Chemical Principles Atkins – Notes

Felipe B. Pinto 61387 – MIEQB 26 de junho de 2023

Conteúdo

Topic 17A Rates of Chemical re-		Exemplo 17B.2 1	10
actions	2	17B.3 Second-order reaction 2 A →	
17A.1 Monitoring the progress of a		P	11
reaction	3	17B.4 Second-order reaction A +	
Exemplo 17A.1 1	5	$B \longrightarrow P \dots \dots \dots$	12
17A.2 Definition of Rate	6	17B.5 n-th order reaction nA → P	13
Topic 17B Integrated Rate Laws	7	Topic 17C Reactions approaching	
17B.1 Zeroth-Order reaction A →		equilibrium	14
Р	8	17C.1 First-Order reactions appro-	
17B.2 First-order reaction A \longrightarrow P	9	aching equilibrium	15

Торі	c 17A –	Rates of Chemical reactions

17A.1 Monitoring the progress of a reaction

Exemplo 17A.1 1

Self test 17A.1

$$2 \operatorname{NOBr}_{(g)} \longrightarrow 2 \operatorname{NO}_{(g)} + \operatorname{Br}_{2(g)}$$

Resposta

$p({ m NOBr}_{({ m g})})$	$igg p(ext{NO}_{(ext{g})})$	$p(\mathrm{Br}_{2(\mathrm{g})})$	$oxed{p}$
p_0	0	0	p_0
$p_0 - 2 \Delta p$	$2 \Delta p$	Δp	$p_0 + \Delta p$
$3p_0 - 2p$	$2(p-p_0)$	$p-p_0$	
			$\Delta p = p - p_0$

17A.2 Definition of Rate

$$A + 2B \longrightarrow 3C + D$$

Rate for each substance

$$v=rac{ ext{d[D]}}{ ext{d}t}=rac{ ext{d}[ext{C}]}{ ext{d}t}=-rac{ ext{d}[ext{A}]}{ ext{d}t}=-rac{ ext{d}[ext{B}]}{ ext{d}t}$$

17A.2.1 Extend of reaction (ξ)

Define a universal rate of the reaction

$$\mathrm{d}n_J = v_J \; \mathrm{d}\xi$$

 v_J Is the stoichiometric number of the species

17A.2.2 Rate of reaction

$$v = rac{1}{V}rac{\mathsf{d}\xi}{\mathsf{d}t} = rac{1}{V\,v_J}rac{\mathsf{d}n_J}{\mathsf{d}t} \stackrel{=}{=} rac{1}{v_J}rac{\mathsf{d}[\mathsf{J}]}{\mathsf{d}t}$$

V Volume of the system

Heterogeneous reaction

$$v = rac{1}{v_J}rac{\mathrm{d}\sigma_J}{\mathrm{d}t} ~~ \sigma_J = rac{n_J}{A} ~~$$

A Surface area

Topic 17B -	Integrated Rate Laws

17B.1 Zeroth-Order reaction A → P

$$v=rac{ ext{d}[ext{P}]}{ ext{d}t}=-rac{ ext{d}[ext{A}]}{ ext{d}t}=k_r$$
 $[ext{A}]=egin{cases} [ext{A}]_0-k_r\,t & t\leq [ext{A}]_0/k_r\ 0 & t> [ext{A}]_0/k_r \end{cases}$

Intregration

$$\frac{d[A]}{dt} = -k_r \implies$$

$$\implies \int d[A] = \Delta[A] = [A] - [A]_0 = -\int k_r dt = -k_r \Delta t = -k_r t \implies$$

$$\implies [A] = [A]_0 - k_r t$$

$$egin{align} v &= rac{ ext{d}[ext{P}]}{ ext{d}t} = -rac{ ext{d}[ext{A}]}{ ext{d}t} = k_r \, [ext{A}] \ &\lnrac{[ext{A}]}{[ext{A}]_0} = -k_r \, t \iff [ext{A}] = [ext{A}]_0 \, e^{-k_r \, t} \ \end{aligned}$$

Intregration

$$\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -k_r [\mathrm{A}] \implies$$

$$\implies \int \frac{\mathrm{d}[\mathrm{A}]}{[\mathrm{A}]} = \Delta \ln [\mathrm{A}] = \ln \frac{[\mathrm{A}]}{[\mathrm{A}]_0} = -\int k_r \, \mathrm{d}t = -k_r t \implies$$

$$\implies [\mathrm{A}] = [\mathrm{A}]_0 e^{-k_r t}$$

17B.2.1 Reaction

Time, t

17B.2.2 Half Life

$$t_{1/2} = \frac{\ln 2}{k_r}$$

$$\ln \frac{[A]_0/2}{[A]_0} = \ln 1/2 = -\ln 2 = -k_r t_{1/2} \implies t_{1/2} = \frac{\ln 2}{k_r}$$

