Chapter 4: Primitive Objects Using Graphics

Objective

- ☐ To create primitive objects using graphics.
- ☐ To produce output primitives:
 - Point
 - Line
 - Circle
 - Rectangle
 - Polygon
- ☐ To introduce the graphics system using OpenGL.

Output Primitives

- Graphic SW and HW provide subroutines to describe a scene in terms of basic geometric structures called output primitives.
- Output primitives are combined to form complex structures
- Simplest primitives
 - Point (pixel)
 - Line segment

Geometric Primitive Types

GL_TRIANGLE_STRIP

GL_QUAD_STRIP

GL_TRIANGLE_FAN

Scan Conversion

- Converting output primitives into frame buffer updates. Choose which pixels contain which intensity value.
- Constraints
 - Straight lines should appear as a straight line
 - primitives should start and end accurately
 - Primitives should have a consistent brightness along their length
 - They should be drawn rapidly

Point

- Coordinate position is represented by 1 pixel or more.
- •Screen coordinate is integer: point $p(x, y) = pixel \{int(x), int(y)\}.$
- Example $P_1(2.5, 3.25) \rightarrow P_{pixel} = (2, 3)$
- Instruction example:
 - ■Draw one point \rightarrow setPixel (x,y)
 - Take point position \rightarrow getPixel (x,y)

Line Drawing

 Simple approach: sample a line at discrete positions at one coordinate from start point to end point, calculate the other coordinate value from line equation.

$$y = m x + b \qquad x = \frac{1}{m} y + \frac{b}{m}$$

$$m = \frac{y_{start} - y_{end}}{x_{start} - x_{end}}$$

If m>1, increment y and find x If $m\le 1$, increment x and find y

Algorithms

Line drawing

- Digital Differential Analyzer (DDA) algorithm
- Bresenham's line algorithm

Circle-generating algorithm

Midpoint circle algorithm

Approaches

- To <u>display a line</u> on a raster monitor, the graphics system must first
 - Project the endpoints to integer screen coordinates.
 - Determine the nearest pixel positions along the line path between the two end point.
 - Then the line color is loaded into the **frame buffer** at the corresponding pixel coordinates.
 - Reading from the frame buffer, the video controller plots the screen pixels.

- This process digitizes the line into a set of discrete integer positions that, in general, only approximates the actual line path.
 - A computed line position of (10.48,20.51) for example, is converted into (10,21).
 - This rounding of coordinate values causes all (except horizontal and vertical) lines to be displayed with *stair-step* appearance.

Stair-step effect produced when a line is generated as a series of pixel positions.

Line Equations

 The Cartesian slope-intercept equation for a straight line is

$$y = m \cdot x + b \tag{1}$$

with *m* as the slope and *b* as the intercept of the line.

If 2 endpoints (x0,y0) and (x1,y1) is given, the values of slope m and y intercept b can be computed as:

$$m = \frac{y1 - y0}{x1 - x0} \tag{2}$$

$$b = y0 - m \cdot x0 \tag{3}$$

 Algorithms for displaying straight lines are based on the line equation (1). • For any given x interval, δx , along a line, we can compute the corresponding y interval δy as:

$$\delta y = m \cdot \delta x$$

• Similarly, the x interval δx corresponding to a specified δy as:

$$\delta x = \frac{\delta y}{m} \tag{5}$$

 These equations form the basis for determining deflection voltages in analog displays, such as vector-scan system, where arbitrarily small changes in deflection voltage are possible.

(4)

Digital Differential Analyzer (DDA) Algorithm

- **DDA** is a scan-conversion line algorithm based on calculating either δy or δx using (4) and (5).
- Steps in the **DDA** algorithm are:
 - 1. Determine 2 endpoints to draw a line.
 - Set (x0,y0) as the first point and (x1,y1) as the last point.
 - 3. Compute the difference of $\Delta x = x1 x0$ and $\Delta y = y1 y0$.
 - 4. The difference with greater magnitude determines the value of parameter *steps*. i.e.

```
if |\Delta x| > |\Delta y| then 

steps = |\Delta x| else steps = |\Delta y|
```

- 5. Starting with pixel position (x0,y0), we determine the offset needed at each step to generate the next pixel position along the line path.
 - i.e. x_increment = $|\Delta x|/steps$ and y_increment = $|\Delta y|/steps$.
- 6. SetPixel at location (round(x0), round(y0)).
- 7. Set k=0.
- 8. Determine the next coordinate (x_{k+1}, y_{k+1}) . $x_{k+1} = x_k + x_{\text{increment}}$ and $y_{k+1} = y_k + y_{\text{increment}}$. And setpixel at (round (x_{k+1}) , round (y_{k+1})).
- 9. Repeat step 8. until x=x1 and y=y1.

