Neutronaktivációs analízis

Reaktorfizikai mérések

jegyzőkönyvet készítette:

Asztalos Bogdán, Kadlecsik Ármin, Körtefái Dóra

mérés időpontja: 2020. 05. 04. (távoktatás keretében)

mérésvezető: Radócz Gábor

1. Bevezetés

A neutronaktivációs analízis egy nukleáris reakciókon alapuló elemanalitikai módszer. Lényege, hogy egy mintát neutronokkal besugározva, benne az atommagok gerjesztődnek és a legerjesztődés során olyan sugárzást bocsátanak ki, aminek a spektruma az atommagokra egyedileg jellemző. Ezzel a módszerrel kémiai roncsolás nélkül megállapítható, hogy milyen anyagi összetétele van a mintának. A módszer során főleg a nagy hatáskeresztmetszetű (n,γ) típusú reakciók játszanak szerepet, prompt gamma aktivációs analízis esetében közvetlenül az ezekben keletkező fotonokat detektáljuk, míg a késleltetett módszernél az aktivációs termék béta-bomlását követő gamma-fotonokat, így a besugárzott minta karakterisztikus γ -spektrumát mérjük. A mérésünk során egy acélminta vanádiumés mangántartalmát állapítjuk meg.

2. Mérés leírása

A mérés lényege, hogy egy ismeretlen anyagi összetételű mintát neutronokkal besugárzunk, és a gerjesztett atommagok által kibocsátott γ -sugárzást mérjük. A mérésben neutronforrásként a BME tanreaktorát használtuk, aminek előnye egyrészt, hogy nagy teljesítménnyel nyerhetünk ki neutronokat – a 100 kW-os névleges teljesítmény mellett akár $10^{12} \frac{1}{\mathrm{cm}^2 \mathrm{s}}$ neutronfluxus is kinyerhető –, másrészt a neutronok energiája néhány $\mu \mathrm{eV}$ -től MeV-es nagyságrendig terjed.

A mintákat kis ampullákba helyezve, csőpostán juttatjuk a reaktorzónába, ahol 90 s-ig sugározzuk be őket, majd utána mintánként eltérő hűtési idők után megmérjük a γ -spektrumukat. A γ -spektrum felvételéhez HPGe detektort használunk, amivel nagyobb felbontásban is ki lehet mérni a spektrumot, mint a szcintillációs detektorok használatával. A γ -spektrum felvétele után a különböző legerjesztődésekhez tartozó csúcsokat keressük meg, amiből az egyes összetevők mennyiségére következtetünk.

A karakterisztikus csúcsokhoz tartozó elemek jelenlétére úgy lehet következtetni, hogy ha megmérjük, hogy az adott csúcs tartományában hány beütést érzékeltünk – minél többet, annál több található a mintában az adott típusú atommagból. A csúcs alatti terület nettó méretét meghatározó egyenlet:

$$N_{\text{nett\acute{o}}} = m \frac{f_i N_{Av}}{A_{\text{rel}}} \Phi \left(E \right) \sigma \left(E \right) \left(1 - e^{-\lambda t_i} \right) e^{-\lambda t_c} f_{\gamma} \varepsilon_{\gamma} \frac{\left(1 - e^{-\lambda t_m} \right)}{\lambda} \tag{1}$$

ahol m az adott elem teljes tömege a mintában, a szürke tényező a csúcsért felelős izotópok eloszlására jellemző faktor, a sárga tényező az E energiájú neutron befogását leíró mennyiség, a zöld tényező az aktiválódás során felaktiválódó, míg a kék a hűlés során elbomló atommagok számát mutatja, a barna tényező a kibocsátott γ -foton gyakoriságát és a detektor hatásfokát fejezi ki, végül pedig a piros tényező a mérés ideje alatt kibocsátott

fotonokat adja meg.

A mérést nehezítheti, hogy az (1) kifejezésben lévő különböző mennyiségek relatív hibája összeadódik, így a végső eredmény elég pontatlan lehet. A probléma megoldása, ha nem az adott csúcs méréséből, és az (1) egyenletben lévő adatok ismeretéből számoljuk ki az különböző elemek jelenlétét, hanem külön mérést végzünk standard mintákkal, ekkor a csúcsok alatti nettó terület az ismeretlen minta és a standard minta tulajdonságainak arányaként fejezhető ki. Mivel adott elem esetén az izotópok aránya, és a rájuk jellemző kölcsönhatási keresztmetszetek állandóak, ezért az első két tényező kiesik, továbbá ha a detektálás módszere és geometriai elrendeződése is ugyanaz, akkor a hatásfokos tényező is eltűnik. Mivel az időket szabadon megválaszthatjuk, ezért a besugárzás és a mérés idejét választhatjuk egyenlőnek. Mivel a besugárzás vége és a detektálás kezdete között eltelt időt ugyanannyinak tartani nehezebb, mint a többi idő esetében, ezért a hűtési időhöz tartozó tényezőt nem ejtjük ki.

