PCS 2304 Sistemas Digitais II

<u>Módulo 07 – Dispositivos de Lógica</u> <u>Programável</u>

versão: 1.04 Spina (outubro de 2017)

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 1

Conteúdo

· Lógica Programável

- Introdução
- Memórias como PLDs
- Arranjos Lógicos Programáveis: PLAs e PALs
- PLDs modernos: CPLDs e FPGAs
- FPGAs: estrutura
- Projeto Lógico com FPGAs

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 7

Memórias como PLDs

- As primeiras realizações de PLDs foram baseadas em memórias ROM (Read Only Memory).
- Posteriormente, outras memórias do tipo ROM (ex.: PROM, EPROM, EEPROM) passaram a ser usadas.

Memórias como PLDs

Objetivo: construir um circuito que implemente a seguinte lógica:

	itrad	Sai	aas	
Α	В	С	F1	F2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

$$F1 = \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$F2 = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Minimização é fonte de erro!

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 9

Memórias como PLDs

Memória PROM 8 x 2

 $F2 = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ. Seq.: Bloc. Bás. I> PCS 2304 Sistemas Digitais II 11

Saídas

AND fixas (decodificador)

Decodificador 3:8

Memórias como PLDs

 Funcionalmente, *PROMs são formadas por uma matriz de portas AND (DEC) fixas e uma matriz de portas OR programáveis.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 12

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 13

Memórias como PLDs

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 14

Memórias como PLDs: Exercício

 Use uma *PROM para programar as funções F1 e F2 abaixo

Ent	radas	s Sa	ídas
Α	В	F1	F2
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 15

Memórias como PLDs: Exercício

- Use uma *PROM para programar as funções F1 e F2 abaixo
- Resposta

Entr	adas	s Sa	idas
A B		F1	F2
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

$$F1 = \overline{A}B + AB = B$$

 $F2 = AB + AB$

Arranjos Lógicos Programáveis: PLAs

- *PROMs como PLDs: Implementam tabela verdade completa, sem minimização. Paralelamente ao uso de memórias, dispositivos de lógica programável de fato foram criados.
- As PLAs (Programmable Logic Arrays) são matrizes de lógica programável nas quais tanto a matriz de ANDs (primeiro nível) como a matriz de ORs (segundo nível) são programáveis.
- PLAs sintetizam to funções na forma de soma de produtos: Produtos compartilhados entre diversas saídas.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 17

Arranjos Lógicos Programáveis: PLAs OR array PLA 4x4 AND array Saídas

Arranjos Lógicos Programáveis: Exercício 1

Use uma PLA para programar as funções F1 e F2

Entr	adas	s S	aídas
Α	В	F1	F2
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 19

Arranjos Lógicos Programáveis: Exercício 1

- Use uma PLA para programar as funções F1 e F2
- Resposta:

Entr	adas	s S	aídas
Α	В	F1	F2
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

Arranjos Lógicos Programáveis: PALs

- PLAs eram de difícil utilização e caras.
- Como alternativa foram propostas as PALs, onde o nível de ANDs é programável, mas o nível de ORs é fixo.
 - Menor flexibilidade, porém custo também menor.
- Nesse caso, um número fixo de entradas para cada porta OR é usado.
 - Deve ser usada uma PAL adequada ao nível de complexidade desejado (número de termos).
- Tanto PALs como PLAs são não voláteis, ou seja, podem ser desligadas sem perda de informação.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 21

Arranjos Lógicos Programáveis: PALs

Arranjos Lógicos Programáveis: Exercício 2

 Use uma PAL para programar as funções F1 e F2 abaixo

Entr	adas	s S	aídas
Α	В	F1	F2
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 23

Arranjos Lógicos Programáveis: Exercício 2

- Use uma PAL para programar as funções F1 e F2 abaixo
- Resposta:

Entr	adas	s S	aídas
Α	В	F1	F2
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0
		•	•

• Sintetizar as funções F1 e F2:

E	Entra	Sa	ídas	
Α	В	С	F1	F2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 26

Arranjos Lógicos Programáveis: Exemplo

Passo 1: Determinar os produtos

E	Entra	Sa	ídas	
Α	В	С	F1	F2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

•*PROM: todos os possíveis mintermos e escolher

•PLA ou PAL: minimiza a implementação!

