Cauchyho nerovnosť

Lema 1. Nech a a b sú reálne čísla. Nech x a y sú kladné reálne čísla. Potom platí

$$\frac{(a+b)^2}{x+y} \le \frac{a^2}{x} + \frac{b^2}{y}.$$

 $D\hat{o}kaz.$ Danú nerovnosť stačí prepísať do ekvivalentného tvaru: $(ay-bx)^2\geq 0.$

Tvrdenie 1. Nech a_1, a_2, \ldots, a_n sú reálne čísla. Nech x_1, x_2, \ldots, x_n sú kladné reálne čísla. Potom platí

$$\frac{(a_1 + a_2 + \dots + a_n)^2}{x_1 + x_2 + \dots + x_n} \le \frac{a_1^2}{x_1} + \frac{a_2^2}{x_2} + \dots + \frac{a_n^2}{x_n}.$$

Dôkaz. Matematickou indukciou. Podľa predchádzajúcej lemy máme

$$\frac{(a_1 + a_2 + \dots + a_{n+1})^2}{x_1 + x_2 + \dots + x_{n+1}} \le \frac{a_1^2}{x_1} + \frac{(a_2 + \dots + a_{n+1})^2}{x_2 + \dots + x_{n+1}} \le \frac{a_1^2}{x_1} + \frac{a_2^2}{x_2} + \dots + \frac{a_{n+1}^2}{x_{n+1}}.$$

Veta 1. (Cauchyho nerovnosť) Nech $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ sú reálne čísla. Potom platí

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2).$$

 $D\hat{o}kaz$. Ak čísla b_1, b_2, \dots, b_n sú nenulové, stačí použiť predchádzajúce tvrdenie:

$$\frac{(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2}{b_1^2 + b_2^2 + \dots + b_n^2} \le \frac{(a_1b_1)^2}{b_1^2} + \frac{(a_2b_2)^2}{b_2^2} + \dots + \frac{(a_nb_n)^2}{b_n^2} = a_1^2 + a_2^2 + \dots + a_n^2.$$

Zobrazenie

Nech X a Y sú množiny. Symbolom $X \to Y$ budeme označovať množinu všetkých zobrazení množiny X do množiny Y. Zápis $f: X \to Y$ znamená, že $f \in (X \to Y)$. Symbolom f(x) označujeme hodnotu zobrazenia f v prvku $x \in X$. Zápis $x \mapsto f(x)$ znamená, že prvku x je priradený prvok f(x).

Nech M je množina. Ak je každému prirodzenému číslu n priradený istý prvok $a_n \in M$, potom hovoríme, že

$$a_1, a_2, a_3, a_4, a_5, \dots$$

Г

je postupnosť prvkov množiny M. Teda postupnosť je zobrazenie $\mathbf{a}: \mathbb{N} \to M$, ktoré je definované predpisom $\mathbf{a}(n) = a_n$ pre každé $n \in \mathbb{N}$. Postupnosť často zapisujeme v skrátenom tvare $(a_n)_{n \in \mathbb{N}}$. Prvky a_n nazývame členy postupnosti \mathbf{a} .

Nech $f: X \to Y$. Obraz množiny $A \subseteq X$ definujme predpisom

$$f[A] = \{ f(a) : a \in A \}.$$

Obraz množiny X sa volá *obraz zobrazenia f*. Označujeme ho symbolom Im f. Teda Im f = f[X].

 $Vzor\ mno\check{z}iny\ B\subseteq Y$ definujme predpisom

$$f^{-1}[B] = \{x \in X : f(x) \in B\}.$$

Ak množina B je jednoprvková, t.j. v prípade $B = \{y\}$, namiesto $f^{-1}[\{y\}]$ píšeme $f^{-1}[y]$.

Príklad 1.

Príklad 2. Nech $X=\{a,b\}$, kde $b=\{a\}$. Definujme zobrazenie $f:X\to X$ predpisom f(x)=a pre každé $x\in X$. Potom $f[b]=b\neq a=f(b)$.

Zobrazenie $f: X \to Y$ sa volá *injektívne*, ak pre každé $y \in Y$ rovnica f(x) = y (s neznámou x) má najviac jedno riešenie.

Zobrazenie $f:X\to Y$ sa volá surjektívne, ak pre každé $y\in Y$ rovnica f(x)=y (s neznámou x) má aspoň jedno riešenie.

Zobrazenie $f: X \to Y$ sa volá *bijektívne*, ak pre každé $y \in Y$ rovnica f(x) = y (s neznámou x) má práve jedno riešenie.

Úloha 1. Zistite, či zobrazenie $f:\mathbb{R}^2\to\mathbb{R}^2$ definované pre každé $(u,v)\in\mathbb{R}^2$ predpisom $f(u,v)=(u^2-v^2,2uv)$

- a) je injektívne,
- b) je surjektívne.

Príklad 3. Nech X je množina všetkých postupností $\mathbf{x}=(x_n)_{n\in\mathbb{N}}$ reálnych čísel, pre ktoré rad $\sum_{n=1}^{\infty}x_n^2$ konverguje.

Definujme zobrazenie $T: X \to X$ predpisom $T(\mathbf{x}) = \mathbf{y}$, kde

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{2^{n-1}}$$
 pre každé prirodzené číslo n .

Najskôr ukážeme, že zobrazenie Tje korektne definované. Nech $\mathbf{x} \in X.$ Overíme, že rad

$$\sum_{n=1}^{\infty} \left(\frac{x_1 + x_2 + \dots + x_n}{2^{n-1}} \right)^2 = \sum_{n=1}^{\infty} \frac{1}{4^{n-1}} (x_1 + x_2 + \dots + x_n)^2$$

je konvergentný. Stačí použiť Cauchyho nerovnosť:

$$(x_1 + x_2 + \dots + x_n)^2 \le \underbrace{(1^2 + 1^2 + \dots + 1^2)}_{=n} (x_1^2 + x_2^2 + \dots + x_n^2) \le n \sum_{k=1}^{\infty} x_k^2.$$

Potom

$$\sum_{n=1}^{\infty} \frac{1}{4^{n-1}} (x_1 + x_2 + \dots + x_n)^2 \le \sum_{n=1}^{\infty} \frac{n}{4^{n-1}} \sum_{k=1}^{\infty} x_k^2.$$

Pretože obidva rady $\sum\limits_{n=1}^{\infty}\frac{n}{4^{n-1}}$ a $\sum\limits_{k=1}^{\infty}x_k^2$ konvergujú, postupnosť $T(\mathbf{x})$ patrí do množiny X.

Teraz ukážeme, že zobrazenie Tje injektívne. Nech $\mathbf{x},\mathbf{z}\in X.$ Predpokladajme, že platí

$$T(\mathbf{x}) = T(\mathbf{z}). \tag{1}$$

Ukážeme, že potom pre každé prirodzené číslo n platí $x_n = z_n$.

Z rovnosti (1) vyplýva, že

$$\frac{x_1}{2^0} = \frac{z_1}{2^0}, \qquad \frac{x_1 + x_2}{2^1} = \frac{z_1 + z_2}{2^1}, \qquad \frac{x_1 + x_2 + x_3}{2^2} = \frac{z_1 + z_2 + z_3}{2^2}, \qquad \dots$$

Odtiaľ postupne dostávame $x_1 = z_1, x_2 = z_2, x_3 = z_3, \dots$

Nakoniec ukážeme, že zobrazenie T nie je surjektívne. Nech ${\bf y}$ je postupnosť reálnych čísel definovaná predpisom $y_n=\frac{1}{n}$ pre každé prirodzené číslo n. Pretože

rad $\sum_{n=1}^{\infty} \frac{1}{n^2}$ je konvergentný, postupnosť **y** patrí do množiny X. Nech **x** je taká postupnosť prvkov množiny X, pre ktorú platí $T(\mathbf{x}) = \mathbf{y}$. Pretože

$$2^{n-1}y_n = x_1 + x_2 + \dots + x_n,$$

$$2^n y_{n+1} = x_1 + x_2 + \dots + x_n + x_{n+1},$$

máme

$$x_{n+1} = 2^n y_{n+1} - 2^{n-1} y_n = \frac{2^n}{n+1} - \frac{2^{n-1}}{n} = \frac{2^{n-1}(n-1)}{n(n+1)}.$$

Pretože $\lim_{n\to\infty} x_{n+1}^2 = \infty$, rad $\sum_{n=1}^{\infty} x_n^2$ nespĺňa nutnú podmienku konvergencie. To je v spore s tým, že postupnosť **x** patrí do množiny X.

Tvrdenie 2. Nech $f: X \to Y$ je zobrazenie. Potom pre každé $A_1, A_2 \subseteq X$ a pre každé $B_1, B_2 \subseteq Y$ platí

- (a) $f[A_1 \cup A_2] = f[A_1] \cup f[A_2],$
- (b) $f[A_1 \cap A_2] \subseteq f[A_1] \cap f[A_2]$; ak f je injektívne, potom platí rovnosť,
- (c) $f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2],$
- (d) $f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2].$

Tvrdenie 3. Nech $f: X \to Y$ je zobrazenie. Potom pre každé $A \subseteq X$ a pre každé $B \subseteq Y$ platí

- (a) $A \subseteq f^{-1}[f[A]]$; ak f je injektívne, potom platí rovnosť,
- (b) $f[f^{-1}[B]] \subseteq B$; ak f je surjektívne, potom platí rovnosť,
- (c) $f^{-1}[Y \setminus B] = X \setminus f^{-1}[B]$.

Nech $f:X\to Y$ a $g:Y\to Z$ sú zobrazenia. Zložené zobrazenie $g\circ f:X\to Z$ definujeme predpisom

$$(g \circ f)(x) = g(f(x))$$
 pre každé $x \in X$.

