ЛАБОРАТОРНА РОБОТА №4

Обробка кольорових зображень

Тема роботи: обробка кольорових зображень.

Мета роботи: дослідити особливості обробки кольорових зображень в середовищі МАТLAB або Python.

Теоретичні відомості

Основи теорії кольору

Людиною колір сприймається за характером відбитого від об'єктів або випромінюваного ними світла. Видиме світло складає відносно вузьку смугу всього діапазону довжин хвиль електромагнітного спектру: від 380 до 780 нм. Тіло, що рівномірно відбиває або випромінює світло у всьому видимому діапазоні довжин хвиль, для спостерігача має вигляд білого. В той же час тіло, яке відбиває світло переважно в деякому обмеженому діапазоні довжин хвиль, набуває певного кольору.

Коли світло ϵ безбарвним (*ахроматичним*) в ролі його характеристики виступа ϵ інтенсивність. Параметрами, якими прийнято користуватись для розрізнення кольорів ϵ :

- Світлість (яскравість) характеризує інтенсивність світла.
- *Тон кольору* характеризує домінуючий колір, що сприймається спостерігачем і зазвичай відповідає певному спектральному складу світла.
- Насиченість характеризує білизну кольору.

Разом тон кольору та насиченість називаються кольоровістю.

Кольорові простори

Кольоровий простір або кольорова модель визначають певну систему координат та підпростір у цій системі, в якому кожному кольору відповідає єдина точка. Існують наступні види просторів кольору:

- Лінійні (XYZ, RGB, CMY[K]).
- Нелінійні (HSV, HSI);
- Рівномірні (L*a*b*, L*u*v*).

Для перетворення кольорів в системі МАТLAВ використовуються наступні функції:

- rgb2gray
- rgb2hsv Ta hsv2rgb
- rgb2xyz Ta xyz2rgb
- rgb2lab Ta lab2rgb
- тощо

або пари універсальних функції:

- makecform
- applycform

Перетворення кольорів в середовищі Python можна здійснити за допомогою аналогічних функцій пакету skimage.color. При цьому у Python замість пари функцій makecform та applycform застосовується єдина функція convert_colorspace.

Обробка кольорових зображень

Фільтрацію цифрових кольорових зображень можна здійснювати покомпонентно, тобто по кожній кольоровій площині (складовій) окремо. Для цього можна застосовувати *деякі* розглянуті вище методи просторової та частотної обробки (див. лаб. 2 та лаб. 3).

Водночас, підвищення різкості та згладжування можна досягти шляхом обробки компоненти V моделі кольору HSV або компоненти L* моделей L*u*v* та L*a*b*. В такому разі алгоритм фільтрації матиме вигляд:

- 1. Перевести зображення із заданого простору в один із просторів HSV/L*u*v*/L*a*b*.
- 2. Виконати фільтрацію компоненти V або L*.
- 3. Повернути зображення у заданий кольоровий простір.

В ряді випадків, покомпонентна обробка зображень може призводити до кольорових спотворень. Цей ефект виникатиме тоді, коли оператори, застосовувані до площин кольору зображення відрізнятимуться, зокрема при покомпонентній еквалізації гістограм. В такому випадку застосовують перетворення в простори HSV, L*u*v* та L*a*b*.

Зауваження. При виконанні перетворень між кольоровим просторами необхідно контролювати типи даних утворюваних зображень, щоб при подальшій обробці випадково не вийти за діапазон допустимих значень пікселів, що може призводити до появи спотворень.

Виявлення контурів на кольорових зображеннях

Наближено знайти градієнт кольорового RGB зображення можна знайти шляхом покомпонентної обробки наступним чином:

$$\begin{split} F_a(x,y) &= \nabla f_{\rm R} + \nabla f_{\rm G} + \nabla f_{\rm B} = \\ &= \sqrt{\left(\frac{\partial \mathbf{R}}{\partial x}\right)^2 + \left(\frac{\partial \mathbf{R}}{\partial y}\right)^2} + \sqrt{\left(\frac{\partial \mathbf{G}}{\partial x}\right)^2 + \left(\frac{\partial \mathbf{G}}{\partial y}\right)^2} + \sqrt{\left(\frac{\partial \mathbf{B}}{\partial x}\right)^2 + \left(\frac{\partial \mathbf{B}}{\partial y}\right)^2} \end{split}$$

де частинні похідні визначаються будь-яким розглянутим вище методом диференціювання зображень, наприклад, за допомогою оператора Собела; R, G та B – відповідні зображення-компоненти.

