

SEQUENCE LISTING

<110> Jones, David HA
Bout, Abraham

<120> Efficient Production of IgA in Recombinant Mammalian Cells

<130> 2578-6077

<150> US 09/549,463
<151> 2000-04-14

<150> US 60/129,452
<151> 1999-04-15

<160> 8

<170> PatentIn version 3.2

<210> 1
<211> 2022
<212> DNA
<213> Artificial

<220>

<223> Genomic DNA encoding heavy chain of anti-EpCAM IgA

<220>
<221> misc_feature
<222> (1)..(3)
<223> Start codon

<220>
<221> misc_feature
<222> (2020)..(2022)
<223> Stop codon

<400> 1

atggcatgcc ctggcttcct gtgggcactt gtgatctcca cctgttttga atttccatg 60

gcccgaggc agctggtgca gtctggggct gaggtgaaga agcctgggtc ctcggtgagg 120

gtctcctgca aggcttctgg aggcacccctc agcagctatg ctatcagctg ggtgcgcacag 180

gccccctggac aagggcgttga gtggatggga gggatcatcc ctatcttgg tacagcaa 240
tacgcacaga agttccaggg cagagtcacg attaccgcgg acgaatccac gagcacagcc 300
tacatggagc tgagcagcct gagatcttag gacacggctg tgtattactg tgcaagagac 360
cggtttcttc actattgggg ccaaggtaacc ctggtcaccg tctcgacagg tgagtgcggc 420
cgctctgtgc tgggttcctc cagtatagag gagaggcagg cacagactgt cctcctgggg 480
acatggcatg agggccgcgt cctcacagtg cattctgtgt tccagcatcc ccgaccagcc 540
ccaaggctt cccgctgagc ctctgcagca cccagccaga tgggaacgtg gtcatgcct 600
gcctggtcca gggcttcttc ccccaggagc cactcagtgt gacctggagc gaaagcggac 660
agggcgtgac cgccagaaac ttcccaccca gccaggatgc ctccggggac ctgtacacca 720
cgagcagcca gctgaccctg ccggccacac agtgccttagc cggcaagtcc gtgacatgcc 780
acgtgaagca ctacacgaat cccagccagg atgtgactgt gccctgccc ggtcagaggg 840
caggctgggg agtggggcgg ggccaccccg tcgtgccctg acactgegcc tgccacccgtg 900
ttccccacag ggagccgccc cttcactcac accagagtgg accgcggggcc gagccccagg 960
aggtggtggt ggacaggcca ggaggggcga ggccggggca tgggaagca tgtgctgacc 1020
agctcaggcc atctctccac tccagttccc tcaactccac ctacccatc tccctcaact 1080
ccacctaccc catctccctc atgctgccac ccccgactgt cactgcaccg accggccctc 1140
gaggacctgc tcttaggttc agaagcgaac ctcacgtca cactgaccgg cctgagagat 1200
gcctcaggtg tcacccatc ctggacgccc tcaagtggga agagcgctgt tcaaggacca 1260
cctgaccgtg acctctgtgg ctgctacagc gtgtccagtg tccgtcggg ctgtgccgag 1320
ccatggacc atgggaagac cttcacttgc actgctgcct accccgagtc caagaccccg 1380
ctaaccgcca ccctctcaaa atccgggtggg tccagaccct gctcggggcc ctgctcagt 1440
ctctggttt caaagcatat tcctggcctg ctcctccct cccaatcctg ggctccagtg 1500
ctcatgccaa gtacagaggg aaactgaggc aggctgaggg gccaggacac agcccggtt 1560

gccaccaga gcagagggc tctctatcc cctgcccagc cccctgacct ggctctac 1620
cctccaggaa acacattcg gcccgggtc cacctgctgc cgccggcgtc ggaggagctg 1680
gccctgaacg agctggtgac gctgacgtgc ctggcacgtg gcttcagccc caaggatgtg 1740
ctggttcgct ggctgcagg gtcacaggag ctgccccgca agaagtacct gacttggca 1800
tcccggcagg agcccgcca gggcaccacc accttcgctg tgaccagcat actgcgcgtg 1860
gcagccgagg actggaagaa gggggacacc ttctcctgca tggtggcca cgaggccctg 1920
ccgctggct tcacacagaa gaccatcgac cgcttggcgg gtaaacccac ccatgtcaat 1980
gtgtctgttg tcatggcggaa ggtggacggc acctgctact ga 2022

