电子科技大学研究生人学考试 高等代数 835

模拟(八) 满分: 150 分 用时: 210 分钟

填空题 (10*3' = 30')

- 1. 若多项式 f(x) 除以 x-2 的余式为 3, 除以 x-3 的余式为 4, 则除以 x^2-5x+6 的余式为?
- 2. 四阶行列式 D_4 的第三行元素为 -1,0,2,3, 其第四行对应的余子式分别为 5,10,a,5, 则 a=?.
- 3. 设 $\alpha, \beta, \gamma_2, \gamma_3, \gamma_4$ 均为四维行向量,四阶矩阵 $A = \begin{pmatrix} \alpha \\ 2\gamma_2 \\ \gamma_3 \\ 3\gamma_4 \end{pmatrix}$, $B = \begin{pmatrix} \beta \\ \gamma_2 \\ \gamma_3 \\ 2\gamma_4 \end{pmatrix}$,且 $|A| = \begin{pmatrix} \alpha \\ 2\gamma_2 \\ \gamma_3 \\ 2\gamma_4 \end{pmatrix}$ 2, |B| = 1° $\Re |2A - B| = ?$.
- 4. 若实对称阵 A 与矩阵 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$ 合同,则二次型 $x^T A x$ 的正惯性指数为?
- 5. 已知 $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2,β_3 是三维向量空间的两组基,若向量 γ 在这两组基下的 坐标分别为 $(x_1,x_2,x_3)^T,(y_1,y_2,y_3)^T$,且 $y_1=x_1,y_2=x_1+x_2,y_3=x_1+x_2+x_3$ 。求由基 $\alpha_1,\alpha_2,\alpha_3$ 到 β_1,β_2,β_3 的过度矩阵?
- 6. 已知 P 是数域,向量空间 P^3 的线性变换 σ 为:

$$\sigma(a, b, c) = (a + 2b - c, b + c, a + b - 2c).$$

则该线性变换的秩为? 其是否可以对角化?

7. 在 ℝ² 中定义内积:

$$\forall X=(x_1,x_2), Y=(y_1,y_2), < X,Y>=3x_1y_1+x_2y_2$$
求向量 $\alpha=(1,1), \beta=(0,2)$ 的夹角余弦值 $\cos<\alpha,\beta>=?$

8. 矩阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & a \\ 1 & 0 & 1 \end{pmatrix}$$
 可对角化,求 $a = ?$ 以及 A 的最小多项式?

解答题

1. (15) 矩阵:

$$A_{n+1} = \begin{pmatrix} (a_0 + b_0)^n & (a_0 + b_1)^n & \cdots & (a_0 + b_n)^n \\ (a_1 + b_0)^n & (a_1 + b_1)^n & \cdots & (a_1 + b_n)^n \\ \vdots & \vdots & \vdots & \vdots \\ (a_n + b_0)^n & (a_n + b_1)^n & \cdots & (a_n + b_n)^n \end{pmatrix}$$

1). 证明:

$$A_{n+1} = \begin{pmatrix} a_0^n & a_0^{n-1} & \cdots & 1 \\ a_1^n & a_1^{n-1} & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ a_n^n & a_n^{n-1} & \cdots & 1 \end{pmatrix} \begin{pmatrix} C_n^0 & & & \\ & C_n^1 & & \\ & & \cdots & \\ & & & C_n^n \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ b_0 & b_1 & \cdots & b_n \\ \vdots & \vdots & \vdots & \vdots \\ b_0^n & b_1^n & \cdots & b_n^n \end{pmatrix}$$

- 2). 求行列式 |A_{n+1}|.
- 2. (20) 设 n 阶方阵 $A=(\alpha_1,\alpha_2,\cdots,\alpha_n)$,若线性方程组 AX=b 有通解:

$$X = \eta_0 + k_1 \xi_1 + \dots + k_s \xi_s$$

其中 $\eta_0 = (1, 1, \dots, 1)^T, \xi_i = (1, 1, \dots, 1, 0, \dots, 0)^T$ (前面 $i \uparrow 1, i = 1, 2, \dots, s$)。 设:

$$B = (n\alpha_n, (n-1)\alpha_{n-1}, \cdots, 2\alpha_2, \alpha_1)$$

- 1). 若 B 可以写为 B = AC, 写出矩阵 C;
- 2). 求 BX = b 的通解;
- 3. (20) 已知二次曲面 $x^2 + ay^2 + z^2 + 2bxy + 2xz + 2yz = 4$ 可经正交变换化为椭圆柱 面方程 $y_1^2 + 4z_1^2 = 4$,求 a, b 及所作正交变换。
- 4. (15) 在二阶复矩阵上定义线性变换:

$$\sigma(X) = AX, A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

求 σ 的特征值,特征向量以及若尔当标准型。

- 5. (15) 已知 A 为 n 阶矩阵,多项式 $f(x) = \sum_{k=1}^{2021} \frac{x^k}{(k-1)!}$ 为矩阵 A 的零化多项式。证明:
 - 1). 记 $g(x) = \frac{f(x)}{x}$, 则 g(x) 无重根;
 - 2). A 可对角化;
- 6. (15) 设 σ 为 \mathbb{R}^3 上的线性变换, ϵ 为恒等变换。 σ 的特征多项式为 λ^3-1 ,记: $V_1=\{\alpha|(\sigma-\epsilon)\alpha=0\}, V_2=\{\alpha|(\sigma^2+\sigma+\epsilon)\alpha=0\}$ 。证明:
 - 1). V_1, V_2 均是 σ 的不变子空间;
 - 2). $\mathbb{R}^3 = V_1 \oplus V_2$;
- 7. (20) 已知 A, B 均为 n 阶矩阵, n = 2k + 1 为奇数, 且 $A^2 = O$ 。证明:
 - 1). $2r(A) \le n$;
 - 2). AB BA 不可逆;