W	
1).	What are the allotropes of assbon and horo do they differ
	from each other?
حا	Allotropes are the substances which have some chemical
	atom (and hence elemned composition same) but have
	different physical and chemical properties.
	Carbon has very high number of allothopes. The most common
	are: - Diamond
	(P) Graphite
	(g) Go Buckeyball
	(iv) Carbon Nano Tubes
	(540 Fullerites.
	(m) C40
	(VII) Lonsableste
	(III) Amorphoses Carbon and many more
	J .
	The different allotropic forms of carlon differ in number of
	covalent bond and arrangement of atoms. Hence, following major
	differences are observed.
	J.
0	Conductivity.
	=> The allotropes like graphite, carbon Nano Tube, etc. one highly
	conductive due to the paresence of free electrons in each carbon
	of graphene whereas the other allotropes like diamond and
<i>j-</i>	amorphous carbon are insulators.

ne Bimal Parajuli (20BDS0405)	20ate
	Page
67, 3	(1) Strength
	=> Diamond - which is an caston edlotrope is the hardest
3 3 3 4 5 5 F	substance ever known Also, tensile strength of CNTs are
	100 s tome greater than stell of similar dimension. However
***	the allotropes like graphite are not so hard and some amorphous
	Carbons also exist.
1	
	The Chermical Proposities.
	=> A carbon atom in diamond has no valonce electron forming
	a tetrahedral Structure whereas CNT and graphite has
	one-valence electron which allows conduction and increases
	reactivity.
	V .
C	iv) Elasticity.
	=> CNTs don't have weak spot found n other materials
1	making them Howible & clastic tohereas other allotropes
	making them flowible & clastic tohereas other allotropes lake diamond have extremely limited clastic deformability

71 13	
N.	
2).	How does the chiral vector help to identify various categories of
	The chiral yester is a vector connecting the centers of two
-5	hexagons. It helps to identify the structure of nanotubes and
	classify them accordingly.
	casing man electronary.
	For a carbon-tranotube (LNT), chiral vector is represented as.
	where, a, leaz are defined on nearest bond length. 9cc = 0-144m
	As shown in figure,
	2/2)
_#	
_	
-	100). (10). (30).
7	he structure of CNT depends on chitzel angle (0), defined as angle beth chiral vector and Zig-zag direction.
	both chiral vector and Zing - zag direction.
	90.0= tan (130).
11 .	16.05 (WESU)

270-6 and m=0, then CNT will have zig- zag pattern.

2700-20 and n x m, then CNT will have chiral structure.

27.0COC3° and n=m, then CNT will have cum chair structure.

3). White the unique properties of CNT.

1) The properties of anique to CNT are:

(a) CNTs have very high electrical and thermal andudrity.

(b) CNTs have very high tensile strength.

(c) CNTs have a low thermal expansion coefficient.

(c) CNTs have very high tensile strength.

4). Withe a short note on inductively applications of Nanolechnology.

Ly Nanotechnology is impacting the field of consumer goods, several products that incorporate nanomaterials are already in a variety of items; many of which people donat even realize contain nanoparticls, product with rovel functions ranging from easy—clean to scratch resistant. Some examples are like as bumps are made lighter, clothing is more stain tepellant, sunccrean is more radiation resistant, synthetic banes are stronger, cell phone careans are stronger, cell phone careans are stronger and light weight, sports ball are made more durable, etc.—though embedded wearable electronics, such novel products also have a promising papential and numerous potential application. In the heavy industry, Nanotechnology is predicted to be the major driver of tech and business in this contrary and holds the predicted to be the predicted in patential with algoriticals, intelligent systems and new production methods with algoritical inquest for all aspects of scriety.

