ANTIBODY TO HUMAN PARATHYROID HORMONE-RELATED PEPTIDE

Publication number: JP11092500 (A)

Publication date: 1999-04-06

JP3416035 (B2)

Also published as:

Inventor(s): SATO ISAO; WAKAHARA YUJI; YABUTA HISAHIRO

Applicant(s): CHUGAI PHARMACEUTICAL CO LTD

Classification:

- international: C12N15/02; A61K38/00; A61K39/395; A61P3/00; A61P3/14;

A61P35/00; C07H21/04; C07K16/18; C07K16/26; C07K16/46; C12N1/21; C12N5/00; C12N5/10; C12N15/09; C12P21/08; C12R1/19; C12R1/91; C12N15/02; A61K38/00; A61K39/395; A61P3/00; A61P35/00; C07H21/00; C07K16/18; C07K16/46; C12N1/21; C12N5/00; C12N5/10; C12N15/09; C12P21/08; A61K38/00; (IPC1-7): A61K38/00; C07K16/46; A61K39/395; C07H21/04; C07K16/18; C07K16/26; C12N1/21; C12N5/10; C12N15/02; C12N15/09; C12P21/08; C12N1/21; C12R1/19;

C12N5/10; C12R1/91; C12P21/08; C12R1/91

- European:

Application number: JP19970258739 19970924

Priority number(s): JP19970258739 19970924; JP19960255196 19960926;

JP19970214168 19970724

Abstract of JP 11092500 (A)

PROBLEM TO BE SOLVED: To obtain the subject new antibody having a chimeral L-strand including a human antibody L-strand C-domain and a mouse anti-human parathyroid hormone-related peptide monoclonal antibody L-strand V-domain, low in antigenicity, and useful for e.g. hypercalcemia and hypophosphatemia. SOLUTION: This new antibody is composed of a chimeral L-strand including a human antibody L-strand C-domain and a mouse monoclonal antibody L-strand V-domain to human parathyroid hormone related peptide, and a chimeral H- strand including a human antibody H-strand C-domain and a mouse monoclonal antibody H-strand V-domain to the human parathyroid hormone-related peptide. This new antibody is low in antigenicity in humans, and useful as, e.g. an inhibitor for hypercalcemia involved in malignant tumors or an improver for hypophosphatemia such as hypophosphatemic rachitis.; This new antibody is obtained by ligating a cloned mouse V-domain sequence with a human antibody C-domain sequence integrated into an expression vector followed by transferring the ligation product into host cells and then expressing it.

Data supplied from the esp@cenet database — Worldwide

(51) Int.Cl.⁶

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

 \mathbf{F} I

(11)特許出願公開番号

特開平11-92500

(43)公開日 平成11年(1999)4月6日

-	DAYN, I DIT , 1					
C 0 7 K 16/46			C07K 1	16/46		
A 6 1 K 39/395	ADU		A61K 3	39/395	ADUN	
C 0 7 H 21/04			C07H 2	21/04	В	
C 0 7 K 16/18			C07K 1	16/18		
16/26			1	16/26		
		審查請求		頁の数84 OL	(全 73 頁)	最終頁に続く
(21)出願番号 特願平9-258739			(71)出願人			
(22)出顧日	平成9年(1997)9月24日			中外製薬株式会 東京都北区浮間		1号
			(72)発明者	佐藤 功		
(31)優先権主張番号	特願平8-255196			静岡県御殿場下	市駒門1丁目	135番地 中外
(32)優先日	平8 (1996) 9 月26日			製薬株式会社区	勺	
(33)優先権主張国	日本(JP)		(72)発明者	若原 裕二		
(31)優先権主張番号	+ 特願平9−214168			静岡県御殿場市	市駒門1丁目	135番地 中外
(32)優先日	平 9 (1997) 7 月24日			製薬株式会社内	勺	
(33)優先権主張国	日本(JP)		(72)発明者	薮田 尚弘		
				静岡県御殿場下	制門1丁目	135番地 中外
				製薬株式会社内	勺	
			(74)代理人			1名)

(54) 【発明の名称】 ヒト副甲状腺ホルモン関連ペプチドに対する抗体

識別記号

(57)【要約】

【課題】 ヒト副甲状腺ホルモン関連ペプチドに対する 抗体の提供。

【解決手段】 ヒト副甲状腺ホルモン関連ペプチドに対 する抗体、該抗体をコードするDNA、該DNAを含む 組換えベクター、該組換えベクターにより形質転換され た形質転換体、該抗体の製造方法、及び該抗体の用途。

【特許請求の範囲】

【請求項1】 ヒト抗体のL鎖C領域、及びヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体のL鎖V領域を含むキメラL鎖。

【請求項2】 L鎖V領域が配列番号45で表されるアミノ酸配列を含むものである請求項1記載のキメラL鎖。

【請求項3】 C領域がCλ領域である請求項1記載の キメラL鎖。

【請求項4】 ヒト抗体のH鎖C領域、及びヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル 抗体のH鎖V領域を含むキメラH鎖。

【請求項5】 H鎖V領域が配列番号46で表されるアミノ酸配列を含むものである請求項4記載のキメラH鎖。

【請求項6】 C領域が $C\gamma$ 1領域である請求項4記載のキメラH鎖。

【請求項7】 請求項 $1\sim3$ のいずれか1項に記載のキメラL鎖、及び請求項 $4\sim6$ のいずれか1項に記載のキメラH鎖を含む、ヒト副甲状腺ホルモン関連ペプチドに対するキメラモノクローナル抗体。

【請求項8】 ヒト抗体のL鎖V領域のフレームワーク領域 $1\sim4$ 、及びヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体のL鎖V領域の相補性決定領域 $1\sim3$ を含む、ヒト型化抗体のL鎖V領域を含むポリペプチド。

【請求項9】 相補性決定領域 $1\sim3$ がそれぞれ配列番号 $59\sim61$ で表されるアミノ酸配列を含むものである、請求項8記載のポリペプチド。

【請求項10】 フレームワーク領域 $1\sim3$ がそれぞれ ヒト抗体HSU03868のフレームワーク領域 $1\sim3$ 由来のものであり、かつ、フレームワーク領域4がヒト抗体S25755のフレームワーク4由来のものである、請求項8記載のポリペプチド。

【請求項11】 フレームワーク領域1~3がそれぞれ ヒト抗体HSU03868のフレームワーク領域1~3と実質的 に同一のものであり、かつ、フレームワーク領域4がヒト抗体S25755のフレームワーク領域4と実質的に同一のものである、請求項8記載のポリペプチド。

【請求項12】 フレームワーク領域中のKabat の規定による第36番目のアミノ酸がチロシンであり、かつ、同第49番目のアミノ酸がアスパラギン酸である、請求項8記載のポリペプチド。

【請求項13】 配列番号48~51で表されるいずれかの アミノ酸配列を含む、請求項12記載のポリペプチド。

【請求項14】 フレームワーク領域中のKabat の規定による第45番目のアミノ酸がリジンであり、かつ、同第87番目のアミノ酸がイソロイシンである、請求項8記載のポリペプチド。

【請求項15】 配列番号52~55で表されるいずれかの アミノ酸配列を含む、請求項14記載のポリペプチド。

【請求項16】 ヒト抗体のH鎖V領域のフレームワー

ク領域1~4、及びヒト副甲状腺ホルモン関連ペプチド に対するマウスモノクローナル抗体のH鎖V領域の相補 性決定領域1~3を含む、ヒト型化抗体のH鎖V領域を 含むポリペプチド。

【請求項17】 相補性決定領域 $1\sim3$ が、それぞれ配列番号 $62\sim64$ で表されるアミノ酸配列を含むものである、請求項16記載のポリペプチド。

【請求項18】 フレームワーク領域1~4がヒトサブグループIII のヒト抗体のフレームワーク領域1~4に由来するものである、請求項16記載のポリペプチド。

【請求項19】 フレームワーク領域 $1\sim4$ がそれぞれヒト抗体S31679のフレームワーク領域 $1\sim4$ に由来するものである、請求項16記載のポリペプチド。

【請求項20】 フレームワーク領域1~4がそれぞれ ヒト抗体S31679のフレームワーク領域1~4と実質的に 同一のものである、請求項16記載のポリペプチド。

【請求項21】 配列番号56で表されるアミノ酸配列を含む、ヒト型化抗体のH鎖V領域を含むポリペプチド。

【請求項22】 ヒト抗体のL鎖C領域を含むポリペプチド、及び請求項8~15のいずれか1項に記載のポリペプチドを含む、ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体のL鎖。

【請求項23】 C領域がC λ 領域であり、フレームワーク領域 $1\sim3$ がそれぞれヒト抗体HSU03868のフレームワーク領域 $1\sim3$ と実質的に同一のものであり、フレームワーク領域4がヒト抗体S25755のフレームワーク領域4と実質的に同一のものであり、及び相補性決定領域 $1\sim3$ のアミノ酸配列がそれぞれ配列番号59 ~61 で表されるものである、請求項22記載のヒト型化抗体のL鎖。

【請求項24】 ヒト抗体のH鎖C領域を含むポリペプチド、及び請求項16~21のいずれか1項に記載のポリペプチドを含む、ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体のH鎖。

【請求項25】 C領域がC λ 1領域であり、フレームワーク領域 $1\sim4$ がそれぞれヒト抗体HSGIIIのフレームワーク領域 $1\sim4$ 由来のものであり、及び相補性決定領域 $1\sim3$ がそれぞれ配列番号 $62\sim64$ で表されるアミノ酸配列を含むものである、請求項24記載のヒト型化抗体のH鎖。

【請求項26】 請求項22又は23記載のヒト型化抗体の L鎖、及び請求項24又は25記載のヒト型化抗体のH鎖を 含む、ヒト副甲状腺ホルモン関連ペプチドに対するヒト 型化抗体。

【請求項27】 1.86×10⁻⁷[M] 以下の解離定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。 【請求項28】 1.22×10⁻¹[1/Sec]以下の解離速度定

数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。

【請求項29】 6.55×10⁴[1/M. Sec] 以上の結合速度 定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対 する抗体。

【請求項30】 1.22×10⁻¹[1/Sec]以下の解離速度定数及び6.55×10⁴[1/M.Sec]以上の結合速度定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。

【請求項31】 解離定数が、表面プラズモン共鳴センサーにより測定されるものである請求項27記載の抗体。

【請求項32】 解離速度定数が、表面プラズモン共鳴センサーにより測定されるものである請求項28又は30記載の抗体。

【請求項33】 結合速度定数が、表面プラズモン共鳴センサーにより測定されるものである請求項29又は30記載の抗体。

【請求項34】 解離定数が1.02×10⁻¹¹~1.86×10⁻⁷[M]である請求項27記載の抗体。

【請求項35】 解離定数が1.02×10⁻¹⁰~1.86×10⁻⁸[M]である請求項27記載の抗体。

【請求項36】 解離定数が1.34×10⁻¹⁰~3.58×10⁻¹⁰ [M]である請求項27記載の抗体。

【請求項37】 解離速度定数が $7.38\times10^{-6}\sim1.22\times10^{-1}$ [1/Sec]である請求項28記載の抗体。

【請求項38】 解離速度定数が7.38× 10^{-5} ~1.22× 10^{-2} [1/Sec]である請求項28記載の抗体。

【請求項39】 解離速度定数が1.66×10⁻⁴~3.16×10 -4[1/Sec]である請求項28記載の抗体。

【請求項40】 解離速度定数が2.32×10⁻⁴[1/Sec]である請求項28記載の抗体。

【請求項41】 結合速度定数が6.55×10⁴~1.24×10⁷ [1/M. Sec]である請求項29記載の抗体。

【請求項42】 結合速度定数が6.55×10⁵~1.24×10⁶ [1/M. Sec]である請求項29記載の抗体。

【請求項43】 結合速度定数が7.23×10⁵~1.03×10⁶ [1/M. Sec]である請求項29記載の抗体。

【請求項44】 結合速度定数が1.03×10⁶[1/M.Sec]である請求項29記載の抗体。

【請求項45】 $2.32\times10^{-4}\sim3.16\times10^{-4}[1/Sec]$ の解離速度定数及び $0.883\times10^{6}\sim1.03\times10^{6}[1/M.Sec]$ の結合速度定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。

【請求項46】 抗体が、ヒト抗体、ヒト型化抗体、キメラ抗体又はプライマタイズド抗体である請求項27~45のいずれか1項に記載の抗体。

【請求項47】 ヒト副甲状腺ホルモン関連ペプチドに 対するマウスモノクローナル抗体のL鎖V領域をコード する塩基配列を含むDNA。

【請求項48】 L鎖V領域が配列番号45で表されるアミノ酸配列を含むものである請求項47記載のDNA。

【請求項49】 L鎖V領域をコードする塩基配列が配列番号65で表されるものである請求項47記載のDNA。

【請求項50】 ヒト副甲状腺ホルモン関連ペプチドに 対するマウスモノクローナル抗体のH鎖V領域をコード する塩基配列を含むDNA。

【請求項51】 H鎖V領域が配列番号46で表されるアミノ酸配列を含むものである請求項50記載のDNA。

【請求項52】 H鎖V領域をコードする塩基配列が配列番号57で表されるものである請求項50記載のDN A

【請求項53】 請求項1~3のいずれか1項に記載の キメラL鎖をコードするDNA。

【請求項54】 キメラL鎖をコードするDNAが配列 番号65で表される塩基配列を含むものである請求項53 記載のDNA。

【請求項55】 請求項 $4\sim6$ のいずれか1項に記載の キメラH鎖をコードするDNA。

【請求項56】 キメラH鎖をコードするDNAが配列 番号57で表される塩基配列を含むものである請求項55 記載のDNA。

【請求項57】 請求項8~15のいずれか1項に記載のポリペプチドをコードする塩基配列を含むDNA。

【請求項58】 配列番号66~74で表されるいずれかの 塩基配列を含む、請求項57記載のDNA。

【請求項59】 請求項16~21のいずれか1項に記載のポリペプチドをコードする塩基配列を含むDNA。

【請求項60】 配列番号58で表される塩基配列を含む、請求項59記載のDNA。

【請求項61】 請求項22又は23記載のヒト型化抗体の L鎖をコードするDNA。

【請求項62】 配列番号47~55で表されるいずれかの アミノ酸配列をコードする塩基配列を含む、ヒト型化抗 体の上鎖DNA。

【請求項63】 ヒト型化抗体のL鎖DNAが、配列番号66~74で表されるいずれかの塩基配列を含むものである請求項62記載のDNA。

【請求項64】 請求項24又は25記載のヒト型化抗体の H鎖をコードするDNA。

【請求項65】 配列番号56で表されるアミノ酸配列をコードする塩基配列を含む、ヒト型化抗体のH鎖DNA

【請求項66】 ヒト型化抗体のH鎖DNAが、配列番号58で表される塩基配列を含むものである請求項65記載のDNA。

【請求項67】 請求項47~66のいずれか1項に記載のDNAを含む組換えベクター。

【請求項68】 請求項67記載の組換えベクターにより形質転換された形質転換体。

【請求項69】 請求項 $47\sim49$ 及び $53\sim54$ のいずれか1項に記載のDNAを含む発現ベクター、並びに請求項 $50\sim52$ 及び $55\sim56$ のいずれか1項に記載のDNAを含む発現ベクターにより形質転換された形質

転換体を培養し、得られる培養物からヒト副甲状腺関連ペプチドに対するキメラ抗体を採取することを特徴とするヒト副甲状腺関連ペプチドに対するキメラ抗体の製造 方法。

【請求項70】 請求項57~58及び61~63のいずれか1項に記載のDNAを含む発現ベクター、並びに請求項59~60及び64~65のいずれか1項に記載のDNAを含む発現ベクターにより形質転換された形質転換体を培養し、得られる培養物からヒト副甲状腺関連ペプチドに対するヒト型化抗体を採取することを特徴とするヒト副甲状腺関連ペプチドに対するヒト型化抗体の製造方法。

【請求項71】 ヒト副甲状腺ホルモン関連ペプチドに 対するヒト型化抗体を有効成分として含む医薬組成物。

【請求項72】 ヒト副甲状腺ホルモン関連ペプチドに 対するヒト型化抗体を有効成分として含む高カルシウム 血症抑制剤。

【請求項73】 ヒト副甲状腺ホルモン関連ペプチドに 対するるヒト型化抗体を有効成分として含む、悪性腫瘍 に伴う高カルシウム血症抑制剤。

【請求項74】 悪性腫瘍が、膵臓癌、肺癌、咽頭癌、 喉頭癌、舌癌、歯肉癌、食道癌、胃癌、胆管癌、乳癌、 腎癌、膀胱癌、子宮癌、前立腺癌及び悪性リンパ腫から なる群から選ばれる少なくとも一つである請求項73記 載の高カルシウム血症抑制剤。

【請求項75】 請求項27~46のいずれか1項に記載の抗体を有効成分として含む医薬組成物。

【請求項76】 請求項27~46のいずれか1項に記載の抗体を有効成分として含む高カルシウム血症抑制剤。

【請求項77】 請求項27~46のいずれか1項に記載の抗体を有効成分として含む含む、悪性腫瘍に伴う高カルシウム血症抑制剤。

【請求項78】 悪性腫瘍が、膵臓癌、肺癌、咽頭癌、 喉頭癌、舌癌、歯肉癌、食道癌、胃癌、胆管癌、乳癌、 腎癌、膀胱癌、子宮癌、前立腺癌及び悪性リンパ腫から なる群から選ばれる少なくとも一つである請求項77記 載の高カルシウム血症抑制剤。

【請求項79】 ヒト副甲状腺ホルモン関連ペプチドに 対するヒト型化抗体を有効成分として含む低リン血症改 善剤。

【請求項80】 低リン血症が低リン血性くる病である 請求項79記載の低リン血症改善剤。

【請求項81】 低リン血症が低リン血性ビタミンD抵 抗性くる病である請求項79記載の低リン血症改善剤。

【請求項82】 請求項27~46のいずれか1項に記載の抗体を有効成分として含む低リン血症改善剤。

【請求項83】 低リン血状が低リン血性くる病である 請求項82記載の低リン血症改善剤。

【請求項84】 低リン血状が低リン血性ビタミンD抵

抗性くる病である請求項82記載の低リン血症改善剤。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の可変領域(V領域)とヒト抗体の定常領域(C領域)とからなるヒト/マウスキメラ抗体、副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の軽鎖(L鎖)V領域及び重鎖(H鎖)V領域の相捕性決定領域がヒト抗体に移植されているヒト型化(humanized)抗体、該抗体のL鎖及びH鎖、並びに該抗体のL鎖又はH鎖を構成するV領域を含むポリペプチドに関する。

【0002】本発明はさらに、上記の抗体、特にそのV 領域をコードする塩基配列を含むDNA、及びV領域を 含むL鎖又はH鎖をコードするDNAに関する。本発明 はさらに、該DNAを含む組換えベクター、及び該ベク ターにより形質転換された宿主に関する。

【0003】本発明はさらに、副甲状腺ホルモン関連ペプチドに対するキメラ抗体及びヒト型化抗体の製造方法に関する。本発明はさらに、副甲状腺ホルモン関連ペプチドに対する抗体を有効成分として含む医薬組成物並びに高カルシウム血症抑制剤及び低リン血症改善剤に関する。

[0004]

【従来の技術】悪性腫瘍に伴う高カルシウム血症は、全悪性腫瘍患者の5~20%にみられる重篤な合併症状であり、放置すれば確実に死に至るため悪性腫瘍の末期的症状であると考えられている。高カルシウム血症のコントロールは患者の治療予後とQOL (Quality of Life) に大きく影響することから、臨床的に重要な役割を持つ。

【0005】悪性腫瘍患者における高カルシウム血症は、一般に、腫瘍産生性の体液性骨吸収因子によるHHM (Humoral hypercalcemia of malignancy) と、骨に転移又は浸潤した腫瘍の局所的な作用によるLOH (Local 0 steolytic hypercalcemia) とに大別される。HHMでは骨吸収又は骨破壊の亢進によりカルシウムの流出が増加し、腎のカルシウム排泄能の低下とあいまって高カルシウム血症を生ずると考えられている(和田誠基及び永田直一、内科69、644-648)。

【0006】高カルシウム血症は、血清カルシウム値が 12mg/dlを超えるとその症状が現れると考えられ、その 症状として、初期に食思不振、悪心、嘔吐が悪性腫瘍患者において非特異的に認められる。高カルシウム血症が 悪化すると、腎遠位尿細管の障害で水分の濃縮力が低下するために多尿となり、また、悪心、嘔吐により水分が十分に摂取されないため脱水を伴う。

【0007】悪性腫瘍に伴う高カルシウム血症のうち田 Mを起こす液性因子として、PTH(副甲状腺ホルモン; Pa rathyroid Hormone)様の物質である副甲状腺ホルモン 関連ペプチド(Parathyroid Hormone related Peptid e、以下「PTHrP」という)がMoseley, J. M. らにより見いだされた (Proc. Natl. Acad. Sci. USA (1987)、84,5048-5052)。

【0008】その後、PTHrPをコードする遺伝子が単離され(Suva, L. J. et al., Science (1987) 237, 893)その解析から、ヒトPTHrPは遺伝子の選択的スプライシングに基づく139、141及び173個のアミノ酸からなる三種が存在すること、並びに血中では全構造を有するPTHrP(1-139)の限定分解に基づく様々なフラグメントが存在することが明らかになった(Baba, H. Clinical Calcium (1995) 5, 229-223)。PTHrPは、N末端側第1位から第13位のアミノ酸13個のうち8個がPTHと同一である他、第14位から第34位アミノ酸部位においてもPTHと類似の立体構造を呈するものと推定され、少なくともN末端側においてはPTHと共通のPTH/PTHrP 受容体に結合する(Jueppner, H. et al., Science (1991) 254, 1024-1026、Abou-Samra, A-B. et al., Proc. Natl. Acad. Sci. USA (1992) 89, 2732-2736)。

【0009】PTHrPは様々な腫瘍組織から産生されることが報告されているが、腫瘍のみならず、皮膚、中枢神経、子宮、胎盤、授乳中の乳腺、甲状腺、副甲状腺、副腎、肝、腎、膀胱をはじめとする、胎児から成人に至るまでの種々の正常な組織により産生されることが明らかになった(Burtis, W. J. Clin. Chem. (1992) 38, 2171-2183、Stewart, A. F. &; Broadus, A. E. J. Clin. Endocrinol. (1991) 71, 1410-1414)。また、PTHrPは、胎児期から新生児期にかけて母体より高く保たれるカルシウム代謝調節に重要な役割を演じていると考えられている。

【0010】PTH/PTHrP 受容体は主に骨と腎に存在し(滋野長平、Clinical Calcium(1995)5,355-359)、PTHrPが受容体に結合することにより複数の細胞内シグナル伝達系が活性化されることが知られている。その一つは、アデニルシクラーゼであり、もう一つはフォスフォリパーゼCである。アデニルシクラアーゼの活性化により、細胞内cAMP濃度が上昇しプロテインキナーゼAが活性化される。また、フォスフォリパーゼCはフォスファチデルイノシトール4,5-ビスフォスフォネートを分解してイノシトール1,4,5-トリフォスフォネートとジアシルグリセロールを生じさせる。これらのシグナル伝達系にはG蛋白質が関与する(Coleman,D.T. et al.,Biochemical mechanisms of parathyroid hormone action. In: "Theparathyroids" (Bilezikian, J. P. et al.),Raven press, New York, (1994)page 239)。

【0011】PTHrPは、これらのシグナル伝達系を介して、HHMに観察される高カルシウム血症、低リン血症、 腎リン再吸収能の低下、腎性cAMP排泄の増加などを引き起こす。このように、PTHrPは悪性腫瘍に伴う高カルシウム血症に密接に関連していることが明らかになっている。悪性腫瘍に伴う高カルシウム血症の治療には補液を 行う他、カルシトニン、ステロイド剤、インドメタシン、無機リン酸塩、ビスフォスフォネート等が使用される。しかしながら、これらの薬剤は連続使用により効果が低減すること、強い副作用が発現すること、又は薬効発現が遅いことなどから、より治療効果が高く副作用の少ない薬剤の使用が期待されている。

【0012】一方、悪性腫瘍に伴う高カルシウム血症治療の新しい試みとして、Kukreja, S. C. らは、ヒト肺ガン細胞又はヒト喉頭ガン細胞を移植して高カルシウム血症を生じた無胸腺マウスにPTHrPに対する中和抗血清を投与すると、血中カルシウム濃度及び尿cAMPレベルが減少したことを報告している(J. Clin. Invest. (1988) 82, 1798-1802)。佐藤幹二らは、PTHrP産生ヒト腫瘍を移植したヌードマウスにPTHrP(1-34)に対する抗体を投与すると、高カルシウム血症を低減させ、マウスの生存時間を大幅に延長させたことを報告している(J. bone &; Mine. Res. (1993) 8, 849-860)。また、特開平4-2 28089号には、ヒトPTHrP(1-34)に対するマウス/ヒトキメラ抗体が開示されている。

【0013】マウスのモノクローナル抗体はヒトにおいて高度に免疫原性(「抗原性」という場合もある)を有し、このため、ヒトにおけるマウスモノクローナル抗体の医学療法的価値は制限されている。例えば、マウス抗体をヒトに投与すると異物として代謝されうるので、ヒトにおけるマウス抗体の半減期は比較的短く、期待された効果を充分に発揮できない。さらに、投与したマウス抗体に対して発生するヒト抗マウス抗体(HAMA)は、血清病又は他のアレルギー反応など、患者にとって不都合で危険な免疫応答を惹起する。したがって、マウスモノクローナル抗体をヒトに頻回投与することはできない。

【0014】これらの問題を解決するため、非ヒト由来の抗体、例えばマウス由来のモノクローナル抗体の免疫原性を低減させる方法が開発された。その一つが、抗体の可変領域(V領域)はもとのマウスモノクローナル抗体に由来し、定常領域(C領域)は適当なヒト抗体に由来するキメラ抗体を作製する方法である。

【0015】得られるキメラ抗体はもとのマウス抗体の可変領域を完全な形で含有するので、もとのマウス抗体と同一の特異性をもって抗原に結合することが期待できる。さらに、キメラ抗体ではヒト以外に由来するアミノ酸配列の比率が実質的に減少しており、それ故にもとのマウス抗体に比べて免疫原性が低いと予想される。キメラ抗体はもとのマウスモノクローナル抗体と同等に抗原に結合し、かつ免疫原性が低いが、それでもなおマウス可変領域に対する免疫応答が生ずる可能性がある(LoBuglio, A. F. et al., Proc. Natl. Acad. Sci. USA, 86, 4220-4224, 1989)。

【0016】マウス抗体の免疫原性を低減させるための 第二の方法は一層複雑であるが、しかしマウス抗体の潜 在的な免疫原性をさらに大幅に低下させることが期待さ れる。この方法においては、マウス抗体の可変領域から相補性決定領域(complementarity determining region; CDR)のみをヒト可変領域に移植して「再構成」(reshaped)ヒト可変領域を作製する。ただし、必要によっては、再構成ヒト可変領域のCDRの構造をより一層もとのマウス抗体の構造に近づけるために、CDRを支持しているフレームワーク領域(FR)の一部のアミノ酸配列をマウス抗体の可変領域からヒト可変領域に移植する場合がある。

【0017】次に、これらのヒト型化された再構成ヒト可変領域をヒト定常領域に連結する。最終的に再構成されたヒト型化抗体のヒト以外のアミノ酸配列に由来する部分は、CDR及び極く一部のFRのみである。CDRは超可変アミノ酸配列により構成されており、これらは種特異的配列を示さない。このため、マウスCDRを担持するヒト型化抗体は、もはやヒトCDRを含有する天然ヒト抗体より強い免疫原性を有しないはずである。

【0018】ヒト型化抗体については、さらに、Riechm ann, L. et al., Nature, 332, 323-327, 1988; Verhoeye, M. et al., Science, 239, 1534-1536, 1988; Kettleborough, C. A. et al., Protein Engng., 4, 773-783, 1991; Maeda, H. et al., Human Antibodies and Hybridoma, 2, 124-134, 1991; Gorman, S. D. et al., Proc. Natl. Acad. Sci. USA, 88, 4181-4185, 1991; Tempest, P. R. et al., Bio/Technology, 9, 266-271, 1991; Co, M. S. et al., Proc. Natl. Acad. Sci. USA, 88, 2869-2873, 1991; Carter, P. et al., Proc. Natl. Acad. Sci. USA, 89, 4285-4289, 1992; Co, M. S. et al., J. Immunol., 148, 1149-1154, 1992; 及 でSato, K. et al., Cancer Res., 53, 851-856, 1993を参照のこと。

【0019】前記のごとく、ヒト型化抗体は療法目的のために有用であると予想されるが、PTHrPに対するヒト型化抗体は知られておらず、前記文献にはその示唆もなされていない。また、ヒト型化抗体の製造方法において任意の抗体に普遍的に適用し得る画一的な方法は存在せず、特定の抗原に対して十分な結合活性、中和活性を示すヒト型化抗体を作製するためには種々の工夫が必要である(例えば、Sato, K. et al., Cancer Res., 53, 851-856, 1993を参照のこと)。

[0020]

【発明が解決しようとする課題】本発明は、PTHrPに対するマウスモノクローナル抗体の可変領域(V領域)とヒト抗体の定常領域(C領域)とからなるヒト/マウスキメラ抗体、PTHrPに対するマウスモノクローナル抗体の軽鎖(L鎖)V領域及び重鎖(H鎖)V領域の相捕性決定領域がヒト抗体に移植されているヒト型化(humanized)抗体、該抗体のL鎖及びH鎖、並びに該抗体のL鎖又はH鎖を構成するV領域を含むポリペプチドを提供することを目的とする。

【0021】本発明はさらに、上記の抗体、特にそのV

領域をコードする塩基配列を含むDNA、及びV領域を含むポリペプチドを含むL鎖又はH鎖をコードするDNAを提供することを目的とする。本発明はさらに、該DNAを含む組換えベクター、及び該ベクターにより形質転換された宿主を提供することを目的とする。本発明はさらに、PTHrPに対するキメラ抗体及びヒト型化抗体の製造方法を提供することを目的とする。本発明はさらに、中和活性が高いPTHrPに対する抗体を提供することを目的とする。本発明はさらに、PTHrPに対する抗体又はヒト型化抗体を有効成分として含む医薬組成物並びに高カルシウム血症抑制剤、低リン血症改善剤及びアルカローシス改善剤を提供することを目的とする。

[0022]

【課題を解決するための手段】本発明者らは、上記課題に基づいて鋭意研究を行った結果、PTHrPに対するマウスモノクローナル抗体のヒトにおける免疫原性が低減されている抗体を得ることに成功し、本発明を完成するに至った。すなわち、本発明は、ヒト抗体のL鎖C領域、及びPTHrPに対するマウスモノクローナル抗体のL鎖V領域を含むキメラL鎖である。L鎖V領域としては、配列番号45で表されるアミノ酸配列を含むものが挙げられ、L鎖C領域としてはC λ 領域のものが挙げられる。【0023】さらに、本発明は、ヒト抗体のH鎖C領

【0023】さらに、本発明は、ヒト抗体の日鎖C領域、及びPTHrP に対するマウスモノクローナル抗体の日鎖V領域を含むキメラ日鎖である。日鎖V領域としては、配列番号46で表されるアミノ酸配列を含むものが挙げられ、C領域としてはCγ1領域のものが挙げられる。さらに、本発明は、前記キメラL鎖及びキメラ日鎖を含む、PTHrPに対するキメラモノクローナル抗体である。

【0024】さらに、本発明は、ヒト抗体のL鎖V領域のフレームワーク領域1~4、及びPTHrPに対するマウスモノクローナル抗体のL鎖V領域の相補性決定領域1~3を含む、ヒト型化抗体のL鎖V領域を含むポリペプチドである。相補性決定領域1~3としては、それぞれ配列番号59~61で表されるアミノ酸配列を含むものが挙げられる。フレームワーク領域1~3としてはそれぞれヒト抗体HSU03868のフレームワーク領域1~3由来のもの、かつ、フレームワーク領域1~3としてはヒト抗体S25755のフレームワーク領域1~3と実質的に同のもの、かつ、フレームワーク領域1~3と実質的に同のもの、かつ、フレームワーク領域1~3と実質的に同のもの、かつ、フレームワーク領域4としてはヒト抗体S25755のフレームワーク領域4と実質的に同一のものが挙げられる。

【0025】ここで、「実質的に同一」とは、ヒト型化 抗体において使用されるヒト抗体のフレームワーク領域 において、ヒト型化抗体がマウスモノクローナル抗体と 同等の活性を有するように、マウスモノクローナル抗体 の相補性決定領域を形成するために必要なアミノ酸の欠 失、置換、付加等を生じてもよいことを意味する。

【0026】さらに、本発明は、フレームワーク領域中のKabatの規定(Kabat, E.A. et al., US Dept. Health and Human Services, US Government Printing Offices, 1991)による第36番目のアミノ酸がチロシンであり、かつ、同第49番目のアミノ酸がアスパラギン酸である、ヒト型化抗体のL鎖V領域を含むポリペプチドである。

