Contents

1	Chapter 5 Solution						
	1.1	Problem 5.3			2		
	1.2	Problem 5.4			2		
	1.3	Problem 5.5			2		
2	Cha	oter 6 Solution			3		
	2.1	Problem 6.2					
	2.2	Problem 6.3			3		
	2.3	Problem 6.4			٠		
	2.4	Problem 6.6			4		
		Problem 6.7			4		
	2.6	Problem 6.8			4		
		Problem 6.9			-		
		Problem 6.10			Į.		
		Problem 6.11			-		
		Problem 6.12			, [
		Problem 6.13					

Chapter 1

Greedy algorithm

1.1 Problem 5.3

Run DFS on the graph to detect a cycle edge. Return YES as soon as a cycle edge is found. Else, if there is no cycle edge, return NO.

This algorithm has O(|V|) runtime because we note that G is either a tree (in which case |E| = |V| - 1) or it is not (in which case |E| > |V| - 1).

- If G is a tree then we will not be able to detect any back edge. DFS will traverse the entire graph, which takes O(|V| + |E|), but because |E| = |V| 1, this is O(|V|).
- If G is not a tree then we can find a back edge after traversing at most |V| edges because the edges picked by DFS form a tree, and any tree in the original graph can have at most |V| vertices.

1.2 Problem 5.4

We note that a connect component with m vertices must have at least m-1 edges¹.

Let the number of vertices in component i be m_i , i = 1, 2, ..., k. We have $\sum_{i=1}^{k} m_i = n$.

The number of edges in the graph is the total number of edges in all components, which is at least

$$\sum_{i=1}^{k} (m_i - 1) = n - k.$$

1.3 Problem 5.5

- (a) We follow Kruskal's algorithm to build the minimum spanning tree: at each step, pick the edge with the least weight that does not create a cycle. Because all edge weights are increased by 1, the weight of any edge relative to all other edges is the same, so Kruskal's will produce the same result.
- (b) The shortest path will change. Consider the quadrilateral ABCD with

$$AB = BC = CD = 2, AD = 7.$$

Currently the shortest path from A to D is $A \to B \to C \to D$. If we increase the weight of all edges by 1 then AB = BC = CD = 3, DA = 8, so the shortest path from A to D is the $A \to D$.

¹since the component is connected, we can build a minimum spanning tree in it; this tree has m vertices and m-1 edges, so the number of edges in the component must be at least m-1.

Chapter 2

Dynamic programming

2.1 Problem 6.2

Let b[i] be the minimum total penalty for stopping at hotel a_i , $1 \le i \le n$. We have

$$b[i] = \min_{1 \le j < i} \{b[j] + (200 - (a[i] - a[j]))^2\}.$$

Also record the value j which yields $\min_{1 \le j < i} \{b[j] + (200 - (a[i] - a[j]))^2\}$ and set b[i]. Prev = b[j]. Backtrack from b[n] to get the sequence of hotels to stop by.

2.2 Problem 6.3

Let S[i] be the maximum total profit we get from building some restaurants in $\{m_1, m_2, \ldots, m_i\}$. Consider 2 cases:

- (1) If restaurant m_i should not be built, then S[i] = S[i-1].
- (2) If restaurant m_i should be built, then let c_i be the maximum index j which yields $m_i m_j \ge k$. We then have $S[i] = p_i + S[c_i]$.

Therefore in general,

$$S_i = \max\{S[i-1], p_i + S[c_i]\}.$$

To get the sequence of restaurants, keep an array R[n] such that R[i] = 1 if restaurant i is built in the optimal solution, and R[i] = 0 otherwise. When we calculate S[i], if the max falls to case (1), R[i] = 0. Else, R[i] = 1. Output all the R[i]s that are 1.

2.3 Problem 6.4

Consider an array S[n] where S[i] = true if the substring $s_1 s_2 \dots s_i$ is a valid string, and false otherwise. We have S[1] = dict(s[1]) and

$$S[i] = (S[1] \&\& dict(s[2 .. i]) \ ||(S[2] \&\& dict(s[3..i]) \ || ... \ ||(S[i-1] \&\& dict(s[i..i]))),$$

where s[j..i] is $s_j s_{j+1} ... s_i$.

2.4 Problem 6.6

Let the input string be $x_1x_2...x_n$.

Let $Z = \{a, b, c\}$ and let $T[i, j] \subset Z$ be the set of the possible values that the product $x_i x_{i+1} \dots x_j$ can yield with all possible parenthesizations.

We see that $T[i, i] = x_i$ for all $1 \le i \le n$. We need to compute T[1, n].

Define $A \times B$ as $\{a \cdot b | a \in A, b \in B\}$.