<210> 2
<211> 922
<212> DNA
<213> Artificial

<220>
<223> Genomic DNA encoding light chain of anti-EpCAM IgA

<220>
<221> misc_feature
<222> (1)..(3)
<223> Start Codon

<220>
<221> misc_feature
<222> (920)..(922)
<223> Stop Codon

<400> 2
atggcatgcc ctggcttcct gtggcacatt gtgatctcca cctgtcttga atttccatg 60
gctgaaattg agctcactca gtctccactc tccctgcccgtc acaccctgg agagccggcc 120
tccatctcct gcaggtcttag tcagagccctc ctgcatacgta atggatacaa ctatttggat 180
tggtacctgc agaagccagg gcagtcctca cagtcctga tctatttggg ttctaattcgg 240

gcctccgggg tccctgacag gttcagtggc agtggatcg gcacagatt tacactgaaa 300
atcagcagag tggaggctga ggatgtggg gtttattact gcatgcaagc tctacaaact 360
ttcacttcg gccctggac caaggtggag atcaaacgta agtgcactt gcggccgcta 420
ggaagaaaact caaaacatca agatttaaa tacgcttcg ggtctccttg ctataattat 480
ctggataag catgctgtt tctgtctgtc cctaacatgc cctgtgatta tccgcaaaca 540
acacacccaa gggcagaact ttgttactta aacaccatcc tgttgcttc ttcctcagg 600
aactgtggct gcaccatctg tcttcattt cccgccccatct gatgagcagt tgaaatctgg 660
aactgcctct gttgtgtgcc tgctgaataa cttctatccc agagaggcca aagtacagt 720
gaaggtggat aacgcccctcc aatcgggtaa ctcccaggag agtgcacag agcaggacag 780
caaggacagc acctacagcc tcagcagcac cctgacgctg agcaaagcag actacgagaa 840
acacaaagtc tacgcctgcg aagtccacca tcagggcctg agctcgcccg tcacaaagag 900
cttcaacagg ggagagtgtt ag 922

<210> 3
<211> 489
<212> PRT
<213> artificial

<220>
<223> Amino acid sequence anti-EpCAM IgA heavy chain

<220>
<221> MISC_FEATURE
<222> (1)..(21)
<223> leader peptide

<220>
<221> MISC_FEATURE
<222> (22)..(136)
<223> VH Region

<220>
<221> MISC_FEATURE
<222> (137)..(238)
<223> CH1 Region

<220>
<221> MISC_FEATURE
<222> (239)..(359)
<223> CH2 Region

<220>
<221> MISC_FEATURE
<222> (360)..(489)
<223> CH3 Region

<400> 3

Met Ala Cys Pro Gly Phe Leu Trp Ala Leu Val Ile Ser Thr Cys Leu
1 5 10 15

Glu Phe Ser Met Ala Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val
20 25 30

Lys Lys Pro Gly Ser Ser Val Arg Val Ser Cys Lys Ala Ser Gly Gly
35 40 45

Thr Phe Ser Ser Tyr Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln
50 55 60

Gly Leu Glu Trp Met Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn
65 70 75 80

Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser
85 90 95

Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr
100 105 110

Ala Val Tyr Tyr Cys Ala Arg Asp Pro Phe Leu His Tyr Trp Gly Gln
115 120 125

Gly Thr Leu Val Thr Val Ser Thr Ala Ser Pro Thr Ser Pro Lys Val
130 135 140

Phe Pro Leu Ser Leu Cys Ser Thr Gln Pro Asp Gly Asn Val Val Ile

145 150 155 160
Ala Cys Leu Val Gln Gly Phe Phe Pro Gln Glu Pro Leu Ser Val Thr
165 170 175

