	•	Not	e
		Grup	pe A
Name Vorname		I	II
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	1		
	$\left \begin{array}{c}2\end{array}\right $		
Unterschrift der Kandidatin/des Kandidaten	3		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik	$oxed{4}$		
Diplomvorprüfung HÖHERE MATHEMATIK II	5		
Analysis 1 für Physiker, Prof. Dr. H. Spohn	6		
5. September 2005, 16:30 – 18:00 Uhr			
Hörsaal: Platz:	7		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 9 Aufgaben	8		
Bearbeitungszeit: 90 min. Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter	9		
Nur von der Aufsicht auszufüllen:			
Hörsaal verlassen von bis	\sum		
Vorzeitig abgegeben um	_[
Besondere Bemerkungen:			
	I	 Erstkorrel	 ctur

II

Au	fgabe 1.				[ca. 6 Punkte]		
(a) Sei $(x_n)_{n\in\mathbb{N}}$ eine reellwertige monotone Folge. Entscheiden Sie, ob die folgenden Aussagen zutreffen:							
		richtig	falsch				
				(x_n) b	esitzt mindestens einen Häufungswert in \mathbb{R} .		
				Falls d	lie Folge (x_n) beschränkt ist, besitzt sie einen Grenzwert.		
				Jeder	Jeder reelle Grenzwert von (x_n) ist zugleich ein Häufungswert.		
				Ist (x_i)	(n) unbeschränkt, so konvergiert $(\frac{1}{x_n})$ gegen 0.		
(b)	(b) Sei $f:[0,1] \to \mathbb{R}$ eine differenzierbare Funktion mit $f(0)=f(1)=0$. Entscheiden Sie, ob die folgenden Aussagen zutreffen:						
			richtig	falsch			
					f ist beschränkt.		
					f' ist beschränkt.		
					Es gibt einen Punkt $x_0 \in (0,1)$ mit $f(x_0) = 0$.		
					Es gibt einen Punkt $x_0 \in (0,1)$ mit $f'(x_0) = 0$.		
(c)	(c) Sei (f_n) eine Folge differenzierbarer Funktionen $f_n:[a,b]\to\mathbb{R}$ mit $\lim_{n\to\infty}f_n(x)=f(x)$ für $x\in[a,b]$, und sei $x_0\in[a,b]$. Entscheiden Sie, ob die folgenden Aussagen zutreffen:						
	richtig	falsch					
			Wenn	$ f_n(x) <$	$c \in \mathbb{R}$ für alle $x \in [a,b], n \in \mathbb{N}$, so ist $f:[a,b] \to \mathbb{R}$ stetig.		
			Wenn	$ f_n(x) <$	$c \in \mathbb{R}$ für alle $x \in [a,b], n \in \mathbb{N}$, so ist $f:[a,b] \to \mathbb{R}$ beschränkt.		
			Wenn	$\sup_{x \in [a,b]} f_n $	$f_n(x) - f(x) \to 0$, so ist $\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x)$.		
			Wenn	$\sup_{x \in [a,b]} f_n $	$f_n(x) - f(x) \to 0$, so ist $\lim_{n \to \infty} \lim_{x \to x_0} f'_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f'_n(x)$.		

Hinweis: Jede Zeile wird mit höchstens einem halben Punkt bewertet.

Aufgabe 2	Konvergenz	(Multiple	Choice)
Auigabe 2.	Konvergenz	(Muniple	Choice

[ca. 5 Punkte]

(a) Welchen Wert besitzt die folgende Reihe?

