Learning rate = 0.1

Epsilon = 1 (this decays each timestep i.e. reduces slowly towards the value 0)

 $Discount\ Factor = 0.99$

Environment

S (*)	1	0
0	-10	10

Initialise Q-Table (Q-Values) && 4 unique actions (up, right, down, left)

For now, our Q-table is useless; we need to train our Q-function using the Q-Learning algorithm

Training Timestep 1:

Choose an action using the Epsilon Greedy Strategy (Epsilon = 1, it will be decayed with time i.e. reduced) Because epsilon is big (= 1.0), We can take a random action.

10

0

0

0

LEFT

0

0

0

0

0

0

Moving to the right gets a reward of 1

We then need to update our q-value for this State - Action pair i.e. moving to the right while at the starting state.

	UP	RIGHT	DOWN	LEFT
s	0	0	0	0

To make this update, we use the Q-learning formula

Therefore:

• Q(S, Right) is given by: 0 + 0.1 * [1 + 0.99 * 0 - 0] = 0.1

	UP	RIGHT	DOWN	LEFT
s	0	0.1	0	0

Eq. from above

the current max == 0

Training Timestep 2:

We first decay the epsilon slightly i.e. from 1 to 0.99
Because epsilon is still high (= .99), We can take another random action. e.g moving **down**

Moving to the down gets a reward of -10

We then need to update our q-value for this State - Action pair i.e. moving to the right while at the starting state.

	UP	RIGHT	DOWN	LEFT
S	0	0.1	0	0
1	0	0	0	0

Therefore:

• Q(1, Down) is given by: 0 + 0.1 * [-10 + 0.99 * 0 - 0] = -1

	UP	RIGHT	DOWN	LEFT
S	0	0.1	0	0
1	0	0	-1	0