【0027】さらに、本発明は、配列番号48~51で表されるいずれかのアミノ酸配列を含む、ヒト型化抗体のL鎖V領域を含むポリペプチドである。さらに、本発明は、フレームワーク領域中のKabatの規定による第45番目のアミノ酸がリジンであり、かつ、同第87番目のアミノ酸がイソロイシンである、ヒト型化抗体のL鎖V領域を含むポリペプチドである。さらに、本発明は、配列番号52~55で表されるいずれかのアミノ酸配列を含む、ヒト型化抗体のL鎖V領域を含むポリペプチドである。

【0028】さらに、本発明は、ヒト抗体のH鎖V領域のフレームワーク領域 $1\sim4$ 、及びヒトPTHrP に対するマウスモノクローナル抗体のH鎖V領域の相補性決定領域 $1\sim3$ を含む、ヒト型化抗体のH鎖V領域を含むポリペプチドである。相補性決定領域 $1\sim3$ としては、それぞれ配列番号 $62\sim64$ で表されるアミノ酸配列を含むものが挙げられ、フレームワーク領域 $1\sim4$ としては、ヒトサブグループIII (Human Subgroup III(HSG III)、Kabat, E. A. et al., US Dept. Health and Human Services, US Government Printing Offices, 1991)に属するヒト抗体のフレームワーク領域 $1\sim4$ 由来のもの、より詳しくはそれぞれヒト抗体S31679のフレームワーク領域 $1\sim4$ 由来のものが挙げられ、あるいはヒト抗体S31679のフレームワーク領域 $1\sim4$ と実質的に同一のものが挙げられる

【0029】さらに、本発明は、配列番号56で表されるアミノ酸配列を含む、ヒト型化抗体のH鎖V領域を含むポリペプチドである。さらに、本発明は、前記ヒト型化抗体のL鎖V領域を含むポリペプチド及びヒト抗体のL鎖C領域を含むポリペプチドを含む、ヒトPTHrPに対するヒト型化抗体のL鎖である。ここで、C領域としてはCλ領域、フレームワーク領域1~3としてはそれぞれヒト抗体HSU03868のフレームワーク領域4としてはヒト抗体S25755のフレームワーク領域4と実質的に同一のもの、フレームワーク領域4と実質的に同一のもの、そして相補性決定領域1~3のアミノ酸配列としてはそれぞれ配列番号59~61で表されるものが挙げられる。

【0030】さらに、本発明は、前記ヒト抗体のH鎖C 領域を含むポリペプチド及びH鎖V領域を含むポリペプチドをびH鎖V領域を含むポリペプチドを含む、ヒトPTHrP に対するヒト型化抗体のH鎖である。 C領域としては $C\gamma$ 1領域、フレームワーク領域 $1\sim4$ としてはHSGIIIに属するヒト抗体由来のフレームワーク領域 $1\sim4$ 由来のもの、そして相補性決定領域 $1\sim3$ としてはそれぞれ配列番号 $62\sim64$ で表されるアミノ

酸配列を含むものが挙げられる。

【0031】さらに、本発明は、抗原性が弱く、中和活性が高い抗PTHrP 抗体に関する。該PTHrP 抗体はヒトの疾患の治療に供することが可能な、ヒト抗体、ヒト型化抗体、キメラ抗体、プライマタイズド抗体などを含む。また、該抗体は低い解離定数を有するものである。さらに、本発明の抗体は解離定数が小さいため中和活性が高く、ヒトの疾患の治療に供することができる。

【0032】本発明の抗体は、 1.86×10^{-7} [M] 以下の解離定数、 1.22×10^{-1} [1/Sec] 以下の解離速度定数、そして 6.55×10^{4} [1/M. Sec] 以上の結合速度定数を有するものである。また、これらの定数は、R I 標識されたリガンドを用いたスキャッチャード解析や表面プラズモン共鳴センサー等により測定することができる。

【0033】さらに、本発明は、ヒトPTHrP に対するマウスモノクローナル抗体のL鎖V領域をコードする塩基配列を含むDNA又はH鎖V領域をコードする塩基配列を含むDNAである。L鎖V領域及びH鎖V領域としては、それぞれ配列番号45、46で表されるアミノ酸配列を含むものが挙げられ、L鎖V領域をコードする塩基配列を含むDNAとしては例えば配列番号65で表されるものが挙げられ、H鎖V領域をコードする塩基配列を含むDNAとしては配列番号57で表されるものが挙げられる。

【0034】さらに、本発明は、前記キメラL鎖又はキメラH鎖をコードするDNAである。該L鎖をコードするDNAとしては例えば配列番号65で表される塩基配列を含むものが挙げられ、該H鎖をコードするDNAとしては配列番号57で表される塩基配列を含むものが挙げられる。

【0035】さらに、本発明は、前記ヒト型化抗体のL鎖V領域コードする塩基配列を含むDNA又はH鎖V領域をコードする塩基配列を含むDNAである。L鎖V領域をコードする塩基配列を含むDNAとしては配列番号66~74で表されるいずれかの塩基配列を含むものが挙げられ、H鎖V領域をコードする塩基配列を含むDNAとしては配列番号58で表されるものが挙げられる。

【0036】さらに、本発明は、配列番号47~55で表されるいずれかのアミノ酸配列をコードする塩基配列を含む、ヒト型化抗体のL鎖V領域のDNAである。該DNAとしては、配列番号66~74で表されるいずれかの塩基配列を含むものが挙げられる。さらに、本発明は、配列番号56で表されるアミノ酸配列をコードする、ヒト型化抗体のH鎖V領域のDNAである。該DNAとしては配列番号58で表される塩基配列を含むものが挙げられる。

【0037】さらに、本発明は、前記いずれかのDNAを含む組換えベクターである。さらに、本発明は、前記 組換えベクターにより形質転換された形質転換体である。さらに、本発明は、前記形質転換体を培養し、得られる培養物からヒト副甲状腺関連ペプチドに対するキメラ抗体又はヒト型化抗体を採取することを特徴とするヒ ト副甲状腺関連ペプチドに対するキメラ抗体又はヒト型 化抗体の製造方法である。

【0038】さらに、本発明は、前記抗体を有効成分と して含む医薬組成物並びに高カルシウム血症抑制剤及び 低リン血症改善剤である。該カルシウム血症は悪性腫瘍 に起因するものであり、また、悪性腫瘍随伴性高カルシ ウム血症患者においてはしばしば低リン血症が認められ る。従って、本発明の抗体は、上記悪性腫瘍に対する治 療又は高カルシウム血症若しくは低リン血状症状の軽減 をするために使用することができる。なお、悪性腫瘍と しては、例えば膵臓癌、肺癌、咽頭癌、喉頭癌、舌癌、 歯肉癌、食道癌、胃癌、胆管癌、乳癌、腎癌、膀胱癌、 子宮癌、前立腺癌及び悪性リンパ腫からなる群から選ば れる少なくとも一つが挙げられるが、これらの癌に限定 されるものではなく、高カルシウム血症をもたらす悪性 腫瘍はすべて本発明の高カルシウム血症抑制剤の適用の 対象とすることができる。以下、本発明を詳細に説明す る。

[0039]

【発明の実施の形態】

1.ヒトPTHrP に対するマウスモノクローナル抗体の作 製

PTHrPに対するマウスモノクローナル抗体は、抗原で免疫した動物から得られる抗体産生細胞と、ミエローマ細胞との細胞融合によりハイブリドーマを調製し、得られるハイブリドーマからPTHrP活性を特異的に阻害する抗体を産生するクローンを選択することにより調製することができる。

【0040】(1) 抗原の調製

動物の免疫に用いるPTHrPとしては、組換えDNA法又は化学合成により調製したPTHrPのアミノ酸配列の全部若しくは一部のペプチド、又は高カルシウム血症を惹起する癌細胞の培養上清液由来のPTHrPなどが挙げられる。例えば、公知のPTHrP(Kemp, B. E. et al., Science (1987)238, 1568-1570) の第1~34番目のアミノ酸からなるペプチド(PTHrP(1-34))を抗原として用いることができる。なお、ヒトPTHrP(1-34)は、配列番号75で表されるアミノ酸配列を有するものである。

【0041】得られたPTHrPをキャリアータンパク質 (例えばサイログロブリン) に結合させた後、アジュバントを添加する。アジュバントとしては、フロイント完全アジュバント、フロイントの不完全アジュバント等が 挙げられ、これらの何れのものを混合してもよい。

【0042】(2) 免疫及び抗体産生細胞の採取 上記のようにして得られた抗原を哺乳動物、例えばマウス、ラット、ウマ、サル、ウサギ、ヤギ、ヒツジなどの 哺乳動物に投与する。免疫は、既存の方法であれば何れ の方法をも用いることができるが、主として静脈内注 射、皮下注射、腹腔内注射などにより行う。また、免疫 の間隔は特に限定されず、数日から数週間間隔で、好ま しくは4~21日間間隔で免疫する。

【0043】最終の免疫日から2~3日後に抗体産生細胞を採集する。抗体産生細胞としては、脾臓細胞、リンパ節細胞、末梢血細胞が挙げられるが、一般に脾臓細胞が用いられる。抗原の免疫量は1回にマウス1匹当たり、100 μg用いられる。

【0044】(3) 抗体価の測定

免疫した動物の免疫応答レベルを確認し、また、細胞融合処理後の細胞から目的とするハイブリドーマを選択するため、免疫した動物の血中抗体価、又は抗体産生細胞の培養上清中の抗体価を測定する。抗体検出の方法としては、公知技術、例えばEIA(エンザイムイムノアッセイ)、RIA(ラジオイムノアッセイ)、ELISA(酵素連結イムノソルベントアッセイ)等が挙げられる。

【0045】(4) 細胞融合

抗体産生細胞と融合させるミエローマ(骨髄腫)細胞として、マウス、ラット、ヒトなど種々の動物に由来し、当業者が一般に入手可能な株化細胞を使用する。使用する細胞株としては、薬剤抵抗性を有し、未融合の状態では選択培地(例えばHAT培地)で生存できず、融合した状態でのみ生存できる性質を有するものが用いられる。一般的に8-アザグアニン耐性株が用いられ、この細胞株は、ヒポキサンチンーグアニンーホスホリボシルトランスフェラーゼを欠損し、ヒポキサンチン・アミノプテリン・チミジン(HAT)培地に生育できないものである。

【0046】ミエローマ細胞は、既に公知の種々の細胞株、例えば、P3 (P3x63Ag8.653) (J. Immunol. (1979)12 3:1548-1550) 、P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81:1-7)、NS-1(Kohler, G. and Milstein, C., Eur. J. Immunol. (1976)6:511-51 9)、MPC-11 (Margulies, D. H. et al., Cell (1976)8:40 5-415)、SP2/0 (Shulman, M. et al., Nature (1978)276:269-270)、F0(de St. Groth, S. F. et al., J. Immunol. Methods (1980) 35:1-21)、S194 (Trowbridge, I.S., J. Exp. Med. (1978)148:313-323) 、R210 (Galfre, G. et al., Nature (1979) 277:131-133)等が好適に使用される。

【0047】抗体産生細胞は、脾臓細胞、リンパ節細胞などから得られる。すなわち、前記各種動物から脾臓、リンパ節等を摘出又は採取し、これら組織を破砕する。得られる破砕物をPBS、DMEM、RPMI1640等の培地又は緩衝液に懸濁し、ステンレスメッシュ等で濾過後、遠心分離を行うことにより目的とする抗体産生細胞を調製する。

【0048】次に、上記ミエローマ細胞と抗体産生細胞とを細胞融合させる。細胞融合は、MEM、DMEM、RPME-1640培地などの動物細胞培養用培地中で、ミエローマ細胞と抗体産生細胞とを、混合比1:1~1:10で融合促進剤の存在下、30~37℃で1~15分間接触させることに

よって行われる。細胞融合を促進させるためには、平均分子量1,000~6,000 のポリエチレングリコール、ポリビニルアルコール又はセンダイウイルスなどの融合促進剤や融合ウイルスを使用することができる。また、電気刺激(例えばエレクトロポレーション)を利用した市販の細胞融合装置を用いて抗体産生細胞とミエローマ細胞とを融合させることもできる。

【0049】(5) ハイブリドーマの選択及びクローニング

細胞融合処理後の細胞から目的とするハイブリドーマを選別する。その方法として、選択培地における細胞の選択的増殖を利用する方法等が挙げられる。すなわち、細胞懸濁液を適切な培地で希釈後、マイクロタイタープレート上にまき、各ウェルに選択培地(HAT培地など)を加え、以後適当に選択培地を交換して培養を行う。その結果、生育してくる細胞をハイブリドーマとして得ることができる。ハイブリドーマのスクリーニングは、限界希釈法、蛍光励起セルソーター法等により行い、最終的にモノクローナル抗体産生ハイブリドーマを取得する。

【0050】(6) モノクローナル抗体の採取取得したハイブリドーマからモノクローナル抗体を採取する方法としては、通常の細胞培養法や腹水形成法等が挙げられる。細胞培養法においては、ハイブリドーマを10~20%ウシ胎児血清含有 RPMI-1640培地、MEM 培地、又は無血清培地等の動物細胞培養培地中で、通常の培養条件(例えば37℃,5%C0₂濃度)で2~14日間培養し、その培養上清から抗体を取得する。

【0051】腹水形成法においては、ミエローマ細胞由来の哺乳動物と同種の動物の腹腔内にハイブリドーマを投与し、ハイブリドーマを大量に増殖させる。そして、1~4週間後に腹水又は血清を採取する。上記抗体の採取方法において、抗体の精製が必要とされる場合は、硫安塩析法、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどの公知の方法を適宜に選択して、又はこれらを組み合わせることにより精製する。【0052】2.キメラ抗体の構築

(1) ヒトPTHrPに対するマウスモノクローナル抗体のV領域をコードする塩基配列を含むDNAのクローニング

(i) mRNAの調製

ヒトPTHrPに対するマウスモノクローナル抗体のV 領域をコードする塩基配列を含むDNAのクローニング を行うため、回収されたハイブリドーマから公知の方 法、例えばグアニジンー超遠心法(Chirgwin, J. M. ら、 Biochemistry(1979),18,5294-5299)、AGPC法 (Chomczynski, Pら、Analytical Biochemistry(198 7),162,156-159)等により全RNAを調製し、mRN A Purification Kit(Pharmacia 社製)に添付された Oligo(dT)-セルローススパンカラム等によりmRNAを 調製する。また、Quick Prep mRNA Purification Kit (Pharmacia 社製) を用いることにより、全RNAの抽 出操作を経ずに、mRNAの調製を行うこともできる。

【0053】(ii) c DNAの調製及び増幅

上記(i) で得たmRNAから、逆転写酵素を用いてL鎖及びH鎖のV領域におけるcDNAをそれぞれ合成する。cDNAの合成は、0ligo-dTプライマー又はL鎖C領域若しくはH鎖C領域とハイブリダイズする適当なプライマー(例えば配列番号1で表される塩基配列を有するMHC2プライマー)を用いることが出来る。cDNA合成反応は、前記mRNAとプライマーとを混合し、逆転写酵素の存在下で例えば52℃で30分の反応を行う。

【0054】cDNAの増幅は、L鎖及びH鎖ともに5'-Ampli FINDER RACE kit (CLONTECH社)を用いた5'-RACE法 (Frohman, M. A. ら, Proc. Natl. Acad. Sci. USA 85, 8998-9002, 1988、Belyavsky, A. ら, Nucleic Acids Res. 17, 2919-2932, 1989)に基づくPCR (ポリメラーゼ連鎖反応)にて行うことが出来る。すなわち、上記で合成したcDNAの5'末端にAmpli FINDER Anchor (配列番号42)を連結し、L鎖V領域及びH鎖V領域をコードする塩基配列を含むDNA (以下、L鎖V領域をコードする塩基配列を含むDNAを「L鎖V領域のDNA」又は「L鎖V領域をコードするDNA」と略記することもある(H鎖V領域、C領域等についても同様))についてPCRを行う。

【0055】L鎖V領域のDNAを増幅するためのプライマーとして、例えばAnchorプライマー(配列番号2)及びマウス抗体のL鎖2鎖定常領域(C2領域)の保存配列から設計したプライマー(例えば配列番号4で表される塩基配列を有するMLCプライマー)を用いることが出来る。また、H鎖V領域のDNAを増幅するためのプライマーとして、例えばAnchorプライマー(配列番号2)及びMHCーG1プライマー(配列番号3)(S.T. Jones ら、Biotechnology、9、88、1991)を用いることが出来る。

【0056】(iii)DNAの精製及び塩基配列の決定 PCR産物について、公知手法に従ってアガロースゲル 電気泳動を行い、目的とするDNA断片を切り出した 後、DNAの回収及び精製を行い、ベクターDNAに連 結する。DNAの精製は、市販のキット(例えばGENECL EAN II; BI0101)を用いて行われる。DNA断片を保持 するためのベクターDNAには公知のもの(例えばpUC1 9、Bluescript等)を用いることができる。

【0057】前記DNAと上記ベクターDNAとを、公知のライゲーションキット(宝酒造製)を用いて連結させ、組換えベクターを得る。次に、得られる組換えベクターを大腸菌JM109等に導入した後アンピシリン耐性コロニーを選抜し、公知方法に基づいてベクターDNAを調製する(J. Sambrook, et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1989)。目的と

するDNAの塩基配列は、上記ベクターDNAを制限酵素で消化した後、公知方法(例えばジデオキシ法)により決定する(J. Sambrook, et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1989)。本発明では、自動塩基配列決定装置(DNA Sequencer 373A; ABI 社)を用いることができる。

【0058】(iv)相補性決定領域

H鎖V領域及びL鎖V領域は、抗原結合部位を形成し、その全般の構造は互いに類似性を有している。すなわち、それぞれ4つのフレームワーク領域(FR)部分が、3つの超可変領域、すなわち相補性決定領域(CDR)により連結されている。FRのアミノ酸配列は比較的よく保存されているが、一方、CDR領域のアミノ酸配列の変異性は極めて高い(Kabat, E. A. ら、「Sequence of Proteinsof Immunological Interest」 US Dept. Health and Human Services, 1983)。

【0059】前記4個のFRの多くの部分は、 β -シート構造をとり、その結果3個のCDRはループを形成する。CDRは、ある場合には β -シート構造の一部を形成することもある。従って、3個のCDRはFRによって相互に立体的に非常に近い位置に保持され、そしてFRは対をなす領域の3個のCDRと共に抗原結合部位を形成する。

【0060】このような事実に基づき、ヒトPTHrPに対するマウスモノクローナル抗体の可変領域のアミノ酸配列をKabatらにより作成された抗体のアミノ酸配列のデータベース(「Sequence of Proteins of Immunological Interest」 US Dept. Health and Human Services, 1983)にあてはめて、相同性を調べることによりCDR領域を見い出すことが出来る。

【0061】(2)キメラ抗体の発現ベクターの作製マウスモノクローナル抗体のマウスL鎖(以下、抗体のL鎖又はH鎖を表す場合は、マウスについては「マウスL鎖」、ヒト抗体のH鎖については「ヒトH鎖」のように略記することもある。)及びH鎖V領域をコードするDNA断片がクローニングされれば、これらのマウスV領域をコードするDNAと連結して発現させることによってキメラ抗ヒトPTHrP抗体が得られる。

【0062】キメラ抗体を作製するための基本的な方法は、クローン化されたcDNAに存在するマウスリーダー配列及びV領域配列を、哺乳類細胞の発現ベクター中にすでに存在するヒト抗体C領域をコードする配列に連結することを含んでなる。あるいは、クローン化されたcDNAに存在するマウスリーダー配列及びV領域の配列をヒト抗体C領域をコードする配列に連結した後、哺乳類細胞発現ベクターに連結することを含んでなる。

【0063】ヒト抗体C領域を含むポリペプチドは、任 意のヒト抗体のH鎖C領域及びヒト抗体のL鎖C領域の ものとすることができ、例えばヒトH鎖のものについて は $C\gamma 1$ 、 $C\gamma 2$ 、 $C\gamma 3$ 又は $C\gamma 4$ 、及びL鎖のものについては $C\lambda$ 又は $C\kappa$ を各々挙げることができる。

【0064】キメラ抗体の製造のためには、まず、2種類の発現ベクター、すなわちエンハンサー/プロモーター系のごとき発現制御領域による制御のもとでマウスL鎖V領域をコードするDNA及びヒトL鎖C領域をコードするDNAを含む発現ベクター、並びにエンハンサー/プロモーター系のごとき発現制御領域のもとでマウスH鎖V領域をコードするDNA及びヒトH鎖C領域をコードするDNAを含む発現ベクターを作製する。次に、これらの発現ベクターにより哺乳類細胞のごとき宿主細胞を同時形質転換し、そして形質転換された細胞をインービトロ又はインービボで培養してキメラ抗体を製造する(例えば、WO91/16928参照)。

【0065】あるいは、クローン化されたcDNAに存在するマウスリーダー配列並びにマウスL鎖V領域をコードするDNA及びヒトL鎖C領域をコードするDNAと、マウスリーダー配列並びにマウスH鎖V領域をコードするDNA及びヒトH鎖C領域をコードするDNAとを単一の発現ベクター(例えば、WO94/11523参照)に導入し、そして該ベクターを用いて宿主細胞を形質転換し、次にこの形質転換された宿主をインービボ又はインービトロで培養して目的とするキメラ抗体を生産させる。

【0066】(i) キメラ抗体H鎖の構築

キメラ抗体の日鎖発現ベクターは、マウスの日鎖V領域をコードする塩基配列を含む c DNA(以下、「日鎖V領域の c DNA」ともいう)を、ヒト抗体の日鎖C領域をコードする塩基配列を含むゲノムDNA(以下、「日鎖C領域のゲノムDNA」ともいう)又は当該領域をコードする c DNA(以下、「H鎖C領域の c DNA」ともいう)を含む適当な発現ベクターに導入することにより得ることが出来る。日鎖C領域としては、例えば $C\gamma$ 1、 $C\gamma$ 2、 $C\gamma$ 3 又は $C\gamma$ 4 領域が挙げられる。

【0067】(i-a) H鎖C領域をコードするゲノムDN Aを含むキメラH鎖発現ベクターの構築

H鎖C領域をコードするゲノムDNAを有する発現ベクターとしては、 $C\gamma$ 1領域をコードするものについては、例えばHEF-PMh- $g\gamma$ 1 (WO92/19759参照)又はDHFR- Δ E-RVh-PM1-f(WO92/19759参照)が挙げられる。

【0068】ここで、マウスH鎖V領域をコードするcDNAをこれらの発現ベクターに挿入するにあたり、PCR法により該cDNAに適当な塩基配列を導入することが出来る。例えば、該cDNAの5'ー末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするため該cDNAの開始コドン直前にKozakコンセンサス配列を有するように設計したPCRプライマー、及び、該cDNAの3'ー末端に適当な制限酵素の認識配列を有するように、そしてゲノムDNAの一次

転写産物が正しくスプライスされmRNAとなるためのスプライスドナー部位を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を発現ベクターに導入することができる。

【0069】こうして構築したマウスH鎖V領域をコードするcDNAを適当な制限酵素で処理した後、上記発現ベクターに挿入して、H鎖C領域(Cγ1領域)をコードするゲノムDNAを含むキメラH鎖発現ベクターを構築する。

【0070】(i-b) H鎖をコードする塩基配列を含む c DNAを含むキメラH鎖発現ベクターの構築

H鎖C領域(例えばCγ1領域)をコードするcDNA を有する発現ベクターは、以下のようにして構築するこ とができる。すなわち、ヒト型化PM1抗体のH鎖V領 域及びヒト抗体H鎖C領域Cγ1のゲノムDNA (N. T akahashi, et al., Cell 29, 671-679 1982) をコード するDNAを含む発現ベクターDHFR-△E-RVh -PM1-f (WO92/19759参照) と、ヒト型 化PM1抗体L鎖V領域のゲノムDNAびヒト抗体L鎖 κ鎖C領域のゲノムDNAをコードするDNAを含む発 現ベクターRV1-PM1a (WO92/19759参 照)とを導入したCHO細胞からmRNAを調製し、R T-PCR法により、ヒト型化PM1抗体H鎖V領域コ ードするcDNA及びヒト抗体H鎖C領域(Cv1)を コードする c DNAをクローニングし、該 c DNAを適 当な制限酵素処理を行った動物細胞発現用ベクターに連 結することにより、目的とする発現ベクターが構築され

【0071】ここで、マウスH鎖V領域をコードする c DNAを、ヒト抗体H鎖C領域C γ 1をコードする c DNAを直接連結するにあたり、H鎖V領域をコードする c DNAを含む断片に、PCR法により適当な塩基配列を導入することが出来る。例えば、該 c DNAの5'ー末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするために該 c DNAの開始コドン直前にKozakコンセンサス配列を有するように設計したPCRプライマー、及び、該 c DNAの3'ー末端にH鎖C領域C γ 1のDNAと直接連結するための適当な制限酵素の認識配列を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を該 c DNAに導入する。

【0072】こうして構築したマウスH鎖V領域をコードするcDNAを適当な制限酵素で処理して、上記H鎖C領域Cγ1をコードするcDNAと連結して、pCOS1又はpCHO1のごとき発現ベクターに挿入することにより、キメラH鎖をコードするcDNAを含む発現ベクターを構築することが出来る。

【0073】(ii)キメラ抗体L鎖の構築

キメラ抗体のL鎖発現ベクターは、マウスL鎖V領域を コードするcDNAと、ヒト抗体のL鎖C領域をコード するゲノムDNA又はcDNAとを連結し、適当な発現ベクターに導入することにより得ることが出来る。L鎖C領域としては、例えば κ 鎖又は λ 鎖が挙げられる。

【0074】(ii-a) キメラL鎖λ鎖をコードする c D NAを含む発現ベクターの構築

マウスL鎖V領域をコードする c DNAを含む発現ベクターを構築するにあたり、PCR法により適当な塩基配列を該発現ベクターに導入することが出来る。例えば、該 c DNAの5'ー末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするためのKozakコンセンサス配列を有するように設計したPCRプライマー、及び、3'ー末端に適当な制限酵素の認識配列を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を該cDNAに導入する。

【0075】ヒトL鎖A鎖C領域をコードするcDNA

は、全塩基配列をDNA合成機で合成し、PCR法によ り構築することが出来る。ヒトL鎖λ鎖C領域は、アイ ソタイプの違いにより少なくとも4種類の存在が知ら れ、いずれのアイソタイプも発現ベクターの構築に用い ることが可能である。例えば、クローニングしたマウス モノクローナル抗体L鎖λ鎖C領域との相同性の検索か ら、ヒトL鎖λ鎖C領域断片のアイソタイプとしてMc g + Ke + Oz - (accession No. X57819) (P.D ariavach5, Proc. Natl. Acad. Sci. USA, 84, 9074-9 078, 1987)のものを選択して発現ベクターの構築に用い ることが出来る。公知のヒトL鎖λ鎖C領域、例えばM cg+ Ke+ Oz- のcDNAを構築するため に、例えば配列番号11から14に示す4本の下記プラ イマーに分ける。プライマーMBC1HGP1(配列番 号11) 及びMBC1HGP3(配列番号13) はセン スDNA配列を有し、MBC1HGP2 (配列番号1 2) 及びMBC1HGP4 (配列番号14) はアンチセ ンスDNA配列を有し、それぞれのプライマーの両端に 20から23bpの相補的配列を有する様に設計する。 【0076】MBC1HGPS(配列番号15)及びM BC1HGPR(配列番号16)は外部プライマーと呼 ばれ、MBC1HGP1、MBC1HGP4とそれぞれ 相同な配列を有しており、それぞれ適当な制限酵素の認 識配列をそれぞれ含んでいる。 PCR法を用いて、4本 のプライマーをアセンブリさせ、完全長の c DNA合成 し、さらに外部プライマーを加え c D N A の増幅を行 う。PCR法によるアセンブリとは、MBC1HGP1 とMBC1HGP2、又はMBC1HGP3とMBC1 HGP4とがその相補的配列によりアニーリングし、M BC1HGP1-MBC1HGP2断片とMBC1HG P3-MBC1HGP4断片が合成され、さらに、各断 片の相補的配列によりアニーリングして、完全長のヒト L鎖λ鎖C領域をコードするcDNAが合成されること を指す。

【0077】このようにして構築したヒトL鎖೩鎖C領域をコードするcDNAと、上記のようにして構築したマウスL鎖V領域をコードするcDNAとを、適当な制限酵素部位間で連結し、さらにpCOS1又はpCHO1のごとき発現ベクターに挿入することにより、キメラ抗体のL鎖೩鎖をコードするcDNAを含む発現ベクターを構築することが出来る。

【0078】(ii-b)キメラL鎖κ鎖をコードするcDN Aを含む発現ベクターの構築

マウスL鎖V領域をコードするcDNAを含む発現ベクターを構築するにあたり、PCR法により、該cDNAに適当な塩基配列を導入することが出来る。例えば、該cDNAの5,一末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするためのKozakコンセンサス配列を有するように設計したPCRプライマー、及び、3,一末端に適当な制限酵素の認識配列を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を該cDNAに導入する。

【0080】3. ヒト型化抗体の作製

(1) ヒト抗体との相同性検索

マウスモノクローナル抗体のCDRがヒト抗体に移植されているヒト型化抗体を作製するためには、マウスモノクローナル抗体のFRとヒト抗体のFRとの間に高い相同性が存在することが望ましい。従って、マウス抗ヒトPTHrPモノクローナル抗体のH鎖及びL鎖のV領域を、プロテイン・データ・バンクを用いて構造が解明されているすべての既知抗体のV領域と比較する。また、同時にKabatらにより、抗体のFRの長さ、アミノ酸の相同性等によって分類されたヒト抗体のサブグループ(HSG: Human subgroup)(Kabat, E.A. ら、US Dep. Health and Human Services, US Government Printing Offices, 1991) との比較を行う。

【0081】ヒトH鎖V領域の場合は、Kabatらに よるHSG分類により、HSGI~IIIに分類すること が出来、マウス抗ヒトPTHrPモノクローナル抗体H 鎖V領域は、HSGIIIのコンセンサス配列と82.7%の ホモロジーを有する。一方、ヒトL鎖λ鎖V領域は、K a b a t らによるHSG分類により、HSGI~VIに分類することが出来、マウス抗ヒトPTHrPモノクローナル抗体L鎖ル鎖V領域は、いずれのサブグループに属するヒトL鎖ル鎖V領域のコンセンサス配列とも高いホモロジーを有さない。

【0082】従って、マウス抗ヒトPTHrPモノクローナル抗体をヒト型化する際には、ヒトH鎖V領域としてHSGIIに属し、最も相同性の高いヒトH鎖V領域、又はカノニカルストラクチャー(Chothia C, et a l., J. Mol. Biol. 196, 901-917, 1987)の一致するFRの構造を有するヒトH鎖V領域をヒト型化抗体の構築に使用することが望ましい。また、ヒトL鎖λ鎖V領域のサブグループには相同性の高いコンセンサス配列がないことより、プロテイン・データ・バンクに登録されている最も高い相同性を有するヒト抗体L鎖λ鎖V領域をヒト型化抗体の構築に使用することが望ましい。

【 **0 0 8 3**】 (2) ヒト型化抗体 V 領域をコードする D N A の設計

ヒト型化抗体V領域をコードするDNAの設計における 第一段階は、設計の基礎となるヒト抗体V領域を選択す ることである。本発明においては、マウス抗体V領域の FRと80%以上ホモロジーを有するヒト抗体V領域の FRを、ヒト型化抗体に用いることができる。ここで、 H鎖V領域のFRとしては、サブグループIIIに属する もの、例えばS31679(NBRF-PDB、Cuisinier A.M.ら、Eu r. J. Immunol. 23, 110-118, 1993) 由来のFRを実質的に 同一なFRの断片として挙げることができる。また、L 鎖V領域のFRとしては、例えばヒト抗体HSU038 68 (GEN-BANK, Deftos Mb, Scand. J. Immunol. 39, 95-103, 1994) 由来のFR1、FR2及びFR3と、ヒ ト抗体S25755 (NBRF-PDB) 由来のFR4 とを実質的に同一なFRの断片として挙げることができ る。なお、ヒト抗体S31679は、ヒト胎児肝臓のc DNAライブラリーよりクローニングされた抗体であ り、ヒト抗体HSU03868は新規ヒトL鎖A鎖V領 域の遺伝子としてクローニングされた抗体である。

【0084】(3) ヒト型化抗体 V 領域を含むポリペプ チドの作製

本発明のヒト型化抗体は、該抗体のC領域、及びV領域のフレームワーク(FR)領域がヒト由来のものであり、V領域の相補性決定領域(CDR)がマウス由来のものである(図1)。本発明のヒト型化抗体のV領域を含むポリペプチドは、鋳型となるヒト抗体のDNA断片が入手可能ならば、PCR法によるCDRーグラフティングと呼ばれる手法により作製することができる。「CDRーグラフティング」とは、マウス由来のCDRをコードするDNA断片を作製し、これを鋳型となるヒト抗体のCDRと入れ換える手法をいう。

【0085】また、鋳型となるヒト抗体のDNA断片が 入手できない場合は、データベースに登録されている塩 基配列をDNA合成機で合成し、PCR法によりヒト型化抗体V領域のDNAを作製することができる。さらに、アミノ酸配列のみデータベースに登録されている場合は、そのアミノ酸配列を基に、Kabat, E. A. らの報告(US Dep. Health and Human Services, US Government Printing Offices, 1991)している抗体のコドン使用頻度に基づいて、全塩基配列を類推することができる。この塩基配列をDNA合成機で合成し、PCR法によりヒト型化抗体V領域のDNAを作製し、これを適当な宿主に導入して発現させることにより、目的のポリペプチドを作製することができる。以下に、鋳型となるヒト抗体のDNA断片が入手できる場合の、PCR法によるCDRーグラフティングの一般的な概要を示す。

【0086】(i) CDR-グラフティング 図2に示すように、V領域をコードするDNAがFR 1、CDR1、FR2、CDR2、FR3、CDR3及 びFR4をコードするDNAの順で連結されているもの とする。

【0087】まず、それぞれのCDRに対応するマウス 由来のDNA断片を合成する。CDR1~3は、先にク ローニングしたマウスH鎖V領域及びL鎖V領域の塩基 配列を基に合成されたDNAである。グラフティングプ ライマーBは、センス方向のマウスCDR1とヒト抗体 のFR2にハイブリダイズする配列を有し、グラフティ ングプライマーEは、アンチセンス方向のCDR1とヒ ト抗体のFR1にハイブリダイズする配列を有するよう に合成する(グラフティングプライマーCとF、グラフ ティングプライマーDとGについても同様) (図 2 (1))。また、FR1の上流の領域及びFR4の下流の領 域にハイブリダイズすることができる適当なプライマー (外部プライマーという;図2(1)のA及びH)も合成 する。なお、グラフティングプライマーの分離、抽出 は、公知の手法により行うことができる (Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold S pringHarbor Laboratory Press, 1989).

