

My Commute is a Train Wreck

Cleo Falvey Math 448 Spring 2020

How long are the different segments of my commute?

Section I of IV

Histograms of Different Commute Segments

What probability distribution can we use to model commute segments?

Section II of IV

To start, let's try some common distributions using MLE.

Total Time

The shifted gamma distribution looked the best. $\alpha = 9.122924$, $\beta = 2.281909$, c = 35.09

Total Time on Shifted/NonShifted Gamma Distribution

Degrees of Freedom versus Log-Likelihood Function Value

Here's a Chisquare with 23 degrees of freedom (minimized log-likelihood).

Was the shifted gamma or the shifted chisquare better? p=.75; the shifted chi-square is better!

Shifted Gamma vs. Shifted Chi Square

Which direction (going to school vs. coming home) has more variance?

Section III of IV

F=.5366, df=30,47, p=.04811; there is a marginally significant difference (larger variance coming home b/c of rush hour!).

Linear Modelling

Section IV of IV

First, let's figure out which segments have the greatest impact on length.

Waiting for the green line and taking the green line had the greatest association with length.

Now, we can plot! $Total\ time = 30.965 + 1.1062 (green\ line)$

effect of green line on total time

But wait! Are the residuals normal?

Waiting for the green line was also correlated! Total time = 51.4505+1.0897(waiting for green line)

effect of waiting for the green line on total time

Again, we ask if the residuals are normal. And they seem to be!

Takeaways

- My commute is long (between 45 and 70 minutes).
- A good distribution is a shifted chi-square distribution.
- Factors that matter when contributing to the length of it are:
 - The green line
 - Rush hour

Limitations

- Bias / convenience sample
- Inaccuracy in timing
- Covid 19 limited sample size

Any questions?

Citations

- Marie Laure Delignette-Muller, Christophe Dutang (2015). fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34. URL http://www.jstatsoft.org/v64/i04/.
- Owen, W. J., & Wackerly, D. D. (2008). _Mathematical statistics with applications, seventh edition, Dennis Wackerly, William Mendenhall, Richard L. Scheaffer._ Belmont, CA: Brooks/Cole Cengage Learning.
- R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Taiyun Wei and Viliam Simko (2017). R package "corrplot": Visualization of a Correlation Matrix (Version 0.84). Available from https://github.com/taiyun/corrplot
- Thomas Lin Pedersen (2019). patchwork: The Composer of Plots. R package version 1.0.0. https://CRAN.R-project.org/package=patchwork
- Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686
- Millard SP (2013). _EnvStats: An R Package for Environmental Statistics_. Springer, NewYork. ISBN 978-1-4614-8455-4, <URL: http://www.springer.com>.
- Yihui Xie (2020). knitr: A General-Purpose Package for Dynamic Report Generation in R. Rpackage version 1.28.