Exercises for Linear Regression

Jordan Boyd-Graber Digging into Data

March 11, 2013

1 Linear Regression Formula

Prediction $\hat{y} = f(\mathbf{x})$ given observation \mathbf{x} .

$$f(\mathbf{x}) = \beta_0 + \sum_{j=1}^p \beta_j x_j \tag{1}$$

Distribution of y given \mathbf{x} :

$$p(y | x) = y \sim N(\beta_0 + \sum_{j=1}^{p} \beta_j x_j, \sigma^2)$$
 (2)

2 Example Weights

dimension	weight
β_0	1
eta_1	2.0
eta_2	-1.0
σ	1.0

3 Example Inputs

What are the predictions for these inputs?

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}$$

3.
$$\mathbf{x}_3 = \{.5, 2\}$$

4 Probability of Observations given Inputs

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 3$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 = -1$$

5 Normal Density Table

To use:

- 1. Let's say that you want to look up the value for a.bc
- 2. Find the row that corresponds to a.b
- 3. In that row, find the column for 0.0c. That entry is your answer for $p(y = a.bc \mid \mu = 0.0, \sigma = 1.0)$.
- 4. For example, the probability of observing y = 0.12 is 0.3961
- 5. Negative number? Just look up the positive value (the distribution is symmetric)
- 6. Non-zero mean (but $\sigma = 1$)? Just look up $y \mu$.

Table 1. Standard normal density function

Tuoie	- I Standt	ii u noi m	ai aciisity	Tunction						
Χ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.3989	0.3989	0.3989	0.3988	0.3986	0.3984	0.3982	0.3980	0.3977	0.3973
0.1	0.3970	0.3965	0.3961	0.3956	0.3951	0.3945	0.3939	0.3932	0.3925	0.3918
0.2	0.3910	0.3902	0.3894	0.3885	0.3876	0.3867	0.3857	0.3847	0.3836	0.3825
0.3	0.3814	0.3802	0.3790	0.3778	0.3765	0.3752	0.3739	0.3725	0.3712	0.3697
0.4	0.3683	0.3668	0.3653	0.3637	0.3621	0.3605	0.3589	0.3572	0.3555	0.3538
0.5	0.3521	0.3503	0.3485	0.3467	0.3448	0.3429	0.3410	0.3391	0.3372	0.3352
0.6	0.3332	0.3312	0.3292	0.3271	0.3251	0.3230	0.3209	0.3187	0.3166	0.3144
0.7	0.3123	0.3101	0.3079	0.3056	0.3034	0.3011	0.2989	0.2966	0.2943	0.2920
8.0	0.2897	0.2874	0.2850	0.2827	0.2803	0.2780	0.2756	0.2732	0.2709	0.2685
0.9	0.2661	0.2637	0.2613	0.2589	0.2565	0.2541	0.2516	0.2492	0.2468	0.2444
1.0	0.2420	0.2396	0.2371	0.2347	0.2323	0.2299	0.2275	0.2251	0.2227	0.2203
1.1	0.2179	0.2155	0.2131	0.2107	0.2083	0.2059	0.2036	0.2012	0.1989	0.1965
1.2	0.1942	0.1919	0.1895	0.1872	0.1849	0.1826	0.1804	0.1781	0.1758	0.1736
1.3	0.1714	0.1691	0.1669	0.1647	0.1626	0.1604	0.1582	0.1561	0.1539	0.1518
1.4	0.1497	0.1476	0.1456	0.1435	0.1415	0.1394	0.1374	0.1354	0.1334	0.1315
1.5	0.1295	0.1276	0.1257	0.1238	0.1219	0.1200	0.1182	0.1163	0.1145	0.1127
1.6	0.1109	0.1092	0.1074	0.1057	0.1040	0.1023	0.1006	0.0989	0.0973	0.0957
1.7	0.0940	0.0925	0.0909	0.0893	0.0878	0.0863	0.0848	0.0833	0.0818	0.0804
1.8	0.0790	0.0775	0.0761	0.0748	0.0734	0.0721	0.0707	0.0694	0.0681	0.0669
1.9	0.0656	0.0644	0.0632	0.0620	0.0608	0.0596	0.0584	0.0573	0.0562	0.0551
2.0	0.0540	0.0529	0.0519	0.0508	0.0498	0.0488	0.0478	0.0468	0.0459	0.0449
2.1	0.0440	0.0431	0.0422	0.0413	0.0404	0.0396	0.0387	0.0379	0.0371	0.0363
2.2	0.0355	0.0347	0.0339	0.0332	0.0325	0.0317	0.0310	0.0303	0.0297	0.0290
2.3	0.0283	0.0277	0.0270	0.0264	0.0258	0.0252	0.0246	0.0241	0.0235	0.0229
2.4	0.0224	0.0219	0.0213	0.0208	0.0203	0.0198	0.0194	0.0189	0.0184	0.0180
2.5	0.0175	0.0171	0.0167	0.0163	0.0158	0.0154	0.0151	0.0147	0.0143	0.0139
2.6	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.0110	0.0107
2.7	0.0104	0.0101	0.0099	0.0096	0.0093	0.0091	0.0088	0.0086	0.0084	0.0081
2.8	0.0079	0.0077	0.0075	0.0073	0.0071	0.0069	0.0067	0.0065	0.0063	0.0061
2.9	0.0060	0.0058	0.0056	0.0055	0.0053	0.0051	0.0050	0.0048	0.0047	0.0046
3.0	0.0044	0.0043	0.0042	0.0040	0.0039	0.0038	0.0037	0.0036	0.0035	0.0034
3.1	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026	0.0025	0.0025
3.2	0.0024	0.0023	0.0022	0.0022	0.0021	0.0020	0.0020	0.0019	0.0018	0.0018
3.3	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014	0.0013	0.0013
3.4	0.0012	0.0012	0.0012	0.0011	0.0011	0.0010	0.0010	0.0010	0.0009	0.0009
3.5	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007	0.0007	0.0007	0.0006
3.6	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0004
3.7	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003	0.0003	0.0003	0.0003
3.8	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002
3.9	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
4.0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

4