Водночає існує більш точний метод виявлення контурів, що оснований на довизначенні поняття градієнту для вектор-функцій, якими власне і є кольорові зображення. Нехай існують наступні величини g_{xx} , g_{yy} та g_{xy} :

$$g_{xx} = \mathbf{u}^{2} = \mathbf{u}^{T} \mathbf{u} = \left| \frac{\partial \mathbf{R}}{\partial x} \right|^{2} + \left| \frac{\partial \mathbf{G}}{\partial x} \right|^{2} + \left| \frac{\partial \mathbf{B}}{\partial x} \right|^{2},$$

$$g_{xx} = \mathbf{v}^{2} = \mathbf{v}^{T} \mathbf{v} = \left| \frac{\partial \mathbf{R}}{\partial y} \right|^{2} + \left| \frac{\partial \mathbf{G}}{\partial y} \right|^{2} + \left| \frac{\partial \mathbf{B}}{\partial y} \right|^{2},$$

$$g_{xy} = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{T} \mathbf{v} = \frac{\partial \mathbf{R}}{\partial x} \frac{\partial \mathbf{R}}{\partial y} + \frac{\partial \mathbf{G}}{\partial x} \frac{\partial \mathbf{G}}{\partial y} + \frac{\partial \mathbf{B}}{\partial x} \frac{\partial \mathbf{B}}{\partial y}.$$

Можна, тоді показати, що кут, в напрямку якого швидкість росту вектор-функції буде максимальною, визначається рівнянням:

$$tg(2\theta) = \frac{2g_{xy}}{g_{xx} - g_{yy}},$$

а величина швидкості зміни в точці (x, y) в напрямку кута θ задовольняє виразу:

$$F(x, y) = \sqrt{\frac{1}{2}[(g_{xx} + g_{yy}) + (g_{xx} - g_{yy})\cos(2\theta) + g_{xy}\sin(2\theta)]}.$$

Відзначимо, що наведене вище рівняння для кута θ має два розв'язки, які відрізняються на 90°, тому щоб знайти градієнт необхідно обчислити F(x, y) для двох значень кутів: θ та $\theta + \pi / 2$ та вибрати з них більше.

Для виявлення контурів на кольорових зображеннях використовуватимемо функцію **colorgrad**, яка реалізує обидва вище описаних методи.

Порядок виконання роботи

- 1. У відповідністю до наведених нижче завдань виконати обробку зображень (зображення та необхідні для їх обробки додаткові тфайли з функціями надаються окремо).
- 2. Провести експериментальні дослідження впливу параметрів функцій обробки на якість результуючих зображень.
- 3. На практиці з'ясувати що ϵ спільним, а що відмінним при обробці кольорових та яскравісних зображень.
- 4. Представити процедури обробки зображень у вигляді т-файла.

Завдання

Виконати обробку заданих зображень:

- 1. Перетворити зображення у різні простори кольору (файл pic.1.png).
- 2. Здійснити згладжування зображення за допомогою покомпонентної обробки (файл pic.2.png).
- 3. Здійснити згладжування зображення шляхом його перетворення в системи кольору HSV та L*a*b* (файл pic.2.png).

- 4. Підвищити різкість зображення за допомогою покомпонентної обробки (файл ріс.2.png).
- 5. Підвищити різкість зображення шляхом його перетворення в системи кольору HSV та L*a*b* (файл pic.2.png).
- 6. Виконати еквалізацію гістограм (файл pic.2.png).
- 7. Виконати виявлення контурів на зображенні покомпонентно та розглядаючи зображення як вектор функцію (файл pic.2.png). Порівняти результати.

Запитання для самоконтролю

- 1. Що таке колір, якими параметрами він зазвичай характеризується.
- 2. Як представляються кольорові цифрові зображення у сучасній обчислювальній техніці.
- 3. Що таке кольоровий простір. Наведіть види кольорових просторів, та їх приклади.
- 4. Для чого потрібні різні кольорові простори. Наведіть приклади їх застосування.
- 5. Якими двома шляхами можна виконувати обробку кольорових зображень. В чому їх переваги та недоліки.
- 6. Як виконується еквалізація гістограм при обробці кольорових зображень. Чому її не можна виконувати по кожній площині кольору.
- 7. Наведіть алгоритм обробки зображення із переходом у простори HSV/L*u*v/L*a*b.
- 8. Як виконується виявлення контурів на кольорових зображеннях.
- 9. Які процедура переходу між кольоровими просторами застосовуються в системі MATLAB.