110A HW5

Warren Kim

Winter 2024

Question 1

Let R be a ring and $I \subseteq R$ be an ideal. Let $J \subseteq R$ be an ideal such that $I \subseteq J$, and let $\overline{J} \subseteq \overline{R} = R/I$ be an ideal.

- 1. Show that $\pi^{-1}(\pi(J)) = J$ and $\pi(\pi^{-1}(\overline{J})) = \overline{J}$. [Recall $\pi: R \to R/I$ is the canonical projection.]
- 2. Let $\overline{J} = \pi(J)$. Let $\pi: R \to R/I$ and $\phi: \overline{R} \to \overline{R}/\overline{J}$ be canonical projections. Show that $\ker(\phi \circ \pi) = J$.

Response

Proof: Let R be a ring and $I \subseteq R$ be an ideal. Let $J \subseteq R$ be an ideal such that $I \subseteq J$, and let $\overline{J} \subseteq \overline{R} = R/I$ be an ideal.

(1) $\pi^{-1}(\pi(J)) = J$: Let $a \in \pi^{-1}(\pi(J))$. Then by definition of the pre-image under π , there exists $x \in J$ such that $\pi(a) = \pi(x) \in \pi(J)$, or a + I = x + I, which implies that $a - x \in I \subseteq J$, so $a \in J$. Since a was arbitrary, $\pi^{-1}(\pi(J)) \subseteq J$. Now let $b \in J$. Then by definition, $\pi(b) = b + I$. Then, $\pi^{-1}(\pi(b)) = \pi^{-1}(b + I)$ but by definition of the pre-image, $\pi^{-1}(b + I) = b \in \pi^{-1}(\pi(J))$. Since b was arbitrary, $J \subseteq \pi^{-1}(\pi(J))$. Since we have $\pi^{-1}(\pi(J)) \subseteq J$ and $\pi^{-1}(\pi(J)) \supseteq J$, $\pi^{-1}(\pi(J)) = J$.

 $\pi(\pi^{-1}(\overline{J})) = \overline{J}$: Let $a + I \in \pi(\pi^{-1}(\overline{J}))$. Then there exists $x \in R$ such that $x \in \pi^{-1}(\overline{J})$ and $\pi(x) = a + I \in \overline{J}$. Since a was arbitrary, $\pi(\pi^{-1}(\overline{J})) \subseteq \overline{J}$. Now let $b + I \in \overline{J}$. Then by definition, b + I is in the image of J under π , so $b \in \pi^{-1}(\overline{J})$. Then $\pi(\pi^{-1}(b + I)) = \pi(b) = b + I \in \pi(\pi^{-1}(\overline{J}))$. Since b + I was arbitrary, $\overline{J} \subseteq \pi(\pi^{-1}(\overline{J}))$. Since $\pi(\pi^{-1}(\overline{J})) \subseteq \overline{J}$ and $\pi(\pi^{-1}(\overline{J})) \supseteq \overline{J}$, $\pi(\pi^{-1}(\overline{J})) = \overline{J}$.

(2) Let $\overline{J}=\pi(J)$. Let $\pi:R\to R/I$ and $\phi:\overline{R}\to\overline{R}/\overline{J}$ be canonical projections. Take $a\in J$. Then $\phi\circ\pi(a)=\phi(\pi(a))=\phi(a+I)=(a+I)+\overline{J}$, but since $a+I\in\overline{J}$, we have that $(a+I)+\overline{J}=0+\overline{J}\in\ker(\phi\circ\pi)$. Since a was arbitrary, $J\subseteq\ker(\phi\circ\pi)$. Now take any $b\in R$ such that $\phi\circ\pi(b)=0+\overline{J}$. Then, $(b+I)+\overline{J}=0+\overline{J}$. Then by definition, $b+I\in\overline{J}=\pi(J)$ by assumption. Then b+I is the image of J under π , so $b\in\pi^{-1}(\overline{J})=\pi^{-1}(\pi(J))=J$. Since b was arbitrary, $\ker(\phi\circ\pi)\subseteq J$. Since $b\in\pi(\phi\circ\pi)$ and $b\in\pi(\phi\circ\pi)$, $b\in\pi(\phi\circ\pi)$.

Question 2

Let $m, n \in \mathbb{Z}$ be nonzero. Show that (m, n) = 1 if and only if $\mathbb{Z}/mn \cong \mathbb{Z}/m \times \mathbb{Z}/n$.

Response

(\Longrightarrow) Let $m, n \in \mathbb{Z}$ be nonzero such that $\gcd(m, n) = 1$. Let $R = \mathbb{Z}$, I = (m), and J = (n). Then I + J = R since we can represent (1) := (m)x + (n)y for some $x, y \in Z$. Then $R/(I \cap J) \simeq (R/I) \times (R/J)$ but since I + J = R, $I \cap J = IJ$, so $R/IJ \simeq (R/I) \times (R/J)$. Substituting I, J, R, we get $\mathbb{Z}/mn \simeq \mathbb{Z}/m \times \mathbb{Z}/n$.

