計算思維與人工智慧

TA Class #06

RapidMiner3

參考書目

大數據驅動商業決策:13 個 RapidMiner 商業預測操作實務

今日重點

模型訓練流程

常見的模型目標 & 今日重點

- The most common data science modeling tasks are these:
 - Classification—Deciding if something belongs to one category or another
 - Scoring—Predicting or estimating a numeric value, such as a price or probability
 - Ranking—Learning to order items by preferences
 - Clustering—Grouping items into most-similar groups
 - Finding relations—Finding correlations or potential causes of effects seen in the data
 - Characterization—Very general plotting and report generation from data

Evaluation (Classification)

Confusion matrix

- A good summary of classifier accuracy is the confusion matrix
 - which tabulates actual classifications against predicted ones

示例 [編輯]

如果已經訓練好了一個系統用來區分貓和狗,那混淆矩陣就可以概括算法的測試結果以便將來的檢查。假設一個**13**個動物的樣本,**8** 隻貓和**5**隻狗,那混淆矩陣的結果可能如下表所示:

		預測的類別	
		貓	狗
祭的類別	貓	5	3
實際的	狗	2	3

在這個混淆矩陣中,系統預測了8隻實際的貓,其中系統預測3隻是狗,而5隻狗中,則預測有2隻是貓。所有正確的預測都位於表格的對角線上(以粗體突出顯示),因此很容易從視覺上檢查表格中的預測錯誤,因為它們將由對角線之外的值表示。

https://zh.wikipedia.org/zh-tw/%E6%B7%B7%E6%B7%86%E7%9F%A9%E9%98%B5

- Definition (<u>BadLoan</u> => positive case)
 - True positive
 - False positive
 - True negative
 - False negative

```
pred
Good.Loan BadLoan GoodLoan
BadLoan TP 41 FN 259
GoodLoan FP 13 TN 687
```

		Predicted cond	lition	Sources: [22][23][24][25][26][27][28][29][30] view+talk+edit		
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$	
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = FN = 1 - TPR	
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN),	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR	
5	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision = TP = 1 - FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$	
	Balanced accuracy (BA) $= \frac{TPR + TNR}{2}$	$F_1 \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes-Mallows index (FM) = $\sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV −√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP	

Evaluation

pre	ed		
Good.Loan	Bac	dLoan	GoodLoan
BadLoan	TP	41	FN 259
GoodLoan	FP	13	TN 687

- Accuracy
 - # of items categorized correctly divided by #of items
 - (TP+TN)/(TP+TN+FP+FN)
- Precision
 - fraction of the items the classifier flags as being in the class actually are in the class = how often a positive indication turns out to be correct
 - TP/(TP+FP)
- Recall
 - what fraction of the things that are in the class are detected by the classifier
 - TP/(TP+FN)
- False positive rate = FP/(FP+TN)

Accuracy 在某些應用場景不實用 (舉例: Information Retrieval 關鍵字搜索) 以下的範例 (Retrieved = Positive) 其 Accuracy 將會趨近於 1, 但是 Retrieve 效果其實不好, 大部分和關鍵字相關的文件都沒有被撈回來 (82 筆)

	Retrieved	Not Retrieved
Relevant	18	82
Not Relevant	2	1,000,000,000

Precision 和 Recall 可以被人為操作, 讓數字很好看

● Recall = 1 (全猜 Positive)

	Retrieved	Not Retrieved
Relevant	18	0
Not Relevant	1,000,000,000	0

● 刻意降低 Recall 通常可以提高 Precision

Precision & Recall 有 Trade-off 的關係

 Picking thresholds other than 0.5 can allow the data scientist to trade precision for recall

```
(table(truth=spamTest$spam, prediction=spamTest$pred>0.9))
(table(truth=spamTest$spam, prediction=spamTest$pred>0.5))
(table(truth=spamTest$spam, prediction=spamTest$pred>0.1))
```

- 假設模型預測的輸出結果為機率, 只有當 "可能為 spam (垃圾信件) 的機率" 大於 0.9 or 0.5 or 0.1 時, 模型才會把該樣本分類為 spam。
- 機率門檻設定得愈低,則被預測為 Positive 的樣本會愈多、被預測為 Negative 的樣本會愈少>> Precision 下降、Recall 上升。反之亦然
- 所以我們通常會同時看 F1-Score

The F1 score

- Sørensen-Dice coefficient, <u>Sørensen</u>-Dice index,
 <u>Sørensen</u> index, Dice's coefficient
- Harmonic mean (調和平均數) of precision and recall
 - a useful combination of precision and recall.