【0088】次に、グラフティングプライマーEと外部プライマーA、グラフティングプライマーBとF、グラフティングプライマーCとG、グラフティングプライマーDと外部プライマーHとを用いて第一PCRを行う。その結果、それぞれ断片A-E、断片B-F、断片C-G及び断片D-Hが得られる(図2(2))。

【0089】前記の通り、グラフティングプライマーBの上流とグラフティングプライマーEの下流の一部の領域とが重複するように設計されているので(グラフティングプライマーCとF、DとGについても同様)、これらの断片は、適当な温度条件で反応させることにより、それぞれの相補的配列にアニーリングし、PCRを行うことによりAからHまでの長さを有するDNAにアセンブリーすることが可能である。そして、V領域をコードする1本のDNA断片が得られたところで外部プライマ

ーAとHを加え、第二PCRを行うことにより、FR1 \sim 4はヒト由来のものであるがCDR1 \sim 3はマウス由来のものとなったヒト型抗体V領域をコードするDNAを得る。そして、これを適当な宿主に導入して発現させることにより、目的のポリペプチドを得ることができる(図 2(3))。

【0090】(ii)ヒト型化H鎖V領域をコードするDN A及び発現ベクターの構築

本発明では、ヒト型化抗体の鋳型となるヒト抗体の日鎖 V領域をコードするDNAを天然から入手することがで きないため、当該DNAは日鎖V領域をコードするDN Aの全塩基配列をDNA合成機で合成し、PCR法によ り構築することが出来る。

【0091】マウス抗ヒトPTHrPモノクローナル抗体H鎖V領域は、ヒトサブグループIIIに属するS31679と高い相同性を有する。このヒト抗体を鋳型としてヒト型化H鎖V領域をコードするDNAを構築するために、例えば配列番号23から26に示す4本のプライマーに分けて使用する。プライマーMBC1HGP1(配列番号23)及びMBC1HGP3(配列番号24)はセンスDNA配列を有し、MBC1HGP2(配列番号25)及びMBC1HGP4(配列番号26)はアンチセンスDNA配列を有し、それぞれのプライマーの両端に15から21bpの相補的配列を有する様に設計する。

【0092】外部プライマーMBC1HVS1(配列番号27)、MBC1HVR1(配列番号28)はMBC1HGP1、MBC1HGP4とそれぞれ相同な配列を有しており、それぞれ適当な制限酵素の認識配列をそれぞれ含んでいる。PCR法を用いて、4本のプライマーをアセンブリさせ完全長のcDNA合成し、さらに外部プライマーを加えDNAの増幅を行う。PCR法によるアセンブリとは、MBC1HGP1とMBC1HGP2、又はMBC1HGP3とMBC1HGP4とがその相補的配列によりアニーリングし、MBC1HGP1ーMBC1HGP3断片とMBC1HGP2ーMBC1HGP4断片が合成され、さらに、各断片の相補的配列によりアニーリングして、完全長のヒト型化H鎖V領域のDNAが合成されることを指す。

【0093】ヒト抗体H鎖C領域は任意のヒトH鎖C領域であることができ、例えばヒトH鎖Cγ1、Cγ2、Cγ3又はCγ4を挙げることができる。前記のようにして構築したヒト型化抗体H鎖V領域のDNAは、任意のヒト抗体H鎖C領域、例えばヒトH鎖C領域Cγ1領域のDNAと連結することができる。キメラ抗体H鎖の構築で述べたように、適当な制限酵素にて処理した後、エンハンサー/プロモーター系のごとき発現制御領域のもとでヒトH鎖C領域をコードするDNAと連結し、ヒト型化H鎖V領域及びヒトH鎖C領域のDNAを含む発現ベクターを作製する。

【0094】(iii) ヒト型化L鎖V領域をコードするD NA及び発現ベクターの構築

本発明では、H鎖V領域をコードするDNAの場合と同様、鋳型となるヒト抗体のL鎖V領域のDNAを天然から入手することができないため、L鎖V領域をコードするDNAの全塩基配列をDNA合成機で合成し、PCR法により構築することが出来る。

【0095】マウス抗ヒトPTHrPモノクローナル抗体L鎖V領域と最も相同性を有するヒト抗体HSU03868を鋳型としてヒト型化L鎖V領域のDNAを構築するために、例えば配列番号29から32に示す4本のプライマーに分けて使用する。プライマーMBC1LGP1(配列番号29)及びMBC1LGP3(配列番号30)はセンスDNA配列を有し、MBC1LGP2(配列番号31)及びMBC1LGP4(配列番号32)はアンチセンスDNA配列を有し、それぞれのプライマーの両端に15から21bpの相補的配列を有する様に設計する。

【0096】外部プライマーMBC1LVS1(配列番号33)、MBC1LVR1(配列番号34)はMBC1LGP1、MBC1LGP4とそれぞれ相同な配列を有しており、それぞれ適当な制限酵素の認識配列をそれぞれ含んでいる。PCR法を用いて、4本のプライマーをアセンブリさせ完全長のDNA合成し、さらに外部プライマーを加えDNAの増幅を行う。PCR法によるアセンブリとは、MBC1LGP1とMBC1LGP3、又はMBC1LGP2とMBC1LGP4とがその相補的配列によりアニーリングし、MBC1LGP1ーMBC1LGP3断片とMBC1LGP2ーMBC1LGP4時が合成され、さらに、各断片の相補的配列によりアニーリングして、完全長のヒト型化円鎖V領域をコードするDNAが合成されることを指す。

【0097】ヒト抗体上鎖C領域は任意のヒト上鎖C領域であることができ、例えばヒト上鎖C λ やC κ を挙げることができる。前記のようにして構築したヒト型化抗体上鎖V領域のDNAは、任意のヒト抗体上鎖C領域、例えばヒト上鎖C λ 領域のものと連結することができる。適当な制限酵素で処理した後、エンハンサー/プロモーター系のごとき発現制御領域のもとでヒト上鎖 λ 鎖C領域をコードするDNAと連結し、ヒト型化上鎖V領域及びヒト上鎖 λ 鎖C領域をコードするDNAを含む発現ベクターを作製する。

【0098】前記のようにして、ヒト型化抗体のV領域を含むポリペプチドが作製されても、該ポリペプチドが抗体としての活性(抗原に対する結合活性、中和活性等)を有するか否かは必ずしも明らかではない。特にL鎖の場合は、マウス抗ヒトPTHrPモノクローナル抗体L鎖V領域が、非常に希なVλx遺伝子由来であるため、ヒト型化H鎖との組み合わせによりCOS-7のごとき動物細胞で発現させ、活性の有無を検討する必要が

ある。

【0099】ヒト型化抗体V領域のどのFRが、ヒト型化抗体の結合活性及び中和活性に寄与するのかを明らかにする方法として、ハイブリッドV領域を構築し(Ohto mo, T. et al. Molecular Immunology, 32,407-416,1995)、確認するのが有効である。本発明のヒト型化抗体L鎖V領域において、どのアミノ酸を変異させれば活性を有するものが得られるかを調べるため、ヒト型化抗体のFR領域の断片をマウス由来のFR領域の断片と組換えたものをコードするDNAを構築し、ヒト型化のための各領域の評価を行う。

【0100】図3に示すように、FR1及びFR2はヒト抗体由来であるがFR3及びFR4をマウス抗体由来に組み換えたV領域を含むポリペプチドを有する抗体(このような組み換えた断片を有する抗体を「ハイブリッド抗体」という)、FR1のみをヒトのものに組み換えたハイブリッド抗体、FR2のみをヒトのものに組み換えたハイブリッド抗体を作製する。そして、これらのハイブリッド抗体をコードするDNAを発現ベクターに組み込み、ヒト型化抗体を一過性に発現させ、抗体の活性の有無を調べる。

【0101】本発明者は、この方法を用いてL鎖V領域を含むポリペプチドの抗原結合活性及び中和活性について検討した結果、FR2及びFR3に、置換すべきアミノ酸が存在することが判明した。本発明者は、FR2及びFR3領域に活性に寄与するアミノ酸が存在することが判明し、Kabat, E.A. ら(US Dep. Health and Human Services, US Government Printing Offices, 1991)により決定された抗体のアミノ酸番号の第36、45及び49番目のアミノ酸(FR2領域に存在する)、並びに第87番目のアミノ酸(FR3領域に存在する)が活性に寄与するアミノ酸であることを明らかにした。

【0102】そこで、本発明では、これらのアミノ酸を変異(例えば置換)させたV領域を含むポリペプチドを作製する。まず、前記CDRーグラフティングにより、アミノ酸の変異を導入させるための基本となるアミノ酸配列を有するV領域を含むポリペプチドを調製する。この基本となるポリペプチドは、配列番号47で表されるアミノ酸配列を含むものであり、「バージョンa」とする(表1のa)。

【0103】次に、このバージョンaを基準として、FRのいくつかのアミノ酸を変異させた種々の変異型断片を作製する。変異の導入は、目的の変異を導入しようとするアミノ酸をコードするオリゴヌクレオチドプライマー(変異原プライマー)を設計し、該プライマーを用いたPCRにより行うことができる。このようにして、FR2及びFR3の特定のアミノ酸を変異させたV領域を含むポリペプチド(バージョンb~t)が作製される(表100 を し

[0104]

【0105】前記のようにして構築したヒト型化抗体L 鎖V領域各バージョンをコードするDNAは、任意のヒト抗体L鎖C領域、例えばヒトL鎖C λ領域のDNAと連結することができる。適当な制限酵素で処理した後、エンハンサー/プロモーター系のごとき発現制御領域のもとでヒトL鎖入鎖C領域をコードするDNAと連結し、ヒト型化L鎖V領域各バージョンをコードするDNAとを含む発現ベクターを作製する。

【0106】また、前記のようにして構築したヒト型化

抗体H鎖V領域及びヒトH鎖C領域をコードするDNAと、ヒト型化L鎖V領域及びヒトL鎖C領域をコードするDNAとを、単一の発現ベクター(例えば、WO94/11523参照)に導入し、そして該ベクターを用いて宿主細胞を形質転換し、次にこの形質転換された宿主をインービボ又はインービトロで培養して目的とするヒト型化抗体を生産させることができる。

【0107】4. キメラ抗体及びヒト型抗体の製造 キメラ抗体又はヒト型化抗体を製造するためには、前記 のようなそれぞれ2種類の発現ベクターを作製する。す なわち、キメラ抗体については、エンハンサー/プロモーター系のごとき発現制御領域による制御のもとでマウスH鎖V領域及びヒトH鎖C領域をコードするDNAを含む発現ベクター、並びにエンハンサー/プロモーター系のごとき発現制御領域のもとでマウスL鎖V領域及びヒトL鎖C領域をコードするDNAを含む発現ベクターを作製し、ヒト型化抗体については、エンハンサー/プロモーター系のごとき発現制御領域による制御のもとでヒト型化H鎖V領域及びヒトH鎖C領域をコードするDNAを含む発現ベクター、並びにエンハンサー/プロモーター系のごとき発現制御領域のもとでヒト型化L鎖V領域及びヒトL鎖C領域をコードするDNAを含む発現ベクターを作製する。

【0108】次に、これらの発現ベクターにより哺乳類細胞のごとき宿主細胞を同時形質転換し、そして形質転換された細胞をインービトロ又はインービボで培養してキメラ抗体又はヒト型化抗体を製造する(例えば、WO91/16928参照)。

【0109】また、H鎖V領域及びH鎖C領域をコード するDNA、並びにL鎖V領域及びL鎖C領域をコード するDNAを単一ベクターに連結し、適当な宿主細胞を 形質転換し、抗体を産生させることができる。すなわ ち、キメラ抗体の発現には、クローニングされた c D N Aに存在するマウスリーダー配列並びにマウスH鎖V領 域及びヒトH鎖C領域をコードするDNAと、マウスリ ーダー配列並びにマウスL鎖V領域及びヒトL鎖C領域 をコードするDNAとを単一の発現ベクター(例えば、 WO94/11523参照) に導入する。ヒト型化抗体 の発現には、ヒト型化H鎖V領域及びヒトH鎖C領域を コードするDNAと、ヒト型化L鎖V領域及びヒトL鎖 C領域をコードするDNAとを単一の発現ベクター(例 えば、WO94/11523参照) に導入する。そし て、これらのベクターを用いて宿主細胞を形質転換し、 次にこの形質転換された宿主をインービボ又はインービ トロで培養して目的とするキメラ抗体又はヒト型化抗体 を生産させる。

【0110】以上のようにして目的とするキメラ抗体又はヒト型化抗体をコードするDNAで形質転換した形質転換体を培養し、産生したキメラ抗体又はヒト型化抗体は、細胞内又は細胞外から分離し均一にまで精製することができる。なお、本発明の目的蛋白質であるキメラ抗体又はヒト型化抗体の分離・精製を、プロテインAアガロースカラムを用いて行うことができる。また、その他に、通常の蛋白質で用いられる分離・精製方法を使用すればよく、何ら限定されるものではない。例えば各種クロマトグラフィー、限外濾過、塩折、透析等を適宜選択、組合せれば、キメラ抗体又はヒト型化抗体を分離・精製することができる。

【0111】ヒトPTHrPに対する本発明のキメラ抗 体又はヒト型化抗体を製造するために、任意の発現系を 使用することができる。例えば、真核細胞を用いる場合は動物細胞(例えば樹立された哺乳類細胞系)、真糸状菌細胞又は酵母細胞などが挙げられ、原核細胞を用いる場合は細菌細胞(例えば大腸菌細胞等)などを使用することができる。好ましくは、本発明のキメラ抗体又はヒト型化抗体は哺乳類細胞、例えばCOS細胞又はCHO細胞中で発現される。

【0112】これらの場合、哺乳類細胞での発現のために有用な常用のプロモーターを用いることができる。例えば、ヒト・サイトメガロウィルス前期(human cytome galovirus immediate early; HCMV)プロモーターを使用するのが好ましい。HCMVプロモーターを含有する発現ベクターの例には、 $HCMV-VH-HC\gamma1$, HCMV-VL-HCK等であって、pSV2neoに由来するもの(WO92-19759)が含まれる。

【0113】また、その他に、本発明のために用いることのできる哺乳動物細胞における遺伝子発現のプロモーターとしては、レトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス40(SV40)などのウイルスプロモーターやヒト・ポリペプチド・チェーン・エロンゲーション・ファクター1 α (HEF-1 α)などの哺乳動物細胞由来のプロモーターを用いればよい。例えばSV40のプロモーターを使用する場合は、Mulliganらの方法(Nature 277,108,1979)、また、HEF-1 α プロモーターを使用する場合は、Mizushima、S. らの方法(Nucleic Acids Research、18,5322,1990)に従えば容易に実施することができる。

【0114】複製起原としては、SV40、ポリオーマウイルス、アデノウイルス、牛バピローマウイルス(BPV)等の由来のものを用いることができ、さらに宿主細胞系中での遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、ホスホトランスフェラーゼAPH(3') II又はI(neo)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチンーグアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ薬酸還元酵素(DHFR)遺伝子等を含むことができる。

【0115】5. キメラ抗体及びヒト型抗体の抗原結合 活性及び中和活性の評価

(1) 抗体の濃度測定

得られた精製抗体の濃度の測定は、ELISAにより行うことができる。抗体濃度測定のためのELISAプレートを次のようにして調製する。ELISA用96 穴プレート(例えばMaxisorp, NUNC)の各穴を、例えば $1~\mu$ g/mlの濃度に調製したヤギ抗ヒトIgG抗体 $100~\mu$ lで固相化する。 $200~\mu$ lの希釈バッファー(例えば50mM Tris-HCl、1~mM MgCl $_2$ 、0.1M NaCl、0.05% Tween20、0.02% NaN $_3$ 、1%牛血清アルブミン(BSA)、pH7.2)でブロッキングの後、キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を発現させたCOS-7 細胞若

しくはCHO細胞の培養上清、又は精製キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を段階希釈して各穴に加え、次にアルカリフォスファターゼ結合ヤギ抗ヒト I g G抗体100 μ 1 を加え、1 mg/ml の基質溶液(Si gma 104、p ーニトロフェニルリン酸、SIGMA)を加え、次に405nm での吸光度をマイクロプレートリーダー(Bio Rad)で測定する。濃度測定のスタンダードとして、Hu IgG1 λ Purified (The Binding Site)を用いることができる。

【0116】(2) 抗原結合能の測定

抗原結合測定のためのELISAプレートでは、次のようにして調製する。ELISA用96穴プレートの各穴を $1\mu g/ml$ の濃度に調製したヒトPTHrP(1-34) $100\mu l$ で固相化する。 $200\mu l$ の希釈バッファーでブロッキングの後、キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を発現させたCOS-7細胞若しくはCHO細胞の培養上清、又は精製キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を段階希釈して各穴に加え、次にアルカリフォスファターゼ結合ヤギ抗ヒト1gG抗体 $100\mu l$ を加え、1mg/ml の基質溶液(Sigma104、p--トロフェニルリン酸、<math>SIGMA)を加え、次に405m での吸光度をマイクロプレートリーダー(BioRad)で測定する。

【0117】(3) 中和活性の測定

マウス抗体、キメラ抗体及びヒト型化抗体の中和活性の測定は、例えばラット骨肉腫細胞株ROS17/2.8-5細胞(Sato, K. et al., Acta Endocrinology116, 113-120, 1987)を用て行うことができる。すなわち、ROS17/2.8-5細胞を、4mMのヒドロコルチゾンで刺激し、PTH/PTHrPレセプターを誘導する。1mMのイソブチルー1-メチルキサンチン(IBMX、SIGMA)でcAMPの分解酵素を阻害し、中和活性を測定するマウス抗体、キメラ抗体又はヒト型化抗体をPTHrP(1-34)と等量混合し、各抗体とPTHrP(1-34)の混合液を各穴に添加する。PTHrPの刺激により、ラット骨肉腫細胞株ROS17/2.8-5細胞が産生するcAMPの量を測定することにより、マウス抗体、キメラ抗体又はヒト型抗体の中和能を評価することができる。

【0118】(4) PTHrP と抗PTHrP 抗体との相互作用に おける速度論的解析

本発明では、PTHrP と抗PTHrP 抗体との相互作用における速度論を、様々な手法を用いて解析することができる。具体的には、スキャッチャード解析やBIACORE と呼ばれる表面プラズモン共鳴センサー(ファルマシアバイオテク社により開発・実用化された)により解離定数、解離速度定数、結合速度定数を測定することが可能であるが、本発明では、その一例として、BIACORE と呼ばれる表面プラズモン共鳴センサーにより解析する場合を説明する。

【0119】BIACOREの基本構造は、光源とプリズム、ディテクターとマイクロ流路から成っている。実際には、カセット式のセンサーチップ上にリガンドを固定化し、そこにアナライトをインジェクションする。両者に親和性があれば、その結合量が光学的に検出される。

【0120】その検出原理は表面プラズモン共鳴と呼ばれる現象である。すなわち、ガラスと金属薄膜との界面に全反射するように入射した光のうち、ある角度の入射光は表面プラズモンの励起に使われ減衰してしまう。その角度が金属薄膜(センサー)に接している溶媒の濃度変化に依存して変動する。BIACORE はこの変動を検出するというものである。

【O 1 2 1】BIACOREではこの変化を共鳴シグナル(SPR signal)と呼び、0.1度の変化を1000RU(resonance un its)としている。1000RUは表面積1mm²の薄金センサー上に約1ngの蛋白質が結合した場合の変化量であり、蛋白質であれば50RU(50pg)程度の変化を十分検出することができる。検出されたシグナルは、BIACOREに付属しているコンピューターがセンサーグラムと呼ばれる結合曲線に変換し、リアルタイムにコンピューターディスプレイ上に描き出される(夏目徹 他、(1995)実験医学、13、p563-569.)(Karlsson, R. et al., (1991)J. Immunol. Methods 145, p229-240.)。

【0122】上記BIACORE によって本発明の抗PTHrP 抗体のカイネティクスパラメーター、すなわち解離定数 (KD)、解離速度定数 (Kdiss) および結合速度定数 (Kass)を測定することができる。本発明の抗PTHrP 抗体は、解離定数 (KD値) が小さい値であるほど中和活性を有する点で好ましい。本発明の抗PTHrP 抗体において、KD値は 1.86×10^{-7} 以下であることが好ましく、 1.86×10^{-8} 以下であることがより好ましく、 3.58×10^{-10} 以下のものが最も好ましい。

【0123】また、KD値は解離速度定数(Kdiss)および結合速度定数(Kass)の2つのパラメーターから決定される(KD=Kdiss/Kass)。したがって、Kdissの値が小さく、Kassの値が大きければKD値が小さくなることは明らかである。具体的には、本発明の抗PTHrP抗体の場合、Kdissの値が 1.22×10^{-1} [1/Sec]以下であればよい。好ましくは、Kdissの値が 1.22×10^{-2} 以下であり、より好ましくは 3.16×10^{-4} 以下であり、最も好ましくは 2.32×10^{-4} [1/Sec]以下である。

【0124】一方、Kass の値は 6.55×10^4 [1/M. Sec]以上であればよい。好ましくはKass の値は 6.55×10^5 以上であり、より好ましくは 0.883×10^6 以上であり、最も好ましくは 1.03×10^6 [1/M. Sec]以上である。さらに、Kdissの値が 1.22×10^{-1} [1/Sec]以下であり、かつ、Kass の値が 6.55×10^4 [1/M. Sec]以上の抗PTHrP 抗体も好ましい。

【0125】さらに具体的には、本発明の抗PTHrP 抗体は、KD値がKD値は $1.02 \times 10^{-11} \sim 1.86 \times 10^{-7}$ [M] の

範囲であり、 $1.02\times10^{-10}\sim1.86\times10^{-8}$ [M] のものが好ましく、 $1.34\times10^{-10}\sim3.58\times10^{-10}$ [M]のものがより好ましく、 $2.25\times10^{-10}\sim3.58\times10^{-10}$ [M]のものが最も好ましい。また、Kdiss値は $7.38\times10^{-6}\sim1.22\times10^{-1}$ [1/Sec]の範囲であり、 $7.38\times10^{-5}\sim1.22\times10^{-2}$ [1/Sec]のものが好ましく、 $1.66\times10^{-4}\sim3.16\times10^{-4}$ [1/Sec]のものがより好ましく、 $1.66\times10^{-4}\sim2.32\times10^{-4}$ [1/Sec]のものが最も好ましい。

【 0 1 2 6 】そしてKass 値は、 $6.55 \times 10^4 \sim 1.24 \times 10^7$ [1/M. Sec] の範囲であり、 $6.55 \times 10^5 \sim 1.24 \times 10^6$ [1/M. Sec] のものが好ましく、 $7.23 \times 10^5 \sim 1.03 \times 10^6$ [1/M. Sec] のものがより好ましく、 $0.883 \times 10^6 \sim 1.03 \times 10^6$ [1/M. Sec] のものが最も好ましい。これらのKD値、Kdiss値およびKass 値はスキャッチャード解析、あるいはBIACORE などの表面プラズモン共鳴センサー等により得ることができるが、BIACORE を用いて得ることが好ましい。

【0127】6. 抗PTHrP 抗体又はヒト型化抗体を有効成分として含む医薬組成物及び高カルシウム血症抑制剤PTHrPに対する抗体又はヒト型化抗体の治療効果を確認するには、PTHrPに対する抗体又はヒト型化抗体を、高カルシウム血症を呈した動物に投与し、高カルシウム血症の指標を測定することによりその治療効果を確認することができる。また、高カルシウム血症を呈した動物及び高カルシウム血症患者においては、しばしば低リン血症が認められるが、本発明の抗体は、この低リン血症を改善するために用いることもできる。

【0128】本発明で使用される抗体は、前記解離定数、解離速度定数及び結合速度定数を有する抗PTHrP 抗体(ヒト抗体、キメラ抗体、プライマタイズド抗体を含む)、あるいはPTHrPに対するヒト型化された抗体である。この抗体は、PTHrPに結合することにより、PTHrPの活性を中和する抗体であり、特に、好ましくはヒト型化された#23-57-137-1抗体が挙げられる。ヒト型化#23-57-137-1抗体の作製方法は、実施例1~3に記載されている。

【0129】本発明で使用される抗体は、塩析法、HPLC等を用いたゲル濾過法、プロテインAカラム等を用いたアフィニティークロマトグラフィー法等の通常の精製手段を組み合わせて高純度に精製することができる。このように精製された抗体は、放射免疫測定法(RIA)、酵素免疫測定法(EIA、ELISA)、あるいは蛍光抗体法(Immunofluorescence Analysis)等の通常の免疫学的手段により、高精度にPTHrPを認識することを確認できる。

【0130】高カルシウム血症を呈する動物には、PTHr Pを産生する腫瘍細胞を免疫機能が低下又は欠失した実験動物に移植することにより作製したモデル動物を使用することができる。移植される腫瘍細胞としては、ヒト由来の腫瘍細胞が好ましく、例えば、ヒト膵臓癌PAN-7が挙げられる。また、腫瘍細胞を移植される免疫機能が

低下又は欠失した動物としてはヌードマウス、SCIDマウスが挙げられる。高カルシウム血症の抑制の評価は、血中カルシウム濃度、体重減少、あるいは運動量の低下を経時観察し、その改善の程度を評価することによって行われる。

【0131】本発明のPTHrPに対する抗体又はヒト型化抗体を有効成分として含む医薬組成物及び高カルシウム血症抑制剤は、非経口的に全身又は局所的に投与することができる。例えば、点滴などの静脈内注射、筋肉内注射、腹腔内注射、皮下注射を選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。有効投与量は、一回につき体重1kgあたり0.01mgから1000mgの範囲で選ばれる。あるいは、患者あたり5~10000 mg/body、好ましくは50~1000mg/bodyの投与量を選ぶことができる。

【0132】本発明のPTHrPに対する抗体又はヒト型化 抗体を有効成分として含む医薬組成物及び高カルシウム 血症抑制剤は、投与経路次第で医薬的に許容される担体 や添加物を共に含むものであってもよい。このような担 体及び添加物の例として、水、医薬的に許容される有機 溶剤、コラーゲン、ポリビニルアルコール、ポリビニル ピロリドン、カルボキシビニルポリマー、カルボキシメ チルセルロースナトリウム、ポリアクリル酸ナトリウ ム、アルギン酸ナトリウム、水溶性デキストラン、カル ボキシメチルスターチナトリウム、ペクチン、メチルセ ルロース、エチルセルロース、キサンタンガム、アラビ アゴム、カゼイン、ゼラチン、寒天、ジグリセリン、グ リセリン、プロピレングリコール、ポリエチレングリコ ール、ワセリン、パラフィン、ステアリルアルコール、 ステアリン酸、ヒト血清アルブミン(HSA)、マンニト ール、ソルビトール、ラクトース、医薬添加物として許 容される界面活性剤などが挙げられる。使用される添加 物は、本発明の剤形に応じて上記の中から適宜又は組み 合わせて選択されるが、これらに限定されるものではな W

【0133】なお、本発明の抗体は、種々の癌(悪性腫瘍)によって誘発される高カルシウム血症に広く使用することができる。これらの癌種は特に限定されるものではなく、単一の癌のみならず複数の癌が併発したものも含まれる。癌種としては、例えば膵臓癌、肺癌、咽頭癌、喉頭癌、舌癌、歯肉癌、食道癌、胃癌、胆管癌、乳癌、腎癌、膀胱癌、子宮癌、前立腺癌又は悪性リンパ腫などが挙げられる。

[0134]

【実施例】以下、参考例および実施例により本発明をさらに具体的に説明する。但し、本発明は、これら実施例等にその技術的範囲を限定するものではない。

[参考例1]

抗PTHrP(1-34) マウスモノクローナル抗体産 生ハイブリドーマの作製 ヒトPTHrP(1-34) に対するモノクローナル抗 体産生ハイブリドーマ#23-57-154 および#23-57-137-1の作製は、佐藤幹二らによって行われた (Sato, K. et al., J. Bone Miner. Res. 8, 849-860, 1993)。

【0135】免疫原として使用するために、PTHrP (1-34) (Peninsula 製) とキャリアータンパクであるサイログロブリンをカルボジイミド (Dojinn) を用いて結合した。サイログロブリンと結合したPTHrP (1-34) を透析し、タンパク濃度として $2\mu g/ml$ となるように調製した後、フロイントアジュバント (Difco) と1:1 で混合し、エマルジョン作製後、16匹の雌性BALB/Cマウスの背部皮下又は腹腔内に動物あたり $100\mu g$ を11回免疫した。初回免疫は、フロイント完全アジュバントを用い、二回目以降の追加免疫にはフロイント不完全アジュバントを使用した。

【0136】免疫したマウスの血清中の抗体価の測定は、以下の方法で行った。すなわち、マウス尾静脈より採血し、血清分離後RIAバッファーで希釈した抗血清と 125 I標識PTHrP(1-34)を混合し、結合活性を測定した。抗体価の上昇したマウスの腹腔に、キャリアータンパクを結合していないPTHrP(1-34)を動物あた 950μ gを最終免疫した。

【0137】最終免疫3日目にマウスを屠殺し、脾臓を 摘出後、脾臓細胞とマウスミエローマ細胞株P3x63Ag8U. 1を、50%ポリエチレングリコール4000を用いる常法に したがって細胞融合した。細胞融合した細胞を2×10⁴ /ウェルの細胞数で85枚の96穴プレートに蒔き込んだ。 ハイブリドーマの選別はHAT培地を用いて行った。

【0138】ハイブリドーマのスクリーニングは、HA T培地中で生育の認められた穴の培養上清を固相化RI A法にてPTHrP認識抗体の有無を測定し選択することにより行った。抗体との結合能の認められた穴からハイブリドーマを回収し、15%FCSを含むRPMI-1640 培地にOPI-supplement (Sigma)を添加した培地に懸濁し、限界希釈法にてハイブリドーマの単一化を実施した。PTHrP(1-34)との結合能の強いクローン#23-57-154および#23-57-137-1を得た。

【0139】なお、ハイブリドーマクローン#23-57-137-1 は、mouse-mouse hybridoma #23-57-137-1 として、工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に、平成8年8月15日に、FERM BP-5631としてブダペスト条約に基づき国際寄託されている。

【0140】 〔実施例1〕 ヒトPTHrP(1-34) に対するマウスモノクローナル抗体のV領域をコードするDNAのクローニング

ヒトPTHrP (1-34) に対するマウスモノクローナル抗体#23-57-137-1 の可変領域をコードするDNAを次の様にしてクローニングした。

(1) mRNAの調製

ハイブリドーマ #23-57-137-1 からのmRNAをQuick Prep mRNA Purification Kit (Pharmacia Biotech社)を用いて調製した。ハイブリドーマ#23-57-137-1 の細胞を抽出バッファーで完全にホモジナイズし、キット添付の処方に従い、オリゴ(dT)-セルローススパンカラム(01igo(dT)-Cellulose Spun Column)にてmRNAを精製し、エタノール沈殿をおこなった。mRNA沈殿物を溶出バッファーに溶解した。

【 0 1 4 1】(2) マウスH鎖V領域をコードする遺伝子の c DNAの作製および増幅

(i) #23-57-137-1 抗体H鎖V領域 c DNAのクローニ ング

ヒトPTHrPに対するマウスモノクローナル抗体のH鎖V領域をコードするDNAのクローニングは、5'-RAC E 法 (Frohman, M. A. et al., Proc. Natl. Acad. Sci. U SA, 85, 8998-9002, 1988; Belyavsky, A. et al., Nucl eic Acids Res. 17, 2919-2932, 1989) により行った。5'-RACE 法には5'-Ampli FINDER RACE kit(CLONETECH 社) を用い、操作はキット添付の処方にしたがって行った。 c DNA合成に使用するプライマーは、マウスH鎖定常領域(C領域)とハイブリダイズするMHC 2プライマー(配列番号1)を用いた。前記のようにして調製したmRNA約2 μ gを鋳型としてMHC 2プライマー10pmole を加え、逆転写酵素と 52° C、30分間反応させることにより c DNAへの逆転写を行った。