		7	
		2	
1		Page	
5).	Differentiate the different to	loes of coherence.	
ر _ا	There are basically 2 types of	of cohereng which are differentiated:	
	1 Temporal Coherence)	
	1 22 A	cass temporal conference of the	
	phase distance between a	eny troo points is constant.	
in .		at time 't' than f(t)=f(t+4).	
	7	whose of = phase difference.	
	(1) Spatial Coherence.		
Ų.	=) A beam is said to possess spatial coherence if the phase		
	differice bet two curves of a plane out time 't' es perpendidas		
	to the direction of propagation.		
	. 2		
	Temporal Coherence	Spatial Coherence.	
0	It is related with time, degree	@ It is related with position,	
	of monox homoeticity.	size of source.	
)		
0	It is also known as	(1) It is also known as transverse	
	longitudinal coherence.	coherence.	
	3		
	It's measured using	(is) It's measured using young's	
	Michelsonic Interprometr.	Double Slit Experience	
		` .	
	3,		

Name	Bimal Parajuli (20BDS0405)
	Date Page
<i>G</i>).	Why is population inversion needed for lasing action?.
	3 0
_ L-5	Population inversion is the state of achieving more number
	of atoms in higher energy state than in ground state
	Population inversion is the state of achieving more number of atoms in higher energy state than in ground state It is achieved synthetically with the help of pumping.
	When the population inversion is achieved, the percentage
	of stimulated emission increases as more atoms are in higher
	energy state.
	So, with higher probability of stimulated emission,
	So, with higher probability of stirmulated emission, more photons are emitted causing the amplification of light required for laser.
	light required for laser.
	. E2 7777777777777777777
	(N2)N1).
	topulation Inversion
- ,	Ground State 7/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
-	(E)
-#	N No. of atoms in ground state. N2-No. of atoms in E2 bexelted):
	12-No. of atoms in Ezbexated).
	Fig: Population Inversion.
	Fig: Population Inversion.

Da. 21 evel laser working

Why are four level lasers better than three level lasers? Four level lasers have two metal-stable state who was the 3-byel lasers have only one meta stable state. Hono, In a four level laser the properlation innersion is achieved with ase as It is due to the transition from one meta-stable state to the other unlike in three level laser where the transition is from metastable stack to ground state. In a four level laser, 94 takes more time for atoms to reach ground state, 50 four level lasers require less intensive pumping and can operate in continuous mode.

Thatis why four level laser is better than 3-level lasers. Excited Staff Excited Meta Glaplo. I'm' meta Cyround Ground

Fig. Alevel laser working

Nan	ne Bimal Parajuli (20BDS0405)
	Date
	Page
_	
(B) .	Prove that the vake of stimulated absorption is same
4	as the rate of stimulated emission.
Ly	In thermal cavilibrium at temperature 1, with energy
7	density and radiation trequency of let Nand Made
	the number of atoms prosent in energy state Land
	2 at any instant.
	Z an early trop
	let 'B' be the Einstein's coefficient for stimulation emission
	and 1 A' be receptivent of stimulated absorption
	and the second of second o
	Under thermal equilibrium, no of transitions from E2-5E1
	should be equal to the no of travisitions from E, > E2
-	
	as shoran:
$-\parallel$	
	Rabs - I Res
	Rabs Shirt
	F ₁
	More, the rate of stimulated absorption 98:-
	Rabs = B12 N12 · 9 ·
	rade of spontaneous emission.
	RSp = A21 1821 - 10.
	rate of stimulated emission,
	rate of stimulated emission, Ret = B21 · N21· Q
2004	2022년 - 12 - 조선의 시안 - 12 12 - 12 12 - 12 12 12 12 12 12 12 12 12 12 12 12 12