Mérési standardok használatával tehát az (1) alapegyenlet az alábbi összefüggést adja:

$$m_{\text{minta}} = m_{\text{std}} \frac{N_{\text{minta}}}{N_{\text{std}}} e^{-\lambda(t_{c \, \text{std}} - t_{c \, \text{minta}})}$$
 (2)

Ismert tömegű standard minták, és a γ -csúcsok kimérésével már meghatározható koncentráció.

A mérés során egy normálacél mintát vizsgáltunk, és a vanádium- valamint mangántartalmát mértük meg. Ehhez két 100 μ g tömegű standard mintát elemeztünk, az egyiket a vanádiumhoz tartozó γ -csúcsokhoz, a másikat a mangánhoz tartozó csúcsokhoz. A besugárzási idő mindegyik esetben 90 s volt a reaktor 10 kW-os teljesítménye mellett.

3. Kiértékelés

3.1. Spektrumok elemzése

A két standard minta és az ismeretlen minta besugárzása után megmértük a spektrumukat. A spektrumban található csúcsok alapján következtethetünk az anyagi összetételükre.

3.1.1. Első standard minta

Az első standard minta hűtési ideje $t_{cs1}=229\,\mathrm{s}$ volt. A minta mért spektruma az 1. ábrán látható. A spektrumban egy darab éles csúcs látható, erre Gauss-görbét illesztve meghatározhatók a paraméterei. A kapott értékeket az 1. táblázat tartalmazza. A csúcs helye 1433 keV energiánál van, a neutronaktivációs táblázat alapján ilyen energiájú fotonokat a $^{52}\mathrm{V}$ bocsát ki, ami $^{51}\mathrm{V}$ magból keletkezhet neutronbefogással, ez tehát jelen van a mintában. $^{51}\mathrm{V}$ magot neutronnal sugározva előfordulhat, hogy $^{52}\mathrm{V}$ helyett $^{48}\mathrm{Sc}$ keletkezik egy α -részecske kibocsátásával. Ezen mag γ -spektrumára többféle energia is tartozhat-

1. standard					
energia [keV]	folyamat	Nettó terület			
$1432,67 \pm 2,10$	$^{51}\mathrm{V}(\mathrm{n},\gamma)^{52}\mathrm{V}$	16027 ± 127			

1. táblázat. Az első standard minta spektrumában lévő csúcs adatai

na, de mivel a (n,γ) reakció hatásfoka sokkal kisebb, mint a neutronelnyelésé, ezeket az energiacsúcsokat nem látjuk a spektrumban.

Megállapítható tehát, hogy a minta vanádiumot tartalmaz, így a későbbiek során tehát ezt a standardod fogjuk használni az ismeretlen minta vanádium-tartalmának meghatározásához.

3.1.2. Második standard minta

A második standard minta hűtési ideje $t_{cs2}=302\,\mathrm{s}$ volt, ennek kivárása után megmértük a spektrumát, ami a 2. ábrán látható. Ebben a spektrumban már három csúcs található, ezekre szinten Gauss-görbe illeszthető, és az ebből meghatározott adatokat a 2. táblázatba jegyeztük fel. Mindhárom csúcs az ⁵⁵Mn neutronelnyelésével keletkező ⁵⁶Mn izotóphoz

2. standard					
energia [keV]	folyamat	Nettó terület			
$846.02 \pm 1,79$		3845 ± 64			
$1809,13 \pm 2,04$	$^{55}{ m Mn}({ m n},\!\gamma)^{56}{ m Mn}$	487 ± 23			
$2111,41 \pm 1,26$		256 ± 16			

2. táblázat. A második standard minta spektrumában lévő csúcs adatai

tartozó sugárzás, és mivel a mangánhoz más reakció nem is tartozik a táblázat alapján, ezért ez standard a mangánminta, tehát az ismeretlen minta mangántartalmát ehhez fogjuk viszonyítani.

3.1.3. Ismeretlen minta

Harmadjára az ismeretlen minta spektrumát mértük meg, ennek hűlési ideje $t_{\rm cism}=224\,{\rm s}$ volt. A kapott spektrumot a 3. ábra ábrázolja. Ez a spektrum már láthatóan több csúcsot tartalmaz, mint az előzőek, de vegyük észre, hogy a négy legnagyobb csúcs azokon az energiákon vannak, ahol az előző két standard csúcsai, tehát a minta tartalmaz vanádiumot és mangánt is. Ezen kívül, a spektrumon megfigyelhetőek a $^{187}{\rm W}$ karakterisztikus γ -csúcsai, amely a $^{186}{\rm W}$ -ból keletkezik neutronbefogással, tehát a minta tartalmaz volfrámot is, de ennek a mennyiségével most kvantitatíven nem foglalkozunk. A megtalált csúcsok adatait a 3. táblázat tartalmazza.