【0142】6N NaOH でRNAを加水分解(65℃、30分間)した後、エタノール沈殿によりcDNAを精製した。T4RNAリガーゼで37℃で6時間、室温で16時間反応することにより、合成したcDNAの5′末端にAmpli FINDER Anchor(配列番号42)を連結した。これを鋳型としてPCRにより増幅するためのプライマーとしてAnchorプライマー(配列番号2)およびMHC-G1プライマー(配列番号3)(S.T. Jones, et al., Biotechnology, 9, 88, 1991)を使用した。

【0143】PCR溶液は、その 50μ 1中に10mM TrisHC1(pH8.3)、50mM KC1、0.25mM dNTPs (dATP, dGTP, dCTP, dTTP)、1.5 mM MgC1 $_2$ 、2.5 ユニットのTaKaRa Taq (宝酒造)、10pmole のAnchorプライマー、並びにMHC-G1プライマー及びAmpliFINDER Anchor を連結した cDNAの反応混合物 1μ 1を含有する。この溶液に 50μ 1の鉱油を上層した。PCRはThermal Cycler Model 480J(Perkin Elmer)を用い、94℃にて45秒間、60℃にて45秒間、72℃にて2分間の温度サイクルで30回行った。

【0 1 4 4】(ii) #23-57-137-1 抗体L鎖V領域の c D NAのクローニング

ヒトPTHrPに対するマウスモノクローナル抗体のL鎖V領域をコードするDNAのクローニングは、5'-RACE法 (Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA 85, 8998-9002, 1988; Belyavsky, A. et al., Nucl

eic Acids Res. 17, 2919–2932, 1989)により行った。5' -RACE 法には5'-Ampli Finder RACE Kit(Clonetech)を用い、操作は添付の処方に従った。 c DNA合成に使用するプライマーは、oligo-dTプライマーを用いた。前記のように調製したmRNA約2 μ gを鋳型としてoligo-dTプライマーを加え、逆転写酵素と52 $\mathbb C$ 、30分間反応させることにより c DNAへの逆転写を行った。 6 N NaOHでRNAを加水分解(65 $\mathbb C$ 、30分間)した後、エタノール沈殿により c DNAを精製した。合成した c DNAの5'末端に前記Ampli FINDER Anchor をT4RNAリガーゼで37 $\mathbb C$ で6時間、室温で16時間反応させることにより連結した。

【0145】マウスL鎖2鎖定常領域の保存配列からPCRプライマーMLC(配列番号4)を設計し、394 DNA/RNA シンセサイザー(ABI社)を用いて合成した。PCR溶液は、その $100~\mu$ 1中に10~mM Tris-HC1 (pH 8.3)、50mM KC1、0.25mM dNTPs (dATP, dGTP, dCTP, dTTP)、1.5mM MgCl $_2$ 、2.5 ユニットの AmpliTaq (PERKIN ELMER)、50pmole のAnchorプライマー(配列番号2)、並びにMLC(配列番号4)およびAmpli FINDER Anchor を連結したcDNAの反応混合物 $1~\mu$ 1を含有する。この溶液に $50~\mu$ 1の鉱油を上層した。PCRはThermal CyclerModel 480J (Perkin Elmer)を用い、94Cにて45秒間、60Cにて45秒間、72Cにて2分間の温度サイクルで35回行った。

【0146】(3) PCR生成物の精製および断片化 前記のようにしてPCR法により増幅したDNA断片を 3%Nu Sieve GTGアガロース (FMC Bio. Products)を用 いたアガロースゲル電気泳動により分離した。H鎖V領 域として約550bp 長、L鎖V領域として約550bp 長のD NA断片を含有するアガロース片を切取り、GENECLEAN II Kit(BI0101)を用い、キット添付の処方に従いDNA 断片を精製した。精製したDNAをエタノールで沈殿さ せた後、10mM Tris-HCl (pH7.4)、1mM EDTA 溶液20μ 1に溶解した。得られたDNA溶液1μ1を制限酵素X ma I (New England Biolabs)により37℃で1時間消化 し、次いで制限酵素EcoRI (宝酒造)により37℃で1時 間消化した。この消化混合物をフェノール及びクロロホ ルムで抽出し、エタノール沈殿によりDNAを回収し た。こうして、5'-末端にEcoRI 認識配列を有し、 3'一末端にXma I 認識配列を有するマウスH鎖V領 域をコードするDNAおよびL鎖V領域をコードするD NAを得た。

 胞 (ニッポンジーン) 100 μ1に加え、この細胞を氷上で15分間、42℃にて1分間、さらに氷上で1分間静置した。次いで300 μ1のSOC培地 (Molecular Cloning: A Labgoratory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989)を加えて37℃にて30分間インキュベートした後、100 μg/m1又は50μg/m1のアンピシリン、0.1mMのIPTG、20μg/m1のX-ga1を含むLB寒天培地または2xYT寒天培地 (Molecular Cloning: A Labgoratory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989)上にこの大腸菌をまき、37℃にて一夜インキュベートして大腸菌形質転換体を得た。

【0148】この形質転換体を 100μ g/m1 又は 50μ g/m1 のアンピシリンを含有するL B 培地または $2 \times Y$ T 培地2 m1 で37Cにて一夜培養し、菌体画分からプラスミド抽出機 $PI-100 \Sigma$ (クラボウ) 又はQIAprep Spin Plasmid Kit (QIAGEN)を用いてプラスミドDNAを調製し、塩基配列の決定を行った。

【 0 1 4 9 】 (4) マウス抗体V領域をコードするDNA の塩基配列決定

前記プラスミド中の c DNAコード領域の塩基配列を、ダイターミネーターサイクルシークエンシングキット(D ye Terminator Cycle Sequencing kit(Perkin-Elmer))を用い、DNAシークエンサー373A (ABI 社Perkin-Elmer)により決定した。配列決定用プライマーとしてM13 Primer M4 (宝酒造) (配列番号5)及びM13 Primer R V (宝酒造) (配列番号6)を用い、両方向の塩基配列を確認することにより配列を決定した。

【0150】こうして得られたハイブリドーマ#23-57-137-1に由来するマウスH鎖V領域をコードするDNAを含有するプラスミドをMBC1H04、L鎖V領域をコードするDNAを含有するプラスミドをMBC1L24と命名した。プラスミドMBC1H04およびMBC1L24に含まれるマウス#23-57-137-1抗体のH鎖V領域およびL鎖V領域をコードするDNAの塩基配列(対応するアミノ酸配列を含む)をそれぞれ配列番号57、65に示す。H鎖V領域を含むポリペプチド及びL鎖V領域を含むポリペプチドは、いずれも、それぞれ配列番号57、65で表される塩基配列の第58番目(グルタミンをコードする)から開始されている。これらのアミノ酸配列を、H鎖V領域含むポリペプチドについては配列番号46、L鎖V領域含むポリペプチドについては配列番号45に示す。

【0151】なお、前記プラスミドMBC1H04 およびMBC1 L24 を有する大腸菌は、Escherichia coli JM109 (MBC1 H04) およびEscherichia coli JM109 (MBC1L24) として、工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に、平成8年8月15日に、Escherichia coli JM109 (MBC1H04)についてはFERM BP-562 8、Escherichia coli JM109 (MBC1L24)についてはFERM BP-5627としてブダペスト条約に基づき国際寄託されて

いる。

【0152】(5) ヒトPTHrPに対するマウスモノクローナル抗体#23-57-137-1のCDRの決定 H鎖V領域およびL鎖V領域の全般の構造は、互いに類似性を有しており、それぞれ4つのフレームワーク部分が3つの超可変領域、すなわち相補性決定領域(CDR)により連結されている。フレームワークのアミノ酸配列は、比較的よく保存されているが、一方、CDR領域のアミノ酸配列の変異性は極めて高い(Kabat, E. A. et al., 「Sequence of Proteins of Immunological Interest」US Dept. Health and Human Services, 1983)。 【0153】このような事実に基づき、ヒトPTHェPに対するマウスモノクローナル抗体の可変領域のアミノ酸配列をKabat らにより作成された抗体のアミノ酸配列のデータベースにあてはめて、相同性を調べることによりCDR領域を表2に示すごとく決定した。なお、L鎖V領域のCDR $1\sim3$ のアミノ酸配列についてはそれぞれ配列番号59 ~6 1に示し、H鎖V領域のCDR $1\sim3$ のアミノ酸配列についてはそれぞれ配列番号62 ~6 4に示した。

【0154】 【表2】

V領域	配列番号	CDR1	CDR2	CDR3	
H鎖V領域	57	31-35	50-66	99-107	
L鎖V領域	65	23-34	50-60	93-105	

【0155】〔実施例2〕キメラ抗体の構築

- (1) キメラ抗体H鎖の構築
- (i) H鎖V領域の構築

ヒトH鎖C領域Cγ1のゲノムDNAを含む発現ベクタ ーに連結するために、クローニングしたマウスH鎖V領 域をコードするDNAをPCR法により修飾した。後方 プライマーMBC1-S1(配列番号7)はV領域のリ ーダー配列の5'ー側をコードするDNAにハイブリダ イズし且つKozak コンセンサス配列 (Kozak, M. et a 1., J. Mol. Biol., 196, 947-950, 1987) 及び制限酵素Hin d IIIの認識配列を有するように設計した。前方プライ マーMBC1-a (配列番号8) はJ領域の3'ー側を コードするDNA配列にハイブリダイズし、且つ、スプ ライスドナー配列及び制限酵素BamHIの認識配列を有す るように設計した。PCRは、TaKaRa Ex Taq (宝酒 造)を用い、50μ1の反応混合液に鋳型DNAとして0. 07μgのプラスミドMBC1H04、プライマーとしてMBC1-a およびMBC1-S1 をそれぞれ50pmole 、2.5UのTaKaRa Ex Taq、0.25mMのdNTP含む条件で添付緩衝液を使用し て50 μ 1 の鉱油を上層し、94℃にて1分間、55℃にて1 分間、72℃にて2分間の温度サイクルで30回行った。P CR法により増幅したDNA断片を3%NuSieve GTGア ガロース (FMC Bio. Products)を用いたアガロースゲル 電気泳動により分離した。

【0156】437bp 長のDNA断片を含有するアガロース片を切取り、GENECLEAN II Kit(BI0101)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノール沈殿で回収した後、10mM Tris-HCl (pH7.4)、1mM EDTA 溶液20μ1に溶解した。得られたDNA溶液1μ1を制限酵素BamHI、Hind III (宝酒造)により37℃1時間消化した。この消化混合物をフェノール及びクロロホルムで抽出し、エタノール沈殿によりDNAを回収した。

【0157】上記のようにして調製したマウスH鎖V領域をコードするDNAを含むHind III-BamHIDNA断片

をHind IIIおよびBamHIで消化することにより調製したp UC19ベクターにサブクローニングした。このプラスミドの塩基配列を確認するためプライマーM13 Primer M4 およびM13 Primer RV をプライマーとして、ダイターミネーターサイクルシークエンシングキット(Perkin-Elmer)を用い、DNAシークエンサー373A(Perkin-Elmer)により塩基配列を決定した。正しい塩基配列を有するハイブリドーマ#23-57-137-1に由来するマウスH鎖V領域をコードするDNAを含有し、5'ー側にHind III認識配列及びKozak配列、3'ー側にBamHI認識配列を持つプラスミドをMBC1H/pUC19と命名した。

【0158】(ii) c DNAタイプのマウスーヒトキメラ H鎖を作製するためのH鎖V領域の構築

ヒトH鎖C領域Cγ1のcDNAと連結するために、上記のようにして構築したマウスH鎖V領域をコードするDNAをPCR法により修飾した。H鎖V領域を修飾するための後方プライマーMBC1HVS2(配列番号9)はV領域のリーダー配列の最初をコードする配列の2番のアスパラギンをグリシンに変換し、且つKozak コンセンサス配列(Kozak, M. et al., J. Mol. Biol., 196, 947-950, 1987)並びにHind IIIおよびEcoRI 認識配列を有するように設計した。H鎖V領域を修飾するための前方プライマーMBC1HVR2(配列番号10)はJ領域の3、一側をコードするDNA配列にハイブリダイズし、且つ、C領域の5、一側の配列をコードしApaIおよびSmaI認識配列を有するように設計した。

【0159】 P C R は TaKaRa Ex Taq (宝酒造)を用い、 50μ 1の反応混合液に鋳型 D N A として 0.6μ gのプラスミドMBC1H/pUC19、プライマーとしてMBC1HVS2およびMBC1HVR2をそれぞれ50pmole、TaKaRa Ex Taqを2.5U、0.25mMの d N T P 含む条件で、添付の緩衝液を使用して、 50μ 1の鉱油を上層して94 $\mathbb{C}1$ 分間、55 $\mathbb{C}1$ 分間、72 $\mathbb{C}1$ 分間の温度サイクルで30回行った。 P C R 法により増幅した D N A 断片を 1% Sea Kem GTG アガロース (FMC Bio. Products)を用いたアガロースゲル電気泳

動により分離した。456bp 長のDNA断片を含有するアガロース片を切取り、GENECLEAN II Kit (BI0101)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノール沈殿させた後、10mM Tris-HC1(pH7.4)、1 mMEDTA 溶液20 μ 1 に溶解した。

【0160】得られたDNA溶液1μ1を制限酵素EcoR I およびSmaI (宝酒造) により37℃で1時間消化した。 この消化混合物をフェノール及びクロロホルムで抽出 し、エタノール沈殿によりDNAを回収した。上記のよ うにして調製したマウスH鎖V領域をコードするDNA を含むEcoRI-SmaIDNA断片を、EcoRI およびSmaIで消 化することにより調製したpUC19 ベクターにサブクロー ニングした。このプラスミドの塩基配列を確認するた め、プライマーM13 Primer M4 及びM13 Primer RVをプ ライマーとして、ダイターミネーターサイクルシークエ ンシングキット(Perkin-Elmer)を用い、DNAシークエ ンサー373A(Perkin-Elmer)により塩基配列を決定した。 正しい塩基配列を有するハイブリドーマ#23-57-137-1 に由来するマウスH鎖V領域をコードするDNAを含有 し、5'一側にEcoRI およびHind III認識配列及びKoza k 配列、3'ー側にApa I およびSma I 認識配列を持つプ ラスミドをMBC1Hv/pUC19と命名した。

【0161】(iii) キメラ抗体H鎖の発現ベクターの構築

ヒト抗体H鎖C領域C γ 1を含む c DNAは、以下のようにして調製した。すなわち、ヒト型化PM1 抗体H鎖V領域およびヒト抗体H鎖C領域 I g G 1のゲノムDNA (N. Takahashi, et al., Cell 29, 671-679 1982)をコードする発現ベクターDHFR- \triangle E-RVh-PM-1-f(W092/19759参照)と、ヒト型化PM1 抗体L鎖V領域のDNAおよびヒト抗体L鎖 κ 鎖C領域のゲノムDNAをコードする発現ベクターRV1-PM1a(W092/19759参照)とを導入したCHO細胞よりmRNAを調製し、RT-PCR法でヒト型化PM1 抗体H鎖V領域およびヒト抗体C領域C γ 1を含む c DNAをクローニングし、pUC19のHind IIIとBamHI部位にサブクローニングした。塩基配列を確認した後、正しい配列を持つプラスミドをpRVh-PM1f-c DNAと命名した。

【0162】DHFR- \triangle E-RVh-PM-1-f上のSV40プロモーターとDHFR遺伝子との間にあるHind III部位、およびEF-1 α プロモーターとヒト型化PM1抗体H鎖V領域との間にあるEcoRI 部位を欠失した発現ベクターを作製し、ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域C γ 1を含む c DNAの発現ベクターの構築のために使用した。

【 O 1 6 3】pRVh-PM1f-c D N A をBamHIで消化した 後、Klenowフラグメントで平滑化し、さらにHind IIIで 消化し、Hind III-BamHI平滑化断片を調製した。このHi nd III-BamHI平滑化断片を、上記のHind III部位および EcoRI 部位が欠失したDHFR-△E-RVh-PM1-f をHind III およびSmaIで消化することにより調製した発現ベクターに連結し、ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域C γ 1 をコードする c DNA を含む発現ベクターRVh-PM1f-c DNA を構築した。

【0164】ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域C γ 1をコードするcDNAを含む発現ベクターRVh-PMIf-cDNAをApaIおよびBamHIで消化した後、H鎖C領域を含むDNA断片を回収し、ApaIおよびBamHIで消化することにより調製したMBC1Hv/pUC19に導入した。こうして作製したプラスミドをMBC1HcDNA/pUC19と命名した。このプラスミドはマウス抗体のH鎖V領域およびヒト抗体C領域C γ 1をコードするcDNAを含み、5'-末端にEcoRI およびHind III認識配列、3'-末端にBamHI認識配列を持つ。

【0165】プラスミドMBC1HcDNA/pUC19 をEcoRI およびBamHIで消化し、得られたキメラ抗体のH鎖をコードする塩基配列を含むDNA断片を、EcoRI およびBamHIで消化することにより調製した発現ベクターpCOS1に導入した。こうして得られたキメラ抗体の発現プラスミドをMBC1HcDNA/pCOS1と命名した。なお、発現ベクターpCOS1は、HEF-PMh- $g\gamma1$ (W092/19759参照)から、EcoRI およびSmaI消化により抗体遺伝子を削除し、EcoRI-NotI-BamHI Adaptor(宝酒造)を連結することにより構築した。

【0166】さらにCHO細胞での発現に用いるためのプラスミドを作製するため、プラスミドMBC1HcDNA/pUC19をEcoRI およびBamHIで消化し、得られたキメラ抗体H鎖配列を含むDNA断片を、EcoRI およびBamHIで消化することにより調製した発現プラスミドpCHO1に導入した。こうして得られたキメラ抗体の発現プラスミドをMBC1HcDNA/pCHO1と命名した。なお、発現ベクターpCHO1は、DHFR-△E-rvH-PM1-f(W092/19759参照)から、EcoRI およびSmaI消化により抗体遺伝子を削除し、EcoRI-NotI-BamHI Adaptor(宝酒造)を連結することにより構築した。

【0167】(2) ヒトレ鎖定常領域の構築

(i) クローニングベクターの作製

ヒトL鎖定常領域を含むpUC19 ベクターを構築するために、 $Hind\ III$ 部位欠失pUC19 ベクターを作製した。pUC19 ベクター2 μ gを $20mM\ Tris-HC1$ (pH8.5)、 $10mM\ M$ gCI_2 、 $1mM\ DTT$ 、 $100\ mM\ KCl$ 、 $8\ UO\ Hind\ III$ (宝酒造)を含有する反応混合液 20μ 1中で37 $^{\circ}$ Cにて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿により回収した。

【0168】回収したDNAを50mM Tris-HCl (pH7.5)、10mM $MgCl_2$ 、1mM DTT、100mM NaCl、0.5mM dNTP、6 UのKlenowフラグメント (GIBCO BRL)を含有する50 μ I の反応混合液中で室温にて20分間反応させ、末端を平滑化させた。反応混合液をフェノールおよびクロロホルムで抽出し、ベクターDNAをエタノール沈殿により回

収した。

【 0 1 6 9 】回収したベクターDNAを50mM Tris-HCl (pH7.6)、 10mM MgCl₂ 、 1 mM ATP、 1 mM DTT、 5 % (v /v) ポリエチレングリコール-8000、 0.5 UのT4 DNAリガーゼ (GIBCO BRL)を含有する反応混合液10 μ 1 中で16 ℃で 2 時間反応させ、自己連結させた。反応混合液 5 μ 1 を大腸菌JM109 コンピテント細胞(ニッポンジーン)100 μ 1 に加え、氷上で30分間静置した後、42℃にて 1 分間、さらに氷上で 1 分間静置した。SOC培地500 μ 1 を加えて、37℃で1時間インキュベーションした後、X-gal とIPTGを表面に塗布した 2 × Y T 寒天培地(50 μ g/ml アンピシリン含有)(Molecular Cloning: A Lab goratory Manual, Sambrook, et al., Cold Spring Harb or Laboratory Press, 1989)にまき、37℃で一夜培養して形質転換体を得た。

【 O 1 7 O】形質転換体を、50 µ g/ml アンピシリンを含有する 2×Y T培地20mlで37℃一夜培養し、菌体画分からPlasmid Mini Kit(QIAGEN)を用いて、添付の処方に従ってプラスミドDNAを精製した。精製したプラスミドをHind IIIで消化し、HindIII部位が欠失していることを確認したプラスミドをpUC19 ΔHind IIIと命名した。

【 0 1 7 1】(ii)ヒトL鎖λ鎖定常領域をコードするD NAの構築

ヒト抗体L鎖 λ鎖 C領域は、M c g + K e + O z - 、M c g - K e - O z - 、M c g - K e - O z + 、M c g - K e + O z - の少なくとも4種類のアイソタイプが知られている(P. Dariavach, et al., Proc. Natl. Acad. Sci. USA, 84, 9074-9078, 1987)。#23-57-137-1 マウスL鎖 入鎖 C領域と相同性を有するヒト抗体L鎖 入鎖 C領域をEMBLデータベースで検索した結果、アイソタイプがM c g + K e + O z - (accession No. X57819)(P. Dariavach, et al., Proc. Natl. Acad. Sci. USA, 84, 9074-9078, 1987)のヒト抗体L鎖入鎖が最も高い相同性を示し、#23-57-137-1 マウスL鎖入鎖 C領域との相同性はアミノ酸配列で64.4%、塩基配列で73.4%であった。

【0172】そこで、このヒト抗体L鎖入鎖C領域をコードするDNAの構築を、PCR法を用いて行った。各プライマーの合成は、394 DNA/RNA シンセサイザー(ABI社)を用いて行った。HLAMB1 (配列番号11) およびHLAMB3 (配列番号13) はセンスDNA配列を有し、HLAMB2 (配列番号12) およびHLAMB4 (配列番号14) はアンチセンスDNA配列を有し、それぞれのプライマーの両端に20から23bpの相補的配列を有する。

【 O 1 7 3】外部プライマーHLAMBS(配列番号15)、HLAMBR(配列番号16)はHLAMB1、HLAMB4とそれぞれ相同な配列を有しており、またHLAMBSはEcoRI、Hind III、B1 nI認識配列を、HLAMBRはEcoRI 認識配列をそれぞれ含んでいる。第一PCRでHLAMB1-HLAMB2 とHLAMB3-HLAMB4

の反応を行った。反応後、それらを等量混合し、第二P CRでアセンブリを行った。さらに外部プライマーHLAM BSおよびHLAMBRを添加し、第三PCRにより全長DNA を増幅させた。

【0174】 P C R は TaKa Ra Ex Taq (宝酒造)を使い、添付の処方に従って行った。第一P C R では、 $5\,\mathrm{pm}$ ole のHLAMB1および $0.5\,\mathrm{pmole}$ のHLAMB2と $5\,\mathrm{U}$ のTaKa Ra Ex Taq (宝酒造)とを含有する $100\,\mu$ 1の反応混合液、あるいは $0.5\,\mathrm{pmole}$ のHLAMB3および $5\,\mathrm{pmole}$ のHLAMB4と $5\,\mathrm{U}$ のTaKa Ra Ex Taq (宝酒造)とを含有する $100\,\mu$ 1の反応混合液を用い、 $50\,\mu$ 1の鉱油を上層して $94\,\mathrm{C}$ にて $1\,\mathrm{分}$ 間、 $60\,\mathrm{C}$ にて $1\,\mathrm{分}$ 間、 $72\,\mathrm{C}$ にて $1\,\mathrm{分}$ 間の温度サイクルで $5\,\mathrm{D}$ 间でた。第二P C R は、反応液を $50\,\mu$ 1 ずつ混合し、 $50\,\mu$ 1 の鉱油を上層して $94\,\mathrm{C}$ にて $1\,\mathrm{分}$ 間、 $72\,\mathrm{C}$ にて $1\,\mathrm{分}$ 間、 $72\,\mathrm{C}$ にて $1\,\mathrm{O}$ 間、 $72\,\mathrm{C}$ にて $1\,\mathrm{O}$ 間、 $72\,\mathrm{C}$ にて $1\,\mathrm{O}$ 間の温度サイクルで $3\,\mathrm{D}$ 1 で、第三P C R は、反応液に外部プライマーHLAMBS および HLAMBRを各 $50\,\mathrm{pmole}$ ずつ添加し、 $94\,\mathrm{C}$ にて $1\,\mathrm{O}$ 間、 $60\,\mathrm{C}$ にて $1\,\mathrm{O}$ 間、 $72\,\mathrm{C}$ にて $1\,\mathrm{O}$ 間の温度サイクルで $3\,\mathrm{D}$ 回行った。

【0175】第三PCR産物のDNA断片を3%低融点アガロースゲル(NuSieve GTG Agarose, FMC)で電気泳動した後、GENECLEANII Kit(BI0101)を用い、添付の処方に従ってゲルから回収、精製した。得られたDNA断片を50mM Tris-HC1(pH7.5)、10mM MgCl $_2$ 、1mM DTT、100mMNaCl、8UのEcoRI(宝酒造)を含有する20 μ 1の反応混合液中で37℃にて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿で回収した後、10mM Tris-HC1(pH7.4)、1mM EDTA 溶液8 μ 1 に溶解した。

【0176】プラスミドpUC19 Δ Hind III 0.8μ gを同様にEcoRI で消化し、フェノールおよびクロロホルムで抽出し、エタノール沈殿により回収した。消化したプラスミドpUC19 Δ Hind IIIを50 mM Tris-HC1 (pH9.0)、1 mM MgCl₂、アルカリホスファターゼ(E.coli C75, 宝酒造)を含有する反応混合液50 μ 1中で37 $^{\circ}$ C、30分間反応させ脱リン酸処理(BAP処理)した。反応液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿により回収した後、10mM Tris-HC1 (pH7.4)、1 mM ED TA 溶液10 μ 1 に溶解した。

【0177】上記のBAP処理したプラスミドpUC19 Δ Hind III 1μ I と先のPCR産物 4μ I とを、DNA Ligation Kit Ver. 2(宝酒造)を用いて連結し、大腸菌JM10 9 コンピテント細胞に形質転換した。得られた形質転換体を 50μ g/ml アンピシリンを含有する $2\times Y$ T培地 2 mlで一夜培養し、菌体画分からQIAprep Spin PlasmidKit (QIAGEN)を用いてプラスミドを精製した。

【0178】上記プラスミドについて、クローニングされたDNAの塩基配列の確認を行った。塩基配列の決定には373A DNAシークエンサー(ABI社) を用い、プライマーにはM13 プライマー M4 およびM13 プライマーRV(宝

酒造)を用いた。その結果、クローニングされたDNAの内部に12bpの欠失があることが判明した。このDNAを含むプラスミドをC λ Δ / pUC19と命名した。そこで、その部分を補うためのプライマーHCLMS (配列番号 17)、 HCLMR (配列番号18)を新たに合成し、PCRで再度正しいDNAの構築を行った。

【0179】第一PCRで欠失DNAを含むプラスミド $C\lambda\Delta/pUC19$ を鋳型とし、プライマーHLAMBSとHCLMR 、HCLMS とHLAMB4で反応を行った。PCR産物をそれ ぞれ精製し、第二PCRでアセンブリを行った。さらに 外部プライマーHLAMBSおよびHLAMB4を添加し、第三PCRにより全長DNAを増幅させた。

【0180】第一PCRでは、鋳型としてC λ Δ /pUC1 90.1μ g、プライマーHLAMBSおよびHCLMR 各50pmole 、あるいはHCLMS およびHLAMB4各50pmole 、5 UのTaK aRa Ex Taq (宝酒造)を含有する 100μ 1の反応混合液を用い、 50μ Iの鉱油を上層して94℃にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルで30回行った。

【0181】PCR産物HLAMBS-HCLMR(236bp)、HCLMS-HLAMB4(147bp)をそれぞれ3%低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BI0101)を用いてゲルから回収、精製した。第二PCRでは精製DNA断片各40ng、1UのTaKaRa Ex Taq (宝酒造)を含有する20 μ 1の反応混合液を用い、 25μ 1の鉱油を上層して94 $^{\circ}$ にて1分間、 60° にて1分間、 72° にて1分間の温度サイクルを5回行った。

【0182】第三PCRでは、第二PCR反応被 2μ 1、外部プライマーHLAMBS、HLAMB4各50pmole 、5 Uの TaKaRa Ex Taq (宝酒造)を含有する $100~\mu$ 1の反応混合液を用い、 50μ 1の鉱油を上層した。PCRは、94℃にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルで30回行った。第三PCR産物である357bpのDNA断片を3%低融点アガロースゲルで電気泳動した後、GENECLEANII Kit(BI0101)を用いてゲルから回収、精製した。

【0183】得られたDNA断片 0.1μ gをEcoRI で消化した後、BAP処理したプラスミド pUC19 Δ Hind III にサブクローニングした。大腸菌 JM109コンピテント細胞に形質転換し、 50μ g/ml アンピシリンを含有する $2\times Y$ T培地2 mlで一夜培養し、菌体画分からQIApre p Spin Plasmid Kit(QIAGEN)を用いてプラスミドを精製した。精製したプラスミドについて塩基配列をM13プライマー M4、M13プライマーRV(宝酒造)を用い、373ADNAシークエンサー(ABI社)にて決定した。欠失のない正しい塩基配列を有していることが確認されたプラスミドをC λ /pUC19とした。

【0184】(iii) ヒトL鎖κ鎖定常領域をコードする DNAの構築

プラスミドHEF-PM1k-gk (WO92/19759) からL鎖κ鎖C

領域をコードするDNA断片を、PCR法を用いてクローニングした。394 DNA/RNA シンセサイザー(ABI社)を用いて合成した前方プライマーHKAPS (配列番号19)は EcoRI、Hind III、BlnI認識配列を、後方プライマーHK APA (配列番号20)はEcoRI 認識配列を有するように設計した。

【0185】鋳型となるプラスミドHEF-PM1k-gk $0.1~\mu$ g、プライマーHKAPS 、HKAPA 各50pmole 、5 UのTaKa Ra Ex Taq (宝酒造)を含有する $100~\mu$ 1の反応混合液を用い、 $50~\mu$ 1の鉱油を上層した。94² にて1分間、60² にて1分間、72² にて1分間の反応を30 サイクル行った。360bp の P C R 産物を 3 %低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BIO101)を用いてゲルから回収、精製した。

【O186】得られたDNA断片をEcoRI で消化した

後、BAP処理したプラスミドpUC19△Hind IIIにクロ ーニングした。大腸菌JM109コンピテント細胞に形 質転換し、 50μ g/ml アンピシリンを含有する $2 \times YT$ 培地 2 mlで一夜培養し、菌体画分からQIAprep Spin Pla smid Kit(QIAGEN)を用いてプラスミドを精製した。精製 したプラスミドの塩基配列をM13 プライマー M4 、M13 プライマー RV (宝酒造)を用い、373A DNAシークエン サー(ABI社) にて決定した。正しい塩基配列を有してい ることが確認されたプラスミドをCκ/pUC19 とした。 【0187】(3) キメラ抗体L鎖発現ベクターの構築 キメラ#23-57-137-1 抗体L鎖発現ベクターを構築し た。プラスミドC λ/pUC19 、C κ/pUC19 のヒト抗体 定常領域の直前にあるHind III、BlnI部位に、#23-57-137-1 L鎖V領域をコードするDNAを連結することに よって、それぞれキメラ#23-57-137-1 抗体L鎖V領域 およびL鎖λ鎖またはL鎖κ鎖定常領域をコードするD NAを含むpUC19 ベクターを作製した。EcoRI 消化によ ってキメラ抗体上鎖をコードするDNAを切り出し、H EF発現ベクターヘサブクローニングを行った。

【0188】すなわち、プラスミドMBC1L24 から#23-57-137-1 抗体L鎖V領域をコードするDNAを、PCR 法を用いてクローニングした。各プライマーの合成は、394DNA/RNA シンセサイザー(ABI社) を用いて行った。後方プライマーMBCCHL1 (配列番号21)はHind III認識配列とKozak 配列 (Kozak, M. et al., J. Mol. Biol. 196,947-950,1987)を、前方プライマーMBCCHL3 (配列番号22)はBglII、EcoRI 認識配列を有するように設計した。

【0189】PCRは、10mM Tris-HC1 (pH8.3)、50mM KC1、1.5mM MgCl $_2$ 、0.2mM dNTP、0.1 μ gのMBC1L24、プライマーとしてMBCCHL1 およびMBCCHL3 を各50pm ole、1 μ 1 の AmpliTaq (PERKIN ELMER)を含有する100 μ 1 の反応混合液を用い、50 μ 1 の鉱油を上層して94 $^{\circ}$ にて45秒間、60 $^{\circ}$ にて45秒間、72 $^{\circ}$ にて2 分間の温度サイクルで30回行った。

【0190】444bp のPCR産物を3%低融点アガロースゲルで電気泳動した後、GENECLEAN II kit (BI0101)を用いてゲルから回収、精製し、10mM Tris-HCl (pH7.4)、1mM EDTA 溶液20μ1に溶解した。PCR産物1μ1をそれぞれ10mM Tris-HCl (pH7.5)、10mM MgCl2、1mM DTT、50mM NaCl、8 UのHind III (宝酒造) および8 UのEcoRI (宝酒造)を含有する反応混合液20μ1中で37℃にて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿で回収し、10mM Tris-HCl (pH7.4)、1mM EDTA 溶液8μ1に溶解した。