We note that $T[i, i+1] = T[i, i] \bigcup T[i+1, i+1]$ and $T[i, i+2] = (T[i, i] \times T[i+1, i+2]) \bigcup (T[i, i+1] \times T[i+2, i+2])$ (to put it another way, abc can be written as (a)(bc) or (ab)(c)).

We therefore see that we already have

$$T[1,1], T[2,2], T[3,3], \ldots,$$

from which we can calculate

$$T[1,2], T[2,3], T[3,4], \ldots,$$

from which we can calculate

$$T[1,3], T[2,4], T[3,5], \dots$$

and eventually we can expand to T[1, n], which is what we need to find. In other words,

$$T[i, i+s] = \bigcup_{i \le k < i+s} (T[i, k] \times T[k+1, i+s]).$$

The algorithm is as follows:

```
for i = 1 to n: T[i,i] = x[i].
for s = 1 to n-1:
  for i = 1 to n - s:
    T[i, i + s] = empty
    for k = 1 to i + s - 1:
        T[i, i + s] = T[i, i + s] UNION (T[i, k] * T[k+1,s])
If a is in T[1,n] return true. Else, return false.
```

2.5 Problem 6.7

Let the input string be $x_1x_2...x_n$. Let T[i,j] be the length of the longest palindromic subsequence in x[i..j]. We have

$$\begin{cases} T[i.i] = 1 \\ T[i, i+1] = 2 \text{ if } x[i] = x[i+1] \text{ and } 0 \text{ if } x[i] \neq x[i+1] \\ T[i, j] = T[i+1, j-1] + 2 \text{ if } x[i] = x[j] \text{ and } \max\{T[i+1, j], T[i, j-1]\} \text{ else} \end{cases}$$

2.6 Problem 6.8

Let E[i, j] be the length of the largest common substring of $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$ such that $x_i = y_j$. We see that E[1, j] = 1 if $x_1 = y_j$ and 0 otherwise. Similarly, E[j, 1] = 1 if $y_1 = x_j$ and 0 otherwise. In general, we have

$$E[i,j] = \begin{cases} E[i-1, j-1] + 1 & \text{if } x_i = y_j \\ 0 & \text{if } x_i \neq y_j \end{cases}$$

2.7 Problem 6.9

Let the input string be x[0..n-1] and the input breakpoint array be y[1..m]. Convert y to y[0..m+1] and let y[0] = -1, y[m+1] = n-1.

Let M(i,j) be

$$\begin{cases} M(i,i) = 0, \ \forall i : 0 \le i \le m+1 \\ M(i,i+1) = 0, \ \forall i : 0 \le i \le m+1 \\ M(i,j) = (y[j] - y[i]) + \min_{l:i < l < j} \{M(i,l) + M(l,j)\} \end{cases}$$

2.8 Problem 6.10

Let E[i, j] be the probability of obtaining exactly i heads when j coins c_1, c_2, \ldots, c_j with head-probability p_1, p_2, \ldots, p_j are tossed. We have

$$\begin{cases} E[0,0] = 1 \\ E[0,j] = E[0,j-1] \cdot (1-p_j) \ \forall 1 \le j \le n \\ E[i,0] = 0 \ \forall 1 \le i \le k \\ E[i,j] = p_j \cdot E[i-1,j-1] + (1-p_j) \cdot E[i,j-1] \end{cases}$$

2.9 Problem 6.11

Let E[i,j] be the longest common subsequence of $x_1x_2...x_j$ and $y_1y_2...y_j$. We have E[1,j]=1 if $x_1=y_j$, for all $1 \le j \le m$. Similarly, E[j,1]=1 if $x_j=y_1$, for all $1 \le j \le n$. In general we have

$$E[i,j] = \begin{cases} E[i-1,j-1] + 1 \text{ if } x_i = y_j \\ \max\{E[i-1,j] + E[i,j-1]\} \text{ if } x_i \neq y_j. \end{cases}$$

2.10 Problem 6.12

Let d[i, j] be the distance between point i and j. We have

$$\begin{cases} A[i,i] = 0 \\ A[i,i+1] = 0 \\ A[i,i+2] = 0 \\ A[i,j] = \min_{i < k < j} \{A[i,k] + A[k,j] + d[i,k] + d[k,j]\} \end{cases}$$

2.11 Problem 6.13

A sequence where a greedy approach would fail is

Let E[i,j] be the maximum value the first player can have by picking cards from the set of cards $s_i, s_{i+1}, \ldots, s_j$.

We see that E[i, j] = 0 if $i \le j$. In general,

$$E[i,j] = \max\{v_i + \min\{E[i+2,j] - v_{i+1}, E[i+1,j-1] - v_j\},\$$

$$v_j + \min\{E[i+1,j-2] - v_{j-1}, E[i+2,j-1] - v_{i+1}\}\}.$$