Apprentissage et classification monotone

Laura Nguyen

LFI

19 juillet 2018

Classification monotone

- Classifieur monotone :
 - Exploiter au mieux l'éventuelle monotonie de la classe par rapport aux valeurs d'attributs
 - Classifieur aussi monotone que possible et maintenant de bonnes performances
- Concepts sémantiques : préférence, priorité, importance...
- Applications :
 - Prédiction du risque de faillite
 - Evaluation du prix de biens immobiliers
 - Cote de crédit
- Pazzani et al. (2001) :
 - ► Etude auprès des experts (médecins)
 - Gain d'interprétabilité
 - Performances équivalentes

Exemple de problème de classification monotone

Potharst & Feelders (2002)

client	revenu	éducation	casier judiciaire	prêt
cl1	faible	faible	juste	non
cl2	faible	faible	excellent	faible
cl3	moyen	intermédiaire	excellent	intermédiaire
cl4	élevé	faible	excellent	élevé
cl5	élevé	intermédiaire	excellent	élevé

Formalisation

- Entrées :
 - n exemples : $\Omega = \{\omega_1, ..., \omega_n\}$
 - ► m attributs ordonnés : $A = (a_1, ..., a_m)$. Pour j = 1, ..., m:
 - ★ $a_i : \Omega \to X_i$ avec X_i totalement ordonné
 - ★ Espace de description $X = X_1 \times ... \times X_m$
 - k classes : $C = c_1, ..., c_k$
- Sortie :
 - ▶ Fonction de classification monotone $\lambda: X \to C$

Dataset artificiel à un attribut monotone

Classification par arbres de décision

- Pas d'hypothèse sur les données
- Exploiter au mieux l'éventuelle gradualité
- Classification par arbres de décision
 - ► Choisir *a_j* respectant le plus la contrainte de monotonie locale :

$$\forall \omega_i, \omega_h \in \Omega, a_j(\omega_i) \leq a_j(\omega_h) \Rightarrow \lambda(\omega_i) \leq \lambda(\omega_h)$$

Pas de garantie d'avoir un classifieur globalement monotone

Mesures de discrimination à rang

- Problème : incapacité des mesures de discrimination classiques à détecter la monotonie
- Chercher des mesures de discrimination sensibles à la monotonie et robustes au bruit non-monotone
 - Généralisation à rang de mesures classiques (Shannon, Gini)
 - ► Modèle de construction hiérarchique :

$$H^*(\lambda|a_j) = h^*(g^*(f^*(\omega_1)), ..., g^*(f^*(\omega_n)))$$

Ensembles dominants

- Classes d'équivalence générées par, :
 - un attribut $a_i : [\omega_i]_{a_i} = \{\omega_h \in \Omega : a_i(\omega_i) = a_i(\omega_h)\}$
 - ▶ la classe λ : $[\omega_i]_{\lambda} = \{\omega_h \in \Omega : \lambda(\omega_i) = \lambda(\omega_h)\}$
- Ensembles dominants générés par, :
 - un attribut $a_j : [\omega_i]_{a_i}^{\leq} = \{\omega_h \in \Omega : a_j(\omega_i) \leq a_j(\omega_h)\}$
 - ▶ la classe $\lambda : [\omega_i]^{\leq}_{\lambda} = \{\omega_h \in \Omega : \lambda(\omega_i) \leq \lambda(\omega_h)\}$

Ensembles dominants : exemple

Soit le dataset suivant :

ω_i	a_1	<i>a</i> ₂	λ
ω_1	1	5	1
ω_2	1	7	1
ω_3	2	8	1
ω_4	5	9	2
ω_5	5	7	2
ω_6	4	6	2

• L'ensemble dominant généré par a_1 pour ω_3 est :

$$[\omega_3]_{a_1}^{\leq} = \{\omega_3, \omega_4, \omega_5, \omega_6\}$$

• L'ensemble dominant généré par λ pour ω_3 est :

$$[\omega_3]^{\leq}_{\lambda} = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$$

Généralisation à rang de l'entropie de Shannon

• Entropie conditionnelle de Shannon :

$$H_s(\lambda|a_j) = \sum_{i=1}^{|\Omega|} \frac{1}{|\Omega|} \left(\log \left(\frac{|[\omega_i]_{\lambda} \cap [\omega_i]_{a_j}|}{|[\omega_i]_{a_j}|} \right) \right)$$

• Entropie de Shannon à rang :

$$H_s^*\left(\lambda|a_j\right) = \sum_{i=1}^{|\Omega|} \frac{1}{|\Omega|} \left(\log \left(\frac{|[\omega_i]_\lambda^{\leq} \cap [\omega_i]_{a_j}^{\leq}|}{|[\omega_i]_{a_j}^{\leq}|} \right) \right)$$