Identitana množine X je zobrazenie $I_X:X\to X,$ ktoré je definované predpisom $I_X(x)=x$ pre každé $x\in X.$

Nech $f:X\to Y$ je bijektívne zobrazenie. Potom existuje jediné zobrazenie $f^{-1}:Y\to X$, pre ktoré platí

$$f^{-1} \circ f = I_X, \quad f \circ f^{-1} = I_Y.$$

Zobrazenie f^{-1} sa volá $inverzn\acute{e}$ zobrazenie ku f.

Úloha 2. Definujme dve postupnosti $(a_n)_{n\in\mathbb{N}}$ a $(b_n)_{n\in\mathbb{N}}$ predpismi

$$a_{2j-1} = j, \ a_{2j} = a_j;$$

 $b_{2j-1} = 1, \ b_{2j} = 1 + b_j.$

Overte, že priradenie $j\mapsto (a_j,b_j)$ definuje bijekciu medzi množinami $\mathbb N$ a $\mathbb N\times\mathbb N$. Nájdite k nej inverzné zobrazenie.

Vektorový priestor

Nech \mathbb{F} je pole. My budeme pracovať s poľom \mathbb{R} všetkých reálnych čísel a s poľom \mathbb{C} všetkých komplexných čísel. Ak teda nejaké tvrdenie vyslovíme pre pole \mathbb{F} , bude to znamenať, že toto tvrdenie platí aj pre pole \mathbb{R} , aj pre pole \mathbb{C} .

 $Vektorový \ priestor \ V$ nad poľom $\mathbb F$ je množina prvkov, ktoré voláme vektory, na ktorej je definované $s\check{c}itanie$ vektorov a skalárne $n\acute{a}sobenie$ vektorov, ktoré majú nasledujúce vlastnosti:

- o Sčítanie je asociatívne, t.j. pre všetky vektory x, y, z patriace do množiny V platí: x + (y + z) = (x + y) + z.
- o Sčítanie je komutatívne, t.j. pre všetky vektory x,y patriace do množiny V platí: x+y=y+x.
- o Existuje práve jeden vektor, ktorý voláme nulový vektor a označujeme ho 0, pre ktorý platí x + 0 = x a 0 + x = x pre všetky vektory x patriace do množiny V.
- o Pre každý vektor x patriaci do množiny V existuje práve jeden vektor patriaci do množiny V, voláme ho opačný vektor k vektoru x a označujeme ho ^-x , pre ktorý platí $x + ^-x = 0$ a $^-x + x = 0$.
- o Pre každé $\alpha, \beta \in \mathbb{F}$ a pre každé $x \in V$ platí: $(\alpha \beta)x = \alpha(\beta x)$.
- o Pre každé $x \in V$ platí: 1x = x, kde 1 je jednotka poľa \mathbb{F} .
- o Pre každé $\alpha \in \mathbb{F}$ a pre každé $x, y \in V$ platí: $(\alpha + \beta)x = (\alpha x) + (\beta x)$.
- o Pre každé $\alpha, \beta \in \mathbb{F}$ a pre každé $x \in V$ platí: $\alpha(x+y) = (\alpha x) + (\alpha y)$.

Prvky poľa \mathbb{F} voláme skaláry. Niekedy namiesto pomenovania vektorový priestor budeme používať názov lineárny priestor a jeho prvky budeme volať body. Pretože podľa dohody o priorite operácií má násobenie prednosť pred sčítaním, niektoré zátvorky môžeme vynechať. Napr. namiesto $(\alpha x) + (\beta y)$ píšeme $\alpha x + \beta y$.

Pripomeňme si, že v matematike niektoré symboly používame v rôznych významoch. Napr. ten istý symbol 0 označuje nulu poľa \mathbb{F} , ale aj nulový vektor priestoru V. Musíme si na to dávať pozor.

Typickým príkladom vektorového priestoru nad poľom \mathbb{R} je množina \mathbb{R}^3 všetkých usporiadaných trojíc reálnych čísel.

Príklad 4. Nech A je neprázdna množina. Potom množina $\mathscr{F}(A)$ všetkých funkcií $f:A\to\mathbb{R}$ je vektorovým priestorom nad poľom \mathbb{R} . Ak A je uzavretý interval [a,b], namiesto $\mathscr{F}([a,b])$ píšeme $\mathscr{F}[a,b]$. Ak A je množina všetkých prirodzených čísel, $\mathscr{F}(\mathbb{N})$ je vektorový priestor všetkých postupností reálnych čísel.

Ďalšie vektorové priestory, ktorých prvky sú postupnosti reálnych čísel: množina m všetkých ohraničených postupností, množina c všetkých konvergentných postupností, množina c_0 všetkých postupností konvergujúcich k nule. Všimnime si, že platí:

$$c_0 \subseteq c \subseteq m \subseteq \mathscr{F}(\mathbb{N}).$$

Vektorový podpriestor

Neprázdna podmnožina P vektorového priestoru V nad poľom \mathbb{F} sa volá vektorový podpriestor priestoru V, ak je uzavretá vzhľadom na sčítanie vektorov a na skalárne násobenie, t.j. ak sú splnené nasledujúce dve podmienky:

- o Pre každé dva vektory $x, y \in P$ platí $x + y \in P$.
- o Pre každý skalár $\alpha \in \mathbb{F}$ a pre každý vektor $x \in P$ platí $\alpha x \in P$.

Príkladom vektorového podpriestoru je množina P všetkých tých usporiadaných trojíc reálnych čísel (x,y,z), pre ktoré platí z=0 (ako podmnožina priestoru \mathbb{R}^3). Tento podpriestor môžeme stotožniť s vektorovým priestorom \mathbb{R}^2 . Rozdiel medzi nimi je čisto formálny: prvkami množiny \mathbb{R}^2 sú usporiadané dvojice (x,y), pričom prvkami množiny P sú usporiadané trojice (x,y,0). Teoretický rámec pre takéto stotožnenie poskytuje nasledujúca definícia.

Nech je dané zobrazenie $f:U\to V$, kde U,V sú vektorové priestory nad tým istým poľom \mathbb{F} . Hovoríme, že f je lineárne zobrazenie, ak sú splnené nasledujúce podmienky:

- o Pre každé dva vektory $x, y \in U$ platí f(x + y) = f(x) + f(y).
- o Pre každý skalár $\alpha \in \mathbb{F}$ a pre každý vektor $x \in U$ platí $f(\alpha x) = \alpha f(x)$.

Ak lineárne zobrazenie $f:U\to V$ je bijektívne, hovoríme, že vektorové priestory U a V sú navzájom lineárne izomorfné.

Príklad 5. Nech $A=\{1,2,3\}$. Potom každej funkcii $f:A\to\mathbb{R}$ môžeme priradiť usporiadanú trojicu reálnych čísel (f(1),f(2),f(3)). Tým sme popísali bijekciu $b:\mathscr{F}(A)\to\mathbb{R}^3$, ktorá spĺňa požiadavky z predchádzajúcej definície. Teda vektorové priestory $\mathscr{F}(\{1,2,3\})$ a \mathbb{R}^3 sú navzájom izomorfné. Táto vlastnosť nám umožňuje rôznu grafickú reprezentáciu vektorov. Napríklad

Symbolom $\mathscr{C}[a,b]$ budeme označovať množinu všetkých spojitých reálnych funkcií definovaných na uzavretom intervale [a,b]. Podobne, symbolom $\mathscr{R}[a,b]$ označíme množinu všetkých Riemannovsky integrovateľných funkcií a symbolom $\mathscr{B}[a,b]$ množinu všetkých ohraničených funkcií. Potom každá z nasledujúcich inklúzií vyjadruje vzťah medzi vektorovým priestorom a jeho podpriestorom:

$$\mathscr{C}[a,b] \subseteq \mathscr{R}[a,b] \subseteq \mathscr{B}[a,b] \subseteq \mathscr{F}[a,b].$$

Posunutie a podobnosť

Nech $a \in V$, kde V je vektorový priestor nad poľom \mathbb{F} . Zobrazenie $T_a:V \to V$ definované pre každé $x \in V$ predpisom

$$T_a(x) = a + x$$

voláme posunutie o vektor a. Pre každú podmnožinu $A\subseteq V$ položme

$$a + A = T_a[A] = \{a + x : x \in A\}.$$

Nech $\alpha \in \mathbb{F}.$ Zobrazenie $S_\alpha: V \to V$ definované pre každé $x \in V$ predpisom

$$S_{\alpha}(x) = \alpha x$$

voláme podobnosť, pričom skalár α voláme koeficient podobnosti. Pre každú podmnožinu $A\subseteq V$ položme

$$\alpha A = S_{\alpha}[A] = \{\alpha x : x \in A\}.$$

Hamelova báza

Nech $\{v_1, \ldots, v_n\}$ je konečná neprázdna podmnožina vektorového priestoru V nad poľom \mathbb{F} . Lineárna kombinácia vektorov v_1, \ldots, v_n je ľubovoľný vektor tvaru

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n,$$

kde $\alpha_1,\ldots,\alpha_n\in\mathbb{F}$. Hovoríme, že vektory v_1,\ldots,v_n sú lineárne nezávislé, ak platí:

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0 \quad \Rightarrow \quad \alpha_1 = \dots = \alpha_n = 0.$$

V opačnom prípade hovoríme, že vektory v_1, \ldots, v_n sú lineárne závislé.

Nech A je ľubovoľná neprázdna podmnožina vektorového priestoru V. Hovoríme, že A je množina lineárne nezávislých vektorov, ak každá jej konečná neprázdna podmnožina obsahuje len lineárne nezávislé vektory.

