Class C Amplifiers	1-40
Small-Signal Amplifier Transistor Selection by Package	1-41
Devices for Hi-Rel Applications	1-44

Plastic-Encapsulated Small-Signal Transistors

Motorola's small-signal TO-92 plastic transistors encompass hundreds of devices with a wide variety of characteristics for general purpose, amplifier and switching applications. The popular high-volume TO-92 package combines proven reliability, performance, economy and convenience to provide the perfect solution for industrial and consumer design problems. All Motorola TO-92 devices are laser marked for ease of identification and shipped in antistatic containers, as part of Motorola's ongoing practice of maintaining the highest standards of quality and reliability.

In addition to the standard TO-92 devices listed in the following tables, Motorola also offers special electrical selections of these devices. Please contact your Motorola Sales Representative regarding any special requirements you may have.

In each of the following tables, the major specifications of the TO-92 transistor are given for easy comparison.

Motorola TO-92 transistors are available in the radial or axial tape and reel formats. Lead forming to fit TO-5 or TO-18 sockets is also available.

TABLE 1. General-Purpose Transistors

These general-purpose transistors are designed for small-signal amplification from dc to low radio frequencies. They are also useful as oscillators and general-purpose switches. The transistors are listed in order of decreasing breakdown voltage, V(BRICEO.

 $P_D @ T_A = 25^{\circ}C = 625 \text{ mW})$

Device	and Polarity	V(BR)CEO	F _T @)	Ic	HFE (@	
NPN	PNP	Volts Min	MHz Min	I _C mA	mA Max	Min	Max	IC mA	
MPS8099	MPS8599	80	150	10	200	100	300	1.0	
MPS-A06	MPS-A56	80	100	10	500	50	_	100	
MPS8098	MPS8598	60	150	10	200	100	300	1.0	
MPS-A05	MPS-A55	60	100	10	500	50	_	100	
MPS651	MPS751	60	75	50	2000	40		2000	
2N3904	2N3906	40	300	10	200	100	300	10	
2N4401	2N4403	40	250	20	600	100	300	150	
2N3903	2N3905	40	250	10	200	50	150	100	
2N4400	2N4402	40	200	20	600	50	150	150	
MPS-A20	MPS-A70	40	125	5.0	100	40	400	5.0	
MPS650	MPS750	40	75	50	2000	40	_	2000	
MPS6531	MPS6534	40	390†	50	600	90	270	100	
MPS2222	MPS2907	30	250	20	600	100	300	150	
2N4123	2N4125	30	250	10	200	50	150	2.0	
MPS3704	MPS3702	30	100	50	600	100	300	50	
MPS6513	MPS6517	30	330†	10	100	90	180	2.0	
2N4124	2N4126	25	300	10	200	120	360	2.0	
MPS6514	MPS6518	25	480†	10	100	150	300	2.0	
MPS6515	MPS6519	25	480	10	100	250	500	2.0	
MPS5172		25	Table .		100	100	500	10	
MPS6560	MPS6562	25	60	10	500	50	200	600	
MPS6601	MPS6651	25	100	50	1000	30	150	1000	

1	WATT TO-92	(TO-226AE)	(Pp @ TA	$= 25^{\circ}C = 1.0$	W)
---	------------	------------	----------	-----------------------	----

MPS6717	MPS6729	80	50	200	500	80		F0
							1—	50
MPSW06	MPSW56	80	50	200	500	80	_	50
MPS6716	MPS6728	60	50	200	500	80	_	50
MPSW05	MPSW55	60	50	200	500	80	_	50
MPS6715	MPS6727	40	50	50	1000	50	_	1000
MPSW01A	MPSW51A	40	50	50	1000	50	_	1000
MPS6714	MPS6726	30	50	50	1000	50	_	1000
MPSW01	MPSW51	30	50	50	1000	50	_	1000

†Typ

PLASTIC ENCAPSULATED SMALL-SIGNAL TRANSISTORS (continued)

TABLE 2. High-Speed Saturated Switching Transistors

The transistors listed in this table are specially optimized for high-speed saturated switches. They are heavily gold doped and processed to provide very short switching times and low output capacitance (below 6 pF). The transistors are listed in order of decreasing turn-on time (ton).

ton & toff @		V(BR)CEO	V(BR)CEO @			VCE(sat) @ &					
Device Type	ns Max	ns Max	I _C	Volts Min	hFE Min	I _C	Volts Max	I _C mA	IB mA	MHz Min	I _C
IPN	101	(Feb.		1 1			12300	40			
2N4264	25	35	10	15	40	10	0.22	10	1.0	300	10
2N4265	25	35	10	12	100	10	0.22	10	1.0	300	10
MPS3646	18	28	300	15	30	30	0.2	30	3.0	350	30
MPS2369	12	18	10	15	40	10	0.25	10	1.0	500	10
NP	No.			36.			000001				
MPS3640	25	35	50	12	30	10	0.2	10	1.0	500	10
MPS4258	15	20	10	12	30	50	0.15	10	1.0	700	10
2N5771	15	20	10	15	50	10	0.18	10	1.0	850	10

TABLE 3. RF/UHF/VHF Amplifiers and CATV Transistors

The transistors listed below are high performance, high frequency standard transistors. The transistors are listed in order of decreasing f_T min.

Device	fT @		C _{cb} V(BR)CEO	V(BR)CEO Volts	G _{pe}	NF dB	@ Gain			
Туре	Min	Тур	mA	pF Max	Min	Min	Max	MHz	V _{AGC} Min	dB
MPS5179	900		5.0	1.0	12	15	4.5	200	10 PM	neer object
MPS-H17	800	1600	5.0	0.9	15	24†	6.0	200		
MPS6543	750	1100	4.0	1.0	25			204		
MPS-H10	650	1500	4.0	0.65*	25			81		
MPS-H11	650	1400	4.0	0.7	25		10	-016		200 mm3
MPS6547	600	1100	2.0	0.35†	25		-			
MPS918	600	800	4.0	1.7	15	15	6.0	60		
MPS3563	600	800	8.0	1.7	12	14				
MPS3866	500		50		30	10				
MPS-H08	400	700	3.0	0.3*	30	14	3.5	200	5.0**	30
MPS-H34	500	700	15	0.32	45					100
MPS6539	500	1000	4.0	0.7	20		4.5	100		10700
2N5222	450	1000	4.0	1.3	15			Action to	1	Self-transition of
MPS-H07	400	700	3.0	0.3*	30	18	3.2	100	5.0	30
MPS-H24	400	800	8.0	0.36	30		and A			RA
MPS-H20	400	750	4.0	0.65	30					100000
MPS6540	350	700	2.0	0.65	30		- Italian			10,000
MPS-H32	300	450	4.0	0.22	30	22.5	3.3†	45	5.5†	30
MPS-H30	300	450	4.0	0.65	20	22.5	6.0	45	4.4	30
MPS3693	200	400	10	3.5	45		4.0†	1.0		1000
MPS3694	200	400	10	3.5	45		4.0†	1.0		
MPS-H04	80	120	1.5	1.6	80		2.0	1.0		1446.00
MPS-H05	80	120	1.5	1.6	80	mark a	2.0	1.0		
NP				1 10 10 10 10						
MPS-H81	600	700	5.0	0.65*	20		Discourse of the Control of the Cont			
2N5208	300	600	2.0	1.0	25	22	3.0	100		19833
MPS-H54	80	130	1.5	1.6	80		2.0	1.0		75 May 1
MPS-H55	80	130	1.5	1.6	80					

PLASTIC ENCAPSULATED SMALL-SIGNAL TRANSISTORS (continued)

TABLE 4. Darlington Transistors

Darlington amplifiers are cascade transistors used in applications requiring very high gain and input impedance. These devices have monolithic construction and are listed in order of decreasing voltage, V_(BR)CES.

Device a	and Polarity	V(BR)CES	(0	9	Ic	fT @	D)	V _{CE(sat)}	(a)	
NPN	PNP	Volts Min	hFE Min	mA	mA Max	MHz Min	I _C mA	Volts Max	I _C	mA
MPS-A29	10 12	100	10000	100	500	125	10	2.0	100	0.1
MPS-A28		80	10000	100	500	125	10	2.0	100	0.1
MPS-A27		60	10000	100	500	125	10	1.5	100	0.1
	MPSA77	60	10000	100	300	125	10	1.5	100	0.1
MPS-A26		50	10000	100	500	125	10	1.5	100	0.1
	MPSA76	50	10000	100	300	125	10	1.5	100	0.1
2N6426	45	40	30000	100	500	150	10	1.5	500	0.5
2N6427		40	20000	100	500	130	10	1.5	500	0.5
MPSA25	1 1 1 1	40	10000	100	500	125	10	1.5	100	0.1
	MPSA75	40	10000	100	300	125	10	1.5	100	0.1
MPSA14	MPSA64	30	20000	100	300	125	10	1.5	100	0.1
MPSA13	MPSA63	30	10000	100	300	125	10	1.5	100	0.1
MPSD04	MPSD54	25	1000	100	300	100	10	1.0	100	0.1
MPSA12	MPSA62	20	20000	10	300			1.0	10	0.01
Watt TO-	92									
MPS6725		50	25K	200	1000	100	200	1.5	1000	2.0
MPS6724		40	25K	200	1000	100	200	1.5	1000	2.0
MPSW45		40	25K	200	1000	100	200	1.5	1000	2.0
MPSW14	MPSW64	3.0	20K	100	1000	125	10	1.5	100	0.1
MPSW13	MPSW63	30	10K	100	1000	125	10	1.5	100	0.1

TABLE 5. Low-Noise Amplifier Transistors

The small-signal transistors listed in this table are characterized for low-noise amplification at low frequencies. The transistors are listed in decreasing order of noise figure (NF).

	NF @	i)	BV(BR)CEO	(6	ŷ.	f _T @	0
Device Type	dB Typ	f*	Volts Min	hFE Min	I _C mA	MHz Min	I _C mA
IPN							9 1
2N6428	6.0	Audio	50	250	10	100	1.0
2N4123	6.0	Audio	30	50	2.0	250	10
2N6429	5.0	Audio	45	500	10	100	1.0
2N4124	5.0	Audio	25	120	2.0	300	10
2N6428A	4.0 Max	Audio	50	250	10	100	1.0
2N6429A	3.5 Max	Audio	45	500	10	100	1.0
2N5209	3.0 Max	Audio	50	150	10	30	0.5
2N5088	3.0	Audio	30	300	10	50	0.5
MPS6520	3.0	Audio	25	200	2.0	390†	2.0
MPS6521	3.0	Audio	25	300	2.0	390†	2.0
2N5210	2.0 Max	Audio	50	250	10	30	0.5
MPS8097	2.0 Max	Audio	40	250	0.1	200	10
2N5089	2.0 Max	Audio	25	400	10	50	0.5
MPSA18	1.5 Max	Audio	45	500	10	100	1.0
MPSA09	1.4	1.0 kHz	50	100	0.1	30	0.5
NP							
2N4125	5.0	Audio	30	50	2.0	200	10
2N4126	4.0	Audio	25	120	2.0	250	10
2N5086	3.0	Audio	50	150	10	40	0.5
MPS6522	3.0	Audio	25	200	2.0	340†	2.0
MPS6523	3.0	Audio	25	300	2.0	340†	2.0
MPS4249	3.0	1.0 kHz	60	100	10	100	1.0
2N5087	2.0	Audio	60	250	10	40	0.5
MPS4250	2.0	1.0 kHz	40	250	10	250	1.0
*MPS4250A	2.0	1.0 kHz	60	250	0.1	250	1.0

*Audio = 10 Hz to 15.7 kHz.

PLASTIC ENCAPSULATED SMALL-SIGNAL TRANSISTORS (continued)

TABLE 6. High-Voltage Transistors

These high-voltage transistors are designed for driving neon bulbs and Nixie* indicator tubes, for direct line operation, and for other applications requiring high-voltage capability at relatively low collector current. The devices are listed in order of decreasing breakdown voltage, V(BR)CEO.

	V(BR)CEO	lc	(a	V _{CE(sat)}		B ₄	fT @	D .
Device Type	Volts Min	Amp* Max	hFE Min	I _C	Volts Max	I _C mA	IB mA	MHz Min	IC mA
IPN									
MPS-A44	400	0.3	50	10	0.75	50	5.0	20	10
2N6517	350	0.5	30	30	0.30	10	1.0	40	10
MPS-A45	350	0.3	50	10	0.75	50	5.0	20	10
2N6516	300	0.5	45	30	0.30	10	1.0	40	10
MPS-A42	300	0.5	40	10	0.5	20	2.0	50	10
2N6515	250	0.5	50	30	0.30	10	1.0	40	10
MPS-A43	200	0.5	40	10	0.4	20	2.0	50	10
MPS-D01	200	0.1	20	30				40	10
2N5551	160	0.6	80	10	0.15	10	1.0	100	10
2N5550	140	0.6	60	10	0.15	10	1.0	100	10
MPS-L01	120	0.15	50	10				60	10
Watt TO-92	2								
MPS6735	300	0.3	40	10	2.0	20	2.0	50	10
MPSW10	300	0.3	40	30	0.75	30	3.0	45	10
MPSW42	300	0.3	40	30	0.50	20	2.0	50	10
MPS6734	250	0.3	40	10	2.0	20	2.0	50	10
MPSW43	200	0.3	50	30	0.4	20	2.0	50	10
MPS6733	200	0.3	40	10	2.0	20	2.0	50	10
PNP			196						
2N6520	350	0.5	30	30	0.30	10	1.0	40	10
2N6519	300	0.5	45	30	0.30	10	1.0	40	10
MPS-A92	300	0.5	40	10	0.8	20	2.0	50	10
2N6518	250	0.5	50	30	0.30	10	1.0	40	10
MPS-A93	200	0.5	40	10	0.7	20	2.0	50	10
MPS-D51	200	0.1	20	30				40	10
2N5401	150	0.6	60	10	0.5	50	0.5	100	10
2N5400	120	0.6	40	10	0.5	50	0.5	100	10
MPS-L51	100	0.6	40	50	0.25	10	1.0	60	10
Watt TO-92	2								
MPSW60	300	0.3	40	30	0.75	20	2.0	60	10
MPSW92	300	0.3	25	30	0.50	20	2.0	50	10
MPSW93	200	0.3	30	30	0.40	20	2.0	50	10

TABLE 7. Choppers

Devices are listed in decreasing (V(BR)EBO

	V(BR)EBO	lc	(6	a)	VCE(sat)		Sk.	fT @	D .
Device Type	Volts Min	Amp* Max	hFE Min	mA	Volts Max	I _C mA	I _B	MHz Min	I _C
PN									
MPSA17	15	100	200	5.0	0.25	10	1.0	100	5.0
MPSA16	12	100	200	5.0	0.25	10	1.0	80	5.0
NP									
MPS404A	25	150	30	12	0.20	24	1.0		
MPS404	12	150	30	12	0.20	24	1.0		

TABLE 8. Dual Diodes

Dual diodes designed for use in low cost biasing, steering, and voltage doubler applications including series, common cathode and common anode diodes.

		V(BR)	a	IB (a	V _F	a	CVR = 0	trr
Device Type	Description	Volts Min	I(BR) μA	μA Max	V _R Volts	Volts Min/Max	lF mA	pF Max	ns Max
MSD6100	Switching	100	100	0.1	50	0.67/0.82	10	1.5	4.0
MSD6102	Common Cathode	70	100	0.1	50	0.67/1.0	10	3.0	100
MSD6150	Common Anode	70	100	0.1	50	-/1.0	10	8.0	100

Microminiature Products

Microminiature Space Saving Alternatives for Discrete Devices

A wide variety of discrete components from Motorola's repertoire of reliability-proven semiconductor processes and geometries are available in SOT (Small Outline Transistor) packages. Products include Bipolar and Field-Effect Transistors; Switching, Zener and Varactor Diodes; and Silicon Controlled Rectifiers. The surface-mounted SOT devices are currently being used by circuit designers on Printed Circuit Boards and Ceramic Substrate.

Some of the significant features of the SOT devices are:

- Complete Pretest Capability all SOT's are 100% electrically tested.
- Handling and Assembly Ease SOT's can be placed on substrates either manually or by using automated handling equipment.
- Reliability SOT's are subjected to the same rigid reliability test performed on all Motorola plastic packages.
- Small Size/Less Weight Considerable size reduction and weight-saving is achieved in circuit designs using SOT technology.
- Broad Line Currently, Motorola offers over 250 standard discrete devices in the SOT packages. (Inquiries regarding customers' special requirements are invited.)
- Marking Capability A multi-digit code is laser marked on every SOT device.

- Multi-Sources Although Motorola was the first domestic supplier of SOT's, today there are several U.S. manufacturers, as well as many foreign sources for these devices.
- Packaging Motorola standard shipping method for SOT's is in vials; additionally, in conjunction with the industry trend to use automatic placement equipment for microminiature components, Motorola offers the SOT-23 packaged in the 8mm tape and reel format.
- Standard SOT-23 VS Low Profile SOT-23 Motorola offers both the standard SOT-23 outline (TO-236AA) and the new "Low Profile" SOT-23 (TO-236AB). The only difference is the clearance from the bottom of the package to the surface of the substrate:

	Millin	neters	Inches		
Device	Min	Max	Min	Max	
Standard SOT-23	0.10	0.25	0.004	0.0098	
Low Profile SOT-23	0.01	0.10	0.0005	0.0040	

The "Low Profile" package is primarily designed for customers using two-sided printed circuit boards with the SOT-23's mounted on the "bottom side" of the board, and with the nonsurface mounted device on the "top side." Contact your Motorola representative for ordering instructions on "Low Profile" SOT-23's.

TABLE 1. General-Purpose SOT-23 Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

Devices are listed in order of descending breakdown voltage.

NPN

				hFE		fŢ
Device Type	Marking	VBR(CEO)	Min	Max	@ IC (mA)	Min (MHz)
BCX70K	AK	45	380	630	2	125
BCX70J	AJ	45	250	460	2	125
BCW72	K2	45	200	450	2	
BCX70H	AH	45	180	310	2	125
BCW66G	EG	45	160	400	100	100
BCX70G	AG	45	120	220	2	125
BCW71	K1	45	110	220	2	_
BCW66F	EF	45	100	250	100	100
BCX19	U1	45	100	600	100	200
MMBT930	1X	45	100	300	1	30
MMBC1623L7	L7	40	300	600	1	200
MMBC1623L6	L6	40	200	400	1.	200
MMBC1623L5	L5	40	135	270	1	200
BSS79C	CF	40	100	300	150	250
MMBT2222A	1P	40	100	300	150	200
MMBT3904	1A	40	100	300	10	200

TABLE 1. General-Purpose SOT-23 Transistors (continued)

Pinout: 1-Base, 2-Emitter, 3-Collector

Devices are listed in order of descending breakdown voltage.

NPN

				hFE		fT
Device Type	Marking	VBR(CEO)	Min	Max	@ IC (mA)	Min (MHz)
MMBT4401	2X	40	100	300	150	250
MMBC1623L4	L4	40	90	180	1	200
MMBC1623L3	L3	40	60	120	1	200
MMBT3903	1Y	40	50	150	10	250
BSS79B	CE	40	40	120	150	250
MMBTA20	1C	40	40	400	5	125
MMBC1622D8	D8	35	450	900	5	100
MMBC1622D7	D7	35	300	600	5	100
MMBC1622D6	D6	35	200	400	5	100
BCW60D	AD	32	380	630	2	125
BCW60C	AC	32	250	460	2	125
BCW65C	EC	32	250	630	100	100
BCW60B	AB	32	180	310	2	125
BCW65B	EB	32	160	400	100	100
BCW60A	AA	32	120	220	2	125
BCW65A	EA	32	100	250	100	100
MMBT2222	1B	30	100	300	150	250
MMBB601T	ZA	25	400	650	2	_
BCW20	U2	25	100	600	100	-
MMBT4124	ZC	25	60		50	300
BCW33	D3	20	420	00	2	42 4 7740
BCW32	D2	20	200	450	2	-
BCW31	D1	20	110	220	2	

PNP

				hFE		fT
Device Type	Marking	V _{BR} (CEO)	Min	Max	@ IC (mA)	Min (MHz)
BSS82C	CM	60	100	300	150	100
MMBT2907A	2F	60	100	300	150	200
MMBA811C8	C8	45	450	900	5	50
BCX71K	BK	45	380	630	2	_
MMBA811C7	C7	45	300	600	5	50
BCX71J	BJ	45	250	460	2	
BCW70	H2	45	215	500	2	_
MMBA811C6	C6	45	200	400	5	50
BCX71H	BH	45	180	310	2	_
BCW68G	DG	45	160	400	100	100
MMBA811C5	C5	45	135	270	5	50
BCW69	H1	45	120	260	2	_
BCX71G	BG	45	120	220	2	_
BCW68F	DF	45	100	250	100	100
BCX17	T1	45	100	600	100	100
MMBA813S4	S4	45	100	200	50	100
MMBA813S3	S3	45	75	150	50	100
MMBA813S2	S2	45	50	100	50	100
MMBA812M7	M7	40	300	600	1	150
MMBA812M6	M6	40	200	400	1 1	150
MMBA812M5	M5	40	135	270	1	150
MMBT2907	2B	40	100	300	150	200
MMBT3906	2A	40	100	300	10	250
MMBT4403	2T	40	100	300	150	200
MMBA812M4	M4	40	90	180	1	150
MMBA812M3	M3	40	60	120	1 1	150
BSS80B	CH	40	40	120	150	200
BSS80C	CJ	40	40	120	150	200
MMBTA70	2C	40	40	400	5	125
BCW61D	BD	32	380	630	2	125
BCW61C	BC	32	250	460	2	-
BCW67C	EC	32	250	630	100	100
BCW61B	BB	32	180	310	2	-

TABLE 1. General-Purpose SOT-23 Transistors (continued)

Pinout: 1-Base, 2-Emitter, 3-Collector

Devices are listed in order of descending breakdown voltage.

PNP

		2.00		hFE		fT
Device Type	Marking	VBR(CEO)	Min	Max	@ IC (mA)	Min (MHz)
BCW67B	DB	32	160	400	100	100
BCW61A	BA	32	120	220	2	_
BCW67A	DA	32	100	250	100	100
MMBT4125	ZD	30	60	80	50	200
MMBB709T	ZB	25	400	650	2	_
MMBB709S	ZB	25	290	460	2	_
BCX18	T2	25	100	600	100	2014
BCW30	C2	20	215	500	2	_
BCW29	C1	20	120	260	2	100 <u>11 </u>

TABLE 2. SOT-23 Switching Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

NPN

		Switching	Time (ns)				The state of	
Device	Marking	TON	TOFF	VBR(CEO)	Min	Max	@ IC (mA)	fyMin (MHz)
MMBT2369	1J	12	18	15	40	120	10	
BSX39	02	12	18	14	40	200	10	_
BSV52	B2	12	18	12	40	120	10	400
MMBC1621B4	B4	20	40	20	90	180	1.0	200
MMBC1621B3	B3	20	40	20	60	120	1.0	200
MMBC1621B2	B2	20	40	20	40	80	1.0	20
NP				-100		-		
MMBT3640	2J	25	35	12	30	120	10	500

TABLE 3. SOT-23 Transistors, VHF/UHF Amplifiers, Mixers, Oscillators

Pinout: 1-Base, 2-Emitter, 3-Collector

NPN

		f	Т		Cob
Device	Marking	Min (GHz)	@ IC (mA)	V _{BR} (CEO)	Max (pF)
MMBT3960A	1T	1.600	30	8	2.00
MMBT3960	15	1.600	30	3	2.00
MMBT6543	3F	0.750	4	25	1.00
MMBTH10	3E	0.650	4	25	.70
MMBC1321Q2	Q2	0.600	2	25	1.80
MMBC1321Q3	Q3	0.600	2	25	1.80
MMBC1321Q4	Q4	0.600	2	25	1.80
MMBC1321Q5	Q5	0.600	2	25	1.80
MMBT918	3B	0.600	4	15	1.70
MMBTH24	3A	0.400	8	30	.36
MMBC1009F1	F1	0.150	1	25	3.50
MMBC1009F2	F2	0.150	1	25	3.50
MMBC1009F3	F3	0.150	1	25	3.50
MMBC1009F4	F4	0.150	1	25	3.50
MMBC1009F5	F5	0.150	1	25	3.50
P					-1,
MMBT4260	2R	2.000	10	10	2.50

MMBT4261

MMBTH81

25

2.50

.85

10

10

2.000

0.600

TABLE 4. Chopper Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

PNP

		vital a			HFE	
Device	Marking	V _{BR} (EBO)	V _{BR} (CEO)	Min	Max	@ IC (mA)
MMBT404	2M	12	24	30	400	12
MMBT404A	2N	25	35	30	400	12

TABLE 5. SOT-23 Darlington Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

NPN

			HFE			
Device	Marking	Min	Max	@ IC (mA)	VBR(CEO)	VCE(sat) Max (V) 1.5 1.5 1.5
MMBTA14	1N	20 K	_	100	30	1.5
MMBT6427	1V	10 K	100 K	10	40	1.5
MMBTA13	1M	10 K	_	100	30	1.5
IP						-
MMBTA64	2V	10 K		10	30	1.5
MMBTA63	2U	5.0 K		10	30	1.5

TABLE 6. Low-Noise SOT-23 Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

NDN

	2	NF dB			HFE		f _T Min (MHz)
Device	Marking	(Typ)	V _{BR} (CEO)	Min	Max	@ IC (mA)	
MMBT5088	1Q	1.0	30	300	900	1.0	50
MMBT5089	1R	1.0	25	400	1200	1.0	50
MMBT2484	1U	3.0	60	100	600	0.01	15
MMBT6428	1K	3.0	50	250	650	1.0	100
MMBT6429	1L	3.0	45	500	1250	1.0	100
NP							
MMBT5087	2Q	1.0	50	250	800	1.0	40
MMBT5086	2P	1.5	50	150	500	1.0	40

TABLE 7. High-Voltage SOT-23 Transistors

2L

Pinout: 1-Base, 2-Emitter, 3-Collector

					fr	
Device	Marking	V _{BR} (CEO)	Min	Max	@ IC (mA)	Min (MHz)
MMBTA42	1D	300	40	_	10	50
MMBTA43	1E	200	40	_	10	50
MMBC1654N5	N5	160	150	330	15	120
MMBC1654N6	N6	160	100	220	15	120
MMBC1654N7	N7	160	50	130	15	120
MMBT5550	1F	150	60	250	10	100
MMBC1653N2	N2	130	150	330	15	120
MMBC1653N3	N3	130	100	220	15	120
MMBC1653N4	N4	130	50	130	15	120
P						
MMBTA92	2D	300	40	_	10	50
MMBTA93	2E	200	40	_	10	50

MMBT5401

100

10

60

240

150

2H

TABLE 8. SOT-23 Driver Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

NPN

MMBTA55

	1971		hFE			f
Device	Marking	V _{BR} (CEO)	Min	Max	@ IC (mA)	Min (MHz)
MMBTA06	1G	80	50	_	10	100
BSS64	AM	80	20	80	4.0	50
MMBTA05	1H	60	50	-	10	100
IP						
BSS63	BM	100	30	(0) = <u>al</u> _1671	10	50
MMBTA56	2G	80	50	-	10	100

50

100

10

60

TABLE 9. RF SOT-23 Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

NPN			fT			NF			MAG		
Device	Marking	Typ (GHz)	I _C (mA)	V _{CE} (V)	Typ (dB)	@ Ic (mA)	V _{CE} (V)	Typ (dB)	@ IC (mA)	V _{CE} (V)	f (MHz)
MMBR571	7X	8.0	50	10	2	10	5.0	12	30	5	1000
MMBR930	7C	5.5	30	5.0	1.9	2.0	5.0	15.5	30	5.0	500
MMBR920	7B	5.0	14	10	2.4	2.0	10	17	14	10	1000
MMBR911	7P	5.0	30	10	2.5	5	5.0	12	30	10	1000
BRF92	P1	4.5	14	10	3.0	3.0	1.5	_	_	_	_
BFR92S	P5	4.5	14	10	3.0	3.0	1.5	_	_	_	_
BFR93	R1	4.5	30	5.0	3.0	2.0	5.0	_	_	_	_
BFR93S	R6	4.5	30	5.0	3.0	2.0	5.0	-	_	_	_
MMBR901	7A	4.0	15	10	2.3	5.0	6.0	10.5	15	10	1000
MMBR931	7D	3.5	1.0	1.0	2.7	0.5	1.0	18	1.0	1.0	500
MMBR2060	7E	2.5	20	10	2.0	1.5	10	13	20	10	500
MMBR5031	7G	2.0	5.0	6.0	1.9	1.0	6.0	13.5	5.0	6.0	450
MMBR5179	7H	1.5	5.0	6.0	4.0	1.5	6.0	11.0	5.0	6.0	450
MMBR2857	7K	1.0	4.0	10	_	-	_	_	_	_	-
BFS17	E1	1.0	2.0	5.0	5.0	2.0	5.0	_	_	_	30
BFS17S	E5	1.0	2.0	5.0	5.0	2.0	50	_	_	_	30
NP											
MMBR536	7R	4.0	20	5	3.0	3.0	5.0	10	15	5	1000
MMBR4957	7F	2.0	2.0	10	2.5	2.0	10	14.5	2.0	10	450

TABLE 10. RF Junction Field-Effect SOT-23 Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

N-CHANNEL

	100.00	NI	F	1111	2.5		
Device	Marking	Typ (dB)	f (MHz)	Min (mmhos)	Max (mmhos)	V _{DS} (V)	V(BR)GSS - 25 - 25 - 25
MMBFU310	6C	1.5	100	10	18	10	-25
MMBF5484	6B	2.0	100	3.0	6.0	15	- 25
MMBF5486	6H	2.0	100	4.0	8.0	15	
MMBF4416	6A	2.0	100	4.5	7.5	15	-30
MMBFJ310	6T	4.0	450	8.0	18	10	-25

TABLE 11. General-Purpose Field-Effect SOT-23 Transistors

Pinout: 1-Base, 2-Emitter, 3-Collector

N-CHANNEL

					IDSS		
Device	Marking	V _(BR) GSS	Min (mmhos)	Max (mmhos)	V _{DS} (V)	Min (mA)	Max (mA)
MMBF5457	6D	- 25	1.0	5.0	15	1.0	5.0
BFR30	M1	-25	1.0	4.0	10	4.0	10
BFR31	M2	-25	1.5	4.5	10	1.0	5.0
MMBF5459	6L	- 25	2.0	6.0	15	4.0	16
-CHANNEL							14.5
MMBF5460	6E	40	1.0	4.0	15	1.0	5.0

TABLE 12. Chopper/Switches, Junction Field-Effect SOT-23 Transistors

N-CHANNEL

		rDS(on)	toff		V(G	S) off	IDSS		
Device	Marking	Max (Ohms)	Max (ns)	V(BR)GSS	Min (V)	Max (V)	Min (mA)	Max (mA)	
MMBF4391	6J	30	20	-30	-4.0	-10	50	150	
MMBF4860	6F	40	50	-30	-2.0	-6.0	20	100	
MMBF4392	6K	60	35	-30	-2.0	-5.0	25	75	
MMBF4393	6G	100	55	-30	-0.5	-3.0	5.0	30	

TABLE 13. SOT-23 Switching Diodes (Dual Unless Otherwise Noted)

Diode Pinout: Noted Below

				trr		IR		VF		
Device	Marking	Description		Max (ns)	V _{BR} Min (V)	Max (μA)	Min (V)	Max (V)	@ IF (mA)	C _{VR} Max (pF)
MMBD2836	A2	Common Anode	(5)	6(1)	75	0.1	_	1.0	10	4.0
BAW56	A1	Common Anode	(5)	6(1)	70	2.5	_	1.1	50	1.5
MMBD2835	A3	Common Anode	(5)	6(1)	35	0.1	_	1.0	10	4.0
BAV74	JA	Common Cathode	(3)	2(2)	50	0.1	_	1.0	100	2.0
MMBD2838	A6	Common Cathode	(3)	6(1)	75	0.1	_	1.0	10	4.0
BAV70	A4	Common Cathode	(3)	6(1)	70	2.5	_	1.1	50	1.5
MMBD2837	A5	Common Cathode	(3)	6(1)	35	0.1	_	1.0	10	4.0
MMBD6100	5B	Common Cathode	(3)	15(1)	70	0.1	0.85	1.1	100	2.5
MMBD914	5D	Single	(6)	4(2)	100	0.05	_	1.0	10	4.0
BAS16	A6	Single	(6)	6(1)	75	1.0	_	0.715	1.0	2.0
BAL99	TF	Single	(7)	6(1)	70	2.5	_	1.1	50	1.5
MMBD6050	5A	Single	(6)	10(1)	70	0.1	0.85	1.1	100	2.5
BAV99	A7	Series	(4)	6(1)	70	2.5		1.1	50	1.5
MMBD7000	5C	Series	(4)	15(1)	100	0.3	0.75	1.1	100	1.5

NOTES: (1) IF = IR = 10 mA, V_R = 5.0 V, I_{RR} = 1.0 mA (2) IF = IR = 10 mA, V_R = 6.0 V, I_{RR} = 1.0 mA

⁽³⁾ Pinout: 1-Anode, 2-Anode, 3-Cathode

⁽⁴⁾ Pinout: 1-Anode, 2-Cathode, 3-Cathode and Anode

⁽⁵⁾ Pinout: 1-Cathode, 2-Cathode, 3-Anode (6) Pinout: 1-Anode, 2-N.C., 3-Cathode

⁽⁷⁾ Pinout: 1-N.C., 2-Anode, 3-Cathode

TABLE 14. SOT-23 Tuning Diodes

Tuning Diode Pinouts: 1-Anode, 2-N.C., 3-Cathode

		В	V _R		СТ		Capac	itance tio		Q		RS		F	ı	R
Device	Marking	Min (V)	@ I _R (μA)	Min (pF)	Max (pF)	@ V _R (V)	Min	Max	Min	@ V _R (V)	& f (MHz)	Max (ohms)	Max (V)	@ IF (mA)	Max (μA)	@ V _F
TUNING DIOD	ES															
MMBV2097	4K		4.0	.8	1.2		2	2.6		400						
MMBV2098	4L	30	10	1.8	2.7	4	2.8	325	325 4	100	_	_	_	.02	25	
MMBV105G	4E			1.8	2.8	2.5	4	6	150	(1)	100				.05	28
MMBV2101	4G	30	10	6.1	7.5		2.5	3.3	450		50	1 -	_	_		0.5
MMBV2103	4H			9.0	11	4	2.6	2.6	400	4	50	_	-	_	.02	25
MMBV3102	4C	30	10	20	25	3	4.5	_	300	3	50	_	-	_	.1	25
MMBV2108	4X	30	10	24.3	29.7	4	2.7	3.3	300	4	50	_	-	_	.02	25
MMBV109	4A	30	10	26	32	.3	5	6.5	280	3	50	_	-	_	.02	25
MMBV2109	4J	30	10	29.7	36.3	4	2.7	3.3	200	4	50			_	.02	25
"PIN" CHANN	EL SWIT	ГСН			n de							K	ALC:	to.		
MMBV3401	4D	35	10	_	1	20	_	_	_	_	_	.7	1—1	-	.1	25
HOT CARRIER	DIODE	S														
MMBD101	4M	4	10	_		_	_	_	_	-	_	_	.6		05	
MMBD352 (Dual)	5G	4	.25	_	1	0	_	_	-	_	_	_	.50	10	.25	3
MMBD501	5F	50	10	_		20	-	_	-	_	-	_	1.2		.2	25

Notes: (1) Voltage such that CT = 9.0 pF.

TABLE 15. SOT-23 Zener Diodes

Pinout 1-Anode, 2-N.C., 3-Cathode (Tolerance ± 5%)

VZ (Nom) Volts	U.S. Standards	Device Marking	Pro-Electron Equivalent	Device Marking
3.3	MMBZ5226	8A		
3.6	MMBZ5227	8B		
3.9	MMBZ5228	8C		
4.3	MMBZ5229	8D		
4.7	MMBZ5230	8E	BZX84C4V7	Z1
5.1	MMBZ5231	8F	BZX84C5V1	Z2
5.6	MMBZ5232	8G	BZX84C5V6	Z3
6.0	MMBZ5233	8H		
6.2	MMBZ5234	8J	BZX84C6V2	Z4
6.8	MMBZ5235	8K	BZX84C6V8	Z 5
7.5	MMBZ5236	8L	BZX84C7V5	Z6
8.2	MMBZ5237	8M	BZX84C8V2	Z 7
8.7	MMBZ5238	8N		
9.1	MMBZ5239	8P	BZX84C9V1	Z8
10.0	MMBZ5240	8Q	BZX84C10	Z9
11.0	MMBZ5241	8R	BZX84C11	Y1
12.0	MMBZ5242	8S	BZX84C12	Y2
13.0	MMBZ5243	8T	BZX84C13	Y3
14.0	MMBZ5244	8U		
15.0	MMBZ5245	8V	BZX84C15	Y4
16.0	MMBZ5246	8W	BZX84C16	Y5
17.0	MMBZ5247	8X	3/4-1-2-24	
18.0	MMBZ5248	8Y	BZX84C18	Y6
19.0	MMBZ5249	8Z		
20.0	MMBZ5250	81A	BZX84C20	Y7
22.0	MMBZ5251	81B	BZX84C22	Y8
24.0	MMBZ5252	81C	BZX84C24	Y9

TABLE 15. SOT-23 Zener Diodes (continued)

Pinout 1-Anode, 2-N.C., 3-Cathode (Tolerance ± 5%)

VZ (Nom) Volts	U.S. Standards	Device Marking	Pro-Electron Equivalent	Device Marking
25.0	MMBZ5253	81D		
27.0	MMBZ5254	81E	BZX84C27	Y10
28.0	MMBZ5255	81F		
30.0	MMBZ5256	81G	BZX84C30	Y11
33.0	MMBZ5257	81H	BZX84C33	Y12

TABLE 16. SOT-23 Silicon Controlled Rectifier

Rectifier Pinouts: 1-Cathode, 2-Gate, 3-Anode

Device	Marking	IF (mA)	V _{FXM} (mA)	IGT (μA)	V _{GT} (V)	I _H (mA)
MMBS5062	5T	500	100	200	.8	5
MMBS5061	5S	500	50	200	.8	5
MMBS5060	5R	500	25	200	.8	5

TABLE 17. SOT-23 Silicon Programmable Unijunction Transistors

Transistor Pinouts: 1-Cathode, 2-Gate, 3-Anode

Device	Marking	ITRM (Amp) (1)	ITSM (Amp) (2)	Max (μA) Ip (3)	Min (V) V _T	Max (V)	Max (μA) Iy (3)	Max (V) VF
MMBPU131	5Z	1	1	2	.2	.7	50	1.5

NOTES:

- 2. Non-Repetitive Peak Forward Current 10 µs Pulse Width
- 3. Vs = 10 Vdc, Rg = 1.0 m Ω

TABLE 18. SOT-89 Transistors

Pinout: 1-Base, 2-Collector, 3-Emitter

General Purpose

NPN

			fr		
Device	V _{BR(CEO)}	Min	Max	@ I _C (mA)	Min (MHz)
BCX56	80	40	160	150	50
BCX55	60	40	160	150	50
BCX54	45	40	250	150	50
MXT3904	40	100	300	10	300
BCX68	20	85	375	500	65

LIME					
BCX53	80	40	160	150	50
BCX52	60	40	160	150	50
BCX51	45	40	250	150	50
MXT3906	40	100	300	10	250
BCX69	20	85	375	500	65

TABLE 18. SOT-89 Transistors (continued)

Pinout: 1-Base, 2-Collector, 3-Emitter

High Voltage

NIDA		

MXTA44	400	50	200	10	_
MXTA42	300	40	_	10	50
MXTA43	200	50	200	30	_
IP .					
MXTA92	300	40	_	10	50
MXTA93	200	30	150	30	50

Darlingtons

		hFE		V _{CE(sat)}		
Device	Min	Max	@ I _C (mA)	VBR(CBO)	Max (V)	
PN		U0s		e a	1=12-	
MXTA27	10 K	_	10	60	1.5	
MXTA14	10 K	3—	10	30	1.5	
NP						
MXTA77	10 K	_	10	60	1.5	

RF

NPN

	f	Г		hFE				
Device	Min (MHz)	I _C (mA)	V _{BR(CEO)}	Min	Max	I _C (mA)		
BFQ19	4000	50	15	25		50		
BFQ18A	3200*	_	15	25	_	50		
MXR5943	1200	50	30	25	300	50		
BFQ17	1200	150	25	25	_	50		
MXR3866	500	50	30	10	200	50		
IP .								
MXR5583	1000	40	30	25	100	100		
MXR5160	500	50	40	10	E 1 528 1 0	50		

^{*}Тур

Metal Small-Signal Transistors

Motorola Small-Signal Metal Can Transistors are designed for use as General-Purpose Amplifiers, High-Speed Switches, High-Voltage Amplifiers, Low-Level/Low-Noise Amplifiers, High-Frequency Oscillators, Choppers, and Darlingtons. These devices are manufactured in a variety of packages, i.e., TO-18, TO-39,

TO-46, TO-52, and TO-72.

The following selector guide tables also indicate those Motorola small-signal metal can transistors which are qualified to MIL-19500 high-rel requirements. Devices are available in the JAN, JANTX, JANTXV and JANS versions as specified.

TABLE 1. Switching Transistors

The following devices are intended for use in general-purpose switching and amplifier applications. Within each package group shown, the devices are listed in order of decreasing turn-on time (t_{on}) .

	Device	ton ns &		@ lc	V(BR)CEO Volts	IC mA	hFE (V _{CE(sat)} Volts	@ lc @		f _T MHz	IC
Package	Туре	Max	Max	mA	Min	Max	Min	mA	Max	mA	mA	Min	mA
IPN						,							
TO-18	2N2540	40	40	150	30		100	150	0.45	150	15	250	20
	2N914**	40	40	200	15	150	12	10	0.7	200	20	300	20
	2N4014	35	60	500	50	1000	35	500	0.52	500	50	300	50
	2N4013	35	60	500	30	1000	35	500	0.42	500	50	300	50
	2N2501	15	25	300	20	Dr 119	10	500	0.3	50	5.0	350	10
	2N2369	12	18	100	15	500	20	100	0.25	10	1.0	500	10
	2N2369A†	12	18	10	15	200	40	10	0.2	10	1.0	500	10
	2N3227	12	18	100	20	50	30	100	0.25	10	1.0	500	10
TO-39	2N3444**	50	70	500	50	ARI	20	500	0.6	500	50	175	50
	2N3253**	50	70	500	40	CINI	25	500	0.6	500	50	175	50
	2N3735#	48	60	1000	50	1500	20	1000	0.5	500	50	250	50
	2N3734	48	60	1000	50	1500	30	1000	0.5	500	50	250	50
	2N3252	45	70	500	30		30	500	0.5	500	50	200	50
	2N3506#	45	90	1500	40	3000	40	1500	1.0	1500	150	60	100
	2N3507#	45	90	1500	50	3000	30	1500	1.0	1500	150	60	100
	2N3725	35	60	500	50	2000	35	500	0.52	500	50	300	50
	2N3725A	35	60	500	30	1200	35	500	0.52	500	50	300	50
900	2N3724	35	60	500	30	2000	35	500	0.42	500	50	300	50
	2N3724A	35	60	500	30	1200	35	500	0.42	500	50	300	50
	MM5262	30	60	1000	50	2000	25	1000	0.8	1000	100	350(typ)	50
N.S.	2N5861	25	60	500	50	2000	25	500	0.5	500	50	200	50
	2N3303	15	25	1000	-	1000	20	10	0.7	1000	100	450	100
TO-46	2N3736	48	60	1000	30	1500	30	1000	0.5	500	50	250	50
A 10	2N3737#	48	60	1000	50	1500	20	1000	0.5	500	50	250	50
9.7	2N3647	20	25	150	10	500	25	150	0.4	150	15	350	15
-17	2N3648	16	18	150	15	500	30	150	0.4	150	15	450	15
5.9	2N3508	12	18	10	20	500	40	10	0.25	10	1.0	500	10
	2N3509	12	18	10	20	500	100	10	0.25	10	1.0	500	10
TO-52	MM1748	6.0	15	10	_	150	20	10	-	_	_	600	5.0
	MM1748A	10	15	10	_	150	20	10	_	-	_	600	5.0
NP													
TO-18	2N2894	60	90	30	12	200	40	30	0.2	30	3.0	400	30
	2N869A**	50	80	30	18	200	40	30	0.2	30	3.0	400	10
	2N3546	40	30	50	12		25	50	0.25	50	5.0	700	10
	2N4208	15	20	10	12	200	30	10	0.15	10	1.0	700	10
	MM4258	15	20	10	12	200	30	10	0.15	10	1.0	700	10
	2N4209	15	20	10	15	200	50	10	0.6	50	5.0	850	10
AN available	**.IAN/.IAN	ITX available	+.1	AN/JANT)	(/JANTXV/JANS	available	# 1	AN/IANT)	(/JANTXV ava	ilable			

TABLE 1. Switching Transistors (continued)

Package	Device Type	ton ns & Max	toff k ns @	I _C	V(BR)CEO Volts Min	IC mA Max	hFE (a IC	VCE(sat) Volts Max	@ I _C @	I _B	f _T MHz Min	I _C
NP							1						
TO-39	2N3634#	400	600	50	140	1000	50	50	0.5	50	5.0	150	30
	2N3635#	400	600	50	140	1000	100	50	0.5	50	5.0	200	30
	2N3636#	400	600	50	175	1000	50	50	0.5	50	5.0	150	30
	2N4036	110	700	150	65	1000	40	150	0.65	150	15	60	50
	2N4030	100	240(typ)	500	60	1000	15	1000	1.0	1000	100	100	50
	2N4031	100	240(typ)	500	80	1000	10	1000	0.5	500	50	100	50
	2N4032	100	240(typ)	500	60	1000	40	1000	1.0	1000	100	150	50
	2N4033#	100	240(typ)	500	80	1000	25	1000	0.5	500	50	150	50
	2N4406	75	225	1000	80	1500	20	1000	0.7	1000	100	150	50
	2N4407	75	225	1000	80	1500	30	1000	0.7	1000	100	150	50
	2N3245	55	165	500	50	1000	30	500	0.6	500	50	150	50
	2N3244	50	185	500	40	1000	50	500	0.5	500	50	175	50
	2N3467#	40	90	500	40	100	40	500	0.5	500	50	175	50
	2N3468#	40	90	500	50	1000	25	500	0.6	500	50	150	50
	2N3762#	43	115	1000	40	1500	30	1000	0.9	1000	100	180	50
	2N3763#	43	115	1000	60	1500	20	1000	0.9	1000	100	150	50
	2N4404	40	210	500	80	1000	30	500	0.5	500	50	200	50
	2N4405**	40	210	500	80	1000	50	500	0.5	500	50	200	50
	2N5022	40	90	500	_	500	25	1000	0.8	1000	100	170	50
	2N5023	40	90	500	_	500	40	1000	0.7	1000	100	200	50

^{*}JAN available

TABLE 2. High-Gain Low-Noise Transistors

These transistors are characterized for high-gain and low-noise applications. Devices are listed in decreasing order of NF.

Package	Device Type	NF Wideband Typ* Max dB	V(BR)CEO Volts Min	I _C mA Max	h _l Min	E Max	l _C @ μA mA*	f _T MHz @ Min	@ I _C mA
IPN				OC e	De .			1772	
TO-18	2N2484#	8.0*	60	50	100	500	10	15	0.05
	2N930A	3.0	45	30	100	300	10	45	0.5
	2N930**	3.0	45	30	100	300	10	30	0.5
NPN DARLI	NGTON								
TO-18	MM6427	73	40	300	5000		10*	125	100
PNP									
TO-18	2N3962	10	60	200	100	450	1.0	40	0.5
	2N3963	10	80	200	100	450	1.0	40	0.5
	2N3965	8.0	60	200	250	600	1.0	50	0.5
	2N3964	4.0	45	200	250	600	1.0	50	0.5
	2N3798	3.5	60	50	150	450	500	30	0.5
	2N3799	2.5	60	50	300	900	500	30	0.5
TO-46	2N2604	4.0	45	0	40	120	0.01	30	0.5
	2N2605#	4.0	45	30	100	300	0.01	30	0.5

TABLE 3. High-Frequency Amplifiers/Oscillators

The transistors shown are designed for use as both oscillators and amplifiers at UHF and VHF frequencies. Devices are listed in decreasing order of $V_{(BR)CEO}$ with each line.

Package	Device Type	V _(BR) CEO Volts Min	hFE @	IC mA	G _{pe} dB Min	NF dB @ Max	a f MHz	f _T MHz @ Min	IC mA	C _{obo} pF Max
PN										•
TO-18	MM1941	20	25	10	7.0	_	_	600	10	2.5
TO-72	2N918†	15	20	3.0	15	6.0	60	600	4.0	1.7
NP				17						
TO-18	2N3307	35	40	2.0	17	4.5	200	300	2.0	1.3
TO-72	2N4261# 2N4260	15 15	30 30	10 10	_	_	_	1600 2000	10 10	2.5 2.5

^{*}JAN available

TABLE 4. High-Voltage/High-Current Amplifiers

The following table lists Motorola standard devices that have high Collector-Emitter Breakdown Voltage. Devices are listed in decreasing order of $V_{(BR)CEO}$ within each package type.

Package	Device Type	V _(BR) CEO Volts Min	Max	hFE (@ IC mA	VCE (sat) Volts Max	@ I _C ∣ mA	& IB	fT MHz (Min	a lc ∣ mA
N										
TO-18	2N6431	300	50	50	30	0.5	20	2.0	50	10
	2N6430	200	50	50	30	0.5	20	2.0	50	10
TO-39	MM8520	500	1000	15	10	1.5	10	2.0	5.0	10
	2N3439#	350	1000	40	20	0.5	50	4	15	10
	MM421	325	1000	25	30	5.0	30	3	15	10
	2N3742	300	50	20	30	1.0	30	3.0	30	10
	2N5058	300	150	35	30	1.0	30	3.0	30	10
	MM420	250	1000	25	30	5.0	30	3	15	10
	2N3440#	250	1000	40	20	0.5	50	4	15	10
	MM3003	250	50	20	10				150	10
	2N4927	250	50	20	30	2.0	30	3.0	30	10
	2N5059	250	150	30	30	1.0	30	3.0	30	10
	MM3002	200	50	20	10			1	150	10
	2N4926	200	50	20	30	2.0	30	3.0	30	10
	MM3009	180	400	40	10		1,50.50		50	20
	MM3001	150	200	20	10				150	10
	2N3114	150	200	30	30	1.0	50	5.0	40	30
	2N3500#	150	300	40	150	0.4	150	15	150	20
	2N3501#	150	300	100	150	0.4	150	15	150	20
	2N3712	150	200	30	30	2.0	50	5.0	40	30
	2N5682	120	1000	40	250	0.6	250	25	30	100
	MM3008	120	400	40	10	0.0			50	20
	2N657	100	400	30	200	4.0	200	40	00	
	2N3498#	100	500	40	150	0.6	300	30	150	20
	2N3499#	100	500	100	150	0.6	300	30	150	20
	2N4924	100	200	40	150	0.4	50	5.0	100	20
	MM3007	100	2500	50	250	0.35	150	15	50	50
	2N5681	100	1000	40	250	0.6	250	25	30	100
	MM3006	80	2500	50	200	0.35	150	15	50	50
		80	3000	30	250	0.3	500	50	2	100
	2N4239 MM3005	60	2500	50	150	0.35	150	15	50	50
		60	2500	30	200	4.0	200	40	30	30
	2N656 2N4238	60	3000	30	250	0.3	500	50	2	100
	2N4238 2N4237	40	3000	30	250	0.3	500	50	2	100

#JAN/JANTX/JANTXV available

[&]quot;JAN/JANTX available

[†]JAN/JANTX/JANTXV/JANS available

[#]JAN/JANTX/JANTXV available

TABLE 4. High-Voltage High-Current Amplifiers (continued)

Package	Device Type	V(BR)CEO Volts Min	IC mA Max	hFE @	a I _C	VCE (sat) Volts Max	I _C mA	& IB mA	fT MHz Min	@ Ic mA
NP		. v .	O VIII	100.00			72000			
TO-18	2N6433	300	1000	30	30	0.5	20	2.0	50	10
	2N6432	200	1000	30	30	0.5	20	2.0	50	10
	2N3497	120	100	40	10	0.35	10	1.0	150	20
	2N3496	80	100	40	10	0.3	10	1.0	200	20
TO-39	2N3743#	300	50	25	30	8.0	30	3.0	30	10
	●2N5416#	300	1000	30	50	2.5	50	5	15	10
	MM4003	250	500	20	10	5.0	10	1.0		_
	2N4931#	250	500	20	20	5.0	10	1.0	20	20
	MM4002	200	500	20	10	5.0	10	1.0	_	
	2N4930#	200	500	20	20	5.0	10	1.0	20	20
	•2N5415#	200	1000	30	50	2.5	50	5	15	10
	2N3637#	175	1000	100	50	0.5	50	5.0	200	30
	2N3636#	175	1000	50	50	0.5	50	5.0	150	30
	2N4929	150	500	25	10	0.5	10	1.0	100	20
	MM4001	150	500	20	10	0.6	10	1.0		_
	2N3635#	140	1000	100	50	0.5	50	5.0	200	30
	2N3634#	140	1000	50	50	0.5	50	5.0	150	30
	2N3495	120	100	40	10	0.35	10	1.0	150	20
	2N5680	120	1000	40	250	0.6	250	25	30	100
	MM4000	100	100	20	10	0.6	10	1.0	111 34 11	_
	MM5007	100	2000	50	250	0.5	150	15	30	50
	2N4928	100	100	25	10	0.5	10	1.0	100	20
	2N5679	100	1000	40	250	0.6	250	25	30	100
	MM5006	80	2000	50	200	0.5	150	15	30	50
	2N3494	80	100	40	10	0.3	10	1.0	200	20
	2N4236	80	3000	30	250	0.6	1000	125	3	100
	2N4036	65	1000	40	150	0.65	150	15	60	50
	MM5005	60	2000	50	150	0.5	150	15	30	50
	2N4235	60	3000	30	250	0.6	1000	125	3	100
	2N4234	40	3000	30	250	0.6	1000	125	3	100

TABLE 5. General-Purpose Amplifiers

These transistors are designed for dc to VHF amplifier applications, general-purpose switching applications, and complementary circuitry. Devices are listed in decreasing order of V(BR)CEO within each package group.

Package	Device Type	V(BR)CEO Volts Min	f _T MHz @ Min	I _C	I _C mA Max	h _i Min	E (-
V	Туре	Willi	WIIII	IIIA	Max	MIII	Max	mA
TO-18	2N2896	90	120	50	1000	60	200	150
	2N3700#	80	80	1.0	1000	50	200	500
	2N2895	65	120	50	1000	40	120	150
	2N956	50	70	50		40	120	150
	2N2897	45	100	50	1000	50	200	150
	2N718	40	50	50		40	120	150
	2N2221A#	40	250	20	800	40	120	150
	2N2222A#	40	300	20	800	100	300	150
	2N3946	40	300	10	200	50	150	10
	2N3947	40	300	10	200	100	300	10
	2N2222#	30	250	20	800	100	300	150
	2N3302	30	250	50	500	100	300	150
	2N916*	25	300	10		50	200	10
TO-39	2N1711	80	70	50		100	300	150
	2N3019#	80	100	50	1000	100	300	150
	2N3020	80	80	50	1000	40	120	150
	2N1613#	50	60	50	500	40	120	150
	2N2193A	50	50	50	1000	40	120	150
	2N2270	45	100	50	1000	50	200	150

TABLE 5. General-Purpose Amplifiers (continued)

	Device	V(BR)CEO Volts	f _T MHz	a lc	IC mA		hFE	@ lc
Package	Туре	Min	Min	mA	Max	Min	Max	mA
N	140	91 - 157	1. F 7 1	QUERES!		0	DITTE O	
TO-39	2N697	40	50	50		40	120	150
10-05	2N2218A#	40	250	20	800	40	120	150
	2N2219A#	40	300	20	800	100	300	150
		10000			14(0)(0)		1000	
	2N3053	40	100	50	700	50	250	150
	2N2218#	30	250	20	800	40	120	150
	2N2219#	30	250	20	800	100	300	150
- 4	2N3300	30	250	50	500	100	300	150
TO-46	2N5581**	40	250	20	800	40	120	150
	2N5582**	40	300	20	800	100	300	150
TO-52	MM3903	40	250	10	200	50	150	10
	MM3904	40	300	10	200	100	300	10
IP								
TO-18	2N4026	80	100	50	1000	15		100
.0 10	2N4027	80	100	50	1000	10		100
	2N4027 2N4028	80	150	50	1000	40		100
	2N4029	80	150	50	1000	25		100
			200	50	600	40	120	
	2N2906A#	60						150
	2N2907A†	60	200	50	600	100	300	150
	2N3250A#	60	250	10	200	50	150	10
	2N3251A#	60	300	10	200	100	300	10
	2N2906#	40	200	50	600	40	120	150
	2N2907#	40	200	50	600	100	300	150
	2N3250	40	250	10	200	50	150	10
	2N3251	40	300	10	200	100	300	10
	2N869	18						
TO-39	MM5007	100	30	50	2000	50	250	250
	MM5006	80	30	50	2000	50	250	200
	2N4031	80	100	50	1000	10	_	100
	2N4033#	80	150	50	1000	25	_	100
	2N4404	80	200	50	1000	40	120	150
	2N4405**	80	200	50	1000	100	300	150
	MM4036	65	60	50	1000	20	140	150
	2N4036	65	60	50	1000	40	140	150
	2N4037	65	60	50	1000	40	140	150
		60	30	50	2000	50	250	
	MM5005			50		40		150
	2N2904A#	60	200	10000	600	10.50	120	150
	2N2905A†	60	200	50	600	100	300	150
	2N4030	60	100	50	1000	15	_	100
	2N4032	60	150	50	1000	40		100
	MM4037	40	60	50	1000	50	250	150
	2N1131A	40	50	50	600	30	90	150
	2N1132A	40	60	50	600	30	90	150
	2N2904#	40	200	50	600	40	120	150
	2N2905#	40	200	50	600	100	300	150
	2N1132*	35	60	50	600	30	90	150
TO-46	2N3485A**	60	200	50	600	40	120	150
	2N3486A**	60	200	50	600	100	300	150
	2N3673	50	200	50	600	75	225	150
	2N3486	40	200	50	600	100	300	150
				40	200	400	000	10
TO-52	MM3906	40	250	10	200	100	300	10

TABLE 6. Choppers

Devices are listed in decreasing V(BR)EBO.

Package	Device	V _{(BR)EBO} Min	V _{(BR)ECO}	Min hFE(inv)	Offset Voltage VEC(ofs) Max (mV)	On-State Resistance rec(on) Max (Ω)
TO-46	2N2946	40	35	3.0	2.0	45
	2N2946A	40	35	20	2.0	8.0
	2N5230	30	20	15	0.5	8.0
	2N5231	30	20	15	0.8	10
	2N2945A	25	20	30	1.0	6.0
	2N2945	25	20	4.0	1.0	35
	2N5229	15	10	15	0.5	6.0

JAN/JANTX available

Multiple Small-Signal Transistors

The trend in electronic system design is toward the use of integrated circuits — to reduce component cost, assembly cost, and equipment cost. But ICs still aren't all things to all people, and for those circuit designs where ICs are not available, there is a noticeable swing towards the use of multiple devices.*

Motorola is reacting to this expanding market requirement by making available a large selection of Quad, Dual, and Darlington transistors for off-the-shelf delivery. The chips used in the Quad and Dual transistors are those that have emerged as the most popular ones for discrete transistor applications. But even be-

yond that, Motorola offers its entire vast repertoire of discrete small-signal transistors for multiple-device packaging. For special applications where the devices in this brochure might not quite fit the design requirements, special configurations can be supplied with quick turnaround time and at low premiums.

*Multiple devices, as described here, encompass two or more transistor chips in a single package. Included in this definition are the Darlington transistors which consist of two interconnected devices functioning as a single-stage amplifier.

Specification Tables

The following short form specifications include Quad and Dual transistors listed in alphanumeric order. Some columns denote two different types of data indicated by either **bold** or *italic* typeface. See key and headings for proper identification.

TABLE 1. Quad Transistors

IC Amp hFE@IC Max Min 5	VBE
0.05 20 3.0 m 0.5 40 150 m 0.5 100 150 m 0.5 40 10 m 0.5 40 10 m 0.05 150 1.0 m 0.05 300 1.0 m	250* .4 10 150 m 116 63 150 m 116 63 150 m 116 63 150 m 116 63 150 m 116 63 10 10 m 116 63 3* AUD 116 63 2* AUD 116 63
0.6 40 150 m 0.6 100 150 m 1.0 20 500 m 0.2 30 10 m 0.05 150 0.1 m 0.05 300 0.1 m	100*
1.5 30 500 m 1.5 30 500 m 1.5 35 500 m 1.5 35 500 m 0.5 40 150 m 0.5 100 150 m	75
0.05 75 1.0 m 0.05 20 3.0 m 0.5 50 10 m 0.5 40 150 m 0.5 40 150 m	250 4 10 150 m 64 64 250 4 10 150 m 64 64 64 64 64 64 64 64 64 64 64 64 64
0.5 100 150 m 0.5 100 150 m 0.5 40 10 m 0.05 150 1.0 m 0.05 300 1.0 m 0.6 40 150 m 0.6 40 150 m 0.6 100 150 m 0.6 100 150 m	250* .4 10 150 m 64 250* .4 10 150 m 64 15* .25 10 10 m 64 2* AUD 64 100* .4 10 150 m 64
1.0 40 300 m 1.0 20 500 m 0.2 30 10 m 1.0 25 500 m 1.0 30 500 m 1.5 35 150 m	25 0.7 10 1.0 A 64 90 0.5 10 500 m 64 25 25 10 10 m 64 60 45 10 500 m 64 60 45 500 m 64 120 .55 10 500 m 64
0.05 150 0.1 m 0.05 300 0.1 m 0.2 75 10 m 0.2 75 10 m	3* AUD 64 2* AUD 64 136* 0.2 10 10 m 64 155* .25 10 10 m 64
0.2	75 10 m 250 4.0 37*

[†] H, HX, and HXV Suffixes also available.

^{††} MHQ4013 is electrically equivalent to MHQ3725.

TABLE 1. Quad Transistors (continued)

		PD =		100					h _{FE1}	∆VBE mV Max	Gp dB Min	Max Typ		
TYPE NO.	ID	Watts 500 Die 500 Only	VCE- Volts volts	Amp Max	h _{FE}	@ IC ten	fT MHz Min Typ*	C _{ob} pF Max Typ*	t _{on} ns Max Typ*	t _{off} ns Max Typ*		@ - / _B	& / _C 5	PACKAGE TO- Case No. No.
MPQ6001 MPQ6002 MPQ6100 MPQ6100A MPQ6501 MPQ6502	CG CA CA CG CG	0.65 A 0.65 A 0.5 A 0.65 A 0.65 A	30 0 30 0 40 0 45 0 30 0 30 0	0.5 0.5 0.05 0.05 0.5 0.5	100 75 150 40 100	150 m 150 m 1.0 m 1.0 m 1.50 m 150 m	200 200 50 50 200 200	8.0 8.0 4.0 4.0 8.0 8.0	30* 30* 30*	225* 225* 225* 225*	0.4 0.4 0.4 0.4	10 10 4* 4* 10 10	150 m 150 m AUD AUD 150 m 150 m	646 646 646 646 646 646
MPQ6600 MPQ6600A MPQ6700 MPQ6842 MPQ7041 MPQ7042 MPQ7043	CA CA CA NA NA	0.5 A 0.5 A 0.75 A 0.75 A 0.75 A 0.75 A 0.75 A	40 0 45 0 40 0 40 0 150 0 200 0 250 0	0.05 0.05 0.2 0.5 0.5 0.5	75 150 70 70 25 25 25	1.0 m 1.0 m 10 m 10 m 1.0 m 1.0 m	50 50 200 300 50 50 50	4.0 4.0 4.5 4.5 5.0 5.0 5.0	45	150	0.25 0.25 0.15 0.5 0.5 0.5	4.0 4.0 10 10 10 10	1.0 m 1.0 m 0.5 m 20 m 20 m 20 m	646 646 646 646 646 646
MPQ7051 MPQ7052 MPQ7053 MPQ7091 MPQ7092 MPQ7093 MQ918	CA CA PA PA PA NA	0.75 A 0.75 A 0.75 A 0.75 A 0.75 A 0.75 A 0.55 A	150 O 200 O 250 O 150 O 200 O 250 O 15 O	0.5 0.5 0.5 0.5 0.5 0.5 0.5	25 25 25 25 25 25 35 50	1.0 m 1.0 m 1.0 m 1.0 m 1.0 m 1.0 m 3.0 m	50 50 50 50 50 50 50	5.0 5.0 5.0 5.0 5.0 5.0			0.7 0.7 0.7 0.5 0.5 0.5	10 10 10 10 10 10	20 m 20 m 20 m 20 m 20 m 20 m 60 M	646 646 646 646 646 646
MQ930 MQ982 MQ1120 MQ1129 MQ2218 MQ2218 MQ2218A MQ2219 MQ2219A	NA PA PA NA NA NA NA	0.4 A 0.4 A 0.4 A 0.4 A 0.6 A 0.6 A	45 0 50 0 30 0 30 0 30 0 40 0 30 0 30 0	0.03 0.6 0.5 0.5 0.5 0.5 0.5	150 40 50 100 40 40 100 100	1.0 m 150 m 10 m 10 m 150 m 150 m 150 m	260* 200 200 200 200 200 200 200 200	6.0 8.0 8.0 8.0 8.0 8.0	58	No.	0.5 0.10 0.15 0.4 0.4 0.3 0.3	10 10 10 10 10 10	150 m 10 m 10 m 150 m 150 m 150 m	607 607 607 607 607 607 607
MQ2369 MQ2484 MQ2904 MQ2905A MQ3251 MQ3467	NS NE PG PG PA PS	0.40 A 0.4 A 0.4 A 0.4 A 0.40 A 0.40 A	15 O 60 O 40 O 60 O 40 O 40 O	0.5 0.03 0.6 0.6 0.05 1.0	40 100 40 100 100 20	10 m 10 u 150 m 150 m 10 m 500 m	500 260* 300 300 300 150	4.0 6.0 8.0 8.0 6.0 20	15 42 42 42	20 130 130 110	.25 .4 .4 .25 0.5	10 3.0 10 10 10	10 m AUD 150 m 150 m 10 m 500 m	607 607 607 607 607 607
MQ3725 MQ3762 MQ3798 MQ3799 MQ3799A MQ6001	NS PS PA PA PM CG	0.40 A 0.40 A 0.40 A 0.40 A 0.40 A 0.40 A	40 0 40 0 60 0 60 0 60 0 30 0	1.0 1.5 0.05 0.05 0.05 0.5	50 20 150 300 300 40	100 m 1.0 A 100 u 100 u 100 u 150 m	200 150 450* 450* 450* 200	10 20 4.0 4.0 4.0 8.0	45 40 0.9 60	75 110 3.0 350	.26 1.0 0.2 0.2 0.2 0.4	10 10 10 10 10 10	100 m 1.0 A 1.0 m 1.0 m 1.0 m 150 m	607 607 607 607 607 607
MQ6002 MQ7001 MQ7003 MQ7004 MQ7005 MQ7007	CG PA NA NA PA	0.40 A 0.4 A 0.40 A 0.40 A 0.4 A 0.4 A	30 0 30 0 40 0 13 0 12 0 40 0	0.5 0.6 0.05 0.2 0.05 0.2	100 70 50 30 30 30	150 m 1.0 m 10 m 10 m 3.0 m 1.0 m	200 200 200 675* 400 300	8.0 8.0 6.0 4.0 3.0 8.0	60	350	0.4 0.4 .35 0.4 1.0	10 10 10 10	150 m 150 m 1.0 m 10 m 10 m 50 m	607 607 607 607 607 607
MQ7021 2N5146 2N6501	CG PA NS	0.40 A 0.4 A 0.6 A	40 0 40 0 40 0	0.05 1.5 1.0	50 20 50	10 m 1.0 A 100 m	200 150 250	6.0 20 10	28* 40 35	72* 110 60	.35 1.0 0.3	10 10 10	10 m 1.0 A 100 m	607 607 607

TABLE 2. QUAD TMOS FETS (N CHANNEL)

	rds(on)			VGS	(t/h)		ID	IDSS		V(BR)DSS		IGSS		iss	Cr	'ss	ton	toff
		@	(V)		a		(a)		@		@		(a)		@		
Device	(Ω) Max	I _D (μA)	Min	Max	V _{DS}	(mA)	(μA) Max	V _{DS}	(V) Min	lG (μA)	(nA) Max	V _{DG} (V)	(pF) Max	V _{DS}	(pF) Max	V _{DS}	(ns) Max	(ns) Max
MFQ930C	1.4	1.0A	1.0	3.5	VGS	1.0	10	35	35	10	50	15	70	25	18	25	15	15
MFQ960C	1.7	1.0A	1.0	3.5	VGS	1.0	10	60	60	10	50	15	70	25	18	25	15	15
MFQ990C	2.0	1.0A	1.0	3.5	VGS	1.0	10	90	90	10	50	15	70	25	18	25	15	15

TABLE 3. Dual Transistors

		PD .		30					h _{FE1}	∆VBE mV Max	Gp dB Min	NF dB Max	@ f		
TYPE NO.	ID	Watts uod One Die e	V _{CE} -volts	Amp Max	h _{FE} (O IC 5	f _T MHz Min	C _{ob} pF Max	t _{on} ns Max	^t off ns Max	VCE (sat) Volts Max	@ — . L [/] B	& / _C 5	PAC TO- No.	KAGE Case No.
MD708 MD708A MD708AF MD708B MD708BF MD708F	NG NM NM NM NM NM	0.55 A 0.55 A 0.35 A 0.55 A 0.35 A 0.35 A	15 0 15 0 15 0 15 0 15 0 15 0	0.2 0.2 0.2 0.2 0.2 0.2	40 40 40 40 40 40	10 m 10 m 10 m 10 m 10 m 10 m	300 300 300 300 300 300	5.0 5.0 5.0 5.0 5.0 5.0	35 0.9 0.9 0.8 0.8	75 5.0 5.0 10 10	.20 .20 .20 .20 .20 .20	10 10 10 10 10 10	10 m 10 m 10 m 10 m 10 m 10 m		654 654 610 654 610
MD918 MD918A MD918AF MD918B MD918F,BF MD982,F MD984	NF NM NM NM NF PA PA	0.55 A 0.55 A 0.35 A 0.55 A 0.35 A 0.40 A .575 A	15 O 15 O 15 O 15 O 15 O 50 O 20 O	0.05 0.05 0.05 0.05 0.05 0.6 0.2	50 50 50 50 50 40 25	3.0 m 3.0 m 3.0 m 3.0 m 3.0 m 150 m	600 600 600 600 200 250	1.7 1.7 1.7 1.7 1.7 8.0	0.9 0.9 0.8	5.0 5.0 10	0.5 0.5	6.0 6.0 6.0 6.0 10	60 M 60 M 60 M 60 M 150 m		654 654 610 654 610 654
MD985 MD985F MD986 MD986F MD1120 MD1120F	CA CA CA NM NM	0.35 A 0.35 A 0.55 A 0.35 A 0.575 A 0.35 A	30 0 30 0 15 0 15 0 30 0 30 0	0.5 0.5 0.2 0.2 0.5 0.5	40 40 25 25 50 50	150 m 150 m 10 m 10 m 10 m 10 m	200 200 200 200 200 200 200	8.0 8.0 4.0 4.0 8.0 8.0	0.8	10 10	0.5 0.5 0.3 0.3 .10	10 10 10 10 10	150 m 150 m 10 m 10 m 10 m 10 m	9 2	654 610 654 610 654 610
MD1121 MD1121F MD1122 MD1122F MD1123 MD1129	NM NM NM NM PM	0.575 A 0.35 A 0.575 A 0.35 A 0.575 A 0.575 A	30 0 30 0 30 0 30 0 40 0 30 0	0.5 0.5 0.5 0.5 0.2 0.5	50 50 50 50 30 100	10 m 10 m 10 m 20 m 100 u 10 m	200 200 200 200 250 200	8.0 8.0 8.0 8.0 4.0 8.0	0.9 0.9 0.9 0.9 0.8 0.9	10 10 5.0 5.0 10 5.0	.10 .10 .10 .10 .25	10 10 10 10 10	10 m 10 m 10 m 10 m 10 m 10 m		654 654 654 654 654
MD1129F MD1130 MD1130F MD1132 MD2060F MD2218	NM PM PM NM NM	0.35 A 0.575 A 0.35 A 0.3 A 0.35 A 0.575 A	30 0 40 0 40 0 15 0 60 0 30 0	0.5 0.2 0.2 0.05 0.5 0.5	100 100 100 50 30 40	10 m 100 u 100 u 1.0 m 0.1 m 150 m	200 200 200 600 100 200	8.0 4.0 4.0 1.7 15 8.0	0.9 0.9 0.9 0.9 0.9	5.0 5.0 5.0 5.0 5.0 5.0	.15 .25 .25 0.4 .10 0.4	10 10 10 10 8.0 10	10 m 10 m 10 m 10 m 10 m 150 m		610 654 610 654 654
MD2218A MD2218AF MD2218F MD2219 MD2219A MD2219AF	NG NG NG NG NG	0.575 A 0.35 A 0.35 A 0.575 A 0.575 A 0.350 A	30 0 30 0 30 0 30 0 30 0 30 0	0.5 0.5 0.5 0.5 0.5	40 40 40 100 100	150 m 150 m 150 m 150 m 150 m 150 m	200 200 200 200 200 200 200	8.0 8.0 8.0 8.0 8.0	45 45 60 60 45 45	310 310 350 350 310 310	0.3 0.4 0.4 0.3 0.3	10 10 10 10 10	150 m 150 m 150 m 150 m 150 m 150 m		654 610 654 654 610
MD2219F MD2369 MD2369A MD2369AF MD2369B MD2369BF	NG NS NM NM NM	0.350 A 0.55 A 0.55 A 0.35 A 0.55 A 0.35 A	30 0 15 0 15 0 15 0 15 0 15 0	0.5 0.5 0.5 0.5 0.5	100 40 40 40 40 40	150 m 10 m 10 m 10 m 10 m 10 m	200 500 500 500 500 500	8.0 4.0 4.0 4.0 4.0 4.0	60 15 0.9 0.9 0.8 0.8	350 20 5.0 5.0 10	0.4 .25 .25 .25 .25 .25	10 10 10 10 10	150 m 10 m 10 m 10 m 10 m 10 m		610 654 654 610 654 610
MD2369F MD2904 MD2904A MD2904AF MD2904F MD2905	NS PG PG PG PG	0.35 A 0.575 A 0.575 A 0.350 A 0.350 A 0.575 A	15 0 40 0 60 0 60 0 40 0 40 0	0.5 0.6 0.6 0.6 0.6 0.6	40 40 40 40 40 100	10 m 150 m 150 m 150 m 150 m 150 m	500 200 200 200 200 200 200	4.0 8.0 8.0 8.0 8.0 8.0	15 45 45 45 45 45	20 130 130 130 130 130	.25 0.4 0.4 0.4 0.4 0.4	10 10 10 10 10	10 m 150 m 150 m 150 m 150 m 150 m	30.00	610 654 654 610 654

MULTIPLE SMALL-SIGNAL TRANSISTORS (continued)

TABLE 3. Dual Transistors (continued)

TYPE NO.	ID	P _D to the One	ACE-soript	I _C	h _{FE} (Plc t	f _T MHz	C _{ob}	hFE1 hFE2	Max toff	V _{CE}	NF dB Max	_	PACKAGE TO- Case
		Die Die Only	Volts and	Max	Min	5	Min Typ*	Max	Max	Max	Volts Max	/B		No. No.
MD2905A MD2905AF MD2905F MD3250	PG PG PG PA	0.575 A 0.35 A 0.35 A 0.57 5	60 0 60 0 40 0 A40 0	0.6 0.6 0.6 0.20	100 100 100 50	150 m 150 m 150 m 1.0 m	200 200 200 200	8.0 8.0 8.0 6.0	45 45 45	130 130 130	0.4 0.4 0.4 .25	10 10 10	150 m 150 m 150 m 10 m	654 610 610 654
MD3250A MD3250AF	PM PM	0.57 5 0.35 A	A40 O 40 O	0.20	50 50	1.0 m 1.0 m	200 200	6.0	0.9	5.0 5.0	.25	10	10 m 10 m	654 610
MD3250F MD3251 MD3251A MD3251AF MD3251F MD3409	PA PA PM PM PA NM	0.35 A 0.575 A 0.575 A 0.35 A 0.35 A 0.575 A	40 0 40 0 40 0 40 0 40 0 30 0	0.20 0.20 0.20 0.20 0.20 0.5	50 100 100 100 100 50	1.0 m 1.0 m 1.0 m 1.0 m 1.0 m	200 250 250 250 250 250 200	6.0 6.0 6.0 6.0 6.0	0.9 0.9 0.8	5.0 5.0	.25 .25 .25 .25 .25 .25	10 10 10 10 10	10 m 10 m 10 m 10 m 10 m 10 m	610 654 654 610 610 654
MD3410 MD3467 MD3467F MD3725 MD3725F MD3762	NM PS PS NS NS	0.575 A 0.60 A 0.35 A 0.60 A 0.35 A 0.60 A	30 0 40 0 40 0 40 0 40 0 40 0	0.5 1.5 1.5 1.0 1.0	50 20 20 50 50 20	10 m 500 m 500 m 100 m 100 m 1.0 A	200 150 150 200 200 150	8.0 20 20 10 10 20	0.9 40 40 45 45 45	10 110 110 75 75 110	.15 0.5 0.5 .26 .26 1.0	10 10 10 10 10	10 m 500 m 500 m 100 m 100 m 1.0 A	654 654 610 654 610 654
MD3762F MD5000 MD5000A MD5000B	PS PH PM PM	0.35 A 0.3 A 0.3 A 0.3 A	40 0 15 0 15 0 15 0	1.5 0.05 0.05 0.05	20 20 20 20 20	1.0 A 3.0 m 3.0 m 3.0 m	150 600 600 600	20 1.7 1.7 1.7	0.9 0.8	110 5.0 10	1.0 15 15 15	10	1.0 A 200 M 200 M 200 M	610 654 654 654
MD6001 MD6001F MD6002 MD6002F	CG CG CG	.575 A 0.35 A .575 A 0.35 A	30 0 30 0 30 0 30 0	0.5 0.5 0.5 0.5	40 40 100 100	150 m 150 m 150 m 150 m	200 200 200 200	8.0 8.0 8.0 8.0	60 60 60 60	350 350 350 350	0.4 0.4 0.4 0.4	10 10 10 10	150 m 150 m 150 m 150 m	654 610 654 610
MD6003 MD6003F MD6100 MD6100F MD7000 MD7001	CA CA CA NA PA	.575 A 0.35 A 0.5 A 0.35 A 0.575 A 0.6 A	30 O 30 O 45 O 45 O 30 O 30 O	0.5 0.5 0.05 0.05 0.5 0.6	70 70 100 100 70 70	150 m 150 m 0.1 m 0.1 m 150 m	200 200 30 30 200 200	8.0 8.0 4.0 4.0 8.0 8.0			0.4 0.4 .25 .25 0.4 0.4	10 10 10 10 10	150 m 150 m 1.0 m 10 m 150 m 150 m	654 610 654 610 654 654
MD7001F MD7002 MD7002A MD7002B MD7003 MD7003A	PA NA NM NM NA	0.350 A 0.575 A 0.575 A 0.575 A 0.55 A 0.55 A	30 0 40 0 40 0 40 0 40 0 40 0	0.6 0.03 0.03 0.03 0.05 0.05	70 40 40 40 50 50	150 m 100 u 100 u 100 u 10 m 10 m	200 200 200 200 200 200 200	8.0 6.0 6.0 6.0 6.0 6.0	0.75 0.85 0.75	25 15 25	0.4 .35 .35 .35 .35 .35	10 10 10 10 10	150 m 10 m 10 m 10 m 1.0 m 1.0 m	610 654 654 654 654 654
MD7003AF MD7003B MD7003F MD7004 MD7004F MD7005	NM NM NA NA NA PA	0.35 A 0.55 A 0.35 A 0.55 A 0.35 A 0.55 A	40 0 40 0 40 0 13 0 13 0 12 0	0.05 0.05 0.05 0.2 0.2 0.2	50 50 50 30 30 30	10 m 10 m 10 m 10 m 10 m 3.0 m	200 200 200 675* 675* 650	6.0 6.0 6.0 4.0 4.0 3.0	0.75 0.85	25 15	.35 .35 .35 0.4 0.4 0.4	10 10 10 10 10	1.0 m 1.0 m 1.0 m 10 m 10 m 10 m	610 654 610 654 610 654

TABLE 3. Dual Transistors (continued)

TYPE NO.	ID	PD to Matts of One	VCE- volts	l _C			f _T	Cob	h _{FE1}	mV Max	dB Min VCF	NF dB Max		PAC	KAGE
TIPE NO.	10	One Only	Volts	Amp Max	h _{FE} (C E	MHz Min Typ*	pF Max Typ*	ns Max Typ	ns Max Typ	(sat) Volts Max	@ — I _B	& / _C 5		No.
MD7005F MD7007 MD7007A MD7007B MD7007BF MD7007F	PA PA PM PM PM PA	0.35 A 0.575 A 0.575 A 0.575 A 0.35 A 0.35 A	12 0 40 0 50 0 60 0 40 0 40 0	0.05 0.2 0.2 0.2 0.2 0.2	30 30 30 30 30 30	3.0 m 1.0 m 1.0 m 1.0 m 1.0 m	650 300 300 300 300 300 300	3.0 8.0 8.0 8.0 8.0 8.0	0.75 0.85 0.85	20 10 10	0.4 1.0 1.0 1.0 1.0	10 10 10 10 10 10	10 m 50 m 50 m 50 m 50 m 50 m		610 654 654 654 610 610
MD7021 MD7021F MD8001 MD8002 MD8003 2N2060	CG CG NM NM NM	0.55 A 0.35 A 0.575 A 0.575 A 0.575 A 0.5 A	40 0 40 0 40 0 40 0 40 0 60 0	0.05 0.05 0.03 0.03 0.03 0.05	50 50 100 100 100 30	10 m 10 m 1.0 m 1.0 m 1.0 m 100 u	200 200 260* 260* 260* 60	6.0 6.0 2.6* 2.6* 2.6*	28* 28*	72* 72* 15 15 15 5.0	35	10 10	10 m 10 m	78	654 610 654 654 654
2N2060A 2N2223 2N2223A 2N2453 2N2453A 2N2480	NM NM NM NM NM	0.5 A 0.5 A 0.5 A 0.5 A 0.5 A 0.3 A	60 0 60 0 60 0 30 0 50 0 35 0	0.5 0.5 0.5 0.05 0.05 0.05	30 25 25 80 80 30	100 u 100 u 100 u 10 u 10 u 1.0 m	60 50 50 60 60 50	15 15 15 8.0 8.0 20	0.9 0.8 0.9 0.9 0.9 0.8	3.0 15 5.0 3.0 3.0	0.6 1.2 1.2	10 10 10 7.0 4.0 8.0	50 m 50 m 50 m 1000 H 1000 H 1000 H	78 78 78 78 78 78 78	654 654 654 654 654
2N2480A 2N2639 2N2640 2N2641 2N2642 2N2643	NM NM NM NE NM NM	0.3 A 0.3 A 0.3 A 0.3 A 0.3 A	40 0 45 0 45 0 45 0 45 0 45 0	0.5 0.03 0.03 0.03 0.03 0.03	50 50 50 50 100	1.0 m 10 u 10 u 10 u 10 u 10 u	50 80 80 80 80	18 8.0 8.0 8.0 8.0	0.8 0.9 0.8 0.9	5.0 5.0 10 5.0 10	1.3	10 4.0 4.0 4.0 4.0 4.0	50 m AUD AUD AUD AUD AUD	78 78 78 78 78 78	654 654 654 654 654
2N2644 2N2652 2N2652A 2N2720 2N2721 2N2722	NE NM NM NM NM NM	0.3 A 0.3 A 0.3 A 0.3 A 0.3 A	45 0 60 0 60 0 60 0 60 0 45 0	0.03 0.5 0.5 0.04 0.04 0.04	100 50 50 30 30 50	10 u 1.0 m 1.0 m 0.1 m 0.1 m 1.0 u	80 60 60 80 80 100	8.0 15 15 6.0 6.0 6.0	0.85 0.9 0.9 0.8 0.9	3.0 3.0 5.0 10 5.0	1.2 1.0 1.0 1.0	4.0 10 8.0 10 10 20	50 m 1000 H 10 m 10 m 10 m	78 78 78 78 78 78	654 654 654 654 654
2N2903 2N2903A 2N2913 2N2914 2N2915 2N2916	NM NE NE NE NM NM	0.6 C 0.6 C 0.3 A 0.3 A 0.3 A	30 0 30 0 45 0 45 0 45 0 45 0	0.05 0.03 0.03 0.03 0.03	125 125 60 150 60 150	1.0 m 1.0 m 10 u 10 u 10 u 10 u	60 60 60 60 60	8.0 6.0 6.0 6.0 6.0	0.8 0.9 0.9	10 5.0 5.0 5.0		7.0 7.0 4.0 3.0 4.0 3.0	1000 H 1000 H AUD AUD AUD AUD	78 78	654 654 654 654 654
2N2917 2N2918 2N2919 2N2920 2N3043 2N3044	NM NM NM NM NM NM	0.3 A 0.3 A 0.3 A 0.3 A 0.25 A 0.25 A	45 0 45 0 60 0 60 0 45 0 45 0	0.03 0.03 0.03 0.03 0.03 0.03	60 150 60 150 100	10 u 10 u 10 u 10 u 10 u 10 u	60 60 60 30 30	6.0 6.0 6.0 8.0 8.0	0.8 0.9 0.9 0.9 0.9	10 10 5.0 5.0 5.0 10		4.0 3.0 4.0 3.0 5.0 5.0	AUD AUD AUD AUD AUD AUD	17	654 654 654 654 610
2N3045 2N3046 2N3047 2N3048 2N3726	NE NM NM NE PE	0.25 A 0.25 A 0.25 A 0.25 A 0.4 A	45 O 45 O 45 O 45 O	0.03 0.03 0.03 0.03	100 50 50 50 135	10 u 10 u 10 u 10 u	30 30 30 30 200	8.0 8.0 8.0 8.0	0.9 0.8	5.0 10 5.0		5.0 5.0 5.0 5.0 4.0	AUD AUD AUD AUD 1000 H		610 610 610 610 654

MULTIPLE SMALL-SIGNAL TRANSISTORS (continued)

TABLE 3. Dual Transistors (continued)

		PD					1		h _{FE1}	mV Max	Gp dB Min		@ f		
TYPE NO.	ID	Watts on to do	V _{CE} -volts Support	I _C Amp Max	h _{FE} (PIC E	f _T MHz Min	C _{ob} pF Max	t _{on} ns Max	t _{off} ns Max	VCE	<i>lc</i>	& /C 5		KAGE Case No.
2N3727 2N3806 2N3807 2N3808 2N3809 2N3810	PE PE PM PM PM	0.4 A 0.5 A 0.5 A 0.5 A 0.5 A 0.5 A	45 0 60 0 60 0 60 0 60 0	0.3 0.05 0.05 0.05 0.05 0.05	135 150 300 150 300 150	1.0 m 0.1 m 0.1 m 0.1 m 0.1 m 0.1 m	200 100 100 100 100 100	8.0 4.0 4.0 4.0 4.0 4.0	0.9 0.8 0.8 0.9	5.0 5.0 5.0 3.0		4.0 7.0 4.0 7.0 4.0 7.0	1000 H 100 H 100 H 100 H 100 H 100 H		654 654 654 654 654 654
2N3810A 2N3811 2N3811A 2N3812 2N3813 2N3814	PM PM PM PM PA PM	0.5 A 0.5 A 0.5 A 0.5 A 0.5 A	60 0 60 0 60 0 60 0 60 0	0.05 0.05 0.05 0.05 0.05 0.05	150 300 300 150 300 150	0.1 m 0.1 m 0.1 m 0.1 m 0.1 m 0.1 m	100 100 100 100 100 100	4.0 4.0 4.0 4.0 4.0 4.0	0.95 0.9 0.95	1.5 3.0 1.5		3.0 4.0 1.5 3.5 2.5 7.0	100 H 100 H 100 H AUD AUD 100 H		654 654 654 610 A 610 A
2N3815 2N3816 2N3816A 2N3817 2N3817A 2N3838	PM PM PM PM PM CE	0.5 A 0.5 A 0.5 A 0.5 A 0.5 A 0.25 A	60 0 60 0 60 0 60 0 60 0 40 0	0.05 0.05 0.05 0.05 0.05 0.05	300 150 150 300 300 100	0.1 m 0.1 m 0.1 m 0.1 m 0.1 m 150 m	100 100 100 100 100 200	4.0 4.0 4.0 4.0 4.0 8.0	0.8 0.9 0.95 0.9 0.95 50	5.0 3.0 1.5 3.0 1.5 340		4.0 7.0 7.0 4.0 4.0 8.0	100 H 100 H 100 H 100 H 100 H 1000 H		610 A 610 A 610 A 610 A 610 A
2N4015 2N4016 2N4854 2N4855 2N4937 2N4938	PM PM CE CE PM PM	0.4 A 0.4 A 0.3 A 0.3 A 0.6 A 0.6 A	60 0 60 0 40 0 40 0 40 0 40 0	0.3 0.3 0.6 0.6 0.05 0.05	135 135 100 40 50	1.0 m 1.0 m 150 m 150 m 1.0 m	200 200 200 200 300 300	8.0 8.0 8.0 5.0 5.0	0.9 0.9 60 60 0.9 0.8	5.0 2.5 350 350 3.0 5.0		4.0 4.0 8.0 8.0 4.0 4.0	1000 H 1000 H 1000 H 1000 H AUD AUD		654 654 654 654 654 654
2N4939 2N4940 2N4941 2N4942 2N5793 2N5794	PE PM PM PE NG NG	0.6 A 0.6 A 0.6 A 0.6 A 0.5 A	40 0 40 0 40 0 40 0 40 0 40 0	0.05 0.05 0.05 0.05 0.6 0.6	50 50 50 50 40 100	1.0 m 1.0 m 1.0 m 1.0 m 150 m	300 300 300 300 200 200	5.0 5.0 5.0 8.0 8.0	0.8 0.9 45 45	5.0 3.0 310 310	0.3 0.3	4.0 4.0 4.0 4.0 10	AUD AUD AUD AUD 150 m 150 m	nngi	654 610 A 610 A 610 A 654 654
2N5795 2N5796 2N6502 2N6503	NG NG NS NS	0.5 A 0.5 A 0.6 A 0.6 A	60 0 60 0 40 0 40 0	0.6 0.6 1.0 1.0	40 100 50 50	150 m 150 m 100 m 100 m	200 200 250 250	8.0 8.0 10 10	47 47 35 35	140 140 60 60	0.4 0.4 0.3 0.3	10 10 10 10	150 m 150 m 100 m 100 m		654 654 654 610 A
	-	5.	- Carl	157						10					
	1				2000		17.0						-	127	

Field-Effect Transistors

Motorola offers a line of field-effect transistors that encompasses the latest technology and covers the full range of FET applications. Included here is a wide variety of junction FETs, MOSFETs (with P- or N-channel polarity with both single and dual gates) and TMOS FETs. These FETs include devices developed for operation across the frequency range from dc to UHF in switching and amplifying applications. Package options

from low cost plastic to metal TO-72 packages are available. The selector guides on the following pages are designed to emphasize those FET families and device types that, by virtue of widespread industry use, ease of manufacture and, consequently, low relative cost, merit first consideration for new equipment design.

JFETs

TABLE 1. Switches and Choppers

JFETs operate in the depletion mode. They are available in both P- and N-channel and are offered in both metal and plastic packages. Applications include general-purpose amplifiers, switches and choppers, and RF amplifiers and mixers. These devices are economical and very rugged. The drain and source are interchangeable on many typical FETs.

P-Channel JFETs

		^r ds	(on)		G(off)		nA)	V(BR)GSS V(BR)GDO	C _{iss}	C _{rss}	ton	toff
Package TO -	Device	(Ω) MAX	l _D (μΑ)	MIN	MAX	MIN	MAX	(V) MIN	(pF) MAX	(pF) MAX	(ns) MAX	(ns) MAX
92	MPF970	100	1.0	5.0	12	15	100	30	12	5.0	8.0	25
92	MPF971	250	1.0	1.0	7.0	2.0	80	30	12	5.0	10	120
72	2N3993	150	-	4.0	9.5	10	_	25	16	4.5	_	_
72	2N3994	300		1.0	5.5	2.0	_	25	16	4.5	_	_
72	2N3994A	300	_	1.0	5.5	2.0	_	25	12	3.0	_	_

N-Channel JFETs

18	MFE2012	10	-	3.0	10	100	_	25	50	20	16	37
18	MFE2011	15	1.0	1.0	10	40	-	25	50	20	10	20
18	2N4859A	25	_	2.0	6.0	50	_	30	10	4.0	8.0	20
92	MPF4859A	25	_	2.0	6.0	50	1	30	10	4.0	8.0	20
18	2N4856A	25	_	4.0	10	50	-	40	10	4.0	8.0	20
92	MPF4856A	25	_	4.0	10	50	_	40	10	4.0	8.0	20
18	2N4856	26	_	4.0	10	50	-	40	10	8.0	9.0	25
92	MPF4856	25	_	4.0	10	50	_	40	10	8.0	9.0	25

TABLE 1. Switches and Choppers (continued)

N-Channel JFETs (continued)

		rds	(on)	_	S(off)		SS	V(BR)GSS V(BR)GDO	C _{iss}	C _{rss}	ton	toff
Package TO -	Device	(Ω) MAX	@ ID (μΑ)	MIN	V) MAX	(n MIN	nA) MAX	(V) MIN	(pF) MAX	(pF)	(ns) MAX	(ns)
		25	(μΑ)	4.0	10	50	IVIAA	30	18	8.0	9.0	25
18	2N4859			4.0	10	50		30	18			
92	MPF4859	25					_			8.0	9.0	25
18	MFE2010	25	1.0	0.5	10	15	-	25	50	20	10	35
18	2N4391	30	1.0	4.0	10	50	150	40	14	3.5	15	20
92	MPF4391	30	1.0	4.0	10	60	130	20	10	3.5	15	20
92	2N638	30	1.0		(12)	50		30	10	4.0	9.0	15
18	2N4091	30	1.0	5.0	10	30	-	40	16	5.0	25	40
92	MPF4091	30	1.0	5.0	10	30	_	40	16	5.0	25	40
92	J111	30	1.0	3.0	10	20		35	10 ^t	5.0 ^t	13	35
18	MFE2006	30	1.0	-5.0	- 10	30	_	-30	16	5.0	20	40
18	2N3970	30	1.0	4.0	10	50	150	40	25	6.0	20	30
92	MPF3970	30	1.0	4.0	10	50	150	40	25	6.0	20	30
18	2N4057A	40		2.0	6.0	20	100	40	10	3.5	10	40
92	MPF4857A	40	_	2.0	6.0	20	100	40	10	3.5	10	40
18	2N860A	40	_	2.0	6.0	20	100	30	10	3.5	10	40
92	MPF4860A	40		2.0	6.0	20	100	30	10	3.5	10	40
18	2N4857	40	_	2.0	6.0	20	100	40	18	8.0	10	50
92	MPF4857	40		2.0	6.0	20	100	40	18	8.0	10	50
18	2N4860	40		2.0	6.0	20	100	30	18	8.0	10	50
92	MPF4860	40	_	2.0	6.0	20	100	30	18	8.0	10	50
92	2N5653	50	1.0	_	(12) ^t	40	_	30	10	3.5	9.0	15
18	2N4092	50	1.0	2.0	7.0	15	_	40	16	5.0	35	60
92	MPF4092	50	1.0	2.0	7.0	15		40	16	5.0	35	60
92	J112	50	1.0	1.0	5.0	5.0		35	10 ^t	5.0 ^t	13 ^t	35
18	MFE2005	50	1.0	-2.0	-8.0	15	_	-30	16	5.0	35	60
18	2N4392	60	1.0	2.0	5.0	25	75	40	14	3.5	15	35
92	MPF4392	60	1.0	2.0	5.0	25	75	20	10	3.5	15	35
18	2N4858A	60	1.0	0.8	4.0	8.0	80	40	10	3.5	16	80
92	MPF4858A	60	1.0	0.8	4.0	8.0	80	40	10	3.5	16	80
18	2N4861A	60	_	0.8	4.0	8.0	80	30	10	3.5	16	80
92	MPF4861A	60	_	0.8	4.0	8.0	80	30	10	3.5	16	80
92	2N5639	60	1.0	_	(8.0)t	25	_	30	10	4.0	14	30
18	2N3971	60	1.0	2.0	5.0	25	75	40	25	6.0	30	60
92	MPF3971	60	1.0	2.0	5.0	25	75	40	25	6.0	30	60
18	2N4858	60	_	0.8	4.0	8.0	80	40	18	8.0	20	10
92	MPF4858	60	_	0.8	4.0	8.0	80	40	18	8.0	20	10
18	2N4861	60	_	0.8	4.0	8.0	80	30	18	8.0	20	10
92	MPF4861	60	_	0.8	4.0	8.0	80	30	18	8.0	20	10
18	2N4093	80	1.0	1.0	5.0	80		40	16	5.0	60	80
92	MPF4093	80	1.0	1.0	5.0	80	_	40	16	5.0	60	80
18	MFE2004	80	1.0	-1.0	-6.0	8.0	_	-30	16	5.0	60	80
72	MFE3002	100	10 V	_	3.0	_	. 10	15	5.0	1.5	_	_
18	2N4393	100	1.0	0.5	3.0	5.0	30	40	14	3.5	15	50
92	MPF4393	100	1.0	0.5	3.0	5.0	30	20	10	3.5	15	55
92	2N5654	100	1.0	_	(8.0)	15	_	25	10	3.5	14	30
92	2N5640	100	1.0		(6.0)	5.0		30	10	4.0	18	45

TABLE 1. Switches and Choppers (continued)

N-Channel JFETs (continued)

	hat beet o	rds	(on)	VGS	S(off)	ID	SS	V(BR)GSS V(BR)GDO	C _{iss}	C _{rss}	ton	toff
Daaliana		(0)	(a	(V)	(n	nA)		(F)			
Package TO –	Device	(Ω) MAX	ID (μA)	MIN	MAX	MIN	MAX	(V) MIN	(pF) MAX	(pF) MAX	(ns) MAX	(ns) MAX
18	2N3972	100	1.0	0.5	3.0	5.0	30	40	25	6.0	80	100
92	MPF3972	100	1.0	0.5	3.0	5.0	30	40	25	6.0	80	100
92	J113	100	1.0	0.5	3.0	2.0	20-	35	10 ^t	5.0t	13 ^t	35t
92	BF246	-	_	0.5	14	10	300	25	_	_	V	-
92	BF246A	35t	1.0	1.5	4.0	30	80	25	_	-18	_	
92	BF246B	50t	1.0	3.0	7.0	60	140	25	_	_		_
92	BF246C	65 ^t	1.0	5.5	12.0	110	250	25	_	_	(a) (_
92	J107	8	_	0.5	4.5	100		25	_	-:4		_
92	J108	8	_	3.0	10.0	80	-	25	1 1	_		_
92	J109	12	-	2.0	6.0	40		25		-	_	-
92	J110	18	_	0.5	4.0	10	53-	25	_	_	773	

t = typical

TABLE 2. Low-Frequency/Low-Noise

P-Channel JFETs

		Re Yfs	Re Yos	C _{iss}	Crss	V(BR)GSS V(BR)GDO	VGS	S(off)	ID	SS
Package TO –	Device	(mmho) MIN	(μmho) MAX	(pF) (MAX)	(pF) MAX	(V) MIN		V) MAX	(m MIN	(An
92	MPF161	0.8	75	7.0	2.0	40	0.2	8.0	-0.5	-14
72	2N5265	0.9	75	7.0	2.0	60	0.3	1.5	0.5	1.0
72	MFE4009	1.0	20	20	_	20		5.0	1.0	3.0
72	MFE4012	1.0	100	20	_	20	_	8.0	5.0	15
72	2N5267/8	1.0	20	20	- 1	20	-	6.0	1.0	6.0
72	2N3909	1.0	100	32	16	20	0.3	7.9	0.3	15
18	MFE4007	1.0	20	25	7.0	25	0.3	1.5	0.3	1.2
28	2N2608	1.0	17			30	1.0	4.0	0.9	4.5
92	MPF2608	1.0		17	_	30	1.0	4.0	0.9	4.5
92	2N5460	1.0	50	7.0	2.0	40	0.75	6.0	1.0	5.0
72	2N5266	1.0	75	7.0	2.0	60	0.4	2.0	0.8	1.6
92	2N5463	1.0	75	7.0	2.0	60	0.5	4.0	1.0	5.0
72	2N3330	1.5	40	20	_	20	_	6.0	2.0	6.0
92	MPF3330	1.5	40	20	_	20	_	6.0	2.0	6.0
18	MFE4009	1.5	20	25	7.0	25	0.5	2.5	1.0	3.5
92	2N5461	1.5	50	7.0	2.0	40	1.0	7.5	2.0	9.0
72	2N5267	1.5	75	7.0	2.0	60	1.0	4.0	1.5	3.0
92	2N5464	1.5	75	7.0	2.0	60	0.8	4.5	2.0	9.0
92	2N4360	2.0	100	20	5.0	20	0.4	9.0	3.0	30
92	2N4342	2.0	75	20	5.0	25	_	5.5	4.0	12
92	2N5462	2.0	50	7.0	2.0	40	1.8	9.0	4.0	16
72	2N5268	2.0	75	7.0	2.0	60	1.0	4.0	2.5	5.0

TABLE 2. Low-Frequency/Low-Noise (continued)

P-Channel JFETs

	1 4 5	Re Yfs	Re Yos	C _{iss}	C _{rss}	V(BR)GSS V(BR)GDO	VGS	S(off)	ID	SS
Package TO -	Device	(mmho) MIN	(μmho) MAX	(pF) (MAX)	(pF) MAX	(V)	MIN (V) MAX	(m MIN	MAX
92	2N5465	2.0	75	7.0	2.0	60	1.5	6.0	4.0	16
72	2N3909A	2.2	100	9.0	3.0	20	0.3	7.9	1.0	15
72	2N5269	2.2	75	7.0	2.0	60	2.0	6.0	4.0	8.0
18	2N2609	2.5		30	_	30	1.0	4.0	2.0	10
92	MPF2609	2.5	-	30	_	30	1.0	4.0	2.0	10
72	2N5270	2.5	75	7.0	2.0	60	2.0	6.0	7.0	14

N-Channel JFETs

		Re	fs	R _e \	os	C _{iss}	C _{rss}	V(BR)GSS V(BR)GDO	VGS	S(off)	ID	SS
Package		(mmho)	@ f	(µmho)	@ f	(pF)	(pF)	(V)	,	V)		nA)
TO -	Device	MIN	(MHz)	MAX	(MHz)	(MAX)	MAX	MIN	MIN	MAX	MIN	MAX
18	2N3370	0.3	30	15	30	20	3.0	40		3.2	0.1	0.6
92	MPF111	0.5	10	200	10		_	20	0.5	10	0.5	20
92	J201	0.5	20	1.0 ^t	20	5.0t	2.0t	40	0.3	1.5	0.2	1.0
18	2N3369	0.6	30	30	30	20	3.0	40		6.5	0.5	2.5
92	MPF109	8.0	15	75	15	7.0	3.0	25	0.2	8.0	0.5	24
18	2N4339	0.8	15	15	15	7.0	3.0	50	0.6	1.8	0.5	1.5
92	MPF4339	0.8	15	15	15	7.0	3.0	50	0.6	1.8	0.5	1.5
18	2N3460	0.8	20	5.0	30	18	6.0	50	_	1.8	0.2	1.0
18	2N3438	0.8	20	5.0	30	18	6.0	50	_	2.3	0.2	1.0
72	2N4220	1.0	15	10	15	6.0	2.0	30	_	4.0	0.5	3.0
92	MPF4220	1.0	15	10	15	6.0	2.0	30		4.0	0.5	3.0
72	2N4220A	1.0	15	10	15	6.0	2.0	30		4.0	0.5	3.0
92	MPF4220A	1.0	15	10	15	6.0	2.0	30	-	4.0	0.5	3.0
72	2N5358	1.0	15	10	15	6.0	2.0	40	0.5	3.0	0.5	1.0
92	J202	1.0	20	3.5t	20	5.0t	2.0t	40	0.8	4.0	0.9	4.5
18	2N3368	1.0	30	80	30	20	3.0	40	_	11.5	2.0	12
72	2N5359	1.2	15	10	15	6.0	2.0	40	0.8	4.0	0.6	1.6
18	2N4340	1.3	15	30	15	7.0	3.0	50	1.0	3.0	1.2	3.6
72	2N5360	1.4	15	20	15	6.0	2.0	40	0.8	4.0	0.5	2.5
94	2N5458	1.5	15	50	15	7.0	3.0	25	1.0	7.0	2.0	9.0
72	2N5361	1.5	15	20	15	6.0	2.0	40	1.0	6.0	2.5	5.0
92	J203	1.5	20	10 ^t	20	5.0t	2.0t	40	2.0	10	4.0	20
18	2N3459	1.5	20	20	30	18	6.0	50	-	3.4	0.8	4.0
72	2N3821	1.5	15	10	15	6.0	3.0	50	_	4.0	0.5	2.5
92	MPF3821	1.5	15	10	15	6.0	3.0	50	_	4.0	0.5	2.5
18	2N3437	1.5	20	20	30	18	6.0	50	_	4.8	0.8	4.0
92	2N5457	2.0	15	50	15	7.0	3.0	25	0.5	6.0	1.0	5.0
92	2N5459	2.0	15	50	15	7.0	3.0	25	2.0	8.0	4.0	16
72	2N4221	2.0	15	20	15	6.0	2.0	30		6.0	2.0	6.0

t = typical

TABLE 2. Low-Frequency/Low-Noise (continued)

N-Channel JFETs

		Re	fs	R _e \	os	C _{iss}	C _{rss}	V(BR)GSS V(BR)GDO	VGS	S(off)	ID	SS
Package		(mmho)	@ f	(µmho)	@ f	(pF)	(pF)	(V)	(V) 	(m	nA)
TO -	Device	MIN	(MHz)	MAX	(MHz)	(MAX)	MAX	MIN	MIN	MAX	MIN	MAX
92	MPF4221	2.0	15	20	15	6.0	2.0	30	_	6.0	2.0	6.0
72	2N4221A	2.0	15	20	15	6.0	2.0	30	_	6.0	2.0	6.0
92	MPF4221A	2.0	15	20	15	6.0	2.0	30	-	6.0	2.0	6.0
72	2N5362	2.0	15	40	15	6.0	2.0	40	2.0	7.0	4.0	8.0
72	2N3822	2.0	15	20	15	6.0	3.0	50	_	6.0	2.0	10
92	MPF3822	2.0	15	20	15	6.0	3.0	50	_	6.0	2.0	10
18	2N4341	2.0	15	60	15	7.0	3.0	50	2.0	6.0	3.0	9.0
72	2N4222	2.5	15	40	15	6.0	2.0	30	_	8.0	5.0	15
92	MPF4222	2.5	15	40	15	6.0	2.0	30	_	8.0	5.0	15
72	2N4222A	2.5	15	40	15	6.0	2.0	30	_	8.0	5.0	15
92	MPF4222A	2.5	15	40	15	6.0	2.0	30	_	8.0	5.0	15
72	2N5363	2.5	15	40	15	6.0	2.0	40	2.5	8.0	7.0	14
18	2N3458	2.5	20	35	30	18	6.0	50	_	7.8	3.0	15
18	2N3436	2.5	20	35	30	18	6.0	50	_	9.8	3.0	15
72	2N5364	2.7	15	60	15	6.0	2.0	40	2.5	8.0	9.0	18
92	2N5670	3.0	15	75	15	7.0	3.0	25	2.0	8.0	8.0	20
18	2N4398	12 ^t	0.001	_	_	14	3.5	40	0.5	3.0	5.0	30
72	2N5556	6.5	0.001	20	15	6.0	3.0	30	0.2	4.0	0.5	2.5
72	2N4117	20	0.001	3.0	10	3.0	1.5	40	0.6	1.8	30	90
92	MPF4117	20	0.001	3.0	10	3.0	1.5	40	0.6	1.8	30	90
72	2N4117A	70	0.001	3.0	10	3.0	1.5	40	0.6	1.8	30	90
92	MPF4117A	70	0.001	3.0	10	3.0	1.5	40	0.6	1.8	30	90
72	2N4118	80	0.001	5.0	10	3.0	1.5	40	1.0	3.0	80	240
92	MPF4118	80	0.001	5.0	10	3.0	1.5	40	1.0	3.0	80	240
72	2N4118A	80	0.001	5.0	10	3.0	1.5	40	1.0	3.0	80	240
92	MPF4118A	80	0.001	5.0	10	3.0	1.5	40	1.0	3.0	80	240
72	2N4119	100	0.001	10	10	3.0	1.5	40	2.0	6.0	200	600
92	MPF4119	100	0.001	10	10	3.0	1.5	40	2.0	6.0	200	600
72	2N4119A	100	0.001	10	10	3.0	1.5	40	2.0	6.0	200	600
92	MPF4119A	100	0.001	10	10	3.0	1.5	40	2.0	6.0	200	600

t = typical

MOSFETs

MOSFETs are available in either depletion/enhancement or enhancement mode (in general, depletion/enhancement devices are operated in the depletion mode and are referred to as depletion devices). They are available in both N- and P-channel, and both single gate and dual gate construction. Some MOSFETs are also offered with input diode protection which reduces the chance of damage from static charge in handling.

TABLE 2. Low-Frequency/Low-Noise (continued)

P-Channel MOSFETs

		Re	Yfs	Ciss	Crss	V(BR)DSS	VGS	(TH)	ID	SS
				-			(/)	(n	ıA)
Package TO -	Device	(mmho) MIN	(µmho) MAX	(pF) (MAX)	(pF) MAX	(V) MIN	MIN	MAX	MIN	MAX
72	3N155	1.0	60	5.0	1.3	-35	-1.5	-3.2	_	-1.0
72	3N156	1.0	60	5.0	1.3	-35	-3.0	-5.0	_	-1.0
72	3N157	1.0	60	5.0	1.3	-35	-1.5	-3.2	_	-1.0
72	3N155A	1.0	60	5.0	1.3	-35	-1.5	-3.2	_	-0.25
72	3N156A	1.0	60	5.0	1.3	-35	-3.0	-5.0	_	-0.25
72	3N157A	1.0	60	5.0	1.3	-50	-1.5	-3.2	_	-0.25
72	3N158	1.0	60	5.0	1.3	-35	-3.0	-5.0		-1.0
72	3N158A	1.0	60	5.0	1.3	- 25	-2.0	-6.0	_	-20
18	MFE823	1.0	_	6.0	1.5	-50	-3.0	-5.0	_	-0.25
72	MFE3003	_	_	5.0	1.0	- 15	_	-4.0	_	10

N-Channel MOSFETs

18	2N3796	0.4	1.8	7.0	0.8	25	_	-7.0	2.0	6.0
18	MFE825	0.5	_	4.0	0.7	20	_	_	1.0	25
72	2N4351	1.0	_	5.0	1.3	25	1.0	5.0	_	10
72	3N169	1.0	_	5.0	1.3	25	0.5	1.5		10
72	3N170	1.0	_	5.0	1.3	25	1.0	2.0	_	10
72	3N171	1.0	_	5.0	1.3	25	1.5	3.0	_	10
72	MFE3002	_	_	5.0	1.0	15	_	3.0	_	10
18	2N3797	1.5	_	8.0	0.8	25	_	-7.0	2.0	6.0

TABLE 3. High-Frequency Amplifiers

N-Channel JFETs

		Rel	fs	R _e Y	os	Ciss	C _{rss}	10 %	NF	V _(BR) GSS V _(BR) GDO	VGS	(off)	ID	SS
Package TO –	Device	(mmho) MIN	@ f (MHz)	(μmho) MAX	@ f (MHz)	(pF)	(pF) MAX	(dB) MAX	@ RG = 1K f (MHz)	(V) MIN	MIN ((m MIN	MAX
92	2N5669	1.6	100	100	100	7.0	3.0	2.5	100	25	1.0	6.0	4.0	10
92	MPF108	1.6	100	200	100	6.5	2.5	3.0	100	25	-	8.0	1.5	24
92	MPF102	1.6	100	200	100	7.0	3.0	_	-	25		8.0	2.0	20
92	2N3819	1.6	100	_	_	8.0	4.0	_	_	25		8.0	2.0	20
92	2N5668	1.0	100	50	100	7.0	3.0	2.5	100	25	0.2	4.0	1.0	5.0
72	2N4224	1.7	200	200	200	6.0	2.0	_	_	30	0.1	8.0	20	20
92	MPF4224	1.7	200	200	200	6.0	2.0	_	_	30	0.1	8.0	2.0	20
92	2N5484	2.5	100	75	100	5.0	1.0	3.0	100	25	0.3	3.0	1.0	5.0
72	MFE2000	2.5	0.001	50	0.001	5.0	1.0	4.0	400	- 25	- 0.5	-0.4	4.0	10
92	2N5670	2.5	100	150	100	7.0	3.0	2.5	100	25	2.0	8.0	8.0	20
92	2N5246	2.5	400	100	400	4.5	1.0		_	30	0.5	4.0	1.5	7.0
72	2N4223	2.7	200	200	200	6.0	2.0	5.0	200	30	0.1	8.0	3.0	18
92	MPF4223	2.7	200	200	200	6.0	2.0	5.0	200	30	0.1	8.0	3.0	18
92	2N5485	3.0	400	100	400	5.0	1.0	4.0	400	25	1.0	4.0	4.0	10
92	J305	3.0t	400	80t	100	3.0t	0.8 ^t	4.0t	400	30	0.5	3.0	1.0	8.0
72	2N3823	3.2	200	200	200	6.0	2.0	2.5	100	30	_	8.0	4.0	20
92	MPF3823	3.2	200	200	200	6.0	2.0	2.5	100	30		8.0	4.0	20
92	2N5486	3.5	400	100	400	5.0	1.0	4.0	400	25	2.0	6.0	8.0	20
72	MFE2001	4.0	0.001	75	0.001	5.0	1.0	4.0	400	- 25	-2.0	-6.0	8.0	20
72	2N4416	4.0	400	100	400	4.0	0.8	4.0	400	30	2.0	6.0	5.0	15
92	MPF4416	4.0	400	100	400	4.0	0.8	4.0	400	- 30	2.0	6.0	5.0	15
72	2N4416A	4.0	400	100	400	4.0	0.8	4.0	400	30	2.0	6.0	5.0	15
92	MPF4416A	4.0	400	100	400	4.0	0.8	4.0	400	30	2.0	6.0	5.0	15
92	2N5245	4.0	400	100	400	4.5	1.0	4.0	400	30	1.0	6.0	5.0	15
92	2N5247	4.0	400	150	400	4.5	1.0	4.0	400	30	1.5	8.0	8.0	24
92	J304	4.2 ^t	400	80 ^t	100	3.0t	0.8 ^t	4.0t	400	30	2.0	6.0	5.0	15
52	U308	10	0.001	150	100	5.0	2.5	3.0t	450	25	1.0	6.0	12	60
52	U309	10	0.001	150	100	5.0	2.5	зt	450	25	1.0	4.0	12	30
52	U310	10	0.001	150	100	5.0	2.5	зt	450	25	2.5	6.0	24	60
92	J308	12 ^t	100	250 ^t	100	7.5	2.5	1.5 ^t	100	25	1.0	6.5	12	60
92	J309	12 ^t	100	250 ^t	100	7.5	2.5	1.5 ^t	100	25	1.0	4.0	12	30
92	J310	12 ^t	100	250 ^t	100	7.5	2.5	1.5 ^t	100	25	2.0	6.5	24	60
72	MFE3004	2.0	0.001	_	-	4.5	0.4	4.5	200	20	_	-5.0	2.0	10
72	3N128*	5.0	0.001	500	200	7.0	0.28	5.0	200	-50	-0.5	-8.0	5.0	- 25

t = typical

^{*}N-Channel MOSFET

MOSFETs (continued) TABLE 4. Dual Gate MOSFETs

These devices are especially suited for RF amplifier and mixer applications in TV tuners, radio, etc. The Dual Gate construction also allows easy AGC control with very low power.

Dual Gate MOSFETs

		Re	fs	R _e Y	os	Ciss	C _{rss}		NF	V(BR)GSS V(BR)GDO	VGS	(off)	ID	SS
Package TO –	Device	(mmho) MIN	@ f (MHz)	(μmho) MAX	@ f (MHz)	(pF) (MAX)	(pF) MAX	(dB) MAX	@ RG = 1K f (MHz)	(V) MIN	MIN	0.01	(m MIN	MAX
72	MFE140	10	0.001			7.0	0.05	3.5	105	± 7.0	_	4.0	3.0	30
72	MFE521	10	0.001			4.0	0.02	3.5	200	10	0.5	2.0	5.0	20
72	3N211	17	0.001	-		_	0.05	3.5	200	±6.0	-0.2	-5.5	6.0	40
М	MPF211	17	0.001			_	0.05	3.5	200	± 6.0	-0.2	-5.5	6.0	40
72	3N206	7.0	0.001			_	0.03	4.0	45	25	-0.2	-4.0	3.0	15
72	3N213	15	0.001		100	_	0.05	4.0	45	±6.0	-0.2	-5.5	6.0	40
М	MPF213	15	0.001			_	0.05	4.0	45	± 6.0	-0.2	-5.5	6.0	40
72	3N212	17	0.001			_	0.05	4.0	45	±6.0	-0.2	-4.0	6.0	40
М	MPF212	17	0.001			_	0.05	4.0	45	±6.0	-0.2	-4.0	6.0	40
72	3N203	7.0	0.001			4.3t	0.03	4.5	200	±6.0	-0.2	-5.0	3.0	11
М	MPF203	7.0	0.001			4.3t	0.03	4.5	200	±6.0	-0.2	-5.0	3.0	11
72	3N201	8.0	0.001			4.5t	0.03	4.5	200	±6.0	-0.2	-5.0	6.0	30
М	MPF201	8.0	0.001			4.3t	0.03	4.5	200	±6.0	-0.2	-5.0	6.0	30
72	3N202	8.0	0.001			4.3t	0.03	4.5	200	±6.0	-0.2	-5.0	6.0	30
М	MPF202	8.0	0.001			4.3t	0.03	4.5	200	±6.0	-0.2	-5.0	6.0	30
72	MFE121	10	0.001			6.0	0.02	5.0	60	±7.0	_	-4.0	5.0	30
72	MFE120	8.0	0.001			7.0	0.02	5.0	105	±7.0	_	-4.0	2.0	18
72	MFE130	8.0	0.001		7 7 7	7.0	0.05	5.0	105	±7.0		-4.0	3.0	30
72	MFE122	8.0	0.001			7.0	0.02	5.0	200	±7.0	_	-4.0	2.0	30
72	MFE131	8.0	0.001		-	7.0	0.05	5.0	200	±7.0	_	-4.0	3.0	30
72	MFE132	8.0	0.001			7.0	0.05	5.0	200	±7.0	_	-4.0	3.0	30
72	3N204	10	0.001			_	0.03	5.0	400	25	-0.2	-4.0	6.0	30
72	3N205	10	0.001			_	0.03	5.0	400	25	-0.2	-4.0	6.0	30
72	3N209	10	0.001			7.0	0.03	6.0	500	±7.0	-0.1	-4.0	5.0	30
М	MPF521	10	0.001			4.0	0.03	3.5	200	12	_	_	_	_

t = typical M = Macro-X Package

Small-Signal TMOS

TABLE 5. TMOS Power MOSFETs

Power MOSFETs, Motorola trademark TMOS, are FET transistors with an oxide insulated gate which controls vertical current flow.

This basic description fits a number of structures and process titles including Vertical DMOS, HEXMOS, TMOS, UMOS, Vertical MOS, and VMOS.

There are subtle parametric tradeoffs with these different products but they all exhibit higher input impedance, faster switching, enhanced thermal stability, and easier paralleling than bipolar transistors. In addition, they have lower "on" resistance and higher power handling capability than conventional horizontal MOSFETs or JFETs.

N-Channel

	15.0	rds	(on)	VGS	5(t/h)	IDSS	V(BR)DSS	IGSS	Ciss	Crss	ton	toff
Package		(Ω)	@ ID	(V)	(μ A)	(V)	(nA)	(pF)	(pF)	(ns)	(ns)
TO -	Device	MAX	(A)	MIN	MAX	MAX	MIN	MAX	MAX	MAX	MAX	MAX
39	MFE930	1.4	1.0	1.0	3.5	10	35	50	70	18	15	15
92	MPF930	1.4	1.0	1.0	3.5	10	35	50	70	18	15	15
39	MFE960	1.7	1.0	1.0	3.5	10	60	50	70	18	15	15
92	MPF960	1.7	1.0	1.0	3.5	10	60	50	70	18	15	15
39	MFE990	2.0	1.0	1.0	3.5	10	90	50	70	18	15	15
92	MPF990	2.0	1.0	1.0	3.5	10	90	50	70	18	15	15
18	MFE9200	6.4	.250	1.0	4.0	10	200	50	90	3.5	15	15
92	MPF9200	6.4	.250	1.0	4.0	10	200	50	90	3.5	15	15
92	BS107	14	0.20	1.0	2.6	0.03	200	10	90	3.5	15	15
92	BS170	5.0	0.20	0.8	3.0	0.5	60	10	38 ^t	4.5 ^t	10	10
226AE	MPF910	5.0	0.50	0.8	2.5	10	60	10	38t	4.5t	5.0t	5.0t
92	MPF6659	1.8	1.0	0.8	2.0	500	35	100	50	10	5.0	5.0
92	MPF6660	3.0	1.0	0.8	2.0	500	60	100	50	10	5.0	5.0
92	MPF6661	4.0	1.0	0.8	2.0	500	90	100	50	10	5.0	5.0
39	2N6659	1.8	1.0	0.8	2.0	10	35	100	50	10	5.0	5.0
39	2N6660	3.0	1.0	0.8	2.0	10	60	100	50	10	5.0	5.0
39	2N6661	4.0	1.0	0.8	2.0	10	90	100	50	10	5.0	5.0
226AE	MPF1010		_	0.3	2.5	10	100	10	35 ^t	6t	5.0 ^t	5.0t
39	MFE910	5.0	0.5	0.3	2.5	10	60	10	_		5.0t	5.0t

t = typical

GaAs FETs

TABLE 6. GaAs Dual Gate Field-Effect Transistors

The GaAs Dual Gate FETs listed here are for low noise and high gain receiver amplifier and mixer applications.

	IDS Ty	ss p	N	oise Figu	re	G	ain	Ind ₃	MdB				
Device Type	IDSS (mA)	Vds	NF dB	f MHz	I _D mA	dB Min	f MHz	dB	dBm	V _{(BR)DSX}	I _D	P _T mW	Package
MRF966	50	5.0	1.2*	1000	10	15	1000	-65*	10*	10	60	350	317-1
MRF967	50	5.0	1.2*	1000	10	13	1000	- 65*	10*	10	60	350	358-1

^{*}Typ

RF Small-Signal Transistors

Motorola's small-signal, low power RF transistor product range includes transistors with gain-bandwidths of 1.0 GHz to 8.0 GHz operating at currents of 0.25 mA to over 140 mA.

These devices are available in a wide variety of package types; metal can, plastic Macro-X and Macro-T, hermetic ceramic and microminiature. Most of these transistors are fully

characterized with y or s parameters; and in addition, there are non-saturated switching characteristics, low power driver specifications, and noise figure limits. QPL types with JAN, JTX and JTXV processing levels are available as well as Hi Rel processing to meet unique customer requirements.

RF Small-Signal Transistors

Motorola small-signal and medium power RF transistors with gain-bandwidth products from 1.0 GHz to 8.0 GHz operate with currents from 0.25 mA to over 140 mA. The following chart, combined with the tables of package options, enables the circuit designer to select the optimum device from Motorola's wide range of transistor/package combinations.

- 1 2N3866, 2N3866A, MM8000
- 2 2N5160, MM4018, PNP
- 3 2N3948, 2N4427, MRF207
- 4 2N5109, 2N5943, MM8001, MM8002
- 5 2N5583, PNP
- 6 2N5836, 2N5837 7 MRF511, MRF517, MRF525
- 8 2N2857, 2N3839, 2N5179,
- MRF501, MRF502
- 2N6304, 2N6305, BFX89, BFY90
- 10 2N4957, 2N4958, 2N4959, PNP
- 11 MRF931
- 12 2N6603, BFR90, MRF901, MRF904 13 2N6604, BFR91, MRF911, MRF914
- 14 BFR96, MRF961, MRF962, MRF965
- 15 BFW92A 16 MRF559
- 17 MRF580, MRF581, MRF586, MRF587
- 18 MRF571, MRF572, MRF573
- 19 MRF536, MRF534, MM4049, PNP

TABLE 1. UHF and Microwave Oscillators

The transistors listed below are for UHF and microwave oscillator applications as initial signal sources or as output stages of limited range transmitters. Devices are listed in order of increasing output power.

	Test Con	ditions	Pout	fr	3.7
Device Type	f MHz	V _{CC} Volts	mW Min	MHz Typ	Package
2N5179	500	10	20	1800	TO-72
2N2857	500	10	30	1800	TO-72
2N3839	500	6.0	30	1800	TO-72
MM8009	1680	20	200	1400	TO-39
2N5108	1680	20	300	1400	TO-39
MRF905	1680	20	500*	2200	TO-46
2N3866	400	15	1000	1000	TO-39

^{*}Typical

TABLE 2. GaAs Dual Gate Field-Effect Transistors

The GaAs Dual Gate N-Channel FET's listed here are for low noise and high gain receiver amplifier and mixer applications.

			IDSS Typ Noise Figure Gain		ain	IMD ₃	P ₁ dB						
Device Type	IDSS (mA)	Vds	NF dB	f MHz	ID mA	dB Min	f MHz	dB	dBm	V(BR)DSX	I _D	P _T mW	Package
MRF966	50	5.0	1.2*	1000	10	15	1000	-65*	10*	10	60	350	317-1
MRF967	50	5.0	1.2*	1000	10	13	1000	-65*	10*	10	60	350	358-1

^{*}Typical

TABLE 3. Low-Noise Transistors

The low-noise devices listed are produced with carefully controlled r_b ' and f_T to optimize device noise performance. Devices listed in the matrix are classified according to noise figure performance versus frequency.

NF			Frequer	ncy MHz		A COMMITTEE IN	
dB	60	100	200	450	1000	2000	Polarity
1.5	2N5829 2N5031	2N5829 2N5031	MRF904	MRF571	MRF572		PNP NPN
2.0	2N4957 2N5032	2N4957 2N5032	2N5829 2N5031	MRF904	MRF901		PNP NPN
2.5	2N4958 2N5032	2N4958 2N5032	2N4957 2N5032	2N5829 2N5031	MRF901 2N6603	MRF572 MRF573	PNP NPN NPN
3.0	2N4959 2N2857	2N4959 2N2857	2N4958 2N5032	2N4957 2N5032	2N5829 MRF901 2N6604	2N6603	PNP NPN NPN
3.5	2N4959 2N5179	2N4959 2N5179	2N4959 2N2857	2N4958 2N5032	2N4957 2N5031	MRF901	PNP NPN
4.0	2N4959 2N5179	2N4959 2N5179	2N4959 2N5179	2N4959 2N2857	2N4958 2N5031	2N6604	PNP NPN
4.5	2N4959 2N5179	2N4959 2N5179	2N4959 2N5179	2N4959 2N2857	2N4959 2N5032	7	PNP NPN

TABLE 4. CATV, MATV, and Class A Linear Transistors

The devices listed below are excellent for Class A linear CATV/MATV applications and are listed according to increasing gain-bandwidth (f_T). More information concerning the device for your specific linear design needs can be obtained through your local Motorola Sales Office or Motorola distributor.

	Nominal Test		Noise Figure		Distortion S	pecifications		
Device Type	Conditions VCE/IC Volts/mA	f _T MHz Min	Max/Freq. dB/MHz	2nd Order IMD	3rd Order IMD	12 Ch. Cross- Mod.	Output Level dBmV	Package
MRF501	6/5	600	4.5*/200					TO-72
MRF502	6/5	800	4.0*/200					TO-72
2N5179	6/5	900	4.5/200					TO-72
BFY90	5/2	1000	5.0/500					TO-72
2N6305	5/10	1200	5.5/450					TO-72
BFX89	5/25	1200	6.5/500			. 10		TO-72
2N5109	15/50	1200	3.0*/200					TO-39
2N5943	15/50	1200	3.4/200	-50		-42	+ 50	TO-39
2N6304	5/10	1400	4.5/450					TO-72
MRF511	20/80	1500	7.3*/200	- 50	-65	- 57	+ 50	244A-01
2N5947	20/75	1500*	3.8/200		-55	- 60	+ 50	244A-01
MRF517	15/60	2200	7.5/300	-60	-72	-57	+ 45	TO-39
BFW92A	5/2	4500*	3.0*/500					317A-01
MRF586	14/70	4500*	3.0/500	-50	- 72		+ 50	TO-39
BFR90	10/14	5000*	2.4*/500					317A-01
BFR91	5/35	5000*	1.9*/500		P			317A-01
BFR96	10/50	5000*	3.0*/500					317A-01
MRF961	10/50	5000*	2.0*/500					317-01
MRF962	10/50	5000*	2.0*/500		7			303-01
MRF965	10/50	5000*	2.0*/500					TO-46
MRF581	10/75	5000*	3.0/500		- 65		+50	317-01
MRF587	14/70	5500*	3.0/500	- 52	-72		+ 50	244A-01

^{*}Тур

TABLE 5. High-Speed Switches

The transistors listed below are for use as high-frequency current-mode switches. They are also suitable for RF amplifier and oscillator applications. The devices are listed in ascending order of collector current.

Device Type	Test Conditions IC/VCE mA/Volts	f _T MHz Min	r _b ′C _C	Package
2N3959	10/10	1300	25	TO-18
2N3960	10/10	1600	40	TO-18
2N5835	10/6.0	2500	5.0**	TO-72
MM4049*	20/5.0	4000	15	TO-72
MRF914	20/10	4500**		TO-72
2N5842	25/4.0	1700	40	TO-72
2N5841	25/4.0	2200	25	TO-72
2N5943	50/15	1200	5.5**	TO-39
2N5583*	50/10	1000	8.0**	TO-39
2N5836	50/6.0	2000	6.0**	TO-46
2N5837	100/3.0	1700	6.0**	TO-46

^{*}PNP **Typ

Class C Amplifiers

The transistors listed in these tables are specified for operation in Class C RF power amplifier circuits. The tables are arranged by increasing frequency of operation first, then by increasing output power. The first table contains those devices specified at 12.5 Vdc, while the following table contains devices specified at 28 Vdc.

TABLE 6. Low-Voltage Class C Amplifiers

Device Type	Frequency (MHz)	P _{in} (w)	Pout (w)	G _{pe} dB	Voltage (V)	Case Outline
MRF8003	27	0.05	0.5	10.0	12.5	TO-39
MRF8004	27	0.35	3.5	10.0	12.5	TO-39
MRF402	50	0.1	1.0	10.0	12.5	TO-39
MRF229	90	0.15	1.5	10.0	12.5	TO-39
MRF230	90	0.15	1.5	10.0	12.5	TO-39
MRF604	175	0.1	1.0	10.0	12.5	TO-46
2N4427	175	0.1	1.0	10.0	12.0	TO-39
MRF607	175	0.12	1.75	11.5	12.5	TO-39
2N6255	175	0.5	3.0	7.8	12.5	TO-39
MRF237*	175	0.25	4.0	12.0	12.5	TO-39
MRF207	220	0.15	1.0	8.2	12.5	TO-39
MRF225	225	0.18	1.5	9.0	12.5	TO-39
MRF227*	225	0.13	3.0	13.5	12.5	TO-39
2N3948	400	0.25	1.0	6.0	13.6	TO-39
2N6256	470	0.1	0.5	7.0	12.5	249-5
MRF515	470	0.12	0.75	8.0	12.5	TO-39
MRF581	470	0.05	1.2	13.8	12.5	317-1
MRF629*	470	0.32	2.0	8.0	12.5	TO-39
MRF626	470	0.05	0.5	10.0	12.5	305-1
MRF627	470	0.05	0.5	10.0	12.5	305A-1
MRF628	470	0.05	0.5	10.0	12.5	249-5
MRF630	470	0.25	3.0	10.8	12.5	TO-39
MRF559	870	0.063	0.5	9.0	12.5	317-1
MRF581	870	0.12	1.0	9.2	12.5	317-1

TABLE 7. High-Voltage Class C Amplifiers

Device Type	Frequency (MHz)	P _{in} (w)	Pout (w)	G _{pe} dB	Voltage (V)	Case Outline
2N3553	175	0.25	2.5	10.0	28.0	TO-39
MRF525*	400	0.001	0.02	13.0	26.0	TO-39
2N3866	400	0.1	1.0	10.0	28.0	TO-39
2N5160†	400	0.16	1.0	8.0	28.0	TO-39
MRF313	400	0.03	1.0	15.0	28.0	305A-1
MRF313A	400	0.03	1.0	15.0	28.0	305-1

*Grounded Emitter TO-39

†PNP

Small-Signal Amplifier Transistor Selection by Package

In small-signal RF applications the package style is often determined by the end application, or circuit construction technique. To aid the circuit designer in device selection, below are listed the Motorola broad range of RF small-signal amplifier transistors organized by package. Devices for other applications such as oscillators or switches are shown in the appropriate preceding tables.

TABLE 8. TO-39 METAL CAN

	Gain -	– BW		Noise Figure	е	Ga	ain	Maxim	um Ratings	5
Device Type	f _T GHz	I _C	NF dB	f MHz	I _C	dB Min	f MHz	V(BR)CEO	I _C	P _T mW
MM8000	0.7	50	2.7	200	10	11.4*	200	30	0.4	3.50
MM8001	0.9	50	2.7	200	10	11.4*	200	30	0.4	3.50
2N5109	1.2	50	3.0	200	10	11	216	20	400	2.50
2N5943	1.2	50	3.4	200	30	11.4*	200	30	400	3.50
MRF525†	2.5	50	4.0	400	_	13	400	35**	150	2.50
MRF517	2.7	60	7.5	300	50	10*	300	35**	150	2.50
MRF586	4.5	70	3.0	500	70	14*	500	17	200	2.50

†Grounded Emitter TO-39

*Typ

**V(BR)CBO

TABLE 9. Plastic — SOE — Case 317-01/317A-01

	Gain -	– BW		Noise Figure	е	G	ain	Maximu	um Ratings	S
Device Type	f _T GHz	I _C mA	NF dB	f MHz	I _C mA	dB Min	f MHz	V(BR)CEO V	I _C	P _T mW
MRF931	3.0	1.0	3.8	500	0.25	16*	500	5.0	5.0	50
MRF559	3.0	100	_	_	_	13.0*	512	18	150	2000
BFW92A	4.0	25	2.5	500	2.0	16*	500	5.0	50	190
MRF901	4.5	15	2.0	1000	5.0	10	1000	15	30	375
BFR96	4.5	50	2.0*	500	10	12	500	15	100	500
MRF961	4.5	50	2.0*	500	10	13.5	500	15	100	500
MRF911	5.0	30	2.5	1000	5.0	12.5*	1000	12	40	400
BFR90	5.0	14	2.4	500	2.0	18*	500	15	30	180
BFR91	5.0	30	1.9	500	2.0	16*	500	12	35	180
MRF571	8.0	5.0	1.0*	500	5.0	13.5	500	10	70	2500
MRF580	5.0	75	2.0*	500	50.0	11.0	500	18	200	2500
MRF581	5.0	75	2.0*	500	50.0	13.0	500	18	200	2500
MRF536**	5.0	20	4.5*	1000	3.0	8.5	1000	10	30	300

Гур

TABLE 10. Ceramic — SOE — Case 244A-01, 303-01, 358-01

Device Type	Gain — BW			Noise Figure	9	Gain		Maximum Ratings		
	f _T GHz	I _C mA	NF dB	f MHz	I _C	dB Min	f MHz	V(BR)CEO V	I _C	P _T mW
2N5947	1.5	75	3.8	200	50	10	250	30	400	5000
MRF511	2.1	80	7.3	200	50	10	250	25	250	5000
2N6603	4.5	15	2.0	1000	5.0	13*	1000	15	30	400
MRF962	4.5	50	2.0*	500	10	15	500	15	100	750
2N6604	5.0	30	2.5	1000	5.0	14	1000	12	50	500
MRF587	5.5	70	3.0	500	70	15*	500	17	200	5800
MRF572	8.0	50	2.0	1000	5.0	10	1000	10	70	2500
MRF573	8.0	50	2.0	1000	5.0	10	1000	10	70	2500

*Тур

TABLE 11. TO-72 METAL CAN

Jimega, avenue	Gain -	- BW	1	Noise Figure	9	Gain		Maxim	um Ratings	5
Device Type	f _T GHz	I _C	NF dB	f MHz	IC mA	dB Min	f MHz	V(BR)CEO V	I _C mA	P _T mW
2N5031	1.0	5.0	2.5	450	1.0	14	450	10	20	200
2N5032	1.0	5.0	3.0	450	1.0	14	450	10	20	200
2N4958*	1.0	2.0	3.3	450	2.0	16	450	30	30	200
2N4959*	1.0	2.0	3.8	450	2.0	15	450	30	30	200
2N5829*	1.2	2.0	2.5	450	2.0	17	450	30	30	200
2N4957*	1.2	2.0	3.0	450	2.0	17	450	30	30	200
MRF501	1.2	5.0	4.0	200	1.5	15**	200	15	50	200
MRF502	1.2	5.0	4.0	200	1.5	15**	200	15	50	200
2N6305	1.2	10	5.5	450	2.0	12	450	15	50	200
BFX89	1.2	25	6.5	500	2.0	19	200	15	50	200
BFY90	1.4	25	5.0	500	2.0	21	200	15	50	200
2N5179	1.4	10	4.5	200	1.5	15	200	12	50	200
2N6304	1.4	10	4.5	450	2.0	15	450	15	50	200
2N3839	1.6	8.0	3.9	450	1.5	12.5	450	15	40	200
2N2857	1.6	8.0	4.1	450	1.5	12.5	450	15	40	200
MRF904	4.0	15	1.5	450	5.0	16	450	15	30	200
MRF914	4.5	20	2.0	500	5.0	15	500	12	40	200

*PNP

Typ

RF Amplifier Modules

The devices listed below are general purpose RF hybrid amplifiers, which feature input and output impedance matching and dc biasing networks for simplified RF amplifier design.

TABLE 12. General-Purpose 50 Ω — 100 Ω Wideband Modules

Device Type	Frequency Range MHz	Gain dB Min/Typ	Supply Voltage Vdc	Output Level 1 dB Compression mW/f (MHz)	Noise Figure @ 250 MHz dB
MHW590	10-400	32.5/34	24	800/200	5.0
MHW591	1.0-250	35/36.5	13.6	700/100	5.0
MHW592	1.0-250	34.5/36	24	900/100	5.0
MHW593	10-400	34/35.5	13.6	600/200	4.5

TABLE 13. TO-39 Wideband, 50 Ω Modules

The MWA Series features excellent gain versus frequency flatness, temperature stability and are cascadable for high gain lineups. Construction techniques include thin film gold metal circuitry and hermetic TO-39 package. MWA devices processed for military applications are available to special order.

Device Type	Frequency Range MHz	Gain dB Min/Typ	Supply Voltage Vdc	Output Level 1 dB Compression dBm Typ	Noise Figure (400 MHz) dB Typ
MWA110	0.1-400	13/14	2.9	-2.5	4.0
MWA120	0.1-400	13/14	5.0	+8.2	5.5
MWA130	0.1-400	13/14	5.5	+ 18	7.0
MWA210	0.1-600	9/10	1.75	+1.5	6.0
MWA220	0.1-600	9/10	3.2	+ 10.5	6.5
MWA230	0.1-600	9/10	4.4	+ 18.5	7.5
MWA310	0.1-1000	7/8	1.60	+3.5	6.5
MWA320	0.1-1000	7/8	2.9	+11.5	6.7
MWA330	0.1-1000	-/6.2	4.0	+15.2	9.0

High Reliability RF Transistors

The listed devices are active per QPL-19500 (Qualified Products List). Check with your local Motorola Sales Office or franchised Distributor for current qualification status and additions.

2N2857JAN 2N2857JTX 2N2857JTXV	2N4957JAN 2N4957JTX 2N4957JTXV	
2N3553JAN 2N3553JTX 2N3553JTXV	2N5109JAN 2N5109JTX 2N5109JTXV	
2N3866JAN 2N3866JTX 2N3866JTXV	2N6603JAN 2N6603JTX 2N6603JTXV	
2N3866AJAN 2N3866AJTX 2N3866AJTXV	2N6604JAN 2N6604JTX 2N6604JTXV	
2N3960JAN 2N3960JTX 2N3906JTXV		

Transistor Complements

The transistor complements listed are suitable for most applications requiring NPN and PNP devices of similar RF characteristics. If your application demands special matching of complementary transistors, please contact your local Motorola Sales Office or Motorola distributors.

NPN	PNP
2N2857	2N4958
2N3553	MM4019
2N3866	2N5160
2N3959, 2N3960	2N4260, 2N4261
2N3906JAN	MM4261H
2N5943	2N5583
MRF531	MRF532
MRF904	MM4049
MRF571	MRF536

Devices for Hi-Rel Applications

Motorola offers over 650 devices listed in QPL-19500, and is certified to supply small-signal bipolar devices to ALL FOUR quality levels of MIL-S-19500: JAN, JANTX, JANTXV, and JANS.

The following tables list the Motorola discrete devices and slash-sheet number as they appear on the Qualified Products List.

Switching and High-Frequency Transistors

	MIL-S-19		
2N703 JAN	/153	2N3250A JAN,JTX,JTXV	. /323
2N706 JAN	/120	2N3251A JAN,JTX,JTXV	/323
2N708 JAN,JTX		2N3253 JAN	
2N718A JAN,JTX,JTXV	/181	2N3444 JAN,JTX	
2N869A JAN,JTX	/283	2N3467 JAN,JTX,JTXV	. /348
2N914 JAN,JTX	/373	2N3468 JAN,JTX,JTXV	. /348
2N916 JAN		2N3485A JAN,JTX	 . /392
2N918 JAN,JTX,JTXV,JANS.	/301	2N3486A JAN,JTX	. /392
2N930 JAN,JTX	/253	2N3498 JAN,JTX,JTXV	. /366
2N1132 JAN	/177	2N3499 JAN,JTX,JTXV	 . /366
2N1613 JAN,JTX,JTXV	/181	2N3500 JAN,JTX,JTXV	. /366
2N2218 JAN,JTX,JTXV	251	2N3501 JAN,JTX,JTXV	 . /366
2N2218A JAN,JTX,JTXV	/251	2N3506 JAN,JTX,JTXV	. /349
2N2219 JAN,JTX,JTXV	/251	2N3507 JAN,JTX,JTXV	. /349
2N2219A JAN,JTX,JTXV	/251	2N3634 JAN,JTX,JTXV	 . /357
2N22219AL JANS		2N3635 JAN,JTX,JTXV	. /357
2N2221 JAN,JTX,JTXV		2N3636 JAN,JTX,JTXV	
2N2221A JAN,JTX,JTXV		2N3637 JAN,JTX,JTXV	357
2N2222 JAN,JTX,JTXV		2N3700 JAN,JTX,JTXV	391
2N2222A JAN,JTX,JTXV,JANS	225	2N3735 JAN,JTX,JTXV	395
2N2369A JAN,JTX,JTXV,JANS	/317	2N3737 JAN,JTX,JTXV	. /395
2N2481 JAN,JTX		2N3743 JAN,JTX,JTXV	
2N2904 JAN,JTX,JTXV		2N3762 JAN,JTX,JTXV	
2N2904A JAN,JTX,JTXV		2N3763 JAN,JTX,JTXV	
2N2905 JAN,JTX,JTXV		2N3764 JAN,JTX,JTXV	
2N2905A JAN,JTX,JTXV		2N3765 JAN,JTX,JTXV	
2N2905AL JANS		2N4033 JAN,JTX,JTXV	
2N2906 JAN,JTX,JTXV		2N4261 JAN,JTX,JTXV	
2N2906A JAN,JTX,JTXV		2N4405 JAN,JTX,JTXV	
2N2907 JAN,JTX,JTXV		2N4449 JAN,JTX,JTXV	
2N2907A JAN,JTX,JTXV,JANS		2N4453 JAN,JTX	
2N2944A JAN,JTX,JTXV		2N4930 JAN,JTX,JTXV	
2N2945A JAN,JTX,JTXV		2N4931 JAN,JTX,JTXV	
2N2946A JAN,JTX,JTXV		2N5581 JAN,JTX	
2N3013 JAN,JTX		2N5582 JAN,JTX	. /423
2N3019,S JAN,JTX,JTSV	391		

RF Transistors

	MIL-S-19		
2N918 JAN,JTX,JTXV,JANS	/301	2N3959 JAN,JTX,JTXV	399
2N2857 JAN,JTX,JTXV	343	2N3960 JAN,JTX,JTXV	399
2N3375 JAN,JTX,JTXV	/341	2N4957 JAN,JTX,JTXV	426
2N3553 JAN,JTX,JTXV	/341	2N5109 JAN,JTX,JTXV	453
2N3866 JAN,JTX,JTXV	398	2N6603 JAN,JTXV	522
2N3866A JAN,JTX,JTXV	398	2N6604 JAN,JTXV	522

Multiple Devices

Field-Effect Transistors

MIL-S-19500		MIL-S-19500
2N2060 JAN,JTX,JTXV	70 2N2608 JAN	/295
2N2919 JAN,JTX,JTXV/35	55 2N2609 JAN	/296
2N2920 JAN,JTX,JTXV		/378
2N3810 JAN,JTX,JTXV		
2N3811 JAN,JTX,JTXV/33		/375
2N4854 JAN,JTX,JTXV		/375
2N5793 JAN,JTX,JTXV	95 2N4856 JAN,JTX,JTXV	/385
2N5794 JAN,JTX,JTXV		/385
2N5795 JAN,JTX,JTXV/49	96 2N4858 JAN,JTX,JTXV	/385
2N5796 JAN,JTX,JTXV	96 2N4859 JAN,JTX,JTXV	/385
	2N4860 JAN,JTX,JTXV	/385
	2N4861 JAN,JTX,JTXV	/385
	2N4091 JAN,JTX,JTXV	/431
	2N4092 JAN,JTX,JTXV	/431
	2N4093 JAN,JTX,JTXV	/431

Motorola's small-signal TO-92 plastic transistors encompass hundreds of devices spanning the gamut from general-purpose amplifiers and switches with a wide variety of characteristics to dedicated special-purpose devices for the most demanding applications. The popular high-volume TO-92 package combines proven reliability, performance, economy and convenience to provide the perfect solution for industrial and consumer design problems.

As an additional service to our customers Motorola will, upon request, supply the following:

- Radial tape and reel
- · Axial tape and reel
- TO-5 lead forming
- TO-18 lead forming

Contact your Motorola representative for ordering information.

Plastic-Encapsulated Small-Signal Transistors

2N3903 2N3904

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltge	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 2.8	mW mW/°C
*Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

*THERMAL CHARACTERISTICS

THE HAME OF A TOTAL TOTAL TOTAL			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

^{*}Indicates Data in addition to JEDEC Requirements.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)		V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V _(BR) CBO	60	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		V(BR)EBO	6.0	_	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		IBL	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		ICEX	-	50	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) ($I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$)	2N3903 2N3904	hFE	20 40	_	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3903 2N3904		35 70	=	
(IC = 10 mAdc, V_{CE} = 1.0 Vdc)	2N3903 2N3904		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3903 2N3904		30 60	_	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3903 2N3904		15 30	=	
Collector-Emitter Saturation Voltage(1) (IC = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		VCE(sat)	_	0.2 0.3	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		V _{BE(sat)}	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	2N3903 2N3904	fT	250 300	_	MHz

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

	Characteristic		Symbol	Min	Max	Unit
Output Capacitance (V _{CB} = 5.0 Vdc, I	E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, I	C = 0, f = 1.0 MHz)		C _{ibo}	_	8.0	pF
Input Impedance (I _C = 1.0 mAdc, \	/ _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	k ohms
Voltage Feedback R (I _C = 1.0 mAdc, \	atio $I_{CE} = 10 \text{ Vdc, f} = 1.0 \text{ kHz}$	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10-4
Small-Signal Currer (I _C = 1.0 mAdc, \	nt Gain /CE = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{fe}	50 100	200 400	
Output Admittance (I _C = 1.0 mAdc, \	/ _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μ Adc, \frac{1}{2} f = 10 Hz to 15.7	/ _{CE} = 5.0 Vdc, R _S = 1.0 k ohms, kHz)	2N3903 2N3904	NF	=	6.0 5.0	dB
SWITCHING CHAR	ACTERISTICS		850 1	Mary 13	N. 1935	
Delay Time			- t _d	-	35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$		tr	_	35	ns

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc},$		td	-	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		tr	_	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _S		175 200	ns
Fall Time			tf	_	50	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 – DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT

FIGURE 2 – STORAGE AND FALL TIME EQUIVALENT TEST CIRCUIT

^{*}Total shunt capacitance of test jig and connectors

TYPICAL TRANSIENT CHARACTERISTICS

--- T_J = 25°C --- T_J = 125°C

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS

h PARAMETERS

(VCF = 10 Vdc, f = 1.0 kHz, TA = 25°C)

TYPICAL STATIC CHARACTERISTICS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Power Dissipation @ T _A = 60°C	PD	250	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

2N3905 2N3906

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V(BR)EBO	5.0		Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)		IBL	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)		CEX	_	50	nAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$)	2N3905 2N3906	hFE	30 60	_	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3905 2N3906		40 80	_	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3905 2N3906		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3905 2N3906		30 60	_	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3905 2N3906		15 30	_	
Collector-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 50$ mAdc, $I_B = 5.0$ mAdc)		V _{CE(sat)}	_ = /	0.25 0.4	Vdc
Base-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 50$ mAdc, $I_B = 5.0$ mAdc)		V _{BE(sat)}	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	2N3905 2N3906	fT	200 250	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	4.5	pF

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

	Characteristic		Symbol	Min	Max	Unit
Input Capacitance (VBE = 0.5 Vdc, Ic	c = 0, f = 100 kHz)		C _{ibo}	_	10.0	pF
Input Impedance (I _C = 1.0 mAdc, V	CE = 10 Vdc, f = 1.0 kHz)	2N3905 2N3906	h _{ie}	0.5 2.0	8.0 12	k ohms
Voltage Feedback Ra (I _C = 1.0 mAdc, V	atio CE = 10 Vdc, f = 1.0 kHz)	2N3905 2N3906	h _{re}	0.1 0.1	5.0 10	X 10 ⁻⁴
Small-Signal Current $(I_C = 1.0 \text{ mAdc, V})$	t Gain CE = 10 Vdc, f = 1.0 kHz)	2N3905 2N3906	h _{fe}	50 100	200 400	-
Output Admittance (I _C = 1.0 mAdc, V	CE = 10 Vdc, f = 1.0 kHz)	2N3905 2N3906	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure ($I_C = 100 \mu Adc$, $V_{CE} = 5.0 Vdc$, $R_S = 1.0 k ohm$, $f = 10 Hz to 15.7 kHz$)		2N3905 2N3906	NF	_	5.0 4.0	dB
SWITCHING CHARA	ACTERISTICS					
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$		t _d	_	35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$		tr	_	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _{B1} = I _{B2} = 1.0 mAdc)	2N3905 2N3906	t _S	_	200 225	ns
Fall Time		2N3905	tf	_	60	ns

2N3906

FIGURE 1 – DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT

FIGURE 2 – STORAGE AND FALL TIME EQUIVALENT TEST CIRCUIT

75

*Total shunt capacitance of test jig and connectors

TRANSIENT CHARACTERISTICS T_J = 25°C --- T_J = 125°C

FIGURE 4 - CHARGE DATA = 40 V 3000 2000 1000 CHARGE (pC) 700 500 d 300 200 100 70 5.0 7.0 10 70 100 200 20 3.0 Ic. COLLECTOR CURRENT (mA)

⁽¹⁾ Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

AUDIO SMALL SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

h PARAMETERS

 $(V_{CE}=10\ Vdc$, $f=1.0\ kHz$, $T_A=25^{\circ}C)$

STATIC CHARACTERISTICS

2N4123 2N4124

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N4123	2N4124	Unit		
Collector-Emitter Voltage	VCEO	30	25	Vdc		
Collector-Base Voltage	VCBO	40	30	Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	IC	200		mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 1.0 \text{ mAdc}, I_E = 0)$	2N4123 2N4124	V(BR)CEO	30 25	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N4123 2N4124	V(BR)CBO	40 30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)		ICBO	_	50	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 2.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc)	2N4123 2N4124 2N4123	hFE	50 120	150 360	_
(IC = 20 MAGC, ACE = 1.0 AGC)	2N4123 2N4124		60	=	
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)		VCE(sat)	_	0.3	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$		V _{BE(sat)}	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	2N4123 2N4124	fT	250 300	=	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ MHz}$)		C _{obo}	_	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 100 kHz)		C _{ibo}	_	8.0	pF
Collector-Base Capacitance (I _E = 0, V _{CB} = 5.0 V, f = 100 kHz)		C _{cb}	_	4.0	pF
Small-Signal Current Gain (I $_{C}=2.0$ mAdc, $V_{CE}=10$ Vdc, $f=1.0$ kHz)	2N4123 2N4124	h _{fe}	50 120	200 480	_

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Det	Symbol	Min	Max	Unit
Current Gain — High Frequency		hfe			_
$(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$	2N4123		2.5	_	975
	2N4124		3.0	· ·	
$(I_C = 2.0 \text{ mAdc}, V_{CF} = 10 \text{ V}, f = 1.0 \text{ kHz})$	2N4123		50	200	
$(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz})$	2N4124		120	480	
Noise Figure		NF			dB
$(I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc, R_S = 1.0 kohm,$	2N4123			6.0	5533.0-3
Noise Bandwidth = 10 Hz to 15.7 kHz)	2N4124			5.0	100

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

AUDIO SMALL SIGNAL CHARACTERISTICS

h PARAMETERS

VCE = 10 V, f = 1 kHz, TA = 25°C

STATIC CHARACTERISTICS

2N4125 2N4126

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTORS

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N4125	2N4126	Unit		
Collector-Emitter Voltage	VCEO	30	25	Vdc		
Collector-Base Voltage	VCBO	30	25	Vdc		
Emitter-Base Voltage	VEBO	4.0		4.0		Vdc
Collector Current — Continuous	Ic	200		mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0		Watt mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 1.0 \text{ mAdc}, I_E = 0)$	2N4125 2N4126	V(BR)CEO	30 25	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	2N4125 2N4126	V _(BR) CBO	30 25	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)		ICBO	_	50	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)		IEBO	_	50	nAdc
ON CHARACTERISTICS				5	
DC Current Gain(1) $(I_{C} = 2.0 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc})$ $(I_{C} = 50 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc})$	2N4125 2N4126 2N4125	hFE	50 120 25	150 360 —	_
Collector-Emitter Saturation Voltage(1) (IC = 50 mAdc, I _B = 5.0 mAdc)	2N4126	V _{CE(sat)}	60	0.4	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{BE(sat)}	_	0.95	Vdc	
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product $(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$	2N4125 2N4126	fT	200 250	_	MHz
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	10	pF
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0 , f = 1.0 MHz)		C _{cb}	_	4.5	pF
Small-Signal Current Gain (IC = 2.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N4125 2N4126	h _{fe}	50 120	200 480	_
Current Gain — High Frequency (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	2N4125 2N4126	h _{fe}	2.0 2.5	=	
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _G = 1.0 k ohm, Noise Bandwidth = 10 Hz to 15.7 kHz)	NF	=	5.0 4.0	dB	

MOTOROLA SEMICONDUCTORS

AUDIO SMALL SIGNAL CHARACTERISTICS NOISE FIGURE

h PARAMETERS

STATIC CHARACTERISTICS FIGURE 9 - DC CURRENT GAIN 2.0 T_J = +125°C +25°C hFE. DC CURRENT GAIN (NORMALIZED) 1.0 -55°C 0.7 0.5 0.3 0.2 0.1 0.5 0.7 5.0 30 200 Ic. COLLECTOR CURRENT (mA)

2N4264 2N4265

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N4264	2N4265	Unit		
Collector-Emitter Voltage	VCEO	15	12	Vdc		
Collector-Base Voltage	VCBO	30		Vdc		
Emitter-Base Voltage	VEBO	6.0		Vdc		
Collector Current — Continuous	1 _C	200		200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		100-		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +150		°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	200	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_E = 0)$	2N4264 2N4265	V(BR)CEO	15 12	=	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V(BR)CBO	20	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V(BR)EBO	6.0	_	Vdc
Base Cutoff Current $ \begin{array}{ll} (V_{CE}=12~Vdc,~V_{EB\{off\}}=0.25~Vdc)\\ (V_{CE}=12~Vdc,~V_{EB\{off\}}=0.25~Vdc,~T_{A}=100^{\circ}C) \end{array} $		IBEV	_	0.1 10	μAdc
Collector Cutoff Current (V _{CE} = 12 Vdc, V _{EB(off)} = 0.25 Vdc)		CEX	-	100	nAdc
ON CHARACTERISTICS					
DC Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N4264 2N4265	hFE	25 30	_	_
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N4264 2N4265		40 100	160 400	
(I _C = 10 mAdc, V _{CE} = 1.0 Vdc, $T_A = -55$ °C)	2N4264 2N4265		20 45	_	
(I _C = 30 mAdc, V_{CE} = 1.0 Vdc)	2N4264 2N4265		40 90	=	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$	2N4264 2N4265		30 55	=	
$(I_C = 200 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$	2N4264 2N4265		20 35	=	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)(1)		VCE(sat)	_	0.22 0.35	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)(1)		V _{BE} (sat)	0.65 0.75	0.80 0.95	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

	Symbol	Min	Max	Unit	
SMALL-SIGNAL CHAR	ACTERISTICS	l y			
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)			350	_	MHz
Input Capacitance (VBE = 0.5 Vdc, IC =	0, f = 1.0 MHz)	C _{ibo}		8.0	pF
Collector-Base Capacita (V _{CB} = 5.0 Vdc, I _E =	C _{cb}	_	4.0	pF	
SWITCHING CHARACT	ERISTICS				
Delay Time	(V _{CC} = 10 Vdc, V _{EB(off)} = 2.0 Vdc,	td	-	8.0	ns
Rise Time	I _C = 100 mAdc, I _{B1} = 10 mAdc) (Fig. 1, Test Condition C)	t _r	-	15	ns
Storage Time	$V_{CC} = 10 \text{ Vdc}, (I_{C} = 10 \text{ mAdc}, \text{ for } t_{S})$	ts	_	20	ns
Fall Time	$(I_C = 100 \text{ mA for } t_f)$ $I_{B1} = I_{B2} = 10 \text{ mAdc})$ (Fig. 1, Test Condition C)	tf	-	15	ns
Turn-On Time	(V _{CC} = 3.0 Vdc, V _{EB(off)} = 1.5 Vdc, I _C = 10 mAdc, I _{B1} = 3.0 mAdc) (Fig. 1, Test Condition A)	ton	_	25	ns
Turn-Off Time	(V _{CC} = 3.0 Vdc, I_C = 10 mAdc, I_{B1} = 3.0 mAdc, I_{B2} = 1.5 mAdc) (Fig. 1, Test Condition A)	toff	_	35	ns
Storage Time	(V _{CC} = 10 Vdc, I _C = 10 mA I _{B1} = I _{B2} = 10 mAdc) (Fig. 1, Test Condition A)	t _S	-	20	ns
Total Control Charge	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _B = mAdc) (Fig. 1, Test Condition B)	Ω _T	_	80	pC

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

FIGURE 1 — SWITCHING TIME EQUIVALENT TEST CIRCUIT

TEST CONDITION	Ic	Vcc	RB	Rc	Csimes	V _{EB(off)}	٧,	V ₂	٧,
	mA	٧	Ω	Ω	pF	٧	٧	٧	٧
A	10	3	3300	270	4	-1.5	10.55	-4.15	10.70
В	10	10	560	960	4	1-1	-	-4.65	6.55
C	100	10	560	96	12	-2.0	6.35	-4.65	6.55

CURRENT GAIN CHARACTERISTICS

FIGURE 2 - MINIMUM CURRENT GAIN

FIGURE 3 - QT TEST CIRCUIT

FIGURE 4 - TURN-OFF WAVEFORM

NOTE 1

When a transistor is held in a conductive state by a base current,

when a transistor is neid in a conductive state by a base current, $I_{\rm s}$, a charge, $Q_{\rm s}$, is developed or "stored" in the transistor, $Q_{\rm s}$ may be written: $Q_{\rm s}=Q_{\rm t}+Q_{\rm v}+Q_{\rm s}$. $Q_{\rm t}$ is the charge required to develop the required collector current. This charge is primarily a function of alpha cutoff frequency, $Q_{\rm v}$ is the charge required to charge the collector-base feedback capacity, $Q_{\rm x}$ is excess charge resulting from overdrive, i.e., operation in

The charge required to turn a transistor "on" to the edge of saturation is the sum of Q_1 and Q_{ν} which is defined as the active region charge, Q_A . $Q_A = I_{BI}t$, when the transistor is driven by a constant cur-

rent step (I_B) and I_B) $<<\frac{r_G}{h_{FB}}$

If I₈ were suddenly removed, the transistor would continue to conduct until Qs is removed from the active regions through an external path or through internal recombination. Since the internal recombination time is long compared to the ultimate capability of a transistor, a charge, Q_{τ} , of opposite polarity, equal in magnitude, can be stored on an external capacitor. C, to neutralize the internal charge and considerably reduce the turn-off time of the transistor. Figure 3 shows the test circuit and Figure 4 the turn-off waveform. Given Q_T from Figure 13, the external C for worst-case turn-off in any circuit is: $C = Q_T/\triangle V$, where $\triangle V$ is defined in Figure 3.

"ON" CONDITION CHARACTERISTICS

FIGURE 5 — COLLECTOR SATURATION REGION

DYNAMIC CHARACTERISTICS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

2N4400 2N4401

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)		V _(BR) CEO	40	_	Vdc
Collector-Base Breakdown Voltage $(I_C = 0.1 \text{ mAdc}, I_E = 0)$		V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$		V(BR)EBO	6.0	_	Vdc
Base Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)		IBEV	_	0.1	μAdc
Collector Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)		ICEX	_	0.1	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	2N4401	hFE	20	_	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N4400 2N4401		20 40	_	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N4400 2N4401		40 80	_	
($I_C = 150 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	2N4400 2N4401		50 100	150 300	
$(I_C = 500 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	2N4400 2N4401		20 40	_	
Collector-Emitter Saturation Voltage (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc)		VCE(sat)		0.4 0.75	Vdc
Base-Emitter Saturation Voltage (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc)		V _{BE} (sat)	0.75	0.95 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (IC = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	2N4400 2N4401	fT	200 250	=	MHz
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I_E = 0, f = 100 kHz)		C _{cb}	_	6.5	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Emitter-Base Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)	44B)	C _{eb}	-	30	pF
Input Impedance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N4400 2N4401	h _{ie}	0.5 1.0	7.5 15	k ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	plan y	h _{re}	0.1	8.0	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N4400 2N4401	hfe	20 40	250 500	
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	30	μmhos

SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = 30 Vdc, V _{EB} = 2.0 Vdc,	td	NO.91	15	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	t _r	_	20	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _S	_	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$	tf	_	30	ns

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

TRANSIENT CHARACTERISTICS

SMALL-SIGNAL CHARACTERISTICS

h PARAMETERS

 $V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$

This group of graphs illustrates the relationship between $h_{\rm fe}$ and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were

selected from both the 2N4400 and 2N4401 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

STATIC CHARACTERISTICS

2N4402 2N4403

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			-	+444	
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAd	c, I _B = 0)	V(BR)CEO	40	20-	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E	= 0)	V(BR)CBO	40		Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C =	0)	V(BR)EBO	5.0		Vdc
Base Cutoff Current (V _{CE} = 35 Vdc, V _{BE} = 0.4 Vdc)		BEV	_	0.1	μAdc
Collector Cutoff Current (VCE = 35 Vdc, VBE = 0.4 Vd	c)	CEX	_	0.1	μAdc
ON CHARACTERISTICS	Later Devel	ar falligher real	,		-
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$)	2N4403	hFE	30		-
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N4402 2N4403		30 60	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N4402 2N4403		50 100	=	
$(I_C = 150 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})(1)$	2N4402 2N4403		50 100	150 300	
$(I_C = 500 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})(1)$	Both		20	_	
Collector-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)		VCE(sat)	=	0.4 0.75	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)		VBE(sat)	0.75	0.95 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 20 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	2N4402 2N4403	fT	150 200	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)		C _{cb}	_	8.5	pF
Emitter-Base Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 140 kHz)		C _{eb}	_	30	pF
Input Impedance (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N4402 2N4403	h _{ie}	750 1.5k	7.5k 15k	ohms

2N4402, 2N4403

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{re}	0.1	8.0	X 10-4
Small-Signal Current Ga (I _C = 1.0 mAdc, V _{CE} :	in = 10 Vdc, f = 1.0 kHz) 2N4402 2N4403	h _{fe}	30 60	250 500	_
Output Admittance (I _C = 1.0 mAdc, V _{CE}	= 10 Vdc, f = 1.0 kHz)	h _{oe}	1.0	100	μmhos
SWITCHING CHARACTE	ERISTICS	100			
Delay Time	(Vcc = 30 Vdc, Vgc = 2.0 Vdc,	td	_	15	ns

Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE} = 2.0 \text{ Vdc},$	t _d	-	15	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	tr	_	20	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _S	-	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$	tf	-	30	ns

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

TRANSIENT CHARACTERISTICS

SMALL-SIGNAL CHARACTERISTICS

h PARAMETERS

VCE = 10 Vdc, f = 1 kHz, TA = 25°C

This group of graphs illustrates the relationship between h_{fs} and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were selected from both the

2N4402 and 2N4403 lines, and the same units were used to develop the correspondingly-numbered curves on each graph.

STATIC CHARACTERISTICS

MAXIMUM RATINGS

Rating	Symbol	2N4409	2N4410	Unit
Collector-Emitter Voltage	VCEO	50	80	Vdc
Collector-Base Voltage	VCBO	80	120	Vdc
Emitter-Base Voltage	VEBO	BO 5.0		Vdc
Collector Current — Continuous	lc	250		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

2N4409 2N4410

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N5550 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) $ (I_{\hbox{\scriptsize C}}=1.0 \text{ mAdc}, I_{\hbox{\scriptsize B}}=0) $ 2N4409 2N4410	V(BR)CEO	50 80		Vdc
Collector-Emitter Breakdown Voltage (IC = 500 μ Adc, VBE = 5.0 Vdc, RBE = 8.2 kohms) 2N4409 2N4410	V(BR)CEX	80 120	Ferni Sans	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0) 2N4409 2N4410	V(BR)CBO	80 120	7 7	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	5.0	SCHOOL STA	Vdc
	ICBO	ass in the	0.01 1.0 0.01 1.0	μAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, IC = 0)	IEBO	14.50.T	0.1	μAdc
ON CHARACTERISTICS		Ar not most	at the table	10000
DC Current Gain (I _C = 1.0 mAdc, V_{CE} = 1.0 Vdc) (I _C = 10 mAdc, V_{CE} = 1.0 Vdc)	hFE	60 60	400	
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc)	V _{CE(sat)}	pu <u>z</u> . i e	0.2	Vdc
Base-Emitter Saturation Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$)	V _{BE(sat)}	5 1 <u>T</u> H	0.8	Vdc
Base-Emitter On Voltage ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	V _{BE(on)}	tothe To (1)	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS	CHW II		0135	
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 30 MHz)	fT	60	300	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 140 \text{ kHz}$, emitter guarded)	C _{cb}	t self-to-	12	pF
Emitter-Base Capacitance ($V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 140 \text{ kHz}, \text{ collector guarded}$)	C _{eb}		50	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ f_T = |h_{fe}| • f_{test}.

2N5086 2N5087

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	VCBO	50	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	357	°C/W

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic			Symbol	Min	Max	Unit
OFF CHARACTERISTICS					,	
Collector-Emitter Breakdown Voltage(2) (I _C = 1.0 mAdc, I _B = 0)			V _(BR) CEO	50	3 - 1507	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	Piler		V(BR)CBO	50	_	Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 35 \text{ Vdc}, I_E = 0)$	10/ 10 m		ICBO	ev _	10 50	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)			IEBO	_	50	nAdc
ON CHARACTERISTICS				Seed a		N. september
DC Current Gain (IC = 100 μ Adc, VCE = 5.0 Vdc)	2N5086 2N5087		hFE	150 250	500 800	0 -0
(I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc)	2N5086 2N5087			150 250	(E)	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})(2)$	2N5086 2N5087			150 250		121
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		-	V _{CE(sat)}		0.3	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)			V _{BE(on)}	_	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 500 μ Adc, V _{CE} = 5.0 Vdc, f = 20 MHz)		1 34 5 4	fT	40	-0-	MHz
Collector-Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)			C _{cb}	_	4.0	pF
Small-Signal Current Gain (IC = 1.0 mAdc, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N5086 2N5087	12	h _{fe}	150 250	600 900	18.7
Noise Figure (I _C = 20 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k ohms, f = 10 Hz to 15.7 kHz)	2N5086 2N5087	20516	NF		3.0 2.0	dB
(I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 3.0 k ohms, f = 1.0 kHz)	2N5086 2N5087			_	3.0 2.0	

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

100

TYPICAL NOISE CHARACTERISTICS (V_{CE} = 5.0 Vdc, T_A = 25°C)

NOISE FIGURE CONTOURS (V_{CE} = 5.0 Vdc, T_A = 25°C)

FIGURE 3 — NARROW BAND, 100 Hz

1.0 M

500 k

8 Bandwidth = 1.0 Hz

1.0 M

20 k

10 k

10 k

2.0 dB

3.0 dB

2.0 dB

2.0 dB

70 100

IC, COLLECTOR CURRENT (µA)

300

Noise Figure is Defined as:

NF = 20 log₁₀
$$\left[\frac{e_n^2 + 4KTRS + I_n^2RS^2}{4KTRS} \right] \frac{1}{2}$$

e_n = Noise Voltage of the Transistor referred to the input. (Figure 3)

In = Noise Current of the transistor referred to the input (Figure 4)

 $K = Boltzman's Constant (1.38 \times 10^{-23} j/^{o}K)$

T = Temperature of the Source Resistance (OK)

Rs = Source Resistance (Ohms)

TYPICAL STATIC CHARACTERISTICS

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 17 - THERMAL RESPONSE

FIGURE 18 - ACTIVE-REGION SAFE OPERATING AREA

The safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 20 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 19. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. (See AN-415A).

FIGURE 19 — TYPICAL COLLECTOR LEAKAGE CURRENT

DESIGN NOTE: USE OF THERMAL RESPONSE DATA

A train of periodical power pulses can be represented by the model as shown in Figure 19A. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 19 was calculated for various duty cycles.

To find $Z_{\theta JA(t)}$, multiply the value obtained from Figure 19 by the steady state value $R_{\theta JA}$. Example:

The MPS3905 is dissipating 2.0 watts peak under the following conditions:

t1 = 1.0 ms, t2 = 5.0 ms (D = 0.2)

Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22.

The peak rise in junction temperature is therefore

 $\Delta T = r(t) \times P_{(pk)} \times R_{\theta} JA = 0.22 \times 2.0 \times 200 = 88^{\circ}C.$ For more information, see AN-569.

MAXIMUM RATINGS

Rating	Symbol	2N5088	2N5089	Unit
Collector-Emitter Voltage	VCEO	30	25	Vdc
Collector-Base Voltage	V _{CBO}	35	30	Vdc
Emitter-Base Voltage	VEBO	4.5		Vdc
Collector Current — Continuous	Ic	50		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	R _θ J _A (1)	357	°C/W

2N5088 2N5089

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPSA18 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	2N5088 2N5089	V(BR)CEO	30 25	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	2N5088 2N5089	V(BR)CBO	35 30	=	Vdc
Collector Cutoff Current ($V_{CB} = 20 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 15 \text{ Vdc}$, $I_{E} = 0$)	2N5088 2N5089	ICBO	=	50 50	nAdc
Emitter Cutoff Current $(V_{EB(off)} = 3.0 \text{ Vdc}, I_C = 0)$ $(V_{EB(off)} = 4.5 \text{ Vdc}, I_C = 0)$		IEBO	_	50 100	nAdc
ON CHARACTERISTICS				- China	
DC Current Gain ($I_C = 100 \mu Adc$, $V_{CE} = 5.0 Vdc$)	2N5088 2N5089	hFE	300 400	900 1200	- -
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5088 2N5089		350 450	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})(2)$	2N5088 2N5089		300 400	<u></u>	1
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{CE(sat)}	_	0.5	Vdc
Base-Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)(2)		V _{BE(on)}	· ·	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 500 \mu Adc$, $V_{CE} = 5.0 Vdc$, $f = 20 MHz$)		fT	50		MHz
Collector-Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	**************************************	C _{cb}		4.0	pF
Emitter-Base Capacitance $(V_{BE}=0.5\ Vdc,\ I_{C}=0,\ f=100\ kHz)$		C _{eb}	_	10	pF
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N5088 2N5089	h _{fe}	350 450	1400 1800	_
Noise Figure ($I_C = 100 \mu Adc$, $V_{CE} = 5.0 Vdc$, $R_S = 10 kohms$, $f = 10 Hz$ to 15.7 kHz)	2N5088 2N5089	NF	_	3.0 2.0	dB

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N5208

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	65 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	R ₀ JA(1)	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			Colpania.	ET CHARLA
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, I _B = 0)	V(BR)CEO	25	N Z tyr	Vdc
Collector-Base Breakdown Voltage (IC = 0.1 mAdc, IE = 0)	V(BR)CBO	30	on white	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	3.0	106 <u>—</u> 0 Po	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ICBO	Total Car	10	nAdc
Emitter Cutoff Current (VBE = 2.0 Vdc, IC = 0)	IEBO	_	100	nAdc
ON CHARACTERISTICS		arm f	171-1	
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc)	hFE	20	120	_
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 10 Vdc)	V _{BE(on)}	_	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (IC = 2.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	300	1200	MHz
Input Capacitance (VBE = 2.0 Vdc, IC = 0, f = 1.0 MHz)	C _{ibo}	_	4.0	pF
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{cb}	-	1.0	pF
Collector Base Time Constant ($I_E = 2.0 \text{ mAdc}$, $V_{CB} = 10 \text{ Vdc}$, $f = 31.8 \text{ MHz}$)	rb'C _C		10	ps
Noise Figure ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $R_S = 75 \text{ ohms}$, $f = 100 \text{ MHz}$, $BW = 1.0 \text{ MHz}$)	NF		3.0	dB
FUNCTIONAL TEST			1 11 11 11	OH HE
Amplifier Power Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	Gpe	22		dB

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

FIGURE 1 - 100 MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT

COMMON-EMITTER Y PARAMETERS (Polar Plots)

VCE = 10 Vdc, TA = 25°C

FIGURE 2 - INPUT ADMITTANCE

FIGURE 3 - OUTPUT ADMITTANCE

FIGURE 4 - FORWARD TRANSFER ADMITTANCE

FIGURE 5 - REVERSE TRANSFER ADMITTANCE

STABILITY FACTOR CURVE

FIGURE 6 - POWER GAIN AND NOISE FIGURE 35 f = 100 MHz VCE = 10 V 30 Rs = 75 Ohms 12 NOISE FIGURE (4B) POWER GAIN (dB) 10 20 8.0 NF Gpe 5.0 2.0 0 1.0 3.0 4.0 5.0 6.0 7.0 IC, COLLECTOR CURRENT (mAdc)

COMMON-EMITTER Y PARAMETERS vs FREQUENCY

VCE = 10 Vdc, TA = 25°C

FIGURE 8 - INPUT ADMITTANCE

FIGURE 9 - OUTPUT ADMITTANCE

FIGURE 10 - FORWARD TRANSFER ADMITTANCE

FIGURE 11 - REVERSE TRANSFER ADMITTANCE

STABILITY FACTOR CURVES

FIGURE 12 - OPTIMUM SOURCE ADMITTANCE

FIGURE 13 - OPTIMUM LOAD ADMITTANCE

When a potentially unstable device is operated without feedback, there is an infinite number of combinations of source and load admittance associated with any given circuit stability factor (k). Equations have been developed for determining the optimum source and load admittance for maximum gain. Figures 7, 12 and 13 provide a solution to the equations for the 2N5208.

NOISE FIGURE

FIGURE 14 - FREQUENCY EFFECTS

FIGURE 15 - SOURCE RESISTANCE EFFECTS

FIGURE 16 - CURRENT-GAIN - BANDWIDTH PRODUCT

FIGURE 17 - CAPACITANCES

\$3000 CALACA TO TATABLE

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	VEBO	4.5	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	357	°C/W

2N5209 2N5210

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPSA18 for graphs.

ELECTRICAL	CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)
	Characteristic

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				1287 Wall 178	E. (15.)
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	50	Transition of the	Vdc
Collector-Base Breakdown Voltage $(I_C = 0.1 \text{ mAdc}, I_E = 0)$		V(BR)CBO	50	1 (2)	Vdc
Collector Cutoff Current (V _{CB} = 35 Vdc, I _E = 0)		ICBO		50	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		I _{EBO}	_	50	nAdc
ON CHARACTERISTICS				province to	no sedio
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	2N5209 2N5210	hFE	100 200	300 600	Sparth in
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5209 2N5210		150 250	===	
$(I_C = 10 \text{ mAdc, } V_{CE} = 5.0 \text{ Vdc})(2)$	2N5209 2N5210		150 250	GES (TOPAN)	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{CE(sat)}	PER TOUR	0.7	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	-	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS				C - BUO	5.133
Current-Gain — Bandwidth Product ($I_C = 500 \mu Adc$, $V_{CE} = 5.0 Vdc$, $f = 20 MHz$)		fT	30	e openis	MHz
Collector-Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	beed sometimes a gate of	C _{cb}	1007	4.0	pF
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N5209 2N5210	h _{fe}	150 250	600 900	=
Noise Figure (I _C = 20 μ Adc, V _{CE} = 5.0 Vdc, R _S = 22 k ohms, f = 10 Hz to 15.7 kHz)	2N5209 2N5210	NF	_	3.0 2.0	dB
(I_C = 20 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k ohms, f = 1.0 kHz)	2N5209 2N5210		_	4.0 3.0	

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	2.0	Vdc
Collector Current — Continuous	Ic	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			TO CHARLES	MARL R
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	15		Vdc
Collector-Base Breakdown Voltage (IC = $100 \mu Adc$, IE = 0)	V(BR)CBO	20	1-1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	2.0	77-	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ІСВО	_	100	nAdc
Emitter Cutoff Current (VBE = 2.0 Vdc, I _C = 0)	IEBO	_	100	nAdc
ON CHARACTERISTICS		- V -		
DC Current Gain(2) (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	hFE	20	150	_
Collector-Emitter Saturation Voltage (IC = 4.0 mAdc, IB = 400 μ Adc)	VCE(sat)	_	1.0	Vdc
Base-Emitter On Voltage (I _C = 4.0 mAdc, I _B = 400 μAdc)	V _{BE(on)}	C	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product $\{I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz}\}$	fτ	450	ngaer V of	MHz
Collector-Base Capacitance (VCB = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}		1.3	pF
Small-Signal Current Gain ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	20	300	(6) (<u>—)</u> (6)

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

COMMON-BASE y PARAMETERS versus FREQUENCY

 $(V_{CB} = 10 \text{ Vdc}, I_{C} = 4.0 \text{ mAdc}, T_{A} = 25^{\circ}\text{C})$

yib, INPUT ADMITTANCE

yfb, FORWARD TRANSFER ADMITTANCE

FIGURE 3 - RECTANGULAR FORM

COMMON-BASE y PARAMETERS versus FREQUENCY

 $(V_{CB} = 10 \text{ Vdc}, I_{C} = 4.0 \text{ mAdc}, T_{A} = 25^{\circ}\text{C})$

yrb, REVERSE TRANSFER ADMITTANCE

yob, OUTPUT ADMITTANCE

FIGURE 7 - RECTANGULAR FORM 10 9.0 yob, OUTPUT ADMITTANCE (mmhos) 6.0 4.0 3.0 2.0 1.0 0 100 300 400 700 1000 f, FREQUENCY (MHz)

WWW. Common Common		State of the Land of the Control of	
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	357	°C/W

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

2N5223

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N3903 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				MATERIAL AND AND
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	20	- 1 - 1 m	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	25		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	3.0	at	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ICBO	_	100	nAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	I _{EBO}	-	500	nAdc
ON CHARACTERISTICS			COLSCIA	MINAPEL V
DC Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	hFE	50	800	0 - J
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	SHOP OF SE	0.7	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VBE(sat)	3 <u>-</u> 2000	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS		Talling I		
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	150	WO WE	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	6.1 <u>36</u> 9-11	4.0	pF
Small-Signal Current Gain (I _C = 2.0 mAdc, V _{CF} = 10 Vdc, f = 1.0 kHz)	h _{fe}	50	1600	2 - <u>a-</u>

2N5224

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	357	°C/W

(1) $R_{\theta,JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

No. of the second	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				Sarahit.	25 × 22 +10
Collector-Emitter Breakdov (I _C = 10 mAdc, I _B = 0)	wn Voltage(2)	V(BR)CEO	12	redarm er	Vdc
Collector-Base Breakdown (I _C = 100 μAdc, I _E = 0)		V _(BR) CBO	25	71-63	Vdc
Emitter-Base Breakdown V $(I_E = 100 \mu Adc, I_C = 0)$		V(BR)EBO	5.0	7,380	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	A-0,	СВО	_	500	nAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, IC = 0)	V ¹	EBO	_	100	μAdc
ON CHARACTERISTICS				10 TP 43	ATHORES
DC Current Gain $(I_C = 10 \text{ mAdc}, V_{CE} = (I_C = 100 \text{ mAdc}, V_{CE} = 100 \text{ mAdc})$		hFE	40 15	400	1000-05 1 301 0 5 dlo
Collector-Emitter Saturation (I _C = 10 mAdc, I _B = 3.0		V _{CE(sat)}	1000	0.35	Vdc
Base-Emitter Saturation V (I _C = 10 mAdc, I _B = 3.0		V _{BE(sat)}	- <u>-</u> /	0.9	Vdc
SMALL-SIGNAL CHARACT	TERISTICS		5 3		ATT TO STORY
Current-Gain — Bandwidth (IC = 10 mAdc, VCE =		f	250		MHz
Collector-Base Capacitano (V _{CB} = 5.0 Vdc, I _E = 0,		C _{cb}	_	4.0	pF
SWITCHING CHARACTER	ISTICS		1 1 1 1	10	0.5
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE(off)} = 1.5 Vdc	t _d	_	25	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 3.0 mAdc)	tr	-	20	ns
Storage Time	(V _{CC} = 3.0 Vdc,	t _S	_	35	ns
Fall Time	$I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 3.0 \text{ mAdc}$	tf	_	25	ns

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

2N5225

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	357	°C/W

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V(BR)CEO	25	i—.	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V(BR)CBO	25	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \ \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ІСВО	_	300	nAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, IC = 0)	IEBO	_	500	nAdc
ON CHARACTERISTICS(2)				
DC Current Gain (I _C = 10 mAdc, V_{CE} = 10 Vdc) (I _C = 50 mAdc, V_{CE} = 10 Vdc)	hFE	25 30	600	-
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	VCE(sat)	_	0.8	Vdc
Base-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{BE} (sat)	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	f _T	50	_	MHz
Collector-Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{cb}	=	20	pF
Small-Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	30	1800	_

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	lc	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	357	°C/W

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

2N5226

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			and the same of	ARA DO H
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	25	Carro G	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	V(BR)CBO	25		Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	4.0	-	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _C = 0)	ІСВО	_	300	nAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, I _C = 0)	IEBO		500	nAdc
ON CHARACTERISTICS(2)			DOMESTIC	ASIANI
DC Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 50 mAdc, V _{CE} = 10 Vdc)	hFE	25 30	600	marit.
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	VCE(sat)	-	0.8	Vdc
Base-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	VBE(sat)	The state of the	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		la marque	1850 Table	112-116M
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fτ	50	-	MHz
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}		20	pF
Small-Signal Current Gain (I _C = 50 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	hfe	30	1800	Ter

2N5227

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N3905 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	Reia(1)	200	°C/W

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			STATE OF THE	FARD R
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 0$)	V(BR)CEO	30		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V(BR)CBO	30	7.00	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	3.0	MA/A	Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, _{E} = 0)$	Ісво		100	nAdc
Emitter Cutoff Current (V _{BE} = 2.0 Vdc, I _C = 0)	IEBO	-	500	nAdc
ON CHARACTERISTICS				Alexander
DC Current Gain ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 2.0 m Adc$, $V_{CE} = 10 Vdc$)	h _{FE}	30 50	— 700	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	Ploy at 0.	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}		1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		- 1.85E		
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	f _T	100		MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	C _{cb}	- T	5.0	pF
Small-Signal Current Gain (I _C = 2.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	50	1500	_

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	5.0	Vdc
Collector-Emitter Voltage	VCES	6.0	Vdc
Collector-Base Voltage	V _{CBO}	5.0	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	lC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	357	°C/W

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

2N5228

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

PNP SILICON

Refer to MPS3640 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown	Voltage(2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V(BR)CEO	5.0	_	Vdc
Collector-Emitter Breakdown	Voltage ($I_C = 100 \mu Adc, V_{BE} = 0$)	V(BR)CES	6.0	_	Vdc
Collector-Base Breakdown Vo	Itage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	5.0	_	Vdc
Emitter-Base Breakdown Volta	age ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	_	Vdc
Collector Cutoff Current (VCI	E = 4.0 Vdc, VBE = 0)	ICES	_	100	nAdc
Emitter Cutoff Current (VBE	= 2.5 Vdc, I _C = 0)	IEBO	_	100	μAdc
ON CHARACTERISTICS					
DC Current Gain $(I_C = 10 \text{ m}.)$ $(I_C = 50 \text{ m}.)$	Adc, V _{CE} = 0.3 Vdc) Adc, V _{CE} = 1.0 Vdc)(2)	hFE	30 15	_	_
Collector-Emitter Saturation V	oltage (I _C = 10 mAdc, I _B = 3.0 mAdc)	VCE(sat)	_	0.4	Vdc
Base-Emitter Saturation Voltage	ge ($I_C = 10 \text{ mAdc}$, $I_B = 3.0 \text{ mAdc}$)	V _{BE(sat)}	0.65	1.25	Vdc
SMALL-SIGNAL CHARACTERI	ISTICS				
Current-Gain — Bandwidth Pre	oduct ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	300	_	MHz
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	5.0	pF
SWITCHING CHARACTERISTI	cs				
Delay Time (Vo	CC = 3.0 Vdc, VBE(off) = 1.5 Vdc	t _d	_	25	ns
	= 10 mAdc, I _{B1} = 3.0 mAdc)	t _r	_	50	ns
Storage Time (Vo	CC = 3.0 Vdc, IC = 10 mA,	t _s	_	90	ns
	I = I _{B2} = 3.0 mAdc)	tf	_	50	ns

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	2N5400	2N5401	Unit
Collector-Emitter Voltage	VCEO	120	150	Vdc
Collector-Base Voltage	VCBO	130	160	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	IC	600		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0		Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

2N5400 2N5401

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR
PNP SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				13	7)
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	2N5400 2N5401	V(BR)CEO	120 150	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \ \mu Adc, I_E = 0$)	2N5400 2N5401	V(BR)CBO	130 160	+=	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	1	V(BR)EBO	5.0	1-1	Vdc
Collector Cutoff Current (VCB = 100 Vdc, IE = 0) (VCB = 120 Vdc, IE = 0) (VCB = 100 Vdc, IE = 0, TA = 100°C) (VCB = 120 Vdc, IE = 0, TA = 100°C)	2N5400 2N5401 2N5400 2N5401	ІСВО	dis	100 50 100 50	nAdc μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)		IEBO	-	50	nAdc
ON CHARACTERISTICS(1)	177		++-		
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	2N5400 2N5401	hFE	30 50	_6.0	8 11
(I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	2N5400 2N5401	LONDER	40 60	180 240	
$(I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5400 2N5401	10V-	40 50	_	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	1/10 -	V _{CE(sat)}	=	0.20 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		V _{BE(sat)}	=	1.0 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	THE RANGE OF				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 Mhz)	2N5400 2N5401	fT	100 100	400 300	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	6.0	pF

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N5400 2N5401	h _{fe}	30 40	200 200	_
Noise Figure (I _C = 250 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 kohm, f = 10 Hz to 15.7 kHz)		NF		8.0	dB

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

1.0 0.9 0.8 0.7 0.6 Ic = 1.0 mA 10 mA 100 mA 0.3 0.2 0.1

FIGURE 6 - SWITCHING TIME TEST CIRCUIT

FIGURE 7 - CAPACITANCES 100 †J = 25°C = 70 50 30 (pF) 20 CAPACITANCE (F c, 3.0 2.0 1.0 0.2 0.3 3.0 0.5 0.7 1.0 2 0 5.0 VR, REVERSE VOLTAGE (VOLTS)

FIGURE 8 - TURN-ON TIME

2N5550 2N5551

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N5550	2N5551	Unit
Collector-Emitter Voltage	VCEO	140	160	Vdc
Collector-Base Voltage	VCBO	160	180	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	lc	600		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	357	°C/W

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			-		
Collector-Emitter Breakdown Voltage(2) (I _C = 1.0 mAdc, I _B = 0)	2N5550 2N5551	V(BR)CEO	140 160	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \ \mu Adc, I_E = 0$)	2N5550 2N5551	V(BR)CBO	160 180	er post	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$		V(BR)EBO	6.0	_	Vdc
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0) (V _{CB} = 120 Vdc, I _E = 0) (V _{CB} = 100 Vdc, I _E = 0, T _A = 100°C) (V _{CB} = 120 Vdc, I _E = 0, T _A = 100°C)	2N5550 2N5551 2N5550 2N5551	ICBO		100 50 100 50	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO		50	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc)	2N5550 2N5551	hFE	60 80	_	_
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5550 2N5551	6917 180 y	60 80	250 250	
$(I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5550 2N5551		20 30		
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	Both Types	VCE(sat)	, <u>32</u> , _	0.15	Vdc
$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	2N5550 2N5551		Ξ	0.25 0.20	-
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	Both Types	VBE(sat)	1	1.0	Vdc
$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	2N5550 2N5551		_	1.2 1.0	

2N5550, 2N5551

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS	1				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	1	fT	100	300	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	Village	C _{obo}	-	6.0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$	2N5550 2N5551	C _{ibo}		30 20	pF
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{fe}	50	200	_
Noise Figure $(I_C = 250 \mu Adc, V_{CE} = 5.0 \text{ Vdc}, R_S = 1.0 \text{ kohm}, f = 10 \text{ Hz to } 15.7 \text{ kHz})$	2N5550 2N5551	NF	=	10 8.0	dB

⁽²⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

2N5771

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

IVIAXIIVIUIVI RATINGS				
Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	15	Vdc	
Collector-Base Voltage	VCBO	15	Vdc	
Emitter-Base Voltage	VEBO	4.5	Vdc	
Collector Current — Continuous	Ic	50	mA	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	Watts mW/°C	
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.0 8.0	Watt mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	
Lead Temperature	TL	260	°C	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 3.0 mA)(1)	V(BR)CEO	15	-	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 100 \mu A$)	V(BR)CES	15	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu A$)	V _(BR) CBO	15	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu A$)	V(BR)EBO	4.5	_	Vdc
Collector Cutoff Current (V _{CB} = 8.0 Vdc)	Ісво	_	10	nA
Collector Cutoff Current $(V_{CE} = 8.0 \text{ Vdc})$ $(V_{CE} = 8.0 \text{ Vdc}, T_{A} = 125^{\circ}\text{C})$	ICES	_	10 5.0	nA μA
Emitter Cutoff Current (VBE = 4.5 Vdc)	IEBO	-	1.0	μА
ON CHARACTERISTICS				
DC Current Gain ($I_C = 1.0$ mA, $V_{CE} = 0.5$ Vdc)(1) ($I_C = 10$ mA, $V_{CE} = 0.3$ Vdc)(1) ($I_C = 50$ mA, $V_{CE} = 1.0$ Vdc)(1) ($I_C = 10$ mA, $V_{CE} = 0.3$ Vdc, $T_A = -55^{\circ}C$)	hFE	35 50 40 20	120 —	_
Collector-Emitter Saturation Voltage(1) $ \begin{array}{cccc} (I_C = 1.0 \text{ mA}, I_B = 0.1 \text{ mA}) \\ (I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}) \\ (I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}) \end{array} $	VCE(sat)		0.15 0.18 0.6	Vdc
Base-Emitter Saturation Voltage(1) (IC = 1.0 mA, IB = 0.1 mA) (IC = 10 mA, IB = 1.0 mA) (IC = 50 mA, IB = 5.0 mA)	V _{BE} (sat)	0.75 —	0.8 0.95 1.5	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, f = 140 kHz)	C _{cb}	_	3.0	pF
Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, f = 140 kHz)	C _{eb}	_	3.5	pF
Small-Signal Current Gain ($I_C = 10 \text{ mA}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	h _{fe}	8.5	_	_
SWITCHING CHARACTERISTICS				
Storage Time (I _C = 10 mA, I _{B1} \approx I _{B2} \approx 10 mA)	t _s	_	20	ns
Turn-On Time ($I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$)	ton	-	15	ns
Turn-Off Time ($I_C = 10 \text{ mA}$, $I_{B1} = I_{B2} = 1.0 \text{ mA}$)	^t off	_	20	ns

⁽¹⁾ Pulse Conditions: Pulse Length = 300 μ s, Duty Cycle = 1.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	12	Vdc
Collector Current — Continuous	IC	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

2N6426 2N6427

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

DARLINGTON TRANSISTOR

NPN SILICON

Characteristic	Characteristic		Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)		V(BR)CEO	40	- -	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	1 168	V _(BR) CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	Spirit and St	V(BR)EBO	12	_	_	Vdc
Collector Cutoff Current (V _{CE} = 25 Vdc, I _B = 0)	1	ICEO	_	×	1.0	μAdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		СВО	_	_	50	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, IC = 0)		IEBO	_	-	50	nAdc
ON CHARACTERISTICS						
DC Current Gain(2) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	2N6426 2N6427	hFE	20,000 10,000	_	200,000	_
(I _C = 100 mAdc, V_{CE} = 5.0 Vdc)	2N6426 2N6427	D. D.V.	30,000 20,000	=	300,000 200,000	
$(I_C = 500 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N6426 2N6427		20,000 14,000	- = -	200,000	
Collector-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)		V _{CE} (sat)	3	0.71 0.9	1.2 1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 0.5 mAdc)		VBE(sat)	_	1.52	2.0	Vdc
Base-Emitter On Voltage (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}		1.24	1.75	Vdc
SMALL-SIGNAL CHARACTERISTICS		L - L		-57	05	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	5.4	7.0	pF
Input Capacitance (VBE = 1.0 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}		10	15	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Input Impedance (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	2N6426 2N6427	h _{ie}	100 50	= 1	2000 1000	kΩ
Small-Signal Current Gain (IC = 10 mAdc, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N6426 2N6427	h _{fe}	20,000 10,000		- <u> </u>	
Current Gain — High Frequency (IC = 10 mAdc, VCE = 5.0 Vdc, f = 100 MHz)	2N6426 2N6427	h _{fe}	1.5 1.3	2.4 2.4	Vagacifi s	to attack
Output Admittance (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	The later	h _{oe}	_	- 7-	1000	μmhos
Noise Figure (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, R _S = 100 k Ω , f = 10 kHz to 15.7 kHz)		NF		3.0	10	dB

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - TRANSISTOR NOISE MODEL

NOISE CHARACTERISTICS

(VCE = 5.0 Vdc, TA = 25°C)

FIGURE 4 - TOTAL WIDEBAND NOISE VOLTAGE

FIGURE 5 - WIDEBAND NOISE FIGURE

SMALL-SIGNAL CHARACTERISTICS

FIGURE 6 - CAPACITANCE

FIGURE 7 - HIGH FREQUENCY CURRENT GAIN

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 10 - "ON" VOLTAGES

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 12 - THERMAL RESPONSE

FIGURE 13 - ACTIVE REGION SAFE OPERATING AREA

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	2N6428,A 2N6429,A	VCEO	50 45	Vdc
Collector-Base Voltage	2N6428,A 2N6429,A	VCBO	60 55	Vdc
Emitter-Base Voltage	00	VEBO	6.0	Vdc
Collector Current — Continu	ous	Ic	200	mAdc
Total Device Dissipation @ 7 Derate above 25°C	$T_A = 25^{\circ}C$	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T Derate above 25°C	$T_C = 25^{\circ}C$	PD	1.5 12	Watts mW/°C
Operating and Storage Junc	tion	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

THE THE STATE OF T			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	Raja	200	°C/W

2N6428,A 2N6429,A

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N6428 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	2N6428,A 2N6429,A	V(BR)CEO	50 45	=	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	2N6428,A 2N6429,A	V _(BR) CBO	60 55	=	Vdc
Collector Cutoff Current (VCE = 30 Vdc)		ICEO	_	0.025	μΑ
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		ICBO	_	0.01	μΑ
Emitter Cutoff Current (VEB = 5.0 Vdc, I _C = 0)		IEBO	_	0.01	μΑ
ON CHARACTERISTICS					
DC Current Gain $(V_{CE} = 5.0 \text{ Vdc}, I_{C} = 0.01 \text{ mAdc})$	2N6428,A 2N6429,A	hFE	250 500	=	_
($V_{CE} = 5.0 \text{ Vdc}$, $I_{C} = 0.1 \text{ mAdc}$)	2N6428,A 2N6429,A		250 500	650 1250	
$(V_{CE} = 5.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc})$	2N6428,A 2N6429,A		250 500	=	
$(V_{CE} = 5.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$	2N6428,A 2N6429,A		250 500	=	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		V _{CE(sat)}	_	0.2 0.6	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.56	0.66	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ V}$, $f = 100 \text{ MHz}$)		fT	100	700	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)		C _{obo}	-	3.0	pF
Input Capacitance (VEB = 0.5 Vdc, I_C = 0, f = 1.0 MHz)		C _{ibo}	_	8.0	pF

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	rev.		Symbol	Min	Max	Unit
Input Impedance (IC = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)		2N6428,A 2N6429,A	h _{ie}	3.0 6.0	30 60	kΩ
Voltage Feedback Ratio $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$		2N6428,A 2N6429,A	h _{re}	2.0 5.0	20 50	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	7	2N6428,A 2N6429,A	h _{fe}	200 400	800 1600	Service with
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	Jr.Wro	2N6428,A 2N6429,A	h _{oe}	5.0 10	50 100	μmhos

NOISE FIGURE/TOTAL NOISE VOLTAGE CHARACTERISTICS ($V_{CE} = 5.0 \text{ V}$, $I_{C} = 0.1 \text{ mA}$, $T_{A} = 25^{\circ}\text{C}$).

providental structure.			NF Ma	V _T x (1)	NF Ma	V _T x (2)	NF Max	V _T	Ur	nit
	1697	2N6428	3.0	18.1	6.0	5700	3.5	4.3	dB	nV
		2N6428A	2.0	16.2	4.0	4600	3.0	4.1	dB	nV
		2N6429	3.0	18.1	5.0	5100	4.0	4.6	dB	nV
		2N6429A	2.0	16.2	3.5	4300	3.5	4.3	dB	nV

⁽¹⁾ R_S = 10 k Ω , BW = 1.0 Hz, f = 100 Hz (2) R_S = 50 k Ω , BW = 15.7 kHz, f = 10 Hz-10 kHz (3) R_S = 500 Ω , BW = 1.0 Hz, f = 10 Hz

MAXIMI IM RATINGS

Rating	Symbol	2N6515 2N6518	2N6516 2N6519	2N6517 2N5520	Unit
Collector-Emitter Voltage	VCEO	250	300	350	Vdc
Collector-Base Voltage	V _{CBO}	250	300	350	Vdc
Emitter-Base Voltage 2N6515, 2N6516, 2N6517 2N6518, 2N6519, 2N6520	V _{EBO}	6.0 5.0			Vdc
Base Current	ΙB	250			mAdc
Collector Current — Continuous	ŀc		500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.625 5.0			Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150			°C
Lead Temperature ≥ 1/16" from case for 10 seconds	TL	260			°C

THERMAL CHARACTERISTICS

THERWAL CHARACTERISTICS			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

NPN 2N6515 thru 2N6517 **PNP** 2N6518 thru 2N6520 **CASE 29-02, STYLE 1**

TO-92 (TO-226AA)

TRANSISTOR

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Character	ristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1)		V(BR)CEO			Vdc
$(I_C = 1.0 \text{ mAdc}, I_B = 0)$	2N6515, 2N6518	(BIT)CLO	250	_	
ing minasy B sy	2N6516, 2N6519		300	_	
	2N6517, 2N6520		350	_	
Collector-Base Breakdown Voltage		V _(BR) CBO			Vdc
$(I_{\rm C} = 100 \ \mu {\rm Adc}, I_{\rm F} = 0)$	2N6515, 2N6518	(511)050	250	_	
	2N6516, 2N6519		300	_	
	2N6517, 2N6520		350	_	
Emitter-Base Breakdown Voltage		V(BR)EBO			Vdc
$(I_E = 10 \mu\text{Adc}, I_C = 0)$	2N6515, 2N6516, 2N6517		6.0	_	
	2N6518, 2N6519, 2N6520		5.0	_	
Collector Cutoff Current		Ісво			nAdc
$(V_{CB} = 150 \text{ Vdc}, I_{E} = 0)$	2N6515, 2N6518		_	50	
$(V_{CB} = 200 \text{ Vdc}, I_{E} = 0)$	2N6516, 2N6519		_	50	
$(V_{CB} = 250 \text{ Vdc}, I_{E} = 0)$	2N6517, 2N6520		_	50	
Emitter Cutoff Current		^I EBO	4		nAdc
$(V_{EB} = 5.0 \text{ Vdc}, I_{C} = 0)$	2N6515, 2N6516, 2N6517		_	50	
$(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$	2N6518, 2N6519, 2N6520		_	50	
ON CHARACTERISTICS(1)					
DC Current Gain		hFE			_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515, 2N6518		35	_	
	2N6516, 2N6519		30	_	
	2N6517, 2N6520		20	_	
			100		
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515, 2N6518		50	_	
	2N6516, 2N6519		45	_	
	2N6517, 2N6520		30	_	
(I _C = 30 mAdc, V _{CF} = 10 Vdc)	2N6515, 2N6518		50	300	
THE STANFACT TO THE	2N6516, 2N6519		45	270	
	2N6517, 2N6520		30	200	
			100		
$(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515, 2N6518		45	220	
	2N6516, 2N6519		40	200	
	2N6517, 2N6520		20	200	
$(I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515, 2N6518		25	_	
	2N6516, 2N6519		20	_	
	2N6517, 2N6520		15	_	

NPN 2N6515 thru 2N6517, PNP 2N6518 thru 2N6520

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteris	stic	100	Symbol	Min	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 20 mAdc, I _B = 2.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	ob/v	0.0	VCE(sat)		0.30 0.35 0.50 1.0	Vdc
Base-Emitter Saturation Voltage	10-100	DIR	V _{BE(sat)}		n 3 - men	Vdc
(I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 20 mAdc, I _B = 2.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc)			*BE(Sat)	_	0.75 0.85 0.90	Total David
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 10 Vdc)		full may	V _{BE} (on)	nodaniu	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					Mark 1	Annual France
Current-Gain — Bandwidth Product(1) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)			fT	40	200	MHz
Collector-Base Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		C _{cb}	85 3183	6.0	pF
Emitter-Base Capacitance (VER = 0.5 Vdc, Ic = 0, f = 1.0 MHz)	2N6515 thru 2	N6517	C _{eb}	produce make	80	pF

SWITCHING CHARACTERISTICS

Turn-On Time	ton		200	ns
$(V_{CC} = 100 \text{ Vdc}, V_{BE(off)} = 2.0 \text{ Vdc}, I_{C} = 50 \text{ mAdc}, I_{B1} = 10 \text{ mAdc})$	2867	SULI BING L	ACPERATION LANGE	DIN 1 DOLLS
Turn-Off Time	toff		3.5	ns
$(V_{CC} = 100 \text{ Vdc}, I_{C} = 50 \text{ mAdc}, I_{B1} = I_{B2} = 10 \text{ mAdc})$			ALL SALES DES	CHE CHAR

2N6518 thru 2N6520

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

100

FIGURE 2 - DC CURRENT GAIN

FIGURE 5 – TEMPERATURE COEFFICIENTS

50 70 100

NPN 2N6515 thru 2N6517, PNP 2N6518 thru 2N6520

FIGURE 9 - SWITCHING TIME TEST CIRCUIT

FIGURE 11 - ACTIVE REGION SAFE OPERATING AREA

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

Rating	Symbol	MPS404	MPS404A	Unit
Collector-Emitter Voltage	VCEO	24	35	Vdc
Collector-Base Voltage	VCBO	25	40	Vdc
Emitter-Base Voltage	VEBO	12	25	Vdc
Collector Current — Continuous	Ic	150		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

MPS404 MPS404A

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

CHOPPER TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			True 107	AND DOWN		
Collector-Emitter Breakdown Voltage(2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	MPS404 MPS404A	V(BR)CEO	24 35	#1 <u></u>	<u></u>	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	MPS404 MPS404A	V(BR)CBO	25 40	1		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	MPS404 MPS404A	V _{(BR)EBO}	12 25	50 50	, =	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)		Ісво	-	-	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)		IEBO	_	-	100	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 12 mAdc, V _{CE} = 0.15 Vdc)		hFE	30	100	400	-
Collector-Emitter Saturation Voltage (I _C = 12 mAdc, I _B = 0.4 mAdc) (I _C = 24 mAdc, I _B = 1.0 mAdc)		V _{CE(sat)}	_	0.1 0.12	0.15 0.20	Vdc
Base-Emitter Saturation Voltage (I _C = 12 mAdc, I _B = 0.4 mAdc) (I _C = 24 mAdc, I _B = 1.0 mAdc)	D _{OLE} HOV	V _{BE} (sat)	-	0.7 0.74	0.85 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	10.00			-1-1-1		
Common-Base Cutoff Frequency (I _C = 1.0 mAdc, V _{CB} = 6.0 Vdc)	ENTERS .	fob	4.0	-	_	MHz
Output Capacitance (V _{CB} = 6.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	7-3	6.8	20	pF

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 7 - COLLECTOR SATURATION REGION COLLECTOR EMITTER VOLTAGE (VOLTS) $T_{J} = 25^{\circ}C$ 0.4 Ic = 2.0 mA 50 mA 10 mA 0.3 0.2 0.1 VCE, 0.02 0.005 0.01 0.05 0.1 0.2 0.5 2.0 5.0 IB, BASE CURRENT (mA)

FIGURE 13 - SWITCHING TIME TEST CIRCUIT

FIGURE 14 - STORED BASE CHARGE TEST CIRCUIT

MOTOROLA SEMICONDUCTORS

Rating	Symbol	MPS650 MPS750	MPS651 MPS751	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	5	.0	Vdc
Collector Current — Continuous	IC	2.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 12.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 5.0		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	-55 to +150	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS650 MPS651 NPN SILICON MPS750 MPS751 PNP SILICON

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

Characterist	ic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				2.1	attent to
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	MPS650, MPS750 MPS651, MPS751	V(BR)CEO	40 60	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS650, MPS750 MPS651, MPS751	V(BR)CBO	60 80		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	6	V(BR)EBO	5.0	- - -	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, _E = 0)$ $(V_{CB} = 80 \text{ Vdc}, _E = 0)$	MPS650, MPS750 MPS651, MPS751	ІСВО	=	0.1 0.1	μAdc
Emitter Cutoff Current (VEB = 4.0 V, I _C = 0)	a. 3. 10s	IEBO		0.1	μAdc
ON CHARACTERISTICS(1)					10.0
DC Current Gain ($I_C = 50 \text{ mA}, V_{CE} = 2.0 \text{ V}$) ($I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}$) ($I_C = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V}$) ($I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}$)		hFE	75 75 75 40	Ξ	
Collector-Emitter Saturation Voltage ($I_C = 2.0 \text{ A}, I_B = 200 \text{ mA}$) ($I_C = 1.0 \text{ A}, I_B = 100 \text{ mA}$)	Sec. Ph.	V _{CE(sat)}		0.5 0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 1.0 A, I _B = 100 mA)		V _{BE(sat)}	-	1.2	Vdc
Base-Emitter On Voltage (I _C = 1.0 A, V _{CE} = 2.0 V)		V _{BE(on)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			U-1-19-		
Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		fT	75	-	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT is defined as the frequency at which $|h_{\mbox{fe}}|$ extrapolates to unity.

MPS706,A

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCER	20	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _{0.1A} (1)	200	°C/W

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					PILITE.	1-1-11
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	2 487.00	V(BR)CEO	15		4 -4	Vdc
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, R _{BE} = 10 Ohms)		V(BR)CER	20	MOV VI		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)		V _(BR) CBO	25	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V(BR)EBO	5.0	_	-	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, _{E} = 0)$ $(V_{CB} = 25 \text{ Vdc}, _{E} = 0)$	MPS706/MPS706A MPS706A	ІСВО	=	= "	0.5 10	μAdc
Collector Cutoff Current (V _{CE} = 20 Vdc, R _{BE} = 100 kHz)	MPS706A	ICER	_	_	10	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc , IC = 0) (VBE = 5.0 Vdc , IC = 0)	MPS706 MPS706A	IEBO	_	=	10 10	μAdc
ON CHARACTERISTICS						
DC Current Gain(2) (I _C = 10 mAdc, V_{CE} = 1.0 Vdc)	MPS706 MPS706A	hFE	20 20	50 45	— 60	-
Collector-Emitter Saturation Voltage(2) (I _C = 10 mAdc, I _B = 1.0 mAdc)		VCE(sat)	_	0.3	0.6	Vdc
Base-Emitter Saturation Voltage(2) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)	MPS706 MPS706A	V _{BE(sat)}	— 0.7	0.8 0.8	0.9 0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				1.00	of division in	
Current-Gain — Bandwidth Product $(I_C = 10 \text{ mAdc}, V_{CE} = 15 \text{ Vdc}, f = 100 \text{ MHz})$		fT	200	600		MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	MPS706	C _{obo}	_	1.5	6.0	pF
Input Capacitance (VBE = 1.0 Vdc, $I_C = 0$, $f = 100 \text{ kHz}$)		C _{ibo}	_	3.4	_	pF
Extrinsic Base Resistance (V _{CE} = 15 Vdc, I _E = 10 mAdc, f = 300 MHz)		rb	_	_	50	pF

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	SLOSI.			196	
Storage Time (Figure 1) $ (V_{CC} = 10 \text{ Vdc, } I_{C} = 10 \text{ mAdc,} \\ I_{B1} = I_{B2} = 10 \text{ mAdc)} $ MPS706A MPS706	t _S		20 20	25 60	ns
Turn-On Time (Figure 1) $(V_{CC} = 3.0 \text{ Vdc}, V_{BE(off)} = 2.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc})$	ton	_ 134	35	40	ns
Turn-Off Time (Figure 2) ($V_{CC} = 3.0 \text{ Vdc}$, $I_{C} = 10 \text{ mAdc}$, $I_{B1} = I_{B2} = 3.0 \text{ mAdc}$)	t _{off}	_	55	75	ns

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width ≤ 12 ns, Duty Cycle ≤ 2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - STORAGE TIME TEST CIRCUIT

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12 mW	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	7				
Collector-Emitter Breakdown Voltage(2) (I _C = 30 mAdc, I _B = 0)	V(BR)CEO	15			Vdc
Collector-Emitter Breakdown Voltage (I _C = 30 mAdc, R _{BE} = 10 Ohms)	V(BR)CER	20	_	=	Vdc
Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc$, $I_E = 0$)	V(BR)CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	ICBO	_	-	25	nAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, IC = 0)	I _{EBO}	_	_	80	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain ($I_C = 0.5 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	15 30	35 50	_ 120	=
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	_	0.21	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	0.68	0.7	0.78	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	300	600	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 140 kHz)	C _{obo}	_	2.4	6.0	pF
SWITCHING CHARACTERISTICS					
Storage Time (Figure 1) (V _{CC} = 3.0 Vdc, I_C = 10 mAdc, I_{B1} = I_{B2} = 10 mAdc)	t _S	3	14	25	ns

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

MPS750, MPS751

For Sepcifications, See MPS650, MPS651

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V(BR)CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	ICBO	_	_	0.5	μAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0)	CES	_	_	10	μAdc
ON CHARACTERISTICS					
DC Current Gain(2) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	hFE	25	_	_	_
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)(2)	V _{CE(sat)}	=	0.2 0.3	0.25 0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	0.7	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	350	600	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	1.5	4.0	pF
Input Capacitance (VEB = 10 Vdc, I_C = 0, f = 100 kHz)	C _{ibo}	_	3.4	_	pF
SWITCHING CHARACTERISTICS					
Storage Time (Figure 1) ($V_{CC}=10\ V_{dc}$, $I_{C}=10\ mAdc$, $I_{B1}=I_{B2}=10\ mAdc$)	t _S	_	18	25	ns
Turn-On Time (Figure 1) (V _{CC} = 3.0 Vdc, V _{BE(off)} = 4.0 Vdc, I _C = 10 mAdc, I _{B1} = 3.0 mAdc)	ton	_	12	16	ns
Turn-Off Time (Figure 2) (V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _{B1} = 3.0 mAdc)	toff	_	25	30	ns

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - STORAGE TIME TEST CIRCUIT

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V _(BR) CBO	25	_	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	3.0	_	-	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	ICBO	_	_	0.5	μAdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 0)	CES	-	_	10	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	hFE	20	35	_	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	0.20	0.30	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}		0.78	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS	•				
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	300	600	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	-	1.5	4.0	pF
SWITCHING CHARACTERISTICS					
Storage Time $$ (Figure 1) $$ (V _{CC} = 10 V, I _C = 10 mAdc, I _{B1} = I _{B2} = 10 mAdc)	t _S	_	28	35	ns
Turn-On Time (Figure 2) ($V_{CC}=3.0$ V, $V_{BE(off)}=2.0$ V, $I_{C}=10$ mAdc, $I_{B1}=3.0$ mAdc, $I_{B2}=1.0$ mAdc)	t _{on}	_	15	20	ns
Turn-Off Time (Figure 2) ($V_{CC}=3.0\ V, I_{C}=10\ mAdc, I_{B1}=3.0\ mA, I_{B2}=1.0\ mAdc)$	^t off	_	30	35	ns

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 – TURN-ON AND TURN-OFF TIME TEST CIRCUIT

FIGURE 2 - STORAGE TIME TEST CIRCUIT

MPS918 MPS3563

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS918	MPS3563	Unit
Collector-Emitter Voltage	VCEO	15	12	Vdc
Collector-Base Voltage	V _{CBO}	30	30	Vdc
Emitter-Base Voltage	VEBO	3.0	2.0	Vdc
Collector Current — Continuous	Ic	50		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				•	
Collector-Emitter Breakdown Voltage(2) $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	MPS918 MPS3563	V(BR)CEO	15 12	_	Vdc
Collector-Base Breakdown Voltage (IC = 1.0 μ Adc, IE = 0) (IC = 100 μ Adc, IE = 0)	MPS918 MPS3563	V(BR)CBO	30 30	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	MPS918 MPS3563	V(BR)EBO	3.0 2.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$	MPS918 MPS3563	ICBO	_	10 50	nAdc
ON CHARACTERISTICS					
DC Current Gain(2) (I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 8.0 mAdc, V _{CE} = 10 Vdc)	MPS918	hFE	20 20	200	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	MPS918	V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)	MPS918	V _{BE(sat)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 4.0 mAdc, V_{CE} = 10 Vdc, f = 100 MHz) (I _C = 8.0 mAdc, V_{CE} = 10 Vdc, f = 100 MHz)	MPS918 MPS3563	fT	600 600	_ 1500	MHz
Output Capacitance $(V_{CB} = 0 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	MPS918 MPS918 MPS3563	C _{obo}	=	3.0 1.7 1.7	pF
Input Capacitance ($V_{EB}=0.5\ V_{dC}$, $I_{C}=0$, $f=140\ kHz$)	MPS918	C _{ibo}	_	2.0	pF
Small-Signal Current Gain ($I_C = 8.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	MPS3563	h _{fe}	20	250	_
Noise Figure (I _C = 1.0 mAdc, V_{CE} = 6.0 Vdc, R_S = 400 ohms, f = 60 MHz)	MPS918	NF	_	6.0	dB

MPS918, MPS3563

Characteristic	100	Symbol	Min	Max	Unit		
FUNCTIONAL TEST							
Common-Emitter Amplifier Power Gain ($I_C = 6.0$ mAdc, $V_{CB} = 12$ Vdc, $f = 200$ MHz) ($I_C = 8.0$ mAdc, $V_{CE} = 10$ Vdc, $f = 200$ MHz) ($G_{fd} + G_{re} < -20$ dB)	MPS918 MPS3563	G _{pe}	15 14	=	dB		
Power Output ($I_C = 8.0 \text{ mAdc}$, $V_{CB} = 15 \text{ Vdc}$, $f = 500 \text{ MHz}$)	MPS918	Pout	30	_	mW		
Oscillator Collector Efficiency (I _C = 8.0 mAdc, V_{CB} = 15 Vdc, P_{OUt} = 30 mW, f = 500 MHz)	MPS918	η	25	-	%		

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 1.0%.