$$\sum_{n=1}^{\infty} \left(\frac{1}{3^n} - \frac{(-1)^n}{2^n} \right) \qquad \qquad \Box \quad \frac{5}{4} \qquad \Box \quad \frac{7}{8} \qquad \Box \quad \frac{5}{6} \qquad \Box \quad \frac{11}{12} \qquad \Box \quad \frac{13}{6}$$

$$\Box \frac{5}{4}$$

$$\supset \frac{7}{8}$$

$$\frac{5}{6}$$

$$\frac{11}{12}$$

$$\Box \frac{13}{6}$$

(b) Wo liegt der Grenzwert der Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{(1+\frac{1}{n})^n} ?$

$$\square = -\infty$$

$$\square = -\infty \qquad \square \in (-\infty, 0) \qquad \square = 0 \qquad \square \in (0, \infty) \qquad \square = +\infty$$

$$\Box = 0$$

$$\square \in (0, \infty)$$

$$\Box = +\infty$$

(c) Wie groß ist der Konvergenzradius der folgenden Potenzreihe?

$$\sum_{n=0}^{\infty} \sqrt{n}^{\sqrt{n}} x^n$$

(d) Für welche $z \in \mathbb{C}$ konvergiert die folgende Reihe absolut? (Mehrere Antworten können zutreffen.)

$$\sum_{n=0}^{\infty} \frac{z^{n^2}}{2^n} \qquad \square \quad z=2i \qquad \square \quad z=1+i \qquad \square \quad z=1 \qquad \square \quad z=-i \qquad \square \quad z=-\frac{1}{2}$$

$$\Box \quad z = 2i$$

$$\Box \quad z = 1 + i$$

$$\Box$$
 $z=1$

$$\Box$$
 $z = -c$

$$\exists z = -rac{1}{2}$$

(e) Durch welchen Wert ist die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{\cos^2 x - 1}{x^2}$ bei x = 0 stetig fortsetzbar?

$$\Box$$
 nicht stetig fortsetzbar \Box $\frac{1}{2}$ \Box 2 \Box 0

$$\Box \frac{1}{2}$$

$$\Box$$
 0

Aufgabe 3. HDI [ca. 3 Punkte]

Definieren Sie den Begriff Stammfunktion und formulieren Sie den Fundamentalsatz (Hauptsatz) der Differential- und Integralrechnung aus der Vorlesung.

Aufgabe 4. Konvexität [ca. 4 Punkte]

 $\mathit{Zur\ Erinnerung}$: Die Funktion $f:\mathbb{R}\to\mathbb{R}$ heißt konvex, wenn für alle $\alpha\in[0,1]$ und für alle $x,y\in\mathbb{R}$ gilt

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y).$$

Zeigen Sie:

Gilt für die differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$, dass ihr Graph nie unterhalb ihrer Tangenten liegt, so ist f konvex, in Formeln:

$$\forall a, b \in \mathbb{R} : f(b) \ge f(a) + (b-a)f'(a) \implies f \text{ ist konvex.}$$

Hinweis: Setzen Sie $a = (1 - \alpha)x + \alpha y$.

Aufgabe 5. Taylorreihe

[ca. 5 Punkte]

Gegeben sei die Funktion $f(x) = \frac{1}{1+x^2}$.

(a) Wie lauten die Koeffizienten a_n der Taylorreihe von f mit Entwicklungspunkt $x_0 = 0$?

 \Box $a_n = (-1)^n$ für $n \in \mathbb{N}_0$

$$\qquad \qquad \Box \quad a_n = \frac{i^n + (-i)^n}{2} \text{ für } n \in \mathbb{N}_0$$

$$\Box \quad a_n = \frac{1 + (-1)^n}{2n} \text{ für } n \in \mathbb{N}_0$$

- $\Box \quad a_n = \frac{i^n i^{-n}}{2} \text{ für } n \in \mathbb{N}_0$
- (b) Wie groß ist der Konvergenzradius der Reihe $\sum_{n=0}^{\infty}a_nx^n$ mit a_n aus Teilaufgabe a)?

 \Box 0

 $\Box \frac{1}{2} \qquad \Box \qquad 1 \qquad \Box \qquad e$

(c) Wie ergeben sich die Koeffizienten b_n der Taylorreihe $\arctan(x) = \sum_{n=0}^{\infty} b_n x^n$ aus den Koeffizienten a_n aus Teilaufgabe a)?