Lineárny obal množiny $A\subseteq V$ je množina všetkých lineárnych kombinácií vektorov patriacich do množiny A. Označujeme ho $\operatorname{Sp} A$. Je to najmenší vektorový podpriestor priestoru V obsahujúci množinu A.

Tvrdenie 4. Nech $A \subseteq V$ je množina lineárne nezávislých prvkov. Nech $b \in V \setminus A$. Potom $A \cup \{b\}$ je množina lineárne nezávislých prvkov práve vtedy, keď $b \notin \operatorname{Sp} A$.

Množina $H \subseteq V$ sa nazýva Hamelova báza priestoru V, ak H je množina lineárne nezávislých prvkov a $\operatorname{Sp} H = V$.

Pomocou axiómy výberu možno dokázať, že každý vektorový priestor V má Hamelovu bázu. Hovoríme, že vektorový priestor V je konečnorozmerný, ak má konečnú Hamelovu bázu. V takomto prípade počet prvkov Hamelovej bázy voláme dimenzia vektorového priestoru V a označujeme ju dimV. V opačnom prípade hovoríme, že vektorový priestor V je nekonečnorozmerný.

Každý nenulový vektor možno jednoznačne vyjadriť v tvare lineárnej kombinácie prvkov Hamelovej bázy.

POLONORMA

Nech V je vektorový priestor nad poľom \mathbb{F} . Funkciu $p:V\to\mathbb{R}$ voláme polonorma na V, ak má nasledujúce vlastnosti:

- o Pre každý skalár $\alpha \in \mathbb{F}$ a pre každý vektor $x \in V$ platí $p(\alpha x) = |\alpha| p(x)$, tzv. absolútna homogenita.

Polonorma sa volá *norma*, ak má nasledujúcu vlastnosť:

o Pre každý nenulový vektor $x \in V$ platí $p(x) \neq 0$, tzv. oddeliteľnosť.

Normu najčastejšie označujeme $\|\cdot\|$, t.j. namiesto p(x) píšeme $\|x\|$.

Príklad 6. Vo vektorom priestore \mathbb{R}^3 definujeme polonormu p predpisom

$$p(x, y, z) = \max\{|x|, |y|\}.$$

pre každé $(x, y, z) \in \mathbb{R}^3$. Táto polonorma nie je normou.

Tvrdenie 5. Nech p je polonorma na vektorovom priestore V. Potom platí:

- $|p(x)-p(y)| \le p(x-y)$ pre každé dva vektory $x,y \in V$.
- p(0) = 0.
- $\circ p(x) \ge 0 \text{ pre každý vektor } x \in V.$

Ak p je polonorma na vektorovom priestore V, potom množina ker p, ktorú definujeme predpisom

$$\ker p = \{x \in V : p(x) = 0\} = p^{-1}[0],$$

je vektorový podpriestor priestoru V. Voláme ho jadro polonormy p.

Pre polonormu z príkladu 6 je týmto podpriestorom množina

$$\ker p = \{(x, y, z) \in \mathbb{R}^3 : x = y = 0\}.$$

Príklad 7. Pre každú Riemannovsky integrovateľnú funkciu $f:[a,b]\to\mathbb{R}$ položme

$$p(f) = \int_a^b |f(x)| \, dx.$$

Tým sme definovali polonormu p na vektorovom priestore $\mathscr{R}[a,b]$. Táto polonorma nie je normou na priestore $\mathscr{R}[a,b]$, avšak je normou na jeho podpriestore $\mathscr{C}[a,b]$.

Pomocou Hamelovej bázy môžeme na každom vektorovom priestore definovať normu. Naozaj, ak $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$ je vyjadrenie nenulového vektora x v tvare lineárnej kombinácie prvkov z danej Hamelovej bázy, stačí položiť

$$||x|| = |\alpha_1| + \dots + |\alpha_n|.$$

Samozrejme, pre x = 0 kladieme ||x|| = 0.

Pomocou polonormy definujeme $\mathit{otvoren\'u}$ guľu so stredom v bode xa polomerom r>0 predpisom

$$B(x,r) = \{ y \in V : p(y-x) < r \} = x + rB(0,1).$$

FAKTOROVÝ PRIESTOR

Nech V je vektorový priestor nad poľom $\mathbb F$ a P je jeho vektorový podpriestor. Hovoríme, že vektory $x,y\in V$ sú $kongruentn\acute{e}$ modulo P, ak platí $x-y\in P$. Zapisujeme to $x\equiv_P y$.

Tvrdenie 6. Relácia kongruencie modulo P je ekvivalencia, ktorá má nasledujúce vlastnosti:

(1) Pre každé $x, y, x', y' \in V$ platí:

$$ak \ x \equiv_{P} x', \ y \equiv_{P} y', \ potom \ (x+y) \equiv_{P} (x'+y').$$

(2) Pre každé $\alpha \in \mathbb{F}$ a $x, y \in V$ platí:

$$ak \ x \equiv_{P} y, \ potom \ (\alpha x) \equiv_{P} (\alpha y).$$

Množina $[x] = \{y \in V : x \equiv_P y\}$, kde $x \in V$, sa volá *vrstva*. Množinu všetkých vrstiev budeme označovať symbolom V/P, t.j.

$$V/P = \{ [x] : x \in V \}.$$

Každú vrstvu [x], kde $x \in V$, môžeme vyjadriť v tvare

$$[x] = x + P = \{x + y : y \in P\}.$$

Na množine V/P definujeme sčítanie a skalárne násobenie nasledujúcim spôsobom:

$$[x] + [y] = [x + y],$$
 $\alpha[x] = [\alpha x]$

pre každé $x, y \in V$, $\alpha \in \mathbb{F}$. Množina V/P s takto definovaným sčítaním a skalárnym násobením je vektorový priestor nad poľom \mathbb{F} , ktorý voláme faktorový priestor.

Príklad 8. Nech $V=\mathbb{R}^3$ a $P=\{(x,y,z)\in\mathbb{R}^3:y=z=0\}.$ Potom faktorový priestor

$$V/P = \{[(0, y, z)] : (y, z) \in \mathbb{R}^2\}$$

je izomorfný s vektorovým priestorom \mathbb{R}^2 .

Polonorma na faktorovom priestore

Nech V je vektorový priestor nad poľom \mathbb{F} a P je jeho vektorový podpriestor. Nech p je polonorma na V. Pre každý vektor $x \in V$ položme

$$\rho([x]) = \inf_{y \in P} p(x - y).$$

Potom ρ je polonorma na faktorovom priestore V/P. V prípade, že $P=\ker p$, polonorma ρ je normou, pričom platí

$$\rho([x]) = p(x)$$

pre každé $x \in V$.

Príklad 9. Nech $V = \mathbb{R}^3$ a $P = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}$. Nech p je polonorma na V, ktorá je definovaná predpisom

$$p(x, y, z) = \max\{|x|, |y|\}$$

pre každé $(x, y, z) \in V$. Potom pre polonormu ρ na faktorovom priestore V/P platí:

$$\rho([(0, y, z)]) = |y|$$

pre každé $(y,z) \in \mathbb{R}^2$. Polonorma ρ nie je normou.

Metrika

Množina X sa volá pseudometrický priestor, ak každým dvom prvkom x a y množiny X je priradené reálne číslo d(x,y) také, že pre každé $x,y,z\in X$ platí

Množina X sa volá metrický priestor, ak každým dvom prvkom x a y množiny X je priradené reálne číslo d(x,y) také, že pre každé $x,y,z\in X$ platí

(a)
$$d(x,y) \ge 0$$
;

(a)
$$d(x,y) \ge 0$$
;

(b)
$$d(x, x) = 0;$$

(b)
$$d(x, y) = 0$$
 práve vtedy, keď $x = y$;

(c)
$$d(x,y) = d(y,x);$$

(c)
$$d(x, y) = d(y, x)$$
;

(d)
$$d(x,z) \le d(x,y) + d(y,z)$$
.

(d)
$$d(x, z) \le d(x, y) + d(y, z)$$
.

Zobrazenie $d: X \times X \to \mathbb{R}$, sa volá pseudometrika na množine X.

Zobrazenie $d: X \times X \to \mathbb{R}$, sa volá metrika na množine X.

Nech V je normovaný priestor s polonormou p. Pomocou tejto polonormy definujeme na priestore V pseudometriku d predpisom

Nech V je normovaný priestor s normou $\|\cdot\|$. Pomocou tejto normy definujeme na priestore V metriku d predpisom

$$d(x,y) = p(x-y)$$
 pre každé $x,y \in V.$

$$d(x,y) = ||x-y||$$
 pre každé $x, y \in V$.

Táto (pseudo)
metrika je invariantná vzhľadom na posunutie, t.j. pre ľubovoľné
 $z \in V$ platí

$$d(x+z,y+z)=d(x,y)$$
 pre všetky $x,y\in V.$

Ľubovoľnú podmnožinu M priestoru X, na ktorom máme (pseudo)metriku d, môžeme pokladať za (pseudo)metrický priestor, v ktorom každým dvom prvkom x a y je priradené číslo d(x,y). V takomto prípade hovoríme, že M je podpriestor priestoru X. Pritom (pseudo)metriku na podpriestore M sme formálne dostali ako zúženie zobrazenia d na množinu $M \times M$.

Úloha 3. Zistite, pre ktoré reálne čísla $\xi>0$ existuje metrika d na štvorprvkovej množine $X=\{O,A,B,C\}$ taká že

$$d(A, B) = d(B, C) = d(C, A) = 1,$$

$$d(O,A) = d(O,B) = d(O,C) = \xi.$$

Ak $\xi=\frac{1}{2}$, môže byť X podpriestorom priestoru \mathbb{R}^3 s euklidovskou metrikou $d(\mathbf{x},\mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$? A pre $\xi=\frac{4}{7}$? Ako sa zmení situácia, keď namiesto priestoru \mathbb{R}^3 budeme uvažovať priestor všetkých spojitých reálnych funkcií $\mathscr{C}[0,1]$ s metrikou $d(f,g)=\max_{x\in[0,1]}|f(x)-g(x)|$?

