	_
Name:	

Klausur: Grundlagen der Elektronik WS 08/09

Kurzfragen ohne Unterlagen (Bearbeitungszeit: 30 min)

- 1) In welchem Bereich liegen die Bandabstände (links) und Gitterkonstanten (rechts) der am meisten verwendeten Halbleitermaterialien (unter normalen Bedingungen)?
- 2) Welche der Aussagen zur Kapazität C einer pn-Diode mit abruptem Übergang und homogenen Dotierungen sind zutreffend?
- 3) Welche der Aussagen zu einem idealen *pn*-Übergang mit angelegter Spannung sind zutreffend?
- 4) Skizzieren Sie in den vorbereiteten Diagrammen die örtlichen Verläufe der Raumladungsdichte ρ(x), des elektrischen Feldes E(x) und das Bändermodell W(x) in der angedeuteten, idealen Metall-Oxid-n-Halbleiterstruktur für den Fall der starken Inversion. Beschriften Sie W_F, W_L, W_V sowie die angelegte Spannung U. Welches Vorzeichen muss dann die Spannung am Metall gegenüber dem Halbleiter aufweisen?
- 5) Gegeben ist eine ideale Metall-Isolator-Halbleiter-Struktur (Bild a) mit gleichen Austrittsarbeiten von Halbleiter und Metall sowie in den Bildern c bis e die zugehörigen Bändermodelle für drei Arbeitspunkte. Um welchen Halbleitertyp handelt es sich? Zeichnen Sie für niedrige Frequenzen den C(U_g)-Verlauf in das Diagramm (Bild b). Markieren Sie die Arbeitspunkte der drei angegebenen Bändermodelle mit dem zugehörigen Buchstaben (c bis e) in der C(U_g)-Kennlinie.
- 6) Welche der Aussagen zu einer MOS-Kapazität sind zutreffend?
- 7) Welche der Aussagen über die drei Grundschaltungen des Bipolartransistors ist bei üblichen Dimensionierungen zutreffend?
- 8) Gegeben ist das Bändermodell W(x) von n-dotiertem Si. Skizzieren Sie die Zustandsdichten der Elektronen im Leitungsband und der Löcher im Valenzband D(W) in parabolischer Näherung, sowie die Fermi-Verteilung f(W) und die Elektronen- und Löcherkonzentrationen im Leitungs- bzw. Valenzband n(W), p(W) in den vorbereiteten Koordinatensystemen.
- 9) Welche der Aussagen zu dem gezeigten Bändermodell mit den Bandkanten W_V und W_L sowie die beiden Quasi-Ferminiveaus für die Elektronen und Löcher W_{Fn} und W_{Fp} sind richtig unter der Voraussetzung gleicher effektiver Zustandsdichten im Leitungs- und Valenzband?
- 10) Skizzieren Sie in dem vorbereiteten Diagramm den Konzentrationsverlauf der Minoritätsladungsträger in der neutralen Basis (x, bis x₁) eines npn-Transistors (Diffusionsdreieck).

ELO

FOG

Name:....

Klausur: Grundlagen der Elektronik WS 08/09

Pruch n gezählt?

Aufgaben (Bearbeitungszeit: 2 Std.)

Untersuchen Sie die Kapazität C_s einer np^+ -Diode unter Sperrbelastung (Spannung U) (Abb. 1, Fläche $A_K = 2 \text{ mm}^2$) in Abhängigkeit von der ortsunabhängigen, vollständig ionisierten Dotierstoffkonzentration im niedrig dotierten Bereich bei 300 K. Gehen Sie, wie für die ideale pn-Diode üblich, davon aus, dass die beweglichen Ladungsträger in der Sperrschicht (grau unterlegt) keine Rolle spielen und die Bahngebiete feldfrei sind.