1. standard spektruma

1. ábra. Az első standard minta által kibocsátott sugárzás $\gamma\text{-spektruma}$

2. ábra. A második standard minta által kibocsátott sugárzás $\gamma\text{-spektruma}$

Ismeretlen minta spektruma

3. ábra. Az ismeretlen minta által kibocsátott sugárzás $\gamma\text{-spektruma}$

Ismeretlen minta						
energia [keV]	folyamat	Nettó terület				
$72,64 \pm 1,43$		446 ± 42				
$134,63 \pm 1,43$	$^{186}\mathrm{W(n,\gamma)^{187}W}$	330 ± 74				
$479,16 \pm 0,93$		334 ± 44				
$685,20 \pm 1,53$		277 ± 45				
$1432,66 \pm 2,12$	$^{51}{ m V(n,}\gamma)^{52}{ m V}$	19473 ± 141				
845.98 ± 1.81		8295 ± 108				
$1809,08 \pm 2,44$	$^{55}{ m Mn}({ m n},\gamma)^{56}{ m Mn}$	1167 ± 36				
$2111,36 \pm 2,12$		544 ± 24				

3. táblázat. Az ismeretlen minta spektrumában lévő csúcs adatai

3.2. Az ismeretlen minta összetétele

Az előzőek alapján lehetővé válik annak kiszámítása, hogy az ismeretlen minta milyen arányban tartalmaz vanádiumot és mangánt. Ehhez a (2) egyenletet fogjuk használni, vagyis a korábban megmért csúcsok nettó területére, és a hűlési időkre lesz szükségünk. A csúcsok nettó területének a hibáját az illesztés hibájával becsüljük, a időmérés hibáját pedig $\Delta t = 10 \, \text{s-nak}$ vesszük. Ezek alapján a szükséges arányokat a 4. táblázat tartalmazza.

elem	$N_{ m std}$	$N_{ m ism}$	$t_{c\mathrm{std}}$ [s]	$t_{c \mathrm{ism}} [\mathrm{s}]$	$rac{m_{ m ism}}{m_{ m std}}$
vanádium	16027 ± 127	19473 ± 141	229 ± 10	224 ± 10	$1,196 \pm 0,092$
mangán – 1. csúcs	3845 ± 64	8295 ± 108			$2,145 \pm 0,067$
mangán – 2. csúcs	487 ± 23	1167 ± 46	302 ± 10	224 <u>1</u> 10	$2,382 \pm 0,210$
mangán – 3. csúcs	256 ± 16	544 ± 24			$2,113 \pm 0,228$

4. táblázat. A (2) képlethez szükséges adatok, és a belőlük képzett arányok

Mivel a mangánhoz három csúcs tartozott, ezért a mangán arányára háromféle értéket kaptunk, de ezek értéke nagyjából megegyezik. A hibáikkal fordítva súlyozva átlagoltuk őket, így a mangánra vonatkozó tömegarányra $\frac{m_{\rm ism}}{m_{\rm std}}=2,186\pm0,125$ értéket kapunk.

Figyelembe véve, hogy a standard minták tömege $100\,\mu\mathrm{g}$ volt, az ismeretlen minta tömege pedig $43,01\,\mathrm{mg}$, a tömegmérés hibáját pedig 3%-nak véve, az ismeretlen minta által tartalmazott vanádium és mangán mennyisége

$$m_{
m V} = 119,6 \,\mu{
m g} \pm 12,8 \,\mu{
m g} \qquad m/m_{
m V} = (0,28 \pm 0,04) \,\%$$

 $m_{
m Mn} = 218,6 \,\mu{
m g} \pm 19,1 \,\mu{
m g} \qquad m/m_{
m Mn} = (0,51 \pm 0,06) \,\%$

4. Diszkusszió

A mérés során a BME tanreaktorával besugároztunk három mintát, egy vanádiumot és egy mangánt tartalmazó standard mintát, valamint egy meghatározandó összetételű mintát. A neutronnal való besugárzás hatására a mintákban bizonyos atommagok felaktiválódtak, és az általuk kibocsátott γ -sugárzás spektrumát mérve megállapíthattuk, hogy milyen elemek vannak jelen a mintákban. A két standard minta mennyiségéhez viszonyítva kiszámoltuk, hogy mennyi az ismeretlen minta vanádium- és mangántartalma, ezek 0,28%-nak és 0,51%-nak adódtak. Kimutattuk továbbá azt is, hogy a minta tartalmaz volfrámot is, de ezt kvantitatív módon nem vizsgáltuk.

4. ábra. Az ismeretlen minta anyagi összetétele

Annak ismeretében, hogy az ismeretlen minta a 4. ábrán látható normálacélból származik, összehasonlíthatók az eredményeink az anyag névleges összetételével. A minta mangántartalma hivatalosan 0.57%, ami a mi eredményünkhöz képest hibahatáron belül van, de a vanádiumtartalom 0.36%-a jelentősen több, mint amit mi mértünk.

Hivatkozások

- [1] Mérésleírás link
- [2] F. Adams, R. Dams. A compilation of precisely determinded gamma-transition energies of radionuclides produced by reactor irradiation.