Statistical Estimation	Midterm 1
ASEN 5044 Fall 2018	Due Date: Oct 11, 2018
Name: Andrew Kramer	PhD Student

Problem 1

Inverted pendulum with equations of motion:

$$(M+m)\ddot{z} - ml\ddot{\theta}\cos\theta + ml\dot{\theta}^{2}\sin\theta = P$$
$$l\ddot{\theta} - q\sin\theta = \ddot{z}\cos\theta$$

Part (a)

The system's state equations can be expressed as follows:

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{P - g\sin x_3 \cos x_3 - mlx_4^2 \sin x_3}{M + m\sin^2 x_3} \cos x_3 \\ \frac{P\cos x_3 + (M + m)g\sin x_3 + mlx_4^2 \sin x_3 \cos x_3}{Ml + ml\sin^2 x_3} \end{bmatrix}$$

To demonstrate the system is in equilibrium at $\dot{z} = 0$, $\theta = 0$, $\dot{\theta} = 0$, and P(t) = 0 we note first that at the given conditions the equations of motion become

$$(M+m)\ddot{z} - ml\ddot{\theta} = 0$$
$$l\ddot{\theta} = \ddot{z}$$

If we plug the second equation back into the first we get

$$(M+m)\ddot{z} - m\ddot{z} = M\ddot{z} = 0$$

Because we know M is not equal to zero, this means \ddot{z} must be equal to zero. Additionally, because $\ddot{z} = l\ddot{\theta}$ and $l \neq 0$ we can also conclude that $\ddot{\theta} = 0$. This means $\dot{x} = 0$ under the given conditions and the system is therefore in equilibrium.

- Part (b)
- Part (c)
- Part (d)
- Part (e)
- Part (f)
- Part (g)

Problem 2

Two 6-sided dice rolls with R_1 and R_2 denoting the outcome of the first and second die, respectively.

Part (a)

 $P(R_1) = P(R_2) = \frac{1}{6}$ for all R_1 and R_2 . Because the outcomes R_1 and R_2 are independent, $P(R_1, R_2) = P(R_1) * P(R_2)$. So

$$P(R_1, R_2) = \frac{1}{36}, \ \forall R_1, R_2$$

Part (b)

The joint probabilities for X and Y are shown in table 1 below

Table 1: Joint Probabilities						
X	Y=1	Y=2	Y=3	Y=4	Y=5	Y=6
1	1/36	2/36	2/36	2/36	2/36	2/36
2	0	1/36	2/36	2/36	2/36	2/36
3	0	0	1/36	2/36	2/36	2/36
4	0	0	0	1/36	2/36	2/36
5	0	0	0	0	1/36	2/36
6	0	0	0	0	0	1/36

Part (c)

The marginal probabilities of X obtained from the sum $\sum_{y} P(X = x, Y = y)$ and the marginal probabilities of Y obtained from the sum $\sum_{x} P(X = x, Y = y)$ are shown below in table 2.

Table 2: Marginal Probabilities

	X	Y
1	11/36	1/36
2	9/36	3/36
3	7/36	5/36
4	5/36	7/36
5	3/36	9/36
6	1/36	11/36

Part (d)

X and Y are not independent. Two variables are considered independent if the realization of one variable does not affect the probability of the other. This is not the case for X and Y. By the definitions of X and Y, the value of Y cannot be less than the value of X, since the maximum of R_1 and R_2 cannot be less than the minimum. So the P(Y=3,X=5)=0, while P(Y=3,X=1)=2/36.

Problem 3

A random variable X has the pdf $p(x) = k(1 - x^4)$ for $-1 \le x \le 1$ and p(x) = 0 elsewhere.

Part (a)

Because $\int_{-\infty}^{\infty} p(x)dx = 1$ we can find k as follows:

$$\int_{-1}^{1} k(1 - x^4) dx = 1$$

$$k \int_{-1}^{1} (1 - x^4) dx =$$

$$k \left[x - \frac{1}{5} x^5 \right]_{-1}^{1} =$$

$$k \left(1 - \frac{1}{5} + 1 - \frac{1}{5} \right) =$$

$$\frac{8k}{5} = 1$$

$$k = \frac{5}{8}$$

Now we can calculate $E[x] = \int_{-\infty}^{\infty} x p(x) dx$ as follows:

$$\int_{-\infty}^{\infty} x p(x) dx = \frac{5}{8} \int_{-1}^{1} x (1 - x^4) dx$$

$$= \frac{5}{8} \int_{-1}^{1} (x - x^5) dx$$

$$= \frac{5}{8} \left[\frac{1}{2} x^2 - \frac{1}{6} x^6 \right]_{-1}^{1}$$

$$= \frac{5}{8} \left(\frac{1}{2} - \frac{1}{6} - \frac{1}{2} + \frac{1}{6} \right)$$

$$= 0$$

Next we find $E[x^2] = \int_{-\infty}^{\infty} x^2 p(x) dx$ as

$$\int_{-\infty}^{\infty} x^2 p(x) dx = \frac{5}{8} \int_{-1}^{1} x^2 (1 - x^4) dx$$

$$= \frac{5}{8} \int_{-1}^{1} (x^2 - x^6) dx$$

$$= \frac{5}{8} \left[\frac{1}{3} x^3 - \frac{1}{7} x^7 \right]_{-1}^{1}$$

$$= \frac{5}{8} \left(\frac{1}{3} - \frac{1}{7} + \frac{1}{3} - \frac{1}{7} \right)$$

$$= \frac{5}{21}$$

Finally we can find $var(x) = E[x^2] - (E[x])^2 = \frac{5}{21} - 0 = \frac{5}{21}$.

Part (b)

The cumulative distribution function is defined as $P_X(\zeta) = \int_{-\infty}^{\zeta} p(x) dx$. So the cdf is:

$$P_X(\zeta) = \int_{-\infty}^{\zeta} p(x)dx$$

$$= \frac{5}{8} \int_{-1}^{\zeta} (1 - x^4) dx$$

$$= \frac{5}{8} \left[x - \frac{1}{5} x^5 \right]_{-1}^{\zeta}$$

$$= \frac{5}{8} \left(\zeta - \frac{1}{5} \zeta^5 + \frac{4}{5} \right)$$

Part (c)

Because the pdf is symmetric about zero, P(|X| < 0.5) is equivalent to P(-0.5 < X < 0.5), which can be found as

$$P(-0.5 < X < 0.5) = P_X(0.5) - P_X(-0.5) = 0.7895$$

Problem 4

Blood alcohol tests on drivers given the conditional probabilities given in table 3:

Table 3: Conditional Probabilities					
P(T A)	A = drunk	A = sober			
T = positive	0.99	0.001			
T = negative	0.01	0.999			

Part (a)

We can find P(A = drunk|T = positive) through a straightforward application of Bayes' rule:

$$P(A = \text{drunk}|T = \text{positive}) = \frac{P(T = \text{positive}|A = \text{drunk}) * P(A = \text{drunk})}{P(T = \text{positive})}$$

Since we aren't given a number for P(T = positive) we can find it as P(T = positive) = P(T = positive|A = drunk)P(A = drunk) + P(T = positive|A = sober)P(A = sober) = 0.99 + 0.001 = 0.991. So the conditional probability is:

$$P(A = \text{drunk}|T = \text{positive}) = \frac{0.99 * 0.2}{0.991} = 0.1998$$

Part (b)

Problem AQ1

Part (a)

Part (b)

Part (c)

Part (d)