Криптография

Лекция 3. Хеш-функции.

Дмитрий Яхонтов

"Кочерга", 2019

Хеш-функция (свёртка, отпечаток, дайджест)

Хеш-функция необратимо преобразует набор данных X произвольной длины в хеш H фиксированной длины.

Применения:

- контроль целостности сообщений
- цифровые подписи: вместо всего сообщения достаточно подписать его хеш
- проверка данных без хранения образца
- доказательство работы (proof-of-work)

Требования к хеш-функциям

- Необратимость нельзя восстановить сообщение по значению его хеша.
- Стойкость к поиску второго прообраза зная сообщение и его хеш, нельзя подобрать другое сообщение с тем же хешем.
- Стойкость к коллизиям нельзя подобрать пару сообщений с одинаковыми хешами.
- Стойкость к удлинению прообраза нельзя дополнить сообщение так, чтобы получить нужный хеш.

На основе симметричных шифров

Структура Меркла—Дамгора (Merkle—Damgård) на примере MD5

Криптографическая губка

название хеш-функции	год	число раундов	размер блока	размер хеша
MD2	1989	18	128	128
MD4	1990	48	512	128
MD5	1991	64	512	128
MD6	2008	40 - 80	4096	128 - 512
RIPEMD	1996	64 / 80	512	128 / 160 / 256 / 320
SHA-1	1995	80	512	160
SHA-2	2002	64 / 80	512 / 1024	224 / 256 / 384 / 512
SHA-3 (Keccak)	2008	24	1600	224 / 256 / 384 / 512
Стрибог (ГОСТ Р 34.11-2012)	2012	12	512	256 / 512

Коды проверки подлинности (MAC — Message Authentication Code)

МАС служит для защиты сообщения от изменеий и контроля целостности.

Для генерации и проверки используется секретный ключ.

Хранение и проверка паролей

логин	пароль		Введённый пароль	
chingiz	40000MoNkEyS			
padla	pere\$%*za&\$#na		1	
pat	40000MoNkEyS	→ ==	◄	
strelok	74606247WH0ds		J	

	Введённый пароль	
ЛОГИН	хеш пароля	<u> </u>
chingiz	1A1B612107856C81C8DF311174E766C1	Хеш-функция
padla	ECDAC781EFBC47BB0571DC73CDA50AE3	леш-функция
pat	1A1B612107856C81C8DF311174E766C1	==
strelok	66DB5F9AB5EBEF2D0417741FD75D021D	

Радужные таблицы (Rainbow Tables)

• Можно хранить только начальные и конечные элементы цепочек

Как пользоваться радужной таблицей

Соль и перец

Функция формирования ключа (KDF — Key Derivation Function)

- Получение ключа заданной длины и формата
- Получение нескольких независимых ключей из одного пароля
- Защита от атаки перебором: многократное хеширование увеличивает время вычисления ключа, снижая скорость перебора до неприемлемо низкой

Доказательство выполнения работы (Proof-of-Work)

Вычислительная задача: подобрать **nonce** так, чтобы хеш **H(сообщение + nonce)** получился меньше целевого значения (медленно)

Проверка: однократное вычисление **Н(сообщение + nonce)** и сравнение с целевым значением (быстро)

- Защита от спама (Hashcash, Bitmessage)
- Генерация блоков (криптовалюты)

Задачи

1. Перед вычислением хеш-функции сообщение необходимо дополнить до длины, кратной размеру блока. Самый простой способ — дополнить нулевыми битами.

Чем этот способ плох и как его можно улучшить?

2. Четверо хакеров спорят, как назвать их группу. Каждый предлагает свой вариант и считает его единственно правильным. Решено выбрать случайным образом. Нет независимой стороны, которая помогла бы провести жеребьёвку, а каждый хакер доверяет только себе.

Предложите протокол, который позволит сделать честный случайный выбор в пользу одного из участников.

- 3. Алиса и Боб проводят взаимную аутентификацию, которая состоит в проверке знания общего секретного ключа. Протокол аутентификации следующий:
- Стороны обмениваются именами, каждый проверяет, что имена не совпадают.
- Алиса склеивает строки: своё имя + имя Боба + метка времени.
- Алиса вычисляет МАС полученной строки, используя секретный ключ, и отправляет результат Бобу.
- Боб проверяет МАС Алисы, используя секретный ключ.
- Боб склеивает строки: своё имя + имя Алисы + метка времени.
- Боб вычисляет МАС полученной строки, используя секретный ключ, и отправляет результат Алисе.
- Алиса проверяет МАС Боба, используя секретный ключ.

Как Мэллори, не зная ключа, может выдать себя за Боба? Какие изменения нужно внести в протокол, чтобы закрыть уязвимость?

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - @androidruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