MPS929,A MPS930,A

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS929 MPS930	MPS929A MPS930A	Unit
Collector-Emitter Voltage	VCEO	DV 21 = 3	45	Vdc
Collector-Base Voltage	V _{CBO}	45	60	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	6.0	Vdc
Collector Current — Continuous	lc		100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	- 55	to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Refer to MPS3903 for additional graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)		V _(BR) CEO	45	-	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	MPS929, MPS930 MPS929A, MPS930A	V(BR)CBO	45 60	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	MPS929, MPS930 MPS929A, MPS930A	V(BR)EBO	5.0 6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 5.0 Vdc, I _B = 0)		ICEO	_	2.0	nAdc
Collector Cutoff Current $(V_{CB} = 45 \text{ Vdc}, I_E = 0)$	MPS929, MPS930 MPS929A, MPS930A	СВО	_	10 2.0	nAdc
Collector Cutoff Current $(V_{CE} = 45 \text{ Vdc}, V_{BE} = 0)$	MPS929, MPS930 MPS929A, MPS930A	ICES	=	10 2.0	nAdc
$(V_{CE} = 45 \text{ Vdc}, V_{BE} = 0, T_{A} = 125^{\circ}\text{C})$	MPS929, MPS930 MPS929A, MPS930A		_	10 2.0	μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, I _C = 0)	MPS929, MPS930 MPS929A, MPS930A	IEBO	_	10 2.0	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 1.0 μ Adc, V _{CE} = 5.0 Vdc)	MPS929A MPS930A	hFE	25 60	=	_
$(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	MPS929, MPS929A MPS930, MPS930A		40 100	120 300	
$(I_C = 10 \mu Adc, V_{CE} = 5.0 Vdc, T_A = -55^{\circ}C)$	MPS929 MPS929A MPS930 MPS930A		10 15 20 30	=	
$(I_C = 500 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	MPS929, MPS929A MPS930, MPS930A		60 150	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MPS929, MPS929A MPS930, MPS930A		_	350 600	

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	1000	Symbol	Min	Max	Unit
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 0.5 mAdc)	MPS929, MPS930 MPS929A, MPS930A	V _{CE(sat)}		1.0 0.5	Vdc
Base-Emitter Saturation Voltage(1) (IC = 10 mAdc, Ig = 0.5 mAdc)	MPS929, MPS930 MPS929A, MPS930A	V _{BE(sat)}	0.6 0.7	1.0 0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS			- J	A Company	
Current-Gain — Bandwidth Product (I _C = 500 μ Adc, V _{CE} = 5.0 Vdc, f = 30 MHz)	MPS929, MPS930 MPS929A, MPS930A	fT	30 45	7=	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 1.0 \text{ MHz}$)	MPS929, MPS930 MPS929A, MPS930A	C _{obo}	= 1	8.0 6.0	pF
Input Impedance (I _E = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)		h _{ib}	25	32	Ohms
Voltage Feedback Ratio (I _E = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	7.530	h _{rb}	- MAD 0 1	600	X 10-6
Small-Signal Current Gain (IC = 1.0 mAdc, $V_{CE} = 5.0$ Vdc, $f = 1.0$ kHz)	MPS929, MPS929A MPS930, MPS930A	h _{fe}	60 150	350 600	-
Output Admittance (I _E = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)		h _{ob}	-	1.0	μmho
Noise Figure (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kohms, f = 10 Hz to 15.7 kHz)	MPS929, MPS929A MPS930, MPS930A	NF	=	4.0 3.0	dB

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL CHARACTERISTICS

Rating	Symbol	MPS2222	MPS2222A	Unit
Collector-Emitter Voltage	VCEO	30	40	Vdc
Collector-Base Voltage	VCBO	60	75	Vdc
Emitter-Base Voltage	VEBO	5.0	6.0	Vdc
Collector Current — Continuous	IC	600		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS2222 MPS2222A*

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0$)	MPS2222 MPS2222A	V(BR)CEO	30 40	=	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	MPS2222 MPS2222A	V(BR)CBO	60 75	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	MPS2222 MPS2222A	V(BR)EBO	5.0 6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	MPS2222A	ICEX	_	10	nAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, _E = 0) (V _{CB} = 60 Vdc, _E = 0) (V _{CB} = 50 Vdc, _E = 0, T _A = 125°C) (V _{CB} = 50 Vdc, _E = 0, T _A = 125°C)	MPS2222 MPS2222A MPS2222 MPS2222A	ICBO		0.01 0.01 10 10	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)	MPS2222A	IEBO	_	10	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	MPS2222A	I _{BL}	_	20	nAdc
ON CHARACTERISTICS					•
DC Current Gain $ \begin{aligned} &(I_C=0.1 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=1.0 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=150 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=150 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=500 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ \end{aligned} $	MPS2222A only MPS2222 MPS2222A	hFE	35 50 75 35 100 50 30 40	300	_
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	MPS2222 MPS2222A	VCE(sat)	=	0.4 0.3	Vdc
(I _C = 500 mAdc, I _B = 50 mAdc)	MPS2222 MPS2222A		_	1.6 1.0	

^{*}Also available as a PN2222,A.

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	MPS2222 MPS2222A	V _{BE} (sat)	0.6	1.3 1.2	Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	MPS2222 MPS2222A			2.6 2.0	in a second
SMALL-SIGNAL CHARACTERISTICS	100			v 1 (u)	
Current-Gain — Bandwidth Product(2) $(I_C = 20 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$	MPS2222 MPS2222A	fŢ	250 300	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	8.0	pF
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$	MPS2222 MPS2222A	C _{ibo}	_ 	30 25	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	MPS2222A MPS2222A	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	MPS2222A MPS2222A	h _{re}	=	8.0 4.0	X 10-4
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	MPS2222A MPS2222A	h _{fe}	50 75	300 375	A 3881, 2-2.1
Output Admittance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	MPS2222A MPS2222A	h _{oe}	5.0 25	35 200	μmhos
Collector Base Time Constant ($I_E = 20 \text{ mAdc}$, $V_{CB} = 20 \text{ Vdc}$, $f = 31.8 \text{ MHz}$)	MPS2222A	rb'C _C	-a. Ligar -	150	ps
Noise Figure (IC = 100 μ Adc, VCE = 10 Vdc, RS = 1.0 k Ω , f = 1.0 kHz)	MPS2222A	NF		4.0	dB
SWITCHING CHARACTERISTICS MPS2222A only	MESSER				
Delay Time $(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc})$		td	-	10	ns
$lc = 150 \text{ mAdc}, lg_1 = 15 \text{ mAdc}$	(Figure 1)				

Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc},$	t _d	_	10	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc) (Figure 1)	t _r	_	25	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	ts	_	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$ (Figure 2)	tf	-	60	ns

- (1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- (2) fT is defined as the frequency at which |hfe| extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.5	Vdc
Collector Current — Continuous	IC	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS2369

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			W		
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	15	_	_	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc, V_{BE} = 0$)	V(BR)CES	40	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V(BR)CBO	40		_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0) (V _{CB} = 20 Vdc, I _E = 0, T_A = 125°C)	ІСВО	=	_	0.4 30	μAdc
ON CHARACTERISTICS					
DC Current Gain(1)	hFE	40 20 20	=	120 — —	_
Collector-Emitter Saturation Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	V _{CE} (sat)	_	-	0.25	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	V _{BE(sat)}	0.70	-	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 5.0 Vdc , I _E = $0, f = 1.0 \text{ MHz}$)	C _{obo}	_	_	4.0	pF
Small-Signal Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	h _{fe}	5.0	_	_	-
SWITCHING CHARACTERISTICS					
Storage Time $(I_{B1} = I_{B2} = I_C = 10 \text{ mAdc})$ (Figure 3)	t _S	-	5.0	13	ns
Turn-On Time (V _{CC} = 3.0 Vdc, I_C = 10 mAdc, I_{B1} = 3.0 mAdc) (Figure 1)	^t on	_	8.0	12	ns
Turn-Off Time ($V_{CC}=3.0$ Vdc, $I_{C}=10$ mAdc, $I_{B1}=3.0$ mAdc, $I_{B2}=1.5$ mAdc) (Figure 2)	toff	_	10	18	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

*Total shunt capacitance of test jig and connectors.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	VCBO	18	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

MPS2714

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

	Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				141	to an ex	
Collector-Emitter Breakdo		V _(BR) CEO	18			V
Collector Cutoff Current (V _{CB} = 18.0 Vdc, I _E =	0)	ICBO	_	-	0.5	μΑ
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0	0)	IEBO	-	T.V	0.5	μΑ
ON CHARACTERISTICS						
DC Current Gain (IC = 2.0 mAdc, VCE =	4.5 Vdc)	hFE	75	_	225	-
Collector-Emitter Saturati (I _C = 50 mAdc, I _B = 3		V _{CE(sat)}	-	_	0.3	Vdc
Base-Emitter Saturation \((IC = 50 mAdc, IB = 3)\)		V _{BE(sat)}	-	-	1.3	Vdc
SMALL-SIGNAL CHARAC	TERISTICS					
Current-Gain — Bandwid (I _C = 10 mAdc, V _{CE} =		fT	_	250	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0	, f = 100 kHz)	C _{obo}	-	2.5	-	pF
Input Impedance (IC = 0.5 mAdc, VCE =	= 1.0 Vdc, f = 1.0 kHz)	h _{ie}	-	3000	-	ohms
Small-Signal Current Gair (I _C = 2.0 mAdc, V _{CE} =		h _{fe}	80		300	-
SWITCHING CHARACTER	RISTICS					
Delay Time	(I 40 A I 00 A V 40 V)	t _d	_	7.0	_	ns
Rise Time	$(I_C = 10 \text{ mA}, I_{B1} = 3.0 \text{ mA}, V_{CC} = 10 \text{ V})$	t _r	_	6.0	_	ns
Storage Time	$(I_C = 10 \text{ mA}, I_{B1} = 3.0 \text{ mA}, I_{B2} = 1.0 \text{ mA},$	t _S	_	12	_	ns
Fall Time	V _{CC} = 10 V)	tf	_	9.0	_	ns

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

MPS2907 MPS2907A

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS2907	MPS2907A	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	VCBO		60	Vdc
Emitter-Base Voltage	VEBO	1	5.0	
Collector Current — Continuous	lc	600		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 55 t	to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Characteri	stic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MPS2907 MPS2907A	V(BR)CEO	40 60	=	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)		V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE(off)} = 0.5 Vdc)		ICEX	-	50	nAdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 125^{\circ}\text{C})$	MPS2907 MPS2907A MPS2907	СВО	=	0.020 0.010 20	μAdc
Base Current (V _{CE} = 30 Vdc, V _{BE(off)} = 0.5 Vdc)	MPS2907A	IB		50	nAdo
ON CHARACTERISTICS					
DC Current Gain (I _C = 0.1 mAdc, V_{CE} = 10 Vdc)	MPS2907 MPS2907A	hFE	35 75	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPS2907 MPS2907A		50 100	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPS2907 MPS2907A		75 100	=	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	MPS2907, MPS2907A		100	300	100
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	MPS2907 MPS2907A		30 50	_	
		VCE(sat)	=	0.4 1.6	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)		V _{BE(sat)}	_	1.3 2.6	Vdc

MPS2907, MPS2907A

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CH	ARACTERISTICS				
	dwidth Product(1),(2) CE = 20 Vdc, f = 100 MHz)	fT	200	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E	= 0, f = 1.0 MHz)	C _{obo}	1	8.0	pF
Input Capacitance (VBE = 2.0 Vdc, Ic	; = 0, f = 1.0 MHz)	C _{ibo}	-	30	pF
SWITCHING CHARA	CTERISTICS				
Turn-On Time		ton	_	45	ns
Delay Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$ $I_{B1} = 15 \text{ mAdc}) \text{ (Figures 1 and 5)}$	td	_	10	ns
Rise Time	IBT = 19 HIZAGY (Figures Falla of	t _r		40	ns
Turn-Off Time		toff		100	ns
Storage Time	$(V_{CC} = 6.0 \text{ Vdc}, I_C = 150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc})$ (Figure 2)	t _S		80	ns
Fall Time	IB1 - IB2 - 13 IIIAde/ (Figure 2/	tf	_	30	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL CHARACTERISTICS

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

10 mA 100 mA

FIGURE 4 - COLLECTOR SATURATION REGION

FIGURE 5 - TURN-ON TIME 300 VCC = 30 V 200 IC/IB = 10 TJ = 25°C 100 (us) t, TIME (30 td @ VBE(off) = 0 V 10 7.0 5.0 30 70 200 300 500 IC. COLLECTOR CURRENT

TYPICAL SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE** V_{CE} = 10 Vdc, T_A = 25°C

MPS2907, MPS2907A

MPS3390 thru **MPS3398**

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3903 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	5	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	V _(BR) CEO	25	-	V
Collector Cutoff Current (V _{CB} = 18 Vdc, I _E = 0)		СВО	_	0.1	μΑ
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		IEBO	_	0.1	μΑ
ON CHARACTERISTICS					
DC Current Gain (V _{CE} = 4.5 Vdc, I _C = 2.0 mAdc)	MPS3390 MPS3391 MPS3392 MPS3393 MPS3394 MPS3395 MPS3396 MPS3397 MPS3398	hFE	400 250 150 90 55 150 90 55 55	800 500 300 180 110 500 500 500 800	_
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance ($V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$)		C _{obo}		10	pF
Small-Signal Current Gain (VCE = 4.5 V, IC = 2.0 mA, f = 1.0 kHz)	MPS3390 MPS3391 MPS3392 MPS3393 MPS3394 MPS3395 MPS3396 MPS3397 MPS3398	hfe	400 250 150 90 55 150 90 55 55	1250 800 500 400 300 800 800 800	_

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS3391A

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	25	_	Vdc
Collector Cutoff Current $(V_{CB} = 25 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 25 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$	СВО	=	0.1 10	μAdc
Emitter Cutoff Current $(V_{EB} = 5.0 \text{ Vdc}, I_C = 0)$	IEBO	_	0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 4.5 Vdc)	hFE	250	500	-
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	10	pF
Current Gain — High Frequency (I _C = 100 µAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	hfe	170	-	_
Noise Figure (I _C = 100 μ Adc, V _{CE} = 4.5 Vdc, R _g = 5.0 kohms, f = 10 Hz to 15.7 kHz)	NF	_	5.0	dB

MPS3402 MPS3403

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	500	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Refer to MPS8098 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			44-1	
Collector-Emitter Breakdown Voltage (IC = 1.0 mA)	V(BR)CEO	25	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µA)	V(BR)CBO	25		Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ A)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 18 V) (V _{CB} = 18 V, T _A = 100°C)	СВО	_	100 15	nA μA
Emitter Cutoff Current (V _{BE} = 5.0 V)	IEBO	=	100	nA
ON CHARACTERISTICS				
The second secon	h _{FE} 63402 63403	75 180	225 540	-
Collector-Emitter Saturation Voltage (I _C = 50 mA, I _B = 3.0 mA)	VCE(sat)	-	0.3	Vdc
Base-Emitter Saturation Voltage ($I_C = 50 \text{ mA}, I_B = 3.0 \text{ mA}$)	V _{BE} (sat)	0.6	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Small-Signal Current Gain ($I_C = 2.0 \text{ mA}$, $V_{CE} = 4.5 \text{ V}$, $f = 1.0 \text{ kHz}$) ($I_C = 2.0 \text{ mA}$, $V_{CE} = 4.5 \text{ V}$, $f = 1.0 \text{ kHz}$)	h _{fe}	75 180	=	_

MAXIMON NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	VCBO	50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	500	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

THE HIVAL OHAHAOTE HOTIO			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS3404 MPS3405

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

TRANSISTOR

NPN SILICON

Refer to MPS8098 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				15.166.177	
Collector-Emitter Breakdown Voltage (I _C = 1.0 mA)		V(BR)CEO	50	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μA)		V _(BR) CBO	50	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µA)		V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current (V _{CB} = 18 V) (V _{CB} = 18 V, T _A = 100°C)		ІСВО	=	100 15	nA μA
Emitter Cutoff Current (VBE = 5.0 V)		IEBO	·—	100	nA
ON CHARACTERISTICS					
DC Current Gain (I _C = 2.0 mA, V _{CE} = 4.5 V) (I _C = 2.0 mA, V _{CE} = 4.5 V)	MPS3404 MPS3405	hFE	75 180	225 540	_
Collector-Emitter Saturation Voltage (I _C = 50 mA, I _B = 3.0 mA)		V _{CE(sat)}	ar. - /18*	0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 50 mA, I _B = 3.0 mA)		V _{BE(sat)}	0.6	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS		100 (100		- 111	
Small-Signal Current Gain (IC = 2.0 mA, VCE = 4.5 V, f = 1.0 kHz) (IC = 2.0 mA, VCE = 4.5 V, f = 1.0 kHz)	MPS3404 MPS3405	h _{fe}	75 100		

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Power Dissipation @ T _A = 60°C	PD	450	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	RAJA	200	°C/W

Refer to 2N4400 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				DE CITE T
Collector-Base Breakdown Voltage (I _C = 100 μA)	V(BR)CBO	30		Vdc
Collector-Emitter Breakdown Voltage (I _C = 2.0 mA)	V(BR)CEO(sus)	25		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μA)	V(BR)EBO	6.0		Vdc
Collector Cutoff Current ($V_{CB} = 25 \text{ V}$) ($V_{CB} = 25 \text{ V}$, $T_{A} = 65^{\circ}\text{C}$)	ICBO	=	50 3.0	nAdc μA
ON CHARACTERISTICS				CC V
DC Current Gain (IC = 100 μ A, V _{CE} = 10 V) (IC = 1.0 mA, V _{CE} = 10 V)	hFE	70 150	600	or and
Collector-Emitter Saturation Voltage (I _C = 1.0 mA, I _B = 0.1 mA)	VCE(sat)	_	0.35	Vdc
SMALL-SIGNAL CHARACTERISTICS			0.012/912 978	
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	_	4.0	pF
Small-Signal Current Gain (I $_{\rm C}=1.0$ mA, V $_{\rm CE}=5.0$ V, f = 20 MHz) (I $_{\rm C}=10$ mA, V $_{\rm CE}=5.0$ V, f = 1.0 kHz)	h _{fe}	2.0 120	12 750	

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Power Dissipation @ TA = 60°C	PD	450	mW
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS3566

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N4400 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	· ·		A 100	
Collector-Emitter Breakdown Voltage(1) (I _C = 30 mA)	V(BR)CEO(sus)	30	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µA)	V(BR)CBO	40		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μA)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 20 V) (V _{CB} = 20 V, T _A = 75°C)	СВО	_	50 5.0	nA μA
Emitter Cutoff Current (V _{BE} = 5.0 V)	l _{EBO}	_	10	μА
ON CHARACTERISTICS				
DC Current Gain ($I_C = 10 \text{ mA}$, $V_{CE} = 10 \text{ V}$) ($I_C = 2.0 \text{ mA}$, $V_{CE} = 10 \text{ V}$)	hFE	150 80	600	-
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 10 mA)	VCE(sat)	=	1.0	Vdc
Base-Emitter On Voltage(1) (IC = 100 mA, VCE = 1.0 V)	V _{BE(on)}	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS		15		
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	_	25	pF
Small-Signal Current Gain (I _C = 30 mA, V_{CE} = 10 V, f = 20 MHz)	h _{fe}	2.0	35	-

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μs , Duty Cycle \leq 2.0%.

MPS3567 MPS3568 MPS3569

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N4400 for graphs for MPS3567, 3569.*

MAXIMUM RATINGS

Rating	Symbol	MPS3567 MPS3569	MPS3568	Unit		
Collector-Emitter Voltage	VCEO	40	60	Vdc		
Collector-Base Voltage	VCBO	80 \		Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	IC	600		mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5		mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				WHITE READ	MAYO A
Collector-Emitter Sustaining Voltage(1) (I _C = 30 mAdc, I _B = 0)	MPS3567, MPS3569 MPS3568	VCEO(sus)	40 60	- (A	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	Marie I II also also also a constitution	V(BR)CBO	80	- 1/40	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$		V _{(BR)EBO}	5.0	- V	Vdc
Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_E = 0, T_A = 75^{\circ}\text{C})$		СВО	=	50 5.0	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO	_	25	nAdc
ON CHARACTERISTICS(1)				Ties.	i anno a M
DC Current Gain (IC = 30 mAdc, V _{CE} = 1.0 Vdc) (IC = 150 mAdc, V _{CF} = 1.0 Vdc)	MPS3567, MPS3568 MPS3569 MPS3567, MPS3568	h _{FE}	40 100 40	_ _ 120	off —) off off
(IC = 100 HI/40), VCE = 1.0 V40)	MPS3569		100	300	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)}	- 20 - 1 00	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{BE(sat)}	=	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS				N 19 1 - X	
Current-Gain — Bandwidth Product(1) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ MHz}$)		fT	60	- (b.17 apr7+	MHz
Output Capacitance $(V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz})$		C _{obo}	3-3	20	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	80	pF

^{*}Refer to MPS8098 for graphs for MPS3568.

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Emitter Voltage	VCES	25	Vdc
Collector-Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	VEBO	40	Vdc
Collector Current — Continuous	IC	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

⁽¹⁾ $R_{\theta,JA}$ is measured with the device soldered into a typical printed circuit board.

MPS3638A

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

PNP SILICON

Refer to 2N4402 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		K III III	C. C. C.		
Collector-Emitter Breakdown Voltage (I _C = 100 μ Adc, V _{BE} = 0)		V _(BR) CES	25	_	Vdc
Collector-Emitter Sustaining Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$		V _{CEO(sus)}	25		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)		V(BR)CBO	25	_	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	4.0	-	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, V _{BE} = 0) (V _{CE} = 15 Vdc, V _{BE} = 0, T _A = -65 °C)		ICES	_	0.035 2.0	μAdc
Emitter Cutoff Current (V _{EB} = 3.0 V, I _C = 0)		IEBO	_	35	nA
Base Current $(V_{CE} = 15 \text{ Vdc}, V_{BE} = 0)$		IB	_	0.035	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	MPS3638A	hFE	80	-	_
($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	MPS3638 MPS3638A		20 100	=	
($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	MPS3638 MPS3638A		30 100	=	1
$(I_C = 300 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	MPS3638 MPS3638A		20 20	_	
Collector-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}$, $I_B = 2.5 \text{ mAdc}$) ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mAdc}$)		VCE(sat)	=	0.25 1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}$, $I_B = 2.5 \text{ mAdc}$) ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mAdc}$)		V _{BE} (sat)	0.80	1.1 2.0	Vdc

Characteristic		Symbol	Min	Max	Unit	
SMALL-SIGNAL CHARACTE	RISTICS	Table 1	-			
Current-Gain — Bandwidth $V_{CE} = 3.0 \text{ Vdc}, V_{C} = 50 \text{ r}$		MPS3638 MPS3638A	fT	100 150	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) MPS3638 MPS3638A		C _{obo}	=	20 10	pF	
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f	= 1.0 MHz)	MPS3638 MPS3638A	C _{ibo}	=	65 25	pF
Input Impedance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{ie}	_	2000	Ohms	
Voltage Feedback Ratio (I _C = 10 mAdc, V _{CE} = 10) Vdc, f = 1.0 kHz)	MPS3638 MPS3638A	h _{re}		26 15	X 10-4
		h _{fe}	25 100	=	-	
Output Admittance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	_	1.2	mmhos	
SWITCHING CHARACTERIS	TICS					
	(V _{CC} = 10 Vdc, I _C = 300 mAdc, I _{B1} = 30 mAdc)		t _d		20	ns
Rise Time			tr	-	70	ns
	(V _{CC} = 10 Vdc, I _C = 300 mAdc, I _{B1} = 30 mAdc, I _{B2} = 30 mAdc)		t _S	_	140	ns
Fall Time			tf	- 1-0	70	ns
Turn-On Time	$(I_C = 300 \text{ mAdc}, I_{B1} = 30 \text{ r})$	mAdc)	ton	_	75	ns
Turn-Off Time $(I_C = 300 \text{ mAdc}, I_{B1} = 30 \text{ mAdc}, I_{B2} = 30 \text{ mAdc})$		toff	_	170	ns	

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	VCBO	12	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	80	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS3640

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown	n Voltage (I _C = 100 μ Adc, V _{BE} = 0)	V(BR)CES	12	_	Vdc
Collector-Emitter Sustaining	$_{\rm I}$ Voltage(1) ($I_{\rm C}=10$ mAdc, $I_{\rm B}=0$)	VCEO(sus)	12	_	Vdc
Collector-Base Breakdown V	Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	12	_	Vdc
Emitter-Base Breakdown Vo	oltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current (V (V	$V_{CE} = 6.0 \text{ Vdc}, V_{BE} = 0)$ $V_{CE} = 6.0 \text{ Vdc}, V_{BE} = 0, T_{A} = 65^{\circ}\text{C}$	ICES	_	0.01 1.0	μAdc
Base Current (V _{CE} = 6.0 V	/dc, V _{BE} = 0)	IB	_	10	nAdc
ON CHARACTERISTICS(1)					
DC Current Gain $(I_C = 10)$ $(I_C = 50)$	mAdc, V _{CE} = 0.3 Vdc) mAdc, V _{CE} = 1.0 Vdc)	hFE	30 20	120 —	-
Collector-Emitter Saturation	Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$ $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}, T_A = 65^{\circ}\text{C})$	V _{CE(sat)}	=	0.2 0.6 0.25	Vdc
Base-Emitter Saturation Vol	tage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{BE} (sat)	0.75 0.8 —	0.95 1.0 1.5	Vdc
SMALL-SIGNAL CHARACTE	ERISTICS				
Current-Gain — Bandwidth	Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	500	_	MHz
Output Capacitance (VCB	= = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	Cobo	_	3.5	pF
Input Capacitance (VBE =	$0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$	Cibo	-	3.5	pF
SWITCHING CHARACTERIS	TICS				
	$(V_{CC} = 6.0 \text{ Vdc}, I_{C} = 50 \text{ mAdc}, V_{BE(off)} = 1.9 \text{ Vdc},$	td	_	10	ns
Rise Time	$I_{B1} = 5.0 \text{ mAdc}$	tr	_	30	ns
Storage Time	$(V_{CC} = 6.0 \text{ Vdc}, I_{C} = 50 \text{ mAdc}, I_{B1} = I_{B2} = 5.0 \text{ mAdc})$	t _s	_	20	ns
Fall Time		tf		12	ns
Turn-On Time $(V_{CC} = 6.0 \text{ Vdc}, I_{C} = 50 \text{ r})$ $(V_{CC} = 1.5 \text{ Vdc}, I_{C} = 10 \text{ r})$	mAdc, V _{BE(off)} = 1.9 Vdc, I _{B1} = 5.0 mAdc) mAdc, I _{B1} = 0.5 mAdc)	ton	_	25 60	ns
Turn-Off Time (V _{CC} = 6.0 Vdc, I _C = 50 I	mAdc, $V_{BE(off)} = 1.9 \text{ V}$, $I_{B1} = I_{B2} = 5.0 \text{ mAdc}$) mAdc, $I_{B1} = I_{B2} = 0.5 \text{ mAdc}$	^t off		35 75	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 4 - "ON" VOLTAGES

FIGURE 5 - COLLECTOR SATURATION REGION

FIGURE 6 - TEMPERATURE COEFFICIENTS

FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 8 - CAPACITANCE

MPS3644 MPS3645

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

MAXIMOM RATINGS		20		
Rating		Symbol	Value	Unit
Collector-Emitter Voltage	MPS3644 MPS3645	V _{CEO}	45 60	Vdc
Collector-Base Voltage	MPS3644 MPS3645	VCBO	45 60	Vdc
Emitter-Base Voltage		VEBO	5.0	Vdc
Total Device Dissipation @ Derate above 25°C	$T_A = 25^{\circ}C$	PD	.625	Watts mW/°C
Operating and Storage Jur Temperature Range	nction	TJ, T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic Symbol Min Max Unit **OFF CHARACTERISTICS** Collector-Emitter Sustaining Voltage(1) (I_C = 10 mA) MPS3644 VCEO(sus) 45 Vdc MPS3645 60 MPS3644 45 Collector-Base Breakdown Voltage (I_C = 100 μA) Vdc V(BR)CBO MPS3645 60 Emitter-Base Breakdown Voltage (I_E = 10 μ A) V(BR)EBO 5.0 Vdc Collector Cutoff Current ICES $(V_{CE} = 30 \text{ Vdc})$ $(V_{CE} = 50 \text{ Vdc})$ MPS3644 35 nA MPS3645 35 (VCE = 30 Vdc, @ TA = 65°C) MPS3644 2.0 μΑ (VCE = 50 Vdc, @ TA = 65°C) MPS3645 2.0 ON CHARACTERISTICS DC Current Gain (I_C = 100 μ A, V_{CE} = 10 Vdc) 40 hFE $(I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ Vdc})$ 80 (I_C = 10 mA, V_{CE} = 10 Vdc)(1) (I_C = 50 mA, V_{CE} = 1.0 Vdc)(1) (I_C = 150 mA, V_{CE} = 1.0 Vdc)(1) 100 115 300 100 300 (IC = 300 mA, VCE = 2.0 Vdc)(1) 20 Collector-Emitter Saturation Voltage (I_C = 50 mA, I_B = 2.5 mA)(1) 0.25 Vdc VCE(sat) $(I_C = 150 \text{ mA}, I_B = 15 \text{ mA})(1)$ 0.4 $(I_C = 300 \text{ mA}, I_B = 30 \text{ mA})(1)$ 1.0 Base-Emitter Saturation Voltage (I_C = 50 mA, I_B = 2.5 mA)(1) 1.0 Vdc VBE(sat) $(I_C = 150 \text{ mA}, I_B = 15 \text{ mA})(1)$ 1.3 $(I_C = 300 \text{ mA}, I_B = 30 \text{ mA})(1)$ 2.0 SMALL-SIGNAL CHARACTERISTICS Output Capacitance (VCB = 10 Vdc) Cobo 8.0 pF Input Capacitance (VEB = 0.5 Vdc) Cibo 25 pF hie Input Impedance (I_C = 10 mA, V_{CE} = 10 Vdc, f = 1.0 kHz) 2000 Ω -6X10 Voltage Feedback Ratio (IC = 10 mA, VCE = 10 Vdc, f = 1.0 kHz) hre 1500 Small-Signal Current Gain (IC = 20 mA, VCE = 20 Vdc, f = 100 MHz) hfe 2.0 $(I_C = 10 \text{ mA}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$ 100 Output Admittance (IC = 10 mA, VCE = 10 Vdc, f = 1.0 kHz) 1200 umhos hoe SWITCHING CHARACTERISTICS (FIGURE 1) Turn-On Time ($I_C = 300 \text{ mA}, I_{B1} = 30 \text{ mA}$) 40 ton 100 Turn-Off Time ($I_C = 300 \text{ mA}$, $I_{B1} = I_{B2} = 30 \text{ mA}$) toff ns

(1) Pulse Width = 300 μ sec., Duty Cycle = 1.0%.

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous — 10 μs Pulse	IC	300 500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Refer to 2N4264 for graphs.

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdow	n Voltage ($I_C = 100 \mu Adc, V_{BE} = 0$)	V(BR)CES	40	_	Vdc
Collector-Emitter Sustaining	g Voltage(1) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V _{CEO(sus)}	15		Vdc
Collector-Base Breakdown \	Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Vo	oltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0		Vdc
Collector Cutoff Current (\\(\)\(\)\	/ _{CE} = 20 Vdc, V _{BE} = 0) / _{CE} = 20 Vdc, V _{BE} = 0, T _A = 65°C)	ICES	=	0.5 3.0	μAdc
ON CHARACTERISTICS(1)					
	mAdc, V _{CE} = 0.4 Vdc) 0 mAdc, V _{CE} = 0.5 Vdc) 0 mA, V _{CE} = 1.0 Vdc)	hFE	30 25 15	120 — —	
Collector-Emitter Saturation	Noltage (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc) (I _C = 30 mA, I _B = 3.0 mA, T _A = 65°C)	VCE(sat)		0.2 0.28 0.5 0.3	Vdc
Base-Emitter Saturation Vo	ltage ($I_C = 30 \text{ mAdc}$, $I_B = 3.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mA}$)	V _{BE} (sat)	0.73 — —	0.95 1.2 1.7	Vdc
SMALL-SIGNAL CHARACTE	ERISTICS				
Current-Gain — Bandwidth (I _C = 30 mAdc, V _{CE} = 1		fT	350	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, 1	f = 1.0 MHz)	C _{obo}	_	5.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, 1	f = 1.0 MHz)	C _{ibo}	_	=	pF
SWITCHING CHARACTERIS	STICS				
Turn-On Time		ton	_	18	ns
	(V _{CC} = 10 Vdc, V _{BE(off)} = 3.0 Vdc, I _C = 300 mAdc, I _{B1} = 30 mAdc) (Figure 1)	t _d	_	10	ns
Rise Time	In Se in Set (Ingele I)	t _r	-	15	ns
Turn-Off Time	$(V_{CC} = 10 \text{ Vdc}, I_C = 300 \text{ mAdc}, I_{B1} = I_{B2} = 30 \text{ mAdc})$	toff		28	ns
Fall Time	(Figure 1)	tf		15	ns
Storage Time (VCC = 10 Vdc, IC = 10	mAdc, I _{B1} = I _{B2} = 10 mAdc) (Figure 2)	t _S	_	18	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT FIGURE 2 - CHARGE STORAGE TIME TEST CIRCUIT -3.0 V +10 V +10 V 9 \$1.0 k §33 10% Pulse Waveform at ₹500 ₹91 0. Point "A" 0.1 +7.6 V To Sampling Scope 0.1 120 $t_r \le 1.0 \text{ ns}$ $Z_{in} = 100 \text{ k}\Omega$ \$ 890 16 $t_r, t_f \le 1.0 \text{ ns}$ Pulse Width $\ge 240 \text{ ns}$ ₹50 $z_{in} = 50 \Omega$ To Sampling Scope $t_r \leq 1.0 \text{ ns}$ -10 V ₹₅₆ $z_{in} = 100 k\Omega$ $t_r \le 1.0 \text{ ns}$ Pulse Width = 300 ns = Duty Cycle = 2.0% z_{in} = 50 Ω

MPS3702 MPS3703

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N4402 for graphs.

MAXIMUM RATINGS

Rating	Symbol	MPS3702	MPS3703	Unit
Collector-Emitter Voltage	VCEO	25	30	Vdc
Collector-Base Voltage	V _{CBO}	40	50	Vdc
Emitter-Base Voltage	V _{EBO}	5.0		Vdc
Collector Current — Continuous	IC	600		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	- 55 to	-55 to +150	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.2	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	MPS3702 MPS3703	V(BR)CEO	25 30	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS3702 MPS3703	V(BR)CBO	40 50	=	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)		ICBO	-	100	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)		IEBO	-	100	nAdc
ON CHARACTERISTICS					1
DC Current Gain(1) (I _C = 50 mAdc, V_{CE} = 5.0 Vdc)	MPS3702 MPS3703	hFE	60 30	300 150	.—
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)		V _{CE(sat)}	_	0.25	Vdc
Base-Emitter On Voltage(1) (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)		V _{BE} (on)	0.6	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					•
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)		fT	100	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)		C _{obo}	_	12	pF

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

MINIMON INTINGO				
Rating	Symbol	MPS3704 MPS3705	MPS3706	Unit
Collector-Emitter Voltage	VCEO	30	20	Vdc
Collector-Base Voltage	V _{CBO}	50	40	Vdc
Emitter-Base Voltage	VEBO	5		Vdc
Collector Current — Continuous	lc	600		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	+ 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.2	°C/W

MPS3704 thru MPS3706

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N4400 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

	Symbol	Min	Max	Unit
			10121	2. 41
MPS3704 MPS3705 MPS3706	V(BR)CEO	30 30 20	=	Vdc
MPS3704 MPS3705 MPS3706	V(BR)CBO	50 50 40	=	Vdc
wat in our	V _{(BR)EBO}	5.0	_	Vdc
	СВО	_	100	nAdc
	IEBO	_	100	nAdc
			6 6	- 1
MPS3704 MPS3705 MPS3706	hFE	100 50 30	300 150 600	-
MPS3704 MPS3705 MPS3706	VCE(sat)	=	0.6 0.8 1.0	Vdc
	V _{BE(on)}	0.5	1.0	Vdc
	fŢ	100	-	MHz
	C _{obo}	-	12	pF
	MPS3706 MPS3706 MPS3704 MPS3705 MPS3706 MPS3704 MPS3706 MPS3706	MPS3704 MPS3706 MPS3706 MPS3706 MPS3706 V(BR)CBO V(BR)EBO ICBO IEBO MPS3704 MPS3705 MPS3706 MPS3706 MPS3706 MPS3706 MPS3706 MPS3706 VCE(sat) VBE(on)	MPS3704 MPS3706 MPS3706 MPS3706 MPS3706 MPS3706 MPS3706 MPS3706 V(BR)CBO 50 MPS3706 V(BR)EBO 5.0 ICBO ICBO ICBO MPS3704 MPS3705 MPS3706 VCE(sat) T MPS3706 MPS3706	MPS3704 MPS3706 V(BR)CBO 30 — 30 — 30 — 30 — 30 — 30 — 30 — 30

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

MPS3707 MPS3710 MPS3711

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to MPS3903 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current	Ic	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	NO	V(BR)CEO	30	-	V
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	8041	ICBO		100	nA
Emitter Cutoff Current (VBE = 6.0 Vdc, I _C = 0)		IEBO		100	nA
ON CHARACTERISTICS	17115				
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	MPS3707 MPS3710 MPS3711	hFE	100 90 180	400 330 660	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 0.5 mAdc)		V _{CE} (sat)	_	1.0	V
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.5	1.0	V
SMALL-SIGNAL CHARACTERISTICS					
Small-Signal Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, f = 1.0 KHz) (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 KHz)	MPS3707 MPS3710 MPS3711	h _{fe}	100 90 180	550 450 800	m ¹⁰ W.L.
Noise Figure(1) (VCE = 5.0 V, IC = 100 μ A) (RG = 5.0 K Ω , Noise Bandwidth = 15.7 KHz)	MPS3707	NF	_	5.0	dB

⁽¹⁾ Average Noise Figure is measured in an amplifier with low frequency response down 3 dB at 10 c/s.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	55	Vdc
Emitter-Base Voltage	V _{EBO}	3.5	Vdc
Collector Current — Continuous	lc	0.4	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	200	°C/W

MPS3866

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Symbol Min Max Unit	Characteristic
	OFF CHARACTERISTICS
VCER(sus) 55 — Vdc	Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, R _{BE} = 10 Ω)
VCEO(sus) 30 — Vdc	Collector-Emitter Sustaining Voltage ($I_C = 5.0 \text{ mAdc}, I_B = 0$)
V _{(BR)EBO} 3.5 — Vdc	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)
ICEO — 0.02 mAdc	Collector Cutoff Current $(V_{CE} = 28 \text{ Vdc}, I_B = 0)$
°C)	Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = -1.5 Vdc (Rev.), T _C = 150° C) (V _{CE} = 55 Vdc, V _{BE} = -1.5 Vdc (Rev.)
I _{EBO} — 0.1 mAdc	Emitter Cutoff Current $(V_{BE} = 3.5 \text{ Vdc}, I_C = 0)$
	ON CHARACTERISTICS
h _{FE} 5.0 — 10 200	DC Current Gain ($I_C = 360$ mAdc, $V_{CE} = 5.0$ Vdc)(1) ($I_C = 50$ mAdc, $V_{CE} = 5.0$ Vdc)
VCE(sat) — 1.0 Vdc	Collector-Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 20 \text{ mAdc}$)
	SMALL-SIGNAL CHARACTERISTICS
f _T 500 — MHz	Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)
C _{obo} — 3.0 pF	Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)
	FUNCTIONAL TEST
G _{pe} 10 — dB	Amplifier Power Gain $(V_{CC} = 28 \text{ Vdc}, P_{out} = 1.0 \text{ W}, f = 400 \text{ MHz})$
η 45 — %	Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)
C _{obo} — 3.0 G _{pe} 10 — 7 45 —	(I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz) Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz) FUNCTIONAL TEST Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz) Collector Efficiency

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	Ic	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Power Dissipation @ TA = 60°C	PD	450	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS3903 MPS3904

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	ev i d	Phoposition 1			
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	CARLOS FA	V(BR)CBO	60		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	6.0	4-4	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB(off)} = 3.0 Vdc)		ICEX	_	50	nAdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB(off)} = 3.0 Vdc)		IBL	-	50	nAdc
ON CHARACTERISTICS(1)	ert				•
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	MPS3903 MPS3904	hFE	20 40	=	-
($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	MPS3903 MPS3904	*	35 70	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MPS3903 MPS3904		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{cE} = 1.0 \text{ Vdc})$	MPS3903 MPS3904		30 60	_	
$I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MPS3903 MPS3904		15 30	_	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		VCE(sat)	_	0.2 0.3	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		V _{BE(sat)}	0.65	0.85 1.0	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic			Symbol	Min	Max	Unit
SMALL-SIGNAL CHA	ARACTERISTICS	Dalle U	mark of the		evan Gir	
Current-Gain — Band (I _C = 10 mAdc, V _C	dwidth Product E = 20 Vdc, f = 100 MHz)	MPS3903 MPS3904	fΤ	150 200	=	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E	= 0, f = 100 kHz)		C _{obo}	-30-5	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, Ic	; = 0, f = 100 kHz)		C _{ibo}	_	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		MPS3903 MPS3904	h _{ie}	0.5 1.0	8.0 10	kΩ
Voltage Feedback Ra (I _C = 1.0 mAdc, V	atio CE = 10 Vdc, f = 1.0 kHz)	MPS3903 MPS3904	h _{re}	0.1 0.5	5.0 8.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) MPS3903 MPS3904			h _{fe}	50 100	200 400	ALC TO
Output Admittance (I _C = 1.0 mAdc, V	CE = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure (IC = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω ,		MPS3903 MPS3904	NF	о дел	6.0 5.0	dB
SWITCHING CHARA	CTERISTICS					
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ V})$	dc,	td	_	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r	·	50	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc},$	MPS3903 MPS3904	t _s	=	800 900	ns
Fall Time	$l_{B1} = l_{B2} = 1.0 \text{ mAdc}$		tf	_	90	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

EQUIVALENT SWITCHING TIME TEST CIRCUITS

FIGURE 1 - TURN-ON TIME

FIGURE 2 - TURN-OFF TIME

TYPICAL NOISE CHARACTERISTICS (VCF = 5.0 Vdc, TA = 25°C)

NOISE FIGURE CONTOURS (VCE = 5.0 Vdc, TA = 25°C)

FIGURE 5 - NARROW BAND, 100 Hz

FIGURE 6 - NARROW BAND, 1.0 kHz

FIGURE 7 - WIDEBAND

Noise Figure is Defined as:

NF =
$$20 \log_{10} \left(\frac{e_n^2 + 4KTR_S + I_n^2 R_S^2}{4KTR_S} \right) 1/2$$

en = Noise Voltage of the Transistor referred to the input. (Figure 3)

In = Noise Current of the transistor referred to the input (Figure 4)

K = Boltzman's Constant $(1.38 \times 10^{-23} \text{ j/}^{\circ}\text{K})$

T = Temperature of the Source Resistance (OK)

Rs = Source Resistance (Ohms)

TYPICAL STATIC CHARACTERISTICS

TYPICAL DYNAMIC CHARACTERISTICS

DESIGN NOTE: USE OF THERMAL RESPONSE DATA

A train of periodical power pulses can be represented by the model as shown in Figure 19A. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 19 was calculated for various duty cycles.

To find $Z_{\theta,J,A(t)}$, multiply the value obtained from Figure 19 by the steady state value $R_{\theta,J,A}$.

Example:

The MPS3903 is dissipating 2.0 watts peak under the following conditions:

$$t_1 = 1.0 \text{ ms}, t_2 = 5.0 \text{ ms}. (D = 0.2)$$

Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22.

The peak rise in junction temperature is therefore $\Delta T = r(t) \times P_{(DK)} \times R_{\theta, J\Delta} = 0.22 \times 2.0 \times 200 = 88^{\circ}C.$

For more information, see AN-569.

The safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 20 is based upon $T_{J(pk)}=150^{\circ}C;$ T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leqslant 150^{\circ}C.$ $T_{J(pk)}$ may be calculated from the data in Figure 19. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown. (See AN-415A).

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Base Current	IB	200	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Power Dissipation @ TA = 60°C	PD	450	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS3905 MPS3906

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N5086 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	V _(BR) CEO	40	_	Vdc	
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		V _(BR) CBO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE(off)} = 3.0 Vdc)		ICEX	-	50	nAdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE(off)} = 3.0 Vdc		I _{BL}	_	50	nAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	MPS3905 MPS3906	hFE	30 60	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MPS3905 MPS3906		40 80	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MPS3905 MPS3906		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MPS3905 MPS3906		30 60	=	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MPS3905 MPS3906		15 30	_	
Collector-Emitter Saturation Voltage (IC = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		VCE(sat)	_	0.25 0.4	Vdc
Base-Emitter Saturation Voltage ($I_C=10$ mAdc, $I_B=1.0$ mAdc) ($I_C=50$ mAdc, $I_B=5.0$ mAdc)		V _{BE(sat)}	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	MPS3905 MPS3906	fT	200 250	_	MHz

Characteristic		Symbol	Min	Max	Unit	
Output Capacitance (V _{CB} = 5.0 Vdc, I _E	ut Capacitance $_{ m CB}=5.0~{ m Vdc}, I_{ m E}=0, f=100~{ m kHz})$		C _{obo}	×	4.5	pF
Input Capacitance (VBE = 0.5 Vdc, IC	= 0, f = 100 kHz)	987 3	C _{ibo}		10	pF
Input Impedance (I _C = 1.0 mAdc, V _{CI}	E = 10 Vdc, f = 1.0 kHz)	MPS3905 MPS3906	h _{ie}	0.5 2.0	8.0 12	k ohms
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		h _{re}	0.1 1.0	5.0 10	X 10-4	
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) MPS3905 MPS3906		h _{fe}	50 100	200 400	da sa <u>n</u> ul	
Output Admittance (I _C = 1.0 mAdc, V _C)	E = 10 Vdc, f = 1.0 kHz)	MPS3905 MPS3906	h _{oe}	1.0	40 60	μmhos
Noise Figure (I _C = 100 µAdc, V _{CE} = 5.0 Vdc, R _S = 1.0 k ohm, MPS3905 f = 10 Hz to 15.7 kHz) MPS3906			NF		5.0 4.0	dB
SWITCHING CHARAC	TERISTICS					•
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE(off)} =		t _d	_	35	ns
Rise Time	(I _C = 10 mAdc, I _{B1} = 1.0 m.	Adc)	t _r	_	50	ns
Storage Time		MPS3905	+-	_	500	DC.

Delay Time		$(V_{CC} = 3.0 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc}$		-	35	ns
Rise Time	(I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r	_	50	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc,	MPS3905 MPS3906	t _S	=	500 600	ns
Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mAdc}$	MPS3905 MPS3906	tf	adhi Tayo	90 90	ns

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

Rating	Symbol	MPS4248 MPS4250	MPS4249 MPS4250A	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Emitter Voltage	VCES	40	60	Vdc
Collector-Base Voltage	V _{CBO}	40	60	Vdc
Emitter-Base Voltage	VEBO	5.0	5.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	1.5 12	mW mW/°C
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD		-	201
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	o +125	°C
Junction Temperature	TJ	1	25	°C
Lead Temperature (10 seconds)	TL	2	60	°C

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

TRANSISTOR

PNP SILICON

Charact	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 10 \ \mu A$) ($I_C = 5.0 \ mA$) ($I_C = 5.0 \ mA$) ($I_C = 5.0 \ mA$)	MPS4248 MPS4249 MPS4250 MPS4250A	V(BR)CES	40 60 40 60	=	Vdo
Collector-Emitter Sustaining Voltage(1) (I _C = 5.0) (I _C = 5.0)	MPS4248, MPS4250 MPS4249, MPS4250A	V(BR)CEO(sus)	40 60	=	Vdo
Collector-Base Breakdown Voltage (I _C = 10 μ A) (I _C = 10 μ A)	MPS4248, MPS4250 MPS4249, MPS4250A	V(BR)CBO	40 60	=	Vdd
Emitter-Base Breakdown Voltage ($I_E = 10 \mu A$)		V _{(BR)EBO}	5.0	_	Vdo
Collector Cutoff Current $(V_{CB} = 40 \text{ V})$ $(V_{CB} = 50 \text{ V})$ $(V_{CB} = 40 \text{ V}, T_{A} = 65^{\circ}\text{C})$	MPS4248, MPS4249, MPS4250A MPS4250 MPS4248,49,50	ІСВО	Ξ	10 10 3.0	nA
Emitter Cutoff Current (VBE = 3.0 V)		IEBO	_	20	nA
ON CHARACTERISTICS					
DC Current Gain $ \begin{aligned} &(I_C = 100 \ \mu\text{A}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 100 \ \mu\text{A}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 100 \ \mu\text{A}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 1.0 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 1.0 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 1.0 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 10 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 10 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 10 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) \\ &(I_C = 10 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) \end{aligned} $	MPS4248 MPS4249 MPS4250,A MPS4248 MPS4249 MPS4250 MPS4248 MPS4248 MPS4249	hFE	50 100 250 50 100 250 50 100 250	300 700 — — — — —	_
Collector-Emitter Saturation Voltage(1) (I _C = 10 mA, I _B = 0.5 mA)		V _{CE} (sat)	_	0.25	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 10 mA, I _B = 0.5 mA)		V _{BE} (sat)	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 5.0 V, f = 1.0 MHz)		C _{obo}	_	6.0	pF

MPS4248, MPS4249, MPS4250, MPS4250A

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic Input Capacitance (VBE = 0.5 V, f = 1.0 MHz)		Symbol	Min	Max	Unit
		C _{ibo}	-	16	pF
Small-Signal Current Gain (IC = 1.0 mA, VCE = 5.0 V, f = 1.0 kHz) (IC = 1.0 mA, VCE = 5.0 V, f = 1.0 kHz) (IC = 1.0 mA, VCE = 5.0 V, f = 1.0 kHz) (IC = 0.5 mA, VCE = 5.0 V, f = 20 MHz)	MPS4248 MPS4249 MPS4250,A MPS4248,49,50	h _{fe}	50 100 250 2.0	1000 500 800	
Noise Figure		NF		yt ,	dB
$(I_C = 20 \ \mu A, V_{CE} = 5.0 \ V, R_S = 10 \ K\Omega,$ $f = 1.0 \ kHz, P_{BW} = 150 \ Hz)$ $(I_C = 20 \ \mu A, V_{CF} = 5.0 \ V, R_S = 10 \ K\Omega,$	MPS4248,50,A		-	2.0	
f = 1.0 kHz, PBW = 150 Hz)	MPS4249		_	3.0	
$(I_C = 250 \mu A, V_{CE} = 5.0 \text{ V}, R_S = 1.0 \text{ K}\Omega,$ $f = 1.0 \text{ kHz}, P_{BW} = 150 \text{ Hz})$	MPS4248,50,A		_	2.0	
$(I_C = 250 \mu A, V_{CE} = 5.0 \text{ V}, R_S = 1.0 \text{ K}Ω,$ $f = 1.0 \text{ kHz}, P_{BW} = 150 \text{ Hz})$	MPS4249		_	3.0	

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

Rating	Symbol	MPS4257	MPS4258	Unit
Collector-Emitter Voltage	VCEO	6.0	12	Vdc
Collector-Base Voltage	V _{CBO}	6.0	12	Vdc
Emitter-Base Voltage	V _{EBO}	4	.5	Vdc
Collector Current — Continuous	Ic	80		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		25 2	mW mW°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	+ 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS4257 MPS4258

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTORS

PNP SILICON

Refer to MPS3640 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 100 μ Adc, VBE = 0)	MPS4257 MPS4258	V(BR)CES	6.0 12	=	Vdc
Collector-Emitter Sustaining Voltage(1) $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	MPS4257 MPS4258	VCEO(sus)	6.0 12	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS4257 MPS4258	V(BR)CBO	6.0 12	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)		V(BR)EBO	4.5	_	Vdc
Collector Cutoff Current (VCE = 3.0 Vdc , VBE = 0) (VCE = 3.0 Vdc , VBE = 0 , TA = $+65^{\circ}\text{C}$) (VCE = 6.0 Vdc , VBE = 0) (VCE = 6.0 Vdc , VBE = 0 , TA = $+65^{\circ}\text{C}$)	MPS4257 MPS4257 MPS4258 MPS4258	ICES	=	0.01 5.0 0.01 5.0	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain		hFE	15 30 30	120 —	_
Collector-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 50$ mAdc, $I_B = 5.0$ mAdc)		V _{CE(sat)}	=	0.15 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 50$ mAdc, $I_B = 5.0$ mAdc)		V _{BE(sat)}	0.75 —	0.95 1.5	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (IC = 10 mAdc, $V_{CE} = 5.0$ Vdc, $f = 100$ MHz) (IC = 10 mAdc, $V_{CE} = 10$ Vdc, $f = 100$ MHz)	MPS4257 MPS4258	fT	500 700	=	MHz
Input Capacitance (VBE = 0.5 Vdc, $I_{\overline{C}}$ = 0, f = 1.0 MHz)		C _{ibo}	_	3.5	pF
Collector-Base Capacitance (VCB = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	3.0	pF

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic				Symbol	Min	Max	Unit
SWITCHING CHARACTI	ERISTICS					C. C	A LINE A
Turn-On Time	(V _{CC} = 1.5 Vdc,	May	SCHOOL STATE OF	ton		15	ns
Delay Time	VBE(off) = 0, IC = 10 mAdc, IB1 = 1.0 mAdc)		t _d	_	10	ns	
Rise Time	- IC = 10 MAde, IB1 - 1.0 I	J mAdc, IB1 = 1.0 mAdc)		t _r	_	15	ns
Turn-Off Time	(V _{CC} = 1.5 Vdc,	-307-15	MPS4257 MPS4258	toff		15 20	ns
Storage Time	I _C = 10 mAdc, I _{B1} = I _{B2} = 1.0 mAdc)		MPS4257 MPS4258	t _S		15 20	ns
Fall Time		2000	11.7	tf	res—al	10	ns
Storage Time (I _C ≈ 10 mAdc, I _{B1} ≈	10 mAdc, I _{B2} ≈ 10 mAdc)	24	MPS4257 MPS4258	t _S	-0109	15 20	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

	V _{in} Volts	V _{BB} Volts	V _{CC} Volts	R1 Ohms	R2 Ohms	R3 Ohms	IC mA	IB1 mA	IB2 mA
ton	-5.8	GND	-1.5	130	2.2 k	5 k	10	1.0	1712
toff	+9.8	-8.0	-1.5	130	2.2 k	5 k	10	1.0	1.0
ts	+9.0	-10	- 3.0	270	510	390	10	10	10

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

Rating	Symbol	MPS4274	MPS4275	Unit
Collector-Emitter Voltage	VCEO	12	15	Vdc
Collector-Emitter Voltage	VCES	30	30 40	
Collector-Base Voltage	V _{CBO}	30	40	Vdc
Emitter-Base Voltage	VEBO	4.5		Vdc
Collector Current — Continuous	lc	100		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	-55 to +150	

THERMAL CHARACTERISTICS

THE HUME OF A LACTE HIS 1100			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS4274 MPS4275

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

Refer to MPS2369 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			107 Jan 7-	Later de
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, I _B = 0) MPS4274 MPS4275	V(BR)CEO	12 15	= -	Vdc
Collector-Emitter Breakdown Voltage $ (I_{\hbox{\scriptsize C}} = 10 \ \mu \hbox{\scriptsize Adc}, V_{\hbox{\scriptsize EB}} = 0) \\ \qquad \qquad \qquad MPS4274 \\ \qquad MPS4275 $	V(BR)CES	30 40	4 = 4 ,	Vdc
Collector-Base Breakdown Voltage $ (I_{\hbox{\scriptsize C}} = 10~\mu \hbox{\scriptsize Adc}, I_{\hbox{\scriptsize E}} = 0) \\ \qquad \qquad \qquad \qquad MPS4274 \\ \qquad \qquad MPS4275 $	V(BR)CBO	30 40	n <u>u</u> ffice	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	4.5	-	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0, T _A = 65°C)	Ісво	_	10	μAdd
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{EB} = 0)	ICES	-	400	nAdd
ON CHARACTERISTICS				, are to part
DC Current Gain (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 30 mAdc, V _{CE} = 0.4 Vdc) (I _C = 100 mAdc, V _{CE} = 1.0 Vdc)	hFE	35 30 18	120 — —	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 10 \text{ mAdc}$, $I_B = 3.3 \text{ mAdc}$) ($I_C = 30 \text{ mAdc}$, $I_B = 3.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	VCE(sat)	=	0.2 0.18 0.25 0.50	Vdc
Base-Emitter Saturation Voltage $(I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc})$ $(I_C=10 \text{ mAdc}, I_B=3.3 \text{ mAdc})$ $(I_C=30 \text{ mAdc}, I_B=3.0 \text{ mAdc})$ $(I_C=100 \text{ mAdc}, I_B=10 \text{ mAdc})$	VBE(sat)	0.72 0.74 —	0.85 1.00 1.15 1.60	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, f = 1.0 MHz)	C _{cb}	_	4.0	pF
Small Signal Current Gain (I _C = 10 mAdc, V _{CB} = 10 Vdc, f = 100 MHz)	h _{fe}	4.0	_	_
SWITCHING CHARACTERISTICS	-			
Charge Storage Time $(I_C = I_{B1} = I_{B2} = 10 \text{ mAdc}, V_{CC} = 10 \text{ Vdc})$	ts	_	13	ns
Turn-On Time ($I_C = 10 \text{ mAdc}$, $I_{B1} = 3.3 \text{ mAdc}$, $V_{CC} = 3.0 \text{ Vdc}$)	ton		12	ns
Turn-Off Time ($I_C = 10 \text{ mAdc}$, $I_{B1} = I_{B2} = 3.3 \text{ mAdc}$, $V_{CC} = 3.0 \text{ Vdc}$)	toff	_	12	ns

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

TRANSISTOR

NPN SILICON

Refer to MPS3903 for graphs.

MAXIMUM RATINGS

WAXIIVIOW NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	.625	Watts
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0	Watt
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C
Lead Temperature (10 seconds)	TL	260	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			THE ALL AND	
Collector-Emitter Sustaining Voltage(1) (IC = 3.0 mA)	V(BR)CEO(sus)	18	y 55	Vdc
Collector-Base Breakdown Voltage (IC = 100 µA)	V(BR)CBO	20		Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ A)	V(BR)EBO	3.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ V})$ $(V_{CB} = 15 \text{ V}, T_{A} = 65^{\circ}\text{C})$	Ісво	=	50 5.0	nA μA
Emitter Cutoff Current (V _{BE} = 2.0 V)	lEBO	_	50	nA
ON CHARACTERISTICS			21,200133	
DC Current Gain (I _C = 1.0 mA, V _{CE} = 5.0 V)	hFE	60	1000	-
Collector-Emitter Saturation Voltage (I _C = 1.0 mA, I _B = 0.1 mA)	VCE(sat)	-	0.4	Vdc
Base-Emitter On Voltage ($I_C = 100 \mu A$, $V_{CE} = 5.0 V$)	V _{BE(on)}	-	0.75	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Collector-Base Capacitance (V _{CB} = 5.0 V)	C _{cb}		5.0	pF
Small-Signal Current Gain (I _C = 1.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz) (I _C = 1.0 mA, V_{CE} = 5.0 V, f = 20 MHz)	h _{fe}	50 2.0	1100 20	11

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol Value		Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	.625	Watts
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0	Watt
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C
Junction Temperature	TJ		°C
Lead Temperature (10 seconds)	TL	260	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•			
Collector-Emitter Sustaining Voltage(1) (IC = 10 mA)	V(BR)CEO(sus)	30	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μA)	V(BR)CBO	30	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μA)	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ V})$ $(V_{CB} = 20 \text{ V}, T_{A} = 65^{\circ}\text{C})$	ICBO	=	50 3.0	nΑ μΑ
ON CHARACTERISTICS				
DC Current Gain (I _C = 100 μ A, V _{CE} = 10 V) (I _C = 1.0 mA, V _{CE} = 10 V) (I _C = 10 mA, V _{CE} = 10 V)(1)	hFE	50 50 50	800 — —	_
Collector-Emitter Saturation Voltage(1) (IC = 10 mA, IB = 0.5 mA)	VCE(sat)	-	0.3	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 10 mA, I _B = 0.5 mA)	V _{BE} (sat)	_	1.0	Vdc
Base-Emitter On Voltage(1) ($I_C = 10 \text{ mA}$, $V_{CE} = 10 \text{ V}$)	V _{BE(on)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Collector-Base Capacitance (V _{CB} = 5.0 V, f = 1.0 MHz)	C _{cb}	-	7.0	pF
Emitter-Base Capacitance (V _{BE} = 0.5 V, f = 1.0 MHz)	C _{eb}	_	30	pF
Small-Signal Current Gain ($I_C=0.5$ mA, $V_{CE}=5.0$ V, $f=20$ MHz) ($I_C=1.0$ mA, $V_{CE}=10$ V, $f=1.0$ kHz)	h _{fe}	1.5 40	_ 1000	-

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO} 20		Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	100	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.625	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C
Lead Temperature (10 seconds)	TL	260	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	NV 3 1 1 1 1 1 2 2			
Collector-Emitter Breakdown Voltage (I _C = 100 µA)	V(BR)CES	20	115	Vdc
Collector-Emitter Sustaining Voltage (I _C = 10 mA)(1)	VCEO(sus)	20	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μA)	V(BR)CBO	20		Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μA)	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc) (V _{CE} = 15 Vdc, T _A = 65°C)	ICES	_	50 25	nA μA
ON CHARACTERISTICS				
DC Current Gain $ \begin{aligned} &(I_C = 100 \ \mu\text{A}, \ V_{CE} = 10 \ \text{Vdc}) \\ &(I_C = 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{Vdc}) \\ &(I_C = 10 \ \text{mA}, \ V_{CE} = 1.0 \ \text{Vdc})(1) \\ &(I_C = 50 \ \text{mA}, \ V_{CE} = 10 \ \text{Vdc})(1) \end{aligned} $	hFE	30 40 40 15		_
Collector-Emitter Saturation Voltage ($I_C = 1.0 \text{ mA}$, $I_B = 0.1 \text{ mA}$)(1) ($I_C = 10 \text{ mA}$, $I_B = 1.0 \text{ mA}$)(1) ($I_C = 50 \text{ mA}$, $I_B = 5.0 \text{ mA}$)(1)	VCE(sat)	=	0.15 0.20 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mA}$, $I_B = 1.0 \text{ mA}$)(1) ($I_C = 50 \text{ mA}$, $I_B = 5.0 \text{ mA}$)(1)	V _{BE(sat)}	0.7 0.75	1.0 1.25	Vdc
SMALL-SIGNAL CHARACTERISTICS				D.
Collector-Base Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{cb}	_	5.0	pF
Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, f = 1.0 MHz)	C _{eb}	_	8.0	pF
Current Gain — High Frequency (I _C = 10 mA, V _{CE} = 20 Vdc, f = 100 MHz)	h _{fe}	3.0		_
SWITCHING CHARACTERISTICS				
Turn-On Time (I _C \approx 50 mA, I _{B1} \approx 5.0 mA)	ton	-	50	ns
Turn-Off Time (I _C \approx 50 mA, I _{B1} \approx 5.0 mA, I _{B2} \approx $-$ 5.0 mA)	^t off	_	200	ns
(I _C \approx 50 mA, I _{B1} \approx 5.0 mA, I _{B2} \approx -5.0 mA) (1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.				

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPS5172

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPS3903 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				and sugar	San Silve
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	25	Jeffand sow	oli <u>jas</u> bijo Pagodijas V	Vdc
Collector Cutoff Current (V _{CB} = 25 Vdc, I _E = 0) (V _{CB} = 25 Vdc, I _E = 0, T_A = 100°C)	СВО	1	- No.	100 10	nAdc μAdc
Collector Cutoff Current (V _{CE} = 25 Vdc, V _{BE} = 0)	ICES	_	- Jo	100	nAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)	IEBO		- <u>ai</u> 0	100	nAdc
ON CHARACTERISTICS				nie.	nine 2.30
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	hFE	100	Told collin	500	0 m_0
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)		BAN_ F	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	208	0.75	plicanArr amoussess	Vdc
Base-Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 10 Vdc)	V _{BE(on)}	0.5		1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS			a Mr.	CO III III	- aunio
Current-Gain — Bandwidth Product (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)	fT	W all to	120	1 - Y	MHz
Collector-Base Capacitance (V _{CB} = 0, I _E = 0, f = 1.0 MHz)	C _{cb}	1.6	NY NAME OF	10	pF
Small-Signal Current Gain (I _C = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	100	(f. sup)	750	-

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

WAXIIVIOW RATINGS	100		
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	2.5	Vdc
Collector Current — Continuous	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	300 1.71	mW mW/°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	12/10-11	9		
Collector-Emitter Sustaining Voltage (I _C = 3.0 mAdc, I _B = 0)	VCEO(sus)	12	A DA	Vdc
Collector-Base Breakdown Voltage (IC = 0.001 mAdc, I _E = 0)	V _(BR) CBO	20		Vdc
Emitter-Base Breakdown Voltage $(I_E=0.01 \text{ mAdc}, I_C=0)$	V(BR)EBO	2.5	1.00	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	ICBO	=	0.02 1.0	μAde
ON CHARACTERISTICS			5 nV 1	1 350
DC Current Gain (IC = 3.0 mAdc, V _{CE} = 1.0 Vdc)	hFE	25	250	7/8/2/8
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}		0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}		1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		profession (V.)	W. At Part	W at
Current-Gain — Bandwidth Product(1) (IC = 5.0 mAdc, V _{CE} = 6.0 Vdc, f = 100 MHz)	fT	900	2000	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 to 1.0 MHz)	C _{cb}	rille <u>d</u> has	1.0	pF
Small Signal Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	25	300	
Collector Base Time Constant (I _E = 2.0 mAdc, V _{CB} = 6.0 Vdc, f = 31.9 MHz)	rb′C _C	3.0	14	ps
Noise Figure (See Figure 1) (IC = 1.5 mAdc, V_{CE} = 6.0 Vdc, R_S = 50 ohms, f = 200 MHz)	NF	× _	4.5	dB
Common-Emitter Amplifier Power Gain (See Figure 1) (V _{CE} = 6.0 Vdc, I _C = 5.0 mAdc, f = 200 MHz)	Gpe	15	_	dB

⁽¹⁾ $f_{\mbox{\scriptsize T}}$ is defined as the frequency at which $|h_{\mbox{\scriptsize fe}}|$ extrapolates to unity.

FIGURE 1 – 200 MHz AMPLIFIER POWER GAIN AND NOISE FIGURE CIRCUIT

- L1 1-3/4 Turns, #18 AWG, 0.5" L, 0.5" Diameter
- L2 2 Turns, #16 AWG, 0.5" L, 0.5" Diameter
- L3 2 Turns, #13 AWG, 0.25" L, 0.5" Diameter (Position 1/4" from L2)

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	20	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	30	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current ($V_{CB} = 15 \text{ Vdc}, I_E = 0$) ($V_{CB} = 15 \text{ Vdc}, I_E = 0, T_A = 60^{\circ}\text{C}$)	ІСВО	_	_	50 1.0	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain(2) (I _C = 2.0 mAdc, V _{CE} = 10 Vdc)	hFE	25	75	_	_
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	700	800	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	1.25	2.5	pF
Small-Signal Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 44 MHz)	h _{fe}	20	-	_	_

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Emitter Voltage	VCES	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	200	°C/W

(1) R_{BJA} is measured with the device soldered into a typical printed circuit board.

MPS6511

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 0.5 mAdc, I _B = 0)	V _(BR) CEO	20	- -	_	Vdc
Collector-Emitter Breakdown Voltage(2) (I _C = 100 µAdc, V _{EB} = 0)	V _(BR) CES	30	_	_	Vdc
Collector Cutoff Current ($V_{CB} = 15 \text{ Vdc}, I_E = 0$)	ІСВО	_	-	50	nAdc
ON CHARACTERISTICS	W 94., 65.		11.71	1 1 1	
DC Current Gain(2) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	hFE	25	75		77.
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}		1.25	2.5	pF
FUNCTIONAL TEST				-	
Amplifier Power Gain (I _C = 10 mAdc, V _{CB} = 12 Vdc, f = 45 MHz)	Gpe	30	· -	_	dB

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

NPN MPS6512 thru MPS6515

PNP MPS6516 thru MPS6519

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

Refer to 2N4125 for graphs.

MAXIMUM RATINGS

Rating	Symbol	NPN	PNP	Unit
Collector-Emitter Voltage MPS6512, MPS6513	VCEO	30		Vdc
MPS6514, MPS6515 MPS6516 thru MPS6518 MPS6519		25 —	40 25	
Collector-Base Voltage MPS6512 thru MPS6515 MPS6516 thru MPS6518 MPS6519	VCBO	40 —	— 40 25	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	4.0	Vdc
Collector Current — Continuous	lc	100	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	+ 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	RAJA	200	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristi	С	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					1796	
Collector-Emitter Breakdown Voltage (I _C = 0.5 mAdc, I _B = 0)	MPS6512, MPS6513 MPS6514, MPS6515	V(BR)CEO	30 25	_	1	Vdc
$(I_C = 0.5 \text{ mAdc}, I_B = 0)$	MPS6516 thru MPS6518 MPS6519		40 25		_	
Emitter-Base Breakdown Voltage (IE = 10 μ (IE = 10 μ	Adc, $I_C = 0$	V(BR)EBO	4.0 4.0	_	· -	Vdc
Collector Cutoff Current (VCB = 30 Vdc, IE = 0) (VCB = 30 Vdc, IE = 0) (VCB = 20 Vdc, IE = 0) ON CHARACTERISTICS	MPS6516 thru MPS6518 MPS6519	ICBO	=	=======================================	0.05 0.05 0.05	μAdc
DC Current Gain		hFE			7.11	-
(I _C = 2.0 mAdc, V _{CE} = 10 Vdc)	MPS6512 MPS6513 MPS6514 MPS6515	FE	50 90 150 250	=	100 180 300 500	
$(I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	MPS6512 MPS6513 MPS6514 MPS6515		30 60 90 150	=	=	
($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	MPS6516 MPS6517 MPS6518 MPS6519		50 90 150 250	=	100 180 300 500	
$(I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	MPS6516 MPS6517 MPS6518 MPS6519		30 60 90 150	_ _ _	_ _ _	
	50 mAdc, I _B = 5.0 mAdc) 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	=	_	0.5 0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Output Capacitance $(V_{CB}=10\ Vdc,\ I_{E}=0\ (V_{CB}=10\ Vdc,\ I_{E}=0\)$		C _{obo}	_	_	3.5 4.0	pF

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	NPN	PNP	Unit
Collector-Emitter Voltage	VCEO			Vdc
MPS6520, MPS6521		25		
MPS6522, MPS6523		_	25	
Collector-Base Voltage	VCBO		1.6 00	Vdc
MPS6520, MPS6521	000	40	_	
MPS6522, MPS6523		_	25	
Emitter-Base Voltage	VEBO	4.0		Vdc
Collector Current — Continuous	lc	100		mAdc
Total Device Dissipation @ TA = 25°C	PD	63	25	mW
Derate above 25°C		5.0		mW/°C
Total Device Dissipation @ T _C = 25°C	PD	1.5		Watts
Derate above 25°C		12		mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Printed Circuit Board Mounting)	R_{θ} JA	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

NPN MPS6520 MPS6521

PNP MPS6522 MPS6523

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

Refer to MPS3903 for NPN graphs.*

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					ford a fire
Collector-Emitter Breakdown Voltage (IC = 0.5 mAdc, IB = 0) (IC = 0.5 mAdc, IB = 0)		V(BR)CEO	25 25	= 7	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$) ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	4.0 4.0	=	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I_E = 0) (V _{CB} = 20 Vdc, I_E = 0)		ІСВО	_	0.05 0.05	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 10 Vdc)	MPS6520 MPS6521	hFE	100 150	400	- 77
(I _C = 2.0 mAdc, V_{CE} = 10 Vdc)	MPS6520 MPS6521		200 300	600	
$(I_C = 100 \ \mu Adc, V_{CE} = 10 \ Vdc)$	MPS6522 MPS6523		100 150	400	
$(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPS6522 MPS6523		200 300	600	
Collector-Emitter Saturation Voltage (IC = 50 mAdc, I _B = 5.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	Surgest St	V _{CE(sat)}	_	0.5 0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz) (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	to 1 x xx 5 1 x	C _{obo}	= 1	3.5 3.5	pF
Noise Figure ($I_C = 10 \mu Adc$, $V_{CE} = 5.0 Vdc$, $R_S = 10 kohms$, Power Bandwidth = 15.7 kHz, 3.0 dB points @ 1		NF		3.0	dB
(I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kohms, Power Bandwidth = 15.7 kHz, 3.0 dB points @ 1	ri .	- I	-	3.0	e and i

^{*}Refer to 2N5086 for PNP graphs.

MPS6530 thru MPS6532

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N4400 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

MAXIMUM RATINGS

MAXIMON INTINGO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage MPS6530, MPS6531 MPS6532	VCEO	40 30	Vdc
Collector-Base Voltage MPS6530, MPS6531 MPS6532	VCBO	60 50	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	Ic	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625	mW
Junction Temperature	T _J , T _{stg}	150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _Ø JA	0.2	°C/mW

Characteristic	1	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				THE PERSON NAMED IN	ANK. IN
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	MPS6530, MPS6531 MPS6532	V _{(BR)CEO}	40 30	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	MPS6530, MPS6531 MPS6532	V _(BR) CBO	60 50	=	Vdc
Emitter-Base Breakdown Voltage (IB = 10 μ Adc, IC = 0) (IB = 10 μ Adc, IC = 0)	All Types All Types	V(BR)EBO	5.0 4.0		Vdc
Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_E = 0, T_A = 60^{\circ}\text{C})$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0, T_A = 60^{\circ}\text{C})$	MPS6530, MPS6531 MPS6532 MPS6530, MPS6531 MPS6532	СВО		0.05 0.1 2.0 5.0	μAdc
ON CHARACTERISTICS	1510				
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CF} = 1.0 \text{ Vdc}$)	MPS6530 MPS6531 MPS6530	hFE	30 60 40	_ _ _ 120	_
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPS6531 MPS6532 MPS6530 MPS6531		90 30 25 50	270 —	
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	MPS6530, MPS6532 MPS6531	VCE(sat)	=	0.5 0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	MPS6530, MPS6531 MPS6532	V _{BE(sat)}	= 1	1.0 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS		Jerse F		WA 200	9 1
Output Capacitance (VCB = 10 Vdc, I _E = 0, f = 1.0 MHz) (VCB = 10 Vdc, I _E = 0, f = 1.0 MHz)	All Types All Types	C _{obo}	=	5.0 7.0	pF

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MPS6533, MPS6534 MPS6535	VCEO	40 30	Vdc
Collector-Base Voltage MPS6533, MPS6534 MPS6535	V _{CBO}	40 30	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625	mW
Junction Temperature	TJ, Tsta	150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.2	°C/mW

MPS6533 thru MPS6535

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N4402 for graphs.

Characterist	ic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				DOMESTO	ARARI) 4
Collector-Emitter Breakdown Voltage (IC = 10 mAdc, IB = 0)	MPS6533, MPS6534 MPS6535	V(BR)CEO	40 30	e of the	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	MPS6533, MPS6534 MPS6535	V(BR)CBO	40 30	e e el parko moderno la marko	Vdc
Emitter-Base Breakdown Voltage (IB = 10 μ Adc, IC = 0) (IB = 10 μ Adc, IC = 0)	All Types All Types	V(BR)EBO	5.0 4.0	v = 1,050 m=0,01	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _F = 0, T _A = 60°C)	All Types MPS6533, MPS6534	Ісво	_	0.05	μAdd
$(V_{CB} = 20 \text{ Vdc}, I_{E} = 0, T_{A} = 60^{\circ}\text{C})$	MPS6535		200 TO 10	5.0	ni nouv
ON CHARACTERISTICS			- Purily		
DC Current Gain (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	MPS6533 MPS6534	hFE	30 60	2000 L	oz un
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MPS6533 MPS6534 MPS6535	GHM LOF	40 90 30	120 270 —	Tue Tue
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPS6533 MPS6534	-45/ S 4E	25 50	Z-10	of receive
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	MPS6533, MPS6535 MPS6534	VCE(sat)	-	0.5 0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	MPS6533, MPS6534 MPS6535	V _{BE(sat)}	=	1.0 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	All Types All Types	C _{obo}	_	5.0 7.0	pF

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	35	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

THE HIME OF A TOTAL OF ETHO 1100			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W
Thermal Resistance, Junction to Ambient	R _{0.1A} (1)	357	°C/W

⁽¹⁾ R_{BJA} is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			6	DESTRUCTION OF	NEO W
Collector-Emitter Breakdown Voltage(2) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	25	— color	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	V(BR)CBO	35		Lipotes, son	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	3.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 25 Vdc, I _E = 0)	ІСВО	_	BUISEY TH	0.1	μAdc
Emitter Cutoff Current (VBE = 2.0 Vdc, IC = 0)	IEBO	_		1.0	μAdc
ON CHARACTERISTICS	la la company			1/2 6	Company of the
DC Current Gain(2) (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	hFE	25	60	7.755.0	= 6274
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	200	350	mVdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	750	950	mVdc
SMALL-SIGNAL CHARACTERISTICS					71
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 12 Vdc, f = 100 MHz)	fT	750	1100	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	0.8	1.0	pF
Collector Base Time Constant (I _E = 4.0 mAdc, V _{CE} = 12 Vdc, f = 31.8 MHz)	rb'C _C	_	y	9.5	ps

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

WAXIIVIOW NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.81	mW mW/°C
Total Device Dissipation @ T _A = 60°C	PD	210	mW
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +135	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit			
Thermal Resistance, Junction to Ambient	RAJA	357	°C/W			

MPS6544

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPSH20 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}$, $I_E = 0$)	V(BR)CEO	45		Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V _(BR) CBO	60		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	= 4	Vdc
Collector Cutoff Current (V _{CB} = 35 Vdc, I _E = 0)	Ісво	_	0.5	μAdc
ON CHARACTERISTICS				770
DC Current Gain (I _C = 30 mAdc, V _{CE} = 10 Vdc)	h _{FE}	20	7=	T
Collector-Emitter Saturation Voltage (I _C = 30 mAdc, I _B = 3.0 mAdc)	V _{CE(sat)}	_	0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Common-Emitter Reverse Transfer Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_{C} = 0$, $f = 100 \text{ kHz}$)	C _{re}		0.65	pF
Output Admittance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 45 MHz)	Yoe		0.10	mmhos
Output Voltage (Vin(RMS) = 12 mV, f = 45 MHz)	V _{out}	1.0		Vdc

MPS6547

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	35	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	200	°C/W

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			7.0	BAUTERIE	HE 110
Collector-Emitter Breakdown Voltage(2) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	25	_	All marrows	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	35	The second	70-1	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	3.0	_	7 (10 to 0	Vdc
Collector Cutoff Current (V _{CB} = .25 Vdc, I _E = 0)	Ісво	_		100	nAdc
Emitter Cutoff Current (V _{BE} = 2.0 Vdc, I _C = 0)	IEBO	-		1.0	μAdc
ON CHARACTERISTICS			DAM E	N Date of	
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)	hFE	20	60	o vilan	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	Lu jeG vin	0.1	0.35	Vdc
Base-Emitter On Voltage(2) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	V _{BE(on)}		0.7	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS	1	A ST A ST	the till	1	
Current-Gain — Bandwidth Product (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	600	1000	-	MHz
Common-Emitter Reverse Transfer Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{re}	_	0.3	0.35	pF
Conversion Gain (I _C = 4.0 mAdc, V_{CE} = 10 Vdc, f = 100 MHz to 10.7 MHz)	Gpe	20	25	-	dB

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

L2 = 37 Turns #28 Wire, Wound on 1/4" I.D. Coil Form.

MPS6560 MPS6562

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AUDIO TRANSISTOR

MPS6560 NPN SILICON

MPS6562 PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THEDMAI CHADACTEDISTICS

THE MINE OF A TANK OF EMOTION			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/mW

(1) R₀JA is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V(BR)CEO	25	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	25	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current $(V_{CE} = 25 \text{ Vdc}, _{B} = 0)$	ICEO	_	100	nAdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	ІСВО	_	100	nAdc
Emitter Cutoff Current (VEB(off) = 4.0 Vdc, I _C = 0)	IEBO	-	100	nAdc
ON CHARACTERISTICS(2)				
DC Current Gain	hFE	35 50 50	 200	-
Collector-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)	VCE(sat)	_	0.5	Vdc
Base-Emitter On Voltage ($I_C = 500 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 30 MHz)	fT	60	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	-	30	pF

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	45	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	Ic	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit			
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W			
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W			

MPS6565 MPS6566

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N3903 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					TIEF	
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)		V(BR)CEO	45	-	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)		V _(BR) CBO	60		-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \ \mu Adc, I_C = 0$)		V(BR)EBO	4.0	-		Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		ІСВО	_	-	100	nAdc
ON CHARACTERISTICS						
DC Current Gain $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPS6565 MPS6566	hFE	40 100	=	160 400	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{CE(sat)}	_	0.1	0.4	Vdc
SMALL-SIGNAL CHARACTERISTICS					15,619	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	130 51 , 6	3.5	pF

MPS6568A thru MPS6570A

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

VHF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	Voltage V _{CEO} 20		Vdc
Collector-Base Voltage	V _{CBO}	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case(1)	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

(1) R_{BJA} is measured with the device soldered into a typical printed circuit board.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				CAN DE LA	mark 1940
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V _(BR) CEO	20	<u>-</u>	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)		V _(BR) CBO	20		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	3.0	_	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _C = 0)		ICBO	-	50	nAdc
ON CHARACTERISTICS				2 10 10	1
DC Current Gain ($I_C = 4.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	ğ vali	hFE	20	200	_
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)		V _{CE(sat)}	0.1	3.0	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 5.0 mAdc)		V _{BE(sat)}	£1,00,	0.96	Vdc
SMALL-SIGNAL CHARACTERISTICS					10.7
Current-Gain — Bandwidth Product ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	MPS6568A MPS6569A, MPS6570A	fT	375 300	800 800	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}, emitter guarded}$)	MPS6568A/6570A	C _{cb}	_	0.65	pF
Noise Figure (VAGC = 1.4 Vdc, R_S = 50 ohms, f = 200 MHz) (VAGC = 2.75 Vdc, R_S = 50 ohms, f = 45 MHz)	MPS6568A MPS6569A, MPS6570A	NF	_	3.3 6.0	dB
FUNCTIONAL TEST					
$\begin{aligned} & \text{Amplifier Power Gain} \\ & \text{(VAGC} = 1.4 \text{ Vdc, R}_{\text{S}} = 50 \text{ ohms, f} = 200 \text{ MHz)} \\ & \text{(VAGC} = 2.75 \text{ Vdc, R}_{\text{S}} = 50 \text{ ohms, f} = 45 \text{ MHz)} \end{aligned}$	MPS6568A MPS6569A, MPS6570A	G _{pe}	20 22.5	27 28.5	dB
Forward AGC Voltage (Gain Reduction = 30 dB, RS = 50 ohms, f = 200 MHz) (Gain Reduction = 30 dB, RS = 50 ohms, f = 45 MHz)	MPS6568A MPS6569A MPS6570A	VAGC	4.0 4.4 5.2	5.0 5.4 6.2	Vdc

AGC CHARACTERISTICS

 $V_{CC}=12~Vdc,\,R_S=50~OHMS,\,SEE~FIGURES~9~AND~10$

FIGURE 3 — 200 MHz FUNCTIONAL TEST CIRCUIT (NEUTRALIZED)

FIGURE 4 — 45 MHz FUNCTIONAL TEST CIRCUIT (UNNEUTRALIZED)

MPS6571

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

MAXIMOM NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

Refer to MPSA18 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	20	_		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	25	=	_	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	ІСВО		. 7.	50	nAdc
Emitter Cutoff Current (VEB(off) = 3.0 Vdc, I _C = 0)	IEBO) .—	50	nAdc
ON CHARACTERISTICS		1			in Lo
DC Current Gain (I _C = 100 µAdc, V _{CE} = 5.0 Vdc)	hFE	250	-	1000	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE} (sat)	-		0.5	Vdc
Base-Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	V _{BE} (on)	_	_	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS		19	-		1
Current-Gain — Bandwidth Product (I _C = 500 µAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)	fT	50	175	_	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	_	4.5	pF
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kohms, f = 100 Hz)	NF	_	1.2	_	dB

Rating	Symbol	MPS6573 MPS6574	MPS6575 MPS6576	Unit
Collector-Emitter Voltage	VCEO	35	45	Vdc
Collector-Base Voltage	V _{CBO}	35	45	Vdc
Emitter-Base Voltage	V _{EBO}	4.0		Vdc
Collector Current — Continuous	Ic	100		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

MPS6573 thru MPS6576

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AUDIO TRANSISTOR

NPN SILICON

Refer to MPS3903 for graphs.

Characteristic		Min	Max	Unit
			TRI.	
MPS6573, MPS6574 MPS6575, MPS6576	V(BR)CEO	35 45	_	Vdc
MPS6573, MPS6574 MPS6575, MPS6576	ICBO	=	100 100	nAdc
	IEBO	-	100	nAdc
MPS6573, MPS6575 MPS6573, MPS6575 MPS6574, MPS6576(2)	hFE	100 200 100	 500 300	_
	V _{CE(sat)}	_	0.5	Vdc
	V _{BE(on)}	_	0.8	Vdc
	fT	100	350	MHz
	C _{obo}	-	12	pF
	MPS6575, MPS6576 MPS6573, MPS6574 MPS6575, MPS6576 MPS6573, MPS6575 MPS6573, MPS6575	MPS6573, MPS6574 MPS6575, MPS6576 MPS6573, MPS6574 MPS6575, MPS6576 IEBO MPS6573, MPS6575 MPS6573, MPS6575 MPS6574, MPS6575 MPS6574, MPS6576(2) VCE(sat) VBE(on)	MPS6573, MPS6574 MPS6575, MPS6574 MPS6575, MPS6576 MPS6573, MPS6576 ICBO —— MPS6573, MPS6576 IEBO —— MPS6573, MPS6575 MPS6573, MPS6575 MPS6574, MPS6576(2) VCE(sat) VBE(on) —— fT 100	MPS6573, MPS6574 MPS6575, MPS6576 MPS6575, MPS6574 MPS6575, MPS6576 MPS6573, MPS6576 ICBO IEBO IEBO MPS6573, MPS6575 MPS6573, MPS6575 MPS6574 MPS6574 MPS6575 MPS6574 MPS6575 MPS6576 IDO TOO MPS6574 MPS6575 MPS6576 MPS6576 IDO TOO TOO TOO TOO TOO TOO TOO

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPS6580

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

WAXIIIOW HATIIIGO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _{BJA} (1)	200	°C/W

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

Refer to MPSH81 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				111111111111111111111111111111111111111	
Collector-Emitter Breakdown Voltage(2) (IC = 1.0 mAdc, IB = 0)	V _(BR) CEO	25			Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V _(BR) CBO	30	_	CHUS AGO	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	3.0	- /	7-4	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	СВО	_	_	100	nAdc
Emitter Cutoff Current (VBE = 2.0 Vdc, I _C = 0)	IEBO	_	_	100	nAdc
ON CHARACTERISTICS			No.	Fig. 16.51	11 - 1
DC Current Gain(2) (I _C = 2.0 mAdc, V _{CE} = 10 Vdc)	hFE	20	80	10 <u>2</u> 5	_
Collector-Emitter Saturation Voltage ($I_C = 2.0 \text{ mAdc}$, $I_B = 0.2 \text{ mAdc}$)	V _{CE(sat)}	_	0.2	0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS			the by w	_1-1-1-1	
Current-Gain — Bandwidth Product ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fΤ	250	450	7. It 7. In.	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 MHz)	C _{cb}	_	0.5	1.0	pF

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MPS6601/6651 MPS6602/6652	VCEO	25 40	Vdc
Collector-Base Voltage MPS6601/6651 MPS6602/6652	V _{CBO}	25 30	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	1 _C	1000	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	200	°C/W

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

NPN MPS6601 MPS6602 PNP MPS6651 MPS6652

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

	Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	3					
Collector-Emitter Breakd (I _C = 1.0 mAdc, I _B =	0) MI	PS6601/6651 PS6602/6652	V _{(BR)CEO}	25 40	=	Vdc
Collector-Base Breakdov (I _C = 100 μAdc, I _E =	0) MI	PS6601/6651 PS6602/6652	V(BR)CBO	25 40	7 =	Vdc
Emitter-Base Breakdown (I _E = 10 μAdc, I _C = 0			V(BR)EBO	4.0	-	Vdc
Collector Cutoff Current (VCE = 25 Vdc, I _B = (VCE = 30 Vdc, I _B =	0) MI	PS6601/6651 PS6602/6652	ICEO		0.1 0.1	μAdc
Collector Cutoff Current (V _{CB} = 25 Vdc, I _E = (V _{CB} = 30 Vdc, I _E =	0) MI	PS6601/6651 PS6602/6652	ICBO	_	0.1 0.1	μAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 100 mAdc, V _{CE} (I _C = 500 mAdc, V _{CE} (I _C = 1000 mAdc, V _C	= 1.0 Vdc)		hFE	50 50 30	=	_
Collector-Emitter Satura			V _{CE(sat)}		0.6	Vdc
Base-Emitter On Voltage (I _C = 500 mAdc, V _{CE}			V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARA	ACTERISTICS	part for				
Current-Gain — Bandwi (I _C = 50 mAdc, V _{CE} =	dth Product = 10 Vdc, f = 30 MHz)		fT	100	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E =	0, f = 100 kHz)		C _{obo}	-	30	pF
SWITCHING CHARACTI	ERISTICS					
Delay Time		1	td	_	25	ns
Rise Time	(V _{CC} = 40 Vdc, I _C = 500 mAdc,		tr	_	30	ns
Storage Time			ts	_	250	ns
Fall Time	-		tf	-	50	ns

FIGURE 1 - SWITCHING TIME TEST CIRCUITS

*Total Shunt Capacitance of Test Jig and Connectors For PNP Test Circuits, Reverse All Voltage Polarities

FIGURE 2 — MPS6601/6602 DC CURRENT GAIN 300 200 VCE = 1.0 V TJ = 25°C 30 10 100 1c, COLLECTOR CURRENT (mA)

NPN MPS6601, MPS6602, PNP MPS6651, MPS6652

NPN

PNP

NPN MPS6601, MPS6602, PNP MPS6651, MPS6652

MPS6714 MPS6715

CASE 29-03, STYLE 1 TO-92 (TO-226 AE)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPSW01 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MPS6714 MPS6715	VCEO	30 40	Vdc
Collector-Base Voltage MPS6714 MPS6715	VCBO	40 50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	RAJA	125	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	MPS6714 MPS6715	V(BR)CEO	30 40	-	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS6714 MPS6715	V(BR)CBO	40 50	_	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)	The state of the s	V(BR)EBO	5.0		Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I_E = 0) (V _{CB} = 50 Vdc, I_E = 0)	MPS6714 MPS6715	Ісво	=	0.1 0.1	μAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		IEBO	_	0.1	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain (I _C = 100 mAdc, V_{CE} = 1.0 Vdc) (I _C = 1000 mAdc, V_{CE} = 1.0 Vdc)		hFE	60 50	 250	_
Collector-Emitter Saturation Voltage (I _C = 1000 mAdc, I _B = 100 mAdc)		V _{CE(sat)}	_	0.5	Vdc
Base-Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	-	30	pF

⁽I_C = $\overline{5}0$ mAdc, V_{CE} = 10 Vdc, f = 20 MHz) (1) Pulse Test: Pulse Width \leq 30 μ s, Duty Cycle \leq 2.0%.

25

2.5

hfe

Small-Signal Current Gain

Rating	Symbol	MPS6516	MPS6517	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	5	.0	Vdc
Collector Current — Continuous	Ic	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPS6716 MPS6717

CASE 29-03, STYLE 1 TO-92 (TO-226 AE)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPSW05 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, B = 0)	MPS6716 MPS6717	V(BR)CEO	60 80	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS6716 MPS6717	V(BR)CBO	60 80	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current ($V_{CB} = 40 \text{ Vdc}, I_E = 0$) ($V_{CB} = 60 \text{ Vdc}, I_E = 0$)	MPS6716 MPS6717	ІСВО	_	0.1 0.1	μAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		IEBO	_	10	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 250 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		hFE	80 50	 250	_
Collector-Emitter Saturation Voltage (I _C = 250 mAdc, I _B = 10 mAdc)		V _{CE(sat)}		0.5	Vdc
Base-Emitter On Voltage (I _C = 250 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	-	30	pF
Small-Signal Current Gain (I _C = 200 mAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)		h _{fe}	2.5	25	_

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPS6724 MPS6725

CASE 29-03, STYLE 1 (TO-226 AE)

DARLINGTON TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS6724	MPS6725	Unit
Collector-Emitter Voltage	VCES	40	50	Vdc
Collector-Base Voltage	VCBO	50	60	Vdc
Emitter-Base Voltage	VEBO	1	2	Vdc
Collector Current — Continuous	lc	1000		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	RAIA	125	°C/W

Refer to 2N6426 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				THAT	VANES TO
Collector-Emitter Breakdown Voltage(1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	MPS6724 MPS6725	V(BR)CES	40 50		Vdc
Collector-Base Breakdown Voltage (IC = 1.0 μ Adc, IE = 0)	MPS6724 MPS6725	V(BR)CBO	50 60	- A-count	Vdc Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	12	nert Day	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_{E} = 0)$	MPS6724 MPS6725	ICBO	_	100 100	nAdc
Emitter Cutoff Current (VEB = 10 Vdc, IC = 0)		IEBO	_	100	nAdc
ON CHARACTERISTICS(1)			()	A STATE OF THE PARTY	25 427
DC Current Gain ($I_C = 200 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 1000 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)		hFE	25,000 4,000	40,000	
Collector-Emitter Saturation Voltage (I _C = 1000 mAdc, I _B = 2.0 mAdc)		VCE(sat)	-	1.5	Vdc
Base-Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	Lpa.	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			State of Pales	AL AN	
Current-Gain — Bandwidth Product (I _C = 200 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		fŢ	100	1000	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	-	10	pF

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MPS6726 MPS6727	VCEO	30 40	Vdc
Collector-Base Voltage MPS6726 MPS6727	VCBO	40 50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPS6726 MPS6727

CASE 29-03, STYLE 1 TO-92 (TO-226 AE)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to MPSW51 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				s. inholena	ALLOYS TO
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	MPS6726 MPS6727	V(BR)CEO	30 40	1 9-4	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μ Adc, I _E = 0)	MPS6726 MPS6727	V(BR)CBO	40 50		Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)		V _{(BR)EBO}	5.0		Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0)	MPS6726 MPS6727	Ісво		0.1 0.1	μAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		IEBO	·—	0.1	μAdc
ON CHARACTERISTICS(1)				10 Marin	de la la
DC Current Gain (I _C = 100 mAdc, V_{CE} = 1.0 Vdc) (I _C = 1000 mAdc, V_{CE} = 1.0 Vdc)	el .	hFE	60 50		-
Collector-Emitter Saturation Voltage (I _C = 1000 mAdc, I _B = 100 mAdc)	- 4	V _{CE(sat)}	- C	0.5	Vdc
Base-Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	-	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS			Laurence Co	ARRIVA INT	The lates
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	9	C _{cb}	a - 17	30	pF
Small-Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MH	z)	h _{fe}	2.5	25	***

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPS6728 MPS6729

CASE 29-03, STYLE 1 TO-92 (TO-226 AE)

AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS6728	MPS6729	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	5	.0	Vdc
Collector Current — Continuous	IC	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

Refer to MPSW55 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				1 11	
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	MPS6728 MPS6729	V(BR)CEO	60 80	-	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS6728 MPS6729	V(BR)CBO	60 80		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	- 1	Vdc
Collector Cutoff Current (VEB = 5.0 Vdc, I _C = 0)		IEBO	-	10	μAdc
Emitter Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$	MPS6728 MPS6729	Ісво	=	0.1 0.1	μAdc
ON CHARACTERISTICS(1)					Control of
DC Current Gain ($I_C = 50$ mAdc, $V_{CE} = 1.0$ Vdc) ($I_C = 250$ mAdc, $V_{CE} = 1.0$ Vdc)		hFE	80 50	 250	
Collector-Emitter Saturation Voltage (I _C = 250 mAdc, I _B = 10 mAdc)		VCE(sat)	_	0.5	Vdc
Base-Emitter On Voltage (I _C = 250 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS			8.0%	La Ser Co.	de seco
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	30	pF
Small-Signal Current Gain (I _C = 200 mAdc, V_{CE} = 5.0 Vdc, f = 20 MHz)		h _{fe}	2.5	25	-

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	MPS6735	MPS6734	MPS6733	Unit
Collector-Emitter Voltage	VCEO	300	250	200	Vdc
Collector-Base Voltage	VCBO	300	250	200	Vdc
Emitter-Base Voltage	VEBO		6.0	N IA TO	Vdc
Collector Current — Continuous	IC		300	91.533	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	ži.	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}		-55 to +15	60	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPS6733 MPS6734 MPS6735

CASE 29-03, STYLE 1 TO-92 (TO-226 AE)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

Refer to MPSW42 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					100 H-10
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MPS6735 MPS6734 MPS6733	V(BR)CEO	300 250 200	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS6735 MPS6734 MPS6733	V(BR)CBO	300 250 200		Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V _{(BR)EBO}	6.0	-	Vdc
	MPS6735 MPS6734 MPS6733	СВО	=	0.1 0.1 0.1	μAdc
Emitter Cutoff Current (VEB = 6.0 Vdc, I _C = 0)		IEBO	_	0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc)		hFE	25 40	200	
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{CE(sat)}	_	2.0	Vdc
Base-Emitter On Voltage (I _C = 20 mAdc, V _{CE} = 10 Vdc)		V _{BE(on)}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)		fŢ	50	200	MHz
Collector-Base Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	3.0	pF

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPS8093

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 60°C	PD	450	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Refer to 2N4402 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				kena at
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc)	V(BR)CEO	40		Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc)	V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc)	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current (V _{CB} = 20 V)	Ісво	_	100	nAdc
Emitter Cutoff Current (V _{BE} = 3.0 V)	IEBO	_	100	nAdc
ON CHARACTERISTICS		-(1	V 14 11'V 50	S = 5 1
DC Current Gain (I _C = 50 mAdc, V_{CE} = 2.0 Vdc)	h _{FE}	100	300	-
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_	0.25	Vdc
Base-Emitter On Voltage (I _C = 50 mAdc, V _{CE} = 2.0 V)	V _{BE(on)}	0.6	1.0	Vdc

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	Ic	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

MPS8097

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPSA18 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			- 90-15	ale train
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	-,-,-	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0)	ICBO		30 10	nAdc μAdc
Emitter Cutoff Current (V _{BE} = 6.0 Vdc, I _C = 0)	IEBO	- Upit I	20	nAdc
ON CHARACTERISTICS(2)			4 10-11	
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	hFE	250	700	
Base-Emitter On Voltage (I _C = 100 µAdc, V _{CE} = 5.0 Vdc)	V _{BE(on)}	0.45	0.65	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	1.0	4.0	pF
Emitter-Base Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$	C _{eb}	=	10	pF
Small-Signal Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{fe}	250	800	_
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = kOhms, f = 10 Hz to 15.7 KHz)	NF		2.0	dB
Equivalent Short Circuit Noise Voltage (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kOhms, f = 100 Hz, Bw = 1.0 Hz)	e _n	_	32	nV/√Hz

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

NPN MPS8098 MPS8099 PNP MPS8598 MPS8599

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

MAXIMUM RATINGS

Rating	Symbol		MPS8099 MPS8599	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
		The Name of the State of the St	MPS8598 MPS8599	
Emitter-Base Voltage	V _{EBO}	6.0	5.0	Vdc
Collector Current — Continuous	Ic	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	+ 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W	
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				1.74.7	MK 11
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	MPS8098, MPS8598 MPS8099, MPS8599	V(BR)CEO	60 80	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPS8098, MPS8598 MPS8099, MPS8599	V(BR)CBO	60 80	===	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	MPS8098, MPS8099 MPS8598, MPS8599	V(BR)EBO	6.0 5.0	- AL - BL	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)		ICEO	_	0.1	μAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	MPS8098, MPS8598 MPS8099, MPS8599	ІСВО	a de la	0.1 0.1	μAdc
Emitter Cutoff Current $(V_{EB} = 6.0 \text{ Vdc}, I_{C} = 0)$ $(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$	MPS8098, MPS8099 MPS8598, MPS8599	IEBO	_	0.1 0.1	μAdc
ON CHARACTERISTICS(1)					100
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) 0($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)		hFE	100 100 75	300	_
Collector-Emitter Saturation Voltage $(I_C = 100 \text{ m})$ $(I_C = 100 \text{ m})$	Adc, I _B = 5.0 mAdc) Adc, I _B = 10 mAdc)	VCE(sat)	=	0.4 0.3	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	MPS8098, MPS8598 MPS8099, MPS8599	V _{BE} (on)	0.5 0.6	0.7 0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)		fT	150	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	MPS8098, MPS8099 MPS8598, MPS8599	C _{obo}	=	6.0 8.0	pF
Input Capacitance $(V_{BE}=0.5\ Vdc,\ I_{C}=0,\ f=1.0\ MHz)$	MPS8098, MPS8099 MPS8598, MPS8599	C _{ibo}	=	25 30	pF

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 2.0%.

NPN MPS8098, MPS8099, PNP MPS8598, MPS8599

FIGURE 1 - SWITCHING TIME TEST CIRCUITS

*Total Shunt Capacitance of Test Jig and Connectors For PNP Test Circuits, Reverse All Voltage Polarities

FIGURE 6—ACTIVE REGION, SAFE OPERATING AREA MPS 8098, MPS 8099

FIGURE 6—ACTIVE REGION, SAFE OPERATING AREA MPS 8598, MPS 8599

MPS8098, MPS8099

NPN MPS8098, MPS8099, PNP MPS8598, MPS8599

MPS8598, MPS8599

Rating	Symbol		MPSA06 MPSA56	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	Vdc
Collector-Base Voltage	V _{CBO}	60	80	Vdc
Emitter-Base Voltage	VEBO	4.0		Vdc
Collector Current — Continuous	Ic	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	200	°C/W

⁽¹⁾ R_{BJA} is measured with the device soldered into a typical printed circuit board.

NPN MPSA05 MPSA06 PNP MPSA55 MPSA56

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	MPSA05, MPSA55 MPSA06, MPSA56	V(BR)CEO	60 80	_	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	4.0		Vdc
Collector Cutoff Current (VCE = 60 Vdc, IB = 0)	/	ICEO	_	0.1	μAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	MPSA05, MPSA55 MPSA06, MPSA56	СВО	=	0.1 0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		hFE	50 50	_	-
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)		V _{CE(sat)}	=	0.25	Vdc
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	-	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 10 mA, V _{CE} = 2.0 V, f = 100 MHz)	MPSA05 MPSA06	fŢ	100	_	MHz
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}, f = 100 \text{ MHz})$	MPSA55 MPSA56		50		

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μs , Duty Cycle \leq 2.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

FIGURE 1 - SWITCHING TIME TEST CIRCUITS

FIGURE 2 - CURRENT-GAIN-BANDWIDTH PRODUCT 200 300 fT, CURRENT-GAIN-BANDWIDTH PRODUCT (MHz) (MHz) VCE = 2.0 V VCE = 2.0 V TJ = 25°C 200 CURRENT-GAIN—BANDWIDTH PRODUCT TJ = 25°C 100 70 100 50 70 50 30 30 50 70 100 200 2.0 3.0 20 30 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA)

50 100

NPN MPSA05, MPSA06, PNP MPSA55, MPSA56

FIGURE 6 - ACTIVE - REGION SAFE OPERATING AREA

NPN MPS-A05, MPS-A06

FIGURE 8 - "ON" VOLTAGES

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 10 - BASE-EMITTER TEMPERATURE COEFFICIENT

PNP MPS-A55, MPS-A56

FIGURE 12 - "ON" VOLTAGES

FIGURE 13 - COLLECTOR SATURATION REGION

FIGURE 14 - BASE-EMITTER TEMPERATURE COEFFICIENT

MPSA09

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	VCBO	50	Vdc
Collector Current — Continuous	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	. A Loo	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	bol Max	
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

Refer to MPSA18 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	50	01-36	-	Vdc
Collector-Base Breakdown Voltage $(I_C = 0.1 \text{ mAdc}, I_E = 0)$	V(BR)CBO	50	11 4 191	Leg Mile	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ІСВО		- 1-	100	nAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	IEBO	-	_	100	nAdc
ON CHARACTERISTICS			i x and l	Tag 13V	100
DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 5.0 Vdc)	hFE	100		600	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	143 147 1		0.9	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	V _{BE(on)}	1,10,3	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		18.7			
Current-Gain — Bandwidth Product (I _C = 0.5 mAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)	fT	30	80	_	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	-	_	5.0	pF
Noise Figure (I _C = 0.1 mAdc, V _{CE} = 5.0 Vdc, R _S = 0.8 k ohms, f = 1.0 kHz)	NF	_	1.4	_	dB

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	lC .	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSA10

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPS3903 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			3,780 004654	Team on
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	- -	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	4.0		Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ІСВО		100	nAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	hFE	40	400	
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	125	10/2 100	MHz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 100 kHz)	C _{obo}	_	4.0	pF

MPSA12

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

DARLINGTON TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	20	Vdc
Emitter-Base Voltage	VEBO	10	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Refer to 2N6426 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 100 µAdc, IB = 0)	V(BR)CES	20	_		Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ICBO	_	-	100	nAdc
Collector Cutoff Current (VCE = 15 Vdc, VBE = 0)	ICES	_	_	100	nAdc
Emitter Cutoff Current (VEB = 10 Vdc, I _C = 0)	IEBO	_	_	100	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	hFE	20,000	region to	-	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 0.01 mAdc)	V _{CE(sat)}	_	_	1.0	Vdc
Base-Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	V _{BE}	_	_	1.4	Vdc

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	30	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current — Continuous	Ic	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSA13 MPSA14

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

DARLINGTON TRANSISTOR

NPN SILICON

Refer to 2N6426 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc, I _B = 0)		V(BR)CES	30		Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		ІСВО	_	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)		IEBO	_	100	nAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	MPSA13 MPSA14	hFE	5000 10,000	=	-
$(I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MPSA13 MPSA14		10,000 20,000	=	
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)		V _{CE(sat)}	-	1.5	Vdc
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)		V _{BE}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		fT	125	_	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$

MPSA16 MPSA17

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS-A16	MPS-A17	Unit
Collector-Emitter Voltage	VCEO	4	0	Vdc
Emitter-Base Voltage	VEBO	12	15	Vdc
Collector Current — Continuous	lc	100		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	R _B JC	83.3	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				advective.	
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	40	Alta -s	Vdc
Emitter-Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$	MPS-A16 MPS-A17	V(BR)EBO	12 15	=	Vdc
Collector Cutoff Current (VCB = 30 Vdc, IE = 0)	10 .	ICBO	_	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)	900	IEBO	_	100	nAdc
ON CHARACTERISTICS	144,000				
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	a 249	hFE	200	600	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{CE(sat)}	-	0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	MPS-A16 MPS-A17	fT	100 80		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	4.0	pF

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 – SMALL SIGNAL CURRENT GAIN

FIGURE 3 - SATURATION AND ON VOLTAGES

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 5 - OUTPUT CAPACITANCE

MPSA18

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

LOW NOISE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Collector-Base Voltage	VCBO	45	Vdc
Emitter-Base Voltage	VEBO	6.5	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

THE TWINE OF A TANK OF ETHO TIO			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _B JA(1)	200	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V _(BR) CEO	45	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V _(BR) CBO	45	_	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	6.5	_	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	_	1.0	50	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain $ \begin{aligned} &(\text{IC} = 10 \; \mu\text{Adc}, \; \text{V}_{\text{CE}} = 5.0 \; \text{Vdc}) \\ &(\text{IC} = 100 \; \mu\text{Adc}, \; \text{V}_{\text{CE}} = 5.0 \; \text{Vdc}) \\ &(\text{IC} = 1.0 \; \text{mAdc}, \; \text{V}_{\text{CE}} = 5.0 \; \text{Vdc}) \\ &(\text{IC} = 10 \; \text{mAdc}, \; \text{V}_{\text{CE}} = 5.0 \; \text{Vdc}) \end{aligned} $	hFE	400 500 500 500	580 850 1100 1150	 1500	_
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	VCE(sat)	_	0.08	0.2 0.3	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	V _{BE(on)}	_	0.6	0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS		1.0			
Current-Gain — Bandwidth Product (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	fT	100	160	_	MHz
Collector-Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{cb}	_	1.7	3.0	pF
Emitter-Base Capacitance ($V_{EB}=0.5~Vdc, I_{C}=0, f=1.0~MHz$)	C _{eb}	_	5.6	6.5	pF
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 10 Hz to 15.7 kHz) (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 100 Hz)	NF	_	0.5 4.0	1.5 —	dB
Equivalent Short Circuit Noise Voltage (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 100 Hz)	VT	/ 	6.5	_	nV/√Hz

⁽¹⁾ R_{BJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width \leqslant 300 μ s, Duty Cycle \leqslant 2.0%.

FIGURE 1 - TRANSISTOR NOISE MODEL

NOISE CHARACTERISTICS

(VCE = 5.0 Vdc, TA = 25°C)

NOISE VOLTAGE

100 Hz NOISE DATA

FIGURE 6 - TOTAL NOISE VOLTAGE 300 200 IC = 10 mA TOTAL NOISE VOLTAGE (nV) 100 70 50 30 20 10 7.0 5.0 3.0 10 20 50 100 200 500 10k 20k 50k 10k 20k 50 k 100 k RS, SOURCE RESISTANCE (OHMS)

FIGURE 8 — DC CURRENT GAIN

FIGURE 9 - "ON" VOLTAGES

FIGURE 10 - TEMPERATURE COEFFICIENTS

FIGURE 11 - CAPACITANCE

FIGURE 12 - CURRENT-GAIN-BANDWIDTH PRODUCT

MPSA20

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	4.0	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _{BJA} (1)	200	°C/W

Refer to MPS3903 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(2) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	4.0	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	_	100	nAdc
ON CHARACTERISTICS	•			
DC Current Gain(2) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	hFE	40	400	_
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)	VCE(sat)	_	0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product(2) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz	fT	125	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	4.0	pF

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width \leqslant 300 μ s, Duty Cycle \leqslant 2.0%.

Rating	Symbol	MPS-A25	MPS-A26	MPS-A27	Unit
Collector-Emitter Voltage	VCES	40	50	60	Vdc
Emitter-Base Voltage	VEBO	10		Vdc	
Collector Current — Continuous	lc	500			mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0			mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSA25 MPSA26 MPSA27

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

DARLINGTON TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (IC = 100 μ Adc, VBE = 0)	MPSA25 MPSA26 MPSA27	V(BR)CES	40 50 60	_		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSA25 MPSA26 MPSA27	V(BR)CBO	40 50 60	=		Vdc
Collector Cutoff Current (V _{CB} = 30 V, I _E = 0) (V _{CB} = 40 V, I _E = 0) (V _{CB} = 50 V, I _E = 0)	MPSA25 MPSA26 MPSA27	I _{CBO}		=	100 100 100	nAdc
Collector Cutoff Current $(V_{CE} = 30 \text{ V, V}_{BE} = 0)$ $(V_{CE} = 40 \text{ V, V}_{BE} = 0)$ $(V_{CE} = 50 \text{ V, V}_{BE} = 0)$	MPSA25 MPSA26 MPSA27	ICES		=	500 500 500	nAdc
Emitter Cutoff Current (V _{BE} = 10 Vdc)		IEBO	_	=	100	nAdc
ON CHARACTERISTICS(1)			V			
DC Current Gain ($I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$) ($I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$)		hFE	10,000 10,000	_	_	_
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 0.1 mAdc)		VCE(sat)	_	-	1.5	Vdc
Base-Emitter On Voltage ($I_C = 100 \text{ mA}$, $V_{CE} = 5.0 \text{ Vdc}$)		V _{BE(on)}	-	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	2 -					
Small Signal Current Gain ($I_C = 10 \text{ mA}$, $V_{CE} = 5.0 \text{ V}$, $f = 100 \text{ MHz}$)		h _{fe}	1.25	2.4	—	_

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - COLLECTOR SATURATION REGION

FIGURE 4 - HIGH FREQUENCY CURRENT GAIN

FIGURE 5 — ACTIVE REGION SAFE OPERATING AREA

Rating	Symbol	MPSA28	MPSA29	Unit
Collector-Emitter Voltage	VCES	80	100	Vdc
Collector-Base Voltage	V _{CBO}	80	100	Vdc
Emitter-Base Voltage	VEBO	12		Vdc
Collector Current — Continuous	lc	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSA28 MPSA29

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

DARLINGTON TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (IC = 100 μ Adc, VBE = 0)	MPSA28 MPSA29	V _(BR) CES	80 100	=	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSA28 MPSA29	V(BR)CBO	80 100	=	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	Both Types	V _{(BR)EBO}	12	-	_	Vdc
Collector Cutoff Current (VCB = 60 Vdc, $IE = 0$) (VCB = 80 Vdc, $IE = 0$)	MPSA28 MPSA29	ICBO	_	=	100 100	nAdc
Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 80 \text{ Vdc}, V_{BE} = 0)$	MPSA28 MPSA29	ICES	_	~ <u>_</u> il	500 500	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, IC = 0)	Both Types	IEBO		_	100	nAdc
ON CHARACTERISTICS(1)						
DC Current Gain (I _C = 10 mAdc, V_{CE} = 5.0 Vdc) (I _C = 100 mAdc, V_{CE} = 5.0 Vdc)	Both Types Both Types	hFE	10,000 10,000	=	=	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.01 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$)	Both Types Both Types	V _{CE} (sat)	=	0.7 0.8	1.2 1.5	Vdc
Base-Emitter On Voltage ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	Both Types	V _{BE(on)}		1.4	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	100					
Current-Gain — Bandwidth Product(2) $(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 100 \text{ MHz})$	Both Types	fŢ	125	200	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	Both Types	C _{obo}	-	5.0	8.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT = hfe • ftest.

Rating	Symbol	MPSA42	MPSA43	Unit
Collector-Emitter Voltage	VCEO	300	200	Vdc
Collector-Base Voltage	VCBO	300	200	Vdc
Emitter-Base Voltage	VEBO	6.0	6.0	Vdc
Collector Current — Continuous	Ic	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSA42 MPSA43

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	MPSA42 MPSA43	V(BR)CEO	300 200	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSA42 MPSA43	V _(BR) CBO	300 200	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)		V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 160 \text{ Vdc}, I_E = 0)$	MPSA42 MPSA43	ICBO	=	0.1 0.1	μAdc
Emitter Cutoff Current ($V_{BE} = 6.0 \text{ Vdc}, I_{C} = 0$) ($V_{BE} = 4.0 \text{ Vdc}, I_{C} = 0$)	MPSA42 MPSA43	I _{EBO}	=	0.1 0.1	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	Both Types Both Types	hFE	25 40	=	_
(I _C = 30 mAdc, V _{CE} = 10 Vdc)	MPSA42 MPSA43		40 40	_	
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	MPSA42 MPSA43	VCE(sat)	_	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	R. T.	V _{BE(sat)}	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fT	50	_	MHz
Collector-Base Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)	MPSA42 MPSA43	C _{cb}	_	3.0 4.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	MPSA44	MPSA45	Unit
Collector-Emitter Voltage	VCEO	400	350	Vdc
Collector-Base Voltage	VCBO	500	400	Vdc
Emitter-Base Voltage	VEBO	6.0	6.0	Vdc
Collector Current — Continuous	lC	300		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSA44 MPSA45

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				Treatment of the same of the s	
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	MPSA44 MPSA45	V(BR)CEO	400 350	=	Vdc
Collector-Emitter Breakdown Voltage (IC = 100 μ Adc, VBE = 0)	MPSA44 MPSA45	V(BR)CES	500 400	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSA44 MPSA45	V(BR)CBO	500 400	= ,	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)		V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 400 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 320 \text{ Vdc}, I_E = 0)$	MPSA44 MPSA45	ІСВО	_	0.1 0.1	μAdc
Collector Cutoff Current $(V_{CE} = 400 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 320 \text{ Vdc}, V_{BE} = 0)$	MPSA44 MPSA45	ICES	_	500 500	nAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, I _C = 0)		I _{EBO}	_	0.1	μAdc
ON CHARACTERISTICS(1)					
$\begin{array}{ll} \text{DC Current Gain(1)} & (I_{C} = 1.0 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ & (I_{C} = 10 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ & (I_{C} = 50 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ & (I_{C} = 100 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \end{array}$	oli i	hFE	40 50 45 40	200 —	-
	dc, I _B = 0.1 mAdc) dc, I _B = 1.0 mAdc) dc, I _B = 5.0 mAdc)	VCE(sat)		0.4 0.5 0.75	Vdc
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 10 \text{ mAdc})$	= 1.0 mAdc)	V _{BE(sat)}	_	0.75	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance $(V_{CB} = 20 \text{ Vdc}, I_E = 0, f = 1.0)$	MHz)	C _{obo}	_	7.0	pF
Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 N	1Hz)	C _{ibo}	—	13	pF
Small-Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10) Vdc, f = 10 MHz)	h _{fe}	2.0	_	_

MPSA55, MPSA56

For Specifications, See MPSA05

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 — COLLECTOR SATURATION REGION

FIGURE 3 - ON VOLTAGES

FIGURE 4 — ACTIVE REGION — SAFE OPERATING AREA

FIGURE 5 - CAPACITANCE

FIGURE 6 - HIGH FREQUENCY CURRENT GAIN

FIGURE 7 — TURN-ON SWITCHING TIMES AND TEST CIRCUIT

FIGURE 8 — TURN-OFF SWITCHING TIMES AND TEST CIRCUIT

MPSA62 MPSA63 MPSA64

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

DARLINGTON TRANSISTOR

PNP SILICON

Refer to MPSA75 for graphs.

MAXIMUM RATINGS

Rating	Symbol	MPSA62	MPSA63 MPSA64	Unit
Collector-Emitter Voltage	VCES	20	30	Vdc
Collector-Base Voltage	VCBO	20	30	Vdc
Emitter-Base Voltage	VEBO	10		Vdc
Collector Current — Continuous	IC	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	Car styleten witness	April - A LA Co	9		
Collector-Emitter Breakdown Voltage ($I_C = 100 \ \mu Adc, V_{BE} = 0$)	MPSA62 MPSA63, MPSA64	V(BR)CES	20 30	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$	MPSA62 MPSA63, MPSA64	ІСВО	=	100 100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)		IEBO	_	100	nAdc
ON CHARACTERISTICS(1)				11	
DC Current Gain $(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MPSA63 MPSA64 MPSA62	hFE	5000 10,000 20,000	Ē	
(I _C = 100 mAdc, V_{CE} = 5.0 Vdc)	MPSA63 MPSA64		10,000 20,000		1 :
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.01 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$)	MPSA62 MPSA63, MPSA64	VCE(sat)	_	1.0 1.5	Vdc
Base-Emitter On Voltage ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	MPSA62 MPSA63, MPSA64	V _{BE(on)}	_	1.4 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 100 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	MPSA63, MPSA64	fT	125	_	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	lc	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

MPSA70

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N5086 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			34 150 3	
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, _{E} = 0)$	ІСВО	_	100	nAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	hFE	40	100	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	·—	0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	125	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _F = 0, f = 100 kHz)	C _{obo}	2 	4.0	pF

MPSA75 MPSA76 MPSA77

CASE 29-02 TO-92 (TO-226AA)

DARLINGTON TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MPSA75	MPSA76	MPSA77	Unit
Collector-Emitter Voltage	VCES	40	50	60	Vdc
Emitter-Base Voltage	VEBO		10		Vdc
Collector Current — Continuous	IC	500			mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0			mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•			-17	
Collector-Emitter Breakdown Voltage (IC = 100 μ Adc, VBE = 0)	MPSA75 MPSA76 MPSA77	V(BR)CES	40 50 60	_		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSA75 MPSA76 MPSA77	V(BR)CBO	40 50 60	=	=	Vdc
Collector Cutoff Current (VCB = 30 V, IE = 0) (VCB = 40 V, IE = 0) (VCB = 50 V, IE = 0)	MPSA75 MPSA76 MPSA77	ICBO	_ _ _		100 100 100	nAdc
Collector Cutoff Current (VCE = 30 V, VBE = 0) (VCE = 40 V, VBE = 0) (VCE = 50 V, VBE = 0)	MPSA75 MPSA76 MPSA77	ICES		=	500 500 500	nAdc
Emitter Cutoff Current (VBE = 10 Vdc)		I _{EBO}	_	_	100	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 10 mA, V_{CE} = 5.0 V) (I _C = 100 mA, V_{CE} = 5.0 V)		hFE	10,000 10,000	=	=	_
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 0.1 mAdc)		V _{CE(sat)}	_	_	1.5	Vdc
Base-Emitter On Voltage (I _C = 100 mA, V _{CE} = 5.0 Vdc)		V _{BE}	_	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current Gain — High Frequency (I _C = 10 mA, V _{CE} = 5.0 V, f = 100 MHz)		h _{fe}	1.25	2.4	_	_

FIGURE 1 - DC CURRENT GAIN

FIGURE 3 - COLLECTOR SATURATION REGION COLLECTOR EMITTER VOLTAGE (VOLTS) TA = 25°C 50 mA 100 mA 175 mA 1.2 0.8 VCE, 50 100 200 500 1K 2K 5.0 10 20 0.1 0.2 0.5 1.0 2.0 IB, BASE CURRENT (µA)

MPSA92 MPSA93

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

HIGH VOLTAGE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS-A92	MPS-A93	Unit
Collector-Emitter Voltage	VCEO	300	200	Vdc
Collector-Base Voltage	VCBO	300	200	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	IC	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	MPSA92 MPSA93	V(BR)CEO	300 200	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSA92 MPSA93	V(BR)CBO	300 200	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current ($V_{CB} = 200 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 160 \text{ Vdc}$, $I_{E} = 0$)	MPSA92 MPSA93	СВО	_	0.25 0.25	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	0	0.1	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain $ \begin{aligned} &\text{(I}_{C}=1.0 \text{ mAdc, V}_{CE}=10 \text{ Vdc)} \\ &\text{(I}_{C}=10 \text{ mAdc, V}_{CE}=10 \text{ Vdc)} \end{aligned} $ $ &\text{(I}_{C}=30 \text{ mAdc, V}_{CE}=10 \text{ Vdc)} $	Both Types Both Types MPSA92 MPSA93	hFE	25 40 25 25		_
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	MPSA92 MPSA93	VCE(sat)	_	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE} (sat)	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS		,			
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fT	50	_	MHz
Collector-Base Capacitance $(V_{CB} = 20 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	MPSA92 MPSA93	C _{cb}	=	6.0 8.0	pF

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

IC, COLLECTOR CURRENT (mA)

NPN MPSD05 PNP MPSD55

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Collector Current — Continuous	lC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient(1)	$R_{\theta JA}$	200	°C/W

Refer to 2N4400 for MPSD05 graphs.*

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		145		F 3
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	25	-	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	25	-	Vdc
Collector Cutoff Current (VCE = 20 Vdc)	ICEO	_	1.0	μAdo
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	СВО		1.0	μAdo
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)	IEBO	_	100	nAdo
ON CHARACTERISTICS(2)			ptot only	
DC Current Gain (I _C = 50 mAdc, V_{CE} = 5.0 Vdc) (I _C = 100 mAdc, V_{CE} = 5.0 Vdc) (I _C = 500 mAdc, V_{CE} = 5.0 Vdc)	hFE	50 80 30	= 1	-
Collector-Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	VCE(sat)		0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	100	-	MHz

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width \leqslant 300 μ s, Duty Cycle \leqslant 2.0%.

^{*}Refer to 2N4402 for MPSD55 graphs.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/mW

MPSH02

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	20	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	20	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$	ICBO	_	50	nAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	hFE	20	200	_
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	375	_	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	C _{cb}	_	0.5	pF
Noise Figure ($V_{AGC} = 1.4 \text{ Vdc}$, $R_S = 50 \text{ Ohms}$, $f = 200 \text{ MHz}$)	NF	_	3.3	dB
FUNCTIONAL TEST				
Amplifier Power Gain ($V_{AGC} = 1.4 \text{ Vdc}, R_S = 50 \text{ Ohms}, f = 200 \text{ MHz}$)	G _{pe}	20	1	dB
Forward AGC Voltage (Gain Reduction = 30 dB, R_S = 50 Ohms, f = 200 MHz)	VAGC	4.0	5.0	Vdc

AGC CHARACTERISTICS (V_{CC} = 12 Vdc, R_S = 50 Ohms, f = 200 MHz, See Figure 9)

FIGURE 1 – POWER GAIN

FIGURE 2 – NOISE FIGURE

COMMON-EMITTER y PARAMETERS

 $(I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = 25^{\circ}\text{C})$

COMMON-EMITTER y PARAMETERS

(I_C = 4.0 mAdc, V_{CE} = 10 Vdc, T_A = 25°C)

FIGURE 7 - DC CURRENT GAIN

FIGURE 8 - COLLECTOR-BASE CAPACITANCE

FIGURE 9 - 200 MHz FUNCTIONAL TEST CIRCUIT (NEUTRALIZED)

MPSH04 MPSH05

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (IC = 1.0 mAdc, IB = 0)	V _(BR) CEO	80	-	_	Vdc
follector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V _(BR) CBO	80	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	4.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_{E} = 0)$	ICBO	-	_	50	nAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)	IEBO	_	_	50	nAdc
ON CHARACTERISTICS					
(ic iii iii ias) (CE is ias)	SH04 SH05	30 30	_	120 150	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE} (sat)	_	_	0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Crrent-Gain — Bandwidth Product (I _C = 1.5 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fΤ	80	_	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{cb}	_	_	1.6	pF
Output Admittance (I _C = 1.5 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	_	_	5.0	μmhos
Noise Figure (I _C = 1.5 mAdc, V_{CE} = 10 Vdc, R_S = 50 ohms, f = 1.0 MHz) MF	NF PSH04	_	-	2.0	dB

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.81	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	357	°C/W

MPSH07 MPSH08

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

FM/VHF TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	30	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)		V(BR)CBO	30	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	3.0	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)		ICBO	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 3.0 mAdc, V _{CE} = 10 Vdc)		hFE	20	_	_
Base-Emitter On Voltage (IC = 3.0 mAdc, V_{CE} = 10 Vdc)		V _{BE(on)}	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				•	
Current-Gain — Bandwidth Product (I _C = 3.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fT	400	_	MHz
Collector-Emitter Capacitance ($V_{CE} = 10 \text{ Vdc}$, $I_B = 0$, $f = 1.0 \text{ MHz}$, base guarded)		C _{ce} (C _{rb})	-	0.3	pF
Noise Figure		NF			dB
(I _C = 3.0 mAdc, V_{CB} = 10 Vdc, R_S = 50 Ohms, f = 100 MHz) (I _C = 3.0 mAdc, V_{CB} = 10 Vdc, R_S = 50 Ohms, f = 200 MHz)	MPS-H07 MPS-H08		_	3.0 3.0	
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain ($I_C = 3.0$ mAdc, $V_{CB} = 10$ Vdc, $R_S = 50$ Ohms, $f = 100$ MHz) ($I_C = 3.0$ mAdc, $V_{CB} = 10$ Vdc, $R_S = 50$ Ohms, $f = 200$ MHz)	MPS-H07 MPS-H08	G _{pb}	18 14	=	dB
Forward AGC Current (Gain Reduction = 30 dB, R _S = 50 Ohms, f = 100 MHz) (Gain Reduction = 30 dB, R _S = 50 Ohms, f = 200 MHz)	MPS-H07 MPS-H08	IAGC	6.5 6.5	8.5 8.5	mAdc

AGC CHARACTERISTICS

 V_{CC} = 10 Vdc, R_S = 50 Ohms, See Figure 9

COMMON-BASE y PARAMETERS

$$V_{CB} = 10 \text{ Vdc}, T_A = 25^{\circ}\text{C}$$

FIGURE 3 - INPUT ADMITTANCE

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

FIGURE 5 - FORWARD TRANSFER ADMITTANCE

FIGURE 6 - OUTPUT ADMITTANCE

FIGURE 7 - COLLECTOR-BASE TIME CONSTANT

FIGURE 8 - CURRENT-GAIN BANDWIDTH PRODUCT

FIGURE 9 - 100-MHz AND 200-MHz COMMON-BASE AMPLIFIER

MPSH10 MPSH11

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

VHF/UHF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	° °C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	°C/W	
Thermal Resistance, Junction to Ambient	RAIA	357	°C/W	

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	25	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \ \mu Adc, I_E = 0$)		V(BR)CBO	30	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	y -1	V _{(BR)EBO}	3.0	_	Vdc
Collector Cutoff Current (V _{CB} = 25 Vdc, I _E = 0)		ICBO	_	100	nAdc
Emitter Cutoff Current (VBE = 2.0 Vdc, I _C = 0)		IEBO	_	100	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)		hFE	60	_	_
Collector-Emitter Saturation Voltage (I _C = 4.0 mAdc, I _B = 0.4 mAdc)		V _{CE(sat)}	_	0.5	Vdc
Base-Emitter On Voltage (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)		V _{BE}	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fT	650	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	0.7	pF
Common-Base Feedback Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	MPS-H10 MPS-H11	C _{rb}	0.35 0.6	0.65 0.9	pF
Collector Base Time Constant (I _C = 4.0 mAdc, V _{CB} = 10 Vdc, f = 31.8 MHz)		rb′C _C	_	9.0	ps

COMMON-BASE y PARAMETERS versus FREQUENCY

 $(V_{CB} = 10 \text{ Vdc}, I_{C} = 4.0 \text{ mAdc}, T_{A} = 25^{\circ}\text{C})$

yib, INPUT ADMITTANCE

FIGURE 1 - RECTANGULAR FORM

FIGURE 2 - POLAR FORM

COMMON-BASE y PARAMETERS versus FREQUENCY

 $(V_{CB} = 10 \text{ Vdc}, I_{C} = 4.0 \text{ mAdc}, T_{A} = 25^{\circ}\text{C})$

Yfb, FORWARD TRANSFER ADMITTANCE

FIGURE 4 - POLAR FORM

yrb, REVERSE TRANSFER ADMITTANCE

FIGURE 5 - RECTANGULAR FORM

FIGURE 6 - POLAR FORM

yob, OUTPUT ADMITTANCE

FIGURE 7 - RECTANGULAR FORM

FIGURE 8 - POLAR FORM

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Printed Circuit Board Mounting)	$R_{\theta JA}$	200	°C/W

MPSH17

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

CATV TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				H 15-2	2012
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	15		-	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V(BR)CBO	20	-	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	-	-	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ICBO	—	=	100	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	hFE	25	_	250	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$)	VCE(sat)		- (T)	0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS	and the same of th	satif w			
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	800	_	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{cb}	0.3	-	0.9	pF
Small-Signal Current Gain ($I_C = 5.0$ mAdc, $V_{CE} = 10$ Vdc, $f = 1.0$ kHz)	h _{fe}	30	- 1 - 1	=	-
Noise Figure ($I_C = 5.0 \text{ mAdc}$, $V_{CC} = 12 \text{ Vdc}$, $R_S = 50 \text{ ohms}$, $f = 200 \text{ MHz}$)	NF	=-		6.0	dB
FUNCTIONAL TEST					
Amplifier Power Gain (I _C = 5.0 mAdc, V_{CC} = 12 Vdc, R_S = 50 ohms, f = 200 MHz)	G _{pe}	_	24	_	dB

MPSH20

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

VHF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.81	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.0 8.0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R_{θ} JC	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	357	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 0$)	V(BR)CEO	30	_		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	40	<u> </u>	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ІСВО	_	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	hFE	25	_	_	_
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	400	620		MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	0.5	0.65	pF
Collector Base Time Constant ($I_E = 4.0 \text{ mAdc}$, $V_{CB} = 10 \text{ Vdc}$, $f = 31.8 \text{ MHz}$)	rb′C _C	_	10	_	ps
Conversion Gain (213 to 45 MHz) (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, Oscillator Injection = 200 mVdc)	_	18	23	-	dB

CONVERSION GAIN CHARACTERISTICS

(TEST CIRCUIT FIGURE 9)

FIGURE 1 - VARIATION WITH COLLECTOR CURRENT

FIGURE 2 - VARIATION WITH INJECTION LEVEL

COMMON-EMITTER y PARAMETERS

($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$)

FIGURE 3 - INPUT ADMITTANCE

IC, COLLECTOR CURRENT (mAdc)

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

COMMON-EMITTER y PARAMETERS

 $(I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = 25^{\circ}\text{C})$

FIGURE 5 - FORWARD TRANSFER ADMITTANCE

FIGURE 6 - OUTPUT ADMITTANCE

FIGURE 9 - MIXER TEST CIRCUIT

- 1/4" I.D., AIR WOUND, WINDING LENGTH 1/2"; BASE TAPPED 1 TURN FROM GROUND.
- L2 = 10 TURNS #26 INSULATED WIRE, WOUND ON 1/4" I.D. COIL FORM, ARNOLD PART NO. A1-10 IRON POWDER CORE.

WANIMOW NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +135	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	RAIA	357	°C/W

MPSH24

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

VHF TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	40	-	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ICBO	-	_	50	nAdc
ON CHARACTERISTICS					•
DC Current Gain (I _C = 8.0 mAdc, V _{CE} = 10 Vdc)	hFE	30			
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 8.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	400	620		MHz
Collector-Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}	_	0.25	0.36	pF
Conversion Gain (213 MHz to 45 MHz)	-				dB
(I _C = 8.0 mAdc, V_{CC} = 20 Vdc, Oscillator Injection = 150 mVrms) (60 MHz to 45 MHz)	oki mena	19	24	-	-
(I _C = 8.0 mAdc, V _{CC} = 20 Vdc, Oscillator Injection = 150 mVrms)		24	29	_	

CONVERSION GAIN CHARACTERISTICS

(TEST CIRCUIT FIGURE 7)

(V_{CC} = 20 Vdc, R_S = R_L = 50 Ohms, f_{if} = 44 MHz, B.W. = 6.0 MHz)

FIGURE 1 - CONVERSION GAIN versus COLLECTOR CURRENT

FIGURE 2 - CONVERSION GAIN versus INJECTION LEVEL

COMMON-EMITTER y PARAMETERS

(VCE = 15 Vdc, TA = 25°C)

FIGURE 3 - INPUT ADMITTANCE

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

FIGURE 5 - FORWARD TRANSFER ADMITTANCE

FIGURE 6 - OUTPUT ADMITTANCE

FIGURE 7 - VHF MIXER TEST CIRCUIT

(f_{if} = 44 MHz, B.W. = 6.0 MHz)

MPSH30 MPSH31

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

IF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	200	°C/W

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _(BR) CEO	20	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	20	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$	ICBO	_	50	nAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 4.0 mAdc, V_{CE} = 5.0 Vdc)	h _{FE}	20	200	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 5.0 mAdc)	V _{CE(sat)}	0.1	3.0	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 5.0 mAdc)	V _{BE(sat)}	_	0.96	Vdc
SMALL-SIGNAL CHARACTERISTICS				•
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	300	800	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}, \text{ emitter guarded}$)	C _{cb}	_	0.65	pF
Noise Figure ($V_{AGC} = 2.75 \text{ Vdc}$, $R_S = 50 \text{ ohms}$, $f = 45 \text{ MHz}$)	NF	_	6.0	dB
FUNCTIONAL TESTS				
Power Gain (VAGC = 2.75 Vdc, R _S = 50 ohms, f = 45 MHz)	Gpe	22.5	31	dB
Forward AGC Voltage (Gain Reduction = 30 dB, R _S = 50 ohms, f = 45 MHz) MPS-H30 MPS-H31	VAGC	4.4 5.2	5.4 6.2	Vdc

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +135	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSH32

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

VHF TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	40	_		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	-	_	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ІСВО	_	_	50	nAdc
ON CHARACTERISTICS	1				
DC Current Gain (I _C = 4.0 mAdc, V _{CE} = 5.0 Vdc)	hFE	27	35	200	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 5.0 mAdc)	V _{CE(sat)}		1.5	3.0	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 5.0 mAdc)	V _{BE(sat)}	_	0.9	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	300	440	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) (Emitter Guarded)	C _{cb}	- 9	0.2	0.22	pF
Noise Figure (I _E ≈4.0 mAdc, V _{CE} ≈9.3 Vdc, V _{AGC} = 2.75 Vdc, R _S = 50 Ohms, f = 45 MHz)	NF		3.3	-	dB
FUNCTIONAL TEST	1,574	a line			
Amplifier Power Gain ($I_E\approx4.0$ mAdc, $V_{CE}\approx9.3$ Vdc, $V_{AGC}=2.75$ Vdc, $R_S=50$ Ohms, $f=45$ MHz)	G _{pe}	22.5	25	-	dB
Forward AGC Voltage (Gain Reduction = 30 dB, R _S = 50 Ohms, f = 45 MHz)	VAGC	_	5.5	_	Vdc
SUMMARY-COMMON EMITTER PARAMETERS (VCE = 10 Vdc, IC = 4.0 m	Adc, f = 45 MHz)				
Input Conductance	gie	_	6.0	_	mmhos
Input Capacitance	C _{ieo}	4	33	_	pF
Forward Transfer Admittance Magnitude	Yfe		110		mmhos
Forward Transfer Admittance Phase Angle	<yfe< td=""><td>-</td><td>-22</td><td>_</td><td>Degrees</td></yfe<>	-	-22	_	Degrees
Feedback Capacitance	C _{re}	_	0.2		pF
Output Conductance	9oe		20		μmhos
Output Capaticance	Coe	_	1.4	_	pF
Maximum Unilateralized Power Gain $G_{um} = \frac{ y_{fe} ^2}{4 \text{ gie goe}}$	G _{um}		44	-	dB

AGC CHARACTERISTICS

 V_{CC} = 12 Vdc, R_S = 50 Ohms, f = 45 MHz, See Figure 10

COMMON-EMITTER y PARAMETERS

VCE = 10 Vdc, f = 45 MHz, TA = 25°C

0.2 0.3 0.5

2.0 3.0

IC, COLLECTOR CURRENT (mAdc)

5.0

10

20

1.0

FIGURE 10 – 45 MHz FUNCTIONAL TEST CIRCUIT (UNNEUTRALIZED)

MPSH34

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

IF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Collector-Base Voltage	VCBO	45	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +135	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	357	°C/W

Refer to MPSH24 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					7
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	45	-	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V(BR)CBO	45	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	-	-	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_{E} = 0)$	СВО	_	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 7.0 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$) ($I_C = 20 \text{ mAdc}$, $V_{CE} = 2.0 \text{ Vdc}$)	hFE	40 15	=	=	_
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	VCE(sat)	_	-	0.5	Vdc
Base-Emitter On Voltage (I _C = 7.0 mAdc, V _{CE} = 15 Vdc)	V _{BE(on)}	_	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 15 mAdc, V _{CE} = 15 Vdc, f = 100 MHz)	fT	500	720	-	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	C _{cb}	_	0.25	0.32	pF
Current-Gain — Bandwidth Ratio ($I_C = 15 \text{ mAdc}$ to $I_C = 20 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$)	<u>fT15</u> fT20		_	1.6	-

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	IC	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	200	°C/W

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

MPSH54 MPSH55

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				200	NUMBER OF
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	80	_		Vdc
Collector-Base Breakdown Voltage (I _C = 100 μ Adc, I _E = 0)	V(BR)CBO	80	111		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.0	i 1 − .,	Shirt of	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_{E} = 0)$	ICBO	_	_	50	nAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)	IEBO	_	-	50	nAdc
ON CHARACTERISTICS				er board	
DC Current Gain $(I_{\hbox{\scriptsize C}}=1.5~\hbox{\scriptsize mAdc}, V_{\hbox{\scriptsize CE}}=10~\hbox{\scriptsize Vdc}) \\ {\rm MPSH54} \\ {\rm MPSH55}$	hFE	30 30	=	120 150	Sup.
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	-		0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 1.5 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	80			MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{cb}	_	_	1.6	pF
Output Admittance (IC = 1.5 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	-		15	μmhos
Noise Figure $\{I_C = 1.5 \text{ mAdc}, V_{CF} = 10 \text{ Vdc}, R_S = 50 \text{ ohms}, f = 1.0 \text{ MHz}\}$ MPSH54	NF	_	-	2.0	dB

MPSH81

CASE 29-02, STYLE 2 TO-92 (TO-226AA)

RF AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	V _{CBO}	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.81	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	357	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					THE PLANT
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	20	-	7	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V _(BR) CBO	20	- "	3 700	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	3.0			Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$	ICBO	-	_	100	nAdc
Emitter Cutoff Current (V _{BE} = 2.0 Vdc, I _C = 0)	IEBO	_	_ =	100	nAdc
ON CHARACTERISTICS				1 11	Hallan III
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	hFE	60	_	- Ton	-
Collector-Emitter Saturation Voltage ($I_C = 5.0 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)	V _{CE(sat)}	-	_	0.5	Vdc
Base-Emitter On Voltage (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	V _{BE(on)}	- 40	- 19E-124	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					ia.
Current-Gain — Bandwidth Product ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fΤ	600	_		MHz
Collector-Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}		_	0.85	pF
Collector-Emitter Capacitance (I _B = 0, V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{ce}	_	_	0.65	pF

TYPICAL COMMON-BASE y-PARAMETERS

(V_{CB} = 10 Vdc, T_A = 25°C, Frequency Points in MHz)

FIGURE 1 - INPUT ADMITTANCE

FIGURE 2 - REVERSE TRANSFER ADMITTANCE

FIGURE 3 - FORWARD TRANSFER ADMITTANCE

FIGURE 4 - OUTPUT ADMITTANCE

FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT

IC, COLLECTOR CURRENT (mA)

MPSL01

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	120	Vdc
Collector-Base Voltage	VCBO	140	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	150	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

Refer to 2N5550 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	120	1700	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μ Adc, I _E = 0)	V(BR)CBO	140		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0		Vdc
Collector Cutoff Current $(V_{CB} = 75 \text{ Vdc}, I_E = 0)$	ІСВО	-	1.0	μAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, I _C = 0)	IEBO	_	100	nAdc
ON CHARACTERISTICS				
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	hFE	50	300	
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc)	VCE(sat)	_	0.20 0.30	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)(1)	VBE(sat)	_	1.2 1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product(1) (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	60	_	MHz
Collector-Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}	_	8.0	pF
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	30	-	_

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

MINIMONI INTINGO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	100	Vdc
Collector-Base Voltage	VCBO	100	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	Ic	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12.0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W

MPSL51

CASE 29-02, STYLE 1 TO-92 (TO-226AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N5400 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	100	n took brook	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V _(BR) CBO	100	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	17	Vdc
Collector Cutoff Current ($V_{CB} = 50 \text{ Vdc}, I_{E} = 0$)	ІСВО		1.0	μAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	I _{EBO}	_	100	nAdc
ON CHARACTERISTICS(1)	M		L P HISTORY	1 1804
DC Current Gain(1) (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)	hFE	40	250	100 NES
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{CE} (sat)	en our P	0.25 0.30	Vdc
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	V _{BE} (sat)	100 - 101 100 - 101 100 - 101	1.2 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS		V-1	Jr. Tulya A	10
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	60	2 - 14 - 10 0	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}		8.0	pF
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	20	2 11 <u>-</u> 14 45	9 -

⁽¹⁾ Pulse Test: Pulse Test = 300 μ s, Duty Cycle = 2.0%.

MPSW01 MPSW01A

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

HIGH CURRENT TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MPSW01 MPSW01A	VCEO	30 40	Vdc
Collector-Base Voltage MPSW01 MPSW01A	VCBO	40 50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	1000	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					The state of the
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	MPSW01 MPSW01A	V(BR)CEO	30 40	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSW01 MPSW01A	V(BR)CBO	40 50		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	5.0		Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$	MPSW01 MPSW01A	СВО	=	0.1 0.1	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0)		IEBO	_	0.1	μAdc
ON CHARACTERISTICS(1)					1-1
DC Current Gain (I _C = 10 mAdc, V_{CE} = 1.0 Vdc) (I _C = 100 mAdc, V_{CE} = 1.0 Vdc) (I _C = 1000 mAdc, V_{CE} = 1.0 Vdc)		hFE	55 60 50	=	_
Collector-Emitter Saturation Voltage (I _C = 1000 mAdc, I _B = 100 mAdc)		VCE(sat)	-	0.5	Vdc
Base-Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	-	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)		fΤ	50	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	20	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	MPSW05	MPSW06	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	V _{CBO}	60	80	Vdc
Emitter-Base Voltage	VEBO	4.0		Vdc
Collector Current — Continuous	Ic	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPSW05 MPSW06

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

AMPLIFIER TRANSISTOR

NPN SILICON

	Symbol	Min	Max	Unit
MPSW05 MPSW06	V(BR)CEO	60 80		Vdc
	V _{(BR)EBO}	4.0	X= 2	Vdc
MPSW05 MPSW06	ICEO	=	0.5 0.5	μAdc
MPSW05 MPSW06	ICBO	= "	0.1 0.1	μAdc
	IEBO	_	0.1	μAdc
		41.1	1000	9
	hFE	80 60		- T.
	V _{CE(sat)}		0.40	Vdc
	V _{BE(sat)}	207 W	1.2	Vdc
		13.W 19.5	- 24 - 15	417
	fT	50	Mana n	MHz
a seep a s	C _{obo}		12	pF
	MPSW06 MPSW05 MPSW06 MPSW05	MPSW05 MPSW06 V(BR)CEO V(BR)EBO ICEO MPSW05 MPSW06 ICBO IEBO hFE VCE(sat) VBE(sat)	MPSW05 MPSW06 V(BR)CEO 60 80 V(BR)EBO 4.0 MPSW05 MPSW06 ICEO — MPSW05 MPSW06 ICBO — IEBO NFE 80 60 VCE(sat) VBE(sat) FT 50	MPSW05 MPSW06 MPSW06 V(BR)EBO V(BR)EBO 4.0 MPSW05 MPSW06 MPSW06

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPSW10

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

HIGH VOLTAGE TRANSISTOR

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	300	Vdc
Collector-Base Voltage	VCBO	300	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	lc	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	R _B JA	125	°C/W

Refer to MPSW42 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	300	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	300	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V _{(BR)EBO}	6.0		Vdc
Collector Cutoff Current ($V_{CB} = 200 \text{ Vdc}, I_{E} = 0$)	Ісво	_	0.2	μAdc
Emitter Cutoff Current (VEB = 6.0 Vdc, I _C = 0)	IEBO	_	0.1	μAdc
ON CHARACTERISTICS(1)				
DC Current Gain	hFE	25 40 40	- Se-	- 1
Collector-Emitter Saturation Voltage (I _C = 30 mAdc, I _B = 3.0 mAdc)	V _{CE(sat)}		0.75	Vdc
Base-Emitter On Voltage (I _C = 30 mAdc, V _{CE} = 10 Vdc)	VBE(on)	_	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS		100		
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)	fT	45		MHz
Collector-Base Capacitance (V _{CB} = 20 Vdc, I_E = 0, f = 1.0 MHz)	C _{cb}	_	3.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	10	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPSW13 MPSW14

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

DARLINGTON TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		N. Committee			
Collector-Emitter Breakdown Voltage ($I_C = 100 \mu Adc, V_{BE} = 0$)		V(BR)CES	30	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		ІСВО	_	100	nAdc
Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)		IEBO	_	100	nAdc
ON CHARACTERISTICS(1)				le st	
DC Current Gain ($I_C = 10$ mAdc, $V_{CE} = 5.0$ Vdc)	MPSW13 MPSW14	hFE	5000 10,000	=	_
$(I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MPSW13 MPSW14		10,000 20,000	_	
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)		V _{CE(sat)}	_	1.5	Vdc
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	-	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		fT	125	_	MHz
STATE OF LIFE AND THE STATE OF	The state of the s				

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$.

FIGURE 1 - ACTIVE REGION SAFE OPERATING AREA

FIGURE 2 - DC CURRENT GAIN 200 k 100 4 70 k CURRENT GAIN 50 k 30 k 20 k ∺ 10 k 불 70k 50 k VCE = 50 V 30 k 20 k 5.0 7.0 10 50 70 100 30 300 IC COLLECTOR CURRENT (mA)

FIGURE 4 — ON VOLTAGES

16

14

TJ = 250C

14

VBE(sat) @ IC/IB = 1000

06

50 70 10 20 30 50 70 100 200 300 500

IC. COLLECTOR CURRENT (mA)

MPSW42 MPSW43

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MPSW42	MPSW43	Unit
Collector-Emitter Voltage	VCEO	300	200	Vdc
Collector-Base Voltage	VCBO	300	200	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	Ic	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				•	•
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	MPSW42 MPSW43	V _(BR) CEO	300 200	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPSW42 MPSW43	V(BR)CBO	300 200	=	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 160 \text{ Vdc}, I_E = 0)$	MPSW42 MPSW43	Ісво	=	0.1 0.1	μAdc
Emitter Cutoff Current $(V_{EB}=6.0\ Vdc,\ I_{C}=0)$ $(V_{EB}=4.0\ Vdc,\ I_{C}=0)$	MPSW42 MPSW43	IEBO	_	0.1 0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain $ \begin{aligned} &(I_C=1.0 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ &(I_C=30 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \end{aligned} $	Both Types Both Types MPSW42 MPSW43	hFE	25 40 40 40	=	_
Collector-Emitter Saturation Voltage ($I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc}$)	MPSW42 MPSW43	V _{CE(sat)}	_	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE(sat)}	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)		fT -	50	_	MHz
Collector-Base Capacitance (VCB = 20 Vdc, IE = 0, f = 1.0 MHz)	MPSW42 MPSW43	C _{cb}	Ξ	3.0 4.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 — D.C. CURRENT GAIN

FIGURE 2 — COLLECTOR SATURATION REGION

FIGURE 3 — ON VOLTAGES

FIGURE 4 — TEMPERATURE COEFFICIENTS

FIGURE 5 — CAPACITANCE

FIGURE 6 — CURRENT GAIN - BANDWIDTH PRODUCT

FIGURE 7 - ACTIVE REGION SAFE OPERATING AREA

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	V _{EBO}	12	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPSW45

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

DARLINGTON TRANSISTOR

NPN SILICON

Refer to 2N6426 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 100 µAdc, V _{BE} = 0)	V(BR)CES	40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	50	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	12	_	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$	ICBO	- nit :	100	nAdc
Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)	I _{EBO}	_	100	nAdc
ON CHARACTERISTICS(1)				
DC Current Gain (I _C = 200 mAdc, V_{CE} = 5.0 Vdc) (I _C = 500 mAdc, V_{CE} = 5.0 Vdc) (I _C = 1.0 Adc, V_{CE} = 5.0 Vdc)	hFE	25,000 15,000 4,000	150,000	-5
Collector-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 2.0 mAdc)	V _{CE(sat)}		1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 2.0 mAdc)	V _{BE(sat)}		2.0	Vdc
Base-Emitter On Voltage (I _C = 1.0 Adc, V_{CE} = 5.0 Vdc)	V _{BE(on)}		2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 200 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	fT	100	-	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	6.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPSW51 MPSW51A

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

HIGH CURRENT TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MPSW51 MPSW51A	VCEO	30 40	Vdc
Collector-Base Voltage MPSW51 MPSW51A	VCBO	40 50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	1000	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	125	°C/W

	Symbol	Min	Max	Unit
			11-491	
MPSW51 MPSW51A	V(BR)CEO	30 40	=	Vdc
MPSW51 MPSW51A	V(BR)CBO	40 50	=	Vdc
	V _{(BR)EBO}	5.0	1-7	Vdc
MPSW51 MPSW51A	СВО	= -	0.1 0.1	μAdc
	IEBO	- 10-	0.1	μAdc
		4.17	2 1 2 2	179
	hFE	55 60 50	=	
	V _{CE(sat)}	-	0.7	Vdc
	V _{BE(on)}		1.2	Vdc
				and the same
	fΤ	50	-7-	MHz
	C _{obo}		30	pF
	MPSW51A MPSW51 MPSW51A MPSW51	MPSW51 MPSW51A MPSW51A V(BR)CBO V(BR)EBO V(BR)EBO ICBO MPSW51A IEBO hFE VCE(sat) VBE(on)	MPSW51	MPSW51

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 7 - ACTIVE REGION-SAFE OPERATING AREA

Rating	Symbol	MPSW55	MPSW56	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	4.0		Vdc
Collector Current — Continuous	lc	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPSW55 MPSW56

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

AMPLIFIER TRANSISTOR

PNP SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	MPSW55 MPSW56	V(BR)CEO	60 80	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		V _{(BR)EBO}	4.0	-	Vdc
Collector Cutoff Current $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$	MPSW55 MPSW56	ICEO	= 1	0.5 0.5	μAdc
Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$	MPSW55 MPSW56	ІСВО		0.1 0.1	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)		IEBO	- red	0.1	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 250 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		hFE	80 50	_	_
Collector-Emitter Saturation Voltage (I _C = 250 mAdc, I _B = 10 mAdc)		V _{CE(sat)}	_	0.5	Vdc
Base-Emitter On Voltage (I _C = 250 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}		1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 250 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	18-2	fT	50	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	Har	C _{obo}	_	15	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - D.C. CURRENT GAIN

FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 3 — ON VOLTAGES

FIGURE 4 — BASE-EMITTER

FIGURE 5 - CAPACITANCE

MPSW55, MPSW56

FIGURE 6 — CURRENT GAIN - BANDWIDTH PRODUCT

FIGURE 7 - ACTIVE REGION - SAFE OPERATING AREA

MPSW60 CASE 29-03, STYLE 1 TO-92 (TO-226AE) HIGH VOLTAGE TRANSISTOR PNP SILICON

Refer to MPSW92 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	300	Vdc
Collector-Base Voltage	V _{CBO}	300	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	500	mAdc
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	300	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	300	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10.0 µAdc, I _C = 0)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_{E} = 0)$	ІСВО	_	0.2	μAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	IEBO	_	0.1	μAdc
ON CHARACTERISTICS(1)				
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 30 mAdc, V _{CE} = 10 Vdc)	hFE	25 30 25	=	_
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	VCE(sat)	_	0.75	Vdc
Base-Emitter On Voltage (I _C = 20 mAdc, V _{CE} = 10 Vdc)	V _{BE(on)}	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)	f _T	60	_	MHz
Collector-Base Capacitance $(V_{CB} = 20 \text{ Vdc}, I_E = 0, f = 10 \text{ MHz})$	C _{cb}	-	8.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	MPSW63 MPSW64	Unit
Collector-Emitter Voltage	VCES	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	10	Vdc
Collector Current — Continuous	Ic	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

MPSW63 MPSW64

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

DARLINGTON TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					31
Collector-Emitter Breakdown Voltage ($I_C = 100 \mu Adc$, $V_{BE} = 0$)	E.	V _(BR) CES	30	7	Vdc
Collector Cutoff Current (VCB = 30 Vdc, I _E = 0)		Ісво		100	nAdc
Emitter Cutoff Current (VEB = 10 Vdc, I _C = 0)		IEBO	_	100	nAdc
ON CHARACTERISTICS(1)		1.00			
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	MPSW63 MPSW64	hFE	5,000 10,000	===	-
$(I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MPSW63 MPSW64	"X" - 1-4"	10,000 20,000	= -	
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)		V _{CE(sat)}	-	1.5	Vdc
Base-Emitter On Voltage ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)		V _{BE(on)}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		fT	125	-	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT = |hfe| • ftest.

TYPICAL ELECTRICAL CHARACTERISTICS

MPSW63, MPSW64

FIGURE 7 — ACTIVE REGION, SAFE OPERATING AREA

MPSW92 MPSW93

CASE 29-03, STYLE 1 TO-92 (TO-226AE)

HIGH VOLTAGE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MPSW92	MPSW93	Unit
Collector-Emitter Voltage	VCEO	300	200	Vdc
Collector-Base Voltage	V _{CBO}	300	200	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	Ic	500		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 20		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		***			
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	MPSW92 MPSW93	V(BR)CEO	300 200	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	MPSW92 MPSW93	V _(BR) CBO	300 200	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)		V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 160 \text{ Vdc}, I_E = 0)$	MPSW92 MPSW93	ICBO	=	0.25 0.25	μAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)		IEBO	_	0.1	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain $ \begin{aligned} &(I_C = 1.0 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 30 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \end{aligned} $	Both Types Both Types MPSW92 MPSW93	hFE	25 40 25 25		_
Collector-Emitter Saturation Voltage $(I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc})$	MPSW92 MPSW93	VCE(sat)	=	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE(sat)}	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)		fT	50	_	MHz
Collector-Base Capacitance $(V_{CB}=20\ Vdc,I_{E}=0,f=1.0\ MHz)$	MPSW92 MPSW93	C _{cb}	_	6.0 8.0	'pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μs , Duty Cycle \leq 2.0%.

FIGURE 1 — D.C. CURRENT GAIN 200 VCE = 10 V TJ = 125°C 25°C hFE, DC CURRENT GAIN 100 70 -55°C 50 30 20 1.0 2.0 30 50 70 IC, COLLECTOR CURRENT (mA)

FIGURE 7 — ACTIVE REGION SAFE OPERATING AREA

MSD6100

CASE 29-02, STYLE 3 TO-92 (TO-226AA)

DUAL SWITCHING DIODE COMMON CATHODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	100	Vdc
Recurrent Peak Forward Current	lF	200	mA
Peak Forward Surge Current (Pulse Width = 10 μsec)	IFM(surge)	500	mA
Power Dissipation @ T _A = 25°C Derate above 25°C	P _D (1)	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg} (1)	-55 to +135	°C

Characteristic	Symbol	Min	Max	Unit
Breakdown Voltage (I(BR) = 100 μAdc)	V _(BR)	100	-	Vdc
Reverse Current $(V_R=100\ Vdc)$ $(V_R=50\ Vdc)$ $(V_R=50\ Vdc)$ $(V_R=50\ Vdc,\ T_A=125^\circ C)$	IR	=	5.0 0.1 20	μAdc
Forward Voltage (IF = 1.0 mAdc) (IF = 10 mAdc) (IF = 100 mAdc)	VF	0.55 0.67 0.75	0.7 0.82 1.1	Vdc
Capacitance (V _R = 0)	С	_	1.5	pF
Reverse Recovery Time $(I_F = I_R = 10 \text{ mAdc}, V_R = 5.0 \text{ Vdc}, I_{rr} = 1.0 \text{ mAdc})$	t _{rr}	-	4.0	ns

Continuous package improvements have enhanced these guaranteed Maximum Ratings as follows: P_D = 1.0 W @ T_C = 25°C, Derate above 25°C — 8.0 mW/°C, T_J = -65 to +150°C, _{θJC} = 125°C/W.

MSD6102

CASE 29-02, STYLE 3 TO-92 (TO-226AA)

DUAL DIODE COMMON CATHODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Recurrent Peak Forward Current	IF	200	mA
Peak Forward Surge Current (Pulse Width = 10 μs)	IFM(surge)	500	mA
Power Dissipation @ T _A = 25°C Derate above 25°C	P _D (1)	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg} (1)	-55 to +135	°C

⁽¹⁾ Continuous package improvements have enhanced these guaranteed Maximum Ratings as follows: PD = 1.0 W @ TC = 25°C, Derate above 25°C — 8.0 mW/°C, TJ = -65 to +150°C, θ JC = 125°C/W.

Characteristic	Symbol	Min	Max	Unit
Breakdown Voltage (I _(BR) = 100 μAdc)	V _(BR)	70	-	Vdc
Reverse Current (V _R = 50 Vdc)	IR	_	0.1	μAdc
Forward Voltage (I _F = 10 mAdc)	V _F	Time	1.0	Vdc
Capacitance (V _R = 0)	С	=	3.0	pF
Reverse Recovery Time $(I_F = I_R = 10 \text{ mAdc}, V_R = 5.0 \text{ Vdc}, I_{rr} = 1.0 \text{ mAdc})$	t _{rr}	-	100	ns

MSD6150

CASE 29-02, STYLE 4 TO-92 (TO-226AA)

DUAL DIODE COMMON ANODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Peak Forward Recurrent Current	lF	200	mA
Peak Forward Surge Current (Pulse Width = 10 μ s)	IFM(surge)	500	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D (1)	625 5.0	mW mW°C
Operating and Storage Junction Temperature Range	TJ, T _{stg} (1)	-55 to +135	°C

Characteristic	Symbol	Min	Тур	Max	Unit
Breakdown Voltage (I _(BR) = 100 µAdc)	V _(BR)	70	_	_	Vdc
Reverse Current (V _R = 50 Vdc)	IR	_	_	0.1	μAdc
Forward Voltage (I _F = 10 mAdc)	VF	_	0.80	1.0	Vdc
Capacitance (V _R = 0)	С	_	5.0	8.0	pF
Reverse Recovery Time (I _F = I _R = 10 mAdc, V _R = 5.0 Vdc, i _{rr} = 1.0 mAdc)	t _{rr}	_	_	100	ns

⁽¹⁾ Continuous package improvements have enhanced these guaranteed Maximum Ratings as follows: $P_D = 1.0 \text{ W} \ @ T_C = 25^{\circ}\text{C}$, Derate above 8.0 mW/°C, $P_D = 10 \text{ W} \ @ T_C = 25^{\circ}\text{C}$, Derate above 80 mW/°C, T_J , $T_{stg} = -55 \text{ to} + 150^{\circ}$, $\theta_{JC} = 12.5^{\circ}\text{C/W}$, $\theta_{JA} = 125^{\circ}\text{C}$.

A wide variety of discrete components from Motorola's repertoire of reliability-proven semiconductor processes and geometries are available in the SOT-23 and SOT-89 packages. Products include Bipolar and Field-Effect Transistors, Switching, Zener and Varactor Diodes.

As an additional service to our customers SOT-23's are available in:

- 8 mm tape and reel
- reverse pinout
- standard profile (TO-236AA) or low profile (TO-236AB)

Contact your Motorola representative for ordering information.

Microminature Products

BCW29,30

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	20	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	IC	100	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N5086 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	1				
Collector-Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _E = 0)		V(BR)CEO	20	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc, V _{EB} = 0)		V(BR)CES	30	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_C = 0$)		V(BR)CBO	30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$		ІСВО	=	100 10	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain $(I_C = 2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	BCW29 BCW30	hFE	120 215	260 500	=
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 0.5 mAdc)		VCE(sat)	_	0.3	Vdc
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.6	0.75	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (I _E = 0, V _{CE} = 10 Vdc, f = 1.0 MHz)		C _{obo}	=	7.0	pF
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = BW = 200 Hz)	= 1.0 kHz,	NF	_	10	dB

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	IC	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

BCW31,32,33

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to MPS3904 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				27 73 74	SAMO 1
Collector-Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _B = 0)		V(BR)CEO	20	- y	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_B = 0$)		V _(BR) CBO	30		Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)		V _{(BR)EBO}	5.0		Vdc
ON CHARACTERISTICS	-1		7		DAY.
DC Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	BCW31 BCW32 BCW33	h _{FE}	110 200 420	220 450 800	0.7
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 0.5 mAdc)		V _{CE(sat)}	(-)	0.25	Vdc
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)	Salar V.	V _{BE(on)}	0.55	0.70	Vdc
SMALL-SIGNAL CHARACTERISTICS	400 March			10 May 1	5 - 45
Output Capacitance (I _E = 0, V _{CB} = 10 Vdc, f = 1.0 MHz)	ality (Ver)	C _{obo}		4.0	pF
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	Ampl	NF	1 81 81	10	dB

BCW60A,B,C,D

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	32	Vdc
Collector-Base Voltage	V _{CBO}	32	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	100	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

Symbol

Min

Max

Unit

Refer to MPS3904 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

OFF CHARACTERISTICS				Del - E	
Collector-Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _E = 0)		V(BR)CEO	32	70.0	Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \mu Adc$, $I_C = 0$)		V(BR)EBO	5.0	U = 1	Vdc
Collector Cutoff Current (V _{CE} = 32 Vdc) (V _{CE} = 32 Vdc, T _A = 150°C)		ICES	_	20 20	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)	- X - E	IEBO	_	20	nAdc
ON CHARACTERISTICS					
DC Current Gain (IC = 10 μ Adc, VCE = 5.0 Vdc)	BCW60A BCW60B BCW60C BCW60D	hFE		=	1 7 1 20
(I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc)	BCW60A BCW60B BCW60C BCW60D		120 180 250 380	220 310 460 630	
$(I_C = 50 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc})$	BCW60A BCW60B BCW60C BCW60D		60 70 90 100	= =	
(I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	BCW60A BCW60B BCW60C BCW60D		125 175 250 350	250 350 500 700	
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 1.25 mAdc) (I _C = 10 mAdc, I _B = 0.25 mAdc)		V _{CE(sat)}	=	0.55 0.35	Vdc
Base-Emitter Saturation Voltage $\{I_C = 50 \text{ mAdc}, I_B = 1.25 \text{ mAdc}\}$ $\{I_C = 50 \text{ mAdc}, I_B = 0.25 \text{ mAdc}\}$		V _{BE(sat)}	0.7 0.6	1.05 0.85	Vdc
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.55	0.75	Vdc

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS		9.9		5
Current-Gain — Bandwidth Product (IC = 10 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 MHz)	fT	125	_	MHz
Output Capacitance $(V_{CE} = 10 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$	C _{obo}	- 4	4.5	pF
Noise Figure (IC = 0.2 mAdc, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	-	6.0	dB
SWITCHING CHARACTERISTICS				
Turn-On Time ($I_C = 10 \text{ mAdc}$, $I_{B1} = 1.0 \text{ mAdc}$)	t _{on}		150	ns
Turn-Off Time (IB2 = 1.0 mAdc, VBB = 3.6 Vdc, R1 = R2 = 5.0 k Ω , RL = 990 Ω)	t _{off}	_	800	ns

BCW61A,B,C,D

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	32	Vdc
Collector-Base Voltage	VCBO	32	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	100	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N5086 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _B = 0)		V _{(BR)CEO}	32	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 1.0 µAdc, I _C = 0)		V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current (V _{CE} = 32 Vdc) (V _{CE} = 32 Vdc, T _A = 150°C)		ICES	_	20 20	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain (IC = 10 μ Adc, V _{CE} = 5.0 Vdc)	BCW61A BCW61B BCW61C BCW61D	hFE	 20 40 100	_ _ _	_
$(I_C = 2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	BCW61A BCW61B BCW61C BCW61D		120 140 250 380	220 310 460 630	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	BCW61A BCW61B BCW61C BCW61D		60 80 100 100	=	
(IC = 2.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	BCW61A BCW61B BCW61C BCW61D		125 175 250 350	250 350 500 700	
Collector-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}$, $I_B = 1.25 \text{ mAdc}$) ($I_C = 10 \text{ mAdc}$, $I_B = 0.25 \text{ mAdc}$)		VCE(sat)	=	0.55 0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 1.25 mAdc) (I _C = 10 mAdc, I _B = 0.25 mAdc)		VBE(sat)	0.68	1.05 0.85	Vdc
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.6	0.75	Vdc

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
SMALL SIGNAL CHARACTERISTICS	-	Delta Co		
Output Capacitance (V _{CE} = 10 Vdc, I _C = 0, f = 1.0 MHz)	C _{obo}	115	6.0	pF
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	- -	6.0	dB
SWITCHING CHARACTERISTICS				
Turn-On Time (I _C = 10 mAdc, I _{B1} = 1.0 mAdc)	ton	- 6	150	ns
Turn-Off Time (I _{B2} = 1.0 mAdc, V _{BB} = 3.6 Vdc, R ₁ = R ₂ = 5.0 k Ω , R _L = 990 Ω)	toff	- 4	800	ns

BCW65A

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	32	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	Ic	800	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	32	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 µAdc, V _{EB} = 0)	V(BR)CES	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CE} = 32 Vdc, I _E = 0) (V _{CE} = 32 Vdc, I _E = 0, T_A = 150°C)	ICES	_	_	20 20	nAdc μAdc
Emitter Cutoff Current $(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$	IEBO	_	_	20	nAdc
ON CHARACTERISTICS					
DC Current Gain	hFE	35 75 100 35		220 250 —	_
Collector-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	VCE(sat)	_	0.7 0.3	_	Vdc
Base-Emitter Saturation Voltage $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	VBE(sat)	_	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fΤ	100	_	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_	_	12	pF
Input Capacitance (VEB = 0.5 Vdc, I_C = 0, f = 1.0 MHz)	C _{ibo}	_	_	80	pF
Noise Figure (IC = 0.2 mAdc, VCE = 5.0 Vdc, RS = 1.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	_	_	10	dB
SWITCHING CHARACTERISTICS					
Turn-On Time $(I_{B1} = I_{B2} = 15 \text{ mAdc})$	ton	_	_	100	ns
Turn-Off Time (I _C = 150 mAdc, R _L = 150 Ω)	t _{off}	_	_	400	ns

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Collector-Base Voltage	VCBO	75	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	l _C	800	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

BCW66F

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Тур

Max

Unit

OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0$)	V(BR)CEO	45	-	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 µAdc, V _{EB} = 0)	V(BR)CES	75	-	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CE} = 45 Vdc, I _C = 0) (V _{CE} = 45 Vdc, I _C = 0, T_A = 150°C)	ICES	_	=	20 20	nAdc μAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, I _C = 0)	IEBO	_	_	20	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 100 \ \mu Adc, V_{CE} = 1.0 \ Vdc$) ($I_C = 10 \ m Adc, V_{CE} = 1.0 \ Vdc$) ($I_C = 100 \ m Adc, V_{CE} = 1.0 \ Vdc$) ($I_C = 500 \ m Adc, V_{CE} = 2.0 \ Vdc$)	hFE	35 75 100 35	_ _ _	 250 	_
Collector-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	VCE(sat)	_	0.7 0.3	_	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)	V _{BE(sat)}	_	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 20 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	100	_	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_	-	12	pF
Input Capacitance (VEB = 0.5 Vdc, IC = 0 , f = 1.0 MHz)	C _{ibo}	-	_	80	pF
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 Vdc, R_S = 1.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	_	_	10	dB
SWITCHING CHARACTERISTICS					
			T		

Symbol

ton

toff

Min

 $(I_C = 150 \text{ mAdc}, R_L = 150 \Omega)$

 $(I_{B1} = I_{B2} = 15 \text{ mAdc})$

Turn-On Time

Turn-Off Time

100

400

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

BCW67,A,B,C BCW68,F,G

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

IND CHINICITY ID CTITICO				
Rating	Symbol	BCW67	BCW68	Unit
Collector-Emitter Voltage	V _{CEO}	32	45	Vdc
Collector-Base Voltage	VCBO	45	60	Vdc
Emitter-Base Voltage	V _{EBO}	V _{EBO} 5.0		Vdc
Collector Current — Continuous	Ic	8	00	mAdo

THERMAL CHARACTERISTICS

THE HIVAL OHAHAOTEHIOTIO			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	R ₀ JA	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteris	tic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					and ender	
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	BCW67 Series BCW68 Series	V(BR)CEO	32 45	=	=	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 μ Adc, V _{EB} = 0)	BCW67 Series BCW68 Series	V(BR)CES	45 60	= 1	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	5.0	_		Vdc
Collector Cutoff Current (VCE = 32 Vdc, IE = 0) (VCE = 45 Vdc, IE = 0) (VCE = 32 Vdc, IB = 0, TA = 150°C) (VCE = 45 Vdc, IB = 0, TA = 150°C)	BCW67 Series BCW68 Series BCW67 Series BCW68 Series	ICES	=	=	20 20 10 10	nAdd μAdd
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO	_	_	20	nAdd
ON CHARACTERISTICS					of the co	
DC Current Gain ($I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$)	BCW67,A,68,F BCW67B,68G BCW67C	h _{FE}	75 120 180	=	=	-
$(I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	BCW67,A,68,F BCW67B,68G BCW67C		100 160 250	===	250 400 630	
$(I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	BCW67,A,68,F BCW67B,68G BCW67C		35 60 100	= -	=	-
Collector-Emitter Saturation Voltage (IC =	100 mAdc, IB = 10 mAdc)	V _{CE(sat)}	_	_	0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 500	mAdc, I _B = 50 mAdc)	V _{BE(sat)}	_		2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product ($I_C = 20$ mAdc, $V_{CE} = 10$ Vdc, $f = 100$ M	1Hz)	fT	100	_		MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E =$	0, f = 1.0 MHz)	C _{obo}	_	_	18	pF
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0.5 \text{ Vdc})$, f = 1.0 MHz)	C _{ibo}	_	_	80	pF
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 \ f = 1.0 kHz, BW = 200 Hz)	/dc, R _S = 1.0 k Ω ,	NF	_	_	10	dB

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

BCW69,70

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N5086 for graphs.

ELECTRICAL CHARACTERISTICS	$(T_{\Delta} =$	25°C unless	otherwise i	noted.)
-----------------------------------	-----------------	-------------	-------------	---------

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				S CONTRACTOR	To Py
Collector-Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _B = 0)		V(BR)CEO	45	OF SERVICE	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc, V _{EB} = 0)		V _{(BR)CES}	50		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	1000	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$		ICBO	_	100 10	nAdc μAdc
ON CHARACTERISTICS				PARE	
DC Current Gain (IC = 2.0 mAdc, V_{CE} = 5.0 Vdc)	BCW69 BCW70	hFE	120 215	260 500	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 0.5 mAdc)		V _{CE(sat)}	10=3	0.3	Vdc
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.6	0.75	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (I _E = 0, V _{CB} = 10 Vdc, f = 1.0 MHz)		C _{obo}	lay To 1	7.0	pF
Noise Figure $(I_C = 0.2 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, R_S = 2.0 \text{ k}\Omega, f = 1.0 \text{ kHz}, BW = 200 \text{ Hz})$		NF	3 T	10	dB

BCW71,72

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	100	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPS3904 for graphs.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					1007777	
Collector-Emitter Breakdown Voltage (I _C = 2.0 mAdc, V _{EB} = 0)		V(BR)CEO	45	_		Vdc
Collector-Emitter Breakdown Voltage ($I_C = 2.0 \text{ mAdc}, V_{EB} = 0$)		V _{(BR)CES}	45	_	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)		V _(BR) CBO	50	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	-	Vdc
Collector Cutoff Current $(V_{CB}=20\ V_{dc}, I_E=0)$ $(V_{CB}=20\ V_{dc}, I_E=0, T_A=100^{\circ}C)$		ICBO	_	===	100 10	nAdc μAdc
ON CHARACTERISTICS	D77					
DC Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	BCW71 BCW72	hFE	110 200	_	220 450	- et
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 2.5 \text{ mAdc}$)		VCE(sat)	_	 0.21	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 2.5 mAdc)		V _{BE(sat)}	_	0.85	_	Vdc
Base-Emitter On Voltage ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)		V _{BE(on)}	0.6	_	0.75	Vdc
SMALL SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 35 \text{ MHz}$)		fT	_	300	_	MHz
Output Capacitance (I _E = 0, V _{CE} = 10 Vdc, f = 1.0 MHz)		C _{obo}	_	_	4.0	pF
Input Capacitance (I _C = 0, V_{EB} = 0.5 Vdc, f = 1.0 MHz)		C _{ibo}	_	9.0	-	pF
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)		NF	_	_	10	dB

Rating		Va		
	Symbol	BCX17	BCX18	Unit
Collector-Emitter Voltage	V _{CEO}	45	25	Vdc
Collector-Base Voltage	V _{CBO}	50	30	Vdc
Emitter-Base Voltage	V _{EBO}	5.0		Vdc
Collector Current — Continuous	lc	500		mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

BCX17,18 BCX19,20

NPN CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	BCX17 BCX18	V(BR)CEO	45 25	=	_	Vdc
Collector-Emitter Breakdown Voltage (IC = 10 μ Adc, IC = 0)	BCX17 BCX18	V(BR)CES	50 30	=	= 1	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$		ICBO	=	_	100 5.0	nAdc μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)		IEBO	_	_	10	μAdc
ON CHARACTERISTICS						
DC Current Gain		hFE	100 70 40	=	600 — —	_
Collector-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)		V _{CE(sat)}	-	-	0.62	Vdc
Base-Emitter On Voltage (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	_	-	1.2	Vdc

BCX51 BCX52 BCX53

CASE 345-01, STYLE 1 SOT-89

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	BCX51	BCX52	BCX53	Unit
Collector-Emitter Voltage	VCEO	45	60	80	V
Collector-Emitter Voltage	VCER	45	60	100	٧
Collector-Base Voltage	VCBO	45	60	100	V
Emitter-Base Voltage	VEBO	5.0	5.0	5.0	V
Base Current	IB	0.1	0.1	0.1	Α
Collector Current — Continuous	IC	1.0	1.0	1.0	Α
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-	°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 10 mA) (IC = 10 mA) (IC = 10 mA)	BCX51 BCX52 BCX53	V(BR)CEO	45 60 80	=	V
Collector-Base Breakdown Voltage (IC = 10 μ A) (IC = 10 μ A) (IC = 10 μ A)	BCX51 BCX52 BCX53	V _(BR) CBO	45 60 100		V
Emitter-Base Breakdown Voltage (I _E = 10 µA)		V(BR)EBO	5.0	-	V
Collector Cutoff Current (V _{CB} = 30 V) (V _{CB} = 30 V, T _J = 125°C)		ІСВО	=	100 10	nA μA
Emitter Cutoff Current (VEB = 3.0 V)		IEBO	_	100	nA
ON CHARACTERISTICS					
DC Current Gain $ \begin{aligned} &(I_C = 5.0 \text{ mA, V}_{CE} = 2.0 \text{ V}) \\ &(I_C = 150 \text{ mA, V}_{CE} = 2.0 \text{ V}) \\ &(I_C = 150 \text{ mA, V}_{CE} = 2.0 \text{ V}) \\ &(I_C = 500 \text{ mA, V}_{CE} = 2.0 \text{ V}) \end{aligned} $	BCX51 BCX52,53	hFE	25 40 40 25	250 160	-
Collector-Emitter Saturation Voltage (I _C = 500 mA, I _B = 50 mA)		V _{CE(sat)}	_	0.5	V
Base-Emitter On Voltage (I _C = 500 mA, V _{CE} = 2.0 V)		V _{BE(on)}	-	1.0	V
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (V _{CE} = 5.0 V, I _C = 10 mA, f = 35 MHz)		fT	50	_	MHz

Rating	Symbol	BCX54	BCX55	BCX56	Unit
Collector-Emitter Voltage	VCEO	45	60	80	V
Collector-Emitter Voltage	VCER	45	60	100	V
Collector-Base Voltage	VCBO	45	60	100	V
Emitter-Base Voltage	VEBO	5.0	5.0	5.0	V
Base Current	IB	0.1	0.1	0.1	Α
Collector Current — Continuous	IC	1.0	1.0	1.0	Α

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

BCX54 BCX55 BCX56

CASE 345-01, STYLE 1 SOT-89

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					S. Inject
Collector-Emitter Breakdown Voltage (IC = 10 mA) (IC = 10 mA) (IC = 10 mA)	BCX54 BCX55 BCX56	V(BR)CEO	45 60 80	=	V
Collector-Base Breakdown Voltage (IC = 10 μ A) (IC = 10 μ A) (IC = 10 μ A)	BCX54 BCX55 BCX56	V(BR)CBO	45 60 100	= = =	V
Emitter-Base Breakdown Voltage (IE = 500 mA, IB = 50 mA) (IE = 10 μ A) (IE = 10 μ A)	BCX54 BCX55 BCX56	V(BR)EBO	5.0 5.0 5.0	= = =	V
Collector Cutoff Current ($V_{CB} = 30 \text{ V}$) ($V_{CB} = 30 \text{ V}$, $T_{J} = 125^{\circ}\text{C}$)		ICBO	= 1	100 10	nA μA
Emitter Cutoff Current (VEB = 3.0 V)		IEBO	-	100	nA
ON CHARACTERISTICS			06.17		3 SP
DC Current Gain (I _C = 5.0 mA, V _{CE} = 2.0 V) (I _C = 150 mA, V _{CE} = 2.0 V) (I _C = 500 mA, V _{CE} = 2.0 V)		hFE	25 40 25	 250 	_ 1
Collector-Emitter Saturation Voltage (I _C = 500 mA, I _B = 50 mA)		V _{CE(sat)}	-	0.5	V
Base-Emitter On Voltage (I _C = 500 mA, V _{CE} = 2.0 V)		V _{BE(on)}	_	1.0	V
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product $(V_{CE} = 5.0 \text{ V, } I_{C} = 10 \text{ mA, } f = 35 \text{ MHz})$		fΤ	50	-	MHz

BCX68

CASE 345-01, STYLE 1 SOT-89

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	20	V
Collector-Emitter Voltage	VCES	25	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Base Current	IB	100	mA
Base Current — Maximum	IBM	200	mA
Collector Current — Continuous	IC	1.0	А
Collector Current — Maximum	ICM	2.0	А

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			Life out the	MIS
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	20	-	V
Collector Cutoff Current $(V_{CB} = 25 \text{ V})$	СВО	_	100	nA
Emitter Cutoff Current (V _{EB} = 5.0 V)	IEBO	_	10	μΑ
ON CHARACTERISTICS				
DC Current Gain $(V_{CE} = 10 \text{ V, I}_{C} = 5.0 \text{ mA})$ $(V_{CE} = 1.0 \text{ V, I}_{C} = 0.5 \text{ A})$ $(V_{CE} = 1.0 \text{ V, I}_{C} = 1.0 \text{ A})$	hFE	50 85 60	 375 	_
Collector-Emitter Saturation Voltage (I _C = 1.0 A, I _B = 100 mA)	VCE(sat)	_	0.5	V
Base-Emitter On Voltage (V _{CE} = 10 V, I _C = 5.0 mA) (V _{CE} = 1.0 V, I _C = 1.0 A)	V _{BE} (on)	=	0.6 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($V_{CE} = 5.0 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f = 20 \text{ MHz}$)	fT	65	_	MHz

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	20	V
Collector-Emitter Voltage	V _{CES}	25	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Base Current	IB	100	mA
Base Current — Maximum	IBM	200	mA
Collector Current — Continuous	Ic	1.0	А
Collector Current — Maximum	ICM	2.0	А

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

BCX69

CASE 345-01, STYLE 1 SOT-89

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	20	_	V
Collector Cutoff Current (V _{CB} = 25 V)	ICBO	-	100	nA
Emitter Cutoff Current (V _{EB} = 5.0 V)	IEBO	-	10	μА
ON CHARACTERISTICS				
DC Current Gain $(V_{CE} = 10 \text{ V, } I_{C} = 5.0 \text{ mA})$ $(V_{CE} = 1.0 \text{ V, } I_{C} = 0.5 \text{ A})$ $(V_{CE} = 1.0 \text{ V, } I_{C} = 1.0 \text{ A})$	hFE	50 85 60	 375 	_
Collector-Emitter Saturation Voltage (I _C = 1.0 A, I _B = 100 mA)	VCE(sat)	_	0.5	V
Base-Emitter On Voltage (V _{CE} = 10 V, I _C = 5.0 mA) (V _{CE} = 1.0 V, I _C = 1.0 A) SMALL-SIGNAL CHARACTERISTICS	VBE(on)	=	0.6 1.0	V
Current-Gain — Bandwidth Product	fT	65		MHz
$(V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA, f} = 20 \text{ MHz})$.11	00		IVITIZ

BCX70G,H,J,K

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	45	Vdc
Collector-Base Voltage	VCBO	45	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPS3904 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				CAL DAVIN	100,000 10
Collector-Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _E = 0)		V(BR)CEO	45		Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \mu Adc$, $I_C = 0$)		V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current (V _{CE} = 32 Vdc) (V _{CE} = 32 Vdc, T _A = 150°C)		ICES	_	20 20	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO	-	20	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	BCX70G BCX70H BCX70J BCX70K	hFE			_
(I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc)	BCX70G BCX70H BCX70J BCX70K		120 180 250 380	220 310 460 630	
(I _C = 50 mAdc, V_{CE} = 1.0 Vdc)	BCX70G BCX70H BCX70J BCX70K		60 70 90 100	=======================================	
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 1.25 mAdc) (I _C = 10 mAdc, I _B = 0.25 mAdc)		VCE(sat)	=	0.55 0.35	Vdc
Base-Emitter Saturation Voltage $(I_C = 50 \text{ mAdc}, I_B = 1.25 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 0.25 \text{ mAdc})$		V _{BE} (sat)	0.7 0.6	1.05 0.85	Vdc
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.55	0.75	Vdc

BCX70G,H,J,K

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic			Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)			fT	125	-	MHz
Output Capacitance (V _{CE} = 10 Vdc, I _C = 0, f = 1.0 MHz)		-	C _{obo}	-	4.5	pF
Small-Signal Current Gain (IC = 2.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz)	BCX70G BCX70H BCX70J BCX70K	,	h _{fe}	125 175 250 350	250 350 500 700	_
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	40.00		NF	_	6.0	dB
SWITCHING CHARACTERISTICS						
Turn-On Time $(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$		-	ton	_	150	ns
Turn-Off Time (IB2 = 1.0 mAdc, VBB = 3.6 Vdc, R1 = R2 = 5.0 k Ω , RL = 990 Ω)			^t off	-	800	ns

BCX71G,H,J,K

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	45	Vdc
Collector-Base Voltage	V _{CBO}	45	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

Symbol

Refer to 2N5086 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic

Characteristic		Cyllibol	141111	IVIAA	Omit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 2.0 \text{ mAdc}, I_B = 0$)		V _{(BR)CEO}	45	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 1.0 μ Adc, I _C = 0)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current ($V_{CE} = 32 \text{ Vdc}$) ($V_{CE} = 32 \text{ Vdc}$, $T_{A} = 150^{\circ}\text{C}$)		ICES	=	20 20	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	BCX71G BCX71H BCX71J BCX71K	hFE		= =	_
(I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc)	BCX71G BCX71H BCX71J BCX71K		120 140 250 380	220 310 460 630	
($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	BCX71G BCX71H BCX71J BCX71K		60 80 100 110	=	
$(I_{C} = 2.0 \text{ mAdc, V}_{CE} = 5.0 \text{ Vdc, f} = 1.0 \text{ kHz})$	BCX71G BCX71H BCX71J BCX71K		125 175 250 350	250 350 500 700	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.25 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 1.25 \text{ mAdc}$)		V _{CE(sat)}	_	0.25 0.55	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.25 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 1.25 \text{ mAdc}$)		V _{BE(sat)}	0.6 0.68	0.85 1.05	Vdc
Base-Emitter On Voltage (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	0.6	0.75	Vdc
Output Capacitance (V _{CE} = 10 Vdc, I _C = 0, f = 1.0 MHz)		C _{obo}	-	6.0	pF

Unit

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Noise Figure (I _C = 0.2 mAdc, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	- "	6.0	dB
SWITCHING CHARACTERISTICS				
Turn-On Time ($I_C = 10 \text{ mAdc}$, $I_{B1} = 1.0 \text{ mAdc}$)	t _{on}	-	150	ns
Turn-Off Time (IB2 = 1.0 mAdc, VBB = 3.6 Vdc, R1 = R2 = 5.0 k Ω , R1 = 990 Ω)	^t off	_	800	ns

BFQ17

CASE 345-01, STYLE 1 SOT-89

RF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	25	V
Collector-Emitter Voltage (RBE \leq 50 Ω)	VCER	40	V
Collector-Base Voltage	V _{CBO}	40	V
Emitter-Base Voltage	V _{EBO}	2.0	V
Collector Current — Continuous	IC	300	mA
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mA})$	V(BR)CEO	25	_	V
Collector-Base Breakdown Voltage (I $_{\rm C}=10~\mu{\rm A}$)	V(BR)CBO	40	_	V
Emitter-Base Breakdown Voltage (IE = 10 μ A)	V(BR)EBO	2.0	-	V
Collector Cutoff Current (V _{CB} = 20 V) (V _{CB} = 20 V, T_A = 150°C)	ІСВО	_	100 20	nA
Emitter Cutoff Current (VEB = 1.0 V)	IEBO	_	100	nA
ON CHARACTERISTICS				
DC Current Gain ($I_C = 50$ mA, $V_{CE} = 5.0$ V) ($I_C = 150$ mA, $V_{CE} = 5.0$ V)	hFE	25 25	_	_
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 10 mA)	V _{CE(sat)}	_	0.5	V
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($V_{CE} = 15 \text{ V}, I_C = 150 \text{ mA}, f = 500 \text{ MHz}$)	fT	1200(1)	-	MHz
Collector-Base Capacitance (V _{CB} = 15 V, f = 1.0 MHz)	C _{cb}	_	4.0	pF
Reverse Transfer Capacitance Common-Emitter (V _{CE} = 15 V, I _C = 10 mA, f = 1.0 MHz)	C _{re}	_	1.9	pF

⁽¹⁾ Typical only

BFQ18A

CASE 345-01, STYLE 1 SOT-89

RF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	V
Collector-Base Voltage	V _{CBO}	25	V
Emitter-Base Voltage	V _{EBO}	12	V
Collector Current — Continuous	IC -	150	mA
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

THE THE CHARLEST CONTRACT CONT			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			17	IL ETE
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	15	_	V
Collector-Base Breakdown Voltage (IC = 10 μ A)	V(BR)CBO	25	 -	V
Emitter-Base Breakdown Voltage (IE = 10 μ A)	V(BR)EBO	2.0	_	V
Collector Cutoff Current (V _{CB} = 10 V)	СВО	_	100	nA
Emitter Cutoff Current (V _{EB} = 1.0 V)	IEBO	_	100	nA
ON CHARACTERISTICS				
DC Current Gain (I _C = 50 mA, V_{CE} = 10 V) (I _C = 100 mA, V_{CE} = 10 V)	h _{FE}	25 25	=	
SMALL SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (V _{CE} = 10 V, I _C = 50 mA, f = 500 MHz)	fT	3200(1)	- -	MHz
0.7 1.1 1				

⁽¹⁾ Typical only

BFQ19

CASE 345-01, STYLE 1 SOT-89

RF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	V
Collector-Base Voltage	VCBO	20	V
Emitter-Base Voltage	VEBO	3.0	V
Collector Current Max (f > 1.0 MHz)	ICM	150	mA
Collector Current — Average	ICAV	75	mA
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			NICK-II	RS-FT A
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	15		V
Collector-Base Breakdown Voltage (IC = 10 μ A)	V(BR)CBO	20	- 1	V
Emitter-Base Breakdown Voltage (IE = 10 μ A)	V(BR)EBO	3.0		V
Collector Cutoff Current (V _{CB} = 10 V)	СВО	_	100	nA
Emitter Cutoff Current (VEB = 1.0 V)	IEBO	_	100	nA
ON CHARACTERISTICS			6 4313	1-1400-11
DC Current Gain (I _C = 50 mA, V _{CE} = 10 V) (I _C = 75 mA, V _{CE} = 10 V)	hFE	25 25	-	
SMALL-SIGNAL CHARACTERISTICS		40000	TA INCIDENT	L Jan
Current-Gain — Bandwidth Product (I _C = 50 mA, V _{CE} = 10 V, f = 500 MHz) (I _C = 75 mA, V _{CE} = 10 V, f = 500 MHz)	fT	4.0 4.4	_	GHz
Collector-Base Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{cb}	_	1.6	pF
Capacitance Emitter-to-Base (V _{EB} = 0.5 V, f = 1.0 MHz)	C _{eb}	-	5.0	pF
Reverse Transfer Capacitance Common Emitter (V _{CE} = 10 V, I _C = 10 mA, f = 1.0 MHz)	C _{re}	1	1.3	pF
Noise Figure (I _C = 50 mA, V_{CE} = 10 V, f = 500 MHz)	NF	-	3.3	dB

BFR30,31

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

JFET AMPLIFIER

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	VGS	25	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate Reverse Current $(V_{GS} = 10 \text{ Vdc}, V_{DS} = 0)$		IGSS	-	0.2	nAdc
Gate Source Cutoff Voltage $(I_D = 0.5 \text{ nAdc}, V_{DS} = 10 \text{ Vdc})$	BFR30 BFR31	V _{GS(off)}	_	5.0 2.5	Vdc
Gate Source Voltage $(I_D = 1.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc})$	BFR30 BFR31	VGS	0.7	3.0 1.3	Vdc
$(I_D = 50 \mu Adc, V_{DS} = 10 Vdc)$	BFR30 BFR31		_	4.0 2.0	
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain (V _{DS} = 10 Vdc, V _{GS} = 0)	BFR30 BFR31	IDSS	4.0 1.0	10 5.0	mAdc
SMALL-SIGNAL CHARACTERISTICS		•			
Forward Transfer Admittance (ID = 1.0 mAdc, VDS = 10 Vdc, f = 1.0 kHz) $(ID = 200 \ \mu Adc, VDS = 10 \ Vdc, f = 1.0 \ kHz)$	BFR30 BFR31 BFR30 BFR31	Y _{fs}	1.0 1.5 0.5 0.75	4.0 4.5 —	mAdc
Output Admittance (ID = 1.0 mAdc, V_{DS} = 10 Vdc, f = 1.0 kHz) (ID = 200 μ Adc, V_{DS} = 10 Vdc)	BFR31 BFR31	Yos	40 20	25 15	μAdc
Input Capacitance (ID = 1.0 mAdc, V_{DS} = 10 Vdc, f = 1.0 MHz) (ID = 200 μ Adc, V_{DS} = 10 Vdc, f = 1.0 MHz)		C _{iss}	=	5.0 4.0	pF
Reverse Transfer Capacitance (ID = 1.0 mAdc, V_{DS} = 10 Vdc, f = 1.0 MHz) (ID = 200 μ Adc, V_{DS} = 10 Vdc, f = 1.0 MHz)		C _{rss}	Ξ	1.5 1.5	pF

BFR92

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	2.0	Vdc
Collector Current — Continuous	Ic	25	mAdo

THERMAL CHARACTERISTICS

THE THINK OF THE TOTAL THE THE			
Characteristic	Symbol	Max'	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	R ₀ JA	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			DAME DOAM	סודר כונ
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mA)	V(BR)CEO	15		Vdc
Collector-Base Breakdown Voltage (I _C = 100 µA)	V(BR)CBO	20	o ta <u>l</u> leas production	Vdc
Emitter-Base Breakdown Voltage (I _C = 100 μA)	V(BR)EBO	2.0	e almi u en	Vdc
Collector Cutoff Current (V _{CB} = 10 V)	ICBO	_	50	nA
ON CHARACTERISTICS		The Division	gy span (d)	(5)
DC Current Gain (I _C = 14 mA, V_{CE} = 10 V)(1)	hFE	25	The Loss	#12 HQ
Collector-Emitter Saturation Voltage(1) (I _C = 25 mA, I _B = 5.0 mA)	VCE(sat)	10 a	0.5	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 25 mA, I _B = 5.0 mA)	V _{BE} (sat)	T SELFORT	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS		No. of Street	e - u - luli	5.0457
Current-Gain — Bandwidth Product (I _C = 14 mA, V _{CE} = 10 V, f = 500 MHz)	fτ	5 GHz (Typ)	V 2 2 0.1	MHz
Noise Figure (V _{CE} = 1.5 V, I_C = 3.0 mA, I_S = 50 I_C , I_C = 500 MHz)	NF	av et - y	3.0 (Typ)	dB
Capacitance-Collector to Base (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{cb}	_	0.7 (Typ)	pF

⁽¹⁾ Pulse Width \leqslant 300 $\mu\text{s},$ Duty Cycle \leqslant 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	V _{CBO}	15	Vdc
Emitter-Base Voltage	VEBO	2.0	Vdc
Collector Current — Continuous	Ic	25	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

BFR93

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1000	ALKO PYC
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	12	kerr - ter	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ A)	V(BR)CBO	15	w.t., - J.t.	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µA)	V(BR)EBO	2.0	101 -	Vdc
Collector Cutoff Current (V _{CE} = 10 V)	ICEO	_	50	nA
Collector Cutoff Current (V _{CB} = 10 V)	Ісво	_	50	nA
Emitter Cutoff Current (V _{EB} = 1.0 V)	I _{EBO}	_	10	nA
ON CHARACTERISTICS		10.4	36 46	45 - 10
DC Current Gain (I _C = 1.0 mA, V_{CE} = 5.0 V) (I _C = 30 mA, V_{CE} = 5.0 V)	h _{FE}	25 25	_	2 -21
Collector-Emitter Saturation Voltage (I _C = 35 mA, I _B = 7.0 mA)	VCE(sat)	-	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 35 mA, I _B = 7.0 mA)	VBE(sat)	POLICE COLL	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS	athlik yi	W X 1000	La Contraction	DA LY
Current-Gain — Bandwidth Product ($I_C = 30$ mA, $V_{CE} = 5.0$ V, $f = 500$ MHz)	fT	4.5	ALC:	GHz
Noise Figure (V _{CE} = 5.0 V, I _C = 2.0 mA, R _S = 50 Ω , f = 30 MHz)	NF	=110	3.0	dB

BFS17

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	25	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	15	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µA)	V(BR)CBO	25	-	Vdc
Collector Cutoff Current (V _{CE} = 10 V)	ICEO	_	25	nA
Collector Cutoff Current (V _{CB} = 10 V)	Ісво	_	25	nA
Emitter Cutoff Current (V _{EB} = 4.0 V)	l _{EBO}	_	100	μΑ
ON CHARACTERISTICS				
DC Current Gain (I _C = 2.0 mA, V _{CE} = 1.0 V) (I _C = 25 mA, V _{CE} = 1.0 V)	hFE	20 20	150	_
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA)	VCE(sat)	-	0.4	V
Base-Emitter Saturation Voltage ($I_C = 10$ mA, $I_B = 1.0$ mA)	V _{BE} (sat)	-	1.0	V
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 2.0 mA, V _{CE} = 5.0 V, f = 500 MHz) (I _C = 25 mA, V _{CE} = 5.0 V, f = 500 MHz)	f _T	1.0 1.3*	=	GHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	ССВ	_	1.0*	pF
Noise Figure (I _C = 2.0 mA, V _{CE} = 5.0 V, R _S = 50 Ω , f = 30 MHz)	NF	_	5.0*	dB

^{*}Тур

MAXIMON HATHINGO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Emitter Voltage $R_{BE} = 10 \text{ k}\Omega$	VCER	110	Vdc
Collector Current — Continuous	Ic.	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C	
Storage Temperature	T _{stg}	150	°C	
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W	

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

BSS63

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

PNP SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc)	V(BR)CEO	100	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 μ Adc, I _E = 0, R _{BE} = 10 k Ω)	V(BR)CER	110	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V(BR)CBO	110	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc)	V(BR)EBO	6.0	-	_	Vdc
Collector Cutoff Current (V _{CB} = 90 Vdc, I _E = 0)	ІСВО	_	_	100	nAdc
Collector Cutoff Current (V _{CE} = 110 Vdc, R _{BE} = 10 k Ω)	ICER	_	_	10	μAdc
Emitter Cutoff Current (VEB = 6.0 Vdc, I _C = 0)	IEBO	_	_	200	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 10$ mAdc, $V_{CE} = 1.0$ Vdc) ($I_C = 25$ mAdc, $V_{CE} = 1.0$ Vdc)	hFE	30 30	_	=	_
Collector-Emitter Saturation Voltage (I _C = 25 mAdc, I _B = 2.5 mAdc)	V _{CE} (sat)	—	_	250	mVdc
Base-Emitter Saturation Voltage ($I_C = 25 \text{ mAdc}$, $I_B = 2.5 \text{ mAdc}$)	V _{BE(sat)}	_	_	900	mVdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 25 mAdc, V _{CE} = 5.0 Vdc, f = 35 MHz)	fT	50	95	_	MHz
Case Capacitance (I _E = I _C = 0, V _{CB} = 10 Vdc)	CC	_	_	5.0	pF

BSS64

CASE 318-03, STYLE 6 SOT-23 (TO-236AA/AB)

DRIVER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Vdc
Collector-Base Voltage	VCBO	120	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	100	mA

THERMAL CHARACTERISTICS

THE THE OTHER DESIGNATION			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				SERT 19
Collector-Emitter Breakdown Voltage (I _C = 4.0 mA)	V(BR)CEO	80	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µA)	V(BR)CBO	120		Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μA)	V(BR)EBO	5.0	27 1 <u>4 1</u> 5 1 6 1	Vdc
Collector Cutoff Current (V _{CE} = 80 V, T _A = 70°C)	ICES	_	20	μΑ
Emitter Cutoff Current (V _{BE} = 4.0 V)	IEBO	_	200	nA
ON CHARACTERISTICS				
DC Current Gain $(V_{CE} = 1.0 \text{ V, I}_{C} = 10 \text{ mA})$	hFE	20		32
Collector-Emitter Saturation Voltage (I _C = 4.0 mA, I _B = 400 μ A) (I _C = 50 mA, I _B = 15 mA)	VCE(sat)	=	0.7 3.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			1000	
Current-Gain — Bandwidth Product (I _C = 4.0 mA, V _{CF} = 10 V, f = 35 MHz)	fT	50	_	MHz

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	Ic	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

BSS79C

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				. V . W . I
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc)	V(BR)CEO	40		Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc)	V(BR)CBO	75	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc)	V(BR)EBO	6.0	_	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc) (V _{CB} = 60 Vdc, T _A = 150°C)	ICBO	= -	10 10	nAdc μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc)	IEBO	-	10	nAdc
ON CHARACTERISTICS			130	B. South
DC Current Gain (IC = 150 mAdc, VCE = 10 Vdc)	hFE	100	300	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	VCE(sat)	= 1	0.3 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		The Re	and feet,	The sale
Current-Gain — Bandwidth Product (V _{CE} = 20 Vdc, I _C = 20 mAdc, f = 100 MHz)	fT	250	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{obo}		8.0	pF
SWITCHING CHARACTERISTICS		C- 173	CONTRACTOR OF THE PARTY OF THE	S. Carlotte
Delay Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc})$ $(I_{B1} = I_{B2} = 15 \text{ mAdc})$	td	- 30 (2)	10	ns
Rise Time $(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc})$ $(I_{B1} = I_{B2} = 15 \text{ mAdc})$	t _r	-	10	ns
Storage Time $(V_{CC}=30\ V_{dc}, I_{C}=150\ mAdc)$ $(I_{B1}=I_{B2}=15\ mAdc)$	t _S	_	225	ns
Fall Time $(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc})$ $(I_{B1} = I_{B2} = 15 \text{ mAdc})$	tf	_	60	ns

BSS80C

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	800	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				Tay to 1826
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	40		Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ A)	V(BR)CBO	60	r. 	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ A)	V(BR)EBO	5.0		Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc) (V _{CB} = 50 Vdc, T _A = 150°C)	ІСВО	=	10 10	nA μA
Emitter Cutoff Current (V _{BE} = 3.0 Vdc)	I _{EBO}	_	10	nA
ON CHARACTERISTICS				1050-0
DC Current Gain (I _C = 150 mA, V _{CE} = 10 Vdc)	hFE	100	300	_
Collector-Emitter Saturation Voltage (I _C = 150 mA, I _B = 15 mA) (I _C = 500 mA, I _B = 50 mA)	VCE(sat)	-4	0.4 1.6	Vdc
SMALL-SIGNAL CHARACTERISTICS	•	4 757	a 1972 11	dalla a
Current-Gain — Bandwidth Product (I _C = 50 mA, V _{CE} = 20 Vdc, f = 100 MHz)	fT	200		MHz
Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{obo}	_	8.0	pF
SWITCHING CHARACTERISTICS			1014	7 10
Delay Time $(I_{B1} \approx I_{B2} \approx 15 \text{ mA},$	t _d	_	10	ns
Rise Time $V_{CC} = 30 \text{ V, I}_{C} = 150 \text{ mA}$	t _r	_	40	ns
Storage Time $(I_{B1} \approx I_{B2} \approx 15 \text{ mA},$	t _S	_	80	ns
Fall Time $V_{CC} = 30 \text{ V, I}_{C} = 150 \text{ mA}$	tf	_	30	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

BSS82C

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	60	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Symbol	Min	Max	Unit
		11,50.1	a Mac
V _(BR) CEO	60	101 = X	Vdc
V _(BR) CBO	60		Vdc
V _{(BR)EBO}	5.0	_	Vdc
ІСВО	=	10 10	nΑ μΑ
IEBO		10	nA
	100	0	
hFE	100	300	·—·
VCE(sat)	=	0.4 1.6	Vdc
fT	100	-	MHz
	V(BR)CEO V(BR)CBO V(BR)EBO ICBO IEBO hFE VCE(sat)	V(BR)CEO 60 V(BR)CBO 60 V(BR)EBO 5.0 ICBO ————————————————————————————————————	V(BR)CEO 60 — V(BR)CBO 60 — V(BR)EBO 5.0 — ICBO — 10 — 10 IEBO — 10 VCE(sat) — 0.4 — 1.6

BSV52

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	V _{CBO}	20	Vdc
Emitter-Base Voltage	VEBO	20	Vdc
Collector Current — Continuous	IC	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1 1911	11437
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc)	V(BR)CEO	12	_	Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, T_A = 125^{\circ}\text{C})$	ІСВО	=	100 5.0	nAdc μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc)	hFE	25 40 25	120	-
Collector-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 300$ μ Adc) ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 50$ mAdc, $I_B = 5.0$ mAdc)	VCE(sat)	=======================================	300 250 400	mVdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{BE} (sat)	700	850 1200	mVdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc)	f _T	400	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	4.0	pF
Input Capacitance (V _{EB} = 1.0 Vdc, I _C = 0)	C _{ibo}	-	4.5	pF
SWITCHING CHARACTERISTICS				
Storage Time $(I_C = I_B = I_{BM} = 10 \text{ mAdc})$	t _S	_	13	ns
Turn-On Time (V _{BE} = 1.5 Vdc, I_C = 10 mAdc, I_B = 3.0 mAdc)	ton	_	12	ns
Turn-Off Time (I _C = 10 mAdc, I _B = 3.0 mAdc)	toff	_	18	ns

BSX39

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	14	Vdc
Collector Current — Continuous	Ic	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C	
Storage Temperature	T _{stg}	150	°C	
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W	

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				N. E.	W 1 1 1 1
Collector-Emitter Breakdown Voltage (I _C = 2.0 mA)	Seed No. 1	V(BR)CEO	14	-	Vdc
Collector Cutoff Current (V _{CB} = 12 V)	eta gro	ІСВО	_	100	nA
Collector Cutoff Current ($V_{CE} = 12 \text{ V}$) ($V_{CE} = 12 \text{ V}, T_{J} = 125^{\circ}\text{C}$)	11 1000	CES	_	100 5.0	nA μA
ON CHARACTERISTICS	971665			***************************************	
DC Current Gain ($I_C = 1.0 \text{ mA}$, $V_{CE} = 1.0 \text{ V}$) ($I_C = 10 \text{ mA}$, $V_{CE} = 1.0 \text{ V}$) ($I_C = 50 \text{ mA}$, $V_{CE} = 1.0 \text{ V}$)	1. 14 mg/s 19. 14 mg/s	hFE	25 40 25	200	-
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$) ($I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$)	-×-	V _{CE(sat)}	=	250 400	mV
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$) ($I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$)		V _{BE(sat)}	700 —	850 1.2	mV V
SWITCHING CHARACTERISTICS					
Turn-On Time ($I_C = 10 \text{ mA}, I_B = 3.0 \text{ mA}$)		t _{on}	=	12	ns
Turn-Off Time $(I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 3.0 \text{ mA})$		t _{off}	_	18	ns

BZX84C

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

ZENER DIODES

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Voltage Range	VZ(nom)	4.7 to 33	Vdc

THERMAL CHARACTERISTICS

THE HUME OF PARTIES OF THE TIGO			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Chara	cteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Forward Voltage		VF	_	0.9	Vdc
(I _F = 10 mAdc)	BZX84 Series			19	
Reverse Voltage Leakage Current		IR			μAdc
$(V_R = 2.0 \text{ Vdc})$	BZX84-C4V7		_	3.0	
The second second	BZX84-C5V1			2.0	200
	BZX84-C5V6		_	1.0	
(V _R = 4.0 Vdc)	BZX84-C6V2		_	3.0	
	BZX84-C6V8		_	2.0	
(V _R = 5.0 Vdc)	BZX84-C7V5		_	1.0	
	BZX84-C8V2		_	0.7	
$(V_R = 6.0 \text{ Vdc})$	BZX84-C9V1		_	0.5	
$(V_R = 7.0 \text{ Vdc})$	BZX84-C10			0.2	
$(V_R = 8.0 \text{ Vdc})$	BZX84-C11, C12, C13		-	0.1	1
$(V_{R} = 0.70 V_{Z})$	BZX84-C15 to BZX84-C33		_	0.05	

ZENER VOLTAGE

		$V_{Z3}(V)$ Marking $I_{Z3}(mA)$ Min Max $Z_{ZT1}(\Omega)$				$\Delta V_Z/\Delta T(nV/k)$			
Device	Marking		Min	Max	$Z_{ZT1}(\Omega)$	$Z_{ZT2}(\Omega)$	Z _{ZT3} (Ω)	Min	Max
BZX84C4V7	Z1	20	4.4	5.1	80	500	15	-3.5	0.2
BZX84C5V1	Z2	20	4.8	5.5	60	480	15	-2.7	1.2
BZX84C5V6	Z3	20	5.2	6.3	40	400	10	-2.0	2.5
BZX84C6V2	Z4	20	5.8	6.8	10	150	6	0.4	3.7
BZX84C6V8	Z5	20	6.4	7.4	15	80	6	1.2	4.5
BZX84C7V5	Z6	20	7.0	8.0	15	80	6	2.5	5.3
BZX84C8V2	Z 7	20	7.7	8.8	15	80	6	3.2	6.2
BZX84C9V1	Z8	20	8.5	9.7	15	100	8	3.8	7.0
BZX84C10	Z9	20	9.4	10.7	20	150	10	4.5	8.0
BZX84C11	Y1	20	10.4	11.8	20	150	10	5.4	9.0
BZX84C12	Y2	20	11.4	12.9	25	150	10	6.0	10
BZX84C13	Y3	20	12.5	14.2	30	170	15	7.0	11
BZX84C15	Y4	20	13.9	15.7	30	200	20	9.2	13
BZX84C16	Y5	20	15.4	17.2	40	200	20	10.4	14
BZX84C18	Y6	20	16.9	19.2	45	225	20	12.4	16
BZX84C20	Y7	20	18.9	21.4	55	225	20	14.4	18
BZX84C22	Y8	20	20.9	23.4	55	250	25	16.4	20
BZX84C24	Y9	20	22.9	25.7	70	250	25	18.4	22
BZX84C27	Y10	10	25.2	29.3	80	300	45	21.4	25.3
BZX84C30	Y11	10	28.1	32.4	80	300	50	24.4	29.4
BZX84C33	Y12	10	31.1	35.4	80	325	55	27.4	33.4

			VZ	1(V)		VZ	2(V)
Device	Marking	IZ1(mA)	Min	Max	I _{Z1} (mA)	Min	Max
BZX84C4V7	Z1	5	4.4	5.0	1	3.7	4.7
BZX84C5V1	Z2	5	4.8	5.4	1	4.2	5.3
BZX84C5V6	Z3	5	5.2	6.0	1	4.8	6.0
BZX84C6V2	Z4	5	5.8	6.6	1	5.6	6.6
BZX84C6V8	Z5	5	6.4	7.2	1	6.3	7.2
BZX84C7V5	Z6	5	7.0	7.9	1	6.9	7.9
BZX84C8V2	Z7	5	7.7	8.7	1	7.6	8.7
BZX84C9V1	Z8	5	8.5	9.6	1	8.4	9.6
BZX84C10	Z9	5	9.4	10.6	1	9.3	10.6
BZX84C11	Y1	5	10.4	11.6	1	10.2	11.6
BZX84C12	Y2	5	11.4	12.7	1	11.2	12.7
BZX84C13	Y3	5	12.4	14.1	1	12.3	14
BZX84C15	Y4	5	13.8	15.6	1	13.7	15.5
BZX84C16	Y5	5	15.3	17.1	1	15.2	17
BZX84C18	Y6	5	16.8	19.1	1	16.7	19
BZX84C20	Y7	5	18.8	21.2	1	18.7	21.1
BZX84C22	Y8	5	20.8	23.3	1	20.7	23.2
BZX84C24	Y9	5	22.8	25.6	1	22.7	25.5
BZX84C27	Y10	2	25.1	28.9	0.5	25	28.9
BZX84C30	Y11	2	28	32	0.5	27.8	32
BZX84C33	Y12	2	31	35	0.5	30.8	35

MBAL99

CASE 318-02/03, STYLE 18 SOT-23 (TO-236AA/AB)

SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Continuous Reverse Voltage	VR	70	Vdc
Peak Forward Current	lF	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta}JA$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	1.01			100
Reverse Voltage Leakage Current $(V_R = 70 \text{ V})$ $(V_R = 25 \text{ V}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ V}, T_J = 150^{\circ}\text{C})$	IR	=======================================	2.5 30 50	μΑ
Reverse Breakdown Voltage (I _R = 100 μA)	V _(BR)	70	-	V
Forward Voltage (IF = 1.0 mA) (IF = 10 mA) (IF = 50 mA) (IF = 50 mA)	V _F		715 855 1100 1300	mV
Diode Capacitance (V _R = 0, f = 1.0 MHz)	CD	_	1.5	pF
Reverse Recovery Time (IF = IR = 10 mA, RL = 100 Ω , measured at IR = 1.0 mA)	t _{rr}		15	ns
Forward Recovery Voltage (I _F = 10 mA, t _r = 20 ns)	VFR	-	1.75	V

MAXIMOM NATINGO					
Rating	Symbol	Value	Unit		
Continuous Reverse Voltage	VR	75	VCC		
Peak Forward Current	I _F	200	mA		
Peak Forward Surge Current	IFM(surge)	500	mA		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MBAS16

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

SWITCHING DIODE

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			AWARE	1245434
Reverse Voltage Leakage Current (V _R = 75 V) (V _R = 75 V, T _J = 150°C) (V _R = 25 V, T _J = 150°C)	IR	Ξ	1.0 50 30	μΑ
Reverse Breakdown Voltage ($I_{BR} = 100 \ \mu A$)	V _(BR)	75	TIV TITS	V
Forward Voltage (F = 1.0 mA) (F = 10 mA) (F = 50 mA) (F = 100 mA)	V _F		715 855 1100 1300	mV
Diode Capacitance (V _R = 0, f = 1.0 MHz)	CD	_	2.0	pF
Forward Recovery Voltage (IF = 10 mA, $t_r = 20$ ns)	V _{FR}	_	1.75	V
Reverse Recovery Time (IF = IR = 10 mA, RL = 100 Ω)	t _{rr}		15	ns
Stored Charge (I _F = 10 mA to V_R = 5.0 V, R_L = 500 Ω)	QS	_	45	pC

MBAV70

CASE 318-02/03, STYLE 9 SOT-23 (TO-236AA/AB)

SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Forward Current	IF	200	mAdc
Peak Forward Surge Current	IFM(surge)	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			11111111	
Reverse Breakdown Voltage (I _(BR) = 100 µAdc)	V _(BR)	>70	 	Vdc
Reverse Voltage Leakage Current $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ Vdc})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	IR		60 5.0 100	μAdc
Diode Capacitance (V _R = 0, f = 1.0 MHz)	СТ	_	1.5	pF
Forward Voltage (IF = 1.0 mAdc) (IF = 10 mAdc) (IF = 50 mAdc) (IF = 100 mAdc)	V _F	=	715 855 1100 1300	mVdc
Reverse Recovery Time $(I_F = I_R = 10 \text{ mAdc}, V_R = 5.0 \text{ Vdc}, I_R(REC) = 1.0 \text{ mAdc}) \text{ (Figure 1)}$	t _{rr}	_	15	ns

FIGURE 1 — Recovery Time Equivalent Test Circuit

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA.