Úloha 4. Nech (X,d) je metrický priestor. Definuje funkciu $f: \mathbb{R} \to \mathbb{R}$ predpisom

$$f(x) = \frac{1}{4} \cdot (2x + 1 - 2|x - 1| - |x - 2| + |x - 3|).$$

Dokážte, že $f \circ d$ je metrika na množine X. V prípade, že Xje množina všetkých reálnych čísel s metrikou d(x, y) = |x - y|, popíšte jeho podpriestor $M = \{0, 1, 2, 5\}$.

Nech Vje normovaný priestor s normou $\|\cdot\|.$ Definujme funkciu $p:V\to\mathbb{R}$ predpisom

$$p(x) = \frac{\|x\|}{1 + \|x\|}.$$

Ukážeme, že funkcia p je subaditívna. Nech $x, y, z \in V$. Položme

$$a = ||x||, b = ||y||, c = ||x + y||.$$

Zrejme a, b, c sú nezáporné reálne čísla. Chceme dokázať, že platí

$$\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}.$$

Túto nerovnosť môžeme upraviť do ekvivalentného tvaru:

$$c \le a + b + 2ab + abc$$
.

Stačí si už len uvedomiť, že norma $\|\cdot\|$ je subaditívna, odkiaľ máme $c \leq a+b$.

Ak vektorový priestor V obsahuje aj nejaký nenulový vektor, potom funkcia p nie je absolútne homogénna. Naozaj, ak $x \in V$ je taký vektor, pre ktorý platí $\|x\| = 1$, potom

$$p(2x) = \frac{\|2x\|}{1 + \|2x\|} = \frac{2}{3} \neq 1 = \frac{2\|x\|}{1 + \|x\|} = 2p(x).$$

Pomocou funkcie p môžeme však definovať na priestore V metriku predpisom

$$d(x,y) = p(x-y)$$
 pre každé $x, y \in V$.

Nech X je (pseudo)
metrický priestor. Otvorenú guľu so stredom v bod
exa polomerom r>0 predpisom

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

Podmnožinu U priestoru X nazývame okolie bodu $x \in U$, ak s bodom x obsahuje aj nejakú guľu so stredom v bode x, t.j. ak existuje r > 0 také, že $B(x,r) \subseteq U$.

Takýto bod x sa volá vnútorný bod množiny U. Množinu všetkých vnútorných bodov nazývame vnútro množiny U. Označujeme ho symbolom Int(U).

Podmnožina G priestoru X sa volá otvorená, ak je okolím každého svojho bodu. To znamená, že pre každé $x \in G$ existuje r > 0 také, že $B(x, r) \subseteq G$.

Postupnosť $(x_n)_{n\in\mathbb{N}}$ bodov priestoru X konverguje k bodu $x_0\in X$ ak platí:

$$\forall \varepsilon > 0 \ \exists n(\varepsilon) \in \mathbb{N} \ \forall n \ge n(\varepsilon) : \ d(x_n, x_0) < \varepsilon.$$

Zapisujeme to $\lim_{n\to\infty} x_n = x_0$, prípadne $x_n \to x_0$.

Všimnime si, že ak postupnosť $(x_n)_{n\in\mathbb{N}}$ bodov priestoru X konverguje k bodu $x_0 \in X$, potom konverguje ku každému bodu $x_0' \in X$, pre ktorý platí $d(x_0, x_0') = 0$. Teda jednoznačnosť limity máme zaručenú len v prípade, že pseudometrika d je metrikou.

Hovoríme, že bod $x \in X$ je bod uzáveru množiny $V \subseteq X$, ak je limitou nejakej konvergentnej postupnosti bodov množiny V, t.j. ak existuje postupnosť $(x_n)_{n \in \mathbb{N}}$ prvkov množiny V taká, že $\lim_{n \to \infty} x_n = x$. Množinu všetkých bodov uzáveru množiny V nazývame uzáver množiny V. Označujeme ho symbolom Cl(V).

Podmnožina F priestoru X je $uzavret\acute{a}$, ak obsahuje limity všetkých svojich konvergentných postupností. To znamená, že musí platiť $\operatorname{Cl}(F) = F$. Množina F je uzavret\acute{a}, ak jej doplnok $G = X \setminus F$ je otvorená množina.

Podmnožina H priestoru X je $hust\acute{a}$ v X, ak každý bod množiny X je bodom uzáveru množiny H, t.j. ak platí $\operatorname{Cl}(H) = X$. Množina H je hustá v X, ak pre každú guľu B(x,r) v priestore X platí $B(x,r) \cap H \neq \emptyset$.

Postupnosť $(x_n)_{n\in\mathbb{N}}$ prvkov priestoru X je Cauchyovská, ak platí:

$$\forall \varepsilon > 0 \ \exists n(\varepsilon) \in \mathbb{N} \ \forall m, n \ge n(\varepsilon) : \ d(x_m, x_n) < \varepsilon.$$

Priestor X sa volá $\mathit{úpln\acute{y}},$ ak každá Cauchy ovská postupnosť v tomto priestore konverguje.

IZOMETRIA

Metrické priestory X, Y (s metrikami d, ρ) sa volajú izometrické, ak existuje taká bijekcia $f: X \to Y$, že pre každé $x, y \in X$ platí $d(x, y) = \rho(f(x), f(y))$. Takéto zobrazenie f sa volá izometria.

Úloha 5. Ukážte, že ak za priestor X vezmeme množinu všetkých prirodzených čísel s metrikou d(x,y) = |x-y|, potom existuje izometria medzi priestorom X a nejakým jeho vlastným podpriestorom Y. Zistite, či analogické tvrdenie platí aj pre množinu všetkých celých čísel (s tou istou metrikou).

MINKOWSKÉHO FUNKCIONÁL

Podmnožina K vektorového priestoru V sa volá konvexná, ak pre každé $x,y \in V$ a pre každé $\lambda \in (0,1)$ platí: $\lambda x + (1-\lambda)y \in K$.

Nech pje polonorma na V. Potom pre každé $\varepsilon>0$ množina $\{x\in V:p(x)<\varepsilon\}$ je konvexná.

Nech M je podmnožina vektorového priestoru V. Minkowského funkcionál množiny M definujeme predpisom

$$p_M(x) = \inf\{\alpha > 0 : x \in \alpha M\}$$

pre každé $x\in V$. Minkowského funkcionál môže nadobúdať aj hodnotu ∞ (s využitím rovnosti: inf $\emptyset=\infty$).

Tvrdenie 7. Nech M je konvexná podmnožina vektorového priestoru V. Potom Minkowského funkcionál množiny M je subaditívny, t.j. pre každé $x,y \in V$ platí

$$p_M(x+y) \le p_M(x) + p_M(y).$$

 $D\hat{o}kaz$. Pre každé $x \in V$ položme

$$M(x) = \{\alpha > 0 : x \in \alpha M\}.$$

Nech $x, y \in V$ sú také, že množiny M(x) a M(y) sú neprázdne (v opačnom prípade je dokazovaná nerovnosť triviálne splnená).

Nech $\alpha \in M(x)$, $\beta \in M(y)$. To znamená, že platí

$$\alpha^{-1}x \in M, \quad \beta^{-1}y \in M.$$

Položme

$$\lambda = \frac{\alpha}{\alpha + \beta}.$$

Pretože množina M je konvexná, platí

$$\lambda(\alpha^{-1}x) + (1-\lambda)(\beta^{-1}y) \in M,$$

t.j.

$$(\alpha + \beta)^{-1}(x+y) \in M.$$

Odtiaľ vyplýva, že

$$\alpha + \beta \in M(x+y).$$

Pretože $p_M(x+y) = \inf M(x+y)$, máme

$$p_M(x+y) \le \alpha + \beta.$$

Pretože $\alpha \in M(x)$, $\beta \in M(y)$ boli ľubovoľné, platí

$$p_M(x+y) \le p_M(x) + p_M(y).$$

Tvrdenie 8. Nech M je konvexná podmnožina vektorového priestoru V. Predpokladajme, že platí $0 \in M$. Potom platí

$${x \in V : p_M(x) < 1} \subseteq M \subseteq {x \in V : p_M(x) \le 1}.$$

 $D\hat{o}kaz.$ Najskôr dokážeme druhú inklúziu. Nech $x\in M.$ Potom $1\in M(x),$ teda $p_M(x)\leq 1.$

Teraz dokážeme prvú inklúziu. Nech $x \in V$ je také, že $p_M(x) < 1$. Potom existuje $\alpha \in (0,1)$ také, že $\alpha^{-1}x \in M$. Pretože množina M je konvexná, máme

$$x = \alpha(\alpha^{-1}x) + (1 - \alpha)0 \in M.$$

Tvrdenie 9. Nech M je podmnožina vektorového priestoru V. Potom pre každé $\alpha>0$ a pre každé $x\in V$ platí

$$p_M(\alpha x) = \alpha p_M(x).$$

 $D\hat{o}kaz$. Nech $\alpha > 0$ a $x \in V$. Nech $\beta \in M(x)$. Pretože potom $\beta^{-1}x \in M$, máme $(\alpha\beta)^{-1}(\alpha x) \in M$, odkiaľ $\alpha\beta \in M(\alpha x)$. Pretože $p_M(\alpha x) = \inf M(\alpha x)$, máme $p_M(\alpha x) \leq \alpha\beta$. Pretože $\beta \in M(x)$ bolo ľubovoľné, platí $p_M(\alpha x) \leq \alpha p_M(x)$.