•
$$\frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2*precision*recall}{precision+recall} = \frac{2*TP}{2*TP+FP+FN}$$

Common classification performance measures

Table 5.5 Example classifier performance measures

Measure	Formula
Accuracy	(TP+TN)/ (TP+FP+TN+FN)
Precision	TP/(TP+FP)
Recall	TP/(TP+FN)
Sensitivity	TP/(TP+FN)
Specificity	TN/(TN+FP)

當進行二元分類預測時,我們可以求得以下關係圖:

	 預測結果 與		實際結果		
實際結果的	比較	0	1	總數	
35 别处 田	0	真陽性(TP)	偽陽性(FP)	P'	
預測結果	1	偽陰性(FN)	真陰性(TN)	N'	
總數		Р	N		

■ ROC 空間將偽陽性率 (FPR) 定義為 X 軸, 真陽性率 (TPR)定義為 Y 軸:

$$\circ \quad \mathsf{TPR} = \mathsf{TP} / (\mathsf{TP} + \mathsf{FN})$$

$$\circ$$
 FPR = FP / (FP + TN)

由 ROC_space.png: Indonderivative work: Kai walz (talk) - ROC_space.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8326140

■ ROC 空間將偽陽性率 (FPR) 定義為 X 軸, 真陽性率 (TPR)定義為 Y 軸:

- \circ TPR = TP / (TP + FN)
- \circ FPR = FP / (FP + TN)

真陽性率 (TPR, true positive rate)

又稱:命中率 (hit rate)、敏感度(sensitivity)

TPR = TP / P = TP / (TP + FN)

偽陽性率(FPR, false positive rate)

又稱:錯誤命中率,假警報率 (false alarm rate)

FPR = FP / N = FP / (FP + TN)

由 ROC_space.png: Indonderivative work: Kai walz (talk) - ROC_space.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8326140

- 進行分類時,我們會設置閾值(threshold)作為 分類的分界。而設置不同的閾值會影響分類的 結果。
- 假設資料點 Z 投影至 sigmoid function 後的值高於閾值分類為 1、反之則分類為 0。若此時閾值設定為 0.9,則六個資料點中左數第三個點可以被正確分類為 0 (投影值 0.7 < 0.9)。閾值設定為 0.5 或 0.2 都會讓第三個點分類錯誤

- 因此當我們把所有的 threshold 都考慮進來的時候,我們就可以將 ROC 畫成一條曲線!
- 當曲線越靠近左上角時,代表該模型預測結果會 越好!因為這樣就有機會找到分類精確度更高的分 界了!

由 无法识别作者。根据版权声明推断作者为NekoJaNekoJa~commonswiki。- 无法识别来源。根据版权声明推断为其自己的作品。, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=407628

ROC Curve & AUC Score

數字愈大愈好

模型比較視覺化(Operator: Compare ROCs)

☑加入 Nominal to Numerical, 將自變數轉換成數值型態 (某些分類模型只接受數值型態的自變數)

模型比較視覺化(Operator: Compare ROCs)

☑加入 Nominal to Numerical, 將自變數轉換成數值型態 (某些分類模型只接受數值型態的自變數)

模型比較視覺化:各種模型放入

模型比較視覺化:結果

Models (Classification)

常見分類模型

- Logistic Regression
- KNN
- <u>決策樹 (Decision Tree, Random Forest)</u>
- Support Vector Machine
-

上課使用的範例流程檔

匯入RapidMiner3-Class-Example.rmp, 可以用於測試各種分類模型

上課使用的範例流程檔

點擊進入 Cross Validation 元件內部,可在紅色框起來的地方替換不同模型

還記得之前學過的線性迴歸嗎?

- Prediction
 - $\hat{Y} = \hat{f}(X)$
 - \hat{f} : our estimate for f
 - \hat{Y} : resulting prediction for Y

Logistic Regression 可以視為線性迴歸的一個變形, 可用於分類任務

線性迴歸希望數據點都盡量符合紅線

羅吉斯迴歸希望找到可以切分類別的那條線

2

Logistic Regression 會使用 Sigmoid 函數轉換數值, 讓最後的輸出結果為機率 (介於 0 和 1 之間); 接著根據閾值(Threshold) 做分類 (e.g. Threshold 為 0.5, 則 >= 0.5 為一類、< 0.5 為一類)

Sigmoid function

Article Talk

From Wikipedia, the free encyclopedia

A **sigmoid function** is a mathematical function having a characteristic "S"-shaped curve or **sigmoid curve**.

A common example of a sigmoid function is the logistic function shown in the first figure and defined by the formula:^[1]

$$\sigma(x) = rac{1}{1 + e^{-x}} = rac{e^x}{1 + e^x} = 1 - \sigma(-x).$$

Figure 1. The standard logistic function $\sigma(t)$; note that $\sigma(t) \in (0,1)$ for all t.

