Non-Linear Models

PSC 8185: Machine Learning for Social Science

Iris Malone

January 31, 2021

Announcements

- Problem Set 1 Due Next Monday (February 7)
- Start thinking about end of semester project \rightarrow meet 1x before March 7

1

Recap

Where We've Been:

- Linear regression model estimates E(Y)
- Classification model estimates $E(Y \mid X)$
- Model selection often depends on beliefs about DGP, n obs, and p variables

2

Recap

Where We've Been:

- Linear regression model estimates E(Y)
- Classification model estimates $E(Y \mid X)$
- Model selection often depends on beliefs about DGP, n obs, and p variables

New Terminology:

- Conditional Expectation
- Maximum Likelihood Estimation
- · Odds Ratio
- · Accuracy, Sensitivity, Specificity

2

Agenda

1. Why Do We Need Non-Linear Models?

2. Interaction Effects

- 3. Generalized Linear Models (GLMs)
- 4. Semi-Parametric Models

Why Do We Need Non-Linear

Models?

Regression and Classification

Parametric models introduced last week make assumptions about underlying DGP ...

- Linear Regression \rightarrow linear
- Logistic Regression \rightarrow logit
- LDA \rightarrow linear
- Exception: KNN (non-parametric)

Regression and Classification

Parametric models introduced last week make assumptions about underlying DGP ...

- Linear Regression \rightarrow linear
- Logistic Regression \rightarrow logit
- LDA \rightarrow linear
- Exception: KNN (non-parametric)

Problem: These assumptions often fail.

Recall: Limits to Linear Regression

Gauss-Markov assumptions frequently violated due to:

- 1. Variables Interact
- 2. Non-Normal Errors
- 3. Non-Linear Relationships
- 4. Heteroskedasticity
- 5. Collinearity

Recall: Limits to Logit Regression and LDA

Logit regression performs poorly when ...

- Collinearity \rightarrow unstable coefficients (p > n)
- Well-separated class \rightarrow unstable coefficients

LDA performs poorly if ...

• True f non-linear

3 Problems to Linear Regression

Figure 1: Christoph Molnar

· Variables often interact

• Variables often interact \rightarrow **Solution**: Model interactions

- Variables often interact → Solution: Model interactions
- Residuals not perfectly bell-shaped

- Variables often interact → Solution: Model interactions
- Residuals not perfectly bell-shaped \rightarrow **Solution:** GLMs

- Variables often interact → Solution: Model interactions
- Residuals not perfectly bell-shaped \rightarrow **Solution:** GLMs
- Most relationships are not strictly linear

- Variables often interact → Solution: Model interactions
- Residuals not perfectly bell-shaped \rightarrow **Solution:** GLMs
- Most relationships are not strictly linear \rightarrow **Solution:** Semi-Parametric Models

3 Solutions to Common Regression Problems

- 1. Interaction Effects
- 2. Generalized Linear Models
- 3. Semi-Parametric Models

3 Solutions to Common Regression Problems

- 1. Interaction Effects
- 2. Generalized Linear Models
- 3. Semi-Parametric Models

Interaction Effects

Interaction Effects

Main Idea: Different sub-groups within the data respond differently to the same stimuli

Interaction Effects

Main Idea: Different sub-groups within the data respond differently to the same stimuli

Problems:

- SUTVA violation ≠ causal claims
- Pooling groups masks true effect \rightarrow bias
 - Wrong Direction: Variable has competing or countervailing effects on Group 1 and Group 2
 - 2. Wrong Magnitude: Different Effect Sizes for Group 1 or Group 2
- Example Pooled Bias: Leadership Turnover and Terrorism
 - Group 1: New Grievance \rightarrow Conflict
 - Group 2: Resolves Grievance \rightarrow Peace

Types of Interaction Effects

Groups: b_1 and b_2 ; Treatment: a

Solutions to Potential Interaction Effects

- 1. Model Interaction Effects in Linear Regression
- 2. Use Non-Parametric Model

Modeling Interaction Effects

Pooled Model:

$$y = \beta_0 + \beta_1(\mathsf{Stimuli}) + \beta_2(\mathsf{Group}) + \epsilon_i$$

