## Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа <u>М3211</u>                         | К работе допущен |
|---------------------------------------------|------------------|
| Студент <u>Низамутдинов Э.Р Сидякин Я.А</u> | Работа выполнена |
| Преподаватель Тимофеева Э.О                 | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №1.02

Изучение скольжения тележки по наклонной плоскости

- 1. Цель работы.
  - 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
  - 2. Определение величины ускорения свободного падения д
- 2. Задачи, решаемые при выполнении работы.
  - 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
  - 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
  - 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
  - 4. Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.
- 3. Объект исследования.

Исследование движение тележки по рельсу с фиксированным и переменным углом наклона

4. Метод экспериментального исследования.

Исследование косвенных величин (ускорения), полученных из многократных прямых измерений.

5. Рабочие формулы и исходные данные.

Второй закон Ньютона, описывающий движение тележки

$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{\mathrm{Tp}},$$

$$\begin{cases} 0y : 0 = N - mg\cos\alpha, \\ 0x : ma = mg\sin\alpha - \mu mg\cos\alpha, \end{cases}$$

При поступательном равноускоренном движении тела вдоль оси Ох зависимость проекции его скорости vx от времени t определяется выражением

$$v_x(t) = v_{0x} + a_x t$$

Зависимость координаты тела x от времени t имеет вид:

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}$$

Выражение для модуля ускорения:

$$a = g(\sin \alpha - \mu)$$

Значение угла наклона рельса к горизонту:

$$sin\alpha = \frac{(h - h_0) - (h' - h'_0)}{x' - x}$$

Среднее арифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i$$

Расчет погрешности, используя коэффициент Стьюдента. Доверительный интервал для измеряемого в работе промежутка времени:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

$$\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t])$$

Относительная погрешность:

$$\varepsilon_t = \frac{\Delta t}{t} \cdot 100\%$$

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N \cdot (N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Погрешности косвенных измерений:

$$\Delta y = \sum_{i=1}^{\infty} \sqrt{\left(\frac{\partial f}{\partial x_i} \Delta x_i\right)^2}$$

6. Измерительные приборы.

| № п/п | Наименование   |             | Тип прибора             | Используемый<br>диапазон | Погрешность<br>прибора |
|-------|----------------|-------------|-------------------------|--------------------------|------------------------|
| 1     | Линейка на     | рельсе      | Измерительный<br>прибор | 0–1.3м                   | 0.005м                 |
| 2     | Линейка на у   | гольнике    | Измерительный<br>прибор | 0-4м                     | 0.0005м                |
| 3     | ПКЦ-3 в режиме | секундомера | Измерительный<br>прибор | 0-100c                   | 0.1c                   |

# 7. Схема установки (перечень схем, которые составляют Приложение 1).



- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

#### Таблица 1.

| > | к, м | х', м | h_0, мм | h o', мм |
|---|------|-------|---------|----------|
|   | 0,22 | 1     | 204     | 204      |

#### Таблица 2.

|    | Измеряемые величины |        |        | Pacc                         | читанные величины |                        |       |
|----|---------------------|--------|--------|------------------------------|-------------------|------------------------|-------|
| Nº | х_1, м              | х_2, м | t_1, c | t_2, c x_2 - x_1, m (t_2^2 - |                   | (t_2^2 - t_1^2)/2, c^2 |       |
| 1  | 0,15                | 0,40   | 1,40   | 2,70                         | 0,25              |                        | 2,665 |
| 2  | 0,15                | 0,50   | 1,60   | 3,20                         | 0,35              |                        | 3,84  |
| 3  | 0,15                | 0,70   | 1,50   | 3,70                         | 0,55              |                        | 5,72  |
| 4  | 0,15                | 0,90   | 1,50   | 4,20                         | 0,75              |                        | 7,695 |
| 5  | 0,15                | 1,10   | 1,30   | 4,50                         | 0,95              |                        | 9,28  |

#### Найдем погрешности:

$$\Delta Y = \sqrt{(-\Delta x_1)^2 + (\Delta x_2)^2} = 0,007$$
$$\Delta Z = \sqrt{(t_1 \Delta t_1)^2 + (-t_2 \Delta t_2)^2}$$

Таблица 3.

| t_1, c | t_2, c | Погрешность Z |
|--------|--------|---------------|
| 1,5    | 2,7    | 0,304138127   |
| 1,6    | 3,2    | 0,357770876   |
| 1,4    | 3,6    | 0,399249296   |
| 1,4    | 4,1    | 0,445982062   |
| 1,4    | 4,5    | 0,468401537   |

Тогда ускорение посчитаем по МНК: a = 0.0987м/с^2

CKO:  $\sigma a = 0.0035$ 

Таблица 4.

| N_пл | h, мм | h', мм | Nº | t_1, c | t_2, c |
|------|-------|--------|----|--------|--------|
|      |       |        | 1  | 1,5    | 4,6    |
|      |       |        | 2  | 1,4    | 4,5    |
| 1    | 225   | 215    | 3  | 1,3    | 4,5    |
|      |       |        | 4  | 1,3    | 4,4    |
|      |       |        | 5  | 1,6    | 4,8    |
|      |       |        | 1  | 0,9    | 3,1    |
|      |       |        | 2  | 0,9    | 3,2    |
| 2    | 235   | 215    | 3  | 0,9    | 3,1    |
|      |       |        | 4  | 1,1    | 3,3    |
|      |       |        | 5  | 0,9    | 3,1    |
|      |       |        | 1  | 0,7    | 2,6    |
|      |       |        | 2  | 0,7    | 2,6    |
| 3    | 245   | 215    | 3  | 0,9    | 2,7    |
|      |       |        | 4  | 0,9    | 2,7    |
|      |       |        | 5  | 0,7    | 2,6    |
|      |       |        | 1  | 0,7    | 2,3    |
|      |       |        | 2  | 0,6    | 2,2    |
| 4    | 255   | 215    | 3  | 0,6    | 2,2    |
|      |       |        | 4  | 0,6    | 2,2    |
|      |       |        | 5  | 0,6    | 2,2    |
|      |       |        | 1  | 0,6    | 2      |
|      |       |        | 2  | 0,6    | 2      |
| 5    | 265   | 215    | 3  | 0,6    | 2      |
|      |       |        | 4  | 0,6    | 2      |
|      |       |        | 5  | 0,6    | 2      |