a) Ermitteln Sie ausgehend vom Verlauf der Raumladung $\rho(x) = q(N_D^+ + p - N_A^- - n)$ der gegebenen Diode durch Integration der Poisson-Gleichung:

$$\frac{d^2W_L(x)}{dx^2} = q\frac{dE(x)}{dx} = \frac{q}{\varepsilon}\rho(x) \text{ den Verlauf der elektrischen Feldstärke } E \text{ (für } x_1, x_2)$$

und x_3 explizit angeben!) und der Leitungsbandkante $W_{\rm L}$ als Funktion von x im Bereich der Sperrschicht getrennt für n- und p-Bereiche. Skizzieren Sie die Verläufe (Vorlage). Markieren Sie charakteristische Parameter $[-qN_{\rm A}, qN_{\rm D}, q(U_{\rm D}-U)]$.

b) Bestimmen Sie aus der Bandaufwölbung $W_L(x_1)$ - $W_L(x_3)$ die Ausdehnung der Verarmungszone $w=x_3$ - x_1 in Abhängigkeit von U näherungsweise unter Beachtung von $N_D << N_A$. Tab. 1

1.65.

nttp://pfg-et.campus-bs.de

pfg@tu-bs.de

Ermitteln Sie aus w(U) die Sperrschichtkapazität $C_s = \varepsilon_r \varepsilon_0 A_{\rm K}/w$ in Abhängigkeit von U. Tragen Sie die in Tab. 1 angegebenen Werte geeignet auf (Vorlage), so dass Sie die Dotierstoffkonzentration $N_{\rm D}$ sowie die Diffusionspannung $U_{\rm D}$ graphisch bestimmen können (Zahlenwerte). Die relative Dielektrizitätskonstante beträgt $\varepsilon_r = 11,7$, $[\varepsilon_0 = 8,854\cdot10^{-12}~{\rm As/(Vm)}, q=1,6\cdot10^{-19}~{\rm C}]$.

-U(V)	$C_{\rm s}({\rm pF})$
0	166
1	122
2	101
3	88,6
5	72,9

1/6

2) Abb. 2 zeigt einen Bipolartransistor, der 0 X₂ X₃

hei 300 K unter üblichen Bedingungen betrieben ($U_{eb} = 0.7 \text{ V}$, $U_{eb} = -10 \text{ V}$) wird. In den Sperrschichten ist thermische Generation und Rekombination ebenso zu vernachlässigen wie ein Spannungsabfall über den Bahngebieten. Zum Strom I tragen nur die in die Basis injizierten Löcher bei (Stromdichte $J = J_p$). Ermitteln Sie den Basis-Transportfaktor β_T . Weitere Glei-Abb. 2

chungen und Daten:

Elektronenkonzentration an den Rändern des Basisbahngebietes: $p_n(x_2) = p_{n0} \exp(W_2/kT)$, $p_n(x_3) = p_{n0} \exp(W_3/kT)$, wobei W_2 eine Funktion von U_{eb} und W_3 eine Funktion von U_{cb} ist. Diffusionsstromdichtegleichung: $J_p = -qD_p(dp_p/dx)$;

Kontinuitätsgleichung: $dp_n/dt = -1/q(dJ_p/dx)-r_{net}$;

thermische Nettorekombinationsrate: $r_{\rm net}=(p_{\rm n}-p_{\rm n0})/\tau_{\rm p}$; Diffusionslänge: $L_{\rm p}=(D_{\rm p}\tau_{\rm p})^{1/2}$; Diffusionskoeffizient $D_{\rm p}=\mu_{\rm p}kT/{\rm q}$; Eigenleitungskonzentration: $n_{\rm i}=(n_{\rm p0}p_{\rm p0})^{1/2}=3\cdot10^{10}~{\rm cm}^{-3}$; $N_{\rm D}=3\cdot10^{17}~{\rm cm}^{-3}$ (Basis, vollständig ionisiert); $\tau_{\rm p}=0.1~{\rm \mu s}$; $\mu_{\rm p}=300~{\rm cm}^2/{\rm Vs}$; $d_{\rm b}=3~{\rm \mu m}$; Konstanten: ${\rm q}=1.6\cdot10^{-19}~{\rm C}$, ${\rm k}=1.38\cdot10^{-23}~{\rm WsK}^{-1}$.