Trp Ser Glu Ser Gly Gln Gly Val Thr Ala Arg Asn Phe Pro Pro Ser
180 185 190

Gln Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser Ser Gln Leu Thr Leu
195 200 205

Pro Ala Thr Gln Cys Leu Ala Gly Lys Ser Val Thr Cys His Val Lys
210 215 220

His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val Pro Cys Pro Val Pro
225 230 235 240

Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser Pro
245 250 255

Ser Cys Cys His Pro Arg Leu Ser Leu His Arg Pro Ala Leu Glu Asp
260 265 270

Leu Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys Thr Leu Thr Gly Leu
275 280 285

Arg Asp Ala Ser Gly Val Thr Phe Thr Trp Thr Pro Ser Ser Gly Lys
290 295 300

Ser Ala Val Gln Gly Pro Pro Asp Arg Asp Leu Cys Gly Cys Tyr Ser
305 310 315 320

Val Ser Ser Val Leu Ser Gly Cys Ala Glu Pro Trp Asn His Gly Lys
325 330 335

Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys Thr Pro Leu Thr
340 345 350

Ala Thr Leu Ser Lys Ser Gly Asn Thr Phe Arg Pro Glu Val His Leu
355 360 365

Leu Pro Pro Pro Ser Glu Glu Leu Ala Leu Asn Glu Leu Val Thr Leu
370 375 380

Thr Cys Leu Ala Arg Gly Phe Ser Pro Lys Asp Val Leu Val Arg Trp
385 390 395 400

Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys Tyr Leu Thr Trp Ala
405 410 415

Ser Arg Gln Glu Pro Ser Gln Gly Thr Thr Thr Phe Ala Val Thr Ser
420 425 430

Ile Leu Arg Val Ala Ala Glu Asp Trp Lys Lys Gly Asp Thr Phe Ser
435 440 445

Cys Met Val Gly His Glu Ala Leu Pro Leu Ala Phe Thr Gln Lys Thr
450 455 460

Ile Asp Arg Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val
465 470 475 480

Met Ala Glu Val Asp Gly Thr Cys Tyr
485

<210> 4

<211> 239

<212> PRT

<213> Artificial

<220>

<223> amino acid sequence anti-EpCAM IgA light chain

<220>

<221> MISC_FEATURE

<222> (1)..(21)

<223> leader peptide

<220>

<221> MISC_FEATURE

<222> (22)..(132)

<223> VL region

<220>

<221> MISC_FEATURE

<222> (133)..(239)

<223> CL region

<400> 4

Met Ala Cys Pro Gly Phe Leu Trp Ala Leu Val Ile Ser Thr Cys Leu
1 5 10 15

Glu Phe Ser Met Ala Glu Ile Glu Leu Thr Gln Ser Pro Leu Ser Leu
20 25 30

Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln
35 40 45

Ser Leu Leu His Ser Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln
50 55 60

Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg
65 70 75 80

Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp
85 90 95

Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr
100 105 110

Tyr Cys Met Gln Ala Leu Gln Thr Phe Thr Phe Gly Pro Gly Thr Lys
115 120 125

Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
130 135 140

Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
145 150 155 160

Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
165 170 175

Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
180 185 190

Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
195 200 205

Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
210 215 220

Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

<210> 5
<211> 38
<212> DNA
<213> Artificial

<220>
<223> E001 forward primer for amplification of light chain

<400> 5
cctggcgcc caccatggca tgccctggct tcctgtgg 38

<210> 6
<211> 32
<212> DNA
<213> Artificial

<220>
<223> E002 reverse primer for amplification of light chain

<400> 6
ccgggttaac taacactctc ccctgttcaa gc 32

<210> 7
<211> 39
<212> DNA
<213> Artificial

<220>

<223> E003 forward primer for amplification of heavy chain

<400> 7

ggaggatccg ccaccatggc atgcctggc ttccgtgg 39

<210> 8

<211> 29

<212> DNA

<213> Artificial

<220>

<223> P01 reverse primer for amplification of heavy chain

<400> 8

ggaccgctag ctcagtagca ggtgccgac 29