BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	$\operatorname{Cas} 0$	2
4.	Cas 1	2
5.	Cas 2	3
6.	Cas 3	3
7.	Cas 4	4
8.	AFFAIRE À SUIVRE	6

Date: 25 Jan. 2024 - 27 Jan. 2024.

1. CE QUI NOUS INTÉRESSE

Existe-t-il $(n,k) \in \mathbb{N}^* \times \mathbb{N}$ tel que $\prod_{i=0}^k (n+i)$ soit le carré d'un entier?

2. Notations utilisées

Dans la suite, nous utiliserons les notations suivantes.

- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\} \text{ et } {}^{2}\mathbb{N}_{*} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}.$
- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$, $\pi_n^k = \prod_{i=0}^k (n+i)$. Par exemple, nous avons $\pi_n^0 = n$ et $\pi_n^1 = n(n+1)$.
- ullet P désigne l'ensemble des nombres premiers.
- $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*$, $v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$, autrement dit $p^{v_p(n)}$ divise n, mais $p^{v_p(n)+1} \nmid n$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- 2 N désigne l'ensemble des nombres naturels pairs.
- $2 \mathbb{N} + 1$ désigne l'ensemble des nombres naturels impairs.

Donnons juste un fait basique concernant l'ensemble ²N, fait qui nous sera utile par la suite.

Fait 3.1. $\forall (n,m) \in {}^{2}\mathbb{N}_{*} \times {}^{2}\mathbb{N}_{*}$, si $n \neq m$, alors nous avons:

(1)
$$|n-m|=3 \iff (n,m) \in \{(1,4); (4,1)\}$$

(2)
$$|n-m| \ge 5$$
 dès que $(n,m) \notin \{(1,4); (4,1)\}$.

 $D\acute{e}monstration$. Quitte à échanger les rôles, on peut supposer n>m. Par hypothèse, nous avons $(N,M)\in \mathbb{N}^*\times \mathbb{N}^*$ tel que $n=N^2$ et $m=M^2$. Comme n>m, nous avons aussi N>M. Pour conclure, il suffit de s'appuyer sur les équivalences suivantes.

$$N > M \iff N \ge M + 1$$

$$\iff N^2 \ge (M+1)^2$$

$$\iff n \ge m + 2M + 1$$

$$\iff n - m \ge 2M + 1$$

Fait 4.1. $\forall n \in \mathbb{N}^*$, $n(n+1) \notin {}^2\mathbb{N}$.

Démonstration. Supposons que $\pi_n^1 = n(n+1) \in {}^2\mathbb{N}_*$. Clairement $\forall p \in \mathbb{P}$, $v_p(\pi_n^1) \in 2\mathbb{N}$. Or $p \in \mathbb{P}$ ne pent diviser à la fois n et n+1. Nous savons donc que $\forall p \in \mathbb{P}$, $v_p(n) \in 2\mathbb{N}$ et $v_p(n+1) \in 2\mathbb{N}$, autrement dit $(n,n+1) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. D'après le fait 3.1, nous savons que ceci est impossible.

Une preuve alternative. Supposons que $\pi_n^1 = n(n+1) = N^2$ où $N \in \mathbb{N}^*$. Rappelons les deux identités classiques suivantes.

$$\bullet \ n(n+1) = 2\sum_{k=1}^{n} k$$

•
$$N^2 = \sum_{k=1}^{N} (2k - 1)$$

Dès lors, après avoir noté que N > n, les équivalences suivantes donnent une contradiction.

$$n(n+1) = N^{2} \iff 2 \sum_{k=1}^{n} k = \sum_{k=1}^{N} (2k-1)$$

$$\iff \sum_{k=1}^{n} 2k = \sum_{k=1}^{N} 2k - N$$

$$\iff \sum_{k=n}^{N} 2k = N$$

$$\iff \sum_{k=n}^{N-1} 2k + N = 0$$
Se souvenir que $N > n > 0$.

5. Cas 2

Fait 5.1. $\forall n \in \mathbb{N}^*, \ n(n+1)(n+2) \notin {}^2\mathbb{N}$.