 $N_{\Pi\Pi}$  - количество пластин

h - высота на координате x=0.22 м

 $h^\prime$  - высота на координате  $x^\prime=1.00$  м

#### Таблица 5.

|                                   |             | <t_1> +- \delta</t_1> | <t_2> +- \delta</t_2> | <a> +- \delta</a> |  |
|-----------------------------------|-------------|-----------------------|-----------------------|-------------------|--|
| N пл                              | sin ∖alpha  | t_1                   | t_2                   | а                 |  |
|                                   |             |                       |                       | 0,083 +-          |  |
| 1                                 | 0,012820513 | 1,42+-0.162           | 4,56+-0.188           | 0.007             |  |
|                                   |             |                       |                       | 0,171+-           |  |
| 2                                 | 0,025641026 | 0,94+-0.111           | 3,16+-0.111           | 0.013             |  |
|                                   |             |                       |                       | 0,253+-           |  |
| 3                                 | 0,038461538 | 0,9+-0.219            | 2,64+-0.068           | 0.022             |  |
|                                   |             |                       |                       | 0,361+-           |  |
| 4                                 | 0,051282051 | 0,78+-0.055           | 2,22+-0.055           | 0.022             |  |
|                                   |             |                       |                       | 0,428+-           |  |
| 5                                 | 0,064102564 | 0,6+-0                | 2+-0                  | 0.003             |  |
| N пл - количество пластин         |             |                       |                       |                   |  |
| $ = 1/ n \sum_{i=1}^{n} t_i, 2_i$ |             |                       |                       |                   |  |

$$B = g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin^2 \alpha_i - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i\right)^2} = 6,869$$

$$A = \frac{1}{N} \left( \sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right) = -0.004$$

СКО для ускорения свободного падения:  $\sigma g = 0.234$ 

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Для задания 1.

Рассчитаем абсолютную погрешность коэффициента а для доверительной вероятности  $\alpha$  = 0, 90 (t0.90,5  $\approx$  2):

$$\Delta a = 2\sigma a = 0.007$$

Относительная погрешность ускорения:

$$\varepsilon a = \Delta a/a \cdot 100\% = 3.56\%$$

#### Для задания 2.

### Вычислим погрешность для t1, t2

| погрешность<br>t_1 | погрешность<br>t_2 |
|--------------------|--------------------|
| 0,162100463        | 0,188548774        |
| 0,1112             | 0,1112             |
| 0,219602404        | 0,068095815        |
| 0,0556             | 0,0556             |
| 0                  | 0                  |

$$\Delta a = \langle a \rangle \sqrt{\frac{(\Delta x_2)^2 + (\Delta x_1)^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + ((\langle t_2 \rangle) \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

# Вычислим погрешность для ускорения

| погрешность |
|-------------|
| а           |
| 0,007912061 |
| 0,01389368  |
| 0,022090147 |
| 0,022115771 |
| 0,003885202 |

Рассчитаем СКО для ускорения свободного падения

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{D(N-2)}} = 0,234$$

Посчитаем абсолютную погрешность д для доверительной вероятности α = 0.90

$$\Delta g = 2\sigma g = 0, 469$$

Рассчитаем относительную погрешность д:

$$\varepsilon g = \Delta g/g \cdot 100\% = 6,841\%$$

Ускорение свободного падения в Санкт-Петербурге: 9,8195. Абсолютное отклонение:  $\Delta g = |g_{exp} - g_{table}| = 2,950$ 

Относительное отклонение: 
$$\varepsilon_g = \frac{\Delta g}{g_{table}} = 0,301$$
 (30,1%)  $\Delta g = 0,469 < |g_{exp} - g_{table}|_{=2,9507}$ 

# 10. Графики (перечень графиков, которые составляют Приложение 2).





#### 11. Окончательные результаты.

Доверительный интервал для значения ускорения при одной пластине:

$$a = (0.0987 \pm 0.007) \text{ M/c}^2$$
  
 $\epsilon a = 3.56\% \text{ } \alpha = 0.9$ 

Доверительный интервал значения ускорения свободного падения:

$$g = (6.86 \pm 0.469) \text{ M/c}^2$$
  
 $\epsilon g = 6.841\% \text{ } \alpha = 0.9$ 

#### 12. Выводы и анализ результатов работы.

По собранным данным была построена аппроксимирующая прямая. Угловой коэффициент был получен по методу наименьших квадратов. При построении зависимости с таким угловым м/с^2 коэффициентом отмечалось сходство экспериментально и аналитически построенных графиков соответственно, таким образом гипотеза о равноускоренности движения тележки подтверждается в рамках эксперимента. Относительная погрешность полученного значения составляет 6.81%, что является показателем в пределах нормы. Экспериментально полученные данные позволили рассчитать значения ускорения свободного падения  $g = (6 \text{IO} 86 \pm 0.469)$ . м/с^2.

