ASSIGNMENT 11 - Q1

Problem -1

The 3-D design space of a steel bridge structure is 6 m long, 2 m tall, and 1 m wide, as shown below. Suppose the structure is fixed on the bottom two edges and is applied a uniform pressure load on the top surface. Perform topology optimization of the bridge using the given design space to achieve 80% weight reduction. Find out the effect of changing the load value.

Geometry

Mesh

Boundary Conditions

Optimization Region

Mass Reduction

Final Geometry

Comments:

Topology optimization (TO) is a mathematical method that optimizes material layout within a given design space, for a given set of loads, boundary conditions and constraints with the goal of maximizing the performance of the system.

After applying pressure loads (250, 500, 2000) MPa to study its effect on the geometry. The Topology Optimization generates the same geometry for all the applied load. Because it removes part of the geometry that doesn't been affect by load

ASSIGNMENT 11 - Q2

Problem -2

Optimize the stiffened aluminum panel design with clamped edges as shown below. In the initial design, the 100 in. \times 100 in. panel has a thickness of 0.5 in. The stiffeners are each 100 in. long, 5 in. tall, and 0.25 in. thick, and divide the panel evenly into eight blocks of the same area. The design variables, that is, the panel thickness t, the longitudinal stiffener thickness tlong, and the lateral stiffener thickness tlat, have the following range of variations: 0.4 in. < t < 0.6 in., 0.2 in. < tlong < 0.3 in., and 0.2 in. < tlat < 0.3 in. The optimization aims to minimize the panel's weight subject to the constraint of the panel's fundamental frequency fbase ≥ 130 Hz.

Geometry

Mesh

Boundary Conditions

Result:

Fundamental Freq. = 41.31Hz

Result:

Parametric Table

Table of Schematic F2: Optimization								
	A	В	С	D				
1	■ Input Parameters							
2	Name	Lower Bound	Upper Bound					
3	P1 - Thickness Thickness (in)	0.4	0.6					
4	P2 - Thickness 2 Thickness (in)	0.2	0.3					
5	P3 - Thickness 3 Thickness (in)	0.2	0.3					
6	■ Parameter Relationships							
7	Name	Left Expression	Operator	Right Expression				
*	New Parameter Relationship	New Expression	<=	New Expression				
60000	New Parameter Relationship	New Expression	K=	New Expression				
15	(lene	Left Expression	Operator	Right Expression				

Design Output

rable of Schematic F2: Optimization								
	A	В	C	D	E	F	G	
1	Name	Parameter	Objective		Constraint			
2	Nalle		Туре	Target	Туре	Lower Bound	Upper Bound	
3	Maximize P4; P4 >= 130 Hz	P4 - Total Deformation Reported Frequency	Maximize T		Values >= Lower Bound ▼	130		
4	Maximize P5	P5 - Force Reaction Maximum Z Axis	Maximize T		No Constraint			
*		Select a Parameter ▼						

Comment:

The maximum Freq. is 44 Hz while it must be more than 130 Hz. So, we must increase the parametric range to achieve the design consideration.

₁e of	e of Schematic F2: Optimization						
	Α	В	С	D	Е	F	
1	Name 🔽	P1 - Thickness Thickness (in)	P2 - Thickness 2 Thickness (in)	P3 - Thickness 3 Thickness (in)	P4 - Total Deformation Reported Freque	P5 - Force Reaction Maximum Z Axis (lbf)	
2	27	0.6	0.3	0.3	43.964	-660.48	
3	25	0.4	0.3	0.3	43.419	-460.33	
4	18	0.6	0.3	0.25	43.335	-657.98	
5	26	0.5	0.3	0.3	43.319	-560.41	
6	24	0.6	0.25	0.3	42.77	-652.97	
7	16	0.4	0.3	0.25	42.71	-457.83	
8	17	0.5	0.3	0.25	42.654	-557.9	
9	9	0.6	0.3	0.2	42.645	-655.48	
10	15	0.6	0.25	0.25	42.103	-650.47	
11	23	0.5	0.25	0.3	42.021	-552.9	
12	22	0.4	0.25	0.3	42	-452.83	
13	7	0.4	0.3	0.2	41.945	-455.33	
14	8	0.5	0.3	0.2	41.931	-555.4	
15	21	0.6	0.2	0.3	41.438	-645.47	
16	6	0.6	0.25	0.2	41.37	-647.97	
17	14 DP 0	0.5	0.25	0.25	41.31	-550.4	
18	13	0.4	0.25	0.25	41.235	-450.33	
19	12	0.6	0.2	0.25	40.726	-642.97	
20	20	0.5	0.2	0.3	40.575	-545.4	
21	5	0.5	0.25	0.2	40.536	-547.9	
22	19	0.4	0.2	0.3	40.416	-445.32	
23	4	0.4	0.25	0.2	40.407	-447.82	
24	3	0.6	0.2	0.2	39.944	-640.46	
25	11	0.5	0.2	0.25	39.81	-542.89	
26	10	0.4	0.2	0.25	39.584	-442.82	
27	2	0.5	0.2	0.2	38.977	-540.39	
8	1	0.4	0.2	0.2	38.682	-440.32	
	1000	0.4	0.2	0,2	38.682	-440.32	
27	2	0.5	0.2	0.2	38.977	-540.39	
26	10	0.4	0.2	0,25	39,584	-442.82	
25				0.25			
		0.6			39,944	€40.40	
					40'40')		