Modeling Interaction Effects

Pooled Model:

$$y = \beta_0 + \beta_1(\mathsf{Stimuli}) + \beta_2(\mathsf{Group}) + \epsilon_i$$

Interaction Model:

$$y=\beta_0+\beta_1(\mathsf{Stimuli})+\beta_2(\mathsf{Group})+\beta_3(\mathsf{Group}\times\mathsf{Stimuli})+\epsilon_i$$

$$y\approx\beta_0+\beta_1(\mathsf{Stimuli})+\begin{cases} 0, & \text{if }\mathsf{Group}=1\\\\ \beta_2+\beta_3(\mathsf{Stimuli}), & \text{if }\mathsf{Group}=2 \end{cases}$$

Interpreting Main Effects

Pooled Model:

$$y = \beta_0 + \beta_1(\mathsf{Stimuli}) + \beta_2(\mathsf{Group}) + \epsilon_i$$

Main Effect: The effect of an explanatory variable on an outcome, e.g. β_1 in pooled model tells us average effect of stimuli on y for all groups

Interpreting Interaction Effect

Interaction Model:

$$y \approx \beta_0 + \beta_1(\text{Stimuli}) + \begin{cases} 0, & \text{if Group} = 1 \\ \beta_2 + \beta_3(\text{Stimuli}), & \text{if Group} = 2 \end{cases}$$

Interaction Effect: The effect of an explanatory variable on an outcome conditional on a separate variable

- β_1 : effect of stimuli on y for group = 1
- β_2 : effect of Group 2 on y for stimuli = 0
- β_3 : effect of stimuli on y for group = 2

Marginal Effect: The effect of group 2 on outcome, e.g. $\beta_2 + \beta_3 ({\sf Stimuli})$

Different Types of Interactions

Marginal Effect Interpretation Varies by Type of Variable...

- Binary and Binary: Effect of Group 2 on outcome when stimuli is present
- Binary and Continuous: Effect of Group 2 on outcome for one unit increase in stimuli
- Continuous and Continuous: Effect of one unit increase in ${\cal X}_1$ for one unit increase in ${\cal X}_2$

3 Solutions to Common Regression Problems

- 1. Interaction Effects
- 2. Generalized Linear Models
- 3. Semi-Parametric Models

Generalized Linear Models (GLMs)

Problem of Non-Normality

Problem: Errors frequently not normally distributed, e.g.

- · Binary Variables
- · Categorical Variables
- Count Variables

Problem of Non-Normality

Problem: Errors frequently not normally distributed, e.g.

- · Binary Variables
- · Categorical Variables
- Count Variables

Risks:

- Incorrect errors \rightarrow inaccurate confidence intervals
- · Produce negative probability estimates

Solutions to Non-Normality

- 1. Linear Probability Model
- 2. Transform the dependent variable
- 3. Generalized Linear Models

Linear Probability Model

Recall: If you have a binary dependent variable, you could use a special type of linear regression \rightarrow Linear Probability Model $P(y=1 \mid x) = \beta_0 + \beta_1 X_1 + \ldots \beta_p X_p$

Linear Probability Model

Recall: If you have a binary dependent variable, you could use a special type of linear regression \rightarrow Linear Probability Model $P(y=1 \mid x) = \beta_0 + \beta_1 X_1 + \ldots \beta_p X_p$

Upside: This works for a lot of binary classification problems. Workhorse in econometrics.

Linear Probability Model

Recall: If you have a binary dependent variable, you could use a special type of linear regression \rightarrow Linear Probability Model $P(y=1 \mid x) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$

Upside: This works for a lot of binary classification problems. Workhorse in econometrics.

Risks:

- · Allows probabilities outside [0, 1] range
- · Difficult to extend to more than 2 classes
- · Does not work if there are interactions

Transform the DV

If you have a skewed distribution, you could transform the DV to approximate a normal distribution, e.g. log transformation

Log Transformation of DV

$$log(y) = \beta_0 + \beta_1 X$$
$$y = \exp(\beta_0 + \beta_1 X)$$
$$y = exp(\beta_0) \exp(\beta_1 X)$$

Interpretation:

- A one-unit increase in X associated with a $\exp(\beta_1)$ change in Y
- A one-unit increase in X associated with a β_1 percentage change in ${\rm Y}$