Exemplo 17B.2 1

The variation in the partial pressure of azomethane with time was followed at 600 K, with the results given below. Confirm that the decomposition $CH_3N_2CH_{3(g)} \longrightarrow CH_3CH_{3(g)} + N_{2(g)}$ is first-order in azomethane, and find the rate constant and half-life at 600 K.

t/s	0	1000	2000	3000	4000
p/Pa	10.9	7.63	5.32	3.71	2.59

Resposta

t/s	0	1000	2000	3000	4000
$ln(p/p_0)$	0	-0.357	-0.717	-1.08	-1.44

$$k_r \cong 3.5953*10^{-4}; \quad t_{1/2} = \frac{\ln 2}{k_r} \cong \frac{\ln 2}{3.5953*10^{-4}} \cong 1.93\,\mathrm{E3}\,\mathrm{s}$$

$$egin{aligned} v &= rac{ ext{d}[ext{P}]}{ ext{d}t} = -rac{ ext{d}[ext{A}]}{ ext{d}t} = k_r \left[ext{A}
ight]^2 \ rac{1}{[ext{A}]} &- rac{1}{[ext{A}]_0} = k_r \, t \iff [ext{A}] = rac{[ext{A}]_0}{1 + k_r \, t \, [ext{A}]_0} \end{aligned}$$

Intregration

$$\frac{d[A]}{dt} = -k_r [A]^2 \implies$$

$$\implies \int \frac{d[A]}{[A]^2} = \Delta (-[A]^{-1}) = [A]_0^{-1} - [A]^{-1} =$$

$$= -\int k_r dt = -k_r t \implies$$

$$\implies [A]^{-1} = k_r t + [A]_0^{-1} \iff [A] = \frac{[A]_0}{1 + k_r t [A]_0}$$

17B.3.1 Reaction

$$[P] = \frac{k_r t [A]_0^2}{1 + [A]_0 k_r t} \iff \frac{1}{[P]} - \frac{1}{[A]_0} = \frac{1}{k_r t [A]_0^2}$$

$$[A] = [A]_0 - [P] = \frac{[A]_0}{1 + k_r t [A]_0} \implies k_r t [A]_0 = \frac{[P]}{[A]_0 - [P]} \implies$$

$$\implies [P] = \frac{k_r t [A]_0^2}{1 + k_r t [A]_0} \iff \frac{[A]_0}{[P]} - 1 = \frac{1}{k_r t [A]_0}$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.$$

17B.3.2 Half life

$$t_{1/2}=rac{1}{k_r\left[\mathrm{A}
ight]_0}$$

17B.4 Second-order reaction $A + B \longrightarrow P$

$$v = rac{\mathrm{d[P]}}{\mathrm{d}t} = -rac{\mathrm{d[A]}}{\mathrm{d}t} = -rac{\mathrm{d[B]}}{\mathrm{d}t} = k_r \, [\mathrm{A}][\mathrm{B}]$$
 $\ln rac{[\mathrm{B}]/[\mathrm{B}]_0}{[\mathrm{A}]/[\mathrm{A}]_0} = ([\mathrm{B}]_0 - [\mathrm{A}]_0) \, k_r \, t \quad : \mathrm{A}_0
eq [\mathrm{B}]_0$

Note: Behaves as $2 A \longrightarrow P \text{ if } [A]_0 = [B]_0$

Integration

[A] [B] [P]

[A]₀ [B]₀ 0

[A]₀ -
$$x$$
 [B]₀ - x

$$\frac{d[A]}{dt} = \frac{d[A]_0 - x}{dt} = -\frac{dx}{dt} = \\
= -k_r [A][B] = -k_r ([A]_0 - x)([B]_0 - x) \implies \\
\implies \int_0^x \frac{dx}{([A]_0 - x)([B]_0 - x)} = \frac{1}{[B]_0 - [A]_0} \left(\ln \frac{[A]_0}{[A]_0 - x} - \ln \frac{[B]_0}{[B]_0 - x} \right) = \\
\stackrel{=}{\underset{[A]_0 \neq [B]_0}{=}} \frac{1}{[B]_0 - [A]_0} \left(\ln \frac{[A]_0}{[A]} - \ln \frac{[B]_0}{[B]} \right) = \frac{1}{[B]_0 - [A]_0} \ln \frac{[B]/[B]_0}{[A]/[A]_0} = \\
= \int_0^t k_r dt = k_r t \implies \\
\implies \ln \frac{[B]/[B]_0}{[A]/[A]_0} = ([B]_0 - [A]_0) k_r t$$

