UNIVERSIDAD TECNOLÓGICA NACIONAL

Técnico Superior en Programación Diseño y Administración de Bases de Datos Examen Final – Febrero 2025

1(3)	2a(1,5)	2b(2)	2c(1)	2d(1,5)	3(1)	TOTAL

1.) Armar el diagrama de entidad-relación. Normalizado en 3era FN. Identificar PK, FK, UNIQUE, NOT NULL.

El modelo debe permitir obtener la siguiente información de los datos de los censos realizados de los habitantes y viviendas de nuestro país. La información requerida es la siguiente:

- Cantidad de personas censadas cuyos datos son DNI, Nombre y Apellido, Fecha de Nac y Sexo.
- Censos realizados: año del censo, persona que realiza el censo, zona otorgada (centro, sur, norte) y personas censadas con la fecha en que fue censada, y sí estaba presente en ese momento.
- Cantidad de habitantes por ciudad y provincia de los censos realizados en los años 2010 y 2020
- Cantidad de familias censadas, para esto es necesario registrar a un jefe de familia por cada vivienda censada.
- Para realizar el censo se anotaron 10000 personas, es necesario saber la cantidad de personas que realizaron los censos y su identificación (DNI, apellido y nombre).

2.) En base al siguiente modelo sobre las reserva de turnos médicos, implementar las siguientes consultas SQL:

Ejemplo de la tabla turnos (cargada con todos los horarios de los médicos, los turnos disponibles tienen null en idPaciente)

idTurno	fecha	hora	idMedico	idPaciente
1	02/01/2024	8:00	1	9001
2	02/01/2024	8:15	1	9002
3	02/01/2024	8:30	1	9003
4	02/01/2024	9:00	1	NULL
5	02/01/2024	8:00	2	9003
6	03/01/2024	10:00	2	9001

2.a) Escribir todas las sentencias SQL (en orden) para normalizar la columna categoría de la tabla médicos, las categorías existentes son: "Basico", "Dif B", "Dif. C". Tener en cuenta que la tabla tiene datos.

- 2.b) Crear un procedimiento almacenado para asignar un turno a un **paciente nuevo**. Los datos a ingresar son (idturno, nombre del paciente, dni y teléfono), El procedimiento debe devolver la fecha y hora del turno asignado
- 2.c) Mostrar Nombre y especialidad de los médicos que no tienen horarios definidos en la tabla turnos.
- 2.d) Mostrar la cantidad de turnos ocupados por mes y especialidad del año 2024. Sólo interesan las especialidades con más de 20 turnos.

Mes	Especialidad	cantidad
01	Cardiología	35
01	Clínica médica	21
02	Cardiología	55

3. Marque la/s opcion/es correcta/s:

- 1. ¿Qué es un stored procedure en el contexto de bases de datos?
 - a. Una tabla que almacena datos temporales.
 - b. Un conjunto de instrucciones SQL precompiladas.
 - c. Un tipo de índice utilizado para optimizar consultas.
 - d. Un formato de almacenamiento de datos en memoria.
- 2. En una consulta SQL que utiliza GROUP BY, ¿cuál es su propósito principal?
 - a) Filtrar los resultados basados en una condición específica.
 - b) Ordenar los resultados en orden ascendente o descendente.
 - c) Dividir los datos en grupos basados en valores comunes en una columna.
 - d) Unir múltiples tablas en una sola consulta.
- 3. ¿Cuál es uno de los objetivos principales de un Sistema de Gestión de Bases de Datos (DBMS)?
 - A) Maximizar la redundancia de datos.
 - B) Asegurar la inconsistencia entre tablas relacionadas.
 - C) Facilitar el acceso a los datos y mejorar la seguridad.
 - D) Incrementar la complejidad en la manipulación de información.
- 4. ¿Cuál de las siguientes afirmaciones es cierta con respecto a la normalización de bases de datos?
 - A) La normalización consiste en organizar los datos de una base de datos en tablas para minimizar la redundancia y la dependencia de datos.
 - B) La normalización implica la combinación de múltiples bases de datos para simplificar la gestión de datos.
 - C) La normalización no tiene impacto en la integridad de los datos ni en la eficiencia del sistema.
 - D) La normalización aumenta la redundancia de datos y hace que la actualización de información sea más compleja.

1) persona: id, dni, nombre, apellido, fechanac, sexo, idciudad

ciudad: idciudad, nombre, idprovincia

provincia: idprov, nombre

censo: año, idpersonacensa, idzona

zona: id, nombre

detallecenso: idcenso, idpersona, fecha, presente, idjefefamilia

2) a)create table categorias

insert into categorias alter table medicos update medicos

drop column en medicos

b)select pa.nombreApellido, p.nombre, t.fecha. t.hora

from profesionales p

inner join turnos t on t.idprofesional = p.idprofesional

inner join pacientes

inner join especialidades e on e.idespecialidad = p.idespecialidad

where year(t.fecha) =2023 and idpaciente not in (select idpaciente from turnos)

c)select 'turno mañana' as franja, count(*)

from turno

inner join medicos

inner join especialidades e on e.idespecialidad = p.idespecialidad

where year(t.fecha)=2024 and month(t.fecha)=1 and t.hora<='12:00'

and e.nombre = 'cardiologia' and t.ispaciente is null

group by

union

select 'turno tarde', count(*)

from turno

inner join medicos

inner join especialidades e on e.idespecialidad = p.idespecialidad

where year(t.fecha)=2024 and month(t.fecha)=1 and t.hora>'12:00'

and e.nombre = 'cardiologia' and t.ispaciente is null

d) select e.nombre, month(t.fecha), count(*)

from turnos

inner join medicos

inner join especialidades e on e.idespecialidad = p.idespecialidad

where year(t.fecha)=2023 and t.idpaciente is not null

group by e.id, month(t.fecha)

having count(*) >25