Log Transformation of DV

$$log(y) = \beta_0 + \beta_1 X$$
$$y = \exp(\beta_0 + \beta_1 X)$$
$$y = exp(\beta_0) \exp(\beta_1 X)$$

Interpretation:

- A one-unit increase in X associated with a $exp(\beta_1)$ change in Y
- A one-unit increase in X associated with a β_1 percentage change in Y

Risks:

- Transformation doesn't always work
- Alternate non-log transformations \rightarrow less interpretable

Generalized Linear Model

Main Idea: Create a function to map relationship between explanatory variables and expected outcome in *linear* way

Generalized Linear Model

Main Idea: Create a function to map relationship between explanatory variables and expected outcome in *linear* way

GLM Features:

- Systematic Component ($\eta = X\beta$)
- Random Component: probability distribution of Y (f(y))
- Link Function: Function mapping $X\beta$ and f(Y) such that $(E(Y\mid X)=\mu=\eta^{-1})$

Example of GLM Recipe: Linear Regression

Linear Regression:

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} X_1$$

- Systematic Component: $\eta = \beta_0 + \beta_1 X_1$
- Random Component: $Y \sim N(\mu, \sigma^2)$, e.g. $\epsilon \sim N(0, \sigma^2)$
- Link Function: $E(Y) = \mu = X\beta$

Example of GLM Recipe: Logit Regression

Logit Regression:

$$P(y = 1 \mid X) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$
$$log[\frac{P(y = 1 \mid X)}{P(y = 0 \mid X)}] = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- Systematic Component: $\eta = \beta_0 + \beta_1 X_1$
- Random Component: $Y \sim Bernoulli(p)$
- Link Function: $E(Y \mid X) = log[\frac{P(y=1\mid X)}{P(y=0\mid X)}] = X\beta$

Recipe for GLM

How do I pick the right GLM?

- 1. Visually inspect outcome variable
- 2. Assign probability distribution function (pdf) which best explains outcome distribution
- 3. Pick link function based on corresponding PDF

Common Link Functions

Distribution	Support of distribution	Typical uses	Link name	Link function
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}\boldsymbol{\beta} = \mu$
Exponential	${\rm real:}(0,+\infty)$	Exponential- response data, Inv scale parameters	Inverse	$\mathbf{X}\boldsymbol{\beta} = -\mu^{-1}$
Gamma				
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}\boldsymbol{\beta} = -\mu^{-2}$
Poisson	integer: $[0,+\infty)$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}\boldsymbol{\beta} = \ln\left(\mu\right)$
Bernoulli	integer: $[0,1]$	outcome of single yes/no occurrence		$\mathbf{X}\boldsymbol{\beta} = \ln\left(\frac{\mu}{1-\mu}\right)$
Binomial	integer: $[0,N]$	count of # of "yes" occurrences out of N yes/no occurrences		
Categorical	integer: $[0,K)$	outcome of single K- way occurrence		
	K-vector of integer: $[0,1]$, where exactly one element in the vector has the value 1			
Multinomial	K-vector of integer: $[0,N]$	count of occurrences of different types (1 K) out of N total K- way occurrences		

Different GLMS for Different Categorical Variables

If outcome or dependent variable is binary and in the form 0/1, then use logit or probit models. Some examples are:

Did you vote in the last election? Do you prefer to use public transportation or to drive a car? 0 'No' 1 'Yes' 0 'Prefer to drive' 1 'Prefer public transport'

If outcome or dependent variable is categorical but are ordered (i.e. low to high), then use ordered logit or ordered probit models. Some examples are:

Do you agree or disagree with the President? What is your socioeconomic status? 1 'Disagree' 1 'Low' 2 'Neutral' 2 'Middle' 3 'Agree' 3 'High'

If outcome or dependent variable is categorical without any particular order, then use multinomial logit. Some examples are:

If elections were held today, for which party would you vote?

- 1 'Democrats' 2 'Independent'
- 3 'Republicans'

What do you like to do on the weekends?

