More on Principal Component Analysis

Low-rank matrix approximation

minimize $||x-\hat{x}||_F^2$ subject to $rank(\hat{x}) = r$ $x_1...x_n$ represent the observed signal appoximate by $\hat{x}_1...\hat{x}_n$ \$\hat{x}_1...\hat{x}_n belong to an r-dimensional plane (=) \hat{x} low rank

The observed signal plane appoximate by
$$\hat{x}_1 ... \hat{x}_r$$
 (=) $\hat{x}_1 |_{\text{low rank}}$ for $\hat{x}_2 |_{\text{low rank}}$ Solution: $\hat{x}_1 = \hat{x}_2 |_{\text{low rank}}$ (x) $\hat{x}_2 = \mathcal{U}_{(r)} \mathcal{D}_{(r)} |_{\text{low rank}} |_{\text{lo$

Example: flags

2 De-noising X is actually low-rank, but we observe only "noisy" version of X.

Input data X.

Approximation $\hat{X} = SVDr(X)$

(3) Imputation of missing values.

Netflix competition: Build a recommendation system

Data: n = 480/89 customers, p = 17770 movies 1% of values observed

Low-rank matrix completion

Denote Sec 11... ny x 11... pr the set of observed

entries in X.
Example:
$$X = \begin{pmatrix} NA & 1 \\ O & NA \\ NA & 2 \end{pmatrix}$$
 $\Omega = \{(1,2), (2,1), (3,2)\}$

The approximation error: $\sum_{(i,j)\in\Omega} (\chi_{ij} - \chi_{ij}^2)^2 = ||W*(\chi-\chi)||_F^2$

Example:
$$W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sum_{(i,j) \in \mathcal{L}} (X_{i,j} - \hat{X}_{i,j}) = \sum_{i=1}^{n} \sum_{j=1}^{p} (W_{i,j} \cdot (X_{i,j} - \hat{X}_{i,j}))^{2}$$

Hard-impute algorithm

minimize $\|W*(x-\hat{x})\|_F^2$ Subject to $rank(\hat{x}) = r$

Input: matrix
$$X \in \mathbb{R}^{h \times p}$$
 and rank Γ ,
and orbitrary $\hat{X} \in \mathbb{R}^{h \times p}$.

Step 1 $Y = W + X + (1 - W) + \hat{X}$ \(\text{ repeat until } \)

Step 2 $\hat{X} = SVD_r(y)$ \(\hat{X} \)

Output: \hat{X}

Hard-impute steps:

- · impute missing values in X with the elements from X
- · make & low-rank.

Example
$$X = \begin{pmatrix} NA & 1 \\ 0 & NA \\ NA & 2 \end{pmatrix}$$
 $W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\hat{X} = \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$

$$\frac{Step 1}{1 - W} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow y = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & d \\ e & 0 \end{pmatrix} = \begin{pmatrix} a & 1 \\ 0 & d \\ e & 2 \end{pmatrix}$$

$$\frac{Step 2}{2} \hat{X} = SVD_r(y)$$

 $| y = UDV^T \hat{\chi} = U_{cr}, D_{rr}, V_{rr}^T = \begin{pmatrix} \alpha' \beta' \\ c', \alpha' \\ e', f' \end{pmatrix}$ Computational trick: if there are many missing values and r is small, use $y = W \times (X - \hat{\chi}) + \hat{\chi}$

Store only $(X_{ij} - \hat{X}_{ij})$ for $(i,j) \in SZ$ Store only $(X_{ij} - \hat{X}_{ij})$ for $(i,j) \in SZ$ "Soft" low-rank problem

① minimize $||x-x'||_F^2$ subject to rank(x) = r

Controlling rank(x) \iff Controlling number of non-zero Singular values (i.e. $d_i > 0$)

Idea: lets control $\stackrel{\circ}{\underset{i=1}{\sum}} a_i$ instead $\stackrel{\circ}{\underset{}{=}}$ control the nuclear norm $||\hat{x}||_{*}$

② minimize $\|X - \hat{X}\|_F^2 + \lambda \|\hat{X}\|_*$ penalty factor

Solution:
$$\hat{X} = SVD_r(X)$$
 Solution: $\hat{X} = S_A(X)$

$$X = \begin{bmatrix} X & X & X \\ X & V & V \end{bmatrix}$$

1) rank(x)=-

$$\hat{\mathbf{X}} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{v} \end{bmatrix}$$

$$\hat{X} = \begin{bmatrix} \hat{V} & \hat{V}^T \\ \hat{V}^T & \hat{V}^T \end{bmatrix}$$

$$\hat{X} = \begin{bmatrix} \hat{V} & \hat{V}^T \\ \hat{V}^T & \hat{V}^T \end{bmatrix}$$

$$\hat{X} = \begin{bmatrix} \hat{V} & \hat{V}^T \\ \hat{V}^T & \hat{V}^T \end{bmatrix}$$

$$\hat{X} = \begin{bmatrix} \hat{V} & \hat{V}^T \\ \hat{V}^T & \hat{V}^T \end{bmatrix}$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_{r+1} \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_r \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_r \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_r \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r, d_r \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r \dots d_r \dots d_r)$$

$$\hat{X} = \alpha \log (d_1 \dots d_r \dots$$

2 ... + A // X 11*

$$\hat{X} = \bigcup_{\mathcal{D}^*} \bigcup_{\mathcal{V}^T} \bigcup_$$

D*= diag ((d,-1)+... (dp-1)+)

Soft - impute algorithm

minimize ||W*(x-x)||_F + A //x //*

Input: matrix $X \in \mathbb{R}^{h \times p}$ and penalty λ .

and orbitrary $\hat{X} \in \mathbb{R}^{h \times p}$.

Step 1 $Y = W + X + (1 - W) + \hat{X}$ 1 repeat

Step 1 $Y = W * X + (1-W) * \hat{X}$ repeat until

Step 2 $\hat{X} = S_{\hat{X}}(Y)$ \hat{X} converges

Dutput: \hat{X}

Parameter λ balances off the approximation error and the "rank" of \hat{X} $| \lambda \to 0 \Rightarrow X = \hat{X} \quad \text{and} \quad \lambda \uparrow \Rightarrow \text{rank}(\hat{X}) \downarrow$

Cinematch: in-house Netflix algorithm