Passo 1 (PLA): Determinar os produtos
 Com PLA: <u>maximizar produtos compartilhados</u>

Er	itrada	Sai	das	
Α	В	С	F1	F2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

1	Α	١		F	2	Δ	١
BC 0 1				В	С	0	1
0	0	0		0	0	0	0
1	1	0	— A'B'C −	0	1	1	1
1	0	1	AB —	1	1	0	1
0	0	1	AC	1	0	0	1
	,		AO				
							_
	F1	= /	A'B'C + AF	3			
	F2	2 = /	A'B'C + AB'	3 +	· A	C	
	0 1	C 0 0 0 1 1 1 0 0 0 0	C 0 1 0 0 0 1 1 0 1 0 1 0 0 1	C 0 1 0 0 0 1 1 0 A'B'C - 1 0 1 AB 0 0 1 AC	C 0 1 B 0 0 1 1 0 A'B'C 0 1 0 1 AB 1 0 0 1 AC 1	C 0 1 0 0 0 1 1 0 A'B'C 0 1 1 0 1 AB 1 1 0 0 1 AC 1 0	C 0 1 BC 0 0 0 0 0 1 1 0 A'B'C 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 28

Arranjos Lógicos Programáveis: Exemplo

Passo 2 (PLA): Matriz de Personalização

Compar-tilhados A B C F1 F2 A'B'C 0 0 1 1 1		Produto		Entrada			Saídas	
Compartilhados AB 1 1 1 1 1			Α	В	С	F1	F2	
tilhados AB 1 1 - 1 1	Compar-	A'B'C	0	0	1	1	1	
	tilhados	AB	1	1	•	1	1	
AC 1 - 1 0 1		AC	1	-	1	0	1	

• Passo 3 (PLA): Desenhar o circuito

Produto	Entrada			Saí	das
	Α	В	F1	F2	
A'B'C	0	0	1	1	1
AB	1	1	-	1	1
AC	1	-	1	0	1

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 30

Arranjos Lógicos Programáveis: Exemplo

• Passo 3 (PLA): Desenhar o circuito

Produto		Entrada			das
	Α	В	F1	F2	
A'B'C	0	0	1	1	1
AB	1	1	-	1	1
AC	1	-	1	0	1

Passo 1 (PAL): Determinar os produtos
 Com PAL: minimizar número de produtos

En	itrada	Saí	das	
Α	В	С	F1	F2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

F	1		\		F	2	A	\
В	С	0	1		В	С	0	1
0	0	0	0		0	0	0	0
0	1	1	0	─ A'B'C	0	1	1	1
1	1	0	1	AB	1	1	0	1
1	0	0	1	B'C /	1	0	0	1
F1 = A'B'C + AB F2 = B'C + AB								

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 32

Arranjos Lógicos Programáveis: Exemplo

Passo 2 (PAL): Matriz de Personalização
 Obs.: não é essencial para a PAL, mas ajuda.

	Produto	Entrada			Saídas	
		A B C			F1	F2
	A'B'C	0	0	1	1	0
Dana	AB	1	1	-	1	0
Repe- tidos	B'C	-	0	1	0	1
lidos	AB	1	1	-	0	1

Passo 3 (PAL): Desenhar o circuito

Produto		Entrada	Saí	das		
	Α	В	С	F1	F2	
A'B'C	0	0	1	1	0	
AB	1	1	-	1	0	
B'C	-	0	1	0	1	
AB	1	1	-	0	1	
A'B'C * * * * * * D •						

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 34

Arranjos Lógicos Programáveis: Exemplo

Passo 3 (PAL): Desenhar o circuito

- · Sintetizar:
 - F0 = A + B'C'
 - F1 = AC' + AB
 - F2 = B'C' + AB
 - F3 = B'C + A

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 36

Arranjos Lógicos Programáveis: Exemplo

Matriz das funções

Produto	Entrada			Saídas		
	A B C			F0	F1	F2
AB	1	1	-	0	1	1
B'C AC'	-	0	1	0	0	0
AC'	1	-	0	0	1	0
B'C'	-	0	0	1	0	1
Α	1	-	-	1	0	0

F3 2

• Implementação com PLA

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 38

Arranjos Lógicos Programáveis: Exemplo

Implementação com PAL

Arranjos Lógicos Programáveis: Extras

- Algumas PLAs e PALs comerciais apresentam funcionalidades adicionais, como:
 - Realimentação Saída utilizada como entrada.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 40

Arranjos Lógicos Programáveis: Extras

- Algumas PLAs e PALs comerciais apresentam funcionalidades adicionais, como:
 - Registradores na saída Permitem sintetizar circuitos sequenciais.