- 1 'Rest'
- 2 'Go to movies'
- 3 'Exercise'

OTR

· Binary Logistic Regression

Ordinal Logistic Regression

- Binary Logistic Regression
 - Binary DV (o or 1)
 - · PDF: Bernoulli
 - · Link Function: Logit

$$E(Y \mid X) = log[\frac{\mu}{1 - \mu}]$$

Ordinal Logistic Regression

- Binary Logistic Regression
 - Binary DV (o or 1)
 - · PDF: Bernoulli
 - · Link Function: Logit

$$E(Y \mid X) = log[\frac{\mu}{1 - \mu}]$$

- Ordinal Logistic Regression
 - Ordered Categorical DV (0 < 1 < 2)
 - · PDF: Multinomial
 - · Link Function: Logit

$$E(Y \mid X) = log[\frac{\mu}{1 - \mu}]$$

- Binary Logistic Regression
 - Binary DV (o or 1)
 - · PDF: Bernoulli
 - · Link Function: Logit

$$E(Y \mid X) = log[\frac{\mu}{1 - \mu}]$$

- Ordinal Logistic Regression
 - Ordered Categorical DV (0 < 1 < 2)
 - · PDF: Multinomial
 - · Link Function: Logit

$$E(Y \mid X) = log[\frac{\mu}{1 - \mu}]$$

- Multinomial Logistic Regression
 - Unordered Categorical DV (A, B, or C)
 - · PDF: Multinomial
 - · Link Function: Logit

$$E(Y \mid X) = log[\frac{\mu}{1 - \mu}]$$

Interpretation

Binary Logistic Regression

- One unit increase in x_1 is associated with β_1 increase in log odds that Y=1
- Odds Ratio: The odds of Y=1 are $exp(\beta_1)$ different for every one unit increase in x_1

Interpretation

Binary Logistic Regression

- One unit increase in x_1 is associated with β_1 increase in log odds that Y=1
- Odds Ratio: The odds of Y=1 are $exp(\beta_1)$ different for every one unit increase in x_1

Ordinal Logistic Regression

• The odds of moving to a higher category are $exp(\beta_1)$ different for every one unit increase in x_1

Interpretation

Binary Logistic Regression

- One unit increase in x_1 is associated with β_1 increase in log odds that Y=1
- Odds Ratio: The odds of Y=1 are $exp(\beta_1)$ different for every one unit increase in x_1

Ordinal Logistic Regression

• The odds of moving to a higher category are $exp(\beta_1)$ different for every one unit increase in x_1

- The logit coefficient for category B will change by β_1 relative to category A (base category) for every one unit increase in x_1
- If x_1 increases one unit, the chances of being in category B is $exp(\beta_1)$ higher than being in category A (base category)

Alternate GLM \rightarrow Count Dependent Variable

- Count variable takes on discrete values (0, 1, 2, ...)
- Examples: Number of votes, number of vaccines, number of students, number of clients

Use Poisson Model for Count Data

Estimating Equation

$$log(E(Y \mid X) = \beta_0 + \beta_1 X$$

GLM Components:

- $E(Y) = \lambda = X\beta$
- $V(Y) = X\beta$
- · PDF: Poisson
- · Link Function: Log

Expected Value

$$E(Y \mid X) = \lambda = exp(\beta_0 + \beta_1 X)$$

Poisson Model Interpretation

- A one unit change in x_1 is associated with a β_1 difference in the logs of expected counts
- Incident Rate Ratio ($exp(X\beta)$): A one unit change in x_1 is associated with a β_1 change in the rate ratio
- Presenting Results? Recommend Predicted Counts \rightarrow More Interpretable

Limits to Poisson Models

Limits: Count data \to overdispersion and excess zeros Occurs when $E(Y) \neq Var(Y)$, e.g. rare event data

Alternatives to Poisson Model

Intuition: Correct for overdispersion by adjusting variance; correct for excess zeros by modeling two separate equations (selection and count)

Alternatives to Poisson Model

Intuition: Correct for overdispersion by adjusting variance; correct for excess zeros by modeling two separate equations (selection and count) Solutions:

- Negative Binomial Model (Overdispersion)
- Zero-Inflated Negative Binomial Model (Excess Zeros)
- Zero-Inflated Poisson Model (Excess Zero)

Advantages and Disadvantages to GLM

Advantages:

Advantages and Disadvantages to GLM

Advantages:

- Workhouse model for inference problems
- · Works for large variety of outcome variables
- Performs well if pick right link function

