Relatório Projeto 3.1 AED 2020/2021 Versão 1.0

Nome: Miguel António Gabriel de Almeida Faria	Nº Estudante: 2019216809
TP (inscrição): PL8 Login no Mooshak: 2019216809	
Nº de horas de trabalho:5H Aulas Práticas de Laboratório:2	H Fora de Sala de Aula: 3 H
(A Preencher pelo Docente) CLASSIFICAÇÃO:	
Comentários:	

1. Análise Empírica de Complexidade

Correr a implementação do projeto 3.1 para um número crescente de transações e obter os tempos de execução (excluindo tempo de leitura e impressão de resultados). Produzir tabela, gráfico e regressão relevantes.

Núm. Transações	Tempo (ms)
1024	3
4096	7
16384	33
65536	428
131072	2218
262144	8999
524288	36831
1048576	178518

A expressão f(N) está de acordo com o esperado? Justifique.

A expressão não está de acordo com o esperado. A regressão mais adequada aos dados obtidos é polinomial de grau 2, no entanto a complexidade da Merkle Tree é linear, uma vez que para cada número de transações N, o número de iterações é igual a 2N-1. Esta diferença pode dever-se ao uso de várias operações envolvendo os ArrayLists.

O projeto 3.1 pode ser implementado seguindo uma abordagem iterativa e uma recursiva.

Explique sucintamente o essencial das duas implementações em termos de estruturas de dados utilizadas e da propagação dos *hashcodes* na árvore

No meu projeto segui a abordagem iterativa com representação implícita da árvore através de um array, onde para a criação dos nós é usado um ciclo que vai calculando os nós acima até chegar à raiz. Se tivesse representado a árvore explicitamente, a abordagem recursiva seria melhor, onde primeiro é construída a estrutura da árvore, e depois se vai substituindo os valores dos nós a partir das folhas. Em ambos os casos, a propagação dos hashcodes é ascendente.