Arranjos Lógicos Programáveis: Extras

- Algumas PLAs e PALs comerciais apresentam funcionalidades adicionais, como:
 - Saídas tri-state Permitem colocar a saída em estado de alta impedância.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 42

Arranjos Lógicos Programáveis: Resumo

PLDs atuais: CPLDs e FPGAs

11/06/18

- Com o avanço da microeletrônica, circuitos programáveis mais complexos foram sendo elaborados. Circuitos atuais se enquadram em duas categorias:
 - CPLD Complex PLD;
 - FPGA Field Programmable Gate Array.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 44

PLDs modernos: Características

- Grande quantidade de lógica programável Flip-flops pré-implementados.
- Interconexões programáveis entre lógica programável, Flip-flops e entradas/saídas do dispositivo – É possível controlar o roteamento dos sinais dentro do circuito.

PLDs modernos: Estrutura

CPLD – Estrutura contínua de conexão:

PAL muito grandes teriam muito mais problemas de desperdício de área e de desempenho

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 46

PLDs modernos: Estrutura

• FPGA: estrutura segmentada de conexão

Chaves programáveis (ligações do bloco com linhas de interconexão)

Chaves programáveis (ligações entre linhas verticais e horizontais)

Bloco lógico bem menor que as plds!

PLDs modernos: Comparação

- Complexidade:
 - PLAs e PALs são muito simples
 - Menos que 200 gates equivalentes;
 - CPLDs têm capacidade moderada
 - Até 100.000 gates equivalentes;
 - FPGAs atuais
 - Acima de 1M de gates equivalentes.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 48

PLDs modernos: Comparação

- · Volatilidade:
 - CPLDs são dispositivos não voláteis, i.e., podem ser desligados sem perda de informação (EEPROM);
 - FPGAs são voláteis, i.e., quando desligadas perdem a informação (field programable!);
 - Algumas FPGAs são associadas a ROMs para permitir que a informação seja recuperada ao ligar.

PLDs modernos: Programação

- Linguagens de programação próprias existentes PALASM, CUPL, etc.
- Não são mais usadas devido às linguagens de descrição de Hardware de mais alto nível – VHDL, Verilog.
- As linguagens de alto nível são transcritas para fluxo de bits - usado para programar o dispositivo.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 50

FPGAs

- Atualmente FPGAs são os dispositivos mais utilizados.
- FPGAs modernas podem emular algumas centenas de milhares de portas lógicas.
- Algumas FPGAs possuem memória RAM e/ou processadores embutidos para facilitar o projeto.
- Existem versões em Flash e EEPROM caras!

FPGAs: Componentes

- · Compostas de:
 - CLBs (Configurable Logic Blocks)
 - Blocos lógicos que executam funções:
 - IOBs (Input/Output Buffers)
 - Interface com mundo externo;
 - Interconexões programáveis
 - · Conecta CLBs e IOBs.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 52

FPGAs: Componentes

 Diagrama de blocos do Xilinx Spartan

FPGAs: CLBs

Configurable Logic Blocks

- CLBs são compostos de:
 - LUTs (lookup tables)
 - · Implementam lógica combinatória
 - Flip-flops
 - Implementam funções sequenciais
 - Multiplexadores
 - · Conectam LUTs e Flip-flops.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 54

FPGAs: CLBs

Configurable Logic Blocks

- 3 LUTs:
 - LUT-F (4 x 1-bit)
 - LUT-G (4 x 1-bit)
 - LUT-H (3 x 1-bit)
- 2 saídas "registradas
 - XQ e YQ
- 2 saídas combinatórias
 - X e Y

lookup table

- LUT-N Uma <u>tabela-verdade</u> de N entradas e 2^N posições de 1 bit:
 - Programar uma LUT significa preencher os valores da tabela-verdade,
 - Uma LUT com 4 entradas pode emular 2¹⁶ (~64 K) <u>funções</u> booleanas (todas as possibilidades com 16 possíveis produtos = 2¹⁶);
 - FPGAs comerciais podem conter LUTs de até 6 entradas (mais de 16 bilhões de funções emuláveis).
- Implementadas usando MUXes
 - Mais compactos do que arranjos AND/OR
 - Necessitam de elementos de memória, normalmente do tipo SRAM.
 - Fornecem maior velocidade ao circuito
 - Dados alimentados na SRAM a partir de memória não volátil (ex.: EEPROM) que contém o programa

