Introduction to machine learning Exercise set 5 report

Elias Annila 014328901

Pen and paper:

Problem 1:

a) There is positive correlation between a and b if a=cb+d where c>0. In other words if b increases, a also increase. In this situation we can write $y=w_0x_0+w_1x_{1...}w_nx_n$. As w_j is positive that means that if x_j increases y also increases, so there is positive correlation.

b) $y=w_0x_0+w_1x_1...w_nx_n$ Again for there to be positive correlation between x_j and y it must be that y increases as x_j increases. This does not however mean that $w_j>0$ as there is also possibility that for example $w_j=0$ in which case there is no correlation between x_j and y, but if x_k is correlating positively with x_j and y with $w_k>0$ it can still be that as x_j increases y also increases, but $w_j=0$.

Problem 2:

a)

Let's suppose that there is a coefficient vector (w0, w1, w2) such that $XOR(x_1, x_2) = sign(w_0 + w_1x_1 + w_2x_2)$

As $XOR(x_1,x_2)=sign(w_0+w_1x_1+w_2x_2)$ we can make a following table:

X ₁	<i>X</i> ₂	$sign(w_0 + w_1 x_1 + w_2 x_2)$
1	^2	$3igii(w_0 \cdot w_1 x_1 \cdot w_2 x_2)$
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

If we insert our x_1 and x_2 values into our XOR functions we get following for equations which

$$w_0 + w_1(-1) + w_2(-1) < 0$$
 $w_0 - w_1 - w_2 < 0$
 $w_0 + w_1(1) + w_2(1) < 0$ $w_0 + w_1 + w_2 < 0$

must all be true: $w_0 + w_1(-1) + w_2(1) > 0 = w_0 - w_1 + w_2 > 0$ if we solve w_1 from these we get: $w_0 + w_1(1) + w_2(-1) > 0$ $w_0 + w_1 - w_2 > 0$

which is a contradiction.

b)

As above let's write the XOR function as a table:

<i>x</i> ₁	<i>X</i> ₂	$sign(w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2)$
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

from this we can try to find a suitable order of w_0, w_1, w_2, w_3

From this we can try to find a suitable order of
$$w_0, w_1, w_2, w_3$$

 $w_0 - w_1 - w_2 + w_3 < w_0 - w_1 + w_2 - w_3$ $w_0 - w_1 - w_2 + w_3 < w_0 + w_1 - w_2 - w_3$
 $-w_2 + w_3 < w_2 - w_3$ $-w_1 + w_3 < w_0$
 $w_3 < w_2$ $w_3 < w_1$
 $w_0 + w_1 + w_2 + w_3 < w_0 - w_1 + w_2 - w_3$ $w_0 + w_1 + w_2 + w_3 < w_0 + w_1 - w_2 - w_3$
 $w_1 + w_3 < -w_1 - w_3$ $w_2 + w_3 < -w_2 - w_3$
 $2w_1 + 2w_3 < 0$ $2w_2 + 2w_3 < 0$
 $w_1 < -w_3$ $w_2 < -w_3$

from these solutions we can gather following (although we don't know the order of w_1 and w_2):

So let's try to use some weights that follow these rules for our XOR function and see if it behaves correctly (we guess w_0 to be 0):

<i>X</i> ₁	<i>x</i> ₂	$sign(0 + \frac{a}{3}x_1 + \frac{a}{3}x_2 - ax_1x_2)$
-1	-1	$sign(0-\frac{a}{3}-\frac{a}{3}-a)=sign(-\frac{5}{3}a)=-1$
-1	+1	$sign(0-\frac{a}{3}+\frac{a}{3}+a)=sign(a)=+1$
+1	-1	$sign(0+\frac{a}{3}-\frac{a}{3}+a)=sign(a)=+1$
+1	+1	$sign(0 + \frac{a}{3} + \frac{a}{3} - a) = sign(-\frac{1}{3}a) = -1$

As the resulting XOR values match actual XOR values we can conclude that for example $w = (0, \frac{a}{3}, \frac{a}{3}, -a)$ when a < 0 is appropriate coefficient vector, so we can indeed represent XOR as linear classifier.

Problem 3:

As a XOR b is (a OR b) AND !(a AND b) we want to make z₁ represent OR and z₂ represent !AND so we want to choose u weights so that following table is true.

<i>X</i> ₁	<i>X</i> ₂	z_1	\mathbf{z}_2
+1	+1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=+1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=-1$
+1	-1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=+1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=+1$
-1	+1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=+1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=+1$
-1	-1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=-1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=+1$

$$u_{11} = 1$$

$$u_{12} = 1$$

If We choose
$$u_{21} = -1$$
 we get:

$$u_{22} = -1$$

<i>x</i> ₁	<i>x</i> ₂	z_1	\mathbf{z}_2
+1	+1	$s(u_{10}+1+1)=s(u_{10}+2)$	$s(u_{20}-1-1)=s(u_{20}-2)$
+1	-1	$s(u_{10}+1-1)=s(u_{10})$	$s(u_{20}-1+1)=s(u_{20})$
-1	+1	$s(u_{10}-1+1)=s(u_{10})$	$s(u_{20}+1-1)=s(u_{20})$
-1	-1	$s(u_{10}-1-1)=s(u_{10}-2)$	$s(u_{20}+1+1)=s(u_{20}+2)$

From above table it is obvious we choose both u_{10} and u_{20} to be 1, as this results in z values on given x values as listed in below table, which corresponds to behavior of OR and !AND:

<i>x</i> ₁	<i>x</i> ₂	\boldsymbol{z}_1	\boldsymbol{z}_2
+1	+1	+1	-1
+1	-1	+1	+1
-1	+1	+1	+1
-1	-1	-1	+1