【0191】プラスミドpUC19 1μ gを同様にHind III およびEcoRI で消化し、フェノールおよびクロロホルムで抽出し、エタノール沈殿により回収し、アルカリホスファターゼ(E. coli C75, 宝酒造)でBAP処理した。反応液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿で回収した後、10mM Tris-HCI (pH7.4)、1mM EDTA 溶液 10μ 1 に溶解した。

【0192】 BAP処理したプラスミドpUC19 1μ 1と 先のPCR産物 4μ 1をDNA Ligation Kit Ver. 2(宝酒造)を用いて連結し、大腸菌 JM109コンピテント細胞(ニッポンジーン)に前述と同様に形質転換した。これを、 50μ g/m1アンピシリンを含有する $2\times Y$ T寒天培地にまき、37℃で一夜培養した。得られた形質転換体を、 50μ g/m1アンピシリンを含有する $2\times Y$ T培地 2mlで37℃で一夜培養した。菌体画分からQIAprepSpin Plasmid Kit(QIAGEN)を用いてプラスミドを精製した。塩基配列を決定後、正しい塩基配列を有するプラスミドをCHL/pUC19 とした。

【0193】プラスミドC λ /pUC19、 $C\kappa$ /pUC19各 1μ gをそれぞれ20mM Tris-HC1(pH8.5)、10mM MgCl $_2$ 、1 mM DTT、100mM KC1、8 Uの Hind III(宝酒造)および2 UのB1nI(宝酒造)を含有する反応混合液 20μ 1中で37℃にて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿で回収した後、37℃で30分間BAP処理を行った。反応液をフェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿で回収し、10mM Tris-HC1(pH7.4)、1mM EDTA 溶液 10μ 1に溶解した。

【0194】#23-57-137-1 L鎖V領域をコードするDNAを含むプラスミドCHL/pUC19 から8 μ gを同様にHind IIIおよびBInIで消化した。得られた409bpのDNA断片を3%低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BI0101)を用いてゲルから回収、精製し、10mM Tris-HC1 (pH7.4)、1 mM EDTA 溶液IO μ 1に溶解した。

【0195】このL鎖V領域DNA $4\mu1$ を、BAP処理したプラスミドC λ /pUC19 またはC κ /pUC19 各 $1\mu1$ にサブクローニングし、大腸菌 JM109コンピテント細胞に形質転換した。 $50\mu g/m1$ アンピシリンを含

有する $2 \times Y$ T培地 3 mlで一夜培養し、菌体画分からQI Aprep Spin PIasmid Kit (QIAGEN) を用いてプラスミドを精製した。これらをそれぞれプラスミドMBCIL(λ)/pUC19 、MBCIL(κ)/pUC19 とした。プラスミドMBCIL(λ)/pUC19 およびMBCIL(κ)/pUC19 をそれぞれEcoRI で消化し、3 %低融点アガロースゲルで電気泳動した後、743b p の D N A 断片をGENECLEANII Kit(BI0101) を用いてゲルから回収、精製し、10 mM Tris-HC1(pH7.4)、1 mM EDT A 溶液10 m 1 に溶解した。

【0196】発現ベクターとしてプラスミドHEF-PM1k-g k $2.7~\mu$ g を EcoRI で消化し、フェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿で回収した。回収したDNA断片をBAP処理した後、1%低融点アガロースゲルで電気泳動し、6561bpのDNA断片をGENE CLEANII Kit (BI0101)を用いてゲルから回収、精製し、10mM Tris-HC1 (pH7.4)、1 mM EDTA 溶液10 μ 1 に溶解した。

【0197】BAP処理したHEFベクター $2\mu1$ を上記プラスミド $MBC1L(\lambda)$ または $MBC1L(\kappa)$ EcoRI 断片各 $3\mu1$ と連結し、大腸菌 JM109コンピテント細胞に形質転換した。 50μ g/ml アンピシリンを含有する $2\times YT$ 培地2m1で培養し、菌体画分からQIAprep Spin Pla smid Kit (QIAGEN) を用いてプラスミドを精製した。

【0198】精製したプラスミドを、20mM Tris-HCl(p H8.5)、 10mM MgCl_2 、1 mM DTT、100mM KCl 、8 UのHi nd III(宝酒造)および2 UのPvuI(宝酒造)を含有する反応混合液 $20\,\mu$ 1中で37℃にて1 時間消化した。断片が正しい方向に挿入されていれば5104/2195bp 、逆方向に挿入されていれば4378/2926bp の消化断片が生じることより、正しい方向に挿入されていたプラスミドをそれぞれMBClL(χ)/neo 、MBClL(χ)/neo とした。

【0199】(4) COS-7細胞のトランスフェクション

キメラ抗体の抗原結合活性および中和活性を評価するため、前記発現プラスミドをCOS-7 細胞で一過性に発現させた。すなわちキメラ抗体の一過性発現は、プラスミドMBC1HcDNA/pCOS1とMBC1L

 (λ) / n e o、またはMBC1HcDNA/pCOS 1とMBC1L (κ) / n e oとの組み合わせでGene P ulser 装置 (Bio Rad)を用いてエレクトロポレーショ ンによりCOS-7細胞に同時形質導入した。PBS

(一) 中に 1×10^7 細胞/m 1 の細胞濃度で懸濁されている COS-7 細胞0.8m1に、各プラスミド DNA10 μ gを加え、I,500 V,25 μ F の静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を 2 %のUI tra Low IgG ウシ胎児血清(GIBCO)を含有する DME M培地(GIBCO)に懸濁し、10 c m培養皿を用いて CO_2 インキュベーターにて培養した。72時間の培養の後、培養上清を集め、遠心分離により細胞破片を除去し、ELISA の試料に供した。ま

た、COS-7細胞の培養上清からのキメラ抗体の精製は、AffiGel Protein A MAPSIIキット (BioRad) を用いてキット添付の処方に従って行った。

[0200] (5) ELISA

(i) 抗体濃度の測定

抗体濃度測定のためのELISA プレートを次のようにして 調製した。ELISA 用96穴プレート(Maxisorp, NUNC)の 各穴を、固相化バッファー (0.1M NaHCO3 、0.02% NaN 3)で1μg/mlの濃度に調製したヤギ抗ヒトIgG抗体 (TAGO) 100 μ1 で固相化し、200 μ1 の希釈バッファ - (50mM Tris-HCl , 1 mM MgCl₂, 0.1MNaCl , 0.05% Tween20、0.02% NaN₃、1% 牛血清アルブミン(B SA)、pH7.2)でブロッキングの後、キメラ抗体を発現 させたCOS細胞の培養上清あるいは精製キメラ抗体を 段階希釈して各穴に加えた。1時間室温にてインキュベ ートし、PBS-Tween20 で洗浄後、アルカリフォスファタ ーゼ結合ヤギ抗ヒトIgG抗体(TAGO) 100 μ1 を加え た。 1 時間室温にてインキュベートし、PBS-Tween20 で 洗浄の後、1 mg/ml の基質溶液 (Sigma104、pーニトロ フェニルリン酸、SIGMA) を加え、次に405nm での吸光 度をマイクロプレートリーダー(Bio Rad) で測定した。 濃度測定のスタンダードとして、Hu IgG1 2 Purified (The BindingSite)を用いた。

【0201】(ii)抗原結合能の測定

抗原結合測定のためのEIISAプレートでは、次のようにして調製した。ELISA用96穴プレートの各穴を、固相化バッファーで1 μ g/m l の濃度に調製したヒトPTHェP(1-34)(ペプチド研究所)100 μ l で固相化した。200 μ l の希釈バッファーでブロッキングの後、キメラ抗体を発現させたCOS細胞の培養上清あるいは精製キメラ抗体を段階希釈して各穴に加えた。室温にてインキュベートし、PBS-Tween20 で洗浄後、アルカリフォスファターゼ結合ヤギ抗ヒトI g G抗体(TAG 0)100 μ l を加えた。室温にてインキュベートし、PBS-Tween20 で洗浄の後、1 mg/ml の基質溶液(Sigma10 4、 μ m にの吸光度をマイクロプレートリーダー(Bio Rad)で測定した。

【0202】その結果、キメラ抗体は、ヒトPTHェP (1-34) に対する結合能を有しており、クローニングしたマウス抗体V領域の正しい構造を有することが示された(図4)。また、キメラ抗体においてL鎖C領域が λ 鎖あるいは κ 鎖のいずれであっても抗体のPTHェP (1-34) に対する結合能は変化しないことから、ヒト型化抗体のL鎖C領域は、ヒト型化抗体L鎖 λ 鎖を用いて構築した。

【0203】(6) CHO安定産生細胞株の樹立 キメラ抗体の安定産生細胞株を樹立するため、前記発現 プラスミドをCHO細胞(DXB11)に導入した。す なわちキメラ抗体の安定産生細胞株樹立は、CHO細胞

用発現プラスミドMBC1HcDNA/pCHO1とM BC1L (λ) /neo、またはMBC1HcDNA/ p CHO1とMBC1L (κ) / n e o との組み合わせ で、Gene Pulser 装置 (Bio Rad) を用いてエレクトロ ポレーションによりCHO細胞に同時形質導入した。そ れぞれの発現ベクターを制限酵素 Pvu Iで切断して直 鎖DNAにし、フェノールおよびクロロホルム抽出後、 エタノール沈殿でDNAを回収してエレクトロポレーシ ョンに用いた。PBS (-) 中に1×10⁷細胞/mlの 細胞濃度で懸濁されているCHO細胞0.8ml に、各プラ スミドDNA10μgを加え、1,500 V, 25μFの静電容 量にてパルスを与えた。室温にて10分間の回復期間の 後、エレクトロポレーション処理された細胞を10%ウシ 胎児血清 (GIBCO) を添加したMEM-α培地 (GIBCO)に懸濁し、3枚の96穴プレート(Falcon)を用いて CO。インキュベーターにて培養した。培養開始翌日 に、10%ウシ胎児血清(GIBCO)および500mg/mlのGENE TICIN (G418Sulfate 、GIBCO) 添加、リボヌクレオシ ドおよびデオキリボヌクレオシド不含MEM-α培地 (GIBCO) の選択培地を交換し、抗体遺伝子の導入され た細胞を選択した。選択培地交換後、2週間前後に顕微 鏡下で細胞を観察し、順調な細胞増殖が認められた後 に、上記抗体濃度測定ELISAにて抗体産生量を測定 し、抗体産生量の多い細胞を選別した。

【0204】樹立した抗体の安定産生細胞株の培養を拡大し、ローラーボトルにて2%のUltra Law IgG ウシ胎児血清添加、リボヌクレオシドおよびデオキリボヌクレオシド不含MEM培地を用いて、大量培養を行った。培養3ないし4日目に培養上清を回収し、 $0.2~\mu$ mのフィルター(Millipore)により細胞破片を除去した。CHO細胞の培養上清からのキメラ抗体の精製は、POROSプロテインAカラム(PerSeptive Biosystems)を用いて、ConSep LC100(Millipore)にて添付の処方に従って行い、中和活性の測定および高カルシウム血症モデル動物での薬効試験に供した。得られた精製キメラ抗体の濃度および抗原結合活性は、上記ELISA系にて測定した。

【0205】〔実施例3〕ヒト型化抗体の構築

- (1) ヒト型化抗体H鎖の構築
- (i) ヒト型化H鎖V領域の構築

ヒト型化#23-57-137-1抗体H鎖を、PCR 法によるCDR-グラフティングにより作製した。ヒト 抗体S31679(NBRF-PDB, Cuisinier A.M. ら、Eur. J. Immuno 1.,23,110-118,1993)由来のFRを有するヒト型化#2 3-57-137-1抗体H鎖(バージョン" a")の 作製のために6個のPCRプライマーを使用した。CD R-グラフティングプライマーMBC1HGP1(配列 番号23)及びMBC1HGP3(配列番号24)はセンスDNA配列を有し、そしてCDRグラフティングプライマーMBC1HGP2(配列番号25)及びMBC 1 HG P 4 (配列番号 2 6) はアンチセンスD N A 配列を有し、そしてそれぞれプライマーの両端に 1 5 から 2 1 b p の相補的配列を有する。外部プライマーMB C 1 HV S 1 (配列番号 2 7) 及びMB C 1 HV R 1 (配列番号 2 7) 及びMB C 1 HV R 1 (配列番号 2 8) はCD R グラフティングプライマーMB C 1 HG P 1 及びMB C 1 HG P 4 とホモロジーを有する。【0 2 0 6】CD R ーグラフティングプライマーMB C 1 HG P 1、MB C 1 HG P 2、MB C 1 HG P 3 およびMB C 1 HG P 4 は尿素変性ポリアクリルアミドゲルを用いて分離し(Molecular Cloning: A Laboratory Manual、Sambrookら、Cold Spring Harbor Laboratory Press、1989)、ゲルからの抽出はcrush andsoak法(Molecular Cloning: A Laboratory Manual、Sambrookら、Cold Spring Harbor Laboratory Press、1989)にて行った。

【0207】すなわち、それぞれ1nmoleのCDR ーグラフティングプライマーを6%変性ポリアクリルア ミドゲルで分離し、目的の大きさのDNA断片の同定を シリカゲル薄層板上で紫外線を照射して行い、crush an d soak法にてゲルから回収し20μ1の10mM Tr is-HCl (pH7.4), 1mM EDTA溶液に 溶解した。PCRは、TaKaRa Ex Taq (宝酒造)を用 い、100μ1の反応混合液に上記の様に調製したCD R-グラフティングプライマーMBC1HGP1、MB C1HGP2、MBC1HGP3およびMBC1HGP 4をそれぞれ 1μ 1、0. 25mMのdNTP並びに 2. 5 UのTaKaRa Ex Tagを含む条件で、添付緩衝液を 使用して94℃にて1分間、55℃にて1分間、72℃ にて1分間の温度サイクルで5回行った。さらに50p moleの外部プライマーMBC1HVS1及びMBC 1HVR1を加え、同じ温度サイクルを30回行った。 PCR法により増幅したDNA断片を4%Nu Sieve GTG アガロース (FMC Bio. Products) を用いたアガロース ゲル電気泳動により分離した。

【0208】421bp長のDNA断片を含有するアガロース片を切取り、GENECLEANIIKit(BIO101)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノールで沈殿させた後、10mM TrisーHCl(pH7.4),1 mM EDTA溶液20 μ 1に溶解した。得られたPCR反応混合物を、BamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングし、塩基配列を決定した。正しい配列を有するプラスミドをhMBCHv/pUC19と命名した。

【0209】 (ii) ヒト型化H鎖 c DNAのためのH鎖 V領域の構築

ヒトH鎖C領域Cγ1のcDNAと連結するために、上 記のようにして構築したヒト型化H鎖V領域のDNAを PCR法により修飾した。後方プライマーMBC1HV S2はV領域のリーダー配列の5'ー側をコードする配 列とハイブリダイズし、且つKozak, M, ら、J. Mol. Biol. 196, 947-950, 1987)、Hind III およびEcoRI認識配列を有するように設計した。H鎖V領域のDNAを修飾するための前方プライマーMBC1HVR2は、J領域の3'一側をコードするDNA配列にハイブリダイズし、且つC領域の5'ー側の配列をコードしApaIおよびSmaI認識配列を有するように設計した。

【0210】PCRはTaKaRa Ex Taq (宝酒造)を用い、鋳型DNAとして0.4 μ gのhMBCH ν /pUC19を用い、プライマーとしてMBC1HVS2およびMBC1HVR2をそれぞれ50pmole、2.5UのTaKaRaEx Taq、0.25mMのdNTPを含む条件で添付緩衝液を使用し、94 $^\circ$ にて1分間、55 $^\circ$ にて1分間、72 $^\circ$ にて1分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を3 $^\circ$ NuSieveGTGアガロース(FMCBio.Products)を用いたアガロースゲル電気泳動により分離した。

【0211】 456 b p 長のDNA断片を含有するアガロース片を切取り、GENECLEANIIKit(BIO101)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノールで沈殿させた後、10 mM Tris-HC1(pH7.4),1 mM EDTA溶液 20μ 1に溶解した。得られたPCR反応混合物を、EcoRIおよびSmaIで消化することで調製したpUC19にサブクローニングし、塩基配列を決定した。こうして得られたハイブリドーマ#23-57-137-1に由来するマウスH鎖V領域をコードするDNAを含有し、5、一側にEcoRIおよびHindIII認識配列及びKozak配列、3、一側にApaIおよびSmaI認識配列を持つプラスミドをhMBC1Hv/pUC19と命名した。

【0212】(2) ヒト型化抗体H鎖の発現ベクターの 構築

h PM1抗体H鎖c DNAの配列を含むプラスミドRV h-PM1 f-c DNAをApa I およびBamH I にて消化し、H鎖C領域をコードする塩基配列を含むDN A断片を回収し、Apa I およびBamH I で消化することにより調製したhMBC1H v/pUC19に導入した。こうして作製したプラスミドをhMBC1H c DNA/pUC19と命名した。このプラスミドはヒト型化#23-57-137-1抗体のH鎖V領域及びヒトH鎖C領域C γ 1をコードするDNAを含み、5'-末端にEcoRIおよびHindIII認識配列、3'-末端にBamH I 認識配列を持つ。プラスミドhMBC1H c DNA/pUC19に含まれるヒト型化H鎖バージョン" a"の塩基配列および対応するアミノ酸配列を配列番号58に示す。また、バージョンaのアミノ酸配列を配列番号56に示す。

【0213】hMBC1HcDNA/pUC19をEcoRIおよびBamHIで消化し、得られたH鎖配列を含むDNA断片を、EcoRIおよびBamHIで消化することにより調製した発現プラスミドpCOS1に導入した。こうして得られたヒト型化抗体の発現プラスミドをhMBC1HcDNA/pCOS1と命名した。

【0214】さらにCHO細胞での発現に用いるためのプラスミドを作製するためhMBC1HcDNA/pUC19をEcoRIおよびBamHIで消化し、得られたH鎖配列を含むDNA断片を、EcoRIおよびBamHIで消化することにより調製した発現プラスミドpCHO1に導入した。こうして得られたヒト型化抗体の発現プラスミドをhMBC1HcDNA/pCHO1と命名した。

【0215】(3) L鎖ハイブリッド可変領域の構築(i) FR1, 2/FR3, 4ハイブリッド抗体の作製ヒト型化抗体とマウス(キメラ)抗体のFR領域を組み換えたL鎖をコードするDNAを構築し、ヒト型化のための各領域の評価を行った。CDR2内にある制限酵素Af1II切断部位を利用することによって、FR1及び2はヒト抗体由来、FR3及び4はマウス抗体由来とするハイブリッド抗体を作製した。

【0216】プラスミドMBC1L(λ)/neo及び hMBC1L (λ) /neo各10μgを、10mMT r i s - HCl (pH7. 5), 10 mMMgCl₂1 mMDTT, 50 mMNaCl, 0.01% (w/ v) BSA, AflII (宝酒造) 10 Uを含有する反 応混合液100μ1中で37℃にて1時間消化した。反 応液を2%低融点アガロースゲルで電気泳動し、プラス ミドMBC1L (λ) /neoから6282bpの断片 (c1とする) および1022bpの断片(c2とす る)、プラスミドhMBC1L(λ)/neoから62 82bpの断片(h1とする)および1022bpの断 片(h2とする)を、GENECLEANII Kit (BIO101) を用いてゲルから回収、精製した。回 収した c 1、 h 1 断片各 1 μ g について B A P 処理を行 った。DNAをフェノールおよびクロロホルムで抽出 し、エタノール沈殿で回収した後、10mMTris-HCl (pH7.4), 1mM EDTA溶液10μI に溶解した。

【0217】BAP処理したc1及びh1断片 1μ Iをそれぞれh2、c2断片 4μ Iに連結し(4 $^{\circ}$ С、一夜)、大腸菌 JM109コンピテント細胞に形質転換した。 50μ g/m1アンピシリンを含有する $2\times Y$ T培地2m1 で培養し、菌体画分からQIAprep Spin Plasmid Kit(QIAGEN)を用いてプラスミドを精製した。【0218】精製したプラスミドを、10mMTris—HC1(pH7.5),10mMMgCI $_2$ 及び1mMDTT並びにApaLI(宝酒造)2U、BamHI(宝酒造)8U又はHindIII(宝酒造)8Uを含

【0219】ヒトFR1, 2/マウスFR3, 4ハイブリッド抗体L鎖をコードする発現ベクターをh/mMB $C1L(\lambda)/neo$ とした。一方、h1-c2のクローンが得られなかったので、pUCベクター上で組換えてからHEFベクターにクローニングした。その際、アミノ酸置換のないヒト型化抗体L鎖V領域をコードするDNAを含むプラスミドhMBC1L $a\lambda/p$ UC1g、及びFR3内のg1位(g1位(g2)のチロシンをイソロイシンに置換したヒト型化抗体L鎖V領域をコードするDNAを含むプラスミドg3)のチロシンをイソロイシンに置換したヒト型化抗体L鎖V領域をコードするDNAを含むプラスミドg3)のチロシンを鋳型として用いた

【0220】プラスミドMBC1L(λ)/pUC19、hMBC1La λ /pUC19及びhMBC1Ld λ /pUC19の各10 μ gを、10mMTris-HCI(pH7.5),10mMMgCl₂,1mMDTT,50mMNaCl,0.01%(w/v)BSA,HindIII16U,AflII4Uを含有する反応混合液30 μ 1中で37 $\mathbb C$ 、1時間消化した。反応液を2%低融点アガロースゲルで電気泳動し、プラスミドMBC1L(λ)/pUC19から215bp(c2')、プラスミドhMBC1La λ /pUC19およびhMBC1Ld λ /pUC19からそれぞれ3218bp(ha1',hd1')のDNA断片をGENECLEANII Kit(BIO101)を用いてゲルから回収、精製した。

【0221】ha1'、hd1'断片をそれぞれc2'断片に連結し、大腸菌JM109コンピテント細胞に形質転換した。 50μ g/m1アンピシリンを含有する $2\times$ YT培地2m1で培養し、菌体画分からQIAprepSpinPIasmidKit (QIAGEN)を用いてプラスミドを精製した。ha1'、hd1'断片を含むプラスミドを、それぞれプラスミドm/hMBC1La λ /pUC19と

【0222】得られたプラスミドm/hMBC1La λ /pUC19、m/hMBC1Ld λ /pUC19をE coRIで消化した。それぞれ743bpのDNA断片を2%低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BIO101)を用いてゲルから回収、精製し、10mM Tris-HC1 (pH7.4), 1mM EDTA溶液 20μ 1に溶解した。

【0223】各DNA断片 4μ 1を前述のBAP処理したHEFベクター 1μ 1に連結し、大腸菌JM109コ

ンピテント細胞に形質転換した。 50μ g/mlアンピシリンを含有する $2\times Y$ T培地2ml で培養し、菌体画分からQIAprep Spin PlasmidKit(QIAGEN)を用いてプラスミドを精製した。

【0224】精製した各プラスミドを、 $20\,\mathrm{mMTr}$ i s $-\mathrm{HC1}$ (pH8.5), $10\,\mathrm{mMMgCl}_2$, $1\,\mathrm{m}$ MDTT, $100\,\mathrm{mMKC1}$, HindIII (宝酒造) $8\,\mathrm{U}$, PvuI (宝酒造) $2\,\mathrm{U}$ を含有する反応混合液 $20\,\mu$ 1中で $37\,\mathrm{C}$ にて1時間消化した。断片が正しい方向に挿入されていれば $5104/2195\,\mathrm{bp}$ 、逆方向に挿入されていれば $4378/2926\,\mathrm{bp}$ の消化断片が生じることより、プラスミドの確認を行った。これらを、それぞれマウスFR1, $2/\mathrm{E}$ トFR3, $4\,\mathrm{M}$ イブリッド抗体L鎖をコードする発現ベクター m/hM BC1La λ/neo 、 $\mathrm{m}/\mathrm{hMBC1Ld}\lambda/\mathrm{neo}$ とした。

【 0 2 2 5 】(i i) F R 1 / F R 2 ハイブリッド抗体の作 製

CDR1内にあるSnaBI切断部位を利用することによって、同様にFR1とFR2のハイブリッド抗体を作製した。プラスミドMBC1L(λ) / neo及びh/mMBC1L(λ) / neoの各10 μ gを10mMTris-HC1(pH7.9),10mMMgC12,1mMDTT,50mMNaC1,0.01%(w/v)BSA,SnaBI(宝酒造)6Uを含有する反応混合液20 μ l中で、37℃にて1時間消化した。次に20mMTris-HC1(pH8.5),10mMMgCl2,1mMDTT,100mMKC1,0.01%(w/v)BSA,PvuI6Uを含有する反応混合液50 μ l中で37℃にて1時間消化した。

【0226】反応液を1.5%低融点アガロースゲルで電気泳動した後、プラスミドMBC1L(λ) / neoから4955bp (m1) および2349bp (m2)、プラスミドト/mMBC1L(λ) / neoから4955bp (hm1) および2349bp (hm2)の各DNA断片を、GENECLEANII Kit (BIO101) を用いてゲルから回収、精製し、10mM Tris-HC1(pH7.4), 1mM ED TA溶液40 μ 1に溶解した。

【0227】m1、hm1断片 $1\mu1$ をそれぞれhm2、m2断片 $4\mu1$ に連結し、大腸菌JM109コンピテント細胞に形質転換した。 50μ g/m1アンピシリンを含有する $2\times YT$ 培地2m1で培養し、菌体画分からQIAprepSpinPlasmidKit (QIAGEN)を用いてプラスミドを精製した。精製した各プラスミドを、10mMTris-HC1 (pH7. 5), $10mMMgCl_2$ 、1mMDTT及びApaI (宝酒造) 8 UまたはApaLI (宝酒造) 2 Uを含有する反応混合液 $20\mu1$ 中で 37 ∞ にて 1 時間消化し

た。

【0228】各断片が正しく連結されていれば、Apa Iで7304bp、ApaLIで5560/1246/498bp(m1-hm2)、ApaIで6538/766bp、ApaLIで3535/2025/1246/498bp(hm1-m2)の消化断片が生じることにより、プラスミドの確認を行った。ヒトFR1/マウスFR2、3、4ハイブリッド抗体L鎖をコードする発現ベクターをhmmMBC1L(λ)/neo、マウスFR1/ヒトFR2/マウスFR3、4ハイブリッド抗体L鎖をコードする発現ベクターをmhmMBC1L(λ)/neoとした。

【0229】(4)ヒト型化抗体L鎖の構築

ヒト型化#23-57-137-1抗体L鎖を、PCR 法によるCDR-グラフティングにより作製した。ヒト 抗体HSU03868 (GEN-BANK, Deftos Mら, Scand. J. Immunol., 39, 95-103, 1994) 由来のFR1、FR2および FR3、並びにヒト抗体S25755 (NBRF-PD B) 由来のFR4を有するヒト型化#23-57-13 7-1抗体L鎖 (バージョン"a") の作製のために6 個のPCRプライマーを使用した。

【0230】CDRーグラフティングプライマーMBC 1LGP1(配列番号29)及びMBC1LGP3(配列番号30)はセンスDNA配列を有し、そしてCDRグラフティングプライマーMBC1LGP2(配列番号31)及びMBC1LGP4(配列番号32)はアンチセンスDNA配列を有し、そしてそれぞれプライマーの両端に15から21bpの相補的配列を有する。外部プライマーMBC1LVS1(配列番号33)及びMBC1LVR1(配列番号34)はCDRグラフティングプライマーMBC1LGP1及びMBC1LGP4とホモロジーを有する。

【0231】CDR-グラフティングプライマーMBC 1LGP1、MBC1LGP2、MBC1LGP3およ びMBC1LGP4は尿素変性ポリアクリルアミドゲル を用いて分離し(Molecular Cloning: A Laboratory Manu al, Sambrookら, Cold SpringHarbor Laboratory Press, 1989)、ゲルからの抽出はcrush and soak法(Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spr ing Harbor Laboratory Press, 1989)にて行った。

【0232】すなわち、それぞれ1nmoleoCDRーグラフティングプライマーを6%変性ポリアクリルアミドゲルで分離し、目的の大きさのDNA断片の同定をシリカゲル薄層板上で紫外線を照射して行い、crush and soak法にてゲルから回収し、 $20\mulo10mM$ TrisーHC1 (pH7.4), 1mMEDTA溶液に溶解した。

【0233】PCRは、TaKaRa Ex Taq (宝酒造) を用い、 100μ 1の反応混合液に上記の様に調製したCDR-グラフティングプライマーMBC1

LGP1、MBC1LGP2、MBC1LGP3および MBC1LGP4をそれぞれ 1μ 1、0. 25mMのd NTP並びに2. 5UのTaKaRa Ex Taqを 含む条件で、添付緩衝液を使用して94℃にて1分間、55℃にて1分間、72℃にて1分間の温度サイクルで 5回行い、この反応混合液に50pmo1eの外部プライマーMBC1LVS1及びMBC1LVR1を加え、 さらに同じ温度サイクルで30回反応させた。 PCR法により増幅したDNA断片を3%Nu Sieve GTGアガロース(FMC Bio. Products)を用いたアガロースゲル電気泳動により分離した。

【0234】421bp長のDNA断片を含有するアガロース片を切取り、GENECLEANIIKit(BIO101)を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物を、BamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングし、塩基配列を決定した。こうして得られたプラスミドをhMBCL/pUC19と命名した。しかしながらCDR4の104位(Kabatの規定によるアミノ酸番号96位)のアミノ酸がアルギニンになっていたため、これをチロシンに修正するための修正プライマーMBC1LGP10R(配列番号35)を設計し、合成した。PCRはTaKaRa

Taq (宝酒造)を用い、 $100\mu1$ の反応混合液に 鋳型DNAとして 0.6μ gのプラスミド hMBCL/ pUC19、プライマーとしてMBC1LVS1及びM BC1LGP10Rをそれぞれ50pmo1e、2.5 UOTaKaRaEx Taq (宝酒造)0.25mMのdNTPを含む条件で添付の緩衝液を使用して50 $\mu1$ の鉱油を上層して94℃にて1分間、55℃にて1分間、72℃にて1分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を3%Nu Sieve GTGアガロース(FMC Bio.Products)を用いたアガロースゲル電気泳動により分離した。

【0235】 421bp長のDNA断片を含有するアガロース片を切取り、GENECLEANIIKit (BIO101)を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物をBamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングした。

【0236】M13 Primer M4プライマー及びM13 Primer RVプライマーを用いて塩基配列を決定した結果、正しい配列を得ることができたので、このプラスミドをHindIIIおよびBlnIで消化し、416bpの断片を1%アガロースゲル電気泳動により分離した。GENECLEANII Kit (BIO101)を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物を、HindIIIおよびBlnIで消化することにより調製し

たプラスミド $C\lambda/p$ UC19に導入し、プラスミドhMBC1L $a\lambda/p$ UC19と命名した。このプラスミドをEcoRI消化し、ヒト型化L鎖をコードするDNAをプラスミドpCOS1に導入し、EF1 α プロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをhMBC1L $a\lambda/p$ COS1と命名した。ヒト型化L鎖バージョン″a″の塩基配列(対応するアミノ酸を含む)を配列番号6に示す。また、バージョンaのアミノ酸配列を配列番号47に示す。

【0237】バージョン" b "をPCR法による変異導入を用いて作製した。バージョン" b "では43位(Kabatの規定によるアミノ酸番号43位)のグリシンをプロリンに、49位(Kabatの規定によるアミノ酸番号49位)のリジンをアスパラギン酸に変更するように設計した。変異原プライマーMBC1LGP5R(配列番号36)とプライマーMBC1LVS1により、プラスミドhMBC1La λ /pUC19を鋳型としてPCRを行い、得られたDNA断片をBamHIおよびHindIIIで消化し、pUC19のBamHI,HindIII部位にサブクローニングした。塩基配列決定後、制限酵素HindIIIおよびAflIIで消化し、HindIIIおよびAflIIで消化したhMBC1La λ /pUC19と連結した。

【0238】こうして得られたプラスミドをhMBC1L $b\lambda/pUC19$ とし、このプラスミドをEcoRIで消化し、ヒト型化L鎖をコードするDNAを含む断片をプラスミドpCOS1に導入し、 $EF1\alpha$ プロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドを $hMBC1Lb\lambda/pCOS1$ と命名した。

【0239】バージョン"c"をPCR法による変異導入 を用いて作製した。バージョン" c "では84位(Kab a t の規定によるアミノ酸番号80位)のセリンをプロ リンに変更するように設計した。変異原プライマーMB C1LGP6S (配列番号37) とプライマーM13 Primer RVによりプラスミドhMBC1La2 /pUC19を鋳型としてPCRを行い、得られたDN A断片をBamHIおよびHindIIIで消化し、B amHIおよびHindIIIで消化することにより調 製したpUC19にサブクローニングした。 塩基配列 決定後、制限酵素BstPIおよびAor51HIで消 化し、BstPIおよびAor51HIで消化したhM BC1La λ/pUC19と連結した。こうして得られ たプラスミドをhMBC1Lcλ/pUC19とし、こ のプラスミドを制限酵素EcoRI消化し、ヒト型化L 鎖をコードする配列を含む配列をプラスミドpCOS1 のEcoRI部位に導入し、EF1 aプロモーターの下 流にヒト型化L鎖の開始コドンが位置するようにした。 こうして得られたプラスミドをhMBC1Lc2/pC