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 56

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 58

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 59

 Exemplo 2: programação das funções X e Y na Xilinx Spartan:

-X = A'B'C + ABC'

- Y = AB'

	(A)	(B)	(C)	(X)	
F4	F3	F2	F1	(X) F	
X	0	0	0	0	-
Χ	0	0	1	1	
Χ	0	1	0	0	
Χ	0	1	1	0	
X X X X X X	1	0	0	0	
Χ	1	0	1	0	
Χ	1	1	0	1	
Х	1	1	1	0	

G4	G3	(A) G 2	(B) G1	(Y) G
X	Χ	0	0	0
X	X	0	1	0
X	X	1	0	1
X	X	1	1	0
_				

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 60

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 61

- Usando LUT-4: é possível calcular funções com maior número de variáveis associando 2 ou mais LUTs.
- Por exemplo, vamos calcular a função:
 - X = ABCDEFGH
- Para isso precisamos inicialmente dividir a função em subfunções:

$$- X_{1} = ABCD$$
 $- X_{2} = EFGH$
 $- X = X_{1}X_{2}$
3 LUTs

LUT-4 = 4 entradas, 16 posições

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 62

FPGAs: LUTs

- Vamos configurar:
 - LUT-F para calcular $X_1 = ABCD$
 - LUT-G para calcular X₂ = EFGH
 - LUT-H para calcular X = X₁X₂

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 64

FPGAs: LUTs

- Usando associações, <u>cada CLB</u> Spartan pode calcular funções de até 9 variáveis.
- É possível calcular funções de mais variáveis associando mais de um CLB, por meio das saídas combinatórias.
- Ao se associar diversos CLBs, existe uma redução na frequência máxima, pois o sinal deverá atravessar um número maior de LUTs até chegar a um Flip-Flop.

FPGAs: Interconexões Programáveis

- · Permitem conexão entre os CLBs
- Configuráveis de acordo com necessidade

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 66

Misc: Fabricantes

- Actel(<u>http://www.actel.com/</u>)
- Altera (http://www.altera.com/)
- Atmel(<u>http://www.atmel.com/products/</u>)
 - Cypress(<u>http://www.cypress.com/</u>)
 - Lattice(<u>http://www.lattice.com/</u>)
- Quicklogic(<u>http://www.quicklogic.com/</u>)
 - Xilinx(<u>http://www.xilinx.com/</u>)

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 85

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 86

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 < Circ.Seq.: Bloc. Bás.I> PCS 2304 Sistemas Digitais II 87

Livro Texto

 Wakerly, J.F.; Digital Design – Principles & Practices; Fourth Edition, ISBN: 0-13-186389-4, Pearson & Prentice-Hall, Upper Saddle, River, New Jersey, 07458, 2006.

Lição de Casa

- Leitura Obrigatória:
 - Capítulo 9 do Livro Texto, itens 9.5 e 9.6.
- Exercícios Obrigatórios:
 - Exercícios 9.28 a 9.36 do Capítulo 9 do Livro Texto.

© Andrade, Midorikawa, Saraiva, Símplicio e Spina 2.012 «Circ.Seq.: Bloc. Bás.I» PCS 2304 Sistemas Digitais II 89

Bibliografia Adicional Deste Assunto

- "Digital Design and Computer Architecture". Harris, D.M. & Harris, S.L. Morgan Kaufmann, 2007.
- "Digital Systems Design Using VHDL". Charles H. Roth Jr and Lizy Kurian John. 2nd Edition, 2008. ISBN-10: 0534384625 ISBN-13: 9780534384623
- "The Ten Commandments of Excellent Design—VHDL Code Examples". Peter Chambers. VLSI Technology.
- Chapter 3 The Art of VHDL Synthesis. LeonardoSpectrum HDL Synthesis Manual.