CSC 212 Practice Midterm Exam 1A

Problems marked with (*) are challenging and problems marked with (**) are hard

Your Name:			
rour mame:			

1. (10 points) Write a function T(n) that counts the number of multiplications performed by the following function foo on an input of size $n \ge 1$. You do not need to find a closed form for T(n).

```
int foo(int n) {
   int result = 1;
   for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= i; ++j)
            result = result * i * j;
   return result;
}</pre>
```


- 2. (10 points) Which of the following asymptotic descriptions of $n^2 + 3n \lg n$ are correct?
 - $\bigcirc \mathcal{O}(n^2)$
 - $\bigcirc \mathcal{O}(n \lg n)$
 - $\bigcirc \mathcal{O}(n)$
 - $\bigcirc \Omega(n^2)$
 - $\bigcirc \Omega(n \lg n)$
 - $\bigcirc \Omega(n)$
 - $\bigcirc \Theta(n^2)$
 - $\bigcirc \Theta(n \lg n)$
 - $\bigcirc \Theta(n)$

3.	(10 points) What is the growth rate of the following function?
	$2n + 3\lg n + 5$
	○ Constant
	○ Logarithmic
	○ Linear
	○ Linearithmic
	O Quadratic
	O Cubic
	(Exponential
	(10 points) (*) Suppose algorithm A always runs in $\Theta(n)$ time and algorithm B always runs in $\Theta(\lg n)$
	time. Which algorithm should you prefer for small values of n ? Which algorithm should you prefer for large values of n ? Justify your answer.
	(10 points) Suppose v is a grow-by-doubling dynamic array with size 0 and capacity 1. What is the capacity of v after 5 calls to $push_back$?

6. (10 points) What is the output of the following program?

```
queue<int> q;
q.push(0);
q.push(1);
q.push(2);
q.pop();
cout << q.front() << '-';
q.pop();
cout << q.front();</pre>
```

7. (10 points) (*) Give a Θ -bound on the time complexity of the following program. Justify your answer.

```
int baz(const vector<int>& v) {
    stack<int> s;
    int result = 0;
    for (int i = 0; i < v.size(); i++) {
        while (!s.empty() && v[i] >= v[s.top()])
            s.pop();
        int x = i + 1;
        if (!s.empty())
            x = i - s.top();
        result = max(result, x);
        s.push(i);
    }
    return result;
}
```

(10 points) What are the contents of ${\tt v}$ after this program executes?
<pre>vector <int> v{0, 1, 4, 2, 3}; // min-heap pop_heap(v.begin(), v.end()); v.pop_back(); v.push_back(1) push_heap(v.begin(), v.end())</int></pre>
(10 points) (**) Give an input of size n such that heapsort sorts it in linear time. Justify your answer.

(10 points) (*) You are a software engineer working on a cloud computing platform. Users submit computational jobs to the system, and the system executes them on a server. A job is a unit of work like running a simulation or processing a dataset. Jobs arrive in the order that customers submit them. Some jobs are marked as urgent , and should be executed as soon as possible.
For example, suppose jobs are represented by letters, and the system has two servers:
1. Job A (not urgent) arrives, Job B (not urgent) and Job C (not urgent) arrive.
• Server 1 executes A.
• Server 2 executes B.
2. Job D (urgent), Job E (not urgent) and Job F (urgent) arrive.
• Server 1 executes D.
• Server 2 executes F.
3. No new jobs arrive.
• Server 1 executes C.
• Server 2 executes E.