- 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
- 3. tp » trr

WAXINGW HATINGO				
Rating	Symbol	Value	Unit	
Reverse Voltage	VR	50	Vdc	
Forward Current	IF	200	mAdc	
Peak Forward Surge Current	IFM(surge)	500	mAdc	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MBAV74

CASE 318-02/03, STYLE 9 SOT-23 (TO-236AA/AB)

SWITCHING DIODE

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Reverse Breakdown Voltage (I _(BR) = 5.0 μAdc)	V _(BR)	50	\ <u> </u>	Vdc
Reverse Voltage Leakage Current (V _R = 50 Vdc, T _J = 125°C) (V _R = 50 Vdc)	IR	_	100 0.1	μAdc
Diode Capacitance (V _R = 0, f = 1.0 MHz)	СТ	2	2.0	pF
Forward Voltage (IF = 100 mAdc)	V _F	-	1.0	Vdc
Reverse Recovery Time $(I_F = I_R = 10 \text{ mAdc, } I_R(REC) = 1.0 \text{ mAdc, } measured at I_R = 1.0 \text{ mA, } R_L = 100 \Omega)$	t _{rr}	-	15	ns

MBAV99

CASE 318-02/03, STYLE 11 SOT-23 (TO-236AA/AB)

DUAL SERIES SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Forward Current	lF	100	mAdc
Peak Forward Surge Current	IFM(surge)	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			100110-01	Saltage P
Reverse Breakdown Voltage (I(BR) = 100 μ A)	V(BR)	70	2007 - - 200 2004 ₀	Vdc
Reverse Voltage Leakage Current $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ Vdc})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	l _R		30 2.5 50	μAdc
Diode Capacitance (V _R = 0, f = 1.0 MHz)	c _T	_	1.5	pF
Forward Voltage (IF = 1.0 mAdc) (IF = 10 mAdc) (IF = 50 mAdc) (IF = 100 mAdc)	V _F		715 855 1100 1300	mVdc
Reverse Recovery Time (IF = IR = 10 mAdc, i _{R(REC)} = 1.0 mAdc) (Figure 1)	t _{rr}	-	15	ns

FIGURE 1 — Recovery Time Equivalent Test Circuit

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (IF) of 10 mA.

- 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
- 3. tp " trr

Rating	Symbol	Value	Unit		
Reverse Voltage	VR	70	Vdc		
Forward Current	IF	200	mAdc		
Peak Forward Surge Current	IFM(surge)	200	mAdc		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MBAW56

CASE 318-02/03, STYLE 12 SOT-23 (TO-236AA/AB)

DUAL SWITCHING DIODE

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				pt
Reverse Breakdown Voltage (I _(BR) = 100 μAdc)	V(BR)	70		Vdc
Reverse Voltage Leakage Current $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ Vdc})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _R	=	30 2.5 50	μAdc
Diode Capacitance $(V_R = 0, f = 1.0 \text{ MHz})$	CT		2.5	pF
Forward Voltage (IF = 1.0 mAdc) (IF = 10 mAdc) (IF = 50 mAdc) (IF = 50 mAdc) (IF = 100 mAdc)	VF	=======================================	715 855 1100 1300	mVdc
Reverse Recovery Time (IF = IR = 10 mAdc, IR(REC) = 1.0 mAdc) (Figure 1)	t _{rr}	173	15	ns

FIGURE 1 — Recovery Time Equivalent Test Circuit

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (IF) of 10 mA.

2. Input pulse is adjusted so IR(peak) is equal to 10 mA.

3. tp » trr

MMBA811C5,6,7,8

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	50	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N5086 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc)		V(BR)CEO	45	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc)		V _(BR) CBO	50	-	Vdc
Emitter-Base Breakdown Voltage (I _C = 10 µAdc)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc)		Ісво	(-)	50	nAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc)		IEBO	1	50	nAdc
ON CHARACTERISTICS				,	
DC Current Gain $ \begin{aligned} &(I_C=0.1 \text{ mAdc, V}_{CE}=3.0 \text{ Vdc}) \\ &(I_C=0.5 \text{ mAdc, V}_{CE}=3.0 \text{ Vdc}) \\ &(\text{For Reference Only}) \\ &(I_C=0.5 \text{ mAdc, V}_{CE}=3.0 \text{ Vdc}) \end{aligned} $	MMBA811C5 MMBA811C6 MMBA811C7 MMBA811C8	hFE	150 135 — 135 200 300 450	900 270 400 600 900	_
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		VCE(sat)	_	0.3	Vdc
Base-Emitter On Voltage ($I_C = 0.5 \text{ mAdc}$, $V_{CE} = 3.0 \text{ Vdc}$)		V _{BE(on)}	0.5	0.65	Vdc
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 1.0 mAdc, V _{CE} = 6.0 Vdc, f = 100 MHz)		fT	75	_	MHz

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	100	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBA812M3,4,5,6,7

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N5086 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)		ICBO	_	0.1	μAdc
Emitter Cutoff Current $(VEB = 5.0 \text{ Vdc}, I_C = 0)$		IEBO	_	0.1	μAdc
ON CHARACTERISTICS					7
DC Current Gain ($V_{CE}=6.0~Vdc,~I_{C}=1.0~mAdc$)	MMBA812M3 MMBA812M4 MMBA812M5 MMBA812M6 MMBA812M7	hFE	60 90 135 200 300	120 180 270 400 600	_
Collector-Emitter Saturation Voltage (I _C = 30 mAdc, I _B = 3.0 mAdc)		V _{CE(sat)}	_	0.5	Vdc
Base-Emitter On Voltage (V _{CE} = 6.0 Vdc, I _C = 1.0 mAdc)		V _{BE(on)}	_	0.8	Vdc

MMBC1009F1 thru MMBC1009F5

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

AM/FM RF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	50	mAdo

THERMAL CHARACTERISTICS

THERMAL GRANAGIERIO 1100					
Characteristic	Symbol	Max	Unit		
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C		
Storage Temperature	T _{stg}	150	°C		
*Thermal Resistance Junction to Ambient	$R_{\theta}JA$	357	°C/W		

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						The A
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)		ICBO	=	-	0.1	μAdc
ON CHARACTERISTICS					7 - 1 - 1 - 1	W. 100
DC Current Gain ($I_C = 0.5 \text{ mAdc}$, $V_{CE} = 3.0 \text{ Vdc}$)	MMBC1009F1 MMBC1009F2 MMBC1009F3 MMBC1009F4 MMBC1009F5	hFE	30 40 60 90 135		60 80 120 180 270	30 h
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		VCE(sat)	_	_	0.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				, Arriva	R' + T	
Current-Gain — Bandwidth Product (I _C = 1.0 mAdc, V _{CE} = 6.0 Vdc, f = 100 MHz)		fT	150	_	66 GH	MHz
Output Capacitance (V _{CB} = 6.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	2.0	_	pF
Noise Figure (I _C = 0.5 mAdc, V_{CE} = 6.0 Vdc, f = 1.0 MHz, R	$G = 500 \Omega$	NF		2.5	_	dB

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	lc	10	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

MMBC1321Q2 thru MMBC1321Q5

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

VHF/RF AMPLIFIER TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			4.81	deal	1
Collector Cutoff Current (V _{CB} = 25 Vdc, I _E = 0)	СВО	-	- = -	0.1	μAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0)	IEBO	_	- -	0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 6.0 Vdc) MMBC132 MMBC132 MMBC132 MMBC132	1Q3 1Q4	40 60 90 135		80 120 180 270	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	_		0.6	Vdc
SMALL-SIGNAL CHARACTERISTICS					5 ID 5
Current-Gain — Bandwidth Product ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fτ	600	100	2 -	MHz
Output Capacitance (V _{CB} = 6.0 Vdc, I _E = 0, f = 100 MHz)	C _{obo}	_	1.3	1.8	pF
Noise Figure (V _{CE} = 6.0 Vdc, I_E = 2.0 mAdc, f = 900 MHz, R_G = 50 Ω)	NF	_	5.0	-	dB

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBC1621B2,3,4

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	200	mAdc

THERMAL CHARACTERISTICS

THE TIME OF A TANK OF ETHO TOO			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				2 Tuesday	ALTO 470
Collector-Emitter Breakdown Voltage (I _C = 100 μA)		V _(BR) CES	20	I BV &	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μ A)		V _(BR) CBO	25	7 2464	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µA)		V _{(BR)EBO}	5.0	160	Vdc
Collector Cutoff Current (V _{CB} = 15 V)		СВО	_	100	nA
Emitter Cutoff Current (V _{EB} = 4.0 V)		IEBO		100	nA
ON CHARACTERISTICS			garage	gr prike	11 - 3'
$(I_C = 1.0 \text{ mA}, V_{CE} = 0.5 \text{ V})$	MMBC1621B2 MMBC1621B3 MMBC1621B4	hFE	40 60 90	80 120 180	E-UMP District L. M.
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA)		VCE(sat)	4.7	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA)		V _{BE(sat)}	200	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mA, V _{CE} = 10 V, f = 100 MHz)		fT	200	-	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)		C _{obo}	_	5.0	pF
SWITCHING CHARACTERISTICS	_				
Storage Time $(I_C = I_{B1} = I_{B2} = 10 \text{ mA})$ (Figure 1)		t _S	_	20	ns
Turn-On Time ($I_C = 10$ mA, $I_{B1} = 3.0$ mA, $V_{OB} = 1.5$ V)		ton	_	20	ns
Turn-Off Time ($I_C = 10 \text{ mA}$, $I_{B1} = 3.0 \text{ mA}$, $I_{B2} = 1.5 \text{ mA}$)		^t off	_	40	ns

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	35	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBC1622D6,7,8

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPS3904 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					-74-73
Collector Cutoff Current (V _{CB} = 25 Vdc, I _E = 0)		ІСВО	-	50	nAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		IEBO	_	50	nAdc
ON CHARACTERISTICS					1-10-40
DC Current Gain $ (\text{VCE} = 3.0 \text{ Vdc, I}_{\text{C}} = 0.1 \text{ mAdc}) $ $ (\text{VCE} = 3.0 \text{ Vdc, I}_{\text{C}} = 0.5 \text{ mAdc}) $	All MMBC1622D6 MMBC1622D7 MMBC1622D8	hFE	150 200 300 450	400 600 900	
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)		V _{CE(sat)}	_	0.3	Vdc
Base-Emitter On Voltage $(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 0.5 \text{ mAdc})$. — –	V _{BE(on)}	0.55	0.65	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (V _{CE} = 6.0 Vdc, I _E = 1.0 mAdc, f = 100 Mhz)		fT	100	_	MHz

MMBC1623L3,4,5,6,7

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	50	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	Ic	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPS3904 for graphs.

Characteris	tic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				ACT IN TO	TAND 110
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)		ICBO	-	100	nAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		IEBO		100	nAdc
ON CHARACTERISTICS				SOFT AT LESS TOP	ex-10 ITC
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$)	MMBC1623L3 MMBC1623L4 MMBC1623L5 MMBC1623L6 MMBC1623L7	hFE	60 90 135 200 300	120 180 270 400 600	10V - 10V
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)		V _{CE(sat)}	11 m	0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 100 mA, I _B = 10 mAdc)		V _{BE(sat)}	- 11 - 17 - 11 - 12 - 13 - 13 - 13 - 13 - 13 - 13	1.0	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 6.0 Vdc)		V _{BE} (on)	.60	0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (VCE = 6.0 Vdc, I _E = 10 mAdc, f = 100 MHz	z)	fT	200	_	MHz

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	130	Vdc
Collector-Base Voltage	V _{CBO}	150	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	Ic	50	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBC1653N2,3,4

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						1
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0)	- 1 1	ІСВО	-	_	0.1	μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, I _C = 0)		IEBO	<u> </u>	1—1	0.1	μAdc
ON CHARACTERISTICS		1 11	3			
DC Current Gain $(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 15 \text{ mAdc})$	MMBC1653N2 MMBC1653N3 MMBC1653N4	hFE	50 100 150	30 <u>-</u>	130 220 330	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		VCE(sat)	-	in TE	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{BE(sat)}		20x14	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	1 14 14					- ×-
Current-Gain — Bandwidth Product (VCE = 10 Vdc, I _F = 10 mAdc, f = 100 MHz)		fτ	-	150	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	4.5		pF

MMBC1654N5,6,7

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	160	Vdc
Collector-Base Voltage	VCBO	180	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	Ic	50	mAdc

THERMAL CHARACTERISTICS

THE THE STATE OF T					
Characteristic	Symbol	Max	Unit		
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C		
Storage Temperature	T _{stg}	150	°C		
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W		

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector Cutoff Current (V _{CB} = 100 V, I _E = 0)	ICBO	_	_	0.1	μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, C = 0)	IEBO		-	0.1	μAdc
ON CHARACTERISTICS	100				
DC Current Gain (V _{CE} = 3.0 V, I _C = 15 mAdc) MMBC1654N5 MMBC1654N6 MMBC1654N7	hFE	50 100 150	_	130 220 330	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_		0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	-	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				•	•
Current-Gain — Bandwidth Product (V _{CE} = 10 Vdc, I _F = 10 mAdc, f = 100 MHz)	fT	-	150	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	4.5	-	pF

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

HOT-CARRIER UHF MIXER DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	4.0	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·			have se	100
Reverse Breakdown Voltage (I _R = 10 µAdc)	V _(BR)	4.0	_	-,	Vdc
Reverse Voltage Leakage Current (V _R = 3.0 Vdc)	IR	=	-	0.25	μAdc
Series Inductance (f = 250 MHz)	LS		6.0	_	nH
Case Capacitance (f = 1.0 MHz)	cc	_	0.18		pF
Diode Capacitance (V _R = 0, f = 1.0 MHz)	C _T	_	-	1.0	pF
Forward Voltage (I _F = 10 mAdc)	V _F	_	-	0.60	Vdc
Noise Figure (f = 1.0 GHz)	NF	_	-	7.0	dB

CASE 318-02/03 STYLE 11 SOT-23 (TO-236AA/AB)

DUAL HOT CARRIER MIXER DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Continuous Reverse Voltage	VR	4	Vcc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			en elem	CIAHO N
Forward Voltage (I _F = 10 mA)	VF	-	0.60	V
Reverse Voltage Leakage Current (V _R = 3.0 V) (V _R = 4.0 V)	l _R	15.APQ.D	0.25 10	μΑ
Capacitance (V _R = 0 V, f = 1.0 MHz)	С	_	1.0	pF

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

HOT-CARRIER DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	50	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			C 33 010	4110
Reverse Breakdown Voltage (I _R = 10 µAdc)	V(BR)	50	-		Vdc
Reverse Voltage Leakage Current (V _R = 25 Vdc)	l _R	_		200	μAdc
Diode Capacitance (V _R = 20 Vdc, f = 1.0 MHz)	СT	_		1.0	pF
Forward Voltage (I _F = 10 mAdc)	V _F	_=_	-	1.2	Vdc

MMBD914X

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

HIGH-SPEED SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Forward Current	lF	200	mAdo
Peak Forward Surge Current	IFM(surge)	500	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			4 T. T.	161 B 16
Reverse Breakdown Voltage (I _R = 100 µAdc)	V _(BR)	100	-	Vdc
Reverse Voltage Leakage Current (V _R = 20 Vdc) (V _R = 75 Vdc)	I _R	=	25 5.0	nAdc μAdc
Diode Capacitance (V _R = 0 Vdc, f = 1.0 MHz)	CT	_	4.0	pF
Forward Voltage (I _F = 10 mAdc)	V _F	_	1.0	Vdc
Reverse Recovery Time (IF = IR = 10 mAdc) (Figure 1)	t _{rr}	2	15	ns

FIGURE 1 — Recovery Time Equivalent Test Circuit

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (IF) of 10 mA.

- 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
- 3. tp » trr

MMBD2835X36X

CASE 318-02/03, STYLE 12 SOT-23 (TO-236AA/AB)

DUAL SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Forward Current	IF.	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Reverse Breakdown Voltage (IR = 100 μ Adc)	MMBD2835X MMBD2836X	V(BR)	35 75	=	Vdc
Reverse Voltage Leakage Current (V _R = 30 Vdc) (V _R = 50 Vdc)	MMBD2835X MMBD2836X	l _R	_	100 100	nAdc
Diode Capacitance (V _R = 0, f = 1.0 MHz)		СT	_	4.0	pF
Forward Voltage (I _F = 10 mAdc) (I _F = 50 mAdc) (I _F = 100 mAdc)		VF	=	1.0 1.0 1.2	Vdc
Reverse Recovery Time $(I_F = I_R = 10 \text{ mAdc}, I_{R(REC)} = 1.0 \text{ mAdc})$ (Figure 1)		t _{rr}	_	15	ns

FIGURE 1 — Recovery Time Equivalent Test Circuit

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (IF) of 10 mA.

- 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
- 3. tp » trr

MMBD2837X MMBD2838X

CASE 318-02/03, STYLE 9 SOT-23 (TO-236AA/AB)

DUAL SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Reverse Voltage	V _{RM}	75	Vdc
D.C. Reverse Voltage MMBD2837 MMBD2838	VR	30 50	Vdc
Peak Forward Current	^I FM	450 300	mAdo
Average Rectified Current	lo	150 100	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				BOLT PURETON	uto di
Reverse Breakdown Voltage (I_{BR}) = 100 μ Adc)	MMBD2837X MMBD2838X	V _(BR)	35 75	¥ <u>=</u> 2 :	Vdc
Reverse Voltage Leakage Current (V _R = 30 Vdc) (V _R = 50 Vdc)	MMBD2837X MMBD2838X	IR	=	0.1 0.1	μAdc
Diode Capacitance (V _R = 0, f = 1.0 MHz)		CT	_	4.0	pF
Forward Voltage (I _F = 10 mAdc) (I _F = 50 mAdc) (I _F = 100 mAdc)		V _F	=	1.0 1.0 1.2	Vdc
Reverse Recovery Time $(I_F = I_R = 10 \text{ mAdc}, I_{R(REC)} = 1.0 \text{ mAdc})$ (Figure 1)		t _{rr}	_	15	ns

FIGURE 1 — Recovery Time Equivalent Test Circuit

- Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA.
 - 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
 - 3. tp » trr

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Forward Current	1 _F	200	mAdc
Peak Forward Surge Current	IFM(surge)	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBD6050X

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

SWITCHING DIODE

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			EUR BRITO	OFF CHARA
Reverse Breakdown Voltage (I _(BR) = 100 µAdc)	V(BR)	70	yerser <u>—</u> Jack Bachar (C	Vdc
Reverse Voltage Leakage Current (V _R = 50 Vdc)	IR	124	0.1	μAdc
Forward Voltage (I _F = 1.0 mAdc) (I _F = 100 mAdc)	V _F	0.55 0.85	0.7	Vdc
Reverse Recovery Time $(I_F = I_R = 10 \text{ mAdc}, I_{REC}) = 1.0 \text{ mAdc})$ (Figure 1)	t _{rr}	6 × m	15	ns
Capacitance (V _R = 0)	С	_	2.5	pF

FIGURE 1 — Recovery Time Equivalent Test Circuit

- Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA.
 - 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
 - 3. tp » trr

CASE 318-02/03, STYLE 9 SOT-23 (TO-236AA/AB)

DUAL SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	70	Vdc
Forward Current	l _F	200	mAdc
Peak Forward Surge Current	IFM(surge)	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				SHE Y
Reverse Breakdown Voltage (I _(BR) = 100 μAdc)	V(BR)	70	-00	Vdc
Reverse Voltage Leakage Current (V _R = 50 Vdc)	IR	_	0.1	μAdc
Forward Voltage (IF = 1.0 mAdc) (IF = 100 mAdc)	VF	0.55 0.85	0.7 1.1	Vdc
Reverse Recovery Time (IF = IR = 10 mAdc, IR(REC) = 1.0 mAdc) (Figure 1)	t _{rr}	_	15	ns
Capacitance (V _R = 0)	С	_	2.5	pF

FIGURE 1 — Recovery Time Equivalent Test Circuit

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA.

- 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
- 3. tp » trr

CASE 318-02/03, STYLE 11 SOT-23 (TO-236AA/AB)

DUAL SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	100	Vdc
Forward Current	1F	200	mAdc
Peak Forward Surge Current	IFM(surge)	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Reverse Breakdown Voltage (I _(BR) = 100 μAdc)	V _(BR)	100	-	Vdc
Reverse Voltage Leakage Current (V _R = 50 Vdc) (V _R = 100 Vdc) (V _R = 50 Vdc, 125°C)	R R2 R3	=	0.30 0.5 100	μAdc
Forward Voltage (I _F = 1.0 mAdc) (I _F = 10 mAdc) (I _F = 100 mAdc)	V _F	0.55 0.67 0.75	0.7 0.82 1.1	Vdc
Reverse Recovery Time (I _F = I _R = 10 mAdc) (Figure 1)	t _{rr}	-	15	ns
Capacitance (V _R = 0)	С	-	1.5	pF

FIGURE 1 — Recovery Time Equivalent Test Circuit

Notes: 1. A 2.0 kΩ variable resistor adjusted for a Forward Current (I_F) of 10 mA.

- 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
- 3. tp » trr

MMBF4391 thru MMBF4393

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

JFET SWITCHING TRANSISTOR

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Forward Gate Current	lG(f)	50	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				8711786.1134	MIANO IN
Gate-Source Breakdown Voltage (I _G = 1.0 µAdc, V _{DS} = 0)		V _(BR) GSS	30	Han I - mari	Vdc
Gate Reverse Current (VGS = 15 Vdc, VDS = 0, TA = 25°C) (VGS = 15 Vdc, VDS = 0, TA = 100°C)		IGSS	=	1.0 0.20	nAdc μAdc
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ nAdc})$	MMBF4391 MMBF4392 MMBF4393	VGS(off)	4.0 2.0 0.5	10 5.0 3.0	Vdc
ON CHARACTERISTICS	and the second second				0.00
Zero-Gate-Voltage Drain $(V_{DS} = 15 \text{ V}, V_{GS} = 0)$	MMBF4391 MMBF4392 MMBF4393	IDSS	50 25 5.0	150 75 30	mAdc
		ID	_	1.0 1.0	nAdc μAdc
Drain-Source On-Voltage (I _D = 12 mAdc, V _{GS} = 0) (I _D = 6.0 mAdc, V _{GS} = 0) (I _D = 3.0 mAdc, V _{GS} = 0)	MMBF4391 MMBF4392 MMBF4393	V _{DS(on)}	=	0.4 0.4 0.4	Vdc
Static Drain-Source On Resistance (ID = 1.0 mAdc, VGS = 0)	MMBF4391 MMBF4392 MMBF4393	rDS(on)		30 60 100	Ohms
SMALL-SIGNAL CHARACTERISTICS					
Input Capacitance (VDS = 15 Vdc, VGS = 0, f = 1.0 MHz)		C _{iss}	_	14	pF
Reverse Transfer Capacitance (V _{DS} = 0, V _{GS} = 12 Vdc, f = 1.0 MHz)	/	C _{rss}	-	3.5	pF

INDIANION IDAINIO			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Gate Current	IG	10	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBF4416

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET VHF/UHF AMPLIFIER TRANSISTOR

N-CHANNEL

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate-Source Breakdown Voltage ($I_G = 1.0 \mu Adc$, $V_{DS} = 0$)	V _(BR) GSS	30		Vdc
Gate Reverse Current (VGS = 20 Vdc, VDS = 0) (VGS = 20 Vdc, VDS = 0, T_A = 150°C)	IGSS	=	1.0 200	nAdc nAdc
Gate Source Cutoff Voltage (I _D = 1.0 nAdc, V _{DS} = 15 Vdc)	VGS(off)	_	6.0	Vdc
Gate Source Voltage (I _D = 0.5 mAdc, V _{DS} = 15 Vdc)	V _{GS}	1.0	5.5	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain (VGS = 15 Vdc, VGS = 0)	IDSS	5.0	15	mAdc
Gate-Source Forward Voltage (I _G = 1.0 mAdc, V _{DS} = 0)	V _{GS(f)}		1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	Y _{fs}	4500	7500	μmhos
Output Admittance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	Yos	_ 10	50	μmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{iss}	_	4.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	0.8	pF
Output Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{oss}	_	2.0	pF
FUNCTIONAL CHARACTERISTICS				
Noise Figure (VDS = 15 Vdc, ID = 5.0 mAdc, Rg \approx 1000 Ω , f = 100 MHz) (VDS = 15 Vdc, ID = 5.0 mAdc, Rg \approx 1000 Ω , f = 400 MHz)	NF	_	2.0 4.0	dB
Common Source Power Gain $(V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 100 \text{ MHz})$ $(V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 400 \text{ MHz})$	G _{ps}	18 10	=	dB

MMBF4860

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET SWITCHING TRANSISTOR

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Reverse Gate-Source Voltage	V _{GS(r)}	30	Vdc
Forward Gate Current	I _{G(f)}	50	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta}JA$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			0.15	0.64
Gate-Source Breakdown Voltage (I _G = 1.0 µAdc, V _{DS} = 0)	V(BR)GSS	30		Vdc
Gate Reverse Current $(V_{GS} = 15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = 15 \text{ Vdc}, V_{DS} = 0, T_{A} = 150^{\circ}\text{C})$	IGSS		0.5 2.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 0.5 nAdc)	VGS(off)	2.0	6.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain(1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	IDSS	20	100	mAdc
Drain Cutoff Current $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 10 \text{ Vdc})$ $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 10 \text{ Vdc}, T_{A} = 150^{\circ}\text{C})$	ID(off)	= .	0.25 0.5	nAdc μAdc
Drain-Source On-Voltage (I _D = 10 mAdc, V _{GS} = 0)	V _{DS(on)}	- 15 (37)	0.5	Vdc
Static Drain-Source On Resistance (VGS = 0, I _D = 0, f = 1.0 kHz)	rDS(on)	_	40	Ohms
Input Capacitance (Vps = 0, Vgs = 10 Vdc, f = 1.0 MHz)	C _{iss}	_	18	pF
Reverse Transfer Capacitance (V _{DS} = 0, V _{GS} = 10 Vdc, f = 1.0 MHz)	C _{rss}	_	8.0	pF
SWITCHING CHARACTERISTICS				. L
Delay Time $(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 20 \text{ mAdc})$ $(V_{G(on)} = 0, V_{GS(off)} = 10 \text{ Vdc})$	t _d	-	6.0	ns
Rise Time $(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 10 \text{ mAdc})$ $(V_{GS(on)} = 0, V_{GS(off)} = 6.0 \text{ Vdc})$ (Figure 1)	t _r	_	4.0	ns
Turn-Off Time $(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 5.0 \text{ mAdc})$ $(V_{GS(on)} = 0, V_{GS(off)} = 4.0 \text{ Vdc})$ (Figure 1)	^t off	_	50	ns

⁽¹⁾ Pulse Test: Pulse Width = 100 ms, Duty Cycle ≤ 10%.

FIGURE 1 — SWITCHING TIMES TEST CIRCUIT

NOTES: 1. The input waveforms are supplied by a generator with the following characteristics: $Z_{OUI} = 50$ ohms, Duty Cycle $\approx 2.0\%$

 Z_{Out} = 50 ohms, Duty Cycle ≈ 2.0%
 Waveforms are monitored on an oscilloscope with the following characteristics: t_r ≤ 0.75 ns, R_{in} ≥ 1.0 megohm, C_{in} ≤ 2.5 pF.

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET GENERAL PURPOSE TRANSISTOR

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	V _{GS(r)}	25	Vdc
Gate Current	IG	10	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)	V(BR)GSS	25	_	_	Vdc
Gate Reverse Current $(V_{GS}=15\ Vdc,V_{DS}=0)$ $(V_{GS}=15\ Vdc,V_{DS}=0,T_{A}=100^{\circ}C)$	IGSS	_	_	1.0 200	nAdc
Gate Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ nAdc}$)	V _{GS(off)}	0.5	_	6.0	Vdc
Gate Source Voltage (VDS = 15 Vdc, ID = 100 μ Adc)	V _G s	_	2.5	-	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain(1) (V _{DS} = 15 Vdc, V _{GS} = 0)	IDSS	1.0	_	5.0	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance(1) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	Y _{fs}	1000	_	5000	μmhos
Reverse Transfer Admittance ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz}$)	Yrs	_	10	50	μmhos
Input Capacitance (VDS = 15 Vdc, VGS = 0, f = 1.0 MHz)	C _{iss}	_	4.5	7.0	pF
Reverse Transfer Capacitance ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{rss}	_	1.5	3.0	pF

⁽¹⁾ Pulse test: Pulse Width ≤ 630 ms; Duty Cycle ≤ 10%.

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET TRANSISTOR

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	V _{GS(r)}	- 25	Vdc
Gate Current	IG	10	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				JANE TO
Gate-Source Breakdown Voltage ($I_G = -10 \mu A$, $V_{DS} = 0$)	V _(BR) GSS	25	25 - 10 - 1	Vdc
Gate 1 Leakage Current (V _{GS} = -15 V, V _{DS} = 0)	I _{G1SS}		1.0	nA
Gate 2 Leakage Current $(V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$	I _{G2SS}	0	200	nA
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ V}, I_D = 10 \text{ nA})$	V _{GS(off)}	2.0	8.0	Vdc
ON CHARACTERISTICS			J 1470	123
Zero-Gate-Voltage Drain (V _{DS} = 15 V, V _{GS} = 0)	IDSS	4.0	16	mA
SMALL-SIGNAL CHARACTERISTICS		10	LV TI	- 111111
Forward Transfer Admittance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz)	Yfs	2000	6000	μmhos
Output Admittance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz)	Yos		50	μmhos
Input Capacitance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	- ,0	7.0	pF
Reverse Transfer Capacitance (VDS = 15 V, VGS = 0, f = 1.0 MHz)	C _{rss}	-	3.0	pF

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET GENERAL PURPOSE TRANSISTOR

P-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	40	Vdc
Reverse Gate-Source Voltage	VGSR	40	Vdc
Forward Gate Current	IGF	10	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta}JA$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			140	12mg line	16-1-180
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)	V(BR)GSS	40	_		Vdc
Gate Reverse Current $(V_{GS}=20\ Vdc,V_{DS}=0)$ $(V_{GS}=20\ Vdc,V_{DS}=0,T_{A}=100^{\circ}C)$	Igss	_	=	5.0 1.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 1.0 µAdc)	V _{GS} (off)	0.75	11-	6.0	Vdc
Gate Source Voltage (V _{DS} = 15 Vdc, I _D = 0.1 mAdc)	VGS	0.5		4.0	Vdc
ON CHARACTERISTICS				1000	100-17-3
Zero-Gate-Voltage Drain (V _{DS} = 15 Vdc, V _{GS} = 0)	IDSS	1.0	7977 30	5.0	mAdc
SMALL-SIGNAL CHARACTERISTICS					i mana
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	Y _{fs}	1000	_	4000	μmhos
Output Admittance ($V_{DS} = 15 \text{ Vdc}$, $V_{GS} = 0$, $f = 1.0 \text{ kHz}$)	Yos	_	_	75	μmhos
Input Capacitance (VDS = 15 Vdc, VGS = 0, f = 1.0 MHz)	C _{iss}	_	5.0	7.0	pF
Reverse Transfer Capacitance ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{rss}	_	1.0	2.0	pF
Equivalent Short-Circuit Input Noise Voltage (VDS = 15 Vdc, VGS = 0, RG = 1.0 M Ω , f = 100 Hz, BW = 1.0 Hz)	ē _n	_	20	_	nV/√Hz

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	V _{GS(r)}	25	Vdc
Forward Gate Current	IG(f)	10	mA
Continuous Device Dissipation at or Below T _C = 25°C Linear Derating Factor	PD	200 2.80	mW mW/°C
Storage Channel Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBF5484

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET TRANSISTOR

N-CHANNEL

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate-Source Breakdown Voltage ($I_G = -1.0 \mu A, V_{DS} = 0$)	V(BR)GSS	- 25		Vdc
Gate Reverse Current $(V_{GS} = -20 \text{ V}, V_{DS} = 0)$ $(V_{GS} = -20 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$	IGSS	_	-1.0 -0.2	nA μA
Gate Source Cutoff Voltage (V _{DS} = 15 V, I _D = 10 nA)	V _{GS(off)}	-0.3	-3.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain (V _{DS} = 15 V, V _{GS} = 0)	IDSS	1.0	5.0	mAdc
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz)	Y _{fs}	3000	6000	μmhos
Output Admittance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz)	y _{os}	_	50	μmhos
Input Capacitance ($V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{iss}	-	5.0	pF
Reverse Transfer Capacitance (Vps = 15 V, Vgs = 0, f = 1.0 MHz)	C _{rss}	_	1.0	pF
Output Capacitance (Vps = 15 V, Vgs = 0, f = 1.0 MHz)	C _{oss}	_	2.0	pF
FUNCTIONAL CHARACTERISTICS				
Noise Figure (V _{DS} = 15 V, I _D = 1.0 mA, YG' = 1.0 mmhos) (R _G = 1.0 k Ω , f = 100 MHz) (V _{DS} = 15 V, V _{GS} = 0, YG' = 1.0 μ mho)	NF	_	3.0	dB
$(R_G = 1.0 \text{ M}\Omega, f = 1.0 \text{ kHz})$		_	2.5	
Common Source Power Gain (V _{DS} = 15 Vdc, I _D = 1.0 mAdc, f = 100 MHz)	G _{ps}	16	25	dB

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET TRANSISTOR

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	V _{GS(r)}	25	Vdc
Forward Gate Current	lG(f)	10	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta}JA$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	Tayon by India			
Gate-Source Breakdown Voltage $(V_{DS} = 0, I_{G} = -1.0 \mu A)$	V _(BR) GSS	- 25	Peril Sept 2	Vdc
Gate 1 Leakage Current (VGS = -20 V, VDS = 0)	lG1SS	_	-1.0	nA
Gate 2 Leakage Current $(V_{GS} = -20 \text{ V}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$	I _{G2SS}	_	-0.2	μΑ
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ V}, I_D = 10 \text{ nA})$	VGS(off)	-2.0	-6.0	Vdc
ON CHARACTERISTICS			NAME OF THE OWNER, OWNE	in the state in
Zero-Gate-Voltage Drain (VGS = 0, VDS = 15 V)	IDSS	8.0	20	mA
SMALL-SIGNAL CHARACTERISTICS		- unit	A TATE OF THE	100
Forward Transfer Admittance (VGS = 0, VDS = 15 V, f = 1.0 kHz)	Yfs	4000	8000	μmhos
Input Admittance (VGS = 0, VDS = 15 V, f = 400 MHz)	Re(yis)		1000	μmhos
Output Admittance $(V_{GS} = 0, V_{DS} = 15 \text{ V}, f = 1.0 \text{ kHz})$	Yos		75	μmhos
Output Conductance $(V_{GS} = 0, V_{DS} = 15 \text{ V}, f = 400 \text{ MHz})$	Re(yos)		100	μmhos
Forward Transconductance (V _{GS} = 0, V _{DS} = 15 V, f = 400 MHz)	Re(yfs)	3500	(2.C.T.)	μmhos
Input Capacitance $(V_{GS}=0, V_{DS}=15 \text{ V}, f=1.0 \text{ MHz})$	C _{iss}	_	5.0	pF
Reverse Transfer Capacitance $(V_{GS} = 0, V_{DS} = 15 \text{ V}, f = 1.0 \text{ MHz})$	C _{rss}		1.0	pF
Output Capacitance ($V_{GS} = 0$, $V_{DS} = 15 \text{ V}$, $f = 1.0 \text{ MHz}$)	C _{oss}	_	2.0	pF
FUNCTIONAL CHARACTERISTICS	1.30%			25.0
Noise Figure (VDS = 15 V, ID = 4.0 mA, f = 100 MHz, YG = 1.0 μ mhos) (VDS = 15 V, ID = 4.0 mA, RG = 1.0 μ M, f = 400 MHz, YG = 1.0 μ mhos) (VGS = 0, VDS = 15 V, RG = 1.0 m Ω , f = 1.0 kHz, YG = 1.0 μ mhos)	NF	=	2.0 4.0 2.5	dB
Common Source Power Gain (V _{DS} = 15 V, I _D = 4.0 mA, f = 100 MHz) (V _{DS} = 15 V, I _D = 4.0 mA, f = 400 MHz)	G _{ps}	18 10	30 20	dB

MMBFJ310

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET VHF/UHF AMPLIFIER TRANSISTOR

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	25	Vdc
Gate Current	IG	10	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage ($I_G = -1.0 \mu Adc$, $V_{DS} = 0$)	V _(BR) GSS	- 25	_	-	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ V})$ $(V_{GS} = -15 \text{ V}, T_{A} = 125^{\circ}\text{C})$	IGSS	=	-	-1.0 -1.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 10 Vdc, I _D = 1.0 nAdc)	V _{GS(off)}	-2.0	_	-6.5	Vdc
ON CHARACTERISTICS			in the second		
Zero-Gate-Voltage Drain (V _{DS} = 10 Vdc, V _{GS} = 0)	IDSS	24	_	60	mAdc
Gate-Source Forward Voltage (I _G = 1.0 mAdc, V _{DS} = 0)	V _{GS(f)}	_	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				714 60	761
Forward Transfer Admittance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)	Y _{fs}	8.0	17710	18	mmhos
Output Admittance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)	Yos	_	-	200	μmhos
Input Capacitance (VGS = -10 Vdc, VDS = 0 Vdc, f = 1.0 MHz)	C _{iss}	-		5.0	pF
Reverse Transfer Capacitance (VGS = -10 Vdc, VDS = 0 Vdc, f = 1.0 MHz)	C _{rss}	-	-	2.5	pF
Equivalent Short-Circuit Input Noise Voltage (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 Hz)	ēn	11/2	10	_ =	nV/√Hz

MMBFU310

CASE 318-02/03, STYLE 10 SOT-23 (TO-236AA/AB)

FET TRANSISTOR

N-CHANNEL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	25	Vdc
Gate Current	IG	10	mAdc

THERMAL CHARACTERISTICS

THE THE CHARLEST CONTROLLED			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1 - 11	Mark to be
Gate-Source Breakdown Voltage ($I_G = -1.0 \mu A$, $V_{DS} = 0$)	V(BR)GSS	- 25		Vdc
Gate 1 Leakage Current $(V_{GS} = -15 \text{ V}, V_{DS} = 0)$	I _{G1SS}	_	- 150	pA
Gate 2 Leakage Current (VGS = -15 V, VDS = 0, TA = 125 °C)	I _{G2SS}	_	- 150	nA
Gate Source Cutoff Voltage $(V_{DS} = 10 \text{ V, I}_D = 1.0 \text{ nA})$	VGS(off)	- 2.5	-6.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain $(V_{DS} = 10 \text{ V, } V_{GS} = 0)$	IDSS	24	60	mA
Gate-Source Forward Voltage (I _G = 10 mA, V _{DS} = 0)	V _{GS(f)}	70,000	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance $(V_{DS} = 10 \text{ V, } I_D = 10 \text{ mA, } f = 1.0 \text{ kHz})$	Y _{fs}	10	18	mmhos
Output Admittance $(V_{DS} = 10 \text{ V, I}_{D} = 10 \text{ mA, f} = 1.0 \text{ kHz})$	Yos	_	150	μmhos
Input Capacitance $(V_{GS} = -10 \text{ V, } V_{DS} = 10 \text{ V, f} = 1.0 \text{ MHz})$	C _{iss}	_	5.0	pF
Reverse Transfer Capacitance (VGS = -10 V, VDS = 10 V, f = 1.0 MHz)	C _{rss}	-	2.5	pF

Rating	Symbol	Value	Unit
Power Dissipation Derate Above 25°C	P _D R _θ JA	350 2.8	mW mW/°C
DC Gate Current	IG	± 20	mA
Repetitive Peak Forward Current 100 µs Pulse Width, 1.0% Duty Cycle 20 µs Pulse Width, 1.0% Duty Cycle	ITRM	1.0	Amp
Non-Repetitive Peak Forward Current 10 μs Pulse Width	ITSM	1.0	Amp
Gate to Cathode Forward Voltage	VGKF	40	Volt
Gate to Cathode Reverse Voltage	VGKR	5.0	Volt
Gate to Anode Reverse Voltage	VGAR	40	Volt
Anode to Cathode Voltage	VAK	± 40	Volt

MMBPU131

CASE 318-02/03, STYLE 14 SOT-23 (TO-236AA/AB)

UNIJUNCTION TRANSISTOR

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				The state of
Peak-Point Current (V _S = 10 Vdc, R _G = 1.0 M Ω) (V _S = 10 Vdc, R _G = 10 k Ω)	lp	-	2.0 5.0	μΑ
On-State Voltage ($V_S=10~Vdc,~R_G=1.0~M\Omega$)	V _T	0.2	1.6	Volts
Luminous Intensity (V _S = 10 Vdc, R _G = 1.0 M Ω) (V _S = 10 Vdc, R _G = 10 k Ω)	IV	_ 70	50 —	μΑ
Anode to Cathode On-State Voltage (I _F = 50 mA Peak)	V _F	= -	1.5	Volts
Output Voltage (V _B = 20 Vdc, C _C = 0.2 μ F)	Vo	6.0	_	Volts
Rise Time $(V_B = 20 \text{ Vdc}, C_C = 0.2 \mu\text{F})$	t _r	_	80	ns

MMBR901

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	30	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	(a) (a)		man E	
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	15	- -	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V _(BR) CBO	25	= - , : y	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	2.0	inge de partie	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ІСВО	of TVE	50	nAdc
ON CHARACTERISTICS	5 MSDEEL			
DC Current Gain ($I_C = 5.0 \text{ MAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	30	200	(R.a. V <u>.</u>
SMALL-SIGNAL CHARACTERISTICS			al are	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	1.0	pF
Common-Emitter Amplifier Power Gain ($V_{CC} = 6.0 \text{ Vdc}$, $I_C = 5.0 \text{ mAdc}$, $f = 1.0 \text{ GHz}$)	G _{pe} (1)	16 (Typ)	-	dB
Noise Figure (I _C = 5.0 mAdc, V_{CE} = 6.0 Vdc, f = 1.0 GHz)	NF(1)	-	1.9 (Typ)	dB

⁽¹⁾ Noise figure and power gain measured on the Ailtech 7380 50Ω system.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	15	Vdc
Collector-Base Voltage	V _{CBO}	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	35	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBR920

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF AMPLIFIER/SWITCHING TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				114 736	0243.40
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 0$)	V _{(BR)CEO}	15	-	2 -11-	Vdc
Collector-Base Breakdown Voltage ($I_C=0.1$ mAdc, $I_E=0$)	V _(BR) CBO	20	100	- - 0	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	2.0			Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ICBO	-	_	50	nAdc
ON CHARACTERISTICS				0.00	en i
DC Current Gain (I _C = 14 mAdc, V _{CE} = 10 Vdc)	hFE	25		250	_
SMALL SIGNAL CHARACTERISTICS			Tree!	SIGN BRO	Districted
Current-Gain — Bandwidth Product (I _C = 14 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz)	fT	_	4.5	 	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	<u>-</u>	1.0	pF
Noise Figure ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 0.5 \text{ GHz}$) ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ GHz}$)	NF(1)	-0	2.4 3.0		dB
Common-Emitter Amplifier Power Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz) (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz)	G _{pe} (1)		15 10	a 25 ans	dB

⁽¹⁾ Noise figure and power gain measured on the Ailtech 7380 50 Ω system.

MMBR930

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

AMPLIFIER/SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	V _{CBO}	15	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	IC	35	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	12	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	V(BR)CBO	15	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 5.0 Vdc, I _E = 0)	ІСВО	-	_	50	nAdc
ON CHARACTERISTICS				Marie de	
DC Current Gain (I _C = 30 mAdc, V _{CE} = 5.0 Vdc)	hFE	25	_	250	_
SMALL-SIGNAL CHARACTERISTICS			136 134		
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	-	1.0	pF
Noise Figure (I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc, f = 0.5 GHz) (I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 GHz)	NF(1)	="	1.9 2.5	=	dB
Common-Emitter Amplifier Power Gain (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc, f = 0.5 GHz) (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc, f = 0.5 GHz)	G _{pe} (1)	_	11 8.0	_	dB

⁽¹⁾ Noise figure and power gain measured on the Ailtech 7380 50 Ω system.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	5.0	Vdc
Collector-Base Voltage	V _{CBO}	10	Vdc
Emitter-Base Voltage	VEBO	2.0	Vdc
Collector Current — Continuous	Ic	5.0	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBR931

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF AMPLIFIER TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_B = 0$)	V(BR)CEO	5.0	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.01 \text{ mAdc}, I_E = 0$)	V(BR)CBO	10	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	2.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 5.0 Vdc, I _E = 0)	ІСВО	_	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 0.25 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	30	_	150	-
SMALL-SIGNAL CHARACTERISTICS					
Collector-Base Capacitance (V _{CB} = 1.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	_	0.5	pF
Noise Figure (I _E = 0.25 mAdc, V_{CE} = 1.0 Vdc, f = 1.0 GHz)	NF(1)	_	4.3	-	dB
Gate Power Dissipation (I _E = 0.25 mAdc, V_{CE} = 1.0 Vdc, f = 1.0 GHz)	PG(1)	_	10	_	_

⁽¹⁾ Noise figure and power gain measured on the Ailtech 7380 50 Ω system.

MMBR2060

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	14	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	lc	50	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				ANAHO 41
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	14	1 100 30	Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$	Ісво	220m	50	nAdc
Emitter Cutoff Current (VEB = 4.0, I _C = 0)	I _{EBO}	-	100	μAdc
ON CHARACTERISTICS				the second
DC Current Gain ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 20 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 500 \text{ MHz}$)	hFE	20 2.0	120	AC 5 141
Collector-Emitter Saturation Voltage (I _C = 80 mAdc, I _B = 8.0 mAdc)	V _{CE(sat)}	-9 <u>1</u> -380	0.38	Vdc
Base-Emitter Saturation Voltage (I _C = 40 mAdc, I _B = 20 mAdc)	V _{BE} (sat)	No. 2	0.98	Vdc
SMALL-SIGNAL CHARACTERISTICS				es y pada
Current-Gain — Bandwidth Product ($I_C = 20 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fŢ	_	1.0	GHz
Collector-Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$	C _{cb}	-	1.0	pF
Emitter-Base Capacitance $(V_{EB}=0.5\ Vdc, I_C=0)$	C _{eb}	-	3.0	pF
Noise Figure ($V_{CE} = 10 \text{ Vdc}$, $I_E = 1.5 \text{ mAdc}$, $f = 450 \text{ MHz}$)	NF(1)	_	3.5	dB
Common-Emitter Amplifier Power Gain ($V_{CE} = 10 \text{ Vdc}$, $I_{E} = 1.5 \text{ mAdc}$, $f = 450 \text{ Mhz}$)	Gpe(1)	12.5	_	dB

⁽¹⁾ Noise figure and power gain measured on the Ailtech 7380 50 Ω system.

III DANIO III I I I I I I I I I I I I I I I I			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	VEBO	2.5	Vdc
Collector Current — Continuous	lc	40	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBR2857

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		- / - / - / - /	et i ta	and the last
Collector-Emitter Breakdown Voltage (IC = 3.0 mAdc, IB = 0)	V _(BR) CEO	15	-	Vdc
Collector-Base Breakdown Voltage (IC = 1.0 μ Adc, IE = 0)	V _(BR) CBO	30	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	2.5		Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ІСВО	-	0.05	μAdc
ON CHARACTERISTICS			T. JYK	
DC Current Gain (IC = 3.0 mAdc, V _{CE} = 1.0 Vdc)	hFE	30	-	
SMALL-SIGNAL CHARACTERISTICS			and the same	SELECTION.
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	1000	·	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	C _{cb}		1.0	pF
Small-Signal Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	50	-	-
Noise Figure (IC = 1.5 mAdc, V_{CE} = 6.0 Vdc, R_S = 50 Ω , f = 450 MHz)	NF	_	4.5	dB
Common-Emitter Amplifier Power Gain (IC = 1.5 mAdc, VCE = 6.0 Vdc, f = 450 MHz)	GPE	12.5	-	dB

MMBR4957

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	30	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			to the last	Ally re
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	30		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	3.0		Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, _{C} = 0)$	ІСВО	_	0.1	μAdc
ON CHARACTERISTICS			T PROFES	171
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc)	hFE	20	150	-
SMALL-SIGNAL CHARACTERISTICS		7017	AND DE	40 1000
Current-Gain — Bandwidth Product (I _E = 2.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	1,200	-	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	-	0.8	pF
Common-Emitter Amplifier Power Gain(1) (V _{CE} = 10 Vdc, I _C = 2.0 mAdc, f = 450 MHz)	G _{pe}	17 (Typ)	_	dB
Noise Figure(1) (I _C = 2.0 mAdc, V_{CE} = 10 Vdc, f = 450 MHz)	NF	_	3.0 (Typ)	dB

⁽¹⁾ Noise figure and power gain measured on the Ailtech 7380 50 Ω system.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	10	Vdc
Collector-Base Voltage	V _{CBO}	15	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	IC	20	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBR5031

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF AMPLIFIER TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	10	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.01 \text{ mAdc}, I_E = 0$)	V(BR)CBO	15	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.01 mAdc, I _C = 0)	V(BR)EBO	3.0	_	Vdc
Collector Cutoff Current (V _{CB} = 6.0 Vdc, I _E = 0)	ICBO	_	10	nAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$)	hFE	25	300	-
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	1,000	-	MHz
Collector-Base Capacitance ($V_{CE}=6.0\ V_{dc}, I_E=0, f=0.1\ MHz$)	C _{cb}	_	1.5	pF
Noise Figure ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 450 \text{ MHz}$)	NF(1)	-	2.5	dB
Common-Emitter Amplifier Power Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 450 \text{ MHz}$)	G _{pe} (1)	14	25	dB

⁽¹⁾ Noise figure and power gain measure on Ailtech 7380 50 Ω system.

MMBR5179

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

RF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	V _{CBO}	20	Vdc
Emitter-Base Voltage	V _{EBO}	2.5	Vdc
Collector Current — Continuous	lc	50	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	12	37 <u>-</u> 3	Vdc
Collector-Base Breakdown Voltage (IC = 0.01 mAdc, IE = 0)	V(BR)CBO	20	-	Vdc
Emitter-Base Breakdown Voltage (IE = 0.01 mAdc, IC = 0)	V(BR)EBO	2.5	-	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	Ісво	_	0.02	μAdc
ON CHARACTERISTICS			or Tiles	
DC Current Gain ($I_C = 3.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	25		
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	-	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	-	1.0	Vdc
SMALL SIGNAL CHARACTERISTICS		- 1		
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 6.0 Vdc, f = 100 MHz)	fT	900		MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ to } 1.0 \text{ MHz}$)	C _{cb}	_	1.0	pF
Small Signal Current Gain (I _C = 2.0 mAdc, V _{CE} = 6.0 Vdc, f = 1.0 kHz)	h _{fe}	25	_	_
Noise Figure (I _C = 1.5 mAdc, V_{CE} = 6.0 Vdc, R_S = 50 Ω , f = 200 Mhz)	NF(1)	71	4.5	dB
Common-Emitter Amplifier Power Gain $(V_{CE} = 6.0 \text{ Vdc}, I_C = 5.0 \text{ mAdc}, f = 200 \text{ MHz})$	G _{pe} (1)	15	_	dB

⁽¹⁾ Noise figure and power gain measured on the Ailtech 7380 50 Ω system.

Rati	ng	Symbol	Value	Unit
Forward Current Avg.	$(T_C = +67^{\circ}C)$	I _F	510	mA
Peak Forward Gate Vo	Itage	VGFM	5.0	V
Peak Forward Blocking RG = 1.0 k	Voltage; MMBS5060 MMBS5061 MMBS5062	VFXM	30 60 100	V

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBS5060,61,62

CASE 318-02/03, STYLE 14 SOT-23 (TO-236AA/AB)

SILICON CONTROLLED RECTIFIER

PNPN DEVICE

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			Continue 2	Notario Avi
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GIVI	0.1	7 1	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	17/10/	4-14	50	μΑ
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TIZIVI	- To 10	50	μΑ
Forward Voltage* (IF = 1.2 A Peak)	V _F	-	1.7	V
Gate Trigger Current** (RGC = 1.0 k Ω , VAC = 7.0 V, RL = 100 Ω	IGT	_	200	μΑ
Gate Trigger Voltage (RGC = 1.0 k Ω , VAC = 7.0 V, RL = 100 Ω	V _{GT}	-	0.8	V
Holding Current ($V_{AC} = 7.0 \text{ V}$, $R_{GC} = 1.0 \text{ k}\Omega$	lн	J=27.0	5.0	mA

^{*}PW ≤ 1.0 ms, D.C. ≤ 1.0%.

^{**}RGC current not included in measurement.

MMBT404,A

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

CHOPPER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating		Value			
	Symbol	404	404A	Unit	
Collector-Emitter Voltage	VCEO	24	35	Vdc	
Collector-Base Voltage	V _{CBO}	25	40	Vdc	
Emitter-Base Voltage	VEBO	12	25	Vdc	
Collector Current — Continuous	Ic	150		mAdd	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	R ₀ JA	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					Yes - 1 5 5	1
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	MMBT404 MMBT404A	V _{(BR)CEO}	24 35	_		Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	MMBT404 MMBT404A	V _{(BR)CBO}	25 40	_	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	MMBT404 MMBT404A	V(BR)EBO	12 25	_		Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)		СВО		_	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)		IEBO	_	_	100	nAdc
ON CHARACTERISTICS					Lat.	
DC Current Gain ($I_C = 12 \text{ mAdc}, V_{CE} = 0.15 \text{ Vdc}$)		hFE	30	-	400	-
Collector-Emitter Saturation Voltage ($I_C = 12 \text{ mAdc}$, $I_B = 0.4 \text{ mAdc}$) ($I_C = 24 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)		V _{CE(sat)}	=	_	0.15 0.20	Vdc
Base-Emitter Saturation Voltage $(I_C = 12 \text{ mAdc}, I_B = 0.4 \text{ mAdc})$ $(I_C = 24 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$		V _{BE(sat)}	=	_	0.85 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Output Capacitance $(V_{CB} = 6.0 \text{ Vdc}, I_{E} = 0)$		C _{obo}	_	_	20	pF
SWITCHING CHARACTERISTICS						
Delay Time $(V_{CC} = 10 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$ (Figure 1)		^t d	-	43	_	ns
Rise Time $(I_{B1} = 1.0 \text{ mAdc}, V_{BE(off)} = 14 \text{ Vdc})$		t _r	_	180	_	ns
Storage Time $(V_{CC} = 10 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$		t _S	_	675	_	ns
Fall Time (I _{B1} = I _{B2} = 1.0 mAdc) (Figure 1)		tf	_	160	-	ns

FIGURE 1 — SWITCHING TIME TEST CIRCUIT

	V _{in} (Volts)	V _{BB} (Volts)
ton, td, tr	- 12	+1.4
t _{off} , t _s and t _f	+20.6	-11.6

Voltages and resistor values shown are for $I_C = 10$ mA, $I_C/I_B = 10$ and $I_{B1} = I_{B2}$

MMBT918

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

VHF/UHF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	Ic	350	mAdo

THERMAL CHARACTERISTICS

PROGRES I ... SWITCHING TOUT SERT OFFICER

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 3.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	15	=	Vdc
Collector-Base Breakdown Voltage $(I_C = 1.0 \ \mu Adc, I_E = 0)$	V(BR)CBO	30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ICBO	_	50	nAdc
ON CHARACTERISTICS				
DC Current Gain (IC = 3.0 mAdc, VCE = 1.0 Vdc)	hFE	20	_	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	_	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE} (sat)	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fτ	600	_	MHz
Output Capacitance (V _{CB} = 0 Vdc, I _E = 0, f = 1.0 MHz) (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	=	3.0 1.7	pF
Input Capacitance (VEB = 0.5 Vdc, I_C = 0, f = 1.0 MHz)	C _{ibo}	_	2.0	pF
Noise Figure (I _C = 1.0 mAdc, V_{CE} = 6.0 Vdc, R_S = 50 Ω , f = 60 MHz) (Figure 1)	NF	-	6.0	dB
Power Output ($I_C = 8.0 \text{ mAdc}$, $V_{CB} = 15 \text{ Vdc}$, $f = 500 \text{ MHz}$)	Pout	30	_	mW
Common-Emitter Amplifier Power Gain ($I_C = 6.0 \text{ mAdc}$, $V_{CB} = 12 \text{ Vdc}$, $f = 200 \text{ MHz}$)	G _{pe}	11	-	dB

FIGURE 1 — NF, Gpe MEASUREMENT CIRCUIT 20-200

NF Test Conditions

 $I_C = 1.0 \text{ Amp}$

V_{CE} = 6.0 Volts

 $R_S = 50 \Omega$

f = 60 MHz

Gpe Test Conditions

 $I_C = 6.0 \text{ mA}$

V_{CE} = 12 Volts

f = 200 MHz

MMBT930

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	45	Vdc
Collector-Base Voltage	V _{CBO}	45	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	. Ic	30	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

*Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPS3904 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	121 - 1			
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	45	-	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	45	1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current $(V_{CE} = 5.0 \text{ Vdc}, I_B = 0)$	ICEO	_	10	nAdc
Collector Cutoff Current (V _{CB} = 45 Vdc, I _E = 0)	СВО	_	10	nAdc
Collector Cutoff Current (V _{CE} = 45 Vdc, V _{BE} = 0)	ICES	_	10	nAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)	IEBO	-	10	nAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 500 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	hFE	100 150	300 — 600	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 0.5 mAdc)	V _{CE(sat)}	_	1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)	V _{BE} (sat)	0.6	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 500 µAdc, V _{CE} = 5.0 Vdc, f = 30 MHz)	fτ	30	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	8.0	pF
Noise Figure (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 10 Hz to 15.7 kHz)	NF	_	3.0	dB

Rating	Symbol	MMBT2222	MMBT2222A	Unit
Collector-Emitter Voltage	VCEO	30	40	Vdc
Collector-Base Voltage	VCBO	60	75	Vdc
Emitter-Base Voltage	VEBO	5.0	6.0	Vdc
Collector Current — Continuous	Ic	6	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT2222,A

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

TRANSISTOR

NPN SILICON

Refer to MPS2222 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		· ·			-
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	MMBT2222 MMBT2222A	V(BR)CEO	30 40	=	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	MMBT2222 MMBT2222A	V(BR)CBO	60 75	=	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	MMBT2222 MMBT2222A	V(BR)EBO	5.0 6.0	=	Vdc
Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)	MMBT2222A	ICEX	_	10	nAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 125°C) (V _{CB} = 50 Vdc, I _E = 0, T _A = 125°C)	MMBT2222 MMBT2222A MMBT2222 MMBT2222A	ICBO		0.01 0.01 10 10	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)	MMBT2222A	IEBO	_	10	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	MMBT2222A	IBL	_	20	nAdc
ON CHARACTERISTICS					***************************************
DC Current Gain $ \begin{aligned} &(I_C = 0.1 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 1.0 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 150 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \\ &(I_C = 150 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \\ &(I_C = 150 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc})(1) \\ &(I_C = 500 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \end{aligned} $	MMBT2222A only MMBT2222 MMBT2222A	hFE	35 50 75 35 100 50 30 40		_
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	MMBT2222 MMBT2222A	VCE(sat)	=	0.4 0.3	Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	MMBT2222 MMBT2222A		_	1.6 1.0	

A VCCTTT	Characteristic		Symbol	Min	Max	Unit
Base-Emitter Saturation Volt $(I_C = 150 \text{ mAdc}, I_B = 15)$		MMBT2222 MMBT2222A	VBE(sat)	 0.6	1.3 1.2	Vdc
($I_C = 500 \text{ mAdc}$, $I_B = 50$	mAdc)	MMBT2222 MMBT2222A		_	2.6 2.0	1000
SMALL-SIGNAL CHARACTE	RISTICS	, N				114.14
Current-Gain — Bandwidth F (I _C = 20 mAdc, V _{CE} = 20		MMBT2222 MMBT2222A	fT	250 300	-1-	MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f	= 1.0 MHz)		C _{obo}	_	8.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f	= 1.0 MHz)	MMBT2222 MMBT2222A	C _{ibo}	=	30 25	pF
Input Impedance (I _C = 1.0 mAdc, V_{CE} = 10 (I _C = 10 mAdc, V_{CE} = 10		MMBT2222A MMBT2222A	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ (}I_{C} = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ mAdc}$)		MMBT2222A MMBT2222A	h _{re}		8.0 4.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 10 (I _C = 10 mAdc, V_{CE} = 10		MMBT2222A MMBT2222A	h _{fe}	50 75	300 375	-1 TV-
Output Admittance (I _C = 1.0 mAdc, V_{CE} = 10 (I _C = 10 mAdc, V_{CE} = 10		MMBT2222A MMBT2222A	h _{oe}	5.0 25	35 200	μmhos
Collector Base Time Constant (IE = 20 mAdc, VCB = 20		MMBT2222A	rb'C _C	_	150	ps
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10	0 Vdc, R _S = 1.0 k Ω , f = 1.	0 kHz) MMBT2222A	NF	4.0	4.0	dB
SWITCHING CHARACTERIS	TICS MMBT2222A only				1	
	V _{CC} = 30 Vdc, V _{BE(off)} =		t _d	_	10	ns
Rise Time	$C = 150 \text{ mAdc}, I_{B1} = 15 \text{ r}$	nAdc)	tr	_	25	ns
	V _{CC} = 30 Vdc, I _C = 150 n	nAdc,	t _S		225	ns
Fall Time	$B_1 = I_{B2} = 15 \text{ mAdc}$		tf	_	60	ns

⁽¹⁾ Pulse Test: Pulse Width \leqslant 300 μ s, Duty Cycle \leqslant 2.0%. (2) f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.5	Vdc
Collector Current — Continuous	I _C	500	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT2369

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

SWITCHING TRANSISTOR

NPN SILICON

Refer to MPS2369 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	*		- 1	TA . TA	MI 0 14
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	15	- 1	1	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc$, $V_{BE} = 0$)	V(BR)CES	40		9 - 3	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	V _(BR) CBO	40			Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	V(BR)EBO	4.5			Vdc
Collector Cutoff Current $(V_{CB}=20\ V_{CC}, I_E=0)$ $(V_{CB}=20\ V_{CC}, I_E=0, T_{A}=125^{\circ}C)$	ІСВО	-	=	0.4 30	μAdc
ON CHARACTERISTICS					
DC Current Gain(1)	hFE	40 20 20	_	120 — —	_
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	-	A = 1	0.25	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	0.70	-	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}		_	4.0	pF
Small Signal Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	h _{fe}	5.0	-	-	-
SWITCHING CHARACTERISTICS	A	- X		In Par	
Storage Time $(I_{B1} = I_{B2} = I_C = 10 \text{ mAdc})$	t _S	_	5.0	13	ns
Turn-On Time $(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc})$	ton	-	8.0	12	ns
Turn-Off Time ($V_{CC} = 3.0 \text{ Vdc}$, $I_{C} = 10 \text{ mAdc}$, $I_{B1} = 3.0 \text{ mAdc}$, $I_{B2} = 1.5 \text{ mAdc}$)	^t off	-	10	18	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MMBT2484

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

LOW NOISE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	lc	50	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

Refer to MPSA18 for graphs.

*Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			S du	WE T
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	60	-	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0		Vdc
Collector Cutoff Current (V _{CB} = 45 Vdc, I _E = 0) (V _{CB} = 45 Vdc, I _E = 0, T _A 150 $^{\circ}$ C)	Ісво	_	10 10	nAdc μAdc
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	IEBO	-	10	nAdo
ON CHARACTERISTICS			17197	
DC Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc) (I _C = 10 mAdc, V_{CE} = 5.0 Vdc)	hFE	250 —	— 800	
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc)	V _{CE(sat)}	_	0.35	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	V _{BE(on)}	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS		1		
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$	C _{obo}	_	6.0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 140 \text{ kHz})$	C _{ibo}	_	6.0	pF
Noise Figure (I _C = 10 μ Adc, V _{CF} = 5.0 Vdc, R _S = 10 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	-	3.0	dB

Rating	Symbol	MPS2907	MPS2907A	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	V _{CBO}	60		Vdc
Emitter-Base Voltage	V _{EBO}		5.0	Vdc
Collector Current — Continuous	lc	(600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT2907,A

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to MPS2907 for graphs.

Characteri	stic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MMBT2907 MMBT2907A	V(BR)CEO	40 60	=	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		V _(BR) CBO	60	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE(off)} = 0.5 Vdc)		ICEX	_	50	nAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	MMBT2907 MMBT2907A	ІСВО	_	0.020 0.010	μAdd
$(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 125^{\circ}\text{C})$	MMBT2907 MMBT2907A		=	20 10	
Base Current $(V_{CE} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc})$		IB	_	50	nAdo
ON CHARACTERISTICS					
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	MMBT2907 MMBT2907A	hFE	35 75	=	-
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MMBT2907 MMBT2907A		50 100	Ξ	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MMBT2907 MMBT2907A		75 100	=	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	MMBT2907, MMBT2907A		100	300	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	MMBT2907 MMBT2907A		30 50	_	
Collector-Emitter Saturation Voltage(1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc)		V _{CE(sat)}	=	0.4 1.6	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)		VBE(sat)	=	1.3 2.6	Vdc

	Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CHA	ARACTERISTICS				
	dwidth Product(1),(2) CE = 20 Vdc, f = 100 MHz)	fT	200	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E	= 0, f = 1.0 MHz)	C _{obo}		8.0	pF
Input Capacitance (VBE = 2.0 Vdc, Ic	c = 0, f = 1.0 MHz)	C _{ibo}		30	pF
SWITCHING CHARA	CTERISTICS				
Turn-On Time	36 (6)	ton	-	45	ns
Delay Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	td	_	10	ns
Rise Time	IBI - 10 III/ddy	t _r	_	40	ns
Turn-Off Time	(V _{CC} = 6.0 Vdc, I _C = 150 mAdc, I _{R1} = I _{R2} = 15 mAdc)	toff	_	100	ns
Storage Time		ts		80	ns
Fall Time	101 102 10 111 1001	tf	_	30	ns

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	V _{CBO}	12	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	l _C	80	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT3640

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

SWITCHING TRANSISTOR

PNP SILICON

Refer to MPS3640 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			A CONTRACTOR	Zaru P
Collector-Emitter Breakdown Voltage ($I_C = 100 \mu Adc, V_{BE} = 0$)	V(BR)CES	12	_	Vdc
Collector-Emitter Sustaining Voltage(1) (IC = 10 mAdc, IB = 0)	V _{CEO(sus)}	12	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	12	1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	-	Vdc
Collector Cutoff Current (V _{CE} = 6.0 Vdc, V _{BE} = 0) (V _{CE} = 6.0 Vdc, V _{BE} = 0, T _A = 65°C)	CES	_	0.01 1.0	μAdc
Base Current (V _{CE} = 6.0 Vdc, V _{BE} = 0)	IB	_	10	nAdc
ON CHARACTERISTICS(1)				
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 0.3 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	30 20	120	-
Collector-Emitter Saturation Voltage $(I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc})$ $(I_C=50 \text{ mAdc}, I_B=5.0 \text{ mAdc})$ $(I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc}, T_A=65^\circ\text{C})$	V _{CE(sat)}	_	0.2 0.6 0.25	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}	0.75 0.8 —	0.95 1.0 1.5	Vdc
SMALL SIGNAL CHARACTERISTICS		10	30.75	
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	500	_	MHz
Output Capacitance (V _{CB} = = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	3.5	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 1.0 MHz)	Cibo	_	3.5	pF
SWITCHING CHARACTERISTICS				
Delay Time $(V_{CC} = 6.0 \text{ Vdc}, I_{C} = 50 \text{ mAdc}, V_{BE(off)} = 1.9 \text{ Vdc},$	^t d	_	10	ns
Rise Time I _{B1} = 5.0 mAdc)	t _r	_	30	ns
Storage Time $(V_{CC} = 6.0 \text{ Vdc}, I_C = 50 \text{ mAdc}, I_{B1} = I_{B2} = 5.0 \text{ mAdc})$	t _S	_	20	ns
Fall Time	tf	_	12	ns
Turn-On Time $(V_{CC} = 6.0 \text{ Vdc}, I_{C} = 50 \text{ mAdc}, V_{BE(off)} = 1.9 \text{ Vdc}, I_{B1} = 5.0 \text{ mAdc})$ $(V_{CC} = 1.5 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = 0.5 \text{ mAdc})$	ton	=	25 60	ns
Turn-Off Time $(V_{CC}=6.0~V_{dc}, I_{C}=50~mAdc, V_{BE(off)}=1.9~V, I_{B1}=I_{B2}=5.0~mAdc) (V_{CC}=1.5~V_{dc}, I_{C}=10~mAdc, I_{B1}=I_{B2}=0.5~mAdc)$	^t off	=	35 75	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MMBT3903 MMBT3904

CASE 318-03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltge	VCBO	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	lc	200	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N3903 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					100 - 100 100
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)		V(BR)CEO	40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		V(BR)CBO	60	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		V(BR)EBO	6.0		Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{BL}	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		ICEX	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) $(I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MMBT3903 MMBT3904	hFE	20 40	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MMBT3903 MMBT3904		35 70	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MMBT3903 MMBT3904		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MMBT3903 MMBT3904		30 60	=	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MMBT3903 MMBT3904		15 30	=	
Collector-Emitter Saturation Voltage(1) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc)		V _{CE(sat)}	_	0.2 0.3	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$		V _{BE(sat)}	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS			7		
	MMBT3903 MMBT3904	fT	250 300	=	MHz

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$		C _{obo}	120	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 1.0 MHz)	2	C _{ibo}	_	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	MMBT3903 MMBT3904	hie	1.0 1.0	8.0 10	k ohms
Voltage Feedback Ratio $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	MMBT3903 MMBT3904	h _{re}	0.1 0.5	5.0 8.0	X 10-4
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	MMBT3903 MMBT3904	h _{fe}	50 100	200 400	_
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	No. 19 and 1	h _{oe}	1.0	40	μmhos
Noise Figure ($I_C = 100 \mu Adc$, $V_{CE} = 5.0 Vdc$, $R_S = 1.0 k$ ohms, $f = 10 Hz$ to 15.7 kHz)	MMBT3903 MMBT3904	NF	=	6.0 5.0	dB

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc},$		t _d		35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r	7 E- 954	35	ns
Storage Time	1.66	1BT3903 1BT3904	t _S	_	175 200	ns
Fall Time			tf		50	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MMBT3906

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N3905 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				and the
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	40	91. 2 v	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)	I _{BL}	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)	ICEX	_	50	nAdc
ON CHARACTERISTICS(1)				
DC Current Gain (IC = 0.1 mAdc, V _{CE} = 1.0 Vdc) (IC = 1.0 mAdc, V _{CE} = 1.0 Vdc) (IC = 10 mAdc, V _{CE} = 1.0 Vdc) (IC = 50 mAdc, V _{CE} = 1.0 Vdc) (IC = 50 mAdc, V _{CE} = 1.0 Vdc)	hFE	60 80 100 60 30		_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_	0.25 0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{BE} (sat)	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fΤ	250	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$	C _{obo}	_	4.5	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$	C _{ibo}	_	10.0	pF
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ie}	2.0	12	k ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	10	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	100	400	_

	Characteristic	Symbol	Min	Max	Unit
Output Admittance (I _C = 1.0 mAdc, V _{CE} =	10 Vdc, f = 1.0 kHz)	h _{oe}	3.0	60	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} =	5.0 Vdc, R _S = 1.0 k ohm, f = 10 10 Hz to 15.7 kHz)	NF	_	4.0	dB
SWITCHING CHARACTER	RISTICS			6 T/2 T/2	
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc	td	1	35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$	t _r	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc,	t _S	_	225	ns
Fall Time $I_{B1} = I_{B2} = 1.0 \text{ mAdc}$	tf	- 10	75	ns	

⁽¹⁾ Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MMBT4124

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N4124	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	200	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N4123 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IE = 0)	V(BR)CEO	25	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	ІСВО	_	50	nAdc
Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_{C} = 0)$	IEBO	_	50	nAdc
ON CHARACTERISTICS				
DC Current Gain(1) (I _C = 2.0 mAdc, V_{CE} = 1.0 Vdc) (I _C = 50 mAdc, V_{CE} = 1.0 Vdc)	hFE	120 60	360 —	_
Collector-Emitter Saturation Voltage(1) (IC = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_	0.3	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	VBE(sat)	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	300	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$	C _{obo}	_	4.0	pF
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 100 kHz)	C _{ibo}	_	8.0	pF
Collector-Base Capacitance ($I_E = 0$, $V_{CB} = 5.0 \text{ V}$, $f = 100 \text{ kHz}$)	C _{cb}	_	4.0	pF
Small-Signal Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	120	480	_
Current Gain — High Frequency (IC = 10 mAdc, V_{CE} = 20 Vdc, f = 100 MHz) (IC = 2.0 mAdc, V_{CE} = 10 V, f = 1.0 kHz)	h _{fe}	3.0 120	 480	_
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 kohm, Noise Bandwidth = 10 Hz to 15.7 kHz)	NF	_	5.0	dB

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

Rating	Symbol	2N4125	2N4126	Unit
Collector-Emitter Voltage	VCEO	30	25	Vdc
Collector-Base Voltage	V _{CBO}	30	25	Vdc
Emitter-Base Voltage	VEBO	4.0		Vdc
Collector Current — Continuous	Ic	200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT4125

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N4125 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			TO DE	1
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _E = 0)	V(BR)CEO	30		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	30	7	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	ІСВО	-	50	nAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	IEBO	=	50	nAdc
ON CHARACTERISTICS	W a	10 10 10		
DC Current Gain(1) ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	50 25	150	_
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)		0.4	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	V _{BE} (sat)	7	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	200	-	MHz
Input Capacitance (VBE = 0.5 Vdc, I $_{\text{C}}$ = 0, f = 100 kHz)	C _{ibo}	_	10	pF
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)	C _{cb}	-	4.5	pF
Small-Signal Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	50	200	-
Current Gain — High Frequency (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	h _{fe}	2.0	-	-
Noise Figure ($I_C = 100 \mu Adc$, $V_{CE} = 5.0 Vdc$, $R_S = 1.0 kohm$, Noise Bandwidth = 10 Hz to 15.7 kHz)	NF	_	5.0	dB

⁽¹⁾ Pulse Test: Pulse Width = 300 μsec, Duty Cycle = 2.0%.

MMBT4401

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	Ic	600	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N4401 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			ADSTRUCTOR OF	R.CHARA
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40		Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	60		Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	6.0		Vdc
Base Cutoff Current (VCE = 35 Vdc, VEB = 0.4 Vdc)	IBEV	_	0.1	μAdc
Collector Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	ICEX	_	0.1	μAdc
ON CHARACTERISTICS(1)				
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 500 \text{ mAdc}$, $V_{CE} = 2.0 \text{ Vdc}$)	hFE	20 40 80 100 40	300	
Collector-Emitter Saturation Voltage (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc)	V _{CE(sat)}	=	0.4 0.75	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	V _{BE} (sat)	0.75	0.95 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (IC = 20 mAdc, VCE = 10 Vdc, f = 100 MHz)	fΤ	250	-	MHz
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)	C _{cb}	_	6.5	pF
Emitter-Base Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{eb}	-	30	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	1.0	15	k ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	8.0	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)	h _{fe}	40	500	-
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	1.0	30	μmhos
SWITCHING CHARACTERISTICS				
Delay Time (V _{CC} = 30 Vdc, V _{EB} = 2.0 Vdc,	t _d	_	15	ns
Rise Time I _C = 150 mAdc, I _{B1} = 15 mAdc)	tr	_	20	ns
Storage Time (V _{CC} = 30 Vdc, I _C = 150 mAdc,	ts	_	225	ns
Fall Time $I_{B1} = I_{B2} = 15 \text{ mAdc}$	tf	_	30	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT4403

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

SWITCHING TRANSISTOR

PNP SILICON

Refer to 2N4402 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			10 73	
Collector-Emitter Breakdown Voltage(1) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	40	-	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage (IE = 0.1 mAdc, IC = 0)	V(BR)EBO	5.0	_	Vdc
Base Cutoff Current (VCE = 35 Vdc, VBE = 0.4 Vdc)	IBEV	_	0.1	μAdc
Collector Cutoff Current (V _{CE} = 35 Vdc, V _{BE} = 0.4 Vdc)	CEX	_	0.1	μAdc
ON CHARACTERISTICS			A 15-7	The same
DC Current Gain $(I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 150 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})(1)$ $(I_C = 500 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})(1)$	hFE	30 60 100 100 20	 300 	-
Collector-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	VCE(sat)	_	0.4 0.75	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{BE(sat)}	0.75	0.95 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	200	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)	C _{cb}	-0.00	8.5	pF
Emitter-Base Capacitance (VBE = 0.5 Vdc, IC = 0, f = 140 kHz)	C _{eb}	_	30	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	hie	1.5k	15k	ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	8.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	60	500	_
Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)	hoe	1.0	100	μmhos
SWITCHING CHARACTERISTICS				
Delay Time (V _{CC} = 30 Vdc, V _{BE} = 2.0 Vdc,	t _d	_	15	ns
Rise Time $I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	t _r	_	20	ns
Storage Time (V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _S	_	225	ns
Fall Time IB1 = IB2 = 15 mAdc)	tf	_	30	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MMBT5086,87

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

LOW NOISE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	lc	50	mAdo

THERMAI CHARACTERISTICS

THERMAL CHARACTERISTICS			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N5086 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	50	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)		V(BR)CBO	50		Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 35 \text{ Vdc}, I_{E} = 0)$		СВО	=	10 50	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	MMBT5086 MMBT5087	hFE	150 250	500 800	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT5086 MMBT5087		150 250	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT5086 MMBT5087		150 250	_	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		VCE(sat)	_	0.3	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$)		V _{BE(sat)}	_	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS			7		
Current-Gain — Bandwidth Product (IC = 500 μ Adc, V _{CE} = 5.0 Vdc, f = 20 MHz)		fŢ	40	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I_E = 0, f = 100 kHz)		C _{obo}	_	4.0	pF
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	MMBT5086 MMBT5087	h _{fe}	150 250	600 900	-
Noise Figure (IC = 20 mAdc, VCE = 5.0 Vdc, RS = 10 k Ω , f = 10 Hz to 15.7 kHz)	MMBT5086 MMBT5087	NF	=	3.0 2.0	dB
(IC = 100 μ Adc, VCE = 5.0 Vdc, RS = 3.0 k Ω , f = 1.0 kHz)	MMBT5086 MMBT5087		_	3.0 2.0	

		Va		
Rating	Symbol	MMBT5088	MMBT5089	Unit
Collector-Emitter Voltage	VCEO	30	25	Vdc
Collector-Base Voltage	VCBO	35	30	Vdc
Emitter-Base Voltage	VEBO	4.5		Vdc
Collector Current — Continuous	Ic	50		mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT5088,89

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

LOW NOISE TRANSISTOR

NPN SILICON

Refer to MPSA18 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	MMBT5088 MMBT5089	V(BR)CEO	30 25		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MMBT5088 MMBT5089	V(BR)CBO	35 30		Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	MMBT5088 MMBT5089	ІСВО	_	50 50	nAdc
Emitter Cutoff Current $(VEB(off) = 3.0 \text{ Vdc}, I_C = 0)$ $(VEB(off) = 4.5 \text{ Vdc}, I_C = 0)$	MMBT5088 MMBT5089	IEBO	=	50 100	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	MMBT5088 MMBT5089	hFE	300 400	900 1200	-
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT5088 MMBT5089		350 450	Ξ,	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT5088 MMBT5089		300 400		73
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mA	Adc)	V _{CE(sat)}	-	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{BE(sat)}	_	0.8	Vdc
SMALL SIGNAL CHARACTERISTICS					7 7 7
Current-Gain — Bandwidth Product (I _C = 500 µAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)		fΤ	50	_	MHz
Collector-Base Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kHz emitter guarded})$		C _{cb}	_	4.0	pF
Emitter-Base Capacitance $(V_{BE}=0.5\ Vdc,\ I_{C}=0,\ f=100\ kHz\ collector\ guarded)$		C _{eb}	-	10	pF
Small Signal Current Gain ($I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$)	MMBT5088 MMBT5089	h _{fe}	350 450	1400 1800	_
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 10 Hz to 15.7 Hz)	MMBT5088 MMBT5089	NF	=	3.0 2.0	dB

MMBT5401

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	150	Vdc
Collector-Base Voltage	V _{CBO}	160	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	500	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N5401 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			42 2011	AD THE
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	150	ing see and see a	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	160	North Control	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	Ісво	= -	50 50	nAdc μAdc
ON CHARACTERISTICS				il il
DC Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc) (I _C = 10 mAdc, V_{CE} = 5.0 Vdc) (I _C = 50 mAdc, V_{CE} = 5.0 Vdc)	hFE	50 60 50	240	type to the
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_	0.20 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VBE(sat)	=	1.0 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	(Albert	4547/7	a mallet set	3- L
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	100	300	MHz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 1.0 MHz)	C _{obo}	-	6.0	pF
Small Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	40	200	-
Noise Figure (I _C = 200 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 ohms, f = 10 Hz to 15.7 kHz)	NF		8.0	dB

WAXIII OW HAT III GO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	140	Vdc
Collector-Base Voltage	V _{CBO}	160	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	Ic	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT5550

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

Refer to 2N5550 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			HERVE STREET	testo
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	140		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_C = 0$)	V(BR)CBO	160		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	6.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$	ІСВО	=	100 100	nAdc μAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, I _C = 0)	IEBO	_	50	nAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	60 60 20	 250 	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	VCE(sat)		0.15 0.25	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	VBE(sat)	1 - 1	1.0 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS	THE PERSON NAMED IN STREET		4	
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	100	300	MHz
Output Capacitance (VCB = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	6.0	pF
	Cibo	_	30	pF

MMBT6427

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

DARLINGTON TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	12	Vdc
Collector Current — Continuous	IC	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N6426 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				442-
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	40		Vdc
Emitter-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_C = 0$)	V(BR)EBO	12	_	Vdc
Collector Cutoff Current $(V_{CE} = 25 \text{ Vdc}, I_B = 0)$	ICEO	_	1.0	μAdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$	ICBO	_	50	nAdc
Emitter Cutoff Current $(V_{BE} = 10 \text{ Vdc}, I_C = 0)$	I _{EBO}	_	50	nAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 500 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	10,000 20,000 14,000	100,000 200,000 140,000	_
Collector-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)	VCE(sat)	_	1.2 1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 0.5 mAdc)	V _{BE} (sat)	-	2.0	Vdc
Base-Emitter On Voltage ($I_C = 50 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	VBE(on)	· F	1.75	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 1.0 MHz)	C _{obo}	_	7.0	pF
Input Capacitance ($V_{BE}=0.5, I_C=0, f=1.0 \ MHz$)	C _{ibo}	-	15	pF
Current Gain — High Frequency (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	h _{fe}	1.3	_	Vdc
Noise Figure (IC = 1.0 mAdc, VCE = 5.0 Vdc, RS = 100 k Ω , f = 1.0 kHz to 15.7 kHz)	NF	_	10	dB

		Va	lue	
Rating	Symbol	MMBT6428	MMBT6429	Unit
Collector-Emitter Voltage	VCEO	50	45	Vdc
Collector-Base Voltage	VCBO	60	55	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	Ic	200		mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

Characteristic

MMBT6428,29

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPSA18 for graphs.

Max

Unit

Min

Symbol

Characteristic		Symbol	IAIILI	IAIGX	Onit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	MMBT6428 MMBT6429	V(BR)CEO	50 45	=	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$) ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	MMBT6428 MMBT6429	V(BR)CBO	60 55	=	Vdc
Collector Cutoff Current (VCE = 30 Vdc)		ICEO	_	0.1	μAdc
Collector Cutoff Current (VCB = 30 Vdc, IE = 0)		ICBO	-	0.01	μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, I _C = 0)		IEBO	_	0.01	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 0.01 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	MMBT6428 MMBT6429	hFE	250 500	=	-
$(I_C = 0.1 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT6428 MMBT6429		250 500	650 1250	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT6428 MMBT6429		250 500	= =	
$(I_C = 10 \text{ mAdc, } V_{CE} = 5.0 \text{ Vdc})$	MMBT6428 MMBT6429		250 500	=	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		VCE(sat)	_	0.2 0.6	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)		VBE(on)	0.56	0.66	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)		fΤ	100	700	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)		C _{obo}	x—	3.0	pF
Input Capacitance (VEB = 0.5 Vdc, IC = 0 , f = 1.0 MHz)		C _{ibo}	_	8.0	pF

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT6517

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	350	Vdc
Collector-Base Voltage	V _{CBO}	350	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Base Current	IB	250	mA
Collector Current — Continuous	IC	500	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N6517 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	The state of the s		1		
Collector-Emitter Breakdown Voltage (I _C = 1.0 mA)	Districtly Districtly	V(BR)CEO	350		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu A$)	prose frequen	V _(BR) CBO	350	Anto Esta	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μA)	Settle to	V(BR)EBO	6.0		Vdc
Collector Cutoff Current (V _{CB} = 250 V)		ІСВО		50	nA
Emitter Cutoff Current (VEB = 5.0 V)		IEBO	-	50	nA
ON CHARACTERISTICS				NV 0	734
DC Current Gain $ \begin{aligned} &(I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}) \\ &(I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}) \\ &(I_C = 30 \text{ mA}, V_{CE} = 10 \text{ V}) \\ &(I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}) \\ &(I_C = 100 \text{ mA}, V_{CE} = 10 \text{ V}) \end{aligned} $		hFE	20 30 30 20 15	200 100	10 + <u>2</u> 0
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA) (I _C = 20 mA, I _B = 2.0 mA) (I _C = 30 mA, I _B = 3.0 mA) (I _C = 50 mA, I _B = 5.0 mA)	or partition.	VCE(sat)	=	0.30 0.35 0.50 1.0	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA) (I _C = 20 mA, I _B = 2.0 mA) (I _C = 30 mA, I _B = 3.0 mA)		V _{BE(sat)}	=	0.75 0.85 0.90	Vdc
Base-Emitter On Voltage (I _C = 100 mA, V _{CE} = 10 V)		V _{BE(on)}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mA, V _{CE} = 20 V, f = 20 MHz)		fτ	40	200	MHz
Collector-Base Capacitance (V _{CB} = 20 V, f = 1.0 MHz)		C _{cb}	_	6.0	pF
Emitter-Base Capacitance (VFB = 0.5 V, f = 1.0 MHz)		C _{eb}	_	80	pF

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	350	Vdc
Collector-Base Voltage	V _{CBO}	350	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Base Current	IB	250	mA
Collector Current — Continuous	IC	500	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBT6520

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

PNP SILICON

Refer to 2N6520 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			85	S IND THE
Collector-Emitter Breakdown Voltage (I _C = 1.0 mA)	V(BR)CEO	350		Vdc
Collector-Base Breakdown Voltage (I _C = 100 μ A)	V(BR)CBO	350	0 - u	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ A)	V _{(BR)EBO}	5.0		Vdc
Collector Cutoff Current (V _{CB} = 250 V)	Ісво	_	50	nA
Emitter Cutoff Current (VEB = 4.0 V)	IEBO	-	50	nA
ON CHARACTERISTICS			LOCKED FO	Contract
DC Current Gain (I _C = 1.0 mA, V _{CE} = 10 V) (I _C = 10 mA, V _{CE} = 10 V) (I _C = 30 mA, V _{CE} = 10 V) (I _C = 30 mA, V _{CE} = 10 V) (I _C = 50 mA, V _{CE} = 10 V) (I _C = 100 mA, V _{CE} = 10 V)	hFE	20 30 30 20 15	200 100	100
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA) (I _C = 20 mA, I _B = 2.0 mA) (I _C = 30 mA, I _B = 3.0 mA) (I _C = 50 mA, I _B = 5.0 mA)	VCE(sat)	Ξ	0.30 0.35 0.50 1.0	Vdc
Base-Emitter Saturation Voltage (IC = 10 mA, I _B = 1.0 mA) (IC = 20 mA, I _B = 2.0 mA) (IC = 30 mA, I _B = 3.0 mA)	VBE(sat)	=	0.75 0.85 0.90	Vdc
Base-Emitter On Voltage (I _C = 100 mA, V _{CE} = 10 V)	V _{BE(on)}			Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (IC = 10 mA, V _{CE} = 20 V, f = 20 MHz)	fT	40	200	MHz
Collector-Base Capacitance (V _{CB} = 20 V, f = 1.0 MHz)	C _{cb}	_	6.0	pF
Emitter-Base Capacitance (V _{EB} = 0.5 V, f = 1.0 MHz)	C _{eb}	_	100	pF

MMBT6543

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	V _{CBO}	35	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	50	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPS6543 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			100	111 101	3
Collector-Emitter Breakdown Voltage(2) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	25	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	35	_		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	3.0		-	Vdc
Collector Cutoff Current (V _{CB} = 25 Vdc, I _E = 0)	ІСВО	_		0.1	μAdc
Emitter Cutoff Current (VBE = 2.0 Vdc , IC = 0)	IEBO	_	_	1.0	μAdc
ON CHARACTERISTICS					ARILL N
DC Current Gain(2) $(I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	hFE	25	60	= 1	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)	VCE(sat)	_	200	350	mVdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	750	950	mVdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 12 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	750	1100	_	MHz
Output Capacitance (VCB = 10 Vdc, $I_E = 0$, $f = 1.0$ MHz)	C _{obo}	_	8.0	1.0	pF
Collector Base Time Constant (I _E = 4.0 mAdc, V _{CE} = 12 Vdc, f = 31.8 MHz)	rb′C _C	_	_	9.5	ps

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

		Va		
Rating	Symbol	MMBTA05	MMBTA06	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	V _{EBO}	4.0		Vdc
Collector Current — Continuous	Ic	50	00	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBTA05,06

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

DRIVER TRANSISTOR

NPN SILICON

Characterist	ic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				LI	auto va
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	MMBTA05 MMBTA06	V(BR)CEO	60 80	*—>	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	4.0	- 0	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)		ICEO	-	0.1	μAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	MMBTA05 MMBTA06	ІСВО		0.1 0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 10$ mAdc, $V_{CE} = 1.0$ Vdc) ($I_C = 100$ mAdc, $V_{CE} = 1.0$ Vdc)		hFE	50 50	=	-
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)		V _{CE(sat)}	_	0.25	Vdc
Base-Emitter On Voltage $(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		V _{BE(on)}	-	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS			, 1,	- 1	
Current-Gain — Bandwidth Product(2) (I _C = 10 mA, V _{CE} = 2.0 V, f = 100 MHz)		fΤ	100		MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

MMBTA13,14

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

DARLINGTON AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	30	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current — Continuous	IC	300	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta}JA$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to 2N6426 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				5 1 1 1 1 1	10 AT
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc, I _B = 0)		V(BR)CES	30	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		ICBO	_	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)		IEBO		100	nAdc
ON CHARACTERISTICS(1)				8 50	
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	MMBTA13 MMBTA14	hFE	5000 10,000		- W
$(I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBTA13 MMBTA14		10,000 20,000	= .	ECEND FICE
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)		V _{CE(sat)}	_	1.5	Vdc
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)		V _{BE}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		f _T	125		MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$.

THE DATE OF THE CO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	l _C	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBTA20

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE AMPLIFIER

NPN SILICON

Refer to MPS3904 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				COLUMN TO	JULIET TH
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	8 P.A.S. (200-1)	V(BR)CEO	40	906-50 000 3 0 1 1000	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)	305 (950)	V(BR)EBO	4.0	and the same	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	Might	ICBO	_	100	nAdc
ON CHARACTERISTICS				TRUNCE	19.50
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	89.81184	hFE	40	400	- Table
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{CE(sat)}	- 1	0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS	LU FR WOO		I.		1 - 150
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	5.700.54	fT	125	draftin.	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _F = 0, f = 100 kHz)	tough about	C _{obo}	1.00	4.0	pF

MMBTA42,43

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

		Va		
Rating	Symbol	MMBTA42	MMBTA43	Unit
Collector-Emitter Voltage	VCEO	300	200	Vdc
Collector-Base Voltage	VCBO	300	200	Vdc
Emitter-Base Voltage	VEBO	6.0	6.0	Vdc
Collector Current — Continuous	lc	500		mAdd

THERMAL CHARACTERISTICS

THE HIME OF MICHOLOG					
Characteristic	Symbol	Max	Unit		
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C		
Storage Temperature	T _{stg}	150	°C		
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W		

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPSA42 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				HO - 0915.6	Anis) in
Collector-Emitter Breakdown Voltage(1) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	MMBTA42 MMBTA43	V _(BR) CEO	300 200	449 · · · · · · · · · · · · · · · · · ·	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MMBTA42 MMBTA43	V(BR)CBO	300 200		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	6.0	m/2-19	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 160 \text{ Vdc}, I_E = 0)$	MMBTA42 MMBTA43	ІСВО		0.1 0.1	μAdc
Emitter Cutoff Current (VBE = 6.0 Vdc, I _C = 0) (VBE = 4.0 Vdc, I _C = 0)	MMBTA42 MMBTA43	IEBO	14=16	0.1 0.1	μAdd
ON CHARACTERISTICS(1)		W. N			1/
DC Current Gain $ \begin{aligned} &\text{(I}_{C} = 1.0 \text{ mAdc, V}_{CE} = 10 \text{ Vdc)} \\ &\text{(I}_{C} = 10 \text{ mAdc, V}_{CE} = 10 \text{ Vdc)} \end{aligned} $ $ \end{aligned} $ $ \begin{aligned} &\text{(I}_{C} = 30 \text{ mAdc, V}_{CE} = 10 \text{ Vdc)} \end{aligned} $	Both Types Both Types MMBTA42 MMBTA43	hFE	25 40 40 40	_	-
Collector-Emitter Saturation Voltage ($I_C = 20 \text{ mAdc}$, $I_B = 2.0 \text{ mAdc}$)	MMBTA42 MMBTA43	VCE(sat)	_	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE} (sat)	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fΤ	50	_	MHz
Collector-Base Capacitance $(V_{CB}=20\ Vdc,\ I_E=0,\ f=1.0\ MHz)$	MMBTA42 MMBTA43	C _{cb}	_	3.0 4.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	MMBTA55	MMBTA56	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	4	.0	Vdc
Collector Current — Continuous	lc	50	00	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBTA55,56

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

DRIVER TRANSISTOR

PNP SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				and the last	
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	MMBTA55 MMBTA56	V(BR)CEO	60 80	No. 2"	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)		V _{(BR)EBO}	4.0	-	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)		ICEO	_	0.1	μAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	MMBTA55 MMBTA56	Ісво	<u></u>	0.1 0.1	μAdc
ON CHARACTERISTICS	Tellar tellar			and the latest terminal to the latest terminal t	Qr
DC Current Gain (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 100 mAdc, V _{CE} = 1.0 Vdc)	Object Services	hFE	50 50		-
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)		V _{CE(sat)}	-	0.25	Vdc
Base-Emitter On Voltage ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		V _{BE(on)}		1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS		1.10			
Current-Gain — Bandwidth Product(2) (I _C = 100 mAdc, V _{CE} = 1.0 Vdc, f = 100 MHz)		fT	50	- 1	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

MMBTA63 MMBTA64

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

DARLINGTON TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	30	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current — Continuous	Ic	500	mAdc

THERMAL CHARACTERISTICS

THE HIMAE OHAHAOTENIOTICS					
Characteristic	Symbol	Max	Unit		
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C		
Storage Temperature	T _{stg}	150	°C		
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W		

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPSA75 for graphs.

Char	racteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					DITREGUN	RAND THE
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc)	G0Ng-V	11-75 (ch	V(BR)CES	30	e gr., esten	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc)	asinsk i	Steelers Indel 5 15 1 1	СВО	and the ".	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc)	Olgali		IEBO		100	nAdc
ON CHARACTERISTICS					1 - 1	7 7 12
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc) (I _C = 100 mAdc, V _{CE} = 5.0 Vdc) (I _C = 100 mAdc, V _{CE} = 5.0 Vdc) (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)		MMBTA63 MMBTA64 MMBTA63 MMBTA64	hFE	5,000 10,000 10,000 20,000	1 2 V O	NAC DE
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)			VCE(sat)	100-1	1.5	Vdc
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	No.		V _{BE(on)}	30	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	rig W				parket of t	
Current-Gain — Bandwidth Product (IC = 10 mAdc, VCE = 50 Vdc, f = 10	00 MHz)		fT	125	ARAU (A)	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMOM NATINGS				
Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	40	Vdc	
Emitter-Base Voltage	VEBO	4.0	Vdc	
Collector Current — Continuous	l _C	100	mAdc	

THERMAL CHARACTERISTICS

THE HIVAE OHAHAOTE HIOTIOG					
Characteristic	Symbol	Max	Unit		
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C		
Storage Temperature	T _{stg}	150	°C		
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W		

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBTA70

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N5086 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			10/1/2010	0.00
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	step e nw.	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	4.0	TELLINIA S	Vdc
Collector Cutoff Current (VCB = 30 Vdc, IE = 0)	ІСВО		100	nAdc
ON CHARACTERISTICS		CONTRACT OF STREET	CALL SECTION	Description
DC Current Gain (IC = 5.0 mAdc, VCE = 10 Vdc)	hFE	40	400	Trains.
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)		0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fŢ	125	TOTAL PO	MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz)	C _{obo}	-	4.0	pF

MMBTA92,93

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

HIGH VOLTAGE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating Symbol MMBTA92 MMBTA93 Unit						
Rating	Symbol	MMBTA92	MMBTA93	Unit		
Collector-Emitter Voltage	VCEO	300	200	Vdc		
Collector-Base Voltage	VCBO	300	200	Vdc		
Emitter-Base Voltage	VEBO	5.0	5.0	Vdc		
Collector Current — Continuous	Ic	5	00	mAdo		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Refer to MPSA92 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				COST (4951 37	VIVAKO 470
Collector-Emitter Breakdown Voltage(1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	MMBTA92 MMBTA93	V _(BR) CEO	300 200		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MMBTA92 MMBTA93	V(BR)CBO	300 200	1 2 000m	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	5.0	eni e ina	Vdc
Collector Cutoff Current ($V_{CB} = 200 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 160 \text{ Vdc}$, $I_{E} = 0$)	MMBTA92 MMBTA93	ICBO		0.25 0.25	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	gorizi de	0.1	μAdc
ON CHARACTERISTICS(1)			Contract	San Sharp	And the said
DC Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc)	Both Types Both Types	hFE	25 40	=	- ug/ms
$(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MMBTA92 MMBTA93		25 25	_	
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	MMBTA92 MMBTA93	VCE(sat)	=	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE(sat)}	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fT	50	_	MHz
Collector-Base Capacitance ($V_{CB}=20\ Vdc,I_{E}=0,f=1.0\ MHz)$	MMBTA92 MMBTA93	C _{cb}	=	6.0 8.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MMBTH10

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

NPN SILICON

VHF/UHF TRANSISTOR

THERMAL CHARACTERISTICS Characteristic Symbol Max Unit *Total Device Dissipation, $T_A = 25^{\circ}C$ 350 mW PD Derate above 25°C mW/°C 2.8 Storage Temperature 150 °C Tstg 357 °C/W *Thermal Resistance Junction to Ambient $R_{\theta JA}$

Symbol

VCEO

VCBO

VEBO

Value

25

30

3.0

Unit

Vdc

Vdc

Vdc

MAXIMUM RATINGS

Collector-Emitter Voltage

Collector-Base Voltage

Emitter-Base Voltage

Rating

Refer to MPSH10 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless other	wise noted.)
Characteristic	

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			TATE	Ingra 4
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, Ig = 0)	V(BR)CEO	25	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 25 \text{ Vdc}, I_E = 0)$	Ісво	-	100	nAdc
Emitter Cutoff Current (V _{BE} = 2.0 Vdc, I _C = 0)	IEBO	_	100	nAdc
ON CHARACTERISTICS	•			
DC Current Gain (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	h _{FE}	60	_	_
Collector-Emitter Saturation Voltage ($I_C = 4.0 \text{ mAdc}$, $I_B = 0.4 \text{ mAdc}$)	VCE(sat)	-	0.5	Vdc
Base-Emitter On Voltage (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	V _{BE}		0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fτ	650	1.1.1	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	0.7	pF
Common-Base Feedback Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{rb}	0.35	0.65	pF
Collector Base Time Constant (I _C = 4.0 mAdc, V _{CB} = 10 Vdc, f = 31.8 MHz)	rb'C _C	_	9.0	ps

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

MMBTH24

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

VHF MIXER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	100	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			803	NACTOR IS	AND THE
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, Ig = 0)	V(BR)CEO	30	m	of ale	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	V _(BR) CBO	40	100 <u>-</u>	gi zuAu D	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.0	- 1 <u></u>	on the same	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ICBO	=	- 10 v	50	nAdc
ON CHARACTERISTICS				anjed Tre.	- whi
DC Current Gain (I _C = 8.0 mAdc, V _{CE} = 10 Vdc)	hFE	30		10003734	AK 2 MC
SMALL-SIGNAL CHARACTERISTICS				read to	erud be
Current-Gain — Bandwidth Product(1) (I _C = 8.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	400	620	and the same	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{cb}	- 1	0.25	0.36	pF
Conversion Gain	-			V. SPETE	dB
(213 MHz to 45 MHz) (I _C = 8.0 mAdc, V _{CC} = 20 Vdc, Oscillator Injection = 150 mVrms) (60 MHz to 45 MHz)	c _G	19	24	-	130
(I _C = 8.0 mAdc, V _{CC} = 20 Vdc, Oscillator Injection = 150 mVrms)		24	29	_	

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MMBTH81

CASE 318-02/03, STYLE 6 SOT-23 (TO-236AA/AB)

UHF/VHF TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	20	Vdc
Collector-Base Voltage	V _{CBO}	20	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

*Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			3.5	TATIOAN	Arco sec
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	20	(a _ '= V	en r ad er f	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	V _(BR) CBO	20	are L ight	nov as	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	V(BR)EBO	3.0	_	12-47AS 0	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ICBO	L vi	1014 - -	100	nAdc
Emitter Cutoff Current (V _{BE} = 2.0 Vdc, I _C = 0)	IEBO	_	_	100	nAdc
ON CHARACTERISTICS				augh y	according.
DC Current Gain ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	hFE	60	N E _ 10	1 = 1 0 E	
Collector-Emitter Saturation Voltage ($I_C = 5.0 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)	VCE(sat)	-	_	0.5	Vdc
Base-Emitter On Voltage (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	V _{BE(on)}	-	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	600	_	-	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	C _{cb}		_	0.85	pF
Collector-Emitter Capacitance (I _B = 0, V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{ce}	-	_	0.65	pF

MMBV105G

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

VOLTAGE VARIABLE CAPACITANCE DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	30	Vdc
Forward Current	l _F	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit		
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C		
Storage Temperature	T _{stg}	150	°C		
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W		

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			4.7	COLUMN TARREST	PER CHE
Reverse Breakdown Voltage ($I_R = 10 \mu Adc$)	V _(BR)	30		-	Vdc
Reverse Voltage Leakage Current (V _R = 28 Vdc)	IR	_	n — ,	50	nAdc
Series Inductance (f = 250 MHz)	LS	_	3.0	No. Vo.	nH
Diode Capacitance Temperature Coefficient (V _R = 3.0 Vdc, f = 1.0 MHz)	тсс	_	280	10-r	ppm/°C
Diode Capacitance (V _R = 25 Vdc)	CT	1.8	_	2.8	pF
Capacitance Ratio (V _{R1} = 3.0 Vdc, V _{R2} = 25 Vdc, f = 1.0 MHz)	C3/C25	4.0	_	6.0	7-1

MMBV109

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

VOLTAGE VARIABLE CAPACITANCE DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	30	Vdc
Forward Current	lF	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			10	STATE	DER 1 310
Reverse Breakdown Voltage (I _R = 10 µAdc)	V _(BR)	30		-	Vdc
Reverse Voltage Leakage Current (V _R = 28 Vdc)	IR	_		0.1	μAdc
Series Inductance (f = 250 MHz)	Ls	-	3.0	-	nH
Case Capacitance (f = 1.0 MHz)	cc	_	0.1	-	pF
Diode Capacitance Temperature Coefficient (V _R = 3.0 Vdc, f = 1.0 MHz)	TCC	-	280	-	ppm/°C
Figure of Merit $(V_R = 3.0 \text{ Vdc}, f = 50 \text{ MHz})$	Q	280	_	_	_
Diode Capacitance (V _R = 3.0 Vdc, f = 1.0 MHz)	СТ	26	_	32	pF

MMBV2101 thru MMBV2109

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

TUNING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	30	Vdc
Forward Current	IF	20	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	mW mW/°C	
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8		
Storage Temperature	T _{stg}	150	°C	
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W	

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				DACTERIST	terio cio
Reverse Breakdown Voltage (I _R = 10 µAdc)	V _(BR)	30	-	utAs	Vdc
Reverse Voltage Leakage Current (V _R = 25 Vdc)	IR	-	nor — ogn	20	nAdc
Series Inductance (f = 250 MHz, Lead Length $\approx 1/16"$)	LS	=	3.0	r—cma	nH
Case Capacitance $(f = 1.0 \text{ MHz}, \text{Lead Length} \approx 1/16")$	CC	_	0.15	- T	pF
Diode Capacitance Temperature Coefficient (V _R = 4.0 Vdc, f = 1.0 MHz)	TCC	- 100	280	400	ppm/°C

Device	C_T , Diode Capacitance $V_R = 4.0 \text{ Vdc}$, $f = 1.0 \text{ MHz}$ pF		Q, Figure of Merit VR = 4.0 Vdc f = 50 MHz	TR, Tuni C ₂ / f = 1.	Marking		
	Min	Nom	Max	Min	Min	Max	Тор
MMBV-2101	6.1	6.8	7.5	400	2.5	3.3	4G
MMBV-2102	7.3	8.2	9.0	400	2.6	3.3	45
MMBV-2103	9.0	10	11	350	2.6	3.3	4H
MMBV2104	10.8	12	13.2	350	2.6	3.3	4T
MMBV-2105	13.5	15	16.5	350	2.6	3.3	4U
MMBV-2106	16.2	18	19.8	300	2.7	3.3	4V
MMBV-2107	19.8	22	24.2	300	2.7	3.3	4W
MMBV-2108	24.3	27	29.7	250	2.7	3.3	4X
MMBV-2109	29.7	33	36.3	150	2.7	3.3	4J

MMBV3102

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

VOLTAGE VARIABLE CAPACITANCE DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	30	Vdc
Forward Current	lF	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C	
Storage Temperature	T _{stg}	150	°C	
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W	

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				Arabi II	Total Ro
Reverse Breakdown Voltage (I _R = 10 µAdc)	V(BR)	30	7,6	V - V - Luta	Vdc
Reverse Voltage Leakage Current $(V_R = 25 \text{ Vdc})$	IR	-		0.1	μAdc
Series Inductance (f = 250 MHz)	LS	_	3.0	-	nH
Case Capacitance (f = 1.0 MHz)	c _C	-	0.1	-	pF
Diode Capacitance Temperature Coefficient (V _R = 3.0 Vdc, f = 1.0 MHz)	тсс	_	280	-	ppm/°C
Figure of Merit (V _R = 3.0 Vdc, f = 50 MHz)	Q	300		F-0	
Diode Capacitance (V _R = 3.0 Vdc, f = 1.0 MHz)	C _T	20	_	25	pF

MMBV3401

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

SILICON PIN SWITCHING DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	35	Vdc

THERMAL CHARACTERISTICS

THE WALL OF A TANK OF EMB 1100								
Characteristic	Symbol	Max	Unit					
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C					
Storage Temperature	T _{stg}	150	°C					
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W					

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			-	10.157.37	260 P
Reverse Breakdown Voltage (I _R = 10 μAdc)	V(BR)	35	_	-	Vdc
Reverse Voltage Leakage Current (V _R = 25 Vdc)	IR	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1	μAdc
Series Inductance (f = 250 MHz)	Ls	_	3.0	-/	nH
Series Resistance (I _F = 10 mAdc)	RS	_	_	0.7	Ohms
Case Capacitance (f = 1.0 MHz)	СС		0.1	- Ku	pF
Diode Capacitance (V _B = 20 Vdc, f = 1.0 MHz)	C _T	_	() o	1.0	pF

MMBZ5226 thru MMBZ5257

CASE 318-02/03, STYLE 8 SOT-23 (TO-236AA/AB)

ZENER DIODES

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W

^{*}Package mounted on 99.5% alumina 10 x 8 x 0.6 mm.

V_F = 0.9 V Max @ I_F = 10 mA for all types.

	-7	Test		Zener Voltage		Max Zener		
MMBZ	Marking	Current IZT mA	Min	V _Z	Max	Impedance @ IZT Ω	Max I _R μA	© VR V
5226	8A	5.0	3.1	3.3	3.5	175	25	.95
5227	8B	5.0	3.4	3.6	3.8	145	15	.95
5228	8C	5.0	3.7	3.9	4.1	120	10	.95
5229	8D	5.0	4.0	4.3	4.6	100	5	.95
5230	8E	5.0	4.4	4.7	5.0	80	3	2.0
5231	8F	5.0	4.8	5.1	5.4	60	2	2.0
5232	8G	5.0	5.2	5.6	6.0	40	1	2.0
5233	8H	5.0	5.6	6.0	6.4	25	5	3.3
5234	8J	5.0	5.8	6.2	6.6	10	3	4.0
5235	8K	5.0	6.4	6.8	7.2	15	2	4.0
5236	8L	5.0	7.0	7.5	7.9	15	1	5.0
5237	8M	5.0	7.7	8.2	8.7	15	0.7	5.0
5238	8N	5.0	8.2	8.7	9.2	15	0.6	5.5
5239	8P	5.0	8.5	9.1	9.6	15	0.5	6.0
5240	80	5.0	9.4	10	10.6	20	0.2	7.0
5241	8R	5.0	10.4	11	11.6	20	0.1	8.0
5242	85	5.0	11.4	12	12.7	25	0.1	8.0
5243	8T	5.0	12.4	13	14.1	30	0.1	8.0
5244	8U	5.0	13.2	14	14.8	30	0.1	9.5
5245	8V	5.0	13.8	15	15.6	30	0.05	10.5
5246	8W	5.0	15.3	16	17.1	40	0.05	11.2
5247	8X	5.0	16.0	17	18.0	45	0.05	11.9
5248	8Y	5.0	16.8	18	19.1	45	0.05	12.6
5249	8Z	5.0	17.9	19	20.1	50	0.05	13.3
5250	81A	5.0	18.8	20	21.2	55	0.05	14.0
5251	81B	5.0	20.8	22	23.3	55	0.05	15.4
5252	81C	5.0	22.8	24	25.6	70	0.05	16.8
5253	81D	5.0	23.3	25	26.7	75	0.05	17.5
5254	81E	2.0	25.1	27	28.9	80	0.05	18.9
5255	81F	2.0	26.1	28	29.9	80	0.05	19.6
5256	81G	2.0	28.0	30	32.0	80	0.05	21.0
5257	81H	2.0	30.8	33	35.0	80	0.05	23.1

MXR3866

CASE 345-01, STYLE 1 SOT-89

RF TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	V
Collector-Base Voltage	V _{CBO}	55	V
Emitter-Base Voltage	V _{EBO}	3.5	V
Collector Current — Continuous	lc	0.4	А
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Characteristic			Symbol	Min	Max	Unit
OFF CHARACTERISTICS	38	1 10	08			UR
Collector-Emitter Breakdown Voltage (I _C = 5.0 mA, R _{BE} = 10 Ω)	Alta EA	- 5	V(BR)CER	55	-	V
Collector-Emitter Sustaining Voltage (I _C = 5.0 mA)	0.8	20	V _{CEO(sus)}	30		OCS. V
Collector-Base Breakdown Voltage (I _C = 0.1 mA)	68 82	1.6	V _(BR) CBO	55	Ţ	sese V
Emitter-Base Breakdown Voltage (I _E = 0.1 mA)	E8 53	H.F	V _{(BR)EBO}	3.5		V
Collector Cutoff Current (V _{CE} = 28 V)	2.6 7.2	,AG	ICEO	Xi	20	μА
Collector Cutoff Current (V _{CE} = 55 V, V _{BE} = 1.5 V)	18 13	1.	ICEX	- 18	100	μА
ON CHARACTERISTICS						- Company
DC Current Gain (I _C = 0.36 A, V _{CE} = 5.0 V) (I _C = 0.05 A, V _{CE} = 5.0 V)	- h- 61 31 11	1.E	hFE	5.0 10	200	5240
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 20 mA)		8-17	V _{CE(sat)}	3	1.0	MAKE V
SMALL-SIGNAL CHARACTERISTICS				110		3860
Current-Gain — Bandwidth Product (I _C = 50 mA, V _{CE} = 15 V, f = 200 MHz)	Ma i		fT	500		MHz
Output Capacitance (V _{CB} = 30 V, f = 1.0 MHz)	18.		C _{obo}	X	3.0	pF

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	V
Collector-Base Voltage	V _{CBO}	60	V
Emitter-Base Voltage	VEBO	4.0	V
Collector Current — Continuous	Ic	0.4	А
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

MXR5160

CASE 345-01, STYLE 1 SOT-89

RF TRANSISTOR
PNP SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			VI TRAILE	PARTS
Collector-Emitter Sustaining Voltage (I _C = 5.0 mA)	VCEO(sus)	40	racion de	V
Emitter-Base Breakdown Voltage (I _E = 0.1 mA)	V(BR)EBO	4.0	out a nd a	V
Collector Cutoff Current (V _{CB} = 28 V)	ICBO	 poly-	1.0	μΑ
Collector Cutoff Current (V _{CE} = 60 V)	ICES	_	0.1	mA
Emitter Cutoff Current (V _{CE} = 28 V)	ICEO	_	20	μΑ
ON CHARACTERISTICS	•		Mary Sale	ARAPA I
DC Current Gain (I _C = 50 mA, V _{CE} = 5.0 V)	hFE	10		13 O.
SMALL-SIGNAL CHARACTERISTICS		100	1 10 10	
Current-Gain — Bandwidth Product (I _C = 50 mA, V _{CE} = 15 V, f = 200 MHz)	fr	500	2	MHz

MXR5583

CASE 345-01, STYLE 1 SOT-89

HIGH FREQUENCY RF TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	٧
Collector-Base Voltage	V _{CBO}	30	V
Emitter-Base Voltage	V _{EBO}	3.0	٧
Collector Current — Continuous	IC	500	mA
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

THE HIMAE OHAHAOTE HIOTIO			
Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			L. P. P. L.	1401-0
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mA)	V(BR)CEO	30	11-1-1	٧
Collector-Base Breakdown Voltage(1) (I _C = 10 μA)	V(BR)CBO	30		V
Emitter-Base Breakdown Voltage (I _E = 100 µA)	V(BR)EBO	3.0	-	٧
Collector Cutoff Current (V _{CB} = 20 V)	ІСВО	2-2	50	nA
Emitter Cutoff Current (V _{EB} = 2.0 V)	IEBO	_	0.5	μΑ
ON CHARACTERISTICS			100000	одилир и
DC Current Gain (I _C = 40 mA, V_{CE} = 2.0 V) (I _C = 100 mA, V_{CE} = 2.0 V) (I _C = 300 mA, V_{CE} = 5.0 V)	hFE	20 25 15	100	-
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 10 mA)	VCE(sat)	-	0.8	V
Base-Emitter On Voltage (I _C = 100 mA, V _{CE} = 2.0 V)	V _{BE(on)}	_	1.8	V
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 40$ mA, $V_{CE} = 10$ V, $f = 100$ MHz) ($I_C = 100$ mA, $V_{CE} = 10$ V, $f = 100$ MHz)	fT	1000 1300	_	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	٧
Collector-Base Voltage	V _{CBO}	40	V
Emitter-Base Voltage	V _{EBO}	3.5	V
Collector Current — Continuous	lc	400	mA
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

MXR5943

CASE 345-01, STYLE 1 SOT-89

RF TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				1
Collector-Emitter Breakdown Voltage (I _C = 5.0 mA)	V(BR)CEO	30	=	٧
Collector-Base Breakdown Voltage (IC = 100 µA)	V(BR)CBO	40	1	V
Emitter-Base Breakdown Voltage (IE = 100 µA)	V(BR)EBO	3.5	1	٧
Collector Cutoff Current (V _{CE} = 20 V)	ICEO		50	μΑ
Collector Cutoff Current (V _{CB} = 15 V)	Ісво	-	10	μА
ON CHARACTERISTICS				
DC Current Gain ($I_C = 50 \text{ mA}, V_{CE} = 15 \text{ V}$)	hFE	25	300	_
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 10 mA)	VCE(sat)		0.2	V
Base-Emitter Saturation Voltage (IC = 100 mA, I _B = 10 mA)	V _{BE} (sat)	1 - 1	1.0	V
SMALL SIGNAL CHARACTERISTICS		4	2 1	
Current-Gain — Bandwidth Product (I _C = 25 mA, V _{CE} = 15 V, f = 200 MHz) (I _C = 50 mA, V _{CE} = 15 V, f = 200 MHz) (I _C = 100 mA, V _{CE} = 15 V, f = 200 MHz)	ft	1000 1200 1000	= \	MHz

MXT3904

CASE 345-01, STYLE 1 SOT-89

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltge	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	IC	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Refer to 2N3904 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			ELIDEST:	AND NO
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	entre d inan	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _(BR) CBO	60	er di Se rri di Ma	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	V _{(BR)EBO}	6.0	a a l ang	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	-	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	ICEX	_	50	nAdc
ON CHARACTERISTICS			33	LACANO NO
DC Current Gain(1)	hFE	40 70 100 60 30	300	
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	-	0.2	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{BE} (sat)	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	300	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I_E = 0, f = 1.0 MHz)	C _{obo}	_	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0 , f = 1.0 MHz)	C _{ibo}	_	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	1.0	10	k ohms
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{re}	0.5	8.0	X 10-4
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	100	400	_

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k ohms, f = 10 Hz to 15.7 kHz)	NF	Sivro	5.0	dB

SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,	td	_	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)	t _r	- 3	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _{B1} = I _{B2} = 1.0 mAdc)	t _S	-	200	ns
Fall Time	S. Manual Property - Talk and a state of	tf		50	ns

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

MXT3906

CASE 345-01, STYLE 1 SOT-89

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	Ic	200	mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Refer to 2N3905 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)	I _{BL}	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)	ICEX	_	50	nAdc
ON CHARACTERISTICS(1)				
DC Current Gain	hFE	60 80 100 60 30		_
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc)	VCE(sat)	=	0.25 0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{BE} (sat)	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f⊤	250	_	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	4.5	pF
Input Capacitance ($V_{BE}=0.5\ Vdc$, $I_{C}=0$, $f=100\ kHz$)	C _{ibo}	_	10.0	pF
Input Impedance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	hie	2.0	12	k ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	10	X 10-4
Small Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	100	400	_

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{oe}	3.0	60	μmhos
Noise Figure $(I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc, R_S = 1.0 k ohm, f = 10 Hz to 15.7 kHz)$	NF	d.1777a	4.0	dB

SWITCHING CHARACTERISTICS

5 1 7			T	25	
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc	t _d		35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc}$	t _r	-15	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc,	t _S	-	225	ns
Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mAdc}$	tf	- 13	75	ns

⁽¹⁾ Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MXTA14

CASE 345-01, STYLE 1 SOT-89

DARLINGTON TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	V
Collector-Emitter Voltage	VCES	30	V
Emitter-Base Voltage	VEBO	10	V
Collector Current — Continuous	Ic	300	mV

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Refer to 2N6426 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 100 μ A)	V(BR)CES	30	-	V
Collector Cutoff Current (V _{CB} = 30)	ICBO	_	100	nA
Emitter Cutoff Current (V _{BE} = 10 V)	IEBO	_	100	nA
ON CHARACTERISTICS				
DC Current Gain(1) ($I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$) ($I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$)	hFE	10 K 20 K	=	_
Collector-Emitter Saturation Voltage(1) (I _C = 100 mA, I _B = 0.1 mA)	V _{CE(sat)}	-	1.5	V
Base-Emitter On Voltage (I _C = 100 mA, V _{CE} = 5.0 V)	VBE(on)	_	2.0	V
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (VCE = 5.0 V, IC = 10 mA, f = 100 MHz)	fT	125	-	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0 %.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	60	V
Emitter-Base Voltage	V _{EBO}	10	V
Collector Current — Continuous	lc	500	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

MXTA27

CASE 345-01, STYLE 1 SOT-89

DARLINGTON TRANSISTOR

NPN SILICON

Refer to MPSA25 for graphs.

Characteristic	8	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				acrine	ATT MANUSTO
Collector-Emitter Breakdown Voltage (I _C = 100 µA)	ShATKIV	V _(BR) CES	60	HoV we ll- less is.	Visite
Collector-Base Breakdown Voltage (I _C = 100 μA)	1000000	V(BR)CBO	60	- CV - May	V
Collector Cutoff Current (V _{CB} = 50 V)	CPA-1	ICBO	_	100	nA
Collector Cutoff Current (V _{CE} = 50 V)	D ₂	ICES	_	500	nA
Emitter Cutoff Current (VBE = 10 V)	Light new	IEBO	_	100	nA
ON CHARACTERISTICS					
DC Current-Gain (I _C = 10 mA, V_{CE} = 5.0 V) (I _C = 100 mA, V_{CE} = 5.0 V)	State of the state	hFE	10 K 10 K	10 <u>-</u> 91 st	7 0.0 - 1871 V 2 h - agh
Collector-Emitter Breakdown Voltage (I _C = 100 mA, I _B = 0.1 A)		VCES		1.5	V Committee
Base-Emitter On Voltage (I _C = 100 mA, V _{CE} = 5.0 V)	THE THE	V _{BE(on)}	_	2.0	V
SMALL-SIGNAL CHARACTERISTICS	12423/1		6	WIND BY	And all well
Current Gain — High Frequency (I _C = 10 mA, V _{CE} = 5.0 V, f = 100 MHz)	N I	h _{fe}	1.25	not nederns to	College 1-E mille

MXTA42 MXTA43

CASE 345-01, STYLE 1 SOT-89

HIGH VOLTAGE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MPSA42	MPSA43	Unit
Collector-Emitter Voltage	VCEO	300	200	Vdc
Collector-Base Voltage	VCBO	300	200	Vdc
Emitter-Base Voltage	VEBO	6.0	6.0	Vdc
Collector Current — Continuous	lc	500		mAdo

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Refer to MPSA42 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	my?	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	MXTA42 MXTA43	V(BR)CEO	300 200	EART OF	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	MXTA42 MXTA43	V(BR)CBO	300 200	120 20 100	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \ \mu Adc, I_C = 0)$	E .	V(BR)EBO	6.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 160 \text{ Vdc}, I_E = 0)$	MXTA42 MXTA43	ICBO		0.1 0.1	μAdc
Emitter Cutoff Current $(V_{BE} = 6.0 \text{ Vdc}, I_{C} = 0)$ $(V_{BE} = 4.0 \text{ Vdc}, I_{C} = 0)$	MXTA42 MXTA43	IEBO	= ;	0.1 0.1	μAdc
ON CHARACTERISTICS(1)			18		
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	Both Types Both Types	hFE	25 40	=	_
$(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MXTA42 MXTA43		40 40	Marin Aug	
Collector-Emitter Saturation Voltage ($I_C = 20$ mAdc, $I_B = 2.0$ mAdc)	MXTA42 MXTA43	VCE(sat)	_	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE} (sat)	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fΤ	50	_	MHz
Collector-Base Capacitance ($V_{CB}=20\ Vdc,\ I_{E}=0,\ f=1.0\ MHz$)	MXTA42 MXTA43	C _{cb}	_	3.0 4.0	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	400	V
Collector-Base Voltage	V _{CBO}	500	V
Emitter-Base Voltage	VEBO	6.0	V
Collector Current — Continuous	lc	300	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

MXTA44

CASE 345-01, STYLE 1 SOT-89

HIGH VOLTAGE TRANSISTOR

NPN SILICON

Refer to MPSA44 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			when the	
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mA, I _B = 0)	V(BR)CEO	400	10.00	V
Collector-Emitter Breakdown Voltage (I _C = 100 µA, V _{BE} = 0)	V(BR)CES	500	0017	V
Collector-Base Breakdown Voltage (I _C = 100 µA, I _B = 0)	V(BR)CBO	500	-	V
Emitter-Base Breakdown Voltage ($I_E = 10 \mu A$, $I_C = 0$)	V(BR)EBO	6.0	H-G a -To	V
ON CHARACTERISTICS				
DC Current Gain(1) (I _C = 1.0 mA, V_{CE} = 10) (I _C = 10 mA, V_{CE} = 10) (I _C = 50 mA, V_{CE} = 10) (I _C = 100 mA, V_{CE} = 10)	hFE	40 50 45 40	200 —	
Collector-Emitter Saturation Voltage(1) ($I_C = 1.0$ mA, $I_B = 0.1$ mA) ($I_C = 10$ mA, $I_B = 1.0$ mA) ($I_C = 50$ mA, $I_B = 5.0$ mA)	VCE(sat)	=	0.4 0.5 0.75	V
Base-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA)	V _{BE} (sat)	41-4 -	0.75	V
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 20 V, I _E = 0, f = 1.0 MHz)	C _{obo}	_	6.0	pF
Input Capacitance (VEB = $0.5 \text{ V, I}_{\text{C}} = 0, \text{ f} = 1.0 \text{ MHz}$)	C _{ibo}	_	110	pF
Current Gain — High Frequency (I _C = 10 mA, V _{CE} = 10 V, f = 10 MHz)	h _{fe}	2.0	-	_

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0 %.

MXTA64

CASE 345-01, STYLE 1 SOT-89

DARLINGTON TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	10	Vdc
Collector Current — Continuous	Ic	300	mA

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	RAJA	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		-	alternation	1440 980
Collector-Emitter Breakdown Voltage (IC = 100 μ A)	V(BR)CES	30	egen i <u>Lucher</u> i gil jer	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc)	ICBO	1810 <u>L</u> 1110	100	nA
Emitter Cutoff Current (V _{BE} = 10 Vdc)	IEBO	000 <u>-</u> N 18	100	nAc
ON CHARACTERISTICS		-18-17-17 -	and States	or at a
DC Current Gain ($I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ Vdc}$)(1) ($I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ Vdc}$)(1)	hFE	10000 20000	<u>-</u> 10	MANUEL IN
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 0.1 mA)(1)	VCE(sat)	- 2	1.5	Vdc
Base-Emitter On Voltage ($I_C = 100$ mA, $V_{CE} = 5.0$ Vdc)(1)	V _{BE(on)}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (V _{CE} = 5.0 Vdc, I _C = 100 mA, f = 100 MHz)	fT	125		MHz

⁽¹⁾ Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	60	V
Emitter-Base Voltage	VEBO	10	V
Collector Current — Continuous	Ic	300	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

MXTA77

CASE 345-01, STYLE 1 SOT-89

DARLINGTON TRANSISTOR

PNP SILICON

Refer to MPSA75 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			118911.	AND T
Collector-Emitter Breakdown Voltage (I _C = 100 µA)	V(BR)CES	60	-	٧
Collector-Base Breakdown Voltage (IC = 100 µA)	V(BR)CBO	60	-	V
Collector Cutoff Current (V _{CB} = 50 V)	СВО	_	100	nA
Collector Cutoff Current (VCE = 50 V)	ICES	10 <u></u> 10-7	500	nA
Emitter Cutoff Current (VBE = 10 V)	IEBO	- 0.	100	nA
ON CHARACTERISTICS	1 - 4 -			
DC Current Gain (I _C = 10 mA, V _{CE} = 5.0 V) (I _C = 100 mA, V _{CE} = 5.0 V)	hFE	10 K 10 K		51 along 2
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 0.1 mA)	V _{CE(sat)}		1.5	٧
Base-Emitter On Voltage (I _C = 100 mA, V _{CE} = 5.0 V)	V _{BE(on)}		2.0	٧
Current Gain — High Frequency (I _C = 10 mA, V _{CE} = 5.0 V, f = 100 MHz)	h _{fe}	1.25	_	_

MXTA92 MXTA93

CASE 345-01, STYLE 1 SOT-89

HIGH VOLTAGE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MPS-A92	MPS-A93	Unit
Collector-Emitter Voltage	VCEO	300	200	Vdc
Collector-Base Voltage	VCBO	300	200	Vdc
Emitter-Base Voltage	VEBO	5	.0	Vdc
Collector Current — Continuous	lc	50	00	mAdd

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Total Device Dissipation, T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/°C
Storage Temperature	T _{stg}	150	°C
*Thermal Resistance Junction to Ambient	$R_{\theta JA}$	125	°C/W

^{*}Package mounted on 99.5% alumina 10 x 12 x 0.6 mm.

Refer to MPSA92 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1. 1.191	1 111111	May 13
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	MXTA92 MXTA93	V(BR)CEO	300 200	= -	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MXTA92 MXTA93	V(BR)CBO	300 200	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current ($V_{CB} = 200 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 160 \text{ Vdc}$, $I_{E} = 0$)	MXTA92 MXTA93	ІСВО		0.25 0.25	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	_	0.1	μAdc
ON CHARACTERISTICS(1)			7.2		5.
DC Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc)	Both Types Both Types	hFE	25 40	= =	
$(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MXTA92 MXTA93		25 25	 150	- Markey Co
Collector-Emitter Saturation Voltage ($I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc}$)	MXTA92 MXTA93	VCE(sat)	_	0.5 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE(sat)}	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fT	50	-	MHz
Collector-Base Capacitance $(V_{CB}=20\ Vdc,I_{E}=0,f=1.0\ MHz)$	MXTA92 MXTA93	C _{cb}	=	6.0 8.0	pF

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

Motorola's metal-can transistor product offering includes: general purpose, switching, high voltage, choppers, Darlingtons, low noise amplifiers and RF amplifiers.

A variety of package options are available: TO-18, TO-46, TO-52, TO-72, and TO-39.

Many devices contained in this section are also available with high reliability MIL-S-19500 processing. JAN, JANTX, JANTXV, and JANS qualified devices are so noted on the following data sheets.

Metal Transistors

2N656 2N657

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3498 for graphs.

MAXIMUM RATINGS

MAXIMUM RATINGS			- Win	
Rating	Symbol	2N656	2N657	Unit
Collector-Emitter Voltage	VCEO	60	100	Vdc
Collector-Base Voltage	VCBO	60	100	Vdc
Emitter-Base Voltage	VEBO	8	.0	Vdc
Collector Current — Continuous 2N656 2N657	IC IC		.0 .5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	-	.0 .7	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		.0	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to	+200	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 250 μ Adc, IB = 0)	2N656 2N657	V(BR)CEO	60 100	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	2N656 2N657	V(BR)CBO	60 100	=	Vdc
Emitter-Base Breakdown Voltage ($I_E=250~\mu Adc, I_C=0$)		V _{(BR)EBO}	8.0	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		ICBO	_	10	μAdc
ON CHARACTERISTICS					•
DC Current Gain (I _C = 200 mAdc, V _{CE} = 10 Vdc)		hFE	30	90	_
Collector-Emitter Saturation Voltage(1) (I _C = 200 mAdc, I _B = 40 mAdc)		VCE(sat)	_	4.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Input Impedance(1) (I _B = 8.0 mAdc, V _{CE} = 10 Vdc)		h _{ie}	_	0.5	k ohm

(1) Pulse Test: Pulse Length = 300 µs, Duty Cycle ≤ 2.0%.

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N2218 for graphs.

MAXIMUM RATINGS

MAXIMON NATINGS							
Rating	Symbol	Value	Unit				
Collector-Emitter Voltage	VCER	40	Vdc				
Collector-Base Voltage	VCBO	60	Vdc				
Emitter-Base Voltage	VEBO	5.0	Vdc				
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.6 4.0	Watt mW/°C				
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	PD	2.0 13.3	Watts mW/°C				
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C				

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			grant abid to a	BAC AD
Collector-Emitter Breakdown Voltage(1) (I _C = 100 mAdc, R _{BE} = 10 ohms)	V(BR)CER	40	Tall Inch	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	V _(BR) CBO	60	Faller Con-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V _{(BR)EBO}	5.0	1000 m	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	ІСВО		1.0 100	μAdc
ON CHARACTERISTICS		1007.01	ar translati	A
DC Current Gain(1) (I _C = 150 mAdc, V _{CE} = 10 Vdc)	hFE	40	120	3000 ,- ,2
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	(A) seller	1.5	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	a: I = IT	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS	101-2-22-2	ok alaman	1 7 67	W . NO
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0)	C _{obo}		35	pF
Small-Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	h _{fe}	2.5		MHz
1) Pulsa Test: Pulsa Length < 12 ma Pulsa Cycle < 2 09/			0	

(1) Pulse Test: Pulse Length ≤ 12 ms, Duty Cycle ≤ 2.0%.

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCER	80	Vdc
Collector-Base Voltage	V _{CBO}	120	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.6 4.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.0 13.3	Watts mW/°C
Operating and Storage Temperature Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	75	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	250	°C/W

Refer to 2N3019 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			SATE DETEN	gallip Tie
Collector-Emitter Breakdown Voltage (1) (I _C = 100 mAdc, R _{BE} ≦ 10 ohms)	V(BR)CER	80		Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	lCBO		2.0 200	μAdc
Emitter Cutoff Current (VEB = 2.0 Vdc, $I_C = 0$)	I _{EBO}		100	μAdc
ON CHARACTERISTICS				
DC Current Gain (1) (I _C = 150 mAdc, V_{CE} = 10 Vdc)	hFE	40	120	
Collector-Emitter Saturation Voltage (1) (I _C = 150 mAdc, I _B = 15 mAdc)	VCE(sat)	1000	5.0	Vdc
Base-Emitter Saturation Voltage (1) (IC = 150 mAdc, IB = 15 mAdc)	VBE(sat)	SATE AND TO	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS	*	254 x 72	ter del o	10-3 mg/s
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	50	And	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	20	pF
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 10 Vdc, f = 1.0 kHz)	hib	20	30 10	Ohms
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 5.0 \text{ mAdc}$, $V_{CB} = 10 \text{ Vdc}$, $f = 1.0 \text{ khZ}$)	h _{rb}	_	2.5 3.0	X 10-4
Small Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	35 45	100	_
Output Admittance (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CB} = 10 Vdc, f = 1.0 kHz)	h _{ob}	0.05	0.5 1.0	μmhos

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

JAN AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

Refer to 2N2368 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	600 4.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 2.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	25	-	-	Vdc
Collector-Base Breakdown Voltage (I _C = 5.0 µAdc, I _E = 0)	V _(BR) CBO	25	_	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V(BR)EBO	5.0	-	-	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, I _B = 0)	ICEO	_	-	10	μAdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0) (V _{CB} = 10 Vdc, I _E = 0, T _A = $+150$ °C)	ICBO	=	=	0.5 50	μAdc
ON CHARACTERISTICS			1-6	l v	
DC Current Gain(1) (I _C = 10 mAdc, V_{CE} = 5.0 Vdc) (I _C = 10 mAdc, V_{CE} = 5.0 Vdc, T_{A} = -55°C)	hFE	40 20	=	100	-
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 0.5 mAdc)	VCE(sat)	-	_	0.5	Vdc
Base-Emitter On Voltage(1) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	VBE(on)	0.7	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _E = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	fT	70	150	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0 , f = 1.0 MHz)	C _{obo}	-	3.0	6.0	pF

(1) Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle = 2.0%

2N706,A,B

(2N706 JAN AVAILABLE) CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

Refer to 2N2368 for graphs.

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	2N706A,B	VCEO	15	Vdc
Collector-Emitter Voltage	1)	VCER	20	Volts
Collector-Base Voltage		VCBO	25	Volts
Emitter-Base Voltage	2N706 2N706A 2N706B	VEBO	3.0 5.0 5.0	Volts
Collector Current	2N706,A,B	lc	50	mA
Total Device Dissipation (Derate above 25°C	\hat{a} T _A = 25°C	PD	0.3 2.0	Watt mW/°C
Total Device Dissipation (Derate above 25°C	\widehat{a} T _C = 25°C	PD	1.0 6.67	Watts mW/°C
Total Device Dissipation (Derate above 100°C	$\widehat{w} T_{C} = 100^{\circ}C$	PD	0.5	Watt
Operating and Storage Ju Temperature Range	inction	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	150	°C/W
Thermal Resistance, Junction to Ambient 2N706A,B	$R_{\theta JA}$	500	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				THE SHOPE OF	AHARD SI
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)		V(BR)CEO	15	p. Jaker	Vdc
Collector-Emitter Breakdown Voltage(2) (R = 10 ohms, I _C = 10 mAdc)		V(BR)CER	20	AND PACK OF	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$ $(V_{CB} = 25 \text{ Vdc}, I_E = 0)$	2N706A, 2N706B	ICBO	=	0.5 30 10	μAdc
Collector Cutoff Current (V _{CE} = 20 Vdc, R _{BE} = 100k)	2N706A, 2N706B	CER	_	10	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0) (VEB = 5.0 Vdc, I _C = 0)	2N706 2N706A, 2N706B	IEBO	=	10 10	μAdc
ON CHARACTERISTICS			7.	2 85 - 34	177 30
DC Current Gain(2) $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N706 2N706A, 2N706B	hFE	20 20	60	01 -4
Collector-Emitter Saturation Voltage(2) (I _C = 10 mAdc, I _B = 1.0 mAdc)	2N706, 2N706A 2N706B	V _{CE(sat)}	= 1	0.6 0.4	Vdc
Base-Emitter Saturation Voltage(2) (I _C = 10 mAdc, I _B = 1.0 mAdc)	2N706 2N706A, 2N706B	V _{BE(sat)}	_ 0.7	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					2
Current-Gain — Bandwidth Product (V _{CE} = 15 Vdc, I _E = 10 mAdc, f = 100 MHz)		fT	200	- 4	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$	2N706A, 2N706B 2N706	C _{obo}	=	5.0 6.0	pF
Magnitude of Forward Current Transfer Ratio, Common-R (VCE = 15 Vdc, IE = 10 mAdc, f = 100 Mhz) (VCE = 10 Vdc, IE = 10 mAdc, f = 100 MHz)	Emitter 2N706 2N706A,B	h _{fe}	2.0	=	_

2N706,A,B

Characteristic	ar brown Range Co.	Symbol	Min	Max	Unit
Collector Base Time Constant (V _{CE} = 15 Vdc, I _E = 10 mAdc, f = 300 MHz)	A STATE OF THE PARTY OF THE PAR	rb	_	50	ohms
Storage Time	2N706B	t _S	_	25	ns
Turn-On Time (I _{B1} = 3.0 mA, I _{B2} = 1.0 mA)		ton	- -	40	ns
Turn-Off Time (I _{B1} = 3.0 mA, I _{B2} = 1.0 mA)		toff	_	75	ns
Charge Storage Time Constant(2)	2N706 2N706A,B	тs		60 25	ns

- (1) Refers to collector breakdown voltage in the high current region when Rbe = 10 Ω
- (2) Pulse Test: Pulse Width \leq 12 μ s, Duty Cycle \leq 2.0%.
- (3) Switching Times Measured with Tektronix Type R Plug-In (50 Ω Internal Impedance).

JAN, JTX AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	15	Vdc	
Collector-Emitter Voltage	VCER	20	Vdc	
Collector-Base Voltage	VCBO	40	Vdc	
Emitter-Base Voltage	VEBO	5.0	Vdc	
Collector Current — Continuous	lc	limited by PD only		
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	360 m 2.1 mV		
Total Device Dissipation @ $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$ Derate above 25°C Derate above 100°C	PD	1.2 680 6.9 6.9	Watts mW mW/°C mW/°C	
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	145	°C/W

Refer to 2N2368 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	Yes -			
Collector-Emitter Breakdown Voltage (I _C = 30 mAdc, R _{BE} ≤ 10 ohms)	V _{CER(sus)}	20	_	Vdc
Collector-Emitter Sustaining Voltage (I _C = 30 mAdc, I _B = 0)	V _{CEO(sus)}	15	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$)	V _(BR) CBO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (VCE = 20 Vdc, VBE = 0.25 Vdc, TA = +125°C)	ICEX	_	10	μAdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_C = 0, T_A = 150^{\circ}\text{C})$	ICBO	_	0.025 15	μAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, IC = 0)	IEBO	_	0.08	μAdc
ON CHARACTERISTICS				
DC Current Gain (IC = 0.5 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 1.0 Vdc)(1) (IC = 10 mAdc, VCE = 1.0 Vdc, $T_A = -55^{\circ}C$)(1)	hFE	15 30 15	120 —	_
Collector-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 7.0$ mAdc, $I_B = 0.7$ mAdc, $T_A = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$)	VCE(sat)	=	0.4 0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 7.0 mAdc, I _B = 0.7 mAdc, T _A = -55°C)	VBE(sat)	0.72	0.80 0.90	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	300	_	MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, 100 kHz \leq f \leq 1.0 MHz)	C _{obo}	_	6.0	pF
Extrinsic Base Resistance (IC = 10 mAdc, VCE = 10 Vdc, f = 300 MHz)	rb'	_	50	ohms
SWITCHING CHARACTERISTICS				
Storage Time ($I_C = I_{B1} = I_{B2} = 10 \text{ mAdc}$)	t _S	_	25	ns
Turn-On Time	ton	_	40	ns
Turn-Off Time	toff	_	70	ns

CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N2218 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage(1)	VCER	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	500	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.4 2.66	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 10	Watts mW/°C
Total Device Dissipation @T _C = 100°C	PD	0.75	Watt
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Min	Max	Unit
OFF CHARACTERISTICS				12.867
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, pulsed; R _B ≤ 10 Ohms)	V _{CER(sus)}	40	- T-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V _(BR) CBO	60	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 1.0 mA, I _C = 0)	V _{(BR)EBO}	5	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _A = 150 $^{\circ}$ C)	ІСВО	=	1.0 100	μAdc
ON CHARACTERISTICS				100
DC Current Gain (I _C = 150 mAdc, V _{CE} = 10 Vdc)	hFE	40	120	_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	-	1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	_	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 10 Vdc, f = 100 kHz, I _E = 0)	C _{obo}	-	35	pF
Input Capacitance $(V_{BE} = 0.5 \text{ V, f} = 100 \text{ kHz, I}_{C} = 0)$	C _{ibo}	_	80	pF
Small-Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	h _{fe}	2.5	_	_

(1) Pulse Test: PW ≤ 300 µs, Duty Cycle ≤ 2.0%.

2N718A 2N956, 2N1711

2N718A JAN, JTX, JTXV AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

2N718A: See 2N3019 for graphs.*

MAXIMUM RATINGS

Rating	Symbol	2N718A 2N956	2N1711	Unit
Collector-Emitter Voltage	VCER	5	0	Vdc
Collector-Base Voltage	VCBO	7	5	Vdc
Emitter-Base Voltage	V _{EBO}	7.0		Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 2.86	800 4.57	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	3.0 17.15	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				80	n amilitado	MUET TRE
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, pulsed; R _{BE} ≤ 10 ohms)		VCER(sus)	50	10" - 009	end <u>—</u> sver eco. = D	Vdc
Collector-Base Breakdown Voltage $(I_C = 100 \ \mu Adc, I_E = 0)$		V(BR)CBO	75	in Fig.	1 7 4 9	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	7.0	inger La r en la Equi	- 1 VS	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T_A = 150°C)		^I CBO		0.001	0.01 10	μAdc
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	2N718A, 2N956, 2N1711	IEBO	_		0.010 0.005	μAdc
ON CHARACTERISTICS				100		
DC Current Gain (I _C = 0.01 mAdc, V _{CE} = 10 Vdc)	2N956, 2N1711	hFE	20	Am Pf	I source of	-
$(I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N718A, 2N956, 2N1711		20 35	10 <u>-</u> 140	NO LA IN	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N718A, 2N956, 2N1711		35 75		62516 T-90	1.7
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	2N718A, 2N956, 2N1711		20 35) <u>es</u> u	_ = -	and the second
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N718A, 2N956, 2N1711		40 100	==	120 300	
$(I_{C} = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N718A, 2N956, 2N1711		20 40	_	_	
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)}	-	0.24	1.5	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)		V _{BE(sat)}	_	1.0	1.3	Vdc

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{*2}N956 and 2N1711: See 2N3019 for graphs.

2N718A, 2N956, 2N1711

Characteristic		Symbol	Min	Тур	Max	Unit
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product $(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz})$	2N718A, 2N956, 2N1711	fT	60 70	300 300	12.07	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	500 F 10 10 10	C _{obo}	_	4.0	25	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	_	20	80	pF
Input Impedance $ \begin{array}{ll} \text{(IC} = 1.0 \text{ mAdc, VCB} = 5.0 \text{ Vdc, f} = 1.0 \text{ kHz)} \\ \text{(IC} = 5.0 \text{ mAdc, VCB} = 10 \text{ Vdc, f} = 1.0 \text{ kHz)} \end{array} $	The Care of	h _{ib}	24 4.0	=	34 8.0	ohms
Voltage Feedback Ratio ($IC = 1.0 \text{ mAdc}$, $VCB = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N718A, 2N956, 2N1711	h _{rb}	T& EMP	si Edo	3.0 5.0	X 10-4
$(I_{C} = 5.0 \text{ mAdc}, V_{CB} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N718A, 2N956, 2N1711	163	=	47.0	3.0 5.0	
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (IC = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N718A, 2N956, 2N1711 2N718A,	h _{fe}	30 50	14 vs1 = 16x	100 200	_
THE STORY TOE TO THEY	2N956, 2N1711	person 778.	70	84-77	300	100.73
Output Admittance (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CB} = 10 Vdc, f = 1.0 kHz)		h _{ob}	0.05 0.05		0.5 0.5	μmhos
Noise Figure (I _C = 300 μ Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N718A, 2N956, 2N1711	NF	- 122		12 8.0	dB

2N720A

CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Vdc
Collector-Emitter Voltage	VCER	100	Vdc
Collector-Base Voltage	VCBO	120	Vdc
Emitter-Base Voltage	VEBO	7.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.86	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97	°C/W

Refer to 2N3019 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (I _C = 100 mAdc, R _{BE} ≤ 10 ohms)	VCER(sus)	100	_	Vdc
Collector-Emitter Sustaining Voltage(1) (I _C = 30 mAdc, I _B = 0)	VCEO(sus)	80		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	120	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	7.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 90 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 90 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ICBO	_	.010 15	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO	_	.010	μAdc
ON CHARACTERISTICS			*	
$\begin{array}{lll} \text{DC Current Gain} & (I_{C} = 0.1 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ & (I_{C} = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \\ & (I_{C} = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc, } T_{A} = -55^{\circ}\text{C}) \\ & (I_{C} = 150 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \end{array}$	hFE	20 35 20 40	 120	_
Collector-Emitter Saturation Voltage(1) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)	V _{CE(sat)}	_	1.2 5.0	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$ $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$	V _{BE(sat)}	_	0.9 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				•
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	50	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	15	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 100 kHz)	Cibo	_	85	pF
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 10 Vdc, f = 1.0 kHz)	hib	20 4.0	30 8.0	Ohms
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 5.0 \text{ mAdc}$, $V_{CB} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{rb}	_	1.25 1.50	X 10 ⁻⁴
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	30 45	100	_
Output Admittance ($I_{C} = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_{C} = 5.0 \text{ mAdc}$, $V_{CB} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ob}	=	0.5 0.5	μmhos

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

WIAANVION KATINGS					
Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	VCEO	20	Vdc		
Collector-Emitter Voltage	VCES	30	Vdc		
Collector-Base Voltage	VCBO	40	Vdc		
Emitter-Base Voltage	VEBO	5.0	Vdc		
Collector Current — Continuous Peak	Ic	200	mAdc		
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	0.3 2.0	Watt mW/°C		
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.0 6.67	Watts mW/°C		
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD	0.5 6.67	Watt mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +175	°C		

2N834 2N835

CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

Refer to 2N2368 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			Marie in a	
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V(BR)CBO	40		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	4	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0) (V _{CB} = 20 Vdc, I _E = 0, T_A = 150°C)	Ісво	NG 1	0.5 30	μAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0)	ICES	z—	10	μAdc
ON CHARACTERISTICS				
DC Current Gain(1) (IC = 10 mAdc, V_{CE} = 1.0 Vdc)	hFE	25	-	_
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{CE(sat)}	=	0.25 0.4	Vdc
Base-Emitter Saturation Voltage(1) (IC = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	8 	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS			val line	
Current-Gain — Bandwidth Product (IC = 10 mAdc, V_{CE} = 15 Vdc, f = 100 MHz)	fT	350	- 6	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	C _{obo}	, a T 10	4.0	pF
Magnitude of Forward Current Transfer Ratio, Common-Emitter (IC = 10 mAdc, V_{CE} = 15 Vdc, f = 100 MHz)	h _{fe}	3.5		- 46
SWITCHING CHARACTERISTICS	1.400			
Charge-Storage Time Constant (Figure 2) (I _C = 10 mAdc, I _{B1} = I _{B2} = 10 mAdc)	t _S	_	25	ns
Turn-On Time (Figure 1) (IC = 10 mAdc, I_{B2} = 1.0 mAdc)	ton	_	35	ns
Turn-Off Time (Figure 1) (I _C = 10 mAdc, I _{B1} = 3.0 mAdc, I _{B2} = 1.0 mAdc)	^t off	<u> </u>	75	ns

⁽¹⁾ Pulse Test: Pulse Width ≤ 12 ms, Duty Cycle ≤ 2.0%.

2N869A 2N4453

JAN, JTX, JTXV AVAILABLE CASE 22-03, STYLE 1 TO-18 (TO-206AA)

2N4453 CASE 26-03, STYLE 1 TO-46 (TO-206AB) JAN, JANTX AVAILABLE

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N869A	2N4453	Unit
Collector-Emitter Voltage	VCEO	18	18	Vdc
Collector-Emitter Voltage	VCES	2	5	Vdc
Collector-Base Voltage	VCBO	25	25	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	Ic	200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.06	400 2.29	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ $TC = 100^{\circ}C$ Derate above $25^{\circ}C$	PD	1.2 0.686 6.86	2.0 1.03 11.3	Watts Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N869A	2N4453	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	146	97.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	486	585	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				out things on	OFF CHARG
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	2N4453	V _(BR) CEO	18		Vdc
Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc$, $V_{BE} = 0$)	2N869A, 2N4453	V(BR)CES	25	y other	Vdc
Collector-Emitter Sustaining Voltage(1) (I _C = 10 mAdc, I _B = 0)		V _{CEO(sus)}	18	m J=377	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	2N869A, 2N4453	V(BR)CBO	25	Town Town	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V(BR)EBO	5.0	COT BIRE	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0, T _A = 150°C)	2N869A	СВО	(pt	25	μAdc
Collector Cutoff Current (V _{CE} = 15 Vdc, V _{BE} = 0)		CES		10	nAdc
Emitter Cutoff Current (VEB = 4.5 Vdc, I _C = 0)	2N4453	IEBO	-	10	nAdc
Base Current (V _{CE} = 15 Vdc, V _{BE} = 0)	2N869A	IB	or the c	10	nAdc
ON CHARACTERISTICS(1)			0 17 4	- 71	d rega
DC Current Gain (IC = 10 mAdc, VCE = 0.3 Vdc) (IC = 10 mAdc, VCE = 5.0 Vdc) (IC = 30 mAdc, VCE = 0.5 Vdc)	2N869A 2N869A 2N869A, 2N4453	hFE	30 40 40		-
$(I_{C} = 30 \text{ mAdc}, V_{CE} = 0.5 \text{ Vdc}, T_{A} = -55^{\circ}\text{C})$ $(I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N869A, 2N4453 2N869A, 2N4453		17 25	raine s	Total
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 1.5 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	2N869A 2N4453 2N869A 2N869A, 2N4453	VCE(sat)		0.15 0.25 0.2 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 1.5 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	2N869A 2N4453 2N869A 2N869A, 2N4453	VBE(sat)	0.78 0.8 0.85	0.98 1.1 1.2 1.7	Vdc

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(1)(2) (IC = 10 mAdc, V _{CE} = 15 Vdc, f = 100 MHz)		fT	400		MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I_E = 0, f = 140 kHz)	2N869A	C _{obo}	-	6.0	pF
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 150 kHz)	2N869A	C _{ibo}	- T	6.0	pF
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	2N4453	C _{cb}	-	6.0	pF
Emitter-Base Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	2N4453	C _{eb}	4	6.0	pF

Turn-On Time		V _{CC} = 2.0 Vdc, 2N869A	ton	-	50	ns
Delay Time	$I_C = 30 \text{ mAdc},$ $I_{B1} = 1.5 \text{ mAdc}$	V _{CC} = 3.0 Vdc 2N4453 2N4453	td	er co <u>l</u> eine	35	ns
Rise Time	181 - 1.5 HIAGE		tr	_	20	ns
Turn-Off Time	I _C = 30 mAdc,		toff	_	80	ns
Storage Time	I _{B1} = I _{B2} =	$V_{CC} = 3.0 \text{ Vdc} $ $2N4453$ $2N4453$	ts	-	65	ns
Fall Time	1.5 IIIAuc	2144433	tf	_	20	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 1.0%.

TYPICAL SWITCHING CHARACTERISTICS

FIGURE 3 - "ON" VOLTAGES

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

300

10 7.0

3.0

FIGURE 4 — CURRENT-GAIN — BANDWIDTH PRODUCT

FIGURE 5 — TURN-ON TIME

10

IC, COLLECTOR CURRENT (mA)

FIGURE 6 - TURN-OFF TIME

FIGURE 7 — SWITCHING TIME TEST CIRCUIT

FIGURE 8 — SWITCHING TEST CIRCUIT VALUES

		V _{in} Volts	V _{BB} Volts	V _{CC} Volts	R _L Ohms	I _C	IB1 (4)	1B2 ⁽⁴⁾ mA
ton, tr, td	2N869A	-7.0	3.0	2.0	62	30	1.5	-
	2N4453	-7.0	3.0	3.0	91	30	1.5	_
toff, ts, tf	2N869A	+6.0	-4.0	2.0	62	30	1.5	1.5
	2N4453	+6.0	-4.0	3.0	91	30	1.5	1.5

⁽³⁾ I_C/I_B = 10. Switching is shown to reflect current industry practices. Compare the values shown in Figures 1 and 2 @ I_C = 30 mA to the typical values in the Electrical Characteristics table @ I_C/I_B = 20.

70

⁽⁴⁾ IB1 = IB2 = 3.0 mA @ IC/IB = 10

MAXIMUM RATINGS

Symbol	Value	Unit
VCEO	60	Vdc
VCER	80	Vdc
VCBO	100	Vdc
VEBO	7.0	Vdc
lc	1.0	Amp
PD	0.5 2.86	Watt mW/°C
PD	1.8 1.0 10.3	Watt mW/°C
T _J , T _{stg}	-65 to +200	°C
	VCEO VCER VCBO VEBO IC PD	VCEO 60 VCER 80 VCBO 100 VEBO 7.0 Ic 1.0 PD 0.5 2.86 PD 1.8 1.0 10.3

THERMAL CHARACTERISTICS

THE THINK OF THE THOU			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97.4	°C/W
Thermal Resistance, Junction to Ambient	RAJA	350	°C/W

2N910

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3019 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, R _{BE} ≤ 10 ohms)(1)	VCER(sus)	80	_	Vdc
Collector-Emitter Sustaining Voltage (I _C = 30 mAdc, I _B = 0)(1)	V _{CEO(sus)}	60	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	V(BR)CBO	100	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	V(BR)EBO	7.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 75 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 75 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ІСВО	=	0.025 15	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO	_	0.025	μAdc
ON CHARACTERISTICS				
DC Current Gain $(I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	hFE	35 75 30	=	
Collector-Emitter Saturation Voltage $\{I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}\}\$ $\{I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}\}\$	V _{CE(sat)}	_	0.4 1.2	Vdc
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	V _{BE(sat)}	0.6	0.8 0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS			1.1	
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	60	_	MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz)	C _{obo}	_	15	pF
Input Capacitance ($V_{BE} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 100 \text{ kHz}$)	C _{ibo}	_	85	pF
Input Impedance (I _C = 5.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{ie}	_	1800	Ohms
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{ib}	20 4.0	30 8.0	Ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{rb}	_	3.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{fe}	76	200	_
Output Admittance (I _C = 5.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	hoe	_	100	μmhos
Output Admittance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{ob}	=	0.5 1.0	μmho
Noise Figure (I _C = 0.3 mAdc, V_{CB} = 10 Vdc, R_{G} = 510 ohms, f = 1.0 kHz, B W = 200 Hz)	NF	_	12	dB

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle = 2.0%.

JAN, JTX AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

Refer to 2N2368 for graphs.

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Emitter Voltage (R _{BE} ≤ 10 ohms)	VCER	20	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous(1)	lC	150	mAdc
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	360 2.06	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.8	Watts mW/°C
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD	0.68	Watt
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1877.16	Water Til
Collector-Emitter Breakdown Voltage(2) ($I_C = 30 \text{ mAdc}, R_{BE} \le 10 \text{ ohms}$)	V _{CER(sus)}	20		Vdc
Collector-Emitter Sustaining Voltage(2) ($I_C = 30 \text{ mAdc}, I_B = 0$)	V _{CEO(sus)}	15	rta <u>-</u> argi	Vdc
Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$)	V(BR)CBO	40	- 1 - 1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0		Vdc
Collector Cutoff Current $(V_{CE} = 20 \text{ Vdc}, V_{BE} = 0.25 \text{ Vdc}, T_A = 125^{\circ}C)$	ICEX	X	10	μAdc
Collector Cutoff Current $(V_{CB}=20\ Vdc,\ I_{E}=0)$ $(V_{CB}=20\ Vdc,\ I_{E}=0,\ T_{A}=150^{\circ}C)$	СВО	0.5 = 30 V	0.025 15	μAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, IC = 0)	IEBO	_	0.1	μAdc
ON CHARACTERISTICS	EV 2 37V	ghd v 1d	1.5	
DC Current Gain(2) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	hFE	30	120	

hFE			
	30	120	
Property April 19	12		
	10		
V _{CE(sat)}		DUM-USE T	Vdc
	_	0.70	
		0.25	A Linear
V _{BE(sat)}	0.70	0.80	Vdc
	VCE(sat)	30 12 10 VCE(sat)	30 120 12 — 10 — VCE(sat) — 0.70 — 0.25

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product (I _C = 20 mAdc, V_{CE} = 10 Vdc, f = 100 MHz)	fT	300	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	-	6.0	pF
Input Capacitance ($V_{BE} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 1.0 \text{ MHz}$)	C _{ibo}	_	9.0	pF

SWITCHING CHARACTERISTICS

Storage Time(3) $(I_C = I_{B1} = I_{B2} = 20 \text{ mAdc})$	t _S		20	ns
Turn-On Time(3) (I _C = 200 mAdc, I _{B1} = 40 mAdc, I _{B2} = 20 mAdc)	ton	- 1	40	ns
Turn-Off Time(3) (I _C = 200 mAdc, I _{B1} = 40 mAdc, I _{B2} = 20 mAdc)	toff	· · ·	40	ns

- (1) Limited by Power Dissipation.
- (2) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 1.0%. (3) Measured on Sampling Scope: Pulse Width \geq 200 ns.

CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

6.81 Total Power Dissipation @ + 100°C Case PD 0.68 W °C -65 to +200Operating and Storage Temperature TJ, Tstg

Value

50

70

5.0

0.36

2.05

1.2

Unit

Vdc

Vdc

Vdc

Watts

mW/°C

Watts

mW/°C

Symbol

VCEO

VCBO

VEBO

PD

PD

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

MAXIMUM RATINGS

Collector-Emitter Voltage

Collector-Base Voltage

Emitter-Base Voltage

Derate above 25°C

Derate above 25°C

Temperature Range

Rating

Total Device Dissipation @ TA = 25°C

Total Device Dissipation @ T_C = 25°C

Refer to 2N3946 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	What was and			
Collector-Emitter Sustaining Voltage(1) (IC = 10 mA IB = 0)	VCEO(sus)	50	-	Vdc
Collector-Base Breakdown Voltage (IC = 100 \(\mu \) A IE = 0)	V(BR)CBO	70	NO. TO BE	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu A, I_C = 0)$	V(BR)EBO	5.0	- In	Vdc
Collector Cutoff Current (V _{CB} = 60 V, I _E = 0)	Ісво	_	0.010	μΑ
Collector Cutoff Current $(V_{CB} = 60 \text{ V}, I_{E} = 0)$ $(V_{CB} = 60 \text{ V}, I_{E} = 0, T_{A} = +150^{\circ}\text{C})$	ІСВО	3/1	0.010 30	μΑ
ON CHARACTERISTICS		order of hear	nation with	1000
DC Current Gain ($I_C = 10 \text{ mA V}_{CE} = 5.0 \text{ V}$)	hFE	50	200	on least
Collector-Emitter Saturation Voltage (IC = 10 mA IB = 1.0 mA	VCE(sat)	- Stall of	1.0	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mA I _B = 1.0 mA)	V _{BE(sat)}	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS			10.75	451 - 1 - 13
Output Capacitance (IE = 0 V _{CB} = 10 V, f = 100 kHz)	C _{obo}	-	3.5	pF
Emitter Transition Capacitance (I _C = 0 V _{EB} = 0.5 V, f = 100 kHz)	C _{TE}	AV - B	10	pF
Input Impedance (I _C = 1.0 mA V_{CE} = 5.0 V) (I _C = 5.0 mA V_{CE} = 5.0 V)	h _{ie}	_ 3d	6000 2000	ohms
High Frequency Current Gain f = 100 MHz (I _C = 10 mA V _{CE} = 15 V)	h _{fe}	2.5	35 ₀ v.	>_4
Small-Signal Current Gain $f=1$ kHz (IC = 1.0 mA VCE = 5.0 V) (IC = 5.0 mA VCE = 5.0 V)	h _{fe}	40 50	200 250	
Output Admittance (I _C = 1.0 mA V _{CE} = 5.0 V) (I _C = 5.0 mA V _{CE} = 5.0 V)	h _{oe}	1-446	75 125	μmhos μmho
Collector Base Time Constant (I _C = 10 mA, V _{CB} = 10 V, f = 40 mHz)	rb′C _C		300	ps

SMALL-SIGNAL DEVICES

JAN AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3946 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	25	Vdc
Collector-Base Voltage	VCBO	45	Vdc
Emitter-Base Voltage	VEBO	5	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watts mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.2 6.9	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		ra e	and a micro	
Collector-Emitter Sustaining Voltage(1) (I _C = 30 mA, I _B = 0)	V _{CEO(sus)}	25		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu A, I_E = 0$)	V(BR)CBO	45	1 1 1 <u></u> 1 1 1 1 1 1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu A, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 30 V, I _E = 0)	ІСВО	_	10	nAdc
Collector Cutoff Current @ 150°C (VCB = 30 V, IE = 0)	Ісво	_	10	μAdc
ON CHARACTERISTICS			J. 1 (0)	951
DC Current Gain(1) (I _C = 10 mA, V _{CE} = 1.0 V) (I _C = 10 mA, V _{CE} = 1.0 V, -55°C)	hFE	50 15	200	
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA)	VCE(sat)	_	0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mA}$, $I_B = 1.0 \text{ mA}$)	V _{BE(sat)}	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS			g1.60m	de in
Output Capacitance (V _{CB} = 5.0 V, I _E = 0)	C _{obo}	_	6.0	pF
Input Capacitance (VEB = 0.5 V, IC = 0)	C _{ibo}		10	pF
Input Impedance, f = 1.0 kHz (I _C = 1.0 mA, V_{CE} = 5.0 V) (I _C = 5.0 mA, V_{CE} = 5.0 V)	h _{ie}	Ē	6000 2000	ohms ohms
Small-Signal Current Gain, f = 1.0 kHz ($I_C = 1.0$ mA, $V_{CE} = 5.0$ V) ($I_C = 5.0$ mA, $V_{CE} = 5.0$ V)	h _{fe}	40 50	200 250	7 - 17 - 2
Magnitude of Forward Circuit Transfer Ratio, Common-Emitter ($I_C=10$ mA, $V_{CE}=15$ V)	h _{fe}	3.0		-
Output Admittance, $f = 1.0 \text{ kHz}$ ($I_C = 1.0 \text{ mA}$, $V_{CE} = 5.0 \text{ V}$) ($I_C = 5.0 \text{ mA}$, $V_{CE} = 5.0 \text{ V}$)	h _{oe}	=	75 125	μmho μmho
Collector Base Time Constant (I _C = 10 mA, V _{CB} = 10 V, f = 40 MHz)	rb'C _C	-	300	ps

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

JAN, JTX, JTXV AVAILABLE CASE 20-03, STYLE 10 TO-72 (TO-206AF)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	300 1.71	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (IC = 3.0 mAdc, IB = 0)	V _{CEO(sus)}	15		Vdc
Collector-Base Breakdown Voltage (I _C = 1.0 μ Adc, I _E = 0)	V(BR)CBO	30	- A	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	3.0		Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I_E = 0) (V _{CB} = 15 Vdc, I_E = 0, T_A = 150°C)	ІСВО	=	.010 1.0	μAdc μAdc
ON CHARACTERISTICS				
DC Current Gain (IC = 3.0 mAdc, V _{CE} = 1.0 Vdc)	hFE	20	-	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	1 11		100	
Current-Gain — Bandwidth Product(1) (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	600	100 A	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$ $(V_{CB} = 0, I_E = 0, f = 140 \text{ kHz})$	C _{obo}	=	1.7 3.0	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 140 kHz)	C _{ibo}	199 To	2.0	pF
Noise Figure ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $R_G = 400 \text{ Ohms}$, $f = 60 \text{ MHz}$)	NF	-	6.0	dB
FUNCTIONAL TEST				
Amplifier Power Gain ($V_{CB} = 12 \text{ Vdc}$, $I_{C} = 6.0 \text{ mAdc}$, $f = 200 \text{ MHz}$)	Gpe	15	_	dB
Power Output $(V_{CB} = 15 \text{ Vdc}, I_{C} = 8.0 \text{ mAdc}, f = 500 \text{ MHz})$	Po	30	_	mW
Collector Efficiency (V _{CB} = 15 Vdc, I _C = 8.0 mAdc, f = 500 MHz)	η	25	-	%

⁽¹⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

2N930,A

JAN, JTX AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2481 for graphs.

MAXIMUM RATINGS

SPAIN MINIONIVAIN				
Rating	Symbol	2N930	2N930A	Unit
Collector-Emitter Voltage	VCEO	45	60	Vdc
Collector-Base Voltage	VCBO	45	60	Vdc
Emitter-Base Voltage	VEBO	5.0	6.0	Vdc
Collector Current	IC		30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD).5 .33	W mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD		.8	Watt mW/°C
Operating and Storage Temperature Temperature Range	T _J , T _{stg}	- 65 to	+ 175	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					W
Collector-Emitter Breakdown Voltage (1) (IC = 10 mAdc, IB = 0)		V _(BR) CEO	45	18 TAT	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	2N930A	V _(BR) CBO	80	şi ≡ oAq	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	2N930 2N930A	V _{(BR)EBO}	5.0 6.0	uAde, lc = aut <u>C</u> arren	Vdc
Collector Cutoff Current (VCE = 5.0 Vdc, I _B = 0)		ICEO	ar tally	2.0	nAdc
Collector Cutoff Current (V _{CB} = 45 Vdc, I _E = 0)	2N930 2N930A	СВО		10 2.0	nAdc
Collector Cutoff Current (VCE = 45 Vdc, VBE = 0)	2N930 2N930A	CES		10 2.0	nAdc
$(V_{CE} = 45 \text{ Vdc}, V_{BE} = 0, T_{A} = 170^{\circ}\text{C})$	2N930 2N930A		on Tem.	10 2.0	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)	2N930 2N930A	IEBO	_	10 2.0	nAdc
ON CHARACTERISTICS			100		
DC Current Gain (I _C = 1.0 μ Adc, V _{CE} = 5.0 Vdc)	2N930A	hFE	60		1007.
$(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N930 2N930A	11/0.5 -0	100	300	w a catol
$(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C)$	2N930 2N930A	23-116	20 30		Ampin s
$(I_C = 500 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N930 2N930A	10.19/ 001	150	ot =v	July Committee
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}) (1)$	2N930 2N930A	1 1001 00	38 51 0.8	600 600	1 en 71

Characteristic		Symbol	Min	Max	Unit
Collector-Emitter Saturation Voltage (1) (I _C = 10 mAdc, I _B = 0.5 mAdc)	2N930 2N930A	V _{CE(sat)}	=	1.0 0.5	Vdc
Base-Emitter Saturation Voltage (1) (I _C = 10 mAdc, I _B = 0.5 mAdc)	2N930 2N930A	V _{BE(sat)}	0.7	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS	ICLES & N				
Current-Gain — Bandwidth Product (I _C = 500 μ Adc, V _{CE} = 5.0 Vdc, f = 30 MHz)	2N930 2N930A	fΤ	30 45	=	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$	2N930 2N930A	C _{obo}	_	8.0 6.0	pF
Input Impedance (I _E = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)		hib	25	32	ohms
Voltage Feedback Ratio $(I_E = 1.0 \text{ mAdc}, V_{CB} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	serie vita	h _{rb}		600	X 10-6
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N930 2N930A	h _{fe}	150	600	_
Output Admittance (I _E = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	1	h _{ob}	1212931	1.0	μmhos
Noise Figure (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k ohms, f = 10 Hz to 15.7 kHz)	2N930, 2N930A	NF	-	3.0	dB

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N1132,A

JAN AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N1132	2N1132A	Unit
Collector-Emitter Voltage	VCEO	35	40	Vdc
Collector-Emitter Voltage (R _{BE} ≤ 10 Ohms)	VCER	← 5	50 →	Vdc
Collector-Base Voltage	VCBO	50	60	Vdc
Emitter-Base Voltage	VEBO	← 5	.0 →	Vdc
Collector Current — Continuous	Ic	← 600 →		mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	← 600 → ← 3.43 →		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	← 2.0 → ← 11.43 →		Watts mW/°C
Total Device Dissipation @ T _C = 100°C 2N1132A	PD	← 1	.0	Watts
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	o +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	87.49	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	291.55	°C/W

Refer to 2N2904 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	apply (e.g.	1,000,00			
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	2N1132A 2N1132	V(BR)CEO	40 35		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	2N1132, 2N1132A	V(BR)CBO	50 60	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$) ($I_E = 1.0 mA$, $I_C = 0$)	2N1132, 2N1132A	V(BR)EBO	5.0 5.0	=	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _A = 150°C) (V _{CB} = 45 Vdc, I _E = 0) (V _{CB} = 45 Vdc, I _E = 0, T _A = 150°C)	2N1132 2N1132 2N1132 2N1132A 2N1132A	ICBO	=	1.0 100 100 0.5 50	μAdc
Collector Cutoff Current (V _{CE} = 50 V, R _{BE} = ≤ 10 Ohms)	2N1132 2N1132A	ICER	_	10 10	mA mA
Emitter Cutoff Current (VBE = 5.0 Vdc , IC = 0) (VBE = 2.0 Vdc , IC = 0)	2N1132A 2N1132	IEBO	=	100 100	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 5.0$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 150$ mAdc, $V_{CE} = 10$ Vdc)		hFE	25 30	— 90	_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		VCE(sat)	_	1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{BE(sat)}	_	1.3	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS				18	
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	S refered	fT	60		MHz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 1.0 MHz) (V _{CB} = 10 Vdc, I_E = 0, f = 1.0 MHz)	2N1132, 2N1132A	C _{obo}	· DEW	45 30	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 1.0 kHz) (VBE = 0.5 Vdc, IC = 0, f = 1.0 MHz)	2N1132, 2N1132A	C _{ibo}	=	80 80	pF
$ \begin{array}{l} \mbox{Input Impedance} \\ \mbox{(I}_{\mbox{C}} = 1.0 \mbox{ mAdc, V}_{\mbox{CB}} = 5.0 \mbox{ Vdc, f} = 1.0 \mbox{ kHz} \\ \mbox{(I}_{\mbox{C}} = 5.0 \mbox{ mAdc, V}_{\mbox{CB}} = 10 \mbox{ Vdc, f} = 1.0 \mbox{ kHz} \\ \end{array} $		h _{ib}	25 —	35 10	Ohms
Voltage Feedback Ratio (I _C = 5.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)		h _{rb}	80 <u>-</u> 1	8.0 8.0	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz) $(IC = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N1132, 2N1132A 2N1132, 2N1132A	h _{fe}	25 25 30 30	100 75 —	_
Output Admittance (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	. = 5	h _{ob}	- T	1.0 5.0	μmhos
SWITCHING CHARACTERISTICS					
Turn-On Time	2N1132A	ton	-	45	ns
Turn-Off Time	2N1132A	toff	_	35	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 SWITCHING TIMES TEST CIRCUIT

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage (RBE ≤ 10 Ohms)	VCER	50	Vdc
Collector-Base Voltage	VCBO	75	Vdc
Emitter-Base Voltage	VEBO	7.0	Vdc
Collector Current — Continuous	IC .	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.57	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.15	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	58.3	°C/W

Refer to 2N3019 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			4 14 141	- N. W. D. D. D.	1011112
Collector-Emitter Breakdown Voltage(1) (I _C = 100 mAdc, R _{BE} ≤ 10 Ohms)	VCER(sus)	50			Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	V(BR)CBO	75			Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	7.0	A.C. (2010)	_	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ICBO	=	=	10 10	nAdc μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, IC = 0)	IEBO	_	_	10	nAdc
ON CHARACTERISTICS(1)	1 1200				
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc, T _A = -55°C) (I _C = 150 mAdc, V _{CE} = 10 Vdc) (I _C = 500 mAdc, V _{CE} = 10 Vdc)	hFE	20 35 20 40 20	35 50 — 80 30	 120	_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.3	1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	-	0.78	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS			•		
Current-Gain — Bandwidth Product(1) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	60	-	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	Cobo	_	10	25	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 100 kHz)	Cibo	7 473	50	80	pF
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 10 Vdc, f = 1.0 kHz)	h _{ib}	24 4.0	_	34 8.0	Ohms
Voltage Feedback Ratio (IC = 1.0 mAdc, VCB = 5.0 Vdc, f = 1.0 kHz) (IC = 5.0 mAdc, VCB = 10 Vdc, f = 1.0 kHz)	h _{rb}	<u></u>	=	3.0 3.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	30 35	=	100 150	_
Output Admittance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 10 Vdc, f = 1.0 kHz)	h _{ob}	0.05 0.05	=	0.5 0.5	μmhos
Noise Figure $(I_C = 0.3 \text{ mAdc, V}_{CE} = 10 \text{ Vdc, R}_S = 510 \text{ Ohms, f} = 1.0 \text{ kHz,}$ Bandwidth = 1.0 Hz)	NF	_	_	12	dB
SWITCHING CHARACTERISTICS					
Switching Time	$t_d + t_r + t_f$	_	_	30	ns

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

For Specifications, See 2N718A Data.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Vdc
Collector-Emitter Voltage	VCER	100	Vdc
Collector-Base Voltage	V _{CBO}	120	Vdc
Emitter-Base Voltage	VEBO	7.0	Vdc
Collector Current — Continuous	IC	0.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.57	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.2	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	58.3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	219	°C/W

2N1893

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3019 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			124 (C) 227	130
Collector-Emitter Breakdown Voltage (IC = 100 mAdc, RBE = 10 ohms)	VCER(sus)	100		Vdc
Collector-Emitter Sustaining Voltage(1) (I _C = 30 mAdc, I _B = 0)	V _{CEO(sus)}	80	7.00	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V _(BR) CBO	120	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	7.0	and the left	Vdc
Collector Cutoff Current (V _{CB} = 90 Vdc, $I_E = 0$) (V _{CB} = 90 Vdc, $I_E = 0$, $T_A = 150$ °C)	ІСВО	-30	0.01 15	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO		0.01	μAdc
ON CHARACTERISTICS		137		
DC Current Gain(1) $(I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}\text{C})$ $(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	hFE	20 35 20 40	_ _ _ 120	ingrava in
Collector-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)	V _{CE(sat)}	200 <u>—</u> 200	1.2 5.0	Vdc
Base-Emitter Saturation Voltage $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$ $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$	V _{BE(sat)}	1 46 <u>7</u> 100	0.9 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	50	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, 100 kHz \leq f \leq 1.0 MHz)	Cobo	_	15	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, 100 kHz \leq f \leq 1.0 MHz)	Cibo	70/= mi	85	pF
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 10 Vdc, f = 1.0 kHz)	h _{ib}	20 4.0	30 8.0	Ohms
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 5.0 \text{ mAdc}$, $V_{CB} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{rb}	Sale bill	1.25 1.5	X 10-4
Small-Signal Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$ $(I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	30 45	100	_
Output Admittance (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CB} = 10 Vdc, f = 1.0 kHz)	h _{ob}	=	0.5 0.5	μmho

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	65	Vdc
Collector-Emitter Voltage, RBE ≤ 10 Ohms	VCER	80	Vdc
Collector-Base Voltage	VCBO	120	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current — Continuous	lc	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	175	°C/W

Refer to 2N3019 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		E 00 00			
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, R _{BE} ≤ 10 ohms)	V _{CER(sus)}	80	_	_	Vdc
Collector-Emitter Sustaining Voltage(2) (I _C = 100 mAdc, I _B = 0)	VCEO(sus)	65	_	_	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 100 \mu Adc, V_{EB} = 1.5 \text{ Vdc}$)	V(BR)CEX	120	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	120	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	7.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	СВО	77	= =	2.0 2.0	nAdc μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO		_	2.0	nAdc
ON CHARACTERISTICS				DOM:	-
DC Current Gain (I _C = 0.1 mAdc, V_{CE} = 10 Vdc) (I _C = 10 mAdc, V_{CE} = 10 Vdc) (I _C = 10 mAdc, V_{CE} = 10 Vdc, T_{A} = -55°C) (I _C = 150 mAdc, V_{CE} = 10 Vdc)(2) (I _C = 500 mAdc, V_{CE} = 10 Vdc)(2) (I _C = 1.0 Adc, V_{CE} = 10 Vdc)(2)	hFE	20 35 20 40 25			_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.15	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	_	0.88	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS				15 11 11	
Current-Gain — Bandwidth Product $(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz})$	fT	60	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	Cobo	7	6.0	15	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 100 kHz)	Cibo	_	50	80	pF
Input Impedance (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	hib	24 4.0		34 8.0	Ohms
Voltage Feedback Ratio ($I_C = 1.0$ mAdc, $V_{CE} = 5.0$ Vdc, $f = 1.0$ kHz) ($I_C = 5.0$ mAdc, $V_{CE} = 10$ Vdc, $f = 1.0$ kHz)	h _{rb}	_		3.0 3.0	X 10-
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	hfe	30 35	_	100 150	
Output Admittance (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{ob}	0.01 0.01	, <u> </u>	0.5 1.0	μmho
Noise Figure ($I_C = 300 \mu Adc$, $V_{CE} = 10 Vdc$, $R_S = 1.0 k$ Ohm, $f = 1.0 kHz$, Bandwidth $= 1.0 Hz$)	NF	_	4.0	6.0	dB
SWITCHING CHARACTERISTICS					
Switching Time	$t_d + t_r + t_f$	_	_	30	ns

(1) R_{ØJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	VCBO	80	Vdc
Emitter-Base Voltage	VEBO	8.0	Vdc
Collector Current — Continuous	lc	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.6	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.8 16	Watts mW/°C
Total Device Dissipation @ 100°C Case Derate above 100°C	PD	1.6 16	mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

2N2193A

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3019 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		7		
Collector-Emitter Sustaining Voltage(1) ($I_C = 25 \text{ mA}, I_B = 0$)	V _{CEO(sus)}	50	James	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V(BR)CBO	80	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	8.0	-	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T _A = 150°C)	Ісво	=	0.010 25	μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, I _C = 0)	IEBO	-	0.050	μAdc
ON CHARACTERISTICS				
DC Current Gain(1) $ \begin{cases} (I_C = 0.1 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc, } T_A = -55^{\circ}\text{C}) \\ (I_C = 150 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \\ (I_C = 150 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \\ (I_C = 500 \text{ mAdc, } V_{CE} = 10 \text{ Vdc})(1) \\ (I_C = 1.0 \text{ Adc, } V_{CE} = 10 \text{ Vdc})(1) \\ (I_C = 1.0 \text{ Adc, } V_{CE} = 10 \text{ Vdc})(1) \end{cases} $	hFE	15 30 20 40 30 20 15	120 —	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	VCE(sat)	_	0.25	Vdc
Base-Emitter Saturation Voltage (IC = 150 mAdc, IB = 15 mAdc)	V _{BE(sat)}	_	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	20	pF
Small-Signal Current Gain ($I_C = 50 \text{ mA}$, $V_{CE} = 10 \text{ V}$, $f = 20 \text{ MHz}$)	h _{fe}	2.5	_	
SWITCHING CHARACTERISTICS				
Rise Time	t _r	_	70	ns
Storage Time	t _S		150	ns
Fall Time	tf	_	50	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N2218,A/2N2219,A 2N2221,A/2N2222,A 2N5581/82

JAN, JTX, JTXV AVAILABLE

2N2218,A 2N2219,A CASE 79-02 TO-39 (TO-205AD) STYLE 1

2N2221,A 2N2222,A CASE 22-03 TO-18 (TO-206AA) STYLE 1

2N5581 2N5582 CASE 26-03 TO-46 (TO-206AB) STYLE 1

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N2218 2N2219 2N2221 2N2222	2N2218A 2N2219A 2N2221A 2N2222A	2N5581 2N5582	Unit
Collector-Emitter Voltage	VCEO	30	40	40	Vdc
Collector-Base Voltage	VCBO	60	75	75	Vdc
Emitter-Base Voltage	VEBO	5.0	6.0	6.0	Vdc
Collector Current — Continuous	Ic	800	800	800	mAdc
and the Van	oV	2N2218,A 2N2219,A	2N2221,A 2N2222,A	2N5581 2N5582	mails 2
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.57	0.4 2.28	0.6 3.33	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.1	1.2 6.85	2.0 11.43	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}		°C		

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		-		4	
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V(BR)CEO	30 40	ili – gl Af	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V(BR)CBO	60 75		Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	Non-A Suffix A-Suffix, 2N5581, 2N5582	V(BR)EBO	5.0 6.0		Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	A-Suffix, 2N5581, 2N5582	ICEX	_	10	nAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 150°C) (V _{CB} = 60 Vdc, I _E = 0, T _A = 150°C)	Non-A Suffix A-Suffix, 2N5581, 2N5582 Non-A Suffix A-Suffix, 2N5581, 2N5582	I _{CBO}	=	0.01 0.01 10 10	μAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	A-Suffix, 2N5581, 2N5582	IEBO	_	10	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	A-Suffix	IBL	_ T _ 0	20	nAdc
ON CHARACTERISTICS			1000		100
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	2N2218,A, 2N2221,A, 2N5581(1) 2N2219,A, 2N2222,A, 2N5582(1)	hFE	20 35	di andi Lizhka Fati Zi ovy	10 Ju
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218,A, 2N2221,A, 2N5581 2N2219,A, 2N2222,A, 2N5582		25 50	= 500	q - Lugn
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218,A, 2N2221,A, 2N5581(1) 2N2219,A, 2N2222,A, 2N5582(1)		35 75	1.0	CONTRACTOR
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}C)$	2N2218A, 2N2221A, 2N5581 2N2219A, 2N2222A, 2N5582		15 35	=	ener he
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N2218,A, 2N2221,A, 2N5581 2N2219,A, 2N2222,A, 2N5582		40 100	120 300	- at a

2N2218/19/21/22, A SERIES, 2N5581/82

ELECTRICAL CHARACTERISTICS (continued) (Tx = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
		-		113.59	land?
$(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$	2N2218,A, 2N2221,A, 2N5581	100	20	_	
	2N2219,A, 2N2222,A, 2N5582	No real or	50		
// 500 A. J. V. 40 V. V.	Chicago Chicago	1			2700
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N2218, 2N2221 2N2219, 2N2222	1	20 30		
	2N2218A, 2N2221A, 2N5581		25		
	2N2219A, 2N2222A, 2N5582		40	_	B7 11
Collector-Emitter Saturation Voltage(1)		V _{CE} (sat)			Vdc
(I _C = 150 mAdc, I _B = 15 mAdc)	Non-A Suffix	*CE(sat)	with and the	0.4	Vuc
	A-Suffix, 2N5581, 2N5582		_	0.3	ATTE
(IC = 500 mAdc, IB = 50 mAdc)	Non-A Suffix		· —	1.6	
	A-Suffix, 2N5581, 2N5582			1.0	
Base-Emitter Saturation Voltage(1)		V _{BE(sat)}			Vdc
$(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$	Non-A Suffix		0.6	1.3	
	A-Suffix, 2N5581, 2N5582		0.6	1.2	
/lo - 500 mAdo lo - 50 mAdo	Non A Suffix	80.00		2.6	
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	Non-A Suffix A-Suffix, 2N5581, 2N5582		_	2.6	
CMALL SIGNAL CHARACTERISTICS	7. Gailly, 2110001, 2110002	-		2.0	
SMALL-SIGNAL CHARACTERISTICS					E417
Current-Gain — Bandwidth Product(2) (I _C = 20 mAde, V _{CE} = 20 Vdc, f = 100 MHz)	All Types Event	fT	250		MHz
11C - 20 111Auc, VCE - 20 Vuc, 1 = 100 (VIAZ)	All Types, Except 2N2219A, 2N2222A, 2N5582		300		The state of the s
0 0 (0)	21422137, 21422227, 2143302		_		-
Output Capacitance(3) $(V_{CB} = 10 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kHz})$		C _{obo}	_	8.0	pF
		-		CONTRACTOR OF THE PARTY OF THE	
Input Capacitance(3)	Non-A Suffix	C _{ibo}		30	pF
$(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$	A-Suffix, 2N5581, 2N5582			25	
land languages	A Gullix, Elicool, Elicool	E	43.11	20	labore
Input Impedance $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A	h _{ie}	1.0	3.5	kohms
(IC = 1.0 MAde, VCE = 10 Vde, 1 = 1.0 K12)	2N2219A, 2N2222A	4 1	2.0	8.0	-
				5.0	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A	1 1	0.2	1.0	
	2N2219A, 2N2222A		0.25	1.25	
Voltage Feedback Ratio		h _{re}			X 10-4
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A		_	5.0	
	2N2219A, 2N2222A		_	8.0	
//- 10 Ad- V 10 Vd- £ 10 III-\	2N12240A 2N12224A			2.5	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		_	4.0	
	LITEL ION, LITELLEN			7.0	
Small-Signal Current Gain	2N12219A 2N12221A	h _{fe}	30	150	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		50	300	
			-	550	
(I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N2218A, 2N2221A	1811 2	50	300	
(-	2N2219A, 2N2222A		75	375	
Output Admittance		hoe		3	μmhos
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A		3.0	15	7 15
	2N2219A, 2N2222A		5.0	35	
//- 10 Ad- V 10 V/- 5 - 10 V/- 1	2N12210A 2N12221A		10	100	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		10 25	100 200	
N. C. B. T. C.	בוזבבוטה, בוזבבבבה				
Collector Base Time Constant	A-Suffix	rb'C _C	_	150	ps
(I _E = 20 mAdc, V _{CB} = 20 Vdc, f = 31.8 MHz)	A-Sullix	N=			-
Noise Figure		NF	-	4.0	dB
$(I_C = 100 \mu\text{Adc}, V_{CE} = 10 \text{Vdc},$	2N2219A, 2N2222A			j.	
R _S = 1.0 kohm, f = 1.0 kHz)	LITEL ION, LITELLEM	5 ")			01
Real Part of Common-Emitter		Re(hie)	_	60	Ohms
ligh Frequency Input Impedance (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 300 MHz)	2N2218A, 2N2219A				

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ f_T is defined as the frequency at which $||f_{e}||$ extrapolates to unity. (3) 2N5581 and 2N5582 are Listed C_{cb} and C_{eb} for these conditions and values.

2N2218.A/2N2219.A/2N2221.A/2N2222.A/2N5581/82

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SWITCHING CHARA	CTERISTICS				
Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc},$	t _d	_	10	ns
Rise Time	Time IC = 150 mAdc, IB1 = 15 mAdc) (Figure 14)		_	25	ns
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$	t _S	_	225	ns
Fall Time	I _{B1} = I _{B2} = 15 mAdc) (Figure15)	tf	_	60	ns
Active Region Time Constant (IC = 150 mAdc, V _{CE} = 30 Vdc) (See Figure 14 for 2N2218A, 2N2219A, 2N2221A, 2N2222A)		ТА	-	2.5	ns

FIGURE 1 - NORMALIZED DC CURRENT GAIN

FIGURE 2 - COLLECTOR CHARACTERISTICS IN SATURATION REGION

This graph shows the effect of base current on collector current. β_0 (current gain at the edge of saturation) is the current gain of the transistor at 1 volt, and β_r (forced gain) is the ratio of I_c/I_B in a circuit.

EXAMPLE: For type 2N2219, estimate a base current (I_{μ}) to insure saturation at a temperature of 25°C and a collector current of 150 mA.

Observe that at $I_c=150$ mA an overdrive factor of at least 2.5 is required to drive the transistor well into the saturation region. From Figure 1, it is seen that $h_{\rm H}$ @ 1 volt is approximately 0.62 of $h_{\rm H}$ @ 10 volts. Using the guaranteed minimum gain of 100 @ 150 mA and 10 V, $\beta_{\rm o}=62$ and substituting values in the overdrive equation, we find:

$$\frac{\beta_{o}}{\beta_{s}} = \frac{h_{H} @ 1.0 \text{ V}}{I_{c}/I_{JF}}$$
 $2.5 = \frac{62}{150/I_{JF}}$ $I_{JF} \approx 6.0 \text{ mA}$

2N2218,A/2N2219,A/2N2221,A/2N2222,A/2N5581/82

FIGURE 4 – TEMPERATURE COEFFICIENTS

h PARAMETERS

V_{CF} = 10 Vdc, f = 1.0 kHz, T_A = 25°C

This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were selected and the same units were used to develop the correspondingly numbered curves on each graph.

FIGURE 6 — VOLTAGE FEEDBACK RATIO

FIGURE 8 — OUTPUT ADMITTANCE

SWITCHING TIME CHARACTERISTICS

FIGURE 12 — DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT

FIGURE 13 — STORAGE TIME AND FALL TIME EQUIVALENT TEST CIRCUIT

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	Vdc
Collector-Emitter Voltage, RBE ≤ 10 Ohms	VCER	60	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	7.0	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	175	°C/W

Refer to 2N3019 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) ($I_C = 100 \text{ mAdc}, R_{BE} \le 10 \text{ Ohms}$)	V(BR)CER	60	-	_	Vdc
Collector-Emitter Sustaining Voltage(2) (I _C = 100 mAdc, I _B = 0)	V _{CEO(sus)}	45	_	11—11	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.05 \mu Adc, I_E = 0$)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	7.0	_	::	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_{E} = 0, T_{C} = 25^{\circ}\text{C})$ $(V_{CB} = 60 \text{ Vdc}, I_{E} = 0, T_{C} = 150^{\circ}\text{C})$	ICBO	_	_	0.05 100	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO	_	_	100	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	hFE	30 50	90 135	 200	_
Collector-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)	V _{CE(sat)}	_	0.15	0.9	Vdc
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)	V _{BE(sat)}	_	0.88	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS			•		
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fΤ	100	250	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$	C _{obo}	_	10	15	pF
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 100 kHz)	C _{ibo}	_	60	80	pF
Small-Signal Current Gain ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	50	-	275	-
Noise Figure $\{I_C=0.3\ mAdc,\ V_{CE}=10\ Vdc,\ R_{\mbox{\scriptsize S}}=1.0\ k\ Ohm,\ f=1.0\ kHz,\ B.W.=1.0\ Hz\}$	NF	_	7.0	10	dB
SWITCHING CHARACTERISTICS					
Total Switching Time	ton + toff	_	_	30	ns

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	35	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	800 4.56	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	219	°C/W
Lead Temperature, 1/16" from Case for 10 seconds	TL	300	°C

2N2297

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N3019 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage(2) (I _C = 30 mAdc, I _B = 0)	VCEO(sus)	35	1—1		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V _(BR) CBO	80	-	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	7.0	-	_	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T _A = $+150$ °C)	ІСВО	_	_	10 10	nAdc μAdc
Emitter Cutoff Current ($V_{EB} = 5.0 \text{ Vdc}, I_{C} = 0$)	I _{EBO}	_	_	10	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain (I _C = 10 mAdc, V_{CE} = 10 Vdc) (I _C = 150 mAdc, V_{CE} = 10 Vdc) (I _C = 1.0 Adc, V_{CE} = 10 Vdc)	h _{FE}	30 40 15	60 80 40	 120 	_
Collector-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	VCE(sat)	=	0.1 0.6	0.2 1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	V _{BE(sat)}	-	0.8	1.6	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ MHz}$)	f _T	60	100	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$	C _{obo}	7 	8.0	12	pF
Input Capacitance ($V_{EB}=0.5\ V_{C}=0,f=100\ kHz$)	C _{ibo}	-	60	80	pF
Collector Base Time Constant (I _C = 10 mAdc, V _{CB} = 10 Vdc, f = 4.0 MHz)	rb′C _C	_	_	800	ps

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N2368 2N2369,A 2N3227

2N2369A JAN, JTX, JTXV AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

Rating		Symbol	Value	Unit
	2N2368,9,A 2N3227	VCEO	15 20	Vdc
Collector-Emitter Voltage		VCES	40	Vdc
Collector-Base Voltage	net v W	VCBO	40	Vdc
	2N2368,9,A 2N3227	V _{EBO}	4.5 6.0	Vdc
Collector Current (10 µsec pulse)		IC(Peak)	500	mA
	ous 2N2369A, 2N3227	lc	200.	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C		PD	0.36 2.06	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	2N3227	PD	1.2 6.85	Watts mW/°C
Total Device Dissipation @ T _C = 100°C Derate above 100°C		PD	.68 6.85	Watts mW/°C
Operating and Storage June Temperature Range	tion	TJ, T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				- pl 3-m9	
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, V _{BE} = 0)	2N3227	V(BR)CEO	20	13 m - 105	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 μA, V _{BE} = 0)	or ¹	V(BR)CES	40	No. Co. Co. Co. Co. Co. Co. Co. Co. Co. C	Vdc
Collector-Emitter Sustaining Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N2368, 2N2369, 2N2369A	V _{CEO(sus)}	15	ner - · · ·	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu A, I_B = 0$)		V(BR)CBO	40	the Arms the s	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_E = 0$)	2N2368, 2N2369, 2N2369A 2N3227	V(BR)EBO	4.5 6.0	_1737	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 3.0 Vdc)	2N3227	ICEX	-	0.2	μAdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	2N2368, 2N2369 2N3227	ICBO	=	0.4 0.2	μAdc
$(V_{CB} = 20 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	2N2368, 2N2369, 2N2369A 2N3227		_	30 50	
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 0)	2N2369A	ICES		0.4	μAdc
Base Current $(V_{CE} = 20 \text{ Vdc}, V_{BE} = 0)$	2N2369A	IB	_	0.4	μAdc
ON CHARACTERISTICS					
DC Current Gain(1) $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N2368 2N2369 2N2369A 2N3227	hFE	20 40 — 100	60 120 120 300	1
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}, T_A = -55^{\circ}C)$	2N2368 2N2369 2N3227	- 1	10 20 40	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 0.35 \text{ Vdc}, T_A = -55^{\circ}\text{C})$ $(I_C = 30 \text{ mAdc}, V_{CE} = 0.4 \text{ Vdc})$	2N2369A 2N2369A		20 30	=	

2N2368, 2N2369,A, 2N3227

Characteristic			Symbol	Min	Max	Unit
(I _C = 100 mAdc, V_{CE} = 1.0 Vdc)	2N2369A 2N3227			20 30	=	
$(I_C = 100 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	2N2368 2N2369		in the second	10 20	_	
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc)	2N2368, 2N23 2N2369A	69, 2N3227	V _{CE(sat)}	=	0.25 0.20	Vdc
(IC = 10 mAdc, IB = 1.0 mAdc, TA = $+125^{\circ}$ C) (IC = 30 mAdc, IB = 3.0 mAdc)	2N2369A 2N2369A			467 = 148	0.30 0.25	
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	2N2369A 2N3227		-	_	0.50 .45	
Base-Emitter Saturation Voltage(1) ($I_C=10 \text{ mAdc}$, $I_B=1.0 \text{ mAdc}$) ($I_C=10 \text{ mAdc}$, $I_B=1.0 \text{ mAdc}$, $T_A=+125^\circ\text{C}$) ($I_C=10 \text{ mAdc}$, $I_B=1.0 \text{ mAdc}$, $T_A=-55^\circ\text{C}$) ($I_C=30 \text{ mAdc}$, $I_B=3.0 \text{ mAdc}$) ($I_C=100 \text{ mAdc}$, $I_B=10 \text{ mAdc}$)	All Types 2N2369A 2N2369A 2N2369A 2N2369A 2N2369A 2N3227		VBE(sat)	0.70 0.59 — — — 0.8	0.85 — 1.02 1.15 1.60 1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	2N2368 2N2369, 2N23	69A, 2N3227	fT	400 500		MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)	All Types		C _{obo}	-	4.0	pF
Input Capacitance (VBE = 1.0 Vdc, $I_C = 0$, $f = 140$ kHz)	2N3227	400	C _{ibo}	_	4.0	pF
SWITCHING CHARACTERISTICS						
Delay Time $(V_{CC} = 10 \text{ V}, V_{EB} = 2.$	0 Vdc,	2N3227	td	_	5.0	ns
Rise Time 100 mA, I _{B1} = 10 mA)		2143227	tr	_	18	ns
Storage Time (IC = IB1 = 10 mAdc, IB2 = -10 mAdc) (IC = 100 mAdc, IB1 = IB2 = 10 mAdc, VCC =	10 V)	2N2368 2N2369A 2N3227	t _S	=	10 13 13	ns
Fall Time $(V_{CC} = 10 \text{ V}, I_C = 100 \text{ mA}, I_{B1} = I_{B2} = 10 \text{ mA})$		2N3227	tf		15	ns
Turn-On Time (I _C = 10 mAdc, I _{B1} = 3.0 mA, I _{B2} = -1.5 mA, V	V _{CC} = 3.0 Vdc)	All Types	ton	TI F	12	ns
Turn-Off Time (IC = 10 mAdc, IB1 = 3.0 mA, IB2 = -1.5 mA, I	V _{CC} = 3.0 Vdc)	2N2368 2N2369, 2N2369A, 2N3227	toff	Ē	 15 18	ns
Total Control Charge (I _C = 10 mA, I _B = 1.0 mA, V _{CC} = 3.0 V)		2N3227	Q _T		50	pC

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 5 — TURN-ON AND TURN-OFF TIME TEST CIRCUIT

FIGURE 8 — MAXIMUM CHARGE DATA

FIGURE 10 - TURN-OFF WAVE FORM

FIGURE 11 — STORAGE TIME EQUIVALENT TEST CIRCUIT

FIGURE 12 — MAXIMUM COLLECTOR SATURATION VOLTAGE CHARACTERISTICS

JAN, JTX AVAILABLE CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

Max

Unit

Min

Symbol

Re(hie)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.2 6.9	Watts
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage V(BR)CEO 15 Vdc $(I_C = 30 \text{ mAdc}, I_B = 0)$ Collector-Emitter Breakdown Voltage 30 Vdc V(BR)CES $(I_C = 1.0 \, \mu Adc, V_{BE} = 0)$ Collector-Base Breakdown Voltage 40 Vdc V(BR)CBO $(I_C = 10 \, \mu Adc, I_E = 0)$ Emitter-Base Breakdown Voltage V(BR)EBO 5.0 Vdc $(I_E = 100 \, \mu Adc, I_C = 0)$ Collector Cutoff Current **ICEX** μAdc $(V_{CE} = 20 \text{ Vdc}, V_{BE} = 3.0 \text{ Vdc})$ 0.05 $(V_{CE} = 20 \text{ Vdc}, V_{BE} = 3.0 \text{ Vdc}, T_{A} = 150^{\circ}\text{C})$ 15 **Emitter Cutoff Current IEBO** 100 nAdc $(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$ Base Cutoff Current 50 nAdc IBL $(V_{CE} = 20 \text{ Vdc}, V_{BE} = 3.0 \text{ Vdc})$ ON CHARACTERISTICS DC Current Gain hFE $(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ 25 $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ 40 120 $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}, T_A = -55^{\circ}C)(1)$ 20 $(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$ 20 Collector-Emitter Saturation Voltage VCE(sat) Vdc $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ 0.25 $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})(1)$ 0.40 Base-Emitter Saturation Voltage V_{BE}(sat) Vdc $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ 0.7 0.82 $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})(1)$ 1.25 **SMALL-SIGNAL CHARACTERISTICS Output Capacitance** Cobo 5.0 $(V_{CB} = 5.0 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz})$ Input Capacitance Cibo 7.0 pF $(V_{EB} = 0.5 \text{ V, f} = 1.0 \text{ MHz})$ Small-Signal Current Gain hfe 3.0 $(V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 100 \text{ MHz})$

Ohms

Real Part of Input Impedance

 $(I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 250 \text{ MHz})$

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
SWITCHING CHARACTERISTICS				
Storage Time ($I_C = 10 \text{ mA}$, $I_{B1} = 10 \text{ mA}$, $I_{B2} = 10 \text{ mA}$)	t _s	_	20	ns
Turn-On Time (I _C = 100 mA, I _{B1} = 10 mA, V _{BE(off)} = 2.0 V) (I _C = 10 mA, I _{B1} = 1.0 mA, V _{BE(off)} = 2.0 V)	ton	_	40 75	ns
Turn-Off Time $(I_C = 100 \text{ mA}, I_{B1} = 10 \text{ mA}, I_{B2} = 5.0 \text{ mA})$ $(I_C = 10 \text{ mA}, I_{B1} = 1.0 \text{ mA}, I_{B2} = 0.5 \text{ mA})$	toff	_	55 45	ns

⁽¹⁾ Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

COLLECTOR SATURATION VOLTAGE CHARACTERISTICS

MINIMUM CURRENT GAIN CHARACTERISTICS

TYPICAL SWITCHING CHARACTERISTICS

MAXIMUM RATINGS

MAXIMOM HATINGS					
Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	VCEO	60	Vdc		
Collector-Base Voltage	VCBO	60	Vdc		
Emitter-Base Voltage	V _{EBO}	6.0	Vdc		
Collector Current — Continuous	Ic	50	mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.06	mW mW/°C		
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.2 6.85	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	146	°C/W
Thermal Resistance, Junction to Ambient	R _∂ JA(1)	485	°C/W
Lead Temperature 1/16" from Case for 10 Seconds	TL	300	°C

2N2484

JAN, JTX, JTXV AVAILABLE **CASE 22-03, STYLE 1** TO-18 (TO-206AA)

AMPLIFIER TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Refer to 2N2481 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	60	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	6.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 45 Vdc, I _E = 0) (V _{CB} = 45 Vdc, I _E = 0, T_A = 150°C)	ІСВО	_	=	10 10	nAdc μAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}$, $I_{C} = 0$)	IEBO	_	_	10	nAdc
ON CHARACTERISTICS					-
DC Current Gain ($I_C = 1.0 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 10 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 10 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc, \ T_A = 55^{\circ}C$) ($I_C = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 500 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$) ($I_C = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$)	hFE	30 100 20 175 200 250	190 250 40 275 300 350 400	500 800	-
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc)	VCE(sat)	_	0.25	0.35	Vdc
Base-Emitter On Voltage (I _C = 0.1 mAdc, V _{CE} = 5.0 Vdc)	V _{BE(on)}	0.5	0.65	0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS				3	
Current-Gain — Bandwidth Product $ \begin{array}{c} (I_C=0.05 \text{ mAdc}, V_{CE}=5.0 \text{ Vdc}, f=5.0 \text{ MHz}) \\ (I_C=0.5 \text{ mAdc}, V_{CE}=5.0 \text{ Vdc}, f=30 \\ \text{MHz}) \end{array} $	fT	15 60	50 100	=	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)	Cobo	_	3.0	6.0	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 140 kHz)	Cibo	_	4.0	6.0	pF
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hie	3.5	_	24	kΩ
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{re}	_	_	800	X 10-6
Small-Signal Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	150	_	900	_
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{oe}	_	-	40	μmhos
Noise Figure $(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc, R_S = 10 \ k\Omega, f = 100 \ Hz, BW = 20 \ Hz)$ $(I_C = 10 \ \mu Adc, V_{CF} = 5.0 \ Vdc, R_S = 10 \ k\Omega,$	NF	_	8.0	10	dB
f = 1.0 kHz, BW = 200 Hz) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kΩ,		_	_	3.0	
f = 10 kHz, BW = 2.0 kHz) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kΩ, f = 10 Hz to 15.7 kHz, BW = 15.7 kHz)			_	3.0	

⁽¹⁾ R_{6JA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width \leqslant 300 μ s, Duty Cycle \leqslant 2.0%.

CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

WAXIMUW KATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.1	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.2 6.9	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	d contract a second	econiX e	and a few sections	- Late Jal
Collector-Emitter Breakdown Voltage (I _C = 30 mAdc, I _B = 0, Pulsed)	V(BR)CEO	20	e e e e e e e e e e e e e e e e e e e	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	40	7 7	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	V(BR)EBO	6.0		Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 3.0 Vdc)	ICEX	- 0	25	nAdc
Base Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 3.0 Vdc) (V _{CE} = 20 Vdc, V _{BE} = 3.0 Vdc, T _A = 150°C)	IBL	=	0.025 50	nAdc
ON CHARACTERISTICS				
DC Current Gain	hFE	20 30 50 20 40 30	150 ————————————————————————————————————	
Collector-Emitter Saturation Voltage(1) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) (IC = 100 mAdc, IB = 10 mAdc)	VCE(sat)	=	0.2 0.3 0.4	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	V _{BE} (sat)	=	0.85 1.0 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				WA ON I
Current-Gain — Bandwidth Product ($V_{CE} = 20 \text{ Vdc}$, $I_{C} = 10 \text{ mAdc}$, $f = 100 \text{ MHz}$)	fŢ	350		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	-	4.0	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0 , f = 100 kHz)	C _{ibo}		7.0	pF
Small-Signal Current Gain (V _{CE} = 20 Vdc, I _C = 10 mAdc, f = 100 MHz)	h _{fe}	3.5		

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
SWITCHING CHARACTERISTICS				
Charge Storage Time Constant (I _C = I _{B1} = I _{B2} = 10 mAdc)	τS	-	15	ns
Total Control Charge (I _C = 10 mAdc, I _B = 1.0 mAdc)	Q_{τ}	=	60	pC
Active Region Time Constant (I _C = 10 mAdc)	[†] Α	_	2.5	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

ACTIVE REGION TIME CONSTANT

COMMON EMITTER DC LEAKAGE CHARACTERISTICS

RISE TIME FACTOR

FALL TIME FACTOR

CASE 22, STYLE 1 TO-18

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Emitter Voltage	VCER	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.86	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, pulsed, I _B = 0)	V(BR)CEO	30	_	Vdc
Collector-Emitter Breakdown Voltage (IC = 100 mAdc, pulsed, RBE \leq 10 Ω)	V(BR)CER	40	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (VBE = 0.2 Vdc, VCE = 20 Vdc)	ICEX	_	0.250	μAdc
Collector Cutoff Current ($V_{CB}=40$ Vdc, $I_{E}=0$) ($V_{CB}=40$ Vdc, $I_{E}=0$, $T_{A}=150^{\circ}C$)	ІСВО	=	0.250 200	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0)	IEBO	_	0.05	μAdc
Base Cutoff Current $(V_{BE} = 0.2 \text{ Vdc}, V_{CE} = 20 \text{ Vdc})$ $(V_{BE} = 0.2 \text{ Vdc}, V_{CE} = 20 \text{ Vdc}, T_{A} = 150^{\circ}\text{C})$	IBL	=	0.250 200	μAdc
ON CHARACTERISTICS(1)				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	hFE	20 30 50 20	 150 	
SMALL-SIGNAL CHARACTERISTICS			2 1	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	Cobo	_	8.0	pF
Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 100 kHz)	Cibo	_	25	pF
Small-Signal Current Gain (VCE = 20 Vdc, IC = 20 mAdc, f = 100 MHz)	hfe	2.5	_	_
SWITCHING CHARACTERISTICS				
Storage Time ($I_C = I_{B1} = I_{B2} = 20 \text{ mAdc}, V_{CC} = 5.0 \text{ V}$)	τS	_	20	ns
Active Region Time Constant	τA	_	2.0	ns
Turn-On Time (IB1 = IB2 = 15 mAdc, IC = 150 mAdc, VCC = 7.0 Vdc, RL = 40 Ω)	t _{on}		40	ns
Turn-Off Time (IB1 = IB2 = 15 mAdc, IC = 150 mAdc, VCC = 7.0 Vdc, RL = 40 Ω)	toff	_	40	ns
Total Control Charge	Q _T	_	750	pC

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

JAN, JTX AVAILABLE CASE 26-03, STYLE 1 TO-46 (TO-206AB)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N3962 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	45	V
Collector-Base Voltage	VCBO	60	V
Emitter-Base Voltage	VEBO	6	V
Collector Current — Continuous	IC	30	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.28	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) I _C = 10 mA (Pulse)	V(BR)CEO	45	_	V
Collector-Base Breakdown Voltage ($I_C = 10 \mu A$)	V(BR)CBO	60	_	V
Emitter-Base Breakdown Voltage (I _E = 10 μA)	V(BR)EBO	6	_	V
Collector Cutoff Current (V _{CB} = 45 V)	СВО		10	nA
Base-Emitter Short Circuit Current ($V_{CE} = 45 \text{ V}$) ($V_{CE} = 45 \text{ V}$, $T_{A} = 170 ^{\circ}\text{C}$)	CES	_	10 10	nA μA
Emitter Cutoff Current (VBE = 5.0 V)	IEBO	_	2	nA
ON CHARACTERISTICS				
DC Current Gain(1) $(V_{CE}=5.0~V, I_{C}=10~\mu A)$ $(V_{CE}=5.0~V, I_{C}=500~\mu A)$ $(V_{CE}=5.0~V, I_{C}=10~m A)$ $(V_{CE}=5.0~V, I_{C}=10~\mu A, T_{A}=-55^{\circ}C)$	hFE	100 150 — 20	300 — 600 —	=
Collector-Emitter Saturation Voltage ($I_C = 10$ mA, $I_B = 500 \mu$ A)	V _{CE} (sat)	_	0.5	V
Base-Emitter Saturation Voltage ($I_C = 10$ mA, $I_B = 500 \mu A$)	V _{BE(sat)}	0.7	0.9	V
SMALL-SIGNAL CHARACTERISTICS		o delle		
Output Capacitance ($V_{CB} = 5.0 \text{ V}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	Cobo	_	6	pF
Input Impedance $(V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, f = 100 \text{ MHz})$	h _{ie}	_	200	Ω
Input Impedance ($V_{CB} = 5.0 \text{ V}$, $I_E = 1.0 \text{ mA}$, $f = 1.0 \text{ kHz}$)	hib	25	35	Ω
Voltage Feedback Ratio ($V_{CB} = 5.0 \text{ V}$, $I_{E} = 1.0 \text{ mA}$, $f = 1.0 \text{ kHz}$)	h _{rb}	_	10	10-4
Small-Signal Current Gain (V _{CB} = 5.0 V, I _E = 1.0 mA, f = 1.0 kHz) (V _{CB} = 5.0 V, I _C = 500 μ A, f = 30 MHz)	h _{fe}	150 1.0	600	=
Output Admittance ($V_{CB} = 5.0 \text{ V}$, $I_{E} = 1.0 \text{ mA}$, $f = 1.0 \text{ kHz}$)	h _{ob}	_	1	μmh
Noise Figure(2) (V _{CB} = 5.0 V, I _C = 10 μ A, R _q = 10 k Ω , BW = 15.7 kHz)	NF	_	3	dB

⁽¹⁾ Pulse Width < 300 μsec , Duty Cycle \le 2.0%.

⁽²⁾ Measured in amplifier with response down 3 db at 10 Hz.

CASE 79, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

PNP SILICON

Refer to 2N2904 for graphs.

Unit

Min

Symbol

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	35	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	800	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.57	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.14	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

onal doteriorio	Symbol	141111	IVIAA	Oilit
OFF CHARACTERISTICS				- Sec.
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, I _B = 0)	VCEO(sus)	35	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	50	-	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CE} = 25 Vdc, V _{BE} = 0.5 Vdc Off)	ICEX	_	100	nAdc
Base Cutoff Current (V _{CE} = 25 Vdc, V _{BE} = 0.5 Vdc Off)	IBL	_	100	nAdc
ON CHARACTERISTICS				
DC Current Gain $ \begin{cases} I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1) \\ I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1) \\ I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1) \end{cases} $	hFE	20 30 15 25	90 —	_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	V _{CE} (sat)	_	0.4 1.2	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	V _{BE} (sat)	_	1.3 1.8	Vdc
SMALL-SIGNAL CHARACTERISTICS			111	
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	120	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, f = 100 kHz)	C _{obo}	_	25	pF
SWITCHING CHARACTERISTICS				
Delay Time	t _d	9	25	ns
Rise Time	t _r	25	45	ns
Storage Time	t _S	100	225	ns
Fall Time	tf	30	45	ns

CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage(1)	VCEO	12	Vdc
Collector-Base Voltage	VCBO	12	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.06	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1200 6.85	mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

Refer to 2N869A for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			EVER VITT	organi i
Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc, V_{BE} = 0$)	V _(BR) CES	12	20 to -	Vdc
Collector-Emitter Sustaining Voltage(2) (I _C = 10 mAdc, I _B = 0)	V _{CEO(sus)}	12		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	12	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.0	_	Vdc
Collector Cutoff Current (V _{CB} = 6.0 Vdc, I _E = 0, T _A = 125°C)	Ісво	_	10	μAdc
Collector Cutoff Current (V _{CE} = 6.0 Vdc, V _{BE} = 0)	CES	_	80	nAdc
Base Current (V _{CE} = 6.0 Vdc, V _{BE} = 0)	IB	_	80	nAdc
ON CHARACTERISTICS			•	
DC Current Gain(2) $ \begin{array}{lll} (I_C = 10 \text{ mAdc, V}_{CE} = 0.3 \text{ Vdc}) \\ (I_C = 30 \text{ mAdc, V}_{CE} = 0.5 \text{ Vdc}) \\ (I_C = 30 \text{ mAdc, V}_{CE} = 0.5 \text{ Vdc, T}_{A} = -55^{\circ}\text{C}) \\ (I_C = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc})(2) \\ \end{array} $	hFE	30 40 17 25	150 —	
Collector-Emitter Saturation Voltage(2) (IC = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	VCE(sat)	_	0.15 0.2 0.5	Vdc
Base-Emitter Saturation Voltage(2) $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc})$ $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	V _{BE} (sat)	0.78 0.85	0.98 1.2 1.7	Vdc
SMALL-SIGNAL CHARACTERISTICS		3-1 F 107		
Current-Gain — Bandwidth Product (I _C = 30 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	400		MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 140 \text{ kHz}$)	C _{obo}	_	6.0	pF
Input Capacitance (VBE = -0.5 Vdc, IC = 0, f = 140 kHz)	C _{ibo}	_	6.0	pF
SWITCHING CHARACTERISTICS				
Turn-On Time ($V_{CC}=2.0~Vdc,~V_{BE}=3.0~Vdc,~I_{C}=30~mAdc,~I_{B1}=1.5~mAdc$)	t _{on}	_	60	ns
Turn-Off Time $(V_{CC}=2.0 \text{ Vdc}, I_{C}=30 \text{ mAdc}, I_{B1}=I_{B2}=1.5 \text{ mAdc})$	toff	_	90	ns
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-	

⁽¹⁾ Applicable from 0.01 to 10 mAdc.

⁽²⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

MAXIMOM RATINGS											
Rating	Symbol	2N2895	2N2896	2N2897	Unit						
Collector-Emitter Voltage	VCEO	65	90	45	Vdc						
Collector-Emitter Voltage	VCER	80	140	60	Vdc						
Collector-Base Voltage	VCBO	120	140	60	Vdc						
Emitter-Base Voltage	VEBO	7.0		7.0		7.0		7.0		1450	Vdc
Collector Current — Continuous	IC	1.0			Adc						
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		0.5 2.86		Watt mW/°C						
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3			Watts mW/°C						
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200			°C						

2N2895 2N2896 2N2897

CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 100 mAdc, R _{BE} = 10 ohms)	2N2895 2N2896 2N2897	V(BR)CER	80 140 60		Vdc
Collector-Emitter Sustaining Voltage(1) $(I_C = 100 \text{ mAdc}, I_B = 0)$	2N2895 2N2896 2N2897	VCEO(sus)	65 90 45	=	Vdc
Collector-Base Breakdown Voltage ($I_C=0.1\ mAdc,\ I_E=0$)	2N2895 2N2896 2N2897	V(BR)CBO	120 140 60	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)		V(BR)EBO	7.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_{C} = 0)$	2N2895 2N2896 2N2897	ICBO		0.002 0.01 0.05	μAdc
$(V_{CB} = 60 \text{ Vdc}, I_{E} = 0, T_{A} = +150^{\circ}\text{C})$	2N2895 2N2897		=-	2.0 50	
$(V_{CB} = 90 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 90 \text{ Vdc}, I_{E} = 0, T_{A} = +150^{\circ}\text{C})$	2N2896 2N2896		_	0.01 10	
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	2N2895 2N2896 2N2897	lEBO	Ξ	0.005 0.01 0.05	μAdc
ON CHARACTERISTICS					
DC Current Gain $ \begin{aligned} &(_C &= 10 \; \mu Adc, V_{CE} &= 10 \; Vdc) \\ &(_C &= 100 \; \mu Adc, V_{CE} &= 10 \; Vdc) \\ &(_C &= 1.0 \; m Adc, V_{CE} &= 10 \; Vdc) \\ &(_C &= 10 \; m Adc, V_{CE} &= 10 \; Vdc) \\ &(_C &= 10 \; m Adc, V_{CE} &= 10 \; Vdc, T_{A} &= -55^{\circ}C) \end{aligned} $ $ (_C &= 150 \; m Adc, V_{CE} &= 10 \; Vdc, T_{A} &= -55^{\circ}C) $	2N2895 2N2895 2N2896, 2N2897 2N2895 2N2895, 2N2896 2N2895 2N2896 2N2897	hFE	10 20 35 35 20 40 60		_
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N2897 2N2895		50 25	200	

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	2N2895, 2N2896 2N2897	VCE(sat)	=	0.6	Vdc
Base-Emitter Saturation Voltage(1) $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$	2N2895, 2N2896 2N2897	V _{BE} (sat)	_	1.2 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	2N2895, 2N2896 2N2897	fT	120 100	=	MHz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 100 kHz)		C _{obo}	_	15	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 100 kHz)		C _{ibo}	_	80	pF
Small-Signal Current Gain (IC = 5.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	2N2895 2N2896, 2N2897	h _{fe}	50 50	200 275	-
Noise Figure (I _C = 0.3 mAdc, V_{CE} = 10 Vdc, R_S = 500 ohms, f = 1.0 kHz, BW = 15 kHz)	2N2895	NF		8.0	dB

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.8%.

MAXIMUM RATINGS

MAXIMUM KATINGS							
Rating	Symbol	Non-A Suffix		Non-A Suffix		A-Suffix	Unit
Collector-Emitter Voltage	VCEO	40		60	Vdc		
Collector-Base Voltage	VCBO		60		Vdc		
Emitter-Base Voltage	VEBO		Vdc				
Collector Current — Continuous	IC		600		mAdc		
				2N3485,A 2N3486,A			
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	600 3.43	400 2.28	400 2.28	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.2	1.8 10.3	2.0 11.43	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-	°C				

2N2904,A, 2N2905,A, 2N2906,A, 2N2907,A, 2N3485,A, 2N3486,A

JAN, JTX, JTXV AVAILABLE*

CASE 79-02, STYLE 1 2N2904/2905 TO-39 (TO-205AD)

CASE 22-03, STYLE 1 2N2906/2907 TO-18 (TO-206AA)

CASE 26-03, STYLE 1 2N3485/3486 TO-46 (TO-206AB)

GENERAL PURPOSE TRANSISTOR
PNP SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				100		
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	Non-A Suffix A-Suffix	V(BR)CEO	40 60	=	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)		V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	7.1	V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current (VCE = 30 Vdc, VBE = 0.5 Vdc)		ICEX	-	_	50	nAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	Non-A Suffix A-Suffix	СВО	= 4	J==-	0.020 0.010	μAdc
$(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	Non-A Suffix A-Suffix		z= <u>=</u>	=	20 10	
Base Current (V _{CE} = 30 Vdc, V _{BE} = 0.5 Vdc)		IB	_		50	nAdc
ON CHARACTERISTICS	lea .	1.4-4				
DC Current Gain (IC = 0.1 mAdc, $V_{CE} = 10 \text{ Vdc}$)	2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904A, 2N2906A, 2N3485A 2N2905A, 2N2907A, 2N3486A	hFE	20 35 40 75	=	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904A, 2N2906A, 2N3485A 2N2905A, 2N2907A, 2N3486A		25 50 40 100	=	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904A, 2N2906A, 2N3485A 2N2905A, 2N2907A, 2N3486A		35 75 40 100	_ _ _	=	1 7
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N2904A, 2N2906A, 2N3485,A 2N2905A, 2N2907A, 2N3486A		40 100	77 =	120 300	

*ALSO AVAILABLE 2N2905ALJANS AND 2N2907AJANS

2N2904,A, 2N2905,A, 2N2906,A, 2N2907,A, 2N3485,A, 2N3486,A

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

	Characteristic		Min	Тур	Max	Unit
(I _C = 500 mAdc, V	CE = 10 Vdc)(1) 2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904A, 2N2906A, 2N3485A 2N2905A, 2N2907A, 2N3486A		20 30 40 50	=		FYTOUR
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)		VCE(sat)	=	=	0.4 1.6	Vdc
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)(1) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)		VBE(sat)	=	=	1.3 2.6	Vdc
SMALL-SIGNAL CHA	RACTERISTICS	ese a su sul				
Current-Gain — Band (IC = 50 mAdc, VC	width Product(2) E = 20 Vdc, f = 100 MHz)	fŢ	200	_	7 ₂ - - 1	MHz
Output Capacitance (V _{CR} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	_	8.0	pF
Input Capacitance (VBE = 2.0 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	_	_	30	pF
SWITCHING CHARA	CTERISTICS	To de la constitución de la cons		1-10-1	W 17 01	
Turn-On Time		ton	_	26	45	ns
Delay Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc, I _{B1} = 15 mAdc)		_	6.0	10	ns
D: T:				00	40	

Turn-On Time		ton	_	26	45	ns
Delay Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc, I _{B1} = 15 mAdc)	t _d	_	6.0	10	ns
Rise Time	IB1 = 19 HINGE/	t _r		20	40	ns
Turn-Off Time	Egy Picks - Ingel	toff	Cou - mak	70	100	ns
Storage Time	$(V_{CC} = 6.0 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc})$	ts	_	50	80	ns
Fall Time	181 - 182 - 10 111/400)		_	20	30	ns

- (1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0.%
- (2) fT is defined as the frequency at which |hfe| extrapolates to unity.

2N2904,A, 2N2905,A, 2N2906,A, 2N2907,A, 2N3485,A, 2N3486,A

TURN ON BEHAVIOR

TURN OFF BEHAVIOR

DELAY AND RISE STORAGE AND FALL TIME TEST CIRCUIT TIME TEST CIRCUIT -30 +15 V -6.0 INPUT INPUT \$ 200 \$1.0 k $Z_0 = 50 \Omega$ $Z_0 = 50 \Omega$ PRF = 150 PPS PRF = 150 PPS RISE TIME ≤ 2.0 µs RISE TIME ≤ 2.0 ns 1.0 k TO OSCILLOSCOPE TO OSCILLOSCOPE RISE TIME ≤ 5.0 ns RISE TIME ≤ 5.0 ns -16 V -30 V 50 1N916 200 ns 200 ns

2N2944 thru 2N2946

CASE 26-03, STYLE 1 TO-46 (TO-206AB)

TRANSISTOR

PNP SILICON

Refer to 2N2944A for graphs.

MAXIMUM RATINGS

WAXIVIUW RATINGS					
Rating	Symbol	2N2944	2N2945	2N2946	Unit
Emitter-Collector Voltage	VECO	10	20	35	Vdc
Collector-Base Voltage	VCBO	15	25	40	Vdc
Emitter-Base Voltage	VEBO	15	25	40	Vdc
Collector Current — Continuous	IC	7		mAdc	
Total Device Dissipation @ TA = 25°C	PD			mW	
Derate above 25°C				mW/°C	
Total Device Dissipation @ T _C = 25°C	PD			Watts	
Derate above 25°C			mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-	00	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	87.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	435	°C/W

ELECTRICAL	CHARACTERISTICS	(TA	=	25°C	unless	otherwise	noted.)	

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 25 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_{E} = 0)$	2N2944 2N2945 2N2946	СВО	_	=	0.1 0.2 0.5	nAdc
Emitter Cutoff Current $(V_{EB}=15\ Vdc, _C=0)$ $(V_{EB}=25\ Vdc, _C=0)$ $(V_{EB}=40\ Vdc, _C=0)$	2N2944 2N2945 2N2946	IEBO		=	0.1 0.2 0.5	nAdc
ON CHARACTERISTICS						
DC Current Gain (IC = 1.0 mAdc, $V_{CE} = 0.5 \text{ Vdc}$)	2N2944 2N2945 2N2946	hFE	80 40 30	180 160 130	=	
*DC Current Gain (inverted connection) (IB = 200 μ Adc, VEC = 0.5 Vdc)	2N2944 2N2945 2N2946	hFE(inv)	6.0 4.0 3.0	20 17 15		
Offset Voltage (IB = 200 μ Adc, IE = 0)	2N2944 2N2945 2N2946	VEC(ofs)	_ _ _	0.18 0.23 0.27	0.3 0.5 0.8	mVdd
$(l_B = 1.0 \text{ mAdc}, l_E = 0)$	2N2944 2N2945 2N2946		=	0.4 0.5 0.6	0.6 1.0 2.0	
$(I_B = 2.0 \text{ mAdc}, I_E = 0)$	2N2944 2N2945 2N2946		=	0.8 0.9 1.0	1.0 1.6 2.5	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 1.0 \text{ MHz}$)	2N2944 2N2945 2N2946	fΤ	10 5.0 3.0	15 13 12		MHz
Output Capacitance ($V_{CB} = 6.0 \text{ Vdc}$, $I_{E} = 0$, $f = 500 \text{ kHz}$)	J	C _{obo}	A-1-1	3.2	10	pF
Input Capacitance ($V_{EB} = 6.0 \text{ Vdc}$, $I_{C} = 0$, $f = 500 \text{ kHz}$)		C _{ibo}	_	1.9	6.0	pF
"ON" Series Resistance (IB = 1.0 mAdc, IE = 0, IC = 100 μ Arms, f = 1.0 kHz)	2N2944 2N2945 2N2946	rec		4.0 4.5 5.0	20 35 45	Ohms

*Indicates Data in addition to JEDEC Requirements.

MAXIMUM RATINGS

Rating	Symbol	2N2944A	2N2945A	2N2946A	Unit	
Emitter-Collector Voltage	VECO	10	20	35	Vdc	
Collector-Base Voltage	VCBO	15	25	40	Vdc	
Emitter-Base Voltage	VEBO	15	25	40	Vdc	
Collector Current — Continuous	lc		100			
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD			mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		2.0 11.43			
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200			°C	
Lead Temperature 1/16" from Case for 10 seconds	TL	240			°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	435	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	87.5	°C/W

2N2944A 2N2945A 2N2946A

JAN, JTX, JTXV AVAILABLE CASE 26-03, STYLE 1 TO-46 (TO-205AB)

CHOPPER TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Emitter-Collector Breakdown Voltage ($I_E = 10 \mu Adc, I_B = 0$)	2N2944A 2N2945A 2N2946A	V(BR)ECO	10 20 35	=		Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0) (V _{CB} = 25 Vdc, I _E = 0)	2N2944A 2N2945A	ІСВО	=	=	0.1 0.2	nAdd
$(V_{CB} = 40 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$ $(V_{CB} = 25 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$	2N2946A 2N2944A 2N2945A			=	0.5 10 20	
$(V_{CB} = 40 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$	2N2946A		_	_	25	
Emitter Cutoff Current (VEB = 25 Vdc, I _C = 0)	2N2944A 2N2945A	IEBO	=	=	0.1 0.2	nAdd
$(V_{EB} = 40 \text{ Vdc}, I_{C} = 0)$	2N2946A		_	_	0.5	
$(V_{EB} = 25 \text{ Vdc}, I_{C} = 0, T_{A} = 100^{\circ}\text{C})$	2N2944A 2N2945A		=	=	10 15	
$(V_{EB} = 40 \text{ Vdc, } I_{C} = 0, T_{A} = 100^{\circ}\text{C})$	2N2946A		_	_	20	
ON CHARACTERISTICS						,
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 0.5 \text{ Vdc}$)	2N2944A 2N2945A 2N2946A	hFE	100 70 50	200 200	_	_
DC Current Gain (Inverted Connection) (I _B = 200 μAdc, V _{EC} = 0.5 Vdc)	2N2944A 2N2945A 2N2946A	hFE(inv)	50 30 20	— 32 25	_	_
Offset Voltage (IB = 200 μ Adc, IE = 0)	2N2944A 2N2945A 2N2946A	VEC(ofs)	=	0.23 0.4 0.7	0.3 0.5 0.8	mVdd

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characterist	ic	Symbol	Min	Тур	Max	Unit
(IB = 1.0 mAdc, IE = 0)	2N2944A		_	-	0.6	
	2N2945A		_	0.5	1.0	C. Shakes
	2N2946A		_	0.6	2.0	Mark to the
$(I_B = 2.0 \text{ mAdc}, I_E = 0)$	2N2944A		-	_	1.0	
- 1 2 1 1 1 5 1 C 1 1 D 1 1 D 1 1 D 1 1 D 1 D 1 D 1 D	2N2945A		2 -	0.9	1.6	
	2N2946A			1.0	2.5	

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product $(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 6.0 \text{ Vdc}, f = 1.0 \text{ MHz})$	2N2944A 2N2945A 2N2946A	fT	10 5.0	— 15 8.0		MHz
Output Capacitance (V _{CB} = 6.0 Vdc, I _E = 0, f = 0.1 MHz to 1.0 MHz)		C _{obo}		3.2	10	pF
Input Capacitance (VEB = 6.0 Vdc , I _C = 0 , f = 0.1 MHz to 1.0 MHz)		C _{ibo}	(—) g	1.9	6.0	pF
"ON" Series Resistance (IB = 1.0 mAdc, IE = 0, Ie = 100 μ Arms, f = 1.0 kHz)	2N2944A 2N2945A 2N2946A	rec(on)			4.0 6.0 8.0	Ohms

1.0 Vac 1.0 kHz 1.0 k

FIGURE 2 — VEC(offset)

mA + + + + + + - - - - - 9.1 k 2% 1.0 Vac 10 k 2% Output Figure 1 — rec(on) rec(on) τ ec(on) mA 1.0k 2% V

Output measured with H.P. 400D Ac VTVM or equivalent. 1.0 mV = 1.0 Ω rec(on)

CASE 79, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTORS

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	3.0 20	Watts mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	0.6 4.00	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			7 5	
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, pulsed, I _B = 0)	V _(BR) CEO	20	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V _(BR) CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0.5 Vdc)	ICEX	_	.050	μAdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ІСВО	=	0.025 15	μAdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0.5 Vdc)	I _{BL}	_	.050	μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 150 mAdc, V _{CE} = 10 Vdc)	hFE	100	300	_
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.5	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	_	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 20 mA, V _{CE} = 20 V, f = 100 MHz)	fΤ	250	- 1	MHz
Output Capacitance (V _{CB} = 10 V, I _E = 0, f = 100 kHz)	C _{obo}	_	8.0	pF
SWITCHING CHARACTERISTICS				
Delay Time (V _{CC} = 30 V, I _{CS} = 150 mA, I _{B1} = 15 mA)	^t d	_	20	ns
Rise Time (V _{CC} = 30 V, I _{CS} = 150 mA, I _{B1} = 15 mA)	t _r	_	75	ns
Storage Time ($V_{CC}=6.0$ V, $I_{CS}=150$ mA, $I_{B1}=15$ mA, $I_{B2}=15$ mA)	t _s	-	300	ns
Fall Time $(V_{CC}=6.0\ V,\ I_{CS}=150\ mA,\ I_{B1}=15\ mA,\ I_{B2}=15\ mA)$	t _f	-	200	ns

CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

Rating	Symbol	Value	Unit
Collector-Emitter Voltage(1)	VCEO	12	Vdc
Collector-Emitter Voltage	VCES	30	Vdc
Collector-Base Voltage	Vсво	30	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous Peak (10 μs Pulse)	IC	200 500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$ Derate above 25°C	PD	1.20 0.68 6.85	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

Refer to 2N2368 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			Paragone In	1000
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	12	ATTO I	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 μAdc, V _{BE} = 0)	V(BR)CES	30	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	30		Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current ($V_{CE} = 20 \text{ Vdc } V_{BE} = 0$) ($V_{CE} = 20 \text{ Vdc}, V_{BE} = 0, T_A = +85^{\circ}C$)	CES	_	0.4 10	μAdc
Base Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 0)	^I BL	-	0.4	μAdc
ON CHARACTERISTICS (2)				
DC Current Gain $(I_C = 10 \text{ mAdc}, V_{CE} = 0.35 \text{ Vdc})$ $(I_C = 30 \text{ mAdc}, V_{CE} = 0.4 \text{ Vdc})$ $(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	hFE	30 25 12	120 — —	
Collector-Emitter Saturation Voltage $ \begin{array}{cccc} (I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc}) \\ (I_C=30 \text{ mAdc}, I_B=3.0 \text{ mAdc}) \\ (I_C=100 \text{ mAdc}, I_B=10 \text{ mAdc}) \\ (I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc}, T_A=+85^\circ\text{C}) \end{array} $	V _{CE(sat)}	=	0.20 0.25 0.50 0.30	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 30 \text{ mAdc}$, $I_B = 3.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	V _{BE(sat)}	0.72	0.87 1.15 1.60	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	400	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)	Cobo	_	4.0	pF
SWITCHING CHARACTERISTICS				
Storage Time $(I_C = I_{B1} = -I_{B2} = 10 \text{ mAdc})$	t _S	_	13	ns
Turn-On Time $(V_{CC} = 2.0 \text{ Vdc}, V_{EB(off)} = 0, I_{C} = 30 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc})$	ton	_	15	ns
Turn-Off Time $\{V_{CC}=2.0\ V_{dc},\ I_{C}=30\ mAdc,\ I_{B1}=-I_{B2}=3.0\ mAdc\}$	toff	_	20	ns

MAXIMUM RATINGS

⁽¹⁾ Applicable from 0.01 mA to 10 mA (Pulsed).

⁽²⁾ Pulse Test: Pulse Length = 30 μ s, Duty Cycle \leq 2.0%.

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

Refer to 2N869A for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	V _{CBO}	12	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.85	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•		Live I	
Collector-Emitter Breakdown Voltage (I _C = 10 μAdc, V _{BE} = 0)	V(BR)CES	12	(a)	Vdc
Collector-Emitter Sustaining Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$ (Emitter-Base Termination — Open Base)	VCEO(sus)	12	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CBO	12		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current ($V_{CE} = 6.0 \text{ Vdc}$, $V_{BE} = 0$) ($V_{CE} = 6.0 \text{ Vdc}$, $V_{BE} = 0$, $T_{A} = +85^{\circ}\text{C}$)	ICES	_	80 5.0	μAdc
Base Current (V _{CE} = 6.0 Vdc, V _{BE} = 0)	IB	_	30	μAdc

DC Current Gain (I _C = 10 mAdc, V _{CE} = 0.3 Vdc) (I _C = 30 mAdc, V _{CE} = 0.5 Vdc)	hFE	25 30	120	_
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$		20		
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc, T _A = +85°C) (I _C = 100 mAdc, I _B = 10 mAdc)	VCE(sat)	Ξ	0.15 0.2 0.4 0.5	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	V _{BE} (sat)	0.78 0.85	0.98 1.2 1.7	Vdc

SMALL-SIGNAL CHARACTERISTICS

Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$	C _{obo}		6.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 140 \text{ kHz}$)	C _{ibo}	1	6.0	pF
Small-Signal Current Gain ($I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz}$)	h _{fe}	4.0	-	- Topas

SWITCHING CHARACTERISTICS

Turn-On Time	$(V_{CC} = 2.0 \text{ Vdc}, I_{C} \approx 30 \text{ mAdc}, I_{B1} \approx 1.5 \text{ mAdc})$	ton	_	60	ns
Turn-Off Time	$(V_{CC} = 2.0 \text{ Vdc}, I_{C} \approx 30 \text{ mAdc}, I_{B1} = I_{B2} \approx 1.5 \text{ mAdc})$	toff	_	75	ns

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 1.0%.

2N3013 2N3014

2N3013 JAN, JTX AVAILABLE CASE 27, STYLE 1 TO-52 (TO-206AC)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage(1) 2N3013 2N3014	VCEO	15 20	Vdc
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous (10 μs pulse) Peak	IC	200 500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$ Derate above $25^{\circ}C$	PD	1.20 0.68 6.85	Watts Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

(1) Applicable from 0.01 mA to 10 mA (Pulsed)

Refer to 2N3510 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc, V _{BE} = 0)		V(BR)CES	40		Vdc
Collector-Emitter Sustaining Voltage(2) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N3013 2N3014	VCEO(sus)	15 20	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)		V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)		V _{(BR)EBO}	5.0	=	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 0) (V _{CE} = 20 Vdc, V _{BE} = 0, T _A = +125°C)		CES	=	0.3 40	μAdc
Base Current (V _{CE} = 20 Vdc, V _{BE} = 0)		IB	_	0.3	μAdc
ON CHARACTERISTICS(2)					
DC Current Gain $ \begin{aligned} &(I_C = 30 \text{ mAdc, } V_{CE} = 0.4 \text{ Vdc}) \\ &(I_C = 100 \text{ mAdc, } V_{CE} = 0.5 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 0.4 \text{ Vdc}) \\ &(I_C = 300 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 100 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 100 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 30 \text{ mAdc, } V_{CE} = 0.4 \text{ Vdc, } T_A = -55^{\circ}\text{C}) \end{aligned} $	2N3013 2N3014 2N3013 2N3014	h₽E	30 25 25 15 25	120 — — — —	_
Collector-Emitter Saturation Voltage $ \begin{aligned} &(I_C=30 \text{ mAdc, } I_B=3.0 \text{ mAdc}) \\ &(I_C=100 \text{ mAdc, } I_B=10 \text{ mAdc}) \\ &(I_C=100 \text{ mAdc, } I_B=10 \text{ mAdc}) \\ &(I_C=300 \text{ mAdc, } I_B=30 \text{ mAdc}) \\ &(I_C=300 \text{ mAdc, } I_B=1.0 \text{ mAdc}) \\ &(I_C=10 \text{ mAdc, } I_B=1.0 \text{ mAdc}) \\ &(I_C=30 \text{ mAdc, } I_B=3.0 \text{ mAdc, } T_A=+125^{\circ}\text{C}) \end{aligned} $	2N3013 2N3014 2N3013 2N3014	VCE(sat)		0.18 0.28 0.35 0.50 0.18 0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc) (I _C = 300 mAdc, I _B = 1.0 mAdc)	2N3013 2N3014	V _{BE} (sat)	0.75 — — 0.70	0.95 1.20 1.70 0.80	Vdc

Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS			•	
Current-Gain — Bandwidth Product (I _C = 30 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	350	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 140 \text{ kHz})$	C _{obo}	_	5.0	pF
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 140 kHz)	C _{ibo}	_	8.0	pF
SWITCHING CHARACTERISTICS				
Storage Time $(I_C = I_{B1} = I_{B2} = 10 \text{ mAdc})$	t _S	_	18	ns
Turn-On Time $(VEB(off) = 5.0 \text{ V, V}_{CC} = 15 \text{ V, I}_{C} = 300 \text{ mAdc, I}_{B1} = 30 \text{ mAdc})$	t _{on}			ns
$(V_{EB(off)} = 0, V_{CC} = 2.0 \text{ V}, I_{C} = 30 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc})$ 2N3014		_	15 16	
Turn-Off Time $(V_{CC} = 15 \text{ V}, I_C = 300 \text{ mAdc}, I_{B1} = I_{B2} = 30 \text{ mAdc})$ 2N3013	^t off	_	25	ns
$(V_{CC} = 2.0 \text{ V}, I_{C} = 30 \text{ mAdc}, I_{B1} = I_{B2} = 3.0 \text{ mAdc})$ 2N3014		_	25	

⁽²⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

2N3019 2N3020 2N3700

JAN, JTX, JTXV AVAILABLE 2N3019, 2N3020 CASE 22 STYLE 1 TO-18 (TO-206AA)

GENERAL TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N3019 2N3020	2N3700	Unit
Collector-Emitter Voltage	VCEO	80	80	Vdc
Collector-Base Voltage	VCBO	140	140	Vdc
Emitter-Base Voltage	VEBO	7.0	7.0	Vdc
Collector Current — Continuous	lc	1.0	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.6	0.5 2.85	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	1.8 10.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	+ 200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N3019 2N3020	2N3700	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	16.5	70	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	89.5	245	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 30 mAdc, I _B = 0)		V(BR)CEO	80	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)		V _(BR) CBO	140	_	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	7.0	_	Vdc
Collector Cutoff Current (V _{CB} = 90 Vdc, I_E = 0) (V _{CB} = 90 Vdc, I_E = 0, T_A = +150°C)		ICBO	_	0.01 10	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)		IEBO	=	0.010	μAdc
ON CHARACTERISTICS					
DC Current Gain(1) $(I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3700, 2N3019 2N3020	hFE	50 30	100	_
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3700, 2N3019 2N3020		90 40	120	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3700, 2N3019 2N3020		100 40	300 120	
(I _C = 150 mAdc, V_{CE} = 10 Vdc, T_{C} = -55° C)	2N3700, 2N3019		40	_	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3700, 2N3019 2N3020		50 30	100	
(I _C = 1.0 Adc, V _{CE} = 10 Vdc)	All Types		15	_	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)		VCE(sat)	=	0.2 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{BE(sat)}	-	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz}$)	2N3020 2N3019, 2N3700	fŢ	80 100	400	MHz

2N3019, 2N3020, 2N3700

Characteristic		Symbol	Min	Max	Unit
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	12	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 1.0 MHz)		C _{ibo}	_	60	pF
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	2N3700, 2N3019 2N3020	h _{fe}	80 30	400 200	_
Collector Base Time Constant (IE = 10 mAdc, V_{CB} = 10 Vdc, f = 4.0 MHz)	2N3019, 2N3020 2N3700	rb′C _C	_ 15	- 400 400	ps
Noise Figure $(I_C = 100 \mu Adc, V_{CE} = 10 Vdc, R_S = 1.0 k ohms, f = 1.0 kHz)$	2N3019, 2N3700	NF	_	4	dB

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

FREQUENCY EFFECTS

COLLECTOR CURRENT - 1 kHz hfe

CURRENT GAIN BANDWIDTH PRODUCT versus

CURRENT GAIN — BANDWIDTH PRODUCT

ACTIVE REGION SAFE OPERATING AREA

MAXIMUM RATINGS

Rating	Symbol	2N3053	2N3053A	Unit
Collector-Emitter Voltage(1)	VCEO	40	60	Vdc
Collector-Base Voltage	V _{CBO}	60	80	Vdc
Emitter-Base Voltage	V _{EBO}	5.0		Vdc
Collector Current — Continuous	Ic	700		mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C
Lead Temperature 1/16", ±1/32" From Case for 10 s	T _L	+ 235		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W

(1) Applicable 0 to 100 mA (Pulsed):

Pulse Width \leq 300 μ sec., Duty Cycle \leq 2.0%.

0 to 700 mA; Pulse Width \leq 10 μ sec., Duty Cycle \leq 2.0%.

2N3053,A

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3019 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) ($I_C = 100 \mu Adc, I_B = 0$)	2N3053 2N3053A	V(BR)CEO	40 60	_	Vdc
Collector-Emitter Breakdown Voltage(2) (I _C = 100 mAdc, R _{BE} = 10 ohms)	2N3053 2N3053A	V(BR)CER	50 70	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	2N3053 2N3053A	V(BR)CBO	60 80	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (VCE = 30 Vdc, VBE $[off]$ = 1.5 Vdc) (VCE = 60 Vdc, VBE $[off]$ = 1.5 Vdc)	2N3053 2N3053A	ICEX	_	0.25	μAdd
Emitter Cutoff Current (V _{BE} = 4.0 Vdc, I _C = 0)	2N3053	IEBO	_	0.25	μAdd
Base Cutoff Current (V _{CE} = 60 Vdc, V _{BE(off)} = 1.5 Vdc)	2N3053A	IBL	_	0.25	μAdo
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 150 \text{ mAdc}$, $V_{CE} = 2.5 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)		hFE	25 50	 250	_
Collector-Emitter Saturation Voltage $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$	2N3053 2N3053A	V _{CE(sat)}	_	1.4 0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	2N3053 2N3053A	V _{BE} (sat)	— 0.6	1.7 1.0	Vdc
Base-Emitter On Voltage ($I_C = 150 \text{ mAdc}$, $V_{CE} = 2.5 \text{ Vdc}$)	2N3053 2N3053A	V _{BE(on)}	_	1.7 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ mAdc}$	0 Vdc, f = 20 MHz)	fT	100	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 140 \text{ kHz}$)		C _{obo}	_	15	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 140 kHz)		Cibo	_	80	pF

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N3073 CASE 22-03, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

Refer to 2N2904 for graphs.

MAXIMUM RATINGS

WAXIIVIOW NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	60	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	IC	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.06	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.2 6.85	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				Kee or
Collector-Emitter Breakdown Voltage(1) (I _C = 30 mAdc, I _B = 0)	V(BR)CEO	60		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	4.0		Vdc
Collector Cutoff Current $(V_{CE} = 30 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 30 \text{ Vdc}, V_{BE} = 0, T_{A} = 125^{\circ}\text{C})$	ICES	=	10 10	nAdc μAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0)	IEBO	=	100	μAdc
Base Current (V _{CE} = 30 Vdc, V _{BE} = 0)	IB	_	10	nAdc
ON CHARACTERISTICS				
DC Current Gain(1) (I _C = 50 mAdc, V_{CE} = 1.0 Vdc) (I _C = 50 mAdc, V_{CE} = 1.0 Vdc, T_{A} = -55° C) (I _C = 300 mAdc, V_{CE} = 2.0 Vdc)	hFE	30 12 15	130 — —	-
Collector-Emitter Saturation Voltage $(I_C = 50 \text{ mAdc}, I_B = 2.5 \text{ mAdc})$ $(I_C = 300 \text{ mAdc}, I_B = 30 \text{ mAdc})$	VCE(sat)	=	0.25 1.0	Vdc
Base-Emitter Saturation Voltage $(I_C = 50 \text{ mAdc}, I_B = 2.5 \text{ mAdc})$ $(I_C = 300 \text{ mAdc}, I_B = 30 \text{ mAdc})$	V _{BE} (sat)		1.2 2.0	Vdc
Base-Emitter On Voltage (I _C = 50 mAdc, V _{CE} = 1.0 Vdc)	V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS			100	
Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fτ	130	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 140 \text{ kHz}$)	C _{obo}	_	10	pF
Input Impedance ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ie}	_	1.5	kohms
Voltage Feedback Ratio (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}		26	X 10-4
Small Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	25	180	
Output Admittance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	_ 9	1200	μmhos

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit		
SWITCHING CHARACTERISTICS						
Turn-On Time (I _C ≈300 mAdc, I _{B1} ≈30 mAdc)	ton	_	40	ns		
Turn-Off Time (Ic≈300 mAdc, I _{B1} ≈I _{B2} ≈30 mAdc)	toff	- 1	100	ns		

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

CASE 79, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage(1)	VCEO	150	Vdc
Collector-Base Voltage	V _{CBO}	150	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.57	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Refer to 2N3498 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(2) (IC = = 30 mAdc, IB = 0)	V(BR)CEO	150	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	V(BR)CBO	150	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 100 Vdc, I_E = 0) (V _{CB} = 100 Vdc, I_E = 0, T_A = 150°C)	ICBO	_	0.010 10	μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)	IEBO	-	0.10	μAdc
ON CHARACTERISTICS				
DC Current Gain(2) (IC = 0.1 mAdc, V_{CE} = 10 Vdc) (IC = 30 mAdc, V_{CE} = 10 Vdc) (IC = 30 mAdc, V_{CE} = 10 Vdc, T_{A} = -55° C)	hFE	15 30 12	 120 	_
Collector-Emitter Saturation Voltage(2) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_	1.0	Vdc
Base-Emitter Saturation Voltage(2) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{BE} (sat)	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance ($V_{CB} = 20 \text{ Vdc}$, $I_E = 0$, $f = 140 \text{ kHz}$)	C _{obo}	_	9.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 140 \text{ kHz}$)	C _{ibo}	-	80	pF
Small-Signal Current Gain (IC = 1.0 mA, V_{CE} = 5.0 V , f = 1 kHz)	h _{fe}	25	_	_
Current Gain — High Frequency $(V_{CE} = 10 \text{ Vdc}, I_C = 30 \text{ mAdc}, f = 20 \text{ MHz})$	h _{fe}	2.0	_	-
Real Part of Input Impedance (I _C = 10 mA, V_{CE} = 10 V, f = 100 MHz)	Re(h _{ie})	-	30	Ohms

⁽¹⁾ Between 0 and 30 mA.

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

MAXIMUM RATINGS

Rating	Symbol	2N3133	2N3135	Unit
Collector-Emitter Voltage	VCEO	35	35	Vdc
Collector-Base Voltage	VCBO	50	50	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	4.0	Vdc
Collector Current — Continuous	lc	600	600	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.6 3.43	0.4 2.28	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3 17.14	1.8 10.3	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

Refer to 2N2904 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V(BR)CEO	35	-	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	50	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	8	Vdc
Collector Cutoff Current $(V_{CE} = 30 \text{ V, } V_{BE} = 0.5 \text{ V})$	ICEX	-	0.1	μAdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _A = 150 $^{\circ}$ C)	СВО	==	0.05 30	μAdc
Base Cutoff Current $(V_{CE} = 30 \text{ V}, V_{BE} = 0.5 \text{ V})$	IBL	_	0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)(1)	hFE	25 40	 120	_
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.6	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	_	1.5	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	200	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	10	pF
Input Capacitance $(V_{BE} = 2 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$	C _{ibo}	_	40	pF
SWITCHING CHARACTERISTICS				
Turn-On Time $(V_{CC} = 30 \text{ V, I}_{C} = 150 \text{ mA, I}_{B1} = 15 \text{ mA})$	t _{on}	26	75	ns
Turn-Off Time $(V_{CC} = 6.0 \text{ V}, I_{C} = 150 \text{ mA}, I_{B1} = I_{B2} = 15 \text{ mA})$	^t off	70	150	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N3244 2N3245

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

2N3227

For Specifications, See 2N2368 Data.

MAXIMUM RATINGS

Rating	Symbol	2N3244	2N3245	Unit
Collector-Emitter Voltage	VCEO	40	50	Vdc
Collector-Base Voltage	VCBO	40	50	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	Ic	1.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.175	°C/mW

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					-APT
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	2N3244 2N3245	V(BR)CEO	40 50		Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N3244 2N3245	V _(BR) CBO	40 50	= 1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	5.0		Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)		IBEV	-	80	nAdo
Collector Cutoff Current (VCE = 30 Vdc, VBE = 3.0 Vdc)		ICEX	-	50	nAdo
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$		СВО	=	0.050 10	μAdo
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0) (V _{EB} = 4.0 Vdc, I _C = 0)	2N3245 2N3244	IEBO	_	30 30	nAdo
ON CHARACTERISTICS				9 17.325	in a
DC Current Gain(1) $(I_{C} = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_{C} = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3244 2N3245 2N3244 2N3245	hFE	60 35 50 30	150 90	
$(I_C = 1.0 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc})$	2N3244 2N3245		25 20	_	100
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	2N3244 2N3245	VCE(sat)	= = =	0.3 0.35	Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	2N3244 2N3245		_	0.5 0.6	
$(I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc})$	2N3244 2N3245	1000	\equiv	1.0 1.2	

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit	
Base-Emitter Saturati (I _C = 150 mAdc, I _E (I _C = 500 mAdc, I _E (I _C = 1.0 Adc, I _B =	3 = 15 mAdc) 3 = 50 mAdc)		V _{BE(sat)}	— 0.75 —	1.1 1.5 2.0	Vdc
SMALL-SIGNAL CHA	ARACTERISTICS					
Current-Gain — Band (I _C = 50 mAdc, V _C	dwidth Product E = 10 Vdc, f = 100 MHz)	2N3244 2N3245	fΤ	175 150	=	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E	= 0, f = 100 kHz)		C _{obo}		25	pF
Input Capacitance (VEB = 0.5 Vdc, IC	= 0, f = 100 kHz)		C _{ibo}	- -	100	pF
SWITCHING CHARA	CTERISTICS					2.7
Delay Time	/I- 500 A I 50 A	2012244	t _d	_	15	ns
Rise Time	(I _C = 500 mA, I _{B1} = 50 mA V _{EB} = 2.0 V, V _{CC} = 30 V)	2N3244 2N3245	t _r	=	35 40	ns
Storage Time	(I _C = 500 mA, V _{CC} = 30 V	2N3244 2N3245	t _S	_	140 120	ns
Fall Time	$I_{B1} = I_{B2} = 50 \text{ mA}$	IB1 = IB2 = 50 IIIA) 2N3245	tf		45	ns
Total Control Charge (I _C = 500 mA, I _B =	= 50 mA, V _{CC} = 30 V)	2N3244	Q_{τ}	-	14	pC

⁽¹⁾ Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 — MINIMUM CURRENT GAIN CHARACTERISTICS

FIGURE 2 — COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS

2.0

1.6 $\beta_{F} = 10$ $T_{J} = 25^{\circ}C$ 1.2

0.4 $V_{CE(141)}$ 1.2 V_{N3244} 0.4 $V_{COLLECTOR CURRENT (mA)}$

FIGURE 3 - MAXIMUM SATURATION VOLTAGES

FIGURE 5 - JUNCTION CAPACITANCE

FIGURE 7 - CHARGE DATA

FIGURE 9 - TURN-OFF EQUIVALENT TEST CIRCUIT

FIGURE 10 - Q, TEST CIRCUIT

FIGURE 11 - TURN-OFF WAVEFORM

CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

MAXIMOM RATINGS							
Rating	Symbol	Value	Unit				
Collector-Emitter Voltage	VCEO	12	Vdc				
Collector-Base Voltage	V _{CBO}	15	Vdc				
Emitter-Base Voltage	VEBO	5.0	Vdc				
Collector Current — Continuous	lc	200	mA				
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above 25°C	PD	0.36 2.06	Watt mW/°C				
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.9	Watts mW/°C				
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C				

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	12	3	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	15		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0	-	Vdc
Base Cutoff Current (V _{CE} = 10 Vdc, V _{BE} = 1.0 Vdc)	IBEV	_	50	nAdc
Collector Cutoff Current ($V_{CE} = 10 \text{ Vdc}$, $V_{BE} = 1.0 \text{ Vdc}$) ($V_{CE} = 10 \text{ Vdc}$, $V_{BE} = 1.0 \text{ Vdc}$, $T_{A} = 100^{\circ}\text{C}$)	ICEX	=	0.05 5.0	μAdc
ON CHARACTERISTICS			76.5(4	
DC Current Gain(1) (I _C = 0.1 mAdc, V _{CE} = 1.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc) (I _C = 100 mAdc, V _{CE} = 1.0 Vdc)	hFE	100 100 100 75 35	300 — — — —	_
Collector-Emitter Saturation Voltage(1) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	VCE(sat)	=	0.125 0.25 0.45	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	VBE(sat)	0.6 0.7 —	0.9 1.1 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 20 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	300	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	8.0	pF
Input Capacitance (VBE = 1.0 Vdc, $I_C = 0$, $f = 100 \text{ kHz}$)	Cibo	_	8.0	pF

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SWITCHING CHARA	CTERISTICS				
Delay Time	I _C = 100 mA, I _B = 10 mA,	t _d	_	5.0	ns
Rise Time	V _{BE} = 0.5 V, V _{CC} = 10 V	t _r	-	15	ns
Storage Time	$I_C = 100 \text{ mA}, I_{B1} = I_{B2} = 10 \text{ mA},$	t _S		60	ns
Fall Time	V _{CC} = 10 V	tf	_	20	ns
Turn-On Time	I _C = 10 mA, I _{B1} = 1.0 mA, V _{BE} = 0.5 V, V _{CC} = 3.0 V	ton	_	90	ns
Turn-Off Time	$I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 1.0 \text{ mA},$ $V_{CC} = 3.0 \text{ V}$	toff		100	ns
Total Control Charge (I _C = 10 mA, I _B =	0.25 mA, V _{CC} = 3.0 V)	Q_{τ}	-	150	pC

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - ton CIRCUIT

FIGURE 2 - toff CIRCUIT

+0.5

-10.7

-11.3+8.7

1 K

100 10

FIGURE 3 - TYPICAL SWITCHING TIMES

⁹⁵ *Total shunt capacitance of test jig and connectors.

FIGURE 10 — Q_T TEST CIRCUIT

VALUES REFER TO $I_C = 10$ mA TEST POINT

-3 Y 0 235

14.PF max

14.PF max

10.9 Q_T TO Q_T

FIGURE 11 - TURN-OFF WAVE FORM

2N3250,A 2N3251,A

2N3250A,2N3251A JAN, JTX, JTXV AVAILABLE

> CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N3250 2N3251	2N3250A 2N3251A	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	VCBO	50	60	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current	lc	200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.9		Watts mW/°C
Operating and Storage Temperature Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.15	mW/°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.49	mW/°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		Jan 3 10M 15	7-1		
Collector-Emitter Breakdown Voltage (1) (IC = 10 mAdc)	2N3250, 2N3251 2N3250A, 2N3251A	V(BR)CEO	40 60	-	Vdc
Collector-Base Breakdown Voltage (IC = 10 µAdc)	2N3250, 2N3251 2N3250A, 2N3251A	V _(BR) CBO	50 60		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc)		V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{BE} = 3.0 Vdc)		ICEX	-	20	Adc
Base Cutoff Current (V _{CE} = 40 Vdc, V _{BE} = 3.0 Vdc)		IBL	_	50	nAdc
ON CHARACTERISTICS					
DC Forward Current Transfer Radio (1) (I _C = 0.1 mAdc, V _{CE} = 1.0 Vdc)	2N3250, 2N3250A 2N3251, 2N3251A	hFE	40 80	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3250, 2N3250A 2N3251, 2N3251A		45 90	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3250, 2N3250A 2N3251, 2N3251A		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3250, 2N3250A 2N3251, 2N3251A		15 30	_	
Collector-Emitter Saturation Voltage (1) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		V _{CE(sat)}	=	0.25 0.5	Vdc
Base-Emitter Saturation Voltage (1) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		V _{BE(sat)}	0.6	0.9 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	2N3250, 2N3250A 2N3251, 2N3251A	fT	250 300	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)		C _{obo}	-	6.0	pF
Input Capacitance (V _{CB} = 1.0 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	-	8.0	pF

2N3250,A, 2N3251,A

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Input Impedance (I _C = 1.0 mA, V_{CE} = 10 V, f = 1.0 kHz)	2N3250, 2N3250A 2N3251, 2N3251A	h _{ie}	1.0 2.0	6.0 12	kohms
Voltage Feedback Ratio (I _C = 1.0 mA, V _{CE} = 10 V, f = 1.0 kHz)	2N3250, 2N3250A 2N3251, 2N3251A	h _{re}	_	10 20	X 10-4
Small-Signal Current Gain ($I_C = 1.0 \text{ mA}$, $V_{CE} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$)	2N3250, 2N3250A 2N3251, 2N3251A	h _{fe}	50 100	200 400	_
Output Admittance ($I_C = 1.0 \text{ mA}$, $V_{CE} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$)	2N3250, 2N3250A 2N3251, 2N3251A	h _{oe}	4.0 10	40 60	μmhos
Collector Base Time Constant (I _C = 10 mA, V _{CE} = 20 V)		rb'C _C	_	250	ps
Noise Figure (I _C = 100 μ A, V _{CE} = 5.0 V, R _S = 1.0 k Ω , f = 100 Hz)		NF	-	6.0	dB

SWITCHING CHARACTERISTICS

	Characteristic		Symbol	Max	Unit
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc		td	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mA)		t _r	35	ns
Storage Time	$(I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc} $ $V_{CC} = 3.0 \text{ V})$	2N3250, 2N3250A 2N3251, 2N3251A	t _S	175 200	ns
Fall Time			tf	50	ns

⁽¹⁾ Pulse Test: PW = 300 μ s, Duty Cycle = 2.0%.

SWITCHING TIME CHARACTERISTICS

FIGURE 1 — DELAY AND RISE TIME

FIGURE 2 - STORAGE AND FALL TIME

AUDIO SMALL SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS $(V_{\text{CE}}=6\,\text{V},\, \text{T}_{\text{A}}=25\,^{\circ}\text{C})$

FIGURE 4 - SOURCE RESISTANCE

h PARAMETERS

 $V_{CE}=10\,V,\,f=1\,kc,\,T_A=25^\circ C$

FIGURE 5 - CURRENT GAIN

FIGURE 6 - OUTPUT ADMITTANCE

FIGURE 7 --- VOLTAGE FEEDBACK RATIO

FIGURE 8 - INPUT IMPEDANCE

FIGURE 9 - NORMALIZED CURRENT GAIN CHARACTERISTICS

FIGURE 10 - COLLECTOR SATURATION REGION

This graph shows the effect of base current on collector current. β_O is the current gain of the transistor at 1 volt, and β_F (forced gain) is the ratio of $\|_C/\|_{L^2}$ in a circuit. EXAMPLE: For type 2N3251, estimate a base current $(\|_{B^F})$ to instruction at a temperature of 25°C and a collector current of 10 mA. Observe that at $\|_C = 10$ mA an overdrive factor of at least 2.5 is required to the respective result in the catherine ratios. For fixing 1 is sean that

Observe that at $I_C=10$ mA an overdrive factor of at least 2.5 is required to drive the transistor well into the saturation region. From Figure 1, it is seen that hFE @ 1 volt is typically 167 (guaranteed limits from the Table of Characteristics can be used for "worst-case" design). . .

$$\frac{\beta_{\rm O}}{\beta_{\rm F}} = \frac{\rm h_{FE} \ @ \ 1 \ Volt}{\rm I_{\rm C}/I_{\rm BF}} \qquad 2.5 = \frac{167}{10 \ \rm mA/I_{\rm BF}} \qquad \rm I_{\rm BF} \approx 6.68 \ mA \ typ$$

FIGURE 11 — SATURATION VOLTAGES

FIGURE 12 - TEMPERATURE COEFFICIENTS

FIGURE 14 — 30 MC EQUIVALENT CIRCUIT

FIGURE 15 - JUNCTION CAPACITANCE

FIGURE 16 - CHARGE DATA

MAXIMUM RATINGS

Rating	Symbol	2N3252	2N3253	2N3444	Unit
Collector-Emitter Voltage	VCEO	30	40	50	Vdc
Collector-Base Voltage	VCBO	60	75	80	Vdc
Emitter-Base Voltage	VEBO	5.0			Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71			Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6			Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}		65 to +2	00	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	35	°C/W
	R _θ JA	0.175	°C/mW

2N3252 2N3253 2N3444

JAN, JTX AVAILABLE 2N3253, 2N3444 CASE 79, STYLE 1 TO-39 (TO-205AD)

SWITCHING

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		1000	1,000		FIRE
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, pulsed, I _B = 0)	2N3252 2N3253 2N3444	V(BR)CEO	30 40 50	=	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N3252 2N3253 2N3444	V(BR)CBO	60 75 80		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{EB(off)} = 4.0 Vdc) (V _{CE} = 60 Vdc, V _{EB(off)} = 4.0 Vdc)	2N3252 2N3253, 2N3444	CEX	=	0.5 0.5	μAdc
Collector Cutoff Current (VCB = 40 Vdc, I _E = 0) (VCB = 40 Vdc, I _E = 0, T _A = 100°C) (VCB = 60 Vdc, I _E = 0) (VCB = 60 Vdc, I _E = 0, T _A = 100°C)	2N3252 2N3252 2N3253, 2N3444 2N3253, 2N3444	ІСВО	-	0.50 75.0 0.50 75.0	μAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, I _C = 0)		IEBO	-	0.05	μAdc
Base Cutoff Current (V _{CE} = 40 Vdc, V _{EB(off)} = 4.0 Vdc) (V _{CE} = 60 Vdc, V _{EB(off)} = 4.0 Vdc)	2N3252 2N3253, 2N3444	IBL		0.50 0.50	μAdc
ON CHARACTERISTICS	AND SERVICE AND ADDRESS OF THE PARTY OF THE				
DC Current Gain(1) (IC = 150 mAdc, VCE = 1.0 Vdc)	2N3252 2N3253 2N3444	hFE	30 25 20		
$(I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3252 2N3253 2N3444		30 25 20	90 75 60	
$(I_C = 1.0 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc)}$	2N3252 2N3253 2N3444		25 20 15	=	

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

	Characteristic		Symbol	Min	Max	Unit
Collector-Emitter Saturatio (I _C = 150 mAdc, I _B = 19		2N3252 2N3253, 2N3444	V _{CE(sat)}	=	0.3 0.35	Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50)$	00 mAdc)	2N3252 2N3253, 2N3444		_	0.5 0.60	
$(I_C = 1.0 \text{ Adc}, I_B = 100)$	mAdc)	2N3252 2N3253, 2N3444		_	1.0 1.2	a water
Base-Emitter Saturation Vol $(I_C=150 \text{ mAdc}, I_B=19)$ $(I_C=500 \text{ mAdc}, I_B=50)$ $(I_C=1.0 \text{ Adc}, I_B=100)$	5 mAdc) D mAdc)	· · · · · ·	V _{BE(sat)}	 0.7 	1.0 1.3 1.8	Vdc
SMALL-SIGNAL CHARACT	TERISTICS					Week I
Current-Gain — Bandwidth $(I_C = 50 \text{ mAdc}, V_{CE} = 1)$		2N3252 2N3253, 2N3444	fT	200 175	**************************************	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0,	f = 100 kHz)		C _{obo}		12	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0,	f = 100 kHz)		C _{ibo}	_	80	pF
SWITCHING CHARACTERI	STICS			- same	a state to	VN . 31.1
Delay Time	$I_C = 500 \text{ mAdc}, I_{B1} = 50 \text{ mAdc}$		td	_	15	ns
Rise Time	$V_{CC} = 30 \text{ V}, V_{BE} = 2.0 \text{ V}$	2N3252 2N3253, 2N3444	t _r	_	30 35	ns
Storage Time	$I_C = 500 \text{ mAdc}, I_{B1} = I_{B2} = 50 \text{ mag}$	mAdc	t _S	-	40	ns
Fall Time	$V_{CC} = 30 \text{ V}$		tf	_	30	ns
Total Control Charge (I _C = 500 mAdc, I _{B1} = !	50 mAdc, V _{CC} = 30 V)		QΤ	- 7	5.0	nC

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

COLLECTOR SATURATION VOLTAGE CHARACTERISTICS

2N3252, 2N3253, 2N3444

2N3299 2N3300

CASE 79, STYLE 1 TO-39 (TO-205AD)

> **GENERAL PURPOSE TRANSISTOR**

2N3301 2N3302

CASE 22, STYLE 1 TO-18 (TO-206AA)

> **GENERAL PURPOSE TRANSISTOR**

> > NPN SILICON

Refer to 2N2218 for graphs.

MAXIMUM RATINGS			200	
Rating	Symbol	Va	Unit	
Collector-Emitter Voltage (Applicable 0 to 10 mAdc)	VCEO	30		Vdc
Collector-Base Voltage	Vсво	6	0	Vdc
Emitter-Base Voltage	VEBO	5,0		Vdc
Collector Current — Continuous	IC	500		mAdc
10 10 1		2N3299 2N3300	2N3301 2N3302	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.56	0.36 2.06	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.2	1.8 10.3	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-65 to	+200	°C

ELECTRICAL CHARACTERISTICS	(TA	=	25°C unless	otherwise	noted.)
C	hara	oto	rictic		

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1000	1-1-1-1	1
Collector-Emitter Sustaining Voltage(1) (I _C = 10 mAdc, I _B = 0)	1 7 7	VCEO(sus)	30		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	4	V(BR)CBO	60		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	9 11 1.	V(BR)EBO	5.0		Vdc
Collector Cutoff Current $(V_{CE} = 50 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 50 \text{ Vdc}, V_{BE} = 0, T_{A} = 150^{\circ}\text{C})$		ICES	= 10	0.01 10	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)		IEBO		10	nAdc
Base Current (V _{CE} = 50 Vdc, V _{BE} = 0)		IB		10	nAdc
ON CHARACTERISTICS				7777	-
	mAdc) mAdc)	VCE(sat)	20 35 25 50 35 75 20 50 40 100 20 50		Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	c)	1/		1.5	
Base Emitter Voltage (I _C = 150 mA, V _{CE} = 10 V)		V _{BE} (on)		1.1 V	Max
SMALL-SIGNAL CHARACTERISTICS	/ f 100 MILL	T , I	050		
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 V	rdc, t = 100 MHz)	fT	250	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)		C _{obo}		8.0	pF
Input Capacitance ($V_{BE} = 2.0 \text{ Vdc}$, $I_{C} = 0$, $f = 140 \text{ kHz}$)		C _{ibo}		20	pF
SWITCHING CHARACTERISTICS		1			
Turn-On Time $(V_{CC} = 25 \text{ Vdc}, I_{C} = 300 \text{ mAdc}, I_{B1} = 30 \text{ mAdc})$)	ton	-	60	ns
Turn-Off Time $(V_{CC} = 25 \text{ Vdc}, I_C = 300 \text{ mAdc}, I_{B1} = I_{B2} = 300 \text{ mAdc})$	mAdc)	toff	_	150	ns

MAYIMI IM DATINGS

Rating	Symbol	2N3307	2N3308	Unit
Collector-Emitter Voltage	V _{CEO}	35	25	Vdc
Collector-Emitter Voltage	VCES	40	30	Vdc
Collector-Base Voltage	V _{CBO}	40	30	Vdc
Emitter-Base Voltage	V _{EBO}	3.0		Vdc
Collector Current — Continuous	IC	5	0	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	50 200 1.14		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		00 71	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

2N3307 2N3308

CASE 20, STYLE 10 TO-72 (TO-206AF)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				•	
Collector-Emitter Breakdown Voltage ($I_C = 2.0 \text{ mAdc}, I_B = 0$)	2N3307 2N3308	V(BR)CEO	35 25	=	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc, V_{BE} = 0$)	2N3307 2N3308	V(BR)CES	40 30	_	Vdc
Collector-Base Breakdown Voltage(1) (IC = 10 μ Adc, IE = 0)	2N3307 2N3308	V(BR)CBO	40 30	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)		V _{(BR)EBO}	3.0	_	Vdc
Collector Cutoff Current ($V_{CB} = 15 \text{ Vdc}$) ($V_{CB} = 15 \text{ Vdc}$, $T = 150^{\circ}\text{C}$)	2N3307	ІСВО	_	0.010 3.0	μAdc
ON CHARACTERISTICS					
DC Current Gain $(V_{CE} = 10 \text{ Vdc}, I_{C} = 2.0 \text{ mAdc})$	2N3307 2N3308	hFE	40 25	250 250	_
Collector-Emitter Saturation Voltage (I _C = 3.0 mAdc, I _B = 0.6 mAdc)		V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 3.0 mAdc, I _B = 0.6 mAdc		V _{BE(sat)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product $(V_{CE} = 10 \text{ Vdc}, I_{C} = 2.0 \text{ mAdc}, f = 100 \text{ MHz})$		fT	300	1200	MHz
Maximum Frequency of Operation $(V_{CE} = 10 \text{ Vdc}, I_C = 2.0 \text{ mAdc})$		f _{max}	f _{max} Typical 2000		MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$	2N3307 2N3308	C _{obo}	_	1.3 1.6	pF
Small-Signal Current Gain $(V_{CE} = 10 \text{ Vdc}, I_{C} = 2.0 \text{ mAdc}, f = 1 \text{ kHz})$	2N3307 2N3308	h _{fe}	40 25	250 250	_
Collector Base Time Constant $(V_{CB} = 10 \text{ Vdc}, I_{C} = 2.0 \text{ mAdc}, f = 31.8 \text{ MHz})$	2N3307 2N3308	rb′C _C	2.0	15 20	ps

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Noise Figure		NF			dB
(V _{CE} = 10 Vdc, I _C = 2.0 mAdc, f = 200 MHz)	2N3307		_	4.5	
	2N3308		_	6.0	

SWITCHING CHARACTERISTICS

Power Gain(2) (V _{CE} = 10 Vdc, I _C = 2.0 mAdc, f = 200 MHz)		Ge	17		dB
Power Gain (AGC)(2)		Ge			dB
$(V_{CE} = 5.0 \text{ Vdc}, I_{C} = 20 \text{ mAdc}, f = 200 \text{ MHz})$	2N3307		_	0	
	2N3308		2-	_	

⁽¹⁾ Cobo is measured in guarded circuit such that the can capacitance is not included.

COMMON EMITTER AVERAGE SMALL POWER GAIN & NOISE FIGURE VERSUS COLLECTOR CURRENT

NOISE FIGURE versus FREQUENCY

⁽²⁾ AGC is obtained by increasing I_C. The circuit remains adjusted for $V_{CE} = -10$ Vdc, $I_{C} = -2$ mAdc operation.

MAXIMUM RATINGS

		Pi	PNP NPN			
Rating	Symbol	2N5415	2N5416	2N3439	2N3440	Unit
Collector-Emitter Voltage	VCEO	200	300	350	250	Vdc
Collector-Base Voltage	VCBO	200	350	450	300	Vdc
Emitter-Base Voltage	VEBO	4.0	6.0	7.0	7.0	Vdc
Base Current	IB		0	.5		Adc
Collector Current — Continuous	IC	1.0				Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		— 1.0 — 5.7			Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	10 57		5.0 28.6		Watts mW/°C
Total Device Dissipation @ T _A = 50°C Derate above 50°C	PD	1.0 — 6.7 —			Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200				°C

2N3439, 2N3440 NPN 2N5415, 2N5416 PNP

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N5415 2N5416	2N3439 2N3440	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	17.5	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	150	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage(1) ($I_C = 50 \text{ mAdc}, I_B = 0$)	2N5415 2N5416 2N3439 2N3440	VCEO(sus)	200 300 350 250		Vdc
*Collector Cutoff Current (V _{CE} = 300 Vdc, I _B = 0) (V _{CE} = 200 Vdc, I _B = 0)	2N3439 2N3440	ICEO		20 50	μAdc
*Collector Cutoff Current (V _{CE} = 450 Vdc, V _{BE} = 1.5 Vdc) (V _{CE} = 300 Vdc, V _{BE} = 1.5 Vdc)	2N3439 2N3440	ICEX		500 500	μAdc
Collector Cutoff Current (V _{CB} = 175 Vdc, I _E = 0) (V _{CB} = 280 Vdc, I _E = 0) (V _{CB} = 360 Vdc, I _E = 0) (V _{CB} = 250 Vdc, I _E = 0)	2N5415 2N5416 2N3439 2N3440	ICBO		50 50 20 20	μAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0) (VEB = 6.0 Vdc, IC = 0)	2N5415 2N5416, 2N3439, 2N3440	IEBO	_	20 20	μAdc
ON CHARACTERISTICS(1)					
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc) *(I _C = 20 mAdc, V _{CE} = 10 Vdc)	2N3439 2N3439, 2N3440	hFE	30 40	— 160	
*($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	2N5415 2N5416	-	30 30	150 120	
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 4.0 mAdc)	2N3439, 2N3440	V _{CE(sat)}	-	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 4.0 mAdc)	2N3439, 2N3440	V _{BE(sat)}	-	1.3	Vdc

2N3439, 2N3440 NPN / 2N5415, 2N5416 PNP

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit			
SMALL-SIGNAL CHARACTERISTICS								
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 5.0 MHz)	2N3439, 2N3440	fT	15		MHz			
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	2N5415, 2N5416, 2N3439, 2N3440	C _{obo}	=	15 10	pF			
Input Capacitance (VEB = 5.0 Vdc, $I_C = 0$, f = 1.0 MHz)	0.00%	C _{ibo}	_	75	pF			
Small-Signal Current Gain (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) (I _C = 10.0 mAdc, V_{CE} = 10 Vdc, f = 5.0 MHz)	2N5415, 2N5416	h _{fe}	25	Tal	-			
Real Part of Input Impedance (V _{CE} = 10 Vdc, I _C = 5.0 mAdc, f = 1.0 MHz)		Re(h _{ie})	-	300	Ohms			

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

CAUTION: The sustaining voltage must not be measured on a curve tracer. (See Fig. 15.)

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

2N3439, 2N3440 NPN / 2N5415, 2N5416 PNP

FIGURE 4 - CURRENT-GAIN - BANDWIDTH PRODUCT

FIGURE 5 - CAPACITANCE

FIGURE 6 - THERMAL RESPONSE

FIGURE 7 - ACTIVE-REGION SAFE OPERATING AREA

PNP - 2N5415, 2N5416 1.0 - 10 µs 0.7 0.5 100 4 (AMP) 0.3 CURRENT 0.2 5.0 m $T_{J} = 200^{\circ}C$ BONDING WIRE LIMITED 0.1 THERMALLY LIMITED 0.1 0.07 0.05 @ TC = 25°C (SINGLE PULSE) SECOND BREAKDOWN LIMITED CURVES APPLY BELOW 0.03 RATED VCEO 2N5415 0.02 کے 0.01 500 5.0 7.0 30 50 70 VCE, COLLECTOR-EMITTER VOLTAGE (V(LTS)

NPN - 2N3439, 2N3440

There are two limitations on the power handling ability of a transistor, average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must be subjected to greater dissipation than the curves indicate.

The data of Figure 7 is based on $T_{J(pk)}=200^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leqslant 200^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. (See AN-415).

PNP 2N5415, 2N5416

NPN 2N3439 2N3440

FIGURE 10 - COLLECTOR SATURATION REGION

2N3439, 2N3440 NPN / 2N5415, 2N5416 PNP

FIGURE 12 - TEMPERATURE COEFFICIENTS

FIGURE 13 - COLLECTOR CUTOFF REGION

FIGURE 14 - BASE CUTOFF REGION

FIGURE 15 — CIRCUIT USED TO MEASURE SUSTAINING VOLTAGES

Rating	Symbol	2N3467	2N3468	Unit		
Collector-Emitter Voltage	VCEO	40	50	Vdc		
Collector-Base Voltage	VCBO	40 50		Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	lc	1.0		Adc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.175	°C/mW

2N3467 2N3468

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

PNP SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N3467 2N3468	V _{(BR)CEO}	40 50	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N3467 2N3468	V _(BR) CBO	40 50	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	5.0	_	Vdc
Base Cutoff Current (V _{CE} = -30 Vdc, V _{BE} = 3.0 Vdc)		BEV	_	120	nAdc
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{BE} = 3.0 Vdc)		ICEX	-	100	nAdc
Collector Cutoff Current ($V_{CB} = 30 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 30 \text{ Vdc}$, $I_{E} = 0$, $T_{A} = 100^{\circ}\text{C}$)		СВО	=	0.10 15	μAdc
ON CHARACTERISTICS					-
DC Current Gain(1) (I _C = 150 mAdc, V _{CE} = 1.0 Vdc)	2N3467 2N3468	hFE	40 25	_	_
$(I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3467 2N3468		40 25	120 75	
(I _C = 1.0 Adc, V _{CE} = 5.0 Vdc)	2N3467 2N3468		40 20	=	
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)	2N3467 2N3468	V _{CE} (sat)	_	0.3 0.36	Vdc
(I _C = 500 mAdc, I _B = 50 mAdc)	2N3467 2N3468		_	0.5 0.6	
(I _C = 1.0 Adc, I _B = 100 mAdc)	2N3467 2N3468		=	1.0 1.2	
Base-Emitter Saturation Voltage(1) (IC = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc) (I _C = 1.0 Adc, I _B = 100 mAdc)		V _{BE} (sat)	0.8	1.0 1.2 1.6	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHA	RACTERISTICS			Transfer to the	or the land
Current-Gain — Bando (I _C = 50 mAdc, V _{CE}	width Product = 10 Vdc, f = 100 MHz) 2N3467 2N3468	fT	175 150		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E =	= 0, f = 100 kHz)	C _{obo}	_	25	pF
Input Capacitance (VEB = 0.5 Vdc, IC	= 0, f = 100 kHz)	C _{ibo}	-	100	pF
SWITCHING CHARAC	TERISTICS				12.11
Delay Time	$(I_C = 500 \text{ mA}, I_{B1} = 50 \text{ mA}, V_{BE} =$	t _d		10	ns
Rise Time	2.0 V, V _{CC} = 30 V)	t _r	-	30	ns
Storage Time	$(I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}, V_{CC} = 30 \text{ V})$	t _S	_	60	ns
Fall Time	C DEBK - NOR	tf	p == :	30	ns

Total Control Charge (I_C = 500 mA, I_B = 50 mA, V_{CC} = 30 V) (1) Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%.

STORAGE TIME VARIATION WITH TEMPERATURE

Qт

6.0

nC

LIMITS OF SATURATION VOLTAGE

MINIMUM CURRENT GAIN CHARACTERISTICS

2N3494 2N3495

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

2N3496 2N3497

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

MAXIMUM RATINGS			and the second	
Rating	Symbol	2N3494 2N3496	2N3495 2N3497	Unit
Collector-Emitter Voltage	VCEO	80	120	Vdc
Collector-Base Voltage	V _{CBO}	80	120	Vdc
Emitter-Base Voltage	VEBO	4.5		Vdc
Collector Current — Continuous	IC	100		mAdc
		2N3494 2N3495	2N3496 2N3497	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	600 3.43	400 2.28	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C^*$ Derate above $25^{\circ}C$	PD	3.0 17.2	1.2 6.85	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

^{*}Indicates Data in addition to JEDEC Requirements.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, I _B = 0)	2N3494, 2N3496 2N3495, 2N3497	V(BR)CEO	80 120	= -	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N3494, 2N3496 2N3495, 2N3497	V(BR)CBO	80 120	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	4.5	_	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 90 \text{ Vdc}, I_{E} = 0)$	2N3494, 2N3496 2N3495, 2N3497	СВО		100 100	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	_	25	nAdc
ON CHARACTERISTICS					April 1
DC Current Gain(1) $ \begin{aligned} &(I_{\text{C}} = 100 \; \mu\text{Adc, V}_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 1.0 \; \text{mAdc, V}_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 10 \; \text{mAdc, V}_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 50 \; \text{mAdc, V}_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 100 \; \text{mAdc, V}_{\text{CE}} = 10 \; \text{Vdc}) \end{aligned} $	2N3494, 2N3496	hFE	35 40 40 40 35		_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	2N3494, 2N3496 2N3495, 2N3497	VCE(sat)	=	0.3 0.35	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{BE(sat)}	0.6	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) $(I_C = 20 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$	2N3494, 2N3496 2N3495, 2N3497	fT	200 150	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$	2N3494, 2N3496 2N3495, 2N3497	C _{obo}	=	7.0 6.0	pF
Input Capacitance (VBE = 2.0 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	_	30	pF

ELECTRICAL CHARACTERISTICS (continued) (Τ_Δ = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Input Impedance (I _C = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	0.1	1.2	k ohms
Voltage Feedback Ratio (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	_	2.0	X 10-4
Small-Signal Current Gain (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz)	h _{fe}	40	300	_
Output Admittance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	_	300	μmhos
Real Part of Input Impedance (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 300 MHz)	Re(h _{ie})	_	30	Ohms

SWITCHING CHARACTERISTICS

Turn-On Time ($V_{CC} = 30 \text{ Vdc}$, $I_C = 10 \text{ mAdc}$, $I_{B1} = 1.0 \text{ mAdc}$)	-ton	-	300	ns
Turn-Off Time ($V_{CC}=30~Vdc,I_{C}=10~mAdc,I_{B1}=I_{B2}=1.0~mAdc)$	toff	_	1000	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 2.0%.

FIGURE 1 - TURN-ON TIME TEST CIRCUIT

FIGURE 3 - VCE (sat) versus IC

FIGURE 5 — hFE versus IC

FIGURE 2 - TURN-OFF TIME TEST CIRCUIT

FIGURE 4 - ICBO versus TA

FIGURE 6 - VBE versus IC

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

-5.0 -10 -50 -100 -COLLECTOR-BASE VOLTAGE (V)

Rating	Symbol	2N3498 2N3499	2N3500 2N3501	Unit
Collector-Emitter Voltage	VCEO	100	150	Vdc
Collector-Base Voltage	VCBO	100	150	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	IC	500	300	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	°C/W

2N3498 thru 2N3501

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	
Collector-Emitter Breakdown Voltage (1) (I _C = 10 mAdc, I _B = 0)	2N3498, 2N3499 2N3500, 2N3501	V(BR)CEO	100 150	_	==	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	2N3498, 2N3499 2N3500, 2N3501	V(BR)CBO	100 150	y E	1 11 1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	6.0	=		Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$ $(V_{CB} = 75 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 75 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	2N3498, 2N3499 2N3500, 2N3501	^I CBO	=	1 1 1	0.050 50 0.050 50	μAdc
Emitter Cutoff Current (VBE(off) = 4.0 Vdc, I _C = 0)	opolitas - America roman	IEBO	s - .	(1. -)	25	nAdc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	2N3498, 2N3500 2N3499, 2N3501	hFE	20 35	=		
(I _C = 1.0 mAdc, V _{CE} = 10 Vdc)	2N3498, 2N3500 2N3499, 2N3501		25 50	=		
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3498, 2N3500 2N3499, 2N3501		35 75	<u> </u>	-	
(I _C = 150 mAdc, V_{CE} = 10 Vdc)	2N3498, 2N3500 2N3499, 2N3501		40 100	<u> </u>	120 300	1
(I _C = 300 mAdc, V_{CE} = 10 Vdc)	2N3500 2N3501		15 20	=	_	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3498 2N3499		15 20	_	=	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc)	All Types All Types 2N3500, 2N3501 2N3498, 2N3499	V _{CE} (sat)	=	_ _ _	0.2 0.25 0.4 0.6	Vdc

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (continued) \ (T_{\mbox{\scriptsize A}} \ = \ 25^{\circ}\mbox{\scriptsize C unless otherwise noted.})$

Characteristic		Symbol	Min	Тур	Max	Unit
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) All Type (I _C = 50 mAdc, I _B = 5.0 mAdc) All Type (I _C = 150 mAdc, I _B = 15 mAdc) 2N3500, (I _C = 300 mAdc, I _B = 30 mAdc) 2N3490,	s 2N3501	VBE(sat)	=	=	0.8 0.9 1.2 1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS						if year
Current-Gain — Bandwidth Product(2) $(V_{CE} = 20 \text{ Vdc}, I_{C} = 20 \text{ mAdc}, f = 100 \text{ MHz})$		fT	150	-	-	MHz
Output Capacitance 2N3498, $(V_{CB}=10\ Vdc,\ I_E=0,\ f=100\ kHz)$ 2N3500,	2N3499 2N3501	C _{obo}	_	_	10 8.0	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 100 kHz)	18.	C _{ibo}	_	_	80	pF
	2N3500 2N3501	h _{ie}	0.2 0.25	_	1.0 1.25	k ohms
	2N3500 2N3501	h _{re}	=		2.5 4.0	X 10-4
	2N3500 2N3501	h _{fe}	50 75	_	300 375	-
	2N3500 2N3501	h _{oe}	=	=	100 200	μmhos
SWITCHING CHARACTERISTICS				1.0275.01	190 11	marin a
Delay Time (I _C = 150 mAdc, I _{B1} = 15 mAdc, V _{CC} = 100 Vdc, V _{BE(off)} =	2.0 Vdc)	t _d		20	_	ns
Rise Time (I _C = 150 mAdc, I _{B1} = 15 mAdc, V_{CC} = 100 Vdc, $V_{BE(off)}$ =	2.0 Vdc)	t _r	1 -	35		ns
Storage Time (I _C = 150 mAdc, I _{B1} = I _{B2} = 15 mAdc, V _{CC} = 100 Vdc)	12 . pag. 1500 1	t _S	-	800	bio E no	ns
Fall Time ($I_C = 150 \text{ mAdc}$, $I_{B1} = I_{B2} = 15 \text{ mAdc}$, $V_{CC} = 100 \text{ Vdc}$)		t _f	_	80	10	ns

FIGURE 1 - CURRENT GAIN CHARACTERISTICS versus JUNCTION TEMPERATURE 2N3498

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$.

FIGURE 2 - CURRENT GAIN CHARACTERISTICS versus COLLECTOR-EMITTER VOLTAGE 1.5 2N3498-2N3499 hFE, DC CURRENT GAIN (NORMALIZED) T1 = 25°C 1.0 VCE = 10 V 0.7 0.3 2.0 V 0.1 3.0 5.0 200 300 500 1.0 2.0 7.0 50 70 100 IC, COLLECTOR CURRENT (mA)

SMALL-SIGNAL DEVICES

FIGURE 5 - "ON" VOLTAGES

AUDIO SMALL-SIGNAL h PARAMETER CHARACTERISTICS

(VCE = 10 Vdc, TA = 25°C, f = 1.0 kHz)

0.5 0.7 1.0

2.0 3.0

5.0 7.0 10

02 03

Rating	Symbol	2N3506	2N3507	Unit
Collector-Emitter Voltage	VCEO	40	50	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	Ic	3.0		Adc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C
Operating and Storage Junction	TJ, T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.175	°C/mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	35	°C/W

2N3506 2N3507

JAN, JTX, JTXV AVAILABLE CASE 79, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, pulsed, I _B = 0)	2N3506 2N3507	V(BR)CEO	40 50		Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	2N3506 2N3507	V _(BR) CBO	60 80	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current (VCE = 40 Vdc, VEB(off) = 4.0 Vdc) (VCE = 40 Vdc, VEB(off) = 4.0 Vdc, T _A = 100°C) (VCE = 60 Vdc, VEB(off) = 4.0 Vdc, T _A = 100°C) (VCE = 60 Vdc, VEB(off) = 4.0 Vdc, T _A = 100°C)	2N3506 2N3507	ICEX	=	1.0 150 1.0 150	μAdc
Base Cutoff Current (V _{CE} = 40 Vdc, V _{EB(off)} = 4.0 Vdc) (V _{CE} = 60 Vdc, V _{EB(off)} = 4.0 Vdc)	2N3506 2N3507	I _{BL}	, I.	1.0 1.0	μAdc
ON CHARACTERISTICS		and the same			
DC Current Gain(1) ($I_C = 500 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.5 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) ($I_C = 2.5 \text{ Adc}$, $V_{CE} = 3.0 \text{ Vdc}$) ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 5.0 \text{ Vdc}$)	2N3506 2N3507 2N3506 2N3507 2N3506 2N3507 2N3506 2N3507	hFE	50 35 40 30 30 25 25 20	200 150 —	- 1
Collector-Emitter Saturation Voltage(1) (IC = 500 mAdc, IB = 50 (IC = 1.5 Adc, IB = 150 m (IC = 2.5 Adc, IB = 250 m)	nAdc)	VCE(sat)		0.5 1.0 1.5	Vdc
Base-Emitter Saturation Voltage(1) (IC = 500 mAdc, IB = 50 mAdc (IC = 1.5 Adc, IB = 150 mAdd (IC = 2.5 Adc, IB = 250 mAdd	:)	V _{BE(sat)}	0.9	1.0 1.4 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 5 Vc	lc, f = 20 MHz)	fT	60	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	40	pF
Input Capacitance (VBE = 3 Vdc, IC = 0, f = 100 kHz)		Cibo	_	300	pF

ELECTRICAL CHARACTERISTICS (continued) ($T_{\Delta} = 25^{\circ}\text{C}$ unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit
SWITCHING CHARA	CTERISTICS			SOLVE I SOLVE	5-3-3-
Delay Time	I _C = 1.5 Adc, I _{B1} = 150 mAdc	td		15	ns
Rise Time	$V_{CC} = 30 \text{ V}, V_{EB} = 0 \text{ V}$	tr	_	30	ns
Storage Time	$I_C = 1.5 \text{ Adc}, I_{B1} = I_{B2} = 150 \text{ mAdc}$	ts	_	55	ns
Fall Time	V _{CC} = 30 V	tf	_	35	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 2.0%.

SATURATION VOLTAGES

SWITCHING TIMES

CURRENT GAIN CHARACTERISTICS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current (10 μ s pulse) (Peak)	IC	500	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.40 2.29	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.0 11.43	Watts mW/°C
Operating and Storage Temperature Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.0875	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.438	°C/W

2N3508 2N3509

CASE 26, STYLE 1 TO-46 (TO-206AB)

SWITCHING TRANSISTOR

NPN SILICON

Refer to 2N2368 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_B = 0$)		V _(BR) CBO	40	_	Vdc
Collector-Emitter Breakdown Voltage (1) (I _C = 10 mAdc)		V _{(BR)CEO}	20	-	Vdc
Collector-Emitter Voltage (I _C = 10 µAdc, I _B = 0)		V _(BR) CES	40	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{EB(off)} = 3.0 Vdc)		ICEX	_	0.2	μAdc
Collector Cutoff Current ($V_{CB} = 20 \text{ Vdc}$) ($V_{CB} = 20 \text{ Vdc}$, $T_{A} = 150^{\circ}\text{C}$)	Both Types 2N3508 2N3509	ICBO	Ξ	0.2 30 50	μAdc
Base Cutoff Current $(V_{CE} = 20 \text{ Vdc}, V_{EB(off)} = 3.0 \text{ Vdc})$		IBL	-	0.5	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	2N3508 2N3509	hFE	40 100	120 300	1—
(I _C = 10 mAdc, V_{CE} = 1.0 Vdc, T_A = -55° C)	2N3508 2N3509		20 40	_	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3508 2N3509		20 30	_	
Collector-Emitter Saturation Voltage (1) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 100 mAdc, IB = 10 mAdc)		VCE(sat)	_	0.25 0.45	Vdc
Base-Emitter Saturation Voltage (1) (IC = 10 mAdc, I _B = 1.0 mAdc) (IC = 100 mAdc, I _B = 10 mAdc)		V _{BE(sat)}	0.70 0.8	0.85 1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS					4
Output Capacitance (VCB = 5.0 Vdc, I _E = 0, f = 140 kHz)		C _{obo}	-	4.0	pF

	Characteristic	Symbol	Min	Max	Unit
Input Capacitance (VBE = 1.0 Vdc, Ic	c = 0, f = 140 kHz)	C _{ibo}	-	4.0	pF
Small-Signal Current (I _C = 10 mAdc, V _C	t Gain CE = 10 Vdc, f = 100 MHz)	h _{fe}	5.0	7 -	_
SWITCHING CHARA	CTERISTICS				71
Storage Time (I _C = I _{B1} = I _{B2} =	10 mA)	$t_S(\tau_S)$	-1-	13	ns
Turn-On Time (I _C = 10 mA, I _{B1}	= 3.0 mA, V _{CC} = 3.0 V, V _{OB} = 1.5 V)	ton	-	12	ns
Turn-Off Time (I _C = 10 mA, I _{B1}	= 3.0 mA, I _{B2} = 1.5 mA, V _{CC} = 3.0 V)	toff	-	18	ns
Total Control Charge (I _C = 10 mA, I _B =	e 1.0 mA, V _{CC} = 3.0 V)	Ωτ	_	50	pC
Delay Time	V _{CC} = 10 V, V _{EB} = 2.0 V,	t _d	_	5.0	ns
Rise Time	$I_C = 100 \text{ mA}, I_{B1} = 10 \text{ mA}$	t _r	_	18	ns
Storage Time	V _{CC} = 10 V	ts	-	13	ns
Fall Time	$I_C = 100 \text{ mA}, I_{B1} = I_{B2} = 10 \text{ mA}$	tf	_	15	ns

⁽¹⁾ Pulse Test: PW = 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM KATINGS				
Rating	Symbol	2N3510 2N3647	2N3511 2N3648	Unit
Collector-Emitter Voltage	VCEO	10	15	Vdc
Collector-Base Voltage	VCBO	40	40	Vdc
Emitter-Base Voltage	VEBO	6	6.0	
Collector Current — Continuous	Ic	500		mAdc
		TO-46 2N3647 2N3648	TO-52 2N3510 2N3511	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.28	360 2.06	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.0 11.43	1.2 6.9	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

CASE 27, STYLE 1 TO-52 (TO-206AC)

2N3647 2N3648

CASE 26, STYLE 1 TO-46 (TO-206AB)

SWITCHING TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N3510, 2N3647 2N3511, 2N3648	V(BR)CEO	10 15	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		V(BR)EBO	6.0	7	Vdc
Collector Cutoff Current $(V_{CE} = 10 \text{ Vdc}, V_{EB(off)} = 1.0 \text{ Vdc})$ $(V_{CE} = 10 \text{ Vdc}, V_{EB(off)} = 1.0 \text{ Vdc}, T_{A} = 150^{\circ}\text{C})$		ICEX	=	.025 50	μAdc
Base Cutoff Current (V _{CE} = 10 Vdc, V _{OB} = 1.0 Vdc)		I _{BL}	_	.025	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc)	2N3510, 2N3647 2N3511, 2N3648	hFE	12 15	=	-
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3510, 2N3647 2N3511, 2N3648		20 25	++	
$(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3510, 2N3647 2N3511, 2N3648		25 30	150 120	3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2N3511, 2N3648 2N3510, 2N3647 2N3511, 2N3648		12 15 12	=	
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	2N3510, 2N3647 2N3511, 2N3648	VCE(sat)	=	0.25 0.4 0.6 0.8	Vdc
Base-Emitter Saturation Voltage(1) (IC = 10 mAdc, I _B = 1.0 mAdc) (IC = 150 mAdc, I _B = 15 mAdc) (IC = 300 mAdc, I _B = 30 mAdc) (IC = 500 mAdc, I _B = 50 mAdc)	2N3510, 2N3647 2N3511, 2N3648	VBE(sat)	0.8	0.8 1.0 1.15 1.5	Vdc

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit	
SMALL-SIGNAL CHARA	ACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E =	0, f = 100 kHz)	CONTRACTOR CONTRACTOR	C _{obo}	=	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C =	0, f = 100 kHz)	book olde.	C _{ibo}	=	8.0	pF
Input Impedance (I _C = 1.0 mA, V _{CE} =	10 V, f = 1.0 kHz)		h _{ie}	0.6	4.5	kohms
Voltage Feedback Ratio			h _{re}	_	25	X 10-4
Small-Signal Current G ($I_C = 15 \text{ mAdc}, V_{CE}$ ($I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ mA}$	= 10 Vdc, f = 100 MHz)	2N3510, 2N3647 2N3511, 2N3648	h _{fe}	3.5 4.5 20	 150	-
Output Admittance (I _C = 1.0 mA, V _{CE} =	10 V, f = 1.0 kHz)		h _{oe}	10	100	μmhos
SWITCHING CHARACT	ERISTICS				The Trees	vic ment do
Delay Time	$(I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}, V_{EB} = 0.5 \text{ V}, V_{CC} = 6.0 \text{ V})$	2N3510, 2N3647 2N3511, 2N3648	td	Ξ	10 8.0	ns
Rise Time		2N3510, 2N3647 2N3511, 2N3648	t _r	=	12 10	ns
Storage Time	$(I_C = 150 \text{ mA}, I_{B1} = -I_{B2} = 15 \text{ mA}, V_{CC} = 6.0 \text{ V})$	2N3510, 2N3647 2N3511, 2N3648	t _S	_	16 12	ns
Fall Time		2N3510, 2N3647 2N3511, 2N3648	tf	===	12 8.0	ns
Turn-On Time	$(I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}, V_{EB} = 0.5 \text{ V}, V_{CC} = 6.0 \text{ V})$	2N3510, 2N3647 2N3511, 2N3648	ton	_	20 16	ns
Turn-Off Time	$(I_C = 150 \text{ mA}, I_{B1} = -I_{B2} = 15 \text{ mA}, V_{CC} = 6.0 \text{ V})$	2N3510, 2N3647 2N3511, 2N3648	toff	_	25 18	ns
Total Control Charge (I _C = 150 mA, I _B =	15 mA, Vcc = 6.0 V)		Ωτ	_	300	pC

⁽¹⁾ Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%.

2N3546

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	VCBO	15	Vdc
Emitter-Base Voltage	VEBO	4.5	Vdc
DC Collector Current	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.9	Watts mW/°C
Operating and Storage Temperature Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.15	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.49	°C/W

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	12	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CBO	15	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	V(BR)EBO	4.5	_	Vdc
Base Cutoff Current (V _{CE} = 10 Vdc, V _{BE(off)} = 3.0 Vdc)	IBEV	_	0.10	μAdc
Collector Cutoff Current (V _{CE} = 10 Vdc, V _{BE(off)} = 3.0 Vdc)	ICEX	_	0.010	μAdc
Collector Cutoff Current (V _{CB} = 10 Vdc) (V _{CB} = 10 Vdc, T _A = 150°C)	ICBO	=	0.010 10	μAdc
ON CHARACTERISTICS				
DC Current Gain (1) $ \begin{aligned} &(I_C = 1.0 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc, } T_{A} = -55^{\circ}\text{C}) \\ &(I_C = 50 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 100 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \end{aligned} $	hFE	20 30 15 25 15	120 — —	. —
Collector-Emitter Saturation Voltage (1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	VCE(sat)	=	0.15 0.25 0.50	Vdc
Base-Emitter Saturation Voltage (1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	V _{BE(sat)}	0.7 0.8	0.9 1.3 1.6	Vdc
SMALL-SIGNAL CHARACTERISTICS	- Comment of the comm			
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	700	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	6.0	pF
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	_	5.0	pF

2N3546

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (continued) \ (T_{\mbox{\scriptsize A}} \ = \ 25^{\circ} \mbox{C unless otherwise noted.})$

	Characteristic	Symbol	Min	Max	Unit
SWITCHING CHARACTERISTICS					
Delay Time	$I_C = 50 \text{ mA}, I_{B1} = 5.0 \text{ mA}$	td	_	10	ns
Rise Time	$V_{BE} = 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$	tr	_	15	ns
Storage Time	$I_C = 50 \text{ mA}, I_{B1} = I_{B2} = 5.0 \text{ mA}$	ts		20	ns
Fall Time	V _{CC} = 3.0 V	t _f	_	15	ns
Turn-On Time		ton		40	ns
Turn-Off Time		toff		30	ns
Total Control Charge (I _C = 50 mA, I _B =	5.0 mA, V _{CC} = 3.0 V)	QΤ	_	400	pC

⁽¹⁾ Pulse Test: PW = 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	2N3634 2N3635	2N3636 2N3637	Unit
Collector-Emitter Voltage	VCEO	140	175	Vdc
Collector-Base Voltage	VCBO	140	175	Vdc
Emitter-Base Voltage	V _{EBO}	5	.0	Vdc
Collector Current — Continuous	lc	1.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	_	.0 3.6	Watts mW/°C
Operating and Storage Junction	T _J , T _{stg}	-65 to	+ 200	°C

2N3634 thru 2N3637

JAN, JTX AVAILABLE CASE 79, STYLE 1 TO-39 (TO-39-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N3634, 2N3635 2N3636, 2N3637	V(BR)CEO	140 175	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	2N3634, 2N3635 2N3636, 2N3637	V(BR)CBO	140 175	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0)		ICBO	_	100	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	-	50	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	2N3634, 2N3636 2N3635, 2N3637	hFE	40 80	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3634, 2N3636 2N3635, 2N3637	1 A A	45 90	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3634, 2N3636 2N3635, 2N3637		50 100		
$(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3634, 2N3636 2N3635, 2N3637		50 100	150 300	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3634, 2N3636 2N3635, 2N3637		25 50	=	
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		VCE(sat)	=	0.3 0.5	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		VBE(sat)	— 0.65	0.8 0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (V _{CE} = 30 Vdc, I _C = 30 mAdc, f = 100 MHz)	2N3634, 2N3636 2N3635, 2N3637	fT	150 200	=	MHz

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Output Capacitance (VCB = 20 Vdc, IE = 0, f = 100 kHz)		C _{obo}	_	10	pF
Input Capacitance (VBE = 1.0 Vdc, $I_C = 0$, $f = 100 \text{ kHz}$)		C _{ibo}	_	75	pF
Input Impedance (IC = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N3634, 2N3636 2N3635, 2N3637	h _{ie}	100 200	600 1200	ohms
Voltage Feedback Ratio ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	1 _12 18001	h _{re}	_	3.0	X 10 ⁻⁴
Small-Signal Current Gain $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N3634, 2N3636 2N3635, 2N3637	h _{fe}	40 80	160 320	de circle
Output Admittance ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{oe}	-	200	μmhos
Noise Figure $(I_C = 0.5 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, R_S = 1.0 \text{ k ohms}, f = 1.0 \text{ k ohms})$	1.0 kHz)	NF	-	3.0	dB

SWITCHING CHARACTERISTICS

0.2 0.3 0.5 0.7 1.0

Turn-On Time	(V _{CC} = 100 Vdc, V _{BE} = 4.0 Vdc,	ton		400	ns	
Turn-Off Time	$I_C = 50 \text{ mAdc}, I_{B1} = I_{B2} = 5.0 \text{ mAdc}$	toff	_	600	ns	1

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2.0 3.0 5.0 7.0 10

FIGURE 1 - JUNCTION CAPACITANCE VARIATIONS

FIGURE 6 — CURRENT GAIN CHARACTERISTICS VERSUS COLLECTOR EMITTER VOLTAGE

FIGURE 9 - CURRENT GAIN

FIGURE 10 - VOLTAGE FEEDBACK RATIO

FIGURE 11 — SATURATION VOLTAGES

FIGURE 12 - TEMPERATURE COEFFICIENTS

FIGURE 13 - SWITCHING TIME TEST CIRCUIT

r.w. ≥ 20 µs
DUTY CYCLE ≤ 2%
RISE TIME ≤ 20 ns

	V _{mex}	V _{min}
TURN-ON	+4.0 V	-5.65 V
TURN-OFF	+4.1 V	-5.9 V

FIGURE 14 — TURN-ON TIME VARIATIONS WITH VOLTAGE

FIGURE 15 — TURN-OFF TIME VARIATIONS WITH CIRCUIT GAIN*

2N3677

CASE 26-03, STYLE 1 TO-46 (TO-206AB)

LOW POWER CHOPPER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	20	V
Collector-Base Voltage	VCBO	30	V
Emitter-Base Voltage	V _{EBO}	30	V
Collector Current — Continuous	lc	100	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.3	mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Emitter-Collector Breakdown Voltage (I _C = 1.0 nA)	V(BR)ECS	20	-	V
Collector-Base Breakdown Voltage (I _C = 1.0 mA)	V(BR)CBO	30	_	V
Emitter-Base Breakdown Voltage (I _E = 1.0 mA)	V(BR)EBO	30	-	V
Collector Cutoff Current (V _{CB} = 30 V)	ICBO	_	1.0	nA
Emitter Cutoff Current (V _{EB} = 30 V)	I _{EBO}	_	1.0	nA
ON CHARACTERISTICS				
Offset Voltage (I _B = 1.0 mA)	VEC(ofs)	_	1.0	mV
Common-Collector static forward transfer ratio (I _E = 1.0 mA, V _{EC} = 6.0 V)	h _{fe}	4.0	_	_
On series resistance (I _B = 1.0 mA)	r _s	0.1	8.0	ohms
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 6.0 V, f = 159 kHz)	C _{obo}	-	10	pF
Input Capacitance (VEB = 6.0 V, f = 159 kHz)	C _{ibo}	_	6.0	pF
Magnitude of Forward Current Transfer Ratio, Common-Emitter (IC = 1.0 mA, V_{CE} = 6.0 V, f = 1.0 MHz)	h _{fe}	5.0	_	=

2N3712

CASE 79, STYLE 1 TO-39 (205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	150	Vdc
Collector-Base Voltage	VCBO	150	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Refer to 2N3498 for graphs.

Symbol	Min	Max	Unit
			200
V(BR)CEO	150	-	Vdc
V(BR)CBO	150	An	Vdc
V(BR)EBO	5.0		Vdc
ICBO	==	0.1 50	μAdc
EBO	_	0.1	μAdc
			1 100
hFE	25 30	150) in-
V _{CE(sat)}	_	2.0	Vdc
V _{BE} (sat)	8.200 <u>- 0</u> 00	0.9	Vdc
f _T	40	240	MHz
C _{obo}	1.0	9.0	pF
C _{ibo}	1 	80	pF
hfe	25	_	-
rb′C _e	_	100	ps
	V(BR)CEO V(BR)CBO V(BR)EBO ICBO IEBO VCE(sat) VBE(sat) fT Cobo Cibo hfe	V(BR)CEO 150 V(BR)CBO 150 V(BR)EBO 5.0 ICBO — IEBO — NFE 25 30 VCE(sat) — VBE(sat) — fT 40 Cobo 1.0 Cibo — hfe 25	V(BR)CEO 150 — V(BR)CBO 150 — V(BR)EBO 5.0 — ICBO — 0.1 — 50 — IEBO — 0.1 MFE 25 — 30 150 VCE(sat) VCE(sat) — 2.0 VBE(sat) — 0.9 fT 40 240 Cobo 1.0 9.0 Cibo — 80 hfe 25 —

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N3724 2N3725

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N3724	2N3725	Unit	
Collector-Emitter Voltage	VCEO	30	50	Vdc	
Collector-Base Voltage	VCBO	50 80		Vdc	
Emitter-Base Voltage	V _{EBO}	6.0		Vdc	
Collector Current — Continuous	lc	500		mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watts mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C	

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N3725 2N3724	V(BR)CEO	50 30	_	_	Vdc
Collector-Emitter Breakdown Voltage (IC = 10 μ Adc, VBE = 0)	2N3725 2N3724	V(BR)CES	80 50	_	=	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N3725 2N3724	V(BR)CBO	80 50	1	i ju	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)		V _{(BR)EBO}	6.0		_	Vdc
Collector Cutoff Current	2N3725 2N3724 2N3725 2N3724	ІСВО	Ξ	0.12 0.12 —	1.7 1.7 120 120	μAdd
Collector Cutoff Current $(V_{CE} = 80 \text{ Vdc}, V_{EB} = 0)$ $(V_{CE} = 50 \text{ Vdc}, V_{EB} = 0)$	2N3725 2N3724	ICES	=	0.15 0.15	10 10	μAdo
Base Current (V _{CE} = 50 V, V _{EB} = 0) (V _{CE} = 80 V, V _{EB} = 0)	2N3724 2N3725	lΒ	_	_	10	μAdo
ON CHARACTERISTICS(1)						
DC Current Gain $ \begin{aligned} &(C=10 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ &(C=100 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ &(C=100 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc, } T_{A}=-55^{\circ}\text{C}) \\ &(C=300 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc, } T_{A}=-55^{\circ}\text{C}) \\ &(C=500 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc, } T_{A}=-55^{\circ}\text{C}) \\ &(C=500 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc, } T_{A}=-55^{\circ}\text{C}) \\ &(C=800 \text{ mAdc, } V_{CE}=2.0 \text{ Vdc, } T_{A}=-55^{\circ}\text{C}) \\ &(C=800 \text{ mA, } V_{CE}=5.0 \text{ Vdc, } T_{A}=-55^{\circ}\text{C}) \\ &(C=1.0 \text{ Adc, } V_{CE}=5.0 \text{ Vdc, } T_{A}=-55^{\circ}\text{C}) \\ &(C=1.0 \text{ Adc, } V_{CE}=5.0 \text{ Vd, } T_{A}=-55^{\circ}\text{C}) \\ &(C=1.0 \text{ Adc, } V_{CE}=5.0 \text{ Vd, } T_{A}=-55^{\circ}\text{C}) \end{aligned} $	2N3725 2N3725	hFE	30 60 30 40 35 20 25 30 20 25			_
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc)	2N3725 2N3724	V _{BE(sat)}	=	0.17 0.17	0.25 0.25	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
			_			
(IC = 100 mAdc, IB = 10 mAdc)	2N3725		_	0.19	0.26	
	2N3724			0.19	0.20	
			_		200000000000000000000000000000000000000	
$(I_C = 300 \text{ mAdc}, I_B = 30 \text{ mAdc})$	2N3725		_	0.25	0.40	
	2N3724			0.25	0.32	
			_		and the same	100
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	2N3725		_	0.30	0.52	
A CAMPAGNA OF THE PARTY OF THE	2N3724	100		0.30	0.42	
			_		and the	
(IC = 800 mAdc, IB = 80 mAdc)	2N3725		_	0.43	0.80	
	2N3724	1		0.43	0.65	-
			· · · · · · · · · · · · · · · · · · ·		100	B mi
(I _C = 1.0 mAdc, I _B = 100 mAdc)	2N3725		_	0.55	0.95	
	2N3724			0.55	0.75	
Base-Emitter Saturation Voltage		V _{BE(sat)}				Vdc
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$		DL(3dt)	_	_	0.76	1,55,5
(I _C = 100 mAdc, I _B = 10 mAdc)			-	_	0.86	
(I _C = 300 mAdc, I _B = 30 mAdc)			_	_	1.1	
(I _C = 500 mAdc, I _B = 50 mAdc)			0.8	_	1.1	100
(I _C = 800 mAdc, I _B = 80 mAdc)			_	_	1.5	No. 12 (No.
(I _C = 1.0 Adc, I _B = 100 mAdc)			_	_	1.7	-

Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fT	300	_	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$	2N3725 2N3724	C _{obo}	= 1, 4,	- =	10 12	pF
Input Capacitance (VEB = 0.5 Vdc, I_C = 0, f = 1.0 MHz)		C _{ibo}	_		55	pF

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle = 1.0%.

SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = 30 Vdc, V _{BE} (off) = 3.8 Vdc, I _C = 500 mAdc, I _{B1} = 50 mAdc) (Figures 8, 10)	^t d	_	5.0	10	ns
Rise Time		t _r	_	15	30	ns
Turn-On Time		ton	_	20	35	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 500 mAdc, I _{B1} = I _{B2} = 50 mAdc) (Figures 9, 10)	ts	-	35	50	ns
Fall Time		tf	-	20	25	ns
Turn-Off Time		toff	-	50	60	ns

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$.

TYPICAL DC CHARACTERISTICS

FIGURE 2 - DC CURRENT GAIN 400 VCE = 1.0 V TJ = 1250C 200 GAIN 25°C DC CURRENT 100 80 -55°C 60 40 20 10 100 200 500 1000 IC, COLLECTOR CURRENT (mA)

FIGURE 3 - "ON" VOLTAGES 1.4 25°C 1.0 V, VOLTAGE (VOLTS) 0.8 0.6 VBE(sat) @ IC/IB = 10-0.4 0.2 VCE(sat) @ IC/IB 10 200 500 1000 IC. COLLECTOR CURRENT (mA)

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 8 - TURN-ON TIME 200 IC/IB = 10 _ TJ = 25°C 100 50 tr @ VCC = 10 Vdc t, TIME (ns) VCC = 30 Vdc 20 10 5.0 td @ VBE(off) = 0 V VBE(off) = 3.8 Vdc VCC = 30 Vdc 3.0 2.0 20 30 1000 10 100 200 300 500 IC, COLLECTOR CURRENT (mA)

MAXIMUM RATINGS

Rating	Symbol	2N3734 2N3736	2N3735 2N3737	Unit
Collector-Emitter Voltage	VCEO	30	50	Vdc
Collector-Base Voltage	VCBO	50	75	Vdc
Emitter-Base Voltage	VEBO	5	5.0	
Collector Current — Continuous	Ic	1.5		Adc
· · · · · · · · · · · · · · · · · · ·		TO-39 2N3734 2N3735	TO-46 2N3736 2N3737	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	0.5 2.86	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	4.0 22.8	2.0 11.4	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N3734 2N3736	2N3735 2N3737	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.044	0.088	°C/mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.175	0.35	°C/mW

2N3734 2N3735

CASE 79, STYLE 1 TO-39 (TO-205AD)

2N3736 2N3737

CASE 26, STYLE 1 TO-46 (TO-206AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3725 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N3734, 2N3736 2N3735, 2N3737	V(BR)CEO	30 50	=	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N3734, 2N3736 2N3735, 2N3737	V(BR)CBO	50 75	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current (VCE = 25 Vdc, VEB = 2 Vdc) (VCE = 25 Vdc, VEB = 2 Vdc, TA = 100°C) (VCE = 40 Vdc, VEB = 2 Vdc, TA = 100°C) (VCE = 40 Vdc, VEB = 2 Vdc, TA = 100°C)	2N3734, 2N3736 2N3735, 2N3737	ICEX	=	0.20 20 0.20 20	μAdc
Base Cutoff Current (V _{CE} = 25 Vdc, V _{EB} = 2 Vdc) (V _{CE} = 40 Vdc, V _{EB} = 2 Vdc) ON CHARACTERISTICS	2N3734, 2N3736 2N3735, 2N3737	l _{BL}	Ξ	0.3 0.3	μAdc
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 1 Vdc) (I _C = 150 mAdc, V _{CE} = 1 Vdc) (I _C = 500 mAdc, V _{CE} = 1 Vdc) (I _C = 1 Adc, V _{CE} = 1 Vdc)	2N3734, 2N3736 2N3735, 2N3737	hFE	35 40 35 30 20	 120 80	_
$(I_C = 1.5 \text{ Adc, } V_{CE} = 5 \text{ Vdc})$	2N3734, 2N3736 2N3735, 2N3737		30 20	_	
Collector-Emitter Saturation Voltage(1) (IC = 10 mAdc, I _B = 1 mAdc) (IC = 150 mAdc, I _B = 15 mAdc) (IC = 500 mAdc, I _B = 50 mAdc) (IC = 1 Adc, I _B = 100 mAdc)		VCE(sat)		0.2 0.3 0.5 0.9	Vdc
Base-Emitter Saturation Voltage(1) (IC = 10 mAdc, I _B = 1 mAdc) (IC = 150 mAdc, I _B = 15 mAdc) (IC = 500 mAdc, I _B = 50 mAdc) (IC = 500 mAdc, I _B = 50 mAdc)		VBE(sat)	 0.9	0.8 1.0 1.2 1.4	Vdc

2N3734, 2N3735, 2N3736, 2N3737

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	9.0	pF
Input Capacitance (VBE = 0.5 Vdc , $I_C = 0$, $f = 100 \text{ kHz}$)	C _{ibo}	_	80	pF
Small-Signal Current Gain ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	h _{fe}	2.5	_	_
SWITCHING CHARACTERISTICS				
Turn-On Time $(VCC = 30 \text{ V, VBE(off)} = 2.0 \text{ V, I}_C = 1.0 \text{ Amp, I}_{B1} = 100 \text{ mA})$	ton	-	40	ns
Turn-Off Time $(V_{CC} = 30 \text{ V, V}_{BE(off)} = 2.0 \text{ V, I}_{C} = 1.0 \text{ Amp, I}_{B1} = 100 \text{ mA})$	^t off	_	60	ns
Total Control Charge ($I_C = 1 \text{ Amp}$, $I_B = 100 \text{ mA}$, $V_{CC} = 30 \text{ V}$)	Q_{τ}	-	10	NC

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	300	Vdc
Collector-Base Voltage	V _{CBO}	300	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	°C/W

2N3742

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	V(BR)CEO	300	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	300	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	7.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 200 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$	ІСВО	=	0.2 20	μAdc
Emitter Cutoff Current (VEB = 6.0 Vdc, IC = 0)	IEBO	_	0.2	μAdc
ON CHARACTERISTICS(2)				
DC Current Gain ($I_C = 3.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 30 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$)	hFE	10 15 20 20	 200 	_
Collector-Emitter Saturation Voltage (IC = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc)	V _{CE(sat)}	=	0.75 1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc}$)	V _{BE(sat)}	_	1.0 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product(3) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)	fτ	30	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	6.0	pF
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$	C _{ibo}	-	80	pF
Input Impedance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	_	2.0	k ohms
Voltage Feedback Ratio (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	-	2.0	X10-4
Small-Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 10 kHz)	h _{fe}	20	200	-

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Output Admittance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}		50	mhos
Real Part of Input Impedance (IC = 10 mAdc, VCE = 10 Vdc, f = 5.0 MHz)	Re(hie)	-	200	Ohms

- (1) Pulse Test: Pulse Width ≤ 30 µs, Duty Cycle ≤ 1.0%.
- (2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- (3) f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

IANI ITY

JAN, JTX AVAILABLE CASE 79, STYLE 1 TO-39 (TO-205AD)

2N3743

AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	300	Vdc
Collector-Base Voltage	VCBO	300	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.7	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}\text{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	300	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	300	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current ($V_{CB} = 200 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 200 \text{ Vdc}$, $I_E = 0$, $T_A = 100^{\circ}\text{C}$)	Ісво	=	0.3 30	μAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	IEBO	-	0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain(2) (I _C = 100 μ Adc, V _{CE} = 10 Vdc) (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 30 mAdc, V _{CE} = 10 Vdc) (I _C = 50 mAdc, V _{CE} = 20 Vdc)	hFE	20 25 25 25 25 25		-
Collector-Emitter Saturation Voltage(2) (IC = 10 mAdc, I _B = 1 mAdc) (I _C = 30 mAdc, I _B = 3 mAdc)	V _{CE} (sat)	-	5.0 8.0	Vdc
Base-Emitter Saturation Voltage(2) (I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 30 mAdc, I _B = 3 mAdc)	V _{BE(sat)}	_	1.0 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	15	pF
Input Capacitance $(V_{EB} = 1.0 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$	C _{ibo}	_	400	pF
Input Impedance ($V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f = 1 \text{ kHz}$)	h _{ie}	_	1.0	kohms
Voltage Feedback Ratio (V _{CE} = 10 V, I _C = 10 mA, f = 1 kHz)	h _{re}	_	4.0	X 10-4
Small-Signal Current Gain $(V_{CE} = 10 \text{ V, I}_{C} = 10 \text{ mA, f} = 1 \text{ kHz})$	h _{fe}	30	300	_

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Current Gain — High Frequency (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)	h _{fe}	1.5	_	_
Output Admittance $(V_{CE} = 10 \text{ V, } I_{C} = 10 \text{ mA, } f = 1 \text{ kHz})$	h _{oe}	=	200	μmhos
Real Part of Input Impedance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 5 MHz)	Re(h _{ie})	_	40	ohms

⁽¹⁾ PW \leq 30 μ s, Duty Cycle \leq 1.0%.

JUNCTION CAPACITANCE 500 300 T_ = 25°C 200 C, CAPACITANCE (pF) 100 70 50 30 20 10 0.5 1.0 2.0 5.0 20 50 REVERSE BIAS (VOLTS)

⁽²⁾ PW ≤ 300 µs. Duty Cycle ≤ 2.0%.

SMALL SIGNAL Y PARAMETERS $T_A = 25^{\circ}C$

MAXIMUM RATINGS

Rating	Symbol	2N3762 2N3764	2N3763 2N3765	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	Vсво	40	60	Vdc
Emitter-Base Voltage	VEBO	5	.0	Vdc
Collector Current — Continuous	I _C 1.5		Adc	
		TO-39 2N3762 2N3763	TO-46 2N3764 2N3765	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	0.5 2.86	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	4.0 22.8	2.0 11.4	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	+200	°C
Lead Temperature 1/16" from Case for 10 Seconds	TL	+ 235		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N3762 2N3763	2N3764 2N3765	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	44	88	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	350	°C/W

2N3762 2N3763

JAN, JTX, JTXV AVAILABLE

CASE 79, STYLE 1 TO-39

2N3764 2N3765 CASE 26, STYLE 1

TO-46

SWITCHING TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	2N3762, 2N3764 2N3763, 2N3765	V(BR)CEO	40 60	=	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N3762, 2N3764 2N3763, 2N3765	V _(BR) CBO	40 60	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current (VCE = 20 Vdc, VEB = 2.0 Vdc) (VCE = 20 Vdc, VEB = 2.0 Vdc, TA = 100°C) (VCE = 30 Vdc, VEB = 2.0 Vdc) (VCE = 30 Vdc, VEB = 2.0 Vdc, TA = 100°C)	2N3762, 2N3764 2N3763, 2N3765	ICEX	=	0.10 10 0.10 10	μAdc
Base Cutoff Current (V _{CE} = 20 Vdc, V _{EB} = 2.0 Vdc) (V _{CE} = 30 Vdc, V _{EB} = 2.0 Vdc)	2N3762, 2N3764 2N3763, 2N3765	^I BL	=	0.2 0.2	μAdc
ON CHARACTERISTICS	THE WATER OWN THE REAL PROPERTY.				
DC Current Gain(1) (IC = 10 mAdc, V _{CE} = 1.0 Vdc) (IC = 150 mAdc, V _{CE} = 1.0 Vdc) (IC = 500 mAdc, V _{CE} = 1.0 Vdc) (IC = 1.0 Adc, V _{CE} = 1.5 Vdc)	2N3762, 2N3764 2N3763, 2N3765	hFE	35 40 35 30 20	 	
$(I_C = 1.5 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$	2N3762, 2N3764 2N3763, 2N3765		30 20	<u>-</u>	.]
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc) (I _C = 1.0 Adc, I _B = 100 mAdc)		VCE(sat)		0.1 0.22 0.5 0.9	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc) (I _C = 1.0 Adc, I _B = 100 mAdc)		V _{BE(sat)}	 0.9	0.8 1.0 1.2 1.4	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit	
SMALL-SIGNAL CI	HARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc,	e E = 0, f = 100 kHz)	1.0	C _{obo}	-	15	pF
Input Capacitance (VBE = 0.5 Vdc,	I _C = 0, f = 100 kHz)		C _{ibo}	-	80	pF
Current Gain — High (IC = 50 mAdc, V	gh Frequency VCE = 10 Vdc, f = 100 MHz)	2N3762, 2N3764 2N3763, 2N3765	h _{fe}	1.8 1.5	_	-
SWITCHING CHAR	ACTERISTICS				Printer and	
Delay Time		(V _{CC} = 30 V, V _{BE(off)} = 2.0 V,		_	8.0	ns
Rise Time $I_C = 1.0 \text{ Amp}, I_{B1} = 100 \text{ mA}$		tr	_	3.5	ns	

Delay Time	$(V_{CC} = 30 \text{ V}, V_{BE(off)} = 2.0 \text{ V},$	t _d	_	8.0	ns
Rise Time	$I_C = 1.0 \text{ Amp, } I_{B1} = 100 \text{ mA})$	tr	_	3.5	ns
Storage Time	$(V_{CC} = 30 \text{ V, } I_{C} = 1.0 \text{ Amp,}$	t _S	_	80	ns
Fall Time	$l_{B1} = -l_{B2} = 100 \text{ mA}$	tf	_	35	ns
Total Control Charge (I _C = 1.0 Amp, I _B	e = 100 mA, V _{CC} = 30 V)	Q_{τ}	-	30	pC

⁽¹⁾ Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%.

"ON" CONDITION CHARACTERISTICS

This graph shows the effect of base current on collector current. $\beta_{\rm O}$ (current gain at the edge of saturation) is the current gain of the transistor at 1 volt, and $\beta_{\rm F}$ (forced gain) is the ratio of I_C/I_{BF} in a circuit. EXAMPLE: For type 2N3734, estimate a base current (I_{BF}) to measure saturation at a temperature of 25°C and a collector of 500 mA.

Observe that at $I_{\rm C}=500\,{\rm mA}$ an overdrive factor of at least 2.0 is required to drive the transistor well into the saturation region. From Figure 1, it is seen that $h_{\rm FE}$ @ 1 volt is typically 54 (guaranteed limits from the Table of Characteristics can be used for "worst-case" design).

$$\frac{\beta_{\text{O}}}{\beta_{\text{F}}} = \frac{h_{\text{FE}} @~1~\text{Volt}}{I_{\text{C}}/I_{\text{BF}}} \qquad \qquad 2 = \frac{54}{500~\text{mA/I}_{\text{BF}}} \qquad \qquad I_{\text{BF}} \approx 18.5~\text{mA typ}$$

LARGE SIGNAL CHARACTERISTICS

"OFF" CONDITION CHARACTERISTICS

0 0.2

0.4

0.6

VBE, BASE-EMITTER VOLTAGE (VOLTS)

0.8

1.0

1.2

EFFECT OF BASE-EMITTER RESISTANCE 102 COLLECTOR CURRENT (µA) 1.0 10-1

RBE, EXTERNAL BASE-EMITTER RESISTANCE (ohms)

ACTIVE REGION SAFE OPERATING AREAS

MAXIMUM RATINGS

MI DAME IN TOTAL TOTAL CO.	_			
Rating	Symbol	2N3798 2N3799	2N3798A 2N3799A	Unit
Collector-Emitter Voltage	VCEO	60	90	Vdc
Collector-Base Voltage	VCBO	60	90	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	IC	50		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.86		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.15	°C/mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.49	°C/mW

2N3798 2N3799

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

AMPLIFIER TRANSISTOR

PNP SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	2N3798, 2N3799	V(BR)CEO	60	-	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	2N3798, 2N3799	V _(BR) CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)		V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$		ІСВО	Ξ	=	0.01 10	μAdd
Emitter Cutoff Current (VBE = 4.0 Vdc, I _C = 0)		I _{EBO}	-	_	20	nAdd
ON CHARACTERISTICS						
DC Current Gain(1) (I _C = 1.0 μ Adc, V _{CE} = 5.0 Vdc)	2N3799	h _{FE}	75	_	_	_
$(I_C = 10 \mu Adc, V_{CE} = 5.0 Vdc)$	2N3798 2N3799		100 225	=	- =	-
$(I_{C} = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N3798 2N3799		150 300	-	_	
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C)$	2N3798 2N3799		75 150	=	=	
$(I_C = 500 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N3798 2N3799		150 300	=	450 900	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N3798 2N3799		150 300	Ξ	= _	100
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N3798 2N3799		125 250	_	_	
Collector-Emitter Saturation Voltage(1) ($I_C = 100 \mu Adc$, $I_B = 10 \mu Adc$) ($I_C = 1.0 \mu Adc$, $I_B = 100 \mu Adc$)		VCE(sat)	_	_	0.2 0.25	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 100 μAdc, I _B = 10 μAdc) (I _C = 1.0 mAdc, I _B = 100 μAdc)		V _{BE(sat)}	_	_	0.7 0.8	Vdc
Base-Emitter On Voltage (I _C = 100 μAdc, V _{CE} = 5.0 Vdc)	-	V _{BE(on)}	_	_	0.7	Vdc

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
SMALL-SIGNAL CHARACTERISTICS	ALTERNATION TO BE	8.3				
Current-Gain — Bandwidth Product(2) (IC = 500μ Adc, VCE = 5.0 Vdc , f = 30 MHz) (IC = 1.0 mAdc , VCE = 5.0 Vdc , f = 100 MHz)	200	fΤ	30 100	=	_ 500	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	AV 1	C _{obo}	_		4.0	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 100 kHz)		C _{ibo}	-	-	8.0	pF
Input Impedance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N3798 2N3799	h _{ie}	3.0 10	-	15 40	k ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	W 2 1 2 2	h _{re}	_	_	25	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N3798 2N3799	hfe	150 300	6 1 <u>8</u> 411	600 900	13. Table 1 T
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	Maria I	h _{oe}	5.0		60	μmhos
Noise Figure $ \begin{cases} I_{\hbox{\scriptsize C}} = 100 \; \mu \hbox{\scriptsize Adc, V}_{\hbox{\scriptsize CE}} = 10 \; \hbox{\scriptsize Vdc, R}_{\hbox{\scriptsize G}} = 3.0 \; \hbox{\scriptsize k ohms),} \\ f = 100 \; \hbox{\scriptsize Hz, B.W.} = 20 \; \hbox{\scriptsize Hz} $	2N3798 2N3799 2N3798	NF		4.0 2.5 1.5	7.0 4.0 3.0	dB
Noise $f = 10 \text{ kHz, B.W.} = 2.0 \text{ kHz}$	2N3799 2N3798 2N3799		_	1.0 0.8	1.5 2.5 1.5	
Broadband Noise-Bandwidth 10 Hz to 15.7 kHz	2N3798 2N3799		=	2.5 1.5	3.5 2.5	1 - 27

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

SPOT NOISE FIGURE (V_{CE} = 10 Vdc, T_A = 25°C)

FIGURE 1 — SOURCE RESISTANCE EFFECTS, f = 1.0 kHz

FIGURE 2 — SOURCE RESISTANCE EFFECTS, f = 10 Hz

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

FIGURE 3 - FREQUENCY EFFECTS

FIGURE 4a — TYPICAL CURRENT GAIN CHARACTERISTICS—2N3798

FIGURE 4b — TYPICAL CURRENT GAIN CHARACTERISTICS — 2N3799

2N3946 2N3947

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C			Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.15	°C/mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.49	°C/mW

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		-			
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc)	Control of the second	V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V(BR)EBO	6.0	-	Vdc
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 3.0 Vdc) (V _{CE} = 40 Vdc, V _{OB} = 3.0 Vdc, T _A = 150°C)		ICEX	=	0.010 15	μAdc
Base Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 3.0 Vdc)		IBL	-	.025	μAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 0.1 mAdc, V_{CE} = 1.0 Vdc)	2N3946 2N3947	hFE	30 60	=	-
(I _C = 1.0 mAdc, V_{CE} = 1.0 Vdc)	2N3946 2N3947		45 90	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3946 2N3947		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3946 2N3947		20 40	_	
Collector-Emitter Saturation Voltage(1) ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 50$ mAdc, $I_B = 5.0$ mAdc)		V _{CE(sat)}	_	0.2 0.3	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		V _{BE(sat)}	0.6	0.9 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	2N3946 2N3947	fT	250 300	=	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	-	4.0	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Input Capacitance ($V_{BE} = 1.0 \text{ Vdc}$, $I_{C} = 0$, $f = 100 \text{ kHz}$)		C _{ibo}	_	8.0	pF
Input Impedance (IC = 1.0 mA, V_{CE} = 10 V, f = 1.0 kHz)	2N3946 2N3947	h _{ie}	0.5 2.0	6.0 12	kohms
Voltage Feedback Ratio ($I_C = 1.0 \text{ mA}$, $V_{CE} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$)	2N3946 2N3947	h _{re}	-	10 20	X 10-4
Small Signal Current Gain (IC = 1.0 mA, V_{CE} = 10 V, f = 1.0 kHz)	2N3946 2N3947	h _{fe}	50 100	250 700	_
Output Admittance (IC = 1.0 mA, V_{CE} = 10 V, f = 1.0 kHz)	2N3946 2N3947	h _{oe}	1.0 5.0	30 50	μmhos
Collector Base Time Constant (I _C = 10 mA, V_{CE} = 20 V, f = 31.8 MHz)		rb′C _C	_	200	ps
Noise Figure (I _C = 100 μ A, V _{CE} = 5.0 V, R _Q = 1.0 k Ω , f = 10 Hz to 15.7 kHz)		NF	_	5.0	dB

SWITCHING CHARACTERISTICS

Delay Time	$V_{CC} = 3.0 \text{ Vdc}, V_{OB} = 0.5 \text{ Vdc},$		td	-	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mA		t _r	- 100 - 1 1 -	35	ns
Storage Time	$V_{CC} = 3.0 \text{ V, } I_{C} = 10 \text{ mA,}$	2N3946	ts	_	300	ns
		2N3947		_	375	
Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mAdc}$		tf	_	75	ns

⁽¹⁾ Pulse Test: PW ≤ 300 µs, Duty Cycle ≤ 2%.

TYPICAL SWITCHING CHARACTERISTICS

(T_A= 25°C unless otherwise noted)

STORAGE AND FALL TIMES

TURN-ON TIME EQUIVALENT TEST CIRCUIT

TURN-OFF TIME EQUIVALENT TEST CIRCUIT

*TOTAL SHUNT CAPACITANCE OF TEST JIG AND CONNECTORS

AUDIO SMALL-SIGNAL CHARACTERISTICS

NOISE FIGURE VARIATIONS

VCE = 5 V. TA = 25°C

h PARAMETERS

Vct = 10 V. TA = 25°C. f = 1 Kc

INPUT IMPEDANCE 50 20 10 5.0 2.0 1.0 0.5 0.2 0.1 0.2 2.0 10 1.0 5.0 Ic. COLLECTOR CURRENT (mAdc)

CURRENT GAIN CHARACTERISTICS

COLLECTOR SATURATION REGION

2N3962 2N3963 2N3964 2N3965

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N3798 for graphs.

MAXIMUM RATINGS

MAXIMUM RATINGS				1	
Rating	Symbol	2N3962 2N3965	2N3964	2N3963	Unit
Collector-Emitter Voltage	VCEO	60	45	80	V
Collector-Base Voltage	VCBO	60	45	80	V
Emitter-Base Voltage	VEBO		6.0		V
Collector Current — Continuous	Ic		200		mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		0.36 2.06		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		1.2 6.85		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-	65 to +2	00	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		- 10 mm		The same	
Collector-Emitter Breakdown Voltage (I _C = 5.0 ma)	2N3962, 2N3965 2N3963 2N3964	V(BR)CEO	60 80 45		Vdc
Collector-Emitter Breakdown Voltage (IC = 10 μ A)	2N3962, 2N3965 2N3963 2N3964	V(BR)CES	60 80 45	Ξ	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ A)	2N3962, 2N3965 2N3963 2N3964	V(BR)CBO	60 80 45		Vdc
Emitter-Base Breakdown Voltage ($I_C = 10 \mu A$)		V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 50 V; 2N3964 = 40 V) (V _{CE} = 70 V)	2N3965, 2N3962 2N3963	ICBO	=	10 10	nAdc
Collector Cutoff Current (VCE = 50 V) (VCE = 70 V) (VCE = 40 V) (VCE = 50 V)	2N3962 2N3963 2N3964 2N3965	CES		10 10 10	nAdc
Emitter Cutoff Current (VEB = 4.0 V)		IEBO	-	10	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 10 μ A, V _{CE} = 5.0 V)	2N3962, 2N3963 2N3964, 2N3965	hFE	100 250	300 500	_
$(I_C = 100 \ \mu A, V_{CE} = 5.0 \ V)$	2N3962, 2N3963 2N3964, 2N3965		100 250	=	
$(I_C = 1.0 \text{ mA}, V_{CE} = 5.0)$	2N3962, 2N3963 2N3964, 2N3965		100 250	450 600	
$(I_C = 10 \ \mu A, V_{CE} = 5.0, T_A = -55^{\circ}C)$	2N3962, 2N3963 2N3964, 2N3965		40 100	=	

2N3962, 2N3963, 2N3964, 2N3965

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
$(I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ}\text{C})$	2N3962, 2N3963 2N3964, 2N3965		-11	600 800	
$(I_C = 1.0 \ \mu A, V_{CE} = 5.0 \ V)$	2N3962, 2N3963 2N3964, 2N3965		60 180	_	
$(I_C = 10 \text{ mA, } V_{CE} = 5.0 \text{ V})$	2N3962, 2N3963 2N3964, 2N3965		100 200	_	
$(I_C = 50 \text{ mA, } V_{CE} = 5.0 \text{ V})$	2N3962, 2N3963 2N3964, 2N3965		90 180	_	
$(I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = -55^{\circ}\text{C})$	2N3962, 2N3963 2N3964, 2N3965		45 90	Σ	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$) ($I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$)(1)		VCE(sat)	_	0.25 0.4	V V
Base-Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.5 mA) (I _C = 50 mA, I _B = 5.0 mA)(1)		V _{BE} (sat)	=	0.9 0.95	V
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 5.0 V, f = 1.0 MHz)		C _{obo}	_	6.0	pF
Input Capacitance (VEB = 0.5 V, f = 1.0 MHz)		C _{ibo}	_	15	pF
Input Impedance (IC = 1.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz)	2N3962, 2N3963 2N3964, 2N3965	h _{ie}	2.5 6.0	17 20	kΩ
Voltage Feedback Ratio (I _C = 1.0 mA, V _{CE} = 5.0, f = 1.0 kHz)		h _{re}		10	10-4
Small-Signal Current Gain (IC = 1.0 mA, VCE = 5.0 V, f = 1.0 kHz)	2N3962, 2N3963 2N3964, 2N3965	h _{fe}	100 250	550 700	=
Magnitude of Forward Current Transfer Ratio, Common- $(I_C=0.5 \text{ mA}, V_{CE}=5.0 \text{ V}, f=200 \text{ MHz})$	Emitter 2N3962, 2N3963 2N3964, 2N3965	h _{fe}	2.0 2.5	8.0 8.0	=
Output Admittance ($I_C = 1.0 \text{ mA}$, $V_{CE} = 5.0$, $f = 1.0 \text{ kHz}$)	2N3962, 2N3963 2N3964, 2N3965	h _{oe}	5.0 5.0	40 50	μmhos
Noise Figure ($I_C = 20 \text{ mA}$, $V_{CE} = 5.0 \text{ V}$, BW = 15.7 kHz)	2N3962, 2N3963 2N3964, 2N3965	NF	=	3 2	dB
(I $_{C}=20~\mu A$, V $_{CE}=5.0~V$, BW $=1.5~kHz$, f $=10~kHz$, R $_{S}=10~k\Omega)$	2N3962, 2N3963 2N3964, 2N3965		=	3 2	
(IC = 20 μ A, VCE = 5.0 V, BW = 150 Hz, f = 1.0 kHz, RS = 10 k Ω)	2N3962, 2N3963 2N3964, 2N3965		=	3 2	
(IC = 20 μA , VCE = 5.0 V, BW = 15 Hz, f = 100 Hz, RS = 10 k Ω)	2N3962, 2N3963 2N3964, 2N3965	3.4	=	10 4	
(I _C = 20 μ A, V _{CE} = 5.0 V, BW = 2.0 Hz, f = 10 Hz, R _S = 10 k Ω)	2N3964, 2N3965		_	8	

⁽¹⁾ Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2%.

2N4013 2N4014

CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

IVIAAIIVIUIVI RATIIVGS				
Rating	Symbol	2N4013	2N4014	Unit
Collector-Emitter Voltage	VCEO	30	50	Vdc
Collector-Base Voltage	VCBO	50 _	80	Vdc
Emitter-Base Voltage	VEBO	6	.0	Vdc
Collector Current — Continuous — Peak	IC		.0	Adc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD		.5 3.6	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1	.4 .8	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	+200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					67924	
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	2N4014 2N4013	V(BR)CEO	50 30	= 1	Ξ	Vdc
Collector-Emitter Breakdown Voltage (IC = 10 μ Adc, VBE = 0)	2N4014 2N4013	V(BR)CES	80 50	_		Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	2N4014 2N4013	V(BR)CBO	80 50	= -	===	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	**************************************	V(BR)EBO	6.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 40 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T _A = 100°C) (V _{CB} = 40 Vdc, I _E = 0, T _A = 100°C)	2N4014 2N4013 2N4014 2N4013	ICBO		0.12 0.12 —	1.7 1.7 120 120	μAdd
Collector Cutoff Current (V _{CE} = 80 Vdc, V _{EB} = 0) (V _{CE} = 50 Vdc, V _{EB} = 0)	2N4014 2N4013	ICES	=	0.15 0.15	10 10	μAdd
ON CHARACTERISTICS(1)						_
DC Current Gain (I _C = 10 mAdc, V_{CE} = 1.0 Vdc) (I _C = 100 mAdc, V_{CE} = 1.0 Vdc) (I _C = 100 mAdc, V_{CE} = 1.0 Vdc, V_{CE} = 1.0 Vdc) (I _C = 300 mAdc, V_{CE} = 1.0 Vdc) (I _C = 500 mAdc, V_{CE} = 1.0 Vdc) (I _C = 500 mAdc, V_{CE} = 1.0 Vdc, V_{CE} = 1.0 Vdc, V_{CE} = 1.0 Vdc, V_{CE} = 1.0 Vdc) (I _C = 800 mAdc, V_{CE} = 2.0 Vdc)	2N4014 2N4013	hfE	30 60 30 40 35 20 20	= = = = = = = = = = = = = = = = = = = =	 150 	
$(I_C = 1.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$	2N4014 2N4013		25 30	_	_	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	2N4014 2N4013	VCE(sat)	=	0.17 0.17	0.25 0.25	Vdc
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	2N4014 2N4013		=	0.19 0.19	0.26 0.20	

2N4013, 2N4014

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
(I _C = 300 mAdc, I _B = 30 mAdc)	2N4014		_	0.25	0.40	
16.	2N4013		_	0.25	0.32	
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	2N4014		_	0.30	0.52	
	2N4013		_	0.30	0.42	
(Ic = 800 mAdc, IB = 80 mAdc)	2N4014		_	0.43	0.80	
	2N4013		_	0.43	0.65	
$(I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc})$	2N4014		_	0.55	0.95	
	2N4013		_	0.55	0.75	
Base-Emitter Saturation Voltage		V _{BE(sat)}			10. 10	Vdc
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$			_	_	0.76	
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$			_	_	0.86	
(I _C = 300 mAdc, I _B = 30 mAdc)				_	1.1	
(I _C = 500 mAdc, I _B = 50 mAdc)			0.8	_	1.1	
(I _C = 800 mAdc, I _B = 80 mAdc)			_	_	1.5	
$(I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc})$			_	_	1.7	

Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fT	300	_	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	2N4014 2N4013	C _{obo}	_	_	10 12	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 1.0 \text{ MHz}$)		C _{ibo}	_	ļ —	55	pF

SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = 3.8 Vdc		t _d	_	5.0	10	ns
Rise Time	I _C = 500 mAdc, I _{B1} = 50 mAdc) (Figures 8, 10)	$I_C = 500 \text{ mAdc}, I_{B1} = 50 \text{ mAdc})$		-	15	30	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 500 mAdc, 2N4014		ts	_	30	50	ns
Fall Time	I _{B1} = I _{B2} = 50 mAdc) (Figures 9, 10)	2 = 50 mAdc) 2N4013		_	20 25	25 30	ns
Turn-On Time	(V _{CC} = 30 Vdc, V _{BE(off)} = 3.8 Vdc I _C = 500 mAdc, I _{B1} = 50 mAdc) (Figures 8, 10)		ton	-	20	35	ns
Turn-Off Time	(V _{CC} = 30 Vdc, I _C = 500 mAdc, I _{B1} = I _{B2} = 50 mAdc) (Figures 9, 10)	2N4014 2N4013	toff	_	50	60	ns

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 1.0%.

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

⁽²⁾ fT = |hfe| • ftest.

TYPICAL DC CHARACTERISTICS

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 9 – TURN-OFF TIME

FIGURE 10 - SWITCHING TIME TEST CIRCUIT

P.W. > 200 ns
Duty Cycle < 2.0%
Generator Source Impedance = 50 !!
Pulse Generator EH1421 Timing Unit and 1121 Pulse Driver
Oscilloscope: Tektronix 661 Sampling Scope

FIGURE 11 - COLLECTOR CUTOFF CURRENT

2N4026 thru 2N4033

2N4026-2N4029 CASE 22-03, STYLE 1 TO-18 (TO-206AA)

JAN, JTX, TXV AVAILABLE IN

2N4033 2N4030–2N4033 CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N4026/28 2N4030/32	2N4027/29 2N4031/33	Unit
Collector-Emitter Voltage(1)	VCEO	60	80	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	5.0	5.0	Vdc
		2N4026- 2N4029	2N4030- 2N4033	
Collector Current — Continuous	lc	1.0	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	.5 2.85	1.25 7.15	W mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.0 11.4	- 7.0 40	W mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	- 65 to	o +200	°C
Lead or Terminal Temperature(2)	TL	+:	300	°C

- (1) Applicable 0 to 10 mA
- (2) Measured at a distance not less than 1/16" from seated surface (or case) for 60 Sec.

THERMAL CHARACTERISTICS

THEITMAE OHAHAOTEHIOTIOO				
Characteristic	Symbol	TO-18	TO-39	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	40	20	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	280	140	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 10 mA)	2N4026,28,30,32 2N4027,29,31,33	V _(BR) CEO	60 80	_	V
Collector-Base Breakdown Voltage (IC = 10 μ A)	2N4026,28,30,32 2N4027,29,31,33	V _(BR) CBO	60 80	1 1	V
Emitter-Base Breakdown Voltage (I _E = 10 μ A)	THE P	V(BR)EBO	5.0	_	V
Collector Cutoff Current (V _{CB} = 50 V) (V _{CB} = 60 V) (V _{CB} = 50 V, T _A = 150°C) (V _{CB} = 60 V, T _A = 150°C)	2N4026,28,30,32 2N4027,29,31,33 2N4026,28,30,32 2N4027,29,31,33	СВО	=	50 50 50 50	nA μA
Emitter Cutoff Current (V _{EB} = 5.0 V)		IEBO	(10	μΑ
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 mA, V_{CE} = 5.0 V, @ -55°C)	2N4026,27,30,31 2N4028,29,32,33	hFE	15 40	=	_
$(I_C = 100 \ \mu A, V_{CE} = 5.0 \ V)$	2N4026,27,30,31 2N4028,29,32,33		30 75	_	
$(I_C = 100 \text{ mA, } V_{CE} = 5.0 \text{ V})$	2N4026,27,30,31 2N4028,29,32,33		40 100	120 300	
$(I_C = 500 \text{ mA, V}_{CE} = 5.0 \text{ V})$	2N4026,27,30,31 2N4028,29,32,33		25 70	=	
$(I_C = 1.0 \text{ A}, V_{CE} = 5.0 \text{ V})$	2N4026,30 2N4027,31 2N4028,32 2N4029,33		15 10 40 25		

2N4026 thru 2N4033

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Fig. 4.	Symbol	Min	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 150 mA, I _B = 15 mA) (I _C = 500 mA, I _B = 50 mA) (I _C = 1.0 A, I _B = 100 mA)	2N4026,28,30,32	VCE(sat)	111	0.15 0.50 1.0	V
Base-Emitter Saturation Voltage (I _C = 150 mA, I _B = 15 mA)		V _{BE(sat)}	-4	0.9	V
Base-Emitter On Voltage ($I_C = 1.0 \text{ A}$, $V_{CE} = 1.0 \text{ V}$) ($I_C = 500 \text{ mA}$, $V_{CE} = 0.5 \text{ V}$)	2N4026,28,30,32	V _{BE(on)}	1.1	1.2 1.1	V
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CE} = 10 V, f = 1.0 MHz)		C _{obo}	_	20	pF
Input Capacitance (V _{EB} = 0.5 V, f = 1.0 MHz)		C _{ibo}	4 E 10	110	pF
Small Signal Current Gain ($I_C = 50 \text{ mA}$, $V_{CE} = 10 \text{ V}$, $f = 100 \text{ MHz}$)	71 1 apr 1 16	h _{fe}	1.0	4.0	_
SWITCHING CHARACTERISTICS					
Storage Time $(I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA})$		t _S	_	350	ns
Turn-On Time $(I_C = 500 \text{ mA}, I_{B1} = 50 \text{ mA})$		ton	_	100	ns
Fall Time		tf	_	50	ns

⁽I_C = 500 mA, I_{B1} = I_{B2} = 50 mA) (3) Pulse Width = 300 μ s, Duty Cycle 1.0%.

2N4036 2N4037

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N4036	2N4037	Unit
Collector-Emitter Voltage	VCEO	65 40 (sus)(1)		Vdc
Collector-Base Voltage	VCBO	90	60	Vdc
Emitter-Base Voltage	VEBO	7.0	7.0	Vdc
Base Current	IB	0.5		Adc
Collector Current — Continuous	lc	1.0		Adc
Continuous Power Dissipation at or Below T _C = 25°C Linear Derating Factor	PD	5.0 28.6	1.0 5.72	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C
Lead Temperature 1/16" from Case for 10 Seconds	TL	230		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N4036	2N4037	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	25	_	°C/W

⁽¹⁾ Must not be tested on a curve tracer.

FLECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	2N4036 2N4037	VCEO(sus)	65 40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mA dc)	2N4037	V(BR)CBO	60	-	Vdc
Collector Cutoff Current (V _{CE} = 85 V, V _{BE} = 1.5 V) (V _{CE} = 30 V, V _{BE} = 1.5 V, T _C = 150°C)	2N4036	ICEX	-	100 0.1	mAdo
Collector Cutoff Current $(V_{CB} = 90 \text{ V}, I_E = 0)$ $(V_{CB} = 60 \text{ V}, I_E = 0)$	2N4036 2N4037	Ісво	-	100 0.25	μAdc
Emitter Cutoff Current $(V_{BE} = 7.0 \text{ Vdc}, _{C} = 0)$ $(V_{BE} = 5.0 \text{ Vdc}, _{C} = 0)$	2N4036 2N4037	IEBO	=	10.0 1.0	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 150 mAdc, V_{CE} = 2.0 V) (I _C = 0.1 mAdc, V_{CE} = 10 V) (I _C = 1.0 mAdc, V_{CE} = 10 V) (I _C = 150 mAdc, V_{CE} = 10 V)	2N4036 2N4036 2N4037 2N4036 2N4037	hFE	20 20 15 40 50	200 — — 140 250	-
(I _C = 500 mAdc, V _{CE} = 10 V)	2N4036		20	_	
Collector-Emitter Saturation Voltage (I _C = 150 mA, I _B = 15 mA)	2N4036 2N4037	VCE(sat)		0.65 1.4	V
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$)	2N4036	V _{BE(sat)}		1.4	V
Base-Emitter On Voltage ($I_C = 150 \text{ mA}$, $V_{CE} = 10 \text{ V}$)	2N4037	V _{BE(on)}		1.5	V
SMALL-SIGNAL CHARACTERISTICS					
Collector-Base Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	2N4037	C _{cb}	-	30	pF
Current Gain — High Frequency (I _C = 50 mA, V _{CE} = 10 V, f = 20 MHz)	2N4036 2N4037	h _{fe}	3.0 3.0	10.0	_

2N4036, 2N4037

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SWITCHING CHARACTERISTICS		-	510	1414	
Rise Time (I _{B1} = 15 mA)	2N4036	t _r	_	70	ns
Storage Time (I _{B2} = 15 mA)	2N4036	t _S	_	600	ns
Fall Time (I _{B2} = 15 mA)	2N4036	tf	V-Y	100	ns
Turn-On Time (I _{B1} = I _{B2})	2N4036	ton		110	ns
Turn-Off Time (IB1 = IB2)	2N4036	toff	_	700	ns

TYPICAL COLLECTOR-CUTOFF CURRENT versus JUNCTION TEMPERATURE

TYPICAL SMALL SIGNAL BETA CHARACTERISTICS

DISSIPATION DERATING CURVE

TYPICAL SATURATION-VOLTAGE CHARACTERISTICS

MAXIMUM SAFE OPERATING AREAS (SOA)

2N4208 2N4209

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

Refer to MM4257 for graphs.

FI FCTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

BAAVIBALIBA DATIBICO

Rating	Symbol	2N4208	2N4209	Unit
Collector-Emitter Voltage	VCEO	12	15	Vdc
Collector-Base Voltage	VCBO	V _{CBO} 12		Vdc
Emitter-Base Voltage	VEBO	4.5		Vdc
Collector Current — Continuous	Ic	50-200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.30-0.36 1.72-2.06		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.70–1.2 4.0–6.9		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				WA W		
Collector-Emitter Breakdown Voltage(1) $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	2N4208 2N4209	V _{(BR)CEO}	12 15		=	Vdc
Collector-Emitter Breakdown Voltage $(I_C = 100 \mu Adc, V_{BE} = 0)$	2N4208 2N4209	V(BR)CES	12 15	=	- =	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$) 2N		V(BR)CBO	12 15	_	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		V(BR)EBO	4.5	5.9		Vdc
Collector Cutoff Current (V _{CE} = 6.0 Vdc, V _{BE} = 0) (V _{CE} = 8.0 Vdc, V _{BE} = 0) (V _{CE} = 6.0 Vdc, V _{BE} = 0, T _A = 125°C) (V _{CE} = 8.0 Vdc, V _{BE} = 0, T _A = 125°C)		ICES		=	10 10 5.0 5.0	nAdc μAdc
Base Current $(V_{CE} = 6.0 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 8.0 \text{ Vdc}, V_{BE} = 0)$	2N4208 2N4209	IB	_	_	1.0 1.0	nAdc
ON CHARACTERISTICS						

DC Current Gain hFE 2N4208 $(I_C = 1.0 \text{ mAdc}, V_{CE} = 0.5 \text{ Vdc})$ 15 2N4209 35 $(I_C = 10 \text{ mAdc}, V_{CE} = 0.3 \text{ Vdc})$ 2N4208 30 120 2N4209 120 (I_C = 10 mAdc, V_{CE} = 0.3 Vdc, T_A = -55°C) 2N4208 12 2N4209 20 $(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$ 2N4208 30 2N4209 40 Collector-Emitter Saturation Voltage V_{CE}(sat) 2N4208 $(I_C = 1.0 \text{ mAdc}, I_B = 0.1 \text{ mAdc})$ 0.13 2N4209 0.15 $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ 2N4208 0.15 2N4209 0.18 $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})(1)$ 2N4208 0.5 2N4209 0.6 Base-Emitter Saturation Voltage VBE(sat) Vdc 0.7 0.8 0.75 0.86 0.90

1.1

2N4208, 2N4209

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit	
SMALL-SIGNAL CHA	ARACTERISTICS						
Current-Gain — Band (I _C = 10 mAdc, V _C	dwidth Product CE = 10 Vdc, f = 100 MHz)	2N4208 2N4209	fτ	700 850	1000 1100	<u> </u>	MHz
Output Capacitance (V _{CR} = 5.0 Vdc, I _F = 0, f = 140 kHz)		77	C _{obo}	- 4	2.0	3.0	pF
Input Capacitance $(V_{BE}=0.5\ Vdc, I_{C}=0, f=140\ kHz)$			C _{ibo}	_	2.0	3.5	pF
SWITCHING CHARA	CTERISTICS						
Turn-On Time			ton	_	10	15	ns
Delay Time	(V _{CC} = 1.5 Vdc, V _{BE} = 0, I _C = 10 mAdc, I _{R1} = 1.0 mAdc)		td	_	5.0	10	ns
Rise Time	1C = 10 made, 1B1 = 1.0 made,		t _r	_	5.0	15	ns
Turn-Off Time	(V _{CC} = 1.5 Vdc,	2N4208 2N4209	toff	=	12 16	15 20	ns
Storage Time	I _C = 10 mAdc, I _{B1} = I _{B2} = 1.0 mAdc)	2N4208 2N4209	t _S	=	12 17	15 20	ns
Fall Time		2N4208 2N4209	tf	-	6.0 8.0	10 10	ns
Storage Time (I _C \approx 10 mAdc, I _{B1} \approx 10 mAdc, I _{B2} \approx 10 mAdc)		2N4208 2N4209	t _S	_	_	15 20	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. (2) f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

2N4234 2N4235 2N4236

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

POWER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N4234	2N4235	2N4236	Unit
Collector-Emitter Voltage	VCEO	40	60	80	Vdc
Collector-Base Voltage	VCBO	40	60	80	Vdc
Emitter-Base Voltage	VEBO		7.0		Vdc
Base Current	1 _B		0.2		Vdc
Collector Current — Continuous	IC	= : X-1 =	1.0 3.0*		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	19 6 Ex	1.0	-174.80 190 C Pro	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	10 1 301 8 0	6.0	W 1	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-	65 to +2	00	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	29	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			0.00		
Collector-Emitter Sustaining Voltage(1) (I _C = 100 mAdc, I _B = 0)	2N4234 2N4235 2N4236	VCEO(sus)	40 60 80	_	Vdc
Collector Cutoff Current $(VCE = 30 \text{ Vdc}, I_B = 0)$ $(VCE = 40 \text{ Vdc}, I_B = 0)$ $(VCE = 60 \text{ Vdc}, I_B = 0)$	2N4234 2N4235 2N4236	ICEO	=	1.0 1.0 1.0	mAdc
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{BE} = 1.5 Vdc) (V _{CE} = 60 Vdc, V _{BE} = 1.5 Vdc) (V _{CE} = 80 Vdc, V _{BE} = 1.5 Vdc) (V _{CE} = 30 Vdc, V _{BE} = 1.5 Vdc, T _C = 150°C) (V _{CE} = 40 Vdc, V _{BE} = 1.5 Vdc, T _C = 150°C) (V _{CE} = 60 Vdc, V _{BE} = 1.5 Vdc, T _C = 150°C)	2N4234 2N4235 2N4236 2N4234 2N4235 2N4236	ICEX	=	0.1 0.1 0.1 1.0 1.0	mAde
Collector Cutoff Current (VCB = 40 Vdc, $I_E = 0$) (VCB = 60 Vdc, $I_E = 0$) (VCB = 80 Vdc, $I_E = 0$)	2N4234 2N4235 2N4236	ІСВО	=	0.1 0.1 0.1	mAdc
Emitter Cutoff Current (V _{BE} = 7 Vdc, I _C = 0)		IEBO	-	0.5	mAdc
ON CHARACTERISTICS					
DC Current Gain(1) (IC = 100 mAdc , $V_{\text{CE}} = 1.0 \text{ Vdc}$) (IC = 250 mAdc , $V_{\text{CE}} = 1.0 \text{ Vdc}$) (IC = 500 mAdc , $V_{\text{CE}} = 1.0 \text{ Vdc}$) (IC = 1.0 Adc , $V_{\text{CE}} = 1.0 \text{ Vdc}$)		hFE	40 30 20 10	150 —	
Collector-Emitter Saturation Voltage(1) $(I_C = 1.0 \text{ Adc}, I_B = 125 \text{ mAdc})$		V _{CE(sat)}	_	0.6	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 1.0 Adc, I _B = 100 mAdc)		V _{BE(sat)}		1.5	Vdc
Base-Emitter On Voltage (I _C = 250 mAdc, V _{CE} = 1.0 Vdc)		V _{BE}	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 1.0 MHz)		fT	3.0	_	MHz

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	erapr =	100	pF
Small-Signal Current Gain (IC = 50 mAdc, VCE = 10 Vdc, f = 1.0 kHz)	hfe	25	-	- 60

⁽¹⁾ Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%. *Indicates Data in addition to JEDEC Requirements.

Safe Area Curves are indicated by Figure 2. All limits are applicable and must be observed.

FIGURE 2 - ACTIVE-REGION SAFE OPERATING AREAS

1.0 Ic, COLLECTOR CURRENT (AMP) 0.7 0.5 $T_J = 200^{\circ}C$ Secondary Breakdown Limitation 0.3 0.2 THERMAL LIMITATION AT $T_C = 25$ °C. (BASE-EMITTER DISSIPATION IS PERCEPTIBLE ABOVE IC = 1 AMP). 0.1 LIMIT FOR: 0.07 - 2N4234 0.05 2N4235 2N4236 0.03 7.0 10

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate Ic - VcE limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T_J, power-temperature derating must be observed for both steady state and pulse power conditions.

LARGE SIGNAL CHARACTERISTICS

FIGURE 4 — INPUT ADMITTANCE

"OFF" REGION CHARACTERISTICS

FIGURE 6 - EFFECTS OF BASE-EMITTER RESISTANCE

SATURATION REGION CHARACTERISTICS

DYNAMIC CHARACTERISTICS

MAXIMUM RATINGS

Rating	Symbol	2N4237	2N4238	2N4239	Unit
Collector-Emitter Voltage	VCEO	40	60	80	Vdc
Collector-Base Voltage	VCBO	50	80	100	Vdc
Emitter-Base Voltage	VEBO		6.0		Vdc
Base Current	IB		500		Vdc
Collector Current — Continuous	lc	1.0 3.0*		Adc	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	1.0 5.3		Watt mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	6.0 34		Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-	-65 to +200		°C

2N4237 2N4238 2N4239

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

THERMAL CHARACTERISTICS

 Characteristic
 Symbol
 Max
 Unit

 *Thermal Resistance, Junction to Case
 $R_{\theta JC}$ 29
 °C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage(1) (IC = 100 mAdc, Ig = 0)	2N4237 2N4238 2N4239	VCEO(sus)	40 60 80		Vdc
Collector Cutoff Current (VCE = 50 Vdc, VEB = 1.5 Vdc) (VCE = 80 Vdc, VEB = 1.5 Vdc) (VCE = 100 Vdc, VEB = 1.5 Vdc) (VCE = 30 Vdc, VEB = 1.5 Vdc, TC = 150°C) (VCE = 50 Vdc, VEB = 1.5 Vdc, TC = 150°C)	2N4237 2N4238 2N4239 2N4237 2N4238	ICEX		0.1 0.1 0.1 1.0	mAdo
$(V_{CE} = 70 \text{ Vdc}, V_{EB} = 1.5 \text{ Vdc}, T_{C} = 150^{\circ}\text{C})$ Collector Cutoff Current $(V_{CB} = \text{Rated V}_{CEO}, I_{E} = 0)$ $(V_{CE} = \text{Rated V}_{CEO}, I_{B} = 0)$	2N4239	СВО		0.1	mAdo
Emitter Cutoff Current (VEB = 6.0 Vdc, IC = 0)	14	IEBO	-	0.5	mAdd
ON CHARACTERISTICS	-100				4
DC Current Gain(1) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc) (I _C = 250 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc) (I _C = 1.0 Vdc) (I _C = 1.0 Vdc) (I _C = 1.0 Vdc)	24 534 at 1 200	hFE	30 30 30 15	150 —	-
Collector-Emitter Saturation Voltage(1) (IC = 500 mAdc, IB = 50 mAdc) (IC = 1.0 Adc, IB = 0.1 Adc)		V _{CE(sat)}	_	0.3 0.6	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 1.0 Adc, I _B = 0.1 Adc)		V _{BE} (sat)	-	1.5	Vdc
Base-Emitter On Voltage(1) (I _C = 250 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		Transfer of the	1		
Output Capacitance (V _{CB} = 10 Vdc, I _C = 0, f = 0.1 MHz)	A 1 - 12	C _{obo}	_	100	pF
Small Signal Current Gain (IC = 100 mAdc, VCE = 10 Vdc, f = 1.0 kHz)		h _{fe}	30		-
Current Gain — High Frequency (VCE = 10 V, IC = 100 mA, f = 1 MHz)		hfe	1.0	-	4

(1) Pulse Test: Pulse Width \leqslant 300 μ s, Duty Cycle 2.0%. *Indicates Data in addition to JEDEC Requirements.

FIGURE 1 — POWER-TEMPERATURE DERATING CURVE

Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed.

SWITCHING CHARACTERISTICS

FIGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT

FIGURE 3 - TURN-ON TIME

FIGURE 4 - THERMAL RESPONSE

There are two limitations on the power handling ability of a transistor; junction temperature and secondary breakdown. Safe operating area curves indicate $l_{\rm c}$ — $V_{\rm c}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

For this particular transistor family, the thermal curves are the limiting design values, except for a small portion of the dc curve. The pulse secondary breakdown curves are shown for information only.

TYPICAL DC CHARACTERISTICS

FIGURE 10 - EFFECTS OF BASE-EMITTER RESISTANCE

FIGURE 11 — "ON" VOLTAGE

FIGURE 12 — COLLECTOR CUTOFF REGION

FIGURE 13 — TEMPERATURE COEFFICIENTS

2N4260 2N4261

2N4261 JAN, JTX AVAILABLE CASE 20, STYLE 10 TO-72

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	15	Vdc
Emitter-Base Voltage	VEBO	4.5	Vdc
Collector Current — Continuous	IC	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _E = 0)		V(BR)CEO	15	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V(BR)CBO	15	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		V(BR)EBO	4.5		Vdc
Collector Cutoff Current (VCE = 10 Vdc, VBE(off) = 2.0 Vdc) (VCE = 10 Vdc, VBE(off) = 2.0 Vdc, T_A = 150°C) (VCE = 10 Vdc, VEB(on) = 0.4 Vdc)		ICEX	Ξ	0.005 5.0 0.05	μAdc
Base Cutoff Current ($VCE = 10 Vdc, VBE(off) = 2.0 Vdc$)		IBL	_	0.005	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 30 mAdc, V _{CE} = 2.0 Vdc)		hfE	25 30 20	 150 	-
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc) (I _C = 10 mAdc, I _B = 1.0 mAdc)		VCE(sat)	=	0.15 0.35	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V_{CE} = 1.0 Vdc) (I _C = 10 mAdc, V_{CE} = 1.0 Vdc)		VBE(on)	==	0.8 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 4.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	2N4260 2N4261	fT	1200 1500	=	MHz
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$	2N4260 2N4261		1600 2000	=	
Output Capacitance (V _{CB} = 4.0 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	-	2.5	pF
Input Capacitance $(V_{BE}=0.5 \text{ Vdc}, I_{C}=0, f=100 \text{ kHz})$		C _{ibo}	_	2.5	pF
Current Gain — High Frequency (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	2N4260 2N4261	h _{fe}	16 20	_	_

ELECTRICAL CHARACTERISTICS (continued) (Τ_Δ = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Collector Base Time Constant		rb'C _C			ps
$(I_C = 5.0 \text{ mAdc}, V_{CE} = 4.0 \text{ Vdc}, f = 31.8 \text{ MHz})$	2N4260		_	35	
SWAZET JAM, JER AVABARKE	2N4261		-	60	
(I _C = 10 mAdc, V _{CF} = 10 Vdc, f = 31.8 MHz)	2N4260		-	30	
201-01	2N4261		_	50	

SWITCHING	CHARACTERISTICS	ċ

SWITCHING CHARACTERISTICS		@ IU MA	@ 30 mA	
Rise Time	t _r	0.5	0.9	ns
Fall Time	tf	1.0	1.2	ns
Turn-On Time	ton(delay)	1.0	1.2	ns
Turn-Off Delay Time	toff(delay)	1.0	1.2	ns

FIGURE 1 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

FIGURE 2 — COLLECTOR SATURATION REGION

Typical Performance (v_{out} = 1.0 V)

FIGURE 4 — TEMPERATURE COEFFICIENTS

2N4404 2N4405

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Vdc
Collector-Base Voltage	VCBO	80	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.25 7.15	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	8.75 50	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	25	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	140	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	1 (5, 1)		407		
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdd	c, I _B = 0)	V(BR)CEO	80	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E =	= 0)	V(BR)CBO	80		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C =$	0)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)		ІСВО	_	25	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)	No. of the Contract	IEBO	_	25	nAdo
ON CHARACTERISTICS					
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	2N4404 2N4405	hFE	30 75		5.
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N4404 2N4405		40 100	Ú.	
$(I_C = 150 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})(1)$	2N4404 2N4405	at the state of	40 100	120 300	
$(I_C = 500 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})(1)$	2N4404 2N4405		30 50		
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)(1) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)(1)		VCE(sat)	=	0.15 0.2 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)(1)	1 1 1	V _{BE} (sat)	 0.85	0.8 1.2	Vdc
Base-Emitter On Voltage ($I_C = 150 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		V _{BE} (on)	- 1	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	(30	fT	200	600	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	1 2 2	C _{cb}		10	pF
Emitter-Base Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{eb}		75	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SWITCHING CHARA	ACTERISTICS				
Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = 2.0 Vdc,	td	_	15	ns
Rise Time	$I_C = 500 \text{ mAdc}, I_{B1} = 50 \text{ mAdc})$	tr	_	25	ns
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 500 \text{ mAdc},$	t _s	_	175	ns
Fall Time	$I_{B1} = I_{B2} = 50 \text{ mAdc}$	tf	_	35	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

TRANSIENT CHARACTERISTICS

FIGURE 3 - CAPACITANCES

FIGURE 4 - CHARGE DATA

FIGURE 6 - RISE TIME

FIGURE 7 - STORAGE TIME

FIGURE 8 - FALL TIME

SMALL-SIGNAL CHARACTERISTICS

NOISE FIGURE V_{CE} = 10 Vdc, T_A = 25°C

FIGURE 9 - FREQUENCY EFFECTS

h PARAMETERS $V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_{A} = 25 ^{\circ}\text{C}$

This group of graphs illustrates the relationship of the "h" parameters for this series of transistors. To obtain these curves, 4 units were selected and identified by number — the same units were used to develop curves on each graph.

FIGURE 11 - CURRENT GAIN

FIGURE 12 - INPUT IMPEDANCE

2N4404, 2N4405

FIGURE 13 - VOLTAGE FEEDBACK RATIO

FIGURE 14 - OUTPUT ADMITTANCE

STATIC CHARACTERISTICS

FIGURE 15 - DC CURRENT GAIN

FIGURE 16 - COLLECTOR SATURATION REGION

FIGURE 17 - "ON" VOLTAGES

FIGURE 18 - TEMPERATURE COEFFICIENTS

RATINGS AND THERMAL DATA

FIGURE 19 - SAFE OPERATING AREA

The safe operating area curves indicate $1_{\rm C}$ $^{\rm V}$ $_{\rm CE}$ limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 19 is based upon $T_{\rm J(pk)}$ =

The data of Figure 19 is based upon $T_{J(pk)} = 200^{\circ}\text{C}$; T_{C} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 200^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 20. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	2.0	Amps
Total Device Dissipation @ T _A = 25°C* Derate above 25°C	PD	1.25 7.15	Watts mW/°C
Total Device Dissipation @ T _C = 25°C* Derate above 25°C	PD	8.75 50	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	20	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	140	°C/W

2N4406 2N4407

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B	= 0)	V(BR)CEO	80	_	Vdc
Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	1	V(BR)CBO	80	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)		ІСВО		25	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)		IEBO	-	25	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	2N4406 2N4407	hFE	30 80	=	_
$(I_C = 150 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N4406 2N4407		30 80	_	
$(I_C = 500 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N4406 2N4407		30 80	120 240	
$(I_C = 1.0 \text{ Adc, V}_{CE} = 5.0 \text{ Vdc})$	2N4406 2N4407		20 30	=	
$(I_C = 1.5 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$	2N4406, 2N4407		10	_	
Collector-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$) ($I_C = 1.5 \text{ Adc}$, $I_B = 150 \text{ mAdc}$)		VCE(sat)	=	0.2 0.4 0.7 1.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$) ($I_C = 1.5 \text{ Adc}$, $I_B = 150 \text{ mAdc}$)		VBE(sat)	0.9	0.9 1.3 1.5	Vdc
Base-Emitter On Voltage (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	1	fT	150	750	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	15	pF
Emitter-Base Capacitance ($V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz}$)		C _{eb}	-	160	pF

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SWITCHING CHARACTERISTICS					
Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 2.0 \text{ Vdc},$	td	_	15	ns
Rise Time	I _C = 1.0 Adc, I _{B1} = 100 mAdc)	t _r	_	60	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 1.0 Adc,	t _s	_	175	ns
Fall Time	$I_{B1} = I_{B2} = 100 \text{ mAdc}$	t _f	_	50	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{*}Indicates Data in addition to JEDEC Requirements.

STATIC CHARACTERISTICS

FIGURE 1 — DC CURRENT GAIN 2.5 NORMALIZED CURRENT GAIN 100°C 1.0 F25°C 0.7 -55°C 0.5 VCE = 1.0 V hFE, I = 10 V 0.3 0.25 2.0 3.0 5.0 7.0 10 200 300 500 700 1000 1.0 20 30 50 70 100 IC, COLLECTOR CURRENT (mA)

The safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 5 is based upon $T_{J(pk)}=200^{\circ}C$; T_{C} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leqslant 200^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

TRANSIENT CHARACTERISTICS

FIGURE 7 - CAPACITANCES

FIGURE 8 - CHARGE DATA

FIGURE 9 - TURN-ON TIME

FIGURE 10 - TURN-OFF TIME

SWITCHING TIME EQUIVALENT TEST CIRCUITS

FIGURE 11 - TURN-ON TIME

FIGURE 12 - TURN-OFF TIME

2N4890

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N4033 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.7	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Characteris	tic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				12	DE CO	active to
Collector-Emitter Breakdown Voltage(1) (Ic	$c = 100 \ \mu Adc, I_B = 0)$	V(BR)CEO	40	-	_	Vdc
Collector-Emitter Breakdown Voltage (IC =	= 10 mAdc, R _{BE} = 10 ohms)	V(BR)CER	50	_	#=15	Vdc
Collector-Base Breakdown Voltage $(I_C = 1)$	00 μ Adc, I _E = 0)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100)$	$0 \mu Adc, I_C = 0)$	V(BR)EBO	5.0		_	Vdc
Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc, V})$	BE(off) = 1.5 Vdc)	CEX	_	_	0.25	μAdc
Base Cutoff Current $(V_{CE} = 60 \text{ Vdc}, V_{BE(c)})$	iff) = 1.5 Vdc)	I _{BL}	_		0.25	μAdc
ON CHARACTERISTICS	Land to Carrier to the Res					7_ 12
DC Current Gain ($I_C = 150 \text{ mAdc}$, $V_{CE} = 2.5 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) *($I_C = 500 \text{ mA}$, $V_{CE} = 5 \text{ Vdc}(1)$		hFE	25 50 15	130 140 —		_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)}	-	0.12	1.4	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	ped X	V _{BE(sat)}	-	0.82	1.7	Vdc
Base-Emitter On Voltage (I _C = 150 mAdc, V _{CE} = 2.5 Vdc)		V _{BE(on)}	n—:	0.74	1.7	Vdc
SMALL-SIGNAL CHARACTERISTICS	PDV X	-		i i i i i i i i i i	THE R. P.	I Hole
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MH	Hz)	fT	100	280	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)		C _{obo}	_	9.0	15	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 140 kHz)		C _{ibo}	194	60	80	pF
SWITCHING CHARACTERISTICS						
	$V_{BE(off)} = 0.8 \text{ Vdc},$	t _d	_	15	50	ns
Rise Time I _C = 150 mAdc,	I _C = 150 mAdc, I _{B1} = 15 mAdc)	tr	20	20	50	ns
Storage Time (V _{CC} = 30 Vdc,		ts	-	110	200	ns
Fall Time I _{B1} = I _{B2} = 15	mAdc)	tf	_	20	70	ns

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

^{*}Indicates Data in Addition to JEDEC Requirements.

2N4924 2N4925

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N4924	2N4925	Unit
Collector-Emitter Voltage	VCEO	100	150	Vdc
Collector-Base Voltage	VCBO	100	150	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	lc	200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	175	°C/W

Refer to 2N3498 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			E ITT DE 'TO	
C	V(BR)CEO N4924 N4925	100 150	=	Vdc
	V(BR)CBO N4924 N4925	100 150	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 75 \text{ Vdc}, I_E = 0)$	ІСВО	=	0.1 0.1	μAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc)	I _{EBO}	-	0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain	hFE	25 35 40	 200	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)		0.25 0.4	Vdc
Base-Emitter On Voltage ($I_C = 50$ mAdc, $V_{CE} = 10$ Vdc)	V _{BE(on)}	-	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (2) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fτ	100	500	MHz
Collector-Base Capacitance (V _{CB} = 20 Vdc, I_E = 0, f = 140 kHz)	C _{cb}	_	10	pF
Emitter-Base Capacitance $(V_{EB} = 1.0 \text{ Vdc}, I_{C} = 0, f = 140 \text{ kHz})$	C _{eb}	_	80	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ f_T = |h_{fe}| • f_{test}.

MAXIMUM RATINGS

Rating	Symbol	2N4926	2N4927	Unit
Collector-Emitter Voltage	VCEO	200	250	Vdc
Collector-Base Voltage	VCBO	200	250	Vdc
Emitter-Base Voltage	V _{EBO}	7	7.0	
Collector Current — Continuous	Ic	50		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	°C/W

2N4926 2N4927

CASE 79, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (1) $ (I_{\hbox{\scriptsize C}} = 10 \text{ mAdc, } I_{\hbox{\scriptsize B}} = 0) \\ 2N4926 \\ 2N4927 $	V _{(BR)CEO}	200 250	=	Vdc
Collector-Base Breakdown Voltage $ (I_{\hbox{\scriptsize C}}=0.1 \text{ mAdc}, I_{\hbox{\scriptsize C}}=0) \\ 2N4926 \\ 2N4927 $	V _(BR) CBO	200 250	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	7.0	_	Vdc
	ICBO	=	0.1 10 0.1 10	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc)	IEBO	_	0.1	μAdc
ON CHARACTERISTICS (1)				
DC Current Gain ($I_C = 3.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 30 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$)	hFE	10 15 20 20	200	_
Collector-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc})$	V _{CE(sat)}	_	1.0 2.0	Vdc
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 3.0 \text{ mAdc})$	V _{BE(sat)}	_	1.2 1.5	Vdc
Base-Emitter On Voltage ($I_C = 30 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	V _{BE(on)}	_	1.5	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product $(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 20 \text{ MHz})$	fT	30	300	MHz
Collector-Base Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 140 kHz)	C _{cb}	_	6.0	pF
Input Impedance ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ie}	75	2000	ohm
Voltage Feedback Ratio ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{re}	0.1	2.0	X 10 ⁻⁴
Small-Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	25	250	_
Output Admittance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	hoe	_	50	μmhos
Real Part of Input Impedance (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 5.0 MHz)	Re(hie)	4.0	200	ohms

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N4928 thru 2N4931

2N4930 and 2N4931 JAN, JTX & JTXV AVAILABLE CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N3494 for graphs for 2N4928.*

Rating	Symbol	2N4928	2N4929	2N4930	2N4931	Unit
Collector-Emitter Voltage	VCEO	100	150	200	250	Vdc
Collector-Base Voltage	VCBO	100	150	200	250	Vdc
Emitter-Base Voltage	VEBO	4.0	4.0	4.0	4.0	Vdc
Collector Current — Continuous	IC	100	500	500	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.6 3.4	1.0 5.71	1.0 5.71	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.2	5.0 28.6	5.0 28.6	5.0 28.6	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg		-65 to	+ 200		°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	2N4928 2N4929 2N4930 2N4931	V(BR)CEO	100 150 200 250		Vdc
Collector-Base Breakdown Voltage (IE = 0, IC = 100 μ Adc)	2N4928 2N4929 2N4930 2N4931	V(BR)CBO	100 150 200 250		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		V _{(BR)EBO}	4.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 75 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 150 \text{ Vdc}, I_E = 0)$	2N4928 2N4929 2N4930, 2N4931	ICBO	=	0.5 0.5 1.0	μAdc
Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_{C} = 0)$ $(V_{BE} = 3.0 \text{ Vdc}, I_{C} = 0)$	2N4928, 2N4929 2N4930, 2N4931	IEBO	_	0.5 1.0	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc)(1)	All Types 2N4928, 2N4929	hFE	20 25	200	_
(I _C = 50 mAdc, V _{CE} = 10 Vdc)(1) (I _C = 30 mAdc, V _{CE} = 10 Vdc)(1)	2N4930, 2N4931 2N4928, 2N4929 2N4930, 2N4931	-	20 20 20	200	7 2 4
$ \begin{aligned} & \text{Collector-Emitter Saturation Voltage(1)} \\ & \text{(IC} = 10 \text{ mAdc, I}_{\text{B}} = 1.0 \text{ mAdc)} \end{aligned} $	2N4928, 2N4929 2N4930, 2N4931	VCE(sat)	=	0.5 5.0	Vdc
Base-Emitter On Voltage $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	Profile and the second	V _{BE(on)}	_	1.0	Vdc

2N4928 thru 2N4931

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS		•			
Current-Gain — Bandwidth Product (IC = 20 mAdc, V_{CE} = 20 Vdc, f = 100 MHz) (IC = 20 mAdc, V_{CE} = 20 Vdc, f = 20 MHz)	2N4928, 2N4929 2N4930, 2N4931	fT	100 20	1,000 200	MHz
Collector-Base Capacitance $(V_{CB} = 20 \text{ Vdc}, I_{E} = 0, f = 140 \text{ kHz})$ $(V_{CB} = 20 \text{ Vdc}, I_{E} = 0, f = 140 \text{ kHz})$ $(V_{CB} = 20 \text{ Vdc}, I_{E} = 0, f = 140 \text{ kHz})$	2N4928 2N4929 2N4930, 2N4931	C _{cb}	=	6.0 10 20	pF
Emitter-Base Capacitance (VBE = 2.0 Vdc, I _C = 0, f = 140 kHz) (VBE = 1.0 Vdc, I _C = 0, f = 140 kHz) (VBE = 0.5 Vdc, I _C = 0, f = 140 kHz)	2N4928 2N4929 2N4930, 2N4931	C _{eb}	=	40 80 400	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Refer to 2N3634 for graphs for 2N4929. Refer to 2N3743 for graphs for 2N4930 and 2N4931.

2N5022 2N5023

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N3467 for graphs.

MAXIMUM RATINGS

Rating	Symbol	2N5022	2N5023	Unit
Collector-Emitter Voltage	VCEO	50	30	V
Collector-Emitter Voltage	VCES	50	30	V
Collector-Base Voltage	VCBO	50	30	V
Emitter-Base Voltage	VEBO	100 4	5	V
Collector Current — Continuous (Pulse Width = 300 μ s, DC = 1%)	IC	1.0*		А
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.72		Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		.0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C
Maximum Lead Temperature (Soldering, 60 sec max)	TL	+300		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	43.8	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	°C/W

^{*}Indicates Data in Addition to JEDEC Requirements.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 100 μ Adc)	2N5022 2N5023	V(BR)CES	50 30	_	V
Collector-Emitter Sustaining Voltage $(I_C = 10 \text{ mAdc})$	2N5022 2N5023	V(BR)CEO(sus)*	50 30	_	V
Collector-Base Breakdown Voltage (IC = 100 μ Adc)	2N5022 2N5023	V(BR)CBO	50 30	_	V
Emitter-Base Breakdown Voltage (I _E = 100 μAdc)	All	V(BR)EBO	5.0	_	V
Collector Cutoff Current (V _{CE} = 30 Vdc) (V _{CE} = 20 Vdc) (T _A = 100° Cdc)	2N5022 2N5023	ICES	=	100 15	nA μA
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 100 mA, V _{CE} = 1.0 Vdc)	2N5022 2N5023	hFE	15 30	=	_
$(I_C = 500 \text{ mA, V}_{CE} = 1.0 \text{ Vdc})$	2N5022 2N5023		25 40	100 100	
$(I_C = 1.0 \text{ A, V}_{CE} = 5.0 \text{ Vdc})$	2N5022 2N5023		25 40	=	
$(I_C = 500 \text{ ma}, V_{CE} = 1.0 \text{ V}, T_A = -55^{\circ}\text{C})$	2N5022 2N5023		10 20	=	
Collector-Emitter Saturation Voltage(1) $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	2N5022 2N5023	VCE(sat)	_	0.20 0.17	v
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	2N5022 2N5023		_	0.40 0.35	V
$(I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc})$	2N5022 2N5023		_	0.80 0.70	V

2N5022, 2N5023

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Base-Emitter Saturation Voltage (IC = 100 mAdc, IB = 10 mAdc) (IC = 500 mAdc, IB = 50 mAdc) (IC = 1.0 Adc, IB = 100 mAdc)		V _{BE(sat)}	0.8	1.0 1.4 1.75	V V V
SMALL-SIGNAL CHARACTERISTICS	Date And The Control of the Control		117		
Collector-Base Capacitance (V _{BE} = 0.5 V, f = 100 kHz)		C _{cb}	Y	25	pF
Emitter-Base Capacitance (V _{BE} = 0.5 V, f = 100 kHz)		C _{eb}	_	100	pF
Small-Signal Current Gain (IC = 50 mA, V_{CE} = 10 V, f = 100 MHz)	2N5022 2N5023	h _{fe}	1.7 2.0	_	_
SWITCHING CHARACTERISTICS					
Turn-On Time (V _{CE} = -30 V, I _C ≈ 500 mA, I _B ≈ 50 mA)	21 19000 - 2	t _{on}	-	40	ns
Turn-Off Time (V _{CE} = 30 V, $I_C \approx 500$ mA, $I_{B1} = I_{B2} \approx 50$ mA)		^t off	-	90	ns

⁽¹⁾ Pulse Width = 300 μ s, Duty Cycle = 1.0%.

2N5058 2N5059

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

MAXIMOM RATINGS					
Rating	Symbol	2N5058	2N5059	Unit	
Collector-Emitter Voltage	VCEO	300	250	Vdc	
Collector-Base Voltage	V _{CBO}	300	250	Vdc	
Emitter-Base Voltage	V _{EBO}	7.0	6.0	Vdc	
Collector Current — Continuous	IC	150		mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 6.67		Watt mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 33.3		Watts mW/°C	
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	30	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA (1)	150	°C/W

Ceb

Refer to 2N3724 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (2) (IC = 30 mAdc, IB = 0) 2N5058 2N5059	V(BR)CEO	300 250	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0) 2N5058 2N5059	V(BR)CBO	300 250	_	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0) 2N5058 2N5059	V(BR)EBO	7.0 6.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_A = +125^{\circ}\text{C})$	ІСВО	_	0.05 20	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	l _{EBO}	_	10	nAdc
ON CHARACTERISTICS (2)				
DC Current Gain (IC = 5.0 mAdc, VCE = 25 Vdc) 2N5058 2N5059 (IC = 30 mAdc, VCE = 25 Vdc) 2N5058	hFE	10 10	 150	_
$(I_{C} = 30 \text{ mAdc}, V_{CE} = 25 \text{ Vdc}, T_{A} = -55^{\circ}\text{C})$ 2N5058		30 10	150	
(I _C = 100 mAdc, V _{CE} = 25 Vdc) 2N5058 2N5059		35 30	_	
Collector-Emitter Saturation Voltage $(I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc})$	V _{CE(sat)}	()	1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 30 \text{ mAdc}$, $I_B = 3.0 \text{ mAdc}$)	V _{BE(sat)}	_	0.85	Vdc
Base-Emitter On Voltage (I _C = 30 mAdc, V _{CE} = 25 Vdc)	V _{BE(on)}	: 	0.82	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (3) (I _C = 10 mAdc, V _{CE} = 25 Vdc, f = 20) MHz) f _T	30	160	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	10	pF
F F . G			1	0.00

⁽¹⁾ ROJA is measured with the device soldered into a typical printed circuit board.

Emitter-Base Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ fT is defined as the frequency at which the |hfe| extrapolates to unity.

2N5229 2N5230 2N5231

CASE 26-03, STYLE 1 TO-46 (TO-206AB)

LOW POWER CHOPPER TRANSISTOR

PNP SILICON

Max

Unit

Min

Symbol

Ceb

hfe

MAXIMUM RATINGS

Rating	Symbol	2N5229	2N5230	2N5231	Unit
Emitter-Collector Voltage	VECO	10	20	30	Vdc
Collector-Base Voltage	VCBO	15	30	50	Vdc
Emitter-Base Voltage	VEBO	15	30	50	Vdc
Collector Current — Continuous	Ic	50			mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.86			Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.0 12			Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200			°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

OFF CHARACTERISTICS Emitter-Collector Breakdown Voltage V(BR)ECO Vdc $(I_F = 10 \, \mu Adc, I_R = 0)$ 2N5229 10 2N5230 20 2N5231 30 Collector-Base Breakdown Voltage V(BR)CBO Vdc 2N5229 15 $(I_{C} = 10 \, \mu Adc, I_{F} = 0)$ 2N5230 30 2N5231 50 Emitter-Base Breakdown Voltage Vdc V(BR)FBO 2N5229 15 $(I_E = 10 \, \mu Adc, I_C = 0)$ 2N5230 30 2N5231 50 Collector Cutoff Current nAdc **ICBO** (VCB = 12 Vdc, IF = 0) 2N5229 1.0 (VCB = 25 Vdc, IF = 0) 2N5230 1.0 (VCB = 40 Vdc, IE = 0) 2N5231 1.0 **Emitter Cutoff Current IEBO** nAdc $(V_{EB} = 12 \text{ Vdc}, I_{C} = 0)$ 2N5229 1.0 (VEB = 25 Vdc, IC = 0) 2N5230 1.0 (V_{EB} = 40 Vdc, I_C = 0) 2N5231 1.0 ON CHARACTERISTICS DC Current Gain hFE (I_C = 100 μ Adc, V_{CE} = 1.0 Vdc) 50 (I_C = 200 μ Adc, V_{CE} = 0.5 Vdc) (Inverted Connection) 15 Offset Voltage VEC(ofs) mVdc $(l_B = 100 \ \mu Adc, l_E = 0)$ 2N5229, 2N5230, 05 2N5231 0.8 2N5229, $(l_B = 1.0 \text{ mAdc}, l_E = 0)$ 0.8 2N5230, 2N5231 1.0 SMALL-SIGNAL CHARACTERISTICS pF Collector-Base Capacitance Ccb 5.0 $(V_{CB} = 10 \text{ Vdc}, I_{E} = 0, f = 140 \text{ kHz})$

Emitter-Base Capacitance

Small Signal Current Gain

 $(V_{EB} = 10 \text{ Vdc}, I_{C} = 0, f = 140 \text{ kHz})$

($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, f = 4.0 MHz)

2.0

4.0

pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
"ON" Series Resistance ($I_B = 1.0 \text{ mAdc}, I_E = 0, I_e = 100 \ \mu\text{A RMS}, f = 1.0 \ \text{kHz}$) 2N5229 2N5230 2N5231	rec(on)	1.0 2.0 2.0	6.0 8.0 10	Ohms

TYPICAL CHARACTERISTICS

FIGURE 1 – EMITTER-COLLECTOR VOLTAGE versus BASE CURRENT

FIGURE 3 – EMITTER-COLLECTOR "ON" RESISTANCE versus BASE CURRENT

FIGURE 5 — CURRENT GAIN versus COLLECTOR CURRENT

FIGURE 2 – EMITTER-COLLECTOR VOLTAGE versus JUNCTION TEMPERATURE

FIGURE 4 – EMITTER-COLLECTOR "ON" RESISTANCE TEMPERATURE COEFFICIENT versus BASE CURRENT

FIGURE 6 — CURRENT GAIN (Inverted Connection) versus EMITTER CURRENT

FIGURE 7 — COLLECTOR CUTOFF CURRENT versus
JUNCTION TEMPERATURE

FIGURE 8 — EMITTER CUTOFF CURRENT versus
JUNCTION TEMPERATURE

FIGURE 9 — COLLECTOR-EMITTER SATURATION VOLTAGE versus COLLECTOR CURRENT

FIGURE 10 – JUNCTION CAPACITANCE versus REVERSE BIAS VOLTAGE

2N5320 2N5321

CASE 79, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N5320	2N5321	Unit
Collector-Emitter Voltage	VCEO	75	50	Vdc
Collector-Base Voltage	VCBO	100	75	Vdc
Emitter-Base Voltage	VEBO	7.0	5.0	Vdc
Base Current	IB	1.0		Adc
Collector Current — Continuous	IC	2.0		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	10 0.057		Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	17.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	. 13				
Collector-Emitter Breakdown Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	2N5320 2N5321	V(BR)CEO	75 50	=	Vdc
Collector Cutoff Current (VCE = 100 Vdc, VBE = 1.5 Vdc) (VCE = 70 Vdc, VBE = 1.5 Vdc, $T_C = 150^{\circ}C$) (VCE = 75 Vdc, $V_{BE} = 1.5$ Vdc) (VCE = 75 Vdc, $V_{BE} = 1.5$ Vdc, $T_C = 150^{\circ}C$)	2N5320 2N5321	ICEX	=	0.1 5.0 0.1 5.0	mAdc
Emitter Cutoff Current $(V_{BE} = 7.0 \text{ Vdc}, I_{C} = 0)$ $(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	2N5320 2N5321	IEBO	_	0.1 0.1	mAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 500 \text{ mAdc}, V_{CE} = 4.0 \text{ Vdc}$)	2N5320 2N5321	hFE	30 40	130 250	_
$(I_C = 1.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc})$	2N5320		10	_	
Collector-Emitter Saturation Voltage $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	2N5320 2N5321	V _{CE(sat)}	=	0.5 0.8	Vdc
Base-Emitter On Voltage (IC = 500 mAdc, V_{CE} = 4.0 Vdc)	2N5320 2N5321	VBE(on)	_	1.1 1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Small-Signal Current Gain (I _C = 50 mAdc, V_{CE} = 4.0 Vdc, f = 10 MHz)		h _{fe}	5	-	_
SWITCHING CHARACTERISTICS					
Turn-On Time ($V_{CC} = 30 \text{ Vdc}$, $I_{C} = 500 \text{ mAdc}$, $I_{B1} = 50 \text{ mAdc}$)		ton	_	80	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_C = 500 \text{ mAdc}, I_{B1} = I_{B2} = 50 \text{ mAdc})$		^t off	_	800	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL INPUT CHARACTERISTICS

CURRENT GAIN CHARACTERISTICS versus COLLECTOR-EMITTER VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

MAXIMUM SAFE OPERATING AREAS (SOA)

2N5322 2N5323

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	2N5322	2N5323	Unit
Collector-Emitter Voltage	VCEO	75	50	Vdc
Collector-Base Voltage	V _{CBO}	100	75	Vdc
Emitter-Base Voltage	VEBO	7.0	5.0	Vdc
Base Current	IB	1.0 *		Adc
Collector Current — Continuous	Ic	2.0		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	10 0.057		Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R_{θ} JC	17.5	°C/W

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1 12	11 11 11	111
Collector-Emitter Breakdown Voltage(1) (I _C = 100 mAdc, I _B = 0)	2N5322 2N5323	V(BR)CEO	75 50	_	Vdc
Collector Cutoff Current (VCE = 100 Vdc, VBE = 1.5 Vdc) (VCE = 70 Vdc, VBE = 1.5 Vdc, $T_{C} = 150^{\circ}\text{C}$) (VCE = 75 Vdc, VBE = 1.5 Vdc) (VCE = 45 Vdc, $T_{C} = 150^{\circ}\text{C}$)	2N5322 2N5323	ICEX	=	0.1 5.0 0.1 5.0	mAdc
Emitter Cutoff Current $(V_{BE} = 7.0 \text{ Vdc}, _{C} = 0)$ $(V_{BE} = 5.0 \text{ Vdc}, _{C} = 0)$	2N5322 2N5323	IEBO	_	0.1 0.1	mAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 500 \text{ mAdc}$, $V_{CE} = 4.0 \text{ Vdc}$)	2N5322 2N5323	hFE	30 40	130 250	-
$(I_C = 1.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc})$	2N5322		10	_	
Collector-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	2N5322 2N5323	V _{CE(sat)}	_	0.7 1.2	Vdc
Base-Emitter On Voltage ($I_C = 500 \text{ mAdc}$, $V_{CE} = 4.0 \text{ Vdc}$)	2N5322 2N5323	V _{BE(on)}	_	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Small-Signal Current Gain ($I_C = 50 \text{ mAdc}$, $V_{CE} = 4.0 \text{ Vdc}$, $f = 10 \text{ MHz}$)		h _{fe}	5	_	_
SWITCHING CHARACTERISTICS					
Turn-On Time (V _{CC} = 30 Vdc, I_C = 500 mAdc, I_{B1} = 50 mAdc)		ton	-	100	ns
Turn-Off Time ($V_{CC} = 30 \text{ Vdc}$, $I_C = 500 \text{ mAdc}$, $I_{B1} = I_{B2} = 50 \text{ mAdc}$)		^t off	_	1000	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

4

TYPICAL INPUT CHARACTERISTICS

TYPICAL TRANSFER CHARACTERISTICS

CURRENT GAIN CHARACTERISTICS versus COLLECTOR-EMITTER VOLTAGE

MAXIMUM SAFE OPERATING AREAS (SOA)

2N5415, 2N5416

For Specifications, See 2N3439 Data.

2N5581

For Specifications, See 2N2218 Data.

2N5679 2N5680

PNP SILICON

2N5681 2N5682

NPN SILICON

CASE 79-02, STYLE 1 TO-5 (TO-205AA)

GENERAL PURPOSE TRANSISTOR

MAXIMUM RATINGS

Rating	Symbol	2N5679 2N5681	2N5680 2N5682	Unit
Collector-Emitter Voltage	VCEO	100	120	Vdc
Collector-Base Voltage	VCBO	100	120	Vdc
Emitter-Base Voltage	VEBO	4.0		Vdc
Base Current	l _B	0.5		Adc
Collector Current — Continuous	IC	1.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.7		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	10 57		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	17.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	°C/W

Characteristic	7 1	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (IC = 10 mAdc, IB = 0)	2N5679, 2N5681 2N5680, 2N5682	V _{CEO(sus)}	100 120		Vdc
Collector Cutoff Current (V _{CE} = 70 Vdc, I _B = 0) (V _{CE} = 80 Vdc, I _B = 0)		ICEO	=	10 10	μAdc
Collector Cutoff Current (V _{CE} = 100 Vdc, V _{EB} = 1.5 Vdc) (V _{CE} = 120 Vdc, V _{EB} = 1.5 Vdc) (V _{CE} = 100 Vdc, V _{EB} = 1.5 Vdc, T _C = 150°C) (V _{CE} = 120 Vdc, V _{EB} = 1.5 Vdc, T _C = 150°C)	2N5679, 2N5681 2N5680, 2N5682 2N5679, 2N5681 2N5680, 2N5682	ICEX		1.0 1.0 1.0	μAdc mAdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 120 \text{ Vdc}, I_E = 0)$	2N5679, 2N5681 2N5680, 2N5682	ICBO	_	1.0 1.0	μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO	_	1.0	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 250$ mAdc, $V_{CE} = 2.0$ Vdc) ($I_C = 1.0$ Adc, $V_{CE} = 2.0$ Vdc)		hFE	40 5.0	150	_
Collector-Emitter Saturation Voltage ($I_C = 250 \text{ mAdc}$, $I_B = 25 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 200 \text{ mAdc}$)		V _{CE(sat)}	=	0.6 1.0 2.0	Vdc
Base-Emitter Saturation Voltage (I _C = 250 mAdc, V _{CE} = 2.0 Vdc)		V _{BE(sat)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 10 MHz)		fT	30	_	_
Output Capacitance (V _{CB} = 20 Vdc, I_E = 0, f = 1.0 MHz)		.C _{obo}	_	50	pF
Small-Signal Current Gain (I _C = 0.2 Adc, V _{CE} = 1.5 Vdc, f = 1.0 kHz)	- J- North Aut Top	h _{fe}	40	1985-, C	A.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

RB and RC Varied to Obtain Desired Current Levels

For t_d and t_r , D1 is disconnected and V2 = 0 For PNP test circuit, reverse diode and voltage polarities.

FIGURE 4 - CURRENT-GAIN - BANDWIDTH PRODUCT

FIGURE 5 — CAPACITANCE

T_J = 25°C

C_{1b}

--- 2N5679, 2N5680 --- 2N5681, 2N5682 --- 0.5 1.0 2.0 5.0 10 20 50 VR, REVERSE VOLTAGE (VOLTS)

FIGURE 6 - THERMAL RESISTANCE

700

500

300

100

70 50

20

10

별 200

CAPACITANCE

FIGURE 7 - ACTIVE-REGION SAFE OPERATING AREA

FIGURE 8 - POWER DERATING

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C \cdot V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 7 is based on $T_C=25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \lesssim 200^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 7 may be found at any case temperature by using the appropriate curve on Figure 8.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	IC	2.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 6.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	°C/W

2N5859

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	V(BR)CBO	80	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	V(BR)EBO	6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 50 Vdc, V _{BE(off)} = 2.0 Vdc) (V _{CE} = 50 Vdc, V _{BE(off)} = 2.0 Vdc, T _A = 75°C)	CEX	=	0.2 5.0	μAdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 75^{\circ}\text{C})$	ICBO	=	0.25 5.0	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO	_	0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain $(I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	hFE	30 15 10	120 100	_
Collector-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	VCE(sat)	_	0.4 0.7	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc) (I _C = 1.0 Adc, I _B = 100 mAdc)	V _{BE(sat)}	0.8	1.0 1.25	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	250	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{cb}		7.0	pF
Emitter-Base Capacitance (VEB = 0.5 Vdc, IC = 0, f = 100 kHz)	Ceb	_	60	pF
SWITCHING CHARACTERISTICS		d.		1
Delay Time $(VCC=30\ Vdc,\ VBE(off)=2.0\ Vdc,\ I_C=1.0\ Adc,\ I_{B1}=100\ mAdc)$ (Figures 8 and 10)	td	**	6.0	ns
Rise Time $(V_{CC}=30\ Vdc,\ V_{BE(off)}=2.0\ Vdc,\ I_{C}=1.0\ Adc,\ I_{B1}=100\ mAdc)$ (Figures 8 and 10)	tr		30	ns
Storage Time $(V_{CC}=30\ Vdc,\ I_{C}=1.0\ Adc,\ I_{B1}=I_{B2}=100\ mAdc)$ (Figures 9 and 11)	t _S	-/	35	ns
Fall Time ($V_{CC}=30\ Vdc,\ I_{C}=1.0\ Adc,\ I_{B1}=I_{B2}=100\ mAdc)$ (Figures 9 and 11)	tf		35	ns

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Turn-On Time (VCC = 30 Vdc, $V_{BE(off)}$ = 2.0 Vdc, I_{C} = 1.0 Adc, I_{B1} = 100 mAdc) (Figures 8 and 10)	ton	-	35	ns
Turn-Off Time ($V_{CC}=30~Vdc,~I_{C}=1.0~Adc,~I_{B1}=I_{B2}=100~mAdc)$ (Figures 9 and 11)	^t off		60	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)}=200^{o}\text{C}$; T_{C} is variable depending on conditions. Pulse curves are valid for duty cycles of 10% provided $T_{J(pk)} \leq 200^{o}\text{C}$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

TYPICAL DC CHARACTERISTICS

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 10 - TURN-ON TIME TEST CIRCUIT

2N5861

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	VCBO	100	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	Ic	2.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 6.0	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				A-
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, I _B = 0)	V _{(BR)CEO}	50	38	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V _(BR) CBO	100	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	6.0	-	Vdc
Collector Cutoff Current (V _{CE} = 50 Vdc, V _{BE} (off) = 2.0 Vdc) (V _{CE} = 50 Vdc, V _{BE} (off) = 2.0 Vdc, T _A = 75°C)	ICEX	7	0.3	μAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T_A = +75°C)	ІСВО	=	0.3 10	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)	IEBO	-	0.1	μAdc
ON CHARACTERISTICS(1)				•
DC Current Gain (I _C = 500 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc, T _A = -55°C)	hFE	25 10	100	-
Collector-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)	V _{CE(sat)}	_	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)	V _{BE(sat)}	8.0	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	200	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{cb}	_	7.0	pF
Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{eb}	_	60	pF
SWITCHING CHARACTERISTICS				
Turn-On Time $(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 2.0 \text{ Vdc},$	ton	_	25	ns
Delay Time I _C = 500 mAdc, I _{B1} = 50 mAdc)	t _d	_	8.0	ns
Rise Time	t _r	_	18	ns

2N5861

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit
Turn-Off Time	(V _{CC} = 30 Vdc, I _C = 500 mAdc,	toff	_	60	ns
Storage Time	$I_{B1} = I_{B2} = 50 \text{ mAdc}$	ts	_	35	ns
Fall Time		tf	_	35	ns

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 us. Duty Cycle ≤ 2.0%

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 2 - CAPACITANCE

FIGURE 4 - TURN-OFF TIME

FIGURE 5 - TURN-ON TIME TEST CIRCUIT

+5 8 V Vin 10% -2.0 V Vout td

Vin during ton interval must be +5.8 V. All waveforms and bias levels must be set with unit in circuit.

Oscilloscope: Tektronix 661 Sampling Scope

SMALL-SIGNAL DEVICES

MOTOROLA SEMICONDUCTORS

FIGURE 6 - TURN-OFF TIME TEST CIRCUIT

Generator Source Impedance = 50 Ω

Pulse Generator: EH1421 Timing Unit and 1121 Pulse Driver

Oscilloscope: Tektronix 661 Sampling Scope

 V_{in} during t_{off} interval must be -4.0 V. All waveforms and bias levels must be set with unit in circuit.

FIGURE 7 - DC CURRENT GAIN

FIGURE 8 - "ON" VOLTAGES

FIGURE 9 - ACTIVE-REGION SAFE OPERATING AREA

There are two limitations on the power handling ability of a transistor: junction temperature and secondary breakdown. Safe operating area curves indicate $I_C\!-\!V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 9 is based on $T_{J(pk)}=200^{o}C;\,T_{C}$ is variable depending on conditions. Pulse curves are valid for duty cycles of 10% provided $T_{J(pk)} \leq 200^{o}C.$ At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

FIGURE 10 — TEMPERATURE COEFFICIENTS

2N6430 2N6431

CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	2N6430	2N6431	Unit
Collector-Emitter Voltage	VCEO	200	300	Vdc
Collector-Base Voltage	V _{CBO}	200	300	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	IC	50		mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 2.86		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

	Symbol	Min	Max	Unit
2N6430 2N6431	V(BR)CEO	200 300	=	Vdc
2N6430 2N6431	V(BR)CBO	200 300	=	Vdc
	V(BR)EBO	6.0	_	Vdc
2N6430 2N6431	ІСВО	=	0.1 0.1	μAdc
	IEBO	_	0.1	μAdc
	h _{FE}	25 40 50	200	_
	V _{CE(sat)}	-	0.5	Vdc
	V _{BE(sat)}	-	0.9	Vdc
	fT	50	500	MHz
	C _{cb}	-	4.0	pF
	2N6431 2N6430 2N6431 2N6430	2N6430 2N6431 2N6430 2N6431 V(BR)CBO V(BR)EBO 1CBO 2N6430 2N6431 IEBO hFE VCE(sat) VBE(sat)	2N6430 2N6431 2N6430 2N6430 2N6430 2N6431 V(BR)CBO 200 300 V(BR)EBO 6.0 2N6430 2N6431 ICBO — — — — — — — — — — — — — — — — — — —	V(BR)CEO

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N6432 2N6433

CASE 22, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N3743 for graphs.

MAXIMUM RATINGS

Rating	Symbol	2N6432	2N6433	Unit
Collector-Emitter Voltage	VCEO	200	300	Vdc
Collector-Base Voltage	VCBO	200	300	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	Ic	500		mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 2.86		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

	Symbol	Min	Max	Unit
			RATE OF	
2N6432 2N6433	V(BR)CEO	200 300		Vdc
2N6432 2N6433	V _(BR) CBO	200 300	C - 1 _PA	Vdc
	V(BR)EBO	5.0	2	Vdc
2N6432 2N6433	ІСВО		0.25 0.25	μAdc
	IEBO	_	0.1	μAdc
	_			-
	hFE	25 40 30	_ _ _ 150	
	VCE(sat)	_	0.5	Vdc
	VBE(sat)	_	0.9	Vdc
		1 31		SE TTO
	fT	50	500	MHz
,	C _{cb}	_	6.0	pF
	2N6432 2N6433 2N6433	2N6432 2N6433	2N6432 200 300 2N6433 V(BR)CBO 200 300 2N6432 300 V(BR)EBO 5.0 2N6432 1CBO — 2N6432 1CBO — 1CBO — 1EBO — hFE 25 40 30 VCE(sat) — VBE(sat) —	2N6432

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM420 MM421

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

TRANSISTOR

NPN SILICON

Refer to 2N3439 for graphs.

MAXIMUM RATINGS

Rating	Symbol	MM420	MM421	Unit
Collector-Emitter Voltage	VCEO	250 325		Vdc
Collector-Base Voltage	VCBO	275	350	Vdc
Emitter-Base Voltage	VEBO	6.0	6.0	Vdc
Base Current	IB	100	100	mA
Collector Current — Continuous	lc	100	500	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	800 5.3		mW mW/°C
Total Device Dissipation @ T _A = 75°C Derate above 75°C	PD	2.5 25		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175		°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			mulia.	(AFO PL
Collector-Emitter Sustaining Voltage(1) $ (I_{\hbox{\scriptsize C}} = 10 \text{ mA, } I_{\hbox{\scriptsize B}} = 0) \\ \qquad \qquad MM420 \\ \qquad MM421 $	VCEO(sus)	250 325		Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc) MM420 MM421	V(BR)CBO	275 350	= 1	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc)	V(BR)EBO	6	-	Vdc
	ICEO	=	1.0 1.0	mAdc
Collector Cutoff Current (V _{BE} = 275 Vdc, I _E = 0) MM420 (V _{BE} = 350 Vdc, I _E = 0) MM421	ІСВО		100 100	μAdc
ON CHARACTERISTICS		- Walter & - Co.		
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 20 Vdc) (I _C = 10 mAdc, V _{CE} = 20 Vdc) (I _C = 30 mAdc, V _{CE} = 20 Vdc)	hFE	15 25 25	 250	-
Collector-Emitter Saturation Voltage (I _C = 30 mAdc, I _B = 3.0 mAdc)	VCE(sat)	-	5.0	Vdc
Base-Emitter On Voltage ($I_C = 30 \text{ mA}$, $V_{CE} = 20 \text{ V}$)	V _{BE(on)}	=	1.0	V
SMALL-SIGNAL CHARACTERISTICS				ey ayard
Current-Gain — Bandwidth Product (I _C = 10 mA, V _{CE} = 20 V, f = 10 MHz)	fT	15	-	MHz
Output Capacitance (V _{CB} = 20 V, f = 100 kHz) (Commo	C _{obo}	100 - 1	12	pF

(1) PW \leq 300 μ sec, Duty Cycle \leq 2.0%.

MM1505

CASE 27-02, STYLE 1 TO-52 (TO-206AC)

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Symbol	Value	Unit
VCEO	6.0	Vdc
VCES	11	Vdc
VCBO	15	Vdc
VEBO	4.0	Vdc
IC	50	mAdc
PD	0.30 1.71	Watt mW/°C
T _J , T _{stg}	-65 to +200	°C
TL	300	°C
	VCEO VCES VCBO VEBO IC PD TJ, Tstg	VCEO 6.0 VCES 11 VCBO 15 VEBO 4.0 IC 50 PD 0.30 1.71 TJ, T _{stg} -65 to +200

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			121212121	(Early) th
Collector-Emitter Breakdown Voltage (IC = 10 μ Adc, VBE = 0)	V(BR)CES	11	data <u>R</u> esilio	Vdc
Collector-Emitter Sustaining Voltage(2) (I _C = 10 mAdc, I _B = 0)	V _{CEO(sus)}	6.0	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	15		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	1894-9	Vdc
Collector Cutoff Current $(V_{CE} = 11 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 5.0 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 5.0 \text{ Vdc}, V_{BE} = 0, T_{A} = +85^{\circ}\text{C})$	ICES	= 111	10 0.1 5.0	μAdc
Base Cutoff Current (V _{CE} = 11 Vdc, V _{EB(off)} = 0)	IBL	_	10	μAdc
ON CHARACTERISTICS(2)				
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 0.4 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 0.4 \text{ Vdc}$) ($I_C = 30 \text{ mAdc}$, $V_{CE} = 0.4 \text{ Vdc}$)	hFE	15 25 15	125 —	_
Collector-Emitter Saturation Voltage $ \begin{cases} I_C = 1.0 \text{ mAdc}, I_B = 0.1 \text{ mAdc}) \\ (I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}) \\ (I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc}) \\ (I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}, T_A = 85^\circ\text{C}) \end{cases} $	VCE(sat)		0.25 0.25 0.38 0.4	Vdc
Base-Emitter Saturation Voltage $(I_C=1.0 \text{ mAdc}, I_B=0.1 \text{ mAdc})$ $(I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc})$ $(I_C=30 \text{ mAdc}, I_B=3.0 \text{ mAdc})$	V _{BE} (sat)	0.68 0.75 —	0.85 0.95 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS		1.3		
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 4.0 Vdc, f = 100 MHz)	fT	600	-	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 140 \text{ kHz})$	C _{obo}	Total Control	3.0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 140 \text{ kHz})$	C _{ibo}	-	2.0	pF
SWITCHING CHARACTERISTICS				
Storage Time ($I_C = I_{B1} \approx I_{B2} = 5.0 \text{ mAdc}$)	t _S	_	6.0	ns
Turn-On Time ($V_{CC} = 1.0 \text{ Vdc}$, $V_{BE(off)} = 1.0 \text{ Vdc}$, $I_{C} = 10 \text{ mAdc}$, $I_{B1} \approx 2.0 \text{ mAdc}$)	ton	_	12	ns
Turn-Off Time ($V_{CC} = 1.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} \approx I_{B2} \approx 1.0 \text{ mAdc}$)	toff	_	12	ns

⁽¹⁾ Applicable from 0.01 mAdc to 10 mAdc (Pulsed).

⁽²⁾ Pulse Test: Pulse Length = 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

WAXIIIOW HATIIIGO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO(sus)}	6.0	Vdc
Collector-Base Voltage	V _{CBO}	15	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	150	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.71	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	583	°C/W

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

MM1748,A

CASE 27, STYLE 1 TO-52 (TO-206AC)

SWITCHING TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS	(T _A = 25°C unless otherwise noted.)
Char	acteristic

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Sustaining Voltage(2) ($I_C = 10 \text{ mAdc}, I_B$	= 0)	V _{CEO(sus)}	6.0	-	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		V(BR)CBO	15	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	4.0	— y	-	Vdc
Collector Cutoff Current $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	MM1748 MM1748A Both Devices	ICBO	=		50 5.0 5.0	nAdd μAdd
ON CHARACTERISTICS(2)	Botti Devices		_	_	5.0	_
DC Current Gain (IC = 10 mAdc, V _{CE} = 0.5 Vdc) (I _C = 10 mAdc, V _{CE} = 0.5 Vdc, T _A = -55°C) (I _C = 30 mAdc, V _{CF} = 1.0 Vdc)	MM1748 MM1748A Both Devices Both Devices	hFE	20 30 10 15	50 55 20 20	120 90 —	_
Collector-Emitter Saturation Voltage (I _C = 3.0 mAdc, I _B =	0.15 mAdc)	V _{CE(sat)}	_	0.2	0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 3.0 mAdc, I _B = 0.15	mAdc)	V _{BE(sat)}	0.7	0.78	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS					•	
Current-Gain — Bandwidth Product $(I_C = 5.0 \text{ mAdc}, V_{CE} = 4.0 \text{ Vdc}, f = 100 \text{ MHz})$	MM1748 MM1748A	fT	600 800	750 850	<u> </u>	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)		C _{obo}		2.0	3.0	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 140 kHz)		C _{ibo}	- "	1.8	2.0	pF
SWITCHING CHARACTERISTICS						
Storage Time $(V_{CC}=3.0~V_{dc},I_{C}=5.0~mAdc,I_{B1}=I_{B2}=5.0~mAdc)$		t _S	_	4.0	6.0	ns
Turn-On Time $(V_{CC}=1.0\ Vdc,\ V_{BE(off)}=1.0\ Vdc,\ I_{C}=10\ mAdc,\ I_{B1}=2.0\ mAdc,\ I_{B2}=1.0\ mAdc)$		ton	-	12	15	ns
Turn-Off Time $(V_{CC} = 1.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$		toff	_	12	15	ns

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM2005

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM KATINGS			
Rating	Rating Symbol		Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.28	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.4 8.0	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

Refer to 2N2904 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				1 12 120	
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	V(BR)CEO	20	_	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	25		1. AC - 17	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	4.0		- 1	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ICBO	_		0.5	μAdc
ON CHARACTERISTICS(1)				THE SECTION	
DC Current Gain ($I_C = 150 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	hFE	100	200	400	0
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.3	1.0	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}		0.7	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			Seat A		547- u - u -
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	6.0	15	pF
SWITCHING CHARACTERISTICS					
Turn-On Time ($V_{CC} = 30 \text{ Vdc}$, $I_{C} = 150 \text{ mAdc}$, $I_{B1} = 15 \text{ mAdc}$)	t _{on}	-	20	45	μs
Turn-Off Time ($V_{CC}=6.0~V_{dc}, I_{C}=150~mAdc, I_{B1}=I_{B2}=15~mAdc$)	toff	_	85	100	μs

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	MM2258	MM2259 MM2260	Unit
Collector-Emitter Voltage	VCEO	120	175	Vdc
Collector-Base Voltage	V _{CBO}	120	175	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	IC	500	300	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	MM2258	MM2259 MM2260	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35		°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175		°C/W

MM2258 MM2259 MM2260

CASE 31-03, STYLE 1 TO-5 (TO-205AA)

TRANSISTOR

NPN SILICON

Refer to 2N3498 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	MM2258 MM2259, MM2260	V(BR)CEO	120 175		Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	MM2258 MM2259, MM2260	V _(BR) CBO	120 175	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	5.0	- 3000	Vdc
Collector Cutoff Current (V _{CB} = 75 V, I _E = 0) (V _{CB} = 75 V, I _E = 0, 50°C)	2071 V 27 24 a 2 44 6 6 6 7 1	Ісво	=	.050 50	μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO	_	25	nAdc
ON CHARACTERISTICS			DV 5	1 10 An	
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	MM2259 MM2258, MM2260	hFE	25 50	Tankin	-1
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MM2259 MM2258, MM2260		35 50		
$(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MM2259 MM2258, MM2260	*	35 50		L' n
Collector-Emitter Saturation Voltage (I _C = 25 mAdc, I _B = 2.5 mAdc)		V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 25 mAdc, I _B = 2.5 mAdc)		V _{BE(sat)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	MM2258 MM2259, MM2260	C _{obo}	=	9.0 8.0	pF
Collector-Base Capacitance (V _{CB} = 25 Vdc, I _C = 10 mAdc)	MM2258 MM2259, MM2260	C _{cb}	_	5.0 4.5	pF
Magnitude of Forward Current Transfer Ratio, Comm ($V_{CF} = 25 \text{ Vdc}$, $I_{C} = 20 \text{ mAdc}$, $f = 100 \text{ MHz}$)	on-Emitter	h _{fe}	1.5	_	_

⁽¹⁾ Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%.