Page	
At equilibrium,	
Pals = Psp + Pst. => B12 N12 (9 = A21 N21 + B21 N21 8.	
=> B12 No 0 = A21 N21 + B21 M21 8.	
=) B12 M2 - B21. M21 = A21. M21 - A21. M21.	
=) 8 = A21. N21	
By 1. New (By2 M12 -1)	
B21. N21 (B12 M12 -1) B21. N21	
for conveniene, we write N21= N2 and N12=N1.	
So, Q = A21 (B12N1 1) B21 (B2N2 1)	
(521 (B21 N2)	
We know the plants radiction law gives:	
Q = 8 tr hy3 x 1 (hv/kt - 1)	
C3 (ehv/47-1)	
The distribution of atoms is given by Boltzmann's	<u>, </u>
according to which,	
M2 - e - E2/kT	
M. GEZ-EDYKT	and the second
1 3 M - 6/12 - 7/1-	
THI - OFFIET (TE)-HD).	
TO THE WORLD	
so, the egg () be comes.	
# 3= Bx (32 eny) -1)	

Name Bimal Parajuli	(20BDS0405)	
	2 Date)
	Page	
and the second s	Comparing (vi) and (vii), we get.	
	$B_{12}=1.$	
	B21	_
	-: B12=B21	
	and A12 8th 123	
	Since, B12=B21, eg? (i) and (ii) becomes,	
	Since, B12=B21, egg (i) and (ii) becomes, fabs = B12 +118	
**	and fa = B12 N2Q.	
	-: Rabs will be equal to 1st only if N1= N2.	
	Hence, 1745 proved that the so rate of strongloded emission will be equal to rate of stimulated absorption only If NI=N2-	
-	to easel to rate of stimulated absorption only 91 N1=N2-	

*	
	Date Page
<u>(9</u> :	penive the expression for threshold gain of lager.
<u>_</u>	loses threshold is the lowest excitation energy at which the losers output is dominated by atimulated comission.
	In a baser, active medium acts as an amplifier of maves and whom tases light bounces back and fost him the optical resonator as shown, it suffers some loss.
	F1 (
	my _ with my activity R. and R. Caparated
v.	let two mirrors M, and mz with reflectivity R, and Rz separated by distuno 12 have empty space filled by active medium- let, the initial intensity of light be to travelling ferom
	m, at to m2, the bearn intensity increases from. ILL) to = To .e.(Y-06)L. where, Y = gain of laser.
	appearation to unequan.
	after reflection at My Intensity of beam will be. ### ICLI = Poto e (V-de) L.
	after mend hip beam intensity will be. I(2L) = RiPo. To. elv-dell.
	And the camplification obtained during the tound trip:

Name Bimal Parajuli (20Bl	S0405)
3	2 Date
	Page
	here, Rika represents the loses at minor.
	Nozo the lesing action to occur. Cr21.
	Nozoite lesing action to occer, $Cr \ge 1$. $\Rightarrow P_1 P_2 e^{(\gamma_1 - \alpha_5)2L} \ge 1$. $\Rightarrow e^{(\gamma_1 - \alpha_5)2L} \ge 1$
	=) e (Y-05) 2L > 1
	Rif2
	$\Rightarrow (Y-xs)2L > Ln(\frac{1}{R_1R_2}).$
	(K1F2)
	=> Y ≥ xs + 1 ln(1/2) 2
	Here, Y=-threshold gan.
	As pumping is increased, value of your also increases called.
	threshold gain and lesses stranks oscillating.
	Hena, the value of threshold gain is-
	pth = xs + 1 lo (= 2)
	21 Uriry

3imal Parajuli (20BDS)	0405)	2 Date 2
3).	So, populator inversion 9s created on Ne	
	So, population inversion 95 created on No helps in production of lasing actor. Thus, laser (red) is produced	mpno chromatie
ė.	25 11 Reservant 3 46	Metastall (C)
		> ~> 632.8 m.
		(Lager).
Cypus		Cipund State
-	Fig: - Working of He - Ne laser	

