Date :-07/01/2022

Time:-25 Minutes

Exam Name :-MHTCET-

Mark :- 30

1to1Guru-1

1.	a	(A) For ideal gas PV = nRT $PV = \frac{m'}{M}RT = \frac{m'}{V} \cdot \frac{RT}{M}$ (where m' is the mass of the gas and M molecular weight) $\therefore P = \frac{\rho RT}{M}$ (where ρ is the density of the gas) $\therefore \rho = \frac{PM}{RT} = \frac{PM}{NKT}$ (where N is Avogadro number) $\therefore \rho = \frac{Pm}{KT}$ (where m = $\frac{M}{N}$ = mass of each molecule)
2.	c	(c) When atoms of an element are bombarded by neutrons, the atomic nuclei are (artificially) disintegrated and emit lighter particle (eg. α – particle, β – particle, proton etc.). Sometimes a neutron is observed by the nucleus which is converted into its heavier isotope and energy is emitted in the form of γ -photons. This process in which heavy nucleus is broken into two nearly equal fragments is called nuclear fission.
3.	c	As the bridge is balanced, $ \frac{R_{AB}}{R_{BC}} = \frac{R_{AD}}{R_{DC}} $ $ \therefore \frac{15+6}{(X 8)+3} = \frac{15+(6 6)}{4+(4 4)} $ $ \therefore \frac{21}{\left(\frac{8X}{8+X}\right)+3} = \frac{18}{4+2} $ $ \therefore 168+21 X = 33X+72 $ $ \therefore 12X = 96 \Rightarrow X = \frac{96}{12} = 8 \Omega $ (a) Power factor = $\cos \phi = \frac{R}{Z}$
4.	a	(a) Power factor = $\cos \phi = \frac{R}{Z}$ = $\frac{12}{15} = \frac{4}{5} = 0.8$
5.	d	(D) $I_L = \frac{v}{X_L}$ and $I_C = \frac{v}{X_C}$. 1to 1guru.com i.e. $I_L \propto \frac{1}{\omega}$ and $I_C \propto \omega$ \therefore With increase in ω , I_L decreases while I_C increases.
6.	c	(c) From 0 to 2 s: at any time $t, F = 10 t$ $\Rightarrow a = F/m = 10t/m$ $\Rightarrow \int_0^v dv = \int_0^t \frac{10t}{m} dt \Rightarrow v = \frac{5t^2}{m}$ Momentum: $P = mv = 5t^2$ At $t = 2$ s, $P = 5(2)^2 = 20$ kg ms ⁻¹ , $v = 20/m$ From 2 to 4 s; $F = 40 - 10 t$

		$\int_{20/m}^{v} dv = \int_{2}^{t} \frac{40 - 10t}{m} dt \implies v = \frac{1}{m} [40t - 40 - 5t^{2}]$
		$\int_{20/m} av = \int_{2} \frac{1}{m} av \Rightarrow v = \frac{1}{m} [40v - 40 - 5v]$
		$P = mv = 40t - 40 - 5t^2$
'.	c	
3.	b	(b) Electromeric effect occurs only in the presence of attacking reagent. It operates in the molecules having multiple bonds. Since, it exists only on the demand of attacking reagent it is a temporary effect. <i>e.g.</i> , —c N Attacking reagent — c N H
		active methylene group
	b	(b) H_3C — CH_2 — C — CH_2 — C — CH_3 — C —
		(like, $-CHO$, $> C = O$, $-COOH$, $-CN$, $-X$, etc), its acidity will increase due to $-I$ effect of
		the electron withdrawing groups.
0.	a	CH ₃ = C - O'Na' + Br - CH ₂ CH ₃ - Nah H ₃ C - C - O - CH ₂ = CH ₃ CH ₃ CH ₃ tert-Alkyl halides undergo elimination reaction with sodium alkoxides (strong bases) easily. (CH ₃) ₃ CBr NO ₂ H ₃ CP ₃ (H ₃ C) ₂ C = CH ₂ + ROH + NaBr. This will be the product in 'B'. 3° alcohols in presence of H ₃ SO ₄ can be easily dehydrated. Hence the alkene will result rather than the ether. An alkyl halide and an alcohol do not react to give ether.
1.	c	(c) Given, $\frac{p_2}{p_1} = 2$, $\frac{T_2}{T_1} = 2$, $V_1 = 4 \text{ dm}^3$, $V_2 = ?$ From gas equation $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$ or $\frac{V_1}{V_2} = \frac{p_2}{p_1} \times T_1/T_2$ $\therefore \frac{4}{V_2} = 2 \times \frac{1}{2} = 1$ $\therefore V_2 = 4 \text{ dm}^3$
2.	b	Hydrolysis of methyl acetate can be represented as CH ₃ COOH _(aq) + H ₂ O _(l) → CH ₃ COOH _(aq) + CH ₃ OH _(aq) The solvent (H ₂ O) participates in the reaction, and it is expected to have second order kinetics. But it follows first order kinetics, as the presence of huge amount of water, keeps its concentration unchanged. ∴ [H ₂ O] = constant = k ₁ ∴ rate = k [CH ₃ COOH] k ₁
3.	c	(C) The mixture is an acidic buffer; hence the pH would be less than 7.
4.	c	(3) The properties, which do not depend on the amount of substance, are called intensive property. <i>e.g.</i> , surface tension, viscosity etc.
5.	c	