Démonstration. Supposons que $\pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*$. Posant m=n+1, nous avons $\pi_n^2 = (m-1)m(m+1) = m(m^2-1)$ où $m \in \mathbb{N}_{\geq 2}$. Comme $\forall p \in \mathbb{P}$, $v_p(\pi_n^2) \in 2\mathbb{N}$, et comme de plus $p \in \mathbb{P}$ ne peut diviser à la fois m et m^2-1 , nous savons que $\forall p \in \mathbb{P}$, $v_p(m) \in 2\mathbb{N}$ et $v_p(m^2-1) \in 2\mathbb{N}$, d'où $(m,m^2-1) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. Or, d'après le fait 3.1, $m^2-1 \in {}^2\mathbb{N}$ est impossible. □

Une preuve alternative. Supposons que $\pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*$. Comme $p \in \mathbb{P}_{>2}$ ne peut diviser au maximum qu'un seul des trois facteurs n, (n+1) et (n+2), nous savons que $\forall p \in \mathbb{P}_{>2}$, $(v_p(n), v_p(n+1), v_p(n+2)) \in (2\mathbb{N})^3$. Mais que se passe-t-il pour p=2?

Supposons d'abord $n \in 2\mathbb{N}$.

- Posant n=2m, nous avons $\pi_n^2=4m(2m+1)(m+1)$, d'où $m(2m+1)(m+1)\in {}^2\mathbb{N}_*$.
- Comme $v_2(n+1) = v_2(2m+1) = 0$, nous savons que $2m+1 = n+1 \in {}^2\mathbb{N}_*$.
- Donc $m(m+1) \in {}^{2}\mathbb{N}_{*}$, mais le fait 4.1 interdit cela.

Supposons maintenant $n \in 2\mathbb{N} + 1$.

- Nous savons que $n \in {}^{2}\mathbb{N}_{*}$.
- Dès lors, $(n+1)(n+2) \in {}^2\mathbb{N}_*$, mais de nouveau ceci contredit le fait 4.1. \square

6. Cas 3

Fait 6.1. $\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$.

Démonstration. Nous pouvons ici faire les manipulations algébriques naturelles suivantes.

$$\pi_n^3 = n(n+3) \cdot (n+1)(n+2)$$

$$= (n^2 + 3n) \cdot (n^2 + 3n + 2)$$

$$= (m-1)(m+1)$$

$$= m^2 - 1$$

D'après le fait 3.1, $m^2 - 1 \notin {}^2\mathbb{N}$, c'est-à-dire $\pi_n^3 \notin {}^2\mathbb{N}$.

7. Cas 4

Fait 7.1.
$$\forall n \in \mathbb{N}^*, n(n+1)(n+2)(n+3)(n+4) \notin {}^2\mathbb{N}$$
.

Démonstration. Supposons que $\pi_n^4 = n(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}_*$. Comme $p \in \mathbb{P}_{>3}$ ne peut diviser au maximum qu'un seul des quatre facteurs n, (n+1), (n+2), (n+3) et (n+4), nous savons que $\forall p \in \mathbb{P}_{>3}$, $(v_p(n), v_p(n+1), v_p(n+2), v_p(n+3), v_p(n+4)) \in (2\mathbb{N})^5$. Mais que se passe-t-il pour p=2 et p=3?

Nous avons les alternatives suivantes pour chaque facteur (n+i) de π_n^4 .

- [A1] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times 2\mathbb{N}$
- [A2] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times (2\mathbb{N}+1)$
- [A3] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times 2\mathbb{N}$
- [A4] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times (2\mathbb{N}+1)$

Quatre alternatives pour cinq facteurs, il est temps d'utiliser ce bon vieux principe des tiroirs qui va nous permettre de lever des contradictions.