MM3000 thru MM3003

CASE 79, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MM3000	MM3001	MM3002	MM3003	Unit
Collector-Emitter Voltage	VCEO	100	150	200	250	Vdc
Emitter-Base Voltage	VEBO		5	.0		Vdc
Collector Current — Continuous	lC	200	200	50	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD			.0 71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6				Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200			°C	

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					CALL OF THE
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MM3000 MM3001 MM3002 MM3003	V(BR)CEO	100 100 150 200 250	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	5X2-954 0 7 7 7 5	V _{(BR)EBO}	5.0		Vdc
Collector Cutoff Current $ \begin{aligned} & (V_{CB} = 50 \text{ Vdc, } I_E = 0) \\ & (V_{CB} = 75 \text{ Vdc, } I_E = 0) \\ & (V_{CB} = 100 \text{ Vdc, } I_E = 0) \end{aligned} $	MM3000 MM3001 MM3002, MM3003	ICBO		1.0 1.0 5.0	μAdc
ON CHARACTERISTICS					rk.
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)		hFE	20		-
SMALL-SIGNAL CHARACTERISTICS				V	
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	10/100 - 2 - 11	fT	150	_	MHz
Output Capacitance $(V_{CB} = 20 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$	MM3000, MM3001 MM3002, MM3003	C _{obo}	=	7.0 15	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	MM3005	MM3006	MM3007	Unit
Collector-Emitter Voltage	VCEO	60	80	100	Vdc
Collector-Base Voltage	VCBO	80	100	120	Vdc
Emitter-Base Voltage	VEBO		5.0		
Collector Current — Continuous	IC	2.5			Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71			Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	8.0 45.6			Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200			°C

MM3005 MM3006 MM3007

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AUDIO TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					SAP OF
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MM3005 MM3006 MM3007	V(BR)CEO	60 80 100	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MM3005 MM3006 MM3007	V(BR)CBO	80 100 120	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \ \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current $(V_{CB}=60\ Vdc,\ I_E=0)$ $(V_{CB}=80\ Vdc,\ I_E=0)$ $(V_{CB}=100\ Vdc,\ I_E=0)$	MM3005 MM3006 MM3007	ІСВО	=	100 100 100	nAdc
Emitter Cutoff Current $(V_{BE} = 4.0 \text{ Vdc}, I_{C} = 0)$		IEBO	_	100	nAdc
ON CHARACTERISTICS				-1	10.11
DC Current Gain $ \begin{aligned} &(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ &(I_{C} = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ &(I_{C} = 200 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ &(I_{C} = 250 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \end{aligned} $	All Types MM3005 MM3006 MM3007	hFE	40 50 50 50		_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)}	_	0.35	Vdc
Base-Emitter On Voltage ($I_C = 150 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		V _{BE(on)}	0.60	0.75	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(1) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ MHz}$)		fT	50	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	15	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM3008 MM3009

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

WAXIWOW HATINGS						
Rating	Symbol	MM3008	MM3009	Unit		
Collector-Emitter Voltage	VCEO	120	180	Vdc		
Emitter-Base Voltage	VEBO	6.0		6.0		Vdc
Collector Current — Continuous	IC	4	00	mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71		Watt mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	4.0 22.8		Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	°C		

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				LIFE DE LA	PART HIT
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MM3008 MM3009	V(BR)CEO	120 180	Lange S valle	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	alka e	V(BR)EBO	6.0	element ye	Vdc
Collector Cutoff Current (V _{CB} = 120 Vdc, I _E = 0) (V _{CB} = 180 Vdc, I _E = 0)	MM3008 MM3009	ICBO	=	0.1 0.1	μAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, I _C = 0)		IEBO		0.1	μAdc
ON CHARACTERISTICS	pr 0/15/00				
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 30 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	1754A	hFE	30 40 30	=	-
SMALL-SIGNAL CHARACTERISTICS				30 300	
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)		fT	50	- 4	MHz
Output Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)	5 to 276	C _{obo}		4.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	17.50	C _{ibo}	_	20	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	VCBO	50	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current — Continuous	lc	1.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	°C/W

MM3726

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

PNP SILICON

Refer to 2N3467 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			The state of	
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	50	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0		Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)	ІСВО	_	0.1	μAdc
ON CHARACTERISTICS(1)				
DC Current Gain (I _C = 500 mAdc, V_{CE} = 2.0 Vdc) (I _C = 1.0 Adc, V_{CE} = 5.0 Vdc)	hFE	30 15	120	
Collector-Emitter Saturation Voltage (IC = 500 mAdc, I _B = 50 mAdc) (IC = 1.0 Adc, I _B = 100 mAdc)	VCE(sat)	=	0.6 1.2	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc) (I _C = 1.0 Adc, I _B = 100 mAdc)	VBE(sat)	0.8	1.1 1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS		1.57	T-1	
Current-Gain — Bandwidth Product(1) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fŢ	200	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz, emitter guarded)	C _{cb}	-	10	pF
Emitter-Base Capacitance ($V_{BE} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 100 \text{ kHz}$, collector guarded)	C _{eb}	_	80	pF
SWITCHING CHARACTERISTICS		17/11/1	lander of	at non-
Turn-On Time $(V_{CC}=30~Vdc,~V_{BE(off)}=2.0~Vdc,~I_{C}=500~mAdc,~I_{B1}=50~mAdc,~R_{B}=200~ohms,~R_{L}=60~ohms)$	t _{on}	in a	30	ns
Turn-Off Time $(V_{CC}=30\ Vdc,\ I_{C}=500\ mAdc,\ I_{B1}=I_{B2}=50\ mAdc,\ R_{B}=200\ ohms,\ R_{L}=60\ ohms)$	toff	-	90	ns
Turn-On Time $(V_{CC} = 30 \text{ Vdc}, V_{BE} = 2.0 \text{ Vdc}, I_{C} = 1.0 \text{ Adc}, I_{B1} = 100 \text{ mAdc}, R_{B} = 100 \text{ ohms}, R_{L} = 30 \text{ ohms})$	t _{on}	_	35	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_{C} = 1.0 \text{ Adc}, I_{B1} = I_{B2} = 100 \text{ mAdc}, R_{B} = 100 \text{ ohms}, R_{L} = 30 \text{ ohms})$	toff	_	60	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM3903 MM3904

CASE 27-02, STYLE 1 TO-52 (TO-206AC)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 2.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	500 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +125	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	490	°C/W

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS				THE TOA	Sheek Sto
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdd	c, I _B = 0)	V(BR)CEO	40	V	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E =	0)	V(BR)CBO	60	447244	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0))	V(BR)EBO	6.0	111111111111111111111111111111111111111	Vdc
Base Cutoff Current (VCE = 30 Vdc, VEB(off) = 3.0 Vdc	:)	IBEV	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB(off)} = 3.0	Vdc)	ICEX	-	50	nAdc
ON CHARACTERISTICS(1)					-
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$)	MM3903 MM3904	hFE	20 40	=	-
(I _C = 1.0 mAdc, V_{CE} = 1.0 Vdc)	MM3903 MM3904		35 70		
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MM3903 MM3904		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MM3903 MM3904		30 60		
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MM3903 MM3904		10 15	=	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		VCE(sat)	=	0.2 0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		V _{BE} (sat)	0.65	0.85 0.95	Vdc

MM3903, MM3904

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHA	ARACTERISTICS				
Current-Gain — Bandwidth Product(1) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz) MM3903 MM3904		fT	250 300	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E	= 0, f = 100 kHz)	C _{obo}		4.0	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 100 kHz)		C _{ibo}	_	8.0	pF
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) MM3903 MM3904		h _{fe}	50 100	200 400	_
SWITCHING CHARA	CTERISTICS				
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc},$	td	_	35	ns
Rise Time	$I_C = 10 \text{ mAdc}$, $I_{B1} = 1.0 \text{ mAdc}$)	t _r	_	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, MM3903 I_{B1} = I_{B2} = 1.0 \text{ mAdc}) MM3904$	t _S	= 10	175 200	ns
Fall Time		tf	-	50	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM3905 MM3906

CASE 27-02, STYLE 1 TO-52 (TO-206AC)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.06	mW mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	490	°C/W

Refer to 2N3250 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)		V _(BR) CEO	40	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		V _(BR) CBO	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)		V _{(BR)EBO}	5.0	_	Vdc
Base Cutoff Current (VCE = 30 Vdc, VBE = 3.0 Vdc)		IBEV	_	50	nAdc
Collector Cutoff Current (VCE = 30 Vdc, VBE = 3.0 Vdc)		ICEV	_	50	nAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	MM3905 MM3906	hFE	30 60	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MM3905 MM3906		40 80	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MM3905 MM3906		50 100	150 300	
$(I_C = 50 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc})$	MM3905 MM3906		30 60	=	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	MM3905 MM3906		10 15	_	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		VCE(sat)	_	0.25 0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		V _{BE} (sat)	0.65 —	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(1) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	MM3905 MM3906	fτ	200 250	=	MHz

MM3905. MM3906

Characteristic		Symbol	Min	Max	Unit	
Output Capacitance (V _{CB} = 5.0 Vdc, I _E	= 0, f = 100 kHz)		C _{obo}	- 1	5.0	pF
Input Capacitance (VBE = 0.5 Vdc, IC	= 0, f = 100 kHz)	Sales Company of the	C _{ibo}	2110	10	pF
Input Impedance (I _C = 1.0 mAdc, V _C	E = 10 Vdc, f = 1.0 kHz)	MM3905 MM3906	h _{ie}	0.5 2.0	8.0 12	k ohms
Voltage Feedback Rati (I _C = 1.0 mAdc, V _C	io E = 10 Vdc, f = 1.0 kHz)	MM3905 MM3906	h _{re}	0.1 X 10 ⁻⁴ 1 X 10 ⁻⁴	5 X 10 ⁻⁴ 10 X 10 ⁻⁴	
Small-Signal Current (IC = 1.0 mAdc, VC)	Gain E = 10 Vdc, f = 1.0 kHz)	MM3905 MM3906	h _{fe}	50 100	200 400	-
Output Admittance (I _C = 1.0 mAdc, V _C	E = 10 Vdc, f = 1.0 kHz)	MM3905 MM3906	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure (I _C = 100 \(\tmu\)Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k ohm, f = 10 Hz to 15.7 kHz)		MM3905 MM3906	NF	_19.3	5.0 4.0	dB
SWITCHING CHARAC	TERISTICS		1,50	A ROSE		1.16.35
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE(off)} =	(V _{CC} = 3.0 Vdc, V _{BE(off)} = 0.5 Vdc,		_	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r		35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 m/	MM3905 Adc, MM3906	t _S	-	200 225	ns
Fall Time	$ I_{B1} = I_{B2} = 1.0 \text{ mAdc} $	$I_{B1} = I_{B2} = 1.0 \text{ mAdc}$			60	no

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc},$	td	_	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)	tr	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc, MM3906	ts	=	200 225	ns
Fall Time	I _{B1} = I _{B2} = 1.0 mAdc) MM3905 MM3906	tf	=	60 75	ns

⁽¹⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.

MM4000 thru MM4003

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to 2N3494 for graphs for MM4000.*

MAXIMUM RATINGS

Rating	Symbol	MM4000	MM4001	MM4002	MM4003	Unit
Collector-Emitter Voltage	VCEO	100	150	200	250	Vdc
Collector-Base Voltage	VCBO	100	150	200	250	Vdc
Emitter-Base Voltage	VEBO	4.0	4.0	4.0	4.0	Vdc
Collector Current — Continuous	lc	100	500	500	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.6 3.42	1.0 5.71	1.0 5.71	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.2	5.0 28.6	5.0 28.6	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}		-65 to	o +200		°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	1 5,000,000				
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	MM4000 MM4001 MM4002 MM4003	V(BR)CEO	100 150 200 250	=	Vdc
Collector-Base Breakdown Voltage (IE = 0, IC = 100 μ Adc)	MM4000 MM4001 MM4002 MM4003	V(BR)CBO	100 150 200 250		Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 75 Vdc, I _E = 0) (V _{CB} = 150 Vdc, I _E = 0)	MM4000 MM4001 MM4002, MM4003	ICBO	=	1.0 1.0 5.0	μAdc
ON CHARACTERISTICS					
DC Current Gain(1) ($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)		hFE	20	_	_
Collector-Emitter Saturation Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	MM4000, MM4001 MM4002, MM4003	V _{CE(sat)}	=	0.6 5.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance $(V_{CB} = 20 \ Vdc, \ I_E = 0, \ f = 100 \ kHz)$	MM4000 MM4001 MM4002, MM4003	C _{obo}	=	6.0 10 20	pF

⁽¹⁾ Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%.

^{*}Refer to 2N3634 for graphs for MM4001.

Refer to 2N4930 for graphs for MM4002 and MM4003.

MAXIMUM RATINGS

Rating	Symbol	MM4005	MM4006	MM4007	Unit		
Collector-Emitter Voltage	VCEO	60	80	100	Vdc		
Collector-Base Voltage	VCBO	60	80	100	Vdc		
Emitter-Base Voltage	VEBO		5.0				
Collector Current — Continuous	lc	1.0			1.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71			Watt mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	7.0 40		Watts mW/°C			
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200			°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	25	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	175	°C/W

⁽¹⁾ R_{BJA} is measured with the device soldered into a typical printed circuit board.

MM4005 thru MM4007

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N4033 for graphs.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				-		
Collector-Emitter Breakdown Voltage(2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	MM4005 MM4006 MM4007	V(BR)CEO	60 80 100		_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MM4005 MM4006 MM4007	V(BR)CBO	60 80 100	=		Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	5.0	_	3 -	Vdc
Collector Cutoff Current ($V_{CB} = 50 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 60 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 80 \text{ Vdc}$, $I_{E} = 0$)	MM4005 MM4006 MM4007	ІСВО	=	=	100 100 100	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	_	_	100	nAdc
ON CHARACTERISTICS(2)						
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		hFE	40 50	90 150	=	-
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)}	_	0.1	-	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{BE(sat)}	-	0.7		Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)		fT	50	250	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	10	_	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	100	_	pF

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM4036 MM4037

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MM4036 MM4037	VCEO	65 40	Vdc
Collector-Base Voltage MM4036 MM4037	V _{CBO}	90 60	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Base Current	IB	500	mAdc
Collector Current — Continuous	lc	1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	7.0 40	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	25	°C/W
Thermal Resistance, Junction to Ambient	R ₀ JA(1)	175	°C/W

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						4.4
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	MM4036 MM4037	V(BR)CEO	65 40	_	143	Vdc
Collector-Base Breakdown Voltage (IC = $100 \mu Adc$, IE = 0) (IC = $10 \mu Adc$, IE = 0)	MM4036 MM4037	V(BR)CBO	90 60	=		Vdc
Emitter-Base Breakdown Voltage ($IE = 100 \mu Adc$, $IC = 0$) ($IE = 1.0 \mu Adc$, $IC = 0$)	MM4036 MM4037	V(BR)EBO	5.0 5.0	= =		Vdc
	MM4036 MM4036	ICEV	=	=	250 100	nAdo μAdo
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)	MM4036, MM4037	ICBO		_	250	nAdo
Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$ $(V_{BE} = 5.0 \text{ Vdc}, I_C = 0)$	MM4036 MM4037	IEBO	_		250 1.0	μAdo
ON CHARACTERISTICS(2)						•
DC Current Gain ($I_{C} = 100 \ \mu Adc$, $V_{CE} = 10 \ Vdc$) ($I_{C} = 150 \ mAdc$, $V_{CE} = 2.0 \ Vdc$) ($I_{C} = 150 \ mAdc$, $V_{CE} = 10 \ Vdc$) ($I_{C} = 500 \ mAdc$, $V_{CE} = 10 \ Vdc$) ($I_{C} = 1.0 \ mAdc$, $V_{CE} = 10 \ Vdc$) ($I_{C} = 150 \ mAdc$, $V_{CE} = 10 \ Vdc$) ($I_{C} = 150 \ mAdc$, $V_{CE} = 10 \ Vdc$)	MM4036 MM4036 MM4036 MM4036 MM4037 MM4037	hFE	20 20 40 20 15 50	50 60 90 40 50 75	200 140 — — 250	-
Collector-Emitter Saturation Voltage ($I_C = 150$ mAdc, $I_B = 15$ mAdc)	MM4036 MM4037	V _{CE(sat)}	-	0.3 0.3	0.65 1.4	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	× - 1	V _{BE(sat)}		1.0	1.4	Vdc

MM4036, MM4037

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
SMALL-SIGNAL CHA	ARACTERISTICS			-		
Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)		fT	60	100	en - po	MHz
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz) MM4036, MM4037		7 C _{ibo}	_	60	_	pF
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) MM4036 MM4037		C _{cb}	=	20 20	30	pF
SWITCHING CHARA	CTERISTICS					
Turn-On Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	ton	_	40	75	ns
Turn-Off Time	$(V_{CC} = 6.0 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc})$	toff	_	110	175	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM4052

CASE 26-03, STYLE 1 TO-46 (TO-206AB)

CHOPPER AND SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	30	Vdc	
Emitter-Collector Voltage	VECO	30	Vdc	
Collector-Base Voltage	VCBO	30	Vdc	
Emitter-Base Voltage	VEBO	30	Vdc	
Collector Current — Continuous	lc	500	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.86	Watt mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.75 10	Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C	

Refer to 2N2944A for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, Ig = 0)	V(BR)CEO	30	_	Vdc
Emitter-Collector Breakdown Voltage(1) (IE = 10 mAdc, IB = 0)	V(BR)ECO	30	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	30	_	Vdc
Emitter-Base Breakdown Voltage(1) (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	30	=	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ІСВО	_	0.5	nAdc
Emitter Cutoff Current (V _{EB} = 15 Vdc, I _C = 0)	^J EBO	_	0.5	nAdc
ON CHARACTERISTICS			•	
DC Current Gain(1)	hFE	20 15 3.0	=	_
Offset Voltage ($I_B = 1.0 \text{ mAdc}, I_E = 0$)	V _{EC(ofs)}		2.0	mVdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, 100 kHz \leq f \leq 1.0 MHz)	C _{obo}	_	10	pF
Input Capacitance $(V_{EB} = 10 \; Vdc, I_{C} = 0, 100 \; kHz \leqslant f \leqslant 1.0 \; MHz)$	C _{ibo}	_	5.0	pF
Small-Signal Current Gain (I _C = 10 mAdc, V_{CE} = 1.0 Vdc, f = 1.0 kHz) (I _C = 10 mAdc, V_{CE} = 1.0 Vdc, f = 4.0 MHz)	h _{fe}	20 3.0	_	
"ON" Series Resistance (I _B = 10 mAdc, f = 1.0 kHz)	rec	_	2.0	Ohms

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 20%.

MM4208 MM4209

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

Refer to MM4257 for graphs.

Max

Тур

Unit

Symbol

Min

MAXIMUM RATINGS

Rating	Symbol	MM4208	MM4209	Unit
Collector-Emitter Voltage	VCEO	12	15	Vdc
Collector-Base Voltage	VCBO	12	15	Vdc
Emitter-Base Voltage	VEBO	4.5		Vdc
Collector Current — Continuous	Ic	200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.86		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

				. 110		
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(1) $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	MM4208 MM4209	V(BR)CEO	12 15	=	_	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 100 \ \mu Adc, V_{BE} = 0$)	MM4208 MM4209	V(BR)CES	12 15	=	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MM4208 MM4209	V(BR)CBO	12 15	=	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)		V(BR)EBO	4.5	_	_	Vdc
Collector Cutoff Current (V _{CE} = 6.0 Vdc, V _{BE} = 0) (V _{CE} = 8.0 Vdc, V _{BE} = 0) (V _{CE} = 6.0 Vdc, V _{BE} = 0, T _A = 125°C) (V _{CE} = 8.0 Vdc, V _{BE} = 0, T _A = 125°C)	MM4208 MM4209 MM4208 MM4209	ICES		_ _ _	10 10 5.0 5.0	nAdc μAdc
Base Current (V _{CE} = 6.0 Vdc, V _{BE} = 0) (V _{CE} = 8.0 Vdc, V _{BE} = 0)	MM4208 MM4209	lΒ	=	=	1.0 1.0	nAdc
ON CHARACTERISTICS						
DC Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 0.5 \text{ Vdc})$	MM4208 MM4209	hFE	15 35	_ '	_	_
(I _C = 10 mAdc, V_{CE} = 1.0 Vdc)	MM4208 MM4209		30 40	_	100 120	
(I _C = 10 mAdc, V _{CE} = 1.0 Vdc, T _A = -55° C)	MM4208 MM4209		12 20	=	=	
$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$	MM4208 MM4209		30 30	_	_	
Collector-Emitter Saturation Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)(1) ($I_C = 10 \text{ mA}$, $I_B = 0.1 \text{ mA}$) ($I_C = 10 \text{ mA}$, $I_B = 1.0 \text{ mA}$)	MM4208 MM4208 MM4208, MM4209 MM4209 MM4209	VCE(sat)		11111	0.13 0.15 0.6 0.15 0.15	Vdc

Characteristic			Symbol	Min	Тур	Max	Unit
e-Emitter Saturation Voltage G = 1.0 mAdc, Ig = 0.1 mAdc) G = 10 mAdc, Ig = 1.0 mAdc) G = 50 mAdc, Ig = 5.0 mAdc)(1)		V _{BE} (sat)	— 0.75 —		0.8 .95 1.5	Vdc	
SMALL-SIGNAL CHARACTERISTICS							
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	MM42	08	fT	850 700	1300 1200	KATTA JA DAL	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)			C _{obo}		- 20	3.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 140 kHz)	2004		C _{ibo}			3.5	pF
SWITCHING CHARACTERISTICS	phAm	105	1 51		an enimal	integral	l esta che
Turn-On Time	HEW	dE U	ton		3-00	15	ns
Turn-Off Time	2 24	100	toff			25	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

MM4257 MM4258

CASE 22, STYLE 1 TO-18 (TO-206AA)

SWITCHING TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MM4257	MM4258	Unit
Collector-Emitter Voltage	VCEO	6.0	12	Vdc
Collector-Base Voltage	VCBO	6.0	12	Vdc
Emitter-Base Voltage	VEBO	4.5		Vdc
Collector Current — Continuous	IC	200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.06		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.86		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(1) (IC = 100 μ Adc, V _{BE} = 0)	MM4257 MM4258	V _(BR) CES	6.0 12	=	=	Vdc
Collector-Emitter Sustaining Voltage(1) $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	MM4257 MM4258	V _{CEO(sus)}	6.0 12	=	<u>-</u>	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MM4257 MM4258	V(BR)CBO	6.0 12		=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	4.5	-		Vdc	
Collector Cutoff Current (V _{CE} = 6.0 Vdc, V _{BE} = 0) (V _{CE} = 3.0 Vdc, V _{BE} = 0, T _A = +65°C)	ICES	=	=	0.01 5.0	μAdc	
ON CHARACTERISTICS(1)		W. 70				
DC Current Gain (IC = 1.0 mAdc, V _{CE} = 0.5 Vdc) (IC = 10 mAdc, V _{CE} = 0.3 Vdc) (IC = 50 mAdc, V _{CE} = 1.0 Vdc)		hFE	15 30 30	=	 120 	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	100	VCE(sat)	= = =	=	0.15 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{BE(sat)}	0.75	=	0.95 1.5	Vdc	
SMALL SIGNAL CHARACTERISTICS	90 . 21.	the state of		1 1 4-1		+- 1
Current-Gain — Bandwidth Product(2) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 100 \text{ MHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	MM4257 MM4258	fT	500 700	=		MHz
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)	1	Cibo			3.5	pF
Collector-Base Capacitance (VCB = 5.0 Vdc, IF = 0, f = 100 kHz)		C _{cb}	-	-	3.0	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic			Symbol	Min	Тур	Max	Unit
SWITCHING CHARA	CTERISTICS						
Turn-On Time				_	10	15	ns
Delay Time	(V _{CC} = 1.5 Vdc, V _{BE} = 0, I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		td	_	5.0	10	ns
Rise Time	ic in mas, ig in in	, 100/	t _r	_	5.0	15	ns
Turn-Off Time	(V _{CC} = 1.5 Vdc,	MM4257 MM4258	toff	=	12 16	15 20	ns
Storage Time	I _C = 10 mAdc, I _{B1} = I _{B2} = 1.0 mAdc)	MM4257 MM4258	t _S	-=	6.0 8.0	15 20	ns
Fall Time	- A	MM4257 MM4258	tf	-	6.0 8.0	10 10	ns
Storage Time (I _C \approx 10 mAdc, I _{B1} \approx 10 mAdc, I _{B2} \approx 10 mAdc) MM4257			t _S	-	-	15	ns
		MM4258	1 1	_		20	JULY 1974

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL TRANSIENT CHARACTERISTICS

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

FIGURE 5 - SWITCHING TIME TEST CIRCUIT

	V _{in} Volts	V _{BB} Volts	V _C C Volts	R1 Ohms	R2 Ohms	R3 Ohms	IC mA	IB1 mA	IB2 mA
ton	- 5.8	GND	- 1.5	130	2.2 k	5 k	10	1.0	-
toff	+9.8	-8.0	-1.5	130	2.2 k	5 k	10	1.0	1.0
ts	+9.0	-10	-3.0	270	510	390	10	10	10

DC CURRENT GAIN

MM5005 MM5006 MM5007

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

AUDIO TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

MAXIMUM RATINGS					
Rating	Symbol	MM5005	MM5006	MM5007	Unit
Collector-Emitter Voltage	VCEO	60	80	100	Vdc
Collector-Base Voltage	VCBO	80	100	120	Vdc
Emitter-Base Voltage	VEBO		5.0	4	Vdc
Collector Current — Continuous	lc		2.0		Adc
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	1.5 8.57			Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		8.0 45.7		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-	65 to +2	00	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	MM5005 MM5006 MM5007	V(BR)CEO	60 80 100	Ξ	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MM5005 MM5006 MM5007	V(BR)CBO	80 100 120	==	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$	MM5005 MM5006 MM5007	ICBO		200 200 200	nAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, I _C = 0)		IEBO	_	100	nAdc
ON CHARACTERISTICS					
DC Current Gain (IC = 1.0 mAdc, V_{CE} = 1.0 Vdc) (IC = 150 mAdc, V_{CE} = 2.5 Vdc) (IC = 200 mAdc, V_{CE} = 2.5 Vdc) (IC = 250 mAdc, V_{CE} = 2.5 Vdc)	All Types MM5005 MM5006 MM5007	hFE	40 50 50 50	250 250 250 250	_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		VCE(sat)	Jr	0.5	Vdc
Base-Emitter On Voltage (I _C = 150 mAdc, V _{CE} = 2.5 Vdc)		V _{BE(on)}	0.65	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(1) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)		fT	30	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	20	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	50	Vdc
Collector-Emitter Voltage	VCES	60	Vdc
Collector-Base Voltage	VCBO	75	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous	lc	2.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	4.0 22.8	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	44	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}(1)$	175	°C/W

⁽¹⁾ R_{BJA} is measured with the device soldered into a typical printed circuit board.

MM5262

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

Refer to 2N3724 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V _{(BR)CEO}	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, V _{BE} = 0)	V _{(BR)CES}	60	-	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	75	_	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 75 Vdc, I _E = 0)	ІСВО	_	_	100	μAdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = 0)	ICES	= -	-	. 10	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	IEBO	-	-	100	μAdc
ON CHARACTERISTICS(2)					
DC Current Gain (I _C = 100 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc) (I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)	hFE	35 40 25	100 65 35	Ξ	-
Collector-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 100 mAdc)	V _{CE(sat)}	-81	0.29	0.8	Vdc
Base-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 100 mAdc)	V _{BE(sat)}		0.94	1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS			DAKE 1	4/5	15.7
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	_	350	-	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	-	7.3	V 244	pF
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 1.0 MHz)	C _{ibo}	-	72	_	pF
SWITCHING CHARACTERISTICS					
Turn-On Time	ton		16	30	ns
Turn-Off Time	toff	-	28	60	ns

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MM5415 MM5416

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MM5415	MM5416	Unit
Collector-Emitter Voltage	VCEO	200	300	Vdc
Collector-Base Voltage	VCBO	200	350	Vdc
Emitter-Base Voltage	VEBO	4.0	7.0	Vdc
Base Current	I _B	0	.5	Adc
Collector Current — Continuous	IC	1.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		.0	Watt W/°C
Total Power Dissipation @ T _C = 50°C Linear Derating Factor	PD	1	0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	+ 200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	17.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	150	°C/W

Refer to 2N5415 for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage $\{I_C = 10 \text{ mA}, I_B = 0\}$	MM5415 MM5416	V _{CEO(sus)}	200 300		Vdc
Collector Cutoff Current (V _{CE} = 150 Vdc, I _B = 0)	MM5415, MM5416	ICEO	_	50	μAdc
Collector Cutoff Current (V _{CE} = 175 Vdc, I _E = 0) (V _{CE} = 280 Vdc, I _E = 0)	MM5415 MM5416	ICBO	_	50 50	μAdc μAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, $I_C = 0$) (VBE = 7.0 Vdc, $I_C = 0$)	MM5415 MM5416	IEBO	_	20 20	μAdc
ON CHARACTERISTICS				1907 180	100
DC Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc)	MM5415 MM5416	hFE	30 30	150 120	_
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5.0 mAdc)	MM5415, MM5416	V _{CE(sat)}	_	2.5	Vdc
Base-Emitter On Voltage (I _C = 50 mAdc, V _{CE} = 10 V)	MM5415, MM5416	V _{BE(on)}		1.5	Vdc
SMALL-SIGNAL CHARACTERISTICS				Unit.	
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 5.0 MHz)		fŢ	15		MHz
Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)		C _{obo}	7.7	25	pF
Current Gain — High Frequency (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	25		-
Real Part of Input Impedance (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 MHz)		Re(h _{ie})		300	Ohms

MAXIMI IM BATINGS

WAXINOW NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	V _{EBO}	12	Vdc
Collector Current — Continuous	IC	300	mAdd
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	375 2.14	mW W/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.25 7.15	Watts W/°C
Operating and Storage Junction	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	140	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	467	°C/W

MM6427

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

DARLINGTON TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	50	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	V(BR)EBO	12	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ІСВО	_	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)	IEBO	_	100	nAdc
ON CHARACTERISTICS(1)				
DC Current Gain ($I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	h _{FE}	5000 10,000	=	-
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)	V _{CE(sat)}	_	1.5	Vdc
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	V _{BE(on)}	· —	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	-	8.0	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 100 kHz)	C _{ibo}	_	15	pF
Small-Signal Current Gain(1) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	h _{fe}	1.25	_	_

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Motorola's multiple (Duals and Quads) transistors have been implemented with discrete transistor chips that have proven to be the most popular for all-around performance at low cost.

Packaging options include plastic and ceramic DIP's, ceramic flat pak, and various metal-can outlines.

Multiple Transistors

2N2060,A 2N2223,A 2N2480,A

2N2060 JAN, JTX, JTXV AVAILABLE CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MD2218 for graphs.

MAXIMUM RATINGS

Rating	Symbol	2N2060,A 2N2223,A	2N2480	2N2480A	Unit
Collector-Emitter Voltage	VCEO	60	40	40	Vdc
Collector-Emitter Voltage	VCER	80	_	_	Vdc
Collector-Base Voltage	Vсво	100	75	80	Vdc
Emitter-Base Voltage	VEBO	7.0	5.0	5.0	Vdc
Collector Current — Continuous	lc	No.	500		mAdc
	195	One Die		All Die ıal Power	
Total Device Dissipation @ T _A = 25°C	PD	0.5 0.5 0.3 2.86 2.86 1.72	ARS OF CALL	0.6 0.6 0.6 3.43 3.43 3.43	mW/°C
Total Device Dissipation @ T _C = 25°C	PD	1.5 1.6 1.0 8.6 9.1 5.7	Asserts .	3.0 3.0 2.0 17.2 11.4 11.4	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	2=	-65 to +2	00	°C

Character	istic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 100 mAdc, R _{BE} ≤ 10 ohms)	2N2060, 2N2060A, 2N2223, 2N2223A	VCER(sus)	80	_	Vdc
Collector-Emitter Sustaining Voltage(1) (I _C = 20 mAdc, I _B = 0)	2N2480 2N2480A	V _{CEO(sus)}	40 40	=	Vdc
$(I_C = 30 \text{ mAdc}, I_B = 0)$	2N2060, 2N2060A, 2N2223, 2N2223A		60	_	
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480* 2N2480A*	V _(BR) CBO	100 75 80	=	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480, 2N2480A	V(BR)EBO	7.0 5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0, T _A = 150°C)	2N2480, 2N2480A	ICBO	_	15	μAdc
$(V_{CB} = 60 \text{ Vdc}, I_E = 0)$	2N2480 2N2480A		=	0.050 0.020	
$(V_{CB} = 80 \text{ Vdc}, I_{E} = 0)$	2N2060, 2N2060A 2N2223, 2N2223A		=	0.002 0.010	
$(V_{CB} = 80 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	2N2060, 2N2060A 2N2223, 2N2223A		_	10 15	
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	2N2060, 2N2060A 2N2223, 2N2223A 2N2480 2N2480A	IEBO	=	2.0 10 50 20	nAdc

2N2060,A

Charac	teristic	Symbol	Min	Max	Unit
ON CHARACTERISTICS					
DC Current Gain		hFE			1
$(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N2060, 2N2060A 2N2223, 2N2223A	"FE	25 15	75 —	<u> </u>
(I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	2N2060, 2N2060A 2N2223, 2N2223A 2N2480 2N2480A	N	30 25 20 35	90 150 —	E SHOWAI
(I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc)	2N2060, 2N2060A 2N2480 . 2N2480A	26.5	40 30 50	120 350 200	- 19 ⁸
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N2060, 2N2060A 2N2223, 2N2223A	i i	50 50	150 200	
Collector-Emitter Saturation Voltage (IC = 50 mAdc, IB = 5.0 mAdc)	2N2060A 2N2060, 2N2223, 2N2223A, 2N2480A 2N2480	VCE(sat)	=	0.6 1.2 1.3	Vdc
Base-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5.0 mAdc)	2N2060, 2N2060A, 2N2223, 2N2223A, 2N2480A 2N2480	V _{BE(sat)}	-10	0.9 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	(4)				
Current-Gain — Bandwidth Product $(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz})$	2N2223, 2N2223A 2N2480, 2N2480A 2N2060, 2N2060A	fτ	50 60		MHz
Output Capacitance (VCB = 10 Vdc, I _E = 0, f = 1.0 MHz)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480A 2N2480	C _{obo}	=	15 18 20	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$	2N2060, 2N2060A, 2N2223, 2N2223A, 2N2480A	C _{ibo}	- /	85	pF
Input Impedance $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2060, 2N2060A 2N2480A	h _{ie}	1000 1000	4000 5000	ohms
Input Impedance (IC = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480A	h _{ib}	20 20	30 35	ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	2N2223, 2N2223A	h _{rb}	- 5	3.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	2N2060, 2N2060A 2N2223, 2N2223A 2N2480A	h _{fe}	50 40 50	150 200 300	r
Output Admittance (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	2N2060, 2N2060A, 2N2480A	h _{oe}		16	μmhos
Output Admittance $(I_C = 1.0 \text{ mAdc}, V_{CB} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N2223, 2N2223A	h _{ob}	_	0.5	μmhos
Noise Figure (I _C = 0.3 mAdc, V_{CE} = 10 Vdc, R_{S} = 510 Ω ,		NF			dB
f = 1.0 kHz, BW = 1.0 Hz) (I _C = 0.3 mAdc, V _{CE} = 10 Vdc,	2N2480, 2N2480A		_	8.0	

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Ch	aracteristic	Symbol	Min	Max	Unit
R _S = 510 Ω , f = 1.0 kHz, BW = 200 Hz) (IC = 0.3 mAdc, V _{CE} = 10 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz, BW = 15.7 kHz)(2)	2N2060, 2N2060A	Mark Survey	<u></u>	8.0	
MATCHING CHARACTERISTICS	4.515	OFFICE OF THE PERSON OF THE PE		0.0	7
DC Current Gain Ratio(3) (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	2N2060, 2N2060A, 2N2223A 2N2223, 2N2480, 2N2480A	hFE1/hFE2	0.9 0.8	1.0 1.0	- NO 50
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$		000 Lynn 000 Conf	0.9	1.0 1.0	
Base-Emitter Voltage Differential (IC = 100 μ Adc, VCE = 5.0 Vdc)	2N2060A 2N2060, 2N2223A, 2N2480A	V _{BE1} -V _{BE2}	2. <u>20</u> 2	3.0 5.0	mVdc
	2N2480 2N2223	60,07	rent— ne Ven—m N	10 15	

2N2060, 2N2060A, 2N2480A

2N2480

2N2060A

2N2223, 2N2223A

2N2060

2N2480, 2N2480A (1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Base-Emitter Voltage Differential Change Due to Temperature

 $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$

 $(I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc,$

 $T_A = -55^{\circ}C \text{ to } + 125^{\circ}C)$

(2) Amplifier: 3.0 Db points at 25 Hz and 10 kHz with a roll-off of 6.9 dB per octave.

(3) The lowest hee reading is taken as hee1 for this ratio.

Δ(V_{BE1}-V_{BE2})

 ΔT

5.0

10

5.0

10

25

15

μV/°C

2N2453,A

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2920 for graphs.

MAXIMUM RATINGS

INIAXIIVIOIVI KATINGS				
Rating	Symbol	2N2453	2N2453A	Unit
Collector-Emitter Voltage	VCEO	30	50	Vdc
Collector-Base Voltage	VCBO	60	80	Vdc
Emitter-Base Voltage	VEBO	7.0		Vdc
Collector Current — Continuous	lc	5	60	mAdc
		One Die	Both Die	60
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	300 1.71	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	600 3.43	1200 6.86	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	No. of the Control of			
Collector-Emitter Sustaining Voltage(1) $ (I_{\hbox{\scriptsize C}} = 10 \text{ mAdc}, I_{\hbox{\scriptsize B}} = 0) \\ 2N2453 \\ 2N2453A $	VCEO(sus)	30 50	-	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0) 2N2453 2N2453A	V(BR)CBO	60 80	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \mu Adc, I_C = 0$)	V(BR)EBO	7.0	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T_A = 150°C)	ІСВО	=	0.005 10	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	IEBO	_	0.002	μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, T _A = -55° C) (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, T _A = -55° C)	hFE	80 40 150 75	— 600 —	_
Collector-Emitter Saturation Voltage ($I_C = 5.0 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)	V _{CE} (sat)	_	1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 5.0 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)	V _{BE} (sat)	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 30 \text{ MHz}$)	fτ	60	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$	C _{obo}	— k	8.0	pF
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 140 kHz)	C _{ibo}		10	pF
Input Impedance (IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz)	h _{ie}	5.0	_	kohms
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)	hib	20	30	Ohms

2N2453.A

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{re}	_	6.0	X 10-4
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{rb}	_	5.0	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{fe}	150	600	_
Output Admittance (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{oe}	5.0	30	μmhos
Output Admittance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{ob}	_	0.2	μmho
Noise Figure (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 1.0 kHz)	NF	_	7.0	dB
MATCHING CHARACTERISTICS			77 PK F	
DC Current Gain Ratio(2) $ \begin{cases} \text{(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)} & \text{2N2453A} \\ \text{(I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc)} \\ \text{(I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc, T_{A} = -55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C)} \end{cases} $	hFE1/hFE2	0.90 0.90 0.85	1.0 1.0 1.0	
Base-Emitter Voltage Differential ($I_C = 10 \mu Adc, V_{CE} = 5.0 Vdc$) ($I_C = 1.0 \mu Adc, V_{CE} = 5.0 Vdc$)	VBE1-VBE2		3.0 5.0	mVdc

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

 $(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C \ to + 125^{\circ}C) \ 2N2453$

Base-Emitter Voltage Differential Gradient

10 5.0 μV/°C

 $\Delta(V_{BE1}-V_{BE2})$

ΔΤΑ

⁽²⁾ Lowest hee reading is taken as hee1 for this ratio.

2N2639 thru 2N2644

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2913 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	45		Vdc		
Collector-Base Voltage	V _{CBO}	45		45		Vdc
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	lc	30		mAdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.72	600 3.43	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	600 3.43	1200 6.87	mW mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage(1) V_{CEO(sus)} 45 Vdc $(I_C = 10 \text{ mAdc}, I_B = 0)$ Collector Cutoff Current 0.010 ICEO μAdc $(V_{CE} = 5.0 \text{ Vdc}, I_{B} = 0)$ Collector Cutoff Current **ICBO** μAdc $(V_{CB} = 45 \text{ Vdc}, I_E = 0)$ 0.010 $(V_{CB} = 45 \text{ Vdc}, I_{E} = 0, T_{A} = +150^{\circ}\text{C})$ 10 0.010 Emitter Cutoff Current **IEBO** μAdc $(V_{EB} = 5.0 \text{ Vdc}, I_{C} = 0)$ ON CHARACTERISTICS(1) DC Current Gain hFE (IC = 10 μ Adc, VCE = 5.0 Vdc) 2N2639, 2N2640, 2N2641 50 300 2N2642, 2N2643, 2N2644 100 300 2N2639, 2N2640, 2N2641 $(I_C = 10 \, \mu Adc, V_{CE} = 5.0 \, Vdc, T_A = -55^{\circ}C)$ 10 2N2642, 2N2643, 2N2644 20 $(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$ 2N2639, 2N2640, 2N2641 55 2N2642, 2N2643, 2N2644 110 $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$ 2N2639, 2N2640, 2N2641 65 2N2642, 2N2643, 2N2644 130 Collector-Emitter Saturation Voltage VCE(sat) 1.0 Vdc $(I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc})$ Base-Emitter Saturation Voltage VBE(sat) Vdc 0.6 1.0 $(I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc})$ SMALL-SIGNAL CHARACTERISTICS Current-Gain — Bandwidth Product 40 MHz (IC = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 20 MHz) Cobo **Output Capacitance** 8.0 pF $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$ Input Impedance hib 25 32 ohms ($I_C = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, f = 1.0 kHz, $I_E = -1.0 \text{ mA}$) X 10-6 Voltage Feedback Ratio hrb 600

 $(I_C = 1.0 \text{ mAdc}, V_{CB} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}, I_E = -1.0 \text{ mA})$

2N2639 thru 2N2644

Characteristic		Symbol	Min	Max	Unit
Small-Signal Current Gain (IC = 1.0 mAdc, $V_{CB} = 5.0$ Vdc, $f = 1.0$ kHz)	2N2639, 2N2640, 2N2641 2N2642, 2N2643, 2N2644	h _{fe}	65 130	600 600	_
Output Admittance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz, I _E =	= -1.0 mA)	h _{ob}	_	1.0	μmhos
Noise Figure (I _C = 10 μ Adc, V _{CB} = 5.0 Vdc, R _S = 10 k Ω , Bandwidth = 10 Hz to 15 kHz)		NF	-	4.0	dB
MATCHING CHARACTERISTICS		DECY.		1757 62	
DC Current Gain Ratio(2) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	2N2639, 2N2642 2N2640, 2N2643	hFE1/hFE2	0.9	1.0	10. <u>-</u>
Base-Emitter Voltage Differential (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	2N2639, 2N2642	V _{BE1} -V _{BE2}	_	5.0	mVdc

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ The lowest hee reading is taken as hee1 for this test.

2N2652,A

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2060,A for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	6	50	Vdc		
Collector-Base Voltage	VCBO	100		Vdc		
Emitter-Base Voltage	VEBO	7.0		7.0		Vdc
Collector Current — Continuous	IC	500		mAdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.3 1.72	0.6 3.43	Watt mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 5.7	2.0 11.4	Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C		

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			THE TANK	auto e e
Collector-Emitter Breakdown Voltage(1) (I _C = 20 mAdc, I _B = 0)	V(BR)CEO	60	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V _(BR) CBO	100		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	7.0	n -	Vdc
Collector Cutoff Current (VCB = 50 Vdc, IE = 0) (VCB = 50 Vdc, IE = 0, T_A = 150°C)	ICBO	- 1	0.010 15	μAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0$) 2N2652	IEBO	_	0.010	μAdc
ON CHARACTERISTICS	Landa toka	pt_101	P 19 (4)	
DC Current Gain ($I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc$) ($I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc$) ($I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc, T_{A} = -55^{\circ}C$)	hFE	35 50 15	200	- Include
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{CE(sat)}		1.2	Vdc
Base-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{BE(sat)}		0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS		North In the		city sol
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	60	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	Acr- 1	15	pF
Input Capacitance (VBE = 0, 0.5 Vdc, IC = 0, f = 1.0 MHz)	C _{ibo}	_	85	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	hie	1.0	10.5	kohms
Input Impedance (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{ib}	20	35	ohms
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	hfe	50	300	in to st in
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{oe}	_	50	μmhos
Noise Figure ($I_C = 0.3 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $R_S = 610 \text{ ohms}$, B. W. = 1.0 Hz, f = 1.0 kHz)	NF	_	8.0	dB
MATCHING CHARACTERISTICS		A CONTRACTOR	The State of the	in a law
DC Current Gain Ratio(2) ($I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc$) 2N2652 ($I_C = 1.0 mAdc, V_{CE} = 5.0 Vdc$) 2N2652	hFE1/hFE2	0.85 0.85	1.0 1.0	
Base-Emitter Voltage Differential ($I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc$) ($I_C = 1.0 mAdc, V_{CE} = 5.0 Vdc$)	V _{BE1} -V _{BE2}		3.0 3.0	mVdc

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

 $(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55 \ to + 125^{\circ}C)$

Base-Emitter Voltage Differential Gradient

 $\Delta(V_{BE1}-V_{BE2})$

μV/°C

⁽²⁾ The lowest of the two hee readings is taken as hee1 for the purpose of measurement.

2N2720 2N2721

CASE 654-07, STYLE 1

DUAL **AMPLIFIER TRANSISTOR**

NPN SILICON

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	6	0	Vdc
Collector-Base Voltage	V _{CBO}	8	10	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	lc	40		mAdc
of Park all set		One Die	Both Die	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.3 1.71	0.6 3.4	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.6 3.4	1.2 6.8	Watt mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

Refer to 2N2060 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1077	WALK 440
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEC	60	-	Vdc
Collector Cutoff Current (V _{CE} = 5.0 Vdc, I _B = 0)	ICEO	The Contract of the Contract o	10	nAdc
Collector Cutoff Current ($V_{CB} = 60$ Vdc, $I_{E} = 0$) ($V_{CB} = 60$ Vdc, $I_{E} = 0$, $T_{A} = 150$ °C)	СВО		0.01 10	μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, IC = 0)	IEBO	N 100 H	10	nAdc
ON CHARACTERISTICS		P (214.7
DC Current Gain $(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$ $(I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc)$ $(I_C = 10 \ mAdc, V_{CE} = 5.0 \ Vdc)$	hFE	30 35 42	120 — —	=/_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}		1.0	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE} (sat)	0.65	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS		The Desired States	dirity .	10 %
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ mAdc}$	0 MHz) f _T	80	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}		6.0	pF
Input Impedance (IE = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)	hib	25	32	ohms
Voltage Feedback Ratio (I _E = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{rb}	1 - 1	500	X 10-6
Small-Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hfe	30	200	<u> </u>
Output Admittance (I _E = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	h _{ob}	_	1.0	μmhos
MATCHING CHARACTERISTICS			0 T 16 T 1	Q 2 1800
DC Current Gain Ratio(2) (IC = 100 μ Adc, VCE = 5.0 Vdc) 2N2720 2N2721	h _{FE1} /h _{FE}	0.9 0.8	1.0	_
Base-Emitter Voltage Differential (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc) 2N2720 2N2721	V _{BE1} -V _B	=2	5.0 10	mVdc
Base-Emitter Voltage Differential Change Due to Temperature (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, T _A = -55 to $+25$ °C) 2N2720 2N2721	Δ(V _{BE1} -V _E	E2)	0.8 1.6	mV
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = +25 \ to +125^{\circ}C)$ 2N2720 2N2721	_ 19x3. 9_2	=	1.0 2.0	

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ The lower of the two hFE readings is taken as hFE1 for the purpose of measurement.

2N2722

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2920 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	4	45			
Collector-Base Voltage	V _{CBO}	45		Vdc		
Emitter-Base Voltage	V _{EBO}	5.0		5.0		Vdc
Collector Current — Continuous	lc	40		mAdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.3 1.7	0.6 3.4	Watt mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.6 3.4	1.2 6.8	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	V-			
Collector-Emitter Breakdown Voltage(1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	45	-	Vdc
Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	V(BR)CBO	45	_	Vdc
Collector Cutoff Current $(V_{CE} = 5.0 \text{ Vdc}, I_B = 0)$	ICEO	_	2.0	nAdc
Collector Cutoff Current (VCB = 30 Vdc, I _E = 0) (VCB = 30 Vdc, I _E = 0, T_A = 150°C)	ІСВО	_	0.001 1.0	μAdc
Emitter Cutoff Current $(V_{EB} = 5.0 \text{ Vdc}, I_{C} = 0)$	IEBO	-	1.0	nAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 1.0 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 0.1 mAdc, V _{CE} = 5.0 Vdc)	hFE	50 100 125	250 — —	_
Collector-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc})$	V _{CE(sat)}	_	1.0	Vdc
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc})$	V _{BE(sat)}	0.65	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz})$	fT	100		MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_	6.0	pF
Input Impedance ($I_E = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hib	25	32	ohms
Voltage Feedback Ratio $(I_E = 1.0 \text{ mAdc}, V_{CB} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{rb}	_	600	X 10-6
Small-Signal Current Gain $(I_E = 0.1 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	100	700	_
Output Admittance ($I_E = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ob}	_	1.0	μmhos
Noise Figure $$ (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 10 Hz to 15.7 kHz)	NF	_	4.0	dB
MATCHING CHARACTERISTICS				
DC Current Gain Ratio(2) (IC = 1.0 μ Adc, VCE = 5.0 Vdc)	hFE1/hFE2	0.9	1.0	-
Base-Emitter Voltage Differential (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	V _{BE1} -V _{BE2}	-	5.0	mVdc
Base-Emitter Voltage Differential Change Due to Temperature (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, T _A = -55 to +25°C) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, T _A = +25 to +125°C)	Δ(V _{BE1} –V _{BE2})	_	0.8 1.0	mVdc

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ The lower of the two hFE readings is taken as hFE1 for the purpose of measurement.

2N2723

CASE 20-03, STYLE 8 TO-72 (TO-206AF)

DARLINGTON TRANSISTOR

NPN SILICON

Refer to 2N998 for graphs.

MAXIMUM RATINGS

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage (Base 1 and Base 2 open)	V _{CE2O}	60	Vdc
Collector-Base Voltage	V _{CB1}	80	Vdc
Emitter-Base Voltage	V _{E2B1}	12	Vdc
Collector Current — Continuous	IC	40	Adc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	0.5 2.9	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.8 10.5	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Symbol	Min	Max	Unit
		TOWNS .	Than .
V(BR)CE2O	60	en o harr	Vdc
V(BR)CB1O	80	K-(=, 5)	Vdc
V(BR)E2B1O	12	-	Vdc
I _{CB10}	_	0.01 10	μAdc
IE2B1O	_	10	nAdc
hFE	2000	10,000	GC J 5V
VCE2(sat)	_	1.0	Vdc
V _{BE2(sat)}		1.7	Vdc
4			
C _{ob1o}	_	10	pF
h _{fe}	1500	15,000	_
h _{fe}	5.0	-	_
NF	_	10	dB
	V(BR)CE2O V(BR)CB1O V(BR)E2B1O ICB1O IE2B1O PFE VCE2(sat) VBE2(sat) Cob1o hfe hfe	V(BR)CE2O 60 V(BR)CB1O 80 V(BR)E2B1O 12 ICB1O — IE2B1O — VCE2(sat) — VBE2(sat) — Cob1o — hfe 1500 hfe 5.0	V(BR)CE2O 60 — V(BR)CB1O 80 — V(BR)E2B1O 12 — ICB1O — 0.01 — 10 IE2B1O — 10 hFE 2000 10,000 VCE2(sat) — 1.7 Cob1o — 10 hfe 1500 15,000 hfe 5.0 —

⁽¹⁾ Pulse Test: Pulse Width \leq 12 ms, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage (Base 1 and Base 2 open)	V _{CE2O}	40	Vdc
Collector-Base Voltage	V _{CB10}	60	Vdc
Emitter-Base Voltage (Pin 4 to Pin 2)	V _{E2B10}	15 7.5	Vdc
Collector Current — Continuous	lC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.9	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.5	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

2N2785

CASE 22-03, STYLE 8 TO-72 (TO-206AF)

DARLINGTON TRANSISTOR

NPN SILICON

Refer to 2N998 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			7/15	
Collector-Emitter Breakdown Voltage(1) (IC = 20 mAdc, I _{B1} = 0)	V(BR)CEO2O	40	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _{E2} = 0)	V(BR)CBO10	60	_	Vdc
Emitter-Base Breakdown Voltage (I _{E2} = 100 µAdc, I _C = 0)	V(BR)E2BO1O	15	_	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, I _B = 0)	ICEO	5 = . *	500	nAdc
Collector Cutoff Current $(V_{CB1} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB1} = 30 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ІСВО	- -	0.05 10	μAdc
Emitter Cutoff Current ($VE2B1 = 5.0 \text{ Vdc}$, $IC = 0$)	IEBO	Special Control	20	nAdc
ON CHARACTERISTICS	I wash or	Dytto /	Y 1 - 100	6 - 6 - 6
DC Current Gain(1) (IC = 1.0 mAdc, V _{CE2} = 4.0 Vdc) (IC = 10 mAdc, V _{CE2} = 5.0 Vdc) (IC = 100 mAdc, V _{CE2} = 5.0 Vdc)	hFE	600 1200 2000	_ 20,000	
Collector-Emitter Saturation Voltage (I _C = 15 mAdc, I _{B1} = 3.0 mAdc)	VCE(sat)	Maria de la companya	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		- Non-C		and Man
Output Capacitance (V _{CB1} = 10 Vdc, I _{E2} = 0, f = 1.0 MHz)	C _{ob1o}	- 4	30	pF
Input Impedance (IC = 1.0 mAdc, V_{CB1} = 5.0 Vdc, f = 1.0 kHz)	h _{ib}	30	80	Ohms
Voltage Feedback Ratio (IC = 1.0 mAdc, V _{CE2} = 5.0 Vdc, f = 1.0 kHz)	h _{rb}	1.5	10	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE2} = 5.0 Vdc, f = 1.0 kHz)	hfe	600		-
Current Gain — High Frequency (I _C = 1.0 mAdc, V _{CE2} = 5.0 Vdc, f = 10 MHz)	hfe	1.0	77	-
Output Admittance (I _C = 1.0 mAdc, V _{CR1} = 5.0 Vdc, f = 1.0 kHz)	h _{ob}	_	0.5	μmhos

2N2903

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

MAXIMOM NATINGS						
Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	30		Vdc		
Collector-Base Voltage	V _{CBO}	60		Vdc		
Emitter-Base Voltage	VEBO	7.0		7.0		Vdc
Collector Current — Continuous	Ic	50		mAdc		
200		One Die	Both Die	North		
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	200 1.14	300 1.71	mW mW/°C		
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	0.6 3.43	1.2 6.86	Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C		

Refer to 2N2920 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			-15-14	
Collector-Emitter Sustaining Voltage(1) (I _C = 10 mAdc, I _B = 0)	V _{CEO(sus)}	30	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \mu Adc, I_C = 0$)	V(BR)EBO	7.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	ICBO	pulled 19	0.01 15	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO	_	0.01	μAdc
ON CHARACTERISTICS				
DC Current Gain $(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$ $(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C)$ $(I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc)$ $(I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C)$	hFE	60 25 125 60	625 —	-
Collector-Emitter Saturation Voltage $(I_C = 5.0 \text{ mAdc}, I_B = 0.5 \text{ mAdc})$	V _{CE(sat)}	_	1.0	Vdc
Base-Emitter Saturation Voltage $(I_C = 5.0 \text{ mAdc}, I_B = 0.5 \text{ mAdc})$	V _{BE(sat)}		0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product $(I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 30 \text{ MHz})$	f _T	60	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$	Cobo	. —	8.0	pF
Input Capacitance ($V_{BE} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 140 \text{ kHz}$)	Cibo	_	10	pF
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hie	1.0	Dr. 25/	kohm
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hib	20	30	ohms
Voltage Feedback Ratio $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{re}	-	6.0	X 10-4
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hrb	_	5.0	X 10-4
Small-Signal Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	150	600	_
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hoe	5.0	30	μmhos
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hob	_	0.2	μmho
Noise Figure (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kohms, f = 1.0 kHz)	NF	-	7.0	dB
MATCHING CHARACTERISTICS				-0-
DC Current Gain Ratio(2) ($I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	hFE1/hFE2	0.8	1.0	1.00000
Base-Emitter Voltage Differential (I $_{C}=10~\mu Adc, V_{CE}=5.0~Vdc)$	V _{BE1} -V _{BE2}	à <u></u> -	10	mVdc
Base-Emitter Voltage Differential Gradient (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, T _A = -55° C to $+125^{\circ}$ C)	$\frac{\Delta(V_{BE1}-V_{BE2})}{\Delta T_{A}}$		20	μV/°C

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ Lowest hee reading is taken as hee1 for this ratio.

MAXIMUM RATINGS

MAXIMUM RATINGS				
Rating	Symbol	2N2913 thru 2N2918	2N2919 2N2920	Unit
Collector-Emitter Voltage	VCEO	45	60	Vdc
Collector-Base Voltage	VCBO	45	60	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	lc	30		mAdc
		One Die	Both Die	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	300 1.7	500 2.86	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	750 4.3	1500 8.6	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

2N2913 thru 2N2920

JAN, JTX, JTXV, JANS AVAILABLE CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			- I			
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	2N2913 thru 18, 2N2919, 2N2920	V(BR)CEO(sus)	45 60	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu Adc, I_E = 0$)	2N2913 thru 18, 2N2919, 2N2920	V(BR)CBO	45 60	=	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	6.0	=	-	Vdc
Collector Cutoff Current (V _{CE} = 5.0 Vdc, I _B = 0)		ICEO	_	-	0.002	μAdd
Collector Cutoff Current (V _{CB} = 45 Vdc, I _E = 0)	2N2913 thru 18, 2N2919, 2N2920	ICBO	=	=	0.010 0.002	μAdd
$(V_{CB} = 45 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	All Types		_	_	10	1
Emitter Cutoff Current (VEB = 5.0 Vdc, I _C = 0)		IEBO	-	-	0.002	μAdd
ON CHARACTERISTICS			4.1			
DC Current Gain(1) (IC = 10 μ Adc, VCE = 5.0 Vdc)	2N2913,15,17,19, 2N2914,16,18,20	hFE	60 150	=	240 600	-
$(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C)$	2N2913,15,17,19, 2N2914,16,18, 2N2920		15 30 40	<u>-</u>	=	
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N2913,15,17,19, 2N2914,16,18,20	107	100 225	_ =	=	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N2913,15,17,19, 2N2914,16,18,20		150 300	_	_	
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc)		VCE(sat)	-	-	0.35	Vdc
Base-Emitter On Voltage (I _C = 100 μAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	-	-	0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 500 μAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)	-6	fT	60			MHz

2N2913 thru 2N2920

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Output Capacitance (VCB = 5.0 Vdc, IE = 0, f = 140 kHz)		C _{obo}	_	4.0	6.0	pF
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz)	L. Kalana	h _{ib}	25	28	32	ohms
Output Admittance (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)		h _{ob}	-		1.0	μmhos
Noise Figure (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 1.0 kHz, BW = 200 Hz)	2N2914,16,18,20, 2N2913,15,17,19	NF	=	2.0 3.0	3.0 4.0	dB
(I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 10 Hz to 15.7 kHz, BW = 10 kHz)	2N2914,16,18,20, 2N2913,15,17,19	nic uni	_	2.0 3.0	3.0 4.0	

MATCHING CHARACTERISTICS

DC Current Gain Ratio(2)		hFE1/hFE2				_
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N2917,18,		0.8	_	1.0	
7,000	2N2915,16,19,20		0.9	_	1.0	Tr mile
Base-Emitter Voltage Differential		VBE1-VBE2			n al	mVdc
$(I_C = 10 \mu\text{Adc} \text{ to } 1.0 \text{mAdc}, V_{CF} = 5.0 \text{Vdc})$	2N2917,18,	, DET DEZ		_	10	
0	2N2915,16,19,20		_	_	5.0	
					1 7	100
$(I_C = 100 \mu Adc, V_{CF} = 5.0 Vdc)$	2N2917,18,		_	_	5.0	
	2N2915,16,19,20		_	_	3.0	
Base-Emitter Voltage Differential Change Due to	Temperature	Δ(VBE1-VBE2)	34			mVdo
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc,$		DE! DEL			100	1
$T_A = -55^{\circ}C \text{ to } +25^{\circ}C)$	2N2917,18,		_	_	1.6	
	2N2915,16,19,20		-	_	0.8	
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc,$	2N2917,18			_	2.0	
$T_A = +25^{\circ}C \text{ to } +125^{\circ}C)$	2N2915,16,19,20		-	_ 100	1.0	127

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ The lowest hee reading is taken as hee1 for this ratio.

2N3043 thru 2N3048

CASE 610A-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	45		Vdc		
Collector-Base Voltage	VCBO	45		Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	IC	30		mAdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	250 1.67	350 2.33	mW mW/°C		
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	0.7 4.67	1.4 9.33	Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C		

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage(1) 45 Vdc V(BR)CEO $(I_C = 10 \text{ mAdc}, I_B = 0)$ Emitter-Base Breakdown Voltage 5.0 V(BR)EBO Vdc $(I_E = 10 \, \mu Adc, I_C = 0)$ Collector Cutoff Current Ісво μAdc $(V_{CB} = 45 \text{ Vdc}, I_E = 0)$ 0.010 $(V_{CB} = 45 \text{ Vdc}, I_{E} = 0, T_{A} = +150^{\circ}\text{C})$ 10 Emitter Cutoff Current **IEBO** 0.010 μAdc $(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$ ON CHARACTERISTICS DC Current Gain(1) hFE $(I_C = 10 \mu Adc, V_{CE} = 5.0 Vdc)$ 2N3043, 2N3044, 2N3045 100 300 2N3046, 2N3047, 2N3048 50 200 $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$ 2N3043, 2N3044, 2N3045 130 2N3046, 2N3047, 2N3048 65 Collector-Emitter Saturation Voltage 1.0 Vdc VCE(sat) $(I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc})$ Base-Emitter On Voltage VBE 0.8 Vdc 0.6 $(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$ **SMALL-SIGNAL CHARACTERISTICS** Current-Gain — Bandwidth Product fT 30 MHz (I_C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 20 MHz) Output Capacitance Cobo 8.0 pF $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$ Input Impedance hie Ohms $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$ 2N3043, 2N3044, 2N3045 3.2k 19k 2N3046, 2N3047, 2N3048 1.6k 13k Small-Signal Current Gain hfe $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$ 2N3043, 2N3044, 2N3045 130 600 2N3046, 2N3047, 2N3048 65 400 Output Admittance hoe μmhos $(t_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz})$ 100 70 NF (IC = 10 μ Adc, VCE = 5.0 Vdc, RS = 10 kohms, Bandwidth = 10 Hz to 15.7 kHz)

2N3043 thru 2N3048

Characteristic		Symbol	Min	Max	Unit
MATCHING CHARACTERISTICS					
DC Current Gain Ratio(2) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	2N3043, 2N3046 2N3044, 2N3047	hFE1/hFE2	0.9	1.0 1.0	_
Base-Emitter Voltage Differential (IC = 10 μ Adc, VCE = 5.0 Vdc)	2N3043, 2N3046 2N3044, 2N3047	V _{BE1} -V _{BE2}	_	5.0 10	mVdc
Base-Emitter Voltage Differential Temperature Gradient (IC = 10 μ Adc, VCE = 5.0 Vdc, TA = -55 to $+125$ °C)	2N3043, 2N3046 2N3044, 2N3047	$\frac{\Delta(V_{\text{BE1}}-V_{\text{BE2}})}{\Delta T_{\text{A}}}$	2 <u></u> -	10 20	μV/°C

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ The lowest hee reading is taken as hee1 for this test.

2N3425

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTORS

NPN SILICON

Refer to MD2369,A,B for graphs.

Max

Unit

Min

Symbol

MAXIMUM RATINGS

Rating	Symbol	Va	Unit			
Collector-Emitter Voltage	VCEO	15		Vdc		
Collector-Emitter Voltage	VCER	20		Vdc		
Collector-Base Voltage	V _{CBO}	40		40		Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.3 1.72	0.4 2.28	Watt mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.75 4.3	1.5 8.55	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	°C			

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic

OFF CHARACTERISTICS			No.	138
Collector-Emitter Breakdown Voltage(1) (I _C = 30 mAdc, R _{BE} ≤ 10 ohms)	V _{CER(sus)}	20		Vdc
Collector-Emitter Sustaining Voltage(1) (I _C = 10 mAdc, I _B = 0)	V _{CEO(sus)}	15	10,44	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{EB(off)} = 0.25 Vdc, T _A = 125°C)	ICEX	_	15	μAdc
Collector Cutoff Current $(V_{CB}=20 \text{ Vdc}, I_{E}=0)$ $(V_{CB}=20 \text{ VDc}, I_{E}=0, T_{A}=150^{\circ}\text{C})$	ІСВО	=	0.025 15	μAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0)	IEBO	_	0.2	μAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 0.5 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	12 30 12	120 —	-
Collector-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 7.0$ mAdc, $I_B = 0.7$ mAdc, $T_A = -55^{\circ}C$ to $+125^{\circ}C$)	V _{CE(sat)}	_	0.4 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 7.0 \text{ mAdc}$, $I_B = 0.7 \text{ mAdc}$, $T_A = -55^{\circ}C$)	V _{BE(sat)}	0.7	0.85 0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product $(I_C = 20 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$	fT	300	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)	C _{obo}	_	6.0	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 140 kHz)	Cibo	_	9.0	pF
Small-Signal Current Gain (I _C = 10 mAdc, V _{CE} = 1.0 Vdc, f = 1.0 kHz)	h _{fe}	20		_
Real Part of Input Impedance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 300 MHz)	Re(hie)		50	Ohms
SWITCHING CHARACTERISTICS				
Storage Time ($I_C = 10 \text{ mAdc}$, $I_{B1} = 10 \text{ mAdc}$, $I_{B2} = 10 \text{ mAdc}$)	t _S	-	40	ns
Turn-On Time $(V_{CC}=3.0\ Vdc,\ V_{EB(off)}=2.0\ Vdc,\ I_{C}=10\ mAdc,\ I_{B1}=3.0\ mAdc)$	ton	_	50	ns
Turn-Off Time	toff	19-15	90	ns

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

(VCC = 3.0 Vdc, I_C = 10 mAdc, I_{B1} = 3.0 mAdc, I_{B2} = 1.0 mAdc)

2N3726 2N3727

CASE 654-07, STYLE 1

DUAL **AMPLIFIER TRANSISTOR**

PNP SILICON

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	45		Vdc		
Collector-Base Voltage	VCBO	- 4	5	Vdc		
Emitter-Base Voltage	VEBO	5	.0	Vdc		
Base Current	I _B	100		mAdc		
Collector Current — Continuous	Ic	300		300		mAdc
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.29	500 2.86	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.85 4.85	1.4 8.0	Watt mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	+ 200	°C		
Collector ₁ to Collector ₂ Voltage Voltage rating any lead to case	V _{C1} V _{C2}	± 200 ± 200		Vdc Vdc		

Refer to MD2905,A for graphs.

Characteristic Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			Marie Con	WAR-
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, I _B = 0)	V(BR)CEO	45	m6n-	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.01 \text{ mAdc}, I_E = 0$)	V(BR)CBO	45		Vdc
Emitter-Base Breakdown Voltage $(I_E = 0.01 \text{ mAdc, } I_C = 0)$	V(BR)EBO	5.0		Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T_A = 150°C)	СВО	_	10 10	nAdc μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)	IEBO	_	0.1	μAdc
ON CHARACTERISTICS	1995 7	1,1	-	
DC Current Gain (IC = 0.01 mAdc, V _{CE} = 5.0 Vdc) (IC = 0.1 mAdc, V _{CE} = 5.0 Vdc) (IC = 1.0 mAdc, V _{CE} = 5.0 Vdc) (IC = 50 mAdc, V _{CE} = 5.0 Vdc) (IC = 50 mAdc, V _{CE} = 5.0 Vdc)(1)	hFE	80 120 135 115	350	-
Collector-Emitter Saturation Voltage(1) (IC = 50 mAdc, I _B = 2.5 mAdc)	V _{CE(sat)}	_	0.25	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 2.5 mAdc)	V _{BE(sat)}	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product(2) (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 20 MHz) (IC = 50 mAdc, V_{CE} = 20 Vdc, f = 100 MHz)	fT	60 200	600	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_ AB= Y	8.0	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	-	30	pF
Input Impedance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)	h _{ie}	_ Told	11.5	kohm
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	4 × 2 = 1	1500	X 10-6
Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)	h _{fe}	135	420	_

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{oe}	- 5	80	μmhos
Noise Figure (I _C = 30 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 kohms, f = 1.0 kHz, B.W. = 20	00 Hz)	NF	T — 1	4.0	dB
MATCHING CHARACTERISTICS					
DC Current Gain Ratio(3) (I _C = 0.1 mAdc to 1.0 mAdc, V _{CE} = 5.0 Vdc)		hFE1/hFE2	0.9	1.0	_
Base-Emitter Voltage Differential ($I_C = 0.1 \text{ mAdc}$ to 1.0 mAdc, $V_{CE} = 5.0 \text{ Vdc}$)	2N3726 2N3727	V _{BE1} -V _{BE2}	<u> </u>	5.0 2.5	mVdc
Base-Emitter Differential Change Due to Temperature (I _C = 0.1 mAdc to 1.0 mAdc, V_{CE} = 5.0 Vdc, T_{A} = -55° C to $+25^{\circ}$ C)	2N3726 2N3727	Δ(V _{BE1} -V _{BE2})	=	1.6 0.8	mVdc
(I_C = 0.1 mAdc to 1.0 mAdc, V_{CE} = 5.0 Vdc, T_A = $+25^{\circ}C$ to $+125^{\circ}C$)	2N3726 2N3727		=	2.0	

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

⁽³⁾ For purposes of this ratio, the lowest hFE reading is taken as hFE1.

2N3806 thru 2N3810,A 2N3811,A

CASE 654-07, STYLE 1

2N3812 thru 2N3816,A 2N3817,A

CASE 610A-04, STYLE 1

2N3810, 2N3811 — JAN, JTX, JTXV AVAILABLE

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Va	Unit			
Collector-Emitter Voltage	VCEO	e	Vdc			
Collector-Base Voltage	V _{CBO}	6	60	Vdc		
Emitter-Base Voltage	VEBO	5	.0	Vdc		
Collector Current — Continuous	lc	50		50		mAdc
	A 7 A	One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Metal Can (2N3806 thru 2N3810,A, 2N3811,A) Derate above 25°C	PD	500	600	mW/°C		
Total Device Dissipation @ T _C = 25°C Flat Package (2N3812 thru 2N3816,A, 2N3817,A) Derate above 25°C	PD	2.86 3.43 250 350 1.5 2.06		mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to	°C			

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)		V _(BR) CEO	60	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		V _(BR) CBO	60	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T_A = 150°C)		ICBO	_	0.01 10	μAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, I _C = 0)		IEBO	_	20	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 1.0 μ Adc, V _{CE} = 5.0 Vdc)	2N3807,9,11,A,13,15,17,A	hFE	75	_	_
(I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		100 225	_	
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		150 300	450 900	
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C)$	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		75 150	_	
$(I_C = 500 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		150 300	450 900	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		150 300	450 900	
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		125 250	_	
Collector-Emitter Saturation Voltage(1) (I _C = 100 µAdc, I _B = 1.0 µA) (I _C = 1.0 mAdc, I _B = 100 µAdc)	2N3814, 2N3815	VCE(sat)	=	0.2 0.25	Vdc
Base-Emitter Saturation Voltage(1) (IC = 100 μ Adc, IB = 10 μ Adc) (IC = 1.0 mAdc, IB = 100 μ Adc)		V _{BE(sat)}	=	0.7 0.8	Vdc

2N3806 thru 2N3810,A, 2N3811,A, 2N3812,A, 2N3816,A, 2N3817,A

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Base-Emitter On Voltage (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)		V _{BE(on)}		0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (IC = 500 µAdc, V _{CE} = 5.0 Vdc, f = 30 MHz) (IC = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		fτ	30 100	 500	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)		C _{obo}	-	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, $I_C = 0$, $f = 100$ kHz)		C _{ibo}	_	8.0	pF
Input Impedance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A	h _{ie}	3.0 10	30 40	Ω
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{re}	_	25	X 10-4
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A	h _{fe}	150 300	600 900	·
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	5.0	60	μmhos
Noise Figure (IC = 100 μ Adc, VCE = 10 Vdc, RG = 3.0 kohms f = 100 Hz, BW = 20 Hz	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A	NF	=	7.0 4.0	dB
$ \begin{array}{lll} \text{Spot} & f = 1.0 \text{ kHz, BW} = 200 \text{ Hz} \\ \text{Noise} & \end{array} $	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A			3.0 1.5	
f = 10 kHz, BW = 2.0 kHz)	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		=	2.5 1.5	
Broadband Noise Bandwidth 10 Hz to 15.7 kHz	2N3806,8,10,A,12,14,16,A 2N3807,9,11,A,13,15,17,A		=	3.5 2.5	
MATCHING CHARACTERISTICS					
DC Current Gain Ratio(2) (IC = 100 μ Adc, V _{CE} = 5.0 Vdc)	2N3808,9,14,15 2N3810,11,16,17 2N3810A,11A,16A,17A	hFE1/hFE2	0.8 0.9 0.95	1.0 1.0 1.0	-
(I _C = 100 μ Adc, V _{CE} = 50 Vdc, T _A = -55 to $+12$	5°C) 2N3810A,11A,16A,17A		0.85	1.0	
Base-Emitter Voltage Differential (IC = 10 μ Adc to 10 mAdc, VCE = 5.0 Vdc)	2N3808,9,14,15 2N3810,A,11,A,16,A,17,A	V _{BE1} -V _{BE2}	Ξ	8.0 5.0	mVdc
(I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	2N3808,9,14,15 2N3810,11,16,17 2N3810A,11A,16A,17A		=	5.0 3.0 1.5	
Base-Emitter Voltage Differential Change Due to Tem (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, T _A = -55 to +25		Δ(V _{BE1} -V _{BE2})			mVdc
	2N3808,9,14,15 2N3810,11,16,17 2N3810A,11A,16A,17A		=	1.6 0.8 0.4	
(I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, T _A = $+25$ to $+12$	25°C) 2N3808,9,14,15 2N3810,11,16,17 2N3810A,11A,16A,17A			2.0 1.0 0.5	

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μs , Duty Cycle \leq 2.0%.

⁽²⁾ The lowest hee reading is taken as hee1 for this ratio.

MAXIMUM RATINGS

Rating	Symbol	Va	Unit			
Collector-Emitter Voltage	VCEO	40		Vdc		
Collector 1 to Collector 2 Voltage Voltage Rating any Lead to Case	V _{C1C2}	± 120 ± 120		Vdc		
Collector-Base Voltage	VCBO	60		60		Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc		
Collector Current — Continuous	lc	600		mAdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.25 1.67	0.35 2.34	Watt mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.7 4.67	1.4 9.34	Watts		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	°C			

2N3838

CASE 610A-04, STYLE 1

COMPLEMENTARY DUAL AMPLIFIER TRANSISTOR

NPN/PNP SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mA	dc, I _B = 0)	V(BR)CEO	40	_	Vdc
Collector-Emitter Nonmatching Voltage (I _C (on) = 600 mAdc, I _B (on) = 120 mAdc, I _B (off) =	0)	V _{CEO(NL)} †	40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E$	= 0)	V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C$	= 0)	V(BR)EBO	5.0	-	Vdc
Base Cutoff Current (VCE = 50 Vdc, VBE(off) = 0.5 V	/dc)	IBEV	_	10	nAdc
Collector Cutoff Current $(V_{CE} = 50 \text{ Vdc}, V_{BE(off)} = (V_{CE} = 50 \text{ Vdc}, V_{BE(off)} = 0)$		ICEV	_	0.01 10	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)		IEBO	_	10	nAdc
ON CHARACTERISTICS					
$\begin{array}{lll} \mbox{DC Current Gain} & (I_{\mbox{\footnotesize C}} = 0.1 \mbox{ mAdc, V}_{\mbox{\footnotesize CE}} = 10 \mbox{ Vdc}) \\ & (I_{\mbox{\footnotesize C}} = 1.0 \mbox{ mAdc, V}_{\mbox{\footnotesize CE}} = 10 \mbox{ Vdc}) \\ & (I_{\mbox{\footnotesize C}} = 10 \mbox{ mAdc, V}_{\mbox{\footnotesize CE}} = 10 \mbox{ Vdc}) (1) \\ & (I_{\mbox{\footnotesize C}} = 150 \mbox{ mAdc, V}_{\mbox{\footnotesize CE}} = 10 \mbox{ Vdc}) (1) \\ & (I_{\mbox{\footnotesize C}} = 150 \mbox{ mAdc, V}_{\mbox{\footnotesize CE}} = 1.0 \mbox{ Vdc}) (1) \end{array}$		hFE	35 50 75 100 50	300	-
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$,	I _B = 15 mAdc)	V _{BE(sat)}	0.85	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 20 mAdc,	V _{CE} = 10 Vdc, f = 100 MHz)	fT	200		MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 140)$	kHz)	C _{obo}	_	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f =	1.0 kHz)	hie	1.6	9.0	kohms
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 1	0 Vdc, f = 1.0 kHz)	h _{fe}	60	300	_
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, t	= 1.0 kHz)	hoe	_	50	μmho
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 kohm, f =	= 1.0 kHz)	NF	_	8.0	dB
SWITCHING CHARACTERISTICS					
Delay Time (V _{CC} = 10 Vdc, V _{BE(off)} =	0 Vdc,	td	1 - 2	10	ns
Rise Time $I_C = 150 \text{ mAdc}, I_{B1} = 15$	mAdc)	tr	_	40	ns
Storage Time $(V_{CC} = 10 \text{ Vdc}, I_{C} = 150 \text{ r})$	mAdc,	ts	_	250	ns
Fall Time $I_{B1} = I_{B2} = 15 \text{ mAdc}$		tf	_	90	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

[†] The highest value of collector supply voltage that may be safely used with a resistive load switching circuit in which the collector current is 600 mAdc.

2N4015 2N4016

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

MAXIMUM RATINGS						
Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	6	60	Vdc		
Collector 1 to Collector 2 Voltage Voltage Rating and Lead to Case	V _{C1C2}	± 200 ± 200		Vdc		
Collector-Base Voltage	VCBO	60		60		Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc		
Base Current	lΒ	100		mAdc		
Collector Current — Continuous	lc	300		mAdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.29	500 2.86	mW mW/°C		
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	0.85 4.85	1.4 8.0	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

Refer to MD2905,A for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V(BR)CEO	60		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	60	T.	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = $^\circ$ 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = $^+$ 150 $^\circ$ C)	ІСВО	_	10 10	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	IEBO		0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain	hFE	80 120 135 115	 350 	_
Collector-Emitter Saturation Voltage(1) $(I_C = 50 \text{ mAdc}, I_B = 2.5 \text{ mAdc})$	V _{CE} (sat)	_	0.25	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAdc, V _{CE} = 2.5 Vdc)	V _{BE(sat)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			1.75	
Current-Gain — Bandwidth Product(2) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$) ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ MHz}$)	f _T	200 60	600	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	8.0	pF
Input Capacitance ($V_{EB}=0.5\ V_{CC}=0,f=1.0\ MHz$)	C _{ibo}	_	25	pF
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ie}	_	11.5	kohms
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{re}	_	15	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	135	420	_

2N4015, 2N4016

Characteristic	Symbol	Min	Max	Unit
Output Admittance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	_	80	μmhos
Noise Figure (IC = 0.03 mAdc, V_{CE} = 5.0 Vdc, R_S = 10 kohms, f = 1.0 kHz, BW = 200 Hz)	NF	_	4.0	dB
MATCHING CHARACTERISTICS				

MATCHING CHARACTERISTICS					
DC Current Gain Ratio (I _C = 0.1 mAdc, V _{CE} = 5.0 Vdc)		h _{FE1} /h _{FE2}	0.9	1.0	_
Base-Emitter Voltage Differential ($I_C = 0.1$ to 1.0 mAdc, $V_{CE} = 5.0$ Vdc)	2N4015 2N4016	V _{BE1} -V _{BE2}	_	5.0 2.5	mVdc
Base-Emitter Voltage Differential Gradient (IC = 0.1 to 1.0 mAdc, VCE = 5.0 Vdc, $T_A = -55$ to $+25^{\circ}$ C)	2N4015 2N4016	$\frac{\Delta(V_{BE1}-V_{BE2})}{\Delta T_{A}}$	=	1.6 0.8	mVdc
(IC = 0.1 to 1.0 mAdc, V_{CE} = 5.0 Vdc, T_{A} = $+25^{\circ}C$ to $+125^{\circ}C$)	2N4015 2N4016		_	2.0 1.0	

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

2N4854 2N4855

2N4854 — JAN, JTX, JTXV AVAILABLE CASE 654-07, STYLE 5

COMPLEMENTARY DUAL AMPLIFIER TRANSISTOR

NPN/PNP SILICON

Refer to MD6001 for graphs.

MAXIMUM RATINGS

MAXIMUM RATINGS						
Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	4	10	Vdc		
Collector 1 to Collector 2 Voltage Voltage Rating any Lead to Case	V _{C1C2}	± 200 ± 200		Vdc		
Collector-Base Voltage	VCBO	60		60		Vdc
Emitter-Base Voltage	V _{EBO}	5.0		Vdc		
Collector Current — Continuous	Ic	600		mAdc		
1-010		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	600 4.0	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 6.67	2.0 13.33	Watts		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)		V _(BR) CEO	40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V _(BR) CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E=10~\mu Adc,~I_C=0$)		V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0, T _A = 150°C)		Ісво	_	10	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)		IEBO	_	10	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	2N4854 2N4855	hFE	35 20	_	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N4854 2N4855		50 25	_	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N4854 2N4855		75 35	_	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N4854 2N4855		100 40	300 120	
$(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})(1)$	2N4854 2N4855		50 20	=	
(I _C = 300 mAdc, V_{CE} = 10 Vdc)(1)	2N4854 2N4855		35 20	_	
Collector-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)		V _{BE(sat)}	0.75	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fT	200	_	MHz

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	The second second	Symbol	Min	Max	Unit
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	500	8.0	pF
Input Impedance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N4854 2N4855	h _{ie}	1.5 0.75	9.0 4.5	kohms
Small-Signal Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N4854 2N4855	h _{fe}	60 30	300 150	_
Output Admittance (IC = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	2N4854 2N4855	h _{oe}	11/2 11/2 2/3	50 25	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 kohm, f =	1.0 kHz)	NF	-	8.0	dB

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc},$	t _d	_	20	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	tr	_	40	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	ts	_	280	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$	tf	_	70	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N4937 thru 2N4942

2N4937, 2N4938, 2N4939 **CASE 654-07, STYLE 1**

2N4440, 2N4441, 2N4442 **CASE 610A-04, STYLE 1**

AMPLIFIER TRANSISTOR

PNP SILICON

Refer to MD3250,A for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	4	10	Vdc		
Collector 1 to Collector 2 Voltage Voltage Rating and Lead to Case	V _{C1C2}	± 200 ± 200		Vdc		
Collector-Base Voltage	VCBO	5	0	Vdc		
Emitter-Base Voltage	VEBO	5.0		Vdc		
Base Current	I _B	10		10		mAdc
Collector Current — Continuous	lc	50		mAdc		
-0.74 K		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C — Ceramic Metal Can Derate above 25°C — Ceramic Metal Can	PD	250 500 1.5 2.9	350 600 2.0 3.4	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C Metal Can	PD	1.2 6.85	2.0 11.42	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _(BR) CEO	40	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V _(BR) CBO	50	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$	СВО	-	20	nAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc , I _C = 0)	IEBO	_	20	nAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 1.0 mAdc$, $V_{CE} = 10 Vdc$) ($I_C = 10 mAdc$, $V_{CE} = 10 Vdc$)	hFE	40 50 50	200 250 250	-
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 Mhz)	fT	300	900	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 140 \text{ kHz}$) Emitter Guarded	C _{cb}	_	5.0	pF
Input Impedance (IBE = 0.5 Vdc, IC = 0, f = 140 kHz) Collector Guarded	C _{eb}	_	10	pF
Input impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	hie	1.0	10	kΩ
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{re}	_	10	X 10-4
Small-Signal Current Gain (I $_{C}=1.0$ mAdc, $V_{CE}=10$ Vdc, $f=1.0$ kHz)	h _{fe}	50	_	_
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{oe}	5.0	50	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 3.0 k Ω , f = 10 Hz to 15.7 kHz)	NF	_	4.0	dB

2N4937 thru 2N4942

Characteristic		Symbol	Min	Max	Unit		
MATCHING CHARACTERISTICS							
DC Current Gain Ratio(1)		hFE1/hFE2	V	200	_		
$(I_C = 100 \mu\text{Adc} \text{ to } 1.0 \text{ mAdc}, V_{CE} = 10 \text{Vdc})$	2N4937, 2N4941		0.9	1.0			
	2N4938, 2N4940		0.8	1.0			
		186 2	19 11		1 / Yell		
$(I_C = 100 \mu\text{Adc} \text{ to } 1.0 \text{ mAdc}, V_{CE} = 10 \text{Vdc},$		1 1	TO THE				
$T_A = -55^{\circ}C \text{ to } 125^{\circ}C)$	2N4937, 2N4941		0.85	1.0			
	2N4938, 2N4940		0.7	1.0			
Base-Emitter Voltage Differential		V _{BE1} -V _{BE2}	400		mVdc		
(I _C = 100 μ Adc to 1.0 mAdc, V _{CE} = 10 Vdc)	2N4937, 2N4941	DET DEE	_	3.0	3333376.5895		
- No. 1	2N4938, 2N4940		-	5.0			
Base-Emitter Voltage Differential Gradient		Δ(V _{BE1} -V _{BE2})	100		mVdc		
(I _C = 100 μ Adc to 1.0 mAdc, V _{CE} = 10 Vdc,		ΔΤΑ		1.0	- evan uvanesa.		
$T_A = 25^{\circ}C \text{ to } + 125^{\circ}C)$	2N4937, 2N4941	A	_	2.0			
	2N4938, 2N4940		_				
		32.71					
$(I_C = 100 \mu Adc to 1.0 mAdc, V_{CE} = 10 Vdc,$				0.8			
$T_A = -55^{\circ}C \text{ to } 25^{\circ}C)$	2N4937, 2N4941		_	1.6			
	2N4938, 2N4940		_				

⁽¹⁾ The lowest hee reading is taken as hee1 for this ratio.

2N5793 2N5794

JAN, JTX, JTXV AVAILABLE CASE 654-07, STYLE 1

DUAL TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

IVIAAIIVIOIVI RATIIVGS	_					
Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO		40	Vdc		
Collector-Base Voltage	VCBO		75	Vdc		
Emitter-Base Voltage	VEBO	6.0		6.0		Vdc
Collector Current — Continuous	IC	600		mAdc		
TABLET FURNIS		One Die	Both Die Equal Power			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 2.9	600 3.4	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.9	2.0 11.43	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

Refer to MD2218,A for graphs.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		•			
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)		V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		V _(BR) CBO	75	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V(BR)EBO	6.0	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		ІСВО	_	10	nAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0)		IEBO	_	10	nAdc
Collector 1 to Collector 2 Leakage Current (V _{1C-2C} = ± 50 Vdc)		IC1-C2	_	±1.0	nAdc
ON CHARACTERISTICS					
DC Current Gain (IC = $100 \mu Adc$, V_{CE} = $(I_{C} = 1.0 mAdc$, V_{CE} = $(I_{C} = 10 mAdc$, V_{CE} = $(I_{C} = 150 mAdc$, V_{CE} (IC = $150 mAdc$, V_{CE} (IC = $150 mAdc$, V_{CE} (IC = $150 mAdc$, V_{CE}	= 10 Vdc) 2N57 = 10 Vdc)(1) 2N57 = 10 Vdc)(1) 2N57 = 1.0 Vdc)(1) 2N57 = 10 Vdc)(1) 2N57 = 10 Vdc)(1) 2N57 = 10 Vdc)(1) 2N57 2N57	94 93 94 93 94 93 94 99 99 99 99	20 35 25 50 35 75 20 50 40 100 25 40	 120 300	_
Collector-Emitter Saturation Voltage(1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 300 mAdc, IB = 30 mAdc)		VCE(sat)	_	0.3	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mAdc}$)		V _{BE} (sat)	0.6 —	1.2 1.8	Vdc
SMALL-SIGNAL CHARA	CTERISTICS				
Current-Gain — Bandwidth Product(2) $(I_C = 20 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$		100 MHz) f _T	250	_	MHz
Collector-Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$		C _{cb}	_	8.0	pF
Emitter-Base Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$		Ceb	_	25	pF
SWITCHING CHARACTE	ERISTICS				
Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc},$	t _d	-	15	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	t _r	_	30	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _S	_	250	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$		_	60	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	60		Vdc		
Collector-Base Voltage	VCBO	60		Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	Ic	600		mAdc		
glatic		One Die	Both Die Equal Power	V POF 1		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 2.9	600 3.4	mW mW/°C		
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.9	2.0 11.43	Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C		

2N5795 2N5796

JAN, JTX, JTXV AVAILABLE CASE 654-07, STYLE 1

DUAL TRANSISTOR

PNP SILICON

Refer to MD2904,A for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	et a sellocia ;			
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	60	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _(BR) CBO	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	100	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	СВО	_	20	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)	IEBO	100 - I	100	nAdc
Collector 1 to Collector 2 Leakage Current (V _{1C-2C} = ±50 Vdc	I _{C1-C2}		±1.0	nAdc
ON CHARACTERISTICS				
(I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc)(1) (I _C = 150 mAdc, V _{CE} = 1.0 Vdc)(1) (I _C = 150 mAdc, V _{CE} = 1.0 Vdc)(1) (I _C = 150 mAdc, V _{CE} = 10 Vdc)(1) (I _C = 500 mAdc, V _{CE} = 10 Vdc)(1) 2h	N5795 N5796 N5796 N5796 N5796 N5796 N5796 N5796 N5796 N5796 N5795 N5796	40 75 40 100 40 100 20 50 40 100 40 50		
Collector-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)		_	0.4 1.6	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{BE} (sat)	k H <u>E</u> ntuc	1.3 2.6	Vdc
SMALL-SIGNAL CHARACTERISTICS	37.500			
Current-Gain — Bandwidth Product(2) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, f	= 100 MHz) f _T	200	10 <u>-</u> 1 77	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{cb}		8.0	pF
Emitter-Base Capacitance (V _{EB} = 2.0 Vdc, I _C = 0, f = 100 kHz)	C _{eb}	_	30	pF
SWITCHING CHARACTERISTICS (See Figure 1)			are allow the first	11/1
Delay Time (V _{CC} = 30 Vdc, V _{BE(off)} = 0.5 Vdc,	t _d		12	ns
Rise Time $I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	t _r	_	35	ns
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$	t _S	_	100	ns
Fall Time $I_{B1} = I_{B2} = 15 \text{ mAdc}$	tf		40	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

2N6501 2N6502 2N6503

QUAD CERAMIC 2N6501 CASE 607,04, STYLE 1

DUAL 2N6502 CASE 654-07, STYLE 1

DUAL CERAMIC 2N6503 CASE 610A-04, STYLE 1

SWITCHING TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO		40	Vdc
Collector-Base Voltage	VCES	80		Vdc
Collector-Base Voltage	VCBO		80	
Emitter-Base Voltage	VEBO		6.0	Vdc
Collector Current — Continuous	lc		1.0	Adc
		All Die One Die Equal Power		da Z
Total Device Dissipation @ T _A = 25°C	PD		mark in encircle	mW
2N6502 2N6503 2N6501		600 350 400	650 400 600	
Derate above 25°C				mW/°C
2N6502 2N6503 2N6501		3.42 2.0 2.28	3.7 2.28 3.42	
Total Device Dissipation @ T _C = 25°C	PD			Watts
2N6502 2N6503 2N6501		2.1 1.25 1.0	3.0 2.5 4.0	
Derate above 25°C 2N6502		12	17.2	mW/°C
2N6503 2N6501	5-80.7	7.15 5.71	14.3 22.8	1-54
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65	°C	

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case		$R_{\theta}JC$			°C/W
	2N6502		83.3	58.3	
	2N6503		140	70	
	2N6501		175	43.8	
Thermal Resistance, Junction to Ambient(1)		$R_{\theta JA}$			°C/W
	2N6502	007.1	292	270	
	2N6503		500	438	
	2N6501		438	292	
			Junction to Ambient	Junction to Case	
Coupling Factor					
	2N6502		85	40	
	2N6503		75	0	
	2N6501 (Q1, Q2	2)	57	0	
	(Q1-Q3	, Q1-Q4)	56	0	

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit		
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V(BR)CEO	40	_	Vdc		
Collector-Emitter Breakdown Voltage (I _C = 100 µAdc, V _{BE} = 0)	V(BR)CES	80	-	Vdc		
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	80	-	Vdc		
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	6.0	-	Vdc		
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)	ІСВО	w -	1.7	μAdo		

2N6501, 2N6502, 2N6503

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Emitter Cutoff Current (VBE = 4.0 Vdc, I _C = 0)	IEBO	-	1.0	μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 100 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 2.0 Vdc) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)	hFE	50 30 10	150 — —	_
Collector-Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	VCE(sat)	=	0.3 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{BE(sat)}	0.8	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	250	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{cb}	-	10	pF
Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{eb}	_	65	pF
SWITCHING CHARACTERISTICS				
Turn-On Time $(V_{CC}=30\ Vdc,\ V_{BE}=3.8\ Vdc,\ I_{C}=500\ mAdc,\ I_{B1}=50\ mAdc)$	t _{on}	-	35	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_C = 500 \text{ mAdc}, I_{B1} = I_{B2} = 50 \text{ mAdc})$	t _{off}	_	60	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL DC CHARACTERISTICS

IB. BASE CURRENT (mA)

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 9 - SWITCHING TIME TEST CIRCUIT

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	15		Vdc
Collector-Base Voltage	VCBO	40		Vdc
Emitter-Base Voltage	VEBO	ļ	5.0	Vdc
Collector Current — Continuous	IC	2	200	mAdc
		One Die	Both Die Equal Power	
Total Device Dissipation @ T _A = 25°C MD708, MD708A, MD708B MD708F, MD708AF, MD708BF Derate above 25°C MD708, MD708A, MD708B MD708F, MD708AF, MD708BF	PD	550 350 3.13 2.0	600 400 3.42 2.28	mW/°C
Total Device Dissipation @ T _C = 25°C MD708, MD708A, MD708B MD708F, MD708AF, MD708BF Derate above 25°C MD708, MD708A, MD708B MD708F, MD708AF, MD708BF	PD	1.4 0.7 8.0 4.0	2.0 1.4 11.4 8.0	Watts mW/°0
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Case MD708, MD708A, MD708B MD708F, MD708AF, MD708BF	$R_{\theta JC}$	125 250	87.5 125	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	319 500	292 438	°C/W
		Junction to Ambient	Junction to Case	
Coupling Factors MD708, MD708A, MD708B MD708F, MD708AF, MD708BF		83 75	40 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(2) (I _C = 30 mAdc, I _B = 0)	V(BR)CEO	15	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _(BR) CBO	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ICBO	=	15 30	nAdc μAdc
ON CHARACTERISTICS				
DC Current Gain(2) ($I_C = 500 \mu Adc$, $V_{CE} = 1.0 Vdc$) ($I_C = 10 mAdc$, $V_{CE} = 1.0 Vdc$) ($I_C = 100 mAdc$, $V_{CE} = 5.0 Vdc$) ($I_C = 150 mAdc$, $V_{CE} = 5.0 Vdc$)	hFE	40 40 35 20	200 —	-
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) (IC = 100 mAdc, IB = 10 mAdc)	VCE(sat)	=	0.20 0.35 0.50	Vdc
Base-Emitter Saturation Voltage $ \begin{array}{ll} (I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc}) \\ (I_C=50 \text{ mAdc}, I_B=5.0 \text{ mAdc}) \\ (I_C=100 \text{ mAdc}, I_B=10 \text{ mAdc}) \end{array} $	VBE(sat)	0.65 — —	0.85 0.95 1.10	Vdc

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Va	Unit	
Collector-Emitter Voltage	VCEO	15		Vdc
Collector-Base Voltage	VCBO	3	80	Vdc
Emitter-Base Voltage	VEBO	3	.0	Vdc
Collector Current — Continuous	IC	5	50	mAdc
		One Die Both Die		
Total Device Dissipation @ T _A = 25°C MD918,A,B MD918F,AF,BF Derate above 25°C MD918,A,B MD918F,AF,BF	PD	550 350 3.14 2.0	600 400 3.42 2.28	mW/°C
Total Device Dissipation @ T _C = 25°C MD918,A,B MD918F,AF,BF Derate above 25°C MD918,A,B MD918F,AF,BF	PD	1.4 0.7 8.0 4.0	2.0 1.4 11.4 8.0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	+ 200	°C

MD918A MD918B

CASE 654-07, STYLE 1

MD918F MD918AF MD918BF

CASE 610A-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD918,A,B MD918F,AF,BF	R _θ JC	125 250	87.5 125	°C/W
Thermal Resistance, Junction to Ambient	MD918,A,B MD918F,AF,BF	R _θ J _A (1)	319 500	292 438	°C/W
			Junction to Ambient	Junction to Case	
Coupling Factors	MD918,A,B MD918F,AF,BF		83 75	40 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	15	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 1.0 µAdc, I _E = 0)	V(BR)CBO	30	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	3.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0) (V _{CB} = 15 Vdc, I _E = 0, T _A = 150°C)	ІСВО	=	=	10 1.0	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 3.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	50	165		
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 Adc)	VCE(sat)	-	0.09	0.2	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	0.86	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	600	-		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	1.1	1.7	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	_	1.15	2.0	pF
Noise Figure (I _C = 1.0 mAdc, V_{CE} = 6.0 Vdc, R_S = 400 Ω , f =	60 MHz)	NF	_	_	6.0	dB
MATCHING CHARACTERISTICS	W2.004.1	A gradient				
DC Current Gain Ratio(3) $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MD918B,BF MD918A,AF	hFE1/hFE2	0.8	=	1.0 1.0	- 1-
Base-Emitter Voltage Differential ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	MD918B,BF MD918A,AF	V _{BE1} -V _{BE2}	_	_	10 5.0	mVdc
Base-Emitter Voltage Differential Gradient ($I_C = 1.0$ mAdc, $V_{CE} = 5.0$ Vdc, $T_A = -55$ to $+125^{\circ}C$)	MD918B,AF,BF MD918A	$\frac{\Delta(V_{\text{BE1}}-V_{\text{BE2}})}{\Delta T_{\text{A}}}$	_	_	20 10	μV/dc °C

⁽²⁾ Pulse Test: Pulse Width ≤ 300 µs. Duty Cycle ≤ 2.0%.

FIGURE 1 - DC CURRENT GAIN T.1 = 150°C 200 hFE, DC CURRENT GAIN 2500 100 -55°C VCE = 5.0 V VCE = 10 V 20 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA)

⁽³⁾ The lowest her reading is taken as her for this ratio.

MD982,F MQ982

MD982 CASE 654-07, STYLE 1

MD982F CASE 610A-04, STYLE 1

MQ982 CASE 607-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

THERMAL CHARACTERISTICS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	50		Vdc
Collector-Base Voltage	VCBO	6	0	Vdc
Emitter-Base Voltage	V _{EBO}	5	.0	Vdc
Collector Current — Continuous	lc	60	00	mAdc
		One Die	All Die	
Total Device Dissipation @ T _A = 25°C MD982 MD982F M0982 Derate above 25°C MD982 MD982F M0982 MD982F M0982	PD	600 350 400 3.42 2.0 2.28	650 400 600 3.7 2.28 3.42	mW/°C
Total Device Dissipation @ T _C = 25°C MD982 MD982F MQ982 Derate above 25°C MD982 MD982F MQ982	PD	2.1 1.25 1.0 12 7.15 5.71	3.8 2.5 4.0 17.2 14.3 22.8	Watts mW/°C
Operating and Storage Junction	TJ, T _{stg}	-65 to +200		°C

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD982 MD982F MQ982	R _θ JC	83.3 140 175	58.3 70 43.8	°C/W
Thermal Resistance, Junction to Ambient	MD982 MD982F MQ982	R _θ JA(1)	292 500 438	270 438 292	°C/W
		•	Junction to Ambient	Junction to Case	
Coupling Factor	MD982 MD982F MQ982	(Q1-Q2) (Q1-Q3 or Q1-Q4)	85 75 57 55	40 0 0	%

Temperature Range

MAYIMI IM DATINGS

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	50	>-	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ICBO	_	_	0.020 20	μAdc
ON CHARACTERISTICS(2)					
DC Current Gain (I _C = 0.1 mAdc, V_{CE} = 10 Vdc) (I _C = 1.0 mAdc, V_{CE} = 10 Vdc) (I _C = 10 mAdc, V_{CE} = 10 Vdc) (I _C = 150 mAdc, V_{CE} = 10 Vdc)	hFE	20 25 35 40	50 75 90 60		-
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.25	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) SMALL-SIGNAL CHARACTERISTICS	V _{BE(sat)}	_	0.88	1.4	Vdc
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	200	320	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	5.8	8.0	pF
Input Capacitance (VBE = 2.0 Vdc, IC = 0, f = 100 kHz)	Cibo	_	16	30	pF

MAXIMUM RATINGS

Symbol	Value		Unit		
VCEO	20		Vdc		
VCBO		40			
VEBO	5.0		5.0		Vdc
Ic	200		mAdc		
	One Die	Both Die Equal Power			
PD	575 3.29	625 3.57	mW mW/°C		
P _D	1.8 10.3	2.5 14.3	Watts mW/°C		
T _J , T _{stg}	-65 to +200		°C		
	VCEO VCBO VEBO IC PD	VCEO VCBO VEBO IC One Die PD 575 3.29 PD 1.8 10.3	VCEO 20 VCBO 40 VEBO 5.0 IC 200 One Die Both Die Equal Power PD 575 625 3.29 3.57 PD 1.8 2.5 10.3 14.3		

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97	70	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	304	280	°C/W
		Junction to Ambient	Junction to Case	
Coupling Factor		84	44	

MD984

CASE 654-07, STYLE 1

DUAL
AMPLIFIER TRANSISTOR
PNP SILICON

Refer to MD3250 for graphs.

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) $(I_C = 10 \text{ mAdc}, I_B = 0)$	V(BR)CEO	20	=	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	V _(BR) CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0) (V _{CB} = 20 Vdc, I _E = 0, T_A = 150°C)	ІСВО	=	_	25 30	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain(2) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	hFE	25	75	_	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)(2)	VCE(sat)	_	0.18 0.38	0.3 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	0.8	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	250	550		MHz

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MD985,F

MD985 CASE 654-07, STYLE 5

MD985F CASE 610A-04, STYLE 1

COMPLEMENTARY DUAL
GENERAL PURPOSE TRANSISTOR

NPN/PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	30		Vdc
Collector-Base Voltage	VCBO	60		Vdc
Emitter-Base Voltage	VEBO	ļ	5.0	Vdc
Collector Current — Continuous	lc		500	mAdc
and their	Both Die One Die Equal Powe		Both Die Equal Power	
Total Device Dissipation @ T _A = 25°C MD985 MD985F Derate above 25°C MD985 MD985F	PD	575 350 3.29 2.0	625 400 3.57 2.28	mW/°C
Total Device Dissipation @ T _C = 25°C MD985 MD985F Derate above 25°C MD985 MD985F	PD	1.8 1.0 10.3 5.71	2.5 2.0 14.3 11.4	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65	°C	

THERMAL CHARACTERISTICS

Characteristic	Such Turk Bulk	Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD985 MD985F	R _θ JC	97 175	70 87.5	°C/W
Thermal Resistance, Junction to Ambient	MD985 MD985F	R _θ JA(1)	304 500	280 438	°C/W
	 		Junction to Ambient	Junction to Case	
Coupling Factor	MD985 MD985F		84 75	44	%

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				res result	-
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V(BR)CEO	30	-		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	60	_		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0	_	-	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = +150^{\circ}\text{C})$	СВО	=	=	20 20	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain	hFE	20 25 35 40	50 75 90 90	=	_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	VCE(sat)	-	0.3	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	-	1.0	1.4	Vdc

MD985,F

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
SMALL-SIGNAL CHARACTERISTICS		- 4	WEST TO		3
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 100 MHz) MD985	fT	200	320	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	5.8	8.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{ibo}	_	20	_	pF
SWITCHING CHARACTERISTICS					
Turn-On Time (V _{CC} = 30 Vdc, I _C = 150 mAdc, I _{B1} = 15 mAdc)	ton	_	25	-	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc})$	toff	_	75	_	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MD986,F

MD986 CASE 654-07, STYLE 5

MD986F CASE 610A-04, STYLE 1

COMPLEMENTARY DUAL GENERAL PURPOSE TRANSISTOR

NPN/PNP SILICON

MAXIMUM RATINGS

MAXIMUM RATINGS				
Rating	Symbol	V	Unit	
Collector-Emitter Voltage	VCEO	15		Vdc
Collector-Base Voltage	VCBO	40		Vdc
Emitter-Base Voltage	VEBO	DrLinn	5.0	Vdc
Collector Current — Continuous	IC		200	mAdo
		One Die	Both Die Equal Power	
Total Device Dissipation @ TA = 25°C MD986 MD986F Derate above 25°C MD986 MD986F	PD	550 350 3.14 2.0	600 400 3.42 2.28	mW/°C
Total Device Dissipation @ T _C = 25°C MD986 MD986F Derate above 25°C MD986 MD986F	PD	1.4 0.7 8.0 4.0	2.0 1.4 11.4 8.0	Watts mW/°0
Operating and Storage Junction Temperature Range	TJ, Tstg	- 65	°C	

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD986 MD986F	R_{θ} JC	125 250	87.5 125	°C/W
Thermal Resistance, Junction to Ambient	MD986 MD986F	R _θ JA(1)	319 500	292 438	°C/W
		·	Junction to Ambient	Junction to Case	
Coupling Factors	MD986 MD986F		83 75	40 0	%

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	15	_	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	40	_	5—2	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0) (V _{CB} = 20 Vdc, I _E = 0, T _A = 150°C)	ICBO	_	_	25 30	nAdc μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc)	h _{FE}	25	_	_	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	_	_	0.3 0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VBE(sat)	_	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
	fΤ	200 200	320 320	=	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	_	4.0	pF

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS				
Rating	Symbol	Va	lue	Unit
Collector-Emitter Voltage	VCEO	3	30	
Collector-Base Voltage	VCBO	6	60	Vdc
Emitter-Base Voltage	VEBO	5	.0	Vdc
Collector Current — Continuous	IC	50	00	mAdc
		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C MD1120, MD1121, MD1122 MD1120F, MD1121F, MD1122F MQ1120 Derate above 25°C MD1120, MD1121, MD1122 MD1120F, MD1121F, MD1122F MQ1120	PD	575 350 400 3.29 2.0 2.28	625 400 600 3.57 2.28 3.42	mW/°C
Total Device Dissipation @ T _C = 25°C MD1120, MD1121, MD1122 MD1120F, MD1121F, MD1122F MQ1120 Derate above 25°C MD1120, MD1121, MD1122 MD1120F, MD1121F, MD1122F MQ1120	PD	1.8 1.0 0.9 10.3 5.71 5.13	2.5 2.0 3.6 14.3 11.4 20.5	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	°C

MD1120,F MD1121,F MD1122,F **MQ1120**

MD1120, MD1121, MD1122 **CASE 654-07, STYLE 1**

MD1120F CASE 610A-04, STYLE 1

MQ1120 CASE 607-04, STYLE 1

> DUAL **AMPLIFIER TRANSISTOR**

> > NPN SILICON

Refer to MD2218,A for graphs.

THERMAL CHARACTERISTICS

С	haracteristic	Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Ca	ise	$R_{\theta JC}$			°C/W
	MD1120, MD1121, MD1122		97	70	
	MD1120F, MD1121F, MD1122F		175	87.5	
	MQ1120		195	48.8	
Thermal Resistance, Junction to Ar	mbient	$R_{\theta JA}(1)$			°C/W
	MD1120, MD1121, MD1122		304	280	
	MD1120F, MD1121F, MD1122F		500	438	
	MQ1120		438	292	
			Junction to Ambient	Junction to Case	Unit
Coupling Factors					%
	MD1120, MD1121, MD1122		84	44	
	MD1120F, MD1121F, MD1122F		75	0	
	MQ1120 (Q1-Q2)		57	0	
	(Q1-Q3 or Q1-Q4)		55	0	

⁽¹⁾ $R_{\theta,JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	-	_	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ІСВО	=	_	10 10	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	I _{EBO}	_	_	10	nAdc

MD1120,F, MD1121,F, MD1122,F, MQ1120

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	544			AMERICAN TO	
DC Current Gain(2) $ \begin{aligned} &(I_{\text{C}} = 10 \; \mu\text{Adc}, V_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 100 \; \mu\text{Adc}, V_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 100 \; \text{mAdc}, V_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 10 \; \text{mAdc}, V_{\text{CE}} = 10 \; \text{Vdc}) \end{aligned} $	hFE	20 30 40 50	40 50 60 65	100 120 160 200	_ = -
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	_	80	100	mVdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	700	850	mVdc
SMALL-SIGNAL CHARACTERISTICS			and the same	11112	11.00
Current-Gain — Bandwidth Product(2) (IC = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fŢ	200	250	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 100 kHz)	C _{obo}	_	3.5	8.0	pF
MATCHING CHARACTERISTICS					
DC Current Gain Ratio(3)	hFE1/hFE2	0.8 0.9	_	1.0 1.0	
Base-Emitter Voltage Differential (I _C = 100 μAdc, V _{CE} = 10 Vdc) All Devices (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) MD1122, MD1122F	VBE1-VBE2	=	=	10 5.0	mVdc
Base-Emitter Voltage Differential Change Due to Temperature — MD1121, MD1122 (IC = $100 \mu Adc$, $V_{CE} = 10 Vdc$, $T_{A} = -55 to +25 ^{\circ}C$) (IC = $100 \mu Adc$, $V_{CE} = 10 Vdc$, $T_{A} = +25 to +125 ^{\circ}C$)	Δ(V _{BE1} –V _{BE2})			0.8 1.0	mVdc

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ The lowest hee reading is taken as hee1 for this ratio.

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	40		Vdc
Collector-Base Voltage	VCBO	- 6	0	Vdc
Emitter-Base Voltage	VEBO	5.	.0	Vdc
Collector Current — Continuous	IC	20	00	mAdc
		One Die	All Die	
Total Device Dissipation @ T _A = 25°C MD1123, MD1130	PD	575	625	mW
MD1130F Derate above 25°C	0.	350	400	mW/°C
MD1123, MD1130 MD1130F		3.29 2.0	3.57 2.28	
Total Device Dissipation @ T _C = 25°C	PD			Watts
MD1123, MD1130 MD1130F	10 1	1.8 1.0	2.5	14/20
Derate above 25°C MD1123, MD1130 MD1130F	Llys	10.3 5.71	14.3 11.4	mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	°C	

MD1123 MD1130,F

MD1123 MD1130 **CASE 654-07, STYLE 1**

MD1130F CASE 610-A04, STYLE 1

DUAL **AMPLIFIER TRANSISTOR**

PNP SILICON

THERMAL CHARACTERISTICS

Characteristi	c	Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD1123, MD1130 MD1130F	R _θ JC	97 175	70 87.5	°C/W
Thermal Resistance, Junction to Ambient	MD1123, MD1130 MD1130F	R _θ JA(1)	304 500	280 438	°C/W
			Junction to Ambient	Junction to Case	
Coupling Factors	MD1123, MD1130 MD1130F		84 75	44 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)		V(BR)CEO	40	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		V _{(BR)CBO}	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 150°C)		ICBO	_	=	10 10	nAdc μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	-	_	10	nAdc
ON CHARACTERISTICS						
DC Current Gain(2) (I _C = 10 μ Adc, V _{CE} = 10 Vdc)	MD1130,F	hFE	60	100	_	_
(I _C = 100 μ Adc, V _{CE} = 10 Vdc)	MD1123 MD1130F		30 100	80 170	120 300	
($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	MD1130,F		100	180	_	
($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	MD1123 MD1130.F		50 100	75 150	200	

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 Adc)		V _{CE(sat)}		0.18	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	T. NO.	V _{BE} (sat)		0.8	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS			10		Artist of the Co	
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	MD1123 MD1130,F	fT	250 200	600 550	- 0%	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	3.5	4.0	pF
MATCHING CHARACTERISTICS					11.12(9).	Dell's
DC Current Gain Ratio(3) (I _C = 100 μ Adc, V _{CE} = 10 Vdc)	MD1123 MD1130,F	hFE1/hFE2	0.8 0.9	_	1.0 1.0	-
Base-Emitter Voltage Differential ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 1.0 mAdc$, $V_{CE} = 10 Vdc$)	MD1123 MD1130,F	V _{BE1} -V _{BE2}	_	==	10 5.0	mVdc
Base-Emitter Voltage Differential Change Due to Temperature — MD1121, MD1122 (I _C = 100 µAdc, V _{CE} = 10 Vdc, T _A = +25 to +125°C)	MD1130,F	Δ V _{BE1} /V _{BE2}	_	-	10	mVdc

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ The lowest hee reading is taken as hee1 for this ratio.

MAXIMUM RATINGS				
Rating	Symbol	V	alue	Unit
Collector-Emitter Voltage	VCEO		30	Vdc
Collector-Base Voltage	VCBO	18 11	60	
Emitter-Base Voltage	VEBO		5.0	Vdc
Collector Current — Continuous	Ic		500	mAdc
		One Die	All Die Equal Power	
Total Power Dissipation @ T _A = 25°C	PD	575 350 400 3.29 2.9 2.28	625 400 600 3.57 2.28 3.42	mW/°C
Total Device Dissipation © T _C = 25°C MD1129 MD1129F MQ1129 Derate above 25°C MD1129 MD1129F MQ1129 MD1129F MQ1129	PD	1.8 1.0 0.9 10.3 5.71 5.13	2.5 2.0 3.6 14.3 11.4 20.5	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 t	o +200	°C

MD1129,F MQ1129

MD1129 CASE 654-07, STYLE 1

MD1129F CASE 610A-04, STYLE 1

MQ1129 CASE 607-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD1129 MD1129F MQ1129	R _θ JC	97 175 195	70 87.5 48.8	°C/W
Thermal Resistance, Junction to Ambient		R _θ JA(1)	304 500 438	280 438 292	°C/W
		•	Junction to Ambient	Junction to Case	Unit
Coupling Factors					%
	MD1129		84	44	
	MD1129F		75	0	
	MQ1129 (Q1-Q2)		57	0	
	(Q1-Q3	or Q1-Q4)	55	0	

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	30	_	=	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	60	_	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ІСВО	=	=	10 10	nAdc μAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	IEBO	_	-	10	nAdc

Characteristic		Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	169 0	1.05	ale e		107 107	S MELLIN
DC Current Gain(2) $ \begin{aligned} &(I_{\text{C}} = 10 \; \mu \text{Adc, V}_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 100 \; \mu \text{Adc, V}_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 1.0 \; \text{mAdc, V}_{\text{CE}} = 10 \; \text{Vdc}) \\ &(I_{\text{C}} = 10 \; \text{mAdc, V}_{\text{CE}} = 10 \; \text{Vdc}) \end{aligned} $	ad 3to boul Press	hFE	60 100 100 100		300	woll have
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	MD1129, MQ1129 MD1129F	V _{CE(sat)}	_	0.09	0.1 0.15	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	Layers Trail	V _{BE} (sat)	-	0.7	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS	10.5				10.44	TUY!
Current-Gain — Bandwidth Product(2) (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fτ	200	250	Misual Con	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	5.5	C _{obo}	_	3.5	8.0	pF
MATCHING CHARACTERISTICS (MD1129, MD112	9F)				050	251
DC Current Gain Ratio(3) (I _C = 100 μ Adc, V _{CE} = 10 Vdc) (I _C = 1.0 mAdc, V _{CE} = 10 Vdc)	E 54	hFE1/hFE2	0.9 0.9	=	1.0 1.0	216
Base-Emitter Voltage Differential (I _C = 100 μ Adc, V _{CE} = 10 Vdc) (I _C = 1.0 mAdc, V _{CE} = 10 Vdc)	7 (35-	V _{BE1} -V _{BE2}	===	[F-8]1	5.0 5.0	mVdc
Base-Emitter Voltage Differential Change Due to $^{\circ}$ (I _C = 100 μ Adc, V _{CE} = 10 Vdc, T _A = -55 to $^{\circ}$ (I _C = 100 μ Adc, V _{CE} = 10 Vdc, T _A = $+25$ to $^{\circ}$	+ 25°C)	Δ(V _{BE1} -V _{BE2})	=	MTE _B TT	0.8	mVdc

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ The lowest hee reading is taken as hee1 for this ratio.

MAXIMUM RATINGS

		4.0				
Rating Symbol Value		lue	Unit			
Collector-Emitter Voltage VCEO		1	15	Vdc		
Collector-Base Voltage	V _{CBO}	3	30		30	
Emitter-Base Voltage	V _{EBO}	5.0		5.0		Vdc
Collector Current — Continuous	lc	50		mAdc		
		One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	550 3.14	600 3.42	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.4 8.0	2.0 11.4	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	87.5	°C/W
Thermal Resistance, Junction to Ambient $R_{\theta JA}(1)$		319	292	°C/W
		Junction to Ambient	Junction to Case	Unit
Coupling Factors		83	40	%

MD1132,F

MD1132F CASE 610A-04, STYLE 1

MD1132 CASE 654-07, STYLE 1

DUAL RF AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MD918 for graphs.

(1) R_{BJA} is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 3.0 mAdc, I _B = 0)	V(BR)CEO	15	_	1—A	Vdc
Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$)	V(BR)CBO	30	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ICBO	_	_	10 1.0	nAdc μAdc
ON CHARACTERISTICS	1 - 1 - 1 - 1				
DC Current Gain(2) ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	50	_	_	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	0.2	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	0.7	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	600	800	-	_
Output Capacitance $(V_{CB} = 0, I_E = 0, f = 140 \text{ kHz})$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$	C _{obo}	=	1.5 1.3	3.0 1.7	pF
Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 140 kHz)	Cibo	_	1.8	2.0	pF
MATCHING CHARACTERISTICS					
DC Current Gain Ratio(3) (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	hFE1/hFE2	0.9	_	1.0	-
Base-Emitter Voltage Differential (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	V _{BE1} -V _{BE2}	_	_	5.0	mVdc
Base-Emitter Voltage Differential Change Due to Temperature (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, T_{A} = -55 to +25°C) (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, T_{A} = +25 to +125°C)	Δ(V _{BE1} -V _{BE2})	=	=	0.8 1.0	mVdc

- (2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- (3) The lowest hee reading is taken as hee1 for this ratio.

MD2218,A,F,AF MD2219,A,F,AF MQ2218,A MQ2219,A

MD2218,A MD2219,A CASE 654-07, STYLE 1 The state of the s

MD2218F,AF MD2219F,AF CASE 610A-04, STYLE 1

LE 1

MQ2218,A MQ2219,A CASE 607-04, STYLE 1

DUAL
AMPLIFIER TRANSISTOR
NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MD2218,A,F MD2219,A,F MQ2218,A MQ2219,A		Unit
Collector-Emitter Voltage	VCEO	30	40	Vdc
Collector-Base Voltage	VCBO	60	75	Vdc
Emitter-Base Voltage	VEBO	5.0	6.0	Vdc
Collector Current — Continuous	Ic	50	00	mAdc
Street Street		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C MD2218,A, MD2219,A MD2218,A, MD2219F,AF MQ2218,A, MQ2219,A Derate above 25°C MD2218,A, MD2219,A MD2218,A, MD2219,A MD2218,A, MD2219,A MD2218,A, MQ2219,A		575 350 400 3.29 2.0 2.28	625 400 600 3.57 2.28 3.42	mW/°C
Total Device Dissipation (a) T _C = 25°C MD2218,A, MD2219,A MD2218,AF, MD2219F,AF MO2218,A, MQ2219,A Derate above 25°C MD2218,A, MD2219,A MD2218F,AF, MD2219F,AF MO2218,A, MO2219,A		1.8 1.0 0.9 10.3 5.71 5.13	2.5 2.0 3.6 14.3 11.4 20.5	Watts mW/°C
Operating and Storage Junction TJ, Tstg			+ 200	°C

THERMAL CHARACTERISTICS

Characterist	ic	Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD2218,A, MD2219,A MD2218F,AF, MD2219F,AF MQ2218,A, MQ2219,A	R _θ JC	97 175 195	70 87.5 48.8	°C/W
Thermal Resistance, Junction to Ambient	MD2218,A, MD2219,A MD2218,F,AF, MD2219,F,AF MQ2218,A, MQ2219,A	R _θ JA(1)	304 500 438	280 438 292	°C/W
			Junction to Ambient	Junction to Case	-70
Coupling Factors	MD2218,A, MD2219,A MD2218F,AF, MD2219F,AF MQ2218,A, MQ2219,A (Q1-Q2	2) 3 or Q1-Q4)	84 75 57 55	44 0 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown V ($I_C = 10 \text{ mAdc}, I_B = 0$)	oltage(2) MD2218,A,F, MD2219,A,F, MQ2218,A, MQ2219,A MD2218AF. MD2219AF	V(BR)CEO	30 40	_		Vdc
Collector-Base Breakdown Vol $(I_C = 10 \mu Adc, I_E = 0)$	MD2218,A,F, MD2219,A,F, MQ2218,A, MD2219,A MD2218AF. MD2219AF	V(BR)CBO	60 75	_	_	Vdc

MD2218,A,F,AF, MD2219,A,F,AF, MQ2218,A, MQ2219,A

Characteristic		Symbol	Min	Тур	Max	Unit
Emitter-Base Breakdown Voltage $(I_{\hbox{\scriptsize E}}=10~\mu\hbox{\scriptsize Adc},I_{\hbox{\scriptsize C}}=0) \\ MD2218,A,F,~MD2219,A,F,~MQ2218,A,$		V _{(BR)EBO}				Vdc
	MQ2219,A MD2218AF, MD2219AF		5.0 6.0	_	_	
Collector Cutoff Current (VCE = 50 Vdc, VEB(off) = 3.0 Vdc)		ICEV				nAdd
EBION	MD2218,F, MD2219,F, MQ2218,A MD2218A,AF, MD2219A,AF, MQ2219,A		20 15		_	
Base Cutoff Current (V _{CE} = 50 Vdc, V _{EB(off)} = 3.0 Vd	(c)	IBL	30	_	_	nAdd
ON CHARACTERISTICS(2)				VA		
DC Current Gain		hFE	-			_
(I _C = 0.1 mAdc, V_{CE} = 10 Vdc)	MD2218,A,F,AF, MQ2218,A MD2219,A,F,AF, MQ2219,A		20 35	50 45	=	
(I _C = 1.0 mAdc, V_{CE} = 10 Vdc)	MD2218,A,F,AF, MQ2218,A MD2219,A,F,AF, MQ2219,A		25 50	55 55	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD2218,A,F,AF, MQ2218,A MD2219,A,F,AF, MQ2219,A	-	35 75	65 85	=	
(I _C = 150 mAdc, V_{CE} = 1.0 Vdc)	MD2218,A,F,AF, MQ2218,A MD2219,A,F,AF, MQ2219,A		20 50	65 65	_	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD2218,AF,AF, MQ2218,A MD2219,A,F,AF, MQ2219,A	E # -	40 100	30 120	120 300	e.l.
$(I_C = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD2218,A, MQ2218,A MD2219,A, MQ2219,A		25 30	75 75	=	
Collector-Emitter Saturation Voltage		V _{CE(sat)}				Vdc
(I _C = 150 mAdc, I _B = 15 mAdc)	MD2218,A,F, MD2219,A,F, MQ2218,A, MQ2219,A MD2218AF, MD2219AF		Ξ	0.2	0.4 0.3	
$(I_C = 300 \text{ mAdc}, I_B = 30 \text{ mAdc})$	MD2218,A,F, MD2219,A,F, MQ2218,A, MQ2219,A MD2218AF, MD2219AF		=	0.35 —	1.2 0.9	
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	MD2218,A,F, MD2219,A,F, MQ2218,A, MQ2219,A MD2218AF, MD2219AF	VBE(sat)	0.6 0.6	0.95 1.0	1.3 1.2	Vdc
$(I_C = 300 \text{ mAdc}, I_B = 30 \text{ mAdc})M$	D2218,A,F, MD2219,A,F, MQ2218,A, MQ2219,A MD2218AF, MD2219AF	77,2	_	_	2.0	-
SMALL-SIGNAL CHARACTERISTICS	to the same of the same	75.		16-15		
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f =	= 100 MHz)	fT	200	250		MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kH		C _{obo}		3.5	8.0	pF
nput Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 100 k		C _{ibo}				pF
	MQ2219,A		_	15	20	

MD2218AF, MD2219AF

Characteristic		Symbol	Min	Тур	Max	Unit			
SWITCHING CHARACTERISTICS									
Delay Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc, V _{BE(off)} = 0.5 Vdc, I _{B1} = 15 mAdc) MD2218,F, MD2219,F MD2218A,AF, MD2219A,AF	td	W <u>1</u>	=	20 15	μs			
Rise Time	MD2218,F, MD2219,F MD2218A,AF, MD2219A,AF	t _r	=	= "	40 30	μs			
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc, I _{B1} = I _{B2} = 15 mAdc) MD2218,F, MD2219,F MD2218A,AF, MD2219A,AF	t _s	=		280 250	μs			
Fall Time	MD2218,F, MD2219,F MD2218A,AF, MD2219A,AF	t _f	_		70 60	μS			

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

20

IC, COLLECTOR CURRENT (mA)

2.0

0.2

300

MD2218,A,F,AF, MD2219,A,F,AF, MQ2218,A, MQ2219,A

NOISE FIGURE

FIGURE 4 - FREQUENCY EFFECTS

(V_{CE} = 10 Vdc, T_A = 25°C)

FIGURE 6 - CURRENT-GAIN-BANDWIDTH PRODUCT 500 fT, CURRENT-GAIN-BANDWIDTH PRODUCT (MHz) V_{CE} = 20 V T_J = 25°C f = 100 MHz 300 200 100 70 50 30 20 10 0.2 0.3 2.0 3.0 5.0 10 20 30 IC, COLLECTOR CURRENT (mAdc)

SWITCHING TIME CHARACTERISTICS

MD2218,A,F,AF, MD2219,A,F,AF, MQ2218,A, MQ2219,A

FIGURE 10 - TURN-OFF BEHAVIOR

200 = 10Ic/IB t, t, STORAGE AND FALL TIME (ns) 100 70 50 $I_C/I_B = 10$ tf 30 20 HIGH GAIN TYPES $T_J=25^\circ C$ 10 200 20 30 50 70 100 300 10 IC. COLLECTOR CURRENT (mA)

FIGURE 11 – DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT

FIGURE 12 – STORAGE TIME AND FALL TIME EQUIVALENT TEST CIRCUIT

MAXIMUM RATINGS				
Rating	Symbol	V	alue	Unit
Collector-Emitter Voltage	VCEO	15		Vdc
Collector-Base Voltage	VCBO		40	Vdc
Emitter-Base Voltage	VEBO	4	5.0	Vdc
Collector Current — Continuous	IC		500	mAdd
		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C MD2369.A.B	PD	550	600	mW
MD2369F,AF,BF MQ2369		350 400	400 600	
Derate above 25°C MD2369,A,B MD2369F,AF,BF MQ2369		3.14 2.0 2.28	3.42 2.28 3.42	mW/°(
Total Device Dissipation @ T _C = 25°C	PD			Watts
MD2369,A,B MD2369F,AF,BF MQ2369 Derate above 25°C MD2369,A,B		1.4 0.7 0.7	2.0 1.4 2.8	mW/°C
MD2369F,AF,BF MQ2369		4.0 4.0	80 16	
Operating and Storage Junction Temperature Range	TJ, T _{stg}	−65 t	o +200	°C

MD2369,A,B MD2369F,AF,BF MQ2369

MD2369,A,B **CASE 654-07, STYLE 1**

MD2369F,AF,BF CASE 610A-04, STYLE 1

MQ2369 **CASE 607-04, STYLE 1**

DUAL **GENERAL PURPOSE TRANSISTOR**

NPN SILICON

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD2369,A,B MD2369F,AF,BF MQ2369	R _θ JC	125 250 250	87.5 125 62.6	°C/W
Thermal Resistance, Junction to Ambient	MD2369,A,B MD2369F,AF,BF MQ2369	R _θ JA(1)	319 500 438	292 438 292	°C/W
		•	Junction to Ambient	Junction to Case	
Coupling Factor	MD2369,A,B MD2369F,AF,BF MQ2369 (Q1-Q2) (Q1-Q3 o	r Q1-Q4)	83 75 57 55	40 0 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	15	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V(BR)CBO	40	-		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_{E} = 0, T_{A} = +150^{\circ}\text{C})$	Ісво	=	_	0.03 30	μAdc
ON CHARACTERISTICS(2)					
DC Current Gain (I _C = 10 mAdc, V_{CE} = 1.0 Vdc) (I _C = 10 mAdc, V_{CE} = 1.0 Vdc, T_{A} = -55° C)	hFE	40 20	95 —	140	_

MD2369,A,B, MD2369F,AF,BF, MQ2369

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	47	Symbol	Min	Тур	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		VCE(sat)	7	_	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	of Control	V _{BE(sat)}	0.7	_	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	0.50	f _T .	500	800	- 17	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I_E = 0, f = 100 kHz).	004	C _{obo}	_	_	4.0	pF
Input Capacitance (V _{BE} = 1.0 Vdc, I _C = 0, f = 100 MHz)	Marie Land	C _{ibo}	_	-	4.0	pF
SWITCHING CHARACTERISTICS	27.2	U. Y			100.5	STATE OF THE PARTY
Storage Time $(V_{CC} = 10 \text{ Vdc}, I_C = I_{B1} = I_{B2} = 10 \text{ mAdc})$		t _S	-	_	13	ns
Turn-On Time $(V_{CC} = 3.0 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1}$	= 3.0 mAdc)	ton	_	_	15	ns
Turn-Off Time $(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc}, I_{B2} =$	1.5 mAdc)	toff	-	-	20	ns
MATCHING CHARACTERISTICS						- 10
CL	9A, MD2369AF 9B, MD2369BF	hFE1/hFE2	0.9 0.8		1.0	POP DE
CL CL	9A, MD2369AF 9B, MD2369BF	V _{BE1} -V _{BE2}	_ *	· -	5.0 10	mVdc
)A, MD2369AF 9B, MD2369BF	$\frac{\Delta(V_{\text{BE1}}-V_{\text{BE2}})}{\Delta T_{\text{A}}}$	Marine Mo	i	10 20	μV/°C

- (2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- (3) The lowest hee reading is taken as hee1 for this test.

FIGURE 1 - STORAGE TIME TEST CIRCUIT

MD2369,A,B, MD2369F,AF,BF, MQ2369

FIGURE 4 - TURN-ON TEST CIRCUIT V_{CC} = 3.0 V

FIGURE 10 - COLLECTOR SATURATION REGION

FIGURE 11 - TEMPERATURE COEFFICIENTS

MD2904,A,F,AF MD2905,A,F,AF MQ2904, MQ2905A

MD2904,A MD2905,A CASE 654-07, STYLE 1

MD2904F,AF MD2905F,AF CASE 610A-04, STYLE 1

MQ2904 MQ2905A CASE 607-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MD2904,F MD2905,F MQ2904	MD2904A,AF MD2905A,AF MQ2905A	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	VCBO	1)	60	Vdc
Emitter-Base Voltage	VEBO		5.0	Vdc
Collector Current — Continuous	lc	6	800	mAdc
		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C MD2904,A, MD2905,A MD2904F,AF, MD2905,AF MQ2904, MQ2905A Derate above 25°C MD2904,A, MD2905,A MD2904,F,AF, MD2905F,AF MQ2904, MQ2905A	PD	575 350 400 3.29 2.0 2.28	625 400 600 3.57 2.28 3.42	mW/°C
Total Device Dissipation @ T _C = 25°C MD2904F, AF, MD2905F, AF MD2904F, AF, MD2905A Derate above 25°C MD2904F, AF, MD2905A MD2904F, AF, MD2905F, AF MD2904F, AF, MD2905F, AF MD2904F, MD2905A	PD	1.8 1.0 0.9 10.3 5.71 5.13	2.5 2.0 3.6 14.3 11.4 20.5	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	- 65 t	0 + 200	°C

THERMAL CHARACTERISTICS

Characteris	tic	Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD2904,A, MD2905,A	$R_{\theta JC}$	97	70	°C/W
	MD2904F,AF, MD2905F,AF MQ2904, MQ2905A	6 451	175 195	87.5 48.8	
Thermal Resistance, Junction to Ambient	MD2904,A, MD2905,A MD2904F,AF, MD2905F,AF MQ2904, MQ2905A	R _θ JA(1)	304 500 438	280 438 292	°C/W
			Junction to Ambient	Junction to Case	
Coupling Factor					%
	MD2904,A, MD2905,A MD2904F,AF, MD2905F,AF		84 75	44 0	
	MQ2904, MQ2905A (Q1-Q2) (Q1-Q3 or	Q1-Q4)	57 55	0	

⁽¹⁾ ${\rm R}_{\theta {\rm JA}}$ is measured with the device soldered into a typical printed circuit board.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	MD2904, MD2905 MD2904A, MD2905A	V _(BR) CEO	40 60	=	=	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)		V(BR)CBO	60	-	- ,	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0		-	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$		СВО		=	0.020 30	μAdc

MD2904,A,F,AF, MD2905,A,F,AF, MQ2904, MQ2905A

Characteris	tic	Symbol	Min	Тур	Max	Unit
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	-	-	30	nAdo
ON CHARACTERISTICS(2)						
DC Current Gain		hFE			4 3,	_
$(I_C = 0.1 \text{ mAdc}, V_{CF} = 10 \text{ Vdc})$	MD2904		20	50	_	
	MD2904A		40	70	_	
	MD2905		35	70	_	
	MD2905A		75	150	_	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD2904		25	75	_	
0	MD2904A		40	75	-	
	MD2905		50	100	-	
	MD2905A		100	175	_	
(I _C = 10 mAdc, V _{CE} = 10 Vdc)	MD2904		35	90		
TO TO THE TOP	MD2904A		40	90		
	MD2905		75	110	_	
	MD2905A		100	200	_	
(I _C = 150 mAdc, V _{CE} = 10 Vdc)	MD2904,A,		40	90	120	
TIC - 130 MAde, VCE - 10 Vde,	MD2905,A		100	200	300	
$(I_C = 500 \text{ mAdc}, V_{CF} = 10 \text{ Vdc})$	MD2904		20	60	_	
. G	MD2904A		40	80	_	
	MD2905		30	130	_	
	MD2905A		50	150	_	
Collector-Emitter Saturation Voltage		V _{CE(sat)}				Vdc
$(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$			_	0.25	0.4	
(I _C = 500 mAdc, I _B = 50 mAdc)			_	0.5	1.6	
Base-Emitter Saturation Voltage		V _{BE(sat)}		0.00	4.0	Vdc
(I _C = 150 mAdc, I _B = 15 mAdc)			_	0.88	1.3	
(I _C = 500 mAdc, I _B = 50 mAdc) SMALL-SIGNAL CHARACTERISTICS				1.0	2.6	
Current-Gain — Bandwidth Product(3)		fT	200	320	_	MHz
$(I_C = 50 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ M})$	Hz)	-1	200	320	_	191112
Output Capacitance		Cobo	_	5.8	8.0	pF
$(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$						
nput Capacitance		C _{ibo}	_	16	30	pF
$(V_{BE} = 2.0 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$						
SWITCHING CHARACTERISTICS			-			
urn-On Time (V _{CC} = 30 Vdc,	$V_{BE} = 0.5 \text{ Vdc},$	ton	_	_	45	ns
Delay Time $I_C = 150 \text{ mAdc}$, $I_{B1} = 15 \text{ mAdc}$		t _d			12	ns
ilse tittle		tr	_		35	ns
urn-Off Time (V _{CC} = 30 Vdc,		toff			130	ns
Storage Time $I_C = 150 \text{ mAdc},$ $I_{B1} = I_{B2} = 15 \text{ mAdc},$	nAdc)	t _S			100	ns
all Time		tf	_	_	40	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - DC CURRENT GAIN

5

NOISE FIGURE V_{CE} = 10 V, T_A = 25°C

FIGURE 4 - FREQUENCY EFFECTS

MD2904, A, F, AF, MD2905, A, F, AF, MQ2904, MQ2905A

FIGURE 6 - CURRENT-GAIN BANDWIDTH PRODUCT

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 13 - STORAGE AND FALL TIME TEST CIRCUIT

5

MAXIMUM RATINGS				
Rating	Symbol	V	alue	Unit
Collector-Emitter Voltage	VCEO	1.7	40	Vdc
Collector-Base Voltage	VCBO	61	50 5.0	
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	lc		50	mAdo
200		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C	PD			mW
MD3250,A, MD3251,A		575	625	
MD3250F,AF, MD3251F,AF MQ3251		350 400	400	
Derate above 25°C		400	600	mW/°C
MD3250,A, MD3251,A		3.29	3.57	mvv/ C
MD3250F,AF, MD3251F,AF		2.0	2.28	
MQ3251		2.28	3.42	
Total Device Dissipation @ T _C = 25°C	PD			Watts
MD3250,A, MD3251,A		1.8	2.5	
MD3250F,AF, MD3251F,AF		1.0	2.0	
MQ3251		0.9	3.6	
Derate above 25°C				mW/°C
MD3250,A, MD3251,A		10.3 5.71	14.3	
MD3250F,AF, MD3251F,AF MQ3251		5.71	11.4 20.5	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 t	0 +200	°C

MD3250,A,F,AF MD3251,A,F,AF MQ3251

MD3250,A MD3251,A **CASE 654-07, STYLE 1**

MD3250F,AF MD3251F,AF CASE 610A-04, STYLE 1

MQ3251 **CASE 607-04, STYLE 1**

DUAL **AMPLIFIER TRANSISTOR**

PNP SILICON

THERMAL CHARACTERISTICS

Characteris	tic	Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case		$R_{\theta JC}$	1114		°C/W
	MD3251,A, MD3251,A		97	70	
	MD3250F,AF, MD3251F,AF		175	87.5	
	MQ3251	100	195	48.8	
Thermal Resistance, Junction to Ambient		R _θ JA(1)		- TV.	°C/W
	MD3250,A, MD3251,A		304	280	
	MD3250F,AF, MD3251F,AF		500	438	
	MQ3251		438	292	
	787712	28-1, 1	Junction to Ambient	Junction to Case	
Coupling Factors			110 1		%
	MD3250,A, MD3251,A		84	44	
	MD3250F,AF, MD3251F,AF		75	0	
	MQ3251 (Q1-Q2)		57	0	
	(Q1-Q3 or Q1-Q4)		55	0	

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	- Y			August 1	
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	÷==-	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	V(BR)CBO	50	·—	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	V _{(BR)EBO}	5.0	-	_	Vdc
Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	ICBO	_	_	10 10	nAdc μAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	IEBO	_	_	10	nAdc

MD3250,A,F,AF, MD3251,A,F,AF, MQ3251

Characteristic		Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS(2)	. NW 1	e 0	enV		spatioV t	668-TUT
DC Current Gain	30365	hFE		AUCD-ML-S) - 1991	1 (1994)
$(I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	MD3250,A,F,AF		25	75	-	
A, DESCENA	MD3251,A,F,AF		50	100	_	
	* 25 GF 1 TO L ,	L. British L.			-	-
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	MD3250,A,F,AF		50	82	150	0 0 0
	MD3251,A,F,AF		80	170	300	10.00
	MQ3251	100	80	170		1000
	1000	197		1.6	All the Res	Intitive
$(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, T_A = -55^{\circ}C)$	MD3250,A,F,AF		25	35	_ 10	KDM
CASE GYGA-MA STYLE Y	MD3251,A,F,AF	1	50	75	2 52 600	SE DIESE
	1.7	69.5		P ₁ , (2)	SOLA, AND	HICZINA
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MD3250,A,F,AF	2.5	50	87	150	- N
The second secon	MD3251,A,F,AF	100	100	180	300	02.54
	MQ3251		100	180	or enterest	SWITTER BUT
					2	1 1 1
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MD3250,A,F,AF		50	92	SUN-JUBS	COM
ROTESHART REGUENA	MD3251,A,F,AF	0.0	100	190	DV - 183	107-104
	MQ3251	4 40 1	100	190	300	10.70.5
	3**9%-1				- 125. Box	La slavet
$(I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MD3250,A,F,AF	1.10	15	50		CC 88
	MD3251,A,F,AF	100	30	90	N, HARRIS	850F
	MQ3251	C	30	90	- 18	COM
Collector-Emitter Saturation Voltage	1000	V _{CE(sat)}		er deroid	to inte	Vdc
(I _C = 10 mAdc, I _B = 1.0 mAdc)		CL(Sat)	_	0.11	0.25	
$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$			_	0.18	0.5	L. Selle
Base-Emitter Saturation Voltage		Voc				Vdc
(I _C = 10 mAdc, I _B = 1.0 mAdc)		V _{BE} (sat)	0.6	0.78	0.9	Vuc
			0.0	0.78	1.2	100000
(I _C = 50 mAdc, I _B = 5.0 mAdc)				0.00	1.2	
	My3		Con Indiana			1
Current-Gain — Bandwidth Product	D*	fT		A US TO DO	el pantani	MHz
$(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$	MD3250,A,F,AF	100000	200	600	_	
	MD3251,A,F,AF	Transpirer	250	600	_	
100	MQ3251	KU.S. D04	300	600	_	
Output Capacitance		Cobo	_	2.5	6.0	pF
$(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kHz})$	4.11.27	TS A. 025YO				
Input Capacitance	42. 1.000000	Cibo	_	6.0	8.0	pF
(VBE = 1.0 Vdc, IC = 0, f = 100 kHz)		Olbo		0.0	0.0	Pi
MATCHING CHARACTERISTICS (MD3250,A,F,AF 8	MD3251 A F AF ONLY)					
		h				
DC Current Gain Ratio(3)		hFE1/hFE2	0.0		1.0	A policy
$(I_C = 100 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc})$	A . 15/00	Market State In	0.9		1.0	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$			0.9		1.0	
Dana Fasistan Valtana Differential		V _{BE1} -V _{BE2}			-	mVdd
4. P. C.		100	_	_	3.0	
Base-Emitter Voltage Differential (I _C = 100 µAdc, V _{CE} = 5.0 Vdc)	a 1 0 0 F1			1	5.0	
$(I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc)$ $(I_C = 10 \mu Adc, V_{CE} = 5.0 Vdc)$	Name of the same	A	_	100	5.0	0.00
$(I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc)$	Standar - No San	A Marc of Teach	5.5 - □	L-MINTS	5.0	F F ac
$ \begin{array}{ll} (I_{C} = 100 \; \mu \text{Adc, V}_{CE} = 5.0 \; \text{Vdc}) \\ (I_{C} = 10 \; \mu \text{Adc, V}_{CE} = 5.0 \; \text{Vdc}) \\ (I_{C} = 10 \; \text{mAdc, V}_{CE} = 5.0 \; \text{Vdc}) \end{array} $	emperature	AlVBE1/VBE2	p.g-E-	ped of the	A STATE OF THE PARTY OF THE PAR	mVdc
$(I_C = 100 \mu Adc, V_{CE} = 5.0 Vdc)$ $(I_C = 10 \mu Adc, V_{CE} = 5.0 Vdc)$	The state of the s	Δ V _{BE1} /V _{BE2}	pa- <u>□</u> -0	on Maria	A STATE OF THE PARTY OF THE PAR	mVdd

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ The lowest hee reading is taken as hee1 for this ratio.

MD3250,A,F,AF, MD3251,A,F,AF, MQ3251

0.5 1.0

0.5

FIGURE 1 - CAPACITANCE 7.0 -TJ = 250C-C, CAPACITANCE (pF) 5.0 3.0 1.0 0.2 2.0

5.0 10 20

FIGURE 2 - CURRENT-GAIN BANDWIDTH PRODUCT

NOISE FIGURE VARIATIONS

(VCE = 6.0 V, TA = 25°C)

50

FIGURE 4 - EFFECTS OF SOURCE RESISTANCE

FIGURE 7 - TEMPERATURE COEFFICIENTS

J

MAXIMUM RATINGS

Rating	Symbol	Value		Value		Unit
Collector-Emitter Voltage V _{CEO}		3	10	Vdc		
Collector-Base Voltage	VCBO	6	60	Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	Ic	500		mAdc		
		One Die	Both Die Equal Power			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	575 3.29	625 3.57	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	2.5 14.3	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97	70	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1) 304 280		280	°C/W
		Junction to Ambient	Junction to Case	
Coupling Factors		84	44	%

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board. **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted.)

MD3409 MD3410

CASE 654-07, STYLE 1

DUAL **AMPLIFIER TRANSISTOR**

NPN SILICON

Refer to MD2218 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc, I_B = 0$)	V(BR)CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0		_	Vdc
Collector Cutoff Current $(V_{CB}=50~V_{dc}, I_{E}=0)$ $(V_{CB}=50~V_{dc}, I_{E}=0, T_{A}=150^{\circ}C)$	ІСВО	_	_	10 10	nAdc μAdc
Emitter Cutoff Current ($V_{BE} = 3.0 \text{ Vdc}, I_{C} = 0$)	IEBO	_	_	10	nAdc
ON CHARACTERISTICS					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	hFE	20 30 40 50	40 50 60 65	100 120 160 200	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	0.09	0.15	Vdc
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	V _{BE} (sat)	_	0.7	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	ÍΤ	200	250	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_	3.5	8.0	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 1.0 MHz)	Cibo	-	15	25	pF
MATCHING CHARACTERISTICS					
Base-Emitter Voltage Differential Change Due to Temperature (IC = 100 μ Adc, VCE = 10 Vdc, MD3409 TA = -55° C to $+25^{\circ}$ C) MD3410	V _{BE1} -V _{BE2}	_	=	1.6 0.8	mVdc

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

(I_C = 100 μ Adc, V_{CE} = 10 Vdc,

 $T_A = +25^{\circ}C \text{ to } +125^{\circ}C)$

2.0

MD3409

MD3410

MD3467,F MQ3467

MD3467 CASE 654-07, STYLE 1

MD3467F CASE 610A-04, STYLE 1

MQ3467 CASE 607-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating		Symbol	V	Unit					
Collector-Emitter Voltag	е	VCEO	40		VCEO 40	VCEO 40	40	Vdc	
Collector-Base Voltage		VCBO		40	Vdc				
Emitter-Base Voltage		VEBO	5.0		5.0		5.0		Vdc
Collector Current — Cor	ntinuous	lc	140 27 15	1.5	Adc				
heap S			One Die	All Die Equal Power					
Total Device Dissipation @ TA = 25°C	1	PD		- 160 F 6	mW				
	MD3467 MD3467F MQ3467		600 350 400	650 400 600					
Derate above 25°C	MD3467 MD3467F MQ3467		3.42 2.0 2.28	3.7 2.28 3.42	mW/°C				
Total Device Dissipation @ T _C = 25°C	1	PD		- team - time	Watts				
Derate above 25°C	MD3467 MD3467F MQ3467 MD3467 MD3467F		2.1 1.25 1.0 12 7.15	3.0 2.5 4.0 17.2 14.3	mW/°C				
accale or	MQ3467		5.71	22.8					
Operating and Storage Temperature Range	Junction	T _J , T _{stg}	- 65	to +200	°C				

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD3467 MD3467F MQ3467	R _θ JC	83.3 140 175	58.3 70 43.8	°C/W
Thermal Resistance, Junction to Ambient	MD3467 MD3467F MQ3467	R _θ JA(1)	292 500 438	270 438 292	°C/W
		•	Junction to Ambient	Junction to Case	
Coupling Factors	MD3467 MD3467F MQ3467 (Q1-Q:	2) 3 or Q1-Q4)	85 75 57 55	40 0 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		107 10 1			
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	418	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	V(BR)CBO	40	-		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0		- 7	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0, T _A = 100°C)	ІСВО	-	-	10	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)	IEBO	-	_	100	nAdc

MD3467,F, MQ3467

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

	Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTIC	S					
DC Current Gain (I _C = 500 mAdc, V _C	E = 1.0 Vdc)	hFE	20	_	-	-
Collector-Emitter Satur (I _C = 500 mAdc, I _B		V _{CE(sat)}	_	0.32	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)		V _{BE(sat)}	-	0.95	1.2	Vdc
SMALL-SIGNAL CHAP	RACTERISTICS					
Current-Gain — Bandv (I _C = 50 mAdc, V _{CE}	vidth Product = 10 Vdc, f = 100 MHz)	fT	150	220	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E =	0, f = 140 kHz)	C _{obo}	-	8.5	20	pF
Input Capacitance (VBE = 0.5 Vdc, IC =	= 0, f = 140 kHz)	C _{ibo}	-	22	80	pF
SWITCHING CHARACT	TERISTICS					
Delay Time	(V _{CC} = 30 Vdc, V _{BE} = 2.0 Vdc,	td	_	7.0	10	ns
Rise Time	I _C = 500 mAdc, I _{B1} = 50 mAdc)	tr	_	17	30	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 500 mAdc,	t _S	_	58	80	ns
Fall Time	$I_{B1} = I_{B2} = 50 \text{ mAdc}$	tf	_	14	30	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 10 - SWITCHING TIME TEST CIRCUIT

MD3725,F MQ3725

MD3725 CASE 654-07, STYLE 1

MD3725F CASE 610A-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Va	alue	Unit
Collector-Emitter Voltage	VCEO		Vdc	
Collector-Base Voltage	VCBO	9	65	Vdc
Emitter-Base Voltage	VEBO		6.0	Vdc
Collector Current — Continuous	lc		1.0	Adc
	The reg	One Die	All Die Equal Power	ley'll yo
Total Device Dissipation @ T _A = 25°C MD3725 MD3725F M03725 Derate above 25°C MD3725 MD3725F M03725F M03725F	PD	600 350 400 3.42 2.0 2.28	650 400 600 3.7 2.28 3.42	mW/°C
Total Device Dissipation @ T _C = 25°C MD3725 MD3725F M03725 Derate above 25°C MD3725F MD3725F MD3725F MD3725F	PD	2.1 1.25 1.0 12 7.15 5.71	3.0 2.5 4.0 17.2 14.3 22.8	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65	to +200	°C

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD3725	$R_{ heta JC}$	83.3	58.3	°C/W
	MD3725F		140	70	
	MQ3725		175	43.8	
Thermal Resistance, Junction to Ambient		$R_{\theta JA}(1)$			°C/W
	MD3725	0071	292	270	
	MD3725F		500	438	
	MQ3725		433	292	
			Junction to Ambient	Junction to Case	
Coupling Factor					%
	MD3725		85	40	
	MD3725F		75	0	
	MQ3725 (Q1	-Q2)	57	0	
	(Q1	-Q3, Q1-Q4)	55	0	

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	_	_	Vdc
Collector-Emitter Breakdown Voltage (IC = 10 μ Adc, VBE = 0) MD3725F	V(BR)CES	65	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	65	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	6.0	_	_	Vdc
Collector Cutoff Current ($V_{CB} = 40 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 40 \text{ Vdc}$, $I_E = 0$, $T_A = 100^{\circ}\text{C}$)	Ісво	=	0.12	1.7 120	μAdc μAdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS(2)					
DC Current Gain ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 500 \text{ mAdc}$, $V_{CE} = 2.0 \text{ Vdc}$)	hFE	50 30	=	150	1 3 <u>2</u> 3
Collector-Emitter Saturation Voltage (IC = 100 mAdc, IB = 10 mAdc) (IC = 500 mAdc, IB = 50 mAdc)	V _{CE(sat)}	=	0.19 0.30	0.26 0.45	Vdc
Base-Emitter Saturation Voltage (IC = 100 mAdc, IB = 10 mAdc) (IC = 500 mAdc, IB = 50 mAdc)	V _{BE(sat)}	0.80	=	0.86 1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	200	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	-		10	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{ibo}	-	-	65	pF
SWITCHING CHARACTERISTICS					
Turn-On Time $(V_{CC}=30\ V_{dc}, I_{C}=500\ mAdc, I_{B1}=50\ mAdc, V_{BE(off)}=3.8\ V_{dc})$	ton	-	20	45	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_C = 500 \text{ mAdc}, I_{B1} = I_{B2} = 50 \text{ mAdc})$	toff	-	50	75	ns

⁽²⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

TYPICAL DC CHARACTERISTICS

FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT

FIGURE 6 - CAPACITANCE

FIGURE 7 — TURN-ON TIME

FIGURE 8 - TURN-OFF TIME

FIGURE 9 - SWITCHING TIME TEST CIRCUIT

FIGURE 10 - COLLECTOR CUTOFF CURRENT

Rating	Symbol	V	Unit	
Collector-Emitter Voltage	VCEO		Vdc	
Collector-Base Voltage	VCBO	131-1	Vdc	
Emitter-Base Voltage	VEBO		5.0	Vdc
Collector Current — Continuous	Ic		1.5	Adc
		One Die	All Die Equal Power	
Total Device Dissipation @ TA = 25°C	PD			mW
MD3762 MD3762F		600 350	650 400	
MQ3762		400	600	
Derate above 25°C		100	000	mW/°0
MD3762		3.42	3.7	
MD3762F		2.0	2.28	
MQ3762		2.28	3.42	
Total Device Dissipation @ T _C = 25°C	PD			Watts
MD3762		2.1	3.0	
MD3762F		1.25	2.5	
MQ3762		1.0	4.0	
Derate above 25°C			One that	mW/°C
MD3762		12	17.2	
MD3762F MQ3762		7.15	14.3	
		5.71	22.8	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 t	o +200	°C

MD3762 CASE 654-07, STYLE 1

MD3762F CASE 610A-04, STYLE 1

MQ3762 CASE 607-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD3762 MD3762F MQ3762	R _⊕ JC	83.3 140 175	58.3 70 43.8	°C/W
Thermal Resistance, Junction to Ambient	MD3762 MD3762F MQ3762	R _θ JA(1)	292 500 438	270 438 292	°C/W
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T.		Junction to Ambient	Junction to Case	
Coupling Factors					%
	MD3762		85	40	
	MD3762F		75	0	
	MQ3762 (Q1-Q		57	0	
	(Q1-Q	3, Q1-Q4)	55	0	

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V(BR)CEO	40	_	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V _(BR) CBO	40	-	+=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$	ІСВО	=	=	100 10	nAdc μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)	IEBO	Jet -	-	100	nAdc

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

200	Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERIST	ICS(2)	Ø41 E			porter or	15 6 15
DC Current Gain (I _C = 1.0 Adc, V _{CE}	= 2.0 Vdc)	hFE	20	40	i es ta r ki	-
Collector-Emitter Sat		V _{CE} (sat)	-	0.52	1.0	Vdc
Base-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.1 Adc)		V _{BE(sat)}	.—	1.05	1.4	Vdc
SMALL-SIGNAL CH	ARACTERISTICS	1875				
Current-Gain — Band (I _C = 50 mAdc, V _C	dwidth Product CE = 10 Vdc, f = 100 MHz)	fT	150	220	- (- 1 -1-4)	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E	= 0, f = 140 kHz)	C _{obo}	1-	8.5	20	pF
Input Capacitance (VBE = 0.5 Vdc, Ic	c = 0, f = 140 kHz)	C _{ibo}	_	22	80	pF
SWITCHING CHARA	CTERISTICS	363				
Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = 2.0 Vdc,	td	_	5.0	10	ns
Rise Time	I _C = 1.0 Adc, I _{B1} = 100 mAdc)	t _r	_	18	30	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 1.0 Adc,	ts	_	45	80	ns
Fall Time	$I_{B1} = I_{B2} = 100 \text{ mAdc}$	tf	_	18	30	ns

⁽²⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 3 - "ON" VOLTAGE

FIGURE 4 - TEMPERATURE COEFFICIENTS

⁽³⁾ fT is defined as the frequency at which |hfe| extrapolates to unity.

MD4260 MD4261

CASE 654-07, STYLE 1

DUAL RF AMPLIFIER

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	12		Vdc		
Collector-Base Voltage	VCBO	12		12		Vdc
Emitter-Base Voltage	VEBO	4.0		4.0		Vdc
Collector Current — Continuous	IC	50		mAdc		
pro-report -	eral .	One Die	Both Die			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	550 3.14	600 3.42	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.4 8.0	2.0 11.4	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

THERMAL CHARACTERISTICS

Characteristic	Junction to Ambient	Junction to Case	Unit
Thermal Resistance			°C/W
One Die	319	125	
Effective, Both Die	292	87.5	
Coupling Factor	83	40	%

Refer to 2N4260 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	1	746		
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	12	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	12	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	Vdc
Collector Cutoff Current (VCE = 12 Vdc, IB = 0)	ICEO	-	1.0	μAdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ICBO		10	nAdc
ON CHARACTERISTICS				
DC Current Gain $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 30 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	hFE	30 20	200	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}		0.3	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			des de	
Current-Gain — Bandwidth Product $(I_C = 0.5 \text{ mAdc}, V_{CE} = 4.0 \text{ Vdc}, f = 100 \text{ MHz})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$	fT	1.0 1.5	=	GHz
Output Capacitance (V _{CB} = 3.0 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	2.5	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 100 kHz)	C _{ibo}	_	2.5	pF
Collector Base Time Constant (I _C = 5.0 mAdc, V_{CE} = 4.0 Vdc, f = 31.8 MHz) (I _C = 10 mAdc, V_{CE} = 10 Vdc, f = 31.8 MHz)	rb'C _C		35 30	ps
MATCHING CHARACTERISTICS (MD4261 only)		***************************************	CVI C	
DC Current Gain Ratio(1) (IC = 10 mAdc, VCE = 1.0 Vdc)	hFE1/hFE2	0.8	1.0	-
Base-Emitter Voltage Differential (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	V _{BE1} -V _{BE2}	_	10	mVdd

⁽¹⁾ The lowest hee reading is taken as hee1 for this ratio.

MD5000,A,B

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N3307 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	15		Vdc		
Collector-Base Voltage	VCBO	20		20		Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc		
Collector Current Continuous	IC	50		mAdc		
		One Side	Both Sides			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	400 2.3	mW mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.) Characteristic Symbol Min Тур Max Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (I_C = 3.0 mAdc, I_B = 0) V(BR)CEO 15 Vdc Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) V(BR)CBO 20 Vdc Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$) V(BR)EBO 5.0 Vdc Collector Cutoff Current (VCB = 15 Vdc, IE = 0) **ICBO** 0.010 μAdc $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$ 1.0 ON CHARACTERISTICS DC Current Gain (I_C = 3.0 mAdc, V_{CE} = 1.0 Vdc) hFE 20 50 Collector-Emitter Saturation Voltage (I_C = 10 mAdc, I_B = 1.0 mAdc) Vdc VCE(sat) 0.4 Base-Emitter Saturation Voltage (I_C = 10 mAdc, I_B = 1.0 mAdc) VBE(sat) 1.0 Vdc **SMALL-SIGNAL CHARACTERISTICS** Current-Gain - Bandwidth Product fT 600 900 MHz (IC = 4.0 mAdc, V_{CE} = 10 Vdc, f = 100 MHz) **Output Capacitance** Cobo 1.7 pF $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 140 \text{ kHz})$ Input Capacitance Cibo 2.0 pF $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 140 \text{ kHz})$ NF Noise Figure (IC = 1.0 mAdc, V_{CE} = 6.0 Vdc, f = 60 MHz, R_S = 400 ohms) **FUNCTIONAL TEST** Amplifier Power Gain Gpe 15 20 dB (I_C = 6.0 mAdc, V_{CB} = 12 Vdc, R_{G} = R_{L} = 50 ohms, f = 200 MHz) MATCHING CHARACTERISTICS DC Current Gain Ratio(1) hFE1/hFE2 (I_C = 4.0 mAdc, V_{CE} = 10 Vdc) MD5000 0.7 MD5000A 0.9 1.0 MD5000B 0.8 1.0 Base-Emitter Voltage Differential mVdc V_{BE1}-V_{BE2} MD5000 $(I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ 5.0 MD5000A 5.0 MD5000B 10 Base-Emitter Voltage Differential Gradient μV/°C Δ(VBE1-VBE2) $(I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55 \text{ to } + 125^{\circ}\text{C})$ MD5000 10 ΔT_A MD5000A 10 MD5000B 20

SMALL-SIGNAL DEVICES

(1) The lowest hee reading is taken as hee1 for this ratio.

MD6001,F MD6002,F MD6003,F MQ6001, MQ6002

MD6001 MD6002 MD6003

CASE 654-07, STYLE 5 MD6001F

MD6002F MD6003F

CASE 610A-04, STYLE 1 MQ6001

MQ6002
CASE 607-04, STYLE 1
COMPLEMENTARY DUAL
GENERAL PURPOSE

TRANSISTOR NPN/PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	MD6003 MD6003F	MD6001,F MD6002,F MQ6001,2	Unit
Collector-Emitter Voltage	VCEO		30	Vdc
Collector-Base Voltage	V _{CBO}	50	60	Vdc
Emitter-Base Voltage	VEBO		5.0	Vdc
Collector Current — Continuous	lc		500	mAdc
State Supply Supply		One Die	All Die Equal Power	My. UT
Total Device Dissipation @ T _A = 25°C MD6001,2,3 MD6001F,2F,3F MQ6001,2 Derate above 25°C MD6001,2,3 MD6001F,2F,3F	PD	575 350 400 3.29 2.0	625 400 600 3.57 2.28	mW/°C
MQ6001,2 Total Device Dissipation @ T _C = 25°C MD6001,2,3 MD6001,2,F,3F MQ6001,2 Derate above 25°C MD6001,2,3 MD6001,2,3 MD6001,2,3 MQ6001,2 MQ6001,2	PD	2.28 1.8 1.0 0.9 10.3 5.71 5.13	2.5 2.0 3.6 14.3 11.4 20.5	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characterist	ic	Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD6001,2,3 MD6001F,2F,3F MQ6001,2	$R_{ heta}$ JC	97 175 195	70 87.5 48.8	°C/W
Thermal Resistance, Junction to Ambient	MD6001,2,3 MD6001F,2F,3F MQ6001,2	R _θ JA(1)	304 500 438	280 438 292	°C/W
	8.5		Junction to Ambient	Junction to Class	
Coupling Factor	MD6001,2,3 MD6001F,2F,3F MQ6001,2 (Q1-Q2) (Q1-Q3 or Q1-Q4)		84 75 57 55	44 0 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise noted.)				parties halder		
Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V _{(BR)CEO}	30	_	_	Vdc	
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0) MD6003,F MD6001,F, MD6002,F, MQ6001, MQ6002	V(BR)CBO	50 60	=	=	Vdc	
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	, i, 	- - - 4	Vdc	
Base Cutoff Current (VCE = 30 Vdc, VBE = 3.0 Vdc) (VCF = 50 Vdc, VEB = 3.0 Vdc) MD6003,F MD6001,F,2,F, MQ6002,F	IBEV	=		50 30	nAdc	

MD6001,F, MD6002,F, MD6003,F, MQ6001, MQ6002

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic

Collector Cutoff Current		lory		100		
	MD6003,F	ICEV			30	m A ala
(VCE = 30 Vdc, VBE(off) = 3.0 Vdc)			_	_		nAdc
$(V_{CE} = 50 \text{ Vdc}, V_{EB(off)} = 3.0 \text{ Vdc})$	MD6001,F,2,F, MQ6001,2		_	2	20	nAdc
$(V_{CE} = 50 \text{ Vdc}, V_{EB(off)} = 3.0 \text{ Vdc}, T_{A} = 150^{\circ}\text{C})$	MD6001,F,2,F, MQ6001,2		_	_	30	μAdc
Collector Cutoff Current		ІСВО	_	_	100	nA
$(V_{CB} = 40 \text{ Vdc}, I_{E} = 0)$	MD6003,F					
ON CHARACTERISTICS(2)		111111111111111111111111111111111111111				
DC Current Gain		hFE				_
$(I_C = 0.1 \text{ mAdc}, V_{CF} = 10 \text{ Vdc})$	MD6001,F, MQ6001		20	80		
	MD6002,F, MQ6002	4	35	70	-	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD6001,F, MQ6001		25	90		100
(IC = 1.0 MAde, VCE = 10 Vde)	MD6003,F		40	70		. 1.2
			50	0.10	7.20	-
	MQ6002,F, MQ6002	100	50	100		211
$(I_C = 10 \text{ mAdc}, V_{CF} = 10 \text{ Vdc})$	MD6001,F, MQ6001		35	70	_	
	MD6002,F, MQ6002		75	110	_	
(I _C = 150 mAdc, V _{CE} = 10 Vdc)	MD6001,F, MQ6001		40	_	120	
	MD6003.F		70	110	_	
	MD6002,F, MQ6002		100	200	300	0
(I _C = 300 mAdc, V _{CF} = 10 Vdc)	MD6001,F, MQ6001		20	_	_	
. UL				1000	1	

All Other Devices

MD6001,F, MQ6001

MD6002,F, MQ6002

MD6001, MD6002,F, MQ6002,1

MD6001, MD6002,F, MQ6001,2

All Devices

All Devices

Min

30

20

50

VCE(sat)

V_{BE(sat)}

90

80

0.3

0.59

1.02

1.25

0.4

1.4

1.3

2.0

Тур

Max

Unit

Vdc

Vdc

Symbol

 $(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$

Collector-Emitter Saturation Voltage

(IC = 150 mAdc, IB = 15 mAdc)

(IC = 300 mAdc, IB = 30 mAdc)

(IC = 150 mAdc, IB = 15 mAdc)

Base-Emitter Saturation Voltage

⁽I) C = 300 mAdc, C = 300 mAdc) MD6001, M (2) Pulse Test: Pulse Width $C = 300 \mu \text{s}$, Duty Cycle C = 2.0%.

NOISE FIGURE V_{CE} = 10 V, T_A = 25°C

 $\begin{array}{c} 6.0 \\ V_{CE} = 10 \text{ Vdc} \\ T_{A} = 25^{\circ}\text{C} \\ \hline \\ 5.0 \\ \hline \\ 4.0 \\ \hline \\ 4.0 \\ \hline \\ & 2.0 \\ \hline \\ & & \\$

FIGURE 4 - FREQUENCY EFFECTS

5.0 10

f. FREQUENCY (kHz)

50 100

0.2

0.5 1.0 2.0

MD7000

CASE 654-07, STYLE 1

DUAL
GENERAL PURPOSE
TRANSISTOR

NPN SILICON

Refer to MD2218 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Va	Unit			
Collector-Emitter Voltage	VCEO	30		Vdc		
Collector-Base Voltage	VCBO	5	50	Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	IC	500		mAdc		
	L. III record	One Die	Both Die			
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	575 3.29	625 3.57	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	2.5 14.3	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	°C			

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die	Both Die	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97	70	°C/W
Thermal Resistance, Junction to Ambient	Junction to $R_{\theta JA}(1)$ 304		280	°C/W
		Junction to Ambient	Junction to Case	
Coupling Factor	17 S F 4	84	44	%

⁽¹⁾ R_{BJA} is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	30		=	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	50	-		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	-	+=	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)	ІСВО		-	100	nAdc
ON CHARACTERISTICS					
DC Current Gain(2) (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 10 Vdc) (I _C = 300 mAdc, V _{CE} = 10 Vdc)	hFE	40 70 30	60 80 50	=	_
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	VCE(sat)	_	0.2	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	10-7	0.95	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 20 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	200	250	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	3.5	8.0	pF
Input Capacitance (VEB = 2.0 Vdc, I_C = 0, f = 100 kHz)	C _{ibo}	-	15	30	pF

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Va	lue	Unit
Collector-Emitter Voltage	VCEO	30		Vdc
Collector-Base Voltage	VCBO	5	0	Vdc
Emitter-Base Voltage	VEBO	5.	.0	Vdc
Collector Current — Continuous	lc	60	00	mAdc
		One Die	All Die	
Total Device Dissipation @ T _A = 25°C MD7001 MD7001F MQ7001 Derate above 25°C MD7001 MD7001F MQ7001	PD	350 400 3.42 2.0 2.28	650 400 600 3.7 2.28 3.42	mW/°C
Total Device Dissipation @ T _C = 25°C MD7001 MD7001F MQ7001 Derate above 25°C MD7001 MD7001F MQ7001F MQ7001	PD	2.1 1.25 1.0 12 7.15 5.71	3.8 2.5 4.0 17.2 14.3 22.8	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	°C

MD7001,F MQ7001

MD7001 CASE 654-07, STYLE 1

MD7001F CASE 610A-04, STYLE

MQ7001 **CASE 607-04, STYLE 1**

DUAL **AMPLIFIER TRANSISTOR**

PNP SILICON

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case		$R_{\theta JC}$			°C/W
	MD7001		83.3	58.3	
	MD7001F		140	70	
	MQ7001		175	43.8	
Thermal Resistance, Junction to Ambient		$R_{\theta JA}(1)$			°C/W
	MD7001		292	270	
	MD7001F		500	438	
	MQ7001		438	292	
			Junction to Ambient	Junction to Case	
Coupling Factor					%
	MD7001		85	40	
	MD7001F		75	0	
	MQ7001 (Q	I-Q2)	57	0	
	(0.	I-Q3 or Q1-Q4)	55	0	

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V _{(BR)CEO}	30	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V _(BR) CBO	50	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)	ICBO	_	_	100	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 10 Vdc) (I _C = 300 mAdc, V _{CE} = 10 Vdc)	hFE	40 70 30	50 90 60	=	-
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	-	0.25	0.4	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE} (sat)		0.88	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS	ISL ACCUSED				
Current-Gain — Bandwidth Product(2) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	200	320	100 1 - 1 11 11 11 11 11 11 11 11 11 11 11	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	5.8	8.0	pF
Input Capacitance (VBE = 2.0 Vdc , IC = 0 , f = 100 kHz)	Cibo	_	16	30	pF

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

Rating	Symbol	V	Unit	
Collector-Emitter Voltage	VCEO		Vdc	
Collector-Base Voltage	VCBO		50	Vdc
Emitter-Base Voltage	VEBO		Vdc	
Collector Current — Continuous	lc		30	mAdc
		One Die	Both Die Equal Power	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	575 3.29	625 3.57	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	2.5 14.3	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97	70	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	304	280	°C/W
Coupling Factors		Junction to Ambient 84	Junction to Case	%

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

MD7002,A,B

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2919 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	9				
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	1 1	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	50	- 2		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	-	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ІСВО	^ —	_	100	nAdc
ON CHARACTERISTICS					
DC Current Gain(2) ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 10 mAdc$, $V_{CE} = 10 Vdc$)	hFE	40 50	130 170	_	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}		0.2	0.35	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	0.8	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 5.0 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	200	260	(MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	- 300	2.6	6.0	pF
Input Capacitance (V _{BE} = 2.0 Vdc, I_C = 0, f = 100 kHz)	C _{ibo}	700	2.3	8.0	pF
MATCHING CHARACTERISTICS					-
DC Current Gain Ratio(3) $ (I_{\hbox{\scriptsize C}} = 100~\mu \hbox{\scriptsize Adc}, V_{\hbox{\scriptsize CE}} = 10~\hbox{\scriptsize Vdc}) \\ \qquad \qquad \qquad MD7002A \\ \qquad MD7002B $	hFE1/hFE2	0.75 0.85	="	1.0 1.0	-
Base-Emitter Voltage Differential (I _C = 100 μAdc, V _{CE} = 10 Vdc) MD7002A MD7002B	V _{BE1} -V _{BE2}	_		25 15	mVdc

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ The lowest hee reading is taken as hee1 for this ratio.

MD7003,A,B,F,AF MQ7003

MD7003,A,B CASE 654-07, STYLE 1

MD7003F,AF CASE 610A-04, STYLE 1

MQ7003 CASE 607-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N3810 for curves.

MAXIMUM RATINGS

Rating	Symbol	V	alue	Unit
Collector-Emitter Voltage	VCEO		40	Vdc
Collector-Base Voltage	VCBO	50		Vdc
Emitter-Base Voltage	VEBO		5.0	Vdc
Collector Current — Continuous	Ic	DESCRIPTION OF THE PERSON OF T	50	mAdc
State Delta Septial Propose		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C	PD	To I	7/L -	mW
MD7003,A,B MD7003F,AF		550 350	600 400	to legal
MQ7003 Derate above 25°C		400	600	mW/°C
MD7003,A,B MD7003F,AF	en 7 s	3.14	3.42 2.28	Como
MQ7003		2.28	3.42	
Total Device Dissipation @ T _C = 25°C	PD		ARREST SAM	Watts
MD7003,A,B		1.4	2.0	
MD7003F,AF	COMPANY	0.7	1.4	
MQ7003 Derate above 25°C		0.7	2.8	mW/°C
MD7003,A,B		8.0	11.4	Daniel Co.
MD7003F,AF	1000	4.0	8.0	an and the
MQ7003		4.0	16	al and
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65	to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Average at	Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD7003,A,B MD7003F,AF MQ7003	R _Ø JC	125 250 250	87.5 125 62.6	°C/W
Thermal Resistance, Junction to Ambient	MD7003,A,B MD7003F,AF MQ7003	R _θ JA(1)	319 500 438	292 438 292	°C/W
37 39		Angel Con-	Junction to Ambient	Junction to Case	180 J
Coupling Factor	MD7003,A,B MD7003F,AF MQ7003 (Q1-Q2)	or Q1-Q4)	83 75 57 55	40 0 0	%

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					77
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	195	45 -4.1	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	50	_ 30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	1745		100	nAdc
ON CHARACTERISTICS					
DC Current Gain(2) ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 10 mAdc$, $V_{CE} = 10 Vdc$)	hFE	40 50	350 350	=	_

MD7003,A,B,F,AF, MQ7003

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)		0.25	0.35	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE} (sat)	* 10 =	0.6	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	200	300	473061	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}		3.0	6.0	pF
Input Capacitance (VBE = 2.0 Vdc , IC = 0 , f = 100 kHz)	C _{ibo}	_	2.0	8.0	pF
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 3.0 kohms, f = 10 Hz to 15.7 kHz)	NF	10	2.0	i str	dB
MATCHING CHARACTERISTICS	unyai .		1009		
DC Current Gain Ratio(3) $ (I_{\hbox{\scriptsize C}} = 100~\mu \hbox{\scriptsize Adc}, V_{\hbox{\scriptsize CE}} = 10~\hbox{\scriptsize Vdc}) \\ \qquad \qquad \qquad \mbox{MD7003A} \\ \qquad \qquad \mbox{MD7003B} $	AF	0.75 0.85	19-16	1.0 1.0	- L
Base-Emitter Voltage Differential ($I_C = 100 \mu Adc, V_{CE} = 10 Vdc$) MD7003A MD7003B	AF VBE1-VBE2	_	=	25 15	mV

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ The lowest hee reading is taken as hee1 for this ratio.

MD7007,A,B,F,BF MQ7007

MD7007,A,B CASE 654-07, STYLE 1

MD7007F,BF CASE 610A-04, STYLE 1

MQ7007 CASE 607-04, STYLE 1

DUAL AMPLIFIER TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	V	Unit	
Collector-Emitter Voltage	VCEO	40		Vdc
Collector-Base Voltage	Vсво	907	50	Vdc
Emitter-Base Voltage	V _{EBO}	data made	5.0	Vdc
Collector Current — Continuous	IC		200	mAdc
560		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C MD7007,A,B MD7007F,BF	PD	575 350	625 400	mW
MQ7007 Derate above 25°C MD7007,A,B MD7007F,BF MQ7007		3.29 2.0 2.28	3.57 2.28 3.42	mW/°C
Total Device Dissipation @ T _C = 25°C MD7007,A,B MD7007F,BF MQ7007 Derate above 25°C MD7007,A,B MD7007F,BF	PD	1.8 1.0 0.9 10.3 5.71	2.5 2.0 3.6 14.3 11.4	Watts mW/°C
MQ7007 Operating and Storage Junction Temperature Range	T _J , T _{stg}	5.13 - 65 1	20.5	°C

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case	MD7007,A,B MD7007F,BF MQ7007	R _θ JC	97 175 195	70 87.5 48.8	°C/W
Thermal Resistance, Junction to Ambient	MD7007,A,B MD7007F,BF MQ7007	R _θ JA(1)	304 500 438	280 438 292	°C/W
			Junction to Ambient	Junction to Case	
Coupling Factors	MD7007,A,B MD7007F,BF MQ7007 (Q1-Q2)) or Q1-Q4)	84 75 57 55	44 0 0	%

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	V _(BR) CBO	50	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current (VCB = 30 Vdc, I _E = 0)	Ісво	-	_	100	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain ($I_C = 100 \ \mu Adc, V_{CE} = 10 \ Vdc$) ($I_C = 1.0 \ mAdc, V_{CE} = 10 \ Vdc$) ($I_C = 10 \ mAdc, V_{CE} = 10 \ Vdc$) ($I_C = 50 \ mAdc, V_{CF} = 10 \ Vdc$)	h _{FE}	30 30 30 15	110 130 75 25		_

MD7007, A, B, F, BF, MQ7007

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_	0.38	1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}		0.9	1.5	Vdc
SMALL-SIGNAL CHARACTERISTICS		,			
Current-Gain — Bandwidth Product(2) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	300	600		MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	4.0	8.0	pF
Input Capacitance (V _{BE} = 2.0 Vdc, I_C = 0, f = 100 kHz)	C _{ibo}	_	3.8	10	pF
MATCHING CHARACTERISTICS					
DC Current Gain Ratio(3) (IC = 1.0 mAdc, VCE = 10 Vdc) MD7007A MD7007B	hFE1/hFE2	0.75 0.85	_	1.0 1.0	_
	V _{BE1} -V _{BE2}	_	_	20 10	mVdd

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ The lowest hee reading is taken as hee1 for this ratio.

MD7021,F MQ7021

MD7021 CASE 654-07, STYLE 5

MD7021F CASE 610A-04, STYLE 1

MQ7021 CASE 607-04, STYLE 1

COMPLEMENTARY
GENERAL PURPOSE TRANSISTOR

NPN/PNP SILICON

MAXIMUM RATINGS

MAXIMUM RATINGS				
Rating	Symbol	V	alue	Unit
Collector-Emitter Voltage	VCEO		40	Vdc
Collector-Base Voltage	VCBO		Vdc	
Emitter-Base Voltage	VEBO	Chalce T. T.	Vdc	
Collector Current — Continuous	IC	and day	50	mAdc
		One Die	All Die Equal Power	
Total Device Dissipation @ T _A = 25°C	PD	10 to 100	40 - 996	mW
MD7021	400	550	600	
MD7021F		350	400	
MQ7021		400	600	
Derate above 25°C				mW/°0
MD7021		3.14	3.42	
MD7021F		2.0	2.28	
MQ7021		2.28	3.42	4 103
Total Device Dissipation @ Tc = 25°C	PD	55.6 07	THE PROPERTY OF	Watts
MD7021		1.4	2.0	
MD7021F		0.7	1.4	100
MQ7021		0.7	2.8	
Derate above 25°C				mW/°0
MD7021		8.0	11.4	
MD7021F		4.0	8.0	
MQ7021		4.0	16	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65	to +200	°C

THERMAL CHARACTERISTICS

Characteristic		Symbol	One Die	All Die Equal Power	Unit
Thermal Resistance, Junction to Case		$R_{\theta JC}$			°C/W
	MD7021		125	87.5	
	MD7021F		250	125	
	MQ7021		250	62.6	
Thermal Resistance, Junction to Ambient		R _{€JA} (1)			°C/W
	MD7021		319	292	
	MD7021F		500	438	
	MQ7021		438	292	
			Junction to Ambient	Junction to Case	
Coupling Factor					%
	MD7021		83	40	1337
	MD7021F		75	0	
	MQ7021	(Q1-Q2)	57	0	
		(Q1-Q3 or Q1-Q4)	55	0	

⁽¹⁾ $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	-	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	V(BR)CBO	50	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ІСВО	_	_	100	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 µAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	hFE	40 50	65 70	=	_

MD7021,F, MQ7021

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)(2)	V _{CE(sat)}	-	(11/12)	0.35	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		1 3 1	18 100-3	00 38 A	
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	200	320	_	MHz
Output Capacitance (VCB = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	- 4	\ -	6.0	pF
Input Capacitance (V _{BE} = 2.0 Vdc, I _C = 0, f = 100 kHz)	C _{ibo}	_	-	8.0	pF
SWITCHING CHARACTERISTICS					
Turn-On Time $(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = 15 \text{ Adc})$	ton	_	28	_	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc})$	toff	THE C	72	To the last	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MD8001 MD8002 MD8003

CASE 654-07, STYLE 1

DUAL AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2920 for graphs.

MAXIMUM RATINGS

Rating	Symbol	V	Unit			
Collector-Emitter Voltage MD8001 MD8002 MD8003	VCEO		Vdc			
Collector Current — Continuous	IC	30		30		mAdc
	20	One Die	Both Die Equal Power			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	575 3.29	625 3.57	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	2.5 14.3	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65	°C			

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die Max	Both Die Equal Power Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97	70	°C/W
Thermal Resistance, Junction to Ambient	R _θ JA(1)	304	280	°C/W
		Junction to Ambient	Junction to Case	
Coupling Factor		84	44	%

⁽¹⁾ $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	MD8001 MD8002 MD8003	V(BR)CEO	40 50 60	_	_	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)		ICBO	_	-	50	nAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO	_	_	50	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc)		hFE	100	200	_	-
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product(2) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fT	_	260	-	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$		C _{obo}	_	2.6	_	pF
Input Capacitance (VBE = 2.0 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	_	2.3	-	pF
MATCHING CHARACTERISTICS						
Base-Emitter Voltage Differential (I _C = 1.0 mAdc, V _{CE} = 10 Vdc)		V _{BE1} -V _{BE2}	_	_	15	mVdc

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS

INIAVIIAIOIAI VALIIARR						
Rating	Symbol	Value		Unit		
Collector-Emitter Voltage	VCEO	15		Vdc		
Collector-Base Voltage	VCBO	30		Vdc		
Emitter-Base Voltage	VEBO	3.0		3.0		Vdc
Collector Current — Continuous	lc	50		mAdc		
		Each Transistor	Total Device			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.65 3.72	1.9 10.88	Watts mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.3 7.43	4.6 26.3	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C		

MHQ918

CASE 632-02, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MD918 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 3.0 mAdc, I _B = 0)	V(BR)CEO	15	-	_	Vdc
Collector-Base Breakdown Voltage (IC = 1.0 μ Adc, IE = 0)	V(BR)CBO	30	-	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V _{(BR)EBO}	3.0			Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ICBO	_	-	10	nAdc
ON CHARACTERISTICS(1)			•		
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 3.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	 20 	110 80 50		_,
Collector-Emitter Saturation Voltage (IC = 10 mAdc, Ig = 1.0 mAdc)	VCE(sat)	-	0.11	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	0.84	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					100
Current-Gain — Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	600	850		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)	C _{obo}	-	0.75	2.0	pF
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 140 kHz)	C _{ibo}	-	1.4	2.5	pF
Noise Figure ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $R_S = 400 \text{ Ohms}$, $f = 60 \text{ MHz}$)	NF	_	4.0	6.0	dB

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MHQ2221 MHQ2222 MPQ2221* **MPQ2222***

MHQ2221 MHQ2222 **CASE 632-02, STYLE 1** TO-116

MPQ2221 MPQ2222 CASE 646, STYLE 1

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

QUAD **GENERAL PURPOSE TRANSISTOR**

NPN SILICON

Refer to MD2218 for graphs.

MAXIMUM RATINGS			nacional St.	
Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	40		Vdc
Collector-Base Voltage	VCBO	60)	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	lc	500		mAdc
Test dates Dissing		Each Transistor	Total Device	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.65	1.9	Watts
MHQ2221, MHQ2222 MPQ2221, MPQ2222	209	3.72 5.2	10.88 15.2	mW/°C
Operating and Storage Junction Temperature Range MHQ2221,22 MPQ2221,22	T _J , T _{stg}	-65 to +200 -55 to +150		°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	100 P. T.		11-800-1	1		
Collector-Emitter Breakdown Voltage(1) (IC	= 10 mAdc, I _B = 0)	V(BR)CEO	40	_		Vdc
Collector-Base Breakdown Voltage (I _C = 10	μ Adc, I _E = 0)	V(BR)CBO	60	-	The labor	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu$	Adc, $I_C = 0$)	V(BR)EBO	5.0	-	otole 3 s	Vdc
Collector Cutoff Current (VCB = 50 Vdc, IE	= 0)	ІСВО	_		50	nAdo
Emitter Cutoff Current (VBE = 3.0 Vdc, IC =	0)	IEBO	=	v. <u>—</u> **	50	nAdd
ON CHARACTERISTICS					15/15/15/15	
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	MHQ2221, MPQ2221 MHQ2222, MPQ2222	hFE	35 75	_	=	-
(I _C = 150 mAdc, V_{CE} = 10 Vdc)	MHQ2221, MPQ2221 MHQ2222, MPQ2222		40 100	=	= ;	
$(I_C = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MHQ2221, MPQ2221 MHQ2222, MPQ2222		20 30	= =	1 10 <u>2 m</u>	Z mi
Collector-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mAdc}$)		V _{CE(sat)}	=	N	0.4 1.6	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc)		V _{BE(sat)}	_	_	1.3 2.6	Vdc
SMALL-SIGNAL CHARACTERISTICS	l resil					- 1
Current-Gain — Bandwidth Product(1) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MH	tz)	fŢ	200	350	-	MH
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	4.5	8.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	-	17	30	pF
SWITCHING CHARACTERISTICS						
Turn-On Time $(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 0.5 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$		t _{on}	_	25	_	ns
Turn-Off Time (VCC = 30 Vdc, IC = 150 mAdc,		toff		250	_	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

 $I_{B1} = I_{B2} = 15 \text{ mAdc}$

^{*}MPQ2221A and MPQ2222A also available.

MHQ2221, MHQ2222, MPQ2221, MPQ2222

FIGURE 1 – DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT

FIGURE 2 – STORAGE TIME AND FALL TIME EQUIVALENT TEST CIRCUIT

MHQ2369 MP02369

MHQ2369 CASE 632-02, STYLE 1

MPQ2369 CASE 646-05, STYLE 1 TO-116

SWITCHING TRANSISTOR NPN SILICON

Refer to MD2369 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value		Value		Value		Unit
Collector-Emitter Voltage	VCEO	15		Vdc				
Collector-Base Voltage	VCBO	40)	Vdc				
Emitter-Base Voltage	VEBO	4.5		Vdc				
Collector Current — Continuous	Ic	500		mAdc				
	3 -	Each Transistor	Total Device					
Total Device Dissipation @ T _A = 25°C Derate above 25°C MHQ2369 MPQ2369	PD	0.5 2.86 5.0	1.5 8.58 15	Watts mW/°C				
Operating and Storage Junction Temperature Range MHQ2369 MPQ2369	TJ, T _{stg}	- 65 to +200 - 55 to +125		°C				

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	15	_	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	ІСВО	_	_	0.4	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)	IEBO	_	_	0.5	μAdc
ON CHARACTERISTICS					
DC Current Gain(1) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 2.0 \text{ Vdc}$)	hFE	40 20	_	_	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	_	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	_	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					•
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	450	550	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)	C _{obo}	_	2.5	4.0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 140 \text{ kHz})$	C _{ibo}	_	3.0	5.0	pF
SWITCHING CHARACTERISTICS					
Turn-On Time ($V_{CC}=3.0~V_{dc},V_{BE}=1.5~V_{dc},I_{C}=10~mAdc,I_{B1}=3.0~mAdc)$	t _{on}	_	9.0	-	ns
Turn-Off Time ($V_{CC} = 3.0 \text{ Vdc}$, $I_{C} = 10 \text{ mAdc}$, $I_{B1} = 3.0 \text{ mAdc}$, $I_{B2} = 1.5 \text{ mAdc}$)	toff	_	15	-	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 2.0%.

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	40		Vdc
Collector-Base Voltage	V _{CBO}	60)	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current — Continuous	Ic	50		mAdc
71 - Fig. 7		Each Transistor	Total Device	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.6 3.42	1.8 10.3	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.85	4.2 24	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

MHQ2483 MHQ2484

CASE 632-02, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2919 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					LI CO	
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)		V _{(BR)CEO}	40	Vehi	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)		V(BR)CBO	60	_		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	10-	V(BR)EBO	6.0			Vdc
Collector Cutoff Current (VCB = 45 Vdc, I _E = 0)	*	ІСВО	_		20	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)	5 100.20	IEBO	_		20	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 0.1 mAdc, V_{CE} = 5.0 Vdc)	MHQ2483 MHQ2484	hFE	100 200	=	=	=
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MHQ2483 MHQ2484		150 300	_	=	100
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MHQ2483 MHQ2484		150 300	*** <u>-</u>	=	TO SERVICE
Collector-Emitter Saturation Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)	-	VCE(sat)	=	0.13 0.15	0.35 0.5	Vdc
Base-Emitter On Voltage ($I_C = 100 \mu Adc$, $V_{CE} = 5.0 Vdc$) ($I_C = 10 mAdc$, $V_{CE} = 5.0 Vdc$)		V _{BE} (on)	_	0.58 0.70	0.7 0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS			100	1,50	4 5 6 7 1	13.17
Current-Gain — Bandwidth Product ($I_C = 500 \ \mu Adc$, $V_{CE} = 5.0 \ Vdc$, $f = 20 \ MHz$)		fΤ	50	100	0 -0 - 0 a	MHz
Input Capacitance ($V_{BE} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 100 \text{ kHz}$)		C _{ibo}	_	4.0	8.0	pF
Collector-Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	-	C _{cb}	_	1.8	6.0	pF
Noise Figure (IC = 10 μ Adc, VCE = 5.0 Vdc, RS = 10 kohms, f = 10 Hz to 15.7 kHz, BW = 10 kHz)	MHQ2483 MHQ2484	NF	=	3.0 2.0	Ξ.	dB

MHQ2906 MHQ2907 MPQ2906* MPQ2907*

MHQ2906, MHQ2907 CASE 632-02, STYLE 1

MPQ2906 MPQ2907 CASE 646-05, STYLE 1 TO-116

QUAD GENERAL PURPOSE TRANSISTOR

PNP SILICON

Refer to MD2904 for graphs.

MAXIMUM RATINGS

MAXIMUM KATINGS		100	ILIAN MA	
Rating	Symbol	Valuè		Unit
Collector-Emitter Voltage	VCEO	40		Vdc
Collector-Base Voltage	VCBO	60) and the same	Vdc
Emitter-Base Voltage	VEBO 5.0		Vdc	
Collector Current — Continuous	lc	600		mAdc
1. P 10.1.		Each Transistor	Total Device	
Total Device Dissipation @ T _A = 25°C	PD	0.65	1.9	Watts
Derate above 25°C MHQ2906, MHQ2907 MPQ2906,		3.72	10.88	mW/°C
MPQ2907	T T	6.5	19	00
Operating and Storage Junction Temperature Range MHQ2906,07 MPQ2906,07	T _J , T _{stg}	- 65 to - 55 to		°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Symbol	Min	Тур	Max	Unit
			18/11/1-28	
V(BR)CEO	40	-	_	Vdc
V(BR)CBO	60	_	_	Vdc
V(BR)EBO	5.0	_		Vdc
ІСВО	-	- 	50	nAdc
IEBO	_	_	50	nAdc
		-		
hFE	35 75	=	=	
	40 100	=	Ξ	3 (1-3 -
	30 50	_	_	
V _{CE(sat)}	_	=	0.4 1.6	Vdc
V _{BE(sat)}	=	=	1.3 2.6	Vdc
fT	200	350		MHz
C _{obo}		6.0	8.0	pF
C _{ibo}	- F	20	30	pF
			0.5	milled to
ton	127	30		ns
toff	_	100	_	ns
	V(BR)CEO V(BR)CBO V(BR)EBO ICBO IEBO hFE VCE(sat) VBE(sat) fT Cobo Cibo	V(BR)CEO 40 V(BR)CBO 60 V(BR)EBO 5.0 ICBO — IEBO — hFE 35 75 40 100 30 50 VCE(sat) — VBE(sat) — fT 200 Cobo — Cibo —	V(BR)CEO 40 — V(BR)CBO 60 — V(BR)EBO 5.0 — ICBO — — IEBO — — hFE 35 — 75 — 40 — 100 — 30 — 50 — VCE(sat) — — VBE(sat) — — fT 200 350 Cobo — 6.0 Cibo — 20	V(BR)CEO 40 — — V(BR)CBO 60 — — V(BR)EBO 5.0 — — ICBO — — 50 IEBO — — 50 hFE 35 — — 40 — — — 100 — — — 50 — — — VCE(sat) — — 0.4 — — 1.6 — VBE(sat) — — 1.3 — — 2.6 fT 200 350 — Cobo — 6.0 8.0 Cibo — 20 30

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 2.0%.

^{*}MPQ2906A and MPQ2907A also available.

FIGURE 1 – DELAY AND RISE TIME TEST CIRCUIT

FIGURE 2 – STORAGE AND FALL TIME TEST CIRCUIT

MHQ3467

CASE 632-02, STYLE 1 TO-116

MEMORY DRIVER TRANSISTOR

PNP SILICON

Refer to MD3467 for graphs.

MAXIMUM RATINGS				
Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	40)	Vdc
Collector-Base Voltage	V _{CBO}	40)	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	Ic	1.0		Adc
		Each Transistor	Total Device	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	0.9 5.14	2.7 15.4	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	6.3 36	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +200		°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	40	-	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V(BR)EBO	5.0	-	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	_	_	200	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)	I _{EBO}	_	,	200	nAdc
ON CHARACTERISTICS					
DC Current Gain(1) $ (I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) $	hFE	20	_	— ,	_
Collector-Emitter Saturation Voltage(1) (I _C = 500 mAdc, I _B = 50 mAdc)	VCE(sat)	_	0.23	0.5	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 500 mAdc, I _B = 50 mAdc)	V _{BE} (sat)	_	0.9	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(1) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	125	190	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	10	25	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0 , f = 100 kHz)	C _{ibo}	_	55	80	pF
SWITCHING CHARACTERISTICS					
Turn-On Time ($I_C = 500 \text{ mAdc}$, $I_{B1} = 50 \text{ mAdc}$)	t _{on}	_	_	40	ns
Turn-Off Time ($I_C = 500 \text{ mAdc}$, $I_{B1} = I_{B2} = 50 \text{ mAdc}$)	toff	_	_	90	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating		Symbol	Value		Unit
Collector-Emitter Voltage		VCEO	12	2	Vdc
Collector-Base Voltage		V _{CBO}	15	5	Vdc
Emitter-Base Voltage		VEBO	4.	5	Vdc
Collector Current — Contin	nuous	lc	200		mAdc
	William I		Each Transistor	Total Device	11.74
Total Device Dissipation @ T _A = 25°C Derate above 25°C	MHQ3546 MPQ3546	PD	0.5 2.86 4.0	1.5 8.58 12	Watts mW/°C
Operating and Storage Junction Temperature Range	MHQ3546 MPQ3546	T _J , T _{stg}	-65 to +200 -55 to +150		°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				Taur Lan	
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	12	_	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	15	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	Ісво	_	_	0.1	μAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)	IEBO	_	_	0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 10 mAdc, V_{CE} = 1.0 Vdc) (I _C = 100 mAdc, V_{CE} = 1.0 Vdc)	hFE	30 15	_	=	, m
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	Mary Mary	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	-	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(1) (IC = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fΤ	600	1000	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	2.0	6.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}		3.5	8.0	pF
SWITCHING CHARACTERISTICS					
Turn-On Time $(V_{CC}=2.0\ Vdc,\ V_{BE(off)}=3.0\ Vdc,\ I_{C}=30\ mAdc,\ I_{B1}=1.5\ mAdc)$	t _{on}	_	15	1	ns
Turn-Off Time $(V_{CC} = 2.0 \text{ Vdc}, I_C = 30 \text{ mAdc}, I_{B1} = I_{B2} = 1.5 \text{ mAdc})$	^t off	_ 	25	-	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MHQ3798 MHQ3799

CASE 632-02, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N3810 for graphs.

MAXIMUM RATINGS

Rating	Symbol	MHQ3798	MHQ3799	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	VCBO	6	0	Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	lc	5	0	mAdc
MARKET (Line)		Each Transistor	Total Device	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.86	1.5 8.58	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 5.71	3.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

Characte	ristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					3.0	THRETON	RAIS TH
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	OBS MAIN DEPARTS	MHQ3798 MHQ3799	V(BR)CEO	40 60	nto Track	nere Brea	Vdc
Collector-Base Breakdown Voltage (IC =	10 μAdc, I _E =	0)	V(BR)CBO	60		OD NOTE AND	Vdc
Emitter-Base Breakdown Voltage (IE =	10 μ Adc, I _C = 0)	V(BR)EBO	5.0	82Y	Alles Andre	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc	, IE = 0)		ІСВО	7 -	_	10	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc,	$I_C = 0$		IEBO	_		20	nAdc
ON CHARACTERISTICS					and how to		Tartus A
DC Current Gain(1) (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	day (***)	MHQ3798 MHQ3799	hFE	100 225	V 0 1 3		TENNE
(I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)		MHQ3798 MHQ3799		150 300	-	3 -	1 - yl
(I _C = 500 μ Adc, V _{CE} = 5.0 Vdc)		MHQ3798 MHQ3799		150 300	SWG126	1 1 2 - 1 1 1 2 - 1	5 11 46
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$		MHQ3798 MHQ3799		125 250	= =	. = :	n Thomas
Collector-Emitter Saturation Voltage (I _C = 100 μ Adc, I _B = 10 μ Adc) (I _C = 1.0 mAdc, I _B = 100 μ Adc)			VCE(sat)	= = 1	_	0.2 0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 100 μ Adc, I _B = 10 μ Adc) (I _C = 1.0 mAdc, I _B = 100 μ Adc)			VBE(sat)	_	=	0.7 0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS							Obfue o
Current-Gain — Bandwidth Product (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1	00 MHz)		fŢ	_	130		MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)			C _{obo}	3 - 7	2.3	_	pF
Input Capacitance (VBE = 0.5 Vdc, $I_C = 0$, f = 100 kHz)			C _{ibo}	_	5.5	_	pF
Noise Figure (I _C = 100 µAdc, V _{CE} = 10 Vdc, R _S = f = 10 Hz to 15.7 kHz)	3.0 kohms,	MHQ3798 MHQ3799	NF	_	2.5 1.5	_	dB

MAXIMUM RATINGS				
Rating	Symbol	MHQ4001A	MHQ4002A	Unit
Collector-Emitter Voltage	VCEO	40	45	Vdc
Collector-Emitter Voltage	VCES	60	70	Vdc
Collector-Base Voltage	VCBO	60	70	Vdc
Emitter-Base Voltage	VEBO	6	Vdc	
Collector Current — Continuous	IC	1	Adc	
		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	750 4.3	2500 14.3	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.86	4.0 22.8	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to	°C	

MHQ4001A MHQ4002A

CASE 632-02, STYLE 1 TO-116

MEMORY DRIVER TRANSISTOR

NPN SILICON

Refer to MD3725 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0) MHQ4001A MHQ4002A	V(BR)CEO	40 45		7 II	Vdc
Collector-Emitter Breakdown Voltage (IC = 10 μ Adc, VBE = 0) MHQ4001A MHQ4002A	V(BR)CES	60 70			Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0) MHQ4001A MHQ4002A	V(BR)CBO	60 70			Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	V _{(BR)EBO}	6.0		example of	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	<u></u>	(P 22)	500	nAdc
ON CHARACTERISTICS(1)			Act II	50 1900	month of
DC Current Gain ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 500 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	50 30 20	100 60 45	250 —	-
Collector-Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	VCE(sat)		0.14 0.23 0.36	0.26 0.52 0.95	Vdc
Base-Emitter Saturation Voltage $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$ $(I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc})$	V _{BE(sat)}	0.8 —	0.75 0.88 1.0	0.86 1.1 1.7	Vdc
SMALL-SIGNAL CHARACTERISTICS		1194	N-14 (1991)	- 18 11	ro men.
Current-Gain — Bandwidth Product(1) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	200	275	21 <u>2</u> 4	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}		5.0	10	pF
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 100 kHz)	C _{ibo}	-	55	70	pF
SWITCHING CHARACTERISTICS					
Turn-On Time ($V_{CC}=30~V_{dc},~I_{C}=0.5~Adc,~V_{BE}=3.8~V_{dc},~I_{B1}=50~mAdc)$	ton		30	40	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_{C} = 0.5 \text{ Adc}, I_{B1} = I_{B2} = 50 \text{ mAdc})$	toff	- 0-0	60	75	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MHQ4013 MHQ4014

CASE 632-02, STYLE 1 TO-116

QUAD MEMORY DRIVER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MHQ4013	MHQ4014	Unit
Collector-Emitter Voltage	VCEO	40	45	Vdc
Collector-Emitter Voltage	VCES	60	70	Vdc
Collector-Base Voltage	VCBO	60	70	Vdc
Emitter-Base Voltage	VEBO	6	.0	Vdc
Collector Current — Continuous	Ic	1	Adc	
ent of called		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	750 4.3	2500 14.3	mW mW/°C
Total Device Dissipation	PD	4.0	4.0	101
@ T _C = 25°C Derate above 25°C		1.2 6.86	22.8	Watts mW/°C

Refer to MD3725 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				V-,	
Collector-Emitter Breakdown Voltage(1) $ (I_{\hbox{\scriptsize C}} = 10 \text{ mAdc}, I_{\hbox{\scriptsize B}} = 0) \\ \text{MHQ4013} \\ \text{MHQ4014} $	V(BR)CEO	40 45	=	_	Vdc
Collector-Emitter Breakdown Voltage $ (I_{\hbox{\scriptsize C}} = 10~\mu \hbox{\scriptsize Adc, V}_{\hbox{\scriptsize BE}} = 0) \\ \qquad \qquad$	V(BR)CES	60 70	Ξ	⁶⁵ =	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0) MHQ4013 MHQ4014	V(BR)CBO	60 70	_	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	6.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	ГСВО	_	_	500	nAdd
ON CHARACTERISTICS(1)			wi		11.31
DC Current Gain ($I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$)	hFE	60 35 25	100 65 50	250 — —	-
Collector-Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	V _{CE(sat)}	=	0.14 0.23 0.36	0.26 0.52 0.95	Vdc
Base-Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	V _{BE} (sat)	0.8	0.75 0.88 1.0	0.86 1.1 1.7	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(1) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	200	275		MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kHz})$	C _{obo}		5.0	10	pF
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 100 kHz)	C _{ibo}	_	50	70	pF
SWITCHING CHARACTERISTICS				1 14 3	
Turn-On Time ($V_{CC}=30~Vdc,~I_{C}=0.5~Adc,~V_{BE(off)}=3.8~Vdc,~I_{B1}=50~mAdc)$	ton	_	20	35	ns
Turn-Off Time ($V_{CC}=30\ Vdc,\ I_{C}=0.5\ Adc,\ I_{B1}=I_{B2}=50\ mAdc)$	toff	-	50	60	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT

MHQ6001 MHQ6002

CASE 632-02, TYPE 1 TO-116

OUAD COMPLEMENTARY TRANSISTOR

NPN/PNP SILICON

MAXIMUM RATINGS		-				
Rating	Symbol	Val	Unit			
Collector-Emitter Voltage	VCEO	30)	Vdc		
Collector-Base Voltage	VCBO	60)	Vdc		
Emitter-Base Voltage	VEBO	5.0		5.0		Vdc
Collector Current — Continuous	lc	50	500			
		Each Transistor	Total Device			
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	0.65 3.72	1.9 10.88	Watts mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.3 7.43	4.6 26.3	Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to	+ 200	°C		

Refer to MHQ2222 for NPN graphs.*

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)		V _(BR) CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)		V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		Ісво	_	_	20	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)		IEBO	_	_	30	nAdc
ON CHARACTERISTICS						
DC Current Gain(1) (IC = 1.0 mAdc, VCE = 10 Vdc) MHQ6001 MHQ6002		hFE	25 50	=	-	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ MHQ6001 MHQ6002			35 75	=	_	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ MHQ6001 MHQ6002			40 100	_	_	
$(I_{C} = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ MHQ6001 MHQ6002			20 30	_		
Collector-Emitter Saturation Voltage(1) (IC = 150 mAdc, IB = 15 mAdc (IC = 300 mAdc, IB = 30 mAdc)		VCE(sat)	=	_	0.4 1.4	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc)		V _{BE} (sat)	=	=	1.3 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product(1) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$ f = 100 kHz)	,	fT	_	400	-	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	NPN PNP	C _{obo}	- -	6.0 4.5	_	pF
Input Capacitance $(V_{BE} = 2.0 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$	NPN PNP	C _{ibo}	=	20 17	_	pF
SWITCHING CHARACTERISTICS						
Turn-On Time $(V_{CC} = 30 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$		ton	_	30	_	ns
Turn-Off Time ($V_{CC} = 30 \text{ Vdc}$, $I_{C} = 150 \text{ mAdc}$, $I_{B1} = I_{B2} = 15 \text{ mAdc}$)		toff	=	225 —	=	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{*}Refer to MHQ2907 for PNP graphs.

MAXIMUM KATINGS				
Rating	Symbol	MHQ6100	MHQ6100A	Unit
Collector-Emitter Voltage	VCEO	40	45	Vdc
Collector-Base Voltage	VCBO	6	30	Vdc
Emitter-Base Voltage VEBO		5.0		Vdc
Collector Current — Continuous	Ic	Ę	50	mAdc
The second second		Each Transistor	Total Device	- 160 - 160
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.86	1.5 8.58	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 5.71	3.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

MHQ6100,A

CASE 632-02, TYPE 2 TO-116

QUAD COMPLEMENTARY PAIR TRANSISTOR

NPN/PNP SILICON

Refer to MHQ2483 for NPN graphs. Refer to MHQ3798 for PNP graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	11,00	and the Olek		Tel Ville	SAMO	1715
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)	MHQ6100 MHQ6100A	V(BR)CEO	40 45	= <		Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V(BR)CBO	60		- C	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	IV.	V(BR)EBO	5.0	W		Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		ICBO		-	10	nAdc
ON CHARACTERISTICS				- A-		•
DC Current Gain(1) (IC = 100 μ Adc, V _{CE} = 5.0 Vdc)	MHQ6100 MHQ6100A	hFE	50 100		para varian	e no texts
$(I_C = 500 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc)$	MHQ6100 MHQ6100A		75 150	= .4	- 19	A LUS
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MHQ6100 MHQ6100A	a la colar de co	75 150	0 <u>-</u> . v	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MHQ6100 MHQ6100A	ou o	60 125	=	- 1	Polis -
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc)		VCE(sat)		<u></u>	0.25	Vdc
Base-Emitter Saturation Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$)		V _{BE(sat)}	_	-	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 500 μ Adc, V _{CE} = 5.0 Vdc, f = 20 MHz)	NPN PNP	fT	_	175 130	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kHz})$	NPN PNP	C _{obo}	_	4.5 2.3	_	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)	NPN PNP	C _{ibo}	_	6.0 5.5	_	pF

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPQ918

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MD918 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Va	Unit	
Collector-Emitter Voltage	VCEO	15		Vdc
Collector-Base Voltage	VCBO	;	30	Vdc
Emitter-Base Voltage	VEBO	3	3.0	Vdc
Collector Current — Continuous	lc	50		mAdc
	- Invest	Each Transistor	Four Transistors Equal Power	e 17 mile
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	6.7 0.825	2.4 19.2	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	- 55 t	°C	

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 134	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	% %

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Collector-Emitter Breakdown Voltage(1) (I _C = 3.0 mAdc, I _B = 0)	V(BR)CEO	15	-	alian as as	Vdc
Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$)	V(BR)CBO	30		-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	3.0		oh <u>c</u> er	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ІСВО	_	- 20	10	nAdc
ON CHARACTERISTICS(1)					
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 3.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	20	110 80 50		Say, pa
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	-	0.11	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	0.84	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			N. A.V. M.		
Current-Gain — Bandwidth Product ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	600	850	ast antim	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)	C _{obo}	_	0.75	1.7	pF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 140 kHz)	Cibo	_	1.1	2.0	pF
Noise Figure (I _C = 1.0 mAdc, V _{CE} = 6.0 Vdc, R _G = 400 Ohms, f = 60 MHz)	NF	_	4.0	6.0	dB

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Va	Value		
Collector-Emitter Voltage	VCEO		20		
Collector-Base Voltage	VCBO		40	Vdc	
Emitter-Base Voltage	VEBO	4	4.0	Vdc	
Collector Current — Continuous	lc	500		mAdc	
The said was		Each Transistor	Four Transistors Equal Power		
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	650 5.18	1250 10	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 8.0	3.0 24	Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 t	°C		

THERMAL CHARACTERISTICS

Characteristic		Junction to Case	Junction to Ambient	Unit
Thermal Resistance	(1) Each Die Effective, 4 Die	125 41.6	193 100	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	30 2.0	60 24	%

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MD2218 for graphs.

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			Sel Vine	1170 1187	1715-7
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, IB = 0)	V _{(BR)CEO}	20	-		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	40	N	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	-	ET	Vdc
Collector Cutoff Current (VCB = 30 Vdc, $I_E = 0$)	Ісво	_	redail c	50	nAdc
Emitter Cutoff Current (V _{EB} = 2.0 Vdc, I _C = 0)	IEBO	_	- 1	50	nAdc
ON CHARACTERISTICS(2)					I get m
DC Current Gain (IC = 10 mAdc, V _{CE} = 10 Vdc) (IC = 50 mAdc, V _{CE} = 10 Vdc) (IC = 150 mAdc, V _{CE} = 10 Vdc)	hFE	50 50 40	=	Ξ	WO LL
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	-	S. j.	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	= 0	16 - , .	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS	•				
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	175	Aure Tare		MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	-		8.0	pF
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{ibo}	-	-	30	pF

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPQ1000

CASE 646-05, STYLE 1 TO-116 PNP SILICON

Refer to MPQ2907 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Va	Unit	
Collector-Emitter Voltage	VCEO	20		Vdc
Collector-Base Voltage	VCBO		40	Vdc
Emitter-Base Voltage	VEBO		1.0	Vdc
Collector Current — Continuous	lc	500		mAdc
Earth Transmission Transmission Stock Power		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.65 5.18	1.25 8.0	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 8.0	3.0 24	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 t	°C	

THERMAL CHARACTERISTICS

Characteristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance(1)			°C/W
Each Die	125	193	
Effective, 4 Die	41.6	100	
Coupling Factor			%
Q1-Q4 or Q2-Q3	30	60	
Q1-Q2 or Q3-Q4	2.0	24	

(1) Junction to ambient data applies for typical printed circuit board mounting.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			(4) =	graddan t	N - 30
Collector-Emitter Breakdown Voltage(1) (IC = 10 mAdc, IB = 0)	V _{(BR)CEO}	20	6707V0 10	T SOA	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CBO	40	ipali <u>eV</u> pw	10 .554 I	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V(BR)EBO	4.0		Stray	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	_	-	50	nAdc
Emitter Cutoff Current (VEB = 2.0 Vdc, I _C = 0)	IEBO	- T -	-	50	nAdc
ON CHARACTERISTICS(1)			197 01	10 F 500	
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	hFE	50 50 40	100 120 80		-
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.22	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	VBE(sat)		0.89	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS	1/4	1 007	evit,	16 1	1 1 1
Current-Gain — Bandwidth Product(1) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	150	300	y silv os	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	1-1	4.5	8.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{ibo}	02 1-	17	30	pF

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPQ2221, MPQ2222 For Specifications, See MHQ2221 Data.

MPQ2369 For Specifications, See MHQ2369 Data.

Rating	Symbol	Va	Unit			
Collector-Emitter Voltage	VCEO	40		Vdc		
Collector-Base Voltage	VCBO		60	Vdc		
Emitter-Base Voltage	VEBO	6	5.0	Vdc		
Collector Current — Continuous	lc	50		50		mAdc
10.4		Each Transistor	Four Transistors Equal Power			
Total Device Dissipation @ T _A = 25°C(1) Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.825 6.7	2.4 19.2	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 55 t	°C			

⁽¹⁾ Second Breakdown occurs at power levels greater than 3 times the power dissipation rating.