a) Berechnen Sie $p_n(x)$ an den Orten x_2 und x_3 (Zahlenwerte). Ermitteln Sie die Elektronenkonzentration p_n im Basis-Bahngebiet $d_b = x_3 - x_2$ in Abhängigkeit vom Ort x und vom Spannungsabfall U_{eb} über der Emitter-Basis-Diode. Hinweis: Verwenden Sie zur Lösung der aufzustellenden Differenzialgleichung den Ansatz:

$$p_{\rm n}(x) - p_{\rm n0} = A \sinh\left(\frac{x - x_2}{L_{\rm p}}\right) + B \sinh\left(\frac{x_3 - x}{L_{\rm p}}\right).$$

Ermitteln Sie den Verlauf $p_n(x)$ im Basis-Bahngebiet. Nähern und skizzieren Sie $p_n(x)$ für den Fall $d_b/L_p << 1$ (Vorlage).

Bestimmen Sie aus $p_n(x)$ (ohne Näherung) die Löcherstromdichten $J_p(x_2)$ und $J_p(x_3)$. Eliminieren Sie in diesem Gleichungssystem die spannungsabhängigen Terme, so dass Sie $J_p(x_3)$ als Funktion von $J_p(x_2)$ erhalten. Ermitteln Sie hieraus den Basis-TransVog

 $p_{n}(x)$ p_{n0} 0 X_{2} X_{3}

- 3) Analysieren Sie die Schaltung in Abb. 3a. Der Transistor ist durch das Kennlinienfeld in Abb. 3 b charakterisiert. Folgende Betriebsparameter sind gegeben: $U_{\rm B}=8$ V, $U_{\rm ce}=4$ V, $U_{\rm eb}=-0.7$ V, $U_{\rm E}=0.5$ V, $I_{\rm b}=8$ μ A, $I_{\rm q}=5\times I_{\rm b}$, $R_{\rm G}=50$ Ω , $R_{\rm L}=1.5$ k Ω .
 - a) Welcher Transistortyp liegt vor? Zeichnen Sie das Gleichstromersatzschaltbild. Ermitteln Sie den Arbeitspunkt (U_{ce} , I_c) und die Widerstände R_1 , R_2 , R_E und R_C . Wie groß ist I_c ($U_{ce} = 0$)? Tragen Sie Arbeitspunkt und -gerade in das Kennlinienfeld ein.
 - b) Führen Sie eine Wechselstromanalyse durch. Welcher Schaltungstyp liegt vor? Zeichnen Sie hierzu die Ersatzschaltung unter Verwendung des vereinfachten Kleinsignal-Ersatzschaltbildes für den Transistor (<u>Abb. 3c</u>) mit den Parametern α = 0,997, r_b = 1,9 kΩ und r_c = 7 Ω. Die Kondensatoren stellen im betrachteten Frequenzbereich Kurzschlüsse dar.
 - Bestimmen Sie aus b) mit Hilfe der in a) ermittelten Werte den Eingangswiderstand R_e = u_1/i_1 , die Stromverstärkung $v_i = i_2/i_1$, die Leerlaufspannungsverstärkung $v_{uL} = u_2/u_1$ ($i_2 = 0$), die Spannungsverstärkung $v_u = u_2/u_G$ ($i_2 \neq 0$) und den Ausgangswiderstand $R_a = u_2/i_2$ ($u_G = 0$) der Schaltung formel- und zahlenmäßig. Nutzen Sie bei der Herleitung der Formeln sinnvolle Näherungen.

Abb. 3

Name:....

