VISION powered smart cataloging of books

- Aritra Raut

My work has mainly two phases:

- 1.Book detection (From video inputs)
- 2. Optical character recognition

1. Book detection:

I have used YOLOv1 approach for object detection

 Original YOLOv1 was trained on PascalVOC dataset, which consists of 20 different class objects.

My Data ->

Details of my data:

Detail of my data:

For Training :::

Total no. of videos annotated - 31

Total no. of frames extracted - 4738

I have taken 1 per 10 images.

My dataset size - 474 images

train-validation split :- (80:20) → 379:95

Detail of my data:

```
For Testing :::
```

Total no. of videos annotated: 10

Total no. of frames: 1376

After reduction(by the same manner): 137

Detail of my data:

Initial inputs :::

(class_label , center_x , center_y , width
height)

- 1 0.35 0.32708333333333334 0.253125 0.29166666666666667
- 3 0.291666666666667 0.2515625 0.054166666666667 0.152777777777777
- 2 0.40185185185185185 0.3697916666666667 0.0828125 0.1638888888888888

Basic idea:

- Each picture
 is divided into
 S×S grids.
- Each cell will output a prediction with a corresponding bounding box

Basic idea:

We have to identify those cells which contains objects' mid points

How the ground truth vectors for each cell actually look like?

Probability that there is an object

The network \rightarrow

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

How the prediction vectors will look like?

Probability that there is an object

Loss function:

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Visualization of training and validation loss:

Visualization of mean avg. precision:

Result ->

Result ->

CUENTA GS

Applications in Biological and Matenals Systems

For this portion I have used python's pytesseract package

Evaluation (object detection):

Evaluation (optical character recognition):

What is edit distance?

Given two strings str1 and str2 and below operations that can performed on str1.

- 1.Insert
- 2.Remove
- 3.Replace

Find minimum number of edits (operations) required to convert 'str1' into 'str2'. That is basically called Edit distance

Thank You