		$ax^2 + 2hxy + by^2 = 0 \Rightarrow$
		$m_1 + m_2 = \frac{-2h}{b}$ and $m_1 m_2 = \frac{a}{b}$
		Now $(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4m_1m_2 \Rightarrow$
		$(m_1 - m_2)^2 = \frac{4h^2}{h^2} - \frac{4a}{h} = \frac{4h^2 - 4ab}{h^2}$
		But $4ab = 3h^2$, then
		$(m_1 - m_2)^2 = \frac{4h^2 - 3h^2}{b^2} = \frac{h^2}{b^2} \Rightarrow m_1 - m_2 = \frac{h}{b}$
		Now $2m_1 = \frac{-2h}{b} + \frac{h}{b} = \frac{-h}{b} \Rightarrow m_1 = \frac{-h}{2b}$ and
		$\frac{-h}{2b} + m_2 = \frac{-2h}{b} \Rightarrow m_2 = \frac{-3h}{2b} \Rightarrow$
		$m_1: m_2 = 1:3$
		$ \begin{aligned} \text{(a) I} &= \int \frac{dx}{5x^2 + 7} \\ &= \int \frac{dx}{4x} \end{aligned} $
16.	٩	$I = \int \frac{dx}{\left(\sqrt{5}x\right)^2 + \left(\sqrt{7}\right)^2}$
10.	, a	$I = \frac{1}{\sqrt{7}} \tan^{-1} \left(\frac{\sqrt{5}x}{\sqrt{7}} \right) \frac{1}{\sqrt{5}} + c$
		$I = \frac{1}{\sqrt{35}} \tan^{-1} \left(\frac{\sqrt{5}x}{\sqrt{7}} \right) + c$
17.	c	(c) Direction is not determinable, because if magnitude is zero we cannot determine where it moves, e.g. if displacement is zero
		$f(x) = x^5 \Rightarrow f'(x) = 5x^4$
		a = 4, h = 0.01
18.	c	$f(4) = 4^5 = 1024, f'(4) = 5(4)^4 = 1280$
10.		$f(4+0.01) = f(4) + hf'(4) \Rightarrow$
		$f(4.01) = 1024 + (0.01)(1280) = 1024 + 12.80 \Rightarrow$
	-	$(4.01)^5 = 1036.80$
		$A^{-1} = \frac{1}{ A } \text{ (adj A)} = \frac{1}{-1 + \sin^2 \alpha} \begin{bmatrix} -1 & -\sin \alpha \\ \sin \alpha & 1 \end{bmatrix}$
19.	c	
		$=\frac{1}{\cos^2\alpha}\begin{bmatrix}1&\sin\alpha\\-\sin\alpha&-1\end{bmatrix}$
		$ax^2 + 2hxy + by^2 = 0 \Rightarrow$
		-2h a
		$ \frac{m_1 + m_2 = \frac{1}{b} \text{ and } m_1 m_2 = \frac{1}{b}}{\text{One of the line given by } ax^2 + 2hxy + by^2 = 0 \text{ bisects}} $ $ 1 \text{guru.com} $
20.	h	the angle between co-ordinate axes, then line is
20.	וט	$y=x\Rightarrow m_1=-1$
		Now $-m_2 = \frac{a}{b} \Rightarrow m_2 = \frac{-a}{b}$ and
		$-1 - \frac{a}{b} = \frac{-2h}{b} \Rightarrow a + b = 2h \Rightarrow (a + b)^2 = 4h^2$
21.	c	$\frac{\pi}{}$
		(c) $I = \int_{0}^{2} \frac{\cos x}{(1 + \sin x)(2 + \sin x)} dx$
		Put $\sin x = t$, $\cos x dx = dt$
-	-	

$$I = \int_{0}^{1} \frac{1}{(1+t)(2+t)} dt$$

$$I = \int_{0}^{1} \frac{-1}{2+t} dt + \int_{0}^{1} \frac{1}{1+t} dt$$

$$I = [\log(t+1) - \log(t+2)] \Big|_{0}^{1}$$

$$I = \left[\log\left(\frac{t-1}{t+2}\right)\right] \Big|_{0}^{1}$$

$$I = \log\left(\frac{2}{3}\right) - \log\left(\frac{1}{2}\right)$$

$$I = \log\left(\frac{4}{3}\right)$$

$$(c) \text{ Here, } \lim_{h \to 0} \frac{(a+h)^{2} \sin(a+h) - a^{2} \sin a}{h}$$

$$= \lim_{h \to 0} \left[\frac{a^{2} \left\{\sin(a+h) - \sin a\right\}}{h} + \frac{h\left\{2a \sin(a+h) + h \sin(a+h)\right\}}{h}\right]$$

$$= \lim_{h \to 0} \frac{a^{2} \cdot 2 \cos\left[a + \frac{h}{2}\right] \cdot \sin\frac{h}{2}}{2 \cdot \frac{h}{2}} + \lim_{h \to 0} (2a+h) \sin(a+h)$$

$$= a^{2} \cos a + 2a \sin a$$

GURU

www.1to1guru.com