预测宣传册需求

第1步:理解业务和数据

解释下需要作出的关键决策。(限 500 字以内)

关键决策:

请回答以下问题

1. 需要作出什么样的决策? 需要做出的关键决策是:我们是否应该向新增的 250 名客户寄送产品目录册。

2. 作出这些决策需要获取哪些数据?

作出这个决策,我们需要知道这 250 个新客户预期能够带来多大的利润。而如果需要知道这个信息,我们就需要知道这 250 个新客户预期能够带来多大的销量,通过销量来计算利润。在我们进行分析的时候,这个销量是不知道的,因此这是一个预测问题,我们需要采用预测分析方法来获得预期销量。根据课程中介绍的方法图,这个预测问题属于有丰富数据的数值预测问题,因此在后面的分析中将采用线性回归模型。而项目已经准备了整洁的数据,因此可以跳过 CRISP-DM 的数据准备步骤,直接开始分析和建模。需要的数据有:

数据名称	数据来源	进一步解释
Avg Sale Amount	p3-customers.xlsx	平均销售额,为用于建模的目标变量
Responded to Last		是否相应过上一次的产品宣传目录,需要进一步建立虚拟变
Catalog	p3-customers.xlsx	量
Avg Num Products		
Purchased	p3-customers.xlsx	平均产品购买数量
Customer Segment	p3-customers.xlsx	客户分类, 需要进一步建立虚拟变量
# Years as Customer	p3-customers.xlsx	多少年的客户
	р3-	
Customer Segment	mailinglist.xlsx	客户分类, 需要进一步建立虚拟变量
Avg Num Products	p3-	
Purchased	mailinglist.xlsx	平均产品购买数量
	р3-	
# Years as Customer	mailinglist.xlsx	多少年的客户
	р3-	
Score_Yes	mailinglist.xlsx	客户决定购买产品的概率
平均毛利率 50%	项目背景提供	平均毛利率信息
产品目录册成本 6.5 美元	项目背景提供	印刷和寄送每本产品目录册的成本

第2步:分析、建模和验证

描述下你是如何设置线性回归模型的,使用了哪些变量,原因是什么,以及模型的结果。建议提供可视化图表(限 500 字以内)。

重要事项: 使用 p1-customers.xlsx 训练你的线性模型。

至少回答以下问题:

1. 你是如何在你的模型中选择<u>预测变量(请参阅补充文本)</u>的?原因是什么?你必须解释你选择的连续预测变量与目标变量有线性关系。请参阅<u>这节课</u>来探索你的数据,并使用散点图寻找线性关系。你必须在答案中包含散点图。

首先,我对数据进行了全面的观察,弄清楚给定的数据集中都有哪些字段,每个字段的含义分别是什么,最终我选择了这几个字段作为预测变量: Customer Segment,

Responded to Last Catalog,Avg Num Products Purchased,Years as Customer。这几个变量中,只有 Avg Num Products Purchased 和 Years as Customer 是数值变量,其他的两个是分类变量。我们需要通过相关性分析逐一评估和筛选这些变量,首先来看 Avg Num Products Purchased:

回归统计				
Multiple R	0.855754217			
R Square	0. 73231528			
Adjusted R				
Square	0.732202476			
标准误差	176. 0070633			
观测值	2375			

	Coefficients	标准误差	t Stat	P-value
				1.75315E-
Intercept	44. 01516317	5. 704322669	7.71610684	14

从散点图和相关性分析上可以看出 Avg Num Products Purchased 与目标变量有较强相关性, 其 R 平方系数为 0.73, 系数估计值的 p 值都小于 0.05, 具有统计显著性。

下面再来分析#Years as Customer

回归统计	
Multiple R	0. 029781864
R Square	0. 000886959
Adjusted R Square	0. 000465926
标准误差	340. 0365645
观测值	2375

	${\it Coefficients}$	标准误差	t Stat	P-value
Intercept	380. 0388359	15. 28292813	24. 86688628	1. 6908E-121
X Variable				
1	4. 384997179	3. 021175081	1. 451421073	0. 146794828

#Years as Customer 与目标变量不具有很显著的相关性,因为 R 平方系数为 0.00088,变量的 p 值 0.15,远大于 0.05,不具备统计显著性,因此排除掉。

