Metaheurystyki Lista 3 Simulated Annealing

Badania dokonano na pliku hard_4 na 10 000 generacjach i 25 sąsiadach.

Test 1
Temperatura startowa – 30 000
Mnożnik temperatury – 0.9997

Bazując na wykresie doszedłem do wniosku, że działanie heurystyki będzie lepiej widoczne po zwiększeniu prawdopodobieństwa wybrania gorszego osobnika, więc zwiększyłem temperaturę początkową.

Test 2
Temperatura startowa – 50 000
Mnożnik temperatury – 0.9997

Pomimo, że wyniki końcowe są gorsze, na wykresie wyraźniej widać, że wartości spadają i rosną. Żeby polepszyć wynik zmniejszyłem mnożnik temperatury, żeby szybciej spadała.

Test 3
Temperatura startowa – 50 000
Mnożnik temperatury – 0.99945

Wyraźnie widać po wykresie 1 (greedy), że wartości dużo szybciej zbiegają do wartości najlepszej, jednocześnie schodząc i wybierając częściej gorsze osobniki na początku. Na wykresie zaczynającym od osobnika losowego, wyniki też się poprawiły, choć na wykresie nie widać spadków wartości bieżącej.

Test 4
Temperatura startowa – 30 000
Mnożnik temperatury – 0.99945

Powrócenie do niższej temperatury startowej i zachowanie niższego mnożnika pozwoliło osiągnąć lepsze wyniki w obu wykresach, pomimo, że widoczność działania heurystyki zanika.

Test 5
Temperatura startowa – 20 000
Mnożnik temperatury – 0.99945

Jeszcze większe zmniejszenie temperatury startowej doprowadziło do najlepszych wyników ze wszystkich testów. Postanowiłem więc zwiększyć liczbę generacji i spróbować na jednym z poprzednich ustawień

Test 6
Temperatura startowa – 50 000
Mnożnik temperatury – 0.9997
Liczba generacji – 20 000

Po zwiększeniu ilości generacji oba wykresy osiągnęły najlepsze wyniki, a wykres zaczynający się od greedy, osiąga lepszy wynik niż samo greedy. Osobnikowi losowemu niewiele do tego brakło.

Tabele

	Alg. Losowy [10k]		Alg. Zachłanny[439]			
Best	Worst	Avg	Best	Worst	Avg	
-17 598 042,31	-20 524 090,71	-19 045 492,77	-1 272 283,56	-1 462 872,93	-1 356 906,54	

Wartości przedstawione poniżej są dla osobnika losowego

Lp	Ustawienia			Simulated Annealing					
	Generacje	Temperatura	Mnożnik	Best	Worst	Avg	Std		
1	10 000	30 000	0.9997	-1 907 755,80	-2 269 976,35	-2 023 353,11	55 186,80		
2	10 000	50 000	0.9997	-2 323 302,36	-2 692 760,60	-2 413 650,54	47 046,04		
3	10 000	50 000	0.99945	-1 470 777,86	-1 786 196,68	-1 517 427,68	28 416,24		
4	10 000	30 000	0.99945	-1 459 286,50	-1 766 027,35	-1 500 352,61	29 699,05		
5	10 000	20 000	0.99945	-1 290 063,63	-1 768 653,66	-1 401 843,28	68 719,01		
6	20 000	50 000	0.9997	-1 278 221,44	-1 538 703,76	-1 301 909,71	25 088,49		