

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Отчет по выполнению практического занятия 9

Тема: Рекурсивные алгоритмы и их реализация

Дисциплина: Структуры и алгоритмы обработки данных

Выполнил студент

Хвостов В. В.

Группа

ИКБО-01-20

Содержание

1	Ответы на вопросы				
2	Главное задание				
	2.1	Задача	1	4	
		2.1.1	Условие задачи	4	
		2.1.2	Постановка задачи	4	
		2.1.3	Описание алгоритма – рекуррентная зависимость	4	
		2.1.4	Коды используемых функций	5	
		2.1.5	Ответы на задания по задаче 1	6	
		2.1.6	Код программы	8	
		2.1.7	Результаты тестирования	8	
	2.2	Задача	2	ç	
		2.2.1	Условие задачи	ç	
		2.2.2	Постановка задачи	ç	
		2.2.3	Описание алгоритма – рекуррентная зависимость	ç	
		2.2.4	Коды используемых функций	ç	
		2.2.5	Ответы на вопросы задания 2	ç	
		2.2.6	Код программы	10	
		2.2.7	Результаты тестирования	11	
Вн	ыводн	Ы		12	
Cı	тисоч	. инфор	манионных источников	12	

Ответы на вопросы

Рекурсивная функция

Рекурсивная функция - числовая функция числового аргумента, которая в своём определении содержит себя же (математическое определение).

Рекурсивная функция - это функция, которая вызывает саму себя (в языках программирования).

Шаг рекурсии

Шаг рекурсии - это условие продолжения рекуррентного вызова.

Глубина рекурсии

Глубина рекурсии - это количество одновременно выполняемых процедур.

Условие завершения рекурсии

Условие завершения рекурсии - это условие, которое, при его выполнении, остановит вызов рекурсивной функции самой себя.

Линейная рекурсия

Линейная рекурсия - вид рекурсии, при которой рекурсивные вызовы на любом рекурсивном срезе, инициируют не более одного последующего рекурсивного вызова.

Каскадная рекурсия

Каскадная рекурсия - рекурсия, не являющаяся линейной. При каскадной рекурсии, рекурсивные обращения, как правило, приводят к необходимости многократно решать одни и те же подзадачи.

Прямая рекурсия

Прямая рекурсия вызывает алгоритм (функцию, процедуру) Р из текста самого алгоритма Р.

Косвенная рекурсия

Косвенная рекурсия - циклическая последовательность вызовов нескольких алгоритмов P_1, P_2, \ldots, P_n (функций, процедур) друг друга: P_1 вызывает P_2 , P_2 вызывает P_3, \ldots, P_n вызывает P_1 (n > 1).

Организация стека рекурсивных вызовов

Стек рекурсии - область памяти, в которую заносятся значения всех локальных переменных алгоритма (программы) в момент рекурсивного обращения. Каждое такое обращение формирует один слой данных стека. При завершении вычислений по конкретному обращению a из стека считывается соответствующий ему слой данных, и локальные переменные восстанавливаются, снова принимая значения, которые они имели в момент обращения a.

Главное задание

Вариант 10

2.1. Задача 1

2.1.1. Условие задачи

Вычислить значение цифрового корня для некоторого целого числа N.

2.1.2. Постановка задачи

Реализовать функцию вычисления произвольного корня для некоторого целого числа N.

2.1.3. Описание алгоритма – рекуррентная зависимость

Для реализации данной функции воспользуемся методом Ньютона из математического анализа, который позволяет найти приблизительное значение функции в конкретной точке (в нашем случае $f(x) = x^{\frac{1}{n}}$, где $n \in \mathbb{N}$). Рекуррентным соотношение в данном случае является формула

$$x_{k+1} = \frac{1}{n} \left((n-1)x_k + \frac{N}{x_k^{n-1}} \right).$$

где x_k - значение x на k шаге рекурсии. Чем больше количество вызовов рекурсии, тем точнее наш результат. Но т.к. компьютер ограничен в точности, то мы зададим условие выхода из рекурсии такое, чтобы разница между x_n и x_{n+1} была меньше определенной константы h, определенной ниже.

2.1.4. Коды используемых функций

```
#include <cmath>
#include < iostream >

constexpr long double h = 0.000000001; // 10^-8

double newtonsMethodRoot(double N, double x, double n) {
   double xn = 1/n * ((n-1)*x+N/std :: pow(x, n-1));
   if (std :: fabs (xn - x) <= h) {</pre>
```

```
return xn;
} else {
  return newtonsMethodRoot(N, xn, n);
}
```

2.1.5. Ответы на задания по задаче 1

Итерационный алгоритм решения задачи

Для решения данной задачи можно использовать алгоритм, который сравнивает разность текущего и предыдущего значения х с некоторой погрешностью в цикле и каждый раз считает новое значение корня n-ой степени, сохраняя предыдущее для следующей итерации.

Реализация в виде функции для итерационного алгоритма

```
double newtonsMethodRootIter (double N, double x, double n) {
    double xn = 0;
    double xprev = x;
    for (;;) {
        xn = 1/n * ((n-1)*xprev+N/std :: pow(xprev, n-1));
        if (std :: fabs (xprev - xn) <= h) {
            break;
        }
        xprev = xn;
    }
    return xn;
}</pre>
```

Теоретическая сложность алгоритма

Теоретическая сложность алгоритма равна $\Theta(d^p \lg d)$ т.к. каждый раз в цикле точность увеличивается примерное в p раз, а также $\Theta(d^p)$ - сложность выполнения возведения в степень(где p - степень корня, d - необходимая точность результата т.е. количество цифр после запятой).