 \Box $b_n = a_n$

$$\square \quad b_0=0, \ b_n=a_{n-1} \text{ für } n\in \mathbb{N}$$

 $\Box \quad b_n = n \, a_n \text{ für } n \in \mathbb{N}_0$

$$\Box \quad b_0 = 0, \ b_n = \frac{a_{n-1}}{n} \text{ für } n \in \mathbb{N}$$

$$\square \quad b_0=0, \ b_n=\frac{a_{n-1}}{n-1} \text{ für } n\in \mathbb{N}$$

$$\Box \quad b_n = \frac{a_{n+1}}{n+1} \text{ für } n \in \mathbb{N}_0$$

Aufgabe 6. Integration

[ca. 6 Punkte]

Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz und bestimmen Sie gegebenenfalls deren Wert.

- (a) $\int_{-1}^{0} \frac{dx}{\sqrt[3]{x+1}}$
- ☐ divergent
- \Box 1 \Box $\frac{3}{2}$ \Box $\frac{4}{3}$

(b) $\int_0^1 dx \, \log x$

- ☐ divergent
- \Box -1 \Box -2 \Box $\frac{1}{2}$

- (c) $\int_0^\infty \frac{dx}{\sqrt{\cosh x 1}}$
- ☐ divergent
- \Box 1 \Box $\frac{1}{2}$ \Box $\frac{3}{2}$

Aufgabe 7. Supremum einer Menge

[ca. 3 Punkte]

Seien $A, B \subseteq \mathbb{R}$ nichtleer und nach oben beschränkt, und sei $A+B=\{a+b \mid a\in A, b\in B\}$. Beweisen Sie die Ihnen aus den Übungen bekannte Tatsache, dass

$$\sup (A+B) = \sup A + \sup B.$$

Aufgabe 8. Inhomogenes Differentialgleichungssystem

[ca. 4 Punkte]

Sei $x: \mathbb{R} \to \mathbb{R}^2$ die Lösung des inhomogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t) + b(t), \quad \text{wobei} \quad A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{und} \quad b(t) = \begin{pmatrix} e^{-t} \\ 0 \\ 0 \end{pmatrix}.$$

(a) Berechnen Sie den Propagator e^{tA} . Wie lautet er bei t=1 ?

$$\Box \begin{pmatrix} e & 0 & 2e \\ 0 & 1 & 0 \\ 0 & 0 & e \end{pmatrix} \quad \Box \begin{pmatrix} e & 0 & e \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \Box \begin{pmatrix} e & 0 & 2e \\ 0 & e & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \Box \begin{pmatrix} 1 & 0 & 2e \\ e & 0 & 0 \\ 0 & 0 & e \end{pmatrix}$$

(b) Berechnen Sie die erste Komponente von x(t) zur Zeit t=1 unter der Anfangsbedingung x(0)=(0,0,0) (benutzen Sie die Formel $x(t)=e^{tA}x(0)+\int_0^t ds\ e^{(t-s)A}b(s)$).

$$\Box \quad \frac{1}{2}\left(2e+\frac{1}{e}\right) \qquad \Box \quad \frac{1}{2}\left(e-\frac{1}{e}\right) \qquad \Box \quad \frac{1}{2}\left(e-\frac{2}{e}\right) \qquad \Box \quad \frac{1}{2}\left(e+\frac{1}{e}\right)$$

[ca. 4 Punkte]

Aufgabe 9. Homogenes Differentialgleichungssystem Sei $x:\mathbb{R}\to\mathbb{R}^2$ die Lösung des homogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t), \quad \text{wobei} \quad A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}.$$

Bestimmen Sie die allgemeine Lösung x(t), indem Sie die Eigenwerte und Eigenvektoren von A berechnen.