(\iff) Let $\mathbb{Z}/mn \simeq \mathbb{Z}/m \times \mathbb{Z}/n$. Suppose for the sake of contradiction that $d = \gcd(m, n) > 1$. Since $\mathbb{Z}/mn \simeq \mathbb{Z}/m \times \mathbb{Z}/n$, there exists a bijection $f : \mathbb{Z}/mn \to \mathbb{Z}/m \times \mathbb{Z}/n$. Consider $([m]_m, [n]_n) = ([0]_m, [0]_n) \in \mathbb{Z}/m \times \mathbb{Z}/n$. Then since f is bijective, there exists $x \in \mathbb{Z}/mn$ such that $f([x]_{mn}) = ([0]_m, [0]_n)$. Put $x := d \cdot \min\{m, n\}$. Without loss of generality, assume n < m. Then $f([x]_{mn}) = f([dn]_{mn}) = ([dn]_m, [dn]_n) = ([0]_m, [0]_n)$ since $d \mid m$ and $d \mid n$ by definition. Because d < m, $[dn]_{mn} = [x]_{mn} \neq [0]_{mn}$. Since $\ker(f) \neq \{0\}$, f is not injective and therefore not bijective, a contradiction.

Question 3

Let R be a (commutative) ring and $I_1, I_2, I_3 \subseteq R$ be ideals such that $I_1 + I_3 = R$ and $I_2 + I_3 = R$. Show that $(I_1 \cap I_2) + I_3 = R$.

Response

Let R be a commutative ring ant $I_1, I_2, I_3 \subseteq R$ be ideals such that $I_1 + I_3 = R$ and $I_2 + I_3 = R$. $(I_1 \cap I_2) + I_3 \subseteq R$: Take $a \in (I_1 \cap I_2) + I_3$. Then since $I_1 + I_3 = R$ and $I_2 + I_3 = R$, $a \in R$ since $a \in I_1 + I_3 = R$ and $a \in I_2 + I_3 = R$.

 $R \subseteq (I_1 \cap I_2) + I_3$: Pick any $x \in R$. Since $I_1 + I_3 = R$ and $I_2 + I_3 = R$, there exist $a \in I_1$, $b \in I_2$, $c, d \in I_3$ such that a + c = 1 and b + d = 1. Then

$$1 = (a+c)(b+d)$$
$$= ab + ad + cb + cd$$
$$1 = ab + ((ad+cb) + cd)$$

Then $ab \in I_1 \cap I_2$ because $a \in I_1$, we have $ab \in I_1$, and similarly, $b \in I_2$. Also, $(ad + cb) + cd \in I_3$ since $cd \in I_3$, so $ab + ((ad + cb) + cd \in (I_1 \cap I_2) + I_3$. Then multiplying by x on both sides, we get $x(ab) + x((ad + cb) + cd) = x \in (I_1 \cap I_2) + I_3$.

Since $(I_1 \cap I_2) + I_3 \subseteq R$ and $(I_1 \cap I_2) + I_3 \supseteq R$, $(I_1 \cap I_2) + I_3 = R$.

Question 4

Let R be a (commutative) ring and let $I_1, I_2, I_3 \subseteq R$ be ideals. Suppose that $I_i + I_j = R$ for $i \neq j$. Let a_1, a_2, a_3 be any ideals. Show that there is some $x \in R$ such that

$$x \equiv a_1 \mod I_1$$

 $x \equiv a_2 \mod I_2$
 $x \equiv a_3 \mod I_3$.

Response

Let R be a commutative ring and let $I_1, I_2, I_3 \subseteq R$ be ideals where $I_i + I_j = R$ for $i \neq j$. Let $a_1, a_2, a_3 \in R$. Then $I_1 + I_2 = R$, $I_1 + I_3 = R$, and $I_2 + I_3 = R$, so

$$(I_2 \cap I_3) + I_1 = R$$

 $(I_1 \cap I_3) + I_2 = R$
 $(I_1 \cap I_2) + I_3 = R$

from (Question 3). Then there exist

$$p \in I_1, q \in I_2 \cap I_3$$
 such that $p + q = 1_R$
 $r \in I_2, s \in I_1 \cap I_3$ such that $r + s = 1_R$
 $u \in I_3, v \in I_1 \cap I_2$ such that $u + v = 1_R$