DDA Algorithm: Example

- Two endpoints of a line are given as A(10,10) and B(17,16).
 Compute the points generated by the **DDA** algorithm.
 - 1. A(10,10) and B(17,16)
 - 2. $(x_0, y_0) = (10,10)$ and $(x_1, y_1) = (17,16)$
 - 3. $\Delta x=7$ and $\Delta y=6$.
 - 4. $\Delta x > \Delta y$, thus step=7.
 - 5. $x_{increment} = \Delta x + step = 1$ and $y_{increment} = \Delta y + step = 0.86$.
 - 6. $(x_{k+1}, y_{k+1}) = (x_k + x_increment, y_k + y_increment) = (10+1, 10+0.86) = (11,10.86)$
 - 7. $(\text{round}(x_{k+1}), \text{round}(y_{k+1})) = (11,11)$
 - 8. Repeat steps 6. and 7. until $(x_{k+1}, y_{k+1}) = (17,16)$ when k=0

k	Х	У	(round(x), round(y))	
0	10	10	(10,10)	
1	11	10.86	(11,11)	
2	12	11.72	(12,12)	
3	13	12.58	(13,13)	
4	14	13.44	(14,13)	
5	15	14.30	(15,14)	
6	16	15.16	(16,15)	
7	17	16.02	(17,16)	

Line Produced by DDA Algorithm

DDA Code in C

```
#include <stdlib.h>
#include <math.h>
inline int round (const float a) { return int (a + 0.5); }
void lineDDA (int x0, int y0, int xEnd, int yEnd)
 int dx = xEnd - x0, dy = yEnd - y0, steps, k;
 float xincrement, yincrement, x = x0, y = y0;
 if (fabs (dx) > fabs (dy))
   steps = fabs (dx);
 else
   steps = fabs (dy);
 xIncrement = float (dx) / float (steps);
 yIncrement = float (dy) / float (steps);
 setPixel (round (x), round (y));
 for (k = 0; k < steps; k++) {
   x += xIncrement;
   y += yIncrement;
   setPixel (round (x), round (y));
```

Pros and Cons of DDA Algorithm

- DDA is a faster algorithm for calculating pixel positions compared to the one that directly implements Eq. (1).
- It eliminates the multiplication in Eq.(1) by appropriate increments in the x or y directions to step from one pixel to another along the line path.
- The accumulation of round-off error can drift away from the true line path for long line segments.
- The rounding operations and floating-point arithmetic is still time consuming.
- Its performance can be improved by separating the increments m and $\frac{1}{m}$ into integer and fractional parts. Thus, all calculations will be reduced to integer operations.

Bresenham's Line Algorithm

Figure 1 (positive slope)

Figure 2 (negative slope)

- Is a more general scan-line approach that can be applied to both **line** and **curves**.
- This raster-line generating algorithm is developed by Bresenham, that uses only incremental integer calculations.
- Figure 1 and Figure 2 shows section of display screen where a straight line is to be drawn.
 - The vertical axis shows the scan-line positions.
 - The horizontal axis identify pixel columns.
- On figure 1, starting from the left endpoint we need to determine whether to plot the next pixel at position (11,11) or the one at (11,12).
- Similarly for Figure 2, starting from left endpoint, we want to determine whether to plot the next pixel at position (51,50) or (51,49).
- These questions are answered in Bresenham's algorithm.

Figure 3-10

A section of the screen showing a pixel in column x_k on scan line y_k that is to be plotted along the path of a line segment with slope 0 < m < 1.