Z práve dokázaného tvrdenia vyplýva, že pre každé $\alpha>0$ a $x\in V$ platí

$$p_M(x) = p_M(\alpha^{-1}(\alpha x)) \le \alpha^{-1} p_M(\alpha x),$$

odkiaľ $p_M(\alpha x) \geq \alpha p_M(x)$.

Podmnožina M vektorového priestoru V sa volá vyvážená, ak pre každé $x \in M$ a pre každé $\alpha \in \mathbb{F}$ také, že $|\alpha| = 1$, platí: $\alpha x \in M$.

Tvrdenie 10. Nech M je vyvážená podmnožina vektorového priestoru V. Predpokladajme, že platí $0 \in M$. Potom pre každé $\alpha \in \mathbb{F}$ a pre každé $x \in V$ platí

$$p_M(\alpha x) = |\alpha| p_M(x).$$

 $D\hat{o}kaz$. Pre $\alpha = 0$ je tvrdenie triviálne splnené.

Pretože množina Mje vyvážená, pre každé $x\in V$ a pre každé $\alpha\in\mathbb{F}$ také, že $|\alpha|=1,$ platí

$$M(x) = M(\alpha x).$$

Nech $\alpha\in\mathbb{F},\ \alpha\neq0$. Položme $\beta=\frac{\alpha}{|\alpha|}$. Potom $|\beta|=1$, teda podľa vyššie dokázaného pre každé $x\in V$ platí

$$p_M(\alpha x) = p_M(\beta | \alpha | x) = p_M(|\alpha| x) = |\alpha| p_M(x).$$

Podmnožina M vektorového priestoru V sa volá absorbujúca, ak pre každé $x \in V$ existuje $\alpha > 0$ také, že $\alpha x \in M$. Ak množina M je absorbujúca, potom jej Minkowského funkcionál nadobúda iba reálne hodnoty.

Z dokázaného vyplýva, že ak množina M je konvexná, vyvážená a absorbujúca, potom jej Minkowského funkcionál p_M je polonorma.

Tvrdenie 11. Nech V je vektorový priestor nad poľom \mathbb{F} . Nech p je polonorma na V. Potom množina $B = \{x \in V : p(x) < 1\}$ je konvexná, vyvážená a absorbujúca. Polonorma p sa pritom zhoduje s Minkowského funkcionálom množiny B.

 $D\hat{o}kaz.$ 1) Najskôr ukážeme, že množina Bje konvexná. Nech $x,y\in B,\,\alpha\in(0,1).$ Potom

$$p(\alpha x + (1 - \alpha)y) \le \alpha p(x) + (1 - \alpha)p(y) < \alpha + (1 - \alpha) = 1.$$

2) Teraz ukážeme, že množina B je vyvážená. Nech $x\in B.$ Nech $\alpha\in \mathbb{F}$ je také, že $|\alpha|=1.$ Potom

$$p(\alpha x) = |\alpha|p(x) = p(x) < 1.$$

3) Ďalej ukážeme, že množina B je absorbujúca. Nech $x \in V$. Nech $\alpha > 0$ je také, že $\alpha p(x) < 1$. Potom

$$p(\alpha x) = \alpha p(x) < 1.$$

4) Nakoniec ukážeme, že pre každé $x \in V$ platí

$$p(x) = \inf B(x) = \inf \{ \alpha > 0 : \alpha^{-1} x \in B \}.$$

Nech $x \in V$. Pretože množina B je absorbujúca, množina B(x) je neprázdna.

Nech $\alpha > 0$ je také, že $\alpha^{-1}x \in B$. Potom $p(x) = p(\alpha^{-1}\alpha x) = \alpha p(\alpha^{-1}x) < \alpha$.

Pretože $\alpha \in B(x)$ bolo ľubovoľné, platí

$$p(x) \le \inf B(x)$$
.

Ukážeme, že platí rovnosť. Sporom. Predpokladajme, že platí

$$p(x) < \inf B(x)$$
.

Vyberme $\beta > 0$ také, že

$$p(x) < \beta < \inf B(x)$$
.

Zrejme $\beta \notin B(x)$. To znamená, že platí $\beta^{-1}x \notin B$. Potom $\beta^{-1}p(x) = p(\beta^{-1}x) \ge 1$, odkiaľ $p(x) \ge \beta$. to je však v spore s tým, že $p(x) < \beta$.

Extrémne body

Nech A je konvexná podmnožina vektorového priestoru V. Bod $a \in A$ sa volá $extrémny \ bod$ množiny A, ak množina $A \setminus \{a\} = \{x \in A : x \neq a\}$ je konvexná. Inými slovami, vynechaním bodu a z množiny A dostaneme zase konvexnú množinu. Množinu všetkých extrémnych bodov konvexnej množiny $A \subseteq V$ budeme označovať symbolom E(A).

Nech $\{v_1, \ldots, v_n\}$ je konečná neprázdna podmnožina vektorového priestoru V. Konvexná kombinácia vektorov v_1, \ldots, v_n je ľubovoľný vektor tvaru

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n,$$

kde reálne čísla $\alpha_1, \ldots, \alpha_n$ sú nezáporné a ich súčet sa rovná jednej.

Množina $K\subseteq V$ je konvexná, ak obsahuje každú konvexnú kombináciu svojich vektorov.

Nech $f: U \to V$ je lineárne zobrazenie, kde U, V sú vektorové priestory nad tým istým poľom \mathbb{F} . Nech $A \subseteq X$, $B \subseteq Y$ sú konvexné množiny. Potom množiny f[A], $f^{-1}[B]$ sú tiež konvexné.

Nech U, V sú normované priestory nad tým istým poľom \mathbb{F} . Hovoríme, že zobrazenie $f: U \to V$ je lineárna izometria, ak f je bijektívne lineárne zobrazenie (teda vektorové priestory U, V sú lineárne izomorfné), pričom pre normy platí:

$$||f(x)||_V = ||x||_U$$
 pre každé $x \in U$.

Tvrdenie 12. Nech $f:U\to V$ je lineárna izometria medzi normovanými priestormi U,V. Potom platí

$$f[E(B_U)] = E(B_V),$$

kde B_U , B_V sú uzavreté jednotkové gule v priestoroch U, V, t.i.

$$B_U = \{x \in U : ||x||_U \le 1\}, \quad B_V = \{y \in V : ||y||_V \le 1\}.$$

Príklad 10. Nech p je polonorma na vektorovom priestore V. Predpokladajme, že p je normou na jeho podpriestore U. Položme $P = \ker p$. Potom priradenie $x \mapsto [x] \in V/P$ definuje lineárnu izometriu medzi priestormi U a $W = \{[x] : x \in U\}$. Injektívnosť vyplýva z toho, že p je norma na U. Inými slovami, podpriestor U možno izometricky vnoriť do priestoru V.

Banachov Priestor

 $Banachov\ priestor\ je\ normovaný\ priestor\ V$, ktorý je úplný, t.j. každá Cau-chyovská postupnosť vektorov priestoru V konverguje.

Nech $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ je postupnosť vektorov priestoru V. Hovoríme, že rad $\sum_{n=1}^{\infty} x_n$ konverguje, ak postupnosť jeho čiastočných súčtov $\mathbf{s} = (s_n)_{n \in \mathbb{N}}$ konverguje, kde

$$s_n = x_1 + x_2 + \dots + x_n,$$

pre každé $n \in \mathbb{N}$. Rad $\sum_{n=1}^{\infty} x_n$ konverguje absolútne, ak rad $\sum_{n=1}^{\infty} \|x_n\|$ konverguje.

Veta 2. Normovaný priestor je úplný práve vtedy, keď každý absolútne konvergentný rad v tomto priestore je konvergentný.

Systém polonoriem

Na priestore $\mathscr{C}[a,b]$ máme okrem normy zavedenej pomocou Riemannovho integrálu (príklad 4) aj tzv. supremovú normu $\|\cdot\|$ definovanú pre každé $f\in\mathscr{C}[a,b]$ predpisom

$$||f|| = \sup_{x \in [a,b]} |f(x)|.$$

Potom $\mathscr{C}[a,b]$ so supremovou normou je Banachov priestor. Postupnosť funkcií $\mathbf{f} = (f_n)_{n \in \mathbb{N}}$ konverguje v tomto priestore práve vtedy, keď konverguje rovnomerne.

Na priestore $\mathscr{C}(a,b)$ všetkých spojitých reálnych funkcií definovaných na otvorenom intervale (a,b) nie je možné použiť supremovú normu, pretože môže nadobúdať hodnotu ∞ . Je to spôsobené tým, že spojitá funkcia nemusí byť na otvorenom intervale ohraničená.

Pomocou supremovej normy dostaneme pre každý uzavretý interval $[r,s]\subseteq (a,b)$ polonormu $p_{[r,s]}$ na priestore $\mathscr{C}(a,b)$. Konkrétne, pre každé $f\in\mathscr{C}(a,b)$ položíme

$$p_{[r,s]}(f) = \sup_{x \in [r,s]} |f(x)|.$$

Tým sme definovali systém polonoriem, ktorý nám dovoľuje zaviesť konvergenciu do priestoru $\mathscr{C}(a,b)$ nasledujúcim spôsobom: postupnosť funkcií $\mathbf{f}=(f_n)_{n\in\mathbb{N}}$ konverguje k funkcii f_0 , ak pre každú polonormu $p_{[r,s]}$ platí $\lim_{n\to\infty}p_{[r,s]}(f_n-f_0)=0$.

Postupnosť funkcií $\mathbf{f} = (f_n)_{n \in \mathbb{N}}$ konverguje v tomto priestore práve vtedy, keď konverguje rovnomerne na každej kompaktnej podmnožine intervalu (a,b). Dokonca stačí uvažovať priestor $\mathscr{C}(a,b)$ so spočítateľným systémom polonoriem, konkrétne polonoriem tvaru $p_{[r_n,s_n]}$ (pre každé $n \in \mathbb{N}$), pričom platí $\lim_{n \to \infty} r_n = a$ a $\lim_{n \to \infty} s_n = b$.

