Static Single Assignment Form (SSA)

Unnikrishan C

August 27, 2019

SSA Form

- A new intermediate representation.
- Incorporates def-use information.
- Every variable has exactly one definition in the program text (i.e in SSA IR).
 - This does not mean that there are no loops.
- Some compiler optimizations perform better on SSA forms.

SSA Example - program1

SS form- Join nodes and ϕ function

- A special merge operator, ϕ is used for selection of values in join nodes.
- The SSA form is augmented with use-def and def-use chains. to facilitate design of faster algorithms.
- Translation from SSA to machine code introduces copy operations, which may introduce some inefficiency (will be covered in coming classes).

SSA Example: program1 in non SSA form

SSA Example - program2

```
{ Read A; LSR = 1; RSR = A;
SR = (LSR + RSR)/2;
Repeat {
   T = SR*SR;
   if (T>A) RSR = SR;
   else if (T<A) LSR = SR;
        else { LSR = SR; RSR = SR}
   SR = (LSR + RSR)/2;
Until (LSR ≠ RSR);
Print SR;
```

SSA Example: program2 in non SSA form

Just workout this example yoursel

Dominance Frontier

- If two **non-null** paths from **nodes** X and Y each having a definition of v converge at a node P, then P contains a trivial ϕ -function of the form $V_p = \phi(V_x , V_y)$, where V_x and V_y are values coming from nodes X and Y.
- It would be wasteful to place ϕ -functions in all join nodes.
- ullet It is possible to locate the nodes where ϕ -functions are needed.
- This is captured by the **dominance frontier**.

Join Set and ϕ nodes

Given S: set of flow graph nodes, the set JOIN(S) is

- the set of all nodes N, such that there are at-least two non-null paths in the flow graph that start at two distinct nodes in S and converge at N.
 - The paths considered should not have any other common nodes apart from N.
- The **iterated join set**, $JOIN^+(S)$ is
 - $JOIN^{(1)}(S) = JOIN(S)$
 - $JOIN^{(i+1)}(S) = JOIN(S \cup JOIN^{(i)}(S))$
- If S is the set of assignment nodes for a variable v , then $JOIN^+(S)$ is precisely the set of flow graph nodes, where ϕ -functions are needed for v.
- $JOIN^+(S)$ is termed the dominance frontier (DF(S))

JOIN⁺ Example-one

- Variable i: $JOIN^+\{B1, B2\} = \{B2\}$ // i modified (assigned) in B1 and B2.
- Variable n: $JOIN^+\{B1, B5, B6\} = \{B2, B7\}$ // n modified (by user-input in B1), (assigned in B5, B6).

JOIN⁺ Example-two

Dominator and Dominance Frontier

- Given two nodes x and y in a flow graph, x dominates y (x ∈ dom(y)), if x appears in all paths from the Start node to y.
- The node x strictly dominates y , if x dominates y and $x \neq y$.
- x is the **immediate** dominator of y (denoted idom(y)), if x is the closest strict dominator of y.
- A dominator tree shows all the immediate dominator relationships.
- The dominance frontier of a node x, DF (x), is the set of all nodes y such that
 - \bullet x dominates a predecessor of y (p \in preds(y) and x \in dom(p))
 - but x does not strictly dominate y (x $\not\in$ dom(y) \ {y })
- See informal definition in next slide if got confused.

Dominance Frontier - Informal definiton

- Informally, DF (x) contains the first nodes reachable from x that x does not dominate, on each path leaving x.
- Strictly In example 1 (next slide),
 - DF (B1) = ϕ since B1 dominates all nodes in the flow graph except Start and B1, and there is no path from B1 to Start or B1.
 - In the same example, DF (B2) = {B2}, since B2 dominates all nodes except Start, B1, and B2, and there is a path from B2 to B2 (via the back edge).
 - DF (B3)={B2}, B2 is the first node reachable from B3, which it does not dominate.
 - Continuing in the same example, B5, B6, and B7 do not dominate any node and the first reachable nodes are B7, B7, and B2 (respectively).
 Therefore, DF (B5) = DF (B6) = {B7} and DF (B7) = {B2}
 - In example 2 (second next slide), B5 dominates B6 and B7, but not B8; B8 is the first reachable node from B5 that B5 does not dominate; therefore, DF (B5) = {B8}

DF-Example1

DF-Example2

