

FUNCTIONS

Why

We want a notion for a correspondence between two sets.

Definition

A function f (or correspondence, mapping, map) from a set X to a set Y is a relationwhose domain is X and whose range is a subset of Y, such that for each $x \in X$,

- 1. there exists $y \in Y$ so that $(x, y) \in f$
- 2. if $(x,y) \in f$ and $(x,z) \in f$, then y=z; where y and z are in Y

We often summarize these two conditions by saying: to every element $x \in X$ there corresponds a unique element $y \in Y$ so that $(x, y) \in f$.

We call this unique element $y \in Y$ the result of the function at the argument x. We call Y a codomain—notice our use of the word "a", since the codomain is not a property of the function. If the range is Y we say that f is a function from X onto Y (or call f onto, surjective). If distinct elements of X are mapped to distinct elements of Y, we say that the function is one-to-one (or injective).

We say that the function *maps* (or *takes*) elements from the domain to the codomain. Since the word "function" and the verb "maps" connote activity, some authors refer to the set of ordered pairs as the *graph* of a function and avoid defining the term "function" as we have, in terms of sets.

Notation

Given sets X and Y, we abbreviate the statement that the object denoted by f is a function whose domain is a X and whose codomain is a set Y by

$$f:X\to Y$$

We read the notation aloud as "f from X to Y." We emphasize again that the range of f need not be Y, but must necessarily be a subset.

We denote by Y^X the set of functions from X to Y. This set is contained in the power set $\mathcal{P}((X \times Y))$. A reasonable but nonstandard notation is $X \to Y$, read as "A to B." All the following three statements have the same meaning:

$$f: X \to Y, \quad f \in Y^X, \quad f \in (X \to Y).$$

We tend to denote functions by lower case latin letters; especially f, g, and h. f is a mnemonic for function and g and h are nearby in the usual ordering of the Latin letters.

Suppose $f: A \to B$. For each element $a \in A$, we denote the result of applying f to a by f(a), read aloud "f of a." We sometimes drop the parentheses, and write the result as f_a , read aloud as "f sub a." Let $g: A \times B \to C$. We often write g(a, b) or g_{ab} instead of g((a, b)). We read g(a, b) aloud as "g of a and b". We read g_{ab} aloud as "g sub a b."

Examples

If $X \subset Y$, the function $\{(x,y) \in X \times Y \mid x=y\}$ is the *inclusion function* of X into Y. We often introduce such a function as "the function from X to Y defined by f(x) = y". We mean by this that f is a function and that we are specifying the appropriate ordered pairs using the statement, called *argument-value notation*. The inclusion function of X into X is called the *identity function* of X. If we view the identity function as a relation on X, it is the relation of equality on X.

The functions $f:(X\times Y)\to X$ defined by f(x,y)=x is the pair projection of $X\times Y$ ono X. Similarly $g:(X\times Y)\to Y$ defined by g(x,y)=y is the pair projection of $X\times Y$ onto Y.

The identity function is one-to-one and onto, the inclusion functions are one-to-one but not always onto, and the pair projections are usually not one-to-one.