Nech Γ je systém polonoriem na vektorovom priestore V. Hovoríme, že postupnosť $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ vektorov priestoru V konverguje, ak existuje vektor $x_0 \in V$ taký, že pre každú polonormu $p \in \Gamma$ platí $\lim_{n \to \infty} p(x_n - x_0) = 0$.

Hovoríme, že systém polonoriem Γ na vektorovom priestore V spĺňa Hausdorff ovu podmienku, ak pre každý nenulový vektor $x \in V$ existuje polonorma $p \in \Gamma$ taká, že p(x) > 0. Hausdorffova podmienka nám zaručuje jednoznačnosť limity postupnosti vektorov.

Nech $\{p_n:n\in\mathbb{N}\}$ je spočítateľný systém polonoriem na vektorovom priestore V, ktorý spĺňa Hausdorffovu podmienku. Potom môžeme na priestore V definovať metriku predpisom

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{p_n(x-y)}{1 + p_n(x-y)} \text{ pre každ\'e} \quad x, y \in V.$$

ZÚPLNENIE NORMOVANÉHO PRIESTORU

Nech U je vektorový priestor nad poľom \mathbb{F} s normou $\|\cdot\|_U$. Hľadáme Banachov priestor V nad poľom \mathbb{F} s normou $\|\cdot\|_V$ taký, že:

- o Vektorový priestor U je izomorfný s nejakým vektorovým podpriestorom W priestoru V, t.j. existuje injektívne zobrazenie $i:U\to V$ s vlastnosťami: $i(x+y)=i(x)+i(y),\,i(\alpha x)=\alpha i(x)$ pre každé $x,y\in U,\,\alpha\in F$.
- o Normy spĺňajú nasledujúcu podmienku: $||i(x)||_V = ||x||_U$ pre každé $x \in U$.
- o Množina W je hustá v priestore V, t.j. pre každý vektor $y \in V$ existuje postupnosť $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ vektorov priestoru W s vlastnosťou $\lim_{n \to \infty} x_n = y$.

Najskôr zavedieme vektorový priestor \tilde{U} , ktorý je tvorený všetkými Cauchyovskými postupnosťami priestoru U.

Nech $\mathbf{x} \in \tilde{U}$, t.j. $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ je *Cauchy*ovská postupnosť vektorov priestoru U. Pretože pre každé $n, m \in \mathbb{N}$ platí

$$|||x_n||_U - ||x_m||_U| \le ||x_n - x_m||_U,$$

 $(\|x_n\|_U)_{n\in\mathbb{N}}$ je Cauchyovská postupnosť reálnych čísel, teda musí mať limitu. Pomocou nej definujeme polonormu p v priestore \tilde{U} , t.j. pre každé $\mathbf{x} \in \tilde{U}$ položíme

$$p(\mathbf{x}) = \lim_{n \to \infty} \|x_n\|_U.$$

Nech P je vektorový podpriestor priestoru \tilde{U} , ktorý je tvorený tými postupnosťami $\mathbf{x} \in \tilde{U}$, pre ktoré platí $p(\mathbf{x}) = 0$. Symbolom V označíme faktorový priestor \tilde{U}/P . Jeho normu označíme symbolom $\|\cdot\|_V$. Pripomeňme si, že pre každé $\mathbf{x} \in \tilde{U}$ platí

$$\|[\mathbf{x}]\|_V = p(\mathbf{x}) = \lim_{n \to \infty} \|x_n\|_U.$$

Zobrazenie $i: U \to V$ definujeme pre každé $x \in U$ predpisom $i(x) = [(x)_{n \in \mathbb{N}}]$, kde $(x)_{n \in \mathbb{N}}$ je konštantná postupnosť. Položme $W = \operatorname{Im} i = \{i(x) : x \in U\}$.

Najskôr ukážeme hustotu množiny Wv priestore V. Nech $\mathbf{x}\in \tilde{U}.$ Ukážeme, že platí

$$\lim_{n\to\infty}i(x_n)=[\mathbf{x}].$$

Nech $\varepsilon > 0$. Pretože postupnosť $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ je Cauchyovská,

$$\exists n_0 \in \mathbb{N} \ \forall n, k \ge n_0 : \|x_n - x_k\|_U < \varepsilon.$$

Nech $k \geq n_0$ je pevne zvolené. Potom platí

$$\|[\mathbf{x}] - i(x_k)\|_V = \|[(x_n - x_k)_{n \in \mathbb{N}}]\|_V = \lim_{n \to \infty} \|x_n - x_k\|_U \le \varepsilon.$$

Tým sme dokázali, že platí $i(x_n) \to [\mathbf{x}].$

Ukážeme, že priestor V je úplný.

Nech $([\mathbf{x}_n])_{n\in\mathbb{N}}$ je Cauchyovská postupnosť vektorov priestoru V.

Využijeme už dokázané tvrdenie, že množina W je hustá v priestore V.

Nech $n \in \mathbb{N}$ je pevne zvolené. Potom pre $\varepsilon = \frac{1}{n}$ existuje $z_n \in U$ také, že platí

$$\|[\mathbf{x}_n] - i(z_n)\|_V < \frac{1}{n}.$$

Ukážeme, že $(i(z_n))_{n\in\mathbb{N}}$ je Cauchyovská postupnosť vektorov priestoru V. Naozaj, nech $n,m\in\mathbb{N}$. Potom

$$||i(z_n) - i(z_m)||_V \le ||i(z_n) - [\mathbf{x}_n]||_V + ||[\mathbf{x}_n] - [\mathbf{x}_m]||_V + ||[\mathbf{x}_m] - i(z_m)||_V < \frac{1}{n} + ||[\mathbf{x}_n] - [\mathbf{x}_m]||_V + \frac{1}{m}.$$

Pretože pre každé $n, m \in \mathbb{N}$ platí $||i(z_n) - i(z_m)||_V = ||z_n - z_m||_U$, postupnosť $\mathbf{z} = (z_n)_{n \in \mathbb{N}}$ je Cauchyovská v priestore U. Teda $\mathbf{z} \in \tilde{U}$.

Ukážeme, že $[\mathbf{x}_n] \to [\mathbf{z}]$. Naozaj, pre každé $n \in \mathbb{N}$ platí

$$\|[\mathbf{x}_n] - [\mathbf{z}]\|_V \le \|[\mathbf{x}_n] - i(z_n)\|_V + \|i(z_n) - [\mathbf{z}]\|_V < \frac{1}{n} + \|i(z_n) - [\mathbf{z}]\|_V.$$

Stačí si už len uvedomiť, že platí $\lim_{n\to\infty}i(z_n)=[\mathbf{z}].$

Skalárny súčin

Nech V je vektorový priestor nad poľom \mathbb{R} . Skalárny súčin na vektorovom priestore V je zobrazenie

 $\langle \cdot | \cdot \rangle : V \times V \to \mathbb{R}$

Nech V je vektorový priestor nad poľom \mathbb{C} . Skalárny súčin na vektorovom priestore V je zobrazenie

$$\langle \cdot | \cdot \rangle : V \times V \to \mathbb{C}$$

také, že pre každé $x, y, z \in X$

také, že pre každé $x,y,z\in X$ a pre každé $\alpha\in\mathbb{R}$ platí

a pre každé $\alpha \in \mathbb{C}$ platí

- (a) $\langle x|x\rangle \ge 0;$ (a) $\langle x|x\rangle \ge 0;$
- (b) $\langle x|x\rangle=0$ práve vtedy, keď x=0; (b) $\langle x|x\rangle=0$ práve vtedy, keď x=0;
- (c) $\langle x + y | z \rangle = \langle x | z \rangle + \langle y | z \rangle$; (c) $\langle x + y | z \rangle = \langle x | z \rangle + \langle y | z \rangle$;
- (d) $\langle \alpha x | y \rangle = \alpha \langle x | y \rangle$; (d) $\langle \alpha x | y \rangle = \alpha \langle x | y \rangle$;
- (e) $\langle x|y\rangle = \langle y|x\rangle$. (e) $\langle x|y\rangle = \overline{\langle y|x\rangle}$. Nach V ie vektorový priestor nad poľom \mathbb{F} . Potom funkcia $\|\cdot\|: V \to \mathbb{R}$, k

Nach V je vektorový priestor nad poľom $\mathbb F.$ Potom funkcia $\|\cdot\|:V\to\mathbb R,$ ktorá je definovaná pre každé $x\in V$ predpisom

$$||x|| = \sqrt{\langle x|x\rangle},$$

je norma na vektorovom priestore V.

 $Hilbertov\ priestor\ je\ vektorový\ priestor\ V$ so skalárnym súčinom, ktorý je úplný, t.j. každá Cauchyovská postupnosť vektorov priestoru V konverguje.

Lema 2. Nech V je vektorový priestor so skalárnym súčinom. Potom pre každé $x,y\in V$ a pre každé $\alpha\in\mathbb{F}$ platí

$$\langle x - \alpha y | x - \alpha y \rangle = \langle x | x \rangle - \overline{\alpha} \langle x | y \rangle - \alpha \overline{\langle x | y \rangle} + \alpha \overline{\alpha} \langle y | y \rangle.$$

Veta 3. (Cauchyho-Schwarzova nerovnosť) Nech V je vektorový priestor so skalárnym súčinom. Potom pre každé $x, y \in V$ platí

$$|\langle x|y\rangle| \le ||x|| ||y||. \tag{2}$$

Pritom rovnosť nastáva práve vtedy, keď vektory x, y sú lineárne závislé.