Lösung:

a) Die Gleichgewichtselektronenkonzentration in der Basis ergibt sich zu: $p_{n0} = n_i^2/N_D = 3000 \text{ cm}^3$. Die Löcherkonzentration am Rand des Basisbahngebiets beträgt: $(1.7 \times 10^{15} \text{ cm}^{-3}/0)$

$$p_{\rm n}(x_2) = p_{\rm n0} \exp\left(\frac{{\rm q}\,U_{\rm eb}}{{\rm k}\,T}\right) = 1.7 \times 10^{15} {\rm cm}^{-3}, \ p_{\rm n}(x_3) = p_{\rm n0} \exp\left(\frac{{\rm q}\,U_{\rm cb}}{{\rm k}\,T}\right) \approx 0.$$

Aus der Kontinuitäts- sowie der Stromgleichung (nur Diffusionsanteil) für die Löcher der Konzentration $p_n(x)$ im Basis-Bahngebiet ergibt sich folgende inhomogene Differenzialgleichung (vgl. (3.16)):

$$\frac{d^2 p_{\rm n}(x)}{dx^2} - \frac{p_{\rm n}(x) - p_{\rm n0}}{L_{\rm n}^2} = 0$$

mit den obigen Randbedingungen (vgl. (1.63a)) und dem gegebenen Ansatz:

$$p_{\hat{\mathbf{n}}}(x) - p_{\hat{\mathbf{n}}0} = A \sinh\left(\frac{x - x_2}{L_p}\right) + B \sinh\left(\frac{x_3 - x}{L_p}\right).$$

liefert. Einsetzen in die Randbedingungen ergibt A und B:

$$A = -\frac{p_{\text{n0}}}{\sinh\left(\frac{d_{\text{b}}}{L_{\text{p}}}\right)}, B = \frac{p_{\text{n0}}\left[\exp\left(\frac{qU_{\text{eb}}}{kT}\right) - 1\right]}{\sinh\left(\frac{d_{\text{b}}}{L_{\text{p}}}\right)}.$$

Die Lösung lautet somit:

$$p_{n}(x) - p_{n0} = \frac{-p_{n0} \left[\sinh\left(\frac{x - x_{2}}{L_{p}}\right) + \sinh\left(\frac{x_{3} - x}{L_{p}}\right) \right] + p_{n0} \exp\left(\frac{q U_{eb}}{kT}\right) \sinh\left(\frac{x_{3} - x}{L_{p}}\right)}{\sinh\left(\frac{d_{b}}{L_{p}}\right)}$$

Für $d_b/L_p \ll 1$ ergibt sich näherungsweise ein linearer Verlauf:

b) Da das Basisgebiet annähernd feldfrei ist, ergibt sich $J_p(x_2)$ zu ((vgl. (1.31a)):

$$J_{\mathrm{p}}\!\left(\!x_{2}\!\right) = -\mathrm{q}D_{\mathrm{p}}\frac{\mathrm{d}p_{\mathrm{n}}\!\left(x\right)}{\mathrm{d}x}\Big|_{x_{2}} = -\frac{\mathrm{q}D_{\mathrm{p}}p_{\mathrm{n}0}\!\left[1 - \mathrm{exp}\!\left(\frac{\mathrm{q}\,U_{\mathrm{e}\,\mathrm{b}}}{\mathrm{k}\,T}\right)\right]}{L_{\mathrm{p}}\!\tanh\!\left(\frac{d_{\mathrm{b}}}{L_{\mathrm{p}}}\right)} + \frac{\mathrm{q}D_{\mathrm{p}}p_{\mathrm{n}0}}{L_{\mathrm{p}}\!\sinh\!\left(\frac{d_{\mathrm{b}}}{L_{\mathrm{p}}}\right)}.$$

und $J_{\mathfrak{p}}(x_3)$ zu:

$$J_{p}(x_{3}) = -qD_{p}\frac{\mathrm{d}p_{p}(x)}{\mathrm{d}x}\Big|_{x_{3}} = -\frac{qD_{p}p_{n0}\left[1 - \exp\left(\frac{qU_{eb}}{kT}\right)\right]}{L_{p}\sinh\left(\frac{d_{b}}{L_{p}}\right)} + \frac{qD_{p}p_{n0}}{L_{p}\tanh\left(\frac{d_{b}}{L_{p}}\right)}.$$