$$egin{align} v = rac{ ext{d}[ext{P}]}{ ext{d}t} = -rac{ ext{d}[ext{A}]}{ ext{d}t} = k_r \left[ext{A}
ight]^n \ k_r \, t = rac{1}{n-1} \left(\left(\left[ext{A}
ight]_0 - \left[ext{P}
ight]
ight)^{1-n} - \left[ext{A}
ight]_0^{1-n}
ight); \quad n \geq 2 \, . \end{align}$$

17B.5.1 Half life

$$t_{1/2} = rac{2^{n-1}-1}{\left(n-1
ight)k_r\left[\mathrm{A}
ight]_0^{n-1}}\quad:n>1$$

Topic 17C –	Reactions approaching equilibrium

17C.1 First-Order reactions approaching equilibrium

$$K = rac{[\mathrm{A}]_{\mathrm{eq}}}{[\mathrm{P}]_{\mathrm{eq}}} = rac{k_r}{k_r'} \quad egin{cases} [\mathrm{P}] = [\mathrm{A}]_0 - [\mathrm{A}] \ [\mathrm{P}]_0 = 0 \end{cases} \ [\mathrm{A}] = rac{[\mathrm{A}]_0}{k_r' + k_r} \left(k_r' + k_r \, \exp \left(-(k_r' + k_r) t
ight)
ight) \ [\mathrm{A}]_{\mathrm{eq}} = rac{[\mathrm{A}]_0}{(k_r/k_r') + 1}; \quad [\mathrm{P}]_{\mathrm{eq}} = rac{[\mathrm{A}]_0}{(k_r'/k_r) + 1} \ v = -rac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = k_r \, [\mathrm{A}] - k_r' \, [\mathrm{B}] \end{cases}$$

 $\mathbf{A} \stackrel{k_r}{===} \mathbf{P}$

integration

$$\frac{d[A]}{dt} = \\ = -k_r [A] + k'_r [P] \underset{P_0 = 0}{=} -k_r [A] + k'_r ([A]_0 - [A]) = -(k'_r + k_r) [A] + k'_r [A]_0 \implies \\ \frac{\int_{[A]_0}^{[A]} \frac{d[A]}{-(k'_r + k_r)[A] + k'_r [A]_0} = \\ = \int_{-(k'_r + k_r)[A]_0 + k'_r [A]_0}^{-(k'_r + k_r)[A]_1 + k'_r [A]_0} \frac{d[-(k'_r + k_r)[A]_1 + k'_r [A]_0)}{-(k'_r + k_r)[A]_1 + k'_r [A]_0} = \\ = \frac{-1}{k'_r + k_r} \Delta (\ln -(k'_r + k_r)[A] + k'_r [A]_0) = \\ = \frac{-1}{k'_r + k_r} \left(\ln \frac{-(k'_r + k_r)[A]_1 + k'_r [A]_0}{-(k'_r + k_r)[A]_0 + k'_r [A]_0} \right) = \\ = \frac{-1}{k'_r + k_r} \left(\ln \frac{-(k'_r + k_r)[A]_1 + k'_r [A]_0}{k_r} \right) = \\ = \frac{-1}{k'_r + k_r} \left(\ln \left(-(k'_r - k_r) \frac{[A]}{[A]_0} + k'_r \right) - \ln k_r \right) = \\ = \int_0^t dt = t \implies \\ \exp \left(\ln \left(-(k'_r + k_r) \frac{[A]}{[A]_0} + k'_r \right) \right) = -(k'_r + k_r) \frac{[A]}{[A]_0} + k'_r = \\ = \exp(-(k'_r + k_r)t + \ln k_r) = k_r \exp(-(k'_r + k_r)t) \implies \\ \implies [A] = \frac{[A]_0}{k'_r + k_r} (k'_r + k_r \exp(-(k'_r + k_r)t))$$

$$\lim_{t \to \infty} [A] = \frac{[A]_0}{k'_r + k_r} (k'_r + k_r * 0) = \frac{[A]_0 k'_r}{k'_r + k_r}$$

17C.1.1 Chain reactions