Advantages and Disadvantages to GLM

Advantages:

- Workhouse model for inference problems
- Works for large variety of outcome variables
- Performs well if pick right link function

- Parametric → inflexible
- Assumptions about underlying DGP
- Can't capture interactions or non-linearities
- · Coefficients not easily interpretable

3 Solutions to Common Regression Problems

- 1. Interaction Effects
- 2. Generalized Linear Models
- 3. Semi-Parametric Models

Semi-Parametric Models

Many Relationships are Non-Linear

- Polynomial, e.g. Wage and Age
- Parabolic, e.g. Rainfall and Conflict
- **Exponential**, e.g. Covid Cases and Time
- **Logarithmic**, e.g. Strength Training and Fitness

Solutions to Non-Linearity

- 1. Transform the explanatory variable
- 2. More flexible regressions
 - · Polynomial function
 - Stepwise function (Piecewise Function)
- 3. Semi-parametric Models
 - Splines
 - · Generalized Additive Model
- 4. Non-parametric models

Transform the Explanatory Variable

If you have a skewed IV, you could transform to approximately a linear relationship, e.g. log transformation

Interpretation:

- A 1 percentage change increase in X associated with a β_1 change in Y

Transform the Explanatory Variable

If you have a skewed IV, you could transform to approximately a linear relationship, e.g. log transformation

Interpretation:

• A 1 percentage change increase in X associated with a β_1 change in Y

Risks:

- · Transformation doesn't always work
- Non-log transformations \rightarrow less interpretable

Polynomial Regression

Main Idea: Create a highly flexible model to better capture non-linear trends based on level of flexibility degree d

$$f_i(x) = x^i$$

 $y_i = \beta_0 + \beta_1 X x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d + \epsilon_i$

Advantages and Disadvantages to Polynomial Regression

Advantages:

Advantages and Disadvantages to Polynomial Regression

Advantages:

- For a large enough degree d, a polynomial regression allows us to produce an extremely flexible (non-linear) curve
- Performs well if i = d matches true f_i

Advantages and Disadvantages to Polynomial Regression

Advantages:

- For a large enough degree *d*, a polynomial regression allows us to produce an extremely flexible (non-linear) curve
- Performs well if i = d matches true f_i

- High d \rightarrow overly flexible and overfit the data
- Small N \rightarrow high variance and wider confidence intervals
- · Assumes all data is non-linear (global)

Stepwise Function

Main Idea: Disaggregate data into separate categories and estimate a local functions for each category

$$f_i(x) = 1(c_i \le x < c_{i+1})$$

Stepwise Function

Main Idea: Disaggregate data into separate categories and estimate a local functions for each category

$$f_i(x) = 1(c_i \le x < c_{i+1})$$

Procedure:

- Break the range of X into K distinct bins \rightarrow ordered categorical
- Fit a different linear function for each bin and fit a different constant in each bin.
- Assemble piecewise functions based on whether X is above or below breakpoint (categorical threshold c_1, c_2, \ldots, c_k)

Stepwise Regression Examples

Piecewise Constant

Figure 3: Figure 7.2

Advantages and Disadvantages to Stepwise Function

Advantages:

Advantages and Disadvantages to Stepwise Function

Advantages:

- · Captures local structure of data
- Requires fewer assumptions than polynomial regression
- Popular approach in 1980s-1990s

Advantages and Disadvantages to Stepwise Function

Advantages:

- · Captures local structure of data
- Requires fewer assumptions than polynomial regression
- Popular approach in 1980s-1990s

- · Hard to determine optimal K
- · Often miss additional non-linearities

Splines

Main Idea: Combine the best of polynomial regressions and stepwise functions \rightarrow extremely flexible fit

Splines

Main Idea: Combine the best of polynomial regressions and stepwise functions \rightarrow extremely flexible fit

Model Intuition:

- Break the range of X into K distinct bins
- Fit a polynomial function in each region
- Constrain each polynomial function to create smooth breakpoints called knots (ξ)
- Knots provide continuity at disjunctures (continuity in derivatives)
 - Zero Knots \rightarrow Polynomial Regression
 - Three Knots → Cubic Spline
- Describe functional form f for splines using basis function (i.e. parameter-specific function)

$$f(x) = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \beta_3 b_3(x_i) + \dots + \beta_{k+3} b_{k+3}(x_i)$$

Cubic Splines

Cubic splines often provide relatively good fit of data because we can't see the discontinuities. We write f in terms of K+3 basis functions.