回归统计				
Multiple R	0.838073244			
R Square	0.702366762			
Adjusted R				
Square	0.70199017			
标准误差	185. 6701605			
观测值	2375			

	${\it Coefficients}$	标准误差	t Stat	P-value
Intercept	682. 6789474	8. 353695455	81. 7217902	0
X Variable			_	
1	-525. 3174221	10.0447704	52. 29760376	0
X Variable				1.2112E-
2	391. 4805372	15. 7315673	24. 88503082	121
X Variable			_	3.5029E-
3	-286. 346374	11. 37206197	25. 17981126	124

客户分类和目标变量具有较强相关性,其 R 平方系数为 0.70 且 p 值小于 0.05,具有统计显著性。

	!统计
	红 り
Multiple R	0. 199358226
R Square	0. 039743702
Adjusted R	
Square	0. 039339043
标准误差	333. 3587723
观测值	2375

	Coefficients	标准误差	t Stat	P-value
Intercept	418.6566924	7. 100780582	58. 95924927	0
X Variable			_	1.0296E-
1	-262. 2583298	26. 46304679	9. 910360355	22

R方系数只有 0.04,模型不具备可解释性,所以 Responded to Last Catalog 要排除掉。

2. 解释为何你认为你的线性模型是很好的模型。必须使用你的回归模型产生的统计学结果证明你的推理过程。对于你所选择的每个变量,请使用你的模型产生的 p 值和 R 平方值证明每个变量为何与你的模型很好地拟合。

从上面的分析可以看出,我们最后要保留的预测变量为 Avg Num Products Purchased,Customer Segment,而其他的变量要排除掉。利用这里的两个预测变量建立多元线性回归模型,并对其进行分析得到如下结果:

回归统计			
Multiple R	0. 914810204		
R Square	0.836877709		
Adjusted R	0.836602397		

137. 4832081

观测值 2375

	${\it Coefficients}$	标准误差	t Stat	P-value
				1. 1227E-
Intercept	303. 4634713	10. 57571483	28. 69436972	155
X Variable				
1	66. 97620492	1. 515040358	44. 20753848	0
X Variable			_	1.0503E-
2	-245. 4177445	9. 767775616	25. 12524388	123
X Variable				2.5804E-
3	281.8387649	11. 90985741	23.66432739	111
X Variable			_	6. 34584E-
4	-149. 3557219	8. 972754792	16. 64547014	59

从上面两张表可以看出,我得到的多元线性回归模型得到的调整的 R 平方值为 0.84,且 对于每个系数估计值,得到的 P 值都很小,小于 0.05,具有统计显著性,意味着得到的结果不大可能是偶然发生的。

3. 根据提供的数据,最佳线性回归方程是什么?每个系数小数点后最多保留两位(例如 1.28)

根据提供的数据,最佳线性回归方程为:

Y= 303.46 + 66.98 * Avg_Num_Products_Purchased – 245.42 (If Type: Store Mailing List) + 281.84 (If Type: Loyalty Club and Credit Card) – 149.36 (If Type: Loyalty Club) + 0 (If Type: Credit Card Only)

第3步: 演示/可视化:

根据你的模型结果给出建议。(限 500 字以内)

至少回答以下问题:

- 1. 你的建议是什么?公司应该向这 250 个客户发送宣传册吗? 我的建议是公司应该向这 250 个客户发送宣传册。
- **2.** 你是如何得出你的建议的? (请解释你的推理流程,以便审核人员能够根据你的流程向你 提供反馈)

首先,我使用上面得到的多元线性回归模型,对 250 个新客户进行了计算,算出每个人预计购买的销售额,然后在此基础上,我进一步计算得到预计的利润,方法是用预计销量乘

以毛利率 50%, 然后减去成本 6.5 美元。最后, 我将所有的利润加起来得到预计的总利润, 超过 1 万美元, 因此我建议应该寄送产品宣传册给 250 个新客户。

3. 新的宣传册带来的利润预计是多少? (假设向这 **250** 个客户发送了宣传册) 新的宣传册带来的利润预计 21987. 96 美元。