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 134	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	% %

MPQ2483 MPQ2484

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N2919 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)		V(BR)CEO	40	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)		V _(BR) CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		V(BR)EBO	6.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 45 Vdc, I _E = 0)		ICBO	=	_	20	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)		I _{EBO}	_	_	20	nAdc
ON CHARACTERISTICS						
DC Current Gain(2) ($I_C = 0.1 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	MPQ2483 MPQ2484	hFE	100 200	=	=	_
(I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc)	MPQ2483 MPQ2484		150 300	=	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MPQ2483 MPQ2484		150 300	=	_	
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc) (I _C = 10 mAdc, I _B = 1.0 mAdc)		VCE(sat)	_	0.13 0.15	0.35 0.5	Vdc
Base-Emitter Saturation Voltage(2) (IC = 100 μ Adc, VCE = 5.0 Vdc) (IC = 10 mAdc, VCE = 5.0 Vdc)		V _{BE(sat)}	=	0.58 0.70	0.7 0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 500 μ Adc, V _{CE} = 5.0 Vdc, f = 20 MHz)		fΤ	50	100	_	MHz
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	I PET TAKE	4.0	8.0	pF

MPQ2483, MPQ2484

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	- N	Symbol	Min	Тур	Max	Unit
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)		C _{cb}	_	1.8	6.0	pF
Noise Figure	1997	NF				dB
$(I_C = 10 \mu Adc, V_{CE} = 5.0 Vdc, R_S = 10 kohms,$	MPQ2483		_	3.0	_	
f = 10 Hz to 15.7 kHz, BW = 10 kHz)	MPQ2484	Garage Co.	_	2.0	_	

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Va	Unit	
Collector-Emitter Voltage	VCEO		Vdc	
Collector-Base Voltage	VCBO		25 \	
Emitter-Base Voltage	VEBO	4	4.0	
Collector Current — Continuous	nuous I _C 1.0		Adc	
		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation	PD			
@ T _A = 25°C Derate above 25°C		650 5.2	1250 10	mW mW/°C
	PD	0.7	1	19000000

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	125 41.6	193* 100*	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	30 2.0	60 25	% %

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

MPQ3303

CASE 646-05, STYLE 1 TO-116

QUAD SWITCHING TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	12	-	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	V(BR)CBO	25		-	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)	V(BR)EBO	4.0			Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, V _{BE} = 0)	ICES	_	_	100	μAdo
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 mAdc, V _{CE} = 0.5 Vdc) (I _C = 300 mAdc, V _{CE} = 0.5 Vdc)	hFE	30 40	45 55	200	-
Collector-Emitter Saturation Voltage (I _C = 300 mAdc, I _B = 30 mAdc) (I _C = 1.0 Adc, I _B = 0.1 Adc)	V _{CE(sat)}	_	0.22 0.52	0.33 0.7	Vdc
Base-Emitter Saturation Voltage ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 0.1 \text{ Adc}$)	V _{BE(sat)}	=	0.87 1.04	1.1 1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	fT	400	500	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$	C _{obo}	_	5.0	10	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	-	22	30	pF
SWITCHING CHARACTERISTICS					
Turn-On Time $(V_{CC} = 12 \text{ Vdc}, I_{C} = 1.0 \text{ Adc}, V_{BE(off)} = 4.0 \text{ Vdc}, I_{B1} = 100 \text{ mAdc})$	ton	_	12	15	ns
Turn-Off Time $(V_{CC} = 12 \text{ Vdc}, I_C = 1.0 \text{ Adc}, I_{B1} = I_{B2} = 100 \text{ mAdc})$	toff	-	18	25	ns

MPQ3467

CASE 646-05, STYLE 1 TO-116

QUAD MEMORY DRIVER TRANSISTOR

PNP SILICON

Refer to MD3467 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Va	Unit	
Collector-Emitter Voltage	VCEO	40		Vdc
Collector-Base Voltage	VCBO		Vdc	
Emitter-Base Voltage	VEBO	Ę	Vdc	
Collector Current — Continuous	IC	1.0		Adc
avorationer (Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ T _A = 25°C(1) Derate above 25°C	PD	650 5.2	1500 12	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.25 10	3.2 25.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 t	°C	

⁽¹⁾ Second Breakdown occurs at power levels greater than 2 times the power dissipation rating.

THERMAL CHARACTERISTICS

Charac	teristic	R _B JC Junction to Case	R _Ø JA Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	100 39	193 83.2	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	45 5.0	55 10	% %

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					- 0
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	40	_	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V(BR)CBO	40	1327_1	Ji Auto	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	-	- - - 1	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO		-	200	nAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	I _{EBO}	_	w	200	nAdc
ON CHARACTERISTICS	,		- Y - 105 m	THE PARTY NAMED IN	
DC Current Gain(2) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)	hFE	20	-		=
Collector-Emitter Saturation Voltage(2) (I _C = 500 mAdc, I _B = 50 mAdc)	VCE(sat)	-	0.23	0.5	Vdc
Base-Emitter Saturation Voltage(2) (I _C = 500 mAdc, I _B = 50 mAdc)	V _{BE} (sat)		0.90	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS	1811198	101		pet the state of	
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	125	190	7	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	Table 1	10	25	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 100 kHz)	C _{ibo}	-	55	80	pF
SWITCHING CHARACTERISTICS		r 1000	(200	Same L	1.7.754
Turn-On Time ($I_C = 500 \text{ mAdc}$, $I_{B1} = 50 \text{ mAdc}$)	ton		50%	40	ns
Turn-Off Time (I _C = 500 mAdc, I _{B1} = I _{B2} = 50 mAdc)	t _{off}	_	_	90	ns

⁽²⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

MPQ3546 For Specifications, See MHQ3546 Data.

Rating	Symbol	MPQ3725	MPQ3725A	Unit
Collector-Emitter Voltage	VCEO	40	50	Vdc
Collector-Emitter Voltage	VCES	60	70	Vdc
Emitter-Base Voltage	VEBO	5	.0	Vdc
Collector Current — Continuous	lc	1	1.0	
			Four	
		One Transistor	Transistors Equal Power	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		Equal	Watts mW/°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	M	ax	Unit
		One Transistor	Effective For Four Transistors	
Thermal Resistance, Junction to Ambient(1)	$R_{\theta JA}$	125	50	°C/W

MPQ3725,A

CASE 646-05, STYLE 1 TO-116

QUAD **CORE DRIVER TRANSISTOR**

NPN SILICON

Refer to MD3725 for graphs.

(1) $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	MPQ3725 MPQ3725A	V(BR)CEO	40 50	=	_	Vdc
Collector-Emitter Breakdown Voltage (IC = 100 μ Adc, VBE = 0)	MPQ3725 MPQ3725A	V(BR)CES	60 70	=	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)		V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0)		ICBO	_	-	0.5	μAdc
ON CHARACTERISTICS(2)						
DC Current Gain ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	MPQ3725 MPQ3725A	hFE	35 40	75 80	200	_
$(I_C = 500 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	MPQ3725 MPQ3725A		25 30	45 50	_	
Collector-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)		V _{CE(sat)}	_	0.32	0.45	Vdc
Base-Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)		V _{BE(sat)}	0.8	0.9	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					•	
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	MPQ3725 MPQ3725A	fT	250 200	275 250	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	5.1	10	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	-	62	80	pF

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS				Carl Seller	Tomores
Turn-On Time (I _C = 500 mAdc, I_{B1} = 50 mAdc, $V_{BE(off)}$ = 3.8 Vdc)	ton	_	20	35	ns
Turn-Off Time $(I_C = 500 \text{ mAdc}, I_{B1} = I_{B2} = 50 \text{ mAdc})$	toff	_	50	60	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Rating	Symbol	Va	Unit	
Collector-Emitter Voltage	VCEO		40	
Collector-Base Voltage	VCBO	4	40	Vdc
Emitter-Base Voltage	VEBO	5	5.0	Vdc
Collector Current — Continuous	IC	1.5		Adc
	-	Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	750 5.98	1700 13.6	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.25 10	3.2 25.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−55 t	°C	

THERMAL CHARACTERISTICS

Characteristic		Junction to Case	Junction to Ambient	Unit
Thermal Resistance(1)	Each Die Effective, 4 Die	100 39	167 73.5	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	46 5.0	56 10	%

MPQ3762

CASE 646-05, STYLE 1 TO-116

QUAD MEMORY DRIVER TRANSISTOR

PNP SILICON

Refer to MD3467 for graphs.

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V(BR)CEO	40	_	_	Vdc
Collector-Base Breakdown Voltage (IC = 10 μ Adc, IE = 0)	V(BR)CBO	40	-	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current ($V_{CB} = 30 \text{ Vdc}, I_E = 0$)	ІСВО	-	_	100	nAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	IEBO	_	_	100	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain ($I_C = 150$ mAdc, $V_{CE} = 1.0$ Vdc) ($I_C = 500$ mAdc, $V_{CE} = 2.0$ Vdc) ($I_C = 1.0$ Adc, $V_{CE} = 2.0$ Vdc)	hFE	35 30 20	70 65 35		_
Collector-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	VCE(sat)		0.3 0.6	0.55 0.9	Vdc
Base-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	V _{BE(sat)}	1 1	0.9 1.0	1.25 1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	150	275	-	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{obo}	1	9.0	15	pF
Input Capacitance (VEB = 0.5 Vdc , IC = 0 , f = 100 kHz)	C _{ibo}	-	55	80	pF
SWITCHING CHARACTERISTICS					
Turn-On Time (V _{CC} = 30 Vdc, I _C = 1.0 Adc, I _{B1} = 100 mAdc, V _{BE(off)} = 2.0 Vdc)	ton	-	_	50	ns
Turn-Off Time $(V_{CC} = 30 \text{ Vdc}, I_C = 1.0 \text{ Adc}, I_{B1} = I_{B2} = 100 \text{ mAdc})$	toff	_	-	120	ns

EQUIVALENT TEST CIRCUITS

Rating	Symbol	MPQ3798	MPQ3799	Unit
Collector-Emitter Voltage	VCEO	40	60	Vdc
Collector-Base Voltage	VCBO		60	Vdc
Emitter-Base Voltage	VEBO	Ę	5.0	Vdc
Collector Current — Continuous	Ic		50	mAdc
-		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ TA = 25°C(1) Derate above 25°C	PD	0.5 4.0	0.9 7.2	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.825 6.7	2.4 19.2	Watts m/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 t	°C	

⁽¹⁾ Second breakdown occurs at power levels greater than 3 times the power dissipation rating.

THERMAL CHARACTERISTICS

Charac	teristic	R _B JC Junction to Case	R _Ø JA Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 139	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	% %

MPQ3798 MPQ3799

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

PNP SILICON

Refer to 2N3810 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	MPQ3798 MPQ3799	V(BR)CEO	40 60	=	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)		V(BR)CBO	60	_	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		ІСВО	_	_	10	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	_	-	20	nAdc
ON CHARACTERISTICS(2)		•		•		
DC Current Gain (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc)	MPQ3798 MPQ3799	hFE	100 225	=	=	,
$(I_{C} = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	MPQ3798 MPQ3799		150 300	=	=	
(I _C = 500 μ Adc, V _{CE} = 5.0 Vdc)	MPQ3798 MPQ3799		150 300	=	=	
(I _C = 10 mAdc, V_{CE} = 5.0 Vdc)	MPQ3798 MPQ3799		125 250	=	=	
Collector-Emitter Saturation Voltage (I _C = 100 μ Adc, I _B = 10 μ Adc) (I _C = 1.0 mAdc, I _B = 100 μ Adc)		VCE(sat)	=	0.12 0.07	0.2 0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 100 μ Adc, I _B = 10 μ Adc) (I _C = 1.0 mAdc, I _B = 100 μ Adc)		V _{BE} (sat)	=	0.62 0.68	0.7 0.8	Vdc

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit		
SMALL-SIGNAL CHARACTERISTICS								
Current-Gain — Bandwidth Product (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	Man (1)	fΤ	60	250	_	MHz		
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	2.1	4.0	pF		
Input Capacitance (VBE = 0.5 Vdc , IC = 0 , f = 100 kHz)	941 1	C _{ibo}	-	5.5	8.0	pF		
Noise Figure $(I_C = 100 \mu\text{Adc}, V_{CE} = 10 \text{Vdc}, R_S = 3.0 \text{kohms}, f = 10 \text{Hz} \text{ to } 15.7 \text{kHz})$	MPQ3798 MPQ3799	NF	=	2.5 1.5		dB		

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

	T			
Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	4	10	Vdc
Collector-Base Voltage	V _{CBO}	(30	Vdc
Emitter-Base Voltage	VEBO	6	5.0	Vdc
Collector Current — Continuous	Ic	200		mAdc
		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	825 6.7	2.4 19.2	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 139	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	% %

MPQ3904

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER/SWITCHING TRANSISTOR

NPN SILICON

Refer to 2N3904 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(1) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	6.0		· (-	Vdc
Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$	ICBO	_	_	50	nAdc
Emitter Cutoff Current (V _{BE} = 40 Vdc, I _C = 0)	I _{EBO}	_	_	50	nAdc
ON CHARACTERISTICS(1)				100	
DC Current Gain (I _C = 0.1 mAdc, V_{CE} = 1.0 Vdc) (I _C = 1.0 mAdc, V_{CE} = 1.0 Vdc) (I _C = 10 mAdc, V_{CE} = 1.0 Vdc)	hFE	30 50 75	90 160 200		_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)		0.1	0.2	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)	V _{BE} (sat)	_	0.65	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS			CHE IN	Maria de la Companya	- 1
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fτ	250	300	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)	C _{obo}	_	2.0	4.0	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 140 kHz)	C _{ibo}	_	4.0	8.0	pF
SWITCHING CHARACTERISTICS				- 4° -	
Turn-On Time (I _C = 10 mAdc, V_{BE} = 0.5 Vdc, I_{B1} = 1.0 mAdc)	ton	-	37		ns
Turn-Off Time ($I_C = 10 \text{ mAdc}$, $I_{B1} = I_{B2} = 1.0 \text{ mAdc}$)	^t off		136	_	ns

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER/SWITCH TRANSISTOR

PNP SILICON

Refer to 2N3906 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Va	Unit			
Collector-Emitter Voltage VCE		4	Vdc			
Collector-Base Voltage	VCBO		40	Vdc		
Emitter-Base Voltage	VEBO		5.0	Vdc		
Collector Current — Continuous	Ic	200		200		mAdc
words of the same		Each Transistor	Four Transistors Equal Power			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	825 6.7	2.4 19.2	Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 55 t	°C			

THERMAL CHARACTERISTICS

Characteristic		Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 139	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	%

ELECTRICAL	. CHARACTERISTICS	$(T_{\Delta} =$	25°C unless	otherwise noted.)
------------	-------------------	-----------------	-------------	-------------------

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				ACTERIST	ELHO T
Collector-Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	40	'nVnatu	grussian	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ Adc, I _E = 0)	V(BR)CBO	40			Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	5.0	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$	ІСВО	_	_	50	nAdc
Emitter Cutoff Current (V _{BE} = 4.0 Vdc, I _C = 0)	IEBO	_		50	nAdc
ON CHARACTERISTICS(1)				ST 7040 YO	ALC: Y
DC Current Gain ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	40 60 75	160 180 200		10 TO
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	_	0.1	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE} (sat)	_	0.65	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS		10	i is to the	New Janes	Y (2-38)
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	200	250	y = 50	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 140 kHz)	C _{obo}		3.3	4.5	pF
Input Capacitance (VBE = 0.5 Vdc, I_C = 0, f = 140 kHz)	C _{ibo}	1014	4.8	10	pF
SWITCHING CHARACTERISTICS			Tarrell I	DEPTH DE	CHOY N
Turn-On Time (I _C = 10 mAdc, $V_{BE(off)}$ = 0.5 Vdc, I_{B1} = 1.0 mAdc)	ton	-	43	gv poke	ns
Turn-Off Time ($I_C = 10 \text{ mAdc}$, $I_{B1} = I_{B2} = 1.0 \text{ mAdc}$)	toff		155	- on	ns

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	30		Vdc
Collector-Base Voltage	VCBO	6	30	Vdc
Emitter-Base Voltage	VEBO	E	5.0	Vdc
Collector Current — Continuous	lc	5	00	mAdc
Y Y C E		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ TA = 25°C(1) MPQ6001, MPQ6002, MPQ6501, MPQ6502 Derate above 25°C MPQ6001, MPQ6002, MPQ6501, MPQ6502	PD	0.65 5.18	1.25	Watts mW/°C
Total Device Dissipation @ T _C = 25°C MPQ6001, MPQ6002, MPQ6501, MPQ6502 Derate above 25°C MPQ6001, MPQ6002, MPQ6501, MPQ6502	PD	1.0	3.0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 55 t	o +150	°C

THERMAL CHARACTERISTICS

	Characteristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance Each Die	MPQ6001, MPQ6002, MPQ6501, MPQ6502	125	193	°C/W
Effective, 4 Die	MPQ6001, MPQ6002, MPQ6501, MPQ6502	41.6	100	
Coupling Factors		30	60	%
	MPQ6001, MPQ6002	30	60	
Q1-Q4 or Q2-Q3	MPQ6501, MPQ6502	30	60	
		30	60	
	MPQ6001, MPQ6002			
Q1-Q2 or Q3-Q4	MPQ6501, MPQ6502	20	24	
		20	24	
		20	24	
		2.0	24	

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characterist	tic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) (IC	= 10 mAdc, l _B = 0)	V(BR)CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 1	0 μAdc, I _E = 0)	V _{(BR)CBO}	60	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10	μ Adc, I _C = 0)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E	= 0)	ICBO	_	_	30	nAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)		IEBO	_	_	30	nAdc
ON CHARACTERISTICS						***************************************
DC Current Gain(2) ($I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	MPQ6001, MPQ6501 MPQ6002, MPQ6502	hFE	25 50	=	=	-
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPQ6001, MPQ6501 MPQ6002, MPQ6502		35 75	=	=	
(I _C = 150 mAdc, V_{CE} = 10 Vdc)	MPQ6001, MPQ6501 MPQ6002, MPQ6502		40 100	=	=	
(I _C = 300 mAdc, V_{CE} = 10 Vdc)	MPQ6001, MPQ6501 MPQ6002, MPQ6502		20 30	=	_	

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Sym	bol Min	Тур	Max	Unit
Collector-Emitter Saturation Voltage(2) (IC = 150 mAdc, I _B = 15 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc)	VCE	sat)	= 1	0.4 1.4	Vdc
Base-Emitter Saturation Voltage(2) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mAdc}$)	V _{BE} (sat)		1.3 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product(2) (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fı	200	350	_	MHz
L.CB	C _{OI} NP PN	00	6.0 4.5	8.0 8.0	pF
I LB	C _{ib}	- -	20 17	30 30	pF

Turn-On Time ($V_{CC}=30~Vdc,~V_{BE}=0.5~Vdc,~I_{C}=150~mAdc,~I_{B1}=15~mAdc,~Figure~1)$	t _{on}	_	30	-	ns
Turn-Off Time ($V_{CC}=30~Vdc,~I_{C}=150~mAdc,~I_{B1}=I_{B2}=15~mAdc)$	toff	_	225	-	ns

- (1) Second Breakdown occurs at power levels greater than 3 times the power dissipation rating.
- (2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

NPN DATA

FIGURE 1 - NORMALIZED DC CURRENT GAIN

Rating	Symbol	MPQ6100 MPQ6600	MPQ6100A MPQ6600A	Unit
Collector-Emitter Voltage	VCEO	40	45	Vdc
Collector-Base Voltage	V _{CBO}	(60	Vdc
Emitter-Base Voltage	VEBO		5.0	Vdc
Collector Current — Continuous	IC	50		mAdc
		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.825 6.7	2.4 19.2	Watts mW/°C
Operating and Storage Junction	TJ, T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Charact	eristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance(1)	Each Die Effective, 4 Die	151 52	250 139	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	%

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board.

MPQ6100,A TYPE 1 MPQ6600,A TYPE 2

CASE 646-05 TO-116

QUAD
COMPLEMENTARY PAIR
TRANSISTOR

PNP/NPN SILICON

Refer to MHQ2483 for NPN Curves. Refer to MHQ3798 for PNP Curves.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage(2) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MPQ6100,6600 MPQ6100A,6600A	V(BR)CEO	40 45	=	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$		V(BR)EBO	5.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		ІСВО	_	_	10	nAdo
ON CHARACTERISTICS(2)						
DC Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc)	MPQ6100,6600 MPQ6100A,6600A	hFE	50 100	_	=	_
$(I_C = 500 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	MPQ6100,6600 MPQ6100A,6600A		75 150	=	=	
(IC = 1.0 mAdc, V_{CE} = 5.0 Vdc)	MPQ6100,6600 MPQ6100A,6600A		75 150	=	=	
(I _C = 10 mAdc, V_{CE} = 5.0 Vdc)	MPQ6100,6600 MPQ6100A,6600A		60 125	=	_	
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 100 μAdc)		VCE(sat)	_	-	0.25	Vdc
Base-Emitter Saturation Voltage ($I_C = 1.0 \text{ mAdc}$, $I_B = 100 \mu \text{Adc}$)		V _{BE(sat)}	_	_	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (IC = $500 \mu Adc$, $V_{CE} = 5.0 Vdc$, $f = 20 MHz$)		fŢ	50	_	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kHz})$	PNP NPN	C _{obo}	=	1.2 1.8	4.0 4.0	pF

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Input Capacitance (VBE = 0.5 Vdc, $I_{\mbox{\scriptsize C}}$ = 0, f = 100 kHz)	PNP NPN	C _{ibo}	m' _	_	8.0 8.0	pF
Noise Figure $(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, R_S = 10 \ kohms, f = 10 \ Hz to 15.7 \ kHz, BW = 10 \ kHz)$	97 97 - 70 98 - 70	NF	_	4.0	_	dB

⁽²⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

Rating	Symbol	Value		Unit
Collector-Emitter Voltage MPQ6426 MPQ6427	MPQ6426 30		Vdc	
Collector-Base Voltage MPQ6426 MPQ6427	VCBO	40 50		Vdc
Emitter-Base Voltage	VEBO	12		Vdc
Collector Current — Continuous	lc	500		mAdc
		Each Die	Four Die Equal Power	
Total Device Dissipation @ T _A = 25°C(1) Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	825 6.7	2400 19.2	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	tg -55 to +150		°C

Second Breakdown occurs at power levels greater than 3 times the power dissipation rating.

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 139	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	% %

MPQ6426 MPQ6427

CASE 646-05, STYLE 1 TO-116

QUAD DARLINGTON TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) $(I_C = 10 \text{ mAdc}, I_B = 0)$	MPQ6426 MPQ6427	V(BR)CEO	30 40	_	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPQ6426 MPQ6427	V(BR)CBO	40 50	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)		V _{(BR)EBO}	12	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		ІСВО	-	100	nAdc
Emitter Cutoff Current (VBE = 10 Vdc, I _C = 0)		I _{EBO}	_	100	nAdc
ON CHARACTERISTICS(2)					
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)		hFE	5000 10,000	_	_
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)		V _{CE(sat)}	_	1.5	Vdc
Base-Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		fT	125	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{obo}	_	8.0	pF
Input Capacitance (VBE = 0.5 Vdc, I _C = 0, f = 100 kHz)		C _{ibo}	-	15	pF

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

NOISE CHARACTERISTICS (V_{CE} = 5.0 Vdc, T_A = 25°C)

FIGURE 3 - TOTAL WIDEBAND NOISE VOLTAGE 200 (nV) BANDWIDTH = 10 Hz TO 15.7 kHz VOLTAGE 100 TOTAL WIDEBAND NOISE 100 µA 1.0 2.0 5.0 10 20 50 100 200 500 1000 RS, SOURCE RESISTANCE (kΩ)

DYNAMIC CHARACTERISTICS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	40		Vdc
Collector-Base Voltage	VCBO	40		Vdc
Emitter-Base Voltage	VEBO	5.0		Vdc
Collector Current — Continuous	lc	200		mAdc
		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ TA = 25°C(1) Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	825 6.7	2400 19.2	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

⁽¹⁾ Second breakdown occurs at power levels greater than 3 times the power dissipation rating.

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 139	°C/W °C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	%

MPQ6700 CASE 646-05, TYPE 2 TO-116 QUAD COMPLEMENTARY PAIR TRANSISTOR

PNP/NPN SILICON

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(2) (IC = 10 mAdc, I _B = 0)	V(BR)CEO	40	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CBO	40	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	1-1	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	Ісво	_	50	nAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, I _C = 0)	IEBO	_	50	nAdc
ON CHARACTERISTICS(2)	444			-
DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 1.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	hFE	30 50 70	=	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	_	0.25	Vdc
Base-Emitter Saturation Voltage (IC = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	= .	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product(2) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	200		MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	4.5	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 100 kHz) PNP NPN	C _{ibo}	_	10 8.0	pF

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

100

2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA)

100

IC, COLLECTOR CURRENT (mA)

NPN

PNP

FIGURE 4 - COLLECTOR SATURATION REGION

FIGURE 5 - TURN-ON TIME

FIGURE 6 - TURN-OFF TIME

FIGURE 8 - CAPACITANCE

Unit

Max

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	:	30	Vdc
Collector-Base Voltage	VCBO	:	30	Vdc
Emitter-Base Voltage	V _{EBO}	4	1.0	Vdc
Collector Current — Continuous	lc	200		mAdc
		Each Transistor	Four Transistors Equal Power	
Total Device Dissipation @ T _A = 25°C(1) Derate above 25°C	PD	500 4.0	900 7.2	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	825 6.7	2400 19.2	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

⁽¹⁾ Second Breakdown occurs at power levels greater than 3 times the power dissipation rating.

THERMAL CHARACTERISTICS

Charac	Junction to Case		Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	151 52	250 139	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	34 2.0	70 26	%

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

MPQ6842

CASE 646-05, TYPE 2 TO-116

QUAD COMPLEMENTARY PAIR TRANSISTOR

PNP/NPN SILICON

Тур

Characteristic	Symbol	Min	
OFF CHARACTERISTICS			
Collector-Emitter Breakdown Voltage(2) (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	30	
Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	VIRRICRO	30	

Collector-Emitter Breakdown Voltage(2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V(BR)CEO	30	-	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V(BR)CBO	30	_	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	Ісво	_	_	50	nAdc
Emitter Cutoff Current ($V_{EB} = 3.0 \text{ Vdc}$, $I_{C} = 0$)	IEBO	-W1	_	50	nAdc
ON CHARACTERISTICS(2)					

ON CHARACTERISTICS(2)

DC Current Gain (I _C = 0.5 mAdc, V _{CE} = 1.0 Vdc)	hFE	30	_	-	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	E CALDED	50	_	_	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	11 12 1	70		_	
Collector-Emitter Saturation Voltage $~(I_C=0.5~mAdc,~I_B=0.05~mAdc,~0^{\circ}C\leqslant T\leqslant 70^{\circ}C)$	V _{CE(sat)}		0.05	0.15	Vdc
Base-Emitter Saturation Voltage ($I_C = 0.5 \text{ mAdc}$, $I_B = 0.05 \text{ mAdc}$)	V _{BE(sat)}		0.65	0.9	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fŢ	200	350		MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)		C _{obo}	_	3.0	4.5	pF
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$	PNP NPN	C _{ibo}	=	5.0 4.0	10 8.0	pF

SWITCHING CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ Vdc}$)

Propagation Delay Time (50% Points TP1 to TP3) (50% Points TP2 to TP4)	[‡] PLH [‡] PHL	_	15 6.0	25 15	ns
Rise Time (0.3 V to 4.7 V, TP3 or TP4)	t _r	5.0	25	35	ns
Fall Time (4.7 V to 0.3 V, TP3 or TP4)	t _f	5.0	10	20	ns

⁽²⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

PNP

FIGURE 3 - TEMPERATURE COEFFICIENTS

PNP

FIGURE 5 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

MPQ7041 MPQ7042 MPQ7043

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

NPN SILICON

Refer to MPQ7051 for graphs.

MAXIMUM RATINGS

Rating	Symbol	MPQ7041	MPQ7042	MPQ7043	Unit
Collector-Emitter Voltage	VCEO	150	200	250	Vdc
Collector-Base Voltage	VCBO	150	200	250	Vdc
Emitter-Base Voltage	VEBO		5.0		Vdc
Collector Current — Continuous	Ic		500		mAdc
		Each Die		ur Die I Power	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	750 5.98		700 13.6	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.25 10		3.2 25.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150			°C

THERMAL CHARACTERISTICS

Characteristic		Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	100 39	167 73.5	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	46 5.0	56 10	% %

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						-
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	MPQ7041 MPQ7042 MPQ7043	V(BR)CEO	150 200 250	Ξ	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPQ7041 MPQ7042 MPQ7043	V(BR)CBO	150 200 250			Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)		V(BR)EBO	5.0		_	Vdc
Collector Cutoff Current ($V_{CB} = 120$ Vdc, $I_{E} = 0$) ($V_{CB} = 150$ Vdc, $I_{E} = 0$) ($V_{CB} = 180$ Vdc, $I_{E} = 0$)	MPQ7041 MPQ7042 MPQ7043	СВО			100 100 100	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 1.0 mAdc, V_{CE} = 10 Vdc) (I _C = 10 mAdc, V_{CE} = 10 Vdc) (I _C = 30 mAdc, V_{CE} = 10 Vdc)		hFE	25 40 40	45 60 80		-
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)	- 19	VCE(sat)		0.3	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		V _{BE} (sat)	1-	0.7	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fT	50	80	_	MHz
Output Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	2.5	5.0	pF
Input Capacitance (VEB = 3.0 Vdc, I _C = 0, f = 1.0 MHz)		Cibo	_	40	50	pF

MAXIMUM RATINGS

Rating	Symbol	MPQ7051	MPQ7052	MPQ7053	Unit
Collector-Emitter Voltage	VCEO	150	200	250	Vdc
Collector-Base Voltage	VCBO	150	200	250	Vdc
Emitter-Base Voltage	VEBO		5.0		Vdc
Collector Current — Continuous	lc	V	500	munit in	mAdc
		Each Die	E	our Die Equal Power	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	750 5.98		1700 13.6	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.25 10		3.2 25.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150			°C

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die Effective, 4 Die	100 39	167 73.5	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3 Q1-Q2 or Q3-Q4	46 5.0	56 10	%

MPQ7051 MPQ7052 MPQ7053

CASE 646-05, TYPE 2 TO-116

QUAD COMPLIMENTARY PAIR TRANSISTOR

NPN/PNP SILICON

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					J.
10 11 11 12 13	MPQ7051 MPQ7052 MPQ7053	V(BR)CEO	150 200 250	Ē	Vdc
	MPQ7051 MPQ7052 MPQ7053	V(BR)CBO	150 200 250		Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)		V(BR)EBO	5.0	_	Vdc
(V _{CB} = 150 Vdc, I _E = 0)	MPQ7051 MPQ7052 MPQ7053	Ісво		250 250 250	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)	111	IEBO	_	100	nAdc
ON CHARACTERISTICS		and the last			
DC Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 30$ mAdc, $V_{CE} = 10$ Vdc)		hFE	25 35 25	=======================================	.iti
Collector-Emitter Saturation Voltage $(I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc})$	mAdc)	V _{CE(sat)}	-	0.7	Vdc
Base-Emitter Saturation Voltage $(I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mA})$	dc)	V _{BE(sat)}		0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS	3,1				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fT	50	_	MHz
Output Capacitance (V _{CB} = 20 Vdc, I _C = 0, f = 1.0 MHz)		C _{obo}		6.0	pF
1. FB	NPN PNP	Cibo	=	50 75	pF

IC, COLLECTOR CURRENT (mA)

IC, COLLECTOR CURRENT (mA)

MAXIMUM RATINGS

IVIANIIVIOIVI RATIIVGS					
Rating	Symbol	MPQ7091	MPQ7092	MPQ7093	Unit
Collector-Emitter Voltage	VCEO	150	200	250	Vdc
Collector-Base Voltage	VCBO	150	200	250	Vdc
Emitter-Base Voltage	VEBO		5.0		
Collector Current — Continuous	Ic	500			mAdc
		Each Die	10.00	ur Die I Power	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	750 5.98		700 13.6	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.25 10		3.2 25.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150			°C

THERMAL CHARACTERISTICS

Charac	teristic	Junction to Case	Junction to Ambient	Unit
Thermal Resistance	Each Die	100	167	°C/W
	Effective, 4 Die	39	73.5	°C/W
Coupling Factors	Q1-Q4 or Q2-Q3	46	56	%
	Q1-Q2 or Q3-Q4	5.0	10	%

MPQ7091 MPQ7092 MPQ7093

CASE 646-05, STYLE 1 TO-116

QUAD AMPLIFIER TRANSISTOR

PNP SILICON

Refer to MPQ7051 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	MPQ7091 MPQ7092 MPQ7093	V(BR)CEO	150 200 250	Ξ	=	Vdc
Collector-Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MPQ7091 MPQ7092 MPQ7093	V(BR)CBO	150 200 250	=	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)		V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current ($V_{CB} = 120$ Vdc, $I_{E} = 0$) ($V_{CB} = 150$ Vdc, $I_{E} = 0$) ($V_{CB} = 180$ Vdc, $I_{E} = 0$)	MPQ7091 MPQ7092 MPQ7093	ІСВО	=	=	250 250 250	nAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, I _C = 0)		IEBO	(-)	_	100	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 30 mAdc, V _{CE} = 10 Vdc)		hFE	25 35 25	40 55 50	_	-
Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B	= 2.0 mAdc)	V _{CE(sat)}	- <u>-</u>	0.3	0.5	Vdc
Base-Emitter Saturation Voltage $(I_C = 20 \text{ mAdc}, I_B = 20 \text{ mAdc})$	2.0 mAdc)	V _{BE(sat)}	_	0.7	0.9	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		fT	50	70	_	MHz
Output Capacitance (V _{CB} = 20 Vdc, I_E = 0, f = 1.0 MHz)		C _{obo}	_	3.0	5.0	pF
Input Capacitance (VEB = 3.0 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	60	75	pF

MQ982

For Specifications, See MD982 Data.

The data sheets on the following pages are designed to emphasize those FET's that by virtue of widespread industry use, ease of manufacture, and consequently low relative cost, merit first consideration for new equipment design. Package options from low-cost plastic to metal packages are available.

CAUTION:

Static electricity is a surface phenomenon which most commonly occurs when two dissimilar materials come into contact and then separate. Electro Static Discharge (ESD) damage of semiconductor components by operating personnel is quickly becoming a very prominent and significant problem. From simple bipolar designs to sensitive MOSFET structures, ESD has its unforgiving effect of degradation or destruction.

Motorola believes it is important to extend an emphasizing note of cautiousness when handling and testing ANY FET product. Precautions include, but are not limited to, the implementation of static safe workstations and proper handling techniques (see below). Additionally, it is very important to keep FET devices in their antistatic shipping containers and away from any static-generating materials.

HANDLING CONSIDERATIONS:

MOS Field-Effect Transistors, due to their extremely high input resistance, are subject to potential damage by the accumulation of excess static charge. To avoid possible damage to the devices while handling, testing, or in actual operation, the following procedure should be followed:

- The leads of the devices should remain wrapped in the shorting spring except when being tested or in actual operation to avoid the build-up of static charge.
- Avoid unnecessary handling; when handled, the devices should be picked up by the can instead of the leads.
- The devices should not be inserted or removed from circuits with the power on as transient voltages may cause permanent damage to the devices.

Field-Effect Transistors

2N2608 2N2609

CASE 22-03, STYLE 12 TO-18 (TO-206AA)

JFET GENERAL PURPOSE

P-CHANNEL — DEPLETION

Refer to 2N5460 for graphs.

MAXIMUM RATINGS

MAXIMOM HATINGO			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Gate Current	IG	50	mA
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	300 1.7	mW mW/°C
Storage Temperature Range	T _{stg}	-60 to +200°C	°C

Characteristic	2-3-3-6	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	25 125 5	But her livery	THERE	A LATER ST	100
Gate-Source Breakdown Voltage (I _G = 1.0 μA)	I (Sales)	V _(BR) GSS	30	7. T. ye.	Vdc
Gate Reverse Current (VGS = 5.0 V)	-1 45%	IGSS	-	10	nA
Gate Source Cutoff Voltage $(V_{DS} = -5.0 \text{ V, I}_{D} = -1.0 \mu\text{A})$	2000mg/ 2000	V _{GS(off)}	1.0	4.0	Vdc
ON CHARACTERISTICS	_				
Zero-Gate-Voltage Drain Current $(V_{DS} = -5.0 \text{ V}, V_{GS} = 0 \text{ V})$	2N2608 2N2609	IDSS*	-0.9 -2.0	-4.5 -10.0	mA
SMALL-SIGNAL CHARACTERISTICS	Rest, Control	et a statute.			
Forward Transfer Admittance $(V_{DS} = -5.0 \text{ V}, f = 1.0 \text{ kHz})$	2N2608 2N2609	yfs *	1000 2500	=	μmhos
Input Capacitance $(V_{DS} = -5.0 \text{ V}, V_{GS} = 1.0 \text{ V}, f = 140 \text{ kHz})$	2N2608 2N2609	C _{iss}		17 30	pF
FUNCTIONAL CHARACTERISTICS					S. DEWIE
Noise Figure (V _{DS} = -5.0 V, f = 1.0 kHz, R = 1.0 meg)	3.4	NF	-	3.0	dB

^{*}Pulse Width \leq 100 msec., Duty Cycle \leq 10%.

2N2843 2N2844

CASE 22-03, STYLE 22 TO-18 (TO-206AA)

JFET GENERAL PURPOSE

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Drain Current	ID	50	mA
Total Device Dissipation @ $T_A = 25$ °C Derate above 25 °C	PD	300 1.7	mW mW/°C
Storage Temperature Range	T _{stg}	-60 to +200°C	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		•			
Gate-Source Breakdown Voltage (I _G = 1.0 μA)		V(BR)GSS	30	-	Vdc
Gate Reverse Current (VGS = 5.0 V)		IGSS	_	10	nA
Gate Source Cutoff Voltage (V _{DS} = -5.0 V, I _D = -1.0 μ A)		V _{GS(off)}	_	1.7	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current $(V_{DS} = -5.0 \text{ V})$	2N2843 2N2844	IDSS*	200 440	1000 2200	μΑ
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance $(V_{DS} = -5.0 \text{ V}, f = 1.0 \text{ kHz})$	2N2843 2N2844	Yfs *	540 1400	_	μmhos
Input Capacitance $(V_{DS} = -5.0 \text{ V}, V_{GS} = 1.0 \text{ V}, f = 140 \text{ kHz})$	2N2843 2N2844	C _{iss}	=	17 30	pF
FUNCTIONAL CHARACTERISTICS		•			
Noise Figure ($V_{DS} = -5.0 \text{ V}, f = 1.0 \text{ kHz}, R_G = 1.0 \text{ meg}$)		NF	_	3.0	dB
CONTROL OF THE CONTRO					

^{*}Pulse Width ≤ 630 ms, Duty Cycle = 10%.

2N3330

CASE 20-03, STYLE 5 TO-72 (TO-206AF)

JFET AMPLIFIER

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

MAXIMON NATINGS				
Rating	Symbol	Value	Unit	
Drain-Gate Voltage	V _{DG}	20	Vdc	
Reverse Gate-Source Voltage	VGSR	20	Vdc	
Gate Current	IG	10	mAdc	
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	0.3 1.7	Watts mW/°C	
Storage Temperature Range	T _{stq}	-65 to +200	°C	

Refer to 2N5460 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			EXTENSI:	4
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)	V(BR)GSS	20		Vdc
Gate Reverse Current (V _{GS} = 10 Vdc, V _{DS} = 0) (V _{GS} = 10 Vdc, V _{DS} = 0, T _A = 150°C)	IGSS	=	10 10	nAdc μAdc
ON CHARACTERISTICS			5 7 75	F-CIN I
Zero-Gate-Voltage Drain Current(1) (V _{DS} = -10 Vdc, V _{GS} = 0)	IDSS	2.0	6.0	mAdc
Gate-Source Voltage ($V_{DG} = -15$ Vdc, $I_{D} = 10 \mu Adc$)	VGS	_	6.0	Vdc
Drain-Source Resistance (I _D = 100 μAdc, V _{GS} = 0)	rDS		800	Ohms
SMALL-SIGNAL CHARACTERISTICS		11.7		SCA
Forward Transfer Admittance(1) $ \begin{aligned} &(V_{DS} = -10 \text{ Vdc, } I_D = 2.0 \text{ mAdc, } f = 1.0 \text{ kHz}) \\ &(V_{DS} = -10 \text{ Vdc, } I_D = 2.0 \text{ mAdc, } f = 10 \text{ MHz}) \end{aligned} $	Yfs	1500 1350	3000	μmhos
Output Admittance $(V_{DS} = -10 \text{ Vdc}, I_{D} = 2.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	Yos	70110	40	μmhos
Reverse Transfer Conductance $(V_{DS} = -10 \text{ Vdc}, I_D = 2.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	Yrs		0.1	μmhos
Input Conductance $(V_{DS} = -10 \text{ Vdc}, I_D = 2.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	Yis	_	0.2	μmhos
Input Capacitance $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 1.0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{iss}	_	20	pF
FUNCTIONAL CHARACTERISTICS				
Noise Figure (VDS = -5.0 Vdc, ID = 1.0 mAdc, RG = 1.0 Megohm, f = 1.0 kHz)	NF	-	3.0	dB

⁽¹⁾ Pulse Test: Pulse Width ≤ 630 ms, Duty Cycle ≤ 10%.

2N3331

CASE 20-03, STYLE 5 TO-72 (TO-206AF)

JFET
LOW-FREQUENCY
P-CHANNEL — DEPLETION

Refer to 2N5460 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	20	Vdc
Drain-Gate Voltage	V _{DG}	20	Vdc
Gate-Source Voltage	VGS	20	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				ALKIES -	Quight-
Gate-Source Breakdown Voltage (I _G = 10 μA)		V _(BR) GSS	20	- TRYE	Vdc
Gate Reverse Current (VGS = 10 V, VDS = 0)		IGSS	_	10	nA
Gate Source Cutoff Voltage (Vps = -15 V, Ip = -10 μ A)	DI LIS	V _{GS(off)}	- 10	8.0	Vdc
ON CHARACTERISTICS	ATM				
Zero-Gate-Voltage Drain Current (VDS = -10 V, VGS = 0 V)		l _{DSS} *	-5.0	-15.0	mA
Drain-Source Resistance (ID = -100μ A, VGS = 0)	TAVE	rDS	400	800	ohms
SMALL-SIGNAL CHARACTERISTICS					S. P. Line and
Forward Transfer Admittance $(V_{DS} = -10 \text{ V}, I_D = -5.0 \text{ mA}, f = 1.0 \text{ kHz})$	· Large	Yfs *	2000	4000	μmhos
Output Admittance $(V_{DS} = -10 \text{ V}, I_D = -2.0 \text{ mA}, f = 1.0 \text{ kHz})$	CARLO C	y _{os} *	_	100	μmhos
Forward Transfer Admittance $(V_{DS} = -10 \text{ V}, I_D = -2.0 \text{ mA}, f = 10 \text{ MHz})$		Yfs*	1350	MARKI — ISA	μmhos
Input Capacitance (V _{DS} = -10 V, V _{GS} = 1.0 V, f = 1.0 MHz)	A COLUMN	C _{iss}	- (11)	20	pF
FUNCTIONAL CHARACTERISTICS	NE ITS				
Noise Figure (Vps = -5.0 V, Ip = -1.0 mA, R _G = 1.0 M Ω , f = 1.0 kHz)	144	NF	- (45)	4.0	dB

^{*}Pulse Width \leq 300 μ s, Duty Cycle \leq 10%.

2N3436 2N3437 2N3438

CASE 22-03, STYLE 4 TO-18 (TO-206AA)

JFET LOW-FREQUENCY

N-CHANNEL - DEPLETION

MAXIMUM RATINGS

INIAAIINON NATINGS			
Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	50	Vdc
Gate-Source Voltage	VGS	50	Vdc
Gate Current	IG	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/°C
Storage Temperature Range	T _{sta}	-65 to +200	°C

FI FCTRICAL	CHARACTERISTICS	ITA -	25°C unless	otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				LOUISIA TO	ASAM) IN
Gate-Source Breakdown Voltage (IG = 1.0 μ A)		V _(BR) GSS	50		Vdc
Gate Reverse Current (V _{GS} = -30 V)		IGSS	-	0.5	nA
Gate Source Cutoff Voltage $(V_{DS} = 20 \text{ V}, I_D = 1.0 \text{ nA})$	2N3436 2N3437 2N3438	VGS(off)		10.0 5.0 2.5	Vdc
Gate Source Voltage (VDS = 20 V, ID = 1.0 μ A)	2N3436 2N3437 2N3438	VGS	14 C	9.8 4.8 2.3	Vdc
ON CHARACTERISTICS			2778	WILL DAY	THE HART
Zero-Gate-Voltage Drain Current $(V_{DS} = 20 \text{ V})$	2N3436 2N3437 2N3438	IDSS*	3.0 0.8 0.2	15 4.0 1.0	mA
SMALL-SIGNAL CHARACTERISTICS			6.000	most who	of board
Forward Transfer Admittance (VDS = 20 V, f = 1.0 kHz)	2N3436 2N3437 2N3438	Vfs	2500 1500 800	10000 6000 4500	μmhos
Output Admittance (V _{DS} = 30 V, f = 1.0 kHz)	2N3436 2N3437 2N3438	y _{os}	AEC.	35 20 5	μmhos
Input Capacitance $(V_{DS}=10\ V)$ $(V_{DS}=6.0\ V)$ $(V_{DS}=4.0\ V,f=1.0\ MHz)$	2N3436 2N3437 2N3438	C _{iss}	_	18	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (VDS = 10 V, RG = 1.0 m Ω , f = 1.0 kHz)		NF		2.0	dB

^{*}Pulse Width \leq 630 msec, Duty Cycle \leq 10%.

2N3458 2N3459 2N3460

CASE 22-03, STYLE 4 TO-18 (TO-206AA)

JFET LOW-FREQUENCY/ LOW NOISE

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	50	Vdc
Gate-Source Voltage	VGS	50	Vdc
Gate Current	IG	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage ($I_G = 1.0 \mu A$)		V _(BR) GSS	-50	_	Vdc
Gate Reverse Current (VGS = -30 V)		IGSS	_	25	nA
Gate Source Cutoff Voltage $(V_{DS}=20, I_{D}=1.0 \mu A)$	2N3458 2N3459 2N3460	VGS(off)	Ξ	-7.8 -3.4 -1.8	Vdc
ON CHARACTERISTICS	0		11/2/20	1000	glb/m
Zero-Gate-Voltage Drain (V _{DS} = 20 Volts)	2N3458 2N3459 2N3460	l _{DSS} *	3.0 0.8 0.2	15.0 4.0 1.0	mA
SMALL-SIGNAL CHARACTERISTICS	10750				
Forward Transfer Admittance (V _{DS} = 20 Volts, f = 1.0 kHz)	2N3458 2N3459 2N3460	Vfs *	2500 1500 800	10000 6000 4500	μmhos
Output Admittance (V _{DS} = 30 Volts, f = 1.0 kHz)	2N3458 2N3459 2N3460	Yos	Ξ	35 20 5	μmhos
Input Capacitance (V _{DS} = 10 V)	100 m 100 m	C _{iss}	40,5	18	pF
Output Capacitance (V _{DS} = 30 V)	elle en c	Coss	·	5.0	pF
FUNCTIONAL CHARACTERISTICS	TO EAST				
Noise Figure (VDS = 10 V, f = 20 Hz, RG = 1.0 M Ω)	2N3458 2N3459 2N3460	NF	=	6.0 4.0 4.0	dB

^{*}Pulse Width ≤ 100 msec, Duty Cycle ≤ 10%.

2N3796 2N3797

CASE 22-03, STYLE 2 TO-18 (TO-206AA)

MOSFET LOW-POWER AUDIO

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Source Voltage 2N3796 2N3797	V _{DS}	25 20	Vdc	
Gate-Source Voltage	VGS	±10	Vdc	
Drain Current	ID	20	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C	
Junction Temperature Range	TJ	+ 175	°C	
Storage Channel Temperature Range	T _{stg}	-65 to +200	°C	

Characteristic	LATER REPORT	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		- Action				
Drain-Source Breakdown Voltage $(V_{GS} = -4.0 \text{ V}, I_D = 5.0 \mu\text{A})$ $(V_{GS} = -7.0 \text{ V}, I_D = 5.0 \mu\text{A})$	2N3796 2N3797	V(BR)DSX	25 20	30 25		Vdc
Gate Reverse Current(1) (VGS = -10 V, VDS = 0) (VGS = -10 V, VDS = 0, TA = 150°C)		IGSS		_	1.0 200	pAdc
Gate Source Cutoff Voltage (ID = $0.5 \mu A$, VDS = $10 V$) (ID = $2.0 \mu A$, VDS = $10 V$)	2N3796 2N3797	VGS(off)	_	-3.0 -5.0	-4.0 -7.0	Vdc
Drain-Gate Reverse Current(1) (V _{DG} = 10 V, I _S = 0)		IDGO	_	_ =	1.0	pAdc
ON CHARACTERISTICS	PM A408				49775	T (150)
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$	2N3796 2N3797	IDSS	0.5 2.0	1.5 2.9	3.0 6.0	mAdc
On-State Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = +3.5 \text{ V})$	2N3796 2N3797	ID(on)	7.0 9.0	8.3 14	14 18	mAdc
SMALL-SIGNAL CHARACTERISTICS	COLUMN .					
Forward Transfer Admittance (V _{DS} = 10 V, V _{GS} = 0, f = 1.0 kHz)	2N3796 2N3797	Yfs	900 1500	1200 2300	1800 3000	μmhos
$(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3796 2N3797		900 1500	=	_	appa appa
Output Admittance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N3796 2N3797	Yos	=	12 27	25 60	μmhos
Input Capacitance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3796 2N3797	C _{iss}	Ξ	5.0 6.0	7.0 8.0	pF
Reverse Transfer Capacitance (V _{DS} = 10 V, V _{GS} = 0, f = 1.0 MHz)	21/3/42	C _{rss}	_	0.5	0.8	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}, R_S = 3 \text{ megohms}$)	NF	_	3.8	_	dB

⁽¹⁾ This value of current includes both the FET leakage current as well as the leakage current associated with the test socket and fixture when measured under best attainable conditions.

20

18

16

14

12

10

8

6

4

2

0 0 2

6

4

ID. DRAIN CURRENT (mA)

TYPICAL DRAIN CHARACTERISTICS

FIGURE 1 _ 2N3796

FIGURE 2 - 2N3797

COMMON SOURCE TRANSFER CHARACTERISTICS

+1

 $V_{GS} = 0 V$

22 24

FIGURE 3 - 2N3796

12 14 16 18

VDS, DRAIN-SOURCE VOLTAGE (VOLTS)

FIGURE 4 - 2N3797

2N3821 2N3822 2N3824

CASE 20-03, STYLE 1 TO-72 (TO-206AF)

JFET LOW FREQUENCY, LOW NOISE

N-CHANNEL — DEPLETION JAN 2N3821 AND JAN 2N3822 AVAILABLE

Refer to 2N4220 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	50	Vdc
Drain-Gate Voltage	V _{DG}	50	Vdc
Gate-Source Voltage	VGS	-50	Vdc
Drain Current	ID	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Junction Temperature Range	TJ	175	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage ($I_G = -1.0 \mu Adc, V_{DS} = 0$)		V _(BR) GSS	-50	_	Vdc
Gate Reverse Current $(V_{GS} = -30 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -30 \text{ Vdc}, V_{DS} = 0, T_{A} = 150^{\circ}\text{C})$		IGSS	_	-0.1 -100	nAdc
Gate Source Cutoff Voltage ($I_D = 0.5 \text{ nAdc}, V_{DS} = 15 \text{ Vdc}$)	2N3821 2N3822	V _{GS(off)}	_	-4.0 -6.0	Vdc
Gate Source Voltage (ID = 50 μ Adc, VDS = 15 Vdc) (ID = 200 μ Adc, VDS = 15 Vdc)	2N3821 2N3822	VGS	- 0.5 - 1.0	-2.0 -4.0	Vdc
Drain Cutoff Current $ \begin{array}{ll} (V_{DS}=15~Vdc,V_{GS}=-8.0~Vdc) \\ (V_{DS}=15~Vdc,V_{GS}=-8.0~Vdc,T_{A}=150^{\circ}C) \end{array} $	2N3824 2N3824	^I D(off)	=	0.1 100	nAdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	2N3821 2N3822	IDSS	0.5 2.0	2.5 10	mAdc
Static Drain-Source On Resistance (VGS = 0, ID = 0, f = 1.0 kHz)	2N3824	rDS(on)	-	250	Ohms
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance $(V_{DS}=15\ Vdc,\ V_{GS}=0,\ f=1.0\ kHz)(1)$ $(V_{DS}=15\ Vdc,\ V_{GS}=0,\ f=100\ MHz)$	2N3821 2N3822 2N3821 2N3822	Vfs	1500 3000 1500 3000	4500 6500	μmhos
Output Admittance(1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N3821 2N3822	Yos		10 20	μmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{iss}	-	6.0	pF
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3821 2N3822	C _{rss}	_	3.0 3.0	pF
$(V_{GS} = -8.0 \text{ Vdc}, V_{DS} = 0, f = 1.0 \text{ MHz})$	2N3824		_	3.0	

Characteristic		Symbol	Min	Max	Unit
FUNCTIONAL CHARACTERISTICS					
Noise Figure $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, R_S = 1.0 \text{ megohm}, f = 10 \text{ Hz}, \text{Noise Bandwidth} = 5.0 \text{ Hz})$	2N3821, 2N3822	NF	-	5.0	dB
Equivalent Input Noise Voltage (Vps = 15 Vdc, Vgs = 0, f = 10 Hz, Noise Bandwidth = 5.0 Hz)	2N3821, 2N3822	e _n	_	200	nv/Hz ^{1/2}

⁽¹⁾ Pulse Test: Pulse Width ≤ 100 ms. Duty Cycle ≤ 10%.

2N3823

JAN, JANTX AVAILABLE CASE 20-03, STYLE 1 TO-72 (TO-206AF)

JFET VHF AMPLIFIER

N-CHANNEL - DEPLETION

Refer to 2N4416 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	-30	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Junction Temperature Range	TJ	175	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				EQUIPMANTO	ARAICO RE
Gate-Source Breakdown Voltage $(I_G = -1.0 \mu Adc, V_{DS} = 0)$		V(BR)GSS	-30	507 50A	Vdc
Gate Reverse Current $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$		IGSS	= :0 v	- 0.5 - 500	nAdc
Gate Source Cutoff Voltage (I _D = 0.5 nAdc, V _{DS} = 15 Vdc)	basans	VGS(off)	era. gr	-8.0	Vdc
Gate Source Voltage (I _D = 0.4 mAdc, V _{DS} = 15 Vdc)		V _{GS}	-1.0	-7.5	Vdc
ON CHARACTERISTICS			0.	The state of	- Light
Zero-Gate-Voltage Drain Current(1) (V _{DS} = 15 Vdc, V _{GS} = 0)		IDSS	4.0	20	mAdc
SMALL-SIGNAL CHARACTERISTICS	SINCE AS		TU III	SUVERBY OF	0.8
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)(1) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 200 MHz)		Vfs	3500 3200	6500 —	μmhos
Input Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 200 MHz)	1000000 10000000	Re(y _{is})	1 - 1 0	800	μmhos
Output Conductance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)(1) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 200 MHz)	51/7962 61/05/05	yos Re(yos)	1 1 1 N A	35 200	μmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$		C _{iss}		6.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	49(7)50	C _{rss}	1 - 1-3 - 7	2.0	pF
FUNCTIONAL CHARACTERISTICS			estima.	Sevi I Wan	, n.m. voi
Noise Figure (V _{DS} = 15 Vdc, V _{GS} = 0, R _S = 1000 ohms, f =	100 MHz)	NF	L) = ;	2.5	dB

2N3909,A

CASE 20-03, STYLE 5 TO-72 (TO-206AF)

JFET AMPLIFIER

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	-20	Vdc
Drain-Gate Voltage	V _{DG}	-20	Vdc
Reverse Gate-Source Voltage	VGSR	20	Vdc
Forward Gate Current	l _{GF}	10	mAdc
Forward Gate-Source Voltage	VGSF	20	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

Refer to 2N5460 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.) (1)

Make Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				LA MERTIN	APADIO FRE
Gate-Source Breakdown Voltage (I _G = 10 µAdc, V _{DS} = 0)		V _(BR) GSS	20		Vdc
Gate Reverse Current $(V_{GS} = 10 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = 10 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$		IGSS	ξ.Ξ	10 1.0	nAdc μAdc
Gate Source Cutoff Voltage $(V_{DS} = -10 \text{ Vdc}, I_D = 10 \mu \text{Adc})$	2N3909 2N3909A	VGS(off)	_ <u>0</u>	8.0 8.0	Vdc
Gate Source Voltage (VDS = -10 Vdc, ID = $30 \mu Adc$)	-	VGS	0.3	7.9	Vdc
ON CHARACTERISTICS			The same of	and the offe	the sale and
Zero-Gate-Voltage Drain Current(2) $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0)$	2N3909 2N3909A	IDSS	0.3 1.0	15 15	mAdc
SMALL-SIGNAL CHARACTERISTICS			As a	and the same	
Forward Transfer Admittance(2) $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N3909 2N3909A	Yfs	1000 2200	5000 5000	μmhos
$(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 10 \text{ MHz})$	2N3909 2N3909A		900 2000	7-7	100
Output Admittance $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$		Yos	_	100	μmhos
Input Capacitance $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3909 2N3909A	C _{iss}	=	32 9.0	pF
Reverse Transfer Capacitance $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3909 2N3909A	C _{rss}	=	16 3.0	pF

⁽¹⁾ The fourth lead (case) is connected to the source for all measurements.

⁽²⁾ Pulse Test: Pulse Width ≤ 630 ms, Duty Cycle ≤ 10%.

2N3966

CASE 20-03, STYLE 1 TO-72 (TO-206AF)

JFET HIGH-FREQUENCY AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Gate Current	IG	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C (Free Air)	PD	300 1.71	mW mW/°C
Lead Temperature (1/16" from Case for 10 Seconds)	TL	300	°C
Storage Temperature Range	T _{stg}	-55 to 200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				194175
Gate-Source Breakdown Voltage (IG = 1.0 μ A, VDS = 0)	V _(BR) GSS	-30	_	Vdc
Gate Reverse Current (VGS = 20 V, VDS = 0)	IGSS	-	0.1	nA
Drain Cutoff Current ($V_{DS} = 10 \text{ V}, V_{GS} = -7.0 \text{ V}, T_A = 150^{\circ}\text{C}$)	I _D (off)	_ 8	2.0	μΑ
Gate Source Cutoff Voltage (ID = 10 nA, VDS = 10 V)	V _{GS(off)}	4.0	6.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current $(V_{DS} = 20 \text{ V}, V_{GS} = 0)$	IDSS	2.0	-	mA
Drain-Source "ON" Voltage (ID = 1.0 mA, VGS = 0 V)	V _{DS(on)}	_	0.25	Vdc
Drain Reverse Current $(V_{DG} = 20 \text{ V, I}_S = 0 \text{ A})$ (25°C) (150°C)	IDGO	=	0.1 0.2	nA μA
Static Drain-Source On Resistance (VGS = 0 V, I _D = 0, f = 1.0 kHz)	rDS(on)	1-161	220	Ω
SMALL-SIGNAL CHARACTERISTICS				
Input Capacitance (V _{DS} = 20 V, V _{GS} = 0 V, f = 1.0 MHz)	C _{iss}	_	6.0	pF
Reverse Transfer Capacitance $(V_{DS} = 0 \text{ V}, V_{GS} = 7.0 \text{ V}, f = 1.0 \text{ MHz})$	C _{rss}	- 1	1.5	pF
SWITCHING CHARACTERISTICS				
Delay Time (See Figure 1)	t _d	- 1	0.02	μsec
Rise Time (See Figure 1)	t _r	-0	100	nsec
Turn-Off Time (See Figure 1)	toff	_	100	nsec

2N3970 2N3971 2N3972

CASE 22-03, STYLE 4 TO-18 (TO-206AA)

SWITCHING

N-CHANNEL — DEPLETION

BAAVIBALIBA DATIBIOC

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	40	Vdc
Drain-Gate Voltage	VDG	40	Vdc
Reverse Gate-Source Voltage	VGSR	40	Vdc
Forward Gate Current	IGF	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.8 10	Watts mW/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL	. CHARACTERISTICS	$(T_{\Delta} =$	25°C unless	otherwise not	ed.)
------------	-------------------	-----------------	-------------	---------------	------

Characteristic		Symbol	Min	Max	Unit	
OFF CHARACTERISTICS	Serve			province and	OSAGARA DAGO	A DISTRICT
Gate-Source Breakdown V	oltage ($I_G = 1.0 \mu Adc, V_{GS} = 0$)		V(BR)GSS	40		Vdc
Gate Reverse Current (Vo	GS = 20 Vdc, V _{DS} = 0)		IGSS	_	250	pAdc
Drain Reverse Current (V (V	$DG = 20 \text{ Vdc}, I_S = 0)$ $DG = 20 \text{ Vdc}, I_S = 0, T_A = 150^{\circ}\text{C})$		IDGO	200	250 500	pAdc nAdc
Drain Cutoff Current (VD:	S = 20 Vdc, V _{GS} = -12 Vdc) S = 20 Vdc, V _{GS} = -12 Vdc, T _A = 150°C)		ID(off)		250 500	pAdc nAdc
Gate Source Voltage (VD	$_{\rm S}=$ 20 Vdc, $I_{\rm D}=$ 1.0 nAdc)	2N3970 2N3971 2N3972	V _{GS}	4.0 2.0 0.5	10 5.0 3.0	Vdc
ON CHARACTERISTICS	(Malati)				MINE THE NA	annog ala
Zero-Gate-Voltage Drain C	furrent(1) $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0)$	2N3970 2N3971 2N3972	IDSS	50 25 5.0	150 75 30	mAdc
Drain-Source On-Voltage		2N3970 2N3971 2N3972	V _{DS(on)}	= 7	1.0 1.5 2.0	Vdc
Static Drain-Source On Re	sistance ($I_D = 1.0 \text{ mAdc}$, $V_{GS} = 0$)	2N3970 2N3971 2N3972	rDS(on)	1 -	30 60 100	Ohms
SMALL-SIGNAL CHARAC	TERISTICS			MGC SYC	11 5 854 3	med year
Drain-Source "ON" Resist	ance $(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$	2N3970 2N3971 2N3972	rds(on)	93 <u>—</u> 23	30 60 100	Ohms
Input Capacitance (VDS	= 20 Vdc, V _{GS} = 0, f = 1.0 MHz)		Ciss	1 - r - 1	25	pF
Reverse Transfer Capacita	ince $(V_{DS} = 0, V_{GS} = -12 \text{ Vdc}, f = 1.0 \text{ M})$	Hz)	C _{rss}	- 20	6.0	pF
SWITCHING CHARACTER	ISTICS				The Control	
Turn-On Delay Time	$\label{eq:condition for 2N3970:} \frac{\text{Test Condition for 2N3970:}}{ V_{DD} = 10 \text{Vdc, V}_{GS(on)} = 0,} \\ D(on) = 20 \text{mAdc, V}_{GS(off)} = 10 \text{Vdc})$	2N3970 2N3971 2N3972	^t d(on)	===	10 15 40	ns
Rise Time	$\begin{split} & \frac{\text{Test Condition for 2N3971:}}{\text{(V}_{DD} = 10 \text{ Vdc, V}_{GS(on)} = 0,} \\ & \text{I}_{D(on)} = 10 \text{ mAdc, V}_{GS(on)} = 5.0 \text{ Vdc)} \end{split}$	2N3970 2N3971 2N3972	t _r	=	10 15 40	ns
Turn-Off Time	$\label{eq:condition for 2N3972} \begin{split} & \underline{\text{Test Condition for 2N3972}} \colon \\ & \overline{\text{(V}_{DD} = 10 \text{Vdc, V}_{GS(on)} = 0,} \\ & \text{I}_{D(on)} = 5.0 \text{mAdc, V}_{GS(off)} = 3.0 \text{Vdc)} \end{split}$	2N3970 2N3971 2N3972	^t off	=	30 60 100	ns

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 3.0%.

2N3993,A 2N3994,A

CASE 20-03, STYLE 5 TO-72 (TO-206AF)

SWITCHING

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	- 25	Vdc
Drain-Gate Voltage	V _{DG}	- 25	Vdc
Reverse Gate-Source Voltage	VGSR	25	Vdc
Forward Gate Current	IGF	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				LAURESTO.	Wall to
Gate-Source Breakdown Voltage ($I_G = 1.0 \mu Adc, V_{DS} = 0$)		V _(BR) GSS	25	A	Vdc
Drain Reverse Current $(V_{DG} = -15 \text{ Vdc}, I_{S} = 0)$ $(V_{DG} = -15 \text{ Vdc}, I_{S} = 0, T_{\Delta} = 150^{\circ}\text{C})$		IDGO	3/19	1.2 1.2	nAdc µAdc
Drain Cutoff Current		ln/ m		1.2	μΑιιι
$(V_{DS} = -10 \text{ Vdc}, V_{GS} = 10 \text{ Vdc})$	2N3993, 2N3993A	ID(off)		1.2	nAdc
$(V_{DS} = -10 \text{ Vdc}, V_{GS} = 6.0 \text{ Vdc})$	2N3994, 2N3994A		_	1.2	1171440
$(V_{DS} = -10 \text{ Vdc}, V_{GS} = 10 \text{ Vdc}, T_{A} = 150^{\circ})$	2N3993, 2N3993A	-	_	1.0	μAdc
$(V_{DS} = -10 \text{ Vdc}, V_{GS} = 6.0 \text{ Vdc}, T_{A} = 150^{\circ})$	2N3994, 2N3994A		_	1.0	1710 7
Gate Source Voltage		VGS			Vdc
$(V_{DS} = -10 \text{ Vdc}, I_{D} = -1.0 \mu \text{Adc})$	2N3993, 2N3993A		4.0	9.5	1
	2N3994, 2N3994A		1.0	5.5	100

Zero-Gate-Voltage Drain Current(1)		IDSS	4.000		mAdc
$(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0)$	2N3993, 2N3993A		10	_	
	2N3994, 2N3994A		2.0	_	5.4

SMALL-SIGNAL CHARACTERISTICS

Drain-Source "ON" Resistance $(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$	2N3993, 2N3993A 2N3994, 2N3994A	rds(on)	327	150 300	Ohms
Forward Transfer Admittance(1) $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N3993 2N3993A 2N3994 2N3994A	Yfs	6.0 7.0 4.0 5.0	12 12 10 10	mmhos
Input Capacitance $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3993, 2N3994 2N3993A, 2N3994A	C _{iss}	_	16 12	pF
Reverse Transfer Capacitance (VDS = 0, VGS = 10 Vdc, f = 1.0 MHz)	2N3993 2N3993A	C _{rss}	_ 7 ·	4.5 3.0	pF
$(V_{DS} = 0, V_{GS} = 6.0 \text{ Vdc}, f = 1.0 \text{ MHz})$	2N3994 2N3994A		=	5.0 3.5	

(1) Pulse Test: Pulse Width = 100 ms, Duty Cycle ≤ 10%.

2N4091 2N4092 2N4093

JAN, JTX AVAILABLE CASE 22-03, STYLE 3 TO-18 (TO-206AA)

SWITCHING

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	40	Vdc
Drain-Gate Voltage	V _{DG}	40	Vdc
Gate-Source Voltage	VGS	40	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ $T_A = 25$ °C Derate above 25°C	PD	1.8 10	Watts mW/°C
Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				S. Lelbalan	100 40
Gate-Source Breakdown Voltage ($I_G = 1.0 \mu Adc, V_{DS} = 0$)		V _(BR) GSS	40	100 12 10 to 1	Vdc
Drain-Gate Breakdown Voltage $(I_D = 1.0 \mu Adc, I_S = 0)$		V _(BR) DGO	40	MAN CONTRACTOR	Vdc
Gate Source Cutoff Voltage $(V_{DS} = 20 \text{ Vdc}, I_D = 1.0 \text{ nAdc})$	2N4091 2N4092 2N4093	VGS(off)	5.0 2.0 1.0	10 7.0 5.0	Vdc
Source Reverse Current (V _{SG} = 20 Vdc, I _D = 0)	Austral Make	Isgo		0.2	nAdc
Drain Reverse Current $(V_{DG}=20\ Vdc,I_S=0)$ $(V_{DG}=20\ Vdc,I_D=0,T_A=150^{\circ}C)$		IDGO		0.2	nAdc μAdc
$\begin{array}{lll} \text{Drain-Cutoff Current} \\ (\text{VDS} = 20 \text{ Vdc}, \text{V}_{\text{GS}} = 12 \text{ Vdc}) \\ (\text{VDS} = 20 \text{ Vdc}, \text{V}_{\text{GS}} = 8.0 \text{ Vdc}) \\ (\text{VDS} = 20 \text{ Vdc}, \text{V}_{\text{GS}} = 6.0 \text{ Vdc}) \\ (\text{VDS} = 20 \text{ Vdc}, \text{V}_{\text{GS}} = 6.0 \text{ Vdc}) \\ (\text{VDS} = 20 \text{ Vdc}, \text{V}_{\text{GS}} = 12 \text{ Vdc}, \text{T}_{\text{A}} = 150^{\circ}\text{C}) \\ (\text{VDS} = 20 \text{ Vdc}, \text{V}_{\text{GS}} = 8.0 \text{ Vdc}, \text{T}_{\text{A}} = 150^{\circ}\text{C}) \\ (\text{VDS} = 20 \text{ Vdc}, \text{V}_{\text{GS}} = 6.0 \text{ Vdc}, \text{T}_{\text{A}} = 150^{\circ}\text{C}) \end{array}$	2N4091 2N4092 2N4093 2N4091 2N4092 2N4093	ID(off)		0.2 0.2 0.2 0.4 0.4	nAdc μAdc
ON CHARACTERISTICS	19091 15 9001				
Zero-Gate-Voltage Drain Current* (VDS = 20 Vdc, VGS = 0)	2N4091 2N4092 2N4093	IDSS*	30 15 8.0	Ξ	mAdc
$ \begin{array}{ll} \text{Drain-Source On-Voltage} \\ \text{(I}_D=6.6 \text{ mAdc, V}_{GS}=0) \\ \text{(I}_D=4.0 \text{ mAdc, V}_{GS}=0) \\ \text{(I}_D=2.5 \text{ mAdc, V}_{GS}=0) \end{array} $	2N4091 2N4092 2N4093	V _{DS(on)}		0.2 0.2 0.2	Vdc
Static Drain-Source On Resistance ($I_D = 1.0 \text{ mAdc}, V_{GS} = 0$)	2N4091 2N4092 2N4093	rDS(on)	a	30 50 80	Ohms

2N4091, 2N4092, 2N4093

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS		•			+
Drain-Source "ON" Resistance $(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$	2N4091 2N4092 2N4093	^r ds(on)	=	30 50 80	Ohms
Input Capacitance (VDS = 20 Vdc, VGS = 0, f = 1.0 MHz)		C _{iss}		16	pF
Reverse Transfer Capacitance (V _{DS} = 0, V _{GS} = 20 Vdc, f = 1.0 MHz)		C _{rss}		5.0	pF
SWITCHING CHARACTERISTICS	7 4				
Delay Time (See Figure 1) $ \begin{pmatrix} I_{D(on)} = 6.6 \text{ mAdc} \\ I_{D(on)} = 4.0 \text{ mAdc} \\ \end{pmatrix} $ $ \begin{pmatrix} I_{D(on)} = 4.0 \text{ mAdc} \\ \end{pmatrix} $ $ \begin{pmatrix} I_{D(on)} = 2.5 \text{ mAdc} \end{pmatrix} $	2N4091 2N4092 2N4093	^t d	Ξ	15 15 20	ns
Rise Time (See Figure 1) $ (ID_{On}) = 6.6 \text{ mAdc}) $ $ (ID_{On}) = 4.0 \text{ mAdc}) $ $ (ID_{On}) = 2.5 \text{ mAdc}) $	2N4091 2N4092 2N4093	t _r	Ξ	10 20 40	ns
Turn-Off Time (See Figure 1) (VGS(off) = 12 Vdc) (VGS(off) = 8.0 Vdc) (VGS(off) = 6.0 Vdc)	2N4091 2N4092 2N4093	t _{off}	Ξ	40 60 80	ns

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

2N4117,A 2N4118,A 2N4119,A

CASE 20-03, STYLE 1 TO-72 (TO-206AF)

JFET AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

MAXIMOM HATINGO			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	-40	Vdc
Drain-Gate Voltage	V _{DG}	-40	Vdc
Gate Current	IG	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Lead Temperature (1/16" from case for 10 s)	TL	255	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage $(I_G = -1.0 \mu Adc, V_{DS} = 0)$		V _(BR) GSS	-40	_	Vdc
Gate Reverse Current (VGS = 20 Vdc, VDS = 0) (VGS = 20 Vdc, VDS = 0, TA = 150°C)	2N4117,4118,4119 2N4117A,4118A,4119A 2N4117,4118,4119	IGSS	_	- 10 - 1.0 - 25	pAdc nAdc
50	2N4117A,4118A,4119A		_	-2.5	
Gate Source Cutoff Voltage $(I_D = 1.0 \text{ nAdc}, V_{DS} = 10 \text{ Vdc})$	2N4117,A 2N4118,A 2N4119,A	VGS(off)	-0.6 -1.0 -2.0	-1.8 -3.0 -6.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(1) (VDS = 10 Vdc, V _{GS} = 0)	2N4117,A 2N4118,A 2N4119,A	IDSS	0.03 0.08 0.20	0.09 0.24 0.60	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Input Capacitance (VDS = 10 Vdc, VGS = 0, f = 1.0 MHz)		C _{iss}	_	3.0	pF
Reverse Transfer Capacitance $(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$		C _{rss}	_	1.5	pF
Forward Transconductance ($V_{DS} = 10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz}$)	2N4117,A 2N4118,A 2N4119,A	9fs	70 80 100	210 250 330	μmhos
Output Conductance $(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N4117,A 2N4118,A 2N4119,A	9os	Ξ	3.0 5.0 10	μmhos

⁽¹⁾ IDSS is measured during a 2.0-ms interval 100 ms after power is applied. (NOT a JEDEC condition.)

FIGURE 1 - TRANSFER CHARACTERISTICS

FIGURE 2 - TRANSCONDUCTANCE CHARACTERISTICS

2N4220 thru 2N4222

2N4220,A thru 2N4222,A

CASE 20-03, STYLE 3 TO-72 (TO-206AF)

JFET LOW-FREQUENCY, LOW NOISE

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	-30	Vdc
Drain Current	I _D	15	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2	mW mW/°C
Junction Temperature Range	TJ	175	°C
Storage Channel Temperature Range	T _{stg}	-65 to +200	°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage ($I_G = -10 \mu Adc, V_{DS} = 0$)		V _{(BR)GSS}	-30	_	_	Vdc
Gate Reverse Current $ \begin{array}{ll} (V_{GS}=-15~Vdc,V_{DS}=0) \\ (V_{GS}=-15~Vdc,V_{DS}=0,T_{A}=150^{\circ}\text{C}) \end{array} $		IGSS	_	_	-0.1 -100	nAdc
Gate Source Cutoff Voltage ($I_D = 0.1 \text{ nAdc}, V_{DS} = 15 \text{ Vdc}$)	2N4220,A 2N4221,A 2N4222,A	VGS(off)		=	-4 -6 -8	Vdc
Gate Source Voltage (ID = 50 μ Adc, VDS = 15 Vdc) (ID = 200 μ Adc, VDS = 15 Vdc) (ID = 500 μ Adc, VDS = 15 Vdc)	2N4220,A 2N4221,A 2N4222,A	VGS	- 0.5 - 1.0 - 2.0		-2.5 -5.0 -6.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current* (VDS = 15 Vdc, VGS = 0)	2N4220,A 2N4221,A 2N4222,A	IDSS	0.5 2.0 5.0	=	3.0 6.0 15	mAdc
Static Drain-Source On Resistance $(V_{DS} = 0, V_{GS} = 0)$	2N4220,A 2N4221,A 2N4222,A	rDS(on)		500 400 300		Ohms
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance Common Source* ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz}$)	2N4220,A 2N4221,A 2N4222,A	Yfs	1000 2000 2500		4000 5000 6000	μmhos
Output Admittance Common Source $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N4220,A 2N4221,A 2N4222,A	y _{os}			10 20 40	μmhos
Input Capacitance ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz}$)		C _{iss}	_	4.5	6.0	pF
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$		C _{rss}	1,	1.2	2.0	pF
Common-Source Output Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 30 MHz)		Cosp	_	1.5	_	pF

2N4220 thru 2N4222, 2N4220A thru 2N4222A

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
FUNCTIONAL CHARACTERISTICS		•				
Noise Figure		NF				dB
$(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, R_{S} = 1.0 \text{ megohm},$	2N4220A		_	_	2.5	
f = 100 Hz	2N4221A		_	_	2.5	
	2N4222A		_	_	2.5	

^{*}Pulse Test: Pulse Width = 630 ms, Duty Cycle = 10%.

- NOTES: 1. Graphical data is presented for dc conditions. Tabular data is given for pulsed conditions (Pulse Width = 630 ms, Duty Cycle = 10%). Under dc conditions, self heating in higher IDSS units reduces IDSS (See Figure 10).
 - 2. Figures 8, 9, 10: Data taken in a standard printed circuit with a TO-18 type socket mounting and 1/4" lead length.

Vps. DRAIN-SOURCE VOLTAGE (VOLTS)

2N4223 2N4224

CASE 20-03, STYLE 3 TO-72 (TO-206AF)

JFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	VDG	30	Vdc
Gate-Source Voltage	VGS	-30	Vdc
Drain Current	ID	20	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Operating and Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage $(I_G = -10 \mu Adc, V_{DS} = 0)$	1.0	V(BR)GSS	-30	1 1600	Vdc
Gate Reverse Current $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0)$	2N4223 2N4224	IGSS	=	-0.25 -0.50	nAdc
$(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$	2N4223 2N4224		= =	-250 -500	
Gate Source Cutoff Voltage (ID = 0.25 nAdc, VDS = 15 Vdc) (ID = 0.50 nAdc, VDS = 15 Vdc)	2N4223 2N4224	VGS(off)	-1.2 -	-8.0 -8.0	Vdc
Gate Source Voltage (I _D = 0.3 mAdc, V _{DS} = 15 Vdc) (I _D = 0.2 mAdc, V _{DS} = 15 Vdc)	2N4223 2N4224	V _{GS}	-1.0 -1.0	-7.0 -7.5	Vdc
ON CHARACTERISTICS	and the second of		199		
Zero-Gate-Voltage Drain Current* $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	2N4223 2N4224	IDSS	3.0 2.0	18 20	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)*	2N4223 2N4224	Yfs	3000 2000	7000 7500	μmhos
$(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 200 \text{ MHz})$	2N4223 2N4224		2700 1700	=	
Input Conductance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 200 MHz)		Re(yis)	_	800	μmhos
Output Conductance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 200 MHz)		Re(yos)	-	200	μmhos
Input Capacitance (VDS = 15 Vdc, $V_{GS} = 0$, f = 1.0 MHz)	No. 1	C _{iss}	=	6.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{rss}	-	2.0	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
FUNCTIONAL CHARACTERISTICS					
Noise Figure (VDS = 15 Vdc, VGS = 0, RS = 1.0 k ohm, f = 200 MHz) 2 N	N4223	NF	_	5.0	dB
Small-Signal Power Gain Common Source (VDS = 15 Vdc, VGS = 0, f = 200 MHz) 2 1	N4223	G _{ps}	10	_	dB

^{*}Pulse Test: Pulse Width ≤ 630 ms, Duty Cycle ≤ 10%.

FIGURE 1-NOISE FIGURE AND POWER GAIN TEST CIRCUIT

FIGURE 5 – TEMPERATURE COEFFICIENT FOR Y_{fs} versus DRAIN CURRENT

FIGURE 6 - CAPACITANCES

FIGURE 7 - COMMON SOURCE NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 8 - INPUT ADMITTANCE versus FREQUENCY

FIGURE 9 - FORWARD TRANSFER ADMITTANCE

FIGURE 10 - OUTPUT ADMITTANCE

FIGURE 11 - REVERSE TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 12 - POWER GAIN versus FREQUENCY

FIGURE 13 – COMMON SOURCE NOISE FIGURE versus FREQUENCY

2N4338 2N4339 2N4340 2N4341

CASE 22-03, STYLE 3 TO-18 (TO-206AA)

JFET LOW-FREQUENCY, LOW NOISE

N-CHANNEL — DEPLETION

Max

Unit

Symbol

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	50	Vdc
Drain-Gate Voltage	V _{DG}	50	Vdc
Gate-Source Voltage	VGS	50	Vdc
Reverse Gate-Source Voltage	VGSR	50	Vdc
Gate Current	IG	50	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic

	naracteristic		Syllibol	IAIIII	IVIAX	Unit
OFF CHARACTERISTICS					Brandon's	LAST ST
Gate-Source Breakdown Voltage (IG = -1.0μ A)	a'rethwy''		V _(BR) GSS	50	-	Vdc
Gate Reverse Current (VGS = -30 V)	(50)		IGSS		0.1	nA
Gate Source Cutoff Voltage (V _{DS} = 15 V, I _D = 0.1 μ A)	e-100	2N4338 2N4339 2N4340 2N4341	VGS(off)	- 0.3 - 0.6 - 1.0 - 2.0	-1.0 -1.8 -3.0 -6.0	Vdc
ON CHARACTERISTICS		LITTOTT		2.0	0.0	
Zero-Gate-Voltage Drain Current (V _{DS} = 15 V)	780	2N4338 2N4339 2N4340 2N4341	lpss*	0.2 0.5 1.2 3.0	0.6 1.5 3.6 9.0	mA
SMALL-SIGNAL CHARACTERISTICS	Land Man			10/94	4	
Forward Transfer Admittance (V _{DS} = 15 V, f = 1.0 kHz)	187 ·	2N4338 2N4339 2N4340 2N4341	Yfs *	600 800 1300 2000	1800 2400 3000 4000	μmhos
Output Admittance (V _{DS} = 15 V, f = 1.0 kHz)		2N4338 2N4339 2N4340 2N4341	Yos		5.0 15 30 60	μmhos
Input Capacitance (VDS = 15 V, f = 1.0 MHz)	FIG		C _{iss}	- 17	6.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 V, f = 1.0 MHz)	25/4		C _{rss}	16 _ 20 m3 x	2.0	pF
FUNCTIONAL CHARACTERISTICS		The state of the state of	II . T. LEWIS CO.	74	1	
Noise Figure (VDS = 15 Volts, f = 1.0 kHz, RG =	= 1.0 MΩ)		NF		1.0	dB

^{*}Pulse Test: Pulse Width ≤ 630 msec, Duty Cycle ≤ 10%.

2N4342

CASE 29-02, STYLE 7 TO-92 (TO-226AA)

JFET HIGH FREQUENCY, LOW NOISE

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

MAXIMON RATINGS						
Rating	Symbol	Value	Unit			
Drain-Source Voltage	V _{DS}	- 25	Vdc			
Drain-Gate Voltage	V _{DG}	- 25	Vdc			
Reverse Gate-Source Voltage	VGSR	25	Vdc			
Forward Gate Current	IGF	50	mAdc			
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	310 2.82	mW mW/°C			
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +125	°C			

Refer to 2N5460 for graphs.

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS	ROW OF STOLEN				
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)	V _(BR) GSS	25		Vdc	
Gate Reverse Current $(V_{GS} = 15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = 15 \text{ Vdc}, V_{DS} = 0, T_A = 65^{\circ}\text{C})$	l _{GSS}	=	10 0.5	nAdc μAdc	
Gate Source Cutoff Voltage $(V_{DS} = -10 \text{ Vdc}, I_D = 1.0 \mu \text{Adc})$	VGS(off)	1.0	5.5	Vdc	
Gate Source Voltage $(V_{DS} = -10 \text{ Vdc}, I_D = 0.4 \text{ mAdc})$ $(V_{DS} = -10 \text{ Vdc}, I_D = 1.0 \text{ mAdc})$	V _{GS}	0.7	5.0	Vdc	
ON CHARACTERISTICS			fort gate	Seeks Surgel	
Zero-Gate-Voltage Drain Current (V _{DS} = -10 Vdc, V _{GS} = 0)	IDSS	4.0	12	mAdc	
SMALL-SIGNAL CHARACTERISTICS					
Drain-Source "ON" Resistance (VGS = 0, I _D = 0, f = 1.0 kHz)	r _{ds(on)}	-	700	Ohms	
Forward Transfer Admittance ($V_{DS} = -10 \text{ Vdc}$, $V_{GS} = 0$, $f = 1.0 \text{ kHz}$)	Yfs	2000	6000	μmhos	
Output Admittance $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	Yos	_	75	μmhos	
Common Source Forward Transconductance ($V_{DS} = -10$ Vdc, $V_{GS} = 0$, f = 1.0 MHz)	Re(y _{fs})	1500	-	μmhos	
Input Capacitance $(V_{DS} = -10 \text{ Vdc}, V_{CS} = 0, f = 1.0 \text{ MHz})$	C _{iss}	-	20	pF	
Reverse Transfer Capacitance ($V_{DS} = -10 \text{ Vdc}$, $V_{GS} = 0$, f = 1.0 MHz)	C _{rss}	-	5.0	pF	
FUNCTIONAL CHARACTERISTICS					
Noise Figure $(V_{DS}=-10~Vdc,V_{GS}=0,R_{G}=1.0~Megohm,f=100~Hz,BW=15~Hz)$	NF		1.5	dB	
Equivalent Short-Circuit Input Noise Voltage $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ Hz}, \text{BW} = 15 \text{ Hz})$	En	_	0.08	μV/√Hz	

2N4351

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOS FET SWITCHING

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage*	VGS	30	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	800 4.56	mW mW/°C
Junction Temperature Range	TJ	175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

^{*}Transient potentials of ± 75 Volt will not cause gate-oxide failure.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Volt ($I_D = 10 \mu A$, $V_{GS} = 0$)	age	V _{(BR)DSX}	25	_	Vdc
Zero-Gate-Voltage Drain Curr $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$ T		IDSS	_	10 10	nAdc μAdc
Gate Reverse Current $(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0)$	0)	IGSS	_	± 10	pAdc
ON CHARACTERISTICS					
Gate Threshold Voltage $(V_{DS} = 10 \text{ V, } I_D = 10 \mu\text{A})$		V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage (ID = 2.0 mA, VGS = 10 V		V _{DS(on)}	_	1.0	V
On-State Drain Current $(V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V})$		I _{D(on)}	3.0	-	mAdc
SMALL-SIGNAL CHARACTER	RISTICS				
Forward Transfer Admittance (VDS = 10 V, ID = 2.0 mA)		Yfs	1000		μmho
Input Capacitance (V _{DS} = 10 V, V _{GS} = 0, f =	= 140 kHz)	C _{iss}	_	5.0	pF
Reverse Transfer Capacitance (V _{DS} = 0, V _{GS} = 0, f = 14		C _{rss}	_	1.3	pF
Drain-Substrate Capacitance (VD(SUB) = 10 V, f = 140	kHz)	C _{d(sub)}	-	5.0	pF
Drain-Source Resistance (VGS = 10 V, I _D = 0, f = 1	I.0 kHz)	^r ds(on	_	300	ohms
SWITCHING CHARACTERIST	ICS		-17 5		
Turn-On Delay (Fig. 5)		^t d1	_	45	ns
Rise Time (Fig. 6)	$I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc},$ $V_{GS} = 10 \text{ Vdc})$	t _r	_	65	ns
Turn-Off Delay (Fig. 7)	(See Figure 9; Times Circuit Determined)	t _{d2}	_	60	ns
Fall Time (Fig. 8)		tf	_	100	ns

FIGURE 3 — DRAIN-SOURCE "ON" RESISTANCE

FIGURE 4 — "ON" DRAIN-SOURCE VOLTAGE

SWITCHING CHARACTERISTICS $(T_A = 25 \, ^{\circ}\text{C})$

FIGURE 9 — SWITCHING CIRCUIT and WAVEFORMS

The switching characteristics shown above were measured in a test circuit similar to Figure 10. At the beginning of the switching interval, the gate voltage is at ground and the gate-source

capacitance ($C_{gs} = C_{iss} - C_{rss}$) has no charge. The drain voltage is at V_{DD} , and thus the feedback capacitance (C_{rss}) is charged to V_{DD} . Similarly, the drain-substrate capacitance ($C_{d(sub)}$) is charged to V_{DD} since the substrate and source are connected to ground.

During the turn-on interval, C_{gs} is charged to V_{GS} (the input voltage) through R_S (generator impedance). C_{rss} must be discharged to $V_{GS} \sim V_{D(on)}$ through R_S and the parallel combination of the load resistor (R_D) and the channel resistance (r_{ds}). In addition, $C_{d(sub)}$ is discharged to a low value ($V_{D(on)}$) through R_D in parallel with r_{ds} . During turn-off this charge flow is reversed.

Predicting turn-on time proves to be somewhat difficult since the channel resistance (r_{ds}) is a function of the gate-source voltage (VGS). As C_{gs} becomes charged, VGS is approaching V_{in} and r_{ds} decreases (see Figure 4) and since C_{rss} and $C_{d(sub)}$ are charged through r_{ds} , turn-on time is quite non-linear.

If the charging time of C_{gS} is short compared to that of C_{rss} and $C_{d(sub)}$, then r_{dS} (which is in parallel with R_D) will be low compared to R_D during the switching interval and will largely determine the turn-on time. On the other hand, during turn-off r_{ds} will be almost an open circuit requiring C_{rss} and $C_{d(sub)}$ to be charged through R_D and resulting in a turn-off time that is long compared to the turn-on time. This is especially noticeable for the curves where $R_S=0$ and C_{gs} is charged through the pulse generator impedance only.

The switching curves shown with $R_S=R_D$ simulate the switching behavior of cascaded stages where the driving source impedance is normally the same as the load impedance. The set of curves with $R_S=0$ simulates a low source impedance drive such as might occur in complementary logic circuits.

FIGURE 10 — SWITCHING CIRCUIT MOSFET EQUIVALENT MODEL

2N4352

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOS FET SWITCHING

P-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	±30	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	800 4.56	mW mW/°C
Junction Temperature Range	TJ	175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown V ($I_D = -10 \mu A$, $V_{GS} = 0$		V(BR)DSX	-25	_	Vdc
Zero-Gate-Voltage Drain C (V _{DS} = -10 V, V _{GS} =		IDSS	=	-10 -10	nAdc μAdc
Gate Reverse Current (VGS = ±30 V, VDS =	0)	l _{GSS}	_	±10	pAdc
ON CHARACTERISTICS					
Gate Threshold Voltage (V _{DS} = -10 V, I _D = -1	10 μΑ)	V _{GS(Th)}	-1.0	-5.0	Vdc
Drain-Source On-Voltage (ID = -2.0 mA, VGS =	-10 V)	V _{DS(on)}	-	-1.0	V
On-State Drain Current (VGS = -10 VDS = -1	0 V)	I _{D(on)}	-3.0	_	mA
SMALL-SIGNAL CHARACT	TERISTICS				
Drain-Source Resistance (VGS = -10 V, I _D = 0,	f = 1.0 kHz)	^r ds(on)	_	600	ohms
Forward Transfer Admittar $(V_{DS} = -10 \text{ V}, I_{D} = 2.0 \text{ m})$		Yfs	1000	-	μmho
Input Capacitance (V _{DS} = -10 V, V _{GS} = 0	0, f = 140 kHz)	C _{iss}	_	5.0	pF
Reverse Transfer Capacitar (V _{DS} = 0, V _{GS} = 0, f =		C _{rss}	_	1.3	pF
Drain-Substrate Capacitano (VD(SUB) = -10 V, f =		C _{d(sub)}	-	4.0	pF
SWITCHING CHARACTERI	STICS				
Turn-On Delay (Figures 5)		^t d1	-	45	ns
Rise Time (Figures 6)	$I_D = -2.0 \text{ mAdc}, V_{DS} = -10 \text{ Vdc},$	t _r	_	65	ns
Turn-Off Delay (Figures 7)	VGS = -10 V) (See Figure 9, Times Circuit Determined)	^t d2	-	60	ns
Fall Time (Figures 8)		t _f	_	100	ns

FIGURE 1 — FOWARD TRANSFER ADMITTANCE

FIGURE 2 — TRANSFER CHARACTERISTICS

FIGURE 3 — DRAIN-SOURCE "ON" RESISTANCE

SWITCHING CHARACTERISTICS $(T_A = 25\,^{\circ}\text{C})$

ID, DRAIN CURRENT (mA)

ID, DRAIN CURRENT (mA)

FIGURE 9 - SWITCHING CIRCUIT and WAVEFORMS

The switching characteristics shown above were measured in a test circuit similar to Figure 10. At the beginning of the switching interval, the gate voltage is at ground and the gate-source capacitance $(G_{na} = C_{na}, -C_{na})$ has no charge. The drain voltage is at V_{OD} , and thus the feedback capacitance (G_{na}) is charged to V_{OD} . Similarly, the drain-substrate capacitance (G_{na}) is charged to V_{OD} . Similarly, the drain-substrate capacitance (G_{na}) is charged to V_{OD} . Similarly, the turn-on the contraction of the load resistor (R_0) and the channel resistance from the turn-on the reverse of the siston (R_0) and the channel resistance (r_{nb}) . In addition, G_{DD} is discharged to a low value (V_{Olen}) through R_0 in parallel with r_{nb} . During turn-off this charge flow is reversed. Fredicting turn-on time proves to be somewhat difficult since the channel season of V_{DD} is the same of V_{DD} in the same of V_{DD} is discharged to a low value V_{DD} through V_{DD} is discharged to a low value V_{DD} through V_{DD} is discharged to see Figure 4) and since C_{DD} and V_{DD} is a special property of V_{DD} and V_{DD} is discharged to a low value V_{DD} in the V_{DD} is discharged to a low value V_{DD} in the V_{DD} is discharged to a low value V_{DD} through V_{DD} and V_{DD} is discharged to a low value V_{DD} through V_{DD} and V_{DD} is discharged to a low value V_{DD} through V_{DD} and V_{DD} is discharged to a low value V_{DD} through V_{DD} and V_{DD} is discharged V_{DD} through V_{DD} and V_{DD} is discharged V_{DD} through V_{D

FIGURE 10 - SWITCHING CIRCUIT with MOSFET EQUIVALENT MODEL

2N4360

CASE 29-02, STYLE 7 TO-92 (TO-226AA)

JFET LOW-FREQUENCY/LOW-NOISE

P-CHANNEL — DEPLETION

Refer to 2N5460 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	20	Vdc
Drain-Gate Voltage	V _{DG}	20	Vdc
Gate-Source Voltage	VGS	20	Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			territoria y	
Gate-Source Breakdown Voltage ($I_G = 10 \mu A$)	V _(BR) GSS	20		Vdc
Gate Reverse Current (V _{GS} = 15)	I _{GSS}	_	10	nA
Gate Source Cutoff Voltage $(V_{DS} = -10 \text{ V}, I_D = 1.0 \mu\text{A})$	V _{GS(off)}	0.7	10.0	Vdc
Gate Source Voltage (I _D = 0.3 mA, V _{DS} = -10 V)	V _{GS}	0.4	9.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current (Vps = -10 V, Vgs = 0 V)	IDSS	3.0	30	mA
SMALL-SIGNAL CHARACTERISTICS				10
Drain-Source "ON" Resistance (I _D = 0, V _{GS} = 0, f = 1.0 kHz)	r _{ds}	_	700	Ohms
Forward Transfer Admittance $(V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ kHz})$	Vfs	2000	8000	μmhos
Output Admittance $(V_{DS} = -10 \text{ V, V}_{GS} = 0 \text{ V, f} = 1.0 \text{ kHz})$	Yos	-	100	μmhos
Common Source Forward Transconductance $(V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz})$	Re(yfs)	1500	_	μmhos
Input Capacitance $(V_{DS} = -10 \text{ V}, f = 1.0 \text{ MHz})$	C _{iss}	-	20	pF
Reverse Transfer Capacitance (V _{DS} = -10 V, f = 1.0 MHz)	C _{rss}	_	5.0	pF
FUNCTIONAL CHARACTERISTICS				6.6
Noise Figure (Vps = -10 V, Ip = 1.0 mA, Rg = 1.0 m Ω , f = 100 Hz)	NF	_	5.0	dB

2N4391 2N4392 2N4393

CASE 22-03, STYLE 4 TO-18 (TO-206AA)

JFET SWITCHING

N-CHANNEL — DEPLETION

Refer to MPF4391 for graphs.

MAXIMUM RATINGS

MAXIMUM KATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	40	Vdc
Drain-Gate Voltage	V _{DG}	40	Vdc
Gate-Source Voltage	VGS	40	Vdc
Forward Gate Current	IGF	50	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.8 10	Watts mW/°C
Operating Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

*ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				SPECIAL CO	Old of
Gate-Source Breakdown Voltage (IG = 1.0 µAdc, VDS = 0)	Line of	V _(BR) GSS	40	-	Vdc
Gate Reverse Current (VGS = 20 Vdc, VDS = 0) (VGS = 20 Vdc, VDS = 0, TA = 150°C)		IGSS	= -	0.1 0.2	nAdc μAdc
Gate Source Voltage $(V_{DS} = 20 \text{ Vdc}, I_D = 1.0 \text{ nAdc})$	2N4391 2N4392 2N4393	VGS	4.0 2.0 0.5	10 5.0 3.0	Vdc
Gate-Source Forward Voltage (IG = 1.0 mAdc, V _{DS} = 0)		V _{GS(f)}	_	1.0	Vdc
Drain-Cutoff Current (VDS = 20 Vdc, VGS = 12 Vdc) (VDS = 20 Vdc, VGS = 7.0 Vdc) (VDS = 20 Vdc, VGS = 5.0 Vdc) (VDS = 20 Vdc, VGS = 5.0 Vdc) (VDS = 20 Vdc, VGS = 12 Vdc, TA = 150°C) (VDS = 20 Vdc, VGS = 7.0 Vdc, TA = 150°C) (VDS = 20 Vdc, VGS = 5.0 Vdc, TA = 150°C)	2N4391 2N4392 2N4393 2N4391 2N4392 2N4393	^I D(off)		0.1 0.1 0.1 0.2 0.2	nAdc μAdc
ON CHARACTERISTICS			1 117	100	
Zero-Gate-Voltage Drain Current(1) (VDS = 20 Vdc, V _{GS} = 0)	2N4391 2N4392 2N4393	IDSS	50 25 5.0	150 75 30	mAdc
Drain-Source On-Voltage (ID = 12 mAdc, V _{GS} = 0) (ID = 6.0 mAdc, V _{GS} = 0) (ID = 3.0 mAdc, V _{GS} = 0)	2N4391 2N4392 2N4393	V _{DS(on)}	T.	0.4 0.4 0.4	Vdc
Static Drain-Source On Resistance $(I_D = 1.0 \text{ mAdc}, V_{GS} = 0)$	2N4391 2N4392 2N4393	rDS(on)) <u> </u>	30 60 100	Ohms
SMALL-SIGNAL CHARACTERISTICS					
Drain-Source "ON" Resistance $(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$	2N4391 2N4392 2N4393	^r ds(on)	=	30 60 100	Ohms

Characteristic		Symbol	Min	Max	Unit
Input Capacitance $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$		C _{iss}	-	14	pF
Reverse Transfer Capacitance $ \begin{array}{ll} (V_{DS}=0,V_{GS}=12\text{Vdc},f=1.0\text{MHz})\\ (V_{DS}=0,V_{GS}=7.0\text{Vdc},f=1.0\text{MHz})\\ (V_{DS}=0,V_{GS}=5.0\text{Vdc},f=1.0\text{MHz}) \end{array} $	2N4391 2N4392 2N4393	C _{rss}	741_72 	3.5 3.5 3.5	pF
SWITCHING CHARACTERISTICS	TO TEAT TO THE				
Rise Time	2N4391 2N4392 2N4393	t _r		5.0 5.0 5.0	ns
Fall Time (V _{GS(off)} = 12 Vdc) (V _{GS(off)} = 7.0 Vdc) (V _{GS(off)} = 5.0 Vdc)	2N4391 2N4392 2N4393	t _f		15 20 30	ns
Turn-On Time $ \begin{cases} I_D(on) = 12 \text{ mAdc} \\ I_D(on) = 6.0 \text{ mAdc} \\ I_D(on) = 3.0 \text{ mAdc} \end{cases} $	2N4391 2N4392 2N4393	t _{on}	TOS. TO	15 15 15	ns
Turn-Off Time (VGS(off) = 12 Vdc) (VGS(off) = 7.0 Vdc) (VGS(off) = 5.0 Vdc)	2N4391 2N4392 2N4393	toff		20 35 50	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 100 μ s, Duty Cycle \leq 1.0%.

^{*}In addition to JEDEC Registered Data.

2N4416,A

CASE 20-03, STYLE 1 TO-72 (TO-206AF)

JFET VHF/UHF AMPLIFIER

N-CHANNEL — DEPLETION

JAN JTX JTXV AVAILABLE

MAXIMUM RATINGS

Rating		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	30	Vdc	
Drain-Gate Voltage	2N4416 2N4416A	V _{DG}	35 30	Vdc	
Gate-Source Voltage		VGS	30	Vdc	
Gate Current		IG	10	mAdc	
Total Device Dissipation @ Ta Derate above 25°C	_λ = 25°C	PD	300 1.71	mW mW/°C	
Operating and Storage Junctic Temperature Range	on	TJ, T _{stg}	-65 to +175	°C	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			4.1	(Color
Gate-Source Breakdown Voltage (IG = 1.0 μ Adc, VDS = 0) 2N4410 2N4410		30 35	_	Vdc
Gate Reverse Current $(V_{GS} = 20 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = 20 \text{ Vdc}, V_{DS} = 0, T_{A} = +150^{\circ}\text{C})$	IGSS	_	100 200	pAdc
Gate Source Cutoff Voltage (ID = 1.0 nAdc, VDS = 15 Vdc)	VGS(off)	=	6.0	Vdc
Gate Source Voltage (I _D = 0.5 mAdc, V _{DS} = 15 Vdc)	VGS	1.0	5.5	Vdc
Gate-Source Forward Voltage (IG = 1.0 mAdc, VDS = 0)	V _{GS(f)}	-	1.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current(1) (VDS = 15 Vdc, VGS = 0)	IDSS	5.0	15	mAdc
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance(1) (VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)	Yfs	4500	7500	μmhos
Real Part of Forward Transfer Admittance (VDS = 15 Vdc, VGS = 0, f = 400 MHz)	Yfs(real)	4000	_	μmhos
Real Part of Input Admittance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz})$ $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 400 \text{ MHz})$	Yis(real)	_	100 1000	μmhos
Output Admittance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	y _{os}	_	50	μmhos
Real Part of Output Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 400 MHz)	Yos(real)	- 1	75 100	μmhos
Imaginary Part of Input Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 400 MHz)	Yis(imag)	=	2500 10,000	μmhos
Imaginary Part of Output Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 400 MHz)	Yos(imag)	=	1000 4000	μmhos

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	4.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	0.8	pF
Common Source Output Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	Coss		2.0	pF
FUNCTIONAL CHARACTERISTICS				
Noise Figure (Figures 3 and 4) $ \text{(V}_{DS} = 15 \text{ Vdc, I}_{D} = 5.0 \text{ mAdc, R}_{g} \approx 1000 \text{ Ohms, f} = 100 \text{ MHz)} $ $ \text{(V}_{DS} = 15 \text{ Vdc, I}_{D} = 5.0 \text{ mAdc, R}_{g} \approx 1000 \text{ Ohms, f} = 400 \text{ MHz)} $	NF	= -	2.0 4.0	dB
Small-Signal Power Gain Common Source (Figure 1) ($V_{DS} = 15 \text{ Vdc}$, $I_{D} = 5.0 \text{ mAdc}$, $f = 100 \text{ MHz}$) ($V_{DS} = 15 \text{ Vdc}$, $I_{D} = 5.0 \text{ mAdc}$, $f = 400 \text{ MHz}$)	G _{ps}	18 10	=	dB

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

POWER GAIN

FIGURE 1 - EFFECTS OF DRAIN CURRENT

FIGURE 2 - 100 MHz and 400 MHz NEUTRALIZED TEST CIRCUIT

*L1	17 turns, (approx. – depends upon circuit layout) AWG #28 enameled copper wire, close wound on 9/32" ceramic coil
	form. Tuning provided by a powdered iron slug.

Adjust VGS for

I_D = 50 mA V_{GS}< 0 Volts NOTE:

L2 4-1/2 turns, AWG #18 enameled copper wire, 5/16" long, 3/8" I.D. (AIR CORE).

L3 3-1/2 turns, AWG #18 enameled copper wire, 1/4" long, 3/8" I.D. (AIR CORE).

Reference	VA	LUE
Designation	100 MHz	400 MHz
C1	7.0 pF	1.8 pF
C2	1000 pF	17 pF
С3	3.0 pF	1.0 pF
C4	1-12 pF	0.8-8.0 pF
C5	1-12 pF	0.8-8.0 pF
C6	0.0015 μF	0.001 μF
C7	0.0015 μF	0.001 μF
L1	3.0 µH °	0.2 μΗ**
L2	0.15 μH°	0.03 μΗ**
L3	0.14 μH °	0.022 μΗ**

- **L1 6 turns, (approx. depends upon circuit layout) AWG #24 enameled copper wire, close wound on 7/32" ceramic coil form. Tuning provided by an aluminum slug.
 - L2 1 turn, AWG #16 enameled copper wire, 3/8" I.D. (AIR CORE).
 - L3 1/2 turn, AWG #16 enameled copper wire, 1/4" I.D. (AIR CORE).

The noise source is a hot-cold body

(AIL type 70 or equivalent) with a test receiver (AIL type 136 or equivalent).

NOISE FIGURE

(T_{channel} = 25°C)

FIGURE 4 - EFFECTS OF DRAIN CURRENT

INTERMODULATION CHARACTERISTICS

FIGURE 5 - THIRD ORDER INTERMODULATION DISTORTION

COMMON SOURCE CHARACTERISTICS ADMITTANCE PARAMETERS

(V_{DS} = 15 Vdc, T_{channel} = 25°C)

FIGURE 13 - S22s

COMMON GATE CHARACTERISTICS

ADMITTANCE PARAMETERS

(V_{DG} = 15 Vdc, T_{channel} = 25°C)

FIGURE 16 - FORWARD TRANSFER ADMITTANCE (yfg)

COMMON GATE CHARACTERISTICS S-PARAMETERS

2N4856,A thru 2N4861,A

JAN, JTX AVAILABLE CASE 22-03, STYLE 4 TO-18 (TO-206AA)

SWITCHING

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	2N4856,A 2N4857,A 2N4858,A	2N4859,A 2N4860,A 2N4861,A	Unit
Drain-Source Voltage	V _{DS}	+40	+30	Vdc
Drain-Gate Voltage	V _{DG}	+40	+30	Vdc
Reverse Gate-Source Voltage	VGSR	-40	-30	Vdc
Forward Gate Current	l _{GF}	5	60	mAdc
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	360 2.4		mW mW/°C
Storage Temperature Range	T _{stg}	- 65 to	+ 175	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (IG = 1.0 μ Adc, V _{DS} = 0)	2N4856,A, 2N4857,A, 2N4858,A 2N4859,A, 2N4860,A, 2N4861,A	V(BR)GSS	-40 -30	=	Vdc
Gate Reverse Current $ \begin{aligned} &(V_{GS} = -20 \ V_{dc}, V_{DS} = 0) \\ &(V_{GS} = -15 \ V_{dc}, V_{DS} = 0) \\ &(V_{GS} = -20 \ V_{dc}, V_{DS} = 0, T_{A} = 150^{\circ}\text{C}) \\ &(V_{GS} = -15 \ V_{dc}, V_{DS} = 0, T_{A} = 150^{\circ}\text{C}) \end{aligned} $		IGSS	= = = = = = = = = = = = = = = = = = = =	0.25 0.25 0.5 0.5	nAdc μAdc
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 0.5 \text{ nAdc})$	2N4856,A, 2N4859,A 2N4857,A, 2N4860,A 2N4858,A, 2N4861,A	V _{GS(off)}	-4.0 -2.0 -0.8	- 10 - 6.0 - 4.0	Vdc
Drain Cutoff Current $ \begin{array}{ll} (V_{DS}=15~\text{Vdc},~V_{GS}=-10~\text{Vdc})\\ (V_{DS}=15~\text{Vdc},~V_{GS}=-10~\text{Vdc},~T_{A}=1 \end{array} $	50°C)	I _{D(off)}	_	0.25 0.5	nAdc μAdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(1) (V _{DS} = 15 Vdc, V _{GS} = 0)	2N4856,A, 2N4859,A 2N4857,A, 2N4860,A 2N4858,A, 2N4861,A	IDSS	50 20 8.0	 100 80	mAdc
Drain-Source On-Voltage (I _D = 20 mAdc, V _{GS} = 0) (I _D = 10 mAdc, V _{GS} = 0) (I _D = 5.0 mAdc, V _{GS} = 0)	2N4856,A, 2N4859,A 2N4857,A, 2N4860,A 2N4858,A, 2N4861,A	V _{DS(on)}	=	0.75 0.5 0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Drain-Source "ON" Resistance $(V_{GS} = 0, I_{D} = 0, f = 1.0 \text{ kHz})$	2N4856,A, 2N4859,A 2N4857,A, 2N4860,A 2N4858,A, 2N4861,A	^r ds(on)	Ξ	25 40 60	Ohms
Input Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ Vdc}, f = 1.0 \text{ MHz})$	2N4856 thru 2N4861 2N4856A thru 2N4861A	C _{iss}	_	18 10	pF
Reverse Transfer Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ Vdc, f} = 1.0 \text{ MHz})$	2N4856 thru 2N4861 2N4856A, 2N4859A 2N4857A, 2N4858A, 2N4860A, 2N4861A	C _{rss}	Ξ	8.0 4.0 3.5	pF

2N4856.A thru 2N4861.A

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

	Characteristic			Min	Max	Unit
SWITCHING CHARACT	ERISTICS (See Figure 1) (2)	•				
Turn-On Delay Time	$\frac{\text{Conditions for 2N4856,A, 2N4859,A:}}{(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 20 \text{ mAdc}, V_{GS(on)} = 0, V_{GS(off)} = -10 \text{ Vdc})}$	2N4856, 2N4859 2N4856A, 2N4859A 2N4857, 2N4860 2N4857A, 2N4860A	^t d(on)	=	6.0 5.0 6.0 6.0	ns
	10 11	2N4858, 2N4861 2N4858A, 2N4861A		_	10 8.0	CONTRACTOR
Rise Time	Conditions for 2N4857,A, 2N4860,A:	2N4856,A, 2N4859,A 2N4857,A, 2N4860,A	tr	_	3.0 4.0	ns
	$(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 10 \text{ mAdc}, V_{GS(on)} = 0, V_{GS(off)} = -6.0 \text{ Vdc})$	2N4858, 2N4861 2N4858A, 2N4861A		_	10 8.0	
Turn-Off Time	Conditions for 2N4858,A, 2N4861,A:	2N4856, 2N4859	toff	_	25 20	ns
	$(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 5.0 \text{ mAdc}, V_{GS(on)} = 0, V_{GS(off)} = -4.0 \text{ Vdc})$	2N4857A, 2N4860A		=	50 40 100 80	

⁽¹⁾ Pulse Test: Pulse Width = 100 ms, Duty Cycle ≤ 10%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

TEST CIRCUIT

- NOTES: a. The input waveforms are supplied by a generator with the following characteristics: Z_{out} = 50 ohms, Duty Cycle \approx 2.0%.
 - b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r < 0.75$ ns, $R_{in} > 1.0$ megohm, $C_{in} < 2.5$ pF.

⁽²⁾ The ID(on) values are nominal; exact values vary slightly with transistor parameters.

2N5245 2N5246 2N5247

CASE 29-02, STYLE 23 TO-92 (TO-226AA)

JFET HIGH-FREQUENCY AMPLIFIER

N-CHANNEL — DEPLETION

Refer to 2N4416 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	-30	Vdc
Gate Current	IG	50	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C (Free Air)	PD	360 2.88	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	500 4.0	mW mW/°C
Lead Temperature (1/16" from Case for 10 Seconds)	TL	260	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Symbol	Min	Max	Unit
V _(BR) GSS	-30	_	Vdc
IGSS	_	- 1.0	nA
l _{G1SS}	_	-0.5	μΑ
V _{GS(off)}	- 1.0 - 0.5 - 1.5	- 6.0 - 4.0 - 8.0	Vdc
	V(BR)GSS	V(BR)GSS -30 IGSS - IG1SS - VGS(off) -1.0 -0.5	V(BR)GSS -30 - IGSS1.0 IG1SS0.5 VGS(off) -1.0 -6.0 -0.5 -4.0

-11 -11 11 11 11 11 11 11 11 11 11 11 11					
Zero-Gate-Voltage Drain Current		IDSS			mA
(VDS = 15 V, VGS = 0, Pulsed: See Note 1)	2N5245		5.0	15	
100	2N5246		1.5	7.0	
	2N5247		8.0	24	

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance		Yfs			μmhos
$(V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N5245		4500	7500	
. 20	2N5246		3000	6000	
	2N5247		4500	8000	
Input Admittance		Re(yis)			μmhos
$(V_{DS} = 15 \text{ V}, V_{GS} = 0)$	(100 MHz)		_	100	
. 50	(400 MHz)		_	1000	
Output Admittance		Yos			μmhos
$(V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N5245	(*************************************	_	50	
50	2N5246		_	50	
	2N5247		_	70	
Output Conductance		Re(yos)			μmhos
$(V_{DS} = 15 \text{ V}, V_{GS} = 0)$	2N5245 (100 MHz)		_	75	
50	2N5246		_	75	
	2N5247		_	100	
	2N5245 (400 MHz)		_	100	
	2N5246		_	100	
	2N5247		_	150	

2N5245, 2N5246, 2N5247

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Forward Transconductance (V _{DS} = 15 V, V _{GS} = 0, f = 400 MHz)	2N5245 2N5246 2N5247	Re(y _{fs})	4000 2500 4000	=	μmhos
Input Capacitance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 Mhz)		C _{iss}	_	4.5	pF
Reverse Transfer Capacitance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz)	Sec. 1000	C _{rss}	-	1.0	pF
Input Susceptance $(V_{DS} = 15 \text{ V}, V_{GS} = 0)$	(100 MHz) (400 MHz)	I _M (Yis)	_	3.0 12.0	mmho
FUNCTIONAL CHARACTERISTICS	94		N 11	mustaria.	
Noise Figure (VDS = 15 V, ID = 5.0 mA, R'G = 1.0 k Ω)	2.9	NF		2.0 4.0	dB
Common Source Power Gain (VDS = 15 V, ID = 5.0 mA, R'G = 1.0 k Ω)	2N5245 (100 MHz) 2N5245 (400 MHz)	G _{ps}	18 10	A	dB
Output Susceptance (V _{DS} = 15 V, V _{GS} = 0)	(100 MHz) (400 MHz)	I _M (Yos)	=	1000 4000	μmho

Note 1: tp = 100 ms, Duty Cycle = 10%.

2N5265 thru 2N5270

CASE 20-05, STYLE 5 TO-72 (TO-206AF)

JFET GENERAL PURPOSE

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	60	Vdc
Drain-Gate Voltage	V _{DG}	60	Vdc
Reverse Gate-Source Voltage	VGSR	60	Vdc
Drain Current	ID	20	mAdc
Forward Gate Current	IGF	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

Characteristic	40.0	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	Strange of the company				
Gate-Source Breakdown Voltage ($I_G = 10 \mu Adc, V_{DS} = 0$)		V(BR)GSS	60	_	Vdc
Gate Reverse Current $(V_{GS}=30\ V_{dC},V_{DS}=0)$ $(V_{GS}=30\ V_{dC},V_{DS}=0,T_{A}=150^{\circ}C)$		IGSS	_	2.0 2.0	nAdc μAdc
Gate Source Cutoff Voltage (VDS = 15 Vdc, ID = 1.0 μ Adc)	2N5265, 2N5266 2N5267, 2N5268 2N5269, 2N5270	V _{GS(off)}	Ξ	3.0 6.0 8.0	Vdc
Gate Source Voltage (V _{DS} = 15 Vdc, I _D = 0.05 mAdc) (V _{DS} = 15 Vdc, I _D = 0.08 mAdc) (V _{DS} = 15 Vdc, I _D = 0.15 mAdc) (V _{DS} = 15 Vdc, I _D = 0.25 mAdc) (V _{DS} = 15 Vdc, I _D = 0.4 mAdc) (V _{DS} = 15 Vdc, I _D = 0.7 mAdc)	2N5265 2N5266 2N5267 2N5268 2N5269 2N5270	Vgs	0.3 0.4 1.0 1.0 2.0 2.0	1.5 2.0 4.0 4.0 6.0 6.0	Vdc
ON CHARACTERISTICS		THE STATE OF			
Zero-Gate-Voltage Drain Current (V _{DS} = 15 Vdc, V _{GS} = 0)	2N5265 2N5266 2N5267 2N5268 2N5269 2N5270	IDSS	0.5 0.8 1.5 2.5 4.0 7.0	1.0 1.6 3.0 5.0 8.0	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N5265 2N5266 2N5267 2N5268 2N5269 2N5270	Yfs	900 1000 1500 2000 2200 2500	2700 3000 3500 4000 4500 5000	μmhos
Output Admittance Common Source (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)		Yos	-	75	μmhos

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Common Source Forward Transconductance (VDS = 15 Vdc, VGS = 0, f = 100 MHz)	2N5265 2N5266 2N5267 2N5268 2N5269 2N5270	Re(y _{fs})	800 900 1400 1700 1900 2100		μmhos
Input Capacitance ($V_{DS} = 15 \text{ Vdc}$, $V_{GS} = 0$, $f = 1.0 \text{ MHz}$)	0.00	C _{iss}	_	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	6 57	C _{rss}	_	2.0	pF
FUNCTIONAL CHARACTERISTICS	dest.				1 1 10 1
Noise Figure $(V_{DS}=15~Vdc,V_{GS}=0,R_{G}=1.0~M~ohm,f=100~Hz,BW=1.0~Hz)$		NF	-	2.5	dB
Equivalent Short-Circuit Input Noise Voltage	N 194 L	en	_	115	nV/√Hz

FIGURE 1-6 TRANSFER CHARACTERISTIC CURVES FOR MIN/MAX IDSS LIMITS

 $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ Hz}, BW = 1.0 \text{ Hz})$

FIGURES 7-12 - TYPICAL AND MINIMUM FORWARD TRANSFER ADMITTANCE

TYPICAL CURVES

FIGURE 13 - OUTPUT RESISTANCE versus DRAIN CURRENT 1000 VDS = 15 V = 1.0 kHz IDSS = 0.7 mA ross, OUTPUT RESISTANCE (k OHMS) 500 300 200 1.5 mA 100 50 30 20 10 0.2 ID, DRAIN CURRENT (mA)

2N5457 2N5458 2N5459

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET GENERAL PURPOSE

N-CHANNEL — DEPLETION

Refer to 2N4220 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	VGSR	- 25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Junction Temperature Range	TJ	125	°C
Storage Channel Temperature Range	T _{stq}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage ($I_G = -10 \mu Adc, V_{DS} = 0$)		V _(BR) GSS	-25	_	_	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$		IGSS	1	1.1	-1.0 -200	nAdc
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, I_{D} = 10 \text{ nAdc})$	2N5457 2N5458 2N5459	VGS(off)	- 0.5 - 1.0 - 2.0		-6.0 -7.0 -8.0	Vdc
Gate Source Voltage $(V_{DS} = 15 \text{ Vdc}, I_{D} = 100 \ \mu\text{Adc})$ $(V_{DS} = 15 \text{ Vdc}, I_{D} = 200 \ \mu\text{Adc})$ $(V_{DS} = 15 \text{ Vdc}, I_{D} = 400 \ \mu\text{Adc})$	2N5457 2N5458 2N5459	V _G s		-2.5 -3.5 -4.5	=	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current* (VDS = 15 Vdc, V _{GS} = 0)	2N5457 2N5458 2N5459	IDSS	1.0 2.0 4.0	3.0 6.0 9.0	5.0 9.0 16	mAdc
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance Common Source* (VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)	2N5457 2N5458 2N5459	Yfs	1000 1500 2000	_	5000 5500 6000	μmhos
Output Admittance Common Source* (VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)		Yos	_	10	50	μmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{iss}	_	4.5	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{rss}	_	1.5	3.0	pF

^{*}Pulse Test: Pulse Width ≤ 630 ms; Duty Cycle ≤ 10%.

2N5460 thru 2N5465

CASE 29-02, STYLE 7 TO-92 (TO-226AA)

JFET AMPLIFIER

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	2N5460 2N5461 2N5462	2N5463 2N5464 2N5465	Unit
Drain-Gate Voltage	V _{DG}	40	60	Vdc
Reverse Gate-Source Voltage	VGSR	40	60	Vdc
Forward Gate Current	I _{G(f)}	10		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82		mW mW/°C
Junction Temperature Range	TJ	-65 to +135		°C
Storage Channel Temperature Range	T _{stg}	-65 to +150		°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic Symbol Min Unit Тур Max OFF CHARACTERISTICS Gate-Source Breakdown Voltage V(BR)GSS Vdc $(I_G = 10 \ \mu Adc, V_{DS} = 0)$ 2N5460, 2N5461, 2N5462 40 2N5463, 2N5464, 2N5465 60 Gate Reverse Current IGSS 2N5460, 2N5461, 2N5462 $(V_{GS} = 20 \text{ Vdc}, V_{DS} = 0)$ 5.0 nAdc $(V_{GS} = 30 \text{ Vdc}, V_{DS} = 0)$ 2N5463, 2N5464, 2N5465 5.0 $(V_{GS} = 20 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$ 2N5460, 2N5461, 2N5462 1.0 μAdc 2N5463, 2N5464, 2N5465 $(V_{GS} = 30 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$ 1.0 VGS(off) Vdc Gate Source Cutoff Voltage 0.75 $(V_{DS} = 15 \text{ Vdc}, I_{D} = 1.0 \mu Adc)$ 2N5460, 2N5463 6.0 2N5461, 2N5464 1.0 7.5 2N5462, 2N5465 1.8 9.0 Gate Source Voltage VGS Vdc $(V_{DS} = 15 \text{ Vdc}, I_D = 0.1 \text{ mAdc})$ 2N5460, 2N5463 0.5 4.0 $(V_{DS} = 15 \text{ Vdc}, I_{D} = 0.2 \text{ mAdc})$ 2N5461, 2N5464 0.8 4.5 $(V_{DS} = 15 \text{ Vdc}, I_{D} = 0.4 \text{ mAdc})$ 2N5462, 2N5465 1.5 6.0 ON CHARACTERISTICS Zero-Gate-Voltage Drain Current mAdc IDSS 5.0 $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0,$ 2N5460, 2N5463 1.0 f = 1.0 kHz2N5461, 2N5464 2.0 9.0 2N5462, 2N5465 4.0 16 SMALL-SIGNAL CHARACTERISTICS Forward Transfer Admittance Yfs μmhos $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$ 2N5460, 2N5463 1000 4000 2N5461, 2N5464 1500 5000 2N5462, 2N5465 2000 6000 **Output Admittance** 75 μmhos Yos $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$ Input Capacitance Ciss 5.0 7.0 pF $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$ Reverse Transfer Capacitance Crss 2.0 pF 1.0 $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$ **FUNCTIONAL CHARACTERISTICS** NF 1.0 2.5 dB $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, R_G = 1.0 \text{ Megohm}, f = 100 \text{ Hz}, BW = 1.0 \text{ Hz})$ Equivalent Short-Circuit Input Noise Voltage en 60 115 nV/\sqrt{Hz} $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ Hz}, BW = 1.0 \text{ Hz})$

6

DRAIN CURRENT versus GATE SOURCE VOLTAGE

FIGURE 1 - VGS(off) = 2.0 VOLTS

FIGURE 2 - VGS(off) = 4.0 VOLTS

FIGURE 3 - VGS(off) = 5.0 VOLTS

FORWARD TRANSFER ADMITTANCE versus DRAIN CURRENT

FIGURE 4 - VGS(off) = 2.0 VOLTS

FIGURE 5 - VGS(off) = 4.0 VOLTS

FIGURE 6 - VGS(off) = 5.0 VOLTS

Common Source y Parameters for Frequencies Below 30 MHz

 $\gamma_{is} = j\omega C_{iss}$ $\gamma_{os} = j\omega C_{osp}^* + 1/r_{oss}$ $\gamma_{fs} = \gamma_{fs} \mid \gamma_{rs} = -j\omega C_{rss}$

 $^*C_{OSp}$ is C_{OSS} in parallel with Series Combination of C_{ISS} and C_{TSS} .

FIGURE 11 - EQUIVALENT LOW FREQUENCY CIRCUIT

NOTE:

 Graphical data is presented for dc conditions. Tabular data is given for pulsed conditions (Pulse Width = 630 ms, Duty Cycle = 10%).

2N5484 thru 2N5486

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET VHF/UHF AMPLIFIER

N-CHANNEL — DEPLETION

Refer to 2N4416 for graphs.

MAXIMUM RATINGS

Symbol	Value	Unit	
V _{DG}	25	Vdc	Ī
V _{GSR}	25	Vdc	
ID	30	mAdc	
lG(f)	10	mAdc	Ī
PD	310 2.82	mW mW/°C	
T _J , T _{stg}	-65 to +150	°C	
	VDG VGSR ID IG(f) PD	V _{DG} 25 V _{GSR} 25 I _D 30 I _{G(f)} 10 P _D 310 2.82	VDG 25 Vdc VGSR 25 Vdc ID 30 mAdc IG(f) 10 mAdc PD 310 mW 2.82 mW/°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage $(I_G = -1.0 \mu Adc, V_{DS} = 0)$		V _(BR) GSS	- 25	_	-	Vdc
Gate Reverse Current $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$		IGSS		=	-1.0 -0.2	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	2N5484 2N5485 2N5486	VGS(off)	-0.3 -0.5 -2.0	- I	-3.0 -4.0 -6.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current (V _{DS} = 15 Vdc, V _{GS} = 0)	2N5484 2N5485 2N5486	IDSS	1.0 4.0 8.0	_	5.0 10 20	mAdc
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5484 2N5485 2N5486	Yfs	3000 3500 4000	_	6000 7000 8000	μmhos
Input Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 400 MHz)	2N5484 2N5485, 2N5486	Re(y _{is})	_	_	100 1000	μmhos
Output Admittance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N5484 2N5485 2N5486	Yos	= =		50 60 75	μmhos
Output Conductance (VDS = 15 Vdc, VGS = 0, f = 100 MHz) (VDS = 15 Vdc, VGS = 0, f = 400 MHz)	2N5484 2N5485, 2N5486	Re(y _{OS})	_	_	75 100	μmhos
Forward Transconductance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz)	2N5484	Re(y _{fs})	2500	_	_	μmhos
$(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 400 \text{ MHz})$	2N5485 2N5486		3000 3500	_	_	

2N5484 thru 2N5486

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (continued) \ (T_{\mbox{\scriptsize A}} = 25^{\circ}\mbox{\scriptsize C unless otherwise noted.})$

Characteristic		Symbol	Min	Тур	Max	Unit
Input Capacitance ($V_{DS}=$ 15 Vdc, $V_{GS}=$ 0, f = 1.0 MHz)		C _{iss}	_	- 2	5.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{rss}	_	_	1.0	pF
Output Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{oss}	_	- 3	2.0	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure $ \begin{aligned} &\langle V_{DS} = 15 \ Vdc, V_{GS} = 0, \ R_G = 1.0 \ Megohm, f = \\ &\langle V_{DS} = 15 \ Vdc, \ I_D = 1.0 \ mAdc, \\ &R_G = 1.0 \ k \ ohm, f = 100 \ MHz) \end{aligned} $ $ \langle V_{DS} = 15 \ Vdc, \ I_D = 1.0 \ mAdc, \\ &R_G = 1.0 \ k \ ohm, f = 200 \ MHz) \end{aligned} $ $ \langle V_{DS} = 15 \ Vdc, \ I_D = 4.0 \ mAdc, \\ &R_G = 1.0 \ k \ ohm, f = 100 \ MHz) \end{aligned} $ $ \langle V_{DS} = 15 \ Vdc, \ I_D = 4.0 \ mAdc, \\ &R_G = 1.0 \ k \ ohm, f = 400 \ MHz) $	1.0 kHz) 2N5484 2N5484 2N5485, 2N5486 2N5485, 2N5486	NF	- - -	4.0 —	2.5 3.0 — 2.0 4.0	dB
Common Source Power Gain (VDS = 15 Vdc, ID = 1.0 mAdc, f = 100 MHz) (VDS = 15 Vdc, ID = 1.0 mAdc, f = 200 MHz) (VDS = 15 Vdc, ID = 4.0 mAdc, f = 100 MHz) (VDS = 15 Vdc, ID = 4.0 mAdc, f = 400 MHz)	2N5484 2N5484 2N5485, 2N5486 2N5485, 2N5486	G _{ps}	16 — 18	_ 14 _	25 — 30 20	dB

2N5555

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Gate-Source Voltage	VGS	25	Vdc
Forward Gate Current	IGF	10	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	310 2.82	mW mW/°C
Junction Temperature Range	TJ	-65 to +150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown (I _G = 10 μAdc, V _{DS} =		V _(BR) GSS	25	_	Vdc
Gate Reverse Current (VGS = 15 Vdc, VDS =	= 0)	IGSS	-	1.0	nAdc
Drain Cutoff Current (VDS = 12 Vdc, VGS = (VDS = 12 Vdc, VGS =		I _{D(off)}	_	10 2.0	nAdc μAdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain (V _{DS} = 15 Vdc, V _{GS} =		DSS	15	_	mAdc
Gate-Source Forward Vol $(I_{G(f)} = 1.0 \text{ mAdc}, V_{DS})$	5	V _{GS(f)}	_	1.0	Vdc
Drain-Source On-Voltage (ID = 7.0 mAdc, VGS		V _{DS(on)}	_	1.5	Vdc
Static Drain-Source On R (ID = 0.1 mAdc, VGS		rDS(on)	-	150	Ohms
SMALL-SIGNAL CHARA	CTERISTICS				
Small-Signal Drain-Source (V _{GS} = 0, I _D = 0, f =		rds(on)	_	150	Ohms
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} =	= 0, f = 1.0 MHz)	C _{iss}	_	5.0	pF
Reverse Transfer Capacit (V _{DS} = 0, V _{GS} = 10 \		C _{rss}	_	1.2	pF
SWITCHING CHARACTE	RISTICS				
Turn-On Delay Time	$(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 7.0 \text{ mAdc},$	t _d (on)	_	5.0	ns
Rise Time	$V_{GS(on)} = 0$, $V_{GS(off)} = -10 \text{ Vdc}$ (See Figure 1)	t _r	-	5.0	ns
Turn-Off Delay Time	(V _{DD} = 10 Vdc, I _{D(on)} = 7.0 mAdc,	t _d (off)	_	15	ns
Fall Time	$V_{GS(on)} = 0$, $V_{GS(off)} = -10 \text{ Vdc}$ (See Figure 1)	tf	_	10	ns

^{*}Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 3.0%.

FIGURE 1 — SWITCHING TIMES TEST CIRCUIT

2N5638 2N5639 2N5640

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

N-CHANNEL — DEPLETION

Refer to 2N5653 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Reverse Gate-Source Voltage	VGSR	30	Vdc
Forward Gate Current	IGF	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Junction Temperature Range	TJ	-65 to +150	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					1
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)		V _(BR) GSS	30	-	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$		IGSS	_	1.0 1.0	nAdc μAdc
$\begin{array}{lll} \text{Drain Cutoff Current} \\ (V_{DS} = 15 \text{Vdc}, V_{GS} = -12 \text{Vdc}) \\ (V_{DS} = 15 \text{Vdc}, V_{GS} = -8.0 \text{Vdc}) \\ (V_{DS} = 15 \text{Vdc}, V_{GS} = -6.0 \text{Vdc}) \\ (V_{DS} = 15 \text{Vdc}, V_{GS} = -6.0 \text{Vdc}, T_{A} = 100^{\circ}\text{C}) \\ (V_{DS} = 15 \text{Vdc}, V_{GS} = -8.0 \text{Vdc}, T_{A} = 100^{\circ}\text{C}) \\ (V_{DS} = 15 \text{Vdc}, V_{GS} = -6.0 \text{Vdc}, T_{A} = 100^{\circ}\text{C}) \\ (V_{DS} = 15 \text{Vdc}, V_{GS} = -6.0 \text{Vdc}, T_{A} = 100^{\circ}\text{C}) \end{array}$	2N5638 2N5639 2N5640 2N5638 2N5639 2N5640	I _{D(off)}	=	1.0 1.0 1.0 1.0 1.0	nAdc μAdc
ON CHARACTERISTICS	2110040			1.0	
Zero-Gate-Voltage Drain Current(1) (VDS = 20 Vdc, VGS = 0)	2N5638 2N5639 2N5640	I _{DSS}	50 25 5.0	=	mAdo
Drain-Source On-Voltage (I _D = 12 mAdc, V _{GS} = 0) (I _D = 6.0 mAdc, V _{GS} = 0) (I _D = 3.0 mAdc, V _{GS} = 0)	2N5638 2N5639 2N5640	V _{DS(on)}	=	0.5 0.5 0.5	Vdc
Static Drain-Source On Resistance (ID = 1.0 mAdc, $V_{GS} = 0$)	2N5638 2N5639 2N5640	rDS(on)	=	30 60 100	Ohms
SMALL-SIGNAL CHARACTERISTICS					
Static Drain-Source "ON" Resistance $(V_{GS}=0, I_{D}=0, f=1.0 \text{ kHz})$	2N5638 2N5639 2N5640	^r ds(on)	=	30 60 100	Ohms
Input Capacitance (V _{DS} = 0, V _{GS} = -12 Vdc, f = 1.0 MHz)		C _{iss}	_	10	pF
Reverse Transfer Capacitance (VDS = 0, VGS = -12 Vdc, f = 1.0 MHz)		C _{rss}	_	4.0	pF

2N5638, 2N5639, 2N5640

	Characteristic			Symbol	Min	Max	Unit
SWITCHING CHAP	RACTERISTICS						
Turn-On Delay Time		I _{D(on)} = 12 mAdc 6.0 mAdc 3.0 mAdc	2N5638 2N5639 2N5640	^t d(on)	=	4.0 6.0 8.0	ns
Rise Time	$V_{DD} = 10 \text{ Vdc},$ $V_{GS(on)} = 0,$	I _{D(on)} = 12 mAdc 6.0 mAdc 3.0 mAdc	2N5638 2N5639 2N5640	t _r	=	5.0 8.0 10	ns
Turn-Off Delay Time	$V_{GS(off)} = -10 \text{ Vdc},$ $R_{G'} = 50 \text{ ohms}$	I _{D(on)} = 12 mAdc 6.0 mAdc 3.0 mAdc	2N5638 2N5639 2N5640	^t d(off)	=	5.0 10 15	ns
Fall Time		I _{D(on)} = 12 mAdc 6.0 mAdc 3.0 mAdc	2N5638 2N5639 2N5640	tf	_	10 20 30	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

2N5653 2N5654

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	30	Vdc
Reverse Gate-Source Voltage	VGSR	30	Vdc
Forward Gate Current	IGF	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)		V _(BR) GSS	30	_	Vdc
Gate Reverse Current $ \begin{array}{ll} (V_{GS}=-15~Vdc,V_{DS}=0) \\ (V_{GS}=-15~Vdc,V_{DS}=0,T_{A}=100^{\circ}C) \end{array} $		IGSS	_	1.0 1.0	nAdc μAdc
$\begin{array}{lll} \text{Drain Cutoff Current} \\ (\text{V}_{DS} = 15 \text{ Vdc}, \text{V}_{GS} = -12 \text{ Vdc}) \\ (\text{V}_{DS} = 15 \text{ Vdc}, \text{V}_{GS} = -8.0 \text{ Vdc}) \\ (\text{V}_{DS} = 15 \text{ Vdc}, \text{V}_{GS} = -12 \text{ Vdc}, \text{T}_{A} = 100^{\circ}\text{C}) \\ (\text{V}_{DS} = 15 \text{ Vdc}, \text{V}_{GS} = -8.0 \text{ Vdc}, \text{T}_{A} = 100^{\circ}\text{C}) \end{array}$	2N5653 2N5654 2N5653 2N5654	^I D(off)	=	1.0 1.0 1.0 1.0	nAdc μAdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(1) $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0)$	2N5653 2N5654	IDSS	40 15	=	mAdc
Drain-Source On-Voltage (I _D = 10 mAdc, V _{GS} = 0) (I _D = 5.0 mAdc, V _{GS} = 0)	2N5653 2N5654	V _{DS(on)}	=	0.75 0.75	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Static Drain-Source "ON" Resistance ($V_{GS} = 0$, $I_D = 1.0$ mAdc)	2N5653 2N5654	^r ds(on)	=	50 100	Ohms
$(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$	2N5653 2N5654		_	50 100	
Input Capacitance $(V_{DS} = 0, V_{GS} = -12 \text{ Vdc}, f = 1.0 \text{ MHz})$		C _{iss}	_	10	pF
Reverse Transfer Capacitance (VDS = 0, VGS = -12 Vdc, f = 1.0 MHz) (VDS = 0, VGS = -8.0 Vdc, f = 1.0 MHz)	2N5653 2N5653	C _{rss}	_	3.5 3.5	pF

2N5653, 2N5654

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

	Characteristic		Symbol	Min	Max	Unit			
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	Test Condition for 2N5653: $(V_{DD} = 10 \text{ Vdc}, V_{GS(on)} = 0,$ $V_{GS(off)} = -12 \text{ Vdc},$	2N5653 2N5654	^t d(on)	_	4.0 6.0	ns			
Rise Time	I _{D(on)} = 10 mAdc, R _G ' = 50 Ohms)	2N5653 2N5654	t _r		5.0 8.0	ns			
Turn-Off Delay Time	Test Condition for 2N5654: (VpD = 10 Vdc, VGS(on) = 0, VGS(off) = -12 Vdc,	2N5653 2N5654 2N5653	^t d(off)	= 6	5.0 10	ns			
ran inne	I _{D(on)} = 5.0 mAdc, R _G ' = 50 Ohms) (Figure 1)	2N5654	tf	_	10 20	ns			

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 3.0%.

2N5668 2N5669 2N5670

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	VGSR	25	Vdc
Drain Current	ID	20	mAdc
Forward Gate Current	lG(f)	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	sipation @ T _A = 25°C P _D 310		mW mW/°C
Storage Channel Temperature Range	T _{stg}	-65 to +150	°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)		V(BR)GSS	25	_		Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$		IGSS	_	1	2.0 2.0	nAdc μAdc
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ nAdc})$	2N5668 2N5669 2N5670	VGS(off)	0.2 1.0 2.0		4.0 6.0 8.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current(1) $(V_{DS} = 15 \ Vdc, \ V_{GS} = 0)$	2N5668 2N5669 2N5670	IDSS	1.0 4.0 8.0	_	5.0 10 20	mAdc
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz}$)	2N5668 2N5669 2N5670	Yfs	1500 2000 3000	_	6500 6500 7500	μmhos
Input Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz)		Re(yis)	_	125	800	μmhos
Output Admittance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N5668 2N5669 2N5670	Yos			20 50 75	μmhos
Output Conductance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz})$	2N5668 2N5669 2N5670	Re(y _{OS})		10 25 35	50 100 150	μmhos
Forward Transconductance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz})$	2N5668 2N5669 2N5670	Re(yfs)	1000 1600 2500		=	μmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{iss}	_	4.7	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{rss}	-	1.0	3.0	pF

2N5668, 2N5669, 2N5670

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{OSS}	_	1.4	4.0	pF
FUNCTIONAL CHARACTERISTICS				19 11 11	
Noise Figure (Figure 1) (Vps = 15 Vdc, Vqs = 0, f = 100 MHz at R_{G} ' = 1.0 k ohm)	NF	_	NEW C	2.5	dB
Common Source Power Gain (Figure 1) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz)	G _{ps}	16	1 3 - 7 °	12.	dB

⁽¹⁾ Pulse Test: Pulse Width = 100 ms, Duty Cycle ≤ 10%.

FIGURE 1 - 100 MHz, POWER GAIN AND NOISE FIGURE TEST CIRCUIT

2N6659 2N6660 2N6661 MPF6660 MPF6661

2N6659,60,61 CASE 79-02, STYLE 6 TO-39 (TO-205AD)

MPF6659,60,61 CASE 29-03, STYLE 22 TO-226AE

TMOS SWITCHING TRANSISTOR

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	2N6659 MPF6659	2N6660 MPF6660	2N6661 MPF6661	Unit
Drain-Source Voltage	V _{DS}	35	60	90	Vdc
Drain-Gate Voltage	V _{DG}	35	60	90	Vdc
Gate-Source Voltage	VGS		± 30		Vdc
Drain Current — Continuous (1) Pulsed (2)	I _D	2.0 3.0			Adc
- /		2N665 2N666 2N666	0 M	IPF6659 IPF6660 IPF6661	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	6.25 50		2.5 20	Watts mW/°C
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	_		1.0 8.0	Watts mW/°0
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-	-55 to +150		

- (1) The Power Dissipation of the package may result in a lower continuous drain current.
- (2) Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Characteristic	- LA 162-438	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	The state of the s			*		•
Zero-Gate-Voltage Drain Current (V _{DS} = Maximum Rating, V _{GS} = 0)		DSS	1 12	_	10	μAdc
Gate-Body Leakage Current (VGS = 15 V, V _{DS} = 0)		IGSS	_	_	100	nAdc
Drain-Source Breakdown Voltage (VGS = 0, ID = 10 μ A)	2N6659, MPF6659 2N6660, MPF6660 2N6661, MPF6661	V(BR)DSX	35 60 90	=	_	Vdc
ON CHARACTERISTICS(1)						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1.0 \text{ mA})$		V _{GS(Th)}	8.0	1.4	2.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 V, I _D = 1.0 A)	2N6659, MPF6659 2N6660, MPF6660 2N6661, MPF6661	VDS(on)		=	1.8 3.0 4.0	Vdc
$(V_{GS} = 5.0 \text{ V}, I_{D} = 0.3 \text{ A})$	2N6659, MPF6659 2N6660, MPF6660 2N6661, MPF6661		=	0.8 0.9 0.9	1.5 1.5 1.6	
Static Drain-Source On Resistance ($V_{GS} = 10 \text{ Vdc}$, $I_D = 1.0 \text{ Adc}$)	2N6659, MPF6659 2N6660, MPF6660 2N6661, MPF6661	rDS(on)	_		1.8 3.0 4.0	Ohms
On-State Drain Current (V _{DS} = 25 V, V _{GS} = 10 V)		I _{D(on)}	1.0	2.0	-	Amps
SMALL-SIGNAL CHARACTERISTICS						
Input Capacitance $(V_{DS} = 25 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$		C _{iss}	v—	30	50	pF
Reverse Transfer Capacitance ($V_{DS} = 25 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)		C _{rss}	_	3.6	10	pF
Output Capacitance $(V_{DS} = 25 \text{ V, } V_{GS} = 0, f = 1.0 \text{ MHz})$		Coss	_	20	40	pF
Forward Transconductance (V _{DS} = 25 V, I _D = 0.5 A)		9fs	170	_	_	mmhos

2N6659, 2N6660, 2N6661, MPF6659, MPF6660, MPF6661

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS(1)					
Rise Time	t _r	60 -	_	5.0	ns
Fall Time	tf	-2	-	5.0	ns
Turn-On Time	ton	-9	_	5.0	ns
Turn-Off Time	toff		_	5.0	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

RESISTIVE SWITCHING

0.4

150 (°C)

50

TJ, JUNCTION TEMPERATURE

100

2.0

VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

0.4

0 - 50 4.0 V

4.0

3.0

FIGURE 7 — ON-VOLTAGE versus TEMPERATURE

3N128

CASE 20-03, STYLE 7 TO-72 (TO-206AF)

MOSFET AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

WAXIMON RATINGS							
Rating	Symbol	Value	Unit				
Drain-Source Voltage	V _{DS}	+20	Vdc				
Drain-Gate Voltage	V _{DG}	+ 20	Vdc				
Gate-Source Voltage	V _{GS}	±10	Vdc				
Drain Current	ID	50	mAdc				
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	330 2.2	mW mW/°C				
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C				

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				•
Gate-Source Breakdown Voltage(1) (IG = -10 µAdc, VDS = 0)	V _(BR) GSS	-50	_	Vdc
Gate Reverse Current $(V_{GS}=-8.0~V_{dc},V_{DS}=0)$ $(V_{GS}=-8.0~V_{dc},V_{DS}=0,T_{A}=125^{\circ}C)$	I _{GSS}	=	0.05 5.0	nAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 50 µAdc)	V _{GS(off)}	-0.5	-8.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current(2) (V _{DS} = 15 Vdc, V _{GS} = 0)	IDSS	5.0	25	mAdc
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance $(V_{DS} = 15 \text{ Vdc}, I_{D} = 5.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	Y _{fs}	5000	12,000	μmhos
Input Admittance $(V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 200 \text{ MHz})$	Re(yis)	-	800	μmhos
Output Conductance $V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 200 \text{ MHz}$	Re(y _{OS})	_	500	μmhos
Forward Transconductance {V _{DS} = 15 Vdc, I _D = 5.0 mAdc, f = 200 MHz}	Re(yfs)	5000	_	μmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 1.0 \text{ MHz})$	C _{iss}	_	7.0	pF
Reverse Transfer Capacitance ${V_{DS} = 15 \text{ Vdc, I}_D = 5.0 \text{ mAdc, f} = 1.0 \text{ MHz}}$	C _{rss}	0.05	0.35	pF
FUNCTIONAL CHARACTERISTICS				
Noise Figure $(V_{DS} = 15 \text{ Vdc}, I_{D} = 5.0 \text{ mAdc}, f = 200 \text{ MHz})$	NF	-	5.0	dB
Power Gain $(V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 200 \text{ MHz})$	PG	13.5	23	dB

⁽¹⁾ Caution Destructive Test, can damage gate oxide beyond operation.

⁽²⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

O

TYPICAL CHARACTERISTICS (TA = 25°C)

TYPICAL 1 kHz DRAIN CHARACTERISTICS

(T_A = 25°C, V_{DS} = 15 Vdc, f = 1.0 kHz)

TYPICAL 200 MHz COMMON-SOURCE ADMITTANCE CHARACTERISTICS

(TA = 25°C, VDS = 15 Vdc, f = 200 MHz)

FIGURE 9 — POWER CAIN AND NOISE FIGURE versus DRAIN CURRENT

ID, DRAIN CURRENT (mA)

FIGURE 10 – POWER GAIN AND NOISE FIGURE versus DRAIN VOLTAGE

FIGURE 11 - THIRD ORDER INTERMODULATION DISTORTION

Figure 11 shows the typical third order intermodulation distortion (IMD) performance of the 3N128 at 200 MHz.

Both fundamental output and third order IMD output characteristics are plotted. The curves have been extrapolated to show the third order intermodulation output intercept point.

Performance for drain currents from I_{DSS} to 0.1 I_{DSS}, is given. The power gain and noise figure test amplifier shown in Figure 12 was used to generate the IMD data.

FIGURE 12 - POWER GAIN, NOISE FIGURE AND INTERMODULATION DISTORTION TEST CIRCUIT

3N155 3N156

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOSFET SWITCHING

P-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

IVIANIIVIOIVI NATIIVGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	±35	Vdc
Drain-Gate Voltage	V _{DG}	±50	Vdc
Gate-Source Voltage	VGS	±50	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	300 2.0	mW mW/°C
Junction Temperature Range	TJ	-65 to +175	°C
Storage Channel Temperature Range	T _{stg}	-65 to +175	°C

Refer to 3N157 for graphs.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $(I_D = -10 \mu Adc, V_G = V_S = 0)$	V(BR)DSX	-35	_	_	Vdc
Zero-Gate-Voltage Drain Current $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0)$ $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, T_A = 125^{\circ}\text{C})$	IDSS	=	=	-1.0 -1000	nAdc
Gate Reverse Current $(V_{GS} = +50 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = +25 \text{ Vdc}, V_{DS} = 0)$	IGSS	10	_	+ 1000 + 10	pAdc
Resistance Drain Source (ID = 0, VGS = 0)	rDS(off)	1 x 10+10	_	_	Ohms
Resistance Gate Source Input $(V_{GS} = -25 \text{ Vdc})$	RGS	_	1 x 10+16	-	Ohms
Gate Forward Leakage Current $(V_{GS} = -50 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -25 \text{ Vdc}, V_{DS} = 0)$	IG(f)	_	_	- 1000 - 10	pAdc
ON CHARACTERISTICS	- 95				
Gate Threshold Voltage $(V_{DS} = -10 \text{ Vdc}, I_{D} = -10 \mu\text{Adc})$ 3N155 3N156	VGS(Th)	-1.5 -3.0	= =	-3.2 -5.0	Vdc
Drain-Source On-Voltage ($I_D = -2.0 \text{ mAdc}$, $V_{GS} = -10 \text{ Vdc}$)	V _{DS(on)}	_		-1.0	Vdc
Static Drain-Source On Resistance ($I_D = 0$ mAdc, $V_{GS} = -10$ Vdc)	rDS(on)	_	-	600	Ohms
On-State Drain Current $(V_{DS} = -15 \text{ Vdc}, V_{GS} = -10 \text{ Vdc})$	I _{D(on)}	-5.0	_	_	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Drain-Source Resistance (VGS = -10 Vdc, ID = 0, f = 1.0 kHz) (VGS = -15 Vdc, ID = 0 , f = 1.0 kHz)	^r ds(on)	=	_	400 350	Ohms
Forward Transfer Admittance $(V_{DS} = -15 \text{ Vdc}, I_D = -2.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	Yfs	1000	-	4000	μmhos
Input Capacitance $(V_{DS} = -15 \text{ Vdc}, V_{GS} = -10 \text{ Vdc}, f = 140 \text{ kHz})$	C _{iss}	_	-	5.0	pF
Reverse Transfer Capacitance (V _{DS} = 0, V _{GS} = 0, f = 140 kHz)	C _{rss}	_	_	1.3	pF
Drain-Substrate Capacitance (VD(SUB) = -10 Vdc, f = 140 kHz)	C _{d(sub)}	-	-	4.0	pF
SWITCHING CHARACTERISTICS					
Turn-On Delay	td	_	_	45	μs
Rise Time $(V_{DD} = -10 \text{ Vdc}, I_{D(on)} = -2.0 \text{ mAdc},$	t _r	_	1, -	65	ns
Turn-Off Delay $V_{GS(on)} = -10 \text{ Vdc}, V_{GS(off)} = 0$	t _S	_	_	60	ns
Fall Time	tf	_	_	100	ns

3N157 3N158

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOSFET AMPLIFIER AND SWITCHING

P-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage*	V _{DS}	±35	Vdc
Drain-Gate Voltage*	V _{DG}	±50	Vdc
Gate-Source Voltage*	VGS	±50	Vdc
Drain Current*	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C*	PD	300 1.7	mW mW/°C
Junction Temperature Range*	TJ	-65 to +175	°C
Storage Channel Temperature Range*	T _{stq}	-65 to +175	°C

^{*}JEDEC Registered Limits

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

Gilaracteristic	- Oymbor	141111	1.45	IVIUA	Oille
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $(I_D = -10 \mu Adc, V_G = V_S = 0)$	V _{(BR)DSX}	-35	_	1-0	Vdc
Zero-Gate-Voltage Drain Current $(V_{DS} = -15 \text{ Vdc}, V_{GS} = 0)$ $(V_{DS} = -35 \text{ Vdc}, V_{GS} = 0)$	IDSS	=	=	- 1.0 - 10	nAdc μAdc
Gate Reverse Current* $(V_{GS} = +25 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = +50 \text{ Vdc}, V_{DS} = 0)$	IGSS	=	=	+ 10 + 10	pAdc nAdc
Input Resistance (V _{GS} = -25 Vdc)	RGS	- <u>-</u>	1 x 10+12	_	Ohms
1.03	V _{GS} N157 N158	- 1.5 - 3.0	_	-5.5 -7.0	Vdc
Gate Forward Current* $ \begin{array}{lll} (V_{GS} = -25 \ \text{Vdc}, \ V_{DS} = 0) \\ (V_{GS} = -50 \ \text{Vdc}, \ V_{DS} = 0) \\ (V_{GS} = -25 \ \text{Vdc}, \ V_{DS} = 0, \ T_{A} = +55^{\circ}\text{C}) \\ (V_{GS} = -50 \ \text{Vdc}, \ V_{DS} = 0, \ T_{A} = +55^{\circ}\text{C}) \end{array} $	l _{G(f)}	=		-10 -1.0 -10 -1.0	pAdc nAdc nAdc μAdc
ON CHARACTERISTICS					
	V _{GS(Th)}	- 1.5 - 3.0	_	-3.2 -5.0	Vdc
On-State Drain Current* (V _{DS} = -15 Vdc, V _{GS} = -10 Vdc)	I _{D(on)}	-5.0		-	mAdc
SMALL-SIGNAL CHARACTERISTICS			•		
Forward Transfer Admittance* ($V_{DS} = -15$ Vdc, $I_D = -2.0$ mAdc, $f = 1.0$ kHz)	Yfs	1000	<u> </u>	4000	μmhos
Output Admittance* ($V_{DS} = -15 \text{ Vdc}$, $I_{D} = -2.0 \text{ mAdc}$, $f = 1.0 \text{ kHz}$)	Yos	_	-	60	μmhos
Input Capacitance* $(V_{DS} = -15 \text{ Vdc}, V_{GS} = 0, f = 140 \text{ kHz})$	C _{iss}	_		5.0	pF
Reverse Transfer Capacitance* (Vps = -15 Vdc, Vgs = 0, f = 140 kHz)	C _{rss}	_	-	1.3	pF
Drain-Substrate Capacitance (VD(SUB) = -10 Vdc, f = 140 kHz)	C _{d(sub)}	_	-	4.0	pF
Noise Voltage $(R_S = 0, BW = 1.0 \text{ Hz}, V_{DS} = -15 \text{ Vdc}, I_{D} = -2.0 \text{ mAdc}, f = 100 \text{ Hz})$	e _n	, - ·	300	_	NV/√Hz
$(R_S = 0, BW = 1.0 Hz, V_{DS} = -15 Vdc, I_D = -2.0 mAdc, f = 1.0 kHz)$			120	500	

Symbol

Min

^{*}JEDEC Registered Limits

FIGURE 1 - FORWARD TRANSCONDUCTANCE

FIGURE 2 - OUTPUT TRANSCONDUCTANCE

FIGURE 3 – FORWARD TRANSCONDUCTANCE versus TEMPERATURE

FIGURE 4 - BIAS CURVE

FIGURE 5 - "ON" DRAIN-SOURCE VOLTAGE

FIGURE 6 - EQUIVALENT INPUT NOISE VOLTAGE

SWITCHING CHARACTERISTICS

 $(T_A = 25^{\circ}C)$

FIGURE 7 - TURN-ON DELAY TIME

FIGURE 8 – RISE TIME

FIGURE 9 - TURN-OFF DELAY TIME

FIGURE 10 - FALL TIME

FIGURE 11 - SWITCHING CIRCUIT and WAVEFORMS

source capacitance ($C_{gs} \cdot C_{rss} \cdot C_{rss}$) has no charge. The drain voltage is at Vpp and thus the feedback capacitance (C_{rss}) is charged to Vpp. Similarly, the drain substrate capacitance ($C_{d(sub)}$) is charged to Vpp since the substrate and source are connected to ground.

During the turn-on interval C_{gs} is charged to Vgs (the input voltage) through R_{G} (generator impedance) (Figure 12). C_{rss}

The switching characteristics shown above were measured in a test circuit similar to Figure 11. At the beginning of the switching interval, the gate voltage is at ground and the gate

voltage) through R_G (generator impedance) (Figure 12). C_{TSS} must be discharged to $V_{GS} \cdot V_{D(n)}$ through R_G and the parallel combination of the load resistor (R_D) and the channel resistance (r_{dS}). In addition, $C_{d(sub)}$ is discharged to a low value ($V_{D(on)}$) through R_D in parallel with r_{ds} . During turn-off this charge flow is reversed.

Predicting turn-on time proves to be somewhat difficult since the channel resistance (r_{dS}) is a function of the gate source voltage (VGS). As C_{gS} becomes charged VGS is approaching V_{in} and r_{dS} decreases (see Figure 5) and since C_{rSS} and $C_{d(sub)}$ are charged through $r_{dS'}$ turn-on time is quite non-linear.

If the charging time of C_{gs} is short compared to that of C_{rss} and $C_{d(sub)}$, then r_{ds} (which is in parallel with R_D) will be low compared to R_D during the switching interval and will largely determine the turn-on time. On the other hand, during turn-off r_{ds} will be almost an open circuit requiring C_{rss} and $C_{d(sub)}$ to be charged through R_D and resulting in a turn-off time that is long compared to the turn-on time. This is especially noticeable for the curves where $R_{G^{*}}$ 0 and C_{gs} is charged through the pulse generator impedance only.

The switching curves shown with R_G • R_D simulate the switching behavior of cascaded stages where the driving source impedance is normally the same as the load impedance. The set of curves with R_G • 0 simulates a low source impedance drive such as might occur in complementary logic circuits.

FIGURE 12 – SWITCHING CIRCUIT with MOSFET EQUIVALENT MODEL

3N169 3N170 3N171

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOSFET SWITCHING

N-CHANNEL - ENHANCEMENT

Refer to 2N4351 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	± 35	Vdc
Gate-Source Voltage	VGS	±35	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ $T_A = 25$ °C Derate above 25°C	PD	300 1.7	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	800 4.56	mW/°C
Junction Temperature Range	TJ	175	°C
Storage Temperature Range	T _{stq}	-65 to +175	°C

	Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS						-
Drain-Source Breakdown (I _D = 10 μAdc, V _{GS} =			V _{(BR)DSX}	25	= 1	Vdc
Zero-Gate-Voltage Drain (VDS = 10 Vdc, VGS = (VDS = 10 Vdc, VGS =	= 0)		IDSS	- drg	10 1.0	nAdc μAdc
Gate Reverse Current $(V_{GS} = -35 \text{ Vdc}, V_{DS})$ $(V_{GS} = -35 \text{ Vdc}, V_{DS})$			IGSS	= 1	10 100	pAdc
ON CHARACTERISTICS	programme grant transcent	PRIMARY STATE	Tall Q Co			
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D =	10 μAdc)	3N169 3N170 3N171	V _{GS(Th)}	0.5 1.0 1.5	1.5 2.0 3.0	Vdc
Drain-Source On-Voltage (ID = 10 mAdc, VGS			V _{DS(on)}	-	2.0	Vdc
On-State Drain Current (VGS = 10 Vdc, VDS	= 10 Vdc)	n Paris	I _D (on)	10	7	mAdc
SMALL-SIGNAL CHARA	CTERISTICS					
Drain-Source Resistance (VGS = 10 Vdc, ID =			r _{ds(on)}		200	Ohms
Forward Transfer Admit (V _{DS} = 10 Vdc, I _D =	tance 2.0 mAdc, f = 1.0 kHz)	/	Yfs	1000	-	μmhos
Input Capacitance (V _{DS} = 10 Vdc, V _{GS}	= 0, f = 1.0 MHz)		C _{iss}	_	5.0	pF
Reverse Transfer Capaci (V _{DS} = 0, V _{GS} = 0, f			C _{rss}	_	1.3	pF
Drain-Substrate Capacita (V _D (SUB) = 10 Vdc, f		THE UT	C _{d(sub)}	CALE IN	5.0	pF
SWITCHING CHARACTE	ERISTICS			\$ md		
Turn-On Delay Time	(V _{DD} = 10 Vdc, I _{D(on)} = 10 mAdc,		td(on)	3 -	3.0	ns
Rise Time	$V_{GS(on)} = 10 \text{ Vdc}, V_{GS(off)} = 0,$		tr		10	ns
Turn-Off Delay Time	RG' = 50 Ohms		[†] d(off)	-	3.0	ns
Fall Time	See Figure 1	See Figure 1		-	15	ns

FIGURE 1 — SWITCHING TIME TEST CIRCUIT

3N201 3N202 3N203

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL - DEPLETION

Refer to MPF201 for additional graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	VDG1 VDG2	30 30	Vdc
Drain Current	ID	50	mAdc
Gate Current	IG1 IG2	±10 ±10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.4	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0	Watt mW/°C
Lead Temperature	TL	300	°C
Junction Temperature Range	TJ	-65 to +175	°C
Storage Channel Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage ($I_D = 10 \mu Adc$, $V_S = 0$, $V_{G1S} = V_{G2S} = -5.0 Vdc$)		V _{(BR)DSX}	25	_	_	Vdc
Gate 1-Source Breakdown Voltage(1) $(I_{G1} = \pm 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0)$		V(BR)G1SO	±6.0	± 12	±30	Vdc
Gate 2-Source Breakdown Voltage(1) $(I_{G2} = \pm 10 \text{ mAdc}, V_{G1S} = V_{DS} = 0)$		V(BR)G2SO	±6.0	±12	±30	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0) $ $(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$		I _{G1SS}	_	±.040 —	± 10 - 10	nAdc μAdc
Gate 2 Leakage Current $(V_{G2S} = \pm 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0) $ $(V_{G2S} = -5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150 ^{\circ}\text{C})$		l _{G2SS}	=	±.050 —	± 10 - 10	nAdc μAdc
Gate 1 to Source Cutoff Voltage (VDS = 15 Vdc, VG2S = 4.0 Vdc, I_D = 20 μ Adc)		VG1S(off)	-0.5	-1.5	-5.0	Vdc
Gate 2 to Source Cutoff Voltage (VDS = 15 Vdc, VG1S = 0, ID = 20 μ Adc)		V _{G2S} (off)	-0.2	-1.4	-5.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current(2) $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, V_{G2S} = 4.0 \text{ Vdc})$	3N201,3N202 3N203	IDSS	6.0 3.0	13 11	30 15	mAdc
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance(3) $(V_{DS} = 15~Vdc, V_{G2S} = 4.0~Vdc, V_{G1S} = 0, f = 1.0~kHz)$	3N201,3N202 3N203	Y _{fs}	8.0 7.0	12.8 12.5	20 15	mmhos
Input Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = IDSS, f = 1.0 MHz)		C _{iss}	_	3.3	_	pF
Reverse Transfer Capacitance (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, I_D = 10 mAdc, f = 1.0 M	1Hz)	C _{rss}	0.005	0.014	0.03	pF
Output Capacitance (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, I_D = I_{DSS} , f = 1.0 MHz)		Coss	_	1.7	_	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure (VDD = 18 Vdc, V_{GG} = 7.0 Vdc, f = 200 MHz) (Figure 1) (VDD = 18 Vdc, V_{GG} = 6.0 Vdc, f = 45 MHz) (Figure 3)	3N201 3N203	NF	=	1.8 5.3	4.5 6.0	dB

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	A CONTRACTOR	Symbol	Min	Тур	Max	Unit
Common Source Power Gain		Gps				dB
(VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz) (Figure 1)	3N201	Po	15	20	25	
(V _{DD} = 18 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) (Figure 3)	3N203		20	25	30	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz}) \text{ (Figure 2)}$	3N202	G _c (5)	15	19	25	
Bandwidth		BW				MHz
(V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (Figure 1)	3N201		5.0		9.0	18003.888
(V _{DD} = 18 Vdc, f _{LO} = 245 MHz, f _{RF} = 200 MHz) (Figure 2)	3N202		4.5	_	7.5	
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	3N203		3.0	_	6.0	
Gain Control Gate-Supply Voltage(4)		VGG(GC)				Vdc
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	3N201		0	-1.0	-3.0	
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	3N203		0	-0.6	-3.0	

- (1) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.
- (2) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.
- (3) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating.
- (4) ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG} = 7.0$ volts (3N201) and $V_{GG} = 6.0$ volts (3N203).
- (5) Power Gain Conversion

- L1 14 Turns, #30 AWG Copper, Close-Wound 7/32" OD form with ARNOLD ENGINEERING "J" Tuning Core
- L2 10 Turns, #30 AWG Copper, Close-Wound 7/32" OD form with ARNOLD ENGINEERING "J" Tuning Core

TYPICAL CHARACTERISTICS

FIGURE 4 - DRAIN CURRENT versus **DRAIN to SOURCE VOLTAGE** VG2S = 4.0 V IDSS = 12.8 mA 26 VG1S = +1.0 V 24 22 DRAIN CURRENT (mA) 20 +0.5 V 18 16 14 12 n v 10 8.0 ò 6.0 4 N 2.0 -1.0 V 0 2.0 4.0 6.0 8.0 10 18 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

FIGURE 5 - DRAIN CURRENT versus GATE-ONE to SOURCE VOLTAGE 28 26 VDS = 15 V IDSS = 12.8 mA 24 VG2S = +4.0 V 22 mA) 20 DRAIN CURRENT 18 +2.0 V 16 14 12 +1.0 V 10 8.0 .0 V 6.0 4.0 2.0 VG2S = -1.0 V 1.0 +1.0 -1 N +0.5 VG1S, GATE-ONE-TO-SOURCE VOLTAGE (VOLTS)

FIGURE 7 - SMALL-SIGNAL COMMON-SOURCE GATE-ONE

SMALL-SIGNAL DEVICES

FIGURE 8 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE
FORWARD TRANSFER ADMITTANCE versus
GATE-TWO to SOURCE VOLTAGE

FIGURE 9 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE
INPUT AND OUTPUT CAPACITANCE versus
GATE-TWO-to-SOURCE VOLTAGE

TYPICAL CHARACTERISTICS

FIGURE 10 — COMMON-SOURCE POWER GAIN AND SPOT NOISE FIGURE VERSUS DRAIN CURRENT

FIGURE 11 — COMMON-SOURCE POWER GAIN AND SPOT NOISE FIGURE versus GAIN CONTROL

FIGURE 12 – COMMON-SOURCE POWER GAIN versus DRAIN SUPPLY CURRENT – 3N201

FIGURE 13 – SMALL-SIGNAL COMMON-SOURCE CONVERSION POWER GAIN versus LOCAL OSCILLATOR INPUT VOLTAGE – 3N202

FIGURE 14 – SMALL-SIGNAL COMMON SOURCE INSERTION POWER GAIN versus GAIN CONTROL GATE-SUPPLY VOLTAGE – 3N203

TYPICAL CHARACTERISTICS

FIGURE 15 - SMALL-SIGNAL GATE ONE FORWARD

FIGURE 17 - SMALL-SIGNAL GATE ONE OUTPUT
ADMITTANCE versus FREQUENCY

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Drain Current	ID	50	mA
Reverse Gate Current	IG	-10	mA
Forward Gate Current	IGF	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.4	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 0.8	mW mW/°C
Lead Temperature	TL	300	°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65°C to + 175°C	°C

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL GATE MOS-FET

N-CHANNEL — DEPLETION

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage (ID = 10 μ A, VG1 = VG2 = -5.0 V)		V(BR)DSX	25	-	Vdc
Gate 1-Source Breakdown Voltage (I _{G1} = ±10 mA) Note 1		V _(BR) G1SO	±6	±30	Vdc
Gate 2-Source Breakdown Voltage (I _{G2} = ±10 mA) Note 1		V(BR)G2SO	±6	±30	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 \text{ V}, V_{G2S} = V_{DS} = 0)$		I _{G1SS}	_	±10	nA
Gate 2 Leakage Current $(V_{G2S} = \pm 5.0 \text{ V}, V_{G1S} = V_{DS} = 0)$		^I G2SS	_	±10	nA
Gate 1 to Source Cutoff Voltage (V _{DS} = 15 V, V _{G2S} = 4.0 V, I _D = 20 μ A)		V _{G1S(off)}	-0.5	-4.0	Vdc
Gate 2 to Source Cutoff Voltage (VDS = 15 V, VG1S = 0 V, ID = 20 μ A)		V _{G2S(off)}	-0.2	-4.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current* ($V_{DS} = 15 \text{ V, } V_{G2S} = 4.0 \text{ V, } V_{G1S} = 0 \text{ V}$)		IDSS*	6	30	mA
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance (Vps = 15 V, Vg2s = 4.0 V, Vg1s = 0 V, f = 1.0 kHz) Note 2		Y _{fs}	10	22	mmhos
Input Capacitance (Vps = 15 V, Vg2S = 4.0 V, Ip = Ipss, f = 1.0 Mhz)		C _{iss}		/p. .0	pF
Reverse Transfer Capacitance (Vps = 15 V, Vg2s = 4.0 V, I_D = 10 mA, f = 1.0 MHz)		C _{rss}	0.005	0.03	pF
Output Capacitance (Vps = 15 V, Vg2s = 4.0 V, $I_D = I_{DSS}$, $f = 1.0 MHz$)		C _{oss}		/p. .4	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure $(V_{DD} = 18 \text{ V, } V_{GG} = 7.0 \text{ V, } f = 200 \text{ MHz})$ $(V_{DS} = 15 \text{ V, } V_{G2S} = 4.0 \text{ V, } I_{D} = 10 \text{ mA, } f = 450 \text{ MHz})$	3N204 3N204	NF	=	3.5 5.0	dB
Common Source Power Gain (V _{DD} = 18 V, V _{GG} = 7.0 V, f = 200 MHz) (V _{DS} = 15 V, V _{G2S} = 4.0 V, I _D = 10 mA, f = 450 MHz)	3N204 3N204	G _{ps}	20 14	28	dB

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Bandwidth $(V_{DD} = 18 \text{ V, } V_{GG} = 7.0 \text{ V, } f = 200 \text{ MHz})$ $(V_{DD} = 18 \text{ V, } f_{LO} = 245 \text{ MHz, } f_{RF} = 200 \text{ MHz})$ (Note 4)	3N3204 3N205	BW	7.0 4.0	12 7.0	MHz
Gain Control Gate-Supply Voltage (Note 3) (V _{DD} = 18 V, Δ GPS = 300 dB, f = 200 MHz)	3N204	V _{GG} (GC)	0	-2.0	Vdc
Conversion Gain (Note 4) (V _{DD} = 18 V, f _{LO} = 245 MHz, f _{RF} = 200 MHz)	3N205	G _(conv.)	17	28	dB

^{*}PW = 30 μ sec, Duty Cycle \leq 2.0%.

⁽¹⁾ All gate breakdown voltages are measured while the device is conducting rated gate current. This insures that the gate voltage limiting network is functioning propertly.

⁽²⁾ This parameter must be measured with bias voltages applied for less than five (5) seconds to avoid overheating.

⁽³⁾ ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG}=7.0$ V. (4) Amplitude at input from local oscillator is 3 volts RMS.

MAXIMI IM PATINGS

Rating	Symbol	Va	Unit	
Drain-Source Voltage	V _{DS}	25		Vdc
Drain-Gate Voltage	V _{DG1} V _{DG2}	30 30		Vdc
Drain Current	ID	3	mAdc	
Gate Current	IG1R IG1F IG2R IG2F	- 10 10 - 10 10		mAdc
		3N209	MPF209	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.71	_	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		300 2.4	mW mW/°C
Lead Temperature, 1/16" From Seated Surface for 10 seconds	TL	260	200	°C
Storage Channel Temperature Range	T _{stg}	-65 to +175	-65 to +150	°C
Operating Channel Temperature	T _{channel}	175	150	°C

3N209 MPF209

3N209 CASE 20-03, STYLE 9 TO-72 (TO-206AF)

MPF209 CASE 317-01, STYLE 1

DUAL-GATE MOSFET UHF COMMUNICATIONS

N-CHANNEL — DEPLETION

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage (ID = 10 μ Adc, VG1S = -4.0 Vdc, VG2S = 4.0 Vdc)	V _{(BR)DSX}	25	_	_	Vdc
Gate 1 — Source Forward Breakdown Voltage ($I_{G1} = 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0$)	V(BR)G1SSF	7.0	_	22	Vdc
Gate 1 — Source Reverse Breakdown Voltage ($I_{G1} = -10$ mAdc, $V_{G2S} = V_{DS} = 0$)	V(BR)G1SSR	-7.0		-22	Vdc
Gate 2 — Source Forward Breakdown Voltage ($I_{G2} = 10 \text{ mAdc}$, $V_{G1S} = V_{DS} = 0$)	V(BR)G2SSF	7.0	_	22	Vdc
Gate 2 — Source Reverse Breakdown Voltage ($I_{G2} = -10$ mAdc, $V_{G1S} = V_{DS} = 0$)	V(BR)G2SSR	-7.0	_	-22	Vdc
Gate 1 — Terminal Forward Current ($V_{G1S} = 6.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0$)	IG1SSF	-	-	20	nAdc
Gate 1 — Terminal Reverse Current $ \begin{array}{ll} (V_{G1S}=-6.0\ Vdc,\ V_{G2S}=V_{DS}=0) \\ (V_{G1S}=-6.0\ Vdc,\ V_{G2S}=V_{DS}=0,\ T_{A}=150^{\circ}\text{C}) \end{array} $	IG1SSR	=	_	-20 -10	nAdc μAdc
Gate 2 — Terminal Forward Current ($V_{G2S} = 6.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0$)	^I G2SSF	_	-	20	nAdc
Gate 2 — Terminal Reverse Current $(V_{G2S} = -6.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0)$ $(V_{G2S} = -6.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$	I _{G2SSR}	Ξ	1=	-20 -10	nAdc μAdc
ON CHARACTERISTICS		. 1	1 1 1 1		
Gate 1 — Zero Voltage Drain Current ($V_{DS} = 15 \text{ Vdc}$, $V_{G1S} = 0$, $V_{G2S} = 4.0 \text{ Vdc}$)	IDSS	5.0	-	30	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance $(V_{DS}=15~Vdc,V_{G2S}=4.0~Vdc,I_{D}=10~mAdc,f=1.0~kHz)$	Yfs	10	13	20	mmhos
Input Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID \geq 5.0 mAdc, f = 1.0 MHz)	C _{iss}	-	3.3	7.0	pF
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} \ge 5.0 \text{ mAdc}, f = 1.0 \text{ MHz})$	C _{rss}	0.005	0.023	0.03	pF
Output Capacitance (V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D \geqslant 5.0 mAdc, f = 1.0 MHz)	C _{oss}	0.5	2.0	4.0	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
FUNCTIONAL CHARACTERISTICS				Veletine	1.2-10
Noise Figure $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 500 \text{ MHz})$	NF	_	4.0	6.0	dB
Common Source Power Gain (Figure 12) (V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D = 10 mAdc, f = 500 MHz)	G _{ps}	10	13	20	dB
*Bandwidth $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 10 \text{ mAdc}, f = 500 \text{ MHz})$	BW	7.0		17	MHz

FIGURE 1 - MOS FET CIRCUIT SCHEMATIC

TYPICAL SCATTERING PARAMETERS

TYPICAL COMMON-SOURCE ADMITTANCE PARAMETERS

(VDS = 15 Vdc, VGS2 = 4.0 Vdc, ID = 10 mAdc)

FIGURE 8 - Y₂₁, FORWARD TRANSFER ADMITTANCE

FIGURE 9 - Y₂₂, OUTPUT ADMITTANCE versus FREQUENCY

FIGURE 10 — POWER GAIN AND NOISE FIGURE versus SOURCE RESISTANCE
(See Schematic Figure 12)

The Test Circuit shown in Figure 12 was used to generate Power Gain and Noise Figure as a function of Source Resistance curves.

FIGURE 11 - THIRD ORDER INTERMODULATION DISTORTION

Figure 11 shows the typical third order intermodulation distortion (IMD) performance of the 3N209 and 3N210 at 500 MHz.

Both fundamental output and third order IMD output characteristics are plotted. The curves have been extrapolated to show the third order intermodulation output intercept point.

The performance is typical for I_D between 5.0 mAdc and 10 mAdc. The test circuit shown in Figure 12 was used to generate the IMD Data.

FIGURE 12 – TEST CIRCUIT FOR POWER GAIN, NOISE FIGURE AND THIRD ORDER INTERMODULATION DISTORTION

3N211 3N212 3N213

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

Refer to MPF211 for graphs.

MAXIMUM RATINGS

Rating	Symbol	3N211 3N212	3N213	Unit
Drain-Source Voltage	V _{DS}	27	35	Vdc
Drain-Gate Voltage	V _{DG1} V _{DG2}	35 40 35 40		Vdc
Drain Current	ID	50		mAdc
Gate Current	IG1 IG2	±10 ±10		mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	360 2.4		mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.2 8.0		Watt mW/°C
Lead Temperature, 1/16" From Seated Surface for 10 seconds	TL	300		°C
Junction Temperature Range	TJ	-65 to	°C	
Storage Temperature Range	T _{stg}	- 65 to	°C	

Characteristic	3.5	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage (ID = 10 μ Adc, VG1S = VG2S = -4.0 Vdc)	3N211,212 3N213	V(BR)DSX	25 30	_	Vdc
Instantaneous Drain-Source Breakdown Voltage](1) (ID = 10 μ Adc, VG1S = VG2S = -4.0 Vdc)	3N211,212 3N213	V(BR)DSX	27 35	-	Vdc
Gate 1-Source Breakdown Voltage(2) (I _{G1} = ±10 mAdc, V _{G2S} = V _{DS} = 0)	errori Rediction I o millione	V(BR)G1SO	±6.0	(1 <u>—</u>) 5 3 (1 1 0 1 1 1	Vdc
Gate 2-Source Breakdown Voltage(2) $(I_{G2} = \pm 10 \text{ mAdc}, V_{G1S} = V_{DS} = 0)$	in Case 100 and a	V(BR)G2SO	±6.0	0 - 9 - 60	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0) $ $(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_{A} = 150^{\circ}\text{C})$	professor was a	IG1SS		±10 -10	nAdc μAdc
Gate 2 Leakage Current $(V_{G2S} = \pm 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0)$ $(V_{G2S} = -5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}C)$		I _{G2SS}	-	±10 -10	nAdc μAdc
Gate 1 to Source Cutoff Voltage (VDS = 15 Vdc, $V_{G2S} = 4.0 \text{ Vdc}$, $I_D = 20 \mu\text{Adc}$)	3N211,213 3N212	VG1S(off)	-0.5 -0.5	-5.5 -4.0	Vdc
Gate 2 to Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_{D} = 20 \mu\text{Adc})$	3N211 3N212,213	V _{G2S} (off)	-0.2 -0.2	-2.5 -4.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(3) (V _{DS} = 15 Vdc, V _{G1S} = 0, V _{G2S} = 4.0 Vdc)		DSS	6.0	40	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance(4) $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz})$	3N211,212 3N213	Yfs	17 15	40 35	mmhos
Reverse Transfer Capacitance (Vps = 15 Vdc, Vg2s = 4.0 Vdc, I_D = 10 mAdc, f = 1.0 MHz)		C _{rss}	0.005	0.05	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$ $(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211 3N211,13	NF	=	3.5 4.0	dB

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Common Source Power Gain		Gps			dB
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$	3N211		24	35	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211		29	37	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N213		27	35	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$	3N212	G _C (6)	21	28	
Bandwidth	THE WAY WAY	BW			MHz
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$	3N211		5.0	12	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$	3N212		4.0	7.0	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211,213		3.5	6.0	
Gain Control Gate-Supply Voltage(5)		VGG(GC)			Vdc
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz})$	3N211	3,007	_	-2.0	
$(V_{DD} = 24 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz})$	2N211,213		_	±1.0	

⁽¹⁾ Measured after five seconds of applied voltage.

⁽²⁾ All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.

⁽³⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

⁽⁴⁾ This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground.

⁽⁵⁾ ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG}=7.0$ Volts (3N211) and $V_{GG}=6.0$ Volts (3N213). (6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_c .

BS107,A

CASE 29-02, STYLE 30 TO-92 (TO-226AA)

TMOS SWITCHING

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	200	Vdc
Gate-Source Voltage	V _{GS}	±20	Vdc
Drain Current Continuous(1) Pulsed(2)	I _D	250 500	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.6	Watts
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to 150	°C

- (1) The Power Dissipation of the package may result in a lower continuous drain current.
- (2) Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Refer to MFE9200 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Zero-Gate-Voltage Drain Current (Vps = 130 V, V _{GS} = 0)	IDSS	_	=	30	nAdc
Drain-Source Breakdown Voltage (VGS = 0, ID = 100 μ A)	V(BR)DSX	200	_	_	Vdc
Gate Reverse Current (VGS = 15 Vdc, VDS = 0)	IGSS	_	0.01	10	nAdc
ON CHARACTERISTICS*					
Gate Threshold Voltage (I _D = 1.0 mA, V _{DS} = V _{GS})	V _{GS(Th)}	1.0	_	3.0	Vdc
Static Drain-Source On Resistance BS107 $ (V_{GS} = 2.6 \text{ V, } I_{D} = 20 \text{ mA}) \\ (V_{GS} = 10 \text{ V, } I_{D} = 200 \text{ mA}) \\ BS107A \\ (V_{GS} = 10 \text{ Vdc}) \\ (I_{D} = 100 \text{ mA}) \\ (I_{D} = 250 \text{ mA}) $	rDS(on)	=	 4.5 4.8	28 14 6.0 6.4	Ohms
SMALL-SIGNAL CHARACTERISTICS	*				
Input Capacitance ($V_{DS} = 25 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{iss}	_	72	90	pF
Reverse Transfer Capacitance ($V_{DS} = 25 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{rss}	1	2.8	3.5	pF
Output Capacitance ($V_{DS} = 25 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{oss}	_	15	20	pF
Forward Transconductance (V _{DS} = 25 V, I _D = 250 mA)	9fs	200	400	_	mmhos
SWITCHING CHARACTERISTICS					
Turn-On Time	t _{on}	_	6.0	15	ns
Turn-Off Time	toff	_	12	15	ns

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

BS170

CASE 29-02, STYLE 30 TO-92 (TO-226AA)

TMOS FET SWITCHING

N-CHANNEL — ENHANCEMENT

Refer to 2N6659 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	60	Vdc	
Gate-Source Voltage	VGS	±20	Vdc	
Drain Current(1)	ID	0.5	Adc	
Total Device Dissipation @ T _C = 25°C	PD	0.83	Watt	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	

(1) The Power Dissipation of the package may result in a lower continuous drain current.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Gate Reverse Current (VGS = 15 V, V _{DS} = 0)	IGSS	_	0.01	10	nAdc
Drain-Source Breakdown Voltage (VGS = 0, ID = 100 μ A)	V(BR)DSS	60	90	_	Vdc
ON CHARACTERISTICS(2)					
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.0 mA)	V _{GS(Th)}	0.8	2.0	3.0	Vdc
Static Drain-Source On Resistance (V _{GS} = 10 V, I _D = 200 mA)	rDS(on)	-	1.8	5.0	Ohms
Drain Cutoff Current (Vps = 25 V, Vgs = 0 V)	I _{D(off)}	-	-	0.5	μΑ
Forward Transconductance (Vps = 10 V, lp = 250 mA)	9fs	-	200	_	mmhos
SMALL-SIGNAL CHARACTERISTICS					
Input Capacitance ($V_{DS} = 10 \text{ V, } V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{iss}	_	60	_	pF
SWITCHING CHARACTERISTICS					
Turn-On Time (I _D = 0.2 A) See Figure 1	ton	_	4.0	10	ns
Turn-Off Time (I _D = 0.2 A) See Figure 1	toff	(h) A	4.0	10	ns

(2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

RESISTIVE SWITCHING

FIGURE 2 - SWITCHING WAVEFORMS FIGURE 1 - SWITCHING TEST CIRCUIT + 25 V 125 Ω To Sampling Scope 50 Ω Input ton toff 20 dB Pulse Generator → V_{out} 40 pF 50 Ω Attenuator 50 Ω Output Vout 10% **§** 1.0 MΩ 50 Ω Inverted 10% (Vin Amplitude 10 Volts) Input Vin Pulse

Width

J107, J108 J109, J110

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET GENERAL-PURPOSE TRANSISTOR

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	- 25	Vdc
Gate-Source Voltage	VGS	- 25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Junction Temperature Range	TJ	135	°C
Storage Channel Temperature Range	T _{stq}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage $(V_{DS} = 0, I_G = -10 \mu Adc)$		V(BR)GSS	-25	_	_	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$		IGSS	_	=	-3.0 -200	nAdc
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, I_{D} = 10 \text{ nAdc})$	J107 J108 J109 J110	V _{GS(off)}	-0.5 -3.0 -2.0 -0.5	Ē	-4.5 -10 -6.0 -4.0	Vdc

ON CHARACTERISTICS

Zero-Gate-Voltage Drain Current(1)		IDSS				mAdc
$(V_{DS} = 15, V_{GS} = 0)$	J107	500	100	_	_	
. 55	J108	100	80		_	
	J109		40	_	_	
	J110		10	_	_	
Drain-Source On-Resistance		rDS(on)				ohms
$(V_{DS} < 0.1 \text{ V}, V_{GS} = 0 \text{ V})$	J107		8	_	8.0	
	J108		_	_	8.0	
	J109		-	_	12	
	J110	20 1965	(CO)		18	

SMALL-SIGNAL CHARACTERISTICS

Drain Gate + Source Gate On-Capacitance $(V_{DS}=0\ Vdc,\ V_{GS}=0,\ f=1.0\ MHz)$	C _{dg(on)} + C _{sg(on)}		=	85	pF
Drain Gate Off-Capacitance ($V_{DS} = 0 \text{ Vdc}$, $V_{GS} = -10 \text{ V}$, $f = 1.0 \text{ MHz}$)	C _{dg} (off)	-	-	15	pF
Source Gate Off-Capacitance ($V_{DS} = 0 \text{ Vdc}$, $V_{GS} = -10 \text{ V}$, $f = 1.0 \text{ MHz}$)	C _{sg(off)}	·	_	15	pF

(1) Pulse Duration 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 1 — COMMON SOURCE INPUT CAPACITANCE versus GATE-SOURCE VOLTAGE

FIGURE 2 — COMMON SOURCE REVERSE FEEDBACK CAPACITANCE versus GATE-SOURCE VOLTAGE

FIGURE 3 — ON-RESISTANCE versus GATE-SOURCE CUTOFF VOLTAGE

FIGURE 4 — OUTPUT CHARACTERISTIC

FIGURE 5 — OUTPUT CHARACTERISTIC

FIGURE 6 — OUTPUT CHARACTERISTIC

FIGURE 7 — OUTPUT CHARACTERISTIC

J111 J112 J113

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET CHOPPER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	-35	Vdc
Gate-Source Voltage	VGS	-35	Vdc
Gate Current	IG	50	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.68	mW mW/°C
Lead Temperature	TL	300	°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (I _G = -1.0 μA)		V _(BR) GSS	35	_	Vdc
Gate Reverse Current (VGS = -15 V)		IGSS	_	- 1.0	nA
Gate Source Cutoff Voltage (VDS = 5.0 V, ID = 1.0 μ A)	J111 J112 J113	V _{GS(off)}	-3.0 -1.0 -0.5	- 10 - 5.0 - 3.0	V
Drain-Cutoff Current $(V_{DS} = 5.0 \text{ V}, V_{GS} = -10 \text{ V})$		ID(off)	_	1.0	nA
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current* (V _{DS} = 15 V)	J111 J112 J113	IDSS	20 5.0 2.0	=	mA
Static Drain-Source On Resistance (V _{DS} = 0.1 V)	J111 J112 J113	rDS(on)	=	30 50 100	Ohms
Drain Gate and Source Gate On-Capacitance ($V_{\mbox{DS}} = V_{\mbox{GS}} = 0$, f = 1.0 MHz)		C _{dg(on)} + C _{sg(on)}	_	28	pF
Drain Gate Off-Capacitance (VGS = -10 V, f = 1.0 MHz)		C _{dg(off)}	_	5.0	pF
Source Gate Off-Capacitance (VGS = -10 V, f = 1.0 MHz)		C _{sg(off)}	_	5.0	pF

^{*}Pulse Width = 300 μ sec, Duty Cycle = 3.0%.

J174 J175 J176 J177

CASE 29-02, STYLE 30 TO-92 (TO-226AA)

JFET CHOPPER TRANSISTOR

P-CHANNEL — DEPLETION

Refer to MPF970 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Gate Current	IG	50	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					Spile Wat 1
Gate-Source Breakdown Voltage (I _G = 1.0 μA)		V _(BR) GSS	30	00 C = 0 S	Vdc
Gate Reverse Current (VGS = 20 Volts)		IGSS	-	1.0	nA
Gate Source Cutoff Voltage $(V_{DS} = -15 \text{ V}, I_D = -10 \text{ nA})$	J174 J175 J176 J177	V _{GS(off)}	5.0 3.0 1.0 0.8	10 6.0 4.0 2.5	Vdc

CHARACTERISTICS	

Zero-Gate-Voltage Drain Current		IDSS*			mA
$(V_{DS} = -15 V)$	J174		-2.0	- 100	
. 50	J175		-7.0	-60	
	J176		-2.0	-25	
	J177		-1.5	-20	A SPECIAL
Static Drain-Source On Resistance	Police	rDS(on)		THE REST OF	Ω
$(V_{DS} \leq -0.1 \text{ Volt})$	J174		_	85	
. 50	J175		-	125	
	J176		-	250	
	J177		_	300	AUTO SELE

^{*}Pulse Width = 300 μs, Duty Cycle ≤ 3.0%.

J201 J202 J203

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET LOW FREQUENCY/LOW NOISE

N-CHANNEL — DEPLETION

Refer to 2N4220 for graphs.

MAXIMUM RATINGS	STATE OF THE		
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	40	Vdc
Drain-Gate Voltage	V _{DG}	40	Vdc
Gate-Source Voltage	VGS	40	Vdc
Gate Current	IG	50	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	STICS			A TRIBUTAL	MARKET THE
Gate-Source Breakdown Voltage $(I_G = -1.0 \mu A)$		V(BR)GSS	-40	y 3	Vdc
Gate Reverse Current (V _{GS} = -20 V)		l _{GSS}	_	-100	pA
Gate Source Cutoff Voltage $(V_{DS} = 20 \text{ V, } I_D = 10 \text{ nA})$	J201 J202 J203	VGS(off)	-0.3 -0.8 -2.0	-1.5 -4.0 -10.0	Vdc
ON CHARACTERISTICS	1816				
Zero-Gate-Voltage Drain Current (VDS = 20 V)	J201 J202 J203	IDSS*	0.2 0.9 4.0	1.0 4.5 20.0	mA
SMALL-SIGNAL CHARACTERISTICS		•			
Forward Transfer Admittance (V _{DS} = 20 V, f = 1.0 kHz)	J201 J202 J203	yfs *	500 1000 1500	Ξ	μmhos

^{*}Pulse Width ≤ 2.0 msec.

J270 J271

CASE 29-02, STYLE 30 TO-92 (TO-226AA)

JFET CHOPPER TRANSISTOR

P-CHANNEL — DEPLETION

Refer to MPF970 for graphs.

-6.0

-50

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Gate Current	IG	50	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 3.27	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				and the same	
Gate-Source Breakdown Voltage ($I_G = 1.0 \mu A$)		V _(BR) GSS	30	-	Vdc
Gate Reverse Current (VGS = 20 Volts)		IGSS	_	200	pA
Gate Source Cutoff Voltage $(V_{DS} = -15 \text{ V}, I_D = -1.0 \text{ nA})$	J270 J271	V _{GS(off)}	0.5 1.5	2.0 4.5	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current (VDS = -15 V)	J270	I _{DSS} *	-2.0	- 15	mA

manufacturers (1) Charmen to call of	
	CHARACTERISTICS

Forward Transfer Admittance $(V_{DS} = -15 \text{ V}, f = 1.0 \text{ kHz})$	J270 J271	Yfs	6000 8000	15000 18000	μmhos
Output Admittance (V _{DS} = -15 V, f = 1.0 kHz)	J270 J271	Yos	= -	200 500	μmhos
Input Capacitance (V _{DS} = -15 V, f = 1.0 MHz)		C _{iss}		32	pF
Reverse Transfer Capacitance (VDS = -15 V, f = 1.0 MHz)		C _{rss}	_	8.0	pF

J271

^{*}Pulse Width ≤ 2.0 ms.

J300

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET HIGH FREQUENCY AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

MAXIMUM RATINGS	PERSONAL AND INSTRUMENTAL PROPERTY AND INCIDENCE AND INCID			
Rating	Symbol	Value	Unit	
Drain-Gate Voltage	V _{DG}	- 25	Vdc	
Gate Current	IG	10	mA	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 3.5	mW mW/°C	
Lead Temperature (1/16" from Case for 10 Seconds)	T _L	300	°C	
Junction Temperature Range	TJ	TJ -55 to +150		
Storage Temperature Range	T _{stg}	-55 to +150	°C	

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				ALL SHOP IN	
Gate-Source Breakdown Voltage (I _G = -1.0 μA, V _{DS} = 0)		V _(BR) GSS	- 25	Au I	Vdc
Gate Reverse Current (V _{GS} = -15 V, V _{DS} = 0)		IGSS	_	500	pA
Gate Source Cutoff Voltage (V _{DS} = 10 V, I _D = 1.0 mA)	News.	V _{GS(off)}	- 1.0	-6.0	Vdc
ON CHARACTERISTICS				V 53 1	SECTION NO.
Zero-Gate-Voltage Drain Current (V _{DS} = 10 V, V _{GS} = 0)	.1501	¹ DSS	6.0	30	mA
Gate-Source Forward Voltage (V _{DS} = 0, I _G = 1.0 mA)		V _{GS(f)}	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			to be a second		
Forward Transfer Admittance (Vps = 10 V, lp = 5.0 mA, f = 1.0 kHz)	061.1 156	Vfs	4500	9000	μmhos
Output Admittance (VDS = 10 V, ID = 5.0 mA, f = 1.0 kHz)	MGS	Yos		200	μmhos
Input Capacitance ($V_{DS} = 10 \text{ V}, I_D = 5.0 \text{ mA}, f = 1.0 \text{ MHz}$)	*Xia	C _{iss}		5.5	pF
Reverse Transfer Capacitance ($V_{DS} = 10 \text{ V}$, $I_{D} = 5.0 \text{ mA}$, $f = 1.0 \text{ MHz}$)		C _{rss}	LISTA S	1.7	pF

J304 J305

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET
HIGH FREQUENCY
AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	-30	Vdc
Gate-Source Voltage	V _{GS}	-30	Vdc
Gate Current	lG	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 3.5	mW mW/°C
Lead Temperature (1/16" from Case for 10 Seconds)	SATL A	300	°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Characteristic		Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					Part Control	
Gate-Source Breakdown Voltage (IG = 1.0 μ A, VDS = 0)	22.30		V(BR)GSS	30	1 7 X A. D	Vdc
Gate Reverse Current (V _{GS} = -20 V, V _{DS} = 0)	Page		IGSS	0.7(100	pA
Gate Source Cutoff Voltage (V _{DS} = 15 V, I _D = 1.0 nA)	Ma	J304 J305	VGS(off)	-2.0 -0.5	-6.0 -3.0	Vdc
ON CHARACTERISTICS		9/10-				
Zero-Gate-Voltage Drain Current $(V_{DS} = 15 \text{ V}, V_{GS} = 0)$	-34	J304 J305	IDSS	5.0 1.0	15 8.0	mA
SMALL-SIGNAL CHARACTERISTICS		118 6			13.73	
Output Admittance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz)	N AND		Yos		50	μmhos
Forward Transconductance (V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz)	T	J304 J305	Re(yfs)	4500 3000	7500	μmhos

J308 J309 J310

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET VHF/UHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS							
Rating	Symbol	Value	Unit				
Drain-Source Voltage	V _{DS}	25	Vdc				
Gate-Source Voltage	VGS	25	Vdc				
Forward Gate Current	l _{GF}	10	mAdc				
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 3.5	mW mW/°C				
Junction Temperature Range	TJ	-55 to +125	°C				
Storage Temperature Range	T _{stg}	-55 to +150	°C				

Refer to U308 for graphs.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	
Gate-Source Breakdown Voltage (I _G = -1.0 μA, V _{DS} = 0)		V _(BR) GSS	- 25	tenesie e	enterproduction	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 25^{\circ}\text{C})$ $(V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = +125^{\circ}\text{C})$		IGSS		=	-1.0 -1.0	nΑ μΑ
Gate Source Cutoff Voltage $(V_{DS} = 10 \text{ V}, I_{D} = 1.0 \text{ nA})$	J308 J309 J310	VGS(off)	-1.0 -1.0 -2.0	=	-6.5 -4.0 -6.5	Vdc
ON CHARACTERISTICS					and make to	3636
Zero-Gate-Voltage Drain Current(1) (V _{DS} = 10 V, V _{GS} = 0)	J308 J309 J310	IDSS	12 12 24	=	60 30 60	mA
Gate-Source Forward Voltage (V _{DS} = 0, I _G = 1.0 mA)	1	V _{GS(f)}	-	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					1 12	T de A
Common-Source Input Conductance $(V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ mA}, f = 100 \text{ MHz})$	J308 J309 J310	Re(y _{is})	=	0.7 0.7 0.5	=	mmhos
Common-Source Output Conductance (V _{DS} = 10 V, I _D = 10 mA, f = 100 MHz)		Re(yos)	_	0.25	_	mmhos
Common-Gate Power Gain (V _{DS} = 10 V, I _D = 10 mA, f = 100 MHz)		G _{pg}	_	16	_	dB
Common-Source Forward Transconductance (V _{DS} = 10 V, I _D = 10 mA, f = 100 MHz)		Re(y _{fs})	_	12	_	mmhos
Common-Gate Input Conductance ($V_{DS} = 10 \text{ V}, I_D = 10 \text{ mA}, f = 100 \text{ MHz}$)		Re(yig)	_	12	-	mmhos
Common-Gate Forward Transconductance (V $_{DS} = 10$ V, I $_{D} = 10$ mA, f = 1.0 kHz)	J308 J309 J310	9fs	8000 10000 8000		20000 20000 18000	μmhos
Common-Gate Output Conductance ($V_{DS}=10~V, I_{D}=10~mA, f=1.0~kHz$)	J308 J309 J310	9os		=	200 150 200	μmhos

 nV/\sqrt{Hz}

J308, J309, J310

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Common-Gate Forward Transconductance ($V_{DS} = 10 \text{ V}$, $I_D = 10 \text{ mA}$, $f = 1.0 \text{ kHz}$)	J308 J309 J310	9fg	_	13000 13000 12000		μmhos
Common-Gate Output Conductance ($V_{DS} = 10 \text{ V}, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz}$)	J308 J309 J310	9og		150 100 150		μmhos
Gate-Drain Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ V}, f = 1.0 \text{ MHz})$		C _{gd}	_	1.8	2.5	pF
Gate-Source Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ V}, f = 1.0 \text{ MHz})$		C _{gs}	_	4.3	5.0	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure (Vps = 10 V, lp = 10 mA, f = 450 MHz)		NF	_	1.5	_	dB

 \overline{e}_{n}

10

Equivalent Short-Circuit Input Noise Voltage

JF1033B JF1033S JF1033Y

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET HIGH FREQUENCY AMPLIFIER

N-CHANNEL DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	20	Vdc
Gate-Source Voltage	VGS	25	Vdc
Drain Current	ID	20	mA
Forward Gate Current	IGF	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage ($I_G = -10 \mu A$)		V _(BR) GSS	- 25	_	Vdc
Drain-Source Breakdown Voltage ($I_D = 10 \mu A$)		V _(BR) DGO	20	_	Vdc
Gate Reverse Current $(V_{GS} = -10 \text{ V}, V_{DS} = 0)$		IGSS	-	-100	nA
Gate Source Cutoff Voltage (VDS = 10 V, ID = 10 μ A)		VGS(off)	-1.0	-8.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$	JF1033Y JF1033B JF1033S	IDSS	2.5 5.0 10.0	6.0 12.0 20.0	mA
SMALL-SIGNAL CHARACTERISTICS					
Forward Transconductance ($V_{DS} = 10 \text{ V}$, $V_{GS} = 0$, $f = 1.0 \text{ kHz}$)		Re(yfs)	4.5	13.0	mmhos
FUNCTIONAL CHARACTERISTICS					
Noise Figure $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 100 \text{ MHz})$		NF	-	2.5	dB

MFE120 MFE121 MFE122

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	+ 25	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	Takes					
Drain-Source Breakdown Voltage (I _D = 100 μ Adc, V _S = 0, V _{G1S} = -4.0 V, V _{G2S} = +	4.0 V)	V _{(BR)DSX}	25	_	-	Vdc
Gate 1-Source Breakdown Voltage (I _{G1} = \pm 10 μ Adc, V _{G2S} = 0)		V(BR)G1SO	±7.0	_	±20	Vdc
Gate 2-Source Breakdown Voltage ($I_{G2} = \pm 10 \mu Adc$, $V_{G2S} = 0$)		V(BR)G2SO	±7.0	<u> </u>	± 20	Vdc
Gate 1 Leakage Current (VG1S = +6.0 Vdc, VG2S = 0, VDS = 0)		IG1SS	-	-	20	nAdc
Gate 2 Leakage Current $(V_{G2S} = +6.0 \text{ Vdc}, V_{G1S} = 0, V_{DS} = 0)$		l _{G2SS}		1	20	nAdc
Gate 1 to Source Cutoff Voltage (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 200 μ Adc)		VG1S(off)		-	-4.0	Vdc
Gate 2 to Source Cutoff Voltage (V _{DS} = 15 Vdc, V _{G1S} = 0, I _D = 200 μAdc)		V _{G2S(off)}	_	y =	-4.0	Vdc
ON CHARACTERISTICS	State of the last of the	A 5 300	CHARLE	4		
Zero-Gate-Voltage Drain Current $(V_{DS}=15\ Vdc,V_{G1S}=0,V_{G2S}=4.0\ Vdc)$	MFE120 MFE121 MFE122	IDSS	2.0 5.0 2.0	7.0 10 9.0	18 30 20	mAdc
SMALL-SIGNAL CHARACTERISTICS		1-6		-	11	
Forward Transfer Admittance (Gate 1 to Drain) ($V_{DS} = 15 \text{ Vdc}$, $V_{G2S} = 4.0 \text{ Vdc}$, $V_{D} = 10 \text{ mAdc}$, $V_{D} = 10 \text{ mAdc}$, $V_{D} = 10 \text{ mAdc}$	MFE120,22 MFE121	Y _{fs}	8000 10,000	_	18,000 20,000	μmhos
Input Capacitance $ \begin{array}{ll} (V_{DS}=15~\text{Vdc}, V_{G2S}=4.0~\text{Vdc}, \\ I_{D}=I_{DSS}, f=1.0~\text{MHz}) \end{array} $	MFE120,22 MFE121	C _{iss}	= 1	4.5 4.5	7.0 6.0	pF
Reverse Transfer Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 6.0 mAdc, f = 1.0 MHz)		C _{rss}	Ι	0.023	_	pF
Output Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = IDSS, f = 1.0 MHz)	MFE120,22 MFE121	C _{oss}	= 1	2.5 2.5	4.0 3.5	pF

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
FUNCTIONAL CHARACTERISTICS						
Noise Figure (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 6.0 mAdc, ZS is optimized for NF) (f = 105 MHz — Figure 1) (f = 60 MHz — Figure 3) (f = 200 MHz — Figure 3)	MFE120 MFE121 MFE121	NF	=	2.9 2.6 2.6	5.0 5.0 5.0	dB
Common Source Power Gain (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 6.0 mAdc, ZS is optimized for NF) (f = 105 MHz — Figure 1) (f = 60 MHz — Figure 3) (f = 200 MHz — Figure 3)	MFE120 MFE121 MFE121	G _{ps}	17 20 17	19.6 27.8 18.6	000 <u>0</u> 00 0	dB
Level of Unwanted Signal for 1.0% Cross Modulation ($V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 6.0 \text{ mAdc}$)	4		_	100		mV
Common-Source Conversion Power Gain (Gate 1 Injection (VDS = 15 Vdc, VG2S = 4.0 Vdc, Local Oscillator Voltage = 925 mVrms) (Signal Frequency = 60 MHz, Local Oscillator Frequency = 104 MHz) (Signal Frequency = 200 MHz, Local Oscillator Frequency = 244 MHz)	MFE122	G _C	15	16.5		dB

FIGURE 1 — 60, 105 AND 200 MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT

FIGURE 2 — 60 AND 200 MHz CONVERSION GAIN TEST CIRCUIT

All Feedthrough Capacitors 1000 pf.
All Variable Capacitors JOHANSON JMC2951, 3.0–15 pF

FIGURE 3 - 60 AND 200 MHz CONVERSION POWER GAIN

COMMON-SOURCE ADMITTANCE PARAMETERS

 $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ V.dc}, I_{D} = 6.0 \text{ mAdc})$

40 50

30

FIGURE 5 - REVERSE TRANSFER ADMITTANCE

-grs

200

100

f, FREQUENCY (MHz)

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET FM AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	±7.0	Vdc
Drain Current	ID	30	mAdo
Gate Current	IG	10	mAdo
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300	mW
Operating and Storage Channel Temperature Range	T _{channel} ,	-65 to +175	°C

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			-		
Drain-Source Breakdown Voltage (Ip = 10 μ Adc, Vs = 0, Vs1 = -4.0 Vdc, Vs2 = +4.0 Vdc)	V _{(BR)DSX}	25	_	_	Vdc
Gate 1-Source Breakdown Voltage ($I_{G1} = \pm 10 \mu Adc, V_{G2S} = 0$)	V _{(BR)G1SO}	±7.0	_	± 20	Vdc
Gate 2-Source Breakdown Voltage ($I_{G2} = \pm 10 \mu Adc$, $V_{G2S} = 0$)	V _(BR) G2SO	±7.0	_	±20	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 6.0 \text{ Vdc}, V_{G2S} = 0, V_{DS} = 0)$	IG1SS	_		20	nAdc
Gate 2 Leakage Current ($V_{G2S} = \pm 6.0 \text{ Vdc}$, $V_{G1S} = 0$, $V_{DS} = 0$)	I _{G2SS}	_	_	20	nAdc
Gate 1 to Source Cutoff Voltage ($V_{DS}=15~V_{dc},V_{G2S}=4.0~V_{dc},I_{D}=200~\mu A_{dc}$)	VG1S(off)	_	-	-4.0	Vdc
Gate 2 to Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_D = 200 \mu Adc$)	V _{G2} S(off)	_	_	-4.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current (VDS = 15 Vdc, VG2S = 0, VG2S = 4.0 Vdc)	IDSS	3.0	10	30	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance (Gate 1 connected to Drain) ($V_{DS}=15~V_{dc},V_{G2S}=4.0~V_{dc},I_{D}=10~mAdc,f=1.0~kHz)$	Yfs	10	_	20	mmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = I_{DSS}, f = 1.0 \text{ MHz})$	C _{iss}	_	4.5	7.0	pF
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = I_{DSS}, = 1.0 \text{ MHz})$	C _{rss}	_	0.023	0.05	pF
Output Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = I_{DSS}, f = 1.0 \text{ MHz})$	Coss	7	2.5	4.0	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (Figure 8) (See Test Circuit in Figure 11)	NF	-	2.5	3.5	dB
Common Source Power Gain (Figure 7) (See Test Circuit in Figure 11)	G _{ps}	20	23	_	dB
Level of Unwanted Signal for 1.0% Cross Modulation (Figure 10) (See Test Circuit in Figure 11)	_	_	45	_	mV

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Common-Source Conversion Power Gain (Gate 1 or Gate 2 Injection, Figure 12) (See Test Circuit in Figure 13) (Signal Frequency = 100 MHz, Local Oscillator Frequency = 110.7 MHz)	G _C	15	18.5	_	dB
1/2 I.F. Rejection (See Test Circuit in Figure 13)	1/2 I _{FREJ}	_	50	-	dB

COMMON-SOURCE ADMITTANCE PARAMETERS

($V_{DS} = 15 \text{ Vdc}$, $V_{G2S} = 4.0 \text{ Vdc}$, $I_D = 6.0 \text{ mAdc}$)

The following component values are for a <u>stern</u> stability factor = 2.0. L1,L2 126 nH PAUL SMITH CO. SK-138-1

- 4-½ Turns (yellow)
 C1 Nominal 7.0 pF Adjusted for source impedance of approximately 1000 Ω, JOHANSON JMC2951
- C2 Nominal 4.0 pF ARCO 402
- C3 Nominal 13.73 pF ARCO 403
- C4 Nominal 4.36 pF JOHANSON JMC2951
- All Decoupling Capacitors are Ceramic Discs.

FIGURE 13 - CONVERSION GAIN TEST CIRCUIT

Local Oscillator Injection $V_{in}(RMS) \approx 2.0 \text{ V for G2}$ $\approx 0.9 \text{ V for G1}$ f = 110.7 MHz

L1 126 nH PAUL SMITH CO. SK-138-1

4-½ Turns (yellow) L2 2.73 µH High Unloaded Q

C1 JOHANSON JMC2951

C4,C5,C6 ARCO 402

^{*}For G1 injection, C2 is changed to bypass G2 to ground and C3 is added to connect G1 to the injection input.

PRINTED CIRCUIT BOARD LAYOUT INFORMATION

FIGURE 14 - TEST FIXTURES

105 MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT

A MARC

100 MHz to 10.7 MHz CONVERSION GAIN TEST CIRCUIT

CASE 22-03, STYLE 11 TO-18 (TO-206AA)

MOSFET

P-CHANNEL - ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	VDG	±10	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.71	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	584	°C/W
Thermal Resistance, Junction to Case	R _B JC	250	°C/W

Refer to 2N4352 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage ($I_D = -10 \mu Adc$, $V_{GS} = 0 Vdc$)	V(BR)DSX	- 25	-	Vdc
Zero-Gate-Voltage Drain Current (VDS = -10 Vdc, VGS = 0)	IDSS	-	-20	nAdc
Gate Reverse Current $(V_{GS} = -10 \text{ Vdc}, V_{DS} = 0)$	IGSS	_	1.0	pAdc
ON CHARACTERISTICS				
Gate Threshold Voltage (Vps = -10 Vdc, lp = -10 μ Adc)	V _{GS(Th)}	-2.0	-6.0	Vdc
On-State Drain Current $(V_{DS} = -10 \text{ Vdc}, V_{GS} = -10 \text{ Vdc})$	I _{D(on)}	-3.0	-	mAdc
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance $(V_{DS} = -10 \text{ Vdc}, I_D = -2.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	Yfs	1000	_	μmhos
Input Capacitance $(V_{DS}=-10\ Vdc,\ V_{GS}=-10\ Vdc,\ f=1.0\ MHz)$	C _{iss}	-	6.0	pF
Reverse Transfer Capacitance (V _{DS} = -10 Vdc, V _{GS} = -10 Vdc, f = 1.0 MHz)	C _{rss}	-	1.5	pF

CASE 22-03, STYLE 2 TO-18 (TO-206AA)

MOSFET

N-CHANNEL — DEPLETION

Refer to 2N3796 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	20	Vdc
Gate-Source Voltage	VGS	30	Vdc
Drain Current	ID	25	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.6	mW mW/°C
Junction Temperature Range	TJ	150	°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage ($I_D = 1.0 \mu A, V_{GS} = -8.0 V$)	V(BR)DSX	20	_	Vdc
Gate Reverse Current (VGS = -10 V, VDS = 0 V)	lGSS	_	-1.0	pA
Gate Source Voltage (I _D = 1.0 μA, V _{DS} = 2.0 V)	V _{GS}	0	-2.0	Vdc
ON CHARACTERISTICS				- 7
Zero-Gate-Voltage Drain Current (V _{DS} = 10 V, V _{GS} = 0)	IDSS	1.0	25	mA
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance ($V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}$)	Yfs	500	_	μmhos

MFE910 MPF910

MFE910 CASE 79-02, STYLE 6 TO-39 (TO-205AD)

MPE910 CASE 29-03, STYLE 22 (TO-226AE)

TMOS

SWITCHING

N-CHANNEL — ENHANCEMENT

Refer to 2N6659 for additional graphs.

MAXIMUM BATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	60	Vdc
Gate-Source Voltage	VGS	± 15	Vdc
Drain Current — Continuous(1) Pulsed(2)	I _D	0.5 1.0	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C MPF910	PD	1.0 8.0	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C MFE910	PD	6.25 50	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

- (1) The Power Dissipation of the package may result in a lower continuous drain
- (2) Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			4-1	data ara	AT ISSUE
Zero-Gate-Voltage Drain Current (VDS = 40 V, VGS = 0)	IDSS	_	0.1	10	μAdc
Gate Reverse Current (V _{GS} = 10 V, V _{DS} = 0)	IGSS	-	0.01	10	nAdc
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = 100 μA)	V(BR)DSS	60	90	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Vdc
ON CHARACTERISTICS			67	421 4714	MANAGE MAN
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.0 mA)	VGS(th)	0.3	1.5	2.5	Vdc
Drain-Source On-Voltage (VGS = 10 V, I _D = 500 mA)	V _{DS(on)}	_100	19-11-11	2.5	Vdc
On-State Drain Current (V _{DS} = 25 V, V _{GS} = 10 V)	I _{D(on)}	500	_	-	mA
Forward Transconductance (V _{DS} = 15 V, I _D = 500 mA)	9fs	100	_	_	mmhos

FIGURE 2 — ON-REGION CHARACTERISTICS

FIGURE 3 — OUTPUT CHARACTERISTICS

FIGURE 4 — CAPACITANCE versus DRAIN-TO-SOURCE VOLTAGE

MFE930 MFE960 MFE990

CASE 79-02, STYLE 6 TO-39 (TO-205AD)

TMOS SWITCHING

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	MFE930	MFE960	MFE990	Unit			
Drain-Source Voltage	V _{DS}	35	60	90	Vdc			
Drain-Gate Voltage	V _{DG}	35	60	90	Vdc			
Gate-Source Voltage	VGS		±30			±30		
Drain Current Continuous(1) Pulsed(2)	I _D		2.0 3.0					
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	6.25 50			Watts mW/°C			
Operating and Storage Junction Temperature Range	TJ, T _{stg}		-55 to 150					

- (1) The Power Dissipation of the package may result in a lower continuous drain current.
- (2) Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage (VGS = 0, ID = 10 μ A)	MFE930 MFE960 MFE990	V _{(BR)DSX}	35 60 90	=	_	Vdc
Gate Reverse Current (VGS = 15 Vdc, VDS = 0)		IGSS	_	_	50	nAdc
ON CHARACTERISTICS*						
Zero-Gate-Voltage Drain Current (VDS = Maximum Rating, VGS = 0)		IDSS	_	-	10	μAdc
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.0 mA)		V _{GS(Th)}	1.0	-	3.5	Vdc
Drain-Source On-Voltage (VGS = 10 V) $(I_D = 0.5 \text{ A})$	MFE930 MFE960 MFE990	V _{DS} (on)	=	0.4 0.6 0.6	0.7 0.8 1.2	Vdc
(I _D = 1.0 A)	MFE930 MFE960 MFE990		=	0.9 1.2 1.2	1.4 1.7 2.4	
$(I_D = 2.0 \text{ A})$	MFE930 MFE960 MFE990		=	2.2 2.8 2.8	3.0 3.5 4.8	
Static Drain-Source On Resistance $(V_{GS} = 10 \text{ Vdc}, I_D = 1.0 \text{ Adc})$	MFE930 MFE960 MFE990	rDS(on)	_	0.9 1.2 1.2	1.4 1.7 2.0	Ohms
On-State Drain Current (V _{DS} = 25 V, V _{GS} = 10 V)		I _{D(on)}	1.0	2.0	_	Amps
SMALL-SIGNAL CHARACTERISTICS						
Input Capacitance (VDS = 25 V, VGS = 0, $f = 1.0 \text{ MHz}$)		C _{iss}	_	60	70	pF
Reverse Transfer Capacitance (V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)		C _{rss}	-	13	18	pF
Output Capacitance (Vps = 25 V, Vgs = 0, f = 1.0 MHz)		C _{oss}	_	49	60	pF

MFE930, MFE960, MFE990

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Forward Transconductance (V _{DS} = 25 V, I _D = 0.5 A)	9fs	200	380	_	mmhos
SWITCHING CHARACTERISTICS*					
Turn-On Time (See Figure 1)	t _{on}	_	7.0	15	ns
Turn-Off Time (See Figure 1)	toff		7.0	15	ns

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

RESISTIVE SWITCHING

FIGURE 1 - SWITCHING TEST CIRCUIT

FIGURE 2 — SWITCHING WAVEFORMS

FIGURE 3 — ON VOLTAGE versus TEMPERATURE,

FIGURE 4 — CAPACITANCE VARIATION

FIGURE 5 — TRANSFER CHARACTERISTIC

FIGURE 6 - OUTPUT CHARACTERISTIC

FIGURE 7 - SATURATION CHARACTERISTIC

MFE2000 MFE2001

CASE 20-03, STYLE 1 TO-72 (TO-206AF)

JFET VHF/UHF AMPLIFIER

N-CHANNEL — DEPLETION

Refer to 2N4416 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Gate-Source Voltage	VGS	- 25	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) Characteristic Min Symbol Тур Max Unit OFF CHARACTERISTICS Gate-Source Breakdown Voltage V(BR)GSS -25 Vdc $(I_G = -1.0 \, \mu Adc, V_{DS} = 0)$ Gate Reverse Current IGSS $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0)$ -100pAdc $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$ -200nAdc Gate Source Cutoff Voltage VGS(off) Vdc MFE2000 $(I_D = 0.5 \text{ mAdc}, V_{DS} = 15 \text{ Vdc})$ -0.5-4.0 MFE2001 -2.0-6.0ON CHARACTERISTICS Zero-Gate-Voltage Drain Current DSS mAdc $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$ MFE2000 10 4.0 MFE2001 8.0 20 SMALL-SIGNAL CHARACTERISTICS Forward Transfer Admittance Yfs μmhos $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$ MFE2000 2500 6000 MFE2001 4000 8000 **Output Admittance** Yos μmhos $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$ MFE2000 50 MFE2001 75 Ciss Input Capacitance 5.0 pF $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$ Reverse Transfer Capacitance Crss 1.0 pF $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$ **Output Capacitance** Coss 2.0 pF $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$ **FUNCTIONAL CHARACTERISTICS** NF dB $(V_{DS} = 15 \text{ Vdc}, I_D = 4.0 \text{ mAdc}, f = 100 \text{ MHz}, R_G \approx 1.0 \text{ k ohm})$ 1.6 2.0 $(V_{DS} = 15 \text{ Vdc}, I_{D} = 4.0 \text{ mAdc}, f = 400 \text{ MHz}, R_{G} \approx 1.0 \text{ k ohm})$ 3.3 4.0 Common Source Power Gain Gps dB $(V_{DS} = 15 \text{ Vdc}, I_{D} = 4.0 \text{ mAdc}, f = 100 \text{ MHz})$ 18 23

(VDS = 15 Vdc, ID = 4.0 mAdc, f = 400 MHz)

14

10

MFE2004 MFE2005 MFE2006

CASE 22-03, STYLE 4 TO-18 (TO-206AA)

JFET CHOPPER

N-CHANNEL — DEPLETION

Refer to 2N4091 for graphs.