- We first look at the scan-conversion process for lines with positive slope less than 1.0.
- Pixel positions are determined by sampling at unit x intervals.
- Starting from left endpoint (x₀, y₀) we move to each successive column and plot the pixel whose scan-line y value is closest to the line path.
- Figure 3-10 shows the first pixel at point (x_k, y_k) , we must determine the position of next pixel
 - i.e. either (x_{k+1}, y_k) or (x_{k+1}, y_{k+1}) .

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Figure 3-11

Vertical distances between pixel positions and the line y coordinate at sampling position $x_k + 1$.

Here,
$$x_{k+1} = x_k + 1$$

 $y_{k+1} = y_k + 1$

The y coordinate on the mathematical line at pixel column position x_k+1 is calculated as,

$$y=m(x_k+1)+b \tag{6}$$

Then,

$$d_{lower} = y - y_k$$

$$= m(x_k + 1) + b - y_k$$
(7)

and

$$d_{upper} = (y_k + 1) - y$$

$$= y_k + 1 - m(x_k + 1) - b$$
(8)

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

 To find which of the two pixels is closest to the point

$$d_{lower}$$
- d_{upper} =2 $m(x_k+1)$ -2 y_k +2 b -1 where,

$$m = \frac{\Delta y}{\Delta x} \tag{9}$$

 Simplifying (9) and defining decision parameter, p_k, we get,

$$p_k = \Delta x (d_{lower} - d_{upper})$$
$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

where,

$$c=2\Delta y+\Delta x(2b-1)$$

(10)

• If $p_k >= 0$

choose: (x_k+1, y_k+1)

else

choose: (x_k+1,y_k)

 At step k+1, the decision parameter is evaluated as,

$$p_{k+1} = 2\Delta y \cdot x_{k+1} - 2\Delta x \cdot y_{k+1} + c$$
(11)

So,

$$p_{k+1} - p_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$$
(12)

Since, x_{k+1}=x_k+1

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x (y_{k+1} - y_k)$$
(13)

Thus,

$$p_{k+1} = p_k + 2\Delta y \qquad if \ p_k < 0$$

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x \qquad if \ p_k >= 0$$

• The first parameter p_0 is evaluated from (10) at (x_0, y_0) From (6),

$$y_0 = mx_0 + b$$

SO,

$$b = y_0 - mx_0 \tag{14}$$

$$p_k = \Delta x (d_{lower} - d_{upper})$$

$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + 2\Delta y + \Delta x (2b-1)$$

Substitute b in (14)

$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + 2\Delta y + \Delta x (2(y_0 - mx_0) - 1)$$

Simplify...

$$= 2\Delta y - \Delta x$$

Bresenham's line drawing algorithm for |m|<1.0

- 1. Input 2 endpoints of the line and store the left endpoint in (x_0, y_0) .
- 2. Set the color for the frame-buffer position (x_0, y_0) ; i.e. plot the first point.
- 3. Calculate the constants Δx , Δy , $2\Delta y$, and $2\Delta y$ - $2\Delta x$, and obtain the starting value for the decision parameter as

$$p_0 = 2\Delta y - \Delta x$$

4. At each x_k , along the line, starting at k=0, perform the following test. if $p_k < 0$, the next point to plot is (x_{k+1}, y_k) and

$$p_{k+1}=p_k+2\Delta y$$

if $p_k \ge 0$

the next point to plot is (x_{k+1}, y_{k+1}) and

$$p_{k+1}=p_k+2\Delta y-2\Delta x$$

5. Perform step 4. Δx -1 times.

Bresenham's Algorithm: Example

 Two endpoints of a line is given as (20,10) and (30,18). This line has slope of 0.8, with

$$\Delta x=10$$
, $\Delta y=8$
 $p_0=2\Delta y-\Delta x=6$,
 $2\Delta y=16$,
 $2\Delta y-2\Delta x=-4$

k	p_k	(x_{k+1},y_{k+1})	k	p_k
0	6	(21,11)	5	6
1	2	(22,12)	6	2
2	-2	(23,12)	7	-2
3	14	(24,13)	8	14
4	10	(25,14)	9	10

k	p_k	(x_{k+1}, y_{k+1})
5	6	(26,15)
6	2	(27,16)
7	-2	(28,16)
8	14	(29,17)
9	10	(30,18)