- Deux facteurs différents (n+i) et (n+i') vérifient [A1]. Dans ce cas, on sait juste que $(n+i,n+i') \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. Or $n \notin {}^2\mathbb{N}$ puisque sinon nous aurions $(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}$ via $n(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}$, mais ceci ne se peut d'après le fait 6.1. De même, $n+4 \notin {}^2\mathbb{N}$. Dès lors, nous avons $\{n+i,n+i'\} \subseteq \{n+1,n+2,n+3\}$ qui donne deux carrés parfaits éloignés de moins de 3, et ceci contredit le fait 3.1.
- Deux facteurs différents (n+i) et (n+i') vérifient [A 2]. Dans ce cas, le couple de facteurs est (n, n+3), ou (n+1, n+4).
 - (1) Supposons d'abord que n et (n+3) vérifient $[\mathbf{A2}]$. Comme $\forall p \in \mathbb{P} - \{3\}$, $v_p(n) \in 2\mathbb{N}$ et $v_p(n+3) \in 2\mathbb{N}$, mais aussi $v_3(n) \in 2\mathbb{N} + 1$ et $v_3(n+3) \in 2\mathbb{N} + 1$, nous avons $n = 3N^2$ et $n+3 = 3M^2$ où $(N,M) \in \mathbb{N}^2$. Or, ceci donne $3 = 3M^2 - 3N^2$, puis $M^2 - N^2 = 1$ qui contredit le fait 3.1.
 - (2) De façon analogue, on ne peut pas avoir (n+1) et (n+4) vérifiant $[\mathbf{A2}]$.
- Deux facteurs différents (n+i) et (n+i') vérifient [A3]. Comme dans le point précédent, c'est impossible car on aurait $2 = 2M^2 - 2N^2$, ou $4 = 2M^2 - 2N^2$. En effet, ici les couples possibles sont (n, n+2), (n, n+4), (n+2, n+4) et $(n+1, n+3)^1$.
- Deux facteurs différents (n+i) et (n+i') vérifient $[{\bf A4}]$.

 Dans ce cas, on aurait deux facteurs différents divisibles par 6, mais ceci est impossible.

Une preuve alternative. Supposons que $\pi_n^4=n(n+1)(n+2)(n+3)(n+4)\in {}^2\mathbb{N}_*$. Posant m=n+2, nous avons $\pi_n^4=(m-2)(m-1)m(m+1)(m+2)=m(m^2-1)(m^2-4)$ où $m\in\mathbb{N}_{\geq 3}$. On notera dans la suite $u=m^2-1$ et $q=m^2-4$.

Supposons d'abord que $m \in {}^{2}\mathbb{N}_{*}$.

- \bullet De $muq \in {}^2\mathbb{N}_*$, nous déduisons $uq \in {}^2\mathbb{N}_*$.
- Comme u-q=3, nous savons que $u \wedge q \in \{1,3\}$.
- 1. Rien n'empêche d'avoir n, (n+2) et (n+4) vérifiant tous les trois [A3].

- Si $u \wedge q = 1$, alors $\forall p \in \mathbb{P}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, d'où $(u,q) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. Or ceci est impossible d'après le fait 3.1^2 .
- Si $u \wedge q = 3$, alors $\forall p \in \mathbb{P} \{3\}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, mais aussi $v_3(u) \in 2\mathbb{N} + 1$ et $v_3(q) \in 2\mathbb{N} + 1$. Donc $u = 3U^2$ et $q = 3Q^2$ avec $(U,Q) \in \mathbb{N}^2$. Or u q = 3 donne $U^2 Q^2 = 1$, et le fait 3.1 nous indique une contradiction.

Supposons maintenant que $m \notin {}^{2}\mathbb{N}_{*}$.

