MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO

EICO013 | ALGORITMOS E ESTRUTURAS DE DADOS | 2013-2014 - 1º SEMESTRE

CI4 - Parte teórica. Duração: 30m

Nome:	Código:
-	

Notas:

- Responda às questões seguintes, indicando a opção correta (em maiúsculas)
- Cada resposta errada vale -20% da cotação da pergunta
- 1. Se, na árvore binária de pesquisa representada na figura, eliminar o valor 15, a nova raiz da árvore poderá ser:
 - A. 12
 - B. 17
 - C. 13
 - D. 20
 - E. Nenhuma das possibilidades anteriores

Resposta:

- 2. Considere a árvore representada na questão anterior uma árvore AVL. Ao inserir o valor 8, que operação deve ser realizada para reequilibrar a árvore?
 - A. Rotação simples centrada no nó 12, o nó 12 provoca desequilíbrio
 - B. Rotação dupla centrada no nó 12, o nó 12 provoca desequilíbrio
 - C. Rotação simples centrada no nó 10, o nó 10 provoca desequilíbrio
 - D. Rotação dupla centrada no nó 10, o nó 10 provoca desequilíbrio
 - E. Nenhuma das possibilidades anteriores

Resposta:

- 3. O acesso a um elemento x de uma árvore *splay* com *n* elementos, resulta numa árvore idêntica. Para quantos nós (x) diferentes tal é possível?
 - A. 2
 - B. 1
 - C. log n
 - D. n-1
 - E. Nenhuma das possibilidades anteriores

Resposta:

- **4.** Partindo de uma estrutura inicialmente vazia, e inserindo uma sequência de n elementos, a estrutura resultante <u>não</u> <u>depende</u> da ordem da inserção dos elementos, se esta for:
 - A. Árvore binária de pesquisa (BST)
 - B. Árvore Splay
 - C. Fila de prioridade
 - D. Pilha
 - E. Nenhuma das possibilidades anteriores

Resposta:

- 5. Na fila de prioridade representada pelo vetor [13, 26, 19, 44, 46, 21], a inserção do valor 1, resulta em:
 - A. [1, 13, 26, 19, 44, 46, 21]
 - B. [1, 13, 19, 21, 26, 44, 46]
 - C. [1, 26, 13, 44, 46, 21, 19]
 - D. [1, 26, 19, 44, 46, 21, 13]
 - E. Nenhuma das possibilidades anteriores

Resposta:

EICO013 | ALGORITMOS E ESTRUTURAS DE DADOS | 2013-2014 - 1º SEMESTRE

6.	Qual a característica	da f	ila de	prioridade	(heap),	que	permite	que	esta	estrutura	seja	implementada	de	forma
	eficiente por recurso	a um	vetor?											

- A. A fila de prioridade é uma árvore binária de pesquisa
- B. A fila de prioridade é uma árvore binária completa
- C. A fila de prioridade é uma árvore binária equilibrada
- D. A fila de prioridade não contém elementos repetidos
- E. Nenhuma das possibilidades anteriores

Resposta:	

7.	Seja T uma tabela de dispersão de inteiros de tamanho 13, cujo conteúdo atual é [11, _, _, _, 19, _, _, 17, 8, _, _
	33, _]. Qual será a configuração de T, após a inserção do número 4, sabendo que a função de dispersão utilizada é
	h(x) = 5*x, e a resolução de colisões é quadrática.

```
A. [11, _, _, 4, 19, _, _, 17, 8, _, _, 33, _]
B. [11, 4, _, _, 19, _, _, 17, 8, _, _, 33, _]
```

- C. [11, _, _, _, 19, _, _, 17, 8, 4, _, 33, _]
- D. Não é possível inserir o valor 4
- E. Nenhuma das possibilidades anteriores

Resposta:	

- 8. Numa tabela de dispersão, quais as operações que possuem a mesma complexidade temporal?
 - A. Inserção e pesquisa com sucesso
 - B. Pesquisa com sucesso e pesquisa com insucesso
 - C. Inserção, pesquisa com sucesso e pesquisa com insucesso
 - D. Inserção e pesquisa com insucesso
 - E. Nenhuma das possibilidades anteriores

_	
Resposta:	

- 9. Qual das seguintes afirmações é correta?
 - A. Uma árvore AVL não é necessariamente uma árvore binária de pesquisa
 - B. Uma árvore Splay é sempre uma árvore equilibrada
 - C. Uma fila de prioridade é sempre uma árvore binária de pesquisa
 - D. Uma árvore binária de pesquisa (BST) não é necessariamente uma árvore equilibrada
 - E. Nenhuma das possibilidades anteriores

10. O excerto (pseudo-código) apresentado a seguir constrói uma árvore binária usando uma lista ligada em argumento:

Se a lista ligada contém os elementos "A", "B", "C", "D", "E" (nesta sequência) quantos nós da árvore gerada por esta função incluem o valor "E"?

- A. 0
- B. 3
- C. 5
- D. 8
- E. Nenhuma das possibilidades anteriores

Resposta:	