Eingesetzt ergibt sich:

$$J_{\rm p}\!\left(\!x_{3}\!\right) = \frac{J_{p}\!\left(\!x_{2}\!\right)}{\cosh\!\left(\frac{d_{\rm b}}{L_{\rm p}}\right)} + \underbrace{L_{\rm p}\!\sinh\!\left(\frac{d_{\rm b}}{L_{\rm p}}\right)\!\cosh\!\left(\frac{d_{\rm b}}{L_{\rm p}}\right)} + \underbrace{L_{\rm p}\!\tanh\!\left(\frac{d_{\rm b}}{L_{\rm p}}\right)}.$$

und mit $L_p = (\mu_p k T \tau_n/q)^{1/2} = 8.8 \mu m$:

$$\beta_{\rm T} = \frac{\partial J_{\rm p}(x_3)}{\partial J_{\rm p}(x_2)} = \frac{1}{\cosh\left(\frac{d_{\rm b}}{L_{\rm p}}\right)} = 1 - \frac{d_{\rm b}^2}{2L_{\rm p0}^2} = 0,942.$$

$$R_{2} = \frac{u_{8} - u_{ce} - u_{E}}{I_{c}} = \frac{3.5}{3.5 \text{ m/4}} \approx 1.0 \text{ kg}$$

$$R_{2} = \frac{u_{8} - u_{ce} - u_{E}}{I_{c}} = \frac{3.5}{3.5 \text{ m/4}} \approx 1.0 \text{ kg}$$

$$R_{2} = \frac{u_{E}}{I_{c}} = \frac{0.5 \text{ V}}{3.5 \text{ m/4}} = 143.92$$

$$R_{1} = \frac{u_{eb} + u_{E}}{5.I_{b}} = \frac{1.2 \text{ V}}{4.0 \text{ V}} = 30 \text{ kg}$$

$$R_{2} = \frac{u_{B} - (-u_{eb} + u_{E})}{5I_{b}} = \frac{6.8 \text{ V}}{48 \text{ m/4}} = 142 \text{ kg}$$

$$I_{c} (u_{ce} = 0) = \frac{u_{B}}{R_{E} + R_{c}} = \frac{8 \text{ V}}{1/4 \text{ kg}} = 7 \text{ m/4}$$

C)
$$M_{\Lambda} = -\lambda_{e} \cdot \nabla e + \lambda_{A} - \frac{N_{\Lambda}}{R_{\Lambda 2}} \cdot \nabla_{b} \rightarrow M_{\Lambda} (\Lambda + \frac{N_{\Lambda}}{R_{\Lambda 2}}) = -\lambda_{e} \cdot \nabla e + \lambda_{A} \cdot \nabla_{b}$$
 $\lambda_{A} = \frac{M_{\Lambda}}{R_{\Lambda 2}} - (1 - \lambda) \lambda_{e} = \frac{1}{R_{12}} \left(-\lambda_{e} \cdot \nabla_{e} + \lambda_{A} \cdot \nabla_{b} \right) - (\Lambda - \lambda) \lambda_{e}$
 $\Rightarrow \lambda_{A} \left(\lambda - \frac{\nabla_{e}}{R_{\Lambda 2}} \right) = -\lambda_{e} \left(\frac{\nabla_{e}}{R_{\Lambda 2}} + \Lambda - \lambda \right)$
 $\Rightarrow M_{A} = -\lambda_{e} \cdot \nabla_{e} - \lambda_{e} \left(\frac{\nabla_{e}}{R_{\Lambda 2}} + \Lambda - \lambda \right) \cdot \nabla_{b} = -\lambda_{e} \left(\frac{\nabla_{e}}{R_{\Lambda 2}} + \frac{\nabla_{b}}{R_{\Lambda 2}} +$

alternatio: