

SF1625 Envariabelanalys Tentamen Tisdagen den 7 januari 2020

Skrivtid: 8.00-11.00 Tillåtna hjälpmedel: inga Examinator: Kristian Bjerklöv

Tentamen består av tre delar: A, B och C, som vardera ger maximalt 12 poäng. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade.

DEL A

- 1. (a) Låt $g(x) = \arcsin(\sqrt{x})$. Bestäm g:s definitionsmängd och bestäm g'(x). (2 p)
 - (b) Låt $f(x) = x + \arctan(x)$. Bestäm f:s definitionsmängd och värdemängd. Använd derivatan för att avgöra om funktionen f är inverterbar eller ej. (4 p)

2. (a) Beräkna
$$\int_{\pi^2}^{4\pi^2} \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$$
. (3 p)

(b) Funktionen f(x) uppfyller $f'(x) = x \ln(x)$ och f(1) = 1. Bestäm funktionen f(x). (3 p)

Del B

- 3. Låt $f(x) = xe^{-x}, x \ge 1$.
 - (a) Bestäm den punkt (x_0, y_0) på funktionsgrafen y = f(x) som gör arean av triangeln med hörn i $(0,0), (x_0,0)$ och (x_0,y_0) maximal. (4 p)
 - (b) Finns det någon punkt (x_1, y_1) på funktionsgrafen y = f(x) som gör arean av triangeln med hörn i $(0,0), (x_1,0)$ och (x_1,y_1) minimal? (2 p)
- 4. Låt $F(x) = \int_0^x e^{-t^2} dt$.
 - (a) Bestäm Taylorpolynomet av ordning 1 till F(x) omkring x = 0. (2 p)
 - (b) Bestäm ett närmevärde till F(1/2) som avviker högst 1/8 från det exakta värdet.

(4 p)

DEL C

5. (a) Visa att för alla heltal
$$n \ge 1$$
 gäller olikheten $\sum_{k=1}^n \frac{1}{k} > \ln(n)$. (3 p)

(b) Beräkna gränsvärdet (3 p)

$$\lim_{n \to \infty} \frac{1}{\ln(n)} \sum_{k=1}^{n} \frac{1}{k}.$$

- 6. Antag att funktionen f(x) är definierad på hela reella linjen och att $(f(x))^2 \le x^4 + x^6$ för alla x.
 - (a) Avgör om f måste vara kontinuerlig i punkten x = 0. (3 p)
 - (b) Avgör om f måste vara deriverbar i punkten x = 0. (3 p) Motivera dina svar med bevis eller motexempel.