Modèle de construction hiérarchique de mesures de discrimination à rang Marsala & Petturiti (2015)

- Isoler les propriétés d'une telle mesure
- Créer de nouvelles mesures
- Structure fonctionnelle commune avec 3 fonctions
 Pour a_i fixé :
 - ▶ f* : mesure de monotonie locale de l'objet
 - ▶ g* : mesure de non-monotonie locale de l'objet
 - ▶ h* : agrégation de mesures de non-monotonie locale

Ecriture générique :

$$H^*(\lambda|a_j) = h^*(g^*(f^*(\omega_1)), ..., g^*(f^*(\omega_n)))$$

Couche f^*

Pour $a_j \in A$ fixé,

$$\bullet \ \mathit{dsr}(\omega_i) = \frac{|[\omega_i]_{\lambda}^{\leq} \cap [\omega_i]_{a_j}^{\leq}|}{|[\omega_i]_{a_j}^{\leq}|}$$

$$\bullet \; \mathit{mindsr}(\omega_i) = \frac{\mathit{min}_{\omega_h \in [\omega_i]_{a_j}} |[\omega_h]_{\lambda}^{\leq} \cap [\omega_h]_{a_j}^{\leq}|}{|[\omega_i]_{a_j}^{\leq}|}$$

$$\bullet \ \ \textit{maxdsr}(\omega_i) = \frac{\textit{max}_{\omega_h \in [\omega_i]_{a_j}} | [\omega_h]_{\lambda}^{\leq} \cap [\omega_h]_{a_j}^{\leq} |}{|[\omega_i]_{a_j}^{\leq}|}$$

$$\bullet \ \textit{avgdsr}(\omega_i) = \frac{\displaystyle\sum_{\omega_h \in [\omega_i]_{a_j}} \frac{|[\omega_h]_{\lambda}^{\leq} \cap [\omega_h]_{a_j}^{\leq}|}{|[\omega_i]_{a_j}^{\leq}|}}{|[\omega_i]_{a_j}^{\leq}|}$$

Réécriture des mesures de discrimination à rang

•
$$H_S^*(\lambda|a_j) = \sum_{i=1}^n \frac{1}{n} (-\log(dsr(\omega_i)))$$

• $f_S^* = dsr(\omega_i)$
• $g_S^* = -\log(f_S^*(\omega_i))$
• $h_S^* = \sum_{i=1}^n \frac{1}{n} g_S^*(f_S^*(\omega_i))$
• $H_P^*(\lambda|a_j) = \sum_{i=1}^n \frac{1}{n} (-\frac{\log(mindsr(\omega_i))}{mindsr(\omega_i)})$
• $f_P^* = mindsr(\omega_i)$
• $g_P^* = -\frac{\log f_P^*(\omega_i)}{f_P^*(\omega_i)}$
• $h_P^* = \sum_{i=1}^n \frac{1}{n} g_P^*(f_P^*(\omega_i))$

Construction d'arbres de décision monotones Marsala & Petturiti (2015)

- Classifieur RDMT(H) paramétré par :
 - Une mesure de discrimination H
 - ▶ 3 critères de pré-élagage : partitionnement, arrêt, étiquetage
- Critère de partitionnement (splitting rule)
 - ▶ Chaque attribut a_j est binarisé : $\forall x \in X_j$,

$$a_j^{\mathsf{x}}(\omega_i) = egin{cases} 0 & ext{if } a_j(\omega_i) \leq x \ 1 & ext{otherwise} \end{cases}$$

- ▶ Trouver $a_*^{x_*}$ minimisant $H(\lambda|a_i^x)$
 - ★ a_{*} est l'attribut utilisé pour le partionnement
 - ★ x_{*} est la valeur seuil :

$$x_* = arg min\{H(\lambda|a^x)|j=1,...,m,x \in X_i\}$$

Critère de partitionnement

Arbres de décision générés

Arbre généré par H_S^*

Arbre généré par H_S

RDMT(H) sur des datasets artificiels

RDMT(H) sur de vrais datasets

- Marsala, C. & Petturiti, D. (2015). Rank discrimination measures for enforcing monotonicity in decision tree induction. In *Information Sciences* 291, p. 143-171.
- Pazzani, M. J., Mani, S. & Shankle, W. R. (2001). Acceptance of rules generated by machine learning among medical experts. In *Methods of information in medicine* 40.05, p. 380-385.
- Potharst, R. & Feelders, A. J. (2002). Classification trees for problems with monotonicity constraints. In *ACM SIGKDD Explorations Newsletter* 4.1, p. 1-10.