Linear Regression

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

輸出值為任意數

Logistic Regression

$$f_{w,b}(x) = \sigma\left(\sum_{i} w_{i}x_{i} + b\right)$$

輸出值介於 0 和 1 之間

如何調整 FN 或 FP 的比率

以 Logistic Regression 為例,以下是原先範例的 PerformanceVector

Q: 如果我想要降低 False Negative (FN) 的比率, 要怎麼做?

accuracy: 80.73%

	true Yes	true No	class precision
pred. Yes	78	26	75.00%
pred. No	27	144	84.21%
class recall	74.29%	84.71%	

如何調整 FN 或 FP 的比率

Ans: 使用 MetaCost 元件, 調高 FN 的模型懲罰

如何調整 FN 或 FP 的比率

Ans: 使用 MetaCost 元件, 調高 FN 的模型懲罰

如何調整 FN 或 FP 的比率

PerformanceVector 的 FN 比率成功下降。

Q: 如果我想要降低 False Positive (FP) 的比率, 要怎麼做?

accuracy: 73.09%

	true Yes	true No	class precision
pred. Yes	92	61	60.13%
pred. No	13	109	89.34%
class recall	87.62%	64.12%	

Kaggle 競賽

Smoker 預測

這次的作業將利用分類模型預測目標是否為抽菸者, 預測目標為 smoking (0 沒抽, 1 有抽)

Smoker 預測 - 匯入資料

請從 Kaggle 下載 train.csv、test.csv >> 匯入 RapidMiner 並做以下設定 (記得勾選 Replace errors with missing values)

- train.csv: 使用 Change Role 將 id 改為 id、使用 Change Role 將 smoking 改為 label、使用 Change type 將 smoking 改為 binominal
- **test.csv:** 使用 Change Role 將 id 改為 id

Smoker 預測 - 匯入資料

請從 Moodle 下載 RapidMiner3_Smoker_Status.rmp 並匯入 RapidMiner

Smoker 預測 - 設計流程

記得按照之前教學的方式更改檔案路徑、CSV 輸出位置

注意事項

這次的 training dataset 大小為 9 mb 左右, 照道理來講並不是很大的一筆資料, 但是使用 RapidMiner 訓練模型卻需要花大量時間。所以這次的作業範例沒有使用 Optimize Parameters, 且另外使用 Split data 將訓練資料再切小一點, 避免大家做作業的時候等待太久。

期末報告盡量也不要找太大的資料集, 找 kb 等級的資料比較安全。

注意事項

- 1. 以下分類模型不建議在這次的作業中使用,會計算很久
 - Support Vector Machine
- 2. 如果發現訓練時間還是太長的話, 可以把 Split Data 第一格的 ratio 再調小一點 (下面範例表示只用 0.1 的 training data 訓練模型)

Smoker 預測 - 上傳格式

預測目標為 smoking (值為 Integer, 1 或 0)

Evaluation- AUC Score

上傳分數愈高愈好

Evaluation

Submissions are evaluated on area under the ROC curve between the predicted probability and the observed target.

Higher score is better

Smoker 預測 - Baseline

以下是今天範例的Public 和 Private score, 要拿到 "加分題" 的同學你的 Private score 必須優於 Baseline

Upload a Submission CSV and make sure it produces the expected score. These submissions are private unless tagged as a Benchmark, which appears on the Leaderboard.

更改 Kaggle Team Name

請注意 Team name 務必改成以下格式: 學號-系級-名字

Overview Data Code Discussion Leaderboard Rules Team

Submissions Submissions Submit Predictions ...

Your Team

Everyone that competes in a Competiton does so as a team - even if you're competing by yourself. Learn more.

General

This name will appear on your team's leaderboard position.

基本題 4 分

- 1. 不限定模型, 成功上傳kaggle(即 Leaderboard 有你的名字, 且**格式正確**),
- 2. Public Score 優於 Baseline
- 3. 在 Moodle **上傳至少 1 頁 PDF**, 說明你的設計流程、參數設定, 並附上截圖(請參考簡報 前面的教學是怎麼做的)
- 4. **上傳你的 Process file** (檔名: 學號_RapidMiner3.rmp, 範例: 111753151_RapidMiner3.rmp)

加分題 1分

1. 結算後在 Leaderboard **排名前 50%** 且 Private Score **優於** Baseline 的同學可以得到額外的分數。

透過上課教過的方法 + 上網查詢、調整資料前處理的方法 or 模型參數。接下來的作業都沒有標準答案, 請大家盡可能的去嘗試!

作業注意事項

為了公平起見, 且大家的期末專題海報預計會與 micro:bit 或 RapidMiner 有關, 此作業限定使用 RapidMiner 產生的 Submission 參賽, 請確認繳交的 Process file 可以產生正確的 Submission 檔案

● 請不要抄襲、或是直接拿別人的 Submission 檔案上傳,助教會隨機抽查是 否有排名分數與 Process file 不一致的問題。

Reference

- 大數據驅動商業決策: 13 個 RapidMiner 商業預測操作實務
- RapidMiner 人工智慧機器學習軟體
- Data Science course by professor Jia-Ming Chang
- 基礎統計名詞介紹網頁
- <u>2021 iThome 鐵人賽 全民瘋 AI 系列 2.0</u>
- Hung-yi Lee 機器學習

Tools

Zoomlt - Sysinternals - Microsoft Learn