 $D\hat{o}kaz$. Ak x=0 alebo y=0, potom $\langle x|y\rangle=0$, teda (2) zrejme platí.

Predpokladajme, že $y \neq 0$. Položme

$$\alpha = \frac{\langle x|y\rangle}{\langle y|y\rangle}.$$

Potom podľa lemy 2 dostávame

$$\begin{split} 0 & \leqq \langle x - \alpha y | x - \alpha y \rangle = \langle x | x \rangle - \overline{\alpha} \langle x | y \rangle - \alpha \overline{\langle x | y \rangle} + \alpha \overline{\alpha} \langle y | y \rangle = \\ & = \langle x | x \rangle - \frac{\overline{\langle x | y \rangle}}{\langle y | y \rangle} \cdot \langle x | y \rangle - \frac{\langle x | y \rangle}{\langle y | y \rangle} \cdot \overline{\langle x | y \rangle} + \frac{\langle x | y \rangle}{\langle y | y \rangle} \cdot \frac{\overline{\langle x | y \rangle}}{\langle y | y \rangle} \cdot \langle y | y \rangle = \\ & = \frac{1}{\langle y | y \rangle} \left(\langle x | x \rangle \langle y | y \rangle - \langle x | y \rangle \overline{\langle x | y \rangle} \right) = \frac{1}{\langle y | y \rangle} \left(\langle x | x \rangle \langle y | y \rangle - |\langle x | y \rangle|^{2} \right). \end{split}$$

Odtiaľ máme $|\langle x|y\rangle|^2 \leq \langle x|x\rangle\langle y|y\rangle$.

Teraz predpokladajme, že platí rovnosť $|\langle x|y\rangle|^2 = \langle x|x\rangle\langle y|y\rangle$. Ak x=0 alebo y=0, potom vektory x,y sú lineárne závislé. Ak $y\neq 0$, potom $\langle x-\alpha y|x-\alpha y\rangle=0$, preto $x-\alpha y=0$, čiže vektory x,y sú lineárne závislé.

Teraz predpokladajme, že vektory x, y sú lineárne závislé. Vzhľadom na symetriu dokazovanej rovnosti stačí preskúmať prípad $x = \beta y$, kde $\beta \in \mathbb{F}$. Potom

$$\langle x|x\rangle = \langle \beta y|\beta y\rangle = \beta \overline{\beta} \langle y|y\rangle = |\beta|^2 \langle y|y\rangle,$$
$$|\langle x|y\rangle|^2 = |\langle \beta y|y\rangle|^2 = |\beta\langle y|y\rangle|^2 = |\beta|^2 \langle y|y\rangle^2,$$

teda

$$|\langle x|y\rangle|^2 = \langle x|x\rangle\langle y|y\rangle.$$

Podľa lemy 2 pre ľubovoľné $a, b \in V$ platí

$$\langle a - b | a - b \rangle = \langle a | a \rangle - 2\Re e \langle a | b \rangle + \langle b | b \rangle, \tag{3}$$

$$\langle a+b|a+b\rangle = \langle a|a\rangle + 2\Re e\langle a|b\rangle + \langle b|b\rangle. \tag{4}$$

Teraz už môžeme ľahko dokázať trojuholníkovú nerovnosť pre vektory. Stačí sa odvolať na *Cauchy*ho-*Schwarz*ovu nerovnosť (2). Naozaj, podľa (4) máme

$$||a+b||^2 = ||a||^2 + 2\Re e\langle a|b\rangle + ||b||^2 \le$$

$$\le ||a||^2 + 2|\langle a|b\rangle| + ||b||^2 \le ||a||^2 + 2||a|| ||b|| + ||b||^2 = (||a|| + ||b||)^2.$$

Tým sme ukázali, že ľubovoľné $a,b \in V$ platí

$$||a+b|| \le ||a|| + ||b||.$$

Z rovností (3) a (4) bezprostredne dostávame tzv. rovnobežníkové pravidlo:

$$||a+b||^2 + ||a-b||^2 = 2||a||^2 + 2||b||^2.$$
 (5)

Všimnime si, že hoci vo vzorci (9) sa skalárny súčin nenachádza, použili sme ho pri jeho odvodení. Ako sa môžete presvedčiť na príklade priestoru $\mathscr{C}[0,1]$, prepojenie veľkosti vektora so skalárnym súčinom, ktoré je vyjadrené vzorcom $\|x\| = \sqrt{\langle x|x\rangle}$, je pri odvodení rovnobežníkového pravidla podstatné.

Príklad 11. Nech $V = \mathscr{C}[0,1]$ je priestor všetkých spojitých reálnych funkcií definovaných na intervale [0,1]. Normu na tomto priestore definujeme predpisom

$$||f|| = \max_{x \in [0,1]} |f(x)|$$

pre každé $f \in V$.

Ukážeme, že v tomto priestore neplatí rovnobežníkové pravidlo. Definujme funkcie f,g predpismi f(x)=1, g(x)=x pre každé $x\in[0,1].$ Zrejme sú to spojité funkcie, pričom platí

$$||f + g||^2 + ||f - g||^2 = 4 + 1 = 5,$$

 $2||f||^2 + 2||g||^2 = 2 + 2 = 4.$

Ako vidíme, rovnobežníkové pravidlo neplatí. To znamená, že v tomto priestore neexistuje skalárny súčin, pre ktorý by platila rovnosť $||x|| = \sqrt{\langle x|x\rangle}$.

ORTOGONALITA

Nech V je vektorový priestor so skalárnym súčinom. Hovoríme, že dva vektory $x,y\in V$ sú ortogonálne, ak $\langle x|y\rangle=0$. Zapisujeme to $x\perp y$. Ortogonálny doplnok množiny $A\subseteq V$ definujeme predpisom

$$A^{\perp} = \{ x \in V : x \perp a \text{ pre všetky } a \in A \}.$$

Priamo z rovnosti (4) vyplýva nasledujúce tvrdenie.

Tvrdenie 13. (Pytagorova veta) Nech V je vektorový priestor so skalárnym súčinom. Nech $x, y \in V$. Ak $x \perp y$, potom platí

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Nech V je vektorový priestor so skalárnym súčinom. Množina vektorov $E\subseteq V$ sa volá ortonormálna, ak

- (a) pre každé $u \in E$ platí ||u|| = 1,
- (b) pre každé $u, v \in E, u \neq v$, platí $u \perp v$.

Lema 3. Nech V je vektorový priestor so skalárnym súčinom. Predpokladajme, že $\{e_1, \ldots, e_k\} \subseteq V$ je konečná ortonormálna množina vektorov. Nech $x \in V$. Položme

$$y = \sum_{n=1}^{k} \langle x | e_n \rangle e_n.$$

Potom platí

$$||y||^2 = \sum_{n=1}^k |\langle x|e_n\rangle|^2.$$

Pretože $y \perp (x - y)$, podľa tvrdenia 13 platí $||x||^2 = ||y||^2 + ||x - y||^2$.

Dôsledok 1. Nech V je vektorový priestor so skalárnym súčinom. Predpokladajme, že $\{e_1, \ldots, e_k\} \subseteq V$ je konečná ortonormálna množina vektorov. Nech $x \in V$. Potom platí

$$\sum_{n=1}^{k} |\langle x | e_n \rangle|^2 \le ||x||^2.$$

Veta 4. (Besselova nerovnosť) Nech V je vektorový priestor so skalárnym súčinom. Predpokladajme, že $\{e_1, e_2, \ldots\} \subseteq V$ je nekonečná spočítateľná ortonormálna množina vektorov. Nech $x \in V$. Potom rad $\sum_{n=1}^{\infty} |\langle x|e_n \rangle|^2$ konverguje, pričom platí

$$\sum_{n=1}^{\infty} |\langle x | e_n \rangle|^2 \le ||x||^2.$$

Pripomeňme si, že vzdialenosť bodu $x \in X$ od neprázdnej množiny $Y \subseteq Y$ sa v metrickom priestore definuje predpisom

$$dist(x,Y) = \inf_{z \in Y} d(x,z).$$

V normovanom priestore tento vzorec prejde do tvaru

$$\operatorname{dist}(x,Y) = \inf_{z \in Y} \|x - z\|.$$

Tvrdenie 14. (O najlepšej aproximácii) Nech Y je neprázdna uzavretá konvexná podmnožina v Hilbertovom priestore X. Potom pre každé $x \in X$ existuje práve jeden vektor $y \in Y$ taký, že

$$||x - y|| = \operatorname{dist}(x, Y) = \inf_{z \in Y} ||x - z||.$$

 $D\hat{o}kaz$. Nech $x \in X$. Položme

$$D = \{ ||x - z|| : z \in Y \}, \qquad d = \inf D.$$

Nech $n\in\mathbb{N}$. Ak by pre každé $z\in Y$ platilo $d+1/n\leqq \|x-z\|$, potom by číslo d+1/n bolo dolným ohraničením množiny D, teda by sme mali $d+1/n\leqq$ inf D=d, čo by bol spor. Teda musí existovať $z_n\in Y$ také, že $d+1/n>\|x-z_n\|$. Pretože infimum je dolné ohraničenie, máme $d\leqq \|x-z_n\|$. Pretože $n\in\mathbb{N}$ bolo ľubovoľné, ukázali sme, že existuje postupnosť $(z_n)_{n\in\mathbb{N}}$ prvkov množiny Y taká, že

$$\lim_{n \to \infty} ||x - z_n|| = d. \tag{6}$$

Nech $m, n \in \mathbb{N}$. Položme $a = ||x - z_m||, b = ||x - z_n||$. Z rovnobežníkového pravidla vyplýva, že platí

$$||2x - (z_n + z_m)||^2 + ||z_n - z_m||^2 = 2||x - z_m||^2 + 2||x - z_n||^2$$

odkiaľ po malej úprave dostávame

$$||z_n - z_m||^2 = 2||x - z_m||^2 + 2||x - z_n||^2 - 4||x - (\frac{1}{2}z_n + \frac{1}{2}z_m)||^2.$$

