INFORME COMPARATIVO DE MÉTODOS NUMÉRICOS

DATOS DE ENTRADA

Parámetro	Valor	
Función f(x)	x**2-2	
Función g(x)	math.sqrt(2)	
Intervalo [a,b]	[1.0, 2.0]	
Punto inicial x ■	1.0	
Tolerancia	0.001	
Máx. iteraciones	100	
Tipo de precisión	Decimales correctos	

RESULTADOS COMPARATIVOS

Método	Estado	Iteraciones	Raíz aproximada	Error final
Bisección	Exitoso	10	1.415039	9.77e-04
Punto Fijo	Exitoso	2	1.414214	0.00e+00
Newton-Raphson	Exitoso	4	1.414216	2.12e-06
Regla Falsa	Exitoso	5	1.414141	3.48e-04
Secante	Error de validación	N/A	N/A	N/A

ANÁLISIS COMPARATIVO

Método más eficiente: Punto Fijo Método más preciso: Punto Fijo Mejor método general: Punto Fijo

Conclusión:

Cuatro métodos convergieron exitosamente. Punto Fijo fue tanto el más eficiente como el más preciso.

DESCRIPCIÓN DE MÉTODOS

Método de Bisección: Técnica que encuentra raíces en un intervalo [a,b] donde f(a)×f(b)<0. Divide repetidamente el intervalo por la mitad hasta encontrar la raíz con la precisión deseada. Es robusto y siempre converge, pero puede ser lento.

Método de Punto Fijo: Reformula la ecuación f(x)=0 como x=g(x) y usa iteraciones sucesivas para aproximarse a la raíz. Su convergencia depende de la función g(x) elegida y puede ser muy rápido cuando converge, pero no siempre garantiza convergencia.

Método de Newton-Raphson: Utiliza la derivada de la función para encontrar raíces mediante la fórmula $x_{n+1} = x_n - f(x_n)/f'(x_n)$. Tiene convergencia cuadrática cuando funciona bien, pero requiere que $f'(x) \neq 0$ y puede fallar si la derivada es pequeña o el punto inicial es inadecuado.

Método de Regla Falsa (Falsa Posición): Similar a bisección pero usa interpolación lineal para aproximar la raíz. Calcula el punto donde la línea secante interseca el eje x mediante $c=(a\times f(b)-b\times f(a))/(f(b)-f(a))$. Converge más rápido que bisección pero puede ser más lento cerca de la raíz.

Método de la Secante: Aproxima la derivada usando dos puntos, evitando el cálculo explícito de la derivada. Usa la fórmula $x_{n+1} = x_n - f(x_n)x(x_n-x_{n-1})/(f(x_n)-f(x_{n-1}))$. Converge más rápido que bisección y no requiere derivadas, pero puede ser inestable.