

Contrôle continu PISI 1002

Ouvre-portail

L'ouvre-portail automatisé étudié permet l'ouverture et la fermeture d'un portail chez les particuliers de façon automatique ou semi-automatique. Un portail est généralement constitué de deux vantaux, identiques ou non. Pour automatiser le portail, chaque battant doit être équipé d'un actionneur

- 1) Indiquez le nom des liaisons ainsi que leurs axes principaux aux points A, B, C et D
- 2) Réalisez le graphe des liaisons du système
- 3) Représentez le bras-moteur (AD) et le bras de poussée (DC) en position ouverte
- 4) En déduire l'angle d'ouverture maximal (θ_{M}) du bras moteur (2) ainsi que la course (θ_{M} - θ_{m})

Le bras moteur (2) est commandé en vitesse suivant une loi en trapèze (voir courbe ci-contre)

La course du bras moteur est de 120°

La durée de phase d'accélération est de 0,5 s

La durée de phase décélération est de 0,5 s

La durée totale du mouvement est de 2 s

5) Déterminer la vitesse ω_0 (en rad/s) qui permet de respecter le cahier des charges

Sachant que ω_0 = 1,4 rad/s

- 6) Déterminer les équations de l'accélération angulaire α(t) pour chacune des 3 phases. Application numérique
- 7) Tracer les diagrammes correspondants
- 8) Déterminer les lois du mouvement de l'angle $\theta(t)$ pour chacune des 3 phases. Application numérique:
- Déterminer la valeur de l'angle θ à $t=t_1$: $\theta(t_1)=\theta_1$
- Déterminer la valeur de l'angle θ à $t=t_2$: $\theta(t_2) = \theta_2$
- Déterminer la valeur de l'angle θ à $t=t_f$: $\theta(t_f) = \theta_f$
- 9) Tracer les diagrammes correspondants