Name

Name	Bimal Parajuli (20BDS0405)
	2 Date / Page /
13).	How do you measure the monoichromaticity of a light source?
لم	Monochromaticity of a light source can be measured by analyzing the spectrum emitted by it.
	Monochromaticity is the property, degree or the extent to which the light produced by a surve are of some or nearly same
	wavelength.
	There can be see several motheds possible to measure the
	monochromaticity of a light source which eventually relies on the
70.00	fundamental principle of finding out whether or not the emitted
	varies have almost common wavelength. Some common methods
	are like fourier analysis of the superposed wave packets or by
	the measurement of temporal coherence using an interferometer
	which eventually correlates to monochromaticity.
<u>Ø</u> .	For a light source of trequency to Hz, the bandwidth of gaseous
	and soled state laser is 500Hz and 10 Hz respectively. Find which
\$ 8792	Is more mono chromatic, solid state or gaseous?
جل	So Frequency of light source (rated)., F = 164Hz.
	Band Width of gaseous faser (Afg) = \$ 500thz.
	Bond width of Solid State laser (4/s)= 10 Hz.
	Then, Monochromaticity of justory lesson (Mg) = 47g = 500 = 5×1012
	Monochromachicaty of solid state lever (Ms) = 695 = 10 105
-	Alla, we see, Ma
	· Hence Gaseons state laser is more monochromate than solid state
ides A. A. A. S.	

	2 Date 2 Page 2
15).	An arom has two atomic levels separated by 2.26 evenerary. At what temperature is (Mu/No) hour? (4= 1.38×10-23 January)
	At what temperature is (Mu/No) half? (= 1.38×10-23 Januar)
L	aby k= 1.38x1023 , T=?
	Separation of energy levels (DE) = 2.26 ex
	= 2-26x 1019x1-6 J
	= 3.616 XIE, 2 .
	Energy: No-of e'in upper state and lower state are the and Ne
	respectively.
	We know, Mx N= Nq. e RT
	Me know, My N= Nq.e = AEF Nu - e - AEF Nu
	$\Rightarrow \frac{-\Delta E}{R_1} = \ln(\frac{Nu}{Ne}).$
	$\Rightarrow T = \frac{-8E}{K \ln{(\frac{Nu}{u})}} = \frac{-3.616 \times 10^{23}}{1.38 \times 10^{23} \times 10(\frac{1}{2})}$
	(NU)
	=37802.8 K.
	Hence, Nu is half at nearly 37800x which is a relatively very
	Hence, Nu is half at nearly 37800K which is a relatively very high temperature, many which is equivalent to that inside the
	sun.

Name Bimal Pa	arajuli (20BDS0405)	
	Date — — — Page — — —)
<i>w</i> .	Find the ratio of spontaneous and stimulated emission to a two level due laser system of frequency 5x164 Hz at 200	ا مر
M yres 1	a two level due lager sustern of frequency 5x16 4z at 200	*-
<u>L</u> >	Ser	
25	Frequency of been system(1)=5x104 Hz.	Shirt
-		1
	late have for mula A - A.	
y!	Temperature $(T) = 2000 \text{K}$. We have for mula, $B = A_{24}$ $B_{21} \cdot (e^{hV/cT} - 1)$ where $A, B \rightarrow Einstein's$	1 -11
*.	- A- (ahart 1)	Cal
	=> A24 (ehr/cT_1)	
	Rate of spontanous emission, Rspon = A21 x N2	- 22
	Rote of Stimulated emission, Retion = B2 × N2.B	
	D'ividing.	
	 	
,4		
		100
		-
-		
	•	
Brown Company		,
		100
(-)		
		/ 1
		1

welding etc. due to very high peak power.

	Poge
18>.	CO2 laser emits light of wavelength 10.6 mm - If the
	output power is LOW, calculate the number of photons
X-1 3 - 1 - 1-	contred per minute.
- A point of the second	
La	Wavelength of light = 10.4 µm.
-	= # 1.06×103 m.
	· Total power out = 10 W
	Then, Be let, rate of photon emission = (7).
	Then, P = n x energy per phieton -
	The state of the s
	$\Rightarrow P = \frac{1}{12} \times \frac{hc}{3}$
	$= \frac{hc}{h} = \frac{6.624Ne^{-34} \times 3 \times 10^{8}}{6.624Ne^{-34} \times 3 \times 10^{8}} = 5.33 \times 10^{20} \text{ photons par second}$
	Taking t = 60 seconde.
1 A	No. of photons emitted (n) = 5.83x1020 x 60
	= 3.2×1022 photons -
Estata II	Hena, 3.2×102 photons are emitted in a minute.