OS1と命名した。

【0240】バージョン"d"、"e"及び"f"をPC R法による変異導入を用いて作製した。各バージョンとも順に"a"、"b"、"c"バージョンの91位(Kabatの規定によるアミノ酸番号87位)のチロシンをイソロイシンに変更するように設計した。変異原プライマーMBC1LGP11R(配列番号38)とプライマーM-S1(配列番号44)によりそれぞれhMBC1La λ /pCOS1,hMBC1Lb λ /pCOS1,hMBC1Lb λ /pCOS1,hMBC1Lb λ /pCOS1,hMBC1Lc λ /pCOS1を鋳型としてPCRを行い、得られたDNA断片をBamHIおよびHindIIIで消化し、BamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングした。塩基配列決定後、HindIIIおよびBlnIで消化し、HindIIIおよびBlnIで消化し、HindIIIおよびBlnIで消化することより調製したC λ /pUC19と連結した。

【0241】こうして得られたプラスミドを順にhMB C $1Ld\lambda/pUC19$ 、 $hMBC1Le\lambda/pUC19$ 、 $hMBC1Le\lambda/pUC19$ 、 $hMBC1Lf\lambda/pUC19$ とした。これらのプラスミドをEcoRI消化し、ヒト型化し鎖をコードする配列を含む配列をプラスミドpCOS1のEcoRI 部位に導入し、 $EF1\alpha$ プロモーターの下流にヒト型化し鎖の開始コドンが位置するようにした。こうして得られたプラスミドをそれぞれ順に $hMBC1Ld\lambda/pCOS1$ 、 $hMBC1Le\lambda/pCOS1$ 、 $hMBC1Lf\lambda/pCOS1$ 、 $hMBC1Lf\lambda/pCOS1$

【0242】バージョン"g"及び"h"をPCR法によ る変異導入を用いて作製した。各バージョンとも順に" a"、"d" バージョンの36位 (Kabatの規定に よるアミノ酸番号36位)のヒスチジンをチロシンに変 更するように設計した。変異原プライマーMBC1LG P9R (配列番号39) およびM13 PrimerR Vをプライマーとして用いて、hMBC1La λ/pU C19を鋳型としてPCRを行い、得られたPCR産物 とM13 Primer M4をプライマーとして用い て、プラスミドhMBC1Laλ/pUC19を鋳型と してさらにPCRを行った。得られたDNA断片をHi ndIIIおよびBlnIで消化し、HindIIIお よびBlnIで消化することで調製したプラスミドCル /pUC19にサブクローニングした。このプラスミド を鋳型として、プライマーMBC1LGP13R(配列 番号40)とMBC1LVS1をプライマーとしたPC Rを行った。得られたPCR断片をApalおよびHi ndIIでI消化し、ApaIおよびHindIIIで 消化したプラスミドhMBC1La λ/pUC19およ びhMBC1Ld λ /pUC19に導入した。塩基配列 を決定し、正しい配列を含むプラスミドを順にhMBC 1 Lg λ/pUC19およびhMBC1Lh λ/pUC 19とし、これらのプラスミドを制限酵素 EcoRI消 化し、ヒト型化し鎖をコードする配列を含む配列をプラ スミドp COS 1のE coR I 部位に導入し、E F 1 α プロモーターの下流にヒト型化L鎖の開始コドンが位置 するようにした。こうして得られたプラスミドをそれぞれ順にh MB C 1 L h λ / p COS 1 と命名した。

【0243】バージョン"i"、"j"、"k"、"l" 、"m"、"n" および"o" をPCR法による変異導入 を用いて作製した。変異原プライマーMBC1LGP1 4S (配列番号41) とプライマーV1RV (λ) (配 列番号43) によりプラスミドhMBC1La 1/pU C19を鋳型としてPCRを行い、得られたDNA断片 をApalおよびBlnIで消化し、ApalおよびB 1 n I で消化することにより調製したプラスミドh MB C1Lg1/pUC19にサブクローニングした。塩基 配列決定を行い、それぞれのバージョンに対応した変異 が導入されたクローンを選択した。こうして得られたプ $\forall x \in \mathbb{R}$ $\forall x \in \mathbb{R}$ $\forall x \in \mathbb{R}$ j, k, 1, m, n, o) とし、このプラスミドをE c o R I 消化し、ヒト型化L鎖をコードする配列を含む配 列をプラスミドpCOS1のEcoRI部位に導入し、 EF1αプロモーターの下流にヒト型化L鎖の開始コド ンが位置するようにした。こうして得られたプラスミド $\delta hMBC1Lx\lambda/pCOS1$ (x=i, j, k, 1, m, n, o) と命名した。バージョン"j"、"1" 、"m" および"o" の塩基配列(対応するアミノ酸を 含む)をそれぞれ配列番号67、68、69、70に示す。ま た、これらの各バージョンのアミノ酸配列をそれぞれ配 列番号48、49、50、51に示す。

【0244】バージョン"p"、"q"、"r"、"s"お よび" t" は、バージョン" i "、" j "、"m"、" l " または"o"のアミノ酸配列の87位のチロシンをイソ ロイシンに置換したバージョンであり、FR3内にある 制限酵素Aor51MI切断部位を利用して、バージョ ン"h" を、各バージョン"i"、"j"、"m"、"l"ま たは"o" とつなぎ換えることにより作製したものであ る。すなわち、発現プラスミドhMBC1Lxλ/pC OS1 (x=i, j, m, l, o) 中、CDR3並びに FR3の一部及びFR4を含むAor51HI断片51 4 b p を除き、ここに発現プラスミドhMBC1Lh λ /pCOS1中、CDR3並びにFR3の一部及びFR 4を含むAor51HI断片514bpをつなぐことに より91位(Kabatの規定によるアミノ酸番号87 位) のチロシンがイソロイシンとなるようにした。塩基 配列決定を行い、各バージョン"i"、"j"、"m"、" 1"および"o"の91位(Kabatの規定によるア ミノ酸番号87位) のチロシンがイソロイシンに置換さ れたクローンを選択し、対応するバージョンをそれぞ **れ"p"、"q"、"s"、"r"**および"t"とし、得ら れたプラスミドを $hMBC1Lx\lambda/pCOS1$ (x=p, q, s, r, t) と命名した。バージョン"q"、"

r"、"s" および"t" の塩基配列(対応するアミノ酸を含む)をそれぞれ配列番号71、72、73、74に示す。また、これらの各バージョンのアミノ酸配列をそれぞれ配列番号52、53、54、55に示す。

【0245】プラスミドhMBC1Lqル/pCOS1をHindIIIおよびEcoRIで消化し、Hind

11I およびEcoRI で消化したプラスミドpUC1 9にサブクローニングし、プラスミド $hMBC1Lq\lambda$ / pUC1 9と命名した。ヒト型化L鎖の各バージョンにおける置換アミノ酸の位置を表 3 に示す。

【0246】 【表3】

配列表における置換アミノ酸の位置 (Kabatの規定によるアミノ酸番号)

		-					-
バージョン	36	43	45	47	49	80	87
a b		P			D		
e d						P	т
e f		P			D	Р	Ţ
g	Y					1	· ·
g h i k l	Y		K				Ι
j k	Y		K K K K	V	D		
	Ŷ		Ŕ	Ÿ	D D		
m n	Ÿ			V			
o P	Y		K	V	D		Ι
q r	Ÿ		K K		D		Ī
s t	Y Y Y Y Y Y Y Y Y Y Y		K	V V	D D D		İ
L L	Y			V	D		1

【0247】表中、Yはチロシン、Pはプロリン、Kは リジン、Vはバリン、Dはアスパラギン酸、Iはイソロ イシンを示す。

【0248】なお、前記プラスミドトMBC1HcDN A/pUC19およびトMBC1Lq λ /pUC19を有する大腸菌は、それぞれEscherichia coli JM109 (hMBC1HcDNA/pUC19)および Escherichia coli JM109 (hMBC1Lq λ /pUC19)として、工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に、平成8年8月15日に、Escherichia coli JM109 (hMBC1HcDNA/pUC19)についてはFERM BP-5629、Escherichia coli JM109 (hMBC1Lq λ /pUC19)についてはFERM BP-5630としてブダペスト条約に基づき国際寄託されている。

【0249】(5) COS-7細胞へのトランスフェクション

ハイブリッド抗体およびヒト型化#23-57-137-1抗体の抗原結合活性および中和活性を評価するため、前記発現プラスミドをCOS-7細胞で一過性に発現させた。すなわちL鎖ハイブリッド抗体の一過性発現では、プラスミドhMBC1HcDNA/pCOS1とh/mMBC1L(λ)/neo、hMBC1HcDNA/pCOS1とm/hMBC1Ld λ /neo、hMBC1HcDNA/pCOS1とm/hMBC1Ld λ /neo、hMBC1HcDNA/pCOS1とhmm

MBC1L(λ) / neo、またはhMBC1HcDN A/pCOS1とmhmMBC1L(λ) / neoとの組み合わせを、GenePulser装置(BioRad)を用いてエレクトロポレーションによりCOS-7細胞に同時形質導入した。PBS(-) 中に1×10⁷細胞/mlの細胞濃度で懸濁されているCOS-7細胞 0.8mlに、各プラスミドDNA10 μ gを加え、1,500V,25 μ Fの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を2%のUltraLowIgGウシ胎児血清(GIBCO)を含有するDMEM培養液(GIBCO)に懸濁し、10cm培養皿を用いてCO2インキュベーターにて培養した。72時間の培養の後、培養上清を集め、遠心分離により細胞破片を除去し、ELISAの試料に供した。

【0250】ヒト型化#23-57-137-1抗体の一過性発現では、プラスミドhMBC1HcDNA/pCOS1とhMBC1Lx λ /pCOS1(x=a~t)のいずれかの組み合わせをGenePulser装置(BioRad)を用いて、前記ハイブリッド抗体の場合と同様の方法によりCOS-7細胞にトランスフェクションし、得られた培養上清をELISAに供した。また、COS-7細胞の培養上清からのハイブリッド抗体またはヒト型化抗体の精製は、AffiGel Protein A MAPSIIキット(BioRad)を用いて、キット添付の処方に従って行った。

[0251] (6) ELISA

(i) 抗体濃度の測定

抗体濃度測定のためのELISAプレートを次のように して調製した。ELISA用96穴プレート (Maxi sorp, NUNC)の各穴を固相化バッファー(0. 1M NaHCO₃, 0.02% NaN₃) で1μg /mlの濃度に調製したヤギ抗ヒトIgG抗体(TAG O) 100 μ 1 で固相化し、200 μ 1 の希釈バッファ - (50mM Tris-HCl, 1mM MgC l₂, 0. 1M NaCl, 0. 05% Tween 2 0、0.02% NaN₃、1% 牛血清アルブミン (BSA)、pH7.2)でブロッキングの後、ハイブ リッド抗体またはヒト型化抗体を発現させたCOS-7 細胞の培養上清あるいは精製ハイブリッド抗体またはヒ ト型化抗体を段階希釈して各穴に加えた。1時間室温に てインキュベートしPBS-Tween20で洗浄後、 アルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体 (TAGO) 100 μ 1 を加えた。 1 時間室温にてイン キュベートしPBS-Tween20で洗浄の後、1m g/mlの基質溶液 (Sigma104、p-ニトロフ ェニルリン酸、SIGMA) を加え、次に405 nmで の吸光度をマイクロプレートリーダー (BioRad) で測定した。濃度測定のスタンダードとして、Hu I gG1 \(\text{Purified (The Binding)} \) Site)を用いた。

【0252】(ii)抗原結合能の測定

抗原結合測定のためのELISAプレートを、次のようにして調製した。ELISA用96穴プレートの各穴を固相化バッファーで 1μ g/mlの濃度に調製したヒトPTHrP(1-34)100 μ lで固相化した。200 μ lの希釈バッファーでブロッキングの後、ハイブリッド抗体またはヒト型化抗体を発現させたCOS-7細胞の培養上清あるいは精製ハイブリッド抗体またはヒト型化抗体を段階希釈して各穴に加えた。室温にてインキュベートしPBS-Tween20で洗浄後、アルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体(TAGO)100 μ lを加えた。室温にてインキュベートしPBS-Tween20で洗浄の後、1mg/mlの基質溶液(Sigma104、p-=トロフェニルリン酸、SIGMA)を加え、次に405nmでの吸光度をマイクロプレートリーダー(BioRad)で測定した。

【0253】(7) 活性確認

(i) ヒト型化H鎖の評価

ヒト型化H鎖バージョン" a "とキメラL鎖を組み合わせた抗体は、キメラ抗体とPTHrP結合能が同等であった(図 5)。この結果は、H鎖V領域のヒト型化はバージョン" a"で十分なことを示す。以下、ヒト型化H鎖バージョン" a "をヒト型化抗体のH鎖として供した。

【0254】(ii)ハイブリッド抗体の活性

(ii-a) FR1, 2/FR3, 4ハイブリッド抗体 L鎖がh/mMBC1L(λ) の場合、活性は全く認め られなかったが、 $m/hMBC1La\lambda$ あるいはm/h MBC1Ld λ の場合はいずれもキメラ#23-57-137-1抗体と同等の結合活性を示した(図 6)。これらの結果は、FR3、4はヒト型化抗体として問題ないが、FR1、2内に置換すべきアミノ酸残基が存在することを示唆する。

【0255】(ii-b)FR1/FR2ハイブリッド抗体 L鎖がmhmMBC1L(λ)の場合、活性は全く認められなかったが、hmmMBC1L(λ)の場合はキメラ#23-57-137-1抗体と同等の結合活性を示した(図7)。これらの結果は、FR1, 2のうちFR 1はヒト型化抗体として問題ないが、FR2内に置換すべきアミノ酸残基が存在することを示唆する。

【0256】(iii) ヒト型化抗体の活性

L鎖としてバージョン"a" から"t" の各々一つを用いたヒト型化抗体について、抗原結合活性を測定した。その結果、L鎖バージョン"j"、"1"、" m"、"o"、"q"、"r"、"s"、"t" を有するヒト型化抗体はキメラ抗体と同等のPTHr P結合能を示した(図8~11)。

【0257】(8) CHO安定産生細胞株の樹立 ヒト型化抗体の安定産生細胞株を樹立するため、前記発 現プラスミドをCHO細胞(DXB11)に導入した。 すなわちヒト型化抗体の安定産生細胞株樹立は、CHO 細胞用発現プラスミド hMBC1HcDNA/pCHO 1とhMBC1Lmλ/pCOS1、またはhMBC1 HcDNA/pCHO12hMBC1Lqλ/pCOS 1、あるいはhMBC1HcDNA/pCHO1とhM BC1Lr1/pCOS1との組み合わせで、Gene Pulser装置(BioRad)を用いてエレクトロ ポレーションによりCHO細胞に同時形質導入した。そ れぞれの発現ベクターを制限酵素 Pvu Iで切断して直 鎖DNAにし、フェノールおよびクロロホルム抽出後、 エタノール沈殿でDNAを回収し、エレクトロポレーシ ョンに用いた。PBS (-) 中に1x10⁷ 細胞/m1 の細胞濃度で懸濁されているCHO細胞O.8mlに、 各プラスミドDNA10μgを加え、1,500V,2 5μ Fの静電容量にてパルスを与えた。室温にて10分 間の回復期間の後、エレクトロポレーション処理された 細胞を、10%ウシ胎児血清(GIBCO)を添加した MEM-α培地 (GIBCO) に懸濁し、96穴プレー ト (Falcon)を用いてCO2 インキュベーターに て培養した。培養開始翌日に、10%ウシ胎児血清(G IBCO) および500mg/mlのGENETICI N (G418Sulfate、GIBCO) 添加、リボ ヌクレオシドおよびデオキリボヌクレオシド不含のME M─α選択培地 (GIBCO) に交換し、抗体遺伝子の 導入された細胞を選択した。選択培地交換後、2週間前 後に顕微鏡下で細胞を観察し、順調な細胞増殖が認めら れた後に、上記抗体濃度測定ELISAにて抗体産生量 を測定し、抗体産生能の高い細胞を選別した。

【0258】樹立した抗体の安定産生細胞株の培養を拡大し、ローラーボトルにて2%のUltraLowIgGウシ胎児血清添加、リボヌクレオシドおよびデオキリボヌクレオシド不含のMEM $-\alpha$ 選択培地を用いて、大量培養を行った。培養3ないし4日目に培養上清を回収し、0.2 μ mのフィルター(Millipore)により細胞破片を除去した。 CHO細胞の培養上清からのヒト型化抗体の精製は、POROSプロテインAカラム(PerSeptive Biosystems)を用いて、ConSep LC100(Millipore)にて添付の処方に従って行い、中和活性の測定および高カルシウム血症モデル動物での薬効試験に供した。得られた精製ヒト型化抗体の濃度および抗原結合活性は、上記ELISA系にて測定した。

【0259】〔実施例4〕中和活性の測定

マウス抗体、キメラ抗体およびヒト型化抗体の中和活性の測定は、ラット骨肉腫細胞株ROS17/2.8-5 細胞を用いて行った。すなわち、ROS17/2.8-5 細胞を、10%牛胎児血清(GIBCO)を含むHam'SF-12培地(GIBCO)中にて、 CO_2 インキュベーターで培養した。ROS17/2.8-5 細胞を96穴プレートに 10^4 細胞/ $100\mu1$ /穴で蒔込み、1日間培養し、4mMのヒドロコルチゾンと10% 牛胎児血清を含むHam'SF-12培地(GIBCO)に交換する。さらに<math>3ないし4日間培養した後、 $260\mu1$ のHam'SF-12培地(GIBCO)にで洗浄し、1mMのイソブチル-1-メチルキサンチン(IBM X、SIGMA)および10%の牛胎児血清と10mMのHEPESを含む $80\mu1$ のHam'sF-12を加え、30分間37ででインキュベートした。

【0260】中和活性を測定するマウス抗体、キメラ抗 体またはヒト型化抗体を、あらかじめ10μg/m1、 3. $3\mu g/ml$, 1. $1\mu g/ml \ddagger U0$. 37μ g/m I の群、 10μ g/m l、 2μ g/m I、0.5 μ g/mlおよび0.01 μ g/mlの群、または10 μ g/m I, 5μ g/m I, 1. 25μ g/m l, 0. 63μg/mlおよび0.31μg/mlの群に段階希 釈し、4 ng/mlに調製したPTHrP (1-34) と等量混合し、各抗体とPTHrP (1-34) との混 合液80μ1を各穴に添加した。各抗体の最終濃度は、 上記抗体濃度の4分の1になり、PTHrP(1-3)4) の濃度は、1 n g/m l になる。10分間室温にて 処理した後、培養上清を捨て、PBSにて3回洗浄した した後、100μ1の0.3%塩酸95%エタノールに て細胞内の c AMPを抽出する。水流アスピレーターに て塩酸エタノールを蒸発させ、cAMP EIA ki t (CAYMANCHEMICAL'S) 付属のEIA バッファー120μlを添加してcAMPを抽出後、c AMP EIA kit (CAYMANCHEMICA L'S)添付の処方に従ってcAMPを測定した。その

結果、キメラ抗体と同等の抗原結合を有するL鎖バージョンのうち、91位のチロシンをイソロイシンに置換したバージョン" q"、" r"、" s"、" t"を有するヒト型化抗体がキメラ抗体に近い中和能を示し、その中でも、バージョン" q"がもっとも強い中和能を示した(図12~14)。

【0261】 〔実施例5〕 高カルシウム血症モデル動物 での薬効試験(1)

ヒト腫瘍-ヌードマウス移植系の高カルシウム血症モデル動物を用いて、PTHrPに対するキメラ抗体および L鎖バージョン"m"、"r"および"q"を有するヒト型化抗体について高カルシウム血症に対する治療効果を検討した。

【0262】高カルシウム血症モデル動物としてヒト膵臓癌PAN-7 ((財)実験動物中央研究所より購入)移植ヌードマウスを用いた。ヒト膵臓癌PAN-7を移植されたヌードマウスは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体重減少や運動量の低下などの高カルシウム血症を発症する。高カルシウム血症に対する治療効果の検討は、キメラ抗体およびヒト型化抗体が、ヒト膵臓癌PAN-7によって引き起こされる高カルシウム血症を改善することを、体重および血中カルシウム濃度を指標にして評価した。

【0263】ヒト膵臓癌PAN-7の継代は、BALB/c-nu/nuヌードマウス(日本チャールズリバー)を用いてin vivoで行った。薬効評価には、5週齢雄性BALB/c-nu/nuヌードマウス(日本チャールズリバー)を購入し、1週間の馴化の後、6週齢の動物を使用した。高カルシウム血症モデル動物の作製および群分けは、以下のようにして行った。すなわち、継代しているヒト膵臓癌PAN-7を摘出し、3mm角ブロックに細かく刻んだ腫瘍塊をマウスの脇腹皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、2ないし3週間して腫瘍体積が十分に大きくなったのを確認した後、腫瘍体積、血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、高カルシウム血症モデル動物とした。

 度は、眼窩よりヘマトクリット管で採血し、643自動 Ca++/pHアナライザー(CIBA-CORNIN G)を用いて全血イオン化カルシウム濃度として測定し た。

【0265】その結果、キメラ抗体およびL鎖バージョン"m"、"r"および"q"を有するヒト型化抗体を投与することにより、体重および血中カルシウム濃度の速やかな改善および持続性が認められた。このことから、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症治療薬としての有用性が示された(図15~16)。

【0266】〔実施例6〕高カルシウム血症モデル動物での薬効試験(2)

ヒト腫瘍ーヌードマウス移植系の高カルシウム血症モデル動物を用いて、PTHrPに対するキメラ抗体およびL鎖バージョン" q"を有するヒト型化抗体について、高カルシウム血症に対する治療効果を検討した。高カルシウム血症に対する治療効果の検討は、以下のようにして行った。すなわち、上記で作製、群分けした高カルシウム血症モデル動物に、マウス1匹あたり 10μ gまたは 30μ gのPTHrPに対するキメラ抗体またはL鎖バージョン"q"を有するヒト型化抗体を尾静脈内に単回投与した。キメラ抗体およびヒト型化抗体投与後、1日、3日、7日、10日目に血中カルシウム濃度および体重を測定し、各抗体の薬効評価を行った。血中カルシウム濃度は、眼窩よりヘマトクリット管で採血し、643自動Ca++/pHアナライザー(CIBA-CORNING)を用いて全血イオン化カルシウム濃度として測定した。

【0267】その結果、ヒト膵臓癌PAN-7移植高カルシウム血症モデルにおいて、キメラ抗体およびL鎖バージョン"q"を有するヒト型化抗体を投与することにより、体重および血中カルシウム濃度の速やかな改善および待続性が認められた。このことから、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症治療薬としての有用性が示された(図17)。

【0268】〔実施例7〕高カルシウム血症モデル動物での薬効試験(3)

ヒト腫瘍-ヌードマウス移植系の高カルシウム血症モデル動物(ヒト肺癌LC-6移植高カルシウム血症モデル)を用いて、PTHrP に対するキメラ抗体およびL鎖バージョン"q"を有するヒト型化抗体について高カルシウム血症に対する治療効果を検討した。高カルシウム血症モデル動物としてヒト肺癌LC-6((財)実験動物中央研究所より購入)移植ヌードマウスを用いた。ヒト肺癌LC-6を移植されたヌードマウスは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体重減少や運動量の低下などの高カルシウム血症を発症する。

【0269】高カルシウム血症に対する治療効果の検討は、キメラ抗体およびヒト型化抗体が、ヒト肺癌LC-6によって引き起こされる高カルシウム血症を改善すること

を、体重および血中カルシウム濃度を指標にして評価した。ヒト肺癌LC-6の継代は、BALB/c-nu/nuヌードマウス(日本チャールズリバー)を用いてin vivo で行った。薬効評価には、5週齢雄性BALB/c-nu/nuヌードマウス(日本チャールズリバー)を購入し、1週間の馴化の後、6週齢の動物を使用した。

【0270】高カルシウム血症モデル動物の作製および群分けは、以下のようにして行った。すなわち、継代しているヒト肺癌LC-6を摘出し、3mm 角ブロックに細かく刻んだ腫瘍塊をマウスの脇腹皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、2ないし3週間して腫瘍体積が十分に大きくなったのを確認した後、腫瘍体積、血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、高カルシウム血症モデル動物とした。

【0271】高カルシウム血症に対する治療効果の検討は、以下のようにして行った。すなわち、上記で作製、群分けした高カルシウム血症モデル動物に、マウス1匹あたり 10μ gまたは 30μ gのPTHrPに対するキメラ抗体またはL鎖バージョン" q"を有するヒト型化抗体を尾静脈内に単回投与した。キメラ抗体およびヒト型化抗体投与後、1日、3日、6日、10日目に血中カルシウム濃度および体重を測定し、各抗体の薬効評価を行った。血中カルシウム濃度は、眼窩よりヘマトクリット管で採血し、643自動Ca++/pHアナライザー(CIBA-CORNING)を用いて全血イオン化カルシウム濃度として測定した。

【0272】その結果、ヒト肺癌LC-6移植高カルシウム血症モデルにおいて、キメラ抗体およびL鎖バージョン"q"を有するヒト型化抗体を投与することにより、体重および血中カルシウム濃度の速やかな改善および持続性が認められた。このことから、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症治療薬としての有用性が示された(図18)。

【0273】 〔実施例8〕 BIACORE を用いたPTHrPと抗P THrP抗体の相互作用における速度論的解析

BIACORE を用いて、抗原抗体反応の速度論的解析を行った。抗原としてPTHrP(1-34+Cys) を用い、C末端部位特異的にセンサーチップ上に固定化し、種々の濃度に調製した精製抗体をアナライトとした。得られたセンサーグラムから、カイネティクスパラメーター(結合速度定数kass及び解離速度定数kdiss)を算出した。速度論的解析に関して、文献「Kinetic analysis of monoclonal ant ibody-antigen interactions with a new biosensor based analytical system」(Karlsson, R. et al., (1991) J. Immunol. Methods 145, p229-240.)を参考にした。

【0274】(1) センサーチツプへのPTHrP (1-34+C) の固定化

センサーチップ CM5(Pharmacia) へPTHrP (1-34+C) を 固定化する。ランニングバッファーとしてHBS(10mM HEP ES pH7.4, 0.15M NaCl, 3.4mM EDTA, 0.005% Surfacta nt P20) を用い、流速は5 μ 1/分とした。センサーチッ プCM5 上のカルボキシメチルデキストランのカルボキシ ル基を100 μ1 の0.05M N-ヒドロキシコハク酸イミド(N HS)/0.2M塩酸 N-エチル-N'-(3-ジメチルアミノプロピ ル)-カルボジイミド(EDC) のインジェクトおよび100 μ 1 の80mM塩酸 2-(2-ピリジニルジチオ) エタンアミン(P DEA)/0.1M ホウ酸緩衝液 pH8.5のインジェクトにより活 性化した。引き続き、 $10\mu1$ の5 μ g/ml PTHrP(1-34+ C) / 10mM酢酸ナトリウム緩衝液 pH5.0をインジェクト し、PTHrP(1-34+C)のC末端のCys残基特異的に固定化し た。 さらに、100 μ1 の50mM (L)-システイン/1M NaCl/ 0.1M 蟻酸ナトリウム緩衝液 pH4.3をインジェクトする ことにより、過剰の活性基をブロックした。さらに、10 μ1 の0.1Mグリシン-塩酸緩衝液 pH2.5および10μ1 の1 OmM塩酸をインジェクトすることにより、非共有結合を している物質を洗浄した。このときのPTHrP(1-34+C)の 固定量は、226.4 RU(resonance units) であった(図1 9) 。

【 O 2 7 5】(2) 固定化PTHrP(1-34+C)とマウス抗PTHr P精製抗体との相互作用

ランニングバッファーとしてHBSを用い、流速は $20\,\mu\,1/$ 分とした。抗体は、ハイブリドーマ細胞をBalb/cマウスに腹水化し、採取した腹水をプロテインA カラムを用いて精製した。精製した#23-57-137-1抗体をMBC、精製した3F5 抗体を3F5と表記した。これらの抗体を、HBSを用いて1.25、2.5、5、10、 $20\,\mu\,\mathrm{g/ml}$ の濃度に調製した。分析は、抗体溶液の $40\,\mu\,1$ をインジェクトする2分間を結合相とし、その後HBSに切り換え、2分間の解離相とした。解離相終了後、 $10\,\mu\,1$ の $10\,\mathrm{mM}$ 塩酸をインジェクトすることにより、センサーチツプを再生した。この結合

・解離・再生を分析の1サイクルとし、各種抗体溶液を インジェクトし、センサーグラムを得た。

【O 2 7 6】(3) 固定化PTHrP(1-34+C)とヒト型化抗PT HrP 精製抗体との相互作用

ランニングバッファーとしてHBSを用い、流速は $20\,\mu\,1/$ 分とした。抗体は、CHO細胞に産生させ、プロテインAカラムを用いて精製した。精製したキメラ抗体をchMBC、精製したヒト型化抗体バージョンmをhMBCm、バージョンqをhMBCqと表記した。これらの抗体を、HBSを用いて1.25、2.5、5、10、 $20\,\mu\,g/m1$ の濃度に調製した。分析は、抗体溶液の $40\,\mu\,1$ をインジェクトする2分間を結合相とし、その後HBSに切り換え、2分間の解離相とした。解離相終了後、 $10\,\mu\,1$ の $10\,m$ M HC1をインジェクトすることにより、センサーチツプを再生した。この結合・解離・再生を分析の1サイクルとし、各種抗体溶液をインジェクトし、センサーグラムを得た。

【0277】(4) 相互作用の速度論的解析

目的のデータファイルを読み込み、目的の反応領域について重ね書きによる反応パターンの比較を行った(図20~24)。さらに、カーブフィッティングによるカイネティクスパラメーター(結合速度定数kassおよび解離速度定数kdiss)の算定を行うBIACORE 専用の解析ソフトウエアである「BIAevaluation 2.1」(Pharmacia)を用いて、相互作用の速度論的解析を行った(表4~5)。なお、図20~24において、各曲線は、図の上方から下方に向かってそれぞれ1.25、2.5、5、10、20 μ g/mlの抗体濃度のものである。

[0278]

【表 4 】

MBCおよび3F5 のカイネティクスパラメーター

	MBC	3F5
kdiss [1/s]	7.38×10 ⁻⁵	1,22×10-2
kass [1/Ms]	7.23×10 ⁵	6.55 ×105
KD [M]	1.02×10 ⁻¹⁰	1.86×10-8
	【表 5	

[0279]

キメラ抗体およびヒト型化抗体のカイネティクスパラメーター

			chH-ch λ	hMBCm	hMBCq
kdiss	[1/s]	(×10 ⁻⁴)	1,66	3.16	2.32
kass	[1/Ms]	(×106)	1.24	0.883	1.03
KD [M]		(×10-10)	1.34	3,58	2.25

【0280】なお、結合速度定数を求める際には、解析モデルタイプ4を用いた (BIAevaluation 2.1 Software Handbook, A1~A5)。

【0281】 〔実施例9〕 悪性腫瘍随伴性高カルシウム 血症モデルでのリン排泄抑制作用

悪性腫瘍随伴性高カルシウム血症(HHM)は腫瘍が産生するPTHrPがその原因物質であり、PTHrPは骨吸収および

腎尿細管でのカルシウム再吸収を亢進し、高カルシウム 血症を惹起することが知られている。一方、リンに関し ては、PTHrPは腎尿細管において再吸収を抑制する結 果、排泄促進作用を示し、臨床HHM患者においてしばし ば低リン血症が認められる。そこで、ラット悪性腫瘍随 伴性高カルシウム血症モデルを用いて、ヒト型化抗PTHr P抗体の腎におけるリン排泄に対する効果を検討した。 【0282】モデル動物としてヒト肺癌株LC-6 ((財)実験動物中央研究所より購入)を移植したヌードラットを用いた。ヒト肺癌株LC-6を皮下移植されたヌードラットは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体重減少や運動量の低下などの高カルシウム血症症状を呈する。本モデルを用い、腎クリアランス法にてヒト型化抗PTHrP抗体の腎におけるリン排泄に対する効果をリン排泄率(後述)を指標に評価した。ヒト肺癌株LC-6の継代は、BALB/c-nu/nuヌードマウス(日本クレア)を用いてin vivoで行った。薬効評価には、5週齢雄性F344/NJcl-rnuヌードラット(日本クレア)を購入し、1週間の馴化の後、6週齢の動物を使用した。

【0283】悪性腫瘍随伴性高カルシウム血症モデルの作製は、以下のようにして行った。すなわち、継代しているヒト肺癌株LC-6腫瘍を摘出し、3mm角ブロックに細かく刻んだ腫瘍塊をラットの脇腹皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、30日目前後に腫瘍体積が十分に大きくなった(3000mm³)のを確認した後、血中カルシウム濃度、体重を指標として悪性腫瘍随伴性高カルシウム血症モデル動物とした。腎クリアランス法によるリン排泄の検討は、以下のようにして行った。