Bresenham's Code in C

```
#include <stdlib.h>
#include <math.h>
/* Bresenham line-drawing procedure for |m| < 1.0. */
void lineBres (int x0, int y0, int xEnd, int yEnd)
 int dx = fabs (xEnd - x0), dy = fabs(yEnd - y0);
 int p = 2 * dy - dx;
 int twoDy = 2 * dy, twoDyMinusDx = 2 * (dy - dx);
 int x, y;
 /* Determine which endpoint to use as start position. */
 if (x0 > xEnd) {
   x = xEnd;
   y = yEnd;
   xEnd = x0;
 else {
   x = x0;
   y = y0;
 setPixel (x, y);
 while (x < xEnd) {
   χ++;
   if (p < 0)
    p += twoDy;
   else {
    y++;
     p += twoDyMinusDx;
   setPixel (x, y);
```

Bresenham's Algorithm for |m| \darkq1.0

- i.e m=0 (when Δy =0), m is undefined (when Δx =0), m=1 (when $|\Delta y|$ = $|\Delta x|$), m<0 and m>1.
- For lines with m>1, interchange the roles of x and y directions. i.e. step along y direction in unit steps and calculate successive x values nearest the line path.
- For m<0 (negative slope), the procedure is similar, except that now one coordinate decreases and as the other increases.
- Special cases: horizontal line (Δy =0), vertical lines (Δx =0), and diagonal lines ($|\Delta y|$ = $|\Delta x|$) can each be loaded directly into the frame buffer without processing them through the line-plotting algorithm.

Curve generating Algorithm

Figure 3-15

A circular arc approximated with (a) three straight-line segments, (b) six line segments, and (c) twelve line segments.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Circle generating algorithms

For any circle point (x,y), with radius, r, from a center point (x_c,y_c), the distance relationship is expressed by the
 Pythagorean theorem in Cartesian coordinates as:

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

- But using this equation to generate a circle is time consuming.
- We consider the midpoint circle algorithm here.
- There are many other techniques to reduce the calculation time. Read page 103-104 (Hearn & Baker)

Midpoint Circle Algorithm

- Uses the same technique used in the raster line algorithm.
- For a given radius, r, and screen center position (x_c, y_c) .
 - Set up the algorithm to compute pixel positions around the circle path centered at coordinate (0,0).
 - Then each computed position (x,y) is moved to proper screen position by adding x_c to x and y_c to y.
 - Symmetry consideration can be used to reduce computations.
- Here we look at the first quadrant, Figure 3.18 that is from x=0 to x=y, the slope of the curve varies from 0 to -1.0.
- To apply the midpoint method, a circle function is defined as

$$f_{circ}(x,y)=x^2+y^2-r^2$$

The function below gives the value of fcirc(x,y) for different (x,y) positions.

Figure 3-18

Symmetry of a circle. Calculation of a circle point (x, y)in one octant yields the circle points shown for the other seven octants.

(15)

Figure 3-19

Midpoint between candidate pixels at sampling position $x_k + 1$ along a circular path.

- We want to determine whether to choose (x_{k+1}, y_k) or (x_{k+1}, y_{k-1}) .
- The decision parameter is the circle function (15) evaluated at the midpoint.

$$p_k = f_{circ}(x_k + 1, y_k - \frac{1}{2})$$
$$= (x_k + 1)^2 + \left(y_k - \frac{1}{2}\right)^2 - r^2$$

• If
$$p_k < 0$$
,
choose (x_{k+1}, y_k)
if $p_k \ge 0$
choose (x_{k+1}, y_{k-1}) .

• Next to find pixel position at $x_{k+1}+1=x_k+2$

$$p_{k+1} = f_{circ}(x_{k+1} + 1, y_{k+1} - \frac{1}{2})$$
$$= (x_{k+1} + 1)^2 + \left(y_{k+1} - \frac{1}{2}\right)^2 - r^2$$

Can be simplified to:

$$p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

where y_{k+1} is taken as either y_k or y_k -1, depending on the sign of p_k .

