Manufacturer Recall System

updated

By Brian Sheridan Samuel Pearce

Description of the application:

The Manufacture Recall System is an application that will allow individuals to discover, create and manage recalls for products they are using. This application would be used as a central hub for most vehicle manufacturers and can be tailored into other industries. This would allow administrators to do research on certain products, discover what recalls have occurred with that product as well as implementing a new recall. It also gives administrators the ability to add new product lines to the database. The application would also allow sales personnel to fill out invoices about the product a consumer has purchased and to acquire contact information in the event of a recall. This would allow them to keep track of which products have recalls and information to notify the consumer in the event of a recall.

Information needed for the application:

- 1. Add a new product
 - a. Product Name
 - b. Product Description
- 2. New invoice
 - a. Full name
 - b. Address
 - c. Phone Number
 - d. Email
 - e. Serial Number
 - f. Product Type
 - g. Manufacture Date
- 3. Create new recall
 - a. Product ID
 - b. Start date of the problem
 - c. End date of the problem
 - d. Description of the problem

The users and user interactions:

The users would be required to fill out certain information before they can proceed with submitting anything in the application. This ensures that there will be no errors when the user is navigating and activating the system. Users are able to add new products, create invoices and provide new recall updates.

Picture of the database:

Customer Info

Customer Purchases

Product Type

Products

serial_number	product_id	manufactured_date
1	5	2008-08-14
2	10	1999-02-11
3	11	2000-09-10
4	8	2006-08-05
5	13	2003-11-23
6	7	1989-07-21
7	9	1996-01-31
8	4	2000-11-26
9	1	1985-06-01
10	8	2016-01-31
11	2	2015-08-17
12	2	1988-02-13
13	1	1995-05-15
14	11	2012-05-22
15	4	2009-12-05
16	7	1999-12-14
17	3	1996-10-30
18	14	1999-06-13
19	1	2013-03-31
20	10	2013-03-16
21	7	1988-03-17
22	6	1997-04-20
23	14	1980-03-21
24	1	2007-10-29
25	12	2005-05-06
26	3	2005-09-29
27	•	2010 02 15

Recall Notices

Picture of the EER diagram:

How is the design is normalized(Or denormalized):

Our design is normalized due to the fact that each table relies on a primary key to keep information scalar throughout each of the tables and information is broken down into smaller tables to reduce any duplicate entries. With that, every non-key column is dependent only on the primary key.

OLAP Database

The OLAP database pulls information from the OLTP database through multiple quires to populate four tables with select data that would be required to help a company make executive decisions based on recall information. The OLAP database consists of three dimension tables and one fact table in a star schema.

The dimension tables are:

recall_notices	products	customer_info
notice_id	serial_number	customer_id
issue_description	product_name	customer_name
affected_start_date	product_description	address
affected_end_date		city
		state
		zip

The fact table is:

affected_recalls

customer_id

serial number

notice_id

Picture of the EER diagram for OLAP database:

The five SQL that would be used by an OLAP user are:

This SQL script allows the user to see what products are having the most recalls to decided if they want to discontinue the product.

	product_name	total_recalls
•	Galaxie	6
	LTD	4
	Fiesta	3
	Granada	2
	Pinto	2
	Gran Torino	2
	F250	2
	Maverick	1
	Fairmont	1

This SQL script allows the user to see what states are having the most recalls. See if there is an issue in a manufacturing plant.

	state	total_recalls
•	Florida	3
	Alabama	3
	North Carolina	3
	Illinois	2
	Michigan	2
	District of Columbia	2
	Indiana	1
	Louisiana	1
	California	1
	Maryland	1
	Colorado	1
	Texas	1
	Kansas	1
	Minnesota	1

This SQL script allows the user to see which customers have been most affected by recalls. Allows for the company to reach out to them.

	customer_name	address	city	state	zip	total_recalls
•	Bolstridge, Sibby	6784 Morning Park	Birmingham	Alabama	60604	2
	Clancy, Cyrillus	311 Luster Parkway	Fayetteville	North Carolina	37131	2
	Huton, Kris	0 Gerald Court	Chicago	Illinois	93715	2
	Ackeroyd, Ophelia	72 Talmadge Circle	Miami	Florida	20226	2
	Elcock, Zaria	1 Sullivan Center	Kalamazoo	Michigan	33731	2
	Aronowicz, Genna	9 Manitowish Trail	Corpus Christi	Texas	14225	1
	Sansom, Elston	615 Mcguire Parkway	Washington	District of Columbia	20918	1
	Bird, Filmer	2316 Lunder Center	Shawnee Mission	Kansas	85743	1
	Jolin, Augustine	2676 Troy Terrace	Minneapolis	Minnesota	85383	1
	Whetton, Geno	56 Longview Junction	Baltimore	Maryland	28289	1
	Moutray Read, E	662 Anzinger Crossing	Fort Wayne	Indiana	2124	1
	Gooder, Guendolen	41 Northwestern Cr	Shreveport	Louisiana	93005	1
	Harradine, Lotti	895 Lakewood Gard	Jacksonville	Florida	92662	1
	Najera, Francklin	6 Manufacturers Alley	Pasadena	California	31416	1
	Januszewicz, Shirl	3597 Sunnyside Place	Huntsville	Alabama	77095	1
	Hambric, Peadar	13730 Ridge Oak Alley	Charlotte	North Carolina	2216	1
	Stede, Ashlee	1 Shoshone Circle	Washington	District of Columbia	66105	1
	Caville, Bea	8 Johnson Trail	Colorado Springs	Colorado	85720	1

This SQL script allows the user to see what product class is having the most issues. Could help to find a correlation to fix future products.

This SQL script allows the user to see which area of their product is having the most issues. Allows the company to focus on an area they are having a problem or find new parts that might be better suited.

	issue_description	total_recalls
•	Exhaust explodes	7
	Bumper falls off	4
	Radio catches fire	4
	Transmission failure	3
	Air bags explode	1
	Seatbelt comes loose	1
	Hood open while driving	1
	Breaks catch fire	1
	Exhaust vented to cab	1

	product_description	total_recalls
•	Full-size Car	10
	Subcompact Car	5
	Compact Car	4
	Mid-size Car	2
	Super Duty Truck	2

Feedback from Part 1:

We corrected and added the "state" field into the HTML file and tested for functionality. To address the issue of serial numbers already being taken, we populated the initial tables with serial numbers 1 through 100. To make it more obvious to the user we added a script into the py file that prints a statement the displays the current requested serial number, the first and last name of the person it is registered to, and the product name if the serial number has already been used.