

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE FÍSICA

Física II

Cursos: Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e Gestão Industrial

Regente - Félix Tomo

Assitentes - Fernando Mucomole, Esménio Macassa, Tomásio Januário, Graça Massimbe & Valdemiro Sultane

2022 - Aula Prática # 06 - Força electromotriz e Circuítos eléctricos

- 1. Duas pilhas com fem $\varepsilon_1 = 2V$ $(r_1 = 1\Omega)$ e $\varepsilon_2 = 1V$ $(r_2 = 1\Omega)$, estão associados á resistência $R = 5\Omega$ de acordo com o circuíto da Figura 1. Determine as correntes que passam pelas pilhas $(\varepsilon_1 \ e \ \varepsilon_2)$ e pelo resistor R.
- 2. ($H\&R\ Cap.\ 27,\ 87$) Pretende-se dissipar uma potência de $10\ W$ num resistor de $0,10\ \Omega$, ligando o resitor á uma fonte cuja força electromotriz é de $1.5\ V.\ (a)$ Qual deve ser a diferença de potencial aplicada ao resitor? (b) Qual deve ser a resistência interna da fonte?
- 3. No circuíto apresentado na Figura~2, tem-se que $\varepsilon_1=10~V$, $\varepsilon_2=4~V$, $R_1=R_4=2~\Omega$ e $R_2=R_3=4~\Omega$. Determine as correntes que atravessam os resistores R_2 e R_3 . Considere que as fem são ideais.
- 4. Determine a diferença de potencial entre os pontos A e B da Figura 3. Estando os pontos A e B ligados, determine a corrente que atravessa a fem ε_1 , sabendo que: $\varepsilon_1 = 12 \, V$, $\varepsilon_2 = 10 \, V$, $\varepsilon_3 = 8 \, V$, $R_1 = 2 \, \Omega$, $R_2 = 1 \, \Omega$, $R_3 = 2 \, \Omega$, $R_4 = 2 \, \Omega$ e $r_1 = r_2 = r_3 = 1 \, \Omega$.
- 5. O circuito ramificado apresentado na $Figura\,4$, tem as seguintes características: $\varepsilon_1=6\,V, \varepsilon_2=5\,V, \varepsilon_3=4\,V$, $R_1=100\Omega$ e $R_2=50\,\Omega$. Determine as correntes que passam pelos resistores R_1 e R_2 e a diferença de potencial entre os pontos A e B (todas as fem consideram-se ideais).
- 6. Determine a variação da tensão no capacitor depois de fechar o interruptor no circuíto mostrado na *Figura* 5.
- 7. $(H\&R~Cap.\,27,97)$ No circuíto ilustrado na $Figura\,6$, a força electromotriz da fonte ideal é $\varepsilon=30\,V$, as resistências são $R_1=20\,k\Omega$ e $R_2=10\,k\Omega$ e o capacitor esta completamete descaregado. (a) Quando o interruptor é fechado no instante t=

 $0\,s$, determine a corrente que passsa em cada resistor. (b) Depois de transcorrido um longo período, qual é a corrente no resistor R_2 ?

Figuras