Položme $z=\frac{1}{2}z_n+\frac{1}{2}z_m$. Pretože množina Y je konvexná, platí $z\in Y$. Pretože potom $\|x-z\|\in D$, platí $\|x-z\|\geqq d$. Odtiaľ vyplýva

$$||z_n - z_m||^2 \le 2||x - z_m||^2 + 2||x - z_n||^2 - 4d^2.$$

Premyslite si, ako táto nerovnosť dokazuje, že postupnosť $(z_n)_{n\in\mathbb{N}}$ je Cauchyovská. Pretože priestor X je úplný, táto postupnosť musí konvergovať k nejakému $y\in X$. Pretože množina Y je uzavretá, platí $y\in Y$. Zrejme

$$d = \lim_{n \to \infty} ||x - z_n|| = ||x - y||.$$

Nakoniec dokážeme jednoznačnosť. Nech $y, y' \in Y$ sú také, že

$$||x - y|| = d = ||x - y'||.$$

V predchádzajúcej časti sme ukázali, že každá postupnosť $(z_n)_{n\in\mathbb{N}}$ prvkov množiny Y, pre ktorú platí (6), je Cauchyovská. Pre aj postupnosť

$$y, y', y, y', y, y', \dots$$

je Cauchyovská. Ale to je možné len vtedy, keď y = y'.

Veta 5. (Ortogonálny rozklad) Nech Y je uzavretý vektorový podpriestor Hilbertovho priestoru X. Potom každý vektor $x \in X$ možno vyjadriť jediným spôsobom v tvare x = u + v, kde $u \in Y$ a $v \in Y^{\perp}$.

 $D\hat{o}kaz.$ Nech $x\in X.$ Podľa tvrdenia 14 existuje práve jeden vektor $u\in Y$ taký, že

$$||x - u|| = \operatorname{dist}(x, Y) = \inf_{z \in Y} ||x - z||.$$

Položme v=x-u. Ukážeme, že $v\in Y^\perp$, t.j. že pre každé $y\in Y$ platí $v\perp y$. Nech teda $y\in Y,\,y\neq 0$. Podľa lemy 2 máme

$$\|v - \alpha y\|^2 = \|v\|^2 - \overline{\alpha} \langle v|y\rangle - \alpha \overline{\langle v|y\rangle} + \alpha \overline{\alpha} \|y\|^2.$$

Pre

$$\alpha = \frac{\langle v|y\rangle}{\|y\|^2}$$

odtiaľ po malej úprave dostávame

$$\frac{|\langle v|y\rangle|^2}{\|y\|^2} = \|v\|^2 - \|v - \alpha y\|^2.$$

Pretože $u, y \in Y$, máme $u + \alpha y \in Y$. Potom

$$||v|| = \operatorname{dist}(x, Y) \le ||x - (u + \alpha y)|| = ||v - \alpha y||,$$

preto

$$\frac{|\langle v|y\rangle|^2}{\|u\|^2} \le 0.$$

Odtiaľ vyplýva, že platí $\langle v|y\rangle$, t.j. $v\perp y$. Pretože $y\in Y$ bolo ľubovoľné, máme $v\in Y^\perp$.

Nakoniec ukážeme jednoznačnosť. Nech x=u'+v', kde $u'\in Y,\ v'\in Y^{\perp}$. Potom u+v=x=u'+v', odkiaľ

$$Y \ni u - u' = v' - v \in Y^{\perp}.$$

Pretože $Y \cap Y^{\perp} = \{0\}$, máme u - u' = v' - v = 0. To znamená, že $u = u', \ v = v'$.

Ortonormálna báza

Nech V je vektorový priestor so skalárnym súčinom. Nekonečná spočítateľná ortonormálna podmnožina $E = \{e_1, e_2, e_3, \dots\}$ priestoru V sa volá ortonormálna báza priestoru V, ak každý vektor $x \in V$ možno vyjadriť v tvare

$$x = \sum_{n=1}^{\infty} \langle x | e_n \rangle e_n.$$

Všimnime si, že čiastočné súčty tohto radu $\sum_{n=1}^{k} \langle x|e_n\rangle e_n$ sú vektory patriace do lineárneho obalu množiny E. Teda vektor x, ako limita postupnosti týchto čiastočných súčtov, patrí do uzáveru množiny $\operatorname{Sp} E$. Teda pre ortonormálnu bázu E platí $\operatorname{Cl}(\operatorname{Sp} E) = V$. Inými slovami, množina $\operatorname{Sp} E$ je hustá v priestore V.

Tvrdenie 15. Nech $(x_n)_{n\in\mathbb{N}}$ je ortogonálna postupnosť v Hilbertovom priestore \mathcal{H} . Potom rad $\sum_{n=1}^{\infty} x_n$ konverguje práve vtedy, keď $\sum_{n=1}^{\infty} \|x_n\|^2 < \infty$. V takomto prípade platí

$$\left\| \sum_{n=1}^{\infty} x_n \right\|^2 = \sum_{n=1}^{\infty} \|x_n\|^2.$$

 $D\hat{o}kaz$. Nech $(S_n)_{n\in\mathbb{N}}$ je postupnosť čiastočných súčtov radu $\sum_{n=1}^{\infty}x_n$, t.j.

$$S_n = \sum_{i=1}^n x_i$$
 pre každé $n \in \mathbb{N}$.

Nech $(s_n)_{n\in\mathbb{N}}$ je postupnosť čiastočných súčtov radu $\sum_{n=1}^{\infty} ||x_n||^2$, t.j.

$$s_n = \sum_{i=1}^n \|x_i\|^2$$
 pre každé $n \in \mathbb{N}$.

Potom podľa tvrdenia 13 pre každé $k, n \in \mathbb{N}$ máme

$$||S_{n+k} - S_n||^2 = ||x_{n+1} + \dots + x_{n+k}||^2 = ||x_{n+1}||^2 + \dots + ||x_{n+k}||^2 = s_{n+k} - s_n.$$

Odtiaľ vyplýva, že postupnosť $(S_n)_{n\in\mathbb{N}}$ je Cauchyovská v priestore \mathcal{H} práve vtedy, keď číselná postupnosť $(s_n)_{n\in\mathbb{N}}$ je Cauchyovská.

K dokončeniu dôkazu si stačí uvedomiť, že pre každé $n \in \mathbb{N}$ platí $\|S_n\|^2 = s_n$.

Dôsledok 2. (Parsevalova rovnosť) Nech $\{e_1, e_2, \dots\} \subseteq \mathcal{H}$ je nekonečná spočítateľná ortonormálna množina vektorov v Hilbertovom priestore \mathcal{H} . Ak vektor $x \in \mathcal{H}$ možno vyjadriť v tvare $x = \sum_{n=1}^{\infty} \langle x|e_n\rangle e_n$, potom $\sum_{n=1}^{\infty} |\langle x_n|e_n\rangle|^2 < \infty$, pričom platí

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x_n | e_n \rangle|^2.$$

Pripomeňme si tiež Gramov-Schmidtov ortogonalizačný proces. Predpokladajme, že máme množinu $\{x_1,\ldots,x_n\}\subseteq V$ lineárne nezávislých vektorov, kde V je vektorový priestor so skalárnym súčinom. Gramov-Schmidtov algoritmus nám umožňuje definovať ortonormálnu množinu vektorov $\{e_1,\ldots,e_n\}\subseteq V$ takú, že

$$\operatorname{Sp}\{e_1, \dots, e_n\} = \operatorname{Sp}\{x_1, \dots, x_n\}. \tag{7}$$

Postupujeme nasledujúcim spôsobom:

Položme $e_1 = \frac{1}{\|x_1\|} x_1$. Predpokladajme, že sú už definované vektory e_1, \dots, e_k . Položme

$$e_{k+1} = \frac{1}{\|y_{k+1}\|} y_{k+1}$$
, kde $y_{k+1} = x_{k+1} - \sum_{i=1}^{k} \langle x_{k+1} | e_i \rangle e_i$.

Tento algoritmus môžeme použiť aj pre ľubovoľnú nekonečnú spočítateľnú množinu $\{x_1, x_2, \dots\}$ lineárne nezávislých vektorov, samozrejme len v nekonečnorozmernom vektorovom priestore so skalárnym súčinom. Gramov-Schmidtov algoritmus nám umožňuje definovať nekonečnú spočítateľnú ortonormálnu množinu vektorov $\{e_1, e_2, \dots\}$ takú, že (7) platí pre každé $n \in \mathbb{N}$.

REGISTER

absorbujúca množina

obraz množiny obraz zobrazenia

Banachov priestor Besselova nerovnosť ortogonálny doplnok ortonormálna báza

bijektívne zobrazenie

Parsevalova rovnosť

 c_0

polonorma podobnosť

Cauchyho nerovnosť

postupnosť posunutie

E(A)

pseudometrika

extrémny bod

Pytagorova veta

 $\mathscr{F}(A)$

skalárny súčin

faktorový priestor

 $\operatorname{Sp} A$

Hamelova báza

surjektívne zobrazenie

Hilbertov priestor

hustá množina

uzáver množiny

vnútro množiny

identita

vrstva

injektívne zobrazenie inverzné zobrazenie

vyvážená množina vzor množiny

izometria

 $X \to Y$

 $\ker f$

 $x \mapsto f(x)$

 $\ker p$

kongruentné

zložené zobrazenie

lineárna izometria lineárne zobrazenie lineárny obal

m

metrika

Minkowského funkcionál