【0284】(1) 腎クリアランス法

悪性腫瘍随伴性高カルシウム血症モデル動物をペントバ ルビタール (ネンブタール、大日本製薬(株)) で麻酔 し、37℃の保温マット上に背位固定し、採尿用に膀胱カ ニューレ (ポリエチレンチューブ、PE50、日本ベクトン ディッキンソン)を挿入した。次に大腿静脈にインフュ ージョン用にカニューレ (ポリエチレンチューブ、PE1 0、日本ベクトンディッキンソン)を挿入し、インフュ ージョン溶液(組成: 0.7% イヌリン、 5% マンニトー ル、0.2%ペントバルビタール、0.9%塩化ナトリウム)を インフュージョンポンプ(テルフュージョンシリンジポ ンプ、STC-525、テルモ) にて流速2 ml/hrでインフュー ジョンした。50分間の平衡化の後、20分間間隔で5回 (ピリオド-1からピリオド-5まで) の採尿を膀胱カニュ ーレより行い、尿サンプルとした。また各採尿の中間点 において、右頚静脈より血液サンプルをヘパリン処理し た注射筒にて約0.25m1採取した。

【0285】(2) 抗体の投与

上記したクリアランス実験のピリオド-2の採尿開始時点で、ヒト型化抗PTHrP抗体を1mg/ml/kg 静脈内投与した。

(3) 尿中および血中イヌリンおよびリン濃度測定 ピリオド-1からピリオド-5より得られた尿サンプルは尿 量を測定後、イヌリンおよびリン濃度を測定した。また 同様に得られた血液サンプルは冷却遠心分離後、血漿サ ンプルとしてイヌリンおよびリン濃度を測定した。イヌ リン濃度はアンスロン-硫酸法(Roe, J. H. ら、J Biol Ch em 178, 839-845, 1949)にて測定した。リン濃度は日 立自動分析装置7170型にて無機リン測定用試薬、オート セラIP(第一化学薬品)を用いて、測定のマニュアル通りに測定した(フィスケ・サバロー法)。

【0286】(4) イヌリンクリアランス、リンクリアランスおよびリン排泄率の算出

イヌリンクリアランス (inulin clearance、Cin)、リンクリアランス (phosphate clearance、Cp) およびリン排泄率 (fractional excretion of phosphate、FEp) は以下の式により算出した。

【0287】イヌリンクリアランス (inulin clearanc e、Cin) の算出

Cin = Uin V / Pin

Cinはイヌリンクリアランス (ml/kg/min) を表す。 Uin は尿中イヌリン濃度 (mg/ml) を表す。 Vは単位時間当たりの尿量 (ml/kg/min) を表す。 Pinは血中イヌリン濃度 (mg/ml) を表す。

[0288]

リンクリアランス (phosphate clearance、Cp) の算出 Cp = Up V / Pp

Cpはリンクリアランス (ml/kg/min) を表す。 Up は尿中リン濃度 (mg/ml) を表す。 Vは単位時間当たりの尿量 (ml/kg/min) を表す。 Pp は血中リン濃度 (mg/ml)を表す。

【0289】リン排泄率(fractional excretion of phosphate、FEp)の算出

FEp = Cp / Cin

FEpはリン排泄率を表す。 Cinはイヌリンクリアランス (ml/kg/min) を表す。Cpはリンクリアランス (ml/kg/min) を表す。実験は4匹の動物を用いて行った。結果はその平均値±標準誤差で示す。

【0290】リン排泄率および血中リン濃度の結果を図25および図26に示す。図25はクリアランスの各ピリオド(1ピリオドは20分間)と、腎からのリン排泄率(=リンクリアランス/イヌリンクリアランス)との関係を示すグラフである。なお、ヒト型化抗PTHrP抗体、1mg/kg(i.v.)はピリオド-2のはじめに投与した。

【0291】図26はクリアランスの各ピリオド(1ピリオドは20分間)と、血漿中のリン濃度との関係を示すグラフである。ヒト型化抗PTHrP抗体、1 mg/kg(i.v.)はピリオド-2のはじめに投与した。以上の結果より、抗体投与前のリン排泄率(ピリオド-1)に対して、抗体投与後のリン排泄率(ピリオド-2からピリオド-5)は明らかな抑制を示した。すなわち、中和抗体を投与することで、リン排泄亢進(FEp>;0.2)により低リン血症状態を呈する病態に対してリン再吸収を正常化レベル(リン再吸収率=1-FEp>0.8%)付近まで回復させ、その結果、血中リン濃度が正常化する傾向が示された。このように、PTHrPが原因で起こるリン排泄亢進や低リン血症などの治療薬として本抗体の有用性が示された。

【0292】PTHrP は悪性腫瘍随伴性高カルシウム血症の原因物質であるため、PTHrPによるリン排泄の増加や

組織中高エネルギー有機リン酸濃度の低下が予想される。従って、低リン血症を伴う疾患、例えば低リン血性 くる病、低リン血性ビタミンD抵抗性くる病などでは尿 中へのリン排泄増加が主たる病因であり、本抗体にはこれら疾患の治療薬として有用である。

【0293】 〔実施例10〕悪性腫瘍随伴性高カルシウム 血症の臨床諸症状の改善

悪性腫瘍随伴性高カルシウム血症は腫瘍が産生するPTHrPがその原因物質であり、PTHrPは骨吸収および腎尿細管でのカルシウム再吸収を亢進し、高カルシウム血症を惹起することが知られている。また、悪性腫瘍に伴う高カルシウム血症では、Performance statusの悪化、意識障害、全身倦怠感、口渇感や悪心・嘔吐(食欲不振)などの臨床症状の悪化が認められる。これら臨床症状に対する抗PTHrP抗体の効果をヒト腫瘍ーヌードマウス移植系およびヒト腫瘍ーヌードラット移植系の高カルシウム血症モデル動物を用いて検討した。

【0294】高カルシウム血症モデル動物としてヒト肺癌LC-6((財)実験動物中央研究所より購入)移植ヌードマウスおよびヌードラットを用いた。ヒト肺癌LC-6を移植されたヌードマウスおよびヌードラットは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体温低下、体重減少や運動量の低下などの高カルシウム血症症状を発症する。

【0295】悪性腫瘍随伴性高カルシウム血症の一般臨床症状に対するマウス抗PTHrP抗体の改善効果を、ヒト肺癌LC-6-ヌードマウス移植系を用いて写真で示した。また、運動量の改善、体温改善並びに摂食量低下の改善効果は、ヒト肺癌LC-6-ヌードラット移植系を用いて評価した。

【0296】1. 高カルシウム血症に伴う外側上の臨床症状の改善

ヒト肺癌LC-6の継代は、BALB/c-nu/nuヌードマウス(日本クレア)を用いてinvivoで行った。薬効評価には、5週齢雄性BALB/c-nu/nuヌードマウス(日本クレア)を購入し、1週間の馴化の後、6週齢の動物を使用した。

【0297】高カルシウム血症モデル動物の作製および 群分けは、以下のようにして行った。すなわち、継代し ているヒト肺癌LC-6を摘出し、3mm角ブロックに 細かく刻んだ腫瘍塊をマウスの脇腹皮下に1匹あたり1 個ずつ移植した。腫瘍塊移植後、27日目して腫瘍体積 が十分に大きくなったのを確認した後、腫瘍体積、血中 カルシウム濃度および体重を指標として各指標が平均化 するように群分けし、高カルシウム血症モデル動物とし た。

【0298】腫瘍体積は、腫瘍の長径(amm) および 短径(bmm) を測定し、ギャランの計算式 a b²/2 により腫瘍体積として算出した。血中カルシウム濃度 は、眼窩よりヘマトクリット管で採血し、643自動C

a++/pHアナライザー(CIBA-CORNING)を用いて全血イオン化カルシウム濃度として測定した

【0299】高カルシウム血症に対する治療効果の検討は、以下のようにして行った。すなわち、上記で作製、群分けした高カルシウム血症モデル動物に、マウス1匹あたり 100μ gのPTHrPに対するマウス抗体を、腫瘍移植後、27、30、34、37日目に尾静脈内に投与した。対照群には、リン酸緩衝生理食塩水を同様に尾静脈内に投与した。抗体投与群並びに対照群の中から典型的な1匹をそれぞれ選び、正常動物とともに、腫瘍移植41日目に写真撮影を行った。

【0300】その結果、ヒト肺癌LC-6移植高カルシウム血症モデルにおいて、抗体投与動物(図27の中央及び図28の中央)は、対照動物(図27の右及び図28の右)と同程度の腫瘍塊を保持するにも関わらず正常動物(図27の左及び図28の左)と同等の外見を呈し、抗PTHrP抗体投与により外見上の臨床症状の改善が認められた(図27及び28)。

【0301】2. 高カルシウム血症に伴う運動量低下の改善

ヒト肺癌株LC-6の継代は、BALB/c-nu/n uヌードマウス (日本クレア) を用いてin vivo で行った。薬効評価には、5週齢雄性F344/N J cl-rnuヌードラット (日本クレア) を購入し、1 週間の馴化の後、6週齢の動物を使用した。

【0302】悪性腫瘍随伴性高カルシウム血症モデルの作製は、以下のようにして行った。すなわち、継代しているヒト肺癌株LC-6を摘出し、3mm角ブロックに細かく刻んだ腫瘍塊をラットの脇腹皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、30目目前後に腫瘍体積が十分に大きくなったのを確認した後、血中カルシウム濃度、体重を指標として悪性腫瘍随伴性高カルシウム濃度、体重を指標として悪性腫瘍随伴性高カルシウム血症モデル動物とした。血中カルシウム濃度は、眼窩よりヘマトクリット管で採血し、643自動Ca++/pHアナライザー(CIBA-CORNING)を用いて全血イオン化カルシウム濃度として測定した。

【0303】(1)自発運動量測定法

自発運動量の測定は自発運動量測定装置アニメックス (ANIMEX activity meter type SE, FARAD Electronics, Sweden)を用いて、個体毎に個別飼育しているポリ製ケージ (給水、給餌下)を装置の所定の位置に置き行った。この装置はラットの運動量を計測するもので、一定時間当たりのカウントとして記録される。測定は午後7時から翌日午前8時までの13時間行い、測定結果は1時間当たりのカウント数とした。

【0304】(2) 抗体の投与

上記したように高カルシウム血症を発症したラットを用い、ヒト型化抗PTHrP抗体を5mg/0.5ml/kg尾静脈内投与した。また、対照には、生理食塩水を

同様に尾静脈内に投与した。測定は抗体投与個体と対照 個体を交互に測定した。測定日は抗体投与個体は抗体投 与 0 (投与前日)、2、4、7、14日目に、また対照 個体は1、3、5、8、15日目に行った。その結果、 対照個体の自発運動量は実験期間中変化がないかまたは 減少傾向を示すのに対して、抗体投与個体は4日目以降 自発運動量の増加が認められた(図29)。

【0305】3. 高カルシウム血症に伴う体温低下の改善

ヒト肺癌株LC-6の継代および悪性腫瘍随伴性高カルシウム血症モデルの作製は、上記2で示した方法と同様に実施した。

(1) 体温測定法

体温の測定はデジタル温度計を用い、個体はペントバル ビタール(ネンブタール、大日本製薬(株))で麻酔 し、温度センサープローブを直腸に挿入して行った。

【0306】(2) 抗体の投与

上記したように高カルシウム血症を発症したラットを用い、ヒト型化抗PTHrP抗体を1mg/m1/kg尾静脈内投与した。また、対照には、生理食塩水を同様に尾静脈内に投与した。さらに、正常ラット(無投与)の体温についても同時に測定した。体温測定は抗体投与個体、対照個体および正常ラットいずれも、投与0(投与当日)、1、2、3日目に行った。

【0307】その結果、正常ラットの体温は実験期間中34.2~34.4℃とほとんど変化なく推移した。悪性腫瘍随伴性高カルシウム血症ラットでは、正常ラットに比べ、約2℃の体温の低下が認められた。このモデルにヒト型化抗PTHrP抗体を投与すると、投与3日目で正常ラットの体温まで回復することが確認された。このように、ヒト型化抗PTHrP抗体は悪性腫瘍随伴性高カルシウム血症モデルでの体温低下に対して改善する作用を有することが示された(図30)。

【0308】4. 高カルシウム血症に伴う摂食量低下の改善

ヒト肺癌株LC-6の継代および悪性腫瘍随伴性高カルシウム血症モデルの作製は、上記2で示した方法と同様に実施した。作製したモデルは血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、以下の実験に使用した。

(1) 摂食量測定法

ラットは実験期間中、個別飼育用の代謝ケージに入れ、 給水、給餌下で飼育した。摂食量は当日午前9時から翌 日午前9時までの24時間摂食量とし、給餌器の重量を 測定し、予め測定した重量(風袋重量)との差をその個 体の摂食量(g)とした。

【0309】(2) 抗体の投与

上記したように高カルシウム血症を発症したラット(H HMラット)を用い、ヒト型化抗PTHrP抗体を5mg/0.5ml/kg尾静脈内投与した。また、対照群には、生理食塩水を同様に静脈内に投与した。さらに、正常ラットについても生理食塩水を同様に尾静脈内に投与した。摂食量測定は、抗体投与群、対照群および正常ラット群のいずれも、投与0(投与前日から当日)、1(投与当日から翌日)、3(投与3日目から翌日)、5日目(投与5日目から翌日)に行った。

【0310】その結果、投与前値の摂食量は高カルシウム血症ラット(個体5から9)では平均で8.11gであり、正常ラットは平均12.06gであった。このように明らかに高カルシウム血症ラットでは摂食量の低下が認められた。このモデルにヒト型化抗PTHrP抗体を投与すると、対照群ではあまり摂食量に変化がないのに比べ、抗体投与群では投与1日目以降正常ラットの摂食量まで回復することが確認された。このように、ヒト型化抗PTHrP抗体は悪性腫瘍随伴性高カルシウム血症モデルでの摂食量低下に対して改善する作用のあることが示された(表6)。

[0311]

【表6】

摂食量に及ぼす影響

動物	個体番号	投与 ^(注)		個体別担	食量 (g)	
			投与前日	1日目	3日目	5日目
正常ラット	個体1	生理食塩水	13. 7	16. 7	18. 63	18. 71
	個体 2	生理食塩水	14. 27	15. 3	19.55	19.39
	個体3	生理食塩水	9. 83	15. 5	20.72	19.88
	個体4	生理食塩水	10. 42	15.04	20. 28	22. 03
HHM ラット	個体 5	生理食塩水	10. 77	14. 24	12. 66	11. 82
	個体 6	生理食塩水	6. 99	8. 92	2. 59	14.8
HHM ラット	個体7	抗PTHrP抗体	7. 46	17.65	22. 52	17. 99
	個体8	抗PTHrP抗体	12	12. 38	20.94	23. 1
	個体 9	抗PTHrP抗体	3. 35	16. 65	20.36	21.89

注: 生理食塩水投与量は 0.5 ml/kg 尾静脈投与 抗体投与量は 5 mg/0.5 ml/kg 尾静脈投与 【0312】以上の結果より、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症の臨床諸症状の改善薬としての有用性が示された。

5. 高カルシウム血症に伴う血液 p Hの改善

ヒト肺癌株LC-6の継代および悪性腫瘍随伴性高カルシウム血症モデルの作製は、上記2で示した方法と同様に実施した。作製したモデルは血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、以下の実験に使用した。

(1)血液 p H測定法

血液 p Hは、 $^{\circ}$ パリン処理した注射筒を用い、心臓採血 法にて血液を採取し、643 自動Ca++/p Hアナライザー(CIBA-CORNING)を用いて血液 p Hを測定した。

【0313】(2) 抗体の投与

上記したように高カルシウム血症を発症したラット(H HMラット)を用い、ヒト型化抗PTHrP抗体を5mg/0.5m1/kg尾静脈内投与した(n=3)。また、対照群には、生理食塩水を同様に静脈内に投与した(n=2)。血液pH測定は、抗体投与群および対照群のいずれも、投与0(投与当日)、1、7日目に行った。結果は各群ともにその平均値で示した。

【0314】その結果、高カルシウム血症ラットの抗体 投与前の血液 p Hは約7.49であり(正常ラットの血液 p Hは p H7.40±0.02)、本モデルは明らかに代謝性アル カローシスの病態を示していた。このモデルにヒト型化 抗PTHr P抗体を投与すると、対照群ではほとんど血

配列:

AAATAGCCCT TGACCAGGCA

【0317】配列番号:2

配列の長さ:38 配列の型:核酸

配列:

CTGGTTCGGC CCACCTCTGA AGGTTCCAGA ATCGATAG

【0318】配列番号:3 配列の長さ:28

配列の型:核酸

配列:

GGATCCCGGG CCAGTGGATA GACAGATG

【0319】配列番号:4

配列の長さ:29 配列の型:核酸

配列:

GGATCCCGGG TCAGRGGAAG GTGGRAACA

【0320】配列番号:5

配列の長さ:17 配列の型:核酸

配列:

GTTTTCCCAG TCACGAC

【0321】配列番号:6

配列の長さ:17

液p Hの変化はないのに比べ、抗体投与群では投与7日 目には正常ラットの血液 p Hに近い値まで改善している ことが確認された。悪性腫瘍随伴性高カルシウム血症

(HHM) における臨床諸症状の一つに腎臓での重炭酸イオン(HCO $_3$ ⁻)の排泄阻害に基づく代謝性アルカローシスが報告されている。ヒト型化抗PTHrP抗体の投与は本モデルで血液 $_1$ Hを正常化したことから、HHMで見られる代謝性アルカローシスを改善する作用を有することが示された(図31)。以上の結果より、本発明のキメラ抗体及びヒト型化抗体は、悪性腫瘍に伴う高カルシウム血症の臨床諸症状を改善するための改善薬として有用であることが示された。

[0315]

【発明の効果】本発明により、PTHrPに対する抗体、キメラ抗体およびヒト型化抗体が提供される。これらの抗体は、ヒトにおける抗原性が低いことから、高カルシウム血症、低リン血症等の治療薬として有用である。

[0316]

【配列表】

配列番号:1 配列の長さ:20 配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

29

17

20

38

28

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CAGGAAACAG CTATGAC 17 【0322】配列番号:7 鎖の数: 一本鎖 トポロジー:直鎖状 配列の長さ:31 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GTCTAAGCTT CCACCATGAA ACTTCGGGCT C 31 【0323】配列番号:8 鎖の数:一本鎖 配列の長さ:30 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: TGTTGGATCC CTGCAGAGAC AGTGACCAGA 30 【0324】配列番号:9 鎖の数:一本鎖 配列の長さ:36 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GTCTGAATTC AAGCTTCCAC CATGGGGTTT GGGCTG 36 【0325】配列番号:10 鎖の数:一本鎖 配列の長さ:41 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: TTTCCCGGGC CCTTGGTGGA GGCTGAGGAG ACG GTGACCA G 41 【0326】配列番号:11 鎖の数:一本鎖 配列の長さ:109 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GTCTGAATTC AAGCTTAGTA CTTGGCCAGC CCAAGGCCAA CCCCACGGTC ACCCTGTTCC 60 CGCCCTCCTC TGAGGAGCTC CAAGCCAACA AGGCCACACT AGTGTGTCT 109 【0327】配列番号:12 鎖の数:一本鎖 配列の長さ:110 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GGTTTGGTGG TCTCCACTCC CGCCTTGACG GGGCTGCCAT CTGCCTTCCA GGCCACTGTC 60 ACAGCTCCCG GGTAGAAGTC ACTGATCAGA CACACTAGTG TGGCCTTGTT 1 1 【0328】配列番号:13 鎖の数:一本鎖 配列の長さ:98 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GGAGTGGAGA CCACCAAACC CTCCAAACAG AGC AACAACA AGTACGCGGC CAGCAGCTAC 60 CTGAGCCTGA CGCCCGAGCA GTGGAAGTCC CACAGAAG 98 【0329】配列番号:14 鎖の数:一本鎖 配列の長さ:106 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列:

CATGCGTGAC CTGGCAGCTG TAGCTTCTGT GGGACTTCCA CTGCTC

TGTTGAATTC TTACTATGAA CATTCTGTAG GGGCCACTGT CTTCTCCACG GTGCTCCCTT 60

106

【0330】配列番号:15 鎖の数:一本鎖 配列の長さ:43 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列の型:核酸 配列: GTCTGAATTC AAGCTTAGTA CTTGGCCAGC CCAAGGCCAA CCC 4 3 【0331】配列番号:16 鎖の数:一本鎖 配列の長さ:20 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: TGTTGAATTC TTACTATGAA 20 【0332】配列番号:17 鎖の数:一本鎖 配列の長さ:39 トポロジー: 直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: CAACAAGTAC GCGGCCAGCA GCTACCTGAG CCTGACGCC 39 【0333】配列番号:18 鎖の数:一本鎖 配列の長さ:39 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GTAGCTGCTG GCCGCGTACT TGTTGTTGCT CTGTTTGGA 39 【0334】配列番号:19 鎖の数:一本鎖 配列の長さ:46 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GTCTGAATTC AAGCTTAGTC CTAGGTCGAA CTGTGGCTGC ACCATC 46 【0335】配列番号:20 鎖の数:一本鎖 トポロジー:直鎖状 配列の長さ:34 配列の種類:他の核酸(合成DNA) 配列の型:核酸 配列: TGTTGAATTC TTACTAACAC TCTCCCCTGT TGAA 34 【0336】配列番号:21 鎖の数:一本鎖 トポロジー:直鎖状 配列の長さ:35 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GTCTAAGCTT CCACCATGGC CTGGACTCCT CTCTT 35 【0337】配列番号:22 鎖の数:一本鎖 配列の長さ:48 トポロジー: 直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: TGTTGAATTC AGATCTAACT ACTTACCTAG GACAGTGACC TTGGTCCC 48 【0338】配列番号:23 鎖の数:一本鎖 配列の長さ:128 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GTCTAAGCTT CCACCATGGG GTTTGGGCTG AGCTGGGTTT TCCTCGTTGC TCTTTTAAGA 60 GGTGTCCAGT GTCAGGTGCA GCTGGTGGAG TCTGGGGGAG GCGTGGTCCA GCCTGGGAGG 120

 【0339】配列番号:24
 配列の型:核酸

 配列の長さ:125
 鎖の数:一本鎖

128

トポロジー:直鎖状 配列の種類:他の核酸(合成DNA)

配列:

ACCATTAGTA GTGGTGGTAG TTACACCTAC TATCCAGACA GTGTGAAGGG GCGATTCACC ATCTCCAGAG ACAATTCCAA GAACACGCTG TATCTGCAAA TGAACAGCCT GAGAGCTGAG 120

125

【0340】配列番号:25 鎖の数:一本鎖

配列の長さ:132 トポロジー:直鎖状

配列の型:核酸 配列の種類:他の核酸(合成DNA)

配列:

CTACCACCAC TACTAATGGT TGCCACCCAC TCCAGCCCCT TGCCTGGAGC CTGGCGGACC CAAGACATGC CATAGCTACT GAAGGTGAAT CCAGAGGCTG CACAGGAGAG TCTCAGGGAC 120 CTCCCAGGCT GG 132

【0341】配列番号:26 鎖の数:一本鎖 配列の長さ:110 トポロジー:直鎖状

配列の型:核酸 配列の種類:他の核酸(合成DNA)

配列:

TGTTGGATCC CTGAGGAGAC GGTGACCAGG GTTCCCTGGC CCCAGTAAGC AAAGTAAGTC 60 ATAGTAGTCT GTCTCGCACA GTAATACACA GCCGTGTCCT CAGCTCTCAG 110

【0342】配列番号:27 鎖の数:一本鎖

配列の長さ:30 トポロジー:直鎖状

配列の型:核酸 配列の種類:他の核酸(合成DNA)

配列:

GTCTAAGCTT CCACCATGGG GTTTGGGCTG

30

【0343】配列番号:28 鎖の数:一本鎖

配列の長さ:30 トポロジー:直鎖状

配列の型:核酸 配列の種類:他の核酸(合成DNA)

配列:

TGTTGGATCC CTGAGGAGAC GGTGACCAGG

30

【0344】配列番号:29 鎖の数:一本鎖 配列の長さ:133 トポロジー:直鎖状

配列の型:核酸 配列の種類:他の核酸(合成DNA)

配列:

ACAAAGCTTC CACCATGGCC TGGACTCCTC TCTTCTTCTT CTTTGTTCTT CATTGCTCAG 60 GTTCTTTCTC CCAGCTTGTG CTGACTCAAT CGCCCTCTGC CTCTGCCTCC CTGGGAGCCT 120 133 CGGTCAAGCT CAC

鎖の数:一本鎖 【0345】配列番号:30 配列の長さ:118 トポロジー:直鎖状

配列の型:核酸 配列の種類:他の核酸(合成DNA)

配列:

AGCAAGATGG AAGCCACAGC ACAGGTGATG GGATTCCTGA TCGCTTCTCA GGCTCCAGCT

CTGGGGCTGA GCGCTACCTC ACCATCTCCA GCCTCCAGTC TGAGGATGAG GCTGACTA 118

【0346】配列番号:31 鎖の数:一本鎖

配列の長さ:128 トポロジー:直鎖状

配列の型:核酸 配列の種類:他の核酸(合成DNA)

配列:

CTGTGGCTTC CATCTTGCTT AAGTTTCATC AAGTACCGAG GGCCCTTCTC TGGCTGCTGC 60 TGATGCCATT CAATGGTGTA CGTACTGTGC TGACTACTCA AGGTGCAGGT GAGCTTGACC 120 GAGGCTCC 128

【0347】配列番号:32

鎖の数: 一本鎖 トポロジー:直鎖状

配列の長さ:114

配列の種類:他の核酸(合成DNA)

配列の型:核酸

配列:

CTTGGATCCG GGCTGACCTA GGACGGTCAG TTTGGTCCCT CCGCCGAACA CCCTCACAAA 60

TTGTTCCTTA ATTGTATCAC CCACACCACA GTAATAGTCA GCCTCATCCT CAGA 114

【0348】配列番号:33

鎖の数:一本鎖

配列の長さ:17

トポロジー:直鎖状

配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

ACAAAGCTTC CACCATG

17

【0349】配列番号:34

鎖の数:一本鎖 トポロジー:直鎖状

配列の長さ:19 配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

CTTGGATCCG GGCTGACCT

19

【0350】配列番号:35

鎖の数:一本鎖

配列の長さ:75

トポロジー:直鎖状

配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

CTTGGATCCG GGCTGACCTA GGACGGTCAG TTTGGTCCCT CCGCCGAACA CGTACACAAA

TTGTTCCTTA ATTGT

60 75

43

46

【0351】配列番号:36

【0352】配列番号:37

配列の長さ:43

鎖の数:一本鎖 トポロジー:直鎖状

配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

AAAGGATCCT TAAGATCCAT CAAGTACCGA GGGGGCTTCT CTG

鎖の数:一本鎖

配列の長さ:46

トポロジー:直鎖状

配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

【0353】配列番号:38

ACAAAGCTTA GCGCTACCTC ACCATCTCCA GCCTCCAGCC TGAGGA 鎖の数: 一本鎖

配列の長さ:111

トポロジー:直鎖状

配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

CTTGGATCCG GGCTGACCTA GGACGGTCAG TTTGGTCCCT CCGCCGAACA CGTACACAAA 60

TTGTTCCTTA ATTGTATCAC CCACACCACA GATATAGTCA GCCTCATCCT C

111

4 2

【0354】配列番号:39

鎖の数: 一本鎖

配列の長さ:42

トポロジー:直鎖状

配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

CTTCTCTGGC TGCTGCTGAT ACCATTCAAT GGTGTACGTA CT

鎖の数:一本鎖

【0355】配列番号:40

トポロジー:直鎖状

配列の長さ:26 配列の型:核酸

配列の種類:他の核酸(合成DNA)

配列:

CGAGGGCCCT TCTCTGGCTG CTGCTG

26

【0356】配列番号:41 鎖の数:一本鎖 配列の長さ:35 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列の型:核酸 配列: GAGAAGGCC CTARGTACST GATGRAWCTT AAGCA 35 【0357】配列番号:42 鎖の数:一本鎖 トポロジー:直鎖状 配列の長さ:35 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: CACGAATTCA CTATCGATTC TGGAACCTTC AGAGG 35 【0358】配列番号:43 鎖の数:一本鎖 配列の長さ:18 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GGCTTGGAGC TCCTCAGA 18 【0359】配列番号:44 鎖の数:一本鎖 トポロジー:直鎖状 配列の長さ:20 配列の型:核酸 配列の種類:他の核酸(合成DNA) 配列: GACAGTGGTT CAAAGTTTTT 20 トポロジー: 直鎖状 【0360】配列番号:45 配列の長さ:118 配列の種類:タンパク質 配列の型:アミノ酸 配列: Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser Leu Gly 10 Ala Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Leu Lys Pro Pro Lys Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp 50 55 Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Asp Arg 70 Tyr Leu Ser Ile Ser Asn Ile Gln Pro Glu Asp Glu Ala Met Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val 95 100 Phe Gly Gly Gly Thr Lys Val Thr Val Leu Gly Gln Pro 110 【0361】配列番号:46 トポロジー:直鎖状 配列の長さ:118 配列の種類:タンパク質 配列の型:アミノ酸 配列: Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu Val Lys Pro Gly 5 10 Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met Ser Trp Ile Arg Gln Thr Pro Asp Lys Arg Leu

40

45

35

	Glu	Trp	Val	Ala		I1e	Ser	Ser	G1y		Ser	Туг	Thr	Tyr	
	\mathbf{Pro}	Asp	Ser	Val	50 Lys	G1y	Arg	Phe	Thr	55 Ile	Ser	Arg	Asp	Asn	60 Ala
					65					70					75
	Lys	Asn	Thr	Leu	Tyr 80	Leu	G1n	Met	Ser	Ser 85	Leu	Lys	Ser	G1u	Asp 90
	Thr	Ala	Met	Phe	Tyr 95	Cys	Ala	Arg	G1n	Thr 100	Thr	Met	Thr	Туг	Phe 1 0 5
	Ala	Tyr	Тгр	Gly		Gly	Thr	Leu	Val		Val	Ser	Ala		
【0362】配列番	号·	47			110						ポロ	ジー	: 直	船出	
配列の長さ:116	.,														ク質
配列の型:アミノ酸											>94>	19275	/		/ 具
10/10/21/7 (/ 10/	配列	1 :													
			Va1	Leu	Thr	G1n	Ser	Pro	Ser	Ala	Ser	Ala	Ser	Leu	G1v
	1	nou		пои	5	0111	501		501	10	Der	1114	501	nou	15
		Ser	Va1	Lvs		Thr	Cvs	Thr	Len		Ser	G1n	His	Ser	
	mu	DUI	, 41	ц	20	1111	CJB		пси	25	Jei	0111	11115	501	30
	Tvr	Thr	T1e	G111		His	Gln	Gln	Gln		G1 ii	Lvs	G1v	Pro	
	-,-	1111	110	Olu	35	******	OIII	OIII	0111	40	oru	L) 0	U1,	110	45
	Tvr	Len	Met	Lvs		Lys	Gln	Asn	Glv		His	Ser	Thr	G1 v	
	1,11	Lea	MCC	цуо	50	ць	0111	пор	01)	55	111.0	DCI	1 ***	Oly	60
	G1 v	Ιlρ	Pro	Asn		Phe	Ser	Glv	Ser		Ser	Glv	Ala	Glu	
	ory	110	110	пър	65	THE	501	ory	501	70	DCI	Oly	nia	oru	75
	Tyr	Lan	Thr	Πla		Ser	Lan	Gln	Sor		Aen	Glu	ء [۵	Acn	
	1 11	Leu	1111	116	80	bei	Leu	om	261	85	пър	oru	пта	лър	90
	Т	Crra	C1	V-1		Aan	The	11.	1,,,,		C1n	Dho	Vo1	Т	
	1 9 1	Cys	GLY	vai	95	Asp	1111	116	Lys	100	GIII	THE	rai	1 9 1	105
	Pho	Cl _v	C1 v	C1 _v		Lys	Lou	Thr	Val		C1 v				103
	THE	оту	оту	GIY	110	Lys	Leu	1111	vai	115	GLY				
【0363】配列番	무 .	4 Ω			110						ાં. 'કું મું	٠۶	: 直	邻化	
配列の長さ:118	· .	40								•					ク質
配列の型:アミノ酸										HL	94v2	任业为只	>	, , ,	ノ貝
60月の至・ノミノ政	配列	1.													
			V-1	T	TL.	C1	C	Dava	C	41.	Can	41.	Cam	T	C1
		Leu	vai	Leu		Gln	ser.	Pro	ser.		ser.	Ala	ser	Leu	
	1	C	V - 1	T	5	TL	C	TL.	T	10	C	C1	112	C	15 The
	Ala	ser	Vai	Lys		Thr	Cys	I III.	Leu		Ser	GIII	піѕ	Ser	
	Т	Tha	11.	C1	20	Т	C1_	C1_	C1_	25	C1	T	C1	D	30
	ıyr	Inr	11e	GIU	35	Tyr	GIII	GIII	GIII	40	GIU	Lys	GIY	Pro	Lys 45
	Т	Lau	Mot	Aan		Lys	C1.	Aan	C1.v		Ui.a	Con	The	C1	
	1 9 1	Leu	меι	nsp	50	Lys	GIII	ASP	GIY	55	1118	ser	1111	GIY	60
	C1	Ha	Dwo	Aan		Dho	Con	C1	Con		Con	C1	41a	C1.	
	GTy	He	F10	nsp		Phe	ser	GIY	ser		ser	GIY	nia	Glu	
	Т	Lev	Th	T1~	65 Sor	Sor	Lev	C1-	Sor	70	A a==	C1	Λ1 _~	Λα	75 Tyr
	1 y I.	Leu	1111,	116		Ser	Leu	OIII	ser		лѕр	GIU	vig	лѕр	
	Т	C~	C1	V~1	80 C1v	Λ ~	Th	T1.	I ~	85 Clu	C1-	Dh	V ~ 1	Т	90 Vol
	ı yI	UyS	ату	val		Asp	1111	116	LyS		GIII	гие	v 21.1	1 y I.	
	Dl	C1	C1	C1	95	T	Ι	TL	V-1	100	C1	C1	D		105
	rne	σŢΆ	σŢΆ	σīλ		Lys	Leu	ınr	val		σIJ	GΙΠ	110		
					110					115					