- Increments for obtaining p_{k+1} are either $2x_{k+1}+1$ (if p_k is negative) or $2x_{k+1}+1-2y_{k+1}$ (if p_k is non-negative)
- With $2x_{k+1}=2x_k+2$ and $2y_{k+1}=2y_k-2$
- The initial decision parameter is obtained by evaluating the circle function at $(x_0, y_0) = (0, r)$:

$$p_{0} = f_{circ}(1, r - \frac{1}{2})$$

$$= 1 + (r - \frac{1}{2})^{2} - r^{2}$$

$$p_{0} = \frac{5}{4} - r$$

• If radius is specified as an integer, we can simply round p_0 to : $p_0=1-r$ (for r integer)

Midpoint Circle algorithm

1. Input radius r and circle center (x_c, y_c) then set the coordinates for the first point on the circumferences of a circle centered on the origin as

$$(x_o, y_o) = (0, r)$$

2. Calculate the initial value of the decision parameter as

$$p_0 = \frac{5}{4} - r$$

3. At each x_k position, starting at k=0, perform the following test. If $p_k < 0$, the next point along the circle centered on (0,0) is (x_{k+1},y_k) and

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

Otherwise, the next point along the circle is (x_{k+1}, y_{k-1}) and

$$p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$$

where $2x_{k+1}=2x_k+2$ and $2y_{k+1}=2y_k-2$

- 4. Determine symmetry points in the other 7 octants.
- 5. Move each calculated pixel position (x,y) onto the circular path centered at (x_c, y_c) and plot the coordinate values

$$x=x+x_c$$
, $y=y+y_c$

6. Repeat steps 3 through 5 until $x \ge y$

Mid point circle drawing: Example

- Given a circle radius r=10 centered at (0,0). Using the midpoint circle algorithm determine positions along the circle in the first quadrant.
 - Using the symmetrical property, we find the positions along the circle octant in the first quadrant from x=0 to x=y.
 - The initial value of the decision parameter is

$$p_0 = 1 - r = -9$$

- For the circle centered on the coordinate origin, the initial point is $(x_0, y_0) = (0,10)$,
- The initial increment terms for calculating decision parameters are: $2x_0=0$, $2y_0=20$.

k	p_k	(x_{k+1}, y_{k+1})	2x _{k+1}	2y _{k+1}
0	-9	(1,10)	2	20
1	-6	(2,10)	4	20
2	-1	(3,10)	6	20
3	6	(4,9)	8	18
4	-3	(5,9)	10	18
5	8	(6,8)	12	16
6	5	(7,7)	14	14


```
#include <GL/glut.h>
 class scrPt {
    public:
      GLint x, y;
 void setPixel (GLint x, GLint y)
   glBegin (GL_POINTS);
     glVertex2i (x, y);
   glEnd();
                                                                          void circlePlotPoints (scrPt circCtr, scrPt circPt);
void circleMidpoint (scrPt circCtr, GLint radius)
                                                                              setPixel (circCtr.x + circPt.x, circCtr.y + circPt.y);
   scrPt circPt;
                                                                              setPixel (circCtr.x - circPt.x, circCtr.y + circPt.y);
                                                                              setPixel (circCtr.x + circPt.x, circCtr.y - circPt.y);
   GLint p = 1 - radius:
                               // Initial value of midpoint parameter.
                                                                              setPixel (circCtr.x - circPt.x, circCtr.y - circPt.y);
                                                                              setPixel (circCtr.x + circPt.y, circCtr.y + circPt.x);
   circPt.x = 0;
                         // Set coordinates for top point of circle.
                                                                              setPixel (circCtr.x - circPt.y, circCtr.y + circPt.x);
   circPt.y = radius;
                                                                              setPixel (circCtr.x + circPt.y, circCtr.y - circPt.x);
                                                                              setPixel (circCtr.x - circPt.y, circCtr.y - circPt.x);
   void circlePlotPoints (scrPt, scrPt);
   /* Plot the initial point in each circle quadrant. */
   circlePlotPoints (circCtr, circPt);
   /* Calculate next points and plot in each octant. */
   while (circPt.x < circPt.y) {
     circPt.x++;
     if (p < 0)
        p += 2 * circPt.x + 1;
      else {
        circPt.y--;
        p += 2 * (circPt.x - circPt.y) + 1;
      circlePlotPoints (circCtr, circPt);
                                                                                                                                36
```