ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Τμήμα Επιστήμης Υπολογιστών ΗΥ280 – «Θεωρία υπολογισμού» – Α΄γραπτή εξέταση – Ιανουάριος 2013

Απαντήστε τα παρακάτω με τις απαραίτητες εξηγήσεις εκ μέρους σας:

ΘΕΜΑ 1°: Πεπερασμένα αυτόματα και ομαλές γλώσσες.

(1) 10% Έστω Λ μια ομαλή (= κανονική) γλώσσα επί ενός αλφαβήτου Σ , και έστω Λ_{α} οι λέξεις της Λ που έχουν άστιο μήκος, δηλαδή: $\Lambda_{\alpha} = \{ \lambda : \lambda \in \Lambda$, και $|\lambda| = 2\nu \}$. Είναι η γλώσσα Λ_{α} επίσης ομαλή;

Για να αποσπάσουμε από την Λ όσες (και μόνον) λέξεις έχουν άφτιο πλήθος συμβόλων, αφκεί να την τμήσουμε με την γλώσσα $A = \{ \lambda \in \Sigma^*, \mu \eta κος(\lambda) = άφτιο \}$. Αυτή η γλώσσα είναι ομαλή (την αναγνωρίζει ένα απλό αυτόματο με 2 καταστάσεις). Από θ . κλειστότητας και η $\Lambda_{\alpha} = \Lambda \cap A$ είναι ομαλή.

(2) 10% Έστω ότι η Λ είναι ομαλή γλώσσα, και $X \subseteq \Lambda$. Είναι και η γλώσσα X επίσης κατ' ανάγκην ομαλή;

Η γλώσσα $\{\alpha, \beta\}^*$ είναι ομαλή (προφανώς! – ένα αιτιοκρατικό αυτόματο με μία μόνον κατάσταση αρκεί...) αλλά το υποσύνολο της $\{\alpha^{(\kappa)}\beta^{(\kappa)}: \kappa \geq 1\}$ δεν είναι $(\beta\lambda.$ σημειώσεις). Άρα η πρόταση δεν ισχύει κατ' ανάγκην.

(3) 10% Έστω $\Sigma = \{ \alpha, \beta \}$. Είναι η γλώσσα $\Lambda = \{ \alpha^{(\kappa)}\beta^{(\lambda)} : \kappa + \lambda = \nu, \nu \ge 2 \}^{-1}$ ομαλή;

Ναι: η γλώσσα Λ περιέχει οποιαδήποτε (!) λέξη, αρκεί αυτή να έχει μήκος κ+λ από 2 και πάνω, και τα «α» να προηγούνται των «β». Μια ομαλή περιγραφή της είναι $\{\alpha\alpha\alpha^*\beta^*, \alpha\beta^*\}$.

(4) 10% Έστω Σ = { 1, 2, 4, 5, 7, 9} και Λ = { λ : $\lambda \in \Sigma^*$, και η λ ως δεκαδικός διαιρείται ακριβώς δια 7 }. Είναι η γλώσσα Λ ομαλή;

Είναι: Θα ορίσουμε γι' αυτήν ένα αυτόματο που έχει τις καταστάσεις 0, 1, 2, ..., 6 (τα πιθανά υπόλοιπα δια 7), με την «0» ως αρχική (και μόνη αποδεκτική) κατάσταση, τέτοιο ώστε μια λέξη λ να το οδηγεί στην κατάσταση ν εάν και μόνον εάν η λ ως δεκαδικός (δηλαδή ο αριθμός τιμή(λ)), διαιρούμενος δια 7 δίδει υπόλοιπο = ν . Εάν με την λ πάμε στην κατάσταση (λ .χ.) ν = 3, τότε τιμή(λ) = 7κ+3. Αν στη συνέχεια διαβάσουμε το ψηφίο '4' \in Σ, η νέα τιμή του λ ' = λ 4, είναι η: 10 τιμή(λ) + 4 = 10 (7κ+3) + 4 = 7(10κ) + 34 = 7(10κ+4) + 6, και το νέο υπόλοιπο είναι «6», άρα από « ν =3» μέσω σ = '4', μεταβαίνουμε στο « ν =6». Παρόμοια προσθέτουμε όλες τις άλλες μεταβάσεις για σ = 1, 2, 5, 7, 9.

(5) 10% Είναι το παρακάτω αυτόματο αιτιοκρατικό ή όχι; Αν όχι, μπορείτε να το τρέψετε σε αιτιοκρατικό με την προσθήκη ενός κόμβου-κατάσταση και οσωνδήποτε ακμών, χωρίς να αλλάξει η γλώσσα που ορίζει;

Δεν έχουμε κενές μεταβάσεις, και από κάθε κατάσταση φεύγει ακριβώς από μια ακμή για κάθε ένα σύμβολο – με εξαίρεση τις καταστάσεις K3 (δεν φεύγει «α»), και K4 (δεν φεύγει «β»). Προσθέτουμε μια νέα (μη-αποδεκτική) κατάσταση K, και τις μεταβάσεις K_3 –(α)-> K, K_4 –(β)-> K, K –(α)-> K, K –(β)-> K, και το νέο αυτόματο αποδέχεται την ίδια γλώσσα και είναι αιτιοκρατικό.

.

¹ σ(κ): το σύμβολο «σ» σε κ το πλήθος επαναλήψεις.

ΘΕΜΑ 2°: Ασυμφραστικές γλώσσες και γραμματικές.

