PHP 2550 - HW#2

Blain Morin October 12, 2018

Part A

Table 1: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
gfr	1,249	42.59	28.38	0.70	17.93	66.00	155.50
bascre	1,249	2.33	1.40	0.60	1.26	3.00	9.75
sbase	1,249	152.18	23.08	91	135	169	250
dbase	1,249	92.73	11.54	50	85	100	150
baseu	1,249	1.82	2.31	0.10	0.10	2.68	19.93
AGE	1,249	52.40	13.10	15	43	62	77
SEX	1,249	0.63	0.48	0	0	1	1
black	1,249	0.09	0.29	0	0	0	1

Ladders of Powers

Table 2:

$Dependent\ variable:$				
gfr	I(gfr	(0.5)		
(1)	(2)	(3)		
-13.614^{***} (0.391)				
-2.391^{***} (0.246)				
	9.607*** (0.179)	10.123*** (0.159)		
	-0.145^{***} (0.025)			
0.055** (0.025)	0.0004 (0.001)	0.0003 (0.001)		
0.067 (0.045)	-0.008^{***} (0.003)	-0.004 (0.003)		
5.690*** (1.115)	0.756*** (0.062)	0.705^{***} (0.063)		
-3.393* (1.889)	0.272** (0.108)	0.423*** (0.106)		
63.589*** (4.124)	-1.122^{***} (0.247)	-1.648^{***} (0.234)		
1,249 0.570 10,861.770	1,249 0.783 3,655.775	1,249 0.777 3,688.445		
	gfr (1) -13.614*** (0.391) -2.391*** (0.246) 0.055** (0.025) 0.067 (0.045) 5.690*** (1.115) -3.393* (1.889) 63.589*** (4.124) 1,249 0.570	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Table 3:

	Dependent variable:	
	$I(gfr^0.5)$	
$I(bascre^{-}(-0.5))$	9.589***	
	(0.179)	
log(baseu)	-0.143***	
	(0.025)	
sbase	0.004*	
	(0.002)	
AGE	-0.008***	
	(0.003)	
as.factor(SEX)1	1.487***	
,	(0.407)	
as.factor(black)1	0.924	
,	(0.621)	
sbase:as.factor(black)1	-0.005	
	(0.004)	
sbase:as.factor(SEX)1	-0.005^{*}	
, ,	(0.003)	
Constant	-1.617^{***}	
	(0.350)	
Observations	1,249	
\mathbb{R}^2	0.784	
Akaike Inf. Crit.	3,655.586	
Note:	*p<0.1; **p<0.05; ***p<0.05	