Рекуррентная зависимость

Рекуррентная зависимость в данной задаче - значение корня k-ой степени, вычисленное на предыдущем шаге.

Реализация в виде функции для рекуррентного алгоритма

```
#include <cmath>
#include <iostream>

constexpr long double h = 0.00000001; // 10^-8

double newtonsMethodRoot(double N, double x, double n) {
   double xn = 1/n * ((n-1)*x+N/std :: pow(x, n-1));
   if (std :: fabs (xn - x) <= h) {
      return xn;
   } else {
      return newtonsMethodRoot(N, xn, n);
   }
}</pre>
```

Глубина рекурсии

Условием выхода из рекурсии является вычисление корня с необходимой точностью т.е. из теоретической сложности получаем, что глубина алгоритма = $\lg d$ (т.к. на каждом уровне происходит умножением со сложностью $\Theta(d^p)$).

Определение сложности рекурсивного алгоритма

Определим сложность рекурсивного алгоритма с помощью метода постановки и дерева рекурсии. Пусть у нас на вход подается какое-то число с количеством знаков в результате d. Построим для него дерево (рис. 1). Суммируя все

Рис. 1 - Дерево рекурсии для задания 1

узлы дерева, получаем сложность $\Theta(d^p \lg d)$ (т.к. глубина дерева = $\lg d$).

Пример схемы рекурсивных вызовов

Рис. 2 - Пример рекурсии задания 1

2.1.6. Код программы

2.1.7. Результаты тестирования

Таблица 1 - Тестирование задачи 1

Номер теста	Входные данные	Ожидаемый результат	Результат выполнения программы
1	Число: 24, Степень: 2	4.89898	2 power root = 4.89898
2	Число: 1324, Степень: 3	10.9807	3 power root = 10.9807
3	Число: 256, Порядок: 4	4	4 power root = 4

2.2. Задача 2

2.2.1. Условие задачи

Найти в двунаправленном списке количество четных элементов.

2.2.2. Постановка задачи

Реализовать функцию поиска количества четных элементов в двунаправленном списке.

2.2.3. Описание алгоритма – рекуррентная зависимость

Для решения задачи с помощи рекурсии каждый раз мы будем рассматривать элемент в списке, на который наш указатель хранит адрес, проверять является ли он четным, и затем вызывать рекурсивно эту же функцию, но для следующего элемента. Алгоритм заканчивает свою работу при достижении конца списка.

2.2.4. Коды используемых функций

2.2.5. Ответы на вопросы задания 2

Глубина рекурсии

Глубина рекурсии равна n т.е. размеру списка т.к. нам требуется пройти по всему списку для подсчета количества четных элементов.

Теоретическая сложность алгоритма

Теоретическая сложность алгоритма равна $\Theta(n)$ т.к. мы полностью проходим список 1 раз.

2.2.6. Код программы

```
template < typename Number>
void generateRandomList ( std :: list <Number>& list ) {
  std :: random_device rd;
  std :: mt19937 gen(rd());
  std :: uniform_int_distribution <Number> dist(1, n);
  for (int i = 0; i < n; ++i) {
    list . push back( dist (gen));
template < typename T>
std:: ostream & operator << (std:: ostream & stream, const std:: list <T>& list) {
  for (const auto& elem: list) {
    stream << elem << " ";
  return stream;
int main() {
  int x = 0;
  std :: list < int > list ;
  generateRandomList ( list );
  std :: cout << "Random generated list : " << list << '\n';
  countEvenElementsListRec ( list . cbegin (), list . cend(), x);
  std:: cout << "Count of the even elements in list = " << x << '\n'; // the list, I know
  return 0;
```

2.2.7. Результаты тестирования

Таблица 2 - Тестирование задачи 2

Номер теста	Входные данные	Ожидаемый результат	Результат выполнения программы
1	Список: 7 10 7 7 5 6 1 4 6 4	5	Random generated list: 7 10 7 7 5 6 1 4 6 4 Count of the even elements in list = 5
2	Список: 1 1 5 7 9 1 2 1 10 8	3	Random generated list: 1 1 5 7 9 1 2 1 10 8 Count of the even elements in list = 3
3	Список: 6 7 4 2 9 7 3 6 2 4	6	Random generated list: 6 7 4 2 9 7 3 6 2 4 Count of the even elements in list = 6

Выводы

В ходе выполнения работы были получены практические навыки по разработке рекурсивных алгоритмов. В соответствии с персональным вариантом, были созданы и проанализированы следующие рекурсивные (и итеративные) алгоритмы: функция подсчета корня n-ой степени, подсчет количества четных чисел в двунаправленном списке. Каждая рекурсивная функция прошла тестирование успешно, что подтверждает правильную работу алгоритмов.

Список информационных источников

- 1. Thomas H. Cormen, Clifford Stein и другие: Introduction to Algorithms, 3rd Edition. Сентябрь 2009. The MIT Press.
- 2. Олег Смирнов: Анализ рекуррентных соотношений . Октябрь 2011. https://nord.org.ua/static/course/algo 2011/lecture2.pdf.
- Nth root // Wikipedia
 [Электронный ресурс]. URL:
 https://en.wikipedia.org/wiki/Nth root (Дата обращения: 07.05.2021)
- 4. Kypc Algorithms, part 2 // Coursera [Электронный ресурс]. URL: https://www.coursera.org/learn/algorithms-part2 (Дата обращения: 07.05.2021)