Define $x := a_1(qu) + a_2(ps) + a_3(rv)$. Then

$$x = a_1(qu) + a_2(ps) + a_3(rv) \equiv a_1(qu) \pmod{I_1}$$
 $ps \in I_1, rv \in I_1 \cap I_3 \subseteq I_1$
 $x = a_1(qu) + a_2(ps) + a_3(rv) \equiv a_2(ps) \pmod{I_2}$ $rv \in I_2, qu \in I_2 \cap I_3 \subseteq I_2$
 $x = a_1(qu) + a_2(ps) + a_3(rv) \equiv a_3(rv) \pmod{I_3}$ $qu \in I_3, ps \in I_1 \cap I_3 \subseteq I_3$

so

$$x \equiv a_1 \pmod{I_1}$$

 $x \equiv a_2 \pmod{I_2}$
 $x \equiv a_3 \pmod{I_3}$

1 Midterm Review — Do NOT turn this stuff in.

Note: Just like all other homework problems, the problems above are fair game for the midterm!

- 1. Let R be a commutative ring. We say that $r \in R$ is <u>nilpotent</u> if there is some n > 0 such that $r^n = 0$.
 - (a) Let $P \subseteq R$ be a prime ideal. Show that if $r \in R$ is nilpotent, then $r \in P$.
 - (b) Let $N \subseteq R$ be the set of all nilpotent elements of R. Show that N forms an ideal.
- 2. Let R be any nonzero ring. Show that R has a subring that is isomorphic to \mathbb{Z} or \mathbb{Z}/n (for some positive integer n > 0).
- 3. Let R be a ring and let I_1, I_2, I_3, \cdots be ideals such that the ideals are nested in an ascending manner: $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$. Show that $\bigcup_{i=1}^{\infty} I_i$ is an ideal.

Proof:

- (a) Since I_i is an ideal, $0 \in I_i \subseteq \bigcup_{i=1}^{\infty}$.
- (b) Take $a, b \in \bigcup_{i=1}^{\infty}$. Then $a \in I_j$, $b \in I_k$ for some j, k. Without loss of generality, let $j \leq k$. Then $a + b \in I_k \subseteq \bigcup_{i=1}^{\infty}$.
- (c) Take $a \in \bigcup_{i=1}^{\infty}$, $r \in R$. Then $a \in I_j$ for some j and since I_j is an ideal, $ar, ra \in I_j \subseteq \bigcup_{i=1}^{\infty}$.

Since (a) - (c) are satisfied, $\bigcup_{i=1}^{\infty}$ is an ideal.

- 4. Let $m, n, d \in \mathbb{Z}$. Show the following are equivalent:
 - (a) There is a homomorphism $f: \mathbb{Z}/d \to \mathbb{Z}/m \times \mathbb{Z}/n$;
 - (b) We have m|d and n|d.

Proof: (\Longrightarrow) Let $f: \mathbb{Z}/d \to \mathbb{Z}/m \times \mathbb{Z}/n$ be a homomorphism defined by

$$f([x]_d) = ([x]_m, [x]_n)$$

Then $f([0]_d) = ([0]_m, [0]_n)$. Take k = k + 1 to get

$$f([k+1]_d) = f([k]_d + [1]_d) = f([k]_d) + f([1]_d) = ([k]_n, [k]_m) + ([1]_n, [1]_m) = ([k+1]_m, [k+1]_n)$$

Then $f([d]_d) = f([0]_d) = ([0]_m, [0]_n)$, so $m \mid d$ and $n \mid d$. (\iff) Let $m \mid d, n \mid d$. Then define $f: \mathbb{Z}/d \to \mathbb{Z}/m \times \mathbb{Z}/n$ by

$$f([x]_d) = ([x]_m, [x]_n)$$

Well-defined: Suppose $[x]_d = [y]_d$. Then $x \equiv y \pmod{d}$. By definition, $d \mid x - y$. Then since $m \mid d$ and $n \mid d$, $m \mid x - y$ and $n \mid x - y$, or $x \equiv y \pmod{m}$ and $x \equiv y \pmod{n}$. Then $f([x]_d) = ([x]_m, [x]_n) = ([y]_m, [y]_n) = f([y]_d)$, so f is well-defined.

Homomorphism:

(a) Take $a, b \in \mathbb{Z}/d$. Then

$$f([a+b]_d) = ([a+b]_m, [a+b]_n) = ([a]_m, [a]_n) + ([b]_m, [b]_n) = f([a]_d) + f([b]_d)$$

(b) Take $a, b \in \mathbb{Z}/d$. Then

$$f([a \cdot b]_d) = ([a \cdot b]_m, [a \cdot b]_n) = ([a]_m, [a]_n) \cdot ([b]_m, [b]_n) = f([a]_d) \cdot f([b]_d)$$

(c)
$$f([1]_d) = ([1]_m, [1]_n).$$

so f is a homomorphism.