配列の型:アミノ酸 配列: Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys 35 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg 70 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 110 【0365】配列番号:50 トポロジー:直鎖状 配列の長さ:118 配列の種類:タンパク質 配列の型:アミノ酸 配列: Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly 10 Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg 70 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val 100 105 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 110 【0366】配列番号:51 トポロジー:直鎖状 配列の長さ:118 配列の種類:タンパク質 配列の型:アミノ酸 配列: Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly 1 10 Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg 35 40

トポロジー:直鎖状

配列の種類:タンパク質

【0364】配列番号:49

配列の長さ:118

	Tyr	Val	Met	Asp	Leu	Lys	G1n	Asp	G1y	Ser	His	Ser	Thr	G1y	Asp
	C1	T1.0	Dno	Aan	50	Dha	Con	C1	Con	55 San	Con	C1	۸1۵	C1	60
	оту	116	110	лър	65	Phe	sei	GIY	sei	70	sei	GIY	пта	oru	75
	Tyr	Leu	Thr	Ile	Ser 80	Ser	Leu	G1n	Ser	G1u 85	Asp	G1u	Ala	Asp	Tyr 90
	Tyr	Cys	G1y 95	Val	Gly	Asp	Thr	Ile 100	Lys	G1u	G1n	Phe	Val 105	Tyr	Val
	Phe	Gly		Gly		Lys	Leu		Val		G1y	G1n			
【0367】配列番	号:	5 2			110					115 ト	ポロ	ジー	: 直	鎖状	
配列の長さ:118	•	_													ク質
配列の型:アミノ酸															
	配列]:													
	Gln 1	Leu	Val	Leu	Thr 5	G1n	Ser	Pro	Ser	Ala 10	Ser	Ala	Ser	Leu	G1y 15
		Ser	Val	Lvs		Thr	Cvs	Thr	Leu		Ser	Gln	His	Ser	
				, .	20		-,.			25					30
	Tyr	Thr	Ile	G1u	Trp 35	Tyr	Gln	Gln	Gln	Pro 40	G1u	Lys	G1y	Pro	Lys 45
	Tyr	Leu	Met	Asp		Lys	Gln	Asp	Gly		His	Ser	Thr	G1y	
					50					55					60
	Gly	Ile	Pro	Asp	Arg 65	Phe	Ser	Gly	Ser	Ser 70	Ser	Gly	Ala	Glu	Arg 75
	Tvr	Len	Thr	He		Ser	Leu	Gln	Ser		Asn	Glu	Ala	Asn	
	1,1	Bea		110	80	201	Beu		501	85	пор	0.4		пор	90
	Ile	Cys	Gly	Val		Asp	Thr	Ile	Lys		G1n	Phe	Val	Tyr	
	Phe	Gly	G1y	G1y	95 Thr	Lys	Leu	Thr	Val	100 Leu	G1y	G1n	Pro		105
		·	•	•	110	•				115	·				
【0368】配列番	号:	53											: 直		
配列の長さ:118										杏 C	列の	種類	: 8	ンパ	ク質
配列の型:アミノ酸	配列	⅓:													
	Gln	Leu	Va1	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	Leu	G1y
	1				5					10					15
	Ala	Ser	Val	Lys	Leu 20	Thr	Cys	Thr	Leu	Ser 25	Ser	Gln	His	Ser	Thr 30
	Tyr	Thr	11 e	G1u		Tyr	G1n	G1n	G1n		G1u	Lys	G1y	Pro	
	Tyr	Lan	Mat	Aen	35 Lau	Lys	G1n	Aen	G1 v	40 Ser	Hic	Sor	Thr	C1 v	45 Asp
	1 9 1	Leu	MCC	пър	50	Lys	OIII	пър	ory	55	1113	DCI	1111	ury	60
	G1y	Ile	Pro	Asp	Arg 65	Phe	Ser	Gly	Ser	Ser 70	Ser	G1y	Ala	Glu	Arg 75
	Tyr	Leu	Thr	Ile	Ser	Ser	Leu	G1n	Ser	G1u	Asp	G1u	Ala	Asp	Tyr
	т т		C1	37 1	80		TP1	т 1		85 C1	CI	DI	37 7	T.	90
	He	Cys	Gly	Val	G1y 95	Asp	Ihr	He	Lys	Glu 100	Gln	Phe	Val	Tyr	Val 105
	Phe	G1y	G1y	G1y		Lys	Leu	Thr	Va1		G1y	G1n	Pro		100
					110					115					

配列の型:アミノ酸 配列: Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys 35 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg 70 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 110 【0370】配列番号:55 トポロジー:直鎖状 配列の長さ:118 配列の種類:タンパク質 配列の型:アミノ酸 配列: Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly 10 Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg 70 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val 95 100 105 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 110 【0371】配列番号:56 トポロジー:直鎖状 配列の長さ:118 配列の種類:タンパク質 配列の型:アミノ酸 配列: Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly 10 Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 35 40 45

トポロジー:直鎖状

配列の種類:タンパク質

【0369】配列番号:54

配列の長さ:118

	Ulu	тър	Vai	nia		116	Det	261	GIY	55	561	1 9 1	1111	1 9 1			
	Dmo	Agn	Con	Vol	50	C1	A 22.00	Dha	Tha		Can	A 21 ~	Aan	A an	60		
	110	Asp	Ser	Val		ату	Arg	rne	IIII		261.	Arg	ASp	ASII			
	Ia	A an	Tha	Lau	65	Ι	C15	No+	Aan	70	Lau	A 24.00	۸1۵	C1	75		
	Lys	Asn	mr	Leu		Leu	GIII	меι	ASII		Leu	Arg	Ата	GIU			
	Tri .	A 7	17 1	т	80 T		A 7		a.	85	Tri .	W.	Tri .	т	90 DI		
	ınr	Ala	vai	ıyr		Cys	Ala	Arg	GIN		Inr	мет	ınr	lyr			
	4.7	<i>m</i>	<i>m</i>	0.1	95	0.1	mi		17 1	100	17 1	C	C		105		
	Ala	Tyr	lrp	Gly		Gly	Thr	Leu	Val		Val	Ser	Ser				
In a sel verse	н				110					115	an Met	_	t . Aste				
【0372】配列番	号:	b 7								-	の数			AMZ.LIS			
配列の長さ:411											ポロ						D. 1. 1
配列の型:核酸	w									陷亡	列の	種類	: с	DΝ	А	to	mRNA
	配列																
		AAC														45	
	Met	Asn	Phe	Gly	Leu	Ser	Leu	Ile	Phe		Ala	Leu	Ile	Leu	•		
					-15					-10					-5		
		GTC														90	
	Gly	Val	Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Asp	Leu		
					1				5					10			
	GTG	AAG	CCT	GGA	GGG	TCC	CTG	AAA	CTC	TCC	TGT	GCA	GCC	TCT	GGA	135	
	Val	Lys	Pro	Gly	Gly	Ser	Leu	Lys	Leu	Ser	Cys	Ala	Ala	Ser	G1y		
				15					20					25			
	TTC	ACT	TTC	AGT	AGC	TAT	GGC	ATG	TCT	TGG	ATT	CGC	CAG	ACT	CCA	180	
	Phe	Thr	Phe	Ser	Ser	Tyr	Gly	Met	Ser	Trp	Ile	Arg	G1n	Thr	Pro		
				30					35					40			
	GAC	AAG	AGG	CTG	GAG	TGG	GTC	GCA	ACC	ATT	AGT	AGT	GGT	GGT	AGT	225	
	Asp	Lys	Arg	Leu	Glu	Trp	Val	Ala	Thr	He	Ser	Ser	G1y	G1y	Ser		
				45					50					55			
	TAC	ACC	TAC	TAT	CCA	GAC	AGT	GTG	AAG	GGG	CGA	TTC	ACC	ATC	TCC	270	
	Tyr	Thr	Tyr	Tyr	Pro	Asp	Ser	Val	Lys	G1y	Arg	Phe	Thr	Ile	Ser		
				60					65					70			
	AGA	GAC	AAT	GCC	AAG	AAC	ACC	CTA	TAC	CTG	CAA	ATG	AGC	AGT	CTG	315	
	Arg	Asp	Asn	Ala	Lys	Asn	Thr	Leu	Tyr	Leu	Gln	Met	Ser	Ser	Leu		
				75					80					85			
	AAG	TCT	GAG	GAC	ACA	GCC	ATG	TTT	TAC	TGT	GCA	AGA	CAG	ACT	ACT	360	
	Lys	Ser	Glu	Asp	Thr	Ala	Met	Phe	Tyr	Cys	Ala	Arg	Gln	Thr	Thr		
				90					95					100			
	ATG	ACT	TAC	TTT	GCT	TAC	TGG	GGC	CAA	GGG	ACT	CTG	GTC	ACT	GTC	405	
	Met	Thr	Tyr	Phe	Ala	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val		
				105					110					115			
	TCT	GCA	41	11													
	Ser	Ala															
【0373】配列番	号:	5 8								鎖	の数	: =	本鎖				
配列の長さ:411										ト	ポロ	ジー	: 直	鎖状			
配列の型:核酸										配	列の	種類	: c	DN	A	t o	m R N A
	配歹	1:															
	ATG	GGG	TTT	GGG	CTG	AGC	TGG	GTT	TTC	CTC	GTT	GCT	CTT	TTA	AGA	45	
	Met	Gly	Phe	Gly	Leu	Ser	Trp	Val	Phe	Leu	Val	Ala	Leu	Leu	Arg		
					-15					-10					-5		

 Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr

GGT GTC CAG TGT CAG GTG CAG CTG GTG GAG TCT GGG GGA GGC GTG Gly Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val 1 5 GTC CAG CCT GGG AGG TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA 135 Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly 20 TTC ACC TTC AGT AGC TAT GGC ATG TCT TGG GTC CGC CAG GCT CCA 180 Phe Thr Phe Ser Ser Tyr Gly Met Ser Trp Val Arg Gln Ala Pro 35 GGC AAG GGG CTG GAG TGG GTG GCA ACC ATT AGT AGT GGT GGT AGT Gly Lys Gly Leu Glu Trp Val Ala Thr 11e Ser Ser Gly Gly Ser TAC ACC TAC TAT CCA GAC AGT GTG AAG GGG CGA TTC ACC ATC TCC 270 Tyr Thr Tyr Tyr Pro Asp Ser Val Lys Gly Arg Phe Thr Ile Ser 60 65 70 AGA GAC AAT TCC AAG AAC ACG CTG TAT CTG CAA ATG AAC AGC CTG 315 Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu **7**5 80 AGA GCT GAG GAC ACG GCT GTG TAT TAC TGT GCG AGA CAG ACT ACT 360 Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gln Thr Thr 90 95 ATG ACT TAC TTT GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC 405 Met Thr Tyr Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val 105 110 TCC TCA 411 Ser Ser 【0374】配列番号:59 配列: Gln Gln His Tyr Ser Thr Pro Phe Thr 配列の型:アミノ酸 【0377】配列番号:62 トポロジー:直鎖状 配列の種類:ペプチド 配列の長さ:5 配列の型:アミノ酸 トポロジー:直鎖状 Lys Ala Ser Gln Asp Val Asn Thr Ala Val Ala 配列の種類:ペプチド 【0375】配列番号 560 配列: Pro Tyr Trp Met Gin 配列の型:アミノ酸 【0378】配列番号:63 トポロジー:直鎖状 配列の種類:ペプチド 配列の長さ:16 配列の型:アミノ酸 配列: トポロジー:直鎖状 Ser Ala Ser Asn Arg Tyr Thr 配列の種類:ペプチド 【0376】配列番号:61 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド Ser Ile Phe Gly Asp Gly Asp Thr Arg Tyr Ser Gln Lys Phe Lys Gly

配列の長さ:11

配列:

配列の長さ:7

配列の長さ:9

1

5

10

15

【0379】配列番号:64 配列の長さ:411 配列の長さ:11 配列の型:核酸 配列の型:アミノ酸 鎖の数:二本鎖 トポロジー:直鎖状 トポロジー:直鎖状 配列の種類:ペプチド 配列の種類: cDNA to mRNA 配列: Gly Leu Arg Arg Gly Gly Tyr Tyr Phe Asp Tyr 【0380】配列番号 565 配列: ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser -15-10 GGT TCT TTC TCC CAA CTT GTG CTC ACT CAG TCA TCT TCA GCC TCT 90 Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser 1 5 TTC TCC CTG GGA GCC TCA GCA AAA CTC ACG TGC ACC TTG AGT AGT Phe Ser Leu Gly Ala Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser 20 15 CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAA CAG CCA CTC 180 Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Leu 35 AAG CCT CCT AAG TAT GTG ATG GAT CTT AAG CAA GAT GGA AGC CAC 225 Lys Pro Pro Lys Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCT GGA TCC AGC TCT 270 Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser 65 GGT GCT GAT CGC TAC CTT AGC ATT TCC AAC ATC CAG CCA GAA GAT 315 Gly Ala Asp Arg Tyr Leu Ser Ile Ser Asn Ile Gln Pro Glu Asp 80 GAA GCA ATG TAC ATC TGT GGT GTG GGT GAT ACA ATT AAG GAA CAA 360 Glu Ala Met Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln 95 TTT GTG TAT GTT TTC GGC GGT GGG ACC AAG GTC ACT GTC CTA GGT Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Val Thr Val Leu Gly 105 110 115 CAG CCC 411 Gln Pro 【0381】配列番号:66 鎖の数:二本鎖 配列の長さ:405 トポロジー:直鎖状 配列の型:核酸 配列の種類: cDNA to mRNA 配列: ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser -15-10GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser 1 5 GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT

RNA

Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser

105 110 115

CAG CCC 411

Gln Pro

【0383】配列番号:68 鎖の数:二本鎖

配列の長さ: 411 トポロジー: 直鎖状

配列の型:核酸 配列の種類: c DNA to mRNA

配列:

ATG GCC TGG ACT CCT CTC TTC TTC TTT GTT CTT CAT TGC TCA 45

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser
-15 -10 -5

GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT 90

Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser

1 5 10

GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT 135

Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser

15 20 25

CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG 180

Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu

35 40

AAG GGC CCT AAG TAC GTG ATG GAT CTT AAG CAA GAT GGA AGC CAC 225

Lys Gly Pro Lys Tyr Val Met Asp Leu Lys Gl
n Asp Gly Ser His

5 50 55

AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT 270

Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser

65 70

GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT 315

Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp

5 80 85

GAG GCT GAC TAT TAC TGT GGT GTG GGT GAT ACA ATT AAG GAA CAA 360

Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln

TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGC 405

Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

105 110 115

CAG CCC 411

Gln Pro

【0384】配列番号:69 鎖の数:二本鎖

配列の長さ: 411 トポロジー: 直鎖状

配列の型:核酸 配列の種類: c DNA to mRNA

配列:

ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA 45

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cvs Ser

-15 -10 -5

GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT 90

Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser

1 5 10

GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT 135

Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser

15 20 25

CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG 180

	Gln	His	Ser		Tyr	Thr	He	Glu	Trp	Tyr	Gln	G1n	Gln		Glu			
				30					35					40				
	AAG	GGC	CCT	AGG	TAC	CTG	ATG	GAT	CTT	AAG	CAA	GAT	GGA	AGC	CAC	2	25	
	Lys	Gly	Pro	Arg	Tyr	Leu	Met	Asp	Leu	Lys	G1n	Asp	Gly	Ser	His			
				45					5 0					55				
	AGC	ACA	GGT	GAT	GGG	ATT	CCT	GAT	CGC	TTC	TCA	GGC	TCC	AGC	TCT	2	70	
	Ser	Thr	G1y	Asp	Gly	Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser			
				60					65					70				
	GGG	GCT	GAG	CGC	TAC	CTC	ACC	ATC	TCC	AGC	CTC	CAG	TCT	GAG	GAT	3	1 5	
	G1y	Ala	Glu	Arg	Tyr	Leu	Thr	He	Ser	Ser	Leu	G1n	Ser	Glu	Asp			
				75					80					85				
	GAG	GCT	GAC	TAT	TAC	TGT	GGT	GTG	GGT	GAT	ACA	ATT	AAG	GAA	CAA	3	60	
	Glu	Ala	Asp	Tyr	Tyr	Cys	G1y	Val	Gly	Asp	Thr	Ile	Lys	G1u	G ln			
				90					95					100				
	TTT	GTG	TAC	GTG	TTC	GGC	GGA	GGG	ACC	AAA	CTG	ACC	GTC	CTA	GGC	4	05	
	Phe	Val	Tyr	Val	Phe	G1y	G1y	G1y	Thr	Lys	Leu	Thr	Val	Leu	Gly			
				105					110					115				
	CAG	CCC	4	11														
	Gln	Pro																
【0385】配列番	号:	70									の数							
配列の長さ:411										ト	ポロ	ジー	; 直	鎖状				
配列の型:核酸										配	列の	種類	; c	DN	Α	t o		mRNA
	配歹	IJ:																
	ATG	GCC	TGG	ACT	CCT	CTC	TTC	TTC	TTC	TTT	GTT	CTT	CAT	TGC	TCA	4	5	
	Met	Ala	Trp	Thr	Pro	Leu	Phe	Phe	Phe	Phe	Val	Leu	His	Cys	Ser			
					-15					-10					-5			
	GGT	TCT	TTC	TCC	CAG	CTT	GTG	CTG	ACT	CAA	TCG	CCC	TCT	GCC	TCT	9	0	
	G1y	Ser	Phe	Ser	Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser			
					1				5					10				
	GCC	TCC	CTG	GGA	GCC	TCG	GTC	AAG	CTC	ACC	TGC	ACC	TTG	AGT	AGT	1	35	
	Ala	Ser	Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser			
				15					20					25				
		CAC														1	80	
	Gln	His	Ser		Tyr	Thr	Ile	G1u	Trp	Tyr	G1n	G1n	G1n		Glu			
				30					35					40				
		GGC														2	25	
	Lys	G1y	Pro		Tyr	Val	Met	Asp		Lys	Gln	Asp	Gly		His			
				45					5 0					55		_		
		ACA					_									2	70	
	Ser	Thr	Gly		Gly	He	Pro	Asp	_	Phe	Ser	Gly	Ser		Ser			
	000	0.00	0.4.0	60	m . c	omo	100	4 m C	65	100	omo	010	m om	70	G 4 W	0	1.5	
		GCT			_	_				_	_		_			3	15	
	Gly	Ala	Glu		Tyr	Leu	Ihr	He		Ser	Leu	GIn	Ser		Asp			
	CAC	COT	CAC	75 TAT	TA C	TOTAL	com	OTO.	80 CCT	CAT	101	ATOTO	440	85	CAL	0	e o	
		GCT														3	60	
	ulu	Ala	ASP		ıyr	Uys	ыу	val		ASP	ınr	116	Lys		uln			
	ጥጥ	CTC	ጥልር	90 crc	ጥጥረን	ccc	CCA	ccc	95	A A A	CTC	ACC	ርጥር	100	ccc		ΛE	
		GTG Vo.1	_							_	_			_		4	05	
	тпе	Val	1yr 05	val	тпе	atà			1111	LyS	Leu		vал 15	ren	ату			
		1,	<i>30</i>				11	·				1.	·					

 ${\tt Gln\ His\ Ser\ Thr\ Tyr\ Thr\ Ile\ Glu\ Trp\ Tyr\ Gln\ Gln\ Gln\ Pro\ Glu}$

Gln Pro

 【0386】配列番号:71
 鎖の数:二本鎖

 配列の長さ:411
 トポロジー:直鎖状

 配列の型:核酸
 配列の種類:cDNA to mRNA

配列:

ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA 45 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser -15 -10 -5 GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT 90 Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser 1 5 10

GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT 135
Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser

15 **20** 25

CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG

180

Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Pro Glu

30 35 40

AAG GGC CCT AAG TAC CTG ATG GAT CTT AAG CAA GAT GGA AGC CAC 225 Lys Gly Pro Lys Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His

45 50 55

AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT 270 Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser

60 65 70

GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT $$\tt 315$$ Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp

75 80 85
GAG GCT GAC TAT ATC TGT GGT GTG GGT GAT ACA ATT AAG GAA CAA 36

405

Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln

90 95 100

TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGC

Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

105 110 115

CAG CCC 411

Gln Pro

【0387】配列番号:72鎖の数:二本鎖配列の長さ:411トポロジー:直鎖状

配列の型:核酸 配列の種類:cDNA to mRNA

配列:

ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA 45

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser

-15 -10 -5

GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT 90
Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser

GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT $\,$ 135 $\,$

Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser

CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG 180 Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Pro Glu

				30					35					40			
											CAA					225	
	Lys	Gly	Pro		Tyr	Leu	Met	Asp		Lys	Gln	Asp	Gly		His		
	400			45		4 mm	0.00	m	50	mm o	ma.	~~~	maa	55	m om	250	
											TCA					270	
	Ser	Thr	GLy		GLy	11e	Pro	Asp		Phe	Ser	GLy	Ser		Ser		
	000	0.00	010	60		omo	100	1 mc	65	100	omo	010	mom	70	G 4 (D)	915	
											CTC					315	
	Gly	Ala	Glu	_	Tyr	Leu	Thr	11e		Ser	Leu	GIN	Ser		Asp		
	ava	COT	CAC.	75 TAT	4 m/C	Tr.Com	COT	arra	80	CAT	404	A CO CO	4.4.0	85	044	0.00	
											ACA					360	
	GIU	Ala	Asp		11e	Cys	GIY	vai		Asp	Thr	11e	Lys		GIN		
	ጥጥጥ	ርጥር	TAC	90 crc	ጥጥር	ccc	CCA	ccc	95	A A A	CTC	ACC	ርጥር	100	ccc	405	
											CTG					405	
	rne	vai	ıyr		rne	GIY	ыу	GIA		Lys	Leu	Inr	vai		GIY		
	CAC	ccc	4	105					110					115			
		CCC	4.	11													
【0388】配列番		Pro								绀	の数	. –	未绌				
	7 ;	13									ポロ						
配列の長さ: 411 配列の型:核酸											かり 列の					to mRN2	۸.
配列矽垒,核核	配歹	ı .								EL.	رەربور	7里天只	, с	DN	Α	to mRN2	1
			TCC	АСТ	ССТ	СТС	TTC	TTC	TTC	ттт	GTT	СТТ	САТ	TGC	TCA	45	
											Val					40	
	Met	nia	пр	1 111	-15	Leu	Tile	THE	THE	-10	*41	Lea	1113	0,5	-5		
	GGT	ТСТ	TTC	TCC		CTT	GTG	CTG	ACT		TCG	CCC	тст	GCC		90	
											Ser						
					1				5					10			
	GCC	TCC	CTG	GGA	GCC	TCG	GTC	AAG	СТС	ACC	TGC	ACC	TTG	AGT	AGT	135	
	Ala	Ser	Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser		
				15					20					25			
	CAG	CAC	AGT	ACG	TAC	ACC	ATT	GAA	TGG	TAT	CAG	CAG	CAG	CCA	GAG	180	
	Gln	His	Ser	Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu		
				30					35					40			
	AAG	GGC	CCT	AAG	TAC	GTG	ATG	GAT	CTT	AAG	CAA	GAT	GGA	AGC	CAC	225	
	Lys	Gly	Pro	Lys	Tyr	Val	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His		
				45					50					55			
	AGC	ACA	GGT	GAT	GGG	ATT	CCT	GAT	CGC	TTC	TCA	GGC	TCC	AGC	TCT	270	
	Ser	Thr	G1y	Asp	Gly	Ile	Pro	Asp	Arg	Phe	Ser	G1y	Ser	Ser	Ser		
				60					65					70			
	GGG	GCT	GAG	CGC	TAC	CTC	ACC	ATC	TCC	AGC	CTC	CAG	TCT	GAG	GAT	315	
	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	He	Ser	Ser	Leu	G1n	Ser	Glu	Asp		
				75					80					85			
	GAG	GCT	GAC		ATC	TGT	GGT	GTG	GGT	GAT	ACA	ATT	AAG	GAA	CAA	360	
				TAT		_					ACA Thr		_			360	
				TAT		_							_			360	
	Glu	Ala	Asp	TAT Tyr 90	Ile	Cys	G1y	Val	G1y 95	Asp		Ile	Lys	Glu 100	G1n	360 405	
	Glu TTT	Ala GTG	Asp TAC	TAT Tyr 90 GTG	Ile TTC	Cys GGC	G1y GGA	Val	G1y 95 ACC	Asp AAA	Thr	Ile ACC	Lys GTC	Glu 100 CTA	G1n GGC		

CAG CCC 411

Gln Pro 【0389】配列番号:74 鎖の数:二本鎖 配列の長さ:411 トポロジー:直鎖状 配列の型:核酸 配列の種類: cDNA to mRNA 配列: ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser -15-10GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT 90 Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser 5 GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT 135 Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser 20 CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG -180Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu 35 AAG GGC CCT AGG TAC GTG ATG GAT CTT AAG CAA GAT GGA AGC CAC 225 Lys Gly Pro Arg Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His 45 50 AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT 270 Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser 65 GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT 315 Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp 75 80 GAG GCT GAC TAT ATC TGT GGT GTG GGT GAT ACA ATT AAG GAA CAA 360 Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln

90 95

TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGC Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

105 110

CAG CCC 411

Gln Pro

【0390】配列番号:75 トポロジー:直鎖状 配列の長さ:34 配列の種類:ペプチド

配列の型:アミノ酸

配列:

Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile 10 Gln Asp Leu Arg Arg Phe Phe Leu His His Leu Ile Ala Glu

Ile His Thr Ala

【図面の簡単な説明】 【図5】抗体結合活性の測定結果を示す図である。 【図1】本発明の抗体の模式図である 【図6】抗体結合活性の測定結果を示す図である。 【図2】CDR-グラフティングの概要を示す図であ 【図7】抗体結合活性の測定結果を示す図である。 【図8】抗体結合活性の測定結果を示す図である。 【図3】 V領域のFR及びCDRの評価を示す図であ 【図9】抗体結合活性の測定結果を示す図である。 【図10】抗体結合活性の測定結果を示す図である。

【図4】抗体結合活性の測定結果を示す図である。 【図11】抗体結合活性の測定結果を示す図である。 【図12】ヒト型化抗体の中和活性を示す図である。

【図13】ヒト型化抗体の中和活性を示す図である。

【図14】ヒト型化抗体の中和活性を示す図である。

【図15】高カルシウム血症モデル動物に対する本発明 の抗体の効果を示す図である。

【図16】高カルシウム血症モデル動物に対する本発明 の抗体の効果を示す図である。

【図17】高カルシウム血症モデル動物に対する本発明 の抗体の効果を示す図である。

【図18】高カルシウム血症モデル動物に対する本発明 の抗体の効果を示す図である。

【図19】センサーチップへのPTHrP の固定化のセンサーグラムを示す図である。

【図20】本発明の抗体の速度論的解析結果を示す図である。

【図21】本発明の抗体の速度論的解析結果を示す図で ある

【図22】本発明の抗体の速度論的解析結果を示す図である。

【図23】本発明の抗体の速度論的解析結果を示す図である。

【図24】本発明の抗体の速度論的解析結果を示す図である。

【図25】本発明のヒト型化抗体についてリン排泄率に 及ぼす影響を試験した結果を示す図である。

【図26】本発明のヒト型化抗体について血漿中リン濃度濃度に及ぼす影響を試験した結果を示す図である。

【図27】高カルシウム血症マウスに抗PTHrP抗体を投与した後の外見上の臨床諸症状を観察した結果を示す写真である(生物の形態)。

【図28】高カルシウム血症マウスに抗PTHrP抗体を投与した後の外見上の臨床諸症状を観察した結果を示す写真である(生物の形態)。

【図29】高カルシウム血症モデルを用いて、抗PTH r P抗体投与後の自発運動量の経日変化を、対照群(生理食塩水投与)と比較した図である。

【図30】高カルシウム血症モデルを用いて、抗PTH r P抗体投与後の体温の経日変化を、対照群(生理食塩 水投与)と比較した図である。

【図31】高カルシウム血症モデルを用いて、抗PTH r P抗体投与後の血液 p Hの経日変化を、対照群(生理食塩水投与)と比較した図である。

【図1】

【図2】

▽領域		-		
FR2 CDR2	FR3	FR4	プラスミド	活性
н	m	m	h/m MBC1L(\(\lambda\)	-
m	Н	Н	m/h MBC1L(λ)	+
m	m	m	hmm MBC1L(\(\lambda\)	+
Н	m	m	mhm MBC1L()	_
	FR2 CDR2 H m	FR2 FR3 CDR2 CDR3 H m M H m m	FR2 FR3 FR4 CDR2	FR2 FR3 FR4 CDR2 CDR3 プラスミド H m m h/m MBC1L(え) m H H m/h MBC1L(え) m m h m h m MBC1L(え)

H:ヒト抗体のFR m:マウス抗体のFR

【図5】 【図4】 抗原結合活性の測定 抗原結合活性の測定 0.8 0.6 0.6 O.D. 405/620 O.D. 405/620 0.4 0.2 0.2 0.0 .0.0 L 100 1000 100 1000 抗体濃度 (ng/ml) 抗体濃度(ng/mi)

【図6】 【図7】

【図10】

【図12】

ヒト型化抗 PTHrP(1-34) 抗体の中和活性 250 200 c-AMP濃度(pmole/ml) 150 – hMBCj hMBC m 100 - hMBC o - hMBC r 50 -- chMBC 423-57-137-1 #23-57 0 10.00 1.00 抗体濃度(μg/ml)

【図13】

【図14】 【図25】

ヒト型化抗PTHrP(1-34)抗体の中和活性

【図15】

高カルシウム血症モデル動物(ヒト麻臓癌PAN-7胆癌ヌードマウス) に対するキメラ抗体およびヒト型化抗体の効果

【図16】

高カルシウム血症モデル動物 (ヒト膵臓瘍PAN-7胆癌ヌードマウス) に対するキメラ抗体およびとト型化抗体の効果

【図17】

高カルシウム血症モデル動物(ヒト膵臓癌PAN-7担癌 ヌードマウス)に対するキメラ抗体およびヒト型化抗体の効果

【図18】

高カルシウム血症モデル動物(ヒト肺癌LC-6-JCK担癌 ヌードマウス)に対するキメラ抗体およびヒト型化抗体の効果

【図19】

Fc	Time	Window	AbsResp	SD	Slape	Baseline	RelResp	ld
7	368.5	5.0	11784.0	0.17	0,07	Yes	0	pre-NHS+EDC
2	1621.5	5.0	12157.3	2.29	-1.22	Yes	373.2	NHS+EDC-100ul
	2965.5	5.0	12504.9	1,36	-0.71	No		PDEA-100ul
-	3529.5	5.0	14058,5	8,34	-4.45	No	1901.3	(1-34+C)Sug/ml-10ul-pH5.0
	5545.5	5.0	12423.6	2.08	-1,10	No	256.3	Cys/NaCl-100ul
_	5803.5	5.0	12396.6	0,28	-0.13	No	239.3	Gly/HCL10ul
	6062.5	5.0	12383 6	0.13	0.00	No	225.4	10mM-HCI-10ul

センサーチップへの PTHrP(1-34+C)の固定化のセンサーグラム

MBC センサーグラム重ね合わせ 【図21】

3F5 センサーグラム重ね合わせ

chMBC センサーグラム重ね合わせ

hMBCm センサーグラム重ね合わせ

hMBCq センサーグラム重ね合わせ

【図26】

血素中リン濃度に及ぼす影響

【図27】 【図28】

【図29】

自発運動量に及ぼす影響

600
100
200
24681012141618
日数

体温に及ぼす影響

【図31】

血液pHに及ぼす影響

【手続補正書】

【提出日】平成9年10月13日

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】図27

【補正方法】変更

【補正内容】

【図27】

図面代用写真

【手続補正4】 【補正対象書類名】図面 【補正対象項目名】図28 【補正方法】変更 【補正内容】 【図28】

図面代用写真

-7 1-7	11	L ~°	ージの	を書き
- / U		r ~ -	ーランひ.	をは

(51) Int. Cl. ⁶		識別記号	FΙ		
C12N	1/21		C 1 2 N	1/21	
	5/10		C 1 2 P	21/08	
	15/02		C 1 2 N	5/00	В
	15/09	ZNA		15/00	C
C 1 2 P	21/08				ZNAA
// A61K	38/00	ADD	A 6 1 K	37/02	ADD
(C 1 2 N	1/21				
C 1 2 R	1:19)				
(C 1 2 N	5/10				
C 1 2 R	1:91)				

(C 1 2 P 21/08 C 1 2 R 1:91)