Basis Function for Cubic Spline: Start off with a basis for a cubic polynomial - namely x,x^2 , and x^3 and then add one truncated power basis function $(h(x,\xi))$ per knot.

$$h(x,\xi) = \begin{cases} (x-\xi)_{+}^{3} = (x-\xi)^{3} & \text{if } x > \xi \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Cubic Splines

Natural Cubic Splines

Function is linear outside of boundaries, but has polynomial function inside knots, $X<\xi_1$, $X>\xi_k$

Advantages and Disadvantages to Cubic Splines

Advantages:

Advantages and Disadvantages to Cubic Splines

Advantages:

- · Great for accommodating temporal dependencies
- · Often performs better than polynomial regression
- · More stable estimates than flexible regression methods
- Can determine optimal number of knots through trial-error or cross-validation

Advantages and Disadvantages to Cubic Splines

Advantages:

- · Great for accommodating temporal dependencies
- · Often performs better than polynomial regression
- · More stable estimates than flexible regression methods
- Can determine optimal number of knots through trial-error or cross-validation

- High variance at the outer range of the predictors can be overly flexible (→ smoothing splines or local regression)
- Obsolete? Polynomial time features t, t^2, t^3 achieve same result

Local Linear Regression

- Main Idea: Like splines, estimate a series of local regressions based on span of data
- Span (s) measures the fraction of training samples used in each regression (like nearest neighbors training points closest to x_0)

Local Linear Regression

Span controls the flexibility of the non-linear fit.

- Small $s \rightarrow local$ and wiggly fit
- Large $s \rightarrow global$ fit using all the observations

Local Linear Regression

GAMs

Main Idea: Semi-parametric model which models some parameters as linear and others via splines, loess, or transformation

GAMs

Main Idea: Semi-parametric model which models some parameters as linear and others via splines, loess, or transformation

Example Estimating Equation:

$$y_i = \beta_0 + \sum_{j=1}^p f_j(x_{ij}) + \epsilon = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i$$

GAM Procedure

Model Intuition:

- Calculate a separate function f_j for each parameter X_j and then add together all of the contributions
- Function can be polynomial, natural spline, cubic spline, local regression
- Determine optimal function through backfitting → iteratively update model with new function, holding other functions constant in order to minimize partial residuals

Advantages and Disadvantages to GAMs

Advantages:

Advantages and Disadvantages to GAMs

Advantages:

- · Performs better than linear regression if known non-linearities
- Black box \rightarrow do not need to manually try out different transformations
- ullet GAM preferable if true f sometimes non-linear
- Popular for inference and hypothesis testing

Advantages and Disadvantages to GAMs

Advantages:

- · Performs better than linear regression if known non-linearities
- Black box \rightarrow do not need to manually try out different transformations
- ullet GAM preferable if true f sometimes non-linear
- Popular for inference and hypothesis testing

- Additivity restriction \rightarrow too inflexible?
- When p > n, may miss interactions

Example: How Weather Affects Bike Rentals

Comparison of Non-Linear Models

- Transformation: Most common, but might not fix the problem.
- · Polynomial: Overly flexible, higher bias potential
- · Stepwise: Highly flexible, but hard to tune
- Splines: Often superior to polynomial regression, but maybe unnecessary? (see Carter and Signorino, t,t^2,t^3)

Comparison of Non-Linear Models

- Transformation: Most common, but might not fix the problem.
- Polynomial: Overly flexible, higher bias potential
- Stepwise: Highly flexible, but hard to tune
- **Splines:** Often superior to polynomial regression, but maybe unnecessary? (see Carter and Signorino, t, t^2, t^3)
- GAM: Good combination of approaches

Conclusions

- Linear regression methods often fail because too inflexible (bias-variance trade-off)
- Solutions:
 - Most Common: Alternative Parametric Models (Transformations, GLM, GAM)
 - · Less Common: Non-Parametric Approachs
- Need to understand limits to parametric and semi-parametric models to motivate need for non-parametrics models