As we have now simulated a OR b as well as !(a AND b) we then need to simulate a AND b to combine the two conditions, so we choose v weights so that:

z_1	\boldsymbol{z}_2	у
+1	+1	$s(v_0+v_1z_1+v_2z_2)=+1$
+1	-1	$s(v_0+v_1z_1+v_2z_2)=-1$
-1	+1	$s(v_0+v_1z_1+v_2z_2)=-1$
-1	-1	$s(v_0+v_1z_1+v_2z_2)=-1$

Again we choose $v_1=1$ so we get: $v_2=1$

\boldsymbol{z}_1	\boldsymbol{z}_2	у
+1	+1	$s(v_0+1+1)=s(v_0+2)$
+1	-1	$s(v_0+1-1)=s(v_0)$
-1	+1	$s(v_0-1+1)=s(v_0)$
-1	-1	$s(v_0-1-1)=s(v_0-2)$

So we choose $v_0 = -1$

 $v_0 = -1$ $u_{21} = -1$ $u_{22} = -1$ $v_1 = 1$ $v_2 = 1$ so it is proven that the

So to finish the neural network solves XOR when weights are:

 $u_{10} = 1$ $u_{21} = 1$ $u_{11} = 1$ $u_{12} = 1$

network can compute XOR operation given suitable weights.

b) We are trying to show that $y = sign(v_0 + v_1 z_1 + v_2 z_2)$ doesn't give advantage over $y = sign(w_0 + w_1 x_1 + w_2 x_2)$ in regard to computing XOR function if we disregard sign functions in forming of z values. As $y = sign(w_0 + w_1 x_1 + w_2 x_2)$ was unable to solve XOR as shown in 2 a), we must show that neither can $y = sign(v_0 + v_1 z_1 + v_2 z_2)$ if we ignore sign function in forming of z. As our final choice $y = sign(v_0 + v_1 z_1 + v_2 z_2)$ is the same as in 3 a) where we were able to compute XOR I'll try to show that we can't choose u weights in determination of z values so that z_1 and z_2 would behave as OR and !AND, and thus the whole network can't compute XOR if we ignore the sign function.

Let's consider this table from part a):

=======	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F	
<i>x</i> ₁	<i>X</i> ₂	\mathbf{z}_1	\mathbf{z}_2
+1	+1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=+1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=-1$
+1	-1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=+1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=+1$
-1	+1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=+1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=+1$
-1	-1	$s(u_{10}+u_{11}x_1+u_{12}x_2)=-1$	$s(u_{20}+u_{21}x_1+u_{22}x_2)=+1$

Now let's remove the sign functions and insert x values:

<i>x</i> ₁	<i>x</i> ₂	\mathbf{z}_1	\mathbf{z}_2
+1	+1	$u_{10} + u_{11} + u_{12} = +1$	$u_{20} + u_{21} + u_{22} = -1$
+1	-1	$u_{10} + u_{11} - u_{12} = +1$	$u_{20} + u_{21} - u_{22} = +1$
-1	+1	$u_{10} - u_{11} + u_{12} = +1$	$u_{20} - u_{21} + u_{22} = +1$
-1	-1	$u_{10} - u_{11} - u_{12} = -1$	$u_{20} - u_{21} - u_{22} = +1$

It is clear from the table that we can't choose u_{10} or u_{20} so that we would get the desired OR

and !AND behavior. For example
$$u_{10} + u_{11} + u_{12} = +1$$

 $u_{10} = 1 - (u_{11} + u_{12})$

$$\begin{array}{c} u_{10}-u_{11}-u_{12}=-1\\ u_{10}+u_{11}+u_{12}=+1\\ u_{10}=1-(u_{11}+u_{12}) & 1-u_{11}-u_{12}-u_{11}-u_{12}=-1\\ -2\,u_{11}-2\,u_{12}=0 \end{array} \text{ as we can see }$$

$$u_{11} = -u_{12}$$

 $u_{11 \text{ and}} u_{12}$ should cancel each other, which would mean that in $u_{10} + u_{11} + u_{12} = +1$ and in $u_{10} = +1$

 $u_{10}-u_{11}-u_{12}=-1$ which is a contradiction. Similary for z_2 . As we cannot choose u values so that $u_{10}=-1$

our z values would behave as OR and !AND our final $y = sign(v_0 + v_1 z_1 + v_2 z_2)$ function cannot function as XOR.

Programming:

Problem 4

a) Below are plots showing Kth degree polynomials fitted to the 30 data points.

Illustration 2: K=0

Illustration 4: K=2

Illustration 1: K=1

Illustration 3: K=3

Illustration 11: K=10

Illustration 12: Coefficient of determination plotted on each fitted polynomial

From the plots 1-11 it is apparent that as K increases the polynomial passes closer to data points. As can bee seen from illustration 12, R^2 increases rapidly on polynomial orders of 0-2 but starting from polynomial K=2 the increase is marginal. This is due to the original function that was used to draw y values being second order polynomial. Further increase of K is overfitting to the noise created to datapoints.

Illustration 13: Sum of square errors for each value of K as result of 10 fold cross validation

As can (maybe) be seen from illustration 13, or the output of the code, the sum of square errors improves until K=2 from where it starts to increase. As K gets larger the performance starts to degrade rapidly, as the high degree polynomial starts to oscillate wildly. The estimated coefficients for second degree polynomial were -0.482 $x^2 + 1.043 x + 1.836$ (obtained from the entire data) which are similar to actual training polynomial used: $-0.5x^2 + x + 2$, but as exptected don't quite match.