Department of Atmospheric Sciences National Central University Advanced Applied Mathematics Homework IV 2021/10/27-2021/11/10

(1) 10 pts. 一質點被限制在 $\phi(x,y,z)=0$ 所代表的曲面上運動。假設在 0 到 T 的時間內,該質點由 (x_1,y_1,z_1) 移動到 (x_2,y_2,z_2) ,且其動能 $\frac{1}{2}(\dot{x}^2+\dot{y}^2+\dot{z}^2)$ 随時間的累積量為最小。試證明此質點運動的座標 滿足: $\frac{\ddot{x}}{\phi_x}=\frac{\ddot{y}}{\phi_y}=\frac{\ddot{z}}{\phi_z}$

A particle is confined to move only along the surface represented by $\phi(x, y, z) = 0$. Suppose from time 0 to T, this particle moves from (x_1, y_1, z_1) to (x_2, y_2, z_2) . During this period of time, its kinematic energy $\frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$, after being accumulated over time, is a minimum. Please prove that the coordinate of this particle's movement will satisfy:

$$\frac{\ddot{x}}{\phi_x} = \frac{\ddot{y}}{\phi_y} = \frac{\ddot{z}}{\phi_z}$$

- (2) 30 pts. $J = \int_{x_1}^{x_2} [p(x)y'^2 q(x)y^2] dx$
 - (a) 約束條件 $\int_{x_1}^{x_2} r(x) y^2 dx = 1$,邊界條件在 $x = x_1, x_2$ 處已給定。 證明使 $\delta J = 0$ 的 Euler eq.為 $\frac{d}{dx} \left(p \frac{dy}{dx} \right) + (q + \lambda r) y = 0$,其中 λ 為一常數。

If the constraint is $\int_{x_1}^{x_2} r(x)y^2 dx = 1$, with x being specified at the boundaries $x = x_1$, x_2 , prove that in order to let $\delta J = 0$, the Euler equation is $\frac{d}{dx} \left(p \frac{dy}{dx} \right) + (q + \lambda r)y = 0$ where λ is a constant.

(b) 利用(a)的結果,如欲使 $\delta \int_0^{\pi} y'^2 dx = 0$,且受到 $\int_0^{\pi} y^2 dx = 1$ 的約束,已知邊界條件 y(0) = 0, $y(\pi) = 0$

證明 $y = \sqrt{\frac{2}{\pi}} \sin nx$, 為本題的 Euler eq. , 其中 n 是一不為零的整數。

Using the result from (a), suppose we want to let $\delta \int_0^{\pi} y'^2 dx = 0$, and subject to the constraint $\int_0^{\pi} y^2 dx = 1$, with known boundaries conditions y(0) = 0, $y(\pi) = 0$, prove that $y = \sqrt{\frac{2}{\pi}} \sin nx$ is the Euler equation for this problem, where n is a non-zero integer.

(c) 如果沒有 $\int_0^\pi y^2 dx = 1$ 這個約束條件,證明(b)中的解變成 $y \equiv 0$.(a trivial solution)

If the constraint $\int_0^{\pi} y^2 dx = 1$ does not exist, prove that the solution in (b) becomes a trivial solution $y \equiv 0$.

(3) 10 pts. 一物體質量 m,在空間中受重力 g 牽引鉛直下降。

令
$$L = T - V = m \left(\frac{1}{2} \dot{x}^2 + gx \right)$$
 , x 為下降距離。

請證明會使得 L 由時間 t_1 到 t_2 的累積量為最小的 Euler-Lagrange Equation ,就是控制此物體移動的運動方程式。

A particle with mass *m* falls down due to the gravity.

Let $L = T - V = m \left(\frac{1}{2} \dot{x}^2 + gx \right)$ where x is the falling distance. Prove

that the Euler-Lagrange Equation which can make L accumulating from time t_1 to t_2 reach a minimum is also the governing equation for the movement of this particle.