- Nous avons vu ci-dessus que $u \notin {}^2\mathbb{N}$ et $q \notin {}^2\mathbb{N}$. On peut donc écrire $m = \alpha M^2$, $u = \beta U^2$, $q = \gamma Q^2$ où $(M, U, Q) \in \mathbb{N}^3$, et $(\alpha, \beta, \gamma) \in (\mathbb{N}_{>1})^3$ formant un triplet de naturels sans facteur carré.
- Notons que $\beta \neq \gamma$ car, dans le cas contraire, nous aurions $3 = u q = \beta (U^2 Q^2)$ qui fournirait $0 < |U^2 Q^2| < 3$, et ceci contredirait le fait 3.1.
- Nous avons $m \wedge u = 1$, $m \wedge q \in \{1, 2, 4\}$ et $u \wedge q \in \{1, 3\}$ avec $m \wedge u = m \wedge q = u \wedge q = 1$ impossible car sinon on aurait $(m, u, q) \in \binom{2}{\mathbb{N}}^3$ via $muq \in \binom{2}{\mathbb{N}}$.
- Dès lors, $\forall p \in \mathbb{P}_{>3}$, $(v_p(m), v_p(u), v_p(q)) \in (2\mathbb{N})^3$.
- Les points précédents donnent $\{\alpha,\beta,\gamma\}\subseteq\{2,3,6\}$, où $\beta\neq\gamma$, ainsi que $\alpha\wedge\beta=1$, $\alpha\wedge\gamma\in\{1,2\}$, $\beta\wedge\gamma\in\{1,3\}$ avec $\alpha\wedge\beta=\alpha\wedge\gamma=\beta\wedge\gamma=1$ impossible. Ceci nous donne le tableau « mécanique » suivant qui montre que forcément $(\alpha,\beta,\gamma)=(2,3,2)$ ou $(\alpha,\beta,\gamma)=(2,3,6)$. Le plus dur est fait!

α	β	γ	$\alpha \wedge \beta$	$\alpha \wedge \gamma$	$\beta \wedge \gamma$	Statut
2	3	2	1	2	1	OK
2	3	6	1	2	3	OK
3	2	3	1	3	1	КО
3	2	6	1	3	2	КО

- $(\alpha, \beta, \gamma) = (2, 3, 2)$ nous donne $m = 2M^2$, $m^2 1 = 3U^2$ et $m^2 4 = 2Q^2$. Comme m est pair, posant m - 2 = 2r et notant s = m + 2, les faits suivants lèvent une contradiction.
 - $-2rs = 2Q^2$ donne $rs = Q^2$.
 - $-s \notin {}^2\mathbb{N}$, car dans le cas contraire, nous aurions $(m-2)(m-1)m(m+1) \in {}^2\mathbb{N}$ via $(m-2)(m-1)m(m+1)(m+2) \in {}^2\mathbb{N}$, mais ceci ne se peut d'après le fait 6.1.
 - Les deux résultats précédents donnent $(\pi, R, S) \in \mathbb{N}_{>1} \times \mathbb{N}^2$ tel que $r = \pi R^2$ et $s = \pi S^2$ avec π sans facteur carré.
 - $4=s-2r=\pi(S^2-2R^2)$ donne alors $\pi=2\,,$ d'où $m+2=2S^2\,.$
 - Finalement, $m=2M^2$ et $m+2=2S^2$ contredisent le fait 3.1 via $2=2(S^2-M^2)$.
- $(\alpha, \beta, \gamma) = (2, 3, 6)$ nous donne $m = 2M^2$, $m^2 1 = 3U^2$ et $m^2 4 = 6Q^2$. Les faits suivants lèvent une autre contradiction via une technique similaire à celle employée ci-dessus.
 - Travaillons modulo 3. Comme $m=2M^2$, nous avons $m\equiv 0$ ou $m\equiv -1$. Or $m^2-1=3U^2$ donne $m^2\equiv 1$, d'où $m\equiv -1$, puis $3\mid m-2$, et enfin $6\mid m-2$ puisque m est pair.

^{2.} On peut aussi noter que le fait 5.1 lève une contradiction car nous avons $m \in {}^2\mathbb{N}$ et $u \in {}^2\mathbb{N}$ qui donnent $(m-1)m(m+1) \in {}^2\mathbb{N}$

- Posant m-2=6r et notant s=m+2, nous avons $6rs=6Q^2$, puis $rs=Q^2$.
- $-s \notin {}^{2}\mathbb{N}$ reste valable ici.
- Les deux résultats précédents donnent $(\pi, R, S) \in \mathbb{N}_{>1} \times \mathbb{N}^2$ tel que $r = \pi R^2$ et $s = \pi S^2$ avec π sans facteur carré.
- $-4 = s 6r = \pi(S^2 6R^2)$ donne $\pi = 2$, et on conclut comme avant.

8. AFFAIRE À SUIVRE...