MAXIMUM RATINGS

MAXIMOM NATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Forward Gate Current	lGF	10	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.8 10	Watts mW/°C
Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage $(I_G = 1.0 \mu Adc, V_{DS} = 0)$		V _(BR) GSS	30	- 74	Vdc
Gate Reverse Current $(V_{GS} = 20 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = 20 \text{ Vdc}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$		IGSS	=	0.2 0.4	nAdc μAdc
Drain Cutoff Current $(V_{DS}=20\ Vdc,V_{GS}=12\ Vdc)$ $(V_{DS}=20\ Vdc,V_{GS}=12\ Vdc,T_A=150^{\circ}C)$	inge if	ID(off)	=	0.2 0.4	nAdc μAdc
Gate Source Voltage $(V_{DS} = 20 \text{ Vdc}, I_{D} = 50 \mu\text{Adc})$	MFE2004 MFE2005 MFE2006	VGS	1.0 2.0 5.0	6.0 8.0 10	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current* (VDS = 20 Vdc, VGS = 0)	MFE2004 MFE2005 MFE2006	lDSS*	8.0 15 30	=	mAdc
Gate-Source Forward Voltage (I _G = 1.0 mAdc, V _{DS} = 0)	79	V _{GS(f)}	_	1.0	Vdc
Drain-Source On-Voltage (I _D = 3.0 mAdc, V _{GS} = 0) (I _D = 6.0 mAdc, V _{GS} = 0) (I _D = 10 mAdc, V _{GS} = 0)	MFE2004 MFE2005 MFE2006	VDS(on)		0.4 0.4 0.4	Vdc
Static Drain-Source On Resistance ($I_D = 1.0 \text{ mAdc}, V_{GS} = 0$)	MFE2004 MFE2005 MFE2006	rDS(on)	=======================================	80 50 30	Ohms
SMALL-SIGNAL CHARACTERISTICS					
Static Drain-Source "ON" Resistance ($V_{GS}=0$, $I_{D}=0$, $f=1.0\ kHz$)	MFE2004 MFE2005 MFE2006	^r ds(on)	=	80 50 30	Ohms
Input Capacitance (V _{DS} = 0, V _{GS} = -12 Vdc, f = 1.0 MHz)		C _{iss}	_	16	pF

MFE2004, MFE2005, MFE2006

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Reverse Transfer Capacitance		C _{rss}	116	9 11	pF
$(V_{DS} = 0, V_{GS} = 6.0 \text{ Vdc}, f = 1.0 \text{ MHz})$	MFE2004		_	5.0	
$(V_{DS} = 0, V_{GS} = 8.0 \text{ Vdc}, f = 1.0 \text{ MHz})$	MFE2005		_	5.0	
$(V_{DS} = 0, V_{GS} = 12 \text{ Vdc, f} = 1.0 \text{ MHz})$	MFE2006		_	5.0	
SWITCHING CHARACTERISTICS					
Turn-On Delay Time		td(on)			ns
$(V_{DD} = 3.0 \text{ Vdc}, I_{D} = 3.0 \text{ mAdc}, V_{GS} = 0)$	MFE2004		_	20	
$(V_{DD} = 3.0 \text{ Vdc}, I_{D} = 6.0 \text{ mAdc}, V_{GS} = 0)$	MFE2005		_	15	
$(V_{DD} = 3.0 \text{ Vdc}, I_{D} = 10 \text{ mAdc}, V_{GS} = 0)$	MFE2006		_	10	
Rise Time		tr			ns
$(V_{DD} = 3.0 \text{ Vdc}, I_{D} = 3.0 \text{ mAdc}, V_{GS} = 0)$	MFE2004		_	40	
$(V_{DD} = 3.0 \text{ Vdc}, I_{D} = 6.0 \text{ mAdc}, V_{GS} = 0)$	MFE2005		_	20	
$(V_{DD} = 3.0 \text{ Vdc}, I_{D} = 10 \text{ mAdc}, V_{GS} = 0)$	MFE2006		_	10	
Turn-Off Time		toff			ns
$(V_{DD} = 3.0 \text{ Vdc}, I_D = 3.0 \text{ mAdc}, V_{GS(off)} = 6.0 \text{ Vdc})$	MFE2004		_	80	
$(V_{DD} = 3.0 \text{ Vdc}, I_D = 6.0 \text{ mAdc}, V_{GS(off)} = 8.0 \text{ Vdc})$	MFE2005		_	60	
$(V_{DD} = 3.0 \text{ Vdc}, I_{D} = 10 \text{ mAdc}, V_{GS(off)} = 12 \text{ Vdc})$	MFE2006		-	40	

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

MFE2010 MFE2011 MFE2012

CASE 22-03, STYLE 4 TO-18 (TO-206AA)

JFET CHOPPER

N-CHANNEL — DEPLETION

Refer to J107 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Gate-Source Voltage	VGS	25	Vdc
Forward Gate Current	IGF	50	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10	Watt mW/°C
Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)		V _(BR) GSS	25	_	Vdc
Gate Reverse Current (VGS = 15 Vdc, VDS = 0) (VGS = 15 Vdc, VDS = 0, TA = 150°C)		IGSS	_	3.0 6.0	nAdc μAdc
Drain Cutoff Current $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 12 \text{ Vdc})$ $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 12 \text{ Vdc}, T_{A} = 150^{\circ}\text{C})$		^I D(off)	=	3.0 6.0	nAdc μAdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current* (V _{DS} = 20 Vdc, V _{GS} = 0)	MFE2010 MFE2011 MFE2012	IDSS*	15 40 100	=	mAdc
Gate-Source Forward Voltage (I _G = 1.0 mAdc, V _{DS} = 0)		V _{GS(f)}	_	1.0	Vdc
Gate-Source Voltage $(V_{DS} = 15 \text{ Vdc}, I_{D} = 1.0 \mu \text{Adc})$	MFE2010 MFE2011 MFE2012	VGS	0.5 1.0 3.0	10 10 10	Vdc
Drain-Source On-Voltage (I _D = 8.0 mAdc, V _{GS} = 0) (I _D = 15 mAdc, V _{GS} = 0) (I _D = 30 mAdc, V _{GS} = 0)	MFE2010 MFE2011 MFE2012	VDS(on)		0.75 0.75 0.75	Vdc
Static Drain-Source On Resistance (ID = 1.0 mAdc, $V_{GS} = 0$)	MFE2010 MFE2011 MFE2012	rDS(on)		25 15 10	Ohms
SMALL-SIGNAL CHARACTERISTICS					
Static Drain-Source "ON" Resistance (VGS = 0, ID = 0, f = 1.0 kHz)	MFE2010 MFE2011 MFE2012	rds(on)	=	25 15 10	Ohms
Input Capacitance (Vps = 0, Vgs = 10 Vdc, f = 1.0 MHz)		C _{iss}	_	50	pF
Reverse Transfer Capacitance (VDS = 0, VGS = 12 Vdc, f = 1.0 MHz)		C _{rss}	_	20	pF

MFE2010, MFE2011, MFE2012

Characteristic		Symbol	Min	Max	Unit
SWITCHING CHARACTERISTICS		1			
Turn-On Delay Time		t _{d(on)}		10	ns
Rise Time		tr	IT for	6.0	ns
Turn-Off Delay Time $(V_{DD}=15\ Vdc, I_{D}=8.0\ mAdc)$ $(V_{DD}=15\ Vdc, I_{D}=15\ mAdc)$ $(V_{DD}=15\ Vdc, I_{D}=30\ mAdc)$	MFE2010 MFE2011 MFE2012	^t d(off)	=	35 20 12	ns
Fall Time $(V_{DD} = 15 \text{ Vdc}, I_{D} = 8.0 \text{ mAdc})$ $(V_{DD} = 15 \text{ Vdc}, I_{D} = 15 \text{ mAdc})$ $(V_{DD} = 15 \text{ Vdc}, I_{D} = 30 \text{ mAdc})$	MFE2010 MFE2011 MFE2012	t _f	Ξ	75 45 25	ns

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

FET LOW-POWER AUDIO

N-CHANNEL - DEPLETION

MAXIMUM RATINGS

WAXIMUW KATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	20	Vdc
Drain-Gate Voltage	V _{DG}	±20	Vdc
Drain Current	ID	20	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Junction Temperature Range	TJ	+ 200	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

Refer to 2N3796 for graphs.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage (VGS = -8.0 V, ID = $10~\mu$ Adc)	V(BR)DSX	20	_	Vdc
Gate Reverse Current $(V_{GS} = -10 \text{ Vdc}, V_{DS} = 0)$	IGSS	_	10	pAdc
Gate Source Cutoff Voltage ($I_{DS} = 1.0 \mu Adc, V_{DS} = 10 Vdc$)	VGS(off)	_	-8.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current (VGS = 0 Vdc, VDS = 10 Vdc)	IDSS	0.5	6.0	mAdc
On-State Drain Current (VGS = 3.5 Vdc, VDS = 10 Vdc)	I _{D(on)}	5.0	_	mAdc
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance (V _{DS} = 10 Vdc, V _{GS} = 0, f = 1.0 kHz)	Yfs	700	3500	μmhos
Output Admittance (VDS = 10 Vdc, VGS = 0, f = 1.0 kHz)	Yos	_	100	μmhos
Input Capacitance (VDS = 10 Vdc, VGS = 0, f = 1.0 MHz)	C _{iss}	_	5.0	pF
Reverse Transfer Capacitance (V _{DS} = 10 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	1.5	pF

CASE 20-03, STYLE 7 TO-72 (TO-206AF)

MOSFET CHOPPER

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	15	Vdc
Drain-Gate Voltage	V _{DG}	20	Vdc
Gate-Source Voltage	VGS	±20	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ $T_C = 25$ °C Derate above 25°C	PD	200 1.4	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Zero-Gate-Voltage Drain Current $(V_{DS}=+10~V_{dc},V_{GS}=0)$ $(V_{DS}=+10~V_{dc},V_{GS}=0,T_{C}=125^{\circ}C)$	I _{DSS}	=	10 100	nAdc
Gate Reverse Current $(V_{GS} = \pm 10 \text{ Vdc}, V_{DS} = 0)$	IGSS	-	±100	pAdc
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = 10 µAdc)	V(BR)DS	15	-	Vdc
ON CHARACTERISTICS				
Gate Threshold Voltage (Vps = +10 Vdc, I_D = 10 μ Adc)	V _{GS(TH)}	_	3.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Input Capacitance ($V_{DS} = +10 \text{ Vdc}$, $V_{GS} = 0$, f = 1.0 MHz)	C _{iss}	-	5.0	pF
Reverse Transfer Capacitance $(V_{DS} = 0, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{rss}	_	1.0	pF
Drain-Substrate Capacitance (VD(SUB) = +10 Vdc, f = 1.0 MHz)	C _{d(sub)}		4.0	pF
Static Drain-Source On Resistance $(V_{GS} = +10 \text{ Vdc}, I_{D} = 0, f = 1.0 \text{ kHz})$	^r ds(on)	# 1 T	100	Ohms

CASE 20-03, STYLE 5 TO-72 (TO-206AF)

MOSFET **CHOPPER**

P-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS		
Symbol	Value	Unit
V _{DS}	-15	Vdc
V _{DG}	± 20	Vdc
VGS	±20	Vdc
ID	30	mAdc
PD	200 1.33	mW/°C
TJ, T _{stg}	-65 to +175	°C
	VDS VDG VGS ID PD	VDS -15 VDG ±20 VGS ±20 ID 30 PD 200 1.33 TJ, Tstg -65 to +175

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			ec. auretta	NA OFF
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = −10 µAdc)	V(BR)DSX	- 15	TIE-0	Vdc
Zero-Gate-Voltage Drain Current $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0)$ $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0, T_{C} = 125^{\circ}\text{C})$	IDSS	loss —		nAdc
Gate Reverse Current $(V_{GS} = \pm 10 \text{ Vdc}, V_{DS} = 0)$	I _{GSS}	-	±100	pAdc
ON CHARACTERISTICS			W 192 II LY 1	and the sale
Gate Threshold Voltage (V _{DS} = -10 Vdc, I _D = -10 μ Adc)	V _{GS} (Th)	-	-4.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		- mass		
Drain-Source Resistance (VGS = -10 Vdc, ID = 0, f = 1.0 kHz)	^r ds(on)	ds(on) —		Ohms
Input Capacitance ($V_{DS} = -10 \text{ Vdc}$, $V_{GS} = 0$, f = 1.0 MHz)	C _{iss}	C _{iss} —		pF
Reverse Transfer Capacitance $(V_{DS} = 0, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{rss}	C _{rss} —		pF
Drain-Substrate Capacitance (V _D (SUB) = -10 Vdc, f = 1.0 MHz)	C _{d(sub)}	-	2.0	pF

MFE3004 MFE3005

CASE 20-03, STYLE 7 TO-72 (TO-206AF)

MOSFET VHF/UHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	20	Vdc
Drain-Gate Voltage	V _{DG}	20	Vdc
Gate-Source Voltage	VGS	± 20	Vdc
Drain Current	ID	10	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	200 1.33	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Symbol Characteristic Min Max Unit **OFF CHARACTERISTICS** Drain-Source Breakdown Voltage V(BR)DSX 20 Vdc $(V_{GS} = -5.0 \text{ Vdc}, I_D = 10 \mu Adc)$ Gate Reverse Current IGSS ±50 pAdc $(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0)$ VGS(off) Gate Source Cutoff Voltage -5.0Vdc $(I_D = 10 \mu Adc, V_{DS} = 15 Vdc)$ ON CHARACTERISTICS Zero-Gate-Voltage Drain Current 2.0 10 mAdc IDSS $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$ SMALL-SIGNAL CHARACTERISTICS Forward Transfer Admittance Yfs 2000 μ mhos $(V_{DS} = 15 \text{ Vdc}, I_{D} = 2.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ Input Capacitance Ciss 4.5 pF (VDS = 15 Vdc, VGS = 0, f = 1.0 MHz) Crss 0.4 pF Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$ **FUNCTIONAL CHARACTERISTICS** NF dR (VDS = 15 Vdc, ID = 2.0 mAdc, RS \approx 1.8 k ohms, f = 200 MHz) (Figure 1) MFE3004 4.5 (VDS = 15 Vdc, ID = 2.0 mAdc, RS \approx 650 ohms, f = 400 MHz) (Figure 2) MFE3005 4.5 dB Common Source Power Gain Gps (VDS = 15 Vdc, ID = 2.0 mAdc, RS \approx 1.8 k ohms, f = 200 MHz) (Figure 1) MFE3004 16 $(V_{DS} = 15 \text{ Vdc}, I_D = 2.0 \text{ mAdc}, R_S \approx 650 \text{ ohms}, f = 400 \text{ MHz})$ (Figure 2) MFE3005 10

FIGURE 1 — 200 MHz TEST CIRCUIT — NEUTRALIZED

Unless otherwise specified: Capacitance values in pF

FIGURE 2 — 400 MHz TEST CIRCUIT — NEUTRALIZED

MFE9200

CASE 22-03, STYLE 12 TO-18 (TO-206AA)

TMOS SWITCHING

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	200	Vdc
Gate-Source Voltage	VGS	± 20	Vdc
Drain Current Continuous (1) Pulsed (2)	I _D	400 800	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.8 14.4	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = 10 µA)	V(BR)DSX	200	-	_	Vdc
Gate Reverse Current (VGS = 15 Vdc, V _{DS} = 0)	IGSS	-	0.01	50	nAdc
ON CHARACTERISTICS*					
Zero-Gate-Voltage Drain Current $(V_{DS} = 200 \text{ V}, V_{GS} = 0)$	IDSS	. —	0.1	10	μAdc
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1.0 \text{ mA})$	V _{GS(Th)}	1.0	_	4.0	Vdc
Drain-Source On-Voltage ($V_{GS}=10~V$) ($I_{D}=100~mA$) ($I_{D}=250~mA$) ($I_{D}=500~mA$)	V _{DS(on)}	=	0.45 1.20 3.0	0.6 1.60	Vdc
Static Drain-Source On Resistance (VGS = 10 Vdc) (ID = 100 mA) (ID = 250 mA) (ID = 500 mA)	rDS(on)	=	4.5 4.8 6.0	6.0 6.4 —	Ohms
On-State Drain Current (V _{DS} = 25 V, V _{GS} = 10 V)	I _{D(on)}	400	700	_	mA
SMALL-SIGNAL CHARACTERISTICS					
Input Capacitance $(V_{DS} = 25 \text{ V, } V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{iss}	7	72	90	pF
Reverse Transfer Capacitance (V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	2.8	3.5	pF
Output Capacitance (Vps = 25 V, Vgs = 0, f = 1.0 MHz)	C _{oss}	_	15	20	pF
Forward Transconductance (V _{DS} = 25 V, I _D = 250 mA)	9fs	200	400	=	mmhos
SWITCHING CHARACTERISTICS					•
Turn-On Time See Figure 1	ton	_	6.0	15	ns
Turn-Off Time See Figure 1	toff	-	6.0	15	ns

^{*} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

RESISTIVE SWITCHING

FIGURE 1 - SWITCHING TEST CIRCUIT

FIGURE 2 — SWITCHING WAVEFORMS

FIGURE 3 — ON VOLTAGE versus TEMPERATURE

FIGURE 4 — CAPACITANCE VARIATION

VGS, GATE-SOURCE VOLTAGE (VOLTS)

FIGURE 5 - TRANSFER CHARACTERISTIC

MFQ930C MFQ960C MFQ990C

CASE 632-02, STYLE 1 TO-116

QUAD DUAL-IN-LINE TMOS

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

MAXIMUM KATINGS					
Rating	Symbol	MFQ930C	MFQ960C	MFQ990C	Unit
Drain-Source Voltage	VDS	35	60	90	Vdc
Drain-Gate Voltage	V _{DG}	35	60	90	Vdc
Gate-Source Voltage	VGS		±30		Vdc
Drain Current Continuous (1) Pulsed (2)	I _D		2.0 3.0		Adc
			Each Transistor	Total Device	
Total Device Dissipation @ Tp Derate Above 25°C	λ = 25°C	PD	0.5 17.0	2.0 66.6	Watts mW/°C
Operating and Storage Juncti Temperature Range	on	T _J , T _{stg}	-55 to	+ 150	°C

Refer to MFE930 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage $(V_{GS} = 0, I_{D} = 10 \mu A)$	MFQ930C MFQ960C MFQ990C	V(BR)DSX	35 60 90	=	Ξ	Vdc
Gate Reverse Current (VGS = 15 Vdc, VDS = 0)		IGSS	_	_	50	nAdc
ON CHARACTERISTICS*						
Zero-Gate-Voltage Drain Current (VDS = Maximum Ra	ating, V _{GS} = 0)	IDSS	_	_	10	μAdc
Gate Threshold Voltage ($I_D = 1.0 \text{ mA}, V_{DS} = V_{GS}$)		V _{GS(Th)}	1.0	_	3.5	Vdc
Drain-Source On-Voltage ($V_{GS} = 10 \text{ V}$) ($I_D = 0.5 \text{ A}$)	MFQ930C MFQ960C MFQ990C	V _{DS(on)}		0.4 0.6 0.6	0.7 0.8 1.0	Vdc
$(I_D = 1.0 \text{ A})$	MFQ930C MFQ960C MFQ990C			0.9 1.2 1.2	1.4 1.7 2.0	
$(I_D = 2.0 \text{ A})$	MFQ930C MFQ960C MFQ990C			2.2 2.8 2.8	3.0 3.5 4.0	
Static Drain-Source On Resistance ($V_{GS} = 10 \text{ Vdc}$, $I_D = 1.0 \text{ Adc}$)	MFQ930C MFQ960C MFQ990C	rDS(on)		0.9 1.2 1.2	1.4 1.7 2.0	Ohms
On-State Drain Current $(V_{DS} = 25 \text{ V}, V_{GS} = 10 \text{ V})$		I _{D(on)}	1.0	2.0		Amps
SMALL-SIGNAL CHARACTERISTICS						
Input Capacitance ($V_{DS} = 25 \text{ V, } V_{GS} = 0, f = 1.0 \text{ MHz}$)		C _{iss}	_	60	70	pF
Reverse Transfer Capacitance ($V_{DS} = 25 \text{ V, } V_{GS} = 0, f = 1.0 \text{ MHz}$)		C _{rss}	_	13	18	pF
Output Capacitance ($V_{DS} = 25 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)		C _{oss}	_	49	60	pF
Forward Transconductance (V _{DS} = 25 V, I _D = 0.5 A)		9fs	200	380	_	mmhos
SWITCHING CHARACTERISTICS						
Turn-On Time		ton	_	7.0	15	ns
Turn-Off Time		toff	_	7.0	15	ns

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

Refer to 2N4416 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Gate-Source Voltage	VGS	- 25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 2	mW mW/°C
Junction Temperature Range	TJ	125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate-Source Breakdown Voltage ($I_G = -10 \mu Adc$, $V_{DS} = 0$)	V(BR)GSS	- 25	_	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$	IGSS	=	-2.0 -2.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 2.0 nAdc)	VGS(off)	-	-8.0	. Vdc
Gate Source Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 0.2 \text{ mAdc})$	V _G s	-0.5	-7.5	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current* (V _{DS} = 15 Vdc, V _{GS} = 0 Vdc)	IDSS	2.0	20	mAdc

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance* (Vps = 15 Vdc, V _{GS} = 0, f = 1.0 kHz) (Vps = 15 Vdc, V _{GS} = 0, f = 100 MHz)	Yfs	2000 1600	7500 —	μmhos
Input Admittance ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz}$)	Re(yis)	-67	800	μmhos
Output Conductance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz})$	Re(yos)	- ,	200	μmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{iss}	-	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	3.0	pF

^{*}Pulse Test: Pulse Width ≤ 630 ms; Duty Cycle ≤ 10%.

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET VHF AMPLIFIER

N-CHANNEL - DEPLETION

MAXIMUM RATINGS

WAXIIVOW RATINGS	_		
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Gate-Source Voltage	VGS	- 25	Vdc
Forward Gate Current	lGF	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW/°C
Junction Temperature Range	TJ	-65 to +135	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Refer to 2N4416 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		-	STEE 18911	ACTION TO
Gate-Source Breakdown Voltage ($I_G = 10 \mu Adc, V_{DS} = 0$)	V _(BR) GSS	- 25	1 19 Library	Vdc
Gate Reverse Current $(V_{GS}=-15~Vdc,~V_{DS}=0)$ $(V_{GS}=-15~Vdc,~V_{DS}=0,~T_{A}=100^{\circ}C)$	IGSS	_	1.0 -1.0	nAdc μAdc
Gate-Source Cutoff Voltage* ($V_{DS} = 15 \text{ Vdc}$, $I_D = 10 \mu Adc$)	VGS(off)*	0.5	8.0	Vdc
ON CHARACTERISTICS			Lev June	enclosed an
Zero-Gate-Voltage Drain Current* (VDS = 15 Vdc, VGS = 0)	IDSS*	1.5	24	mAdc
SMALL-SIGNAL CHARACTERISTICS			Age Park	9T 15 00
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz)	Yfs	1600	_	μmhos
Forward Transadmittance* $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	Yfs*	2000	7500	μmhos
Input Admittance (VDS = 15 Vdc, VGS = 0, f = 100 MHz)	Re(yis)		800	μmhos
Output Admittance (VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)	Yos	5 (12/037)	75	μmhos
Output Conductance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz)	Re(yos)		200	μmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{iss}		6.5	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	- H	2.5	pF
FUNCTIONAL CHARACTERISTICS			10-1	HAA II.
Noise Figure $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, R_G = 1.0 \text{ Megohm}, f = 1.0 \text{ kHz})$ $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, R_G = 1.0 \text{ k ohm}, f = 100 \text{ MHz})$	NF	===	2.5 3.0	dB

^{*}To characterize these devices to narrower limits, regarding IDSS, VGS(off) and yfs, the entire production lot is tested and divided into color-coded groups, with each color dot representing a relatively small range compared with the total min-max limit of the whole distribution. The color codes and their associated limits are given in the following table.

When packaged for shipment, the colors are randomly selected and no specific color distribution is implied or guaranteed.

Color	IDS	V _{GS(off)}	Yfs
Orange	1.5 mAdc, Min, 3.0 mAdc Max	0.5 Vdc Min, 5.0 Vdc Max	2000 to 6500 μmhos
Yellow	2.5 mAdc Min, 5.0 mAdc Max	0.5 Vdc Min, 5.0 Vdc Max	2000 to 6500 μmhos
Green	4.0 mAdc Min, 8.0 mAdc Max	1.0 Vdc Min, 7.0 Vdc Max	2500 to 7000 μmhos
Blue	7.0 mAdc Min, 14 mAdc Max	1.0 Vdc Min, 7.0 Vdc Max	2500 to 7000 μmhos
Violet	12 mAdc Min, 24 mAdc Max	2.0 Vdc Min, 8.0 Vdc Max	3000 to 7500 μmhos

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET GENERAL PURPOSE

N-CHANNEL — DEPLETION

Refer to 2N4220 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	20	Vdc
Drain-Gate Voltage	V _{DG}	20	Vdc
Gate-Source Voltage	VGS	-20	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.0	mW mW/°C
Junction Temperature Range	TJ	125	°C
Storage Channel Temperature Range	T _{stg}	-65 to +135	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				5632.0	
Gate-Source Breakdown Voltage ($I_G = -10 \mu Adc$, $V_{DS} = 0$)	V _(BR) GSS	-20	_	_	Vdc
Gate Reverse Current (VGS = -10 Vdc, VDS = 0)	IGSS	_	0.1	100	nAdc
Gate Source Cutoff Voltage (V _{DS} = 10 Vdc, I _D = 1.0 µAdc)	V _{GS(off)}	-0.5	_	-10	Vdc
ON CHARACTERISTICS				Table 1	
Zero-Gate-Voltage Drain Current(1) (V _{DS} = 10 Vdc, V _{GS} = 0)	IDSS	0.5	-	20	mAdc
SMALL-SIGNAL CHARACTERISTICS		- 1	0. 1.1.1	Col I a	
Forward Transfer Admittance(1) (Vps = 10 Vdc, Vgs = 0, f = 1.0 kHz)	Yfs	500	_	W =	μmhos
Output Admittance(1) (V _{DS} = 10 Vdc, V _{GS} = 0, f = 1.0 kHz)	Yos	_	20	<u>-</u>	μmhos
Input Capacitance (Vps = 10 Vdc, Vgs = 0, $f = 1.0 \text{ MHz}$)	C _{iss}	i	4.5	1. . .	pF
Reverse Transfer Capacitance (V _{DS} = 10 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	1.02	1.5	_	pF

(1) Pulse Test: Pulse Width ≤ 630 ms; Duty Cycle ≤ 10%.

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Gate-Source Voltage	VGS	- 25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 2.0	mW mW/°C
Junction Temperature Range	TJ	125	°C
Storage Channel Temperature Range	T _{stg}	-65 to +150	°C

Refer to 2N4416 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				TORRES	111- 10
Gate-Source Breakdown Voltage (I _G = -10 μAdc, V _{DS} = 0)	V _(BR) GSS	- 25		-	Vdc
Gate Reverse Current (V _{GS} = -10 Vdc, V _{DS} = 0)	IGSS	-	-	100	nAdc
Gate Source Cutoff Voltage (Vps = 10 Vdc, $Ip = 1.0 \mu Adc$)	V _{GS(off)}	-0.5	22 164	-10	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(1) (Vps = 10 Vdc, Vgs = 0)	IDSS	1.0	-	25	mAdc
SMALL-SIGNAL CHARACTERISTICS		- 1		-17 - 14	117
Forward Transfer Admittance $(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})(1)$ $(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz})$	Yfs	1000 800	=	7500 —	μmhos
Input Capacitance (Vps = 10 Vdc, Vqs = 0, $f = 1.0 \text{ MHz}$)	C _{iss}	_	8.0	_	pF
Reverse Transfer Capacitance (V _{DS} = 10 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	3.0		pF

⁽¹⁾ Pulse Test: Pulse Width ≤ 630 ms; Duty Cycle ≤ 10%.

MPF130,131,132 MFE130,131,132

MPF130 SERIES CASE 317-01, STYLE 1

MFE130 SERIES CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
Drain-Source Voltage	V _{DS}	25		Vdc
Drain Current	ent I _D		10	mAdc
		MPF130 Series	MFE130 Series	
Total Device Dissipation @ TA = 25°C (Package Limitation)	PD	300	300	mW mW/°C
Derate above 25°C		2.4	1.71	
Operating and Storage Channel Temperature Range	T _{channel} ,	- 65 to + 150	- 65 to + 175	°C

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage (ID = 10 μ Adc, VS = 0, VG1 = -4.0 V, VG2 = +4.0 V)	V _{(BR)DSX}	25	_	_	Vdc
Gate 1-Source Breakdown Voltage ($I_{G1} = \pm 10 \mu Adc, V_{G2S} = 0$)	V _{(BR)G1SO}	±7.0	-	± 20	Vdc
Gate 2-Source Breakdown Voltage ($I_{G2} = \pm 10 \mu Adc, V_{G2S} = 0$)	V _{(BR)G2SO}	±7.0	_	± 20	Vdc
Gate 1 Leakage Current (VG1S = \pm 6.0 Vdc, VG2S = 0, VDS = 0)	I _{G1SS}	-	_	20	nAdo
Gate 2 Leakage Current $(V_{G2S} = \pm 6.0 \text{ Vdc}, V_{G1S} = 0, V_{DS} = 0)$	I _{G2SS}	_	_	20	nAdo
Gate 1 to Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 200 \mu\text{Adc}$)	V _{G1S(off)}	-	_	-4.0	Vdc
Gate 2 to Source Cutoff Voltage (VDS = 15 Vdc, VG1S = 0, ID = 200 μ Adc)	V _{G2S(off)}	-		-4.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current (V _{DS} = 15 Vdc, V _{G1S} = 0, V _{G2S} = 4.0 Vdc)	IDSS	3.0	10	30	mAdd
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance (Gate 1 connected to Drain) (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 10 mAdc, f = 1.0 kHz)	Yfs	8000	_	20000	μmho
Input Capacitance $(V_{DS} = 15 \text{ Vdc } V_{G2S} = 4.0 \text{ Vdc}, I_D = I_{DSS}, f = 1.0 \text{ MHz})$	C _{iss}	-	4.5	7.0	pF
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 6.0 \text{ mAdc}, f = 1.0 \text{ MHz})$	C _{rss}	_	0.023	0.05	pF
Output Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = I_{DSS}, f = 1.0 \text{ MHz})$	Coss	-	2.5	4.0	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (Figure 7) (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 6.0 mAdc, ZS is optimized for NF) (f = 105 MHz) MPF/MFE130	NF	_	2.9	5.0	dB
(f = 60 MHz) MPF/MFE131 (f = 100 MHz) MPF/MFE131		_	2.5 3.0	5.0 5.0	

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Common Source Power Gain (Figure 7) (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 6.0 mAdc, ZS is optimized for NF) (f = 105 MHz) (f = 60 MHz)	MPF/MFE130 MPF/MFE131	G _{ps}	17 20	23 27	_	dB
(f = 200 MHz)	MPF/MFE131		17	20	_	
Level of Unwanted Signal for 1.0% Cross Modulation (V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D = 6.0 mAdc)		_	_	100	ENGT AR M	mV
Common-Source Conversion Power Gain (Gate 1 Injection (VDS = 15 Vdc, VG2S = 4.0 Vdc, Local Oscillator Voltage = 925 mVrms)	, Figure 8)	G _C			operately man	dB
(Signal Frequency = 60 MHz, Local Oscillator Frequency = 104 MHz) (Signal Frequency = 200 MHz, Local Oscillator	MPF/MFE132	es.	15	16.5	_	out and
Frequency = 244 MHz)	MPF/MFE132	1.2	12	14	_	

COMMON-SOURCE ADMITTANCE PARAMETERS

 $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 6.0 \text{ mAdc})$

FIGURE 7 - 60, 105 AND 200 MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT

FIGURE 8 - 60 AND 200 MHz CONVERSION GAIN TEST CIRCUIT

All Feedthrough Capacitors 1000 pF.
All Variable Capacitors JOHANSON JMC 2951, 3.0-15 pF.

MPF201 MPF202 MPF203

CASE 317-01, STYLE 1

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL - DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG1} V _{DG2}	30 30	Vdc
Drain Current	lD .	50	mAdc
Gate Current	IG1 IG2	±10 ±10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.4	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0	Watt mW/°C
Lead Temperature	TL	260	°C
Junction Temperature Range	TJ	-65 to +150	°C
Storage Channel Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage (ID = 10 μ Adc, VS = 0, VG1S = VG2S = -5.0 Vdc)	V(BR)DSX	25		×	Vdc
Gate 1-Source Breakdown Voltage(1) ($I_{G1} = \pm 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0$)	V(BR)G1SO	± 6.0	± 12	±30	Vdc
Gate 2-Source Breakdown Voltage(1) $ (I_{G2} = \pm 10 \text{ mAdc}, V_{G1S} = V_{DS} = 0) $	V(BR)G2SO	± 6.0	± 12	±30	Vdc
Gate 1 Leakage Current $ \begin{array}{ll} (V_{G1S}=\pm 5.0~Vdc, V_{G2S}=V_{DS}=0) \\ (V_{G1S}=-5.0~Vdc, V_{G2S}=V_{DS}=0, T_A=150^{\circ}C) \end{array} $	I _{G1SS}	=	± 0.040	± 100 - 100	nAdc μAdc
Gate 2 Leakage Current $(V_{G2S} = \pm 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0) $ $(V_{G2S} = -5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$	^I G2SS	_	± 0.050	± 100 - 100	nAdc μAdc
Gate 1 to Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 20 \mu \text{Adc}$)	V _{G1S(off)}	-0.5	- 1.5	-5.0	Vdc
Gate 2 to Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_D = 20 \mu \text{Adc}$)	V _{G2S(off)}	-0.2	-1.4	-5.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(2) $ (V_{DS} = 15 \text{ Vdc}, V_{G1S} = V_{G2S} = 4.0 \text{ Vdc}) \\ \text{MPF201}, \text{MPF202} \\ \text{MPF200} $	DSS	6.0 3.0	13 11	30 15	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance(3) $ (V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, \\ f = 1.0 \text{ kHz}) \\ \text{MPF201, MPF202} \\ \text{MPF203} $	Y _{fs}	8.0 7.0	12.8 12.5	20 15	mmhos
Input Capacitance (Vps = 15 Vdc, Vg2s = 4.0 Vdc, Ip = Ipss, f = 1.0 MHz)	C _{iss}	_	3.3	=	pF
Reverse Transfer Capacitance ($V_{DS}=15~Vdc,V_{G2S}=4.0~Vdc,I_{D}=10~mAdc,f=1.0~MHz)$	C _{rss}	0.005	0.014	0.05	pF
Output Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = IDSS, f = 1.0 MHz)	Coss	_	1.7	_	pF
FUNCTIONAL CHARACTERISTICS					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NF	_	1.8 5.3	5.0 6.0	dB

MPF201, MPF202, MPF203

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Common Source Power Gain		Gps				dB
(VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz) (Figure 1)	MPF201	, ,	15	20	25	
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	MPF203		20	25	30	
$(V_{DD} = 18 \text{ Vdc, f }_{LO} = 245 \text{ MHz, f}_{RF} = 200 \text{ MHz}) \text{ (Figure 2)}$	MPF202	G _c (5)	15	19	25	
Bandwidth		BW				MHz
(V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (Figure 1)	MPF201		5.0	_	9.0	V20011500
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz}) \text{ (Figure 2)}$	MPF202		4.5	_	7.5	
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	MPF203		3.0	_	6.0	
Gain Control Gate-Supply Voltage(4)		VGG(GC)				Vdc
$(V_{DD} = 18 \text{ Vdc}, \triangle G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	MPF201		0	-1.0	-3.0	
$(V_{DD} = 18 \text{ Vdc}, \triangle G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	MPF203		0	-0.6	-3.0	

⁽¹⁾ All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.

- (2) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.
- (3) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating.
- (4) ΔG_{DS} is defined as the change in G_{DS} from the value at $V_{GG}=7.0$ volts (MPF201) and $V_{GG}=6.0$ volts (MPF203).
- (5) Power Gain Conversion

FIGURE 1 - 200-MHz TEST CIRCUIT SCHEMATIC

FIGURE 3 - 45-MHz TEST CIRCUIT SCHEMATIC

- L1 14 Turns, #30 AWG Copper, Close-Wound 7/32" OD form with ARNOLD ENGINEERING "J" Tuning Core
- L2 10 Turns, #30 AWG Copper, Close-Wound 7/32" OD form with ARNOLD ENGINEERING "J" Tuning Core

TYPICAL CHARACTERISTICS

FIGURE 5 — DRAIN CURRENT versus GATE-ONE to SOURCE VOLTAGE

FIGURE 6 - SMALL-SIGNAL COMMON-SOURCE GATE-ONE
FORWARD TRANSFER ADMITTANCE versus
DRAIN CURRENT

FIGURE 7 - SMALL-SIGNAL COMMON-SOURCE GATE-ONE
FORWARD TRANSFER ADMITTANCE versus
GATE-ONE to SOURCE VOLTAGE

MPF201, MPF202, MPF203

FIGURE 8 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE FORWARD TRANSFER ADMITTANCE versus GATE-TWO to SOURCE VOLTAGE

FIGURE 9 — SMALL-SIGNAL COMMON-SOURCE GATE-ONE INPUT AND OUTPUT CAPACITANCE versus

FIGURE 10 – COMMON-SOURCE POWER GAIN AND SPOT NOISE FIGURE VERSUS DRAIN CURRENT

FIGURE 11 — COMMON-SOURCE POWER GAIN AND SPOT NOISE FIGURE versus GAIN CONTROL

FIGURE 12 — SMALL-SIGNAL COMMON SOURCE INSERTION POWER GAIN versus GAIN CONTROL GATE-SUPPLY VOLTAGE — MPF203

FIGURE 13 — SMALL-SIGNAL COMMON-SOURCE
CONVERSION POWER GAIN versus
LOCAL OSCILLATOR INPUT VOLTAGE — MPF202

FIGURE 14 — SMALL-SIGNAL GATE ONE FORWARD TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 15 — SMALL-SIGNAL GATE ONE INPUT ADMITTANCE versus FREQUENCY

FIGURE 16 — SMALL-SIGNAL GATE ONE OUTPUT
ADMITTANCE versus FREQUENCY

FIGURE 17 — S PARAMETERS PLOTTED ON 50 OHM SMITH CHART

S22

MAXIMUM RATINGS

Rating	Symbol	MPF211 MPF212	MPF213	Unit
Drain-Source Voltage	V _{DS}	27	35	Vdc
Drain-Gate Voltage	V _{DG1} V _{DG2}	35 40 35 40		Vdc
Drain Current — Continuous	ID	50		mAdc
Gate Current	IG1 IG2	± 10 ± 10		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.71		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0		Watt mW/°C
Lead Temperature, 1/16" From Seated Surface for 10 Seconds	TL	260		°C
Junction Temperature Range	TJ	-65 to +150		°C
Storage Channel Temperature Range	T _{stg}	-65 to +150		°C

MPF211 MPF212 MPF213

CASE 317-01, STYLE 1

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $(V_{G1S} = V_{G2S} = -4.0 \text{ Vdc}, I_D = 10 \mu \text{Adc})$	MPF211,212 MPF213	V(BR)DSX	25 30	Ξ	Vdc
Instantaneous Drain-Source Breakdown Voltage(1) (VG1S = VG2S = -4.0 Vdc, ID = $10 \mu Adc$)	MPF211,212 MPF213	V(BR)DSX	27 35	_	Vdc
Gate 1-Source Breakdown Voltage(2) $(V_{G2S} = V_{DS} = 0, I_{G1} = \pm 10 \text{ mAdc})$		V(BR)G1SO	± 6.0	-	Vdc
Gate 2-Source Breakdown Voltage(2) $(V_{G1S} = V_{DS} = 0, I_{G2} = \pm 10 \text{ mAdc})$		V _(BR) G2SO	±6.0	=	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0) $ $(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$		I _{G1SS}	± 0.04(Typ)	± 100 100	nAdc μAdc
Gate 2 Leakage Current $(V_{G2S} = \pm 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0) $ $(V_{G2S} = -5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$	er er er	I _{G2SS}	± 0.04(Typ)	± 100 100	nAdc μAdc
Gate 1 to Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 2.0 \mu \text{Adc}$)	MPF211,213 MPF212	VG1S(off)	-0.5 -0.5	-5.5 -4.0	Vdc
Gate 2 to Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_D = 20 \mu \text{Adc}$)	MPF211 MPF212,213	V _{G2S} (off)	-0.2 -0.2	-2.5 -4.0	Vdc
ON CHARACTERISTICS		•			•
Zero-Gate-Voltage Drain Current(3) (V _{DS} = 15 Vdc, V _{G1S} = 0, V _{G2S} = 4.0 Vdc)		IDSS	6.0	4.0	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance(4) $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz})$	MPF211,212 MPF213	Yfs	17 15	40 35	mmhos
Reverse Transfer Capacitance $(V_{DS}=15~V_{dc},V_{G2S}=4.0~V_{dc},I_{D}=10~mAdc,f=1.0~MH)$	z)	C _{rss}	0.005	0.05	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure $(V_{DD}=18\ Vdc,V_{GG}=7.0\ Vdc,f=200\ MHz)$ (Figure 1) $(V_{DD}=24\ Vdc,V_{GG}=6.0\ Vdc,f=45\ MHz)$ (Figure 2)	MPF211 MPF211,213	NF	=	4.0 4.5	dB

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Common Source Power Gain		Gps		0.100 L KR L	dB
(V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (Figure 1)	MPF211	P .	24	35	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF211		29	37	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF213	Part of the last	27	35	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RE} = 200 \text{ MHz}) \text{ (Figure 3)}$	MPF212	G _C (6)	21	38	ment new
Bandwidth	MS to	BW		action."	MHz
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	MPF211		5.0	12	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RE} = 200 \text{ MHz}) \text{ (Figure 3)}$	MPF212		4.0	7.0	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF211,213	1	3.5	6.0	
Gain Control Gate-Supply Voltage(5)		V _{GG} (GC)			Vdc
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	MPF211		_	-2.0	
$(V_{DD} = 24 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF211,213	1.5	_	±1.0	1957 9.

- (1) Measured after five seconds of applied voltage.
- (2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate voltage limiting network is functioning properly.
- (3) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.
- (4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to Gate 1 with Gate 2 at ac ground.
- (5) ΔG_{DS} is defined as the change in G_{DS} from the value at $V_{GG} = 7.0$ Volts (MPF211) and $V_{GG} = 6.0$ Volts (MPF213).
- (6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_c.

FIGURE 1 — 200 MHz POWER GAIN, GAIN CONTROL VOLTAGE, AND NOISE FIGURE TEST CIRCUIT

FIGURE 2 — 45-MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT

- C1: Leadless disc ceramic, 0.001 µF
- C2: Leadless disc ceramic, 0.01 µF
- L1: 8 Turns #28, 5/32" diameter form, type "J" slug
- L2: 9 Turns #28, 5/32" diameter form, type "J" slug

FIGURE 3 — 200-MHz-to-45-MHz CIRCUIT FOR CONVERSION POWER GAIN

- L1: 7 Turns #34, 1/4" diameter aluminum slug
- L2: 5-1/2 Turns #20, 1/4" diameter aluminum slug
- L3: 7 Turns #24, 1/4" diameter air core
- C1: Arco type 462, 5-80 pF C2: 0.001 µF leadless disc
- C3: 0.01 µF leadless disc
- T1: Pri: 25 Turns #30, close wound on 1/4"
 - diameter form, type "J" slug
 - Sec: 4 Turns #30, centered over primary

TYPICAL CHARACTERISTICS

FIGURE 4 - DRAIN CURRENT versus **DRAIN-TO-SOURCE VOLTAGE** VG2S = +4.0 V 65 VG1S = 2.0 V IDSS = 15 mA 60 55 DRAIN CURRENT (mA) 50 45 40 35 30 +0.5 V 25 20 0 nv 15 10 0 6.0 8.0 18 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

SMALL-SIGNAL COMMON-SOURCE PARAMETER — GATE ONE

versus GATE TWO-TO-SOURCE VOLTAGE 28 26 - VDS = 15 V VG15 = 0 V 24 - IDSS = 15 mA TRANSFER ADMITTANCE f = 1 kHz 22 20 18 VG1S = 0.5 V 16 14 12 10 FORWARD 8.0 6.0 4 0 2.0 +4.0 VG2S, GATE TWO-TO-SOURCE VOLTAGE (VOLTS)

FIGURE 6 — FORWARD TRANSFER ADMITTANCE

FIGURE 8 — FORWARD TRANSFER ADMITTANCE versus DRAIN CURRENT

FIGURE 9 — INPUT AND OUTPUT CAPACITANCE Versus GATE TWO-TO-SOURCE VOLTAGE

FIGURE 10 — SMALL-SIGNAL GATE ONE INPUT ADMITTANCE versus FREQUENCY

FIGURE 11 — SMALL-SIGNAL FORWARD TRANSFER ADMITTANCE VERSUS FREQUENCY

FIGURE 12 — SMALL-SIGNAL GATE ONE REVERSE TRANSFERS ADMITTANCE versus FREQUENCY

FIGURE 13 — SMALL-SIGNAL GATE ONE OUTPUT
ADMITTANCE versus FREQUENCY

FIGURE 14 — RELATIVE SMALL-SIGNAL POWER GAIN versus GAIN CONTROL GATE SUPPLY VOLTAGE

FIGURE 15 — COMMON SOURCE SPOT NOISE FIGURE versus GAIN CONTROL GATE SUPPLY VOLTAGE

FIGURE 16 - SMALL-SIGNAL COMMON-SOURCE **INSERTION POWER GAIN versus GAIN CONTROL GATE SUPPLY VOLTAGE**

FIGURE 17 — OPTIMUM SPOT NOISE FIGURE versus FREQUENCY

FIGURE 18 — INPUT/OUTPUT IMPEDANCE

S₁₁

 $V_{G2S} = 4.0 \text{ V}$ $I_D = 15 \text{ mA}$

S22

MPF230 MPF231 MPF232

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET LOW NOISE AMPLIFIER

N-CHANNEL - DEPLETION

Refer to 2N4220 for graphs.

MAXIMUM RATINGS

MAXIMUM RATINGS						
Rating	Symbol	Value	Unit			
Drain-Source Voltage	V _{DS}	-40	Vdc			
Drain-Gate Voltage	V _{DG}	40	Vdc			
Gate-Source Voltage	VGS	40	Vdc			
Gate Current	IG	50	mA			
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C			
Storage Temperature Range	T _{stg}	-65 to +150	°C			

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characterist	tic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	4					
Gate-Source Breakdown Voltage $(I_G = -1.0 \mu A)$			V _(BR) GSS	-40	_	Vdc
Gate Reverse Current (VGS = -30 V)			IGSS	_	- 250	pA
Gate Source Cutoff Voltage (VDS = 20 V, ID = 1.0 μ A)	MPF230 MPF231 MPF232		V _{GS} (off)	-1.0 -2.0 -3.0	-3.0 -5.0 -6.0	Vdc
ON CHARACTERISTICS	J				C	-
Zero-Gate-Voltage Drain Current (V _{DS} = 20 V)	MPF230 MPF231 MPF232)7 , " - !	IDSS*	0.7 2.0 5.0	3.0 6.0 10.0	mA
SMALL-SIGNAL CHARACTERISTICS	STANDARD DISTURBED	*	h ly D			
Forward Transfer Admittance ($V_{DS} = 20 \text{ V}, f = 1.0 \text{ kHz}$)	MPF230 MPF231 MPF232		Yfs *	1000 1500 2500	3000 3000 4500	μmhos
FUNCTIONAL CHARACTERISTICS						
Equivalent Short-Circuit Input Noise Voltage (V _{DS} = 10 V, f = 10 Hz)			ē _n		30	nV/√Hz
						-

^{*}Pulse Width ≤ 2.0 msec.

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	±30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Reverse Gate-Source Voltage	VGSR	30	Vdc
Forward Gate Current	lG(f)	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.73	mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	MILLERY.	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					THAT	C TITES
Gate-Source Breakdown Voltage $(I_G = 10 \mu Adc, V_{DS} = 0)$	11388	V(BR)GSS	25	100	-	Vdc
Gate Reverse Current (V _{GS} = 15 Vdc, V _{DS} = 0)	1976A F	IGSS	_	Y	5.0	nAdc
Gate Source Cutoff Voltage (VDS = 15 Vdc, ID = 200 μ Adc)	85751	VGS(off)	0.5	_	7.5	Vdc
ON CHARACTERISTICS				m-7.	MASS.	
Zero-Gate-Voltage Drain Current (VDS = 15 Vdc, VGS = 0)	Red Green Violet	IDSS*	3.0 6.0 11	=	7.0 13 18	mAdc
SMALL-SIGNAL CHARACTERISTICS	BALL DE				term of a	and the
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)		Yfs	6.0	_	-0	mmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ MHz})$	lengt 1	C _{iss}	_	3.0	-	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, I _D = 10 mAdc, f = 1.0 MHz)	1000	C _{rss}	7	1.2	_	pF
Output Capacitance $(V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$		Coss		2.0	- 10 <u>- 1</u> 015 - 4 190	pF
FUNCTIONAL CHARACTERISTICS		rg had a distance			-6	
Noise Figure $(V_{DS} = 15 \text{ Vdc}, R_S = 50 \text{ Ohms})$	100 MHz 400 MHz	NF	=	=	2.0 4.0	dB
Common Source Power Gain (VDS = 15 Vdc, R _S = 50 Ohms)	100 MHz 400 MHz	G _{ps}	20 12	_	_	dB

^{*}To characterize these devices to narrower limits, the entire production lot is tested and divided into color-coded groups, with each color dot representing an IDSS range.

When packaged for shipment, the colors are randomly selected and no specific color distribution is implied or guaranteed.

CASE 317-01, STYLE 1

MOSFET DUAL GATE VHF AMPLIFIER TRANSISTOR

N-CHANNEL — ENHANCEMENT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG1} V _{DG2}	30 30	Vdc
Drain Current	ID	30	mAdc
Gate Current	IG1F IG2F	10 10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.71	mW mW/°C
Operating Channel Temperature	T _{channel}	150	°C
Lead Temperature, 1/16" From Seated Surface for 10 Seconds	TL	200	°C
Storage Channel Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			5.00	THE REAL PROPERTY.	DAVE DE
Gate 1-Source Breakdown Voltage (VG2 = VDS = 0, IG1 = 10 μ Adc)	V(BR)G1SO	10	15	or Trib	Vdc
Gate 2-Source Breakdown Voltage (VG1S = VDS = 0, I_{G2} = 10 μ Adc)	V(BR)G2SO	12	16	ns T o 14	Vdc
Gate 1 Reverse Leakage Current $(V_{G1S} = 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0)$	I _{G1SS}	_	30	100	nAdc
Gate 2 Reverse Leakage Current $(V_{G2S} = 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0)$	I _{G2SS}	_	30	100	nAdc
Drain-Source Breakdown Voltage (VG2 = 0, ID = 10 μ Adc)	V _{(BR)DS}	25	28	/ -	Vdc
ON CHARACTERSTICS					
Gate-Source Threshold Voltage (VG2S = 10 Vdc, ID = 10 μ Adc, VDS = 15 V) (VG1S = 4.0 Vdc, ID = 10 μ Adc, VDS = 15 V)	VG1S(TH) VG2S(TH)	0.5 0.5	1.2 1.0	2.0 2.0	Vdc
Gate-Source On Voltage (VDS = 15 Vdc, V_{G2S} = 10 Vdc, I_D = 10 mAdc)	V _{G1S(on)}	2.0	2.6	4.0	Vdc
"On" Drain Current (VDS = 15 Vdc, V_{G2S} = 10 Vdc, V_{G1S} = 3.0 Vdc)	I _D (on)	5.0	15	20	mAdc
SMALL-SIGNAL CHARACTERISTICS					1
Forward Transfer Admittance(1) $ \begin{array}{ll} (V_{DS}=15~Vdc,V_{G2S}=10~Vdc,I_{D}=10~mAdc,f=1.0~kHz) \\ (V_{DS}=15~Vdc,V_{G2S}=10~Vdc,I_{D}=10~mAdc,f=200~MHz) \end{array} $	Y _{fs} Yfs	10	12 10.57-j6.86	20	mmhos
Input Admittance(1) ($V_{DS}=15~V_{dc},~V_{G2S}=10~V_{dc},~I_{D}=10~mAdc,~f=200~MHz)$	Yis	_	0.524 + j4.27	. .	mmhos
Reverse Transfer Admittance(1) (VDS = 15 Vdc, VG2S = 10 Vdc, ID = 10 mAdc, f = 200 MHz)	Yrs	_	-1.7-j9.8	7 -	μmhos
Output Admittance(1) $(V_{DS}=15~Vdc,~V_{G2S}=10~Vdc,~I_{D}=10~mAdc,~f=200~MHz)$	Yos	_	0.126+j1.79	-	mmhos
Input Capacitance (VDS = 15 Vdc, VG2S = 10 Vdc, VG1 = 2.5 Vdc, f = 1.0 MHz)	C _{iss}	_	3.3	4.0	pF
Reverse Transfer Capacitance (VDS = 15 Vdc, V_{G2S} = 10 Vdc, V_{G1} = 2.5 Vdc, f = 1.0 MHz)	C _{rss}	-	0.015	0.03	pF
Output Capacitance ($V_{DS} = 15 \text{ Vdc}$, $V_{G2S} = 10 \text{ Vdc}$, $V_{G1} = 2.5 \text{ Vdc}$, $f = 1.0 \text{ MHz}$)	Coss	11-	1.1	2.5	pF

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
FUNCTIONAL CHARACTERISTICS					
Noise Figure (Figures 1 and 9) (V _{DS} = 15 Vdc, V _{GG} = 10 V, f = 200 MHz)	NF		1.7	3.5	dB
Common Source Power Gain (Figures 1 and 9) (V _{DS} = 15 Vdc, V _{GG} = 10 V, f = 200 MHz, BW = 7.0 MHz (Min))	G _{ps}	21	25	_	dB

⁽¹⁾ All y-parameters are with respect to Gate 1.

FIGURE 1 - 200 MHz NOISE FIGURE AND POWER GAIN TEST CIRCUIT

TYPICAL CHARACTERISTICS

FIGURE 4 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE FORWARD TRANSFER ADMITTANCE versus GATE-ONE to SOURCE VOLTAGE

FIGURE 5 — SMALL-SIGNAL COMMON-SOURCE GATE-ONE FORWARD TRANSFER ADMITTANCE versus DRAIN CURRENT

FIGURE 6 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE INPUT AND OUTPUT CAPACITANCE versus GATE-TWO to SOURCE VOLTAGE

FIGURE 7 - COMMON SOURCE POWER GAIN versus

DRAIN SUPPLY CURRENT

FIGURE 8 - COMMON SOURCE POWER GAIN AND SPOT NOISE FIGURE versus DRAIN CURRENT

FIGURE 9 — COMMON SOURCE POWER GAIN AND SPOT NOISE FIGURE versus GAIN CONTROL

FIGURE 11 – SMALL-SIGNAL COMMON SOURCE GATE ONE FORWARD TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 12 - SMALL-SIGNAL COMMON SOURCE **OUTPUT ADMITTANCE versus FREQUENCY** 10 1.0 V_{DS} = 15 V V_{G2S} = 10 V · I_D = 10 mA 7.0 0.7 OUTPUT ADMITTANCE (mmhos) 5.0 0.5 % 0.3 UTPUT 3.0 2.0 0.1 TTANCE 0.07 0.05 0.7 0.5 0.3 0.03 0.2 0.02 0.1 0.01 30 40 60 80 100 200 300 500 f, FREQUENCY (MHz)

FIGURE 13 - INPUT/OUTPUT IMPEDANCE

V_{DD} = 18 V V_{GG} = 10 V I_D = 10 mA

SMALL-SIGNAL DEVICES

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET RF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

MAXIMON RATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	VGSR	25	Vdc
Forward Gate Current	IG(f)	10	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	625 5.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)	V _(BR) GSS	25	-	_	Vdc
Gate Reverse Current (V _{GS} = 15 Vdc, V _{DS} = 0)	IGSS	-	-	5.0	nAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 200 μAdc)	VGS(off)	_	_	5.0	Vdc
ON CHARACTERISTICS				•	
Zero-Gate-Voltage Drain (Vps = 15 Vdc, Vqs = 0)	DSS	10	-	_	mAdc
SMALL-SIGNAL CHARACTERISTICS	i i				
Forward Transfer Admittance (Vps = 15 Vdc, Vgs = 0, f = 1.0 kHz)	Yfs	/	20	_	mmhos
Input Capacitance (Vps = 15 Vdc, Ip = 10 mAdc, f = 1.0 MHz)	C _{iss}	-	15	_	pF
Reverse Transfer Capacitance (Vps = 15 Vdc, I_D = 10 mAdc, f = 1.0 MHz)	C _{rss}	_	3.5	-	pF
Common-Gate Input Conductance (Vps = 15 Vdc, Ip = 10 mAdc, f = 100 MHz)	9ig	_	16	_	mmhos
Common-Gate Output Conductance (Vps = 15 Vdc, Ip = 10 mAdc, f = 100 MHz)	G _{og}	-	_	16	μmhos
Common-Gate Forward Transadmittance (Vps = 15 Vdc, lp = 10 mAdc, f = 100 MHz)	Yfg	3	18	_	mmhos
Common-Gate Reverse Transadmittance (Vps = 15 Vdc, Ip = 10 mAdc, f = 100 MHz)	Уrg	_	-	130	μmhos
Output Capacitance (Vps = 15 Vdc, lp = 10 mAdc, f = 1.0 kHz)	C _{oss}	-	3.5	_	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (V _{DS} = 15 Vdc, I_D = 10 mAdc, See Figure 5)	NF	1	= 0	4.0	dB
Small-Signal Power Gain (V _{DS} = 15 Vdc, I _D = 10 mAdc, See Figure 5)	G _{pg}	1	11		dB

FIGURE 1 — NOISE FIGURE

5.0

f = 100 MHz

4.0

4.0

1.0

0.1

0.2

0.3

0.4

0.6

0.8

1.0

RG, SOURCE RESISTANCE (KILOHMS)

FIGURE 5 - 100 MHz TEST CIRCUIT

MPF930 MPF960 MPF990

CASE 29-03, STYLE 22 TO-226AE

TMOS SWITCHING

N-CHANNEL — ENHANCEMENT

Refer to MFE930 for graphs.

MAXIMUM RATINGS

Rating	Symbol	MPF930	MPF960	MPF990	Unit
Drain-Source Voltage	VDS	35	60	90	Vdc
Drain-Gate Voltage	V _{DG}	35	60	90	Vdc
Gate-Source Voltage	VGS		Vdc		
Drain Current Continuous (1) Pulsed (2)	ID		Adc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD			Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to 150			°C
Thermal Resistance	θ JA		°C/W		

- (1) The Power Dissipation of the package may result in a lower continuous drain current.
- (2) Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $(V_{GS}=0, I_{D}=10~\mu A)$ MPF930 MPF960 MPF990	V(BR)DSX	35 60 90		=	Vdc
Gate Reverse Current (V _{GS} = 15 Vdc, V _{DS} = 0)	IGSS	_		50	nAdc
ON CHARACTERISTICS*					
Zero-Gate-Voltage Drain Current (VDS = Maximum Rating, VGS = 0)	IDSS	_	_	10	μAdc
Gate Threshold Voltage (I _D = 1.0 mA, V _{DS} = V _{GS})	VGS(Th)	1.0	_	3.5	Vdc
Drain-Source On-Voltage (VGS = 10 V) (ID = 0.5 A) MPF930 MPF960 MPF990	V _{DS} (on)	=	0.4 0.6 0.6	0.7 0.8 1.2	Vdc
(I _D = 1.0 A) MPF930 MPF960 MPF990		=	0.9 1.2 1.2	1.4 1.7 2.4	
(I _D = 2.0 A) MPF930 MPF960 MPF990		_	2.2 2.8 2.8	3.0 3.5 4.8	
Static Drain-Source On Resistance MPF930 (VGS = 10 Vdc, ID = 1.0 Adc) MPF960 MPF990 MPF990	rDS(on)	=	0.9 1.2 1.2	1.4 1.7 2.0	Ohms
On-State Drain Current (VDS = 25 V, VGS = 10 V)	I _{D(on)}	1.0	2.0	_	Amps
SMALL-SIGNAL CHARACTERISTICS					
Input Capacitance (V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)	Ciss		60	70	pF
Reverse Transfer Capacitance $(V_{DS} = 25 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{rss}	_	13	18	pF
Output Capacitance (VDS = 25 V, VGS = 0, f = 1.0 MHz)	Coss	_	49	60	pF
Forward Transconductance $(V_{DS} = 25 \text{ V}, I_{D} = 0.5 \text{ A})$	9fs	200	380	_	mmhos
SWITCHING CHARACTERISTICS					
Turn-On Time	ton	_	7.0	15	ns
Turn-Off Time	toff	_	7.0	15	ns

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

MPF970 MPF971

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

IVIANIIVIOIVI NATIIVOS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Reverse Gate-Source Voltage	VGSR	30	Vdc
Forward Gate Current	IG(f)	10	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	350 2.8	mW mW/°C
Storage Channel Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range	T _{channel}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	THE PARTY OF LAND	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage (I _G = 1.0 μ Adc, V _{DS} = 0)		V(BR)GSS	30	_	_	Vdc
Gate Reverse Current (VGS = 15 Vdc, VDS = 0) (VGS = 15 Vdc, VDS = 0, T_A = 150°C)		IGSS	= 1	=	1.0 1.0	nAdc μAdc
$ \begin{array}{lll} Drain-Cutoff Current & & & \\ (V_{DS} = 15 \ Vdc, \ V_{GS} = 12 \ Vdc) & & \\ (V_{DS} = 15 \ Vdc, \ V_{GS} = 12 \ Vdc, \ T_{A} = 150 \ ^{\circ}\text{C}) & \\ (V_{DS} = 15 \ Vdc, \ V_{GS} = 7.0 \ Vdc) & & \\ (V_{DS} = 15 \ Vdc, \ V_{GS} = 7.0 \ Vdc, \ T_{A} = 150 \ ^{\circ}\text{C}) & \\ \end{array} $	MPF970 MPF970 MPF971 MPF971	ID(off)	=		10 10 10 10	nAdc μAdc nAdc μAdc
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ nAdc})$	MPF970 MPF971	VGS(off)	5.0 1.0	=	12 7.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current(1) $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0)$	MPF970 MPF971	IDSS	15 2.0	_	100 50	mAdc
Drain-Source On-Voltage (ID = 10 mAdc, $V_{GS} = 0$) (ID = 1.5 mAdc, $V_{GS} = 0$)		V _{DS(on)}	=	_	1.5 1.5	Vdc
Static Drain-Source On Resistance ($I_D = 1.0 \text{ mAdc}, V_{GS} = 0$)	MPF970 MPF971	rDS(on)	hai E	= =	100 250	Ohms
SMALL-SIGNAL CHARACTERISTICS		1995				100
Drain-Source "ON" Resistance $(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$	MPF970 MPF971	rds(on)	_	= 2	100 250	Ohms
Input Capacitance $ \begin{array}{ll} (V_{GS}=12~Vdc, V_{DS}=0, f=1.0~MHz) \\ (V_{GS}=7.0~Vdc, V_{DS}=0, f=1.0~MHz) \end{array} $	MPF970 MPF971	C _{iss}	Ξ		12 12	pF
Reverse Transfer Capacitance (VGS = 12 Vdc, VDS = 0, f = 1.0 MHz) (VGS = 7.0 Vdc, VDS = 0, f = 1.0 MHz)	MPF970 MPF971	C _{rss}	=	-	5.0 5.0	pF

ELECTRICAL CHARACTERISTICS (continued) (Τ_Δ = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (See Figure 6, $R_{K} = 0$) (1)						
Rise Time (I _{D(on)} = 10 mAdc, V _{GS(off)} = 12 Vdc) (I _{D(on)} = 1.5 mAdc, V _{GS(off)} = 7.0 Vdc)	MPF970 MPF971	t _r	= 1	2.0 3.0	5.0 5.0	ns
Fall Time	MPF970 MPF971	tf	_	9.0 68	15 80	ns
Turn-On Time	MPF970 MPF971	t _{on}	=	3.5 5.0	8.0 10	ns
Turn-Off Time $(ID_{On}) = 10 \text{ mAdc}, V_{GS(off)} = 12 \text{ Vdc})$ $(ID_{On}) = 1.5 \text{ mAdc}, V_{GS(off)} = 7.0 \text{ Vdc})$	MPF970 MPF971	toff	_	13 88	25 120	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 100 μ s, Duty Cycle \leq 1.0%.

FIGURE 1 – EFFECT OF I_{DSS} ON DRAIN-SOURCE RESISTANCE AND GATE-SOURCE VOLTAGE

IDSS, ZERO-GATE VOLTAGE DRAIN CURRENT (mA)

FIGURE 6 - SWITCHING TIME TEST CIRCUIT

NOTE 1

The switching characteristics shown above were measured using a test circuit similar to Figure 6. At the beginning of the switching interval, the gate voltage is at Gate Supply Voltage (+V_{GG}). The Drain-Source Voltage (V_{DS}) is slightly lower than Drain Supply Voltage (V_{DD}) due to the woltage divider. Thus Reverse Transfer Capacitance (Cr_{ss}) or Gate-Drain Capacitance (Cr_{gd}) is charged to V_{GG} + V_{DS}.

During the turn-on interval, Gate-Source Capacitance (C_{gs}) discharges through the series combination of RGen and R_K. C_{gd} discharge to $V_{DS(nn)}$ through RG and R_K in series with the parallel combination of effective load impedance (R'_D) and Drain-Source Resistance (r_{ds}) . During the turn-off, this charge flow is reversed.

Predicting turn-on time is somewhat difficult as the channel resistance $r_{\rm ds}$ is a function of the gate-source voltage. While $C_{\rm gd}$ discharges, $V_{\rm GS}$ approaches zero and $r_{\rm ds}$ decreases. Since $C_{\rm gd}$ discharges through $r_{\rm ds}$, turn-on time is non-linear. During turn-off, the situation is reversed with $r_{\rm ds}$ increasing as $C_{\rm gd}$ charges. The above switching curves show two impedance conditions; 1)

The above switching curves show two impedance conditions; 1) R_{K} is equal to R_{D} , which simulates the switching behavior of cascaded stages where the driving source impedance is normally the load impedance of the previous stage, and 2) $R_{K}=0$ (low impedance) the driving source impedance is that of the generator.

FIGURE 7 - TYPICAL FORWARD TRANSFER ADMITTANCE

FIGURE 8 - TYPICAL CAPACITANCE

SMALL-SIGNAL DEVICES

FIGURE 9 — EFFECT OF GATE-SOURCE VOLTAGE ON DRAIN-SOURCE RESISTANCE

FIGURE 10 — EFFECT OF TEMPERATURE ON DRAIN-SOURCE ON-STATE RESISTANCE

FIGURE 11 - LOW FREQUENCY CIRCUIT MODEL

$$\begin{array}{l} \gamma_{1S}=j\omega\;C_{1SS}\\ \gamma_{DS}=1/r_{OSS}+j\omega\;C_{OSS}\\ \gamma_{fS}=|\gamma f_{S}|\\ \gamma_{fS}=-j\omega\;C_{fSS}\\ C_{1SS}=C_{gd}+C_{gS}\\ C_{fSS}=C_{gd}\\ C_{OSS}=C_{gd}+C_{dS},\;C_{dS}\approx0 \end{array}$$

MPF2608 MPF2609

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET LOW-FREQUENCY, LOW NOISE

P-CHANNEL — DEPLETION

Refer to 2N5460 for graphs.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	30	Vdc	
Drain-Gate Voltage	V _{DG}	30	Vdc	
Gate-Source Voltage	VGS	30	Vdc	
Gate Current	IG	50	mA	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Symbol	Min	Max	Unit
201 0796107			
V _(BR) GSS	30	- Company	Vdc
IGSS		10	nA
V _{GS(off)}	1.0	4.0	Vdc
IDSS*	-0.9 -2.0	-4.5 -10.0	mA
		NAME OF STREET	
Vfs *	1000 2500	50 - 100 50 - 2 L00	μmhos
C _{iss}	J.Ame.	17 30	pF
		1904	make Tue
NF	av n <u>L</u> v ju Stimures	3.0	dB
	V(BR)GSS IGSS VGS(off) IDSS* VSs(off)	V(BR)GSS 30 IGSS	V(BR)GSS 30

^{*}Pulse Width ≤ 100 msec, Duty Cycle ≤ 10%.

MPF3330

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET LOW-FREQUENCY, LOW NOISE

P-CHANNEL — DEPLETION

MAXIMUM RATINGS

INIAMINIONI NATINGS			
Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DG}	20	Vdc
Gate-Source Voltage	VGS	20	Vdc
Reverse Gate-Source Voltage	VGSR	20	Vdc
Gate Current	IG	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Refer to 2N5460 for graphs.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate-Source Breakdown Voltage (I _G = 10 μA)	V _(BR) GSS	20	_	Vdc
Gate Reverse Current (VGS = 10 V)	IGSS	_	10	nA
Gate Source Cutoff Voltage (V _{DS} = -15 V, I _D = 10 μ A)	VGS(off)	-	6.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current (Vps = -10 V)	IDSS*	2.0	6.0	mA
Drain-Source Resistance (I _D = 100 μA, V _{GS} = 0)	rDS	y m ay nm	800	Ω
SMALL-SIGNAL CHARACTERISTICS		200		
Forward Transfer Admittance (Vps = -10 V, Ip = 2.0 mA, f = 1.0 kHz)	Vfs *	1500	3000	μmhos
Output Admittance (Vps = -10 V, Ip = 2.0 mA, f = 1.0 kHz)	Yos	, <u> </u>	40	μmhos
Input Capacitance (Vps = -10 Volts, Vgs = 1.0 Volt, f = 1.0 MHz)	C _{iss}	_	20	pF
FUNCTIONAL CHARACTERISTICS	the sale		I NO	
Noise Figure (Vps = -5.0 V, Ip = 1.0 mA, Rg = 1.0 M Ω)	NF	_	3.0	dB

^{*}Pulse Width ≤ 100 msec, Duty Cycle ≤ 10%.

MPF3821 MPF3822

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET GENERAL PURPOSE

N-CHANNEL — DEPLETION

Refer to 2N4220 for graphs.

Max

Unit

Min

Symbol

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	50	Vdc
Drain-Gate Voltage	V _{DG}	50	Vdc
Gate-Source Voltage	VGS	-50	Vdc
Drain Current	ID	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.0	mW mW/°C
Junction Temperature Range	TJ	125	°C
Storage Temperature Range	T _{stg}	-65 to 150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic

		-1			
OFF CHARACTERISTICS		, A		2 11 1	
Gate-Source Breakdown Voltage $(I_G = -1.0 \mu Adc, V_{DS} = 0)$		V _(BR) GSS	-50	report of the last	Vdc
Gate Reverse Current (VGS = -30 Vdc, VDS = 0) (VGS = -30 Vdc, VDS = 0 , TA = 150° C)		IGSS	=	-0.1 -100	nAdc
Gate Source Cutoff Voltage ($I_D = 0.5 \text{ nAdc}, V_{DS} = 15 \text{ Vdc}$)	MPF3821 MPF3822	VGS(off)	_	-4.0 -6.0	Vdc
Gate Source Voltage (ID = 50 μ Adc, VDS = 15 Vdc) (ID = 200 μ Adc, VDS = 15 Vdc)	MPF3821 MPF3822	VGS	-0.5 -1.0	-2.0 -4.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	MPF3821 MPF3822	DSS	0.5 2.0	2.5 10	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})(1)$	MPF3821 MPF3822	Yfs	1500 3000	4500 6500	μmhos
$(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz})$	MPF3821 MPF3822		1500 3000	- =	
Output Admittance(1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz})$	MPF3821 MPF3822	Yos	=	10 20	μmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{iss}	_	6.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{rss}	_	3.0	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, R_S = 1.0 \text{ megohm}, f = 10 \text{ Hz}, \text{ Noise Bandwidth} = 5.0 \text{ Hz})$		NF	-	5.0	dB
Equivalent Input Noise Voltage $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 10 \text{ Hz}, \text{ Noise Band})$	width = 5.0 Hz)	e _n	_	200	nv/Hz ^{1/2}
				•	-

⁽¹⁾ Pulse Test: Pulse Width ≤ 100 ms, Duty Cycle ≤ 10%.

MPF3823 MPF3824

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET HIGH FREQUENCY AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Symbol	Value	Unit
V _{DS}	30 50	Vdc
V _{DG}	30 50	Vdc
VGSR	-30 -50	Vdc
IG	10	mA
PD	300 2.0	mW mW/°C
TL	300	°C
TJ, T _{stg}	-65 to +150	°C
	VDS VDG VGSR IG PD TL	VDS 30 50 VDG 30 50 VGSR -30 -50 IG 10 PD 300 2.0 TL 300

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				A MATERIAL PROPERTY.	ST CPAR
Gate-Source Breakdown Voltage (IG = $-1.0 \mu A$)	MPF3823 MPF3824	V(BR)GSS	-30 -50	2-1	Vdc
Gate Leakage Current (VGS = -20 V)	1	IGSS		-0.5	nA
Gate Source Cutoff Voltage (V _{DS} = 15 V, I _D = 0.5 nA)	1224-71	V _{GS(off)}	1 -	-8.0	Vdc
Gate Source Voltage (VGS = 15 V, ID = 400 μ A)	1277	V _{GS}	-1.0	-7.5	Vdc
ON CHARACTERISTICS	A SHOT				
Zero-Gate-Voltage Drain Current (VDS = 15 V)	1 800	IDSS	4.0	20	mA
SMALL-SIGNAL CHARACTERISTICS	100				
Forward Transfer Admittance (V _{DS} = 15 V, f = 1.0 kHz)		Yfs	3500	6500	μmhos
Output Admittance (V _{DS} = 15 V, f = 1.0 kHz)		Yos	-	35	μmhos
Input Capacitance (V _{DS} = 15 V, f = 1.0 MHz)	2 41	C _{iss}		6.0	• pF
Reverse Transfer Capacitance (V _{DS} = 15 V, f = 1.0 MHz)	MPF3823 MPF3824	C _{rss}	_	2.0 3.0	pF
Drain-Source "ON" Resistance (VGS = 0, I _D = 0, f = 1.0 kHz)	MPF3824 (Only)	^r ds(on)	=	250	Ohms
FUNCTIONAL CHARACTERISTICS					
Noise Figure (V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz)	MPF3823 (Only)	NF	_	2.5	dB

MPF3970 MPF3971 MPF3972

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	40	Vdc
Drain-Gate Voltage	V _{DG}	40	Vdc
Reverse Gate-Source Voltage	VGSR	-40	Vdc
Forward Gate Current	IGF	50	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic Symbol Min Unit Max OFF CHARACTERISTICS V(BR)GSS 40 Gate-Source Breakdown Voltage Vdc $(I_G = 1.0 \mu A, V_{GS} = 0)$ Drain to Gate Leakage IDGO 250 $(V_{DG} = 20 \text{ V}, I_{S} = 0)$ Gate Reverse Current 250 pA IGSS $(V_{GS} = 20 \text{ V}, V_{DS} = 0)$ Gate Source Cutoff Voltage VGS(off) Vdc $(V_{DS} = -20 \text{ V}, I_{D} = 1.0 \text{ nA})$ MPF3970 -4.0-10.0MPF3971 -2.0 -5.0 MPF3972 -0.5-3.0**Drain Source Voltage** VGS Vdc $(V_{GS} = 0)$ $(I_D = 20 \text{ mA})$ MPF3970 1.0 $(I_D = 10 \text{ mA})$ MPF3971 1.5 $(I_D = 5.0 \text{ mA})$ MPF3972 2.0 **Drain Cutoff Current** ID(off) 250 pA $(V_{DS} = 20 \text{ V}, V_{GS} = -12 \text{ V})$ ON CHARACTERISTICS Zero-Gate-Voltage Drain Current mA IDSS MPF3970 50 $(V_{DS} = 20 \text{ V}, V_{GS} = 0)$ 150 MPF3971 25 75 MPF3972 5.0 30 Drain-Source "ON" Resistance Ω rDS(on) $(I_D = 1.0 \text{ mA}, V_{GS} = 0)$ MPF3970 30 MPF3971 60 MPF3972 100 Input Capacitance Ciss 25 pF $(V_{DS} = 20 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$ Reverse Transfer Capacitance Crss 6.0 pF $(V_{DS} = 0, V_{GS} = -12 \text{ V, f} = 1.0 \text{ MHz})$ **FUNCTIONAL CHARACTERISTICS** Drain-Gate Leakage DGO 500 nA $(V_{DG} = 20 \text{ V, I}_{S} = 0, T_{A} = 150^{\circ}\text{C})$ **Drain Cutoff Current** ID(off) 500 nA $(V_{DS} = 20 \text{ V}, V_{GS} = -12 \text{ V}, T_{A} = 150^{\circ}\text{C})$

MPF3970, MPF3971, MPF3972

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic	C	Symbol	Min	Max	Unit
Drain-Source "ON" Resistance $(I_D = 0, V_{GS} = 0, f = 1.0 \text{ kHz})$	MPF3970 MPF3971 MPF3972	^r ds(on)		30 60 100	Ω
SWITCHING CHARACTERISTICS					
Switching Characteristics (MPF3970 Only) (VDD = 10 V, VGS = 0, $ID(on)$ = 20 mA, VGS	(off) = 10 V)	td(on) t _r toff	Ξ	10 10 30	nsec nsec nsec
Switching Characteristics (MPF3971 Only) ($V_{DD} = 10 \text{ V, V}_{GS} = 0, I_{D(on)} = 10 \text{ mA, V}_{GS}$	(off) = 5.0 V)	td(on) t _r toff	=	15 15 60	nsec nsec nsec
Switching Characteristics (MPF3972 Only) ($V_{DD} = 10 \text{ V, V}_{GS} = 0, I_{D(on)} = 5.0 \text{ mA, V}_{GS}$	S(off) = 3.0 V)	td(on) tr toff	= =	40 40 100	nsec nsec nsec

MPF4093

CASE 29-03, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Gate-Source Voltage	VGS	-40	Vdc
Gate Current	IG	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 3.0	mW mW/°C
Lead Temperature (1/16" from Case for 10 Seconds)	TL	300	°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate-Source Breakdown Voltage (IG = 1.0 μ A, VDS = 0)	V(BR)GSS	-40	-	Vdc
Gate Reverse Current $(V_{DG} = -20 \text{ V, I}_S = 0)$	IDGO	_	1.0	nA
Drain-Gate Leakage $(V_{DG} = -20 \text{ V, I}_S = 0, T_A = 150^{\circ}\text{C})$	IDGO	0	400	nA
Drain Cutoff Current $(V_{DS} = 20 \text{ V}, V_{GS} = -6.0 \text{ V})$	I _{D(off)}	_	1.0	nA
Drain-Gate "OFF" Current $(V_{DS} = 20 \text{ V, V}_{GS} = -6.0 \text{ V, T}_{A} = 150^{\circ}\text{C})$	I _{D(off)}	_	400	nA
Gate 1 to Source Cutoff Voltage $(V_{DS} = 20 \text{ V}, _{D} = 1.0 \text{ nA})$	VG1S(off)	- 1.0	-5.0	Vdc
ON CHARACTERISTICS				10
Zero-Gate-Voltage Drain Current (V _{DS} = 20 V, V _{GS} = 0)	IDSS	8.0	-	mA
Drain-Source On-Voltage (VGS = 0, ID = 2.5 mA)	V _{DS(on)}		0.2	Vdc
Static Drain-Source On Resistance $(V_{GS} = 0, I_D = 1.0 \text{ mA})$ $(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$	rDS(on)		80 80	Ω
SMALL-SIGNAL CHARACTERISTICS				
Input Capacitance (V _{DS} = 20 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	- -	16	pF
Reverse Transfer Capacitance $(V_{DS} = 0, V_{GS} = -20 \text{ V}, f = 1.0 \text{ MHz})$	C _{rss}	_	5.0	pF
SWITCHING CHARACTERISTICS				
Delay Time	t _d	_	20	ns
Rise Time	tr	_	40	ns
Turn-Off Time	toff		80	ns

MPF4117,A MPF4118,A MPF4119,A

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET DC AMPLIFIER TRANSISTOR

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

MAXIMOM HATINGO			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	-40	Vdc
Drain-Gate Voltage	V _{DG}	-40	Vdc
Gate Current	IG	50	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	300 2.0	mW mW/°C
Storage Channel Temperature Range	T _{stg}	-65 to +125	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characterist	ic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				CHECK TO	Santa Ti
Gate-Source Breakdown Voltage (V _{DS} = 0, I _G = -1.0 μAdc)		V _(BR) GSS	-40	Trees and	Vdc
Gate Reverse Current (VGS = 20 Vdc, VDS = 0)	MPF4117, 4118, 4119 MPF4117A, 4118A, 4119A	IGSS	- = -1	-10 -1.0	pAdc
$(V_{GS} = 20 \text{ Vdc}, V_{DS} = 0, T_{A} = 125^{\circ}\text{C})$	MPF4117, 4118, 4119 MPF4117A, 4118A, 4119A		_	-25 -2.5	nAdc
Gate Source Cutoff Voltage (VDS = 10 Vdc, I _D = 1.0 nAdc)	MPF4117,A MPF4118,A MPF4119,A	VGS(off)	- 0.6 - 1.0 - 2.0	-1.8 -3.0 -6.0	Vdc
ON CHARACTERISTICS			11.7	1 7 7 1	1900
Zero-Gate-Voltage Drain Current(1) (V _{DS} = 10 Vdc, V _{GS} = 0)	MPF4117,A MPF4118,A MPF4119,A	IDSS	0.03 0.08 0.20	0.09 0.24 0.60	mAdc
SMALL-SIGNAL CHARACTERISTICS			= 0	140	207
Input Capacitance (V _{DS} = 10 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{iss}		3.0	pF
Reverse Transfer Capacitance ($V_{DS} = 10 \text{ Vdc}$, $V_{GS} = 0$, $f = 1.0 \text{ MHz}$)		C _{rss}		1.5	pF
Common-Source Forward Transconductance ($V_{DS} = 10 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ kHz}$)	MPF4117,A MPF4118,A MPF4119,A	9fs	70 80 100	210 250 330	μmhos
Common-Source Output Conductance (VDS = 10 Vdc, VGS = 0, f = 1.0 kHz)	MPF4117,A MPF4118,A MPF4119,A	9os	100	3.0 5.0 10	μmhos

⁽¹⁾ IDSS is measured during a 2.0 ms interval 100 ms after power is applied.

FIGURE 1 - TRANSFER CHARACTERISTICS

FIGURE 2 — TRANSCONDUCTANCE CHARACTERISTICS

FIGURE 3 — CAPACITANCE versus DRAIN-SOURCE VOLTAGE

MPF4220,A MPF4221,A MPF4222,A

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET LOW-FREQUENCY

N-CHANNEL — DEPLETION

Refer to 2N4220 for graphs.

MAXIMUM RATINGS

MAXIMUM KATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	VGS	30	Vdc
Reverse Gate-Source Voltage	VGSR	30	Vdc
Gate Current	IG	10	mA
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	310 2.82	mW mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage $(I_G = -10 \mu A, V_{DS} = 0 V)$	el P	V(BR)GSS	-30	_	Vdc
Gate Reverse Current (V _{GS} = -15 V, V _{DS} = 0 V)		IGSS	_	-100	pA
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ V}, I_D = 0.1 \text{ nA})$	MPF4220,A MPF4221,A MPF4222,A	V _{GS(off)}	=	-4.0 -6.0 -8.0	Vdc
Gate Source Voltage $(V_{DS}=15~V,~I_{D}=50~\mu\text{A})$ $(V_{DS}=15~V,~I_{D}=200~\mu\text{A})$ $(V_{DS}=15~V,~I_{D}=200~\mu\text{A})$ $(V_{DS}=15~V,~I_{D}=500~\mu\text{A})$	MPF4220,A MPF4221,A MPF4222,A	VGS	-0.5 -1.0 -2.0	-2.5 -5.0 -6.0	Vdc
ON CHARACTERISTICS				1	
Zero-Gate-Voltage Drain Current (V _{DS} = 15 Volts, V _{GS} = 0 V)	MPF4220,A MPF4221,A MPF4222,A	lpss*	+ 0.5 + 2.0 + 5.0	+3.0 +6.0 +15.0	mA
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance $(V_{DS} = 15 \text{ V}, f = 1.0 \text{ kHz}, V_{GS} = 0 \text{ V})$	MPF4220,A MPF4221,A MPF4222,A	Yfs *	1000 2000 2500	4000 5000 6000	μmhos
Output Admittance $(V_{DS} = 15 \text{ V}, f = 1.0 \text{ kHz}, V_{GS} = 0 \text{ V})$	MPF4220,A MPF4221,A MPF4222,A	Yos	=	10 20 40	μmhos
Input Capacitance (V _{DS} = 15 V, f = 1.0 MHz)		C _{iss}	-	6.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 V, f = 1.0 MHz)		C _{rss}	_	2.0	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (VDS = 15 V, f = 100 Hz, RG = 1.0 M Ω)	MPF4220,A MPF4221,A MPF4222,A	NF	_	2.5	dB

^{*}Pulse Width ≤ 100 msec, Duty Cycle ≤ 10%.

MPF4223 MPF4224

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET HIGH-FREQUENCY AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Drain Current	ID	20	mA
Gate Current	IG	10	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 2.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) Characteristic Symbol Min Max Unit **OFF CHARACTERISTICS** -30 Vdc V(BR)GSS Gate-Source Breakdown Voltage $(I_G = -10 \mu A)$ Gate 1 Leakage Current IG1SS nA $(V_{G1S} = -20 V)$ MPF4223 0.25 MPF4224 0.50 VGS(off) Vdc Gate Source Cutoff Voltage $(I_D = 0.25 \text{ nA}, V_{DS} = 15 \text{ V})$ MPF4223 -0.1-8.0 $(I_D = 0.5 \text{ nA}, V_{DS} = 15 \text{ V})$ MPF4224 -0.1-8.0Gate Source Voltage VGS Vdc MPF4223 $(I_D = 0.3 \text{ mA}, V_{DS} = 15 \text{ V})$ -1.0-7.0 $(I_D = 0.2 \text{ mA}, V_{DS} = 15 \text{ V})$ MPF4224 -1.0-7.5ON CHARACTERISTICS Zero-Gate-Voltage Drain Current IDSS mA MPF4223 3.0 18 $(V_{DS} = 15 V)$ MPF4224 2.0 20 SMALL-SIGNAL CHARACTERISTICS Forward Transfer Admittance Yfs μmhos MPF4223 3000 7000 $(V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ kHz})$ MPF4224 2000 7500 **Output Conductance** Re(yos) 200 μmhos $(V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 200 \text{ MHz})$ Input Capacitance Ciss 6.0 pF $(V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz})$ Crss Reverse Transfer Capacitance 2.0 pF

SMAL	L-SIGNA	L DEVICES

Common Source Power Gain

(V_{DS} = 15 V, V_{GS} = 0 V, f = 1.0 MHz) FUNCTIONAL CHARACTERISTICS

 $(V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 200 \text{ MHz})$

 $(V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, R_{G} = 1.0 \text{ k}\Omega, f = 200 \text{ MHz})$

5.0

dB

dB

NF

Gps

10

MPF4223 (Only)

MPF4223 (Only)

MPF4391 MPF4392 MPF4393

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

N-CHANNEL - DEPLETION

MAXIMUM RATINGS

MAXIMUM RATINGS	MAXIMUM RATINGS				
Rating	Symbol	Value	Unit		
Drain-Source Voltage	V _{DS}	30	Vdc		
Drain-Gate Voltage	V _{DG}	30	Vdc		
Gate-Source Voltage	VGS	30	Vdc		
Forward Gate Current	IG(f)	50	mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C		
Operating and Storage Channel Temperature Range	T _{channel} ,	-65 to +150	°C		

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					ACTEMIST	RAHO 170
Gate-Source Breakdown Voltage (IG = 1.0 μ Adc, VDS = 0)		V _(BR) GSS	30	(() - () ()	photosid ec IA _M 07	Vdc
Gate Reverse Current $(V_{GS} = 15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = 15 \text{ Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$	Constant Action	IGSS	_		1.0	nAdc μAdc
Drain-Cutoff Current (Vps = 15 Vdc, Vgs = 12 Vdc) (Vps = 15 Vdc, Vgs = 12 Vdc, $T_A = 100$ °C)	E-Aresta Lossassia	ID(off)	_	opahi (v — o ru-i	1.0	nAdc μAdc
Gate Source Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ nAdc})$	MPF4391 MPF4392 MPF4393	VGS	4.0 2.0 0.5	(V2) = (V2) =	10 5.0 3.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current(1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	MPF4391 MPF4392 MPF4393	IDSS	60 25 5.0	T-PLST 3 * R	130 75 30	mAdc
Drain-Source On-Voltage (I _D = 12 mAdc, V _{GS} = 0) (I _D = 6.0 mAdc, V _{GS} = 0) (I _D = 3.0 mAdc, V _{GS} = 0)	MPF4391 MPF4392 MPF4393	V _{DS(on)}	=	- 1,70	0.4 0.4 0.4	Vdc
Static Drain-Source On Resistance ($I_D = 1.0 \text{ mAdc}, V_{GS} = 0$)	MPF4391 MPF4392 MPF4393	rDS(on)	=	- I	30 60 100	Ohms
SMALL-SIGNAL CHARACTERISTICS			politor		50/ X 8	90.6
Forward Transfer Admittance (VDS = 15 Vdc, $ID = 60$ mAdc, $f = 1.0$ kHz) (VDS = 15 Vdc, $ID = 25$ mAdc, $f = 1.0$ kHz) (VDS = 15 Vdc, $ID = 5.0$ mAdc, $f = 1.0$ kHz)	MPF4391 MPF4392 MPF4393	Yfs	14-71	20 17 12	AL CRUM	mmhos
Drain-Source "ON" Resistance (VGS = 0, ID = 0, f = 1.0 kHz)	MPF4391 MPF4392 MPF4393	rds(on)	U-101 000	=	30 60 100	Ohms
Input Capacitance (VGS = 15 Vdc, VDS = 0, f = 1.0 MHz)		C _{iss}	_	6.0	10	pF

MPF4391, MPF4392, MPF4393

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic	Description (C)	Symbol	Min	Тур	Max	Unit
Reverse Transfer Capacitance $(V_{GS}=12\ Vdc,V_{DS}=0,f=1.0\ MHz)$ $(V_{DS}=15\ Vdc,I_{D}=10\ mAdc,f=1.0\ MHz)$		C _{rss}	_	2.5 3.2	3.5	pF
SWITCHING CHARACTERISTICS	,					
Rise Time (See Figure 2) $ \begin{cases} I_{D(on)} = 12 \text{ mAdc}) \\ (I_{D(on)} = 6.0 \text{ mAdc}) \\ (I_{D(on)} = 3.0 \text{ mAdc}) \end{cases} $	MPF4391 MPF4392 MPF4393	t _r		1.2 2.0 2.5	5.0 5.0 5.0	ns
Fall Time (See Figure 4) (VGS(off) = 12 Vdc) (VGS(off) = 7.0 Vdc) (VGS(off) = 5.0 Vdc)	MPF4391 MPF4392 MPF4393	tf		7.0 15 29	15 20 35	ns
Turn-On Time (See Figures 1 and 2) $ \begin{cases} I_{D(on)} = 12 \text{ mAdc} \\ I_{D(on)} = 6.0 \text{ mAdc} \\ I_{D(on)} = 3.0 \text{ mAdc} \end{cases} $	MPF4391 MPF4392 MPF4393	^t on		3.0 4.0 6.5	15 15 15	ns
Turn-Off Time (See Figures 3 and 4) (VGS(off) = 12 Vdc) (VGS(off) = 7.0 Vdc) (VGS(off) = 5.0 Vdc)	MPF4391 MPF4392 MPF4393	toff		10 20 37	20 35 55	ns

⁽¹⁾ Pulse Test: Pulse Width \leq 100 μ s, Duty Cycle \leq 1.0%.

TYPICAL SWITCHING CHARACTERISTICS

FIGURE 5 - SWITCHING TIME TEST CIRCUIT

NOTE 1

The switching characteristics shown above were measured using a test circuit similar to Figure 5. At the beginning of the switching interval, the gate voltage is at Gate Supply Voltage (2 G_G). The Drain-Source Voltage (2 D_G) is slightly lower than Drain Supply, Voltage (2 D_G) due to the voltage divider. Thus Reverse Transfer Capacitance (2 C_g) or Gate-Drain Capacitance (2 C_g) is charged to 2 G_G + 2 D_S.

During the turn-on interval, Gate-Source Capacitance (C_{gs}) discharges through the series combination of R_{Gen} and R_K . C_{gg} must discharge to $V_{DS(on)}$ through R_G and R_K in series with the parallel combination of effective load impedance (R_{D}) and Drain-Source Resistance (r_{ds}). During the turn-off, this charge flow is reversed.

Predicting turn-on time is somewhat difficult as the channel resistance r_{ds} is a function of the gate-source voltage. While C_{gs} discharges, V_{GS} approaches zero and r_{ds} decreases. Since C_{gd} discharges through r_{ds} turn-on time is non-linear. During turn-off, the situation is reversed with r_{ds} increasing as C_{gd} charges.

The above switching curves show two impedance conditions; 1) R_K is equal to R_D which simulates the switching behavior of cascaded stages where the driving source impedance is normally the load impedance of the previous stage, and 2) $R_K = 0$ (low impedance) the driving source impedance is that of the generator.

FIGURE 6 - TYPICAL FORWARD TRANSFER ADMITTANCE

FIGURE 7 - TYPICAL CAPACITANCE

FIGURE 8 – EFFECT OF GATE-SOURCE VOLTAGE

FIGURE 9 - EFFECT OF TEMPERATURE ON DRAIN-SOURCE ON-STATE RESISTANCE

FIGURE 10 - EFFECT OF IDSS ON DRAIN-SOURCE RESISTANCE AND GATE-SOURCE VOLTAGE

The Zero-Gate-Voltage Drain Current (I_{DSS}), is the principle determinant of other J-FET characteristics. Figure 10 shows the relationship of Gate-Source Off Voltage (VGS(off)) and Drain-Source On Resistance (rds(on)) to IDSS. Most of the devices will be within ±10% of the values shown in Figure 10. This data will be useful in predicting the characteristic variations for a given part number.

For example:

Unknown

rds(on) and VGS range for an MPF4392

The electrical characteristics table indicates that an MPF4392 has an IDSS range of 25 to 75 mA. Figure 10, shows rds(on) = 52 Ohms for IDSS = 25 mA and 30 Ohms for IDSS = 75 mA. The corresponding VGS values are 2.2 volts and 4.8 volts.

MPF4416,A

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET HIGH-FREQUENCY AMPLIFIER

N-CHANNEL - DEPLETION

MAXIMUM RATINGS

MAXIMON RATINGS	3			
Rating		Symbol	Value	Unit
Gate-Source Voltage	MPF4416 MPF4416A	V _{GS}	-30 -35	Vdc
Gate Current		IG	10	mA
Total Device Dissipation Derate above 25°C	n @ T _A = 25°C	PD	300 1.7	mW mW/°C
Lead Temperature		TL	300	°C
Operating and Storage Temperature Range	Junction	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (IG = $-1.0 \mu A$)	MPF4416 MPF4416A	V(BR)GSS	-30 -35	=	Vdc
Gate Reverse Current (VGS = -20 V)		IGSS	_	- 250	pA
Gate Source Cutoff Voltage $(V_{DS} = 15 \text{ V}, I_D = 1.0 \text{ nA})$	MPF4416 MPF4416A	V _{GS(off)}	_ - 2.5	-6.0 -6.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current* (V _{DS} = 15 V)		IDSS	5.0	15	mA
SMALL-SIGNAL CHARACTERISTICS					•
Forward Transfer Admittance (V _{DS} = 15 V, f = 1.0 kHz)		Vfs	4500	7500	μmhos
Input Admittance $(V_{DS} = 15 \text{ V}, f = 100 \text{ MHz})$ $(V_{DS} = 15 \text{ V}, f = 400 \text{ MHz})$		Re(yis)	_	100 1000	μmhos
Output Admittance (V _{DS} = 15 V, f = 1.0 kHz)		Yos	-	50	μmhos
Output Conductance (V _{DS} = 15 V, f = 100 MHz) (V _{DS} = 15 V, f = 400 MHz)		Re(yos)	_	75 100	μmhos
Forward Transconductance* (V _{DS} = 15 V, f = 400 MHz)		Re(y _{fs})	4000	_	μmhos
Input Capacitance (V _{DS} = 15 V, f = 1.0 MHz)		C _{iss}	_	4.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 V, f = 1.0 MHz)		C _{rss}	_	0.8	pF
Output Capacitance (Vps = 15 V, f = 1.0 MHz)		C _{oss}	_	2.0	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (V _{DS} = 15 V, I _D = 5.0 mA, R _G = 1.0 k Ω , f = 100 MHz) (V _{DS} = 15 V, I _D = 5.0 mA, R _G = 1.0 k Ω , f = 400 MHz)		NF	_	2.0 4.0	dB
Common Source Power Gain $(V_{DS} = 15 \text{ V, } I_{D} = 5.0 \text{ mA, } f = 100 \text{ MHz})$ $(V_{DS} = 15 \text{ V, } I_{D} = 5.0 \text{ mA, } f = 400 \text{ MHz})$		G _{ps}	18 10	_	dB

^{*}Pulse Test Duration = 2.0 msec.

MPF4856,A thru MPF4861,A

CASE 29-02, STYLE 5 TO-92 (TO-226AA)

JFET SWITCHING

N-CHANNEL — DEPLETION

Refer to 2N4856 for graphs.

MAXIMUM RATINGS

Rating	Symbol	MPF4857,A	MPF4859,A MPF4860,A MPF4861,A	Unit
Drain-Source Voltage	VDS	+40	+30	Vdc
Drain-Gate Voltage	V _{DG}	+40	+30	Vdc
Reverse Gate-Source Voltage	V _{GSR}	-40	-30	Vdc
Forward Gate Current	lgF	50		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.4		mW mW/°C
Storage Temperature Range	T _{stg}	- 65 to	+ 150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate-Source Breakdown Voltage (IG = 1.0 μ Adc, VDS = 0) MPF4856,A, MPF4857,A, MPF4858,A MPF4859,A, MPF4860,A, MPF4861,A	V(BR)GSS	-40 -30	=	Vdc
Gate Reverse Current (VGS = -20 Vdc, VDS = 0) MPF4856,A, MPF4857,A, MPF4858,A (VGS = -15 Vdc, VDS = 0) MPF4859,A, MPF4860,A, MPF4861,A (VGS = -20 Vdc, VDS = 0, TA = 150°C) MPF4856,A, MPF4857,A, MPF4858,A (VGS = -15 Vdc, VDS = 0, TA = 150°C) MPF4859,A, MPF4860,A, MPF4861,A	IGSS	=	0.25 0.25 0.5 0.5	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 0.5 nAdc) MPF4856,A, MPF4859,A MPF4857,A, MPF4860,A MPF4858,A, MPF4861,A	VGS(off)	-4.0 -2.0 -0.8	-10 -6.0 -4.0	Vdc
Drain Cutoff Current (VDS = 15 Vdc, VGS = -10 Vdc) (VDS = 15 Vdc, VGS = -10 Vdc, $T_A = 150$ °C)	l _{D(off)}	_	0.25 0.5	nAdc μAdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current(1) (VDS = 15 Vdc, VGS = 0) MPF4856,A, MPF4859,A MPF4857,A, MPF4860,A MPF4858,A, MPF4861,A	IDSS	50 20 8.0	 100 80	mAdc
Drain-Source On-Voltage (ID = 20 mAdc, VGS = 0)	V _{DS(on)}	=	0.75 0.5 0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Drain-Source "ON" Resistance (VGS = 0, I _D = 0, f = 1.0 kHz) MPF4856,A, MPF4859,A MPF4857,A, MPF4860,A MPF4858,A, MPF4861,A	^r ds(on)	=	25 40 60	Ohms
Input Capacitance (VDS = 0, VGS = -10 Vdc, f = 1.0 MHz) MPF4856 thru MPF4861 MPF4856A thru MPF4861A	C _{iss}	=	18 10	pF
Reverse Transfer Capacitance $(V_{DS}=0,V_{GS}=-10\ Vdc,\ f=1.0\ MHz)$ MPF4856 thru MPF4861 MPF4859A MPF4857A, MPF4858A, MPF4860A, MPF4861A	C _{rss}	=	8.0 4.0 3.5	pF

MPF4856, A thru MPF4861, A

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic			Symbol	Min	Max	Unit	
SWITCHING CHARACTERISTICS							
Turn-On	Conditions for MPF4856,A, MPF4859,A:		td(on)	_	6.0	ns	
Delay Time		MPF4856A, MPF4859A		_	5.0		
	$(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 20 \text{ mAdc},$	MPF4857, MPF4860		_	6.0		
	$V_{GS(on)} = 0$, $V_{GS(off)} = -10 \text{ Vdc}$	MPF4857A, MPF4860A		_	6.0	1	
	DATE OF THE PROPERTY OF THE PR	MPF4858, MPF4861		_	10		
		MPF4858A, MPF4861A		_	8.0	UNRXAL	
Rise Time	Conditions for MPF4857,A, MPF4860,A:	MPF4856,A, MPF4859,A	tr	_	3.0	ns	
	1.16	MPF4857,A, MPF4860,A		_	4.0		
	$(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 10 \text{ mAdc},$	MPF4858, MPF4861	Indexed	_	10		
	$V_{GS(on)} = 0$, $V_{GS(off)} = -6.0 \text{ Vdc}$	MPF4858A, MPF4861A		_	8.0		
Turn-Off Time	30	MPF4856, MPF4859	toff	_	25		
	Conditions for MPF4858,A, MPF4861,A:	MPF4856A, MPF4859A	300000000000000000000000000000000000000	_	20	ns	
	Vdc V	MPF4857, MPF4860	Thirty.	-	50	NO FORM	
	$(V_{DD} = 10 \text{ Vdc}, I_{D(on)} = 5.0 \text{ mAdc},$	MPF4857A, MPF4860A		_	40		
	$V_{GS(on)} = 0$, $V_{GS(off)} = -4.0 \text{ Vdc}$	MPF4858, MPF4861		_	100	NO 316W	
	20(011)	MPF4858A; MPF4861A		_	80	mark! Break!	

⁽¹⁾ Pulse Test: Pulse Width = 100 ms, Duty Cycle ≤ 10%.

⁽²⁾ The ID(on) values are nominal; exact values vary slightly with transistor parameters.

U308 U309 U310

CASE 27-02, STYLE 4 TO-52 (TO-206AC)

JFET VHF/UHF AMPLIFIER

N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	VGS	25	Vdc
Gate Current	IG	20	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 4.0	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage ($I_G = 1.0 \mu A, V_{DS} = 0$)		V(BR)GSS	- 25		_	V
Gate Reverse Current $(V_{GS} = -15 \text{ V})$ $(V_{GS} = 0, T_A = 125^{\circ}\text{C})$		IGSS	=	=	- 150 - 150	pA nA
Gate Source Cutoff Voltage (V _{DS} = 10 V, I _D = 1.0 nA)	U308 U309 U310	VGS(off)	-1.0 -1.0 -2.5		-6.0 -4.0 -6.0	V
ON CHARACTERISTICS		4				
Zero-Gate-Voltage Drain Current(1) (V _{DS} = 10 V, V _{GS} = 0)	U308 U309 U310	IDSS	12 12 24	=	60 30 60	mA
Gate-Source Forward Voltage (I _G = 10 mA, V _{DS} = 0)		V _{GS(f)}	-	-	1.0	V
SWITCHING CHARACTERISTICS						
Common-Gate Forward Transconductance(1) (V _{DS} = 10 V, I _D = 10 mA, f = 1.0 kHz)	U308 U309 U310	9fg	10 10 10		20 20 18	mmhos
Common-Gate Output Conductance (Vps = 10 V, lp = 10 mA, f = 1.0 kHz)		gog	-	150	-	μmhos
Drain-Gate Capacitance $(V_{GS} = -10 \text{ V}, V_{DS} = 10 \text{ V}, f = 1.0 \text{ MHz})$		C _{gd}	-	-	2.5	pF
Gate-Source Capacitance (VGS = -10 V, VDS = 10 V, f = 1.0 MHz)		C _{gs}	-	-	5.0	pF
Equivalent Short-Circuit Input Noise Voltage (VDS = 10 V, ID = 10 mA, f = 100 Hz)		ēn	-	10	-	nV√Hz

⁽¹⁾ Pulse test duration = 2.0 ms.

⁽²⁾ See Figures 10 and 11 for Noise Figure and Power Gain information.

FIGURE 6 – COMMON-GATE Y PARAMETER MAGNITUDE versus FREQUENCY

FIGURE 7 — COMMON-GATE S PARAMETER MAGNITUDE versus FREQUENCY

FIGURE 8 – COMMON-GATE Y PARAMETER
PHASE-ANGLE versus FREQUENCY

FIGURE 9 – S PARAMETER PHASE-ANGLE versus FREQUENCY

FIGURE 10 - NOISE FIGURE and POWER GAIN versus DRAIN CURRENT

FIGURE 11 - NOISE FIGURE and POWER GAIN versus FREQUENCY

FIGURE 12 - 450 MHz IMD EVALUATION AMPLIFIER

BW (3dB) - 36.5 MHz

Device case grounded

IM test tones - f1 = 449.5 MHz, f2 = 450.5 MHz

C1 = 1-10 pf Johanson Air variable trimmer.

C2, C5 = 100 pf feed thru button capacitor.

L1 = 1/8" x 1/32" x 1-5/8" copper bar

Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with C4 and C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point (IP) value is 29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower IP values. For example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm.

FIGURE 13 - TWO TONE 3RD ORDER INTERCEPT POINT

Example of intercept point plot use:

Assume two in-band signals of -20 dBm at the amplifier input. They will result in a 3rd order IMD signal at the output of -90 dBm. Also, each signal level at the output will be -11 dBm, showing an amplifier gain of 9.0 dB and an intermodulation ratio (IMR) capability of 79 dB. The gain and IMR values apply only for signal levels below compression.

Small-signal high-frequency transistors and hybrid modules from Motorola are characterized as low-noise amplifiers, oscillators, high-speed switches, Class A linear amplifiers, and Class C amplifiers. Packaging options include plastic/ceramic stripline and metal can.

RF Transistors

2N2857 2N3839

2N2857 JAN, JTX, JTXV AVAILABLE **CASE 20-03, STYLE 10** TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	2.5	Vdc
Collector Current — Continuous	Ic	40	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	300 1.72	mW mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

FLECTRICAL	CHARACTERISTICS	$(T_{\Lambda} =$	25°C unless	otherwise noted.)	

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	- MA (1)		3.		
Collector-Emitter Breakdown Voltage* (IC = 3.0 mAdc, I _B = 0)	V(BR)CEO	15	_	- %	Vdc
Collector-Base Breakdown Voltage (IC = 1.0 μ Adc, IE = 0)	V(BR)CBO	30	25 350 2	7 124	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	2.5	M = <u>31</u>		Vdc
	СВО		ber—scus	0.01	μAdc
ON CHARACTERISTICS					
DC Current Gain (IC = 3.0 mAdc, VCE = 1.0 Vdc)	hFE	30	_	150	
SMALL SIGNAL CHARACTERISTICS					
	fT	1000 1000	_	1900 2000	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 to 1.0 MHz)	C _{cb}	_	0.7	1.0	pF
Small Signal Current Gain (I _C = 2.0 mAdc, V _{CE} = 6.0 Vdc, f = 1.0 kHz)	h _{fe}	50	_	220	_
Collector Base Time Constant $(I_{\hbox{\scriptsize E}}=2.0~\hbox{\scriptsize mAdc}, V_{\hbox{\scriptsize CB}}=6.0~\hbox{\scriptsize Vdc}, f=31.9~\hbox{\scriptsize MHz})$ 2N2857 2N3839	rb′C _C	4.0 1.0	_	15 15	ps
Noise Figure (Figure 1) (IE = 0.1 mAdc, V_{CE} = 1.0 Vdc, R_S = 50 ohms, f = 450 MHz)(2) Both Types (IC = 1.5 mAdc, V_{CE} = 6.0 Vdc, R_S = 50 ohms, f = 450 MHz) 2N2857 2N3839	NF		5.8 4.1 —	 4.5 3.9	dB
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (Figure 1) (IE = 0.1 mAdc, V_{CE} = 1.0 Vdc, f = 450 MHz, R_S = 50 Ω))(2) (IC = 1.5 mAdc, V_{CE} = 6.0 Vdc, f = 450 MHz, R_S = 50 Ω)	G _{pe}	 12.5	11	 19	dB
Power Output (Figure 2) (I _E = 12 mAdc, V _{CB} = 10 Vdc, f = 500 MHz)	Pout	30	_	_	mW

⁽¹⁾ fT is defined as the frequency at which $|h_{\mbox{fe}}|$ extrapolates to unity. (2) Micro-Power Specifications.

^{*}Indicates Data in addition to JEDEC Requirements.

FIGURE 1 - TEST CIRCUIT FOR NOISE FIGURE AND POWER GAIN L3 < EL2 C2 0.3-5.0 0.3-5.0 1 Rs = 50 Ω 0.8-8.0 1000

- FIGURE 2 TEST CIRCUIT FOR OSCILLATOR POWER OUTPUT Capacitance values in pF 50 Ω DOUBLE-STUB TUNER (W) 50 11 WATT 0.2 ut METER (-) VEE 0 (+) VCC 0 L1 - 3 turns #16 AWG wire, 3/8" O.D. 1-1/4" long.
- L1, L2 Silver-plated brass rod, 1-1/2" long and 1/4" dia. Install at least 1/2" from nearest vertical chassis surface.
 - L3 1/2 turn #16 AWG wire, located 1/4" from and parallel to L2.
 - External interlead shield to isolate collector lead from emitter and base leads.
 - (A) Connect 450-MHz signal generator (with R_S = 50 ohms) to input terminals of amplifier. Connect 50-ohm RF voltmeter across output terminals of amplifier.
- (C) Apply VEE, and with signal generator adjusted for 5 mV output from amplifier, tune C1, C3, and C4 for maximum output. Interchange connections to signal generator and RF voltmeter.
- With sufficient signal applied to output terminals of amplifier, adjust C2 for minimum indication at input.
- Repeat steps (A), (B), and (C) to determine if retuning is necessary.

FIGURE 3 - NOISE FIGURE versus FREQUENCY

10 VCE = 6.0 Vdc 9.0 Ic = 1.0 mAdc 8.0 Rs = Optimum ≈ 250 Ohms @ 105 and 200 MHz 100 Ohms @ 450 MHz 7.0 NOISE FIGURE 6.0 5.0 4.0 3.0 2.0 1.0 60 70 50 100 200 300 400 . 500 f, FREQUENCY (MHz)

FIGURE 4 - NOISE FIGURE versus SOURCE RESISTANCE AND COLLECTOR CURRENT

FIGURE 5 - NOISE FIGURE versus SOURCE RESISTANCE AND COLLECTOR CURRENT

FIGURE 6 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 8 - INPUT ADMITTANCE

FIGURE 10 - FORWARD TRANSFER

FIGURE 7 - NOISE FIGURE AND POWER GAIN Versus COLLECTOR CURRENT

FIGURE 9 – OUTPUT ADMITTANCE versus FREQUENCY

FIGURE 11 -REVERSE TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 16 - S₁₁, INPUT REFLECTION COEFFICIENT AND S₂₂, OUTPUT REFLECTION COEFFICIENT

2N3553

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	65	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	7.0 40	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

VCEO(sus)				
VCEO(sus)	Lauren I			
	40	_		Vdc
V _{(BR)EBO}	4.0	_	_	Vdc
ICEO	-	er in a	0.1	mAdc
ICEX	=	=	5.0 1.0	mAdc
IEBO			0.1	mAdc
		1 1		
hFE	10	_	_	_
V _{CE(sat)}	-	_	1.0	Vdc
fΤ	_	500	_	MHz
C _{obo}	-	8.0	10	pF
G _{pe}	10	_	_	dB
η	50	_	-	%
P _{in}	_	_	0.25	Watt
	V(BR)EBO ICEO ICEX IEBO hFE VCE(sat) fT Cobo	V(BR)EBO 4.0 ICEO — ICEX — IBBO — IFE 10 VCE(sat) — Gpe 10 η 50	V(BR)EBO 4.0	V(BR)EBO 4.0 — — ICEO — — 0.1 ICEX — — 5.0 — — 1.0 IEBO — — 0.1 hFE 10 — — VCE(sat) — — 1.0 fT — 500 — Cobo — 8.0 10 Gpe 10 — — η 50 — —

⁽¹⁾ Pulsed thru a 25 mH inductor.

FIGURE 2 - 175 MHz TEST CIRCUIT SCHEMATIC

2N3866 2N3866A

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	55	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	lc	0.4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, R _{BE} = 10 Ω)		VCER(sus)	55	_	Vdc
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B = 0)		V _{CEO(sus)}	30	_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \ \mu Adc, I_C = 0)$		V _{(BR)EBO}	3.5	-	Vdc
Collector Cutoff Current (V _{CE} = 28 Vdc, I _B = 0)		ICEO	_	0.02	mAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = -1.5 Vdc (Rev.), T _C = 200°C) (V _{CE} = 55 Vdc, V _{BE} = -1.5 Vdc (Rev.)	ger"	ICEX	=	5.0 0.1	mAdc
Emitter Cutoff Current (V _{BE} = 3.5 Vdc, I _C = 0)		IEBO	_	0.1	mAdo
ON CHARACTERISTICS					
DC Current Gain (I _C = 360 mAdc, V_{CE} = 5.0 Vdc) (I _C = 50 mAdc, V_{CE} = 5.0 Vdc)	Both 2N3866 2N3866A	hFE	5.0 10 25	 200 200	_
Collector-Emitter Saturation Voltage $(I_C = 100 \text{ mAdc}, I_B = 20 \text{ mAdc})$		V _{CE(sat)}	_	1.0	Vdc
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	2N3866 2N3866A	fτ	500 800	_	MHz
Output Capacitance ($V_{CB} = 28 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)		C _{obo}	-	3.0	pF
FUNCTIONAL TEST (FIGURE 1)					
Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)		G _{pe}	10	_	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{OUT} = 1.0 W, f = 400 MHz)		η	45	-	%

FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC

f, FREQUENCY (MHz)

FIGURE 6 — OUTPUT POWER versus INPUT POWER (CLASS C)

FIGURE 7 - SMALL-SIGNAL CURRENT GAIN

ANGRES . MARRIED

FIGURE 8 – LARGE-SIGNAL SERIES EQUIVALENT IMPEDANCES

FIGURE 9 - S₁₁ AND S₂₂ versus FREQUENCY

FIGURE 10 - S21 versus FREQUENCY

FIGURE 11 - S₁₂ versus FREQUENCY

MAXIMUM RATINGS

INAXIIVIOIVI IIATIIIGO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	36	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	Ic	400	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _Ø JC	35	°C/W
Thermal Resistance, Junction to Ambient	R _B JA	175	°C/W

2N3948

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B = 0)	VCEO(sus)	20	-	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	36		Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	3.5	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	Ісво	=	0.1 100	μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)	hFE	15	-	_
SMALL SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _E = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	fT	700	_	MHz
Output Capacitance (V _{CB} = 15 Vdc, I_E = 0, f = 1.0 MHz)	C _{obo}	-	4.5	pF
FUNCTIONAL TEST (FIGURE 1)				
Power Gain	Gpe	6.0	_	dB
Output Power (V _{CC} = 13.6 Vdc, f = 400 MHz, P _{in} = 0.25	W) P _{out}	1.0	_	Watt
Collector Efficiency	η	45	_	%

FIGURE 1 - 400 MHz RF AMPLIFIER TEST CIRCUIT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit Vdc	
Collector-Emitter Voltage	VCEO	12		
Collector-Base Voltage	V _{CBO}	20	Vdc	
Emitter-Base Voltage	V _{EBO}	4.5	Vdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.3	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	750 4.3	mW mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C	

THERMAL CHARACTERISTICS

THERMAL CHARACTERISTICS					
Characteristic	Symbol	Max	Unit °C/mW		
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.233			
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	0.436	°C/mW		

2N3959 2N3960

JAN, JTX, JTXV AVAILABLE CASE 22-03, STYLE 1 TO-18 (TO-206AA)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Real Property and	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	and the same				1 1 1 1 1 1	
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)		V _{(BR)CEO}	12	_	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		V _(BR) CBO	20	J	1 3 4	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		V _{(BR)EBO}	4.5	_	-	Vdc
Collector Cutoff Current (V _{CE} = 10 Vdc, V _{EB} = 2.0 Vdc) (V _{CE} = 10 Vdc, V _{EB} = 2.0 Vdc, T _A = 150°C)		ICEX			0.005 5.0	μAdc
Collector Forward Current (V _{CE} = 5.0 Vdc, V _{BE} = 0.4 Vdc)		ICEX	-	_	1.0	μAdc
Base Cutoff Current (V _{CE} = 10 Vdc, V _{EB} = 2.0 Vdc)		IBL	_	-	0.005	μAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 30 mAdc, V _{CE} = 1.0 Vdc)		hFE	25 40 25	=	 400 	1-
Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 0.1 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc)	995	VCE(sat)	10 <u>6 </u>	CROS DATE	0.2 0.3	Vdc
Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 30 mAdc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	_		0.8 1.0	Vdc
SMALL SIGNAL CHARACTERISTICS					-	
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 4.0 Vdc, f = 100 MHz)	2N3959 2N3960	fΤ	1000 1300	=	-=	MHz
($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	2N3959 2N3960		1300 1600	=		
$(I_C = 30 \text{ mAdc}, V_{CE} = 4.0 \text{ Vdc}, f = 100 \text{ MHz})$	2N3959 2N3960		1000 1200	=	= =	
Output Capacitance (VCB = 4.0 Vdc, IF = 0, f = 1.0 MHz)		C _{obo}		2.0	2.5	pF

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 100 MHz)		C _{ibo}	_	1.5	2.5	pF
Collector Base Time Constant		rb'C _C				ps
$(I_C = 5.0 \text{ mAdc}, V_{CF} = 4.0 \text{ Vdc})$	2N3959		_	_	30	
THE STATE OF THE STATE OF	2N3960		_	_	50	
(I _C = 10 mAdc, V _{CF} = 10 Vdc)	2N3959		_	_	25	
	2N3960	100	_	-	40	
(IC = 30 mAdc, VCE = 4.0 Vdc)	2N3959		_	_	30	1000
	2N3960		_	_	50	and the same

SWITCHING CHARACTERISTICS (FIGURE 7)

Turn-On Delay Time (I _C = 10 mAdc, V_{OUt} = 1.0 Vdc) (I _C = 30 mAdc, V_{Out} = 1.0 Vdc)		^t d(on)	_	2.4 2.0		ns
Rise Time		tr		AT T	Herri II	ns
$(I_C = 10 \text{ mAdc}, V_{out} = 1.0 \text{ Vdc})$	Both Devices		_	3.0	_	
$(I_C = 30 \text{ mAdc}, V_{Out} = 1.0 \text{ Vdc})$	2N3959		0-0	2.2	_	
out out	2N3960		_	1.7	_	
Turn-Off Delay Time	7 2 2	td(off)		201727		ns
$(I_C = 10 \text{ mAdc}, V_{Out} = 1.0 \text{ Vdc})$		-1-17	_	1.6	_	
$(I_C = 30 \text{ mAdc}, V_{out} = 1.0 \text{ Vdc})$			_	1.6	_	
Fall Time		tf		THE PARTY OF	ALC: NO	ns
$(I_C = 10 \text{ mAdc}, V_{Out} = 1.0 \text{ Vdc})$	Both Devices			3.3	_	
$(I_C = 30 \text{ mAdc}, V_{out} = 1.0 \text{ Vdc})$	2N3959		_	2.3		
000	2N3960			1.9	-	

FIGURE 1 - TYPICAL DC CURRENT GAIN

FIGURE 3 - TYPICAL COLLECTOR-BASE TIME CONSTANT

FIGURE 2 – TYPICAL CURRENT-GAIN – BANDWIDTH PRODUCT

FIGURE 4 - TYPICAL JUNCTION CAPACITANCE

TURN-ON AND TURN-OFF TIMES

FIGURE 7 - SWITCHING TIMES TEST CIRCUIT

This test set up is designed to simulate a cascade of identical stages. The source resistance ($R_{\rm L}$), equals the load resistance ($R_{\rm L}$). Values used in the test are shown in the table.

For $V_{in} = V_{out} = 1 \text{ V}$, $V_{BB} = +0.5 \text{ V}$, $R_L \& R_K$ values appropriately reduced.

Vin = Vo	ut = 2 volts	. V _{BB} = +	1.0V
I _C (mA)	RE(kΩ)	$R_L\left(\Omega\right)$	R _K (Ω)
1.0	24.0	2.0 k	2.0 k
3.0	8.2	680	680
10	2.4	200	180
30	0.8	68	36

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

WAXIWOW RATINGS						
Rating	Symbol	Value	Unit			
Collector-Emitter Voltage	VCEO	20	Vdc			
Collector-Base Voltage	VCBO	40	Vdc			
Emitter-Base Voltage	VEBO	2.0	Vdc			
Base Current	IB	400	mAdc			
Collector Current — Continuous	Ic	400	mAdc			
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.0 5.71	Watt mW/°C			
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	3.5 20	Watts mW/°C			
Storage Temperature	T _{stg}	-65 to +200	°C			

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, R _{BE} = 10 ohms)	VCER(sus)	40	_	Vdc
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B = 0)	VCEO(sus)	20	_	Vdc
Collector Cutoff Current (V _{CE} = 12 Vdc, I _B = 0)	ICEO		0.02	mAdc
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{BE} = -1.5 Vdc) (V _{CE} = 12 Vdc, V _{BE} = -1.5 Vdc, T _C = $+150$ °C)	ICEV	=0	0.1 5.0	mAdc
Emitter Cutoff Current (VEB = 2.0 Vdc, I _C = 0)	IEBO	_	0.1	mAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 360 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	10 5.0	200	_
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 20 mAdc)	VCE(sat)		0.5	Vdc
SMALL SIGNAL CHARACTERISTICS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	f _T	500	_	MHz
Output Capacitance (V _{CB} = 12 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	4.0	pF
FUNCTIONAL TEST (FIGURE 2)	The second second			
Common-Emitter Amplifier Power Gain $(P_{in} = 100 \text{ mW}, V_{CC} = 12 \text{ Vdc}, f = 175 \text{ MHz})$	G _{pe}	10	_	dB
Collector Efficiency $(P_{OUt} = 1.0 \text{ W, V}_{CC} = 12 \text{ Vdc, f} = 175 \text{ MHz})$	η	50	_	%
Power Input $(P_{Out} = 1.0 \text{ W}, V_{CC} = 12 \text{ Vdc}, f = 175 \text{ MHz})$	P _{in}	_	100	mW

FIGURE 1 - POWER OUTPUT versus FREQUENCY

FIGURE 2 - 175 MHz RF AMPLIFIER CIRCUIT FOR POWER-OUTPUT TEST

2N4957 2N4958 2N4959 2N5829

2N4957 JAN, JTX, JTXV AVAILABLE CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage $(I_C = 100 \mu Adc, I_E = 0)$	1	V(BR)CBO	30	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		V(BR)EBO	3.0	_	-	Vdc
Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$		ICBO	=	=	0.1 100	μAdc
ON CHARACTERISTICS					1	
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc)		hFE	20	40	150	_
SMALL SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product(1) (I _E = 2.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	2N4957, 2N5829 2N4958, 2N4959	fŢ	1200 1000	1600 1500	2500 2500	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	0.4	0.8	pF
Small Signal Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	20	_	200	_
Collector Base Time Constant (I _E = 2.0 mAdc, V _{CB} = 10 Vdc, f = 63.6 MHz)		rb′C _C	1.0	_	8.0	ps
Noise Figure (Figure 1) $(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 450 \text{ MHz})$	2N5829 2N4957 2N4958 2N4959	NF	=	2.3 2.6 2.9 3.2	2.5 3.0 3.3 3.8	dB
FUNCTIONAL TEST						
Common-Emitter Amplifier Power Gain (Figure 1) $(V_{\hbox{\scriptsize CE}}=10~\hbox{\scriptsize Vdc},I_{\hbox{\scriptsize C}}=2.0~\hbox{\scriptsize mAdc},f=450~\hbox{\scriptsize MHz})$	2N4957, 2N5829 2N4958 2N4959	Gpe	17 16 15	=	25 25 25	dB

⁽¹⁾ $f_{\mbox{\scriptsize T}}$ is defined as the frequency at which $|h_{\mbox{\scriptsize fe}}|$ extrapolates to unity.

FIGURE 1 – NOISE FIGURE AND POWER GAIN TEST CIRCUIT

FIGURE 3 - NOISE FIGURE versus FREQUENCY

FIGURE 5 – CONTOURS OF NOISE FIGURE versus SOURCE RESISTANCE AND COLLECTOR CURRENT

FIGURE 2 – UNILATERALIZED POWER GAIN versus FREQUENCY

FIGURE 4 - NOISE FIGURE AND POWER GAIN versus COLLECTOR CURRENT

FIGURE 6 – CONTOURS OF NOISE FIGURE versus SOURCE RESISTANCE AND COLLECTOR CURRENT

COMMON EMITTER CIRCUIT DESIGN DATA

(VCF = 10 Vdc, Ic = 2.0 mAdc)

FIGURE 11 – SOURCE ADMITTANCE versus FREQUENCY (REAL)

NOTE 1

Figures 7 through 18 are included to assist the circuit designer in determining the stability of his particular circuit. Two stability criteria are given in these figures.

these rigures.

The Linvill "C" factor* is a measure of transistor stability when the input and output are terminated in the worst-case (open circuit) condition. When

* "Transistors and Active Circuits," Linvill and Gibbons, McGraw Hill, 1961.

FIGURE 10 - LOAD ADMITTANCE versus FREQUENCY (IMAGINARY)

FIGURE 12 – SOURCE ADMITTANCE

"C" is less than 1.0, the circuit is unconditionally stable. When "C" is greater than 1.0, the circuit is potentially unstable.

The Stern "K" factor† has been defined to determine the stability of a

The Stern "K" factor! has been defined to determine the stability of a practical amplifier terminated in finite load and source admittances. If "K" is greater than 1.0, the circuit will be stable. If less than 1.0, the circuit will be unstable. For further details, see Application Note AN 215A.

¹ "Stability and Power Gain of Tuned Transistor Amplifiers," Arthur P. Stern, Proc. I.R.E., March. 1967.

COMMON BASE CIRCUIT DESIGN DATA

(VCB = 10 Vdc, IC = 2.0 mAdc)

FIGURE 19 - SMALL-SIGNAL CURRENT GAIN versus FREQUENCY 32 28 SMALL-SIGNAL CURRENT GAIN hfe (dB) 24 20 16 12 -Im (hfe) 8 0 Re (hfe) VCE = 10 Vdc IC = 2.0 mA 30 70 100 200 300 700 1000 1500

f, FREQUENCY (MHz)

Apply reverse bias between collector and base and measure capacitance between these terminals. Emitter is open.

Apply reverse bias between emitter and base and measure capacitance between these terminals. Collector is open.

Apply reverse bias between collector and base and measure capacitance between these terminals. Emitter is guarded.

Y PARAMETERS versus CURRENT

(f = 450 MHz)

COMMON BASE y PARAMETER VARIATIONS

 $(V_{CB} = 10 \text{ Vdc}, I_{C} = 2.0 \text{ mAdc})$

COMMON EMITTER y PARAMETER VARIATIONS

(VCE = 10 Vdc, IC = 2.0 mAdc)

2N5031 2N5032

CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	10	Vdc
Collector-Base Voltage	VCBO	15	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	20	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	10	_	-	Vdc
Collector-Base Breakdown Voltage (IC = 0.01 mAdc, IE = 0)	V _(BR) CBO	15	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.01 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	3.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 6.0 \text{ Vdc}, I_E = 0)$	ICBO	_	1.0	10	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 6.0 Vdc)	hFE	25	_	300	-
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 5.0 mAdc, V _{CE} = 6.0 Vdc, f = 100 MHz)	fΤ	1000	_	3500	MHz
Collector-Base Capacitance (V _{CE} = 6.0 Vdc, I _E = 0, f = 0.1 MHz)	C _{cb}	_	1.3	1.5	pF
Collector Base Time Constant ($I_C = 6.0 \text{ mAdc}, V_{CE} = 6.0 \text{ Vdc}, f = 31.8 \text{ MHz}$)	rb'C _C	_	5.0	,-	ps
Noise Figure (Figure 1) $ (I_{\hbox{\scriptsize C}} = 1.0 \text{ mAdc, V}_{\hbox{\scriptsize CE}} = 6.0 \text{ Vdc, f} = 450 \text{ MHz}) $ 2N5031 $ 2N5032 $	NF	=	=	2.5 3.0	dB
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (Figure 1) $(V_{CE} = 6.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 450 \text{ MHz})$	G _{pe}	14	17	25	dB

FIGURE 1 - POWER GAIN AND NOISE FIGURE TEST CIRCUIT

FIGURE 2 - COLLECTOR-BASE CAPACITANCE versus VOLTAGE

FIGURE 3 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 4 - S₁₁ AND S₂₂

SMALL-SIGNAL DEVICES

FIGURE 7 - NOISE FIGURE versus FREQUENCY

FIGURE 8 - POWER GAIN versus FREQUENCY

FIGURE 9 - INPUT ADMITTANCE versus FREQUENCY

FIGURE 10 - OUTPUT ADMITTANCE versus FREQUENCY

FIGURE 11 - FORWARD TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 12 - REVERSE TRANSFER ADMITTANCE versus FREQUENCY

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Emitter Voltage (R _{BE} = 10Ω)	VCER	55	Vdc
Collector-Base Voltage	VCBO	55	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	0.4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.5 0.02	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 5.0 mAdc, RBE = 10 ohms)	V _(BR) CER	55	_	_	Vdc
Collector-Base Breakdown Voltage (IC = 0.1 mAdc, IE = 0)	V(BR)CBO	55	_	_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	3.0	-	_	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, I _B = 0)	ICEO	7	_	20	μAdc
Collector Cutoff Current $(V_{CE} = 50 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = 15 \text{ Vdc}, V_{BE} = 0, T_{C} = 150^{\circ}\text{C})$	ICES	=	=	1.0 10	μAdc mAdc
ON CHARACTERISTICS					
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	VCE(sat)	_	-	0.5	Vdc
SMALL SIGNAL CHARACTERISTICS			•		
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	fT	1200	_	_	MHz
Output Capacitance (V _{CB} = 30 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	7-21	1.3	3.0	pF
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (Figure 1) (Pout = 1.0 W, V _{CC} = 28 Vdc, I _C = 102 mAdc, f = 1.0 GHz)	GPE	5.0	_	-	dB
Power Output (Figure 1) (P _{in} = 316 mW, V _{CE} = 28 Vdc, f = 1.0 Ghz)	Pout	1.0	_	_	Watt
Collector Efficiency (Figure 1) {P _{in} = 316 mW, V _{CE} = 28 Vdc, f = 1.0 GHz}	η	35	-	-	%
Power Output (Oscillator) (Figure 2) (V _{CE} = 20 Vdc, V _{EB} = 1.5 Vdc, f = 1.68 GHz) (Minimum Efficiency = 15%)	Pout	_	0.3	_	Watt

FIGURE 1 - 1 GHz RF AMPLIFIER OUTPUT POWER TEST CIRCUIT

- d1: 1" Input line, center conductor width = 0.280" d2: 1" Output line, center conductor width = 0.125" Q: 2N5108
- R: 3.9 ohms
- T1, T2: Microlab Double Stub Tuner, or Equivalent

Bias Tee: Microlab 08N, or Equivalent Transistor Mount: 1/32" Microstrip board

Note: Impedance measurements are made at transistor socket pins.

FIGURE 2 - 1.68 GHz RF OSCILLATOR OUTPUT POWER TEST CIRCUIT

FIGURE 3 - OUTPUT POWER versus INPUT POWER

FIGURE 4 - OUTPUT POWER versus FREQUENCY

FIGURE 5 - OUTPUT POWER

FIGURE 6 - OSCILLATOR OUTPUT POWER

FIGURE 7 CURRENT-GAIN-BANDWIDTH

FIGURE 8 COLLECTOR BASE CAPACITANCE versus VOLTAGE

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Base Current	IB	400	mAdc
Collector Current — Continuous	l _C	400	mAdc
Total Device Dissipation @ T _C = 75°C(1) Derate above 25°C	PD	2.5 20	Watt mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

(1) Total Device Dissipation at $T_A = 25^{\circ}C$ is 1.0 Watt.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage(2) (I _C = 5.0 mAdc, R _{BE} = 10 Ω)	V(BR)CER	40	_	-	Vdc
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B = 0)	V(BR)CEO	20	_	_	Vdc
Collector Cutoff Current $(V_{CE} = 15 \text{ Vdc}, I_B = 0)$	ICEO		_	20	μAdc
Collector Cutoff Current ($V_{CE}=15$ Vdc, $V_{BE}=-1.5$ V, $T_{C}=150^{\circ}$ C) ($V_{CE}=35$ Vdc, $V_{BE}=-1.5$ V)	ICEX	_	-	5.0 5.0	mAdc mAdc
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	IEBO	-		100	μAdc
ON CHARACTERISTICS					141
DC Current Gain (I _C = 360 mAdc, V_{CE} = 5.0 Vdc) (I _C = 50 mAdc, V_{CE} = 15 Vdc)	hFE	5.0 40		120	=
SMALL SIGNAL CHARACTERISTICS					Total I
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	fT	1200	_	-	MHz
Collector-Base Capacitance (V _{CB} = 15 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	1.8	3.5	pF
Noise Figure ($I_C = 10 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$, $f = 200 \text{ MHz}$)	NF	_	3.0	_	dB
FUNCTIONAL TEST				V	
Common-Emitter Amplifier Voltage Gain (Figure 1) (I _C = 50 mAdc, V _{CC} = 15 Vdc, f = 50 to 216 MHz)	G _{ve}	11	_	· -	dB
Power Input (Figure 2) (I _C = 50 mAdc, V_{CC} = 15 Vdc, R_S = 50 ohms, P_{out} = 1.26 mW, f = 200 MHz)	Pin	1	_	0.1	mW

^() Pulsed thru a 25 mH Inductor; 50% Duty Cycle.

FIGURE 1 – RF AMPLIFIER FOR VOLTAGE GAIN TEST CIRCUIT

FIGURE 2 - 200 MHz TEST CIRCUIT

₽-100

100

FIGURE 12 – FORWARD TRANSFER ADMITTANCE versus
COLLECTOR CURRENT

FIGURE 13 - OUTPUT ADMITTANCE versus FREQUENCY

300

f, FREQUENCY (MHz)

500

200

700

1000

FIGURE 14 - OUTPUT ADMITTANCE versus COLLECTOR

FIGURE 15 — INPUT REFLECTION COEFFICIENT versus FREQUENCY

FIGURE 16 — OUTPUT REFLECTION COEFFICIENT versus FREQUENCY

FIGURE 17 - REVERSE TRANSMISSION COEFFICIENT versus FREQUENCY

FIGURE 18 - FORWARD TRANSMISSION COEFFICIENT

FIGURE 19 — INPUT REFLECTION COEFFICIENT AND OUTPUT REFLECTION COEFFICIENT versus FREQUENCY

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current	lc	0.4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B = 0)	VCEO(sus)	40			Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	4.0	3		Vdc
Collector Cutoff Current (V _{CE} = 28 Vdc, I _B = 0)	ICEO	_	-	20	μAdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = 0)	ICES	-	-72	0.1	mAdc
Collector Cutoff Current (V _{CB} = 28 Vdc, I _E = 0)	ІСВО	-	-	1.0	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)	hFE	10	_		_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	f _T	500	900	-	MHz
Collector-Base Capacitance (V _{CB} = 28 Vdc, I_E = 0, f = 0.1 to 1.0 MHz)	C _{cb}	-	2.5	4.0	pF
FUNCTIONAL TEST					
Amplifier Power Gain (VCE = 28 Vdc, P_{in} = 0.16 Watt, f = 400 MHz) (VCE = 28 Vdc, P_{in} = 50 mW, f = 175 MHz)	G _{pe}	8.0	8.8 14.5	_	dB
Power Output (V _{CE} = 28 Vdc, P _{In} = 0.16 Watt, f = 400 MHz) (V _{CE} = 28 Vdc, P _{In} = 50 mW, f = 175 MHz)	Pout	1.0	1.2 1.4	=	Watt
Collector Efficiency (V _{CE} = 28 Vdc, P _{In} = 0.16 Watt, f = 400 MHz)	η	45	55	-	%

FIGURE 1 - 400-MHz TEST CIRCUIT

CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage Applicable 1.0 to 2.0 mAdc	VCEO	12	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	2.5	Vdc
Collector Current	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	300 1.71	mW mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage ($I_C = 3.0 \text{ mAdc}, I_B = 0$)	V _{CEO(sus)}	12	_	Vdc
Collector-Base Breakdown Voltage $\{I_C = 0.001 \text{ mAdc}, I_E = 0\}$	V _(BR) CBO	20		Vdc
Emitter-Base Breakdown Voltage (IE = 0.01 mAdc, IC = 0)	V _{(BR)EBO}	2.5	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ІСВО	=	0.02 1.0	μAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 3.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	25	250	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	V _{BE(sat)}	_	1.0	Vdc
SMALL SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product(1) (I _C = 5.0 mAdc, V _{CE} = 6.0 Vdc, f = 100 MHz)	fT	900	2000	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 to 1.0 MHz)	C _{cb}	_	1.0	pF
Small Signal Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	25	300	_
Collector Base Time Constant (IE = 2.0 mAdc, V _{CB} = 6.0 Vdc, f = 31.9 MHz)	rb′C _C	3.0	14	ps
Noise Figure (Figure 1) ($I_C = 1.5 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $R_S = 50 \text{ ohms}$, $f = 200 \text{ MHz}$)	NF	_	4.5	dB
FUNCTIONAL TEST				
Common-Emitter Amplifier Power Gain (Figure 1) $(V_{CE} = 6.0 \text{ Vdc}, I_{C} = 5.0 \text{ mAdc}, f = 200 \text{ MHz})$	Gpe	15	-	dB
Power Output (Figure 2) (V _{CB} = 10 Vdc, I _E = 12 mAdc, f≽500 MHz)	Pout	20	-	mW

⁽¹⁾ f_T is defined as the frequency at which $|h_{\mbox{\scriptsize fe}}|$ extrapolates to unity.

FIGURE 1 – 200 MHz AMPLIFIER POWER GAIN AND NOISE FIGURE CIRCUIT

- L1 1-3/4 Turns, #18 AWG, 0.5" L, 0.5" Diameter
- L2 2 Turns, #16 AWG, 0.5" L, 0.5" Diameter
- L3 2 Turns, #13 AWG, 0.25" L, 0.5" Diameter (Position 1/4" from L2)

FIGURE 2 - 500 MHz OSCILLATOR CIRCUIT

L1 - 2 turns #16 AWG wire, 3/8 inch OD, 1-1/4 inch long

Q = 2N5179

FIGURE 3 – NOISE FIGURE versus FREQUENCY

FIGURE 4 - NOISE FIGURE versus SOURCE RESISTANCE and COLLECTOR CURRENT

FIGURE 5 — NOISE FIGURE versus SOURCE RESISTANCE and COLLECTOR CURRENT

FIGURE 13 – S12, REVERSE TRANSMISSION COEFFICIENT FIGURE 14 – S21, FORWARD TRANSMISSION COEFFICIENT

FIGURE 15-S₁₁, INPUT REFLECTION COEFFICIENT AND S₂₂, OUTPUT REFLECTION COEFFICIENT

JAN, JTX, JTXV AVAILABLE CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

IVIAAIIVIOIVI RATIIVOS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	500	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

	Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	DR		W. ma			
Collector-Emitter Breakdo		V(BR)CEO	30	-	7	Vdc
Collector-Base Breakdow (I _C = 10 μAdc, I _E = 0)		V(BR)CBO	30	_	_	Vdc
Emitter-Base Breakdown ($I_E = 100 \mu Adc, I_C = 0$		V(BR)EBO	3.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0		Ісво	-	_	50	nAdc
Emitter Cutoff Current (VEB = 2.0 Vdc, I _C = 0	0)	IEBO	_	_	0.5	μAdc
ON CHARACTERISTICS		2.0				
DC Current Gain(1) (I _C = 40 mAdc, V _{CE} = (I _C = 100 mAdc, V _{CE} : (I _C = 300 mAdc, V _{CE} :	= 2.0 Vdc)	hFE	20 25 15	40 40 22	100	_
Collector-Emitter Saturation (IC = 100 mAdc, IB =		VCE(sat)	_	0.6	0.8	Vdc
Base-Emitter On Voltage		V _{BE(on)}	_	0.84	1.8	Vdc
SMALL SIGNAL CHARAC	CTERISTICS					
Current-Gain — Bandwid (I _C = 40 mAdc, V _{CE} = (I _C = 100 mAdc, V _{CE}		fT	1000 1300	1300 1500	=	MHz
Collector-Base Capacitan $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$		C _{cb}	_	2.5	5.0	pF
Emitter-Base Capacitance (VEB = 0.5 Vdc, I _C = 0		C _{eb}	_	18	35	pF
Collector Base Time Constant (I _C = 50 mAdc, V _{CB} = 10 Vdc, f = 63.6 MHz)		rb′C _c	_	8.0	·-	ps
SWITCHING CHARACTE	RISTICS (FIGURE 10)					
Turn-On Delay Time		t _d	_	1.0	_	ns
Rise Time $(V_{CC} = 31.4 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, R_{C} = 160 \text{ Ohms}, R_{F} = 26.6 \text{ Ohms})$		tr	_	2.1	_	ns
Fall Time		tf	-	1.8	_	ns

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 8 - COLLECTOR-BASE TIME CONSTANT

FIGURE 9 - SWITCHING TIMES

FIGURE 10 - SWITCHING TIMES TEST CIRCUIT

IC mA	R _C Ohms	RE Ohms	VCC Volts
50	526	80	34.4
150	160	26.6	31.4
300	78	13.3	30.6
500	746.5	8.0	30.3

MAXIMUM RATINGS

WIAAIWOW RATINGS						
Rating	Symbol	2N5835	2N5836	2N5837	Unit	
Collector-Emitter Voltage	VCEO	10	10	5.0	Vdc	
Collector-Base Voltage	VCBO	15	15	10	Vdc	
Emitter-Base Voltage	VEBO	3.5	3.5	3.5	Vdc	
Collector Current — Continuous	lc	15	200	300	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	_	=	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	_	2.0 11.43	2.0 11.43	Watts mW/°C	
Storage Temperature	T _{stg}	-	65 to +2	00	°C	

2N5835 CASE 20-03, STYLE 10 TO-72 (TO-206AF)

2N5836, 2N5837 CASE 26-03, STYLE 1 TO-46 (TO-206AB)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	2N5835	V(BR)CBO	15		_	Vdc
$(I_C = 100 \ \mu Adc, I_E = 0)$	2N5836 2N5837		15 10	=	=	
Emitter-Base Breakdown Voltage ($I_E = 100 \ \mu Adc, I_C = 0$)		V _{(BR)EBO}	3.5	-	-	Vdc
Collector Cutoff Current ($V_{CB} = 7.5 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 10 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$)	2N5835 2N5836 2N5837	ІСВО	_	=	0.01 10 10	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, I _C = 0)		IEBO	_	_	100	μAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 10 mAdc, V _{CE} = 6.0 Vdc) (I _C = 50 mAdc, V _{CE} = 6.0 Vdc) (I _C = 100 mAdc, V _{CE} = 3.0 Vdc)	2N5835 2N5836 2N5837	hFE	25 25 25	=	_	_
Base-Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 6.0 Vdc) (I _C = 50 mAdc, V _{CE} = 6.0 Vdc) (I _C = 100 mAdc, V _{CE} = 3.0 Vdc)	2N5835 2N5836 2N5837	V _{BE(on)}	_	=	0.9 0.9 0.9	Vdc
SMALL SIGNAL CHARACTERISTICS						
	2N5835 2N5836 2N5837	fT	2.5 2.0 1.7	= 1		GHz
Collector-Base Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 to 1.0 MHz)	2N5835 2N5836	C _{cb}	=	=	0.8 3.5	pF
$(V_{CB} = 5.0 \text{ Vdc}, I_{E} = 0, f = 0.1 \text{ to } 1.0 \text{ MHz})$	2N5837		_	_	5.0	
	2N5835 2N5836 2N5837	rb'C _C		5.0 6.0 6.0		ps

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	:	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS(2)						
Rise Time (Figure 1)		tr				ns
$(I_C = 10 \text{ mAdc})$	2N5835		_	250	_	
$(I_C = 40 \text{ mAdc})$	2N5836		_	320	_	
$(I_C = 100 \text{ mAdc})$	2N5837		-	650	-	

⁽¹⁾ fr is defined as the frequency at which |hfe| extrapolates to unity.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 5 - CURRENT-GAIN-BANDWIDTH PRODUCT

⁽²⁾ Typical values shown in addition to JEDEC Registered Data.

2.0

FIGURE 6 – COLLECTOR-BASE TIME CONSTANT

10
2N5835 V_{CE} = 6.0 Vdc
2N5836 V_{CE} = 3.0 Vdc
2N5837 V_{CE} = 6.0 Vdc
2N5837 V_{CE} = 6.0 Vdc

2N5835 SCATTERING PARAMETERS (IC = 5.0 mAdc, VCE = 6.0 Vdc, ZG = ZL = 50 Ohms)

70 100

FIGURE 8 - S₁₁, INPUT REFLECTION COEFFICIENT

IC. COLLECTOR CURRENT (mAdc)

FIGURE 9 - S22, OUTPUT REFLECTION COEFFICIENT

FIGURE 10 - S₁₂, REVERSE TRANSMISSION COEFFICIENT

FIGURE 11 - S₂₁, FORWARD TRANSMISSION COEFFICIENT

2N5836 SCATTERING PARAMETERS

(IC = 100 mAdc, VCE = 10 Vdc, ZG = ZL = 50 Ohms)

FIGURE 12 - S₁₁, INPUT REFLECTION COEFFICIENT

FIGURE 13 - S₂₂, OUTPUT REFLECTION COEFFICIENT

FIGURE 14 - S₁₂, REVERSE TRANSMISSION COEFFICIENT

FIGURE 15 - S₂₁, FORWARD TRANSMISSION COEFFICIENT

2N5837 SCATTERING PARAMETERS

 $(I_C = 100 \text{ mAdc}, V_{CE} = 3.0 \text{ Vdc}, Z_G = Z_L = 50 \text{ Ohms})$

FIGURE 16 - S₁₁, INPUT REFLECTION COEFFICIENT

FIGURE 17 - S22, OUTPUT REFLECTION COEFFICIENT

FIGURE 18 - S₁₂, REVERSE TRANSMISSION COEFFICIENT

FIGURE 19 - S₂₁, FORWARD TRANSMISSION COEFFICIENT

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

Max

Unit

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	lc	400	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.7	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.5 0.02	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

			. 11		0
OFF CHARACTERISTICS	CIDESTITUTORY		OF THE PER	by -t ap-	7 1
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)	V(BR)CEO	30	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V(BR)CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	3.5		_	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, I _B = 0)	ICEO	-	-	50	μAdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	Ісво			10	μAdc
ON CHARACTERISTICS					1 10
DC Current Gain (I _C = 50 mAdc, V _{CE} = 15 Vdc)	hFE	25	_	300	T -
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	_	0.15	0.2	Vdc
Base-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{BE(sat)}	_	0.88	1.0	Vdc
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 25 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$, $f = 200 \text{ MHz}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$, $f = 200 \text{ MHz}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$, $f = 200 \text{ MHz}$)	fτ	1000 1200 1000	1350 1550 1425	 2400 	MHz
Collector-Base Capacitance (VCB = 30 Vdc, I _E = 0, f = 100 kHz)	C _{cb}	1.0	1.6	2.5	pF
Emitter-Base Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$	C _{eb}	_	8.4	15	pF
Small Signal Current Gain (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 1.0 kHz)	h _{fe}	25	_	350	-
Collector Base Time Constant (I _E = 50 mAdc, V _{CB} = 15 Vdc, f = 31.8 MHz)	rb'C _C	2.0	5.5	20	ps
Noise Figure (I _C = 30 mAdc, V_{CE} = 15 Vdc, f = 200 MHz) (Figure 1) (I _C = 35 mAdc, V_{CE} = 15 Vdc, f = 200 MHz) (Figure 6)	NF	=	3.4 6.8	8.0	dB
FUNCTIONAL TEST					54 1
Common-Emitter Amplifier Power Gain ($I_C = 10$ mAdc, $V_{CE} = 15$ Vdc, $f = 200$ MHz) (Figure 1) ($I_C = 50$ mAdc, $V_{CE} = 15$ Vdc, $f = 250$ MHz) (Figure 6)	Gpe		11.4 7.6		dB
Intermodulation Distortion (I _C = 50 mAdc, V _{CE} = 15 Vdc, V _{out} = +50 dBmV)	IM	. - ×:	-	-50	dB
Cross Modulation Distortion (IC = 50 mAdc, V _{CE} = 15 Vdc, V _{out} = +40 dBmV) (IC = 50 mAdc, V _{CE} = 15 Vdc, V _{out} = +50 dBmV)	XM	_	- 67 - 45	_ -42	dB

Symbol

Min

FIGURE 1 - NARROW-BAND TEST CIRCUIT

FIGURE 6 - BROADBAND TEST CIRCUIT

FIGURE 7 – CROSS-MODULATION DISTORTION versus COLLECTOR CURRENT

FIGURE 8 - CROSS-MODULATION DISTORTION versus OUTPUT LEVEL

FIGURE 9 - NARROWBAND NOISE FIGURE versus
COLLECTOR CURRENT

FIGURE 10 – NARROWBAND NOISE FIGURE versus
COLLECTOR CURRENT

FIGURE 11 - BROADBAND NOISE FIGURE versus
COLLECTOR CURRENT

FIGURE 12 - NARROWBAND NOISE FIGURE versus

FIGURE 13 - INPUT ADMITTANCE versus FREQUENCY

FIGURE 14 - INPUT ADMITTANCE versus COLLECTOR CURRENT

FIGURE 15 - REVERSE TRANSFER ADMITTANCE

FIGURE 16 - REVERSE TRANSFER ADMITTANCE versus COLLECTOR CURRENT

FIGURE 17 – FORWARD TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 18 - FORWARD TRANSFER ADMITTANCE versus
COLLECTOR CURRENT

FIGURE 19 - OUTPUT ADMITTANCE versus FREQUENCY

FIGURE 20 - OUTPUT ADMITTANCE versus COLLECTOR

FIGURE 21 – INPUT REFLECTION COEFFICIENT versus FREQUENCY

FIGURE 22 – OUTPUT REFLECTION COEFFICIENT versus FREQUENCY

FIGURE 24 – FORWARD TRANSMISSION COEFFICIENT
VOISUS FREQUENCY

FIGURE 25 – INPUT REFLECTION COEFFICIENT AND OUTPUT REFLECTION
COEFFICIENT Versus FREQUENCY

CASE 244A-01, STYLE 1 TO-117 (TO-232AA)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	Ic	400	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 20 mAdc, I _B = 0)	V(BR)CEO	30	_		Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V(BR)EBO	3.5	_	_	Vdc
Collector Cutoff Current (V _{CE} = 28 Vdc, I _B = 0)	ICEO	_	_	100	μAdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	ІСВО	_	_	10	μAdc
Emitter Cutoff Current (VBE = 3.5 Vdc, IC = 0)	IEBO	_	_	100	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 75 mAdc, V _{CE} = 20 Vdc)	hFE	25	_	250	_
Collector-Emitter Saturation Voltage (I _C = 200 mAdc, I _B = 20 mAdc)	V _{CE(sat)}	_	0.2	0.35	Vdc
Base-Emitter Saturation Voltage (I _C = 200 mAdc, I _B = 20 mAdc)	V _{BE(sat)}	_	1.0	1.5	Vdc
SMALL SIGNAL CHARACTERISTICS	In Street				
Current-Gain — Bandwidth Product (IC = 75 mAdc, V _{CE} = 20 Vdc, f = 200 MHz)	fT	1100	1500	-	MHz
Collector-Base Capacitance (V _{CB} = 30 Vdc, I _E = 0, f = 100 kHz)	C _{cb}	_	1.5	4.0	pF
Emitter-Base Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 100 kHz)	C _{eb}	_	8.2	12	pF
Small Signal Current Gain (IC = 75 mAdc, VCE = 20 Vdc, f = 1.0 kHz)	h _{fe}	25	: <u> </u>	300	_
Collector Base Time Constant (I _E = 75 mAdc, V _{CB} = 20 Vdc, f = 31.8 MHz)	rb′C _C	2.0	_	20	ps
Noise Figure (IC = 50 mAdc, V _{CE} = 20 Vdc, f = 200 MHz) (Figure 1) (IC = 50 mAdc, V _{CE} = 20 Vdc, f = 200 MHz)(1) (Figure 2) (IC = 75 mAdc, V _{CE} = 20 Vdc, f = 200 MHz)(1) (Figure 2)	NF	Ξ	3.8 7.2 7.8	— 8.5 —	dB
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (Figure 2) ($I_C = 75 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 250 \text{ MHz}$)	G _{pe}	10	11	_	dB
Intermodulation Distortion (Figure 2) (I _C = 75 mAdc, V _{CE} = 20 Vdc, V _{out} = +50 dBmV)	IM	_	- 55	-50	dB
Cross Modulation Distortion (Figure 2) (I _C = 75 mAdc, V _{CE} = 20 Vdc, V _{Out} = +50 dBmV)	XM	-	-60	-57	dB

(1) Includes noise figure of post-amplifier and matching pad.

FIGURE 1 - NARROWBAND TEST CIRCUIT

FIGURE 2 - BROADBAND TEST CIRCUIT

C1 C2	0.5-6.0 pF	1.4	#30 AWG Triff
C3 C7	1500 pF Underwood		1.9.9 Stackpt
C4, C5, C8	0.01 µF		
C6	470 pF	L5	Ferrite Choke,
LT	3 Turns #20 AWG, 5/32 1.D.		Stackpole 57 0
L2	0.84 µH, Dhmite Z235	R1	20 Ohms
L3	5 Turns #26 AWG, 5/32" I D	RZ:	68 Ohms

FIGURE 3 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 4 - CAPACITANCES

FIGURE 6 - BASE-EMITTER SATURATION VOLTAGE

NOTE 1. RG-59 CABLE WITH ORIGINAL CENTER CONDUCTOR REPLACED WITH #30 WIRE. OVERALL LENGTH, INCLUDING BNC CONNECTORS, IS A QUARTER-WAVELENGTH AT 200 MHz (APPROX. 11 INCHES). USED TO MATCH IMPEDANCE OF NOISE DIODE TO AMPLIFIER UNDER TEST.

THE NOISE FIGURE OF THE POST-AMPLIFIERS AND MINIMUM LOSS PAD IS 8.4 db.

FIGURE 10 - INTERMODULATION DISTORTION TEST SETUP

- ADJUST CHANNEL 2 GENERATOR FOR RATED OUTPUT FROM TEST AMPLIFIER (CHANNELS G & 13 OFF).
- 2. REPEAT FOR CHANNEL G (2 & 13 OFF) AND CHANNEL 13 (2 & G OFF). NOTE FOR REFERENCE THE FIELD STRENGTH METER READING FOR CHANNEL 13 (2 & G OFF).
- 3. TURN CHANNEL 13 OFF AND DRIVE THE TEST AMPLIFIER WITH CHANNELS 2 & G. MEASURE THE LEVEL OF INTERMODULATION DISTORTION AT CHANNEL 13 RELATIVE TO THE REFERENCE LEVEL IN STEP 2.

FIGURE 11 - CROSS MODULATION DISTORTION TEST SETUP

MEASUREMENT PROCEDURE

- ADJUST THE CROSSMODULATION EQUIPMENT FOR +50 dBmV OUTPUT FROM EACH CHANNEL.
- ADJUST ATTENUATOR #1 FOR THE DESIRED OUTPUT LEVEL FROM THE TEST AMPLIFIER. ADJUST ATTENUATOR #2 TO MAINTAIN THE FIELD STRENGTH METER INPUT AT +10 dBmV.
- WITH THE FIELD STRENGTH METER SELECT CHANNEL 13, USING THE WAVE ANALYZER MEASURE THE LEVEL OF THE MODULATION ON CHANNEL 13 DUE TO CROSS-MODULATION OF CHANNELS 2-12.

FIGURE 12 – CROSS MODULATION DISTORTION versus OUTPUT LEVEL

FIGURE 13 – CROSS MODULATION DISTORTION versus CUR RENT

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	VCBO	36	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	1.0	Adc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	5.0 28.5	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-			3
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	18	_	_	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 5.0 \text{ mAdc}$, $V_{BE} = 0$)	V(BR)CES	36	_		Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \text{ mAdc}, I_C = 0$)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	Ісво	-		0.25	mAdc
Collector Cutoff Current ($V_{CE} = 15 \text{ Vdc}, V_{BE} = 0, T_{C} = 55^{\circ}\text{C}$)	ICES	_	_	5.0	mAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 250 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	5.0	3	_	_
SMALL SIGNAL CHARACTERISTICS		-			N.
Output Capacitance ($V_{CB} = 12.5 \text{ Vdc}$, $I_{E} = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	-	15	20	pF
FUNCTIONAL TEST (FIGURE 1)					
Common-Emitter Amplifier Power Gain (P _{Out} = 3.0 W, V _{CC} = 12.5 Vdc, f = 175 MHz)	GPE	7.8	_	_	dB
Collector Efficiency (P _{OUt} = 3.0 W, V _{CC} = 12.5 Vdc, f = 175 MHz)	η	50	-	_	%

FIGURE 1 - 175 MHz CIRCUIT

FIGURE 3 – OUTPUT POWER versus SUPPLY VOLTAGE

5.0

P_{in} = 500 mW

f = 175 MHz

1.0

4.0

8.0

12

16

20

V_{CC}, SUPPLY VOLTAGE (VOLTS)

CASE 249-05, STYLE 1

UHF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

MACHINE MACHINE							
Rating	Symbol	Value	Unit				
Collector-Emitter Voltage	VCEO	16	Vdc				
Collector-Base Voltage	V _{CBO}	36	Vdc				
Emitter-Base Voltage	VEBO	4.0	Vdc				
Collector Current — Continuous	Ic	0.4	Adc				
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.0 11.4	Watts mW/°C				
Storage Temperature	T _{stg}	-65 to +200	°C				

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)		V(BR)CEO	16	_	_	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 5.0 \text{ mAdc}, V_{BE} = 0$)		V(BR)CES	36	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_C = 0$)		V _{(BR)EBO}	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)		ICBO	_	_	0.5	mAdc
Collector Cutoff Current (V _{CE} = 15 Vdc, V _{BE} = 0, T _A = 125°C)		ICES	_	=	5.0	mAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)		hFE	20	80	200	_
SMALL SIGNAL CHARACTERISTICS						
Output Capacitance (VCB = 12.5 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	6.0	8.0	pF
FUNCTIONAL TEST						
Common-Emitter Amplifier Power Gain (Pout = 0.5 W, V _{CC} = 12.5 Vdc, f = 470 MHz)	(Figures 1, 6)	GPE	7.0	9.0	_	dB
Collector Efficiency $(P_{out} = 0.5 \text{ W}, V_{CC} = 12.5 \text{ Vdc}, f = 470 \text{ MHz})$	(Figures 1, 6)	η	60	70	_	%

Typical Output Power curves were measured in

circuit shown in Figure 6.

FIGURE 4 – OUTPUT POWER versus SUPPLY VOLTAGE 1000 800 Pout, OUTPUT POWER (mW) f = 470 MHz 600 75 mW 400 = 50 mW 200 = 25 mW 7.0 9.0 5.0 6.0 VCC, SUPPLY VOLTAGE (VOLTS)

C6 C7

1.5-20 pF ARCO 402 or Equivalent C4 C5

470 pF ATC Type 100-B-420-m-ms 1000 pF UNDERWOOD Type J-101

C8 C11 0.47 µF TANTALUM

C12,C14 470 pF Feedthru

R1 20 Ohm B2 B3 160 Ohm

L1 7 Turns 1/4" I.D. L2 6-4 Turns 1/8" I.D. L3

0.68 µH Molded Choke

6 Turns 1/8" I.D. L5 1 µH Molded Choke 17 L8

FERROXCUBE VK200-20/4B Ferrite Bead, FERROXCUBE 56-590-65/3B

NOTE: All coils air core space wound with #20 AWG Wire, unless otherwise specified.

Figure 7 shows the 2N6256 in a 150 MHz to 450 MHz tripler circuit. This circuit will typically produce 85 mW at 450 MHz with 30 mW at 150 MHz input (4.5 dB gain). Collector efficiency is 25% and all unwanted harmonics are at least 30 dB down from the 450 MHz output level.

It is important that each emitter lead be bypassed separately with a good hi-quality capacitor. The emitter resistor is likewise split in two with one-half on each emitter lead.

The input network is a modified "TEE" consisting of C1, C2, and L1, which matches the 50 Ohm input to the transistor impedance at 150 mc; this is roughly 18-j20 Ohms. The combination of L2 and C3 form a 450 MHz idler to provide a base return for third harmonic current. L4, C6 and L5, C7 are 150 MHz and 300 MHz output idlers respectively. The output matching section is a pi network made up of L6, C9 and C10. All coils are air core space-wound (turns one wire diameter apart) with #20 AWG wire.

2N6304 2N6305

CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	Section 2.1 volume	1 BM 2				
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)		V _{(BR)CEO}	15	s 	_	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)		V(BR)CBO	30	_	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)		V _{(BR)EBO}	3.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 5.0 Vdc, I _E = 0)		ІСВО	-	_	10	nAdc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)		hFE	25	_	250	_
SMALL SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product $(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 100 \text{ MHz})$	2N6304 2N6305	fT	1400 1200	_	_	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	0.8	1.0	pF
Small Signal Current Gain (I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)		h _{fe}	25	(4) Tre	250	_
Collector Base Time Constant ($I_E = 2.0 \text{ mAdc}$, $V_{CB} = 5.0 \text{ Vdc}$, $f = 31.8 \text{ MHz}$)	2N6304 2N6305	rb'C _C	2.0 2.0	= 1	12 15	ps
Noise Figure $(I_C = 2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, R_S = 50 \text{ ohms}, f = 450 \text{ MHz}) (Figure 1)$	2N6304	NF	1 12 1	-	4.5	dB
	2N6305				5.5	
FUNCTIONAL TEST						
Common-Emitter Amplifier Power Gain (IC = 2.0 mAdc , VCE = 5.0 Vdc , f = 450 MHz) (Figure 1)	2N6304 2N6305	G _{pe}	15 12		=	dB

FIGURE 1 - TEST CIRCUIT FOR NOISE FIGURE AND POWER GAIN

FIGURE 2 — COLLECTOR BASE CAPACITANCE versus COLLECTOR BASE VOLTAGE

V_{CB}, COLLECTOR-BASE VOLTAGE (VOLTS)

FIGURE 5 - REVERSE TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 6 – INPUT ADMITTANCE versus FREQUENCY

FIGURE 7 – OUTPUT ADMITTANCE versus FREQUENCY

FIGURE 8 - FORWARD TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 10 - S22, OUTPUT REFLECTION COEFFICIENT

FIGURE 11 - S₁₂, REVERSE TRANSMISSION COEFFICIENT

FIGURE 12 - S21, FORWARD TRANSMISSION COEFFICIENT

FIGURE 13 – S_{11} , INPUT REFLECTION COEFFICIENT AND S_{22} , OUTPUT REFLECTION COEFFICIENT

JAN, JTX, JTXV AVAILABLE CASE 303-01, STYLE 1

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS (TA = 25°C Free Air Temperature)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	30	mAdc
Total Device Dissipation @ T _C = 125°C Derate above 125°C	PD	400 5.33	mW mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			- 187		
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	15	-	-	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	25	74 <u>~</u>	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	3.0	-	77-	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ICBO	-	-	50	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 15 mAdc, V _{CE} = 10 Vdc)	hFE	30	-	200	_
SMALL SIGNAL CHARACTERISTICS					
Collector-Base Capacitance(1) (V _{CB} = 10 Vdc, I _E = 0, 0.1 MHz \leq f \leq 1.0 MHz)	C _{cb}	0.25	_	0.75	pF
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (Figure 1) ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 15 \text{ mA}$, $f = 1.0 \text{ GHz}$)	G _{pe}	15	-	21	dB
Spot Noise Figure (R _S = Optimum) (Figure 1) ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 5.0 \text{ mA}$, $f = 1.0 \text{ GHz}$)	NF	1.0	_	2.5	dB
Power Gain at Optimum Noise Figure (Figure 1) (V _{CE} = 10 Vdc, I _C = 5.0 mA, f = 1.0 GHz)	G _{NF}	10	_	_	dB
TYPICAL 2 GHz PERFORMANCE				•	
Maximum Available Gain (Figure 1)(2) ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 15 \text{ mA}$, $f = 2.0 \text{ GHz}$)	MAG	_	11	_	dB
Noise Figure (R _S = Optimum) (Figure 1) (V_{CE} = 10 Vdc, I_{C} = 5.0 mA, f = 2.0 GHz)	NF	-	2.9	_	dB

⁽¹⁾ C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter terminal shall be connected to the guard terminal of the bridge.

(2) MAG is calculated from the S-Parameters using the equation MAG = $\frac{|S_{21}|^2}{(1-|S_{11}|^2)(1-|S_{22}|^2)}$

FIGURE 1 - BLOCK DIAGRAM FOR POWER GAIN AND NOISE FIGURE

FIGURE 2 - POWER GAIN AND NOISE FIGURE FIGURE 3 - OUTPUT CAPACITANCE versus VOLTAGE versus FREQUENCY 40 10 1.25 V_{CE} = 10 V I_C = 15 mA 32 NF, NOISE FIGURE (dB) GAIN (dB) 152112 0.25 9 8.0 (IC = 5 mA) 0.1 0 0.2 0.3 0.5 1.0 2.0 n 2.0 6.0 FREQUENCY (GHz) FIGURE 4 - CURRENT GAIN-BANDWIDTH PRODUCT FIGURE 5 - POWER GAIN versus COLLECTOR CURRENT versus COLLECTOR CURRENT

FIGURE 6 - NOISE FIGURE versus COLLECTOR CURRENT

COMMON EMITTER SCATTERING PARAMETERS

FIGURE 7 – INPUT AND OUTPUT REFLECTION
COEFFICIENTS versus FREQUENCY

FIGURE 8 — FORWARD AND REVERSE TRANSMISSION
COEFFICIENTS Versus FREQUENCY

S - PARAMETERS

				S - PAR	AMETERS		,			
VCE	Ic	Frequency	S	11	SZ	21	S1	2	S	22
(Volts)	(mA)	(MHz)	S11	Lφ	S21	Lφ	S12	Lφ	S22	Lφ
5.0	5	100	0.69	-30	12.16	160	0.026	72	0.95	-16
		200	0.65	-61	11.03	143	0.046	59	0.84	-31
		500	0.63	-122	7.05	111	0.074	36	0.56	-54
		1000	0.64	-158	4.13	88	0.087	28	0.39	-68
		2000	0.65	170	2.14	61	0.107	29	0.33	-91
	10	100	0.52	-50	18.74	154	0.022	69	0.91	-22
		200	0.54	-92	15.53	135	0.037	53	0.74	-40
		500	0.62	-146	8.49	104	0.052	38	0.43	-62
		1000	0.65	-172	4.66	84	0.065	37	0.29	-75
		2000	0.67	162	2.38	60	0.094	42	0.26	-97
	15	100	0.42	-70	22.72	150	0.019	66	0.87	-26
2015	SC. C.	200	0.51	-113	17.72	130	0.030	50	0.68	-44
1 -	100	500	0.63	-157	8.96	100	0.042	41	0.38	-64
		1000	0.66	-178	4.80	82	0.056	44	0.26	-75
		2000	0.69	159	2.43	59	0.090	48	0.24	-97
	30	100	0.39	-116	24.57	142	0.014	62	0.80	-29
-	-	200	0.55	-145	17.17	120	0.021	49	0.58	-42
n		500	0.67	-171	7.96	95	0.030	49	0.34	-49
		1000	0.69	175	4.18	78	0.047	56	0.29	-56
		2000	0.71	157	2.13	55	0.084	58	0.29	-81
10	5	100	0.71	-27	12.01	161	0.021	73	0.96	-13
		200	0.67	-55	11.10	145	0.039	60	0.87	-25
		500	0.63	-115	7.44	114	0.064	39	0.62	-44
		1000	0.64	-153	4.43	90	0.077	30	0.46	-55
764	- 1	2000	0.64	172	2.27	62	0.094	31	0.39	-76
	10	100	0.55	-43	18.77	155	0.018	71	0.92	-18
		200	0.55	-83	16.00	137	0.031	54	0.78	-32
100		500	0.60	-140	9.06	106	0.046	39	0.49	-48
		1000	0.63	-168	5.02	85	0.058	39	0.36	-56
		2000	0.65	164	2.55	60	0.084	43	0.33	-76
	15	100	0.46	-60	23.14	152	0.016	68	0.90	-21
		200	0.51	-103	18.39	131	0.027	52	0.72	-36
-	7	500	0.61	-152	9.67	102	0.037	42	0.43	-49
		1000	0.64	-175	5.21	83	0.049	45	0.33	-54
Mary III	1.3	2000	0.66	161	2.61	59	0.079	51	0.31	-74
	30	100	0.39	-98	27.29	144	0.013	63	0.83	-24
		200	0.53	-135	19.38	122	0.019	50	0.63	-35
		500	0.64	-167	9.11	96	0.027	48	0.41	-39
		1000	0.66	177	4.77	79	0.042	55	0.36	-45
		2000	0.69	157	2.41	56	0.074	58	0.35	-67

JAN, JTX, JTXV AVAILABLE CASE 303-01, STYLE 1

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS (TA = 25°C Free Air Temperature)

Rating	Symbol	Value	Unit
			JABA SAGOS
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Device Dissipation @ T _C = 125°C Derate above 125°C	PD	500 6.66	mW mW/°C
Storage Temperature	T _{sta}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	15	-	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}$, $I_E = 0$)	V(BR)CBO	25		-	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V _{(BR)EBO}	3.0	2—	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ICBO			50	nAdc
ON CHARACTERISTICS	44	- 0.			
DC Current Gain (I _C = 30 mAdc, V _{CE} = 10 Vdc)	hFE	30	-	200	_
SMALL SIGNAL CHARACTERISTICS					
Collector-Base Capacitance(1) $(V_{CB}=10\ Vdc,\ I_{E}=0,\ 0.1\ MHz\leqslant f\leqslant 1.0\ MHz)$	C _{cb}	0.30	_	0.80	pF
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (Figure 1) (V _{CE} = 10 Vdc, I _C = 30 mAdc, f = 1.0 GHz)	G _{pe}	15	_	21	dB
Spot Noise Figure (R _S = Optimum) (Figure 1) (V _{CE} = 10 Vdc, I _C = 5.0 mAdc, f = 1.0 GHz)	NF	1.5	_	3.0	dB
Power Gain at Optimum Noise Figure (Figure 1) $(V_{CE} = 10 \text{ Vdc}, I_C = 5.0 \text{ mAdc}, f = 1.0 \text{ GHz})$	G _{NF}	9.0	_	_	dB
TYPICAL 2 GHz PERFORMANCE					
Maximum Available Gain (Figure 1)(2) ($V_{CE} = 10 \text{ Vdc}, I_C = 30 \text{ mAdc}, f = 2.0 \text{ GHz}$)	MAG	_	10	_	dB
Noise Figure (R _S = Optimum) (Figure 1) (V_{CE} = 10 Vdc, I _C = 5.0 mAdc, f = 2.0 GHz)	NF	_	4.3	-	dB

⁽¹⁾ C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter terminal shall be connected to the guard terminal of the bridge.

(2) MAG is calculated from the S-Parameters using the equation MAG = $\frac{|S_{21}|^2}{(1-|S_{11}|^2)(1-|S_{22}|^2)}$

FIGURE 1 - BLOCK DIAGRAM FOR POWER GAIN AND NOISE FIGURE

Versus FREQUENCY

40

32

VCE = 10 V
IC = 30 mA

16

18

NF, NOSE FIGURE

40

NF, NOSE FIGURE

40

NF, NOSE FIGURE

40

NF, NOSE FIGURE

5 FIGURE

4 SE (18)

8.0

NF (1C = 5 mA)

FREQUENCY (GHz)

2.0

FIGURE 2 - POWER GAIN AND NOISE FIGURE

FIGURE 3 - OUTPUT CAPACITANCE versus VOLTAGE

0.2

0.1

0.3

COMMON EMITTER SCATTERING PARAMETERS

FIGURE 7 — INPUT AND OUTPUT REFLECTION COEFFICIENTS versus FREQUENCY

FIGURE 8 — FORWARD AND REVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY

S - PARAMETERS

VCE	lc	Frequency	S	11	Sa	21	S1	2	S	22
(Volts)	(mA)	(MHz)	S11	Lφ	S21	Lφ	S12	Lφ	S22	Lφ
5.0	5	100	0.72	-40	12.37	153	0.028	67	0.91	-18
		200	0.65	-78	10.38	133	0.048	51	0.76	-32
		500	0.61	-137	5.75	100	0.067	34	0.50	-45
		1000	0.61	-168	3.13	78	0.082	31	0.41	-54
		2000	0.63	161	1.58	47	0.112	30	0.41	-80
es.	10	100	0.57	-60	19.54	146	0.024	63	0.85	-27
		200	0.55	-105	14.70	125	0.038	47	0.64	-43
3.4		500	0.59	-155	7.12	95	0.051	39	0.37	-55
		1000	0.61	-178	3.77	76	0.069	40	0.29	-62
		2000	0.64	156	1.91	50	0.106	39	0.30	-86
	30	100	0.43	-111	30.58	135	0.016	57	0.72	-39
		200	0.53	-145	19.35	114	0.022	49	0.46	-57
		500	0.62	-173	8.42	91	0.035	51	0.24	-69
		1000	0.63	172	4.36	75	0.058	54	0.18	-76
		2000	0.67	151	2.19	52	0.099	49	0.21	-99
	50	100	0.46	-134	32.34	129	0.013	57	0.64	-42
		200	0.57	-158	19.19	110	0.018	51	0.40	-56
		500	0.64	-178	8.13	89	0.031	57	0.22	-62
		1000	0.65	170	4.17	74	0.053	58	0.19	-70
		2000	0.70	150	2.10	52	0.092	54	0.22	-97
10	5	100	0.74	-36	12.34	154	0.023	69	0.93	-15
		200	0.67	-71	10.56	135	0.040	54	0.81	-25
		500	0.59	-131	6.09	102	0.058	37	0.57	-36
		1000	0.58	-164	3.32	79	0.073	33	0.50	-44
		2000	0.60	164	1.67	48	0.098	32	0.49	-69
	10	100	0.60	-52	19.75	148	0.020	65	0.87	-21
		200	0.56	-95	15.30	127	0.032	49	0.69	-33
		500	0.56	-149	7.69	97	0.044	41	0.45	-41
		1000	0.58	-174	4.07	77	0.061	42	0.39	-47
2 7		2000	0.61	159	2.03	50	0.095	40	0.39	-70
	30	100	0.44	-94	32.03	136	0.014	59	0.75	-31
7 11 -		200	0.50	-135	20.76	115	0.021	49	0.52	-41
		500	0.57	-168	9.13	91	0.032	52	0.33	-43
		1000	0.59	175	4.71	75	0.052	54	0.29	-48
		2000	0.64	154	2.34	52	0.089	49	0.30	-72
1	50	100	0.44	-117	33.56	129	0.012	59	0.68	-31
		200	0.52	-150	19.94	109	0.017	50	0.47	-36
		500	0.59	-174	8.52	89	0.028	56	0.34	-35
		1000	0.61	173	4.38	75	0.049	57	0.32	-43
		2000	0.66	152	2.21	51	0.083	52	0.34	-70

BFR90

CASE 317A-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	30	mAdc
Total Device Dissipation @ T _A = 60°C Derate above 60°C	PD	180 2.0	mW mW/°C
Storage Temperature	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	500	°C/W

 $\textbf{ELECTRICAL CHARACTERISTICS} \; (T_{\mbox{\scriptsize A}} = 25^{\circ}\text{C unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	15	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	20	-		Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	Ісво	=	-	50	nAdc
ON CHARACTERISTICS	- II FI 2	12.0			
DC Current Gain (I _C = 14 mAdc, V _{CE} = 10 Vdc)	hFE	25	_	250	_
SMALL SIGNAL CHARACTERISTICS				11 6	
Current-Gain — Bandwidth Product (I _C = 14 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz)	fT	-	5.0	_	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	-	0.5	1.0	pF
FUNCTIONAL TEST					
Noise Figure (I _C = 2.0 mAdc, V_{CE} = 10 Vdc, f = 0.5 GHz) (I _C = 2.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 GHz)	NF	=	2.4 3.0	Ξ	dB
Power Gain at Optimum Noise Figure (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz) (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz)	G _{NF}	_	15 10	_	dB
Maximum Available Power(1) (I _C = 14 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz) (I _C = 14 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz)	G _{max}	_	18 12	_	dB

(1) $G_{\text{max}} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$

FIGURE 3 – POWER GAIN AND NOISE FIGURE versus COLLECTOR CURRENT

FIGURE 4 - S₁₁ PARAMETERS

Frequenc	y (MHz)	20	00	5	00	80	00	10	00	1500	
V _{CE} (Volts)	I _C	S11	LΦ	S11	LΦ	S11	LΦ	S11	LΦ	S11	Lφ
	2.0	0.77	-45	0.48	-90	0.33	-125	0.27	-160	0.28	170
5.0	5.0	0.52	-60	0.25	-110	0.18	-150	0.18	170	0.21	145
	10	0.33	-75	0.15	-125	0.13	-175	0.15	150	0.20	130
	20	0.20	-95	0.12	-155	0.14	165	0.17	145	0.22	130
	30	0.17	-116	0.14	-170	0.17	160	0.21	145	0.26	130
	2.0	0.79	-40	0.50	-80	0.33	-115	0.26	-150	0.25	175
	5.0	0.56	-55	0.27	-95	0.16	-135	0.13	-175	0.17	150
10	10	0.39	-65	0.16	-105	0.10	-150	0.10	165	0.15	140
	20	0.25	-75	0.10	-120	0.09	-175	0.12	150	0.18	130
	30	0.25	-75	0.10	-120	0.09	-175	0.12	150	0.18	130

FIGURE 5 - S22 PARAMETERS

Frequenc	y (MHz)	2	00	500		80	800		00	1500	
V _{CE} (Volts)	I _C	S22	LΦ								
	2.0	0.89	-20	0.69	-30	0.61	-35	0.55	-35	0.52	-45
	5.0	0.75	-25	0.55	-30	0.50	-30	0.47	-30	0.43	-40
5.0	10	0.64	-25	0.49	-25	0.45	-25	0.43	-30	0.40	-35
	20	0.57	-25	0.47	-20	0.44	-25	0.43	-25	0.40	-35
	30	0.55	-20	0.47	-20	0.46	-20	0.44	-25	0.42	-35
	2.0	0.91	-15	0.74	-25	0.66	-30	0.62	-35	0.59	-40
- 1	5.0	0.79	-20	0.61	-25	0.56	-25	0.54	-30	0.51	-35
10	10	0.70	-20	0.56	-20	0.53	-25	0.51	-25	0.48	-35
	20	0.63	-20	0.54	-25	0.53	-20	0.51	-25	0.49	-35
	30	0.63	-15	0.56	-15	0.55	-20	0.54	-25	0.52	-35

FIGURE 6 - S21 PARAMETERS

Frequenc	y (MHz)	20	0	500		80	0	100	00	1500	
V _{CE} (Volts)	I _C (mA)	S21	LΦ	S21	LΦ	S21	LΦ	S21	LΦ	S21	LΦ
	2.0	5.76	140	3.81	105	2.73	90	2.20	75	1.70	60
	5.0	9.92	125	5.24	95	3.50	80	2.80	70	2.10	60
5.0	10	12.33	115	5.82	90	3.79	75	2.90	65	2.20	55
	20	13.62	105	6.00	85	3.88	75	2.95	65	2.25	55
	30	13.41	105	5.80	80	3.74	75	2.85	65	2.15	55
	2.0	5.77	145	3.88	110	2.80	90	2.25	75	1.75	60
1	5.0	10.05	130	5.42	95	3.60	80	2.85	70	2.10	60
10	10	12.56	115	6.00	90	3.90	80	3.05	70	2.25	55
	20	13.77	110	6.13	85	3.92	75	3.05	65	2.20	55
	30	13.23	105	5.79	85	3.70	75	2.85	65	2.15	55

FIGURE 7 - S₁₂ PARAMETERS

Frequenc	y (MHz)	20	0	50	0	800	0	100	00	1500	
V _{CE} (Volts)	I _C	S12	4	S12		S12	LΦ	S12		S12	40
	2.0	0.06	65	0.10	55	0.12	55	0.14	55	0.17	60
- 1	5.0	0.05	65	0.08	65	0.12	65	0.15	65	0.19	65
5.0	10	0.04	65	0.08	70	0.12	70	0.15	70	0.20	65
	20	0.04	75	0.08	75	0.12	75	0.15	70	0.20	70
	30	0.03	75	0.07	75	0.11	75	0.15	75	0.19	70
	2.0	0.05	70	0.03	55	0.11	55	0.12	55	0.15	60
	5.0	0.04	65	0.07	65	0.10	65	0.13	65	0.17	70
10	10	0.04	65	0.07	70	0.10	70	0.13	70	0.17	70
	20	0.03	70	0.07	75	0.10	75	0.13	75	0.17	70
	30	0.03	75	0.06	75	0.10	75	0.13	75	0.17	70

MAXIMUM RATINGS

Rating	Symbol	Value	Unit Vdc	
Collector-Emitter Voltage	VCEO	12		
Collector-Base Voltage	VCBO	15	Vdc	
Emitter-Base Voltage	VEBO	3.0	Vdc	
Collector Current — Continuous	lc	35	mAdc	
Total Device Dissipation @ T _A = 60°C Derate above 60°C	PD	180 2.0	mW mW/°C	
Storage Temperature	T _{stg}	-65 to +150	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	500	°C/W

BFR91

CASE 317A-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		100			1-1
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	12	-		Vdc
Collector-Base Breakdown Voltage (IC = 0.1 mAdc, IE = 0)	V(BR)CBO	15	_		Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	3.0	·	_	Vdc
Collector Cutoff Current (V _{CB} = 5.0 Vdc, I _E = 0)	ІСВО	-	-	50	nAdc
ON CHARACTERISTICS				Neg 1	
DC Current Gain (IC = 30 mAdc, V _{CE} = 5.0 Vdc)	hFE	25	-1- 8	250	-
SMALL SIGNAL CHARACTERISTICS	+ 1.05.0	N TO	0.7		
Current-Gain — Bandwidth Product (IC = 30 mAdc, V _{CE} = 5.0 Vdc, f = 0.5 GHz)	fτ	2/2	5.0	-	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	<u> </u>	0.7	1.0	pF
FUNCTIONAL TEST	150	10 21 -	0.0		
Noise Figure (I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc, f = 0.5 GHz) (I _C = 2.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 GHz)	NF		1.9 2.5	=	dB
Power Gain at Optimum Noise Figure (IC = 2.0 mAdc, V _{CE} = 5.0 Vdc, f = 0.5 GHz) (IC = 2.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 GHz)	GNF	=	11 8.0		dB
Maximum Available Power(1) (IC = 30 mAdc, V _{CE} = 5.0 Vdc, f = 0.5 GHz) (IC = 30 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 GHz)	G _{max}		16 10		dB

(1)
$$G_{\text{max}} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$$

FIGURE 1 - POWER DERATING

FIGURE 2 - POWER GAIN AND NOISE FIGURE versus FREQUENCY

FIGURE 3 - POWER GAIN AND NOISE FIGURE versus COLLECTOR CURRENT

FIGURE 4 - S11 PARAMETERS

Frequency	y (MHz)	20	0	5	00	800	0	10	00	150	00
V _{CE} (Volts)	I _C (mA)	S11	<i>L</i> Φ	S11	LΦ	S11	LΦ	S11	<i>L</i> φ	S11	LΦ
	2.0	0.72	-65	0.51	-125	0.46	-165	0.47	170	0.51	145
	5.0	0.49	-90	0.35	-150	0.34	175	0.36	155	0.41	135
5.0	10	0.34	-110	0.28	-165	0.29	165	0.32	145	0.36	130
	20	0.26	-130	0.24	180	0.27	155	0.30	140	0.34	125
	30	0.24	-145	0.24	175	0.27	155	0.30	140	0.34	125
	2.0	0.74	-60	0.51	-120	0.45	-160	0.45	170	0.49	150
	5.0	0.52	-80	0.33	-140	0.31	-175	0.32	160	0.37	145
10	10	0.36	-95	0.24	-155	0.24	170	0.27	155	0.31	140
	20	0.25	-115	0.19	-170	0.21	160	0.24	145	0.29	130
	30	0.22	-120	0.19	-175	0.21	160	0.25	145	0.20	130

FIGURE 5 - S22 PARAMETERS

Frequenc	y (MHz)	20	0	50	0	80	0	1000		1500	
V _{CE} (Volts)	I _C (mA)	S22	<i>L</i> φ	S22	<i>L</i> φ	S22	LΦ	S22	L Φ	S22	L Φ
	2.0	0.83	-25	0.62	-35	0.55	-40	0.51	-45	0.49	-60
5.0	5.0	0.66	-30	0.45	-35	0.40	-40	0.37	-40	0.34	-50
	10	0.52	-35	0.36	-35	0.32	-35	0.30	-35	0.27	-50
	20	0.42	-35	0.30	-30	0.27	-30	0.26	-30	0.22	-45
	30	0.38	-35	0.28	-25	0.26	-30	0.25	-30	0.21	-40
	2.0	0.86	-20	0.67	-30	0.62	-35	0.58	-40	0.56	-50
	5.0	0.71	-25	0.53	-30	0.48	-30	0.45	-35	0.43	-45
10	10	0.59	-30	0.45	-25	0.41	-30	0.40	-30	0.37	-40
	20	0.50	-25	0.40	-25	0.38	-25	0.37	-30	0.34	-40
	30	0.47	-25	0.40	-20	0.38	-25	0.37	-30	0.34	-35

FIGURE 6 - S21 PARAMETERS

Frequency	y (MHz)	20	00	50	0	80	0	100	0	150	00
V _{CE} (Volts)	I _C (mA)	S21	<i>L</i> Φ	S21	<i>L</i> Φ	S21	LØ	S21	LΦ	S21	LΦ
	2.0	5.25	130	3.06	95	2.10	75	1.70	65	1.20	50
	5.0	8.72	120	4.34	90	2.84	75	2.30	65	1.60	50
5.0	10	10.85	110	4.92	85	3.22	70	2.60	65	1.80	50
	20	12.13	105	5.34	80	3.44	70	2.75	60	1.90	50
	30	12.50	100	5.42	80	3.47		2.75	60	1.90	50
	2.0	5.36	135	3.20	95	2.20	80	1.85	65	1.30	50
10	5.0	9.05	120	4.55	90	3.00	75	2.45	65	1.65	50
	10	11.37	110	5.22	85	3.40	75	2.65	65	1.85	50
	20	12.83	105	5.64	80	3.63	70	2.75	60	2.00	50
	30	13.10	100	5.62	80	3.63	70	2.75	60	2.00	50

FIGURE 7 - S12 PARAMETERS

Frequenc	y (MHz)	20	0	50	0	80	0	100	00	150	0
V _{CE} (Volts)	I _C (mA)	S12	ιφ	S12	LΦ	S12	LΦ	S12	LΦ	S12	L Φ
	2.0	0.08	55	0.11	45	0.12	50	0.14	55	0.17	65
	5.0	0.06	55	0.09	60	0.13	65	0.17	65	0.22	65
5.0	10	0.05	60	0.09	65	0.14	70	0.19	65	0.24	65
	20	0.05	70	0.07	70	0.15	70	0.19	70	0.25	65
	30	0.04	75	0.10	75	0.15	70	0.19	70	0.25	65
	2.0	0.06	60	0.09	45	0.10	50	0.12	60	0.15	70
	5.0	0.05	60	80.0	60	0.11	65	0.15	65	0.19	70
10	10	0.05	65	0.08	65	0.12	70	0.16	70	0.21	70
	20	0.04	70	0.08	70	0.13	70	0.17	70	0.22	70
	30	0.04	70	0.08	75	0.13	70	0.17	70	0.22	70

BFR96

CASE 317A-01, STYLE 2

MRF961

CASE 317-01, STYLE 2

MRF962

CASE 303-01, STYLE 1

MRF965

CASE 26-03, STYLE 1 TO-46 (TO-206AB)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	BRF96 MRF961	MRF962 MRF965	Unit
Collector-Emitter Voltage	VCEO	15	15	Vdc
Collector-Base Voltage	VCBO	20	20	Vdc
Emitter-Base Voltage	VEBO	3.0	3.0	Vdc
Collector Current — Continuous	Ic	100	100	mAdc
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD	0.5 5.0	0.75 7.5	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +150	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	V 107 1 151	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	20	10 t/				
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	12	V(BR)CEO	15	-	- pr	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)		V(BR)CBO	20		_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		V _{(BR)EBO}	3.0	_	_	Vdc
Collector Cutoff Current (VCB = 10 Vdc, I _E = 0)		СВО	_	_	100	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc)		hFE	30	_	200	_
SMALL SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 0.5 \text{ GHz}$)		fT	_	4.5	_	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, Emitter Guarded)	BFR96, MRF961, MRF962 MRF965	C _{cb}	_	1.2 1.6	1.5 2.0	pF
FUNCTIONAL TEST						
Noise Figure (I _C = 10 mAdc, V_{CE} = 10 Vdc, f = 0.5 GHz)		NF	-	2.0	-	dB
Maximum Available Gain/Insertion Gain (IC = 50 mAdc, V_{CE} = 10 Vdc, f = 0.5 GHz)	BFR96, MRF965 MRF961 MRF962	MAG/ S ₂₁ ²	-/12 -/13.5 -/15	14.5/13 17/15 20.5/16.5	=	dB

NOTE 1. MAG = $\frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$

BFR96 • MRF961 • MRF962 • MRF965

BFR96 COMMON-EMITTER S-PARAMETERS

INPUT/OUTPUT REFLECTION COEFFICIENTS versus FREQUENCY $(V_{CE} = 10 \text{ V, } I_C = 50 \text{ mA})$

FORWARD/REVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY $(V_{CE} = 10 \text{ V, } I_{C} = 50 \text{ mA})$

VCE	l _C	f	S ₁	1	S	21	S ₁	2	S	22
(Volts)	(mA)	(MHz)	S ₁₁	Lφ	S ₂₁	Lφ	S ₁₂	<i>L</i> φ	S22	LΦ
5.0	10	100	0.51	-95	15.04	121	0.047	54	0.58	-48
		300	0.43	-163	5.87	92	0.082	58	0.26	-63
		500	0.46	174	3.61	79	0.120	63	0.19	-63
		700	0.48	162	2.65	68	0.161	63	0.15	-64
		1000	0.48	146	1.92	57	0.220	63	0.12	-79
		1500	0.54	121	1.40	43	0.320	58	0.13	-118
	25	100	0.39	-122	19.41	112	0.037	60	0.42	-68
		300	0.39	-176	6.81	89	0.079	68	0.16	-94
		500	0.42	166	4.11	78	0.129	70	0.10	-103
		700	0.44	156	3.05	69	0.176	68	0.06	-119
		1000	0.44	142	2.20	59	0.244	64	0.06	-159
		1500	0.49	118	1.62	45	0.348	57	0.10	177
	50	100	0.35	-140	21.10	106	0.032	64	0.33	-81
		300	0.38	176	7.11	88	0.081	72	0.13	-116
		500	0.42	162	4.28	78	0.133	72	0.09	-136
		700	0.43	153	3.16	70	0.183	69	0.07	-163
		1000	0.42	140	2.28	60	0.252	65	80.0	165
		1500	0.47	116	1.66	47	0.357	57	0.12	155
10	10	100	0.53	-83	15.96	124	0.039	58	0.65	-36
		300	0.38	-154	6.44	94	0.070	59	0.35	-41
		500	0.41	-179	3.98	81	0.102	64	0.30	-39
		700	0.42	166	2.94	70	0.138	65	0.27	-39
		1000	0.42	151	2.12	60	0.191	66	0.24	-47
		1500	0.49	125	1.50	44	0.278	63	0.22	-72
	25	100	0.38	-104	20.85	115	0.032	60	0.48	-48
		300	0.32	-169	7.54	91	0.070	68	0.23	-48
		500	0.35	170	4.61	80	0.109	71	0.19	-43
		700	0.37	160	3.37	70	0.152	69	0.16	-39
		1000	0.37	146	2.43	61	0.210	67	0.13	-44
		1500	0.43	121	1.73	47	0.304	61	0.10	-74
	50	100	0.33	-119	22.59	109	0.029	63	0.39	-51
		300	0.30	-176	7.74	88	0.069	72	0.19	-47
		500	0.34	166	4.70	79	0.113	73	0.16	-40
		700	0.36	158	3.45	70	0.156	70	0.14	-35
		1000	0.36	144	2.46	61	0.217	66	0.11	-39
		1500	0.42	119	1.75	47	0.310	60	0.08	-72

MRF961 COMMON-EMITTER S-PARAMETERS

INPUT/OUTPUT REFLECTION
COEFFICIENTS versus FREQUENCY
(VCE = 10 V, IC = 50 mA)

FORWARD/REVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY $(V_{CE} = 10 \text{ V}, I_{C} = 50 \text{ mA})$

VCE	IC	f	s	11	S	21	S	12	s	22
(Volts)	(mA)	(MHz)	S ₁₁	LØ	S ₂₁	LØ	S ₁₂	<i>L</i> φ	S ₂₂	<i>L</i> φ
5.0	10	100	0.65	-101	16.61	125	0.047	46	0.61	-56
		300	0.64	-160	6.61	96	0.064	39	0.27	-87
		500	0.66	-178	4.01	83	0.078	45	0.19	-98
		700	0.68	171	2.93	73	0.093	49	0.16	-108
		1000	0.68	160	2.07	63	0.119	53	0.16	-124
		1500	0.72	143	1.43	50	0.158	54	0.21	-141
	25	100	0.60	-129	22.41	115	0.034	44	0.49	-84
		300	0.63	-172	7.94	93	0.049	50	0.26	-132
		500	0.66	174	4.78	83	0.071	58	0.21	-150
		700	0.67	166	3.45	75	0.092	60	0.20	-164
		1000	0.67	156	2.46	66	0.124	61	0.21	-177
		1500	0.71	140	1.73	54	0.173	60	0.24	175
	50	100	0.59	-147	25.12	109	0.025	46	0.42	-104
		300	0.64	-178	8.47	91	0.046	60	0.28	-151
		500	0.67	171	5.05	83	0.070	65	0.26	-167
		700	0.68	164	3.67	75	0.093	65	0.25	-178
		1000	0.67	154	2.60	67	0.128	65	0.26	170
		1500	0.72	138	1.83	56	0.178	62	0.29	163
10	10	100	0.65	-90	17.47	128	0.040	50	0.67	-41
		300	0.61	-154	7.31	97	0.057	41	0.33	-57
		500	0.62	-174	4.46	84	0.069	46	0.25	-58
		700	0.64	175	3.27	74	0.084	50	0.22	-60
- 1		1000	0.64	163	2.33	64	0.106	54	0.20	-72
- 1		1500	0.69	145	1.56	50	0.140	57	0.22	-96
	25	100	0.57	-116	24.36	119	0.030	48	0.51	-62
		300	0.58	-167	8.10	94	0.045	52	0.20	-89
		500	0.61	178	5.43	83	0.070	58	0.14	-97
		700	0.63	169	3.93	75	0.084	60	0.10	-106
		1000	0.62	159	2.78	66	0.112	61	0.09	-124
		1500	0.67	142	1.91	53	0.156	60	0.12	-140
Ī	50	100	0.55	-132	26.97	112	0.024	47	0.40	-73
1		300	0.57	-173	9.32	91	0.042	59	0.16	-104
		500	0.60	174	5.58	82	0.064	64	0.11	-115
		700	0.62	167	4.04	74	0.086	64	0.08	-128
		1000	0.61	158	2.85	66	0.115	64	0.08	-149
		1500	0.67	141	1.96	55	0.158	61	0.12	-158

MRF962 COMMON-EMITTER S-PARAMETERS

INPUT/OUTPUT REFLECTION COEFFICIENTS versus FREQUENCY (VCE = 10 V, IC = 50 mA)

FORWARD/REVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY ($V_{CE} = 10 \text{ V}, I_{C} = 50 \text{ mA}$)

VCE	Ic	f	S	1	S	21	S ₁	2	S ₂₂	
(Volts)	(mA)	(MHz)	S11	Lφ	S21	<i>L</i> φ	S ₁₂	LΦ	S22	Lφ
5.0	10	100	0.70	-102	17.42	128	0.044	43	0.65	-57
		300	0.75	-156	7.11	98	0.058	24	0.32	-97
		500	0.78	-170	4.36	86	0.064	25	0.26	-110
100		700	0.78	-176	3.16	77	0.071	26	0.23	-117
		1000	0.78	176	2.26	67	0.078	27	0.24	-126
	1	1500	0.79	167	1.51	54	0.092	29	0.31	-133
	25	100	0.69	-131	24.24	118	0.029	38	0.56	-87
	1 1	300	0.77	-167	8.76	95	0.039	32	0.35	-137
		500	0.79	-176	5.26	85	0.046	36	0.32	-150
40.0		700	0.80	178	3.82	78	0.055	40	0,31	-158
		1000	0.79	173	2.72	70	0.067	42	0.32	-164
		1500	0.81	164	1.82	59	0.086	42	0.34	-167
Page 1	50	100	0.71	-147	27.72	113	0.021	37	0.53	-107
		300	0.78	-173	9.59	94	0.030	40	0.41	-152
	7	500	0.81	179	5.72	85	0.038	46	0.39	-163
		700	0.81	176	4.09	78	0.048	50	0.38	-169
	-	1000	0.81	171	2.89	71	0.061	51	0.38	-175
		1500	0.82	163	1.96	62	0.082	49	0.40	-177
10	10	100	0.71	-92	18.77	131	0.037	47	0.70	-44
		300	0.74	-150	8.09	100	0.051	28	0.34	-69
		500	0.75	-166	5.01	87	0.056	28	0.27	-75
		700	0.76	-174	3.62	78	0.064	28	0.24	-79
		1000	0.76	179	2.58	69	0.071	30	0.24	-88
		1500	0.77	168	1.72	55	0.085	31	0.31	-104
1	25	100	0.67	-120	27.10	122	0.027	42	0.57	-68
		300	0.73	-163	10.27	97	0.035	36	0.27	-110
		500	0.76	-174	6.21	86	0.043	39	0.22	-124
		700	0.77	-179	4.48	78	0.051	41	0.20	-132
1		1000	0.77	175	3.19	71	0.062	43	0.20	-139
		1500	0.78	166	2.13	59	0.080	42	0.25	-142
	50	100	0.68	-137	31.53	116	0.020	37	0.49	-85
		300	0.74	-169	11.17	95	0.028	40	0.27	-131
		500	0.77	-177	6.69	85	0.037	46	0.24	-144
		700	0.77	178	4.82	78	0.047	48	0.23	-152
		1000	0.77	173	3.42	71	0.059	50	0.23	-158
		1500	0.79	165	2.30	61	0.078	47	0.27	-159

MRF965 COMMON-EMITTER S-PARAMETERS

INPUT/OUTPUT REFLECTION
COEFFICIENTS versus FREQUENCY
(V_{CE} = 10 V, I_C = 50 mA)

FORWARD/REVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY (V_{CE} = 10 V, I_C = 50 mA)

VCE	Ic	f	S	11	Sz	21	S ₁	2	S	22
(Volts)	(mA)	(MHz)	S ₁₁	LΦ	S21	LΦ	S12	LΦ	S ₂₂	Lφ
5.0	10	100	0.56	-102	13.87	121	0.054	48	0.58	-62
	_	300	0.57	-158	5.47	90	0.084	46	0.32	-94
100	1.0	500	0.56	-169	3.40	77	0.110	52	0.27	-106
		700	0.52	178	2.53	69	0.136	54	0.39	-115
-ali		1000	0.55	167	1.79	57	0.181	56	0.35	-112
		1500	0.54	150	1.27	42	0.242	57	0.43	-122
	25	100	0.48	-129	17.61	112	0.041	51	0.47	-85
mu.		300	0.55	-169	6.38	89	0.076	57	0.30	-125
		500	0.54	-176	3.97	77	0.111	62	0.27	-138
Man 1	100	700	0.50	172	2.94	71	0.114	61	0.30	-143
		1000	0.53	162	2.08	61	0.198	60	0.32	-135
		1500	0.50	146	1.50	47	0.267	57	0.37	-140
	50	100	0.47	-144	19.34	107	0.035	56	0.42	-100
	DET	300	0.55	-173	6.72	87	0.073	63	0.31	-138
		500	0.53	-179	4.17	77	0.112	66	0.29	-150
		700	0.50	168	3.10	71	0.147	64	0.33	-153
		1000	0.53	159	2.19	62	0.206	61	0.32	-146
		1500	0.50	143	1.59	49	0.277	58	0.36	-149
10	10	100	0.56	-92	14.67	123	0.047	50	0.63	-50
(Ic)	-	300	0.53	-152	6.00	92	0.077	47	0.34	-73
	-	500	0.53	-165	3.74	78	0.100	53	0.29	-82
		700	0.49	-177	2.76	70	0.124	56	0.31	-93
		1000	0.52	170	1.96	57	0.166	58	0.38	-94
		1500	0.51	153	1.36	42	0.221	59	0.46	-108
	25	100	0.46	-117	19.10	115	0.036	53	0.49	-68
		300	0.50	-164	7.09	90	0.071	57	0.26	-99
		500	0.49	-172	4.39	78	0.102	62	0.23	-110
95		700	0.45	175	3.25	71	0.133	61	0.25	-119
		1000	0.49	164	2.28	60	0.181	61	0.30	-112
Tib.		1500	0.47	148	1.61	46	0.246	59	0.37	-120
	50	100	0.42	-131	20.99	110	0.033	56	0.41	-79
	-	300	0.49	-169	7.46	88	0.069	62	0.24	-111
		500	0.48	-175	4.63	78	0.103	65	0.21	-123
		700	0.45	172	3.40	71	0.136	64	0.25	-129
		1000	0.48	162	2.39	61	0.188	62	0.29	-119
		1500	0.45	146	1.70	48	0.251	59	0.35	-126

BFW92A

CASE 317A-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	V _{EBO}	2.5	Vdc
Collector Current — Continuous	lc	35	mAdc
Total Device Dissipation @ T _C = 105°C Derate above 105°C	PD	180 4.0	mW mW/°C
Storage Temperature	T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case(1)	$R_{\theta JC}$	250	°C/W

Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		ge s			
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	15	-	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	V(BR)CBO	25		-	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	2.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	Ісво	<u> </u>	- O'O	50	nAdc
ON CHARACTERISTICS	100	ec. 0			
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 1.0 Vdc)	hFE	20	50	150	_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz)	fT		4.5		GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz, Emitter Guarded)	C _{cb}	_	0.5	1.0	pF
FUNCTIONAL PERFORMANCE		1	62		
Optimum Noise Figure (Tuned) ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc, $f = 0.5$ GHz)	NF _{opt}	-	2.7	-	dB
Noise Figure (Untuned, $R_S = R_L = 50 \Omega$) (I _C = 10 mAdc, $V_{CE} = 10$ Vdc, $f = 0.5$ GHz)	NF	_	3.0	_	dB
Maximum Available Gain(2) ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc, $f = 0.5$ GHz)	MAG	_	16	_	dB
Insertion Gain (I _C = 10 mAdc, V_{CE} = 10 Vdc, f = 0.5 GHz)	S ₂₁ ²	- 	14	_	dB

(2)
$$G_{\text{max}} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$$

FIGURE 1 - 30-900 MHz BROADBAND AMPLIFIER

L1, L2 - 3.3 µH Molded Inductor

All Resistors 1/4 W, 20%

4.0

2.0

0 0

10

versus COLLECTOR CURRENT 20 18 MAG, MAXIMUM AVAILABLE GAIN (dB) 16 14 V_{CE} = 10 Vdc f = 500 MHz 12 10 8.0 6.0

20 30 IC. COLLECTOR CURRENT (mA)

50

FIGURE 6 - MAXIMUM AVAILABLE GAIN

FIGURE 7 — GAIN-BANDWIDTH PRODUCT versus COLLECTOR CURRENT

FIGURE 9 - NOISE FIGURE versus COLLECTOR CURRENT

FIGURE 11 - NOISE FIGURE versus FREQUENCY

BFW92A COMMON-EMITTER S-PARAMETERS

INPUT/OUTPUT REFLECTION

FORWARD/REVERSE TRANSMISSION

BFW92A COMMON-EMITTER S-PARAMETERS

VCE	l _C	f	S	11	Sz	1	S ₁	2	S	22
(Volts)	(mA)	(MHz)	S11	Δ φ	S21	Ζφ	S ₁₂	Lφ	S22	Lφ
5.0	5.0	100	0.71	-33	11.2	145	0.031	69	0.87	-18
		200	0.49	-60	8.6	122	0.052	62	0.70	-26
		500	0.21	-119	4.5	92	0.094	61	0.48	-30
		800	0.17	-161	3.0	78	0.137	60	0.44	-36
		1000	0.16	176	2.5	71	0.164	60	0.44	-40
	10	100	0.52	-46	16.6	135	0.027	67	0.78	-23
		200	0.31	-75	11.2	113	0.044	65	0.58	-29
		500	0.14	-150	5.2	88	0.089	67	0.40	-29
		800	0.15	173	3.3	76	0.135	65	0.37	-34
		1000	0.16	154	2.8	70	0.164	64	0.37	-38
	15	100	0.40	-55	19.7	129	0.025	69	0.72	-26
		200	0.22	-88	12.1	109	0.041	68	0.52	-29
		500	0.14	-170	5.4	86	0.087	70	0.36	-27
	= (800	0.16	161	3.5	76	0.134	68	0.34	-33
		1000	0.17	145	2.9	69	0.164	66	0.35	-37
	20	100	0.33	-62	21.1	125	0.023	69	0.68	-27
		200	0.18	-99	12.5	106	0.039	69	0.49	-28
		500	0.14	178	5.5	85	0.086	72	0.35	-26
		800	0.17	155	3.5	75	0.133	69	0.33	-32
		1000	0.18	142	2.9	69	0.164	67	0.34	-37
	25	100	0.27	-69	21.9	122	0.022	70	0.65	-27
		200	0.15	-111	12.7	104	0.038	71	0.47	-27
		500	0.16	172	5.5	85	0.085	73	0.35	-25
		800	0.19	153	3.5	75	0 132	70	0.33	-31
4.0		1000	0.20	140	2.9	69	0.163	68	0.33	-36
10	5.0	100	0.73	-30	11.1	146	0.026	71	0.90	-14
	N U	200 500	0.53	-52 -98	8 8	124 94	0.044	63 62	0.75 0.57	-21 -25
		800	0.14	-136	3.1	80	0 120	62	0.57	-30
		1000	0.11	-161	2.6	73	0.143	62	0.53	-34
	10	100	0.57	-39	16.7	137	0 023	70	0.82	-18
	10	200	0.35	-62	11.5	115	0.038	66	0.65	-23
		500	0.12	-117	5.4	89	0.078	69	0.50	-23
		800	0.09	-163	3.5	78	0.118	67	0.47	-28
		1000	0.09	168	2.9	71	0.144	66	0.48	-32
	15	100	0.46	-46	19.9	130	0.021	70	0.77	-20
		200	0.26	-68	12.6	110	0.035	68	0.60	-22
		500	0.09	-137	5.6	87	0.076	71	0.47	-21
		800	0.09	177	3.7	77	0.117	69	0.45	-27
		1000	0.10	153	3.0	71	0.143	68	0.46	-31
	20	100	0.39	-50	21.5	126	0.020	70	0.74	-21
		200	0.21	-73	13.0	107	0.034	71	0.58	-21
		500	0.08	-154	5.7	86	0.075	72	0.46	-20
		800	0.10	168	3.7	76	0.117	70	0.45	-27
		1000	0.11	148	3.0	71	0.142	69	0.45	-31
1	25	100	0.34	-54	22.3	123	0.019	70	0.71	-20
		200	0.17	-79	13.0	105	0 033	71	0.57	-20
		500	0.08	-166	5.7	86	0 075	73	0.47	-19
		800	0 11	162	3.7	76	0 116	70	0.45	-26
- 1		1000	0.13	144	3.0	70	0 141	69	0 46	-30

BFX89 BFY90

CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	2.5	Vdc
Collector Current — Continuous	Ic	50	mAdc
Total Continuous Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)		V(BR)CEO	15	_	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)		ІСВО	_	-	10	nAdo
ON CHARACTERISTICS						
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 25 mAdc, V _{CE} = 1.0 Vdc)		hFE	25 20	_	150 125	-
SMALL SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product(1) (IC = 2.0 mA, V_{CE} = 5.0 Vdc, f = 500 MHz)	BFX89 BFY90	fτ	 1.0	1.0	_	GHz
$(I_C = 25 \text{ mA}, V_{CE} = 5.0 \text{ Vdc}, f = 500 \text{ MHz})$	BFX89 BFY90		_ 1.3	1.1	=	
Emitter-Base Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	BFY90	C _{ibo}	_	-	2.0	pF
Collector-Base Capacitance(2) $(V_{CB} = 10 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$	BFX89 BFY90	C _{cb}	=	0.85 0.85	1.7 1.5	pF
FUNCTIONAL TEST		- 4				
Common-Emitter Amplifier Power Gain($\frac{1}{2}$) (V _{CE} = 10 Vdc, I _C = 8.0 mA, f = 200 MHz)	BFX89 BFY90	G _{pe}	19 —	_ 21	_	dB
Spot Noise Figure (RS = Optimum)(1) $(V_{CE} = 5.0 \text{ Vdc}, I_{C} = 2.0 \text{ mA}, f = 500 \text{ MHz})$	BFX89 BFY90	NF	_	2.5 2.5	6.5 5.0	dB

⁽¹⁾ Pin 4 is grounded. (2) Pin 4 is not grounded.