Name	Bimal Parajuli (20BDS0405)
197.	Starting from the integral form, derive differential form of
	Gauss Theorem for electrostations and explain the physical significance
La	
	The integral form of Gauss Theorem in Electro statics states that
	the flux of electric field out of an arbitrary closed surface is proportional
	to the electric charge enclosed by the surface, Thespective of
	how the charge is distributed.
	ie. $\oint_{E} E dA = \oint_{E} \oint_{E} = \underbrace{Qendosed}_{E_{0}}$
	<u> </u>
	where Es is permittivity of medium.
	for any closed surface & containing charge & By the divergence theorem,
	this equation is equivalent to:
	And the second s
	V-EdV = Gendosed Eb
	for any volumed V containing charge &, by the relation between charge
	and charge donsity, the equation equivalents to:
100 H	W.E.ON = STORED
	11 2 1 JJV E0
	1 18 T 1 L No. Co. at 1 books there
	for any volume V. In order for this equation to be simultaneously true for every possible volume V. it is necessary (and sufficient) for
	for every possible volumer, it is necessary and sufficients for
1	integrands to be equal everywhere. Therefore, the equation is
	integrands to be equal everywhere. Therefore, the equation is equivalent to: $ \overrightarrow{R} = \frac{Q}{E_b} $ Which is the differential form of Gauss Theorem for
	Which is the differential form of Gauss Theorem for
	minute is the different of form of the properties

Vame	Bimal	Parajuli	(20BDS0405)

•			
	Date		4
1	Page		
	roge	And the second s	

Whom T'rs gradient operator.

1e. T' = 2 Ex + 2 Ey + 2 Ez.

The physical significances of this law are:

It is an important law relating the charge distribution with electric field.

It can be used for solid of any shape like conical, spherical or impulse or others as long as the swetace is closed.

H To can be used to derive further laws in electrostatics like columbs law.

Nam	e Bimal Parajuli (20BDS0405)
	2 Date 2 Page 2
20).	Daive the vave equation for electric field in free space using
	Moxwellis equations.
	The Pearl of Chief Chief
لئ	Maxwell's equations for electric field and magnetic field are given as:
De La San	7.8=0-
	3.5 = -38
-	TXB=UOJ + EONO DE
	Putting all together shows that oscillating electrical field produces variable magnetic field and changing magnetic field produces
	electric field and so on.
	In a free space, we can assume the current density (7) and charge
<u> </u>	(A) to be 2045
	Hence, equations above are reduced to:
	D'R = 0.
	ラ×ら= - 張 · (m)
	PXB = 60 M JE W
	Taking curl of equation (11), $\overrightarrow{\nabla} \times [\overrightarrow{\nabla} \times \overrightarrow{E}] = -\overrightarrow{\nabla} \overrightarrow{\partial} \overrightarrow{B}$
	() () × () = - 1) 9 g
	⇒ ◆×(4×5) = - 3 (4×6)
	3 4×C4×2 3 3E

Name Bimal Parajuli (20BDS04	(05) Date Page
	DEX[DZ]= -3 [Mose JE) (from eqn @).
	⇒ D× (立×星) = -10 80 355 - (D).
	(No and Eo are constants called permittivity and permeabil
	We Know that
	So, egn (1) becoms, ⇒ 7. (7. 12) - 72 = - 40 to (312)
	21 mc, V-E=0,
	$\Rightarrow -\sqrt{E} = \mu_0 \varepsilon_0 \frac{\partial E}{\partial t^2}$ $\Rightarrow -\sqrt{E} = \mu_0 \varepsilon_0 \frac{\partial E}{\partial t^2} - \mu_0 \varepsilon_0 \frac{\partial E}{\partial t^2}$
	94.11
	is the wave eq for electric field in free space.