 $(1) \quad 10\% \qquad \text{Esta Γ η exh $\xi h grammatikh e $\pi i tou almabhat h fou $\Sigma = \{$ α, β, γ, δ, ϵ, ζ \}, $ $\mu ϵ a $\phi $\epsilon $t $\eta e and $\delta c to I: $I \rightarrow X \mid \Upsilon, \quad X \rightarrow \alpha \ \beta \ \gamma \ Z \ I, \quad \Upsilon \rightarrow \alpha \ \beta \ \delta \ Z \ I, \quad Z \rightarrow Z \ \epsilon \mid \zeta$

Γοάψτε την ασυμφραστική γραμματική Γ σε αιτιοκρατική μορφή.

Apaleifoure to «δίλημμα» των X , Υ αντικαθιστώντας τον κανόνα $I\to X \perp \Upsilon$. με τους $I\to \alpha$ β Δ, και $\Delta\to \gamma\,Z\,I \mid \delta\,Z\,I.$

Απαλείφουμε την «αριστερή αναδρομή» $Z \to Z$ ε $\vdash \zeta$, αντικαθιστώντας την με τους $Z \to \zeta$ Z', $Z' \to ε$ Z' $\vdash \varnothing$.

- (2) 10% Έστω Γ η εξής γραμματική επί του Σ = { x, + , , × , ÷, 1, 2, ..., 9 }, με αφετηριακό σύμβολο το Ε: $E \to E \Pi E \mid x \Delta , \ \Pi \to + \mid \mid \times \mid \div , \ \Delta \to 1 \mid 2 \mid ... \mid 9$
 - α) Δώστε ένα συντακτικό δένδοο για τη λέξη $\lambda = x_1 x_2 + x_3 \times x_4$.
 - β) Δώστε όλα τα δυνατά συντακτικά δένδοα για την λ.

α) Ένα Σ.Δ. είναι το εξής (αριστερά),

β) και τα υπόλοιπα αντιστοιχούν (συνοπτικά) στα παραπάνω 4 (δεξιά).

(3) 10% Έστω ότι η Λ είναι μια ασυμφραστική γλώσσα επί του Σ = { α , β , γ , δ ,}, και Λ' = { λ : $\lambda \in \Lambda$, και η λ περιέχει τα σύμβολα α ή β (μόνον) μέχρις ενός σημείου, και τα σύμβολα γ ή δ (μόνον) από αυτό το σημείο και μετά}. Είναι η γλώσσα Λ' επίσης ασυμφραστική;

Η γλώσσα $T = \{ \alpha, \beta \} * \{ \gamma, \delta \} *$ είναι ομαλή, άρα η τομή της με την ασυμφραστική Λ είναι επίσης ασυμφραστική, (βλ. σημειώσεις, κλειστότητα ασυμφραστικών γλωσσών). Η τομή $\Lambda \cap T$ είναι η γλώσσα Λ' .

(4) 10% Γράψτε την εξής γραμματική (με αφετηριακό σύμβολο το I) σε κανονική μορφή Chomsky: $I \rightarrow \alpha \ \beta \ K, \ \ K \rightarrow \Lambda \ K \ M \ | \ \varnothing, \ \ \Lambda \rightarrow I \ \alpha, \ \ M \rightarrow \beta \ I$

Τελικά σύμβολα: $I \to \frac{\mathbf{A}\mathbf{B}}{\mathbf{K}}, \mathbf{K} \to \Lambda \mathbf{K}\mathbf{M} \mid \varnothing, \Lambda \to \mathbf{I}\mathbf{A}, \mathbf{M} \to \mathbf{B}\mathbf{I}, \mathbf{A} \to \alpha, \mathbf{B} \to \beta.$ $A\pi\alpha\lambda\epsilon\iota\phi\dot{\eta} X \to \varnothing: \qquad I \to \mathbf{A}\mathbf{B}\mathbf{K} \mid \mathbf{A}\mathbf{B}, \mathbf{K} \to \Lambda \mathbf{K}\mathbf{M} \mid \Lambda \mathbf{M}, \Lambda \to \mathbf{I}\mathbf{A}, \mathbf{M} \to \mathbf{B}\mathbf{I}, \mathbf{A} \to \alpha, \mathbf{B} \to \beta.$

Mόνο διπλά σύμβολα: I → $\frac{S}{S}$ K | AB, $\frac{S}{S}$ → $\frac{AB}{S}$, K → $\frac{T}{M}$ | ΛM, $\frac{T}{M}$ → $\frac{AK}{M}$, Λ → IA, M → BI, A → α, B → β.

(5) 10% Δώστε μια ασυμφοαστική γραμματική για τη γλώσσα επί του $\Sigma = \{ (,), \alpha, \beta, \gamma \}$, που περιέχει όλες και μόνον τις λέξεις με την εξής μορφή: $(\alpha ... \beta \gamma (\beta) (\gamma \gamma) \beta) (\alpha (\gamma \beta) \gamma ... \alpha (\beta) \alpha \beta)$, δηλαδή ένα κείμενο με ισορροπημένες παρενθέσεις, που περιέχει και οποιεσδήποτε υπολέξεις από τα σύμβολα α, β , γ ανάμεσα σε ένα οποιοδήποτε ζεύγος συνταιριασμένων παρενθέσεων και μόνον εκεί $-(\pi.\chi. \eta)$ λέξη $(\alpha) \beta (\gamma)$ δεν επιτρέπεται, λόγω της εμφάνισης του β).

Ένας τρόπος σκέψης είναι ο εξής:

η γραμματική των ισορροπημένων παρενθέσεων έχει την μορφή $I \to I$ (I) $I \to I$) $I \to I$ (I) $I \to I$) $I \to I$ ($I \to I$) $I \to I$) $I \to I$ ($I \to I$) $I \to I$ (I

 $\Pi \rightarrow \Pi \Pi \mid (1) \mid \emptyset$ $I \rightarrow KIK(KIK)K \mid \emptyset$ $K \rightarrow \alpha K \mid \beta K \mid \gamma K \mid \emptyset$