COMMON EMITTER SCATTERING PARAMETERS

FIGURE 7 — INPUT AND OUTPUT REFLECTION

FIGURE 8 — FORWARD AND REVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY

S - PARAMETERS

VCE IC		Frequency	S	11	S	21	S-	12	S ₂₂		
(Volts)	(mA)	(MHz)	511	Δ φ	S21	Δ φ	S ₁₂	<i>Δ</i> φ	S22	4	
5.0	2.0	100	0.81	-37	5.76	148	0.031	72	0.95	-11	
	100	200	0.64	-66	4.56	127	0.050	63	0.87	-17	
		400	0.41	-105	2.91	102	0.071	62	0.79	-23	
		800	0.26	-157	1.63	77	0.105	74	0.75	-34	
		1000	0.23	179	1.38	68	0.129	80	0.74	-41	
	5.0	100	0.60	-54	9.73	133	0.026	68	0.87	-13	
	1 1	200	0.41	-84	6.33	112	0.040	66	0.78	-17	
	1 - 1	400	0.26	-121	3.54	92	0.064	72	0.73	-21	
	1 - 1	800	0.19	-169	1.89	72	0.112	80	0.72	-31	
		1000	0.17	168	1.59	64	0.140	82	0.71	-39	
	10	100	0.71	-66	12.13	122	0.022	70	0.81	-14	
		200	0.28	-96	7.11	104	0.036	71	0.73	-15	
		400	0.19	-133	3.85	88	0.064	77	0.70	-19	
		800	0.18	-178	2.00	69	0.115	83	0.71	-30	
		1000	0.17	160	1.66	61	0.143	84	0.70	-37	
	25	100	0.26	-88	12.79	112	0.019	73	0.76	-13	
	1	200	0.20	-122	7.04	97	0.034	76	0.71	-13	
		400	0.20	-156	3.68	83	0.062	81	0.70	-18	
	1	800	0.23	165	1.88	65	0.114	86	0.71	-30	
		1000	0.24	146	1.56	58	0.145	88	0.70	-38	
10	2.0	100	0.83	-34	5.82	150	0.025	73	0.96	-9	
		200	0.66	-61	4.60	129	0.042	65	0.89	-15	
	CO	400	0.42	-97	2.98	104	0.059	64	0.83	-20	
	1 1	800	0.25	-147	1.69	79	0.088	77	0.80	-31	
		1000	0.20	-172	1.42	70	0.108	82	0.79	-38	
	5.0	100	0.63	-48	9.94	135	0.021	70	0.90	-11	
		200	0.43	-76	6.54	114	0.034	68	0.82	-15	
	1 1	400	0.26	-108	3.72	94	0.054	73	0.77	-19	
		800	0.16	-155	1.98	74	0.095	83	0.77	-24	
		1000	0.14	180	1.65	66	0.119	85	0.76	-36	
	10	100	0.47	-57	12.42	125	0.019	70	0.85	-12	
		200	0.30	-83	. 7.43	106	0.031	72	0.78	-14	
	- 1	400	0.19	-113	4.04	90	0.054	78	0.75	-18	
		800	0.14	-160	2.09	71	0.098	84	0.75	-28	
		1000	0.13	173	1.73	64	0.121	86	0.75	-35	
	25	100	0.32	-71	13.05	114	0.017	72	0.81	-11	
		200	0.21	-99	7.27	99	0.029	76	0.77	-12	
		400	0.16	-135	3.81	85	0.052	81	0.76	-16	
		800	0.17	177	1.96	68	0.096	87	0.76	-28	
	1	1000	0.18	154	1.62	61	0.120	89	0.76	-35	

MD4957

CASE 654-02, STYLE 1 TO-78

DUAL HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

MAXIMOM NATINGS				
Rating	Symbol	Va	Unit	
Collector-Emitter Voltage	VCEO	30		Vdc
Collector-Base Voltage	V _{CBO}	1 4 3	30	
Emitter-Base Voltage	VEBO	3	3.0	
Collector Current	IC	30		mAdc
	70-77	One Side	Both Sides	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	200 1.15	400 2.3	mW mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		L			
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V _(BR) CEO	30	-	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	30	-	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V _{(BR)EBO}	3.0	3 — 8	-	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	ІСВО		_	0.1	μAdc
ON CHARACTERISTICS					-
DC Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc)	hFE	20	_	150	_
SMALL SIGNAL CHARACTERISTICS	N	201			
Current-Gain — Bandwidth Product (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fΤ	1000	1500	-	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kHz}$)	C _{cb}	_	0.4	0.8	pF
Small Signal Current Gain (I $_{C}=2.0$ mAdc, $V_{CE}=10$ Vdc, $f=1.0$ kHz)	h _{fe}	20	_	200	_
Collector Base Time Constant (I _E = 2.0 mAdc, V _{CB} = 10 Vdc, f = 63.6 MHz)	rb'C _C	_	4.0	8.0	ps
Noise Figure (I _C = 2.0 mAdc, V_{CE} = 10 Vdc, f = 450 MHz) (Figure 1) (I _C = 2.0 mAdc, V_{CE} = 10 Vdc, R_S = 50 ohms, f = 1.0 GHz)	NF		2.6 5.0	=	dB
FUNCTIONAL TEST	112 -				
Common-Emitter Amplifier Power Gain ($V_{CE}=10~V_{dc}, I_{C}=2.0~mAdc, f=450~MHz$) (Figure 1) ($V_{CE}=10~V_{dc}, I_{C}=2.0~mAdc, R_{S}=50~ohms, f=1.0~GHz$)	G _{pe}	=	18 13	= 1	dB

FIGURE 1 — NOISE FIGURE AND POWER GAIN TEST CIRCUIT

- * Button type capacitors

 ** Variable air piston type capacitors

- Variable air piston type capacitor

 1. L1 silver plated brass bar, 1.0

 in. Ig by 0.25 in od.

 2. L2 silver plated brass bar, 1.5

 in. Ig by 0.25 in od. Tap is

 0.25 in. from collector

 3. L3 ½ turn of AWG No. 16 wire

 0.25 in. from and parallel to

 1.2.

 4. The noise source is a bet-cold bod
- 4. The noise source is a hot-cold body (All type 70 or equivalent) with a test receiver (AlL type 136 or equivalent).

COMMON EMITTER Y PARAMETER VARIATIONS

COMMON BASE Y PARAMETER VARIATIONS

CASE 714-02

WIDEBAND HYBRID AMPLIFIER

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	VDC	28	Vdc
Input Power	Pin	5.0	dBm
Operating Case Temperature Range	TC	-20 to +90	°C
Storage Temperature Range	T _{stg}	-40 to +100	°C

ELECTRICAL CHARACTERISTICS ($V_{DC}=24~Vdc, Z_0=50~\Omega, T_C=25^{\circ}C.$ All characteristics guaranteed over bandwidth listed under "Frequency Range," unless specified otherwise.)

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency Range	BW	10	_	400	MHz
Power Gain	Gp	31.5	34	35.5	dB
Gain Flatness	F	_	_	± 1.5	dB
Voltage Standing Wave Ratio, In/Out (f = 10-300 MHz) (f = 300-400 MHz)	VSWR	=	1.5:1 2:1	=	_
1 dB Compression (f = 10 MHz) (f = 200 MHz) (f = 400 MHz)	P1	— 700 —	800 800 300	_	mW
Reverse Isolation	PRI	43	50	_	dB
2nd Harmonic (Pout = 10 mW)	d _{so}	_	- 66		dB
Third Order Intercept	lто	_	43	_	dBm
Peak Envelope Power for -32 dB Distortion	PEP	_	500	_	mW
Noise Figure (f = 60 MHz) (f = 300 MHz)	NF	=	4.0 3.5	 5.5	dB
DC Voltage	V _{DC}	_	24	28	٧
DC Current	IDC	_	300	340	mA

FIGURE 1 – POWER GAIN AND RETURN LOSS versus FREQUENCY

FIGURE 2 - POWER GAIN versus FREQUENCY

FIGURE 3 — POWER GAIN versus SUPPLY VOLTAGE

FIGURE 4 - NOISE FIGURE versus SUPPLY VOLTAGE

FIGURE 5 - OUTPUT POWER versus INPUT POWER

FIGURE 6 - OUTPUT POWER versus INPUT POWER

FIGURE 7 – INTERMODULATION DISTORTION – THIRD ORDER versus OUTPUT POWER

FIGURE 8 – INTERMODULATION DISTORTION – FIFTH ORDER versus OUTPUT POWER

FIGURE 9 – INTERMODULATION DISTORTION – THIRD ORDER versus OUTPUT POWER

FIGURE 10 – INTERMODULATION DISTORTION – FIFTH ORDER versus OUTPUT POWER

FIGURE 11 - DC CURRENT DRAIN versus SUPPLY VOLTAGE

MHW591

CASE 714-02

WIDEBAND HYBRID AMPLIFIER

MAXIMUM RATINGS

WAXIWOW RATINGS									
Rating	Symbol	Value	Unit						
Supply Voltage	V _{DC}	16	Vdc						
Input Power	Pin	3.0	dBm						
Operating Case Temperature Range	TC	-20 to +90	°C						
Storage Temperature Range	T _{stg}	-40 to +100	°C						

ELECTRICAL CHARACTERISTICS ($V_{DC}=13.6~Vdc,~Z_{O}=50~\Omega,~T_{C}=25^{\circ}C.$ All characteristics guaranteed over bandwidth listed under "Frequency Range," unless specified otherwise.)

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency Range	BW	1.0		250	MHz
Power Gain	Gp	34.5	36.5	38	dB
Gain Flatness	F	-	_	±1.5	dB
Voltage Standing Wave Ratio, In/Out (f = 1.0-30 MHz) (f = 30-250 MHz)	VSWR	=	1.5:1 2:1	=	-
1 dB Compression (f = 30 MHz) (f = 100 MHz) (f = 250 MHz)	P1	650 — —	800 700 250	=	mW
Peak Envelope Power (IMD3 = -30 dB, f = 30 MHz) (IMD3 = -30 dB, f = 100 MHz) (IMD3 = -30 dB, f = 250 MHz)	PEP	700 — —	850 600 300		mW
Noise Figure (f = 30 MHz) (f = 100 MHz) (f = 250 MHz)	NF	=	3.7 3.7 4.5	5.0	dB
DC Voltage	V _{DC}	-	13.6	16	V
DC Current	IDC	_	300	340	mA

FIGURE 2 - POWER GAIN VERSUS EREQUENCY

FIGURE 3 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 4 - NOISE FIGURE versus SUPPLY VOLTAGE

FIGURE 5 - OUTPUT POWER versus INPUT POWER

FIGURE 6 - OUTPUT POWER versus INPUT POWER

FIGURE 7 – INTERMODULATION DISTORTION versus OUTPUT POWER

FIGURE 8 – INTERMODULATION DISTORTION versus OUTPUT POWER

FIGURE 9 - DC CURRENT DRAIN versus SUPPLY VOLTAGE

MAXIMUM RATINGS

THE CONTROL OF THE CO									
Rating	Symbol	Value	Unit						
Supply Voltage	VDC	28	Vdc						
Input Power	Pin	5.0	dBm						
Operating Case Temperature Range	TC	-20 to +90	°C						
Storage Temperature Range	T _{stq}	-40 to +100	°C						

ELECTRICAL CHARACTERISTICS (VDC = 24 Vdc, Z_0 = 50 Ω , T_C = 25°C. All characteristics guaranteed over bandwidth listed under "Frequency Range," unless specified otherwise.)

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency Range	BW	1.0	-	250	MHz
Power Gain	Gp	33.5	35	36.5	dB
Gain Flatness	F	_	_	± 1.0	dB
Voltage Standing Wave Ratio, In/Out (f = 1.0-30 MHz) (f = 30-250 MHz)	VSWR	_	1.5:1 2:1	_	_
1 dB Compression (f = 30 MHz) (f = 100 MHz) (f = 250 MHz)	P1	750 — —	900 900 750	=	mW
Peak Envelope Power (IMD3 = -30 dB, f = 30 MHz) (IMD3 = -30 dB, f = 100 MHz) (IMD3 = -30 dB, f = 250 MHz)	PEP	700 — —	850 850 600	_	mW
Noise Figure (f = 30 MHz) (f = 100 MHz) (f = 250 MHz)	NF	_ _ _	3.6 3.7 3.9	5.0 —	dB
DC Voltage	V _{DC}	_	24	28	V
DC Current	IDC	_	300	340	mA

FIGURE 7 - INTERMODULATION DISTORTION versus OUTPUT POWER

FIGURE 8 – INTERMODULATION DISTORTION versus OUTPUT POWER

FIGURE 9 - DC CURRENT DRAIN versus SUPPLY VOLTAGE

MHW593

CASE 714-02

WIDEBAND HYBRID AMPLIFIER

MAXIMUM RATINGS

Rating	Symbol	Value	Unit			
Supply Voltage	V _{DC}	16	Vdc			
Input Power	Pin	3.0	dBm			
Operating Case Temperature Range	TC	-20 to +90	°C			
Storage Temperature Range	T _{stg}	-40 to +100	°C			

ELECTRICAL CHARACTERISTICS ($V_{DC}=13.6~Vdc,~Z_{O}=50~\Omega,~T_{C}=25^{\circ}C.$ All characteristics guaranteed over bandwidth listed under "Frequency Range," unless specified otherwise.)

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency Range	BW	10	_	400	MHz
Power Gain	Gp	33	34.5	36	dB
Gain Flatness	F	_	_	± 1.0	dB
Voltage Standing Wave Ratio, In/Out (f = 10-300 MHz) (f = 300-400 MHz)	VSWR	=	1.5:1 2:1	=	_
1 dB Compression (f = 10 MHz) (f = 200 MHz) (f = 400 MHz)	P1	 500 	600 600 200		mW
Reverse Isolation	PRI	45	50	_	dB
2nd Harmonic (P _{Out} = 10 mW)	d _{so}	_	- 55	_	dB
Third Order Intercept	ТО	_	38	_	dBm
Peak Envelope Power for -32 dB Distortion	PEP	-	300	_	mW
Noise Figure (f = 60 MHz) (f = 300 MHz)	NF	=	3.7 4.0	 5.5	dB
DC Voltage	V _{DC}	_	13.6	16	٧
DC Current	IDC	_	300	340	mA

FIGURE 1 – POWER GAIN AND RETURN LOSS versus FREQUENCY

FIGURE 2 - POWER GAIN versus FREQUENCY

FIGURE 3 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 4 - NOISE FIGURE versus SUPPLY VOLTAGE

FIGURE 5 - OUTPUT POWER versus INPUT POWER

FIGURE 6 - OUTPUT POWER versus INPUT POWER

FIGURE 7 — INTERMODULATION DISTORTION — THIRD ORDER versus OUTPUT POWER

FIGURE 8 – INTERMODULATION DISTORTION – FIFTH ORDER versus OUTPUT POWER

FIGURE 9 – INTERMODULATION DISTORTION – THIRD ORDER versus OUTPUT POWER

FIGURE 10 – INTERMODULATION DISTORTION – FIFTH ORDER versus OUTPUT POWER

FIGURE 11 - DC CURRENT DRAIN versus SUPPLY VOLTAGE

MM4018

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	lc	0.4	Adc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				- 14	
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)	V(BR)CEO	20			Vdc
Collector-Base Breakdown Voltage (IC = 5.0 mAdc, IE = 0)	V(BR)CBO	40	-	-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 1.0 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	4.0		_	Vdc
Collector Cutoff Current $(V_{CE} = 15 \text{ Vdc}, I_B = 0)$	ICEO		-	20	μAdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ІСВО	-	_	10	μAdc
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{BE} = 0)	ICES	_	_	0.1	mAdc
ON CHARACTERISTICS	_				
DC Current Gain (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)	hFE	10	_	_	_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$, $f = 100 \text{ MHz}$)	fT	_	900	_	MHz
Output Capacitance ($V_{CB} = 12.5 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kHz}$)	C _{obo}	_	3.5	_	pF
FUNCTIONAL TEST					
Power Output (Figure 1) $(P_{in} = 50 \text{ mW}, V_{CC} = 12.5 \text{ Vdc}, f = 175 \text{ MHz})$	Pout	0.5	_	_	Watt
Collector Efficiency (Figure 1) $(P_{in} = 50 \text{ mW}, V_{CC} = 12.5 \text{ Vdc}, f = 175 \text{ MHz})$	η	45	55	_	%

FIGURE 1 - 175 MHz OUTPUT POWER TEST CIRCUIT

FIGURE 2 - POWER OUTPUT versus POWER INPUT

FIGURE 4 – PARALLEL EQUIVALENT INPUT RESISTANCE versus FREQUENCY

FIGURE 3 – PARALLEL EQUIVALENT OUTPUT CAPACITANCE versus FREQUENCY

FIGURE 5 — PARALLEL EQUIVALENT INPUT CAPACITANCE versus FREQUENCY

MM4019

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Refer to 2N5160 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Collector-Emitter Breakdown Voltage $\{I_C = 10 \text{ mAdc}, I_B = 0\}$	V(BR)CEO	40	-	-	Vdc
Collector-Base Breakdown Voltage (I _C = 10 mAdc, I _E = 0)	V(BR)CBO	60		- 10	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ Adc}, I_C = 0$)	V(BR)EBO	4.0	×-		Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, I _B = 0)	ICEO	_	-	0.1	mAdc
Emitter Cutoff Current (VBE = 4.0 Vdc, IC = 0)	I _{EBO}		_	0.1	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 250 mAdc, V _{CE} = 5.0 Vdc)	hFE	10	_	_	_
Collector-Emitter Saturation Voltage (I _C = 250 mAdc, I _B = 50 mAdc)	VCE(sat)	MACON NAME OF STREET	JAN <u>A</u> 5	1.0	Vdc
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 28 Vdc, f = 100 MHz)	f _T		750		MHz
Output Capacitance (V _{CB} = 30 Vdc, I _E = 0, f = 100 kHz)	C _{obo}	_	7.5	_	pF
FUNCTIONAL TEST					
Power Output (Pin = 0.5 W, V _{CC} = 28 Vdc, f = 400 MHz)	Pout	_	2.0		Watts
Collector Efficiency (Pout = 2.5 W, V _{CC} = 28 Vdc, f = 175 MHz)	η	50	_	_	%
Power Input (Pout = 2.5 W, V _{CC} = 28 Vdc, f = 175 MHz)	Pin	en E	_	0.25	Watt

FIGURE 1 - 175 MHz TEST CIRCUIT

MRF534 MRF536 MM4049

MRF534 CASE 22-03, STYLE 1 TO-206AA

MRF536 CASE 317-01, STYLE 2

MM4049 CASE 20-03, STYLE 2 TO-206AF

HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS		MM4049 Case 20-03 TO-206AF	MRF534 Case 22-03 TO-206AA	MRF536 Case 317-01 Macro-X	
Collector-Emitter Voltage	VCEO	10	10	10	Vdc
Collector-Base Voltage	VCBO	15	15	15	Vdc
Emitter-Base Voltage	VEBO	4.5	4.5	4.5	Vdc
Collector Current — Continuous	IC	30	30	30	mAdc
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	200 1.14	300 1.71	300 2.40	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	-65 to +200	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Collector-Emitter Breakdown Voltage $(I_C = 2.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	10	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \ \mu Adc, I_E = 0$)	V(BR)CBO	15	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0)	ICBO	_	_	10	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 25 mAdc, V _{CE} = 2.0 Vdc)	hFE	20	_	200	_
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product $(I_C = 20 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 500 \text{ MHz})$ MRF534, MM40 MRF536	49 f _T	4.0 5.0	=	=	GHz
Collector-Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{cb}	_	_	1.3	pF
FUNCTIONAL TEST					
	MAG	10 11.5 8.5	12 13 10	=	dB

FIGURE 1 — CURRENT GAIN — BANDWIDTH PRODUCT versus CURRENT

FIGURE 2 — MAXIMUM AVAILABLE GAIN versus COLLECTOR CURRENT

FIGURE 3 - NOISE FIGURE versus FREQUENCY

MM4049 COMMON-EMITTER S-PARAMETERS

VCE	l _C	f	S ₁	1	S	21	S	12	Sz	22
Volts)	(mA)	(MHz)	S11	<i>Δ</i> φ	S21	<i>Δ</i> φ	S ₁₂	<i>L</i> φ	S22	Δ φ
5.0	5.0	200	0.634	-31	6.37	120	0.060	69	0.711	-23
		400	0.469	-34	3.95	93	0.107	65	0.602	-30
		600	0.379	-40	2.90	77	0.147	62	0.587	-33
		800	0.368	-51	2.32	65	0.183	56	0.55	-36
		1000	0.381	-54	1.93	55	0.223	50	0.528	-44
	10	200	0.523	-29	7.79	112	0.056	72	0.632	-23
-		400	0.418	-28	3.74	89	0.104	68	0.543	-29
		600	0.344	-34	3.20	74	0.146	65	0.542	-32
		800	0.345	-46	2.54	64	0.184	58	0.513	-34
		1000	0.366	-50	2.09	54	0.225	52	0.493	-42
	20	200	0.454	-25	8.43	106	0.065	73	0.584	-21
		400	0.390	-23	4.67	85	0.105	70	0.513	-27
		600	0.325	-30	3.31	72	0.148	66	0.620	-30
		800	0.327	-44	2.61	62	0.188	59	0.497	-32
		1000	0.351	-48	2.15	52	0.231	52	0.476	-41
10	5.0	200	0.731	-25	5.83	121	0.053	70	0.736	-18
		400	0.589	-30	3.65	95	0.096	67	0.654	-26
		600	0.502	-38	2.71	79	0.132	64	0.645	-29
		800	0.496	-49	2.21	68	0.164	57	0.612	-33
		1000	0.499	-54	1.83	58	0.198	51	0.592	-42
	10	200	0.643	-25	7.37	114	0.051	71	0.668	-18
		400	0.542	-27	4.28	90	0.094	69	0.060	-25
		600	0.466	-34	3.10	76	0.132	65	0.603	-28
		800	0.465	-46	2.49	66	0.166	59	0.577	-31
		1000	0.476	-51	2.05	57	0.202	53	0.557	-40
	20	200	0.57	-23	8.44	109	0.049	73	0.621	-18
		400	0.496	-24	4.73	88	0.093	71	0.562	-24
		600	0.427	-31	3.38	75	0.131	67	0.572	-27
		800	0.427	-43	2.69	66	0.165	60	0.551	-30
		1000	0.445	-47	2.21	57	0.203	54	0.532	-38

MRF534 COMMON-EMITTER S-PARAMETERS

VCE	Ic	f	S ₁	1	S	21	S ₁	2	S ₂	2
Volts)	(mA)	(MHz)	S11	Δ φ	S21	Δ φ	S12	Δ φ	S22	<i>Δ</i> φ
5.0	5.0	200	0.734	-22	3.70	126	0.066	66	0.507	-39
		400	0.580	-28	2.56	108	0.116	65	0.409	-48
		600	0.444	-37	2.09	95	0.158	62	0.403	-52
		800	0.400	-47	1.80	86	0.195	56	0.364	-56
		1000	0.366	-47	1.55	79	0.234	51	0.348	-69
	10	200	0.645	-27	5.36	124	0.058	69	0.394	-43
		400	0.503	-33	3.44	106	0.109	71	0.316	-52
		600	0.376	-43	2.68	93	0.153	69	0.323	-52
		800	0.333	-54	2.24	84	0.192	65	0.290	-55
		1000	0.295	-54	1.91	77	0.233	61	0.276	-71
	20	200	0.586	-28	5.90	122	0.053	70	0.338	-52
		400	0.454	-34	3.73	105	0.099	73	0.259	-60
		600	0.329	-46	2.87	93	0.143	72	0.267	-58
		800	0.289	-59	2.38	85	0.181	68	0.240	-59
		1000	0.248	-58	2.04	77	0.221	65	0.235	-75
10	5.0	200	0.752	-21	4.28	125	0.066	70	0.550	-28
		400	0.624	-26	2.77	107	0.123	68	0.495	-38
		600	0.512	-34	2.19	94	0.168	65	0.503	-44
		800	0.476	-44	1.86	86	0.207	60	0.464	-51
		1000	0.447	-45	1.60	79	0.246	55	0.443	-64
	10	200	0.685	-24	5.47	123	0.060	71	0.442	-33
		400	0.553	-28	3.46	105	0.113	71	0.385	-42
		600	0.433	-37	2.68	93	0.156	68	0.397	-46
		800	0.391	-49	2.25	85	0.194	63	0.362	-51
		1000	0.359	-47	1.92	78	0.233	59	0.342	-65
	20	200	0.621	-26	6.38	121	0.055	71	0.372	-40
		400	0.488	-31	3.97	104	0.103	72	0.316	-48
		600	0.365	-41	3.04	93	0.145	70	0.332	-50
		800	0.323	-52	2.51	85	0.182	66	0.301	-54
		1000	0.290	-50	2.13	79	0.219	63	0.288	-68

MRF536 COMMON-EMITTER S-PARAMETERS

VCE	l _C	f	S	11	S	21	S ₁	2	S	22
Volts)	(mA)	(MHz)	S11	Δ φ	S ₂₁	<i>Δ</i> φ	S12	<i>L</i> φ	S22	Δ φ
5.0	5.0	400	0.401	-74	5.38	108	0.09	54	0.49	-48
		800	0.181	-102	3.03	86	0.138	51	0.35	-64
		1200	0.136	-157	2.13	70	0.181	48	0.32	-70
- 1		1600	0.151	175	1.68	59	0.21	45	0.27	-80
		2000	0.16	148	1.44	52	0.24	41	0.269	-100
1	10	400	0.289	-94	6.58	103	0.076	56	0.379	-56
- 1		800	0.14	-137	3.55	84	0.122	55	0.266	-73
		1200	0.174	169	2.46	70	0.165	53	0.238	-77
-	100	1600	0.196	154	1.93	60	0.196	50	0.198	-87
		2000	0.227	130	1.65	51	0.230	46	0.202	-110
	20	400	0.233	-118	7.28	99	0.066	60	0.296	-65
		800	0.163	-169	3.88	82	0.110	59	0.204	-84
04		1200	0.233	156	2.65	69	0.153	57	0.179	-84
		1600	0.253	144	2.06	59	0.186	. 55	0.143	-96
		2000	0.290	123	1.75	50	0.220	51	0.160	-121
10	5.0	400	0.478	-54	5.14	109	0.086	58	0.535	-39
-	100	800	0.279	-66	2.90	88	0.141	53	0.420	-55
		1200	0.166	-97	2.08	73	0.184	48	0.388	-62
	- 1	1600	0.151	-123	1.67	64	0.209	44	0.33	-72
		2000	0.110	-158	1.44	55	0.243	39	0.313	-90
	10	400	0.356	-67	6.59	105	0.075	59	0.418	-47
- 1	-	800	0.182	-84	3.59	86	0.124	56	0.311	-62
	14	1200	0.119	-141	2.53	73	0.166	52	0.284	-67
		1600	0.131	-166	2.00	62	0.193	49	0.230	-76
		2000	0.135	154	1.72	55	0.226	45	0.222	-98
	20	400	0.26	-85	7.66	101	0.066	61	0.328	-53
	-	800	0.124	122	4.09	84	0.111	59	0.236	-69
	^ =	1200	0.148	172	2.83	72	0.152	56	0.216	-71
		1600	0.172	158	2.22	62	0.182	54	0.172	-80
	100	2000	0.201	130	1.88	54	0.214	50	0.171	-104

MM8000 MM8001 MM8002

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current	Ic	0.4	Adc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	3.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	er for	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	te A		-	1 1000		
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B = 0)		V _{CEO(sus)}	30	306	= 1	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	7 197	V _(BR) CBO	40	- OLD	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	9 36	V(BR)EBO	3.5	-	_	Vdc
Collector Cutoff Current (V _{CE} = 28 Vdc, I _B = 0)		ICEO	-	_	20	μAdc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 50 \text{ mAdc}$, $V_{CE} = 15 \text{ Vdc}$)		hFE	30	_	_	_
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (IC = 25 mAdc, V_{CE} = 15 Vdc, f = 200 MHz)	MM8000 MM8001 MM8002	fΤ	550 700 1000	=	<u>-</u>	MHz
(IC = 50 mAdc, V_{CE} = 15 Vdc, f = 200 MHz)	MM8000 MM8001 MM8002		700 900 1200	=	=	
$(I_C = 100 \text{ mAdc, } V_{CE} = 15 \text{ Vdc, } f = 200 \text{ MHz})$	MM8000 MM8001 MM8002		700 900 1000	=	=	
Output Capacitance ($V_{CB} = 30 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)		C _{obo}	,—·	_	3.5	pF
Noise Figure (Figure 1) $(I_C = 10 \text{ mAdc}, V_{CE} = 15 \text{ Vdc}, f = 200 \text{ MHz})$		NF		2.7	_	dB
FUNCTIONAL TEST						
Common-Emitter Amplifier Power Gain (Figure 1) (I _C = 10 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)		Gpe	_	11.4	_	dB

FIGURE 1 - 200 MHz TEST CIRCUIT

MM8009

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	35	Vdc
Collector-Base Voltage	VCBO	45	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	IC	400	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Collector-Base Breakdown Voltage (I _C = 100 μ Adc, I _E = 0)	V(BR)CBO	45	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current (VCE = 15 Vdc, IB = 0)	ICEO	_	_	100	μAdc
Collector Cutoff Current (VCE = 35 Vdc, VBE = 0)	ICES	_	_	10	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	hFE	20	_	_	-
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 15 Vdc, f = 100 MHz)	fT	1000	_	_	MHz
Output Capacitance (V _{CB} = 30 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	2.3	3.0	pF
FUNCTIONAL TEST					
Power Output (Figure 1) $(P_{in} = 316 \text{ mW}, V_{CE} = 28 \text{ Vdc}, f = 1.0 \text{ GHz})$	Pout	0.9	_	_	Watt
Power Output (Oscillator) (Figure 2) (VCE = 20 Vdc, VEB = 1.5 Vdc, f = 1.68 GHz) (Minimum Efficiency = 15%)	Pout	_	0.3	1	Watt
Collector Efficiency ($P_{in} = 316 \text{ mW}$, $V_{CE} = 28 \text{ Vdc}$, $f = 1.0 \text{ GHz}$)	η	35	_	_	%

FIGURE 1 - 1.0 GHz POWER AMPLIFIER TEST CIRCUIT

FIGURE 2 - 1.68 GHz POWER OSCILLATOR TEST CIRCUIT

FIGURE 3 - POWER OUTPUT versus POWER INPUT 1.2 1.1 VCE = 28 Vdc 1.0 f = 1.0 GHz POWER OUTPUT (WATTS) 0.9 0.8 0.7 0.6 0.5 0.4 Pout, 0.3 0.2 0.1 0 0.4 0 0.1 0.2 0.3 Pin, POWER INPUT (WATTS)

2.0 1.5 VCE = 28 Vdc Pin = 310 mW

0.7

0.8

f, FREQUENCY (GHz)

0.9

1.0

FIGURE 4 - POWER OUTPUT versus FREQUENCY

P_{out}, POWER OUTPUT (WATTS)

0.5

0.5

0.6

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	V _{CBO}	36	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	lc	0.4	Adc
Total Device Dissipation @ T _C = 25°C(1) Derate above 25°C	PD	3.5 20	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

⁽¹⁾ This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)	V _(BR) CEO	18	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 2.0 \text{ mAdc}, I_E = 0$)	V _(BR) CBO	36	_	1	Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	4.0	_	ı	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ІСВО	_	_	0.1	mAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	h _{FE}	5.0	_	I	_
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain ($V_{CC} = 12.5 \text{ Vdc}, P_{out} = 1.0 \text{ W}, f = 220 \text{ MHz}$)	G _{PE}	8.2	12.5	-	dB
Input Impedance (P _{Out} = 1.0 W, f = 220 MHz)	Z _{in}	_	10-j11.5	_	Ohms
Output Impedance (P _{OUt} = 1.0 W, f = 220 MHz)	Z _{out}	_	32 – j41	-	Ohms

220 MHz TEST CIRCUIT FIGURE 1 - MRF207

OUTPUT POWER versus INPUT POWER (V_{CC} = 12.5 Vdc, f = 220 MHz)

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	V _{CBO}	36	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	Ic	0.25	Adc
Total Device Dissipation @ T _C = 25°C(1) Derate above 25°C	PD	3.5 0.02	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

⁽¹⁾ These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as Class C RF amplifiers.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	Disserve Well II was a Single		200	
Collector-Emitter Breakdown Voltage (I _C = 20 mAdc, I _B = 0)	V(BR)CEO	18	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 20 mAdc, V _{BE} = 0)	V(BR)CES	36		Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \text{ mAdc}, I_C = 0$)	V(BR)EBO	4.0	- 1 <u>-</u>	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	Ісво	_	100	μAdc
ON CHARACTERISTICS		100		
DC Current Gain (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	hFE	15	150	-
SMALL SIGNAL CHARACTERISTICS				
Output Capacitance $(V_{CB} = 12 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	-	8.0	pF
FUNCTIONAL TEST (FIGURE 1)		7		
Common-Emitter Amplifier Power Gain (P _{Out} = 1.5 W, V _{CC} = 12.5 Vdc, f = 225 MHz)	GPE	9.0	-	dB
Collector Efficiency (P _{OUt} = 1.5 W, V _{CC} = 12.5 Vdc, f = 225 MHz)	η	50	-	%

FIGURE 1 - 225 MHz TEST CIRCUIT SCHEMATIC

FIGURE 2 - OUTPUT POWER versus INPUT POWER

FIGURE 3 - SERIES EQUIVALENT IMPEDANCE

CASE 79-03, STYLE 5

HIGH FREQUENCY TRANSISTOR

NPN SILICON

WINFZZI

19

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	16	Vdc
Collector-Base Voltage	V _{CBO}	36	Vdc
Emitter-Base Voltage	V _{EBO}	400	mdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.5	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic Symbol Тур Max Unit **OFF CHARACTERISTICS** Collector-Emitter Breakdown Voltage V(BR)CEO Vdc $(I_C = 50 \text{ mAdc}, I_B = 0)$ Collector-Emitter Breakdown Voltage V(BR)CES 36 Vdc $(I_C = 50 \text{ mAdc}, V_{BE} = 0)$ Emitter-Base Breakdown Voltage V(BR)EBO 4.0 Vdc $(I_E = 1.0 \text{ mAdc}, I_C = 0)$ Collector Cutoff Current 1.0 mAdc СВО $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ Collector Cutoff Current ICES 10 mAdc (V_{CE} = 15 Vdc, V_{BE} = 0, T_C = 55°C) ON CHARACTERISTICS DC Current Gain 20 200 hFE $(I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$ SMALL SIGNAL CHARACTERISTICS **Output Capacitance** 15 pF Cobo $(V_{CB} = 12.5 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz})$ **FUNCTIONAL TEST (FIGURE 1)** Common-Emitter Amplifier Power Gain GPE 13.5 15 dB $(P_{out} = 3.0 \text{ W}, V_{CC} = 12.5 \text{ Vdc}, f = 225 \text{ MHz})$

η

Collector Efficiency

 $(P_{out} = 3.0 \text{ W}, V_{CC} = 12.5 \text{ Vdc}, f = 225 \text{ MHz})$

%

FIGURE 6 - SERIES EQUIVALENT IMPEDANCE

MRF229 MRF230

MRF229 CASE 79-03, STYLE 5

MRF230 CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	VCBO	36	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	lc	0.5	Adc
Total Device Dissipation @ $T_C = 25^{\circ}C(1)$ Derate above $25^{\circ}C$	PD	5.0 28.6	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	35	°C/W

(1) These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as Class C RF Amplifiers.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 25 mAdc, I _B = 0)	V _(BR) CEO	18	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 25 mAdc, V _{BE} = 0)	V(BR)CES	36	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.25 mAdc, I _C = 0)	V _{(BR)EBO}	4.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	Ісво	_	0.5	mAdc
ON CHARACTERISTICS	No. 12			
DC Current Gain (I _C = 250 mAdc, V _{CE} = 5.0 Vdc)	hFE	5.0	_	_
SMALL SIGNAL CHARACTERISTICS				
Output Capacitance ($V_{CB} = 12.5 \text{ Vdc}$, $I_{E} = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_	25	pF
FUNCTIONAL TEST (FIGURE 1)				
Common-Emitter Amplifier Power Gain ($V_{CC} = 12.5 \text{ Vdc}, P_{out} = 1.5 \text{ W}, f = 90 \text{ MHz}$)	GPE	10	_	dB
Collector Efficiency ($V_{CC} = 12.5 \text{ Vdc}, P_{out} = 1.5 \text{ W}, f = 90 \text{ MHz}$)	η	55	_	%
Load Mismatch (VCC = 12.5 Vdc, P_{Out} = 1.5 W, f = 90 MHz, T_{C} \leqslant 25°C)	_	Angles After Wi	30:1 Through in 3 Second hich Devices GPE Test Lim	Interval Will Meet

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

FIGURE 5

FIGURE 6 – PARALLEL EQUIVALENT INPUT RESISTANCE versus FREQUENCY

FIGURE 7 — PARALLEL EQUIVALENT INPUT CAPACITANCE versus FREQUENCY

FIGURE 8 — PARALLEL EQUIVALENT OUTPUT RESISTANCE versus FREQUENCY

FIGURE 9 – PARALLEL EQUIVALENT OUTPUT CAPACITANCE versus FREQUENCY

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	V _{CBO}	36	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	lc	640	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	8.0 45.7	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	20	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

MRF237

CASE 79-03, STYLE 5

HIGH FREQUENCY TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					- 10
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	18	-	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, V _{BE} = 0)	V(BR)CES	36		-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \text{ mAdc}, I_C = 0$)	V(BR)EBO	4.0	-	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ІСВО	-	-	0.25	mAdc
ON CHARACTERISTICS				1	
DC Current Gain (I _C = 250 mAdc, V _{CE} = 5.0 Vdc)	h _{FE}	5.0	_	7	_
SMALL-SIGNAL CHARACTERISTICS	73		9		
Output Capacitance ($V_{CB} = 15 \text{ Vdc}$, $I_E = 0$, $f = 0.1 \text{ MHz}$)	C _{obo}		15	20	pF
FUNCTIONAL TEST (FIGURE 1)	AND A SALES	Danish		93-140	No. of
Common-Emitter Amplifier Power Gain (P _{OUt} = 4.0 W, V _{CC} = 12.5 Vdc, I _C (max) = 640 mAdc, f = 175 MHz)	GPE	12	14	_	dB
Collector Efficiency (Pout = 4.0 W, V _{CC} = 12.5 Vdc, I _C (max) = 640 mAdc, f = 175 MHz)	η	50	62	_	%

FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC

MOTOROLA SEMICONDUCTORS

MRF313 MRF313A

MRF313 CASE 305A-01, STYLE 1

MRF313A **CASE 305-1, STYLE 1**

HIGH FREQUENCY TRANSISTOR **NPN SILICON**

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	IC	150	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	PD	2.5 35	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	28.5	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	30	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, V _{BE} = 0)	V(BR)CES	35	_	-	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	35	-	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current (VCE = 20 Vdc, I _B = 0)	ICEO	_	-	1.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 mAdc, V _{CE} = 10 Vdc)	hFE	20	60	150	_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (IC = 100 mAdc, VCE = 20 Vdc, f = 200 MHz)	fT	_	2.5	-	GHz
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	3.5	5.0	pF
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain(1) (V _{CC} = 28 Vdc, P _{Out} = 1.0 W, f = 400 MHz)	Gpe	15	16	-	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	η	-	45	-	%
Series Equivalent Input Impedance (V _{CC} = 28 Vdc, P _{Out} = 1.0 W, f = 400 MHz)	Z _{in}	_	6.4 – j4.8	_	Ohms
Series Equivalent Output Impedance (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	Z _{out}	_	75 – j45	_	Ohms

(1) Class C

FIGURE 1 - 400 MHz POWER GAIN TEST CIRCUIT

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	18	Vdc	
Collector-Base Voltage	V _{CBO}	36	Vdc	
Emitter-Base Voltage	VEBO	4.0	Vdc	
Collector Current — Continuous	Ic	0.5	Adc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.62	Watts mW/°C	
Storage Temperature	T _{stg}	-65 to +200	°C	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				•
Collector-Emitter Breakdown Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 0$)	V _{(BR)CEO}	18	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, V _{BE} = 0)	V _(BR) CES	36	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.25 mAdc, I _C = 0)	V _{(BR)EBO}	4.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ICBO	_	0.5	mAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 250 mAdc, V _{CE} = 5.0 Vdc)	hFE	5.0	_	_
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 15 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	-	25	pF
FUNCTIONAL TEST (FIGURE 1)				
Common-Emitter Amplifier Power Gain ($V_{CC}=12.5$ Vdc, $P_{out}=1.0$ W, $I_{C}(max)=160$ mAdc, $f=50$ MHz)	GPE	10	_	dB
Collector Efficiency ($V_{CC}=12.5~V_{dc},P_{out}=1.0~W,I_{C}(max)=160~mAdc,f=50~MHz)$	η	50	_	%

FIGURE 1 - 50 MHz TEST CIRCUIT SCHEMATIC

MRF501 MRF502

CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

Refer to 2N5179 for curves

MAXIMUM RATINGS

Rating	Symbol	MRF501	MRF502	Unit
Collector-Emitter Voltage	VCEO	1	5	Vdc
Collector-Base Voltage	VCBO	25	35	Vdc
Emitter-Base Voltage	VEBO	3.5		Vdc
Collector Current	lc	50		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	_	00 14	mW mW/°C
Storage Temperature	T _{stg}	-65 to	+200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (I _C = 3.0 mAdc, I _B = 0)		V(BR)CEO	15	_	=	Vdc
Collector-Base Breakdown Voltage (IC = 1.0 μ Adc, IE = 0)	MRF501 MRF502	V(BR)CBO	25 35		=	Vdc
Emitter-Base Breakdown Voltage (I _E = 1.0 μ Adc, I _C = 0)		V _{(BR)EBO}	3.5	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 1.0 \text{ Vdc}, I_E = 0)$	MRF501 MRF502	ІСВО	=		50 20	nAdc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$)	MRF501 MRF502	hFE	30 40	_	250 170	_
SMALL SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product $(I_C = 5.0 \text{ mAdc}, V_{CE} = 6.0 \text{ Vdc}, f = 100 \text{ MHz})$	MRF501 MRF502	fT	600 800	1000 2000	=	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 to 1.0 MHz)		C _{cb}	_	0.6	_	pF
Collector Base Time Constant (I _E = 2.0 mAdc, V _{CB} = 6.0 Vdc, f = 31.8 MHz)		rb′C _C	_	8.0	_	ps
Noise Figure (Figure 1) $(I_C = 1.5 \text{ mAdc}, V_{CE} = 6.0 \text{ Vdc}, R_S = 50 \text{ ohms}, f = 200 \text{ MHz})$	MRF501 MRF502	NF	=	4.5 4.0	_	dB
FUNCTIONAL TEST						
Common-Emitter Amplifier Power Gain (Figure 1) (V _{CC} = 6.0 Vdc, I _C = 5.0 mAdc, f = 200 MHz)	MRF501 MRF502	G _{pe}	_	15 17	_	dB

FIGURE 1 - 200 MHz AMPLIFIER POWER GAIN AND NOISE FIGURE CIRCUIT

- L1 1.3/4 Turns, #18 AWG, 0.5" Long, 0.5" Diameter L2 2 Turns, #16 AWG, 0.5" Long, 0.5" Diameter L3 2 Turns, #18 AWG, 0.25" Long, 0.5" Diameter, Position Approximately 0.25" from L2

CASE 244A-01, STYLE 1 TO-117

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

WAXIMOW NATINGS	_		
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	35	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	IC	250	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C
Stud Torque(1)	_	6.5	In. Lb.

⁽¹⁾ For Repeated Assembly use 5 In. Lb.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 5.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	20	A0-7-5264		Vdc
Collector-Base Breakdown Voltage (IC = $100 \mu Adc$, IE = 0)	V _(BR) CBO	35			Vdc
Emitter-Base Breakdown Voltage ($IE = 100 \mu Adc, IC = 0$)	V(BR)EBO	3.5	1-	47.5	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, I _B = 0)	ICEO	_	-	100	μAdc
ON CHARACTERISTICS				-7	
DC Current Gain (IC = 80 mAdc, VCE = 10 Vdc)	hFE	25	50	200	
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	-	0.2	0.5	Vdc
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 80 mAdc, V _{CE} = 20 Vdc, f = 200 MHz)	fT	1.5	2.1	7-7	GHz
Output Capacitance ($V_{CB} = 20 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_	3.2	4.5	pF
Noise Figure (I _C = 50 mAdc, V_{CE} = 20 Vdc, f = 200 MHz)	NF	toe Shit i	7.3	10	dB
FUNCTIONAL TEST (FIGURE 1)			1-1-1-1		111
Common-Emitter Amplifier Power Gain (V _{CE} = 20 Vdc, I _C = 80 mAdc, f = 250 MHz)	Gpe	10	11	_	dB
2nd Order Intermodulation Distortion ($V_{CE}=20~Vdc,I_{C}=80~mAdc,V_{Out}=+50~dBmV,Chn~2+Chn~13=266.5~MHz)$	IMD	_	- 55	-50	dB
Cross-Modulation Distortion $ (\text{V}_{\text{CE}} = \text{20 Vdc}, \text{V}_{\text{out}} = +\text{50 dBmV}, \text{I}_{\text{C}} = \text{80 mAdc}) $ Chn 13 Chn R	12 Chn XMD 30 Chn XMD	=	-59 -46	-57 —	dB
Triple Beat $(V_{CE}=20\ Vdc,\ I_{C}=80\ mAdc,\ V_{out}=+50\ dBmV,\ Chn\ 2+Chn\ 3+Chn\ E=261.75\ MHz)$	ТВ	-	-68	- 65	dB

FIGURE 12 - TRIPLE BEAT versus COLLECTOR-EMITTER VOLTAGE

FIGURE 13 – SECOND ORDER IMD versus COLLECTOR CURRENT

FIGURE 14 – SECOND ORDER IMD versus COLLECTOR-EMITTER VOLTAGE

FIGURE 15 — INPUT REFLECTION COEFFICIENT (S11) AND OUTPUT REFLECTION COEFFICIENT (S22) versus FREQUENCY

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

MAXIMOM NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Colector-Base Voltage	VCBO	35	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	lc	150	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	2.5 14.3	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 5.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	20	-	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	V(BR)CBO	35	_	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, I _B = 0)	ICEO	_	_	10	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc)	hFE	20	60	150	-
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_	_	0.5	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 200 MHz)	fT	1800	2000	-	MHz
Output Capacitance (V _{CB} = 12.5 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	3.5	4.0	pF
FUNCTIONAL TEST (FIGURE 1)			•		
Common-Emitter Amplifier Power Gain (V _{CC} = 12.5 Vdc, P _{out} = 0.75 W, f = 470 MHz)	GPE	8.0	8.5	_	dB
Collector Efficiency (V _{CC} = 12.5 Vdc, P _{out} = 0.75 W, f = 470 MHz)	η	50	70		%
Series Equivalent Input Impedance (V _{CC} = 12.5 Vdc, P _{out} = 0.75 W, f = 470 MHz)	Z _{in}	_	14 + j4.0	-	Ohms
Series Equivalent Output Impedance (V _{CC} = 12.5 Vdc, P _{Out} = 0.75 W, f = 470 MHz)	Z _{out}	_	28 – j38	-	Ohms

FIGURE 1 - 470 MHz TEST CIRCUIT

BOARD = 0.032" TEFLON GLASS,

€_R=2.5

C1,C2,C3 - 1.0-10 pF JOHANSON

C4 - 0.1 µF disc

C5 - 1.0 µF TANTULAM

C6 - 0.018 µF chip C7 - 1000 pF Feedthru

L1, L2 - 0.15 µF Choke

L3 - Bead Ferrite

Z1,Z2 - 0.09" × 0.5" LINE, Z = 100 Ω Z3 - 0.18" × 1.0" LINE, Z = 50 Ω

FIGURE 2 - OUTPUT POWER versus INPUT POWER

FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT versus COLLECTOR CURRENT

FIGURE 4 - OUTPUT CAPACITANCE versus COLLECTOR BASE VOLTAGE

FIGURE 5 - S₁₁ and S₂₂ versus FREQUENCY

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage (R _{BE} = 330Ω)	VCER	25	Vdc
Collector-Base Voltage	VCBO	35	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	IC	150	mAdc
Total Device Dissipation @ T _C = 50°C Derate above 50°C	PD	2.5 20.0	Watts mW/°C
Junction Temperature	TJ	+ 175	°C
Storage Temperature	T _{stq}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W

MRF517

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

ELECTRICAL	CHARACTERISTICS /TA -	25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)	V(BR)CEO	20	0		Vdc
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, R _{BE} = 330 Ohms)	V(BR)CER	25	-	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	35	_	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	3.5	_	_	Vdc
Collector Cutoff Current (VCE = 15 Vdc, I _B = 0)	ICEO	-	_	100	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 60 mAdc, V _{CE} = 10 Vdc)	hFE	40		200	-
SMALL SIGNAL CHARACTERISTICS		941.0			
Current-Gain — Bandwidth Product (I _C = 60 mAdc, V _{CE} = 15 Vdc, f = 200 MHz)	fT	2200	2700	_	MHz
Output Capacitance (V _{CB} = 15 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}		3.0	4.5	pF
FUNCTIONAL TEST (FIGURE 1)					
Common-Emitter Amplifier Power Gain (V _{CE} = 15 Vdc, I _C = 60 mAdc, f = 300 MHz)	G _{pe}	_	10	_	dB
Broadband Noise Figure ($V_{CE} = 15 \text{ Vdc}, I_{C} = 50 \text{ mAdc}, f = 300 \text{ MHz}$).	NF	_	-	7.5	dB
2nd Order Distortion (V _{CE} = 15 Vdc, I_C = 60 mAdc, E_{Out} = +45 dBmV, Ch 2 + Ch G = 212.5 MHz)	IMD ₂	_	_	-57	dB
NCTA Cross Modulation Distortion, 12 Ch's (2–13) ($V_{CE}=15~V_{dc}$, $I_{C}=60~mAdc$, $E_{out}=+45~dBmV$, Measured at Ch's 2 and 13)	XMD ₁₂	_	_	- 57	dB
Triple Beat Distortion, 3 Ch's $(V_{CE} = 15 \text{ Vdc}, I_{C} = 60 \text{ mAdc}, E_{out} = +45 \text{ dBmV}, Ch's (4 + 5 + A) = 265 \text{ MHz})$	TB ₃	-	_	−72	dB

FIGURE 2 - 40 to 330 MHz BROADBAND TEST CIRCUIT SCHEMATIC

- 0.002 µF Ceramic Disk C2,C6,C7
 - C3,C5 0.1 µF, 50 Vdc Tantalum
 - C4 1000 pF Button
 - L1 1 Turn, #20 AWG L2 5.6 µH Molded Choke

 - 4 Turns, #20 AWG, 1/4" I.D. L3
- 16:1 Bifilar Wound, #20 AWG Enameled Wire, Wound on a FERROXCUBE 1041T060-4C4 Core
- R1 4.7 kΩ, 1/4 Watt, 10%
- R2, R3 27 \$2 , 1/4 Watt, 5% 270 \$2, 1/4 Watt, 5%
- R4

Input/Output Connectors - Type F $Z_0 = 75 \text{ Ohms}$

FIGURE 3 – TYPICAL RESPONSE CURVE (See Figure 2)

FIGURE 4 - COMMON-EMITTER POWER GAIN

FIGURE 5 – CURRENT GAIN BANDWIDTH PRODUCT

FIGURE 6 - INPUT CAPACITANCE versus

FIGURE 7 - OUTPUT CAPACITANCE versus

FIGURE 8 — BROADBAND NOISE FIGURE versus
COLLECTOR CURRENT

FIGURE 9 — 2nd ORDER DISTORTION (f₁ ± f₂) versus COLLECTOR CURRENT

FIGURE 10 – 12-CHANNEL CROSS MODULATION
DISTORTION versus COLLECTOR CURRENT

FIGURE 11 - DIN 45004 CROSS-MODULATION DISTORTION

FIGURE 12 — TRIPLE BEAT DISTORTION $(f_1 + f_2 + f_3)$ versus COLLECTOR CURRENT

FIGURE 13 – HARMONIC DISTORTION (2f, 3f) versus

VCE	lc	Frequency	S	11	S21	l .	S1	2	S	22
(Volts)	(mA)	(MHz)	S11	Lφ	S21	Lφ	S12	LΦ	S22	L φ
		100	0.538	-152	12.821	100	0.043	49	0.381	-102
		200	0.546	-173	6.612	86	0.064	55	0.314	-12
_		400	0.557	163	3.440	71	0.105	60	0.315	-133
5	30	600	0.602	147	2.357	59	0.144	61	0.360	-140
		800	0.625	136	1.872	46	0.181	59	0.437	-143
	clay lacmy?	1000	0.626	120	1.614	34	0.211	57	0.482	-144
	X	100	0.532	-160	13.475	98	0.040	54	0.362	-11
		200	0.542	-178	6.850	86	0.063	60	0.314	-130
	050/	400	0.558	160	3.586	72	0.109	63	0.313	-140
	60	600	0.602	145	2.475	60	0.151	62	0.353	-146
		800	0.619	134	1.962	48	0.190	59	0.423	-14
		1000	0.616	118	1.706	35	0.221	57	0.464	-147
	-	100	0.532	-163	13.530	98	0.038	57	0.354	-115
	100	200	0.532			0,000				
		400	0.545	179 159	6.908 3.607	85 72	0.063	62 64	0.313	-133
	90	600	0.604	145	2.489	61	0.111	63	0.312	-143
	0 75 (0)	800	0.620	133	1.982	48	0.193	59	0.352	-149
		1000	0.614	117	1.721	35	0.193	57	0.419	-148
	-	100	0.500	-145	14.176	102	0.040	50	0.386	-87
	And Inches	200	0.500	-170	7.358	87	0.040	55	0.304	
	Symbol Indexy's				100000000000000000000000000000000000000	71			100 100 100 100 100	-10
10	30	400 600	0.512 0.559	164 149	3.819 2.593	59	0.097	61 62	0.304 0.356	-118 -128
		800	0.583	137	2.033	46	0.166	60	0.356	-134
		1000	0.584	122	1.724	34	0.194	59	0.442	-13
					73					
		100	0.487	-154	14.977	100	0.037	55	0.353	-96
	Alt bus	200	0.498	-174	7.715	86	0.059	60	0.287	-114
	60	400	0.506	161	4.009	72	0.101	63	0.294	-125
		600	0.553	146	2.731	60	0.139	63	0.341	-133
		800	0.572	135	2.158	47	0.174	60	0.422	-13
		1000	0.569	119	1.835	35	0.202	58	0.475	-139
		100	0.486	-157	15.192	99	0.036	57	0.337	-98
		200	0.493	-176	7.764	86	0.058	61	0.280	-116
	90	400	0.508	160	4.043	72	0.101	64	0.287	-126
		600	0.555	145	2.761	60	0.141	63	0.336	-134
	- 17	800	0.574	134	2.184	47	0.176	60	0.417	-138
	100	1000	0.568	118	1.861	35	0.204	58	0.469	-139
		100	0.465	-153	15.774	100	0.035	56	0.337	-88
		200	0.475	-174	8.091	86	0.056	61	0.274	-105
15	30	400	0.487	161	4.209	71	0.097	64	0.284	-116
15	30	600	0.532	146	2.863	59	0.133	63	0.337	-126
		800	0.551	135	2.249	47	0.167	60	0.425	-132
		1000	0.547	119	1.909	34	0.193	58	0.482	-135
		100	0.468	-150	15.650	101	0.036	54	0.354	-87
		200	0.475	-172	8.088	87	0.057	60	0.282	-104
	60	400	0.486	163	4.178	72	0.096	63	0.290	-116
	60	600	0.530	147	2.846	60	0.133	63	0.341	-126
		800	0.549	136	2.228	47	0.166	60	0.429	-132
	97.	1000	0.547	120	1.887	34	0.192	59	0.487	-135
		100	0.487	-141	14.773	103	0.039	50	0.391	-80
		200	0.486	-167	7.724	87	0.057	55	0.303	-97
		400	0.491	166	3.986	71	0.093	61	0.306	-110
	90	600	0.537	150	2.694	59	0.127	62	0.359	-122
		800	0.565	138	2.108	45	0.159	60	0.448	-129
		1000	0.566	123	1.779	33	0.185	60	0.507	-134

MRF525

CASE 79-03, STYLE 5 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage R _{BE} = 330 Ω	VCER	25	Vdc
Collector-Base Voltage	V _{CBO}	35	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	lc	150	mAdd
Total Device Dissipation @ T _A = 50°C Derate above 50°C	PD	2.5 0.017	Watts W/°C
Junction Temperature	TJ	+ 175	°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	60	°C/W

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	July 0 100		5,0		
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)	V(BR)CEO	20	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, R _{BE} = 330 Ohms)	V(BR)CER	25	_	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mA}, I_E = 0$)	V(BR)CBO	35	J1-	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mA}, I_C = 0$)	V(BR)EBO	3.5	_	=	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, I _B = 0)	ICEO	_	_	100	μΑ
ON CHARACTERISTICS					•
DC Current Gain (I _C = 80 mAdc, V _{CE} = 10 Vdc)	hFE	60	_	175	_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 200 MHz)	fT	2.2	2.5	_	GHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	3.0	4.0	pF
FUNCTIONAL TEST (FIGURE 1)					
Common-Emitter Amplifier Power Gain (V _{CC} = 26 Vdc, P _{in} = 0 dBm, f = 400 MHz)	GPE	13	14	-	dB
Broadband Noise Figure (V _{CE} = 26 Vdc, f = 400 MHz)	NF	_		4.0	dB

FIGURE 1 - 225 to 400 MHz BROADBAND TEST CIRCUIT SCHEMATIC

C1, C2 - 2.5-11 pF Erie Ceramic Variable

C3 - 47 µF 6.0 Volt Electrolytic

C4, C5 - 1000 pF Feedthru

C6 - 470 pF Ceramic Chip C7 - 5.5-18 pF Erie Ceramic Variable

R1 - 150 Ω 1/8 Watt Carbon R2 - 100 Ω 1/8 Watt Carbon

R3, R4 - 10 k Ω 1/8 Watt Carbon

 $R5-3.3~k\Omega$ 1/8 Watt Carbon

R6 - 120 Ω 1/2 Watt Carbon

L1 - 1 Turn #24, 0.125 mil ID

L2, L4 - 0.47 μ H Molded Choke L3 - 2 Turns #24, 0.125 mil ID

L5 - 4 Turns #24, 0.125 mil ID

Q2 - 2N2907A

*Transistor Under Test

IE = 47 mAdc (Nominal)

FIGURE 2 – COMMON-EMITTER POWER GAIN (G_{max})
versus FREQUENCY

FIGURE 3 — CURRENT GAIN BANDWIDTH PRODUCT Versus COLLECTOR CURRENT

FIGURE 4 - BROADBAND AMPLIFIER RESPONSE

FIGURE 5 – 1.0 dB GAIN COMPRESSION OUTPUT versus FREQUENCY

S-PARAMETERS

VCE	l _C	Frequency	S1	1	S21		S12		S22	
(Volts)	(mA)	(MHz)	IS111	Lφ	S21	Lφ	IS121	Lφ	S22	Lφ
	- 1	100	0.388	-111	12.318	107	0.032	61	0.597	-24
		200	0.331	-151	6.768	88	0.049	68	0.480	-25
13.6	10	300	0.337	-171	4.650	77	0.072	73	0.443	-31
		400	0.344	176	3.580	68	0.096	78	0.442	-40
		500	0.349	166	2.889	59	0.125	80	0.459	-47
		100	0.287	-125	14.160	103	0.030	67	0.516	-24
		200	0.263	-160	7.585	86	0.053	73	0.414	-23
	20	300	0.275	-177	5.167	76	0.078	76	0.378	-30
1.3.800	10000	400	0.288	172	3.968	68	0.104	77	0.378	-38
		500	0.293	164	3.214	60	0.135	78	0.396	-45
		100	0.206	-140	15.745	99	0.029	74	0.446	-24
		200	0.208	-171	8.299	84	0.056	76	0.358	-21
	50	300	0.226	176	5.612	75	0.084	76	0.324	-27
		400	0.235	169	4.307	68	0.113	77	0.326	-36
		500	0.243	161	3.488	60	0.114	76	0.345	-42
		100	0.179	-151	15.931	98	0.029	77	0.430	-22
		200	0.187	-177	8.293	85	0.058	80	0.358	-19
	100	300	0.203	171	5.626	77	0.087	80	0.330	-25
		400	0.212	164	4.276	70	0.115	80	0.338	-33
		500	0.213	157	3.456	63	0.147	79	0.364	-39
		100	0.454	-100	13.580	105	0.027	58	0.625	-15
		200	0.313	-138	7.339	88	0.040	67	0.552	-17
26	10	300	0.291	-161	4.989	78	0.060	76	0.532	-23
		400	0.287	-175	3.826	70	0.080	84	0.544	-30
		500	0.287	173	3.096	63	0.106	89	0.570	-36
		100	0.313	-105	15.191	102	0.025	62	0.566	-14
		200	0.220	-144	8.086	87	0.044	73	0.509	-15
	20	300	0.213	-166	5.487	77	0.067	78	0.489	-20
		400	0.215	-178	4.204	71	0.092	83	0.498	-28
		500	0.214	170	3.404	64	0.116	86	0.523	-34
		100	0.165	-117	16.375	102	0.026	71	0.529	-14
	_	200	0.139	-157	8.695	87	0.048	78	0.471	-14
	50	300	0.151	-176	5.882	78	0.073	80	0.449	-20
		400	0.157	173	4.494	71	0.098	82	0.458	-27
	-	500	0.158	164	3.659	65	0.124	84	0.485	-32
		100	0.215	-147	13.156	103	0.023	72	0.602	-14
		200	0.212	-176	7.220	88	0.044	82	0.536	-17
	100	300	0.222	171	4.951	79	0.069	84	0.507	-24
		400	0.230	164	3.851	72	0.093	87	0.513	-31
		500	0.233	156	3.123	64	0.123	89	0.534	-36

MRF531

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	100	Vdc
Collector-Base Voltage	VCBO	100	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 14.3	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _O JC	70	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	100	_	- /	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	100		-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.5	-	-	Vdc
Collector Cutoff Current (V _{CE} = 75 Vdc, V _{BE} = 0)	ICES	n, =1.0	10 = 10	10	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	hFE	25	_	_	_
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	VCE(sat)	-	_	1.0	Vdc
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 25 Vdc, f = 100 MHz)	fT	500	800	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 1.0 MHz)	C _{obo}	-	_	4.0	pF
Input Capacitance (Vpc = 3.0 Vdc, Ic = 0, f = 1.0 MHz)	C _{ibo}	-	9.0	_	pF

FIGURE 2 - INPUT CAPACITANCE 20 18 Cib, INPUT CAPACITANCE (pF) 16 10 8.0 6.0 4.0 2.0 0

2.0

VEB, EMITTER BASE VOLTAGE (VOLTS)

3.0

4.0

5.0

FIGURE 3 - OUTPUT CAPACITANCE

MRF532

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

PNP SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	80	Volts
Collector-Base Voltage	VCBO	80	Volts
Emitter-Base Voltage	VEBO	3.5	Volts
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 14.3	Watts mW/°C
Storage Temperature	T _{stg}	-60 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 10 mA)	V(BR)CEO	80	_	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mA)	V(BR)CBO	80	engi ya	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mA)	V(BR)EBO	3.5	-	Vdc
Collector Cutoff Current (V _{CE} = 75 V)	ICES	_	10	μAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$)	hFE	25	_	<u>×</u>
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA)	VCE(sat)	- Thr	1.0	Vdc
SMALL SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 50 mA, V _{CE} = 25 V, f = 100 MHz)	fτ	500	-	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	_	4.0	pF

MRF534, MRF536 For Specifications, See MM4049 Data.

MRF559

CASE 317-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

INFORMATION INTERNACE			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	18	Vdc
Collector-Base Voltage	VCBO	36	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	150	mAdc
Total Device Dissipation @ $T_C = 50$ °C Derate above 50 °C	PD	2.0 20	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS					SANT -CHAN	100
Collector-Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)		V(BR)CEO	18	-	-	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)		V(BR)CBO	36	-	-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \mu Adc, I_C = 0)$		V _{(BR)EBO}	3.0	_	-	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, V _{BE} = 0)		ICES	-	_	1.0	mAdc
ON CHARACTERISTICS			w 1		TENDET IN	1000
DC Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc)		hFE	30	90	200	_
SMALL SIGNAL CHARACTERISTICS				Acceptant		U
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 200 MHz)		fT		3000	44 Toleran	MHz
Output Capacitance (VCB = 12.5 Vdc, IE = 0, f = 1.0 MHz)		C _{obo}	Let The	2.0	2.5	pF
FUNCTIONAL TEST				neth n		21
Common-Emitter Amplifier Power Gain (Figure 1) $(V_{CC} = 12.5 \text{ Vdc}, P_{out} = 0.5 \text{ W})$	f = 870 MHz f = 512 MHz	GPE	8.0	9.5 13	=	dB
Collector Efficiency (Figure 1) $(V_{CC} = 12.5 \text{ Vdc}, P_{Out} = 0.5 \text{ W})$	f = 870 MHz f = 512 MHz	η	50 —	65 60	=	%
TYPICAL PERFORMANCE @ $V_{CC} = 7.5 V$						
Common-Emitter Amplifier Power Gain ($V_{CC} = 7.5 \text{ Vdc}, P_{out} = 0.5 \text{ W}$)	f = 870 MHz f = 512 MHz	GPE	_	6.5 10	_	dB
Collector Efficiency (V _{CC} = 7.5 Vdc, P _{out} = 0.5 W)	f = 870 MHz f = 512 MHz	η	=	70 65	_	%

FIGURE 1 — 870 MHz TEST FIXTURE

FIGURE 6 - Z $_{in}$ AND Z $_{OL}$ versus COLLECTOR VOLTAGE, INPUT POWER, AND OUTPUT POWER

f	z _{in} онмs			Z _{OL} * OHMS						
FREQUENCY	Vo	V _{CC} = 7.5-12.5 V		.5-12.5 V V _{CC} = 7.5 V			V _{CC} = 12.5 V			
	15 mW	25 mW	50 mW	0.25 W	0.50 W	0.75 W	0.25 W	0.50 W	0.75 W	
400	4.3 - j13.3	4.9 - j11.0	5.7 - j8.7	31 - j49	44 - j34	42 - j4.9	20 - j68	42 - j60	52 - j54	
440	3.9 - j8.8	4.5 - j8.7	5.4 - j6.9	27 - j42	39 - j30	40 - j6.9	19 - j62	37 - j54	49 - j50	
480	3.5 - j4.4	4.1 - j6.5	5.0 - j4.3	24 - j36	36 - j25	39 - j9.0	18 - j56	33 - j48	47 - j46	
520	3.2 - j2.2	3.8 - j4.3	4.7 - j1.7	22 - j30	34 - j20	37 - j12	17 - j52	31 - j44	47 - j42	

 $[*]Z_{OL}$ = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

FIGURE 11 - Z $_{in}$ AND Z $_{OL}$ versus COLLECTOR VOLTAGE, INPUT POWER, AND OUTPUT POWER

f		Z _{in} OHMS				Z _O			
FREQUENCY	Vo	V _{CC} = 7.5-12.5 V			V _{CC} = 7.5 V			V _{CC} = 12.5	/
	25 mW	50 mW	100 mW	0.25 W	0.50 W	0.75 W	0.25 W	0.50 W	0.75 W
800	2.9 + j2.2	3.8 + j4.4	4.7 + j6.5	15.0 - j36.8	22.7 – j30.6	27.1 – j22.6	14.6 - j43.6	17.2 - j39.7	23.4 - j37.7
850	3.2 + j3.5	3.8 + j5.2	4.8 + j7.4	15.7 - j35.3	23.9 - j28.7	27.3 - j21.5	16.3 - j40.8	17.8 - j39.5	23.7 - j36.8
900	3.8 + j5.7	4.4 + j7.0	5.4 + j8.7	16.4 - j33.7	25.1 - j27.0	27.5 - j20.5	17.3 - j38.2	18.3 - j39.3	23.9 - j36.0
950	4.1 + j7.4	4.5 + j8.8	5.5 + j10.1	17.0 - j32.2	26.3 - j25.2	27.6 - j19.4	17.2 - j36.1	20.1 - j38.5	24.5 - j35.6

 $[*]Z_{OL} = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.$

 $\mathtt{G}_{u(max)} = \frac{|\mathtt{S}_{21}|^2}{(1 + |\mathtt{S}_{11}|^2) \ (1 + |\mathtt{S}_{22}|^2)}$

FIGURE 13 — GAIN versus COLLECTOR CURRENT

FIGURE 15 — CURRENT GAIN BANDWIDTH PRODUCT versus COLLECTOR CURRENT

FIGURE 16 — OUTPUT CAPACITANCE versus COLLECTOR BASE VOLTAGE

FIGURE 17 — COMMON EMITTER SCATTERING PARAMETERS

VCE	I _C	f	S	11	S	21	S-	12	S	22
(Volts)	(mA)	(MHz)	S ₁₁	<i>Δ</i> φ	S ₂₁	<i>Δ</i> φ	S12	<i>Δ</i> φ	S22	Zφ
5.0	10	250	0.72	-161	6.20	93	0.057	30	0.30	-91
		500	0.73	179	3.16	76	0.069	43	0.27	-94
		1000	0.76	158	1.62	55	0.105	63	0.27	-119
		1500	0.82	142	1.08	41	0.155	70	0.41	-137
	25	250	0.70	-173	7.17	89	0.045	47	0.26	-123
	18 22	500	0.70	172	3.63	75	0.073	60	0.20	-128
	narphi "	1000	0.74	152	1.90	54	0.134	67	0.21	-157
		1500	0.79	136	1.32	39	0.196	66	0.32	-167
	50	250	0.72	-178	7.63	89	0.038	56	0.27	-139
		500	0.72	170	3.85	77	0068	67	0.23	-141
		1000	0.75	153	2.01	59	0.129	72	0.23	-162
		1500	0.81	137	1.40	46	0.188	70	0.32	-164
	100	250	0.73	179	7.34	88	0.036	61	0.26	-143
	0.000	500	0.74	169	3.70	77	0.067	71	0.22	-144
		1000	0.76	153	1.94	59	0.130	74	0.24	-166
		1500	0.81	138	1.36	46	0.191	71	0.32	-167
	150	250	0.78	176	5.19	92	0.033	64	0.22	-131
	THE SHARED NO	500	0.78	167	2.76	78	0.065	74	0.21	-131
	V 0 1	1000	0.80	151	1.49	58	0.129	77	0.24	-155
		1500	0.85	135	1.05	45	0.191	73	0.35	-161
10	10	250	0.69	-157	7.03	94	0.050	33	0.34	-67
		500	0.70	-178	3.59	77	0.060	46	0.32	-69
	1 1 4	1000	0.74	160	1.84	55	0.094	67	0.29	-94
	- +	1500	0.81	142	1.20	41	0.148	76	0.42	-121
	25	250	0.67	-168	8.30	91	0.039	46	0.24	-93
		500	0.68	176	4.25	77	0.060	60	0.21	-89
		1000	0.72	158	2.19	57	0.109	71	0.19	-114
		1500	0.78	142	1.47	44	0.165	74	0.31	-134
	50	250	0.68	-174	8.88	90	0.035	55	0.21	-110
		500	0.68	172	4.49	77	0.060	67	0.18	-104
		1000	0.72	155	2.31	59	0.113	74	0.17	-128
		1500	0.77	139	1.58	46	0.169	74	0.28	-140
	100	250	0.68	-178	8.49	89	0.03	61	0.19	-104
	AM NORTH	500	0.69	170	4.32	76	0.06	71	0.17	-97
		1000	0.72	153	2.25	58	0.12	76	0.17	-123
		1500	0.78	137	1.53	44	0.18	75	0.28	-137
	150	250	0.72	178	6.53	91	0.029	64	0.22	-71
	APACIVA II.	500	0.73	169	3.37	77	0.056	75	0.24	-75
	#0.5T. (by 38	1000	0.76	152	1.79	57	0.112	80	0.22	-105
		1500	0.83	137	1.22	43	0.175	79	0.34	-129

FIGURE 18 — TUNABLE TEST FIXTURE

FIGURE 19 - PRINTED CIRCUIT BOARD LAYOUT

MAXIMUM RATINGS

WAXIIVOW NATINGO					
Rating	Symbol	MRF571	MRF572	MRF573	Unit
Collector-Emitter Voltage	VCEO	10	10	10	Vdc
Collector-Base Voltage	VCBO	20	20	20	Vdc
Emitter-Base Voltage	VEBO	3.0	3.0	3.0	Vdc
Collector Current — Continuous	Ic	70	70	70	mAdc
Total Device Dissipation @ T _C = 100°C(1) Derate above 100°C	PD	0.5 5.0	0.75 7.5	0.75 7.5	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +150	-65 to +200	-65 to +200	°C

 Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Charactoristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_B = 0$)	V(BR)CEO	10	12	_	Vdc
Collector-Base Breakdown Voltage (I _C = 1.0 mAdc, I _E = 0)	V _(BR) CBO	20	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 50 \mu Adc, I_C = 0$)	V(BR)EBO	2.5		_	Vdc
Collector Cutoff Current ($V_{CB} = 8.0 \text{ Vdc}$, $I_{E} = 0$)	ICBO		-	10	μAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 30 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	50		300	-
SMALL SIGNAL CHARACTERISTICS			Later S		
Current-Gain — Bandwidth Product ($V_{CE} = 8.0 V_{DC}$, $I_{C} = 50 \text{ mA}$, $f = 1.0 \text{ GHz}$)	fT	-	8.0	_	GHz
Collector-Base Capacitance ($V_{CB}=6.0\ Vdc,\ I_E=0,\ f=1.0\ MHz$)	C _{cb}		.7	1.0	pF
FUNCTIONAL TEST	A STATE OF THE STA				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NF	= =	1.0 1.5 2.8 2.5	2.0	dB
Gain @ Noise Figure $(V_{CE} = 6.0 \text{ Vdc}, I_{C} = 5.0 \text{ mAdc}, f = .50 \text{ GHz})$ $(V_{CE} = 6.0 \text{ Vdc}, I_{C} = 5.0 \text{ mAdc}, f = 1.0 \text{ GHz})$	G _{NF}	— 10	16.5 12	_	dB

FIGURE 1 — C_{cb}, COLLECTOR-BASE CAPACITANCE versus VOLTAGE

FIGURE 2 — C_{ib}, INPUT CAPACITANCE versus EMITTER BASE VOLTAGE

FIGURE 3 — MRF571 — GAIN AT NOISE FIGURE AND NOISE FIGURE versus FREQUENCY

FIGURE 4 — MRF572, MRF573 — GAIN AT NOISE FIGURE AND NOISE FIGURE versus FREQUENCY

FIGURE 5 — MRF571, MRF572 and MRF573 — GAIN AT NOISE FIGURE AND NOISE FIGURE versus COLLECTOR CURRENT

FIGURE 6 — f_{γ} , CURRENT GAIN-BANDWIDTH PRODUCT versus COLLECTOR CURRENT

FIGURE 7 — G_A MAX, MAXIMUM AVAILABLE GAIN versus FREQUENCY

FIGURE 8 — 1.0 dB COMPRESSION PT.

AND THIRD ORDER INTERCEPT

FIGURE 9 — MRF571 — Gumax and |S₂₁|²

versus FREQUENCY

FIGURE 10 — MRF572, MRF573 — G_U max and $|S_{21}|^2$ versus FREQUENCY

MRF571
INPUT/OUTPUT REFLECTION COEFFICIENTS
versus FREQUENCY (GHz)
VCE = 6.0 V, IC = 5.0 mA

FORWARD/REVERSE TRANSMISSION
COEFFICIENTS VESUS FREQUENCY (GHz)
VCE = 6.0 V, IC = 5.0 mA

MRF571 COMMON EMITTER S-PARAMETERS

VCE	Ic	f	S	11	S	21	S-	12	S ₂₂	
(Volts)	(mA)	(MHz)	S ₁₁	∠ φ	S ₂₁	Δ φ	S ₁₂	Δ φ	S ₂₂	4
6.0	5.0	200	0.74	-86	10.5	129	0.06	48	0.69	-42
		500	0.62	- 143	5.5	97	0.08	33	0.41	-59
1.		1000	0.61	178	3.0	78	0.09	37	0.28	-69
7.00		1500	0.65	158	2.0	62	0.11	44	0.26	-88
1 10		2000	0.70	140	1.6	51	0.14	51	0.27	-99
0.6	10	200	0.64	-111	15	118	0.04	44	0.53	-59
- 1		500	0.58	-160	6.9	93	0.06	42	0.27	-77
147		1000	0.59	168	3.7	77	0.09	52	0.16	-91
		1500	0.63	151	2.5	64	0.12	56	0.16	-113
15	-	2000	0.67	134	2.0	53	0.16	57	0.16	-118
100	50	200	0.56	-160	20.4	102	0.02	57	0.27	-98
1 %		500	0.57	176	8.4	86	0.05	67	0.14	-130
100		1000	0.60	156	4.4	75	0.09	70	0.11	- 164
100		1500	0.62	152	2.9	64	0.13	68	0.13	- 175
1.0	-	2000	0.66	127	2.4	53	0.18	62	0.11	- 178
8.0	5.0	200	0.75	-83	10.7	129	0.06	49	0.71	-39
3.9		500	0.62	-140	5.1	98	0.08	34	0.43	- 54
		1000	0.60	- 179	3.7	78	0.09	38	0.31	-62
		1500	0.64	159	2.1	62	0.10	45	0.29	-80
		2000	0.69	141	1.7	52	0.13	52	0.29	-91
13	10	200	0.64	-99	15.1	120	0.05	46	0.54	-60
		500	0.52	-152	7.1	94	0.07	45	0.32	-75
		1000	0.52	170	3.7	76	0.10	54	0.15	-82
		1500	0.52	150	2.5	62	0.13	56	0.16	-108
- 1		2000	0.57	133	2.0	51	0.18	55	0.16	- 107
	50	200	0.52	- 153	19.6	102	0.03	56	0.28	-92
		500	0.52	178	8.1	86	0.05	67	0.16	-98
		1000	0.56	157	4.1	73	0.10	70	0.06	- 130
		1500	0.54	139	2.8	62	0.13	68	0.11	-146
		2000	0.59	126	2.2	52	0.19	63	0.10	-137

7

MRF572
INPUT/OUTPUT REFLECTION
COEFFICIENTS versus FREQUENCY (GHz)
VCE = 6.0 V, IC = 5.0 mA

MRF572 FORWARD/REVERSE COEFFICIENTS Versus FREQUENCY (GHz) VCE = 6.0 V, IC = 5.0 mA

MRF572 COMMON EMITTER S-PARAMETERS

VCE IC		f	S	11	S	21	S ₁	2	S ₂₂	
Volts)	(mA)	(MHz)	S ₁₁	Δφ	S ₂₁	Δφ	S ₁₂	∠ φ	S ₂₂	4
6.0	5.0	200	0.81	-73	10.9	134	0.06	50	0.74	-40
		500	0.68	-130	6.1	102	0.09	29	0.43	-64
		1000	0.66	-167	3.3	79	0.10	22	0.29	-77
		1500	0.66	174	2.3	63	0.10	22	0.27	-94
W.		2000	0.68	161	1.8	49	0.11	23	0.29	-104
	10	200	0.72	-101	15.9	123	0.05	43	0.57	- 58
		500	0.66	-150	7.7	95	0.06	30	0.29	-86
		1000	0.66	-178	4.0	77	0.08	33	0.19	-103
		1500	0.67	166	2.7	63	0.09	36	0.19	- 122
		2000	0.69	155	2.1	51	0.10	37	0.20	- 129
	50	200	0.67	- 154	21.8	104	0.02	43	0.30	-94
		500	0.68	-177	9.0	87	0.03	52	0.17	- 129
		1000	0.70	167	4.5	74	0.06	58	0.14	- 151
		1500	0.71	157	3.0	62	0.08	59	0.16	-160
	_	2000	0.73	148	2.3	51	0.10	55	0.17	- 161
8.0	5.0	200	0.83	-69	10.9	136	0.06	52	0.75	-36
		500	0.71	-125	6.3	103	0.08	30	0.46	-57
		1000	0.64	-164	3.5	80	0.09	24	0.31	- 68
		1500	0.65	176	2.4	63	0.10	23	0.29	-84
		2000	0.66	163	1.8	49	0.11	24	0.30	-94
	10	200	0.74	-94	16.2	125	0.05	45	0.60	-51
		500	0.65	-146	7.9	96	0.06	32	0.31	-74
		1000	0.64	-176	4.2	77	0.07	33	0.20	-87
		1500	0.65	168	2.8	63	0.09	36	0.19	- 104
		2000	0.67	156	2.2	50	0.10	37	0.20	-111
	50	200	0.62	-150	22.7	104	0.02	43	0.30	-81
		500	0.64	-174	9.4	86	0.03	51	0.15	- 107
		1000	0.68	167	4.8	74	0.05	58	0.10	- 126
		1500	0.69	160	3.2	61	0.07	58	0.13	- 140
		2000	0.70	147	2.4	50	0.09	55	0.15	- 140

7

MRF573
INPUT/OUTPUT REFLECTION
COEFFICIENTS versus FREQUENCY (GHz)
VCE = 6.0 V, IC = 5.0 mA

MRF573
FORWARD/REVERSE COEFFICIENTS
versus FREQUENCY (GHz)
VCE = 6.0 V, IC = 5.0 mA

MRF573 COMMON EMITTER S-PARAMETERS

VCE	lc	f	S	11	S	21	S	12	S	22
Volts)	(mA)	(MHz)	S ₁₁	Δφ	S ₂₁	∠ φ	S ₁₂	Δφ	S ₂₂	Δφ
6.0	5.0	200	0.76	-73	10.6	134	0.06	52	0.72	-40
		500	0.61	- 132	6.0	100	0.09	35	0.41	-63
		1000	0.59	-173	3.2	77	0.11	33	0.24	-76
		1500	0.61	165	2.2	59	0.12	35	.0.19	-99
		2000	0.64	149	1.8	45	0.13	36	0.18	-117
	10	200	0.64	99	15.1	122	0.05	48	0.56	-55
	1000	500	0.58	- 152	7.2	94	0.07	41	0.27	-81
		1000	0.58	175	3.8	74	0.09	45	0.14	-102
		1500	0.60	158	2.6	60	0.12	47	0.13	- 135
		2000	0.64	144	2.0	46	0.13	45	0.13	- 155
	50	200	0.54	- 153	19.6	104	0.03	55	0.29	-83
		500	0.56	- 179	8.1	85	0.05	62	0.13	-115
		1000	0.59	162	4.1	71	0.09	63	0.08	- 157
		1500	0.61	150	2.8	58	0.12	60	0.12	179
		2000	0.65	138	2.1	46	0.13	54	0.14	165
8.0	5.0	200	0.78	-67	10.6	136	0.06	54	0.75	-36
		500	0.61	-125	6.1	102	0.09	36	0.44	-56
		1000	0.57	- 169	3.4	78	0.10	33	0.27	-66
		1500	0.59	168	2.3	60	0.12	35	0.21	-84
		2000	0.62	151	1.8	46	0.14	36	0.19	-100
	10	200	0.66	-92	15.3	125	0.05	49	0.60	-49
		500	0.55	- 147	7.5	95	0.07	41	0.30	-70
		1000	0.55	178	3.9	75	0.09	45	0.16	-81
		1500	0.57	160	2.7	60	0.12	47	0.12	-109
		2000	0.62	146	2.1	47	0.13	45	0.11	- 130
	50	200	0.53	- 147	20.8	105	0.02	47	0.31	-73
		500	0.53	- 176	9.0	87	0.04	57	0.16	-90
		1000	0.57	166	4.5	72	0.07	61	0.06	-110
		1500	0.59	151	3.1	61	0.11	59	0.07	- 154
		2000	0.63	143	2.3	49	0.13	55	0.09	- 172

MRF571 — CONSTANT GAIN and NOISE FIGURE CONTOURS

$V_{CE} = 6.0 \text{ V}, I_{C} = 5.0 \text{ mA}$	
f = 500 MHz	
— REGION OF INSTABILIT	Y

f(GHz)	NFOPT(dB)	$Rn(\Omega)$	NF50 Ω (dB)
0.5	0.9	9.3	1.3

K
0.58

 $V_{CE} = 6.0 \text{ V}, I_{C} = 5.0 \text{ mA}$ f = 1.0 GHz

f(GHz)	NF _{OPT} (dB)	Rn (Ω)	NF50 Ω (dB)	ГmsNF _{OPT}
1.0	1.5	7.5	2.2	0.48 ∠134°

Γms	ΓmL		
0.89 ∠ – 179°	0.81 ∠66°		

MRF572, MRF573 — CONSTANT GAIN and NOISE FIGURE CONTOURS

 $V_{CE} = 6.0 \text{ V}, I = 5.0 \text{ mA}$ f = 500 MHzM = REGION OF INSTABILITY

f(GHz)	$Rn(\Omega)$	NF (50Ω)	ΓmsNF _{OPT}
0.5	17.1	1.5	0.43 ∠ 57°

K	NFOPT
0.55	1.0

 $V_{CE}=6.0~V,~I_{C}=5.0~mA$ f = 1.0 GHz

f(GHz)	NFOPT	Rn (Ω)	NF50 (Ω) (dB)
1.0	1.5	6.0	2.0

ΓmsNF _{OP}	T K
0.56 ∠ 11	6° 0.93

MRF571 1.0 GHz TEST CIRCUIT

C1, C2, C6 C5, C7

C3, C8 C4, C9 R1 560 pF Chip Capacitor 0.018 μF Chip Capacitor 0.1 μF Mylar Capacitor

0.1 μF Mylar Capacitor 1.0 μF Electrolytic Capacitor 2.7 $k\Omega$

RFC1, RFC2 Z1-Z9

Bead r Board Material VK-200, Ferroxcube

Microstrip, See Photomaster Ferrite Bead, Ferroxcube 56-590-65/3B 0.0625" Teflon Fiberglass $\epsilon_r = 2.5 \pm 0.05$

MRF571 TEST CIRCUIT

MRF572, 573 1.0 GHz TEST FIXTURE

C1, C2, C6, C7

C5, C8 C3, C9

C4, C10 R1 560 pF Chip Capacitor 0.018 μF Chip Capacitor

0.1 μ F Mylar Capacitor 1.0 μ F Electrolytic Capacitor

2.7 k Ω

RFC1, RFC2 Z1-Z7 Bead

Board Material

VK-200, Ferroxcube

Microstrip, See Photomaster Ferrite Bead, Ferroxcube 56-590-65/3B

0.031" Teflon Fiberglass $\epsilon_r = 2.5 \pm 0.05$

MRF572, 573 TEST CIRCUIT

7

PHOTOMASTER OF MRF571 CIRCUIT LAYOUT

PHOTOMASTER OF MRF572, 573 CIRCUIT LAYOUT

MRF580 MRF581

CASE 317A-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

CASE 317-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	MRF581	MRF581	Unit
Collector-Emitter Voltage	VCEO	18	18	Vdc
Collector-Base Voltage	VCBO	36	36	Vdc
Emitter-Base Voltage	VEBO	2.5	2.5	Vdc
Collector Current — Continuous	Ic ·	200	200	mAdc
Total Device Dissipation $@T_C = 50^{\circ}C(1)$ Derate above $T_C = 50^{\circ}C$	PD	2.5 25	2.5 25	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +150	-65 to +150	°C

(1) Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS	(T _A = 25°C unless otherwise noted.)
Char	acteristic

Characteristic		Symbol	Min	Тур	Max	/ Unit
OFF CHARACTERISTICS					X 11	1
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V(BR)CEO	18		Y	Vdc
Collector-Base Breakdown Voltage (I _C = 1.0 mAdc, I _E = 0)		V(BR)CBO	36		1-	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.10 mAdc, I _C = 0)		V _{(BR)EBO}	2.5		-	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)		V(BR)CBO 36 — — V(BR)EBO 2.5 — — ICBO — — 100 IEBO — — 100 fT — 5.0 — Ccb — 1.4 2.0 3 GNF 11 14 — 3 GNF 13 15.5 — Gmax — 15 —				μAdc
Emitter Cutoff Current (V _{CE} = 2.0 Vdc, V _{BE} = 0)		IEBO	10 30 10 E	1 1 1 m	100	μAdc
ON CHARACTERISTICS						
DC Current Gain(1) (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)	e and discussion	hFE	50	_	200	_
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 75 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz)		fT	_	5.0	_	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	7111	C _{cb}	-	1.4	2.0	pF
FUNCTIONAL TESTS		Tana Cara	P			
Noise Figure MRF580/581 ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 0.5 \text{ GHz}$)	Figure 18	NF	-	2.0	3.0	dB
Power Gain at Optimum Noise Figure MRF580 (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz)	Figure 18	GNF	11	14	_	dB
Power Gain at Optimum Noise Figure MRF581 (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz)	Figure 18	GNF	13	15.5	_	dB
Maximum Available Power Gain MRF580(2) (I _C = 75 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz)	2 ×	G _{max}		15	-	dB
Maximum Available Power Gain MRF581(2) ($I_C = 75 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 0.5 \text{ GHz}$)		G _{max}	-	17.5	_	dB
Intermodulation Distortion MRF581(3) (V _{CE} = 10 V, I _C = 75 mA, V _{out} = +50 dBmV)	Figure 16	IMD(d3)	-	-65	_	dB

(1) 300 μ s pulse on Tektronix 576 or equivalent.

(2) Characterized on HP8542 Automatic Network Analyzer.

(3) 2 Tones, f1 = 497 MHz, f2 = 503 MHz, 3rd Order Single Tone reference.

FIGURE 1 — C_{ib} INPUT CAPACITANCE versus VOLTAGE

10

8.0

f = 1.0 MHz

C_{ib}

20

0

1.0

2.0

3.0

VEB, EMITTER-BASE VOLTAGE (VOLTS)

FIGURE 2 — C_{cb}, C_{ob} COLLECTOR-BASE CAPACITANCE

FIGURE 3 — GAIN-BANDWIDTH PRODUCT

FIGURE 4 -- 2ND AND 3RD ORDER INTERCEPT POINTS

MRF580 TYPICAL PERFORMANCE

FIGURE 5 — G_{U max}-MAXIMUM UNILATERAL GAIN, |S₂₁|² versus FREQUENCY

FIGURE 6 — G_{A max}, MAXIMUM AVAILABLE GAIN versus FREQUENCY

FIGURE 7 — NOISE FIGURE AND GAIN ASSOCIATED

FIGURE 8 — NOISE FIGURE AND GAIN ASSOCIATED WITH

FIGURE 9 — MRF580 COMMON EMITTER S-PARAMETERS

VCE	IC	f	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
(Volts)	(mA)	(MHz)	S ₁₁	40	S ₂₁	Δ φ	S ₁₂	Δ φ	S22	<i>L</i> φ
5.0		300	0.49	- 170	5.97	91	0.083	60	0.24	- 108
	25	500	0.52	171	3.63	78	0.127	64	0.18	- 117
	25	1000	0.53	149	1.98	58	0.24	66	0.13	- 154
		1500	0.56	125	1.46	44	0.35	60	0.19	- 172
		300	0.48	- 175	6.35	90	0.08	64	0.24	- 126
		500	0.51	168	3.85	79	0.13	67	0.18	- 139
	50	1000	0.51	148	2.10	59	0.25	66	0.16	- 178
		1500	0.54	123	1.56	46	0.36	58	0.20	169
	-	300	0.48	- 177	6.42	90	0.08	65	0.24	- 132
-		500	0.51	167	3.88	79	0.13	67	0.19	- 145
	75	1000	0.50	147	2.12	59	0.26	65	0.17	175
7		1500	0.53	123	1.57	46	0.36	58	0.21	164
		300	0.48	- 177	6.41	89	0.08	66	0.24	- 134
		500	0.51	167	3.87	78	0.13	68	0.19	- 148
	100	1000	0.51	146	2.114	59	0.26	65	0.17	172
		1500	0.53	123	1.58	46	0.36	58	0.21	162
10		300	0.44	- 164	6.67	92	0.07	61	0.25	- 76
	25	500	0.47	175	4.08	79	0.11	66	0.19	- 75
	25	1000	0.48	152	2.2	60	0.21	68	0.12	- 91
		1500	0.52	126	1.56	45	0.32	64	0.15	- 129
		300	0.47	- 167	7.40	91	0.07	65	0.17	- 89
	50	500	0.47	174	4.53	79	0.11	68	0.12	- 112
	50	1000	0.50	149	2.38	62	0.20	67	0.13	- 126
		1500	0.53	131	1.71	47	0.31	63	0.11	- 147
		300	0.41	- 171	7.24	91	0.07	66	0.20	- 96
	75	500	0.45	171	4.39	79	0.12	69	0.13	-99
	/5	1000	0.45	150	2.36	61	0.23	67	0.07	- 130
		1500	0.48	125	1.72	47	0.33	61	0.12	- 157
		300	0.42	- 172	7.22	90	0.07	67	0.19	- 97
	400	500	0.45	170	4.38	78	0.12	69	0.14	- 98
	100	1000	0.45	149	2.35	60	0.23	67	0.07	- 129
		1500	0.49	125	1.71	46	0.33	62	0.11	- 158
15		300	0.48	- 159	7.28	93	0.06	60	0.24	- 55
	25	500	0.48	- 179	4.44	80	0.09	66	0.17	- 62
	25	1000	0.51	153	2.33	62	0.18	68	0.19	-82
		1500	0.54	133	1.67	46	0.27	68	0.17	- 97
		300	0.39	- 165	7.49	0.92	0.07	65	0.23	-71
	50	500	0.42	174	4.57	80	0.11	69	0.18	- 67
	50	1000	0.43	152	2.44	61	0.21	68	0.11	-74
		1500	0.46	126	1.76	47	0.31	64	0.12	- 115
		300	0.39	- 167	7.57	91	0.07	66	0.21	-74
	75	500	0.42	173	4.57	79	0.11	70	0.17	- 69
	/5	1000	0.42	151	2.45	61	0.21	68	0.09	-75
		1500	0.46	126	1.76	46	0.31	64	0.11	- 118
		300	0.39	-168	7.46	90	0.07	67	0.20	-72
	100	500	0.43	172	4.53	78	0.11	70	0.17	-66
		1000	0.43	151	2.41	60	0.21	69	0.10	-71
		1500	0.47	126	1.74	46	0.31	64	0.12	- 113

5.0

0.2 0.3

3.0

2.0

MRF581 TYPICAL PERFORMANCE

0

0.3

0.5

FIGURE 10 — $G_{U\ max}$ — MAXIMUM UNILATERAL GAIN, $|S_{21}|^2$ versus FREQUENCY 25 $G_{U\ max} = \frac{|S_{21}|^2}{|1-|S_{11}|^2|(1-|S_{22}|^2)}$

VCE = 10 V

2.0 3.0 5.0 7.0

Ic = 75 mA

f. FREQUENCY (GHz)

0.7 1.0

FIGURE 13 — NOISE FIGURE AND GAIN ASSOCIATED WITH NOISE FIGURE Versus COLLECTOR CURRENT

0.7

f, FREQUENCY (GHz)

1.0

FIGURE 14 — OUTPUT POWER versus INPUT POWER

f = 470 MHz

FIGURE 15 — OUTPUT POWER versus INPUT POWER

f = 870 MHz

FIGURE 16 — MRF581 COMMON EMITTER S-PARAMETERS

VCE	lc .	f	S	11	S ₂	S ₂₁		S ₁₂		S ₂₂	
(Volts)	(mA)	(MHz)	S ₁₁	<i>Δ</i> φ	S ₂₁	Δ φ	S ₁₂	44	S22	20	
5.0		300	0.69	- 169	6.57	93	0.06	39	0.34	- 129	
		500	0.72	176	3.95	82	0.07	47	0.29	- 142	
_	25	1000	0.73	157	2.10	62	0.12	60	0.27	- 165	
		1500	0.76	139	1.47	50	0.17	61	0.33	- 172	
		300	0.70	- 173	7.14	93	0.05	45	0.38	- 144	
		500	0.72	173	4.27	82	0.07	53	0.34	- 157	
	50	1000	0.72	157	2.24	65	0.13	62	0.33	179	
		1500	0.76	138	1.61	53	0.18	61	0.37	173	
		300	0.70	- 175	7.26	92	0.05	48	0.40	- 148	
100		500	0.72	172	4.33	82	0.07	55	0.36	- 161	
	75	1000	0.72	155	2.28	65	0.13	63	0.35	176	
		1500	0.76	138	1.64	53	0.19	61	0.39	170	
. 4		300	0.70	- 176	7.30	92	0.05	48	0.40	- 151	
		500	0.72	172	4.34	82	0.07	56	0.37	- 163	
	100	1000	0.72	155	2.28	65	0.13	63	0.362	175	
		1500	0.75	137	1.64	53	0.19	61	0.39	168	
10		300	0.66	- 165	7.58	95	0.05	40	0.29	- 106	
		500	0.69	178	4.56	82	0.07	48	0.23	- 116	
	25	1000	0.70	159	2.39	64	0.11	61	0.19	- 141	
		1500	0.74	141	1.65	50	0.16	64	0.26	- 153	
-		300	0.65	- 169	8.25	94	0.05	46	0.30	- 126	
		500	0.68	175	4.96	82	0.07	54	0.24	- 138	
	50	1000	0.69	157	2.60	65	0.12	63	0.22	- 164	
		1500	0.72	139	1.82	52	0.17	63	0.27	- 171	
		300	0.66	- 171	8.49	93	0.05	48	0.30	- 132	
	75	500	0.68	175	5.06	82	0.07	55	0.25	- 145	
	75	1000	0.69	157	2.64	65	0.12	64	0.23	- 170	
		1500	0.72	139	1.86	53	0.17	63	0.27	- 176	
		300	0.66	- 172	8.46	93	0.05	49	0.30	- 134	
		500	0.68	174	5.06	82	0.07	56	0.25	- 147	
	100	1000	0.68	157	2.64	65	0.12	64	0.23	- 172	
		1500	0.72	139	1.86	52	0.17	63	0.27	- 177	
15		300	0.65	- 163	7.96	95	0.05	40	0.28	- 92	
		500	0.67	179	4.82	82	0.06	48	0.21	- 98	
	25	1000	0.68	160	2.51	63	0.10	62	0.17	- 119	
		1500	0.72	141	1.73	49	0.16	65	0.24	- 137	
		300	0.64	- 167	8.76	94	0.0	46	0.26	- 112	
		500	0.66	177	5.37	82	0.06	54	0.20	- 122	
	50	1000	0.67	159	2.75	65	0.11	64	0.16	- 148	
	V	1500	0.71	141	1.91	51	0.16	64	0.22	- 157	
	24	300	0.64	- 168	8.93	93	0.05	47	0.25	- 117	
	70	500	0.66	176	5.34	82	0.06	55	0.20	- 128	
	75	1000	0.69	158	2.78	65	0.11	65	0.16	- 154	
		1500	0.70	140	1.93	51	0.16	64	0.22	- 162	
		300	0.64	- 169	8.91	93	0.05	48	0.25	- 117	
	100	500	0.66	176	5.33	82	0.6	56	0.19	- 129	
	100	1000	0.67	158	2.78	64	0.11	65	0.16	- 154	
		1500	0.70	140	1.93	51	0.16	64	0.21	- 160	

FIGURE 17 — MRF581 CONSTANT GAIN CONTOURS NOISE FIGURE CONTOURS

f(MHz)	гмѕ	ГМL	FMS NF OPT	G _A MAX (dB)	Rn (Ω)	NF OPT	NF (50 Ω)
500	0.91/176°	0.78/77°	0.39/159°	18	10.5	2.0	2.5

Circuit Per Figure 20

FIGURE 18 — FUNCTIONAL CIRCUIT SCHEMATIC

FIGURE 19 — Z_{in} AND Z_{OL} versus COLLECTOR VOLTAGE, INPUT POWER AND FREQUENCY

P _{in} (mW)	f MHz	Z _{in} Ohms		Z _{OL} * Ohms	
		7.5 V	12.5 V	7.5 V	12.5 V
50	420	9.8 - j12.0	10.3 - j11.1	27.5 - j2.7	54.5 + j5.7
	470	14.2 - j11.1	10.2 - j10.2	28.6 - j2.9	30.8 - j26.3
	520	13.6 - j8.6	8.2 - j7.7	27.0 - j5.0	30.4 - j26.0
75	806	7.6 + j1.3	7.7 + j0.8	16.4 - j22.7	22.3 - j34.0
	870	7.7 - j1.7	7.7 - j2.1	18.4 - j19.2	25.1 - j28.1
	960	6.0 + j4.3	5.9 + j2.5	21 - j17.1	24.5 - j20.4

^{*}ZOL = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

FIGURE 20 — MRF580/581 TEST FIXTURE SCHEMATIC 500 MHz

FIGURE 21 — PC BOARD PHOTOMASTER

CASE 26-03, STYLE 1 TO-46 (TO-206AB)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

THE CHILD OF THE CO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	2.0	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 0.04	Watts W/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 5.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	20	=	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V(BR)CBO	40	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µAdc, I _C = 0)	V(BR)EBO	3.5	_	_	Vdc
Collector Cutoff Current (V _{CE} = 12 Vdc, I _B = 0)	ICEO	_	_	1.0	mAdc
ON CHARACTERISTICS			A	1-12-0	
DC Current Gain (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)	hFE	20	80	200	_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 200 MHz)	f _T	800		-	MHz
Output Capacitance (V _{CB} = 12.5 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	1	_	3.5	pF
FUNCTIONAL TEST (FIGURE 1)	Lander of the same	A	Y-12-		
Common-Emitter Amplifier Power Gain (V _{CC} = 12.5 Vdc, P _{out} = 1.0 W, f = 175 MHz)	GPE	10	_	-	dB
Collector Efficiency (V _{CC} = 12.5 Vdc, P _{out} = 1.0 W, f = 175 MHz)	η	50	-	-	%
Series Equivalent Input Impedance (V _{CC} = 12.5 Vdc, P _{out} = 1.0 W, f = 175 MHz)	Z _{in}	-	7.5-j14	_	Ohms
Series Equivalent Output Impedance ($V_{CC} = 12.5 \text{ Vdc}, P_{out} = 1.0 \text{ W}, f = 175 \text{ MHz}$)	Z _{out}	_	47 – j60	_	Ohms

FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

WAXIIIOW HATIIIGO			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	16	Vdc
Collector-Base Voltage	VCBO	36	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	0.33	Adc
Total Device Dissipation @ T _C = 75°C(1) Derate above 75°C	PD	3.5 28	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

⁽¹⁾ These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as class B or C RF amplifiers.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	The America	PHACT THE	TRI 5 18	Line
Collector-Emitter Breakdown Voltage (I _C = 25 mAdc, I _B = 0)	V _(BR) CEO	16	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 25 mAdc, V _{BE} = 0)	V _(BR) CES	36	AP	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.5 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	4.0	-	Vdc
Collector Cutoff Current (V _{CE} = 10 Vdc, I _B = 0)	ICEO	-	0.3	mAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)	hFE	20	150	
SMALL SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 12 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	-1	15	pF
FUNCTIONAL TEST (FIGURE 1)				
Common-Emitter Amplifier Power Gain (P _{Out} = 1.75 W, V _{CC} = 12.5 Vdc, f = 175 MHz)	GPE	11.5	_	dB
Collector Efficiency (P _{OUt} = 1.75 W, V _{CC} = 12.5 Vdc, f = 175 MHz)	η	50	_	%

FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC

TYPICAL PERFORMANCE DATA

MRF626 MRF627

MRF626 CASE 305-01, STYLE 1

MRF627 CASE 305A-01, STYLE 1

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	30	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	lc	150	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 35	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200°C	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	28.5	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	CYPSUAL DEFE FO				
Collector-Emitter Breakdown Voltage ($I_C = 5.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	20	- -	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	V(BR)CBO	30	7 =		Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.5	Tay		Vdc
Collector Cutoff Current (V _{CE} = 12 Vdc, I _B = 0)	ICEO	_	57	1.0	mAdc
Emitter Cutoff Current (VBE = 3.5 Vdc, IC = 0)	I _{EBO}		-	1.0	mAdc
ON CHARACTERISTICS		1			
DC Current Gain ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	hFE	15	/ =	150	45
SMALL-SIGNAL CHARACTERISTICS					-
	fŢ		2.5 2.7 2.6	=	GHz
Output Capacitance ($V_{CB} = 12.5 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	er For	3.0	3.5	pF
Input Capacitance (VBE = 1.0 Vdc , IC = 0 , f = 1.0 MHz)	C _{ibo}	_	8.8	_	pF
FUNCTIONAL TEST (FIGURE 1)					
Common-Emitter Amplifier Power Gain ($V_{CC} = 12.5 \text{ Vdc}, P_{out} = 0.5 \text{ W}, f = 470 \text{ MHz}$)	GPE	10	12	_	dB
Collector Efficiency (V _{CC} = 12.5 Vdc, P_{out} = 0.5 W, f = 470 MHz)	η	_	60	_	%
Series Equivalent Input Impedance (V _{CC} = 12.5 Vdc, P _{out} = 0.5 W, f = 470 MHz)	Z _{in}	_	6.0 – j4.0	-	Ohms
Series Equivalent Output Impedance (V _{CC} = 12.5 Vdc, P _{out} = 0.5 W, f = 470 MHz)	Z _{out}	_	45 – j28	=	Ohms

FIGURE 1 - OUTPUT POWER versus INPUT POWER

FIGURE 2 – OUTPUT CAPACITANCE versus COLLECTOR BASE VOLTAGE

FIGURE 3 - 470 MHz TEST CIRCUIT SCHEMATIC

C1,C2 - 1.0-25 pF ARCO 421

C3,C4 - 1.0-25 pF ARCO 421 C5 - 1.0 µF, 35 V Capacitor

C6,C7 - 1000 pF Feedthru

L1,L2 - 7 Turns, #22 AWG, 0.2" I.D.

L3 - Choke FERROXCUBE VK 200-20-4B Z3 -

R1 – 1 Ohm, 1/2 W Carbon Z1 – Microstrip Line, 0.25" W x 1.75 " L

Z2 - Microstrip Line, 0.25 W x 1.75 L Modify Plate is 3 x 3 x 0.75

Z2 - Microstrip Line, 0.25" W x 2.00" L Input/Output Connectors - Type N

Z3 - Microstrip Line, 0.50" W x 1.00" L

Board-Glass Teflon, $3^{\prime\prime} \times 5^{\prime\prime} \times 0.060^{\prime\prime}$ Mounting Plate is $3^{\prime\prime} \times 5^{\prime\prime} \times 0.75^{\prime\prime}$

FIGURE 4 – 470 MHz TEST CIRCUIT LAYOUT

+12.5 Vdc

R1

L1

RF Output

C1

O.220 Dia.

FIGURE 5 - TYPICAL S₁₁ and S₂₂ versus FREQUENCY

FIGURE 6 - TYPICAL S₁₂ versus FREQUENCY

MOTOROLA SEMICONDUCTORS

CASE 249-05, STYLE 1

UHF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	16	Vdc
Collector-Base Voltage	Vсво	36	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	lc	200	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	3.0 17.2	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		10			-100- 3
Collector-Emitter Breakdown Voltage(1) (IC = 20 mAdc, IB = 0)	V _(BR) CEO	16		-	Vdc
Collector-Emitter Breakdown Voltage(1) (IC = 20 mAdc, VBE = 0)	V _(BR) CES	36	1 -	-	Vdc
Collector-Base Breakdown Voltage (I _C = 20 mAdc, I _E = 0)	V _(BR) CBO	36	-	- N	Vdc
Emitter-Base Breakdown Voltage ($I_E = 5.0 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	4.0	102 30	300	Vdc
Collector Cutoff Current ($V_{CB} = 15 \text{ Vdc}, _{C} = 0$)	ICBO	_		0.5	mAdc
Collector Cutoff Current ($V_{CE} = 15 \text{ Vdc}$, $V_{BE} = 0$, $T_{C} = 25^{\circ}\text{C}$)	ICES	_	_	2.0	mAdc
ON CHARACTERISTICS	6-30-0-0-0				
DC Current Gain (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	hFE	20	_	_	-
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 12 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}		6.0	10	pF
FUNCTIONAL TEST (FIGURES 5 AND 6)					
Common-Emitter Amplifier Power Gain (VCC = 12.5 Vdc, Pout = 0.5 W, IC(max) = 80 mAdc, f = 470 MHz)	GPE	10	7	_	dB
Collector Efficiency $(V_{CC} = 12.5 \text{ Vdc}, P_{Out} = 0.5 \text{ W}, I_{C}(max) = 80 \text{ mAdc}, f = 470 \text{ MHz})$	η	50	J	_	%

⁽¹⁾ Pulsed thru 25 mH inductor.

FIGURE 1 – SERIES EQUIVALENT IMPEDANCE PARAMETERS

FIGURE 2 - OUTPUT POWER versus INPUT POWER

FIGURE 3 - OUTPUT POWER versus FREQUENCY

FIGURE 4 - OUTPUT POWER versus VOLTAGE

FIGURE 5 - 470 MHz TEST CIRCUIT

FIGURE 6 - 470 MHz TEST CIRCUIT SCHEMATIC

CASE 79-03, STYLE 5

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
	Syllibol	value	Onit
Collector-Emitter Voltage	VCEO	16	Vdc
Collector-Base Voltage	VCBO	36	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Ic	400	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 50	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $(I_C = 50 \text{ mAdc}, I_B = 0)$	V(BR)CEO	16	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 50 mAdc, V _{BE} = 0)	V(BR)CES	36	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 1.0 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	4.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ІСВО	-	1.0	mAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	hFE	20	200	_
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance ($V_{CB} = 12.5 \text{ Vdc}$, $I_{E} = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	_	15	pF
FUNCTIONAL TEST (FIGURE 1)				
Common-Emitter Amplifier Power Gain (V _{CC} = 12.5 Vdc, P _{Out} = 2.0 W, f = 470 MHz)	GPE	8.0	_	dB
Collector Efficiency (V _{CC} = 12.5 Vdc, P _{out} = 2.0 W, f = 470 MHz)	η	50	=	%

FIGURE 1 - 470 MHz TEST CIRCUIT SCHEMATIC

CASE 79-03, STYLE 5

UHF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	16	Vdc
Collector-Base Voltage	VCES	36	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	8.75 50	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	20	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 50 mAdc, I _B = 0)	V(BR)CEO	16	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 50 mAdc, V _{BE} = 0)	V(BR)CES	36	_		Vdc
Emitter-Base Breakdown Voltage (I _E = 1.0 mAdc, I _C = 0)	V(BR)EBO	4.0	_	V 1 12 34	Vdc
Collector Cutoff Current ($V_{CE} = 12.5 \text{ Vdc}, V_{BE} = 0, T_{C} = 25^{\circ}\text{C}$)	CES	_	-	1.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	hFE	20	60	_	-
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 12.5 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	8.0	12	pF
FUNCTIONAL TEST (FIGURE 1)				4	1
Common-Emitter Amplifier Power Gain ($V_{CC} = 12.5 \text{ Vdc}, P_{out} = 3.0 \text{ W}, f = 470 \text{ MHz}$)	GPE	9.5	10	_	dB
Collector Efficiency ($V_{CC} = 12.5 \text{ Vdc}$, $P_{out} = 3.0 \text{ W}$, $f = 470 \text{ MHz}$)	η	-	55	_	%

FIGURE 6 — OUTPUT POWER versus FREQUENCY,
BROADBAND CIRCUIT

FIGURE 8 - BROADBAND CIRCUIT

MAXIMUM RATINGS

MAXIMON NATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	30	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.375 3.3	Watt mW/°C
Storage Temperature	T _{stg}	150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	300	°C/W

MRF901

CASE 317-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	The state of the state of	7.			
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	15	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	25	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	2.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ICBO	_	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 5.0 Vdc)	hFE	30	80	200	_
SMALL SIGNAL CHARACTERISTICS					THE E
Current-Gain — Bandwidth Product (I _C = 15 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz)	fT		4.5	_	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	1	0.4	1.0	pF
Noise Figure (I _C = 5.0 mAdc, V_{CE} = 6.0 Vdc, f = 1.0 GHz)	NF	_	2.0	2.5	dB
FUNCTIONAL TEST (FIGURE 1)			111	151-4	7
Common-Emitter Amplifier Power Gain ($V_{CC} = 6.0 \text{ Vdc}$, $I_{C} = 5.0 \text{ mA}$, $f = 1.0 \text{ GHz}$)	G _{pe}	10	12	-	dB
Third Order Intercept (I _C = 5.0 mAdc, V _{CE} = 6.0 Vdc, f = 0.9 GHz)		-	+23	-	dBm

FIGURE 1 - 1.0 GHz TEST CIRCUIT SCHEMATIC

FIGURE 2 — MAXIMUM UNILATERAL GAIN versus FREQUENCY

25

20

VCC = 10 Vdc

15 mA

16 millipade

17 millipade

18 millipade

19 millipade

10 m

FIGURE 3 — CURRENT-GAIN — BANDWIDTH PRODUCT
VOISUS COLLECTOR CURRENT

TABLE I - S11

FREQUEN	CY (MHz)	20	00	50	00	10	00	15	00	20	00
Vcc	Ic	S ₁₁	Δ φ	S ₁₁	Δ φ	S ₁₁	Lφ	S ₁₁	Δ φ	S ₁₁	Δ φ
	1.0mA	.83	-54	:.65	-110	.61	-153	.62	+177	.65	+157
	2.5	.72	-74	.57	-132	.56	-171	.58	+165	.61	+148
	5.0	.63	-98	.55	-151	.55	+174	.58	+154	.60	+140
1 Volt	10	.55	-130	.55	-170	.56	+164	.59	+148	.61	+135
100	15	.55	-147	.56	-178	.58	+160	.62	+145	.63	+133
20 .58 -165 .60 +174 .6 1.0 .85 -48 .68 -100 .6 2.5 .75 -63 .58 -121 .5 5.0 .64 -82 .52 -139 .5 10 .53 -112 .48 -160 .5 15 .49 -126 .48 -168 .5	.62	+158	.65	+144	.67	+132					
72	1.0	.85	-48	.68	-100	.61	-149	.62	+178	.65	+156
94.94	2.5	.75	-63	.58	-121	.53	-169	.56	+164	.59	+146
		.64	-82	.52	-139	.51	+177	.54	+156	.57	+139
3 Volts	10	.53	-112	.48	-160	.51	+167	.54	+149	.56	+134
70.00	15	.49	-126	.48	-168	.52	+162	.55	+145	.57	+132
	20	.48	-137	.49	-173	.53	+160	.56	+145	.58	+131
	1.0	.87	-45	.71	-94	.60	-148	.60	+179	.63	+156
1000	2.5	.77	-58	.60	-114	.52	-164	.55	+168	.57	+148
	5.0	.66	-75	.52	-132	.48	-177	.52	+159	.54	+142
6 Volts	10	.53	-101	.46	-151	.47	+171	.50	+152	.53	+137
	15	.47	-115	.45	-162	.47	+166	.51	+148	.53	+135
	20	.46	-125	.45	-167	.48	+163	.52	+147	.54	+134
	1.0	.88	-43	.72	-91	.60	-145	.60	-178	.63	+158
	2.5	.79	-55	.60	-109	.52	-160	.54	+170	.57	+150
4014 1	5.0	.68	-70	.50	-130	.47	-175	.50	+160	.53	+143
10 Volts	10	.55	-93	.45	-147	.45	+173	.48	+154	.52	+138
	15	.50	-107	.43	-158	.44	+168	.49	+151	.52	+136
	20	.47	-116	.43	-163	.45	+166	.49	+150	.52	+136

TARLE II - Son

FREQUEN	ICY (MHz)		200	50	00	10	00	15	00	20	00
Vcc	Ic	S ₂₁	Δ φ	S ₂₁	<i>Δ</i> φ	S ₂₁	$\angle \phi$	S ₂₁	Δ φ	S ₂₁	Lφ
	1.0mA	4.2	+140	2.7	+104	1.4	+73	.96	+52	.77	+39
	2.5	7.2	+130	3.9	+98	2.1	+73	1.4	+55	1.1	+42
1 1/-14	5.0	9.9	†121	4.8	+92	2.6	+72	1.8	+57	1.4	+44
1 Volt	10	12.0	+109	5.2	+87	2.8	+70	1.9	+57	1.5	+44
	15	11.4	+103	4.9	+84	2.7	+68	1.8	+55	1.4	+42
	20	6.3	+96	2.6	+81	1.9	+65	1.3	+52	1.0	+41
	1.0	4.5	+144	3.0	+110	1.5	+78	1.0	+56	.82	+43
	2.5	7.8	+136	4.5	+103	2.5	+76	1.7	+58	1.3	+45
3 Volts	5.0	11.2	+127	5.7	+97	3.0	+74	2.0	+58	1.6	+45
	10	14.9	+116	6.8	+91	3.4	+72	2.3	+58	1.8	+45
	15	16	+111	7.0	+88	3.6	+70	2.4	+57	1.8	+45
	20	16.4	+108	7.0	+87	3.5	+69	2.4	+56	1.8	+44
	1.0	4.5	+146	3.1	+113	1.8	+81	1.2	+60	.96	+46
	2.5	7.8	+139	4.8	+106	2.7	+78	1.8	+60	1.4	+46
0.1/-1-	5.0	11.6	+130	6.2	+99	3.3	+75	2.2	+60	1.7	+47
6 Volts	10	15.9	+120	7.5	+92	3.8	+73	2.5	+59	1.9	+47
5.7	15	17.2	+114	7.7	+90	4.0	+71	2.6	+58	2.0	+46
	20	17.7	+110	7.8	+88	4.0	+70	2.6	+57	2.0	+45
	1.0	4.5	+147	3.2	+114	1.8	+82	1.2	+61	.96	+47
	2.5	7.8	+140	4.9	+107	2.7	+79	1.8	+61	1.4	+47
	5.0	11.7	+132	6.4	+100	3.5	+75	2.3	+60	1.8	+48
10 Volts	10	15.9	+121	7.6	+93	4.0	+73	2.6	+58	2.0	+47
	15	17.4	+115	8.0	+90	4.0	+71	2.7	+57	2.0	+46
	20	17.8	+112	8.0	+88	4.0	+70	2.6	+56	2.0	+45

TABLE III - S12

FREQUEN	CY (MHz)	20	0	50	0	100	00	15	00	20	00
Vcc	Ic	S12	Δ φ	S12	Δ φ	S12	Δ φ	S12!	Δ φ	S12	L φ
	1.0mA	.09	+57	.14	+32	.15	+17	.15	+13	.13	+21
	2.5	.08	+49	.10	+32	.12	+27	.13	+32	.14	+40
	5.0	.06	+43	.08	+35	.10	+42	.13	+48	.16	+51
1 Volt	10	.05	+42	.06	+45	.09	+54	.13	+57	.17	+57
	15	.04	+43	.06	+50	.09	+60	.13	+60	.18	+60
	20	.03	+41	.05	+55	.09	+63	.14	+64	.18	+62
	1.0	.06	+61	.10	+37	.13	+21	.12	+20	.10	+31
	2.5	.06	+57	.08	+36	.09	+33	.10	+40	.12	+49
	5.0	.05	+51	.07	+39	.08	+45	.11	+52	.14	+56
3 Volts	10	.04	+49	.05	+49	.08	+56	.11	+61	.15	+61
	15	.03	+49	.05	+55	.08	+62	.12	+64	.15	+64
	20	.03	+52	.04	+59	.08	+65	.12	+65	.15	+65
	1.0	.05	+63	.09	+40	.10	+26	.09	+29	.09	+43
	2.5	.05	+59	.07	+39	.08	+37	.09	+45	.11	+55
	5.0	.04	+55	.05	+42	.07	+48	.09	+56	.12	+62
6 Volts	10	.03	+50	.04	+51	.07	+58	.10	+64	.13	+66
	15	.02	+53	.04	+55	.07	+64	.10	+67	.13	+68
	20	.03	+54	.04	+60	.07	+66	.10	+69	.13	+69
	1.0	.05	+65	.08	+41	.09	+28	.08	+32	.08	+48
	2.5	.04	+59	.06	+42	.07	+38	.08	+48	.09	+59
40.14-1-	5.0	.03	+57	.05	+44	.07	+51	.08	+60	.11	+65
10 Volts	10	.03	+54	.04	+51	.06	+60	.09	+66	.12	+69
	15	.03	+52	.04	+55	.06	+64	.09	+68	.12	+70
	20	.02	+54	.03	+59	.06	+66	.09	+69	.12	+71

TABLE IV - S22

FREQUEN	NCY (MHz)	20	0	50	0	10	00	15	000	20	000
Vcc	lc	S22	Δ φ	S22	$\angle \phi$	S ₂₂	Lφ	S ₂₂	Lφ	S22	4
	1.0mA	.88	-23	.66	-41	.57	-56	.54	-76	.53	-96
	2.5	.76	-34	.48	-50	.40	-61	.37	-78	.37	-98
	5.0	.61	-45	.34	-58	.25	-67	.23	-84	.24	-103
1 Volt	10	.42	-60	.20	-70	.15	-75	.14	-95	.16	-115
	15	.31	-67	.15	-77	.11	-83	.11	-105	.14	-125
	20	.16	-72	.09	-82	.10	-92	.12	-119	.16	-140
	1.0	.91	-18	.75	-32	.66	-47	.62	-65	.60	-82
	2.5	.83	-25	.60	-38	.47	-50	.44	-64	.43	-81
	5.0	.72	-32	.47	-41	.36	-50	.34	-64	.33	-80
3 Volts	10	.56	-40	.34	-42	.27	-49	.25	-62	.25	-78
	15	.48	-43	.30	-41	.23	-46	.21	-60	.22	-76
	20	.43	-43	.27	-39	.22	-44	.21	-58	.22	-75
	1.0	.93	-15	.79	-27	.68	-42	.65	-57	.63	-74
	2.5	.87	-20	.67	-31	.55	-42	.52	-56	.51	-71
	5.0	.77	-26	.55	-34	.45	-41	.43	-53	.42	-68
6 Volts	10	.63	-32	.43	-33	.37	-38	.36	-50	.35	-64
	15	.57	-33	.40	-31	.35	-35	.34	-47	.33	-62
	20	.53	-33	.38	-29	.34	-34	.33	-46	.33	-61
	1.0	.94	-13	.82	-25	.73	-38	.69	-53	.67	-69
	2.5	.89	-18	.70	-28	.60	-38	.57	-51	.56	-66
40 1/-14-	5.0	.81	-23	.60	-29	.50	-37	.48	-48	.47	-61
10 Volts	10	.68	-27	.50	-28	.44	-34	.43	-45	.42	-58
	15	.62	-28	.47	-26	.43	-30	.42	-42	.42	-56
	20	.59	-27	.46	-24	.43	-30	.42	-42	.42	-56

CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

INIAMINION HATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	VCBO	25	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	Ic	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.2 1.14	Watt mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	15	_	3 _ 3	Vdc
Collector-Base Breakdown Voltage (IC = 0.1 mAdc, IE = 0)	V(BR)CBO	25	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ІСВО	_	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 5.0 mAdc, V_{CE} = 5.0 Vdc)	hFE	30	_	200	_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 15 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ GHz}$)	fT	_	4.0	_	GHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	C _{cb}	_	-	1.0	pF
Noise Figure ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 450 \text{ MHz}$) ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 6.0 \text{ Vdc}$, $f = 1.0 \text{ GHz}$)	NF	=	1.5 2.5	=	dB
FUNCTIONAL TEST					
Maximum Available Power(1) (IC = 5.0 mAdc, VCE = 6.0 Vdc, f = 450 MHz) (IC = 5.0 mAdc, VCE = 6.0 Vdc, f = 1.0 GHz)	G _{max}	_	16 10	=	dB
C-+ 2	·				

(1) $G_{\text{max}} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$

TABLE 1 - S₁₁ PARAMETERS

Frequenc	y (MHz)										
Vcc	IC	100		200		50	00	80	00	100	00
(Volts)	(mA)	S11	LΦ	S11	Lφ	S11	LΦ	S11	LΦ	S11	LΦ
1.0	1.0	0.941	-22	0.85	-43	0.57	-91	0.37	-128	0.30	-151
	2.5	0.85	-31	0.67	-57	0.35	-102	0.20	-136	0.14	-157
	5.0	0.69	-44	0.46	-71	0.21	-109	0.10	-144	0.069	-166
	10	0.45	-67	0.28	-94	0.13	-136	0.087	172	0.075	145
	15	0.37	-110	0.31	-145	0.26	170	0.27	139	0.27	122
	30	0.71	-178	0.71	169	0.68	144	0.68	121	0.65	107
3.0	1.0	0.94	-19	0.87	-37	0.61	-80	0.39	-114	0.30	-134
	2.5	0.87	-26	0.71	-47	0.39	-84	0.21	-106	0.15	-115
	5.0	0.74	-34	0.52	-55	0.25	-77	0.13	-82	0.109	-79
	10	0.55	-42	0.35	-58	0.18	-66	0.11	-60	0.105	-55
	15	0.46	-46	0.28	-59	0.15	-64	0.096	-55	0.092	-49
	30	0.28	-95	0.21	-134	0.16	175	0.17	135	0.17	116
6.0	1.0	0.95	-18	0.88	-35	0.63	-76	0.40	-108	0.30	-126
	2.5	0.89	-23	0.74	-43	0.42	-77	0.23	-94	0.17	-100
	5.0	0.77	-31	0.56	-49	0.29	-67	0.18	-69	0.15	-66
	10	0.61	-37	0.40	-50	0.23	-55	0.16	-51	0.16	-50
	15	0.52	-40	0.34	-51	0.20	-52	0.15	-47	0.15	-47
	30	0.36	-55	0.21	-70	0.098	-77	0.037	-59	0.033	-27
10	1.0	0.96	-17	0.89	-33	0.65	-73	0.41	-103	0.31	-12
	2.5	0.89	-22	0.76	-41	0.44	-73	0.25	-88	0.18	-93
	5.0	0.79	-28	0.59	-46	0.32	-63	0.20	-65	0.18	-63
	10	0.64	-34	0.44	-47	0.26	-52	0.19	-49	0.18	-49
	15	0.57	-37	0.38	-48	0.23	-49	0.18	-46	0.17	-46
	30	0.41	-51	0.24	-64	0.12	-67	0.061	-52	0.055	-36

TABLE 2 - S21 PARAMETERS

Frequency (MHz)											
Vcc	I _C	10	10	200		50	00	80	00	10	00
(Volts)	(mA)	S21	LΦ	S21	LΦ	S21	L Ø	S21	LΦ	S21	LΦ
1.0	1.0	5.32	156	3.06	137	2.22	97	1.65	70	1.44	56
	2.5	6.79	146	5.57	124	3.15	86	2.14	64	1.81	52
	5.0	10.97	133	7.60	110	3.62	79	2.38	61	2.00	49
	10	13.16	118	8.07	99	3.60	74	2.35	57	1.96	46
	15	9.84	108	5.66	91	2.44	67	1.63	49	1.38	38
	30	1.65	83	0.88	69	0.47	46	0.43	37	0.45	31
3.0	1.0	3.33	159	3.11	142	2.36	103	1.79	76	1.55	62
	2.5	6.89	150	5.85	129	3.48	92	2.38	70	2.00	58
	5.0	11.49	138	8.34	115	4.12	84	2.70	66	2.25	55
	10	15.71	125	9.82	104	4.39	79	2.85	63	2.34	53
	15	16.97	119	10.05	100	4.39	77	2.83	61	2.34	52
	30	12.66	108	7.02	92	2.98	70	1.94	54	1.61	44
6.0	1.0	3.31	160	3.10	144	2.41	106	1.83	79	1.60	65
	2.5	6.80	151	5.85	131	3.60	94	2.46	77	2.07	60
	5.0	11.44	140	8.54	117	4.28	86	2.83	68	2.33	57
	10	15.85	127	10.14	107	4.61	81	2.96	65	2.46	55
	15	17.20	122	10.47	102	4.60	79	2.96	63	2.45	54
	30	16.37	113	9.38	96	4.00	75	2.58	59	2.14	49
10	1.0	3.25	160	3.08	145	2.40	108	1.83	81	1.61	67
	2.5	6.73	152	5.85	132	3.63	96	2.50	74	2.10	62
	5.0	11.19	142	8.49	119	4.34	88	2.85	69	2.37	59
	10	15.59	129	10.16	108	4.66	82	3.00	66	2.47	56
	15	17.04	124	10.49	104	4.65	80	2,99	64	2.47	55
	30	16.18	115	9.38	98	4.03	96	2.60	60	2.14	50

TABLE 3 - S₁₂ PARAMETERS

Frequency (MHz)											
Vcc	Ic	100		20	0	50	0	80	0	100	00
(Volts)	(mA)	S12	L Ø	S12	LΦ	S12	L Ø	S12	L Ø	S12	LΦ
1.0	1.0	0.054	73	0.097	61	0.159	41	0.184	36	0.194	37
	2.5	0.051	69	0.084	58	0.140	50	0.189	48	0.220	46
	5.0	0.046	65	0.072	60	0.137	58	0,201	53	0.239	50
	10	0.041	64	0.067	64	0.142	62	0.215	56	0.256	51
	15	0.043	61	0.070	63	0.152	62	0.230	55	0.277	50
	30	0.058	50	0.093	58	0.209	57	0.311	46	0.372	39
3.0	1.0	0.039	75	0.072	65	0.123	46	0.143	42	0.151	44
	2.5	0.037	72	0.063	62	0.110	54	0.150	53	0.174	52
	5.0	0.033	70	0.055	64	0.108	62	0.160	58	0.190	55
	10	0.030	70	0.050	68	0.109	67	0.165	61	0.199	57
	15	0.028	70	0.049	70	0.109	68	0.167	62	0.200	57
W. L.	30	0.026	68	0.046	70	0.105	69	0.165	64	0.200	61
6.0	1.0	0.032	76	0.060	66	0.106	49	0.123	45	0.131	48
	2.5	0.031	73	0.054	64	0.095	57	0.130	56	0.151	55
	5.0	0.028	71	0.048	66	0.094	64	0.139	61	0.165	58
	10	0.026	71	0.043	69	0.094	68	0.144	63	0.172	59
	15	0.024	71	0.042	71	0.093	69	0.144	64	0.172	60
	30	0.021	71	0.037	72	0.086	71	0.134	67	0.162	63
10	1.0	0.028	77	0.053	68	0.095	50	0.109	47	0.116	50
	2.5	0.027	74	0.048	65	0.085	58	0.116	57	0.134	57
	5.0	0.025	73	0.043	67	0.084	64	0.125	62	0.148	60
	10	0.023	72	0.037	69	0.084	69	0.128	64	0.153	61
	15	0.022	73	0.037	70	0.084	69	0.128	65	0.152	62
	30	0.019	72	0.033	72	0.076	72	0.119	68	0.143	66

TABLE 4 - S22 PARAMETERS

Frequenc	y (MHz)										
Vcc	Ic	10	0	200		50	0	80	0	100	00
(Volts)	(mA)	S22	LΦ	S22	LΦ	S22	L Ø	S22	LΦ	S22	<i>L</i> φ
1.0	1.0	0.966	-12	0.893	-23	0.693	-41	0.612	-53	0.594	-59
	2.5	0.901	-18	0.760	-29	0.548	-42	0.498	-51	0.494	-56
	5.0	0.793	-24	0.619	-32	0.456	-39	0.429	-49	0.439	-54
	10	0.635	-29	0.486	-32	0.390	-36	0.377	-47	0.389	-53
	15	0.453	-29	0.364	-29	0.313	-34	0.309	-48	0.321	-14
	30	0.048	-78	0.035	-88	0.032	-135	0.031	-162	0.007	-167
3.0	1.0	0.976	-9.0	0.926	-18	0.770	-35	0.702	-46	0.683	-51
	2.5	0.935	-13	0.828	-23	0.648	-35	0.608	-43	0.608	-48
	5.0	0.853	-18	0.712	-25	0.577	-32	0.555	-41	0.565	-46
	10	0.758	-20	0.629	-23	0.539	-29	0.529	-39	0.544	-44
	15	0.711	-20	0.601	-22	0.533	-27	0.526	-38	0.540	-44
	30	0.631	-15	0.576	-16	0.548	-25	0.546	-38	0.558	-45
6.0	1.0	0.982	-8.0	0.939	-16	0.803	-31	0.742	42	0.734	-47
	2.5	0.947	-11	0.861	-20	0.699	-31	0.662	-40	0.660	-45
	5.0	0.882	-15	0.759	-21	0.633	-29	0.617	-31	0.627	-43
	10	0.801	-17	0.684	-20	0.607	-26	0.601	-35	0.610	-41
	15	0.769	-17	0.667	-19	0.602	-25	0.601	-35	0.607	-40
	30	0.737	-14	0.672	-15	0.640	-22	0.641	-33	0.655	-40
10	1.0	0.983	-7.0	0.949	-14	0.830	-29	0.774	-39	0.765	-40
	2.5	0.954	-10	0.880	-18	0.733	-29	0.698	-37	0.702	-42
	5.0	0.901	-13	0.793	-19	0.676	-27	0.659	-35	0.668	-41
	10	0.834	-15	0.725	-18	0.646	-24	0.646	-33	0.658	-39
	15	0.802	-15	0.706	-17	0.645	-23	0.648	-33	0.661	-39
	30	0.776	-13	0.712	-14	0.678	-22	0.686	-32	0.699	-38

CASE 26-03, STYLE 1 TO-46 (TO-206AB)

RF OSCILLATOR TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	VCBO	35	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	Ic	150	mAdc
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD	2.5 40	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	25	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V(BR)CEO	20	30	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	V _(BR) CBO	35	-		Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	3.5	5.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	ІСВО	0 -	000 E	0.1	mAdc
ON CHARACTERISTICS	REF 0	0			
DC Current Gain (I _C = 100 mAdc, V _{CE} = 10 Vdc)	hFE	20	60	150	_
SMALL SIGNAL CHARACTERISTICS	rs tsen	€	376.5		
Current-Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 200 MHz)	fτ	<u>-</u>	2500	-	MHz
Output Capacitance (V _{CB} = 20 Vdc, I_E = 0, f = 1.0 MHz)	C _{obo}	==	3.0	5.0	pF
FUNCTIONAL TEST	2 100		- 0		
Common-Collector Oscillator Output Power (Figure 1) $(V_E = -20 \text{ Vdc}, I_E \cong 110 \text{ mAdc}, f \cong 1.68 \text{ GHz})$	Pout	400	500	C7 -	mW

FIGURE 1 - 1.68 GHz OSCILLATOR TEST CIRCUIT SCHEMATIC

CASE 317-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	12	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Peak	IC	40	mAdc
Total Device Dissipation @ $T_L = 50$ °C Derate above 50 °C	PD	400 4.0	mW mW/°C
Storage Temperature	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Lead	$R_{\theta}JL$	250	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	VILLAT SAT'S	- C - 17c	1000		
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	12	7.6	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}$, $I_E = 0$)	V(BR)CBO	20	_	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ICBO	_	_	50	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 30 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	h _{FE}	30	_	200	_
SMALL SIGNAL CHARACTERISTICS					1
Current-Gain — Bandwidth Product $(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ GHz})$	f _T	_	5.0	_	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	0.6	1.0	pF
FUNCTIONAL TEST					
Noise Figure $(I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ GHz})$ $(I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 2.0 \text{ GHz})$	NF	Ξ	2.5 4.0	_	dB
Power Gain at Optimum Noise Figure ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ GHz}$) ($I_C = 5.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 2.0 \text{ GHz}$)	G _{NF}	=	10 6.0	_	dB
Maximum Available Power Gain(1) (IC = 30 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz) (IC = 30 mAdc, V _{CE} = 10 Vdc, f = 2.0 GHz)	G _{max}	=	12.5 7.5	=	dB

(1)
$$G_{\text{max}} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$$

FIGURE 2 – POWER GAIN AND NOISE FIGURE versus FREQUENCY

FIGURE 3 – POWER GAIN AND NOISE FIGURE
Versus COLLECTOR CURRENT

FIGURE 4 - S₁₁ PARAMETERS

Frequenc	y (MHz)	500		100	00	1500		2000	
V _{CE} (Volts)	I _C (mA)	S11	LΦ	S11	<i>L</i> φ	S11	LΦ	S11	LΦ
5.0	2.0	0.66	-125	0.64	-175	0.68	160	0.73	140
	5.0	0.57	-150	0.58	170	0.62	150	0.66	135
	10	0.54	-165	0.57	160	0.60	145	0.64	130
	20	0.54	-180	0.57	155	0.60	140	0.64	125
	30	0.54	175	0.57	155	0.61	140	0.65	125
10	2.0	0.66	-120	0.63	-170	0.67	160	0.71	140
	5.0	0.56	-145	0.56	175	0.60	150	0.64	135
	10	0.51	-160	0.53	165	0.57	145	0.61	130
	20	0.49	-175	0.52	160	0.57	145	0.60	130
	30	0.49	-175	0.53	160	0.57	145	0.61	130

FIGURE 5 - S22 PARAMETERS

Frequenc	y (MHz)	50	0	100	00	150	00	200	00
V _{CE} (Volts)	I _C	S22	LΦ	S22	Lφ	S22	LΦ	S22	Lφ
5.0	2.0	0.61	-45	0.50	-60	0.48	-80	0.50	-100
	5.0	0.40	-55	0.31	-65	0.30	-85	0.32	-100
	10	0.27	-60	0.20	-70	0.20	-90	0.23	-105
	20	0.19	-70	0.13	-75	0.14	-95	0.17	-110
	30	0.16	-70	0.11	-75	0.13	-95	0.16	-110
10	2.0	0.66	-35	0.55	-50	0.53	-70	0.54	-90
	5.0	0.47	-45	0.38	-50	0.37	-70	0.38	-75
	10	0.35	-45	0.28	-50	0.27	-65	0.29	-85
	20	0.26	-45	0.22	-50	0.22	-65	0.24	-80
	30	0.25	-40	0.21	-45	0.22	-60	0.24	-80

FIGURE 6 - S₂₁ PARAMETERS

Frequency (MHz)		500		1000		1500		2000	
V _{CE} (Volts)	I _C	S21	LΦ	S21	LΦ	S21	LΦ	S21	LΦ
5.0	2.0	3.24	100	1.84	70	1.23	50	0.96	35
	5.0	4.85	90	2.60	70	1.76	50	1.38	40
	10	5.78	85	3.04	70	2.05	50	1.61	40
	20	6.40	85	3.30	65	2.23	50	1.24	40
400 T	30	6.47	80	3.35	65	2.26	50	1.76	40
10	2.0	3.42	100	1.95	70	1.31	50	1.01	35
	5.0	5.20	95	2.80	70	1.89	50	1.45	40
	10	6.22	90	3.28	70	2.20	55	1.71	40
	20	6.82	85	3.55	65	2.37	55	1.84	40
	30	6.90	85	3.55	65	2.36	50	1.81	40

FIGURE 7 - S₁₂ PARAMETERS

Frequenc	y (MHz)	50	00	100	00	150	00	200	00
V _{CE} (Volts)	I _C	S12	- 10	S12	Lφ	S12	LΦ	S12	LΦ
5.0	2.0	0.11	30	0.12	25	0.11	35	0.13	50
	5.0	0.08	40	0.10	45	0.13	55	0.17	55
	10	0.07	50	0.10	55	0.14	60	0.19	60
	20	0.06	60	0.11	65	0.15	65	0.20	60
	30	0.06	65	0.11	65	0.15	65	0.20	60
10	2.0	0.10	35	0.10	30	0.10	40	0.12	55
1,4405	5.0	0.07	40	0.09	45	0.12	55	0.15	60
	10	0.06	50	0.09	55	0.13	60	0.17	60
	20	0.06	60	0.10	65	0.13	65	0.18	60
	30	0.06	60	0.10	65	0.14	65	0.18	65

CASE 303-01, STYLE 1

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Peak	lc	50	mAdc
Total Device Dissipation @ T _C = 75°C Derate above 75°C	PD	500 4.0	mW mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _B JC	250	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			61.0			
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	Y 37	V _(BR) CEO	12		-	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}$, $I_E = 0$)		V _(BR) CBO	20	-	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)		V _{(BR)EBO}	3.0	-	-	Vdc
Collector Cutoff Current ($V_{CB} = 15 \text{ Vdc}$, $I_E = 0$)		ICBO	THE THE		50	nAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 30 mAdc, V _{CE} = 10 Vdc)		hFE	30	_	200	_
SMALL SIGNAL CHARACTERISTICS	The first					
Current-Gain — Bandwidth Product (I _C = 30 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz)		fT		5.0	* Y =	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	1	C _{cb}	111 -	0.6	1.0	pF
FUNCTIONAL TEST		274 Z				
Noise Figure (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 GHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 2.0 GHz)	The state of the s	NF	_	2.5 4.0	3.0	dB
Power Gain at Optimum Noise Figure (IC = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz) (IC = 5.0 mAdc, V _{CE} = 10 Vdc, f = 2.0 GHz)	- 114	G _{NF}	1	12 7.0	_	dB
Maximum Available Power Gain(1) (I _C = 30 mAdc, V_{CE} = 10 Vdc, f = 1.0 GHz) (I _C = 30 mAdc, V_{CE} = 10 Vdc, f = 2.0 GHz)	N. C	G _{max}	14 —	16.5 11.0	=	dB

(1) $G_{\text{max}} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$

f, FREQUENCY (GHz)

Frequenc	y (MHz)	50	00	1000		1500		2000	
V _{CE} (Volts)	I _C (mA)	S11	LΦ	S11	<i>L</i> φ	S11	LΦ	S11	LΦ
5.0	2.0	0.76	-120	0.74	-160	0.76	-175	0.79	175
	5.0	0.72	-145	0.73	-170	0.75	175	0.77	165
	10	0.71	-160	0.74	180	0.75	170	0.77	160
	20	0.73	-170	0.75	175	0.77	165	0.79	155
	30	0.74	-175	0.76	170	0.78	165	0.81	155
	40	0.74	-180	0.76	165	0.79	155	0.81	145
	50	0.74	180	0.77	165	0.79	155	0.82	145
10	2.0	0.77	-115	0.74	-155	0.76	-170	0.78	175
	5.0	0.71	-140	0.72	-170	0.73	175	0.75	165
	10	0.69	-155	0.71	-175	0.73	170	0.75	165
- 1	20	0.69	-165	0.72	175	0.74	165	0.76	160
	30	0.70	-170	0.73	175	0.75	165	0.77	160
	40	0.69	-175	0.72	165	0.75	155	0.78	145
- 1	50	0.70	-175	0.73	165	0.76	155	0.80	145

Frequenc	y (MHz)	50	0	100	00	150	00	200	00
V _{CE} (Volts)	I _C	S22	ĽΦ	S22	LΦ	S22	LΦ	S22	LΦ
5.0	2.0	0.66	-50	0.57	-70	0.57	-95	0.61	-115
1	5.0	0.45	-65	0.37	-85	0.39	~105	0.44	-120
	10	0.33	-80	0.27	-100	0.30	-115	0.35	-130
1	20	0.24	-95	0.21	~115	0.24	-125	0.29	-135
	30	0.21	-100	0.18	-120	0.22	-125	0.28	-135
	40	0.18	-100	0.16	-115	0.20	-125	0.27	-135
la 1	50	0.17	-95	0.16	-110	0.21	-120	0.28	-135
10	2.0	0.71	-45	0.62	-65	0.62	-85	0.64	-105
	5.0	0.51	-55	0.43	-70	0.44	-90	0.48	-105
	10	0.37	-60	0.31	-75	0.33	-95	0.38	-110
	20	0.27	-70	0.23	-80	0.26	-95	0.32	-115
- 1	30	0.23	-65	0.21	-80	0.25	-95	0.31	-110
- 1	40	0.23	-60	0.22	-70	0.25	-90	0.32	-110
	50	0.24	-50	0.24	-65	0.28	-90	0.34	-105

Frequenc	y (MHz)	500		100	00	15	00	20	00
V _{CE} (Volts)	I _C	S21	LΦ	S21	LΦ	S21	LΦ	S21	LΦ
5.0	2.0	3.52	102	1.97	70	1.33	50	0.99	35
	5.0	5.61	95	2.96	70	1.98	50	1.50	35
	10	6.84	90	3.55	70	2.35	55	1.78	40
	20	7.65	85	3.94	65	2.59	50	1.96	40
	30	7.93	85	4.02	65	2.63	50	1.98	40
	40	7.87	80	3.95	65	2.57	45	1.92	30
	50	7.65	80	3.86	60	2.48	45	1.86	30
10	2.0	3.70	105	2.12	75	1.43	50	1.07	35
	5.0	6.09	95	3.24	70	2.17	50	1.62	35
	10	7.53	90	3.91	70	2.58	55	1.96	40
	20	8.54	85	4.38	70	2.86	55	2.17	40
	30	8.79	85	4.45	65	2.92	50	2.17	40
	40	8.58	80	4.32	65	2.80	45	2.08	30
	50	8.30	80	4.15	60	2.69	45	1.98	30

Frequenc	y (MHz)	50	0	10	00	15	00	20	00
V _{CE} (Volts)	I _C (mA)	S12	LΦ	S12	LΦ	S12	LΦ	S12	LΦ
5.0	2.0	0.11	25	0.11	5.0	0.10	-5	0.09	-5
	5.0	0.07	25	0.08	15	0.08	15	0.08	15
	10	0.05	25	0.06	25	0.07	30	0.08	30
	20	0.04	35	0.05	40	0.07	40	0.08	40
	30	0.03	45	0.05	45	0.06	50	0.08	45
	40	0.03	50	0.05	50	0.07	50	0.08	50
	50	0.03	55	0.05	55	0.06	50	0.08	50
10	2.0	0.09	25	0.10	5.0	0.09	0	0.08	0
	5.0	0.06	25	0.07	15	0.07	20	0.07	20
	10	0.05	30	0.06	30	0.06	30	0.07	35
	20	0.03	40	0.05	40	0.06	45	0.07	40
	30	0.03	40	0.05	45	0.06	47	0.07	45
- 1	40	0.03	45	0.05	50	0.06	50	0.07	45
- 1	50	0.03	50	0.04	50	0.06	50	0.07	50

CASE 20-03, STYLE 10 TO-72 (TO-206AF)

HIGH FREQUENCY TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	12	Vdc
Collector-Base Voltage	VCBO	20	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Peak	IC	40	mAdc
Total Device Dissipation @ T _A = 75°C Derate above 75°C	PD	200 1.6	mW mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	RAJA	625	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	10.0	46.9			
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	12	-		Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	20		-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	3.0	3	_	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	ІСВО		33	50	nAdc
ON CHARACTERISTICS		TA S			
DC Current Gain (IC = 20 mAdc, VCE = 10 Vdc)	hFE	30	8-0	200	_
SMALL SIGNAL CHARACTERISTICS		A		•	
Current-Gain — Bandwidth Product (IC = 20 mAdc, VCE = 10 Vdc, f = 0.5 GHz)	f _T		4.5	-	GHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}		0.7	1.0	pF
FUNCTIONAL TEST		F4 43			
Noise Figure $ \begin{cases} I_C = 5.0 \text{ mAdc, } V_{CE} = 10 \text{ Vdc, } f = 0.5 \text{ GHz} \end{cases} $ $ \begin{cases} I_C = 5.0 \text{ mAdc, } V_{CE} = 10 \text{ Vdc, } f = 1.0 \text{ GHz} \end{cases} $	NF		2.0 2.5	=	dB
Power Gain at Optimum Noise Figure (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 0.5 GHz) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 GHz)	G _{NF}	015 016 019	12 7.0		dB
Maximum Available Power Gain(1) (IC = 20 mAdc, V_{CE} = 10 Vdc, f = 0.5 GHz) (IC = 20 mAdc, V_{CE} = 10 Vdc, f = 1.0 GHz)	G _{max}		15 10		dB

(1)
$$G_{\text{max}} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$$

FIGURE 2 – POWER GAIN AND NOISE FIGURE versus FREQUENCY

FIGURE 3 – POWER GAIN AND NOISE FIGURE
Versus COLLECTOR CURRENT

FIGURE 4 - S11 PARAMETERS

Frequenc	y (MHz)	10	00	30	00	50	00	70	00	10	00
V _{CE} (Volts)	IC (mA)	S11	Lφ	S11	Lφ	S11	LΦ	S11	Lφ	S11	Lφ
5.0	2.0	0.84	-35	0.57	-80	0.42	-115	0.34	-140	0.27	-166
	5.0	0.65	-45	0.34	-85	0.23	-115	0.18	-130	0.16	-150
	10	0.48	-50	0.32	-85	0.14	-105	0.12	-115	0.09	-120
	20	0.33	-50	0.15	-75	0.10	-90	0.09	-100	0.09	-101
	30	0.27	-50	0.13	-70	0.09	-85	0.09	-100	0.09	-101
10	2.0	0.86	-30	0.59	-75	0.42	-105	0.34	-130	0.25	-155
	5.0	0.70	-40	0.37	-75	0.24	-95	0.18	-110	0.13	-125
	10	0.55	-45	0.26	-70	0.17	-80	0.14	-90	0.13	-90
	20	0.41	-45	0.21	-60	0.15	-65	0.13	-75	0.14	-80
	30	0.36	-45	0.19	-55	0.14	-65	0.13	-75	0.13	-80

FIGURE 5 - S22 PARAMETERS

Frequency (MHz)		100		300		500		700		1000	
V _{CE} (Volts)	I _C (mA)	S22	Lφ	S22	<i>L</i> φ	S22	Lφ	S22	Lφ	S22	Lφ
5.0	2.0	0.94	-15	0.77	-25	0.68	-30	0.66	-35	0.64	-45
	5.0	0.85	-20	0.63	-30	0.57	-30	0.55	-35	0.55	-45
	10	0.75	-25	0.55	-25	0.51	-30	0.50	-35	0.50	-40
	20	0.66	-25	0.50	-25	0.47	-30	0.47	-35	0.48	-40
	30	0.62	-25	0.49	-25	0.46	-25	0.46	-30	0.47	-40
10	2.0	0.95	-10	0.81	-20	0.74	-30	0.72	-35	0.71	-40
	5.0	0.87	-15	0.69	-25	0.64	-25	0.63	-30	0.63	-40
	10	0.80	-20	0.63	-20	0.59	-25	0.59	-30	0.60	-40
	20	0.72	-20	0.59	-20	0.57	-23	0.57	-30	0.58	-35
	30	0.70	-20	0.59	-20	0.57	-20	0.57	-30	0.58	-35

FIGURE 6 - S21 PARAMETERS

Frequency (MHz)		100		300		500		700		1000	
V _{CE} (Volts)	I _C	S21	<i>L</i> Φ	S21	LΦ	S21	LΦ	S21	LΦ	S21	LΦ
5.0	2.0	5.99	150	4.06	110	2.90	90	2.27	75	1.71	55
	5.0	11.38	135	5.91	100	3.90	80	2.93	70	2.17	55
	10	15.21	125	6.78	95	4.34	80	3.23	70	2.38	55
	20	17.98	115	7.27	90	4.58	75	3.40	65	2.50	50
	30	18.78	110	7.37	85	4.64	75	3.42	65	2.50	50
10	2.0	6.05	150	4.20	115	3.04	90	2.37	75	1.75	55
	5.0	11.46	135	6.17	100	4.06	85	3.08	70	2.26	55
	10	15.45	127	7.08	95	4.56	80	3.41	70	2.50	55
	20	18.35	120	7.57	90	4.80	75	3.58	65	2.61	55
	30	19.12	115	7.63	90	4.79	75	3.56	65	2.60	55

FIGURE 7 - S12 PARAMETERS

Frequency (MHz)		100		300		500		700		1000	
V _{CE} (Volts)	I _C	S12	Lφ	S12	Lφ	S12	LΦ	S12	LΦ	S12	<i>L</i> φ
5.0	2.0	0.04	70	0.09	50	0.11	50	0.12	50	0.16	50
	5.0	0.04	70	0.07	60	0.11	60	0.14	60	0.19	55
	10	0.03	70	0.07	70	0.11	65	0.15	65	0.20	55
	20	0.03	75	0.07	70	0.12	70	0.15	65	0.21	55
H-L	30	0.03	75	0.07	70	0.12	70	0.16	65	0.21	57
10	2.0	0.03	70	0.07	55	0.09	50	0.10	50	0.13	55
	5.0	0.03	70	0.06	60	0.09	65	0.12	60	0.15	60
	10	0.03	70	0.06	65	0.09	65	0.12	65	0.17	60
	20	0.03	75	0.06	70	0.09	70	0.13	65	0.18	60
	30	0.03	75	0.06	70	0.10	70	0.13	65	0.17	60

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	5.0	Vdc	
Collector-Base Voltage	V _{CBO}	10	Vdc	
Emitter-Base Voltage	VEBO	2.0	Vdc	
Collector Current — Peak	lc	5.0	mAdc	
Total Device Dissipation @ T _A = 100°C Derate above 100°C	PD	50 1.0	mW mW/°C	
Junction Temperature	TJ	+ 150	°C	
Storage Temperature	T _{stq}	-65 to +150	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	RAJA	500	°C/W

MRF931

CASE 317-01, STYLE 2

HIGH FREQUENCY TRANSISTOR

NPN SILICON

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 0.1 mAdc, I _B = 0)	V(BR)CEO	5.0	-	7 =	Vdc
Collector-Base Breakdown Voltage ($I_C = 0.01 \text{ mAdc}, I_E = 0$)	V(BR)CBO	10	-		Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	2.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 5.0 Vdc, I _E = 0)	ICBO		-	50	nAdc
ON CHARACTERISTICS			Section 2		
DC Current Gain (I _C = 0.25 mAdc, V _{CE} = 1.0 Vdc)	hFE	30	_	150	_
SMALL SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _E = 1.0 mAdc, V_{CE} = 1.0 Vdc, f = 1.0 GHz)	f _T	_	3.0	_	GHz
Collector-Base Capacitance (V _{CB} = 1.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	0.35	0.5	pF
FUNCTIONAL TEST					
Noise Figure ($I_E=0.25$ mAdc, $V_{CE}=1.0$ Vdc, $f=0.5$ GHz) ($I_E=0.25$ mAdc, $V_{CE}=1.0$ Vdc, $f=1.0$ GHz)	NF		3.8 4.3	=	dB
Power Gain at Optimum Noise Figure ($I_E = 0.25 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$, $f = 0.5 \text{ GHz}$) ($I_E = 0.25 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$, $f = 1.0 \text{ GHz}$)	G _{NF}	=	16 10	=	dB
Transducer Power Gain (I _E = 0.5 mAdc, V_{CE} = 1.0 Vdc, f = 0.5 GHz) (I _E = 0.5 mAdc, V_{CE} = 1.0 Vdc, f = 1.0 GHz)	GT	=	18 12	=	dB

FIGURE 1 - POWER DERATING

FIGURE 2 — TRANSDUCER POWER GAIN AND NOISE FIGURE versus FREQUENCY

FIGURE 3 — TRANSDUCER POWER GAIN AND NOISE
FIGURE versus EMITTER CURRENT

MAXIMUM RATINGS

Rating	Symbol	MRF966	MRF967	Unit
Drain-Source Voltage	V _{DS}	10	10	Vdc
Gate-Source Voltage — Reverse	V _{G1S}	-8.0 -8.0	-8.0 -8.0	Vdc
Gate-Source Voltage — Forward	V _{G1S} V _{G2S}	+ 1.0 + 1.0	+ 1.0 + 1.0	Vdc
Drain Current	ID	60	60	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 3.5	350 3.5	mW mW/°C
Junction Temperature Range	ТЈ	- 65 to + 125	-65 to +125	°C
Storage Channel Temperature Range	T _{stg}	- 65 to + 125	-65 to +125	°C

Handling and Packaging — MES devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MES devices should be observed.

MRF966 MRF967

CASE 317-01, STYLE 1

DUAL GATE GaAs FET

N-CHANNEL

CASE 358-01, STYLE 2

DUAL GATE GaAs FET

N-CHANNEL

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage (V _{G1S} = V _{G2S} = -4.0 Vdc, I _D = 100 μ A)	V _{(BR)DSX}	10	_		Vdc
Gate 1 Leakage Current (V _{G1S} = -5.0 Vdc, V _{G2S} = V _{DS} = 0)	I _{G1SS}			10	μAdc
Gate 2 Leakage Current (VG2S = -5.0 Vdc, VG1S = VDS = 0)	I _{G2SS}		_	10	μAdc
Gate 1 to Source Cutoff Voltage (Vps = 5.0 Vdc, Vg2s = 0)	V _{G1S(off)}	-2.0	_	-4.5	Vdc
Gate 2 to Source Cutoff Voltage (Vps = 5.0 Vdc, Vg1s = 0)	V _{G2} S(off)	-2.0	un V u	-4.5	Vdc
ON CHARACTERISTICS	7-281	200 Line	at physics		-
Zero-Gate-Voltage Drain (Vps = 5.0 Vdc, Vg1s = Vg2s = 0)	IDSS	30	50	80	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance (Vps = 5.0 Vdc, Vg2s = 0, Ip = 10 mA, f = 1.0 kHz)	Yfs	14	20	_	mmhos
Input Capacitance $(V_{DS} = 5.0 \text{ Vdc}, V_{G2S} = 0, I_D = 10 \text{ mA}, f = 1.0 \text{ MHz})$	C _{iss}	_	0.45	7	pF
Reverse Transfer Capacitance $(V_{DS} = 5.0 \text{ Vdc}, V_{G2S} = 0, I_D = 10 \text{ mA}, f = 1.0 \text{ MHz})$	C _{rss}	-	0.04	_	pF
FUNCTIONAL CHARACTERISTICS	4				
Noise Figure $(V_{DS} = 5.0 \text{ Vdc}, V_{G2S} = 0(1), I_{DS} = 10 \text{ mA}, f = 1.0 \text{ GHz})$	NF	_	1.2	1.5	dB
	G _{ps}	13 15	15 18		dB
Intermodulation Distortion (VDS = 5.0 Vdc, IDS = 10 mA, f_1 = 995 MHz, f_2 = 1001 MHz, V_{G2} = 0, P_{in} = -40 dBm)	IMD ₃	_	-65	_	dB

MRF966 • MRF967

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Linear Power Point(2) $(V_{DS} = 5.0 \text{ Vdc}, I_{DS} = 10 \text{ mA}, f_1 = 995 \text{ MHz}, f_2 = 1001 \text{ MHz}, V_{G2} = 0)$	PL	_	+1.0	_	dBm
Output Power at 1 dB Compression Point (VDS = 5.0 Vdc, IDS = 10 mA, f = 1.0 GHz)	Pout	_	10	W	dBm

⁽¹⁾ Data taken using a HP11608A 50 Ω test fixture, Microlab slug tuners, HP11590A bias networks and the HP8970A noise figure meter. Note: V_{G2S} = 0. Refer to Figure 16.

TYPICAL CHARACTERISTICS MRF966

FIGURE 1 — DRAIN CURRENT versus **DRAIN-TO-SOURCE VOLTAGE** 80 VGS2 = 0 V 70 $V_{G1S} = +1.0 V$ 60 DRAIN CURRENT (mA) 0.5 V 50 0 V 0.5 V 40 -1.0 V 30 1.5 V ò 2.0 V 20 2.5 V 10 3.0 V 5.0 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

⁽²⁾ The linear power point is the output power level at which either the signal $2f_1 \pm f_2$ or $2f_2 \pm f_1$ are 30 dB below f_1 or f_2 .

-40

-3.0

FIGURE 5 — COMMON SOURCE POWER GAIN
AND NOISE FIGURE Versus GATE

ONE-TO-SOURCE VOLTAGE 20 18 MRF966 9.0 Gps 16 8.0 7.0 電 (dB) 14 0.0 4.0 NOISE FIGURE POWER GAIN MRF967 12 $V_{DS} = 5.0 V$ 10 IDS = 10 mA $V_{G2} = 0 V$ 8.0 Sc 6.0 3.0 ¥ °Sd sd 4.0 2.0 NF 1.0 2.0 0 0

VG1S, GATE ONE-TO-SOURCE VOLTAGE (VOLTS)

-10

-2.0

FIGURE 6 — COMMON SOURCE POWER GAIN AND NOISE FIGURE versus GATE CONTROL SUPPLY VOLTAGE

FIGURE 7 — COMMON SOURCE POWER GAIN AND NOISE FIGURE versus

+1.0

0

FIGURE 8 — MAXIMUM AVAILABLE GAIN AND STABILITY FACTOR Versus FREQUENCY

FIGURE 9 — MAXIMUM AVAILABLE GAIN AND STABILITY
FACTOR VERSUS FREQUENCY

TYPICAL CHARACTERISTICS

MRF967

FIGURE 12 — THIRD ORDER INTERMODULATION

FIGURE 14 — THIRD ORDER INTERMODULATION

MRF966

MRF966 COMMON-SOURCE S-PARAMETERS

								True To		
VDS	IDS	f	S-	11	S ₂	1	S ₁₂		S	22
Volts)	(mA)	(MHz)	S ₁₁	Δ φ _	S ₂₁	<i>L</i> φ	S ₁₂	<i>Δ</i> φ	S ₂₂	<i>Δ</i> φ
3.0	5.0	200	0.99	-4.0	1.10	171	0.002	94	0.96	-3.0
	1	500	0.96	- 12	1.07	155	0.004	79	0.95	-8.0
	18.30	1000	0.92	-24	1.06	134	0.008	71	0.93	- 17
		1500	0.84	-38	1.00	112	0.008	70	0.90	- 26
		2000	0.71	- 49	0.96	90	0.006	100	0.86	-34
	10	200	0.99	-5.0	1.31	171	0.002	82	0.95	- 3.0
	AL H	500	0.96	- 13	1.28	155	0.005	78	0.94	-8.0
	Later .	1000	0.90	-26	1.25	134	0.008	73	0.91	- 17
		1500	0.81	-40	1.19	112	0.009	72	0.88	- 27
		2000	0.67	-51	1.08	90	0.008	100	0.84	- 35
	15	200	0.99	-5.0	1.34	170	0.002	92	0.93	- 3.0
	111	500	0.96	- 14	1.30	155	0.005	78	0.93	-8.0
	- 100	1000	0.90	- 27	1.29	133	0.009	73	0.91	- 17
		1500	0.79	-42	1.23	111	0.009	74	0.87	- 26
		2000	0.65	-53	1.12	88	0.009	98	0.83	- 34
	20	200	0.99	-5.0	1.24	170	0.002	95	0.91	- 3.0
		500	0.96	- 15	1.21	154	0.006	80	0.90	-8.0
		1000	0.89	- 29	1.20	131	0.010	74	0.88	- 17
		1500	0.79	- 45	1.17	108	0.011	74	0.85	- 26
		2000	0.64	- 57	1.08	84	0.012	94	0.83	- 33
5.0	5.0	200	0.99	-5.0	1.33	170	0.001	84	0.97	-3.0
		500	0.98	- 13	1.29	156	0.004	70	0.97	-9.0
		1000	0.90	- 27	1.25	132	0.006	78	0.95	- 17
		1500	0.81	-40	1.19	112	0.005	73	0.91	- 25
		2000	0.68	- 51	1.00	94	0.006	115	0.88	- 35
	10	200	0.99	-5.0	1.66	170	0.001	75	0.97	- 3.0
		500	0.97	- 14	1.63	156	0.004	76	0.96	- 9.0
		1000	0.89	- 28	1.56	132	0.006	79	0.94	- 17
		1500	0.78	-41	1.47	112	0.005	80	0.90	- 25
		2000	0.65	- 52	1.23	94	0.007	121	0.87	- 35
	15	200	0.99	-5.0	1.84	170	0.001	78	0.96	- 3.0
		500	0.97	- 14	1.80	155	0.004	72	0.95	-8.0
	1.5	100	0.89	- 29	1.71	131	0.006	79	0.94	-17
	100	1500	0.77	-42	1.61	110	0.005	83	0.90	- 25
	10	2000	0.63	-52	1.34	93	0.007	119	0.87	-34
	20	200	0.99	-5.0	1.89	170	0.001	71	0.96	- 3.0
	PH.	500	0.97	-15	1.84	155	0.004	78	0.95	-9.0
	2 -10	1000	0.87	-30	1.75	130	0.006	80	0.93	- 17
		1500	0.75	-43	1.64	109	0.006	84	0.90	-24
	100	2000	0.61	-54	1.37	91	0.008	123	0.87	- 34

MRF967

MRF967 COMMON-SOURCE S-PARAMETERS

VDS	Ips	f	S-	11	S ₂	1	S ₁₂	2	S ₂	2
(Volts)	(mA)	(MHz)	S ₁₁	Δφ	S ₂₁	Δφ	S ₁₂	Δφ	S ₂₂	∠ φ
3.0	5.0	200	0.99	-5	1.19	170	0.005	77	0.96	-4
		500	0.97	- 14	1.16	155	0.016	73	0.94	- 11
		1000	0.92	- 27	1.11	131	0.030	65	0.93	-21
	100	1500	0.86	-40	1.03	111	0.040	54	0.87	-31
	1.30	2000	0.78	-52	0.96	91	0.048	45	0.83	-43
	10	200	0.99	-5	1.47	170	0.006	81	0.95	-4
		500	0.97	- 15	1.43	155	0.016	73	0.93	-11
	100	1000	0.91	- 29	1.39	131	0.031	65	0.92	-21
	M K a	1500	0.84	-43	1.29	111	0.040	54	0.86	- 31
	1	2000	0.75	-56	1.19	90	0.047	45	0.81	- 44
1.0	15	200	1.00	-6	1.50	170	0.006	82	0.93	-4
		500	0.97	- 16	1.46	155	0.016	74	0.91	- 11
	2.0	1000	0.89	-31	1.42	131	0.031	64	0.90	-21
		1500	0.83	- 46	1.33	110	0.040	53	0.84	-31
		2000	0.73	- 59	1.24	89	0.048	45	0.79	- 43
	20	200	1.00	-6	1.33	170	0.007	78	0.90	-3
		500	0.97	- 17	1.30	154	0.017	73	0.88	- 10
		1000	0.89	- 33	1.27	129	0.033	64	0.88	-21
		1500	0.82	-49	1.21	108	0.043	53	0.82	-30
		2000	0.73	- 63	1.14	86	0.050	44	0.78	-42
5.0	5.0	200	0.99	-5	1.17	170	0.006	84	0.97	-3
		500	0.97	- 14	1.16	155	0.014	76	0.97	-9
		1000	0.93	- 27	1.11	131	0.027	65	0.94	- 18
		1500	0.87	- 28	1.07	110	0.039	57	0.93	- 28
		2000	0.79	- 53	0.97	91	0.045	50	0.88	-37
	10	200	0.99	-5	1.47	170	0.006	84	0.97	-3
		500	0.97	- 15	1.43	156	0.014	76	0.96	-9
		1000	0.92	- 29	1.35	132	0.027	65	0.93	- 18
		1500	0.85	-44	1.32	111	0.038	57	0.90	- 29
		2000	0.77	- 56	1.19	91	0.044	49	0.86	- 37
	15	200	1.00	-6	1.53	170	0.006	85	0.96	-3
		500	0.98	- 15	1.48	156	0.014	77	0.95	-9
		1000	0.91	- 29	1.41	131	0.027	64	0.93	- 18
		1500	0.85	-46	1.37	110	0.038	57	0.90	-28
		2000	0.75	- 58	1.24	90	0.043	49	0.86	-36
	20	200	1.00	-6	1.32	170	0.006	85	0.95	- 3
	5-70	500	0.98	- 16	1.29	155	0.015	76	0.95	-8
	7	1000	0.91	-32	1.23	129	0.027	64	0.92	- 17
	100	1500	0.88	-49	1.21	107	0.038	55	0.90	- 27
	2.30	2000	0.75	- 62	1.11	87	0.043	48	0.86	- 36

MRF8003

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

RF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	50	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	lc	0.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 5.7	Watt mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V(BR)CEO	30	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 0.1 mAdc, V _{BE} = 0)	V(BR)CES	50	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.5 mAdc, I _C = 0)	V(BR)EBO	3.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 12 Vdc, I _E = 0)	ІСВО	-	_	0.1	mAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	hFE	20	_	_	_
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 12.5 Vdc, I_E = 0, f = 1.0 MHz)	C _{obo}	_	_	15	pF
FUNCTIONAL TEST (FIGURE 1)					
Common-Emitter Amplifier Power Gain ($V_{CC} = 12.5 \text{ Vdc}, P_{out} = 0.5 \text{ W}, f = 27 \text{ MHz}$)	GPE	10	_	_	dB
Collector Efficiency ($V_{CC} = 12.5 \text{ Vdc}$, $P_{out} = 0.5 \text{ W}$, $f = 27 \text{ MHz}$)	η		50		%

FIGURE 1 - 27 MHz TEST CIRCUIT SCHEMATIC

MRF8004

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

RF AMPLIFIER TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	lc	1.0	Adc
Total Device Dissipation @ T _C = 25°C(1) Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	°C

⁽¹⁾ This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 50 mAdc, I _B = 0)	V _(BR) CEO	30	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 200 mAdc, V _{BE} = 0)	V(BR)CES	60		- Da	Vdc
Emitter-Base Breakdown Voltage (I _E = 1.0 mAdc, I _C = 0)	V _{(BR)EBO}	3.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ICBO	-		0.01	mAdo
ON CHARACTERISTICS	- 1 p × 1 m				
DC Current Gain (I _C = 400 mAdc, V _{CE} = 2.0 Vdc)	hFE	10	_	_	_
SMALL SIGNAL CHARACTERISTICS			The Test		
Output Capacitance (V _{CB} = 12.5 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	35	70	pF
FUNCTIONAL TEST				-	
Common-Emitter Amplifier Power Gain (See Figure 1) (Pout = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	GPE	10		-	dB
Collector Efficiency(2) (See Figure 1) (P _{OUt} = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	η	62.5	70	-	%
Percentage Up-Modulation(1) (See Figure 1) (f = 27 MHz)	_	-	85	_	%
Parallel Equivalent Input Resistance (Pout = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	R _{in}	-	21	_	Ohms
Parallel Equivalent Input Capacitance (Pout = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	C _{in}	_	900	_	pF
Parallel Equivalent Output Capacitance (Pout = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	C _{out}	_	200	_	pF

⁽¹⁾ Percentage Up-Modulation is measured in the test circuit (Figure 1) by setting the Carrier Power (P_C) to 3.5 Watts with V_{CC} = 12.5 Vdc and noting the power input. Then the Peak Envelope Power (PEP) is noted after doubling the original power input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the V_{CC} to 25 Vdc (to simulate the modulating voltage). Percentage Up-Modulation is then determined by the relation:

Percentage Up-Modulation =
$$\left[\left(\frac{PEP}{P_C}\right)^{72} - 1\right] \cdot 10$$

(2) $\eta = \frac{RF P_{Out}}{(V_{CC}) (I_C)} \cdot 100$

FIGURE 1 - 27 MHz TEST CIRCUIT

FIGURE 2 — CIRCUIT TUNED AT 25 V, 25% DUTY CYCLE, $P_{out} = 15 \text{ W PEAK}$

FIGURE 3 — CIRCUIT TUNED AT 12.5 V, Pout = 4 W

20

VCC = 25 V 25% Duty Cycle

VCC = 12.5 V 100% Duty Cycle

0 0 0 3 0.6 0.9 1.2 1.5

MWA110 MWA120 MWA130

CASE 31A-01, STYLE 2

GENERAL PURPOSE HYBRID AMPLIFIERS

MAXIMUM RATINGS

Rating	Symbol	MWA110	MWA120	MWA130	Unit	
RF Input Power	Pin	100			mW	
DC Supply Current	ID	25	55	100	mA	
Maximum Case Temperature	TC	125			°C	
Storage Temperature Range	T _{stg}	-65 to +200			°C	

OPERATING CONDITIONS

Device Voltage	VD	2.9	5.0	5.5	Vdc
Device Current	ID	10	25	60	mAdc
Decoupling Impedance	ZD	1000	1000	330	Ω

ELECTRICAL CHARACTERISTICS ($T_C = -25 \text{ to } +125^{\circ}\text{C}$, 50 Ω system and specified operating conditions.)

Charac	teristic	Symbol	Min	Тур	Max	Unit
Frequency Range		BW	0.1		400	MHz
Power Gain		Gp	13	14	_	dB
Response Flatness		F		0	±1.0	dB
Input VSWR	MWA110/120 MWA130			=	2.5:1 3:1	
Output VSWR	MWA110/120/130	_	_		2.5:1	_
Output @ 1.0 dB Gain Compression	MWA110 MWA120 MWA130	7	02	-2.5 +8.2 +18	=	dBm
Noise Figure	MWA110 MWA120 MWA130	NF		4.0 5.5 7.0	_	dB
Reverse Isolation	MWA110 MWA120 MWA130	PRI	=	18.8 19.2 16.8	_	dB
Harmonic Output	MWA110 ($P_{out} = -9.0 \text{ dBm}$) MWA120 ($P_{out} = 0 \text{ dBm}$) MWA130 ($P_{out} = +10 \text{ dBm}$)	d _{so}	=	- 24 - 34 - 35	=	dB

FIGURE 1 – DEVICE VOLTAGE versus DEVICE CURRENT

10

8.0

6.0

6.0

MWA120

MWA130

2.0

0

20

40

60

80

100

120

140

Indicate Current (made)

MWA110 • MWA120 • MWA130

FIGURE 5 — POWER GAIN versus CASE TEMPERATURE f = 100 MHz

FIGURE 6 — POWER GAIN versus CASE TEMPERATURE f = 400 MHz

FIGURE 7 - VSWR versus FREQUENCY

FIGURE 8 - VSWR versus FREQUENCY

FIGURE 9 – VSWR versus FREQUENCY

FIGURE 10 – INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA110

FIGURE 11 – INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA120

FIGURE 12 – INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA130

FIGURE 13 - 1.0 dB GAIN COMPRESSION versus FREQUENCY

MWA110 • MWA120 • MWA130

FIGURE 14 — 1.0 dB GAIN COMPRESSION versus DEVICE CURRENT f = 400 MHz

FIGURE 15 - 1.0 dB GAIN COMPRESSION versus CASE TEMPERATURE

FIGURE 16 - NOISE FIGURE versus FREQUENCY 10 8.0 (qB) NF, NOISE FIGURE 6.0 MWA120 MWA110 4.0 2.0 0 L 200 400 600 800 1000

FIGURE 17 - REVERSE ISOLATION versus FREQUENCY

FIGURE 18 - SECOND HARMONIC OUTPUT versus FREQUENCY

f, FREQUENCY (MHz)

FIGURE 19 — SECOND AND THIRD ORDER INTERCEPT MWA110

FIGURE 20 – SECOND AND THIRD ORDER INTERCEPT MWA120

FIGURE 21 – SECOND AND THIRD ORDER INTERCEPT MWA130

FIGURE 22 – INTERMODULATION DISTORTION versus POWER OUTPUT

FIGURE 23 – INTERMODULATION DISTORTION versus POWER OUTPUT

FIGURE 24 – INTERMODULATION DISTORTION versus POWER OUTPUT MWA130

FIGURE 25 - GROUP DELAY versus FREQUENCY

-

MWA SERIES HYBRID AMPLIFIER APPLICATIONS INFORMATION

The MWA series hybrid amplifiers are designed for wideband general purpose applications in 50 Ω systems. Fully cascadable for any gain combination, operable at voltages as low as 3 Vdc, and external control of the low frequency corner make the MWA amplifiers extremely versatile gain blocks.

Basic Circuit Configuration

Figure 26 shows the basic internal circuit. It is important to note that the specified operating conditions of voltage, current, and external decoupling impedance must be applied to the units in order to achieve the published electrical characteristics.

FIGURE 26 - INTERNAL CIRCUIT

Amplifier Application

The circuit schematic for a simple amplifier design is shown in Figure 27. External to the MWA hybrid amplifier the only components required are:

Decoupling elements — Bypass Capacitor
Decoupling Impedance
(resistor/inductor)

DC Blocking Capacitors at the RF input and output.

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to the 50 Ω load impedance to minimize RF gain reduction. The loss in gain due to the decoupling impedance is given by the equation:

$$Loss = 20 Log \frac{Z_D}{Z_D + 25} dB$$

where Z_D = decoupling impedance in ohms. For example, if Z_D = 1 k Ω , Loss = 0.214 dB.

FIGURE 27 - AMPLIFIER SCHEMATIC DIAGRAM

Supply Voltage

The value of the external decoupling resistive impedance (R_D) determines the supply voltage (+V_{CC}) and is determined by the following equation:

$$V_{CC} = R_D \times I_D + V_D$$

where I_D and V_D are the device current and voltage stated in the data sheet. For example, for MWA110,

$$I_D = 10 \text{ mA}$$

 $V_D = 2.9 \text{ V}$

and, if $R_D = 330 \Omega$, then

More commonly V_{CC} is predetermined and R_D may be calculated from:

$$R_D = \frac{V_{CC} - V_D}{I_D}$$

If an RF choke is used for decoupling, then the supply voltage (V_{CC}) required is equal to the device voltage (V_D).

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired 3 dB low frequency corner (fLFC).

$$C_{\mathsf{Block}}(\mathsf{Farads}) = \frac{1}{100 \, \pi \, \mathsf{fLFC}(\mathsf{Hz})}$$

Bypass Capacitor

The reactive impedance of the bypass capacitor should be small compared to the impedance of the decoupling element at the lowest frequency of operation.

FIGURE 28 - TEST FIXTURE

Note. The circuitry indicated is on the underside of the printed circuit board with sockets for the amplifier pins. The case of the amplifier should contact the printed circuit board top surface to ensure effective RF grounding.

Text Fixture

The 50 Ω input/output impedance levels of the MWA hybrids are most easily preserved on a circuit board by using 50 Ω microstrip transmission lines. Figure 28 is an example of a circuit board layout which utilizes microstrip transmission lines in conjunction with other sound RF construction techniques.

The characteristic impedance and corresponding line width of the microstrip are a function of the circuit board dielectric constant and thickness. The table lists appropriate line widths for 50 Ω microstrip lines on commonly used circuit board materials.

MATERIAL TYPE	DIELECTRIC CONSTANT	DIELECTRIC THICKNESS INCHES	LINE WIDTH INCHES
Teflon- Fiberglass	2.5	0.03125 0.0625	0.090 0.180
Fiberglass Epoxy	5.0	0.0625	0.100

As in all good RF circuit designs, care should be taken to minimize parasitic lead inductances and to provide adequate grounding.

FIGURE 29 - TYPICAL CASCADE

Cascading

The inherent stability of the MWA hybrid modules makes possible the cascading of two or more units with no oscillatory problems. Figure 29 shows a typical 3 hybrid cascade with measured data for 400 MHz and 1000 MHz hybrids.

	Cascade 1	Cascade 2
Frequency Range	0.25 to 400 MHz	0.25 to 1000 MHz
Gain	43.5 dB	20.5 dB
Gain Flatness	± 1.0 dB	± 0.75 dB
Input VSWR	2.0:1	2.4:1
Output VSWR	1.2:1	2.1:1
V _{CC} Supply	12 Vdc	33 Vdc
Supply	44 mAdc	150 mAdc
MWA #1	MWA110	MWA320
MWA #2	MWA110	MWA330
MWA #3	MWA120	MWA330
R1	1000 Ω	1000 Ω
R2	1000 Ω	500 Ω
R3	300 Ω	500 Ω

MWA210 MWA220 MWA230

CASE 31A-01, STYLE 2

GENERAL PURPOSE HYBRID AMPLIFIERS

MAXIMUM RATINGS

		Value			
Rating	Symbol	MWA210	MWA220	MWA230	Unit
RF Input Power	Pin		100		mW
DC Supply Current	ID	25	55	100	mA
Maximum Case Temperature	TC		125		°C
Storage Temperature Range	T _{stg}		65 to +2	00	°C

OPERATING CONDITIONS

Device Voltage	V _D	1.75	3.2	4.4	Vdc
Device Current	ID	10	25	60	mAdc
Decoupling Impedance	ZD	1000	1000	330	Ω

ELECTRICAL CHARACTERISTICS ($T_C = -25 \text{ to } +100^{\circ}\text{C}$, 50 Ω system and specified operating conditions.)

Chara	cteristic	Symbol	Min	Тур	Max	Unit	
Frequency Range		BW	0.1	BW 0.1 — 600	-	600	MHz
Power Gain	The product of the contract of	Gp	9.0	10	_	dB	
Response Flatness		F	_	0	± 1.0	dB	
Input VSWR	MWA210/220 MWA230	_	=	Ξ	2.5:1 3:1	=	
Output VSWR	MWA210/220/230	_	_	_	2.5:1	_	
Output @ 1.0 dB Gain Compression	MWA210 MWA220 MWA230			+ 1.5 + 10.5 + 18.5	=	dBm	
Noise Figure	MWA210 MWA220 MWA230	NF		6.0 6.5 7.5	=	dB	
Reverse Isolation	MWA210 MWA220 MWA230	PRI	=	13.5 14.5 12.9	=	dB	
Harmonic Output	MWA210 (P _{out} = -9.0 dBm) MWA220 (P _{out} = 0 dBm) MWA230 (P _{out} = +10 dBm)	d _{SO}	=	-29 -36 -36	=	dB	

FIGURE 1 — DEVICE VOLTAGE versus DEVICE CURRENT

10

8.0

8.0

MWA230

MWA220

MWA210

0

2.0

MWA210

10, DEVICE CURRENT (mAdc)

12 MWA210 11 POWER GAIN (dB) MWA220 MWA230 9.0 8.0 40 0 20 60 80 120 140 ID. DEVICE CURRENT (mAdc)

MWA210 ● MWA220 ● MWA230

FIGURE 5 – POWER GAIN versus CASE TEMPERATURE f = 100 MHz

FIGURE 6 - POWER GAIN VERSUS CASE TEMPERATURE

FIGURE 7 - VSWR versus FREQUENCY

FIGURE 8 – VSWR versus FREQUENCY MWA220

FIGURE 9 – VSWR versus FREQUENCY MWA230

MWA210 • MWA220 • MWA230

FIGURE 10 - INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA210

FIGURE 11 – INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA220

FIGURE 12 – INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA230

FIGURE 13 - 1.0 dB GAIN COMPRESSION versus FREQUENCY

FIGURE 14 - 1.0 dB GAIN COMPRESSION

FIGURE 15 - 1.0 dB GAIN COMPRESSION versus CASE TEMPERATURE f = 600 MHz

FIGURE 16 - NOISE FIGURE versus FREQUENCY

FIGURE 17 - REVERSE ISOLATION versus FREQUENCY

FIGURE 18 - SECOND HARMONIC OUTPUT versus FREQUENCY

FIGURE 19 – SECOND AND THIRD ORDER INTERCEPT

FIGURE 20 – SECOND AND THIRD ORDER INTERCEPT
MWA220

FIGURE 21 – SECOND AND THIRD ORDER INTERCEPT MWA230

FIGURE 22 – INTERMODULATION DISTORTION versus POWER OUTPUT MWA210

FIGURE 23 – INTERMODULATION DISTORTION versus POWER OUTPUT MWA220

FIGURE 24 — INTERMODULATION DISTORTION versus POWER OUTPUT MWA230

FIGURE 25 - GROUP DELAY versus FREQUENCY

MWA310 MWA320 MWA330

CHERRY OF THE AWAY OF THE

CASE 31A-01, STYLE 2

GENERAL PURPOSE HYBRID AMPLIFIERS

MAXIMUM RATINGS

		Value			
Rating	Symbol	MWA310	MWA320	MWA330	Unit
RF Input Power	Pin		100		mW
DC Supply Current	ID	25	55	100	mA
Maximum Case Temperature	TC	34	125		°C
Storage Temperature Range	T _{stg}	_	65 to +2	00	°C

OPERATING CONDITIONS

Device Voltage	VD	1.6	2.9	4.0	Vdc
Device Current	I _D	10	25	60	mAdc
Decoupling Impedance	ZD	1000	1000	330	Ω

ELECTRICAL CHARACTERISTICS ($T_C = -25$ to $+80^{\circ}$ C, 50Ω system and specified operating conditions.)

Ch	aracteristic	Symbol	Min	Тур	Max	Unit
Frequency Range		BW	0.1		1000	MHz
Power Gain	MWA310/320 MWA330	Gp	7.0	8.0 6.2		dB
Response Flatness	y comments to the dealers and the	F		0	±1.0	dB
Input VSWR		40-1			3:1	
Output VSWR	to be because of	-	_		3:1	_
Output @ 1.0 dB Gain Compressio	n MWA310 MWA320 MWA330	-	=	+3.5 +11.5 +15.2	111	dBm
Noise Figure	MWA310 MWA320 MWA330	NF		6.5 6.7 9.0	111	dB
Reverse Isolation	MWA310 MWA320 MWA330	PRI	=	10.4 10.4 9.0	111	dB
Harmonic Output	MWA310 (P _{out} = -9.0 dBm) MWA320 (P _{out} = 0 dBm) MWA330 (P _{out} = +10 dBm)	d _{SO}	=	-30 -38 -35	=	dB

FIGURE 5 — POWER GAIN versus CASE TEMPERATURE f = 100 MHz

FIGURE 6 - POWER GAIN versus CASE TEMPERATURE

FIGURE 7 – VSWR versus FREQUENCY

FIGURE 8 - VSWR versus FREQUENCY

FIGURE 9 — VSWR versus FREQUENCY

FIGURE 10 — INPUT IMPEDANCE versus FREQUENCY MWA310

FIGURE 11 — OUTPUT IMPEDANCE versus FREQUENCY MWA310

FIGURE 12 – INPUT IMPEDANCE versus FREQUENCY MWA320

FIGURE 13 — OUTPUT IMPEDANCE versus FREQUENCY MWA320

FIGURE 14 - INPUT IMPEDANCE versus FREQUENCY

FIGURE 15 — OUTPUT IMPEDANCE versus FREQUENCY MWA330

FIGURE 16 - 1.0 dB GAIN COMPRESSION versus FREQUENCY

FIGURE 17 – 1.0 dB GAIN COMPRESSION versus DEVICE CURRENT f = 1000 MHz

FIGURE 18 — 1.0 dB GAIN COMPRESSION versus CASE TEMPERATURE

FIGURE 19 - NOISE FIGURE versus FREQUENCY

FIGURE 20 - REVERSE ISOLATION versus FREQUENCY

FIGURE 21 - SECOND HARMONIC OUTPUT versus FREQUENCY

FIGURE 22 – SECOND AND THIRD ORDER INTERCEPT MWA310

FIGURE 23 — SECOND AND THIRD ORDER INTERCEPT MWA320

FIGURE 25 – INTERMODULATION DISTORTION versus POWER OUTPUT

FIGURE 27 – INTERMODULATION DISTORTION versus POWER OUTPUT

FIGURE 24 – SECOND AND THIRD ORDER INTERCEPT
MWA330

FIGURE 26 – INTERMODULATION DISTORTION versus POWER OUTPUT MWA320

FIGURE 28 – GROUP DELAY versus FREQUENCY MWA310/MWA320/MWA330

7

MWA SERIES HYBRID AMPLIFIER APPLICATIONS INFORMATION

The MWA series hybrid amplifiers are designed for wideband general purpose applications in 50 Ω systems. Fully cascadable for any gain combination, operable at voltages as low as 3 Vdc, and external control of the low frequency corner make the MWA amplifiers extremely versatile gain blocks.

Basic Circuit Configuration

Figure 29 shows the basic internal circuit. It is important to note that the specified operating conditions of voltage, current, and external decoupling impedance must be applied to the units in order to achieve the published electrical characteristics.

FIGURE 29 - INTERNAL CIRCUIT

Amplifier Application

The circuit schematic for a simple amplifier design is shown in Figure 30. External to the MWA hybrid amplifier the only components required are:

Decoupling elements — Bypass Capacitor
Decoupling Impedance
(resistor/inductor)
DC Blocking Capacitors at the RF input and output.

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to the 50 Ω load impedance to minimize RF gain reduction. The loss in gain due to the decoupling impedance is given by the equation:

$$Loss = 20 Log \frac{Z_D}{Z_D + 25} dB$$

where Z_D = decoupling impedance in ohms. For example, if Z_D = 1 $k\Omega,\,Loss$ = 0.214 dB.

FIGURE 30 - AMPLIFIER SCHEMATIC DIAGRAM

Supply Voltage

The value of the external decoupling resistive impedance (R_D) determines the supply voltage (+V_{CC}) and is determined by the following equation:

$$V_{CC} = R_D \times I_D + V_D$$

where I_D and V_D are the device current and voltage stated in the data sheet. For example, for MWA110,

$$I_D = 10 \text{ mA}$$

 $V_D = 2.9 \text{ V}$

and, if RD = 330 Ω , then

More commonly V_{CC} is predetermined and R_D may be calculated from:

$$R_D = \frac{V_{CC} - V_D}{I_D}$$

If an RF choke is used for decoupling, then the supply voltage (V_{CC}) required is equal to the device voltage (V_D).

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired 3 dB low frequency corner (fLFC).

$$C_{\mathsf{Block}}(\mathsf{Farads}) = \frac{1}{100 \,\pi \,\mathsf{fLFC}(\mathsf{Hz})}$$

Bypass Capacitor

The reactive impedance of the bypass capacitor should be small compared to the impedance of the decoupling element at the lowest frequency of operation.

FIGURE 31 – TEST FIXTURE Grounding Screws Circuit Board Mounted on Aluminum Block (Ceramic Chip) Bypass Capacitor (Ceramic Chip) Bypass Capacitor (Ceramic Chip)

Note: The circuitry indicated is on the underside of the printed circuit board with sockets for the amplifier pins. The case of the amplifier should contact the printed circuit board top surface to ensure effective RF grounding.

Text Fixture

The 50 Ω input/output impedance levels of the MWA hybrids are most easily preserved on a circuit board by using 50 Ω microstrip transmission lines. Figure 31 is an example of a circuit board layout which utilizes microstrip transmission lines in conjunction with other sound RF construction techniques.

The characteristic impedance and corresponding line width of the microstrip are a function of the circuit board dielectric constant and thickness. The table lists appropriate line widths for 50 Ω microstrip lines on commonly used circuit board materials.

MATERIAL TYPE	DIELECTRIC CONSTANT	DIELECTRIC THICKNESS INCHES	LINE WIDTH INCHES
Teflon- Fiberglass	2.5	0.03125 0.0625	0.090 0.180
Fiberglass-	5.0	0.0625	0.100

As in all good RF circuit designs, care should be taken to minimize parasitic lead inductances and to provide adequate grounding.

FIGURE 32 - TYPICAL CASCADE

Cascading

The inherent stability of the MWA hybrid modules makes possible the cascading of two or more units with no oscillatory problems. Figure 32 shows a typical 3 hybrid cascade with measured data for 400 MHz and 1000 MHz hybrids.

	Cascade 1	Cascade 2
Frequency Range	0.25 to 400 MHz	0.25 to 1000 MHz
Gain	43.5 dB	20.5 dB
Gain Flatness	± 1.0 dB	± 0.75 dB
Input VSWR	2.0:1	2.4:1
Output VSWR	1.2:1	2.1:1
VCC Supply	12 Vdc	33 Vdc
Supply	44 mAdc	150 mAdc
MWA #1	MWA110	MWA320
MWA =2	MWA110	MWA330
MWA =3	MWA120	MWA330
R1	1000 Ω	1000 Ω
R2	1000 Ω	500 Ω
R3	300 Ω	500 Ω

The following pages contain information on the various packages referenced on the individual data sheets. Information includes: a picture of the package, dimensions in both millimeters and inches, the various pinout configurations (styles), a cross reference for Case numbers, "old" JEDEC "TO" numbers, and the new JEDEC "TO" designation.

Additionally, abstracts of available application notes are provided. Please contact your local sales representative for those desired.

Package Outline
Dimensions
and Application Information

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	5.31	5.84	0.209	0.230
В	4.52	4.95	0.178	0.195
C	4.32	5.33	0.170	0.210
D	0.41	0.53	0.016	0.021
E	-	0.76	-	0.030
F	0.41	0.48	0.016	0.019
G	2.54 BSC		0.100 BSC	
Н	0.91	1.17	0.036	0.046
J	0.71	1.22	0.028	0.048
K	12.70	-	0.500	-
L	6.35	-	0.250	1-7
M	45°BSC		45° BSC	
N	1.27 BSC		0.050 BSC	
P		1.27	-	0.050

ALL JEDEC dimensions and notes apply

CASE 20 STYLES

GATE DRAIN SUBSTRATE AND CASE LEAD STYLE 3 DRAIN SOURCE GATE CASE LEAD

STYLE 4 PIN 1. SOURCE GATE GATE 2 -SUBSTRATE AND CASE PIN 1. SOURCE 2. GATE 1 DRAIN CASE

PIN 1. DRAIN
2. SOURCE AND SUBSTRATE GATE SOURCE AND SUBSTRATE

DRAIN SOURCE GATE CASE AND SUBSTRATE EMITTER 2 BASE 1 COLLECTOR EMITTER 1 BASE 2

PIN 1. EMITTER 2. CATHODE 4. ANODE 1. ALL RULES AND

STYLE 10 PIN 1. EMITTER 2. BASE 3. COLLECTO

NOTES WITH TO-72 OUTLINE SHALL APPLY

DRAIN PIN 1.

GATE 2 GATE 1 SOURCE.

SUBSTRATE

COLLECTOR

AND CASE

CASE 22-03 TO-18 (TO-206AA)

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	5.31	5.84	0.209	0.230	
В	4.52	4.95	0.178	0.195	
C	4.32	5.33	0.170	0.210	
D	0.406	0.533	0.016	0.021	
E	-	0.762	-	0.030	
F	0.406	0.483	0.016	0.019	
G	2.54 BSC		0.100 BSC		
Н	0.914	1.17	0.036	0.046	
J	0.711	1.22	0.028	0.048	
K	12.70	-	0.500	-	
L	6.35	-	0.250	-	
M	45° BSC		450 BSC		
N	1.27 BSC		0.050 BSC		
D	_	1 27	-	0.050	

All JEDEC notes and dimensions apply

CASE 22 STYLES

STYLE 7
PIN 1. ANODE
2. BASE
3. CATHODE STYLE 8 PIN 1. GATE 2 ANODE 1 3 ANODE 2 STYLE 9
PIN 1. ANODE 2
2. ANODE 1
3. GATE
(CONNECTED TO
CASE) STYLE 10 PIN 1 BASE 2 EMITTER 3 BASE STYLE 11
PIN 1 DRAIN
2 GATE
3 SOURCE SUBSTRATE STYLE 12: PIN 1. SOURCE 2. GATE 3. DRAIN (CASE)

CASE 26-03 TO-46 (TO-206AB)

CASE 27-02 TO-52 (TO-206AC)

All JEDEC dimensions and notes apply.

OF TRUE POSITION AT SEATING
PLANE AT MAXIMUM MATERIAL CONDITION.

CASE 654 STYLES

Application Note Abstracts

(Application Notes are available upon request.)

AN-139A Understanding Transistor Response Parameters

This note explains high-frequency transistor response parameters and discusses their interdependence. Useful nomograms are given for determining $h_{\rm fe}$, $f_{\rm T}$, $f_{\rm ae}$, $f_{\rm max}$, and many other parameters.

AN-211A Field-Effect Transistors in Theory and Practice

The basic theory, construction, and application information for field-effect transistors (junction and MOS types) are given. Also included are some typical test circuits for checking FET parameters.

AN-215A RF Small-Signal Design Using 2-Port Parameters

Power gain and stability of high-frequency transistors may be completely described by two port parameters.

This paper presents a summary of the overall design solution for the small-signal RF amplifier using two-port parameters. Design considerations and relationships for both the stable and the potentially unstable transistor are presented together with a discussion of neutralized, unneutralized, matched, and mismatched amplifiers.

AN-267 Matching Network Designs with Computer Solutions

Computer solutions for four networks commonly used in solidstate high frequency amplifiers have been tabulated.

AN-268 Pulse Triggering of Radar Modulator SCR's

Factors involved in dynamic gate triggering are examined and

relations of gate triggering characteristics to variations of total current amplifications with gate current are shown.

AN-270 Nanosecond Pulse Handling Techniques in IC Interconnections

The rapid advancement in the field of high speed digital integrated circuits has brought into focus many problem areas in the methods of pulse measurement techniques and new concepts dealing with these problems. This paper is intended to discuss the more common, yet perhaps not well

AN-421 Semiconductor Noise Figure Considerations

A summary of many of the important noise figure considerations related with the design of low noise amplifiers is presented. The basic fundamentals involving noise, noise figure, and noise figure-frequency characteristics are then discussed with the emphasis on characteristics common to all semiconductors. A brief introduction is made to various methods of data sheet presentation of noise figure and a summary is given for the various methods of measurement. A discussion of low noise circuit design, utilizing many of the previously discussed considerations, is included.

EN-101 Verifying Collector Voltage Ratings

Methods of verifying the various voltage ratings given on transistor data sheets are described. Practical test circuits are given and testing problems are discussed. A detailed discussion of the avalanche breakdown mechanism and the significance of various voltage ratings is also included.

Discrete products are available from Motorola in three quality levels: Industrial/Commercial grade, Military grade, and Customer Specials.

This Reliability and Quality Assurance section contains information on final test and quality assurance processing. Included is a listing of Q.A. tests and the applicable MIL-STD methods relating to the above-noted quality levels.

High reliability (JAN, JANTX, JANTXV, and JANS) processing of transistors is outlined by using a processing and quality control flow chart.

A glossary of Reliability and Quality terms is also included.

Reliability and Quality Assurance

THE PROPERTY OF THE PROPERTY O

Reliability and Quality Assurance

Quality Levels

Most small-signal discrete products are available from Motorola in three quality levels:

- INDUSTRIAL/COMMERCIAL GRADE Identified by a part number prefix such as 2N, MM or MPS and tested to a published Motorola, JEDEC or Proelectron specification.
- MILITARY GRADE Identified by a 2N part number prefix, a JAN, JTX, JTXV or JANS suffix, and manufactured and tested per MIL-S-19500.
 - JAN Controlled lot with sample environmental and life testing
 - JTX Same as JAN plus 100% processing
 - JTXV Same as JTX plus 100% internal visual inspection
 - JANS— Same as JTXV plus wafer lot acceptance and additional 100% processing requirements.
- CUSTOMER SPECIAL Screening, testing and marking as determined by the customer to meet his particular requirements. This may range from a custom-marked industrial/commercial grade product to a hi-rel product which is subjected to a series of stringent inspections and tests to meet aerospace or special military requirements.

Final Test Processing

Device lots are subjected to 100% processing in Final Test. This processing may be as simple as electrical testing to data sheet specifications or as complex as a series of mechanical, environmental and burn-in screening tests preceded and followed by electrical readouts. All lots, whether industrial/commercial, military or hi-rel, are subjected to a minimum eight-hour storage bake at 150°C or 200°C.

Quality Assurance Processing

All products are transferred to QA where they are subjected to Group A electrical testing, usually to the same specifications used by Final Test. In the past, QA has primarily performed sample testing; but now, at Motorola, most small-signal metal can transistors are 100% electrical tested by QA, and when this expansion program is completed, all small-signal transistors will be subjected to 100% QA electrical testing. Military and hi-rel lots may undergo additional 100% screening in QA. Using the popular 2N2222A family as an example, Table 1 compares the varying degrees of preconditioning and screening that are done on the 2N2222A, 2N2222AJAN, 2N2222AJTX, 2N2222AJTXV and 2N2222AJANS transistors. QA randomly selects test samples for Group A. B and C testing as defined in MIL-S-19500. The individual tests are defined in MIL-STD-750. Tables 2 and 3 list the Group B and C test requirements for the 2N2222A military family.

TABLE 1 — 100% PRECONDITIONING AND SCREENING (2N2222A Family)

	Test	MIL-STD-750 Method	Condition	2N2222A 2N2222AJAN	2N2222AJTX 2N2222AJTXV	2N2222AJANS
1.	Electrical tests	_	go – no go	100%	100%	100%
2.	High temperature storage	1032	200°C, 24 hours	_	100%	100%
3.	Thermal shock	1051	C, 20 cycles	_	100%	100%
4.	Constant acceleration	2006	20,000 G, Y1	_	100%	100%
5.	Particle impact noise	2052	В	i—	_	100%
6.	Hermetic seal					
	fine leak	1071	G or H	_	100%	100%
	gross leak	1071	A, C, E or F	_	100%	100%
7.	Electrical tests	_	read & record	_	_	100%
8.	H.T. reverse bias	1039	150°C, 48 hours	_	100%	100%
9.	Electrical tests	_	read & record*	_	100%	100%
10.	Full-power burn-in	1039	25°C, 168 hours	_	100%	_
11.	Full-power burn-in	1039	25°C, 240 hours	_	_	100%
12.	Electrical tests	_	read & record*	_	100%	100%
13.	Hermetic seal					
	fine leak	1071	G or H	_	100%	100%
	gross leak	1071	A, C, E or F	_	100%	100%
14.	X-ray	2076	_	_	_	100%
15.	External visual	2071	_	_	_	100%

^{*}Bin & cell may be used for JTX and JTXV product

TABLE 2 — GROUP B TESTS (2N2222AJAN/JTX/JTXV/JANS)

Inspection or Test	MIL-STD-750 Method	Condition	LTPD (Accept No.) and Military Classification	
SUBGROUP LTPD		No. of Contract of	10 (0)	
Physical dimensions SUBGROUP LTPD	2066		JANS 15(1)	
2. Solderability	2026	_	ALL	
3. Solvent resistance SUBGROUP LTPD	1022	_	ALL 10 (1)	
4. Thermal shock	1051	C1, 25 cycles	JAN, JTX, JTXV	
Thermal shock	1051	C3, 100 cycles	JANS	
5. Hermetic seal				
fine leak	1071	G or H	ALL	
gross leak	1071	A, C, E or F	ALL	
Decap internal visual	2075	_	JANS	
7. Bond strength	2037	Α	JANS	
Die shear SUBGROUP LTPD	2017	_	JANS 5 (2)	
9. Operating life SUBGROUP LTPD	1027	25°C, 340 hours	JAN, JTX, JTXV 20 (0)	
Decap internal visual	2075	_	JAN, JTX, JTXV	
Bond strength SUBGROUP LTPD	2037	A	JAN, JTX, JTXV 10 (2)	
Intermittent operating life SUBGROUP LTPD	1037	25°C, 2000 cycles	JANS 10 (2)	
Accelerated operating life	1027	125°C, 96 hours	JANS	
SUBGROUP LTPD			7 (2)	
4. High-temperature storage life	1032	200°C, 340 hours	JAN, JTX, JTXV	

TABLE 3 — GROUP C TESTS (2N2222AJAN/JTX/JTXV/JANS)

Inspection or Test	MIL-STD-750 Method	Condition	LTPD (Accept No.) and Military Classification	
SUPGROUP LTPD			15 (1)	
Physical dimensions SUBGROUP LTPD	2066	_	ALL 10 (1)	
2. Thermal shock	1056	A	ALL	
3. Terminal strength	2036	E	ALL	
Hermetic seal fine leak gross leak	1071 1071	G or H A, C, E or F	ALL ALL	
5. Moisture resistance	1021	Omit initial precond.	ALL	
6. External visual SUBGROUP LTPD	2071	—	ALL 10 (1)	
7. Shock	2016	1500G	ALL	
Variable-frequency vibration	2056	100-2000 Hz	ALL	
Constant acceleration SUBGROUP LTPD	2006	20,000 G	ALL 15 (1)	
10. Salt atmosphere SUBGROUP LTPD	1041	_	ALL 10 (1)	
11. Operating life	1026	25°C, 1000 hours	ALL	

High Reliability Processing of Transistors

I WAFER PROCESSING

After wafers are processed, they are subjected to Motorola visual inspection requirements and overlay geometry wafers are subjected to a sample SEM inspection to assure good step coverage. The wafers are then probed to electrical requirements and the rejects are inked. Finally, they are sawn and separated to form the individual dice.

II ASSEMBLY

The die are attached to headers and then wire bonded. The following mechanical tests are performed by Quality Control inspectors on a sample basis to ensure assembly process controls.

- (1) Wire pull tests

(2) Die push off tests
Units are stored in dry air until ready for capping.

III CAN WELD OR LID SEAL

Completed headers are loaded into a vacuum chamber for can weld or processed thru a furnace for top attachments on ceramic packages. All devices are subjected to a high temperature storage (stabilization bake) prior to final electrical test.

PROCESSING AND QUALITY CONTROL FLOW CHART

VII SCANNING ELECTRON MICROSCOPE

All JANS product with overlay geometry requires a SEM inspection per MIL-STD-750, method 2077. To assure good metallization step coverage, Motorola monitors all overlay geometry transistor wafer lines whether or not it is required.

XII CUSTOMER SPECIFIED PROCESSING

Screening, testing and marking as determined by the customer to meet his particular requirements, which may range from a custom-marked standard product to a hi-rel product that is subjected to the most stringent tests for aerospace or military applications.

VIII 100% HIGH POWER DIE VISUAL

The high power portion of the inspection is performed to assure good die construction and front metal conditions. Individual reject criteria includes the following: Metallization defects such as scratches, voids, corrosion, adherence, bridging and alignment. Poor die construction conditions such as oxide and faults are also rejected.

IX 100% LOW POWER ASSEMBLY VISUAL

The low power visual inspection controls workmanship, i.e., die attachment, internal lead-wire attachment, and package defects. Die attachment inspection includes assuring good watting, die placement and proper orientation. Internal lead wires must have proper arc and all attachment bonds must be properly placed and in good condition. Package defect inspection includes checking for foreign material, improper construction and cracked

IV 100% FINAL ELECTRICAL TEST

Completed devices are subjected to 100% testing to electrical requirements. When different devices are sourced from a single product line, they are sorted for voltage and gain.

V QUALITY CONTROL

Although it has been traditional for QA to perform sample testing. today most small-signal metal can transistors are 100% electrical tested by QA. Soon, all transistors will be 100% tested by QA. Group A and B tests are performed on JAN devices. Group A and B tests and 100% processing are performed on JANTX, JANTXV and JANS devices. Group C testing is required on a

VI WAREHOUSE

Upon completion, the finished product is ready for shipping. Purchase order requirements are carefully checked again prior to shipping. Warranty tests (Group A) are performed every 24 months on military devices.

X 100% QUALITY CONTROL PROCESSING

- High-temperature storage
- Thermal shock
- Constant acceleration
- Particle impact noise (JANS) Hermetic seal
- High-temperature reverse bias
- Full-power burn-in
- X-ray (JANS) External visual (JANS)
- Read and record parameters

XI GROUP B AND GROUP C INSPECTION

- Physical dimensions
- Solderability
- Solvent resistance Thermal shock
- Hermetic seal
- Decap internal visual
- g. h. Bond strength Die shear
- 340 hr. operating life
- Intermittent operating life (JANS)
- (JANS) 340 hr. storage life

- Typical Group B Processing Typical Group C Processing
 - Physical dimensions
 - a. Thermal shock
 - C. Terminal strength
 - d. Hermetic seal
 - Moisture resistance e.
 - External visual
 - g. Shock Variable-frequency vibration
 - Constant acceleration Salt atmosphere
 - k. 1000 hr. operating life

Test Descriptions

The following tests are frequently used for screening, acceptance and evaluation of semiconductor devices.

A. Steady State Operating Life (SSOL)

The purpose of this test is to evaluate the bulk stability of the die and to generate defects resulting from manufacturing aberrations that are manifested as time and stressdependent failures.

Conditions: TA = 25°C, PD = max rated power

B. Intermittent Operating Life (IOL)

The purpose of this test is the same as Operating Life in addition to checking the integrity of both the wire and die bonds by means of thermal stressing.

Conditions: $T_A = 25^{\circ}C$, PD = max rated power. $T_{(on)} = T_{(off)} = 1$ min.

C. High Temperature Storage Life

The purpose of this test is to generate time/temperature failure mechanisms and to evaluate long-term storage stability.

Conditions: TA = 150°C no bias applied

D. High Temperature Reverse Bias (HTRB)

The purpose of this test is to align mobile ions by means of temperature and voltage stresses to form a high-current leakage path between two or more terminals.

Conditions: TA = 150°C, VCB = 80% max rated VCB,

E. High Temperature High Humidity Reverse Bias (H³TRB)

The purpose of this test is to evaluate the moisture resistance of non-hermetic components. The addition of voltage bias accelerates the corrosive effect after moisture penetration has taken place. With time, this is a catastrophically destructive test.

Conditions: $T_A = 85^{\circ}C$, RH = 85%, $V_{CB} = 80\%$ max rated V_{CB} ,

F. Moisture Resistance

The purpose of this test is to evaluate the moisture resistance of components under temperature/humidity conditions typical of tropical environments.

Conditions: Mil-Std-750, Method 1021.

G. Pressure Cooker

The purpose of this test is to evaluate the moisture resistance of non-hermetic components under pressure/temperature conditions.

Conditions: T = 121°C, P = 1 atmosphere (15 psig)

H. Temperature Cycle (Air to Air)

The purpose of this test is to evaluate the ability of the device to withstand both exposure to extreme temperatures and the transition between temperature extremes, and to expose excessive thermal mismatch between materials.

Conditions: Mil-Std-750, Method 1051, -55°C to 150°C, 15 minutes dwell time at each temperature

I. Thermal Shock (Liquid to Liquid)

This test is an accelerated version of temperature cycle.

Conditions: Mil-Std-750, Method 1056, 0°C to 100°C, 15 seconds dwell time at each temperature

J. Terminal Strength

The purpose of this test is to evaluate the ability of the device terminals to withstand the lead forming and tension associated with component installation into a circuit.

Conditions: Mil-Std-750, Method 2036, Condition E.

K. Solderability

The purpose of this test is to determine the solderability of the device terminals.

Conditions: Mil-Std-750, Method 2026,

L. Salt Atmosphere (Corrosion)

The purpose of this test is to accelerate the corrosion effects of an environment in which salt (NaC1) is present.

Conditions: Mil-Std-750, Method 1041

M. Mechanical Stress Tests

Vibration, shock and constant acceleration tests are infrequently used since they rarely generate failures in small-signal transistors. However, they are still specified for acceptance of military product.

Glossary of Reliability and Quality Terms

Acceptable Quality Level (AQL) — A measure of quality for which a given lot will be accepted most of the time. This is usually established at a probability of acceptance equal to 95%. It is referred to as the producer's risk because the probability of rejecting a good lot is 5%.

Acceptance Number (Ac) — The largest number of defectives in an inspection sample under consideration that will permit acceptance of the lot.

Acceptance Tests — Tests to determine conformance to specification requirements as a basis for lot acceptance.

Average Outgoing Quality (AOQ) — The average quality of outgoing product after 100% screening of rejected lots. This is usually measured in parts per million (PPM).

Average Outgoing Quality Limit (AOQL) — The maximum average outgoing quality that is possible for a given sampling plan.

Defect — Any deviation of a device that does not conform to specified requirements. One device may contain more than one defect.

Defective - A device which contains one or more defects.

Double Sampling — Sampling inspection in which the inspection of the first sample leads to a decision to accept, to reject, or to take a second sample. The inspection of a second sample, when required, always leads to a decision to accept or to reject.

Failure — The inability of a device to perform a specified function within previously-established limits.

Failure Rate — The statistical probability of a failure occurring within a stated period of time. For electronic components it is usually assumed that failures follow an exponential distribution, in which case the failure rate over any stated period of time is constant. The failure rate of semiconductor devices is generally given in percent per thousand hours.

Infant Mortality — Premature failures occurring at a failure rate substantially greater than that observed during subsequent life prior to wear-out.

Lot — A group of devices from which samples are drawn and inspected to determine compliance with acceptance criteria (inspection lot).

Lot Tolerance Percent Defective (LTPD) — A measure of quality for which a given lot will be rejected most of the time. This is usually established at a probability of acceptance equal to 10%. It is referred to as the consumer's risk because the probability of accepting a bad lot is 10%.

Mean Time Between Failures (MTBF) — The total measured operating time of a group of equipments divided by the total number of failures of a repairable equipment. In the case of an exponential failure distribution, this ratio is the reciprocal of failure rate.

Operating Characteristic Curve (OC curve) — A graph of the probability of acceptance as a function of the lot quality or process average quality, whichever is applicable.

Percent Defective — The number of defective devices in a lot divided by the total number of devices in that lot, multiplied by 100.

Probability of Acceptance (Pa) — The fractional probability that a lot will be accepted, usually expressed as a decimal.

Process Average Quality — The expected quality of product from a given process, usually estimated from first sample results of previous inspection lots.

Quality — A measure of the degree to which a product conforms to specification and workmanship requirements.

Rejection Number (Re) — The smallest number of defectives in an inspection sample under consideration that will prevent acceptance of the lot.

Reliability — A measure of the performance of a product over a specified period of time.

Sample — One or more devices selected at random from an inspection lot to represent that lot for acceptance purposes.

Sampling Plan — A specific plan which defines the sample size and the criteria for accepting or rejecting a lot.

Screening Tests — Tests employing nondestructive environmental, electrical, thermal and/or mechanical stresses, for the purpose of identifying anomalous devices.

Single Sampling — Sampling inspection in which a decision to accept or to reject is reached after the inspection of a single sample.

Wearout Failures — Those failures which occur as a result of deterioration processes and whose probability of occurrence increases with time.

100% Inspection — Inspection of every device, in which each device is accepted or rejected individually for the characteristic concerned, on the basis of its own inspection only.

- 1 Selector Guides
- Plastic-Encapsulated TO-92 Transistors
- Microminature Products
- Metal
 Transistors
- 5 Multiple Transistors
- 6 Field-Effect Transistors
- 7 RF Transistors
- Package Outline
 Dimensions and
 Application Literature
- 9 Reliability and Quality Assurance

MOTOROLA Semiconductor Products Inc.

BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.